SRN	
-----	--

PES University, Bangalore (Established under Karnataka Act No. 16 of 2013)

UE18CS334

Aug 2021: END SEMESTER ASSESSMENT (ESA) B.TECH VI SEMESTER

UE18CS334: NATURAL LANGUAGE PROCESSING

_Tin	ne: 3	Hrs Answer All Questions Max Marks: 1	100								
1.	a)	Show any three possible alignments for converting STALL to TABLE indicating operations? Can we have more than one optimal alignment? Use minimum edit distance algorithm to find the optimal alignment and the cost involved (Consider the cost of insertion and deletion as 1 and substitution cost as 2). The entries in the table must be explained properly.									
	b)	Give one example of non-word error and real-word error each. Justify the statement "The noisy channel model is a kind of Bayesian Inference."	4								
	c)	Define the following with an example: 1. BOW model 2. Term Frequency-Inverse document Frequency 3. Lexical Ambiguity	2*3								
2.	a)	Consider a corpus D = {New, higher, education, policy} of four words. And following are the counts of trigrams, bigrams and unigrams in the corpus: New higher new									

						SRN		T			ME-45 (1)		П	
		Where $P^*(t) = P(t) - \frac{1}{8}$ where t can be a unigram, bigram or trigram etc.												
		And $P(t) = \frac{c(t)}{\sum_{i} c_i}$	_											
		Where $\alpha(x, y)$ is	(-)	er that passe	es the left-ove	r mass	to th	he I	lowe	r ord	er n	-gran	ns	
		and can be comp	outed by nor	malizing the	e probabilities	s (ie th								
		trigrams would b					0	_					\perp	
		Consider two wo						le,	rows	repr	esen	it the		
	b)	Construct the Markov model graphically. Also, determine the POS tags assigned to the sentence "Tagore wrote" using an HMM. The tag transition distribution and the word likelihood distribution are given below. In the transition table, rows represent the conditioning event, i.e P(Vb N)=0.40. <s> is "start of the sentence". Show all steps</s>											2+3	
		N	Vb			Tago	re		wro	te.	1			
		<s> 0.60</s>	0.40		N	0.50		\dashv	0.20		1		l	
		N 0.10	0.40		Vb	0.10		+	0.30		1			
		Vb 0.50	0.20			10.10			0.50	<u> </u>	J			
	c)	State whether true or false: 1. Maximum Entropy Markov Model and Maximum Entropy models are both sequence labeling model. 2. In a MEMM, the posterior probability P(T W) is computed directly in contrast to HMM where Likelihood is estimated, where W is a sequence of words and T is a sequence of tags.										5		
	d)	Discuss in brief about the classic tasks of information extraction.									4			
3.	a)	Given a mini grammar:												
		$S \rightarrow NP \ VP$ $NP \rightarrow Det \ N$ $VP \rightarrow V \ NP$ $V \rightarrow ran$ The values in s	[0.30] [0.20] [0.05] quare brack	l l tets represer		[aan [[0.01 [0.02 socia	[] [] [] [2] [ited			res	pecti	ve	8
		rules. Apply Probabilistic CKY algorithm to parse the following sentence: "The sportsman ran a mile"												
		Construct the table and show the steps neatly.												

		SRN	
	b)	Why dependency parsing is required when phrase structures are generated using CFGs? With an example discuss how dependency relations are defined? When a dependency tree is said to be projective?	2+3 +1
	c)	Consider the following text: "Swastika M says she will always be grateful to Amartya S. The actress revealed that the Nobel Laureate helped her calm down when she was scared by a thunderstorm while travelling on a plane." 1. Detect all the mentions in the above text. 2. Identify the coreferential chains. 3. What is the result of setting Anaphoricity classifier's threshold too low? 4. Is there any nested mention in the above text?	1+3 +1+ 1
4.	a)	Suppose the figure below is Wordnet Noun Taxonomy with their Information Content (IC) in brackets: Object (2.79) What is the 1. IC of LCS(Car, Cycle)? 2. Resnik Similarity between "Bicycle" and "Fork"? 3. Jiang-Conrath Similarity between "Car" and "Article"? 4. Lin Similarity between "Vehicle" and "Tableware"? Motor Vehicle Wheeled Vehicle (9.72) Cutlery (9.53) (9.86) Car (10.57) Cycle (10.35) (10.05) Fork Bicycle (10.94) What are the two classes of algorithms to measure the word similarity?	1+2 +2+ 2+1
	b)	Do as directed. 1. Give a clear example of semantic relatedness but no semantic similarity between the terms. 2. Distributional Algorithms use the structure of the dictionary to define the word similarity. (True/False) 3. A feature vector extracted from a window of three words to right and left of the target word (in bold) is [He, PRN, was, VBD, playing, VB, well, ADV, and, CC, expected, VBD] for the sentence "He was playing superbly well and expected to enter National Level team." 4 is one way to build lexicons. 5. What is the difference between a term-document matrix and term-term matrix?	5

		8 e j	SRN							1940				I	
	c)	What is Skip Gram with negative sampling approach $L_{CE} = -[\log \sigma(c_{pos} \cdot w) + \sum_{i=1}^{k} \log \sigma(c_{pos} \cdot w)] + \sum_{i=1}^{k} \log \sigma(c_{pos} \cdot w) + \sum_{i=1}^{k$	g $\sigma(-c_n$.eg _i	• 1		os a	inc	lin	egg	ati	ve			2+2 +2+ 1
5.	a)	How Recurrent Neural networks (RNNs) are used as	languas		-	dal	a (1	r »	Ac)) D		*** 4	-ha	Т	
0.	a)	figure showing the training regime of RNNs as LMs.	languag	,e 11	10	ue	is (1	LIV	visj	ע ז	ra	wι	ne		4+2
	b)	With a neat diagram, discuss the architecture of a BERT?	Transfor	me	r	and	d h	ov	v it	is	us	ed	in		2+2
	c)	Consider the following 4X4 matrix and a 2X2 kernel													
		What is the output feature map after convolution operation if stride=2? And what would be the order of output matrix if stride=1?													
		10 15 9 14													
										3					2+1
		16 2 17 11													+3
		12 10 3 18													
		5 9 16 13 0 1													
		Briefly indicate how convolutional networks are used at character level for text input.													
	d)	Answer the following and rectify the statement in case it is false.													
		 Language models before BERT were unidired ULMfit is also a transformer-based LM. (True Neural Factoid question answering is a single 	e/False)							- ar	nd	(4