YSU ASDS, Statistics, Fall 2019 Lecture 13

Michael Poghosyan

02 Oct 2019

Probability Reminder

Contents

- ▶ Properties of Convergent Sequences of R.V.
- ► LLN and CLT

Last Lecture ReCap

Give the definition of the convergence in the a.s./ Probability / QM / Distributions sense.

Example: Show that if $X_n \sim Binom\left(n, \frac{\lambda}{n}\right)$, then $X_n \stackrel{D}{\longrightarrow} Pois(\lambda)$.

Example: Show that if $X_n \sim Binom\left(n, \frac{\lambda}{n}\right)$, then $X_n \stackrel{D}{\longrightarrow} Pois(\lambda)$.

Note: Note that when using $X_n \xrightarrow{D} Pois(\lambda)$ we mean $X_n \xrightarrow{D} X$, where $X \sim Pois(\lambda)$.

Example: Show that if $X_n \sim Binom\left(n, \frac{\lambda}{n}\right)$, then $X_n \stackrel{D}{\longrightarrow} Pois(\lambda)$.

Note: Note that when using $X_n \xrightarrow{D} Pois(\lambda)$ we mean $X_n \xrightarrow{D} X$, where $X \sim Pois(\lambda)$.

```
lambda <- 1.2; n <- 10; t <- seq(0,7, 0.1)
plot(t,pbinom(t, size = n, prob = lambda/n), type = "s", ylim = c(0,1), ylab = "CDF")
par(new = T)
plot(t, ppois(t, lambda = lambda), type = "s", col = "red", ylim = c(0,1), ylab = "CDF")</pre>
```


Example: Let $X_n \sim \textit{Unif}[0, n]$. Find the limit in Distributions of

 $Y_n = \frac{X_n}{n}$.

Example: Let $X_n \sim Unif[0, n]$. Find the limit in Distributions of $Y_n = \frac{X_n}{n}$. Let us visually show that $Y_n \stackrel{D}{\to} Y$, where $Y \sim Unif[0, 1]$.

Example: Let $X_n \sim Unif[0, n]$. Find the limit in Distributions of $Y_n = \frac{X_n}{n}$. Let us visually show that $Y_n \stackrel{D}{\to} Y$, where $Y \sim Unif[0, 1]$.

```
n <- 10000 ## We use Y_n
m <- 10000 ## No. of generated numbers
y <- runif(m, min = 0, max = n)/n
hist(y, freq = F)
abline(h = 1, col = "red", lwd = 2)</pre>
```


Theorem: Assume $X_n \stackrel{a.s.(P,qm,D)}{\longrightarrow} X$ and $Y_n \stackrel{a.s.(P,qm,D)}{\longrightarrow} Y$.

Theorem: Assume $X_n \xrightarrow{a.s.(P,qm,D)} X$ and $Y_n \xrightarrow{a.s.(P,qm,D)} Y$. Then

 $\triangleright X_n + Y_n \xrightarrow{a.s.(P,qm)} X + Y;$

Theorem: Assume $X_n \xrightarrow{a.s.(P,qm,D)} X$ and $Y_n \xrightarrow{a.s.(P,qm,D)} Y$. Then

- $\searrow X_n + Y_n \stackrel{a.s.(P,qm)}{\longrightarrow} X + Y;$
- $X_n \cdot Y_n \stackrel{a.s.(P)}{\longrightarrow} X \cdot Y;$

Theorem: Assume $X_n \xrightarrow{a.s.(P,qm,D)} X$ and $Y_n \xrightarrow{a.s.(P,qm,D)} Y$. Then

- $\searrow X_n + Y_n \stackrel{a.s.(P,qm)}{\longrightarrow} X + Y;$
- ▶ If $g \in C(\mathbb{R})$, then $g(X_n) \stackrel{a.s.(P,D)}{\longrightarrow} g(X)$

Theorem: Assume $X_n \xrightarrow{a.s.(P,qm,D)} X$ and $Y_n \xrightarrow{a.s.(P,qm,D)} Y$. Then

- $\triangleright X_n + Y_n \stackrel{a.s.(P,qm)}{\longrightarrow} X + Y;$
- ▶ If $g \in C(\mathbb{R})$, then $g(X_n) \stackrel{a.s.(P,D)}{\longrightarrow} g(X)$

Note: In the general case, if $X_n \stackrel{D}{\longrightarrow} X$ and $Y_n \stackrel{D}{\longrightarrow} Y$, then not necessarily $X_n + Y_n \stackrel{D}{\longrightarrow} X + Y$.

