

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

Отчет по лабораторной работе №8 «ГРАФЫ»

Студент Дьяченко Артём Александрович

Группа ИУ7 – 33Б

Преподаватель Барышникова М. Ю.

Оглавление

ОПИСАНИЕ УСЛОВИЯ ЗАДАЧИ	3
ОПИСАНИЕ ТЕХНИЧЕСКОГО ЗАДАНИЯ	3
ОПИСАНИЕ СТРУКТУРЫ ДАННЫХ	4
<u> ОЦЕНКА ЭФФЕКТИВНОСТИ (ТАКТЫ)</u>	5
ПАМЯТЬ (БАЙТ)	5
ОПИСАНИЕ АЛГОРИТМА	5
ОТВЕТЫ НА КОНТРОЛЬНЫЕ ВОПРОСЫ	6

Описание условия задачи

Обработать графовую структуру в соответствии с заданным вариантом. Обосновать выбор необходимого алгоритма и выбор структуры для представления графов. Ввод данных осуществить на усмотрение программиста. Результат выдать в графической форме.

Найти минимальное (по количеству ребер) подмножество ребер, удаление которых превращает заданный связный граф в несвязный.

Описание технического задания

Входные данные:

Целочисленное значение кол-ва вершин в графе, целочисленные пары вершин, соединяющихся рёбрами.

Выходные данные:

Графическая визуализация полученного графа с отмеченными удалёнными рёбрами.

Обращение к программе:

Запускается через терминал командой: ./арр.ехе.

Аварийные ситуации:

- 1. Некорректный ввод кол-ва вершин.
- 2. Некорректное описание ребра графа.

Набор тестов

	Nº	Название теста	Пользовательский ввод	Вывод
•	1	Некорректный ввод кол- ва вершин	-10	Введено недопустимое значение! Повторите попытку.

2	Некорректный ввод кол- ва вершин	abacaba	Введено недопустимое значение! Повторите попытку.
3	Некорректный ввод ребра	7 (при всего семи вершинах)	Введено недопустимое значение! Повторите попытку.
4	Ввод цикла	2 2	Путь в себя невозможен!
5	Корректный ввод	4 12 32 01 02 23 30 -1	удаленные рёбра графа отмечены красным цветом.

Описание структуры данных

Матрица смежности

```
typedef struct
{
   int size; // кол-во вершин в графе
   int **matrix; // матрица смежности
} adjmat_t;
```

Ребро графа

```
typedef struct
{
   int fvertex; // вершина 1
   int svertex; // вершина 2
} edge_t;
```

Цепочки рёбер

```
typedef struct
{
    int size; // размер цепочки
    edge_t *edges; // указатель на рёбра
} chain_t;
```

Оценка эффективности (такты)

Кол-во элементов	Время выполнения
5	17332245
10	21013314
20	34115760

Для оценки эффективности было проведено 1.000 расчётов и взято среднее время.

Память (байт)

Кол-во элементов	Занимаемый объём
5	144
10	488
20	1032

Описание алгоритма

- 1. Пользователь вводит кол-во вершин в графе.
- 2. Определяются рёбра, соединяющие вершины.
- 3. Граф проверяется на связность: если он несвязный выводится в таком же виде, иначе
- 4. Рассматриваются комбинации рёбер по 1, 2 ... N штук. Каждая из них удаляется из графа и проверяется, является ли он связным.
- 5. В тот момент, когда граф перестал быть связным, программа завершается и выводит результат в файл.

Ответы на контрольные вопросы

1. Что такое граф?

Граф – конечное множество вершин и соединяющих их ребер; G = <V, E>. Если пары E (ребра) имеют направление, то граф называется ориентированным; если ребро имеет вес, то граф называется взвешенным.

- 2. Как представляются графы в памяти?
- С помощью матрицы смежности или списков смежности.
- **3. Какие операции возможны над графами?** Обход вершин, поиск различных путей, исключение и включение

вершин.

- **4. Какие способы обхода графов существуют?** Обход в ширину **(BFS Breadth First Search)**, обход в глубину **(DFS Depth First Search)**.
- 5. Где используются графовые структуры?

Графовые структуры могут использоваться в задачах, в которых между элементами могут быть установлены произвольные связи, необязательно иерархические.

6. Какие пути в графе Вы знаете?

Эйлеров путь, простой путь, сложный путь.

7. Что такое каркасы графа?

Каркас графа – дерево, в которое входят все вершины графа, и некоторые (необязательно все) его рёбра.

Вывод

В ходе лабораторной работы я написал программу, строящую граф по введённому кол-ву вершин V и рёбер E, их соединяющих. Перебираются все комбинации рёбер за O(E^2), а сам ДФС работает за O(V + E). Таким образом, общая сложность алгоритма – O(E^3).

Хранить граф в списке смежности эффективно только при малом количестве вершин. Матрица смежности работает намного быстрее (в доступе), но занимает много бОльший объём, тк хранит **V*V** ячеек.