暨大資工系 線性代數 期末考 112.6.14

Theorem 1

4.6 Change of Basis

Change of Basis Problem: If we change the basis for a vector space ∇ from some old basis B to some new basis B', how is the old coordinate matrix $[v]_B$ of a vector v related to the new coordinate matrix $[v]_B$? $\therefore v = k \cdot u + k_2 u_2$

sol: Let
$$B = \{u_1, u_2\}$$
 & $B' = \{u'_1, u'_2\}$
$$= k_1 u_1 + k_2 u_2$$

$$= k_1 (au_1 + bu_2) + k_2 (cu_1 + du_2)$$

$$= (k_1 a + k_2 c) u_1 + (k_1 b + k_2 d) u_2$$
i.e. $u'_1 = au_1 + bu_2$; $u'_2 = cu_1 + du_2$
i.e. $[v]_B = \begin{bmatrix} k_1 a + k_2 c \\ k_1 b + k_2 d \end{bmatrix} = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$

$$= P[v]_{B'}$$

Solution of the change of Basis Problem: If we change the basis for a vector space ∇ from some old basis $B=\{u_1,u_2,\ldots,u_n\}$ to some new basis $B'=\{u_1',u_2',\ldots,u_n'\}$, then the old coordinate matrix $[v]_B$ of a vector v related to the new coordinate matrix $[v]_B$ of the same vector v by the equation $[v]_B$ $P[v]_B$, where the column of P are the coordinate matrices of the new basis vectors relative to the old basis.

i.e.
$$P = \left[\left[u_1 \right]_B \middle| \left[u_2 \right]_B \middle| \cdots \middle| \left[u_n \right]_B \right]$$
 P is called the transition matrix from B' to B

2022/4/8 Yuh-Ming Huang, CSIE NCNU Chapter 4 60

Theorem 2 If $S = \{v_1, v_2, ..., v_n\}$ is an orthonormal basis for an inner product space ∇ , and u is any vector in ∇ , then $u = \langle u, v_1 \rangle v_1 + \langle u, v_2 \rangle v_2 + ... + \langle u, v_n \rangle v_n$

Theorem 3. Let ϖ be a finite-dimensional subspace of an inner product space ∇ .

- (a) If $\{v_1, v_2, ..., v_r\}$ is an orthonormal basis for ϖ , and u is any vector in ∇ , then $proj_{\varpi}u = \langle u, v_1 \rangle v_1 + \langle u, v_2 \rangle v_2 + \cdots + \langle u, v_r \rangle v_r$
- (b) If $\{v_1, v_2, ..., v_n\}$ is an orthogonal basis for ϖ , and u is any vector in ∇ , then $proj_{\varpi}u = \frac{\langle u, v_1 \rangle}{\|v_1\|^2} v_1 + \frac{\langle u, v_2 \rangle}{\|v_2\|^2} v_2 + \cdots + \frac{\langle u, v_n \rangle}{\|v_n\|^2} v_n$

Theorem 4: A least squares solution of Ax=b must satisfy the equality $A^TAx=A^Tb$ (i.e. $x=(A^TA)^{-1}A^Tb$) [it is called the *normal system* associated with Ax=b].

If A is an $m \times n$ matrix with linearly independent column vectors, then for every $n \times 1$ matrix b, the linear system Ax = b has a <u>unique least squares solution</u>. This solution is given by $x = (A^T A)^{-1} A^T b$. Moreover, if ϖ is the column space of A, then the orthogonal projection of b on ϖ is $proj_{\varpi}b = Ax = A(A^T A)^{-1}A^T b$

Theorem 5.

If $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation, and e_1, e_2, \dots, e_n are the standard basic vectors for \mathbb{R}^n , then the standard matrix for T is $[T] = [T(e_1)|T(e_2)|\cdots|T(e_n)]$

Theorem 6.

Theorem 6-1

Theorem 7.

Theorem 8.

