Markov Random Fields

Umamahesh Srinivas

iPAL Group Meeting

February 25, 2011

Outline

- Basic graph-theoretic concepts
- Markov chain
- Markov random field (MRF)
- Gauss-Markov random field (GMRF), and applications
- Other popular MRFs

References

- Charles Bouman, Markov random fields and stochastic image models. Tutorial presented at ICIP 1995
- Mario Figueiredo, Bayesian methods and Markov random fields. Tutorial presented at CVPR 1998

Basic graph-theoretic concepts

- A graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is a finite collection of nodes (or vertices) $\mathcal{V} = \{n_1, n_2, \dots, n_N\}$ and set of edges $\mathcal{E} \subset \binom{\mathcal{V}}{2}$
- We consider only undirected graphs
- Neighbor: Two nodes $n_i, n_i \in \mathcal{V}$ are neighbors if $(n_i, n_i) \in \mathcal{E}$
- Neighborhood of a node: $\mathcal{N}(n_i) = \{n_i : (n_i, n_i) \in \mathcal{E}\}$
- Neighborhood is a symmetric relation: $n_i \in \mathcal{N}(n_j) \Leftrightarrow n_j \in \mathcal{N}(n_i)$
- Complete graph: $\forall n_i \in \mathcal{V}, \ \mathcal{N}(n_i) = \{(n_i, n_j), j = \{1, 2, \dots, N\} \backslash \{i\}\}$
- ullet Clique: a complete subgraph of ${\cal G}$
- Maximal clique: Clique with maximal number of nodes; cannot add any other node while still retaining complete connectedness.

Basic graph-theoretic concepts

- A graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is a finite collection of nodes (or vertices) $\mathcal{V} = \{n_1, n_2, \dots, n_N\}$ and set of edges $\mathcal{E} \subset \binom{\mathcal{V}}{2}$
- We consider only undirected graphs
- Neighbor: Two nodes $n_i, n_j \in \mathcal{V}$ are neighbors if $(n_i, n_j) \in \mathcal{E}$
- Neighborhood of a node: $\mathcal{N}(n_i) = \{n_j : (n_i, n_j) \in \mathcal{E}\}$
- Neighborhood is a symmetric relation: $n_i \in \mathcal{N}(n_j) \Leftrightarrow n_j \in \mathcal{N}(n_i)$
- Complete graph: $\forall n_i \in \mathcal{V}, \ \mathcal{N}(n_i) = \{(n_i, n_j), j = \{1, 2, \dots, N\} \backslash \{i\}\}$
- ullet Clique: a complete subgraph of ${\cal G}$
- Maximal clique: Clique with maximal number of nodes; cannot add any other node while still retaining complete connectedness.

Basic graph-theoretic concepts

- A graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is a finite collection of nodes (or vertices) $\mathcal{V} = \{n_1, n_2, \dots, n_N\}$ and set of edges $\mathcal{E} \subset \binom{\mathcal{V}}{2}$
- We consider only undirected graphs
- Neighbor: Two nodes $n_i, n_j \in \mathcal{V}$ are neighbors if $(n_i, n_j) \in \mathcal{E}$
- Neighborhood of a node: $\mathcal{N}(n_i) = \{n_j : (n_i, n_j) \in \mathcal{E}\}$
- Neighborhood is a symmetric relation: $n_i \in \mathcal{N}(n_j) \Leftrightarrow n_j \in \mathcal{N}(n_i)$
- Complete graph: $\forall n_i \in \mathcal{V}, \ \mathcal{N}(n_i) = \{(n_i, n_j), j = \{1, 2, \dots, N\} \setminus \{i\}\}$
- Clique: a complete subgraph of \mathcal{G} .
- Maximal clique: Clique with maximal number of nodes; cannot add any other node while still retaining complete connectedness.

Illustration

- $V = \{1, 2, 3, 4, 5, 6\}$
- $\bullet \ \mathcal{E} = \{(1,2), (1,3), (2,4), (2,5), (3,4), (3,6), (4,6), (5,6)\}$
- $\mathcal{N}(4) = \{2, 3, 6\}$
- Examples of cliques: $\{(1), (3,4,6), (2,5)\}$
- Set of all cliques: $\mathcal{V} \cup \mathcal{E} \cup \{3,4,6\}$

Separation

- Let A, B, C be three disjoint subsets of \mathcal{V}
- ullet C separates A from B if any path from a node in A to a node in B contains some node in C
- \bullet Example: $C=\{1,4,6\}$ separates $A=\{3\}$ from $B=\{2,5\}$

Markov chains

- Graphical model: Associate each node of a graph with a random variable (or a collection thereof)
- Homogeneous 1-D Markov chain:

$$p(x_n|x_i, i < n) = p(x_n|x_{n-1})$$

• Probability of a sequence given by:

$$p(x) = p(x_0) \prod_{n=1}^{N} p(x_n | x_{n-1})$$

2-D Markov chains

X _(0,0)	X _(0,1)	X _(0,2)	X _(0,3)	X _(0,4)
	X _(1,1)			
X _(2,0)	X _(2,1)	X _(2,2)	X _(2,3)	X _(2,4)
X _(3,0)	X _(3,1)	X _(3,2)	X _(3,3)	X _(3,4)

Advantages:

- Simple expressions for probability
- Simple parameter estimation
- Disadvantages:
 - No natural ordering of image pixels
 - Anisotropic model behavior

Random fields on graphs

- Consider a collection of random variables $\mathbf{x} = (x_1, x_2, \dots, x_N)$ with associated joint probability distribution $p(\mathbf{x})$
- Let A, B, C be three disjoint subsets of V. Let \mathbf{x}_A denote the collection of random variables in A.
 - ullet Conditional independence: $A \perp\!\!\!\perp B \mid C$
 - $A \perp \!\!\!\perp B \mid C \Leftrightarrow p(\mathbf{x}_A, \mathbf{x}_B | \mathbf{x}_C) = p(\mathbf{x}_A | \mathbf{x}_C) p(\mathbf{x}_B | \mathbf{x}_C)$
- Markov random field: undirected graphical model in which each node corresponds to a random variable or a collection of random variables, and the edges identify conditional dependencies.

Random fields on graphs

- Consider a collection of random variables $\mathbf{x} = (x_1, x_2, \dots, x_N)$ with associated joint probability distribution $p(\mathbf{x})$
- Let A, B, C be three disjoint subsets of \mathcal{V} . Let \mathbf{x}_A denote the collection of random variables in A.
 - ullet Conditional independence: $A \perp\!\!\!\perp B \mid C$
 - $A \perp \!\!\!\perp B \mid C \Leftrightarrow p(\mathbf{x}_A, \mathbf{x}_B | \mathbf{x}_C) = p(\mathbf{x}_A | \mathbf{x}_C) p(\mathbf{x}_B | \mathbf{x}_C)$
- Markov random field: undirected graphical model in which each node corresponds to a random variable or a collection of random variables, and the edges identify conditional dependencies.

Markov properties

Pairwise Markovianity:

• $(n_i, n_j) \notin \mathcal{E} \Rightarrow x_i$ and x_j are independent when conditioned on all other variables

$$p(x_i, x_j | \mathbf{x}_{\setminus \{i,j\}}) = p(x_i | \mathbf{x}_{\setminus \{i,j\}}) p(x_j | \mathbf{x}_{\setminus \{i,j\}})$$

Local Markovianity

 Given its neighborhood, a variable is independent on the rest of the variables

$$p(x_i|\mathbf{x}_{\mathcal{V}\setminus\{i\}}) = p(x_i|\mathbf{x}_{\mathcal{N}(i)})$$

Global Markovianity:

• Let A, B, C be three disjoint subsets of \mathcal{V} . If

$$C$$
 separates A from $B\Rightarrow p(\mathbf{x}_A,\mathbf{x}_B|\mathbf{x}_C)=p(\mathbf{x}_A|\mathbf{x}_C)p(\mathbf{x}_B|\mathbf{x}_C)$

then $p(\cdot)$ is global Markov w.r.t. \mathcal{G}

Markov properties

Pairwise Markovianity:

• $(n_i, n_j) \notin \mathcal{E} \Rightarrow x_i$ and x_j are independent when conditioned on all other variables

$$p(x_i, x_j | \mathbf{x}_{\backslash \{i,j\}}) = p(x_i | \mathbf{x}_{\backslash \{i,j\}}) p(x_j | \mathbf{x}_{\backslash \{i,j\}})$$

Local Markovianity:

 Given its neighborhood, a variable is independent on the rest of the variables

$$p(x_i|\mathbf{x}_{\mathcal{V}\setminus\{i\}}) = p(x_i|\mathbf{x}_{\mathcal{N}(i)})$$
 yt notyhbor howl 有关原文

Global Markovianity:

• Let A, B, C be three disjoint subsets of \mathcal{V} . If

$$C$$
 separates A from $B\Rightarrow p(\mathbf{x}_A,\mathbf{x}_B|\mathbf{x}_C)=p(\mathbf{x}_A|\mathbf{x}_C)p(\mathbf{x}_B|\mathbf{x}_C)$,

then $p(\cdot)$ is global Markov w.r.t. \mathcal{G} .

