Attacking Hard Mixed-Integer Optimization Problems through the AMPL Modeling Language

Robert Fourer

AMPL Optimization LLC

www.ampl.com — +1 773-336-2675

Industrial Engineering & Management Sciences, Northwestern University

IFORS 2011

19th Triennial Conference of the Int'l Federation of Operational Research Societies

Melbourne — July 10-15, 2011 — Session MC-7, OR Software

AMPL: Work Scheduling Example

Cover demands for workers

- * Each "shift" requires a certain number of employees
- * Each employee works a certain "schedule" of shifts
- * Each schedule that is worked by anyone must be worked by a fixed minimum number

Minimize total workers needed

- Which schedules are used?
- How many work each of schedule?

Algebraic modeling language: symbolic data

```
set SHIFTS;  # shifts

param Nsched;  # number of schedules;
set SCHEDS = 1..Nsched;  # set of schedules

set SHIFT_LIST {SCHEDS} within SHIFTS;

param rate {SCHEDS} >= 0;  # pay rates
param required {SHIFTS} >= 0;  # staffing requirements

param least_assign >= 0;  # min workers on any schedule used
```

Algebraic modeling language: symbolic model

```
var Work {SCHEDS} >= 0 integer;
var Use {SCHEDS} >= 0 binary;
minimize Total Cost:
   sum {j in SCHEDS} rate[j] * Work[j];
subject to Shift_Needs {i in SHIFTS}:
   sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j] >= required[i];
subject to Least_Use1 {j in SCHEDS}:
   least_assign * Use[j] <= Work[j];</pre>
subject to Least_Use2 {j in SCHEDS}:
   Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];</pre>
```

Explicit data independent of symbolic model

```
set SHIFTS := Mon1 Tue1 Wed1 Thu1 Fri1 Sat1
             Mon2 Tue2 Wed2 Thu2 Fri2 Sat2
             Mon3 Tue3 Wed3 Thu3 Fri3;
param Nsched := 126;
set SHIFT_LIST[1] := Mon1 Tue1 Wed1 Thu1 Fri1 ;
set SHIFT_LIST[2] := Mon1 Tue1 Wed1 Thu1 Fri2 ;
set SHIFT_LIST[3] := Mon1 Tue1 Wed1 Thu1 Fri3 ;
set SHIFT LIST[4] := Mon1 Tue1 Wed1 Thu1 Sat1 :
set SHIFT_LIST[5] := Mon1 Tue1 Wed1 Thu1 Sat2; ......
param required := Mon1 100 Mon2 78 Mon3 52
                  Tue1 100 Tue2 78 Tue3 52
                  Wed1 100 Wed2 78 Wed3 52
                  Thu1 100 Thu2 78 Thu3 52
                  Fri1 100 Fri2 78 Fri3 52
                  Sat1 100 Sat2 78;
```

Solver independent of model & data

```
ampl: model sched1.mod;
ampl: data sched.dat;
ampl: let least_assign := 7;
ampl: option solver cplex;
ampl: solve;
CPLEX 12.3.0.0: optimal integer solution; objective 266
1131 MIP simplex iterations
142 branch-and-bound nodes
ampl: option omit_zero_rows 1, display_1col 0;
ampl: display Work;
Work [*] :=
         20 9 36 7 66 11 82 18 91 25 118 18
 6 28
                                                           122 36
 18 18
         31 9
                          78 26
                                  89 9 112 27
                 37 18
                                                  119 7;
```

Language independent of solver

```
ampl: model sched1.mod;
ampl: data sched.dat;
ampl: let least_assign := 7;
ampl: option solver gurobi;
ampl: solve;
Gurobi 4.5.0: optimal solution; objective 266
504 simplex iterations
50 branch-and-cut nodes
ampl: option omit_zero_rows 1, display_1col 0;
ampl: display Work;
Work [*] :=
  1 20
         21 36 71 7 89 28 95 8 109 28 119 7
                                                           124 28
                 87 7 91 16 101 12 116 17
         37 36
                                                   122
                                                       8;
```

Topics

- 1: Look at the details
- 2: Know when to quit
- 3: Multiprocess
- 4: Tune
- 5: Reformulate
- 6: "Cheat" on the method
- 7: "Cheat" on the data

1: Look at the Details

Log lines
Preprocessing
Postprocessing

Log Lines

CPLEX

```
ampl: option cplex_options 'mipdisplay 2 mipinterval 100';
ampl: solve;
CPLEX 11.2.0: mipdisplay 2
mipinterval 100
       Nodes
                                                   Cuts/
  Node Left
                           IInf
                                 Best Integer
               Objective
                                                 Best Node
                                                             ItCnt
                                                                       Gap
                265.6000
                             18
                                                  265.6000
                                                                38
     0
           0
     0
                265.6000
                             22
                                                  Cuts: 12
                                                                46
                             21
                                                                54
                265.6000
                                                MIRcuts: 1
     0+
                                    10348.0000
                                                  265.6000
                                                                54
                                                                     97.43%
           2
                                    10348.0000
                                                                54
                                                                     97.43%
     0
                265,6000
                             18
                                                  265,6000
         102
                                                                     97.43%
   100
                267.0000
                                    10348.0000
                                                  265.6000
                                                               537
         118
                                                                      2.71%
   119
                 integral
                              0
                                      273.0000
                                                  265.6000
                                                               882
   200
         199
                265.7500
                             19
                                      273,0000
                                                  265,6000
                                                              1633
                                                                      2.71%
         215
                                                                      0.90%
   244
                              0
                                      268.0000
                                                  265.6000
                                                              2744
                 integral
   300
         271
                266,5000
                             14
                                      268.0000
                                                  265,6000
                                                              3093
                                                                      0.90%
   344+
           1
                                      266.0000
                                                  265.6000
                                                              3323
                                                                      0.15%
```

Work

]	Nodes				Cuts/		
	Node	Left	Objective	IInf	Best Integer	Best Node	ItCnt	Gap
	0	0	265.6000	18		265.6000	38	
	0	0	265.6000	22		Cuts: 12	46	
	0	0	265.6000	21		MIRcuts: 1	54	
*	0+	0			10348.0000	265.6000	54	97.43%
	0	2	265.6000	18	10348.0000	265.6000	54	97.43%
	100	102	267.0000	6	10348.0000	265.6000	537	97.43%
*	119	118	integral	0	273.0000	265.6000	882	2.71%
	200	199	265.7500	19	273.0000	265.6000	1633	2.71%
*	244	215	integral	0	268.0000	265.6000	2744	0.90%
	300	271	266.5000	14	268.0000	265.6000	3093	0.90%
*	344+	1			266.0000	265.6000	3323	0.15%

Lower bounds

]	Nodes				Cuts/		
	Node	Left	Objective	IInf	Best Integer	Best Node	${\tt ItCnt}$	Gap
	0	0	265.6000	18		265.6000	38	
	0	0	265.6000	22		Cuts: 12	46	
	0	0	265.6000	21		MIRcuts: 1	54	
*	0+	0			10348.0000	265.6000	54	97.43%
	0	2	265.6000	18	10348.0000	265.6000	54	97.43%
	100	102	267.0000	6	10348.0000	265.6000	537	97.43%
*	119	118	integral	0	273.0000	265.6000	882	2.71%
	200	199	265.7500	19	273.0000	265.6000	1633	2.71%
*	244	215	integral	0	268.0000	265.6000	2744	0.90%
	300	271	266.5000	14	268.0000	265.6000	3093	0.90%
*	344+	1			266.0000	265.6000	3323	0.15%

