# Securing IoT Networks through Moving Target Defence

CSCS25

Andrei Vlădescu<sup>1</sup> Prof. Dr. Ion Bica<sup>2</sup> May 28, 2025

 $^{1}$ University Politehnica of Bucharest (UPB)

<sup>2</sup> "Ferdinand I" Military Technical Academy



### **Outline**

Introduction

Technical Primer

Proposed Architecture

Results & Insights

# Introduction

### **Context & Motivation**

- Explosion of IoT devices in smart homes, healthcare, critical infrastructure
- Resource constraints & lack of built-in security
- IoT as attractive targets for large-scale DDoS attacks

### **Research Objectives**

- Evaluate Moving Target Defence (MTD) for IoT security
- Integrate MTD with Software-Defined Networking (SDN)
- Evaluate the solution in a public network

# **Technical Primer**

# Moving Target Defense (MTD)

- Dynamically alters attack surface
- Examples: ASLR, ISR, honeypots/honeynets
- Increases attacker uncertainty and cost

# **Software-Defined Networking (SDN)**

- Separation of control plane (controller) and data planes (switches)
- Northbound API: apps  $\rightarrow$  controller
- ullet Southbound API: controller o forwarding devices

### State-of-the-Art & Where We Fit

- Mutable Networks (MUTE) crypto-shuffled IP/port mapping
- Random Host Mutation (RHM) edge IP shuffling
- OF-RHM (OpenFlow) SDN-based randomization

# Proposed Architecture

### **Threat Model**

- Botnet-driven volumetric DDoS (SYN/UDP flooding)
- Target: resource-constrained IoT devices (no IDS/ACL)
- Reconnaissance & Exploitation threat vectors also considered

# **System Architecture**



### **Defence Workflow**



### **Defence Workflow**

### Case I - Botnet is not connected

- 1. Recon is done to find the IP address of the proxy
- 2. Botnet floods directly to the IP
- 3. Botnet is blocked by the proxy

### **Defence Workflow**

### Case II - Botnet is connected

- 1. Bots flood the IPs of the proxies assigned to them
- 2. Proxy will detect the flood and flag the IPs
- Master Node will renew the IP address of the proxies from the ISP's DHCP server
- 4. Legitimate users will be able to connect again to the DNS

# Results & Insights

### **Simulation Environment**

- Simulated Internet inside VMs and Docker
- ESP8266 microcontroller HTTP service
- Locust framework & Ixia Breakingpoint for traffic generation
- Power usage measurement using a lab bench power supply
- Scenarios: baseline, nominal load, volumetric DDoS

### **Simulation Environment**

### Ixia Breakingpoint Data Rate Curve



### **Evaluation Metrics**

- Latency
- Failure Rate
- Power Usage

### **Statistics**

# Nominal Usage



### **Statistics**

### Unprotected Attack



### **Statistics**

### Power Draw



# The Good, the Bad & the Lag

### Advantages:

- Cheap-ish
- Increases attacker cost
- Easy to implement in public WAN networks
- Modular, device agnostic approach

#### Limitations:

- Overhead from ISP IP changes is a wildcard
- Needs complementary security measures
- Will need to be fine tuned for different services

Thank you!

Any questions?