Zusammenfassung Markovketten

© M Tim Baumann, http://timbaumann.info/uni-spicker

Abzählbare Markovketten

Notation. Sei im Folgenden $\{Z_n\}$ eine Markovkette auf einem abzählbaren Zustandsraum E.

Def. Für $x \in E$ definiere die Zufallsvariablen

$$\tau_x^{(1)} := \inf\{n > 0 \mid Z_n = x\} \in \mathbb{N} \cup \{\infty\}
\tau_x^{(k)} := \inf\{n > \tau_x^{(k-1)} \mid Z_n = x\}, k > 1.$$

(Beachte: $\tau_x^{(k)}$ ist eine messbare Abbildung.)

Bem. Ferner gilt $\{\tau_x^{(k)} = n\} \in \sigma(Z_0, Z_1, \dots, Z_n)$.

Def. Für $x, y \in E$ sei $F(x, y) := P(\tau_y^{(i)} < \infty \mid Z_0 = x)$

Lem. Für alle $x, y \in E$ und $k \ge 1$ gilt

$$P(\tau_y^{(k)} < \infty \mid Z_0 = x) = F(x, y) \cdot F(y, y)^{k-1}.$$

Notation.
$$\tilde{\ell}(y) = \sum\limits_{k=j}^{\infty} \mathbb{1}\{Z_k = y\}$$

Dann gilt $P(\tau_n^{(k)} < \infty \mid Z_0 = x) = P(\tilde{\ell} > k \mid Z_0 = x)$

Def. Ein Zustand $x \in E$ heißt

- absorbierend, falls p(x, x) = 1,
- rekurrent, falls F(x,x) = 1 und
- transient, falls F(x,x) < 1.

Bem. Absorbierende Zustände sind rekurrent.

Bsp. In der Markovkette

$$(0) \underbrace{1 \atop 1-p} (1) \underbrace{p \atop 1-p} (2) \underbrace{p \atop 1-p} (3) \underbrace{1-p} \dots$$

ist (0) genau dann rekurrent, falls $p \le 1/2$, ansonsten transient. TODO: genauer!

Def. Für $y \in E$ sei

$$\ell(y) := \sum_{k=0}^{\infty} \mathbb{1}\{Z_k = y\}$$

die Anzahl der Besuche in y. Die Green'sche Funktion von $\{Z_n\}$ ist $G: E \times E \to [0, \infty]$ mit

$$G(x,y) := \mathbb{E}(\ell(y) \mid Z_0 = x).$$

Bem.
$$G(x,y) = \mathbb{E}\left(\sum_{k=0}^{\infty} \mathbb{I}\{Z_k = y\} \mid Z_0 = x\right) = \sum_{k=0}^{\infty} P(Z_k = y \mid Z_0 = x) = \delta_{xy} + \sum_{k=1}^{\infty} p^{(k)}(x,y)$$

Satz. Für alle $x, y \in E$ gilt

$$G(x,y) = \begin{cases} \frac{F(x,y)}{1-F(y,y)} & \text{falls } x \neq y, \\ \frac{1}{1-F(y,y)} & \text{falls } x = y. \end{cases}$$

Kor. x ist rekurrent $\iff G(x,x) = \infty$

Satz. ist $x \in E$ rekurrent und F(x, y) > 0, so ist y auch rekurrent und F(x, y) = F(y, x) = 1.

Bem.
$$F(x,y) > 0 \iff \exists n > 1 : P^{(n)}(x,y) > 0$$

Def. $\{Z_n\}$ heißt **irreduzibel**, falls $\forall x, y \in E : F(x, y) > 0$.

Satz. Sei $\{Z_n\}$ irreduzibel. Dann sind entweder alle Zustände rekurrent oder alle Zustände transient.