2. The expression for true error in calculating the derivative of
$$\sin(2x)$$
 at $x = \frac{\pi}{4}$ by

using the approximate expression $f'(x) \approx \frac{f(x+h) - f(x)}{h}$ is

(A)
$$\frac{h - \cos(2h) - 1}{h}$$
(B)
$$\frac{h - \cos(h) - 1}{h}$$
(C)
$$\frac{1 - \cos(2h)}{h}$$
(D)
$$\frac{\sin(2h)}{h}$$

(B)
$$\frac{h - \cos(h) - 1}{h}$$

(C)
$$\frac{1-\cos(2h)}{h}$$

(D)
$$\frac{\sin(2h)}{h}$$

Solution

The correct answer is (C).

Exact answer;

$$f(x) = \sin(2x)$$

$$f'(x) = 2\cos(2x)$$

$$f'\left(\frac{\pi}{4}\right) = 2\cos\left(2\frac{\pi}{4}\right)$$

 $f'(x) = \sin(2x)$ $f'(x) = 2\cos(2x)$ $f'\left(\frac{\pi}{4}\right) = 2\cos\left(2\frac{\pi}{4}\right)$ = 0 imate Solution $f'(x) \approx \frac{f(x+h) - f(x)}{2}$

Approximate Solution

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

$$f(x) = \sin(2x)$$

$$f'(x) \cong \frac{\sin(2(x+h)) - \sin(2x)}{h}$$
$$= \frac{\sin(2x)\cos(2h) + \cos(2x)\sin(2h) - \sin(2x)}{h}$$

$$f'\left(\frac{\pi}{4}\right) \approx \frac{\sin\left(2\frac{\pi}{4}\right)\cos(2h) + \cos\left(2\frac{\pi}{4}\right)\sin(2h) - \sin\left(2\frac{\pi}{4}\right)}{h}$$

$$= \frac{\sin\left(\frac{\pi}{2}\right)\cos(2h) + \cos\left(\frac{\pi}{2}\right)\sin(2h) - \sin\left(\frac{\pi}{2}\right)}{h}$$

$$= \frac{(1)\cos(2h) + (0)\sin(2h) - 1}{h}$$

$$= \frac{\cos(2h) - 1}{h}$$

 E_{t} = True Value – Approximate Value

$$if_{f}=0-\frac{\cos(h)-1}{h}=\frac{1-\cos(h)}{h}$$

4. The relative approximate error at the end of an iteration to find the root of an equation is 0.004%. The least number of significant digits we can trust in the solution is

- (A) 2
- (B) 3
- (C) 4
- (D) 5

Solution

The correct answer is (C).

If $|\epsilon_a| \le 0.5 \times 10^{2-m}$, then at least m significant digits are correct in the answer.

Given
$$|\epsilon_a| = |0.004| = 0.004\%$$

$$0.004 \le 0.5 \times 10^{2-m}$$

 $0.004 \le 0.5 \times 10^{2-m}$ 5 m is at least 1, as $0.004 \le 0.5 \times 10^{2-1}$, that is, $0.004 \le 5$, is true, m is at least 2, as $0.004 \le 0.5 \times 10^{2-2}$, that is, $0.004 \le 0.5$, is true, m is at least 3, as $0.004 \le 0.5 \times 10^{2-3}$, that is, $0.004 \le 0.05$, is true, m is at least 4, as $0.004 \le 0.5 \times 10^{2-4}$, that is, $0.004 \le 0.005$, is true, m is at not at least 5, as $0.004 \le 0.5 \times 10^{2-5}$, that is, $0.004 \le 0.0005$, is not true,

So the least number of significant digits correct in my answer is 4.

Alternative solution

$$\left|\epsilon_a\right| \le 0.5 \times 10^{2-m}$$

$$|0.004| \le 0.5 \times 10^{2-m}$$

$$\frac{0.004}{0.5} \le 10^{2-m}$$

$$0.008 \le 10^{2-m}$$

Taking log of both sides

$$\log_{10}(0.008) \le \log_{10}(10^{2-m})$$

$$-2.0969 \le 2 - m$$

$$m \le 2 + 2.0969$$

$$m \le 4.0969$$

Since m can only be an integer, $m \le 4$.

So the least number of significant digits correct in my answer is 4.