天文观测积分时间与星等的关系讨论

许睿安

北京大学物理学院 2017 级 4 班 学号: 1700011453*

(日期: 2019年11月20日)

关键词: 信噪比,观测积分时间, AB 星等, u'g'r'i'z' 系统

 $^{^{\}ast}$ juianhsu@pku.edu.cn; (+86)13021150508

I. 引言

我们知道想要观测越暗的天体,所需要的曝光时间(或称为观测积分时间)越长.同时望远镜的口径越大、环境视宁度(seeing)越好、背景天光越暗在相同的观测积分时间下都有利于看见更暗的天体.本文试着综合考虑各种实际因素,结合理论分析,给出观测积分时间与星等的关系,并在以简单实例中具体显示.

II. 理论

A. 物理量

表 [列出本文所用到的所有物理量及其单位.

表 I: 本文所用到的所有物理量及其单位.

物理量	意义	单位
$\overline{S_N}$	信噪比 (信号除以噪声)	无量纲
N_R	读出噪声 (每次读出的光电子数不一样)	e^{-}
i_{DC}	暗电流 (电子随机运动产生光电流)	e^{-}/s
Q_e	量子效率 (光子转换成电子的效率)	无量纲
F	目标流量 (来自目标的信号)	$\mathrm{photon}\cdot\mathrm{s}^{-1}\cdot\mathrm{cm}^{-2}$
f	每单位频率的流量 $(积分波长即为 F)^a$	$\mathrm{photon}\cdot\mathrm{s}^{-1}\cdot\mathrm{cm}^{-2}\cdot\mathrm{Hz}^{-1}$
F_{eta}	背景流量 (单位立体角的流量)	$photon \cdot s^{-1} \cdot cm^{-2} \cdot arcsec^{-2}$
Ω	对应的立体角 (与 F_{β} 相乘才是流量量纲) $^{\mathbf{b}}$	arcsec^2
ϵ	望远镜效率 (接收光子的效率)	无量纲
au	观测积分时间 (曝光时间)	\mathbf{S}
A	望远镜集光面积	${ m cm}^2$
D	望远镜口径	m
m_{AB}	以 AB 星等表示的星等大小	无量纲
seeing	视宁度 (衡量大气稳定性)	arcsec

^a 虽然 f 和 F 的量纲不同,但有时候也把 f 直接称为流量.

^b 如果范围不是很大,实际应用时可以取 seeing².

B. AB 星等

AB 星系统的绝对流量定标基于 Vega 的 V 波段流量,即 AB 星系统的任何波段的零等星流量皆是 3631 Jy. 因此容易得到 AB 星等 m_{AB} 和流量 f_{ν} 的关系如式式 1和 2.

$$m_{\rm AB} = -2.5 \log_{10} \left(\frac{f_{\nu}}{3631 \,\rm Jy} \right)$$
 (1)

$$f_{\nu} = 3631 \exp(-0.4m_{\rm AB}) \tag{2}$$

其中

$$1Jy = 10^{-26} \frac{W}{Hz \cdot m^2} = 10^{-23} \frac{erg}{s \cdot Hz \cdot cm^2}$$
 (3)

同时我们知道光子能量可以表示成

$$E = \frac{1.99\text{Å}}{\lambda} \times 10^{-8} \text{erg} \tag{4}$$

z'

9097

1248

因此流量就和实际观测到的光子数关联在一起了

$$1Jy = \frac{10^{-23}}{\frac{1.99\text{Å}}{\lambda} \times 10^{-8}} \frac{\text{photon}}{\text{s} \cdot \text{Hz} \cdot \text{cm}^2} = \frac{\lambda}{1.99\text{Å}} \times 10^{-15} \frac{\text{photon}}{\text{s} \cdot \text{Hz} \cdot \text{cm}^2}$$
(5)

C. u'g'r'i'z' 系统

u'g'r'i'z' 系统是 Sloan 巡天计划 (Sloan Digital Sky Survey, SDSS) 所使用的测光系统,有 5 种波段的滤镜 u',g',r',i',z',详细参数如表 II所示.

u' g' r' i' 3557 4825 6261 7672

955

1064

表 II: u'g'r'i'z' 系统滤镜参数.

 $\overline{\lambda_{eff}/\text{Å}^{\mathbf{a}}}$

 $\Delta \lambda / \mathring{A}^{b}$

468

988

a 有效波长, 具体说明见 [2].

b 等效高斯分布的半高全宽,具体说明见 [2].

D. 信号

望远镜接收的来自星体的信号大小可以表示为

$$S = F\tau A\epsilon Q_e \tag{6}$$

单位为光电子数,符号定义及单位见表 I.

E. 噪声

1. 信号噪声

光子数遵从 poisson 分布, 因此信号本身就存在噪声

$$N_S = \sqrt{S} \tag{7}$$

2. 暗电流

暗电流起因于电子的随机运动,导致得到的光电子除了信号之外还有一部分噪声

$$N_{DC} = \sqrt{S_{DC}} = \sqrt{i_{DC}\tau} \tag{8}$$

3. 背景噪声

背景天光存在一定亮度,可以形式上写成与式6相同的等式

$$S_{\beta} = F_{\beta} \Omega \tau A \epsilon Q_e \tag{9}$$

注意到 F_{β} 和 Ω 的量纲, 使得 $F_{\beta}\Omega$ 和式 6的 F 有相同的物理意义.

