Thesis Simulation Document for Chapter 4

Dasha Asienga

2024-03-13

Contents

Da	ita Generation Mechanism]
	Reading in the Data	1
	Data Subsetting	
	Generating the Parent Simulation Data Set	
	Examining Distributions of the Recidivism in the Parent Data Set	
	Assessing Baseline Predictive Performance of the Parent Data Set	6

This file is intended to contain all the code and information to set up the simulation study and supplement Chapter 4.

Data Generation Mechanism

We're interested in creating a data set that has 50-50 class balance, even across the demographic group, and also has better predictive performance than the COMPAS tool. For this set-up, we will only use 2 variables from the COMPAS data set: 1 continuous variable and 1 categorical variable.

Reading in the Data

First, let's read in the data.

```
compas_path <- "/home/dasienga24/Statistics-Senior-Honors-Thesis/Data Sets/COMPAS/compas_seldonian_bw.c
compas_sim <- read.csv(compas_path)</pre>
```

Data Subsetting

Next, let's plot the distributions of the continuous variables to choose which one we'll proceed with.

```
compas_sim %>%
  ggplot(mapping = aes(x = age)) +
  geom_histogram() +
  theme_minimal() +
  labs(title = "Age")
```


Because age has more variation, we'll use it as our continuous variable. We'll convert priors_count into a categorical variable.

```
compas_sim <- compas_sim %>%
  mutate(prior_offense = ifelse(priors_count > 0, 1, 0)) %>%
  dplyr::select(c(race, prior_offense, age, is_recid))
```

age seems to be a useful predictor for recidivism.

Whether a defendant has committed a prior offense or not appears to be a useful predictor for recidivism as well.

```
compas_sim %>%
  ggplot(mapping = aes(x = as.factor(prior_offense), fill = as.factor(is_recid))) +
  geom_bar() +
  theme_minimal() +
  labs(title = "Committed a Prior Offense",
      fill = "Recidivism",
      x = "prior offense")
```


We'll proceed with these 2 variables – age and prior_offense for the simulation study. A glimpse of the data is shown below.

head(compas_sim)

```
##
                 race prior_offense age is_recid
## 1 African-American
                                  0 34
## 2 African-American
                                  1 24
                                               1
## 3
           Caucasian
                                  1 41
                                               1
## 4
           Caucasian
                                  0 39
                                               0
           Caucasian
                                  0 20
                                               0
## 5
## 6
            Caucasian
                                  0 26
                                               0
```

Generating the Parent Simulation Data Set

We want a setting with 50-50 class balance for each combination of race and recidivism status. To achieve that, we'll perform sample observations with replacement. Let's create a data set with 1250 observations in each of these 4 groups, hence, 5000 observations total.

First, let's subset these 4 groups.

```
compas_b_y <- compas_sim %>%
  filter(race == "African-American" & is_recid == 1)

compas_b_n <- compas_sim %>%
  filter(race == "African-American" & is_recid == 0)

compas_w_y <- compas_sim %>%
  filter(race == "Caucasian" & is_recid == 1)

compas_w_n <- compas_sim %>%
  filter(race == "Caucasian" & is_recid == 0)
```

Next, let's randomly sample 1250 observations from each of these groups.

```
compas_b_y_balanced <- compas_b_y[sample(nrow(compas_b_y), 1250, replace = TRUE),]
compas_b_n_balanced <- compas_b_n[sample(nrow(compas_b_n), 1250, replace = TRUE),]
compas_w_y_balanced <- compas_w_y[sample(nrow(compas_w_y), 1250, replace = TRUE),]
compas_w_n_balanced <- compas_w_n[sample(nrow(compas_w_n), 1250, replace = TRUE),]</pre>
```

Finally, let's union all these together into a single data set.

Let's also shuffle the data set row orderings to aid the machine learning algorithms later.

The parent data set is now ready.

Examining Distributions of the Recidivism in the Parent Data Set

Recidivism Prevalence

The bar plot below shows that we've achieve perfect class balance.

2500 2000 1500 1000 500

1

The bar plot below reveals that the balance is preserved by race as well.

0

0

Recidivism

Assessing Baseline Predictive Performance of the Parent Data Set

We want to make sure that our data set also has good predictive performance. We'll fit a logistic regression and assess baseline accuracy.

```
glm1 <- glm(is_recid ~ age + prior_offense,</pre>
            data = compas_sim_balanced,
            family = binomial(logit))
msummary(glm1)
## Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                   0.036825
                               0.099271
                                          0.371
                                                   0.711
                  -0.022743
                               0.002552
                                         -8.910
                                                   <2e-16 ***
## age
                               0.064619 16.733
                                                   <2e-16 ***
## prior_offense1 1.081245
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 6931.5 on 4999
                                        degrees of freedom
## Residual deviance: 6569.0 on 4997
                                        degrees of freedom
## AIC: 6575
##
## Number of Fisher Scoring iterations: 4
glm1augment <- glm1 %>%
  broom::augment(type.predict = "response")
glm1augment <- mutate(glm1augment, binprediction = round(.fitted, 0))</pre>
with(glm1augment, table(is_recid, binprediction))
##
           binprediction
## is_recid
               0
          0 1304 1196
          1 757 1743
(1334 + 1713)/5000
## [1] 0.6094
```

This model has 61% accuracy.