Campo magnetico nella materia

Fenomeni microscopici

Elettroni

Moto orbitale: L'elettrone ruota sull'orbita e dà origine ad una corrente:

 $i = \frac{e}{T}$

dove Tè il periodo di rivoluzione

Possiamo associare all'elettrone un momento magnetico \mathbf{m}_L :

$$\mathbf{m}_{L} = -\frac{e}{2m_{e}}\mathbf{L}$$

Magnetone di Bohr (idrogeno) $\mu_B = -\frac{e\hbar}{2m_e} = 9,27 \times 10^{-24} \text{J T}^{-1}$

Spin: proprietà quantistica, descritta classicamente come una rotazione a cui è associato il momento magnetico intrinseco:

$$\mathbf{m}_{S} = -\frac{e}{m_{e}}\mathbf{S}$$

$$\mathbf{m} = -\frac{ge}{2m_e} (\mathbf{L} + \mathbf{S}) \qquad (1 < g < 2)$$

• Anche protoni e neutroni hanno spin e momento magnetico proprio (~10⁻³ volte quello dell'elettrone)

Aspetti macroscopici

La materia può essere vista come una distribuzione di **dipoli magnetici elementari**.

Definiamo:

Vettore magnetizzazione M = Momento magnetico medio per unità di volume

$$\mathbf{M} = \lim_{\Delta \tau \to 0} \frac{\Delta \mathbf{m}}{\Delta \tau} = N \langle \mathbf{m} \rangle$$

S.I.: $Am^2/m^3 = A/m$

Leggi della magnetostatica nella materia: Correnti di magnetizzazione

La *trattazione quantitativa* del magnetismo nella materia implica la soluzione di tre problemi:

- Influenza di un materiale magnetizzato sul campo magnetico (Noto M, calcolare B)
- Induzione della magnetizzazione in un materiale da parte del campo magnetico (Noto B, calcolare M)
- Legame tra aspetti macroscopici e microscopici

Nel vuoto:

$$\operatorname{div} \mathbf{B} = 0 \qquad \operatorname{rot} \mathbf{B} = \mu_{o} \mathbf{J}$$

Nella prima legge, <u>non</u> compaiono sorgenti di **B**.

⇒ Non ci aspettiamo cambiamenti nella materia.

La seconda legge descrive come J genera B.

 \Rightarrow Ci aspettiamo che sia modificata dalla presenza di M.

Analogia elettrostatica:

$$\operatorname{div} \mathbf{E} = (\rho - \operatorname{div} \mathbf{P})/\varepsilon_{o}$$
 rot $\mathbf{E} = 0$

P è equivalente ad una distribuzione di carica di polarizzazione:

$$\rho_p = -div \mathbf{P}$$
 $\sigma_p = \mathbf{P} \cdot \mathbf{u}_n$

⇒ M sarà equivalente ad una distribuzione di corrente.

(Utilizzando il potenziale vettore A) si dimostra che:

Un blocco di materiale con magnetizzazione M è equivalente ad una distribuzione di correnti di magnetizzazione di volume e di superficie con:

Densità di volume di corrente di magnetizzazione $J_{\rm m}$

$$J_{m} = \text{rot } \mathbf{M}$$

Densità di superficie di corrente di magnetizzazione $\mathbf{J}_{\mathrm{s,m}}$

$$\mathbf{J}_{\mathrm{s.m}} = \mathbf{M} \times \mathbf{u}_{\mathrm{n}}$$

Esempi

Cilindro con M // asse ed uniforme

Nel volume: \mathbf{M} uniforme \Rightarrow $\mathbf{J}_{m} = \text{rot } \mathbf{M} = 0$

Sulle basi: $\mathbf{M} // \mathbf{u}_{n} \implies \mathbf{J}_{s,m} = 0$

Sulla superficie laterale: $J_{s,m} = M \times u_n$

(si avvolge sulla superficie)

Le "correnti atomiche" si annullano nel volume, ma <u>non</u> sulla superficie

• M non uniforme

$$\mathbf{J}_{\mathrm{m}} = \mathrm{rot} \; \mathbf{M} \neq 0$$

$$\mathbf{J}_{\mathrm{s,m}} = \mathbf{M} \times \mathbf{u}_{\mathrm{n}}$$

Esempio: due blocchi con magnetizzazione \mathbf{M}_1 ed \mathbf{M}_2

 $M_1 \neq M_2 \implies$ Corrente netta anche all'interno del volume

La I legge della magnetostatica nella materia resta:

$$\iint_{\Sigma} \mathbf{B} \cdot \mathbf{u}_{n} dS = \mathbf{0}$$

La II legge della magnetostatica nella materia deve tener conto dell'effetto delle correnti atomiche:

$$rot \mathbf{B} = \mu_o \mathbf{J}_{tot} = \mu_o (\mathbf{J} + \mathbf{J}_m) = \mu_o (\mathbf{J} + rot \mathbf{M})$$

$$\Rightarrow rot (\mathbf{B} - \mu_o \mathbf{M}) = \mu_o \mathbf{J}$$

$$\Rightarrow rot (\mathbf{B}/\mu_o - \mathbf{M}) = \mathbf{J}$$

Definiamo il vettore campo magnetizzante (o intensità di campo magnetico) H:

$$\mathbf{H} = \frac{\mathbf{B}}{\mu_o} - \mathbf{M}$$

Nel SI: **H** si misura in Am^{-1}

[B è detto anche induzione magnetica]

