Introducción a la Lógica y la Computación

Mariana Badano Héctor Gramaglia
Pedro Sánchez Terraf Mauricio Tellechea
Guido Ivetta César Vallero

FaMAF, 1 de septiembre de 2020

Contenidos estimados para hoy

- Reticulados distributivos
 - Reticulados de partes
 - (Contra)ejemplos
 - Teorema M_3 - N_5
 - Intermezzo: Posets y Partes
 - Precalentamiento: Representación de posets
- Reticulados complementados y álgebras de Boole
 - Leyes de De Morgan
 - Isomorfismo de álgebras de Boole
 - Ejemplos

Avisos

■ Por favor, respeten la distribución alfabética de cada comisión.

Reticulados distributivos

Partes de un conjunto $(\mathcal{P}(A),\subseteq)\longleftrightarrow (\mathcal{P}(A),\cup,\cap)$

■ Todo $X \in \mathcal{P}(A)$ tiene un **complemento**: un $Y \in \mathcal{P}(A)$ tal que

$$X \cup Y = 1^{\mathscr{P}(A)} = A$$
 $X \cap Y = 0^{\mathscr{P}(A)} = \varnothing$.

Reticulados distributivos

Partes de un conjunto $(\mathcal{P}(A),\subseteq)\longleftrightarrow (\mathcal{P}(A),\cup,\cap)$

■ Todo $X \in \mathcal{P}(A)$ tiene un **complemento**: un $Y \in \mathcal{P}(A)$ tal que

$$X \cup Y = 1^{\mathcal{P}(A)} = A$$
 $X \cap Y = 0^{\mathcal{P}(A)} = \emptyset.$

■ Las operaciones distribuyen:

$$X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$$

$$X\cap (Y\cup Z)=(X\cap Y)\cup (X\cap Z).$$

Reticulados distributivos

Partes de un conjunto $(\mathcal{P}(A),\subseteq)\longleftrightarrow (\mathcal{P}(A),\cup,\cap)$

■ Todo $X \in \mathcal{P}(A)$ tiene un **complemento**: un $Y \in \mathcal{P}(A)$ tal que

$$X \cup Y = 1^{\mathcal{P}(A)} = A$$
 $X \cap Y = 0^{\mathcal{P}(A)} = \emptyset$.

■ Las operaciones distribuyen:

$$X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$$

$$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z).$$

Definición

L es **distributivo** si para todos los $a,b,c\in L$,

$$a \lor (b \land c) = (a \lor b) \land (a \lor c)$$
$$a \land (b \lor c) = (a \land b) \lor (a \land c).$$

L es **distributivo** si para todos los $a, b, c \in L$,

$$a \lor (b \land c) = (a \lor b) \land (a \lor c).$$

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c).$$

L es **distributivo** si para todos los $a, b, c \in L$,

$$a \lor (b \land c) = (a \lor b) \land (a \lor c).$$

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c).$$

Ejemplo

- Todos los órdenes totales.
- $(\mathbb{N},|).$
- $(\mathscr{P}(A),\subseteq)$ para cada conjunto A.

L es **distributivo** si para todos los $a, b, c \in L$,

- $a \lor (b \land c) = (a \lor b) \land (a \lor c).$
- $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c).$

Ejemplo

- Todos los órdenes totales. Por análisis por casos
- $(\mathbb{N},|).$
- $(\mathscr{P}(A),\subseteq)$ para cada conjunto A.

L es **distributivo** si para todos los $a, b, c \in L$,

- $\blacksquare \ a \lor (b \land c) = (a \lor b) \land (a \lor c).$
- $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c).$

Ejemplo

- Todos los órdenes totales. Por análisis por casos
- **2** $(\mathbb{N}, |)$. Subreticulados también! D_n
- $(\mathscr{P}(A),\subseteq)$ para cada conjunto A.

Sea L un reticulado. $S\subseteq L$ es un **subuniverso** de (L,\vee,\wedge) si es cerrado por las operaciones \vee y \wedge . En tal caso, (S,\vee,\wedge) es un **subreticulado** de (L,\vee,\wedge) .

