Introduction à la Programmation

Benoit Donnet Année Académique 2023 - 2024

Agenda

- Introduction
- Chapitre 1: Bloc, Variable, Instruction Simple
- Chapitre 2: Structures de Contrôle
- Chapitre 3: Méthodologie de Développement
- Chapitre 4: Structures de Données
- Chapitre 5: Modularité du Code
- Chapitre 6: Pointeurs
- Chapitre 7: Allocation Dynamique

Agenda

- Chapitre 1: Bloc, Variable, Instruction Simple
 - Bloc
 - Variable
 - Expression
 - Instruction Simple

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Agenda

- Chapitre 1: Bloc, Variable, Instruction Simple
 - Bloc
 - Variable
 - Expression
 - Instruction Simple

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Bloc

• La forme la plus simple d'un programme C

```
int main()
{
    bloc
}
```

- Un Bloc
 - est délimité par { }
 - contient des instructions exécutables

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

4

Agenda

- Chapitre 1: Bloc, Variable, Instruction Simple
 - Bloc
 - Variable
 - ✓ Principe
 - √ Type Primitif
 - ✓ Pointeur
 - Expression
 - Instructions Simple

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Principe

• Variable mathématique

- symbole, parfois indexé, représentant une quantité inconnue appartenant à un ensemble donné

Propriétés

- 1. généralisation
 - permet de traduire qu'une propriété est générale
- 2. existence
 - permet d'affirmer l'existence d'un objet sans l'expliciter
- 3. résolution
 - permet d'exprimer un problème sous forme d'équation

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

-

Principe (2)

• Variable informatique

- associe un nom à une valeur appartenant à un ensemble donné
 - ✓ une variable correspond toujours à une valeur
 - une variable peut subir une opération
 - la valeur d'une variable peut être modifiée par une opération

Caractérisée par

- un identificateur permettant d'y faire référence
 - ✓ composé de lettres (a-z, A-Z, _) et de chiffres
- un **type**
 - ensemble des valeurs possibles de la variable déclarée
 - désigne la nature du contenu de la variable
 - désigne les opérations pouvant être effectuées dessus
 - lorsqu'une variable est déclarée, la place mémoire correspondant au type est associée à l'identificateur

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Principe (3)

• En pratique, une variable correspond à un emplacement mémoire

Type Primitif

• En C, il existe 4 types primitifs

Nom	Domaine	Exemple
char	caractère	'c', 'a', '@', 'A', '1'
int	sous-ensemble des entiers	1, 10, -10
float	sous-ensemble des réels	1.5, -2.24
double	sous-ensemble des réels	9 564

Type Primitif (2)

- Un char
 - est stocké sur 1 byte
- Un caractère est codé/représenté par un chiffre
 - 'A', 'B', ..., 'Z' \Rightarrow 65, 66, .. 90
 - 'a', 'b', ..., 'z' \Rightarrow 97, 98, ..., 122
 - table ASCII
 - ✓ cfr. slide suivant
- Peut être signé ou non
 - signed char \Rightarrow [-128, 127]
 - unsigned char \Rightarrow [0, 255]
 - dépendant de l'architecture

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

11

Type Primitif (3)

• Table de correspondance ASCII

char	entier	
'A'	65	
'B'	66	
'C'	67	
'Z'	90	

char	entier
'a'	97
'b'	98
'c'	99
	•
'z'	122

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Type Primitif (4)

- un int
 - représente un nombre entier
 - stocké sur 32 bits
 - ✓ 4 bytes
- Le type int peut être modifié
 - on peut lui donner un signe (ou non)
 - ✓ unsigned int \Rightarrow [0, 2³²-1] (\approx N)
 - ✓ signed int \Rightarrow [-2³¹, 2³¹-1] ($\approx \mathbb{Z}$)
 - on peut modifier la taille d'un int
 - ✓ entier court (2 bytes)
 - short int
 - entier long (8 bytes)
 - long int
 - √ combinaison possible avec signed/unsigned
 - exemple: unsigned long int

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

13

Type Primitif (5)

