The Hash Function Hamsi

Özgül Küçük ¹
Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC, and IBBT Kasteelpark Arenberg 10, B–3001 Heverlee, Belgium ozgul.kucuk@esat.kuleuven.be

June 22, 2010

¹This work was sponsored by the Research Fund K.U.Leuven, by the IAP Programme P6/26 BCRYPT of the Belgian State (Belgian Science Policy) and by the Europen Commission through the ICT Programme under Contract ICT-2007-216676 (ECRYPT II). The information in this paper is provided as is, and no warranty is given or implied that the information is fit for any particular purpose. The user therof uses the information at its sole risk and liability.

Contents

1	Intr	oduction	4
2	Spe	cification	5
	2.1	Introduction	5
	2.2	The Hash Function Hamsi	6
		2.2.1 General Design	6
		2.2.2 Initial Values	7
		2.2.3 Message Padding	7
		2.2.4 Message Expansion	9
		2.2.5 Concatenation	10
	2.3	The Non-linear Permutation P	11
		2.3.1 Addition of Constants and Counter	11
		2.3.2 Substitution Layer	12
		2.3.3 Diffusion Layer	12
		2.3.4 Truncation T	14
	2.4	The Non-linear Permutation P_f	15
	2.5	Truncations T_{224} , T_{384}	15
	2.6	Number of Rounds	16
A	Apr	pendix	19
		Construction of the Linear Code [128,16,70] over F_4	19
		Construction of the Linear Code [256,32,131] over F_4	20
	11.4	Combination of the Binetic Code [200,02,101] Over 14	20

List of Figures

2.1	General Design of Hamsi	8
2.2	Concatenation in Hamsi-256 and Hamsi-224	11
2.3	Sboxes acting over 4-bits over the columns of an Hamsi state	13
2.4	Application of L in Hamsi-256 and Hamsi-224	13
2.5	Truncation in Hamsi-256 and Hamsi-224	15

List of Tables

2.1	Hamsi variants and security claims	6
2.2	Notations	6
2.3	Initial Values of Hamsi	6
2.4	Constants used in P	12
2.5	Sbox used in Hamsi	12
2.6	Constants used in P_f	15
2.7	Number of rounds of permutations P and P_f	16
2.8	New Variants	17

Chapter 1

Introduction

This document contains updated specifications of the hash function Hamsi. Hamsi is a Second Round Candidate of the SHA-3 competition organized by NIST [1].

There are no tweaks of Hamsi however we update the specification to correct some parts and to provide a specific parameter for the number of rounds in the finalization of Hamsi-256 and Hamsi-224, see Table 2.8.

For more information, software/hardware implementations, reference code, supporting document and further improvements and all the changes related to this document please refer to the NIST submission package and Hamsi website: http://homes.esat.kuleuven.be/~okucuk/hamsi/

Chapter 2

Specification

2.1 Introduction

Hamsi is a family of cryptographic hash functions. There are two instances of Hamsi, Hamsi-256 and Hamsi-512. Table 2.1 summarizes the variants, corresponding parameters and security claims in bits. Hamsi-224 and Hamsi-384 are very similar to Hamsi-256 and Hamsi-512 respectively. They only differ in initial values, and a final truncation. Thus, here we will mainly mention Hamsi-256 and Hamsi-512. Unless explicitly mentioned, operations and data structures for Hamsi-256 and Hamsi-512 apply for their stripped down counterparts, Hamsi-224 and Hamsi-384 respectively.

At the core of Hamsi are the expansion function and round transformations. Round transformation operates on a state matrix of 4 rows. The number of columns is 4 for Hamsi-256, 8 for Hamsi-512. Any entry in the matrix is a word of 32 bits.

Whenever appropriate, these entries are handled big-endian. But, throughout the algorithm, very few places operate on bits, and the only places that require care implementing are the input and output, in which network order among bytes is assumed, and the bits are numbered starting from the MSB of each byte. Other than that, most operations are word operations, and work without the need of endianness conversion within the rounds, even on NUXI machines. One notable exception is the substitution boxes, where the first row of the state matrix is considered the LSB, and similarly the fourth, MSB. This makes a little endian application.

In every round, 4 operations change the matrix. The first is a constant xor into the whole matrix. The second is a simple xor of round number into the LSB bits of s[1]. The third is an Sbox substitution, and the fourth is a diffusion operation on the matrix.