Sea L un reticulado. $S\subseteq L$ es un **subuniverso** de (L,\vee,\wedge) si es cerrado por las operaciones \vee y \wedge . En tal caso, (S,\vee,\wedge) es un **subreticulado** de (L,\vee,\wedge) .

Lema

■ Si L es distributivo y L' es isomorfo a L, entonces L' es distributivo

Sea L un reticulado. $S\subseteq L$ es un **subuniverso** de (L,\vee,\wedge) si es cerrado por las operaciones \vee y \wedge . En tal caso, (S,\vee,\wedge) es un **subreticulado** de (L,\vee,\wedge) .

Lema

- \blacksquare Si L es distributivo y L' es isomorfo a L, entonces L' es distributivo
- Si L es distributivo, entonces todos sus subreticulados lo son.

Sea L un reticulado. $S\subseteq L$ es un **subuniverso** de (L,\vee,\wedge) si es cerrado por las operaciones \vee y \wedge . En tal caso, (S,\vee,\wedge) es un **subreticulado** de (L,\vee,\wedge) .

Lema

- Si L es distributivo y L' es isomorfo a L, entonces L' es distributivo
- Si L es distributivo, entonces todos sus subreticulados lo son.

Corolario

Si L es distributivo y L' es isomorfo a un subreticulado L ("L' se incrusta en L"), entonces L' es distributivo.

¡Contraejemplos!

¡Contraejemplos!

Subposets pero no subreticulados

¡Contraejemplos!

Subposets pero no subreticulados

¡Contraejemplos!

Subposets pero no subreticulados

Lema (Propiedad "cancelativa")

Sea L distributivo. Para todos $a, b, c \in L$,

$$\left. \begin{array}{l} a \vee b = a \vee c \\ a \wedge b = a \wedge c \end{array} \right\} \implies b = c.$$

Teorema

Un reticulado L es distributivo si y sólo si ninguno de sus subreticulados es isomorfo a M_3 ni a N_5 (i.e., no se incrustan).

Teorema

Un reticulado L es distributivo si y sólo si ninguno de sus subreticulados es isomorfo a M_3 ni a N_5 (i.e., no se incrustan).

Teóricamente es muy limpio, pero como algoritmo apesta.

Teorema

Un reticulado L es distributivo si y sólo si ninguno de sus subreticulados es isomorfo a M_3 ni a N_5 (i.e., no se incrustan).

Teóricamente es muy limpio, pero como algoritmo apesta.

Para obtener mejores resultados es necesario poder presentar a los reticulados distributivos y sus operaciones de manera más concreta.

Teorema

Un reticulado L es distributivo si y sólo si ninguno de sus subreticulados es isomorfo a M_3 ni a N_5 (i.e., no se incrustan).

Teóricamente es muy limpio, pero como algoritmo apesta.

Para obtener mejores resultados es necesario poder presentar a los reticulados distributivos y sus operaciones de manera más concreta.

Un **teorema de representación** nos permite entender a una familia estructuras "abstractas" en términos de ejemplos concretos (más manejables)

Teorema

Un reticulado L es distributivo si y sólo si ninguno de sus subreticulados es isomorfo a M_3 ni a N_5 (i.e., no se incrustan).

Teóricamente es muy limpio, pero como algoritmo apesta.

Para obtener mejores resultados es necesario poder presentar a los reticulados distributivos y sus operaciones de manera más concreta.

Un **teorema de representación** nos permite entender a una familia estructuras "abstractas" en términos de ejemplos concretos (más manejables)

A continuación, representaremos posets usando partes de conjuntos.

Poset P

Partes $\mathcal{P}(P)$

Poset P

Partes $\mathcal{P}(P)$

Notemos que cada $d \in P$ se corresponde con el **ideal principal** $d \downarrow := \{x \in P : x \leq d\}.$

Poset P

Notemos que cada $d \in P$ se corresponde con el **ideal principal** $d \downarrow := \{x \in P : x \leq d\}.$

 $d\mapsto d\downarrow$ es 1-1

Poset P

Partes $\mathcal{P}(P)$

Notemos que cada $d \in P$ se corresponde con el **ideal principal** $d \downarrow := \{x \in P : x \leq d\}.$

$$d\mapsto d\downarrow$$
 es 1-1

Basta ver que $d = \sup d \downarrow = \sup c \downarrow = c$.

De hecho, hay más:

Lema

Para todos $d, c \in P$, $d \le c \iff d \downarrow \subseteq c \downarrow$.

De hecho, hay más:

Lema

Para todos $d, c \in P$, $d \le c \iff d \downarrow \subseteq c \downarrow$.

Demostración.

 \blacksquare (\Rightarrow) Por la transitividad de \leq .

De hecho, hay más:

Lema

Para todos $d, c \in P$, $d \le c \iff d \downarrow \subseteq c \downarrow$.

Demostración.

- \blacksquare (\Rightarrow) Por la transitividad de \leq .
- \blacksquare (\Leftarrow) $d \in c \downarrow$ implies $d \leq c$.

De hecho, hay más:

Lema

Para todos $d, c \in P$, $d \le c \iff d \downarrow \subseteq c \downarrow$.

Demostración.

- \blacksquare (\Rightarrow) Por la transitividad de \leq .
- \blacksquare (\Leftarrow) $d \in c \downarrow$ implica $d \leq c$.

Teorema

 (P, \leq) es isomorfo a un subposet de $(\mathcal{P}(P), \subseteq)$.

De hecho, hay más:

Lema

Para todos $d, c \in P$, $d \le c \iff d \downarrow \subseteq c \downarrow$.

Demostración.

- \blacksquare (\Rightarrow) Por la transitividad de \leq .
- \blacksquare (\Leftarrow) $d \in c \downarrow$ implica $d \leq c$.

Teorema

 (P,\leq) es isomorfo a un subposet de $(\mathcal{P}(P),\subseteq)$.

Un teorema de representación más ajustado nos diría a qué subposets de partes es isomorfo.

De hecho, hay más:

Lema

Para todos $d, c \in P$, $d \le c \iff d \downarrow \subseteq c \downarrow$.

Demostración.

- \blacksquare (\Rightarrow) Por la transitividad de \leq .
- \blacksquare (\Leftarrow) $d \in c \downarrow$ implica $d \leq c$.

Teorema

 (P, \leq) es isomorfo a un subposet de $(\mathcal{P}(P), \subseteq)$.

Un teorema de representación más ajustado nos diría a qué subposets de partes es isomorfo.

Además "subposet" no es compatible con las operaciones.

Reticulados complementados y álgebras de Boole

Recordemos:

- L es **acotado** si tiene primer elemento 0^L y último elemento 1^L .
- Sea L acotado y sean $a, b \in L$. b es un **complemento** de a si

$$a \lor b = 1^L$$
 $a \land b = 0^L$.

L es **complementado** si todo elemento tiene complemento.

Reticulados complementados y álgebras de Boole

Recordemos:

- L es **acotado** si tiene primer elemento 0^L y último elemento 1^L .
- Sea L acotado y sean $a, b \in L$. b es un **complemento** de a si

$$a \lor b = 1^L$$
 $a \land b = 0^L$.

L es **complementado** si todo elemento tiene complemento.

Definición (Álgebra de Boole)

Un **álgebra de Boole** $(B,\vee,\wedge,\neg,0,1)$ es una estructura donde $(B,\vee,\wedge,0,1)$ es un retículo distributivo acotado y $\neg:B\to B$ da un complemento:

$$a \lor \neg a = 1$$
 $a \land \neg a = 0$.

Leyes de De Morgan

Proposición

En toda álgebra de Boole, se dan

$$\neg(x \lor y) = \neg x \land \neg y \qquad \neg(x \land y) = \neg x \lor \neg y$$

Leyes de De Morgan

Proposición

En toda álgebra de Boole, se dan

$$\neg(x \lor y) = \neg x \land \neg y \qquad \neg(x \land y) = \neg x \lor \neg y$$

Demostración.

