b) Consider an arbitrary adversary A that has oracle access to Mac. A requests the tags for $m_a=0^n$, $m_b=0^{n/2}1^{n/2}$, $m_c=1^n$:

$$t_a = F_k(<1>||0^{\frac{n}{2}}) \oplus F_k(<2>||0^{n/2})$$

$$t_b = F_k(<1>||0^{\frac{n}{2}}) \oplus F_k(<2>||1^{n/2})$$

$$t_c = F_k(<1>||1^{\frac{n}{2}}) \oplus F_k(<2>||1^{n/2})$$

Now by XORing those tags together:

$$t_a \oplus t_b \oplus t_c = F_k(<2>||0^{\frac{n}{2}}) \oplus F_k(<1>||1^{\frac{n}{2}}) = F_k(<1>||1^{\frac{n}{2}}) \oplus F_k(<2>||0^{\frac{n}{2}})$$

This corresponds to $Mac(1^{n/2}0^{n/2})$.

A is able to outure a message $m=1^{n/2}0^{n/2}$ and a tag $t=t_a\oplus t_b\oplus t_c$ that was not previously requested, such that Vrfy(m,t)=1

c) Consider an arbitrary adversary A that has oracle access to Mac. Consider an arbitrary message $m \in \{0,1\}^n$, $m=m_1||m_2|$ with $|m_1|=|m_2|=n/2$.

Notice that if
$$r=<1>||m_1$$
 then $t=F_k(<1>||m_1)\oplus F_k(<1>||m_1)$, because $|m_1|=n/2=0^n$

Now in this scheme r is chosen uniformly, so if $r = \langle 1 \rangle || m_1$ is valid.

A outputs $m=m_1$ and $tag=<<1>||m_1,0^n>>$) and succeeds all the time : Vrfy(m,t)=1

4.13

a) An adversary A requests the CBC-MAC oracle for the tag on $m1=m1_1m1_2$ with |m1|=2n, and obtains tag $t1_2: t1_1=F_k(0^n \oplus m1_1)=F_k(m1_1)$ then $t1_2=F_k(F_k(m1_1) \oplus m1_2)$

Now for some $m2=m2_1m2_2$ with |m2|=2n, A requests the tag on $t1_2\oplus m2_1$ and obtains tag $t2_2$:

$$t2_1 = F_k(0^n \oplus t1_2 \oplus m2_1) = F_k(t1_2 \oplus m2_1)$$

$$t2_2 = F_k(F_k(t1_2 \oplus m2_1) \oplus m2_2)$$

Notice that the tag for m1||m2 is t_4 :

$$t_1 = F_k(0^n \oplus m1_1),$$
 $t_2 = F_k(F_k(m1_1) \oplus m1_2) = t1_2,$ $t_3 = F_k(t1_2 \oplus m2_1),$ $t_4 = F_k(F_k(t1_2 \oplus m2_1) \oplus m2_2) = t2_2$

Therefore A is able to outure a message m=m1||m2| and a tag $t=t2_2$

that was not previously requested, such that Vrfy(m,t)=1

b) An adversary A requests the CBC-MAC oracle for the tag on $m1=m1_1m1_2$ with |m1|=2n, and obtains tag $t1_2: t1_1=F_k(0^n \oplus m1_1)=F_k(m1_1)$ then $t1_2=F_k(F_k(m1_1) \oplus m1_2)$

Now for some m2 with |m2|=n, A requests the tag on $t1_2 \oplus m2$ and obtains tag t2:

$$t2 = F_k(0^n \oplus t1_2 \oplus m2) = F_k(t1_2 \oplus m2)$$

Notice that the tag for m1||m2 is $t_3=t2$:

$$t_1 = F_k(0^n \oplus m1_1),$$
 $t_2 = F_k(F_k(m1_1) \oplus m1_2) = t1_2,$
 $t_3 = F_k(t1_2 \oplus m2) = t2$

Therefore A is able to outual a message $m=m1\big||m2|$ with |m|=3n and a tag t=t2 that was not previously requested, such that Vrfy(m,t)=1

4.14

An adversary A requests the CBC-MAC oracle for the tag on $m=0^n$, and obtains <t0, t1> where $t1 = F_k(t0 \oplus 0^n) = F_k(t0)$.

Now for some m' \neq m with |m'|=n, A outputs (m', <m' \oplus t0,t1>). t0 is a random block of length n, so m' $\oplus t0$ is valid.

Moreover will obtain $Vrfy(m', < m' \oplus t0, t1>)=1$ since :

 $F_k(m'\oplus t0\oplus m')=F_k(0^n\oplus t0)=t1$, and m' was not requested before.

10.3

If an adversary A can intercept $h_A=g^x$ sent from Alice, then A can choose its own $x'\in\mathbb{Z}q$ (since G,q,g are standardized and known) and send to Bob $h'_A = g^{x\prime}$. Bob cannot notice that this is not from Alice since he doesn't know x. Now when Bob sends $h_{B}=g^{y}$, A can intercept it and choose its own $y' \in \mathbb{Z}q$. A sends to Alice $h'_B = g^{y'}$. Alice cannot notice that this is not from Bob since she doesn't know y.

