

Fixed Income and Risk Management

Interest Rate Models

Fall 2003, Term 2

© Michael W. Brandt, 2003 All rights reserved without exception

Agenda and key issues

- Pricing with binomial trees
 - Replication
 - Risk-neutral pricing
- Interest rate models
 - Definitions
 - Uses
 - Features
 - Implementation
- Binomial tree example
- Embedded options
 - Callable bond
 - Putable bond
- Factor models
 - Spot rate process
 - Drift and volatility functions
 - Calibration

© Michael W. Brandt 2003 – 2 – Interest Rate Models

1-period binomial model

- Stock with price S = \$60 and one-period risk-free rate of r = 20%
- Over next period stock price either falls to \$30 or rises to \$90

$$S = $60$$
 $S_u = 90 $S_d = 30

• Call option with strike price K = \$60 pays either \$0 or \$30

$$C = ?$$

$$C_u = $30$$

$$C_d = 0$$

• Buy D = $\frac{1}{2}$ share of stock and borrow L = \$12.50

$$S_u/2 - 1.2$$
 \$12.5 = \$45 - \$15 = \$36
\$60/2 - \$12.50 = \$17.50
$$S_u/2 - 1.2$$
 \$12.5 = \$15 - \$15 = \$0

© Michael W. Brandt 2003

- Portfolio replicates option payoff P C = \$17.50
- Solving for replicating portfolio
 - Buy Δ shares of stock and borrow L
 - If stock price rises to \$90, we want the portfolio to be worth

$$$90 \times \Delta - 1.2 \times L = $30$$

- If stock price drops to \$30, we want the portfolio to be worth

$$$30 \times \Delta - 1.2 \times L = $0$$

 $-\Delta = 0.5$ and L = \$12.50 solve these two equations

© Michael W. Brandt 2003 – 4 – Interest Rate Models

• "Delta"

- Δ is chosen so that the value of the replicating portfolio ($\Delta \times S - L$) has the same sensitivity to S as the option price C

$$\Delta = \frac{dC}{dS} = \frac{\$30 - \$0}{\$90 - \$30} = \frac{1}{2}$$

- $-\Delta$ is called the <u>hedge ratio</u> of "<u>delta</u>" of the option
- Delta-hedging an option is analogous to duration-hedging a bond

© Michael W. Brandt 2003 - 5 - Interest Rate Models

Very important result

The option price does <u>not</u> depend on the probabilities of a stock price up-move or down-move

- Intuition
 - If $C \neq \Delta \times S L$, there exist an arbitrage opportunity
 - Arbitrage opportunities deliver riskless profits
 - Riskless profits cannot depend on probabilities
 - Therefore, the option price cannot depend on probabilities

 $^{\circ}$ Michael W. Brandt 2003 -6- Interest Rate Models

 Unfortunately, this simple replication argument does not work with 3 or more payoff states

s
$$\leq$$
 S_{m} $C = ? \leq C_{m}$ C_{d}

 Rather than increase the number of payoff states per period, increase the number of binomial periods D binomial tree

© Michael W. Brandt 2003

• Define

- -u = 1 + return if stock price goes up
- -d = 1 + return if stock price goes down
- -r = per-period riskless rate (constant for now)
- -p = probability of stock price up-move
- No arbitrage requires $d \, f \, 1 + r \, f \, u$
- Stock and option payoffs

$$S < C_u = f(S \cdot u)$$

$$C = ? < C_d = f(S \cdot d)$$

© Michael W. Brandt 2003

• Payoff of portfolio of D shares and L dollars of borrowing

$$D \cdot S \cdot u - L \cdot (1+r)$$

$$D \cdot S \cdot d - L \cdot (1+r)$$

Replication requires

$$\Delta \times S \times u - L \times (1 + r) = C_{u}$$

$$\Delta \times S \times d - L \times (1 + r) = C_{d}$$

• Two equations in two unknowns (D and L) with solution

$$\Delta = \frac{C_u - C_d}{S \times (u - d)} \qquad L = \frac{d \times C_u - u \times C_d}{(1 + r) \times (r - d)}$$

Option price

$$C = \Delta \times S - L$$

Risk-neutral pricing (cont)

• Define

$$q = \frac{(1+r)-d}{u-d}$$
 $(1-q) = \frac{u-(1+r)}{u-d}$

- No-arbitrage condition d £ 1 + r £ u implied 0 £ q £ 1
- Rearrange option price

$$C = \Delta \times S - L$$

$$= \frac{C_u - C_d}{S \times (u - d)} \times S - \frac{d \times C_u - u \times C_d}{(1 + r) \times (u - d)}$$

...

$$=\frac{q\times C_U+(1-q)\times C_d}{1+r}$$

Risk-neutral pricing (cont)

