UM 204 : INTRODUCTION TO BASIC ANALYSIS SPRING 2022

HOMEWORK 8

Instructor: GAUTAM BHARALI Assigned: MARCH 9, 2022

Note. Problem 1 has been carried over from Assignment 7. This will allow discussion—if required at this stage—of Problem 1 during the March 14 tutorial.

1. Let $\{a_n\}$ be a real sequence that converges to A. Then, show that the sequence of averages

$$\mu_n := \frac{a_1 + \dots + a_n}{n}, \quad n = 1, 2, 3, \dots,$$

also converges.

Tip. It would help to guess what $\{\mu_n\}$ converges to!

2. Let $\{a_n\}$ be a real sequence, and define

$$\Delta_n := a_{n+1} - a_n,$$

$$\mu_n := \frac{a_1 + \dots + a_n}{n}, \quad n = 1, 2, 3, \dots.$$

- (a) Assume that the sequences $\{\mu_n\}$ and $\{n\Delta_n\}$ are convergent. Show that $\{a_n\}$ is convergent.
- (b) Suppose we **only** assume that $\{n\Delta_n\}$ is convergent (i.e., no assumptions on $\{\mu_n\}$ are made). Does the conclusion of part (a) still hold true? Give a proof if this is true, else construct a sequence $\{a_n\}$ with the stated property that is not convergent.

Hint. The conclusion of Problem 1 holds true if applied to the sequence $\{n\Delta_n\}$. Examine what the sequence of averages of the first n terms of $\{n\Delta_n\}$ looks like.

- **3.** Let $\sum_{n=1}^{\infty} a_n$ be a convergent series with terms in \mathbb{R} . Let $\{b_n\} \subset \mathbb{R}$ be a monotone bounded sequence. Show that $\sum_{n=1}^{\infty} a_n b_n$ is convergent.
- **4.** Let V be a vector space over the field \mathbb{F} , where \mathbb{F} is either \mathbb{R} or \mathbb{C} , equipped with a norm $\|\cdot\|$. Let

$$\sum_{n=1}^{\infty} a_n \quad \text{and} \quad \sum_{n=1}^{\infty} b_n$$

be convergent series with terms in V whose sums are A and B respectively. Let $c \in \mathbb{F}$. Show that:

- (a) the series $\sum_{n=1}^{\infty} (a_n + b_n)$ is convergent and its sum is (A + B).
- (b) the series $\sum_{n=1}^{\infty} ca_n$ is convergent and its sum is cA.
- **5. Review:** Recall (and study) the two parts of the so-called Comparison Test, which was introduced to you in UM101. This is presented as **Theorem 3.25** in Chapter 3 of "Baby" Rudin (where the statement pertaining to **convergent** series is extended to series whose terms are in \mathbb{C}).

6. Fix a real number a > 1. Recall that if $p \in \mathbb{Q}$ and if p = m/n for some $m \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$, then

$$a^p := (a^m)^{1/n}. (1)$$

Now, if now p is an arbitrary real number, then we define

$$a^p := \sup\{a^q : q \in \mathbb{Q} \text{ and } q \le p\}.$$
 (2)

Assume, for the moment, that the definition (1) does not depend on the choice of the representative m/n of p and that $a^p > 1$ whenever $p \in \mathbb{Q}^+$.

- (a) For $p \in \mathbb{Q}$, show that the two definitions (1) and (2) of a^p agree.
 - (**Remark.** For $p \in \mathbb{Q}$, the left-hand side (1) is simply shorthand for an operation, given by the right-hand side, in an ordered field that admits n-th roots for any positive field element. Part (a) establishes the fact that (2) is the **extension** of the definition of the p-th power to an arbitrary $p \in \mathbb{R}$.)
- (b) For any $x, y \in \mathbb{R}$, show that $a^{x+y} = a^x a^y$.
- (c) Let $p \in \mathbb{R} \setminus \mathbb{Q}$. Let $\{q_n\}$ be **any** sequence of rational numbers such that $q_n \to p$. Show that $\{a^{q_n}\}$ is a convergent sequence. Having established this, show that if

$$q_1 \leq q_2 \leq q_3 \leq \cdots,$$

then the limit of $\{a^{q_n}\}$ is a^p as defined by (2)

(**Remark / Tip.** Part (c) provides yet another reason for why the right-hand side of (2) is a natural way to define a^p when $p \in \mathbb{R} \setminus \mathbb{Q}$. For the sequence $\{a^{q_n}\}$ in the first half of part (c), it suffices to show that $\{a^{q_n}\}$ is Cauchy. Also, you may assume **without proof** that $\lim_{j\to\infty} a^{1/j} = 1$.)

(d) How would you define a^p for $p \in \mathbb{R} \setminus \mathbb{Q}$ if a < 1? You are not required to establish appropriate analogues of (a) and (c), but to state reasons why (2) must be amended.