Theorem: Assume $X_n \xrightarrow{a.s.(P,qm,D)} X$ and $Y_n \xrightarrow{a.s.(P,qm,D)} Y$. Then

- $\triangleright X_n + Y_n \stackrel{a.s.(P,qm)}{\longrightarrow} X + Y;$
- ▶ If $g \in C(\mathbb{R})$, then $g(X_n) \stackrel{a.s.(P,D)}{\longrightarrow} g(X)$

Note: In the general case, if $X_n \xrightarrow{D} X$ and $Y_n \xrightarrow{D} Y$, then not necessarily $X_n + Y_n \xrightarrow{D} X + Y$.

But we have:

Theorem (Slutsky) Assume $X_n \xrightarrow{D} X$ and $Y_n \xrightarrow{P} c$, where $c \in \mathbb{R}$ is a constant. Then

Theorem: Assume $X_n \xrightarrow{a.s.(P,qm,D)} X$ and $Y_n \xrightarrow{a.s.(P,qm,D)} Y$. Then

- $X_n + Y_n \xrightarrow{a.s.(P,qm)} X + Y;$
- ▶ If $g \in C(\mathbb{R})$, then $g(X_n) \stackrel{a.s.(P,D)}{\longrightarrow} g(X)$

Note: In the general case, if $X_n \stackrel{D}{\longrightarrow} X$ and $Y_n \stackrel{D}{\longrightarrow} Y$, then not necessarily $X_n + Y_n \stackrel{D}{\longrightarrow} X + Y$.

But we have:

Theorem (Slutsky) Assume $X_n \xrightarrow{D} X$ and $Y_n \xrightarrow{P} c$, where $c \in \mathbb{R}$ is a constant. Then

$$X_n + Y_n \xrightarrow{D} X + c;$$

Theorem: Assume $X_n \xrightarrow{a.s.(P,qm,D)} X$ and $Y_n \xrightarrow{a.s.(P,qm,D)} Y$. Then

- $X_n + Y_n \xrightarrow{a.s.(P,qm)} X + Y;$
- ▶ If $g \in C(\mathbb{R})$, then $g(X_n) \stackrel{a.s.(P,D)}{\longrightarrow} g(X)$

Note: In the general case, if $X_n \xrightarrow{D} X$ and $Y_n \xrightarrow{D} Y$, then not necessarily $X_n + Y_n \xrightarrow{D} X + Y$.

But we have:

Theorem (Slutsky) Assume $X_n \xrightarrow{D} X$ and $Y_n \xrightarrow{P} c$, where $c \in \mathbb{R}$ is a constant. Then

- $X_n + Y_n \xrightarrow{D} X + c;$
- $X_n \cdot Y_n \xrightarrow{D} c \cdot X.$

Relationship between Convergence Types

Theorem: (Convergence Relationship Diagram)

Relationship between Convergence Types

Theorem: (Convergence Relationship Diagram)

Note: Inverse implications are not always correct.

Relationship between Convergence Types

Theorem: (Convergence Relationship Diagram)

Note: Inverse implications are not always correct. But, say, the following holds: If $X_n \xrightarrow{D} X$ and $X \equiv constant$, then $X_n \xrightarrow{P} X$ ($X_n = X_n = X_n$

Limit Theorems

Assume X_n is a sequence of **Independent**, **Identically Distributed** (IID) r.v.s.

Assume X_n is a sequence of **Independent**, **Identically Distributed** (IID) r.v.s. This means that:

ightharpoonup All X_n -s have the same Distribution.

Assume X_n is a sequence of **Independent**, **Identically Distributed** (IID) r.v.s. This means that:

All X_n -s have the same Distribution. In particular, all numerical partial characteristics of X_n coincide.

