

Institute/School/College Name	Chitkara University Institute of Engineering & Technology			
Department/Centre Name	Department of Applied Sciences			
Programme Name	B.ECSE			
Course Name	Differential Equations and	Session	2023 - 2024	
	Transformations			
Course Code	22AS002	Semester/Batch	2 nd /2023	
Lecture/Tutorial (Per Week)	4-0-0	Course Credit	4	
Course Coordinator Name	Dr. Inderpreet Kaur		_	

1. Objective of the Course:

- To provide the ability to apply mathematics for the solution of complex engineering and real life problems.
- To Identify, formulate and analyse the engineering problems.
- To arrive at substantiated conclusions using principles of mathematics are covered.

The main objectives of the courses are:

- To introduce and develop the Fourier series, half range sine and cosine series on arbitrary intervals for different problems.
- To find solution of second and higher order ordinary linear differential equations along with its applications in RLC circuits.
- To understand the requirement of Laplace transform, Inverse Laplace transform, properties and its application for the solution of differential equations.
- To be familiar with formation of partial differential equations and their solutions.
- To solve the Laplace, heat and wave equations for a variety of boundary conditions in domains of simple geometry and with simple boundary conditions; the techniques available will include separation of variables, Laplace and Fourier Transform methods.
- To determine continuity/differentiability/analyticity of a complex function.

2. Course Learning Outcome:

	Course Outcome	POs	CL	KC	Contact Hours
CLO01	Students will analyze and correlate many real life problems mathematically and thus find the appropriate solutions for them using Fourier series and Transforms (Fourier and Laplace transform)	PO1,PO2,PO11	K2	Factual Conceptual	18
CLO02	Student will be able to solve various practical problems in Science and Engineering using ordinary differential equations	PO1,PO2,PO4	K3	Fundament al Conceptual	18
CLO03	Students will possess an ability to recognize and find families of solutions for most real physical processes such as heat transfer, elasticity, quantum mechanics,	PO1, PO2	K3	Conceptual Procedural	12

	water flow and other practical problems in Science and Engineering, which are governed by ordinary and partial differential equations				
CLO04	Student will be able to analyze functions of complex variables, techniques of complex integrals and compute integrals over complex surfaces.	PO1,PO2,PO4	К3	Conceptual Procedural	6
Total Con	tact Hours				54

Revised Bloom's Taxonomy Terminology

^{*}Knowledge Categories = KC

Course	PO	PO1	PO1	PO12								
Learnin	1	2	3	4	5	6	7	8	9	0	1	
g Outcom												
es												
CLO1	H	H									H	
CLO2	H	H		M								
CLO3	H	Н										
CLO4	H	H		H								

3. ERISE Grid Mapping

Feature Enablement	Level(1-5, 5 being highest)
Entrepreneurship	2
Research	4
Innovation	3
Skills	5
Employability	4

4. Recommended Books (Reference Books/Text Books):

- T1: Advanced Engineering Mathematics, R.K. Jain and S.R.K. Iyengar, Alpha Science International Ltd., 2014.
- **T2:** The Engineering Mathematics, 2nd Edition, Chitkara University Publication, Vol. II. 2013.
- T3: A text book of Engineering Mathematics, N. P. Bali and Manish Goyal, Laxmi Publications, 2010.
- R1: Advanced Engineering Mathematics, Erwin Kreyszig, 10th ed., Wiley India Pvt. Ltd.2011.

^{*}Cognitive Level =CL

- **R2:** Engineering Mathematics, Srimanta Pal &Subodh C. Bhunia, Edition 2015, Oxford University Press, 2015.
- R3: Calculus, by Howard Anton, Irl Bivens Stephens Davis

Other readings & relevant websites:

S.No.	Link of Journals, Magazines, websites and Research Papers	Session
		No.
Link 1	https://www.slideshare.net/Pokar/fourier-series-32752445	1
Link 2	https://www.youtube.com/watch?v=spUNpyF58BY	5
Link 3	https://www.slideshare.net/lankeshssss/ordinary-differential-equation-137100520	8
Link 4	https://www.slideshare.net/Himel_Himo/presentation-on-laplace-transforms	20
Link 5	https://www.slideshare.net/isratzerin6/partial-differential-equation-amp-its-	26
Link 6	https://www.youtube.com/watch?v=UVoD3ylDWW4	34

