Spis treści

1	Log	ika I
	1.1	Prawa logiki
		1.1.1 Prawa łączności
		1.1.2 Prawa przemienności
		1.1.3 Prawa impotentności
		1.1.4 Prawo rozdzielności
		1.1.5 Prawo de Morgana
		1.1.6 Prawo podwójnej negacji
		1.1.7 Prawo transpozycji
		1.1.8 Prawo eksportacji-importacji
	1.2	Wnioskowanie
		1.2.1 Reguły wnioskowania
	1.3	Przekształcenia
	1.4	Postaci normalne
	1.5	Sekwenty
	1.6	Kwantyfikatory
2	Teo	ria Mnogości
	2.1	Zbiory
	2.2	Relacje
		2.2.1 Złożenie relacji
		2.2.2 Rodzaje relacji
		2.2.3 Relacja równoważności
		2.2.4 Relacje porządkujące
		2.2.5 Zbiory uporządkowane
	2.3	Kresy
		2.3.1 Kres górny
		2.3.2 Kres dolny
	2.4	Funkcje
	2.5	Liczby naturalne
	2.6	Zasada indukcji matematycznej
	2.7	Liczby całkowite
	2.8	Liczby wymierne
	2.9	Porządki
		2.9.1 Porządek produktowy
		2.9.2 Porządek leksykograficzny
	2.10	Właściwe odcinki początkowe
	2.11	Liczby rzeczywiste
	2.12	Dobry porządek
	2.13	Homomorfizmy
	2.14	Aksojmat wyboru
	2.15	Liczby kardynalne
		2.15.1 Twierdzenie Cantora
	2.16	Twierdzenie Cantora-Bernsteina
		Twierdzenie Hessenberga
		Hipotoga continuum

1 Logika

1.1 Prawa logiki

1.1.1 Prawa łączności

• $(p \land q) \land r \leftrightarrow p \land (q \land r)$

- $(p \lor q) \lor r \leftrightarrow p \lor (q \lor r)$
- $\bullet \ ((p \leftrightarrow q) \leftrightarrow r) \leftrightarrow (p \leftrightarrow (q \leftrightarrow r))$
- 1.1.2 Prawa przemienności
 - $\bullet \ p \wedge q \leftrightarrow q \wedge p$
 - $p \lor q \leftrightarrow q \lor p$
 - $(p \leftrightarrow q) \leftrightarrow (q \leftrightarrow p)$
- 1.1.3 Prawa impotentności
 - $\bullet \ p \lor p \leftrightarrow p$
 - $\bullet \ p \wedge p \leftrightarrow p$
- 1.1.4 Prawo rozdzielności

$$(p \land q) \lor r \leftrightarrow (p \lor r) \land (q \lor r)$$

1.1.5 Prawo de Morgana

$$\neg(p \land q) \leftrightarrow \neg p \lor \neg q$$

1.1.6 Prawo podwójnej negacji

$$\neg\neg p \leftrightarrow p$$

1.1.7 Prawo transpozycji

$$(p \to q) \leftrightarrow (\neg q \to \neg p)$$

1.1.8 Prawo eksportacji-importacji

$$(p \land q) \to r \leftrightarrow p \to (q \to r)$$

1.2 Wnioskowanie

$$\frac{x_1, x_2, \dots, x_n}{y}$$

 x_n - założenia, y - teza

Wnioskowanie jest dedukcyjne jeżeli $x_1 \wedge x_2 \cdots \wedge x_n \to y$ jest tautologią. Jeżeli wniosek wynika logicznie z przesłanek to wnioskowanie jest dedukcyjne.

1.2.1 Reguły wnioskowania

Poniższe reguły są zawsze poprawne.

$$\frac{p, p \to q}{q}$$

$$\frac{p \to q, q \to r}{p \to r}$$

$$\frac{p \to q, \neg q}{\neg p}$$

$$\frac{p \to q, q \to p}{p \leftrightarrow q}$$

1.3 Przekształcenia

$$p \to q \leftrightarrow \neg p \lor q$$

$$(p \leftrightarrow q) \leftrightarrow (p \to q) \land (q \to p)$$

$$X \downarrow Y = \neg (x \lor y)$$

$$X \uparrow Y = \neg (x \land y)$$

1.4 Postaci normalne

APN - alternatywna postać normalna. Zbiór klauzul nad zmiennymi połączonymi operatorem alternatywy. $(p \land q) \lor (\neg p \land q)$. Jeśli w APN jest para klauzul przeciwnych to jest to anty-tautologia.

