Задание №1

Предыстория

Команда студентов из Новосибирского государственного университета разрабатывает алгоритмы для рекламной платформы «Сибирский клик». Анализируя данные о показах рекламы, они стремятся предсказать, кликнет ли пользователь по объявлению, чтобы оптимизировать таргетинг.

Вас отобрали в номанду — поздравляем! Теперь вам предстоит обработать большой массив данных и создать модель для предсказания вероятности клика.

Что нужно сделать

По категориальным признакам из данных о показах рекламы предсказать вероятность клика (целевой признак: 0 или 1).

Данные

Что	Путь	Формат и описание
Обучающая выборна	data/train.csv	40 000 000 строн, столбцы: id, 22 категориальных признана (ID_01 ID_22), click (0/1)
Тестовая выборка	data/test.csv	Те же столбцы без click
Пример сабмита	data/sample_submis sion.csv	idx,click

Метрика

ROC-AUC (Receiver Operating Characteristic - Area Under Curve).

Шкала баллов

Points = $100 \times max(0, ROC-AUC - 0.60)/(1 - 0.60)$ При ROC-AUC < 0.60 - 0 баллов. «Точное» решение: ROC-AUC ≥ 0.85.

Система оценки

Points = $100 \times max(0, ROC-AUC - 0.60)/(1 - 0.60)$ При ROC-AUC < 0.60 — 0 баллов. «Точное» решение: ROC-AUC ≥ 0.85.

Замечание

Рекомендации по обработке

- Предобработна: Используйте one-hot encoding или hashing для категориальных признаков. Учитывайте высокую кардинальность некоторых столбцов.
- Базовый baseline: Логистическая регрессия или SGDClassifier (scikit-learn).
- Оптимизация: Попробуйте градиентный бустинг (LightGBM) или нейронные сети для повышения ROC-AUC.
- **Кросс-валидация**: Используйте 5-fold CV для оценки модели на обучающей выборке.

Задание №2

предыстория

Kny6 «Следопыт Закавказья» накопил архив из примерно 3000 фотографий, содержащих изображения следов лап и самих лап диких животных и птиц, собранных во время таёжных экспедиций.

Фотографии сделаны в разных условиях: часть — на снегу, часть — на грунте без снега и льда. Некоторые снимки показывают только отпечатки, другие — непосредственно лапы животных или птиц. В кадре нет изображений целых животных — только детали следов или лап на различных поверхностях.

Вам предстоит создать модель для определения вида животного по отпечатку, чтобы егеря могли своевременно отследить редких обитателей и предупредить туристов о хищниках, скрывающихся в тени сосен.

Что нужно сделать

По фотографии отпечатка определить, какому из шести видов животных принадлежит след: медведь, птица, кошка, волк, выдра или перпард

Данные

Что	Путь	Формат и описание
Обучающие изображения	data/train/bear//fo x/	JPG/PNG, произвольный размер ≤ 400×400, имена — ID файлов
Тестовые изображения	data/test/	Те же форматы, без разметки
Карта меток	data/label_map.csv	Столбцы id, filename, Bear, Bird, Cat, Wolf, Leopard, Otter
Пример сабмита	data/sample_submis sion.csv	id,label (Bear - 0 Otter - 5)

Метрика

Macro F1-score по 6 классам.

Шкала баллов

Points = $150 \times max(0, F1 - 0.50)/(1 - 0.50)$

При F1 < 0.50 - 0 баллов. «Точное» решение: F1 ≥ 0.95 (ошибка ≤ 5 %).

Система оценки

Points = $150 \times max(0, F1 - 0.50)/(1 - 0.50)$

При F1 < 0.50 — 0 баллов, «Точное» решение: F1 ≥ 0.95 (ошибка ≤ 5 %).

Замечание

Рекомендации по обработке

- Приведение к единой размерности: resize до 224×224 + нормировка по ImageNet.
- Обязательные аугментации: случайный обрез (RandomResizedCrop), flips, color jitter следы снимали в разных условиях освещения.
- Базовый baseline: fine-tune resnet18 (PyTorch), оптимизатор Adam, LR=1e-3, 20 эпох, batch size=32.

Предыстория

Ученики астрономического клуба «Орион» из Новосибирска запустили проект «Тёмные небеса». С помощью дронов «Сокол-Наблюдатель», оснащённых камерами и датчиками SQM, они совершили 1400 ночных полётов над городами Сибири, чтобы измерить уровень светового загрязнения.

Теперь необходимо автоматически определять яркость неба по фотографиям для создания общероссийской карты «Звёздный щит».

Что нужно сделать

По изображению предсказать значение sky_quality (тип: float, единицы: маг/arcsec²) для тестовых снимков.

Данные

Что	Путь	Формат и описание
Обучающие фото	data/images/IMG_0001. jpg	224×224 RGB, имя = IMG_####.jpg
Таблица меток	data/metadata.csv	file_name,sky_quality
Тестовые фото	data/test_images/	Те же форматы, без меток
Пример сабмита	data/sample_submissio n.csv	file_name,sky_quality

Метрика

RMSE (Root Mean Square Error).

Шкала баллов

Points = $100 \times max(0, 1 - RMSE/0.30)$ При RMSE > 0.30 - 0 баллов. «Точное» решение: RMSE ≤ 0.05.

Система оценки

Points = $100 \times max(0, 1 - RMSE/0.30)$ При RMSE > 0.30 - 0 баллов. «Точное» решение: RMSE ≤ 0.05.

Замечание

Рекомендации по обработке

- Предобработка: Примените CLAHE для усиления контраста, RandomPerspective и другие аугментации (например, RandomRotation, ColorJitter).
- Базовый baseline: Fine-tune EfficientNet-B0 (pretrained на ImageNet21k) с MSE-loss (PyTorch).
- Постобработна: Используйте TTA (Test-Time Augmentation, 8 прогонов) и налибровну предсназаний изотонической регрессией.