Recurrence Relations.

Recurrence Relations

- Equation or an inequality that characterizes a function by its values on smaller inputs.
- Solution Methods
 - Substitution Method.
 - Recursion-tree Method.
 - Master Method.
- Recurrence relations arise when we analyze the running time of iterative or recursive algorithms.
 - Ex: Divide and Conquer.

$$T(n) = \Theta(1)$$
 if $n \le c$
 $T(n) = a T(n/b) + D(n) + C(n)$ otherwise

Substitution Method

- Guess the form of the solution, then use mathematical induction to show it is correct.
 - Substitute guessed answer for the function when the inductive hypothesis is applied to smaller values hence, the name.
- Works well when the solution is easy to guess.
- No general way to guess the correct solution.

Example – Exact Function

Recurrence:
$$T(n) = 1$$
 if $n = 1$
$$T(n) = 2T(n/2) + n$$
 if $n > 1$

- Guess: $T(n) = n \lg n + n$.
- •Induction:
 - •Basis: $n = 1 \Rightarrow n \lg n + n = 1 = T(n)$.
 - •Hypothesis: $T(k) = k \lg k + k$ for all k < n.
 - •Inductive Step: T(n) = 2 T(n/2) + n $= 2 ((n/2)\lg(n/2) + (n/2)) + n$ $= n (\lg(n/2)) + 2n$ $= n \lg n - n + 2n$ $= n \lg n + n$

Example – With Asymptotics

To Solve:
$$T(n) = 3T(\lfloor n/3 \rfloor) + n$$

- Guess: $T(n) = O(n \lg n)$
- Need to prove: $T(n) \le cn \lg n$, for some c > 0.
- Hypothesis: $T(k) \le ck \lg k$, for all k < n.
- Calculate:

$$T(n) \le 3c \lfloor n/3 \rfloor \lg \lfloor n/3 \rfloor + n$$

$$\le c n \lg (n/3) + n$$

$$= c n \lg n - c n \lg 3 + n$$

$$= c n \lg n - n (c \lg 3 - 1)$$

$$\le c n \lg n$$

(The last step is true for $c \ge 1/\lg 3$.)

Example – With Asymptotics

```
To Solve: T(n) = 3T(\lfloor n/3 \rfloor) + n
```

- To show $T(n) = \Theta(n \lg n)$, must show both upper and lower bounds, i.e., $T(n) = O(n \lg n)$ **AND** $T(n) = \Omega(n \lg n)$
- Show: $T(n) = \Omega(n \lg n)$
- Calculate:

$$T(n) \ge 3c \lfloor n/3 \rfloor \lg \lfloor n/3 \rfloor + n$$

$$\ge c n \lg (n/3) + n$$

$$= c n \lg n - c n \lg 3 + n$$

$$= c n \lg n - n (c \lg 3 - 1)$$

$$\ge c n \lg n$$

(The last step is true for $c \le 1 / \lg 3$.)

Example – With Asymptotics

If $T(n) = 3T(\lfloor n/3 \rfloor) + O(n)$, as opposed to $T(n) = 3T(\lfloor n/3 \rfloor) + n$, then rewrite $T(n) \le 3T(\lfloor n/3 \rfloor) + cn$, c > 0.

- To show $T(n) = O(n \lg n)$, use second constant **d**, different from **c**.
- Calculate:

$$T(n) \le 3d \lfloor n/3 \rfloor \lg \lfloor n/3 \rfloor + c n$$

$$\le d n \lg (n/3) + cn$$

$$= d n \lg n - d n \lg 3 + cn$$

$$= d n \lg n - n (d \lg 3 - c)$$

$$\le d n \lg n$$

(The last step is true for $d \ge c / \lg 3$.)

It is OK for d to depend on c.

Practice Examples

1.
$$T(n) = T(n-1) + T(n-2) + c$$
, for any $c > 0$.

