Aproximación por mínimos cuadrados

AIUSTE CONTINUO POLINÓMICO

Manuel Carlevaro

Departamento de Ingeniería Mecánica

Grupo de Materiales Granulares - UTN FRLP

manuel.carlevaro@gmail.com

Cálculo Avanzado • 2023 ∆ · X¬IATEX · ©⊕⊚ $f(x) \in \mathbf{C}[a,b]$, hallar $P_n(x)$ que minimize:

$$\int_a^b [f(x) - P_n(x)]^2 dx$$

 $f(x) \in \mathbf{C}[a,b]$, hallar $P_n(x)$ que minimize:

$$\int_a^b [f(x) - P_n(x)]^2 dx$$

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = \sum_{k=1}^n a_k x^k$$

$$E \equiv E_2(a_0, a_1, \dots, a_n) = \int_a^b \left(f(x) - \sum_{k=0}^n a_k x^k \right)^2 dx$$

 $f(x) \in \mathbf{C}[a,b]$, hallar $P_n(x)$ que minimize:

$$\int_a^b [f(x) - P_n(x)]^2 dx$$

$$\frac{\partial E}{\partial a_i} = 0$$
 para cada $j = 0, 1, \cdots, n$

$$E = \int_{a}^{b} [f(x)]^{2} dx - 2 \sum_{k=0}^{n} a_{k} \int_{a}^{b} x^{k} f(x) dx + \int_{a}^{b} \left(\sum_{k=0}^{n} a_{k} x^{k} \right)^{2} dx$$

$$\frac{\partial E}{\partial a_j} = -2 \int_a^b x^j f(x) dx + 2 \sum_{k=0}^n a_k \int_a^b x^{j+k} dx$$

Ecuaciones normales lineales (n + 1):

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = \sum_{k=0}^{n} a_k x^k$$

$$E \equiv E_2(a_0, a_1, \dots, a_n) = \int_a^b \left(f(x) - \sum_{k=0}^n a_k x^k \right)^2 dx$$

$$\sum_{k=0}^n a_k \int_a^b x^{j+k} \, dx = \int_a^b x^j f(x) \, dx$$
 para cada $j=0,1,\cdots,n$.

Ejemplo: aproximar $f(x) = \sin \pi x$ por un polinomio de grado 2 en [0,1]. Ecuaciones normales:

$$a_0 \int_0^1 1 \, dx + a_1 \int_0^1 x \, dx + a_2 \int_0^1 x^2 \, dx = \int_0^1 \sin \pi x \, dx$$

$$a_0 \int_0^1 x \, dx + a_1 \int_0^1 x^2 \, dx + a_2 \int_0^1 x^3 \, dx = \int_0^1 x \sin \pi x \, dx$$

$$a_0 \int_0^1 x^2 \, dx + a_1 \int_0^1 x^3 \, dx + a_2 \int_0^1 x^4 \, dx = \int_0^1 x^2 \sin \pi x \, dx$$

$$a_0 + \frac{1}{2}a_1 + \frac{1}{3}a_2 = \frac{2}{\pi}$$

$$\frac{1}{2}a_0 + \frac{1}{3}a_1 + \frac{1}{4}a_2 = \frac{1}{\pi}$$

$$\frac{1}{3}a_0 + \frac{1}{4}a_1 + \frac{1}{5}a_2 = \frac{\pi^2 - 4}{\pi^3}$$

Solución
$$a_0 = rac{12\pi^2 - 120}{\pi^3} pprox -0.050465$$

$$a_1 = -a2 = \frac{720 - 60\pi^2}{\pi^3} \approx 4.12251$$

▶ matriz de Hilbert

$$H_{ij} = \int_{a}^{b} x^{j+k+1} dx = \frac{b^{j+k+1} - a^{j+k+1}}{j+k+1}$$
$$\mathbf{H} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{bmatrix}$$

 $cond(\boldsymbol{H}) \approx 524.05678$

▶ matriz de Hilbert

$$H_{ij} = \int_{a}^{b} x^{j+k+1} dx = \frac{b^{j+k+1} - a^{j+k+1}}{j+k+1}$$
$$H = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{bmatrix}$$
$$cond(H) \approx 524.05678$$

