Logica cu predicate de ordinul I Curs 2 - Semantica LP1

Ștefan Ciobâcă

5 Decembrie 2016

Note organizatorice

1. Cursurile din partea a II-a:

http://profs.info.uaic.ro/~stefan.ciobaca/logica/ Verificați periodic această pagină.

Raportare greșeli: stefan.ciobaca@gmail.com

Cuprins

Recapitulare

Semantica LP1

Funcții, predicate, simboluri funcționale, simboluri predicative Noțiunea de structură pentru LP1 Noțiuni semantice - validitate, consecință semantică, satisfiabilitate

Problema validității

Enunț

Forme normale

Preliminarii

Forma normală prenex

Forma normală Skolem

Forma normală Skolem clauzală

Recapitulare forme normale

Reminder - Sintaxa

O nouă logică, mai expresivă decât LP.

Mulțimea termenilor (\mathcal{T}):

$$t ::= x \mid c \mid f(\underbrace{t, \dots, t}_{n})$$
 $x \in \mathcal{X}, c \in \mathcal{F}_{0}, f \in \mathcal{F}_{n}$

Mulțimea formulelor atomice (At):

$$a := P \mid Q(\underbrace{t, \dots, t}_{n}) \qquad P \in \mathcal{P}_{0}, Q \in \mathcal{P}_{n}$$

Mulțimea formulelor de ordinul I (LP1):

$$F ::= a \mid (\neg F) \mid (F) \mid (F \lor F) \mid (F \land F) \mid (F \to F) \mid (\forall x.F) \mid (\exists x.F) \quad a \in At, x \in \mathcal{X}$$

Reminder - Sintaxa - Exemple

Exemplu

$$P \in LP1$$

$$Q(x) \in LP1 \qquad R\left(h(x), f(x, y)\right) \in LP1 \qquad (\neg Q(f(x, y))) \in LP1$$

$$(P \land Q(x)) \in LP1 \qquad \left(Q(x) \lor R\left(h(x), f(x, y)\right)\right) \in LP1$$

$$(Q(x) \to R(x, y)) \in LP1 \qquad ((Q(x) \land P) \lor Q(y)) \in LP1$$

$$(\forall x.(Q(x) \lor P)) \in LP1 \qquad ((\exists x.Q(x)) \lor (\neg P)) \in LP1$$

Reminder - Arborele abstract - Exemplu

Reminder - Despre paranteze

La fel cum scriem $-3 \times 4 + 5$ în loc de $(((-3) \times 4) + 5)$, vom renunța la paranteze după cum urmează:

1. vom scrie $\neg P(x) \land Q(y) \lor R(x,y)$ în loc de $\left(\left((\neg P(x)) \land Q(y)\right) \lor R(x,y)\right)$ (la fel ca la logica propozițională).

Ordinea de prioritate: $\neg, \forall, \exists, \land, \lor, \rightarrow$.

Exemplu

$$\forall x. (P(x) \land \neg Q(x) \to R(x)) \text{ în loc de}$$
 $(\forall x. \Big((P(x) \land (\neg Q(x))) \to R(x) \Big)) \text{ în loc de}$

When in doubt: use parantheses.

Reminder - Poziții

Exemplu $\Big((\forall x) (P(x) \land Q(y)) \Big)|_{1 \cdot 2} = Q(y)$ $\forall x$

Reminder - Apariții - Exemplu

$$bound(F) = \{x\}, free(F) = \{x\}.$$

Reminder - Substituții

Fie substituția $\sigma: \mathcal{X} \to \mathcal{T}$, astfel încât:

- 1. $\sigma(x) = h(x)$;
- 2. $\sigma(y) = f(h(x), a);$
- 3. $\sigma(z) = z$, pentru orice variabilă $z \in \mathcal{X} \setminus \{x, y\}$.

Avem că $(\forall x.(P(x) \land Q(h(y))))\sigma = \forall x.(P(x) \land Q(h(f(h(x),a)))).$

Cuprins

Recapitulare

Semantica LP1

Funcții, predicate, simboluri funcționale, simboluri predicative Noțiunea de structură pentru LP1 Noțiuni semantice - validitate, consecință semantică, satisfiabilitate

Problema validității

Enunț

Forme normale

Preliminarii

Forma normală prenex

Forma normală Skolem

Forma normală Skolem clauzală

Recapitulare forme normale

Funcții

O funcție n-ară peste o mulțime U este orice funcție

$$f: \underbrace{U \times \ldots \times U}_{n} \to U.$$

Câteodată notăm $\underbrace{U \times \ldots \times U}_{n} = U^{n}$ și scriem $f: U^{n} \to U$.

