7. Übungsblatt

Thema: Schur-Komplement

Aufgabe 7

Wir untersuchen die Schur-Komplement-Methode für nicht-überlappende Gebietszerlegungen. Um die Programmierung zu erleichtern (und schon vorhandene Programmteile zu nutzen), sollen die Variablen etwas anders geordnet werden:

$$\begin{pmatrix} A_{11} & A_{1B} & 0 \\ A_{B1} & A_{BB} & A_{B2} \\ 0 & A_{2B} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} u_1 \\ u_B \\ u_2 \end{pmatrix} = \begin{pmatrix} f_1 \\ f_B \\ f_2 \end{pmatrix}$$

Bestimmen Sie analog zur Vorlesung S und f_S für die Gleichung $Su_B = f_S$ durch Auflösen des Gleichungssystems nach u_B , blockweise Elimination.

Wir wollen wieder das Modellproblem auf dem Einheitsquadrat

$$-\Delta u(x,y) = 1$$

mit u=0 auf dem Rand aufgreifen. Wir diskretisieren mit $N\times N$ inneren Gitterpunkten, also $h=\frac{1}{N+1}$, wobei N ungerade sei. Das Gebiet zerlegen wir in zwei gleich große Teile 1 und 2 und ein Interface B. Wenn wir die Variablen spaltenweise numerieren, bekommen wir automatisch die Zerlegung $u=(u_1,u_B,u_2)^T$. Entsprechend hat auch die Matrix A die übliche Gestalt.

Implementieren Sie eine Funktion TeilMatrix(N,kc,nc,kb,nb), die das Produkt c=A*b mit einer $n_c \times n_b$ Teilmatrix von A gemäß

$$c[0...n_c-1] = A[k_c...k_c + n_c - 1, k_b...k_b + n_b - 1] \cdot b[0...n_b - 1]$$

berechnet, basierend auf der matrixfreien Implementierung für den Differenzenstern.

Implementieren Sie eine Funktion SchurMatrix(N), die das Produkt Sv berechnet.

Berechnen Sie nun im Hauptprogramm f_S und lösen Sie $Su_B = f_S$ und $A_{ii}u_i = \dots$

Verwenden Sie zur Lösung der Gleichungssystem (bzw. für die Multiplikation mit A_{ii}^{-1}) das CG-Verfahren ohne Vorkonditionierung.

Parameter: N = 41, CG-Verfahren: max. 100 Iterationen, Residuum 10^{-8} .

Stellen Sie das Ergebnis dar und überprüfen Sie den Wert $u(\frac{1}{2}, \frac{1}{2})$.