Markov properties

Pairwise Markovianity:

• $(n_i, n_j) \notin \mathcal{E} \Rightarrow x_i$ and x_j are independent when conditioned on all other variables

$$p(x_i, x_j | \mathbf{x}_{\setminus \{i,j\}}) = p(x_i | \mathbf{x}_{\setminus \{i,j\}}) p(x_j | \mathbf{x}_{\setminus \{i,j\}})$$

Local Markovianity:

 Given its neighborhood, a variable is independent on the rest of the variables

$$p(x_i|\mathbf{x}_{\mathcal{V}\setminus\{i\}}) = p(x_i|\mathbf{x}_{\mathcal{N}(i)})$$

Global Markovianity:

• Let A, B, C be three disjoint subsets of \mathcal{V} . If

$$C$$
 separates A from $B \Rightarrow p(\mathbf{x}_A, \mathbf{x}_B | \mathbf{x}_C) = p(\mathbf{x}_A | \mathbf{x}_C) p(\mathbf{x}_B | \mathbf{x}_C)$,

then $p(\cdot)$ is global Markov w.r.t. \mathcal{G} .

Hammersley-Clifford Theorem

Consider a random field \mathbf{x} on a graph \mathcal{G} , such that $p(\mathbf{x}) > 0$. Let \mathcal{C} denote the set of all maximal cliques of the graph.

• If the field has the local Markov property, then $p(\mathbf{x})$ can be written as a Gibbs distribution:

$$p(\mathbf{x}) = \frac{1}{Z} \exp \left\{ -\sum_{C \in \mathcal{C}} V_C(\mathbf{x}_C) \right\},$$

where Z, the normalizing constant, is called the partition function; $V_C(\mathbf{x}_C)$ are the clique potentials

• If $p(\mathbf{x})$ can be written in Gibbs form for the cliques of some graph, then it has the global Markov property.

Fundamental consequence: every Markov random field can be specified via clique potentials.

Hammersley-Clifford Theorem

Consider a random field \mathbf{x} on a graph \mathcal{G} , such that $p(\mathbf{x}) > 0$. Let \mathcal{C} denote the set of all maximal cliques of the graph.

• If the field has the local Markov property, then $p(\mathbf{x})$ can be written as a Gibbs distribution:

$$p(\mathbf{x}) = \frac{1}{Z} \exp \left\{ -\sum_{C \in \mathcal{C}} V_C(\mathbf{x}_C) \right\},$$

where Z, the normalizing constant, is called the partition function; $V_C(\mathbf{x}_C)$ are the clique potentials

• If $p(\mathbf{x})$ can be written in Gibbs form for the cliques of some graph, then it has the global Markov property.

Fundamental consequence: every Markov random field can be specified via clique potentials.

Hammersley-Clifford Theorem

Consider a random field ${\bf x}$ on a graph ${\cal G}$, such that $p({\bf x})>0$. Let ${\cal C}$ denote the set of all maximal cliques of the graph.

• If the field has the local Markov property, then $p(\mathbf{x})$ can be written as a Gibbs distribution:

$$p(\mathbf{x}) = \frac{1}{Z} \exp \left\{ -\sum_{C \in \mathcal{C}} V_C(\mathbf{x}_C) \right\},$$

where Z, the normalizing constant, is called the partition function; $V_C(\mathbf{x}_C)$ are the clique potentials

• If $p(\mathbf{x})$ can be written in Gibbs form for the cliques of some graph, then it has the global Markov property.

Fundamental consequence: every Markov random field can be specified via clique potentials.

