CHAPTER 1: INTRODUCTION TO I'C PROTOCOL

1.1 What is I²C?

I²C (Inter-Integrated Circuit, pronounced "I-squared-C" or "I-two-C") is a **two-wire serial communication protocol** developed by Philips (now NXP Semiconductors) in **1982**.

It allows multiple chips (integrated circuits) to communicate with each other using just two lines:

- SDA (Serial Data line) for sending and receiving data
- SCL (Serial Clock line) for timing and synchronization

It is especially useful when **multiple devices** (sensors, displays, EEPROMs, etc.) need to be connected to a single processor without using many pins.

Think of it like a **shared conversation line** where only two "wires" are used for everyone to talk and listen but only one speaks at a time, and the rest listen.

1.2 Why is I²C Used?

- Saves wiring Only 2 wires for many devices
- Supports multiple devices Each device has a unique address
- Easy to implement in hardware widely supported in microcontrollers and FPGAs
- Flexible speed options from slow sensors to fast peripherals

It's like having **one bus route** that can carry different passengers (devices) without adding extra roads (wires).

1.3 History and Evolution

Year	Milestone in I ² C Development
1982	I ² C protocol introduced by Philips (NXP) at 100 kbit/s (Standard-mode).
1992	Fast-mode (400 kbit/s) introduced for faster devices.
1998	High-speed mode (3.4 Mbit/s) launched for demanding applications.
2007	Ultra-fast mode (5 Mbit/s, write-only) added for displays/LED drivers.
Present	I ² C is standard in almost all microcontrollers, FPGAs, and SoCs, often combined with other protocols like SPI, UART, and CAN.

1.4 Applications of I²C

I²C is widely used in:

• Consumer electronics – TVs, smartphones, digital cameras

- Sensors temperature, humidity, pressure, accelerometers
- **Memory devices** EEPROMs, FRAM
- **Displays** OLED, LCD modules
- VLSI design integrating I²C controllers as IP blocks in SoCs

Example: In a smartphone, I²C connects the **CPU** to the **accelerometer** and **touch controller** so the phone can detect orientation and touch input.

1.5 Role in VLSI

In VLSI (Very Large-Scale Integration), I²C is often implemented as:

- Controller IP placed inside SoC to communicate with external chips
- **Peripheral IP** sensor or memory chip that connects to the SoC
- Used during **design and verification** in simulation tools like **System Verilog/UVM** to test data transfer correctness, timing, and error handling.

CHAPTER 2: TECHNICAL OVERVIEW OF I²C

2.1 Basic Working Principle

I²C uses **two wires** to transfer data between devices:

- SDA (Serial Data line) carries the actual bits of data.
- SCL (Serial Clock line) tells when to read/write each bit.

One device act as the **Master** (controls the clock and communication), and others act as **Slaves** (respond when addressed).

Multiple masters can exist, but only one controls the bus at a time (handled by arbitration).

2.2 Two-Wire Architecture

Here is the basic setup:

markdown

Multiple Slaves

- Pull-up resistors are needed on both SDA and SCL lines (because I²C uses open-drain outputs).
- Any device can pull the line LOW, but releasing it lets it go HIGH (due to pull-ups).

Analogy: Imagine a rope where anyone can pull it down (LOW), but when nobody pulls, it goes back up (HIGH).

2.3 Master-Slave Communication Model

- 1. **Master initiates communication** by sending a START condition.
- 2. Master sends address of the target slave device.
- 3. Slave responds with ACK (acknowledge).
- 4. Data is exchanged (read/write) between master and slave.
- 5. Communication ends with a STOP condition.

2.4 I²C Data Frame Structure

Each transfer is made up of 8-bit data chunks followed by an ACK/NACK bit.

Frame breakdown:

- Start condition (S)
- 7-bit or 10-bit address + R/W bit (0 = write, 1 = read)
- ACK bit from slave
- Data byte(s) + ACK/NACK
- Stop condition (P)

Example:

If the master writes 1010101 (7-bit address) with write = 0, it sends: $1010101 \ 0 \rightarrow slave \ ACK \rightarrow data \ bytes.$

2.5 Timing: Start and Stop Conditions

- Start Condition (S): SDA goes LOW while SCL is HIGH \rightarrow Signals a new transfer.
- Stop Condition (P): SDA goes HIGH while SCL is HIGH → Signals the end of transfer.

Diagram:

S: SDA ↓ while SCL ↑

P: SDA ↑ while SCL ↑

2.6 Acknowledge (ACK) and Not Acknowledge (NACK)

- ACK (0) receiver pulls SDA low after each byte to confirm reception.
- NACK (1) receiver leaves SDA high, signaling "no more data" or "error".

2.7 Multi-Master and Arbitration

If two masters try to use the bus at the same time:

- They compare bits while sending.
- If one sends a HIGH but detects a LOW, it stops (loses arbitration). This ensures **no data collision**.

2.8 Summary Table of I²C Signals

Signal	Purpose	Controlled by	Active Level
SDA	Data line	Master/Slave	LOW (open-drain)
SCL	Clock line	Master	LOW (open-drain)
START	Begin transfer	Master	SDA LOW when SCL HIGH
STOP	End transfer	Master	SDA HIGH when SCL HIGH
ACK	Data confirmation	Receiver	SDA LOW

CHAPTER 3: I²C SPECIFICATIONS AND VARIANTS

3.1 Speed Modes of I²C

Over time, I²C evolved to support different **data transfer speeds** to meet various application needs.