- Interpretation of q
 - Expected return on the stock

$$\mathsf{E}\left[\frac{S_1}{S_0}\right] = \frac{p \times S \times u + (1-p) \times S \times d}{S} = p \times u + (1-p) \times d$$

- Suppose we were risk-neutral

$$\mathsf{E}\left[\frac{S_1}{S_0}\right] = p \times u + (1-p) \times d = (1+r)$$

Solving for p

$$p = \frac{(1+r)-d}{u-d} = q$$

• Very, very important result

q is the probability which sets the expected return on the stock equal to the riskfree rate P risk-neutral probability

Risk-neutral pricing (cont)

• Very, very, very important result

The option price equals its expected payoff discounted by the riskfree rate, where the expectation is formed using risk-neutral probabilities instead of real probabilities P risk-neutral pricing

• Risk-neutral pricing extends to multiperiod binomial trees and applies to <u>all</u> derivatives which can be replicated

Derivatives price =
$$PV_r \left[E^q \left[payoff \right] \right]$$

© Michael W. Brandt 2003 - 12 - Interest Rate Models

Risk-neutral pricing intuition

Step 1

- Derivatives are priced by no-arbitrage
- No-arbitrage does not depend on risk preferences or probabilities

• Step 2

- Imagine a world in which all security prices are the same as in the real world but everyone is risk-neutral (a "risk-neutral world")
- The expected return on any security equals the risk-free rate r

• Step 3

- In the risk-neutral world, every security is priced as its expected payoff discounted by the risk-free rate, including derivatives
- Expectations are taken wrt the risk-neutral probabilities q

• Step 4

 Derivative prices must be the same in the risk-neutral and real worlds because there is only <u>one</u> no-arbitrage price

2-period binomial model

Stock and option payoffs

$$S \stackrel{\circ}{=} u \stackrel{\circ}{=} S \stackrel{\circ}{=} u \stackrel{\circ}{=} C_{uu} = f(S \stackrel{\circ}{=} u^2)$$

$$S \stackrel{\circ}{=} u \stackrel{\circ}{=} C_{uu} = f(S \stackrel{\circ}{=} u^2)$$

$$C_{uu} = f(S \stackrel{\circ}{=} u^2)$$

$$C_{ud} = f(S \stackrel{\circ}{=} u^2)$$

$$C_{dd} = f(S \stackrel{\circ}{=} d^2)$$

• By risk-neutral pricing

$$C = \frac{q^2 \times C_{uu} + 2 \times q \times (1 - q) \times C_{ud} + (1 - q)^2 \times C_{dd}}{(1 + r)^2}$$

© Michael W. Brandt 2003 - 14 - Interest Rate Models

3-period binomial model

Stock and option payoffs

• By risk-neutral pricing

$$C = \frac{1}{(1+r)^3} \times \left[q^3 \times C_{uuu} + 3 \times q^2 \times (1-q) \times C_{uud} + \dots \right]$$
$$3 \times q \times \times (1-q)^2 \times C_{udd} + (1-q)^3 \times C_{ddd}$$

© Michael W. Brandt 2003 - 15 - Interest Rate Models

Definitions

- An interest rate model describes the dynamics of either
 - 1-period spot rate
 - Instantaneous spot rate = t-year spot rate r(t) as $t \rightarrow 0$
- Variation in spot rates is generated by either
 - One source of risk \Rightarrow single-factor models
 - Two or more sources of risk ⇒ multifactor models

© Michael W. Brandt 2003 - 16 - Interest Rate Models

Model uses

- Characterize term structure of spot rates to price bonds
- Price interest rate and bond derivatives
 - Exchange traded (e.g., Treasury bond or Eurodollar options)
 - OTC (e.g., caps, floors, collars, swaps, swaptions, exotics)
- Price fixed income securities with embedded options
 - Callable or putable bonds
- Compute price sensitivities to underlying risk factor(s)
- Describe risk-reward trade-off

© Michael W. Brandt 2003 - 17 - Interest Rate Models

Model features

- Interest rate models should be
 - Arbitrage free = model prices agree with current market prices
 - Spot rate curve
 - Coupon yield curve
 - Interest rate and bond derivatives
 - <u>Time-consistent</u> = model implied behavior of spot rates and bond prices agree with their observed behavior
 - Mean reversion
 - Conditional heteroskedasticity
 - Term structure of volatility and correlation structure
- Developing an interest rate model which is both arbitrage free <u>and</u> time consistent is the holy grail of fixed income research

© Michael W. Brandt 2003 - 18 - Interest Rate Models

Model implementation

- In practice, two model implementations
 - Cross-sectional calibration
 - Calibrate model to match exactly all market prices of liquid securities on a single day
 - Used for pricing less liquid securities and derivatives
 - Arbitrage free but probably not time-consistent
 - Usually one or two factors
 - Time-series estimation
 - Estimate model using a long time-series of spot rates
 - Used for hedging and asset allocation
 - Time-consistent but not arbitrage free
 - Usually two and more factors