• Guess: $T(n) = O(2^n)$

2.
$$T(n) = 4T(n/2) + n^2$$

• Guess: $T(n) = O(n^2 \lg n)$

3.
$$T(n) = T(n-2) + n^2$$

• Guess: $T(n) = O(n^3)$

Making a Good Guess

- If a recurrence is similar to one seen before, then guess a similar solution.
 - $T(n) = 3T(\lfloor n/3 \rfloor + 5) + n$ (Similar to $T(n) = 3T(\lfloor n/3 \rfloor) + n$)
 - When *n* is large, the difference between n/3 and (n/3 + 5) is insignificant.
 - Hence, can guess $O(n \lg n)$.
- Method 2: Prove loose upper and lower bounds on the recurrence and then reduce the range of uncertainty.
 - E.g., start with $T(n) = \Omega(n) \& T(n) = O(n^2)$.
 - Then lower the upper bound and raise the lower bound.

Recursion-tree Method

- Making a good guess is sometimes difficult with the substitution method.
- Use recursion trees to devise good guesses.
- Recursion Trees
 - Show successive expansions of recurrences using trees.
 - Keep track of the time spent on the subproblems of a divide and conquer algorithm.
 - Help organize the algebraic bookkeeping necessary to solve a recurrence.

Recursion Tree – Example

• Running time of Merge Sort:

$$T(n) = \Theta(1)$$
 if $n = 1$
 $T(n) = 2T(n/2) + \Theta(n)$ if $n > 1$

• Rewrite the recurrence as

$$T(n) = \mathbf{c}$$
 if $n = 1$
 $T(n) = 2T(n/2) + \mathbf{cn}$ if $n > 1$

c > 0: Running time for the base case and time per array element for the divide and combine steps.

Recursion Tree for Merge Sort

For the original problem, Each of the size n/2 problems we have a cost of *cn*, has a cost of cn/2 plus two plus two subproblems subproblems, each costing each of size (n/2) and T(n/4). cn running time T(n/2). Cost of divide and merge. cn/2cn/2T(n/2)T(n/2)T(n/4) T(n/4)T(n/4)T(n/4)**Cost of sorting** subproblems.

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.

- •Each level has total cost *cn*.
- •Each time we go down one level, the number of subproblems doubles, but the cost per subproblem halves
- \Rightarrow cost per level remains the same.
- •There are $\lg n + 1$ levels, height is $\lg n$. (Assuming n is a power of 2.)
 - •Can be proved by induction.
- •Total cost = sum of costs at each level = $(\lg n + 1)cn = cn\lg n + cn = \Theta(n \lg n)$.

Practice Examples

- Use the recursion-tree method to determine a guess for the recurrences
 - T(n) = 2T(n/2) + 1
 - $T(n) = 2T(n/2) + n^2$
 - $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$.
 - T(n) = T(n/3) + T(2n/3) + O(n).
 - $T(n) = T(n/10) + T(9n/10) + \Theta(n)$.
 - $T(n) = T(n-1) + T(n-2) + \Theta(1)$.

The Master Method

- Based on the Master theorem.
- "Cookbook" approach for solving recurrences of the form

$$T(n) = aT(n/b) + f(n)$$

- $a \ge 1$, b > 1 are constants.
- f(n) is asymptotically positive.
- *n/b* may not be an integer, but we ignore floors and ceilings.
- Requires memorization of three cases.

The Master Theorem

Theorem:

- Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and Let T(n) be defined on nonnegative integers by the recurrence T(n) = aT(n/b) + f(n), where we can replace n/b by $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. T(n) can be bounded asymptotically in three cases:
- 1. If $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if, for some constant c < 1 and all sufficiently large n, we have $a \cdot f(n/b) \le c f(n)$, then $T(n) = \Theta(f(n))$.

Recursion tree view

The Master Theorem

Theorem:

- Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and Let T(n) be defined on nonnegative integers by the recurrence T(n) = aT(n/b) + f(n), where we can replace n/b by $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. T(n) can be bounded asymptotically in three cases:
- 1. If $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if, for some constant c < 1 and all sufficiently large n, we have $a \cdot f(n/b) \le c f(n)$, then $T(n) = \Theta(f(n))$.

Master Method – Examples

- T(n) = 16T(n/4) + n
 - a = 16, b = 4, $n^{\log_b a} = n^{\log_4 16} = n^2$.
 - $f(n) = n = O(n^{\log_b a \varepsilon}) = O(n^{2-\varepsilon})$, where $\varepsilon = 1 \Rightarrow \text{Case 1}$.
 - Hence, $T(n) = \Theta(n^{\log_b a}) = \Theta(n^2)$.