Assume X_n is a sequence of **Independent**, **Identically Distributed (IID)** r.v.s. This means that:

All X_n -s have the same Distribution. In particular, all numerical partial characteristics of X_n coincide. In particular,

$$\mathbb{E}(X_1) = \mathbb{E}(X_2) = ... = \mathbb{E}(X_n) = ...,$$
 $Var(X_1) = Var(X_2) = ... = Var(X_n) =$

Assume X_n is a sequence of **Independent**, **Identically Distributed** (IID) r.v.s. This means that:

All X_n -s have the same Distribution. In particular, all numerical partial characteristics of X_n coincide. In particular,

$$\mathbb{E}(X_1) = \mathbb{E}(X_2) = ... = \mathbb{E}(X_n) = ...,$$
 $Var(X_1) = Var(X_2) = ... = Var(X_n) =$

We will use this many-many

Assume X_n is a sequence of **Independent**, **Identically Distributed** (IID) r.v.s. This means that:

All X_n -s have the same Distribution. In particular, all numerical partial characteristics of X_n coincide. In particular,

$$\mathbb{E}(X_1) = \mathbb{E}(X_2) = ... = \mathbb{E}(X_n) = ...,$$
 $Var(X_1) = Var(X_2) = ... = Var(X_n) =$

We will use this many-many-many-many-... times.

Assume X_n is a sequence of **Independent**, **Identically Distributed** (IID) r.v.s. This means that:

All X_n -s have the same Distribution. In particular, all numerical partial characteristics of X_n coincide. In particular,

$$\mathbb{E}(X_1) = \mathbb{E}(X_2) = ... = \mathbb{E}(X_n) = ...,$$
 $Var(X_1) = Var(X_2) = ... = Var(X_n) =$

We will use this many-many-many-many-... times.

 \triangleright X_n -s are independent.

Assume X_n is a sequence of **Independent**, **Identically Distributed (IID)** r.v.s. This means that:

All X_n -s have the same Distribution. In particular, all numerical partial characteristics of X_n coincide. In particular,

$$\mathbb{E}(X_1) = \mathbb{E}(X_2) = ... = \mathbb{E}(X_n) = ...,$$
 $Var(X_1) = Var(X_2) = ... = Var(X_n) =$

We will use this many-many-many-many-... times.

 $ightharpoonup X_n$ -s are independent. Say, in particular,

$$Var(X_1+X_2+...+X_n) = Var(X_1)+Var(X_2)+...+Var(X_n) = n \cdot Var(X_1)$$

Assume we have a sequence X_n of IID rvs.

Assume we have a sequence X_n of IID rvs. We want to study the behavior of either the sum

$$S_n = X_1 + X_2 + ... + X_n$$

Assume we have a sequence X_n of IID rvs. We want to study the behavior of either the sum

$$S_n = X_1 + X_2 + ... + X_n$$

or the average

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

Assume we have a sequence X_n of IID rvs. We want to study the behavior of either the sum

$$S_n = X_1 + X_2 + ... + X_n$$

or the average

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

Note: Not an easy task to find the Distribution of S_n or \overline{X}_n .

Assume we have a sequence X_n of IID rvs. We want to study the behavior of either the sum

$$S_n = X_1 + X_2 + ... + X_n$$

or the average

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

Note: Not an easy task to find the Distribution of S_n or \overline{X}_n . Even for n = 2.

Assume we have a sequence X_n of IID rvs. We want to study the behavior of either the sum

$$S_n = X_1 + X_2 + ... + X_n$$

or the average

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

Note: Not an easy task to find the Distribution of S_n or \overline{X}_n . Even for n = 2. We need Convolutions!