In un mezzo materiale: $\mathbf{B} = \mu_o(\mathbf{H} + \mathbf{M})$

Nel vuoto: $\mathbf{B} = \mu_o \mathbf{H}$

La II legge della magnetostatica si può esprimere come:

$$rot \mathbf{H} = \mathbf{J}$$

H dipende solo dalle correnti di conduzione, come **D** solo dalle cariche libere.

In forma integrale:

$$\oint_{\gamma} \mathbf{B} \cdot \mathbf{u}_{t} dl = \mu_{0} \left(I + I_{m} \right) \qquad \oint_{\gamma} \mathbf{H} \cdot \mathbf{u}_{t} dl = I$$

5

H non è solenoidale:

$$div \mathbf{H} = -div \mathbf{M} \qquad (div \mathbf{B} = 0)$$

div M dipende dalla geometria e dalle disuniformità del materiale.

Per calcolare **H** <u>non</u> basta conoscere **J**. Bisogna conoscere anche le *sorgenti* del campo.

Esempio: Cilindro con M uniforme

Corrente superficiale di magnetizzazione: $\mathbf{J}_{s,m} = \mathbf{M} \times \mathbf{u}_n$

Per quanto riguarda il campo **B** generato, è equivalente ad un solenoide.

Nel materiale: $\mathbf{H} = \mathbf{B}/\mu_o - \mathbf{M}$

Fuori dal materiale: $\mathbf{H} = \mathbf{B}/\mu_o$

Condizioni al contorno

$$div \mathbf{B} = 0 \implies \Phi_{\Sigma}(\mathbf{B}) = 0 \implies [\mathbf{B}_n] = 0$$

$$rot \mathbf{H} = \mathbf{J} \implies \oint_{\gamma} \mathbf{H} \cdot \mathbf{u}_{t} dl = I \implies [H_{t}] = J'_{s,cond}$$

Misura del campo magnetico (B e H)

In un materiale uniformemente magnetizzato si pratica una cavità sottile e si misura il campo nella cavità:

Cavità parallela: $H = H_t = H_{to} = H_o \implies Misura di H$

Cavità ortogonale: $B = B_n = B_{no} = B_o \implies Misura di$ **B**

Relazione costitutiva

La **relazione costitutiva M** = M(H) dipende dal materiale e può essere ottenuta:

- Sperimentalmente, misurando B = B(H)
 - Si avvolge un blocco toroidale del materiale con un solenoide percorso da una corrente I nota e variabile
 - $-H = NI/(2\pi r)$, indipendente dal materiale
 - Si misura B (in una cavità cilindrica con asse parallelo a **B**) al variare della corrente I $(\rightarrow H)$
- Teoricamente, con una teoria microscopica

Tipi di materiali magnetici:

Isotropo: M // H

Anisotropo: M non parallelo ad H (cristalli)

Lineare: M ∝ H (dia- e paramagnetici)

Non lineare: M <u>non proporzionale ad H (ferromagnetici)</u>

A differenza dei dielettrici:

I materiali magnetici lineari (dia- e paramagnetici) si comportano sostanzialmente come il vuoto e la loro presenza viene spesso trascurata.

I materiali non lineari (ferromagnetici) sono estremamente importanti dal punto di vista pratico.

Materiali isotropi lineari

Relazione costitutiva lineare

$$\mathbf{M} = \chi_m \mathbf{H}$$

dove: $\chi_m =$ Suscettività magnetica

$$\mathbf{B} = \mu_o (1 + \chi_m) \mathbf{H} = \mu \mathbf{H}$$

dove: $\mu = \mu_o \mu_r =$ Permeabilità magnetica del mezzo

 $\mu_r = (1 + \chi_m) = Permeabilità relativa del mezzo$

Si distinguono in:

Materiali **diamagnetici**: $\mu_r < 1$ $\chi_m < 0$

Materiali **paramagnetici**: $\mu_r > 1$ $\chi_m > 0$

Rifrazione delle linee di campo

$$B_{n1} = \mu_{0} \mu_{r1} H_{n1} = B_{n2} = \mu_{0} \mu_{r2} H_{n2}$$

$$H_{i1} = H_{i2}$$

$$\frac{H_{i1}/H_{n1}}{H_{i2}/H_{n2}} = \frac{tg \theta_{1}}{tg \theta_{2}} = \frac{\mu_{r1}}{\mu_{r2}}$$