5. Course Plan:

Session No.	Topics	Recommended Book				
1-3	Fourier Series: Introduction, Fourier Series on arbitrary Intervals,	T1				
4	Half-range cosine and sine series	T1				
	FA(19 th Jan 2024)					
	Fourier transform: Fourier transform of derivative, Shifting and Scaling, Convolution, Fourier Cosine and Sine Transform, Linearity, Shifting and Scaling, Fourier Cosine and Sine transforms of Derivatives, Parseval's Identity	T1, T2				
6	Ordinary Differential Equations: Differential equations of first order and first degree, Linear and Bernoulli equations.	T2				
7-8	Exact differential equations	T2				
9	Equation solvable for p, y and x	T2				
10	Clairaut's equation, Applications to orthogonal trajectories.	T2				
	Second and higher order ordinary linear differential equations with constant coefficients: Complimentary function, Particular integrals (standard types), Differential Operator Method	R1				
	ST-I (17 th Feb 2024)					
13	Variation of parameters, Method of Undetermined Coefficients.	T2				
	Cauchy-Euler differential equation, Simultaneous linear differential equations (two variables) with constant coefficients.	R1, T2				
16-17	Application to RLC circuit	R2				
18-19	Laplace Transform, Linearity and Shifting Property	T2				
20	Inverse transforms properties,	T2				

21	Transforms of derivatives and integrals,	T2	
22	Unit step function, Dirac's delta function	T2	
23-24	Applications to differential equations.	T2	
	ST-2 (30 th March 2024)		
25	Т3		
26-27	Lagrange's Linear equation, Charpit's method	T2, T3	
28	Standard types of first order non-linear partial differential equations	Т3	
29-30	Solutions of second order linear partial differential equations in two variables with constant coefficients by finding complementary function and particular integral	Т3	
31	Classification of PDE of second order – parabolic, elliptic and hyperbolic equations, Solution by separation of variables	Т3	
32	Solution of one-dimensional wave equation, Solution of two-dimensional Laplace equation using Fourier series	Т3	
	ST-3 (4 th May 2024)		
33	Functions of Complex Variables: Limit, Continuity, Derivative of complex Functions	R1	
34	Analytic Function, Cauchy-Riemann equations	R2	
35	Harmonic functions, conformal mapping, Complex Integration,	T2, R3	
36	Cauchy's theorem, Cauchy Integral Formula, Taylors and Laurent's Expansion		
	ETE (Last Week of May)		

6. Delivery/Instructional Resources

Session	Topics	PPT	Industry	Web	Audio-
No.		(link of	Expert	References	Video
		ppts on the	Session(If		
		central	yes: link of		
		server)	ppts on the		
			central		
			server)		

1-5	Fourier Series and	https://ww	NA	https://nptel.	https://ww
1 3	Transforms: Introduction,	w.slideshar		ac.in/courses	w.youtube
	Fourier Series on Arbitrary	e.net/IffatA		/122104018	.com/watc
	Intervals, Half-range cosine	njum/fourie			h?v=r18G i8lSkfM
	and sine series, Fourier	<u>r-</u>			IOIOKIWI
	transform with properties:	transforms-			
	Fourier Transform Linearity	<u>40750759</u>			
	property, Fourier transform of derivative, Shifting and				
	Scaling, Convolution, Fourier				
	Cosine and Sine transforms				
	and properties: Fourier				
	Cosine and Sine Transform,				
	Linearity, Shifting and				
	Scaling, Fourier Cosine and				
	Sine transforms of				
	Derivatives, Parseval's				
	Identity.				
6-17	Ordinary Differential	https://www.	NA	https://nptel.	https://ww
	Equations: Differential	slideshare.ne		ac.in/courses	w.youtube
	equations of first order and first degree, Linear and Bernoulli	t/ahmed7aid er/ordinary-		/122104018	.com/watc h?v=OET
	equations, Exact differential	differential-			0qwat150
	equations, Equation solvable for	equations			&list=PLd
	p, y and x, Clairaut's equation,				M-
	Applications to orthogonal				WZokR4t
	trajectories, Second and higher order ordinary linear differential				bGKbeK8 fDIdEN0
	equations with constant				NEcvAQl
	coefficients: Complimentary				C
	function, Particular integrals				
	(standard types), Differential Operator Method, Variation of				
	parameters, Method of				
	Undetermined Coefficients,				
	Cauchy-Euler differential				
	equation, Simultaneous linear differential equations (two				
	variables) with constant				
	coefficients, Application to RLC				
10.24	circuit.	httm://	NIA	https://arabi	httma.//
18-24	Laplace Transform: Laplace Transform, Linearity and	https://www.slideshare.ne	NA	https://archi ve.nptel.ac.i	https://ww w.khanaca
	Shifting Property, Inverse	t/001Abhish		n/courses/11	demy.org/
	transforms properties,	ek1/laplace-		1/106/11110	math/diffe
	Transforms of derivatives and	transform-		6139/	r ential-
	integrals, Unit step function, Dirac's delta function,	<u>59113100</u>			equations/ l aplace-
	Applications to differential				transform
	equations.				
25.22	Doutiel Differential acception	https://www.	NA	https://pnto	https://www
25-32	Partial Differential equations: Formation of partial differential	https://www. slideshare.ne	INA	https://npte l.ac.in/5ours	https://ww w.youtube
	equations, Equation of first	<u>t/aman1894/</u>		e s/111/107/	.com/watc
	order, Lagrange's Linear	partial-		111107108/	h?v=kEN
	equation, Charpit's method,	differential-			_Ze8QNd
	Standard types of first order non-				<u>M</u>

