Chapter 3

Gate-Level Minimization

Contents

- 3-1 Introduction
 - 補充資料: Cost Criteria
- 3-2 The Map Method
- 3-3 Four-Variable Map

補充資料: Five-Variable Map

Sum-of-Products (SoP)

Simplification

- 3-4 **Product-of-Sums (PoS)** Simplification
- 3-5 Don't-Care Conditions

SoP/PoS

— 補充資料: Quine-McCluskey Method (Tabular Method)

- 補充資料: Multiple-Level Circuit Optimization
 - 3-6 NAND and NOR Implementation
 - 3-7 Other Two-Level Implementations
 - 3-8 Exclusive-OR Function
 - 3-9 Hardware Description Language (HDL)

3-1 Introduction

- Representation of a Boolean function:
 - Truth table: unique
 - Algebraic expression: many different forms
 - ⇒ digital logic circuit
- Minimization of Boolean function:
 - Algebraic manipulation: literal minimization (§2-5)
 - > use the rules and laws of *Boolean algebra*
 - Disadv.: It lacks specific rules to predict each succeeding step in the manipulation process.
 - Map method: gate-level minimization (Ch3)
 - \rightarrow simple straightforward procedure \Rightarrow Manual design of simple ckts
 - > Disadv.: Maps for more than 4 variables are not simple to use.
 - _ Tabular method: Quine-McCluskey method (補充資料)
 - > systematic procedure ⇒ Computer-based logic synthesis tools

補充資料:

Cost Criteria

Cost Criteria

Two cost criteria:

- i. Literal cost
 - > the # of literal appearances in a Boolean expression
- ii. Gate input cost (✓)
 - > the # of inputs to the gates in the implementation

Reference:

 M. Morris Mano & Charles R. Kime, Logic and Computer Design Fundamentals, 3rd Edition, 2004, Pearson Prentice Hall. (§2-4)

Literal Cost

Literal cost:

- the # of literal appearances in a Boolean expression
- E.g.: $F = AB + C(D+E) \rightarrow 5$ literals $F = AB + CD + CE \rightarrow 6$ literals
- Adv.: is very simple to evaluate by counting literal appearances
- Disadv.: does not represent ckt complexity accurately in all cases
 - > E.g.:

$$G = ABCD + \overline{ABCD} \rightarrow 8 \text{ literals}$$

 $G = (\overline{A} + B)(\overline{B} + C)(\overline{C} + D)(\overline{D} + A) \rightarrow 8 \text{ literals}$

Gate Input Cost

- Gate input cost (GIC):
 - the # of inputs to the gates in the implementation
 - is a good measure for contemporary logic implementation
 - > is proportional to the # of transistors and wires used in implementing a logic ckt. (especially for ckt \geq 2 levels)

■ E.g.: nonstandard vs. standard form (p.2-60)

$$F = AB + C(D + E) \rightarrow 3$$
-level
= $AB + CD + DE \rightarrow 2$ -level

$$AB + C(D + E)$$

$$GIC = 8$$

$$AB + CD + CE$$

$$GIC = 9$$

• E.g.:

$$G = ABCD + \overline{ABCD}$$
 \rightarrow GIC = ?

$$G = (\overline{A} + B)(\overline{B} + C)(\overline{C} + D)(\overline{D} + A) \rightarrow$$
 GIC = ?

$$GIC = 4 + 2 \times 4 + 2 = 14$$

$$GIC = 4 + 4 \times 2 + 4 = 16$$

For SoP or PoS eqs, GIC = the sum of

- all literal appearances
- the # of terms excluding terms that consist only of a single literal
- the # of distinct complemented single literals (optional)
- _ E.g.: p.3-10

$$G = ABCD + \overline{ABCD} \qquad \rightarrow GIC = 8 + 2 (+ 4)$$

$$G = (A+B)(B+C)(C+D)(D+A) \rightarrow GIC = 8+4(+4)$$

3-2 The Map Method

- Map method: Karnaugh map simplification
 - a simple straightforward procedure
 - K-map: a pictorial form of a truth table
 - ▶ a diagram made up of squares n input variables $\rightarrow 2^n$ squares
 - **Each** square represents one minterm of the function.
 - > Any adjacent squares in the map differ by only one variable.
 - The simplified expressions produced by the map are always in one of the two *standard forms*:
 - > SOP (sum of products) or POS (product of sums)
- The simplest algebraic expression: not unique
 - one w/ a minimum # of terms andw/ the fewest possible # of literals per term.
 - ⇒ a ckt diagram w/ a minimum # of gates and the minimum # of inputs to the gate.

A. Two-Variable Map

- Two-variable map: 2 variables \rightarrow 4 minterms
 - _ 4 squares, one for each minterm.
 - A function of 2 variables can be represented in the map by marking the squares that correspond to the minterms of the function.

- * Any adjacent squares in the map differ by only one variable.
- ⇒ 2 adjacent minterms may be combined into a term with 1 literal removed.

$$(xy + xy' = x)$$

Example: 2-Variable K-Map

 $\begin{array}{c|cccc}
X & 0 & 1 \\
0 & X'Y' & X'Y \\
1 & XY' & XY
\end{array}$

$$F(X,Y) = m_1 + m_2 + m_3$$

by applying Boolean algebra

B. Three-Variable Map

Three-variable map: $8 \text{ minterms} \Rightarrow 8 \text{ squares}$

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

- Only one bit changes in value from one adjacent column to the next
 - > Any two adjacent squares in the map differ by only one variable, which is primed in one square and unprimed in the other.
 - > E.g.: m₅ & m₇
- Note: Each square has 3 adjacent squares.
 - > The right & left edges touch each other to form adjacent squares.
 - > E.g.: $m_4 \to m_0, m_5, m_6$

Alternatives of 3-variable map:

	YZ				
	X	00	01	11	10
F(X,Y,Z)	0	0 X'Y'Z'	1 X'Y'Z	3 X'YZ	2 X'YZ'
		4	5	7	6
	1	XY'Z'	XY'Z	XYZ	XYZ'

m_0	\mathbf{m}_1	m_3	m_2
m_4	m_5	m_7	m_6

Z	00	01	11	10
0	0	2	6	4
1	1	3	7	5

m_0	m_2	m_6	m_4
m_1	m_3	m_7	m_5

J.J. Shann 3-16

Alternatives of 3-variable map: (cont'd)

	XY	0	1
	00	0	1
F(X,Y,Z)	01	2	3
	11	6	7
	10	4	5

YZ X	0	1
00	0	4
01	1	5
11	3	7
10	2	6

Map Minimization of SOP Expression

Basic property of adjacent squares:

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

- Any two adjacent squares in the map differ by only one variable: primed in one square and unprimed in the other
 - E.g.: $m_5 = XYZ$, $m_7 = XYZ$
- ⇒ Any two minterms in adjacent squares that are ORed together can be simplified to a single AND term w/ a removal of the different variable.

