Universidade Federal do Rio Grande do Norte Instituto Metrópole Digital IMD0601 - Bioestatística

Medidas de dispersão

Prof. Dr. Tetsu Sakamoto Instituto Metrópole Digital - UFRN Sala A224, ramal 182 Email: tetsu@imd.ufrn.br

Baixe a aula (e os arquivos)

- Para aqueles que não clonaram o repositório:
- > git clone https://github.com/tetsufmbio/IMD0601.git
- Para aqueles que já tem o repositório local:
- > cd /path/to/IMD0601
- > git pull

Como são os dados que possuem média = 50?

Medidas de dispersão

São medidas que tentam descrever o grau da dispersão dos dados. Medidas que fornecem uma noção da distribuição dos dados.

Medida de dispersão ideal:

- Definição clara e rígida;
- Fácil cálculo e entendimento;
- Não deve ser muito afetado por flutuações;
- Baseado em todas as observações.

Medidas de dispersão

Existem duas categorias de medida de dispersão:

- Medidas de dispersão absoluta → quantifica a variação em termos da unidade de medida dos dados;
 - Amplitude;
 - Desvio entre quartis;
 - Desvio da média:
 - o Desvio padrão.
- Medidas de dispersão relativa → não possui unidade de medida, comparação entre as distribuições;
 - Coeficiente de Amplitude;
 - Coeficiente de desvio entre quartis;
 - Coeficiente de desvio da média;
 - Coeficiente de variação;

Amplitude

Diferença entre o valor máximo e o valor mínimo dos dados.

Amplitude

Diferença entre o valor máximo e o valor mínimo dos dados.

Vantagens:

- O mais simples das medidas de dispersão;
- Fácil cálculo e entendimento.

Desvantagens:

- Baseado em apenas duas observações extremas;
- Não é uma medida de dispersão confiável.

Desvio entre quartis

Quartil - Os dados são divididos em 4 partes. Cada parte é denominado de quartil.

Para dividirmos os dados em quartis, definimos 3 posições:

Q1: Compreende até 25% dos dados;

Q2: Compreende até 50% dos dados (mediana);

Q3: Compreende até 75% dos dados.

Desvio entre quartis

Amplitude entre quartis (IQR)

Representação gráfica em Boxplot

Desvio entre quartis

Vantagens:

- Fácil de calcular;
- O cálculo envolve apenas o Q1 e o Q3;
- Não é afetado por valores extremos;

Desvantagens:

Utiliza apenas 50% dos dados para o seu cálculo;

Outliers

Determinação dos outliers utilizando a separação dos dados em quartis:

Limite inferior: Q1 - 1.5 * IQR

Limite superior: Q3 + 1.5 * IQR

Onde IQR = Q3 - Q1

Os dados que estiverem fora deste limite são considerados outliers.

Desvio envolvendo a média

Média do desvio = somatória(xi -x)/n = 0

Desvio envolvendo a média

Desvio absoluto

xi	xi - X	xi - x
2	2 - 5.5 = -3.5	2 - 5.5 = 3.5
4	4 - 5.5 = -1.5	4 - 5.5 = 1.5
5	5 - 5.5 = -0.5	5 - 5.5 = 0.5
6	6 - 5.5 = 0.5	6 - 5.5 = 0.5
7	7 - 5.5 = 1.5	7 - 5.5 = 1.5
9	9 - 5.5 = 3.5	9 - 5.5 = 3.5

Média do = somatória(|xi -x|)/n = 5.5 desvio absoluto

Desvio envolvendo a média

Quadrado do Desvio

xi	xi - X	xi - x	(xi - x̄)**2
2	2 - 5.5 = -3.5	2 - 5.5 = 3.5	(2 - 5.5)**2 = 12.25
4	4 - 5.5 = -1.5	4 - 5.5 = 1.5	(4 - 5.5)**2 = 2.25
5	5 - 5.5 = -0.5	5 - 5.5 = 0.5	(5 - 5.5)**2 = 0.25
6	6 - 5.5 = 0.5	6 - 5.5 = 0.5	(6 - 5.5)**2 = 0.25
7	7 - 5.5 = 1.5	7 - 5.5 = 1.5	(7 - 5.5)**2 = 2.25
9	9 - 5.5 = 3.5	9 - 5.5 = 3.5	(9 - 5.5)**2 = 12.25

Média do
quadrado do
desvio
=
somatória((xi -x)**2)/n

= 4.916

Variância

Quando estamos calculando a variância...

Desvio padrão

$$Vari$$
â $ncia=\sigma^2=rac{\sum (xi-x)^2}{(n-1)}$

$$Desvio~padr$$
ã $o=\sigma=\sqrt{rac{\sum (xi-x)^2}{n}}$

Muitas vezes...

$$\sigma = \sqrt{\frac{\sum (xi-x)^2}{n}}$$

$$s=\sqrt{rac{\sum (xi-x)^2}{(n-1)}}$$

Desvio padrão amostral

Uma amostragem não consegue representar toda a variabilidade da população, por isso utilizamos a **correção de Bessel**, para corrigir esta limitação da amostragem.

$$s=\sqrt{rac{\sum (xi-x)^2}{(n-1)}}$$

Desvio padrão

Vantagens:

- Envolve todas as observações para o seu cálculo;
- É pouco afetado por flutuações dos valores;
- Bem definido;

Desvantagens:

- Seu cálculo pode ser laborioso, especificamente se o tamanho dos dados é grande o suficiente;
- Pode ser afetado por valores extremos;

Medidas de dispersão relativa

Não possuem unidade de medida, permite a comparação entre as distribuições;

- Coeficiente de Amplitude;
- Coeficiente de desvio entre quartis;
- Coeficiente de desvio da média;
- Coeficiente de variação;

Coeficiente de Amplitude Coeficiente de desvio entre quartis

Coef. de amplitude = (H - L)/(H + L)

Coef. desvio entre quartis = (Q3 - Q1)/(Q3 + Q1)

Coeficiente de desvio da média Coeficente de desvio de variação

Coef. desvio da média =

(desvio da média)/(média ou mediana)

Coef. de variação =

(desvio padrão)/(média)