OBJECTIVE: To perform ad-hoc analysis using SQL queries on media datasets and generate insights for circulation, revenue, efficiency, and digital readiness.

DATASET DESCRIPTION:

- Fact_print_sales → Contains data on copies printed and net circulation across cities and months.
- Fact_ad_revenue → Stores advertisement revenue details by year and ad category.
- Fact_city_readiness → Tracks city-level literacy rate, smartphone penetration, and internet penetration over time.
- Fact_digital_pilot → Includes digital engagement metrics such as active users, sessions, and engagement rate.
- → dim_city → Dimension table with city attributes such as ID, name, state, and tier classification.

Business Request - 1:

Monthly Circulation Drop Check Generate a report showing the top 3 months (2019–2024) where any city recorded the sharpest month-over-month decline in net_circulation.

Fields: • city_name • month (YYYY-MM) • net_circulation

```
with cte as
(
select city_id, date_, net_circulation,
lag(net_circulation,1) over(partition by city_id order by city_id, date_) as prev_month_NC,
((lag(net_circulation,1) over(partition by city_id order by city_id, date_)) - net_circulation) as
drop_NC
from fact_print
order by city_id
)
```

select city_name, cte.* from cte
join dim_city using(city_id)

where prev_month_NC is not null order by drop_nc desc limit 3;

	city_name	city_id	date_	net_circulation	prev_month_NC	drop_NC
•	Varanasi	C010	2021-01-01	382018	441825	59807
	Varanasi	C010	2019-11-01	431606	487255	55649
	jaipur	C005	2020-01-01	420680	472538	51858

Business Request – 2:

Yearly Revenue Concentration by Category Identify ad categories that contributed > 50% of total yearly ad revenue.

Fields: • year • category_name • category_revenue • total_revenue_year • pct_of_year_total

Solution:

case

when currency = "EUR" then ad_revenue*104

```
with cte as(
SELECT ad_category, quarter_,
case
when SUBSTRING_INDEX(quarter_, '-', 1) like "%Q%" then SUBSTRING_INDEX(quarter_, '-', 1)
else SUBSTRING_INDEX(quarter_, '-', -1) end as qtr,
case
when SUBSTRING_INDEX(quarter_, '-', 1) not like "%Q%" then SUBSTRING_INDEX(quarter_, '-', 1)
else SUBSTRING_INDEX(quarter_, '-', -1) end as year,
ad_revenue, currency,
```

```
when currency = "USD" then ad_revenue*88
else ad_revenue end as revenue_INR
FROM fact_revenue),
```

cte2 as(

select ad_category, year, sum(revenue_INR) as Category_yearly_revenue

from cte

group by ad_category, year)

select standard_ad_category, cte2.*, sum(category_yearly_revenue) over(partition by year) as yearly_total_revenue,

category_yearly_revenue / sum(category_yearly_revenue) over(partition by year)*100 as yearly_revenue_percent

from cte2

join dim_ad_category c on c.ad_category_id=cte2.ad_category;

standard ad category	ad_category	year	Category yearly revenue	yearly total revenue	yearly revenue percent
Government	A001	2019	131514950.72	368283020.84	35.710294
FMCG	A002	2019	85913646.48	368283020.84	23.328158
Real Estate	A003	2019	87581633.04	368283020.84	23.781067
Automobile	A004	2019	63272790.60	368283020.84	17.180480
Government	A001	2020	109755419.12	359277160.64	30.548955
FMCG	A002	2020	56160582.68	359277160.64	15.631548
Real Estate	A003	2020	100344724.96	359277160.64	27.929614
Automobile	A004	2020	93016433.88	359277160.64	25.889882
Government	A001	2021	106533101.44	375770550.16	28.350572
FMCG	A002	2021	80061245.68	375770550.16	21.305886
Real Estate	A003	2021	129195952.12	375770550.16	04 004607
Automobile	A004	2021	59980250.92	375770550.16	An

Business Request – 3:

2024 Print Efficiency Leaderboard For 2024, rank cities by print efficiency = net_circulation / copies_printed. Return top 5.

Fields: • city_name • copies_printed_2024 • net_circulation_2024 • efficiency_ratio = net_circulation_2024 / copies_printed_2024 • efficiency_rank_2024

Solution:

```
with cte as

(

select city_id, sum(copies_sold), sum(net_circulation), sum(net_circulation)/sum(copies_sold)*100
as print_efficiency,

rank() over(order by sum(net_circulation)/sum(copies_sold)*100 desc) as efficiency_rank

from fact_print

where year(date_) = 2024

group by city_id

)

select c.city_name, cte.*

from cte

join dim_city c using(city_id)

order by efficiency_rank limit 5;
```


Business Request - 4:

Internet Readiness Growth (2021) For each city, compute the change in internet penetration from Q1-2021 to Q4-2021 and identify the city with the highest improvement.

