3.1 Decivature of Polynomials & Enponents: 32: Pourer Rule and Overtient Rule:

$$f(x) = 1, \frac{dy}{dx} = 0 \notin f(x) = x : \frac{dy}{dx} = 1 \notin f(x) = x : \frac{dy}{dx} = 2x \notin f(x) = x : \frac{dy}{dx} =$$

PoureRule:

En6:
$$f(x) = x^2$$
 En7: $f(x) = \frac{1}{n}$ En8: $f(x) = \frac{1}{n^5}$ Ena: $f(n) = \frac{1}{n^6}$

$$\frac{1}{2}x^{1/2} = \frac{1}{\sqrt{n}}$$

$$\frac{dy}{dx} = \frac{1}{\sqrt{n}}$$

New delivative fearn mon derivative:

$$\frac{d}{dn}(ef(x)) = e\left(\frac{d}{dn}f(n)\right)$$

$$\frac{d}{dn}(f+g) = \frac{df}{dn} + \frac{dg}{dn}$$

$$\frac{d}{dn}(f+g) = \frac{df}{dn} - \frac{dg}{dn}$$

$$\frac{d}{dn}(f+g) = \frac{df}{dn} - \frac{dg}{dn}$$

$$\frac{d}{dn}(f+g) = \frac{df}{dn} - \frac{dg}{dn}$$

Enq:
$$f(u) = 7n + 5n^{2}3$$

 $\frac{du}{du} = 7 + \frac{5}{3}n^{2/3}$; $\frac{du}{du} = 7 + \frac{5}{3n^{2/3}}$
 $\frac{du}{du} = 7 + \frac{5}{3n^{2/3}}$

Enlo:
$$f(n) = \frac{\sqrt{n^2 - 1}}{n} = \frac{1}{\sqrt{n}} - \frac{1}{n}$$

$$\frac{dy}{dn} = \frac{-\frac{1}{2}n}{n^2 - n} = \frac{-\frac{1}{2}n^2 + \frac{1}{2}n^2}{\frac{dy}{dn}} = \frac{-\frac{1}{2}n^2 + \frac{1}{2}n^2$$

En:
$$f(x) = n^5$$
what is $\frac{dy}{du}$? Tay las poly nomials
$$f(x) = 5!$$

$$f'(x) = 5n^4; f'(x) = 5 \cdot 4n^3$$

$$f''(x) = 5 \cdot 4 \cdot 3n^2 \dots f''(x) = 5! = 120$$

Derivature of Enponential Function

$$f'(x) = \lim_{n \to 0} \frac{f(x+h)-f(x)}{n} \Rightarrow \lim_{n \to 0} \frac{3^{n+1}-3^n}{n} \Rightarrow 3^n \lim_{n \to 0} \frac{3^{n-1}}{n}$$

$$\frac{d}{du}(b^2) = \left(\lim_{n \to 0} \frac{b^n}{n}\right) \cdot b^n \text{ where } \lim_{n \to 0} \frac{b^n}{n} = \text{lu(b)}$$

Remember: Enlevi # in defined to be a # with the elope of taugut line to the graph en=[]

then:
$$1 = \frac{dy}{dx} | e^{x} \stackrel{\uparrow}{=} (\lim_{n \to 0} \frac{e^{n}}{n}) \cdot e^{0} = 1$$

$$\frac{dy}{du} = e^{x}e = e^{xt}$$

3-2 The product and the quotient mule:

I
$$f(x) = 2+3u$$
; $f(0) = 2$; $f'(0) = 3$
 $g(x) = 5+7u$; $f(0) = 5$; $f'(0) = 7$

$$fg(n) = (2+2n)(5+7n)$$

 $10+29n+2(n^2=fg(n))$

Danue as: f(0)g'(0)+f'(0)g(0))

II Rectangle w/ lengths f & g

$$g(0) = f(t) \cdot g(t)$$

$$A(t) = f(t) \cdot g(t)$$

$$At = 0.0001$$

$$A(t) = f(t) \cdot g(t)$$

Product Rule:

The qualient Rule:

En7:
$$(\frac{1}{9})$$
=? = $-\frac{9}{92}$
 $1=\frac{1}{9}\cdot 9$ thun meget

En8:
$$\frac{d}{dn} = \frac{-nn^{n-1}}{n^2n}$$
 $\Rightarrow -nn^{n-1}$

Quotient Rule: (cumplified Vericon) $\frac{d}{dn}\left(\frac{1}{g(n)}\right) = -\frac{g'(n)}{g(n)}$

Quatent Rule: (einsplifted Verrion) $\frac{d}{dn}\left(\frac{1}{g(n)}\right) = -\frac{g'(n)}{g^2(n)}$

En10: $(\frac{f}{g})' = (f, \frac{1}{g})' + f(\frac{1}{g})'$ but that already given $(f+g)' = \frac{f'g - g'f}{g'^2}$ which is the quotient rule