Introduction to Data Management CSE 344

Lecture 18: Lossless Decomposition (Supplement needed for Webquiz)

Announcements

- Webquiz due tomorrow! (last one)
- No lecture on Monday (Presidents' day)
- Homework 5 due next Friday

Decompositions in General

$$R_1$$
 = projection of R on A_1 , ..., A_n , B_1 , ..., B_m
 R_2 = projection of R on A_1 , ..., A_n , C_1 , ..., C_p

Lossless Join Decomposition

Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
Gizmo	19.99	Camera

Name	Price	
Gizmo	19.99	
OneClick	24.99	
Gizmo	19.99	

Name	Category	
Gizmo	Gadget	
OneClick	Camera	
Gizmo	Camera	

Lossy Join Decomposition

Sometimes it is not:

Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
Gizmo	19.99	Camera

What's incorrect??

Price	Category
19.99	Gadget
24.99	Camera
19.99	Camera

Decomposition in General

$$\begin{array}{c} R(A_1, ..., A_n, B_1, ..., B_m, C_1, ..., C_p) \\ \hline \\ S_1(A_1, ..., A_n, B_1, ..., B_m) \\ \hline \\ S_2(A_1, ..., A_n, C_1, ..., C_p) \\ \hline \end{array}$$

$$R = S_1 \bowtie S_2$$

Fact: If $A_1, ..., A_n \rightarrow B_1, ..., B_m$ then the decomposition is lossless

It follows that every BCNF decomposition is losselss

In general: $R = S_1 \bowtie ... \bowtie S_n$

The Chase Test for Lossless Join

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$

R satisfies: $A \rightarrow B$, $B \rightarrow C$, $CD \rightarrow A$

$$S1 = \Pi_{AD}(R)$$
, $S2 = \Pi_{AC}(R)$, $S3 = \Pi_{BCD}(R)$,

hence R⊆ S1 ⋈ S2 ⋈ S3

Need to check: $R \supseteq S1 \bowtie S2 \bowtie S3$

Suppose (a,b,c,d) \in S1 \bowtie S2 \bowtie S3 Is it also in R?

R must contain the following tuples:

"Chase" them (apply FDs):

A	В	C	D
а	b1	c1	d
а	b2	С	d2
а3	b	С	d

Why? $(a,d) \in S1 = \Pi_{AD}(R)$ $(a,c) \in S2 = \Pi_{BD}(R)$ $(b,c,d) \in S3 = \Pi_{BCD}(R)$

A	В	C	D
а	b1	с1	d
а	b1	С	d2
a3	b	С	d

A	В	С	D
а	b1	C	d
а	b1	С	d2
а3	b	С	d

A	В	С	D
а	b1	С	d
а	b1	С	d2
а	b	С	d

Hence R contains (a,b,c,d)