

Linear Dimensionality Reduction: PCA

DCS310

Sun Yat-sen University

Outline

- Motivation
- Perspective 1: Minimizing Reconstruction Error
- Perspective 2: Maximizing Variance
- Perspective 3: SVD
- Other Applications of PCA

Motivation

 The dimensionality of many types of data is very high, e.g., the dimension of each image below is as high as

$$256 \times 256 = 65536$$

 If we work on the raw data directly, the complexity of subsequent tasks (e.g. classification) could be extremely high

The high-dimensional data often resides on a low-dimensional intrinsic space approximately

3-dimensional data lies on a 2-dimensional plane

2-dimensional data lies on a 1-dimensional line

Finding *the principal directions* so that the dimensions of data represented under the new directions can be reduced significantly

For the real-world data, this is also possible

e.g., an face image can be represented well by only several values if appropriate principal directions can be found

$$\boldsymbol{x} \approx \boldsymbol{\mu}_0 + a_1 \boldsymbol{\mu}_1 + \dots + a_7 \boldsymbol{\mu}_7$$

The raw image x that has 65536 values can be represented by only 7 values of $a_1, \dots a_7$

Outline

- Motivation
- Perspective 1: Minimizing the Reconstruction Error
- Perspective 2: Maximizing Variance
- Perspective 3: SVD
- Other Applications of PCA

Re-representation under the New Directions

Orthonormal directions in high dimensional space

A set of vectors u_i satisfying

$$\mathbf{u}_i^T \mathbf{u}_j = \delta_{ij}$$

where $\delta_{ij} = 1$ if i = j; 0 otherwise

Theorem: Under the given M orthonormal directions u_i , the best approximation to a data sample x is

$$\widetilde{\boldsymbol{x}} = \alpha_1 \boldsymbol{u}_1 + \alpha_2 \boldsymbol{u}_2 + \dots + \alpha_M \boldsymbol{u}_M$$

with α_i being equal to

$$\alpha_i = \boldsymbol{u}_i^T \boldsymbol{x}$$

Proof:

$$\|\mathbf{x} - \widetilde{\mathbf{x}}\|^2 = \left\|\mathbf{x} - \sum_{i=1}^{M} \alpha_i \mathbf{u}_i\right\|^2$$
$$= \|\mathbf{x}\|^2 - 2\sum_{i=1}^{M} \alpha_i \mathbf{u}_i^T \mathbf{x} + \sum_{i=1}^{M} \alpha_i^2$$

where we used $\boldsymbol{u}_i^T\boldsymbol{u}_i=0$ for $i\neq j$ and 1 for i=j

This is a quadratic function, and can be minimized when $\alpha_i = u_i^T x$

Given the directions u_i , the best coefficient is $\alpha_i = u_i^T x$. But which directions are the best is still unknown

Finding the Best Directions

• Objective: Given data $\{x^{(n)}\}_{n=1}^{N}$ from \mathbb{R}^{D} , finding the orthonormal directions u_{i} under which the original data can be represented best

$$\mathbf{x}^{(n)} \approx \sum_{i=1}^{M} \alpha_i^{(n)} \mathbf{u}_i$$

• Suppose the best directions $\{u_i\}_{i=1}^M$ are given, what is the coefficients $\alpha_i^{(n)}$?

$$\alpha_i^{(n)} = \boldsymbol{u}_i^T \boldsymbol{x}^{(n)}$$

Instead of representing the data $x^{(n)}$ directly, we first center the data to the origin, *i.e.*, representing data

$$\mathbf{x}^{(n)} - \overline{\mathbf{x}}$$

with

$$\overline{x} = \frac{1}{N} \sum_{n=1}^{N} x^{(n)}$$

• The objective can be formulated as minimizing the error between data $x^{(n)}$ and its approximant $\tilde{x}^{(n)} = \sum_{i=1}^{M} \alpha_i^{(n)} u_i$ in $span(\{u_1, \dots, u_M\})$

$$E = \frac{1}{N} \sum_{n=1}^{N} \left\| \left(\boldsymbol{x}^{(n)} - \overline{\boldsymbol{x}} \right) - \widetilde{\boldsymbol{x}}^{(n)} \right\|^{2}$$

where the best coefficient α_i is known equal to

$$\alpha_i^{(n)} = \boldsymbol{u}_i^T (\boldsymbol{x}^{(n)} - \overline{\boldsymbol{x}})$$