• E.g.:
$$m_5 + m_7 = XYZ + XYZ = XZ(Y + Y) = XZ$$

•

Procedure of map minimization of SOP expression:

- i. A 1 is marked in each minterm that represents the function.
 - Two ways:
 - (1) Convert each minterm to a binary number and then mark a 1 in the corresponding square.
 - (2) Obtain the coincidence of the variables in each term.
- ii. Find possible adjacent 2^k squares:
 - \rightarrow 2 adjacent squares (i.e., minterms) \rightarrow remove 1 literal
 - \rightarrow 4 adjacent squares (i.e., minterms) \rightarrow remove 2 literal
 - \rightarrow 2^k adjacent squares (i.e., minterms) \rightarrow remove k literal
 - ⇒ The larger the # of squares combined, the less the # of literals in the product (AND) term.
 - * It is possible to use the same square more than once.

Example 3.1

Simplify the Boolean function

$$F(X, Y, Z) = \Sigma m(2,3,4,5)$$

<Ans.>

Example: 4-minterm Product Terms

- Product terms using 4 minterms
- $F(X, Y, Z) = \Sigma m(0,2,4,6)$

* The right & left edges touch each other to form adjacent squares.

$$m_0 + m_2 + m_4 + m_6 = \overline{XYZ} + \overline{XYZ} + \overline{XYZ} + X\overline{YZ} + XY\overline{Z}$$

$$= \overline{XZ}(\overline{Y} + Y) + X\overline{Z}(\overline{Y} + Y)$$

$$= \overline{XZ} + X\overline{Z} = \overline{Z}(\overline{X} + X) = \overline{Z}$$

Example: 4-minterm Product Terms

• $F(X, Y, Z) = \Sigma m(0,1,2,3,6,7)$

* It is possible to use the same square more than once.

Example 3.2: Redundant Terms

Simplify the Boolean function

$$F(X,Y,Z) = \sum m(3,4,6,7)$$

<Ans.>

$$XY \rightarrow \text{redundant} (\times)$$

$$F(X,Y,Z) = YZ + X\overline{Z}$$

Example 3.3

Simplify the Boolean function

$$F(X,Y,Z) = \sum m(0,2,4,5,6)$$

<Ans.>

$$F(X,Y,Z) = \overline{Z} + X\overline{Y}$$

Non-unique Optimized Expressions

There may be alternative ways of combining squares to product equally optimized expressions:

• E.g.:
$$F(X,Y,Z) = \sum m(1,3,4,5,6)$$

Simplifying Functions not Expressed as Sumof-minterms Form

- use the map to obtain the minterms of the function & then simplify the function
- Example 3.4: Given the Boolean function

$$F = A'C + A'B + AB'C + BC$$

<Ans.>

$$F = A'C + A'B + AB'C + BC$$

$$0-1 \quad 01- \quad 101 \quad -11$$

$$1, 3 \quad 2, 3 \quad 5 \quad 3, 7$$

$$= \sum m(1, 2, 3, 5, 7)$$

$$= C + A'B$$

$$1 \quad 10$$

$$0 \quad 01 \quad 11 \quad 10$$

$$1 \quad 11 \quad 10$$

$$0 \quad 11 \quad 11$$

3-3 Four-Variable Map

Four-variable map: $16 \text{ minterms} \Rightarrow 16 \text{ squares}$

W	YZ X	00	01	11	10
	00	0	1	3	2
F(W, X, Y, Z)	01	4	5	7	6
	11	12	13	15	14
	10	8	9	11	10

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6
m ₁₂	m ₁₃	m ₁₅	m ₁₄
m_8	m_9	m ₁₁	m ₁₀

- Note: Each square has 4 adjacent squares.
 - > The map is considered to lie on a surface w/ the top and bottom edges, as well as the right and left edges, touching each other to form adjacent squares.
 - \rightarrow E.g.: $m_8 \rightarrow m_0, m_9, m_{10}, m_{12}$

Example 3.5

Simplify the Boolean function

$$F(W, X, Y, Z) = \Sigma(0,1,2,4,5,6,8,9,12,13,14)$$

<Ans.>

$$F = \overline{Y} + \overline{W}\overline{Z} + X\overline{Z}$$

Example 3.6

Simplify the Boolean function

$$F = A'B'C' + B'CD' + A'BCD' + AB'C'$$

[AB'C'](#) [Ans.>](#)

Map Manipulation

- When choosing adjacent squares in a map:
 - Ensure that all the minterms of the function are covered when combining the squares.
 - Minimize the # of terms in the expression.
 - avoid any redundant terms whose minterms are already covered by other terms

Prime Implicants

Implicant:

 A product term is an implicant of a function if the function has the value 1 for all minterms of the product term.

Prime implicant: PI

a product term obtained by combining the max. possible #
 of adjacent squares in the map

• Essential prime implicant: EPI, must be included

- If a minterm in a square is covered by only one PI, that PI is said to be essential.
 - Look at each square marked w/ a 1 and check the # of PIs that cover it.

