# **Exploratory Data Analysis on NYC Taxi Trip Duration Dataset**

# Importing necessary libraries

```
In [ ]:
import pandas as pd  #data processing
import numpy as np  #linear algebra

In [3]:

#data visualisation
import seaborn as sns
sns.set()
import matplotlib.pyplot as plt
%matplotlib inline

In [4]:
import datetime as dt

In [5]:
import warnings; warnings.simplefilter('ignore')
```

# Importing the Dataset

```
In [6]:
data=pd.read_csv("nyc_taxi_trip_duration.csv")
```

# **Exploring the dataset**

```
In [7]:
data.shape

Out[7]:
    (729322, 11)
```

### In [8]:

```
data.columns
```

### Out[8]:

### In [9]:

data.dtypes

### Out[9]:

| id                 | object  |
|--------------------|---------|
| vendor_id          | int64   |
| pickup_datetime    | object  |
| dropoff_datetime   | object  |
| passenger_count    | int64   |
| pickup_longitude   | float64 |
| pickup_latitude    | float64 |
| dropoff_longitude  | float64 |
| dropoff_latitude   | float64 |
| store_and_fwd_flag | object  |
| trip_duration      | int64   |
| dtype: object      |         |

### In [10]:

data.head()

### Out[10]:

|   | id        | vendor_id | pickup_datetime        | dropoff_datetime       | passenger_count | pickup_longitude |
|---|-----------|-----------|------------------------|------------------------|-----------------|------------------|
| 0 | id1080784 | 2         | 2016-02-29<br>16:40:21 | 2016-02-29<br>16:47:01 | 1               | -73.953918       |
| 1 | id0889885 | 1         | 2016-03-11<br>23:35:37 | 2016-03-11<br>23:53:57 | 2               | -73.988312       |
| 2 | id0857912 | 2         | 2016-02-21<br>17:59:33 | 2016-02-21<br>18:26:48 | 2               | -73.997314       |
| 3 | id3744273 | 2         | 2016-01-05<br>09:44:31 | 2016-01-05<br>10:03:32 | 6               | -73.961670       |
| 4 | id0232939 | 1         | 2016-02-17<br>06:42:23 | 2016-02-17<br>06:56:31 | 1               | -74.017120       |
| 4 |           |           |                        |                        |                 | <b>&gt;</b>      |

### In [11]:

```
data.isnull().sum()
```

### Out[11]:

id 0 vendor\_id 0 pickup\_datetime 0 dropoff\_datetime 0 0 passenger\_count pickup\_longitude 0 pickup\_latitude 0 dropoff\_longitude 0 dropoff\_latitude 0 store\_and\_fwd\_flag 0 trip\_duration dtype: int64

### In [12]:

### data.nunique()

#### Out[12]:

id 729322 vendor\_id 2 pickup\_datetime 709359 dropoff\_datetime 709308 passenger\_count 9 19729 pickup\_longitude pickup\_latitude 39776 dropoff\_longitude 27892 dropoff\_latitude 53579 store\_and\_fwd\_flag 2 trip\_duration 6296 dtype: int64

### In [13]:

### data.describe()

### Out[13]:

|       | vendor_id     | passenger_count | pickup_longitude | pickup_latitude | dropoff_longitude | dı |
|-------|---------------|-----------------|------------------|-----------------|-------------------|----|
| count | 729322.000000 | 729322.000000   | 729322.000000    | 729322.000000   | 729322.000000     |    |
| mean  | 1.535403      | 1.662055        | -73.973513       | 40.750919       | -73.973422        |    |
| std   | 0.498745      | 1.312446        | 0.069754         | 0.033594        | 0.069588          |    |
| min   | 1.000000      | 0.000000        | -121.933342      | 34.712234       | -121.933304       |    |
| 25%   | 1.000000      | 1.000000        | -73.991859       | 40.737335       | -73.991318        |    |
| 50%   | 2.000000      | 1.000000        | -73.981758       | 40.754070       | -73.979759        |    |
| 75%   | 2.000000      | 2.000000        | -73.967361       | 40.768314       | -73.963036        |    |
| max   | 2.000000      | 9.000000        | -65.897385       | 51.881084       | -65.897385        |    |
| 4     |               |                 |                  |                 |                   |    |

