Galois Theory HW04

Xianzhi

Due March 11, 2022

Exercise 5.3.9

Question 1. Is the polynomial $X^4 - 2$ irreducible over the field $\mathbb{Q}(\sqrt{3})$?

Soln

Assume $X^4 - 2$ is reducible over $\mathbb{Q}(\sqrt{3})$. Then $X^4 - 2$ either factor into 1 degree one factor and 1 degree three factor, or factor into 2 degree two factor (factor means polynomial).

Case 1

 X^4-2 has a degree one factor in $\mathbb{Q}(\sqrt{3})$. so it has a root in $\mathbb{Q}(\sqrt{3})$. The roots of X^4-2 are

$$\sqrt[4]{2}$$
, $i\sqrt[4]{2}$, $-\sqrt[4]{2}$, $-i\sqrt[4]{2}$. (1)

since $\mathbb{Q}(\sqrt{3})$ is a degree 2 extension, (Because $\sqrt{3}$ has minimal polynomial $X^2 - 3$, which is irreducible by Eisenstein,)

$$\mathbb{Q}(\sqrt[2]{3}) = \left\{ a + b\sqrt[2]{3} \mid a, b \in \mathbb{Q} \right\} \subseteq \mathbb{R}, \tag{2}$$

since $i\sqrt[4]{2}, -i\sqrt[4]{2} \notin \mathbb{R}$, we conclude that they are not in $\mathbb{Q}(\sqrt[2]{3})$.

Now, observe $\sqrt[4]{2}$ and $-\sqrt[4]{2}$ has X^4-2 as their minimal polynomial over \mathbb{Q} , and X^4-2 is irreducible over \mathbb{Q} by Eisenstein, so if $\sqrt[4]{2}$ were to be in $\mathbb{Q}(\sqrt[4]{3})$, then necessarily $\mathbb{Q}(\sqrt[4]{2}) \subseteq \mathbb{Q}(\sqrt[4]{3})$, but $\mathbb{Q}(\sqrt[4]{2})$ is degree 4 extension, and $\mathbb{Q}(\sqrt[4]{3})$ is degree 2 extension, by the tower law, we have a contradiction. The argument for $-\sqrt[4]{2}$ is the same. End of Case 1.

Case 2

 X^4-2 factor into 2 degree two polynomial over $\mathbb{Q}(\sqrt[2]{3})$, thus,

$$(X^2 - \sqrt{2})(X^2 + \sqrt{2}) \tag{3}$$

and $\sqrt[2]{2} \in \mathbb{Q}(\sqrt[2]{3})$.

Comment from instructor: There are other ways to factor $X^4 - 2$ as the product of two quadratic polynomials.

Since $\mathbb{Q}(\sqrt{3})$ is degree 2 extension, we could write $\sqrt{2} = a + b\sqrt{3}$ for $a, b \in \mathbb{Q}$. So $2 = a^2 + 3b^2 + 2ab\sqrt{3}$. Thus,

$$2ab = 0 (4)$$

$$2 = a^2 + 3b^2 (5)$$

If a=0, then $2/3=b^2$, which implies $b=\sqrt{\frac{2}{3}}$, which is a contradiction with $b\in\mathbb{Q}$. If b=0, then $2=a^2$ which implies $a=\sqrt{2}$, which is a contradiction with $a\in\mathbb{Q}$. If a,b both zero, then 2=0, which is a contradiction.

Thus $\sqrt{2} \notin \mathbb{Q}(\sqrt{3})$. So $X^4 - 2$ cannot factor into 2 degree two polynomial over $\mathbb{Q}(\sqrt{3})$. End of Case 2.

Exercise 6.4.6

Question 2. Let L be the splitting field over \mathbb{Q} of X^5-2 over \mathbb{Q} . Show that the Galois group $G := \Gamma(L : \mathbb{Q})$ has order 20, and G has a normal subgroup N with |N| = 5 such that the factor group G/N is cyclic.

