# Équations de droites et de cercles dans le plan

# I. Équations d'une droite dans le plan

# 1) Équations cartésiennes d'une droite

## Propriétés 1



Toute droite (d) du plan a une équation cartésienne de la forme

Le vecteur  $\vec{u} \begin{pmatrix} -b \\ a \end{pmatrix}$  est un vecteur directeur de (d) et le vecteur  $\vec{n} \begin{pmatrix} a \\ b \end{pmatrix}$  est un vecteur normal de (d).

EXEMPLE 1 : Donner une équation de la droite (AB) où A(2;-1) et B(4; 2).

<u>Réponse</u>: Le vecteur  $\overrightarrow{AB}$   $\begin{pmatrix} x_B - x_A = 2 \\ y_B - y_A = 3 \end{pmatrix}$  est un vecteur directeur de la droite (AB) donc une équation de (AB) s'écrit (puisque -b = 2 et a = 3): 3x - 2y + c = 0. En remplaçant x et y par les coordonnées de A, on trouve c = -8 donc (AB) a pour équation 3x - 2y - 8 = 0.

Exemple 2: Donner une équation de la droite (d) perpendiculaire à (AB)passant par C(-3;7).

<u>Réponse</u>: Le vecteur  $\overrightarrow{AB}$   $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$  est un vecteur normal de la droite (d) donc une équation de (d) s'écrit (puisque a = 2 et b = 3) :

2x + 3y + c = 0. En remplaçant x et y par les coordonnées de C, on trouve c = -15 donc (d) a pour équation 2x + 3y - 15 = 0.

#### EXEMPLE 3:

Trouver les coordonnées du point d'intersection de (AB) et (d).

On résout le système :  $\begin{cases} 3x-2y-8=0\\ 2x+3y-15=0 \end{cases}$  on multiplie la première équation par 3 et la seconde par 2 :  $\begin{cases} 9x - 6y - 24 = 0 \\ 4x + 6y - 30 = 0 \end{cases}$  d'où, en ajoutant les deux lignes : 9x + 4x - 54 = 0 donc  $x = \frac{54}{13}$  puis  $3 \times \frac{54}{13} - 2y - 8 = 0$  donne (...)  $y = \frac{29}{13}$ . Donc les coordonnées du point d'intersection de (AB) et (d) sont  $\left(\frac{54}{13}; \frac{29}{13}\right)$ .

# 2) Équation réduite d'une droite Propriété 2

L'équation ax + by + c = 0 peut s'écrire, selon les cas, sous l'une des deux formes réduites suivantes : y = mx + p ou x = k.

Le coefficient m est le coefficient directeur de la droite et p est son ordonnée à l'origine (ordonnée du point d'intersection de la droite avec l'axe des ordonnées).



### Propriétés 3 (Coefficient directeur d'une droite (AB))

Si l'équation de (AB) s'écrit y = mx + p alors  $m = \frac{\Delta y}{\Delta x} = \frac{y_B - y_A}{x_B - x_A}$  $(\Delta y = m.\Delta x \text{ donc } \Delta y = m \text{ si } \Delta x = 1).$  De plus,  $|m = \tan \theta|$  où  $\theta$  est l'angle avec l'horizontale.

#### EXEMPLE 4:

Soient C(-3; 7) et D(-3; 5). Donner l'équation réduite de la droite (CD) puis celle de la droite (AB) de l'exemple précédent.

Réponses :  $x_C = x_D = -3$  donc l'équation de (CD) est x = -3.

### Pour (AB):

- on calcule le coefficient directeur  $m = \frac{y_B y_A}{x_B x_A} = \frac{3}{2}$
- l'équation réduite s'écrit donc  $y = \frac{3}{2}x + p$
- pour trouver p, on remplace x et y par les coordonnées de A (ou de B):  $-1 = \frac{3}{2} \times 2 + p$  donc p = -4.
- l'équation réduite de la droite (AB) est  $y = \frac{3}{2}x 4$  (ce qui est équivalent à 3x 2y 8 = 0).

### Propriétés 4

Soient (d) et (d') deux droites d'équations respectives y = mx + p et y = m'x + p'.

Alors: 
$$\left[ (d)//(d') \iff m = m' \right]$$
 et  $\left[ (d) \perp (d') \iff mm' = -1 \right]$ .

Exemple 5 : (Re)Trouver les équations des droites ( $\Delta$ ) et (d) respectivement parallèles et perpendiculaires à (AB) et passant par le point C.

### <u>Réponses</u>:

Nous savons que l'équation réduite de (AB) est  $y=\frac{3}{2}x-4$  donc son coefficient directeur est  $m=\frac{3}{2}$ .

Soit m' le coefficient directeur de  $(\Delta)$ .

 $(\Delta)//(AB)$  donc  $m'=\frac{3}{2}$ . L'équation de  $(\Delta)$  est  $y=\frac{3}{2}x+p$ . Avec le point C, on trouve  $p=\frac{23}{2}$  donc  $(\Delta):y=\frac{3}{2}x+\frac{23}{2}$ .

