Задача А. 50

Имя входного файла: divide.in Имя выходного файла: divide.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Алексей очень серьезно задолжал банку. Все свои сбережения Алексей хранит в купюрах номиналом 50 шекелей. Помогите ему расплатиться с кредиторами — определите, делится ли долг на 50.

Формат входного файла

В единственной строке записано число s $(0 \le s)$. Определим |s| как длину числа s. $(1 \le |s| \le 10^6)$

Формат выходного файла

Если число делится на 50 вывести "YES" (без кавычек), иначе вывести "NO" (без кавычек).

Примеры

divide.in	divide.out
0	YES
50	YES
42	NO

В 50% тестов $(s \le 10^{19})$.

Задача В. Гирлянды

 Имя входного файла:
 garland.in

 Имя выходного файла:
 garland.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

Вы помогли Алексею выплатить его долг, но Алексею не хватило денег чтобы расплатиться. Теперь он вынужден подрабатывать у Шефа.

Шеф решил разукрасить n домов на главной улице гирляндами. На складе для этого мероприятия есть k типов гирлянд. Одно из пожеланий Шефа заключается в том, чтобы ни у какой пары соседних домиков не было одинакого типа гирлянд.

Помогите Лёхе решить эту проблему затратив минимальное количество средств.

Формат входного файла

В первой строке записаны числа n ($1 \le n \le 1000$) — количество домов и k ($2 \le k \le 1000$) — количество типов гирлянд. Далее вам будет дана таблица a размером $n \times k$, где в элементе a_{ij} ($1 \le a_{ij} \le 10^9$) написана стоимость размещения гирлянды типа j на домик с номером i.

Формат выходного файла

Выведите ответ.

Примеры

garland.in	garland.out
2 3	3
2 2 3	
3 2 1	
3 3	5
2 2 1	
2 3 2	
1 3 2	

В 30% тестов $(k \le 10)$.

В 60% тестов $(k \le 100)$.

Задача С. Паросочетание

Имя входного файла: pairs.in
Имя выходного файла: pairs.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Двудольным графом называется неориентированный граф (V, E), $E \subseteq V \times V$ такой, что его множество вершин V можно разбить на два множества A и B, для которых $\forall (e_1, e_2) \in E$ $e_1 \in A$, $e_2 \in B$ и $A \cup B = V$, $A \cap B = \emptyset$.

Паросочетанием в двудольном графе называется любой набор его несмежных рёбер, то есть такой набор $S \subseteq E$, что для любых двух рёбер $e_1 = (u_1, v_1), e_2 = (u_2, v_2)$ из $S \ u_1 \neq u_2$ и $v_1 \neq v_2$.

Ваша задача — найти максимальное паросочетание в двудольном графе, то есть паросочетание с максимально возможным числом рёбер.

Формат входного файла

В первой строке записаны два целых числа n и m ($1 \le n, m \le 250$), где n — число вершин в множестве A, а m — число вершин в B.

Далее следуют n строк с описаниями рёбер — i-я вершина из A описана в (i+1)-й строке файла. Каждая из этих строк содержит номера вершин из B, соединённых с i-й вершиной A. Гарантируется, что в графе нет кратных ребер. Вершины в A и B нумеруются независимо (с единицы). Список завершается числом 0.

Формат выходного файла

Первая строка выходного файла должна содержать одно целое число l — количество рёбер в максимальном паросочетании. Далее следуют l строк, в каждой из которых должны быть два целых числа u_i и v_i — концы рёбер паросочетания в A и B соотвественно.

Примеры

pairs.in	pairs.out
2 2	2
1 2 0	1 1
2 0	2 2

В 50% тестов ($m \le 15$).

В 70% тестов $(m \le 25)$.