

SimS: A Simplification of SiGamal^a

Isogeny-Based Cryptography

Tako Boris Fouotsa

July 2021

^aSee full paper on eprint: https://eprint.iacr.org/2021/218

Results

- An IND-CCA attack on a variant of SiGamal suggested by Moriya et al. for IND-CCA security.
- A new IND-CCA secure PKE: SimS.
- SimS is more efficient, and provides more compact keys and ciphertexts compared to SiGamal.

Outline

Elliptic curves and isogenies

CSIDH

Public Key Encryption schemes

SiGamal and C-SiGamal

On the IND-CCA security of SiGamal

 SimS

- Montgomery curves: $E: BY^2 = X^3 + AX^2 + X$.
- E has an abelian group structure.
- Isogenies: rational maps between elliptic curves that are morphism respect to the group structure. They are given by Velu formulas.
- Over finite field: E is either **ordinary** (End(E)) is an order in a quadratic imaginary field) or **supersingular**, (End(E)) is a maximal order in a quaternion algebra).
- Seperable isogeny: degree is equal to the size of its kernel.

 They are easy to compute when their kernel has smooth order.

Let $G = \langle g \rangle$ be a cyclic group of prime order n.

g

Hard problems

DLP: Given g and g^a , compute a.

CDH: Given g, g^a and g^b , compute g^{ab} .

DDH: Given g, g^a , g^b . Find a polynomial time algorithm that succeeds in distinguishing a random group element $h \in G$ from g^{ab} with a probability considerably greater than 1/2.

Hard problems

DLP: Given g and g^a , compute a.

CDH: Given g, g^a and g^b , compute g^{ab} .

DDH: Given q, q^a , q^b . Find a polynomial time algorithm that succeeds in distinguishing a random group element $h \in G$ from q^{ab} with a probability considerably greater

than 1/2.

Bad news: Quantum algorithm by Peter Shor (1994) can compute discrete logs in polynomial time using a large scale quantum computer.

Let S_p be the set of supersingular elliptic curves defined over \mathbb{F}_p where p is a well chosen prime. Let $E \in S_p$, then

$$\pi: \quad E \quad \to \quad E$$
$$(x,y) \quad \mapsto \quad (x^p, y^p)$$

is an endomorphism of E defined over \mathbb{F}_p and $\mathbb{Z}[\pi] \subset End_{\mathbb{F}_p}(E)$. The class group $\operatorname{cl}(\mathbb{Z}[\pi])$ of $\mathbb{Z}[\pi]$ acts freely and transitively on \mathcal{S}_p . The action of an ideal class $[\mathfrak{a}]$ of smooth norm N on a curve E translates into an isogeny $\phi_{[\mathfrak{a}]}: E \to [\mathfrak{a}]E$ of smooth degree N.

Replace G by S_p and the exponentiation by the action of the class group $\operatorname{cl}(\mathbb{Z}[\pi])$ on S_p .

 E_0

CSSIP: Given E_0 and $[\mathfrak{a}]E_0$, compute $[\mathfrak{a}]$

CSSICDH: Given E_0 , $[\mathfrak{a}]E_0$ and $[\mathfrak{b}]E_0$, compute $[\mathfrak{b}][\mathfrak{a}]E_0$ CSSIDDH: Given E_0 , $[\mathfrak{a}]E_0$, $[\mathfrak{b}]E_0$. Find a polynomial time algorithm that succeeds in distinguishing a random curve E from $[\mathfrak{b}][\mathfrak{a}]E_0$ with a probability considerably greater than 1/2.

Public Key Encryption schemes (PKE)

- Used for message confidentiality.
- Made-up of three PPT algorithms:
 - KeyGeneration: which generates a pair of keys (sk, pk) for a user Alice.
 - Encryption: which computes a ciphertext c when given a public key pk and a plaintext message m.
 - Decryption: which recovers a plaintext m when given the secret key sk and a ciphertext c of m.
- Needs to fulfil:
 - Correctness: Decryption(Encryption(m)) = m.
 - **OW-CPA secure**: no PPT adversary should be able to recover **m** from *c* and **pk** without the knowledge of **sk**.

