Comparison of ARMAX (autoregressive moving average transfer function) and RNN (recurrent neural network) models to predict geostationary keV electrons ML-Helio 2022

L. E. Simms^{1,2} and N. Yu. Ganushkina^{1,3}, M. van de Kamp³

¹University of Michigan, Ann Arbor, MI, USA ²Augsburg University, Minneapolis, MN, USA ³Finnish Meteorological Institute, Helsinki, Finland

Would classification by 75th percentile improve prediction?

Classification by ARMAX model: But including provious flux and account

But including previous flux and accounting for MLT provide only small improvements

Classification by RNN model:

Contact: laurasim@umich.edu

- Predicting values using an ARMAX model is difficult. Either highs and lows are not well predicted, or predictions lag behind observations.
- Both ARMAX and RNN can be used as classifier models.
- ARMAX and RNN perform similarly at 40 keV in predicting flux > 75th percentile

Work at the University of Michigan was partly funded by National Aeronautics and Space Administration grants #NNX17AI48G, #80NSSC20K0353, and National Science Foundation grant #1663770. The contributions by N. Ganushkina were also partly supported by the Academy of Finland (grant 339329).