Example

Find the PIs and EPIs of the Boolean function

$$F(X, Y, Z) = \Sigma m(1,3,4,5,6)$$

<Ans.>

4 PIs: $\overline{X}Z$, $\overline{Y}Z$, $X\overline{Z}$, $X\overline{Y}$

2 EPIs: \overline{XZ} (m_3) , $X\overline{Z}$ (m_6)

$$F(X,Y,Z) = \sum m(1,3,4,5,6)$$
$$= \overline{X}Z + X\overline{Z} + (\overline{Y}Z)$$
$$= \overline{X}Z + X\overline{Z} + (\overline{Y}Z)$$

Example

Find the PIs and EPIs of the Boolean function $F(A,B,C,D) = \Sigma(0,2,3,5,7,8,9,10,11,13,15)$

<Ans.>

Example (Cont')

6 PIs: BD, B'D', CD, B'C, AD, AB

2 EPIs: $BD (m_5), B'D' (m_0)$

AB	D 00	01	₁ 11	10
00	1	1	1	1 2
01	4	1 5	1 7	6
11	12	13	1	14
10	1	1	1	1 10

The remaining 4 PIs:

CD, B'C, AD, AB'

J.J. Shann 3-34

Finding the Simplified Expression

- Procedure for finding the simplified expression from the map: (SoP form)
 - i. Determine all PIs.
 - ii. The simplified expression is obtained from the logical sum of all the EPIs plus other PIs that may be needed to cover any remaining minterms not covered by the EPIs.
 - There may be more than one expression that satisfied the simplification criteria.

Example: p.3-33

Simplify the Boolean function

$$F(A,B,C,D) = \Sigma(0,2,3,5,7,8,9,10,11,13,15)$$

6 PIs: BD, B'D', CD, B'C, AD, AB'

4 PIs: CD, B'C, AD, AB'

EPIs: BD, B'D' \rightarrow m₀,m₂, m₅, m₇, m₈, m₁₀, m₁₃, m₁₅

 \Rightarrow Combine PIs that contains m_3 , m_9 , m_{11} (CD, B'C, AD, AB')

$$\Rightarrow F = BD + B'D' + CD + AD$$

$$= BD + B'D' + CD + AB'$$

$$= BD + B'D' + B'C + AD$$

$$= BD + B'D' + B'C + AB'$$

補充資料: Five-Variable Map

Five-variable map: 32 minterms \Rightarrow 32 squares

CD AB		001	011	010	110	111	101	100
00	0	1	3	2	6	7	5	4
01								
11								
10								

Each square has 5 adjacent squares.

Alternatives: Five-variable map

- Each square has 5 adjacent squares.
 - > Consider the two half maps as being one on top of the other.
 - > Any 2 squares that fall one over the other are considered adjacent.
 - \rightarrow E.g.: $m_8 \rightarrow m_0, m_9, m_{10}, m_{12}, m_{24}$

Example

Simplify the Boolean function

$$F(A,B,C,D,E) = \Sigma(0,2,4,6,9,13,21,23,25,29,31)$$

$$F = A'B'E' + ACE + BD'E$$

Summary

- Five-variable map: 32 minterms \Rightarrow 32 squares
- Six-variable map: $64 \text{ minterms} \Rightarrow 64 \text{ squares}$
- Maps for more than 4 variables are not as simple to use:
 - Employ computer programs specifically written to facilitate the simplification of Boolean functions w/ a large # of variables.
 - ⇒ 補充 Quine-McCluskey Method (p.3-51) Reference:
 - Randy H. Katz & Gaetano Borriello, Contemporary Logic Design, Prentice Hall.

3-4 Product of Sums Simplification

- Approach 1: POS of F
 - Simplified F' in the form of sum of products
 - Apply DeMorgan's theorem F = (F')'F': sum of products $\Rightarrow F = (F')'$: product of sums
 - E.g.: Simplify the Boolean function in POS:

$$F = \sum m(0, 4, 6)$$

$$\Rightarrow F' = \sum m(1, 2, 3, 5, 7)$$

$$= C + A'B$$

$$\Rightarrow F = (C + A'B)'$$

$$= C' (A + B')$$

4

Approach 2 (duality): POS of F

- combinations of maxterms (it was minterms for SoP)
 - i. A 0 is marked in each maxterm that represents the function.
 - ii. Find possible adjacent 2^k squares and realize each set as a sum (OR) term, w/ variables being complemented.
- E.g.: for 4 variables

CI AB	00	01	11	10
00	\mathbf{M}_0	\mathbf{M}_1	\mathbf{M}_3	\mathbf{M}_2
01	M_4	M_5	M_7	M_6
11	M ₁₂	M ₁₃	M ₁₅	M_{14}
10	M_8	M_9	\mathbf{M}_{11}	\mathbf{M}_{10}

$$M_0M_1 = (A+B+C+D)(A+B+C+D')$$

= $(A+B+C) + (DD')$
= $A + B + C$

Example 3.7

Simplify the Boolean function in (a) SOP and (b)

POS:
$$F(A,B,C,D) = \Sigma(0,1,2,5,8,9,10)$$

<Ans.>

(a) SOP of $F(A,B,C,D) = \Sigma(0,1,2,5,8,9,10)$

-

<Ans.>

(b) POS of F(A,B,C,D) = $\Sigma(0,1,2,5,8,9,10)$ Approach 1:

$$F' = AB + CD + BD'$$

$$F = (F')' = (AB + CD + BD')' = (A'+B')(C'+D')(B'+D)$$
J.J. Shann 3-44

4

<Ans.>

(b) POS of F(A,B,C,D) = $\Sigma(0,1,2,5,8,9,10)$ Approach 2: think in terms of maxterms

$$F = (A'+B')(C'+D')(B'+D)$$

— Gate implementation:

Assumption: The input variables are directly available in their complement ⇒ Inverters are not needed.

- The implementation of a function in a standard form is said to be a two-level implementation.
- Determine which form will be best for a function.

Example

• Given the truth table of a function, simplify the function in (a) SOP and (b) POS.

x y z	F
0 0 0	0
0 0 1	1
0 1 0	0
0 1 1	1
1 0 0	1
1 0 1	0
1 1 0	1
1 1 1	0

<Ans.>

$$F(x, y, z) = \Sigma(1, 3, 4, 6) = \Pi(0, 2, 5, 7)$$

(a)
$$F = x'z + xz'$$

(b) i.
$$F' = x'z' + xz$$

 $F = (F')' = (x' + z')(x + z)$

ii. Or think in terms of maxterms

$$F = (x + z)(x' + z')$$

J.J. Shann 3-47

3-5 Don't-Care Conditions

Don't care condition:

- the unspecified minterms of a function
- is represented by an ★
- E.g.: A 4-bit decimal code has 6 combinations which are not used.

Incompletely specified function:

has unspecified outputs for some input combinations

Decimal	BCD
Symbol	Digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

^{* 1010 ~ 1111} are not used and have no meaning.