Upper bounds

de L 0 0 0 0	0 0 0	Objective 265.6000 265.6000	1Inf 18 22 21	Best Integer	Best Node 265.6000 Cuts: 12	1tCnt 38 46	Gap
0	0	265.6000	22				
0	0				Cuts: 12	46	
		265.6000	21				
0+	^				MIRcuts: 1	54	
•	0			10348.0000	265.6000	54	97.43%
0	2	265.6000	18	10348.0000	265.6000	54	97.43%
00	102	267.0000	6	10348.0000	265.6000	537	97.43%
19	118	integral	0	273.0000	265.6000	882	2.71%
00	199	265.7500	19	273.0000	265.6000	1633	2.71%
44	215	integral	0	268.0000	265.6000	2744	0.90%
00	271	266.5000	14	268.0000	265.6000	3093	0.90%
	1			266.0000	265.6000	3323	0.15%
	00 44	00 199 44 215 00 271	00 199 265.7500 44 215 integral 00 271 266.5000	00 199 265.7500 19 44 215 integral 0 00 271 266.5000 14	00 199 265.7500 19 273.0000 44 215 integral 0 268.0000 00 271 266.5000 14 268.0000	00 199 265.7500 19 273.0000 265.6000 44 215 integral 0 268.0000 265.6000 00 271 266.5000 14 268.0000 265.6000	00 199 265.7500 19 273.0000 265.6000 1633 44 215 integral 0 268.0000 265.6000 2744 00 271 266.5000 14 268.0000 265.6000 3093

Gap

	1	Nodes				Cuts/		
	Node	Left	Objective	IInf	Best Integer	Best Node	${\tt ItCnt}$	Gap
	0	0	265.6000	18		265.6000	38	
	0	0	265.6000	22		Cuts: 12	46	
	0	0	265.6000	21		MIRcuts: 1	54	
*	0+	0			10348.0000	265.6000	54	97.43%
	0	2	265.6000	18	10348.0000	265.6000	54	97.43%
	100	102	267.0000	6	10348.0000	265.6000	537	97.43%
*	119	118	integral	0	273.0000	265.6000	882	2.71%
	200	199	265.7500	19	273.0000	265.6000	1633	2.71%
*	244	215	integral	0	268.0000	265.6000	2744	0.90%
	300	271	266.5000	14	268.0000	265.6000	3093	0.90%
*	344+	1			266.0000	265.6000	3323	0.15%

Preprocessing

```
ampl: option gurobi_options 'outlev 1 logfreq 1 timing 1';
ampl: option presolve 10;
ampl: option show_stats 1;
ampl: solve;
Presolve eliminates 159622 constraints and 755655 variables.
Adjusted problem:
385720 variables:
       384720 binary variables
       1000 linear variables
317322 constraints, all linear; 13961712 nonzeros
1 linear objective; 308776 nonzeros.
Gurobi 4.5.0:
Optimize a model with 317322 Rows, 385720 Columns and 13961712 NonZeros
Presolve removed 0 rows and 32432 columns (presolve time = 2s) ...
Presolve removed 8335 rows and 41141 columns (presolve time = 5s) ...
Presolve removed 9004 rows and 42076 columns (presolve time = 5s) ...
Presolve removed 11605 rows and 56770 columns (presolve time = 28s) ...
Presolve removed 12944 rows and 58142 columns (presolve time = 32s) ...
```

Preprocessing (cont'd)

```
Presolve removed 218544 rows and 58411 columns (presolve time = 33s) ...
Presolve removed 219031 rows and 58411 columns (presolve time = 63s) ...
Presolve removed 222957 rows and 189567 columns (presolve time = 64s) ...
Presolve removed 264766 rows and 292409 columns (presolve time = 65s) ...
Presolve removed 270648 rows and 318250 columns (presolve time = 66s) ...
Presolve removed 285755 rows and 318284 columns (presolve time = 67s) ...
Presolve removed 285781 rows and 318284 columns (presolve time = 72s) ...
Presolve removed 289794 rows and 340434 columns (presolve time = 73s) ...
Presolve removed 297321 rows and 346361 columns (presolve time = 74s) ...
Presolve removed 298380 rows and 352648 columns (presolve time = 76s) ...
Presolve removed 300053 rows and 355703 columns (presolve time = 77s) ...
Presolve removed 300332 rows and 357302 columns (presolve time = 78s) ...
Presolve removed 301007 rows and 358084 columns (presolve time = 79s) ...
Presolve removed 301071 rows and 358248 columns (presolve time = 80s) ...
Presolve removed 301276 rows and 358654 columns
Presolve time: 84.16s
Presolved: 16046 Rows, 27066 Columns, 281091 Nonzeros
Variable types: 823 continuous, 26243 integer (25838 binary)
```

Preprocessing (cont'd)

```
Found heuristic solution: objective 136.2260000
Found heuristic solution: objective 29.8560000
Root relaxation: objective 1.592000e+00, 7215 iterations, 0.19 seconds
         | Current Node |
   Nodes
                                     Objective Bounds
                                                              Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
          0
                           0
                                 1.5920000 1.59200 0.0%
                                                                  84s
Explored 0 nodes (7381 simplex iterations) in 85.04 seconds
Thread count was 8 (of 8 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 1.5920000000e+00, best bound 1.5920000000e+00, gap 0.0%
```

Postprocessing

```
Explored 10161 nodes (609669 simplex iterations) in 146.98 seconds
Thread count was 8 (of 8 available processors)
Node limit reached
Best objective 1.200000000e+01, best bound 8.00000000e+00, gap 33.3333%
Optimize a model with 4112 Rows, 2439 Columns and 15791 NonZeros
Iteration Objective Primal Inf. Dual Inf.
                                                        Time
           0.000000e+00 2.350000e+02 0.000000e+00
                                                          0s
           1.2000000e+01 0.000000e+00 0.000000e+00
     35
                                                          0s
Solved in 35 iterations and 0.00 seconds
Optimal objective 1.20000000e+01
Gurobi 3.0.0: node limit; objective 12
609669 simplex iterations
10161 branch-and-cut nodes
plus 35 simplex iterations for intbasis
```

2: Know When to Quit

Difficult situations

- Work scheduling without log lines
- Work scheduling with log lines
- ❖ Balanced assignment: a complete failure

Can we stop early?

- ❖ In these cases: good bet
- ❖ In general: not so clear

Work Scheduling Without Log Lines

A day of CPLEX output

```
ampl: model sched1.mod;
ampl: data sched.dat;
ampl: let least_assign := 19;
ampl: option solver cplex;
ampl: option cplex_options 'branch 1';
ampl: solve;
252 variables:
        126 binary variables
        126 integer variables
269 constraints, all linear; 1134 nonzeros
1 linear objective; 126 nonzeros.
CPLEX 12.1.0: branch 1
```

Work Scheduling With Log Lines

CPLEX starts promisingly...

	1	Nodes			Best	Cuts/		
	Node	Left	$\tt Objective$	IInf	Integer	Best Node	ItCnt	Gap
k	0+	0			12112.0000		40	
	0	0	265.6000	25	12112.0000	265.6000	40	97.81%
	0	0	265.6000	29	12112.0000	Cuts: 12	79	97.81%
	0	0	265.6000	24	12112.0000	MIRcuts: 4	87	97.81%
	0	0	265.6000	24	12112.0000	MIRcuts: 3	123	97.81%
	0	2	265.6000	24	12112.0000	265.6000	123	97.81
k	12+	12			616.0000	265.6000	198	56.88
k	12+	12			277.0000	265.6000	198	4.12%
k	560+	83			276.0000	265.6000	4897	3.77
k	566+	54			269.0000	265.6000	5117	1.26%
	10000	2132	268.0000	9	269.0000	265.6000	157659	1.26%
	20000	4057	cutoff		269.0000	265.6000	327850	1.26%
	30000	5926	266.3333	12	269.0000	265.6000	507164	1.26%
	40000	7647	cutoff		269.0000	265.6000	690189	1.26%
	50000	9517	268.0000	23	269.0000	265.6000	884164	1.26%
	60000	11228	265.7500	25	269.0000	265.6000	1088023	1.26%
	70000	13361	268.0000	17	269.0000	265.6000	1276209	1.26%
	80000	15594	268.0000	17	269.0000	265.6000	1462445	1.269

... tightens the bound ...