#### **Feature Creation**

```
In [14]:
data['pickup datetime']=pd.to datetime(data['pickup datetime'])
data['dropoff_datetime']=pd.to_datetime(data['dropoff_datetime'])
In [15]:
data['pickup_day']=data['pickup_datetime'].dt.day_name()
data['dropoff_day']=data['dropoff_datetime'].dt.day_name()
In [16]:
data['pickup_day_no']=data['pickup_datetime'].dt.weekday
data['dropoff_day_no']=data['dropoff_datetime'].dt.weekday
In [17]:
data['pickup_hour']=data['pickup_datetime'].dt.hour
data['dropoff_hour']=data['dropoff_datetime'].dt.hour
In [18]:
data['pickup_month']=data['pickup_datetime'].dt.month
data['dropoff_month']=data['dropoff_datetime'].dt.month
In [19]:
def time_of_day(x):
   if x in range(6,12):
        return 'Morning'
   elif x in range(12,16):
        return 'Afternoon
   elif x in range(16,22):
        return 'Evening'
   else:
        return 'Late night'
In [20]:
data['pickup timeofday']=data['pickup hour'].apply(time of day)
data['dropoff_timeofday']=data['dropoff_hour'].apply(time_of_day)
In [21]:
from geopy.distance import great_circle
In [22]:
def cal_distance(pickup_lat,pickup_long,dropoff_lat,dropoff_long):
    start_coordinates=(pickup_lat,pickup_long)
    stop_coordinates=(dropoff_lat,dropoff_long)
    return great_circle(start_coordinates,stop_coordinates).km
```

```
In [23]:
```

# **Univariate Analysis**

# **Target Variable**

### In [24]:

```
sns.histplot(data['trip_duration'],kde=False,bins=20)
```

### Out[24]:

<AxesSubplot:xlabel='trip\_duration', ylabel='Count'>



### In [25]:

```
sns.boxplot(data['trip_duration'])
```

### Out[25]:

<AxesSubplot:xlabel='trip\_duration'>



### In [26]:

```
data['trip_duration'].sort_values(ascending=False)
```

### Out[26]:

| 21813      | 1939736     |         |       |
|------------|-------------|---------|-------|
| 259437     | 86391       |         |       |
| 119185     | 86387       |         |       |
| 177225     | 86378       |         |       |
| 496391     | 86377       |         |       |
|            |             |         |       |
| 672240     | 1           |         |       |
| 102646     | 1           |         |       |
| 533760     | 1           |         |       |
| 512833     | 1           |         |       |
| 622664     | 1           |         |       |
| Name a des | in duna+ian | 1000+60 | 72022 |

Name: trip\_duration, Length: 729322, dtype: int64

### In [27]:

```
data.drop(data[data['trip_duration'] == 1939736].index, inplace = True)
```

### Vendor id

### In [28]:

```
sns.countplot(x='vendor_id',data=data)
```

### Out[28]:

<AxesSubplot:xlabel='vendor\_id', ylabel='count'>



# **Passenger Count**

```
In [29]:
```

```
data.passenger_count.value_counts()
```

### Out[29]:

```
517414
1
2
     105097
5
      38926
3
       29692
6
      24107
4
      14050
0
          33
7
           1
9
           1
```

Name: passenger\_count, dtype: int64

### In [30]:

```
sns.countplot(x='passenger_count',data=data)
```

#### Out[30]:

<AxesSubplot:xlabel='passenger\_count', ylabel='count'>



### In [31]:

```
data=data[data['passenger_count']!=0]
data=data[data['passenger_count']<=6]</pre>
```

# Store and Forward Flag

### In [32]:

```
data['store_and_fwd_flag'].value_counts(normalize=True)
```

### Out[32]:

```
N 0.994463
Y 0.005537
```

Name: store\_and\_fwd\_flag, dtype: float64

### **Distance**

```
In [33]:
```

```
data['distance'].value_counts()
Out[33]:
            2893
0.000000
0.000424
              20
              19
0.000424
0.000424
              16
0.000424
              11
0.643029
               1
1.804800
               1
0.358108
               1
0.809034
               1
               1
2.246576
Name: distance, Length: 726217, dtype: int64
In [ ]:
```

