Teste de Hipóteses

Uma forma de testar uma afirmação

- 1. Define-se duas hipóteses:
 - H_0 : Hipótese Nula (geralmente usa-se =)
 - Assumimos que é verdade
 - H_a : Hipótese Alternativa (geralmente >, <, \neq)
 - ullet Usamos H_a para tentar reunir provas suficientes para rejeitar H_0
- 2. Testa-se uma amostra
- 3. Calcula-se a probabilidade de H_0 ser verdadeira, baseando-se na nossa amostra (Através do ${f valor-p}$)
- 4. Compara-se α (a menor probabilidade de que nós ainda acreditaremos que H_0 é verdadeira):
 - Se o valor-p (probabilidade de H_0 ser verdadeira) for menor que α , nós **rejeitaremos** H_0 (valor-p < α)
 - Se o valor-p for maior que α nós falhamos em rejeitar H_0 (valor-p > α)

Exemplo (Tribunal)

Considere um tribunal. Uma pessoa é acusada de um crime.

 H_0 : inocente

 H_a : culpada

Assume-se que a pessoa é inocente até comprovado que é culpada (p-value) além de uma dúvida razoável (α)

Se comprovado culpado: rejeitamos a H_0 e concluímos que o acusado é "culpado".

Se não: falhamos em rejeitar a H_0 e concluímos que "não é culpado" (a conclusão tem foco na H_a).

Nós nunca concluímos que H_0 é verdadeira

Conclusões

"Existe (ou não existe) suficiente evidência para concluir (Hipótese Alternativa em contexto)".

Teste de Hipóteses para proporções

Fórmulas

Proporções são normalmente distribuidas com a proporção agindo como média, e $\sqrt{rac{\hat{p}\hat{q}}{n}}$ como Erro Padrão

$$\hat{p} \sim N(\hat{p}, \sqrt{\frac{\hat{p}\hat{q}}{n}})$$

No teste de hipóteses, ao invés da proporção, usamos os valores da H_0 (diferente do intervalo de confiança)

Para calcular a probabilidade (valor-p), precisaremos do \hat{p} da proporção da amostra, \hat{p} da probabilidade da hipótese nula, e do Erro Padrão (EP).

$$Z = \frac{\hat{p} - \hat{p}_{H_0}}{EP}$$

Exemplo (IPhone)

Uma empresa telefônica afirma que 43% dos usuários de smartphone nos EUA usam IPhone. Você duvida dessa afirmação. Então você faz uma pesquisa de 83 usuários americanos de smartphone. 44 deles usam IPhone. O que você pode concluir, se $\alpha=0.05$?

 H_0 : $\hat{p} = 0.43$

 H_a : $\hat{p} \neq 0.43$ (teste de duas caldas, rejeitamos se for menor ou maior)

$$\hat{p} \sim N(\hat{p}, \sqrt{\frac{\hat{p}\hat{q}}{n}}) = \hat{p} \sim N(0.43, \sqrt{\frac{0.43 \cdot 0.57}{83}}) = \hat{p} \sim N(0.43, 0.0543)$$

Calculando o \hat{p} da proporção

$$\hat{p} = \frac{x}{n} = \frac{44}{83} = 0.53$$

Calculando o valor-Z

$$Z = \frac{\hat{p} - \hat{p}_{H_0}}{EP} = \frac{0.53 - 0.43}{0.0543} = 1.84$$

Ir na tabela Z e verificar a probabilidade correspondente desse valor-Z: 0.9671, se tirarmos a outra metade, 0.9671-0.5=0.4671

Mas a área que desejamos é a da calda. Logo, calculamos 0.5-0.4671=0.0329

Calculamos o valor-p = 0.0329 + 0.0329 = 0.0658 (valor-p é a probabilidade de H_0 ser verdadeira baseando-se na nossa amostra). Em outras palavras, baseando-se na nossa pesquisa, existe 6.58% de chance da proporção de usuários realmente ser 43%.

Decisão: falhamos em rejeitar a hipótese nula

Motivo: valor-p > α = 0.068 > 0.005

Conclusão: Não existe suficiente evidência para concluir que a proporção de usuários de IPhone é diferente de 43%.

Façamos um intervalo de confiança de 95%

$$\hat{p} = 0.53$$

$$\hat{q} = 0.47$$

$$Z_{\alpha/2} = Z_{0.05/2} = Z_{0.025} = 1.96$$

$$E = Z_{\alpha/2} \sqrt{\frac{\hat{p}\hat{q}}{n}} = 1.96 \sqrt{\frac{0.53 \cdot 0.47}{83}} = 0.107$$

Podemos dizer com 95% de confiança que a proporção de americanos que usam IPhone se encontra entre 42,3% e 63,7%.

 $[\hat{p} - E, \hat{p} + E] = [0.53 - 0.107, 0.53 + 0.107] = [0.423, 0.637]$