Approach and Results of Building the Predictive Model

In this assignment, we followed a structured process to build a logistic regression model to predict lead conversion. The process included data preparation, feature selection, model training, and evaluation. Below is a detailed explanation of each step.

1. Importing Libraries and Data Exploration

The first step was to import essential Python libraries like **pandas** and **numpy** for data manipulation, **matplotlib** and **seaborn** for visualizations, and **sklearn** for machine learning. These tools helped us clean, analyze, and build the model. The dataset was loaded into a **pandas DataFrame**, and we examined the first rows to understand the structure, data types, and any immediate issues like missing values or irrelevant columns.

2. Data Preprocessing

To prepare the data for modeling, we performed the following steps:

- **Converting Binary Values:** Columns with "Yes/No" values were transformed into 0s and 1s.
- **Handling Missing Data:** Missing values in numerical columns were filled with the mean, while categorical columns used the most frequent value.
- Removing Unnecessary Columns: Irrelevant columns like IDs that did not contribute to predictions were dropped.
- Outlier Treatment: Outliers were removed using Interquartile Range (IQR) to prevent skewing the model.
- Standardizing Values: Numerical features were scaled using StandardScaler for consistency.
- Creating Dummy Variables: Categorical variables were converted into numerical dummy variables using one-hot encoding.
- **Visualizations:** Heatmaps and boxplots were used to identify relationships, skewed data, and multicollinearity issues.

3. Feature Selection and Model Building

• Feature Selection: We used Recursive Feature Elimination (RFE) to identify the 15 most important features and avoid overfitting.

- Model Training: A logistic regression model was trained using these 15 features. The model achieved 78.99% accuracy on the training data, showing that it learned useful patterns.
- P-Value Analysis: Features with high p-values (> 0.05), such as
 Last_Activity_Approached upfront and Country_Qatar, were removed as they did not contribute meaningfully to the predictions.
- Variance Inflation Factor (VIF): VIF values were checked for multicollinearity, and all values were below 3, confirming no problematic correlations.
- ROC Curve Analysis: The model's ROC curve showed excellent performance with a high AUC score, proving it could effectively differentiate between positive and negative leads.

4. Model Evaluation on Test Data

The model was tested on unseen data, and different **decision thresholds** were tried to optimize its accuracy:

- A threshold of **0.42** initially resulted in an accuracy of **79.65**%.
- After testing thresholds like 0.3, 0.4, and 0.5, we found that **0.4** gave the best accuracy of **80.45**%.
 - This result showed that the model generalized well to new data and avoided overfitting, making its predictions reliable.

Conclusion

This project followed a systematic process to clean the data, select the best features, and build a logistic regression model. By combining feature selection techniques like RFE, p-value analysis, VIF checks, and performance evaluation using the ROC curve, we ensured the model was accurate and reliable. The final model achieved 80.45% accuracy on test data, demonstrating its effectiveness in predicting lead conversion. This model can be a valuable tool for prioritizing leads and improving business efficiency.