Math 22 Practice Problems

NOTE: This is not meant to represent a sample exam either in difficulty or in length. These are problems collected from old exams and/or problems left over during the preparation of the exam. I hope they will give a good indication of the general level of expectation.

- 1. Define what it means for a linear transformation $T: \mathbf{R}^n \to \mathbf{R}^m$ to be one-to-one.
- 2. Let

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \mathbf{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad \text{and} \quad \mathbf{v} = \begin{pmatrix} -2 \\ 3 \\ \frac{1}{2} \end{pmatrix}.$$

- (a) Write \mathbf{v} as a linear combination of the \mathbf{e}_i .
- (b) Let $T: \mathbf{R}^3 \to \mathbf{R}^2$ be a linear transformation which satisfies

$$T(\mathbf{e}_1) = \begin{pmatrix} -4\\3 \end{pmatrix}, \quad T(\mathbf{e}_2) = \begin{pmatrix} -\frac{2}{3}\\5 \end{pmatrix} \quad \text{and} \quad T(\mathbf{v}) = \begin{pmatrix} 3\\-1 \end{pmatrix}.$$

Use part (a) to find the standard matrix for T.

(c) Is T one-to-one? Is T onto?

3. Let
$$A = \begin{pmatrix} -4 & 1 & 0 \\ -2 & -1 & -2 \\ 4 & 1 & -5 \end{pmatrix}$$
.

- (a) Are the columns of A linearly independent?
- (b) Do the columns of A span all of \mathbb{R}^3 ?

4. Let
$$A = \begin{pmatrix} 1 & 3 & 8 \\ 2 & 4 & 11 \\ 1 & 2 & 5 \end{pmatrix}$$
. Find A^{-1} , and use A^{-1} to solve $A\mathbf{x} = \mathbf{b}$ where $\mathbf{b} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$.

	ll in the blank below with a ways true.	a choice from the following list so that the resulting statement
	(\mathbf{A})	No solutions
	(\mathbf{B})	Exactly one solution
	(\mathbf{C})	At least one solution
	(\mathbf{D})	Infinitely many solutions
	(\mathbf{E})	None of the above is appropriate
(a)	If $T: \mathbf{R}^n \to \mathbf{R}^m$ is not	t onto, then there is a $\mathbf{b} \in \mathbf{R}^m$ such that $T(\mathbf{x}) = \mathbf{b}$ has
(b)	If a matrix A has a column	n which is not a pivot column, then $A\mathbf{x} = 0$ has
(c)	If b is a linear combina	ation of the columns of the matrix A , then $A\mathbf{x} = \mathbf{b}$ has
(d)	The matrix equation $A\mathbf{x} = 0$ always has	
(e)	If the matrix equation $A\mathbf{x} = 0$ has infinitely many solutions, then $A\mathbf{x} = \mathbf{b}$ cannot have	
(f)	If the columns of A are linearly independent, then $A\mathbf{x} = 0$ haswit $\mathbf{x} \neq 0$.	
(g)	If T is a linear transformation, then T is one-to-one if and only if $T\mathbf{x} = 0$ has	
6. De	etermine the values of k as	and h such that the system of equations $x_1 + 3x_2 = k$ $4x_1 + hx_2 = 8$
has		
	no galution	
(a)	no solution,	
(b)	exactly one solution and	
(c)	infinitely many solutions.	

-2-

In cases (b) and (c), write the solutions in parametric form.

- 7. Suppose that B is a $m \times n$ matrix and that $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are vectors in \mathbf{R}^n such that $\{B\mathbf{v}_1, \dots, B\mathbf{v}_n\}$ is linearly independent. Prove that $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is also linearly independent.
- 8. Write $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ as a product of elementary matrices.
- 9. Let $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be linearly independent in \mathbf{R}^4 . Suppose that \mathbf{v}_4 is not in Span($\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$). Must $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ be linearly independent?