Tarea 02 - Reconocimiento de patrones Giovanni Gamaliel López Padilla

Problema 2.1

Sea $\{xi\}$ un conjunto de n vectores d dimensional. Definimos la matriz Kernel $[K_{i,j}]$ con $K_{i,j} = \langle x_i, x_j \rangle$ y \mathbb{D}^2 la matriz de distancias al cuadrada correspondiente. Verifica la identidad que usamos en clase:

$$\mathbb{D}^2 = c1^t + 1c^t - 2\mathbb{X}\mathbb{X}^t$$

con 1 un vector de unos de longitud
n y c el vector de longitud n con elementos $(\mathbb{K}_{i,i})_{i=1}^n$

Sea X una matriz con elementos x_{ij} , entonces, la matriz XX^T se puede escribir de la siguiente manera:

$$(XX^T)_{ij} = \sum_{k=1}^d x_{ik} x_{jk}$$

Con esto, el producto $1c^T$, se puede calcular como:

$$(1^T c)_{ij} = \sum_{k=1}^d x_{jk}^2$$

De igual manera, el producto $c^T 1$, se puede calcular como:

$$(c^T 1)_{ij} = \sum_{k=1}^d x_{ik}^2$$

entonces el elemento ij de la matriz \mathbb{D}^2 , se obtiene lo siguiente:

$$\mathbb{D}_{ij}^{2} = \sum_{k=1}^{d} x_{ik}^{2} - 2x_{ik} + x_{jk}^{2}$$
$$= \sum_{k=1}^{d} (x_{ik} - x_{jk})^{2}$$

si tomamos i = j, se obtiene la diagonal de \mathbb{D}^2 es cero. Por lo tanto, la matriz \mathbb{D}^2 es la matriz de distancias entre los vectores ij.

Problema 2.2

En la página 18 del archivo recpat6.pdf de la clase del 9 de febrero, verifica cómo que se obtiene la expresión $K_{\Phi}(x,y) = (1 + \langle x,y \rangle)^2$. De manera similar, supongamos que se define otro kernel K:

$$K(x,y) = \langle x, y \rangle^3 x, y \in \mathbb{R}^2$$

Busca una función $\Phi()$ tal que:

$$K(x, y) = \langle \Phi(x), \Phi(y) \rangle$$

Sea $X = [x_1, x_2]^T$ y $Y = [y_1, y_2]^T$, calculando $\langle X, Y \rangle^3$ se obtiene lo siguiente:

$$\langle X, Y \rangle^{3} = (x_{1}y_{1} + x_{2}y_{2})^{3}$$

$$= (x_{1}y_{1})^{3} + 3(x_{1}y_{1})^{2}(x_{2}y_{2}) + 3(x_{1}y_{1})(x_{2}y_{2})^{2} + (x_{2}y_{2})^{3}$$

$$= x_{1}^{3}y_{1}^{3} + \sqrt{3}x_{1}^{2}x_{2}\sqrt{3}y_{1}y_{2}^{2} + \sqrt{3}x_{1}x_{2}^{2}\sqrt{3}y_{1}y_{2}^{2} + x_{2}^{3}y_{2}^{3}$$

$$= \langle (x_{1}^{3}, \sqrt{3}x_{1}^{2}x_{2}, \sqrt{3}x_{1}x_{2}^{2}, x^{3}), (y_{1}^{3}, \sqrt{3}y_{1}^{2}y_{2}, \sqrt{3}y_{1}y_{2}^{2}, y^{3}) \rangle$$

$$= \langle \Phi(x), \Phi(y) \rangle$$

por lo tanto:

$$\Phi(z = (z_1, z_2)) = (z_1^3, \sqrt{3}z_1^2 z_2, \sqrt{3}z_1 z_2^2, z^3)$$

Problema 2.3

Sea S un conjunto finito. Definimos como medida de similitud entre dos subconjuntos A y B de S:

$$K(A,B) := \#(A \cap B)$$

Busca una función tal que:

$$K(A, B) = \langle \Phi(A), \Phi(B) \rangle$$

Como S es un conjunto finito, entonces podemos decir que el número total de elementos en S es n. Dando asi que $S = \{s_i\}_{i=1}^n$. Sea Φ la siguiente función:

$$\Phi(X) = \sum_{i=1}^{n} \mathbb{I}_{X}(s_{i})$$

donde X es un conjunto (vector) de elementos y \mathbb{I}_S una función indicadora tal que

$$\mathbb{I}_X(s_i) = \begin{cases} 1 & \text{si } s_i \in S \\ 0 & \text{si } s_i \notin S \end{cases}$$

Entonces,

$$\langle \Phi(A), \Phi(B) \rangle = \sum_{i=1}^{n} I_A(s_i) I_B(s_i)$$
$$= \sum_{i=1}^{n} I_{A \cap B}$$
$$= \#A \cap B$$

Lo anterior se pudo reducir ya que, la suma dará valores diferentes a cero solo si el elemento s_i se encuentra en los dos conjuntos. Por lo tanto:

$$\Phi(X) = \sum_{i=1}^{n} \mathbb{I}_X(s_i) \qquad \mathbb{I}_X(s_i) = \begin{cases} 1 & \text{si } s_i \in X \\ 0 & \text{si } s_i \notin X \end{cases}$$

Problema 2.4

Decidimos que dos observaciones x_i , x_j son conectados por una arista en el grafo correspondiente si x_i está entre los k-vecinos más cercanos de x_i o x_j está entre los k-vecinos más cercanos de x_i . Muestra que la adición de una sola observación en este ejemplo puede destruir por completo el desenrollamiento. Márcala en el dibujo y explícalo.

Figura 1: Datos originales dados.

La muestra que se añadiria a los datos mostrados en la figura 1 es un dato entre la sabada formada. Esto puede ilustrarse en la figura 2. Como la figura 1 esta formada con los k-vecinos más cercanos, al añadirel nuevo dato se contemplarían los vecinos del mismo y en que conjuntos estaría involucrado el mismo. Dando así que la figura formada se desenrolle.

Figura 2: Dato propuesto para desenrollar la figura.

Problema 3.1

Trabajamos con los de datos fashion MNIST. Se trata de imágenes 28x28 de diez diferentes tipos de prendas. Trabajaremos con fashion-mnist_train.csv. Ver https://www.kaggle.com/zalando-research/fashionmnist

Figura 3: Conjunto de datos contenido en el archivo fashion-mnist_train.csv.

Busca visualizaciones 2D y 3D basadas en PCA de las imágenes de T-shirts (clase "0"). ¿ Ves posible encontrar interpretaciones de los componentes como lo hicimos en clase con la base mnist (clásico) de dígitos?

Visualizaciones 2D

En la figura 4a se visualzan las posiciones de las primeras dos componentes de PCA al ser aplicad a los datos del archivo fashion-mnist_train.csv. Se seleccionaron nueve camisetas que se encontraran lo más próximo a cada extremo del conjunto de la figura 4b. Este conjunto se encuentra representado en la figura 4a. Las posiciones de las primeras dos componentes de PCA correspondientes de este subconjunto se muestran en la tabla 1.

- (a) Resultados de PCA usando dos componentes.
- (b) Camisetas señaladas en la figura 4a.

Figura 4: Resultados de las primeras dos componentes de PCA para el conjunto de datos contenido en fashion-mnist_train.csv.

Imagen	Componente		
	1	2	
1	0.2652	0.6747	
2	0.4111	0.8843	
3	0.6193	0.7453	
4	0.1923	0.3806	
5	0.3552	0.471	
6	0.5223	0.64	
7	0.241	0.011	
8	0.3925	0.1517	
9	0.465	0.3078	

Tabla 1: Resultados numéricos de las primeras dos componentes de PCA usando el subconjunto señalado en la figura 4b.

