

Computer Vision

Lecture 08: Data-efficient Training

Pseudo labels

 Networks are trained in a supervised fashion jointly with labeled and unlabeled data.

 Pseudo-Labels are target classes for unlabeled data predicted from another network as if they were true labels.

Pseudo labels

$$\theta_{S}^{\text{PL}} = \underset{\theta_{S}}{\operatorname{argmin}} \ \underbrace{\mathbb{E}_{x_{u}} \Big[\text{CE} \big(T(x_{u}; \theta_{T}), S(x_{u}; \theta_{S}) \big) \Big]}_{:=\mathcal{L}_{u} \big(\theta_{T}, \theta_{S} \big)}$$

Self-training

Self-training with noisy student improves imagenet classification, CVPR'20.

Self-training

- **Require:** Labeled images $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$ and unlabeled images $\{\tilde{x}_1, \tilde{x}_2, ..., \tilde{x}_m\}$.
- 1: Learn teacher model θ_*^t which minimizes the cross entropy loss on labeled images

$$\frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f^{noised}(x_i, \theta^t))$$

2: Use an unnoised teacher model to generate soft or hard pseudo labels for unlabeled images

$$\tilde{y}_i = f(\tilde{x}_i, \theta_*^t), \forall i = 1, \cdots, m$$

3: Learn an **equal-or-larger** student model θ_*^s which minimizes the cross entropy loss on labeled images and unlabeled images with **noise** added to the student model

$$\frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f^{noised}(x_i, \theta^s)) + \frac{1}{m} \sum_{i=1}^{m} \ell(\tilde{y}_i, f^{noised}(\tilde{x}_i, \theta^s))$$

4: Iterative training: Use the student as a teacher and go back to step 2.

Self-training (Noise)

 The teacher network provides a richer supervisory signal than the data supervision.

 KD guides the training of a student network by encouraging it to mimic some aspect of a teacher network.

cow	dog	cat	car
0	1	0	0
_			
cow	dog	cat	car
10 ⁻⁶	.9	.1	10 ⁻⁹
cow	dog	cat	car
.05	.3	.2	.005

'Dark knowledge'

Which classes the teacher found more similar to the predicted class.

$$q_i = \frac{exp(z_i/T)}{\sum_j exp(z_j/T)}$$

q : probability

T: temperature

$$P_{T}^{\tau} = \operatorname{softmax}\left(\frac{\mathbf{a}_{T}}{\tau}\right), \quad P_{S}^{\tau} = \operatorname{softmax}\left(\frac{\mathbf{a}_{S}}{\tau}\right) \quad \mathcal{L}_{KD}(\mathbf{W}_{S}) = \mathcal{H}(\mathbf{y_{true}}, P_{S}) + \lambda \mathcal{H}(P_{T}^{\tau}, P_{S}^{\tau})$$

Distilling the Knowledge in a Neural Network, NeurIPS'14

Hints

 KD fails when the depth of the student network getting deeper.

 Hint is defined as the output of a teacher's hidden layer.

Learning hints

$$\mathcal{L}_{HT}(\mathbf{W}_{\mathbf{Guided}}, \mathbf{W}_{\mathbf{r}}) = \frac{1}{2} ||u_h(\mathbf{x}; \mathbf{W}_{\mathbf{Hint}}) - r(v_g(\mathbf{x}; \mathbf{W}_{\mathbf{Guided}}); \mathbf{W}_{\mathbf{r}})||^2$$

FitNets: hints for thin deep nets, ICLR'15.

Learning hints

```
Input: W_S, W_T, g, h
      Output: W<sub>S</sub>
1: \mathbf{W_{Hint}} \leftarrow \{\mathbf{W_T}^1, \dots, \mathbf{W_T}^h\}
2: \mathbf{W_{Guided}} \leftarrow \{\mathbf{W_S}^1, \dots, \mathbf{W_S}^g\}
3: Intialize W_r to small random values
4: \mathbf{W}_{\mathbf{Guided}}^* \leftarrow \operatorname{argmin} \mathcal{L}_{HT}(\mathbf{W}_{\mathbf{Guided}}, \mathbf{W}_{\mathbf{r}})
                                   W_{Guided}
5: \{\mathbf{W_S}^1, \dots, \mathbf{W_S}^g\} \leftarrow \{\mathbf{W_{Guided}}^{*1}, \dots, \mathbf{W_{Guided}}^{*g}\}
6: \mathbf{W}_{\mathbf{S}}^* \leftarrow \operatorname{argmin} \mathcal{L}_{KD}(\mathbf{W}_{\mathbf{S}})
```

