```
In [12]: # reading dataset
import pandas as pd
df = pd.read_csv('student_info.csv')
df
```

Out[12]:

	Name	Age	CGPA	Degree	Job Probability	Unnamed: 5	Intern
0	Sraboni Shah	220.0	3.60	BSc	Medium	NaN	0
1	Mukit Al Hasan	22.0	3.70	BSc	Medium	NaN	0
2	Niam ur Rashid	21.0	NaN	BSc	Medium	NaN	0
3	Ankita	23.0	2.95	BSc	Low	NaN	0
4	Noman Sarkar	23.0	3.95	MSc	High	NaN	1
5	Warka	35.0	3.00	MSc	Medium	NaN	0
6	Salma Tabassum	24.0	3.96	PhD	High	NaN	1
7	Eidid	NaN	3.85	PhD	High	NaN	1
8	Nahid Sidiqque	25.0	4.00	PhD	High	NaN	1
9	Nabila Anawar	24.0	NaN	MSc	High	NaN	1

```
In [14]: # showing outlier using scatter plot
import matplotlib.pyplot as plt
%matplotlib inline
plt.scatter(df['Age'], df['Name'])
```

Out[14]: <matplotlib.collections.PathCollection at 0x1a5865dd3d0>


```
In [15]: # calculating age by mode
    age_mode = df['Age'].mode()[0]
    age_mode
```

Out[15]: 23.0

In [16]: # replacing outlier age value with age_mode value
 df['Age'][0] = age_mode
 df

C:\Users\USER\AppData\Local\Temp\ipykernel_16588\3369074777.py:2: SettingWithCo
pyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df['Age'][0] = age_mode

Out[16]:

	Name	Age	CGPA	Degree	Job Probability	Unnamed: 5	Intern
0	Sraboni Shah	23.0	3.60	BSc	Medium	NaN	0
1	Mukit Al Hasan	22.0	3.70	BSc	Medium	NaN	0
2	Niam ur Rashid	21.0	NaN	BSc	Medium	NaN	0
3	Ankita	23.0	2.95	BSc	Low	NaN	0
4	Noman Sarkar	23.0	3.95	MSc	High	NaN	1
5	Warka	35.0	3.00	MSc	Medium	NaN	0
6	Salma Tabassum	24.0	3.96	PhD	High	NaN	1
7	Eidid	NaN	3.85	PhD	High	NaN	1
8	Nahid Sidiqque	25.0	4.00	PhD	High	NaN	1
9	Nabila Anawar	24.0	NaN	MSc	High	NaN	1

In [17]: # calculating total NaN value df.isna().sum()

Out[17]: Name 0 Age 1 CGPA 2 Degree 0 Job Probability 0 Unnamed: 5 10

Intern 0

dtype: int64

```
In [18]: # Filling the NaN value with age_mode value
df["Age"].fillna(age_mode, inplace=True)
df
```

Out[18]:

	Name	Age	CGPA	Degree	Job Probability	Unnamed: 5	Intern
0	Sraboni Shah	23.0	3.60	BSc	Medium	NaN	0
1	Mukit Al Hasan	22.0	3.70	BSc	Medium	NaN	0
2	Niam ur Rashid	21.0	NaN	BSc	Medium	NaN	0
3	Ankita	23.0	2.95	BSc	Low	NaN	0
4	Noman Sarkar	23.0	3.95	MSc	High	NaN	1
5	Warka	35.0	3.00	MSc	Medium	NaN	0
6	Salma Tabassum	24.0	3.96	PhD	High	NaN	1
7	Eidid	23.0	3.85	PhD	High	NaN	1
8	Nahid Sidiqque	25.0	4.00	PhD	High	NaN	1
9	Nabila Anawar	24.0	NaN	MSc	High	NaN	1

```
In [20]: # calculating mean value of CGPA column
    cg = df['CGPA'].mean()
    cg
```

Out[20]: 3.62625

```
In [21]: # Filling the NaN value with cg value
df['CGPA'].fillna(cg, inplace=True)
df
```

Out[21]:

	Name	Age	CGPA	Degree	Job Probability	Unnamed: 5	Intern
0	Sraboni Shah	23.0	3.60000	BSc	Medium	NaN	0
1	Mukit Al Hasan	22.0	3.70000	BSc	Medium	NaN	0
2	Niam ur Rashid	21.0	3.62625	BSc	Medium	NaN	0
3	Ankita	23.0	2.95000	BSc	Low	NaN	0
4	Noman Sarkar	23.0	3.95000	MSc	High	NaN	1
5	Warka	35.0	3.00000	MSc	Medium	NaN	0
6	Salma Tabassum	24.0	3.96000	PhD	High	NaN	1
7	Eidid	23.0	3.85000	PhD	High	NaN	1
8	Nahid Sidiqque	25.0	4.00000	PhD	High	NaN	1
9	Nabila Anawar	24.0	3.62625	MSc	High	NaN	1

```
In [22]: # calculating total NaN value
         df.isna().sum()
Out[22]: Name
                              0
         Age
                              0
         CGPA
                              0
         Degree
         Job Probability
                              0
         Unnamed: 5
                             10
         Intern
                              0
         dtype: int64
In [23]: # Removing the 'Unnamed: 5' column
         df2 = df.drop(['Unnamed: 5'], axis=1)
Out[23]:
```

	Name	Age	CGPA	Degree	Job Probability	Intern
0	Sraboni Shah	23.0	3.60000	BSc	Medium	0
1	Mukit Al Hasan	22.0	3.70000	BSc	Medium	0
2	Niam ur Rashid	21.0	3.62625	BSc	Medium	0
3	Ankita	23.0	2.95000	BSc	Low	0
4	Noman Sarkar	23.0	3.95000	MSc	High	1
5	Warka	35.0	3.00000	MSc	Medium	0
6	Salma Tabassum	24.0	3.96000	PhD	High	1
7	Eidid	23.0	3.85000	PhD	High	1
8	Nahid Sidiqque	25.0	4.00000	PhD	High	1
9	Nabila Anawar	24.0	3.62625	MSc	High	1

```
In [35]: # converting the string value with number using LabelEncoder
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df2['Name'] = le.fit_transform(df2['Name'])
df2['Degree'] = le.fit_transform(df2['Degree'])
df2['Job Probability'] = le.fit_transform(df2['Job Probability'])
```

```
In [36]: # removing the intern column
x = df2.drop(['Intern'], axis=1)
x
```

Out[36]:

_		Name	Age	CGPA	Degree	Job Probability
	0	8	23.0	3.60000	0	2
	1	2	22.0	3.70000	0	2
	2	5	21.0	3.62625	0	2
	3	0	23.0	2.95000	0	1
	4	6	23.0	3.95000	1	0
	5	9	35.0	3.00000	1	2
	6	7	24.0	3.96000	2	0
	7	1	23.0	3.85000	2	0
	8	4	25.0	4.00000	2	0
	9	3	24.0	3.62625	1	0

```
In [37]: # taking the Intern column
         y = df2['Intern']
         У
Out[37]: 0
              0
         1
              0
         2
              0
         3
              0
              1
              0
              1
              1
              1
         Name: Intern, dtype: int64
In [48]: # dividing the dataset for training & testing
         from sklearn.model_selection import train_test_split
         x_train, x_test, y_train, y_test = train_test_split(x, y,test_size = 0.2, random)
```

```
In [49]: x_train
```

Out[49]:

	Name	Age	CGPA	Degree	Job Probability
5	9	35.0	3.00000	1	2
0	8	23.0	3.60000	0	2
7	1	23.0	3.85000	2	0
2	5	21.0	3.62625	0	2
9	3	24.0	3.62625	1	0
4	6	23.0	3.95000	1	0
3	0	23.0	2.95000	0	1
6	7	24.0	3.96000	2	0

```
In [50]: y_train
Out[50]: 5
              0
              0
              1
              0
         9
              1
              1
         4
         3
              0
              1
         Name: Intern, dtype: int64
In [51]: # using LogisticRegression model
         from sklearn.linear_model import LogisticRegression
         model = LogisticRegression()
In [52]: # training the model
         model.fit(x_train, y_train)
Out[52]: LogisticRegression()
In [54]: # predicting by test data
         y_pred = model.predict(x_test)
         y_pred
Out[54]: array([1, 0], dtype=int64)
```