 $lackbox{ No es fácil obtener } P_{n+1}(x)$ si ya tenemos $P_n(x)$

▶ matriz de Hilbert

$$H_{ij} = \int_{a}^{b} x^{j+k+1} dx = \frac{b^{j+k+1} - a^{j+k+1}}{j+k+1}$$
$$H = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{bmatrix}$$

 $cond(\boldsymbol{H}) \approx 524.05678$

ightharpoonup No es fácil obtener $P_{n+1}(x)$ si ya tenemos $P_n(x)$

Definición: Funciones linealmente independientes.

Se dice que el conjunto de funciones $\{\phi_0, \dots, \phi_n\}$ es **linealmente independiente** (LI) en [a, b] si

$$P(x) = c_0\phi_0(x) + c_1\phi_1(x) + \cdots + c_n\phi_n(x) = 0, \forall x \in [a,b]$$

entonces $c_0 = c_1 = \cdots = c_n = 0$. De lo contrario, se dice que el conjunto de funciones es **linealmente dependiente**.

▶ matriz de Hilbert

$$H_{ij} = \int_{a}^{b} x^{j+k+1} dx = \frac{b^{j+k+1} - a^{j+k+1}}{j+k+1}$$
$$\mathbf{H} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{bmatrix}$$

 $cond(\boldsymbol{H}) \approx 524.05678$

No es fácil obtener $P_{n+1}(x)$ si ya tenemos $P_n(x)$

Definición: Funciones linealmente independientes.

Se dice que el conjunto de funciones $\{\phi_0, \cdots, \phi_n\}$ es **linealmente independiente** (LI) en [a,b] si

$$P(x)=c_0\phi_0(x)+c_1\phi_1(x)+\cdots+c_n\phi_n(x)=0, \forall x\in[a,b]$$
 entonces $c_0=c_1=\cdots=c_n=0$. De lo contrario, se dice que el conjunto de funciones es **linealmente dependiente**.

Teorema: Polinomios LI.

Si para cada $j=0,1,\cdots,n,$ $\phi_j(x)$ es un polinomio de grado j, entonces el conjunto $\{\phi_o,\cdots,\phi_n\}$ es LI en cualquier intervalo [a,b].

Ejemplo. Si $\phi_0(x) = 2$, $\phi_1(x) = x - 3$, $\phi_2(x) = x^2 + 2x + 7$ y $Q(x) = a_0 + a_1x + a_2x^2$, mostrar que existen constantes c_0, c_1, c_2 tales que $Q(x) = c_0\phi_0(x) + c_1\phi_1(x) + c_2\phi_2(x)$.

Ejemplo. Si $\phi_0(x)=2, \phi_1(x)=x-3, \phi_2(x)=x^2+2x+7$ y $Q(x)=a_0+a_1x+a_2x^2$, mostrar que existen constantes c_0, c_1, c_2 tales que $Q(x)=c_0\phi_0(x)+c_1\phi_1(x)+c_2\phi_2(x)$.

Por el teorema anterior, $\{\phi_0,\phi_1,\phi_2\}$ es LI en cualquier [a,b]. Además:

$$1 = \frac{1}{2}\phi_0(x)$$

$$x = \phi_1(x) + 3 = \phi_1(x) + \frac{3}{2}\phi_0(x)$$

$$x^2 = \phi_2(x) - 2x - 7$$

$$= \phi_2(x) - 2\left[\phi_1(x) + \frac{3}{2}\phi_0(x)\right] - 7\left[\frac{1}{2}\phi_0(x)\right]$$

$$= \phi_2(x) - 2\phi_1(x) - \frac{13}{2}\phi_0(x)$$

Ejemplo. Si $\phi_0(x) = 2$, $\phi_1(x) = x - 3$, $\phi_2(x) = x^2 + 2x + 7$ y $Q(x) = a_0 + a_1x + a_2x^2$, mostrar que existen constantes c_0, c_1, c_2 tales que $Q(x) = c_0\phi_0(x) + c_1\phi_1(x) + c_2\phi_2(x)$.