Some important known facts about S_n and \overline{X}_n in the general case:

$$\mathbb{E}(S_n) =$$

Some important known facts about S_n and \overline{X}_n in the general case:

$$\mathbb{E}(S_n) = n \cdot \mathbb{E}(X_1), \qquad \mathbb{E}(\overline{X}_n) =$$

Some important known facts about S_n and \overline{X}_n in the general case:

$$\mathbb{E}(S_n) = n \cdot \mathbb{E}(X_1), \qquad \mathbb{E}(\overline{X}_n) = \mathbb{E}(X_1);$$

Some important known facts about S_n and \overline{X}_n in the general case:

$$\mathbb{E}(S_n) = n \cdot \mathbb{E}(X_1), \qquad \mathbb{E}(\overline{X}_n) = \mathbb{E}(X_1);$$

so the mean of the means is the mean $\ddot{-}$, and

Some important known facts about S_n and \overline{X}_n in the general case:

$$\mathbb{E}(S_n) = n \cdot \mathbb{E}(X_1), \qquad \mathbb{E}(\overline{X}_n) = \mathbb{E}(X_1);$$

so the mean of the means is the mean $\ddot{\ }$, and

$$Var(S_n) =$$

Some important known facts about S_n and \overline{X}_n in the general case:

$$\mathbb{E}(S_n) = n \cdot \mathbb{E}(X_1), \qquad \mathbb{E}(\overline{X}_n) = \mathbb{E}(X_1);$$

so the mean of the means is the mean $\ddot{-}$, and

$$Var(S_n) = n \cdot Var(X_1), \qquad Var(\overline{X}_n) =$$

Some important known facts about S_n and \overline{X}_n in the general case:

$$\mathbb{E}(S_n) = n \cdot \mathbb{E}(X_1), \qquad \mathbb{E}(\overline{X}_n) = \mathbb{E}(X_1);$$

so the mean of the means is the mean $\ddot{-}$, and

$$Var(S_n) = n \cdot Var(X_1), \qquad Var(\overline{X}_n) = \frac{Var(X_1)}{n}.$$

Some important known facts about S_n and \overline{X}_n in the general case:

$$\mathbb{E}(S_n) = n \cdot \mathbb{E}(X_1), \qquad \mathbb{E}(\overline{X}_n) = \mathbb{E}(X_1);$$

so the mean of the means is the mean $\ddot{-}$, and

$$Var(S_n) = n \cdot Var(X_1), \qquad Var(\overline{X}_n) = \frac{Var(X_1)}{n}.$$

The last property is the mathematical proof of the effectivness of "7 angam chapir, mek angam ktrir" $\ddot{\ }$

Some important known facts about S_n and \overline{X}_n in the general case:

$$\mathbb{E}(S_n) = n \cdot \mathbb{E}(X_1), \qquad \mathbb{E}(\overline{X}_n) = \mathbb{E}(X_1);$$

so the mean of the means is the mean $\ddot{-}$, and

$$Var(S_n) = n \cdot Var(X_1), \qquad Var(\overline{X}_n) = \frac{Var(X_1)}{n}.$$

The last property is the mathematical proof of the effectivness of "7 angam chapir, mek angam ktrir" $\ddot{\ }$

The interpretation of $\mathbb{E}(\overline{X}_n) = \mathbb{E}(X_1)$ and $Var(\overline{X}_n) = \frac{Var(X_1)}{n}$:

Some important known facts about S_n and \overline{X}_n in the general case:

$$\mathbb{E}(S_n) = n \cdot \mathbb{E}(X_1), \qquad \mathbb{E}(\overline{X}_n) = \mathbb{E}(X_1);$$

so the mean of the means is the mean $\ddot{-}$, and

$$Var(S_n) = n \cdot Var(X_1), \qquad Var(\overline{X}_n) = \frac{Var(X_1)}{n}.$$

The last property is the mathematical proof of the effectivness of "7 angam chapir, mek angam ktrir" $\ddot{\ }$

The interpretation of $\mathbb{E}(\overline{X}_n) = \mathbb{E}(X_1)$ and $Var(\overline{X}_n) = \frac{Var(X_1)}{n}$: the values of \overline{X}_n are centered at $\mathbb{E}(X_1)$ and are becoming more and more concentrated around that number as n increases.