Materiali diamagnetici

Tutti i materiali (ma in alcuni è mascherato da altri effetti)

In assenza di un campo esterno, non manifestano proprietà magnetiche: se $\mathbf{B} = 0 \rightarrow \mathbf{M} = 0$

$$\mu_r = (1 + \chi_m) < 1 \implies \chi_m < 0$$

- \Rightarrow M ha verso opposto ad H e a B
- ⇒ Il materiale viene spinto verso regioni dove **B** è meno intenso

$$\mathbf{F} = grad(\mathbf{M} \cdot \mathbf{B}) \implies F_x = -M_x(\partial B_x/\partial x)$$

$$\mu_{\rm r} \approx 1 - 10^{-5}$$

⇒ Effetto molto piccolo rispetto al comportamento nel vuoto

Materiali paramagnetici

Alcuni materiali (ad es. Al, O₂, aria, ...)

In assenza di un campo esterno, non manifestano proprietà magnetiche: se $\mathbf{B} = 0 \rightarrow \mathbf{M} = 0$

$$\mu_r = (1 + \chi_m) > 1 \implies \chi_m > 0$$

- \Rightarrow M ha verso uguale ad H e a B
- ⇒ Il materiale viene spinto verso regioni dove **B** è più intenso

$$\mathbf{F} = grad(\mathbf{M} \cdot \mathbf{B}) \implies F_x = M_x(\partial B_x/\partial x)$$

$$\mu_r \approx 1 + 10^{-4}$$

⇒ Effetto molto piccolo rispetto al comportamento nel vuoto, ma dominante sul diamagnetismo.

Materiali isotropi non lineari (ferromagnetici)

Fe, Ni, leghe di Fe

Caratteristica magnetica fortemente non lineare

Legame non univoco tra B ed H e tra M ed H

- ⇒ Ciclo di isteresi
- \Rightarrow Magnetizzazione permanente o residua $\mathbf{M}_o = \mathbf{M}(0) \neq 0$

Se si "linearizza" un tratto della caratteristica ($\mathbf{B} = \mu_o \mu_r \mathbf{H}$): $\mu_r \approx 10^3 - 10^5$ (Applicazione: schermo magnetico)

Effetto molto marcato rispetto al comportamento nel vuoto e dominante su dia- e paramagnetismo

12

Interpretazione microscopica del magnetismo nella materia

Diamagnetismo

Il moto orbitale degli e⁻ determina un momento magnetico:

$$\mathbf{m} = -\frac{e}{2m_e}\mathbf{L}$$

L'orientazione di m è casuale.

In presenza di un campo magnetico B,

a) Se $\mathbf{B} \not\parallel \mathbf{m}$, nasce un momento meccanico: $\boldsymbol{\tau} = \mathbf{m} \times \mathbf{B}$ che determina un moto di precessione (**precessione di Larmor**) del piano dell'orbita attorno a \mathbf{B} : \mathbf{m} ruota con inclinazione costante.

Dalla II eq. cardinale e dalla Relazione di Poisson:

$$\mathbf{\tau} = \frac{d\mathbf{L}}{dt} = \mathbf{\omega}_L \times \mathbf{L}$$

dove: ω_L = Velocità angolare di precessione di Larmor

$$\Rightarrow \mathbf{m} \times \mathbf{B} = \mathbf{\omega}_L \times \mathbf{L} \quad \Rightarrow \quad -\frac{e}{2m_e} \mathbf{L} \times \mathbf{B} = \mathbf{\omega}_L \times \mathbf{L}$$
$$\mathbf{\omega}_L = \frac{e}{2m_e} \mathbf{B}$$

b) Se **B** \parallel **m**, nasce una forza di Lorentz diretta radialmente, che fa variare la velocità ω :

$$\mathbf{F}_{L} = -\mathbf{e}\mathbf{v} \times \mathbf{B}$$
 con: $\mathbf{v} = \boldsymbol{\omega} \times \mathbf{R}$

