

Exercise 13.1

- Q.1 Two sides of a triangle measure 10cm and 15 cm which of the following measure is possible for the third side?
- (a) 5cm
- **(b)** 20 cm
- (c) 25 cm
- (d) 30 cm

Solution

Lengths of two sides are 15 and 10 cm.

So, sum of two lengths of triangle = 10 + 15 = 25 m

$$10 + 15 > 20$$

10 + 20 > 15

$$15 + 20 > 10$$

∴ 20 cm is possible for third side

Or

Sum of length of two sides is always greater than the third sides of a triangle.

Given

Q.2 Point O is interior of ΔABC Show that

$$m\overline{OA} + m\overline{OB} + m\overline{OC} > \frac{1}{2} (m\overline{AB} + m\overline{BC} + m\overline{CA})$$

Given

Point O is interior of ΔABC

To prove:

$$m\overrightarrow{OA} + m\overrightarrow{OB} + m\overrightarrow{OC} < \frac{1}{2} (m\overrightarrow{AB} + m\overrightarrow{BC} + m\overrightarrow{AC})$$

Construction

Join O with A, B and C.

So that we get three triangle $\triangle OAB$, $\triangle OBC$ and $\triangle OAC$

Proof

Statements	Reasons
Ιn ΔΟΑΒ	
$m\overline{OA} + OB > m\overline{AB}$ (i)	In any triangle the sum of length of two sides is greater then the third sides.
Ιη ΔΟΑС	
$m\overline{OC} + m\overline{OA} > m\overline{AC}$ (ii)	As in (i)
Ιη ΔΟΒС	
$mOB + \overline{OC} > m\overline{BC}$ (iii)	As in (i)
Adding equation i, ii and iii	
$\overline{OA} + \overline{OC} + \overline{OA} + \overline{OB} + \overline{OB} + \overline{OC} > \overline{AC} + \overline{AB} + \overline{BC}$	
$2\overline{OA} + 2\overline{OC} + 2\overline{OB} > \overline{AB} + \overline{BC} + \overline{CA}$	
$2(OA + OC + OB) > \overline{AB} + \overline{BC} + \overline{CA}$	

$$\frac{Z(OA + OC + OB)}{Z} > \frac{\overline{AB} + \overline{BC} + \overline{CA}}{2}$$
$$(OA + OC + OB) > \frac{1}{2}(\overline{AB} + \overline{BC} + \overline{CA})$$

Dividing both sides by 2

Q.3 In the $\triangle ABC$ m $\angle B = 70^{\circ}$ and m $\angle C = 45^{\circ}$ which of the sides of the triangle is longest and which is the shortest.

Solution

Sum of three angle in a triangle is 180°

$$\angle A + \angle B + \angle C = 180$$

$$\angle A + 70 + 45 = 180$$

$$\angle A + 115 = 180$$

$$\angle A = 180 - 115$$

$$\angle A = 65^{\circ}$$

Sides of the triangle depend upon the angles largest angle has

largest opposite side and smallest angle has smallest opposite side here $\angle B$ is largest so, \overline{AC} is largest $\angle C$ is smallest, so \overline{AB} is smallest side.

Q.4 Prove that in a right-angled triangle, the hypotenuse is longer than each of the other two sides.

Solution

Sum of three angles in a triangle is equal to 180°. So in a triangle one angle will be equal to 90° and rest of two angles are acute angle (less than 90°)

$$\therefore m \angle y = 90$$

And
$$m\angle x + m\angle z = 90$$

So $m \angle x$ and $m \angle z$ are acute angle

 \therefore Opposite to m \angle y = 90° is hypotenuse

It is largest side.

Q.5 In the triangular figure $\overline{AB} > \overline{AC}.\overline{BD}$ and \overline{CD} are the bisectors of $\angle B$ and $\angle C$ respectively prove that $\overline{BD} > \overline{DC}$

Given

In∆ABC

$$\overline{AB} > \overline{AC}$$

 \overline{BD} and \overline{CD} are the bisectors of $\angle B$ and $\angle C$

To prove

$$\overline{BD} > \overline{CD}$$

Construction

Label the angles $\angle 1, \angle 2, \angle 3$ and $\angle 4$

Proof

Statements	Reasons
In $\triangle ABC$	
$\overline{AB} > \overline{AC}$	Given
\overline{BD} is the bisector of $\angle B$	
$\frac{1}{2}m\angle ACB > \frac{1}{2}m\angle ABC$	
$m\angle ABC$	
$m \angle 2 \leq m \angle 4$	
\overline{CD} is the bisector of $\angle C$	Given
InΔBCD	
$\overline{BD} > \overline{DC}$	Side opposite to greater angle is greater

Theorem 13.1.4

to

From a point, out side a line, the perpendicular is the shortest distance from the point

Given:

A line AB and a point C

(Not lying on \overrightarrow{AB}) and a point D on \overrightarrow{AB} such that

 $\overrightarrow{CD} \perp \overrightarrow{AB}$

To prove

 $\overline{\text{MCD}}$ is the shortest distance from the point C to $\overrightarrow{\text{AB}}$

Take a point E on \overrightarrow{AB} . Join C and E to form a ΔCDE

Proof

Statements	Reasons
In ΔCDE	
m∠CDB > m∠CED	(An exterior angle of a triangle is greater than non adjacent interior angle)
But m\(CDB = m\(CDE \)	Supplement of right angle
∴ m∠CDE > m∠CED	
Or m∠CED < m∠CDE	
Or $m\overline{CD} < m\overline{CE}$	Side opposite to greater angle is greater.
But E is any point on \overrightarrow{AB}	
Hence mCD is the shortest distance from	
C to \overrightarrow{AB}	

Last Updated: September 2020

Report any mistake at freeilm786@gmail.com

[WEBSITE: WWW.FREEILM.COM] [EMAIL: FREEILM786@GMAIL.COM] [PAGE: 3 OF 3]