# False discovery rate control for polygenic risk prediction

Benjamin Chu

4/21/2022 CAPE meeting (online)

# Methods for Polygenic Risk Scores (PRS)

Goal of PRS: build a model to predict complex human traits using genetic (e.g. GWAS) data.

- Clumping + thresholding (C+T) [Choi and O'Reilly, 2019]
  - 1. Remove highly correlated SNPs (before or after selection)
  - 2. Find significant SNPs passing loose p-value threshold
  - 3. Estimate  $\hat{\beta}_j$  from a univariate regression
  - 4. Predicted phenotype for sample i:  $\hat{y}_i = \sum_j x_{ij} \hat{\beta}_j$
- Penalized regression methods e.g.

$$\hat{\boldsymbol{\beta}} = \text{minimize } \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|_1$$
 (LASSO) 
$$\hat{\boldsymbol{\beta}} = \text{minimize } \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2 \text{ s.t. } \|\boldsymbol{\beta}\|_0 \le k$$
 (IHT)

where  $\lambda$  and k are sparsity inducing parameters tuned by cross validation.

 Other alternatives: Bayesian methods (BayesR [Moser et al., 2015]), T-Trees (random forest) ...etc

# Strength and (possible?) weakness of LASSO for PRS



- LASSO/elastic-net typically outperforms other methods
- The number of non-zero beta for height is 118,322
- How does this model predict in other populations?

Figure: Qian et al. 2020 (PLOS genetics), y-axis measures  $R^2$  predictive performance

# Problem: PRSs are population specific



Figure: Lasso study by Prive et al 2022 (AJHG). Prediction accuracy (partial  $r^2$ ) drops across different group.



Figure: C+T study by David Curtis 2018 (Psychiatric Genetics). PRS for schizophrenia are highly sensitive to ethnic background

## PRS are population specific (but why?)

Watch talks<sup>1</sup> by Graham Coop and Jonathan Kaplan

- Unmeasured (true) population differences
  - Due to genetic drift/selection, which may not be surveyed
  - Unmeasured environmental effects
- Estimation bias
  - Unadjusted confounders (e.g. population stratification) can produce excess false positive
  - Imprecise effect size estimation (e.g. non-additive terms, interaction, epistasis...etc)
  - Intrinsic problems with data (e.g. LD and rare alleles) that cannot be modeled well

We will develop methods to address problems related to estimation bias.

<sup>&</sup>lt;sup>1</sup>https://cehg.stanford.edu/evolgenome-seminars

#### Idea for solution

- 1. Some papers<sup>2</sup> suggest controlling the number of false discoveries will help prediction
- 2. Most PRS models include an enormous number of variants
- 3. Can prediction improve (broadly speaking) if we select a cleaner set of predictors?

Lets explore this idea with Knockoffs

<sup>&</sup>lt;sup>2</sup>For example, [Abramovich et al., 2006] and [Benjamini and Gavrilov, 2009]

#### The Goals of Statistical Knockoffs

Knockoffs are designed for two purpose:

• Instead of controlling FWER<sup>3</sup>, the knockoff procedure controls the FDR

$$FDR = E\left(\frac{\# \text{false positives}}{\# \text{ total discoveries}}\right)$$

This significantly improves power.

• Knockoff based inference tests *conditional hypotheses*. If G is a SNP or a group of SNPs, we test

$$\mathcal{H}_0 = Y \perp \!\!\!\perp X_G \mid X_{-G}$$

Conditioning on  $X_{-G}$  removes SNPs only marginally associated with the trait due to e.g. linkage disequilibrium, prioritizing causal associations

<sup>&</sup>lt;sup>3</sup>which is what Bonferroni correction does in GWAS

# Properties of Knockoffs

- The knockoff-filter wraps *any* algorithm that provides feature-importance scores and helps us decide which variables to choose.
  - In particular, it does not need valid p-values (thus we can quantify FDR of e.g. LASSO)
  - The selected variables have guaranteed FDR control.
- Knockoffs work for covariates with arbitrary correlation structure, unlike e.g. Benjamini-Hochberg

