Group A

Course: Laboratory Practice III

Assignment No:

4

Title of the Assignment: Write a program to solve a 0-1 Knapsack problem using dynamic programming or branch and bound strategy.

Objective of the Assignment: Students should be able to understand and solve 0-1 Knapsack problem using dynamic programming

Prerequisite:

- 1. Basic of Python or Java Programming
- 2. Concept of Dynamic Programming
- 3. 0/1 Knapsack problem

Contents for Theory:

- 1. Greedy Method
- 2. 0/1 Knapsack problem
- 3. Example solved using 0/1 Knapsack problem

What is Dynamic Programming?

• Dynamic Programming is also used in optimization problems. Like divide-and-conquer method, Dynamic Programming solves problems by combining the solutions of subproblems.

- Dynamic Programming algorithm solves each sub-problem just once and then saves its answer in a table, thereby avoiding the work of re-computing the answer every time.
- Two main properties of a problem suggest that the given problem can be solved using Dynamic Programming. These properties are **overlapping sub-problems and optimal substructure**.
- Dynamic Programming also combines solutions to sub-problems. It is mainly used where the
 solution of one sub-problem is needed repeatedly. The computed solutions are stored in a table, so
 that these don"t have to be re-computed. Hence, this technique is needed where overlapping
 sub-problem exists.
- For example, Binary Search does not have overlapping sub-problem. Whereas recursive program of Fibonacci numbers have many overlapping sub-problems.

Steps of Dynamic Programming Approach

Dynamic Programming algorithm is designed using the following four steps –

- Characterize the structure of an optimal solution.
- Recursively define the value of an optimal solution.
- Compute the value of an optimal solution, typically in a bottom-up fashion.
- Construct an optimal solution from the computed information.

Applications of Dynamic Programming Approach

- Matrix Chain Multiplication
- Longest Common Subsequence
- Travelling Salesman Problem

Knapsack Problem

You are given the following-

- A knapsack (kind of shoulder bag) with limited weight capacity.
- Few items each having some weight and value.

The problem states-

Which items should be placed into the knapsack such that-

- The value or profit obtained by putting the items into the knapsack is maximum.
- And the weight limit of the knapsack does not exceed.

Course: Laboratory Practice III

Knapsack Problem

KnapsackProblemVariants

Knapsack problem has the following two variants-

- 1. Fractional Knapsack Problem
- 2. 0/1 Knapsack Problem

0/1KnapsackProblem-

In 0/1 Knapsack Problem,

- As the name suggests, items are indivisible here.
- We can not take a fraction of any item.
- We have to either take an item completely or leave it completely.
- It is solved using a dynamic programming approach.

0/1KnapsackProblemUsingGreedyMethod-

Consider-

- Knapsack weight capacity = w
- Number of items each having some weight and value = n

0/1 knapsack problem is solved using dynamic programming in the following steps-

Step-01:

- Draw a table say T with (n+1) number of rows and (w+1) number of columns.
- Fill all the boxes of 0th row and 0th column with zeroes as shown-

Course: Laboratory Practice III

T-Table

Step-02:

Start filling the table row wise top to bottom from left to right.

Use the following formula-

$$T(i,j) = max \{ T(i-1,j), value_i + T(i-1,j-weight_i) \}$$

Here, T(i, j) = maximum value of the selected items if we can take items 1 to i and have weight restrictions of j.

- This step leads to completely filling the table.
- Then, value of the last box represents the maximum possible value that can be put into the knapsack.

Step-03:

- To identify the items that must be put into the knapsack to obtain that maximum profit,
- Consider the last column of the table.
- Start scanning the entries from bottom to top.
- On encountering an entry whose value is not same as the value stored in the entry immediately above it, mark the row label of that entry.
- After all the entries are scanned, the marked labels represent the items that must be put into the knapsack

Problem-.

For the given set of items and knapsack capacity = 5 kg, find the optimal solution for the 0/1 knapsack problem making use of a dynamic programming approach.

Item	Weight	Value		
1	2	3		
2	3	4		
3	4	5		
4	5	6		

Course : Laboratory Practice III

Solution-

Given

- Knapsack capacity (w) = 5 kg
- Number of items (n) = 4

Step-01:

- Draw a table say "T" with (n+1) = 4 + 1 = 5 number of rows and (w+1) = 5 + 1 = 6 number of columns.
- Fill all the boxes of 0th row and 0th column with 0.