Soit m'' le coefficient directeur de (d).

$$(d) \perp (AB)$$
 donc  $\frac{3}{2} \times m'' = -1$  d'où  $m'' = -\frac{2}{3}$ . L'équation de  $(d)$  est  $y = -\frac{2}{3}x + p$ . Avec le point  $C$ , on trouve  $p = 5$  donc  $(d): y = -\frac{2}{3}x + 5$  (équation équivalente à  $2x + 3y - 15 = 0$ ).

#### EXEMPLE 6:

Trouver les coordonnées du point d'intersection de (AB) et (d).

On résout le système :

$$\begin{cases} y = \frac{3}{2}x - 4 \\ y = -\frac{2}{3}x + 5 \end{cases}$$
 qui donne :  $\frac{3}{2}x - 4 = -\frac{2}{3}x + 5$  donc (multiplier par 6) : 
$$54 \qquad 3 \qquad 54 \qquad 29$$

$$9x - 24 = -4x + 30$$
 d'où  $x = \frac{54}{13}$  puis  $y = \frac{3}{2} \times \frac{54}{13} - 4 = \frac{29}{13}$ . Donc les coordonnées du point d'intersection de  $(AB)$  et  $(d)$  sont  $\left(\frac{54}{13}; \frac{29}{13}\right)$ .

# II. Équation d'un cercle dans le plan

# 1) Équation d'un cercle dans le plan

Soit  $\Omega$  un point de coordonnées (a; b) et R un réel positif.

Le cercle C de centre  $\Omega$  et de rayon R est l'ensemble des points M tels que  $\Omega M = R$ . Donc M  $(x; y) \in C \iff \Omega M^2 = R^2 \iff (x - a)^2 + (y - b)^2 = R^2$ .

## Propriété 5

Le cercle de centre 
$$\Omega(a; b)$$
 et de rayon  $R$  a pour équation 
$$(x-a)^2 + (y-b)^2 = R^2.$$

## 2) Intersection avec une droite ou un cercle

### a) Résolution dans IR des équations du second degré

Ce sont des équations qui peuvent s'écrire sous la forme  $ax^2+bx+c=0$   $(a \neq 0)$ .

### Propriété 6

Pour résoudre l'équation  $ax^2 + bx + c = 0$ , on calcule le discriminant

 $\Delta = b^2 - 4ac$ . Il y a alors trois cas:

 $\Delta < 0$ : l'équation n'a pas de solution réelle.

 $\Delta = 0$ : l'équation  $ax^2 + bx + c = 0$  a une solution unique,

$$x_0 = -\frac{b}{2a}$$

 $\Delta > 0$  alors l'équation  $ax^2 + bx + c = 0$  a deux solutions réelles :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} \text{ et } x_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

### b) Intersection d'un cercle et d'une droite

EXEMPLE 7 : Soit le cercle (C) de centre  $\Omega\left(2\,;\,3\right)$  et de rayon R=4. Déterminer les coordonnées des points d'intersection de la droite (d) d'équation y=2x+1 et du cercle (C).

Réponses : On doit résoudre le système :  $\begin{cases} y = 2x + 1 \\ (x - 2)^2 + (y - 3)^2 = 4^2 \end{cases}$ qui donne  $(x - 2)^2 + (2x + 1 - 3)^2 = 16$  donc  $(x - 2)^2 + (2x - 2)^2 = 16$  d'où  $5x^2 - 12x - 8 = 0$ . Cette équation a pour solutions  $x_1 = \frac{6 - 2\sqrt{19}}{5}$  et  $x_2 = \frac{6 + 2\sqrt{19}}{5}$ .

Comme y = 2x + 1, on trouve  $y_1 = \frac{17 - 4\sqrt{19}}{5}$  et  $y_2 = \frac{17 + 4\sqrt{19}}{5}$ .

### c) Intersection de deux cercles

#### Propriété 7

Soient deux cercles (C) et (C') de centres et de rayons respectifs  $\Omega$ , R et  $\Omega'$ , R'. Alors (C) et (C') sont sécants ssi  $|R - R'| < \Omega\Omega' < R + R'$ .

EXEMPLE 8 : On donne  $\Omega(-3;4)$ , R=4,  $\Omega'(2;-1)$ , R'=5. Démontrer que les deux cercles (C) et (C') sont sécants puis déterminer les coordonnées de leurs points d'intersection.

Réponses : On calcule la distance entre les deux centres :  $\Omega\Omega' = \sqrt{50}$ . Comme  $|R-R'| = 1 = \sqrt{1}$  et  $R+R' = 9 = \sqrt{81}$ , on a bien  $|R-R'| < \Omega\Omega' < R+R'$  donc (C) et (C') sont sécants.

On doit résoudre le système :  $\begin{cases} (x+3)^2 + (y-4)^2 = 4^2 \\ (x-2)^2 + (y+1)^2 = 5^2 \end{cases}$ 

On développe :  $\begin{cases} x^2 + y^2 + 6x - 8y + 9 = 0\\ x^2 + y^2 - 4x + 2y - 20 = 0 \end{cases}$ 

d'où, en soustrayant les deux lignes : 10x - 10y + 29 = 0 d'où y = x + 2, 9.

On arrive donc à :  $\begin{cases} y = x + 2, 9 \\ x^2 + y^2 - 4x + 2y - 20 = 0 \end{cases}$ 

qui donne (...)  $2x^2 + 3,8x - 5,79 = 0$ . Cette équation a pour solutions  $x_1 = \frac{-19 - 7\sqrt{31}}{20}$  et  $x_2 = \frac{-19 + 7\sqrt{31}}{20}$ .

Après avoir vérifié ces valeurs sur un graphique, on cherche y.

Comme y = x + 2, 9, on trouve  $y_1 = \frac{39 - 7\sqrt{31}}{20}$  et  $y_2 = \frac{39 + 7\sqrt{31}}{20}$ .

### 3) Reconnaître une équation de cercle

L'objectif est ici de savoir si une équation donnée est celle d'un cercle, et, dans l'affirmative, de donner son centre et son rayon.

Pour cela, remarquons que :

$$(x-a)^2 + (y-b)^2 = R^2 \iff x^2 - 2ax + a^2 + y^2 - 2by + b^2 = R^2 \iff x^2 + y^2 - 2ax - 2by + a^2 + b^2 - R^2 = 0$$

#### Exemple 9:

Vérifier que  $x^2 + y^2 - 4x + y + 3 = 0$  est l'équation d'un cercle dont on précisera le centre et le rayon.

### Réponse :

En comparant  $x^2 + y^2 - 4x - y + 3 = 0$  avec  $x^2 + y^2 - 2ax - 2by + a^2 + b^2 - R^2 = 0$  on voit que :

-2a = -4 donc a = 2;

-2b = 1 donc b = -1/2;

$$a^{2} + b^{2} - R^{2} = 3$$
 donc  $R^{2} = a^{2} + b^{2} - 3 = 4 + 1/4 - 3 = 5/4$  donc  $R = \frac{\sqrt{5}}{2}$ .

$$x^{2} + y^{2} - 4x + y + 3 = 0 \iff (x - 2)^{2} + \left(y + \frac{1}{2}\right)^{2} = \frac{5}{4}$$
: l'équation est bien

celle d'un cercle, de centre  $\Omega\left(2; -\frac{1}{2}\right)$  et de rayon  $\frac{\sqrt{5}}{2}$ .

# Exercices : équations de cercles dans le plan

On se place, dans toute la fiche, dans un repère  $(O; \vec{\imath}, \vec{\jmath})$  orthonormé.

#### Exercice I

- **1°) a)** Tracer le cercle  $(\mathscr{C}_1)$  de centre  $\Omega(3; 2)$  et de rayon 4.
  - **b)** Placer le point K(1; 5,5). Est-il sur le cercle  $\mathscr{C}_1$ ?
  - c) Soit M(x; y) un point du plan. Démontrer que M est sur le cercle  $(\mathcal{C}_1)$  si et seulement si

$$x^2 + y^2 - 6x - 4y - 3 = 0.$$

Cette condition est une équation du cercle  $(\mathcal{C}_1)$ .

### On passera ici au cours...

- d) Déterminer l'ordonnée du (des) point(s) N du cercle qui a (ont) pour abscisse 1 (s'il y en a!).
- **2°)** Soient les points A(-2; 3) et B(2; 1).
  - a) Donner une équation de la droite (AB).
  - b) Déterminer les coordonnées des points d'intersection du cercle  $\mathscr{C}_1$  et de la droite (AB), s'il y en a.
- **3°)** Soit le cercle  $(\mathscr{C}_2)$  de centre A(-2; 3) passant par  $\Omega$ .
  - a) Déterminer le rayon du cercle  $(\mathscr{C}_2)$ .
  - b) Dire si les cercles  $(\mathscr{C}_1)$  et  $(\mathscr{C}_2)$  sont sécants.
  - c) Déterminer une équation du cercle  $(\mathscr{C}_2)$ .
  - d) Déterminer les coordonnées des points d'intersection des cercles  $(\mathscr{C}_1)$  et  $(\mathscr{C}_2)$ , s'il y en a.

## Exercice II (équations de cercles?)

Dire si les équations suivantes sont des équations de cercles et, dans l'affirmative, déterminer le centre et le rayon de ces cercles :

1°) 
$$x^2 + y^2 + 4x - 2y = 0$$
 2°)  $x^2 + y^2 - 2x + 1 = 0$   
3°)  $x^2 + y^2 - 2x - 3y + 4 = 0$  4°)  $x^2 - 2y^2 + 3x - 4y - 2 = 0$   
5°)  $-x^2 + 2x - y^2 - 5y + 3 = 0$  6°)  $x^2 - 3y - (x - 1)^2 + 5 = 0$