The substitution layer uses a simple Sbox to operate on groups of 4 bits taken from the same bit position in each 4 rows of the state matrix. The result is written back into the same bits.

The diffusion layer operates on 4 words from different positions in the matrix, and the result is written back to those positions.

TD 11 0.1	тт .		1	• ,	1 .
Table 2.1:	Hamsı	variants	and	security	claims

				v	
Variant	Hash	Collision	Preimage	2nd-preimage	Message size
	length	resistance	resistance	resistance	per iteration
Hamsi-256	256	128	256	256	32
Hamsi-512	512	256	512	512	64
Hamsi-224	224	112	224	224	32
Hamsi-384	384	192	384	384	64

2.2 The Hash Function Hamsi

2.2.1 General Design

In this section we describe the general design, namely the iteration mode of Hamsi. Hamsi is based on the Concatenate-Permute-Truncate design strategy used in several hash functions like Snefru [3] and Grindhal [2]. In addition to this approach, it uses a message expansion and a feedforward of the chaining value in each iteration. The non-linear permutation required for the design uses the linear transformation and one of the Sbox of the block cipher Serpent [4]. General design is shown in Fig. 2.1, but more precisely, Hamsi can be described as the composition of the following mappings:

Message Expansion	$E: \{0,1\}^m \to \{0,1\}^n$
Concatenation	$C: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^s$
$Non\hbox{-}linear\ Permutations$	$P, P_f : \{0, 1\}^s \to \{0, 1\}^s$
Truncations	$T: \{0,1\}^s \to \{0,1\}^n$
	$T_{224}: \{0,1\}^{256} \to \{0,1\}^{224}$
	$T_{384}: \{0,1\}^{512} \to \{0,1\}^{384}$

Specifications of the mappings for different variants of Hamsi are given in the following sections. Let $(M_1||M_2||M_3||...||M_l||)$ be properly padded message,

	Table 2.2: Notations							
F_4	Finite Field with 4 elements							
<<<	left rotation							
\oplus	Exclusive or							
<<	left shift							
[n, m, d]	Code with length n,							
	dimension m and							
	minimum distance d							

then Hamsi variants can be described as follows:

Hamsi-256:

$$h_i = (T \circ P \circ C(E(M_i), h_{i-1})) \oplus h_{i-1}, \quad h_0 = iv_{256}, \quad 0 < i < l$$
 (2.1)

$$h = (T \circ P_f \circ C(E(M_l), h_{l-1})) \oplus h_{l-1}$$
(2.2)

Hamsi-224:

$$h_i = (T \circ P \circ C(E(M_i), h_{i-1})) \oplus h_{i-1}, \quad h_0 = iv_{224}, \quad 0 < i < l$$
 (2.3)

$$h = (T_{224} \circ P_f \circ C(E(M_l), h_{l-1})) \oplus h_{l-1}$$
(2.4)

Hamsi-512:

$$h_i = (T \circ P \circ C(E(M_i), h_{i-1})) \oplus h_{i-1}, \quad h_0 = iv_{512}, \quad 0 < i < l$$
 (2.5)

$$h = (T \circ P_f \circ C(E(M_l), h_{l-1})) \oplus h_{l-1}$$
(2.6)

Hamsi-384:

$$h_i = (T \circ P \circ C(E(M_i), h_{i-1})) \oplus h_{i-1}, \quad h_0 = iv_{384} \quad 0 < i < l$$
 (2.7)

$$h = (T_{384} \circ P_f \circ C(E(M_l), h_{l-1})) \oplus h_{l-1}$$
(2.8)

m = 32, n = 256, s = 512 for Hamsi-256 and Hamsi-224 m = 64, n = 512, s = 1024 for Hamsi-512 and Hamsi-384.

2.2.2 Initial Values

Inital values are used as the initial chaining value, h_0 . Hamsi has 4 initial values; iv_{256} , iv_{224} , iv_{512} , iv_{384} used in Hamsi-256, Hamsi-224, Hamsi-512 and Hamsi-384 respectively. Initial values are obtained from the UTF-8 encoding of the text "Özgül Küçük, Katholieke Universiteit Leuven, Departement Elektrotechniek, Computer Security and Industrial Cryptography, Kasteelpark Arenberg 10, bus 2446, B-3001 Leuven-Heverlee, Belgium."

