CASE STUDY-1

Loan Amortization Schedule

Write a Python program that generates a loan amortization schedule based on user input.

Requirements

The program should:

- 1. Prompt the user to enter:
 - o **Loan amount** (floating-point number)
 - o Annual interest rate (percentage as an integer)
 - o **Loan duration** (integer, in years)
- 2. Assume equal monthly payments and compute:
 - o **Fixed monthly payment** using the formula:

$$M=P imes rac{r(1+r)^n}{(1+r)^n-1}$$

- M = Monthly payment
- P = Loan amount
- r = Monthly interest rate (annual rate / 12 / 100)
- $n = Total number of months (years \times 12)$
- 3. Display a well-formatted table with:
 - o Month Number
 - o Starting Balance
 - o Payment Amount
 - o Interest Paid
 - o Principal Paid
 - o Remaining Balance
- 4. Print the total interest paid over the loan term at the end.

Expected Output Format

Loan Amortization Schedule

Month	Starting Balance	Payment	Interest Paid	Principal Paid	Remaining Balance	
======	=========	=======	========	=========		
1	50000.00	1060.66	208.33	852.33	49147.67	
2	49147.67	1060.66	204.79	855.87	48291.80	
60	1058.12	1060.66	4.41	1056.25	0.00	
======	=========	=======	========	========	=======================================	

Total Interest Paid: 6363.77

CASE STUDY-2

Automated Text Complexity Analysis using the Dale-Chall Readability Score

In 1948, Edgar Dale and Jeanne Chall developed a readability formula called the **Dale-Chall Readability Score**. This formula assesses the difficulty of a given text based on the proportion of difficult words (words not on a standard list of familiar words) and the average sentence length.

Dale-Chall Readability Formula

The readability score **D** is calculated using the following formula:

$$D = 0.1579 imes \left(rac{ ext{difficult words}}{ ext{total words}} imes 100
ight) + 0.0496 imes \left(rac{ ext{total words}}{ ext{total sentences}}
ight)$$

If more than 5% of the words in the text are difficult, an additional 3.6365 is added to the score.

Grade-Level Interpretation of Dale-Chall Score

Dale-Chall Score	Approximate Grade Level
4.9 or lower	4th Grade and below
5.0 - 5.9	5th – 6th Grade
6.0 - 6.9	7th – 8th Grade
7.0 - 7.9	9th – 10th Grade
8.0 - 8.9	11th – 12th Grade
9.0+	College Level

Task Description

Write a Python program that:

- 1. Receives a **text file name** from the user.
- 2. **Reads** the contents of the file.
- 3. Counts the number of sentences in the text.
- 4. Counts the total words in the text.
- 5. Counts the number of difficult words, using a predefined list of common words.
- 6. Calculates the Dale-Chall Readability Score using the given formula.
- 7. Determines the corresponding grade level.
- **8.** Outputs the results in a well-formatted way.