Regular rectangular lattices

•
$$V = \{(i, j), i = 1, \dots, M, j = 1, \dots, N\}$$

ullet Order-K neighborhood system:

$$\mathcal{N}^K(i,j) = \{(m,n) : (i-m)^2 + (j-n)^2 \le K\}$$

Auto-models

- Only pair-wise interactions
- In terms of clique potentials: $|C|>2 \Rightarrow V_C(\cdot)=0$
- Simplest possible neighborhood models

Gauss-Markov Random Fields (GMRF)

Joint probability function (assuming zero mean):

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}\mathbf{x}^T \mathbf{\Sigma}^{-1} \mathbf{x}\right\}$$

Quadratic form in the exponent:

$$\mathbf{x}^T \mathbf{\Sigma}^{-1} \mathbf{x} = \sum_i \sum_j x_i x_i \Sigma_{i,j}^{-1} \Rightarrow \text{ auto-model}$$

- ullet The neighborhood system is determined by the potential matrix $oldsymbol{\Sigma}^{-1}$
- Local conditionals are univariate Gaussian

Gauss-Markov Random Fields (GMRF)

Joint probability function (assuming zero mean):

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}\mathbf{x}^T \mathbf{\Sigma}^{-1} \mathbf{x}\right\}$$

Quadratic form in the exponent:

$$\mathbf{x}^T \mathbf{\Sigma}^{-1} \mathbf{x} = \sum_i \sum_j x_i x_i \Sigma_{i,j}^{-1} \Rightarrow \text{ auto-model}$$

- ullet The neighborhood system is determined by the potential matrix $oldsymbol{\Sigma}^{-1}$
- Local conditionals are univariate Gaussian

Gauss-Markov Random Fields

Specification via clique potentials:

$$V_C(\mathbf{x}_C) = \frac{1}{2} \left(\sum_{i \in C} \alpha_i^C x_i \right)^2 = \frac{1}{2} \left(\sum_{i \in \mathcal{V}} \alpha_i^C x_i \right)^2$$

as long as $i \notin C \Rightarrow \alpha_i^C = 0$

• The exponent of the GMRF density becomes:

$$-\sum_{C \in \mathcal{C}} V_C(\mathbf{x}_C) = -\frac{1}{2} \sum_{C \in \mathcal{C}} \left(\sum_{i \in \mathcal{V}} \alpha_i^C x_i \right)^2$$
$$= \frac{1}{2} \sum_{C \in \mathcal{C}} \sum_{C \in \mathcal{C}} \left(\sum_{i \in \mathcal{V}} \alpha_i^C \alpha_i^C \right) x_i x_j = -\frac{1}{2} \mathbf{x}^T \mathbf{\Sigma}^{-1} \mathbf{x}.$$

GMRF: Application to image processing

- Classical image "smoothing" prior
- Consider an image to be a rectangular lattice with first-order pixel neighborhoods
- Cliques: pairs of vertically or horizontally adjacent pixels
- Clique potentials: squares of first-order differences (approximation of continuous derivative)

$$V_{\{(i,j),(i,j-1)\}}(x_{i,j},x_{i,j-1}) = \frac{1}{2}(x_{i,j} - x_{i,j-1})^2$$

ullet Resulting $oldsymbol{\Sigma}^{-1}$: block-tridiagonal with tridiagonal blocks

Bayesian image restoration with GMRF prior

Observation model:

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n}, \quad \mathbf{n} \sim N(0, \sigma^2 \mathbf{I})$$

- Smoothing GMRF prior: $p(\mathbf{x}) \propto \exp\{-\frac{1}{2}\mathbf{x}^T\mathbf{\Sigma}^{-1}\mathbf{x}\}$
- MAP estimate:

$$\hat{\mathbf{x}} = [\sigma^2 \mathbf{\Sigma}^{-1} + \mathbf{H}^T \mathbf{H}]^{-1} \mathbf{H}^T \mathbf{y}$$

Bayesian image restoration with GMRF prior

Figure: (a) Original image, (b) Blurred and slightly noisy image, (c) Restored version of (b), (d) No blur, severe noise, (e) Restored version of (d).

- Deblurring: good
- Denoising: oversmoothing; "edge discontinuities" smoothed out
- How to preserve discontinuities?
 - Other prior models
 - Hidden/latent binary random variables
 - Robust potential functions (e.g. L_2 vs. L_1 -norm)

Bayesian image restoration with GMRF prior

Figure: (a) Original image, (b) Blurred and slightly noisy image, (c) Restored version of (b), (d) No blur, severe noise, (e) Restored version of (d).

