LISTA 4

ANÁLISE DE SÉRIES TEMPORAIS

Tailine J. S. Nonato

2024-04-27

Descrição da atividade

Incluido as seguintes informações referentes a março de 2024, Energia = 419 e Dias = 33, utilizando a técnica de previsão com base na função de autocorrelação amostral, obtenha a previsão do consumo a ser faturado em abril de 2024, reproduzindo todos os elementos apresentados na aula 9.

Respostas

Carregando os pacotes necessários

```
if (!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse,readxl, knitr, latex2exp, pracma)
```

Leitura e manipulação dos dados

Os dados novos foram inseridos de forma mecânica no arquivo original da base de dados.

Table 1: Últimos registros da base de dados

mes	Energia	Dias	consumo
2023-10-27	258	29	8.896552
2023 - 11 - 27	274	30	9.133333
2023-12-28	317	33	9.606061
2024-01-28	367	28	13.107143
2024-02-28	299	30	9.966667
2024-03-30	419	33	12.696970

Replicação dos itens da aula 9

1. Série temporal de jun/1997 a mar/2024

```
plot(energia$mes, energia$consumo, type = "1", lwd = 2,
    main = "Série temporal de jun/1997 a mar/2024",
    xlab = TeX(r'($t$)'),
    ylab = TeX(r'($Y_t$)'))
```

Série temporal de jun/1997 a mar/2024

2. Função de autocorrelação

```
rho <- acf(energia$consumo, lag = n.size, plot = FALSE)
plot(rho, main = "Função de autocorrelação", xlab = "Lag", ylab = "ACF")</pre>
```

Função de autocorrelação

3. Função de autocorrelação

```
rho <- acf(energia$consumo, lag = 36, plot = FALSE)
plot(rho, main = "Função de autocorrelação com lag=36", xlab = "Lag", ylab = "ACF")</pre>
```

Função de autocorrelação com lag=36

4. Função de autocorrelação parcial

```
phi <- pacf(energia$consumo, lag = n.size, plot = FALSE)
plot(phi, main = "Função de autocorrelação parcial", xlab = "Lag", ylab = "PACF", lwd = 3)
```

Função de autocorrelação parcial

5. Função de autocorrelação parcial

```
phi <- pacf(energia$consumo, lag = 36, plot = FALSE)
plot(phi, main = "Função de autocorrelação parcial com lag=36", xlab = "Lag", ylab = "PACE"</pre>
```

Função de autocorrelação parcial com lag=36

6. Diagrama de fase

```
energia$consumo_1 <- c(NA, energia$consumo[1:(n.size-1)])
plot(energia$consumo_1, energia$consumo,
    main = "Diagrama de fase",
    xlab = TeX(r'($Y_t$)'),
    ylab = TeX(r'($Y_{t+1}$)'))
abline(0, 1, col = "red")</pre>
```

Diagrama de fase

7. Variação do consumo (KWh)

```
energia$diff <- c(NA, diff(energia$consumo))
plot(energia$diff, type = "l", lwd = 2,
    main = "Variação do consumo (KWh)",
    xlab = TeX(r'($t$)'),
    ylab = TeX(r'($Y_{t+1} - Y_t$)'))</pre>
```

Variação do consumo (KWh)

8. Função de autocorrelação da variação do consumo

```
x <- na.omit(energia$diff)
rho <- acf(x, lag = length(x), plot = FALSE)
plot(rho, main = "Função de autocorrelação", xlab = "Lag", ylab = "ACF")</pre>
```

Função de autocorrelação

9. Função de autocorrelação parcial da variação do consumo

```
phi <- pacf(x, lag = length(x), plot = FALSE)
plot(phi, main = "Função de autocorrelação parcial", xlab = "Lag", ylab = "PACF")</pre>
```

Função de autocorrelação parcial

Modelos de Previsão

Utilizando a funções ar e predict

```
modelo <- ar(energia$consumo, aic = TRUE)
consumo <- c(energia$consumo, rep(NA, 1))
consumo[n.size+1] <- predict(modelo, n.ahead = 1)$pred
consumo[n.size+1]

[1] 11.00617

energia_abr_ar <- consumo[n.size+1] * 30
energia_abr_ar</pre>
```

[1] 330.1852

Assim, utilizando esse modelo, a energia a ser faturada em abril de 2024 prevista é de 330.19 KWh. Com consumo diário de 11.01 KWh.

