Agrégation Externe

Le groupe linéaire GL(E)

1

Ce problème est en relation avec les leçons d'oral suivantes :

- 104 Groupes finis. Exemples et applications.
- 106 Groupe linéaire d'un espace vectoriel de dimension finie E, sous-groupes de GL(E). Applications.
- 108 Exemples de parties génératrices d'un groupe. Applications.
- 123 Corps finis. Applications.
- 152 Déterminant. Exemples et applications.
- 159 Formes linéaires et hyperplans en dimension finie. Exemples et applications.

On pourra consulter les ouvrages suivants.

- M. Alessandri. Thèmes de géométrie. Groupes en situation géométrique.. Dunod. 1999.
- S. Francinou, H. Gianella, S. Nicolas. Oraux X-ENS. Algèbre 2. Cassini (2009).
- R. Mneimne. Réduction des endomorphismes. Calvage et Mounet (2006).
- D. Perrin. Cours d'algèbre. Ellipses (1996).
- J. E. ROMBALDI. Analyse matricielle. EDP Sciences (2000).
- P. Tauvel. Mathématiques générales pour l'agrégation. Masson (1993).

K désigne un corps commutatif.

E est un K-espace vectoriel de dimension finie ou infinie.

 $E^* = \mathcal{L}(E, \mathbb{K})$ est l'espace dual de E.

On rappelle qu'un hyperplan de E est le noyau d'une forme linéaire non nulle sur E.

 $\mathcal{L}(E)$ est l'algèbre des endomorphismes de E, GL(E) est le groupe des automorphismes de E.

Pour E de dimension finie, on note SL(E) le sous-ensemble de GL(E) défini par :

$$SL(E) = \{ u \in \mathcal{L}(E) \mid \det(u) = 1 \}$$

Pour tout entier $n \geq 1$, $\mathcal{M}_n(\mathbb{K})$ désigne l'algèbre des matrices carrées d'ordre n à coefficients dans \mathbb{K} et $GL_n(\mathbb{K})$ le groupe des matrices inversibles dans $\mathcal{M}_n(\mathbb{K})$.

On note Id [resp. I_n] l'endomorphisme [resp. la matrice] identité.

La notion de déterminant et ses principales propriétés sont supposées acquises.

Pour E de dimension $n \geq 1$, le choix d'une base de E permet de réaliser un isomorphisme d'algèbres de $\mathcal{L}(E)$ sur $\mathcal{M}_n(\mathbb{K})$ et un isomorphisme de groupes de GL(E) sur $GL_n(\mathbb{K})$.

- I - Questions préliminaires

On rappelle que le centre (ou commutateur) Z(G) d'un groupe G est la partie de G formée des éléments de G qui commutent à tous les autres éléments de G, soit :

$$Z(G) = \{ h \in G \mid \forall g \in G, gh = hg \}$$

Pour $1 \leq i, j \leq n$, on note E_{ij} la matrice dont tous les coefficients sont nuls sauf celui d'indice (i, j) (ligne i et colonne j) qui vaut 1.

On rappelle que la famille $(E_{ij})_{1 \leq i,j \leq n}$ est une base de $\mathcal{M}_n(\mathbb{K})$.

Définition 1 Soit φ une forme linéaire non nulle sur E.

On appelle transvection d'hyperplan $\ker(\varphi)$ toute application linéaire $u \in \mathcal{L}(E)$ définie par :

$$\forall x \in E, \ u(x) = x + \varphi(x) a \tag{1}$$

 $o\dot{u} \ a \in \ker(\varphi)$.

Définition 2 Soit φ une forme linéaire non nulle sur E.

On appelle dilatation d'hyperplan $\ker(\varphi)$ toute application linéaire $u \in GL(E)$ définie par :

$$\forall x \in E, \ u(x) = x + \varphi(x) a \tag{2}$$

 $où a \in E \setminus \ker(\varphi)$.

On notera $\tau_{\varphi,a} = Id + \varphi \cdot a$ une transvection définie par (1), où $\varphi \in E^* \setminus \{0\}$ et $a \in \ker(\varphi)$ et $\delta_{\varphi,a} = Id + \varphi \cdot a$ une dilatation définie par (2) où $\varphi \in E^* \setminus \{0\}$ et $a \notin \ker(\varphi)$.

