NCERT 11.9.5 26Q

EE23BTECH11015 - DHANUSH V NAYAK*

(1)

Question: Show that

$$\frac{1 \times 2^2 + 2 \times 3^2 + \dots + n \times (n+1)^2}{1^2 \times 2 + 2^2 \times 3 + \dots + n^2 \times (n+1)} = \frac{3n+5}{3n+1}$$

Solution:

Parameter	Description	Value
n	Integer	2,-1,0,1, 2,
$x_1(n)$	General term of Numerator	$\left(n^3 + 5n^2 + 8n + 4\right) \cdot u(n)$
$x_2(n)$	General Term of Denominator	$\left(n^3 + 4n^2 + 5n + 2\right) \cdot u(n)$
y ₁ (n)	Sum of terms of numerator	?
$y_2(n)$	Sum of terms of denominator	?
U(z)	z-transform of $u(n)$	$\frac{1}{1-z^{-1}}, \{z \in \mathbb{C} : z > 1\}$
ROC	Region of convergence	$\left\{z: \left \sum_{n=-\infty}^{\infty} x(n)z^{-n}\right < \infty\right\}$

TABLE 1: Parameter Table

1. Analysis of Numerator:

By the differentiation property:

$$nx(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} (-z) \frac{dX(z)}{dz}$$

$$\implies nu(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}}{(1 - z^{-1})^2}, \{z \in \mathbb{C} : |z| > 1\}$$

$$\implies n^2 u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1} \left(z^{-1} + 1\right)}{(1 - z^{-1})^3}, \{z \in \mathbb{C} : |z| > 1\}$$

$$(3)$$

$$\implies n^3 u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1} \left(1 + 4z^{-1} + z^{-2}\right)}{\left(1 - z^{-1}\right)^4}, \{ z \in \mathbb{C} : |z| > 1 \} \text{ Time shifting property:}$$

$$\implies n^{4}u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}\left(1 + 11z^{-1} + 11z^{-2} + z^{-3}\right)}{\left(1 - z^{-1}\right)^{5}} \tag{5}$$

where $\{z \in \mathbb{C} : |z| > 1\}$

$$X_{1}(z) = \sum_{n=-\infty}^{\infty} x_{1}(n) z^{-n}$$
 (6)

$$= \sum_{n=-\infty}^{\infty} \left(n^3 + 5n^2 + 8n + 4 \right) u(n) z^{-n}$$
 (7)

Using results of equations (2) to (5) we get:

$$\therefore X_1(z) = \frac{4 + 2z^{-1}}{(1 - z^{-1})^4}, \{ z \in \mathbb{C} : |z| > 1 \}$$
 (8)

$$y_1(n) = \sum_{k=0}^{n} x_1(n)$$
 (9)

$$y_1(n) = x_1(n) * u(n)$$
 (10)

$$Y_1(z) = X_1(z) U(z)$$
 (11)

$$= \frac{4 + 2z^{-1}}{\left(1 - z^{-1}\right)^5}, \{z \in \mathbb{C} : |z| > 1\}$$
 (12)

Using partial fractions:

$$Y_{1}(z) = \frac{22z^{-1}}{(1-z^{-1})} + \frac{48z^{-2}}{(1-z^{-1})^{2}} + \frac{52z^{-3}}{(1-z^{-3})^{3}}$$

$$+ \frac{28z^{-4}}{(1-z^{-1})^{4}} + \frac{6z^{-5}}{(1-z^{-1})^{5}} + 4$$

$$z^{-1} \qquad 1$$

$$\frac{z^{-1}}{(1-z^{-1})} = \frac{1}{1-z^{-1}} - 1 \tag{14}$$

Taking the inverse z-transform of each term:

$$u(n-1) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}}{(1-z^{-1})} \tag{15}$$

$$x(n-k) \stackrel{\mathcal{Z}}{\longleftrightarrow} z^{-k}X(z)$$
 (16)

From equation (1):

$$nu(n-1) \stackrel{\mathcal{Z}}{\longleftrightarrow} z \frac{2z^{-2}}{(1-z^{-1})^2} \tag{17}$$

