University of Delaware CISC260 Homework 2 Solution

Jiefu Li

March 19, 2018

1 Notation

Here, let me use the following notations for logic:

 \bar{X} : NOT X .

X + Y: X or Y.

X * Y: X and Y.

2 Question 1.

[25 points] Given the following truth table, where X, Y, and Z are input and W is output, write the canonical expression and generate gate-level logical circuit.

X	Y	Z	W
0 0 0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Answer: $W = \bar{X} * \bar{Y} * Z + \bar{X} * Y * Z + X * Y * Z$ The circuit is shown as following.

3 Question 2.

[25 points] Write the Boolean expression and fill out the truth table for following logical circuit.

Answer

The expression is:

$$F = A * (B + \bar{C}) + B * (C + \bar{D}) + BD$$

The truth table is:

A	В	С	D	E	F
0	0	0	0		0
0	0	0	1		0
0	0	1	0		0
0	0	1	1		0
0	1	0	0		1
0	1	0	1		1
0	1	1	0		1
0	1	1	1		1
1	0	0	0		1
1	0	0	1		1
1	0	1	0		0
1	0	1	1		0
1	1	0	0		1
1	1	0	1		1
1	1	1	0		1
1	1	1	1		1

4 Question 3.

[25 points] You are asked to design a circuit to detect if an overflow occurs when adding two integers represented in two's complement: Z = X + Y. Let Sz, Sx, and Sy be the sign bit for Z, X, and Y respectively, and they are fed as input to the circuit. Let O be the output bit of the circuit, whose value is 1 if an overflow happens, and 0 if otherwise.

Answer

The truth table is:

Sx		Sy	Sz	0
	0	0	0	0
	0	0	1	1
	0	1	0	0
	0	1	1	0
	1	0	0	0
	1	0	1	0
	1	1	0	1
	1	1	1	0

From the above truth table, the expression is:

$$O = \bar{S}x * \bar{S}y * Sz + Sx * Sy * \bar{S}z$$

Then, from the expression, the circuit is the following:

5 Question 4.

[25 points] Prove that NOR gate is universal, by showing how AND, OR, and NOT gates can be built by wiring a bunch of NOR gates. Draw the wire diagram for each case.

2

Answer

NOR to NOT:

$$NOT(x) = (\bar{x}) = \overline{(x+x)} = NOR(x, x)$$

$$OR(x,y) = x + y = NOT(\overline{(x+y)}) = NOR(NOR(x,y), NOR(x,y))$$

NOR to AND:

$$AND(x,y) = x*y = NOT(\bar{x} + \bar{y}) = NOR(NOR(x,x), NOR(y,y))$$