	Nodes			Best	Cuts/		
Node	Left	Objective	IInf	Integer	Best Node	ItCnt	Gap
1160000	196770	268.0000	15	269.0000	266.2500	24998690	1.02%
1170000	197681	268.0000	6	269.0000	266.3333	25285264	0.99%
1180000	198093	268.0000	6	269.0000	266.5000	25567868	0.93%
1190000	198138	266.6667	24	269.0000	266.6667	25804095	0.87%
1200000	198604	267.2857	17	269.0000	266.6667	26063901	0.87%
Elapsed r	eal time	= 263.20 sec.	(tree	size = 66.8	3 MB)		
1210000	198978	cutoff		269.0000	267.0000	26306006	0.74%
1220000	198908	267.0000	9	269.0000	267.0000	26673281	0.74%
1230000	199278	cutoff		269.0000	267.0000	27003874	0.74%
1240000	199565	268.0000	10	269.0000	267.2500	27261518	0.65%
1250000	200080	268.0000	8	269.0000	267.3333	27521492	0.62%
1260000	200971	cutoff		269.0000	267.3333	27789325	0.62%
1270000	201601	cutoff		269.0000	267.5000	28036060	0.56%
1280000	202092	cutoff		269.0000	267.7500	28247750	0.46%
1290000	202643	268.0000	4	269.0000	268.0000	28449503	0.37%
1300000	203307	cutoff		269.0000	268.0000	28648240	0.37%
Elapsed r	eal time	= 286.48 sec.	(tree	size = 68.3	1 MB)		
1310000	203837	cutoff		269.0000	268.0000	28850298	0.37%
1320000	203880	cutoff		269.0000	268.0000	29058072	0.37%

... eventually stops expanding the search tree ...

Node	Nodes Left	Objective	IInf	Best Integer	Cuts/ Best Node	ItCnt	Gap
387790000	550587	cutoff		269.0000	268.0000	1.40870e+10	0.37%
387800000	550593	268.0000	10	269.0000	268.0000	1.40874e+10	0.37%
Elapsed rea	l time =	95728.25 se	c. (tre	ee size = 15	55.89 MB)		
Nodefile si	ze = 28.	64 MB (19.83	MB aft	er compress	sion)		
387810000	550586	${\tt cutoff}$		269.0000	268.0000	1.40879e+10	0.37%
387820000	550532	cutoff		269.0000	268.0000	1.40884e+10	0.37%
387830000	550535	${\tt cutoff}$		269.0000	268.0000	1.40888e+10	0.37%
387840000	550540	cutoff		269.0000	268.0000	1.40893e+10	0.37%
387850000	550544	268.0000	18	269.0000	268.0000	1.40898e+10	0.37%
387860000	550557	268.0000	13	269.0000	268.0000	1.40902e+10	0.37%
387870000	550578	268.0000	7	269.0000	268.0000	1.40907e+10	0.37%
387880000	550611	268.0000	17	269.0000	268.0000	1.40911e+10	0.37%
387890000	550564	268.0000	6	269.0000	268.0000	1.40916e+10	0.37%
387900000	550529	268.0000	5	269.0000	268.0000	1.40920e+10	0.37%
		95766.47 se		ee size = 15	•		
Nodefile si	ze = 28.	64 MB (19.83	MB aft	er compress	sion)		
387910000	550448	268.0000	10	269.0000	268.0000	1.40923e+10	0.37%
387920000	550458	cutoff		269.0000	268.0000	1.40928e+10	0.37%
387930000	550436	cutoff		269.0000	268.0000	1.40932e+10	0.37%
387940000	550390	268.0000	7	269.0000	268.0000	1.40936e+10	0.37%
387950000	550334	268.0000	7	269.0000	268.0000	1.40940e+10	0.37%

... then takes "forever" to prove optimality

```
Nodes
                                                    Cuts/
                                          Best.
            Left
                                                                   ItCnt
  Node
                   Objective IInf
                                       Integer
                                                 Best Node
                                                                             Gap
             301
                    268,0000
                                      269,0000
                                                  268,0000
                                                            1.72059e+10
                                                                           0.37%
 465550000
             249
                                12
                                                                           0.37%
 465560000
                    268.0000
                                      269.0000
                                                  268.0000
                                                            1.72063e+10
                                                                           0.37%
             228
                                                            1.72068e+10
 465570000
                      cutoff
                                      269.0000
                                                  268.0000
                                                                           0.37%
 465580000
             100
                      cutoff
                                      269.0000
                                                  268.0000 1.72072e+10
                                                                           0.37%
 465590000
              80
                    268.0000
                                      269.0000
                                                  268.0000 1.72076e+10
Flow cuts applied:
Gomory fractional cuts applied:
Root node processing (before b&c):
 Real time
                               0.03
Parallel b&c, 8 threads:
 Real time
                        = 112012.60
  Sync time (average)
                           23098.41
 Wait time (average)
                        = 64021.17
Total (root+branch&cut) = 112012.63 sec.
CPLEX 12.1.0: optimal integer solution; objective 269
-2147483648 MIP simplex iterations
465596558 branch-and-bound nodes
```

... even the latest version!

```
Nodes
                                                    Cuts/
                                          Best.
           Left
                                                                  ItCnt
  Node
                   Objective
                              IInf
                                       Integer
                                                 Best Node
                                                                            Gap
 95900000
           16067
                      cutoff
                                      269,0000
                                                  268,0000
                                                              7.53e+008
                                                                          0.37%
                                                                          0.37%
           12752
                    268.0000
 95950000
                                12
                                      269.0000
                                                  268.0000
                                                              7.53e+008
                                                                          0.37%
           9175
                   268.0000
                                                  268.0000
                                                              7.53e+008
 96000000
                                      269.0000
           5627
                                                                          0.37%
 96050000
                   268,0000
                                      269.0000
                                                  268.0000
                                                              7.54e+008
                                                                          0.37%
 96100000
             657
                      cutoff
                                      269.0000
                                                  268.0000
                                                              7.54e+008
Flow cuts applied:
Gomory fractional cuts applied:
Root node processing (before b&c):
 Real time
                               0.00
Parallel b&c, 8 threads:
 Real time
                           7506.66
  Sync time (average)
                            236.22
 Wait time (average)
                              9.87
Total (root+branch&cut) = 7506.74 sec.
CPLEX 12.3.0.0: optimal integer solution; objective 269
754294922 MIP simplex iterations
96106429 branch-and-bound nodes
```

Work Scheduling With Log Lines

Gurobi starts promisingly...