Ver que $\neg x \land \neg y$ es complemento de $x \lor y$ y aplicar la propiedad cancelativa. La segunda ley es análoga.

Definición

Un isomorfismo de álgebras de Boole

 $f:(B,\vee,\wedge,\neg,0,1)\to(B,\vee',\wedge',\neg',0',1')$ es un iso de retículos $f:(B,\vee,\wedge)\to(B,\vee',\wedge')$ tal que para todo $x\in B$,

$$f(\neg x) = \neg' f(x)$$
 y $f(0) = 0'$ y $f(1) = 1'$

Definición

Un isomorfismo de álgebras de Boole

 $f:(B,\vee,\wedge,\neg,0,1) \to (B,\vee',\wedge',\neg',0',1')$ es un iso de retículos $f:(B,\vee,\wedge) \to (B,\vee',\wedge')$ tal que para todo $x \in B$,

$$f(\neg x) = \neg' f(x)$$
 y $f(0) = 0'$ y $f(1) = 1'$

Son lo mismo que los isos de posets (inducidos por la estructura de retículo).

Definición

Un isomorfismo de álgebras de Boole

 $f:(B,\vee,\wedge,\neg,0,1)\to (B,\vee',\wedge',\neg',0',1')$ es un iso de retículos $f:(B,\vee,\wedge)\to (B,\vee',\wedge')$ tal que para todo $x\in B$,

$$f(\neg x) = \neg' f(x)$$
 y $f(0) = 0'$ y $f(1) = 1'$

Son lo mismo que los isos de posets (inducidos por la estructura de retículo).

Teorema

$$\begin{array}{l} f:(B,\vee,\wedge,\neg,0,1)\to (B,\vee',\wedge',\neg',0',1') \text{ es iso } \Longleftrightarrow \\ f:(B,\leq)\to (B',\leq') \text{ es iso.} \end{array}$$

Definición

Un isomorfismo de álgebras de Boole

 $f:(B,\vee,\wedge,\neg,0,1)\to (B,\vee',\wedge',\neg',0',1')$ es un iso de retículos $f:(B,\vee,\wedge)\to (B,\vee',\wedge')$ tal que para todo $x\in B$,

$$f(\neg x) = \neg' f(x)$$
 y $f(0) = 0'$ y $f(1) = 1'$

Son lo mismo que los isos de posets (inducidos por la estructura de retículo).

Teorema

$$f:(B,\vee,\wedge,\neg,0,1)\to(B,\vee',\wedge',\neg',0',1')$$
 es iso \iff $f:(B,\leq)\to(B',\leq')$ es iso.

Demostración.

Si y es complemento de x, f(x) es complemento de f(y) (por estar definido usando el orden), y aplico propiedad cancelativa.

Bien, ahora a los ejemplos de álgebras de Boole.

Bien, ahora a los ejemplos de álgebras de Boole.

Ejemplo

 $\blacksquare \mathscr{P}(A)$ para todo A.

Bien, ahora a los ejemplos de álgebras de Boole.

- $\blacksquare \mathscr{P}(A)$ para todo A.
- $D_n \operatorname{con} n = p_1 \cdots p_m$ producto de primos distintos.

Bien, ahora a los ejemplos de álgebras de Boole.

- $\blacksquare \mathscr{P}(A)$ para todo A.
- D_n con $n = p_1 \cdots p_m$ producto de primos distintos. Es isomorfa a $\mathscr{P}(\{p_1, \dots, p_m\})$.

Bien, ahora a los ejemplos de álgebras de Boole.

- $\blacksquare \mathscr{P}(A)$ para todo A.
- $D_n \operatorname{con} n = p_1 \cdots p_m$ producto de primos distintos. Es isomorfa a $\mathscr{P}(\{p_1, \dots, p_m\})$. Es decir, esencialmente parte del ejemplo anterior.

Bien, ahora a los ejemplos de álgebras de Boole.

- $\blacksquare \mathscr{P}(A)$ para todo A.
- $D_n \operatorname{con} n = p_1 \cdots p_m$ producto de primos distintos. Es isomorfa a $\mathscr{P}(\{p_1, \dots, p_m\})$. Es decir, esencialmente parte del ejemplo anterior.
- **...**

Bien, ahora a los ejemplos de álgebras de Boole.

