

WEBENCH® Design Report

VinMin = 10.0V VinMax = 14.0V Vout = -12.0V lout = 1.0A Device = LM25576MHX/NOPB Topology = Inverting\_Buck\_Boost Created = 1/27/16 1:02:54 AM BOM Cost = \$4.68 BOM Count = 21 Total Pd = 1.55W

Design : 4079392/13 LM25576MHX/NOPB LM25576MHX/NOPB 10.0V-14.0V to -12.00V @ 1.0A



## **Electrical BOM**

| #   | Name   | Manufacturer                  | Part Number                        | Properties                                                        | Qty | Price  | Footprint                  |
|-----|--------|-------------------------------|------------------------------------|-------------------------------------------------------------------|-----|--------|----------------------------|
| 1.  | Cboot  | MuRata                        | GRM155R71E223KA61D<br>Series= X7R  | Cap= 22.0 nF<br>VDC= 25.0 V<br>IRMS= 0.0 A                        | 1   | \$0.01 | 0402 3 mm <sup>2</sup>     |
| 2.  | Cbyp   | MuRata                        | GRM155R61A104KA01D<br>Series= X5R  | Cap= 100.0 nF<br>VDC= 10.0 V<br>IRMS= 0.0 A                       | 1   | \$0.01 | 0402 3 mm <sup>2</sup>     |
| 3.  | Ccomp  | Yageo America                 | CC0805KRX7R9BB681<br>Series= X7R   | Cap= 680.0 pF<br>VDC= 50.0 V<br>IRMS= 0.0 A                       | 1   | \$0.01 | 0805 7 mm <sup>2</sup>     |
| 4.  | Ccomp2 | Samsung Electro-<br>Mechanics | CL21C140JBANNNC<br>Series= C0G/NP0 | Cap= 14.0 pF<br>VDC= 50.0 V<br>IRMS= 0.0 A                        | 1   | \$0.01 | 0805 7 mm <sup>2</sup>     |
| 5.  | Cin    | MuRata                        | GRM188R61E105KA12D<br>Series= X5R  | Cap= 1.0 uF<br>ESR= 17.113 mOhm<br>VDC= 25.0 V<br>IRMS= 979.39 mA | 1   | \$0.01 | 0603 5 mm <sup>2</sup>     |
| 6.  | Cinx   | AVX                           | 08053C104KAT2A<br>Series= X7R      | Cap= 100.0 nF<br>ESR= 280.0 mOhm<br>VDC= 25.0 V<br>IRMS= 0.0 A    | 1   | \$0.01 | 0805 7 mm <sup>2</sup>     |
| 7.  | Cio    | MuRata                        | GRM31MR71H105KA88L<br>Series= X7R  | Cap= 1.0 uF<br>ESR= 7.389 mOhm<br>VDC= 50.0 V<br>IRMS= 979.22 mA  | 1   | \$0.05 | 1206 11 mm <sup>2</sup>    |
| 8.  | Cout   | Panasonic                     | 16TQC15M<br>Series= TQC            | Cap= 15.0 uF<br>ESR= 90.0 mOhm<br>VDC= 16.0 V<br>IRMS= 1.0 A      | 3   | \$0.66 | 3528-21 17 mm <sup>2</sup> |
| 9.  | Coutx  | Taiyo Yuden                   | TMK212BJ225KG-T<br>Series= X5R     | Cap= 2.2 uF<br>VDC= 20.0 V<br>IRMS= 0.0 A                         | 1   | \$0.04 | 0805 7 mm <sup>2</sup>     |
| 10. | Cramp  | Samsung Electro-<br>Mechanics | CL21C121JB61PNC<br>Series= C0G/NP0 | Cap= 120.0 pF<br>VDC= 50.0 V<br>IRMS= 0.0 A                       | 1   | \$0.01 | 0805 7 mm <sup>2</sup>     |

MXA20A 71 mm<sup>2</sup>

| # Name    | Manufacturer      | Part Number                        | Properties                                           | Qty | Price  | Footprint                   |
|-----------|-------------------|------------------------------------|------------------------------------------------------|-----|--------|-----------------------------|
| 11. Css   | MuRata            | GRM033R60J333KE01D<br>Series= X5R  | Cap= 33.0 nF<br>VDC= 6.3 V<br>IRMS= 0.0 A            | 1   | \$0.01 | 0201 2 mm <sup>2</sup>      |
| 12. D1    | Diodes Inc.       | B340LA-13-F                        | VF@Io= 450.0 mV<br>VRRM= 40.0 V                      | 1   | \$0.13 | SMA 37 mm <sup>2</sup>      |
| 13. L1    | Bourns            | SDR1307-120ML                      | L= 12.0 μH<br>DCR= 30.0 mOhm                         | 1   | \$0.35 |                             |
|           |                   |                                    |                                                      |     |        | SDR1307 227 mm <sup>2</sup> |
| 14. Rcomp | Vishay-Dale       | CRCW040269K8FKED<br>Series= CRCWe3 | Res= 69.8 kOhm<br>Power= 63.0 mW<br>Tolerance= 1.0%  | 1   | \$0.01 | 0402 3 mm <sup>2</sup>      |
| 15. Rfbb  | Vishay-Dale       | CRCW04021K65FKED<br>Series= CRCWe3 | Res= 1.65 kOhm<br>Power= 63.0 mW<br>Tolerance= 1.0%  | 1   | \$0.01 | 0402 3 mm <sup>2</sup>      |
| 16. Rfbt  | Vishay-Dale       | CRCW040214K7FKED<br>Series= CRCWe3 | Res= 14.7 kOhm<br>Power= 63.0 mW<br>Tolerance= 1.0%  | 1   | \$0.01 | 0402 3 mm <sup>2</sup>      |
| 17. Rramp | Vishay-Dale       | CRCW0402200KFKED<br>Series= CRCWe3 | Res= 200.0 kOhm<br>Power= 63.0 mW<br>Tolerance= 1.0% | 1   | \$0.01 | 0402 3 mm <sup>2</sup>      |
| 18. Rt    | Vishay-Dale       | CRCW04029K09FKED<br>Series= CRCWe3 | Res= 9.09 kOhm<br>Power= 63.0 mW<br>Tolerance= 1.0%  | 1   | \$0.01 | 0402 3 mm <sup>2</sup>      |
| 19. U1    | Texas Instruments | LM25576MHX/NOPB                    | Switcher                                             | 1   | \$2.00 |                             |











