

Course on States of Matter for Class XI

rate of Amnion = = 1/A/+A MA/LA MA MB
MB MB/ tps MA MB VA/tA VB/tB

no of moles effused Vol. of effused time taken taken

A confainer contains equal man of the 4 cMy. Calculate the no of moter of the effused in 10 Sec if nv. J moles of My effersed are 0.5 in 10 Sec.

Mhe = 4 | 1/4 = 8 0.5 | 1 | 7 | 4

A Classroom Consist of 13 equidistant rows of benches. A student seating on 1st bench releases N2O (Laughing gas). simultaneons a student releases Weeping gas (Mod. mass = 176) from last bench. find the bench at which students starts Laughing and weeping simultaneoutly

sench front Mar \widehat{A} B) → 12-x- $\frac{\chi}{12-\chi} = \sqrt{\frac{176}{44}} = 2$ 3th Bench

Smix =

Mang

tyrichment

1 nivelue cortains (1/4 of 02 in 1:4 mol ratio. And the no. of effusion step rejuind (4:1) mole ratio of cmy to 02. to achieve $\frac{\gamma_{\text{CM4}}}{\gamma_{02}} = \frac{1}{\sqrt{\left(\sqrt{\frac{3^2}{1^6}}\right)^6}} = \frac{4}{\sqrt{1}}$ (A) 4 (B) 2 (c)(M=8) (D) Nome

If rate of effusion in not count (2/TMRT) 1/2 / $C = \frac{4}{\sqrt{\frac{R7}{2\pi m}}}$ V (2 mmrT) 1/2 - Ab (R7)/2/dt γ_{ν}

$$\frac{P_{t}V}{RT} = \frac{P_{0}V}{RT}e^{-Ct}$$

$$\frac{P_{t}}{N_{t}} = \frac{P_{0}e^{-Ct}}{N_{0}e^{-Ct}}$$

$$\frac{dN_{t}}{dt} = N_{0}e^{-Ct}$$

Rate gespinion Line

113. Under identical conditions of pressure and temperature. 4 L of gaseous mixture (H₂ and CH₄) effuses through a hole in 5min whereas 4 L of a gas X of molecular mass 36 takes to 10 min to effuse through the same hole. The mole ratio of H₂: CH₄, in the mixture is -

(A) 1 : 2

(B) 2:1

(C) 2:3

(D) 1:1

$$\frac{5-1}{6-1}$$
 $\frac{15-22}{12-23}$

- 129. For the reaction $2NH_3(g) \rightarrow N_2(g) + 3H_2(g)$. What is the % of NH_3 converted if the mixture diffuses twice as fast as that of SO_2 under similar conditions
 - (A) 3.125

(B) 6.25

(C) 12.5

(D) none

n = 12/2 = 180 e - Ct, When $\frac{1}{\sqrt{50}}$ 500) (250°)

In equal interval of time, equal percentages of gases are effused

50%