- Needs to fulfil:
 - **Correctness**: Decryption(Encryption(m)) = m.
 - **OW-CPA secure**: no PPT adversary should be able to recover **m** from *c* and **pk** without the knowledge of **sk**.
- Higher security requirements:
 - IND-CPA secure: no PPT adversary who chooses to plaintexts m_0 and m_1 should be able to distinguish if a ciphertext of a random m_b is that of m_0 or m_1 .
 - IND-CCA secure: no PPT adversary having access to a
 decryption oracle who chooses to plaintexts m₀ and m₁
 should be able to distinguish if a ciphertext c of a random
 m_b (b = 0 or b = 1) is that of m₀ or m₁.

A PKE from CSIDH

- KeyGeneration: A starting curve E_0 is given. Choose a secret key $\mathsf{sk} = [\mathfrak{a}]$ and compute the public key $\mathsf{pk} = [\mathfrak{a}]E_0$.
- Encryption: Given a plaintext m, choose a random ideal $[\mathfrak{b}]$, the ciphertext is $c = ([\mathfrak{b}]E_0, c_1)$ where $c_1 = A_{[\mathfrak{a}][\mathfrak{b}]E_0} \oplus m$.
- Decryption: Given a ciphertext c = (E₃, c₁) and the secret key [a], compute [a]E₃ and recover m = A_{[a]E₃} ⊕ c₁.

A PKE from CSIDH

- OW-CPA secure? Yes.
- IND-CPA secure? No.
 Why? Supersingular curves are distinguishable from random strings. If a ciphertext c is that of m₀, then c₁ ⊕ m₁ is unlikely to be a supersingular curve.
- Any repair? **Yes**: use hash functions and set $c_1 = H(A_{[\mathfrak{a}][\mathfrak{b}]E_0}) \oplus m$. (Or other generic transforms...).
- Any repair without using hash functions? Yes: SiGamal and C-SiGamal

 E_0, P_0

$$E_0, P_0 \qquad \qquad \mathbf{a} \qquad \qquad E_1 = [\mathbf{a}]E_0, \\ P_1 = \mathbf{a}P_0$$

$$sk = \mathfrak{a}, \quad pk = (E_1, P_1),$$

$$\mathsf{sk} = \mathfrak{a}, \quad \mathsf{pk} = (E_1, P_1), \quad \ \mathsf{c} = (E_3, P_3, E_4, P_4).$$

$$sk = a$$
, $pk = (E_1, P_1)$, $c = (E_3, P_3, E_4, P_4)$.

Too large ciphertexts?

$$sk = \mathfrak{a}, \quad pk = (E_1, P_1),$$

$$sk = a$$
, $pk = (E_1, P_1)$, $c = (E_3, P_3)$.

$$sk = a$$
, $pk = (E_1, P_1)$, $c = (E_3, P_3)$.

OW-CPA security: P-CSSICDH assumption

Given E_0 , P_0 , $[\mathfrak{a}]E_0$, $\mathfrak{a}P_0$, $[\mathfrak{b}]E_0$, $\mathfrak{b}P_0$ and $[\mathfrak{a}][\mathfrak{b}]E_0$, no PPT adversary can return $[\mathfrak{a}][\mathfrak{b}]P_0$ with non negligible probability.

IND-CPA security: P-CSSIDDH assumption

Given E_0 , P_0 , $[\mathfrak{a}]E_0$, $\mathfrak{a}P_0$, $[\mathfrak{b}]E_0$, $\mathfrak{b}P_0$ and $[\mathfrak{a}][\mathfrak{b}]E_0$, no PPT adversary succeeds in distinguishing a random point $P \in [\mathfrak{a}][\mathfrak{b}]E_0(\mathbb{F}_p)[2^r]$ from $[\mathfrak{b}][\mathfrak{a}]P_0$ with a probability non negligibly greater than 1/2.

