第1章 数字逻辑基础 作业

- 1.4 把下列二进制数转换成十进制数。
- (1) $(11000101)_2 = (197)_{10}$
- (2) $(0.01001)_2 = (0.28)_{10}$
- (3) $(1010.001)_2 = (10.125)_{10}$
- 1.5 把下列十进制数转换成二进制数。
- (4) $(51.125)_{10} = (110011.001)_2$
- (5) $(87.625)_{10} = (1010111.101)_2$
- (6) $(191)_{10} = (101111111)_2$
- 1.6 把下列二进制数分别转换成十进制数、八进制数和十六进制数。
- (1) $(110101111.110)_2 = (431.75)_{10} = (657.6)_8 = (1AF.C)_{16}$
- (3) $(11111.1010)_2 = (31.625)_{10} = (37.5)_8 = (1F.A)_{16}$
- 1.10 用 8421BCD 码表示下列十进制数。
- (1) $(42.78)_{10} = (0100\ 0010.0111\ 1000)_{8421BCD}$
- (3) $(9.04)_{10} = (1001.0000\ 0100)_{8421BCD}$
- 1.12 把下列 8421BCD 码表示成二进制数。
- (2) $(0011\ 0001)_{8421BCD} = (11111)_2$
- (3) $(1000\ 1000)_{8421BCD} = (1011000)_2$
- 1.14 填空。
- (1) $(58.23)_{10} = (111010.001)_2 = (72.1656)_8 = (0101\ 1000.0010\ 0011)_{8421BCD}$
- (2) (0001 1000 1001.0011 0101)_{8421BCD} = $(189.35)_{10}$ = $(10111101.0101)_2$
- 1.16 求下列二进制数的补码和反码。

	原码	补码	反码
(1)	1,1010101	1,0101011	1,0101010
(2)	0,0111000	0,0111000	0,0111000
(3)	1,0000001	1,1111111	1,1111110
(4)	1.10000	1.10000	1.01111

1.17 求下列十进制数的二进制数原码、反码和补码表示。

	原码	补码	反码
$(4) (+112)_{10}$	0,1110000	0,1110000	0,1110000
(6) (-89) ₁₀	1,1011001	1,0100111	1,0100110

1.19 求下列各数的二进制数原码、反码、补码及偏移码表示。

	原码	反码	补码	偏移码
$(2) (-75)_8$	1,111101	1,000010	1,000011	0,000011
$(4) (+B73)_{16}$	0,101101110011	0,101101110011	0,101101110011	1,101101110011