PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-040840

(43) Date of publication of application: 13.02.2003

(51)Int.Cl.

CO7C 69/533 CO7C 69/003 CO7C 69/013 CO7C 69/54 C08F220/24

(21)Application number: 2001-222530

(71)Applicant: CENTRAL GLASS CO LTD

TOSOH F-TECH INC

(22)Date of filing:

24.07.2001

(72)Inventor: MIYAZAWA SATORU

MAEDA KAZUHIKO TOKUHISA KENJI

ARAI SHOJI

(54) FLUORINE-CONTAINING POLYMERIZABLE MONOMER AND POLYMER USING THE SAME (57)Abstract:

PROBLEM TO BE SOLVED: To provide a new polymerizable monomer, to provide a polymer which uses the monomer, and has a high fluorine content, high transparency in a wide wavelength region from vacuum UV light to an optical communication region, a high adhering property to substrates, and a high film-forming property, and further to provide a reflection-preventing material, an optical device material and a resist material coated with the polymer.

SOLUTION: The new fluorine-containing acrylate monomer as specific compounds containing high fluorine contents and hydroxyl groups, the polymer using the monomers, the reflection-preventing material, the optical device material and the resist material using the polymer are provided.

LEGAL STATUS

[Date of request for examination]

29.10.2003

[Date of sending the examiner's decision of

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出壤公開番号 特開2003-40840

(P2003-40840A) (43)公服日 平成16年2日12日(2003-2-13)

		(43)公開日 平成15年2月13日(2003.2.13)			
(51) Int.CL?	織別記号	F I デーマコート*(参考)			
CO7C 69/533		CO7C 69/533 4H006			
69/003		69/003 C 4J100			
69/013		69/013 C			
69/54		69/54			
C 0 8 F 220/24		COSF 220/24			
		審査請求 京請求 請求項の数10 OL (全 15 円)			
(21)出顧番号	特額2001-222530(P2001-222530)	(71)出項人 000002200			
		セントラル硝子株式会社			
(22)出版日	平成13年7月24日(2001.7.24)	山口界宇郁市大字种宇部5253番地			
		(71)出庭人 591180358			
		東ソー・エフテック株式会社			
		東京都中央区京杨三丁目2番4号			
		(72) 発明者 宮澤 党			
		埼玉県川越市今福中食2806番地 セントラ ル硝子株式会社化学研究所内			
		(74)代理人 100108671			
		弁理士 西 袋之			
		最終質に続			

(54) 【発明の名称】 含フッ素第合性単量体およびそれを用いた高分子化合物

(57)【要約】

【課題】 高いフッ素含量を有しながら、幅広い波長鎖 域すなわち真空繁外線から光通信波長域にいたるまで高 い透明性を有し、かつ基板への密着性や高い成膜性を併 せ持つ新規な重合性単置体およびそれを用いた高分子化 台物、さらにはその高分子化合物をコーティングした反 射防止材料、光デバイス材料、レジスト材料を提供す

【解決手段】 高いフッ素含置とヒドロキシ基を含有さ せた特定の化合物として一連の新規な含フッ素アクリレ ート誘導体およびそれらの単置体を用いた高分子化合 - 物」さらにその高分子化合物を用いた反射防止材料、光 デバイス材料、レジスト材料。

(2) 特開2003-40840 1 2 【特許請求の範囲】 * 【化1】

【請求項1】 一般式(1)

$$\begin{array}{c|c}
R^1 & O & R^2 & OR^3 \\
\hline
 & & CF_3
\end{array}$$
(1)

(式中、R*は水素原子、ハロゲン原子、炭化水素基。 含フッ素アルキル基を表し、R*は直鎖または分岐を育 しても良いアルキル基、環状構造を育するアルキル基、 芳香環、またはそれらの複合置換基であって、その一部 がフッ素化されていてもよい。R*は水素原子、及び分 岐を含んでも良い炭化水素基、含フッ素アルキル基、芳※

※香族や脂肪環を育する環状体であって、酸素、カルボニ 10 ル等の結合を含んでも良い。また、nは1~2の整数を 表す。)で表される重合性単置体。 【請求項2】 一般式(2)

【語永填2】 一般式(2 【化2】

$$R^1$$
 OR^3 CF_3 (2)

(式中、R'、R'は一般式(1)における意味と同じ。)で表される請求項1項記載の重合性単置体。

★【請求項3】一般式(3) 【化3】

$$F_3^1$$
 O F_3^3 CF_3 CF_3 OR^3 OR^3 OR^3 OR^3

(式中、R*、R*は一般式(1)における意味と同じ。 R*は直鎖または分岐を有しても良いアルキル基、環状 構造を有するアルキル基、酸素原子またはハロゲン原子 を有しても良いアルキル基、芳香環、またはそれらの復 台置換基であって、その一部に不飽和結合があっても良☆

☆いし、またフッ素化されていても良い。)で表される請 30 求項1項記載の重合性単量体。

【請求項4】 一般式 (4) 【化4】

 $\begin{array}{c|c}
R^{1} & O & R^{5} \\
\hline
O & C & C \\
\hline
F_{3}C & C & F_{3}
\end{array}$ (4)

(式中、R¹、R¹は一般式(1)における意味と同じ。またR¹は直鎖または分板を有しても良いアルキル基(炭素数()~5)を表す。また、nは1~2の整数を表◆

◆す。)で表される請求項1項記載の重合性単置体。 【語求項5】 一般式(5) 【化5】

(3)

(式中、R'、R'、R'、nは一般式 (4) における意 味と同じ。) で表される語求項!項記載の重合性単置

3

【請求項6】 R*がトリフルオロメチル基である請求項 1~5項のいずれかに記載の重合性単量体。

【請求項7】 R*がノナフルオローn - ブチル (C.F. -> 基である請求項1~5項のいずれかに記載の重合性 兰季依.

【請求項8】 請求項1~7項のいずれかに記載の宣合 性単量体を用いて重合または共重合された高分子化合

【請求項9】 共重合成分として、少なくとも、オレブ ィン、含フッ素オレフィン、アクリル酸エステル、メタ クリル酸エステル、含フッ素アクリル酸エステル、含フ ッ素メタクリル酸エステル、ノルボルネン化合物、含フ ッ素ノルボルネン化合物。スチレン系化合物、含フッ素 スチレン系化合物、ビニルエーテル、含フッ素ビニルエ ーテルから選ばれた一種以上の単置体と共重合されるこ とを特徴とする請求項8記載の高分子化合物。

【請求項10】 請求項8または9記載の高分子化合物 25 を用いた反射防止材料、光デバイス材料またはレジスト 材料。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、特定の構造すなわ ちヒドロキシ墓またはそれを保護または修飾した置換基 含有の新規な含フッ素単量体、またはそれを用いて重合 または共重合した高分子化合物、さらにその高分子化合 物を用いた反射防止材料、感光性コーティング材料また はレジスト材料に関する。

[0002]

【従来の技術】ファ素系化合物は、ファ素の待つ撥水 性、撥袖性、低吸水性、耐熱性、耐候性、耐腐食性、透 明性、感光性、低層折率性、低誘電性などの特徴から先 鑑材料分野を中心として幅広い応用分野で使用または関 発が続けられている。特に、コーティング用途に関して 言えば、低屈折率性と可視光の透明性を応用した反射防 止膜、高波長帯(光通信波長帯)での透明性を応用した光 デバイス、紫外線領域(特に真空紫外波長域)での透明 性を応用したレジスト材料などの分野で活発な研究開発 40 が行われている。これらの応用分野において共通の高分米

*子設計としては、できるだけ多くのフッ素を導入するこ とで各使用波長での透明性を実現しつつ、基板への密着 性、高いガラス転移点(硬度)を実現させようとするもの である。しかしながら、村科設計としてファ素含量を高 める工夫により各波長での透明性を高めることは種々提 寒されているが、ファ素含有単置体そのものに同時に親 水性、密着性を高める工夫や高丁gを得る工夫をしてい る例は少ない。最近になって、特に真空紫外銀領域の次 世代F,レジスト分野においてヒドロキシ基合有のファ

