# Synchronous Sequential Logic

Ch.5

### **Outline**

- . Synchronous vs asynchronous sequential circuits
- . Storage elements
  - \_ Latches
  - Flip-flops
- . Mealy and Moore models
- . Analysis of synchronous sequential circuit
- . State diagram and state table
- . Design of synchronous sequential circuit
- . State reduction and assignment

### Introduction

- . Combinational circuit
  - contains no memory element
  - outputs determined solely by present inputs
  - does not meet the need of all applications

## **State Machine Examples**









### **Sequential Circuit**



- . Has feedback path
- State of sequential circuit: content of memory elements
- . (inputs, current state) ⇒ (outputs, next state)

### Synchronous vs Asynchronous

- . Types of sequential circuit
  - Synchronous: synchronized by a clock, the state of the circuit is updated upon receiving a clock pulse

 Asynchronous: the state of the circuit can be updated at any time when an input change occurs

## **Synchronous Sequential Circuit**

- . Synchronous(clocked) sequential circuit
  - a master-clock generator generates a periodic train of clock pulses
  - the clock pulses are distributed throughout the system to the storage elements
  - most popular



## **Storage**

• Storage? How?







### **Logic Based Storage**

. We may keep a 0-bit or a 1-bit by re-generating it in a logic loop!



Fig. 4-2 Logic Structures for Storing Information

### **Latches**

#### . Latches

- the most basic storage elements
- asynchronous circuits (have no clock input)
- flip-flops can be constructed from latches
- . e.g. SR latch



| S | R | Q | Q |             |
|---|---|---|---|-------------|
| 1 | 0 | 1 | 0 | Set state   |
| 0 | 0 | 1 | 0 |             |
| 0 | 1 | 0 | 1 |             |
| 0 | 0 | 0 | 1 | Reset state |
| 1 | 1 | 0 | 0 | Undefined   |

(b) Function table

Fig. 4-4 SR Latch with NOR Gates

### SR Latch

### . Cross coupling two NOR gates





### . Operations

- (S,R)=(0,0): no operation
- (S,R)=(0,1): reset  $(Q \leftarrow 0$ , the clear state)
- (S,R)=(1,0): set  $(Q \leftarrow 1$ , the set state)
- -(S,R)=(1,1): indeterminate state (Q=Q'=0)

| SR  | Q <sup>+</sup> |
|-----|----------------|
| 0 0 | Q              |
| 0 1 | 0              |
| 1 0 | 1              |
| 1 1 | Not allowed    |

### Logic Simulation of SR Latch



# $\overline{SR}$ latch

- use NAND gates
- set and reset occur with a logic-0 signal



| set i | ese | Q | $Q^+$              |
|-------|-----|---|--------------------|
| 1     | 1   | 0 | 0                  |
| 1     | 1   | 1 | 1                  |
| 1     | 0   | 0 | 0                  |
| 1     | 0   | 1 | 0                  |
| 0     | 1   | 0 | 1                  |
| 0     | 1   | 1 | 1                  |
| 0     | 0   | 0 | - 1 inputs not     |
| 0     | 0   | 1 | − <b>∫</b> allowed |

### **SR Latch with Control Input**

#### SR latch with control input

En = 1: enabled

En = 0: disabled





### **D** Latch



- . Use only a single input *D* to eliminate the undesirable state
- .  $Q \leftarrow D$  when En = 1
- . no change when En = 0



## **D** Latch in Verilog

```
always @(En, D) beginif (En == 1'b1) beginQ = D;endend
```

## Latch vs Flip-Flop

#### . Latch

- level triggered
- "transparent" as long as EN = 1
  - state will keep changing if input keeps changing



### Latch vs Flip-Flop

#### . Flip-flop

- storage element whose state cannot change more than once in a clock cycle
- edge triggered
  - state transition happens only on active clock edge
  - eliminate the multiple-transition problem



# Clock Response in Latch and Flip-Flop



### D Flip-Flop

- . D FF's output changes only at active clock edge
- . Either positive- or negative-edge triggered



| D Flip-Flop |          |  |  |  |
|-------------|----------|--|--|--|
| D           | Q(t + 1) |  |  |  |
| 0           | 0        |  |  |  |
| 1           | 1        |  |  |  |

