

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina: Matemática Para Computação AP2 - 1º semestre de 2007 - Gabarito

1. (2,0 pontos) —

Verifique os intervalos onde as funções abaixo são crescentes ou decrescentes e dê os pontos de máximo, mínimo e de inflexão de cada uma delas:

(a)
$$f(x) = x^2 - 4x + 3$$

(b)
$$f(x) = x^3$$

Solução: —

(a)
$$f(x) = x^2 - 4x + 3$$
$$f'(x) = 2x - 4 = 2(x - 2)$$
$$f'(x) < 0 \text{ se } -\infty < x < 2$$
$$f'(x) > 0 \text{ se } 2 < x < +\infty$$

Como f é contínua em x=2, deduz-se do Teorema 5.1.2 que:

f é decrescente em $(-\infty, 2]$

f é crescente em $[2, \infty)$

Concavidade

$$f(x) = x^2 - 4x + 3$$

$$f'(x) = 2x - 4$$

$$f''(x) = 2$$

$$f''(x) > 0, \quad \forall x \in (-\infty, \infty)$$

Logo, a função f é côncava para cima no intervalo $(-\infty, +\infty)$ e não possui ponto de inflexão.

(b)
$$f(x) = x^3$$

$$f'(x) = 3x^2$$

$$f'(x) > 0 \quad \text{se} \quad 0 < x < +\infty$$

$$f'(x) > 0 \quad \text{se} \quad -\infty < x < 0$$

pois f é contínua em x = 0.

f é crescente em $(-\infty, 0]$ f é crescente em $[0, +\infty)$

Logo,

f é crescente em todo o eixo x.

Concavidade

$$f(x) = x^3$$

$$f'(x) = 3x^2$$

$$f''(x) = 6x$$

$$f''(x) > 0 \text{ se } x > 0$$

$$f''(x) < 0 \text{ se } x < 0$$

Logo, a função f é côncava para baixo no intervalo $(-\infty, 0)$ e côncava para cima em $(0, +\infty)$, possuindo ponto de inflexão em (0, 0).

2. (1,5 ponto) —

Calcule as seguintes antiderivadas:

(a)
$$\int \frac{1}{x^5} dt =$$

(b)
$$\int (x+x^2)dx =$$

(c)
$$\int \cos(6x)dx =$$

Solução:

(a)
$$\int \frac{1}{x^5} dx = \int x^{-5} dx = \frac{x^{-5+1}}{-5+1} + C = \frac{x^{-4}}{-4} + C = -\frac{1}{4x^4} + C$$

(b)
$$\int (x+x^2)dx =$$

$$= \int xdx + \int x^2dx$$

$$= \frac{x^2}{2} + \frac{x^3}{3} + C$$

(c)
$$\int \cos(6x)dx =$$

$$= \int \cos u \frac{du}{6}$$

$$= \frac{1}{6} \int \cos u \, du$$

$$= \frac{1}{6} \operatorname{sen} u + C$$

$$= \frac{1}{6} \operatorname{sen} (6x) + C$$

3. (1,5 ponto) –

Utilizando as propriedades básicas da integral definida, calcule:

(a)
$$\int_{1}^{4} [3f(x) - g(x)] dx =$$
 sabendo-se que $\int_{1}^{4} f(x) dx = 2$ e $\int_{1}^{4} g(x) dx = 10$

(b)
$$\int_{0}^{1} \left(5 - 3\sqrt{1 - x^2}\right) dx =$$

Solução: -

(a)
$$\int_{1}^{4} [3f(x) - g(x)] dx =$$
sabendo-se que
$$\int_{1}^{4} f(x) dx = 2 e \int_{1}^{4} g(x) dx = 10$$

$$= 3 \int_{1}^{4} f(x) dx - \int_{1}^{4} g(x) dx$$

$$= 3 \times (2) - (10) = 6 - 10 = -4$$
(b)
$$\int_{0}^{1} \left(5 - 3\sqrt{1 - x^{2}} \right) dx =$$

$$= \int_{0}^{1} 5 dx - 3 \int_{0}^{1} \sqrt{1 - x^{2}} dx$$

$$= (5x)|_{0}^{1} - 3 \cdot \left(\frac{\pi}{4}\right)$$

$$= 5 - 3 \cdot \left(\frac{\pi}{4}\right)$$

$$= \frac{20 - 3\pi}{4}$$

onde: $\int_0^1 \sqrt{1-x^2} dx =$ é a área de um quarto de círculo de raio 1, que vale $\frac14\pi(1^2)=\frac\pi4$

4. (2,0 pontos) ——

Esboce as regiões e calcule suas áreas:

- (a) Região A: região entre a curva $y = x^3 6x^2 + 8x$ e o eixo x.
- (b) Região B: região limitada pelas parábolas $y=6x-x^2$ e $y=x^2-2x$. Solução: —

(a) Região A: região entre a curva $y = x^3 - 6x^2 + 8x$ e o eixo x.

$$x^3 - 6x^2 + 8x = x(x^2 - 6x + 8) = x(x - 2)(x - 4)$$

Essa curva intercepta o eixo x em x = 0, x = 2, x = 4.

$$\int_0^2 (x^3 - 6x^2 + 8x) dx - \int_2^4 (x^3 - 6x^2 + 8x) dx =$$

$$= \left[\frac{1}{4} x^4 - 2x^3 + 4x^2 \right]_0^2 - \left[\frac{1}{4} x^4 - 2x^3 + 4x^2 \right]_2^4$$

$$= 4 + 4 = 8$$

Calculamos 2 integrais separadamente uma vez que a parte da região com $2 \le x \le 4$ fica abaixo do eixo x; uma integral em relação a y entre x=0 e x=2 e outras com respeito a -y entre x=2 e x=4.

Logo, a área da curva é dada por:

$$\int_{0}^{2} (x^{3} - 6x^{2} + 8x) dx - \int_{2}^{4} (x^{3} - 6x^{2} + 8x) dx =$$

$$\int_{0}^{2} x^{3} dx - \int_{0}^{2} 6x^{2} dx + \int_{0}^{2} 8x dx - \left[\int_{2}^{4} x^{3} - \int_{2}^{4} 6x^{2} dx + \int_{2}^{4} 8x dx \right] =$$

$$= \frac{x^{4}}{4} \Big|_{0}^{2} - 6 \frac{x^{3}}{3} \Big|_{0}^{2} + 8 \frac{x^{2}}{2} \Big|_{0}^{2} - \left(\frac{x^{4}}{4} \Big|_{2}^{4} - 6 \frac{x^{3}}{3} \Big|_{2}^{4} + 8 \frac{x^{2}}{2} \Big|_{2}^{4} \right) =$$

$$= \frac{16}{4} - 6 \times \frac{8}{3} + 8 \times \frac{4}{2} - \left(\frac{256}{4} - \frac{16}{4} - 6 \times \left(\frac{64}{3} - \frac{8}{3} \right) + 8 \times \frac{16}{2} - 8 \times \frac{4}{2} \right)$$

$$= 4 - 16 + 16 - (64 - 4 - 128 + 64 + 16 - 16)$$

$$= 4 + 4 = 8$$

(b) Região B: região limitada pelas parábolas $y = 6x - x^2$ e $y = x^2 - 2x$.

Resolvendo $6x - x^2 = x^2 - 2x$, vemos que as parábolas se interceptam quando x = 0 e x = 4, isto é, (0,0), (4,8). Completando quadrados, a primeira parábola tem a equação $y = 9 - (x - 3)^2$ que possui vértice em (3,9).

Dessa mesma forma, a segunda parábola possui a equação $y=(x-1)^2-1$ que possui vértice (1,-1).

$$\int_0^4 ((6x - x^2) - (x^2 - 2x)) dx =$$

$$= \int_0^4 (8x - 2x^2) dx$$

$$= 4x^2 - \frac{2}{3}x^3 \Big|_0^4$$

$$= 64 - \frac{128}{3}$$

$$= \frac{64}{3}$$

5. (1,5 ponto) -

Ache o volume do sólido gerado quando a região limitada por: $y=4x^2,\,x=0$ e y=16, é girada em torno do eixo y. Utilize o método dos discos integrando ao longo do eixo y. Esboce o sólido.

Solução: ——

$$V = \pi \int_0^{16} x^2 dy$$
$$= \pi \int_0^{16} \frac{y}{4} dy$$
$$= \frac{\pi}{8} y^2 \Big|_0^{16}$$
$$= \frac{\pi}{8} (256) = 32\pi$$

6. (1,5 ponto) —

Calcule os seguintes limites:

(a)
$$\lim_{x \to +\infty} \frac{3x^2 + 5x - 8}{7x^2 - 2x + 1} =$$

$$\lim_{x \to 0^+} x \ln x =$$

Solução:

(a)
$$\lim_{x \to +\infty} \frac{3x^2 + 5x - 8}{7x^2 - 2x + 1} =$$

$$= \lim_{x \to +\infty} \frac{6x + 5}{14x - 2}$$

$$= \lim_{x \to +\infty} \frac{6}{14}$$

$$= \frac{3}{7}$$
(b)
$$\lim_{x \to 0^+} x \ln x =$$

$$= \lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x}}$$

 $= \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}}$

 $=\lim_{x\to 0^+}-x=0$