Initial values are obtained in the following manner. The encoding of the address string is UTF-8. iv_{224} is the first 256 bits, iv_{256} is the second 256 bits, totalling 512. iv_{384} is the second 512 bits and iv_{512} is the third 512 bits. The iv values consist of 32 bit words, each read in a Big endian fashion. Thus, the first word of iv_{224} is $0x_{36}$ 6767, which is $0x_{36}$ 6 for "Ö" UTF-8 encoded, $0x_{36}$ 7 for "z", and $0x_{36}$ 7 for "g", giving us the beginning 4 bytes of the address string "Özg".

2.2.3 Message Padding

Hamsi operates on 32 and 64 bit message blocks in Hamsi-256, Hamsi-224 and Hamsi-512, Hamsi-384, respectively. Message padding is performed as follows; Append '1'-bit to the message and number of '0'-bits filling the last message block. Append the message length as 64-bit unsigned integer as the last message block. Note that Hamsi has maximum message length $2^{64} - 1$.

Figure 2.1: General Design of Hamsi

	Table 2.3: Initial Values of Hamsi
iv_{224}	0x3c967a67, 0x3cbc6c20, 0xb4c343c3, 0xa73cbc6b
	0x2c204b61, 0x74686f6c, 0x69656b65, 0x20556e69
iv_{256}	0x76657273, 0x69746569, 0x74204c65, 0x7576656e
	0x2c204465, 0x70617274, 0x656d656e, 0x7420456c
iv_{384}	0x656b7472, 0x6f746563, 0x686e6965, 0x6b2c2043
	0x6f6d7075, 0x74657220, 0x53656375, 0x72697479
	$0 \times 20616e64, 0 \times 20496e64, 0 \times 75737472, 0 \times 69616c20$
	0x43727970, 0x746f6772, 0x61706879, 0x2c204b61
iv_{512}	0x73746565, 0x6c706172, 0x6b204172, 0x656e6265
	0x72672031, 0x302c2062, 0x75732032, 0x3434362c
	$0 \times 20422 d33, 0 \times 30303120, 0 \times 4c657576, 0 \times 656e2 d48$
	0x65766572, 0x6c65652c, 0x2042656c, 0x6769756d

2.2.4 Message Expansion

Hamsi uses linear codes [5] for message expansion. The message expansion of Hamsi-224 and Hamsi-256 expands 32-bit to 256-bit with the code [128,16,70] over F_4 . This is defined by $E: \{0,1\}^{32} \to \{0,1\}^{256}$, as follows, here and below G is the generator matrix of the code:

$$E(M_i) = (M_i \times G), \ M_i \in F_4^{16}$$

= $(m_0, m_1, \dots, m_7), \ m_i \in F_2^{32}$

The linear code [128,16,70] can be constructed in several ways, we choose the one that has a better weight distribution of the codewords. It is obtained by truncation of two cordinates from each codeword of the best known linear code [130,16,72] over F_4 ; this can be achieved by truncating the last two columns from the generator matrix. The linear code [128,16,70] can be constructed by using Magma [8] as follows:

$$F < w > := GF(4); \tag{2.9}$$

$$B: = BestKnownLinearCode(GF(4), 130, 16); \qquad (2.10)$$

$$E: = PunctureCode(C, \{129..130\});$$
 (2.11)

Note that 83 is an upper bound for the minimum distance of the code [128,16,70] over F_4 [7]. In order to fix the code we give the detailed construction in the Appendix.

The message expansion of Hamsi-384 and Hamsi-512 expands 64-bit to 512-bit with the code [256,32,131] over F_4 [6]. $E: \{0,1\}^{64} \to \{0,1\}^{512}$, defining the expansion is applied as follows:

$$E(M_i) = (M_i \times G), \ M_i \in F_4^{32}$$

= $(m_0, m_1, \dots, m_{15}), \ m_i \in F_2^{32}$

Again we use the best known linear code for the message expansion of Hamsi-512 (Hamsi-384 respectively). An upper bound for the minimum distance is 168 [6]. The linear code [256,32,131] over F_4 can be generated by Magma [8]. Detailed construction is given in the Appendix.

Below we describe the message expansion suitable for software implementation. Message expansion in detail. Hamsi expansion can be performed in a method suitable for any arbitrary linear transformation: For every byte of the input, depending on the position of the byte, a table is generated offline, that gives an "output contribution", that corresponds to the output of the input where every other byte position is taken as zeroes. During runtime, for every byte position, the value is looked up from the table corresponding to that position, and all the "output contributions" obtained are xored to get the final output. We perform the expansion in the above mentioned method, but the effect of it is taken to be the same with the method explained below.