1. Hyperplans.

- (a) Montrer qu'une forme linéaire φ sur E non identiquement nulle est surjective.
- (b) Montrer qu'un hyperplan de E est un sous-espace de E supplémentaire d'une droite.

2. Centre de $\mathcal{L}(E)$.

(a) Montrer qu'un endomorphisme $u \in \mathcal{L}(E)$ est une homothétie si, et seulement, il laisse stable toute droite de E.

- (b) Montrer que si $u \in \mathcal{L}(E)$ laisse stable tout hyperplan de E, son adjoint $u^* \in \mathcal{L}(E^*)$ laisse alors stable toute droite de E^* .
- (c) Montrer qu'un endomorphisme $u \in \mathcal{L}(E)$ est une homothétie si, et seulement, il laisse stable tout hyperplan de E.
- (d) Déterminer le centre de $\mathcal{L}(E)$.

3. Polynômes caractéristique et minimal de $u \circ v$ et $v \circ u$ en dimension finie.

E est de dimension finie $n \geq 2$.

- (a) Montrer que pour tout $u \in \mathcal{L}(E)$, il existe une infinité de scalaires λ tels que $u \lambda Id$ soit inversible.
- (b) En déduire que pour tous u et v dans $\mathcal{L}(E)$, $u \circ v$ et $v \circ u$ ont même polynôme caractéristique et même polynôme minimal (considérer d'abord le cas où u est inversible).

4. Transvections en dimension finie ou infinie.

- (a) Montrer qu'un endomorphisme $u \in \mathcal{L}(E)$ est une transvection si, et seulement si, il existe un hyperplan H de E tel que $u_{|H} = Id_H$ et $\operatorname{Im}(u Id) \subset H$.
- (b) Montrer qu'une transvection $\tau_{\varphi,a}$ est un isomorphisme de E, son inverse étant la transvection $\tau_{\varphi,-a}$, puis que 1 est son unique valeur propre, l'espace propre associé étant $\ker(\varphi)$ si $u \neq Id$.
- (c) Montrer que le conjugué dans GL(E) d'une transvection est une transvection.
- (d) Montrer que l'ensemble T(H) des transvections d'hyperplan $H = \ker(\varphi)$ est un sous groupe commutatif de GL(E) isomorphe au groupe additif (H, +).
- (e) Montrer qu'une transvection u admet un polynôme minimal qui est X-1 si u=Id ou $(X-1)^2$ si $u\neq Id$.

5. Transvections en dimension finie.

E est un K-espace vectoriel, de dimension finie $n \geq 2$.

(a) Montrer qu'un isomorphisme $u \in GL(E) \setminus \{Id\}$ est une transvection si, et seulement si, il existe une base de E dans laquelle la matrice de u est de la forme :

$$T_n = \begin{pmatrix} I_{n-2} & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = I_n + E_{n-1,n}$$

(avec $T_2 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$). Une transvection est donc dans SL(E) et non diagonalisable si elle est différente de Id.

(b) Montrer qu'un isomorphisme $u \in GL(E) \setminus \{Id\}$ est une transvection si, et seulement si, il existe une base dans laquelle la matrice de u est de la forme :

$$T_{ij}(\lambda) = I_n + \lambda E_{ij}$$

avec $1 \le i \ne j \le n$ et $\lambda \in \mathbb{K}^*$.

- (c) Montrer qu'un isomorphisme $u \in GL(E) \setminus \{Id\}$ est une transvection si, et seulement si, rg (u Id) = 1 et le polynôme caractéristique de u est $P_u(X) = (X 1)^n$. ²
- (d) Montrer que, pour \mathbb{K} infini, toute transvection différente de Id s'écrit comme produit de deux matrices diagonalisables inversibles.