- $\blacksquare \mathscr{P}(A)$ para todo A.
- $D_n \operatorname{con} n = p_1 \cdots p_m$ producto de primos distintos. Es isomorfa a $\mathcal{P}(\{p_1, \dots, p_m\})$. Es decir, esencialmente parte del ejemplo anterior.
- **...**
- **.** . . .

Bien, ahora a los ejemplos de álgebras de Boole.

Ejemplo

- $\blacksquare \mathscr{P}(A)$ para todo A.
- $D_n \operatorname{con} n = p_1 \cdots p_m$ producto de primos distintos. Es isomorfa a $\mathcal{P}(\{p_1, \dots, p_m\})$. Es decir, esencialmente parte del ejemplo anterior.
- **.**..
- **...**

Sí, hay más ejemplos. Pero parece que el conjunto de partes es uno muy importante.

Bien, ahora a los ejemplos de álgebras de Boole.

Ejemplo

- $\blacksquare \mathscr{P}(A)$ para todo A.
- $D_n \operatorname{con} n = p_1 \cdots p_m$ producto de primos distintos. Es isomorfa a $\mathcal{P}(\{p_1, \dots, p_m\})$. Es decir, esencialmente parte del ejemplo anterior.
- **.**..
- ...

Sí, hay más ejemplos. Pero parece que el conjunto de partes es uno muy importante.

Para continuar, podemos imaginarnos formas de asociar una familia de conjuntos a $(B, \vee, \wedge, \neg, 0, 1)$.

Bien, ahora a los ejemplos de álgebras de Boole.

Ejemplo

- $\blacksquare \mathscr{P}(A)$ para todo A.
- $D_n \operatorname{con} n = p_1 \cdots p_m$ producto de primos distintos. Es isomorfa a $\mathcal{P}(\{p_1, \dots, p_m\})$. Es decir, esencialmente parte del ejemplo anterior.
-
- **...**

Sí, hay más ejemplos. Pero parece que el conjunto de partes es uno muy importante.

Para continuar, podemos imaginarnos formas de asociar una familia de conjuntos a $(B, \lor, \land, \neg, 0, 1)$.

Fuerza bruta

Una estrategia a lo bestia (exponencial)

Si todo falla, considerá todas las combinaciones.

Fuerza bruta

Una estrategia a lo bestia (exponencial)

Si todo falla, considerá todas las combinaciones.

En este caso, es arrancar con $\mathcal{P}(B)$.

Esta estrategia de fuerza bruta también se usará en la tercera parte de la materia.

Fuerza bruta

Una estrategia a lo bestia (exponencial)

Si todo falla, considerá todas las combinaciones.

En este caso, es arrancar con $\mathcal{P}(B)$.

Esta estrategia de fuerza bruta también se usará en la tercera parte de la materia.

¿Cómo asociamos a cada $b \in B$ un $F(b) \subseteq B$?

Ayuda: usemos el orden (y b) para definir F(b).

Teorema de Representación de álgebras de Boole finitas

Teorema

Para toda álgebra de Boole finita B existe A tal que B es isomorfa a $\mathcal{P}(A)$.

¿Quién es A?

¿Qué objetos juegan el rol de elementos de A?

Átomos

Sea B un poset finito acotado con al menos dos elementos.

Definición

 $a \in B$ es un **átomo** si a cubre a 0. At(B) es el conjunto de los átomos de B.

Átomos

Sea ${\it B}$ un poset finito acotado con al menos dos elementos.

Definición

 $a \in B$ es un **átomo** si a cubre a 0. At(B) es el conjunto de los átomos de B.

Ejercicios

- Supongamos $a \in At(B)$. ¿Cuántos valores posibles puede dar $b \wedge a$?
- Encontrar el conjunto de átomos de D_n . Actividad en Aula virtual!
- Sea $a \le b$. Entonces a es átomo de $b \iff a$ es átomo del subposet $b \downarrow$.

