文献阅读与科研展示

第三组-王硕 吕志远 赵万东 孙士瑶 吕丰源 苏光烨 2021.10.09

- 1.背景介绍
- 2.文献讲解-Roche公司的454技术(合成法)
- 3.文献讲解-ABI公司的SOLiD技术(连接法)

一、背景介绍

vuan的快速会议

会议号: 520 375 152

开始录制时间: 2021/10/08 21:09:41

创建者: vuan

二、罗氏454技术

nature Vol 437|15 September 2005|doi:10.1038/nature03959

ARTICLES

Genome sequencing in microfabricated high-density picolitre reactors

Marcel Margulies^{1*}, Michael Egholm^{1*}, William E. Altman¹, Said Attiya¹, Joel S. Bader¹, Lisa A. Bemben¹, Jan Berka¹, Michael S. Braverman¹, Yi-Ju Chen¹, Zhoutao Chen¹, Scott B. Dewell¹, Lei Du¹, Joseph M. Fierro¹, Xavier V. Gomes¹, Brian C. Godwin¹, Wen He¹, Scott Helgesen¹, Chun He Ho¹, Gerard P. Irzyk¹, Szilveszter C. Jando¹, Maria L. I. Alenquer¹, Thomas P. Jarvie¹, Kshama B. Jirage¹, Jong-Bum Kim¹, James R. Knight¹, Janna R. Lanza¹, John H. Leamon¹, Steven M. Lefkowitz¹, Ming Lei¹, Jing Li¹, Kenton L. Lohman¹, Hong Lu¹, Vinod B. Makhijani¹, Keith E. McDade¹, Michael P. McKenna¹, Eugene W. Myers², Elizabeth Nickerson¹, John R. Nobile¹, Ramona Plant¹, Bernard P. Puc¹, Michael T. Ronan¹, George T. Roth¹, Gary J. Sarkis¹, Jan Fredrik Simons¹, John W. Simpson¹, Maithreyan Srinivasan¹, Karrie R. Tartaro¹, Alexander Tomasz³, Kari A. Vogt¹, Greg A. Volkmer¹, Shally H. Wang¹, Yong Wang¹, Michael P. Weiner⁴, Pengguang Yu¹, Richard F. Begley¹ & Jonathan M. Rothberg¹

¹454 Life Sciences Corp., 20 Commercial Street, Branford, Connecticut 06405, USA. ²University of California, Berkeley, California 94720, USA. ³Laboratory of Microbiology, The Rockefeller University, New York, New York 10021, USA. ⁴The Rothberg Institute for Childhood Diseases, 530 Whitfield Street, Guilford, Connecticut 06437, USA. *These authors contributed equally to this work.

Sample preparation top left

Genomic DNA is isolated, fragmented, ligated to adapters and separated into single strands

top right

Emulsion-based PCR

bottom right

The emulsion is broken, the DNA strands are denatured, and beads carrying single-stranded DNA clones are deposited into wells of a fifibre-optic slide

bottom left

Smaller beads carrying immobilized enzymes required for pyrophosphate sequencing are deposited into each well

Microscope photograph of emulsion showing droplets containing a bead and empty droplets. The thin arrow points to a 28-mm bead; the thick arrow points to an approximately 100-mm droplet.

Scanning electron micrograph of a portion of a fibre-optic slide, showing fibre-optic cladding and wells before bead deposition.

Fibre-optic core diameter: 44 um

Fibre-optic core cladding: 2–3

Fibre-optic core depth: 55 um

Fibre-optic core centre-to-centre distance : 50 um

The well density 480 wells um⁻²

The slide contain 1.6 million wells

The flow chamber designed to create a 300-um high channel

Sequencing instrument.

- (a)流体组件
- (b)一个流动室,包括含有孔的光纤载玻片
- (c)A CCD 电荷耦合器件传感器 camera-based imaging assembly

三、SOLiD技术

Accurate Multiplex Polony Sequencing of an Evolved Bacterial Genome

Jay Shendure et al. Science **309**, 1728 (2005); DOI: 10.1126/science.1117389

¹Department of Genetics, Harvard Medical School,波士顿哈佛医学院遗传学系 Boston, MA 02115, USA. ²Department of Genetics, ³Howard Hughes Medical Institute, Washington University, St. Louis, MO 63110, USA.

*These authors contributed equally to this work. †To whom correspondence should be addressed. E-mail: shendure@alumni.princeton.edu (J.S.), gregory_porreca@student.hms.harvard.edu (G.J.P.)

SOLiD流程1 打断,构建文库

SOLiD流程

- •fragment可以结合特定bead,不是所有bead都有结合的 fragment
- •结合有fragment的bead,通过离心筛选出来,然后结合 到glass slide

SOLiD流程

SOLiD流程

First, gather all the good beads... P2 oligonucleotide, corresponds to end adapter on fragments POLYSTY-RENE BEAD COATED WITH P2 PCR beads now bound to large bead

SOLiD流程

SOLiD流程

Probe Anatomy

Two actual bases, each dinucleotide permutation corresponds to a dye color (red, green, blue, or yellow/orange) 16 possible dinucleotide permutations

Universal bases, bind to any of the 4 nucleotides Universal bases with fluorescent dye, measure for fluorescence and cleaved in each cycle, so attached probe is only 5 nucleotides long

带有不同荧光标记的8碱基探针(different fluorescently dyed oligonucleotide 8-mer bases)

- •前2个碱基是真实的碱基。组合起来可以有16种可能,AA\AT\AG\AC, GG\GA\GT\GC......每种排列对应一种荧光颜色(红、绿、蓝、黄)。**注意!**也就是说每种颜色可以对应4种排列。
- •中间3个通用碱基,
- •后3个有荧光标记的碱基

SOLiD流程

- 1.加上8碱基探针后:
- 2.用激光激发荧光。
- 3.用化学方法剪切掉后面3个荧光标记的碱基,只留下前5个碱基和游离的磷酸基团,以便加上第二个探针。

SOLiD流程

Result of one round → incomplete data

- 1.加上8碱基探针后:
- 2.用激光激发荧光。
- 3.用化学方法剪切掉后面3个荧光标记的碱基,只留下前5个碱基和游离的磷酸基团,以便加上第二个探针。

SOLID流程

Complete more cycles!

But we only have fluorescence measurements for every 5th base....

SOLID流程

The entire process is repeated four times, each time with the primer offset by 1 base

偏移1个碱基,再测4轮

- 1.接下来,偏移1个、2个、3个、4个碱基,重复步骤1。也就是会测5轮
- 2.最后通过荧光颜色来判断
- 3.第一个已知的碱基来自5'或3'的adapter,又已知 荧光颜色,就可以推出另外一个碱基

优缺点

a) 优点:

- •目前二代测序技术中准确度最高
- •除了测序和重测序之外,还能进行全基因组表达图谱分析、SNP、microRNA、甲基化等分析。

b) 缺点:

- •读长短,拼接复杂
- •双碱基对应一个荧光信号,如果发生读码错误,将发生连锁读码反应。

二者区别

- ePCR的过程中,SOLiD采用的磁珠直径更小,仅有1微米;而454使用两种磁珠,小磁珠上有固定酶,大磁珠上有reads
- SOLiD的独特之处在于没有使用常用的DNA聚合酶,而是使用DNA连接酶

相同之处

- 均使用ePCR技术
- 均使用磁珠进行扩增

THANKS

OMICS FOR ALL 基 因 科 技 造 福 人 类