THEOREM 2.3.6 Inverse of a Matrix Using Its Adjoint

If A is an invertible matrix, then

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$$

Theorem 9. Fourier Series

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$

$$\| \| \|_{2}^{2} = \int_{0}^{2\pi} |dx| = 2\pi$$

$$\| \cos kx \|_{2}^{2} = \int_{0}^{2\pi} |dx| = 2\pi$$

$$\| \sin kx \|_{2}^{2} = \int_{0}^{2\pi} |\sin^{2}kx| dx = \int_{0}^{2\pi} \frac{|+\omega R_{2}kx|}{2} dx = \pi$$

$$\| \sin kx \|_{2}^{2} = \int_{0}^{2\pi} |\sin^{2}kx| dx = \int_{0}^{2\pi} \frac{|+\omega R_{2}kx|}{2} dx = \pi$$

$$\| \sin kx \|_{2}^{2} = \int_{0}^{2\pi} |\sin^{2}kx| dx = \int_{0}^{2\pi} \frac{|+\omega R_{2}kx|}{2} dx = \pi$$

$$\frac{a_0}{2} = \frac{|+\omega R_{2}kx|}{||x||^{2}} = \frac{1}{2\pi} \int_{0}^{2\pi} |x| dx$$

$$\frac{a_0}{2} = \frac{|+\omega R_{2}kx|}{||x||^{2}} = \frac{1}{2\pi} \int_{0}^{2\pi} |x| dx$$

$$\frac{a_0}{2} = \frac{|+\omega R_{2}kx|}{||x||^{2}} = \frac{1}{2\pi} \int_{0}^{2\pi} |x| dx$$

$$\frac{a_0}{2} = \frac{|+\omega R_{2}kx|}{||x||^{2}} = \frac{1}{2\pi} \int_{0}^{2\pi} |x| dx$$

$$\frac{a_0}{2} = \frac{|+\omega R_{2}kx|}{||x||^{2}} = \frac{1}{2\pi} \int_{0}^{2\pi} |x| dx$$

$$\frac{a_0}{2} = \frac{|+\omega R_{2}kx|}{||x||^{2}} = \frac{1}{2\pi} \int_{0}^{2\pi} |x| dx$$

$$\frac{a_0}{2} = \frac{|+\omega R_{2}kx|}{||x||^{2}} = \frac{1}{2\pi} \int_{0}^{2\pi} |x| dx$$

$$\frac{a_0}{2} = \frac{|+\omega R_{2}kx|}{||x||^{2}} = \frac{1}{2\pi} \int_{0}^{2\pi} |x| dx$$

$$\frac{a_0}{2} = \frac{|+\omega R_{2}kx|}{||x||^{2}} = \frac{1}{2\pi} \int_{0}^{2\pi} |x| dx$$

$$\frac{a_0}{2} = \frac{|+\omega R_{2}kx|}{||x||^{2}} = \frac{1}{2\pi} \int_{0}^{2\pi} |x| dx$$

$$\frac{a_0}{2} = \frac{|+\omega R_{2}kx|}{||x||^{2}} = \frac{1}{2\pi} \int_{0}^{2\pi} |x| dx$$

$$\frac{a_0}{2} = \frac{|+\omega R_{2}kx|}{||x||^{2}} = \frac{1}{2\pi} \int_{0}^{2\pi} |x| dx$$

$$\frac{a_0}{2} = \frac{|+\omega R_{2}kx|}{||x||^{2}} = \frac{1}{2\pi} \int_{0}^{2\pi} |x| dx$$

$$\frac{a_0}{2} = \frac{|+\omega R_{2}kx|}{||x||^{2}} = \frac{1}{2\pi} \int_{0}^{2\pi} |x| dx$$

$$\frac{a_0}{2} = \frac{|+\omega R_{2}kx|}{||x||^{2}} = \frac{1}{2\pi} \int_{0}^{2\pi} |x| dx$$

$$\frac{a_0}{2} = \frac{|+\omega R_{2}kx|}{||x||^{2}} = \frac{1}{2\pi} \int_{0}^{2\pi} |x| dx$$

$$\frac{a_0}{2} = \frac{|+\omega R_{2}kx|}{||x||^{2}} = \frac{1}{2\pi} \int_{0}^{2\pi} |x| dx$$

$$\frac{a_0}{2} = \frac{|+\omega R_{2}kx|}{||x||^{2}} = \frac{1}{2\pi} \int_{0}^{2\pi} |x| dx$$

$$\frac{a_0}{2} = \frac{|+\omega R_{2}kx|}{||x||^{2}} = \frac{1}{2\pi} \int_{0}^{2\pi} |x| dx$$

$$\frac{a_0}{2} = \frac{|+\omega R_{2}kx|}{||x||^{2}} = \frac{1}{2\pi} \int_{0}^{2\pi} |x| dx$$

$$\frac{a_0}{2} = \frac{|+\omega R_{2}kx|}{||x||^{2}} = \frac{1}{2\pi} \int_{0}^{2\pi} |x| dx$$

