Prime Implicant Table Half Full Adder

CLASS 15

QUIZ 2.2

I Design a majority circuit with three inputs in the following way:

Solution

1) Write the truth table of a function, say $F_3(x,y,z)$, where the output agrees with the majority of the input, that is $F_3(x,y,z) = 1$ if and only if at least two out of the three variables: x,y,z have the value 1.

2) Write the expression of the function $F_3(x,y,z)$ and minimize it.

2)
$$F_3 = x'yz + xy'z + xyz' + xyz$$

All implicants are essential.

$$F_3 = A + B + C = xy + xz + yz$$

Note: From the expression of the minimal form we can see that

we take any 2 out of the 3 variables to form majority

QUIZ 2.2 (cont)

II Next, design a majority circuit function, say $F_4(x,y,z,t)$, with four inputs. Handle ties in a way that is 'optimal' from the point of view of the minimization of F_4 . Write the truth table of F_4 . Continue this task as HW.

Solution (Q2.2+HW)

What do we do with the ties? 'tie' is not an acceptable value for a function!

x	v	z	†	F ₄
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	tie d
0	1	0	0	0
0	1	0	1	tie d
0	1	1	0	tie d
0	1	1	1	1
1	0	0	0	0
1	0	0	11	tie d
1	0	1	0	tie d
1	0	1	1	1
1	1	0	0	tié d
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

What do we care about?

To minimize F_4 , and not who wins in a tie! \longrightarrow Use d, to our advantage.

7 is covered by A, E, F

Case I: Take A
$$F_4 = A + B = yt + xz$$

Case II: Take E $F_4 = E + C = yz + xt$

Case III: Take F $F_4 = F + D = zt + xy$

<- 3 Minimal forms

<u>Note</u>: From the expression of the minimal form we can see that we take any 2 out of the 4 variables and the remaining 2 to form at least a tie.

How would the majority circuit look for 5 variables?

$$F_5(x_1, x_2, x_3, x_4, x_5) = 1 \iff$$
 at least 3 out of the 5 variables are 1.

$$\binom{5}{3} = \binom{5}{2} = \frac{5-4}{1\cdot 2} = 10$$
, terus:

$$F_{5} = \chi_{1} \chi_{2} \chi_{3} + \chi_{1} \chi_{2} \chi_{4} + \chi_{1} \chi_{2} \chi_{5} + \chi_{1} \chi_{3} \chi_{4} + \chi_{1} \chi_{3} \chi_{5} + \chi_{1} \chi_{4} \chi_{5} + \chi_{2} \chi_{3} \chi_{4} + \chi_{2} \chi_{3} \chi_{5} + \chi_{2} \chi_{4} \chi_{5} + \chi_{3} \chi_{4} \chi_{5} + \chi_{5} \chi_{5} \chi_{5} + \chi_{5} \chi_{5} + \chi_{5$$

We wrote it directly in minimal form

Solution

Consider the function; we applied the tabulation method on:

$$f = \Sigma (1, 2, 3, 4, 7, 8, 12, 15) + d \Sigma (0, 5, 9, 10, 14))$$

- 1) Draw the K-map and find all prime implicants, giving them the same labels (letters), A - I, in class, when applying the tabulation method.
- 2) Minimize f.

-111	(7, 15)	IJΤ

(14, 15)

We have from tabulation method (class 16):

Essential: none

111-

Index	Impl. Binary	Impl. Dec.	П
	00	(0, 1, 2, 3)	$\ $
	0 - 0 -	(0, 1, 4, 5)	
0	-00-	(0, 1, 8, 9)	
	-0-0	(0, 2, 8, 10)	
	00	(0, 4, 8, 12)	1
1	0 1	(1, 3, 5, 7)	
	1 0	(8, 10, 12, 14)	
- 1			

Least covered 1's: 2, 3, 4, 7, 12, 15: all covered by exactly two implicants. Choose one of them: 2, covered by D, G.

Every minimal form will contain D or G. <u>Case I</u>: Take D \rightarrow 2 and 8 are covered.

To cover the rest we need one size-2 implicant (for 15) and 2 \times size-4 implicants:

$$f = D + B + C + \begin{cases} H \\ I \end{cases}$$
 or $f = D + G + C + I$

$$f = D + G + C + I$$

(note: it's redundant, as we don't need D; if you don't note it, go to Case II below)

<u>Case II</u>: Take $G \rightarrow 1,2,3$ are covered. 15 again may be covered only by a size-2 implicants: H, I.