Realizando una búsqueda en los patrones encotrados se encuentran los siguientes:

 Para la primer componente de PCA pudo hacer una separación entre las camisetas de color oscuro en la parte izquierda y conforme se avanza hacia la derecha las camisetas toman un color más claro. ■ Para la segunda componente de PCA se pudo encontrar que las camisetas que se encuentran en la parte inferior contienen una nula o muy poca cantidad de información en el cuello. En la parte intermedia se encuentran camisetas con cuello más marcado y en la parte supeior camisetas con cuello delgado.

Visualizaciones 3D

Usando las primeras tres componentes de PCA se obtuvieron los resulados mostrados en la figura 5a. Se seleccionaron camisetas que se encontraran en la parte inferior, intermedia y superior usando unicamente la tercer componente. El subconjunto de las camisetas seleccionadas se encuentra representado en la figura 5b. Los valores numéricos de las primeras tres componentes de PCA de las camisetas seleccionadas se encuentran en la tabla 2.

- (a) Resultados de PCA usando dos componentes.
- (b) Camisetas señaladas en la figura 5a.

Figura 5: Resultados de las primeras tres componentes de PCA para el conjunto de datos contenido en fashion-mnist_train.csv.

Ino a mara	Componente		
Imagen	1	2	3
1	0.3374	0.4134	0.058
2	0.4574	0.377	0.494
3	0.292	0.5571	0.8176

Tabla 2: Resultados numéricos de las primeras tres componentes de PCA usando el subconjunto señalado en la figura 5b.

La interpretación que se le puede dar a la tercer componente de PCA es la siguiente:

■ Las camisetas que se encuentren en la parte inferior contienen una cantidad nula de mangas. Las camisetas que se encuentren en la parte intemedia presentan un crecimiento en la parte superior de la camiseta. En la parte superior se encuentran camisetas con mangas.

Problema 3.2

Trabajamos con datos de calificaciones de películas de Netflix por usuarios: https://grouplens.org/datasets/movielens/latest/ Nos limitamos a la base chiquita. Busca algunas visualizaciones informativas de estos datos y coméntalos. Aplica MDS para obtener una visualización de las películas, explora diferentes kernels (basándose en el vector de calificaciones de cada pelicula y/o los géneros a los cuales cada pelicula pertenece). Hay muchísimas calificaciones faltantes. Limítate a un subconjunto chiquito que se puede trabajar facilmente.

Realizando una visualización de los datos se encontro lo siguiente:

La distribución de las calificaciones dadas a todas las películas se muestra en la figura 6. Se muestra que existe una mayor cantidad de calificaciones altas que calificaciones bajas. Por lo que si se quisiera caracterizar a un usuario las calificaciones bajas de pueden tener un peso mayor a comparación que las califaciones altas.

Figura 6: Distribución de las califaciones en la base de datos.

La distribución de los géneros de las películas calificadas se muestra en la figura 7. Se muestra que existe una gran cantidad de películas con el genero drama y esta distribución se asemeja a una exponencial.

Figura 7: Distribución de los géneros de las películas calificadas.

Con la información mostrada en las figuras 6 y 7 se propuso visualizar la distribución de las calificacones por genero. En la figura 8 se muestra esta distribución.

Figura 8: Distribución de calificaciones por género.

En donde se observa que los géneros que contaban con una mayor representación en la figura 7

presentan una mayor cantidad de calificaciones positivas.

Con esto, se opto por el siguiente método para obtener un subconjunto pequeño de calificaiones. Se seleccionaron aquellas películas calificadas las cuales contaran en su género al menos dos de los primeros tres géneros mostrados en la figura 7. En seguida se calculo el promedio de su calificación. Realizando este proceso nos quedamos con un total de 1873 películas. Con este vector de calificaciones se calculo el kernel euclideano, gaussiano, lineal y sigmoide. Las gráficas al aplicar MDS a estos kernels se encuentran representados en la figura .

Figura 9: Resultados de aplicar MDS al vector de calificaciones promedios con diferenes kernels.

Para su representación a color se tomo únicamente una género de la película, es por ello ue el género drama se ve eliminado de la representación.