. E.g. negative-edge triggered version



## Negative-edge Triggered D Flip-Flop

- . Can be formed by two latches + an inverter
  - master latch and slave latch



Operation:



## Positive-edge Triggered D Flip-Flop



### Flip-Flop Timing Parameters

### . Setup time t<sub>s</sub>

minimum time for which the input data must be stable before the trigger edge

### . Hold time t<sub>H</sub>

minimum time for which the input data must remain stable after the trigger edge

### . Propagation delay t<sub>P</sub>

 interval between the trigger edge and the stabilization of the output to its new value

### Timing Characteristics of Sequential Circuits



## Positive-edge Triggered DFF in Verilog

```
. reg Q;
always @(posedge clk) begin
Q <= D;
end</pre>
```

. Or we usually have DFF with a reset control

```
reg Q;
always @(posedge clk, posedge rst) begin
  if (rst == 1)
    Q <= 0;
  else
    Q <= D;
end</pre>
```

### **Exercise**



### Flip-Flops with Inputs: Asynchronous Set/Reset

- . FFs often have additional inputs to set to an initial state asynchronously
- . E.g. D flip-flop with active-low preset and clear



| Ck         | D | PreN | ClrN | $Q^+$         |
|------------|---|------|------|---------------|
| Х          | Х | 0    | 0    | (not allowed) |
| X          | Χ | 0    | 1    | 1             |
| Χ          | X | 1    | 0    | 0             |
| $\uparrow$ | 0 | 1    | 1    | 0             |
| $\uparrow$ | 1 | 1    | 1    | 1             |
| 0,1,↓      | Χ | 1    | 1    | Q (no change) |

### Flip-Flops with Additional Inputs: Enable Input

. E.g. D flip-flop with clock enable





- \_ If CE=0, disabled, Q(t+1)=Q
- \_ If CE=1, like a normal D flip-flop, Q(t+1)=D
- $Q(t+1) = Q \cdot CE' + D \cdot CE$

## Importance of the Sensitivity List

. D-Register with synchronous clear module dff\_sync\_clear( input d, clearb, clock, output reg q always @(posedge clock) begin if (!clearb) q <= 1'b0; else  $q \le d$ : end endmodule

```
. D-Register with asynchronous
   clear
module dff_sync_clear(
input d, clearb, clock,
output reg q
 always @(negedge clearb or
  posedge clock) begin
   if (!clearb) q <= 1'b0;
   else q \le d;
 end
endmodule
```

If one signal in the sensitivity list uses posedge/negedge, then all signals must.

## **Use Nonblocking (<=) for Sequential Logic**

```
always @(posedge clk) begin
q1 <= in;
q2 <= q1; // uses old q1
out <= q2; // uses old q2
end
```

always @(posedge clk) begin q1 = in; q2 = q1; // uses new q1 out = q2; // uses new q2 end





### Sequential always block style

```
reg [3:0] count1, next count1;
                                    reg [3:0] count2;
always @(posedge clk)
                                    always @(posedge clk) begin
                                     if (reset) count2 <= 0;
   count1 <= next count1;
                                     else count2 <=
                                      (count2 == 4) ? 0 : count2 + 1;
always @* begin
 if (reset) next count1 = 0;
                                    end
 else next count1 =
   (count1 == 4) ? 0 : count1 + 1;
                                    assign enable2 = (count2 == 4);
end
assign enable1 = (count1 == 4);
```

## always block

- . Sequential always block: always @(posedge clock) use "<="</p>
- . Combinatorial always block: always @ \* use "="
- Results of operators (LHS) inside always block (sequential and combinatorial) must be declared as "reg"
- . Equivalent Verilog

```
reg z;
always @ *
z = x || y
```

Wire z; assign z = x && y // z not a "reg"

## **Coding Guidelines**

- . Ensure your simulation results will match what they synthesized hardware will do:
  - When modeling sequential logic, use nonblocking assignments.
  - When modeling combinational logic with an always block, use blocking assignments.
  - When modeling both sequential and "combinational" logic within the same always block, use nonblocking assignments.
  - Do not mix blocking and nonblocking assignments in the same always block.
  - Do not make assignments to the same variable from more than one always block.

