Deep Learning for Small Datasets

DAPHNÉ CHOPARD

Overall Goal (Supervised)

Given X and Y, and assuming there exists a true function $f(\cdot)$ such that

$$Y = f(X) + \epsilon, \qquad \epsilon \sim \mathcal{N}(0, \sigma_{\epsilon})$$

the goal is to **estimate a model** $\hat{f}(\cdot)$ **that approximates** $f(\cdot)$ such that

$$\left(Y-\hat{f}(X)\right)^2$$

is minimal.

Overall Goal

Estimate relationship between input *X* and output *y*:

$$\hat{f}(X) = y$$

Overall Goal

Estimate relationship between input *X* and output *y*:

$$\hat{f}(X) = y$$

Overall Goal

Estimate relationship between input *X* and output *y*:

$$\hat{f}(X) = y$$

Expected Generalization Error

$$\operatorname{Err}(x) = E\left[\left(\left(Y - \hat{f}(x)\right)^2\right)\right]$$

$$\operatorname{Err}(x) = E\left[\left(\left(Y - \hat{f}(x)\right)^2\right)\right]$$

$$= f(x)^{2} + E[\hat{f}(x)^{2}] - 2E[\hat{f}(x)]f(x) + \sigma_{\epsilon}^{2}$$

$$\operatorname{Err}(x) = E\left[\left(\left(Y - \hat{f}(x)\right)^{2}\right)\right]$$

$$= f(x)^{2} + E[\hat{f}(x)^{2}] - 2E[\hat{f}(x)]f(x) + \sigma_{\epsilon}^{2}$$

$$= f(x)^{2} - 2E[\hat{f}(x)]f(x) + E[\hat{f}(x)^{2}] + \sigma_{\epsilon}^{2}$$

$$\operatorname{Err}(x) = E\left[\left(\left(Y - \hat{f}(x)\right)^{2}\right)\right]$$

$$= f(x)^{2} + E[\hat{f}(x)^{2}] - 2E[\hat{f}(x)]f(x) + \sigma_{\epsilon}^{2}$$

$$= E[\hat{f}(x)]^{2} + f(x)^{2} - 2E[\hat{f}(x)]f(x) + E[\hat{f}(x)^{2}] - E[\hat{f}(x)]^{2} + \sigma_{\epsilon}^{2}$$

$$\operatorname{Err}(x) = E\left[\left(\left(Y - \hat{f}(x)\right)^{2}\right)\right]$$

$$= f(x)^{2} + E[\hat{f}(x)^{2}] - 2E[\hat{f}(x)]f(x) + \sigma_{\epsilon}^{2}$$

$$= E[\hat{f}(x)]^{2} + f(x)^{2} - 2E[\hat{f}(x)]f(x) + E[\hat{f}(x)^{2}] - E[\hat{f}(x)]^{2} + \sigma_{\epsilon}^{2}$$

$$= \left(E[\hat{f}(x)] - f(x)\right)^{2} + E[(\hat{f}(x) - E[\hat{f}(x)])^{2}) + \sigma_{\epsilon}^{2}$$

$$\operatorname{Err}(x) = E\left[\left(\left(Y - \hat{f}(x)\right)^{2}\right)\right]$$

$$= f(x)^{2} + E[\hat{f}(x)^{2}] - 2E[\hat{f}(x)]f(x) + \sigma_{\epsilon}^{2}$$

$$= E[\hat{f}(x)]^{2} + f(x)^{2} - 2E[\hat{f}(x)]f(x) + E[\hat{f}(x)^{2}] - E[\hat{f}(x)]^{2} + \sigma_{\epsilon}^{2}$$

$$= \left(E[\hat{f}(x)] - f(x)\right)^{2} + E\left[\left(\hat{f}(x) - E[\hat{f}(x)]\right)^{2}\right) + \sigma_{\epsilon}^{2}$$
Squared Bias Error

$$\operatorname{Err}(x) = E\left[\left(\left(Y - \hat{f}(x)\right)^{2}\right)\right]$$

$$= f(x)^{2} + E[\hat{f}(x)^{2}] - 2E[\hat{f}(x)]f(x) + \sigma_{\epsilon}^{2}$$

$$= E[\hat{f}(x)]^{2} + f(x)^{2} - 2E[\hat{f}(x)]f(x) + E[\hat{f}(x)^{2}] - E[\hat{f}(x)]^{2} + \sigma_{\epsilon}^{2}$$

$$= \left(E[\hat{f}(x)] - f(x)\right)^{2} + E\left[\left(\hat{f}(x) - E[\hat{f}(x)]\right)^{2}\right] + \sigma_{\epsilon}^{2}$$
Squared Bias Error Variance Error

How far in general are the predictions from the correct value?

