Bitácora Proyecto Grupal 1

José Bernardo Barquero Bonilla
2023150476

Jose Eduardo Campos Salazar
2013135620

Jimmy Feng Feng
2023060347

Alexander Montero Vargas
2023166058

Instituto Tecnológico de Costa Rica Escuela de Ingeniería en Computadores CE1107 - Fundamentos de Arquitectura de Computadores

> Profesor Luis Chavarría Zamora 20 de Mayo de 2025

Desarrollo por Días

01/05/2025

Encargados

Jose Barquero, Jose Edo Campos, Jimmy Feng y Alexander Montero

Objetivo

Comprender mejor lo solicitado en el enunciado del proyecto y realizar una distribución de las tareas.

Procedimiento

- Se realizó una reunión virtual mediante Google Meet para entender lo solicitado.
- Discusión de posibles formas de solucionar el proyecto.
- División equitativa del trabajo.

Resultados y Observaciones

Todos los estudiantes comprendieron mejor lo solicitado en el proyecto y a su vez, ya saben qué tareas les quedó asignado a cada uno para la realización del proyecto.

01/05/2025

Encargados

Jimmy Feng

Objetivo

Avanzar parte de los módulos asignados en SystemVerilog. Específicamente para el display de 7 segmentos.

Procedimiento

- Se comprendió la tarea asignada del display 7 segmentos.
- Se pensaron en diferentes soluciones para implementar este módulo.
- Se realizó la implementación en SystemVerilog de este módulo.

Resultados y Observaciones

Se logró crear exitosamente el módulo $HEX_SevenSeg$ el cual toma el resultado de 4 bits, obtenido mediante una ecuación booleana, directamente lo pasa al display de 7 segmentos en forma hexadecimal. Es un funcionamiento similar a un BCD, sin embargo en Hexadecimal [1].

08/05/2025

Encargados

Jose Barquero, Jose Edo Campos, Jimmy Feng y Alexander Montero

Objetivo

Comprender de mejor forma lo solicitado en el proyecto.

Procedimiento

- Los estudiantes se pusieron en contacto mediante whatsapp para entender de mejor forma el proyecto.
- Se realizaron consultas al profesor sobre cosas que aún no se entendían.
- También, se le hizo la consulta al profesor de realizar algo extra al proyecto y si aceptó.

Resultados y Observaciones

Los estudiantes comprendieron de mejor forma lo solicitado en el enunciado del proyecto, gracias a las consultas realizadas al profesor, además de la retroalimentación dada por cada miembro del mismo. También, se llegó a un acuerdo con el profesor para hacer algo extra en el proyecto. Ese extra consiste en usar una conexión WiFi o Bluetooth (aún por definir) entre una app mobile y un NodeMCU para enviar datos mediante el protocolo UART a la FPGA.

08/05/2025

Encargados

Jose Barquero

Objetivo

Avanzar con la propuesta de investigación del proyecto.

Procedimiento

- El estudiante comprendió lo solicitado en el enunciado del proyecto para la realización de la estructura de la propuesta de investigación.
- Se hizo uso de la herramienta ChatGPT para generar una estructura adecuada a lo solicitado.
- Se hizo la parte de introducción, identificación del problema y la metodología de la propuesta.

Resultados y Observaciones

Gracias a la estructura brindada por la herramienta IA, se creó una propuesta de investigación completa, donde abarcase los puntos más adecuados. También, se creó de forma exitosa la parte de introducción, identificación del problema y metodología del documento. Esto tomando en cuenta un buen manejo del lenguaje técnico y comunicación de ideas.

09/05/2025

Encargados

Jose Barquero, Jose Edo Campos, Jimmy Feng y Alexander Montero

Objetivo

Entender dudas que se tienen del proyecto.

Procedimiento

• Los estudiantes le realizaron consultas al profesor, debido a una confusión surgida debido a las entradas del módulo de la FPGA y las salidas del mismo módulo.

Resultados y Observaciones

Las dudas fueron atentdidas por el profesor, el cual aclaró todo y dejo más claro cómo es que funcionan las entradas y salidas del módulo a implementar en la FPGA.

