SAR TESTREPOR

ISSUED BY Shenzhen BALUN Technology Co., Ltd.

FOR

smart phone

ISSUED TO
JIANGSU SHUANGSHUANG TECHNOLOGY CO, LTD.

No.188, West Coastal Road, Haian County, Jiangsu Province, P.R.China.

Report No.: BL-SZ1630247-701

EUT Type: smart phone

Model Name: D351W

Brand Name: N/A FCC ID: 2ABD

2ABDT-D351W

Test Standard: FCC 47 CFR Part 2.1093

ANSI C95.1: 2005

IEEE 1528: 2013

Maximum SAR: Head (1 g): 0.406 W/kg

Body (1 g): 1.016 W/kg

Test Conclusion: Pass

Test Date: A

Apr. 8, 2016 ~ Apr. 15, 2016

Date of Issue:

May 5, 2016

NOTE: This test report can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen BALUN Technology Co., Ltd. BALUN Laboratory. Any objections should be raised within thirty days from the date of issue. To validate the report, please visit BALUN website.

Revision History

Version Issue Date Revisions Content

Rev. 01 Apr. 20, 2016 Rev. 02 May 5, 2016

Initial Issue
Added the duty cycle correction factor for
802.11b on page 43 note 3 and describe
the differences between the two card
slots.

TABLE OF CONTENTS

1	GENERAL INFORMATION	5
	1.1 Identification of the Testing Laboratory	5
	1.2 Identification of the Responsible Testing Location	5
	1.3 Test Environment Condition	5
	1.4 Announce	6
2	PRODUCT INFORMATION	7
	2.1 Applicant	7
	2.2 Manufacturer	7
	2.3 Factory Information	7
	2.4 General Description for Equipment under Test (EUT)	7
	2.5 Ancillary Equipment	8
	2.6 Technical Information	9
3	SUMMARY OF TEST RESULT	10
	3.1 Test Standards	10
	3.2 Device Category and SAR Limit	11
	3.3 Test Result Summary	12
	3.4 Test Uncertainty	13
4	MEASUREMENT SYSTEM	14
	4.1 Specific Absorption Rate (SAR) Definition	14
	4.2 DASY SAR System	15
5	SYSTEM VERIFICATION	23
	5.1 Purpose of System Check	23
	5.2 System Check Setup	23
6	TEST POSITION CONFIGURATIONS	24
	6.1 Head Exposure Conditions	24

	6.2	Body-worn Position Conditions	26				
	6.3	Hotspot Mode Exposure Position Conditions	27				
7	MEASU	JREMENT PROCEDURE	28				
	7.1	Measurement Process Diagram	28				
	7.2	SAR Scan General Requirement	29				
	7.3	Measurement Procedure	30				
	7.4	Area & Zoom Scan Procedure	30				
8	COND	JCTED RF OUPUT POWER	31				
	8.1	GSM	31				
	8.2	WCDMA	33				
	8.3	WIFI	34				
	8.4	Bluetooth	35				
9	TEST E	EXCLUSION CONSIDERATION	36				
	9.1	SAR Test Exclusion Consideration Table	37				
	9.2	10g Extremity Exposure Consideration	39				
10	TEST F	RESULT	40				
	10.	1 GSM 850	40				
	10.	2 GSM 1900	41				
	10.	3 WCDMA Band 2	42				
	10.4	4 WCDMA Band 5	42				
	10.	5 WIFI 2.4GHz	43				
11	SAR M	easurement Variability	44				
12	SIMUL	TANEOUS TRANSMISSION	45				
	12.	1 Simultaneous Transmission Mode Consider	45				
	12.	2 Estimated SAR Calculation	46				
	12.	3 Sum SAR of Simultaneous Transmission	47				
13	TEST E	EQUIPMENTS LIST	48				
ANI	NEX A	SIMULATING LIQUID VERIFICATION RESULT	49				
ANI	NEX B	SYSTEM CHECK RESULT	50				
ANI	NEX C	TEST DATA	57				
ANI	NEX D	EUT EXTERNAL PHOTOS	107				
ANI	NEX E	SAR TEST SETUP PHOTOS	NNEX E SAR TEST SETUP PHOTOS107				

ANNEX I	F C	CALIBRATION REPORT	108
F	F.1 E	E-Field Probe	108
F	F.2 [Data Acquisition Electronics	119
F	F.3 [Dual Logo-CTTL-SPEAG-certificates	122
F	F.4 [Dipole Performance Measurement Report	123
F	F.5 8	335MHz Dipole	155
F	F.7 1	1900MHz Dipole	163
F	F.8 2	2450MHz Dipole	171

1 GENERAL INFORMATION

1.1 Identification of the Testing Laboratory

Company Name Shenzhen BALUN Technology Co.,Ltd.		
Address	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi	
Address	Road, Nanshan District, Shenzhen, Guangdong Province,P. R. China	
Phone Number	+86 755 6685 0100	
Fax Number	+86 755 6182 4271	

1.2 Identification of the Responsible Testing Location

Test Location	Shenzhen BALUN Technology Co.,Ltd.		
Addroso	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi		
Address	Road, Nanshan District, Shenzhen, Guangdong Province,P. R. China		
	The laboratory has been listed by Industry Canada to perform		
	electromagnetic emission measurements. The recognition numbers		
	of test site are 11524A-1.		
A a ava ditation	The laboratory has been listed by US Federal Communications		
Accreditation	Commission to perform electromagnetic emission measurements.		
Certificate	The recognition numbers of test site are 832625.		
	The laboratory is a testing organization accredited by China National		
	Accreditation Service for Conformity Assessment (CNAS) according		
	to ISO/IEC 17025. The accreditation certificate number is L6791.		
	All measurement facilities used to collect the measurement data are		
Description	located at Block B, FL 1, Baisha Science and Technology Park,		
Description	Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province,		
	P. R. China 518055		

1.3 Test Environment Condition

Ambient Temperature	21 to 23°C
Ambient Relative Humidity	40 to 50%
Ambient Pressure	100 to 102KPa

1.4 Announce

- (1) The test report reference to the report template version v2.2.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- (5) This document may not be altered or revised in any way unless done so by BALUN and all revisions are duly noted in the revisions section.
- (6) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

2 PRODUCT INFORMATION

2.1 Applicant

Applicant	JIANGSU SHUANGSHUANG TECHNOLOGY CO,LTD.		
Address	No.188, West Coastal Road, Haian County, Jiangsu Province,		
Address	P.R.China.		

2.2 Manufacturer

Manufacturer		JIANGSU SHUANGSHUANG TECHNOLOGY CO,LTD.		
	A diducac	No.188, West Coastal Road, Haian County, Jiangsu Province,		
	Address	P.R.China.		

2.3 Factory Information

Factory	JIANGSU SHUANGSHUANG TECHNOLOGY CO,LTD.
Address	No.188, West Coastal Road, Haian County, Jiangsu Province,
	P.R.China.

2.4 General Description for Equipment under Test (EUT)

EUT Type	smart phone		
Model Name Under Test	D351W		
Series Model Name	N/A		
Description of Model	N/A		
Name Differentiation	N/A		
Hardware Version	1015_MB_V1.2A		
Software Version	ALPS.KK1.MP7.V1.7		
Dimensions (Approx.)	117 × 61 × 9 mm		
Weight (Approx.)	112.3 g		
Network and Wireless	2G Network GSM 850/1900; GPRS; EGPRS;		
connectivity	3G Network WCDMA Band 2/ 5; HSDPA, HSUPA;		
Connectivity	2.4G WLAN, Bluetooth, GPS		

Note 1: The EUT is a mobile phone, supporting dual SIM card slots under the same transceiver. SIM1 support GSM and WCDMA, SIM2 only support GSM. Both SIM card slots share the same transceiver, only SIM1 was tested in this report.

2.5 Ancillary Equipment

	Battery		
	Brand Name	azumi	
	Model No.	1015	
Ancillary Equipment 1	Serial No.	N/A	
	Capacitance	1450mAh	
	Rated Voltage	3.7 V	
	Extreme Voltage	5 V	
Ancillary Equipment 2	Charger		
	Brand Name	azumi	
	Model No.	SC050060-US	
	Rated Input	100-240 V~, 0.15 A, 50/60 Hz	
	Rated Output	5 V=, 0.6 A	

2.6 Technical Information

The requirement for the following technical information of the EUT was tested in this report:

Operating Mode	GSM, WCDMA, 2.4G WLAN, Bluetooth			
	GSM 850	TX: 824 MHz ~ 849 M	1Hz	RX: 869 MHz ~ 894 MHz
	GSM 1900	TX: 1850 MHz ~ 1910) MHz	RX: 1930 MHz ~ 1990 MHz
	WCDMA	TX: 1850 MHz ~ 1910 MHz) MHz	RX: 1930 MHz ~ 1990 MHz
	Band 2	17. 1000 WINZ 1010	7 1711 12	
Frequency Range	WCDMA	TX: 824 MHz ~ 849 M	1Hz	RX: 869 MHz ~ 894 MHz
	Band 5	174. 024 101112 040 10		100. 000 WHZ
	802.11b/g	2400~2483.5 MHz		
	/n(HT20/HT40)	2.100 2.100.0 WH 12		
	Bluetooth	2400~2483.5 MHz		
	WWAN: PIFA Antenna			
Antenna Type	WLAN: PIFA Antenna			
	Bluetooth: PIFA Antenna			
DTM	Not Support			
Hotspot Function	Support			
Power Reduction	Not Support			
Exposure Category	General Population/Uncontrolled exposure			
EUT Stage	Portable Device			
Product	Туре			
FIOUUCI			entical prototype	

3 SUMMARY OF TEST RESULT

3.1 Test Standards

No.	Identity	Document Title
1 47 CFR Part 2		Frequency Allocations and Radio Treaty Matters; General Rules
	47 CIRPAIL2	and Regulations
2	ANSI/IEEE Std.	IEEE Standard for Safety Levels with Respect to Human Exposure
	C95.1-2005	to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz
	IEEE Std.	Recommended Practice for Determining the Peak Spatial-Average
3	1528-2013	Specific Absorption Rate (SAR) in the Human Head from Wireless
	1320-2013	Communications Devices: Measurement Techniques
4	FCC KDB 447498	Mobile and Portable Device RF Exposure Procedures and
	D01 v06	Equipment Authorization Policies
5	FCC KDB 941225	3G SAR MEAUREMENT PROCEDURES
5	D01 v03r01	30 SAN MEAGNEMENT I NOCEDONES
6	FCC KDB 941225	SAR Evaluation Considerations for LTE Devices
0	D05 v02r05	SAN Evaluation Considerations for ETE Devices
7	FCC KDB 941225	SAR Evaluation Procedures for Portable Devices with Wireless
,	D06 v02r01	Router Capabilities
8	FCC KDB 865664	SAR Measurement 100 MHz to 6 GHz
	D01 v01r04	SAIX Measurement 100 Min 2 to 0 Griz
9	FCC KDB 865664	RF Exposure Reporting
	D02 v01r02	Tri Exposure Reporting
10	FCC KDB 648474	SAR Evaluation Considerations for Wireless Handsets
10	D04 v01r03	OAK Evaluation Considerations for vylicless Handsets
11	KDB 248227 D01	SAR Guidance for IEEE 802.11 (Wi-Fi) Transmitters
11	v02r02	OAR Odidance for ILLE 002.11 (VVI-LI) Hansilitters

3.2 Device Category and SAR Limit

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user.

Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

Table of Exposure Limits:

	SAR Value (W/Kg)				
Body Position	General Population/	Occupational/			
	Uncontrolled Exposure	Controlled Exposure			
Whole-Body SAR	0.08	0.4			
(averaged over the entire body)	0.08	0.4			
Partial-Body SAR	1.60	8.0			
(averaged over any 1 gram of tissue)	1.60	6.0			
SAR for hands, wrists, feet and					
ankles	4.0	20.0			
(averaged over any 10 grams of tissue)					

NOTE:

General Population/Uncontrolled Exposure: Locations where there is the exposure of individuals who have no knowledge or control of their exposure. General population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Occupational/Controlled Exposure: Locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

3.3 Test Result Summary

3.3.1 Highest SAR (1 g Value)

Band	Maximum Scaled SAR (W/kg)			Maxim	Limit		
	Head	Body-worn	Hotspot	Head	Body-worn	Hotspot	(W/kg)
GSM 850	0.130	0.416	0.566			0.693	
GSM 1900	0.184	0.401	0.693		1.016		4.0
WCDMA Band 2	0.406	1.016	0.243	0.400			
WCDMA Band 5	0.162	0.468	0.170	0.406			1.6
2.4G WLAN	0.156	0.00					
802.11b	0.156	0.338					
Verdict	Pass						

3.3.2 Highest Simultaneous SAR

Position	Simultaneous Configuration	Simultaneous SAR (W/kg)	Limit (W/kg)	Verdict
Head	WCDMA RMC + 2.4G WLAN	0.562	1.6	Pass
Body-worn	WCDMA RMC + 2.4G WLAN	1.354	1.6	Pass
Hotspot Mode	GSM DATA + 2.4G WLAN	1.031	1.6	Pass

3.4 Test Uncertainty

3.4.1 Measurement uncertainly evaluation for SAR test and system check

According to KDB 865664 D01, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528 is not required in SAR reports submitted for equipment approval.