- Reformulating the reconstruction error E
 - a) Substituting $\widetilde{\boldsymbol{x}}^{(n)} = \sum_{i=1}^{M} \alpha_i^{(n)} \boldsymbol{u}_i$ into $E = \frac{1}{N} \sum_{n=1}^{N} \left\| \left(\boldsymbol{x}^{(n)} \overline{\boldsymbol{x}} \right) \widetilde{\boldsymbol{x}}^{(n)} \right\|^2 \text{ and using } \boldsymbol{u}_i^T \boldsymbol{u}_j = \delta_{ij} \text{ gives}$

$$E = \frac{1}{N} \left(\sum_{n=1}^{N} \left\| \boldsymbol{x}^{(n)} - \overline{\boldsymbol{x}} \right\|^{2} - 2 \sum_{n=1}^{N} \sum_{i=1}^{M} \alpha_{i}^{(n)} \left(\boldsymbol{x}^{(n)} - \overline{\boldsymbol{x}} \right)^{T} \boldsymbol{u}_{i} + \sum_{n=1}^{N} \sum_{i=1}^{M} \left(\alpha_{i}^{(n)} \right)^{2} \right)$$

b) Substituting $\alpha_i^{(n)} = \boldsymbol{u}_i^T (\boldsymbol{x}^{(n)} - \overline{\boldsymbol{x}})$ gives

$$E = \frac{1}{N} \sum_{n=1}^{N} \left\| \boldsymbol{x}^{(n)} - \overline{\boldsymbol{x}} \right\|^{2} - \sum_{i=1}^{M} \boldsymbol{u}_{i}^{T} \underbrace{\frac{1}{N} \sum_{n=1}^{N} (\boldsymbol{x}^{(n)} - \overline{\boldsymbol{x}}) (\boldsymbol{x}^{(n)} - \overline{\boldsymbol{x}})^{T}}_{\boldsymbol{S}} \boldsymbol{u}_{i}$$

Constant

c) Rewritting it in a matrix form gives

$$E = \|\boldsymbol{X} - \overline{\boldsymbol{X}}\|_F^2 - \sum_{i=1}^M \boldsymbol{u}_i^T \boldsymbol{S} \boldsymbol{u}_i$$

where $X \triangleq [x^{(1)}, x^{(2)}, \dots, x^{(N)}]$ and $\|\cdot\|_F$ is the Frobenius norm

Minimizing $E = \|\mathbf{X} - \overline{\mathbf{X}}\|_F^2 - \sum_{i=1}^M \mathbf{u}_i^T \mathbf{S} \mathbf{u}_i$ is equivalent to maximizing

$$\max_{\boldsymbol{u}_1 \cdots \boldsymbol{u}_M} \sum_{i=1}^M \boldsymbol{u}_i^T \boldsymbol{S} \boldsymbol{u}_i$$
$$s. t.: \boldsymbol{u}_i^T \boldsymbol{u}_j = \delta_{ij}$$

$$s.t.: \boldsymbol{u}_i^T \boldsymbol{u}_j = \delta_{ij}$$

13

• Consider the simple case with M = 1. The problem is reduced to:

$$\max_{\boldsymbol{u}_1} \boldsymbol{u}_1^T \boldsymbol{S} \boldsymbol{u}_1$$
$$s.t.: \boldsymbol{u}_1^T \boldsymbol{u}_1 = 1$$

This is equivalent to maximizing (Lagrange method)

$$\boldsymbol{u}_1^T \boldsymbol{S} \boldsymbol{u}_1 - \lambda (\boldsymbol{u}_1^T \boldsymbol{u}_1 - 1)$$

 \triangleright Taking the derivative w.r.t. u_1 and setting it to 0 gives

$$Su_1=\lambda u_1$$
,

from which we can see that u_1 should be the eigenvector of S w.r.t. to the largest eigenvalue

• For the case with M = 2, the problem becomes

$$\max_{u_1,u_2} u_1^T S u_1 + u_2^T S u_2$$

$$s.t.: u_1^T u_1 = 1, u_2^T u_2 = 1, u_1^T u_2 = 0$$

This is equivalent to maximizing

$$u_1^T S u_1 - \lambda_1 (u_1^T u_1 - 1) + u_2^T S u_2 - \lambda_2 (u_2^T u_2 - 1)$$

under the constraint $\mathbf{u}_1^T \mathbf{u}_2 = 0$

 \succ Taking the derivative w.r.t. u_1 and u_2 and setting it to 0 gives

$$Su_1 = \lambda_1 u_1$$
, $Su_2 = \lambda_2 u_2$,

- \Rightarrow u_1 and u_2 must be the eigenvectors of s
- \Rightarrow In fact, to have $u_1^T S u_1 + u_2^T S u_2$ maximized, u_1 and u_2 must be the eigenvectors corresponding to the largest two eigenvalues

For the case M > 1, the directions u_i are the eigenvectors of S corresponding to the largest M eigenvalues

Question: Does the eigenvectors u_i of S satisfy $u_i^T u_j = \delta_{ij}$?

- For any $D \times D$ semi-positive definite matrix $S \triangleq XX^T$, it has D eigenvectors, and they are orthogonal to each other
- \triangleright For every $S \triangleq XX^T$, it can be decomposed as

$$S = U\Lambda U^T$$

where U consists of the eigenvectors and $UU^T = I$; Λ is a diagonal matrix consisting of eigenvalues of S

Examples

Input data: each face image is a data point

Top 25 principal directions

$$x \approx \overline{x} + \alpha_1 \mu_1 + \dots + \alpha_7 \mu_7$$

Outline

- Motivation
- Perspective 1: Minimizing the Reconstruction Error
- Perspective 2: Maximizing Variance
- Perspective 3: SVD
- Other Applications of PCA

Problem Formulation

• Objective: Given data $\{x^{(n)}\}_{n=1}^N$ from \mathbb{R}^D , finding the orthogonal directions u_i onto which the variance of data projected is maximized

Maximizing the variance is equivalent to *preserving the* information of the original data as much as possible

- For the first direction u_1 , we hope the variance in data projected onto the direction u_1 , i.e., $u_1^T x^{(n)}$ is maximized
 - The variance expression

$$var = \frac{1}{N} \sum_{n=1}^{N} \left(\mathbf{u}_{1}^{T} (\mathbf{x}^{(n)} - \overline{\mathbf{x}}) \right)^{2}$$

$$= \mathbf{u}_{1}^{T} \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}^{(n)} - \overline{\mathbf{x}}) (\mathbf{x}^{(n)} - \overline{\mathbf{x}})^{T} \mathbf{u}_{1}$$

$$= \mathbf{u}_{1}^{T} \mathbf{S} \mathbf{u}_{1}$$

Subjecting to $u_1^T u_1 = 1$, as derived before, the variance is maximized when u_1 is the eigenvector of S corresponding to the largest eigenvalue

• For the second direction u_2 , it also should maximize the variance

$$var = \boldsymbol{u}_2^T \boldsymbol{S} \boldsymbol{u}_2,$$

but should subject to the constraints $u_i^T u_j = \delta_{ij}$, that is,

$$\boldsymbol{u}_2^T \boldsymbol{u}_2 = 1 \qquad \boldsymbol{u}_1^T \boldsymbol{u}_2 = 0$$

• Due to u_1 is the eigenvector w.r.t. the largest eigenvalue, it can be proved that u_2 is the eigenvector of s corresponding to the second largest eigenvalue

 u_i is the eigenvector of $S = \frac{1}{N} \sum_{n=1}^{N} (x^{(n)} - \overline{x}) (x^{(n)} - \overline{x})^T$ corresponding to the i-th largest eigenvalue

Outline

- Motivation
- Perspective 1: Minimizing Reconstruction Error
- Perspective 2: Maximizing Variance
- Perspective 3: SVD
- Other Applications of PCA

Singular Value Decomposition (SVD)

• For any $M \times N$ matrix A, it can always be decomposed as

$$A = U\Sigma V^T$$

- $U = [u_1, \dots, u_M]$ and $V = [v_1, \dots, v_N]$, with u_i and v_i being the i-th eigenvector of AA^T and A^TA , and $u_i^Tu_j = \delta_{ij}$ and $v_i^Tv_j = \delta_{ij}$
- Σ has nonzero values on the diagonal, which are the squared roots of the eigenvalues of AA^T or A^TA (They are the same)

 Σ_{ii} is called *singular values* and are stored in a decreasing order

 Because Σ only has nonzero values on the diagonal, A can be expressed as

$$A = U'\Sigma'V'^T = \sum_{i=1}^r \Sigma_{ii} u_i v_i^T$$

where u_i and v_i are the *i*-th column of U and V; r is the number of nonzero diagonal elements in Σ

• The vector u_i in the SVD decomposition of A is the eigenvector of AA^T w.r.t. its i-th largest eigenvalues

• By defining $\widetilde{X} = [x^{(1)} - \overline{x}, x^{(2)} - \overline{x}, \cdots, x^{(N)} - \overline{x}]$, we can see that

$$\widetilde{X}\widetilde{X}^T = \sum_{n=1}^N (x^{(n)} - \overline{x})(x^{(n)} - \overline{x})^T$$

$$= N \cdot S$$

which has the same eigenvectors as the matrix S

If we do SVD on \widetilde{X} , we can obtain the principal directions of the data $\left\{x^{(n)}\right\}_{n=1}^{N}$

Outline

- Motivation
- Perspective 1: Minimizing Reconstruction Error
- Perspective 2: Maximizing Variance
- Perspective 3: SVD
- Other Applications of PCA

Image Compression

Divide the 372×492 image below into many 12×12 patches

- Each patch is viewed as an data instance
- \triangleright Performing PCA on the patches $(2\times12 \rightarrow 5\times5)$

Reconstruction Error vs # PCA components

降低维数越多相对误绝越大

Illustration of the top 6 PCA components

Reconstruction with the top 60 components

Reconstruction with the top 16 components

Denoising

Noisy Image

Denoised Image

Reconstructed from the top 15 principal components