Práctico 7: Espacios vectoriales

- 1. Decidir si los siguientes conjuntos son R-espacios vectoriales, con las operaciones abajo definidas.
 - (a) \mathbb{R}^n , con $v \oplus w = v w$, y el producto por escalares usual.
 - (b) \mathbb{R}^2 , con $(x,y) \oplus (x_1,y_2) = (x+x_1,0), \ c \odot (x,y) = (cx,0).$
- 2. Demostrar que el conjunto de números reales positivos $\mathbb{R}_{>0} = \{x \in \mathbb{R} : x > 0\}$ es un \mathbb{R} -espacio vectorial con las operaciones $x \oplus y = x \cdot y$ y $\lambda \odot x = x^{\lambda}$.
- 3. Sea $\mathbb K$ un cuerpo. Si (V,\oplus,\odot) es un $\mathbb K$ -espacio vectorial y S un conjunto cualquiera, entonces

$$V^S = \{ f : S \to V : f \text{ es una función} \},$$

denota al conjunto de todas las funciones de S en V. Definimos en V^S la suma y el producto por escalares de la siguiente manera: Si $f,g\in V^S$ y $c\in \mathbb{K}$ entonces $f+g:S\to V$ y $c\cdot f:S\to V$ están dadas por

$$(f+g)(x) = f(x) \oplus g(x), \quad (c \cdot f)(x) = c \odot f(x), \qquad \forall x \in S.$$

Probar que $(V^S, +, \cdot)$ es un K-espacio vectorial. En el caso en que V = K, este espacio vectorial se denotará F(S).

- 4. Sea K un cuerpo y $m, n \in \mathbb{N}$. Dar estructura de K-espacio vectorial al conjunto de matrices $M_{m \times n}(\mathbb{K})$.
- 5. Decidir si los siguientes subconjuntos de \mathbb{R}^n son subespacios vectoriales.
 - (a) $\{(x_1, \dots, x_n) \in \mathbb{R}^n : x_1 = x_n\}.$
 - (b) $\{(x_1, \dots, x_n) \in \mathbb{R}^n : x_1 + \dots + x_n = 1\}.$
 - (c) $\{(x_1, \dots, x_n) \in \mathbb{R}^n : x_1 + \dots + x_n = 0\}.$
 - (d) $\{(x_1, \dots, x_n) \in \mathbb{R}^n : x_1 \le x_2\}.$
 - (e) $\{(x_1, \dots, x_n) \in \mathbb{R}^n : x_n = 1\}.$
 - (f) $\{(x_1, \dots, x_n) \in \mathbb{R}^n : x_n = 0\}.$
- 6. Sea \mathbb{K} un cuerpo y $n \in \mathbb{N}$. Mostrar que el conjunto de todos los polinomios con coeficientes en \mathbb{K} de grado menor que n es un subespacio vectorial de $\mathbb{K}[x]$. Este espacio vectorial usualmente se denota por $\mathbb{K}_n[x]$.
- 7. Sea C[0,1] el conjunto de todas las funciones continuas de [0,1] en \mathbb{R} .
 - (a) Probar que C[0,1] es un espacio vectorial con la suma y el producto por escalar definidos 'puntualmente': $(f+g)(x)=f(x)+g(x), (cf)(x)=cf(x), \forall x\in[0,1], f,g\in C[0,1], c\in\mathbb{R}.$
 - (b) Decidir en cada caso si el conjunto dado es un subespacio vectorial de C[0,1].
 - i. $C^1[0,1] = \{f: [0,1] \to \mathbb{R} : f \text{ es derivable}\}.$
 - ii. $W = \{ f \in C[0,1] : f(1) = 1 \}.$
 - iii. $W = \{ f \in C[0,1] : \int_0^1 f(x) dx = 0 \}.$
 - iv. $C^{\infty}[0,1] = \{ f \in C[0,1] : f \text{ es infinitamente derivable} \}$
- 8. Sean W_1, W_2 subespacios de un espacio vectorial V. Probar que $W_1 \cup W_2$ es un subespacio de V si y sólo si $W_1 \subseteq W_2$ o bien $W_2 \subseteq W_1$.
- 9. Sea $\mathbb K$ un cuerpo y V un $\mathbb K$ -espacio vectorial. Sea $\lambda, \mu \in \mathbb K$ y $0 \neq v \in V$. Demostrar que si $\lambda \cdot v = \mu \cdot v$ entonces $\lambda = \mu$.
- 10. Sea \mathbb{K} un cuerpo y consideremos el \mathbb{K} -espacio vectorial $M_n(\mathbb{K})$.
 - (a) El conjunto $W = \{A \in M_n(\mathbb{K}) : det(A) = 0\}$ es un subespacio vectorial de $M_n(\mathbb{K})$?
 - (b) Demostrar que el conjunto $U = \{A \in M_n(\mathbb{k}) : Tr(A) = 0\}$ es un subespacio vectorial de $M_n(\mathbb{k})$.

