Automatentheorie

Grammatiken Typ-1, Typ-0 und Turingmaschinen

Prof. Dr. Franz-Karl Schmatzer schmatzf@dhbw-loerrach.de

- C.Wagenknecht, M.Hielscher; Formale Sprachen, abstrakte Automaten und Compiler; 3.Aufl. Springer Vieweg 2022;
- Sipser M.; Introduction to the Theory of Computation; 2.Aufl.; Thomson Course Technology 2006
- Hopecroft, T. et al; Introduction to Automata Theory, Language, and Computation; 3. Aufl. Pearson Verlag 2006
- Vossen, G. Witt K.; Grundkurs Theoretische Informatik; 4. Aufl.; Vieweg Verlag 2006
- Cohen, D; Introduction to Computer Theory; John Wiley 1990

- kontextsensitive Grammatiken
- Rekursiv-aufzählbare Sprachen
- Turingmaschinen
- Übersicht über die Sprachklassen

Kontextsensitive Sprache Einführung

Betrachte die Sprache L_{KS}

$$L_{KS} = \{a^nb^nc^n \mid n \ge 0\}$$

Dies Sprache gehört nicht zu den kontextfreien Sprachen.

- Um diese Sprache abzuleiten, braucht man kontextabhängige Regeln.
- Aufheben dieser Beschränkung

Kontextsensitive Grammatik Beispiel

- Beispiel für L_{KS}
 - \blacksquare S \rightarrow aSBC | aBC | ϵ
 - \blacksquare d.h. $S \Rightarrow * a^n(BC)^n$
 - Nun hat man die richtige Anzahl der a's, b's und c's.
 - ► IJm die richtige Reihenfolge BⁿCⁿ zu erhalten braucht man die Regel
 - ightharpoonup CB ightharpoonup BC
 - und um die richtige Reihenfolge der B'c und C's zu gewähren die kontextsensitiven Regeln
 - \blacksquare aB \rightarrow ab,
 - ightharpoonup bB ightharpoonup bb,
 - ightharpoonup bC ightharpoonup bc,
 - ightharpoonup cC ightharpoonup cc
 - Damit G_{KS} = ({S,B,C}, {a,b,c}, P,S) erzeugt die Sprache L_{KS} mit $P = \{S \rightarrow aSBC \mid aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc}$

Kontextsensitive Grammatik Definition

- Eine Grammatik G = (N,Σ,P,S) mit N, Σ und S definiert wie zuvor, heißt kontextsensitive Grammatik oder Typ-1-Grammatik, wenn
 - ightharpoonup P \subseteq (($\Sigma \cup N$)*- Σ *) x ($\Sigma \cup N$)* und |P| < ∞
 - ightharpoonup und mit $l \rightarrow r \in P \Rightarrow |l| \leq |r|$
 - d.h. die Anzahl der Symbole links ist kleiner gleich der Anzahl der Symbole rechts. (Monotonie der Sprache)
- Eine Sprache L heißt kontextsensitiv über Σ , falls es eine kontextsensitive Grammatik G über Σ gibt mit L = L(G)

Rekursiv-aufzählbare Sprachen (Typ-0-Grammatiken)

- Wenn man die Monotonie der Ableitungsregeln | 1 | ≤ | r | aufgibt, d.h. die linke Seite kann auch mehr Symbole als die rechte Seite haben, kommt man zu einer weiteren Klasse von Sprachen.
- Die rekursiv-aufzählbare Sprachen G_R
- Eine Grammatik G = (N,Σ,P,S) mit N, Σ und S definiert wie zuvor, heißt Typ-0-Grammatik bzw. rekursiv-aufzählbar, wenn
 - ightharpoonup P ⊆ ((Σ ∪ N)*- Σ *) x (Σ ∪ N)* und |P| < ∞

