On Multiphase-Linear Ranking Functions

Xie Li

May 9, 2020

Motzkin's Transposition Theorem

Theorem (Motzkin's Transposition Theorem)

For $A \in \mathbb{K}^{m \times n}, C \in \mathbb{K}^{l \times n}, b \in \mathbb{K}^m$, and $d \in \mathbb{K}^l$. The formulae below are equivalent.

- $\forall x \in \mathbb{K}^n. \neg (Ax \le b \land Cx < d)$
- ► $\exists \lambda \in \mathbb{K}^m . \exists \mu \in \mathbb{K}^l .$ $\lambda \geq 0 \land \mu \geq 0$ $\land \lambda^T A + \mu^T C = 0 \land \lambda^T b + \mu^T d \leq 0$ $\land (\lambda^T b < 0 \lor \mu \neq 0)$

Intuition of Motzkin's transposition theorem:...

Lemma (0)

Given an non-empty polyhedron $\mathcal P$ and linear functions f_1,\ldots,f_k such that

1.
$$\mathbf{x} \in \mathcal{P} \to f_1(\mathbf{x}) > 0 \lor ... \land f_{k-1}(\mathbf{x}) > 0 \lor f_k(\mathbf{x}) \ge 0$$

2.
$$\mathbf{x} \in \mathcal{P} \not\to f_1(\mathbf{x}) > 0 \lor \dots f_{k-1}(\mathbf{x}) > 0$$

There exists a non-negative constants μ_1, \ldots, μ_{k-1} such that

$$\mathbf{x} \in \mathcal{P} \to \mu_1 f_1(\mathbf{x}) + \mu_{k-1} f_{k-1}(\mathbf{x}) + f_k(\mathbf{x}) \ge 0$$

LRF, Nested r.f. and M Φ RF

$M\Phi RF$ to Nested r.f.

Theorem (1)

If $\mathcal Q$ has a $M\Phi RF$ of depth d, then it has a nested ranking function of depth at most d.

Proof.

By induction on the depth d.

- ▶ d = 1: M Φ RF and nested r.f. are both LRF.
- ▶ d > 1: d = 2 e.g. $\langle f_1, f_2 \rangle$. When index i = 1, we do not impose bound on $f_2(\mathbf{x})$. However, a bound is needed for $f_2'(\mathbf{x}s)$ in nested r.f. $\langle f_1', f_2' \rangle$.

To solve the problem that $f_2(\mathbf{x})$ might goes under 0, when \mathbf{x}'' is ranked by f_1 . Consider $\mathcal{Q}' = \mathcal{Q} \cap \{\mathbf{x}'' \in \mathbb{Q}^{2n} \mid f_1(\mathbf{x}'') \leq 0\}$

M Φ RF to Nested r.f.

Lemma (1)

Let $\tau = \langle f_1, \dots, f_d \rangle$ be an irredundant M Φ RF for \mathcal{Q} , such that $\langle f_2, \dots, f_d \rangle$ is a nested ranking function for $\mathcal{Q}' = \mathcal{Q} \cap \{\mathbf{x}'' \in \mathbb{Q}^{2n} \mid f_1(\mathbf{x}) \leq 0\}$. Then there is a nested ranking function of depth d for \mathcal{Q} .

Prove by construction: construct a nested r.f. $\langle f_1', \dots, f_d' \rangle$

$$f_d(\mathbf{x}) \ge 0$$

$$(\Delta f_i(\mathbf{x''}) - 1) + f_{i-1}(\mathbf{x}) \ge 0 \qquad \text{for all } i = 1, \dots, d.$$

If f_d is non-negative on \mathcal{Q} , then $f'_d = f_d$. Otherwise, $\mathbf{x}'' \in \mathcal{Q} \to f_d(\mathbf{x}) \geq 0 \lor f_1(\mathbf{x}) > 0$

MΦRF to Nested r.f.

$$f_d(\mathbf{x}) \ge 0$$

$$(\Delta f_i(\mathbf{x}'') - 1) + f_{i-1}(\mathbf{x}) \ge 0 \qquad \text{for all } i = 1, \dots, d.$$

Assume $f'_n(\mathbf{x}) = f_n(\mathbf{x}) + \mu_n f_1(\mathbf{x})$ and f'_d, \dots, f'_i has already been computed.

$$\mathbf{x}'' \in \mathcal{Q}' \to (\Delta f_i(\mathbf{x}'') - 1) + f_{i-1}(\mathbf{x}) \ge 0$$

$$\mathbf{x}'' \in \mathcal{Q}' \to (\Delta f_i'(\mathbf{x}'') - 1) + f_{i-1}(\mathbf{x}) \ge 0$$

If above inequation also holds for Q, then $f'_{i-1} = f_{i-1}$, Otherwise

$$\mathbf{x}'' \in \mathcal{Q} \to (\Delta f_i'(\mathbf{x}'') - 1) + f_{i-1}(\mathbf{x}) \ge 0 \lor f_1(\mathbf{x}) \ge 0$$

$\mathsf{BM}\Phi\mathsf{RF}(\mathbb{Q})\in\mathsf{PTIME}$

Theorem (2) $BM\Phi RF(\mathbb{Q}) \in PTIME$.

Proof.

LLRF

Weak LLRF to M⊕RF

Theorem (3)

If Q has a weak LLRF of depth d, it has a $M\Phi$ RF of depth d.

Proof.

Prove by induction.

- ▶ d=1: For LLRF: $\Delta f_1(\mathbf{x}'')>0$, $f_1(\mathbf{x})\geq 0$ is a LRF due to the loop is linear. For M Φ RF: is a LRF.
- ▶ *d* > 1:

