Word meaning as classification

CMSC 723 / LING 723 / INST 725

Hal Daumé III [he/him] 17 Sep 2019

(Many slides c/o Dan Jurafsky & James Martin)

Announcements, logistics

- HW2 (ddl Sept 26 before class):
 - Written portion was posted last week
 - You should have received a login for Jupyter Hub server via email
 if not please contact us ASAP (either after class to talk to Amr)
 - Programming portion posted in next 24 hours (hopefully today)!
- Readings for next few weeks are now posted

R 19 Sep	Data collection and annotation	DataInNLP, and AnnCaseStudy	
T 24 Sep	Measurement and validity	Measurement, and MeasurementCaseStudy, Sec "Reliability, Validity,"	
R 26 Sep	Crowdsourcing annotations	CrowdsourcingNLP, and AnnMyths	HW2
T 01 Oct	Multilinguality and linguistic variety	TheBenderRule, and Elicitation, Sec 3, and optional: ActiveElicitation	

Tf-idf and PPMI are sparse representations

- tf-idf and PPMI vectors are
 - **long** (length |V|= 20,000 to 50,000)
 - sparse (most elements are zero)

Alternative: dense vectors

- vectors which are
 - **short** (length 50-1000)
 - dense (most elements are non-zero)

Sparse versus dense vectors

- Why dense vectors?
 - Short vectors may be easier to use as features in machine learning (less weights to tune)
 - Dense vectors may generalize better than storing explicit counts
 - They may do better at capturing synonymy:
 - car and automobile are synonyms; but are distinct dimensions
 - a_s word with car as a neighbor and a word with automobile as a neighbor should be similar, but aren't
 - In practice, they work better

Dense embeddings you can download!

word2vec

https://code.google.com/archive/p/word2vec/

Fasttext

http://www.fasttext.cc/

Glove

http://nlp.stanford.edu/projects/glove/

Word2vec

- Popular embedding method
- Very fast to train
- Code available on the web
- •Idea: predict rather than count

Word2vec

- Instead of counting how often each word w occurs near "apricot"
- Train a classifier on a binary prediction task:
 - Is w likely to show up near "apricot"?

- We don't actually care about this task
 - But we'll take the learned classifier weights as the word embeddings

Use running text as implicitly supervised training data!

- A word *s* near *apricot*
 - Acts as gold 'correct answer' to the question
 - "Is word w likely to show up near apricot?"
- No need for hand-labeled supervision

Word2Vec: **Skip-Gram** Task

- Word2vec provides a variety of options
 - Let's do "skip-gram with negative sampling" (SGNS)

Skip-gram algorithm

- 1. Treat the target word and a neighboring context word as positive examples.
- 2. Randomly sample other words in the lexicon to get negative samples
- 3. Use logistic regression to train a classifier to distinguish those two cases
- 4. Use the weights as the embeddings

Skip-Gram Training Data

- Training sentence:
- ... lemon, a tablespoon of apricot jam a pinch ...
- c1 c2 target c3 c4

Assume context words are those in +/- 2 word window

Skip-Gram Goal

- Given a tuple (t,c) = target, context
 - (apricot, jam)
 - (apricot, aardvark)
- Return probability that c is a real context word:
- P(+|t,c)
- P(-|t,c) = 1-P(+|t,c)

How to compute p(+|t,c)?

- Intuition:
 - Words are likely to appear near similar words
 - Model similarity with dot-product!
- Classification model
 - $P(+ | t, c) = 1/(1 + exp(-e_t \cdot e_c))$

Skip-Gram Training Data

- Training sentence:
- ... lemon, a tablespoon of apricot jam a pinch ...
- c1 c2 t c3 c4

- Training data: input/output pairs centering on apricot
- Assume a +/- 2 word window

Skip-Gram Training

- Training sentence:
- ... lemon, a tablespoon of apricot jam a pinch ...
- c1 c2 t c3 c4

positive examples +

t c
apricot tablespoon
apricot of
apricot preserves
apricot or

- •For each positive example, we'll create *k* negative examples.
- Using noise words
- •Any random word that isn't \hat{t}

Skip-Gram Training

Training sentence:

```
• ... lemon, a tablespoon of apricot jam a pinch ...
```

• c1 c2 t c3 c4

apricot tablespoor apricot of apricot preserves apricot or

negative examples - k=2

t	c	t	c
apricot	aardvark	apricot	twelve
apricot	puddle	apricot	hello
apricot	where	apricot	dear
apricot	coaxial	apricot	forever

Choosing noise words

- Could pick w according to their unigram frequency P(w)
- More common to chosen then according to $p_{\alpha}(w)$

$$P_{\alpha}(w) = \frac{count(w)^{\alpha}}{\sum_{w} count(w)^{\alpha}}$$

- α = $\frac{3}{4}$ works well because it gives rare noise words slightly higher probability
- To show this, imagine two events p(a)=.99 and p(b) = .01:

$$P_{\alpha}(a) = \frac{.99^{.75}}{.99^{.75} + .01^{.75}} = .97$$

$$P_{\alpha}(b) = \frac{.01^{.75}}{.99^{.75} + .01^{.75}} = .03$$

Setup

- Let's represent words as vectors of some length (say 300), randomly initialized.
- So we start with 300 * V random parameters
- Over the entire training set, we'd like to adjust those word vectors such that we
 - Maximize the similarity of the target word, context word pairs (t,c) drawn from the positive data
 - Minimize the similarity of the (t,c) pairs drawn from the negative data.

