Supplementary Materials for How Correlated are Community-aware and Classical Network Centrality Measures

Stephany Rajeh*[0000-0002-7686-8506], Marinette Savonnet[0000-0003-0449-5277], Eric Leclercq[0000-0001-6382-2288], and Hocine Cherifi[0000-0001-9124-4921]

Laboratoire d'Informatique de Bourgogne - University of Burgundy, Dijon, France *stephany.rajeh@u-bourgogne.fr

Abstract. Community structure has a tremendous effect on identifying influential nodes in complex networks. Unlike classical centrality measures, recently developed community-aware centrality measures make use of a network's community structure. This paper investigates the relationship between both types of measures on a set of fifty real-world networks originating from various domains. Results show that classical and community-aware centrality measures generally exhibit a medium to low correlation across the networks. Additionally, transitivity, efficiency are the most influential macroscopic features while the mixing parameter, modularity, and Max-ODF are the most influential mesoscopic features affecting the correlation between classical and community-aware centrality measures.

Table 1. Macroscopic topological properties of real-world networks. N is the total number of nodes. E is the number of edges. < k > is the average degree. < d > is the average distance. ν is the density. ζ is the transitivity. $k_{nn}(k)$ is the assortativity. D is the diameter. ϵ is the efficiency. γ_{pred} is the estimated exponent of the degree distribution. * indicates the largest connected component if the network is disconnected.

Network	\overline{N}	\overline{E}	< k >	<u> </u>	1,	<i>-</i>	$k_{nn}(k)$	D 6 2
Zachary Karate Club	$\frac{N}{34}$	78	$\frac{\langle \kappa \rangle}{4.58}$	$\frac{\langle a \rangle}{2.40}$	υ 0.130	ζ 0.255	$\frac{\kappa_{nn}(\kappa)}{-0.475}$	$\frac{D \epsilon \gamma_{pred}}{5 0.492 2.094}$
U.S. States	34 49	107	4.36	$\frac{2.40}{4.16}$				11 0.388 1.478
	62	159	5.12	3.35			-0.043	8 0.379 1.470
Dolphins Madrid Train Rombings	64	$\frac{139}{243}$	$\frac{5.12}{7.59}$	$\frac{3.35}{2.69}$			0.029	6 0.448 1.425
Madrid Train Bombings	75	181	4.83	$\frac{2.09}{2.81}$				6 0.407 2.437
Blumenau Drug Les Misérables	75 77	$\frac{151}{254}$	6.59	$\frac{2.61}{2.64}$				
PolBooks		441		$\frac{2.04}{3.07}$			-0.165	7 0.397 2.600