- float et double permettent de représenter des nombres décimaux ($\approx \mathbb{R}$) avec une certaine précision
 - 4 bytes (float)
 - ✓ les 6 premiers chiffres décimaux sont corrects, le 7ème est arrondi
 - 8 bytes (double)
 - ✓ les 15 premiers chiffres décimaux sont corrects, le 16ème est arrondi
- Pas de modification possible
 - pas de signe
 - ✓ float et double sont d'office signés
 - pas de modification de la taille
 - √ exception: long double

Pointeur

- Il est possible de mémoriser, dans un emplacement mémoire, l'adresse d'une variable
- Pointeur

- variable dont la valeur est une adresse Adresse d'un autre emplacement mémoire

Agenda

- Chapitre 1: Bloc, Variable, Instruction Simple
 - Bloc
 - Variable
 - Expression
 - ✓ Définition
 - ✓ Opérateurs
 - ✓ Priorité des Opérateurs
 - Instruction Simple

Définition

- Description du calcul d'une valeur
- Le résultat du calcul est une valeur ayant un certain type
- Une **expression** peut être
 - 1. une variable, dénotée par son identificateur
 - ✓ l'évaluation retourne la valeur courante de la variable
 - √ exemple: moyennePoints
 - 2. une constante (ou littéral)
 - exemple: 'a', 3.14159265
 - 3. obtenue par l'application d'opérateurs à d'autres expressions
 - exemple: (4.0 / 3.0) * pi * r * r * r

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

17

Opérateurs

• Un <u>opérateur</u> permet d'évaluer une expression bien définie sur des valeurs (<u>opérandes</u>) en produisant un résultat (<u>valeur</u> de l'expression)

Opérateurs (2)

- Les opérateurs
 - <u>unaires</u> requièrent une unique opérande
 - ✓ exemple: -5
 - **binaires** en requièrent deux
 - \checkmark exemple: 3 + x
 - **ternaires** en requièrent trois
 - non abordés dans le cours

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

19

Opérateurs (3)

- Il existe différents opérateurs
 - opérateurs arithmétiques
 - opérateurs de comparaison
 - opérateurs booléens
 - opérateurs d'affectation
 - opérateurs d'incrémentation/décrémentation
 - opérateurs *bit-à-bit*
 - opérateurs de décalage
 - opérateurs sur les *pointeurs*

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Opérateurs (4)

- Opérateurs arithmétiques
- La nature de l'opération diffère selon le type des opérandes
 - 2 / 3 = 02.0 / 3.0 = 0.666666...
- modulo applicable seulement aux int
- priorité des opérateurs identique à l'algèbre
 - a * a + b * b - (a * a) + (b* b)
- la forme unaire existe
 - -1

Op.	Signification	
+	addition	
_	soustraction	
/	division	
*	multiplication	
90	modulo	

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

21

Opérateurs (5)

- Opérateurs de <u>comparaison</u>
 - comparaison de deux valeurs
- Retournent des valeurs booléennes
 - vrai ou faux
 - en C standard, il n'existe pas de type booléen
 - $\checkmark vrai \Rightarrow valeur entière non nulle$
 - **+** 1
 - ✓ faux \Rightarrow valeur entière nulle
 - + (

Op.	Signification
<	+ petit que
>	+ grand que
<=	+ petit ou égal
>=	+ grand ou égal
==	égal
!=	différent

Opérateurs (6)

- Opérateurs booléens
 - opérations logiques

Op.	Signification
&&	et "lazy"
	ou "lazy"
!	négation

A	В	A && B	A B	!A
V	V	V	V	F
V	F	F	V	F
F	V	F	V	V
F	F	F	F	V

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

23

Opérateurs (7)

- Opérateurs booléens (suite)
 - comment est évaluée l'expression suivante?
 - n != 0 && m/n > 1
 - écrire la table de vérité pour
 - ✓ A && (B || C)
 - ✓ (A && !B) || (!A && B)

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Opérateurs (8)

