Time-dependent PDEs & PETSC TS yes, we can do time-stepping

Ed Bueler
Dept. of Mathematics and Statistics, UAF

26 April 2016

outline for today

Chapter 6 of book:

- ODE initial value problem examples and methods
- ▶ PETSc TS object can do time-stepping
 - explicit Runge-Kutta methods
 - \circ implicit methods (backward Euler, θ , IMEX)
 - require solving equations at each time step: SNES
- c/ch6/heat.c solves classical heat equation

$$u_t = D\nabla^2 u + f(x, y)$$

- diffusions are stiff, so implicit appropriate
- c/ch6/pattern.c solves system of coupled nonlinear diffusions for pattern formation:

$$u_t = D_u \nabla^2 u - uv^2 + F(1 - u)$$

$$v_t = D_v \nabla^2 v + uv^2 - (F + k)v$$

systems of ODEs

we can solve ODE systems of form

$$\mathbf{y}' = \mathbf{g}(t, \mathbf{y})$$

- \circ $\mathbf{y}(t) \in \mathbb{R}^N$
- ODE describes motion of point in N dimensions
- g can be linear or nonlinear in t or y
- initial value problem specifies solution at one time:

$$\mathbf{y}(t_0) = \mathbf{y}_0$$

- exists unique solution if $\mathbf{g}(t, \mathbf{y})$ is continuous in both inputs and Lipschitz in \mathbf{y} ... that is, you can *predict*
- ∘ for $N < \infty$ cases (i.e. *not* PDEs), one can generally go forward or backward from $t = t_0$

example with fixed size N = 2

• example with initial time $t_0 = 0$

$$\mathbf{y}' = \begin{bmatrix} y_1 \\ -y_0 + t \end{bmatrix}, \quad \mathbf{y}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

exact solution is

$$\mathbf{y}(t) = \begin{bmatrix} t - \sin t \\ 1 - \cos t \end{bmatrix}$$

it is a linear system
g(t, y) = Ay + f(t) where

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad \mathbf{f}(t) = \begin{bmatrix} 0 \\ t \end{bmatrix}$$

Euler numerical methods: forward and backward

- ▶ $t_0 < t_1 < t_2 < \cdots < t_L$ a sequence of times
- steps $h = t_{\ell} t_{\ell-1}$; assume equal only for convenience
- ▶ $\mathbf{Y}_{\ell} \approx \mathbf{y}(t_{\ell})$, and $\mathbf{Y}_{0} = \mathbf{y}_{0}$
- explicit forward Euler method

$$\frac{\mathbf{Y}_{\ell}-\mathbf{Y}_{\ell-1}}{h}=\mathbf{g}(t_{\ell-1},\mathbf{Y}_{\ell-1})$$

one can also write as update formula

$$\mathbf{Y}_{\ell} = \mathbf{Y}_{\ell-1} + h\mathbf{g}(t_{\ell-1}, \mathbf{Y}_{\ell-1})$$

implicit backward Euler method is just as easy to state

$$\frac{\mathbf{Y}_{\ell} - \mathbf{Y}_{\ell-1}}{h} = \mathbf{g}(t_{\ell}, \mathbf{Y}_{\ell})$$

but requires solving system of eqns at each time step

Runge-Kutta methods

Runge-Kutta methods with s stages have form

$$\hat{\mathbf{Y}}_i = \mathbf{Y}_{\ell-1} + h \sum_{j=1}^s a_{ij} \mathbf{g}(t_{\ell-1} + c_j h, \hat{\mathbf{Y}}_j), \qquad 1 \leq i \leq s$$

$$\mathbf{Y}_\ell = \mathbf{Y}_{\ell-1} + h \sum_{i=1}^s b_i \mathbf{g}(t_{\ell-1} + c_i h, \hat{\mathbf{Y}}_i)$$

some "tableau" for explicit instances:

0					
$\frac{1}{2}$	1 2				
$\frac{1}{2}$ $\frac{1}{2}$	0	$\frac{1}{2}$			
1	0	$\frac{2}{0}$	1		
	1 6	1/3	1/3	1/6	

Table 6.1: Tableau for the explicit trapezoidal rule (RK2a; left), the classical fourth-order Runge-Kutta method (RK4; middle), and an embedded fourstage, third-order scheme (RK3bs, the PETSc default; right).

