Compensating a Power Amplifier using Iterative Learning Control : from Design to Realisation

Jules Hammenecker Brussels Faculty of Engineering Vrije Universiteit Brussel - Université Libre de Bruxelles

2014-2015

Thank You Note

Contents

1	Intr	oduction	2
	1.1	Why Digital Predistortion?	2
	1.2	Current Techniques of DPD	2
		1.2.1 Direct and Indirect Learning	2
		1.2.2 Nonlinear Models	2
	1.3	The Best Linear Approximation	2
		1.3.1 What is the BLA?	2
		1.3.2 How to measure it?	2
		1.3.3 Out of Band BLA and the Tickler Tone	2
	1.4	Iterative Learning Control	2
		1.4.1 The Algorithm	2
		1.4.2 Properties	2
2	Usir	ng the BLA in ILC for DPD	3
_	2.1	Introduction	3
	2.2	The Blocky Tought Experiment	3
	2.3	Why can it work?	3
	2.4	Creation of a standalone DPD	5
	2.5	Estimating the Preinverse	5
3	Sim	ulation Results	6
	3.1	ILC with BLA	6
	3.1	3.1.1 Test on Different Systems	6
		3.1.2 Influence of Noise	6
		3.1.3 Study of Convergence	6
		3.1.4 Compensate to Static Gain or BLA?	6
	3.2	Standalone DPD	6
4	A	Produce of Arthur Armalian	7
4		lication on a Audio Valve Amplifier	•
	4.1	The Synchronisation Challenge	7
	4.2	Measure the BLA	7
	4.3	Apply ILC	7
	4.4	Estimate DPD	7
	4.5	Results	7
5	Con	clusion	8

Introduction

1.1 Why Digital Predistortion?

Power amplifiers are used in almost all wireless communication devices. They amplify the communication signal such that a good signal to noise ratio is obtained. They also are an important power consuming block in a communication chain. A power amplifier is often operated in a nonlinear operation mode to improve its efficiency. This nonlinear behavior should be compensated in a later step to reach the strict telecommunication requirements. A Digital Pre-Distortion (DPD) is a common technique to linearize the input-output behavior of a power amplifier. With DPD the input signal of the amplifier is modified such that the desired (i.e. linear) behavior is obtained.

- 1.2 Current Techniques of DPD
- 1.2.1 Direct and Indirect Learning
- 1.2.2 Nonlinear Models
- 1.3 The Best Linear Approximation
- 1.3.1 What is the BLA?
- 1.3.2 How to measure it?
- 1.3.3 Out of Band BLA and the Tickler Tone
- 1.4 Iterative Learning Control
- 1.4.1 The Algorithm
- 1.4.2 Properties

Using the BLA in ILC for DPD

2.1 Introduction

2.2 The Blocky Tought Experiment

A nonlinear dynamic system can alternatively be represented by the combination of a linear transfer function G_{BLA} and a nonlinear function F.

Figure 2.1: Alternative representations of a nonlinear system.

Figure 2.2: Switching the input and output, creating the inverse of the nonlinear system.

2.3 Why can it work?

1.

Figure 2.3: Connecting the inverse and the original system together.

Figure 2.4: Getting creative with the blocks.

Figure 2.5: Cut the loop!

Figure 2.6: Reorganise the blocks one last time.

- 2.4 Creation of a standalone DPD
- 2.5 Estimating the Preinverse

Simulation Results

- 3.1 ILC with BLA
- 3.1.1 Test on Different Systems
- 3.1.2 Influence of Noise
- 3.1.3 Study of Convergence
- 3.1.4 Compensate to Static Gain or BLA?
- 3.2 Standalone DPD

Application on a Audio Valve Amplifier

- **4.1** The Synchronisation Challenge
- 4.2 Measure the BLA
- 4.3 Apply ILC
- 4.4 Estimate DPD
- 4.5 Results

Conclusion

Bibliography

[1] J. Schoukens, R. Pintelon, Y. Rolain , *Mastering System Identification in 100 Exercises*. IEEE Press (2012), 183-238.