• Opérateur d'affectation

- =
- var = expr
- affecter une valeur (expr) à une variable (var)
 - ✓ l'ancienne valeur de var est écrasée/remplacée par expr
- la valeur à affecter peut être le résultat d'une expression
- le type du résultat de expr doit être identique à celui de var

Fonctionnement

- membre de gauche, var, contient l'identificateur de la variable (<u>valeur à gauche</u>) qui va accueillir le résultat
- évaluation du membre de droite, expr, fournit la nouvelle valeur à attribuer à var
- après l'affectation, l'expression entière devient égale à la valeur affectée

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

25

Opérateurs (9)

- Opérateur d'affectation (suite)
 - illustration du fonctionnement

3. Toute l'expression prend la nouvelle valeur de var

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Opérateurs (10)

- Opérateur d'affectation (suite)
 - exemple

1. Evaluation

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

27

Opérateurs (11)

- Opérateur d'affectation (suite)
 - exemple (suite)

$$x = x + 2$$

Туре	Identificateur	Adresse	Valeur
int	Х	bfda2320	6

- 1. Aller lire la valeur de x en mémoire (4)
- Additionner la valeur de x
 (4) avec le littéral (2)
- 3. Placer le résultat de l'addition (6) dans x

Opérateurs (12)

- Il est possible de combiner, en un seul opérateur, l'affectation et l'opération arithmétique
 - **sucre syntaxique**
 - √ raccourci d'écriture
- Forme
 - varα= expr ✓ oùα € {+, -, *, /, %}
- Equivalent à var = var α expr
- Exemple

$$x += 2$$

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

20

Opérateurs (13)

- Opérateurs d'incrémentation/décrémentation
 - opérateurs unaires

```
✓ ++, --
```

- opérande est une valeur à gauche
- L'opérateur peut être placé
 - à *droite* de l'opérande
 - ✓ variable incrémentée (++) ou décrémentée (--) d'une unité
 - la valeur de l'expression correspond à celle de la variable avant l'opération
 - à *gauche* de l'opérande
 - ✓ idem mais la valeur de l'expression correspond à celle après l'opération

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Opérateurs (14)

Exemples

- Soient x et y, deux variables entières, initialisées à la valeur 0, évaluer

Attention

- lisibilité!

$$\checkmark$$
 $X = --X + X++$

- ✓ l'évaluation de cette expression n'est pas garantie par le standard
- combinaison avec des opérateurs booléens

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

31

Opérateurs (15)

• Opérateurs bit-à-bit

- effectue une opération (logique) sur chacun des bits des deux opérandes
- Exemples

Op.	Signification
&	et
l	ou
^	ou exclusif

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Opérateurs (16)

- Opérateurs de décalage
 - décalage de *x* bits vers la gauche/ droite
 - ce n'est pas une rotation!
- Fonctionnement
 - var α x
 - ✓ var, la valeur initiale
 - √ α E {<<, >>}
 - x, nombre de pas de décalage (> 0)
- Exemples

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

33

Signification

décalage à gauche

décalage à droite avec

conservation du signe

Op.

<<

>>

Opérateurs (17)

- Opérateurs de décalage (suite)
- Exemples (suite)
 - en signé

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Opérateurs (18)

- On peut faire 2 opérations sur les pointeurs
 - référencement
 - ✓ obtenir l'adresse d'une variable
 - ✓ opérateur: &
 - déréférencement
 - ✓ obtenir la valeur vers laquelle on pointe
 - ✓ opérateur: *

Type Identificateur		Adresse	Valeur
int	var	bfda2320	20
int *	ptr	bfda245d	bfda2320

N				
N-4				
•••				
bfda2320	2	0	1	
•••				
bfda245d	bfda	2320	•	
•••				
4				
0				

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

34

Priorité des Opérateurs

Priorité ++++

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Priorité des Opérateurs (2)

- Soient
 - X=5
 - Y=10
 - Z=1
- Exemple 1

A = 2 * X + 3 * Y + 4 * Z

- 1. Opérateur * prioritaire sur +
- 2. Ordinateur effectue 2 * X, 3 * Y et 4 * Z
- 3. Ordinateur effectue l'addition des 3 résultats
- 4 affecte le résultat à la variable A