4 MEASUREMENT SYSTEM

4.1 Specific Absorption Rate (SAR) Definition

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by

$$SAR = \frac{\sigma E^2}{\rho}$$

Where: σ is the conductivity of the tissue,

pis the mass density of the tissue and E is the RMS electrical field strength.

4.2 DASY SAR System

4.2.1 DASY SAR System Diagram

The DASY5 system for performing compliance tests consists of the following items:

- 1. A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- 2. A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- 3. A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- 4. A unit to operate the optical surface detector which is connected to the EOC.
- 5. The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- 6. The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation.
- 7. DASY5 software and SEMCAD data evaluation software.
- 8. Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- 9. The generic twin phantom enabling the testing of left-hand and right-hand usage.
- 10. The device holder for handheld mobile phones.
- 11. Tissue simulating liquid mixed according to the given recipes.
- 12. System validation dipoles allowing to validate the proper functioning of the system.

4.2.2 Robot

The Dasy SAR system uses the high precision robots. Symmetrical design with triangular core Built-in optical fiber for surface detection system For the 6-axis controller system, Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents). The robot series have many features that are important for our application:

- High precision (repeatability ±0.02 mm)
- High reliability (industrial design)
- Low maintenance costs
 (virtually maintenance free due to direct drive gears; no
 belt drives)
- Jerk-free straight movements (brush less synchron motors; no stepper motors)
- Low ELF interference (motor control _elds shielded via the closed metallic construction shields)

4.2.3 E-Field Probe

The probe is specially designed and calibrated for use in liquids with high permittivities for the measurements the Specific Dosimetric E-Field Probe EX3DV4-SN:7340 with following specifications is used.

Construction Symmetrical design with triangular core Built-in optical fiber for surface detection

systemBuilt-in shielding against static charges PEEK enclosure material (resistant to

organic solvents, e.g., glycolether)

Calibration ISO/IEC 17025 calibration service available

Frequency 10 MHz to 6 GHz; Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity ± 0.2 dB in HSL (rotation around probe axis); ± 0.4 dB in HSL (rotation normal to probe

axis)

Dynamic range $5 \mu W/g$ to > 100 mW/g; Linearity: $\pm 0.2 dB$

Dimensions Overall length: 337 mm (Tip: 9 mm) Tip diameter: 2.5 mm (Body: 10 mm) Distance from

probe tip to dipole centers: 1.0 mm

Application General dosimetry up to 3 GHz Compliance tests of mobile phones Fast automatic

scanning in arbitrary phantoms (EX3DV4)

E-Field Probe Calibration Process

Probe calibration is realized, in compliance with CENELEC EN 62209-1/-2 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 62209-1/2 annexe technique using reference guide at the five frequencies.

4.2.4 Data Acquisition Electronics

The data acquisition electronics (DAE) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converte and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

- Input Impedance: 200MOhm
- The Inputs: Symmetrical and Floating
- · Commom Mode Rejection: Above 80dB

4.2.5 Phantoms

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

- ·Left hand
- ·Right hand
- ·Flat phantom

Photo of Phantom SN1857

Photo of Phantom SN1859

Serial Number	Serial Number Material		Height
SN 1857 SAM1	Vinylester, glass fiber reinforced	1000	500
SN 1859 SAM2	Vinylester, glass fiber reinforced	1000	500

4.2.6 Device Holder

The DASY5 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. This device holder is used for standard mobile phones or PDA"s only. If necessary an additional support of polystyrene material is used. Larger DUT"s (e.g. notebooks) cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values. Therefore those devices are normally only tested at the flat part of the SAM.

The positioning system allows obtaining cheek and tilting position with a very good accuracy. Incompliance with CENELEC, the tilt angle uncertainty is lower than 1°.

4.2.7 Simulating Liquid

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5%.

The following table gives the recipes for tissue simulating liquid and the theoretical Conductivity/Permittivity.

	Head (Reference IEEE1528)								
Frequency	Water	Sugar	Cellulose	Salt	Preventol	Preventol DGBE		Permittivity	
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	σ (S/m)	3	
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9	
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5	
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5	
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.4	40.0	
2450	55.0	0	0	0.1	0	44.9	1.80	39.2	
2600	54.9	0	0	0.1	0	45.0	1.96	39.0	
Frequency	Water	ŀ	lexyl Carbito	ol	Triton	X-100	Conductivity	Permittivity	
(MHz)	(%)		(%)		(%	6)	σ (S/m)	3	
5200	62.52		17.24		17.24		4.66	36.0	
5800	62.52		17.24		17.24		5.27	35.3	
		Body (Fro	m instrun	nent man	ufacturer)				
Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity	
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	σ (S/m)	ε	
750	51.7	47.2	0	0.9	0.1	0	0.96	55.5	
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2	
900	50.8	48.2	0	0.9	0.1	0	1.05	55.0	
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3	
2450	68.6	0	0	0.1	0	31.3	1.95	52.7	
2600	68.2	0	0	0.1	0	31.7	2.16	52.5	

Fraguenov(MHz)	Water	DGBE	Salt	Conductivity	Permittivity
Frequency(MHz)	vvalei	(%)	(%)	σ (S/m)	ε
5200	78.60	21.40	1	5.54	47.86
5800	78.50	21.40	0.1	6.0	48.20

5 SYSTEM VERIFICATION

5.1 Purpose of System Check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

5.2 System Check Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

6 TEST POSITION CONFIGURATIONS

According to KDB 648474 D04 Handset v01r02, handsets are tested for SAR compliance in head, body-worn accessory and other use configurations described in the following subsections.

6.1 Head Exposure Conditions

Head exposure is limited to next to the ear voice mode operations. Head SAR compliance is tested according to the test positions defined in IEEE Std 1528-2013 using the SAM phantom illustrated as below.

6.1.1 Two Imaginary Lines on the Handset

- (a) The vertical centerline passes through two points on the front side of the handset the midpoint of the width w t of the handset at the level of the acoustic output, and the midpoint of the width w b of the bottom of the handset.
- (b) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (c) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

6.1.2 Cheek Position

- (a) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- (b) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.

6.1.3 Tilted Position

- (a) To position the device in the "cheek" position described above.
- (b) While maintaining the device the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost.

6.2 Body-worn Position Conditions

Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in EN 62209-2 are used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode. When the reported SAR for a body-worn accessory.

Body-worn accessories that do not contain metallic or conductive components may be tested according to worst-case exposure configurations, typically according to the smallest test separation distance required for the group of body-worn accessories with similar operating and exposure characteristics. All body-worn accessories containing metallic components are tested in conjunction with the host device.

Body-worn accessory SAR compliance is based on a single minimum test separation distance for all wireless and operating modes applicable to each body-worn accessory used by the host, and according to the relevant voice and/or data mode transmissions and operations. If a body-worn accessory supports voice only operations in its normal and expected use conditions, testing of data mode for body-worn compliance is not required. A conservative minimum test separation distance for supporting off-the-shelf body-worn accessories that may be acquired by users of consumer handsets is used to test for body-worn accessory SAR compliance. This distance is determined by the handset manufacturer, according to the requirements of Supplement C 01-01. Devices that are designed to operate on the body of users using lanyards and straps, or without requiring additional body-worn accessories, will be tested using a conservative minimum test separation distance <= 5 mm to support compliance.

6.3 Hotspot Mode Exposure Position Conditions

For handsets that support hotspot mode operations, with wireless router capabilities and various web browsing functions, the relevant hand and body exposure conditions are tested according to the hotspot SAR procedures in KDB 941225. A test separation distance of 10 mm is required between the phantom and all surfaces and edges with a transmitting antenna located within 25 mm from that surface or edge. When the form factor of a handset is smaller than 9 cm x 5 cm, a test separation distance of 5 mm (instead of 10 mm) is required for testing hotspot mode. When the separation distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, in the same wireless mode and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface).

7 MEASUREMENT PROCEDURE

7.1 Measurement Process Diagram

7.2 SAR Scan General Requirement

Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Boththe probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1 g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013.

			≤3GHz	>3GHz		
Maximum distance from o	closest meas	surement point	5±1 mm	½·δ·ln(2)±0.5 mm		
(geometric center of probe sensors) to phantom surface			S±1 IIIIII	72°0°111(2)±0.5 111111		
Maximum probe angle fro	om probe ax	s to phantom surface	30°±1°	20°±1°		
normal at the measureme	ent location		30 ±1	20 ±1		
			≤ 2 GHz: ≤ 15 mm	3–4 GHz: ≤ 12 mm		
			2 – 3 GHz: ≤ 12 mm	4 – 6 GHz: ≤ 10 mm		
			When the x or y dimension of t	he test device, in the		
Maximum area scan spat	ial resolution	n: Δx Area , Δy Area	measurement plane orientation	n, is smaller than the above, the		
			measurement resolution must	be ≤ the corresponding x or y		
			dimension of the test device wi	th at least one measurement		
			point on the test device.			
Maximum zoom scan spa	stial recolution	on: Av Zoom Av Zoom	≤ 2 GHz: ≤ 8 mm	3–4 GHz: ≤ 5 mm*		
iviaximum 200m Scan Spa	iliai resolulio	лг. Дх 200пг , Ду 200пг	2 –3 GHz: ≤ 5 mm*	4 – 6 GHz: ≤ 4 mm*		
	uniform grid: Δz Zoom (n)		≤ 5 mm	3–4 GHz: ≤ 4 mm		
				4–5 GHz: ≤ 3 mm		
Maximum zoom scan				5–6 GHz: ≤ 2 mm		
spatial resolution,		Δz Zoom (1): between		3–4 GHz: ≤ 3 mm		
normal to phantom		1st two points closest	≤ 4 mm	4–5 GHz: ≤ 2.5 mm		
surface	graded	to phantom surface		5–6 GHz: ≤ 2 mm		
0	grid	Δz Zoom (n>1):				
		between subsequent	≤ 1.5·Δz 2	Zoom (n-1)		
		points				
Minimum zoom				3–4 GHz: ≥ 28 mm		
scan volume		x, y, z	≥30 mm	4–5 GHz: ≥ 25 mm		
30an volume				5–6 GHz: ≥ 22 mm		

Note:

- 1. δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.
- 2. *When zoom scan is required and the reported SAR from the area scan based 1 g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

7.3 Measurement Procedure

The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- b. Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- c. Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- d. Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 *32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

7.4 Area & Zoom Scan Procedure

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r04 quoted below.

When the 1 g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

8 CONDUCTED RF OUPUT POWER

8.1 **GSM**

GSM 850 Band	Burst A	verage Power(dBm)	Frame-a	veraged powe	r(dBm)
Channel	128	190	251	128	190	251
GSM (GMSK, 1-Slot)	31.98	31.92	31.89	22.98	22.92	22.89
GPRS (GMSK, 1-Slot)	32.73	32.66	32.63	23.73	23.66	23.63
GPRS (GMSK, 2-Slots)	31.77	31.70	31.65	25.77	25.70	25.65
GPRS (GMSK, 3-Slots)	30.22	30.16	30.11	25.96	25.90	25.85
GPRS (GMSK, 4-Slots)	28.93	28.89	28.77	25.93	25.89	25.77
EGPRS (8PSK, 1-Slot)	27.38	27.32	27.31	18.38	18.32	18.31
EGPRS (8PSK, 2-Slots)	26.69	26.55	26.52	20.69	20.55	20.52
EGPRS (8PSK, 3-Slots)	25.12	25.08	24.96	20.86	20.82	20.70
EGPRS (8PSK, 4-Slots)	23.56	23.46	23.52	20.56	20.46	20.52
GSM 1900 Band	Burst A	verage Power((dBm)	Frame-averaged power(dBm)		
Channel	512	661	810	512	661	810
GSM (GMSK, 1-Slot)	28.86	28.75	28.33	19.86	19.75	19.33
GPRS (GMSK, 1-Slot)	29.30	29.08	28.76	20.30	20.08	19.76
GPRS (GMSK, 2-Slots)	28.52	28.50	28.39	22.52	22.50	22.39
GPRS (GMSK, 3-Slots)	26.85	26.80	26.72	22.59	22.54	22.46
GPRS (GMSK, 4-Slots)	25.44	25.32	25.27	22.44	22.32	22.27
EGPRS (8PSK, 1-Slot)	24.20	24.19	24.08	15.20	15.19	15.08
EGPRS (8PSK, 2-Slots)	23.52	23.39	23.28	17.52	17.39	17.28
EGPRS (8PSK, 3-Slots)	22.18	22.06	22.03	17.92	17.80	17.77
EGPRS (8PSK, 4-Slots)	21.89	21.76	21.72	18.89	18.76	18.72

Note:

- 1. SAR testing was performed on the maximum frame-Peaked power mode.
- 2. The frame-averaged power is linearly proportion to the slot number configured and it is linearly scaled the maximum burst-averaged power based on time slots. The calculated method is shown as below:

Frame-averaged power = Burst averaged power (1 Tx Slot) - 9 dB

Frame-averaged power = Burst averaged power (2 Tx Slots) - 6 dB

Frame-averaged power = Burst averaged power (3 Tx Slots) - 4.26 dB

Frame-averaged power = Burst averaged power (4 Tx Slots) - 3 dB

Rated RF power output:

GSM 850 Band	Tune-up (dBm)						
Channel	128	190	251				
GSM (GMSK, 1-Slot)	31.90-32.10	31.85-32.00	31.80-32.00				
GPRS (GMSK, 1-Slot)	32.70-32.80	32.60-32.70	32.60-32.70				
GPRS (GMSK, 2-Slots)	31.70-31.80	31.60-31.80	31.60-31.70				
GPRS (GMSK, 3-Slots)	30.15-30.30	30.10-30.20	30.00-30.20				
GPRS (GMSK, 4-Slots)	28.90-29.00	28.80-29.00	28.70-28.80				
EGPRS (8PSK, 1-Slot)	27.30-27.40	27.20-27.40	27.20-27.40				
EGPRS (8PSK, 2-Slots)	26.60-26.70	26.50-26.60	26.45-26.60				
EGPRS (8PSK, 3-Slots)	25.00-25.20	25.00-25.20	24.90-25.00				
EGPRS (8PSK, 4-Slots)	23.50-23.60	23.40-23.50	23.45-23.60				
GSM 1900 Band		Tune-up (dBm)					
Channel	512	661	810				
GSM (GMSK, 1-Slot)	28.80-29.00	28.70-28.80	28.30-28.40				
GPRS (GMSK, 1-Slot)	29.20-29.40	29.00-29.15	28.70-28.80				
GPRS (GMSK, 2-Slots)	28.40-28.60	28.40-28.60	28.30-28.50				
GPRS (GMSK, 3-Slots)	26.70-27.00	26.70-26.90	26.65-26.80				
GPRS (GMSK, 4-Slots)	25.40-25.50	25.20-25.40	25.20-25.35				
EGPRS (8PSK, 1-Slot)	24.10-24.30	24.10-24.30	24.00-24.20				
EGPRS (8PSK, 2-Slots)	23.40-23.60	23.30-23.50	23.20-23.40				
EGPRS (8PSK, 3-Slots)	22.10-22.30	22.00-22.10	22.00-22.05				
EGPRS (8PSK, 4-Slots)	21.80-22.00	21.70-21.80	21.65-21.80				

8.2 WCDMA

WCDMA Band		Band 2						
		9262		9400		9538		
Channel	Mea. Power	Tune Up (dBm)	Mea. Power	Tune Up (dBm)	Mea. Power	Tune Up (dBm)		
RMC 12.2Kbps	21.50	21.40-21.60	21.63	21.50-21.70	21.39	21.30-20.50		
HSDPA Subtest-1	21.02	20.90-21.10	21.11	21.05-21.20	20.96	20.85-21.00		
HSDPA Subtest-2	20.71	20.60-20.80	20.78	20.60-20.85	20.67	20.60-20.70		
HSDPA Subtest-3	20.62	20.50-20.70	20.70	20.60-20.80	20.56	20.50-20.60		
HSDPA Subtest-4	20.24	20.15-20.30	21.33	21.30-20.40	20.18	20.10-20.25		
HSUPA Subtest-1	20.75	20.70-20.80	20.83	20.80-20.90	20.72	20.60-20.80		
HSUPA Subtest-2	20.25	20.20-20.30	20.32	20.20-20.40	20.19	20.10-20.25		
HSUPA Subtest-3	20.36	20.30-20.40	20.46	20.40-20.50	20.29	20.20-20.35		
HSUPA Subtest-4	20.20	20.10-20.30	20.31	20.25-20.35	20.23	20.20-20.30		
HSUPA Subtest-5	20.34	20.30-20.40	20.43	20.40-20.45	20.38	20.30-20.45		

WCDMA Band		Band 5						
		4132		4183	4233			
Channel	Mea. Power	Tune Up (dBm)	Mea. Power	Tune Up (dBm)	Mea. Power	Tune Up (dBm)		
RMC 12.2Kbps	21.97	21.90-22.05	22.03	21.90-22.10	21.96	21.85-22.00		
HSDPA Subtest-1	21.27	21.20-21.35	21.35	21.30-21.40	21.30	21.20-21.40		
HSDPA Subtest-2	21.16	21.10-21.25	21.19	21.10-21.25	21.15	21.00-21.30		
HSDPA Subtest-3	21.23	21.15-21.30	21.32	21.20-21.35	21.28	21.20-21.40		
HSDPA Subtest-4	21.30	21.20-21.40	21.33	21.30-21.40	21.29	21.20-21.40		
HSUPA Subtest-1	20.89	20.80-21.00	20.92	20.85-21.00	20.84	20.75-20.90		
HSUPA Subtest-2	20.16	20.10-20.20	20.22	20.10-20.30	20.11	20.00-20.20		
HSUPA Subtest-3	20.27	20.15-20.35	20.36	20.30-20.45	20.25	20.20-20.30		
HSUPA Subtest-4	20.44	20.35-20.50	20.52	20.40-20.60	20.46	20.40-20.50		
HSUPA Subtest-5	20.73	20.60-20.80	20.79	20.70-20.85	20.71	20.60-20.80		

8.3 WIFI

8.3.1 2.4G WIFI

Band (GHz)	Mode	Channel	Freq. (MHz)	Avg. Power (dBm)	Tune Up (dBm)	SAR Test Require.
	802.11b (1Mbps)	1	2412	17.61	17.50-17.70	No
		6	2437	17.66	17.60-17.80	No
		11	2462	17.76	17.70-17.80	Yes
	802.11g (6Mbps)	1	2412	13.81	13.70-13.90	No
		6	2437	14.90	14.80-15.00	No
2.4		11	2462	13.91	13.80-14.00	No
(2.4~2.4835)	802.11n(HT20)	1	2412	13.75	13.70-13.80	No
		6	2437	14.85	14.80-14.90	No
		11	2462	13.84	13.80-13.90	No
	802.11n(HT40)	3	2422	11.04	11.00-11.10	No
		6	2437	13.16	13.10-13.20	No
		9	2452	11.05	11.00-11.10	No

8.4 Bluetooth

Mode		GFSK		π/4-DQPSK			
Channel	0	39	78	0	39	78	
Frequency (MHz)	2402	2441	2480	2402	2441	2480	
Avg. Power (dBm)	-2.89	-2.91	-3.01	-4.00	-4.01	-3.01	
Tune Up (dBm)	(-2.95)-(-2.80)	(-3.00)-(-2.85)	(-3.10)-(-2.90)	(-4.10)-(-3.90)	(-4.10)-(-3.90)	(-3.10)-(-2.90)	
Mode	8-DPSK			BLE			
Channel	0	39	78	0	19	39	
Frequency (MHz)	2402	2441	2480	2402	2440	2480	
Avg. Power (dBm)	-3.96	-3.92	-3.99	-3.61	-3.53	-3.99	
Tune Up (dBm)	(-4.00)-(-3.90)	(-4.00)-(-3.85)	(-4.05)-(-3.90)	(-3.70)-(-3.50)	(-3.60)-(-3.40)	(-4.05)-(-3.90)	

9 TEST EXCLUSION CONSIDERATION

9.1 SAR Test Exclusion Consideration Table

According with FCC KDB 447498 D01, Appendix A, <SAR Test Exclusion Thresholds for 100 MHz - 6 GHz and \leq 50 mm> Table, this Device SAR test configurations consider as following :

		Max	Tuno un		Те	st Position	Configurat	ions	
Band	Mode	iviax.	Tune-up	Head	Front/	Left	Right	Тор	Bottom
		dBm	mW	Tieau	Back	Edge	Edge	Edge	Edge
	Distan	ce to User		<5mm	<5mm	<5mm	6mm	97mm	<5mm
GSM 850	Voice	32.10	1621.81	Yes	Yes	No	No	No	No
	Data(3 slots)	30.30	1071.52	No	Yes	Yes	Yes	No	Yes
	Distan	ce to User		<5mm	<5mm	<5mm	6mm	97mm	<5mm
GSM 1900	Voice	29.00	794.33	Yes	Yes	No	No	No	No
	Data(3 slots)	27.00	501.19	No	Yes	Yes	Yes	No	Yes
WCDMA	Distan	ce to User		<5mm	<5mm	<5mm	6mm	97mm	<5mm
Band 2	RMC	21.70	147.91	Yes	Yes	Yes	Yes	No	Yes
WCDMA	Distan	ce to User		<5mm	<5mm	<5mm	6mm	97mm	<5mm
Band 5	RMC	22.10	162.18	Yes	Yes	Yes	Yes	No	Yes
	Distan	ce to User		<5mm	<5mm	<5mm	48mm	<5mm	82mm
	802.11b	17.80	60.26	Yes	Yes	Yes	No	Yes	No
WLAN	802.11g	15.00	31.62	No	No	No	No	No	No
2.4 G	802.11n(HT20)	14.90	30.90	No	No	No	No	No	No
	802.11n(HT40)	13.20	20.89	No	No	No	No	No	No
	Distan	ce to User		<5mm	<5mm	<5mm	48mm	<5mm	82mm
Bluetooth	BR/EDR	-2.80	0.52	No	No	No	No	No	No
	BLE	-3.40	0.46	No	No	No	No	No	No

Note:

- Maximum power is the source-based time-average power and represents the maximum RF output power including tune-up tolerance among production units
- 2. Per KDB 447498 D01, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
- Per KDB 447498 D01, standalone SAR test exclusion threshold is applied; If the distance of the antenna to the user is < 5mm, 5mm is used to determine SAR exclusion threshold
- 4. Per KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- a. f(GHz) is the RF channel transmit frequency in GHz
- b. Power and distance are rounded to the nearest mW and mm before calculation
- c. The result is rounded to one decimal place for comparison
- d. For < 50 mm distance, we just calculate mW of the exclusion threshold value (3.0) to do compare.

This formula is [3.0] / [$\sqrt{f(GHz)}$] · [(min. test separation distance, mm)] = exclusion threshold of mW.

- 5. Per KDB 447498 D01, at 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following
 - a. [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz

- b. [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·10] mW at > 1500 MHz and ≤ 6 GHz
- 6. Per KDB 941225 D01, RMC 12.2kbps setting is used to evaluate SAR. If HSDPA /HSUPA /DC-HSDPA output power is < 0.25dB higher than RMC12.2Kbps, or reported SAR with RMC 12.2kbps setting is ≤ 1.2W/kg, HSDPA/HSUPA/DC-HSDPA SAR evaluation can be excluded.
- 7. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion.8. For each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 1/4dB higher than those measured at the lowest data rate
- 8. Per KDB 248227 D01 SAR is not required for the following 2.4 GHz OFDM conditions.
 - a. When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration.
 - b. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is $\leq 1.2 \, \text{W/kg}$.
- 9. Per KDB 248227 D01 SAR is not required for the following U-NII-1 and U-NII-2A bands conditions.
 - a. When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR.
 - b. When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, each band is tested independently for SAR.

9.2 10g Extremity Exposure Consideration

According with FCC KDB 648474 D04, for smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear, unless it is confirmed otherwise through KDB inquiries, the following phablet procedures should be applied to evaluate SAR compliance for each applicable wireless modes and frequency band. Devices marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance;

The UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna located at \leq 25 mm from that surface or edge, in direct contact with a flat phantom, for 10-g extremity SAR according to the body-equivalent tissue dielectric parameters in KDB 865664 to address interactive hand use exposure conditions. The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.

Conclusion:

The EUT overall diagonal dimension is 12.5cm, which is less than 16.0 cm, 10 g extremity SAR is not required.

10 TEST RESULT

10.1 GSM 850

Mode	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (%)	1 g Meas. SAR (W/Kg)	Meas. Power (dBm)	Max. tune-up Power(dBm)	Scaling Factor	1 g Scaled SAR (W/Kg)	Meas. No.
Head	Head										
	Left Cheek	0	128	824.2	0.93	0.126	31.98	32.10	1.03	0.130	1#
\/-:	Left Tilt	0	128	824.2	4.95	0.091	31.98	32.10	1.03	0.094	2#
Voice	Right Cheek	0	128	824.2	2.57	0.122	31.98	32.10	1.03	0.125	3#
	Right Tilt	0	128	824.2	2.80	0.078	31.98	32.10	1.03	0.080	4#
Body-wor	n Accessory										
\/-:	Front Side	10	128	824.2	0.93	0.165	31.98	32.10	1.03	0.170	5#
Voice	Back Side	10	128	824.2	-0.23	0.405	31.98	32.10	1.03	0.416	6#
Hotspot											
	Front Side	10	128	824.2	-2.05	0.226	30.22	30.30	1.02	0.230	7#
0000	Back Side	10	128	824.2	-3.84	0.556	30.22	30.30	1.02	0.566	8#
GPRS	Left Edge	10	128	824.2	0.69	0.164	30.22	30.30	1.02	0.167	9#
3 slots	Right Edge	10	128	824.2	3.51	0.209	30.22	30.30	1.02	0.213	10#
	Bottom Edge	10	128	824.2	3.04	0.029	30.22	30.30	1.02	0.030	11#

- 1. Refer to ANNEX C for the detailed test data for each test configuration
- 2. Power Drift(%)=10^[Meas Power Drift(dB)/10]-1.