Fo	Found heuristic solution: objective 408.0000000											
Ro	ot re	elaxati	on: objec	tive 2	.656000	e+02, 97 iter	ations, 0.0	0 secon	ds			
	No	odes	l Cu	rrent 1	Node	Object	ive Bounds	1	Wor]	K		
	Expl	Unexpl	Obj	Depth	IntInf	Incumbent	${\tt BestBd}$	Gap	It/Node	Time		
	0	0	265.6000	0 0	15	408.00000	265.60000	34.9%	_	0s		
H	0	0				290.00000	265.60000	8.41%	-	0s		
	0	0	266.0000	0 0	24	290.00000	266.00000	8.28%	-	0s		
H	0	0				275.00000	266.00000	3.27%	-	0s		
	0	0	266.0000	0 0	21	275.00000	266.00000	3.27%	-	0s		
	0	0	266.0000	0 0	21	275.00000	266.00000	3.27%	-	0s		
	0	0	266.0000	0 0	12	275.00000	266.00000	3.27%	-	0s		
	0	2	266.0000	0 0	7	275.00000	266.00000	3.27%	-	0s		
H	42	50				269.00000	266.00000	1.12%	8.6	0s		
2	6094	12393	268.0000	0 65	19	269.00000	266.00000	1.12%	6.7	3s		
6	1393	28900	cutof	f 51		269.00000	266.00000	1.12%	6.6	6s		
10	3339	48360	268.0000	0 43	7	269.00000	266.00000	1.12%	6.6	9s		
13	9466	64591	268.0000	0 57	7	269.00000	266.00000	1.12%	6.6	12s		
17	6702	80630	cutof	f 71		269.00000	266.00000	1.12%	6.6	15s		
21	7155	97936	268.0000	0 29	17	269.00000	266.00000	1.12%	6.6	18s		

... tightens the bound ...

No	odes	Cur	rent N	lode	١	Object	ive Bounds	1	Wor]	Σ.
Expl	Unexpl	Obj	Depth	${\tt IntInf}$		Incumbent	${\tt BestBd}$	Gap	It/Node	Time
508581	228275	267.2000	00 66	26		269.00000	266.00000	1.12%	6.4	39s
555160	247970	268.0000	00 60	13		269.00000	266.00000	1.12%	6.4	42s
593775	263820	268.0000	00 80	15		269.00000	266.00000	1.12%	6.4	45s
637257	280342	268.0000	00 65	7		269.00000	266.00000	1.12%	6.4	48s
679843	295729	268.0000	00 55	14		269.00000	266.00000	1.12%	6.4	51s
724464	315739	268.0000	00 72	2 6		269.00000	266.00000	1.12%	6.4	54s
764318	331586	cutof	f 68	3		269.00000	266.00000	1.12%	6.4	57s
807548	348225	268.0000	00 43	3 22		269.00000	266.00000	1.12%	6.3	60s
850968	362477	cutof	f 56	3		269.00000	266.00000	1.12%	6.3	63s
908917	374846	268.0000	00 53	18		269.00000	266.75000	0.84%	6.2	66s
981286	392065	268.0000	0 57	' 9		269.00000	268.00000	0.37%	6.1	69s
1052711	400737	cutof	f 58	3		269.00000	268.00000	0.37%	6.2	72s
1121014	403413	cutof	f 56	3		269.00000	268.00000	0.37%	6.2	75s
1194809	403685	268.0000	00 57	17		269.00000	268.00000	0.37%	6.3	78s
1271977	405824	268.0000	00 85	7		269.00000	268.00000	0.37%	6.3	81s
1321885	408302	cutof	f 88	3		269.00000	268.00000	0.37%	6.3	84s
1392557	411299	268.0000	0 62	2 7		269.00000	268.00000	0.37%	6.3	87s
1462331	410872	cutof	f 58	3		269.00000	268.00000	0.37%	6.4	90s
1525446	412952	268.0000	00 64	. 7		269.00000	268.00000	0.37%	6.4	93s

... eventually stops expanding the search tree ...

Nodes	Current 1		-	tive Bounds	_		ork
Expl Unexpl	Obj Depth	IntInf	Incumbent	BestBd	Gap	It/No	de Time
468100473 4333549	268.00000	63 6	269.00000	268.00000	0.37%	7.6	23514s
468158488 4333932	cutoff	55	269.00000	268.00000	0.37%	7.6	23517s
468217704 4334267	cutoff	51	269.00000	268.00000	0.37%	7.6	23520s
468270818 4334676	268.00000	43 7	269.00000	268.00000	0.37%	7.6	23523s
468331266 4334927	268.00000	47 11	269.00000	268.00000	0.37%	7.6	23526s
468392344 4335461	cutoff	46	269.00000	268.00000	0.37%	7.6	23529s
468451907 4335661	cutoff	57	269.00000	268.00000	0.37%	7.6	23532s
468512663 4335747	cutoff	71	269.00000	268.00000	0.37%	7.6	23535s
468573142 4336803	cutoff	52	269.00000	268.00000	0.37%	7.6	23538s
468634351 4337183	268.00000	68 11	269.00000	268.00000	0.37%	7.6	23541s
468691039 4337566	268.00000	70 5	269.00000	268.00000	0.37%	7.6	23544s
468748985 4336541	268.00000	62 16	269.00000	268.00000	0.37%	7.6	23547s
468805241 4335743	268.00000	65 18	269.00000	268.00000	0.37%	7.6	23550s
468866302 4335535	268.00000	66 9	269.00000	268.00000	0.37%	7.6	23553s
468926151 4334696	cutoff	65	269.00000	268.00000	0.37%	7.6	23556s
468985994 4334355	268.00000	63 14	269.00000	268.00000	0.37%	7.6	23559s
469044544 4333792	268.00000	52 9	269.00000	268.00000	0.37%	7.6	23562s
469097106 4333524	268.00000	72 8	269.00000	268.00000	0.37%	7.6	23565s
469156297 4332696	cutoff	83	269.00000	268.00000	0.37%	7.6	23568s

... then takes "forever" to prove optimality

```
Nodes
                      Current Node
                                            Objective Bounds
                                                                       Work
    Expl Unexpl |
                                        Incumbent
                                                    BestBd
                                                                   It/Node Time
                   Obj Depth IntInf |
                                                             Gap |
1330292347
           2062
                 268,00000
                             45
                                 14
                                       269.00000 268.00000
                                                            0.37%
                                                                    7.6 69930s
1330348816 1624
                                 22
                                                            0.37%
                 268.00000
                                       269.00000
                                                  268.00000
                                                                    7.6 69933s
1330391972 920
                             76 5 269.00000 268.00000 0.37%
                                                                    7.6 69936s
                268.00000
1330448520 803
                                       269.00000 268.00000 0.37%
                    cutoff
                            69
                                                                    7.6 69939s
1330505973 333 268.00000
                                 11
                                       269.00000 268.00000 0.37%
                                                                    7.6 69942s
Cutting planes:
 Gomory: 1
 Implied bound: 2
Thread count was 8 (of 8 available processors)
Times (seconds):
Input = 0.001
Solve = 69944.7 (summed over threads)
Output = 0.012
Elapsed = 69944
Gurobi 3.0.0: optimal solution; objective 269
10114432447 simplex iterations
1330555419 branch-and-cut nodes
```

Balanced Assignment: Complete Failure

Starts well...

]	Nodes				Cuts/		
	Node	Left	Objective	IInf	Best Integer	Best Node	${\tt ItCnt}$	Gap
	0	0	0.0000	61		0.0000	99	
*	0+	0			232.0000	0.0000	99	100.00%
	0	0	0.0000	60	232.0000	Cuts: 55	174	100.00%
	0	0	0.0000	66	232.0000	Flowcuts: 17	250	100.00%
	0	0	0.0000	58	232.0000	Flowcuts: 9	300	100.00%
	0	0	0.0000	57	232.0000	Flowcuts: 13	326	100.009
*	0+	0			230.0000	0.0000	326	100.009
*	0+	0			216.0000	0.0000	326	100.00
	0	2	0.0000	57	216.0000	0.0000	326	100.00
*	440+	403			214.0000	0.0000	7938	100.00
*	552+	339			212.0000	0.0000	10797	100.00
	1000	556	69.9315	50	212.0000	0.0000	16491	100.00
	2000	1332	42.8547	47	212.0000	0.0000	25669	100.00
	3000	2276	81.6541	49	212.0000	5.0928	37332	97.60
	4000	3214	77.9166	49	212.0000	5.1140	47933	97.59
	5000	4160	71.0567	52	212.0000	6.4918	57582	96.94
	6000	5089	97.3040	47	212.0000	7.8042	66662	96.32
	7000	6021	158.4869	37	212.0000	9.3981	75348	95.57
	8000	6942	157.5392	36	212.0000	11.2257	84237	94.70

Balanced Assignment: Failure (cont'd)

... bogs down without much further progress

	Nodes				Cuts/		
Node	Left	Objective	IInf	Best Integer	Best Node	ItCnt	Gap
	• • • • • • •	•					
6244000	5769420	91.8882	46	212.0000	55.4261	37227229	73.86%
6245000	5770348	123.4752	34	212.0000	55.4272	37233744	73.86%
6246000	5771270	63.5603	48	212.0000	55.4289	37239584	73.85%
6247000	5772192	106.5663	43	212.0000	55.4294	37245120	73.85%
6248000	5773112	64.0217	47	212.0000	55.4308	37251128	73.85%
6249000	5774034	181.2576	31	212.0000	55.4310	37257940	73.85%
6250000	5774954	119.4546	35	212.0000	55.4320	37263877	73.85%
_				size = 1616.65 MB after compre			
6251000	5775885	182.0327	29	212.0000	55.4328	37270210	73.85%
6252000	5776807	140.1960	39	212.0000	55.4330	37275647	73.85%
6253000	5777720	91.9423	43	212.0000	55.4346	37281516	73.85%
6254000	5778648	127.8185	35	212.0000	55.4355	37286884	73.85%
2 Gomory 1 zero-ha	alf cut	ounding cut	s				
CPLEX 11.	2.0: ran	out of mem	ory.				

Stopping Early

1st example

- optimum is either 269 or 268
- solution with 269 is known
- isn't that good enough?

2nd example

- gap is still huge, but . . .
- solution with 212 seems likely to be optimal

... we'll return to these

The trouble with this reasoning

- not robust over a range of similar problems
- could be wrong when gap is large

3: Multiprocess

Predictable effects

Process branch-and-bound nodes faster

Unpredictable effects

❖ Build a different tree

Work scheduling examples . . .

$least_assign = 20$ (Gurobi 4.5)

1 thread

❖ 64491 nodes 44.93 seconds 0.697 sec / 1000 nodes

8 threads

❖ 128876 nodes 19.78 seconds 0.153 sec / 1000 nodes

Speedup

- **2.3** on time
- **❖** 4.5 on time/node

$least_assign = 21$ (Gurobi 4.5)

1 thread

❖ 192407 nodes 88.94 seconds 0.462 sec / 1000 nodes

8 threads

❖ 238144 nodes 27.11 seconds 0.114 sec / 1000 nodes

Speedup

- **❖** 3.3 on time
- **❖** 4.1 on time/node

$least_assign = 22$ (Gurobi 4.5)

1 thread

❖ 244305 nodes 102.93 seconds 0.421 sec / 1000 nodes

8 threads

❖ 164879 nodes 22.81 seconds 0.138 sec / 1000 nodes

Speedup

- **❖** 4.5 on time
- ❖ 3.0 on time/node

$least_assign = 20$ (CPLEX 12.1.0)

1 thread

❖ 99342 nodes 54.766 seconds 0.551 sec / 1000 nodes

8 threads "deterministic"

❖ 163140 nodes 16.847 seconds 0.103 sec / 1000 nodes

8 threads "opportunistic"

*	62130 nodes	4.918 seconds	0.079 sec / 1000 nodes
*	165574 nodes	13.706 seconds	0.083 sec / 1000 nodes
*	153602 nodes	12.870 seconds	0.084 sec / 1000 nodes
*	310312 nodes	19.184 seconds	0.062 sec / 1000 nodes
*	599794 nodes	51.592 seconds	0.086 sec / 1000 nodes
*	154022 nodes	10.760 seconds	0.070 sec / 1000 nodes
*	75747 nodes	5.597 seconds	0.074 sec / 1000 nodes
*	383213 nodes	42.240 seconds	0.110 sec / 1000 nodes

$least_assign = 20$ (CPLEX 12.1.0)

Speedup 8 threads "deterministic"

❖ 3.3 time 5.3 time / node

Speedup 8 threads "opportunistic"

```
❖ 11.1 time 7.0 time / node
```

- **♦** 4.0 time 6.7 time / node
- **❖** 4.3 time 6.6 time / node
- **❖** 2.9 time **8.9** time / node
- ❖ 1.1 time 6.4 time / node
- **❖** 5.1 time 7.9 time / node
- ❖ 9.8 time 7.5 time / node
- **♦** 1.3 time 5.0 time / node

4: Tune

Default settings
Tuning run
Improved settings
Is tuning worthwhile?

Default Settings

CPLEX 11.1 run

	l	Nodes		Cuts/						
	Node	Left	Objective	IInf	Best Integer	Best Node	${\tt ItCnt}$	${ t Gap}$		
	0	0	265.6000	22		265.6000	38			
	0	0	265.6000	22		Cuts: 13	72			
	0	0	265.6000	27		MIRcuts: 1	91			
*	0+	0			10348.0000	265.6000	91	97.43%		
	0	2	265.6000	25	10348.0000	265.6000	91	97.43%		
*	138	128	integral	0	289.0000	265.6000	3272	8.10%		
*	140+	122			285.0000	265.6000	3292	6.81%		
*	236	175	integral	0	283.0000	265.6000	4737	6.15%		
*	318	168	integral	0	280.0000	265.6000	6175	5.14%		
*	418+	140			272.0000	265.6000	8205	2.35%		
*	418+	99			269.0000	265.6000	8205	1.26%		
*	529+	120			267.0000	265.6000	9524	0.52%		
*	85629+	1			266.0000	265.6000	1408458	0.15%		

159.2 seconds

Default Settings

CPLEX 12.3 run

]	Nodes				Cuts/		
	Node	Left	Objective	IInf	Best Integer	Best Node	${\tt ItCnt}$	Gap
*	0+	0			12112.0000		40	
*	0+	0			2016.0000		40	
	0	0	265.6000	25	2016.0000	265.6000	40	86.83%
*	0+	0			330.0000	265.6000	40	19.52%
	0	0	265.6000	29	330.0000	Cuts: 9	79	19.52%
	0	0	266.0000	10	330.0000	Fract: 1	81	19.39%
	0	0	266.0000	10	330.0000	MIRcuts: 5	101	19.39%
*	0+	0			308.0000	266.0000	101	13.64%
*	0+	0			274.0000	266.0000	101	2.92%
	0	2	266.0000	10	274.0000	266.0000	101	2.92%
*	29+	29			272.0000	266.0000	551	2.21%
*	614+	417			270.0000	266.0000	5353	1.48%
*	614+	417			267.0000	266.0000	5353	0.37%
*1	08286	12274	integral	0	266.0000	266.0000	771544	0.00%