Let L be the splitting field of $X^5 - 2$ over \mathbb{Q} .

$$L = \mathbb{Q}(\sqrt[5]{2}, \omega) \text{ where } \omega = e^{\frac{2\pi i}{5}}$$
 (6)

we have

$$L \subseteq \mathbb{Q}(\sqrt[5]{2}, \sqrt[5]{2}\omega, \sqrt[5]{2}\omega^2, \sqrt[5]{2}\omega^3, \sqrt[5]{2}\omega^4) \tag{7}$$

because $\sqrt[5]{2}$ is in there, and $\omega = \frac{\sqrt[5]{2}\omega}{\sqrt[5]{2}}$ is in there.

$$L \supseteq \mathbb{Q}(\sqrt[5]{2}, \sqrt[5]{2}\omega, \sqrt[5]{2}\omega^2, \sqrt[5]{2}\omega^3, \sqrt[5]{2}\omega^4)$$
(8)

because we can multiply $\sqrt[5]{2}$ and ω to generate the roots.

Claim: $[L:\mathbb{Q}] = 20$.

First $[\mathbb{Q}(\sqrt[5]{2}:\mathbb{Q}] = 5$ since $X^5 - 2$ has $\sqrt[5]{2}$ as a root, and $X^5 - 2$ is irreducible by Eisenstein (let p = 2), so $X^5 - 2$ is the minimal polynomial of $\sqrt[5]{2}$ over \mathbb{Q} , and its degree 5.

 $[\mathbb{Q}(\omega):\mathbb{Q}]=4$ since ω is a root of $X^4+X^3+X^2+X+1$, so the degree of $\mathbb{Q}(\omega)$ is at most 4, since X^5-1 has 4 primitive roots of unity, the degree $[\mathbb{Q}(\omega):\mathbb{Q}]$ is 4.

Thus, since $\mathbb{Q}(\omega)$ and $\mathbb{Q}(\sqrt[5]{2})$ are intermediate fields in L, their degree devides degree of L over \mathbb{Q} . so $[L:\mathbb{Q}]$ is a multiple of 20. but by previous result

$$[K(\alpha_1, \dots, \alpha_n) : K] \le deg_K(\alpha_1) \cdots deg_K(\alpha_n)$$
(9)

$$[L:\mathbb{Q}] \le 5 \cdot 4 = 20 \tag{10}$$

$$\implies [L:\mathbb{Q}] = 20 \tag{11}$$

Since L is splitting field of $X^5 - 2 \in \mathbb{Q}[X]$ that has no multiple roots, we conclude L over \mathbb{Q} is Galois extension.

$$|G| = [L:\mathbb{Q}] = 20 \tag{12}$$

where $G := \Gamma(L : \mathbb{Q})$.

Now, we try to show $\mathbb{Q}(\omega)$ over \mathbb{Q} is Galois extension.

$$m_{\mathbb{O}}^{\omega} = X^4 + X^3 + X^2 + X + 1 \tag{13}$$

has roots $\omega = e^{2\pi i/5}$, ω^2 , ω^3 , ω^4 , so $\mathbb{Q}(\omega)$ is the splitting field of $X^4 + X^3 + X^2 + X + 1$ over \mathbb{Q} , with no repeated roots, so by Theorem 6.3, the extension is Galois.

Thus, we apply Galois correspondence to conclude there exists a normal subgroup of G, which is $\mathbb{Q}(\omega)^* = \Gamma(L : \mathbb{Q}(\omega)) =: N$ and we have

$$\Gamma(\mathbb{Q}(\omega):\mathbb{Q}) \cong G/\Gamma(L:\mathbb{Q}(\omega))$$
 (14)

Thus,

$$4 = [\mathbb{Q}(\omega) : \mathbb{Q}] = |\Gamma(\mathbb{Q}(\omega) : \mathbb{Q})| = |G/N| = \frac{|G|}{|N|}.$$
 (15)

Thus,

$$4 = \frac{20}{|N|} \implies |N| = 5. \tag{16}$$

Now, we show G/N is cyclic by showing $\Gamma(\mathbb{Q}(\omega) : \mathbb{Q})$ is cyclic. One element $b \in \Gamma(\mathbb{Q}(\omega) : \mathbb{Q})$ is conjugation restricted to $\mathbb{Q}(\omega)$.

$$b: \omega^2 \mapsto \omega^3 \tag{17}$$

$$w \mapsto w^4$$
 (18)

