Un mathématicien est un aveugle qui, dans une pièce sombre, cherche un chat noir qui n'y est pas. Charles Darwin.

Semaine 4: 11/09 au 15/09

Reprise du chapitre précédent sur les fonctions avec en plus les bijections

▶ Inégalités et fonctions

- -Rappels sur la manipulation d'inégalités. Encadrement d'un quotient de réels positifs.
- -La fonction valeur absolue : définition, propriétés : inégalité triangulaire et sa généralisation.
- -Monotonie, exemples et contre-exemples.

ightharpoonup Propriétés d'une fonction de $\mathbb R$ dans $\mathbb R$

- -Parité et imparité, opérations sur les fonctions paires et impaires, interprétation graphique.
- -Périodicité, exemples et contre-exemples.
- -Asymptotes avec en particulier la recherche d'une asymptote oblique.
- -Rappels sur les extrema d'une fonction.
- -Transformations affines du graphe d'une fonction.

▶ Dérivation

- -Définition, équation de la tangente, exemples.
- -Somme, produit, composée de deux fonctions dérivables, formulaire.
- -Lien entre signe de la dérivée et sens de variation.
- -Utilisation de la dérivation pour démontrer des inégalités ou lever des indéterminations.
- -Bijection et application réciproque, propriété de la réciproque en particulier la dérivabilité.
- -Théorème des valeurs intermédiaires et théorème de la bijection, exemples.

Fonctions usuelles (début)

▶ Logarithmes, exponentielle et fonctions puissances

- -Définition de la comme la primitive sur \mathbb{R}_+^* qui s'annule en 1 de $x \mapsto \frac{1}{x}$.
- -Propriétés du logarithme népérien.
- -Définition de la fonction exp et propriétés.
- -Fonctions puissances, fonctions polynomiales et fonctions rationnelles.
- -Exponentielles et logarithmes en base a.
- -Croissances comparées usuelles.

Remarque. Les fonctions ch, sh, th, Arccos, Arcsin, et Arctan seront au programme de colle la semaine prochaine. On garde aussi la trigonométrie pour la semaine prochaine.

Questions de cours :

- $\bullet \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = e$
- $\bullet \lim_{x \to +\infty} \frac{e^x}{x} = +\infty.$
- $\forall x \in \mathbb{R}_+^*, \ \forall y \in \mathbb{R}_+^*, \ \ln(xy) = \ln(x) + \ln(y).$
- Étude et tracé de $x \mapsto a^x$ où a > 0.
- Étude et tracé de $x \mapsto x^{\alpha}$ où $\alpha \in \mathbb{R}$.