De exemplu, + este o funcție binară peste mulțimea numerelor naturale: $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$.

Convenție: dacă $c: U^0 \to U$ este o funcție 0-ară peste U, vom considera că $c \in U$. Funcțiile de 0 argumente (sau 0-are, sau null-are) se numesc și constante.

Predicate

Un predicat este o funcție care întoarce o valoare de adevăr. În acest curs, mulțimea valorilor de adevăr am notat-o cu \mathbb{B} și am convenit că $\mathbb{B}=\{0,1\}$, unde 0 reprezintă valoarea de adevăr *fals* și 1 reprezintă valoarea de adevăr *adevărat*.

Un predicat n-ar peste o mulțime U este așadar orice funcție

$$P:U^N\to\mathbb{B}.$$

Un exemplu de predicat binar este predicatul \leq , pe care l-ați învățat încă din clasele primare (fără să știți că este un predicat):

$$\leq : \mathbb{Z} \times \mathbb{Z} \to \mathbb{B}.$$

Pentru a simplifica notația, ați folosit scrierea $x \le y$ în loc de $\le (x, y) = 1$ și $x \not\le y$ în loc de $\le (x, y) = 0$.

Funcții versus simboluri funcționale, predicate versus simboluri predicative

În cursul precedent, am discutat despre simboluri funcționale și despre simboluri predicative. Care este diferența dintre un simbol funcțional și o funcție? Care este diferența dintre un simbol predicativ și un predicat? Un simbol este doar un nume, similar cu un identificator într-un limbaj de programare. Simbolul funcțional este un nume care ține locul unei funcții, în timp ce simbolul predicativ ține locul unui predicat. Aritatea unui simbol funcțional/predicativ reprezintă numărul de argumente al funcției/predicatului căreia/căruia îi ține locul.

Semantica LP1 - Noțiunea de structură

Definiție (Structură)

O structură este o pereche S = (U, I), formată din:

- 1. o mulțime nevidă U, numită univers (sau domeniu) al structurii;
- 2. o funcție I, care asociază:
 - 2.1 fiecărui simbol constant $c \in \mathcal{F}_0$ din signatură un element al universului $I_c \in U$;
 - 2.2 fiecărui simbol funcțional $f \in \mathcal{F}_n$ de aritate n o funcție n-ară peste univers: $I_f : U \times ... \times U \rightarrow U$;
 - 2.3 fiecărui simbol predicativ $P \in \mathcal{P}_0$ de aritate 0 o valoare de adevăr $I_P \in \mathbb{B}$;
 - 2.4 fiecărui simbol predicativ $P \in \mathcal{F}_n$ de aritate n un predicat n-ar peste univers: $I_P : U \times ... \times U \to \mathbb{B}$;
 - 2.5 fiecărei variabile $x \in \mathcal{X}$ un element al universului: $I_x \in U$.

Exemplu de structură

Fie $\mathcal{F}_0 = \{e\}, \ \mathcal{F}_1 = \{i\}, \ \mathcal{F}_2 = \{f\} \text{ si } \mathcal{P}_2 = \{e\text{guals}\}.$ Vom considera structura S = (U, I), unde $U = \mathbb{Z}$ si:

1. $I_e: \mathbb{Z}^0 \to \mathbb{Z}$, definită prin

$$I_e = 0;$$

2. $I_i: \mathbb{Z}^1 \to \mathbb{Z}$, definită prin

$$I_i(u) = -u,$$

 $I_f(u,v)=u+v,$

pentru orice $u \in \mathbb{Z}$;

3. $I_f: \mathbb{Z}^2 \to \mathbb{Z}$, definită prin

pentru orice $u, v \in \mathbb{Z}$;

4. $I_{equals}: \mathbb{Z}^2 \to \mathbb{B}$, definit prin

5. $I_x \in \mathbb{Z}$, definită prin

$$I_x = 7$$

Valoarea unui termen într-o structură

Dacă S=(U,I) este o structură și $t\in T$ este un termen, atunci valoarea termenului t în structura S (sau interpretarea termenului t în structura S) se notează cu S(t) și este definită inductiv astfel:

- 1. $S(c) = I_c$, pentru orice simbol funcțional $c \in \mathcal{F}_0$ de aritate 0;
- 2. $S(x) = I_x$, pentru orice variabilă $x \in \mathcal{X}$;
- 3. $S(f(t_1,\ldots,t_n))=I_f(S(t_1),\ldots,S(t_n))$, pentru orice simbol funcțional $f\in\mathcal{F}_n$ de aritate $n\geq 1$ și pentru orice termeni $t_1,\ldots,t_n\in\mathcal{T}$.