^{2.} d'après Agrégation 2013, mathématiques générales

6. Dilatations en dimension finie ou infinie.

- (a) Montrer qu'un isomorphisme $u \in GL(E)$ est une dilatation si, et seulement si, il existe un hyperplan H de E tel que $u_{|H} = Id_H$ et u est diagonalisable de valeurs propres 1 et $\lambda \in \mathbb{K} \setminus \{0,1\}$ (c'est-à-dire que $E = \ker(u Id) \oplus \ker(u \lambda Id)$). On dit que u est une dilatation de rapport λ (pour \mathbb{K} de caractéristique différente de 2 et $\lambda = -1$, on dit que u est une réflexion d'hyperplan $H = \ker(\varphi)$).
- (b) Montrer que le conjugué dans GL(E) d'une dilatation est une dilatation de même rapport.
- (c) Montrer qu'une dilatation u de rapport λ admet un polynôme minimal qui est $(X-1)(X-\lambda)$.
- (d) Montrer que l'inverse d'une dilatation de rapport λ est une dilatation de rapport $\frac{1}{\lambda}$.

7. Dilatations en dimension finie

E est un \mathbb{K} -espace vectoriel, de dimension finie $n \geq 2$.

(a) Montrer qu'un isomorphisme $u \in GL(E)$ est une dilatation si, et seulement si, il existe une base dans laquelle la matrice de u est de la forme :

$$D_n(\lambda) = \begin{pmatrix} I_{n-1} & 0 \\ 0 & \lambda \end{pmatrix} = I_n + (\lambda - 1) E_{n,n}$$

avec $\lambda = \det(u) \in \mathbb{K} \setminus \{0, 1\}$.

(b) Montrer que deux dilatations sont conjuguées dans GL(E) si, et seulement si, elles ont même rapport.

- II - Généralités sur les groupes GL(E) et SL(E)

Sauf précision contraire, E est de dimension finie $n \geq 2$.

- 1. Soit $u \in \mathcal{L}(E)$. Montrer que les assertions suivantes sont équivalentes :
 - (a) $u \in GL(E)$;
 - (b) $\ker(u) = \{0\}$ (i. e. *u* injectif);
 - (c) $\operatorname{Im}(u) = E$ (i. e. u surjectif);
 - (d) il existe $v \in GL(E)$ tel que $u \circ v = Id$;
 - (e) il existe $w \in GL(E)$ tel que $w \circ u = Id$.
- 2. Le résultat de la question précédente est-il valable en dimension infinie?
- 3. Le sous-groupe SL(E) en dimension finie.
 - (a) Montrer que SL(E) est un sous-groupe distingué de GL(E).
 - (b) On suppose que n=2. Quels sont les éléments d'ordre 2 du groupe SL(E)?
 - (c) Montrer que, pour $n \geq 3$, toutes les transvections différentes de Id sont conjuguées dans $SL\left(E\right)$.
 - (d) Que se passe-t-il pour n = 2?
- 4. **Dénombrement de** $GL_n(\mathbb{F}_q)$ **et de** $SL_n(\mathbb{F}_q)^4$ On suppose que $\mathbb{K} = \mathbb{F}_q$ est un corps fini à q éléments $(q = p^r, \text{ où } p \ge 2 \text{ est un nombre premier}).$

^{3.} d'après Agrégation 2013, mathématiques générales

^{4.} d'après Agrégation 2013, mathématiques générales

(a) Montrer que:

$$\forall n \ge 2, \text{ card } (GL_n(\mathbb{F}_q)) = \prod_{k=1}^n (q^n - q^{k-1}) = q^{\frac{n(n-1)}{2}} \prod_{j=1}^n (q^j - 1)$$

(b) Montrer que:

$$\forall n \ge 2, \text{ card } (SL_n(\mathbb{F}_q)) = q^{n-1} \prod_{k=1}^{n-1} (q^n - q^{k-1}) = q^{\frac{n(n-1)}{2}} \prod_{j=2}^n (q^j - 1)$$

- (c) Montrer que si \mathbb{L} est un corps tel que les groupes $SL_n(\mathbb{F}_q)$ et $SL_n(\mathbb{L})$ soient isomorphes (pour $n \geq 2$), alors \mathbb{L} est isomorphe à \mathbb{F}_q (i. e. \mathbb{L} est un corps fini à q éléments.
- 5. Centre de GL(E).

Déterminer le centre de GL(E), pour E de dimension finie ou infinie. Le groupe quotient PGL(E) = GL(E)/Z(GL(E)) est le groupe projectif linéaire

- 6. Les groupes $GL_n(\mathbb{Q})$, $GL_n(\mathbb{R})$ et $GL_n(\mathbb{C})$ peuvent-ils être isomorphes?
- 7. Soient n, m deux entiers naturels non nuls. On fait agir le groupe produit $GL_n(\mathbb{K}) \times GL_m(\mathbb{K})$ sur l'ensemble $\mathcal{M}_{n,m}(\mathbb{K})$ des matrices à n lignes et m colonnes par :

$$\forall (P,Q) \in GL_n(\mathbb{K}) \times GL_m(\mathbb{K}), \ \forall A \in \mathcal{M}_{n,m}(\mathbb{K}), \ (P,Q) \cdot A = PAQ^{-1}$$

Montrer que les orbites correspondantes sont les ensembles :

$$\mathcal{O}_r = \{ A \in \mathcal{M}_{n,m} (\mathbb{K}) \mid \operatorname{rg} (A) = r \}$$

où r est compris entre 0 et min (n, m).

- 8. En supposant que le corps \mathbb{K} est infini, montrer qu'il existe une base de $\mathcal{L}(E)$ formée d'isomorphismes
- 9. On suppose que le corps \mathbb{K} est infini et que l'espace E est de dimension finie $n \geq 1$.

$$-$$
 II $-$ Générateurs de $SL(E)$ et $GL(E)$

E est de dimension finie $n \geq 2$.

1. Générateurs de SL(E).

On se propose de montrer que, pour E de dimension $n \geq 2$, le groupe SL(E) est engendré par l'ensemble des transvections.

- (a) Soient H_1, H_2 deux hyperplans distincts de E et $a \in E \setminus (H_1 \cup H_2)$.
 - i. Montrer que $H = H_1 \cap H_2 \oplus \mathbb{K}a$ est un hyperplan de E.
 - ii. Montrer que $E = H + H_1 = H + H_2$.
 - iii. Montrer qu'il existe une transvection u telle que u(a) = a et $u(H_1) = H_2$ (pour $a_2 \in H_2 \setminus H$, on justifiera l'existence de $a_1 \in H_1 \setminus H$ et $b \in H$ tels que $a_2 = a_1 + b$, puis on peut considérer la transvection $\tau_{\varphi,b}$ où φ est une équation de H telle que $\varphi(a_1) = 1$).
- (b) Montrer que pour tous x, y non nuls dans E, il existe $u \in SL(E)$ produit de une ou deux transvections tel que y = u(x).

(c) Montrer que le groupe $SL\left(E\right)$ est engendré par l'ensemble des transvections. Ce résultat peut aussi se montrer en utilisant les opérations élémentaires sur les matrices (voir Rombaldi).

2. Générateurs de GL(E).

- (a) Montrer que, pour E de dimension $n \geq 2$, le groupe GL(E) est engendré par l'ensemble des dilatations et des transvections.
- (b) Montrer que, pour \mathbb{K} infini et E de dimension $n \geq 2$, le groupe GL(E) est engendré par l'ensemble des matrices diagonalisables inversibles.

3. Morphismes de groupes de GL(E) dans \mathbb{F}_{a}^{*}

- (a) On suppose que E est de dimension finie $n \geq 2$ sur un corps fini \mathbb{F}_q à $q = p^m$ éléments, où $p \geq 2$ est un nombre premier et on se donne un morphisme de groupes γ de GL(E) dans \mathbb{F}_q^* .
- (b) Montrer qu'il existe un entier naturel r compris entre 0 et q-2 tel que pour toute dilatation u de rapport, on ait $\lambda \in \mathbb{F}_q^*$, $\gamma(u) = \lambda^r$.
- (c) Montrer que, pour toute transvection u, on a $\gamma(u) = 1$.
- (d) Déduire de ce qui précède que :

$$\forall u \in GL(E), \ \gamma(u) = (\det(u))^r$$

- III - Sous-groupes de GL(E)

E est de dimension finie $n \geq 1$.