Intermediate representation

Algorithm	# params	Accuracy								
Compression										
FitNet	~2.5M	91.61 %								
Teacher	~9M	90.18%								
Mimic single	∼54M	84.6%								
Mimic single	Mimic single ~ 70 M									
Mimic ensemble	85.8%									
State-of-the-art methods										
Maxout	90.65%									
Network in Netwo	Network in Network									
Deeply-Supervised		91.78 %								
Deeply-Supervised	d Networks (19)	88.2%								

Table 1:	Accuracy on	CIFAR-10
----------	-------------	----------

Algorithm	# params	Accuracy							
Compression									
FitNet	~2.5M	64.96%							
Teacher	$\sim 9M$ 63.54%								
State-of-the-art methods									
Maxout 61.43%									
Network in N	64.32%								
Deeply-Supe	rvised Networks	$\boxed{ \mathbf{65.43\%} }$							

Table 2: Accuracy on CIFAR-100

Intermediate representation

Algorithm	# params	Misclass							
Compression									
FitNet	∼1.5M	2.42%							
Teacher	∼4.9M	2.38 %							
State-of-the-	State-of-the-art methods								
Maxout	Maxout 2.47%								
Network in N	2.35%								
Deeply-Supe	rvised Networks	1.92%							

Table	3:	SV	$^{\prime}$ HN	error
LUUIU	- Carlot	₩ *	1111	VIIVI

Algorithm	# params	Misclass							
Compression									
Teacher	~361K	0.55%							
Standard backprop	~30K	1.9%							
KD	~30K	0.65%							
FitNet	~30K	0.51%							
State-of-the-art meth	State-of-the-art methods								
Maxout	0.45%								
Network in Network	0.47%								
Deeply-Supervised l	Networks	0.39%							

Table 4: MNIST error

KD for object detection

Learning Efficient Object Detection Models with Knowledge Distillation, NIPS'17.

KD for object detection

		Baseline	Distillation	Hint	Distillation + Hint
PASCAL	Trainval	79.6	78.3	80.9	83.5
	Test	54.7	58.4	58	59.4
COCO	Train	45.3	45.4	47.1	49.6
	Val	25.4	26.1	27.8	28.3

learning on different datasets with Tucker and VGG16 pair.

Learning Efficient Object Detection Models with Knowledge Distillation, NIPS'17.

Distillation of part experts

DOPE: Distillation Of Part Experts for whole-body 3D pose estimation in the wild, ECCV'20.

Distillation of part experts

Distillation of part experts

Video pose distillation

Video Pose Distillation for Few-Shot, Fine-Grained Sports Action Recognition, ICCV'21.

Video pose distillation

$$\Delta \mathbf{p}_t := \mathbf{p}_t - \mathbf{p}_{t-1}$$

$$\underset{F,D}{\text{minimize}} \sum_{t=1}^{N} \left\| D\left(F\left(\mathbf{x}_{t}, \phi_{t}\right)\right) - \begin{bmatrix} \mathbf{p}_{t} \\ \Delta \mathbf{p}_{t} \end{bmatrix} \right\|_{2}^{2}$$

Video Pose Distillation for Few-Shot, Fine-Grained Sports Action Recognition, ICCV'21.

Include a gap between patches

Randomly jitter each patch location

Unsupervised Visual Representation Learning by Context Prediction. ICCV 2015

Context Prediction: Predict relative positions of patches

- You have to understand the object to solve this problem!
- Be aware of trivial solution! CNN is especially good at it

Unsupervised Visual Representation Learning by Context Prediction. ICCV 2015

Sample image

Extract 9 patches

Permutate 9 patches

Unsupervised learning of visual representations by solving jigsaw puzzles. In ECCV 2016.

Solving the Jigsaw

- Use stronger supervision, solve the real jigsaw problem
- Harder problem, better ability for networks

Predicting the rotations

Predict the 4 types of rotation angles.

