Mining Frequent Subgraphs

Prof. O-Joun Lee

Dept. of Artificial Intelligence, The Catholic University of Korea ojlee@catholic.ac.kr

Contents

- Frequent subgraph mining (FSM)
- FSM algorithms
 - Apriori-Based Approach: FSG
 - > DFS Approach
 - Subdue Approach
- Sample code: Mining frequent subgraphs in a graph using the gSpan algorithm in NetworkX

Why Frequent patterns?

- Frequent pattern: a structure (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?
 - What are the subsequent purchases after buying a PC?
 - What sequences of DNA are sensitive to this new drug?
 - Which topics are in a collection of documents?

The Apriori principle

- Also called Downward closure Property
- > All subsets of a frequent pattern must also be frequent
 - > Because any item that contains X must also contains subset of X.

If we have already verified that X is infrequent, there is no need to count X's supersets because they MUST be infrequent too.

- Frequent subgraphs
 - ➤ A (sub)graph is frequent if its support (occurrence frequency) in a given dataset is no less than a minimum support threshold
- > Applications of graph pattern mining:
 - Mining biochemical structures
 - Program control flow analysis
 - Mining XML structures or Web communities
 - Building blocks for graph classification, clustering, compression, comparison, and correlation analysis

- Problem: Find all subgraphs of G that appear at least t times
- > Suppose t = 2, the frequent subgraphs are (only edge labels)
 - > a, b, c
 - > a-a, a-c, b-c, c-c
 - > a-c-a ...
- > Exponential number of patterns!

Frequent Subgraph Example

How to mine frequent subgraphs?

- Apriori-based approaches
 - Start with small-size subgraphs and proceeds in a bottom-up manner
 - > Join two patterns to create bigger size patterns (through Apriori principle)
 - Several approaches
 - > FSG
 - > PATH#
- > Pattern-growth approaches
 - > Extends existing frequent graphs by adding one edge
 - Several approaches:
 - > gSpan, MoFa
 - Gaston FFSM, SPIN
- Greedy approaches
 - > Subdue

Apriori-Based Approaches

- > Start with small-size subgraphs and proceeds in a bottom-up manner
- > Join two patterns to create bigger size patterns (through Apriori principle)

- > Problem:
 - > Join operation among graphs is extremely expensive

- > Generate patterns expanding existing ones
- > Extends existing frequent graphs by adding one edge

- > Problems
 - Duplicate graphs

Key Challenges in Subgraph Mining

- Graph isomorphism
 - > To detect if two graphs are identical in structure
- Graph representation (Canonical Labeling)
 - > A canonical label is a unique code of a given graph.
 - Canonical label should be the same no matter how graphs are represented, as long as graphs have the same topological structure and the same labeling of edges and vertices.
- Subgraph candidate generation
 - Generate candidate frequent subgraphs from datasets

Returns True if the graphs G1 and G2 are isomorphic and False otherwise. (The two graphs G1 and G2 must be the same type.)

```
#Import networkx, isomorphism
import networkx as nx
import networkx.algorithms.isomorphism as iso
#create graph 1
G1 = nx.Graph()
G1.add nodes from(['A','B','C','D','E','F'])
G1.add edges from([('A','B'),('A','C'),('A','D'),('A','E'),('A','F')])
#create graph 2
G2 = nx.star graph(5)
```

Testing if two graphs are isomorphic

True

```
nx.is isomorphic(G1, G2)
```


> How to find edge mapping

```
import networkx as nx
G1 = nx.Graph()
G1.add_weighted_edges_from([(0,1,0), (0,2,1), (0,3,2)], weight = 'aardvark')
G2 = nx.Graph()
G2.add_weighted_edges_from([(0,1,0), (0,2,2), (0,3,1)], weight = 'baboon')
G3 = nx.Graph()
G3.add_weighted_edges_from([(0,1,0), (0,2,2), (0,3,2)], weight = 'baboon')

def comparison(D1, D2):
    #for an edge u,v in first graph and x,y in second graph
    #this tests if the attribute 'aardvark' of edge u,v is the
    #same as the attribute 'baboon' of edge x,y.

    return D1['aardvark'] == D2['baboon']

nx.is_isomorphic(G1, G2, edge_match = comparison)
```

True

```
nx.is_isomorphic(G1, G3, edge_match = comparison)
```

False

Given a set of 4 graphs:

- > Support: frequency of a subgraph appearing in a set of graphs
- > Frequent subgraph Min support = 3/4

Apriori principle (for graphs): If a graph is frequent, all of its subgraphs are frequent

We define a <u>labeled graph</u> G as a five element tuple $G = \{V, E, \Sigma_V, \Sigma_E, \delta\}$ Where:

V is the set of vertices of G,

 $E \subseteq V \times V$ is a set of undirected edges of G,

 $\Sigma_{V}(\Sigma_{E})$ are set of vertex (edge) labels,

 δ is the labeling function: $V \to \Sigma_V$ and $E \to \Sigma_E$ that maps vertices and edges to their labels.

- > Support: Given a set of labeled graphs:
 - $ightharpoonup D = \{G_1, G_2, ..., G_n\}, G_i = \langle V_i, E_i, \ell_i \rangle$
 - > A subgraph G.
- The supporting set of G is: $D_G = \{G_i | G \sqsubseteq G_i, G_i \in D\}$ Where $G \sqsubseteq G_i$ indicates that G is subgraph isomorphic to Gi
- > The support is defined as:

$$\sigma(G) = \frac{|D_G|}{|D|}$$

> Input: A set Graph data of labeled undirected graphs

 \triangleright All frequent subgraphs (w. r. t. σ) from *Graph data* .

Subgraph Mining problem: Input and Output

- > Input
 - \triangleright Set of labeled-graphs $D = \{G_1, G_2, ..., G_n\}, G_i = \langle V_i, E_i, \ell_i \rangle$
 - Minimum support min_sup
- ➤ Output:
 - \triangleright A subgraph G is frequent if $\sigma(G) \ge \min_{sup}$
 - Each subgraph is connected.

- > Apriori-based approaches:
 - > FSG
- > Pattern-growth approaches:
 - > gSpan
- > Greedy approach:
 - > Subdue

Methodology: breadth-search, joining two graphs

> 1. Generates new graphs with one more node

➤ 2. Generates new graphs with one more edge

- K = 1
- F₁ = all frequent edges
- Repeat
 - K = K + 1;
 - $C_K = join(F_{K-1})$
 - F_K = frequent patterns in C_K
 - Until F_K is empty

FSG Algorithm

- K = 1
- F₁ = all frequent edges
- Repeat
 - K = K + 1;
 - $C_K = join(F_{K-1})$
 - F_K = frequent patterns in C_K
 - Until F_K is empty

- \triangleright Join(L) = \cup join(P, Q) for all P, Q \in L
- $ightharpoonup Join(P, Q) = \{G \mid P, Q, \subset G, |G| = |P| + 1, |P| = |Q|\}$
- Two graphs P and Q are *joinable* if the join of the two graphs produces an non-empty set
- ➤ Theorem: two graphs P and Q are joinable if P ∩ Q is a graph with size |P| -1 or s hare a common "core" with size P-1

Case 1: identical node labels

Case 2: Core contains identical labels

Core: The (k-1) subgraph that is common between the joint graphs

Case 3: Core multiplicity

- > Graph isomorphism
 - Two graphs may have the same topology though their layouts are different
- Subgraph isomorphism
 - ➤ How to compute the support value of a pattern

> A graph is isomorphic if it is topologically equivalent to another graph

➤ Itemset search space — prefix based

- Canonical representation of itemset is obtained by a complete order over the items.
- Each possible itemset appear in TSS exactly once no duplications or omissions.
- Properties of Tree search space
 - for each k-label, its parent is the k-1 prefix of the given k-label
 - > The relation among siblings is in ascending lexicographic order.

- Organize DFS code nodes as parent-child.
- > Pre-order traversal follows DFS lexicographic order.
- ➤ If s and s' are the same graph with different DFS codes, s' is not the minimum and can be pruned.

➢ Given a graph G. for each Depth First Search over graph G, construct the corr esponding DFS-Code.

