RecogniChess

An unsupervised domain-adaptation approach to chessboard recognition Group 10 Wassim Jabbour - 260969699 Enzo Benoit-Jeannin - 260969262 Oscar Bedford - 260792223 Saif Shahin - 260964749

Chess annotation is important

Chess annotation is important

Automation is difficult

Chess annotation is important

Automation is difficult

Requires a lot of labeled data

Chess annotation is important

Automation is difficult

Requires a lot of labeled data

Labeled data is <u>hard</u> to find

Chess annotation is important

Automation is difficult

Requires a lot of labeled data

Labeled data is <u>hard</u> to find

Labeling data is <u>tedious</u>

Chess annotation is important

Automation is difficult

Requires a lot of labeled data

Labeled data is <u>hard</u> to find

Labeling data is <u>tedious</u>

Unsupervised domain adaptation

Goals & constraints

Generate valid 3D data

Build end-to-end pipeline

Benchmark DA performance

Image content Image format

Unprocessed target data

No DA model

DA model 2

Classification accuracy

Weighted F1 score

Confusion matrices

Target domain: Domain where the model must perform well but lacks labeled data.

Labels were provided but were only used for hyperparameter tuning and testing in order to simulate an unsupervised domain adaptation situation.

500 training examples

Changes in Lighting

Changes in Background

[2] A. D. S. D. Neto and R. M. Campello, "Chess position identification using pieces classification based on synthetic images generation and deep neural network fine-tuning," in Proc. 21st Symp. Virtual Augmented Reality (SVR), pp. 152-160, IEEE, Oct. 2019.

Generated dataset

Source domain: 288,000 generated images

Various lighting conditions

Different centering piece positions

Diverse piece rotations

Multiple camera angles

Makes the trained model <u>invariant</u> to all of the above conditions

Data distribution of the real life dataset after rebalancing

Data distribution of the generated dataset

[3]: Elucidation, "Elucidation/chessboarddetect: Hodgepodge of chessboard detection algorithms on images from actual matches.," *GitHub*. [Online]. Available: https://github.com/Elucidation/ChessboardDetect. [Accessed: 10-Apr-2023].

Source domain: Generated data, labelled

Target domain: Real life data, unlabelled

What domain adaptation technique to use in order to get good accuracies on the target domain?

Methodology: The loss functions

Cross Entropy =
$$-log(p_i)$$

Focal Loss =
$$-(1-p_i)^{\gamma}log(p_i)$$

CORAL Loss =
$$\left\| C_s - C_t \right\|_F^2$$
 with $C(X) = \frac{1}{n-1} (X - \overline{X})^T (X - \overline{X})$

[5] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, 'Focal Loss for Dense Object Detection', arXiv [cs.CV]. 2018.

[6] B. Sun, J. Feng, and K. Saenko, 'Correlation Alignment for Unsupervised Domain Adaptation', CoRR, vol. abs/1612.01939, 2016.

Methodology: The architectures
Baseline 1: VGG16^[7] without domain adaptation

[7] K. Simonyan and A. Zisserman, 'Very Deep Convolutional Networks for Large-Scale Image Recognition', CoRR, vol. abs/1409.1556, 2014.

Baseline 2: Correlation alignment (CORAL) [8]

During training

[8] B. Sun, J. Feng, and K. Saenko, 'Correlation Alignment for Unsupervised Domain Adaptation', CoRR, vol. abs/1612.01939, 2016.