Fields: • city_name • internet_rate_q1_2021 • internet_rate_q4_2021 • delta_internet_rate = internet_rate_q4_2021 - internet_rate_q1_2021

```
with cte1 as
(
select city_id, quarter_,
internet_penetration as Q1_IP
from city_readiness
where quarter_ like "2021%Q1"
),
cte2 as
(
select city_id, quarter_,
internet_penetration as Q4_IP
from city_readiness
where quarter_ like "2021%Q4"
)
select cte1.city_id, city_name, Q1_IP, Q4_IP, Q4_IP-Q1_IP as improvement_IP
from cte1
join cte2
on cte1.city_id=cte2.city_id
join dim_city c on cte1.city_id = c.city_id
order by improvement_IP desc;
```


Business Request - 5:

Consistent Multi-Year Decline (2019→2024) Find cities where both net_circulation and ad_revenue decreased every year from 2019 through 2024 (strictly decreasing sequences).

Fields: • city_name • year • yearly_net_circulation • yearly_ad_revenue • is_declining_print (Yes/No per city over 2019–2024) • is_declining_ad_revenue (Yes/No) • is_declining_both (Yes/No)

```
case
when SUBSTRING_INDEX(quarter_, '-', 1) like "%Q%" then SUBSTRING_INDEX(quarter_, '-', 1)
else SUBSTRING_INDEX(quarter_, '-', -1) end as qtr,
case
when SUBSTRING_INDEX(quarter_, '-', 1) not like "%Q%" then SUBSTRING_INDEX(quarter_, '-', 1)
else SUBSTRING_INDEX(quarter_, '-', -1) end as year,
ad_revenue, currency,
case
when currency = "EUR" then ad_revenue*104
when currency = "USD" then ad_revenue*88
else ad_revenue end as revenue_INR
FROM fact revenue
select edition_ID, year, sum(revenue_INR) as yearly_Rev
from sub revenue
group by edition_ID, year
select p.edition_id , p.city_id, p.year, yearly_NC, yearly_Rev,
lag(yearly_NC,1) over(partition by p.edition_id order by p.edition_id, year ) as LY_NC,
lag(yearly_Rev,1) over(partition by p.edition_id order by p.edition_id, year ) as LY_Rev,
if (yearly_NC < lag(yearly_NC,1) over(partition by p.edition_id order by p.edition_id, year ), 0, 1)
as NC dropped,
if (yearly_Rev < lag(yearly_Rev,1) over(partition by p.edition_id order by p.edition_id, year ), 0, 1)
as Rev_dropped,
if (yearly_NC < lag(yearly_NC,1) over(partition by p.edition_id order by p.edition_id, year ) and
yearly_Rev < lag(yearly_Rev,1) over(partition by p.edition_id order by p.edition_id, year ) , 0, 1) as
Both_NC_REV_dropped
```

```
from print_data p
join revenue_data r using (edition_id, year)

order by edition_id, year
)

select c.city_name , pr.*, if(pr2.a > 0, "No", "YES") as NC_flag, if(pr2.b > 0, "No", "YES") as Rev_flag, if(pr2.c > 0, "No", "YES") as NC_Rev_flag

from print_rev_data pr
join dim_city c using(city_id)
join (select city_id, sum(NC_dropped) as a,sum(rev_dropped) as b, sum(both_NC_rev_dropped) as c

from print_rev_data where LY_NC is not null
group by city_id ) as pr2 on pr2.city_id=pr.city_id
where LY_NC is not null
order by city_name, year;
```


Business Request - 6:

2021 Readiness vs Pilot Engagement Outlier In 2021, identify the city with the highest digital readiness score but among the bottom 3 in digital pilot engagement. readiness_score = AVG(smartphone_rate, internet_rate, literacy_rate) "Bottom 3 engagement" uses the chosen engagement metric provided (e.g., engagement_rate, active_users, or sessions).

Fields: • city_name • readiness_score_2021 • engagement_metric_2021 • readiness_rank_desc • engagement_rank_asc • is_outlier (Yes/No)

```
with cte1 as
select city_id, round(avg(city_Readiness_score),2) as readiness_score
from
select *, Round((literacy_rate+smartphone_penetration+internet_penetration)/3,2) as
City_readiness_score
from city_readiness
where quarter_ like "%2021%" ) as abc
group by city_id
),
cte2 as
select city_id, sum(users_reached) as reached_count, sum(downloads_or_accesses) as
download_count, round(avg(avg_bounce_rate),2) as bounce_rate
from fact_pilot
group by city_id
),
cte3 as
select c.city_name, cte2.*, cte1.readiness_score,
dense_rank() over(order by cte1.readiness_score desc) as readiness_rank,
dense_rank() over(order by cte2.reached_count asc) as engagement_rank
from cte1
join cte2 on cte1.city_id = cte2.city_id
```