GaAs-IR-Lumineszenzdiode GaAs Infrared Emitter

LD 271, LD 271 H LD 271 L, LD 271 HL

Maße in mm, wenn nicht anders angegeben/Dimensions in mm, unless otherwise specified.

Wesentliche Merkmale

- GaAs-IR-LED, hergestellt im Schmelzepitaxieverfahren
- Hohe Zuverlässigkeit
- Hohe Impulsbelastbarkeit
- Lange Anschlüsse
- Gruppiert lieferbar
- Gehäusegleich mit SFH 300, SFH 203

Anwendungen

- IR-Fernsteuerung von Fernseh- und Rundfunkgeräten, Videorecordern, Lichtdimmern
- Gerätefernsteuerungen
- Lichtschranken für Gleich- und Wechsellichtbetrieb

Features

- GaAs infrared emitting diode, fabricated in a liquid phase epitaxy process
- High reliability
- High pulse handling capability
- long leads
- Available in groups
- Same package as SFH 300, SFH 203

Applications

- IR remote control of hi-fi and TV-sets, video tape recorders, dimmers
- Remote control of various equipment
- Photointerrupters

Typ Type	Bestellnummer Ordering Code	Gehäuse Package
LD 271	Q62703-Q148	5-mm-LED-Gehäuse (T 1 ³ / ₄), graugetöntes Epoxy-
LD 271 L	Q62703-Q833	Gießharz, Lötspieße im 2.54-mm-Raster (1/10")
LD271 H	Q62703-Q256	5 mm LED package (T 1 3 / ₄), grey colored epoxy resin lens, solder tabs lead spacing 2.54 mm (1 / ₁₀ ")
LD271 HL	Q62703-Q838	

Grenzwerte Maximum Ratings

Bezeichnung Description	Symbol Symbol	Wert Value	Einheit Unit	
Betriebs- und Lagertemperatur Operating and storage temperature range	$T_{ m op};T_{ m stg}$	- 55 + 100	°C	
Sperrschichttemperatur Junction temperature	$T_{\rm j}$	100	°C	
Sperrspannung Reverse voltage	V_{R}	5	V	
Durchlaßstrom Forward current	I_{F}	130	mA	
Stoßstrom, $t_p = 10 \mu s$, $D = 0$ Surge current	I_{FSM}	3.5	А	
Verlustleistung Power dissipation	P_{tot}	220	mW	
Wärmewiderstand Thermal resistance	R_{thJA}	330	K/W	

Kennwerte (T_A = 25 °C) **Characteristics**

Bezeichnung Description	Symbol Symbol	Wert Value	Einheit Unit	
Wellenlänge der Strahlung Wavelength at peak emission $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms	λ_{peak}	950	nm	
Spektrale Bandbreite bei 50 % von $I_{\rm max}$ Spectral bandwidth at 50 % of $I_{\rm max}$ $I_{\rm F}$ = 100 mA	Δλ	55	nm	
Abstrahlwinkel Half angle	φ	± 25	Grad deg.	
Aktive Chipfläche Active chip area	A	0.25	mm ²	
Abmessungen der aktive Chipfläche Dimensions of the active chip area	$L \times B$ $L \times W$	0.5 × 0.5	mm	
Abstand Chipoberfläche bis Linsenscheitel Distance chip front to lens top	Н	4.0 4.6	mm	
Schaltzeiten, I_e von 10 % auf 90 % und von 90 % auf 10 %, bei I_F = 100 mA, R_L = 50 Ω Switching times, I_e from 10 % to 90 % and from 90 % to 10 %, I_F = 100 mA, R_L = 50 Ω	t_{r},t_{f}	1	μѕ	
Kapazität, $V_{\rm R}$ = 0 V, f = 1 MHz Capacitance	C_{\circ}	40	pF	
Durchlaßspannung Forward voltage I_F = 100 mA, t_p = 20 ms I_F = 1 A, t_p = 100 μs	$V_{F} \ V_{F}$	1.30 (≤ 1.5) 1.90 (≤ 2.5)	V	
Sperrstrom, $V_{\rm R}$ = 5 V Reverse current	I_{R}	0.01 (≤ 1)	μΑ	
Gesamtstrahlungsfluß Total radiant flux $I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	Φ_{e}	18	mW	
Temperaturkoeffizient von I_e bzw. Φ_e , I_F = 100 mA Temperature coefficient of I_e or Φ_e , I_F = 100 mA	TC ₁	- 0.55	%/K	
Temperaturkoeffizient von $V_{\rm F}$, $I_{\rm F}$ = 100 mA Temperature coefficient of $V_{\rm F}$, $I_{\rm F}$ = 100 mA	TC_{V}	– 1.5	mV/K	
Temperaturkoeffizient von λ , $I_{\rm F}$ = 100 mA Temperature coefficient of λ , $I_{\rm F}$ = 100 mA	TC_{λ}	0.3	nm/K	

Gruppierung der Strahlstärke I_e in Achsrichtung gemessen bei einem Raumwinkel Ω = 0.01 sr Grouping of radiant intensity I_e in axial direction at a solid angle of $\Omega = 0.01$ sr

Bezeichnung Description	Symbol Symbol		Wert Value	
		LD 271 LD 271 L	LD 271 H LD 271 HL	
Strahlstärke				
Radiant intensity				
$I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms	I_{e}	15 (≥ 10)	> 16	mW/sr
$I_{\rm F}$ = 1 A, $t_{\rm p}$ = 100 $\mu {\rm s}$	I _{e typ.}	120		mW/sr

Relative spectral emission

$$I_{\mathsf{rel}} = f(\lambda)$$

Radiant intensity $\frac{I_e}{I_e 100 \text{ mA}} = f(I_F)$

Single pulse, t_p = 20 μ s

Max. permissible forward current $I_{\mathsf{F}} = f(T_{\mathsf{A}})$

Forward current

 $I_{\text{F}} = f(V_{\text{F}})$, single pulse, $t_{\text{p}} = 20 \,\mu\text{s}$

Permissible pulse handling capability

 $I_{\text{F}} = f(\tau), T_{\text{C}} = 25 \,^{\circ}\text{C},$ duty cycle D = parameter

Radiation characteristics $I_{\text{rel}} = f(\phi)$

