Proof of Correctedness for the Sum Square Difference

Alan Sorani

May 16, 2024

Lemma 0.1. Let $n \in [6, e^{95}]$ be an integer and let p_n be the n^{th} prime number. We have

$$p_n \le n (\log n + \log \log n)$$
.

Proof. See [Ros41].

Theorem 0.2. Let $n \in [6, e^{95}]$ be an integer, let $C = n (\log n + \log \log n)$, such that $p_n \leq C$ by Theorem 0.1. The n^{th} prime number can be computed as follows.

- 1. Let $S_1 = [C] \setminus \{1\}$ be a set of candidates, and let i = 1.
- 2. Let $m = \min(S)$ be the minimum of S.
- 3. If i = n, take $p_n = m$. Otherwise, take S_{i+1} to be the set S_i minus all the multiples of m, and then increase i by 1.
- 4. Repeat steps 2-3.

Proof. We prove inductively on i that min $(S_i) = p_i$, which shows the result.

Base: We have $S_1 = [C] \setminus \{1\}$ so min $(S_1) = 2$, which is the first prime.

Step: Assume the minimum of S_k is the k^{th} prime for all k < i. Then min (S_i) is not divisible by these primes p_1, \ldots, p_{i-1} , by definition of S_i . Hence $\min(S_i) \geq p_i$. However, $p_i \in S_i$ since $p_i \in S_1$ and since at each step we only removed multiples of one of p_1, \ldots, p_{i-1} . Hence $\min(S_i) = p_i$.

References

[Ros41] Barkley Rosser. "Explicit Bounds for Some Functions of Prime Numbers". In: American Journal of Mathematics 63.1 (1941), pp. 211–232. ISSN: 00029327, 10806377. URL: http://www.jstor.org/stable/2371291 (visited on 05/16/2024).