Phase 2 - EDA + Machine Learning with XGB

- More information Phase 0 (Business Requirement) and Phase 1 (EDA using Python)
- In this Notebook we will do more exploratory data analysis and execute machine learning algorithms
- At the end is going to be provided a summary analysis and expected to answer the business questions (phase 0)

Prediction of Revenue in 2008

Packages used in this Notebook

- tidyverse
- xgboost
- · Ckmeans.1d.dp
- caret
- MLmetrics
- to install a package just run the command for example: install.packages('MLmetrics')

In [2]: library(tidyverse)
library(xgboost)

Info - dataset

· the public dataset used in this process can be accessed trought IBM website below

https://www.ibm.com/communities/analytics/watson-analytics-blog/guide-to-sample-datasets/ (https://www.ibm.com/communities/analytics/watson-analytics-blog/guide-to-sample-datasets/)

```
In [3]: df <- read_csv('../data/WA_Retail-SalesMarketing_-ProfitCost.csv')

## remove records without revenue
df <- na.omit(df)

## Columns used for prediction
col_revenue <- c(
    'Year'
    , 'Product line'
    , 'Product type'
    , 'Product'
    , 'Order method type'
    , 'Retailer country'
    , 'Revenue')

df <- df[col_revenue]

df %>% head(5)

Parsed with column specification:
cols(
    Year = col_integer(),
```

Parsed with column specification:
cols(
Year = col_integer(),
<pre>`Product line` = col_character(),</pre>
<pre>`Product type` = col_character(),</pre>
<pre>Product = col_character(),</pre>
`Order method type` = col_character(),
`Retailer country` = col_character(),
<pre>Revenue = col_double(),</pre>
`Planned revenue` = col_double(),
`Product cost` = col_double(),
Quantity = col_integer(),
`Unit cost` = col_double(),
`Unit price` = col_double(),
`Gross profit` = col_double(),
`Unit sale price` = col_double()
)

Year	Product line	Product type	Product	Order method type	Retailer country	Revenue
2004	Camping Equipment	Cooking Gear	TrailChef Water Bag	Telephone	United States	315044.33
2004	Camping Equipment	Cooking Gear	TrailChef Water Bag	Telephone	Canada	13444.68
2004	Camping Equipment	Cooking Gear	TrailChef Water Bag	Telephone	Japan	181120.24
2004	Camping Equipment	Cooking Gear	TrailChef Water Bag	Telephone	China	69608.15
2004	Camping Equipment	Cooking Gear	TrailChef Water Bag	Telephone	Singapore	30940.35

Basic information / distribution of the data

```
df <- df %>% mutate_if(is.character, as.factor)
In [4]:
        options(repr.plot.width = 9, repr.plot.height = 3)
        gg1 <- qplot(data=df, x=`Order method type`, y=Revenue, geom='col', fill=Year, main = 'R
          scale_y_continuous(name="Revenue", labels = scales::comma) + coord_flip() +
          theme(axis.title.x=element_blank(),
                axis.text.x=element_blank(),
                axis.ticks.x=element_blank())
        gg2 <- qplot(data=df, x=`Retailer country`, y=Revenue, geom='col', fill=Year, main = 'Re
          scale_y_continuous(name="Revenue", labels = scales::comma) + coord_flip() +
          theme(axis.title.x=element_blank(),
                axis.text.x=element_blank(),
                axis.ticks.x=element blank())
        gridExtra::grid.arrange(gg1, gg2, nrow = 1)
```


Analyze Revenue by Product line with Year distribution

```
In [5]:
         options(repr.plot.width = 8, repr.plot.height = 2)
         ## revenue by product line by year
         qplot(data=df, x=`Product line`, y=Revenue, geom='col', fill=Year) +
            scale_y_continuous(name="Revenue", labels = scales::comma) + coord_flip()
                                                                                                     Year
                Personal Accessories
                                                                                                         2007
                  Outdoor Protection
          Mountaineering Equipment -
Golf Equipment -
                                                                                                         2006
```

2005

2004

1st Note

Camping Equipment:

Personal Accessories and Camping Equipment tend to have higher revenue than others

500,000,000

1,000,000,000

Revenue

1,500,000,000

- Order method type from Web provide the biggest revenues
- United States country also provide the biggest revenue

0

Distribution of the Revenue and evaluation of possible outliers

2nd Note

- Personal Accessories and Camping Equipment have more outliers with higher value in Year 2006
- Let's confirm the Total Revenue by Year (2006) and it's impact related to others

Info

- this type of scenario (higher revenue for specific items on specific year) must be better understanding
 with Line of Business Managers and also evaluate if it was just a sazonal discrepancie or some
 marketing campaign or business decision have bigger influence on these numbers
- Another important point to understand are related on how it can influence the prediction of the revenue for year 2008