Valoarea unui termen într-o structură

Exemplu

Fie termenul t = S(f(f(x, e), i(x))). Avem că

$$S(t) = S(f(f(x,e),i(x)))$$

$$= I_f(S(f(x,e)),S(i(x)))$$

$$= (S(f(x,e)) + S(i(x)))$$

$$= I_f(S(x),S(e)) + I_i(S(x))$$

$$= (S(x) + S(e)) + (-S(x))$$

$$= (I_x + I_e) + (-I_x)$$

$$= (7+0) + (-7)$$

$$= 0.$$

Actualizarea valorii unei variabile într-o structură

Fie S = (U, I) o structură, $x \in \mathcal{X}$ o variabilă și $u \in U$ un element al universului.

Cu $S[x \mapsto u]$ notăm o nouă structură $S[x \mapsto u] = (U', I')$, definită astfel:

- 1. U' = U;
- 2. $I'_{x} = u$;
- 3. $I'_o = I_o$, pentru orice $o \in \mathcal{F} \cup \mathcal{P} \cup \mathcal{X} \setminus \{x\}$.

Numim $S[x \mapsto u]$ structura S după actualizarea valorii variabilei x la u. Continuând exemplul precedent, calculați $S[y \mapsto 3](f(x, f(e, y)))$ (răspunsul trebuie să fie 10).

Valoarea de adevăr a unei formule într-o structură

Dacă S este o structură și $F \in LP1$ este o formulă, atunci valoarea de adevăr a formulei F în structura S se notează cu S(F) (vom avea $S(F) \in \mathbb{B}$) și este definită inductiv astfel:

- 1. $S(P(t_1,...,t_n)) = I_P(S(t_1),...,S(t_n))$, pentru orice predicat P de aritate $n \ge 0$;
- 2. $S(F_1 \wedge F_2) = S(F_1) \cdot S(F_2)$, pentru orice formule $F_1, F_2 \in LP1$ (funcția $\cdot : \mathbb{B} \times \mathbb{B} \to \mathbb{B}$ este aici funcția $\not = i$ logic);
- 3. $S(\neg F) = \overline{S(F)}$, pentru orice formulă $F \in LP1$ (funcția $\overline{\cdot} : \mathbb{B} \to \mathbb{B}$ este aici funcția *negație* logică);
- 4. $S(\exists x.F) = \begin{cases} 1 & \text{dacă există un element } u \in U \text{ a.î. } S[x \mapsto u](F) = 1, \\ 0 & \text{altfel.} \end{cases}$

Valoarea de adevăr a unei formule într-o structură - exemplu

Continuând exemplul precedent, avem că:

- 1. S(equals(x,y)) = 1;
- 2. S(equals(x, e)) = 0;
- 3. $S[x \mapsto 0](equals(x, e)) = 1;$
- 4. $S(\exists x.(equals(x, e))) = 1;$
- 5. $S(\forall x.(equals(x, e))) = 0;$

Exercitiu

Scrieți formulele care exprimă că e este element neutru la dreapta pentru f și că i este funcția invers.

Cuprins

Recapitulare

Semantica LP1

Funcții, predicate, simboluri funcționale, simboluri predicative Noțiunea de structură pentru LP1 Noțiuni semantice - validitate, consecință semantică, satisfiabilitate

Problema validității

Enunț

Forme normale

Preliminarii

Forma normală prenex

Forma normală Skolem

Forma normală Skolem clauzală

Recapitulare forme normale

Formulă validă

Exemplu

Formula equals $(x, y) \lor \neg equals(x, y) \in LP1$ este adevărată în orice structură S.

Definiție (Formulă validă)

Fie $F \in LP1$ o formulă. Spunem că F este o formulă validă (sau, în mod echivalent, o tautologie) dacă, pentru orice structură S = (U,I), avem că S(F) = 1.

