стью точки x, которая вообще не содержит точек F, т. е. $O(x) \subset \mathbb{R}^m \setminus F$ и, следовательно, множество $\mathbb{R}^m \setminus F = \mathbb{R}^m \setminus \overline{F}$ открыто, т. е. F замкнуто в \mathbb{R}^m . \blacktriangleright

3. Компакты в \mathbb{R}^m

Определение 8. Множество $K \subset \mathbb{R}^m$ называется *компактом*, если из любого покрытия K множествами, открытыми в \mathbb{R}^m , можно выделить конечное покрытие.

Пример 12. Отрезок $[a,b] \subset \mathbb{R}^1$ является компактом в \mathbb{R}^1 в силу леммы о конечном покрытии.

Пример 13. Обобщением отрезка в \mathbb{R}^m является множество

$$I = \{x \in \mathbb{R}^m \mid a^i \leqslant x^i \leqslant b^i, \ i = 1, \dots, m\},\$$

которое называется m-мерным промежутком, m-мерным брусом или m-мерным параллелепипедом.

Покажем, что I — компакт в \mathbb{R}^m .

 \blacksquare Предположим, что из некоторого открытого покрытия I нельзя выделить конечное покрытие. Разделив каждый из координатных отрезков $I^i = \{x^i \in \mathbb{R} \mid a^i \leqslant x^i \leqslant b^i\}$ (i = 1, ..., m) пополам, мы разобьем промежуток I на 2^m промежутков, из которых по крайней мере один не допускает конечного покрытия множествами нашей системы. С ним поступим так же, как и с исходным промежутком. Продолжая этот процесс деления, получим последовательность вложенных промежутков $I=I_1\supset I_2\supset\ldots\supset I_n\supset\ldots$, ни один из которых не допускает конечного покрытия. Если $I_n=\{x\in\mathbb{R}^m\mid a_n^i\leqslant x^i\leqslant b_n^i,\ i=1,\dots,m\},$ то при каждом $i \in \{1, ..., m\}$ координатные отрезки $a_n^i \leqslant x^i \leqslant b_n^i \ (n = 1, 2, ...)$ образуют, по построению, систему вложенных отрезков, длины которых стремятся к нулю. Найдя при каждом $i \in \{1, ..., m\}$ точку $\xi^i \in [a_n^i, b_n^i]$, общую для всех этих отрезков, получим точку $\xi = (\xi^1, \dots, \xi^m)$, принадлежащую всем промежуткам $I = I_1, I_2, \dots, I_n, \dots$ Поскольку $\xi \in I$, то найдется такое открытое множество G нашей системы покрывающих множеств, что $\xi \in G$. Тогда при некотором $\delta > 0$ также $B(\xi; \delta) \subset G$. Но по построению в силу соотношения (2) найдется номер N такой, что $I_n \subset B(\xi;\delta) \subset G$ при n > N, и мы вступаем в противоречие с тем, что промежутки I_n не допускают конечного покрытия множествами данной системы. ▶

Утверждение 3. *Если* $K - \kappa o \lambda n a \kappa m \ e \ \mathbb{R}^m$, *mo*

- а) K замкнутое множество в \mathbb{R}^m ;
- b) любое замкнутое в \mathbb{R}^m множество, содержащееся в K, само является компактом.
- **◄** а) Покажем, что любая точка $a \in \mathbb{R}^m$, предельная для K, принадлежит K. Пусть $a \notin K$. Для каждой точки $x \in K$ построим такую окрестность G(x), что точка a обладает окрестностью, не имеющей с G(x) общих точек. Совокупность $\{G(x)\}$, $x \in K$, всех таких окрестностей образует открытое покрытие компакта K, из которого выделяется конечное покрытие $G(x_1), \ldots, G(x_n)$. Если теперь $O_i(a)$ такая окрестность точки a, что $G(x_i) \cap O_i(a) = \emptyset$, то множество $O(a) = \bigcap_{i=1}^n O_i(a)$ также является окрестностью точки a, причем, очевидно, $K \cap O(a) = \emptyset$. Таким образом, a не может быть предельной точкой для K.
- b) Пусть F—замкнутое в \mathbb{R}^m множество и $F \subset K$. Пусть $\{G_\alpha\}$, $\alpha \in A$,—покрытие F множествами, открытыми в \mathbb{R}^m . Присоединив к нему еще одно открытое множество $G = \mathbb{R}^m \setminus F$, получим открытое покрытие \mathbb{R}^m и, в частности, K, из которого извлекаем конечное покрытие K. Это конечное покрытие K будет покрывать также множество F. Замечая, что $G \cap F = \varnothing$, можно сказать, что если G входит в это конечное покрытие, то, даже удалив G, мы получим конечное покрытие F множествами исходной системы $\{G_\alpha\}$, $\alpha \in A$.

