Domande degli Orali di Algebra 1

28 gennaio 2016

Preappello di Gennaio 2016

- Restiamo negli anelli commutativi unitari. Ce ne sono che hanno un numero finito di ideali massimali? Fai un po' di esempi. Posso trovare un anello che abbia m ideali massimali $\forall m \in \mathbb{N}$?
- Supponiamo ora di avere A un UFD e supponiamo che $|A| = +\infty$ e supponiamo che A^* sia finito. Dimostra che allora A contiene infiniti elementi primi. (Poi ci accontentiamo anche di Char A = 0 ma ci assicura che si fa anche in caratteristica p)
- Conosci un gruppo finito che abbia esattamente due sottogruppi di indice due? (Suggerimento: I commutatori) Quanti possono essere i sottogruppi di indice due di un gruppo finito, ovvero quali numeri si realizzano?
- Prendo i polinomi a coefficienti interi in infinite variabili $\mathbb{Z}[(x_{\lambda})_{\lambda \in \Lambda}]$. Questo è un UFD?
 - Ora al posto di infinite variabili mettiamo infiniti esponenti (razionali) $B = \bigcup_{n\geq 0} \mathbb{Z}[x^{\frac{1}{n}}]$. B è un UFD? (Suggerimento: ACCP non soddisfatta)
- G gruppo che non ha sottogruppi normali di indice finito. Sia $N \triangleleft G$ e N di ordine finito. Mostrare che $N \sqsubseteq Z(G)$ (Cioè N è sottogruppo del centro) (Suggerimento: Azioni furbe?)
- Consideriamo $\mathbb{Q} \subseteq K_1, \ldots, K_n$ estensioni distinte dei razionali tutte di grado tre su \mathbb{Q} . Se n=2 quali sono i possibili gradi del composto K_1K_2 ? Voglio ora determinare il minimo n tale che, per ogni scelta di K_1, \ldots, K_n si abbia $9 \mid [K_1 \ldots K_n : \mathbb{Q}]$
- Parliamo di p-gruppi. $\mid G \mid = p^3$, G non abeliano. Che dimensione ha il centro? Quante sono le classi di coniugio?
- Enuncia e dimostra il teorema di Cayley. |G| = n. Supponiamo ora n = 2d con d dispari. Mostrare che G possiede un sottogruppo di ordine d. Supponiamo ora che d sia squarefree, quindi $|G| = 2p_1 \cdot \ldots \cdot p_k$ con i p_i tutti distinti. Quanti gruppi G di quest'ordine ci sono? (Quanti sono se $H \sqsubseteq G$, |H| = d, H è ciclico?) (Mostrare poi che se |G| = 2d allora $H \sqsubseteq G$ di ordine d è abeliano)
- Prendiamo p=13 un primo e consideriamo $\mathbb{Q}(\zeta_p)$. Quante sottoestensioni su \mathbb{Q} di grado 2 ci sono? Dato un sottogruppo di indice m di $C_p^* \equiv \operatorname{Gal}\left(\frac{\mathbb{Q}(\zeta_p)}{\mathbb{Q}}\right)$ vorrei trovare un sottocampo di grado m su \mathbb{Q} , espresso come $F=\mathbb{Q}(\alpha)$. Dimostrare che è proprio lui ciò che cerchiamo.
- Prendo p,q primi distinti e vorrei dire che ogni gruppo di ordine p^2q si scrive come prodotto semidiretto
- Prendo $\mathbb Z$ e vorrei trovare due sottoinsiemi moltiplicativamente chiusi distinti S_1, S_2 di $\mathbb Z$ tali che $S_1^{-1}\mathbb Z \equiv S_2^{-1}\mathbb Z$

- Prendo un ideale in $A=\mathbb{Z}[x]$. è vero che se non è massimale possono non bastare solo due generatori (al contrario di come invece avviene per quelli massimali)? (Riportiamo la soluzione integrale: Vero, notiamo che per $I=(4,2x,x^2)=((2,x))^2$ e (2,x)=M è un ideale massimale. Quindi $\frac{M}{M^2}$ è uno spazio vettoriale di dimensione 2 su $\frac{A}{M}$, che è un campo. Se prendo invece $\frac{M^2}{M^3}$ e controllo che ha dimensione 3 concludo, perché il quoziente ha tre generatori quindi anche M^2 deve averne almeno tre.)
- Sia G un p-gruppo. $\mid G \mid = p^n$ e supponiamo che sia abeliano. Mostra che il numero di sottogruppi di ordine p è congruo a 1 modulo p. Vedere che ciò avviene anche per G non abeliano e per sottogruppi di ogni ordine.
- Consideriamo l'estensione ciclotomica $K = \mathbb{Q}(\zeta_p)$, con p primo diverso da due. Esso avrà quindi un'unica sottoestensione (su \mathbb{Q}) di grado 2 ed un'unica di grado $\frac{p-1}{2}$. Un'estensione quadratica di \mathbb{Q} si può sempre esprimere come $\mathbb{Q}(\sqrt{a})$. Al variare di p stabilire se a è positivo o negativo.
- Com'è fatto un 2-Sylow di S7? (Suggerimento piccolissimo: 7 in base due si scrive come $1*2^2+1*2^1+1*2^0$)

Sessione di Fine Gennaio 2016

- Trova un esempio di anello commutativo unitario A nel quale esiste una catena ascendente infinita e non stazionaria di ideali $I_1 \subsetneq I_2 \subsetneq \dots$
- G gruppo finito e $H \sqsubseteq G$ un sottogruppo che interseca ogni classe di coniugio. Ovvero $\forall x \in G \exists g \in G$ t.c. $gxg^{-1} \in H$. Dimostrare allora che H = G. (Suggerimenti: Considerare l'azione di coniugio di G sui sottogruppi coniugati di H e dimostrare che H è normale)