Bachelor's Thesis

Aarrya Saraf
Supervised by:
Dr. Noam Zeilberger, LIX
Dr. Dale Miller, LIX

Top-Down and Bottom-Up Approaches to Parsing

$$x * 7 + 61 * 7$$

1. Tokenizing - [Num x, Sym *, Num 7, Sym +, Num 61, Sym *, Num 7]

```
x * 7 + 61 * 7
```

- Tokenizing [Num x, Sym *, Num 7, Sym +, Num 61, Sym *, Num 7]
- 2. Parsing Makes sure we follow the given grammar

```
x * 7 + 61 * 7
```

- Tokenizing [Num x, Sym *, Num 7, Sym +, Num 61, Sym *, Num 7]
- 2. Parsing Makes sure we follow the given grammar

The grammar:

```
Expr -> Lb Expr Rb | Num | Expr Sym Expr

Num -> Minus Dig Dig* | Dig Dig* | x Rb -> )

Sym -> + | - | / | * Lb -> (

Minus -> - Dig -> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

```
x * 7 + 61 * 7
```

- Tokenizing [Num x, Sym *, Num 7, Sym +, Num 61, Sym *, Num 7]
- 2. Parsing Makes sure we follow the given grammar
- 3. Adjustments and finally evaluation

$$x * 7 + 61 * 7$$

- Tokenizing [Num x, Sym *, Num 7, Sym +, Num 61, Sym *, Num 7]
- 2. Parsing Makes sure we follow the given grammar
- 3. Adjustments and finally evaluation

$$(x*7) + (61*7)$$
 is 3 operations

However

$$7*(61+x)$$
 is just 2

$$x * 7 + 61 * 7$$

- 1. Tokenizing [Num x, Sym *, Num 7, Sym +, Num 61, Sym *, Num 7]
- Parsing Makes sure we follow the given grammar
- 3. Adjustments and finally evaluation

$$(x*7) + (61*7)$$
 is 3 operations

However

$$7*(61+x)$$
 is just 2

Lastly say x = 9 and we will have the answer as 490

```
x * 7 + 61 * 7
```

- Tokenizing [Num x, Sym *, Num 7, Sym +, Num 61, Sym *, Num 7]
- 2. Parsing Makes sure we follow the given grammar
- 3. Adjustments and finally evaluation

1. Sound

- 1. Sound
- 2. Complete

- 1. Sound
- 2. Complete
- 3. Guaranteed to terminate

- 1. Sound
- 2. Complete
- 3. Guaranteed to terminate
- 4. Fast

- 1. Sound
- 2. Complete
- 3. Guaranteed to terminate
- 4. Fast

Consider: 4+23-(7*8)

Consider: 4+23-(7*8)

• Prefer deterministic grammars

Prefer deterministic grammars

Same parse tree

Prefer deterministic grammars

Same parse tree

Super important and precise - hence automated

- 1. Sound
- 2. Complete
- 3. Guaranteed to terminate
- 4. Fast

Start with (●S, N)

Want (●e, 0)

```
Start with (●S, N)
Want (● e, 0)
Rule A -> BC
Then
      (B, i, k), (C, k, j)
           (A,i,j)
```

```
Start with (●S, N)
Want (●e, 0)
Rule A -> a
Then
     ABCD... (●abcd..., N)
       BCD... (a • bcd , N-1)
```


Worst case is O(E) where E is number of edges

[5, 6, 7, 8, 9]

[5, 6, 7, (2,5), (2,6), (3,7), 8, 9, (4,8), (4,9)]

[5, 6, 7, (2,5), (2,6), (3,7), (1,2), (1,3), 8, 9, (4,8), (4,9)]

[5, 6, 7, (2,5), (2,6), (3,7), (1,2), (1,3), (1,5), (1,6), (1,7), 8, 9, (4,8), (4,9)]

[5, 6, 7, (2,5), (2,6), (3,7), (1,2), (1,3), (1,5), (1,6), (1,7), 8, 9, (4,8), (4,9)]

Now Query (1,7) in the list

[5, 6, 7, (2,5), (2,6), (3,7), (1,2), (1,3), (1,5), (1,6), (1,7), 8, 9, (4,8), (4,9)]

Now Query (1,7) in the list - O(E) once but then quick

Bottom-Up - But what if?

 $\overline{[6, 7, (5,6), (2,6), (3,7), (1,2), (1,3), (1,5), (1,6), (1,7), 8, 9, (4,8), (4,9)]}$

No Difference

```
S -> (SRS | (SR | (RS | (R
R -> )
```

(())

STACK - []

```
S -> (SRS | (SR | (RS | (R
R -> )
```

STACK - [S, R, S]

```
S -> (SRS | (SR | (RS | (R
R -> )
```


STACK - [S, R, S, R, S] and fail

Eventually...