4

16 素系スチレンやヒドロキシ墓含有のフッ素系ノルボルネ ン化合物が発表されたことで、フッ素を含有し、かつヒ ドロキシ基の極性を共存させる考え方が見られるように なってきた。しかしながら、まだまだ反射防止膜に必要 とされる十分な低屈折率が得られてなく、または光通信 波長での透明性も十分でなく、または紫外線での透明性 とエッチング耐性の両立が不十分であったりと改善する べき要因は多く存在している。したがってこれら既存の 化合物が発揮しうる機能は必ずしも充分ではなく、更に 優れた高分子化合物を与え得る新規な単置体あるいはそ の原料の創出が望まれていた。

100031

【発明が解決しようとする課題】従って、本発明は、高 いフッ素含置を有しながら、同一分子内に極性基を持た せることで、幅広い波長領域すなわち真空紫外線から光 通信波長域にいたるまで高い透明性を有し、かつ基板へ の密着性や高い成膜性を併せ持つ新規な宣合性単量体お よびそれを用いた高分子化合物、さらにはその高分子化 台物をコーティングした反射防止材料、光デバイス材 料、レジスト材料を提供することにある。

30 [0004]

【課題を解決するための手段】本発明者らは、前記の課 題を解決するため鋭意検討を重ねた結果、工業的にも使 いやすいとされるアクリル系の単置体であって、高いフ ッ素含置とヒドロキシ基を含有させた特定の化合物とし て一連の新規な合フッ素アクリレート誘導体およびそれ ちの単置体を用いた高分子化合物を合成し、本発明を完 成するに至った。ただしヒドロキシ基は下記のR'で説 明する置換基で保護または修飾することが可能である。

【0005】すなわち本発明は、一般式(1)

[0006]

(1t6)

$$\begin{array}{c|c}
R^1 & O & R^2 \\
\hline
 & O & CF_3
\end{array}$$
(1)

【0007】(式中、R1は水素原子、ハロゲン原子、 炭化水素基、含フッ素アルキル基を表し、R*は直鎖ま たは分岐を有しても良いアルキル基。環状構造を有する 50 原子。及び分岐を含んでも良い炭化水素基、含ファ素ア

アルキル基、芳香環、またはそれらの複合置換器であっ て、その一部がフッ素化されていてもよい。R'は水素

(4)

特闘2003-40840

ອ

ルキル基、芳香族や脂肪環を有する環状体であって、酸 素。カルボニル等の結合を含んでも良い。また。nは1 ~2の整数を表す。)で表される宣合性単置体と、それ を用いて宣台または共宣合した高分子化合物である。さ らに本発明は、それを用いた反射防止材料、光デバイス 材料、レジスト材料である。

[0008]

【発明の実施の形態】以下、本発明の実施の形態を詳細*

* に説明する。 【① ① ① ② 】本発明に係る一般式(1)で表される特定

のアクリレートは、分子内にフッ素とヒドロキシ墓をへ キサフルオロイソプロパノール基として共存させたもの である。まず、本発明に使用できる一般式(1)の単置 体について説明する。

[0010]

[化?]

【0011】本発明の一般式(1)に使用できるR*は 水素原子、ハロゲン原子、炭化水素基、含フッ素アルキ ル基であれば特に制限なく使用することができる。好ま しい置換基を例示するならば、ハロゲン原子としてフッ 素。塩素、臭素など、また炭化水素基としてメチル基、 エチル基、プロビル基、イソプロビル基、ブチル基、イ ソプチル基、Sec-ブチル基、tert-ブチル基、 シクロペンチル墓、シクロヘキシル墓。フェニル墓、ベ ンジル基、フェネチル基など、さらには含フッ素アルキ ル基として前記アルキル基の水素原子の一部または全部 がハロゲン原子で置換されたものを倒示できる。ただし 炭化水素基と含フッ素アルキル基の場合の炭素敷は1~ 20程度が好ましく、さらに重合性の額点からは炭素数 1~4が好適に採用される。特に含フッ素アルキル基を 例示するならば、一CF。のトリフルオロメチル基、一C H₂CF₃のトリフルオロエチル基、1、1、1、3, 3. 3-ヘキサブルオロイソプロピル墓、ヘブタブルオ※ % ロイソプロピル基、 $-C_*F_*$ のノケフルオロ-n - ブチル基などが例示できる。

【0012】また、本発明の一般式(1)に使用できる R*は、直鎖または分岐を有しても良いアルキル基、環 状構造を有するアルキル基。芳香環。またはそれらの複 合置換基であって、その一部がフゥ素化されていてもよいし不飽和結合を含んでも良い。例えば、メチレン、エチレン、イソプロピレン。も一ブチレンなどの直鎖または分岐を有するアルキレン基、シクロブテン、シクロヘキサン、ノルボルネン、アダマンタン基などを含有する 環状構造、フェニル基など。その構造は制限なく使用することができるが、特に好ましい構造として、下記一般式(2)~(5)に具体例を示すような単置体が例示できる。

[0013]

[fk8]

$$R^1$$
 O OR^3 CF_3 CF_3

30

[0014]

$$\begin{array}{c|c}
F_3C & \star \text{ (fb9)} \\
F_3C & CF_3 & CF_3 \\
OR^3 & OR^3
\end{array}$$
(3)

[0015]

【化10】

【0017】 ことでR1は、水素原子、及び分岐を含ん でも良い炭化水素基、含フッ素アルキル基、芳香族や脂 肪環を有する環状体であって、酸素、カルボニル等の結 台を含んでも良い。その構造には特に制限はないが、最 も簡単で高い透明性を有するヒドロキシ基が基本とな る。その上で、使用目的により、メチル基、エチル基、 イソプロピル墓。シクロプロピル基。シクロペンチル 基」シクロペキシル基、フルボルネル基、アダマンチル 基。ベンジル基などの環状を有しても良い炭素数1~2 ①程度の炭化水素基、また酸素原子を含むものとして、 メトキシメチルエーテル、メトキシエトキシメチルエー テル等の鎖状エーテル基。テトラヒドロフラン。テトラ ヒドロピラン等の環状エーテル基、芳香族として4ーメ トキシベンジル墓、またカルボニル墓を含むものとし て、アセチル蟇、ピパロイル基、teェt-ブトキシカ ルボニル基、ベンゾイル基等を保護または鋒飾すること が可能である。その目的としては、有機恣媒やアルカリ 水溶液への溶解性、高いガラス転移点、ハンダ耐熱性を 目的とした架橋反応性、光酸発生剤によるボジ型感光性 やエッチング耐性などの特徴を付与させることであり、 本発明の応用分野ごとに使い分けることが可能である。 【①①18】R*の炭素数1~20の炭化水素基として ヌチレン、エチレン、イソプロピレン等の鎖状炭化水素 基。シクロプロビル、シクロペンチル。シクロペキシ ル、フルボルネル、アダマンチル等の環状炭化水素基な どが例示でき、その一部がフッ素、臭素、塩素等に置換 されていても良い。また、酸素原子を含むものとして炭 素数3~5の環状エーテル、炭素数1~20の直鎖、あ るいは分岐アルキル基が例示できる。芳香族として、フ ェニル基、ジフェニルエーテル基、トリフルオロメチル フェニル基。ジトリフルオロメチルフェニル基等が例示 できる。さらにR1として不飽和結合を含有することも 可能である。

(0019)また、R*の炭素数1~5の炭化水素基としてメチレン、エチレン、イソプロピレン、ブチレン、

イソプチレン、secーブチレン等の鎖状炭化水素基、 シクロプロピル、シクロペンチル、シクロペキシル、ノ ルボルネル、アダマンチル等の環状炭化水素基などが例 示できる。

