图像频域显著性检测

姓名赵红苗导师郑海永

中国海洋大学 信息科学与工程学院

2015年5月23日

目录

目录

- 1 课题背景
- 频域显著性检测
- ③ 基于幅度谱分析的显著目标检测模型
 - 幅度谱分析
 - 基于幅度谱分析频域显著目标检测算法
- 4 总结和展望

内容提要

- 1 课题背景
- 2 频域显著性检测
- 基于幅度谱分析的显著目标检测模型
 - 幅度谱分析
 - 基于幅度谱分析频域显著目标检测算法
- 4 总结和展望

选题背景及意义

• 视觉注意

选题背景及意义

• 目标检测、图像分割、以及图像和视频压缩等

选题背景及意义

- 空间域模型计算量较大, 比较耗时
- 基于信息论和统计模型需要引入大量参数
- 频域处理简单、高效及参数设置少

课题来源

1

2

项目类别	国家自然科学基金
课题名称	基于视觉注意结合生物形态特征的海洋
	浮游植物显微图像分析
课题编号	61301240
起止年限	$2014.01 \sim 2016.12$

项目类别	国家自然科学基金
课题名称	基于生物形态特征的中国海常见有害赤
	潮藻显微图像识别
课题编号	61271406
起止年限	$2013.01 \sim 2016.12$

内容提要

- 频域显著性检测
- - 幅度谱分析
 - 基于幅度谱分析频域显著目标检测算法

频域显著性检测一般步骤

- 预处理 ⇒ 提取图像显著性特征
- 后处理 ⇒ 增强图像的显著对比度
- 频域处理 ⇒幅度谱(相位谱保持不变)

幅度谱处理

- SR 模型
 - 保留图像的剩余谱: $\mathcal{R}(f) = \mathcal{L}(f) \mathcal{A}(f)$
 - 不足: 仅突出轮廓或纹理密集的区域

幅度谱处理

- SR. 模型
 - 保留图像的剩余谱: $\mathcal{R}(f) = \mathcal{L}(f) \mathcal{A}(f)$
 - 不足: 仅突出轮廓或纹理密集的区域
- PQFT 模型
 - 只保留图像的相位谱信息
 - 不足: 仅突出轮廓或纹理密集的区域

幅度谱处理

- SR. 模型
 - 保留图像的剩余谱: $\mathcal{R}(f) = \mathcal{L}(f) \mathcal{A}(f)$
 - 不足: 仅突出轮廓或纹理密集的区域
- PQFT 模型
 - 只保留图像的相位谱信息
 - 不足: 仅突出轮廓或纹理密集的区域
- HFT 模型
 - 对幅度谱进行多尺度滤波
 - 不足: 显著目标检测不正确或不均匀

- 1 课题背景
- 2 频域显著性检测
- 基于幅度谱分析的显著目标检测模型
 - 幅度谱分析
 - 基于幅度谱分析频域显著目标检测算法
- 4 总结和展望

下一节内容

- 1 课题背景
- 2 频域显著性检测
- 3 基于幅度谱分析的显著目标检测模型
 - 幅度谱分析
 - 基于幅度谱分析频域显著目标检测算法
- 4 总结和展望

幅度谱分析

图像的重复模式

抑制重复模式、突出显著区域

幅度谱分析

图像的重复模式

基于幅度谱分析的显著目标检测模型

00000000000

重复模式越多⇒ 对数幅度谱中尖刺越高越尖

图像的重复模式

重复模式越多⇒ 对数幅度谱中尖刺越高越尖

幅度谱分析

非显著性抑制分析

幅度谱分析

最优尺度选择分析

00000000000

一维:
$$\sigma = \alpha \cdot (l/L)^{(-1)}$$

二维: $\sigma = \alpha \cdot \left(\frac{f(h,w)}{f(H,W)}\right)^{-1}$

00000000000

基于幅度谱分析频域显著目标检测算法

下一节内容

- 基于幅度谱分析的显著目标检测模型
 - 幅度谱分析
 - 基于幅度谱分析频域显著目标检测算法

基于幅度谱分析的显著目标检测框架

创新点

- 显著区域的尺寸 ←→ 最优幅度谱滤波尺度
- ② 自适应最优尺度选择 ⇒ 均匀地突出显著目标
- ③ 自适应权重融合策略 ⇒ 保留有意义的显著性信息

0000000000

实验结果——PR 曲线、F-measure 值

实验结果——显著图

- 1 课题背景
- 2 频域显著性检测
- ③ 基干幅度谱分析的显著目标检测模型
 - 幅度谱分析
 - 基于幅度谱分析频域显著目标检测算法
- 4 总结和展望

- 介绍了频域显著性检测的原理和一般处理流程:
- ② 总结了多种典型的频域显著性检测算法:
- ◎ 提出了基于幅度谱分析的自适应显著目标检测算法。

- 将频域显著性检测与空间域显著性检测方法结合以提高检测速度和 精度:
- ② 进一步研究显著目标尺寸的检测精度:
- 引入自顶向下的显著性检测方法。

Hongmiao Zhao Ocean University of China 2015.05.23