1. (a)

A+=AE, A is not a superkey for the relation, so, A->E violates BCNF

M+=MEZA, M is not a superkey for the relation, so, M->EZA violates BCNF

S+=FZBSMEA, S is a superkey, pass

SZ+=FZBSMEA, SZ is a superkey, pass

BF+= BFMEZA, BF is not a superkey for the relation, so, BF->M violates BCNF

(b)

R1=MEZA, R2=MFBS

R1:

Attribute	Closure	FD
A	AE	A->E VIOLATE BCNF

R3=AE, R4=AMZ, R2=MFBS

R3:

Attribute	Closure	FD
A	AE	A->E
E	Е	/

R4:

Attribute	Closure	FD
A	AE	1
M	MEZA	M->ZA
Z	Z	1
AZ	AZE	1
AM	MEZA	WEAKER
MZ	MEZA	WEAKER

R2:

Attribute	Closure	FD
BF	BFMEZA	BF->M VIOLATE BCNF

R3=AE, R4=AMZ, R5=BFM, R6=BFS

R5

Attribute	Closure	FD
M	MEZA	1
F	F	1
В	В	1
BF	BFMEZA	BF->M
BM	BMEZA	1
MF	FMEZA	1

R6

Attribute	Closure	FD
S	FZBSMEA	S->BF
F	F	1
В	В	1
BF	BFMEZA	1
BS	FZBSMEA	WEAKER
FS	FZBSMEA	WEAKER

Final decomposition:

R3=AE S3={ A->E } , R4=AMZ S4={M->ZA }, R5=BFM S5={BF->M }, R6=BFS S6={S->BF }

2.

(a)

(-)			
Attribute	LHS	RHS	Conclusion
/	NO	NO	MUST BE IN KEY
A	YES	NO	
/	NO	YES	
BCDEF	YES	YES	

A+=ADFB, NOT A KEY

AB+= ABDF ,NOT A KEY

AC+= ACDFEB, AC IS A KEY!

AD+= ADFB, NOT A KEY

AE+= AEDFBC, AE IS A KEY!

AF+= ADF, NOT A KEY

ABD+= ABDF, NOT A KEY ABF+=ABDF, NOT A KEY ADF+=ADF, NOT A KEY ABDF+=ABDF, NOT A KEY

conclusion 2 keys: AC, AE

(b)

STEP1 SIMPLFY RHS

S1:

1 A->D

2 A -> F

3 ABE->C

4 ABE->D

5 ABE->F

6 ACDF->E

7 AD->B

8 C->D

STEP2 SIMPLIFY LHS

3 ABE->C

A+= ADFB, SINCE B IS DETERMINED BY A

E+=E

AE+=ABCDEF

WE CAN REDUCE THE LHS TO AE

4 ABE->D

A += ADFB,

WE CAN REDUCE THE LHS TO A

5 ABE->F

A += ADFB,

WE CAN REDUCE THE LHS TO A

6 ACDF->E

A+= ADFB, REDUCE D,F

C+=CD

AC+=ABCDEF

WE CAN REDUCE THE LHS TO AC

7 AD->B

A+=ADFB

WE CAN REDUCE THE LHS TO A

S2:

1 A->D

2 A->F

3 AE->C

4 A->D

5 A -> F

6 AC->E

7 A->B

8 C->D

STEP 3 REDUCE FD

FD	EXCLUDE	CLOSURE	DECISION
1	1	A+=ABDF	DISCARD
2	1,2	A+=ABDF	DISCARD
3	1,2,3	AE+=ABDEF, NO C	KEEP
4	1,2,4	A+=ABF, NO D	KEEP
5	1,2,5	A+= ABD, NO F	KEEP
6	1,2,6	AC+=ABCDF, NO E	KEEP
7	1,2,7	A+=ADF, NO B	KEEP
8	1,2,8	C+=C, NO D	KEEP

S3:

3 AE->C

4 A->D

5 A -> F

6 AC->E

7 A->B

8 C->D

CONCLUSION:

S4={A->B, A->D, A->F, AC->E, AE->C, C->D}

(c)

m={A->BDF,AC->E, AE->C, C->D}

R1(A,B,D,F)

R2(A,C,E)

R3(A,C,E) occurs in R2, DISCARD

R4(C,D)

since R2 already contain a super key of the FDS

The final set of relation is:

R1(A,B,D,F) R2(A,C,E) R4(C,D)

(d)

R1

Attribute	closure	FD
A	ABDF	A->BDF
В	В	1
F	F	1
D	D	/
BF	BF	1
BD	BD	/
FD	FD	/
OTHERS	WEAKER	WEAKER

R2

Attribute	closure	FD
A	ABDF	/
С	С	1
Е	Е	1
AC	ABDFCE	AC->E
AE	ABCDEF	AE->C
CE	CE	/

R3

Attribute	closure	FD
С	CD	C->D
D	D	1

Projection on R1 is S1={A->BDF}
Projection on R2 is S2={AC->E, AE->C}

Projection on R3 is S3={C->D}

conclusion:

No any of the projection breaks the BCNF rules, so there is no redundancy.