Game of Thrones	$\frac{105}{107}$	$\frac{441}{352}$	$8.40 \\ 6.58$	$\frac{3.07}{2.90}$				6 0.398 2.022
Movie Galaxies								
	109	326	5.98	2.06				
Football Marriel Portropphing*	115 181	613 224	10.66	$2.50 \\ 7.92$			0.162	4 0.450 1.327 21 0.166 1.724
Marvel Partnerships* Mouse Visual Cortex			2.48					
	193	214	2.21	4.27				8 0.271 2.060
Internet Topology Cogentco	197	243	2.47	10.51				28 0.137 1.660
Jazz	198	2,742	27.69	2.23			0.020	6 0.513 1.477
Malaria Genes	307	2,812	18.32	3.52			0.599	8 0.349 2.443
E. coli Transcription*	329	456	2.77	4.84				13 0.245 2.295
Facebook Friends*	329	1,954	11.88	3.58			0.074	9 0.326 2.015
London Transport	369	430	2.33	13.73				39 0.101 1.682
NetSci	379	914	4.83	6.04				17 0.203 2.386
EU Airlines	417	2,953	14.16	2.76				7 0.400 2.061
Reptiles*	496	984	3.96	7.93				21 0.155 2.120
U.S. Airports	500	2,980	11.92	2.99				7 0.371 1.702
Retweets Copenhagen	761	1,029	2.70	5.35				14 0.208 2.178
Caltech*	762	16,651	43.70	2.23				6 0.461 3.005
DNC Emails*	849	10,384	24.46	2.76				8 0.399 1.417
Board of Directors*	854	2,745	6.43	6.67				17 0.176 2.150
Yeast Collins*	1,004	8,319	16.57	5.55				15 0.220 2.120
Budapest Connectome	1,015	70,654		2.22			0.215	5 0.510 1.696
CS Ph.D.*	1,025	1,043	2.03	11.74				28 0.105 1.928
EuroRoad*	1,039	1,305	2.51	18.39				62 0.077 1.660
Yeast Protein*	1,458	1,993	2.73	6.81				19 0.163 2.185
New Zealand Collaboration*	1,463	4,246	5.80	2.75				6 0.381 2.112
Bible Nouns*	1,707	9,059	10.61	3.38				8 0.320 2.134
Hamsterster*	1,788	12,476	13.49	3.45				14 0.317 1.868
Kegg Metabolic*	1,865	5,769	6.19	3.12				8 0.342 2.331
Human Protein*	2,217	6,418	5.78	3.84				10 0.281 2.240
Adolescent Health	2,539	10,455	8.23	4.55				10 0.234 1.876
Interactome Vidal*	2,783	6,007	4.32	4.84				13 0.223 2.192
Ego Facebook	4,039	88,234	43.69	3.69			0.063	
GrQc	4,158	13,422	6.45	6.04				17 0.179 2.042
U.S. Power Grid	4,941	6,594	2.66	18.98				46 0.062 1.669
Facebook Organizations	5,524		34.11	3.50			0.103	
Facebook Politician Pages	5,908		14.12	4.66				14 0.231 2.664
Internet Autonomous Systems			3.88	3.70				9 0.290 2.356
Princeton*		293,307		2.67			0.090	9 0.400 3.046
PGP		24,316	4.55	7.48				24 0.147 2.804
DBLP*	,	49,579	7.94	4.42				10 0.240 2.324
911AllWords	,	148,035		3.12				10 0.334 2.023
AstroPh*		196,972		4.19				14 0.255 2.891
DeezerEU	28,281	92,752	6.55	6.44	0.002	0.095	0.104	21 0.169 2.273

Table 2. Mesoscopic topological properties of real-world networks with community structure unveiled using Infomap. μ is the mixing parameter. Q is the modularity. χ is the internal degree. φ is the internal distance. ψ is the internal density. η is the Max-ODF. ι is the Average-ODF. κ is the Flake-ODF. \ni is the embeddedness. \hbar is the hub dominance.

Network	μ	\overline{Q}	χ	φ	ψ r	η ι	κ	€	$-\hbar$
EU Airlines		0.109			0.596 0.5	,			
Ego Facebook	0.077	0.814	14.69		0.538 0.4				
U.S. Airports	0.084	0.161	2.30	1.37	0.701 0.5	08 0.34	7 0.530	0.652	0.918
Budapest Connectome	0.088	0.525	90.75		0.295 0.4				
Facebook Politician Pages		0.836			0.402 0.4				
Facebook Friends	0.112	0.688	5.17		0.554 0.4				
Madrid Train Bombings	0.115	0.309	4.25	1.59	0.526 0.4	40 0.28	0 0.328	0.719	0.865
Yeast Collins	0.122	0.747	6.99	1.52	0.618 0.4	31 0.13	6 0.129	0.864	0.868
Malaria Genes	0.128	0.625	10.42	1.47	0.601 0.5	38 0.18	8 0.146	0.812	0.825
CS Ph.D.	0.128	0.859	1.70	1.97	0.306 0.3	07 0.06	8 0.068	0.931	0.793
Reptiles	0.145	0.811	2.77	1.85	0.443 0.4	00 0.13	3 0.127	0.866	0.722
PolBooks	0.145	0.522	5.39	1.57	0.511 0.5	16 0.24	5 0.177	0.754	0.769
NetSci	0.147	0.810	3.69	1.53	0.537 0.3	20 0.11	4 0.083	0.885	0.914
Marvel Partnerships	0.147	0.808	2.01	1.86	0.408 0.4	23 0.12	1 0.141	0.879	0.755
911AllWords	0.153	0.052	1.72	1.63	0.603 0.6	99 0.54	8 0.834	0.452	0.820
Mouse Visual Cortex	0.154	0.740	1.84	1.84	0.161 0.3	45 0.09	0 0.144	0.909	1
U.S. Power Grid	0.166	0.830	2.08	2.56	0.242 0.4	35 0.13	0 0.140	0.869	0.475
Board of Directors	0.167	0.817	5.16	1.49	$0.578 \ 0.4$	59 0.14	1 0.118	0.859	0.904
PGP	0.172	0.813	2.40	1.97	0.388 0.3	81 0.09	7 0.102	0.902	0.727
Zachary Karate Club	0.179	0.402	3.47	1.66	0.404 0.2	94 0.16	3 0.027	0.836	0.844
London Transport	0.198	0.779	1.83	2.49	$0.313\ 0.4$	97 0.17	0 0.273	0.830	0.452
GrQc	0.200	0.779	3.73	1.87	$0.394\ 0.4$	61 0.15	5 0.151	0.844	0.765
EuroRoad	0.202	0.786	1.94	2.70	$0.254\ 0.4$	63 0.16	1 0.205	0.838	0.398
Internet Topology Cogentco	0.206	0.751	1.91	2.23	$0.326\ 0.4$	87 0.17	90.199	0.821	0.473
DNC Emails	0.211	0.416	5.70	1.40	$0.633\ 0.5$	$61\ 0.32$	30.466	0.677	0.925
Dolphins	0.213	0.525	3.41	1.75	$0.467 \ 0.5$	$32\ 0.29$	20.312	0.707	0.695
U.S. States	0.224	0.596	3.35	1.64	$0.479\ 0.4$	75 0.18	0 0.144	0.819	0.767
Yeast Protein	0.240	0.749	1.94	2.04	$0.324\ 0.4$	$32\ 0.14$	9 0.173	0.850	0.728
E. coli Transcription	0.250	0.687	1.69	1.66	$0.466\ 0.4$	64 0.20	8 0.315	0.791	0.883
Game of Thrones	0.267	0.482	3.80	1.63	$0.421\ 0.5$	03 0.21	4 0.207	0.786	0.937
Jazz	0.267	0.443	15.51	1.51	$0.540\ 0.6$	$12\ 0.28$	0 0.268	0.719	0.835
Les Misérables	0.267	0.551	4.30	1.45	$0.584 \ 0.4$	$41\ 0.17$	8 0.141	0.821	0.938
Retweets Copenhagen	0.287	0.695	1.80		$0.338 \ 0.4$				
Football		0.604			$0.751\ 0.4$				
Hamsterster		0.391			0.369 0.6				
Blumenau Drug		-			0.326 0.5				
Human Protein		0.466			$0.253\ 0.5$				
Princeton					0.480 0.7				
Facebook Organizations					0.267 0.7				
Interactome Vidal					0.297 0.5				
Caltech					0.427 0.6				
AstroPh		0.563			0.410 0.6				
Internet Autonomous Systems					0.350 0.5				
DeezerEU		0.565			0.223 0.5				
Movie Galaxies		0.401			0.498 0.5				
Adolescent Health		0.566			0.284 0.7				
DBLP		0.546			$0.195 \ 0.5$				
Kegg Metabolic		0.437			$0.529 \ 0.5$				
Bible Nouns		0.460			0.358 0.6				
New Zealand Collaboration	0.564	0.401	2.28	1.73	0.386 0.6	45 0.38	4 0.552	0.616	0.891

Table 3. Simple linear regression estimates using ordinary least squares for $\text{Mean}(\alpha_i, \beta_{CHB})$ as the dependent variable. Independent variables are the macroscopic and mesoscopic properties considered individually. ω is the estimated coefficient. ϵ is the standard error. The confidence interval is based on 95% likelihood. R^2 is the coefficient of determination. * indicates $p \leq 0.05$. A bold font and * indicate $p \leq 0.01$.

