BART For Causal Inference

Antonio R. Linero

Learning Objectives

- What are the benefits of framing questions causally?
- What are the traps of applying machine learning to causal inference?
 - Prior Dogmatism
 - Treatment Effect Heterogeneity Priors
- What are BCFs and why do we parameterize them the way we do?
- How do we summarize the posterior?
- What is the workflow for applying BART to causal inference?

Image from

https://www.vanderschaar-lab.com/individualized-treatment-ef fect-inference/

What is Causal Inference

Types of Studies

RANDOMIZED

NOT RANDOMIZED

Why Do Causal Inference?

- Forces us to ask good/clear questions
 - Causal questions are model free
 - Causal questions can directly lead to policy recommendations, or actions
- Forces us to clarify our assumptions
 - Encourages transparency
 - Forces us to think carefully about identification, sensitivity analysis, and being explicit about confounders

Why Focus on Treatment Effect Heterogeneity

 In RCTs: Not all treatments are useful for all people, and we might want to target treatments to individuals who will benefit the most.

In Observational Studies: Can motivate different/better policies, but also causal effects in observational studies tend to be more robust when they are large! So finding treatments highly effective in subgroups can motivate better follow up studies and more robust conclusions.

Image from https://bookdown.org/stanfordgsbsilab/ml-ci-tutorial/hte-i-binar-y-treatment.html

Why Machine Learning?

- Reduces risks of model misspecification
- Avoids needing to specify interactions
- But comes with its own catches due to regularization!

Causal Framework

 $A_i \sim \operatorname{Bernoulli}\{e(X_i)\}$

Exposure Model

 $\{Y_i(0),Y_i(1)\}\sim F_{X_i}$

Outcome Model

Observe $\{Y_i(A_i), A_i, X_i\}$

Always missing one...

Our Goal: Estimate the Treatment Effect

$$au(x)=\mathbb{E}\{Y_i(1)-Y_i(0)\mid X_i=x\}$$

Causal Assumptions

No Interference:

$$Y_i(\mathbf{a}) = Y_i(a_i)$$

Positivity:

$$\delta \leq e(x) \leq \delta^{-1} \qquad ext{for all } x$$

Unconfoundedness:

$$A_i \perp \{Y_i(0),Y_i(1)\} \mid X_i$$

Software Options

- bcf package on CRAN
- SoftBart package on CRAN (softbart_vc_regression)

Two Bad Approaches

S-Learner:

Use treatment as "just another covariate"

 $Y_i(a) = \mu(a,x) + \epsilon_i$

Unclear what the prior on HTEs are!

T-Learner:

Stratify on the treatment

 $Y_i(a) = \mu_a(x) + \epsilon_i$

Prefers to attribute to treatment that which can be explained by confounders! Also, assumes a lot of heterogeneity!

Regularization Leads to Prior Dogmatism

Figure 2: Prior distribution of Δ for the BART model in Section 2.2 for $P \in \{1, 10, 50\}$.

 $\Delta = \text{amount of selection bias}$

Quirks of the T-Learner

$$\mu_0(x) \sim N(0,a)$$
 $\mu_1(x) \sim N(0,b)$ $au(x) = \mu_1(x) - \mu_0(x) \sim N(0,a+b)$ Large treatment effects

$$\operatorname{Var}\{ au(X)\}symp rac{\operatorname{Var}\{\mu_1(X)+\mu_0(X)\}}{2}$$

Heterogeneity scales with complexity of prognostic effect

A Bayesian Causal Forest

(Can also include PS in prognostic effect)

The Treatment Effect Prior

Prior on HTE function is very important!!!

Desirable properties

- 1. Shrink towards small effect sizes
- 2. Shrink towards homogeneous effects

Failure to do this correctly can lead to overly-optimistic identification of subgroups and poor estimation of the HTE!

Posterior Summarization

Question: How do I extract scientific insight from the models?

Possible Goals:

- Subgroup identification (who benefited most from treatment?)
- Find an interpretable surrogate for $\tau(x)$

Subgroup Identification

Figure 3: Posterior summarization of the indirect effect using a single regression tree.

Best Tree-Based Approximation to HTE

Projection Summary, As Before

Figure 5: Posterior summarization of the indirect effect using a GAM for the continuous variables. The projection of the posterior mean is given by the dashed line while the shaded area gives a posterior 95% credible band of the projection.

Case Study: an RCT

Question: is treatment more effective at reducing CD4 count change in certain subpopulations?

Go Over Code

Case Study: MEPS

Question: Is there heterogeneity in the degree to which smoking leads to bad health outcomes in some individuals?

Some variables: Age, Sex, Race, Measures of SES.

MORE DOCTORS SMOKE CAMELS
THAN ANY OTHER CIGARETTE

Go Over Code

