# Discrete Damage

Andres, Seb, ...

a,,,,,

## **Abstract**

Keywords:

#### 1. Variational formulation

A bar of length L and section S is stretched along the x axis. The material of the bar has nominal Young's modulus Y. We note u(x) the horizontal displacement. The bar is clamped at its left end, and a displacement  $\Delta \ge 0$  is imposed of the right end

$$u(0) = 0, \quad u(L) = \Delta \tag{1}$$

The total energy of the bar is

$$\mathcal{E}(\epsilon(x), \alpha(x)) = \int_0^L \frac{1}{2} YS \, a(\alpha(x)) \, \epsilon^2(x) \, \mathrm{d}x + \int_0^L WS \, w(\alpha(x)) \, \mathrm{d}x \tag{2}$$

where the first integral is the strain energy and W is the dissipated energy (per unit volume) due to damage and  $\epsilon$  is the longitudinal strain. The functions  $a(\alpha)$  and  $w(\alpha)$  are non-dimensionalized functions, to be discussed later on. As the boundary conditions are written with u(x), we need to include the constraint

$$\epsilon = u'(x) \tag{3}$$

that is, work with the Lagrangian

$$\mathcal{L}(\epsilon, \alpha, u) = \mathcal{E}(\epsilon, \alpha) - \int_0^L \sigma(x) S(\epsilon - u') dx$$
 (4)

where the continuous lagrange multiplier  $\sigma(x)$  is identified with the axial stress in the bar.

# 2. Non-dimensionalisation

In this statics problem, we can freely (and with no loss of generality) choose a unit length and a unit force. We choose L as unit length, and YS as unit force. We introduce the 'hat' adim variables

$$\hat{x} = x/L, \ \hat{u} = u/L, \ \hat{\Delta} = \Delta/L, \ \hat{W} = W/Y, \ \hat{\sigma} = \sigma/Y, \ \hat{\mathcal{E}} = \frac{\mathcal{E}}{YSL}, \ \hat{\mathcal{L}} = \frac{\mathcal{L}}{YSL}$$
 (5)

and simplify (4) to

$$\hat{\mathcal{E}}(\epsilon,\alpha) = \int_0^1 \frac{1}{2} a(\alpha) \,\epsilon^2(\hat{x}) \,\mathrm{d}\hat{x} + \int_0^1 \hat{W}w(\alpha) \,\mathrm{d}\hat{x} \tag{6a}$$

$$\hat{\mathcal{L}}(\epsilon, \alpha, \hat{u}) = \hat{\mathcal{E}}(\epsilon, \alpha) - \int_{0}^{1} \hat{\sigma}(\hat{x}) \left(\epsilon - u'(\hat{x})\right) d\hat{x}$$
 (6b)

And from now on, we drop the 'hats' while keeping in mind that we deal with adim variables.

What's your moto? XXX May 29, 2023

### 3. First variation

We seek extremal configurations of  $\mathcal{E}(\epsilon, \alpha)$ , under the constraints (3) and (1). Applying the lagrange multiplier rule, we work with  $\mathcal{L}$  and look for the conditions under which the first variation of  $\mathcal{L}$  vanishes, for the two variables  $\epsilon$  and  $\hat{u}$ . The minimisation with regard to the third variable  $\alpha$ , involving irreversibility conditions, will be considered in a second step. We introduce the variations  $\bar{\epsilon}(x)$ ,  $\bar{u}(x)$ . The boundary conditions (1) imply that

$$\bar{u}(0) = 0 \text{ and } \bar{u}(1) = 0$$
 (7)

$$\frac{\mathcal{L}(\epsilon + \eta \bar{\epsilon}, \alpha, u + \eta \bar{u}) - \mathcal{L}(\epsilon, \alpha, u)}{\eta} \bigg|_{\eta \to 0} = \int_{0}^{1} a(\alpha) \, \epsilon \, \bar{\epsilon} \, \mathrm{d}x - \int_{0}^{1} \sigma(x) \, (\bar{\epsilon} - \bar{u}') \, \mathrm{d}x = 0 \quad \forall \, \bar{\epsilon}, \, \bar{u}$$
 (8a)

$$= \int_0^1 (a(\alpha)\,\epsilon - \sigma(x))\,\bar{\epsilon} - \sigma'(x)\,\bar{u}\,\mathrm{d}x = 0 \quad \forall\,\bar{\epsilon},\,\bar{u}$$
 (8b)

The boundary term involved in the integration by part on  $\bar{u}'(x)$  identically vanishes because of (7). Condition (8b) consequently yield

$$\sigma'(x) = 0 \tag{9a}$$

$$\sigma = a(\alpha(x)) \epsilon(x) \tag{9b}$$

We find that the axial stress in the beam  $\sigma$  is uniform. As the damage field  $\alpha(x)$  might not be uniform, the longitudinal strain  $\epsilon(x)$  still generically depend on x. We now seek to minimise  $\mathcal{E}$  using the equilibrium conditions we have just found. First we discard the variable u(x) and replace the imposed displacement condition (1) with

$$u(1) - u(0) = \int_0^1 u'(x) \, \mathrm{d}x = \int_0^1 \epsilon(x) \, \mathrm{d}x = \Delta$$
 (10)