Simplification of an Incompletely Specified Function

- Simplification of an incompletely specified function:
 - When choosing adjacent squares to simplify the function in the map, the ×'s may be assumed to be either 0 or 1, whichever gives the simplest expression.
 - An × need not be used at all if it does not contribute to covering a larger area.

Example 3.8

* The outputs in a particular implementation of the function are only 0's and 1's.

Simplify the Boolean function $F(w,x,y,z) = \Sigma m(1,3,7,11,15)$ which has the *don't-care* conditions $d(w,x,y,z) = \Sigma m(0,2,5)$.

(a) **SOP**:
$$F(w,x,y,z) = yz + w'x' = \Sigma m(0,1,2,3,7,11,15)$$

 $F(w,x,y,z) = yz + w'z = \Sigma m(1,3,5,7,11,15)$

(b) **POS**: $F(w,x,y,z) = z (w' + y) = \Sigma m(1,3,5,7,11,15)$

. Shann 3-50

補充資料:

Quine-McCluskey Method &

CAD Tools for Simplification

A. Quine-McCluskey Method (for SOP)

- Tabular method to systematically find all PIs and a minimum cover of PIs for a function
 - 1. Find all prime implicants (xy + xy' = x)

Implication Table

- (a) Fill Column 1 with minterm and don't-care condition indices. Group by number of 1's.
- (b) Apply theorem xy + xy' = x

Compare elements of adjacent groups.

Differ by one bit ⇒ Combine (eliminate a variable) and place in next column.

Mark the combined elements with a check (\checkmark) .

Repeat until no further combinations may be made.

Mark the uncombined elements with a star $(*) \Rightarrow PI$.

2. Find the minimum cover of PIs ⇒ simplified SOP

- 4
 - Tabular method to systematically find all PIs and a minimum cover of PIs for a function
 - 1. Find all prime implicants (xy + xy' = x)
 - 2. Find the minimum cover of PIs

PI Chart

- \Rightarrow simplified SOP
- (a) Construct the Prime Implicant Chart
- (b) Find the EPIs

(* EPIs must be in the set)

(c) Select PIs to cover the remaining minterms if necessary

(* Form the minimum set)

Finding All Prime Implicants (1/4)

 $F(A,B,C,D) = \Sigma m(4, 5, 6, 8, 9, 10, 13) + \Sigma d(0, 7, 15)$

0100 0110 1001 1101

1. Find all prime implicants: Implication Table

(a) Fill Column 1 with minterm and don't-care condition indices.

* Group by number of 1's.

1010	Implication Table		
	Column 1		
0 1's	0	0000	
1 1's	4 8	0100 1000	
2 1's	5 6 9 10	0101 0110 1001 1010	
3 1's	7 13	0111 1101	
4 1's	15	1111	

(b) Apply theorem xy + xy' = x:

Compare elements of adjacent groups.

Differ by one bit

⇒ Combine (eliminate a variable) and place in next column.

Mark the combined elements with 2 a check (\checkmark).

Repeat until no further combinations may be made.

Mark the uncombined elements with a star (*) \Rightarrow PI.

	Implication Table			
Group	Column 1	Column 2		
0	0 0000 🗸	0,4 0-00 0,8 -000		
1	4 0100 ✓ 8 1000 ✓	0,8 -000 4,5 010-		
le)	5 0101 ✓	4, 6 01-0 8, 9 100-		
ith ²	6 0110 v 9 1001 v	8, 10 10-0		
	10 1010 🗸	5,7 01-1 5,13 -101		
3	7 0111 ✓ 13 1101 ✓	6,7 011- 9,13 1-01		
4		7,15 - 111		
4	15 1111 🗸	13,15 11-1		

(b) Apply theorem xy + xy' = x:

Compare elements of adjacent groups.

Differ by one bit

⇒ Combine (eliminate a variable) and place in next column.

Mark the combined elements with 2 a check (\checkmark).

Repeat until no further combinations may be made.

Mark the uncombined elements with a star $(*) \Rightarrow PI$.

	Implication Table			
Group	Column 1	Column 2	Column 3	
0	0 0000 ✓	0,4 0-00 * 0,8 -000 *	4,5,6,7 01 *	
le)	4 0100 ✓ 8 1000 ✓	4, 5 010- \(\sqrt{4}\) 4, 6 01-0 \(\sqrt{1}\)	5,7,13,15 -1-1 *	
ith ²	5 0101 v 6 0110 v 9 1001 v	8, 9 100- * 8, 10 10-0 *		
3	10 1010 ✓ 7 0111 ✓ 13 1101 ✓	5,7 01-1 ✓ 5,13 -101 ✓ 6,7 011- ✓ 9,13 1-01 *		
4	15 1111 🗸	7,15 -111 ✓ 13,15 11-1 ✓		

Finding All Prime Implicants (4/4)

Imp	Implication Table			
Column 1	Column 2	Column 3		
0 0000	0,4 0-00 * 0,8 -000 *	4,5,6,7 01 *		
4 0100 1 8 1000 1 1000 1000	4,5 010- \(\sqrt{4}\) 4,6 01-0 \(\)	5,7,13,15 -1-1 *		
5 0101 V 6 0110 V	8, 9 100- * 8, 10 10-0 *			
9 1001 / 10 1010 /	5,7 01-1 ✓ 5,13 -101 ✓			
7 0111 ✓ 13 1101 ✓	6,7 011- \(\sqrt{9,13} \) 1-01 \(\sqrt{8}\)			
15 1111 ✓	7,15 -111 ✓ 13,15 11-1 ✓			

Prime Implicants:

0,4	0-00	\rightarrow A' C' D'
0,8	-000	\rightarrow B' C' D'
8,9	100-	→ A B' C'
8,10	10-0	\rightarrow A B' D'
9,13	1-01	→ A C′ D
4,5,6,7	01	\rightarrow A' B
5,7,13,15	-1-1	\rightarrow B D

J.J. Shann 3-57

(For Verification Only)

Find all PIs by using K-map: (for verification only)

$$F(A,B,C,D) = \Sigma m(4,5,6,8,9,10,13) + \Sigma d(0,7,15)$$

Prime Implicants:

$$0-00 \rightarrow A' C' D' 01-- \rightarrow A' B$$

$$-000 \rightarrow B' C' D'$$
 $-1-1 \rightarrow B D$

100-
$$\rightarrow$$
 A B' C'

$$10-0 \rightarrow A B' D'$$

$$1-01 \rightarrow A C' D$$

Finding the Minimum Cover (1/4)

