Euclid would approve with glee How territoriality
Of bunting perched upon a stone Is asymptote to hypercone

- Bruce G. Marcot, "ODE TO THE NICHE (AN ECOLOGIST'S NIGHTMARE)"

Hierarchical Modeling in Ecology

Andy Crosby

Cesar Estavo

Since that time, I have sometimes been accused of being a "modeler." I wish to state that I am not now nor have I ever been a "modeler." I was (and am) an ecologist who needed a model.

 David J. Mladenoff (Creator of the LANDIS forest simulation model)

Likely describes the majority of us!

Objectives:

- Introduce hierarchical models as a way to think about ecological data
- De-mistify the modeling process
- Give some examples of HM applications

Resources:

Why models?

Why models?

Why models?

H-D Method (Romesburg 1981)

Retroduction

- 1. Data reflects multiple distinct processes
 - A. Ecological process of interest
 - B. Observation process that produced the count

2. Hierarchically-structured systems

2. Hierarchically-structured systems

Individuals

2. Hierarchically-structured systems

Individuals

Populations

2. Hierarchically-structured systems

3. Scale-dependent processes

3. Scale-dependent processes

3. Scale-dependent processes

Conceptual correspondence

- 1. Levels of organization
- 2. Scales of different processes

3. Hierarchical models

What do we mean by hierarchical?

- Coupled sets of models that are conditionally related (e.g. the simplest occupancy model)
 - Model 1: the ecological process:

 $z_i \sim Bernoulli(\psi)$ - where z is 0 or 1

Model 2: the observation process

 $y_{i,j}|z_i \sim Bernoulli(z_ip)$ - where y is 0 or 1

y is the data

Translation: Ecological model

- ullet ψ is the probability that a site is occupied
- z_i (occupied or not) is a random variable where success (z_i =1) has probability ψ

$$z_i \sim Bernoulli(\psi)$$

• ψ can be modeled as a function of covariates

$$logit(\psi_i) = \alpha + \beta X_i$$

Translation: Observation model

- *p* is the probability of detection
- $y_{i,j}$ (detected or not) is a random variable where success $(y_{i,j}=1)$, **conditional on z**, has probability $z_i \times p$

$$y_{i,j}|z_i \sim Bernoulli(z_i p)$$

• p can be modeled as a function of covariates

$$logit(p_{i,j}) = \alpha + \beta X_{i,j}$$

English translation:

1. Site *i* has probability ψ of being occupied

$$z_i \sim Bernoulli(\psi)$$

2. Conditional on site *i* being occupied, we can detect the species with probability *p*

$$y_{i,j}|z_i \sim Bernoulli(z_i p)$$

What **don't** we mean by hierarchical

• Doesn't imply Bayesian or Frequentist

Doesn't have to be about detection

Doesn't have to be complicated

Example: zero-inflated abundance model

• Model 1: the occupancy process:

 $z_i \sim Bernoulli(\psi)$ - where z is 0 or 1

Model 2: the abundance process

 $N_i|z_i \sim Poisson(z_i\lambda)$ - where N is an integer

Model 3: the detection process

 $y_{i,j}|N_i \sim Binomial(N_i, p)$ - where y is the count

English translation:

1. Site *i* has probability ψ of being occupied

$$z_i \sim Bernoulli(\psi)$$

2. Conditional on site *i* being occupied, the site has an expected abundance of lambda

$$N_i|z_i \sim Poisson(z_i\lambda)$$

3. Conditional on abundance at site i, the expected count is binomial with N_i trials an probability of success p

$$y_{i,j}|N_i \sim Binomial(N_i, p)$$

English translation:

1. Site *i* has probability ψ of being occupied

$$z_i \sim Bernoulli(\psi)$$

$$logit(\psi_i) = \alpha + \beta X_i$$

2. Conditional on site *i* being occupied, the site has an expected abundance of lambda

$$N_i|z_i \sim Poisson(z_i\lambda)$$

$$log(\lambda_i) = \alpha + \beta X_i$$

$$z = 1$$

$$\theta \quad \theta \quad \theta \quad \theta \quad \theta$$

 $z_i \sim Bernoulli(\psi_i)$

$$z_i \sim Bernoulli(\psi_i)$$
 $u_{i,j}|z_i \sim Bernoulli(\theta_{i,j})$

 $z_i \sim Bernoulli(\psi_i)$ $u_{i,j}|z_i \sim Bernoulli(\theta_{i,j})$ $x_{i,j,k}|u_{i,j} \sim Bernoulli(\delta_{i,j,k})$

 $z_i \sim Bernoulli(\psi_i)$

 $u_{i,j}|z_i \sim Bernoulli(\theta_{i,j})$

 $x_{i,j,k}|u_{i,j}\sim Bernoulli(\delta_{i,j,k})$

 $y_{i,j,k,l}|x_{i,j,k}\sim Bernoulli(p_{i,j,k,l})$

The Conceptual Middle Ground

- The Observation-driven View
 - e.g. Mark-recapture analysis

- The Process-driven View
 - e.g. Leslie matrix models
- The Hierarchical View
 - Accounts for both; includes all uncertainty

Bayesian vs. Frequentist

- I use Bayesian methods because:
- 1. Limits on MLE complexity
- 2. Intuitively easier to understand models
- 3. Freedom to develop more specific models

BUGS model formulation

```
for(i in 1:sites){
    z[i] ~ dbern(psi)
    for(j in 1:surveys){
        y[i,j] ~ dbern(z[i]*p)
    }
}
```


BUGS model with covariates

```
for(i in 1:sites){
 psi[i] <- alpha + beta*x[i]
 z[i] \sim dbern(psi[i])
 for(j in 1:surveys){
  p[i] \leftarrow alpha.p + beta.p*x[i]
  y[i,j] \sim dbern(z[i]*p[i])
```

