

Entrega 2

[71.14] Modelos y Optimización I Curso 4 $2C\ 2021$

Alumno	Padrón	Email
Gomez, Joaquín	103735	jgomez@fi.uba.ar
Grassano, Bruno	103855	bgrassano@fi.uba.ar
Romero, Adrián	103371	adromero@fi.uba.ar

${\bf \acute{I}ndice}$

1.	Enunciado	2
2.	Análisis de la situación problemática	3
3.	Objetivo	4
4.	Hipótesis y supuestos	4
5.	Definición de variables	5
6.	Definición de constantes	5
7.	Modelo de programación lineal7.1. Funcional7.2. Restricciones	6 6
8.	Resolución por software	8
9.	Informe de la solución óptima	17

1. Enunciado

La empresa agrícola Granolliers desea estudiar la política del próximo mes. Ya ha aceptado órdenes de compra de las empresas Talbott, Migueletes. y Blasco Hnos. También tiene la opción de comprar un poco de grano adicional de Granjas Solís. Los detalles de los pedidos de se presentan en la siguiente tabla.

Compañía solicitante	Talbott	Migueletes	Blasco Hnos
Cantidad [tn]	40.000 a 45.000	32.000 a 36.000	50.000 a 54.000
Humedad máxima (%)	13	15,5	15
Peso mínimo [kg/m³]	560	540	560
% máximo de daño	2	5	2
% máximo de impurezas	2	3	4
Precio de venta [U\$S/tn]	200	250	190

La compañía tiene la opción de suministrar cualquier cantidad de grano que desee, dentro del rango especificado. Claro está que deberá satisfacer los requerimientos indicados.

Granolliers mezcla los granos que le pertenecen para atender los pedidos de los clientes. Tiene almacenados 326.000 toneladas de maíz que se subdividen en 11 tipos que difieren en cuanto a (1) cantidad disponible, (2) costo por tonelada, (3) porcentaje de contenido de humedad, (4) peso por metro cúbico, (5) porcentaje de grano dañado y (6) porcentaje de impurezas. La siguiente tabla representa la información adicional acerca de las características de los distintos tipos de grano.

Tipo de maíz	Cantidad disponible [tn]	Costo [\$/tn]	Humedad (%)	Peso [kg/m³]	% daño	% impurezas
1	30.000	145	12	570	2	1,5
2	45.000	144	15	570	2	1
3	25.000	145	12	580	3	3
4	40.000	142	13	560	4	2
5	20.000	138	15	540	4	2
6	30.000	137	15	550	5	3
7	75.000	137	18	570	5	1
8	15.000	139	14	580	2	4
9	16.000	127	17	530	7	5
10	20.000	128	15	550	8	3
11	10.000	117	22	560	9	5

El grano que ofrece Granjas Solís es un cargamento de hasta 50.000 toneladas, con un promedio de $15\,\%$ de humedad, $3\,\%$ de daño y $2\,\%$ de impurezas. La carga tiene una densidad de 570 kg por metro cúbico y el gerente de compras está convencido de que el pedido puede obtenerse a un costo de U\$S 141 por tonelada.

¿Qué es lo mejor que puede hacer Granolliers con esta información?

Nota: se debe resolver utilizando exclusivamente variables reales continuas, para poder realizar el análisis de sensibilidad en la última entrega

2. Análisis de la situación problemática

- Se menciona la mezcla de los diferentes granos de maíz.
- Algunos parámetros de la mezcla no son del todo lineales (promedio ponderado), se van a tener que linealizar.

• El siguiente es un esquema representando la situación:

3. Objetivo

Determinar las composiciones y cantidades de las mezclas de granos a vender a los tres compradores de forma tal de maximizar las ganancias durante el próximo mes.