- 1. Montrer que si (G, \cdot) est un groupe tel que tout ses éléments sont d'ordre au plus égal à 2, G est alors commutatif. Si de plus que G est fini, montrer qu'il existe alors un entier $p \geq 0$ tel que card $(G) = 2^p$.
- 2. Soit $(u_i)_{i\in I}$ une famille d'endomorphismes de E diagonalisables (l'ensemble I ayant au moins deux éléments).
 - Montrer qu'il existe une base commune de diagonalisation dans E pour la famille $(u_i)_{i\in I}$ si, et seulement si, ces endomorphismes commutent deux à deux.
- 3. On suppose que le corps \mathbb{K} est de caractéristique différente de 2.
 - (a) Montrer que si G est un sous-groupe multiplicatif fini de GL(E) tel que tout élément de G soit d'ordre au plus égal à 2, alors tous les éléments de G sont diagonalisables et G est commutatif de cardinal inférieur ou égal à 2^n .
 - (b) En déduire que, si F est un \mathbb{K} -espace vectoriel de dimension finie, alors les groupes multiplicatifs GL(E) et GL(F) sont isomorphes si, et seulement si, $\dim(F) = \dim(E)$.
- 4. Soit G un sous-groupe fini de GL(E) de cardinal $p \geq 2$.
 - (a) Montrer que $v = \frac{1}{p} \sum_{u \in G} u$ est un projecteur.
 - (b) Montrer que $\sum_{u \in G} \operatorname{tr}(u)$ est un entier divisible par p.
 - (c) En supposant que \mathbb{K} est de caractéristique nulle, montrer que si $\sum_{u \in G} \operatorname{tr}(u) = 0$, on a alors $\sum_{u \in G} u = 0$.

5. Un théorème de Burnside

On suppose que le corps K est de caractéristique nulle.

- (a) Montrer que si $u \in \mathcal{L}(E)$ est nilpotent, 0 est alors l'unique valeur propre de u et $\mathrm{Tr}(u) = 0$.
- (b) Montrer qu'un endomorphisme $u \in \mathcal{L}(E)$ est nilpotent si, et seulement si, $\text{Tr}(u^k) = 0$ pour tout k compris entre 1 et n.
- (c) Pour \mathbb{K} algébriquement clos, montrer que u est nilpotent si, et seulement si, 0 est la seule valeur propre de u.
- (d) Pour \mathbb{K} algébriquement clos, donner une deuxième démonstration du fait que $u \in \mathcal{L}(E)$ est nilpotent si, et seulement si, $\operatorname{Tr}(u^k) = 0$ pour tout k compris entre 1 et n.
- (e) Soient G un sous-groupe de GL(E), F le sous-espace vectoriel de $\mathcal{L}(E)$ engendré par G, $\mathcal{B} = (u_i)_{1 \le i \le p}$ une base de F extraite de G et l'application :

$$\varphi: G \to \mathbb{K}^p$$

$$u \mapsto (\operatorname{tr}(u \circ u_1), \cdots, \operatorname{tr}(u \circ u_p))$$

Montrer que si u, v dans G sont tels que $\varphi(u) = \varphi(v)$, on a alors :

$$\begin{cases} \forall w \in G, \ \operatorname{tr}(u \circ v^{-1} \circ w) = \operatorname{tr}(w) \\ \forall k \ge 1, \ \operatorname{tr}\left((u \circ v^{-1})^k\right) = n \end{cases}$$

et en déduire que $u \circ v^{-1} - Id$ est nilpotent.

- (f) En gardant les notations de la question précédente et en supposant que tous les éléments de G sont diagonalisables, montrer que φ est injective.
- (g) Montrer que si G est un sous-groupe de GL(E) tel que tous ses éléments sont diagonalisables et $\operatorname{tr}(G)$ est fini, il est alors fini.
- (h) Pour \mathbb{K} algébriquement clos, montrer qu'un sous-groupe G de GL(E) est fini si, et seulement si, il est d'exposant fini (c'est-à-dire qu'il existe $m \in \mathbb{N}^*$ tel que $u^m = Id$ pour tout $u \in G$). Ce résultat est un théorème de Burnside.