Independent Variable	ω	ϵ	T	p > T	Confidence Interval	R^2
Density	0.146	0.423	0.345	0.731	[-0.705; 0.997]	0.002
Transitivity	0.031	0.085	0.361	0.720	[-0.141; 0.202]	0.003
Assortativity	0.074	0.065	1.138	0.261	[-0.057; 0.206]	0.026
Average distance	-0.003	0.005	-0.660	0.512	[-0.013; 0.006]	0.009
Diameter	-0.001	0.002	-0.484	0.631	[-0.004; 0.002]	0.005
Efficiency	0.014	0.144	0.100	0.921	[-0.275; 0.303]	0.001
Degree distribution exponent	0.066	0.043	1.553	0.127	[-0.020; 0.152]	0.049
Modularity	0.110	0.088	1.250	0.218	[-0.067; 0.288]	0.032
Mixing parameter*	0.392	0.124	3.171	0.003	[0.144; 0.641]	0.173
Internal distance	0.074	0.052	1.43	0.159	[-0.030; 0.179]	0.041
Internal density	-0.233	0.124	-1.882	0.066	[-0.481; 0.016]	0.069
Max-ODF	0.228	0.164	1.390	0.171	[-0.102; 0.557]	0.039
Average-ODF	-0.003	0.153	-0.017	0.986	[-0.310; 0.305]	0.0001
Flake-ODF	-0.055	0.096	-0.571	0.571	[-0.247; 0.138]	0.007
Embeddedness	0.065	0.156	0.413	0.681	[-0.250; 0.379]	0.004
Hub dominance	-0.125	0.127	-0.985	0.330	[-0.381; 0.130]	0.020

Table 4. Simple linear regression estimates using ordinary least squares for $\text{Mean}(\alpha_i, \beta_{PC})$ as the dependent variable. Independent variables are the macroscopic and mesoscopic properties considered individually. ω is the estimated coefficient. ϵ is the standard error. The confidence interval is based on 95% likelihood. R^2 is the coefficient of determination. * indicates $p \leq 0.05$. A bold font and * indicate $p \leq 0.01$.

Independent Variable	ω	ϵ	T	p > T	Confidence Interval	R^2
Density	-0.866	0.486	-1.780	0.081	[-1.844; 0.112]	0.062
${f Transitivity}^*$	-0.351	0.088	-4.00	0.0001	[-0.527; -0.175]	0.250
Assortativity	-0.193	0.073	-2.628	0.012	[-0.341; -0.045]	0.126
Average distance	0.005	0.006	0.857	0.395	[-0.006; 0.016]	0.015
Diameter	0.002	0.002	0.886	0.380	[-0.002; 0.005]	0.016
Efficiency	-0.282	0.165	-1.707	0.094	[-0.615; 0.050]	0.057
Degree distribution exponent	0.001	0.052	0.021	0.983	[-0.103; 0.105]	0.0001
Modularity	0.071	0.106	0.673	0.504	[-0.141; 0.284]	0.009
Mixing parameter*	0.523	0.142	3.67	0.001	[0.237; 0.809]	0.219
${\bf Internal\ distance}^*$	0.160	0.058	2.733	0.009	[0.042; 0.277]	0.135
Internal density *	-0.554	0.129	-4.293	0.0001	[-0.813; -0.294]	0.277
Max-ODF	-0.060	0.198	-0.305	0.762	[-0.458; 0.337]	0.002
Average-ODF	-0.263	0.177	-1.486	0.144	[-0.619; 0.093]	0.044
Flake-ODF	-0.010	0.114	-0.086	0.932	[-0.238; 0.219]	0.0001
Embeddedness	0.306	0.180	1.697	0.096	[-0.057; 0.668]	0.057
Hub dominance	-0.054	0.152	-0.357	0.722	[-0.360; 0.251]	0.003

Table 5. Simple linear regression estimates using ordinary least squares for Mean (α_i, β_{CBM}) as the dependent variable. Independent variables are the macroscopic and mesoscopic properties considered individually. ω is the estimated coefficient. ϵ is the standard error. The confidence interval is based on 95% likelihood. R^2 is the coefficient of determination. * indicates $p \leq 0.05$. A bold font and * indicate $p \leq 0.01$.

