FAIRCHILD SEMICONDUCTOR®

PHOTO FET OPTOCOUPLERS

H11F1 H11F2 H11F3

DESCRIPTION

The H11F series consists of a Gallium-Aluminum-Arsenide IRED emitting diode coupled to a symmetrical bilateral silicon photodetector. The detector is electrically isolated from the input and performs like an ideal isolated FET designed for distortion-free control of low level AC and DC analog signals. The H11F series devices are mounted in dual in-line packages.

FEATURES

As a remote variable resistor

- $\leq 100\Omega$ to ≥ 300 M Ω
- ≥ 99.9% linearity
- ≤ 15 pF shunt capacitance
- \geq 100 G Ω I/O isolation resistance

As an analog switch

- · Extremely low offset voltage
- 60 V_{pk-pk} signal capability
- No charge injection or latch-up
- t_{on}, t_{off} ≤ 15 μS
- UL recognized (File #E90700)
- VDE recognized (File #E94766)
 - Ordering option '300' (e.g. H11F1.300)

APPLICATIONS

As a variable resistor -

- Isolated variable attenuator
- · Automatic gain control
- Active filter fine tuning/band switching

As an analog switch -

- · Isolated sample and hold circuit
- Multiplexed, optically isolated A/D conversion

H11F1 H11F2 H11F3

Absolute Maximum Ratings (T _A = 25°C unless otherwise specified)						
Parameter	Symbol	Device	Value	Units		
TOTAL DEVICE						
Storage Temperature	T _{STG}	All	-55 to +150	°C		
Operating Temperature	T _{OPR}	All	-55 to +100	°C		
Lead Solder Temperature	T _{SOL}	All	260 for 10 sec	°C		
EMITTER						
Continuous Forward Current	I _F	All	60	mA		
Reverse Voltage	V _R	All	5	V		
Forward Current - Peak (10 µs pulse, 1% duty cycle)	I _{F(pk)}	All	1	Α		
LED Power Dissipation 25°C Ambient		All	100	mW		
Derate Linearly From 25°C	P_{D}	All	1.33	mW/°C		
DETECTOR						
Detector Power Dissipation @ 25°C	В	All	300	mW		
Derate linearly from 25°C	P_{D}	All	4.0	mW/°C		
Dural day was Vallagas (aith an earlagh)	D)/	H11F1, H11F2	±30	V		
Breakdown Voltage (either polarity)	BV ₄₋₆	H11F3	±15	V		
Continuous Detector Current (either polarity)	I ₄₋₆	All	±100	mA		

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ Unless otherwise specified.)

INDIVIDUAL COMPONENT CHARACTERISTICS							
Parameter	Test Conditions	Symbol	Device	Min	Тур*	Max	Unit
EMITTER							
Input Forward Voltage	$I_F = 16 \text{ mA}$	V _F	All		1.3	1.75	V
Reverse Leakage Current	V _R = 5 V	I _R	All			10	μΑ
Capacitance	V = 0 V, f = 1.0 MHz	CJ	All		50		pF
OUTPUT DETECTOR							
Breakdown Voltage	I = 10uA I = 0	B\/	H11F1, H11F2	30			_V
Either Polarity	$I_{4-6} = 10 \mu A, I_F = 0$ BV ₄₋₆	DV ₄₋₆	H11F3	15]
Off-State Dark Current	$V_{4-6} = 15 \text{ V}, I_F = 0$	I ₄₋₆	All			50	nA
	$V_{4-6} = 15 \text{ V}, I_F = 0, T_A = 100^{\circ}\text{C}$		All			50	μA
Off-State Resistance	$V_{4-6} = 15 \text{ V}, I_F = 0$	R ₄₋₆	All	300			MΩ
Capacitance	$V_{4-6} = 15 \text{ V}, I_F = 0, f = 1 \text{MHz}$	C ₄₋₆	All			15	pF