### **Synchronous Sequential Circuit**

- . Also known as *clocked sequential circuit*, or *finite-state machine* (*FSM*)
- . Current state at time t is stored in a set of flip-flops
- . (input, current state) ⇒ (output, next state)
  - next state at time t+1 (one clock period after time t) is a Boolean function of the present state and input
  - output is a Boolean function of present state and input

### **Mealy and Moore Models**

- . Mealy circuit: sequential circuit for which the output is a function of both present state and input
- . Moore circuit: sequential circuit for which the output is a function of present state only



Mealy machine



Moore machine

### **Analysis Example with D Flip-Flops**

. With *D* flip-flops, the next state can be obtained immediately from the flip-flop input equations:

$$D_A = AX + BX$$
 (so  $A(t+1) = A(t)X(t) + B(t)X(t)$ )  
 $D_B = A'X$  (so  $B(t+1) = A'(t)X(t)$ )  
 $Y = (A+B)X'$ 



#### **State Table**

 A state table shows the state transitions and outputs in tabular form like below.

| IABLE 4-2                              |  |            |  |  |
|----------------------------------------|--|------------|--|--|
| State Table for Circuit of Figure 4-18 |  |            |  |  |
|                                        |  | Name Otata |  |  |

| Prese | ent State | Input | Nex | t State | Output |
|-------|-----------|-------|-----|---------|--------|
| Α     | В         | x     | A   | В       | Y      |
| 0     | 0         | 0     | 0   | Ō       | 0      |
| 0     | 0         | 1     | 0   | 1       | 0      |
| 0     | 1         | 0     | 0   | 0       | 1      |
| 0     | 1         | 1     | 1   | 1       | 0      |
| 1     | 0         | 0     | 0   | 0       | 1      |
| 1     | 0         | 1     | 1   | 0       | 0      |
| 1     | 1         | 0     | 0   | 0       | 1      |
| 1     | 1         | 1     | 1   | 0       | 0      |

Table 4-2 State Table for Circuit of Figure 4-18

#### **State Table**

An alternative way to draw a state table:

| Pres | sent | N          | Next State |            |     | Out   | tput  |
|------|------|------------|------------|------------|-----|-------|-------|
|      | ate  | <b>x</b> = | <b>O</b>   | <b>x</b> = | = 1 | x = 0 | x = 1 |
| A    | В    | A          | В          | A          | В   | у     | у     |
| 0    | 0    | 0          | 0          | 0          | 1   | 0     | 0     |
| 0    | 1    | 0          | 0          | 1          | 1   | 1     | 0     |
| 1    | 0    | 0          | 0          | 1          | 0   | 1     | 0     |
| 1    | 1    | 0          | 0          | 1          | 0   | 1     | 0     |

## **State Diagram**

#### . State transition diagram

\_ a circle: a state

a directed line: transition between the states



input/output

### **Another Example**



- . Input equation
  - \_ D<sub>A</sub>=A⊕x⊕y
- . State equation
  - \_ A(t+1)=A⊕x⊕y
- . Output equation
  - $_{-}$  Z = A

| State | State Inputs |   | State | Output |
|-------|--------------|---|-------|--------|
| A     | X            | Y | Α     | Z      |
| 0     | 0            | 0 | 0     | 0      |
| 0     | 0            | 1 | 1     | 0      |
| 0     | 1            | 0 | 1     | 0      |
| 0     | 1            | 1 | 0     | 0      |
| 1     | 0            | 0 | 1     | 1      |
| 1     | 0            | 1 | 0     | 1      |
| 1     | 1            | 0 | 0     | 1      |
| 1     | 1            | 1 | 1     | 1      |
|       |              |   |       |        |



### **Finding State Diagrams and State Tables**

Example. Construct a recognizer that takes one bit at a time and generates an output Z=1 when and only when the sequence "1101" is detected at the input. (A typical input sequence and the corresponding output sequence are: X=00110111001101101
Z=00000100000001001)

A possible design:



### Corresponding state table:

☐ TABLE 4-5
State Table for State Diagram in Figure 4-21

| Duccent          | Next  | State | Output Z                    |       |
|------------------|-------|-------|-----------------------------|-------|
| Present<br>State | X = 0 | X = 1 | $\overline{\mathbf{x}} = 0$ | X = 1 |
| A                | А     | В     | 0                           | 0     |
| $\mathbf{B}$     | A     | C     | 0                           | 0     |
| C                | D     | C     | 0                           | 0     |
| D                | A     | В     | 0                           | 1     |

Table 4-5 State Table for State Diagram in Figure 4-21

### State names replaced by binary codes:

# ■ TABLE 4-7 Table 4-5 with Names Replaced by Binary Codes

|               | Next  | State | Output Z |       |  |
|---------------|-------|-------|----------|-------|--|
| Present State | X = 0 | X = 1 | X = 0    | X = 1 |  |
| 00            | 00    | 01    | 0        | 0     |  |
| 01            | 00    | 11    | 0        | 0     |  |
| 11            | 10    | 11    | 0        | 0     |  |
| 10            | 00    | 01    | 0        | 1     |  |

Table 4-7 Table 4-5 with Names Replaced by Binary Codes

Remark: There are many different possible binary code assignments which result in final circuit with different complexities.

(Exercise: (i) Complete the design using the above binary code assignment. (ii) Complete the design using another binary code assignment such as 10, 01, 00, 11 for states *A*, *B*, *C*, and *D*, resp.)

#### **State Reduction**

- . Two states of a FSM are equivalent if the outputs produced for each possible input value are identical and the next states for each possible input value are the same or equivalent
- . Equivalent states may be merged into a single state
- State reduction through state equivalence can reduce number of flip-flops used

### **State Reduction Example**

#### Example

\_ state a a b c d e f f g f g a
input 0 1 0 1 0 1 1 0 1 0 0
output 0 0 0 0 0 1 1 0 1 0 0

**Table 5.6** *State Table* 

| Present State | Next  | State | Output |       |  |
|---------------|-------|-------|--------|-------|--|
|               | x = 0 | x = 1 | x = 0  | x = 1 |  |
| а             | а     | b     | 0      | 0     |  |
| b             | c     | d     | 0      | 0     |  |
| c             | а     | d     | 0      | 0     |  |
| d             | e     | f     | 0      | 1     |  |
| e             | а     | f     | 0      | 1     |  |
| f             | g     | f     | 0      | 1     |  |
| g             | a     | f     | 0      | 1     |  |



### **Equivalent states**

- . Equivalent states
  - g = e
  - one of them can be removed
- . Reduced state table

**Table 5.7** *Reducing the State Table* 

|               | Next : | State | Output |       |  |
|---------------|--------|-------|--------|-------|--|
| Present State | x = 0  | x = 1 | x = 0  | x = 1 |  |
| а             | а      | b     | 0      | 0     |  |
| b             | c      | d     | 0      | 0     |  |
| c             | a      | d     | 0      | 0     |  |
| d             | e      | f     | 0      | 1     |  |
| e             | a      | f     | 0      | 1     |  |
| f             | e      | f     | 0      | 1     |  |

### **Equivalent states**

- . New equivalent states
  - $_{-}$  d = f
  - one of them can be removed
- . State table after further reduction

**Table 5.8** *Reduced State Table* 

|               | Next S | State | Output |       |  |
|---------------|--------|-------|--------|-------|--|
| Present State | x = 0  | x = 1 | x = 0  | x = 1 |  |
| а             | а      | b     | 0      | 0     |  |
| b             | c      | d     | 0      | 0     |  |
| c             | а      | d     | 0      | 0     |  |
| d             | e      | d     | 0      | 1     |  |
| e             | а      | d     | 0      | 1     |  |



### **State Assignment**

- . Cost of final circuit depends on state assignment
- . Many possible binary state assignments e.g.

| Table 5.9           |                       |
|---------------------|-----------------------|
| Three Possible Bind | ary State Assignments |

| State | Assignment 1,<br>Binary | Assignment 2,<br>Gray Code | Assignment 3,<br>One-Hot |
|-------|-------------------------|----------------------------|--------------------------|
| а     | 000                     | 000                        | 00001                    |
| b     | 001                     | 001                        | 00010                    |
| c     | 010                     | 011                        | 00100                    |
| d     | 011                     | 010                        | 01000                    |
| e     | 100                     | 110                        | 10000                    |

 One-hot encoding uses more FFs but may lead to simpler decoding logic for next state and output

# Design Procedure for Sequential Circuit

- 1. Determine a state diagram or state table
- 2. State reduction if necessary
- 3. Assign binary values to the states
  - obtain binary-coded state table
- 4. Choose the type of flip-flops
  - derive the simplified flip-flop input equations and output equations
- 5. Obtain the logic diagram

# Design Example with D flip-flops

Complete the following design with the given state diagram and the given states to binary codes mapping using *D* flip-flops.