We take as input, 16 (or 32 for Hamsi-512) values from F_4 . These values, as a vector are multiplied by the generator matrix (which is 16×128 or 32×256). The resulting value is termed M, a vector of 128 (or 256) values from F_4 . This is the contribution of the input bytes to the iteration function. These bytes, together with chain values (of same length) are used to initialize the internal state of the iteration function. The M vector is used to obtain the vector m (which is of the same size) by a simple bit permutation. The m vector consists of q words of 32 bit (4 words for Hamsi-256, 8 for Hamsi-512). As can be seen in Fig. 2.2, for each i < q, every bit of m_i is teamed with the bit in the same position in m_{q+i} to enter the same Sbox. These couples of bits come from the F_4 values in M. To this effect, M_i and M_{q+i} are used to obtain m_i and m_{q+i} , where all even positioned bits (e.g. for i < 16, in bit positions $2 \times i$ of M_i and M_{q+i}) are placed in m_i , and all odd positioned bits are placed in m_{q+i} . If we denote the j^{th} bit of a vector a as a[j], then for $0 \le j < 16$, $m_i[j] = M_i[2*j]$, $m_i[16+j] = M_{q+i}[2*j]$, $m_{q+i}[j] = M_i[2*j+1]$, and $m_{q+i}[16+j] = M_{q+i}[2*j+1]$.

2.2.5 Concatenation

The expanded message words (m_0, m_1, \ldots, m_i) are concatenated to the chaining value (c_0, c_1, \ldots, c_j) , (i, j = 7, 15) forms an extended state. This is afterwards input to the nonlinear permutation P. Concatenation method determines the ordering of the bits (and words) input to P.

In Hamsi-256 and Hamsi-224,
$$C: \{0,1\}^{256} \times \{0,1\}^{256} \to \{0,1\}^{512}$$
 is:
$$C(m_0, m_1, \dots, m_7, c_0, c_1, \dots, c_7) = (m_0, m_1, c_0, c_1, c_2, c_3, m_2, m_3, m_4, m_5, c_4, c_5, c_6, c_7, m_6, m_7), m_i, c_i \in F_2^{32}$$

Figure 2.2: Concatenation in Hamsi-256 and Hamsi-224

In Hamsi-512 and Hamsi-384, $C: \{0,1\}^{512} \times \{0,1\}^{512} \to \{0,1\}^{1024}$ is: $C(m_0,m_1,\ldots,m_{14},m_{15},c_0,c_1,\ldots,c_{14},c_{15}) = (m_0,m_1,c_0,c_1,m_2,m_3,c_2,c_3,\\ c_4,c_5,m_4,m_5,c_6,c_7,m_6,m_7,m_8,\\ m_9,c_8,c_9,m_{10},m_{11},c_{10},c_{11},c_{12},\\ c_{13},m_{12},m_{13},c_{14},c_{15},m_{14},m_{15}),\\ m_i,c_i\in F_2^{32}$

2.3 The Non-linear Permutation *P*

The non-linear permutation consists of 3 layers; input bits are first xored with the constants and a counter, this is followed by the application of 4-bit Sboxes and several applications of the linear transformation L, this is repeated as many as number of rounds. We represent a state of the permutation with $(s_0, s_1, s_2, \ldots, s_j)$, j = 15, 31 and $s_i \in F_2^{32}$, $i = 0, 1, \ldots, j$. This can be visualized with a 4×4 and 4×8 matrix in Hamsi-256 and Hamsi-512, respectively.

2.3.1 Addition of Constants and Counter

The constants $\alpha_i \in F_2^{32}$, $i = 0, 1, 2, \ldots, 31$ are xored with the input state before the substitution layer together with the counter. We use the round number as the counter c, for the 1st round c = 0 and 2nd c = 1, etc. We use constants to ensure asymmetry in the same round within the sboxes and the counter in between the rounds. The constans are permutations of the sequence $0, 1, 2, \ldots, 15$ (each 4 bits). In Table 2.4 representation of the constants corresponding to the bitsliced implementation is given.