【①①20】以下、一般式(1)~(5)で表される α 、 β -不飽和エステルの合成法について説明する。 季発 明によればその合成法は特に制限されず、最終的に一般 式(1)~(5)の単置体が生成できれば良いが、代表 的な合成方法を例示するならば次に示す方法が挙げられる。

【0021】すなわち、一般式(1)~(5)で表され るα、β-不飽和エステルば、ヘキサフルオロアセトンを 出発物質として誘導されるアルコール体とアクリル酸、 メタクリル酸、2-トリフルオロメチルアクリル酸、2 -ノナフルオロ-n-ブチルアクリル酸等の α , β -不飽 30 和カルボン酸。或いはアクリル酸クロリド、メタクリル 酸クロリド、2-トリフルオロメチルアクリル酸クロリ ド、2-ノナフルオローn-ブチルアクリル酸クロリド 等のα.β-不飽和カルボン酸ハライドとの縮合反応から 合成でき、また同様にヘキサフルオロアセトンから誘導 した二重結合を有する化合物からも、硫酸、塩酸、メタ ンスルホン酸。トリフルオロメタンスルホン酸。及び種 ャルイス酸存在下、アクリル酸、メタクリル酸、2-ト リフルオロメチルアクリル酸、2-ノナフルオローn-40 ブチルアクリル酸等のα、β-不飽和カルボン酸との付加 反応からも合成できる。

【①①22】 各反応後の生成物の分離精製は簡用の方法で行えばよく、例えば濃縮、蒸磨、抽出、再結晶。適適、カラムクロマトグラフィー等を用いることができ、また二種類以上の方法を組み合わせて用いても良い。【①①23】次に、本発明による高分子化合物について説明する。本発明によれば、一般式(1)~(5)に示す重合性単質体の単独宣合または、一般式(1)~(5)の複数の組み合わせからなる共重合体、さらに共50 宣合可能な他種の単質体との共宣合体が使用可能であ

【① 024】本発明の一般式(1)~(5)に示す単置 体と共重合可能な単置体を具体的に例示するならば、少 なくとも、オレフィン、含フッ素オレフィン、アグリル 酸エステル、メタクリル酸エステル、含フッ素アクリル 酸エステル、含フッ素メタクリル酸エステル、ノルボル ネン化合物、含フッ素ノルボルネン化合物、スチレン系 化合物、含フッ素スチレン系化合物、ビニルエーテル、 含フッ素ビニルエーテルから選ばれた1種以上の単置体

9

【0025】オレフィンとしては、エチレン、プロピレ ンなど、フルオロオレフィンとしては、フッ化ビニル、 フッ化ビニリデン、トリフルオロエチレン、クロロトリ フルオロエチレン、テトラフルオロエチレン、ヘキサフ ルオロプロピレン、ヘキサフルオロイソプテンなどが例 示できる。

【0026】また、アクリル酸エステルまたはメタクリ ル酸エステルとしてはエステル側鎖について特に制限な く使用できるが、公知の化合物を例示するならば、メチ レート又はメタクリレート。カ・プロビルアクリレート 又はメタクリレート、インプロピルアクリレート又はメ タクリレート。n・ブチルアクリレート又はメタクリレ ート、インプラルアクリレート又はメタクリレート、A ヘキシルアクリレート又はメタクリレート、n-オク チルアクリレート又はメタクリレート、2・エチルヘキ シルアクリレート又はメタクリレート、ラウリルアクリ レート又はメタクリレート、2・ヒドロキシエチルアク リレート又はメタクリレート、2・ヒドロキシプロビル メタクリル酸のアルキルエステル、エチレングリコー ル、プロピレングリコール、テトラメチレングリコール 基を含有したアクリレート又はメタクリレート、さらに アクリルアミド、メタクリルアミド、N・メチロールア クリルアミド、N・メチロールメタクリルアミド、ジア セトンアクリルアミドなどの不飽和アミド、アクリロニ トリル、メタクリロニトリル、アルコキシシラン含有の ビニルシランやアクリル酸またはメタクリル酸エステ ル、モーブチルアクリレート又はメタクリレート、3・ オキソシクロヘキシルアクリレート又はメタクリレー ト、アダマンチルアクリレート又はメタクリレート、ア ルキルアダマンチルアクリレート又はメタクリレート、 シクロヘキシルアクリレート又はメタクリレート、トリ シクロデカニルアクリレート又はメタクリレート、ラク トン環やノルボルネン環などの環構造を有したアクリレ ートまたはメタクリレート。アクリル酸、メタクリル酸 などが使用できる。さらにαシアノ基含有の上記アクリ レート領化合物や領似化合物としてマレイン酸。フマル 酸、無水マレイン酸などを共重合することも可能であ 5.

【0027】また、含フッ素アクリル酸エステル、含フ ッ素メタクリル酸エステルとしては、フッ素原子を有す る墓がアクリルの々位またはエステル部位に有したアク リル酸エステルまたはメタクリル酸エステルであって、 α位にシアノ豊が導入されていても良い。例えば、α位 に含フッ素アルキル基が導入された単量体は、上述した 非フッ素系のアクリル酸エステルまたはメタクリル酸エ ステルであって、α位にトリフルオロメチル基、トリフ ルオロエチル基、ノナフルオローカープチル基などが付 16 与された単置体が好適に採用される。

【0028】一方、そのエステル部位がパーフルオロア ルキル基、フルオロアルキル基であるフッ素アルキル基 や、またエステル部位に環状構造とフッ素を共存する単 位であって、その環状構造が例えばフッ素やトリフルオ ロメチル基で置換された含プッ素ベンゼン環、含プッ素 シクロペンタン環、含フッ素シクロヘキサン環、含フッ 素シクロヘプタン環等を有する単位などを有するアクリ ル酸エステルまたはメタクリル酸エステルである。また エステル部位が含フッ素のも一プチルエステル基である ルアクリレートート又はメタクリレート、エチルアクリ 20 アクリル酸またはメタクリル酸のエステルなども使用可 能である。そのような単位のうち特に代表的なものを単 置体の形で例示するならば、2,2、2-トリフルオロ エチルアクリレート、2、2、3、3-テトラフルオロ プロビルアクリレート、1、1、1、3、3、3-ヘキ サフルオロイソプロビルアクリレート。 ヘブタフルオロ イソプロピルアクリレート、1,1-ジヒドロヘプタフ ルオローカープチルアクリレート、1、1,5-トリヒ ドロオクタフルオローカーペンチルアクリレート、1, 1、2、2-テトラヒドロトリデカフルオローn-オク アクリレート又はメタクリレートなどのアクリル酸又は 30 チルアクリレート、1,1、2,2-テトラヒドロヘブ タデカフルオローカーデシルアクリレート、2、2、2 ートリフルオロエチルメタクリレート、2,2、3,3 ーテトラフルオロプロピルメタクリレート、1、1、 1、3、3、3 - ヘキサフルオロイソプロピルメタクリ レート、ヘプタフルオロイソプロピルメタクリレート、 1. 1ージヒドロヘブタフルオローnーブチルメタクリ レート、1, 1、5ートリヒドロオクタフルオローカー ペンチルメタクリレート、1,1,2、2ーテトラヒド ロトリデカフルオローカーオクチルメタクリレート、 1、1,2,2-テトラヒドロヘブタデカフルオローn - デシルメタクリレート、パーフルオロシクロヘキシル メチルアクリレート、パーフルオロシクロヘキシルメチ ルメタクリレートなどが挙げられる。

【0029】ノルボルネン化合物、含フラ素ノルボルネ ン化合物は、一核または複数の核構造を有するノルボル ネン単置体であって、これらは特に制限なく一般式 (1)~(5)の単置体と共重合することが可能であ る。との際、アリルアルコール、含フッ素アリルアルコ ール、アクリル酸、αフルオロアクリル酸、メタクリル 50 酸。本明細書で記載したすべてのアクリル酸エステルま

