高次元時空モデルと素粒子標準模型

宮根 一樹

2024年3月

概要

これは数物セミナー素粒子グループでのリレーセミナーの資料になります。私が現在所属している研究室*¹は、4次元よりも大きい次元の時空を仮定する高次元時空モデルから素粒子標準模型を再現することを目標とした研究を主にしています。そこで、ここでは高次元時空モデルからどのようにして統一理論の見通しがつくのかについて、議論したいと思います。

目次

1	はじめに	2
	高次元の場の理論とコンパクト化 5 次元理論のコンパクト化	3
	標準模型の復習 非可換ゲージ理論	7 7
付録 B	曲がった空間でのスピノル	8

^{*1} 早稲田大学の安倍研究室といいます。ホームページはこちらです。

1 はじめに

2 高次元の場の理論とコンパクト化

この章では、4+n 次元の Einstein-Hilbert 作用がコンパクト化によって、4 次元では、一般相対論と Yang-Mills 理論になることを見ていこうと思います。

2.1 5次元理論のコンパクト化

まずは単純に 5 次元の時空を考えることにします。その座標は z^M で、M=0,1,2,3,4 という値をとります。また、時空はミンコフスキーで計量は

$$\eta_{MN} = \text{diag}(-, +, +, +, +)$$
(2.1)

です。この時空上の場の理論は、たとえば実スカラー場 $\phi(z)$ なら

$$S = \int d^5 z \sqrt{-g} \left(-\frac{1}{2} g^{MN} \partial_M \phi \partial_N \phi \right)$$
 (2.2)

のように4次元の理論と同じように議論することができます。

ここで、5 番目の座標 z_4 が半径 a の円周になったとしましょう。円周 S^1 となったときは $\theta \in [0, 2\pi)$ でパラメトライズするのが便利なので、以後は無次元のパラメターで $z_4(\theta)$ と書けるとします。さらに

$$dz_4 = ad\theta \tag{2.3}$$

という関係が成立するとすれば、 $\mathrm{d}z_4^2=a^2\mathrm{d}\theta^2$ より

$$g_{\theta\theta} = a^2 \, . \tag{2.4}$$

上述のように、余剰空間に境界条件を課すことを**コンパクト化**といいます。ここで、5 次元のミンコフスキー時空 M_5 がコンパクト化によって時空が 4 次元ミンコフスキーと円周の直積 $M_4 \times S^1$ になるとすれば、その計量は

$$g_{MN} = \begin{pmatrix} \eta_{\mu\nu} & 0\\ 0 & a^2 \end{pmatrix} \tag{2.5}$$

です*2。

このような時空の上で、実スカラー場 $\phi(z)$ の理論を考えてみましょう。今、 θ 方向は円周 S^1 にコンパクト化されていることから、 $\phi(z)$ はフーリエ級数展開できます:

$$\phi(x,\theta) = \frac{1}{\sqrt{2\pi}} \sum_{k} \tilde{\phi}_{k}(x) e^{ik\theta} \,. \tag{2.6}$$

これを5次元の実スカラー場の作用(2.2)に代入します。

$$\int d^5 z \sqrt{-g} = \int d^4 x \sqrt{-g_4} \cdot a \int_0^{2\pi} d\theta$$
 (2.7)

なので、 θ 方向の積分を考えると

$$\int_0^{2\pi} d\theta \left(-\frac{1}{2} g^{MN} (\partial_M \phi)(\partial_N \phi) \right) = \int_0^{2\pi} d\theta \left(-\frac{1}{2} \eta^{\mu\nu} (\partial_\mu \phi)(\partial_\nu \phi) - \frac{1}{2a^2} \partial_\theta \phi^2 \right)$$
(2.8)

 $^{^{*2}}$ ただし、 $g_{\mu\theta}=g_{\theta\mu}=0$ と 4 次元の部分と 1 次元の部分が完全に分離できているのは仮定です。

となりますが、

$$\partial_{\mu}\phi = \frac{1}{\sqrt{2\pi}} \sum_{k} \partial_{\mu}\tilde{\phi}_{k}(x)e^{ik\theta}$$
 (2.9)

