Recurrent Neural Networks

Notes

Content

- Background (Where does DNNs lack?)
- Introduction to RNN
- Working of RNN
- Where do RNN lack?
- Introduction to LSTM
- Working of LSTM

Background

Candidate Name	Email	Department Code	Clarity of questions	Vsubility of Test Interface
Descher	Beecher (970/8 yahco.com	e	4	4
Kelele	Kalisie 1989 @yuhoo.com	c		1
Gianni	Gami' 981 @	8		3
Clemmie	Cenme1983@gnal.con	А	3	3
Jerel	Jere 1907/9-ymail.com	С	4	4
lsam	Isam 1977/Roompany.com	г		5
Arnav	Amay1979@yshco.com	А		5
Onle	Onle i 976@	C	4	4
Milrel	Mikel1990@great.com	E	6	6
Jaids	Juida 1991 (Recompany.com	c		3
Chanel	Chanen 980 (Hotmail.com	C	3	3
Vinie	Vnic1980@normall.com	H	1	1

- We are used to tabular data NxD matrix
- Suppose, a Sequence is of length T, then each sequence is of size TxD
- If there are N sequences, then the size becomes, NxTxD

Background

- used in speech recognition, language translation, stock predictions
- good at modelling sequence data
- They work by using sequential memory
 - e.g.: learning the alphabet sequence
- An RNN has a looping mechanism that acts as a highway to allow information to flow from one step to the next.
- We are used to tabular data NxD matrix
- Suppose, a Sequence is of length T, then each sequence is of size TxD
- If there are N sequences, then the size becomes, NxTxD

 $\frac{https://towards datascience.com/illustrated-guide-to-recurrent-neural-networks-79e5eb8049c9}{}$

Deep Learning: Recurrent Neural Networks in Python - Udemy

Simple Recurrent Unit

- If h(t) is an M-sized vector (i.e. M hidden units)
 - 1st unit connects back to all M units
 - 2nd unit connects back to all M units and so on
 - Therefore, W_h is an MxM matrix
 - Mathematically,

$$h(t) = f(W_h^T h(t-1) + W_x^T x(t) + b_h)$$

$$y(t) = softmax(W_o^T h(t) + b_o)$$

f can be sigmoid, relu, tanh, etc.

Visualizing a recurrent neural network in terms of a feed forward neural network

Example:

- Suppose we make a chatbot to classify intent
- RNN used to encode the sequence of text
- RNN output to a classification model that classifies intent

RNN encoding - previous step information getting incorporated in the current step

Classification based on RNN output

Where do RNNs lack?

- RNNs suffer from short-term memory
 - Caused by vanishing gradients
 - Training an RNN happens through Backpropagation through time.

 The gradient values will exponentially shrink as it propagates through each time step.

- Small gradients mean small adjustments. That causes the early layers not to learn.
- Therefore, the RNN doesn't learn the long-range dependencies across time steps.
- LSTM and GRUs are solutions to the short term memory

Long Short Term Memory Network (LSTM)

- Core concept of LSTMs are the cell state and the gates
- Cell State act as a transport highway that transfers relative information all the way down the sequence chain.
 - You can think of it as the "memory" of the network
 - Carries relevant information throughout the processing of the sequence
- Information gets added to or removed from the cell state via gates.
- The gates can learn what information is relevant to keep or forget during training.
- Gates contains sigmoid activations.
 - helpful for updating or forgetting data
 - because any number getting multiplied by 0 is 0, causing values to disappears or be "forgotten." Any number multiplied by 1 is the same value therefore that value stays the same or is "kept."

	RNN	LSTM
Time steps	✓	✓
Memory for every time step	X	√

LSTM and GRU

- internal mechanisms called gates that can regulate the flow of information.
- gates can learn which data in a sequence is important to keep or throw away
- Analogy towards the working of LSTM and GRUs

multiplication

addition

but will definitely be buying again!

concetenation

A Box of Cereal

Components of LSTM

- Forget Gate "f" (a neural network with sigmoid)
- Candidate layer "Cbar"(a NN with Tanh)
- Input Gate "I" (a NN with sigmoid)
- Output Gate "O"(a NN with sigmoid)
- Hidden state "H" (a vector)
- Memory state "C" (a vector)

https://medium.com/deep-math-machine-learning-ai/chapter-10-1-deepnlp-lstm-long-short-term-memory-networks-with-math-21477f8e4235

LSTM Full time steps

LSTM Flow

= Element-wise multiplication

= Element-wise addition

$$f_{t} = \sigma (X_{t} * U_{f} + H_{t-1} * W_{f})$$

$$\overline{C}_{t} = \tanh (X_{t} * U_{c} + H_{t-1} * W_{c})$$

$$I_{t} = \sigma (X_{t} * U_{i} + H_{t-1} * W_{i})$$

$$O_{t} = \sigma (X_{t} * U_{o} + H_{t-1} * W_{o})$$

$$C_t = f_t * C_{t-1} + I_t * \overline{C}_t$$

$$H_t = O_t * tanh(C_t)$$

W, U = weight vectors for forget gate (f), candidate (c), i/p gate (l) and o/p gate (O)

Note : These are different weights for different gates, for simpicity's sake, I mentioned W and U

LSTM Flow

Thank You

- The first step in LSTM is to decide what information we're going to throw away from the cell state
- Done using the "forget" gate
- It looks at h_{t-1} and x_t , and outputs a number between 0 and 1 for each number in the cell state C_{t-1} .

Mady, Monica, Walks, Room Previous hidden state

What to forget?
Monica

Current input

- The next step is to decide what new information we're going to store in the cell state.
- This has two parts:
 - a sigmoid layer called the "input gate layer" decides which values we'll update.
 - Next, a tanh layer creates a vector of new candidate values, \hat{C}_t , that could be added to the state.

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Mady, Monica, Walks, Room

Previous hidden state

What's new? Richard

Current input

Now, Update the old cell state, C_{t-1} , into the new cell state C.

- We multiply the old state by f, forgetting the things we decided to forget earlier.
 - Then we add $i_{\star}*\hat{C}_{\star}$

Mady, Monica, Walks, Room

Current input

Updated cell state? Richard

- Getting the new hidden state
- First, we run a sigmoid layer which decides what parts of the cell state we're going to output.
 - Then, we put the cell state through tanh (to push the values to be between -1 and 1) and multiply it by the output of the sigmoid gate, so that we only output the parts we decided to.

 $h_t = o_t * \tanh(C_t)$

New hidden state? Richard, Walks Mady, Monica, Walk, Room