

Архитектура компьютера и операционные системы

Лекция 1. Введение

Андреева Евгения Михайловна доцент кафедры информатики и вычислительного эксперимента

План лекции

- CS221.АрхКиОС в учебных планах мехмата
- Учебная карта дисциплины и БРС
- Основные понятия модуля 1
- Подготовка к лабораторным занятиям

Место дисциплины в структуре ООП

- Входные знания и навыки
 - Системы счисления
 - Основные команды UNIX
 - Базовые навыки программирования

- При успешном освоении
 - Основные принципы устройства компьютера и построения ОС
 - Навыки программирования на ассемблере

– ...

Место дисциплины в структуре ООП

Литература

Данный курс построен на основе книг

- [1] Таненбаум Э., Остин Т. Архитектура компьютера СПб.: Питер, 2013. — 816 с.
- [2] Таненбаум Э., Бос Х. Современные операционные системы
 — СПб.: Питер, 2015. 1120 с.
- Для лабораторных занятий по АрхК в основном будет использоваться ассемблер для Intel 8088, описанный в Приложении В к книге Таненбаума [1] и в методических указаниях.
- [3] Пеленицын А. М., Ячменева Н. Н. Методические указания к практикуму по курсу "Архитектура компьютера", ЮФУ, 2014.
- Для лабораторных занятий по ОС в основном будет использоваться bash (Bourne again shell) и С.

Учебная карта дисциплины CS221.ApxКиОС

- Трудоемкость 5 зач. ед., ак. ч. всего: 180, в том числе:
 - 54 ч. лекций;
 - 36 ч. лаб.;
 - 36 ч. сам. работы;
 - 54 ч. сам. работы подготовка к экзамену.
- Форма отчетности экзамен.
- 60 баллов в семестре
- 40 баллов Экзамен
- 10 баллов бонусы
- Преподаватели:
 - Андреева Евгения Михайловна,
 - Шабас Ирина Николаевна

Поддержка курса

- Moodle (edu.mmcs.sfedu.ru)
- Запись на курс с кодовым словом
- Лабораторные (модуль 1 и 2 по 20 баллов) сдаются преподавателю на парах
- Тестирование в начале каждой лабораторной (модуль 1 и 2 по 10 баллов)

CS221. Архитектура компьютера и операционные системы

Модуль 1. Архитектура компьютера

Основные понятия модуля

- Архитектура описание на некотором общем уровне, включающее
 - описание пользовательских возможностей программирования,
 - системы команд,
 - системы адресации,
 - организации памяти и т.д.
- Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера.
- Общность архитектуры разных компьютеров обеспечивает их совместимость с точки зрения пользователя.

Основные понятия модуля

- Организация вычислительной системы набор устройств, и способов их взаимодействия для реализации архитектурных решений:
 - Технологии реализации памяти
 - Шины для связи устройств
 - Воплощение процессора в кристалле

Что мы будем изучать?

Многоуровневая архитектура

5. ЯВУ

• Компиляторы, Библиотеки

4. Язык ассемблера

• Ассемблер, Линкер (компоновщик), Отладчик

3. Уровень ОС

• Этот уровень и ниже — системное программирование

2. Машинный код (Instruction Set Arch, ISA)

•ОЗУ, Системная шина, ЦП

1. Микрокод процессора (микроархитектура)

• Внутренняя шина, Тракт данных, АЛУ

0. Схемы цифровой логики

• Логические вентили и схемы

-1. Уровень физических устройств

• Сфера электронной техники и радиофизики

Примеры архитектур

- Классическая архитектура (архитектура фон Неймана) одно арифметико-логическое устройство (АЛУ), через которое проходит поток данных, и одно устройство управления (УУ), через которое проходит поток команд программа
- **Многопроцессорная архитектура**. Наличие в компьютере нескольких процессоров означает, что параллельно может быть организовано много потоков данных и много потоков команд.
- **Многомашинная вычислительная система.** Здесь несколько процессоров, входящих в вычислительную систему, не имеют общей оперативной памяти, а имеют каждый свою (локальную).
- **Архитектура с параллельными процессорами.** Здесь несколько АЛУ работают под управлением одного УУ. Это означает, что множество данных может обрабатываться по одной программе то есть по одному потоку команд.

Выводы

- Компьютер, с точки зрения архитектуры компьютера иерархическая структура уровней, которые надстраиваются друг над другом.
- Уровень определенная абстракция различных объектов и операций.
- Рассматривая компьютер подобным образом, мы не будем углубляться в детали конкретной реализации

Выводы

- Набор типов данных, операций и характеристик каждого отдельно взятого уровня называется архитектурой.
- Архитектура связана с программными аспектами.
- Сведения о том, сколько памяти можно использовать при написании программы — часть архитектуры.
- Технология, применяемая при реализации памяти, не является частью архитектуры.

Лабораторные занятия

- Ассемблер (от англ. assembler сборщик) транслятор исходного текста программы, написанной на языке ассемблера, в программу на машинном языке.
- Язык ассемблера (англ. assembly language) машинноориентированный язык программирования низкого уровня.