6. Le groupe orthogonal d'un espace euclidien.

On suppose que $\mathbb{K} = \mathbb{R}$ et que E est un espace euclidien de dimension $n \geq 2$.

On rappelle qu'une isométrie (ou application orthogonale) de E est une application $u: E \to E$ qui conserve le produit scalaire, c'est-à-dire que :

$$\forall (x, y) \in E \times E, \langle u(x) \mid u(y) \rangle = \langle x \mid y \rangle$$

On note $\mathcal{O}(E)$ l'ensemble des isométries de E.

(a) Montrer qu'une application $u: E \to E$ est une isométrie si, et seulement si, elle est linéaire et conserve la norme, c'est-à-dire que :

$$\forall x \in E, \ \|u(x)\| = \|x\|$$

- (b) Montrer que $\mathcal{O}(E)$ est un sous-groupe de GL(E). $\mathcal{O}(E)$ est le groupe orthogonal de E.
- (c) Que se passe-t-il en dimension infinie.
- (d) On note:

$$\mathcal{O}^{+}\left(E\right) = \left\{u \in \mathcal{O}\left(E\right) \mid \det\left(u\right) = 1\right\}$$

l'ensemble des isométries positives (ou rotations vectorielles).

Montrer que $\mathcal{O}^+(E)$ est un sous-groupe distingué de $\mathcal{O}(E)$ d'indice 2.

(e) On désigne par S la sphère unité de E. Montrer que l'application $(u, x) \in \mathcal{O}^+(E) \times S \mapsto u \cdot x = u(x)$ définit une action transitive de $\mathcal{O}^+(E)$ sur S.

$$-$$
 IV $-$ Topologie sur $GL(E)$ ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$)

Pour cette partie, $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$ et $(E, \|\cdot\|)$ est un \mathbb{K} -espace vectoriel normé.

On rappelle que si u un endomorphisme de E, alors les assertions suivantes sont équivalentes :

- -u est continue en 0;
- -u est continue sur E;
- -u est bornée sur la sphère [resp. boule] unité de $(E, \|\cdot\|)$;
- -il existe une constante réelle \boldsymbol{c} telle que :

$$\forall x \in E, \|u(x)\| \le c \|x\|$$

-u est uniformément continue sur E.

En notant $\mathcal{L}(E)$ l'espace des applications linéaires continues de E dans E, on peut alors le munir de la norme définie par :

$$\forall u \in \mathcal{L}(E), \|u\| = \sup_{\substack{x \in E \\ \|u\| = 1}} \|u(x)\| = \sup_{x \in E \setminus \{0\}} \frac{\|u(x)\|}{\|x\|}$$
(3)

On a ||Id|| = 1 et pour tous u, v dans $\mathcal{L}(E)$, on a $||u \circ v|| \le ||u|| \, ||v||$, ce qui se traduit en disant que $\mathcal{L}(E)$ est une algèbre normée.

GL(E) désigne le groupe des éléments inversibles de $\mathcal{L}(E)$ ($u \in GL(E)$ signifie que u est linéaire, continue, bijective et d'inverse u^{-1} continu).

Dans le cas où l'espace E est de dimension finie, toutes les normes équivalentes et tout endomorphisme est continu.

1. Cas de la dimension quelconque (finie ou infinie).

Pour cette question, $(E, \|\cdot\|)$ est un espace de Banach et $\mathcal{L}(E)$ est l'espace des applications linéaires continues de E dans E muni de la norme définie par (3).

- (a) Montrer que $\mathcal{L}(E)$ est une algèbre de Banach.
- (b) Montrer que, pour tout $u \in \mathcal{L}(E)$ tel que ||u|| < 1, l'endomorphisme Id u est dans GL(E) d'inverse $\sum_{k=0}^{+\infty} u^k$.
- (c) Montrer que GL(E) est ouvert dans $\mathcal{L}(E)$.
- (d) Montrer que l'application $u \mapsto u^{-1}$ est continue sur GL(E).
- (e) Pour cette question, E est l'espace $\mathbb{C}[X]$ normé par :

$$\forall P = \sum_{k=0}^{n} a_k X^k \in \mathbb{C}[X], \ \|P\| = \sum_{k=0}^{n} |a_k|$$

i. Montrer que l'application:

$$u: \ \mathbb{C}[X] \to \ \mathbb{C}[X]$$

 $P \mapsto XP$

est linéaire et continue.

ii. Montrer que $B(u,1) \cap GL(E) = \emptyset$ et en déduire que GL(E) n'est pas dense dans $\mathcal{L}(E)$.