KPN - koniunkcyjna postać normalna. Zbiór klauzul nad zmiennymi połączonymi operatorem koniunkcji. $(p \lor q) \land (\neg p \lor q)$. Jeśli w KPN jest para klauzul przeciwnych to jest to tautologia.

p	q	r	APN	KPN
1	1	1	$p \wedge q \wedge r$	$\neg p \lor \neg q \lor \neg r$
1	1	0	$p \wedge q \wedge \neg r$	$\neg p \vee \neg q \vee r$
1	0	1	$p \wedge \neg q \wedge r$	$\neg p \lor q \lor \neg r$

1.5 Sekwenty

Sekwent to para zbiorów formuł logicznych powstający z normalnego zapisu algebry logicznej.

Przy pomocy takiego drzewa można sprawdzić czy formula jest tautologią.

1.6 Kwantyfikatory

$$\forall_{A(x)}B(x) \leftrightarrow \forall_x(A(x) \to B(x))$$

$$\exists_{A(x)}B(x) \leftrightarrow \exists_x(A(x) \land B(x))$$

2 Teoria Mnogości

2.1 Zbiory

- $X \subset Y \leftrightarrow \forall x (x \in X \to x \in Y)$
- $X \cup Y \leftrightarrow \{x : x \in X \lor x \in Y\}$
- $X \cap Y \leftrightarrow \{x : x \in X \land x \in Y\}$
- $X \setminus Y \leftrightarrow \{x : x \in X \land \neg x \in Y\}$

- $A \div B = \{x : (x \in A \land \neg x \in B) \lor (\neg x \in A \land x \in B)\}$
- $\bullet \bigcup_{i \in I} A_i = \{x : \exists_{i \in I} (x \in A_i)\}\$
- $\bullet \bigcap_{i \in I} A_i = \{x : \forall_{i \in I} (x \in A_i)\}\$

 $\mathbb U$ - uniwer sum

$$A' = \mathbb{U} \setminus A$$

$$A \times B = \{ \langle x, y \rangle : x \in A \land y \in B \}$$

2.2 Relacje

$$R^{-1} = \{ \langle y, x \rangle : \langle x, y \rangle \in R \}$$

$$xRy \leftrightarrow < x,y> \in R$$

2.2.1 Złożenie relacji

$$R \circ S = \{ \langle x, z \rangle : \exists_y (xRy \land ySz) \}$$

Przykład:

$$R = \{ <1, 2>, <2, 3> \}$$

$$S = \{ <2, 3>, <3, 4> \}$$

$$R \circ S = \{ <1, 3>, <2, 4> \}$$

2.2.2 Rodzaje relacji

- Zwrotna $\forall_{x \in A} x R x$
- Preciwzwrotna $\neg \exists_{x \in A} x R x$
- Symetryczna $\forall_{x,y\in A}(xRy\to yRx)$
- Przeciwsymetryczna $\forall_{x,y\in A}(xRy\to \neg yRx)$
- Antysymetryczna $\forall_{x,y \in A} ((xRy \land yRx) \rightarrow x = y)$
- Przechodnia $\forall_{x,y,z\in A}((xRy \land yRz) \to xRz)$
- Spójna $\forall_{x,y\in A}(xRy\vee yRx)$
- Słabospójna $\forall_{x,y\in A}(xRy\vee x=y\vee yRx)$

2.2.3 Relacja równoważności

Relacja równoważności to relacja która jest zwrotna, symetryczna i przechodnia. Taka relacja może mieć klasy abstrakcji $[x]_R = \{y : xRy\}$

2.2.4 Relacje porządkujące

Relację $R \subset A_2$ nazywamy relacją porządkującą na zbiorze A_1 jeżeli:

- R jest zwrotna
- \bullet R jest antysymetryczna
- R jest przechodnia

Dodatkowo ta relacja może być liniowo porządkująca jeżeli:

- $\bullet~R$ jest spójna
- ullet R jest porządkująca

Zbiór $X\subset A_1$ jest łańcuchem w zbiorze uporządkowanym (A_1,R) jeżeli dla dowolnych $x,y\in X$ zachodzi $xRy\vee yRx.$

2.2.5 Zbiory uporządkowane

(X, A) to zbiór uporządkowany; X to zbiór, A to relacja porządkująca.

- Element najmniejszy a: $\forall_{x \in X} (a \leq x)$
- Element największy b: $\forall_{x \in X} (x \leq b)$
- Element minimalny a: $\forall_{x \in X} (x \leq a \rightarrow x = a)$
- Element makesymalny b: $\forall_{x \in X} (b \le x \to x = b)$

Element największy/najmniejszy jest jedynym elementem maksymalnym/minimalnym, oraz jest jednocześnie kresem górnym/dolnym.

2.3 Kresy

Kres nie musi należeć do zbioru.