Bias
$$(\hat{f}(x)) = E[\hat{f}(x)] - f(x)$$

How far in general are the predictions from the correct value?

Bias
$$(\hat{f}(x)) = E[\hat{f}(x)] - f(x)$$

High bias?

How far in general are the predictions from the correct value?

Bias
$$(\hat{f}(x)) = E[\hat{f}(x)] - f(x)$$

High bias ⇔ model too simple to fit well

How far in general are the predictions from the correct value?

$$\operatorname{Bias}\left(\hat{f}(x)\right) = E[\hat{f}(x)] - f(x)$$

High bias ⇔ model too simple to fit well

How far in general are the predictions from the correct value?

Bias
$$(\hat{f}(x)) = E[\hat{f}(x)] - f(x)$$

High bias ⇔ model too simple to fit well

⇔ training error large

How far in general are the predictions from the correct value?

Bias
$$(\hat{f}(x)) = E[\hat{f}(x)] - f(x)$$

High bias ⇔ model too simple to fit well

⇔ training error large

Low bias \Leftrightarrow model complex enough to fit well

⇔ training error low

How much do the predictions vary between different model realizations?

$$\operatorname{Var}\left(\hat{f}(x)\right) = E\left[\hat{f}(x)^{2}\right] - E\left[\hat{f}(x)\right]^{2}$$

How much do the predictions vary between different model realizations?

$$\operatorname{Var}\left(\hat{f}(x)\right) = E\left[\hat{f}(x)^{2}\right] - E\left[\hat{f}(x)\right]^{2}$$

High variance?

How much do the predictions vary between different model realizations?

$$\operatorname{Var}\left(\hat{f}(x)\right) = E\left[\hat{f}(x)^{2}\right] - E\left[\hat{f}(x)\right]^{2}$$

High variance ⇔ model too complex

How much do the predictions vary between different model realizations?

$$\operatorname{Var}\left(\hat{f}(x)\right) = E\left[\hat{f}(x)^{2}\right] - E\left[\hat{f}(x)\right]^{2}$$

High variance ⇔ model too complex

How much do the predictions vary between different model realizations?

$$\operatorname{Var}\left(\hat{f}(x)\right) = E\left[\hat{f}(x)^{2}\right] - E\left[\hat{f}(x)\right]^{2}$$

High variance ⇔ model too complex

⇔ validation error large

How much do the predictions vary between different model realizations?

$$\operatorname{Var}\left(\hat{f}(x)\right) = E\left[\hat{f}(x)^{2}\right] - E\left[\hat{f}(x)\right]^{2}$$

High variance ⇔ model too complex to generalize well

⇔ validation error large

Low variance \Leftrightarrow model simple enough to generalize well

Bias-Variance

Repeat the model building process multiple times

The centre of the target is a model that perfectly predicts the correct values

Bias-Variance

Repeat the model building process multiple times

Bias-Variance

Repeat the model building process multiple times

Bias-Variance Trade-Off

Issues

Deep neural networks are prone to overfitting (highly complex models)

Model complexity tied to task complexity

Examples of Competitive DNN

	VGGNet	DeepVideo	GNMT
Used For	Identifying Image Category	Identifying Video Category	Translation
Input	Image	Video	English Text
Output	1000 Categories	47 Categories	French Text
Parameters	140M	~100M	380M
Data Size	1.2M Images with assigned Category	1.1M Videos with assigned Category	6M Sentence Pairs, 340M Words
Dataset	ILSVRC-2012	Sports-1M	WMT'14
	2014	2014	2016

Need to find balance

What if limited data?

- Expensive, labor-intensive to collect
- Usage restriction
 - Sensitive data (confidentiality issues)
- Class imbalance
 - More healthy people than people with a given disease

What if limited data?

What if limited data?