Por el teorema anterior, $\{\phi_0,\phi_1,\phi_2\}$ es LI en cualquier [a,b]. Además:

$$1 = \frac{1}{2}\phi_0(x)$$

$$x = \phi_1(x) + 3 = \phi_1(x) + \frac{3}{2}\phi_0(x)$$

$$x^2 = \phi_2(x) - 2x - 7$$

$$= \phi_2(x) - 2\left[\phi_1(x) + \frac{3}{2}\phi_0(x)\right] - 7\left[\frac{1}{2}\phi_0(x)\right]$$

$$= \phi_2(x) - 2\phi_1(x) - \frac{13}{2}\phi_0(x)$$

Entonces:
$$Q(x) = a_0 \left[\frac{1}{2} \phi_0 \right] + a_1 \left[\phi_1(x) + \frac{3}{2} \phi_0(x) \right]$$

$$+ a_2 \left[\phi_2(x) - 2\phi_1(x) - \frac{13}{2} \phi_0(x) \right]$$

$$= \left(\frac{1}{2} a_0 + \frac{3}{2} a_1 - \frac{13}{2} a_2 \right) \phi_0(x)$$

$$+ \left[a_1 - 2a_2 \right] \phi_1(x) + a_2 \phi_2(x)$$

Ejemplo. Si $\phi_0(x)=2, \phi_1(x)=x-3, \phi_2(x)=x^2+2x+7$ y $Q(x)=a_0+a_1x+a_2x^2$, mostrar que existen constantes c_0, c_1, c_2 tales que $Q(x)=c_0\phi_0(x)+c_1\phi_1(x)+c_2\phi_2(x)$.

Por el teorema anterior, $\{\phi_0,\phi_1,\phi_2\}$ es LI en cualquier Entonces: [a,b]. Además:

$$1 = \frac{1}{2}\phi_0(x)$$

$$x = \phi_1(x) + 3 = \phi_1(x) + \frac{3}{2}\phi_0(x)$$

$$x^2 = \phi_2(x) - 2x - 7$$

$$= \phi_2(x) - 2\left[\phi_1(x) + \frac{3}{2}\phi_0(x)\right] - 7\left[\frac{1}{2}\phi_0(x)\right]$$

$$= \phi_2(x) - 2\phi_1(x) - \frac{13}{2}\phi_0(x)$$

$$Q(x) = a_0 \left[\frac{1}{2} \phi_0 \right] + a_1 \left[\phi_1(x) + \frac{3}{2} \phi_0(x) \right]$$

$$+ a_2 \left[\phi_2(x) - 2\phi_1(x) - \frac{13}{2} \phi_0(x) \right]$$

$$= \left(\frac{1}{2} a_0 + \frac{3}{2} a_1 - \frac{13}{2} a_2 \right) \phi_0(x)$$

$$+ \left[a_1 - 2a_2 \right] \phi_1(x) + a_2 \phi_2(x)$$

Teorema:.

 $de \phi_0(x), \phi_1(x), \cdots, \phi_n(x).$

Si Π_n denota el conjunto de todos los polinomios de grado a lo sumo n, y $\{\phi_0(x), \phi_1(x), \cdots, \phi_n(x)\}$ es un conjunto de polinomios LI en Π_n , entonces **cualquier** polinomio en Π_n se puede escribir como combinación lineal

Una función integrable w se denomina **función de peso** en el intervalo I si $w(x) \geq 0, \forall x \in I$, pero $w(x) \not\equiv 0$ en cualquier subintervalo de I

Una función integrable w se denomina **función** de peso en el intervalo I si $w(x) \geq 0, \forall x \in I$, pero $w(x) \not\equiv 0$ en cualquier subintervalo de I

Ejemplo:

$$w(x) = \frac{1}{\sqrt{1 - x^2}}$$

Una función integrable w se denomina **función de peso** en el intervalo I si $w(x) \geq 0, \forall x \in I$, pero $w(x) \not\equiv 0$ en cualquier subintervalo de I

Ejemplo:

$$w(x) = \frac{1}{\sqrt{1 - x^2}}$$

Definición: Funciones ortogonales.

