Reading: Schrijver, Chapter 24

Recap

Def: An M-flower is an M-alternating walk that looks like (draw a flower, label stem and blossom, $v_0 \in X$, v_i even, $v_t = v_i$ odd).

Claim: Shortest M-alternating walk is either an M-augmenting path or an M-flower.

Def: Graph G and matching M with M-blossom B give shrunk graph G/B with matching M/B (draw flower, shrink blossom).

Claim: M maximum iff M/B maximum in G/B.

Algorithm: Edmonds Matching Algorithm While ∃ alternating walk:

- Find one of minimum length.
- If augmenting, do augmentation.
- Else if a flower with blossom B,
 - Recursively find maximum matching N/B in G/B.
 - If |N/B| = |M/B| then M maximum so return M.
 - Else unshrink N/B to get matching N with |N| > |M| and repeat with M := N and corresponding X, \hat{G} .

Edmonds-Gallai Decomposition

Theorem 0.1 (Tutte-Berge Formula): For any graph G, $\nu(G) = min_{U \subseteq V}(|V| + |U| - o(G - U))/2$.

 $\begin{bmatrix} Last \ time, \ inductive \ proof. \ This \ time, \ al-\\ gorithm \ to \ find \ U, \ an \ alternate \ proof. \end{bmatrix}$

Def: U is a Tutte-Berge witness if $\nu(G) = (|V| + |U| - o(G - U))/2$.

Def: The Edmonds-Gallai decomposition partitions the vertices V of a graph G into sets

- D(G) set of vertices v such that v is exposed by some maximum matching,
- A(G) set of neighbors of D(G), and
- C(G) set of all remaining vertices.

Theorem 0.2 For the Edmonds-Gallai decomposition,

- U = A(G) is a Tutte-Berge witness,
- D(G) contains all vertices in odd components in G-U, and
- C(G) contains all vertices in even components in G-U.

Also, every odd component of G-U is factor-critical (a graph H is factor-critical if for every vertex v there is a matching in H that exposes only v).

Finding decomposition.

Construction: vertices reachable by odd/even alternating paths from a vertex $v \in X$.

Let M be matching returned by Edmonds' Algorithm, X be exposed vertices.

- Even := $\{v : \exists \text{ even alternating path from } X \text{ to } v\}$
- Odd := $\{v : \exists \text{ odd alternating path from } X \text{ to } v \text{ and no even one} \}$
- Free := $\{v : \not\exists \text{ alternating path from } X \text{ to } v\}$

Claim: There is no edge between Even and Free.

Proof: For $u \in \text{Even and edge } (u, v)$, v has alternating path from X:

• if $(u, v) \in M$, then even alternating path P to u has (u, v) as final edge, so delete and get odd alternating path to v,

• if $(u, v) \notin M$, then append (u, v) to even alternating path P to u to get odd alternating walk to v, if repeats vertex must be v lies on P so truncate P at v.

so every v adjacent to $u \in \text{Even}$ is in Even or Odd.

Let

- G_0 be final graph of Edmonds Algorithm (after shrinking all blossoms iteratively).
- M_0 corresponding max matching found by alg.

Claim: There is no edge within Even in G_0 . Proof: If $(u, v) \in E$ with $u, v \in E$ ven, then

- v has even alternating path P from X since Even,
- v has odd alternating walk P' from X through u (see previous proof).

Append reverse of P to P' to get alternating walk from X to X. Contradiction since M_0 max and G_0 has no flowers(?).

Note: Claim fails in G since all vertices of a blossom are even (we can go around blossom in either direction).

Claim: Even = $D(G) = \{v : \exists \text{ maximum matching } M \text{ that exposes } v\}$. Proof:

- (\rightarrow) : If $v \in \text{Even}$, take M and even path from X to v. Swap edges on path to get maximum matching that exposes v.
- (\leftarrow): If exists M' exposing v, then $M \cup M'$ has even cycles and even paths, and v is endpoint of even path. Since $v \notin M'$, must be $v \in M$ and hence other endpoint of path in X, so $v \in \text{Even}$.

Claim: Odd = $A(G) = \{v : v \text{ is neighbor of some } u \in D(G), \text{ but } v \notin D(G)\}.$ Proof:

- (\rightarrow): If $v \in \text{Odd}$, odd alternating path from X to v and vertex u before v in path is in Even = D(G). Also $v \in \text{Odd}$ means $v \notin \text{Even}$ by defn.
- (\leftarrow): Everything adjacent to D(G) =Even is in Even \cup Odd and $v \notin$ D(G) =Even, so $v \in$ Odd.

Claim: Free = C(G) = $V(G) \setminus (D(G) \cup A(G))$.

Properties

Theorem 0.3 For the Edmonds-Gallai decomposition,

- U = A(G) is a Tutte-Berge witness,
- C(G) contains all vertices in even components in G-U,
- D(G) contains all vertices in odd components in G-U, and
- every odd component of G-U is factorcritical.

 $\begin{bmatrix} A & graph & H & is factor-critical & if for every \\ vertex & v & there & is & a & matching & in & H & that \\ exposes & only & v. \end{bmatrix}$

Claim: C(G) is even components.

Proof: We proved no edge between Even and Free, so C(G) disjoint from D(G) in G-U. Furthermore, M matches vertices of C(G) to vertices of C(G) so $|M \cap E(C(G))| = |C(G)|/2$:

• $v \in C(G)$ must be matched (else even),

- u matched to v cannot be even since no even-free edges,
- *u* matched to *v* cannot be odd since then *v* would be even,
- \bullet hence v is free too.

Claim: D(G) is odd components, each of which is factor-critical.

Proof: For every connected component H of $(G-U) \cap D(G)$, we show:

- 1. Either $|X \cap H| = 1$ and $|M \cap \delta(H)| = 0$, or $|X \cap H| = 0$ and $|M \cap \delta(H)| = 1$ (where $\delta(H)$ is edges with exactly one endpoint in H).
- 2. H is factor-critical.

By induction on number of blossoms shrunk.

- Base case: no blossoms shrunk, then $G = G_0$ so we proved
 - no Even-Free edge
 - no Even-Even edge

so $(G-U)\cap D(G)$ union isolated vertices and claim follows.

- Inductive step: B blossom in G, claim holds for G/B. First condition:
 - in G/B, b even (stem is even alternating path from X to b)
 - in G, all vertices of B even and in same connected component H_b of $(G-U) \cap D(G)$

– since vertices of $B \setminus \{b\}$ matched internally in G, expanding blossom can't change $|X \cap H_b|$ or $|M \cap \delta(H)|$, so first condition holds in G if it holds in G/B

Second condition:

- by induction, all components of $(G U) \cap D(G)$ other than H_b factor-critical.
- for H_b assume $v \in H_b$ removed.
- if $v \notin B$, by induction is matching M' in G/B that exposes v, so expand it.
- if $v \in B$, by induction is matching M'' in G/B that exposes b, so expand it and take matching in B that exposes v.