© Michael W. Brandt 2003 - 19 - Interest Rate Models

Spot rate tree

• 1-period spot rates (*m*-period compounded APR)

- Notation
 - $-r_{i,j}(n) = n$ -period spot rate *i* periods in the future after *j* up-moves
 - $-\Delta t$ = length of a binomial step in units of years
- Set D t = 1/m and m = 2
- Assume $q_{i,i} = 0.5$ for all steps i and nodes j

Road-map

• Calculate step-by-step

- Implied spot rate curve $r_{0,0}(1)$, $r_{0,0}(2)$, $r_{0,0,0}(3)$
- Implied changes in the spot rate curve

$$r_{0,0}(1), r_{0,0}(2)$$
 $r_{1,1}(1), r_{1,1}(2)$ $r_{1,0}(1), r_{1,0}(2)$

- Price 8% 1.5-yr coupon bond
- Price 1-yr European call option on 8% 1.5-yr coupon bond
- Price 1-yr American put option on 8% 1.5-yr coupon bond

© Michael W. Brandt 2003 - 21 - Interest Rate Models

1-period zero-coupon bond prices

• At time 0

$$P_{0,0}(1) = ?$$

$$P_{1,0}(0) = $100$$

$$P_{1,0}(0) = $100$$

$$P_{0,0}(1) = \frac{q_{0,0} \times P_{1,1}(0) + (1 - q_{0,0}) \times P_{1,0}(0)}{(1 + r_{0,0}(1)/m)^{1 \times \Delta t \times m}}$$
$$= \frac{\$100}{(1 + 0.1/2)^{1}} = \$95.24$$

© Michael W. Brandt 2003 - 22 - Interest Rate Models

1-period zero-coupon bond prices (cont)

At time 1

$$P_{1,1}(1) = \frac{q_{1,1} \times P_{2,2}(0) + (1 - q_{1,1}) \times P_{2,1}(0)}{(1 + r_{1,1}(1)/m)^{1 \times \Delta t \times m}}$$
$$= \frac{\$100}{(1 + 0.11/2)^1} = \$94.79$$

$$P_{1,0}(1) = \frac{q_{1,0} \times P_{2,1}(0) + (1 - q_{1,0}) \times P_{2,0}(0)}{(1 + r_{1,0}(1)/m)^{1 \times \Delta t \times m}}$$
$$= \frac{\$100}{(1 + 0.09/2)^{1}} = \$95.69$$

© Michael W. Brandt 2003 - 23 - Interest Rate Models

1-period zero-coupon bond prices (cont)

• At time 2

$$P_{2,2}(1) = \frac{q_{2,2} \times P_{3,3}(0) + (1 - q_{2,2}) \times P_{3,2}(0)}{(1 + r_{2,2}(1)/m)^{1 \times \Delta t \times m}}$$

$$= \frac{\$100}{(1 + 0.12/2)^{1}} = \$94.34$$

$$P_{2,1}(1) = \frac{q_{2,1} \times P_{3,2}(0) + (1 - q_{2,1}) \times P_{3,1}(0)}{(1 + r_{2,1}(1)/m)^{1 \times \Delta t \times m}} = \$95.24$$

$$P_{2,0}(1) = \frac{q_{2,0} \times P_{3,1}(0) + (1 - q_{2,0}) \times P_{3,0}(0)}{(1 + r_{2,0}(1)/m)^{1 \times \Delta t \times m}}$$

$$= \frac{\$100}{(1 + 0.08/2)^{1}} = \$96.15$$

© Michael W. Brandt 2003 - 24 - Interest Rate Models

1-period zero-coupon bond prices (cont)

$$P_{0,0}(1) = $95.24$$

$$P_{1,1}(1) = $94.79$$

$$P_{2,2}(1) = $94.34$$

$$P_{2,1}(1) = $95.25$$

$$P_{2,0}(1) = $95.15$$

© Michael W. Brandt 2003 - 25 - Interest Rate Models

2-period zero-coupon bond prices

• At time 0

$$P_{0,0}(2) = ?$$

$$P_{1,1}(1) = $94.79$$

$$P_{1,0}(1) = $95.69$$

$$P_{0,0}(2) = \frac{q_{0,0} \times P_{1,1}(1) + (1 - q_{0,0}) \times P_{1,0}(1)}{(1 + r_{0,0}(1)/m)^{1 \times \Delta t \times m}}$$
$$= \frac{\frac{1}{2} \times \$94.79 + \frac{1}{2} \times \$95.69}{(1 + 0.1/2)^{1}} = \$90.71$$

Implied 2-period spot rate

$$P_{0,0}(2) = \frac{\$100}{(1 + r_{0,0}(2)/m)^{2 \times \Delta t \times m}} \Rightarrow r_{0,0}(2) = 9.9976\%$$

