AMENDMENTS TO THE CLAIMS

Docket No.: 14113-00043-US

1. (Currently Amended) An electronic device comprising cathode, anode and at least one organic layer, characterised in that the organic layer comprises at least one defined compound A containing the chemical structural unit Y=X, which is selected from compounds of formula (2) to (4)

where the following applies to the symbols used:

- Y is on each occurrence, P in formula (3) and S in formulae (2) and (4);
- X is NR⁴ in formula (3) and is on each occurrence, identically or differently NR⁴ or O in formulae (2) and (4);
- R¹, R² and R³ is on each occurrence, identically or differently N(R⁴)₂, a straight-chain, branched or cyclic alkyl group having 1 to 40 C atoms, which may be substituted by R⁵ or also unsubstituted, where one or more non-adjacent -CH₂- groups may be replaced by -R⁶C=CR⁶-, -C=C-, Si(R⁶)₂, Ge(R⁶)₂, Sn(R⁶)₂, C=O, C=S, C=Se, C=NR⁶, -O-, -S-, -NR⁶- or -CONR⁶- and where one or more H atoms may be replaced by F, Cl, Br, I, CN or NO₂; a plurality of radicals R¹, R² and/or R³ here may with one another form a mono- or polycyclic, aliphatic or aromatic ring system;

or an aromatic or heteroaromatic system having 1 to 40 aromatic C atoms, which may be substituted b one substituted by one or more radicals R⁵ where a plurality

Docket No.: 14113-00043-US

of substituents R¹, R² and/or R³ may with one another form a mono- or polycyclic, aliphatic or aromatic ring system,

or an aromatic or heteroaromatic system having 1 to 40 aromatic C atoms which is bonded via a divalent group -Z-, where one or more H atoms may be replaced by F, Cl, Br or I or which may be substituted by one or more radicals R⁵; a plurality of substituents

R¹, R² and/or R³ here may define a further mono- or polycyclic, aliphatic or aromatic ring system:

with the proviso that at least one of the radicals R¹, R² and/or R³ stands for an aromatic or heteroaromatic system system in formula (2) and (3) and that both radicals R¹ and R² stand for an aromatic or heteroaromatic system in formula (4);

is on each occurrence, identically or differently a straight-chain branched or cyclic alkyl or alkoxy chain having 1 to 22 C atoms, in which, in addition, one or more non-adjacent C atoms may be replaced by $-R^6C=CR^6$ -, $-C\equiv C$ - $Si(R^6)_2$, $Ge(R^6)_2$, $Sn(R^6)_2$, $-NR^6$ -, -O-, -S-, -CO-, -CO-O-, -O-CO-O- and where one or more H atoms may be replaced by fluorine or is an aryl, heteroaryl, or an aryloxy group having 1 to 40 C atoms, which may also be substituted by one or more radicals R^6 or OH, NH_2 , $NH(R^5)$ or $N(R^5)_2$;

 R^5 is on each occurrence, identically or differently, R^4 or CN, $B(R^6)$ or $Si(R^6)_3$:

R⁶ is on each occurrence, identically or differently, H or an aliphatic or aromatic hydrocarbon radical having 1 to 20 C atoms:

Z is on each occurrence, identically or differently, a conjugated radical having 1 to 40 C atoms, where one or more C atoms may be substituted by a radical R⁵ or halogen;

Application No. 10/590,037 Reply to Office Action of April 10, 2009

Io. 10/590,037 Docket No.: 14113-00043-US

with the proviso that compounds of the formula (4) with X=oxygen, consists of only elements carbon, hydrogen, oxygen and sulfur and that the compound A has a molecular weight of ≥ 150 g/mol and $\leq 10,000$ g/mol and that the device comprises no phosphorescent emitters.

2-3 (Cancelled)

4. (Previously presented) The electronic device according to claim 1, wherein X in the formula (2) or (4) is O.

5-6 (Cancelled)

- 7. (Previously presented) The electronic device according to claim 1, wherein the compound of the formula (2) to (4) does not have a planar structure.
- 8. (Original) Electronic device according to Claim 7, characterised in that at least one of the substituents R¹, R², R³ and/or R⁴ contains at least one sp³-hybridised carbon, silicon, germanium and/or nitrogen atom.
- 9. (Original) Electronic device according to Claim 8, characterised in that at least one of the sp³-hybridised atoms is a secondary, tertiary or quaternary atom.
- 10. (Original) Electronic device according to Claim 9, characterised in that at least one of the sp³-hybridised atoms is a quaternary atom.
- 11. (Previously presented) The electronic device according to claim 1, wherein compound A contains a 9,9'-spirobifluorene derivative, a 9,9-disubstituted fluorene derivative, a 6,6- and/or 12,12-di- or tetrasubstituted indenofluorene derivative, a triptycene derivative, a dihydrophenanthrene derivative or a hexaarylbenzene derivative.
- 12. (Previously presented) The electronic device according to claim 1, wherein compound A contains a 9,9'-spirobifluorene derivative.

