棱镜双光束干涉实验报告

余晨曦 202211999081 实验时间:2022.3.9 报告提交时间: 2022.3.9

一. 实验原理

实验以钠灯作为点光源放置在双棱镜的对称轴线上,经过双棱镜底面和侧面折射之后,其光线看起来是来自两个虚光源 S1、S2,而在它们的重叠区域可以观察到光的干涉现象。

利用如上光路图,可以得到两虚光源到达接收屏的光程差

$$\delta = \sqrt{L^2 + \left(x + \frac{s}{2}\right)^2} - \sqrt{L^2 + \left(x - \frac{s}{2}\right)^2} \approx \frac{\left(x + \frac{s}{2}\right)^2 - \left(x - \frac{s}{2}\right)^2}{2L} = \frac{sx}{L}$$

当 δ 为波长 λ 的整数倍时,两束光的相位相同,合振幅为 2A,此处接收屏出现亮条纹;而当 δ 为 λ 的半整数倍时,两束光反相位振动,合振幅为 0,此处接收屏上出现暗条纹。所以我们可以通过

利用明暗条纹间隔计算出波长。

二.实验记录与数据分析

首先, 利用干涉图样来计算Δ

Ν	10	13	20	4	13	11	2	10
像素	975.17	1247.18	1914.91	384.52	1241.28	1054.21	184.86	962.86
长度								
/Pix								
实际	3.364337	4.302771	6.60644	1.326594	4.282416	3.637025	0.637767	3.321867
长度								
/mm								

图:实验得到的干涉图样

上述数据拟合后

得到

 $\Delta = 0.3309 \, mm$

其次, 开始计算两个虚光源 S1 、S2 间的距离 S

单缝位置	11.60cm	相对距离 L	673mm	
相机位置	78.90cm			
缩小像时	62.00cm	缩小像宽	0.391679mm	
凸透镜位置				
放大像时	29.38cm	放大像宽	3.541977mm	
凸透镜位置				

法一: 通过
$$S=\frac{L_1}{L_2}D$$
 得 $S_1=1.13669$ mm 代入 $\lambda=\frac{S\Delta}{L}=0.000574322$ mm = 574.322 nm 相对误差为 2.522%

法二: 通过
$$S=\sqrt{D_1D_2}$$
 得 S_2 =1.177845mm 代入 $\lambda=\frac{S\Delta}{L}=0.000579122$ mm = 579.122 nm 相对误差为 1.727%

三. 总结

- 1. 实验中用到的光路细调方法
- (1) 狭缝横向位置、凸透镜横向位置和高度细调

首先,将双棱镜从导轨上拿走,让狭缝、凸透镜和相机构成一个成像系统,移动凸透镜可以在两个位置看到狭缝的像,其中凸透镜距离狭缝较近的位置为放大像,在凸透镜距离相机较近的位置为缩小像,需要调节狭缝和凸透镜的横向位置,使得这两个狭缝像都尽量在采集图像的中心位置

(2) 双棱镜的方向和横向位置细调

加入双棱镜后,狭缝像会变成两条平行线,调节后,可以看到两个虚光源产生的干涉条纹,调节双棱镜的水平位置,使得干涉条纹中间明亮的部分位于图像的中心,再用测微头调节双棱镜棱的方向,使得条纹的对比度尽量高

2.本次实验的误差来源较多

- (1) 估读各部分光学部件位置时的读数误差
- (2) 利用软件测量明暗条纹间距时的读数误差
- (3) 测量 S 时所呈放大、缩小像时、凸透镜的位置不一定是最理想位置