10.2GSM 1900

Mode	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (%)	1 g Meas. SAR (W/Kg)	Meas. Power (dBm)	Max. tune-up Power(dBm)	Scaling Factor	1 g Scaled SAR (W/Kg)	Meas. No.
Head	Head										
	Left Cheek	0	512	1850.2	4.47	0.084	28.86	29.00	1.03	0.087	12#
Voice	Left Tilt	0	512	1850.2	2.80	0.043	28.86	29.00	1.03	0.044	13#
voice	Right Cheek	0	512	1850.2	3.99	0.178	28.86	29.00	1.03	0.184	14#
	Right Tilt	0	512	1850.2	3.51	0.061	28.86	29.00	1.03	0.063	15#
Body-wor	n Accessory										
Voice	Front Side	10	512	1850.2	3.99	0.082	28.86	29.00	1.03	0.085	16#
voice	Back Side	10	512	1850.2	-0.46	0.388	28.86	29.00	1.03	0.401	17#
Hotspot											
	Front Side	10	512	1850.2	1.62	0.120	26.85	27.00	1.04	0.124	18#
OPPO	Back Side	10	512	1850.2	0.69	0.669	26.85	27.00	1.04	0.693	19#
GPRS 3 slots	Left Edge	10	512	1850.2	1.16	0.124	26.85	27.00	1.04	0.128	20#
3 51015	Right Edge	10	512	1850.2	3.28	0.008	26.85	27.00	1.04	0.008	21#
	Bottom Edge	10	512	1850.2	2.57	0.155	26.85	27.00	1.04	0.160	22#

- 1. Refer to ANNEX C for the detailed test data for each test configuration
- 2. Power Drift(%)=10^[Meas Power Drift(dB)/10]-1.

10.3WCDMA Band 2

Mode	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (%)	1 g Meas. SAR (W/Kg)	Meas. Power (dBm)	Max. tune-up Power(dBm)	Scaling Factor	1 g Scaled SAR (W/Kg)	Meas. No.
Head											
	Left Cheek	0	9400	1880.0	3.28	0.311	21.63	21.70	1.02	0.316	23#
RMC	Left Tilt	0	9400	1880.0	4.47	0.223	21.63	21.70	1.02	0.227	24#
RIVIC	Right Cheek	0	9400	1880.0	0.00	0.400	21.63	21.70	1.02	0.406	25#
	Right Tilt	0	9400	1880.0	4.23	0.142	21.63	21.70	1.02	0.144	26#
Body-wor	n Accessory										
	Front Side	10	9400	1880.0	-2.95	0.209	21.63	21.70	1.02	0.212	27#
RMC		10	9262	1852.4	-2.28	0.864	21.50	21.60	1.02	0.884	28#
RIVIC	Back Side	10	9400	1880.0	-0.23	1.000	21.63	21.70	1.02	1.016	29#
		10	9538	1907.6	-0.23	0.703	21.39	21.50	1.03	0.721	30#
Hotspot											
	Left Edge	10	9400	1880.0	0.00	0.199	21.63	21.70	1.02	0.202	31#
RMC	Right Edge	10	9400	1880.0	4.23	0.019	21.63	21.70	1.02	0.019	32#
	Bottom Edge	10	9400	1880.0	0.93	0.239	21.63	21.70	1.02	0.243	33#

Note:

- 1. Refer to ANNEX C for the detailed test data for each test configuration
- 2. Power Drift(%)=10^[Meas Power Drift(dB)/10]-1.

10.4WCDMA Band 5

Mode	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (%)	1 g Meas. SAR (W/Kg)	Meas. Power (dBm)	Max. tune-up Power(dBm)	Scaling Factor	1 g Scaled SAR (W/Kg)	Meas. No.
Head											
	Left Cheek	0	4183	836.6	3.51	0.112	22.03	22.10	1.02	0.114	34#
RMC	Left Tilt	0	4183	836.6	4.71	0.070	22.03	22.10	1.02	0.071	35#
RIVIC	Right Cheek	0	4183	836.6	2.57	0.159	22.03	22.10	1.02	0.162	36#
	Right Tilt	0	4183	836.6	3.04	0.112	22.03	22.10	1.02	0.114	37#
Body-wor	n Accessory										
DMC	Front Side	10	4183	836.6	2.09	0.199	22.03	22.10	1.02	0.202	38#
RMC	Back Side	10	4183	836.6	0.69	0.461	22.03	22.10	1.02	0.468	39#
Hotspot											
	Left Edge	10	4183	836.6	2.33	0.145	22.03	22.10	1.02	0.147	40#
RMC	Right Edge	10	4183	836.6	2.80	0.167	22.03	22.10	1.02	0.170	41#
	Bottom Edge	10	4183	836.6	4.47	0.020	22.03	22.10	1.02	0.020	42#
Note											

- 1. Refer to ANNEX C for the detailed test data for each test configuration
- 2. Power Drift(%)=10^[Meas Power Drift(dB)/10]-1.

10.5WIFI 2.4GHz

Mode	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (%)	1 g Meas. SAR (W/Kg)	Meas. Power (dBm)	Max. tune-up Power(dBm)	Scaling Factor	1 g Scaled SAR (W/Kg)	Meas. No.
Head	Head										
	Left Cheek	0	11	2462	1.86	0.155	17.76	17.80	1.01	0.156	43#
802.11 b	Left Tilt	0	11	2462	4.71	0.134	17.76	17.80	1.01	0.135	44#
802.11 0	Right Cheek	0	11	2462	3.51	0.103	17.76	17.80	1.01	0.104	45#
	Right Tilt	0	11	2462	1.39	0.097	17.76	17.80	1.01	0.098	46#
Body-worn	Accessory & Ho	tspot									
	Front Side	10	11	2462	2.09	0.028	17.76	17.80	1.01	0.028	47#
802.11 b	Back Side	10	11	2462	1.39	0.335	17.76	17.80	1.01	0.338	48#
002.11 D	Left Edge	10	11	2462	3.28	0.063	17.76	17.80	1.01	0.064	49#
	Top Edge	10	11	2462	3.04	0.041	17.76	17.80	1.01	0.041	50#

- 1. Refer to ANNEX C for the detailed test data for each test configuration
- 2. Power Drift(%)=10^[Meas Power Drift(dB)/10]-1.
- 3. Test the 802.11 b is using continuous packet transmit that the duty cycle is 100%.

11 SAR Measurement Variability

According to KDB 865664 D01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. Alternatively, if the highest measured SAR for both head and body tissue-equivalent media are $\leq 1.45 \, \text{W/kg}$ and the ratio of these highest SAR values, i.e., largest divided by smallest value, is ≤ 1.10 , the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR repeated measurement procedure:

- 1. When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required.
- 2. When the highest measured SAR is >= 0.80 W/kg, repeat that measurement once.
- 3. If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20, or when the original or repeated measurement is >= 1.45 W/kg, perform a second repeated measurement.
- 4. If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20, and the original, first or second repeated measurement is >= 1.5 W/kg, perform a third repeated measurement.

Frequency Band (MHz)	Wireless Band	RF Exposure Conditions	Test Position	Highest Measured SAR (W/kg)	Repeated SAR (Yes/No)	Highest Measured SAR (W/kg)	Largest to Smallest SAR Radio
1900	WCDMA Band 2	Body	Back	0.864	Yes	0.835	1.03
1900	WCDIVIA Bariu 2	Body	Back	1.000	Yes	0.987	1.01

Note: The ratio of largest to smallest SAR for the original and first repeated measurements is < 1.20, the second repeated measurement is not required.

12 SIMULTANEOUS TRANSMISSION

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna. When the sum of SAR 1g of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit (SAR 1g 1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR 1g is greater than the SAR limit (SAR 1g 1.6 W/kg), SAR test exclusion is determined by the SAR to Peak Location Ratio (SPLSR).

12.1 Simultaneous Transmission Mode Consider

NO.	Mode		2.4G WLAN & 2.4G Bluetooth	
NO.	ivioue	Head	Body-worn	Hotspot
1	GSM	+ 2.4G WLAN	+ 2.4G WLAN	
'	(Voice)		+ Bluetooth	
2	GSM			+ 2.4G WLAN
	(Data)			+ 2.4G WLAN
3	WCDMA	+ 2.4G WLAN	+ 2.4G WLAN	+ 2.4G WLAN
3	RMC		+ Bluetooth	

- 1. 2G&3G share the same antenna and can't transmit simultaneously.
- 2. The Bluetooth and 2.4G WLAN share the same antenna, can't transmitting together.
- 3. 2.4G WLAN supports hotspot mode.

12.2 Estimated SAR Calculation

According to KDB 447498 D01, when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR was estimated according to following formula to result in substantially conservative SAR values of <= 0.4 W/kg to determine simultaneous transmission SAR test exclusion.

Estimated SAR =
$$\frac{Max.Tune\ Up\ Power(mw)}{Min\ Test\ Separation\ Dis\ tan\ ce} * \frac{\sqrt{f_{GHz}}}{x}$$
 (where $_x$ = 7.5 for 1-g SAR)

If the minimum test separation distance is < 5 mm, a distance of 5 mm is used for estimated SAR calculation. When the test separation distance is > 50 mm, the 0.4 W/kg is used for SAR-1g.

Band	Mode	Position	Antenna To user (mm)	SAR Testing	Max. Tune-up Power (dBm)	Max. Tune-up Power (mW)	Frequency (GHz)	Calculation Distance/Gap (mm)	Estimated SAR (W/kg)
		Right Cheek	5	NO	-2.80	0.52	2.402	5	0.022
		Left Cheek	5	NO	-2.80	0.52	2.402	5	0.022
	BR/E	Front side	10	NO	-2.80	0.52	2.402	10	0.011
	DR	Back Side	10	NO	-2.80	0.52	2.402	10	0.011
		Left Edge	10	NO	-2.80	0.52	2.402	10	0.011
Bluetooth		Top Edge	10	NO	-2.80	0.52	2.402	10	0.011
bluetootii		Right Cheek	5	NO	-3.40	0.46	2.440	5	0.019
		Left Cheek	5	NO	-3.40	0.46	2.440	5	0.019
	BLE	Front side	10	NO	-3.40	0.46	2.440	10	0.010
	DLE	Back Side	10	NO	-3.40	0.46	2.440	10	0.010
		Left Edge	10	NO	-3.40	0.46	2.440	10	0.010
		Top Edge	10	NO	-3.40	0.46	2.440	10	0.010

12.3Sum SAR of Simultaneous Transmission

12.3.1 Sum Head SAR of Simultaneous Transmission

Simultaneous Mode	Mode	Max. 1g SAR (W/kg)	1g Sum SAR (W/kg)	SPLSR (Yes/No)
GSM Voice + 2.4G WLAN	GSM Voice	0.184	0.240	No
GSIVI VOICE + 2.4G WLAIN	2.4G WLAN	0.156	0.340	No
WCDMA RMC +2.4G WLAN	WCDMA RMC	0.406	0.562	No
WODIVIA RIVIC +2.4G WLAIN	2.4G WLAN	0.156	0.562	No

12.3.2 Sum Body-worn SAR of Simultaneous Transmission

Simultaneous Mode	Mode	Max. 1g SAR	1g Sum SAR	SPLSR	
Simulaneous Mode	Mode	(W/kg)	(W/kg)	(Yes/No)	
GSM Voice + 2.4G WLAN	GSM Voice	0.416	0.754	No	
GSIVI VOICE + 2.4G WLAIN	2.4G WLAN 0.338		0.754	NO	
WCDMA RMC +2.4G WLAN	WCDMA RMC 1.016		1.354	No	
WODIVIA RIVIC +2.4G WEAN	2.4G WLAN	0.338	1.334	NO	
GSM Voice + Bluetooth	GSM Voice	0.416	0.427	No	
GSW Voice + Bluetooth	Bluetooth	0.011	0.427	NO	
WCDMA RMC + Bluetooth	WCDMA RMC	1.016	1.027	No	
WODIVIA RIVIC + Bluelootii	Bluetooth	0.011	1.027	INO	

12.3.3 Sum Hotspot mode SAR of Simultaneous Transmission

Simultaneous Mode	Mode	Max. 1g SAR	1g Sum SAR	SPLSR
Simulaneous Mode	Mode	(W/kg)	(W/kg)	(Yes/No)
GSM DATA + 2.4G WLAN	GSM DATA	0.693	1.031	No
GSWI DATA + 2.4G WLAN	2.4G WLAN	0.338	1.031	NO
WCDMA RMC + 2.4G	WCDMA RMC	0.243	0.594	No
WLAN	2.4G WLAN	0.338	0.581	No