- 1. (10%) Find a 3×3 matrix A that has eigenvalues 1, 2, and 3, and for which (0,1,0), (-1,2,2), and (-1,1,1) are their corresponding eigenvectors.
- 2. (30%) Let W be the plane with equation 5x 3y + z = 0.
 - (a) (10%) Find an orthonormal basis for W.
 - (b) (10%) Find the standard matrix for the orthogonal projection onto W.
 - (c) (10%) Find all of the points in \mathbb{R}^3 , such that all of them are orthogonally projected to the same vector (1, 1, -2) which is on the plane W.
- 3. (10%) Let W be the line in R^3 with parametric equations x = 2t, y=-t, z=4t (- $\infty < t < \infty$). Find an equation for W^{\perp} .
- 4. (15%) Let $T: M_{22} \rightarrow M_{22}$ be a linear operator and defined by

$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} 2c & a+c \\ b-2c & d \end{bmatrix}$$

- (a) (10%) Find a basis B of M_{22} , then the standard matrix $[T]_B$ of T with respect to the basis B is a diagonal matrix.
- (b) (5%) Find $[T]_B^{100}$.
- 5. (10%) Find a curve of the form a+(b/x) that best fits the data points (1, 7), (3, 3), (6, 1) by making the substitution X = 1/x.
- **6.** (10%) Find the Fourier series of f(x) = 1, $0 \le x < \pi$ and f(x) = 0, $\pi \le x \le 2\pi$ over the interval $[0, 2\pi]$.
- **7.** (15%)

► EXAMPLE 3 Matrix for a Linear Transformation

Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_2 \\ -5x_1 + 13x_2 \\ -7x_1 + 16x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -5 & 13 \\ -7 & 16 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Find the matrix for the transformation T with respect to the bases $B = \{ \mathbf{u}_1, \mathbf{u}_2 \}$ for R^2 and $B' = \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \}$ for R^3 , where

$$\mathbf{u}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 5 \\ 2 \end{bmatrix}; \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$

1. (10%) Find a 3×3 matrix A that has eigenvalues 1, 2, and 3, and for which (0,1,0), (-1,2,2), and (-1,1,1) are their corresponding eigenvectors.

Solution [=
$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{bmatrix} 0 \\ 0 \end{pmatrix} = \begin{bmatrix} 0 \\ 0 \end{pmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} =$$

$$A \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$A \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ 4 \end{bmatrix}$$

$$A \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 4 \end{bmatrix}$$

$$A \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 4 \end{bmatrix}$$

$$A \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 3 \\ 3 \end{bmatrix}$$

$$A \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 3 \\ 3 \end{bmatrix}$$

$$A \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 3 \\ 3 \end{bmatrix}$$

$$A \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 3 \\ 3 \end{bmatrix}$$

$$A \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 3 \\ 3 \end{bmatrix}$$

$$A \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$$

$$A \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$$

$$A \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$$

$$A \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$$

$$A \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$$

$$A \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$$

$$A \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$$

$$A \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\$$

solution 2

$P = \begin{bmatrix} 0 & -1 & -1 \\ 1 & 2 & 1 \end{bmatrix}$ $adj(P)^T = \begin{bmatrix} 0 & -1 & 2 \\ -1 & 0 & 0 \end{bmatrix}$ $def(P) = -2 + 1 = -1$
$P^{-1} = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix}$
$P^{-1}AP = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$
= [0-2-3-[01-1] 143 101 043 [-20-]
= [4 0 1] -2 1 0 -2 0 1] #

- 2. (30%) Let W be the plane with equation 5x 3y + z = 0.
 - (a) (10%) Find an orthonormal basis for W.
 - (b) (10%) Find the standard matrix for the orthogonal projection onto W.
 - (c) (10%) Find all of the points in \mathbb{R}^3 , such that all of them are orthogonally projected to the same vector (1, 1, -2) which is on the plane \mathbb{W} .

