Q1

Let ${\mathbb P}$ denote the vector space of all polynomials in the variable x having real coefficients.

Let

$$V = \{a_0 + a_0x + a_1x^2 + a_2x^3 \mid a_0, a_1, a_2 \in \mathbb{R}\}\$$

Let $T:V\to\mathbb{P}$ be the mapping defined by

$$T(p(x)) = p'(x), \quad \forall p(x) \in V.$$

Correct answers:

- dim ker T = 0
- dim range T = 3

Justification:

$$p'(x) = 0 \iff a_0 + 2a_1x + 3a_2x^2 = 0 \iff a_0 = a_1 = a_2 = 0$$

Therefore
$$\ker T = \{0\} \implies \dim \ker T = 0.$$

$$V = \operatorname{Span}\{1 + x, x^2, x^3\} \implies \dim V = 3.$$

Therefore dim range $T = \dim V - \dim \ker T = 3 - 0 = 0$.

Let $\mathcal{C}(\mathbb{R})$ be the vector space of all continuous real valued functions defined on \mathbb{R} .

Let $W = \operatorname{Span}\{1, \sin x, \sin^2 x, \cos x, \cos^2 x\} \subset V$.

Let $T:W \to \mathbb{R}$ be the linear transformation defined by

$$T(f) = f(0), \quad \forall f \in W.$$

Correct statement:

dim ker T = 3, dim range T = 1

Justification:

As W contains all the constant functions, range $T=\mathbb{R}.$ Hence $\dim \operatorname{range} T=1.$

It should be intuitively obvious that $1, \sin x, \sin^2 x$ and $\cos x$ are linearly independent, but let us prove it.

Suppose $f(x) = a + b \sin x + c \cos x + d \sin^2 x = 0$, where $a, b, c, d \in \mathbb{R}$.

As f is the zero function, f(0) = 0. Hence a + c = 0. Similarly $f(\pi) = 0 \implies a - c = 0$. Therefore a = c = 0.

Therefore $f(x) = b \sin x + d \sin^2 x$. Since $f(\pi/2) = 1$, we obtain b + d = 0. Similarly $f(-\pi/2) = 0 \implies d - b = 0$. Therefore b = d = 0.

Let $V=M_{m\times n}(\mathbb{R})$ be the vector space of all $m\times n$ matrices having real entries, where $m,n\in\mathbb{N}$ and n>1.

Let $T:V\to\mathbb{R}^m$ be defined by

T(A) =the sum of the first and last columns of $A, \forall A \in V.$

For example, if m = 3, n = 4, and

$$A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 7 & 6 & 2 & 2 \\ 1 & 2 & 1 & 7 \end{bmatrix}, \text{ then } T(A) = \begin{bmatrix} 3 \\ 9 \\ 8 \end{bmatrix}$$

Let B be the matrix of T with respect to some bases $\mathcal B$ and $\mathcal C$ respectively.

Correct statement: B is an element of $M_{m \times mn}(\mathbb{R})$

Justification:

We know that dim V = mn and dim $\mathbb{R}^m = m$.

It should be intuitively obvious that the matrix of T is of size $m \times mn$, but let us prove it.

Let $\mathcal{B} = \{b_1, b_2, \dots, b_{mn}\}$ be any basis of V and let $\mathcal{C} = \{c_1, \dots, c_m\}$ be a basis of \mathbb{R}^m . Then

$$T_{\mathcal{B},\mathcal{C}} = [[T(b_1)]_{\mathcal{C}} \quad [T(b_2)]_{\mathcal{C}} \quad \dots \quad [T(b_{mn})]_{\mathcal{C}}]$$

Clearly, $T_{\mathcal{B},\mathcal{C}}$ has mn columns. For each $j=1,\ldots,mn$, $[T(b_i)]_{\mathcal{C}} \in \mathbb{R}^m$. Therefore $T_{\mathcal{B},\mathcal{C}}$ has m rows.

Q4

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

Let $B = A^2$.

Correct statement:

 \blacksquare dim col B=1, dim null B=2, dim col A=2, dim null A=1

Justification:

As the last two columns of A are non-zero and are not scalar multiples of each other, dim col A=2. By the rank-nullity theorem for matrices

$$\dim \operatorname{null} A = 3 - \dim \operatorname{col} A = 1$$

Even without explicit calculation, just by recalling the definition of the matrix product $A\mathbf{x}$, it is easy to see that A^2 has only one non-zero column, and therefore

$$\dim \operatorname{col} A^2 = 1$$
, $\dim \operatorname{null} A^2 = 3 - 1 = 2$