4. Hipótesis y supuestos

- 1. Es posible comprar y vender cantidades arbitrariamente pequeñas de granos. (dentro de los rangos pedidos) (Divisibilidad)
- 2. Las empresas compran todo lo que se les ofrezca. (Certeza)
- 3. No es necesario cumplir con stock final. (Certeza)
- 4. Se pueden mezclar todos los tipos de grano sin problemas, incluido el de Granjas Solis. (Aditividad)
- 5. Cualquier cantidad de cada tipo de grano cumple con las características especificadas. (Certeza)
- 6. Los granos no se estropean. (Certeza)
- 7. Las estimaciones de humedad, peso, daño, e impurezas de cada tipo de grano son precisas. (Certeza)
- 8. La humedad, daño e impureza total de la mezcla de granos es un promedio de las humedades, daños e impurezas de los granos que la componen, ponderado por la proporción de ese grano en la mezcla. (Certeza)
- 9. Las toneladas de mezcla final son la suma de las toneladas utilizadas para cada tipo de grano, no hay desperdicio de granos. (Aditividad)
- 10. Los precios y costos se mantienen constantes durante el periodo. (Certeza)
- 11. Los únicos costos son los asociados a la compra de granos. (Certeza)
- 12. El tiempo de traslado de los granos de Granja Solis no tiene inconvenientes. (Certeza)
- 13. Los valores de costos y venta están en la misma moneda. (Certeza)

5. Definición de variables

 $*Con\ tipos\ y\ unidades$

Nombre	Descripción	Rango	Unidad	Tipo
G_i	Cantidad de grano de tipo i utilizado total. Llamamos X_{12} al grano de Granja Solis	$i=1,2\dots 12$	toneladas/mes	Variable continua
Ej_i	Cantidad de grano de tipo i utilizado para mezcla que se vende a la empresa j.	$i = 1, 2 \dots 12$ $j = T, M, B$	toneladas/mes	Variable continua

6. Definición de constantes

 $*Con\ tipos\ y\ unidades$

CTES	$k_i[tn]$	$c_i[\frac{\$}{tn}]$	$h_i[\%]$	$p_i[\frac{kg}{m^3}]$	$d_i[\%]$	$i_i[\%]$
1	30.000	145	12	570	2	1.5
2	45.000	144	15	570	2	1
3	25.000	145	12	580	3	3
4	40.000	142	13	560	4	2
5	20.000	138	15	540	4	2
6	30.000	137	15	550	5	3
7	75.000	137	18	570	5	1
8	15.000	139	14	580	2	4
9	16.000	127	17	530	7	5
10	20.000	128	15	550	8	3
11	10.000	117	22	560	9	5
12	50.000	141	15	570	3	2

Donde:

- $i = 1 \dots 12$
- k: cantidad
- *c*: costo
- h: humedad
- p: peso
- \bullet d: daño
- \bullet i: impureza

7. Modelo de programación lineal

*Indicando en cada restricción o grupo de restricciones la función que cumplen.

7.1. Funcional

Buscamos maximizar las ganancias obtenidas, para esto nos dan los costos y valores de venta.

$$max(\sum_{i=1}^{12}(200\frac{\$}{tn}ET_{i}+250\frac{\$}{tn}EM_{i}+190\frac{\$}{tn}EB_{i})-COSTOS)$$

Donde:

• $COSTOS = \sum_{i=1}^{12} c_i G_i$

7.2. Restricciones

Empezamos planteando la relación que tenemos entre la cantidad total de granos y las empresas.

•
$$G_i = ET_i + EM_i + EB_i$$

Con $\forall i = 1, \dots 12$

Ahora planteamos las cantidades disponibles que tenemos de cada tipo diferente de grano que tenemos.

- $G_i \leq k_i$
- Para i = 1, ... 12

Planteamos las cantidades que nos pide cada empresa.

- Para Talbott: $40,000 \le \sum_{i=1}^{12} ET_i \le 45,000$
- Para Migueletes: $32,000 \le \sum_{i=1}^{12} EM_i \le 36,000$
- Para Blasco Hnos: $50,\!000 \leq \sum_{i=1}^{12} EB_i \leq 54,\!000$

Empezamos ahora con las restricciones correspondientes a la humedad.

- $\sum_{i=1}^{12} h_i ET_i \le 13 \sum_{i=1}^{12} ET_i$
- $\sum_{i=1}^{12} h_i E M_i \le 15, 5 \sum_{i=1}^{12} E M_i$
- $\sum_{i=1}^{12} h_i EB_i \le 15 \sum_{i=1}^{12} EB_i$

Tenemos restricciones sobre el peso mínimo que se puede tener.

- $\sum_{i=1}^{12} p_i ET_i \ge 560 \sum_{i=1}^{12} ET_i$
- $\sum_{i=1}^{12} p_i EM_i \ge 540 \sum_{i=1}^{12} EM_i$
- $\sum_{i=1}^{12} p_i EB_i \ge 560 \sum_{i=1}^{12} EB_i$

Nos indican también un limite máximo del daño permitido.