Independent Variable	ω	ϵ	T	p > T	Confidence Interval	R^2
Density	-0.239	0.450	-0.531	0.598	[-1.145; 0.666]	0.006
${f Transitivity}^*$	-0.264	0.083	-3.188	0.003	[-0.430; -0.097]	0.175
${f Assortativity}$	-0.170	0.066	-2.570	0.013	[-0.303; -0.037]	0.121
Average distance	-0.008	0.005	-1.690	0.098	[-0.018; 0.002]	0.056
Diameter	-0.002	0.002	-1.413	0.164	[-0.006; 0.001]	0.040
Efficiency	0.245	0.149	1.640	0.108	[-0.055; 0.545]	0.053
Degree distribution exponent	0.086	0.045	1.898	0.064	[-0.005; 0.177]	0.071
Modularity	-0.187	0.092	-2.043	0.047	[-0.371; -0.003]	0.080
Mixing parameter*	0.757	0.095	7.946	0.0001	[0.566; 0.949]	0.568
Internal distance	0.089	0.055	1.617	0.112	[-0.022; 0.200]	0.052
Internal density	-0.309	0.129	-2.392	0.021	[-0.568; -0.049]	0.107
$\mathbf{Max} ext{-}\mathbf{ODF}^*$	0.539	0.160	3.365	0.002	[0.217; 0.861]	0.191
${f Average - ODF^*}$	0.444	0.150	2.960	0.005	[0.142; 0.745]	0.154
${f Flake-ODF^*}$	0.268	0.095	2.835	0.007	[0.078; 0.458]	0.143
${\bf Embeddedness^*}$	-0.405	0.156	-2.593	0.013	[-0.719; -0.091]	0.123
Hub dominance	-0.042	0.137	-0.309	0.759	[-0.317; 0.233]	0.002

Table 6. Simple linear regression estimates using ordinary least squares for $\mathrm{Mean}(\alpha_i, \beta_{Comm})$ as the dependent variable. Independent variables are the macroscopic and mesoscopic properties considered individually. ω is the estimated coefficient. ϵ is the standard error. The confidence interval is based on 95% likelihood. R^2 is the coefficient of determination. * indicates $p \leq 0.05$. A bold font and * indicate $p \leq 0.01$.

Independent Variable	ω	ϵ	T	p > T	Confidence Interval	R^2
Density*	1.516	0.430	3.524	0.001	[0.651; 2.381]	0.206
Transitivity	0.153	0.095	1.615	0.113	[-0.038; 0.344]	0.052
Assortativity	0.069	0.075	0.922	0.361	[-0.081; 0.219]	0.017
Average distance	-0.004	0.005	-0.826	0.413	[-0.015; 0.006]	0.014
Diameter	-0.001	0.002	-0.692	0.492	[-0.005; 0.002]	0.010
Efficiency	0.389	0.154	2.529	0.015	[0.080; 0.698]	0.118
Degree distribution exponent	-0.017	0.050	-0.341	0.735	[-0.118; 0.084]	0.002
Modularity	-0.129	0.100	-1.284	0.205	[-0.331; 0.073]	0.033
Mixing parameter	0.073	0.155	0.474	0.638	[-0.237; 0.384]	0.005
Internal distance	-0.037	0.060	-0.609	0.546	[-0.158; 0.084]	0.008
Internal density	0.006	0.146	0.043	0.966	[-0.287; 0.299]	0.0001
Max-ODF	0.219	0.188	1.169	0.248	[-0.158; 0.597]	0.028
Average-ODF	0.048	0.174	0.274	0.785	[-0.302; 0.398]	0.002
Flake-ODF	-0.076	0.109	-0.704	0.485	[-0.295; 0.142]	0.010
Embeddedness	-0.121	0.177	-0.680	0.500	[-0.477; 0.236]	0.010
Hub dominance	-0.073	0.146	-0.498	0.620	[-0.366; 0.221]	0.005

Table 7. Simple linear regression estimates using ordinary least squares for $\operatorname{Mean}(\alpha_i, \beta_{MV})$ as the dependent variable. Independent variables are the macroscopic and mesoscopic properties considered individually. ω is the estimated coefficient. ϵ is the standard error. The confidence interval is based on 95% likelihood. R^2 is the coefficient of determination. * indicates $p \leq 0.05$. A bold font and * indicate $p \leq 0.01$.

