

Modular Libraries for Surgical Navigation

Stephen Thompson
Wellcome/EPSRC Centre for Interventional and Surgical Sciences, UCL

Presented at Open-Source Software for Surgical Technologies
June 26th 2023, London UK

Aim 1: High Quality, Useful Libraries

 Implement core functions for image guided surgery to support our research.

Aim 1: Platform Tools Covering 6 Domains

Imaging

Segmentation / Medical Image Computing

Hardware Interfaces

Registration

Visualisation

User Interface

Aim 1b: High Quality, Useful Libraries

Allow code to be used as is in production applications.

Aim 2: Sustainability / Maintainability

 Can be maintained (bug fixes / new features / update dependencies) by users (PhDs and Post Docs)

Design Choices

- Choice of Python Language
- Small modules that do a single task
- Infrastructure for managing modular code
 - Python package installer pip

Background, SmartLiver and NifTK

 Augmented reality for surgery.

Historical Example – SmartLiver built with NifTK

SmartLiver Application. Closed source, IP protected, Quality Controlled. Approx 3.7 thousand lines of code.

NiFTK Platform. Opensource, Tested. Approx. 230 thousand lines of code (C++)

- C++
- Based on MITK
- Uses cmake for modules and dependencies

- Python
- Uses pip for modules and dependencies

Case Study – SmartLiver

- Augmented reality in keyhole liver surgery.
- In use, developed under ISO-13485 Quality Management System

Case Studies – SnappySonic

- Public engagement demo. Deployed in 2 weeks.
- https://github.com/scikit-surgery/snappysonic
- https://youtu.be/BI4qyg9NEOk

Case Studies Basic Augmented Reality Demonstration

- Teaching software for AR in surgery.
- Highly extensible to test new user interfaces.
- Can be used anywhere with ArUco:
 - https://youtu.be/jWVsO4nkcZl
 - https://github.com/scikit-surgery/scikitsurgerybard
- Plug and play NDI tracker to use in theatre.

- OpenSource
- Cross platform
- Tested and documented
- Install with pip
- Find us on github
- https://github.com/SciKit-Surgery
- SciKit-Surgery Tutorial 00
- SciKit-Surgery Tutorial 01

Thank you to the developers,

Miguel Xochicale

Asta Olafsdottir

Janis Börsig

Bongjin Koo

Matt Clarkson

Yagmur Idil Ozdemir

Tom Doel

Mian Ahmad

Thomas Dowrick

Raj Kundu

Athena Reissis

Nina Montana Brown

Kim Kahl

Takeaways and Questions

https://link.springer.com/content/pdf/10.1007/s11548-020-02180-5.pdf

1) pip install scikit-surgeryvtk : augmented reality with VTK models

2) pip install scikit-surgerynditracker: interface to nditrackers