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

37

Priorité des Opérateurs (3)

- Exemple 1 (suite)
 - raisonnement graphique

1. Opérateur * prioritaire sur +

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Priorité des Opérateurs (4)

Exemple 2

```
A = 2*(X+3)*Y+4*Z
 1. ( ) prioritaires
  2. l'ordinateur effectue X + 3
  3. l'ordinateur effectue 2 * 8 * Y et 4 * Z
  4. l'ordinateur effectue l'addition des deux résultats
  5. l'ordinateur affecte le résultat à A
```

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Priorité des Opérateurs (5)

Exemple 2 (suite)

Priorité des Opérateurs (6)

- Soient
 - X = 3
 - Y = 4
- Exemple 3

```
X *= Y += 5
```

- 1. *= a la priorité la plus faible
- 2. l'ordinateur effectue Y += 5
- 3. l'ordinateur effectue X *= 9
- 4. l'ordinateur affecte le résultat à X

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

41

Opérateurs (7)

• Exemple 3 (suite)

$$- X = X * (Y = Y + 5)$$

5. Stockage

4. Multiplication des 2 résultats

3. Evaluation de l'expression

1. Evaluation de l'expression

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Priorité des Opérateurs (8)

- Soient
 - n = 5
 - p = 5
- Exemple 4

```
q = (n < p) * n++ - p
```

- 1. (n<p) a la plus grande priorité
- 2. l'ordinateur n++
- 3. l'ordinateur effectue 0 * 5 5
- 4. l'ordinateur affecte le résultat à q

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

43

Priorité des Opérateurs (9)

• Exemple 4 (suite)

1. Evaluation de l'expression

2. Incrémentation

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Priorité des Opérateurs (8)

- Attention
 - $X \neq Y+1$ équivaut à $X = X \neq (Y+1)$
 - X *= Y+1 n'équivaut pas à X = X * Y +1

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

4

Agenda

- Chapitre 1: Bloc, Variable, Instruction Simple
 - Bloc
 - Variable
 - Expression
 - Instruction Simple
 - ✓ Principe
 - ✓ Déclaration
 - Manipulation des Variables
 - Entrées/Sorties
 - √ Type Cast
 - √ Commentaires

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Principe

- **Instruction**?
 - étape dans un programme informatique
- Dicte à l'ordinateur l'action nécessaire à effectuer avant de passer à l'instruction suivante
- Un programme est constitué d'une suite d'instructions
- Les instructions sont exécutées les unes après les autres
 - exécution séquentielle
- Comment séparer 2 instructions?

- ;

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

4.5

Principe (2)

- Il existe différents types d'instructions
 - déclaration
 - calcul/manipulation de variables
 - entrées/sorties
 - contrôle
 - ✓ cfr. Chap. 2
 - procédure/fonction
 - ✓ cfr. Chap. 6

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Déclaration

- Comment savoir de quel type est une variable?
 - il faut déclarer la variable et son type
- Une déclaration de variables
 - est une instruction
 - qui définit l'identificateur et le type d'une variable donnée
- Les variables doivent toujours être déclarées avant d'être utilisées
 - ne peut se faire que dans le bloc d'instructions
 - √ pas toujours vrai (cfr. Chap. 6)

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Déclaration (2)

• Format d'une déclaration

Optionnel type de la variable nom de la variable initialisation [const] type identificateur [= valeur] constante [, identificateur [= valeur]]; indicateur de la fin d'une instruction

Déclaration (3)

Exemple

```
int main(){
  int i;
  int j = 5, k = 2, z;
  int *p;
  unsigned long codeBarre;
  char symbole = 'a', eol='\n';
  const double MOYENNE = 15.56;
}//fin programme
```

- Attention à l'identificateur
 - il doit décrire clairement l'usage de la variable
 - cohérence

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

51

Déclaration (3)

• Ce qu'il <u>ne faut pas</u> faire avec les noms de variables

Mauvaise Déclaration	Raison
int Quantité;	pas d'accents
int Prix Hors Taxe;	pas d'espace entre les mots
int a, b, c, 1P45;	signification?