Formulă satisfiabilă

Definiție (Formulă satisfiabilă)

Fie $F \in LP1$ o formulă. Spunem că F este o formulă satisfiabilă dacă există o structură S = (U, I) a.î. S(F) = 1.

Exercitiu

Dați exemplu de o formulă satisfiabilă.

Observatia

O formulă care nu este satisfibilă se numește formulă nesatisfiabilă, sau, în mod echivalent, contradicție.

Formule echivalente

Două formule $F_1, F_2 \in \text{LP1}$ se numesc *(tare) echivalente* dacă au aceeași valoare de adevăr în orice structură: pentru orice structură $S = (U, I), S(F_1) = S(F_2)$. Faptul că F_1 este echivalentă cu F_2 se notează cu $F_1 \equiv F_2$.

Exemplu

- 1. $P(x) \lor Q \equiv Q \lor P(x)$;
- 2. $\forall x.P(x) \equiv \forall y.P(y)$.

Teorema echivalențelor

Pentru orice $F, G, H \in LP1$, pentru orice $x \in \mathcal{X}$,

$$F \wedge G \equiv G \wedge F$$
, $F \vee G \equiv G \vee F$;

$$F \wedge (G \wedge H) \equiv (F \wedge G) \wedge H, \qquad F \vee (G \vee H) \equiv (F \vee G) \vee H;$$

$$F \wedge (G \vee H) \equiv (F \wedge G) \vee (F \wedge H), F \vee (G \wedge H) \equiv (F \vee G) \wedge (F \vee H),$$

$$\neg (F \land G) \equiv (\neg F) \lor (\neg G), \neg (F \lor G) \equiv (\neg F) \land (\neg G);$$

$$\neg(\forall x.F) \equiv \exists x.(\neg F), \qquad \neg(\exists x.F) \equiv \forall x.(\neg F);$$

dacă $x \notin free(G)$, atunci:

$$(\forall x.F) \lor G \equiv \forall x.(F \lor G), \qquad (\exists x.F) \lor G \equiv \exists x.(F \lor G),$$
$$(\forall x.F) \land G \equiv \forall x.(F \land G). \qquad (\exists x.F) \land G \equiv \exists x.(F \land G).$$

Consecință semantică

Fie n+1 formule $F_1, \ldots, F_n, F \in LP1$ $(n \geq 0)$. Formula F este consecință semantică a formulelor F_1, \ldots, F_n dacă, pentru orice structură S = (U, I), dacă formulele F_1, \ldots, F_n sunt adevărate în S, atunci și F este adevărată în S.

Faptul că F este consecință semantică din F_1, \ldots, F_n se notează cu $F_1, \ldots, F_n \models F$.

Exercitiu

Arătați că $\forall x.P(x) \models P(c)$, unde P este un simbol predicativ unar, c este un simbol funcțional de aritate 0, iar x este o variabilă.

Cuprins

Recapitulare

Semantica LP1

Funcții, predicate, simboluri funcționale, simboluri predicative Noțiunea de structură pentru LP1 Noțiuni semantice - validitate, consecință semantică, satisfiabilitate

Problema validității

Enunț

Forme normale

Preliminarii

Forma normală prenex

Forma normală Skolem

Forma normală Skolem clauzală

Recapitulare forme normale

Problema validității/satisfiabilității

În continuare, cursul este dedicat rezolvării următoarei probleme: Input: O formulă $F \in LP1$.

Output: Da, dacă formula este validă.

Din păcate, problema de mai sus este *nedecidabilă*: nu există niciun algoritm care să o rezolve.

Totuși, vom găsi un semialgoritm pentru problema de mai sus:

- 1. Semialgoritmul se oprește cu răspunsul "da" ddacă formula este validă;
- 2. Dacă răspunsul este "nu", atunci formula nu este validă;
- Dacă formula nu este validă, există posibilitatea ca semialgoritmul să bucleze la infinit.

De fapt, din rațiuni istorice, ne vom concentra asupra problemei nesatisfiabilității. Dar F este validă ddacă $\neg F$ este nesatisfiabilă și deci dacă rezolvăm una din probleme am rezolvat-o și pe cealaltă.