Consequently we now work with the Lagrangian

$$\mathcal{L}(\epsilon(x), \alpha(x)) = \int_0^1 \frac{1}{2} a(\alpha) \, \epsilon^2 \, \mathrm{d}x + \int_0^1 Ww(\alpha) \, \mathrm{d}x - \sigma \int_0^1 \epsilon(x) \, \mathrm{d}x \tag{11}$$

where the lagrange multiplier associated the the displacement condition (10) is directly identified with  $\sigma$ , the axial stress in the bar which is also the applied external tension. Extremizing with regard to  $\epsilon(x)$  leads to (9b) which we use to rewrite (10) as

$$\sigma = \frac{\Delta}{\int_0^1 a^{-1}(\alpha) \, \mathrm{d}x} \tag{12}$$

which enable us to rewrite the strain energy as

$$\int_0^1 \frac{1}{2} a(\alpha) \, \epsilon^2 \, \mathrm{d}x = \int_0^1 \frac{1}{2} \, \frac{\sigma^2}{a(\alpha)} \, \mathrm{d}x = \frac{1}{2} \, \frac{\Delta^2}{\int_0^1 a^{-1}(\alpha) \, \mathrm{d}x}$$
 (13)

We finally obtain an energy which only depends on  $\alpha(x)$ 

$$\mathcal{E}(\alpha(x)) = \frac{1}{2} \frac{\Delta^2}{\int_0^1 a^{-1}(\alpha) \, \mathrm{d}x} + \int_0^1 Ww(\alpha) \, \mathrm{d}x$$
 (14)

During the loading process,  $\Delta = \Delta(t)$ , the field  $\alpha(x, t)$  cannot decrease. A necessary condition is that, at all time

$$\forall x: \quad \dot{\alpha}(x,t) \ge 0 \text{ and } \mu(x) \ge 0 \text{ and } \mu(x) \dot{\alpha}(x,t) = 0$$
 (15a)

with 
$$\frac{\mathcal{E}(\alpha + \eta \bar{\alpha}) - \mathcal{E}(\alpha)}{\eta} \Big|_{\eta \to 0} = \int_0^1 \mu(x) \bar{\alpha} \, dx \, \forall \bar{\alpha}$$
 (15b)

hence 
$$\mu(x) = W w'(\alpha) + \frac{1}{2} \frac{a'(\alpha)}{a^2} \frac{\Delta^2}{\left(\int_0^1 a^{-1}(\alpha) dx\right)^2}$$
 (15c)

And a sufficient condition is

$$\forall \bar{\alpha} \ge 0: \int_0^1 W w''(\alpha) \bar{\alpha}^2 \, \mathrm{d}x + \frac{1}{2} \frac{\Delta^2}{\left(\int_0^1 a^{-1}(\alpha) \, \mathrm{d}x\right)^2} \int_0^1 \left(\frac{a''(\alpha)}{a^2} - 2\frac{a'(\alpha)^2}{a^3}\right) \bar{\alpha}^2 \, \mathrm{d}x + \Delta^2 \frac{\left(\int_0^1 \frac{a'(\alpha)}{a^2} \bar{\alpha} \, \mathrm{d}x\right)^2}{\left(\int_0^1 a^{-1}(\alpha) \, \mathrm{d}x\right)^3} > 0 \tag{16}$$

or, setting  $s(\alpha) = 1/a(\alpha)$ 

$$\forall \bar{\alpha} \ge 0: \int_{0}^{1} Ww''(\alpha)\bar{\alpha}^{2} dx - \frac{1}{2} \frac{\Delta^{2}}{\left(\int_{0}^{1} s(\alpha) dx\right)^{2}} \int_{0}^{1} s''(\alpha) \bar{\alpha}^{2} dx + \Delta^{2} \frac{\left(\int_{0}^{1} s'(\alpha) \bar{\alpha} dx\right)^{2}}{\left(\int_{0}^{1} s(\alpha) dx\right)^{3}} > 0$$
(17)

## 4. Discretisation



Figure 1: —.

We introduce N segments of equal size h = 1/N, with  $s_i = i h$  and  $i \in (1; N)$ , and use the following base functions, see Figure 1

$$H_i(x) = 1 \text{ if } x_{i-1} \le x \le x_i$$
 (18a)

$$H_i(x) = 0$$
 otherwise (18b)

The variation  $\bar{\alpha}(x)$  and  $\alpha(x)$  are represented as

$$\bar{\alpha}(s) = \sum_{i=1}^{N} \bar{\alpha}_i H_i(s)$$
 (19a)

$$\alpha(s) = \sum_{i=1}^{N} \alpha_i H_i(s)$$
 (19b)

We note  $S = \int_0^1 s(\alpha) dx$ . The second variation in (17) can then be written in matrix form as

for 
$$i \neq j$$
:  $H_{ij} = \Delta^2 h^2 \frac{s'(\alpha_i) s'(\alpha_j)}{S^3}$  (20a)

$$H_{ii} = h W w''(\alpha_i) - \frac{\Delta^2}{2} h \frac{s''(\alpha_i)}{S^2} + \Delta^2 h^2 \frac{s'(\alpha_i)^2}{S^3}$$
 (20b)

And the condition (17) can be written as

$$\forall \bar{\alpha}_i > 0, \forall \bar{\alpha}_j > 0: \sum_{i,j} H_{ij} \,\bar{\alpha}_i \,\bar{\alpha}_j > 0$$
(21)

this condition is fulfilled if (theorem NB, mais andres dit que c'est Frobenius-Peron...)

$$\forall i, j: H_{ij} > 0 \tag{22}$$

en fait c'est faux, c'est plutot

$$\forall i: 0 < H_{ij} \tag{23a}$$

$$\forall i: 0 < H_{ij}$$

$$\forall i \neq j: -\sqrt{H_{ii}H_{jj}} < H_{ij}$$
(23a)
(23b)