9.09 seconds

Tuning Run

CPLEX tuning option

```
ampl: option cplex_options 'tunefile t.out tunedisplay 2 tunetime 240';
ampl: solve;
CPLEX 12.3.0.0: tunefile t.out
tunedisplay 2
tunetime 240
Tuning on problem 'c252v269i126o126'
Test 'defaults':
   Integer optimal solution.
   Time = 8.75 sec. Objective = 266 Best bound = 266
Tuning progress: 13%
Test 'short1':
   Time limit exceeded.
   Time = 0.89 sec. Objective = 267 Best bound = 266
Tuning progress: 14%
```

Tuning Run (cont'd)

CPLEX tuning option (cont'd)

```
Test 'short_test2':
CPX_PARAM_CUTPASS 1
  Time limit exceeded.
  Time = 0.89 sec. Objective = 267 Best bound = 266
Tuning progress: 16%
Test 'short_test3':
CPX_PARAM_FRACCUTS 2
   Time limit exceeded.
  Time = 0.89 sec. Objective = 267 Best bound = 266
Tuning progress: 17%
Test 'short_test4':
CPX_PARAM_FRACCAND
                   10000
CPX PARAM FRACPASS
                  10
  Time limit exceeded.
  Time = 0.89 sec. Objective = 267 Best bound = 266
Tuning progress: 18%
```

Tuning Run (cont'd)

CPLEX tuning option (cont'd)

```
Test 'short_test14':
CPX_PARAM_BRDIR 1
CPX_PARAM_PROBE 2
CPX_PARAM_PRESLVND 2
CPX_PARAM_CUTSFACTOR 30.000000
  Integer optimal solution.
  Time = 0.67 sec. Objective = 266 Best bound = 266
Tuning progress: 56%
Test 'short_test15':
CPX_PARAM_BRDIR 1
CPX_PARAM_PROBE 3
CPX_PARAM_PRESLVND 2
CPX_PARAM_CUTSFACTOR 30.000000
   Integer optimal solution.
            0.59 sec. Objective = 266 Best bound = 266
  Time =
Tuning progress: 62%
```

Tuning Run (cont'd)

CPLEX tuning option (cont'd)

```
Test 'long_test1':
CPX_PARAM_BRDIR 1
CPX_PARAM_PROBE 3
CPX_PARAM_PRESLVND
CPX_PARAM_CUTSFACTOR 30.000000
   Integer optimal solution.
   Time = 0.64 sec. Objective = 266 Best bound = 266
Tuning finished.
4 settings written to tunefile file "t.out"
ampl: option cplex_options 'paramfile t.out mipdisplay 2 mipinterval 1000';
ampl: solve;
CPLEX 12.3.0.0: branch = 1
cutsfactor = 30
presolvenode = 2
probe = 3
```

Improved Settings

CPLEX 12.3 run

	No	odes						
	Node	Left	Objective	IInf	Best Integer	Best Node	${\tt ItCnt}$	Gap
*	0+	0			12112.0000		40	
*	0+	0			2016.0000		40	
	0	0	265.6000	25	2016.0000	265.6000	40	86.83%
*	0+	0			330.0000	265.6000	40	19.52%
	0	0	265.6000	29	330.0000	Cuts: 9	79	19.52%
	0	0	266.0000	10	330.0000	Fract: 1	81	19.39%
	0	0	266.0000	10	330.0000	MIRcuts: 5	101	19.39%
*	0+	0			308.0000	266.0000	101	13.64%
*	0+	0			274.0000	266.0000	101	2.92%
	0	2	266.0000	10	274.0000	266.0000	101	2.92%
*	12+	10			271.0000	266.0000	282	1.85%
*	37+	32			270.0000	266.0000	497	1.48%
*	522+	84			268.0000	266.0000	3886	0.75%
*	522+	56			267.0000	266.0000	3886	0.37%
*	919+	91			266.0000	266.0000	7441	0.00%

0.66 seconds

Improved Settings (cont'd)

$Results (for least_assign = 16)$

- ❖ With defaults: 9.09 sec, 109169 nodes, 776836 iters
- ❖ After tuning: 0.66 sec, 979 nodes, 7946 iters

Settings for tuned run

- ❖ branch = 1
- cutsfactor = 30
- ❖ presolvenode = 2
- ❖ probe = 3

... same result at default of probe = 0 ... few cuts, so cutsfactor = 30 is irrelevant

Does It Work for Other Runs?

$least_assign = 15$

- ❖ With defaults: 0.37 sec, 599 nodes, 4,970 iters
- ❖ After tuning: 0.38 sec, 646 nodes, 5,029 iters

$least_assign = 16$

- ❖ With defaults: 9.09 sec, 109,169 nodes, 776,836 iters
- * After tuning: 0.66 sec, 979 nodes, 7946 iters

$least_assign = 17$

- * With defaults: 1249 sec, 20,229,983 nodes, 134,303,193 iters
- * After tuning: 286 sec, 4,062,614 nodes, 24,586,325 iters

Is Tuning Worthwhile?

Yes, sometimes

Default settings are not always so good

But...

- Chance may play a role
- ❖ No settings may be consistently better

And you could always...

Try Another Tuner

Paper at 2010 CPAIOR conference

- Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown,
 Automated Configuration of
 Mixed Integer Programming Solvers
- ❖ State-of-the-art solvers for mixed integer programming (MIP) problems are highly parameterized, and finding parameter settings that achieve high performance for specific types of MIP instances is challenging. We study the application of an automated algorithm configuration procedure to different MIP solvers, instance types and optimization objectives. We show that this fullyautomated process yields substantial improvements to the performance of three MIP solvers: CPLEX, GUROBI, and LPSOLVE. Although our method can be used "out of the box" without any domain knowledge specific to MIP, we show that it outperforms the CPLEX special-purpose automated tuning tool.
- A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140,
 pp. 186–202, 2010. © Springer-Verlag Berlin Heidelberg 2010

5: Reformulate

Balanced assignment revisited

- Previous failed run
- Tighter formulations
- ❖ Successful run

Reconceived formulations

Failed Run

Active start . . .

	1	Nodes				Cuts/		
	Node	Left	${\tt Objective}$	IInf	Best Integer	Best Node	${\tt ItCnt}$	Gap
	0	0	0.0000	61		0.0000	99	
k	0+	0			232.0000	0.0000	99	100.00%
	0	0	0.0000	60	232.0000	Cuts: 55	174	100.00%
	0	0	0.0000	66	232.0000	Flowcuts: 17	250	100.00%
	0	0	0.0000	58	232.0000	Flowcuts: 9	300	100.00%
	0	0	0.0000	57	232.0000	Flowcuts: 13	326	100.00%
k	0+	0			230.0000	0.0000	326	100.00%
k	0+	0			216.0000	0.0000	326	100.00%
	0	2	0.0000	57	216.0000	0.0000	326	100.00%
k	440+	403			214.0000	0.0000	7938	100.00%
k	552+	339			212.0000	0.0000	10797	100.00%
	1000	556	69.9315	50	212.0000	0.0000	16491	100.00%
	2000	1332	42.8547	47	212.0000	0.0000	25669	100.00%
	3000	2276	81.6541	49	212.0000	5.0928	37332	97.60%
	4000	3214	77.9166	49	212.0000	5.1140	47933	97.59%
	5000	4160	71.0567	52	212.0000	6.4918	57582	96.94%
	6000	5089	97.3040	47	212.0000	7.8042	66662	96.32%
	7000	6021	158.4869	37	212.0000	9.3981	75348	95.57%
	8000	6942	157.5392	36	212.0000	11.2257	84237	94.70%

Failed Run (cont'd)

