Distributed Systems COMP 212

Lecture 5

Othon Michail

Flooding/Broadcast

Broadcast given Spanning Tree

 We start from the case in which a spanning tree of the network is given

- Network G = (V, E)
- $E' \subseteq E$ specifies a spanning tree T = (V, E')
- Root: u_0 (leader)
- Processors know T in a distributed way
- Each u_i knows:
 - a parent_i

 u_8

a set children_i

Broadcast given Spanning Tree

Problem:

- u₀ has some information it wishes to send to all processors
 - e.g., a message (M)
 - additionally all nodes must have terminated in the end

Solution: Pseudocode

Algorithm Spanning tree broadcast

State of processor u_i :

- parent_i: holds a processor index or nil; u_i 's parent
- $children_i$: holds a set of processor indices (possibly empty); u_i 's children
- Boolean $terminated_i$: indicates whether u_i has terminated (1) or not (0)

Solution: Pseudocode

Algorithm Spanning tree broadcast Initially u_0 knows $\langle M \rangle$

Code for leader (u_0) : send $\langle M \rangle$ to all children terminate

Code for non-leader:

upon receiving (M) from parent:

send (M) to all children

terminate

round = 1

round = 1

round = 2

round = 3

round = 3

round = 4

Correctness and Performance

When we devise an algorithm we typically should

- 1. Convince that it is correct
- 2. Analyse its performance
- Correctness:
 - Usually a proof that the algorithm does as expected
- Performance:
 - Time Complexity (e.g., #rounds required)
 - Space Complexity (e.g., memory used by processors)
 - Communication Complexity (e.g., total #messages transmitted, size of messages); also called message complexity

Spanning Tree Broadcast Correctness

Fairly easy for this algorithm:

- Show that every node will receive (M) and terminate
 - Whenever a u_i receives $\langle M \rangle$ it terminates by the end of that round
 - Suffices to show that every u_i will receive $\langle M \rangle$

Proof. Take any $u_i \neq u_0$. As the tree T is spanning, there is a single tree-path from u_0 to u_i . By the way the algorithms works, $\langle M \rangle$ will be forwarded hopby-hop on the path until it reaches u_i . And this holds for all u_i in the network.

Equal to the #rounds until all nodes have received (M)

Lemma. For every u_i whose distance from u_0 in the spanning tree is r, it holds that u_i receives $\langle M \rangle$ in round r. *Proof.* By induction on r.

- For r = 1: Holds because in round 1, u_0 transmits $\langle M \rangle$ to all its children who receive it in round 1
- Assume that it holds for any $r 1 \ge 1$
 - Means that all processors at distance r 1 receive $\langle M \rangle$ in round r 1
- Then it must hold also for r
 - The parent u_i of any u_i at distance r is at distance r-1
 - By previous assumption, the parent received $\langle M \rangle$ in round r-1, therefore transmits it to all its children including u_j in round r, and u_j receives it in round r

- This means that for a tree T of depth d the algorithm requires d rounds
- But in general we want our algorithm to run on all possible networks and all their possible spanning trees
 - And not all have the same depth...
- What is the worst-case time complexity of our algorithm?

- This means that for a tree T of depth d the algorithm requires d rounds
- But in general we want our algorithm to run on all possible networks and all their possible spanning trees
 - And not all have the same depth...
- What is the worst-case time complexity of our algorithm?
- It is the worst-case depth of a spanning tree on n nodes

- This means that for a tree T of depth d the algorithm requires d rounds
- But in general we want our algorithm to run on all possible networks and all their possible spanning trees
 - And not all have the same depth...
- What is the worst-case time complexity of our algorithm?
- It is the worst-case depth of a spanning tree on n nodes = n 1

1. Size of largest message transmitted?

- 1. Size of largest message transmitted?
 - Size of (M), typically in bits

 For example, if (M) is a single processor identifier (or id) this would typically be O(log n) bits

2. Total #messages transmitted?

- A single observation suffices
- Any ideas?

- 2. Total #messages transmitted?
- A single observation suffices

Observation. For every edge of the spanning tree, from a parent u_i to a child u_j , exactly one message will be ever transmitted through it.

- The single transmission of $\langle M \rangle$ from u_i to u_j
- As u_i then terminates it will not happen again
- What is the total #messages then?

- 2. Total #messages transmitted?
- A single observation suffices

Observation. For every edge of the spanning tree, from a parent u_i to a child u_j , exactly one message will be ever transmitted through it.

- The single transmission of $\langle M \rangle$ from u_i to u_j
- As u_i then terminates it will not happen again
- What is the total #messages then?
 - #edges of a spanning tree on n nodes
 - Always n 1

Spanning Tree Broadcast Summing-up

Theorem. The Spanning Tree Broadcast algorithm solves the broadcast problem in any connected synchronous network G when a rooted spanning tree T of G is known in advance. The time complexity of the algorithm (in rounds) is equal to the depth d of T. For the communication complexity, the algorithm transmits a total of n - 1 messages and the maximum size of a message is equal to the binary representation of the information to be broadcast.

Broadcast without a given Spanning Tree

Problem:

- u₀ has some information it wishes to send to all processors
 - e.g., a message (M)
 - additionally all nodes must have terminated in the end
- No spanning tree of the network G is given in advance
- The algorithm should also output a constructed spanning tree of G

Solution: Informal description

- All nodes awake initially
- If awake and have just received (M) from some neighbours,
 - Choose one of those neighbours as your parent and let him know
 - forward $\langle M \rangle$ to the rest of the neighbours
 - Wait for 1 round to collect children (if any) and then sleep
- If neighbours inform you that you are their parent,
 - add those processors to your children list
 - sleep
- If you are asleep, do nothing

Solution: Pseudocode

```
Algorithm Broadcast & Spanning tree construction
Code for processor u_i, i \in \{0, 1, ..., n - 1\}:
Initially parent = \perp and children = \emptyset
if u_i = u_0 and parent = \perp then
                                          // root has not yet sent (M)
  send (M) to all neighbours
  parent := u_i
upon receiving (M) from neighbours N:
  if parent = \bot then
                                            // u_i has not received (M) before
    parent := u_i \in N
                                            // select one arbitrarily as parent
    send ("parent") to u_i
     send \langle M \rangle to all neighbours except those in N
     wait for one round to collect children if any and then terminate
upon receiving ("parent") from neighbours N:
  add all u_i \in N to children
  terminate
```


round = 2

34/41

round = 4

38/41

Correctness and Complexity

Correctness:

- correctness of broadcast
- correctness of spanning tree construction
 - can also be shown that the constructed tree is always a Breadth-first search (BFS) tree
- Time complexity:
 - O(D): where D is the maximum distance of a u_i form u_0 in G
- Communication complexity:
 - size of messages: sends message (M) and an id
 - -O(m) messages: where m denotes the #edges of G

Can you prove these at home?