Base: {1, x, ..., x 5}

Después de una parrafade...

(4: x --->

 $\ell_2: \times \longrightarrow \times \S$

 $\Psi_3: \times \longrightarrow \times \xi^2$

 $(2 \times 10 \times 5 \xrightarrow{2} \times 5^{2} \xrightarrow{3} \times 5^{3} \xrightarrow{4} \cdots \xrightarrow{6} \times \text{ orden } 6$ $E^{\langle q_2^2 \rangle} = \mathbb{C}(x^2)$ $\mathbb{C}(x^3) = E^{\langle q_2^3 \rangle}$ cíclico

€(x6)

Gal C $Gal(C(t)/C(t^3)) \cong C_3$ $F_3(t)[y](y^3-t^3)=(y-t)^{\frac{3}{2}}$ $-\mathbb{F}_3(t)/\mathbb{F}_3(t^3)$ Irr(t, F3(t3)) | y3-t3 e F3(t3)[4] ff7(t3)[4] Calulamos Gal (F3(t)/F3(t3)) $F_3(t^3) \longrightarrow F_3(t)$ Obs: Frob: $F_3(t) \longrightarrow F_3(t)$ homomorfismo bijectivo (no en automorfismo) the no hay man raices from solo hay I automorphomis 居(4) Gal(版(13)/版(4)) = {id} 庆(t3)

c) $H = \left\{ \begin{pmatrix} 1 & 0 \\ c & d \end{pmatrix} \mid d \in \mathbb{F}_p^{\times}, c \in \mathbb{F}_p^{\times} \right\} \leq GL(2p)$ Gal (E/Q) & H $\mathbb{Q}(\alpha,\xi) \longrightarrow \mathbb{Q}(\alpha,\xi)$ Q(\{\xi\) \\ \Q(\xi\) ₹ (1) ₹ i = 1,..., p-1 por cada uno que tijemos aqui $\longrightarrow \mathbb{Q}(\alpha, \S)$ $\alpha \longrightarrow \alpha \S P$ total en $H \longrightarrow G = Gal(B(\alpha, \Xi)/Q)$ (c d) - dic ci Es & hom. de grupos? $\left(\begin{pmatrix} 1 & 0 \\ c & d \end{pmatrix}\begin{pmatrix} 1 & 0 \\ c' & d' \end{pmatrix}\right) \stackrel{?}{=} \phi\left(\begin{pmatrix} 1 & 0 \\ c & d \end{pmatrix}\right) \circ \phi\left(\begin{pmatrix} 1 & 0 \\ c' & d' \end{pmatrix}\right)$ Cldc o Cd'c1

20.] firred. sobre Q G abetiano u ∈ C\Q vna raiz de f
$\mathbb{Q} \longrightarrow \mathbb{Q}(x) = \mathbb{Q}(x) = \mathbb{Q}(x)$
Cosas clave: Ga abeliano => todas las subexten son normales
& (R(u) es & aŭadiendo UNA
$gr(f)$ es primo \Longrightarrow no hay extensioner intermedian entre Q g $Q(u)$
Esto es así porque:
$[43.]$ $f(x) = x^{p}-2$ sobre (A, p) primo $a) = Q(x, z)$ $\alpha = \sqrt{2}$, $z = e^{2\pi i/p}$
b) $[E:Q] = p(p-1)$ E=Q(x, x)
$\mathbb{R}(x)$ $\mathbb{R}(x)$

rait

Continuación 13

(dd', c+dc') = dd'

(dd', c+dc) (x) = x \geq c+dc)

 $\varphi_{dc} \circ \varphi_{d'c'}(\xi) = \varphi_{dc}(\xi^{d'}) = \xi^{d'd}$

 $\mathcal{C}_{dc} \circ \mathcal{C}_{dc}(\alpha) = \mathcal{C}_{dc}(\alpha) = \mathcal{C}_{dc}(\alpha) \cdot \mathcal{C}_{dc}(\beta) = \mathcal{C}_{dc}(\alpha) \cdot \mathcal{C}_{dc}(\beta) = \alpha$ $= \alpha \beta \cdot \beta \cdot \beta \cdot d = \alpha \beta \cdot c + c \cdot d$

|
$$42$$
 | E/R Galois $G = Gal(E/R)$
 $G \simeq C_n$

a) $J/n \Longrightarrow J!$ L con $[E:L] = d$ poque G es circlico-
b) TFTG

c) E/R normal

Thus Arbin $[E:E^G] = |G|$
 $K \subset E^G \subset E$

cique pass teorema (Corolano 1 del Tima de Arbin)

con esta trozo?

 E/E^G es Galois

 E/E^G es Galois

Son equivalentes:

1) $K = E^G$

2) E/K Galois

 E/K Galois

 E/K Galois

3) E es el cuerpo de descomposicion de un pol separable sobre E/K

Sup E/K $E/$

 \Rightarrow x es inseparable \Rightarrow Irr(x, K) tiene toolar sus raices ignales

Es normal porque $ff_3(t)$ en el vuerpo de desc. de x^3-t No es separable porque $x^3-t^3=(x-t)^3$ $Gal(ff_3(t)/ff_3(\xi^3))=\{id\}$ porque ξ mandana

Gal($F_3(t)/I_3(t^3)$) = {id} porque O_2 mandanée raices en raices y x^3-t^3 solo hiere 1.