Cuprins

Recapitulare

Semantica LP1

Funcții, predicate, simboluri funcționale, simboluri predicative Noțiunea de structură pentru LP1 Noțiuni semantice - validitate, consecință semantică, satisfiabilitate

Problema validității

Enunț

Forme normale

Preliminarii

Forma normală prenex

Forma normală Skolem

Forma normală Skolem clauzală

Recapitulare forme normale

Apariție a unei formule

Fie $F \in LP1$ o formulă și $p \in pos(F)$ o poziție a formulei F la care se află o formulă $G \in LP1$: $F|_{p} = G$. Atunci spunem că p este o apariție a lui G în F.

Fie $F, G \in LP1$ două formule și $p \in pos(F)$ o apariție a formulei G în F. Atunci formula obținută din F prin înlocuirea apariției p a lui G cu H, notată cu $F[H]_p$, este definită inductiv astfel:

- 1. $(F_1)[H]_{\epsilon} = H$;
- 2. $(F_1 \wedge F_2)[H]_{1 \cdot p} = (F_1[H]_p) \wedge F_2$;
- 3. $(\neg F_1)[H]_{1 \cdot p} = \neg ((F_1)[H]_p);$
- 4. $(\forall x.F_1)[H]_{1 \cdot p} = \forall x.((F_1)[H]_p);$
- 5.

Exemplu

$$\left(\left(P(x) \vee Q(y) \right) \to \forall z.R(x,y,z) \right) [P(a)]_{2\cdot 1} = \\
\left(\left(P(x) \vee Q(y) \right) \to \forall z.P(a) \right)$$

Teorema substituției

Fie $F, G, H \in LP1$, $p \in pos(F)$ astfel încât:

- 1. $G \equiv H$ și
- 2. $G = F|_{p}$.

Atunci $F = F[G]_p \equiv F[H]_p$.

Exemplu

Fie $G = P(x) \lor Q(x)$ și $H = Q(x) \lor P(x)$. Fie $F = \forall x. (P(x) \lor Q(x))$ și poziția p = 1. Avem că $F|_p = G$ și că $G \equiv H$. Prin teorema substituției, putem concluziona că $\forall x. (P(x) \lor Q(x)) \equiv \forall x. (Q(x) \lor P(x))$.

Lema de redenumire a variabilelor legate

Dacă $x,y\in\mathcal{X}$ sunt două variabile, $F\in LP1$ este o formulă astfel încât $y\not\in free(F)$, atunci

$$\forall x.F \equiv \forall y.(F[x \mapsto y])$$
 și $\exists x.F \equiv \exists y.(F[x \mapsto y]).$

Exemplu

Exemple de aplicare ale lemei redenumirii de variabile:

- 1. $\forall x.P(x,z) \equiv \forall y.P(y,z)$.
- 2. $\forall x.P(x,z) \not\equiv \forall z.P(z,z)$.
- 3. $\forall x.(P(x,z) \land \exists y.Q(y)) \equiv \forall y.(P(y,z) \land \exists y.Q(y)).$

Cuprins

Recapitulare

Semantica LP1

Funcții, predicate, simboluri funcționale, simboluri predicative Noțiunea de structură pentru LP1 Noțiuni semantice - validitate, consecință semantică, satisfiabilitate

Problema validității

Enunț

Forme normale

Preliminarii

Forma normală prenex

Forma normală Skolem

Forma normală Skolem clauzală

Recapitulare forme normale

FNP

O formulă $F \in LP1$ este în *formă normală prenex* dacă există variabilele distincte x_1, \ldots, x_n , cuantificatorii $Q_1, \ldots, Q_n \in \{\forall, \exists\}$ și o formulă fără cuantificatori $G \in LP1$, astfel încât:

$$F = Q_1 x_1 \dots Q_n x_n G.$$

Exemplu

$$\forall x.\exists y.\forall z.(P(x) \lor \neg(Q(x,y,z) \land R))$$

Teoremă (Teorema de aducere în FNP)

Pentru orice formulă $F_1 \in LP1$, există o formulă $F_2 \in LP1$ aflată în FNP astfel încât $F_1 \equiv F_2$.

Teorema de aducere în FNP

Pentru orice formulă $F_1 \in LP1$, există o formulă $F_2 \in LP1$ aflată în FNP astfel încât $F_1 \equiv F_2$.