### **Trips per Day**

### In [37]:

```
figure,(ax1,ax2)=plt.subplots(ncols=2,figsize=(20,5))
ax1.set_title('Pickup Days')
ax=sns.countplot(x="pickup_day",data=data,ax=ax1)
ax2.set_title('Dropoff Days')
ax=sns.countplot(x="dropoff_day",data=data,ax=ax2)
```



### **Trips per Hour**

### In [38]:

```
figure,(ax9,ax10)=plt.subplots(ncols=2,figsize=(20,5))
ax9.set_title('Pickup Days')
ax=sns.countplot(x="pickup_hour",data=data,ax=ax9)
ax10.set_title('Dropoff Days')
ax=sns.countplot(x="dropoff_hour",data=data,ax=ax10)
```





### In [ ]:

### **Trips per Time of Day**

### In [39]:

```
figure,(ax3,ax4)=plt.subplots(ncols=2,figsize=(20,5))
ax3.set_title('Pickup Time of Day')
ax=sns.countplot(x="pickup_timeofday",data=data,ax=ax3)
ax4.set_title('Dropoff Time of Day')
ax=sns.countplot(x="dropoff_timeofday",data=data,ax=ax4)
```





### In [41]:

### Trips per month

### In [40]:

```
figure,(ax11,ax12)=plt.subplots(ncols=2,figsize=(20,5))
ax11.set_title('Pickup Month')
ax=sns.countplot(x="pickup_month",data=data,ax=ax11)
ax12.set_title('Dropoff Month')
ax=sns.countplot(x="dropoff_month",data=data,ax=ax12)
```