Another element of $\Gamma(\mathbb{Q}(\omega):\mathbb{Q})$ is

$$a: \omega \mapsto \omega^2$$
 (19)

$$a(\omega) = \omega^2 \tag{20}$$

$$a(\omega^2) = (a(\omega))^2 = \omega^4 \tag{21}$$

$$a(\omega^3) = (a(\omega))^3 = \omega^6 = \omega \tag{22}$$

$$a(\omega^4) = (a(\omega))^4 = \omega^8 = \omega^3 \tag{23}$$

$$a(\omega^5 = 1) = (a(\omega))^5 = \omega^{10} = 1$$
 (24)

Comment from instructor: Why does $\Gamma(\mathbb{Q}(\omega) : \mathbb{Q})$ have an element a with $a(\omega) = \omega^2$? Observe $b = a^2$.

$$a^2(\omega) = a(\omega^2) = \omega^4 \tag{25}$$

$$a^2(\omega^2) = a(\omega^4) = \omega^3 \tag{26}$$

We could let $c := a^3$

$$c(\omega) = a^3(\omega) = a(\omega^4) = \omega^3 \tag{27}$$

$$c(\omega^2) = a^3(\omega^2) = a(\omega^3) = \omega \tag{28}$$

$$c(\omega^3) = a^3(\omega^3) = a^2(\omega) = \omega^4 \tag{29}$$

observe $a^4 = e$

$$a^{4}(\omega) = a(a^{3}(\omega)) = a(\omega^{3}) = \omega$$
(30)

$$a^4(\omega^2) = a(\omega) = \omega^2 \tag{31}$$

$$a^4(\omega^3) = a(\omega^4) = \omega^3 \tag{32}$$

$$a^{4}(\omega^{4}) = a^{3}(\omega^{3}) = \omega^{4} \tag{33}$$

Thus, we found the generator a and all four elements in $\Gamma(\mathbb{Q}(\omega) : \mathbb{Q})$, showing it is indeed cyclic.

Exercise 6.4.7

Question 3. Let p be an irreducible polynomial over a subfield K of \mathbb{C} , and denote by L the splitting field of p over K. Show that if the Galois group $\Gamma(L:K)$ is abelian (i.e. commutative), then its order equals the degree of p.

Proof. Let p be irreducible polynomial over $K \subseteq \mathbb{C}$. Let L be the splitting field of p over K. Let α be a root of p. Let $m = m_K^{\alpha}$ be the minimal polynomial having α as a root over K. Then m divide p. But p is already irreducible, so we conclude that m = p. (We can assume p is monic, because if not, we could scale by a constant from K to make it monic.) Since L is the splitting field of p over K, and $K \subseteq L \subseteq \mathbb{C}$, so p has no multiple roots in L, we apply the equivalence theorem to say L of K is a Galois extension. Since $\Gamma(L:K)$ is abelian, all subgroups are normal. We apply Galois correspondence.

$$\Gamma(K(\alpha):K) \cong \Gamma(L:K)/\Gamma(L:K(\alpha))$$
 (34)

and $K(\alpha)$: K is Galois extension by Galois correspondence. so $K(\alpha)$: K is normal and separable. Thus, since we established $m_K^{\alpha} = p$, $K(\alpha)$ is normal, so $K(\alpha)$ contain all the roots of $m_K^{\alpha} = p$, so $K(\alpha) \supset L$, and since $K(\alpha) \subseteq L$, we conclude $K(\alpha) = L$. Thus,

$$|\Gamma(L:K)| = [L:K] = [K(\alpha):K] = deg \ m_K^{\alpha} = deg \ p \tag{35}$$

and the first equal sign is because extension is Galois.

A question from HW02

Question 4. Show number of automorphisms of a finite degree field extension divides the degree of the field extension.

Let $K \subset L, L : K$ be a finite degree field extension. Recall

$$\Gamma(L:K) = \{g \in \Gamma(L): g(x) = x \quad \forall x \in K\}$$
 WTS:
$$|\Gamma(L:K)| \mid [L:K].$$

Recall Artin's theorem, let $\Gamma(L:K)$ be the finite subgroup. (Since $|\Gamma(L:K)|$ is bounded by $[L:K] < \infty$.) and

$$M = \{x \in L : \forall g \in \Gamma(L : K) : g(x) = x\}$$

so $K \subset M$, and $[L:M] = |\Gamma(L:K)|$. Thus, consider $K \subset M \subset L$,

$$[L:K] = [L:M][M:K]$$

where $[L:M] = |\Gamma(L:K)|$, so $|\Gamma(L:K)|$ divides [L:K].