YASH SARANG D6AD The state of t

Am: To vieate and implement basic digital operations like AND, OR, NOT, NAND, NOR, EXOR and EXNOR operations Theory: D The AND operation: The circuit has 2 or. more inputs. Digital signals are applied at the input terminals marked & B, B, N the other terminal being ground. Mathematically. Y= A and B and (and N. = A.B. C.N = ABCD: N. · Trothe table Input | Output " Diagram.

5) The NOR operator. of The Not OR operator has non than 200 more inputs and I output.

Y' = A+B+...+N (output of OR gote)
Y = Y' = A+B...+N (output of NOR gote)

toth	table:	Input	Output
	A	B	4
	0	0	1
	0	1	0
	1	0	0
		1	0

Diagrams:

The EXOR: It is not a basic operation but can be performed using the basic gates AND, OR & NOT.

Its legisl equation is written as: Y= A Exor B

Y = A \emptyreup B.

Conclusion: We have successfully created and implemented all the gates including AND, OR, NOT, NAND, EXOR & EXNOR.

And Gate:

Or Gate:

Not Gate:

Nand Gate:

Nor Gate:

Exor Gate:

Exnor Gate:

