

ADE LAB SIMULATION

Asynchronous Up Counter Simulation

BY:

MOHAMMED YAHYA USN: 3PD23CS076

SAINATH PATIL USN: 3PD23CS120

SEC: B

Asynchronous Up Counter

Aim: To display 3 bit binary digits from 0 to 7 using asynchronous up counter.

Theory: 3 bit asynchronous counter can be made by using sequential circuit of 3 T flip-flop. Then 3-bit binary number can be displayed by 7-segment display using BCD decoder.

Circuit Diagram:

Truth Table:

Asynchronous counter:

Clask Custos	OutputBits				
Clock Cycles	QC	QC QB			
0	0	0	0		
1	0	0	1		
2	0	1	0		
3	0	1	1		
4	1	0	0		
5	1	0	1		
6	1	1	0		
7	1	1	1		

The binary output from the 3 bit asynchronous counter is given as input to BCD converter and it is displayed by 7 segment display as shown

BCD to 7 segment decoder:

Final output:

Number	Code	LED status							
		Α	В	С	D	D	E	G	DP
	03	0	0	0	0	0	0	1	1
	9F	1	0	0	1	1	1	1	1
2	25	0	0	1	0	0	1	0	1
טייים	0D	0	0	0	0	1	1	0	1
٩	D9	1	1	0	1	1	0	0	1
5	49	0	1	0	0	1	0	0	1
5	41	0	1	0	0	0	0	0	1
Ī	1F	0	0	0	1	1	1	1	1
8	01	0	0	0	0	0	0	0	1
9	19	0	0	0	1	1	0	0	1

Thank You for your understanding.