6.854 Advanced Algorithms

Problem Set 2

John Wang Collaborators:

Problem 1-a: In class, I stated that single rotations don't work for splay trees. To demonstrate this, consider a degenerate n-node linked list shaped binary tree where each node's right child is empty. Suppose the only leaf is splayed to the root by single rotations: show the structure of the tree after this splay. Generalizing, argue that there is a sequence of n/2 splays that each take at least n/2 work.

Solution: If we start with the given degenerate n-node tree and splay the bottom-left node (the leaf) x, then we will slowly move the node up to the root through a series of "kink" rotations. These kink rotations will move x (which is the global minimum of the tree) and decrease its depth by one each time. Visually, all the nodes above and below x will be left children of their parents, and x will be the only node which is a right child of its parent. The process of moving x up the tree will continue until x becomes the root. At this point, x will only have a right child, which will be the maximum element of the data structure, and everything else will continue down in a series of left children.

Let us call this resulting data structure T'. When we splay the new leaf of the tree x' (node which can be found by walking down the left half of the tree), we can see that it will take the same path up to the root through a series of "kink" rotations. Once x' becomes a right child of the root x, a rotation will occur which puts x' at the root of the tree, and x as the left child (since x is the absolute minimum and is the only node smaller than x'). The right child of x' will be the global maximum. The tree now has depth n-1.

Continuing in the same pattern and taking the deepest leaf x'' of the tree, we will go through a series of n-2 rotations until x'' reaches the root. At this point x' will be the left child of x'', with x as the left child of x'. The maximum node will be the right child of the new root, so the tree will now have depth n-2.

It is clear that the deepest leaf a will always be promoted up to the leaf in time equal to the depth of the tree. Once it has reached the root, the previous root b will become its left child, and the maximum node which was previously b's right child, will become a's right child. Therefore, the tree will decrease in depth by 1.

A series of n/2 operations that splay the deepest leaf will therefore cost O(d) each, where d ranges from $n, \ldots, n/2$. Therefore, we have shown that there is a sequence of n/2 splays that each take at least n/2 work.

Problem 1-b: Now from the same starting tree, show the final structure after splaying the leaf with (zig-zig) double rotations. Explain how this splay has made much more progress than single rotations in improving the tree.

Solution: Starting the the only leaf of the tree x, we will perform zig-zigs on the way up to the root. For notation, we will say x is the leaf (minimum element), x' is the parent of the leaf (second smallest element), and x'' is the parent of x', etc. After the first zig-zig, we see that everything except the last three nodes have been untouched, but x is now the child of x'''. Moreover, x has a right child of x' and x' has a right child of x''.

Performing another zig-zig operation, the x' to x'' chain will become the left subtree to x'''. Moreover, x''' will have a right child of x''''. In order to see the generalized behavior, we will call A the right subtree of x. Note that x has no left child at all. Now, x is the left child of its parent y, and y is also a left child of its parent, z. Thus, performing a zig-zig operation will bring x to the top of y and z. Thus, x will have a right child y and no left child, while y has a right child of z and a left child of z.

It is now clear that zig-zig operation will bring x up higher in the tree while adding the chain of y and z to the right subtree of x. Additionally, y's left child will now be x's previous subtree.

Once the splay of x is finished, each node on the left-most path from the root will have a right child. Thus, we see that using the zig-zig operation, the splay will decrease the depth of the tree by a multiplicative factor of 2. In the previous case, the depth after a single splay was n-1, while now the depth is n/2, which is clearly much improved. \square

1

Problem 1-c: Given the theorem about access time in splay trees, it is tempting to conjecture that splaying does not create trees in which it would take a long time to find an item. Show that this conjecture is false by showing that for large enough n, it is possible to restructure any binary tree on n nodes into any other binary tree on n nodes by a sequence of splay operations. Conclude that it is possible to make a sequence of requests that cause the splay tree to achieve any desired shape.

Solution: We will start by showing how we can use splay operations to make a specified node into a leaf. \Box

$\textbf{6.854 Advanced Algorithms} \\ \text{Problem Set 2}$

John Wang Collaborators: