Linear Algebra and Analytic Geometry

Andrew Andreas

August 1, 2024

1 Introduction

Please report any errors to andrew.andreas0@gmail.com

2 Linear Algebra

2.1 Groups

A group $G = (\mathcal{G}, \otimes)$ is a collection of a set, \mathcal{G} , and an operation $\otimes : \mathcal{G} \times \mathcal{G} \to \mathcal{G}$ where the following:

- 1. Closure of \mathcal{G} under $\otimes : \forall x, y \in \mathcal{G} : x \otimes y \in \mathcal{G}$
- 2. Associativity: $\forall x, y, z \in \mathcal{G} : (x \otimes y) \otimes z = x \otimes (y \otimes z)$
- 3. Neutral Element: $\forall x \in \mathcal{G}, \exists e \in \mathcal{G} : x \otimes e = x \text{ and } e \otimes x = x$
- 4. Inverse Element: $\forall x \in \mathcal{G}, \exists \eta \in \mathcal{G} : x \otimes \eta = e \text{ and } \eta \otimes x = e$

where e is the neutral element and the inverse element is defined with respect to the operation \otimes .

If the group is also *commutative* then the group is an **Abelian Group**. Commutativity is a property which states that $\forall x, y \in \mathcal{G}$:

$$x \otimes y = y \otimes x$$

2.2 Vector Spaces

Groups require that the operation is defined for elements within the set \mathcal{G} . Vector spaces extend the idea of groups by including an additional operation of scalar multiplication.

A real-valued vector space $V = (\mathcal{V}, +, \cdot)$ is a set \mathcal{V} with two operations

$$+: \mathcal{V} \times \mathcal{V} \to \mathcal{V}$$

 $\cdot: \mathbb{R} \times \mathcal{V} \to \mathcal{V}$

where

- 1. $(\mathcal{V}, +)$ is an Abelian group
- 2. Distributivity:
 - $\forall \lambda \in \mathbb{R}, \mathbf{x}, \mathbf{y} \in \mathcal{V} : \lambda(\mathbf{x} + \mathbf{y}) = \lambda \mathbf{x} + \lambda \mathbf{y}$
 - $\forall \psi, \phi \in \mathbb{R}, \mathbf{x} \in \mathcal{V} : (\psi + \phi) \cdot \mathbf{x} = \psi \mathbf{x} + \phi \mathbf{x}$
- 3. Associativity w.r.t. Outer Operation: $\forall \psi, \phi \in \mathbb{R}, \mathbf{x} \in \mathcal{V} : \psi \cdot (\phi \cdot \mathbf{x}) = (\psi \cdot \phi) \cdot \mathbf{x}$
- 4. Neutral Element w.r.t. Outer Operation: $\forall \mathbf{x} \in \mathcal{V} : 1 \cdot \mathbf{x} = \mathbf{x}$

The elements of $\mathbf{x} \in V$ are *vectors*, the neutral element of of $(\mathcal{V}, +)$ is the zero vector $\mathbf{0}$ and the inner operation is called *vector addition*

The elements $\lambda \in \mathbb{R}$ are called scalars and the outer operation is a multiplication by scalars

These operations are linear operations that preserve the structure of the elements of \mathcal{V} . In other words, vector addition of two vectors and scalar multiplication are operations which yield another vector.

2.3 Vector Subspaces

Let $V = (\mathcal{V}, +, \cdot)$ be a vector space and $\mathcal{U} \subseteq \mathcal{V}, \mathcal{U} \neq 0$. Then $U = (\mathcal{U}, +, \cdot)$ is a vector subspace of V if U is a subspace with the vector space operations + and \cdot restricted to $\mathcal{U} \times \mathcal{U}$ and $\mathbb{R} \times \mathcal{U}$

Proving whether a subspace is a valid subspace we need to show the subspace is non-empty and that there is closure with respect to the inner and outer operations.

 $\mathcal{U} \neq 0$ means that the set is non-empty and must at least contain the zero element $\mathbf{0}$, though this is a trivial subspace.

2.4 Linear Independence

Given a vector space V and a finite number of vectors $\{\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_n}\}$ we argue that we can express any vector $\mathbf{v} \in V$ as a linear combination of the vectors $\{\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_n}\}$

$$\mathbf{v} = \sum_{i=1}^{n} \lambda_i \mathbf{x_i} \in V$$

with $\lambda_i, i = 1, ..., n \in \mathbb{R}$

For a vector space V and the finite set of vectors $\{\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_n}\}$, if we can non-trivially create a linear combination of these vectors such that

$$\sum_{i=1}^n \lambda_i \mathbf{x_i} = \mathbf{0}$$

where $\lambda_i \neq 0$ then the set of vectors $\{\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_n}\}$ are said to be **linearly dependent**. If only the trivial solution exists such that $\lambda_1 = ...\lambda_n = 0$ then the vectors are said to be **linearly independent**.

If we can express any single $\mathbf{x_i}$ as a linear combination of the other vectors, then the vectors are linearly dependent

A practical way to check if a set of vectors is linearly dependent is to write the vectors as columns of a matrix and use *Gaussian Elimination* to reduce the matrix to *row-echelon form*. If there are any non-pivot columns, then this indicates that the set of vectors are linearly dependent and that the vectors at the non-pivot positions can be expressed as a linear combination of the pivot columns to their left.

For a vector space V with k linearly independent vectors $\mathbf{b_1},...,\mathbf{b_k}$ and m linear combinations

$$\mathbf{x_1} = \sum_{i=1}^k \lambda_{i1} \mathbf{b_i}$$
 $\mathbf{x_2} = \sum_{i=1}^k \lambda_{i2} \mathbf{b_i}$
 \vdots
 $\mathbf{x_m} = \sum_{i=1}^k \lambda_{im} \mathbf{b_i}$

Then for any $\mathbf{x_j}$ we can write this as

$$\mathbf{x_j} = \mathbf{B} \boldsymbol{\lambda}_j, \qquad \boldsymbol{\lambda}_j = \begin{bmatrix} \lambda_{1j} \\ \lambda_{2j} \\ \vdots \\ \lambda_{kj} \end{bmatrix} \qquad j = 1, ..., m$$

If we want to test whether the vectors $\{x_1,...,x_m\}$ are linearly independent, we can check the definition

$$\sum_{j=1}^{m} \phi_j \mathbf{x}_j = \sum_{j=1}^{m} \phi_j \mathbf{B} \lambda_j$$
$$= \mathbf{B} \sum_{j=1}^{m} \phi_j \lambda_j$$

Which means that $\{\mathbf{x_1},...,\mathbf{x_m}\}$ are linearly dependent if and only if $\{\lambda_1,...,\lambda_m\}$ are linearly dependent, which will be true if m > k

2.5 Basis and Rank

2.5.1 Basis

Definition. Generating Set Given a vector space $V = (\mathcal{V}, +, \cdot)$ and a set of vectors $\mathcal{A} = \{\mathbf{x_1}, ..., \mathbf{x_k}\} \subseteq \mathcal{V}$. If every vector $\mathbf{v} \in \mathcal{V}$ can be expressed as a linear combination of $\{\mathbf{x_1}, ..., \mathbf{x_k}\}$, then \mathcal{A} is a generating set of V

Definition. Span The set of all linear combinations of $\mathcal{A} = \{\mathbf{x_1}, ..., \mathbf{x_k}\}$ is called the span of \mathcal{A} . If \mathcal{A} spans V then we say $V = \text{span}[\mathcal{A}]$.

Definition. Basis A generating set \mathcal{A} is called minimal if there exists no smaller set $\tilde{\mathcal{A}} \subseteq \mathcal{A} \subseteq \mathcal{V}$ that spans V. Every linearly independent, minimal generating set of V is called a *basis*, \mathcal{B} , of V

Every vector space V has a basis \mathcal{B} but this basis is not unique - a vector space can have different basis. All basis of a finite dimensional vector space V have the same dimension which is given by the number of basis vectors, $\dim(V)$. Each basis vector can be thought of as an independent direction and so $\dim(V)$ can be thought of as the number of independent directions in this vector space.

Consider a vector space V with spanning vectors $\{\mathbf{x_1}, ..., \mathbf{x_m}\}$, which is the set of all linear combination of the basis vectors $\mathcal{B} = \{\mathbf{b_1}, ..., \mathbf{b_k}\}$ of V. Since m >> k we know that the span is not linearly independent and is not a basis of V. To determine a basis from a set of spanning vectors,

- \bullet Take the spanning vectors of V and write them as the columns of a matrix A
- Determine the row-echelon form of A
- \bullet The spanning vectors which are associated with the pivot columns are a basis of V

2.5.2 Rank

The number of linearly independent columns of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is equal to the number of linearly independent rows of \mathbf{A} and is called the \mathbf{rank} , $\mathrm{rk}(\mathbf{A})$

Some properties of the rank of a matrix are given below:

- $\operatorname{rk}(\mathbf{A}) = \operatorname{rk}(\mathbf{A}^{\mathbf{T}})$
- The columns of **A** span a subspace $U \subseteq \mathbb{R}^m$ with $\dim(U) = \operatorname{rk}(\mathbf{A})$
- The rows of **A** form a subspace $W \subseteq \mathbb{R}^n$ with $\dim(W) = \operatorname{rk}(\mathbf{A}^T)$
- For all square matrices $\mathbf{A} \in \mathbb{R}^{n \times n}$, \mathbf{A} is invertible / regular / non-singular if $\mathrm{rk}(\mathbf{A}) = n$
- For all non-square matrices $\mathbf{C} \in \mathbb{R}^{m \times n}$ and all $\mathbf{b} \in \mathbb{R}^m$, then the linear equation $\mathbf{C}\mathbf{x} = \mathbf{b}$ can only be solved if $\mathrm{rk}(\mathbf{C}) = \mathrm{rk}(\mathbf{C}|\mathbf{b})$ where $\mathbf{C}|\mathbf{b}$ denotes the augmented matrix. This means that \mathbf{b} is in the span of \mathbf{C} , or equivalently is in the *column space* of \mathbf{C} so that \mathbf{b} can be represented as a linear combination of the columns of \mathbf{C}
- A matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is said to have full rank if the it has maximal rank for a matrix of its dimensions, i.e., $\mathrm{rk}(\mathbf{A}) = \min(m, n)$

2.6 Linear Mappings

Definition. Linear Mapping For vector spaces V, W, a mapping is called a *linear mapping (or linear transformation / vector homomorphism)* if

$$\forall \mathbf{x}, \mathbf{y} \in V, \forall \phi, \psi \in \mathbb{R} : \mathbf{\Phi}(\phi \mathbf{x} + \psi \mathbf{y}) = \phi \mathbf{\Phi}(\mathbf{x}) + \psi \mathbf{\Phi}(\mathbf{y})$$

Vector addition and scalar multiplication preserved the structure of the elements of V of V. Linear maps preserve the structure of the vector space if their application also yields vectors.

Definition. Injective / Surjective / Bijective. A mapping $\Phi : \mathcal{V} \to \mathcal{W}$, where \mathcal{V}, \mathcal{W} are arbitrary sets. Then Φ is called

- Injective $\forall \mathbf{x}, \mathbf{y} \in \mathcal{V} : \Phi(\mathbf{x}) = \Phi(\mathbf{y}) \Rightarrow \mathbf{x} = \mathbf{y}$
- Surjective $\Phi(\mathcal{V}) = \mathcal{W}$
- Bijective If it is both injective and surjective

A surjective mapping means that every element of \mathcal{W} can be reached from \mathcal{V} using the linear map Φ . An injective mapping means that Φ is a one-to-one mapping - every element of \mathcal{V} is mapped to a unique element of \mathcal{W} . A bijective mapping has an inverse mapping Ψ such that

$$\Psi \circ \Phi(\mathbf{x}) = \mathbf{x}$$

Further cases of special linear mappings are:

- Isomorphism (linear and bijective) $\Phi: V \to W$
- Endomorphism (linear) $\Phi: V \to V$
- Automorphism (linear and bijective) $\Phi: V \to V$
- Identity Automorphism $id_V : V \to V, \mathbf{x} \leftrightarrow \mathbf{x}$

Finite-dimensional vector spaces V and W are isomorphic if and only if $\dim(V) = \dim(W)$

This has consequence that matrices of dimension $\mathbb{R}^{m \times n}$ and vectors of dimension \mathbb{R}^{mn} the same, since there exists a linear bijective mapping from one to the other.

For vector spaces V, W, X

• The linear mappings

$$\Phi: V \to W$$

$$\Psi: W \to X$$

the mapping $\Phi \circ \Psi : V \to X$ is also linear

- If $\Phi: V \to W$ is an isomorphism, then $\Phi^{-1}: W \to V$ is also an isomorphism
- If $\Phi: V \to W, \Psi: V \to W$ are linear, then $\Psi + \Phi$ and $\lambda \Psi, \lambda \in \mathbb{R}$ are also linear

2.6.1 Matrix Representations of Linear Mappings

For a vector space $V, B = (\mathbf{b_1}, ..., \mathbf{b_n})$ is an ordered basis of V and $\forall \mathbf{x} \in V$ we obtain a unique linear combination

$$\mathbf{x} = \sum_{i=1}^{n} \alpha_i \mathbf{b}_i$$

where α is the coordinate vector with respect to the basis B. Thus we see that a basis defines a coordinate system since the same vector \mathbf{x} can be represented by an equally valid alternate basis, which would necessarily have an alternate coordinate vector \mathbf{v}

Definition. Transformation Matrix For a vector space V, W with corresponding ordered basis $B = (\mathbf{b_1}, ..., \mathbf{b_n}), C = (\mathbf{c_1}, ..., \mathbf{c_m})$, the linear mapping $\Phi : V \to W$ applied to each $\mathbf{b_j}, j = 1, ..., n$ gives the unique representation of $\Phi(\mathbf{b_j})$ with respect to C

$$\mathbf{\Phi}(\mathbf{b}_j) = \sum_{i=1}^m \alpha_{ij} \mathbf{c}_i$$

The $m \times n$ -matrix \mathbf{A}_{Φ} whose elements are given by

$$\mathbf{A}_{\Phi}(ij) = \alpha_{ij}$$

is the transformation matrix for the linear mapping Φ .

2.6.2 Change of Basis

For a linear mapping $\Phi: V \to W$, ordered basis

$$B = (\mathbf{b_1}, ..., \mathbf{b_n}), \qquad \tilde{B} = (\mathbf{\tilde{b}_1}, ..., \mathbf{\tilde{b}_n})$$

of V and

$$C = (\mathbf{c_1}, ..., \mathbf{c_m}), \qquad \tilde{C} = (\mathbf{\tilde{c}_1}, ..., \mathbf{\tilde{c}_m})$$

of W, and transformation matrix $\mathbf{A}_{\Phi} \in \mathbb{R}^{m \times n}$ of Φ with respect to B and C, then the corresponding transformation matrix $\tilde{\mathbf{A}}_{\Phi} \in \mathbb{R}^{m \times n}$ with respect to the bases \tilde{B} and \tilde{C} is given as

$$\tilde{\mathbf{A}}_{\Phi} = \mathbf{T}^{-1}\mathbf{A}_{\Phi}\mathbf{S}$$

- $\mathbf{S} \in \mathbb{R}^{n \times n}$ is the id_V transformation matrix that maps the coordinates with respect to \tilde{B} onto coordinates with respect to B
- $\mathbf{T} \in \mathbb{R}^{m \times m}$ is the id_W transformation matrix that maps the coordinates with respect to \tilde{C} onto coordinates with respect to C

Proof The basis vectors $\tilde{\mathbf{b}}_j$ and $\tilde{\mathbf{c}}_j$ can be written as linear combinations of the basis B and C

$$\tilde{\mathbf{b}}_j = \sum_{i=1}^n s_{ij} \mathbf{b}_i$$

and

$$\tilde{\mathbf{c}}_k = \sum_{l=1}^m t_{lk} \mathbf{c}_l$$

We can also use the linear mapping Φ as applied to $\tilde{\mathbf{b}}_j$ as a linear combination of the basis \tilde{C}

$$\Phi(\tilde{\mathbf{b}}_j) = \sum_{k=1}^m \tilde{a}_{kj} \tilde{\mathbf{c}}_k$$

$$= \sum_{k=1}^m \tilde{a}_{kj} \sum_{l=1}^m t_{lk} \mathbf{c}_l$$

$$= \sum_{l=1}^m \left(\sum_{k=1}^m t_{lk} \tilde{a}_{kj} \right) \mathbf{c}_l$$

and equivalently we can write

$$\Phi(\tilde{\mathbf{b}}_j) = \Phi\left(\sum_{i=1}^n s_{ij} \mathbf{b}_i\right)$$

$$= \sum_{i=1}^n s_{ij} \Phi(\mathbf{b}_j)$$

$$= \sum_{i=1}^n s_{ij} \sum_{l=1}^m a_{li} \mathbf{c}_l$$

$$= \sum_{l=1}^m \left(\sum_{i=1}^n a_{li} s_{ij}\right) \mathbf{c}_l$$

if we equate the two terms

$$\sum_{k=1}^{m} t_{lk} \tilde{a}_{kj} = \sum_{i=1}^{n} a_{li} s_{ij}$$

writing this in matrix form

$$T\tilde{A}_{\Phi} = A_{\Phi}S$$

we see the result follows such that

$$\mathbf{\tilde{A}_{\Phi}} = \mathbf{T^{-1}A_{\Phi}S}$$

Definition. Equivalence Two matrices $\mathbf{A}, \tilde{\mathbf{A}} \in \mathbb{R}^{m \times n}$ are said to be equivalent if there exists regular matrices $\mathbf{S} \in \mathbb{R}^{n \times n}$ and $\mathbf{T} \in \mathbb{R}^{m \times m}$ such that

$$\tilde{\mathbf{A}} = \mathbf{T^{-1}AS}$$

Definition. Similarity Two matrices $\mathbf{A}, \tilde{\mathbf{A}} \in \mathbb{R}^{n \times n}$ are said to be similar if there exists a regular matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$ such that

$$\mathbf{\tilde{A}} = \mathbf{S^{-1}AS}$$

Similar matrices are always equivalent though the converse is not true.

2.7 Image and Kernel

Definition. Kernel / Null Space

$$\ker(\Phi) := \Phi^{-1}(\mathbf{0}_W) = \{ \mathbf{v} \in V : \Phi(\mathbf{v}) = \mathbf{0}_W \}$$

Definition. Image / Range

$$\operatorname{Im}(\Phi) := \Phi(V) = \{ \mathbf{w} \in W \mid \exists \mathbf{v} \in V : \Phi(\mathbf{v}) = \mathbf{w} \}$$

With respect to the linear map Φ V is the domain and W is the codomain.

The *kernel* is the set of vectors \mathbf{v} in the domain that Φ maps to the neutral element $\mathbf{0}_W$ (or equivalently the zero vector). The *image* is the set of vectors in $\mathbf{w} \in W$ that can be reached by Φ from any vector in V.

The image is a subspace of W and the null space are vector is a subspace of V, meaning that they are both non-empty.

Consider a linear mapping $\Phi : \mathbb{R}^n \to \mathbb{R}^m$ and its associated matrix $\mathbf{A}^{m \times n}$. The following statements are true

- $\operatorname{Im}(\Phi) = {\mathbf{A}\mathbf{x} : \mathbf{x} \in \mathbb{R}^n} = \operatorname{span}[\mathbf{a}_1, ..., \mathbf{a}_n]$
- The image is the span of the columns / the *column space* of **A** and is therefore a subspace of \mathbb{R}^m
- $rk(\mathbf{A}) = dim(Im(\mathbf{A}))$
- The kernel / null space is the general solution to the homogeneous system of linear equations $\mathbf{A}\mathbf{x} = \mathbf{0}$ capturing all possible linear combinations of the elements of \mathbb{R}^n
- The kernel is a subspace of \mathbb{R}^n

Definition. The Rank-Nullity Theorem For vector spaces V,W and a linear mapping $\Phi:V\to W$ it holds that

$$\dim(\operatorname{Im}(\Phi)) + \dim(\operatorname{rk}(\Phi)) = \dim(V)$$

Direct consequence of the rank-nullity theorem is that

• If $\dim(V) > \dim(\operatorname{Im}(\Phi))$ then the kernel space is non-trivial, i.e., does not contain just the zero vector

3 Analytic Geometry

3.1 Norms

Definition. Norm A norm on a vector space V is a function

$$\begin{aligned} ||\cdot||:V\to\mathbb{R} \\ \mathbf{x}\to||\mathbf{x}|| \end{aligned}$$

which assigns each vector its length $||\mathbf{x}|| \in \mathbb{R}$ such that for all $\lambda \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in V$ the following statements hold:

- Absolutely Homogeneous $||\lambda \mathbf{x}|| = |\lambda|||\mathbf{x}||$
- Triangle Inequality $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$
- Positive Definite $||\mathbf{x}|| \ge 0$ and $||\mathbf{x}|| = 0 \iff \mathbf{x} = \mathbf{0}$

3.2 Inner Products

Definition. Inner Product Let V be a vector space and $\Omega: V \times V \to \mathbb{R}$ be a *symmetric*, positive definite bilinear mapping, then Ω is an inner product.

Definition. Bilinear Mapping A bilinear mapping Ω is a mapping of two arguments that is linear in both arguments such that for a vector space V and vectors $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V, \lambda, \phi \in \mathbb{R}$

$$\Omega(\lambda \mathbf{x} + \phi \mathbf{y}, \mathbf{z}) = \lambda \Omega(\mathbf{x}\mathbf{z}) + \phi \Omega(\mathbf{y}\mathbf{z})$$

$$\Omega(\mathbf{x}, \phi \mathbf{y} + \lambda \mathbf{z}) = \phi \Omega(\mathbf{x}\mathbf{z}) + \lambda \Omega(\mathbf{x}\mathbf{y})$$

Definition. Symmetric Ω is called symmetric if the ordering of the arguments does not matter, such that $\Omega(\mathbf{x}, \mathbf{y}) = \Omega(\mathbf{y}, \mathbf{x}) \forall \mathbf{x}, \mathbf{y} \in V$

Definition. Positive Definite Ω is called positive definite if

$$\forall \mathbf{x} \in V \setminus \{\mathbf{0}\} : \Omega(\mathbf{x}, \mathbf{x}) > 0, \quad \Omega(\mathbf{0}, \mathbf{0}) = \mathbf{0}$$

A vector space V and an inner product $\langle \cdot, \cdot \rangle$ define an inner product space $(V, \langle \cdot, \cdot \rangle)$

3.2.1 Symmetric, Positive Definite Matrices

Definition. Symmetric Positive Definite Matrix A symmetric matrix $\mathbf{A} \in \mathbb{R}^n$ is said to be positive definite if

$$\forall \ \mathbf{x} \in V \backslash \{\mathbf{0}\} : \mathbf{x}^{\mathbf{T}} \mathbf{A} \mathbf{x} > 0$$

The weaker requirement of $\mathbf{x}^{T}\mathbf{A}\mathbf{x} \geq 0$ results in a symmetric positive semi-definite matrix

Such matrices are defined via the *inner product*. Consider an inner product space $(V, \langle \cdot, \cdot \rangle)$ with an ordered basis $B = (\mathbf{b_1}, ..., \mathbf{b_n})$ and the arbitrary vectors $\mathbf{x}, \mathbf{y} \in V$

$$\langle \mathbf{x}, \mathbf{y} \rangle = \left\langle \sum_{i=1}^{n} \lambda_{i} \mathbf{b}_{i}, \sum_{j=1}^{n} \psi_{j} \mathbf{b}_{j} \right\rangle$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \langle \mathbf{b}_{i}, \mathbf{b}_{j} \rangle \psi_{j}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} A_{ij} \psi_{j}$$

$$= \hat{\mathbf{x}}^{T} \mathbf{A} \hat{\mathbf{y}}$$

where $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ are the coordinate vectors of \mathbf{x} and \mathbf{y} with respect to the basis B

If a matrix $\mathbf{A} \in \mathbb{R}^n$ is symmetric and positive definite then the following properties hold:

- The null space of of A consists of just the 0 vector since $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0 \Rightarrow \mathbf{A} \mathbf{x} \neq 0$ 0 if $\mathbf{x} \neq 0$
- The diagonal elements of \mathbf{A} , A_{ii} , are positive since $A_{ii} = \mathbf{e}_i^T \mathbf{A} \mathbf{e}_i$

3.3 Lengths and Distances

Any inner product induces a norm

$$||\mathbf{x}|| := \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$$

however the converse statement is not true.

For any inner product space $(V, \langle \cdot, \cdot \rangle)$ the induced norm $||\cdot||$ satisfies the Cauchy-Schwarz inequality

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \le ||\mathbf{x}|| ||\mathbf{y}||$$

Definition. Distance For an inner product space $(V, \langle \cdot, \cdot \rangle), d(\mathbf{x}, \mathbf{y})$ is called the distance between \mathbf{x} and \mathbf{y} for $\mathbf{x}, \mathbf{y} \in V$

$$d(\mathbf{x}, \mathbf{y}) := ||\mathbf{x} - \mathbf{y}|| = \sqrt{\langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle}$$

Definition. Metric The mapping

$$d: V \times V \to \mathbb{R}$$
$$(\mathbf{x}, \mathbf{y}) \mapsto d(\mathbf{x}, \mathbf{y})$$

is called a *metric* and satisfies the the following

- *d* is positive definite
- \bullet d is symmetric
- Triangle inequality: $d(\mathbf{x}, \mathbf{z}) > d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z}) \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in V$

3.4 Angles and Orthogonality

Inner products also allow the geometry of a vector space by defining the angle ω between two vectors. If we consider the *Cauchy-Schwarz inequality* again we create two inequalities which we can combine into one

$$\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{||\mathbf{x}||||\mathbf{y}||} \le 1 \text{ and } -1 \le \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{||\mathbf{x}||||\mathbf{y}||}$$

so that

$$-1 \le \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{||\mathbf{x}||||\mathbf{y}||} \le 1$$

The range of this function is [-1,1] which is equivalent to the range of the cosine function so that between $[0,\pi]$ for some ω

$$\cos \omega = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{||\mathbf{x}||||\mathbf{y}||}$$

the ω is the angle between the two vectors ${\bf x}$ and ${\bf y}$ and allows us to characterize the concept of orthogonality

Definition. Orthogonality Two vectors are said to be orthogonal if and only if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$

Definition. Orthogonal Matrix A square matrix $\mathbf{A} \in \mathbb{R}^n$ is orthogonal if and only if its columns and rows are *orthonormal* such that

$$\mathbf{A}\mathbf{A}^{\mathbf{T}} = \mathbf{I} = \mathbf{A}^{\mathbf{T}}\mathbf{A} \implies \mathbf{A}^{-1} = \mathbf{A}^{\mathbf{T}}$$

If the columns are *orthonormal* it means that they are orthogonal and are unit vectors such that for column vectors $\{\mathbf{a}_1,...,\mathbf{a}_n\}$

$$\mathbf{a}_i^T \mathbf{a}_j = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$$

Orthogonal matrices provide the benefit that their linear transformations preserve the length of a vector and also preserved the angle between two vectors. Consider the euclidean norm of the vector $\mathbf{A}\mathbf{x}$

$$||\mathbf{A}\mathbf{x}||^2 = (\mathbf{A}\mathbf{x})^T (\mathbf{A}\mathbf{x})$$

$$= \mathbf{x}^T \mathbf{A}^T \mathbf{A}\mathbf{x}$$

$$= \mathbf{x}^T \mathbf{x}$$

$$= ||\mathbf{x}^T \mathbf{x}||^2$$

and for two vectors $\mathbf{A}\mathbf{x}$ and $\mathbf{A}\mathbf{y}$

$$\cos \omega = \frac{(\mathbf{A}\mathbf{x})^{T}(\mathbf{A}\mathbf{y})}{||\mathbf{A}\mathbf{x}||||\mathbf{A}\mathbf{y}||}$$

$$= \frac{\mathbf{x}^{T}\mathbf{A}^{T}\mathbf{A}\mathbf{y}}{\sqrt{\mathbf{x}^{T}\mathbf{A}^{T}\mathbf{A}\mathbf{x}\mathbf{y}^{T}\mathbf{A}^{T}\mathbf{A}\mathbf{y}}}$$

$$= \frac{\mathbf{x}^{T}\mathbf{y}}{||\mathbf{x}||||\mathbf{y}||}$$

3.5 Orthonormal Basis

Definition. Orthonormal Basis For an *n*-dimensional vector space V and basis $B = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$ of V, then if

$$\langle \mathbf{b}_i, \mathbf{b}_j \rangle = 0$$
, for $i \neq j$
 $\langle \mathbf{b}_i, \mathbf{b}_i \rangle = 1$

for all i, j = 1, ..., n, then B is an orthonormal basis. If the B is only pairwise orthogonal and $\langle \mathbf{b}_i, \mathbf{b}_i \rangle \neq 1$, then the B is an orthogonal basis

3.6 Orthogonal Complement

Consider an D-dimensional subspace V and an M-dimensional subspace $U \subseteq V$, then the *orthogonal complement* U^{\perp} is a (D-M)-dimensional subspace of V which contains all vectors in V that are orthogonal to the vectors in U.

The intersection of U and U^{\perp} is the zero vector: $U \cap U^{\perp} = \{\mathbf{0}\}$. This means that the inner product space $H = (K, \langle \cdot, \cdot \rangle)$ has the same span as $V \Rightarrow \operatorname{span}[H] = \operatorname{span}[V]$, where $K = (\kappa, +, \cdot)$ is the vector space and $\kappa = \{\mathbf{x} : \mathbf{x} \in U \cap U^{\perp}\}$.

As a consequence, every vector $\mathbf{x} \in V$ can be written as a linear combination of the basis vectors of $U, B_U = (\mathbf{u}_1, ..., \mathbf{u}_M)$ and $U^{\perp}, B_{U^{\perp}} = (\boldsymbol{v}_1, ..., \boldsymbol{v}_{D-M})$

$$\mathbf{x} = \sum_{i=1}^{M} \lambda_i \mathbf{u}_i + \sum_{j=1}^{D-M} \gamma_j \mathbf{v}_j, \quad \lambda_i, \gamma_j \in \mathbb{R}$$

3.7 Orthogonal Projections

Definition. Projection For a vector space V and a subspace $U \subseteq V$ then a projection, π is a linear mapping $\pi: V \to U$ if

$$\pi^2=\pi\circ\pi=\pi$$

representing this linear transformation as a matrix \mathbf{P}_{π} , the definition is equivalent to $\mathbf{P}_{\pi}^2 = \mathbf{P}_{\pi}$

3.7.1 Projection onto One-Dimensional Subspaces

Consider a line that passes through the origin which can be represented by the vector $\mathbf{b} \in \mathbb{R}^n$ which is a basis vector of the subspace U where $U \subseteq \mathbb{R}^n$. For some vector $\mathbf{x} \in \mathbf{R}^n$, if we want to project this onto the subspace U then we want our projection $\pi_U(\mathbf{x})$ to do so with minimal loss of information and this is achieved through an orthogonal projection.

To see this, consider that we would like to minimize the distance between \mathbf{x} and the point to which it is projected $\pi_U(\mathbf{x})$ which is given by

$$||\mathbf{x} - \pi_{\mathbf{U}}(\mathbf{x})||$$

From geometry we know that the point on **b** that minimizes the length of the vector $\mathbf{x} - \pi_U(\mathbf{x})$ is the point $\lambda \mathbf{b}$ such that $\mathbf{b} \perp \mathbf{x} - \lambda \mathbf{b}$

$$\langle \mathbf{b}, \mathbf{x} - \lambda \mathbf{b} \rangle = 0 \Longleftrightarrow \lambda = \frac{\langle \mathbf{b}, \mathbf{x} \rangle}{\langle \mathbf{b}, \mathbf{b} \rangle}$$

such that if the inner product is the dot product then

$$\lambda = \frac{\mathbf{b^T} \mathbf{x}}{\mathbf{b^T} \mathbf{b}}$$

Then the projection $\pi_U(\mathbf{x})$ is given by

$$\pi_U(\mathbf{x}) = \lambda \mathbf{b} = \frac{\mathbf{b}^T \mathbf{x}}{\mathbf{b}^T \mathbf{b}} \mathbf{b}$$

Since the projection can be represented as a matrix then we see the projection matrix $\pi_U(\mathbf{x}) = \mathbf{P}_{\pi}\mathbf{x}$ we immediately see that

$$\mathbf{P}\pi = \frac{\mathbf{b}\mathbf{b}^{\mathbf{T}}}{\mathbf{b}^{\mathbf{T}}\mathbf{b}}$$

The projection matrix $\mathbf{P}\pi$ projects any vector \mathbf{x} onto the line through the origin \mathbf{b}

3.7.2 Projection onto General Subspaces

For a subspace $U \subseteq \mathbb{R}^n$ with $\dim(U) = m, m \ge 1$ with basis $(\mathbf{b}_1, ..., \mathbf{b}_m)$ then any projection $\pi_U(\mathbf{x})$ is a linear combination of the basis vectors of U

$$\pi_U(\mathbf{x}) = \sum_{j=1}^m \lambda_j \mathbf{b}_j$$

$$= \mathbf{B} \lambda, \quad \mathbf{B} = [\mathbf{b}_1, ..., \mathbf{b}_m] \in \mathbb{R}^{n \times m}$$

We know then that the vector $\mathbf{x} - \mathbf{B} \boldsymbol{\lambda}$ must be pairwise orthogonal to every basis vector $(\mathbf{b}_1, ..., \mathbf{b}_m)$ such that

$$\langle \mathbf{b}_{1}, \mathbf{x} - \mathbf{B} \boldsymbol{\lambda} \rangle = 0$$
$$\langle \mathbf{b}_{2}, \mathbf{x} - \mathbf{B} \boldsymbol{\lambda} \rangle = 0$$
$$\vdots$$
$$\langle \mathbf{b}_{n}, \mathbf{x} - \mathbf{B} \boldsymbol{\lambda} \rangle = 0$$

where if we choose the dot product for the inner product we can rewrite this as

$$\mathbf{B}^{T}(\mathbf{x} - \mathbf{B}\boldsymbol{\lambda}) = \mathbf{0} \Longleftrightarrow \boldsymbol{\lambda} = (\mathbf{B}^{T}\mathbf{B})^{-1}\mathbf{B}^{T}\mathbf{x}$$

meaning that the projection matrix

$$egin{aligned} \pi_U(\mathbf{x}) = & \mathbf{B} oldsymbol{\lambda} \\ = & \mathbf{B} (\mathbf{B}^{\mathbf{T}} \mathbf{B})^{-1} \mathbf{B}^{\mathbf{T}} \mathbf{x} \\ = & (\mathbf{B}^{\mathbf{T}} \mathbf{B})^{-1} \mathbf{B} \mathbf{B}^{\mathbf{T}} \mathbf{x} \end{aligned}$$

since $\pi_U(\mathbf{x}) = \mathbf{P}\mathbf{x}$ we see that

$$\mathbf{P} = (\mathbf{B^T}\mathbf{B})^{-1}\mathbf{B}\mathbf{B^T}$$

Note that if the basis of $U, (\mathbf{b}_1, ..., \mathbf{b}_m)$ is an orthonormal basis, then $\mathbf{B}^T \mathbf{B} = I$ the projection matrix is

$$P = BB^T$$

and

$$\lambda = \mathbf{B}^T \mathbf{x}$$

3.8 Gram-Schmidt Orthogonalization

The Gram-Schmidt method allows us to construct an *n*-dimensional orthonormal basis, $(\boldsymbol{v}_1,...,\boldsymbol{v}_n)$, from any *n*-dimensional basis $(\mathbf{b}_1,...,\mathbf{b}_n)$ for a vector space $U \subseteq \mathbb{R}^n$

The method proceeds as follows

• Set
$$\mathbf{v}_1 = \mathbf{b}_1$$

•
$$v_k = \mathbf{b}_k - \pi_{\text{span}_{[v_i,...,v_{k-1}]}}(\mathbf{b}_k), \ k = 1,...,n$$

where

$$\pi_{\operatorname{span}_{[\boldsymbol{v}_i,\ldots,\boldsymbol{v}_{k-1}]}}(\mathbf{b}_k) = (\mathbf{U}_{k-1}^T\mathbf{U}_{k-1})^{-1}\mathbf{U}_{k-1}\mathbf{U}_{k-1}^T\mathbf{b}_k$$
$$= \mathbf{U}_{k-1}\mathbf{U}_{k-1}^T\mathbf{b}_k, \quad \mathbf{U}_{k-1} = \begin{bmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \cdots & \boldsymbol{v}_{k-1} \end{bmatrix} \in \mathbb{R}^{n \times (k-1)}$$

where since the k-1 basis vectors are orthonormal, then $(\mathbf{U}_{k-1}^T\mathbf{U}_{k-1})^{-1}=I$