Se dice que $\{\phi_0,\phi_1,\cdots,\phi_n\}$ es un **conjunto ortogonal de funciones** en el intervalo [a,b] respecto de la función de peso w(x) si

$$\langle \phi_k, \phi_j \rangle = \int_a^b w(x)\phi_k(x)\phi_j(x) dx = \begin{cases} 0, & j \neq k, \\ \alpha_j > 0, & j = k \end{cases}$$

Si además $\alpha_j=1$ para cada $j=0,1,2,\cdots,n$, se dice que el conjunto es **ortonormal**.

Una función integrable w se denomina **función de peso** en el intervalo I si $w(x) \geq 0, \forall x \in I$, pero $w(x) \not\equiv 0$ en cualquier subintervalo de I

Ejemplo:

$$w(x) = \frac{1}{\sqrt{1 - x^2}}$$

Definición: Funciones ortogonales.

Se dice que $\{\phi_0,\phi_1,\cdots,\phi_n\}$ es un **conjunto ortogonal de funciones** en el intervalo [a,b] respecto de la función de peso w(x) si

$$\langle \phi_k, \phi_j \rangle = \int_a^b w(x)\phi_k(x)\phi_j(x) dx = \begin{cases} 0, & j \neq k, \\ \alpha_j > 0, & j = k \end{cases}$$

Si además $\alpha_j = 1$ para cada $j = 0, 1, 2, \dots, n$, se dice que el conjunto es **ortonormal**.

Ejemplo: $\{\cos nx, \sin mx\}, n, m=0,1,\cdots$ es ortogonal en $[-\pi,\pi]$ con w(x)=1:

$$\langle \cos nx, \cos mx \rangle = 0$$
 $\langle \cos nx, \cos nx \rangle = \pi$
 $\langle \sin nx, \sin mx \rangle = 0$ $\langle \sin nx, \sin nx \rangle = \pi$
 $\langle \cos nx, \cos nx \rangle = \pi$

Teorema:.

Si $\{\phi_0, \dots, \phi_n\}$ es un conjunto ortogonal de funciones en un intervalo [a,b] respecto de la función de peso w(x), entonces la aproximación por mínimos cuadrados para f en [a,b] respecto de w es:

$$P(x) = \sum_{j=0}^{n} a_j \phi_j(x)$$

donde para cada $j = 0, 1, \dots, n$:

$$a_j = \frac{1}{\alpha_j} \langle f, \phi_j \rangle$$

Teorema:.

Si $\{\phi_0, \dots, \phi_n\}$ es un conjunto ortogonal de funciones en un intervalo [a,b] respecto de la función de peso w(x), entonces la aproximación por mínimos cuadrados para f en [a,b] respecto de w es:

$$P(x) = \sum_{j=0}^{n} a_j \phi_j(x)$$

donde para cada $j = 0, 1, \dots, n$:

$$a_j = \frac{1}{\alpha_j} \langle f, \phi_j \rangle$$

Teorema:.

El conjunto de polinomios $\{\phi_0, \phi_1, \cdots, \phi_n\}$ definido de la siguiente forma es ortogonal en [a, b] respecto de la función de peso w(x):

$$\phi_0(x) \equiv 1, \ \phi_1(x) = x - B_1, \forall x \in [a, b]$$

donde

$$B_1 = \frac{\langle x\phi_0, \phi_0 \rangle}{\langle \phi_0, \phi_0 \rangle}$$

y cuando $k \geq 2$:

$$\phi_k(x) = (x - B_k)\phi_{k-1}(x) - C_k\phi_{k-2}(x), \forall x \in [a, b]$$

donde

$$B_k = \frac{\langle x\phi_{k-1}, \phi_{k-1}\rangle}{\langle \phi_{k-1}, \phi_{k-1}\rangle} \qquad \bigg| \qquad C_k = \frac{\langle x\phi_{k-1}, \phi_{k-2}\rangle}{\langle \phi_{k-2}, \phi_{k-2}\rangle}$$