Schiță de demonstrație. Aplicăm următoarele transformări:

- 1. $\neg(\forall x.F) \equiv \exists x.(\neg F);$
- 2. $\neg(\exists x.F) \equiv \forall x.(\neg F)$;
- 3. $(\forall x.F) \lor G \equiv \forall y.(F[x \mapsto y] \lor G)$ (unde $y \in \mathcal{X} \setminus free(G)$);
- 4. $(\exists x.F) \lor G \equiv \exists y.(F[x \mapsto y] \lor G)$ (unde $y \in \mathcal{X} \setminus free(G)$);
- 5. $(\forall x.F) \land G \equiv \forall y.(F[x \mapsto y] \land G)$ (unde $y \in \mathcal{X} \setminus free(G)$);
- 6. $(\exists x.F) \land G \equiv \exists y.(F[x \mapsto y] \land G) \text{ (unde } y \in \mathcal{X} \setminus free(G));$

Example

$$P(x) \vee \exists x. (Q(x) \wedge \forall x. P(x))$$

Cuprins

Recapitulare

Semantica LP1

Funcții, predicate, simboluri funcționale, simboluri predicative Noțiunea de structură pentru LP1 Noțiuni semantice - validitate, consecință semantică, satisfiabilitate

Problema validității

Enunț

Forme normale

Preliminarii

Forma normală prenex

Forma normală Skolem

Forma normală Skolem clauzală

Recapitulare forme normale

FNS

O formulă F este în formă normală Skolem dacă există variabilele distincte $\{x_1, \ldots, x_n\}$ astfel încât:

$$F = \forall x_1. \forall x_2. \ldots. \forall x_n. G$$

pentru o formulă $G \in LP1$ astfel încât $free(G) = \{x_1, \dots, x_n\}$ și $bound(G) = \emptyset$.

Exemplu

Formule în FNS:

- 1. $\forall x. \forall y. (P(x, y))$
- 2. $\forall x. \forall y. (P(x,y) \land Q(x))$
- 3. $\forall x. \forall y. \forall z. ((P(x, y) \land Q(x)) \lor R(x, y, z))$
- 4. $P(c) \wedge Q(f(a,b))$

Echivalența slabă

Fie $F_1, F_2 \in LP1$. Formula F_1 este slab echivalentă cu F_2 (notat $F_1 \equiv_s F_2$) dacă exact una din următoarele condiții este adevărată:

- 1. F_1 și F_2 sunt satisfiabile
- 2. F_1 și F_2 sunt nesatisfiabile

Cu alte cuvinte, două formule sunt slab echivalente dacă sunt echisatisfiabile (dacă una dintre ele este satisfiabilă atunci și cealaltă este satisfiabilă și invers).

Lema de Skolemizare

Fie $F = \forall x_1. \forall x_2..... \forall x_n. \exists y. G$, unde $n \geq 0$, $G \in LP1$ (G poate conține alți cuantificatori).

Fie $f \in \mathcal{F}_n$ un simbol funcțional de aritate n care nu apare în G. Atunci:

$$F \equiv_{s} \forall x_{1}.\forall x_{2}....\forall x_{n}.G[y \mapsto f(x_{1},...,x_{n})].$$

Schită.

Presupunem că exists o structură S astfel încât S(F)=1. Găsim o structură S' astfel încât

$$S'(\forall x_1.\forall x_2....\forall x_n.G[y \mapsto f(x_1,...,x_n)]) = 1.$$

Presupunem că exists o structură S' astfel încât

 $S'(\forall x_1.\forall x_2....\forall x_n.G[y\mapsto f(x_1,...,x_n)])=1$. Găsim o structură S astfel încât S(F)=1.

Cuprins

Recapitulare

Semantica LP1

Funcții, predicate, simboluri funcționale, simboluri predicative Noțiunea de structură pentru LP1 Noțiuni semantice - validitate, consecință semantică, satisfiabilitate

Problema validității

Enunț

Forme normale

Preliminarii

Forma normală prenex

Forma normală Skolem

Forma normală Skolem clauzală

Recapitulare forme normale

Literal

O formulă $F \in LP1$ se numește *literal* dacă există un predicat $P \in \mathcal{P}_n$ de aritate $n \geq 0$ și n termeni t_1, \ldots, t_n astfel încât

$$F=P(t_1,\ldots,t_n)$$

sau

$$F = \neg P(t_1, \ldots, t_n).$$

Informal, spunem că un literal este o formulă atomică sau negația unei formule atomice.