•
$$\sum_{i=1}^{12} d_i ET_i \le 2 \sum_{i=1}^{12} ET_i$$

•
$$\sum_{i=1}^{12} d_i E M_i \le 5 \sum_{i=1}^{12} E M_i$$

•
$$\sum_{i=1}^{12} d_i E B_i \le 2 \sum_{i=1}^{12} E B_i$$

Tenemos un máximo de impurezas que se puede tener.

•
$$\sum_{j=1}^{12} i_j ET_j \le 2 \sum_{i=1}^{12} ET_i$$

•
$$\sum_{j=1}^{12} i_j EM_j \le 3 \sum_{i=1}^{12} EM_i$$

•
$$\sum_{j=1}^{12} i_j EB_j \le 4 \sum_{i=1}^{12} EB_i$$

8. Resolución por software

El modelo en GLPK: #Trabajo Practico 2 #Conjuntos de datos set granos; set empresas; **#Variables** var E{i in empresas,j in granos} >= 0; var G{i in granos} >= 0; var SUMAPESO{i in empresas}>=0; #Valores de datos; param cantidadMinimaPorEmpresa{i in empresas}; param cantidadMaximaPorEmpresa{i in empresas}; param humedadPorEmpresa{i in empresas}; param pesoPorEmpresa{i in empresas}; param porcentajeDanioPorEmpresa{i in empresas}; param porcentajeImpurezasPorEmpresa{i in empresas}; param precioVentaPorEmpresa{i in empresas}; param cantidadDisponiblePorTipo{i in granos}; param costoToneladaPorTipo{i in granos}; param humedadPorTipo{i in granos}; param pesoPorTipo{i in granos}; param porcentajeDanioPorTipo{i in granos}; param porcentajeImpurezasPorTipo{i in granos}; #Funcional maximize z: (sum{j in granos}(sum{i in empresas} precioVentaPorEmpresa[i]*E[i,j])) - (sum{j in granos} G[j]* costoToneladaPorTipo[j]); #Restricciones #Relacion entre empresas y tipos de grano s.t. relacionEmpresaTiposGrano{j in granos}: G[j] = sum{i in empresas} E[i,j]; #Mínima cantidad por empresa s.t. minimaCantidadPorEmpresa{i in empresas}: sum{j in granos}E[i,j] >= cantidadMinimaPorEmpresa[i]; #Máxima cantidad por empresa s.t. sumaPesoPorEmpresa{i in empresas}: SUMAPESO[i] = sum{j in granos}E[i,j]; s.t. maximaCantidadPorEmpresa{i in empresas}: SUMAPESO[i] <= cantidadMaximaPorEmpresa[i];</pre> #Máxima cantidad por tipo s.t. maximaCantidadPorTipo{j in granos}: G[j] <= cantidadDisponiblePorTipo[j];</pre> s.t. humedad{i in empresas}: sum{j in granos}humedadPorTipo[j]*E[i,j] <=</pre> humedadPorEmpresa[i]*sum{j in granos}E[i,j];

```
Los datos:
#Datos
data;
set granos := T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12;
set empresas := T M B;
param cantidadMinimaPorEmpresa :=
T 40000
M 32000
B 50000;
param cantidadMaximaPorEmpresa :=
T 45000
M 36000
B 54000;
param humedadPorEmpresa :=
T 13
M 15.5
B 15;
param pesoPorEmpresa :=
T 560
M 540
B 560;
param porcentajeDanioPorEmpresa :=
T 2
M 5
B 2;
param porcentajeImpurezasPorEmpresa :=
T 2
М 3
B 4;
param precioVentaPorEmpresa :=
T 200
M 250
B 190;
param cantidadDisponiblePorTipo :=
T1 30000
T2 45000
T3 25000
T4 40000
T5 20000
T6 30000
T7 75000
T8 15000
T9 16000
T10 20000
```

```
T11 10000
T12 50000;
param costoToneladaPorTipo :=
T1 145
T2 144
T3 145
T4 142
T5 138
T6 137
T7 137
T8 139
T9 127
T10 128
T11 117
T12 141;
param humedadPorTipo :=
T1 12
T2 15
T3 12
T4 13
T5 15
T6 15
T7 18
T8 14
T9 17
T10 15
T11 22
T12 15;
param pesoPorTipo :=
T1 570
T2 570
T3 580
T4 560
T5 540
T6 550
T7 570
T8 580
T9 530
T10 550
T11 560
T12 570;
param porcentajeDanioPorTipo :=
T1 2
T2 2
T3 3
T4 4
T5 4
T6 5
T7 5
T8 2
```

```
T9 7
T10 8
T11 9
T12 3;
param porcentajeImpurezasPorTipo :=
T1 1.5
T2 1
T3 3
T4 2
T5 2
T6 3
T7 1
T8 4
T9 5
T10 3
T11 5
T12 2;
```