- Deblurring: good
- Denoising: oversmoothing; "edge discontinuities" smoothed out
- How to preserve discontinuities?
 - Other prior models
 - Hidden/latent binary random variables
 - Robust potential functions (e.g. L_2 vs. L_1 -norm)

- ullet Insert binary variables v to "turn off" clique potentials
- Modified clique potentials:

$$V(x_{i,j}, x_{i,j-1}, v_{i,j}) = \frac{1}{2} (1 - v_{i,j}) (x_{i,j} - x_{i,j-1})^2$$

Intuitive explanation:

- $v=0 \Rightarrow$ clique potential is quadratic ("on")
- $v=1 \Rightarrow V_C(\cdot)=0 \rightarrow$ no smoothing; image has an edge at this location.
- Can choose separate latent variables v and h for vertical and horizontal edges respectively

$$p(\mathbf{x}|\mathbf{h}, \mathbf{v}) \propto \exp\left\{-\frac{1}{2}\mathbf{x}^T\mathbf{\Sigma}^{-1}(\mathbf{h}, \mathbf{v})\mathbf{x}\right\}$$

MAP estimate

 $\hat{\mathbf{x}} = [\sigma^2 \mathbf{\Sigma}^{-1}(\mathbf{h}, \mathbf{v}) + \mathbf{H}^T \mathbf{H}]^{-1} \mathbf{H}^T \mathbf{y}$

- ullet Insert binary variables v to "turn off" clique potentials
- Modified clique potentials:

$$V(x_{i,j}, x_{i,j-1}, v_{i,j}) = \frac{1}{2} (1 - v_{i,j}) (x_{i,j} - x_{i,j-1})^2$$

Intuitive explanation:

- $v = 0 \Rightarrow$ clique potential is quadratic ("on")
- $v=1 \Rightarrow V_C(\cdot)=0 \to \text{no smoothing; image has an edge at this location.}$
- Can choose separate latent variables v and h for vertical and horizontal edges respectively

$$p(\mathbf{x}|\mathbf{h}, \mathbf{v}) \propto \exp\left\{-\frac{1}{2}\mathbf{x}^T\mathbf{\Sigma}^{-1}(\mathbf{h}, \mathbf{v})\mathbf{x}\right\}$$

MAP estimate

$$\hat{\mathbf{x}} = [\sigma^2 \mathbf{\Sigma}^{-1} (\mathbf{h}, \mathbf{v}) + \mathbf{H}^T \mathbf{H}]^{-1} \mathbf{H}^T \mathbf{y}$$

- ullet Insert binary variables v to "turn off" clique potentials
- Modified clique potentials:

$$V(x_{i,j}, x_{i,j-1}, v_{i,j}) = \frac{1}{2} (1 - v_{i,j}) (x_{i,j} - x_{i,j-1})^2$$

Intuitive explanation:

- $v = 0 \Rightarrow$ clique potential is quadratic ("on")
- $v=1 \Rightarrow V_C(\cdot)=0 \to \text{no smoothing; image has an edge at this location.}$
- ullet Can choose separate latent variables v and h for vertical and horizontal edges respectively

$$p(\mathbf{x}|\mathbf{h}, \mathbf{v}) \propto \exp\left\{-\frac{1}{2}\mathbf{x}^T\mathbf{\Sigma}^{-1}(\mathbf{h}, \mathbf{v})\mathbf{x}\right\}$$

 $\hat{\mathbf{x}} = [\sigma^2 \mathbf{\Sigma}^{-1}(\mathbf{h}, \mathbf{v}) + \mathbf{H}^T \mathbf{H}]^{-1} \mathbf{H}^T$

- ullet Insert binary variables v to "turn off" clique potentials
- Modified clique potentials:

$$V(x_{i,j}, x_{i,j-1}, v_{i,j}) = \frac{1}{2} (1 - v_{i,j}) (x_{i,j} - x_{i,j-1})^2$$

Intuitive explanation:

- $v = 0 \Rightarrow$ clique potential is quadratic ("on")
- $v=1 \Rightarrow V_C(\cdot)=0 \to \text{no smoothing; image has an edge at this location.}$
- ullet Can choose separate latent variables v and h for vertical and horizontal edges respectively

$$p(\mathbf{x}|\mathbf{h}, \mathbf{v}) \propto \exp\left\{-\frac{1}{2}\mathbf{x}^T\mathbf{\Sigma}^{-1}(\mathbf{h}, \mathbf{v})\mathbf{x}\right\}$$

