DASAR TEKNIK DIGITAL

AKHMAD ZAINURI., ST. MT.

Sistem Bilangan

Konsep Dasar Sistem Bilangan

Sistem Bilangan selalu mencakup tiga hal:

BASE (RADIX)

Adalah maksimum angka atau simbol yang digunakan dalam sistem tersebut

ABSOLUTE DIGIT

Adalah jenis angka yang mempunyai nilai berbeda dalam sistem

POSITIONAL VALUE

Adalah nilai yang terkandung dalam suatu posisi

Sistem Bilangan Desimal dan Biner

Kita telah terbiasa menggunakan sistem bilangan desimal atau denary, yaitu sistem bilangan dengan basis 10, yang mempunyai 10 buah simbol, yaitu 0,1,2 ... 9. Tetapi sistem ini tidak selalu merupakan pilihan terbaik untuk setiap aplikasi. Sistem biner yang lebih sederhana lebih cocok untuk digunakan dalam elektronika digital seperti komputer atau gadget. Sistem biner merupakan sistem bilangan berbasis 2, dan hanya mempunyai dua buah simbol yaitu 0 dan 1. Berikut ini adalah perbandingan sistem bilangan desimal dan biner.

Sistem Bilangan Desimal

- Base : X₁₀
- Absolute Digit: 0,1,2,3,4,5,6,7,8,9
- Positional Value : ... 10² 10¹ 10⁰ 10⁻¹ 10⁻² ...

Contoh:

$$743,15 = 7 * 10^{2} + 4 * 10^{1} + 3 * 10^{0} + 1 * 10^{-1} + 5 * 10^{-2}$$

$$123,25 = 1 * 10^{2} + 2 * 10^{1} + 3 * 10^{0} + 2 * 10^{-1} + 5 * 10^{-2}$$

Dalam sistem bilangan desimal atau denary, nilai yang terkandung dalam bilangan desimal diurutkan dalam ratusan, puluhan, satuan dan bilangan di belakang tanda koma. Kita bisa menguraikan bilangan desimal dalam bentuk eksponen basis 10 seperti pada contoh di atas.

Sistem Bilangan Biner

- Base (Radix) : $2 \rightarrow X_2$
- Absolute Digit: 0,1
- Positional Value : ... 2² 2¹ 2⁰ 2⁻¹ 2⁻² ...

Contoh:

$$00110 = \mathbf{0} * 2^4 + \mathbf{0} * 2^3 + \mathbf{1} * 2^2 + \mathbf{1} * 2^1 + \mathbf{0} * 2^0 = \dots$$

$$11010 = 1 * 2^4 + 1 * 2^3 + 0 * 2^2 + 1 * 2^1 + 0 * 2^0 = \dots$$

Dalam sistem bilangan biner, dengan cara yang sama kita bisa menguraikan deretan bilangan biner dalam bentuk eksponen basis 2 seperti dalam contoh.

Setiap digit biner disebut bit; Bit paling kanan disebut dengan *Least Significant Bit* (LSB), dan bit paling kiri disebut Most Significant Bit (MSB)

Untuk membedakan bilangan pada sistem yang berbeda digunakan subskrip.

Sebagai contoh, 9₁₀ menyatakan bilangan sembilan pada sistem bilangan desimal,

dan 01101₂ menunjukkan bilangan biner 01101.

Sistem Bilangan Oktal

- Base (Radix): $8 \rightarrow X_8$
- Absolute Digit : 0,1,2 ... 7
- Positional Value : ... 8² 8¹ 8⁰ 8⁻¹ 8⁻² ...

Bilangan oktal adalah sistem bilangan yang berbasis 8 dan mempunyai delapan simbol bilangan yang berbeda 0,1,2 ... 7. Pada suatu bilangan oktal bisa diuraikan dalam eksponen basis 8.

Sistem Bilangan Heksadesimal

- Base (Radix): 16 → X₁₆
- Absolute Digit: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- Positional Value : ... 16² 16¹ 16⁰ 16⁻¹ 16⁻² ...

Bilangan heksadesimal, sering disingkat dengan hex, adalah bilangan dengan basis 16 dan mempunyai 16 simbol yang berbeda. Dengan cara yang sama seperti sistem bilangan lainnya, kita bisa menguraikan satu bilangan heksadesimal ke dalam eksponen basis 16.

