Linear Algebra

Sartaj UI Hasan

Department of Mathematics Indian Institute of Technology Jammu Jammu, India - 181221

Email: sartaj.hasan@iitjammu.ac.in

Lecture 42 (Nov 19, 2019)

Singular Value Decomposition (SVD)

Application of SVD

- We have already discussed 3 fundamental subspaces related to a matrix $A_{m \times n}$, namely: Row A=Col A^T , Col A= Row A^T , Nul A. We now bring into picture a 4th fundamental subspace of A, namely Nul A^T .
- The utility of SVD is that it identifies orthonormal bases for all fundamental subspaces. This is shown in the diagram on the next slide.
- Here we use the following facts: $(\text{Row }A)^{\perp} = \text{Nul }A \text{ and } (\text{Col }A)^{\perp} = \text{Nul }A^{T}$ (For proof see Theorem 3 in Section 6.1 on page no 381)
- By Orthogonal Decomposition Theorem, we have: $\mathbb{R}^n = \text{Row } A \oplus \text{Nul } A \text{ and } \mathbb{R}^m = \text{Col } A \oplus \text{Nul } A^T$
- o.n.b of Row $A = \{v_1, \dots, v_r\}$, where r is the rank of the matrix A; o.n.b. of Nul $A = \{v_{r+1}, \dots, v_n\}$; o.n.b. of Col $A = \{u_1, \dots, u_r\}$; and o.n.b of Nul $A^T = \{u_{r+1}, \dots, u_m\}$

Application of SVD