より、

$$\int_{0}^{2\pi} d\theta \left(-\frac{1}{2} \eta^{\mu\nu} (\partial_{\mu} \phi)(\partial_{\nu} \phi) \right) = \int_{0}^{2\pi} d\theta \left(-\frac{1}{4\pi} \sum_{k,l} \partial_{\mu} \tilde{\phi}_{k}(x) \partial^{\mu} \tilde{\phi}_{l}(x) e^{i(k+l)\theta} \right)$$

$$= -\frac{1}{2} \partial_{\mu} \tilde{\phi}_{0}(x) \partial^{\mu} \tilde{\phi}_{0} - \frac{1}{2} \sum_{k \neq 0} \partial_{\mu} \tilde{\phi}_{k} \partial^{\mu} \tilde{\phi}_{-k}$$

$$= -\frac{1}{2} \partial_{\mu} \tilde{\phi}_{0}(x) \partial^{\mu} \tilde{\phi}_{0} - \sum_{k \geq 1} \partial_{\mu} \tilde{\phi}_{k} \partial^{\mu} \tilde{\phi}_{k}^{*} \tag{2.10}$$

です。ただし、 $\phi(x,\theta)$ が実スカラー場であることから

$$\tilde{\phi}_k^* = \tilde{\phi}_{-k} \tag{2.11}$$

を用いました。(2.8) の残りの項を考えると

$$\int_{0}^{2\pi} d\theta \left(-\frac{1}{2a^{2}} \partial_{\theta} \phi^{2} \right) = \frac{1}{4\pi a^{2}} \int_{0}^{2\pi} d\theta \sum_{k,l} k l \tilde{\phi}_{k} \tilde{\phi}_{l} e^{i(k+l)\theta}$$
$$= -\sum_{k \leq 1} \left(\frac{|k|}{a} \right)^{2} \tilde{\phi}_{k} \tilde{\phi}_{k}^{*}$$
(2.12)

となるので、4次元の有効作用は

$$S = \int d^4x \, a\mathcal{L}_4 \tag{2.13}$$

であり、ラグランジアンは

$$\mathcal{L}_4 = -\frac{1}{2} \partial_\mu \tilde{\phi}_0(x) \partial^\mu \tilde{\phi}_0 - \sum_{n \ge 1} \left(\partial_\mu \tilde{\phi}_n \partial^\mu \tilde{\phi}_n^* + M_n^n \tilde{\phi}_n \tilde{\phi}_n^* \right)$$
 (2.14)

となります。ただし、

$$M_n \equiv \frac{|n|}{a} \tag{2.15}$$

とおきました。

有効作用 (2.14) から次のことが分かります:

- 5 次元の実スカラー場の理論からは、質量 M_n をもつ複素スカラー場(KK 粒子)が現れること。
- n = 0 のモードは、massless であること(ゼロモード)。
- $n \neq 0$ のときは、その粒子の質量は $M_n = |n|/a$ であり、 $a \ll 1$ ならば $M_n \gg 1$ であること。したがって、コンパクト空間の半径が非常に小さければ、十分なエネルギーがないとゼロモード以外の粒子を生成して観測することができないことになります*3。

^{*3} Particle Date Group のデータによると、TeV スケールではまだ KK 粒子の存在が確認されていないようです。

次は、(スピノル場の前に)ベクトル場 $A_M(z)$ の理論を見ていきます。ベクトル場の作用は、一番簡単な Maxwell 理論

$$S = \int d^5 z \sqrt{-g} \left(-\frac{1}{4} g^{MP} g^{NQ} F_{MN} F_{PQ} \right)$$
 (2.16)

を考えます。ベクトル場は z^4 の方向の周期境界条件により、スカラー場の場合と同様に

$$A_M(x,\theta) = \frac{1}{\sqrt{2\pi}} \sum_{n} A_M^{(n)}(x) e^{in\theta}$$
 (2.17)

と展開できます。これを作用 (2.16) に代入します。作用を少し書き換えると

$$S = \int d^4x \sqrt{-g_4} \cdot a \int_0^{2\pi} d\theta \left(-\frac{1}{4} g^{MP} g^{NQ} F_{MN} F_{PQ} \right)$$

$$= \int d^4x \sqrt{-g_4} \cdot a \int_0^{2\pi} d\theta \left(-\frac{1}{4} (\partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu})^2 - \frac{a}{2} (\partial^{\theta} A^{\mu} - \partial^{\mu} A^{\theta})^2 \right)$$
(2.18)