Ejercicios Adicionales

- 11. Decidir si los siguientes conjuntos son espacios vectoriales sobre \mathbb{R} con las operaciones abajo definidas.
 - (a) \mathbb{R}^3 con:

$$(x, y, z) \oplus (x', y', z') = (x + x', y + y' - 1, z + z');$$

 $c \odot (x, y, z) = (cx, cy + 1 - c, cz).$

- (b) El conjunto de polinomios, con el producto por escalares (reales) usual, pero con suma $p(x) \oplus q(x) = p'(x) + q'(x)$ (suma de derivadas).
- 12. Decidir en cada caso si el conjunto dado es un subespacio vectorial de \mathbb{R}^n .
 - (a) $\{(x_1, \dots, x_n) \in \mathbb{R}^n : \exists j > 1, x_1 = x_j\}.$
 - (b) $\{(x_1,\ldots,x_n)\in\mathbb{R}^n : x_1x_n=0\}.$
- 13. Sea $M_n(\mathbb{R})$, el espacio vectorial de matrices $n \times n$. Decidir en cada caso si el conjunto dado es un subespacio vectorial de $M_n(\mathbb{R})$.
 - (a) El conjunto de matrices $n \times n$ inversibles.
 - (b) El conjunto de matrices $n \times n$ NO inversibles.
 - (c) El conjunto de matrices $n \times n$, A, tales que AB = BA, donde B es una matriz $n \times n$ fija.
- 14. Sea $\mathbb{R}[x]$, el espacio vectorial de polinomios con coeficientes reales. Decidir si el subconjunto de polinomios de grado par, junto con el polinomio nulo, es un subespacio vectorial.
- 15. Decidir si los siguientes subconjuntos de \mathbb{R}^3 son subespacios vectoriales.
 - (a) $A = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 1\}.$
 - (b) $B = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0\}.$
 - (c) $C = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 \ge 0\}.$
 - (d) $D = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 = 0\}.$
 - (e) $B \cup D$.
 - (f) $B \cap D$.
- 16. Decidir en cada caso si el subconjunto W es un subespacio vectorial del espacio vectorial V:
 - (a) $W = \{(x_1, \dots, x_n) \in \mathbb{R}^n : \exists j > 1, x_1 = x_j\}, V = \mathbb{R}^n.$
 - (b) $W = \{p(x) \in \mathbb{R}[x] : p'(0) + p''(0) = 0\}, V = \mathbb{R}[x].$
 - (c) $W = \mathbb{Q}[x] = \{p(x) \in \mathbb{R}[x] : a_0, \dots, a_{n-1} \in \mathbb{Q}\}, V = \mathbb{R}[x].$
 - (d) El conjunto de matrices triangulares superiores estrictas (es decir, con ceros en la diagonal). $V = M_n(\mathbb{K})$
 - (e) W es el conjunto de matrices A tales que $A^2 = 0$. $V = M_n(\mathbb{K})$.
 - (f) $W = \{ f : \mathbb{R} \to \mathbb{R} \mid f(x) \neq 0 \ \forall x \in \mathbb{R} \}, \ V = F(\mathbb{R}).$
 - (g) $W = \{ f \in F([0,1]) : f(x^2) = f(x)^2 \}, V = F([0,1]).$
 - (h)* Sea V un \mathbb{K} -espacio vectorial de dimensión n. Sea $W\subseteq V$ un subespacio vectorial de dimensión r< n. Demostrar que

$$W = \bigcap_{U \in \mathcal{S}} U,$$

donde $S = \{U \subseteq V : U \text{ es subespacio vectorial con dim } U = n - 1\}.$