On the IND-CCA security of SiGamal and C-SiGamal

SiGamal and C-SiGamal are not IND-CCA secure

Given a ciphertext $([\mathfrak{b}]E_0,\mathfrak{b}P_0,[\mathfrak{b}][\mathfrak{a}]E_0,[2\mathsf{m}+1]\mathfrak{b}\mathfrak{a}P_0)$ for $\mathsf{m},$ $([\mathfrak{b}]E_0,\mathfrak{b}P_0,[\mathfrak{b}][\mathfrak{a}]E_0,[3][2\mu+1]\mathfrak{b}\mathfrak{a}P_0)$ is a ciphertext for $3\mathsf{m}+1$ since $3(2\mathsf{m}+1)=2(3\mathsf{m}+1)+1$. A similar reason applies for C-SiGamal

A variant that could be IND-CCA secure?

Moriya et al. suggested removing the curve $[\mathfrak{b}][\mathfrak{a}]E_0$ from the ciphertext. Hence the ciphertext would become $([\mathfrak{b}]E_0, \mathfrak{b}P_0, [2m+1]\mathfrak{ba}P_0)$

The variant is not IND-CCA secure

A simple IND-CCA attack

We prove that given a ciphertext ($[\mathfrak{b}]E_0$, $\mathfrak{b}P_0$, $[2\mathsf{m}+1]\mathfrak{b}\mathfrak{a}P_0$) for m , ($[\mathfrak{b}]E_0$, $[3^{-1}]\mathfrak{b}P_0$, $[2\mathsf{m}+1]\mathfrak{b}\mathfrak{a}P_0$) is a ciphertext for $3\mathsf{m}+1$

Why is this attack successful?

Because the ciphertext contains a curve and one of its points.

Can we avoid it?

May be by making sure that when a curve is part of the ciphertext, then none of its points is, and the other way around.

ر $_{14/20}$

Replace $\mathfrak{ab}P_0$ in SiGamal by the canonical point $P_{E_4} \in E_4 = [\mathfrak{a}][\mathfrak{b}]E_0$. A ciphertext for \mathfrak{m} is $([\mathfrak{b}]E_0, P_4 = [2\mathfrak{m} + 1]P_{[\mathfrak{a}][\mathfrak{b}]E_0})$. In order to recover \mathfrak{m} , Alice computes $[\mathfrak{a}][\mathfrak{b}]E_0$ and $P_{[\mathfrak{a}][\mathfrak{b}]E_0}$, solves a discrete logarithm instance between P_4 and $P_{[\mathfrak{a}][\mathfrak{b}]E_0}$.

Replace $\mathfrak{ab}P_0$ in SiGamal by the canonical point $P_{E_4} \in E_4 = [\mathfrak{a}][\mathfrak{b}]E_0$. A ciphertext for \mathfrak{m} is $([\mathfrak{b}]E_0, P_4 = [2\mathfrak{m} + 1]P_{[\mathfrak{a}][\mathfrak{b}]E_0})$. In order to recover \mathfrak{m} , Alice computes $[\mathfrak{a}][\mathfrak{b}]E_0$ and $P_{[\mathfrak{a}][\mathfrak{b}]E_0}$, solves a discrete logarithm instance between P_4 and $P_{[\mathfrak{a}][\mathfrak{b}]E_0}$.

$$E_0 \qquad \qquad \boxed{[a]} \qquad \qquad E_1 = [a]E_0$$

Secret Key: $sk = [\mathfrak{a}]$, Public Key: $pk = E_1$,

 $c = (E_3, P_4).$

Replace $\mathfrak{ab}P_0$ in SiGamal by the canonical point $P_{E_4} \in E_4 = [\mathfrak{a}][\mathfrak{b}]E_0$. A ciphertext for \mathfrak{m} is $([\mathfrak{b}]E_0, P_4 = [2\mathfrak{m} + 1]P_{[\mathfrak{a}][\mathfrak{b}]E_0})$. In order to recover \mathfrak{m} , Alice computes $[\mathfrak{a}][\mathfrak{b}]E_0$ and $P_{[\mathfrak{a}][\mathfrak{b}]E_0}$, solves a discrete logarithm instance between P_4 and $P_{[\mathfrak{a}][\mathfrak{b}]E_0}$.