# **Bivariate Analysis**

### **Trip Duration per Vendor**

### In [46]:

```
sns.barplot(y='trip_duration',x='vendor_id',data=data,estimator=np.mean)
```

### Out[46]:

<AxesSubplot:xlabel='vendor\_id', ylabel='trip\_duration'>



## **Trip Duration per Store and Forward Flag**

# In [47]:

```
sns.catplot(y='trip_duration',x='store_and_fwd_flag',data=data,kind="strip")
```

### Out[47]:

<seaborn.axisgrid.FacetGrid at 0x2a31eab0520>



# **Trip Duration per passenger count**

### In [48]:

```
sns.catplot(y='trip_duration',x='passenger_count',data=data,kind="strip")
```

### Out[48]:

<seaborn.axisgrid.FacetGrid at 0x2a31f949fd0>



# **Trip Duration per hour**

### In [49]:

```
sns.lineplot(x='pickup_hour',y='trip_duration',data=data)
```

### Out[49]:

<AxesSubplot:xlabel='pickup\_hour', ylabel='trip\_duration'>



# Trip Duration per time of day

### In [50]:

```
sns.lineplot(x='pickup_timeofday',y='trip_duration',data=data)
```

### Out[50]:

<AxesSubplot:xlabel='pickup\_timeofday', ylabel='trip\_duration'>



# **Trip Duration per Day of Week**

### In [51]:

```
sns.lineplot(x='pickup_day_no',y='trip_duration',data=data)
```

### Out[51]:

<AxesSubplot:xlabel='pickup\_day\_no', ylabel='trip\_duration'>



# **Trip Duration per month**

### In [52]:

```
sns.lineplot(x='pickup_month',y='trip_duration',data=data)
```

### Out[52]:

<AxesSubplot:xlabel='pickup\_month', ylabel='trip\_duration'>



### **Distance and Vendor**

### In [53]:

```
sns.barplot(y='distance',x='vendor_id',data=data,estimator=np.mean)
```

### Out[53]:

<AxesSubplot:xlabel='vendor\_id', ylabel='distance'>



# **Distance and Store and Forward Flag**

### In [54]:

```
sns.catplot(y='distance',x='store_and_fwd_flag',data=data,kind="strip")
```

### Out[54]:

<seaborn.axisgrid.FacetGrid at 0x2a31e7fffd0>



# Distance per passenger count

### In [55]:

```
sns.catplot(y='distance',x='passenger_count',data=data,kind="strip")
```

### Out[55]:

<seaborn.axisgrid.FacetGrid at 0x2a31f94e160>



# Distance per day of week

### In [56]:

```
sns.lineplot(x='pickup_day_no',y='distance',data=data)
```

### Out[56]:

<AxesSubplot:xlabel='pickup\_day\_no', ylabel='distance'>



# Distance per hour of day

### In [57]:

```
sns.lineplot(x='pickup_hour',y='distance',data=data)
```

### Out[57]:

<AxesSubplot:xlabel='pickup\_hour', ylabel='distance'>



# Distance per time of day

### In [58]:

```
sns.lineplot(x='pickup_timeofday',y='distance',data=data)
```

### Out[58]:

<AxesSubplot:xlabel='pickup\_timeofday', ylabel='distance'>



# Distance per month

### In [59]:

```
sns.lineplot(x='pickup_month',y='distance',data=data)
```

### Out[59]:

<AxesSubplot:xlabel='pickup\_month', ylabel='distance'>



# **Passenger Count and Vendor id**

### In [60]:

```
sns.barplot(y='passenger_count',x='vendor_id',data=data)
```

### Out[60]:

<AxesSubplot:xlabel='vendor\_id', ylabel='passenger\_count'>



# **Trip Duration and Distance**

# In [61]:

sns.relplot(y=data.distance,x='trip\_duration',data=data)

# Out[61]:

<seaborn.axisgrid.FacetGrid at 0x2a330ad9f10>



### In [ ]:

### In [63]:

#### data.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 729286 entries, 0 to 729321
Data columns (total 22 columns):
#
    Column
                        Non-Null Count
                                         Dtype
    -----
                        -----
0
    id
                        729286 non-null object
1
    vendor_id
                        729286 non-null int64
2
                        729286 non-null datetime64[ns]
    pickup datetime
    dropoff_datetime
3
                        729286 non-null datetime64[ns]
                        729286 non-null int64
    passenger_count
4
5
    pickup_longitude
                        729286 non-null float64
6
    pickup_latitude
                        729286 non-null float64
7
    dropoff_longitude
                        729286 non-null float64
    dropoff_latitude
                        729286 non-null float64
8
    store_and_fwd_flag 729286 non-null object
9
10
    trip_duration
                        729286 non-null int64
    pickup_day
                        729286 non-null object
11
    dropoff_day
                        729286 non-null object
12
13
    pickup_day_no
                        729286 non-null int64
14 dropoff_day_no
                        729286 non-null int64
                        729286 non-null int64
    pickup_hour
15
    dropoff_hour
                        729286 non-null int64
16
17
    pickup month
                        729286 non-null int64
18 dropoff_month
                        729286 non-null int64
19
    pickup_timeofday
                        729286 non-null object
20 dropoff_timeofday
                        729286 non-null object
21 distance
                        729286 non-null float64
```

dtypes: datetime64[ns](2), float64(5), int64(9), object(6)

memory usage: 144.1+ MB

#### In [64]:

```
data.isnull().sum()
```

### Out[64]:

id 0 vendor\_id 0 pickup\_datetime 0 dropoff\_datetime 0 passenger\_count 0 pickup\_longitude 0 pickup\_latitude 0 dropoff\_longitude 0 dropoff latitude store\_and\_fwd\_flag 0 trip\_duration 0 pickup\_day 0 dropoff\_day 0 pickup\_day\_no 0 dropoff\_day\_no 0 pickup\_hour 0 dropoff\_hour 0 pickup\_month 0 dropoff\_month 0 pickup\_timeofday dropoff\_timeofday 0 distance 0 dtype: int64

### In [ ]:

```
data['tpep_pickup_datetime'] = pd.to_datetime(yellow_taxi_data['tpep_pickup_datetime'], fo
data['dropoff_timeofday'] = pd.to_datetime(yellow_taxi_data['tpep_dropoff_datetime'], form
data['trip_duration'] = (yellow_taxi_data['tpep_dropoff_datetime'] -
data['tpep_pickup_datetime']).dt.secondsyellow_taxi_data['PULocationID'].fillna(-1, inplace
data['DOLocationID'].fillna(-1, inplace = True)
```