Chomsky-Hierarchie

Alle Sprachen

Typ-0 oder rekursiv-aufzählbare Sprachen

Typ-1 oder kontextsensitive Sprachen

Typ-2 oder kontextfreie Sprachen

Typ-3 oder reguläre Sprachen

- Erweitert man den Kellerautomaten dahingehend, dass man wahlfrei auf den Speicher sowohl lesend als auch schreibend zugreifen kann, gelangt man zu den Turing-Automaten bzw. Turingmaschinen.
- Statt des Speichers nimmt man das Eingabeband selbst auf das man schreibend und lesend zugreifen kann.
- Man benötigt noch Steuerungszeichen für den Schreib-/Lesekopf
- Modell Turingmaschine:

Einführung formal

Sei T = (Q, Σ , Γ , δ , s_0 , #, F) eine (deterministische) Turingmaschine.

 $Q = \{s_0, s_1, s_n\}$ eine nicht leere Menge von Zuständen.

 Σ = eine nicht leere Menge von Zeichen, das Eingabealphabet.

 Γ = eine nicht leere Menge von Zeichen mit $\Sigma \subseteq \Gamma$, das Bandalphabet.

δ : eine partielle Funktion Q x $\Gamma \rightarrow$ Q x Γ x {L,R,N}, die Übergangsfunktion

 $s_0 \in Q$ der Anfangszustand

ein Blanksymbol mit $\# \in \Gamma \setminus \Sigma$

F ⊆ Q die nicht leere Menge von Endzustände

Arbeitsweise

- Das zu lesende Wort steht auf dem Band. Begrenzt durch das Blanksymbol #
- Die Maschine kann in jedem Schritt das gelesene Zeichen durch ein eigenes Zeichen überschreiben, dann den Zustand wechseln und den Kopf still halten N, oder ein Zeichen nach links L oder nach rechts R bewegen.
- Die Überführungsfunktion δ kann man so interpretieren:

 δ (q, o) = (q', a, L) : Im Zustand q wird das Zeichen o gelesen. Von dort wird in den Zustand q' übergegangen, o mit a überschrieben und der Kopf nach links (L) bewegt.

 $\delta(q, o) = (q', a, R)$: Der Kopf wird nach rechts bewegt.

 $\delta(q, o) = (q', a, N)$: Der Kopf wird nicht bewegt.

- Sobald ein Endzustand erreicht wird, hält die Maschine.
- Neben der Terminierung durch Endzustände hält eine deterministische Turingmaschine auch bei δ(q,a) = ⊥ für den aktuellen Zustand q und das gelesene Zeichen a. Gehört q zu den Endzuständen, wird das Wort akzeptiert ansonsten verworfen.

Beispiel 1

- Es soll eine Turingmaschine konstruiert werden, die ein Wort w aus dem Alphabet $\Sigma = \{0,1\}$ in sein Komplement umwandelt.
- Überlegung:
 - Umwandlung wird Bitweise durchgeführt.
 - Algorithmus?
 - Eingabealphabet $\Sigma = \{0,1\}$.
 - ightharpoonup Bandalphabet Σ und #.
 - Zustandsmenge Q = $\{s_0, s_1, s_2\}$ mit s_0 der Startzustand und s_2 der Endzustand.
 - Algorithmus festlegen und Überführungsfunktion bestimmen

Beispiel 1:Algorithmus

- Umwandlung wird Bitweise durchgeführt.
 - 1. Schritt (Zustand 1)
 - Maschine liest das Bit von Band
 - Schreibt das Komplement auf das Band
 - Geht ein Schritt nach rechts
 - Wenn es an das Ende das Ende-Zeichen # liest, dreht sie um und geht in den nächsten Zustand
 - 2. Schritt (Zustand 2)
 - Maschine liest das Bit von Band
 - Schreibt das Bit auf das Band
 - Geht ein Schritt nach links
 - Wenn es an das Ende das Ende-Zeichen # liest, dreht sie um und geht in den Endzustand
 - 3. Schritt (Zustand 2)
 - Maschine bleibt am Anfang des Wortes stehen.