Tabel 1-1 Bilangan dengan basis yang berbeda						
Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)			
00	0000		00 0000 00		0	
01	01 0001 01		1			
02	02 0010 02		2			
03	0011	03	3			
04	04 0100		4			
05	0101	05	5			
06	0110	06	6			
07	0111	07	7			
08	08 1000		8			
09	1001	11	9			
10	1010 12		Α			
11	1011	13	В			
12	1100	14	С			
13	1101	15	D			
14	1110	16	E			
15	15 1111		F			

KONVERSI

Yang dimaksud konversi adalah cara mengubah atau mengalihkan bilangan ke sistem bilangan lainnya.

Konversi dari suatu sistem bilangan biner ke sistem bilangan desimal

Untuk melakukan konversi dari suatu sistem bilangan ke sistem bilangan desimal, kita dapat menguraikan bilangan tersebut ke dalam bentuk eksponen basis bilangan tersebut. Yang perlu kita perhatikan adalah basis bilangan yang digunakan.

Contoh:

Konversikan bilangan 11011_2 ke bilangan desimal $11011_3 = 2^4 + 2^3 + 2^1 + 2^0$

$$11011_2 = 2^4 + 2^3 + 2^1 + 2^0$$
$$= 16 + 8 + 2 + 1$$
$$= 27_{10}$$

Contoh (1.2) Konversi desimal ke biner

41 ₁₀ = Integer 41		CHITID.	Reminder			
41/2	=	20	2 1			
20/2	= =	10	0			
10/2	\ =	5	0			
5/2	\ <u>=</u>	2	1 /			
2/2	=	1 19 88	0			
1/2	=\	OMALA	NG 1			

Konversikan bilangan 756₈ ke bilangan desimal

$$756_8 = 7 * 8^2 + 5 * 8^1 + 6 * 8^0$$

= $448 + 40 + 6$
= 494_{10}

Tugas: Konversikan bilangan 354₈ ke bilangan desimal=?

Konversikan bilangan 31A₁₆ ke bilangan desimal

$$31A_{16}$$
 = 3 * 16² + 1 * 16¹ + 10 * 16⁰
= 768 + 16 + 10
= 794₁₀

Tugas: Konversikan bilangan 313₁₆ ke bilangan desimal=?

Lanjutan ...

$$a_n r^n + a_{n-1} r^{n-1} + ... + a_2 r^2 + a_1 r^1 + a_0 r^0 + a_{-1} r^{-1} + a_{-2} r^{-2} + ...$$

Contoh. 1.1

Konversi bilangan n berbasisi r ke desimal

$$11010,11_{2} = 1.2^{4} + 1.2^{3} + 0.2^{2} + 1.2^{1} + 0.2^{0} + 1.2^{-1} + 1.2^{-2}$$

$$= 26,75_{10}$$

$$4021,2_{5} = 4.5^{3} + 0.5^{2} + 2.5^{1} + 1.5^{0} + 2.5^{-1}$$

$$= 511,4_{10}$$

Konversi sistem bilangan biner ke sistem bilangan oktal

Rumus:

- Kelompokkan tiga-tiga.
- Jika kurang dari tiga diberi 0 di depan untuk bilangan di depan koma dan di belakang untuk bilangan di belakang koma.

Contoh:

10110111,101110₂

kita akan kelompokkan tiga-tiga:

 $010 \ 110 \ 111, \ 101 \ 110_2 = 267,56_8$

Konversi sistem bilangan oktal ke sistem bilangan biner

Rumus:

Kembalikan nilai oktal sesuai dengan nilai biner yang bersesuaian

Contoh:

$$745,23_8 = 111 100 101, 010 011_2$$

= 111100101,010011_2

Konversi sistem bilangan biner ke sistem bilangan heksadesimal

Rumus:

- Kelompokkan empat-empat.
- Jika kurang dari empat diberi 0 di depan untuk bilangan di depan koma dan dibelakang untuk bilangan di belakang koma.

Contoh:

1011110111,01101000₂

kita akan kelompokkan empat-empat:

 $0010 \ 1111 \ 0111, \ 0110 \ 1000_2 = 2F7,68_{16}$

Konversi sistem bilangan heksadesimal ke sistem bilangan biner

Rumus:

Kembalikan nilai hex sesuai dengan nilai biner yang bersesuaian (lihat tabel)

Contoh:

 $ABC,DE_{16} = 1010\ 1011\ 1100,\ 1110\ 1111_2$

= 101010111100,11101111₂

Heksadesimal	sadesimal Biner		Biner
0	0000	8	1000
1	0001	9	1001
2	0010	A	1010
3	0011	В	1011
4	0100	C	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