Independent Variable	ω	ϵ	T	p > T	Confidence Interval	R^2
Density	-0.861	0.673	-1.280	0.207	[-2.214; 0.492]	0.033
Transitivity	0.074	0.138	0.539	0.592	[-0.203; 0.351]	0.052
Assortativity	0.124	0.106	1.172	0.247	[-0.089; 0.336]	0.028
Average distance	0.010	0.007	1.383	0.173	[-0.005; 0.025]	0.038
Diameter	0.004	0.002	1.474	0.147	[-0.001; 0.009]	0.043
Efficiency	-0.349	0.227	-1.541	0.130	[-0.805; 0.106]	0.047
Degree distribution exponent	0.072	0.071	1.018	0.314	[-0.070; 0.215]	0.022
Modularity	0.230	0.141	1.634	0.109	[-0.053; 0.513]	0.053
Mixing parameter	-0.238	0.217	-1.099	0.277	[-0.674; 0.198]	0.025
Internal distance	0.009	0.086	0.106	0.916	[-0.163; 0.181]	0.0001
Internal density	0.156	0.206	0.759	0.452	[-0.257; 0.569]	0.012
Max-ODF	-0.120	0.269	-0.447	0.657	[-0.662; 0.421]	0.004
Average-ODF	-0.005	0.247	-0.018	0.985	[-0.501; 0.492]	0.0001
Flake-ODF	-0.042	0.155	-0.270	0.788	[-0.353; 0.269]	0.002
Embeddedness	0.040	0.253	0.160	0.874	[-0.468; 0.549]	0.001
Hub dominance	-0.078	0.207	-0.378	0.707	[-0.495; 0.338]	0.003

Table 8. Simple linear regression estimates using ordinary least squares for Mean (α_i, β_{CBC}) as the dependent variable. Independent variables are the macroscopic and mesoscopic properties considered individually. ω is the estimated coefficient. ϵ is the standard error. The confidence interval is based on 95% likelihood. R^2 is the coefficient of determination. * indicates $p \leq 0.05$. A bold font and * indicate $p \leq 0.01$.

Independent Variable	ω	ϵ	T	p > T	Confidence Interval	R^2
Density	1.016	0.406	2.502	0.016	[0.200; 1.833]	0.115
Transitivity	0.173	0.083	2.070	0.044	[0.005; 0.341]	0.082
Assortativity	-0.042	0.067	-0.629	0.532	[-0.178; 0.093]	0.008
${\bf Average~distance^*}$	-0.015	0.004	-3.418	0.001	[-0.023; -0.006]	0.196
${\bf Diameter^*}$	-0.004	0.001	-2.961	0.005	[-0.007; -0.001]	0.154
$\mathbf{Efficiency}^*$	0.524	0.126	4.173	0.0001	[0.271; 0.776]	0.266
Degree distribution exponent	0.013	0.038	0.328	0.744	[-0.064; 0.089]	0.002
${\bf Modularity}^*$	-0.344	0.077	-4.486	0.0001	[-0.498; -0.190]	0.295
Mixing parameter	0.007	0.139	0.049	0.961	[-0.272; 0.285]	0.0001
Internal distance	-0.120	0.051	-2.34	0.024	[-0.223; -0.017]	0.102
Internal density	0.196	0.127	1.543	0.129	[-0.060; 0.452]	0.047
Max-ODF	0.342	0.163	2.100	0.041	[0.015; 0.670]	0.084
Average-ODF	0.259	0.151	1.713	0.093	[-0.045; 0.563]	0.058
Flake-ODF	0.181	0.094	1.922	0.061	[-0.008; 0.370]	0.071
Embeddedness	-0.281	0.154	-1.823	0.074	[-0.591; 0.029]	0.065
Hub dominance	0.307	0.123	2.493	0.016	[0.059; 0.554]	0.115

Table 9. Simple linear regression estimates using ordinary least squares for $\text{Mean}(\alpha_i, \beta_{ks})$ as the dependent variable. Independent variables are the macroscopic and mesoscopic properties considered individually. ω is the estimated coefficient. ϵ is the standard error. The confidence interval is based on 95% likelihood. R^2 is the coefficient of determination. * indicates $p \leq 0.05$. A bold font and * indicate $p \leq 0.01$.