09/05/2025

Encargados

Jose Edo Campos

Objetivo

Realizar un prototipo de la app mobile.

Procedimiento

- El estudiante se encargó en realizar una aplicación móvil, según las entradas que se deben enviar a la FPGA, es decir, la entrada del acumulado (4 bits), además de la operación a realizar.
- Se definió la estructura de la comunicación UART.

Resultados y Observaciones

Se obtuvo un prototipo de la app mobile que se puede apreciar en la Figura 1. Además, se definió una estructura a utilizar del protocolo UART, donde los últimos cuatro bits representan el acumulado, y los cuatro primero bits representan el CLK, RESET y la operación a escoger.

Figure 1: Prototipo visual de la aplicación Mobile

09/05/2025-10/05/2025

Encargados

Jose Barquero

Objetivo

Realizar un diseño de la ALU a implementar en la FPGA usando System Verilog.

Procedimiento

- El estudiante comprendió el comportamiento que deben tener las operaciones a realizar.
- Se diseñó según la especificación el realizar todo con compuertas la parte de un selector de operaciones, el cual se describió como un MUX 4:1.
- El estudiante realizó la operación de AND y XOR tomando en cuenta un concepto que se llama replicación para la entrada de dos bits[2] [3].
- El estudiante también realizó la operación de SUB tomando en cuenta que la resta se puede apreciar como una suma y también tomando en consideración que debe ser circular [4].

• El estudiante realizó una versión preliminar de la multiplicación, tomando en consideración los productos parciales y las sumas hechas por un full adder considerando carry [5] [6] [7]

Resultados y Observaciones

Se logró realizar un diseño preliminar de la ALU utilizando solo compuertas lógicas en base a las ecuaciones booleanas obtenidas de las tablas de verdad de cada parte de la ALU realizada.

10/05/2025

Encargados

Jose Edo Campos

Objetivo

Mejorar la parte gráfica de la aplicación mobile.

Procedimiento

• Se consideró realizar unos cambios visuales en la interfaz gráfica de la app mobile, esto para que se viera de mejor forma.

Resultados y Observaciones

La aplicación mobile obtenida, presenta mejoras en su apartado gráfico. En la Figura 2 se puede apreciar este cambio realizado.

Figure 2: Interfaz gráfica de la app mobile mejorada

Referencias

- [1] Bhimsen, 7 Segment HEX Decoder, https://electronics-fun.com/7-segment-hex-decoder/, Digital Electronics, n.d. (visitado 02-05-2025).
- [2] D. of Electrical y U. o. M. Computer Engineering, *ALU Design ECE 270*, Online lecture notes, 2020. dirección: https://engineering.purdue.edu/~meyer/DDU270/Notes/PDF/2-Mod4_NQ_2019.pdf.
- [3] M. M. Mano, C. R. Kime y T. Martin, Logic and Computer Design Fundamentals, 5th. Pearson, 2017, ISBN: 9780131989269. dirección: https://wp.kntu.ac.ir/dfard/ebook/lc_ds1/M.%20Morris%20R.%20Mano,%20Charles%20R.%20Kime,%20Tom%20Martin%20-%20Logic%20and%20computer%20design%20fundamentals-Prentice%20Hall%20(2015).pdf.
- [4] D. Harris y S. Harris, *Digital Design and Computer Architecture*, 2^a ed. Morgan Kaufmann, 2015. dirección: https://www.elsevier.com/books/digital-design-and-computer-architecture/harris/978-0-12-800056-4.
- [5] GeeksforGeeks, Sequential Binary Multiplier, Consultado en mayo de 2025, 2024. dirección: https://www.geeksforgeeks.org/sequential-binary-multiplier/.
- [6] N. Matloff, Digital Design for Multiplication, University of California, Davis. Consultado en mayo de 2025, 2003. dirección: https://heather.cs.ucdavis.edu/Mult.pdf.
- [7] RealDigital, *Multipliers Arithmetic Circuits*, Consultado en mayo de 2025, s.f. dirección: https://www.realdigital.org/doc/42f40f5d5d502c3672477a2bbd78b697.