たはメタクリル酸エステル、含フッ素アクリル酸エステルまたはメタクリル酸エステルなどの不飽和化合物と、シクロペンタジエン、シクロペキザジエンとを用いてディールス アルダー (Diels Alder) 付加反応を行ったノルボルネン化合物が好ましく採用される。

【0030】さらにスチレン系化合物。含フッ素スチレ ン系化合物、ビニルエーテル、含フッ素ビニルエーテ ル、アリルエーテル、ピニルエステル、ピニルシランな ども使用することができる。ここでスチレン系化合物、 含フッ素スチレン系化合物としてはステレン、フッ素化 16 スチレン、ヒドロキシスチレンなどの他、ヘキサフルオ ロアセトンを付加したステレン系化合物、トリフルオロ メチル基で水素を置換したスチレンまたはヒドロキシス チレン、α位にハロゲン、アルキル基、含フッ素アルキ ル基が結合した上記スチレンまたは含フッ素スチレン系 化合物などが使用可能である。一方、ビニルエーテル、 含フッ素ビニルエーテル、アリルエーテル、ビニルエス テルなどは、一般的に本発明による一般式(1)~ (5) の単置体との重合反応性が乏しいとされている が、その共重合比により導入することが可能であり、例 20 えば、メチル基、エチル基、ヒドロキシエチル基、ヒド ロキシブチル基などのヒドロキシ基を含有しても良いア ルキルビニルエーテルであって、その水素の一部または 全部がフッ素で置換されていても良い。またシクロヘキ シルビニルエーテルやその環状構造内に水素やカルボニ ル結合を有した環状型ビニルエーテル、またそれらの環 状型ビニルエーテルの水素の一部または全部がフッ素で 置換された単量体も使用できる。 なお、 アリルエーテ ル、ビニルエステル、ビニルシランについても公知の化 合物であれば特に制限なく使用することが可能である。 【①①31】また、これらの共重合性化合物は単独使用

【00031】また、これらの共宣合性化合物は単独使用でも2種以上の併用でもよい。本発明によれば、一般式(1)~(5)の単置体の共宣合組成比としては特に制限はなく採用されるが、10~100%の間で選択することが好ましい。さらに好ましくは30~100%であり、30%未満では応用分野の波長域によっては十分な透明性や成膜性が発現しない。

【① 0 3 2 】そして、本発明にかかる高分子化合物の宣 台方法としては、一般的に使用される方法であれば特に 制限されないが、ラジカル重合、イオン宣合などが好ま しく、場合により、配位アニオン宣合やリビングアニオ ン重合などを使用することも可能である。ここではより 一般的なラジカル宣合法を説明する。

【①033】すなわち、ラジカル宣合開始剤あるいはラジカル開始源の存在下で、境状宣合、溶液宣合、壁障宣合または乳化重合などの公知の宣合方法により、回分式、半連続式または連続式のいずれかの操作でおとなえばよい。

【0034】ラジカル重合開始剤としては特に限定されるものではないが、例としてアゾ系化合物、過酸化物系 50

化合物、レドックス系化合物が挙げられ、とくにアゾビ スイソブチロニトリル、t - ブチルパーオキシビバレー

ト、過酸化ペンゾイル等が好ましい。

【10035】重合反応に用いる反応容器は特に限定され ない。また、重合反応においては、重合恣媒を用いても よい。宣台溶媒としては、ラジカル重合を阻害しないも のが好ましく、代表的なものとしては、酢酸エチル、酢 酸n-ブチルなどのエステル系、アセトン、メチルイソ ブチルケトンなどのケトン系、トルエン、シクロヘキサ ンなどの炭化水素系、イソプロピルアルコール。エチレ ングリコールモノメチルエーテルなどのアルコール系溶 剤などがある。また水、エーテル系、環状エーテル系、 フロン系、芳香族系、などの種々の溶媒を使用すること も可能である。これらの溶剤は単独でもあるいは2種類 以上を混合しても使用できる。また、メルカプタンのよ うな分子登調整剤を併用してもよい。共重反応の反応温 度はラジカル重合開始剤あるいはラジカル重合開始源に より適宜変更され、通常は20~200℃が好ましく、 特に30~140℃が好ましい。

【0036】このようにして得られる本発明にかかる高分子化合物の溶液または分散液から、媒質である有機溶媒または水を除去する方法としては、公知の方法のいずれも利用できるが、例を挙げれば再沈殿ろ過または減圧下での加熱留出等の方法がある。

【①①37】本発明にかかる高分子化合物の数平均分子 置としては、通常、1,000~100,000. 好ま しくは3,000~50.000の範囲が適切である。 【①038】次に本発明による応用分野について記述す る。本発明はコーティング用途を基本としており、通常 36 は本発明の高分子化合物を有機溶媒に溶解させて成膜さ せることで応用に供する。したがって、使用する有機溶 媒としては高分子化合物が可溶であれば特に制限されな いが、アセトン、メチルエチルケトン、シクロヘキサノ ン、メチルイソアミルケトン、2・ヘブタノンなどのケ トン類や、エチレングリコール、エチレングリコールモ ノアセテート、ジエチレングリコール、ジエチレングリ コールモノアセテート、プロピレングリコール、プロピ レングリコールモノアセテート、ジプロピレングリコー ル、又はジプロビレングリコールモノアセテートのモノ メチルエーテル、モノエチルエーテル、モノプロビルエ ーテル、モノブチルエーテル又はモノフェニルエーテル などの多価アルコール領及びその誘導体や、ジオキサン のような環式エーテル類や、乳酸メチル、乳酸エチル、 酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチ ル、ビルビン酸エチル、メトキシプロピオン酸メチル、 エトキシプロピオン酸エチルなどのエステル領。キシレ ン、トルエンなどの芳香族系溶媒、プロン、代替プロ ン、バーフルオロ化合物。ヘキサフルオロイソプロピル アルコールなどのファ素系溶剤、塗布性を高める目的で 高涛点羽控剤であるターペン系の石油ナフザ溶媒やパラ

(8)

13 フィン系溶膜などが使用可能である。これらは単独で用いてもよいし、2種以上混合して用いてもよい。

【①①39】本発明に係る反射防止材料としては、本発 明による高分子化台物をガラス、プラスチック、液晶オ パネル、プラズマディスプレーパネル。エレクトロルミ ネッセンスパネルなどの表面に極薄膜でコーティングし たものであり、単層または他の屈折率を有する薄膜と組 み合わせて使用することもできる。反射防止性能を高め るためには高分子化合物の可視光線における屈折率を 1. 42以下にする必要があり、好ましくは1. 4以下 である。通常、フッ素含量が高いほど屈折率が低下する が、一方でフッ素含量が高まった場合、基材との密着性 が低下する欠点がある。その場合、本発明による一般式 (1)~(5)の単置体でR3が水素のアルコール側鎖 の単量体を宣合することで基材への密着性を高めること が可能である。本発明による反射防止膜の膜厚としては 被コート物の屈折率によって異なるが、一般的に500 から2000オングストロームの範囲である。

【0040】本発明に係る光デバイスとしては、波長6 50 nmから1550 nmでの光導波路であり、好まし くは850mmから1550mmの半導体レーザーや通 信用光ファイバーで用いられる光源において比較的透明 な高分子化合物からなるものである。本発明によれば、 コアとクラッドの2種類の屈折率を有した高分子化合物 を本発明のコーティング材料から組み合わせて使用し、 スラブ型などの形状に成験してデバイス化する。すなわ ち、本発明による高分子化合物を光導液路のコア及びク ラッドのいずれかあるいは両方に用いることで光導波路 を作成できる。例えば、本発明による高分子化合物をコ ーティングすることでまずクラッドを形成し、その上に クラッドより屈折率が高くなる本発明の高分子化合物を コーティングし、これにマスクを通してあるいは直接光 を照射してバタン上に潜像を形成し、その後未照射部を 恣媒にて除去することによりバタンを形成しこの部分を 光が通るコア部分とし、さらにその上部にコア部より屈 折率が低くなる本発明による高分子化合物を塗布して熱 や紫外線照射により上部クラッドを形成する方法により 光導液路を作製することが可能である。