(Proceso de Gram-Schmidt)

 $\{P_n(x)\}$ es ortogonal en [-1,1] con $w(x)\equiv 1.$ Usando Gram-Schmidt con $P_0(x)\equiv 1:$

$$B_1 = \frac{\int_{-1}^1 x \, dx}{\int_{-1}^1 dx} = 0, \ P_1(x) = (x - B_1)P_0(x) = x$$

 $\{P_n(x)\}$ es ortogonal en [-1,1] con $w(x)\equiv 1$. Usando Gram-Schmidt con $P_0(x)\equiv 1$:

$$B_1 = \frac{\int_{-1}^1 x \, dx}{\int_{-1}^1 dx} = 0, \ P_1(x) = (x - B_1)P_0(x) = x$$

Luego:

$$B_2 = \frac{\int_{-1}^1 x^3 dx}{\int_{-1}^1 x^2 dx} = 0, \ C_2(x) = \frac{\int_{-1}^1 x^2 dx}{\int_{-1}^1 1 dx} = \frac{1}{3}$$

$$P_2(x) = (x - B_2)P_1(x) - C_2P_0(x)$$
$$= (x - 0)x - \frac{1}{3}1$$
$$= x^2 - \frac{1}{3}$$

 $\{P_n(x)\}$ es ortogonal en [-1,1] con $w(x)\equiv 1$. Usando Gram-Schmidt con $P_0(x)\equiv 1$:

$$B_1 = \frac{\int_{-1}^1 x \, dx}{\int_{-1}^1 dx} = 0, \ P_1(x) = (x - B_1)P_0(x) = x$$

Luego:

$$B_2 = \frac{\int_{-1}^1 x^3 dx}{\int_{-1}^1 x^2 dx} = 0, C_2(x) = \frac{\int_{-1}^1 x^2 dx}{\int_{-1}^1 1 dx} = \frac{1}{3}$$

$$P_2(x) = (x - B_2)P_1(x) - C_2P_0(x)$$

$$= (x - 0)x - \frac{1}{3}1$$

$$= x^2 - \frac{1}{3}$$

$$P_3(x) = xP_2(x) - \frac{4}{15}P_1(x) = x^3 - \frac{3}{5}x$$

$$P_4(x) = x^4 - \frac{6}{7}x^2 + \frac{3}{35}, P_5(x) = x^5 - \frac{10}{9}x^3 + \frac{5}{21}x$$

 $\{P_n(x)\}$ es ortogonal en [-1,1] con $w(x)\equiv 1.$ Usando Gram-Schmidt con $P_0(x)\equiv 1:$

$$B_1 = \frac{\int_{-1}^1 x \, dx}{\int_{-1}^1 dx} = 0, \ P_1(x) = (x - B_1)P_0(x) = x$$

Luego:

$$B_2 = \frac{\int_{-1}^1 x^3 dx}{\int_{-1}^1 x^2 dx} = 0, C_2(x) = \frac{\int_{-1}^1 x^2 dx}{\int_{-1}^1 1 dx} = \frac{1}{3}$$

$$P_2(x) = (x - B_2)P_1(x) - C_2P_0(x)$$
$$= (x - 0)x - \frac{1}{3}1$$
$$= x^2 - \frac{1}{3}$$

$$P_3(x) = xP_2(x) - \frac{4}{15}P_1(x) = x^3 - \frac{3}{5}x$$

$$P_4(x) = x^4 - \frac{6}{7}x^2 + \frac{3}{35}, P_5(x) = x^5 - \frac{10}{9}x^3 + \frac{5}{21}x$$