13 TEST EQUIPMENTS LIST

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
PC	Dell	N/A	N/A	N/A	N/A
835MHz Validation Dipole	Speag	D835V2	SN: 4d187	2014/11/26	2017/11/25
1900MHz Validation Dipole	Speag	D1900V2	SN: 5d193	2014/11/28	2017/11/27
2450MHz Validation Dipole	Speag	D2450V2	SN: 952	2014/11/27	2017/11/26
E-Field Probe	Speag	EX3DV4	EX3DV4 SN: 7340		2016/12/09
Phantom1	Speag	SAM	SN: 1859	N/A	N/A
Phantom2	Speag	SAM	SN: 1857	N/A	N/A
Data acquisition electronics	Speag	DAE4	SN: 1454	2015/12/08	2016/12/07
Signal Generator	R&S	SMBV100A	260592	2015/07/16	2016/07/15
Power Meter	Agilent	E4419B	GB40201833	2015/10/14	2016/10/13
Power Sensor	R&S	NRP-Z21	103971	2015/07/16	2016/07/15
Power Amplifier	SATIMO	6552B	22374	N/A	N/A
Dielectric Probe Kit	SATIMO	SCLMP	SN 25/13 OCPG56	2015/08/17	2016/08/16
Wireless Communication Test Set	R&S	CMW 500	138884	2015/07/16	2016/07/15
Network Analyzer	R&S	ZVL-6	EMY46103472	2015/07/16	2016/07/15
Attenuator	COM-MW	ZA-S1-31	1305003187	N/A	N/A
Directional coupler	AA-MCS	AAMCS-UDC	000272	N/A	N/A

Note: Per KDB 865664 D01 Dipole SAR Validation Verification, BALUN LAB has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss is within 20% of calibrated measurement;

ANNEX A SIMULATING LIQUID VERIFICATION RESULT

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an SCLMP Dielectric Probe Kit.

Date	Liquid Type	Fre. (MHz)	Temp.	Meas. Conductivity (σ) (S/m)	Meas. Permittivity (ε)	Target Conductivity (σ) (S/m)	Target Permittivity (ε)	Conductivity Tolerance (%)	Permittivity Tolerance (%)
2016.04.08	Head	835	21.5	0.89	41.5	0.90	41.50	-1.11	0.00
2016.04.07	Body	835	21.0	0.95	55.87	0.97	55.20	-2.06	1.21
2016.04.06	Head	1900	21.3	1.44	39.75	1.40	40.00	2.86	-0.63
2016.04.05	Body	1900	21.7	1.57	51.05	1.52	53.30	3.29	-4.22
2016.04.11	Head	2450	20.7	1.85	38.47	1.80	39.20	2.78	-1.86
2016.04.11	Body	2450	20.7	2.02	50.71	1.95	52.70	3.59	-3.78
Note: The telegrapes limit of Conductivity and Permittivity in ± 50/									

Note: The tolerances limit of Conductivity and Permittivity is ± 5%.

ANNEX B SYSTEM CHECK RESULT

Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %(for 1 g).

Liquid	Freq.	Power	Measured	Normalized	Dipole SAR	Tolerance	Targeted	Tolerance
Туре	(MHz)	(mW)	SAR (W/kg)	SAR (W/kg)	(W/kg)	(%)	SAR(W/kg)	(%)
Head	835	100	0.962	9.62	9.15	5.14	9.56	0.63
Body	835	100	0.973	9.73	9.17	6.11	9.56	1.78
Head	1900	100	3.790	37.90	40.60	-6.65	39.70	-4.53
Body	1900	100	4.140	41.40	40.30	2.73	39.70	4.28
Head	2450	100	5.330	53.30	52.30	1.91	52.40	1.72
Body	2450	100	4.990	49.90	50.60	-1.38	52.40	-4.77
	Type Head Body Head Body Head	Type (MHz) Head 835 Body 835 Head 1900 Body 1900 Head 2450	Type (MHz) (mW) Head 835 100 Body 835 100 Head 1900 100 Body 1900 100 Head 2450 100	Type (MHz) (mW) SAR (W/kg) Head 835 100 0.962 Body 835 100 0.973 Head 1900 100 3.790 Body 1900 100 4.140 Head 2450 100 5.330	Type (MHz) (mW) SAR (W/kg) SAR (W/kg) Head 835 100 0.962 9.62 Body 835 100 0.973 9.73 Head 1900 100 3.790 37.90 Body 1900 100 4.140 41.40 Head 2450 100 5.330 53.30	Type (MHz) (mW) SAR (W/kg) SAR (W/kg) (W/kg) Head 835 100 0.962 9.62 9.15 Body 835 100 0.973 9.73 9.17 Head 1900 100 3.790 37.90 40.60 Body 1900 100 4.140 41.40 40.30 Head 2450 100 5.330 53.30 52.30	Type (MHz) (mW) SAR (W/kg) SAR (W/kg) (W/kg) (%) Head 835 100 0.962 9.62 9.15 5.14 Body 835 100 0.973 9.73 9.17 6.11 Head 1900 100 3.790 37.90 40.60 -6.65 Body 1900 100 4.140 41.40 40.30 2.73 Head 2450 100 5.330 53.30 52.30 1.91	Type (MHz) (mW) SAR (W/kg) SAR (W/kg) (W/kg) (%) SAR(W/kg) Head 835 100 0.962 9.62 9.15 5.14 9.56 Body 835 100 0.973 9.73 9.17 6.11 9.56 Head 1900 100 3.790 37.90 40.60 -6.65 39.70 Body 1900 100 4.140 41.40 40.30 2.73 39.70 Head 2450 100 5.330 53.30 52.30 1.91 52.40

Note: The tolerance limit of System validation ±10%.

System Performance Check Data (835MHz Head)

Date/Time: 4/8/2016

Communication System Band: D835 (835.0 MHz); Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 0.89$ S/m; $\epsilon r = 41.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature:22.1 Liquid Temperature:21.5

DASY5 Configuration:

• Probe: EX3DV4 - SN7340; ConvF(9.56, 9.56, 9.56); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)
 Configuration/CW 835 100mW HEAD/Area Scan (61x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.03 W/kg

Configuration/CW 835 100mW HEAD/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 32.34 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.46 W/kg

SAR(1 g) = 0.962 W/kg; SAR(10 g) = 0.627 W/kgMaximum value of SAR (measured) = 1.04 W/kg

0 dB = 1.03 W/kg = 0.13 dBW/kg

System Performance Check Data (835MHz Body)

Date/Time: 4/7/2016

Communication System Band: D835 (835.0 MHz); Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.95$ S/m; $\epsilon r = 55.87$; $\rho = 1000$ kg/m3

Phantom section: Flat Section

Ambient Temperature:21.6 Liquid Temperature:21.0

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(9.83, 9.83, 9.83); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/CW 835 100mW BODY/Area Scan (61x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.10 W/kg

Configuration/CW 835 100mW BODY/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 32.39 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.56 W/kg

SAR(1 g) = 0.973 W/kg; SAR(10 g) = 0.658 W/kgMaximum value of SAR (measured) = 1.10 W/kg

0 dB = 1.10 W/kg = 0.41 dBW/kg

System Performance Check Data (1900MHz Head)

Date/Time: 4/6/2016

Communication System Band: D1900 (1900.0 MHz); Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.44 \text{ S/m}$; $\epsilon r = 39.75$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

Ambient Temperature:21.8 Liquid Temperature:21.3

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(8.15, 8.15, 8.15); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/CW 1900 100mW HEAD/Area Scan (61x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 4.39 W/kg

Configuration/CW 1900 100mW HEAD/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.95 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 6.91 W/kg

SAR(1 g) = 3.79 W/kg; SAR(10 g) = 2.01 W/kgMaximum value of SAR (measured) = 4.26 W/kg

0 dB = 4.39 W/kg = 6.42 dBW/kg

System Performance Check Data (1900MHz Body)

Date/Time: 4/5/2016

Communication System Band: D1900 (1900.0 MHz); Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.57 \text{ S/m}$; $\epsilon r = 51.05$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

Ambient Temperature:22.3 Liquid Temperature:21.7

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(7.51, 7.51, 7.51); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/CW 1900 100mW BODY/Area Scan (61x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 5.00 W/kg

Configuration/CW 1900 100mW BODY/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.28 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 7.69 W/kg

SAR(1 g) = 4.14 W/kg; SAR(10 g) = 2.15 W/kgMaximum value of SAR (measured) = 4.76 W/kg

0 dB = 5.00 W/kg = 6.99 dBW/kg

System Performance Check Data (2450MHz Head)

Date/Time: 4/11/2016

Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.85 \text{ S/m}$; $\epsilon r = 38.47$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

Ambient Temperature:21.2 Liquid Temperature:20.7

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(7.62, 7.62, 7.62); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 Right 1857; Type: QD000P40CD; Serial: TP1857

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/CW 2450 100mW HEAD/Area Scan (61x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 6.25 W/kg

Configuration/CW 2450 100mW HEAD/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.15 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 11.6 W/kg

SAR(1 g) = 5.33 W/kg; SAR(10 g) = 2.45 W/kgMaximum value of SAR (measured) = 6.07 W/kg

0 dB = 6.07 W/kg = 7.83 dBW/kg

System Performance Check Data (2450MHz Body)

Date/Time: 4/11/2016

Communication System Band: CD2450 (2450.0 MHz); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 2.02 \text{ S/m}$; $\epsilon r = 50.71$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

Ambient Temperature:21.2 Liquid Temperature:20.7

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(7.38, 7.38, 7.38); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/CW 2450 100mW BODY/Area Scan (81x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 5.76 W/kg

Configuration/CW 2450 100mW BODY/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.83 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 10.6 W/kg

SAR(1 g) = 4.99 W/kg; SAR(10 g) = 2.26 W/kgMaximum value of SAR (measured) = 5.65 W/kg

0 dB = 5.76 W/kg = 7.60 dBW/kg

ANNEX C TEST DATA

MEAS.1 Left Head with Cheek on Low Channel in GSM850 mode

Date/Time: 4/8/2016

Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 824.2 MHz; Duty Cycle: 1:8.30042

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.88 \text{ S/m}$; $\epsilon_r = 41.628$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Ambient Temperature:22.1 Liquid Temperature:21.5

DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(9.56, 9.56, 9.56); Calibrated: 12/10/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/8/2015
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

850 Left/GSM 850 Left Head Cheek on Low Channel/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.134 W/kg

850 Left/GSM 850 Left Head Cheek on Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.760 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.159 W/kg

SAR(1 g) = 0.126 W/kg; SAR(10 g) = 0.093 W/kg

Maximum value of SAR (measured) = 0.133 W/kg

0 dB = 0.133 W/kg = -8.76 dBW/kg

MEAS.2 Left Head with Tilt on Low Channel in GSM850 mode

Date/Time: 4/8/2016

Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 824.2 MHz; Duty Cycle: 1:8.30042

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.88 \text{ S/m}$; $\epsilon_r = 41.628$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Ambient Temperature:22.1 Liquid Temperature:21.5

DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(9.56, 9.56, 9.56); Calibrated: 12/10/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/8/2015
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

850 Left/GSM 850 Left Head Tilt on Low Channel/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0958 W/kg

850 Left/GSM 850 Left Head Tilt on Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.474 V/m; Power Drift = 0.21 dB

Peak SAR (extrapolated) = 0.115 W/kg

SAR(1 g) = 0.091 W/kg; SAR(10 g) = 0.068 W/kg Maximum value of SAR (measured) = 0.0956 W/kg

0 dB = 0.0956 W/kg = -10.20 dBW/kg

MEAS.3 Right Head with Cheek on Low Channel in GSM850 mode

Date/Time: 4/8/2016

Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 824.2 MHz; Duty Cycle: 1:8.30042

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.88 \text{ S/m}$; $\epsilon_r = 41.628$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Ambient Temperature:22.1 Liquid Temperature:21.5

DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(9.56, 9.56, 9.56); Calibrated: 12/10/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/8/2015
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

850 Right/GSM 850 Right Head Cheek on Low Channel/Area Scan (61x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.130 W/kg

850 Right/GSM 850 Right Head Cheek on Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.406 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.157 W/kg

SAR(1 g) = 0.122 W/kg; SAR(10 g) = 0.089 W/kg Maximum value of SAR (measured) = 0.129 W/kg

0 dB = 0.130 W/kg = -8.86 dBW/kg

MEAS.4 Right Head with Tilt on Low Channel in GSM850 mode

Date/Time: 4/8/2016

Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 824.2 MHz; Duty Cycle: 1:8.30042

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.88 \text{ S/m}$; $\epsilon_r = 41.628$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Ambient Temperature:22.1 Liquid Temperature:21.5

DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(9.56, 9.56, 9.56); Calibrated: 12/10/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/8/2015
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

850 Right/GSM 850 Right Head Tilt on Low Channel/Area Scan (61x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0809 W/kg

850 Right/GSM 850 Right Head Tilt on Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.238 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.0990 W/kg

SAR(1 g) = 0.078 W/kg; SAR(10 g) = 0.059 W/kg

Maximum value of SAR (measured) = 0.0812 W/kg

0 dB = 0.0812 W/kg = -10.90 dBW/kg

MEAS.5 Body Plane with Front Side on Low Channel in GSM850 mode

Date/Time: 4/7/2016

Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 824.2 MHz; Duty Cycle: 1:8.30042

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.95 \text{ S/m}$; $\epsilon_r = 55.959$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature:21.6 Liquid Temperature:21.0

DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(9.83, 9.83, 9.83); Calibrated: 12/10/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/8/2015
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

850 Body/GSM850 Front Side on Low Channel/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.175 W/kg

850 Body/GSM850 Front Side on Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.40 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.221 W/kg

SAR(1 g) = 0.165 W/kg; SAR(10 g) = 0.119 W/kg Maximum value of SAR (measured) = 0.176 W/kg

0 dB = 0.176 W/kg = -7.54 dBW/kg

MEAS.6 Body Plane with Back Side on Low Channel in GSM850 mode

Date/Time: 4/7/2016

Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 824.2 MHz; Duty Cycle: 1:8.30042

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.95 \text{ S/m}$; $\epsilon_r = 55.959$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature:21.6 Liquid Temperature:21.0

DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(9.83, 9.83, 9.83); Calibrated: 12/10/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/8/2015
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

850 Body/GSM850 Back Side on Low Channel/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.428 W/kg

850 Body/GSM850 Back Side on Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.98 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.536 W/kg

SAR(1 g) = 0.405 W/kg; SAR(10 g) = 0.294 W/kg Maximum value of SAR (measured) = 0.428 W/kg

0 dB = 0.428 W/kg = -3.69 dBW/kg

MEAS.7 Body Plane with Front Side on Low Channel in GPRS850 mode

Date/Time: 4/7/2016

Communication System Band: GPRS850; Frequency: 824.2 MHz;Duty Cycle: 1:2.67

Medium parameters used (interpolated): f = 824.2 MHz; σ = 0.95 S/m; ϵ_r = 55.959; ρ = 1000 kg/m³

Phantom section: Flat Section

Ambient Temperature:21.6 Liquid Temperature:21.0

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(9.83, 9.83, 9.83); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

850 Body/GPRS850 Front Side on Low Channel/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.244 W/kg

850 Body/GPRS850 Front Side on Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.39 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.296 W/kg

SAR(1 g) = 0.226 W/kg; SAR(10 g) = 0.164 W/kg Maximum value of SAR (measured) = 0.239 W/kg

0 dB = 0.244 W/kg = -6.13 dBW/kg

MEAS.8 Body Plane with Back Side on Low Channel in GPRS850 mode

Date/Time: 4/7/2016

Communication System Band: GPRS850; Frequency: 824.2 MHz; Duty Cycle: 1:2.67

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.95 \text{ S/m}$; $\epsilon_r = 55.959$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature:21.6 Liquid Temperature:21.0

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(9.83, 9.83, 9.83); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

• Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

850 Body/GPRS850 Back Side on Low Channel/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.598 W/kg

850 Body/GPRS850 Back Side on Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.55 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 0.709 W/kg

SAR(1 g) = 0.556 W/kg; SAR(10 g) = 0.408 W/kgMaximum value of SAR (measured) = 0.586 W/kg

0 dB = 0.586 W/kg = -2.32 dBW/kg

MEAS.9 Body Plane with Left Edge on Low Channel in GPRS850 mode

Date/Time: 4/7/2016

Communication System Band: GPRS850; Frequency: 824.2 MHz; Duty Cycle: 1:2.67

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.95 \text{ S/m}$; $\epsilon_r = 55.959$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature:21.6 Liquid Temperature:21.0

DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(9.83, 9.83, 9.83); Calibrated: 12/10/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/8/2015
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

850 Body/GPRS850 Left Edge on Low Channel/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.177 W/kg

850 Body/GPRS850 Left Edge on Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.21 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.223 W/kg

SAR(1 g) = 0.164 W/kg; SAR(10 g) = 0.114 W/kg Maximum value of SAR (measured) = 0.175 W/kg

0 dB = 0.175 W/kg = -7.57 dBW/kg

MEAS.10 Body Plane with Left Edge on Low Channel in GPRS850 mode

Date/Time: 4/7/2016

Communication System Band: GPRS850; Frequency: 824.2 MHz; Duty Cycle: 1:2.67

Medium parameters used (interpolated): f = 824.2 MHz; σ = 0.95 S/m; ϵ_r = 55.959; ρ = 1000 kg/m³

Phantom section: Flat Section

Ambient Temperature:21.6 Liquid Temperature:21.0

DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(9.83, 9.83, 9.83); Calibrated: 12/10/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/8/2015
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

850 Body/GPRS850 Right Edge on Low Channel/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.223 W/kg

850 Body/GPRS850 Right Edge on Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.82 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.282 W/kg

SAR(1 g) = 0.209 W/kg; SAR(10 g) = 0.147 W/kg Maximum value of SAR (measured) = 0.223 W/kg

0 dB = 0.223 W/kg = -6.52 dBW/kg

MEAS.11 Body Plane with Bottum Edge on Low Channel in GPRS850 mode

Date/Time: 4/7/2016

Communication System Band: GPRS850; Frequency: 824.2 MHz; Duty Cycle: 1:2.67

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.95 \text{ S/m}$; $\epsilon_r = 55.959$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature:21.6 Liquid Temperature:21.0

DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(9.83, 9.83, 9.83); Calibrated: 12/10/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/8/2015
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

850 Body/GPRS850 Bottom Edge on Low Channel/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0334 W/kg

850 Body/GPRS850 Bottom Edge on Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.368 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.0460 W/kg

SAR(1 g) = 0.029 W/kg; SAR(10 g) = 0.017 W/kg

Maximum value of SAR (measured) = 0.0320 W/kg

0 dB = 0.0320 W/kg = -14.95 dBW/kg

MEAS.12 Left Head with Cheek on Low Channel in GSM1900 mode

Date/Time: 4/6/2016

Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1850.2 MHz; Duty Cycle:

1:8.30042

Medium parameters used: f = 1850.2 MHz; σ = 1.42 S/m; ϵ_r = 39.87; ρ = 1000 kg/m³

Phantom section: Left Section

Ambient Temperature:21.8 Liquid Temperature:21.3

DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(8.15, 8.15, 8.15); Calibrated: 12/10/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/8/2015
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 Left/GSM 1900 Left Head Cheek on Low Channel/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0926 W/kg

1900 Left/GSM 1900 Left Head Cheek on Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.008 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.127 W/kg

SAR(1 g) = 0.084 W/kg; SAR(10 g) = 0.052 W/kg

Maximum value of SAR (measured) = 0.0910 W/kg

0 dB = 0.0910 W/kg = -10.41 dBW/kg

MEAS.13 Left Head with Tilt on Low Channel in GSM1900 mode

Date/Time: 4/6/2016

Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1850.2 MHz; Duty Cycle:

1:8.30042

Medium parameters used: f = 1850.2 MHz; σ = 1.42 S/m; ε_r = 39.87; ρ = 1000 kg/m³

Phantom section: Left Section

Ambient Temperature:21.8 Liquid Temperature:21.3

DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(8.15, 8.15, 8.15); Calibrated: 12/10/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/8/2015
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 Left/GSM 1900 Left Tilt Cheek on Low Channel/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0519 W/kg

1900 Left/GSM 1900 Left Tilt Cheek on Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.151 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.0860 W/kg

SAR(1 g) = 0.043 W/kg; SAR(10 g) = 0.025 W/kg

Maximum value of SAR (measured) = 0.0460 W/kg

0 dB = 0.0460 W/kg = -13.37 dBW/kg

MEAS.14 Right Head with Cheek on Low Channel in GSM1900 mode

Date/Time: 4/6/2016

Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1850.2 MHz; Duty Cycle:

1:8.30042

Medium parameters used: f = 1850.2 MHz; σ = 1.42 S/m; ϵ_r = 39.87; ρ = 1000 kg/m³

Phantom section: Right Section

Ambient Temperature:21.8 Liquid Temperature:21.3

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(8.15, 8.15, 8.15); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 Right/GSM 1900 Right Head Cheek on Low Channel/Area Scan (61x71x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.194 W/kg

1900 Right/GSM 1900 Right Head Cheek on Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.030 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.272 W/kg

SAR(1 g) = 0.178 W/kg; SAR(10 g) = 0.105 W/kg

Maximum value of SAR (measured) = 0.195 W/kg

0 dB = 0.195 W/kg = -7.10 dBW/kg

MEAS.15 Right Head with Tilt on Low Channel in GSM1900 mode

Date/Time: 4/6/2016

Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1850.2 MHz; Duty Cycle:

1:8.30042

Medium parameters used: f = 1850.2 MHz; σ = 1.42 S/m; ϵ_r = 39.87; ρ = 1000 kg/m³

Phantom section: Right Section

Ambient Temperature:21.8 Liquid Temperature:21.3

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(8.15, 8.15, 8.15); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 Right/GSM 1900 Right Head Tilt on Low Channel/Area Scan (61x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0713 W/kg

1900 Right/GSM 1900 Right Head Tilt on Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.758 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.0950 W/kg

SAR(1 g) = 0.061 W/kg; SAR(10 g) = 0.037 W/kg

Maximum value of SAR (measured) = 0.0669 W/kg

0 dB = 0.0669 W/kg = -11.75 dBW/kg

MEAS.16 Body Plane with Front Side on Low Channel in GSM1900 mode

Date/Time: 4/5/2016

Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1850.2 MHz; Duty Cycle:

1:8.30042

Medium parameters used: f = 1850.2 MHz; σ = 1.53 S/m; ϵ_r = 51.24; ρ = 1000 kg/m³

Phantom section: Flat Section

Ambient Temperature:22.3 Liquid Temperature:21.7

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(7.51, 7.51, 7.51); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 Body/GSM 1900 Front Side on Low Channel/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0912 W/kg

1900 Body/GSM 1900 Front Side on Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.917 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.125 W/kg

SAR(1 g) = 0.082 W/kg; SAR(10 g) = 0.051 W/kg Maximum value of SAR (measured) = 0.0884 W/kg

0 dB = 0.0884 W/kg = -10.54 dBW/kg

MEAS.17 Body Plane with Back Side on Low Channel in GSM1900 mode

Date/Time: 4/5/2016

Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1850.2 MHz; Duty Cycle:

1:8.30042

Medium parameters used: f = 1850.2 MHz; σ = 1.53 S/m; ϵ_r = 51.24; ρ = 1000 kg/m³

Phantom section: Flat Section

Ambient Temperature:22.3 Liquid Temperature:21.7

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(7.51, 7.51, 7.51); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 Body/GSM 1900 Back Side on Low Channel/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.449 W/kg

1900 Body/GSM 1900 Back Side on Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.27 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.651 W/kg

SAR(1 g) = 0.388 W/kg; SAR(10 g) = 0.216 W/kg Maximum value of SAR (measured) = 0.435 W/kg

0 dB = 0.435 W/kg = -3.62 dBW/kg

MEAS.18 Body Plane with Front Side on Middle Channel in GPRS1900 mode

Date/Time: 4/5/2016

Communication System Band: GPRS 1900; Frequency: 1850.2 MHz;Duty Cycle: 1:2.67 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.53$ S/m; $\epsilon_r = 51.24$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature:22.3 Liquid Temperature:21.7

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(7.51, 7.51, 7.51); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 Body/GPRS1900 Front Side on Low Channel/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.135 W/kg

1900 Body/GPRS1900 Front Side on Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.877 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.188 W/kg

SAR(1 g) = 0.120 W/kg; SAR(10 g) = 0.075 W/kg Maximum value of SAR (measured) = 0.130 W/kg

0 dB = 0.135 W/kg = -8.70 dBW/kg

MEAS.19 Body Plane with Back Side on Middle Channel in GPRS1900 mode

Date/Time: 4/5/2016

Communication System Band: GPRS 1900; Frequency: 1850.2 MHz;Duty Cycle: 1: 2.67 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.53$ S/m; $\epsilon_r = 51.24$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature:22.3 Liquid Temperature:21.7

DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(7.51, 7.51, 7.51); Calibrated: 12/10/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/8/2015
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 Body/GPRS 1900 Back Side on Low Channel/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.747 W/kg

1900 Body/GPRS 1900 Back Side on Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.91 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.669 W/kg; SAR(10 g) = 0.380 W/kg

Maximum value of SAR (measured) = 0.701 W/kg

0 dB = 0.701 W/kg = -1.54 dBW/kg

MEAS.20 Body Plane with Left Edge on Middle Channel in GPRS1900 mode

Date/Time: 4/5/2016

Communication System Band: GPRS 1900; Frequency: 1850.2 MHz;Duty Cycle: 1: 2.67 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.53$ S/m; $\epsilon_r = 51.24$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature:22.3 Liquid Temperature:21.7

DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(7.51, 7.51, 7.51); Calibrated: 12/10/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/8/2015
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 Body/GPRS1900 Left Edge on Low Channel/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.135 W/kg

1900 Body/GPRS1900 Left Edge on Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.164 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.209 W/kg

SAR(1 g) = 0.124 W/kg; SAR(10 g) = 0.072 W/kg Maximum value of SAR (measured) = 0.136 W/kg

0 dB = 0.136 W/kg = -8.66 dBW/kg

MEAS.21 Body Plane with Right Edge on Middle Channel in GPRS1900 mode

Date/Time: 4/5/2016

Communication System Band: GPRS 1900; Frequency: 1850.2 MHz;Duty Cycle: 1: 2.67 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.53$ S/m; $\epsilon_r = 51.24$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature:22.3 Liquid Temperature:21.7

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(7.51, 7.51, 7.51); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 Body/GPRS1900 Right Edge on Low Channel/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0175 W/kg

1900 Body/GPRS1900 Right Edge on Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.906 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.0180 W/kg

SAR(1 g) = 0.00792 W/kg; SAR(10 g) = 0.00371 W/kg Maximum value of SAR (measured) = 0.00915 W/kg

0 dB = 0.0175 W/kg = -17.57 dBW/kg

MEAS.22 Body Plane with Bottom Edge on Low Channel in GPRS1900 mode

Date/Time: 4/5/2016

Communication System Band: GPRS 1900; Frequency: 1850.2 MHz;Duty Cycle: 1: 1:2.67 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.53$ S/m; $\epsilon_r = 51.24$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature:22.3 Liquid Temperature:21.7

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(7.51, 7.51, 7.51); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 Body/GPRS1900 Bottom Edge on Low Channel/Area Scan (71x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.183 W/kg

1900 Body/GPRS1900 Bottom Edge on Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.039 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.260 W/kg

SAR(1 g) = 0.155 W/kg; SAR(10 g) = 0.082 W/kg Maximum value of SAR (measured) = 0.177 W/kg

0 dB = 0.183 W/kg = -7.38 dBW/kg

MEAS.23 Left Head with Cheek on Mid Channel in WCDMA B2 mode

Date/Time: 4/6/2016

Communication System Band: II; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; σ = 1.45 S/m; ϵ_r = 39.74; ρ = 1000 kg/m³

Phantom section: Left Section

Ambient Temperature:21.8 Liquid Temperature:21.3

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(8.15, 8.15, 8.15); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 Left/WCDMA Band 2 Left Head Cheek on Mid Channel/Area Scan (71x71x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.345 W/kg

1900 Left/WCDMA Band 2 Left Head Cheek on Mid Channel/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.514 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.453 W/kg

SAR(1 g) = 0.311 W/kg; SAR(10 g) = 0.198 W/kg

Maximum value of SAR (measured) = 0.335 W/kg

0 dB = 0.345 W/kg = -4.62 dBW/kg

MEAS.24 Left Head with Tilt on Mid Channel in WCDMA B2 mode

Date/Time: 4/6/2016

Communication System Band: II; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; σ = 1.45 S/m; ε_r = 39.74; ρ = 1000 kg/m³

Phantom section: Left Section

Ambient Temperature:21.8 Liquid Temperature:21.3

DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(8.15, 8.15, 8.15); Calibrated: 12/10/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/8/2015
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 Left/WCDMA Band 2 Left Head Tilt on Mid Channel/Area Scan (71x71x1): Interpolated grid: dx=1.200

mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.245 W/kg

1900 Left/WCDMA Band 2 Left Head Tilt on Mid Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.14 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.346 W/kg

SAR(1 g) = 0.223 W/kg; SAR(10 g) = 0.136 W/kg

Maximum value of SAR (measured) = 0.239 W/kg

0 dB = 0.239 W/kg = -6.22 dBW/kg

MEAS.25 Right Head with Cheek on Mid Channel in WCDMA B2 mode

Date/Time: 4/6/2016

Communication System Band: II; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; σ = 1.45 S/m; ϵ_r = 39.74; ρ = 1000 kg/m³

Phantom section: Right Section

Ambient Temperature:21.8 Liquid Temperature:21.3

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(8.15, 8.15, 8.15); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 Right/WCDMA Band 2 Right Head Cheek on Middle Channel/Area Scan (61x71x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.433 W/kg

1900 Right/WCDMA Band 2 Right Head Cheek on Middle Channel/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.434 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.599 W/kg

SAR(1 g) = 0.400 W/kg; SAR(10 g) = 0.243 W/kg Maximum value of SAR (measured) = 0.434 W/kg

0 dB = 0.433 W/kg = -3.64 dBW/kg

MEAS.26 Right Head with Tilt on Mid Channel in WCDMA B2 mode

Date/Time: 4/6/2016

Communication System Band: II; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters usesd: f = 1880 MHz; σ = 1.45 S/m; ε_r = 39.74; ρ = 1000 kg/m³

Phantom section: Right Section

Ambient Temperature:21.8 Liquid Temperature:21.3

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(8.15, 8.15, 8.15); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 Right/WCDMA Band 2 Right Head Tilt on Middle Channel/Area Scan (61x71x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.159 W/kg

1900 Right/WCDMA Band 2 Right Head Tilt on Middle Channel/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.414 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.207 W/kg

SAR(1 g) = 0.142 W/kg; SAR(10 g) = 0.091 W/kg

Maximum value of SAR (measured) = 0.152 W/kg

0 dB = 0.152 W/kg = -8.18 dBW/kg

MEAS.27 Body Plane with Front Side on Mid Channel in WCDMA B2 mode

Date/Time: 4/5/2016

Communication System Band: II; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; σ = 1.57 S/m; ϵ_r = 51.14; ρ = 1000 kg/m³

Phantom section: Flat Section

Ambient Temperature:22.3 Liquid Temperature:21.7

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(7.51, 7.51, 7.51); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 Body/WCDMA Band 2 Front Side on Mid Channel/Area Scan (71x81x1): Interpolated grid: dx=1.200

mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.223 W/kg

1900 Body/WCDMA Band 2 Front Side on Mid Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.43 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.319 W/kg

SAR(1 g) = 0.209 W/kg; SAR(10 g) = 0.129 W/kg

Maximum value of SAR (measured) = 0.228 W/kg

0 dB = 0.228 W/kg = -6.42 dBW/kg

MEAS.28 Body Plane with Back Side on Low Channel in WCDMA B2 mode

Date/Time: 4/5/2016

Communication System Band: II; Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.533 \text{ S/m}$; $\epsilon_r = 51.233$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature:22.3 Liquid Temperature:21.7

DASY5 Configuration:

• Probe: EX3DV4 - SN7340; ConvF(7.51, 7.51, 7.51); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 Body/WCDMA Band 2 Back Side on Low Channel/Area Scan (71x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.973 W/kg

1900 Body/WCDMA Band 2 Back Side on Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.44 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 1.44 W/kg

SAR(1 g) = 0.864 W/kg; SAR(10 g) = 0.487 W/kg

Maximum value of SAR (measured) = 0.976 W/kg

0 dB = 0.976 W/kg = -0.11 dBW/kg

MEAS.29 Body Plane with Back Side on Mid Channel in WCDMA B2 mode

Date/Time: 4/5/2016

Communication System Band: II; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; σ = 1.57 S/m; ϵ_r = 51.14; ρ = 1000 kg/m³

Phantom section: Flat Section

Ambient Temperature:22.3 Liquid Temperature:21.7

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(7.51, 7.51, 7.51); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 Body/WCDMA Band 2 Back Side on Mid Channel/Area Scan (71x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.21 W/kg

1900 Body/WCDMA Band 2 Back Side on Mid Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.04 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.73 W/kg

SAR(1 g) = 1 W/kg; SAR(10 g) = 0.566 W/kg Maximum value of SAR (measured) = 1.13 W/kg

0 dB = 1.21 W/kg = 0.83 dBW/kg

MEAS.30 Body Plane with Back Side on High Channel in WCDMA B2 mode

Date/Time: 4/5/2016

Communication System Band: II; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1907.6 MHz; $\sigma = 1.593 \text{ S/m}$; $\epsilon_r = 51.042$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature:22.3 Liquid Temperature:21.7

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(7.51, 7.51, 7.51); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

• Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 Body/WCDMA Band 2 Back Side on High Channel/Area Scan (71x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.817 W/kg

1900 Body/WCDMA Band 2 Back Side on High Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.45 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.18 W/kg

SAR(1 g) = 0.703 W/kg; SAR(10 g) = 0.415 W/kg

Maximum value of SAR (measured) = 0.749 W/kg

0 dB = 0.749 W/kg = -1.26 dBW/kg

MEAS.31 Body Plane with Left Edge on Mid Channel in WCDMA B2 mode

Date/Time: 4/5/2016

Communication System Band: II; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; σ = 1.57 S/m; ϵ_r = 51.14; ρ = 1000 kg/m³

Phantom section: Flat Section

Ambient Temperature:22.3 Liquid Temperature:21.7

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(7.51, 7.51, 7.51); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 Body/WCDMA Band 2 Left Side on Mid Channel/Area Scan (71x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.217 W/kg

1900 Body/WCDMA Band 2 Left Side on Mid Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.43 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.320 W/kg

SAR(1 g) = 0.199 W/kg; SAR(10 g) = 0.118 W/kg Maximum value of SAR (measured) = 0.215 W/kg

0 dB = 0.217 W/kg = -6.64 dBW/kg

MEAS.32 Body Plane with Right Edge on Mid Channel in WCDMA B2 mode

Date/Time: 4/5/2016

Communication System Band: II; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; σ = 1.57 S/m; ϵ_r = 51.14; ρ = 1000 kg/m³

Phantom section: Flat Section

Ambient Temperature:22.3 Liquid Temperature:21.7

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(7.51, 7.51, 7.51); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 Body/WCDMA Band 2 Right Side on Mid Channel/Area Scan (71x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0305 W/kg

1900 Body/WCDMA Band 2 Right Side on Mid Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.270 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.0380 W/kg

SAR(1 g) = 0.019 W/kg; SAR(10 g) = 0.010 W/kg Maximum value of SAR (measured) = 0.0208 W/kg

0 dB = 0.0305 W/kg = -15.16 dBW/kg

MEAS.33 Body Plane with Bottom Edge on Mid Channel in WCDMA B2 mode

Date/Time: 4/5/2016

Communication System Band: II; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; σ = 1.57 S/m; ϵ_r = 51.14; ρ = 1000 kg/m³

Phantom section: Flat Section

Ambient Temperature:22.3 Liquid Temperature:21.7

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(7.51, 7.51, 7.51); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

• Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 Body/WCDMA Band 2 Bottom Edge on Mid Channel/Area Scan (71x81x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.276 W/kg

1900 Body/WCDMA Band 2 Bottom Edge on Mid Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.081 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.407 W/kg

SAR(1 g) = 0.239 W/kg; SAR(10 g) = 0.126 W/kg

Maximum value of SAR (measured) = 0.271 W/kg

0 dB = 0.271 W/kg = -5.67 dBW/kg

MEAS.34 Left Head with Cheek on Mid Channel in WCDMA B5 mode

Date/Time: 4/8/2016

Communication System Band: V; Frequency: 836. 6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 836. 6 MHz; σ = 0.92 S/m; ε_r = 41.48; ρ = 1000 kg/m³

Phantom section: Left Section

Ambient Temperature:22.1 Liquid Temperature:21.5

DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(9.56, 9.56, 9.56); Calibrated: 12/10/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/8/2015
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

850 Left/WCDMA Band 5 Left Head Cheek on Middle Channel/Area Scan (71x71x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.123 W/kg

850 Left/WCDMA Band 5 Left Head Cheek on Middle Channel/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.016 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.218 W/kg

SAR(1 g) = 0.112 W/kg; SAR(10 g) = 0.059 W/kg

Maximum value of SAR (measured) = 0.121 W/kg

0 dB = 0.123 W/kg = -9.10 dBW/kg

MEAS.35 Left Head with Tilt on Mid Channel in WCDMA B5 mode

Date/Time: 4/8/2016

Communication System Band: V; Frequency: 836. 6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 836. 6 MHz; σ = 0.92 S/m; ε_r = 41.48; ρ = 1000 kg/m³

Phantom section: Left Section

Ambient Temperature:22.1 Liquid Temperature:21.5

DASY5 Configuration:

• Probe: EX3DV4 - SN7340; ConvF(9.56, 9.56, 9.56); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

850 Left/WCDMA Band 5 Left Head Tilt on Middle Channel/Area Scan (71x71x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0809 W/kg

850 Left/WCDMA Band 5 Left Head Tilt on Middle Channel/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.367 V/m; Power Drift = 0.20 dB

Peak SAR (extrapolated) = 0.136 W/kg

SAR(1 g) = 0.070 W/kg; SAR(10 g) = 0.036 W/kg

Maximum value of SAR (measured) = 0.0762 W/kg

0 dB = 0.0762 W/kg = -11.18 dBW/kg

MEAS.36 Right Head with Cheek on Mid Channel in WCDMA B5 mode

Date/Time: 4/8/2016

Communication System Band: V; Frequency: 836. 6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 836. 6 MHz; σ = 0.92 S/m; ε_r = 41.48; ρ = 1000 kg/m³