【0041】さらに別の導波路形成方法としては、最初に下部クラッド層、コア層の平坦膜を積み置わた後、コア層をフォトレジスト工程によりパターン化した後、反応性イオンエッチングによりコアリッジを形成し、その後上部クラッドをかぶせて導波路構造とすることも可能である。その際には反応性イオンエッチングによりコアリッジを形成し、その後上部クラッドをかぶせて導波路構造とする方法も好ましく採用される。

【0042】光デバイスは、通常電気系デバイスや配線 基板に実装する必要からハンダ耐熱性が必要とされているが、本発明によれば、一般式(1)~(5)の単置体でR*が水素のアルコール側鎖を使用し、かかるヒドロ 14 キシ基を架橋反応させることで必要な耐熱性を付与させることが可能である。使用できる硬化剤としては、ポリイソシアネート、エボキシ化合物、同一分子内に複数のカルボン酸を育する化合物などが使用できるが、これらの硬化剤は制限なく使用できる。また側鎖のヒドロキシ基に対して、アクリル酸、メタクリル酸あるいはこれらの酸クロライドをエステル化させることでネガ型光官能性高分子化合物とすることも可能である。その場合、光デバイス用途だけでなく、反射防止機やレジスト用途など幅広い分野で使用することが可能となる。

【0043】本発明に係るレジストとしては、酸の作用 によりアルカリ性水溶液に対する溶解性が変化する高分 子化合物および酸発生剤を基本組成に含有するポジ型レ ジスト組成物が最も好ましい。特に最近の半導体の微細 化に対応した193nmのArFエキシマレーザーや1 57 nmに代表される真空繁外領域のF,レーザー用ボ ジ型レジストとして好適である。すなわち、酸の作用に よりアルカリ性水溶液に対する溶解性が変化する高分子 化合物は、一般式(1)~(5)のR'、R'、R'が酸 不安定基になるようにしたものであるが、その構造は特 に制限なく使用可能である。一般的な酸不安定基として は、本発明の一般式(1)、(2)、(4)、(5)の Riがtertープチル構造などを有し酸によってその エステル部位が切断される単置体、またR'にtert ープチル基、tert-プトキシカルボニル基、鎖状ま たは環状エーテル基、環状構造を有するラクトン基など である。こういった単置体を用いた高分子化合物は活性 エネルギー線が照射される前にはアルカリ性水溶液に不 **溶もしくは難溶であって、活性エネルギー線を照射した** ことにより酸発生剤から発生した酸により加水分解され アルカリ性水溶液に対して溶解性を示すようになる。 【①①44】本発明組成物に用いられる光酸発生剤につ

いては特に制限はなく、化学増幅型レジストの酸発生剤 として用いられるものの中から、任意のものを選択して 使用することができる。とのような酸発生剤の例として は、含フッ素のスルホン酸誘導体や含フッ素スルホニル イミド誘導体などが好ましい。実際に使用する好ましい 塩としては、ビススルホニルジアゾメタン類、ニトロベ ンジル誘導体類。オニウム塩類、ハロゲン含有トリアジ ン化合物類、シアノ基含有オキシムスルホネート化合物 類 その他のオキシムスルホネート化合物などが挙げら れる。これらの酸発生剤は単独で用いてもよいし、2種 以上を組み合わせて用いてもよく、また、その含有量 は、高分子化合物100重量部に対して、通常0.5~ 20 重畳部の範囲で選ばれる。この量が0.5重量部未 満では像形成性が不十分であるし、20重置部を超える と均一な溶液が形成されにくく、保存安定性が低下する 傾向がみられる。

(0045)本発明のレジストの使用方法としては、従 50 来のフォトレジスト技術のレジストバターン形成方法が

http://www4.ipdl.ncipi.go.jp/tjcontenttrns.ipdl?N0000=21&N0400=image/gif&N0401=/NS...

用いられるが、好適に行うには、まずシリコンウエーハ のような支持体上に、レジスト組成物の溶液をスピンナ ーなどで塗布し、乾燥して感光層を形成させ、これに露 光装置などにより、エキシマレーザー光を所望のマスク パターンを介して照射し、加熱する。 次いでこれを現 **俊波、例えばり、1~10重量%テトラメチルアンモニ** ウムヒドロキシド水溶液のようなアルカリ性水溶液など を用いて現像処理する。この形成方法でマスクパターン に忠実なパターンを得ることができる。

【① 0.4.6】本発明の応用分野は、さらに所望により復 10 和性のある添加物、例えば付加的樹脂、クエンチャー、 可塑剤、安定剤、着色剤、界面活性剤、増粘剤、レベリ ング剤、消泡剤、相溶化剤、密着剤、酸化防止剤などの 程々添加剤を含有させることができる。

[0047]

【実施例】次に本発明を実施例によりさらに詳細に説明 するが、本発明はこれらの例によってなんら限定される ものではない。以下、合成例1~6の工程で本発明の重 台性単置体を合成した。

【0048】[合成例1] 下記式(6)で示されるα 20 -C.F,アクリレートの合成

[0049]

- 【化12】

湿で1, 1, 1-トリフルオロー2-(トリフルオロメ

*【0050】窒素雰囲気下、50m1三口フラスコに室

チル)-2-(メトキシメチルエーテル)ペンタン-4 -オール (1.00g、 3.70mmol) にトルエ ン(18.5ml)を加え溶解させた。続いて0℃で水 素化ナトリウム(97.7mg、 4.07mmol) を加え、50℃で2時間撹拌した。次に2-ノナブルオ ローnープチルアクリル酸クロリド(1.26g.

16

4. ①7mmol)のトルエン (1. 5m!) 溶液を() *Cで適下し、室温で7時間観拌した。この反応溶液に、 O Cで適置の飽和塩化アンモニウム水溶液を加え過剰の 試薬を分解した後、大過剰のエーテルで希釈した。続い て有機層を飽和塩化アンモニウム水溶液、飽和炭酸水素 ナトリウム水溶液、イオン交換水、飽和食塩水で洗浄し た。得られた有機層を適量の硫酸マグネシウムで乾燥

【0051】この複合物をシリカゲルカラムクロマト (酢酸エチル/11-ヘキサン=0/1~1/10) にて 分離錯載し、 $\alpha - C_*F_*$ アクリレート(1.46g、

し、エバボレーターにて返圧濃縮した。

2. 69 mm o 1) を得た。 得られた化合物について核 磁気共鳴法より上記構造を有することを確認した。 【0052】[合成例2] 下記式(7)で示されるメ

タクリレートの合成 [0053]

[(t13]

(7)

(9)

【0054】窒素雰囲気下、50m1三口フラスコに窒 温で3-(5-ヒドロキシビシクロ〔2.2.1〕ヘブ タン)-1,1、1-トリフルオロー2-(トリフルオ ロメチル) = 2 = プロパノール (5.00 g), 17.11mmol)、メタクリル酸(1.91g、 22. 24mmo!), ヒドロキノン (18.8mg. 17mmo!)を混合した。続いてりでで濃硫酸(2. - 25.67mmo!〉を滴下し、70℃で6 40 52g. 時間損控した。次に①でで多量のイオン交換水を加え希 釈後、適量のジエチルエーテルで抽出し、有機層をイオ ン交換水、飽和食塩水で洗浄した。得られた有機層を適 置の確職マグネシウムで乾燥し、エバポレーターにて減 圧波縮した。

【0055】この複合物をシリカゲルカラムクロマト (酢酸エチル/n-ヘキサン=1/10~1/3)にて 分能錯製し、式(7)で示されるメタクリレート(4. 13g、11.46mmol)を得た。得られた化合物 について核磁気共鳴法より上記構造を有することを確認 50

Lite.