PETSC TS basic setup

```
TSCreate(COMM, &ts);
TSSetProblemType(ts, TS_NONLINEAR);
TSSetRHSFunction(ts, NULL, FormRHSFunction, NULL);
TSSetType(ts, TSRK);
TSSetInitialTimeStep(ts,t0,dt);
TSSetDuration(ts, maxsteps, tf-t0);
TSSetFromOptions(ts);
TSSolve(ts,y);
```

- setup similar to SNES, KSP, etc.
- ▶ setting TS_NONLINEAR says ODE is in form $\mathbf{y}' = \mathbf{g}(t, \mathbf{y})$
- ▶ calling TSSetRHSFunction() sets a call-back to our code FormRHSFunction(), which evaluates $\mathbf{g}(t, \mathbf{y})$
- ► TSSetFromOptions() allows overrides:
 - the TSSetType() choice by -ts_type
 - values of t0, dt, maxsteps, tf by ...
- ▶ y must be an allocated Vec of size N containing initial value Y₀

first PETSC TS example

recall our example:

$$\mathbf{g}(t,\mathbf{y}) = \begin{bmatrix} y_1 \\ -y_0 + t \end{bmatrix}$$

▶ thus implementation of $\mathbf{g}(t, \mathbf{y})$:

running ode.c

- c/ch6/ode.c is essentially just the stuff on the last two slides...simple!
- ▶ basic run with adaptive, explicit RK $O(h^3)$ method (default):

```
$ make
$ ./ode -ts_monitor
0 TS dt 0.1 time 0.
1 TS dt 0.170141 time 0.1
...
87 TS dt 0.11548 time 19.8845
88 TS dt 0.205616 time 20.
error at tf = 20.000 : |y-y_exact|_inf = 0.00930352
```

variations:

- changing solver and time axis:
 - | \$./ode -ts_type euler -ts_final_time 1.0 -ts_dt 0.5
- generating run-time movie of trajectory:

```
$ ./ode -ts_monitor_lg_solution -draw_pause 0.1
```

implicit solvers need SNES and Jacobian

backward Euler:

```
$ ./ode -ts_type beuler # error
$ ./ode -ts_type beuler -snes_fd # works
```

▶ odejac.c adds Jacobian function to ode.c:

```
$ make odejac
$ ./odejac -ts_type beuler # works
```

▶ larger class of implicit methods are " θ "-methods with $0 < \theta \le 1$:

$$\frac{\mathbf{Y}_{\ell} - \mathbf{Y}_{\ell-1}}{h} = (1 - \theta) \mathbf{g}(t_{\ell-1}, \mathbf{Y}_{\ell-1}) + \theta \mathbf{g}(t_{\ell}, \mathbf{Y}_{\ell})$$

• $\theta = 1/2$ is $O(h^2)$ accurate: "trapezoid" or "Crank-Nicolson"

```
$ ./odejac -ts_type theta -ts_theta_theta 0.4
$ ./odejac -ts_type cn
```

"stiff" ODE systems

- consider ODE systems of the form y' = g(y), i.e. "autonomous" without t-dependence
- system is asymptotically stable if eigenvalues λ of Jacobian $J=\frac{\partial g_i}{\partial y_i}$ have negative real part
- such a system is stiff if

$$min(Re \lambda) \ll max(Re \lambda) < 0$$

- or: $\kappa(J) \gg 1$ in symmetric case
- idea:

stiff implies the "min(Re λ)" eigenvalues will control time steps of explicit ODE method, causing very short time steps, even though the "max(Re λ)" eigenvalues control the macroscopic behavior of solution