© Michael W. Brandt 2003

Interest Rate Models

2-period zero-coupon bond prices (cont)

At time 1

$$P_{1,1}(2) = \frac{q_{1,1} \times P_{2,2}(1) + (1 - q_{1,1}) \times P_{2,1}(1)}{(1 + r_{1,1}(1)/m)^{1 \times \Delta t \times m}}$$

$$= \frac{\frac{1}{2} \times \$94.34 + \frac{1}{2} \times \$95.24}{(1 + 0.11/2)^{1}} = \$89.85$$

$$\Rightarrow r_{1,1}(2) = 10.9976\%$$

$$P_{1,0}(2) = \frac{q_{1,0} \times P_{2,1}(1) + (1 - q_{1,0}) \times P_{2,0}(1)}{(1 + r_{1,0}(1)/m)^{1 \times \Delta t \times m}}$$

$$= \frac{\frac{1}{2} \times \$95.24 + \frac{1}{2} \times \$96.15}{(1 + 0.09/2)^{1}} = \$91.58$$

$$\Rightarrow r_{1,0}(2) = 8.9976\%$$

© Michael W. Brandt 2003 – 27 –

3-period zero-coupon bond price

• At time 0

$$P_{0,0}(3) = ?$$

$$P_{1,1}(2) = $89.85$$

$$P_{1,0}(2) = $91.58$$

$$P_{0,0}(3) = \frac{q_{0,0} \times P_{1,1}(2) + (1 - q_{0,0}) \times P_{1,0}(2)}{(1 + r_{0,0}(1)/m)^{1 \times \Delta t \times m}}$$
$$= \frac{\frac{1}{2} \times \$89.85 + \frac{1}{2} \times \$91.58}{(1 + 0.1/2)^{1}} = \$86.39$$

Implied 3-period spot rate

$$P_{0,0}(3) = \frac{\$100}{(1 + r_{0,0}(3)/m)^{3 \times \Delta t \times m}} \Rightarrow r_{0,0}(3) = 9.9937\%$$

© Michael W. Brandt 2003

Implied spot rate curve

• Current spot rate curve is slightly downward sloping

$$r_{0,0}(1) = 10.0000\%$$

 $r_{0,0}(2) = 9.9976\%$
 $r_{0,0}(3) = 9.9937\%$

• From one period to the next, the spot rate curve shifts in parallel

$$r_{0,0}(1) = 10.0000\%$$
 $r_{0,0}(2) = 9.9976\%$
 $r_{1,0}(2) = 9.9976\%$
 $r_{1,0}(1) = 11.0000\%$
 $r_{1,0}(2) = 9.0000\%$
 $r_{1,0}(2) = 8.9976\%$

© Michael W. Brandt 2003 - 29 - Interest Rate Models

Coupon bond price

• 8% 1.5-year (3-period) coupon bond with cashflow

© Michael W. Brandt 2003 - 30 - Interest Rate Models

Discounting terminal payoffs by 1 period

© Michael W. Brandt 2003 - 31 - Interest Rate Models

• By risk-neutral pricing

© Michael W. Brandt 2003 - 32 - Interest Rate Models

• By risk-neutral pricing (cont)

© Michael W. Brandt 2003 - 33 - Interest Rate Models

• By risk-neutral pricing (cont)

© Michael W. Brandt 2003 - 34 - Interest Rate Models

European call on coupon bond

• 1-yr European style call option on 8% 1.5-yr coupon bond with strike price K = \$99.00 pays max[0, $P_{2.7} - K$]

© Michael W. Brandt 2003 - 35 - Interest Rate Models

European call on coupon bond

• 1-yr European style call option on 8% 1.5-yr coupon bond with strike price K = \$99.00 pays max[0, $P_{2.7} - K$]

© Michael W. Brandt 2003 - 36 - Interest Rate Models

European call on coupon bond

• 1-yr European style call option on 8% 1.5-yr coupon bond with strike price K = \$99.00 pays max[0, $P_{2.7} - K$]

© Michael W. Brandt 2003 - 37 - Interest Rate Models

European call on coupon bond

• 1-yr European style call option on 8% 1.5-yr coupon bond with strike price K = \$99.00 pays max[0, $P_{2.7} - K$]

© Michael W. Brandt 2003 - 38 - Interest Rate Models

• 1-yr American style put option on 8% 1.5-yr coupon bond with strike price K = \$99.00 pays max[$0, K - P_{i,?}$]

© Michael W. Brandt 2003 - 39 - Interest Rate Models

• 1-yr American style put option on 8% 1.5-yr coupon bond with strike price K = \$99.00 pays max[$0, K - P_{i,?}$]

© Michael W. Brandt 2003 - 40 - Interest Rate Models

• 1-yr American style put option on 8% 1.5-yr coupon bond with strike price K = \$99.00 pays max[$0, K - P_{i,?}$]