Total Revenue by Year

```
In [7]:
         ## revenue by year -> fazer a simulacao/modelo somente com estes dados
         options(repr.plot.width = 8, repr.plot.height = 2)
         qplot(data=df, x=Year, y=Revenue, geom='col', fill=Year)+
           scale_y_continuous(name="Revenue", labels = scales::comma) + coord_flip()
                                                                                                 Year
            2007 -
                                                                                                    2007
            2006
                                                                                                    2006
            2005
                                                                                                    2005
            2004
                                                                                                    2004
                                                              1,000,000,000
                                                                                      1,500,000,000
                                       500,000,000
```

Revenue

Start the Prediction of Revenue for year - 2008

- Will be used XGBoost to predict the revenue in 2008
- Use Caret to partition the train and test data
- Compare the results achieved with XGB vs Random Forest in Phase 1

Aditional info

• Were not provided one dataset by the business users related to year 2008

XGBoost documentation and samples:

https://xgboost.readthedocs.io/en/latest/ (https://xgboost.readthedocs.io/en/latest/)

https://github.com/dmlc/xgboost (https://github.com/dmlc/xgboost)

```
In [8]: | ## define the target and prepare the data to run XGB
        target <- 'Revenue'
        idx_target <- which(col_revenue == target)</pre>
        dfxgb <- df %>% mutate_if(is.character, as.factor)
        dfxgb <- dfxgb %>% mutate_if(is.factor, as.integer)
        set.seed(12345)
        idx <- caret::createDataPartition(dfxgb$Revenue, p=0.80, list=FALSE)</pre>
        train <- dfxgb[idx, ]</pre>
        test <- dfxgb[-idx, ]</pre>
        dtrain <- xgb.DMatrix(data = as.matrix(train[, -idx_target]), label= train[[target]])</pre>
        dtest <- xgb.DMatrix(data = as.matrix(test[, -idx_target]))</pre>
In [9]: | ## execution of XGB
        set.seed(12345)
        fit.xgb <- xgboost(data = dtrain,</pre>
                            objective = "reg:linear",
                            booster = "gbtree",
                             print_every_n = 25, ## print every 25
                            nrounds = 350)
        [1]
                 train-rmse:368519.000000
        [26]
                 train-rmse:161832.156250
        [51]
                train-rmse:131686.859375
                 train-rmse:110794.734375
        [76]
        [101]
                train-rmse:101309.117188
        [126]
                train-rmse:92665.507812
                train-rmse:87156.484375
        [151]
        [176]
                train-rmse:83507.718750
                train-rmse:79411.625000
        [201]
        [226] train-rmse:75475.070312
        [251]
                train-rmse:72690.914062
        [276]
                train-rmse:70538.992188
        [301]
               train-rmse:68313.281250
        [326] train-rmse:66531.570312
        [350]
                train-rmse:64893.933594
```

3rd Note

- XGB have a lot of parameters to tune XGB documentation link provided above
- The printed result shows the improvement of the training process at every 25 steps as detailed in print_every_n = 25, and use rmse evaluation metric

Info

• The Random Forest Regressor/Phase_1 (Python - sklearn) use R^2 to evaluate the prediction and will be used also below to compare both metrics. Our target is to achieve R^2 near to 1

RMSE: Root Mean Squared Error

https://en.wikipedia.org/wiki/Root-mean-square_deviation (https://en.wikipedia.org/wiki/Root-mean-square_deviation)

R^2: Coeficient of determination

https://en.wikipedia.org/wiki/Coefficient_of_determination (https://en.wikipedia.org/wiki/Coefficient_of_determination)

** In regression, the R2 coefficient of determination is a statistical measure of how well the regression predictions approximate the real data points. An R2 of 1 indicates that the regression predictions perfectly fit the data

Feature importance

Note

 the 3 most important features still the same (Product, Retailer country and Order method type) however with XGB the most import feature is Product

```
In [10]: ### feature importance
    ## importance variable of the xgb model
    imp_features <- xgb.importance(model = fit.xgb)

print(imp_features)

## Plot Feature importance
    xgb.ggplot.importance(imp_features, rel_to_first = TRUE)</pre>
```

```
Feature Gain Cover Frequency
1: Product 0.30438392 0.49273598 0.25324370
2: Retailer country 0.23113830 0.22153642 0.30001880
3: Order method type 0.21003098 0.08815150 0.17826250
4: Product type 0.10035484 0.09174638 0.06788266
5: Year 0.07737424 0.07443256 0.15739000
6: Product line 0.07671772 0.03139716 0.04320233
```


Compare the prediction between XGB and Random Forest (Phase_1)

Important note

[1] 0.9016625

- The prediction provided by XGB achieve an R^2 of 0.9016625 and is 6% higher than Random Forest in Phase 1 (0.8442048767542322) and is a good improvement, so we can keep the prediction with XGB
- Let's move on and evaluate the revenue prediction for the year 2008

```
In [12]: | ## The Business Requirement request to predict the revenue for 2008 but do not provide d
          ## the trick here => we will use the same products sold on 2007 to predict the Revenue f
          #### the model used have R^2 of 0.9016 so we expect to achieve a confident result
          df_2008 <- dfxgb %>% filter(Year==2007)
          ## update Year to 2008 and setup the Revenue to 0 -> Revenue will be updated with the pr
          df 2008$Year <- 2008
          df_2008$Revenue <- 0
          print('----- INITIAL dataset: 2008 YEAR')
          print(summary(df_2008))
          ## gernerate the data to use with XGB model (fit.xgb)
          xgb_2008 <- xgb.DMatrix(data = as.matrix(df_2008[, -idx_target]), label= df_2008[[target]</pre>
          predict_revenue_2018 <- predict(fit.xgb, xgb_2008)</pre>
          predict_revenue_2018 <- ifelse(predict_revenue_2018 < 1, 0, predict_revenue_2018)</pre>
          ## update the Revenue predition for year 2008 and compare with other Years
          df_2008$Revenue <- predict_revenue_2018</pre>
          ## generate one dataset to compare the revenue form all Years
          df_all <- rbind(dfxgb, df_2008)</pre>
          print('----- PREDICTION: 2008 YEAR')
          summary(df_all)
          [1] "----- INITIAL dataset: 2008 YEAR"
                           Product line Product type Product
           Min. :2008 Min. :1.000 Min. : 1.00 Min. : 1.00 1st Qu.:2008 1st Qu.:1.000 1st Qu.: 4.00 1st Qu.: 36.00
           Median :2008 Median :3.000 Median :10.00 Median : 68.00
           Mean :2008 Mean :2.937 Mean :10.64 Mean : 70.36
           3rd Qu.:2008 3rd Qu.:5.000 3rd Qu.:16.00 3rd Qu.:106.00
           Max. :2008 Max. :5.000 Max. :21.00 Max. :144.00
           Order method type Retailer country Revenue
           Min. :1.000 Min. : 1.00 Min. :0

1st Qu.:4.000 1st Qu.: 6.00 1st Qu.:0

Median :7.000 Median :12.00 Median :0

Mean :5.773 Mean :11.57 Mean :0

3rd Qu.:7.000 3rd Qu.:17.00 3rd Qu.:0

Max. :7.000 Max. :21.00 Max. :0
          [1] "----- PREDICTION: 2008 YEAR"
                           Product line Product type
                                                                  Product
                Year
           Min. :2004 Min. :1.000 Min. : 1.00 Min. : 1.00
           1st Qu.:2005    1st Qu.:1.000    1st Qu.: 4.00    1st Qu.: 35.00    Median :2006    Median :3.000    Median :10.00    Median : 71.00
           Mean :2006 Mean :2.951 Mean :10.52 Mean : 71.63
           3rd Qu.:2007 3rd Qu.:5.000 3rd Qu.:16.00 3rd Qu.:109.00
           Max. :2008 Max. :5.000 Max. :21.00 Max. :144.00
           Order method type Retailer country Revenue
           Min. :1.000 Min. : 1.00 Min. : 0
1st Qu.:4.000 1st Qu.: 6.00 1st Qu.: 19549
Median :6.000 Median :11.00 Median : 65002
Mean :5.309 Mean :11.46 Mean : 197870
3rd Qu.:7.000 3rd Qu.:17.00 3rd Qu.: 207914
Max. :7.000 Max. :21.00 Max. :10054289
```

Evalute the Revenue Prediction for 2008

Info: The Revenue for 2008 Year are predictions and from 2004 to 2007 are real Revenue


```
In [14]: ## Revenue by Year
    revenue_by_year <- df_all %>% group_by(Year) %>% summarise(Total_Revenue = sum(Revenue))
    print(revenue_by_year)
```

```
# A tibble: 5 x 2
   Year Total Revenue
  <dbl>
                 <dbl>
   2004
           914352804.
2
  2005
          1159195590.
3
  2006
          1495891101.
   2007
          1117336274.
   2008
          1132382363.
```

Insights

- The revenue prediction for the year 2008 is bigger than 2007 and smaller than the year 2005
- The higher revenue of year 2006 seems to not impact the prediction of the revenue for 2008
 - => the higher outliers exposed in the boxplot chart seems to not impact in the revenue prediction
- The confidence of this prediction is quite high so let's answer the final business questions
 - what are the divergence expected on revenue in 2008?

Analysis - Revenue Prediction of 2008 vs (2005 and 2007)

```
Percent Revenue_2008_vs_2005

97.69

[1] " ------ Revenue 2008 vs 2007 "

Percent Revenue_2008_vs_2007

101.35
```

Summary

· Answers for the Business Requirement

The revenue prediction for year 2008 can be done and the 3 most important features to predict revenue are

- Product
- · Retailer country and
- · Order method type

The prediction confidence is high

Achieved an R² of 0.9016 and we can fill confident with the prediction numbers

The divergence related to the revenue prediction are

- ** Based on the assumption to sell the same products of the year 2007
 - Revenue prediction for 2008 are expected to be 2.5% smaller than the year 2005 and
 - Revenue prediction for 2008 are expected to be 1.5% higher than the last year (year 2007)

```
In [16]: print('----- THE END')

[1] "----- THE END"
```