ICS Lab2 Report

PB20000096 潘廷岳

Part1 version L

This lab is easy to deal with. We just need to initialize the F0,F1 and F2, then calculating from F[3] to F[n] according to the recursion formula, and put the F[n] to the R7, then the process is finished. I use 23 lines to finish it.

And more, don't forget to MOD the MOD number!

The follows is the solution of the problem, expressed by assembly language.

```
.ORIG x3000
ADD R1, R1, #1;
ADD R2, R2, #1;
LD R6, MOD ;/Memory the MOD number
ADD R7, R7, #1;
ADD R0, R0, #-1;
BRz LOOP ;
ADD R7, R7, #1;
ADD R0, R0, #-1;
BRz LOOP ;
LOOP1 ADD R3, R2, #0;
ADD R2, R1, #0;
ADD R1, R7, #0;
ADD R5, R3, R3;//R3=R3^{*}2
ADD R7, R1, R5;
AND R7, R7, R6;//R7=R7%(1<<10);
ADD R0, R0, #-1;
BRp LOOP1;
LOOP HALT ;
MOD .FILL x03FF;
F(a) .FILL x0398;//F[20]%1024=(920)D
F(b) .FILL x0001;//F[0]%1024=(1)D
F(c) .FILL x0001;//F[0]%1024=(1)D
F(d) .FILL x0102;//F[96]%1024=(258)D
```

Part2.Correctness Validation

To valid the the correctness of this assembly program,I wrote a program based on C programming language as follows:

```
int main()
{
    int Mod=1024;
    int n;
    while(1)
    {
        int F0=1,F1=1,F2=2,Fn=0;
        cin>n;
        if(n==-1) break;
        if(n==1) cout<<"1";
        else if(n==2) cout<<"2";</pre>
```

```
else{
    n-=2;
    while(n--)
    {
        Fn=(F2+2*F0)%Mod;
        F0=F1;F1=F2;F2=Fn;
    }
}
cout<<Fn<<endl;
}
return 0;
}</pre>
```

After several tests, the answers are all correct, that's perfect!

Part3.Photo Display

n=20:

n=96:

		Registers):							wemory
R0	x0000	0			0	▶ x3	000	x1261	4705	ADD R1, R1, #1
R1	x00F6	246			0	▶ x3	001	x14A1	5281	ADD R2, R2, #1
R2	x0132	306			0	▶ x3	002	x2C0F	11279	LD R6, MOD
R3	x0006	6			0	▶ x3	003	x1FE1	8161	ADD R7, R7, #1
R4	x0000	0			0	▶ x3	004	x103F	4159	ADD RO, RO, #-1
R5	x000C	12			0	▶ x3	005	x040B	1035	BRZ LOOP
R6	x03FF	1023			0	▶ x3	006	x1FE1	8161	ADD R7, R7, #1
R7	x0102	258			0	▶ x3	007	x103F	4159	ADD RO, RO, #-1
PSR	x8002	32770	CC: Z		0	▶ x3	800	x0408	1032	BRZ LOOP
PC	x3011	12305			0	▶ x3	009	x16A0	5792	LOOP1 ADD R3, R2,
MCR	x0000	0			0	▶ x3	A00	x1460	5216	ADD R2, R1, #0
	•			a =	0	▶ x3	00B	x13E0	5088	ADD R1, R7, #0
	C	onsole (click to	rocus)	Clear Console	0	▶ x3	00C	x1AC3	6851	ADD R5, R3, R3
				*	0	▶ x3	OOD	x1E45	7749	ADD R7, R1, R5
					0	▶ x3	00E	x5FC6	24518	AND R7, R7, R6
					0	▶ x3	OOF	x103F	4159	ADD RO, RO, #-1
					0	▶ x3	010	x03F8	1016	BRp LOOP1
					0	x 3	011	xF025	61477	LOOP HALT
					0	▶ x3	012	x03FF	1023	MOD .FILL x03FF
					0	▶ x3	013	x0398	920	F(a) .FILL x0398
					0	▶ x3	014	x0001	1	F(b) .FILL x0001
					0	▶ x3	015	x0001	1	F(c) .FILL x0001
					0	▶ x3	016	x0102	258	F(d) .FILL x0102