4. Релация, композиция, функция, редици. Индукция - резюме

Релацията е множество от п-торки, които са подмножество на декартовото произведение.

Бинарна релация- Ако X и Y са две множества, то $X \leftrightarrow Y$ е множество на всички бинарни релации между X и Y или

$$X \leftrightarrow Y = P(X \times Y)$$

Нотация за двойка ("maps to"): "⊷"

Видове релации: Бинарни, хомогенни и хетерогенни, рефлексивни, симетрични, транзитивни.

Рефлексивна релация: за всяко $x \in X$ е изпълнено $x \alpha x \in R$. Това означава, че всеки елемент на множеството X е свързан със себе си чрез релацията R.

Симетрична релация: $R = \{(1,2),(2,1)\}$ - всяка връзка (x, y) има своята обратна (y, x) т.е. връзките между елементите са двупосочни.

Ako R е релация от типа $X \leftrightarrow Y$, то:

-Област (domain), Source на дадената релация R е множество от елементи от X, които са свързани с елементи от Y

-Обхват (range), **Target** на дадената релация R е множество от елементи Y, с които елемент от X е свързан

Част от областта (domain): Aко $A \subseteq X$, то $A \triangleleft R$

Част от обхвата (range): Ако $B \subseteq Y$, то $R \triangleright B$

Изваждане от областта ($X \setminus A$) или $A \triangleleft R$ - всички елементи от областта X, които не принадлежат на множеството A

Изваждане от обхвата ($Y \setminus B$) или $B \triangleright R$ - всички елементи от обхвата Y, които не принадлежат на множеството B - Това означава, че от релацията R се премахват всички двойки (x,y), при които $y \in B$. Резултатът е нова релация, в която елементите от обхвата, принадлежащи на B, са изключени.

Образ на A в релацията $R(|A|) = ran(A \triangleleft R)$

Обратна релация R~

Композиция (Composition) - Ако източникът (source) на релация R2 е цел (target) на друга релация R1, то двете релации могат да формират нов обект, наречен композиция на две релации (R1°R2). Знакът ○ , както и ; , се използват за означаване на композиция.

$$x \mapsto z \in R1^{\circ}R2 \Leftrightarrow \exists y : Y \bullet x \mapsto y \in R1 \land y \mapsto z \in R2$$

Композицията на две релации свързва началния елемент на първата релация с крайния елемент на втората релация, ако съществува междинен елемент, който ги свързва последователно.

Функции - е специален вид релация, при която елемент от едно множество е свързан с най-много един елемент от друго множество

Функцията е такава релация, която няма двойки, съдържащи еднакъв първи елемент.

Видове функции: Тотални, частични, инекции, сюрекции, биекции.

- \rightarrow за всяко $x \in A$ съществува едно $y \in B$ f е тотална функция: $A \rightarrow B$
- \Rightarrow всяко $x \in A$ съществува най-много едно $y \in B$ частична функция: $A \Rightarrow B$ (elements of A that are not related to any element of B)
- **→** функция за **крайно множество** от стойности на **А крайна**: **А** → **В**

Ако а е елемент от **dom** на функцията f, то записът **f(a)** означава единственият **елемент**, **който е резултат от приложението** на функцията върху а. Две правила за извод: 1) Ако \exists **единствена** двойка а \mapsto b \in f c първи елемет а и втори елемент b, то b = f(a). 2/Ако b = f(a) и \exists единствена двойка с първи елемет a, то а \mapsto b \in f

Ламбда нотация (λ декларация | ограничение ● резултат), където "резултат" е математически израз: $\mathbf{f} = (\lambda \mathbf{x} : \mathbf{T} \bullet \mathbf{u} \mathbf{s} \mathbf{p} \mathbf{a} \mathbf{s})$

$$f = (\lambda x: Z \bullet x^2)$$
 - Квадратична функция

Тъй като релациите са множества (от наредени двойки), то върху тях можем да приложим операторите за множества.

```
R1 = \{(1,red), (2,blue)\}
R2 = \{(3,green), (2,blue)\}
R1 \cup R2 = \{(1,red), (2,blue), (3,green)\}
R1 \cap R2 = \{(2,blue)\}
# ( R1 U R2 ) = 3 - брой елементи в обединението R1 U R2
```

Отменяне (overriding) - често се налага да сменим стойността на функцията за една или повече стойности на областта

Това означава, че новата релация f⊕g ще приема: стойностите на функцията f, където f не е дефинирана в g и стойностите на функцията g, където g е дефинирана:

```
f == \{(1,red), (2,blue), (3,green)\}; g == \{(1,pink), (4,white)\}
f \oplus g = \{(1,pink), (2,blue), (3,green), (4, white)\}
```

Отменянето се отнася само до стойностите на областта на ф-те. Операторът ⊕ е приложим само към ф-и от един и същи тип.