- (a) If x=s and y=t, then a point on the plane is (s,t,-5s+3t)=s(1,0,-5)+t(0,1,3).
- Solution $Z = \underbrace{w_1 = (1,0,-5) \text{ and } w_2 = (0,1,3) \text{ form a basis for } W \text{ (they are linearly independent since neither of them is a scalar multiple of the other).}$
 - **(b)** Letting $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -5 & 3 \end{bmatrix}$, Formula (11) yields

$$P = A(A^{T}A)^{-1}A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -5 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & -5 \\ 0 & 1 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & -5 \\ 0 & 1 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & -5 \\ 0 & 1 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -5 & 3 \end{bmatrix} \begin{bmatrix} 26 & -15 \\ -15 & 10 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & -5 \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -5 & 3 \end{bmatrix} \begin{bmatrix} 10 & 15 \\ 15 & 26 \end{bmatrix} \begin{bmatrix} 1 & 0 & -5 \\ 0 & 1 & 3 \end{bmatrix}$$

$$= \frac{1}{35} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -5 & 3 \end{bmatrix} \begin{bmatrix} 10 & 15 \\ 15 & 26 \end{bmatrix} \begin{bmatrix} 1 & 0 & -5 \\ 0 & 1 & 3 \end{bmatrix} = \frac{1}{35} \begin{bmatrix} 10 & 15 \\ 15 & 26 & 3 \\ -5 & 3 & 34 \end{bmatrix}. = \begin{bmatrix} 2 & 3 & 3 \\ 35 & 35 & 35 \\ 15 & 35 & 35 & 35 \end{bmatrix}$$

Golution3

Y . DV	
(A)	5x-3y+7=0
	3 = -5x + 3y [x7 [17 [07
	X=3
	y=t [2] [-5] [3]
	let v, = (0,1,3) v = 10
	$V_2 = (1,0,-5) - \frac{\langle (0,1,3), (1,0,-5) \rangle}{10} (0.1.3)$
	$= (1,0,-5) - \frac{-3}{70.2} (0,1,3)$
	$=(1,\frac{3}{2},\frac{1}{2}) \Leftrightarrow (2,3,-1) V_2 = 1/4$
	orthonormal basis = { (0, \frac{1}{10}, \frac{3}{10}), \left(\frac{1}{174}, \frac{1}{174}) \}

(6)	A = \[\frac{7}{\tau_{\text{Ty}}} \] Proj_w = A(A^TA)^TA^T \[\frac{1}{\tau_{\text{Ty}}} \] Theorem \[\frac{1}{\text{Ty}} \] = A\[\frac{1}{A}^T \]
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$ = \begin{bmatrix} \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{35} & \frac{1}{35} & \frac{1}{35} \\ \frac{1}{7} & \frac{3}{35} & \frac{3}{35} & \frac{1}{35} & \frac{1}{35} \\ \frac{1}{7} & \frac{3}{35} & \frac{3}{35} & \frac{1}{35} & \frac{1}{35} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} $

3. (10%) Let W be the line in R^3 with parametric equations x = 2t, y=-t, z=4t (- $\infty < t < \infty$). Find an equation for W^{\perp} .

$$50\%$$
: $(x,y,z)\cdot(z,-1,4)=0$
 $\Rightarrow 2 \times y + 4 \times z = 0$

4. (15%) Let $T: M_{22} \rightarrow M_{22}$ be a linear operator and defined by

$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} 2c & a+c \\ b-2c & d \end{bmatrix}$$

- (a) (10%) Find a basis B of M_{22} , then the standard matrix $[T]_B$ of T with respect to the basis B is a diagonal matrix.
- (b) (5%) Find $[T]_B^{100}$.

(F) Theorem 6 & Theorem 6-1 Theorem 1

[a] [xc]	$T(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	Bo=\{(0)\{0\}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ן [טי
- b = a+L	$T\left[\begin{bmatrix}0 & 1 & 1\end{bmatrix}\right] = \begin{bmatrix}0 & 1 & 1\\ & & & \end{bmatrix}$		
C 6->C	T ([0 0]) = [=	横军及成	
	T([0,0]) = [0,0]	7]	
[00 > 0 7 = [T]	B [) 0 -2 0 7	$(\lambda-1)(\lambda,(\lambda+\tau)-\tau-\gamma)$	
1010	-1 7 -1 0	$= (\lambda - 1) (\lambda^3 + 2\lambda^2 - \lambda - 2)$	
0 1 -2 0	0 -1 1+20	$= (\lambda - 1)^{2} (\lambda^{2} + 3\lambda + 2)$	
	[0 0 0 \lambda -1]	= (7-1) = (7+1) (7+2)	
i. N-1,-1,-2	,	1	

P含感说 B至易 2 transition matrix PT[T]BOP = [T]B

- 5. (10%) Find a curve of the form a+(b/x) that best fits the data points (1, 7), (3, 3), (6, 1) by making the substitution X = 1/x.
- With the substitution $X = \frac{1}{x}$, the problem becomes to find a line of the form $y = a + b \cdot X$ that best fits the data points $(1, 7), (\frac{1}{3}, 3), (\frac{1}{6}, 1)$.