Ejemplo: Python

```
1 #!/usr/bin/env pvthon3
 3 import matplotlib.pyplot as plt
 4 plt.stvle.use('../../utils/clases.mplstvle')
 5 import numpy as np
 6 import sympy as sym
 7 from sympy.abc import x. n
 8 import sympy.printing as prt
 9
10 def min Legendre(f, L):
1.1
       c = [1]
       for l in L:
12
           fl = sym.integrate(l * f. (x. -1. 1))
13
           alfa = svm.integrate(l * l, (x, -1, 1))
14
           c.append(fl / alfa)
1.5
       return c
16
17
18 f = sym.exp(-x) - (x-1/2)**2
19 f num = sym.lambdify([x], f, modules='numpy')
20 \times points = np.linspace(-1, 1, 100)
21 plt.plot(x points, f num(x points),
       label=r'f(x)=e^{-x} - (x-1/2)^2', alpha=0.5)
22
```

```
24 for n in range(1, 5):
25
       print(f"n = {n}")
       L = [sym.legendre(n, x) for n in range(n)]
26
       c = min Legendre(f, L)
27
       P = sum(c[i] * L[i] for i in range(len(L)))
28
       lbl = f"$P {n-1} = {prt.latex(sym.N(sym.collect(P, x), 3))}$"
29
       print(lbl)
30
       if n == 1:
3.1
32
           y = P * np.ones(x points.size)
33
       else:
34
           Pn = svm.lambdifv([x], P. modules='numpv')
           v = Pn(x points)
35
       plt.plot(x points, v approx, label=lbl, alpha=0.7)
36
37
38 plt.legend(fontsize=10)
39 plt.xlabel('$x$')
40 plt.tight lavout()
41 plt.savefig("fig-05.pdf")
```


 $\{T_n(x)\}$ es ortogonal en (-1,1) con función de peso $w(x)=(1-x^2)^{-1/2}$. Para $x\in[-1,1]$:

$$T_n(x) = \cos[n \arccos x], \ n \ge 0$$

 $\{T_n(x)\}\$ es ortogonal en (-1,1) con función de peso

$$w(x) = (1-x^2)^{-1/2}$$
. Para $x \in [-1,1]$:

$$T_n(x) = \cos[n \arccos x], \ n \ge 0$$

$$T_0(x) = \cos 0 = 1$$
 y $T_1(x) = \cos(\arccos x) = x$

 $\{T_n(x)\}$ es ortogonal en (-1,1) con función de peso $w(x)=(1-x^2)^{-1/2}.$ Para $x\in[-1,1]$:

$$T_n(x) = \cos[n \arccos x], \ n \ge 0$$

$$T_0(x) = \cos 0 = 1$$
 y $T_1(x) = \cos(\arccos x) = x$

Para $n \ge 1$, $\theta = \arccos x$:

$$T_n(\theta(x)) \equiv T_n(\theta) = \cos(n\theta), \ \theta \in [0, \pi]$$

Relación de recurrencia:

$$T_{n+1}(\theta) = \cos(n+1)\theta = \cos\theta\cos(n\theta) - \sin\theta\sin(n\theta)$$

$$T_{n-1}(\theta) = \cos(n-1)\theta = \cos\theta\cos(n\theta) + \sin\theta\sin(n\theta)$$

Sumando:

$$T_{n+1} = 2xT_n(x) - T_{n-1}(x)$$

 $\{T_n(x)\}$ es ortogonal en (-1,1) con función de peso $w(x)=(1-x^2)^{-1/2}$. Para $x\in[-1,1]$:

$$T_n(x) = \cos[n \arccos x], \ n \ge 0$$

$$T_0(x) = \cos 0 = 1$$
 y $T_1(x) = \cos(\arccos x) = x$

Para $n \ge 1$, $\theta = \arccos x$:

$$T_n(\theta(x)) \equiv T_n(\theta) = \cos(n\theta), \ \theta \in [0, \pi]$$

Relación de recurrencia:

$$T_{n+1}(\theta) = \cos(n+1)\theta = \cos\theta\cos(n\theta) - \sin\theta\sin(n\theta)$$

$$T_{n-1}(\theta) = \cos(n-1)\theta = \cos\theta\cos(n\theta) + \sin\theta\sin(n\theta)$$