H11F1 H11F2 H11F3

ISOLATION CHARACTERISTICS						
Parameter	Test Conditions	Symbol	Min	Тур*	Max	Units
Input-Output Isolation Voltage	f = 60Hz, t = 1 min.	V _{ISO}	5300			Vac (rms)
Isolation Resistance	V _{I-O} = 500 VDC	R _{ISO}	10 ¹¹			Ω
Isolation Capacitance	V _{I-O} = 0, f = 1.0 MHz	C _{ISO}			2	pF

DC Characteristics	Test Conditions	Symbol	Device	Min	Тур*	Max	Units
			H11F1			200	
On-State Resistance	$I_F = 16 \text{ mA}, \ I_{4-6} = 100 \ \mu\text{A}$	R ₄₋₆	H11F2			330	Ω
			H11F3			470	
			H11F1			200	
On-State Resistance	$I_F = 16 \text{ mA}, \ I_{6-4} = 100 \mu\text{A}$	R ₆₋₄	H11F2			330	Ω
			H11F3			470	
Resistance, non-linearity and assymetry	$I_F = 16mA$, $I_{4-6} = 25 \mu A RMS$, $f = 1kHz$		All			0.1	%
AC Characteristics	Test Conditions	Symbol	Device	Min	Тур*	Max	Units
Turn-On Time	$R_L = 50\Omega, I_F = 16\text{mA}, V_{4-6} = 5V$	t _{on}	All			25	μS
Turn-Off Time	$R_1 = 50\Omega$, $I_F = 16mA$, $V_{4-6} = 5V$	t _{off}	All			25	μS

H11F1 H11F2 H11F3

Figure 3. LED Forward Voltage vs. Forward Current

2.0

1.8

1.8

T_A = -55°C

T_A = 25°C

1.0

I_F - LED FORWARD CURRENT - mA

H11F1 H11F2 H11F3

H11F1 H11F2 H11F3

TYPICAL APPLICATIONS

AS A VARIABLE RESISTOR

ISOLATED VARIABLE ATTENUATORS

Distortion free attenuation of low level A.C. signals is accomplished by varying the IRED current, $I_{\rm F}$ Note the wide dynamic range and absence of coupling capacitors; D.C. level shifting or parasitic feedback to the controlling function.

AUTOMATIC GAIN CONTROL

This simple circuit provides over 70db of stable gain control for an AGC signal range of from 0 to 30mA. This basic circuit can be used to provide programmable fade and attack for electronic music.

ACTIVE FILTER FINE TUNING/BAND SWITCHING

The linearity of resistance and the low offset voltage of the H11F allows the remote tuning or band-switching of active filters without switching glitches or distortion. This schematic illustrates the concept, with current to the H11F1 IRED's controlling the filter's transfer characteristic.

AS AN ANALOG SIGNAL SWITCH

ISOLATED SAMPLE AND HOLD CIRCUIT

Accuracy and range are improved over conventional FET switches because the H11F has no charge injection from the control signal. The H11F also provides switching of either polarity input signal up to 30V magnitude.

MULTIPLEXED, OPTICALLY-ISOLATED A/D CONVERSION

The optical isolation, linearity and low offset voltage of the H11F allows the remote multiplexing of low level analog signals from such transducers as thermocouplers, Hall effect devices, strain gauges, etc. to a single A/D converter.

TEST EQUIPMENT - KELVIN CONTACT POLARITY

In many test equipment designs the auto polarity function uses reed relay contacts to switch the Kelvin Contact polarity. These reeds are normally one of the highest maintenance cost items due to sticking contacts and mechanical problems. The totally solid-State H11F eliminates these troubles while providing faster switching.

H11F1 H11F2 H11F3

NOTE

All dimensions are in inches (millimeters)

H11F1 H11F2 H11F3

ORDERING INFORMATION

Option	Order Entry Identifier	Description
S	.S	Surface Mount Lead Bend
SD	.SD	Surface Mount; Tape and Reel
W	.W	0.4" Lead Spacing
300	.300	VDE 0884
300W	.300W	VDE 0884, 0.4" Lead Spacing
3S	.3S	VDE 0884, Surface Mount
3SD	.3SD	VDE 0884, Surface Mount, Tape and Reel

NOTE

All dimensions are in inches (millimeters)

Tape and reel quantity is 1,000 units per reel

H11F1 H11F2 H11F3

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.