8.3.2 8.3.3 柱面坐标和球面坐标系下的三重积分

基础过关

一、计算
$$I = \iiint_{\Omega} z \sqrt{x^2 + y^2} dx dy dz$$
,其中 Ω 是由 $z = \sqrt{x^2 + y^2}$ 与平面 $z = 1$ 所围成的形体.

二、计算
$$I=\iint_{\Omega}z\mathrm{d}x\mathrm{d}y\mathrm{d}z$$
,其中 Ω 是由上半球面 $z=\sqrt{4-x^2-y^2}$ 及抛物面 $x^2+y^2=3z$ 所围成的形体.

三、设
$$\Omega$$
: $x^2 + y^2 + z^2 \le 1$, 计算

1.
$$I = \iiint_{\Omega} z dx dy dz$$
; 2. $I = \iiint_{\Omega} z^2 dx dy dz$; 3. $I = \iiint_{\Omega} \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \right) dx dy dz$.

四、设 Ω 是由平面z=0,z=y,y=1以及抛物柱面 $y=x^2$ 所围的几何体,计算:

$$1. I = \iiint z dx dy dz ;$$

1.
$$I = \iiint_{\Omega} z dx dy dz$$
; 2. $I = \iiint_{\Omega} xz dx dy dz$.

能力提升

一、计算三次积分
$$I = \int_0^{2\pi} d\theta \int_0^1 dr \int_0^{1-r^2} e^{-(1-z)^2} r dz$$
.

二、计算三重积分
$$I=\iint_{\Omega}(x+y+z)^2\mathrm{d}x\mathrm{d}y\mathrm{d}z$$
, 其中 Ω 是由 $x^2+y^2\leq 2z$, $x^2+y^2+z^2\leq 3$ 所围区域.

三、设
$$\Omega: x^2 + y^2 + z^2 \le 2tz, f \in C(\Omega), f(0) = 0, f'(0) = 1, 求$$

$$\lim_{t\to 0^+} \frac{1}{t^4} \iiint\limits_{\Omega} f(\sqrt{x^2 + y^2 + z^2}) \, \mathrm{d}x \mathrm{d}y \mathrm{d}z.$$

四、计算三重积分
$$I = \iiint_{\Omega} (x^2 + xy) dx dy dz$$
, 其中 Ω 是椭球体 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$.

五、当球
$$\Omega_1: x^2+y^2+z^2 \leq R^2$$
和球 $\Omega_2: x^2+y^2+z^2 \leq 2Rz(R>0)$ 的公共部分体积为
$$\frac{5\pi}{12}$$
时,求 Ω_1 的表面位于 Ω_2 内的部分 S_1 的面积.

延伸探究

一、某物体所在的空间区域为 Ω : $x^2 + y^2 + 2z^2 \le x + y + 2z$, 密度函数为 $x^2 + y^2 + z^2$, 求该物体的质量.