© Michael W. Brandt 2003 - 41 - Interest Rate Models

• 1-yr American style put option on 8% 1.5-yr coupon bond with strike price K = \$99.00 pays max[0, $K - P_{i:?}$]

- 42 -© Michael W. Brandt 2003 Interest Rate Models

Callable Bond

- Suppose we want to price a 10% 5-yr coupon bond callable (by the issuer) at the end of year 3 at par
 - Step 1: Determine the price of the non-callable bond, P_{NCB}
 - Step 2: Determine the price of the call option on the non-callable bond with expiration after 3 years and strike price at par, O_{NCB}
 - Step 3: The price of the callable bond is

$$P_{\rm CB} = P_{\rm NCB} - O_{\rm NCB}$$

Intuition

- The bondholder grants the issuer an option to buy back the bond
- The value of this option must be subtracted from the price the bondholder pays the issuer for the non-callable bond

© Michael W. Brandt 2003 - 43 - Interest Rate Models

Putable Bond

- Suppose we want to price a 10% 5-yr coupon bond putable (by the bondholder to the issuer) at the end of year 3 at par
 - Step 1: Determine the price of the non-putable bond, $P_{\rm NPB}$
 - Step 2: Determine the price of the put option on the non-putable bond with expiration after 3 years and strike price at par, O_{NPB}
 - Step 3: The price of the putable bond is

$$P_{PB} = P_{NPB} + O_{NPB}$$

- Intuition
 - The bond issuer grants the holder an option to sell back the bond
 - The value of this option must be added to the price the bondholder pays the issuer for the non-putable bond

© Michael W. Brandt 2003 - 44 - Interest Rate Models

Spot rate process

- Binomial trees are based on spot rate values $r_{i,j}(1)$ and riskneutral probabilities $q_{i,i}$
- In single-factor models, these values are determined by a <u>risk-neutral</u> spot rate process of the form

$$r_{t+\Delta t}(1)-r_t(1) = \underbrace{\mu[r_t(1),t]}_{\text{drift fct}} \times \Delta t + \underbrace{\sigma[r_t(1),t]}_{\text{volatility fct}} \times \sqrt{\Delta t} \times \epsilon_t$$

with

$$Mean[\epsilon_t] = 0 \quad Var[\epsilon_t] = 1$$

such that

$$Mean[r_{t+\Delta t}(1) - r_t(1)] = \mu[r_t(1), t] \times \Delta t$$

$$Var[r_{t+\Delta t}(1) - r_t(1)] = \sigma[r_t(1), t]^2 \times \Delta t$$

© Michael W. Brandt 2003 – 45 – Interest Rate Models

Spot rate process (cont)

• In an *N*-factor models, these values are determined by a <u>risk-neutral</u> spot rate process of the form

$$r_t(1) = z_{1,t} + z_{2,t} + \cdots z_{N,t}$$

with

$$z_{i,t+\Delta t} - z_{i,t} = \underbrace{\mu_i \left[z_{1,t}, z_{2,t}, \cdots, z_{N,t}, t \right] \times \Delta t}_{\text{drift fct}} + \underbrace{\sigma_i \left[z_{1,t}, z_{2,t}, \cdots, z_{N,t}, t \right] \times \Delta t}_{\text{volatility fct}} \times \Delta t + \underbrace{\sigma_i \left[z_{1,t}, z_{2,t}, \cdots, z_{N,t}, t \right]}_{\text{volatility fct}} \times \Delta t$$

ana

$$Mean[\epsilon_{i,t}] = 0 \quad Var[\epsilon_{i,t}] = 1$$

© Michael W. Brandt 2003 - 46 - Interest Rate Models

Drift function

• Case 1: Constant drift

$$r_{t+\Delta t} - r_t = \underbrace{\lambda}_{\text{drift fct}} \times \Delta t + \sigma \times \sqrt{t} \times \epsilon_t$$

with

$$\epsilon_t \sim N[0, 1]$$

• Implied distribution of 1-period spot rates

$$r_{t+\Delta t} \sim N\left[\underbrace{r_t + \lambda \times \Delta t}_{\text{mean}}, \underbrace{\sigma^2 \times \Delta t}_{\text{var}}\right]$$

© Michael W. Brandt 2003 - 47 - Interest Rate Models

• Binomial tree representation

$$q = 1/2 \qquad r_{0,0} + 2 \times \lambda \times \Delta t + 2 \times \sigma \times v \Delta t$$

$$q = 1/2 \qquad r_{0,0} + \lambda \times \Delta t + \sigma \times v \Delta t$$

$$q = 1/2 \qquad r_{0,0} + 2 \times \lambda \times \Delta t$$

$$r_{0,0} + \lambda \times \Delta t - \sigma \times v \Delta t$$

$$r_{0,0} + 2 \times \lambda \times \Delta t - 2 \times \sigma \times v \Delta t$$
Properties

