ECE 65: Components & Circuits Lab

Lecture 14

MOSFET transfer function

Reference notes: sections 4.2,4.3

Sedra & Smith (7th Ed): sections 5.3,7.1.3

Saharnaz Baghdadchi

Course map

4. Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

NMOS Transfer Function

How does v_o change when v_i is changed from 0 to $V_{\rm DD}$?

Circuit Equations:

$$v_{GS} = v_i$$

$$i_D = f(v_{GS}, v_{DS})$$

$$v_o = v_{DS} = V_{DD} - R_D i_D$$

NMOS Transfer Function

- 2) Just to the right of point A:
- o $V_{OV} = v_{GS} V_t$ is small, so i_D is small.
- $\circ v_{DS}$ = $V_{DD} R_D i_D$ is close to V_{DD}
- \circ Thus, v_{DS} > V_{OV} and NMOS is in saturation.

NMOS Transfer Function

3) As v_{GS} increases:

- $\circ V_{OV} = v_{GS} V_t$ and i_D become larger;
- o $v_{DS} = V_{DD} R_D i_D$ becomes smaller.
- \circ At point B, $v_{DS} = V_{OV}$

NMOS Functional circuits

Transition from cut-off to triode can be used to build NMOS switch circuits.

 \circ Voltage at point C (see graph) depends on NMOS parameters and the circuit (in BJT $v_o = V_{sat}$)!

We can also build NMOS logic gates similar to a BJT. But there are much better gates based on CMOS technology!

Lecture 14 reading quiz

The transistors in the below circuit are characterized by $|V_t| = 0.5 V$

 k_p = 4 mA/V^2 , $\lambda=0$. Find the labeled node voltages.

Discussion question 1.

In the below MOSFET circuit, find the node voltage V1. How large a resistor can be inserted in series with the drain while maintaining saturation? $V_t=0.5\ V$, $I=0.1\ mA$, $V_{GS}=1\ V$

Hints:

Discussion question 1.

In the below MOSFET circuit, find the node voltage V1. How large a resistor can be inserted in series with the drain while maintaining saturation? $V_t=0.5\ V$, $I=0.1\ mA$, $V_{GS}=1\ V$

- Label I_D and I_G, V_{GS} and V_{DS}.
- What is I_G in MOSFETs (what we use in ECE 65)?
- Add the resistor between the node labeled with V1 and the drain of the transistor.
- Write the condition of V_{DS} when MOSFET is in saturation, and use it to find the maximum value of R for the MOSFET to stay in saturation.

Discussion question 2.

Design the following MOSFET circuit so that the transistor operates in saturation with $I_D=0.5~mA$ and $V_D=+3~V$. Let PMOS have $V_{tp}=-1~V$, $k_p=1~mA/V^2$, $\lambda=0$.

Discussion question 3.

In the MOSFET circuit that you designed, what is the largest value that R_D can have while maintaining saturation-region operation with the same $I_D=0.5\ mA$?

Let PMOS have $V_{tp}=-1~V$, k_p = $1~mA/V^2$, $\lambda=0$.