Sumando:

$$T_{n+1} = 2xT_n(x) - T_{n-1}(x)$$

Regresando a $x = \cos \theta$, para $n \ge 1$:

$$T_{n+1} = 2x\cos(n\arccos x) - T_{n-1}(x)$$
$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$

Polinomios de Chebyshev. $\{T_n(x)\}$ es ortogonal en (-1,1) con función de peso

$$w(x) = (1-x^2)^{-1/2}$$
. Para $x \in [-1,1]$:

$$T_n(x) = \cos[n \arccos x], \ n \ge 0$$

$$T_0(x) = \cos 0 = 1$$
 y $T_1(x) = \cos(\arccos x) = x$

Para $n \ge 1$, $\theta = \arccos x$:

$$T_n(\theta(x)) \equiv T_n(\theta) = \cos(n\theta), \ \theta \in [0, \pi]$$

Relación de recurrencia:

$$T_{n+1}(\theta) = \cos(n+1)\theta = \cos\theta\cos(n\theta) - \sin\theta\sin(n\theta)$$

$$T_{n+1}(\theta) = \cos(n+1)\theta = \cos\theta\cos(n\theta) - \sin\theta\sin(n\theta)$$

 $T_{n-1}(\theta) = \cos(n-1)\theta = \cos\theta\cos(n\theta) + \sin\theta\sin(n\theta)$

Sumando:

$$T_{n+1} = 2xT_n(x) - T_{n-1}(x)$$

 $T_{n+1} = 2x\cos(n\arccos x) - T_{n-1}(x)$

$$T_{n+1} = 2x \cos(n \arccos x) - T_{n-1}(x)$$

 $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$

Dado que $T_0(x) = 1$ y $T_1(x) = x$:

Regresando a $x = \cos \theta$, para n > 1:

$$T_2(x) = 2xT_1(x) - T_0(x) = 2x^2 - 1$$

$$T_3(x) = 2xT_2(x) - T_1(x) = 4x^3 - 3x$$

$$T_4(x) = 2xT_3(x) - T_2(x) = 8x^4 - 8x^2 + 1$$

Ortogonalidad de polinomios de Chebyshev

$$\int_{-1}^{1} \frac{T_n(x)T_m(x)}{\sqrt{1-x}} dx = \int_{-1}^{1} \frac{\cos(n \arccos x) \cos(m \arccos x)}{\sqrt{1-x^2}} dx$$

Reintroducimos $\theta = \arccos x$:

$$d\theta = -\frac{1}{\sqrt{1 - x^2}} dx$$

$$\int_{-1}^{1} \frac{T_n(x) T_m(x)}{\sqrt{1 - x^2}} dx = -\int_{\pi}^{0} \cos(n\theta) \cos(m\theta) d\theta$$

$$= \int_{0}^{\pi} \cos(n\theta) \cos(m\theta) d\theta$$

Para $n \neq m$:

$$\cos(n\theta)\cos(m\theta) = \frac{1}{2}[\cos(n+m)\theta + \cos(n-m)\theta]$$

Entonces:

Ч

$$\langle T_n, T_m \rangle = \frac{1}{2} \int_0^{\pi} \cos[(n+m)\theta] d\theta$$

$$+ \frac{1}{2} \int_0^{\pi} \cos[(n-m)\theta] d\theta$$

$$= \left[\frac{\sin[(n+m)\theta]}{2(n+m)} + \frac{\sin[(n-m)\theta]}{2(n-m)} \right]_0^{\pi}$$

$$= 0$$

$$\langle T_n, T_n \rangle = \frac{\pi}{2}, \ n \ge 1$$

LECTURAS RECOMENDADAS I

- ▶ R.L. Burden, D.J. Faires y A.M. Burden. *Análisis numérico.* 10.ª ed. Mexico: Cengage Learning, 2017. Capítulo 8.
- ▶ E. Kreyszig, H. Kreyszig y E.J. Norminton. *Advanced Engineering Mathematics*. Hoboken, USA: John Wiley & Sons, Inc, 2011. Capítulo 25.9.