

《大学物理-基础实验》 绪论

物理实验教学中心 2023. 3. 16

- 1 为什么要学习物理实验
- 2 实验物理在科学发展上的重要性
- 3 物理实验教学的重要性
- 4 基础实验的课程安排
- 5 测量的不确定度分析
- 多数据处理

1. 有效数字

2. 常用数据处理方法

1. 有效数字

USTC

- ▶ 测量结果中可靠的几位数加上不确定的一位数 测量只写到开始有误差的那一位,该位数后:四舍六入五凑偶。
- > 有效数字的位数与小数点无关
 - 0.123 V和123 mV (同为3位有效数字,与物理量单位无关)
 - 0.123 和0.1230 (分别为3位和4位有效数字)
 - 1.35和1.3500 (分别为3位和5位有效数字)

物理量的有效数字

• 直接测量: 仪器的最小分度+1位估读位

- 间接测量: 与运算方式有关
 - 加减运算: 最大不确定度分量决定:

432.3+0.1263-2=430

- 乘除运算: 最少有效数字分量决定:

48X3.2345/1.73²=52

48X3.2345/0.173²=5.2x10³

• 常数(如π等)多保留1位

• 中间计算结果的有效数字: 可多保留1位

> 不确定度的有效数字

通常最多保留2位有效数字。

> 测量数值的有效数字

测量数值的有效数字与不确定度对齐。

测量圆柱体合金的密度,求标准不确定度

已知: $m = 14.00 \,\mathrm{g}$,允差 $0.04 \,\mathrm{g}$

直径D用千分尺,高H用游标卡尺

D/mm	10.502	10.488	10.516	10.480	10.495	10.470
H/mm	20.00	20.02	19.98	20.00	20.00	20.02

不同分布测量仪器的置信概率P与置信因子 k_p

Kp P	0.500	0.577	0.650	0.683	0.900	0.950	0.955	0.990	0.997
正态分布	0.675			1.000	1.650	1.960	2.000	2.580	3.000
均匀分布	0.877	1.000		1.183	1.559	1.645	1.654	1.715	1.727
三角分布	0.717	0.862	1.000	1.064	1.675	1.901	1.929	2.204	2.315

几种常见仪器的误差分布与置信系数

仪器	米尺	游标卡尺	千分尺	物理天平	秒表
误差分布	正态	均匀	正态	正态	正态
置信系数C	3	√3	3	3	3

计算实例: 求直径的不确定度

U	S	ГС

<i>D</i> /mm	10.502	10.488	10.516	10.480	10.495	10.470
--------------	--------	--------	--------	--------	--------	--------

$$\bar{D} = 10.4918$$
 mm

中间结果可多保留一位

$$u_{AD} = \frac{\sigma_D}{\sqrt{n}} = 0.007 \qquad mm$$

$$u_{BD} = \frac{\Delta_D}{C} = \frac{0.004}{3} = 0.0013 \qquad mm$$

$$u_D = \sqrt{(t_p \times u_{AD})^2 + u_{BD}^2}$$

$$= \sqrt{(1.11 \times 0.007)^2 + 0.0013^2}$$

$$= 0.008 \quad mm$$

$$D = \overline{D} \pm u_D = (10.492 \pm 0.008)$$
 mm $(P = 0.683)$

计算实例: 求高的不确定度

H/mm	20.00	20.02	19.98	20.00	20.00	20.02
------	-------	-------	-------	-------	-------	-------

$$\bar{H} = 20.003$$
 mm

中间结果可多保留一位

$$u_{AH} = \frac{\sigma_H}{\sqrt{n}} = 0.006 \qquad mm$$

$$u_{BH} = \frac{\Delta_H}{C} = \frac{0.02}{\sqrt{3}} = 0.0115 = 0.012$$
 mm

$$u_{H} = \sqrt{(t_{p} \times u_{AH})^{2} + (k_{p} \times u_{BH})^{2}}$$

$$= \sqrt{(1.11 \times 0.006)^{2} + (1.183 \times 0.012)^{2}}$$

$$= 0.016 \quad mm$$

$$H = \overline{H} \pm u_H = (20.003 \pm 0.016)$$
 mm $(P = 0.683)$

计算实例: 求质量的不确定度

$$m = 14.00 g$$
,允差 $0.04 g$

$$u_{Bm} = \frac{0.04}{3} \approx 0.013 \qquad g$$

$$u_{m} = \sqrt{u_{Am}^{2} + u_{Bm}^{2}}$$
$$= \frac{0.04}{3}$$
$$\approx 0.01 \qquad g$$

$$m = (14.00 \pm 0.01)$$
 g $(P = 0.683)$

计算实例: 求密度的不确定度

$$\rho = \frac{4m}{\pi D^2 H} = \frac{4 \times 14.00}{3.1416 \times 10.492^2 \times 20.003} = 8.094 \times 10^{-3} \ g / mm^3 = 8.094 \ g / cm^3$$