Fig. 4-23 State Diagram for Design Example

■ TABLE 4-8
State Table for Design Example

| Pres | sent State | ent State Input |   | t State | Output |
|------|------------|-----------------|---|---------|--------|
| A    | В          | x               | Α | В       | γ      |
| 0    | 0          | 0               | 0 | 0       | 0      |
| 0    | 0          | 1               | 0 | 1       | 1      |
| 0    | 1          | 0               | 1 | 0       | 0      |
| 0    | 1          | 1               | 0 | 1       | 0      |
| 1    | 0          | 0               | 1 | 0       | 0      |
| 1    | 0          | 1               | 1 | 1       | 1      |
| 1    | 1          | 0               | 1 | 1       | 0      |
| 1    | 1          | 1               | 0 | 0       | 0      |

Table 4-8 State Table for Design Example

#### Deriving the flip-flop input equations and output function:

Output 
$$Y(A,B,X) = \Sigma m(1,5)$$

Since D flip-flops are used,

$$D_A(A,B,X) = A(t+1) = \Sigma m(2,4,5,6)$$

$$D_R(A,B,X) = B(t+1) = \Sigma m(1,3,5,6)$$



### Final logic diagram:



#### Remarks

- 1. Heuristic State Assignment Guidelines
  - i. States having the same next state for a given input should be given adjacent assignments.
  - ii. States that are next states of a single state should be given adjacent assignments.
  - iii. States having the same output for a given input should be given adjacent assignments.
  - (2 states are adjacent if they differ in one variable)

#### Remarks

#### 2. Unused States

- Unused states can be treated as don't care conditions to simplify the circuit
- But, for more robust design it may be desirable to specify the next states and/or output values for the unused states upon a malfunction
- 3. Start State/Reset State
  - A master reset signal is usually provided for initializing the flip-flop states

#### Remarks

#### 4. Timing Issues

- External input changes must be properly timed with respect to active edge to ensure correct operation
- Must give enough time for signals to be transmitted to flip-flop inputs before we sample the flip-flop inputs



### **Example: Vending Machine FSM**

#### . Assumptions

- deliver package of gum after 15 cents deposited
- single coin slot for dime(10¢), nickel(5¢)
- no change provided



### **Vending Machine FSM (cont)**

- . Possible input sequences
  - \_ 3 nickels
  - \_ nickel, then dime
  - dime, then nickel
  - \_ 2 dimes
  - \_ 2 nickels, then dime
- . Inputs: N, D, reset
- . Output: open



### **Vending Machine FSM (cont)**

#### State reduction



# Verilog example

# **Supplementary Materials**

### **Vending Machine FSM (cont)**

#### Remarks

- In practice, a vending machine's coin-receptor is a mechanical device and very slow compared to an electronic circuit
- Inserting a dime (nickel) would cause signal sense<sub>D</sub> (sense<sub>N</sub>) to be asserted for a large number of clock cycles. And there may be an arbitrarily long time between insertion of two consecutive coins (see next page)
- . So, we need to generate a signal D(N) that will be asserted for 1 clock cycle after  $sense_D$  ( $sense_N$ ) becomes 1 (see next page)

### **Vending Machine FSM (cont)**



(a) Timing diagram



### **Example: Arbiter FSM**

- Control access to a shared resources by different devices in a system
  - Each device provides one input (request) to the arbiter
  - The arbiter provides one output (grant) for each device
  - A device asserts its request signal to request for the resource
  - When the resource is not used, the arbiter selects the highest priority requesting device and asserts its grant signal
  - When a device finished using the resource, it deasserts its request signal
- . E.g. Devices 1 to 3 where device 1 has highest priority, followed by device 2