On suppose maintenant que E est de dimension finie $n \geq 1$.

2. Cas de la dimension finie. Densité de GL(E) dans $\mathcal{L}(E)$. Applications.

- (a) Montrer, en expoitant la dimension finie, que GL(E) est un ouvert dense de $\mathcal{L}(E)$ et que l'application $u \mapsto u^{-1}$ est continue de GL(E) dans GL(E).
- (b) Montrer que $GL_n(\mathbb{R})$ est ouvert dans $\mathcal{M}_n(\mathbb{R})$, mais fermé dans $GL_n(\mathbb{C})$.
- (c) Montrer, en utilisant la densité de GL(E) dans $\mathcal{L}(E)$, qu'il existe une base de $\mathcal{L}(E)$ formée d'isomorphismes.
- (d) Pour tout entier $n \geq 2$, toute matrice $A = ((a_{i,j}))_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{K})$ et tous i,j compris entre 1 et n, on note $A_{i,j}$ la matrice carrée d'ordre n-1 déduite de A en supprimant la ligne i et la colonne j.

Le scalaire $\det(A_{i,j})$ est le mineur d'indice (i,j) et le scalaire $(-1)^{i+j} \det(A_{i,j})$ est le cofacteur d'indice (i,j).

La comatrice de A est la matrice :

$$C(A) = \left(\left((-1)^{i+j} \det \left(A_{i,j} \right) \right) \right)_{1 \le i,j \le n}$$

Montrer que :

$$\forall A \in \mathcal{M}_n(\mathbb{K}), \det(C(A)) = (\det(A))^{n-1}$$

(e) Montrer que :

$$\forall (A, B) \in \mathcal{M}_n(\mathbb{K}) \times \mathcal{M}_n(\mathbb{K}), C(AB) = C(A)C(B)$$

(f) Montrer que si A et B sont semblables dans $\mathcal{M}_n(\mathbb{K})$, alors leurs comatrices le sont aussi.

3. Connexité de GL(E)

- (a) Montrer que \mathbb{C}^* est connexe par arcs.
- (b) Montrer que, pour $\mathbb{K} = \mathbb{C}$, GL(E) est connexe par arcs.
- (c) Montrer que, pour $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$, SL(E) est connexe par arcs.
- (d) Montrer que, pour $\mathbb{K} = \mathbb{R}$, GL(E) n'est pas connexe, puis que ses composantes connexes sont les ouverts de $\mathcal{L}(E)$:

$$GL^{+}(E) = \{u \in GL(E) \mid \det(u) > 0\} \text{ et } GL_{n}^{-}(E) = \{u \in GL(E) \mid \det(u) < 0\}$$

Ce résultat permet de définir une orientation sur un espace vectoriel réel E de dimension n. On dit que deux bases \mathcal{B} et \mathcal{B}' de E définissent la même orientation si la matrice de passage de \mathcal{B} à \mathcal{B}' est dans $GL_n^+(\mathbb{R})$.

4. Sous-groupes de GL(E).

(a) On suppose que $\mathbb{K} = \mathbb{C}$.

Montrer que si G est un sous-groupe borné de GL(E), alors toutes les valeurs propres des éléments de G sont de module égal à 1, puis que tous ses éléments sont diagonalisables.

(b)

- i. Montrer que si $\lambda \in \mathbb{C}$ est tel que $\lambda \neq 1$ et $|\lambda| = 1$, il existe alors un entier naturel p tel que $|1 \lambda^p| > \sqrt{2}$.
- ii. Montrer que le seul sous-groupe de GL(E) contenu dans la boule de centre Id et de de rayon $\sqrt{2}$ est $\{Id\}$.