Ubah bilangan biner berikut ini menjadi bilangan desimal: Ubah bilangan desimal berikut ini menjadi bilangan biner: Ubah bilangan oktal berikut ini menjadi bilangan desimal Ubah bilangan desimal berikut ini menjadi bilangan oktal Ubah bilangan oktal berikut ini menjadi bilangan biner Ubah bilangan biner berikut ini menjadi bilangan oktal Ubah bilangan heksadesimal berikut ini menjadi bilangan biner **2A 8D** C09 FF2 **FFFF** Ubah bilangan biner berikut ini menjadi bilangan heksadesimal 110010 100101111111

SISTEM BILANGAN DAN KODE BILANGAN (LANJUTAN)

KODE BILANGAN

- 1. Kode BCD (Binary Coded Decimal)
 - Setiap bilangan desimal (o s.d. 9) dikodekan dalam bilangan biner

 Dengan cara yang sama dapat dilakukan konversi baliknya

Cont...

- Keunggulan kode BCD: mudah mengubah dari dan ke bilangan desimal
- Kerugian: tidak dapat digunakan untuk operasi aritmatika yang hasilnya melebihi 9

Soal:

- 1. Ubahlah bilangan menjadi bilangan BCD :
 - a. 47 b. 815 c. 90623
- 2. Kembalikan kode BCD berikut menjadi bilangan desimalnya :
 - a. 1000 1001 0011 0000
 - b. 0010 0101 0111 0000 0010

2. Kode Excess-3 (XS-3)

- Excess-3 artinya : kelebihan tiga, sehingga nilai biner asli ditambah tiga
- Dapat juga dipakai untuk menggantikan bilangan desimal o s.d. 9

Soal:

Kodekan bilangan desimal berikut ke XS-3:

a. 47 b. 815

Desimal	Kode Excess-3
0	0011
1	0100
2	0101
3	0110
4	0111
5	1000
6	1001
7	1010
8	1011
9	1100

Cont..

- Seperti halnya dengan BCD, XS-3 hanya menggunakan
 10 dari 16 kombinasi yang ada
- Kode Excess-3 dirancang untuk mengatasi kesulitan kode BCD dalam operasi aritmatika
- Aturan-aturan penjumlahan kode XS-3 :
 - 1. Penjumlahan mengikuti aturan penjumlahan biner
 - a. Jika hasil penjumlahan untuk suatu kelompok menghasilkan suatu simpanan desimal, tambahkan 0011 ke kelompok tersebut
 - b. Jika hasil penjumlahan untuk setiap kelompok tidak menghasilkan simpanan desimal, kurangkan 0011 dari kelompok tersebut

• Contoh soal:

1).
$$43 \rightarrow x3 \rightarrow 0111 \ 0110_{x3}$$

 $35 + \rightarrow x3 \rightarrow 0110 \ 1000_{x3} + 1011 \ 1110_{x3}$ penjumlahan biner biasa
 $0011 \ 0011_{x3} - \text{ (krn tidak ada sisa bagi)}$
 $1010 \ 1011_{x3} \rightarrow x3 \rightarrow 0111 \ 1000_{BCD} = 78$

2).
$$28 \rightarrow 0101 \ 1011_{x_3} + \frac{28 +}{56} \rightarrow 1011 \ 0110_{x_3} + \frac{0011 \ 0011_{x_3}}{1000 \ 1001_{x_3}} + \frac{0011 \ 0011_{x_3}}{1000 \ 1001_{x_3}} \rightarrow x_3 \rightarrow 0101 \ 0110_{BCD}$$

3. Kode Gray

- Digunakan untuk peralatan masukan dan keluaran dalam sistem digital
- Tidak bisa digunakan untuk rangkaian aritmatika
- Karakteristik : hanya satu digit yang berubah bila dicacah dari atas ke bawah.

Desimal	Kode Gray
0	0000
1	0001
2	0011
3	0010
4	0110
5	0111
6	0101
7	0100
8	1100
9	1101
10	1111
11	1110
12	1010
13	1011
14	1001
15	1000

