

planetmath.org

Math for the people, by the people.

proof of Bolzano-Weierstrass Theorem

Canonical name ProofOfBolzanoWeierstrassTheorem

Date of creation 2013-03-22 12:22:26 Last modified on 2013-03-22 12:22:26

Owner akrowne (2) Last modified by akrowne (2)

Numerical id 5

Author akrowne (2)

Entry type Proof

Classification msc 40A05 Classification msc 26A06 To prove the Bolzano-Weierstrass theorem, we will first need two lemmas.

Lemma 1.

All bounded monotone sequences converge.

proof.

Let (s_n) be a bounded, nondecreasing sequence. Let S denote the set $\{s_n : n \in \mathbb{N}\}$. Then let $b = \sup S$ (the supremum of S.)

Choose some $\epsilon > 0$. Then there is a corresponding N such that $s_N > b - \epsilon$. Since (s_n) is nondecreasing, for all n > N, $s_n > b - \epsilon$. But (s_n) is bounded, so we have $b - \epsilon < s_n \le b$. But this implies $|s_n - b| < \epsilon$, so $\lim s_n = b$. \square

(The proof for nonincreasing sequences is analogous.)

Lemma 2.

Every sequence has a monotonic subsequence.

proof.

First a definition: call the nth term of a sequence dominant if it is greater than every term following it.

For the proof, note that a sequence (s_n) may have finitely many or infinitely many dominant terms.

First we suppose that (s_n) has infinitely many dominant terms. Form a subsequence (s_{n_k}) solely of dominant terms of (s_n) . Then $s_{n_{k+1}} < s_{n_k} k$ by definition of "dominant", hence (s_{n_k}) is a decreasing (monotone) subsequence of (s_n) .

For the second case, assume that our sequence (s_n) has only finitely many dominant terms. Select n_1 such that n_1 is beyond the last dominant term. But since n_1 is not dominant, there must be some $m > n_1$ such that $s_m > s_{n_1}$. Select this m and call it n_2 . However, n_2 is still not dominant, so there must be an $n_3 > n_2$ with $s_{n_3} > s_{n_2}$, and so on, inductively. The resulting sequence

$$s_1, s_2, s_3, \dots$$

is monotonic (nondecreasing). \square

proof of Bolzano-Weierstrass.

The proof of the Bolzano-Weierstrass theorem is now simple: let (s_n) be a bounded sequence. By Lemma 2 it has a monotonic subsequence. By Lemma 1, the subsequence converges. \square