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Déclaration (4)

• Un programme aura donc la forme suivante

```
int main(){
   //Déclaration des variables

   //Instructions de calcul/manipulation des variables
}//fin programme
```

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

50

Manipulation Variables

- Déclarer et initialiser une variable, c'est bien
- Savoir l'utiliser dans le programme pour des calculs, c'est mieux
- On va utiliser des expressions dans des instructions pour effectuer des calculs sur les variables déclarées
 - l'affectation nous permet de conserver les résultats intermédiaires

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Manipulation Variables (2)

- Exemple
 - calcul de l'aire d'un cercle

```
\checkmark aire = \pi \times r^2
```

```
int main(){
   //Déclaration des variables
   const double PI = 3.1415;
   double rayon = 4.0;
   double aire = 0.0;

   //Instructions de calcul/manipulation des variables
   aire = PI * (rayon * rayon); instruction
}//fin programme expression
expression
```

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

5.5

Entrées/Sorties

- Rappel: un programme prend des données en entrée et produit un résultat en sortie
- les données peuvent être saisies sur l'entrée standard
 - <u>clavier</u>
- les résultats peuvent être écrits sur la sortie standard
 - écran

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Entrées/Sorties (2)

- Comment écrire un message à l'écran?
- 2 étapes
 - 1. inclure la librairie stdio.h
 - 2. utiliser l'instruction printf (message);
 - √ message est une chaîne de caractères entre guillemets
- Exemple

```
#include <stdio.h>
int main(){
  printf("I'm on the highway to hell!");
}//fin programme
```

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

57

Entrées/Sorties (3)

- On peut rajouter au message à afficher des caractères spéciaux de formatage
 - n = retour à la ligne
 - \t => tabulation horizontale
 - $\forall v \Rightarrow$ tabulation verticale
- Exemple

```
#include <stdio.h>
int main(){
  printf("I'm on the highway to hell!\n");
}//fin programme
```

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Entrées/Sorties (4)

- Comment écrire un message à l'écran qui affiche le contenu d'une variable?
- 2 étapes
 - 1. inclure la librairie stdio.h
 - 2. utiliser l'instruction printf (message, expression);
 - message est une chaîne de caractères entre guillemets avec un <u>formatage</u>
 - expression est la liste des expressions qu'on veut afficher
 - · chaque expression est séparée par une virgule

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

50

Entrées/Sorties (5)

• Exemple 1

```
#include <stdio.h>

int main(){
  int x = 5;
  float y = 5.4;
  char c = 'a';

printf("La variable x vaut %d\n", x);
  printf("La variable y vaut %f\n", y);
  printf("La variable c vaut %c\n", c);
  printf("Les 3 variables valent: %d %f %c\n", x, y, c);
}//fin programme
```

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Entrées/Sorties (6)

• Les Entrées/Sorties nécessitent un formatage en fonction du type primitif

Type Primitif	Formatage	Exemple
int	%d	int i=-10; printf("%d", i);
float	%f	float x=2.0/3.0; printf("%f", x);
double	%lf	double x=2.0/3.0; printf("%lf", x);
char	%C	char car='a'; printf("%c", car);
long	%ld	long int li=1000; printf("%ld",li);
short	%hd	short si=1; printf("%hd", si);
unsigned int	%u	unsigned int ui = 10; printf("%u", ui);
unsigned long	%lu	unsigned long ul = 10; printf("%lu", ul);
unsigned short	%hu	unsigned short us = 10; printf("%hu", us);

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

61

Entrées/Sorties (7)

- Exemple 2
 - calcul de l'aire d'un cercle

```
#include <stdio.h>

int main(){
    //Déclaration des variables
    const double PI = 3.1415;
    double rayon = 4.0;
    double aire = 0.0;

    //Instructions de calcul/manipulation des variables
    aire = PI * (rayon * rayon);

    printf("L'aire du cercle est: %lf\n", aire);
}//fin programme
```