Beispiel 1 : δ-Funktion

- Mit s₀ wandert wir an das rechte Ende und wandeln 0 in 1 und 1 in 0 um. Sobald wir das # lesen, wechseln wir in den Zustand s₁.
 - $\delta(s_0,0) = (s_0,1,R)$
 - $\delta(s_0, 1) = (s_0, 0, R)$
 - $\delta(s_0, \#) = (s_1, \#, L)$

- $\delta(s_1,1) = (s_1,1,L)$
- $\delta(s_1,0) = (s_2,0,L)$
- $\delta(s_1, \#) = (s_2, \#, N)$

Beispiel 1

TM für Komplementbildung in FLACI konstruiert

Aufgabe 1

- Es soll ein Turingmaschine konstruiert werden, die eine 1 auf eine Zahl in binärschreibweise addiert.
- Das Wort $w = a_{r-1}...a_1...a_0$ mit $a_i \in \{0,1\}$ und $0 \le i < r$ ist die Binärdarstellung der Zahl $n = \sum a_i 2^i$ (Summe über $0 \le i < r$)
- Überlegung:
 - Addition wird bitweise ausgeführt.
 - Eingabealphabet $\Sigma = \{0,1\}$.
 - ightharpoonup Bandalphabet Σ und #.
 - Zustandsmenge Q = $\{s_0, s_1, s_2, s_3\}$ mit s_0 der Startzustand und s_3 der Endzustand.
 - Geben Sie den Algorithmus an und dann die Überführungsfunktion. Testen Sie den Automaten mit FLACI

Aufgabe 1: Algorithmus 1

- 1. Schritt (Zustand 1)
 - Maschine liest das Bit von Band
 - Schreibt das Bit auf das Band
 - Geht ein Schritt nach rechts
 - Wenn es an das Ende das Ende-Zeichen # liest, dreht sie um und geht in den n\u00e4chsten Zustand
- 2. Schritt (Zustand 2)
 - Maschine liest das Bit von Band
 - Wenn es eine 1 ist
 - Wird eine 0 auf das Band geschrieben
 - Sie geht ein Schritt nach links
 - Wenn es eine 0 ist
 - Wird eine 1 auf das Band geschrieben
 - Sie geht ein Schritt nach links
 - Sie wechselt in den Zustand 3

Aufgabe 1: Algorithmus 2

- 3. Schritt (Zustand 3)
 - Maschine liest das Bit von Band
 - Schreibt das Komplement auf das Band
 - Geht ein Schritt nach rechts
 - Wenn es an das Ende das Ende-Zeichen # liest, dreht sie um und geht in den nächsten Zustand
- 3. Schritt (Zustand 2)
 - Maschine bleibt am Anfang des Wortes stehen.

Aufgabe 2

- Es soll eine Turingmaschine konstruiert werden, die nur Worte akzeptiert, die genau so viele 1 wie 0-Zeichen enthalten.
- \blacktriangleright L(A) = {w \in {0,1}* | mit | w | 0 = | w | 1}.
- Überlegung:
 - Maschine läuft das Wort entlang und markiert in jedem Schritt eine 0 und eine 1. Am Schluss dürfen keine 0 oder 1 Zeichen übrigbleiben.
 - Eingabealphabet $\Sigma = \{0,1\}$.
 - **Bandalphabet** Σ und # und * zur Markierung.
 - Zustandsmenge Q = $\{s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7\}$ mit s_0 der Startzustand und s_7 der Endzustand.
 - Die Überführungsfunktion δ definieren wir wie folgt.

Aufgabe 2: Algorithmus 1

- 1. Schritt (Zustand 0)
 - Maschine liest das erste Bit von Band
 - Wenn es eine 1 war wird das Bit markiert, die Maschine geht einen Schritt nach rechts und in den Zustand 1
 - Wenn es eine 0 war wird das Bit markiert, die Maschine geht einen Schritt nach rechts und in den Zustand 2
 - Wenn es das Ende-Zeichen # liest, dreht sie um und geht in den Zustand 5
- 2. Schritt (Zustand 1) das zweite Zeichen muss eine 0 sein
 - Maschine liest das Bit von Band
 - Wenn es eine 1 ist
 - Wird eine 1 auf das Band geschrieben
 - Sie geht ein Schritt nach rechts
 - Wenn es ein * ist
 - Wird ein * auf das Band geschrieben
 - Sie geht ein Schritt nach rechts
 - Wenn es eine 0 ist
 - Wird ein * auf das Band geschrieben
 - Sie geht ein Schritt nach rechts
 - Sie wechselt in den Zustand 3

Aufgabe 2: Algorithmus 2

- 2. Schritt (Zustand 2) das zweite Zeichen muss eine 1 sein
 - Maschine liest das Bit von Band
 - Wenn es eine 0 ist
 - Wird eine 0 auf das Band geschrieben
 - Sie geht ein Schritt nach rechts
 - Wenn es ein * ist
 - Wird ein * auf das Band geschrieben
 - Sie geht ein Schritt nach rechts
 - Wenn es eine 1 ist
 - Wird ein * auf das Band geschrieben
 - Sie geht ein Schritt nach rechts
 - Sie wechselt in den Zustand 3

Aufgabe 2: Algorithmus 3

- 3. Schritt (Zustand 3) // Ende des Wortes abarbeiten
 - Maschine liest die restlichen Bits von Band
 - Wenn es an das Ende das Ende-Zeichen # liest, dreht sie um und geht in den Zustand 4
- 4. Schritt (Zustand 4) // An den Anfang gehen
 - Maschine geht an den Anfang des Wortes und dreht dort um und geht in den Zustand 0.
- 5. Schritt (Zustand 5)
 - Wenn das Zeichen ein * ist geht sie ein Schritt nach links
 - Wenn es ein # ist dreht die Maschine um und geht in den Zustand 6
 - 6. Schritt (Zustand 7)
 - Das Wort wird akzeptiert

Aufgabe 3

- Es soll eine Turingmaschine konstruiert werden, die nur Worte akzeptiert, die genau so viele 0-, 1- und 2-Zeichen enthalten.
- Arr L(A) = {0ⁿ1ⁿ2ⁿ | mit n ≥ 0}.
- Überlegung:
 - Maschine läuft das Wort entlang und markiert in jedem Schritt eine 0 und eine 1 und eine 2. Am Schluss dürfen keine 0, 1 oder 2 Zeichen übrigbleiben.
 - Eingabealphabet $\Sigma = \{0,1,2\}$.
 - ightharpoonup Bandalphabet Σ und # und * zur Markierung.
 - Zustandsmenge Q = $\{s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7\}$ mit s_0 der Startzustand und s_7 der Endzustand.
 - Die Überführungsfunktion δ definieren wir wie folgt.

Aufgabe 3: Algorithmus 1

- 1. Schritt (Zustand 0)
 - Wenn die Maschine ein * liest, geht sie nach rechts und das Zeichen * wird geschrieben.
 - Wenn die Maschine eine 0 liest, geht sie nach rechts und das Zeichen * wird geschrieben sowie in den Zustand 1 gesprungen.
 - Wenn es das Ende-Zeichen # liest, dreht sie um und geht in den Zustand 5
- 2. Schritt (Zustand 1) das zweite Zeichen muss eine 1 sein
 - Wenn die Maschine ein * liest, geht sie nach rechts und das Zeichen * wird geschrieben.
 - Wenn die Maschine eine 0 liest, schreibt sie die 0 und geht nach rechts.
 - Wenn die Maschine eine 1 liest, schreibt sie ein * geht nach rechts und wechselt in den Zustand 2.
- 3. Schritt (Zustand 2) das dritte Zeichen muss eine 2 sein
 - Wenn die Maschine ein * liest, geht sie nach rechts und das Zeichen * wird geschrieben.
 - Wenn die Maschine eine 1 liest, schreibt sie die 1 und geht nach rechts.
 - Wenn die Maschine eine 2 liest, schreibt sie ein * geht nach rechts und wechselt in den Zustand 3.