Определение 9. Диаметром множества $E \subset \mathbb{R}^m$ называется величина

$$d(E) := \sup_{x_1, x_2 \in E} d(x_1, x_2).$$

Определение 10. Множество $E \subset \mathbb{R}^m$ называется *ограниченным*, если его диаметр конечен.

Утверждение 4. Если $K- \kappa omna\kappa m$ в \mathbb{R}^m , то K- orpanuчenное подмножество \mathbb{R}^m .

◄ Возьмем произвольную точку $a \in \mathbb{R}^m$ и рассмотрим последовательность шаров $\{B(a;n)\}$ $(n=1,2,\ldots)$. Они образуют открытое покрытие \mathbb{R}^m , а следовательно, и K. Если бы K не было ограниченным множеством, то из этого покрытия нельзя было бы извлечь конечное покрытие K. ▶

Утверждение 5. Множество $K \subset \mathbb{R}^m$ является компактом в том и только в том случае, если K замкнуто и ограничено в \mathbb{R}^m .

◀ Необходимость этих условий нами уже показана в утверждениях 3 и 4.

Проверим достаточность этих условий. Поскольку K—ограниченное множество, то найдется m-мерный промежуток I, содержащий K. Как было показано в примере 13, I является компактом в \mathbb{R}^m . Но если K—замкнутое множество, содержащееся в компакте I, то по утверждению 3b) оно само является компактом. \blacktriangleright

Задачи и упражнения

1. Расстоянием $d(E_1,E_2)$ межеду множествами $E_1,E_2\subset\mathbb{R}^m$ называется величина

$$d(E_1, E_2) := \inf_{x_1 \in E_1, x_2 \in E_2} d(x_1, x_2).$$

Приведите пример замкнутых в \mathbb{R}^m множеств E_1 , E_2 без общих точек, для которых $d(E_1,E_2)=0$.

- 2. Покажите, что
- а) замыкание \overline{E} в \mathbb{R}^m любого множества $E\subset\mathbb{R}^m$ является множеством, замкнутым в \mathbb{R}^m ;
- b) множество ∂E граничных точек любого множества $E \subset \mathbb{R}^m$ является замкнутым множеством;
- с) если G открытое множество в \mathbb{R}^m , а F замкнуто в \mathbb{R}^m , то $G\setminus F$ открытое подмножество \mathbb{R}^m .
- **3.** Покажите, что если $K_1\supset K_2\supset\ldots\supset K_n\supset\ldots$ —последовательность вложенных компактов, то $\bigcap_{i=1}^\infty K_i\neq\varnothing$.
- **4.** а) В пространстве \mathbb{R}^{k} двумерная сфера S^2 и окружность S^1 расположились так, что расстояние от любой точки сферы до любой точки окружности одно и то же. Может ли такое быть?
- b) Рассмотрите задачу a) для произвольных по размерности сфер S^m , S^n в \mathbb{R}^k . При каком соотношении между m, n и k описанная ситуация возможна?

§ 2. Предел и непрерывность функции многих переменных

1. Предел функции. В главе III мы подробно изучили операцию предельного перехода для вещественнозначных функций $f\colon X\to \mathbb{R},$ определенных на множестве X, в котором фиксирована база $\mathcal{B}.$

В ближайших параграфах нам предстоит рассматривать функции $f: X \to \mathbb{R}^n$, определенные на подмножествах пространства \mathbb{R}^m , со зна-