Supponendo che il raggio dell'orbita sia $R = \cos t$ (verificato a posteriori):

$$\mathbf{F}_{c} = -\mathbf{m}_{e}\omega^{2}\mathbf{R}$$

 \mathbf{F}_{L} si somma a \mathbf{F}_{c} e la fa variare:

$$\Delta F_c = 2m_e\omega\Delta\omega R = F_L = e\omega RB$$

$$\Rightarrow \qquad \Delta \mathbf{\omega} = \frac{e}{2m_e} \mathbf{B}$$

In ogni caso, si determina un momento $\mathbf{m}_{d} \parallel \mathbf{B}$:

$$\mathbf{m}_{\mathrm{d}} = -\frac{eR^2}{2} \mathbf{\omega}_L = -\frac{eR^2}{2} \frac{e}{2m_e} \mathbf{B}$$

$$\mathbf{m}_{\mathrm{d}} = -\frac{e^2 R^2}{4m_e} \mathbf{B}$$

$$\mathbf{M} = N\langle \mathbf{m} \rangle = -\alpha_{d} \mathbf{B}$$

$$\mathbf{B} = \mu_{0} (\mathbf{H} + \mathbf{M}) = \mu_{0} \mathbf{H} - \mu_{0} \alpha_{d} \mathbf{B}$$

$$\mathbf{B} = \frac{\mu_{\scriptscriptstyle 0}}{1 + \mu_{\scriptscriptstyle 0} \alpha_{\scriptscriptstyle d}} \mathbf{H} = \mu_{\scriptscriptstyle 0} \mu_{\scriptscriptstyle r} \mathbf{H}$$

con:
$$\mu_{r} = \frac{1}{1 + \mu_{0} \alpha_{d}} < 1 \qquad \mu_{0} \alpha_{d} \sim 10^{-5}$$

14

Paramagnetismo

Molecole con momento magnetico proprio m.

Il momento magnetico proprio dipende dallo spin.

Per motivi energetici, ogni orbita elettronica è generalmente occupata da due e⁻ con spin opposti:

$$\mathbf{S}_{tot} = 0 \implies \mathbf{m} = 0$$

In alcuni materiali (paramagnetici), gli spin sono paralleli:

$$\mathbf{S}_{tot} \neq 0 \implies \mathbf{m} \neq 0$$

Se $\mathbf{B} = 0$, i momenti hanno orientazione casuale:

$$\langle \mathbf{m} \rangle = 0 \implies \mathbf{M} = 0$$

Se $\mathbf{B} \neq \mathbf{0}$, nasce un momento meccanico: $\mathbf{\tau} = \mathbf{m} \times \mathbf{B}$ che tende ad allineare i momenti.

Si crea un equilibrio dinamico con l'agitazione termica, che tende a disordinarli.

<m> può essere calcolato con la **teoria di Langevin**, con:

$$U = -\mathbf{m} \cdot \mathbf{B}$$

$$\Rightarrow \langle m\cos\theta\rangle = m_0 L(\alpha) = m_0 \left(\coth\alpha - \frac{1}{\alpha}\right)$$

dove:
$$L(\alpha)$$
 = Funzione di Langevin $\alpha = \frac{m_0 B}{kT}$

Per piccoli valori di **B**, approssimando L alla tangente nell'origine:

$$M = Nm_0 L(\alpha) \cong \frac{Nm_0^2}{3kT} B = \alpha_p B \qquad \mathbf{M} = \alpha_p \mathbf{B}$$

$$\mathbf{B} = \mu_0 (\mathbf{H} + \mathbf{M}) = \frac{\mu_0}{1 - \mu_0 \alpha_p} \mathbf{H} = \mu_0 \mu_r \mathbf{H}$$

$$con: \qquad \mu_r = \frac{1}{1 - \mu_0 \alpha_p} > 1 \qquad \mu_0 \alpha_p \sim 10^{-4}$$

Nelle molecole con momento magnetico proprio, l'effetto paramegnetico si sovrappone a quello diamagnetico ed è dominante.

$$\mathbf{M} \propto \frac{\mathbf{B}}{T}$$

Equilibrio dinamico tra effetto del campo **B** e dell'agitazione termica

NB: Nella trattazione del dia- e del paramagnetismo, si dovrebbe considerare \mathbf{B}_{eff} , ma $\mathbf{B}_{eff} \cong \mathbf{B}$, trattandosi di effetti quantitativamente molto limitati.

Ferromagnetismo

In particolari reticoli cristallini, una forte interazione tra gli spin degli e- rende energeticamente favorita la configurazione atomica/molecolare con spin paralleli (↑↑) anche tra atomi diversi

- ⇒ Magnetizzazione propria M molto intensa
- \Rightarrow **M** \neq 0 anche con **B** = 0
- \Rightarrow **M** \cong **M**_{sat} (max) anche per **B** poco intensi

Domini di Weiss = Regioni (1-100 μm) nelle quali gli spin si allineano spontaneamente (anche in assenza di **B** esterno) determinando **m** permanente

Al di sopra di una temperatura critica caratteristica del materiale (**Temperatura di Curie**), il ferromagnatismo scompare ed il materiale si comporta come paramagnetico

P.Taroni FSII – 7

Momento magnetico nucleare

Applicazione: Risonanza magnetica nucleare

- Spettroscopia
- Imaging medico