[0056] [合成例3] 下記式(8)で示されるα - トリフルオロメチルアクリレートの合成 [0057]

[(14]

【0058】窒素雰囲気下、50m1三口フラスコに窒 湿で1,1,1、7,7、7-ヘキサフルオロー2-(トリフルオロメチル) 6 - (トリフルオロメチル) へ プタン-1,6-ジオール(3.00g、 7.97m mol>、α-トリフルオロメチルアクリル酸(1.4 10.37mmol)、ヒドロキノン(8.7 5 g. 0.08mmol)を復合した。続いて0℃で mg. 濃蘊酸(1. 17g、11. 96mmo!)を適下し、 70℃で15時間撹拌した。次に0℃で多量のイオン交 換水を加え希釈後、適置のジェチルエーテルで抽出し、

(10)

特開2003-40840

18

有機層をイオン交換水、飽和食塩水で洗浄した。得られ た有機層を適量の硫酸マグネシウムで乾燥し、エバボレ ーターにて減圧波縮した。

17

【①①59】この混合物をシリカゲルカラムクロマト (酢酸エチル/n-ヘキサン=1/15~1/5~1/ 2) にて分離錯製し、式(8) で示されるαートリフル オロメチルアクリレート (1.63g, 3.26mmo !)を得た。得られた化合物について核磁気共鳴法より 上記構造を有することを確認した。

【0060】[合成例4] 下記式(9)で示されるα 10 - トリフルオロメチルアクリレートの合成

[0061] 【化15】

【0062】窒素雰囲気下、50m1三口フラスコに窒 温で4- (ヘキサフルオロインプロビルー tert-ブ トキシカルボニルエステル)フェネチルアルコール (1.00g. 2.57mmo!) を塩化メチレン (25. 7m1) に溶解させた。続いて0℃でトリエチ ルアミン (1.10ml. 7.73mmol) を加え た後、0°Cでα-トリフルオロメチルアクリル酸クロリ ド(f), 61g. 3.86mmol)を適下した。次 に0°Cで4ージメチルアミノピリジン(31.5mg、 26mmol)を加え、0℃で20分間鎖拌した。 続いて反応液に適量のイオン交換水を加え、適量のジエ チルエーテルで抽出した。次に有機層をイオン交換水、 飽和食塩水で洗浄し、得られた有機層を適置の鞣酸マグー ネシウムで乾燥し、エバボレーターにて減圧濃縮した。 【()()63】 この複合物を活性アルミナ(中性)カラム クロマト(酢酸エチル/11-ヘキサン=1/10)にて 分能錯製し、式(9)で示されるα-トリフルオロメチ ルアクリレート(1.19g、 2.34mmol)を 得た。得られた化合物について核磁気共鳴法より上記標 造を有することを確認した。

【0064】[合成例5] 下記式(10)で示される アクリレートの合成

[0065]

(化16)

【0066】窒素雰囲気下、50m1三口フラスコに窒 温で2、4-ジヘキサフルオロイソプロパノールフェネ チルアルコール (1.00g、2.20mmol)、50

アクリル酸(0.24g. 3. 30 mmo !) . EF ロキノン (2. 4mg、 0.02mmol) を混合し た。続いて0°Cで滤硫酸(0.39g. 3.96mm o 1)を滴下し、70℃で6時間鏡拌した。次に0℃で 多量のイオン交換水を加え番釈後、適量のジエチルエー テルで抽出し、有機層をイオン交換水、飽和食塩水で洗 **巻した。得られた有機屋を適置の硫酸マグネシウムで乾** 燥し、エバボレーターにて返圧濃縮した。

【①067】との混合物をシリカゲルカラムクロマト (酢酸エチル/n-ヘキサン=1/10~1/1~3/ 1) にて分離領製し、式(10) で示されるアクリレー ト(0.91g. 1.80mmol)を得た。得られ た化合物について核磁気共鳴法より上記標準を有するこ とを確認した。

【0068】[合成例6] 下記式(11)で示される α-トリフルオロメチルアクリレートの合成

[0069] [(t17)

【0070】窒素雰囲気下、50m1三口フラスコに窒 湿で4-(ヘキサフルオロイソプロパノール)シクロヘ キサンエタノール (5.00g、16.99mmo 1) . αートリフルオロメチルアクリル酸(1.85 22. 09mmol)、ヒドロキノン(18. 7 mg. 0.17mmol)を複合した。続いて0℃で 発煙輸融(30%SOs) (6.80g, 25.48 mmo!}を滴下し、70℃で5時間撹拌した。次に0 ℃で多畳の氷水を少畳ずつ飼え希釈後、適畳のジエチル エーテルで拍出し、有機層をイオン交換水、飽和食塩水 で洗浄した。得られた有機層を適置の硫酸マグネシウム で乾燥し、エバボレーターにて減圧緩縮した。この混合 物をシリカ ゲルカラムクロマト (酢酸エチル/n-へ キサン=1/10~1/2)にて分離精製し、式(1) 1)で示されるα-トリフルオロメチルアクリレート (6.15g. 14.78mmol)を得た。得られ た化合物について核磁気共鳴法より上記構造を有するこ とを確認した。

[0071] [合成例7] 下記式(12)で示される α-C.F,アクリレートのホモポリマーの合成 [0072] (ft18)

特闘2003-40840 20

19 (12)

【0073】アルゴン雰囲気下、20m!丸底フラスコ 10 に室温で式(6)の α -C、F,アクリレート(1.00 g)をテトラヒドロフラン(7.00m!)に溶解させ*

*た。次に−78℃で、1、1−ジフェニルヘキシルリチ ウムテトラヒドロフラン溶液 (0.5m01%)を滴下 し、-78℃で12時間捌拌した。との重合液を室温で 大過剰のn - ヘキサンに再定激した後、ポリマーを濾過 回収した。得られたポリマーを80℃オーブンで12時 間返圧乾燥し、式(12)で示されるホモボリマー (i) 91g) を得た。尚、分子登はポリスチレン換算

でMn/Mw=6000/11000であった。 【0074】[合成例8] 下記式(13)で示される メタクリレートのホモポリマーの合成

[0075] [(119]

(13)

【0076】窒素雰囲気下、20m1丸底フラスコに窒 温で式 (7) のメタクリレート (1.00g) をテトラ ヒドロフラン(1.00g)に溶解させた。次に室温 σ , α , α^* - γ g. 0. 5mo1%) を加え66℃で24時間攪拌し た。この宣合液を室温で大過剰のカーヘキサンに再花緻 した後、ポリマーを濾過回収した。得られたポリマーを 80℃オーブンで12時間減圧乾燥し、式(13)で示 30 されるホモポリマー (0.88g)を得た。尚、分子登 はポリスチレン換算でMn/Mw=30000/800 (1)であった。

【0077】[合成例9] 下記式(14)で示される α-トリフルオロメチルアクリレートのホモポリマーの 台成

[0078]

(ft20)

【0079】式(8)で表されるαートリフルオロメチ ルアクリレートの単独宣合体を得るに当たり、末端の酸 性アルコールの保護を行った。

【0080】窒素雰囲気下、20m1丸底フラスコに窒 湿で式 (8) のαートリフルオロメチルアクリレート (1.60g. 3.21mmo!) を塩化メチレン

チジン (0.75ml、 6.42mmol)を加え、 O™でジーtertープトキシジカルボネート(0.8 3.85mmol)を加えりでで3時間機控し た。この反応液に適置のイオン交換水加えた後、適置の ジエチルエーテルで抽出し、有機層をイオン交換水、飽 和食塩水で洗浄した。得られた有機層を適量の硫酸マグ ネシウムで乾燥し、エバボレーターにて減圧濃縮した。 【①081】この混合物をシリカゲルカラムクロマト (酢酸エチル/11-ヘキサン=1/10) にて分離精製 し、式(8)のtert-ブトキシカルボニルエステル 体(1.79g. 2.99mmol)を得た。得られ た化合物について核磁気共鳴法より上記標準を有するこ とを確認した。