- 2. Find the smallest set of PIs that cover all the minterms:
 - **Prime Implicant Chart**
 - (a) Construct the Prime Implicant Chart
 - (b) Find the EPIs (* EPIs must be in the set)
 - (c) Select PIs to cover the remaining minterms if necessary (* Form the minimum set)

Finding the Minimum Cover (2/4)

(a) Construct the PI chart:

Rows = **prime implicants**

Columns = minterms only

(excludes don't-care conditions)

Place an "X" if minterm is covered by the PI.

$$F(A,B,C,D) = \Sigma m(4,5,6,8,9,10,13) + \Sigma d(0,7,15)$$

Prime Implicants:

$$0-00 = A' C' D'$$

$$01 - - = A' B$$

$$-000 = B' C' D'$$

$$-1-1 = B D$$

$$100 - = A B' C'$$

$$10-0 = A B' D'$$

$$1-01 = A C' D$$

Prime Implicant Chart

5 6 8 9 10 13

Finding the Minimum Cover (3/4)

 $\mathbf{F} = \mathbf{A} \mathbf{B'} \mathbf{D'} + \mathbf{A'} \mathbf{B} + \dots$

4

Finding the Minimum Cover (4/4)

(c) Select PIs to cover the remaining minterms if necessary

(* Form the minimum set)

Eliminate all columns covered by EPI.

Find minimum set of rows that cover the remaining columns.

$$\mathbf{F} = \mathbf{A} \mathbf{B'} \mathbf{D'} + \mathbf{A'} \mathbf{B} + \mathbf{A} \mathbf{C'} \mathbf{D}$$

(For Verification Only)

Find the smallest set of PIs that cover all the minterms: (for verification only)

$$F(A,B,C,D) = \Sigma m(4,5,6,8,9,10,13) + \Sigma d(0,7,15)$$

Prime Implicants:

$$\begin{array}{ccccc} 0\text{-}00 & \rightarrow \text{A'} & \text{C'} & \text{D'} & & 01\text{-} & \rightarrow \text{A'} & \text{B} \\ \text{-}000 & \rightarrow \text{B'} & \text{C'} & \text{D'} & & \text{-}1\text{-}1 & \rightarrow \text{B} & \text{D} \\ 100\text{-} & \rightarrow \text{A} & \text{B'} & \text{C'} & & & \\ 10\text{-}0 & \rightarrow \text{A} & \text{B'} & \text{D'} & & & \\ 1\text{-}01 & \rightarrow \text{A} & \text{C'} & \text{D} & & & \end{array}$$

Essential Prime Implicants:

$$10-0 \rightarrow A B' D' \qquad 01--\rightarrow A' B$$

$$\mathbf{F} = \mathbf{A} \mathbf{B}' \mathbf{D}' + \mathbf{A}' \mathbf{B} + \mathbf{A} \mathbf{C}' \mathbf{D}$$

B. CAD Tools for Simplification

Problems of Quine-McCluskey Method:

- The # of PIs grows very quickly as the # of inputs increases.
- Finding a min set cover is a very difficult problem.
 - > an NP-complete problem
 - > There are not likely to be any efficient algorithms for solving it.

Espresso:

- a program for 2-level Boolean function minimization
- combines many of the best heuristic techniques developed
 - > don't generate all PIs
 - > judiciously select a subset of primes that still covers the minterms

Espresso Inputs and Outputs

$$F(A,B,C,D) = \Sigma m(4,5,6,8,9,10,13) + d(0,7,15)$$

Espresso Input

.i 4 .0 1 ilb a b c d .ob f **.**p 10 0100 0101 1 0110 1000 1001 1010 1101 0000 0111 1111 -.e

```
# inputs
# outputs
input names
output name
# product terms
A'BC'D'
A'BC'D
A'BCD'
AB'C'D'
AB'C'D
AB'CD'
ABC'D
A'B'C'D' don't care
A'BCD don't care
ABCD don't care
end of list
```

.i 4 .o 1 .ilb a b c d .ob f .p 3 1-01 1 10-0 1 01-- 1 .e

 $\mathbf{F} = \mathbf{A} \mathbf{C}' \mathbf{D} + \mathbf{A} \mathbf{B}' \mathbf{D}' + \mathbf{A}' \mathbf{B}$

J.J. Shann 3-65

補充資料:

Multiple-Level Circuit Optimization

Multiple-Level Circuit Optimization

- 2-level ckt optimization: simplified SoP, PoS
 - can reduce the cost of combinational logic ckts
 - 2-level ckt: minimal propagation delay
- Multi-level ckts:
 - ckts w/ more than 2 levels
 - There are often additional cost saving available

Reference:

– M. Morris Mano & Charles R. Kime, *Logic and Computer Design Fundamentals*, 3rd Edition, 2004, Pearson Prentice Hall. (§2-6)

Transformations for Multiple-level Optimization

- Multiple-level ckt optimization (simplification):
 - is based on the use of a set of transformations that are applied in conjunction w/ cost evaluation to find a good, but not necessarily optimum solution.
 GIC, delay
- Transformations:
 - Factoring: for GIC \downarrow
 - is finding a factored form from either a SoP or PoS expression for a function → distributive law
 - *Elimination*: for *delay* ↓
 - \rightarrow function G in an expression for function F is replaced by the expression for $G \rightarrow$ distributive law

A. Transformation for GIC Reduction (Factoring)

• E.g.:
$$G = ABC + ABD + E + ACF + ADF$$

 $<$ Ans.>

2-level implementation: gate-input cost = 17

Multi-level implementation: distributive law

$$G = \underline{ABC} + \underline{ABD} + E + \underline{ACF} + \underline{ADF}$$
 (a) $\rightarrow 17$
= $\underline{AB(C+D)} + E + \underline{AF(C+D)}$ (b) $\rightarrow 13$

$$= (\underline{AB + AF}) (C + \underline{D}) + E \qquad (c) \to 12$$

$$= \underline{A(B+F)}(C+D) + E$$

 $(d) \rightarrow 9$ Gate input count

(GIC)

$$G = ABC + ABD + E + ACF + ADF$$
 (a)

$$= AB(C+D) + E + AF(C+D)$$
 (b)

$$= (AB + AF)(C + D) + E$$
 (c)

$$= A(B+F)(C+D) + E$$
 (d)

