Topologia I

Rozwiązanie zadań z serii 2

KONRAD KACZMARCZYK

5 grudnia 2024

Zadanie. Udowodnić, że podzbiór $[1,2] \times [1,2]$ płaszczyzny z metryką rzeka jest homeomorficzny z produktem przestrzeni metrycznych X_1 i X_2 , gdzie $X_1 = [1,2]$ z metryką dyskretną, a $X_2 = [1,2]$ z metryką euklidesową.

Z wykładu wiemy że przestrzeń $X_1 \times X_2$ generowana jest przez metryke:

$$d((x_1, y_1), (x_2, y_2)) = \begin{cases} |y_1 - y_2| & x_1 = x_2 \\ 1 & \text{w p. p.} \end{cases}$$

Aby wykazać że $([1,2]) \times [1,2], d_r) \cong (X_1 \times X_2, d)$, pokażemy że przekształcenie identycznościowe jest homeomorfizem. Warunek na różnowartościowość i surjekcje są oczywiście spełnione, zatem należy wykazać że identyczność jest ciągła z $X_1 \times X_2 \rightarrow [1,2] \times [1,2]$ i odwrotnie. Zaobserwujmy jednak jeśli odległość między punktami w $X_1 \times X_2$ lub $[1,2] \times [1,2]$ jest mniejsza od 1, leżą na tej samej współrzędnej iksowej, i $d=d_r$ i w definicji $(\varepsilon - \delta)$ ciągłości wystarczy wstawić $\delta < \varepsilon$, aby warunek przekstałcenie i jego odwrotność były ciągłe, czyniąc przestrzenie homeomorficznymi.

Zadanie. Udowodnić, że jeżeli A jest zwartym podzbiorem prostej rzeczywistej z topologią strzałka, to A jest zbiorem brzegowym.

Musimy więc wykażać że

Int
$$(A) \neq \emptyset$$

wykażemy to przez sprzeczność:

Niech $\exists a \in \text{Int } A$, zatem istnieje otoczenie $(c,b] \in A$ (gdzie c < a < b). Z warunku że A jest zwarty wynika że z każdego pokrycia można wybrać skończone, ale dla odcinka (c,b] istnieje rodzina zbiorów \mathcal{B} :

$$\mathcal{B} = \left\{ (a + \frac{1}{i+1}, a + \frac{1}{i}], i = N, N+1, \dots \right\} \cup \left\{ (c, a], (a + \frac{1}{N}, b] \right\}$$

w której każdy element pokrywa dokładnie jeden zbiór, zatem nie możemy go zawsze pokryć skończoną liczbą zbiorów z \mathcal{B} , a odcinek jest cześcią podzbioru zwartego, czyli sprzeczność.

Zadanie. Niech (X,d) będzie przestrzenią metryczną zwartą, zaś A jej domkniętym podzbiorem. Pokazać, że jeśli x_1,x_2,\ldots jest ciągiem punktów przestrzeni X takim, że $d(x_i,A)<\frac{1}{i}$, dla każdego $i\in\mathbb{N}$, to podprzestrzeń

$$B = A \cup \{x_i : i \in \mathbb{N}\}\$$

przestrzeni X jest zwarta.

Weźmy dowolny nieskończony ciąg punktów $(x_i)_{i\in\mathbb{N}}$ w B. Z zwartości X wiemy że ten ciąg ma zbieżny podciąg w X, czyli BSO możemy założyć że ciąg $(a_i)_{i\in\mathbb{N}}$ ma granice.

Pozostały nam dwa przypadki: albo mamy nieskończenie wiele punktów w A (który jest domknięty czyli granica $\lim_{i\to\infty}a_i\to a_0\in A$), albo mamy że nieskończenie wiele elementów leży w $\{x_i:i\in\mathbb{N}\}$. W pierwszym przypadku granica $a_0\in A\subset B$, więc B spełnia warunek zwartości (z każdego ciągu punktów w B można wybrać podciąg zbieżny w tej przestrzeni). W drugim przypadku BSO zakładamy że wszystkie punkty należą do $\{x_i:i\in\mathbb{N}\}$, czyli granica tego ciągu a_0 , ma własność $\forall_{i\in\mathbb{N}}d(a_0,A)<\frac{1}{i}$, czyli $d(a_0,A)=0$ co mówi że $a_0\in\overline{A}=A\in B$, więc w tym przypadku zbiór B też spełnia warunek zbieżności, czyli B jest zwarty.

Zadanie. Niech $(X_1, T_1), (X_2, T_2), \ldots, (X_n, T_n)$ będą przestrzeniami topologicznymi. Udowodnij, że $X_1 \times X_2 \times \cdots \times X_n$ jest ośrodkowa wtedy i tylko wtedy gdy, dla każdego $i \in \{1, 2, \ldots, n\}$, przestrzeń X_i jest ośrodkowa.

1. (\Rightarrow) Niech D będzie gęstym podzbiorem $X_1 \times X_2 \times \cdots \times X_n$, rozważmy rzuty $\pi_i : X_1 \times X_2 \times \cdots \times X_n \to X_i$. Wiemy że zbiór $\pi_i(D)$, jest przeliczalny (jako obraz podzbioru przeliczalnego). Pokażemy teraz że jest gęsty, czyli dla dowolnego zbioru otwartego U_i w X_i , przecięcie $U_i \cap \pi_i(D) \neq \emptyset$. Skorzystajmy z faktu że D jest gęsty, czyli wiemy że $\pi_i^{-1}(U_i) \cap D \neq \emptyset$, i po rzutowaniu na X_i przy pomocy π_i , mamy:

$$U_i \cap \pi_i(D) \neq \emptyset$$

czyli przestrzeń X_i jest ośrodkowa.

2. (\Leftarrow) Niech D_i oznacza przeliczalny zbiór gęsty w X_i . Rozważmy teraz zbiór $D = \{(x_1, \ldots, x_n) : \forall_i x_i \in D_i\}$, który jest przeliczalnym zbiorem. Pokażmy że jest gęsty mianowicie: Niech $U = U_1 \times \cdots \times U_n$ będzie otwartym zbiorem w $X_1 \times \cdots \times X_n$. Jako że $\pi_i(U) = U_i$, to zbiory U_i są otwarte, zatem $\exists_{a_i} a_i \in U_i \cap D_i$. W takim razie $(a_1, \ldots, a_n) \in U \cap D$, dla dowolnego otwartego U, więc $X_1 \times \cdots \times X_n$ posiada skończony podzbiór gęsty, czyli jest ośrodkowa.