Mode	Max Speed	Typical Use	
Standard-mode (Sm)	100 kbit/s	Simple sensors, EEPROMs	
Fast-mode (Fm)	400 kbit/s	Faster sensors, LCD controllers	
Fast-mode Plus (Fm+)	1 Mbit/s	High-performance sensors	
High-speed mode (Hs-mode)	3.4 Mbit/s	Advanced displays, high-speed periphera	
Ultra-fast mode (UFm)	5 Mbit/s (write-only)	LED drivers, fast DACs	

Example:

- A temperature sensor might use **Standard-mode**,
- An OLED display might use Fast-mode,
- A high-speed DAC might use **Ultra-fast mode**.

3.2 Electrical Characteristics

I²C is based on **open-drain (or open-collector)** outputs:

- Devices can only **pull the line LOW**.
- Lines are pulled HIGH through pull-up resistors.
- This avoids conflicts when multiple devices are connected.

Why pull-up resistors are important:

Without them, SDA and SCL would just "float" and not register proper logic levels.

3.3 Addressing Modes

- 7-bit Addressing Supports up to 128 devices (most common).
- **10-bit Addressing** For systems needing more devices. Every device has a **unique address**, so the master knows who to talk to.

3.4 Multi-Master Support

I²C allows **more than one master**, but:

- Only one master can control the clock at a time.
- Arbitration decides who gets control without corrupting data.
- Very useful in advanced SoC designs where multiple controllers exist.

• Clock Stretching During Communication, on a byte level, device may be able to receive data at fast rate but it needs more time to store a received byte or to prepare a next byte to be transmitted. Slaves can then hold the SCL line low which is known as Clock Stretching. During this time, master goes into a wait state.

3.5 I²C Variants

1. **Fast-mode Plus (Fm+)** – Higher speed (1 Mbit/s) with stronger drive capability.

- 2. **High-speed Mode (Hs-mode)** Uses special signaling to reach 3.4 Mbit/s.
- 3. Ultra-fast Mode (UFm) Write-only, 5 Mbit/s, designed for one-way high-speed data.
- 4. **SMBus (System Management Bus)** I²C-like protocol with extra rules for power management, mainly in computers.
- 5. PMBus (Power Management Bus) Based on SMBus, used for digital power control.

3.6 Typical I²C Connection Diagram

- [R] = Pull-up resistors (value depends on speed and bus length).
- All devices share SDA & SCL.

3.7 Summary Table of I²C Variants

Variant	Max Speed	Direction	Common Use
Standard-mode	100 kbit/s	R/W	Low-speed sensors
Fast-mode	400 kbit/s	R/W	LCD, EEPROM
Fm+	1 Mbit/s	R/W	Industrial sensors
Hs-mode	3.4 Mbit/s	R/W	High-speed peripherals
UFm	5 Mbit/s	Write	LED drivers
SMBus	100-400 kbit/s	R/W	PC management
PMBus	100-400 kbit/s	R/W	Power management

CHAPTER-4: SUMMARY, TRENDS, AND FUTURE SCOPE

4.1 Summary of Key Points

• I²C Basics – A simple two-wire serial communication protocol (SDA & SCL) developed by Philips in 1982 for connecting multiple ICs using minimal wiring.

- **Master–Slave Architecture** One master controls the bus, while multiple slaves respond when addressed.
- **Data Frames** Communication happens in address + data bytes, with ACK/NACK for reliability.
- Speed Modes From Standard-mode (100 kbit/s) to Ultra-fast mode (5 Mbit/s) to suit different applications.
- **VLSI Integration** I²C is implemented as an IP block in SoCs, designed in RTL, and verified using methodologies like SystemVerilog + UVM.
- Advantages Simple wiring, multi-device support, low cost.
- Limitations Short distance, limited speed compared to SPI or UART.

4.2 Current Trends in I²C Technology

- **Higher-speed adoption** More devices use Fast-mode Plus (1 Mbit/s) and High-speed mode (3.4 Mbit/s) for better performance.
- Integration in SoCs I²C controllers are now standard in microcontrollers, FPGAs, and custom ASICs.
- **Mixed-protocol designs** Modern boards combine I²C with SPI, UART, and CAN for hybrid communication systems.
- **Low-power designs** Optimized I²C controllers for battery-powered devices (wearables, IoT sensors).
- **Automotive & Medical use** I²C is being used in automotive ECUs and medical devices for configuration and control.

4.3 Future Scope

- Improved Robustness Better error detection and noise immunity for industrial environments.
- Longer Bus Lengths Research into signal conditioning to extend I²C range beyond a few meters.
- AI-assisted Bus Monitoring Intelligent systems to detect and predict bus failures in real-time.
- Integration with Emerging Technologies I²C coexisting with high-speed serial buses in chiplet-based SoC designs.
- Smart Verification Tools Automated protocol verification for faster chip development cycles.

REFERENCE

- 1. UM10204 I²C-bus Specification and User Manual, Rev. 7.0 (2021) NXP's latest official I²C specification with all speed modes and updates. https://www.nxp.com/docs/en/user-guide/UM10204.pdf
- 2. I²C-bus.org Specification Overview (Version 6.0) Central resource for I²C protocol info and related standards. https://www.i²c-bus.org/specification/
- 3. Kernel.org Introduction to I2C and SMBus
 Documentation confirming UM10204 Rev.7 as current spec.
 https://www.kernel.org/doc/html/latest/i2c/summary.html
- 4. I²C Revision 7 Notes Terminology Updates
 Info on changes like "master/slave" to "controller/target."
 https://forum.arduino.cc/t/new-i2c-standard-document-by-nxp-controller-and-target/913956