自动驾驶

主讲老师:高彦杰

内容概要

- 1)自动驾驶介绍与应用领域
- 2)自动驾驶主流技术与前沿
- 3)深度增强学习DQN原理
- 4)项目整体架构与模块
- 5)自动驾驶车辆检测原理
- 6) End to End深度学习自动驾驶原理
- 7)开发与评测

自动驾驶介绍与应用领域

自动驾驶介绍

- ✓ 应用场景
- ✓ 支撑算法
 - ✓ Rule based
 - ✓ End to End Deep learning
- ✓ 底层技术平台
 - ✓ 软件层
 - ✓ 硬件层

自动驾驶分级

自动驾驶分级				主体			
NHTSA	SAE	称呼(SAE)	SAE定义	驾驶操作	周边监控	支援	系统作用域
0	0	无自动化	由人类驾驶者全权操作汽车,在行驶过程中可以得到警告 和保护系统的辅助。	人类驾驶者	驾 类 驶 驾 者 驶	人类加	无
1	1	驾驶支援	通过驾驶环境对方向盘和加减速中的一项操作提供驾驶支援,其他的驾驶动作都由人类驾驶员进行操作。	人类驾驶者 系统			部分全域
2	2	部分自动化	通过驾驶环境对方向盘和加减速中的多项操作提供驾驶支援,其他的驾驶动作都由人类驾驶员进行操作。			马驶者	
3	3	有条件自动化	由无人驾驶系统完成所有的驾驶操作。根据系统请求,人 类驾驶者提供适当的应答。	75		有	
4	4	高度自动化	由无人驾驶系统完成所有的驾驶操作。根据系统请求,人 类驾驶者不一定需要对所有的系统请求作出应答,限定道 路和环境条件等。	25c	系统	系统	
	5	完全自动化	由无人驾驶系统完成所有的驾驶操作。人类驾驶者在可能 的情况下接管。在所有的道路和环境条件下驾驶。			57G	

业界进展

自动驾驶主流技术与前沿

Rule based

- ✓ 系统复杂性
 - ✓ 人工设计大量模块
- ✓ 高精地图成本
 - ✓ 广铺
 - ✓ 更新
- ✓ 车载硬件计算能力
 - ✓ 各个子模块自己的网络
- ✓ 难度大,需要协作生态

End to End

- **✓ 1988 ALVINN**
- **✓ 2005 DAVE**
- **✓ 2015 DEEP Driving**
- ✓ 2016 DAVE2 NVIDIA

两种流派对比

		Rule based	End-to-end	
功能	Reactive control (边打电话)	√	√	
-9JHG	Proactive planning (思考判断)	✓	× (research 阶段)	
系统工程复杂度		极高	极低	
算法要求		高	高	
可解释性		高	低	
广铺成本		高 (HD Map)	低	
传感器成本		感器成本 极高		
车载计算能力		车载计算能力 极高		
核心问题		研发、广铺成本极高	没有足够优质的数据	

深度增强学习DQN原理

增强学习

通过和环境交互学习到如何在相应的观测中采取最优行为

行为的好坏可以通过环境给的奖励来确定

观测:

- ✓ 摄像头和激光雷达采集到的周围环境的图像和点云
- ✓ 传感器的输出,行驶速度、GPS定位、行驶方向

奖励:

✓ 根据任务的不同,可以通过到达终点的速度、舒适度和安全 性等指标确定

Q-learn

Q learn算法

Q learn算法

$$Q(s,a) = R(s,a) + \gamma \cdot \max_{\widetilde{a}} \{Q(\widetilde{s}, \widetilde{a})\}, \tag{1.1}$$

算法 1.1 (Q-learning 算法)

Step 1 给定参数 γ 和 reward 矩阵 R.

Step $2 \Leftrightarrow Q := 0$.

Step 3 For each episode:

- 3.1 随机选择一个初始的状态 s.
- 3.2 若未达到目标状态,则执行以下几步
 - (1) 在当前状态 s 的所有可能行为中选取一个行为 a.
 - (2) 利用选定的行为 a, 得到下一个状态 \tilde{s} .
 - (3) 按照 (1.1) 计算 Q(s,a).
 - $(4) \diamondsuit s := \widetilde{s}.$

State 0 1 2 3 4 5 0 $\begin{bmatrix} -1 & -1 & -1 & -1 & 0 & -1 \\ -1 & -1 & -1 & 0 & -1 & 100 \end{bmatrix}$ $R = \begin{bmatrix} 2 & -1 & -1 & -1 & 0 & -1 & 100 \\ -1 & -1 & -1 & 0 & -1 & 0 & -1 \\ 3 & -1 & 0 & 0 & -1 & 0 & -1 \\ 4 & 0 & -1 & -1 & 0 & -1 & 100 \\ 5 & -1 & 0 & -1 & -1 & 0 & 100 \end{bmatrix}$

图 6 reward 值矩阵

$$Q = \begin{array}{c} \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{array}$$

图 7 将 Q 初始化为一个零矩阵

Q learn算法

观察矩阵 R 的第二行 (对应房间 1 或状态 1), 它包含两个非负值, 即当前状态 1 的下一步行为有两种可能: 转至状态 3 或转至状态 5. 随机地, 我们选取转至状态 5.