(a)
$$G = ABC + ABD + E + ACF + ADF$$

$$G = ABC + ABD + E + ACF + ADF$$
 (a)

$$= AB(C+D) + E + AF(C+D)$$
 (b)

$$= (AB + AF)(C + D) + E$$
 (c)

$$= A(B+F)(C+D) + E$$
 (d)

(c)
$$G = (AB + AF)(C + D) + E$$

(d)	G = A((B+F)	(C + I)	D) + I	E

Ckt	# Levels	GIC
(a)	2	17
(b)	3	13 (11)
(c)	4	12
(d)	3	9

3 levels, GIC = 9

Example

E.g.: Multilevel optimization transformations

$$G = A\overline{C}E + A\overline{C}F + A\overline{D}E + A\overline{D}F + BCD\overline{E}F$$

$$H = ABCD + ABE + ABF + BCE + BCF$$

<Ans.>

GIC

26
$$G = \overline{ACE} + \overline{ACF} + \overline{ADE} + \overline{ADF} + BCD\overline{EF}$$

$$= \overline{A(\overline{CE} + \overline{CF} + \overline{DE} + \overline{DF})} + BCD\overline{EF}$$

$$= A(\overline{C(E+F)} + \overline{D(E+F)}) + BCD\overline{EF}$$

$$= A(\overline{C(E+F)} + \overline{D(E+F)}) + BCD\overline{EF}$$

$$= A(\overline{C+D})(E+F) + BCD\overline{EF}$$

$$= A\overline{X}_1 X_2 + BX_1 \overline{X}_2$$

 $=A(C+D)X_2+BX_1EF$

 $X_2 = E + F$

J.J. Shann 3-72

$$G = A\overline{X}_1 X_2 + BX_1 \overline{X}_2$$

$$X_1 = CD$$

$$X_2 = E + F$$

(Cont'd)

$$H = ABCD + ABE + ABF + BCE + BCF$$

$$= B(ACD + AE + AF + CE + CF)$$

$$= B(ACD + A(E+F) + C(E+F))$$

$$= B(A(CD) + (A+C)(E+F))$$

$$= B(AX_1 + (A+C)X_2)$$

$$H = B(AX_1 + (A+C)X_2)$$

$$X_1 = CD$$

$$X_2 = E + F$$

factoring

$$X_1 = CD$$

$$X_2 = E + F$$

substitution

* 2-level

(ignore the delay of NOT gates)

3-6 NAND & NOR Implementation

- NAND & NOR gates:
 - are easier to fabricate w/ electronic components.
 - are the basic gates used in all IC digital logic families.
 - have the universal property:
 - Any Boolean function can be implemented w/ NAND (NOR) gates only.

- Boolean function in terms of AND, OR, NOT
 - ⇒ equivalent NAND (NOR) logic diagram

A. NAND Circuits

- Universal property of the NAND gate:
 - The logical operations of AND, OR, NOT can be obtained w/ NAND gates only.

Two graphic symbols for NAND gate:

- Implementation of a combinational ckt w/ NAND gates:
 - Obtain the simplified Boolean functions in terms of AND, OR, NOT.
 - ii. Convert the function to NAND logic.

.

Two-Level NAND Implementation

Two-level NAND implementation:

Sum of products (AND-OR) \Rightarrow NAND-NAND

• Example: F = AB + CD

(a)
$$\rightarrow$$
 (c): $F = AB + CD = [(AB + CD)']' = [(AB)'(CD)']'$

$$(c) \rightarrow (a): F = [(AB)'(CD)']' = AB + CD$$

Example 3.9

Implement the following Boolean function w/

NAND gates:
$$F(x,y,z) = \Sigma(1,2,3,4,5,7)$$

<Ans.>

i. Simplify the function in SOP:

ii. Convert the function to NAND logic:

- Procedure of implementing a Boolean function w/ two-level NAND gates:
 - 1. Simplify the function and express it in sum of products.
 - 2. Draw a NAND gate for each product term of the expression that has at least two literals. The inputs to each NAND gate are the literals of the term.
 - $\rightarrow 1^{st}$ level
 - 3. Draw a single NAND gate (using the AND-invert or the invert-OR graphic symbol), w/ inputs coming from outputs of 1st level gates. \rightarrow 2nd level
 - 4. A term w/ a single literal requires an inverter in the 1st level or may be complemented and applied as an input of the 2nd-level NAND gate.

J.J. Shann 3-85

Multilevel NAND Circuits

- Standard form of Boolean function
 - \Rightarrow 2-level implementation
- Nonstandard form ⇒ Multilevel circuit

Procedure for obtaining a multilevel NAND diagram:

- 1. From a given Boolean expression, draw the logic diagram w/ AND, OR, and invert gates.
 - Assumption: Both the normal and complement inputs are available.
- 2. Convert all AND gates to NAND gates w/ AND-invert graphic symbol.
- 3. Convert all OR gates to NAND gates w/ invert-OR graphic symbols.
- 4. Check all the bubbles in the diagram. For every bubble that is not compensated by another small circle along the same line, insert an inverter (one-input NAND gate) or complement the input literal.

Example

Implement the multilevel Boolean function using NAND gates: F = (AB' + A'B) (C + D')

B. NOR Implementation

- NOR operation: the dual of NAND operation
 - All procedures and rules for NOR logic are the dual of those developed for NAND logic.
- Universal property of the NOR gate:
 - The logical operations of AND, OR, NOT can be obtained w/ NOR gates only.

4

Two graphic symbols for NOR gate:

- Implementation of a combinational ckt w/ NOR gates:
 - i. Obtain the simplified Boolean functions in terms of AND, OR, NOT.
 - ii. Convert the function to **NOR** logic.

Two-Level NOR Implementation

Two-level NOR implementation:

Product of sums (OR-AND) \Rightarrow NOR-NOR

- Procedure of implementing a Boolean function w/ two-level NOR gates:
 - 1. Simplify the function and express it in product of sums.
 - 2. Draw the OR-AND diagram of the POS expression.
 - 3. OR gates → NOR gates w/ OR-invert graphic symbols.

