

DS Group

Invention Database

Layout of Segment in Directory Dataset

Segment P	refix <u>26</u>	Segment Data 28			
Seg Code &	Prefix Pointers	Pointer to	Metadata		
Delete Byte	32	Seg Data	Seg Key Born-On-Date		

Figure 2A. Split Segment Composition – Prefix Portion with Metadata in segment data portion

Layout of Segment in Segdata Dataset

Segment P	refix <u>26</u>		Seg Data
Seg Code &	Prefix Pointers	Metadata	Pointer to
Delete Byte	32	Seg Key Born-On-Date	Seg Data

Figure 2B. Split Segment Composition – Prefix Portion with Metadata in segment prefix portion

Layout of Segment in Segdata Dataset

Segment Prefix <u>40</u>	Segment Data <u>42</u>	Trans- parent
Seg code & delete byte	User Data <u>48</u>	Born on Date 50

Fig. 3

Ø

```
DIR DD1=DFSIVD1, SIZE=2048, UOW= (500, 50, 10)
```

```
DATASET DD1=DFSIVD1A, DEVICE=3380, SIZE=2048
       NAME=A1111111, PARENT=0, BYTES=40, RULES=(LLV, LAST), PTR=(TB, CTR)
SEGM
       NAME=(A1111111, SEQ, U), BYTES=010, START=00001, TYPE=C
FIELD
       NAME=A9999999, BYTES=010, START=00011, TYPE=C
FIELD
LCHILD NAME=(A1, IVPDB1I), POINTER=INDX, RULES=LAST
LCHILD NAME=(A1X, IVPDB1X), POINTER=INDX
XDFLD NAME=AXXXXXXX, SEGMENT=A1111111, SRCH=(A9999999)
LCHILD NAME=(C1X, IVPDB1Z), POINTER=INDX
       NAME=CXXXXXXX, SEGMENT=C1111111, SRCH=(C9999999)
DATASET DD1=DFSIVD1B, DEVICE=3380, SIZE=4096
                                                                        Х
SEGM
       NAME=B1111111, PARENT=A1111111, BYTES=(1000,50),
             RULES=(LLV, LAST), PTR=(TB)
       NAME= (B1111111, SEQ, M), BYTES=010, START=00003, TYPE=C
FIELD
FIELD NAME=/SXB1
LCHILD NAME=(B1X, IVPDB1Y), POINTER=INDX
XDFLD..NAME=BXXXXXXX,SEGMENT=B1111111,SRCH=(B1111111),SUBSEQ=(/SXB1)
DATASET DD1=DFSIVD1C, DEVICE=3380, SIZE=8192
```

NAME=C1111111, PARENT=B1111111, COMPRTN=(DFSKMPX0, DATA, INIT),

RULES=(LLV, LAST), PTR=(TB), BYTES=(8000, 50)

NAME=(C1111111, SEQ, U), BYTES=010, START=00003, TYPE=C

FIELD NAME=C9999999, BYTES=010, START=00011, TYPE=C DIRGEN

FIELD

SEGM

DBDGEN FINISH END

Figure 4/2 Sample HIDAM DBD

END

NAME=IVPDB2, ACCESS=HDAM, RMNAME=(DFSHDC40, 4, 1000) DBD DIR DD1=DFSIVD2, UOW=(100,10)DATASET DD1=DFSIVD2A, DEVICE=3380, SIZE=2048 NAME=A1111111, PARENT=0, BYTES=40, RULES=(LLL, LAST), Х SEGM COMPRTN=(DFSKMPX0,DATA,INIT) NAME=(A1111111, SEQ, U), BYTES=010, START=00001, TYPE=C DATASET DD1=DFSIVD2B, DEVICE=3380, SIZE=4096 NAME=B1111111, PARENT=A1111111, BYTES=(1000,50), Х SEGM RULES=(LLV, LAST), PTR=(TB) NAME=(B1111111, SEQ, U), BYTES=010, START=00003, TYPE=C FIELD DATASET DD1=DFSIVD2C, DEVICE=3380, SIZE=8192 NAME=C1111111, PARENT=B11111111, COMPRTN=(DFSKMPX0, DATA, INIT), SEGM RULES=(LLV, LAST), PTR=TB, BYTES=8000 NAME=(C1111111, SEQ, U), BYTES=010, START=00001, TYPE=C FIELD DIRGEN **DBDGEN** FINISH

Figure 48 Sample HDAM DBD

Taiget Database

Figure 5 Secondary Index Architecture

Figure 6 Secondary Index Before Reorganizing

Figure 7 Secondary Index After Reorganizing

Figure & Retrieving a Target Segment via a Secondary Index

Figure 9 Correcting Direct Pointer in a Secondary Index

Figure 10 Saving the Database Definition at DB Load Time

Figure | Checking the Database Definition at DB Processing
Time

Figure 12. Unit Of Work (UOW) Architecture

Figure 13. HDAM UOW Architecture

Figure 14. HIDAM UOW Architecture

Figure 15. Prime & DOVF Block Composition

Figure 16. IOVF Block Composition

Figure 17 Block Composition Using IMS' Space Management

144	144.	144	144	148	142	142	L 146
Dep Seg#11	Dep Seg#12	Dep Seg#21	Dep Seg#22	Free Space	Root Seg#2	Root Seg#1	<

Figure 18 Block Composition Using Invention's Space Management

Figure 19 Space Management at Database Load Time

Figure 20 Space Management at Database Update Time

Figure 21. Space Management at Database Load Time

Figure 22. Space Management at Database Update Time