"method of lines" (MOL) for PDEs

- \blacktriangleright one might recognize time-dependent PDEs as "ODEs in ∞ dimensions"; you can discretize with this in mind
 - this is how to solve time-dependent PDEs using PETSC
- consider time-dependent PDEs of form

$$u_t = G(t, u, \nabla u, \nabla^2 u)$$

idea: spatial discretization only gives system of ODEs

MOL for heat equation

• example: if $\{x_i\}$ is an N-point spatial grid then

$$u_t = u_{xx}$$
 \rightarrow $U'_j(t) = \frac{U_{j-1}(t) - 2U_j(t) + U_{j+1}(t)}{\Delta x^2}$

gives system in form " $\mathbf{y}' = \mathbf{g}(t, \mathbf{y})$ " in \mathbb{R}^N , where $U_j(t) \approx u(t, x_j)$ and $\mathbf{U}(t) = \{U_j(t)\} \in \mathbb{R}^N$

symmetric matrix for RHS is

$$A = \frac{1}{\Delta x^2} \begin{pmatrix} -2 & 1 & 0 & & 0 \\ 1 & -2 & 1 & & 0 \\ 0 & 1 & -2 & & 0 \\ & & & \ddots & \\ 0 & 0 & 0 & & -2 \end{pmatrix}$$

has negative real eigenvalues, some \approx 0 and some $\lambda \to -\infty$

this is generic:

MOL on diffusion equations gives stiff ODE systems

TS example codes in c/ch6/

• using form $\mathbf{y}' = \mathbf{g}(t, \mathbf{y})$:

ode.c solves above example

odejac.c adds Jacobian so that implicit methods can be used heat.c MOL for classical heat equation

$$u_t = D\nabla^2 u + f$$

▶ using "implicit-explicit" form f(t, y, y') = g(t, y):

pattern.c MOL for system of two coupled nonlinear heat-like PDEs

$$u_t - D_u \nabla^2 u = -uv^2 + F(1-u)$$

 $v_t - D_v \nabla^2 v = +uv^2 - (F+k)v$

- a model for two chemical species with reaction, diffusion, and feed (Pearson, 1993)
- "adaptive Runge-Kutta implicit-explicit" appropriate (-ts_type arkimex)

running heat.c

- ightharpoonup c/ch6/heat.c solves $u_t = D
 abla^2 u + f(x,y)$
 - on unit square $\Omega = (0,1) \times (0,1)$
 - non-homogeneous Neumann boundary conditions in x
 - periodic boundary conditions in y
 - energy is conserved
- high-res Crank-Nicolson run on 4 processes with saving of time axis and solution:

```
mpiexec -n 4 ./heat -ts_type cn -da_refine 7 \
    -ts_dt 0.0001 -ts_final_time 0.05 \
    -ts_monitor binary:theat.dat \
    -ts_monitor_solution binary:uheat.dat
```

output can be transformed into an off-line movie:

```
./plotTS.py -mx 385 -my 384 theat.dat uheat.dat \ -oroot heat ffmpeg -r 8 -i heat%03d.png heat.m4v
```

running pattern.c

c/ch6/pattern.c solves

$$u_t - D_u \nabla^2 u = -uv^2 + F(1-u)$$

 $v_t - D_v \nabla^2 v = +uv^2 - (F+k)v$

- periodic boundary conditions in both directions
- o creates 2D DMDA with dof=2
- ▶ problem in form $\mathbf{f}(t, \mathbf{y}, \mathbf{y}') = \mathbf{g}(t, \mathbf{y})$:
 - -ts type arkimex is default
 - FormIFunctionLocal() for f; with Jacobian
 - FormRHSFunctionLocal() for g; no Jacobian
- ▶ high-res run on 4 procs, and off-line movie of u component:

```
mpiexec -n 4 ./pattern -ts_adapt_type none \
    -ts_final_time 5000 -ts_dt 10 -da_refine 8 \
    -ts_monitor binary:t8.dat \
    -ts_monitor_solution binary:uv8.dat
./plotTS.py -mx 768 -my 768 -dof 2 -c 0 \
    t8.dat uv8.dat -oroot uhigh8
ffmpeg -r 8 -i uhigh8%03d.png uhigh8.m4v
```