KLASSZIUKS FIZIKA LABORATÓRIUM

Fényhullámhossz és diszperzió mérése jegyzőkönyv

Mérést végezte: Koroknai Botond Mérés időpontja: 2023.04.12

Neptun kód: AT5M0G Jegyzőkönyv leadásának időpontja: 2023.04.23

Tartalomjegyzék:

1	A mérés célja	2		
2	A mérőeszközök:	2		
3	Fontos összefüggések			
4	Mérési adatok:4.1 Hullámhossz mérés:4.2 Bizonytalanság meghatározása:4.3 Törőszög meghatározása:4.4 Diszperzió vizsgálata:	3		
5	Diszkusszió:	4		

1 A mérés célja

A mérés során egy optikai rács, valamint egy prizma fénytörő tulajdonságait kellett megvizsgálni. A prizma az összetett fényeket színeire bontja, és célunk volt megmutatni, hogy a törésmutató valóban függ a hullámhossztól. Goniométer segítségével megmértük, hogy a 0. rendtől mekkora szöggel térnek ki az adott hullámhosszú fénysugarak, és ezen szögek segítségével megkaphatjuk, hogy mekkora hullámhossszal rendelkeznek. Ezt követően a prizma tőrőszögével és a minimális eltérés szögének segítségével meghatározhatjuk a prizma törésmutatóját is.

2 A mérőeszközök:

- Goniométer
- · Prizma 2-es
- · Optikai rács 8000 lpi
- Spektrállámpa
- · Kalibrációs üveg

3 Fontos összefüggések

Prizma törésmutatójának meghatározása:

$$n = \frac{\sin\left(\frac{\phi + \varepsilon_{min}}{2}\right)}{\sin\left(\frac{\phi}{2}\right)} \tag{1}$$

ahol ϕ a prizma törőszöge, és ε_{min} a minimális elétérs szöge.

Prizma tőrőszögének meghatározása:

$$\phi = \frac{\alpha_1 + \alpha_2}{2} \tag{2}$$

ahol α_1 és α_2 a törőlapokról visszavert képének a beeső nyalábbal bezárt szögei.

Hullámhossz:

$$\lambda = -\frac{d}{k}\sin\alpha\tag{3}$$

ahol k a színvonal rendje, d a rácsállandó, α az eltérés szöge.

4 Mérési adatok:

4.1 Hullámhossz mérés:

Első rend				
Szín	$\alpha_{bal}[^{\circ}]$	$\alpha_{jobb}[^{\circ}]$	$\frac{\alpha_{bal} + \alpha jobb}{2} [\circ]$	$\lambda (nm)$
Lila	7.3742	8.3408	7.8575	434.054 ± 9.436
Kék	8.4675	8.5164	8.4919	468.851 ± 9.431
Türkiz	8.6867	8.7222	8.7045	480.499 ± 9.415
Világoszöld	9.2106	9.2433	9.2269	509.094 ± 9.402
Sárgás-zöld	9.8861	9.9339	9.9134	546.421 ± 9.383
Narancssárga I	10.0672	10.9083	10.4878	577.933 ± 9.366
Narancsárga II	10.4652	10.5681	10.5165	579.497 ± 9.365
Vörös	11.6933	11.7311	11.7122	644.512 ± 9.327
Másod rend				
Lila	15.8417	15.9983	15.9231	435.443 ± 9.162

A hullámhossz hibája a

$$\Delta \lambda = \frac{d}{k} cos\alpha \cdot \Delta \alpha \tag{4}$$

képlettel számolható ki.

4.2 Bizonytalanság meghatározása:

A mérés során többször is megmértem az első rendű kék vonal pozícíóját, ezzel keresve a mérések szórását.

Mérés sorszám	Kék
1.	8.4764
2.	8.4808
3.	8.4783
4.	8.4756
5.	8.4839
6.	8.4756

Az így mért adatok alapján: $\Delta \alpha = 0.003$

4.3 Törőszög meghatározása:

A mérés során a 2-es prizma jelöletlen szögét vizsgáltam úgy, hogy bal és jobb oldalon is megkerestem a nulladrendű maximumot.

A (2)-es képlet alapján a tőrőszög:

$\alpha_{bal}[^{\circ}]$	$\alpha_{jobb}[^{\circ}]$
43.5994	74.4752

$$\phi=59.0372^\circ$$

4.4 Diszperzió vizsgálata:

Megmértem az egyes színekhez tartozó minimum szögértékeket, és a (3) - as képlet alapján kiszámoltam a törésmutatókat.

Szín	$\varepsilon_{min}[\circ]$	n
Lila	39.6756	1.539 ± 0.0189
Világos lila	39.5352	1.535 ± 0.0189
Kék	39.1306	1.534 ± 0.0189
Türkiz	39.0412	1.530 ± 0.0189
Világoszöld	38.8670	1.529 ± 0.0189
Zöld	38.6775	1.527 ± 0.0189
Sárga	38.5567	1.525 ± 0.0189
Vörös	38.3226	1.523 ± 0.0189

Hiba: Legyen

$$a = \frac{\phi + \varepsilon_{min}}{2} \tag{5}$$

$$b = \frac{\phi}{2} \tag{6}$$

Hibájuk megadható

$$\Delta a = \frac{\Delta \phi + \Delta \varepsilon_{min}}{2} \tag{7}$$

$$\Delta b = \frac{\Delta \phi}{2} \tag{8}$$

alakban. A törésmutató hibája, így

$$\Delta n = n \left(\Delta a \cdot ctga + \Delta b \cdot ctgb \right) \tag{9}$$

alakban megadható.

Mivel az adott színhez tartozó szögmérés bizonytalansága nagyobb, mint a leolvasás bizonytalansága, így azt mondhatjuk, hogy:

$$\Delta \phi = \Delta \varepsilon_{min} = \Delta \alpha = 0.003 \tag{10}$$

Közepes diszperzió meghatározása:

$$n_{kozepes} = n_{turkiz} - n_{voros} = 0.007 (11)$$

Felbontóképesség: A felbontóképességgel megadhatjuk, hogy milyen legkisebb hullámhossz különbséget tudunk megkülönbözetni a rács spektrumában.

$$\frac{\lambda}{\Delta \lambda} = kN \tag{12}$$

Ahol k a rend, és N a vonalak száma.

Mivel 4 cm széles fénynyalábbal világítottuk meg a rácsot (8000 lpi, 1 inch = 2.54 cm)

$$8000/2.54 \cdot 4 = 12598 \tag{13}$$

szomszédos vonal található. A felbontóképességet a narancssárga szín hullámhosszán vizsgáltam, azaz: $\lambda=577.933~{\rm nm}$

k	$\frac{\Delta \lambda}{\lambda}$	$\Delta\lambda[mm]$	
1	12598	21.8	
2	25196	43.6	
3	37794	65.4	

5 Diszkusszió:

Az általam mért hullámhosszértékek nagyjából megfeleltek az irodalmi értékeknek. A mérések alapján sikeresen beláttam, hogy a hullámhossz fordítottan arányos a törésmutatóval, valamint a törésmutatók és a közepes diszperzió értéke alapján arra következtethetek, hogy a prizma koronaüvegből (BK1) készült.