Reduce Model Complexity

L2 regularisation

L1 regularisation

Dropout

L2 regularisation (weight decay)

Idea: constrain the network weights by adding a regularization term to the loss function J(w)

L2 regularisation (weight decay)

Idea: constrain the network weights by adding a regularization term to the loss function J(w)

$$\tilde{J}(\mathbf{w}) = J(\mathbf{w}) + \alpha \|\mathbf{w}\|_2^2$$
New loss Regularization function term

L2 regularisation: gradient

$$\tilde{J}(\boldsymbol{w}) = J(\boldsymbol{w}) + \alpha \|\boldsymbol{w}\|_2^2$$

Gradient update:

$$\nabla_{w} \tilde{J}(w) = \alpha w + \nabla_{w} J(w)$$

$$w_{\text{new}} = (1 - \eta \alpha) w_{old} - \eta \nabla_{w} J(w_{old})$$

L1 regularisation (LASSO)

Idea: constrain the network weights by adding a regularization term to the loss function J(w)

L1 regularisation (LASSO)

Idea: constrain the network weights by adding a regularization term to the loss function J(w)

$$\tilde{J}(\mathbf{w}) = J(\mathbf{w}) + \alpha \|\mathbf{w}\|_1$$
New loss Regularization function term

L1 regularisation: gradient

$$\tilde{J}(\mathbf{w}) = J(\mathbf{w}) + \alpha \|\mathbf{w}\|_1$$

Gradient:

$$\nabla_{\mathbf{w}}\tilde{J}(\mathbf{w}) = \alpha \operatorname{sign}(\mathbf{w}) + \nabla_{\mathbf{w}}J(\mathbf{w})$$

How does regularization work?

Main idea: smaller weights reduce the impact of the hidden neurons, they become neglectable and the overall complexity of the neural network gets reduced.

How does regularization work?

2D example

Contours of loss function

Constraint function

Dropout

 \triangleright During training turn off a neuron with some probability p

Idea: The NN will be reluctant to give high weights to certain features, because they might disappear → weights spread across all features making them smaller

Regularization Example

On the training set: Accuracy: 0.94786729 On the test set:

Accuracy: 0.915

On the train set:
Accuracy: 0.938388

On the test set:

Accuracy: 0.93

On the train set:
Accuracy: 0.9289099
On the test set:

Accuracy: 0.95

What if limited data?

Increase Amount of Data

Data Augmentation

Data Augmentation

> Idea: generate synthetic data from the training data

The new data must preserve the label or the label must be modified accordingly

Data Augmentation Overall

- > Increase size and <u>diversity</u> of training data
- Learn invariance to some transformations

- Implicit regularisation effects
- Noising ⇔ data augmentation

Example of grid transformations commonly used in biomedical image analysis

Original image

Example of geometry-preserving transforms in a segmentation task

Multiple targets task: an example of applying a combination of transformations to the original image, bounding boxes, and ground truth masks for instance segmentation

Example of results for image classification

Method	C10	C10+	C100	C100+
ResNet18 [5]	10.63 ± 0.26	4.72 ± 0.21	36.68 ± 0.57	22.46 ± 0.31
ResNet18 + cutout	9.31 ± 0.18	3.99 ± 0.13	34.98 ± 0.29	21.96 ± 0.24
WideResNet [22]	6.97 ± 0.22	3.87 ± 0.08	26.06 ± 0.22	18.8 ± 0.08
WideResNet + cutout	5.54 ± 0.08	3.08 ± 0.16	23.94 ± 0.15	18.41 ± 0.27
Shake-shake regularization [4]	-	2.86	-	15.85
Shake-shake regularization + cutout	-	2.56 ± 0.07	-	$\textbf{15.20} \pm \textbf{0.21}$

Current works focus on automatically learning augmentation schedules

Data Augmentation for Audio

- Noise Injection
- Time shifting
- Pitch change
- Speed change
- Background noise

"Everyone was in a good mood after enjoying delicious pizzas."

"Everyone was in a good mood after enjoying delicious pizzas."

Lexical-Level

Embedding-Level

"Everyone was in a good mood after enjoying delicious pizzas."

Lexical-Level

Embedding-Level

Round Translation

Word Replacement

Noise Injection

"Everyone was in a good mood after enjoying delicious pizzas."

Lexical-level: Inserting, Deleting, Swapping random words

"Everyone was in a good mood after enjoying delicious pizzas."

Lexical-level: Inserting, Deleting, Swapping random words

"Everyone was in a good mood after enjoying delicious pizzas."