Learning the classifier

- Iterative process.
- We'll start with 0 or random weights
- Then adjust the word weights to
 - make the positive pairs more likely
 - and the negative pairs less likely
- over the entire training set:

Train using gradient descent

- Actually learns two separate embedding matrices W and C
- Can use W and throw away C, or merge them somehow

Summary: How to learn word2vec (skip-gram) embeddings

- Start with V random 300-dimensional vectors as initial embeddings
- Use logistic regression, the second most basic classifier used in machine learning after naïve bayes
 - Take a corpus and take pairs of words that co-occur as positive examples
 - Take pairs of words that don't co-occur as negative examples
 - Train the classifier to distinguish these by slowly adjusting all the embeddings to improve the classifier performance
 - Throw away the classifier code and keep the embeddings.

Evaluating embeddings

- Compare to human scores on word similarity-type tasks:
- WordSim-353 (Finkelstein et al., 2002)
- SimLex-999 (Hill et al., 2015)
- Stanford Contextual Word Similarity (SCWS) dataset (Huang et al., 2012)
- TOEFL dataset: Levied is closest in meaning to: imposed, believed, requested, correlated

Properties of embeddings

Similarity depends on window size C

- C = ±2 The nearest words to *Hogwarts*:
 - Sunnydale
 - Evernight
- C = ±5 The nearest words to *Hogwarts*:
 - Dumbledore
 - Malfoy
 - halfblood

Analogy: Embeddings capture relational meaning!

vector('king') - vector('man') + vector('woman') \approx vector('queen') vector('Paris') - vector('France') + vector('Italy') \approx vector('Rome')

Are embeddings so magical?

Word2vec as matrix factorization

M = WC, but... what is M?

(Levy & Goldberg, NeurlPS 2014)

$$\mathsf{M} = \log\left(\frac{\#(w,c)\cdot|D|}{\#(w)\cdot\#(c)}\right) - \log k = PMI(w_i,c_j) - \log k$$

How does this help us understand these "semantic" embedding dimensions?

Does this matter empirically?

WS353 (WORDSIM) [13]		MEN (WORDSI	м) [4]	Mixed Analogies [20] Synt. Analogii		ES [22]				
Representation Corr.		Corr.	Representation		Corr.	Representation		Acc.	Representation		Acc.
SVD	(k=5)	0.691	SVD	(k=1)	0.735	SPPMI	(k=1)	0.655	SGNS	(k=15)	0.627
SPPMI	(k=15)	0.687	SVD	(k=5)	0.734	SPPMI	(k=5)	0.644	SGNS	(k=5)	0.619
SPPMI	(k=5)	0.670	SPPMI	(k=5)	0.721	SGNS	(k=15)	0.619	SGNS	(k=1)	0.59
SGNS	(k=15)	0.666	SPPMI	(k=15)	0.719	SGNS	(k=5)	0.616	SPPMI	(k=5)	0.466
SVD	(k=15)	0.661	SGNS	(k=15)	0.716	SPPMI	(k=15)	0.571	SVD	(k=1)	0.448
SVD	(k=1)	0.652	SGNS	(k=5)	0.708	SVD	(k=1)	0.567	SPPMI	(k=1)	0.445
SGNS	(k=5)	0.644	SVD	(k=15)	0.694	SGNS	(k=1)	0.540	SPPMI	(k=15)	0.353
SGNS	(k=1)	0.633	SGNS	(k=1)	0.690	SVD	(k=5)	0.472	SVD	(k=5)	0.337
SPPMI	(k=1)	0.605	SPPMI	(k=1)	0.688	SVD	(k=15)	0.341	SVD	(k=15)	0.208

Where did things go from here...

- Training objectives (fasttext, glove, etc.)
- Multilingual embeddings (also fasttext, others)
- Lots of "bias in embeddings" stuff
- Trying to tease out what embeddings are actually learning
- Using embeddings as an input representation is a very good default for dense models. But bag of n-grams still often wins

Side-note on biases

- There are >64 papers on biases and "debiasing"
- I have many thoughts on this, we'll talk about it later
- For now:
 - Embeddings reflect co-occurance in data
 - Co-occurences reflect social structure as reflected in text
 - Text != the real world

Where did things go from here...

- Training objectives (fasttext, glove, etc.)
- Multilingual embeddings (also fasttext, others)
- Lots of "bias in embeddings" stuff
- Trying to tease out what embeddings are actually learning
- Using embeddings as an input representation is a very good default for dense models. But bag of n-grams still often wins

Today

- Embeddings
- Word2vec
- Word2vec isn't magic