### The Knockoff procedure

- 1. For each sample  $X \in \{0,1,2\}^p$ , generate knockoffs  $\tilde{X} \in \{0,1,2\}^p$  satisfying
  - Y ⊥⊥ X̃ | X
  - $(X, \tilde{X}) \stackrel{d}{=} (X, \tilde{X})_{\text{swap}(S)} \forall S$ . E.g. If  $S = \{2\}$ , then  $(X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3) \stackrel{d}{=} (X_1, \tilde{X}_2, X_3, \tilde{X}_1, X_2, \tilde{X}_3)$
- 2. Compute feature importance statistic on concatenated matrix  $\left[m{X}\ ilde{m{X}}
  ight]$
- 3. Compute knockoff scores  $W_G = ImportanceScore(G) ImportanceScore(\tilde{G})$  for all Gs
- 4. Choose all G such that  $W_G \geq au$ , where au depends on FDR threshold q via

$$au = \min \left\{ t > 0 : rac{1 + \# \{ G : W_G \le -t \}}{\# \{ j : W_G \ge t \} \lor 1} \le q 
ight\}$$

#### Knockoffs are successful for GWAS



We previously found Knockoff-Lasso finds **more predictors** and **localizes** better than traditional LMM.

Figure: Sesia et al 2020 (Nature communications)

## How to use Knockoffs for prediction?

Recall: We want to do prediction.

After Knockoffs select a set of Gs, there are multiple ways to build a PRS model

- 1. If Gs are singleton, we can use least squares to fit low-dimensional model on selected Gs
- 2. If Gs are SNP groups,
  - Option 1: Run a second Lasso routine only allowing non-zero entries in selected Gs
  - Option 2: Run least squares fit on the non-zero entries of the selected Gs

## Method summary

Goal: we want to build a PRS model that can predict across ethnically diverse populations.

- 1. We start with PRS methods that have principled selection *and* estimation procedures, such as LASSO and IHT penalized regression
- 2. In practice, the best performing PRSs select absurdly many predictors (e.g. > 100k for height), which raises *portability* issues.
- 3. We will kill (hopefully false positives) predictors by applying the knockoff filter, which will give us a sparser set with guaranteed FDR control
- 4. This is an experimental project that uses Knockoffs in a new way. We do not have finalized results!

Does this procedure work?

# Experiment 1: Independent genotypes

• Simulate  $6000 \times 50000$  matrix  $\boldsymbol{X}$  by

$$x_{ij} \sim \mathsf{Binomial}(2, p_j), \quad p_j \sim \mathsf{Uniform}(0, 1)$$

- 5000 samples used as training data, 1000 samples for testing
- Pick  $|S_{causal}| = 100$  causal SNPs chosen uniformly,  $h^2 = 0.5$
- Simulate phenotypes (using standardized **X**):

$$y_i = \sum_{j \in \mathcal{S}_{\mathsf{causal}}} \mathsf{x}_{ij} eta_j + \epsilon_i, \quad eta_j \sim \mathsf{N}\left(0, \sqrt{rac{h^2}{2|\mathcal{S}_{\mathsf{causal}}|}}
ight), \quad \epsilon_i \sim \mathsf{N}(0, 1 - h^2).$$

Evaluate performance:

$$R^2 = 1 - \frac{\|\mathbf{y} - \mathbf{X}_{test}\hat{\boldsymbol{\beta}}\|_2^2}{\|\mathbf{y} - \overline{\mathbf{y}}\|_2^2}$$
 (For predicting in same population)   
Partial  $r^2$  (For predicting across populations)

# Experiment 1 results: Independent genotypes

|       | LASSO | LASSO-ko | IHT  | IHT-ko |
|-------|-------|----------|------|--------|
| $R^2$ | 0.42  | 0.46     | 0.45 | 0.45   |
| power | 0.68  | 0.56     | 0.55 | 0.53   |
| FDR   | 0.83  | 0.11     | 0.08 | 0.04   |

Table: Single SNP knockoff results with target FDR = 0.1, averaged over 100 runs

- $R^2$  performance: LASSO-ko  $\geq$  IHT-ko = IHT > LASSO
- Knockoffs control FDR, pay a small price in power

