Repeated eigenvalues:

Consider
$$Y' = AY$$
,

Where A has repeated eigenvalues

e.g. $A = \begin{pmatrix} -5 & 1 \\ -1 & -3 \end{pmatrix}$ $p(\lambda) = det(A-\lambda I)$
 $= (-5-\lambda)(-3-\lambda)+1$
 $= (-5-\lambda)(-3-\lambda)+1$
 $= \lambda^2 + 8\lambda + 16 = (\lambda + 4)^2$
 $\lambda = -4$ is a double not.

Simplest case:

 $A = \begin{pmatrix} \lambda \circ \\ \circ \lambda \end{pmatrix}$
 $A = \begin{pmatrix} \lambda \circ \\ \circ \lambda \end{pmatrix}$
 $A = \begin{pmatrix} \lambda \circ \\ \circ \lambda \end{pmatrix}$
 $A = \begin{pmatrix} \lambda \circ \\ \circ \lambda \end{pmatrix}$
 $A = \begin{pmatrix} \lambda \circ \\ \circ \lambda \end{pmatrix}$
 $A = \begin{pmatrix} \lambda \circ \\ \circ \lambda \end{pmatrix}$
 $A = \begin{pmatrix} \lambda \circ \\ \circ \lambda \end{pmatrix}$
 $A = \begin{pmatrix} \lambda \circ \\ \circ \lambda \end{pmatrix}$
 $A = \begin{pmatrix} \lambda \circ \\ \circ \lambda \end{pmatrix}$
 $A = \lambda$
 $A = \begin{pmatrix} \lambda \circ \\ \circ \lambda \end{pmatrix}$
 $A = \lambda$
 A

In general, when
$$\lambda$$
 is repeated, one might not have "2" eigenvectors

e.g. $A = \begin{pmatrix} -5 & 1 \\ -1 & -3 \end{pmatrix}$ has repeated eigenvalues $\lambda = -4$,

but just 1 direction of eigenvectors (!) (or (E))

(Only on straight line solution)

General solution:

Start with a simple example:

 $Y' = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} Y$. \iff $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y' \end{pmatrix}$

A is a repeated eigenvalue. \iff $x' = 2x + y$ (decoupled!)

Solving $Y' = 2y$ gives

 $y(t) = C_1 e^{2t}$
 $y' = 2x + C_1 e^{2t}$
 $y' = 2x + C_2 e^{2t} + C_3 e^{2t}$

Let some

```
It suggests the following "guessing": the general
 Solution to Y'= AY when A has repeated eigenvalues ?
         Y(t) = ent Wo + tent W, --- (1)
 for some choices of Wo, W.
  Q = Conditions on Wo, W, such that Ytt) in @ satisfies
  A: Plug in Y @ to Y'= AY:
          (ext Wo+ text W,) = A (ext Wo+ text W,)
  =) heat Wo+ (ext+ rtext) W, = ext AWo + text AW,
  => \( \lambda W_0 + W_1 + \lambda t W_1 = AW_0 + t AW_1
 Comparing constant and t-coefficients =
            \int 2W_0 + W_1 = AW_0,
2W_1 = AW_1,
          [ Wi= (A-ZI) Wo,
```

Note $A_{\overline{A}}(A-\lambda I)W_{1} = (A-\lambda I)(A-\lambda I)W_{0}$ $= (A-\lambda I)^{2}W_{0}.$ Using $(A-\lambda I)^{2} = (00)$ (Exercise!), $(A-\lambda I)W_{1} = 0$ is always satisfied

ia.

Theorem: Let Wo be any vector, then $Y(t) = e^{\lambda t} W_0 + t e^{\lambda t} W_1$ with $W_1 = (A - \lambda I) W_0$ satisfies $Y' = AY_1$,

i.e. - The general solution is $Y(t) = e^{\lambda t} W_0 + t e^{\lambda t} W,$ with W_0 arbitrary and $W_1 = (A - \lambda I) W_0$.

- Indeed, since $Y(0) = e^{\circ} W_0 + 0 e^{\circ} W_1 = W_0.,$ Wo serves as the Initial Condition for the I VP.

Phase portrait: We have Y(t) = ent Wo + tent W, We split into 2 cases: 1 W = 0 (Zero rector), <=> (A-ZI)Wo= 0 <=> AWo= ZWo So Wi= 0 (>> Wo is an eigenvector, and in this case, Y(t) = et Wo is a straight line solution. (2) W, 70. In this case Wo is not an eigenvector. Note AWI= ZWI, , so W, is an eigenvector.

Write Y(t) = e 2t Wo + te 2t W, = e 2t (Wo + t W,) =) as t > ± as, Y(t) = et (0+tWi) = text Wi If 2>0, then - text -> +00 as t -> +00 telt -> 0 as t -> - 00 (checked by L'Hospital Rul - tends to (0,0) in the direction of the straight line solution - Makes a "U" turn - then tends to infinity in the direction of the straight like solution. "Source" Phase portroit:

Alo: similar: "sihk". Orientation: how to tell if it's or - Check the vector field at some point away from the straight line solution: -e.g. $Y'=\begin{pmatrix} -5 & 1 \\ -1 & -3 \end{pmatrix}Y$. $\lambda = -4$ (repeated), $V=\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. at (1,0), the vector field is (-1)