想象一下, 当我们的 agent 位于状态 5 以后, 会发生什么事情呢? 观察矩阵 R 的第 6 行 (对应状态 5), 它对应三个可能的行为: 转至状态 1, 4 或 5. 根据公式 (1.1), 我们有

$$Q(1,5) = R(1,5) + 0.8 * \max\{Q(5,1), Q(5,4), Q(5,5)\}$$

$$= 100 + 0.8 * \max\{0,0,0\}$$

现在状态 5 变成了当前状态. 因为状态 5 即为目标状态, 故一次 episode 便完成了, 至此, agent 的"大脑"中的 Q 矩阵刷新为

接下来, 进行下一次 episode 的迭代, 首先随机地选取一个初始状态, 这次我们选取状态 3 作为初始状态.

深度增强学习DQN自动驾驶

Q-Learn挑战

- ✓ 使用表格来表示Q值,现实的很多问题上是几乎不可行的,因为状态太多。
- ✓ 价值函数近似Value Function Approximation
- ✓ 深度学习网络近似Q函数

增强学习DQN

✓ 数据: DQN提供标记样本, Q-Learn算法

✓ 输入:状态

・ 输出:Q値 $L(w) = \mathbb{E}[(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w))^2]$

Target

✓ 模型: DNN

✓ 损失函数:

✓ 优化方法:SGD优化等

✓ 训练方式: experience relay。存储一定数据后,随机采样

项目流程与模块介绍

| 角色定位

4~6人

✓ 主管:人员分配,进度把控

✓ 开发:

- ✓ 数据预处理
- ✓ 模型训练
- ✓ 模块集成

目标制定

- ✓ 项目分析
 - 1. 需求分析
 - 2. 可行性分析
 - 3. 技术选型
- ✓ 项目实现
 - 1. 功能模块分析
 - 2. 任务模块分配
 - 3. 实现进度规划
 - 4. 评测

整体架构

模块简介

- 车辆检测模块
 - 车辆图像预处理模块
 - 车辆视频处理模块
 - 迁移学习模块
 - 模型推断模块
 - 绘制检测结果模块

- End to End自动驾驶模块
 - 图像预处理模块
 - 视频预处理模块
 - 数据探索模块
 - 深度学习模型构建与训练模块
 - 评测与视频加工模块

车辆检测模块

YOLO模型

YOLO: You Only Look Once

YOLO模型

车辆检测

End to End深度学习自动驾驶

End to End

- ✓英伟达的DRIVE解决方案
- ✓ 采用的端到端方法
- ✓ 以摄像头的原始图像作为输入
- ✓ 通过前期使用数据训练出来的模型直接输出车辆的速度和方向

问题陈述

- ✓ 该项目是一个监督回归问题。
- ✓ 数据集:对应每一帧图像都给定了相应的方向盘转向角度
 - ✓ 在本问题中,输入X是前置摄像头获取的单帧图片,而最后的结果Y为转向角度
- ✓ 模型:端到端(end-to-end)模型
 - ✓ 端到端模型指的是输入是原始数据,输出是最后的结果
 - ✓ 目标:训练一个端到端模型f,该模型则可以预测转向角度Y,其关系为Y=f(X)。

DAVE2

Figure 2: Training the neural network.

Figure 3: The trained network is used to generate steering commands from a single front-facing center camera.

数据集

- ✓ 先来看一下项目的输入
- ✓ 项目的原始数据来处于汽车的前置摄像头
- ✓ mkv的视频格式提供的
- ✓ 共10段视频,其中第10段视频将用于测试
- ✓ 第1到第9个视频经提取后,共有24300张图片
- ✓ 图片形状为 (720,1200,3)

评价指标

该项目是回归问题,问题的评价指标主要有两个:

- ✓ 预测结果平均损失函数(MSE)
 - ✓ MSE表达式如下:
 - ✓ 其中 yp 表示预测转向角度
 - ✓ y为实际转向角度

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_p - y)^2$$

- ✓ N为样本总数
- ✓ MSE值越小,则模型效果越好
- ✓ 模型的训练和预测时长

英伟达模型

开发与评测