Independent Variable	ω	ϵ	T	p > T	Confidence Interval	R^2
Density	0.333	0.350	0.952	0.346	[-0.370; 1.036]	0.019
Transitivity	0.081	0.070	1.145	0.258	[-0.061; 0.222]	0.027
Assortativity	-0.052	0.055	-0.942	0.351	[-0.162; 0.058]	0.018
${\bf Average~distance^*}$	-0.015	0.003	-4.490	0.0001	[-0.021; -0.008]	0.296
${\bf Diameter^*}$	-0.004	0.001	-3.871	0.0001	[-0.007; -0.002]	0.238
$\mathbf{Efficiency}^*$	0.407	0.104	3.897	0.0001	[0.197; 0.617]	0.240
Degree distribution exponent	0.048	0.030	1.583	0.120	[-0.013; 0.109]	0.051
${\bf Modularity^*}$	-0.316	0.059	-5.334	0.0001	[-0.435; -0.197]	0.372
Mixing parameter	0.152	0.111	1.369	0.177	[-0.071; 0.376]	0.038
Internal distance	-0.069	0.043	-1.593	0.118	[-0.155; 0.018]	0.050
Internal density	0.004	0.106	0.431	0.668	[-0.168; 0.260]	0.004
$\mathbf{Max\text{-}ODF^*}$	0.463	0.122	3.793	0.0001	[0.218; 0.709]	0.231
${f Average - ODF^*}$	0.382	0.115	3.328	0.002	[0.151; 0.613]	0.187
${f Flake-ODF^*}$	0.250	0.071	3.511	0.001	[0.107; 0.393]	0.204
${\bf Embeddedness^*}$	-0.415	0.116	-3.580	0.001	[-0.648; -0.182]	0.211
Hub dominance	0.229	0.102	2.248	0.029	[0.024; 0.433]	0.095

Fig. 1. Relationship of the mean of the correlation between each community-aware centrality measure combined with all classical centrality measures as a function of the topological properties of real-world networks. The line is fitted by linear regression using ordinary least squares. "P" indicates $p \leq 0.05$. "P" and * indicate $p \leq 0.01$. Colors represent the network's domain. Green color refers to animal networks. Pink color refers to biological networks. Blue color refers to collaboration networks. Violet color refers to human (offline) social networks. Grey color refers to infrastructural networks. Yellow color refers to actor networks. Brown colors refers to miscellaneous networks. Orange color refers to online social networks.

Fig. 2. Relationship of the mean of the correlation between each community-aware centrality measure combined with all classical centrality measures as a function of the topological properties of real-world networks. The line is fitted by linear regression using ordinary least squares. "P" indicates $p \leq 0.05$. "P" and * indicate $p \leq 0.01$. Colors represent the network's domain. Green color refers to animal networks. Pink color refers to biological networks. Blue color refers to collaboration networks. Violet color refers to human (offline) social networks. Grey color refers to infrastructural networks. Yellow color refers to actor networks. Brown colors refers to miscellaneous networks. Orange color refers to online social networks.

Fig. 3. Relationship of the mean of the correlation between each community-aware centrality measure combined with all classical centrality measures as a function of the topological properties of real-world networks. The line is fitted by linear regression using ordinary least squares. "P" indicates $p \leq 0.05$. "P" and * indicate $p \leq 0.01$. Colors represent the network's domain. Green color refers to animal networks. Pink color refers to biological networks. Blue color refers to collaboration networks. Violet color refers to human (offline) social networks. Grey color refers to infrastructural networks. Yellow color refers to actor networks. Brown colors refers to miscellaneous networks. Orange color refers to online social networks.

Fig. 4. Relationship of the mean of the correlation between each community-aware centrality measure combined with all classical centrality measures as a function of the topological properties of real-world networks. The line is fitted by linear regression using ordinary least squares. "P" indicates $p \leq 0.05$. "P" and * indicate $p \leq 0.01$. Colors represent the network's domain. Green color refers to animal networks. Pink color refers to biological networks. Blue color refers to collaboration networks. Violet color refers to human (offline) social networks. Grey color refers to infrastructural networks. Yellow color refers to actor networks. Brown colors refers to miscellaneous networks. Orange color refers to online social networks.