... bogs down completely

	Nodes				Cuts/		
Node	Left	Objective	IInf	Best Integer	Best Node	${\tt ItCnt}$	Gap
• • • • • • • •	• • • • • • • •	•					
6244000	5769420	91.8882	46	212.0000	55.4261	37227229	73.86%
6245000	5770348	123.4752	34	212.0000	55.4272	37233744	73.86%
6246000	5771270	63.5603	48	212.0000	55.4289	37239584	73.85%
6247000	5772192	106.5663	43	212.0000	55.4294	37245120	73.85%
6248000	5773112	64.0217	47	212.0000	55.4308	37251128	73.85%
6249000	5774034	181.2576	31	212.0000	55.4310	37257940	73.85%
6250000	5774954	119.4546	35	212.0000	55.4320	37263877	73.85%
Elapsed t	ime = 91	16.25 sec.	(tree	size = 1616.65	MB)		
Nodefile	size = 16	488.81 MB (685.88	MB after compr	ession)		
6251000	5775885	182.0327	29	212.0000	55.4328	37270210	73.85%
6252000	5776807	140.1960	39	212.0000	55.4330	37275647	73.85%
6253000	5777720	91.9423	43	212.0000	55.4346	37281516	73.85%
6254000	5778648	127.8185	35	212.0000	55.4355	37286884	73.85%
8 flow-co	ver cuts						
2 Gomory	cuts						
1 zero-ha							
9 mixed-i	nteger r	ounding cut	s				
CPLEX 11.	2.0: ran	out of mem	ory.				

Tighter Formulation 1

Definition of overlap for person i

```
minimize TotalOverlap:
    sum {i in PEOPLE} Overlap[i];

subj to OverlapDefn {i in PEOPLE, j in 1..numberGrps}:
    Overlap[i] >=
        sum {i2 in PEOPLE diff {i}: title[i2] = title[i]} Assign[i2,j] +
        sum {i2 in PEOPLE diff {i}: loc[i2] = loc[i]} Assign[i2,j] +
        sum {i2 in PEOPLE diff {i}: dept[i2] = dept[i]} Assign[i2,j] +
        sum {i2 in PEOPLE diff {i}: sex[i2] = sex[i]} Assign[i2,j]
        - maxOverlap[i] * (1 - Assign[i,j]);
```

- ➤ maxOverlap[i] must be ≥ greatest overlap possible
- ➤ Smaller values give stronger b&b lower bounds

```
* theoretically correct: 4 * (maxInGrp-1) \rightarrow 0.0

* empirically justified: 1 * (maxInGrp-1) \rightarrow 156.8 (26.0%)
```

Tighter Formulation 2

Group size limits

```
subj to GroupSize {j in 1..numberGrps}:
   minInGrp <= sum {i in PEOPLE} Assign[i,j] <= maxInGrp;</pre>
```

- miningrp must be smaller than group size average
- > maxingrp must be larger than group size average
- ➤ Tighter limits give stronger b&b lower bounds

```
* floor(card(PEOPLE)/numberGrps) - 1 ceil (card(PEOPLE)/numberGrps) + 1 \rightarrow 156.8 (26.0%)
```

```
* floor(card(PEOPLE)/numberGrps)
ceil (card(PEOPLE)/numberGrps) → 177.6 (16.2%)
```

Tighter Formulation 2 (cont'd)

Group sizes

```
param minInGrp := floor (card(PEOPLE)/numberGrps);
param nMinInGrp := numberGrps - card{PEOPLE} mod numberGrps;
subj to GroupSizeMin {j in 1..nMinInGrp}:
    sum {i in PEOPLE} Assign[i,j] = minInGrp;
subj to GroupSizeMax {j in nMinInGrp+1..numberGrps}:
    sum {i in PEOPLE} Assign[i,j] = minInGrp + 1;
```

Compute exact sizes of all groups

```
* min, max sizes \rightarrow 177.6 (16.2%)

* exact sizes \rightarrow 183.36 (13.5%)
```

Tighter Formulation 3

Symmetry constraint (a)

```
subject to BreakSymm1
    {i in FIRST_PEOPLE, j in ord(i,FIRST_PEOPLE)+1..numberGrps}:
        Assign[i,j] = 0;
```

- > choose the first (numberGrps-1) people in some way
- \triangleright assign the *i*th person to one of the first *i* groups

Tighter Formulation 3 (cont'd)

Symmetry constraint (b)

- ➤ identify "types" of people who are identical in all four characteristics
- > order the people of each type, and order the groups
- with each type, assign higher-numbered people to higher-numbered groups

Tighter Formulation 3 (cont'd)

Symmetry strategies

- > BreakSymm1 increases the b&b lower bound a bit
- > BreakSymm2 does not increase the lower bound
- > CPLEX's symmetry directive is more effective
 - * set symmetry=5 for greatest symmetry-breaking effort

Balanced Assignment

Incorporating enhancements . . .

```
ampl: model gs1f.mod;
ampl: data gs1b.dat;
ampl: option solver cplex;
ampl: option cplex_options 'symmetry 5 mipdisplay 2 mipinterval 1000';
ampl: solve;
MIP Presolve eliminated 54 rows and 0 columns.
MIP Presolve modified 2636 coefficients.
Reduced MIP has 197 rows, 156 columns, and 2585 nonzeros.
Reduced MIP has 130 binaries, 0 generals, 0 SOSs, and 0 indicators.
Clique table members: 62.
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: none, using 1 thread.
Root relaxation solution time = 0.03 sec.
       Nodes
                                                     Cuts/
  Node Left
                 Objective IInf Best Integer
                                                   Best Node
                                                                ItCnt
                                                                          Gap
                                      252.0000
                                                                        27.24%
                  183.3626 134
                                                    183.3626
                                                                  262
                                      252,0000
```

Successful Run

Much more promising start . . .

	•	Nodes				Cuts/		
	Node	Left	Objective	IInf	Best Integer	Best Node	${\tt ItCnt}$	Gap
	0	0	189.1865	100	252.0000	Cuts: 49	445	24.93%
	0	0	189.7246	96	252.0000	Cuts: 12	558	24.71%
*	0+	0			240.0000	189.7246	558	20.95%
	0	0	189.7964	96	240.0000	ZeroHalf: 5	664	20.92%
	0	0	189.8864	97	240.0000	ZeroHalf: 8	782	20.88%
	0	0	189.9590	96	240.0000	ZeroHalf: 6	1002	20.85%
	0	0	189.9768	100	240.0000	ZeroHalf: 7	1166	20.84%
	0	0	189.9769	99	240.0000	ZeroHalf: 4	1184	20.84%
*	0+	0			220.0000	189.9769	1203	13.65%
*	0+	0			216.0000	189.9769	1203	12.05%
	0	2	192.8299	78	216.0000	192.8299	1203	10.73%
*	100+	80			212.0000	193.0563	6092	8.94%
	1000	479	200.3732	83	212.0000	195.6130	36233	7.73%
	2000	1242	205.1626	64	212.0000	195.9832	65307	7.56%
	3000	2103	205.8520	59	212.0000	196.4174	93546	7.35%
	4000	2946	205.5224	57	212.0000	196.8495	120479	7.15%
	5000	3790	201.5651	53	212.0000	197.1664	145209	7.00%
	6000	4624	210.5546	34	212.0000	197.4648	169658	6.86%
	7000	5468	201.2841	60	212.0000	197.6005	195286	6.79%
••	• • • •							

Successful Run (cont'd)