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Entrées/Sorties (8)

- Comment faire pour lire une donnée au clavier?
- 2 étapes
 - 1. inclure la librairie stdio.h
 - 2. utiliser l'instruction scanf (format, variable);
 - format est une chaîne de caractères, entre guillemets, qui indique le formatage (cfr. slide 61)
 - variable est la variable, précédée du caractère &, qui va contenir ce qui est lu au clavier
 - possibilité de lire plusieurs variables d'un seul coup

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Entrées/Sorties (9)

• Exemple 1

```
#include <stdio.h>
int main(){
  int x;
  float y;

  scanf("%d", &x);
  scanf("%f", &y);
  printf("Les 2 variables valent: %d %f\n", x, y);
  scanf("%d %f", &x, &y);
  printf("Les 2 variables valent: %d %f\n", x, y);
}//fin programme
```

Entrées/Sorties (10)

- Exemple 2
 - calcul de l'aire d'un cercle

```
#include <stdio.h>
int main(){
   //Déclaration des variables
   const double PI = 3.1415;
   double rayon;
   double aire = 0.0;

   //Instructions de calcul/manipulation des variables
   printf("Entrez une valeur pour le rayon: ");
   scanf("%lf", &rayon);

   aire = PI * (rayon * rayon);

   printf("L'aire du cercle est: %lf\n", aire);
}//fin programme
```

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

65

Type Cast

- Possibilité d'affecter à une variable de type t₁ une valeur d'un autre type t₂
 - une conversion de la valeur vers le type t₁ est alors effectuée
 - type cast

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Type Cast (2)

- Il existe deux types de type cast
 - 1. casting **implicite**

```
int main(){
   double p = 3.1416;
   int x;
                   x prend la valeur 3
}//fin programme
```

- Règles de conversion
 - √ promotion entière
 - les types plus petits ou égaux à int (i.e., char et short) sont automatiquement convertis en int avant toute opération
 - opérandes de types différents?
 - le type faible est converti dans le type fort
 - hiérarchie de type (int < long < float < double < long double)
 - √ perte de précision

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Type Cast (3)

- Casting implicite
 - exemple

```
int n;
long p;
float x;
```


Type Cast (4)

- Il existe deux types de type cast
 - 2. casting explicite
 - format

```
(type) expression
```

- la valeur est celle de expression convertie en type

```
int main(){
  double a = 2.0;
  double b = 3.0, x;
  int y;
  x = a/b;  x prend la valeur 0.66666...
  y = (int)a/(int)b;  y prend la valeur 0
}//fin programme
```

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

69

Type Cast (5)

- Casting explicite
 - exemples

```
int n=7, p=2;
```

type et valeur des expressions suivantes?

type: ??? valeur: ???

(double) (n/p)

type: ??? valeur: ???

(double) n/p

type: ??? valeur: ???

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Commentaires

- Un programme n'est pas uniquement destiné à être exécuté
 - il doit être tenu à jour par les programmeurs
 - il peut être modifié au cours du temps, pour répondre à de nouvelles exigences
- Les commentaires permettent de rendre un programme lisible
 - //

 ✓ commente une ligne
 - commente tout ce qui se trouve entre /* et */

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

71

Commentaires (2)

Exemple

```
int main(){
   //je commente une seule ligne

   /*
   je commente plusieurs lignes
   en une seule fois
   */
}//fin programme
```

INFO0946 - ULiège - 2023/2024 - Benoit Donnet

Exercices

- Transformer une température en degré Fahrenheit (saisie au clavier) en degré Celsius et afficher la transformation à l'écran
 - $C \sim 0.55556 \times (F 32)$
- Soit la fonction f définie par $f(x) = (2x+3)(3x^2+2)$
 - calculer et afficher l'image par f d'un nombre saisi au clavier
 - calcul et afficher une approximation de la dérivée f de f en un point x (entré au clavier), pour un h assez petit (saisi au clavier)

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

INFO0946 - ULiège - 2023/2024 - Benoit Donnet