Los resultados obtenidos:

Problem: modelo
Rows: 46
Columns: 51
Non-zeros: 304
Status: OPTIMAL

Status: OPTIMAL
Objective: z = 8738488.372 (MAXimum)

No.	Row name	St	Activity	Lower bound	Upper bound	Marginal
1	z	В	8.73849e+06			
2	relacionEmp	resaTi	iposGrano[T1]			
	_	NS	0	-0	=	-200
3	relacionEmp	resaTi	iposGrano[T2]			
		NS	0	-0	=	-200
4	relacionEmp	resaTi	iposGrano[T3]			
		NS	0	-0	=	-145
5	relacionEmp	resaTi	iposGrano[T4]			
		NS	0	-0	=	-142
6	relacionEmp	resaTi	iposGrano[T5]			
		NS	0	-0	=	-138.465
7	relacionEmp	resaTi	iposGrano[T6]			
		NS	0	-0	=	-137
8	relacionEmp	resaTi	iposGrano[T7]			
		NS	0	-0	=	-137
9	relacionEmp	resaTi	iposGrano[T8]			
		NS	0	-0	=	-200
10	relacionEmp	resaTi	iposGrano[T9]			
		NS	0	-0	=	-127
11	relacionEmp:		iposGrano[T10]			
		NS	0	-0	=	-128
12	relacionEmp:		iposGrano[T11]			
		NS	0	-0	=	-117
13	relacionEmp:	resaTi	iposGrano[T12]			
		NS	0	-0	=	-141
14	minimaCantio		-			
		В	40000	40000		
15	minimaCantio		=			
		В	36000	32000		
16	minimaCantio		_			
		NL	50000	50000		-10
17	sumaPesoPor	-				
		NS	0	-0	=	< eps
18	sumaPesoPor					
		NS -	0	-0	=	-115.116
19	sumaPesoPor	_		_		
		NS	0	-0	=	< eps
20	maximaCantio		-		45000	
a :	. ~ .	В	40000		45000	
21	maximaCantio		-		2225	
00		NU	36000		36000	115.116
22	maximaCantio		-		= 4.0.0.0	
		В	50000		54000	

23	maximaCantid	adPor	Tipo[T1]					
		NU	30000				30000	55
24	maximaCantid							
		NU	45000				45000	56
25	maximaCantid		_					
		В	1348.84				25000	
26	maximaCantid		=				40000	
		В	0				40000	
27	maximaCantid		_				00000	0 405440
00		NU	20000				20000	0.465116
28	maximaCantid		_				20000	
20		В	0				30000	
29	maximaCantid		=				75000	
20	marrima Cantid	В	0 [Ton Ton				75000	
30	maximaCantid	NU	15000				15000	61
31	maximaCantid						13000	01
01	maximaoantia	B B	11023.3				16000	
32	maximaCantid						10000	
-		В	1581.4				20000	
33	maximaCantid							
		В	0				10000	
34	maximaCantid	adPor	Tipo[T12]					
		В	2046.51				50000	
35	humedad[T]	В	-18333.3				-0	
36	humedad[M]	NU	0				-0	1.44186
37	humedad[B]	В	-6666.67				-0	
38	pesoMinimo[T]						
	_	В _	483333		-0			
39	pesoMinimo[M				•			
40		В	20930.2		-0			
40	pesoMinimo[B	В	566667		-0			
41	maximoDanio[_	300007		-0			
-11	maximoDanio	NU	0				-0	59
42	maximoDanio[· ·				Ū	00
		NU	0				-0	2.53488
43	maximoDanio[_				_	
		NU	0				-0	59
44	maximoImpure	zas[T]					
		NU	0				-0	< eps
45	maximoImpure	zas[M]					
		NU _	0				-0	0.325581
46	maximoImpure						•	
		В	-130000				-0	
No.	Column name	St	Activity	Lower be	ound	Upper	bound	Marginal
	- , -	В	30000		0			
	E[M,T1]	NL	0		0			-51.9767
		NL P	0 1666.67		0			< eps
		B NL	1000.07		0			-56.1395
	E[H, 12] E[B, T2]	В	43333.3		0			-00.1000
J	<u>,</u>	_			•			