No more reversion

Properties

- No mean reversion
- No heteroskedasticity
- Spot rates can become negative, but not if we model ln[r(1)] ⇒ "Rendleman-Bartter model"
- 2 parameters
- − ⇒ fit only 2 spot rates

- 48 -© Michael W. Brandt 2003

• Example

- $-r_{0,0} = 5\%$
- $-\lambda = 1\%$
- $-\sigma = 2.5\%$
- $-\Delta t = 1/m$ with m = 2

$$q = 1/2 \qquad r_{2,2} = 9.54\%$$

$$q = 1/2 \qquad r_{1,1} = 7.27\% \qquad q = 1/2 \qquad r_{2,1} = 6.00\%$$

$$r_{1,0} = 3.73\% \qquad r_{2,0} = 2.47\%$$

© Michael W. Brandt 2003 - 49 - Interest Rate Models

• Case 2: Time-dependent drift

$$r_{t+\Delta t} - r_t = \underbrace{\lambda(t) \times \Delta t}_{\text{drift fct}} + \sigma \times \sqrt{t} \times \epsilon_t$$

with

$$\epsilon_t \sim N[0, 1]$$

• Implied distribution of 1-period spot rates

$$r_{t+\Delta t} \sim N\left[\underbrace{r_t + \lambda(t) \times \Delta t}_{\text{mean}}, \underbrace{\sigma^2 \times \Delta t}_{\text{var}}\right]$$

• Ho and Lee (1986, *J. of Finance*) ▷ "Ho-Lee model"

© Michael W. Brandt 2003 - 50 - Interest Rate Models

• Binomial tree representation

$$q = \frac{1}{2} \qquad r_{0,0} + [\lambda(1) + \lambda(2)] \times \Delta t + 2 \times \sigma \times v \Delta t$$

$$r_{0,0} + \lambda(1) \times \Delta t + \sigma \times v \Delta t$$

$$q = \frac{1}{2} \qquad r_{0,0} + [\lambda(1) + \lambda(2)] \times \Delta t + 2 \times \sigma \times v \Delta t$$

$$r_{0,0} + \lambda(1) \times \Delta t - \sigma \times v \Delta t$$

$$r_{0,0} + [\lambda(1) + \lambda(2)] \times \Delta t - 2 \times \sigma \times v \Delta t$$

Properties

- No heteroskedasticity
- Spot rates can become negative, but not if we model ln[r(1)]
 - ⇒ "Salomon Brothers model"
- Arbitrarily many parameters
 - ⇒ fit term structure of spot rates but not necessarily spot rate volatilities (i.e., derivative prices)

© Michael W. Brandt 2003 -51 - Interest Rate Models

• Case 3: Mean reversion

$$r_{t+\Delta t} - r_t = \underbrace{\kappa \times \left[\theta - r_t(1)\right]}_{\text{drift fct}} \times \Delta t + \sigma \times \sqrt{t} \times \epsilon_t$$

with

$$\epsilon_t \sim N[0, 1]$$

• Implied distribution of 1-period spot rates

$$r_{t+\Delta t} \sim N\left[\underbrace{r_t + \kappa \times \left[\theta - r_t(1)\right] \times \Delta t}_{\text{mean}}, \underbrace{\sigma^2 \times \Delta t}_{\text{var}}\right]$$

• Vasicek (1977, *J. of Financial Economics*) ▷ "Vasicek model"

© Michael W. Brandt 2003 - 52 - Interest Rate Models

Interest Rate Models

Drift function (cont)

• Binomial tree representation

$$q = 1/2 \qquad r_{1,1} + \kappa \times (\theta - r_{1,1}) \times \Delta t + \sigma \times v \Delta t$$

$$q = 1/2 \qquad r_{0,0} + \kappa \times (\theta - r_{0,0}) \times \Delta t + \sigma \times v \Delta t$$

$$r_{1,1} + \kappa \times (\theta - r_{1,1}) \times \Delta t - \sigma \times v \Delta t$$

$$q = 1/2 \qquad r_{1,0} + \kappa \times (\theta - r_{1,0}) \times \Delta t - \sigma \times v \Delta t$$

$$r_{1,0} + \kappa \times (\theta - r_{1,0}) \times \Delta t - \sigma \times v \Delta t$$

• Properties

- Non-recombining, but can be fixed
- No heteroskedasticity
- Spot rates can become negative, but not if we model ln[r(1)]
- 3 parameters
 - ⇒ fit only 3 spot rates

With $\kappa = 0$

Drift function (cont)