## **Operating Values**

|     | 9         |                       |          |                                              |  |
|-----|-----------|-----------------------|----------|----------------------------------------------|--|
| #   | Name      | Value                 | Category | Description                                  |  |
| 1.  | Cin IRMS  | 524.755 mA            | Current  | Input capacitor RMS ripple current           |  |
| 2.  | Cio IRMS  | 570.296 mA            | Current  | Input to output capacitor RMS ripple current |  |
| 3.  | Cout IRMS | 1.217 A               | Current  | Output capacitor RMS ripple current          |  |
| 4.  | D1 Irms   | 1.192 A               | Current  | D1 Irms                                      |  |
| 5.  | IC lpk    | 5.875 mA              | Current  | Peak switch current in IC                    |  |
| 6.  | lin Avg   | 1.355 A               | Current  | Average input current                        |  |
| 7.  | L lpp     | 817.445 mA            | Current  | Peak-to-peak output inductor ripple current  |  |
| 8.  | L1 lpk    | 2.734 A               | Current  | Inductor peak current                        |  |
| 9.  | L1 Irms   | 1.579 A               | Current  | Inductor ripple current                      |  |
| 10. | BOM Count | 21                    | General  | Total Design BOM count                       |  |
| 11. | FootPrint | 459.0 mm <sup>2</sup> | General  | Total Foot Print Area of BOM components      |  |

| #   | Name         | Value       | Category | Description                                 |
|-----|--------------|-------------|----------|---------------------------------------------|
| 12. | Frequency    | 550.0 kHz   | General  | Switching frequency                         |
| 13. | IC Tolerance | 18.0 mV     | General  | IC Feedback Tolerance                       |
| 14. | Total BOM    | \$4.68      | General  | Total BOM Cost                              |
| 15. | D1 Tj        | 72.857 degC | Op_Point | D1 junction temperature                     |
| 16. | Vin p-p      | 298.756 mV  | Op_Point | Peak-to-peak input voltage                  |
| 17. | Cross Freq   | 15.522 kHz  | Op_point | Bode plot crossover frequency               |
| 18. | Duty Cycle   | 57.0 %      | Op_point | Duty cycle                                  |
| 19. | Efficiency   | 88.586 %    | Op_point | Steady state efficiency                     |
| 20. | Gain Marg    | 10.806 db   | Op_point | Bode Plot Gain Margin                       |
| 21. | IC Tj        | 58.028 degC | Op_point | IC junction temperature                     |
| 22. | IOUT_OP      | 1.0 A       | Op_point | lout operating point                        |
| 23. | Phase Marg   | 48.164 deg  | Op_point | Bode Plot Phase Margin                      |
| 24. | Phase Shift  | 45.2 deg    | Op_point | Bode Plot Phase Shift                       |
| 25. | VIN_OP       | 10.0 V      | Op_point | Vin operating point                         |
| 26. | Vout p-p     | 112.694 mV  | Op_point | Peak-to-peak output ripple voltage          |
| 27. | Cin Pd       | 4.712 mW    | Power    | Input capacitor power dissipation           |
| 28. | Cio Pd       | 2.403 mW    | Power    | Input to output capacitor power dissipation |
| 29. | Cout Pd      | 44.461 mW   | Power    | Output capacitor power dissipation          |
| 30. | D1 Pd        | 476.186 mW  | Power    | Diode power dissipation                     |
| 31. | D1 PdCond    | 450.0 mW    | Power    | Diode conduction losses                     |
| 32. | D1 PdSw      | 26.185 mW   | Power    | Diode switching losses                      |
| 33. | IC Pd        | 700.698 mW  | Power    | IC power dissipation                        |
| 34. | L Pd         | 175.515 mW  | Power    | Inductor power dissipation                  |
| 35. | Rsense Pd    | 99.958 mW   | Power    | LED Current Rsns Power Dissipation          |
| 36. | Total Pd     | 1.546 W     | Power    | Total Power Dissipation                     |

## **Design Inputs**

| #  | Name    | Value   | Description            |
|----|---------|---------|------------------------|
| 1. | lout    | 1.0     | Maximum Output Current |
| 2. | VinMax  | 14.0    | Maximum input voltage  |
| 3. | VinMin  | 10.0    | Minimum input voltage  |
| 4. | Vout    | -12.0   | Output Voltage         |
| 5. | base_pn | LM25576 | Base Product Number    |
| 6. | source  | DC      | Input Source Type      |
| 7. | Та      | 30.0    | Ambient temperature    |

## Design Assistance

1. LM25576 Product Folder: http://www.ti.com/product/LM25576: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.