	(a)	(b)	(c)
1	(0, 1, X, a, Y)	(0, 1, Y, a, X)	(0, 1, X, a, X)
2	(1, 2, Y, b, X)	(1, 2, X, a, X)	(1, 2, X, a, Y)
3	(2, 0, X, a, X)	(2, 0, X, b, Y)	(2, 0, Y, b, X)
4	(2, 3, X, c, Z)	(2, 3, X, c, Z)	(2, 3, Y, b, Z)
5	(3, 1, Z, b, Y)	(3, 0, Z, b, Y)	(3, 0, Z, c, X)
6	(1, 4, Y, d, Z)	(0, 4, Y, d, Z)	(2, 4, Y, d, Z)

(b)

(a)

Min DFS-Code

	(a)	(b)	(c)
1	(0, 1, X, a, Y)	(0, 1, Y, a, X)	(0, 1, X, a, X)
2	(1, 2, Y, b, X)	(1, 2, X, a, X)	(1, 2, X, a, Y)
3	(2, 0, X, a, X)	(2, 0, X, b, Y)	(2, 0, Y, b, X)
4	(2, 3, X, c, Z)	(2, 3, X, c, Z)	(2, 3, Y, b, Z)
5	(3, 1, Z, b, Y)	(3, 0, Z, b, Y)	(3, 0, Z, c, X)
6	(1, 4, Y, d, Z)	(0, 4, Y, d, Z)	(2, 4, Y, d, Z)

(b)

➤ The minimum DFS code *min(G)*, in DFS lexicographic order, is a canonical representation of graph *G*.

> Graphs A and B are isomorphic if and only if:

$$min(A) = min(B)$$

DFS-Code Tree: parent-child relation

- If min(G₁) = { a₀, a₁,, aₙ} and min(G₂) = { a₀, a₁,, aₙ, b} G₁ is parent of G₂ G₂ is child of G₁
- A valid DFS code requires that **b** grows from a vertex on the <u>rightmost</u> path (inherited property from the DFS search).

DFS-Code Tree: parent-child relation

Min(g) = (0,1,X,a,Y) (1,2,Y,b,X) (2,0,X,a,X) (2,3,X,c,Z) (3,1,Z,b,Y) (1,4,Y,d,Z)

A child of graph G_1 must grow edge from rightmost path of G_1 (necessary condition)

Forward edge

Backward edge

Search space: DFS code Tree

- Organize DFS Code nodes as parent-child.
- > Sibling nodes organized in ascending DFS lexicographic order.
- > InOrder traversal follows DFS lexicographic order

Search space: DFS code Tree

- > All of the descendants of infrequent node are infrequent also.
- > All of the descendants of a not minimal DFS code are also not minimal DFS codes.

```
gSpan(D, F, g)
1: if g \neq \min(g)
    return;
2: F \leftarrow F \cup \{g\}
3: children(g) \leftarrow [generate all g' potential children with one edge growth]
4: Enumerate(D, g, children(g))
5: for each c \in \text{children}(g)
    if support(c) \geq #minSup
       SubgraphMining (D, F, c)
```


Given: database D

<u>Task</u>: Mine all frequent subgraphs with support ≥ 2 (#minSup)

gSpan Algorithm: Sample code

➤ Support: 2

```
from gspan_mining.config import parser from gspan_mining.main import main
```

```
%pylab inline
```

%pylab is deprecated, use %matplotlib inline and import the required libraries. Populating the interactive namespace from numpy and matplotlib

```
args_str = '-s 2 -l 3 -p True ./graphdata/sample_data3'
FLAGS, _ = parser.parse_known_args(args=args_str.split())
```

```
gs = main(FLAGS)
print(gs)
```


Subdue Algorithm

- > A greedy algorithm for finding some of the most prevalent subgraphs.
- ➤ This method is not complete, i.e. it may not obtain all frequent subgraphs, although it pays in fast execution.

- ➤ It discovers substructures that compress the original data and represent structural concepts in the data.
- ➤ Based on Beam Search like BFS it progresses level by level. Unlike BFS, however, beam search moves downward only through the best W nodes at each level. The other nodes are ignored.

> Step 1: Create substructure for each unique vertex label

DB:

Substructures:

```
triangle (4)
square (4)
circle (1)
rectangle (1)
```


> Step 2: Expand best substructure by an edge or edge and neighboring vertex

square circle square on rectangle on triangle on square rectangle on square

- > Step 3: Keep only best substructures on queue (specified by beam width).
- > Step 4: Terminate when queue is empty or when the number of discovered substructures is greater than or equal to the limit specified.
- > Step 5: Compress graph and repeat to generate hierarchical description.