In Hamsi-256 and Hamsi-224:

```
(s_0, s_1, \dots, s_{15}) := (s_0 \oplus \alpha_0, s_1 \oplus \alpha_1 \oplus c, s_2 \oplus \alpha_2, s_3 \oplus \alpha_3, s_4 \oplus \alpha_8, s_5 \oplus \alpha_9, s_6 \oplus \alpha_{10}, s_7 \oplus \alpha_{11}, s_8 \oplus \alpha_{16}, s_9 \oplus \alpha_{17}, s_{10} \oplus \alpha_{18}, s_{11} \oplus \alpha_{19}, s_{12} \oplus \alpha_{24}, s_{13} \oplus \alpha_{25}, s_{14} \oplus \alpha_{26}, s_{15} \oplus \alpha_{27},)
```

In Hamsi-512 and Hamsi-384:

$$(s_0, s_1, \ldots, s_{31}) := (s_0 \oplus \alpha_0, s_1 \oplus \alpha_1 \oplus c, s_2 \oplus \alpha_2, \ldots, s_{31} \oplus \alpha_{31})$$

Note that the constants are xored in different ordering in Hamsi-256 (Hamsi-224) than Hamsi-512 (Hamsi-384).

Table 2.4: Constants used in P

$\alpha_0 = 0xff00f0f0$	$\alpha_1 = 0xcccaaaa$	$\alpha_2 = 0xf0f0cccc$	$\alpha_3 = 0xff00aaaa$
$\alpha_4 = 0xcccaaaa$	$\alpha_5 = 0xf0f0ff00$	$\alpha_6 = 0xaaaacccc$	$\alpha_7 = 0xf0f0ff00$
$\alpha_8 = 0xf0f0cccc$	$\alpha_9 = 0xaaaaff00$	$\alpha_{10} = 0xcccff00$	$\alpha_{11} = 0xaaaaf0f0$
$\alpha_{12} = 0xaaaaf0f0$	$\alpha_{13} = 0xff00cccc$	$\alpha_{14} = 0xcccf0f0$	$\alpha_{15} = 0xff00aaaa$
$\alpha_{16} = 0xcccaaaa$	$\alpha_{17} = 0xff00f0f0$	$\alpha_{18} = 0xff00aaaa$	$\alpha_{19} = 0xf0f0cccc$
$\alpha_{20} = 0xf0f0ff00$	$\alpha_{21} = 0xcccaaaa$	$\alpha_{22} = 0xf0f0ff00$	$\alpha_{23} = 0xaaaacccc$
$\alpha_{24} = 0xaaaaff00$	$\alpha_{25} = 0xf0f0cccc$	$\alpha_{26} = 0xaaaaf0f0$	$\alpha_{27} = 0xcccff00$
$\alpha_{28} = 0xff00cccc$	$\alpha_{29} = 0xaaaaf0f0$	$\alpha_{30} = 0xff00aaaa$	$\alpha_{31} = 0xcccf0f0$

2.3.2 Substitution Layer

Hamsi uses a 4×4 -bit Sbox $S: F_2^4 \to F_2^4$ [4]. Hamsi is conveniently designed for bitslice implementation. There are 128 (or 256 for Hamsi-512) parallel and identical Sboxes, all can be executed at the same time in computer words of up to 128 bits (or 256 for Hamsi-512). Hence, if you have registers of size 128 bits, you can make use of it to make Hamsi faster. But registers of 32 bits are sufficient for the basic implementation.

2.3.3 Diffusion Layer

The diffusion layer of Hamsi is based on the several applications of the linear transformation $L:\{0,1\}^{128} \to \{0,1\}^{128}$ [4]. L operates on 32-bit words; inputs and outputs 4, 32-bit words.

Table 2.5: Sbox used in Hamsi

X	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
s[x]	8	6	7	9	3	С	Α	F	D	1	Ε	4	0	В	5	2

Figure 2.3: Shoxes acting over 4-bits over the columns of an Hamsi state.

Diffusion in Hamsi-256 and Hamsi-224

$$(s_0, s_5, s_{10}, s_{15}) := L(s_0, s_5, s_{10}, s_{15})$$

$$(s_1, s_6, s_{11}, s_{12}) := L(s_1, s_6, s_{11}, s_{12})$$

$$(s_2, s_7, s_8, s_{13}) := L(s_2, s_7, s_8, s_{13})$$

$$(s_3, s_4, s_9, s_{14}) := L(s_3, s_4, s_9, s_{14})$$

Figure 2.4: Application of L in Hamsi-256 and Hamsi-224.

Diffusion in Hamsi-512 and Hamsi-384

$$(s_0, s_9, s_{18}, s_{27}) \coloneqq L(s_0, s_9, s_{18}, s_{27})$$

$$(s_1, s_{10}, s_{19}, s_{28}) \coloneqq L(s_1, s_{10}, s_{19}, s_{28})$$

$$(s_2, s_{11}, s_{20}, s_{29}) \coloneqq L(s_2, s_{11}, s_{20}, s_{29})$$

$$(s_3, s_{12}, s_{21}, s_{30}) \coloneqq L(s_3, s_{12}, s_{21}, s_{30})$$

$$(s_4, s_{13}, s_{22}, s_{31}) \coloneqq L(s_4, s_{13}, s_{22}, s_{31})$$

$$(s_5, s_{14}, s_{23}, s_{24}) \coloneqq L(s_5, s_{14}, s_{23}, s_{24})$$

$$(s_6, s_{15}, s_{16}, s_{25}) \coloneqq L(s_6, s_{15}, s_{16}, s_{25})$$

$$(s_7, s_8, s_{17}, s_{26}) \coloneqq L(s_7, s_8, s_{17}, s_{26})$$

$$(s_0, s_2, s_5, s_7) \coloneqq L(s_0, s_2, s_5, s_7)$$

$$(s_{16}, s_{19}, s_{21}, s_{22}) \coloneqq L(s_{16}, s_{19}, s_{21}, s_{22})$$

$$(s_9, s_{11}, s_{12}, s_{14}) \coloneqq L(s_9, s_{11}, s_{12}, s_{14})$$

$$(s_{25}, s_{26}, s_{28}, s_{31}) \coloneqq L(s_{25}, s_{26}, s_{28}, s_{31})$$

Note that in Hamsi-512 (and Hamsi-384) L is applied 12 times (3 times more then Hamsi-256). L diffuses over 128-bits and each Hamsi-512 state has 256 bits in each row of the state matrix, L is applied 3 times more in order to achieve diffusion in between the two 128-bits. $L(s_9, s_{11}, s_{12}, s_{14})$ and $L(s_{25}, s_{26}, s_{28}, s_{31})$ need not be applied in the last round because they are already truncated, see 2.3.4.

Description of L

$$\begin{array}{c} a,b,c,d\in F_2^{32},\,L(a,b,c,d)\colon\\ \\ a:=a<<<13\\ \\ b:=b\oplus a\oplus c\\ \\ d:=d\oplus c\oplus (a<<3)\\ \\ b:=b<<<1\\ \\ d:=d<<<7\\ \\ a:=a\oplus b\oplus d\\ \\ c:=c\oplus d\oplus (b<<7)\\ \\ a:=a<<<5\\ \\ c:=c<<<22 \end{array}$$

2.3.4 Truncation T

Truncation $T:\{0,1\}^{512} \to \{0,1\}^{256}$ in Hamsi-256 and Hamsi-224 is defined as follows:

$$T(s_0, s_1, s_2, \dots, s_{14}, s_{15}) = (s_0, s_1, s_2, s_3, s_8, s_9, s_{10}, s_{11}) \ each \ s_i \in F_2^{32}$$

Figure 2.5: Truncation in Hamsi-256 and Hamsi-224

In Hamsi-512 and Hamsi-384 $T: \{0,1\}^{1024} \to \{0,1\}^{512}$ is as follows:

$$T(s_0, s_1, s_2, \dots, s_{30}, s_{31}) = (s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_{16}, s_{17}, s_{18}, s_{19}, s_{20}, s_{21}, s_{22}, s_{23}) \ each \ s_i \in F_2^{32}$$

Truncation is applied after the last round of the nonlinear permutation. Fig. 2.5 shows the state after the application of linear transformation L and truncation. Similar letters corresponds to the words input to L, like $L(A_0, A_1, A_2, A_3)$, etc.

2.4 The Non-linear Permutation P_f

P and P_f differs only in the number of rounds and constants. P_f is applied to the last message block as final transformation.