... leads to successful conclusion

```
Cuts/
           Nodes
    Node
            Left
                    Objective IInf Best Integer
                                                                   ItCnt
                                                    Best Node
                                                                            Gap
 30287000
            8802
                       cutoff
                                         212,0000
                                                      211.0000 416705257
                                                                           0.47%
                                                                           0.47%
 30288000
            7927
                       cutoff
                                         212.0000
                                                      211.0000 416709767
 30289000
            7021
                   infeasible
                                         212.0000
                                                      211.0000 416714199
                                                                           0.47%
 30290000
            6101
                   infeasible
                                         212.0000
                                                      211.0000 416718973
                                                                           0.47%
Elapsed time = 46415.00 sec. (tree size = 12.94 MB)
 30291000
            5249
                                                      211.0000 416724639
                                                                           0.47%
                       cutoff
                                         212.0000
 30292000
            4407
                   infeasible
                                         212,0000
                                                                           0.47%
                                                      211.0000 416730198
 30293000
            3519
                   infeasible
                                                                           0.47%
                                         212.0000
                                                      211.0000 416735118
            2636
                                                                           0.47%
 30294000
                       cutoff
                                         212.0000
                                                      211.0000 416740781
                                                                           0.47%
 30295000
            1758
                   infeasible
                                         212.0000
                                                      211.0000 416746255
                                                                           0.47%
 30296000
             863
                   infeasible
                                         212,0000
                                                      211.0000 416748900
3 cover cuts
8 implied bound cuts
23 mixed-integer rounding cuts
35 zero-half cuts
12 Gomory fractional cuts
CPLEX 11.2.0: optimal integer solution; objective 212
416751729 MIP simplex iterations
30296965 branch-and-bound nodes
```

Reconceived Formulation

Different variables

- ➤ Min of each type in any group
- ➤ Max of each type in any group

Different objective

➤ Sum of (max – min) over all types

6: "Cheat" on the method

Work scheduling revisited . . .

Cover demands for workers

- * Each "shift" requires a certain number of employees
- * Each employee works a certain "schedule" of shifts
- * Each schedule that is worked by anyone must be worked by a fixed minimum number

Minimize total workers needed

- * Which schedules are used? Use[j] vars
- ❖ How many work each schedule? Work[j] vars

Direct approach

- Apply branch-and-bound to whole problem
- Branch "up" first

Indirect approach

- Step 1: Relax integrality of Work variables Solve for zero-one Use variables
- Step 2: Fix Use variables
 Solve for integer Work variables

... not necessarily optimal, but ...

Run of direct approach

```
ampl: model sched1.mod; data sched.dat;
ampl: let least_assign := 17;
ampl: option solver cplex;
ampl: option cplex_options 'branch 1 presolvenode 2';
ampl: solve;
CPLEX 12.3.0.0: optimal integer solution; objective 267
24586325 MIP simplex iterations
4062614 branch-and-bound nodes
```

Typical run of indirect approach

```
ampl: model sched1.mod; data sched.dat;
ampl: let least_assign := 17;
ampl: option solver cplex;
ampl: option cplex_options 'branch 1 presolvenode 2';
ampl: let {j in SCHEDS} Work[j].relax := 1;
ampl: solve;
CPLEX 12.3.0.0: optimal integer solution; objective 266.5
14355142 MIP simplex iterations
975026 branch-and-bound nodes
ampl: fix {j in SCHEDS} Use[j];
ampl: let {j in SCHEDS} Work[j].relax := 0;
ampl: solve;
CPLEX 12.3.0.0: optimal integer solution; objective 267
11 MIP simplex iterations
O branch-and-bound nodes
```

CPLEX 12.3

❖ Direct: 4,062,614 nodes, 286 seconds

❖ Indirect: 975,026 nodes, 90 seconds

Gurobi 4.5

❖ Direct: > 350,000,000 nodes, > 87000 seconds

❖ Indirect: 2,392,803 nodes, 230 seconds

Observations

- step 1 gives fractional solution
- * step 2 trivially easy and rounds up step 1 objective

... hence optimal

7: "Cheat" on the data

Cut large "raw" rolls into smaller ones

- * All raw rolls the same width
- Various smaller widths ordered
- Varying numbers of widths ordered

Minimize total raw rolls cut

- ❖ By generating patterns during optimization
- By enumerating patterns in advance

Roll Cutting

Cutting model

```
set WIDTHS;
                                         # set of widths to be cut
                                         # number of each width to be cut
param orders {WIDTHS} > 0;
param nPAT integer >= 0;
                                         # number of patterns
param nbr {WIDTHS,1..nPAT} integer >= 0; # rolls of width i in pattern j
var Cut {1..nPAT} integer >= 0;
                                         # rolls cut using each pattern
minimize Number:
   sum {j in 1..nPAT} Cut[i];
                                      # total raw rolls cut
subject to Fill {i in WIDTHS}:
   sum {j in 1..nPAT} nbr[i,j] * Cut[j] >= orders[i];
                                         # for each width,
                                         # rolls cut meet orders
```

Pattern generation model

```
param roll_width > 0;
param price {WIDTHS} default 0.0;
var Use {WIDTHS} integer >= 0;
minimize Reduced_Cost:
    1 - sum {i in WIDTHS} price[i] * Use[i];
subj to Width_Limit:
    sum {i in WIDTHS} i * Use[i] <= roll_width;</pre>
```

Pattern generation script

```
repeat {
    solve Cutting_Opt;
    let {i in WIDTHS} price[i] := Fill[i].dual;
    solve Pattern_Gen;
    if Reduced_Cost < -0.00001 then {
        let nPAT := nPAT + 1;
        let {i in WIDTHS} nbr[i,nPAT] := Use[i];
        }
    else break;
};</pre>
```

Pattern enumeration script

```
repeat {
   if curr_sum + curr_width <= roll_width then {</pre>
      let pattern[curr_width] := floor((roll_width-curr_sum)/curr_width);
      let curr_sum := curr_sum + pattern[curr_width] * curr_width;
   if curr_width != last(WIDTHS) then
      let curr_width := next(curr_width,WIDTHS);
   else {
      let nPAT := nPAT + 1;
      let {w in WIDTHS} nbr[w,nPAT] := pattern[w];
      let curr_sum := curr_sum - pattern[last(WIDTHS)] * last(WIDTHS);
      let pattern[last(WIDTHS)] := 0;
      let curr_width := min {w in WIDTHS: pattern[w] > 0} w;
      if curr_width < Infinity then {</pre>
         let curr_sum := curr_sum - curr_width;
         let pattern[curr_width] := pattern[curr_width] - 1;
         let curr_width := next(curr_width, WIDTHS);
      else break;
```

Sample data

```
param roll_width := 172 ;
param: WIDTHS: orders :=
       25.000
                   5
       24.750
                  73
       18.000
                  14
       17,500
       15.500
                  23
       15.375
       13.875
                  29
       12,500
                  87
       12.250
                  31
       12.000
       10.250
       10.125
                  14
                  43
       10.000
        8.750
                  15
        8.500
                  21
        7.750
```

... Robert W. Haessler, "Selection and Design of Heuristic Procedures for Solving Roll Trim Problems" Management Science 34 (1988) 1460-1471, Table 2

Roll Cutting Results

Patterns generated during optimization (Gilmore-Gomory procedure)

- > 32.80 rolls in continuous relaxation
- ➤ 40 rolls rounded up to integer
- > 34 rolls solving IP using generated patterns

All patterns enumerated in advance

➤ 27,338,021 non-dominated patterns — too big

Every 100th pattern saved

- > 273,380 patterns
- > 33 rolls solving IP using enumerated patterns
- > 50 seconds: b&b heuristic solves at root (no cuts)

... takes much longer to generate than solve