

SMART GAS LEAKAGE CONTROL

Sustentantes:

ANNEL ZORRILLA

BRYAN JIMÉNEZ

JOAN VALDEZ

KEVYN FERNANDEZ

PEDRO MOTA

CONTENIDO

O Descripción de Propuesta

El Equipo

Diseño Preliminar

Cronograma del Proyecto

Métodos de Prueba

Bill Of Materials

BenchMarking

Descripción de la Propuesta

Este producto se trata de la integración de una alarma de gas y una válvula inteligente conectadas mediante wifi para permitir el corte del flujo de gas al momento de la detección de una fuga. El sistema también contará con una aplicación móvil que notificará al usuario sobre la fuga y permitirá una manipulación del flujo de gas desde allí mismo.

• Tareas del Equipo

* Bryan Jimenez

Diseño del Case & PCB

Pedro Mota* Annel ZorrillaJoan Valdez

Programación de Microcontroladores

* Kevyn Fernandez

Desarrollo de Aplicaciones

Diseño Preliminar

Microcontrolador

Detector de gases

Fuente de alimentación

Cronograma

Actividades	Sept			Oct				Nov				Dic		
	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S 11	S12	S13	S14
Idealizar el proyector														
Presentación y aprobación del proyecto														
Investigación														
Compra de materiales														
Diseñar prototipo														
Desarrollo del sistema														
Corregir errores														
Verificar y últimos ajustes														
Sustentación														

Métodos de Prueba

Prueba de Sensibilidad

Prueba de comunicación entre microcontroladores

Prueba de accionamiento de válvula

Prueba de respuesta del detector

Bill Of Materials

Producto	Cantidad	Rango de precios	Descripcion						
Microcontrolador	2	2-5 USD	Uno de ellos para controlar el detector de gas y el otro para controlar la electrovalvula						
Fuente de alimentacion	2	1-3 USD	Para alimentar ambos microcontroladores						
Encargo de PCB	2	10-25 USD	Para los circuitos, tanto de la electrovalvula como del detector						
Electrovalvula	1	12-40 USD	Para controlar el flujo de gas						
Detector de gas	1	11-50 USD	Para identificar la fuga						
Case	2	N/A	Para proteger los elementos del sistema						

Benchmarking

Techamor Y401

Techamor adapta un excelente diseño industrial, y cuenta con una alarmas visual y audible. Simplemente enchufa y listo para monitorear posibles fugas de gas riesgosas

Precio: US\$20

Benchmarking

Kidde KN-COEG-3 Nighthawk

Es un detector de monóxido de carbono y gas explosivo, este cuenta con enchufe y respaldo de batería.

Precio: US\$49.11

Benchmarking

GA21 Detector

Este es un sistema más completo el cual cuenta con una salida para controlar una electroválvula y cerrar el paso de el gas

Precio: US\$295

¿Qué podemos aprender de ese diseño en particular y cuales cosas pudiéramos implementar?

De los productos vistos anteriormente podemos tomar variedad de referencias tanto en sus diseños, como en el valor añadido de sus productos. Por ejemplo, de **Kidde KN-COEG-3** podemos tomar la idea de contar con un respaldo de baterias en caso de corte electrico o de **GA21 Detector** la implementacion de sus componentes.

INVESTIGACIONES DE EBSCO

- <u>IoT Based Gas Leakage Detection and Alarming System</u>
 <u>using Blynkplatforms</u>
- <u>Technology can boost your gas detector safety program</u>
- GAS LEAK DETECTION AND SMART ALERTING USING IOT

Muchas Gracias!