	linear partial differential equations, Solutions of second order linear partial differential equations in two variables with constant coefficients by finding complementary function and particular integral, Classification of PDE of second order —	equations- 42054204			
	parabolic, elliptic and hyperbolic equations, Solution by separation of variables, Solution of one-dimensional wave equation, Solution of two- dimensional Laplace equation using Fourier series.				
33-36	Functions of Complex Variables: Limit, Continuity, Derivative of complex Functions, Analytic Function, Cauchy-Riemann equations, Harmonic functions, conformal mapping, Complex Integration, Cauchy's theorem, Cauchy Integral Formula, Taylors and Laurent's Expansion.	https://www.slideshare.ne t/ShreyPatel 16/complex- function- 96985172	NA	https://archi ve.nptel.ac.i n/courses/11 1/106/11110 6141/	https://ww w.slideser v e.com/asht on/comple x- variables

7. Action plan for different types of learners

Slow Learners	Average Learners	Fast Learners
Extra Class on Saturday.	Doubt-sessions	Doubt Sessions
Doubt sessions.		

8. Evaluation Scheme & Components:

Evaluation	Type of Component	No. of	Weightage of	Mode of
Component		Assessments	Component	Assessment
Component 1	FA	01	10%	Offline
Component 2	Sessional Tests (STs)	03	40%	Online/Offline
Component 3	End Term Examinations	01	50%	Online/Offline
Total			100%	

All the three ST's are compulsory.

Details of Evaluation Components:

Evaluation	Description	Syllabus	Timeline of	Weightage
Component		Covered	Examination	(%)
		(%)		

Component 01	FA	10%	Before ST1	10%
	ST 01	Upto 30%	As defined in Academic Calendar	
Component 02	ST 02	Upto 60%	As defined in Academic Calendar	40%
02	ST 03	Upto 80%	As defined in Academic Calendar	
Component 03	End Term Examination*	100%	At the end of the semester	50%
	Total	ı		100%

^{*}As per Academic Guidelines minimum 75% attendance is required to become eligible for appearing in the End Semester Examination.

Evaluation Components of Sessional Test and End Term Examination

Type of Assessment	Time of Conduction	Total Marks
Sessional Test 1	1-12 Sessions	40
Sessional Test 2	1-24 Sessions	40
Sessional Test 3	1-32 Sessions	40
	End Term Examination	50

9. Syllabus of the Course:

SUBJECT: Differential Equations and Transformations		Subject Code: 22AS002
Content	No. of	Weightage
	Sessions	(%)
Unit 1 Fourier Series and Transforms: Introduction, Fourier Series on	5	13.89
Arbitrary Intervals, Half-range cosine and sine series, Fourier transform with		
properties: Fourier Transform Linearity property, Fourier transform of derivative,	,	
Shifting and Scaling, Convolution, Fourier Cosine and Sine transforms and		
properties: Fourier Cosine and Sine Transform, Linearity, Shifting and Scaling,	,	
Fourier Cosine and Sine transforms of Derivatives, Parseval's Identity.		
Unit 2 Ordinary Differential Equations: Differential equations of first order		33.33
and first degree, Linear and Bernoulli equations, Exact differential equations,		
Equation solvable for p, y and x, Clairaut's equation, Applications to orthogonal		
trajectories, Second and higher order ordinary linear differential equations with		
constant coefficients: Complimentary function, Particular integrals (standard		
types), Differential Operator Method, Variation of parameters, Method of		
Undetermined Coefficients, Cauchy-Euler differential equation, Simultaneous		
linear differential equations (two variables) with constant coefficients,	,	
Application to RLC circuit.		

Unit 3 Laplace Transform: Laplace Transform, Linearity and Shifting Property, Inverse transforms properties, Transforms of derivatives and integrals, Unit step function, Dirac's delta function, Applications to differential equations.		19.4
Unit 4 Partial Differential equations: Formation of partial differential equations, Equation of first order, Lagrange's Linear equation, Charpit's method, Standard types of first order non-linear partial differential equations, Solutions of second order linear partial differential equations in two variables with constant coefficients by finding complementary function and particular integral, Classification of PDE of second order – parabolic, elliptic and hyperbolic equations, Solution by separation of variables, Solution of one-dimensional wave equation, Solution of two-dimensional Laplace equation using Fourier series.	-	22.2
Unit 5 Functions of Complex Variables: Limit, Continuity, Derivative of complex Functions, Analytic Function, Cauchy-Riemann equations, Harmonic functions, conformal mapping, Complex Integration, Cauchy's theorem, Cauchy Integral Formula, Taylors and Laurent's Expansion.	•	11.11

This Document is approved by:

Designation	Name	Signature
Course Coordinator	Dr. Inderpreet Kaur	
Program Incharge	Dr. Reetu Malhotra	
Dean	Dr. Mohit Kumar Kakkar	
DD/MM/YYYY	03/01/2024	