## CLAIM AMENDMENTS

 (Currently Amended) A processor-implemented method for searching for a data object in a plurality of nodes forming a peer-to-peer network, the method comprising:

forming Bloom-Filters at the nodes as a function of data available via the nodes; communicating the Bloom-filters between peer-to-peer coupled nodes of the peerto-peer network that have formed connections using incentive-based criteria to control whether one node connects to another node:

forming a search expression for locating the data object;

for a given node of the plurality of nodes, evaluating other nodes of the plurality of nodes that connected to the given node based on the Bloom-filters and the incentive-based criteria to select one or more of the other nodes to propagate the search expression, the incentive-based criteria comprising one or more of a connection bandwidth and a reliability;

propagating the search expression to said selected one or more of the other nodes; and

outputting a result of the search expression from nodes that satisfy the search expression.

- (Original) The method of claim 1, wherein forming respective Bloom filters at the nodes includes combining Remote Bloom-filters (RBFs) received from peerto-peer coupled nodes of the respective nodes.
- (Original) The method of claim 1, wherein selecting the nodes includes forming a query Bloom-filter based on the search expression and comparing the query Bloom-filter to the respective Bloom-filters.
- 4. (Original) The method of claim 3, wherein comparing the query Bloom-filter to the respective Bloom-filters includes forming a ranking associated with respective Bloom-filters as a sum of bits of the query Bloom-filter that match the bits of the respective Bloom-filter.

- (Original) The method of claim 3, wherein comparing the query Bloomfilter to the Bloom-filters includes forming a ranking associated with respective Bloomfilters as a count of bits of the query Bloom-filter that match the bits of the respective Bloom-filter.
- (Original) The method of claim 1, wherein forming the respective Bloom filters at the nodes includes forming the respective Bloom filters as a function of a local Bloom-filter based on data locally accessible by the respective nodes.
- (Original) The method of claim 1, wherein the peer-to-peer network comprises a Gnutella network.

## 8. (Currently Amended) A system comprising:

a plurality of data processors coupled via a peer-to-peer network arrangement, each data processor including;

a network interface arranged to provide one or more respective connections with one or more associated data processor of the peer-to-peer network arrangement, the connections formed using an incentive-based criteria;

a memory for storing one or more respective remote Bloom filters representing data accessible via the associated connections; and  $\frac{1}{2} \left( \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \right) \left( \frac{$ 

a processing unit arranged to:

form a query Bloom-filter based on a data query;

for a given node of the plurality of nodes, evaluate other nodes of the plurality of nodes that connected to the given node based on the Bloom-filters and the incentive-based criteria to select one or more of the other nodes to propagate a search expression, the incentive-based criteria comprising one or more of a connection bandwidth and a reliability;

select a subset of the connections as a function of the query

Bloom-filter and the respective remote Bloom-filters associated with the connections; and
send the data query to the subset of the connections.

- (Original) The system of claim 8, wherein at least one data processor of the plurality of data processors further includes a local data storage adapted for storing data objects.
- (Original) The system of claim 9, wherein the memory of the at least one data processor is configured for storing a local Bloom-filter representing data accessible via the local data storage.
- 11. (Original) The system of claim 8, wherein the processing units of the data processors are further arranged to publish a Bloom-filter to a selected connection of the one or more connections, the Bloom-filter representing data accessible via the respective data processors.
- 12. (Original) The system of claim 11, wherein the Bloom filter is formed as a logical OR of the remote Bloom filters of the respective data processors except for the remote Bloom filter associated with the selected connection.
- 13. (Original) The system of claim 11, wherein at least one data processor of the plurality of data processors further includes a local data storage adapted for storing data, and the memory of the at least one data processor is configured for storing a local Bloom-filter representing data accessible via the respective local data storage.
- (Original) The system of claim 13, wherein the Bloom filter is formed as a logical OR of: the local Bloom-filter; and

the remote Bloom filters of the respective data processor except for the remote Bloom filter associated with the selected connection.

 (Original) The system of claim 8, wherein the peer-to-peer network arrangement includes a Gnutella network arrangement. 16. (Currently Amended) A computer-readable non-transitory storage medium having instructions stored thereon which are executable on a processor for performing steps comprising:

forming one or more respective peer-to-peer connections with one or more network peers of the processor using an incentive-based criteria;

receiving respective remote Bloom-filters representing data accessible via associated peer-to-peer connections; forming a query Bloom-filter based on a data query;

for a given node, evaluating other nodes connected to the given node to select nodes to propagate a search expression associated with the query based on incentivebased criteria and the one or more respective remote Bloom filters, the incentive-based criteria comprising one or more of a connection bandwidth and a reliability;

selecting a subset of the peer-to-peer connections as a function of the query Bloom-filter and the respective remote Bloom filters associated with the peer-to-peer connections; and

sending the data query to the subset of the connections.

- 17. (Previously Presented) The computer-readable storage medium of claim 16, wherein the steps further include forming a local Bloom-filter based on data accessible via a local data storage of the processor.
- 18. (Previously Presented) The computer-readable storage medium of claim 16, wherein the steps further include sending a Bloom-filter to a selected peer-to-peer connection of the one or more peer-to-peer connections indicating data accessible via the processor.
- 19. (Previously Presented) The computer-readable storage medium of claim 18, wherein the Bloom filter is formed as a logical OR of the remote Bloom filters of the processor except for the remote Bloom filter associated with the selected peer-to-peer connection.

(Previously Presented) The computer-readable storage medium of claim
 wherein the peer-to-peer connections utilize a Gnutella protocol.

## 21.-23. (Cancelled)

## 24. (Currently Amended) A system comprising:

a network interface to connect to one or more nodes of a peer-to-peer network based on an incentive-based criteria, the nodes storing remote Bloom-filters associated with respective peer-to-peer data connections, and the Bloom-filters indicating data accessible via the respective peer-to-peer data connections; and

at least one central processing unit a processor adapted to:

form a query for locating one or more data objects stored on the network nodes:

for a given node of the plurality of nodes, evaluate other nodes of the plurality of nodes that connected to the given node based on the Bloom-filters and the incentive-based criteria to select one or more of the other nodes to propagate the search expression, the incentive-based criteria comprising one or more of a connection bandwidth and a reliability; and

cause the search expression to be propagated to the selected nodes.

 (Original) The data processing arrangement of claim 24, wherein the peer-to-peer data connections utilize a Gnutella protocol.

26.-27. (Cancelled)