となるので、被積分関数の各項は

$$(\partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu})^{2} = \frac{1}{2\pi} \sum_{m,n} e^{i(m+n)\theta} \left(\partial^{\mu}A^{\nu,(m)} - \partial^{\nu}A^{\mu,(m)} \right) \left(\partial_{\nu}A^{(n)}_{\mu} - \partial_{\mu}A^{(n)}_{\nu} \right)$$

$$\xrightarrow{\theta \text{ βin 0 \bar{q}}$} \sum_{n} \left(\partial^{\mu}A^{\nu,(-n)} - \partial^{\nu}A^{\mu,(-n)} \right) \left(\partial_{\nu}A^{(n)}_{\mu} - \partial_{\mu}A^{(n)}_{\nu} \right) \qquad (2.19)$$

$$(\partial^{\theta}A^{\mu} - \partial^{\mu}A^{\theta}) = -\frac{1}{2\pi a^{2}} \sum_{m,n} e^{i(m+n)\theta} \left(mA^{\mu,(m)} - \partial^{\mu}A^{\theta,(m)} \right) \left(nA^{(n)}_{\mu} - \partial_{\mu}A^{(n)}_{\theta} \right)$$

$$\xrightarrow{\theta \text{ βin 0 \bar{q}}$} \frac{1}{a^{2}} \sum_{n} \left(nA^{\mu,(-n)} + \partial^{\mu}A^{\theta,(-n)} \right) \left(nA^{(n)}_{\mu} - \partial_{\mu}A^{(n)}_{\theta} \right) \qquad (2.20)$$

となります。ただし、

$$\partial_{\theta} = \frac{1}{a} \frac{\partial}{\partial \theta} \tag{2.21}$$

として計算しています。この結果を、作用 (2.18) の表式に代入すると

$$S = \int d^4x \sqrt{-g_4} a \left(-\frac{1}{4} \sum_n \left(\partial^{\mu} A^{\nu,(-n)} - \partial^{\nu} A^{\mu,(-n)} \right) \left(\partial_{\nu} A^{(n)}_{\mu} - \partial_{\mu} A^{(n)}_{\nu} \right) - \frac{1}{2a} \sum_n \left(n A^{\mu,(-n)} + \partial^{\mu} A^{\theta,(-n)} \right) \left(n A^{(n)}_{\mu} - \partial_{\mu} A^{(n)}_{\theta} \right) \right)$$

$$\equiv \int d^4x \sqrt{-g_4} a \mathcal{L}_4$$
(2.22)

です。このとき、ベクトル場の質量はどこからくるかというと

$$\mathcal{L}_4 \sim -\sum_n \frac{n^2}{2a} A^{\mu,(n)} A_\mu^{(n)*} \tag{2.23}$$

の項からくるわけですが、やはり質量は a^{-1} に比例しています。したがって、effective なラグランジアンはゼロモードのみに注目すればよくて、それは

$$\mathcal{L}_{\text{eff}} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \frac{1}{2a^2} \partial_{\mu} A_{\theta} \partial^{\mu} A_{\theta}^*$$
 (2.24)

です。ただし、 $A_M^{(n=0)}$ のモードの添え字は省略しており、 $F_{\mu\nu}$ は 4 次元の場の強さです。この表式から、4 次元ではベクトル場のほかに複素スカラー場が生じていることが分かります* 4 。このように、より低いスピンをもつ粒子が生じるのがコンパクト化の特徴(だそう)です。

 $^{^{*4}}$ $A_{ heta}(x)$ の添え字 heta は 4 次元のローレンツ変換では変換されません。したがって、この添え字は 4 次元の理論からは(ゲージ群の添え字と同様に)内部空間の添え字となるため、場 $A_{ heta}(x)$ はローレンツ変換に対してはスカラーです。

付録 A 標準模型の復習

夜ゼミのネタになるかもしれないので、もしかしたらと思って書いておきます *5 。

A.1 非可換ゲージ理論

^{*5} 夜ゼミがどんな感じかわかりませんが、真面目すぎたり簡単すぎたりしたらボツにします(笑)

付録 B 曲がった空間でのスピノル

参考文献

- [1] Michael E. Peskin and Daniel V. Schroeder. *An Introduction to Quantum Field Theory*. Addison-Wesley Pub. Co, Reading, Mass, 1995.
- [2] 藤井 保憲. 超重力理論入門. 産業図書, 2005.