 AND gate → NOR gate w/ invert-AND graphic symbol.
 - 4. A single literal term going into the 2nd-level gate must be complemented

Multilevel NOR Circuits

Procedure for obtaining a multilevel NOR diagram:

- 1. From a given Boolean expression, draw the logic diagram w/ AND, OR, and invert gates.
 - Assumption: Both the normal and complement inputs are available.
- 2. Convert each OR gate to a NOR gate w/ OR-invert symbol.

3. Convert each AND gate to a NOR gates w/ invert-AND symbols.

4. Check all the bubbles in the diagram. For every bubble that is not compensated by another small circle along the same line, insert an inverter (one-input NOR gate) or complement the input literal.

J.J. Shann 3-93

Example

Implement the multilevel Boolean function using NOR gates: F = (AB' + A'B) (C + D')

<Ans.>

3.7 Other Two-Level Implementations

- The types of gates most often found in ICs are NAND and NOR.
 - NAND and NOR logic implementations are the most important from a practical point of view.

Wired logic:

- Some NAND or NOR gates allow the possibility of a wire connection b/t the outputs of two gates to provide a specific logic function.
- E.g.: Wired-AND logicWired-OR logic

Wired Logic

* The wired-logic gate is not a physical gate.

Wired-AND logic:

- E.g.: open-collector TTL
$$\frac{A}{B}$$

NAND gates
$$F = (AB)' (CD)'$$

$$= (AB + CD)'$$

⇒ **AND-OR-INVERT** (**AOI**) function

Wired-OR logic:

- E.g.: ECL NOR gates F = (A + B)' + (C + D)'= [(A + B) (C + D)]'

⇒ **OR-AND-INVERT** (**OAI**) function

2-Level Combinations of Gates

2-level combinations of gates:

AND, OR, NAND, NOR \Rightarrow 16

– Degenerate forms: 8

(degenerate to a single operation; 2-level $\rightarrow 1$ -level)

AND-AND

OR-OR

NAND-OR

NOR-AND

AND-NAND OR-NOR

NAND-NOR NOR-NAND

Nondegenerate forms: 8

AND-OR

OR-AND

NAND-NAND NOR-NOR

NAND-AND NOR-OR

AND-NOR

OR-NAND

- > AND-OR & NAND-NAND \Leftrightarrow sum of products (AO)
- > OR-AND & NOR-NOR \Leftrightarrow product of sums (OA)
- \rightarrow **NAND-AND NOR-OR** AND-NOR OR-NAND \Leftrightarrow ? AOI (A.) J.J. Shann 3-97

A. AND-OR-Invert (AOI) Implementation (AND-NOR & NAND-AND)

- AND-OR-Invert: inversion of SoP
 - Simplify F' in SoP

- E.g.:
$$F' = AB + CD + E$$
 (sum of products)

$$\Rightarrow F = (AB + CD + E)'$$

AND-OR-Invert \Leftrightarrow AND-NOR \Leftrightarrow NAND-AND

B. OR-AND-Invert (OAI) Implementation (OR-NAND & NOR-OR)

- OR-AND-Invert: inversion of PoS
 - Simplify F' in PoS

- E.g.:
$$F' = (A + B) (C + D) E$$
 (product of sums)

$$\Rightarrow F = [(A + B) (C + D) E]'$$

 $OR-AND-Invert \Leftrightarrow OR-NAND \Leftrightarrow NOR-OR$

C. Tabular Summary

- Implementation w/ other 2-level forms:
 - _ p.129, Table 3.2

Example 3.10

Implement the following function w/ AND-NOR, NAND-AND, OR-NAND, NOR-OR 2-level forms:

$$F(x, y, z) = \Sigma(0, 6)$$

<Ans.>

SoP of F =
$$x'y'z' + xyz'$$

PoS of F = $(x + y')(x' + y)z'$
SoP of F' = $x'y + xy' + z$
PoS of F' = $(x + y + z)(x' + y' + z)$

J.J. Shann 3-101

SoP of F =
$$x'y'z' + xyz'$$

PoS of F = $(x + y')(x' + y)z'$
SoP of F' = $x'y + xy' + z$
PoS of F' = $(x + y + z)(x' + y' + z)$

– AND-NOR & NAND-AND implementations: AOI

Simplify F' in SoP: SoP of F' = x'y + xy' + z

$$\Rightarrow$$
 F = $(x'y + xy' + z)'$... AOI

SoP of F =
$$x'y'z' + xyz'$$

PoS of F = $(x + y')(x' + y)z'$
SoP of F' = $x'y + xy' + z$
PoS of F' = $(x + y + z)(x' + y' + z)$

OR-NAND & NOR-OR implementations: OAI

Simplify F' in PoS: PoS of F' =
$$(x + y + z) (x' + y' + z)$$

 \Rightarrow F = $[(x + y + z) (x' + y' + z)]'$... OAI

NOR-OR

3-8 Exclusive-OR Function

■ Exclusive-OR: XOR, ⊕

$$x \oplus y = xy' + x'y$$

- is equal to 1 if only x = 1 or if only y = 1, but not both.
- Exclusive-NOR: XNOR, equivalence

$$(x \oplus y)' = xy + x'y'$$

- is equal to 1 if both x and y are equal to 1 or if both are equal to 0.
- * Two-variable XOR & XNOR are the complement to each other.
- They are particularly useful in arithmetic operations and error-detection and correction ckts.

Properties of XOR

$$x \oplus y = xy' + x'y$$

Identities:

$$x \oplus 0 = x$$

$$x \oplus 1 = x'$$

$$x \oplus x = 0$$

$$x \oplus x' = 1$$

$$x \oplus y' = x' \oplus y = (x \oplus y)'$$

Commutativity and associativity:

$$A \oplus B = B \oplus A$$

 $(A \oplus B) \oplus C = A \oplus (B \oplus C) = A \oplus B \oplus C$

 \Rightarrow XOR gates w/ three or more inputs

Implementations of XOR function

XOR function is usually constructed w/ other types of gates:

Odd Function

$$x \oplus y = xy' + x'y$$

- Multiple-variable XOR operation: odd function
 - equal to 1 if the input variables have an odd # of 1's
- E.g.: 3-variable XOR

$$A \oplus B \oplus C = (A \oplus B) C' + (A \oplus B)' C$$

$$= (AB' + A'B)C' + (AB + A'B')C$$

$$= AB'C' + A'BC' + ABC + A'B'C$$

$$= \Sigma(1, 2, 4, 7)$$

⇒ is equal to 1 if only one variable is equal to 1 or if all three variables are equal to 1.