Application No. 10/590,037 Docket No.: 14113-00043-US

Reply to Office Action of April 10, 2009

13. (Original) Electronic device according to Claim 7, characterised in that the non-planar

radical R¹ or R² or R³ represents a biaryl group.

14. (Cancelled)

15. (Previoulsy presented) Electronic device according to claim 1, characterised in that the

compound A is amorphous and the glass transition temperature Tg of the compound A is greater

than 100°C.

16. (Previoulsy presented) Electronic device according to claim 1, characterised in that the

compound A is employed as electron-transport material.

17. (Previously presented) The electronic device according to claim 1, wherein the layer

comprising compound A comprises at least 50% of this compound.

18. (Previously presented) The electronic device according to claim 1, wherein the organic

layer consists of compound A as pure layer.

19. (Previoulsy presented) Electronic devices according to claim 1, wherein in the electronic

device is an organic electroluminescent device, organic thin-film transistor, organic field-effect

transistor, organic solar cell, organic photoreceptor or organic laser.

20. (Previously presented) Electronic device according to claim 1, characterised in that

further layers are present in addition to the layer comprising the compound A.

21. (Original) Electronic device according to Claim 20, characterised in that these further

layers are selected from hole-injection layer, hole-transport layer, emission layer, hole-blocking

layer, electron-transport layer and/or electron-injection layer.

22. (Previously presented) Electronic device according to claim 1, which further comprises a

fluorescent emission layer and said organic layer is wherein at least one electron-transport layer

comprising at least one compound A and said electron-transport layer is present between the

fluorescent emission layer and the cathode.

699896

Reply to Office Action of April 10, 2009

Docket No.: 14113-00043-US Application No. 10/590,037

23. (Previously presented) Electronic device according to claim 1, which further comprises an emission layer and the emission layer comprises at least one fluorescent emitter and at least one electron-transport material, where the electron-transport material comprises at least one compound A.

- 24. (Previoulsy presented) Electronic device according to claim 1, characterised in that both an electron-transport layer comprising at least one compound A and an emission layer comprising at least one compound A, which may be identical or different, are present.
- 25. (Previously presented) Electronic device according to claim 1, wherein the organic layer is an emission layer and the emission layer comprising the compound A is directly adjacent to the electron-injection layer or the cathode without the use of a separate electron-transport layer.
- 26. (Previously presented) Electronic device according to claim 1, wherein the organic layer is an emission layer and the emission layer comprising the compound A is directly adjacent to the hole-injection layer.
- 27. (Previoulsy presented) Electronic device according to claim 1, characterised in that it is an organic electroluminescent device in which the emitter(s) fluoresce(s) in the visible spectral region with one or more maxima between 380 nm and 750 nm on suitable excitation.
- 28. (Cancelled)
- (New) An electronic device comprising cathode, anode and at least one organic layer, 29 wherein the organic layer comprises at least one defined compound A containing a compound of the examples 1 to 52

Docket No.: 14113-00043-US

	356	J-SS-D
Example 1	Example 2	Example 3
Ēxample 4	Example 5	Example 6
0,800	55	The state of the s
Example 7	Example 8	Example 9
O=PN-N	O=P-N	O=P-N 3
Example 10	Example 11	Example 12
Example 13	Example	e 14

Docket No.; 14113-00043-US

-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		F F
Example 15	Example ¹⁶	Example 17
	F F F	F Po
Example 18	Example 19	Example 20
Example 21	Examp	ole 22
Example 23	Example 24	Example 25
Example 26	Example 27	Example 28

Application No. 10/590,037 Reply to Office Action of April 10, 2009

		03850
Example 29	Example ³⁰	Example ³¹
Example 32	Example 33	Example 34
AS O	Sol	
Example 35	Example ³⁶	Example 37
S P S		
Example 38	Example 39	Example 40
		Se
Example 41	Example 42	Example 43

Application No. 10/590,037 Reply to Office Action of April 10, 2009 Docket No.: 14113-00043-US

30:30	Oi Bio	Ji Si C
Example 44	Example 45	Example 46
36:36	O; Sio	
Example 47	Example 48	Example 49
BBBB		
Example 50	Example 51	Example 52

with the proviso that the compound A has a molecular weight of ≥ 150 g/mol and $\leq 10,000$ g/mol and that the device comprises no phosphorescent emitters.