Universidad del Valle Escuela de Ingeniería de Sistemas y Computación Inteligencia artificial Informe sobre *Machine learning*

Para la experimentación con técnicas de *machine learning* se utilizará un conjunto de datos de 27901 estudiantes quienes participaron en un estudio sobre depresión. Dentro de la información recolectada se tienen datos sobre el estilo de vida, hábitos académicos o laborales y salud mental. Cada persona está descrita mediante 9 atributos, entre los que se incluyen la edad, el promedio acumulado (CGPA), la duración del sueño, el tipo de estudios que realiza, la carga horaria de estudio o trabajo, y si ha tenido pensamientos suicidas o antecedentes familiares de enfermedades mentales. La variable dependiente que se quiere predecir es *Depression*, la cual toma los valores 1 o 0 para indicar la presencia o ausencia de síntomas depresivos, respectivamente. En este informe se desarrollarán modelos para predecir dicha variable a partir de los demás atributos.

#	Atributo	Descripción	Tipo de variable	Posibles valores
1	Gender	Sexo de la persona	Categórica	Female, Male
2	Age	Edad de la persona en años	Numérica	18.0 - 59.0
3	CGPA	Promedio acumulado (Cumulative Grade Point Average)	Numérica	0.0 - 10.0
4	Sleep Duration	Duración habitual del sueño por noche	Categórica	Less than 5 hours 5-6 hours, 7-8 hours, More than 8 hours Others
5	Degree	Indica el nivel educativo en el que se encuentra actualmente	Categórica	High school Undergraduate Postgraduate Doctorate Others
6	Suicidal Thoughts	Indica si ha tenido pensamientos suicidas	Categórica	No, Yes
7	Work/Study Hours	Horas promedio dedicadas a estudio o trabajo por día	Numérica	0.0 - 12.0
8	Family History of Mental Illness	Antecedentes familiares de enfermedades mentales	Categórica	No, Yes
9	Depression	Etiqueta binaria que indica presencia de síntomas depresivos	Variable dependiente a predecir	0 = No tiene depresión 1 = Sí tiene depresión

El objetivo de este informe es crear dos notebooks. En el primer notebook se usará la técnica de redes neuronales probando diferentes topologías y modificando los hiperparámetros. Para esto, debe entregar un notebook donde se realicen las siguientes tareas:

- 1. Leer el archivo depression.csv
- 2. Seleccionar aleatoriamente el 80% del conjunto de datos para entrenar y el 20% restante para las pruebas
- 3. Utilizar una estrategia para normalizar los datos numéricos y una forma de codificar los atributos categóricos
- 4. Construir 5 redes neuronales variando en la topología de la red la cantidad de capas ocultas y de neuronas por cada capa oculta. Puede también variar los hiperparámetros solver y la función de activación. En todas las pruebas debe usar un random_state=123.
- 5. Incluya en el notebook una tabla con el *accuracy* obtenido sobre el conjunto de prueba para las 5 redes neuronales del punto anterior
- 6. Indique en el notebook, usando una celda de tipo texto, los hiperparámetros que por el momento le permiten obtener la red con mayor *accuracy*
- 7. Seleccione uno de los hiperparámetros disponibles en la documentación (https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html) que sea diferente al solver, a la función de activación, y al random_state. Realice dos variaciones en el hiperparámetro seleccionado manteniendo los otros hiperparámetros del punto anterior. Indique el accuracy obtenido al modificar el hiperparámetro seleccionado y analice si la red mejora, empeora, o mantiene su exactitud. Incluya en el notebook dicho análisis

En el segundo notebook se deben realizar las siguientes tareas:

- 1. Leer el archivo depression.csv
- 2. Seleccionar aleatoriamente el 80% del conjunto de datos para entrenar y el 20% restante para las pruebas
- 3. Utilizar una estrategia para normalizar los datos numéricos y una forma de codificar los atributos categóricos
- 4. Configurar los hiperparámetros del árbol de decisión de la siguiente manera: criterion=gini, splitter=best, y random_state=123. Obtener 10 árboles de decisión que resultan de modificar el hiperparámetro max_depth desde 1 hasta 10 con incrementos de 1
- 5. Incluya en el notebook una tabla con el *accuracy* obtenido sobre el conjunto de prueba para los 10 árboles del punto anterior
- 6. Repita el mismo procedimiento del punto 4 usando como hiperparámetros criterion=entropy, splitter=best, y random_state=123. Nuevamente debe modificar el hiperparámetro max_depth desde 1 hasta 10 con incrementos de 1
- 7. Incluya en el notebook una tabla con el *accuracy* obtenido sobre el conjunto de prueba para los 10 árboles del punto anterior
- 8. Indique en el notebook los hiperparámetros que por el momento le permiten obtener el árbol con mayor *accuracy*
- 9. Seleccione uno de los hiperparámetros disponibles en la documentación (https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html) que sea diferente al criterion, splitter, max_depth, y random_state. Realice dos variaciones en el hiperparámetro seleccionado manteniendo los otros hiperparámetros del punto anterior. Indique el accuracy obtenido al modificar el hiperparámetro seleccionado y analice si el árbol de decisión mejora, empeora, o mantiene su exactitud.