A shares the key $k_A=h_B^{\prime}{}^x=g^{y\prime x}$ with Alice. A shares the key $k_B=h_A^{\prime}{}^y=g^{x\prime y}$ with Bob.

10.4

Alice outputs k.

Bob outputs $w \oplus t = u \oplus r \oplus t = s \oplus t \oplus r \oplus t = k \oplus r \oplus r = k$

Therefore both parties have the same key.

This protocol is insecure. Consider a man-in-the-middle attack where an adversary A can intercept and modify messages.

A intercepts $s = k \oplus r$ sent by Alice, and sends to Bob $s' = k' \oplus r'$.

Bob sends $u = s' \oplus t$. A intercepts u and sends to Alice $u' = s \oplus t'$.

Alice send w= $u' \oplus r$. A intercepts w and sends to Bob $w' = u \oplus r'$.

Bob outputs $w' \oplus t = u \oplus r' \oplus t = s' \oplus t \oplus r' \oplus t = k' \oplus r' \oplus t \oplus t' \oplus t \oplus t \oplus t \oplus t = k'$ which is known by A.

 $k \oplus r \oplus r = k$.

Therefore the adversary knows both keys which are different and Alice and Bob never notice the messages have been modified.

11.6

Decryption: On input x and <c1,c2>. Compute $c1^x$, compare if $c1^x = c2$. If it is equal it means that $c2 = (g^y)^x = h^y = (g^x)^y$ so b=0; else b=1

Let's show this encryption scheme is CPA-secure by contradiction.

Assume it is not CPA-secure, it implies that there exists an adversary A such that for all negligeable functions : $\Pr \left[PubK_{A,\Pi}^{eav}(n) = 1 \right] > \frac{1}{2} + negl(n)$

Let's construct an adversary A' for DDH. A' receives a DDH instance (G, q, g, g^x, g^y, h') where h' = g^{z} if b = 1 or $h' = g^{xy}$ if b = 0.

A' sends the challenge ciphertext <c1,c2>= $< g^y, h'>$ with the public key pk = (G,q,g,h) = (G,q,g,g^x) to A. Moreover the message space is $\{0,1\}$ so A considers $m_0=0, m_1=1$. A' outputs whatever A outputs.

$$\begin{split} \Pr \big[PubK_{A,\Pi}^{eav}(n) &= 1 \big] > \frac{1}{2} + negl(n) \\ <=> \Pr \big[A'(G,q,g,g^x,g^y,g^z) &= 1 \big] > \frac{1}{2} + negl(n) \\ <=> \Pr \big[A'(G,q,g,g^x,g^y,g^{xy}) &= 1 \big] > \frac{1}{2} + negl'(n) \\ \text{So} \quad \Pr \big[A'(G,q,g,g^x,g^y,g^z) &= 1 \big] - \Pr \big[A'(G,q,g,g^x,g^y,g^{xy}) &= 1 \big] > \frac{1}{2} + negl(n) - \frac{1}{2} - negl'(n) \\ <=> \Pr \big[A'(G,q,g,g^x,g^y,g^z) &= 1 \big] - \Pr \big[A'(G,q,g,g^x,g^y,g^{xy}) &= 1 \big] > negl(n) - negl'(n) \\ \text{We know that } negl(n) - negl'(n) \text{ is also a negligeable function.} \\ \text{This contradicts the assumption that the decisional Diffie-Hellman problem is hard relative to G (} \\ \Pr \big[A'(G,q,g,g^x,g^y,g^z) &= 1 \big] - \Pr \big[A'(G,q,g,g^x,g^y,g^{xy}) &= 1 \big] \leq negl(n) \text{ for every A'} \big) \\ \text{Therefore the scheme is CPA-secure.} \end{split}$$

11.7

This scheme is not CPA-secure.

Notice that G is the quadratic residues of p so despite $h^r \in G$, $h^r + m$ does not have to be in G. Let's construct an adversary A that chooses uniformly m_0 , $m_1 \in \mathbb{Z}_q$. A gets <c1,c2>. Now A can know if $c2 - m_0$ is in G since it is easy to verify if a number is a quadratic residue. If b=0 then $c2 - m_0 = h^r \in G$ whereas if b=1 from our note earlier, $h^r + m_1 - m_0$ does not have to be in G. A verifies also if $c2 - m_1$ is in G. If only one of them is in G then A outputs this bit, otherwise if both are in G then A chooses randomly. By choosing randomly A succeeds with probability ½ but now each time $c2 - m_b$ is not a QR, which happens with half of the time ,A succeeds for sure. So A succeeds with probability $\frac{1}{2}*\frac{1}{2}+1*\frac{1}{2}=\frac{3}{4}$.

