Imports and loading dataset

```
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
print("Importing modules and loading dataset...\n")
```

Importing modules and loading dataset...

Reading in dataframe

df = pd.read_excel("/content/drive/My Drive/Internship/7. ANZ internship/TASK 1/ANZ synthesised tran
df.head()

	status	card_present_flag	bpay_biller_code	account	currency	long_lat	txn_descript
0	authorized	1.0	NaN	ACC- 1598451071	AUD	153.41 -27.95	ŀ
1	authorized	0.0	NaN	ACC- 1598451071	AUD	153.41 -27.95	SALES-F
2	authorized	1.0	NaN	ACC- 1222300524	AUD	151.23 -33.94	F
3	authorized	1.0	NaN	ACC- 1037050564	AUD	153.10 -27.66	SALES-F
4	authorized	1.0	NaN	ACC- 1598451071	AUD	153.41 -27.95	SALES-F

Modifying data to obtain salaries for each customer Amount column shows annual salary

```
df_salaries = df[df["txn_description"] == "PAY/SALARY"].groupby("customer_id").mean()
df_salaries.head()
```

<u>_</u> →		<pre>card_present_flag</pre>	merchant_code	balance	age	amount	
	customer_id						
	CUS-1005756958	NaN	0.0	4718.665385	53	970.47	
	CUS-1117979751	NaN	0.0	11957.202857	21	3578.65	
	CUS-1140341822	NaN	0.0	5841.720000	28	1916.51	
	CUS-1147642491	NaN	0.0	8813.467692	34	1711.39	
	CIIC_110615675A	MaN	$\cap \cap$	22815 717112	2/	20N2 72	
salar	salaries = []						
<pre>for customer_id in df["customer_id"]: salaries.append(int(df_salaries.loc[customer_id]["amount"]))</pre>							
<pre>df["annual_salary"] = salaries</pre>							
<pre>df_cus = df.groupby("customer_id").mean() df_cus.head()</pre>							
\Box		card_present_flag	merchant_code	balance	age	amount	annual_salary
	customer_id						
	CUS- 1005756958	0.812500	0.0	2275.852055	53	222.862603	970

0.0 9829.929000 21 339.843700

0.0 5699.212250 28 212.632500

3578

1916

- PREDICTIVE ANALYTICS:

Linear regression

CUS-

1117979751

CUS-

1140341822 ----

```
N_train = int(len(df_cus)*0.8)
X_train = df_cus.drop("annual_salary", axis=1).iloc[:N_train]
Y_train = df_cus["annual_salary"].iloc[:N_train]
X_test = df_cus.drop("annual_salary", axis=1).iloc[N_train:]
Y_test = df_cus["annual_salary"].iloc[N_train:]
linear_reg = LinearRegression()
linear_reg.fit(X_train, Y_train)
linear_reg.score(X_train, Y_train)
0.23295376366257825
linear_reg.predict(X_test)
```

0.826923

0.815385

```
□ array([1993.98473311, 2867.39066481, 1944.95959591, 1806.85984885, 2226.35045442, 2075.34697175, 1813.02987337, 5388.67435983, 1902.35351608, 2191.90445145, 1713.48134178, 2854.40519949, 2094.77781158, 3815.34342881, 2249.92922822, 1768.80816189, 2095.02988288, 1515.18425875, 1782.72752537, 2481.2898546 ])

linear_reg.score(X_test, Y_test)

□ -0.31694234980747504
```

Decision Tree - Classification and Regression

```
df_cat = df[["txn_description", "gender", "age", "merchant_state", "movement"]]
pd.get_dummies(df_cat).head()
```

₽		age	txn_description_INTER BANK	txn_description_PAY/SALARY	txn_description_PAYMENT	txn_descri
	0	26	0	0	0	
	1	26	0	0	0	
	2	38	0	0	0	
	3	40	0	0	0	
	4	26	0	0	0	

```
N_train = int(len(df)*0.8)
X_train = pd.get_dummies(df_cat).iloc[:N_train]
Y_train = df["annual_salary"].iloc[:N_train]
X_test = pd.get_dummies(df_cat).iloc[N_train:]
Y_test = df["annual_salary"].iloc[N_train:]
```

Classification

```
0.755500207555002
```

Regression