Aufgabe 3: Algorithmus

- 4. Schritt (Zustand 2)
 - Wenn die Maschine eine 2 liest, geht sie nach rechts und das Zeichen 2 wird geschrieben.
 - Wenn die Maschine eine # liest, schreibt sie ein # geht nach links und wechselt in den Zustand 4.
- 5. Schritt (Zustand 4)
 - Rücklauf zum Anfang
 - Dann zu Schritt 1
- 6. Schritt (Zustand 5)
 - Wenn das Zeichen ein * ist geht sie ein Schritt nach links
 - Wenn es ein # ist dreht die Maschine um und geht in den Zustand 6
- 6. Schritt (Zustand 7)
 - Das Wort wird akzeptiert

Sprache

- Sprache L(M) einer Turingmaschine M
 - M akzeptiert das Eingabewort w genau dann, wenn es ein s_f ∈ F (Menge der Endzustände) sowie Worte v und u gibt mit
 - $(\#,S_0,W) \to^* (V,S_f,U)$
- Die von M akzeptierte Sprache ist:
 - $L(M) = \{ w \in \Sigma^* \mid M \text{ akzeptient } w \}$
- Eine Sprache L heißt rekursiv aufzählbar, wenn es einen Turingmaschine M gibt, die L akzeptiert.
- Eine Sprache L heißt rekursiv, wenn es einen Turingmaschine M gibt, die L akzeptiert und die für jede Eingabe terminiert.

Turing-Automat Äquivalenzen

- Deterministische

 nicht deterministische Turingmaschine.
- Rekursive aufzählbar ⇔ Typ 0 Sprachen.
- Modifikationen von Turingmaschinen.
 - Turingmaschinen mit einseitigem Band
 - Turingmaschinen mit mehreren Bänder

linear beschränkte Automaten LBA

- Anstatt eines unendlichen Bandes, steht der Turingmaschine nur der Speicherplatz zur Eingabe zur Verfügung.
- Dies kann man erreichen, in dem das Eingabewort durch ein extra Zeichen z.B. \$ begrenzt wird und die Turingmaschine nur innerhalb dieser Zeichen agieren darf.
- ► LBA sind äquivalent zu Typ 1 Sprachen

Übersicht über die Sprachklassen

	Sprachklasse	Name	akzeptierender Automat	Erzeugende Grammatik
	Тур 3	regulär	Endliche Automaten	Reguläre Grammatik
	DKF	deterministisch kontextfrei	Deterministischer Kellerautomat	LR(k) Grammatiken
	Typ 2	kontextfrei	Nichtdeterministische Kellerautomaten	kontextfreie Grammatik
	Typ 1	kontextsensitiv	Linear beschränkte Turingmaschinen	kontextsensitive Grammatik
	Typ 0	rekursiv aufzählbar	Turingmaschinen	beliebige Grammatik

Abgeschlossenheitseigenschaften der Sprachklassen

Sprachklasse	Durchschnitt	Vereinigung	Komplement	Konkatenation	Kleene- Stern
Typ 3	ja	ja	ja	ja	ja
DKF	nein	nein	ja	nein	nein
Typ 2	nein	ja	nein	ja	ja
Typ 1	ja	ja	ja	ja	ja
Typ 0	ja	ja	nein	ja	ja

Entscheidbarkeit für die Sprachklassen

Sprachklasse	Wortproblem [Komplexität]	Leerheit	Endlichkeit	Äquivalenz
Тур 3	ja [O(n)]	ja	ja	ja
DKF	ja [O(n)]	ja	ja	?
Тур 2	ja [O(n³)]	ja	ja	nein
Typ 1	ja[2 ^{O(n)}]	nein	nein	nein
Тур 0	nein	nein	nein	nein