### Experiment 2: UK Biobank genotypes

UK Biobank:  $\sim 500,\!000$  samples, primarily British but includes numerous other ethnicities. After QC, we retain

| Population      | Sample size | Description |
|-----------------|-------------|-------------|
| British         | 320094      |             |
| Irish           | 1066        |             |
| White           | 15348       |             |
| Pakistani       | 1617        |             |
| Bangladeshi     | 213         |             |
| Indian          | 5188        |             |
| White and Asian | 722         | Mixed       |
| Chinese         | 1442        |             |
| Asian           | 1695        |             |
| Caribbean       | 3859        |             |
| White and Black | 912         | Mixed       |
| African         | 3112        |             |

#### Experiment 2 setup

- Train data: chromosome 10 (29,481 SNPs) of UK Biobank with 10,000 British samples (i.e. very small subset)
- Phenotypes: **y** simulated in the same way as before, i.e.
  - Pick  $|S_{causal}| = 100, 1000$  causal SNPs chosen uniformly,  $h^2 = 0.5$
  - Simulate phenotypes (using standardized **X**):

$$y_i = \sum_{j \in \mathcal{S}_{\mathsf{causal}}} \mathsf{x}_{ij} eta_j + \epsilon_i, \quad eta_j \sim \mathcal{N}\left(0, \sqrt{rac{h^2}{2|\mathcal{S}_{\mathsf{causal}}|}}
ight), \quad \epsilon_i \sim \mathcal{N}(0, 1 - h^2).$$

Test data: all samples in UKB stratified by ethnicity

# UKB experiments Lasso results (100/29481 SNPs causal, n=10000)



|                          | LASSO | LASSO-ko    |
|--------------------------|-------|-------------|
| $\#$ nonzero $\hat{eta}$ | 422.7 | 458.9       |
| $\#\;\hat{eta}$ selected | 422.7 | 101.0       |
| power (group power)      | 0.76  | 0.66 (0.70) |
| FDR (group FDR)          | 0.82  | 0.34 (0.12) |

- Lasso have better power but finds a lot of junk
- Knockoffs improves FDR in exchange for power.
- Here, the trade-off improved prediction.

# UKB experiments results (100/29481 SNPs causal, n=10000)





|                          | IHT  | IHT-ko      | LASSO | LASSO-ko    |
|--------------------------|------|-------------|-------|-------------|
| $\#$ nonzero $\hat{eta}$ | 57.6 | 56.6        | 422.7 | 458.9       |
| $\#\;\hat{eta}$ selected | 57.6 | 54.84       | 422.7 | 101.0       |
| power (group power)      | 0.54 | 0.52 (0.57) | 0.76  | 0.66 (0.70) |
| FDR (group FDR)          | 0.05 | 0.04 (0.01) | 0.82  | 0.34 (0.12) |

- Standard IHT has good power and controlled FDR
- If FDR was good to start out with, knockoffs hurt prediction performance

# UKB experiments results (500/29481 SNPs causal, n=10000)



|                          | IHT   | IHT-ko      | LASSO   | LASSO-ko    |
|--------------------------|-------|-------------|---------|-------------|
| $\#$ nonzero $\hat{eta}$ | 208.4 | 190.42      | 1384.12 | 1537.5      |
| $\#\;\hat{eta}$ selected | 208.4 | 169.82      | 1384.12 | 436.76      |
| power (group power)      | 0.36  | 0.30 (0.44) | 0.55    | 0.39 (0.57) |
| FDR (group FDR)          | 0.17  | 0.12 (0.02) | 0.80    | 0.55 (0.17) |

Table: Group knockoff (res5) results with target FDR = 0.25

# UKB experiments results (1000/29481 SNPs causal, n=10000)



|                          | IHT   | IHT-ko      | LASSO   | LASSO-ko     |
|--------------------------|-------|-------------|---------|--------------|
| $\#$ nonzero $\hat{eta}$ | 313.5 | 489.1       | 1942.1  | 2053.4       |
| $\#\;\hat{eta}$ selected | 313.5 | 195.0       | 1942.14 | 567.0        |
| power (group power)      | 0.21  | 0.14 (0.30) | 0.43    | 0.25 (0.48)  |
| FDR (group FDR)          | 0.28  | 0.25 (0.03) | 0.78    | 0.57 (0.098) |

- Knockoffs traded too much power for FDR improvements
- Knockoffs predicts worse overall, but its performance degrade less