7	E[T,T3]	NL	0	0	-4
8	E[M,T3]	В	1348.84	0	
9	E[B,T3]	NL	0	0	-4
10	E[T,T4]	NL	0	0	-60
11	E[M,T4]	NL	0	0	-0.651163
12	E[B,T4]	NL	0	0	-60
13	E[T,T5]	NL	0	0	-56.4651
14	E[M,T5]	В	20000	0	
15	E[B,T5]	NL	0	0	-56.4651
16	E[T,T6]	NL	0	0	-114
17	E[M,T6]	NL	0	0	-1.39535
18	E[B,T6]	NL	0	0	-114
19	E[T,T7]	NL	0	0	-114
20	E[M,T7]	NL	0	0	-5.06977
21	E[B,T7]	NL	0	0	-114
22	E[T,T8]	В	8333.33	0	
23	E[M,T8]	NL	0	0	-55.6744
24	E[B,T8]	В	6666.67	0	
25	E[T,T9]	NL	0	0	-222
26	E[M,T9]	В	11023.3	0	
27	E[B,T9]	NL	0	0	-222
28	E[T,T10]	NL	0	0	-282
29	E[M,T10]	В	1581.4	0	
30	E[B,T10]	NL	0	0	-282
31	E[T,T11]	NL	0	0	-330
32	E[M,T11]	NL	0	0	-2.27907
33	E[B,T11]	NL	0	0	-330
34	E[T,T12]	В	0	0	
35	E[M,T12]	В	2046.51	0	
36	E[B,T12]	В	0	0	
37	G[T1]	В	30000	0	
38	G[T2]	В	45000	0	
39	G[T3]	В	1348.84	0	
	G[T4]	В	0	0	
41	G[T5]	В	20000	0	
	G[T6]	В	0	0	
	G[T7]	В	0	0	
	G[T8]	В	15000	0	
	G[T9]	В	11023.3	0	
	G[T10]	В	1581.4	0	
	G[T11]	В	0	0	
	G[T12]	В	2046.51	0	
	SUMAPESO[T]	В	40000	0	
	SUMAPESO [M]	В	36000	0	
51	SUMAPESO[B]	В	50000	0	

 ${\tt Karush-Kuhn-Tucker\ optimality\ conditions:}$

KKT.PE: max.abs.err = 3.73e-09 on row 1
 max.rel.err = 1.09e-16 on row 44
 High quality

KKT.PB: max.abs.err = 0.00e+00 on row 0
 max.rel.err = 0.00e+00 on row 0

High quality

KKT.DE: max.abs.err = 5.68e-14 on column 8
 max.rel.err = 1.11e-16 on column 35
 High quality

KKT.DB: max.abs.err = 0.00e+00 on row 0
 max.rel.err = 0.00e+00 on row 0
 High quality

End of output

9. Informe de la solución óptima

Habiendo obtenido los resultados del software llegamos a lo siguiente respecto de las composiciones de granos:

Talbot

• Grano 1: 30.000tn (75%)

• Grano 2: 1666,67tn (4.17%)

• Grano 8: 8333,33tn (20.83%)

Migueletes

 $Algunos\ valores\ los\ redondeo\ GLPK\ para\ mostrarlos,\ pero\ se\ puede\ ver\ en\ el\ resultado\ que\ se\ usa\ 36.000tn.$

• Grano 3: 1348,84tn (3.75%)

• Grano 5: 20.000tn (55.56%)

• Grano 9: 11.023,3tn (30.62%)

• Grano 10: 1581,4tn (4.39%)

• Grano 12: 2046,51tn (5.68%)

Blasco

• Grano 2: 43.333,3tn (86.67%)

• Grano 8: 6.666,67tn (13.33%)

Propiedades

	Talbot	Migueletes	Blasco Hnos.
Cantidad enviada [tn]	40.000,00	36.000,00	50.000,00
Humedad promedio [%]	12.54	15.5	14.87
Peso promedio $[kg/m^3]$	572.08	540.58	571.33
Daño promedio [%]	2	5	2
Impureza promedio [%]	2	3	1.4

De esta forma se estaría obteniendo una ganancia de \$8.738.488,372.