• Example

$$-r_{0,0} = 5\%$$

$$-\theta = 10\%$$

$$- \kappa = 0.25$$

$$-\sigma = 2.5\%$$

$$-\Delta t = 1/m$$
 with $m = 2$

$$q = 1/2$$
 $r_{2,2} = 9.49\%$ $r_{2,2} = 8.54\%$
 $q = 1/2$ $r_{1,1} = 7.39\%$

$$r_{2,1} = 5.95\%$$
 $r_{2,1} = 5.00\%$
 $r_{2,1} = 5.00\%$

© Michael W. Brandt 2003 - 54 - Interest Rate Models

With $\kappa = 0$

Drift function (cont)

• Example

$$-r_{0,0} = 15\%$$

$$-\theta = 10\%$$

$$- \kappa = 0.25$$

$$-\sigma = 2.5\%$$

$$-\Delta t = 1/m$$
 with $m = 2$

$$q = 1/2 \qquad r_{2,2} = 17.14\% \qquad \qquad r_{2,2} = 18.54\%$$

$$q = 1/2 \qquad r_{1,1} = 16.77\% \qquad \qquad r_{2,1} = 13.61\% \qquad \qquad r_{2,1} = 15.00\%$$

$$q = 1/2 \qquad r_{2,1} = 14.05\% \qquad \qquad r_{2,1} = 15.00\%$$

$$r_{1,0} = 12.61\% \qquad \qquad r_{2,0} = 10.51\% \qquad \qquad r_{2,0} = 11.46\%$$

© Michael W. Brandt 2003 – 55 – Interest Rate Models

Volatility function

• Case 1: Square-root volatility

$$r_{t+\Delta t} - r_t = \lambda \times \Delta t + \underbrace{\sigma \times \sqrt{r_t}}_{\text{VOI fct}} \times \sqrt{t} \times \epsilon_t$$

with

$$\epsilon_t \sim N[0, 1]$$

• Implied distribution of 1-period spot rates

$$r_{t+\Delta t} \sim N\left[\underbrace{r_t + \lambda \times \Delta t}_{\text{mean}}, \underbrace{\sigma^2 \times r_t \times \Delta t}_{\text{var}}\right]$$

• Cox, Ingersoll, and Ross (1985, *Econometrics*) ▷ "CIR model"

© Michael W. Brandt 2003 - 56 - Interest Rate Models

• Binomial tree representation

$$q = 1/2 \qquad r_{1,1} + \lambda \times \Delta t + \sigma \times v \quad r_{1,1} \times v \Delta t$$

$$q = 1/2 \qquad r_{0,0} + \lambda \times \Delta t + \sigma \times v \quad r_{0,0} \times v \Delta t$$

$$r_{1,1} + \lambda \times \Delta t - \sigma \times v \quad r_{1,1} \times v \Delta t$$

$$q = 1/2 \qquad r_{1,0} + \lambda \times \Delta t + \sigma \times v \quad r_{1,0} \times v \Delta t$$

$$r_{1,0} + \lambda \times \Delta t - \sigma \times v \quad r_{1,0} \times v \Delta t$$

$$r_{1,0} + \lambda \times \Delta t - \sigma \times v \quad r_{1,0} \times v \Delta t$$

• Properties

- Non-recombining, but can be fixed
- No mean-reversion, but can be fixed by using different drift function
- Spot rates can become negative, but not as $\Delta t \rightarrow 0$
- 1 volatility parameter (and arbitrarily many drift parameters)
 - ⇒ fit term structures of spot rates but only 1 spot rate volatility

• Example

$$-r_{0.0} = 5\%$$

$$-\lambda = 1\%$$

$$-\sigma = 11.18\% \Rightarrow \sigma \times v r_{0.0} = 2.5\%$$

$$-\Delta t = 1/m$$
 with $m = 2$

With constant

© Michael W. Brandt 2003

- 58 -

Interest Rate Models

• Case 2: <u>Time-Dependent volatility</u>

$$r_{t+\Delta t} - r_t = \lambda \times \Delta t + \underbrace{\sigma(t)}_{\text{vol fct}} \times \sqrt{t} \times \epsilon_t$$

with

$$\epsilon_t \sim N[0, 1]$$

• Implied distribution of 1-period spot rates

$$r_{t+\Delta t} \sim N\left[\underbrace{r_t + \lambda \times \Delta t}_{\text{mean}}, \underbrace{\sigma(t)^2 \times \Delta t}_{\text{var}}\right]$$

Hull and White (1993, J. of Financial and Quantitative Analysis)
 Hull-White model"

