

Large-scale Wireless Fingerprints Prediction for Cellular Network Positioning

Xinyu Wu, Xiaohua Tian, Xinbing Wang Shanghai Jiao Tong University April 18, 2018

Outline

Fingerprint **Prediction** & **Positioning**

- Introduction & Motivation
- Problem Formulation
- Algorithm Design
- Experimental Validation
- Conclusion

Outline

- Introduction & Motivation
- Problem Formulation
- Algorithm Design
- Experimental Validation
- Conclusion

911 Requirement: Localizing emergency caller

Challenge 1: Weak GPS Signal

Challenge 2: Device Constraint

Smartphones are more common in Europe, U.S., less so in developing countries

Percent of adults who report owning a smartphone

JUNE 29, 2017

Alternative: Fingerprinting localization

Weak GPS Signal

Cellphones as basic devices

Fingerprinting Localization

- Method: Offline phase + Online phase
 - Offline phase

Fingerprinting Localization

Method: Offline phase + Online phase

Challenge for Fingerprinting Localization

Constructing Fingerprint Database

Large Area Outdoors

Challenge: Requiring a large number of sampled fingerprints

Costly!

Challenge for Fingerprinting Localization

Constructing Fingerprint Database

Large Area Outdoors

Idea: Sample easily available fingerprints, and predict others

Fingerprint Prediction

Outline

- Introduction & Motivation
- Problem Formulation
- Algorithm Design
- Experimental Validation
- Conclusion

- Modeling Fingerprint Prediction
 - Grid the target area
 - Have some sampled areas
 - Predict unsampled areas
 - Fingerprints do NOT change dramatically.
 - Fingerprints have correlation.

Target Area

- Sampled Fingerprint Value
- Predicted Fingerprint Value

Fingerprint Prediction -> Matrix Completion

SVD usually used to do the prediction

Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD)

Estimation deviates from the sampled value

Matrix Completion: Minimizing the deviation

		•		9			
A :	-51	?	?	\widehat{A} :	-52	-66	-54
	?	-70	-57		-60	-69	-59
	-68	?	-59		-68	-60	-58
	$\min P(A) - P(\widehat{A}) $						
P(A):	-51			$P(\hat{A})$:	-52		
		-70	-57			-69	-59
	-68		-59		-68		-58

Different fillings of A generate different results.

Try all possibilities? Too costly!

Outline

- Introduction & Motivation
- Problem Formulation
- Algorithm Design
- Experimental Validation
- Conclusion

Deeper Insight of SVD

Recall SVD

Best U_k leading to best estimation!

Deeper Insight of SVD

❖ What is U_k?

Part of the unitary matrix U

k orthogonal vectors in m-D space

Deeper Insight of SVD

❖ What is U_k?

Stiefel Manifold

Stiefel manifold

Stiefel Manifold

Finding the optimal U_k on Stiefel Manifold

$$\min: f(U_k)$$

Recall: Gradient Descent Method over real values

Finding the optimal U_k on Stiefel Manifold

min:
$$f(U_k)$$

Stiefel-Manifold based Gradient Descent

Finding the optimal U_k

Design Details

Stiefel-Manifold based Gradient Descent

$$\min_{\hat{\mathbf{A}}} \|P_{\Omega}(\mathbf{A}) - P_{\Omega}(\hat{\mathbf{A}})\| \longrightarrow \min_{\substack{U_k : m \times k \\ w_j : k \times 1}} \sum_{j=1}^n ||[U_k w_j]_{\Omega} - [a_j]_{\Omega}||_2^2$$

$$F(U_k, w_1, ..., w_n)$$

- * Descent Direction $\nabla_{U_k} F$
- Objective Simplification

$$\sum_{j=1}^{n} ||[U_k w_j]_{\Omega} - [a_j]_{\Omega}||_2^2 \qquad \min_{x_j} ||[U_k x_j]_{\Omega} - [a_j]_{\Omega}||_2^2$$

$$F(U_k, w_1, ..., w_n) \qquad F(U_k)$$
 Convexity

Design Details

Stiefel-Manifold based Gradient Descent

$$\min_{\hat{\mathbf{A}}} \| P_{\Omega}(\mathbf{A}) - P_{\Omega}(\hat{\mathbf{A}}) \| \longrightarrow \min_{\substack{U_k : m \times k \\ w_j : k \times 1}} \sum_{j=1}^{n} ||[U_k w_j]_{\Omega} - [a_j]_{\Omega}||_2^2$$

* Iteration Equation
$$U_{t+1} = U_t + 2\eta_t \frac{r_t w_t^T}{||r_t|| ||w_t||}$$
 $r_t = P_{\Omega}(a_q - U_t w_t)$

* Step Size
$$\eta_t = rac{1}{2} rac{||r_t||}{||w_t||}$$

Main Algorithm

SSOA: Streamlined Stiefel-manifold Optimization Algorithm

```
Algorithm 1: Streamlined Stiefel-manifold Optimization
Algorithm (SSOA)
   Input:
        An initial column-orthonormal m \times k matrix U_0;
        sample set \Omega, m \times n sample matrix P_{\Omega}(A);
        maximum number of iteration T.
   Output:
        Estimated matrix A.
    1: t = 0;
    2: while t < T do
           Randomly choose a column index q \in \{1, 2, ..., n\}, get
            [a_q]_{\Omega};
          w_t = ([U_t]_{\Omega}^T [U_t]_{\Omega})^{-1} [U_t]_{\Omega} [a_q]_{\Omega};
           p_t = U_t w_t;
    6: r_t = P_{\Omega}(a_q - p_t);
7: U_{t+1} = U_t + \frac{i_t \omega_t^T}{||w_t||^2};
           t = t + 1;
    9: lend while
   10: U \equiv U_t;
   11: for each i \in \{1, 2, ..., n\} do
12: \overline{a}_i = \overline{U([U]_{\Omega}^T [U]_{\Omega})^{-1}} [U]_{\Omega} [a_i]_{\Omega};
   13: end for
   14: A = [\hat{a}_1, \hat{a}_2, ..., \hat{a}_n].
```


Recover the fingerprints

Outline

- Introduction & Motivation
- Problem Formulation
- Algorithm Design
- Experimental Validation
- Conclusion

Datasets

- ❖ 2.2 km², ~60,000 records, Shanghai, China.
- * 69.8 km2, ~8,820,000 records, Ningbo, China.

Fingerprint Prediction

(a) Target region and BSes distribution

(b) Fingerprints on main roads

(c) Predicted fingerprints

(d) Prediction errors distribution

Fingerprinting Localization

Algorithms in comparison: Cell ID, Gaussian Mixture Model.

THE WIRELESS E911 LOCATION ACCURACY REQUIREMENTS [2]

For terminal-based and terminal-assisted positioning:

- 50m, 67% within 50m for 67% of all calls measured at country level
- 150m, 95% within 150m for 95% of all calls measured at county level

For network-based positioning:

- 100m, 67% within 100m for 67% of all calls measured at county level
- 300m, 90% within 300m for 90% of all calls measured at county level

Carriers must provide location, together with confidence and uncertainty data, for all emergency calls at the PSAPs.

<100m 67%

<300m 90%

<100m <300m

SSOA 71% 98%

Cell ID 34% 93%

GMM 14% 75%

Outline

- Introduction & Motivation
- Problem Formulation
- Algorithm Design
- Experimental Validation
- Conclusion

Conclusion

- Proposed a Streamlined Stiefel-manifold Optimization Algorithm (SSOA) based on Gradient Descent.
- Validated our proposed mechanisms based on largescale real datasets.

Please refer to the paper for more details about:

- 1. Convergence analysis of SSOA.
- 2. Sliding window mechanism for applying SSOA in real cases.
- 3. Theoretical analysis of determining k in U_k .
- 4. Experiment of fingerprint prediction on the smaller dataset.

Thanks for Listening! Q&A