However, if we cover 15 by implicant I, then the remaining 1's may be covered by just one size-4 implicant.

$$f = G + C + I$$
 < Minimal form

which means it's the only one!

$$f = x'y' + z't' + yzt$$

<- only Minimal form as expression</p>

HW 17.1 - assigned

A.

Simplify the following Boolean function F together with the don't-care conditions d; then express the simplified function.

(a)
$$F(x, y, z) = \Sigma (0, 1, 2, 4, 5)$$

 $d(x, y, z) = \Sigma (3, 6, 7)$

(b)
$$F(A, B, C, D) = \Sigma (0, 6, 8, 13, 14)$$

 $d(A, B, C, D) = \Sigma (2, 4, 10)$

В.

A logic circuit implements the following Boolean function:

$$F = A'C + AC'D'$$

It is found that the circuit input combination A = C = 1 can never occur. Find a simpler expression for F using the proper don't-care conditions.

Prime Implicant Table [it computes a minimized form]

Consider the function; we applied the tabulation method on:

$$f = \Sigma (1, 2, 3, 4, 7, 8, 12, 15) + d \Sigma (0, 5, 9, 10, 14))$$

-111	(7, 15)	I
111-	(14, 15)	Н

1's (no d's) are the columns; the prime implicants are the rows:

_	1	2	3	4	7	8	12	15	
-							×		- C ⊃ A
	\vdash						_^_	\vdash	U
В	*		×		*				
C				×		×	×		
D		×				×			
Ε	×					*			
F	×			×					
G	×	×	×						
Н								_ v	- І ⊃ н
								^	

Index	Impl. Binary	Impl. Dec.	II
	00	(0, 1, 2, 3)	G
	0 - 0 -	(0, 1, 4, 5)	F
0	-00-	(0, 1, 8, 9)	E
	-0-0	(0, 2, 8, 10)	D
	00	(0, 4, 8, 12)	C
1	0 1	(1, 3, 5, 7)	В
	1 0	(8, 10, 12, 14)	A
$\overline{}$			

Procedure:

- 1) Find essentials; put them in the minimal form and eliminate from table.
- 2) Remove: Dominated rows.
- 3) Remove: Dominating columns.

Repeat steps 1) - 3) until a minimized form is obtained

1) No essentials

1⊃3

2) We removed dominated rows A and H

7⊃15

8 ⊃12

3) We removed dominating columns 1, 7 and 8

<u>Note</u>: when a 1 has only one x in its column then the implicant corresponding to that x is <u>essential</u>.

Prime Implicant Table

(continued)

We redo the table:

-111

111-

--00

Procedure:

- 1) Find essentials; put them in the minimal form and eliminate from table.
- 2) Remove: Dominated rows.
- 3) Remove: Dominating columns.

Repeat steps 1) - 3) until a minimized form is obtained

1) Essentials:
$$C, I \longrightarrow f = C + I + ...$$

Remove the columns/rows corresponding to the essential implicants

We redo the table:

	2	3
В		×
7		
U	×	
G	X	×

2) Remove: dominated rows

$$f = C + G + I = z't' + x'y' + yzt$$

(7, 15)

(14, 15)

(0, 4, 8, 12)

We have the same minimal form as the K-map gave us (HW 16)!

HW 17.2 - assigned

Minimize the function:

f = A'B'DE' + E'B'C'D + B'DE' + B'CD + CDE' + BDE'

Half-Adder and Full-Adder

Let's add two binary numbers to figure out all steps involved.

Half-adder:

$$S = A'B + AB' = (\underline{A' + B'})(A + B)$$
 $C_{out} = AB = (\underline{A' + B'})'$

Full-adder

<u> </u>	В	Cin	5	Cout
0	0	0	0	0
0 0 0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = A'B'C + A'BC' + AB'C' + ABC$$

$$C_{\text{out}} = A'BC + AB'C + ABC' + ABC$$

$$S = A'B'C + A'BC' + AB'C' + ABC$$

$$C_{\text{out}} = AB + AC + BC$$

Majority function!

HW 17.4 - assigned: Construct a FA using only HA's and one other gate.