Команда ГАДы: Крылов Андрей m3234 Фунин Георгий m3234 Дударев Денис m3235

Отчет Лабораторная работа №3

Введение

В этой лабораторной работе мы реализовали и исследовали методы стохастической оптимизации поиска минимума многомерных функций, а также сравнили их с методами из прошлых лабораторных работы. В работе были использованы Python 3 и библиотека scipy-optimyze.

1 Описание методов

SGD

Реализация SGD

- Метод возвращает координаты и значение точки, а также историю вычислений
- для инициализации состояния применяется NumPy
- Гиперпараметры отвечают за ускорение сходимости и за остановку вычислений

Листинг 1: Реализация метода SGD

```
def stochastic_gradient_descent_2d(
       objective_func: Callable,
2
       gradient_func: Callable,
       x_bounds: Tuple[float, float],
       y_bounds: Tuple[float, float],
5
       learning_rate: float = 0.01,
       max_iter: int = 10000,
       momentum: float = 0.9,
9
       tol: float = 1e-6,
       random_state = None
10
1.1
   ):
       current_x = random.uniform(x_bounds[0], x_bounds[1])
12
       current_y = random.uniform(y_bounds[0], y_bounds[1])
13
       current_value = objective_func([current_x, current_y])
14
15
       best_x, best_y = current_x, current_y
       best_value = current_value
16
       history = [current_value]
17
18
       velocity = np.zeros(2)
19
       for k in range(max_iter):
21
22
            grad = gradient_func([current_x, current_y])
23
           velocity = momentum * velocity - learning_rate * grad
24
25
            current_x += velocity[0]
26
           current_y += velocity[1]
27
           current_x = max(x_bounds[0], min(x_bounds[1], current_x))
29
30
           current_y = max(y_bounds[0], min(y_bounds[1], current_y))
31
           current_value = objective_func([current_x, current_y])
32
           history.append(current_value)
34
            if current_value < best_value:</pre>
35
                best_x , best_y = current_x , current_y
                best_value = current_value
37
38
            if k > 10 and abs(history[-2] - history[-1]) < tol:</pre>
40
41
       return (best_x, best_y), best_value, history
42
```

2 Графики

Реализуем отображение графиков на Python, который:

- отображает визуализацию 3D
- отрисовывает траекторию градиентного спуска
- отображает линии уровня функции

Используемые библиотеки

- питру работа с массивами данных
- matplotlib.pyplot создание 3D-графиков
- matplotlib.colors.LightSource создание освещения для 3D-графиков

3 Описание результатов

а римере ункии иммеллау:

$$z = (x^2 + y - 11)^2 + (x + y^2 - 7)^2$$
 в точке $(2, -1.5)$

Метод	Итерации	Вызовы функции	Вызовы градиента	x	у
VFSA	1000	1001	0	3.5844283018777903	-1.8481265843447385
SGD	135	136	135	3.5845214196109647	-1.8482757702034391

График SGD

На примере функции Химмельблау:

$$z = (x^2 + y - 11)^2 + (x + y^2 - 7)^2$$
 в точке (-5, 0)

Метод	Итерации	Вызовы функции	Вызовы градиента	x	у
VFSA	1000	1001	0	3.5844284293403588	-1.8481265430393075
SGD	156	157	156	-2.8053155593848946	3.131665994249259

График VSFA

На примере функции Бута

$$z = (x + 2y - 7)^2 + (2x + y - 5)^2$$
 в точке (-1.5, 1.75)

Me	тод	Итерации	Вызовы функции	Вызовы градиента	x	У
VFS	SA	1000	1001	0	1.0004717945794974	2.9994346757115355
SGI	D	214	215	214	0.9970054058881611	3.0030057145346216

График SGD

На примере функции Бута

$$z = (x + 2y - 7)^2 + (2x + y - 5)^2$$
 в точке $(1, 0.5)$

Метод	Итерации	Вызовы функции	Вызовы градиента	x	y
VFSA	1000	1001	0	1.0002014585959855	2.9998479101489495
SGD	182	183	182	1.0029391954868798	2.9972734777757633

График VSFA

4 Вывод

В данной лабораторной работе мы реализовали и сравнили два стохастических метода оптимизации VFSA и SGD. VFSA показал стабильные результаты даже при разных начальных точках и хорошо справляется с инетересными мультимодальными функциями, при этом не требует градиента, но делает больше вызовов функции. SGD раотает стрее, но увствителен к вору стартово токи и араметров, осоенно скорости оуени, и моет не сотис на слон унки.