2.3.1 Kres górny

$$\alpha = \sup A \leftrightarrow \forall_{x \in A} (x \le \alpha)$$

2.3.2 Kres dolny

$$\beta = \inf A \leftrightarrow \forall_{x \in A} (\beta \le x)$$

2.4 Funkcje

Relacja binarna R spełniająca prawostronną jednoznaczność to funkcja.

$$\forall_{x,y,z}(xRy \land xRz \rightarrow y = z)$$
; czyli dla każdego x jest jedno y

Przeciwdziedzina funkcji $f: D^*(f) = \{f(x) : x \in D(f)\}\$

$$f: X \to Y$$
 jeżeli $D(f) = X \wedge D^*(f) \subset Y$

Funkcja odwzorowuje zbiór X na zbiór Y jeżeli $D^*(f) = Y$

$$\forall_{x_1,x_2\in X}(f(x_1)=f(x_2)\to x_1=x_2)\to f$$
 jest iniekcją

Iniekcja to funkcja różnowa
rościowa, suriekcja to funkcja odwzorowująca na zbiór, a bijekcja to iniekcja i suriekcja.
 Obraz zbioru to $f[A] = \{f(x) : x \in A\} = \{y : \exists_x (x \in A \land y = f(x))\}$

$$f^{-1}[B] = \{x : f(x) \in B\}$$

2.5 Liczby naturalne

$$S(x) = x \cup \{x\}$$
- następnik zbioru X

$$n \in \mathbb{N}, n = \{0, 1, \dots, n - 1\}$$

$$0 = \emptyset, 1 = \{0\} = S(\emptyset), 2 = \{0, 1\}$$

$$\mathbb{N} = \{0, 1, 2, \dots\}$$

Zbiór X jest indukcyjny jeżeli:

- $0 \in X$
- $x \in X \to S(x) \in X$

Liczba naturalna to zbiór należący do wszystkich indukcyjnych zbiorów.

2.6 Zasada indukcji matematycznej

$$0 \in X \land \forall_{n \in X} (S(n) \in X) \to X = \mathbb{N}$$

TCA166

$$f(n)$$
 - formula $\wedge \forall_{f(n)}(F(S(n))) \rightarrow \forall_{n \in \mathbb{N}}(f(n))$

2.7 Liczby całkowite

$$\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{-n : n \in \mathbb{N}\}\$$

2.8 Liczby wymierne

$$\mathbb{Q}=\{x: x=\frac{m}{n}, m\in \mathbb{Z}, n\in \mathbb{N}\}$$

2.9 Porządki

2.9.1 Porządek produktowy

$$a, b \in A \times B \land \forall_{x_A, y_A \in A, x_B, y_B \in B} (x_A \leq_A x_B \land y_A \leq_B y_B) \rightarrow a \leq b$$

2.9.2 Porządek leksykograficzny

$$a, b \in A \times B \land \forall_{x_A, y_A \in A, x_B, y_B \in B} (x_A = x_B \land y_A \leq_B y_B) \rightarrow a \leq b$$

2.10 Właściwe odcinki początkowe

 (A, \leq) - zbiór liniowo uporządkowany. Jeżeli $X \subset A$ oraz $\forall_{x,y \in A} (x \in X \land y < x) \rightarrow y \in X$ to X jest właściwym odcinkiem początkowym.

Przykład:

- $A = (\{1, 2, 3, 4, 5\}, \leq)$ zbiór liniowo uporządkowany
- $X = \{1, 2, 3\}$ właściwy odcinek początkowy
- \bullet $Y=\{2,3,4\}$ nie jest właściwym odcinkiem początkowym

Przykład:

- $A = (\mathbb{Q}, \leq)$ zbiór liczb wymiernych
- $X = \{x \in \mathbb{Q} : x < 0\}$ właściwy odcinek początkowy

X jest właściwym odcinkiem początkowym. Zaczyna się od $-\infty$ i kończy na 0. Jedyne elementy mniejsze od elementów z X to elementy z X.

2.11 Liczby rzeczywiste

Liczby rzeczywiste definiujemy jako niepuste właściwe odcinki początkowe w (\mathbb{Q}, \leq) , nie mające elementu największego.

Zatem liczby wymierne są reprezentowane przez niepuste właściwe odcinki początkowe w (\mathbb{Q}, \leq) , które nie mają elementu największego, ale mają kres górny.

Liczby niewymierne to liczby wymierne, ale nie mają kresu górnego.