【りり82】続いて重合反応を行った。

【0083】アルゴン雰囲気下、20m!丸底フラスコ に室温で式(8)のtert-ブトキシカルボニルエス テル体(1.00g)をテトラヒドロフラン(7.00 m 1) に溶解させた。次に-78℃で、1, 1-ジフェ ニルヘキシルリチウムテトラヒドロフラン溶液(0.5 mo1%) を滴下し、-78℃で12時間緩搾した。こ の重合液を室温で大過剰のn-ヘキサンに再花碌した 後、ポリマーを濾過回収した。得られたポリマーを80 でオーブンで12時間減圧乾燥し、式(12)で示され るホモポリマー(①、83g)を得た。尚、分子量はポ リスチレン換算でMn/Mw=12000/21000 であった。

【0084】[合成例10] 下記式(15)で示され (16.0ml) に溶解させた。次に0℃で2、6-ル 50 るα-トリフルオロメチルアクリレートのホモポリマー

(12)

特闘2003-40840

の合成 【0085】 * ((t21)

*
(15)

F₃C

CF₃

O

CF₃

O

【0086】アルゴン雰囲気下、20m1丸底フラスコ 20 に室温で式(9)のαートリフルオロメチルアクリレート(1.00g)をテトラヒドロフラン(7.00m 1)に溶解させた。次に-78℃で、1,1-ジフェニルヘキシルリチウムテトラヒドロフラン溶液(0.5m 01%)を滴下し、-78℃で12時間線拌した。この宣合液を室温で大過剰のn-ヘキサンに再洗漱した後、ポリマーを溶通回収した。得られたポリマーを80℃オーブンで12時間減圧乾燥し、式(15)で示されるホモボリマー(0.90g)を得た。尚、分子置はポリスチレン換算でMn/Mw=14000/19000であ 30った。

21 .

【0087】 [合成例11] 下記式(16)で示されるアクリレートのホモポリマーの合成

[0088]

[ft22]

$$F_3C$$

$$F_3C$$

$$F_3C$$

$$F_3C$$

$$F_3C$$

$$F_3C$$

$$F_3C$$

$$F_3C$$

$$F_3$$

$$F_3C$$

$$F_3$$

$$F_3C$$

$$F_3$$

$$F_4$$

$$F_3$$

$$F_3$$

$$F_3$$

$$F_4$$

$$F_3$$

$$F_4$$

$$F_3$$

$$F_4$$

$$F_3$$

$$F_4$$

$$F_4$$

$$F_4$$

$$F_4$$

$$F_4$$

$$F_5$$

【0089】窒素雰囲気下、20m1丸底フラスコに窒温で式(10)のアクリレート(1.00g)をテトラヒドロフラン(1.00g)に溶解させた。次に窒温で、 α,α - アゾビスイソブチロニトリル(0.2mg、0.5mo1%)を加え66°で24時間捌針した。との宣台波を窒温で大過剰のn-ヘキサンに再洗漱した後、ポリマーを濾過回収した。得られたポリマーを80℃オーブンで12時間減圧乾燥し、式(16)で示されるホモポリマー(0.78g)を得た。尚、分子登はポリスチレン換算でMn/Mw=90000/150000であった。

【0090】[合成例12] 下記式(17)で示されるα-トリフルオロメチルアクリレートのホモボリマーの合成

[0091]

[fb23]

【① 0 9 2 】式 (1 1) で表されるα-トリフルオロメチルアクリレートの単独重合体を得るに当たり、末端の酸性アルコールの保護を行った。窒素雰囲気下、20m1丸底フラスコに窒温で式(1 1) のα-トリフルオロメチルアクリレート (2.00g、4.80mmo1) を塩化メチレン (2 4.0m1) に溶解させた。次に0℃で2,6-ルチジン(1.23m1、10.57mmo1) を加え、0℃でジーtertープトキシジカルポネート(1.57g、7.2mmo!) を加え

40

○○で4時間搬評した。との反応液に適量のイオン交換水加えた後、適量のジエテルエーテルで拍出し、有機層をイオン交換水、飽和食塩水で洗浄した。得られた有機層を適置の確設マグネシウムで乾燥し、エバポレーターにて減圧濃縮した。この混合物をシリカゲルカラムクロマト(酢酸エチル/nーヘキサン=1/10)にて分離精製し、式(11)のtertープトキシカルボニルエステル体(2.01g、3.88mmol)を得た。得られた化合物について核磁気共鳴法より上記構造を有することを確認した。

23

【0093】続いて重合反応を行った。

【0094】アルゴン雰囲気下、20m1丸底フラスコ に室温で式(11)のtert-ブトキシカルボニルエ ステル体(1.00g)をテトラヒドロフラン(7.0* * 0 m 1) に溶解させた。次に-78℃で、1,1-ジフェニルへキシルリチウムテトラヒドロフラン溶液(0.5 m o 1%)を適下し、-78℃で12時間線拌した。この重合液を室温で大過剰のn-ヘキサンに再洗剤した後、ポリマーを認過回収した。得られたポリマーを80℃オーブンで12時間減圧乾燥し、式(17)で示されるホモポリマー(0.92g)を得た。尚、分子壁はポリスチレン換算でMn/Mw=140000/18000であった。

24

【① 0 9 5】以下、表1に合成例7から合成例12のホモボリマーの合成結果をまとめた。

[0096]

【表1】

	合成所フ	合膜例 8	合度例 9	合成例10	合成例11	合成例 1 2
合成例1	100			1]
合取例2		100				
合成約3			100			
合成例4				100		
合成的5					100	
合成们6						100
収率%	91	88	8.3	90	76	92
Etn .	0003	30600	12600	14000	90000	140000
Ø#	11000	80009	22(0)	19900	150000	189000
溶解性	0	0	0	0	0	0

【0097】[合成例13~19]

[合成例13] 合成例1で得られた重合性単置体を(1.00g.40モル%)、4-(ヘキザフルオロイソプロパノール)スチレン(0.62g、50モル%)、ヒドロキシスチレン(0.0055g、10モル%)、酢酸ブチル(16.3g)を窒素雰囲気下、150m1のステンレス製オートクレープに仕込み、室温で、α、α ーアゾビスイソブチロニトリル(0.2mg.0.2mo1%)を加え66℃で24時間摂辞した。この宣合液を窒温で大温剥のn-ヘキサンに再社数した後、ボリマーを濾過回収した。得られたボリマーを80℃オーブンで12時間減圧乾燥し、式(18)で示される共宣合体(1.11g)を得た。ここで得られた高分子化合物を合成例13とする。尚、分子置はポリス

チレン換算でMn/Mw=8000/14000であっ

[0098]

(18)

【0099】以後、同様な方法により、表2に示す組成で合成例14~19を行った。

[0100]

【表2】

7	ζ		
۰	,		

	合成例	合成例	自成例	合成例	合設開	合成例	台级约
	13	14	16	16	17	18	19
合成例1	40						
合成例2		5.6					<u> </u>
合說例3			90				
合成例 4				70			
合成例5		.	I		60		50
合成例6					<u> </u>	80	
エラレン		6					
HFIB					<u> </u>		50
'Buá					- 5		
HENA			L		5		
MADES					30		
3FNA			10				
HSF	10		<u>l</u>				
HFIPSt	50]					
VAG		20			L		
HFIP-NB]		80			
NA					1	40	
CHAE						10	
CaFaVE		20					
仮事%	68	3.5	87	63	8.8	6.6	59
Kn	8000	35000	29000	6099	19000	40C00	19000
Re	14000	90000	120000	6003	20000	74000	23000
溶解性	0	0	0	0_	0	0	0

表中の略号は以下の化合物を扱す。

HFIB : ^##7JdP477' #> 'Bua : セーフ・テルアクリレート HERRA : LI CHOIFEIFE 19711-1 RADNA : 35879* 725849996-1 SPHA : 2. 2. 2ートリフルオロエチ&メタクリレート

4-th ロキシステレン

IFSE.