4. Kode ASCII

- ASCII singkatan dari : American Standard Code for Informtion Interchange
- Kode ASCII adalah kode 7-bit dengan format susunan:

$$a_6 a_5 a_4 a_3 a_2 a_1 a_0$$

Setiap a disusun dalam o dan 1

Ex: A dikodekan sebagai: 100 0001

Tabel Kode ASCII

a3a2a1a0		a ₆ a ₅ a ₄ (column)							
	Row (Hex)	000	001 1	010 2	011 3	100 4	101 5	110 6	111
0000	0	NUL	DLE	SP	0	@	P	,	
0001	1	SOH	DC1	1	1	Α	Q	а	q
0010	2	STX	DC2	27	2	В	Ŕ	ь	ŕ
0011	3	ETX	DC3	#	3	С	S	c	s
0100	4	EOT	DC4	\$	4	D	Т	đ	ŧ
0101	5	ENQ	NAK	%	5	E	Ų	e	ц
0110	6	ACK	SYN	&	6	F	V	f	v
0111	7	BEL	ETB	,	7	G	W	g	w
1000	8	BS	CAN	(8	H	X	Ď	х
1001	9	HT	EM)	9	I	Y	i	У
1010	Α	\mathbf{LF}	SUB	*	÷	J	Z	j	Z
1011	В	VT	ESC	+	Ş	K	Γ	k	{
1100	С	FF	FS		<	L	λ	1	Ī
1101	D	CR	GS	_	=	M	j	m	j
1110	E	SO	RS	-	>	N	^	n	٠.
1111	F	S1	US	1	?	O	-	Ð	DEL

A. COMPLEMENT

a. Binary 1's complement for substraction

To take the 1's complement of binary number, Sweply change each bit. The 1's complement of 1 is 0 and vice versa. The 1's complement of 1001010 is 0110101. To substract 1's complement:

- 1. Take the 1's complement of the substrahend (bottom number)
- 2. Add the 1's complement to the minu end (top number)
- 3. Overflow indicated that the answers is positive. Add the overflow to the least significant bit. This operation is called end around carry (EAC).

Lanjutan ...

4.If there is no overflow then the answers is negatif. Take the 1's complement of the original addition to obtain the true magnitude of the answer.

Contoh. 2-1

1. Substract 11001₂ – 10001₂

Jawabannya adalah: +1000

ightharpoonup Periksa : $25_{10} - 17_{10} = 8_{10}$

Contoh. 2-1 (Lanjutan)

2. Substract 10000₂ – 11101₂

Jawabannya adalah : - 1101

 \triangleright Periksa : $16_{10} - 29_{10} = -13_{10}$

Binary 2's complement for subtraction the 2's complement is 1's complement and then add 1.

The 2's complement of 10110 is 01001+1= 01010

To subtract using 2's complement idem \longrightarrow 1's complement

Contoh.

1.
$$1011_2 - 100_2 =$$

Jawab. $1011 \longrightarrow 1011$
 $-0100 \longrightarrow 10111 \longrightarrow +111$

Jadi $1011_2 - 100_2 = +111_2$

Lanjutan

2.
$$10010_2 - 11000_2 = \dots 2$$

Jawab.

10010 10010

- 11000 + 01000

11010 101

No overflow 1100

Jadi 10010₂ - 1100₂ = - 110₂

TEKNIK INFORMATIKA

b. Operasi adder/subtracter bilangar signed 2'sc

Jawaban adder/subtracter diindikasikan oleh bit sign, jika jawaban positif maka bit lainnya merupakan true magnitude dan jika negatif maka bit lainnya merupakan bentuk 2'sc.

Contoh!

1. add untuk bilangan 8 bit 2'sc 01011001 + 10101101

Ignore Sign +

Jadi true mag = +6

2. Add 11011001 + 10101101

Jawab. 1011001 (- 39)
+ 10101101 (- 83)
10000110 (-122)
Ignore
overflow

jadi true mag 10000110 $\stackrel{\text{2'sc}}{\Longrightarrow}$ 1111010(-122)

3. Subtract bilangan 8 bit signed 2'sc 01011011 — 11100101 (+91)

jadi true mag 01110110 (+118)

4. Subtract 10001010 — 111111100

Jawab. 10001010 2'sc 10001010

- 111111100 → + 00000100

No overflow Sign bit -

jadi true mag 10001110 - 01110010(-114)

 Rubah 10010011 kedalam bilangan decimal menggunakan sistem signed 2'sc.
 Jawab.

1 0010011 Sign bit 64 32 16 8 4 2 1 = 64+32+8+4+1 1 1 0 1 1 0 1 = 99 true magnitude

Jadi true magnitude = -99

TEKNIK INFORMATIKA

3. Tunjukkan -78₁₀ sebagai bilangan 8 bit

signed 2'sc.

Jawab.

$$78_{10} = 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0$$

true magnitude 01001110

jadi
$$-78_{10} = 10110010$$
 (signed 2'sc).

TEKNIK INFORMATIKA