Elementary Data Link Protocols

Protocols in the data link layer are designed so that this layer can perform its basic functions: framing, error control and flow control. Framing is the process of dividing bit streams from physical layer into data frames whose size ranges from a few hundred to a few thousand bytes.

Types of Data Link Layer Protocols

Data link protocols can be broadly divided into two categories, depending on whether the transmission channel is noiseless or noisy.

Simplex Protocol

The Simplex protocol is hypothetical protocol designed for unidirectional data transmission over an ideal channel, i.e. a channel through which transmission can never go wrong. It has distinct procedures for sender and receiver. The sender simply sends all its data available onto the channel as soon as they are available its buffer. The receiver is assumed to process all incoming data instantly. It is hypothetical since it does not handle flow control or error control.

Stop – and – Wait Protocol

Stop – and – Wait protocol is for noiseless channel too. It provides unidirectional data transmission without any error control facilities. However, it provides for flow control so that a fast sender does not drown a slow receiver. The receiver has a finite buffer size with finite processing speed. The sender can send a frame only when it has received indication from the receiver that it is available for further data processing.

Stop – and – Wait ARQ

Stop – and – wait Automatic Repeat Request (Stop – and – Wait ARQ) is a variation of the above protocol with added error control mechanisms, appropriate for noisy channels. The sender keeps a copy of the sent frame. It then waits for a finite time to receive a positive acknowledgement from receiver. If the timer expires or a negative acknowledgement is received, the frame is retransmitted. If a positive acknowledgement is received then the next frame is sent.

Go - Back - N ARQ

Go – Back – N ARQ provides for sending multiple frames before receiving the acknowledgement for the first frame. It uses the concept of sliding window, and so is also called sliding window protocol. The frames are sequentially numbered and a finite number of frames are sent. If the acknowledgement of a frame is not received within the time period, all frames starting from that frame are retransmitted.

Selective Repeat ARQ

This protocol also provides for sending multiple frames before receiving the acknowledgement for the first frame. However, here only the erroneous or lost frames are retransmitted, while the good frames are received and buffered.

Sliding Window Protocols

Sliding window protocols are data link layer protocols for reliable and sequential delivery of data frames. The sliding window is also used in Transmission Control Protocol. In this protocol, multiple frames can be sent by a sender at a time before receiving an acknowledgment from the receiver. The term sliding window refers to the imaginary boxes to hold frames. Sliding window method is also known as windowing.

Working Principle

In these protocols, the sender has a buffer called the sending window and the receiver has buffer called the receiving window. The size of the sending window determines the sequence number of the outbound frames. If the sequence number of the frames is an n-bit field, then the range of sequence numbers that can be assigned is 0 to 2-1. Consequently, the size of the sending window is 2-1. Thus in order to accommodate a sending window size of 2-1, a n-bit sequence number is chosen. The size of the receiving window is the maximum number of frames that the receiver can accept at a time. It determines the maximum number of frames that the sender can send before receiving acknowledgment.

Example

Suppose that we have sender window and receiver window each of size 4. So the sequence numbering of both the windows will be 0,1,2,3,0,1,2 and so on. The following diagram shows the positions of the windows after sending the frames and receiving acknowledgments.

Types of Sliding Window Protocols

The Sliding Window ARQ (Automatic Repeat reQuest) protocols are of two categories –

1. Go - Back - NARQ

Go - Back - N ARQ provides for sending multiple frames before receiving the acknowledgment for the first frame. It uses the concept of sliding window, and so is also called sliding window protocol. The frames are sequentially numbered and a finite number of frames are sent. If the acknowledgment of a frame is not received within the time period, all frames starting from that frame are retransmitted.

2. Selective Repeat ARQ

This protocol also provides for sending multiple frames before receiving the acknowledgment for the first frame. However, here only the erroneous or lost frames are retransmitted, while the good frames are received and buffered.