Our approach: Adversarial training (DANN) [9]

During training

Our approach: Adversarial training (DANN)

During training: Forward pass

Our approach: Adversarial training (DANN)

Optimizes
$$L_y$$

$$\theta_y = \theta_y - \frac{\partial L_y}{\partial \theta_y}$$

Our approach: Adversarial training (DANN)

During testing

Results: Hyperparameter tuning

Learning rate	Lambda max coral	Final validation accuracy
0.001	0.01	75.04%
0.001	0.1	83.15%
0.001	1.0	81.73%
0.001	10.0	85.25%
0.001	100.0	71.69%
0.01	0.01	9.35%
0.01	0.1	59.97%
0.01	1.0	39.52%
0.01	10.0	27.27%
0.01	100.0	7.76%

CORAL Model

Gamma	Batch size	Dropout rate	Final validation accuracy
2.0	200.0	0.2	52.82%
2.0	100.0	0.2	56.67%
2.0	200.0	0.5	49.26%
2.0	100.0	0.5	51.76%
5.0	200.0	0.2	52.81%
5.0	100.0	0.2	46.53%
5.0	200.0	0.5	51.2%
5.0	100.0	0.5	56.81%

Base Model

Lambda (Domain adaptation)	Learning Rate	Final validation accuracy
0.1	0.075	74.0%
0.1	0.01	75.9%
variablepaper	0.075	80.5%
variablepaper	0.01	82.8%
0.2	0.0075	80.0%
0.2	0.01	84.1%

Results: Testing metrics on the source domain

Final metrics on the oversampled generated data

Models	Testing Accuracies	F1-Score	Average AUPRC
DANN	99.94%	0.999	0.999
CORAL	99.74%	0.997	0.997
Base Model	97.30%	0.972	0.974

Results: Testing metrics on the target domain

Final metrics on the oversampled real life data

Models	Testing Accuracies	F1-Score	Average AUPRC
DANN	83.80%	0.847	0.858
CORAL	83.68%	0.835	0.847
Base Model	61.97%	0.592	0.641

Results: Confusion matrices with oversample

Conclusions

Invariant to rotation, translation, camera angle, and lighting

A LOT of data

Data generation and the preprocessing pipeline took time to R&D

Not invariant to piece set / board texture

High computational cost

Want to pick up on our work?

Alternative 1: Deep-Reconstruction Classification Network (DRCN)^[10]

Alternative 2: Using Wasserstein Distance Guided Representation Learning Model (WDGRL)^[11]

References

- [1] S. Ben-David et al., "A theory of learning from different domains," Mach. Learn., vol. 79, pp. 151-175, 2010.
- [2] A. D. S. D. Neto and R. M. Campello, "Chess position identification using pieces classification based on synthetic images generation and deep neural network fine-tuning," in Proc. 21st Symp. Virtual Augmented Reality (SVR), pp. 152-160, IEEE, Oct. 2019.
- [3] Elucidation, "Elucidation/chessboarddetect: Hodgepodge of chessboard detection algorithms on images from actual matches.," GitHub. [Online]. Available: https://github.com/Elucidation/ChessboardDetect. [Accessed: 10-Apr-2023].
- [4] "The best free, adless chess server," lichess.org. [Online]. Available: https://lichess.org/. [Accessed: 10-Apr-2023].
- [5] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, 'Focal Loss for Dense Object Detection', arXiv [cs.CV]. 2018.
- [6] B. Sun, J. Feng, and K. Saenko, 'Correlation Alignment for Unsupervised Domain Adaptation', CoRR, vol. abs/1612.01939, 2016.
- [7] K. Simonyan and A. Zisserman, 'Very Deep Convolutional Networks for Large-Scale Image Recognition', CoRR, vol. abs/1409.1556, 2014.
- [8] B. Sun, J. Feng, and K. Saenko, 'Correlation Alignment for Unsupervised Domain Adaptation', CoRR, vol. abs/1612.01939, 2016.
- [9] Y. Ganin et al., 'Domain-Adversarial Training of Neural Networks', arXiv [stat.ML]. 2016.
- [10]: M. Ghifary et al., "Deep reconstruction-classification networks for unsupervised domain adaptation," in Proc. Eur. Conf. Comput. Vis. (ECCV), pp. 597-613, 2016.
- [11]: J. Shen et al., "Wasserstein distance guided representation learning for domain adaptation," in Proc. AAAI Conf. Artif. Intell., vol. 32, no. 1, 2018.

Questions?