

Overview & class objectives

• Objectives:

- Discuss the main concepts between decision trees
- Understand regression and classification trees
- Discover random forests and ensemble methods

Decision tree – basic definitions

Decision tree – basic definitions

Decision tree – basic definitions

Decision tree – basic definition

A decision tree can be used to perform a classification task

Classification tree

Decision tree – basic definition

A decision tree can be used to perform a classification task

Classification tree

A decision tree can be used to perform a regression task

regression tree

Classification trees

Classification decision tree

Classification decision tree

Classification decision tree

$$Entropy = -0.5 log(0.5) - 0.5 log(0.5)$$

00000 00000

$$IG = E(parent) - \sum w_i E(child_i)$$

$$IG = 1 - \frac{11}{20} \times .99 - \frac{9}{20} \times 0.99 = 0.01$$

$$IG = E(parent) - \sum w_i E(child_i)$$

$$IG = 1 - \frac{5}{20} \times 0 - \frac{15}{20} \times 0.99 = 0.32$$

The training algorithm choses the split that maximizes the information gain

Let's recap!

- Decision trees can be used to perform a classification task
- Training of a classification decision tree consists in finding the best data split that maximizes the information gain
- This training approach is a greedy algorithm, and does not guaranty you will train the best tree

Regression trees

Regression decision tree

Regression decision tree

Training decision tree

 $Var\ Red = Var(parent) - \Sigma w_i Var(child_i)$

The best split is the split that maximizes the variance reduction

Let's recap!

- Decision trees can be used to perform a regression task
- Training of a regression decision tree consists in finding the best data split that maximizes the variance reduction
- One of the main advantage of a decision tree is that you can combine categorical and numerical variables in the same model

Overfitting and decision trees

Overfitting: the decision tree fits too perfectly the training dataset

Overfitting: the decision tree fits too perfectly the training dataset

<u>- Pruning:</u> remove branches that do not reduce the variance below a certain cutoff

Overfitting: the decision tree fits too perfectly the training dataset

- <u>- Pruning:</u> remove branches that do not reduce the variance below a certain cutoff
- Max depth: stop the tree training after a certain number of nodes

Random forests

Ensemble learning methods are based on the idea that a prediction from a crowd of models is more stable and accurate than the prediction of any one model alone

We need to build models different enough to make the combined predictions valuable

We need to build models different enough to make the combined predictions valuable

How do you build different models with one unique training set?

Uncorrelatedness is critical for random forests models

Method 1: Bootstrapping (Bagging)

Uncorrelatedness is critical for random forests models

Method 1: Bootstrapping (Bagging)

Method 2: Feature randomness

Let's recap

- Random forests are an ensemble of decision trees all voting for the same prediction tasks
- Random forests can be composed of thousands of small decision trees, all very simple to train
- Methods such as bagging or variable randomness ensure that the trees are different enough and learn different visions of the reality

Hurwitz lab

Salonen lab

My contact:

alise.ponsero@helsinki.fi

LinkedIn:

alise-ponsero-843b953b