We have
$$M = \begin{bmatrix} 1 & 1 \\ 1 & \frac{1}{3} \\ 1 & \frac{1}{6} \end{bmatrix}$$
, $M^{T}M = \begin{bmatrix} 3 & \frac{3}{2} \\ \frac{3}{2} & \frac{41}{36} \end{bmatrix}$, $(M^{T}M)^{-1} = \frac{1}{42} \begin{bmatrix} 41 & -54 \\ -54 & 108 \end{bmatrix}$, and $M^{T}M = \begin{bmatrix} 3 & \frac{3}{2} \\ \frac{3}{2} & \frac{41}{36} \end{bmatrix}$

$$\mathbf{v}^* = \begin{pmatrix} M^T M \end{pmatrix}^{-1} M^T \mathbf{y} = \frac{1}{42} \begin{bmatrix} 41 & -54 \\ -54 & 108 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \frac{1}{3} & \frac{1}{6} \end{bmatrix} \begin{bmatrix} 7 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{5}{21} \\ \frac{48}{7} \end{bmatrix}. \text{ The line in terms of } X \text{ is } y = \frac{5}{21} + \frac{48}{7} X, \text{ so the}$$

required curve is $y = \frac{5}{21} + \frac{48}{7x}$.

6. (10%) Find the Fourier series of f(x) = 1, $0 \le x < \pi$ and f(x) = 0, $\pi \le x \le 2\pi$ over the interval $[0, 2\pi]$.

50Q :

(7) Theorem 9

Let
$$f(x) = \begin{cases} 1, & 0 < x < \pi \\ 0, & \pi \le x \le 2\pi \end{cases}$$
.

$$a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) \, dx = \frac{1}{\pi} \int_0^{\pi} dx = 1$$

$$a_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos kx \, dx = \frac{1}{\pi} \int_0^{\pi} \cos kx \, dx = 0$$

$$b_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin kx \, dx = \frac{1}{\pi} \int_0^{\pi} \sin kx \, dx = \frac{1}{k\pi} (1 - (-1)^k)$$

So the Fourier series is $\frac{1}{2} + \sum_{k=1}^{\infty} \frac{1}{k\pi} (1 - (-1)^k) \sin kx$.

7. (15%)

EXAMPLE 3 Matrix for a Linear Transformation

Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_2 \\ -5x_1 + 13x_2 \\ -7x_1 + 16x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -5 & 13 \\ -7 & 16 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Find the matrix for the transformation T with respect to the bases $B = \{ \mathbf{u}_1, \mathbf{u}_2 \}$ for R^2 and $B' = \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \}$ for R^3 , where

$$\mathbf{u}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 5 \\ 2 \end{bmatrix}; \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$

Solution

From the formula for T,

$$T(\mathbf{u}_1) = \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix}$$
. $T(\mathbf{u}_2) = \begin{bmatrix} 2 \\ 1 \\ -3 \end{bmatrix}$ \Rightarrow Theorem 6

Expressing these vectors as linear combinations of v_1 , v_2 , and v_3 , we obtain (verify)

$$T(\mathbf{u}_1) = \mathbf{v}_1 - 2\mathbf{v}_3, \quad T(\mathbf{u}_2) = 3\mathbf{v}_1 + \mathbf{v}_2 - \mathbf{v}_3$$

Thus,

$$\begin{bmatrix} T(\mathbf{u}_1) \end{bmatrix}_{B'} = \begin{bmatrix} 1\\0\\-2 \end{bmatrix}, \quad \begin{bmatrix} T(\mathbf{u}_2) \end{bmatrix}_{B'} = \begin{bmatrix} 3\\1\\-1 \end{bmatrix}$$

SO

$$[T]_{B',B} = [[T(\mathbf{u}_1)]_{B'} | [T(\mathbf{u}_2)]_{B'}] = \begin{bmatrix} 1 & 3\\ 0 & 1\\ -2 & -1 \end{bmatrix}$$