

Sharif University of Technology Department of Computer Engineering

Embedded System Design

- Introduction (Cont.)
- Reactive Systems

A. Ejlali

A Common Misconception

- Misconception:
 - The study of embedded systems is simply a combination of some of the well-known areas such as:
 - Dependability
 - Real-time systems
 - Low power design
 - etc.

Challenges for Embedded Systems

- Although the study of embedded systems is an interdisciplinary area of study, it has its own challenges:
 - Interplay of different design objectives
 - Challenges in system specification, design, and verification
 - Special features of embedded systems
 - Weight efficient, Cost efficient, Code-size efficient, Diskless systems

Interplay of Design Objectives

Design objectives:

- Fault tolerance (Dependability)
- Energy efficiency
- Real-time
- Cost efficient
- The design objectives are at odds:
 - Example: Fault tolerance requires some types of redundancy and redundancy leads to energy consumption.

Reactive Systems

Typically ES are reactive systems.

"A reactive system is in continual interaction with its environment and executes at a pace determined by that environment."

Reactive Systems (Cont.)

- Reactive Systems = Event-based Systems
- The traditional paradigms of programming (i.e. model of computable functions) are inappropriate.
 - Model of computable functions
 - Von Neumann paradigm
 - Sequential computing
- Suitable model for reactive systems:
 - Automata-based programming paradigm

Automata-Based Programming

- Automata-Based Programming is a programming paradigm whose defining characteristic is the use of finite state machines to describe program behavior.
- The transition graphs of a state machines are used in all stages of software development
 - Specification
 - Implementation
 - debugging
 - documentation