Exemplu

Exemple de literali:

$$P \neg Q(x, f(y)) R(a, f(x), b)$$

 $\neg P Q(x, f(y)) R(a, f(x), b)$

Exemple de formule care nu sunt literali:

$$P \wedge Q(x, y) \qquad \neg \neg P(x) \qquad \forall x. Q(x, x)$$

Clauză

O formulă $F \in LP1$ se numește *clauză* dacă există n literali $L_1, \ldots, L_n \in LP1$ astfel încât

$$F = L_1 \vee L_2 \vee \ldots \vee L_n.$$

$$F_1 = P(x) \lor Q(x,a) \lor \neg R(x,f(a,y)).$$
 $F_2 = P(x)$ $F_3 = \square.$

FNC

O formulă F este $\hat{i}n$ formă normală clauzală (sau, echivalent, $\hat{i}n$ formă normală conjunctivă) dacă există n clauze C_1, \ldots, C_n astfel încât

$$F = C_1 \wedge C_2 \wedge \ldots \wedge C_n$$
.

$$F_1 = (P(x) \lor Q(x)) \land (\neg P(x) \lor R(x, y))$$
$$F_2 = (P(x) \lor Q(x) \lor Q(a)) \land (\neg P(x)) \land (\neg Q(x) \lor R(x, z)).$$

Teorema de aducere în FNC

Fie F o formulă fără cuantificatori. Există o formulă G, echivalentă cu F, aflată în FNC.

Schiță de demonstrație.

Se aplică următoarele transformări (plus, eventual, comutativitatea și asociativitatea lui \vee, \wedge):

$$F \lor (G \land H) \equiv (F \lor G) \land (F \lor H),$$
$$\neg (F \land G) \equiv (\neg F) \lor (\neg G),$$
$$\neg (F \lor G) \equiv (\neg F) \land (\neg G);$$

$$P(x) \vee \neg (P(x) \vee Q(x,y))$$

Matricea unei formule

Fie $F \in LP1$ o formulă. Matricea lui F este formula notată cu F^* , obținută din F prin ștergerea tuturor cuantificatorilor. Formal, avem că:

- 1. $(\forall x.G)^* = G^*$ pentru orice $G \in LP1$;
- 2. $(\exists x.G)^* = G^*$ pentru orice $G \in LP1$;
- 3. $(\neg G)^* = (\neg (G^*))$ pentru orice $G \in LP1$;
- 4. $(G_1 \wedge G_2)^* = (G_1^* \wedge G_2^*)$ pentru orice $G_1, G_2 \in LP1$;
- 5. $(G_1 \vee G_2)^* = (G_1^* \vee G_2^*)$ pentru orice $G_1, G_2 \in LP1$;
- 6. $P(t_1, ..., t_n)^* = P(t_1, ..., t_n)$ pentru orice simbol predicativ $P \in \mathcal{F}_n$ și orice termeni $t_1, ..., t_n \in \mathcal{T}$.

$$\left(P(a) \land \forall x. (P(x) \rightarrow \exists y. R(x,y))\right)^* = P(a) \land (P(x) \rightarrow R(x,y))$$

FNSC

O formulă F este în formă normală Skolem clauzală (FNSC) dacă

- 1. F este în formă normală Skolem și
- 2. F^* este în formă normală clauzală.

Exemplu

$$F_1 = \forall x. \forall y. \Big((P(x) \lor \neg Q(x, y)) \land (Q(a, y) \lor \neg P(a)) \Big)$$
$$F_2 = \forall x. \forall y. \Big(P(a) \land (\neg R(x) \lor Q(y)) \Big)$$

Exemple de formule care nu sunt în FNSC:

$$F_1 = \exists x. P(x) \qquad F_2 = \forall x. \Big(P(a) \land (\neg R(x) \lor Q(y)) \Big)$$
$$F_3 = \forall x. \forall y. \Big(P(a) \land \neg (R(x) \lor Q(y)) \Big)$$

Aducerea unei formule în FNSC - rezumat

```
F orice formulă \in LP1 \equiv F_p o formulă în FN prenex \equiv_s F_s o formulă în FN Skolem \equiv \equiv_{FNSC} o formulă în FN Skolem clauzală
```

Cursul următor: metoda rezoluției pentru a testa satisfiabilitatea unei formule aflată în FNSC.