By equation (16):

$$\frac{(n-1)}{2}u(n-2) \longleftrightarrow \frac{z^{-2}}{(1-z^{-1})^2}$$
(18)

$$\frac{(n-1)(n-2)}{6}u(n-3) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-3}}{(1-z^{-1})^3} \qquad y_2(n) = \sum_{k=0}^n x_2(n)$$

$$(19) \qquad y_2(n) = x_2(n) * u$$

$$\frac{(n-1)(n-2)\dots(n-k+1)}{(k-1)!}u(n-k) \longleftrightarrow \frac{z}{(1-z^{-1})^k}$$
(20)

In equation (20) u(n-k) can be replaced by u(n-1).

Substituting k=2,3,4,5 in equation (20):

$$Z^{-1} \left[\frac{z^{-2}}{(1 - z^{-1})^2} \right] = (n - 1) u (n - 1)$$
 (21)

$$Z^{-1} \left[\frac{z^{-3}}{(1 - z^{-1})^3} \right] = \frac{(n - 1) (n - 2)}{2} u (n - 1)$$
 (22)

$$Z^{-1} \left[\frac{z^{-4}}{(1 - z^{-1})^4} \right] = \frac{(n - 1) (n - 2) (n - 3)}{6} u (n - 1)$$
 (23)

$$Z^{-1} \left[\frac{z^{-5}}{(1 - z^{-1})^5} \right] = \frac{(n - 1) (n - 2) (n - 3) (n - 4)}{24}$$
 (24)

Substituting results of equation (21) to (24) in equation (13):

u(n-1)

$$y_{1}(n) = \frac{3n^{4} + 26n^{3} + 81n^{2} + 106n + 48}{12}u(n)$$

$$= \frac{(3n+8)(n+1)(n+2)(n+3)}{12}u(n)$$
(26)

2. Analysis of Denominator:

$$X_{2}(z) = \sum_{n=-\infty}^{\infty} x_{2}(n) z^{-n}$$

$$= \sum_{n=-\infty}^{\infty} (n^{3} + 4n^{2} + 5n + 2) u(n) z^{-n}$$
(28)

Using results of equation (2) to (5) we get:

$$\frac{(n-1)}{2}u(n-2) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-2}}{(1-z^{-1})^2} \qquad \therefore X_2(z) = \frac{2+4z^{-1}}{(1-z^{-1})^4}, \{z \in \mathbb{C} : |z| > 1\} \quad (29)$$

$$y_2(n) = \sum_{k=0}^{n} x_2(n)$$
 (30)

$$y_2(n) = x_2(n) * u(n)$$
 (31)

$$Y_2(z) = X_2(z) U(z)$$
 (32)

$$=\frac{2+4z^{-1}}{(1-z^{-1})^5}, \{z \in \mathbb{C} : |z| > 1\}$$
 (33)

Using partial fractions:

Sing partial fractions.

$$Y_{2}(z) = \frac{14z^{-1}}{(1-z^{-1})} + \frac{36z^{-2}}{(1-z^{-1})^{2}} + \frac{44z^{-3}}{(1-z^{-3})^{3}} + \frac{26z^{-4}}{(1-z^{-1})^{4}} + \frac{6z^{-5}}{(1-z^{-1})^{5}} + 2$$

Substituting results of equation (21) to (24) in equation (34):

$$y_{2}(n) = \frac{3n^{4} + 22n^{3} + 57n^{2} + 62n + 24}{12}u(n)$$

$$= \frac{(3n+4)(n+1)(n+2)(n+3)}{12}u(n)$$
(36)

As the sequence start from n=0, in RHS of question n should be replaced by n + 1:

$$\frac{y_1(n)}{y_2(n)} = \frac{3n+8}{3n+4} \tag{37}$$

Fig. 1: Stem Plot of $x_1(n)$

Fig. 2: Stem Plot of $x_2(n)$

Fig. 3: Stem Plot of $y_1(n)$

Fig. 4: Stem Plot of $y_2(n)$