- T(n) = T(3n/7) + 1
 - a = 1, b = 7/3, and $n^{\log_b a} = n^{\log_{7/3} 1} = n^0 = 1$
 - $f(n) = 1 = \Theta(n^{\log_b a}) \Longrightarrow \mathbf{Case 2}$.
 - Therefore, $T(n) = \Theta(n^{\log_b a} \lg n) = \Theta(\lg n)$

Master Method – Examples

- $T(n) = 3T(n/4) + n \lg n$
 - a = 3, b=4, thus $n^{\log_b a} = n^{\log_4 3} = O(n^{0.793})$
 - $f(n) = n \lg n = \Omega(n^{\log_4 3 + \varepsilon})$ where $\varepsilon \approx 0.2 \Rightarrow \text{Case 3}$.
 - Therefore, $T(n) = \Theta(f(n)) = \Theta(n \lg n)$.
- $T(n) = 2T(n/2) + n \lg n$
 - a = 2, b=2, $f(n) = n \lg n$, and $n^{\log_b a} = n^{\log_2 2} = n$
 - f(n) is asymptotically larger than $n^{\log_b a}$, but not polynomially larger. The ratio $\lg n$ is asymptotically less than n^{ε} for any positive ε . Thus, the Master Theorem doesn't apply here.

Master Theorem – What it means?

- Case 1: If $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
 - $n^{\log_b a} = a^{\log_b n}$: Number of leaves in the recursion tree.
 - $f(n) = O(n^{\log_b a \varepsilon}) \Rightarrow$ Sum of the cost of the nodes at each internal level asymptotically smaller than the cost of leaves by a *polynomial* factor.
 - Cost of the problem dominated by leaves, hence cost is $\Theta(n^{\log_b a})$.

Master Theorem – What it means?

- Case 2: If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
 - $n^{\log_b a} = a^{\log_b n}$: Number of leaves in the recursion tree.
 - $f(n) = \Theta(n^{\log_b a}) \Rightarrow$ Sum of the cost of the nodes at each level asymptotically the same as the cost of leaves.
 - There are $\Theta(\lg n)$ levels.
 - Hence, total cost is $\Theta(n^{\log_b a} \lg n)$.

Master Theorem – What it means?

• Case 3: If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if, for some constant c < 1 and all sufficiently large n, we have $a \cdot f(n/b) \le c f(n)$, then $T(n) = \Theta(f(n))$.

- $n^{\log_b a} = a^{\log_b n}$: Number of leaves in the recursion tree.
- $f(n) = \Omega(n^{\log_b a + \varepsilon}) \Rightarrow$ Cost is dominated by the root. Cost of the root is asymptotically larger than the sum of the cost of the leaves by a polynomial factor.
- Hence, cost is $\Theta(f(n))$.

Practice Examples

- Use the Master's method to solve the following recurrences. If a recurrence can not be solved by the master's method, state the appropriate reason for it.
 - T(n) = 4T(n/2) + n
 - $T(n) = 4T(n/2) + n^2$
 - $T(n) = 16T(n/2) + n^2$
 - $T(n) = 7T(n/2) + n^2$
 - $T(n) = 2T(\lfloor n/4 \rfloor) + \Theta(1)$
 - $T(n) = 2T(\lfloor n/4 \rfloor) + \sqrt{n}$
 - $T(n) = 2T(\lfloor n/4 \rfloor) + \Theta(n)$
 - $T(n) = 2T(\lfloor n/4 \rfloor) + n^2$

Practice Examples

- Use the Master's method to solve the following recurrences. If a recurrence can not be solved by the master's method, state the appropriate reason for it.
 - $T(n) = T(3n/7) + \Theta(1)$
 - $T(n) = 3T(\lfloor n/4 \rfloor) + n \log n$
 - $T(n) = T(n/2) + \Theta(1)$
 - $T(n) = 3T(\lfloor n/2 \rfloor) + \Theta(n)$
 - $T(n) = 4T(\lfloor n/2 \rfloor) + n^2 \log n$

Iteration Method

- A "brute force" method of solving a recurrence relation.
- It is quite similar to the recursion tree method (summation is same)
- Usually considered for recurrences involving subtraction to reduce the problem size
- The general idea is to iteratively substitute the value of the recurrent part of the equation until a pattern (usually a summation) is noticed which can be used to evaluate the recurrence.