Table 2.6: Constants used in P_f

		J	
$\alpha_0 = 0xcaf9639c$	$\alpha_1 = 0x0ff0f9c0$	$\alpha_2 = 0x639c0ff0$	$\alpha_3 = 0xcaf9f9c0$
$\alpha_4 = 0x0ff0f9c0$	$\alpha_5 = 0x639ccaf9$	$\alpha_6 = 0xf9c00ff0$	$\alpha_7 = 0x639ccaf9$
$\alpha_8 = 0x639c0ff0$	$\alpha_9 = 0xf9c0caf9$	$\alpha_{10} = 0x0ff0caf9$	$\alpha_{11} = 0xf9c0639c$
$\alpha_{12} = 0xf9c0639c$	$\alpha_{13} = 0xcaf90ff0$	$\alpha_{14} = 0x0ff0639c$	$\alpha_{15} = 0xcaf9f9c0$
$\alpha_{16} = 0x0ff0f9c0$	$\alpha_{17} = 0xcaf9639c$	$\alpha_{18} = 0xcaf9f9c0$	$\alpha_{19} = 0x639c0ff0$
$\alpha_{20} = 0x639ccaf9$	$\alpha_{21} = 0x0ff0f9c0$	$\alpha_{22} = 0x639ccaf9$	$\alpha_{23} = 0xf9c00ff0$
$\alpha_{24} = 0xf9c0caf9$	$\alpha_{25} = 0x639c0ff0$	$\alpha_{26} = 0xf9c0639c$	$\alpha_{27} = 0x0ff0caf9$
$\alpha_{28} = 0xcaf90ff0$	$\alpha_{29} = 0xf9c0639c$	$\alpha_{30} = 0xcaf9f9c0$	$\alpha_{31} = 0x0ff0639c$

2.5 Truncations T_{224} , T_{384}

 T_{224} and T_{384} defines the truncation method applied to Hamsi-256 and Hamsi-512 to obtain the digest sizes of 224 and 384 bits.

 $T_{224}: \{0,1\}^{256} \to \{0,1\}^{224}$ is defined as follows:

$$T_{224}(s_0, s_1, \dots, s_7) = (s_0, s_1, s_2, s_3, s_4, s_5, s_6)$$

$$T_{384}: \{0,1\}^{512} \to \{0,1\}^{384}$$
 is:
$$T_{384}(s_0, s_1, \dots, s_{15}) = (s_0, s_1, s_3, s_4, s_5, s_6, s_8, s_9, s_{10}, s_{12}, s_{13}, s_{15})$$

2.6 Number of Rounds

Number of rounds recommended for the variants of Hamsi is given below. We would like to stress that number of rounds is the tunable parameter of Hamsi; it can be decreased to obtain weaker versions and increased in order to achieve better security as long as the performance values are not changed drastically.

Table 2.7: Number of rounds of permutations P and P_f

Variant	Hamsi-256	Hamsi-224	Hamsi-512	Hamsi-384
Rounds of P	3	3	6	6
Rounds of P_f	6	6	12	12

As an update of Hamsi specification for 2nd round of Sha-3 competition, we specify 8 as a second parameter for the number of rounds of P_f for Hamsi-256 and Hamsi-224. Hence, any previous and future cryptanalysis efforts of finalization is valuable. By proposing 8 as a second parameter we can expect a slight change in the performance. Below in Table 2.8 we define new variants named Hamsi-256/8 and Hamsi-224/8 differing only in the number of rounds of finalization (P_f) from Hamsi-256 and Hamsi-224 respectively.

Table 2.8: New Variants

Variant	Hamsi-256/8	Hamsi-224/8
Rounds of P	3	3
Rounds of P_f	8	8

Bibliography

- [1] National Institute of Standards and Technology. Announcing request for candidate algorithm nominations for a new cryptographic hash algorithm (SHA-3) family. Federal Register, 72(212):62212-6220, November 2007.
- [2] R. Knudsen, L., Rechberger, C., S. Thomsen. Grindahl- a family of hash functions. In Biryukov, A, ed.: Fast Software Encryption, FSE 2007. Volume 4593 of Lecture Notes in Computer Science, Springer-Verlag (2007) 39-57
- [3] Merkle R.C. A Fast Software One-Way Hash Function. Journal of Cryptology, 3(1):43-58, 1990.
- [4] Serpent: A proposal for the advanced encryption standard. Available from http://www.cl.cam.ac.uk/~rja14/serpent.html.
- [5] J.H. van Lint. Introduction to Coding Theory.
- [6] Best Known Linear [256,32,d]-Codes in Base 4. Available from http://mint.sbg.ac.at/
- [7] Bounds on the minimum distance of linear codes. Available from http://codetables.de.BKLC/
- [8] Wieb Bosma, John Cannon and Catherine Playoust. *The Magma algebra system. I. The user language.* J.Symbolic Comput., 24(3-4):235-265.