© Michael W. Brandt 2003 – 59 – Interest Rate Models

• Binomial tree representation

$$q = 1/2 \qquad r_{1,1} + \lambda \times \Delta t + \sigma(2) \times v \Delta t$$

$$q = 1/2 \qquad r_{0,0} + \lambda \times \Delta t + \sigma(1) \times v \Delta t \qquad r_{1,1} + \lambda \times \Delta t - \sigma(2) \times v \Delta t$$

$$q = 1/2 \qquad r_{1,1} + \lambda \times \Delta t - \sigma(2) \times v \Delta t$$

$$q = 1/2 \qquad r_{1,0} + \lambda \times \Delta t + \sigma(2) \times v \Delta t$$

$$r_{1,0} + \lambda \times \Delta t - \sigma(2) \times v \Delta t$$

$$r_{1,0} + \lambda \times \Delta t - \sigma(2) \times v \Delta t$$

Properties

- Non-recombining, but can be fixed
- No mean-reversion, but can be fixed by using different drift function
- Spot rates can become negative, but not if we model ln[r(1)]
 - ⇒ "Black-Karasinski model" and "Black-Derman-Toy model"
- Arbitrarily many volatility and drift parameters
 - ⇒ fit term structures of spot rates and volatilities

Calibration

- To calibrate parameters of a factor model to bonds prices
 - Step 1: Pick arbitrary parameter values
 - Step 2: Calculate implied 1-period spot rate tree
 - Step 3: Calculate model prices for liquid securities
 - Step 4: Calculate model pricing errors given market prices
 - Step 5: Use solver to find parameter values which minimize the sum of squared pricing errors

© Michael W. Brandt 2003 - 61 - Interest Rate Models

Factor models

Constant drift example

• Step 1: Pick arbitrary parameter values

Parameters

? 0.00%

s 0.10%

Observed 1-period spot rate

r(1) 6.21%

© Michael W. Brandt 2003 – 62 – Interest Rate Models

• Step 2: Calculate implied 1-period spot rate tree

•			•	•	l	•				6.92%
									6.85%	
							c 700/		C 700/	
						6 63%	6.70%	6 63%		
					6.56%		6.56%			
				6.49%						
	6 200/			6.35%						
6 21%				6.21%						
0.2170				0.2170						
		6.07%		6.07%		6.07%		6.07%		6.07%
			6.00%	/						
				5.93%	5 960/		5.86%			
					3.00 /6		5.00 /0			
						0070		0.1.070		
								5.64%		5.64%
									5.57%	
										5.50%

© Michael W. Brandt 2003 - 63 - Interest Rate Models

• Step 3: Calculate model prices for liquid securities

- E.g., for a 2.5-yr STRIPS

					\$ 100.00
				\$ 96.86	
			\$ 93.87		\$ 100.00
		\$ 91.05		\$ 96.92	
	\$ 88.37		\$ 94.00		\$ 100.00
\$ 85.82		\$ 91.23		\$ 96.99	
	\$ 88.61		\$ 94.13		\$ 100.00
		\$ 91.42		\$ 97.06	
			\$ 94.26		\$ 100.00
				\$ 97.12	
					\$ 100.00

© Michael W. Brandt 2003 - 64 - Interest Rate Models

• Step 3: Calculate model prices for liquid securities (cont)

Paramete	rs	Model implied			
		Periods	spot rate		
?	0.00%	0.5	6.21%		
S	0.10%	1.0	6.21%		
		1.5	6.21%		
		2.0	6.21%		
Observed	1-period spot rate	2.5	6.21%		
		3.0	6.21%		
r(1)	6.21%	3.5	6.21%		
		4.0	6.21%		
		4.5	6.21%		
		5.0	6.21%		

© Michael W. Brandt 2003 - 65 - Interest Rate Models

• Step 4: Use solver

Parame	eters	N	lodel implied	Observed	Pricing
		Periods	spot rate	spot rate	error
?	0.00%	0.5	6.21%	6.21%	0.00%
S	0.10%	1.0	6.21%	6.41%	0.20%
		1.5	6.21%	6.48%	0.27%
		2.0	6.21%	6.56%	0.35%
Observed 1-period spot rate		2.5	6.21%	6.62%	0.41%
	1	3.0	6.21%	6.71%	0.50%
r(1)	6.21%	3.5	6.21%	6.80%	0.59%
		4.0	6.21%	6.87%	0.66%
		4.5	6.21%	6.92%	0.71%
		5.0	6.21%	6.97%	0.76%

Minimize sum of squared errors by choice of parameters

Sum of squared errors 0.0002521

– 66 – Interest Rate Models

• Solution

Param	eters	Model implied		Observed	Pricing	
		Periods	spot rate	spot rate	error	
?	0.57%	0.5	6.21%	6.21%	0.00%	
S	3.63%	1.0	6.34%	6.41%	0.07%	
		1.5	6.45%	6.48%	0.03%	
		2.0	6.56%	6.56%	0.00%	
Observed 1-period spot rate		2.5	6.65%	6.62%	-0.03%	
		3.0	6.73%	6.71%	-0.02%	
r(1)	6.21%	3.5	6.81%	6.80%	-0.01%	
		4.0	6.87%	6.87%	0.00%	
		4.5	6.92%	6.92%	0.00%	
		5.0	6.96%	6.97%	0.01%	

Sum of squared errors 7.882E-07