2.12 Dobry porządek

Porządek \leq , który ma element najmniejszy w każdym podzbiorze niepustym, jest dobrym porządkiem. Zbiór dobrze uporządkowany można przedstawić jako serię mniejszości elementów różnych zbiorów $a_0 < a_1 < a_2 \cdots < b_0 < b_1 \ldots$

Przykładem zbioru liniowo uporządkowanego ale nie dobrze uporządkowanego jest \mathbb{R} lub \mathbb{Z} . Każdy podzbiór w \mathbb{R} jest nieskończony, zatem nie da się skonstruować serii mniejszości.

Funkcja działająca ze zbioru dobrze uporządkowanego (A, \leq) do zbioru dobrze uporządkowanego (B, \leq) zachowuje porządek jeśli $\forall_{x \leq_A y; x, y \in A} (f(x) \leq_B f(y))$, oraz zachowuje ostry porządek jeśli $\forall_{x < y; x, y \in A} (f(x) < f(y))$.

2.13 Homomorfizmy

Jeżeli funkcja $f:A\to B$ dla zbiorów liniowo uporządkowanych (A,\leq_A) i (B,\leq_B) jest iniekcją i zachowuje porządko to jest to homomorfizm porządkowy. Jeżeli funkcja jest homomorfizmem porządkowym oraz bijekcją dla zbiorów uporządkowanych to jest izomorfizmem. Zbiory dla których istnieje izomorfizm są izomorficzne wobec siebie $(A \hookrightarrow B)$. Jeżeli A jest zbiorem dobrze uporządkowanym i funkcja f zachowuje ostry porządko to $x \leq f(x)$ dla każdego $x \in A$. Zbiór dobrze uporządkowany nie jest izomorficzny z żadnym swoim właściwym odcinkiem początkowym. Jeżeli A i B są zbiorami dobrze uporządkowanymi i $A \hookrightarrow B$ to A i B są izomorficzne z właściwymi odcinkami początkowymi drugiego zbioru.

2.14 Aksojmat wyboru

Dla dowolnej rodziny zbiorów niepustych i parami rozłącznych istnieje zbiór zawarty w sumie tej rodziny i mający z każdym zbiorem tej rodziny dokładnie jeden element wspólny.

Ten aksojmat jest równoważny:

- Twierdzeniu, że dla dowolnej rodziny zbiorów niepustych istnieje funkcja wyboru dla rodziny
- Twierdzeniu, że dla każdego zbioru istnieje dobry porządek na tym zbiorze
- Jeżeli zbiór uporządkowany spełnia warunek łańcucha, to dla każdego łańcucha istnieje ograniczenie górne

2.15 Liczby kardynalne

Zbiór X jest równoliczby ze zbiorem Y jeżeli istnieje bijekcja $f: X \to Y(X \backsim Y)$.

$$\overline{\overline{X}} = |X| = \text{liczba elementów zbioru } X$$

Zbiór Y jest skończony, jeżeli jest równoliczby z jakąś liczbą naturalną: $\exists_{x \in \mathbb{N}} (Y \backsim x)$. Zbiór skończony nie jest równoliczny z żadnym ze swoich podzbiorów.

$$\aleph_0 = |\mathbb{N}| = \aleph_0 + \aleph_0 = \text{liczba liczb naturalnych}$$

Moc zbioru to \aleph_0 wtedy i tylko wtedy jeżeli X jest zbiorem wszystkich wyrazów pewnego ciągu nieskończonego bez powtórzeń. Zbiór jest przeliczalny jeżeli jest skończony lub mocy \aleph_0 . Zbiór jest niepusty i przeliczalny wtedy i tylko wtedy gdy jest zbiorem wszystkich wyrazów pewnego ciągu nieskończonego.

Zbiór \mathbb{R} jest nieprzeliczalny.

$$\mathfrak{c} = |\mathbb{R}| = \mathfrak{c} + \mathfrak{c} > \aleph_0$$

$$|X| \le |Y| \leftrightarrow \exists_Z (Z \subset X \land Z \backsim X)$$

2.15.1 Twierdzenie Cantora

P(X) - zbiór potęgowy X

2.16 Twierdzenie Cantora-Bernsteina

$$|X| \le |Y| \land |X| \ge |Y| \to |X| = |Y|$$

$$|X| + |Y| = |X \cup Y|$$

$$|X| \cdot |Y| = |X \times Y|$$

2.17 Twierdzenie Hessenberga

$$X\times X\backsim X$$

dla każdego nieskończonego zbioru \boldsymbol{X}

$$\aleph_{n+1} > \aleph_n, n \in \mathbb{N}$$

2.18 Hipoteza continuum

$$\mathfrak{c}=\aleph_1$$

$$2^{\aleph_0} = \aleph_1$$

Udowodniono, że ta hipoteza jest niezależna od aksjomatów teorii mnogości.