Table: Group knockoff (res5) results with target group FDR 0.25

# UKB experiments results (1000/29481 causal SNPs, n=20k)



|                          | IHT   | IHT-ko      | LASSO   | LASSO-ko    |
|--------------------------|-------|-------------|---------|-------------|
| $\#$ nonzero $\hat{eta}$ | 483.2 | 482.72      | 2542.98 | 2796.3      |
| $\#\;\hat{eta}$ selected | 483.2 | 386.62      | 2542.98 | 1047.92     |
| power (group power)      | 0.37  | 0.32 (0.56) | 0.59    | 0.44 (0.72) |
| FDR (group FDR)          | 0.21  | 0.17 (0.02) | 0.77    | 0.58 (0.12) |

Table: Group knockoff (res5) results with target FDR = 0.25

# UKB experiments results (1000/29481 causal SNPs, n=50k)



|                          | IHT     | IHT-ko      | LASSO  | LASSO-ko    |
|--------------------------|---------|-------------|--------|-------------|
| $\#$ nonzero $\hat{eta}$ | 777.347 | 797.122     | 3083.9 | 3429.8      |
| $\#\;\hat{eta}$ selected | 777.347 | 649.959     | 3083.9 | 1552.53     |
| power (group power)      | 0.58    | 0.53 (0.76) | 0.73   | 0.63 (0.87) |
| FDR (group FDR)          | 0.22    | 0.16 (0.03) | 0.76   | 0.59 (0.15) |

Table: Group knockoff (res5) results with target FDR = 0.25

#### Full UK Biobank analysis

- Fit model on 80% British samples (256,075 samples and 591,513 SNPs)
- Test on 20% British samples (64,019 samples) and all other ethnicities
- Nongenetic covariates: sex, age, PC1-5
- Phenotypes: Height and systopic blood pressure (both continuous)

# UKB analysis: Height



For highly polygenic trait, a more polygenic model is needed for better prediction, but knockoff model is more portable across population 24/27

## UKB analysis: Systolic Blood Pressure



For highly polygenic trait, a more polygenic model is needed for better prediction, but sparser model is more portable across population

#### Summary

We are exploring a novel application of the knockoff framework for PRS prediction

- The knockoff filter gives us a way to control FDR to a desired level, in exchange for power
- This trade-off tends to be more "worth it" when the number of causal variants is low
- Knockoff filter may give worse prediction, but it suffers less performance degradation across populations
- We do not have real data example where knockoff models predict better in absolute scale, but we have only looked at very polygenic traits

#### Interested in Knockoffs?

#### Main theory papers:

- Barber, Rina Foygel, and Emmanuel J. Candès. "Controlling the false discovery rate via knockoffs." The Annals of Statistics 43, no. 5 (2015): 2055-2085.
- Candes, Emmanuel, Yingying Fan, Lucas Janson, and Jinchi Lv. "Panning for gold: model-X'knockoffs for high dimensional controlled variable selection." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 80, no. 3 (2018): 551-577.

#### Genetics application papers:

- Sesia, Matteo, Eugene Katsevich, Stephen Bates, Emmanuel Candès, and Chiara Sabatti.
   "Multi-resolution localization of causal variants across the genome." Nature communications 11, no. 1 (2020): 1-10.
- Sesia, Matteo, Stephen Bates, Emmanuel Candès, Jonathan Marchini, and Chiara Sabatti.
   "False discovery rate control in genome-wide association studies with population structure." Proceedings of the National Academy of Sciences 118, no. 40 (2021).

#### References



Abramovich, F., Benjamini, Y., Donoho, D. L., and Johnstone, I. M. (2006).

Adapting to unknown sparsity by controlling the false discovery rate.

The Annals of Statistics, 34(2):584–653.



Benjamini, Y. and Gavrilov, Y. (2009).

A simple forward selection procedure based on false discovery rate control.

The Annals of Applied Statistics, pages 179–198.



Choi, S. W. and O'Reilly, P. F. (2019).

PRSice-2: Polygenic Risk Score software for biobank-scale data.

Gigascience, 8(7):giz082.



Moser, G., Lee, S. H., Hayes, B. J., Goddard, M. E., Wray, N. R., and Visscher, P. M. (2015).

Simultaneous discovery, estimation and prediction analysis of complex traits using a bayesian mixture model.

PLoS genetics, 11(4):e1004969.