Reproduzindo aula 9

```
x <- na.omit(energia$diff)</pre>
n.size <- length(x)</pre>
n.training <- ceiling(n.size/2)</pre>
observed <- NULL
predicted <- NULL
for (t in (n.training+1):n.size) {
    x.training \leftarrow x[1:(t-1)]
    rho <- acf(x.training, lag = (t-1), plot = FALSE)</pre>
    last.lag <- length(rho$acf)</pre>
    Rho <- rho$acf
    Omega <- toeplitz(Rho[-last.lag])</pre>
    beta <- inv(Omega) %*% Rho[-1]
    beta.0 <- mean(x.training) * (1 - sum(beta))</pre>
    predicted[t] <- beta.0 + sum(rev(beta) * x.training[-1])</pre>
    observed[t] <- x[t]
}
energia$predicted <- c(NA, predicted)
plot(energia$mes,energia$diff, type = "1", lwd = 2,
    main = "Variação do consumo (KWh)",
    xlab = TeX(r'($t$)'),
    ylab = TeX(r'($Y_{t+1} - Y_t$)'))
lines(energia$mes,energia$predicted, col = "red", lwd = 2)
```

Variação do consumo (KWh)

Linearidade entre observado e previsto


```
# correlation
cor(observed, predicted, use = "complete.obs")
```

[1] 0.3829436

```
# mean absolute error
mean(abs(na.omit(observed) - na.omit(predicted)))
```

[1] 1.657283

Tendo como base os exemplos em sala, busca-se aprimorar essas métricas com \hat{Y}

```
Y.hat <- NULL
  Y.t <- NULL
  for (h in (n.training+1):n.size){
      Y.t[h+1] <- energia$consumo[h] + energia$diff[h+1]
      Y.hat[h+1] <- energia$consumo[h] + energia$predicted[h+1]
  }
  # correlation
  cor(Y.t, Y.hat, use = "complete.obs")
[1] 0.829377
  # mean absolute error
  mean(abs(na.omit(Y.t) - na.omit(Y.hat)))
[1] 1.657283
  # mean absolute percentage error
  mean(abs(na.omit(Y.t - Y.hat)/na.omit(Y.t)))
[1] 0.09530472
  plot(energia$mes, energia$consumo, type = "1", lwd = 2,
      main = "Série temporal de fev/1997 a mar/2024 com valores previstos",
      xlab = TeX(r'($t$)'),
      ylab = TeX(r'(\$Y_t\$)'))
  lines(energia$mes, Y.hat, col = "red", lwd = 2)
```

Série temporal de fev/1997 a mar/2024 com valores previstos

Fazendo um "zoom" para os dados de teste:

```
plot(energia$mes[162:322], energia$consumo[162:322], type = "l", lwd = 2,
    main = "Série temporal de nov/2010 a mar/2024 com valores previstos",
    xlab = TeX(r'($t$)'),
    ylab = TeX(r'($Y_t$)'))
lines(energia$mes[162:322], Y.hat[162:322], col = "red", lwd = 2)
```

Série temporal de nov/2010 a mar/2024 com valores previstos

Linearidade entre observado e previsto


```
cor(Y.t, Y.hat, use = "complete.obs")

[1] 0.829377

shapiro.test(na.omit(Y.t - Y.hat))

Shapiro-Wilk normality test

data: na.omit(Y.t - Y.hat)
W = 0.99205, p-value = 0.5203

sd(na.omit(Y.t - Y.hat))
```

[1] 2.131004

```
Y.next <- Y.hat[n.size] + 2*sd(na.omit(Y.t - Y.hat))
Y.next

[1] 16.2901

energia_abr_acf <- Y.next * 30
energia_abr_acf</pre>
```

[1] 488.7029

Assim, utilizando esse modelo, a energia a ser faturada em abril de 2024 prevista é de 488.7 KWh. Com consumo diário de 16.29 KWh.

Comparando os modelos

Se colocarmos em uma tabela:

Table 2: Previsões de consumo diário e do mês para abril de 2024

Função	Consumo	Energia
ar	12.70	330.19
acf	16.29	488.70

Conclusão

Adicionando o valor previsto para abril utilizando o modelo com a função ACF, é possível fazer a série temporal novamente:

```
energia$consumo[n.size+1] <- Y.next
energia$mes[n.size+1] <- "2024-04-30"
plot(energia$mes, energia$consumo, type = "1", lwd = 2,
    main = "Série temporal de jun/1997 ao que é previsto para abr/2024",
    xlab = TeX(r'($t$)'),
    ylab = TeX(r'($Y_t$)'))</pre>
```

Série temporal de jun/1997 ao que é previsto para abr/2024