Phantom section: Right Section

Ambient Temperature:22.1 Liquid Temperature:21.5

DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(9.56, 9.56, 9.56); Calibrated: 12/10/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/8/2015
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

850 Right/WCDMA Band 5 Right Head Cheek on Middle Channel/Area Scan (61x71x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.167 W/kg

850 Right/WCDMA Band 5 Right Head Cheek on Middle Channel/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.768 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.200 W/kg

SAR(1 g) = 0.159 W/kg; SAR(10 g) = 0.117 W/kg

Maximum value of SAR (measured) = 0.167 W/kg

0 dB = 0.167 W/kg = -7.77 dBW/kg

MEAS.37 Right Head with Tilt on Mid Channel in WCDMA B5 mode

Date/Time: 4/8/2016

Communication System Band: V; Frequency: 836. 6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 836. 6 MHz; σ = 0.92 S/m; ε_r = 41.48; ρ = 1000 kg/m³

Phantom section: Right Section

Ambient Temperature:22.1 Liquid Temperature:21.5

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(9.56, 9.56, 9.56); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

850 Right/WCDMA Band 5 Right Head Tilt on Middle Channel/Area Scan (61x71x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.116 W/kg

850 Right/WCDMA Band 5 Right Head Tilt on Middle Channel/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.267 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.144 W/kg

SAR(1 g) = 0.112 W/kg; SAR(10 g) = 0.084 W/kg

Maximum value of SAR (measured) = 0.118 W/kg

0 dB = 0.116 W/kg = -9.36 dBW/kg

MEAS.38 Body Plane with Front Side on Mid Channel in WCDMA B5 mode

Date/Time: 4/7/2016

Communication System Band: V; Frequency: 836. 6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 836. 6 MHz; σ = 0.96 S/m; ε_r = 55.86; ρ = 1000 kg/m³

Phantom section: Flat Section

Ambient Temperature:21.6 Liquid Temperature:21.0

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(9.83, 9.83, 9.83); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

850 Body/WCDMA Band 5 Front Side on Middle Channel/Area Scan (71x71x1): Interpolated grid: dx=1.200

mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.212 W/kg

850 Body/WCDMA Band 5 Front Side on Middle Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.98 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.264 W/kg

SAR(1 g) = 0.199 W/kg; SAR(10 g) = 0.144 W/kg

Maximum value of SAR (measured) = 0.211 W/kg

0 dB = 0.211 W/kg = -6.76 dBW/kg

MEAS.39 Body Plane with Back Side on Mid Channel in WCDMA B5 mode

Date/Time: 4/7/2016

Communication System Band: V; Frequency: 836. 6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 836. 6 MHz; σ = 0.96 S/m; ε_r = 55.86; ρ = 1000 kg/m³

Phantom section: Flat Section

Ambient Temperature:21.6 Liquid Temperature:21.0

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(9.83, 9.83, 9.83); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

850 Body/WCDMA Band 5 Back Side on Middle Channel/Area Scan (71x71x1): Interpolated grid: dx=1.200

mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.486 W/kg

850 Body/WCDMA Band 5 Back Side on Middle Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.75 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.603 W/kg

SAR(1 g) = 0.461 W/kg; SAR(10 g) = 0.334 W/kg

Maximum value of SAR (measured) = 0.487 W/kg

0 dB = 0.487 W/kg = -3.12 dBW/kg

MEAS.40 Body Plane with Left Edge on Mid Channel in WCDMA B5 mode

Date/Time: 4/7/2016

Communication System Band: V; Frequency: 836. 6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 836. 6 MHz; σ = 0.96 S/m; ε_r = 55.86; ρ = 1000 kg/m³

Phantom section: Flat Section

Ambient Temperature:21.6 Liquid Temperature:21.0

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(9.83, 9.83, 9.83); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

850 Body/WCDMA Band 5 Left Edge on Middle Channel/Area Scan (71x71x1): Interpolated grid: dx=1.200

mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.155 W/kg

850 Body/WCDMA Band 5 Left Edge on Middle Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.60 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.202 W/kg

SAR(1 g) = 0.145 W/kg; SAR(10 g) = 0.100 W/kg

Maximum value of SAR (measured) = 0.156 W/kg

0 dB = 0.156 W/kg = -8.07 dBW/kg

MEAS.41 Body Plane with Right Edge on Mid Channel in WCDMA B5 mode

Date/Time: 4/7/2016

Communication System Band: V; Frequency: 836. 6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 836. 6 MHz; σ = 0.96 S/m; ε_r = 55.86; ρ = 1000 kg/m³

Phantom section: Flat Section

Ambient Temperature:21.6 Liquid Temperature:21.0

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(9.83, 9.83, 9.83); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

850 Body/WCDMA Band 5 Right Edge on Middle Channel/Area Scan (71x71x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.177 W/kg

850 Body/WCDMA Band 5 Right Edge on Middle Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.32 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.228 W/kg

SAR(1 g) = 0.167 W/kg; SAR(10 g) = 0.117 W/kg

Maximum value of SAR (measured) = 0.177 W/kg

0 dB = 0.177 W/kg = -7.52 dBW/kg

MEAS.42 Body Plane with Bottom Edge on Mid Channel in WCDMA B5 mode

Date/Time: 4/7/2016

Communication System Band: V; Frequency: 836. 6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 836. 6 MHz; σ = 0.96 S/m; ε_r = 55.86; ρ = 1000 kg/m³

Phantom section: Flat Section

Ambient Temperature:21.6 Liquid Temperature:21.0

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(9.83, 9.83, 9.83); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

850 Body/WCDMA Band 5 Bottom Edge on Middle Channel/Area Scan (71x71x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0226 W/kg

850 Body/WCDMA Band 5 Bottom Edge on Middle Channel/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.906 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.0330 W/kg

SAR(1 g) = 0.020 W/kg; SAR(10 g) = 0.012 W/kg

Maximum value of SAR (measured) = 0.0226 W/kg

0 dB = 0.0226 W/kg = -16.46 dBW/kg

MEAS.43 Left Head with Cheek on Low Channel in IEEE 802.11 b mode

Date/Time: 4/11/2016

Communication System Band: WLAN(b); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.86 \text{ S/m}$; $\epsilon r = 38.28$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Ambient Temperature:21.2 Liquid Temperature:20.7

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(7.62, 7.62, 7.62); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 Right 1857; Type: QD000P40CD; Serial: TP1857

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

802.11 b Head Left/WLAN b Left Head Cheek on Low Channel/Area Scan (61x61x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.166 W/kg

802.11 b Head Left/WLAN b Left Head Cheek on Low Channel/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.828 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.307 W/kg

SAR(1 g) = 0.155 W/kg; SAR(10 g) = 0.078 W/kg

Maximum value of SAR (measured) = 0.182 W/kg

0 dB = 0.166 W/kg = -7.80 dBW/kg

MEAS.44 Left Head with Tilt on Low Channel in IEEE 802.11 b mode

Date/Time: 4/11/2016

Communication System Band: WLAN(b); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.86 \text{ S/m}$; $\epsilon r = 38.28$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Ambient Temperature:21.2 Liquid Temperature:20.7

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(7.62, 7.62, 7.62); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 Right 1857; Type: QD000P40CD; Serial: TP1857

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

802.11 b Head Left/WLAN b Left Head Tilt on Low Channel/Area Scan (61x61x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.150 W/kg

802.11 b Head Left/WLAN b Left Head Tilt on Low Channel/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.860 V/m; Power Drift = 0.20 dB

Peak SAR (extrapolated) = 0.274 W/kg

SAR(1 g) = 0.134 W/kg; SAR(10 g) = 0.067 W/kg

Maximum value of SAR (measured) = 0.150 W/kg

0 dB = 0.150 W/kg = -8.24 dBW/kg

MEAS.45 Right Head with Cheek on Low Channel in IEEE 802.11 b mode

Date/Time: 4/11/2016

Communication System Band: WLAN(b); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.86 \text{ S/m}$; $\epsilon r = 38.28$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Ambient Temperature:21.2 Liquid Temperature:20.7

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(7.62, 7.62, 7.62); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 Right 1857; Type: QD000P40CD; Serial: TP1857

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

802.11 b Head Right/WLAN b Right Head Cheek on Low Channel/Area Scan (61x61x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.126 W/kg

802.11 b Head Right/WLAN b Right Head Cheek on Low Channel/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.154 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.174 W/kg

SAR(1 g) = 0.103 W/kg; SAR(10 g) = 0.050 W/kg

Maximum value of SAR (measured) = 0.119 W/kg

0 dB = 0.119 W/kg = -9.24 dBW/kg

MEAS.46 Right Head with Tilt on Low Channel in IEEE 802.11 b mode

Date/Time: 4/11/2016

Communication System Band: WLAN(b); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.86 \text{ S/m}$; $\epsilon r = 38.28$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Ambient Temperature:21.2 Liquid Temperature:20.7

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(7.62, 7.62, 7.62); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 Right 1857; Type: QD000P40CD; Serial: TP1857

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

802.11 b Head Right/WLAN b Right Head Tilt on Low Channel/Area Scan (61x61x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.109 W/kg

802.11 b Head Right/WLAN b Right Head Tilt on Low Channel/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.177 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.181 W/kg

SAR(1 g) = 0.097 W/kg; SAR(10 g) = 0.050 W/kg

Maximum value of SAR (measured) = 0.110 W/kg

0 dB = 0.110 W/kg = -9.59 dBW/kg

MEAS.47 Body Plane with Front Side on Low Channel in IEEE 802.11 b mode

Date/Time: 4/11/2016

Communication System Band: WLAN(b); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 2.03 \text{ S/m}$; $\epsilon_r = 50.45$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature:21.2 Liquid Temperature:20.7

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(7.38, 7.38, 7.38); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

• Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

802.11 b Body/WLAN b Front Side on Low Channel/Area Scan (61x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0403 W/kg

802.11 b Body/WLAN b Front Side on Low Channel/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.355 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.144 W/kg

SAR(1 g) = 0.028 W/kg; SAR(10 g) = 0.011 W/kg

Maximum value of SAR (measured) = 0.0210 W/kg

0 dB = 0.0210 W/kg = -16.78 dBW/kg

MEAS.48 Body Plane with Back Side on Low Channel in IEEE 802.11 b mode

Date/Time: 4/11/2016

Communication System Band: WLAN(b); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 2.03 \text{ S/m}$; $\epsilon_r = 50.45$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature:21.2 Liquid Temperature:20.7

DASY5 Configuration:

• Probe: EX3DV4 - SN7340; ConvF(7.38, 7.38, 7.38); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

• Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

802.11 b Body/WLAN b Back Side on Low Channel/Area Scan (61x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.501 W/kg

802.11 b Body/WLAN b Back Side on Low Channel/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.736 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.716 W/kg

SAR(1 g) = 0.335 W/kg; SAR(10 g) = 0.136 W/kg

Maximum value of SAR (measured) = 0.403 W/kg

0 dB = 0.403 W/kg = -3.95 dBW/kg

MEAS.49 Body Plane with Left Edge on Low Channel in IEEE 802.11 b mode

Date/Time: 4/11/2016

Communication System Band: WLAN(b); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 2.03 \text{ S/m}$; $\epsilon_r = 50.45$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature:21.2 Liquid Temperature:20.7

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(7.38, 7.38, 7.38); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

• Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

802.11 b Body/WLAN b Left Edge on Low Channel/Area Scan (61x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0882 W/kg

802.11 b Body/WLAN b Left Edge on Low Channel/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.100 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.120 W/kg

SAR(1 g) = 0.063 W/kg; SAR(10 g) = 0.028 W/kg

Maximum value of SAR (measured) = 0.0735 W/kg

0 dB = 0.0735 W/kg = -11.34 dBW/kg

MEAS.50 Body Plane with Top Edge on Low Channel in IEEE 802.11 b mode

Date/Time: 4/11/2016

Communication System Band: WLAN(b); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 2.03 \text{ S/m}$; $\epsilon_r = 50.45$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature:21.2 Liquid Temperature:20.7

DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(7.38, 7.38, 7.38); Calibrated: 12/10/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1454; Calibrated: 12/8/2015

Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

802.11 b Body/WLAN b Top Edge on Low Channel/Area Scan (61x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0513 W/kg

802.11 b Body/WLAN b Top Edge on Low Channel/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.369 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.113 W/kg

SAR(1 g) = 0.041 W/kg; SAR(10 g) = 0.017 W/kg

Maximum value of SAR (measured) = 0.0474 W/kg

0 dB = 0.0474 W/kg = -13.24 dBW/kg

ANNEX D EUT EXTERNAL PHOTOS

Please refer the document "BL-SZ1630247-AW.pdf".

ANNEX E SAR TEST SETUP PHOTOS

Please refer the document "BL-SZ1630247-AS.pdf".