CHAPTER 7: TRIANGLES

EXERCISE 7.3

- 1. ABC is an isosceles triangle with AB = AC and BD and CE are its two medians. Show that BD = CE.
- 2. In Fig.7.4, D and E are the points on side BC of a $\triangle ABC$ such that BD = CE and AD = AE. Show that $\triangle ABD \cong \triangle ACE$.

3. CDE is an equilateral triangle formed on a side CD of a square ABCD (Fig.7.5). Show that $\triangle ADE \cong \triangle BCE$.

- Fig. 7.5
- 4. In Fig.7.6, $BA \perp AC$, $DE \perp DF$ such that BA = DE and BF = EC. Show that $\triangle ABC \cong \triangle DEF$.
- 5. Q is a point on the side SR of $\triangle PSR$ such that PQ = PR. Prove that PS > PQ.

- 6. S is any point on side QR of a $\triangle PQR$. Show that PQ+QR+RP>2PS.
- 7. D is any point on side AC of a $\triangle ABC$ with AB = AC. Show that CD < BD.
- 8. In Fig.7.7, l||m an M is the mid-point of a line segment AB. Show that M is also the mid-point of any line segment CD, having its end points on l and m, respectively.
- 9. Bisectors of the $\angle B$ and $\angle C$ of an isosceles triangle with AB = AC intersect each other at O. BO is produced to a point M. Prove that $\angle MOC = \angle ABC$.

- 10. Bisectors of the $\angle B$ and $\angle C$ of an isosceles triangle ABC with AB = AC intersect each other at O. Show that the external angle adjacent to $\angle ABC$ is equal to $\angle BOC$.
- 11. In Fig.7.8, AD is the bisector of $\angle BAC$. Prove that AB > BD.