Appendix A

Appendix

A.1 Construction of the Linear Code [128,16,70] over F_4

```
Magma V2.15-12
> SetVerbose("BestCode", true);
> SetPrintLevel("Minimal");
> F < w > := GF(4);
> C := BestKnownLinearCode(F, 130, 16);
Construction of a [ 130 , 16 , 72 ] Code:
[1]: [4, 3, 2] Cyclic Linear Code over GF(2^2)
        Dual of the RepetitionCode of length 4
     [126, 13, 72] Quasicyclic of degree 2 Linear Code over GF(2^2)
        QuasiCyclicCode of length 126 with generating
       polynomials: w^2*x^62 + w*x^61 + w*x^60 + x^59 + w*x^58 +
       x^57 + w*x^56 + x^53 + w*x^52 + w^2*x^50 + x^47 + x^46 +
        w*x^45 + w^2*x^44 + w*x^43 + x^41 + x^40 + w*x^38 +
        w*x^37 + x^35 + w^2*x^34 + x^33 + x^31 + w*x^30 + w*x^29
        + x^28 + x^26 + x^25 + w^2*x^24 + x^23 + w*x^22 + x^21 +
       x^20 + x^18 + w^2*x^17 + w*x^16 + w*x^15 + w*x^13 + 1
       x^62 + x^61 + x^60 + x^59 + w^2*x^58 + w^2*x^57 +
        w^2*x^54 + w^2*x^53 + w*x^50 + w^2*x^48 + w^2*x^47 + x^46
        + x^45 + w^2*x^44 + w^2*x^43 + w*x^42 + w*x^41 + w^2*x^39
        + x^38 + w*x^35 + x^34 + w*x^33 + w*x^32 + w*x^31 + x^28
        + w^2*x^26 + x^23 + x^22 + w^2*x^21 + w*x^19 + w^2*x^18 +
        x^17 + w*x^16 + x^11 + w*x^10 + w^2*x^8 + w^2*x^7 +
        w^2*x^6 + w*x^4 + w*x^3 + x^2 + w*x + w^2
[3]: [126, 16, 70] Quasicyclic of degree 2 Linear Code over GF(2^2)
        QuasiCyclicCode of length 126 with generating
```

```
polynomials: w^2*x^62 + x^61 + x^60 + x^59 + w^2*x^57 +
        w^2*x^56 + w*x^55 + x^54 + w^2*x^53 + w^2*x^52 + w^2*x^51
        + w*x^50 + x^49 + w*x^48 + x^46 + w^2*x^43 + w^2*x^41 +
        w*x^40 + w*x^39 + x^37 + w*x^36 + w*x^35 + w^2*x^34 +
        w*x^33 + w^2*x^31 + w*x^28 + w^2*x^25 + w^2*x^24 +
        w^2*x^23 + w^2*x^22 + w^2*x^19 + x^18 + x^17 + w*x^16 +
        1, w^2*x^62 + w^2*x^61 + w*x^60 + x^58 + x^57 + w^2*x^56
        + w*x^55 + x^53 + w*x^52 + w^2*x^51 + w*x^50 + x^48 +
        x^47 + w*x^46 + w^2*x^45 + w^2*x^44 + w^2*x^43 + w^2*x^42
        + w^2*x^41 + x^40 + w*x^39 + x^38 + x^36 + w^2*x^35 +
       w*x^34 + x^33 + w^2*x^31 + x^30 + w*x^29 + x^28 + w*x^26
        + x^25 + x^24 + w^2*x^22 + w*x^21 + w*x^20 + w^2*x^17 +
       w*x^16 + w*x^15 + w*x^14 + w^2*x^13 + w^2*x^12 + x^11 +
        w^2*x^10 + w^2*x^6 + x^3 + x^2 + x + 1
[4]: [130, 16, 72] Linear Code over GF(2^2)
        ConstructionX using [3] [2] and [1]
> E := PunctureCode(C, {129..130});
[128, 16] Linear Code over GF(2^2)
```

A.2 Construction of the Linear Code [256,32,131] over F_4