11.15

a) If N1,N2,N3 are not pairwise coprimes: there exists $i \neq j \in \{1,2,3\}$: $\gcd(Ni,Nj)$ is non trivial and $\gcd(Ni,Nj)$ |Ni|. An adversary A can factor Ni=pq. A can easily recover $\phi(Ni) = (p-1)(q-1)$ and then compute $d=3^{-1}[\phi(N)]$. A has recovered d so the adversary can recover $r=ci^d$ and compute H(r) so that $c4\oplus H(r)=m$. Else N1,N2,N3 are pairwise coprimes. An adversary A can use the Chinese Remainder Theorem to solve the system: $r^3 \equiv a1[N1], r^3 \equiv a2[N2], r^3 \equiv a3[N3]$ and find $r^3[N1N2N3]$. We know $r \in \mathbb{Z}_{N1}^*$ so $0 < r < N1 <=> 0 < r^3 < N1^3 < N1N2N3$ since N1<N2<N3. This means that $r^3[N1N2N3]$ is equal to r^3 in \mathbb{Z} . Thus A finds $r = \sqrt[3]{r^3}$ and computes H(r) so that $c4\oplus H(r) = m$.

- b) To obtain a CPA-secure method we could choose uniformly 3 independent values $r1, r2, r3 \in \mathbb{Z}_{N1}^*$ and send <c1,c2,c3,c4,c5,c6> = $< r1^3[N1], r2^3[N2], r3^3[N3], H(r1) \oplus m, H(r2) \oplus m, H(r3) \oplus m >$ of length 3I+O(n).
- c) We want a ciphertext of length l+O(n). Let's modify our method from question b : choose a uniform $k \in \{0,1\}^n$ and choose an CPA-secure private key Encryption scheme. Send the ciphertext : $< c1, c2, c3, c4, c5, c6, c7 > = < r1^3[N1], r2^3[N2], r3^3[N3], H(r1) \oplus k, H(r2) \oplus k, H(r3) \oplus k, Enc_k(m) >$

12.1

Consider $\Pi' = (Gen', Sign', Vrfy')$ be a fixed length signature scheme. Let's construct $\Pi = (Gen, Sign, Vrfy)$ an arbitrary length scheme.

- •Gen = Gen'
- •Sign : On input $sk \in \{0,1\}^n$ and $m \in \{0,1\}^*$ with $|m| = l < 2^{\frac{n}{4}}$. Parse m into m_1, \ldots, m_d blocks each of length $|mi| = \frac{n}{4}$ (pad the last block with 0's if needed). Uniformly

choose $r \in \{0,1\}^{\frac{n}{4}}$. For each i=1,...,d compute $\sigma_i = Sign_{sk}{'}(r||l||i||mi)$ where i and I are encoded as strings of length n/4. Output $\sigma = < r, \sigma 1, ..., \sigma d >$.

•Vrfy: On input $pk \in \{0,1\}^n$ and $m \in \{0,1\}^*$ and $\sigma = < r, \sigma 1, ..., \sigma d >$ Parse m into d' blocks each of length $|mi| = \frac{n}{4}$. Output 1 if and only if d'=d and for each i=1,...,d, $Vrfy_{pk}{'}(r||l||i||mi,\sigma i) = 1$.

12.5

- a) $Vrfy(m,\sigma)$: On m run enc(.) then compare if $\sigma^e=(enc(m)^d)^e[N]=?enc(m)$. If it is output 1 else 0.
- b) The no-message attack consists of choosing uniformly $\sigma \in \mathbb{Z}^*$ and computing $m = \sigma^e[N]$ so that (m, σ) is a valid forgery. However with this scheme it is impossible to compute m from σ . Indeed, $\sigma = enc(m)^d[N] <=> \sigma^e = enc(m)[N]$ but with an appropriate choice of enc() an adversary cannot decipher and thus cannot get a valid m.
- c) ||N|| is publicly known so an adversary A can easily parse the suffix $0^{||N||/10}$. Moreover A also knows l = ||m|| so it is also easy to parse 0x00||m. Therefore A can decipher and can thus do a no-message attack.
- d) As in question c, an adversary A knows l = ||m|| so it is easy to decipher enc(m) by parsing 0||m||0||m, and then do a no-message attack.

Homemade question

- A) $Vrfy_{sk}$ '(m,t): the receiver computes $t' = Sign_{sk}(m)$ (since Π is deterministic it will output the same if same input) and compares if t' = t. If it is equal then output 1 else 0.
- B) If Π is unforgeable then $Pr[Sign-Forge_{A,\Pi}(n)=1] \leq negl(n)$. $Mac_{Sk}' = Sign_{Sk}$ of Π , so $Pr[Sign-Forge_{A,\Pi}(n)=1] = Pr[Mac-Forge_{A,\Pi'}(n)=1] \leq negl(n) = \varepsilon$ Hence it is impossible for an adversary to output a message with a valid tag with more than negligeable probability, so Π' is existentially unforgeable. Note that Mac' doesn't use pk so making it public doesn't change anything.
- C) If pk is public, then upon receiving (m_0,t_0) and (m_1,t_1) , where one of the tag comes from Mac' and the other is a random tag \neq Mac', an adversary can easily determine the validity of the messages using $Vrfy_{pk}$ from Π (since it's public). Therefore private key authentication does not imply private key encryption.