PELP1 Z15 Analiza obwodów stałoprądowych w programie LTSpice

Zadanie 1. Korzystając z programu LTSpice, wyznaczyć prąd I.

Dane: $E_1 = 5 \text{ V}, E_2 = 3 \text{ V}, J = 2 \text{ mA}, R = 1 \text{ k}\Omega$

 $Odp.:\,I=2\,\mathrm{mA}$

Zadanie 2. Korzystając z programu LTSpice, wyznaczyć napięcie ${\cal U}$

Dane: $E = 3 \text{ V}, J = 1 \text{ mA}, R = 1 \text{ k}\Omega, r = 3 \text{ k}\Omega$

Odp.: U = 1 V

Zadanie 3. Korzystając z programu LTSPice wyznaczyć napięcie U, zakładając że wzmacniacz operacyjny jest idealny. Jak zmieni się wynik po zastosowaniu rzeczywistego wzmacniacza OP07.

Dane: $R_1 = 1 \Omega$, $R_2 = 2 \Omega$, $R_3 = 10 \Omega$, E = 1 V

Odp.:
$$U = E\left(1 + \frac{R_2}{R_1}\right) = 3 \text{ V}$$

Zadanie 4. Wyznaczyć graficznie charakterystykę i=f(u) dwójnika. Przyjąć, że dioda D ma charakterystykę zwarcioworozwarciową.

Zadanie 5. Wyznaczyć punkt pracy oporu nieliniowego R_n , korzystając z programu LTSpice.

Dane: $J=2\,\mathrm{mA},\,r=1\,\mathrm{k}\Omega,\,R=2\,\mathrm{k}\Omega,\,R_n:u_n=ai_n\,|i_n|\,,a=3\,\frac{\mathrm{V}}{\mathrm{mA}^2}$

 $Odp.:\,U_n=3\,\mathrm{V},\,I_n=1\,\mathrm{mA}$