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

T-Table

Step-02:

tart filling the table row wise top to botton from left to right v in the form la-

 $\underline{T(i,j)} = \max \{ \underline{T(i-1,j)}, v | lu e_i + \underline{T(i-1,j)} - weight_i \}$

S

Finding T(1.1)-

We have

- i = 1
- i = 1
- (value) = (value) = 3
- (weight) = (weight) = 2

Substituting the values, we get-

 $T(1,1) = \max \{ T(1-1,1), 3 + T(1-1,1-2) \}$

Course : Laboratory Practice III

 $T(1,1) = \max \{ T(0,1), 3 + T(0,-1) \}$

 $T(1,1) = T(0,1) \{ \text{ Ignore } T(0,-1) \}$

T(1,1) = 0

Finding T(1,2)-

We have,

•
$$(value)_i = (value)_1 = 3$$

Substituting the values, we get-

$$T(1,2) = max \{ T(1-1, 2), 3 + T(1-1, 2-2) \}$$

$$T(1,2) = \max \{ T(0,2), 3 + T(0,0) \}$$

$$T(1,2) = \max \{0, 3+0\}$$

$$T(1,2) = 3$$

Finding T(1,3)-

We have,

Substituting the values, we get-

$$T(1,3) = \max \{ T(1-1,3), 3 + T(1-1,3-2) \}$$

$$T(1,3) = \max \{ T(0,3), 3 + T(0,1) \}$$

$$T(1,3) = max \{0, 3+0\}$$

$$T(1,3) = 3$$

.......

•
$$(value)_i = (value)_1 = 3$$

(;+) ****** { *(* * ; +) ; ** * *(* * ; + *)

$$T(1,4) = max \{ T(0,4), 3 + T(0,2) \}$$

$$T(1,4) = \max \{0, 3+0\}$$

$$T(1,4) = 3$$

Finding T(1,5)-

We have,

- i = 1
- j = 5
- (value) = (value) = 3
- (weight) = (weight) = 2

Substituting the values, we get-

$$T(1,5) = \max \{ T(1-1,5), 3 + T(1-1,5-2) \}$$

Course : Laboratory Practice III

$$T(1,5) = \max \{ T(0,5), 3 + T(0,3) \}$$

$$T(1,5) = \max \{0, 3+0\}$$

$$T(1,5) = 3$$

Finding T(2.1)-

We have,

- i = 2
- j-1
- (value) = (value) = 4
- (weight)i = (weight)2 = 3

Substituting the values, we get-

$$T(2,1) = \max \{ T(2-1,1), 4 + T(2-1,1-3) \}$$

$$T(2,1) = \max \{ T(1,1), 4 + T(1,-2) \}$$

$$T(2,1) = T(1,1) \{ Ignore T(1,-2) \}$$

$$T(2,1) = 0$$

Substituting the values, we get-

$$T(2,2) = max \{ T(2-1,2), 4 + T(2-1,2-3) \}$$

$$T(2,2) = max \{ T(1,2), 4 + T(1,-1) \}$$

$$T(2,2) = T(1,2) \{ Ignore T(1,-1) \}$$

$$T(2,2) = 3$$

Substituting the values, we get-

$$T(2,3) = max \{ T(2-1,3), 4 + T(2-1,3-3) \}$$

$$T(2,3) = max \{ T(1,3), 4 + T(1,0) \}$$

$$T(2,3) = max \{3, 4+0\}$$

$$T(2,3) = 4$$

Similarly, compute all the entries.

After all the entries are computed and filled in the table, we get the following table-

	0	1	2	3	4	5
0 / 1 / 2	0	0	0	0	0	0
	0	0	3	3	3	3
	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

T-Table

- The last entry represents the maximum possible value that can be put into the knapsack.
- So, maximum possible value that can be put into the knapsack = 7.

IdentifyingItemsToBePutIntoKnapsack

Following Step-04,

- We mark the rows labelled "1" and "2".
- Thus, items that must be put into the knapsack to obtain the maximum value 7 are-

Item-1 and Item-2

TimeComplexity-

- Each entry of the table requires constant time $\theta(1)$ for its computation.
- It takes $\theta(nw)$ time to fill (n+1)(w+1) table entries.
- It takes $\theta(n)$ time for tracing the solution since tracing process traces the n rows.
- Thus, overall θ (nw) time is taken to solve 0/1 knapsack problem using dynamic programming

Conclusion-In this way we have explored Concept of 0/1 Knapsack using Dynamic approch

Assignment Question

- 1. What is Dynamic Approach?
- 2. Explain concept of 0/1 knapsack
- 3. Difference between Dynamic and Branch and Bound Approach. Which is best?

Course: Laboratory Practice III

4. Solve one example based on 0/1 knapsack(Other than

Manual) Reference link

- https://www.gatevidyalay.com/o-1-knapsack-problem-using-dynamic-programming-approach/
- https://www.youtube.com/watch?v=mMhC9vuA-70
- https://www.tutorialspoint.com/design and analysis of algorithms/design and analysis of algorithms fractional knapsack.htm