#### **Arbiter FSM**



### **Verilog Code for Arbiter FSM**

```
module arbiter (r, Reset, Clock, g);
    input [1:3] r; // request signals
    input Reset, Clock;
    output wire [1:3] g; // grant signals
    reg [2:1] state, next;
    parameter Idle = 2'b00, gnt1 = 2'b01, gnt2 = 2'b10, gnt3 = 2'b11;
    // Sequential block
    always @(posedge Clock)
         if (Reset == 1) state <= Idle;
         else state <= next;
    // Define output
    assign g[1] = (state == gnt1);
    assign g[2] = (state == gnt2);
    assign g[3] = (state == gnt3);
```

```
// Next state combinational circuit
    always @(r, state)
         case (state)
              Idle: casex (r)
                       3'b000: next = Idle:
                       3'b1xx: next = gnt1;
                       3'b01x: next = gnt2;
                       3'b001: next = gnt3;
                       default: next = Idle;
                   endcase
              gnt1: if (r[1]) next = gnt1;
                   else next = Idle;
              gnt2: if (r[2]) next = gnt2;
                   else next = Idle;
              gnt3: if (r[3]) next = gnt3;
                   else next = Idle;
              default: next = Idle;
         endcase
endmodule
```

### **Verilog Code for FSM**

- . There are more than one way to describe a FSM
- . In the sample code above
  - 1st always block introduces flip-flops into the circuit
  - 2<sup>nd</sup> always block describes the combinational circuit for computing the next state
  - The outputs are defined with conditional assignment statements
- State transition should use non-blocking assignment (<=)
  as FFs of synchronous sequential circuit are updated
  concurrently by a common clock</li>

# 附錄

# JK Flip-Flop

. E.g. Positive-edge triggered *JK* flip-flop



| J | K | Q(t + 1) |
|---|---|----------|
| 0 | 0 | Q(t)     |
| 0 | 1 | 0        |
| 1 | 0 | 1        |
| 1 | 1 | Q'(t)    |

From *D* flip-flop:



### **Exercise**





### T Flip-Flop

### ■ E.g. Positive-edge triggered *T* flip-flop







| T | Q(t + 1)     |
|---|--------------|
| 0 | Q(t) $Q'(t)$ |

From *D* flip-flop:



# **Characteristic Table (Next State Table)**

. Show the next state as a function of the inputs and present state

|      |               |    | -Flop C | haract | Tables |            |            |
|------|---------------|----|---------|--------|--------|------------|------------|
|      |               | JK | Flip-F  | lop    |        |            |            |
|      |               | J  | K       | Q(t +  | 1)     |            |            |
|      |               | 0  | 0       | Q(t)   |        | No change  |            |
|      |               | 0  | 1       | 0      |        | Reset      |            |
|      |               | 1  | 0       | 1      |        | Set        |            |
|      |               | 1  | 1       | Q'(t)  |        | Complement |            |
| D FI | ip-Flop       |    |         |        | T      | Flip-Flop  |            |
| D    | <b>Q</b> (t + | 1) |         |        | T      | Q(t + 1)   |            |
| 0    | 0             |    | Reset   |        | 0      | Q(t)       | No change  |
| 1    | 1             |    | Set     |        | 1      | Q'(t)      | Complement |
|      |               |    |         |        |        |            |            |

### **Characteristic Equation**

- . Characteristic equations
  - D flip-flop

$$Q(t+1) = D$$

- \_ JK flip-flop
  - Q(t+1) = JQ'+K'Q
- T flop-flop
  - $Q(t+1) = T \oplus Q$

### **Analysis Example with JK flip-flops**

- Obtain the flip-flop input equations in terms of the present state and input variables
- . Use the corresponding flip-flop characteristic table or equation to determine the next state