Method	Conv1	Conv2	Conv3	Conv4	Conv5
ImageNet labels	19.3	36.3	44.2	48.3	50.5
Random Random rescaled Krähenbühl et al. (2015)	11.6 17.5	17.1 23.0	16.9 24.5	16.3 23.2	14.1 20.6
Context (Doersch et al., 2015) Context Encoders (Pathak et al., 2016b) Colorization (Zhang et al., 2016a) Jigsaw Puzzles (Noroozi & Favaro, 2016) BIGAN (Donahue et al., 2016) Split-Brain (Zhang et al., 2016b) Counting (Noroozi et al., 2017)	16.2 14.1 12.5 18.2 17.7 17.7 18.0	23.3 20.7 24.5 28.8 24.5 29.3 30.6	30.2 21.0 30.4 34.0 31.0 35.4 34.3	31.7 19.8 31.5 33.9 29.9 35.2 32.5	29.6 15.5 30.3 27.1 28.0 32.8 25.7
(Ours) RotNet	18.8	31.7	38.7	38.2	36.5

ImageNet classification top-1 accuracy

Unsupervised representation learning by predicting image rotations. In ICLR 2018.

Self-supervision for video

Find corresponding pairs using visual tracking

Wang, X., & Gupta, A. (2015). Unsupervised learning of visual representations using videos. In *ICCV2015*

Lecture 8: Data-efficient Training Prof. Seungryul Baek

Self-supervision for video

Is the temporal order of a video correct?

Encode the cause and effect of action

Misra, I., Zitnick, C. L., & Hebert, M. Shuffle and learn: unsupervised learning using temporal order verification. In *ECCV 2016*.

Self-supervision for video

Is the temporal order of a video correct?

Find the odd sequence

Fernando, B., Bilen, H., Gavves, E., & Gould, S. Self-Supervised Video Representation Learning With Odd-One-Out Networks. *In CVPR2017*.

Self-supervision for pose

Unsupervised Learning of Object Landmarks through Conditional Image Generation, NeurIPS'18.

Self-supervision for pose

- Self-supervision: Learning without tagged data.
- The method could be applied to any inputs.
 - Speech, image, video, text and etc.


```
Input = [CLS] the man went to [MASK] store [SEP]
         he bought a gallon [MASK] milk [SEP]
Label = IsNext
Input = [CLS] the man [MASK] to the store [SEP]
         penguin [MASK] are flight ##less birds [SEP]
Label = NotNext
```

Transformer architecture is trained by 1) Masked language model, 2) Next sentence prediction

Contrastive learning

Contrastive learning

Contrastive learning

	Food	CIFAR10	CIFAR100	Birdsnap	SUN397	Cars	Aircraft	VOC2007	DTD	Pets	Caltech-101	Flowers
Linear evaluatio	n:											
SimCLR (ours)	76.9	95.3	80.2	48.4	65.9	60.0	61.2	84.2	78.9	89.2	93.9	95.0
Supervised	75.2	95.7	81.2	56.4	64.9	68.8	63.8	83.8	78.7	92.3	94.1	94.2
Fine-tuned:												
SimCLR (ours)	89.4	98.6	89.0	78.2	68.1	92.1	87.0	86.6	77.8	92.1	94.1	97.6
Supervised	88.7	98.3	88.7	77.8	67.0	91.4	88.0	86.5	78.8	93.2	94.2	98.0
Random init	88.3	96.0	81.9	77.0	53.7	91.3	84.8	69.4	64.1	82.7	72.5	92.5

Contrastive learning for pose

Self-Supervised 3D Hand Pose Estimation from monocular RGB via Contrastive Learning, ICCV'21

Contrastive learning for pose

The agreement between projections from the same input image is maximized (left) and agreements amongst projections from different input images are minimized (right)

Weakly-supervised learning

Weakly-supervised object detection

Weakly Supervised Deep Detection Networks, CVPR'16

Weakly-supervised object detection

$$[\sigma_{\text{class}}(\mathbf{x}^c)]_{ij} = \frac{e^{x_{ij}^c}}{\sum_{k=1}^C e^{x_{kj}^c}}$$

$$[\sigma_{\text{det}}(\mathbf{x}^d)]_{ij} = \frac{e^{x_{ij}^d}}{\sum_{k=1}^{|\mathcal{R}|} e^{x_{ik}^d}}$$

Weakly-supervised object detection

Weakly-supervised segmentation

Original image

Predicted patch weights

Ground-truth patches

Attention-based Deep Multiple Instance Learning, ICML'18

Weakly-supervised segmentation

Predicted patch weights

aK