常数π多取一位: 3.1416

$$\frac{u_{\rho}}{\rho} = \sqrt{\left(\frac{u_{m}}{m}\right)^{2} + \left(\frac{2u_{d}}{\overline{D}}\right)^{2} + \left(\frac{u_{h}}{\overline{H}}\right)^{2}}$$

$$= \sqrt{\left(\frac{0.02}{14.00}\right)^2 + \left(\frac{2 \times 0.008}{10.492}\right)^2 + \left(\frac{0.016}{20.003}\right)^2}$$

=0.0022

$$u_{\rho} = 8.094 \times 0.0022 = 0.018 \, g / cm^3$$

$$\rho = (8.094 \pm 0.018) g / cm^3 \quad (P = 0.683)$$

测量结果的有效数字的位数取决于测量结果的不确定度。

- 1. 不确定度通常取1位有效数字或2位有效数字;
- 2. 不确定度的取舍也采用四舍六入五凑偶;
- 3. 测量结果的有效数字要和不确定度对齐;
- 4. 实验结果一般用绝对不确定度表示,也可用相对不确定度表示。

- 2.1 列表法
- 2.2 作图法
- 2.3 最小二乘法

• 记录原始数据的最好方法

- 格式要求:
 - (1) 列表名称;
 - (2) 测量量的名称、单位等信息;
 - (3) 要正确反映测量数据的有效数字;
 - (4) 用钢笔/圆珠笔,如实记录数据;
 - (5) 表格力求简单明了,一目了然。

测量圆柱体的直径D(千分尺)和高H(游标卡尺)

<i>D</i> /mm	10.502	10.488	10.516	10.480	10.495	10.470
<i>H</i> /mm	20.00	20.02	19.98	20.00	20.00	20.02

或者

测量圆柱体的直径D(千分尺)和高H(游标卡尺)

D/mm 10.502 10.488 10.516 10.480 10.495 10.470

H/mm 20.00 20.02 19.98 20.00 20.00 20.02

列表法的优点

- (1) 数据易于参考比较,便于检查数据的合理性、 发现问题,指导实验;
- (2) 一个表可同时记录多个变量间的变化而不紊乱;
- (3) 便于以后随时处理数据,分析问题。

2.2 作图法

USTC

• 坐标纸

直角、半对数、对数坐标纸等

• 应用软件

origin, matlab, mathematica

教学平台课件: Origin8简易使用教程

网络中心网站有正版软件下载!

中国科学技术大学 正版软件

入口:信息门户 > 正版软件

http://zbh.ustc.edu.cn/zbh.php

- 1. 坐标轴、方向,物理量名称和单位,分度。
- 2. 图号和图的名称。
- 3. 可靠数字在图中应可靠,估读位在图中应是估计的,即图纸中的一小格对应数值中可靠数字的最后一位。
- 4. 适当选取x轴和y轴的比例和坐标的起点,使图 线比较对称的充满整个图纸,不要缩在一边或 一角。除特殊需要以外,坐标轴的起点一般不 一定取为零值。

标明坐标轴:

用粗实线画坐标轴,用箭头标轴方向,标坐标轴的名称或符号、单位,再按顺序标出坐标轴整分格上的量值。

标实验点:

实验点可用 "+"、 "。"、"·"等符号标出(同一坐标系下不同曲线用不同的符号)

连线:

用直尺、曲线板等把点连成直线、光滑曲线。一般不强求直线或曲线通过每个实验点,应使连线两边的实验点与图线最为接近且分布大体均匀。

标出图线特征:

在图上空白位置标明实验条件或从图上得出的某些参数。如利用所绘直线可给出被测电阻R大小:从所绘直线上读取两点 A、B的坐标就可求出 R 值。

由图上 $A \times B$ 两点可得被测电阻R为:

$$R = \frac{U_B - U_A}{I_B - I_A} = \frac{7.00 - 1.00}{18.58 - 2.76} = 0.379(k\Omega)$$

标出图名:

在图线下方或空白位置写出图的名称及某些必要的说明。

电阻伏安特性曲线

图1 光杠杆法测铜棒的长度与温度的关系

以数据点为基点,误差杆长度的一半表示相应不确定度的大小。

用作图法把实验数据表示成曲线,固然可以看出事物之间的规律,但毕竟不如方程来得确切。如何从实验数据出发求出方程,这也是数据处理中常常遇到的问题。

最小二乘法认为:若最佳拟合的方程为Y=f(x),则所测各 y_i 值与拟合方程上相应的点 $Y_i=f(x_i)$ 之间的偏离的平方和为最小,

即

$$s = \sum_{i} (y_i - f(x_i))^2$$
 最小

• 线性的函数关系,则可写成 Y = mx + b

• 指数函数关系,则可写成: $Y = ae^{bx} + c$

• 函数关系不明确,则常用多项式来表示:

$$Y = a_0 X + a_1 X^2 + \cdots$$

线性拟合(线性回归)

函数关系 y = f(x) = mx + b

$$s(m,b) = \sum_{i=1}^{n} [y_i - (mx_i + b)]^2$$
最小

$$\begin{cases} \frac{\partial s}{\partial m} = -2\sum_{i=1}^{n} (y_i - mx_i - b)x_i = 0\\ \frac{\partial s}{\partial b} = -2\sum_{i=1}^{n} (y_i - mx_i - b) = 0 \end{cases}$$

$$m = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\overline{x^2} - \overline{x}^2}$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \overline{xy} = \frac{1}{n} \sum_{i=1}^{n} x_i y_i$$

$$1 \sum_{i=1}^{n} x_i = \frac{1}{n} \sum_{i=1}^{n} x_i y_i$$

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$
 $\overline{x}^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2$

r定量描述x、y变量之间线性相关程度的好坏。

$$r = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\sqrt{\left[\overline{x^2} - (\overline{x})^2\right] \left[\overline{y^2} - (\overline{y})^2\right]}}$$
$$-1 \le r \le 1$$

r 值越接近1, x和y 的线性关系越好; r为正, 称为正相关; r为负, 称为负相关。

附表二: 相关系数临界值表

$$P(|\rho| > \rho_{\alpha}) = \alpha$$
 (表中 $n-2$ 是自由度)

$n-2$ α	0. 10	0.05	0. 02	0.01	0.001	n-2
1	0.987 69	0.099 692	0.999 507	0.999 877	0.999 998 8	1
2	0.900 00	0.950 00	0.980 00	0.990 00	0.999 00	2
3	0.805 4	0.878 3	0.934 33	0.958 73	0.991 16	3
4	0.729 3	0.811 4	0.882 2	0.917 20	0. 974 06	4
5	0.669 4	0.754 5	0.832 9	0.874 5	0.950 74	5
6	0.621 5	0.706 7	0.788 7	0.834 3	0. 924 93	6
7	0.582 2	0.666 4	0.749 8	0.797 7	0.898 2	7
8	0. 549 4	0.631 9	0.715 5	0.764 6	0.872 1	8
9	0. 521 4	0.602 1	0.685 1	0.734 8	0.847 1	9
10	0.497 3	0. 576 0	0.658 1	0.707 9	0.823 3	10

 r_0 是与测量次数n有关的量,一般可以通过查表得到。

- $r > r_0$: x, y之间是线性关系,可以用最小二乘法进行回归。
- $r < r_0$: x, y之间是非线性关系,不可以用最小二乘法进行回归。

• 斜率m的标准差为

$$s_m = m\sqrt{\left(\frac{1}{r^2} - 1\right)/(n-2)}$$

• 截距b的标准差为

$$s_b = \sqrt{\overline{x^2}} \cdot s_m$$

• 斜率m和截距b的扩展不确定度

$$u_m = t_p s_m; \quad u_b = t_p s_b$$

式中 t_P 是置信概率P(或显著性水平 α =1-P)时,根据自由度v=n-2查t分布表所得到的t值。

$t_{\rm P}$ P	0.997	0.95	0.683
1	235.80	12.71	1.84
2	19.21	4.30	1.32
3	9.21	3.18	1.20
4	6.62	2.78	1.14
5	5.51	2.57	1.11
6	4.90	2.45	1.09
7	4.53	2.36	1.08
8	4.28	2.31	1.07
9	4.09	2.26	1.06
10	3.96	2.23	1.05
11	3.85	2.20	1.05
12	3.76	2.18	1.04
13	3.69	2.16	1.04
14	3.64	2.14	1.04
15	3.59	2.13	1.03
16	3.54	2.12	1.03
17	3.51	2.11	1.03
18	3.48	2.10	1.03
19	3.45	2.09	1.03
20	3.42	2.09	1.03
oo.	3.00	1.96	1

请到实验室完成预备实验

(查看短信通知或预约选课系统中的安排)

谢谢!