Transient Analysis using LTSpice

Why LTSpice?

- 1. It is **free**, Developed by Linear Technology
- 2. Fast
- 3. Easy to learn

Download for free from the following link:

http://www.linear.com/designtools/software/?gclid=Cl2Gg9uasLsCFQuUfgodpwQAJQ#LTspice

Also download the user's guide and go through it briefly

When switch in **Position:1** Capacitor voltage
$$V_C = V \left(1 - e^{-\frac{t}{RC}}\right)$$

Current
$$i_1 = \frac{V}{R} e^{-\frac{t}{RC}}$$

Position:2
$$=$$
 $i_2 = \frac{V_C}{R} e^{-\frac{t}{RC}}$

Sajjad Haidar

LT SPICE Simulation: Adding components

Run: Simulation

Switch ⇒ Position 2: Capacitor discharging

When switch in position in 1 for a long time, $V_C \sim V$

$$i_2 = \frac{V_{C(initial)}}{R} e^{-\frac{t}{RC}}$$

$$V_C = V_{C(initial)} e^{-\frac{t}{RC}}$$

Sajjad Haidar

LT SPICE Simulation: Capacitor Discharging

Removing the battery Sets node: n001 at the capacitor

LT SPICE Simulation: Capacitor Discharging

Calculating Power and Energy

When switch in position 1 for a long time, or in steady state capacitor voltage becomes equal to battery voltage. Energy Stored in capacitor can be expressed as:

$$E = \frac{1}{2} C V^2$$

When the switch in position 2, power dissipated by the resistor, R is:

$$P = i_2^2 R = \left(\frac{V}{R} e^{-t/RC}\right)^2 R = \frac{V^2}{R} e^{-2t/RC}$$

Total energy consumed by R is:
$$E = \int p.dt = \frac{V^2}{R} \int_0^\infty e^{-2t/RC} . dt$$

LTSpice to find Power and energy

Sajjad Haidar