B	C_{00}	01	11	10
0	0	1	3	1 2
1	1 4	5	1 7	6

E.g.: 4-variable XOR

$A \oplus B \oplus C \oplus D$

$$= (AB' + A'B) \oplus (CD' + C'D)$$

$$= (AB' + A'B) (CD' + C'D)'$$

$$+ (AB' + A'B)' (CD' + C'D)$$

$$= (AB' + A'B)(CD + C'D')$$

$$+ (AB + A'B')(CD' + C'D)$$

$$= \Sigma(1, 2, 4, 7, 8, 11, 13, 14)$$

CD	00	01	11	10
$AB \sim 00$		1		1
01	1		1	
11		1		1
10	1		1	

■ An n-variable XOR function is defined as the logical sum of the $2^n/2$ minterms whose binary numerical values have an odd # of 1's.

Even Function

 $x \oplus y' = x' \oplus y = (x \oplus y)'$

XNOR is commutative and associative

$$(A \oplus B)' = (B \oplus A)'$$

$$[(A \oplus B)' \oplus C]' = [A \oplus (B \oplus C)']'$$

$$= A \oplus B \oplus C$$

$$\neq (A \oplus B \oplus C)'$$

- Modifying the definition of multiple-variable XNOR operation: even function
 - equal to 1 if the input variables have an even # of 1's

■ E.g.: 3-variable XNOR

XOR: $A \oplus B \oplus C = \Sigma(1,2,4,7)$

XNOR: $(A \oplus B \oplus C)' = \Sigma(0,3,5,6)$

A	C_{00}	01	11	10
0	0	1	3	12
1	1	5	1	6

Odd function $F = A \oplus B \oplus C$

A	C_{00}	01	11	10
0	1 0	1	1 3	2
1	4	1 5	7	16

Even function $F = (A \oplus B \oplus C)'$

E.g.: 4-variable XNOR

XOR: $A \oplus B \oplus C \oplus D = \Sigma(1, 2, 4, 7, 8, 11, 13, 14)$

XNOR: $(A \oplus B \oplus C \oplus D)' = \Sigma(0, 3, 5, 6, 9, 10, 12, 15)$

AB	00	01	11	10
00		1		1
01	1		1	
11		1		1
10	1		1	

ĆL) /	,	,	,
AB	00	01	11	10
00	1		1	
01		1		1
11	1		1	
10		1		1

Odd function $F = A \oplus B \oplus C \oplus D$

Even function $F = (A \oplus B \oplus C \oplus D)'$

■ An n-variable XNOR function is defined as the logical sum of the $2^n/2$ minterms whose binary numerical values have an even # of 1's.

J.J. Shann 3-111

Logic Diagram of Odd & Even Functions

Logic diagram of odd & even functions:

Parity Generation & Checking

- Error-detection and correction codes: (§1-7, §7-4)
- Parity bit:
 - detecting errors during transmission of binary information.
 - is an extra bit included w/ a binary message to make the # of 1's either odd or even.
 - The message, including the parity bit, is transmitted and then checked at the receiving end for errors.
 - Parity generator: generates the parity bit in the transmitter
 - Parity checker: checks the parity in the receiver

Example

 Consider a 3-bit message to be transmitted together w/ an even parity bit.

Even-parity generator:

3-bit msg x y z	Parity Bit P
0 0 0	0
0 0 1	1
0 1 0	1
0 1 1	0
1 0 0	1
1 0 1	0
1 1 0	0
1 1 1	1

$$P = x \oplus y \oplus z$$

Even-parity checker:

C = 1 if error occurs

4-bit received	Error check
x y z P	\boldsymbol{C}
$0\ 0\ 0\ 0$	0
0001	1
0010	1
0011	0
0100	1
0101	0
0110	0
0 1 1 1	1
1000	1
1001	0
1010	0
1011	1
1100	0
1 1 0 1	1
1110	1
1111	0

$$\mathbf{C} = x \oplus y \oplus z \oplus \mathbf{P}$$

J.J. Shann 3-115

Logic diagram

Even parity generator:

(3 inputs)

$$P = x \oplus y \oplus z$$

3-bit even parity generator

Even parity checker:

(4 inputs)

$$C = x \oplus y \oplus z \oplus P$$

4-bit even parity checker

3-9 Hardware Description Language (HDL)

HDL:

- is a language that describes the hardware structure and behavior of digital systems in a textual form.
- Can be used to represent logic diagrams, Boolean expressions, and other more complex digital ckts.
- Two applications of HDL processing:
 - Logic simulation:
 - > the representation of the structure and behavior of a digital logic system through the use of a computer.
 - Logic synthesis:
 - > the process of deriving a list of components and their interconnections (*netlist*) from the model of a digital system described in HDL.

Module Declaration

HDL Example:

//Verilog model of circuit of Figure 3.37

```
module Simple_Circuit (A, B, C, D, E);
  output D, E;
  input A, B, C;
  wire w1;

and G1 (w1, A, B); //Optional gate instance name
  not G2 (E, C);
  or G3 (D, w1, E);
endmodule
```

Chapter Summary

- Minimization of Boolean function:
 - Algebraic manipulation: literal minimization (Ch2)
 - Map method: gate-level minimization (§3-2~3-5)
 - SoP simplification & PoS simplification
 - Don't-care conditions
 - _ Tabular method: Quine-McCluskey method (補充資料)
- Multiple-Level Circuit Optimization (補充資料)
- NAND and NOR Implementation
- Other two-level implementation
- XOR and XNOR Functions
- Hardware Description Language (HDL)

Problems & Homework (6th ed)

Sections	Exercises	Homework
§3 - 2	3.1~3.3	3.3(a)
§3-3	3.4~3.12, 3.26	3.5(b), 3.6(b), 3.10(b)
§3-4	3.13, 3.14	3.13(b)
§3-5	3.15	3.15(b)
補充資料		Repeat 3-15(b) by Quine-
		McCluskey method
§3-6	3.16~3.23	3.16(a), 3.20
§3-7	3.24, 3.25	3.24
§3-8	3.27, 3.28, 3.30	3.28
Ch4	3.29	
HDL	3.31~3.40	J.J. Shaini 3-120