"Everyone was in a good mood after enjoying delicious pizzas."

Lexical-level: Inserting, Deleting, Swapping random words

"Everyone was in a good mood after enjoying task delicious pizzas."

"Everyone was in a good mood after enjoying delicious pizzas."

Lexical-level: Inserting, <u>Deleting</u>, Swapping random words

"Everyone was in a good $_{--}^{\prime\prime}$ after enjoying task delicious pizzas."

"Everyone was in a good mood after enjoying delicious pizzas."

> Lexical-level: Inserting, Deleting, Swapping random words

"Everyone good in a was ____ after enjoying talk delicious pizzas."

"Everyone was in a good mood after enjoying delicious pizzas."

Lexical-level: Inserting, Deleting, Swapping random words

"Everyone good in a was after enjoying talk delicious pizzas."

Embedding-level: Adding (e.g., Gaussian) noise to the embeddings

"Everyone was in a good mood after enjoying delicious pizzas."

Lexical-level: Inserting, Deleting, Swapping random words

"Everyone good in a was after enjoying talk delicious pizzas."

Embedding-level: Adding (e.g., Gaussian) noise to the embeddings

"Everyone was in a good mood after enjoying delicious pizzas."

Lexical-level: Inserting, Deleting, Swapping random words

"Everyone good in a was after enjoying talk delicious pizzas."

Embedding-level: Adding (e.g., Gaussian) noise to the embeddings

"Everyone was in a good mood after enjoying delicious pizzas."

Lexical-level: Replace with synonym, hypernym, language model, ...

"Everyone was in a good mood after enjoying delicious pizzas."

Lexical-level: Replace with synonym, hypernym, language model, ...

"Everyone was in a good mood after enjoying delicious pizzas."

"Everyone was in a good mood after enjoying delicious pizzas."

> Lexical-level: Replace with synonym, hypernym, language model, ...

"Everyone was in a cheerful mood after enjoying delicious pizzas."

"Everyone was in a good mood after enjoying delicious pizzas."

Lexical-level: Replace with synonym, hypernym, language model, ...

"Everyone was in a good mood after enjoying delicious food."

"Everyone was in a good mood after enjoying delicious pizzas."

Lexical-level: Replace with synonym, hypernym, language model, ...

"Everyone was in a cheerful mood after enjoying delicious food."

Embedding-level: Replace with nearest word embeddings

"Everyone was in a good mood after enjoying delicious pizzas."

Lexical-level: Replace with synonym, hypernym, language model, ...

"Everyone was in a <u>cheerful</u> mood after enjoying delicious <u>food</u>."

Embedding-level: Replace with nearest word embeddings

"Everyone was in a good mood after enjoying delicious pizzas."

Lexical-level: Replace with synonym, hypernym, language model, ...

"Everyone was in a <u>cheerful</u> mood after enjoying delicious <u>food</u>."

Embedding-level: Replace with nearest word embeddings

"Everyone was in a good mood after enjoying lunch pizzas."

Round-Translation

> Translation to a target language and then back to source language

"Everyone was in a good mood after enjoying delicious pizzas."

Round-Translation

> Translation to a target language and then back to source language

"Everyone was in a good mood after enjoying delicious pizzas."

«Tout le monde était de bonne humeur après avoir dégusté de délicieuses pizzas.»

Round-Translation

> Translation to a target language and then back to source language

"Everyone was in a good mood after enjoying delicious pizzas."

«Tout le monde était de bonne humeur après avoir dégusté de délicieuses pizzas.»

'Everyone was in a good mood after tasting delicious pizzas.''

- Less widely used
- Wider range of tasks with different invariance properties

Data Augmentation GANs

- Example for emotion classification
- ➤ 5%-10% increase in the classification accuracy

GANs for faces generation

Data Augmentation for Big Data

- Can increase diversity
- Improve robustness

Be careful!

Not every transformation ok!

Other tools

- Batch Normalization
 - Normalize layer inputs by subtracting the batch mean and dividing by the batch standard deviation

Other tools

- Transfer Learning
 - Reuse parts of a previously trained model on a new network to solve a different but similar problem

References

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1, No. 10). New York: Springer series in statistics.

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1), 1-48.

https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229

http://scott.fortmann-roe.com/docs/BiasVariance.html