4. 读出噪声

读出噪声是在读出的时候产生的噪声,读出时间越短噪声越大,与曝光时间的长短没关系.

F. 信噪比

综上所述,噪声可以分成与时间有关的部分 N_{time} 和无关的部分 N_R

$$N_{time} = \sqrt{S + S_{DC} + S_{\beta}} = \sqrt{F \tau A \epsilon Q_e + i_{DC} \tau + F_{\beta} \Omega \tau A \epsilon Q_e} = \sqrt{\tau N_T}$$
 (10)

其中

$$N_T = FA_{\epsilon} + i_{DC} + F_{\beta}\Omega A_{\epsilon} \tag{11}$$

定义 A_{ϵ} 为有效集光面积

$$A_{\epsilon} = A \epsilon Q_e \tag{12}$$

因此信噪比可以表示成

$$S_N \equiv \frac{S}{N} = \frac{S}{\sqrt{N_R^2 + N_{time}^2}} = \frac{F\tau A_\epsilon}{\sqrt{N_R^2 + \tau N_T}} \sim \sqrt{\tau}$$
 (13)

由此可以发现信噪比大致上与 $\sqrt{\tau}$ 成正比. 从式 14可以写出

$$\tau = \frac{S_N^2 N_T}{2F^2 A_\epsilon^2} \left[1 + \sqrt{1 + \frac{4F^2 A_\epsilon^2 N_R^2}{S_N^2 N_T^2}} \right]$$
 (14)

值得注意的是,以上对于信噪比的讨论指的是望远镜观测时的信噪比,但是更多时候 关心的是信号处理的信噪比,差别在于我们并不能知道真正的信号,信号总是和噪声 叠加,因此考虑到统计上的估计问题[3],信噪比应该修正为

$$S_N \equiv \frac{S}{N} = \frac{S}{\sqrt{N_S^2 + 2N_n^2}} = \frac{FA_{\epsilon}\sqrt{\tau}}{\sqrt{FA_{\epsilon} + 2(\frac{N_R^2}{\tau} + i_{DC} + F_{\beta}\Omega A_{\epsilon})}}$$
(15)

其中, N_S 是信号噪声, N_n 是信号噪声以外的噪声.

III. 例题

考虑最简单的情况,忽略读出噪声 N_R 、暗电流 i_{DC} 、和望远镜效率 ϵ ,在表 III条件下观察积分时间与星等的关系.

物理量	大小	单位
$\overline{S_N}$	10	无量纲
Q_e	0.5	无量纲
$Q_e \ m_{AB,g}^{a}$	16~28	无量纲
F_{eta}	19,21,23	$m_{AB,g} \cdot arcsec^{-2}$
D	1, 4, 10	m
seeing	3, 1, 0.5, 0.1	arcsec

表 III: 例题参数.

此条件下,式 16简化为

$$S_N \equiv \frac{S}{N} = \frac{FA_{\epsilon}\sqrt{\tau}}{\sqrt{FA_{\epsilon} + 2F_{\beta}\Omega A_{\epsilon}}}$$
 (16)

则

$$\tau = \frac{S_N^2 N_T}{F^2 A_\epsilon^2} \tag{17}$$

其中

$$N_T = FA_{\epsilon} + 2F_{\beta}\Omega A_{\epsilon} \tag{18}$$

只要利用式 5和式 17就能把积分时间和星等关联在一起,得到以下结果.

a 表示在 u'g'r'i'z' 系统中的 g' 波段的星等.

图 1: 在不同的望远镜口径 (左上)、背景噪声 (右上)、大气视宁度 (左下)、信噪比 (右下)下,观测积分时间与星等的关系.

若固定观测积分时间 $\tau=3600{\rm s}$,可观测到的极限星等如表 IV所示,表中没有特别指出的参数皆以 $D=4~{\rm m}$ 、 $seeing=0.5~{\rm arcsec}$ 、 $F_{\beta}=21~{\rm m}_{{\rm AB,g}}\cdot{\rm arcsec}^{-2}$ 代入

表 IV: 固定观测积分时间 $\tau = 3600$ s, 在不同条件下可观测到的极限星等.

$\overline{D/\mathrm{m}}$	$m_{AB,g}$	$seeing/{ m m}$	$m_{AB,g}$	$F_{\beta}/\mathrm{m_{AB,g} \cdot arcsec^{-2}}$	$m_{AB,g}$
1	25.418	3	25.012	19	25.956
4	26.950	1	26.202	21	26.950
10	27.951	0.5	26.950	23	27.937
		0.1	28.662		

- [1] Wikipedia2019AB magnitude, 地址 https://en.wikipedia.org/wiki/AB_magnitude
- [2] Fukugita, M., Ichikawa, T., Gunn, J. E., Doi, M., Shimasaku, K., Schneider, D. P. 1996 Astronomical Journal 111 1748
- [3] 皮埃尔·莱纳,丹尼尔·鲁昂,弗朗索瓦·勒布伦,弗朗索瓦·米尼亚尔,迪迪埃·佩拉 2015 观测天体物理学 (第一版) 伍可,孙维新,胡景耀译 (北京:中国科学技术出版社) 第 459-460 页.