Example: Iteration Method

Given recurrence,
$$T(n) = T(n-1) + 1$$
 and $T(1) = \theta(1)$.

$$T(n) = T(n-1) + 1$$

$$= (T(n-2) + 1) + 1 = (T(n-3) + 1) + 1 + 1$$

$$= T(n-4) + 4 = T(n-5) + 1 + 4$$

$$= T(n-5) + 5 = T(n-k) + k$$
When $k = n-1$

$$T(n-k) = T(1) = \theta(1)$$

$$T(n) = \theta(1) + (n-1)$$

$$= 1 + n - 1$$

$$= n = \theta(n)$$
.

Iteration Method

T(n) = 1 if n=1= 2T (n-1) if n>1T(n) = 2T(n-1) $= 2[2T (n-2)] = 2^2 T (n-2)$ $=4[2T (n-3)] = 2^3T (n-3)$ $= 8[2T (n-4)] = 2^4T (n-4)$ (Eq.1) Repeat the procedure for i times $T(n) = 2^{i} T(n-i)$ Put n - i = 1 or i = n - 1 in (Eq.1) $T(n) = 2^{n-1} T(1)$ $= 2^{n-1} .1$ {T (1) =1given}

Iteration Method

•
$$T(n) = T(n-1) + n$$

• $T(n) = n + (n-1) + T(n-2)$
• $= n + (n-1) + (n-2) + T(n-3)$
•
•
• $T(n) = n + (n-1) + (n-2) + ... + [n - (n-2)] + [n - (n-1)]$
• $T(n) = n + (n-1) + (n-2) + ... + [n-(n-2)] + [n-(n-1)]$
• $T(n) = n + (n-1) + (n-2) + ... + [n-(n-2)] + [n-(n-1)]$
• $T(n) = n + (n-1) + (n-2) + ... + [n-(n-2)] + [n-(n-1)]$
• $T(n) = n + (n-1) + (n-2) + ... + [n-(n-2)] + [n-(n-1)]$
• $T(n) = n + (n-1) + (n-2) + ... + [n-(n-2)] + [n-(n-1)]$
• $T(n) = n + (n-1) + (n-2) + ... + [n-(n-2)] + [n-(n-1)]$
• $T(n) = n + (n-1) + (n-2) + ... + [n-(n-2)] + [n-(n-1)]$
• $T(n) = n + (n-1) + (n-2) + ... + [n-(n-2)] + [n-(n-1)]$
• $T(n) = n + (n-1) + (n-2) + ... + [n-(n-2)] + [n-(n-1)]$

 $=O(n^2)$

Changing the variable

Sometimes reucurrences can be reduced to simpler ones by *changing variables*

• Example: Solve $T(n) = 2T(\sqrt{n}) + \log n$

Let
$$m = \log n \Rightarrow 2^m = n \Rightarrow \sqrt{n} = 2^{m/2}$$

$$T(n) = 2T(\sqrt{n}) + \log n \Rightarrow T(2^m) = 2T(2^{m/2}) + m$$
Let $S(m) = T(2^m)$

$$T(2^m) = 2T(2^{m/2}) + m \Rightarrow S(m) = 2S(m/2) + m$$

$$\Rightarrow S(m) = O(m \log m)$$

$$\Rightarrow T(n) = T(2^m) = S(m) = O(m \log m) = O(\log n \log \log n)$$

Practice Examples:
$$T(n) = 2T(\sqrt{n}) + 1$$

 $T(n) = 2T(\sqrt{n}) + n$

Some more recurrences

Some important/typical bounds on recurrences not covered by master method:

- Logarithmic: $\Theta(\log n)$
 - Recurrence: T(n) = 1 + T(n/2)
 - Typical example: Recurse on half the input (and throw half away)
 - Variations: T(n) = 1 + T(99n/100)
- Linear: $\Theta(N)$
 - Recurrence: T(n) = 1 + T(n-1)
 - Typical example: Single loop
 - Variations: T(n) = 1 + 2T(n/2), T(n) = n + T(n/2), T(n) = T(n/5) + T(7n/10 + 6) + n
- Quadratic: $\Theta(n^2)$
 - Recurrence: T(n) = n + T(n-1)
 - Typical example: Nested loops
- Exponential: $\Theta(2^n)$
 - Recurrence: T(n) = 2T(n-1)