北京航空航天大学 2013-2014 学年 第二学期期末

《 工科数学分析 (2) 》 试 卷 (A)

班号	学 号	姓名	成绩
グエ 丁 <u></u>	ナフ	XL11	及汉

题 号	_	 三	四	五.	六	七	总分
成绩							
阅卷人							
校对人							

一、 求解下面问题(每小题6分,满分48分)

1. 设u(x,y,z)为连续函数, 是以 $M(x_0,y_0,z_0)$ 为中心,半径为R的球面,求极限 $\lim_{R\to 0^+} \frac{1}{4\pi R^2} \iint\limits_{\Sigma} u(x,y,z) dS.$

2. 计算
$$\iint_{D} x^{2}e^{-y^{2}}dxdy$$
, 其中 D 是由 $x = 0$, $y = 1$ 及 $y = x$ 所围成的区域.

3. 已知椭圆型区域 $D = \{(x,y) | \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1\}$. 利用广义极坐标变换计算积分 $I = \iint_D (b^2 x^2 + a^2 y^2) dx d.$

4. 求曲面 Σ: $z = x^2 + y^2$ (0 ≤ z ≤ 2)的面积.

5. 计算三重积分
$$\iiint_V [(\cos y)^{2012}x + 3] dx dy dz$$
, 其中 由 $z = 1$ 与 $z = \sqrt{x^2 + y^2}$ 所成的立.

6. 计算第一型曲面积分 $\iint_{\Sigma} (x+y+z)^2 dS$, 其中 为上半球面 $x^2+y^2+z^2=a^2$ $(z \ge 0)$, 其中 a > 0 . (可利用对称性)

7. 计算曲线积分 $\int_{\Gamma} z \, ds$, 其中 Γ 为圆锥螺线 $x = t \cos t$, $y = t \sin t$, z = t, $t \in [0,2\pi]$.

二、(本题 10 分) 求方程 $y'' + 3y' - 4y = xe^{2x}$ 的通解.

三、(本题 10 分) 设曲线积分 $I = \int_L \frac{(x+2y)dx + (ax+y)dy}{x^2+y^2}$ 在区域 D 内与路径无关,

- (1) 写出满足题设的区域D的条件,并求常数a;
- (2) 设曲线 L 为从点 A(1,0) 沿上半平面到点 B(2,0) 的一段弧,求曲线积分 I.

四、(本题 12 分)(利用 Green 公式)

计算 $\oint_L \frac{xdy - ydx}{4x^2 + 9y^2}$, 其中 是以(1,1) 为中心, 4 为半径的圆周, 取顺时针方向.

五 、
$$(10 \, eta)$$
 (利用 Gauss 公式)
计算 $\iint_\Sigma (x^2+z^2) \mathrm{d}y \mathrm{d}z + (y^2+x^2) \mathrm{d}z \mathrm{d}x + (z^2+y^2) \mathrm{d}x \mathrm{d}y$,其中 是曲面 $z=\sqrt{1-x^2-y^2}$,取上侧.

六、(10分) (利用 Stokes 公式)

计算 $\oint_{\Gamma} y dx + (z - \cos x) dy + (x + e^z) dz$, 其中 是 $\begin{cases} x^2 + y^2 + z^2 = R^2, \\ x + y + z = 0. \end{cases}$ 为逆时针方向.

七、附加题(本题10分)

设 是分片光滑的闭曲面, 上的单位外法向量 \vec{n} 的方向余弦为 $\cos \alpha$, $\cos \beta$, $\cos \gamma$,分别证明对于以下两种情形,

- (1) P,Q,R在 $ar\Omega$ 上具有二阶连续偏导数, Ω 为 所围的立体;
- (2) P,Q,R在 上具有一阶连续偏导数.

都成立 $I = \iint\limits_{\Sigma} \begin{vmatrix} c \circ \omega & c \mathcal{B}s & \varphi \circ s \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} dS = 0.$