มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี ข้อสอบปลายภาคการศึกษาที่ 1/2559

วันอังคาร ที่ 29 พฤศจิกายน 2559	เวลา 09.00 -12.00 น
วิชา CPE221 Circuit and Electronics for Computer Engineers	วศ.คอมพิวเตอร์

คำสั่ง

- 1. ข้อสอบมีทั้งหมด 5 ข้อ จำนวน 8 แผ่น (รวมแผ่นนี้) คะแนนรวม 60 คะแนน
- 2. ให้ทำข้อสอบทุกข้อลงในช่องว่างที่เตรียมไว้ให้ ในตัวข้อสอบชุดนี้
- 3. อนุญาตให้ใช้เครื่องคำนวณใดๆ ทั้งสิ้น
- 4. <u>ไม่อนุญาต</u>ให้นำเอกสารใจๆ เข้าห้องสอบ
- 5. เขียนชื่อ และ รหัสประจำตัว ลงในปกหน้าฉบับนี้

ผศ.สุรพนธ์ ตุ้มนาค ผู้ออกข้อสอบ 0-2470-9083

ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมการภาควิชาวิศวกรรมคอมพิวเตอร์แล้ว

ผศ. สนั่น สระแก้ว หัวหน้าภาควิชาวิศวกรรมคอมพิวเตอร์

ข้อ	1	2	3	4	5	รวม
คะแนนเต็ม	10	10	10	20	10	60
คะแนนที่ได้						

4		0000 m
ชื่อ	รหัสประจำตัว	ภาควชา/ชนบ

1. What is the display value on meter for each circuit below? (10 marks)

1.1 Answer = ____

1.2 Answer = ____

1.3 Answer = ____

1.4 Answer = ____

- 2. Sketch the output signal from each circuit below which input signal is given. (10 marks)
- 2.1 Vin = $2.5\sin \omega t$, frequency = 1 kHz. Dual Supply = ± 15 V.

 $2.2 \text{ Vin} = 2 \sin wt$, frequency = 1 kHz. Dual Supply = +/- 5 V.

 $2.3 \text{ Vin} = 2 \sin \omega t$, frequency = 1 kHz

ชื่อรหัสประจำตัวร	ชั้นปี
-------------------	--------

3. Find $v_1(t)$ and $v_2(t)$.

(10 marks)

4.Using the characteristics of picture below, determine component value of a voltage-divider biasing for BJT common emitter circuit having Q-point of I_{CQ} = 5 mA and V_{CEQ} = 8 V. Use Vcc = 24 V. and Rc = 3 R_E . (20 marks)

4.1 Draw schematic circuit.

ชื่อ <i>.</i>	รหัสประจำตัว	ชั้นปี	.,,
---------------	--------------	--------	-----

4.2 Find Rc and $R_{E_{\cdot}}$

4.3 Find R2 if R1 = 24 k*Ohm*. Assuming that $\beta R_E > 10R2$.

4.4 Calculate β at the Q-point.

5. For the circuit of picture below, determine each parameter as follow. Draw equivalent model to support your answer.

(10 Marks)

5.1 r_e.

5.2 Zi

5.3 Zo

5.4 Av

Configuration			and the confidence of the conf
Pland-bias:	Medhum (1 kO)	Medium (2 kΩ)	High (~200)
	- 440.	= Rd.	(Actra)
	. A.	≈ R _C	
	(R _a ≥ 10A _a)	(r, ≥ 10R _c)	$\simeq \frac{R_c}{I_c}$
			$(r_a \approx 10R_C)$
Voltage-divider Vcx	Medinen (1 kΩ)	Medium (2 kΩ)	High (-200)
bias:	= Rikip.	* Rob.	Refr.
		≈ R _C	
R ₂		$(r_a \ge 10R_c)$	$=\frac{R_c}{r_s}$
$\begin{bmatrix} R_E \\ + C_E \end{bmatrix}$			(r. ≈ 10Rc)
Unhypnesed Vcc	High (100 kG)	Maditon (2 kΩ)	Low (-5)
emitter bies: $R_B = \frac{R_C}{R_B}$	-[846]	• [•]	
	$Z_a = \overline{\beta(r_s + R_B)}$	(any level of (a)	To the
	- Edm		. <u>.</u>
	(A-> 1)		(R ₂ ≫ r ₂)