

Exercise 9A

Question 15:

We have h = 4 and let assumed mean be A = 26. We have the table given below:

Marks	Frequency	Mid value	$u_i = \left(\frac{x_i - A}{h}\right)$	$(f_i \times u_i)$
	fi	×i		
4-8	2	6	-5	-10
8 - 12	12	10	-4	-48
12 - 16	15	14	-3	-45
16 - 20	25	18	-2	-50
20 - 24	18	22	-1	-18
24 - 28	12	26 = A	0	0
28 - 32	13	30	1	13
32 - 36	3	34	2	6
	Σ f _i = 100			$\Sigma(f_i \times u_i) = -152$

A = 26, h = 4,
$$\sum f_i = 100$$
 and $\sum (f_i \times u_i) = -152$

$$\begin{split} \overline{x} &= A + \left[h \times \frac{\sum \left(f_i \times u_i \right)}{\sum f_i} \right] \\ &= 26 + \left[4 \times \frac{-152}{100} \right] \\ &= 26 - \frac{152}{25} = (26 - 6.08) = 19.92 \end{split}$$

Hence the mean of given frequency distribution is 19.92.

Question 16:

We have h=30 and let A=75 be the assumed mean, we have the table given below:

Marks	Frequency	Mid value	$u_i = \left(\frac{x_i - A}{h}\right)$	$(f_i \times u_i)$
	fi	×i		
0-30	12	14	-2	-24
30 - 60	21	45	-1	-21
60 - 90	34	75 = A	0	0
90 - 120	52	105	1	52
120 - 150	20	135	2	40
150 - 180	11	165	3	33
	Σ f _i = 150			$\Sigma (f_i \times u_i) = 80$

Thus, A = 75, h = 30,
$$\sum f_i = 150$$
 and $\sum (f_i \times u_i) = 80$

Mean,
$$\overline{x} = A + \left[h \times \frac{\sum (f_i \times u_i)}{\sum f_i} \right]$$

= 75 + $\left(30 \times \frac{80}{150} \right)$
= 75 + 16 = 91

Hence, the mean of the given frequency distribution is 91.

********* END ********