

Consider the following game: there is an amount v of pie being sequentially proposed to split between two players; let $\delta \in (0,1)$ be a discounting factor.

Period 1:

- Player 1 chooses a share $x_1 \in [0, v]$ of the pie for himself and offers the split.
- Player 2 can either reject the offer, the pie size is reduced by δ to δv and the game continues in period 2, or accept, the split is implemented as proposed by player 1 and the game ends immediately with $u_1 = x_1, u_2 = v x_1$.

Period 2:*

- Player 2 chooses a share $x_2 \in [0, \delta v]$ of the pie for himself and anon offers the split.
- Player 1 can either reject the offer, the pie size is again reduced by δ to $\delta^2 v$ and the game continues in period 2, or accept, the split is implemented as proposed by player 1 and the game ends immediately with $u_1 = \delta v x_2$, $u_2 = x_2$.

and so on...

Now consider the bilateral bargaining game with infinite horizon:

Proposition (Shaked & Sutton (1984))

The infinite horizon bargaining game has a unique SPNE in which the players reach an agreement in period 1 such that player 1 earns $\frac{v}{1+\delta}$ and player 2 $\frac{\delta v}{1+\delta}$.

Proof: Let v_1 be the lowest payoff player 1 receives in any SPNE in a subgame when she makes the initial offer and let \overline{v}_1 be her highest SPNE payoff in such a subgame; likewise, we define \underline{v}_2 and \overline{v}_2 .

To derive a sufficient condition, we set the property for $i, j = 1, 2, i \neq j$:

$$\tilde{\mathbf{v}}_i = \delta(\tilde{\mathbf{v}} - \tilde{\mathbf{v}}_j), \tag{1}$$

where \tilde{v}_k denotes an arbitrary proposal of player k for himself in the respective round (k=i,j) and \tilde{v} is the remaining pie size in player is turn, therewith $\tilde{v} < v$ as $\delta < 1$.

More specifically, equation (1) states that the value of a proposal for the player -i discounts each round with the factor δ .

Proof (cont.): By definition, player j won't accept an offer that is lower than $\delta \underline{v}_j$, hence, as v is the maximum pie size and by (1):

$$\overline{\mathbf{v}}_i \le \mathbf{v} - \delta \underline{\mathbf{v}}_i. \tag{2}$$

Analogously, player j will accept any offer that gives her at least $\delta_i \overline{v}_i$, so

$$\underline{\mathbf{v}}_{i} \ge \mathbf{v} - \delta \overline{\mathbf{v}}_{j}. \tag{3}$$

Subtracting the two equations (2) and (3) from each other for both players yields

$$\overline{\mathbf{v}}_1 - \underline{\mathbf{v}}_1 \le \delta \left(\overline{\mathbf{v}}_2 - \underline{\mathbf{v}}_2 \right) \tag{4}$$

and

$$\overline{\mathbf{v}}_2 - \underline{\mathbf{v}}_2 \le \delta\left(\overline{\mathbf{v}}_1 - \underline{\mathbf{v}}_1\right). \tag{5}$$

Proof (cont.): Multiplying (5) with δ and using (4) results in

$$\overline{\mathbf{v}}_1 - \underline{\mathbf{v}}_1 \le \delta \left(\overline{\mathbf{v}}_2 - \underline{\mathbf{v}}_2 \right) \le \delta^2 \left(\overline{\mathbf{v}}_1 - \underline{\mathbf{v}}_1 \right), \tag{6}$$

and analogously for player 2. Let us recall that \overline{v}_i is the largest payoff in each SPNE for player i and \underline{v}_i is the smallest. As $\delta < 1$ and $\overline{v}_i \geq \underline{v}_i$, (6) implies $\overline{v}_i = \underline{v}_i \eqqcolon v_i$ for i=1,2. Hence, the SPNE payoffs are unique in the Bilateral Bargaining.

Using the fact of uniqueness in equations (2) and (3), we can state that

$$v_1 = v - \delta v_2$$
 and $v_2 = v - \delta v_1$,

and direct substitution therefore yields

$$onumber v_1 = (1-\delta)
olimits
onumber v_1 = rac{(1-\delta)
olimits}{(1-\delta^2)} = rac{(1-\delta)
olimits}{(1+\delta)(1-\delta)}$$

Proof (cont.): Hence, the proposal in a SPNE is

$$extstyle v_1^* = rac{ extstyle v}{(1+\delta)}, \quad extstyle v_2^* = extstyle v - extstyle v_1^* = rac{\delta extstyle v}{(1+\delta)},$$

where v is the pie size available for split.

Interpretation:

- Efficiency: player 2 accepts player 1s first proposal, resulting in immediate agreement without delay; a delay is costly for both player due to discounting.
- This game contains a first mover advantage: whoever makes the initial proposal offers herself a higher share.
- A similar result can be made for individual discounting rates (δ_1, δ_2) , where each δ_k represents the patience of player k.

