- **8.** a) Estudie, según los diferentes $n \in \mathbb{N}$, el resto de la división euclídea de 7^n por 9.
 - b) ¿Cuál es el resto de la división de 35368⁷¹³ por 9?
 - c) ¿Para qué valores de $n \in \mathbb{N}$, el número $B_n = 16^{3n} + 16^n 2$ es divisible por 9?

Este problema es el 86.60 del volumen 2 de Problemas de oposiciones de Editorial Deimos y allí figura resuelto.

SOLUCIÓN: a) El resto de la división euclídea de 7^n por 9 es $r \in \{0,1,2,...,8\}$ si y sólo si $7^n \equiv r \pmod 9$. Calculamos los restos potenciales de 7 módulo 9, que son

$$7^0 = 1 \equiv 1 \pmod{9}, \qquad 7^1 = 7 \equiv 7 \pmod{9}, \qquad 7^2 = 49 \equiv 4 \pmod{9}, \qquad 7^3 = 343 \equiv 1 \pmod{9}$$

y por tanto

$$7^{3k} \equiv 1 \pmod{9}, \qquad 7^{3k+1} \equiv 7 \pmod{9}, \qquad 7^{3k+2} \equiv 4 \pmod{9}$$

b) Como quiera que $35368 = 9 \cdot 3929 + 7$, resulta que $35368 \equiv 7 \pmod{9}$ y como $713 = 3 \cdot 237 + 2$, resulta que

$$35368^{713} \equiv 7^{713} \equiv 7^{3 \cdot 237 + 2} \equiv 4 \pmod{9}$$

por lo que el resto de la división es 4.

academiadeimos.es

c) Se piden los $n \in \mathbb{N}$ tales que $B_n = 16^{3n} + 16^n - 2$ es divisible por 9, esto es, tales que $B_n \equiv 0 \pmod{9}$. Dado que es $7^{3n} \equiv 1 \pmod{9}$, podemos escribir:

academia@academiadeimos.es

$$B_n \equiv 16^{3n} + 16^n - 2 \equiv 7^{3n} + 7^n - 2 \equiv 7^n - 1 \pmod{9}$$

y será $B_n \equiv 0 \pmod{9}$ si y sólo si $7^n \equiv 1 \pmod{9}$, pero esto ocurre si y sólo si n es múltiplo de 3.