#FIPSt : 1, 1, 1, 3, 3, 3, -^+97#4D-2-(4-t' I#7zI#)-2-7' D#1' /-#

: t'=4727-h

HFIP-NB: 3-(5-6' 990[2, 2, 1]2-47' \$24)-1, 1, 1, -197840-2-(197840474)-2-7' 04' /-1 : #9591466 MA

CHIE: 'SOUNFOR' INT-TH

CAFANE : 1H, 1H, 2H-A' -7MfA-10-879FAC CAR-76

【0101】[実施例1~3]合成例8、14.15で 得られた高分子化合物 100 重量部(以下、部という) をメチルイソプチルケトンに溶解させ約30%の固形分 濃度になるように調製した。次に前記の高分子化合物溶 液中の高分子100部に対し10重量部の割合でサイメ ル303(フルメトキシ化メラミン樹脂、三弁サイアケ ミド社製)を加え、良く混合し、合成例8,14.15 の高分子化合物に対し、実施例1,2、3のコーティン グ液を調製した。

【0102】とれらをガラス板上に展開させ、50ミク ロンのフィルムを作製した。自然乾燥1時間後、100 での熱風乾燥機で30分、強制乾燥し、架橋反応を促進 させた。これらの屈折率をアッベ屈折計で測定したとこ ろ、実施例1.2、3に対し、それぞれ、1.38、 1.36、1.36であった。なお、キシレンによるラ ピング試験30往復を行ったところ、表面性に大きな変 化は確認できなかった。次いで、上記の約30%の溶液 に対し、さらに希釈を行いし約2%の濃度になるように ングストロームになるようにガラス基板上にコーティン グした。どの溶液もはじくととなく、均一にスピンコー トできた。10分の自然乾燥後100℃で1時間熱処理 を行い、ガラス板の反射率を測定したところ、650n mの波長域に対し、実施例1、2、3に対し1.5%、 0.9%、3.1%と高レベルな反射防止性能が見られ

【0103】 [実施例4.5] 合成例12で得られた高 分子化合物 1()() 重置部(以下、部という)をメチルイ ソプチルケトンに溶解させ約30%の固形分濃度になる ように調整した。次に前記の高分子化合物溶液中の高分 子100部に対し15重量部の割合でサイメル303を 添加し、実施例4のコーティング液を調製した。また実 施例5では、合成例12の30%溶液を硬化剤を添加せ ずにそのまま使用した。

【0104】これらを100ミクロンの厚みを有するボ リエチレンテレフタレートフィルム(PET)上に展開

- し、自然乾燥1時間後、100℃の熱原乾燥機で30
- してからスピンコート法にて腹厚が950~1200オ 50 分 強制乾燥した。これらの屈折率をアッベ屈折計で測

定したところ、実施例4、5に対し、それぞれ、1、3 7. 1. 36であった。なお、キシレンによるラビング 試験30往復を行ったところ、実施例4は表面性に大き な変化は確認できなかった。実施例5に関しては、表面 が白化したが、耐溶剤性が不要の応用に関しては使用で きるものと判断した。

27

【0105】次いで、上記の約30%の溶液に対し、さ ちに希釈を行いし約2%の濃度になるようにしてからフ ローコート法にて順厚が950~1200オングストロ ームになるようにPET上にコーティングした。どの溶 10 液もはじくことなく、均一にコートできた。10分の自 然乾燥後130°Cで30分間熱処理を行い、反射率を測 定したところ。650 n mの波長域に対し、実施例4、 5に対し1.1%、0.8%と高レベルな反射防止性能 が見られた。

【0106】 [実施例6] 合成例19で得られた高分子 化合物100g、サイメル303を12gをメチルイン ブチルケトン250gに溶解させた後、6インチのシリ コンウエハー上にスピンコート法で25ミクロンの厚み になるようにコーティングし、自然乾燥後150℃で3 20 り、真空紫外域の液長で高い透明性を発現した。 0分間熱処理を行うことで下部クラッド層を作製した。 この硬化物の屈折率は波長1.55 µmで1.40であ った。次いで、合成例11で得られた高分子化合物10 0g、サイメル303を12gをメチルイソブチルケト ン250gに溶解させた後、下部クラッドの上にスピン コート法で約10ミクロンの厚みになるようにコーティ ングし、自然乾燥後150°Cで30分間熱処理を行うこ とでコア層を作製した。この硬化物の屈折率は液長1. 5 5 μmで 1. 4 4 であった。次にフォトレジストを塗 布後ママヤ越しに露光してパターン化し、そのレジストを マスクにしてドライエッチング加工してY分岐導波路バ ターンを有するコアリッジを得た。その後、このリッジ パターンに下部クラッドに用いた高分子化合物を塗布し て同様条件で熱硬化し、光導波路を作製した。この光導 波路をダイシングソーによって5cmの長さに切り出し し、挿入損失を測定したところ、波長1.3 umで0. *

*5dB以下、1.55 umで1.5d B以下であった。ま た。挿入損失の偏波依存性は波長1.3μmでも0.1 d B以下であった。また180℃の高温下でも顕著な損 失増加はなく、十分な耐熱性があった。

【1)107】との他、光回路の基本回路である方向性結 台器、スターカップラー、光導波路型グレーティングリ ング共振器、M×N合分岐等が作製可能であった。また POF用の各種導波路素子、スターカップラ、Y分岐な どの作製も可能であった。

[実施例7~11]合成例1、10、13、16、17 の高分子化合物をプロピレングリコールモノメチルアセ テートに溶解させ、固形分10%になるように調整し た。さらに高分子化合物100重置部に対して、みどり 化学製トリフェニルスルホニウムトリフレートを2重置 部になるように溶解し、実施例7、8.9、10のレジ スト溶液を調製した。これらをスピンコートし、膜厚1 (i)ナノメータの光透過率を波長157nmにて測定し たところ、台成例1、10.13、16、17に対し、 それぞれ68%、56%、52%、60%、49%であ

【0108】次いで、全レジスト溶液を孔径0.2マイ クロメーターのメンプランフィルターでろ過した後、シ リコンウェハー上にスピンコートし幾厚250ナノメー タのレジスト膜を得た。110℃で60秒プリベークを 行った後、KェFエキシマレーザーマイクロスキャナー を用い、248nmでの窓光を行ったのち、120℃で ポストエクスポーザーベークを60秒間行った。その 後、2.38重量%テトラメチルアンモニウムヒドロキ シド水溶液を用い、23°Cで1分間、バドル法により現 30 僚したのち、純水で水洗し、乾燥して、レジストパター ンを形成した。

【0109】その結果、実施例7、8、9、10、11 に対し、それぞれ、感度23、14.17、12.21 mJ/cmであった。またどの場合も解像度220ナノメー タのライン&スペースが解像され、バターン形状も良好 で現象欠陥もほとんど見られなかった。

フロントページの続き

(72)発明者 前田 一彦

東京都千代田区神田錦町3丁目7番地1 セントラル硝子株式会社

(72) 発明者 徳久 賢治

山口県新南陽市政所4丁目6-6-301

(72)発明者 荒井 昭治

山口県徳山市遠石3丁目8番52号

Fターム(参考) 4H006 AA01 AA03 AB46 AB78 BJ20

8350 BM10 BM71 BM10 BP10 KC14 KE00 KE20 KF10

43100 AA00Q AA02Q AA03Q AB02Q AC21Q AEGGQ ALG3Q ALG8P AL71P AR11Q BAO3P BAO4P BB18P BC43P CA01 CA04

JA38