• MAP estimate:

$$\hat{\mathbf{x}} = [\sigma^2 \mathbf{\Sigma}^{-1} (\mathbf{h}, \mathbf{v}) + \mathbf{H}^T \mathbf{H}]^{-1} \mathbf{H}^T \mathbf{y}$$

Discontinuity-preserving restoration

Convex potentials:

- Generalized Gaussians: $V(x) = |x|^p, p \in [1, 2]$
- Stevenson:

$$V(x) = \begin{cases} x^2, & |x| < a \\ 2a|x| - a^2, & |x| \ge a \end{cases}$$

• Green: $V(x) = 2a^2 \log \cosh(x/a)$

Non-convex potentials:

- Blake, Zisserman: $V(x) = (\min\{|x|, a\})^2$
- Geman, McClure: $V(x) = \frac{x^2}{x^2 + a^2}$

Ising model (2-D MRF)

			_	_	_		
0	0	0	0	0	0	0	0
0	0	0	0	0	1	1	0
0	0	0	1	1	1	1	0
0	0	0	1	1	1	0	0
0	0	0	0	0	1	0	0
0	0	0	0	1	1	0	0
0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0

- $V(x_i, x_j) = \beta \delta(x_i \neq x_j), \beta$ is a model parameter
- Energy function:

$$\sum_{C \in \mathcal{C}} V_C(\mathbf{x}_C) = \beta(\text{boundary length})$$

Longer boundaries less probable

Application: Image segmentation

- Discrete MRF used to model the segmentation field
- ullet Each class represented by a value $X_s \in \{0,\dots,M-1\}$
- Joint distribution function:

$$P\{Y \in dy, X = x\} = p(y|x)p(x)$$

• (Bayesian) MAP estimation:

$$\hat{\mathbf{X}} = \arg\max_{x} p_{x|Y}(x|Y) = \arg\max_{x} (\log p(Y|x) + \log(p(x)))$$

Application: Image segmentation

- Discrete MRF used to model the segmentation field
- ullet Each class represented by a value $X_s \in \{0,\dots,M-1\}$
- Joint distribution function:

$$P\{Y \in dy, X = x\} = p(y|x)p(x)$$

• (Bayesian) MAP estimation:

$$\hat{\mathbf{X}} = \arg\max_{x} p_{x|Y}(x|Y) = \arg\max_{x} (\log p(Y|x) + \log(p(x)))$$

Application: Image segmentation

- Discrete MRF used to model the segmentation field
- ullet Each class represented by a value $X_s \in \{0,\dots,M-1\}$
- Joint distribution function:

$$P\{Y \in dy, X = x\} = p(y|x)p(x)$$

• (Bayesian) MAP estimation:

$$\hat{\mathbf{X}} = \arg\max_{x} p_{x|Y}(x|Y) = \arg\max_{x} (\log p(Y|x) + \log(p(x)))$$

MAP optimization for segmentation

Data model:

$$p_{y|x}(y|x) = \prod_{s \in S} p(y_s|x_s)$$

• Prior (Ising) model:

$$p_x(x) = \frac{1}{Z} \exp\{-\beta t_1(x)\},\,$$

where $t_1(x)$ is the number of horizontal and vertical neighbors of x having a different value

MAP estimate:

$$\hat{x} = \arg\min_{x} \{-\log p_{y|x}(y|x) + \beta t_1(x)\}$$

Hard optimization problem

MAP optimization for segmentation

Data model:

$$p_{y|x}(y|x) = \prod_{s \in S} p(y_s|x_s)$$

• Prior (Ising) model:

$$p_x(x) = \frac{1}{Z} \exp\{-\beta t_1(x)\},\,$$

where $t_1(x)$ is the number of horizontal and vertical neighbors of x having a different value

MAP estimate:

$$\hat{x} = \arg\min_{x} \{-\log p_{y|x}(y|x) + \beta t_1(x)\}$$

Hard optimization problem

Some proposed approaches

- Iterated conditional modes: iterative minimization w.r.t. each pixel
- Simulated annealing: Generate samples from prior distribution
- Multi-scale resolution segmentation

Figure: (a) Synthetic image with three textures, (b) ICM, (c) Simulated annealing, (d) Multi-resolution approach.

Summary

- Graphical models study probability distributions whose conditional dependencies arise out of specific graph structures
- Markov random field is an undirected graphical model with special factorization properties
- 2-D MRFs have been widely used as priors in image processing problems
- Choice of potential functions leads to different optimization problems