Secret Key: sk = [a], Public Key: $pk = E_1$, Ciphertext:

 $c = (E_3, P_4).$

Replace $\mathfrak{ab}P_0$ in SiGamal by the canonical point $P_{E_4} \in E_4 = [\mathfrak{a}][\mathfrak{b}]E_0$. A ciphertext for \mathfrak{m} is $([\mathfrak{b}]E_0, P_4 = [2\mathfrak{m} + 1]P_{[\mathfrak{a}][\mathfrak{b}]E_0})$. In order to recover \mathfrak{m} , Alice computes $[\mathfrak{a}][\mathfrak{b}]E_0$ and $P_{[\mathfrak{a}][\mathfrak{b}]E_0}$, solves a discrete logarithm instance between P_4 and $P_{[\mathfrak{a}][\mathfrak{b}]E_0}$.

Secret Key: sk = [a], Public Key: $pk = E_1$, Ciphertext:

Could $[2m + 1]P_{[\mathfrak{a}][\mathfrak{b}]E_0}$ or its x-coordinate leak too much about $[\mathfrak{a}][\mathfrak{b}]E_0$?

We make use of a randomizing function $f_E : \mathbb{F}_p \to \mathbb{F}_p$ satisfying the following conditions:

- f_E is bijective, f_E and $g_E = f_E^{-1}$ can be efficiently computed when E is given;
- an adversary can not distinguish $f_E(x)$ from a random element of \mathbb{F}_p ;
- an adversary can not compute $f_E(R(x))$ from $f_E(x)$ where R(x) is a non-identical rational function.

Could $[2m + 1]P_{[\mathfrak{a}][\mathfrak{b}]E_0}$ or its x-coordinate leak too much about $[\mathfrak{a}][\mathfrak{b}]E_0$?

We make use of a randomizing function $f_E : \mathbb{F}_p \to \mathbb{F}_p$ satisfying the following conditions:

- f_E is bijective, f_E and $g_E = f_E^{-1}$ can be efficiently computed when E is given;
- an adversary can not distinguish $f_E(x)$ from a random element of \mathbb{F}_p ;
- an adversary can not compute $f_E(R(x))$ from $f_E(x)$ where R(x) is a non-identical rational function.

Example: $f_E: x \mapsto x \oplus A_E$.

Secret Key: $\mathsf{sk} = [\mathfrak{a}]$, Public Key: $\mathsf{pk} = E_1$, Ciphertext: $\mathsf{c} = (E_3, x')$.

IND-CPA security

Theorem: If CSSIDDH holds, then SimS is IND-CPA secure.

IND-CCA security

A knowledge of Exponent assumption: For every PPT adversary \mathcal{A} which when given a ciphertext (E_3, x') outputs a valid ciphertext $(F, y') \neq (E_3, x')$, there exists PPT adversary \mathcal{A}' which when given a ciphertext (E_3, x') outputs $([\mathfrak{b}'], F, y')$ where $(F, y') \neq (E_3, x')$ is a valid ciphertext and $[\mathfrak{b}']E_0 = F$.

Theorem: If the previous assumption holds and SimS is IND-CPA secure, then SimS is IND-CCA secure.

Summary

 $p_{128}=2^{130}\cdot\ell_1\cdots\ell_{60}-1$ where ℓ_1 through ℓ_{59} are the smallest distinct odd primes, and ℓ_{60} is 569.

 $p_{256} = 2^{258} \cdot \ell_1 \cdots \ell_{43} - 1$ where ℓ_1 through ℓ_{42} are the smallest distinct odd primes, and ℓ_{43} is 307.

	CSIDHpke	SimS	SiGamal	C-SiGamal
Private key	[a]	[a]	a	a
Size of plaintext	$\log_2 p$	r-2	r-2	r-2
Size of public key	$\log_2 p$	$\log_2 p$	$2\log_2 p$	$2\log_2 p$
Size of ciphertexts	$2\log_2 p$	$2\log_2 p$	$4\log_2 p$	$2\log_2 p$
Class group cost for p_{128}	x1.00	x1.30	x1.50	x1.50
Class group cost for p_{256}	x1.00	x2.31	x2.57	x2.57
Enc + Dec cost for p_{128}	x1.00	x1.38	x1.57	x1.65
$\mathrm{Enc} + \mathrm{Dec} \; \mathrm{cost} \; \mathrm{for} \; p_{256}$	x1.00	x2.62	x2.82	x3.17
Security	OW-CPA	IND-CCA	IND-CPA	IND-CPA