... "между" - дефиниране на крайни множества2 .. 5 = {2,3,4,5}

Редици: Подредени множества, които се различават от множествата с фиксирана дължина и позволяват дублиране, като всяка позиция е важна. Празна редица: ()

Множествата не са редици. Множествата се различават от редиците:

- Множествата нямат определен ред на елементите
- Множествата **не позволяват дублиране** на елементи, докато в редицата може да има повтарящи се елементи.

```
Queue = \langle Rob, Peter, Mark, Mark, Matt \rangle seq[Queue] = \{(1,Rob), (2,Peter)...\} = = \{1\mapsto Rob, 2\mapsto Peter, ...\} AskedQns == \langle Rob, Peter, Mark, Mark, Matt \rangle head (AskedQns) = Rob tail (AskedQns) = \langle Peter, Mark, Mark, Matt \rangle front (AskedQns) = \langle Rob, Peter, Mark, Mark \rangle last (AskedQns) = Matt # AskedQns = 5 Достъп до отделните елементи: AskedQns(1) = Rob или AskedQns 1 = Rob AskedQns(3) = Mark и AskedQns 2 = Mark
```

Свързване (concatenation) $\langle 1,3,1 \rangle \land \langle 3,4 \rangle = \langle 1,3,1,3,4 \rangle$

Обобщение - distributed concatenation (flattening) - обединяваме вложени структури в една подредена редица, премахвайки вложеността. $\Lambda/\langle\langle a,b,c\rangle,\langle d,e\rangle,\langle f,g,h\rangle\rangle$

Достъпът до отделните елементи позволява проверка на стойността на елемент на дадена позиция.

Филтърът премахва нежеланите елементи от структурата, като същевременно запазва реда и мултипликативността на др.елементи:

$$\langle a, b, c, d, e, d, c, b, a \rangle \upharpoonright \{a, b\} = \langle a, d, d, a \rangle$$

инективни редици – редици, в които няма повтарящи се елементи **композиция** на редица с функция:

S е редица върху тип X, т.е. **s**: **seq**[X], което означава, че s е последователност от елементи от типа X. **f** е функция върху елементите на X, т.е. **f**: $X \to Y$, което означава, че f приема елементи от тип X и връща елементи от тип Y. За да приложим f към всеки елемент от s можем да запишем композицията на s c f: **s** o **f** или **s**; **f**

Композицията $s \circ f$ - f се прилага към всеки елемент от редицата s. Резултатът е нова редица, в която на всяка позиция е поставен резултатът от прилагането на f към съответния елемент от s.

Дистрибутивност - Ако имаме редица **s** и функция **f** и ако приложим **f** към редицата, можем да постигнем същия резултат, ако приложим **f** към всеки елемент от редицата поотделно и след това комбинираме тези резултати: $s \circ (f \circ g) = (s \circ f) \circ (s \circ g)$

s t – конкатенация /свързване/ на редици

Дистрибутивност - f(s t) = f(s) f(t)

Трасета (Traces) са **поредици от събития** (или операции), които се случват в система; **последователност от събития**, които записват действия в определен ред; **Event**- съвкупност от **събития**

Ограничения на трасетата: trace 1 event - извличане на специфични събития като записи или четения

Bags (Чанти) - (или multiset) е съвкупност от елементи, в която същият елемент може да се появява повече от веднъж

Free Types (Свободни типове) - набор от възможни стойности, които могат да бъдат използвани за създаване на типове

colors::=red|orange|yellow|green|blue|indigo|violet - дефинира colors като тип, който може да има една от следните стойности: червен...

Индукция - Използва се за доказателства върху числа, структури като бинарни дървета и редици. Метод за доказателство, който се използва за показване на истинността на дадено твърдение за цяла категория обекти, базирайки се на два основни принципа:

1. **База на индукцията** -Основен случай (**Base Case**):Доказва се, че твърдението е вярно за най-малкия обект от категорията.

Пр: За естествени числа, осн. случай обикновено е за 0 или 1.

2. **Индуктивна стъпка (Inductive Step)**: - ако твърдението е вярно за някакъв обект n, то е вярно и за следващия обект n+1

Видове индукция:

Натурална индукция (Mathematical Induction) - за естествени числа.

Структурна индукция (Structural Induction) - Прилага се към обекти с рекурсивна структура, като дървета, списъци или редици.

Техники/ методи за доказателство:

- **1. Natural Deduction** (Естествен извод) -използва правила за извод за да извежда нови твърдения от вече доказани (конюнкция, импликация, дизюнкция..). Базира се на формална логика и позволява да извеждаме нови твърдения от осн. предпоставки.
- 2. **Equational Reasoning** (Еквивалентно разсъждение) основава се на принципа на еквивалентност. Доказват се твърдения чрез преработка на изрази, като се използват логически еквивалентни формули. Използват алгебрични правила за манипулиране на уравнения/ изрази, за да се покаже, че два израза са идентични или че едно твърдение води до друго.
- 3. **Induction (Индукция)** -Индукцията е метод за доказване на твърдения, които са верни за всички елементи от дадено множество.
- 4. Special Forms (Специални форми на доказателства):
- -Case analysis (Анализ на случаи): разделяме доказателството на разл.случаи и доказваме твърдението поотделно за всеки от тях. След това обединяваме резултатите, за да направим обобщение.
- -One-point rule (Правило за една точка) доказва се твърдението чрез анализ на един конкретен случай, който е достатъчен за доказване на общото твърдение.
- -Proof by contradiction (Доказателство чрез противоречие): приемането на отрицанието на твърдението и доказването, че това води до противоречие с известни факти или аксиоми. Ако достигнем противоречие, то твърдението трябва да е вярно, тъй като неговото отрицание води до нелогичност.