```
S -> (SRS | (SR | (RS | (R
R -> )
```



```
S -> (SRS | (SR | (RS | (R
R -> )
```


STACK - [R, R]

Key Observations (after fixing a grammar)

Grammar in Greibach Normal Form for convenience

Key Observations (after fixing a grammar)

- Grammar in Greibach Normal Form for convenience
- Complexity of O(Rⁿ) with n size of input and R the number of rules

Key Observations (after fixing a grammar)

- Grammar in Greibach Normal Form for convenience
- Complexity of O(Rⁿ) with n size of input and R the number of rules
- Cannot have useful error messages (but this can be helped with look ahead features)

Idea of Look-Ahead - Recall

```
S -> (SRS | (SR | (RS | (R
```


Idea of Look-Ahead

```
S -> (SRS | (SR | (RS | (R
R -> )
```

(())

STACK - [S, R, S]

We look one step ahead in our set of rules and see if S can parse (and), S can parse)).

S -> AB | c

A -> AB | a

B -> BA | b

"ababa"

A		

S -> AB | c

A -> AB | a

B -> BA | b

"ababa"

A				
	В			
		A		
			В	
				A

Α	S, A			
	В			
		A		
			В	
				A

S -> AB | c

A -> AB | a

"ababa" B->BA|b

A	S, A			
	В	В		
		A	S, A	
			В	В
				A

S -> AB | c

A -> AB | a

"ababa" B->BA|b

A	S, A	S, A, -		
	В	В		
		A	S, A	
			В	В
				A

S -> AB | c

A -> AB | a

"ababa" B->BA|b

Α	S, A	S, A	S, A	S, A
	В	В	В	В
		A	S, A	S, A
			В	В
				A

Bottom-Up: CKY Algorithm (for a fixed grammar)

• O(n^3) for CNF

Bottom-Up: CKY Algorithm (for a fixed grammar)

O(n^3) for CNF

 In general, it is O(n^(k+1)) where k is the maximum number of non terminals in a rule

Bottom-Up: CKY Algorithm (for a fixed grammar)

O(n³) for CNF

 In general, it is O(n^(k+1)) where k is the maximum number of non terminals in a rule

This implementation is not natural to prolog

"ababa"

```
S -> AB | c
A -> AB | a
```

B -> BA | b

```
[]
Infer ((S, X, Y), L):-
member ((A, X, Z), L),
member ((B, Z, Y), L).
infer((S, X, X+1), L):-
member(('c', 0, 1), L)
```

"ababa"

```
S -> AB | c
```

A -> AB | a

B -> BA | b

```
[(A, 0, 1)]
Infer ((S, X, Y), L):-
member ((A, X, Z), L),
member ((B, Z, Y), L).
infer((S, X, X+1), L):-
member(('c', 0, 1), L)
```

S -> AB | c A -> AB | a B -> BA | b

```
[(A, 0, 1), (B, 1, 2), (A, 2, 3), (B, 3, 4), (A, 4, 5)]
Infer ((S, X, Y), L):-
member ((A, X, Z), L),
member ((B, Z, Y), L).
infer((S, X, X+1), L):-
member(('c', 0, 1), L)
```

" a b a b a "

```
S -> AB | c
```

A -> AB | a

B -> BA | b

```
[(A, 0, 1), (B, 1, 2), (A, 2, 3), (B, 3, 4), (A, 4, 5), (S, 0, 2), (A, 0, 2)...]
Infer ((S, X, Y), L):-
    member ((A, X, Z), L),
    member ((B, Z, Y), L).

infer((S, X, X+1), L):-
    member(('c', 0, 1), L)
```

Idea is same as before!

Idea is same as before!

By changing the nature of inference, we have made the algorithm more free

Outlook

• Combining Bottom-Up and Top-Down - Earley's Algorithm

Combining Bottom-Up and Top-Down - Earley's Algorithm

• runs in O(n^3) for all

Combining Bottom-Up and Top-Down - Earley's Algorithm

runs in O(n^3) for all

No obvious and simple implementation in Prolog (to me at least)

Outlook

• Combining Bottom-Up and Top-Down - Earley's Algorithm

A better Parsing Algorithm and connections to Matrices

A better Parsing Algorithm and connections to Matrices

Parsing a CFG = Boolean Matrix Multiplication

A better Parsing Algorithm and connections to Matrices

Parsing a CFG = Boolean Matrix Multiplication

Theoretical lower bound unknown

A better Parsing Algorithm and connections to Matrices

Parsing a CFG = Boolean Matrix Multiplication

Theoretical lower bound unknown

Current best is ~ O(n^2.37)

Outlook

• Combining Bottom-Up and Top-Down - Earley's Algorithm

A better Parsing Algorithm and connections to Matrices

Term sharing and common subformulae elimination

Term Sharing

Much easier to do with a Bottom-Up Implementation

Common SubFormulae Elimination

$$A(B(C), D(B(C))) = A(K, D(K)), K = B(C)$$

Again much easier with Bottom-Up Approaches!

Analyzed top down and bottom up approaches

Analyzed top down and bottom up approaches

Found a new prolog implementation - generalising the algorithm

Analyzed top down and bottom up approaches

Found a new prolog implementation - generalising the algorithm

Based on this work we can do a better logical analysis of Earley's algorithm

Analyzed top down and bottom up approaches

• Found a new prolog implementation - generalising the algorithm

Based on this work we can do a better logical analysis of Earley's algorithm

This may lead to better algorithms

Analyzed top down and bottom up approaches

• Found a new prolog implementation - generalising the algorithm

• Based on this work we can do a better logical analysis of Earley's algorithm

This may lead to better algorithms

Also helpful in CSFE and Term-Sharing

Thank You!