Зачем нам ассемблер?

- Глубокое понимание работы компьютера.
- Гибкость при работе с аппаратными ресурсами.
- Оптимизация программ по времени выполнения.
- Оптимизация программ по размеру кода.

Текст программы на ассемблере (as88)

Лаб. практикум. Занятие 1. Стр. 729 [<u>Таненбаум</u>]

Заглавные или строчные?

Трассер (отладчик) t88

```
mmcs@lubuntu-vm: ~
                                                                                 _ D ×
File Edit Tabs Help
CS: 00 DS=SS=ES: 001
AH:00 AL:00 AX:
BH:00 BL:00 BX:
CH:00 CL:00 CX:
DH:00 DL:00 DX:
                                  .SECT.TEXT
SP: 7ff8 SF 0 D S Z C
BP: 7ff8 CC - > p
                                =>MOV
                                           AX,(y)
SI: 0000
          IP:0000:PC
                                  ADD
                                           AX,(x)
                                  MOV
DI: 0000
         .TEXT+0
                                           (res), AX
                       I
res
              =0000:
              =0002:
              =0004:
```

Основные команды

- MOV AX, BX
- ADD AX, BX
- SUB AX, BX
- MUL BX
 - ! неявный операнд в AX, результат в DX:AX
- DIV CX
 - ! неявный операнд в DX:AX, результат в AX и DX

• (стр. 743 [<u>Таненбаум</u>])

Режимы адресации

Режим адресации	Операнд	Примеры				
Регистровая адресация						
По регистру для байтов	Регистр для байтов	AH, AL, BH, BL, CH, CL, DH, DL				
По регистру для слов	Регистр для слов	AX, BX, CX, DX, SP, BP, SI, DI				
Адресация сегментов данных						
Непосредственная адре- сация	Адрес после кода операции	(#)				
Косвенная регистровая адресация	Адрес в регистре	(SI), (DI), (BX)				

Стр. 740 [<u>Таненбаум</u>]

Лабораторная работа 2

Регистры общего назначения

AX	АН	AL
вх	вн	BL
СХ	СН	CL
DX	DH	DL
,	15 87	0

Сегментные регистры

Указатели и индексы

Условные и безусловные переходы

Регистр флагов

регистр флагов

CMP AX, BX – из AX вычитается ВХ по результату выставляется

Регистр флагов

```
CS: 00 DS=SS=ES: 001
                                 .SECT .TEXT
AH:00 AL:05 AX:
                                 .SECT .TEXT
BH:00 BL:05 BX:
                                 .SECT .TEXT
CH:00 CL:00 CX:
                                         MOV
                                                 AX, 5
DH:00 DL:00 DX:
                                                 BX, 5
                                         MOV
SP: 7ff8 SF 0 D S Z C
                                         CMP
                                                 AX. BX
BP: 7ff8 CC - > p ≥
                                         MOV
                                                 BX, 8
SI: 0000 IP:0008:PC
                                                 AX. BX
                                         CMP
DI: 0000 x+5
```

CS: 00 DS=SS=ES:	002	.SECT	.TEXT	
AH:00 AL:05 AX:	5		MOV	AX, 5
BH:00 BL:08 BX:	8		MOV	BX, 5
CH:00 CL:00 CX:	Θ		CMP	AX, BX
DH:00 DL:00 DX:	Θ		MOV	BX, 8
SP: 7ff8 SF 0 D S	Z C		CMP	AX, BX
BP: 7ff8 CC - > n-	- c 	=>	MOV	AX, 5
SI: 0000 IP:000d:	PC		MOV	BX, 5
DI: 0000 x+7		.SECT	.DATA	

Команды переходов

Команда	Описание	Условие перехода
JNA, JBE	Ниже или равно	CF = 1 или ZF = 1
JNB, JAE, JNC	Не ниже	CF = 0
JE, JZ	Нуль, равно	ZF = 1
t@tabl_body = JNLE, JG	Больше чем	$SF = OF \mu ZF = 0$
JGE, JNL	Больше или равно	SF = OF
JO	Переполнение	OF = 1
JS	Отрицательный знак	SF = 1
JCXZ	Значение СХ равно нулю	CX = 0
JB, JNAE, JC	Ниже	CF = 1
JNBE, JA	Выше	CF = 0 и ZF = 0
JNE, JNZ	Не равно нулю, не равно	ZF = 0
JL, JNGE	Меньше чем	SF ≠ OF
JLE, JNG	Меньше или равно	SF ≠ OF или ZF = 1
JNO	Без переполнения	OF = 0
JNS	Неотрицательно	SF = 0

Домашнее задание

- Записаться на курс <u>CS221 CA&OS</u>
- Установить <u>ПО для поддержки лабораторного практикума</u>
- Читать [<u>Таненбаум</u>] стр. 20-31,
 Приложение В стр. 729-789
- Читать <u>Методические указания</u>
- Подготовиться к <u>Лабораторному занятию 2</u>