#### 1. FF input equations:

$$J_A = B$$
,  $K_A = BX'$ ,  $J_B = X'$ ,  $K_B = A \oplus X$ 

#### 2. Compute the next state

**Table 5.4** *State Table for Sequential Circuit with JK Flip-Flops* 

| Present<br>State |   | Input | Next<br>Input State |   | Flip-Flop<br>Inputs |                |                |                |  |
|------------------|---|-------|---------------------|---|---------------------|----------------|----------------|----------------|--|
| A                | В | ×     | A                   | В | J <sub>A</sub>      | K <sub>A</sub> | J <sub>B</sub> | K <sub>B</sub> |  |
| 0                | 0 | 0     | 0                   | 1 | 0                   | 0              | 1              | 0              |  |
| 0                | 0 | 1     | 0                   | 0 | 0                   | 0              | 0              | 1              |  |
| 0                | 1 | 0     | 1                   | 1 | 1                   | 1              | 1              | 0              |  |
| 0                | 1 | 1     | 1                   | 0 | 1                   | 0              | 0              | 1              |  |
| 1                | 0 | 0     | 1                   | 1 | 0                   | 0              | 1              | 1              |  |
| 1                | 0 | 1     | 1                   | 0 | 0                   | 0              | 0              | 0              |  |
| 1                | 1 | 0     | 0                   | 0 | 1                   | 1              | 1              | 1              |  |
| 1                | 1 | 1     | 1                   | 1 | 1                   | 0              | 0              | 0              |  |

. State equations for A and B:

$$A(t+1) = J_A A' + K_A' A = BA' + (Bx)' A = A'B + AB' + Ax$$
  
 $B(t+1) = J_B B' + K_B' B = x'B' + (A \oplus x)' B = B'x' + ABx + A'Bx'$ 

. State transition diagram



### **Analysis Example with** *T* **flip-flops**



#### . The input and output functions

#### . The state equations

$$-A(t+1) = (Bx)'A+(Bx)A'$$
$$=AB'+Ax'+A'Bx$$

$$B(t+1) = x \oplus B$$

**Table 5.5**State Table for Sequential Circuit with T Flip-Flops

| Present<br>State |   | Input | Ne<br>St <i>a</i> |   | Output |  |
|------------------|---|-------|-------------------|---|--------|--|
| Α                | В |       | A                 | В | У      |  |
| 0                | 0 | 0     | 0                 | 0 | 0      |  |
| 0                | 0 | 1     | 0                 | 1 | 0      |  |
| 0                | 1 | 0     | 0                 | 1 | 0      |  |
| 0                | 1 | 1     | 1                 | 0 | 0      |  |
| 1                | 0 | 0     | 1                 | 0 | 0      |  |
| 1                | 0 | 1     | 1                 | 1 | 0      |  |
| 1                | 1 | 0     | 1                 | 1 | 1      |  |
| 1                | 1 | 1     | 0                 | 0 | 1      |  |

## Design Using JK Flip-Flops or T Flip-Flops

- . Need to know the FF input values to bring about the required state change
- . Excitation tables for JK flip-flop and T flip-flop:

| Q(t) | Q(t=1)        | J    | K |   | Q(t) | Q(t=1)         | T |
|------|---------------|------|---|---|------|----------------|---|
| 0    | 0             | 0    | X |   | 0    | 0              | 0 |
| 0    | 1             | 1    | X |   | 0    | 1              | 1 |
| 1    | 0             | X    | 1 |   | 1    | 0              | 1 |
| 1    | 1             | X    | 0 |   | 1    | 1              | 0 |
|      | (a) JK Flip-l | Flop |   | · | (1   | o) T Flip-Flop | ) |

### **Design Example with JK flip-flops**

Complete the following design with the given state diagram and the given states to binary codes mapping using *JK* flip-flops.



Fig. 4-23 State Diagram for Design Example

■ TABLE 4-8
State Table for Design Example

| Present State |   | Input | Nex | Output |   |
|---------------|---|-------|-----|--------|---|
| Α             | В | х     | Α   | В      | Υ |
| 0             | 0 | 0     | 0   | 0      | 0 |
| 0             | 0 | 1     | 0   | 1      | 1 |
| 0             | 1 | 0     | 1   | 0      | 0 |
| 0             | 1 | 1     | 0   | 1      | 0 |
| 1             | 0 | 0     | 1   | 0      | 0 |
| 1             | 0 | 1     | 1   | 1      | 1 |
| 1             | 1 | 0     | 1   | 1      | 0 |
| 1             | 1 | 1     | 0   | 0      | 0 |

Table 4-8 State Table for Design Example

#### Deriving the flip-flop input equations and output function:

Output  $Y(A,B,X) = \Sigma m(1,5)$ 

JK flip-flops are used, we derive the required J and K input values:

| Pre | sent State | Input | Ne | xt State | F  | Flip-Flop Inputs |                |                |
|-----|------------|-------|----|----------|----|------------------|----------------|----------------|
| Α   | В          | x     | A  | В        | JA | KA               | J <sub>B</sub> | Κ <sub>B</sub> |
| 0   | 0          | 0     | 0  | 0        | 0  | X                | 0              | Х              |
| 0   | 0          | 1     | 0  | 1        | 0  | X                | 1              | X              |
| 0   | 1          | 0     | 1  | 0        | 1  | X                | X              | 1              |
| 0   | 1          | 1     | 0  | 1        | 0  | X                | X              | 0              |
| 1   | 0          | 0     | 1  | 0        | X  | 0                | 0              | X              |
| 1   | 0          | 1     | 1  | 1        | X  | 0                | 1              | X              |
| 1   | 1          | 0     | 1  | 1        | X  | 0                | X              | O              |
| 1   | 1          | 1     | 0  | 0        | X  | 1                | X              | 1              |



Hence, 
$$J_A = BX'$$
  $K_A = BX$  
$$J_B = X$$
  $K_B = (A \oplus X)'$  
$$Y = B'X$$

Final logic diagram:



Fig. 4-28 Logic Diagram for Sequential Circuit with JK Flip-Flops

## Design Example with T flip-flops

. A *n*-bit binary counter

the state diagram

no input (except for the clock



#### . The state table and required flip-flop inputs:

**Table 5.14** *State Table for Three-Bit Counter* 

| Present State  |                |                | Next State     |                       |                | Flip-Flop Inputs       |                       |                 |  |
|----------------|----------------|----------------|----------------|-----------------------|----------------|------------------------|-----------------------|-----------------|--|
| A <sub>2</sub> | A <sub>1</sub> | A <sub>0</sub> | A <sub>2</sub> | <b>A</b> <sub>1</sub> | A <sub>0</sub> | <b>T</b> <sub>A2</sub> | <i>T<sub>A1</sub></i> | T <sub>A0</sub> |  |
| 0              | 0              | 0              | 0              | 0                     | 1              | 0                      | 0                     | 1               |  |
| 0              | 0              | 1              | 0              | 1                     | 0              | 0                      | 1                     | 1               |  |
| 0              | 1              | 0              | 0              | 1                     | 1              | 0                      | 0                     | 1               |  |
| 0              | 1              | 1              | 1              | 0                     | 0              | 1                      | 1                     | 1               |  |
| 1              | 0              | 0              | 1              | 0                     | 1              | 0                      | 0                     | 1               |  |
| 1              | 0              | 1              | 1              | 1                     | 0              | 0                      | 1                     | 1               |  |
| 1              | 1              | 0              | 1              | 1                     | 1              | 0                      | 0                     | 1               |  |
| 1              | 1              | 1              | 0              | 0                     | 0              | 1                      | 1                     | 1               |  |





. Logic simplification using the K map

. The logic diagram



# 附錄

# Sequential networks





Unit 1

#### **Test bench**

https://verilogquide.readthedocs.io/en/latest/verilog/testbench.html `timescale 1ns / 1psmodule Lab1 Team5 Comparator 4bits tb; reg [3:0] A,B; wire A It B, A gt B, A eq B; Comparator 4bits c(A, B, A It B, A gt B, A eq B); initial begin #10 A=4'b1010; B=4'b1010; // edit your own testbench \$display ("time = %t A = %b, B = %b, A It B=%b, A gt B=%b, A eq B=%b", \$time, A,B,A It B, A gt B, A eq B); #10 A= 4'b0000; B= 4'b1111; \$\display ("time = \%t A = \%b, B = \%b, A It B=\%b, A gt B=\%b, A eq B=\%b", \$\text{time}, A, B, A It B, A gt B, A eq B); \$finish; End \$monitor("time = %t, A = %b, B = %b, A It B=%b, A gt B=%b, A eq B=%b", \$time, A,B, A It B, A gt B, initial begin  $A_eq_B$ ; End endmodule