The following are important cases when we can find exactly the Distribution of S_n and/or \overline{X}_n :

The following are important cases when we can find exactly the Distribution of S_n and/or \overline{X}_n :

▶ If $X_k \sim \mathcal{N}(\mu, \sigma^2)$, k = 1, ..., n, are Independent, then

$$S_n = X_1 + ... + X_n \sim$$

The following are important cases when we can find exactly the Distribution of S_n and/or \overline{X}_n :

▶ If $X_k \sim \mathcal{N}(\mu, \sigma^2)$, k = 1, ..., n, are Independent, then

$$S_n = X_1 + ... + X_n \sim \mathcal{N}(n \cdot \mu, n \cdot \sigma^2)$$

and

$$\overline{X}_n = \frac{X_1 + X_2 + ... + X_n}{n} \sim$$

The following are important cases when we can find exactly the Distribution of S_n and/or \overline{X}_n :

▶ If $X_k \sim \mathcal{N}(\mu, \sigma^2)$, k = 1, ..., n, are Independent, then

$$S_n = X_1 + ... + X_n \sim \mathcal{N}(n \cdot \mu, n \cdot \sigma^2)$$

and

$$\overline{X}_n = \frac{X_1 + X_2 + ... + X_n}{n} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right).$$

The following are important cases when we can find exactly the Distribution of S_n and/or \overline{X}_n :

▶ If $X_k \sim \mathcal{N}(\mu, \sigma^2)$, k = 1, ..., n, are Independent, then

$$S_n = X_1 + ... + X_n \sim \mathcal{N}(n \cdot \mu, n \cdot \sigma^2)$$

and

$$\overline{X}_n = \frac{X_1 + X_2 + ... + X_n}{n} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right).$$

▶ If $X_k \sim Pois(\lambda)$, k = 1, ..., n, are Independent, then

$$S_n = X_1 + ... + X_n \sim$$

The following are important cases when we can find exactly the Distribution of S_n and/or \overline{X}_n :

▶ If $X_k \sim \mathcal{N}(\mu, \sigma^2)$, k = 1, ..., n, are Independent, then

$$S_n = X_1 + ... + X_n \sim \mathcal{N}(n \cdot \mu, n \cdot \sigma^2)$$

and

$$\overline{X}_n = \frac{X_1 + X_2 + ... + X_n}{n} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right).$$

▶ If $X_k \sim Pois(\lambda)$, k = 1, ..., n, are Independent, then

$$S_n = X_1 + ... + X_n \sim Pois(n \cdot \lambda).$$

▶ If $X_k \sim Bernoulli(p)$, k = 1, ..., n are Independent, then

$$S_n = X_1 + ... + X_n \sim$$

▶ If $X_k \sim Bernoulli(p)$, k = 1, ..., n are Independent, then

$$S_n = X_1 + ... + X_n \sim Binom(n, p);$$

▶ If $X_k \sim Bernoulli(p)$, k = 1, ..., n are Independent, then $S_n = X_1 + ... + X_n \sim Binom(n, p);$

If
$$X_k \sim Binom(m,p), \ k=1,...,n,$$
 are Independent, then
$$S_n = X_1 + ... + X_n \sim$$

▶ If $X_k \sim Bernoulli(p)$, k=1,...,n are Independent, then $S_n = X_1 + ... + X_n \sim Binom(n,p);$

If $X_k \sim Binom(m,p)$, k=1,...,n, are Independent, then $S_n = X_1 + ... + X_n \sim Binom(n \cdot m,p).$

Now, what can be said about S_n and \overline{X}_n in the general case?

Now, what can be said about S_n and \overline{X}_n in the general case? LLN and CLT help us in this matter, they describe the *asymptotic* properties of these guys:

Now, what can be said about S_n and \overline{X}_n in the general case? LLN and CLT help us in this matter, they describe the *asymptotic* properties of these guys:

The Weak Law of Large Numbers, WLLN:

If $X_1, X_2, ..., X_n$ are IID, with finite $\mathbb{E}(X_1)$ and Variance $Var(X_1)$, then

$$\overline{X}_n = \frac{X_1 + X_2 + ... + X_n}{n} \xrightarrow{\mathbb{P}} \mathbb{E}(X_1), \qquad n \to +\infty,$$

Now, what can be said about S_n and \overline{X}_n in the general case? LLN and CLT help us in this matter, they describe the *asymptotic* properties of these guys:

The Weak Law of Large Numbers, WLLN:

If $X_1, X_2, ..., X_n$ are IID, with finite $\mathbb{E}(X_1)$ and Variance $Var(X_1)$, then

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} \stackrel{\mathbb{P}}{\to} \mathbb{E}(X_1), \qquad n \to +\infty,$$

i.e., for any $\varepsilon > 0$,

$$\mathbb{P}\left(\left|\frac{X_1+X_2+\ldots+X_n}{n}-\mathbb{E}(X_1)\right|\geq\varepsilon\right)\to 0, \qquad n\to+\infty.$$

Now, what can be said about S_n and X_n in the general case? LLN and CLT help us in this matter, they describe the *asymptotic* properties of these guys:

The Weak Law of Large Numbers, WLLN:

If $X_1, X_2, ..., X_n$ are IID, with finite $\mathbb{E}(X_1)$ and Variance $Var(X_1)$, then

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} \stackrel{\mathbb{P}}{\to} \mathbb{E}(X_1), \qquad n \to +\infty,$$

i.e., for any $\varepsilon > 0$,

$$\mathbb{P}\left(\left|\frac{X_1+X_2+\ldots+X_n}{n}-\mathbb{E}(X_1)\right|\geq\varepsilon\right)\to 0, \qquad n\to+\infty.$$

Note: This means that for any $\varepsilon > 0$, the chances that \overline{X}_n is far from $\mathbb{E}(X_1)$ more than ε , is very small, if n is large.

The Strong LLN

The Strong Law of Large Numbers, SLLN, Kolmogorov If $X_1, X_2, ..., X_n$ are IID, with finite $\mathbb{E}(|X_1|)$, then

$$\frac{X_1+X_2+\ldots+X_n}{n}\stackrel{a.s.}{\to} \mathbb{E}(X_1), \qquad n\to+\infty,$$

The Strong LLN

The Strong Law of Large Numbers, SLLN, Kolmogorov

If $X_1, X_2, ..., X_n$ are IID, with finite $\mathbb{E}(|X_1|)$, then

$$\frac{X_1+X_2+\ldots+X_n}{n}\stackrel{a.s.}{\to} \mathbb{E}(X_1), \qquad n\to+\infty,$$

that is,

$$\mathbb{P}\left(\lim_{n\to+\infty}\frac{X_1+X_2+\ldots+X_n}{n}=\mathbb{E}(X_1)\right)=1.$$

Visualization of the LLN

```
n <- 1000; expect <- 0.6
X <- rbinom(n, 1, expect)
S <- cumsum(X); p <- S/(1:n)
plot(p, type = "l")
abline(expect,0, col = "red", lwd = 2)</pre>
```


Sometimes we are required to calculate limits of the form:

$$\lim_{n\to+\infty}\frac{g(X_1)+g(X_2)+\ldots+g(X_n)}{n}$$

in the Probability or a.s. sense, for some nice function g.

Sometimes we are required to calculate limits of the form:

$$\lim_{n\to+\infty}\frac{g(X_1)+g(X_2)+...+g(X_n)}{n}$$

in the *Probability* or *a.s.* sense, for some nice function g.Clearly, under the condition that $\mathbb{E}(g(X_1))$ and $Var(g(X_1))$ are finite, or $\mathbb{E}(|g(X_1)|) < +\infty$, we will have

$$\frac{g(X_1)+g(X_2)+...+g(X_n)}{n}\stackrel{\mathbb{P},a.s.}{\longrightarrow} \mathbb{E}(g(X_1)), \qquad n\to +\infty.$$

Sometimes we are required to calculate limits of the form:

$$\lim_{n\to+\infty}\frac{g(X_1)+g(X_2)+\ldots+g(X_n)}{n}$$

in the *Probability* or *a.s.* sense, for some nice function g.Clearly, under the condition that $\mathbb{E}(g(X_1))$ and $Var(g(X_1))$ are finite, or $\mathbb{E}(|g(X_1)|) < +\infty$, we will have

$$\frac{g(X_1)+g(X_2)+...+g(X_n)}{n} \overset{\mathbb{P},a.s.}{\longrightarrow} \mathbb{E}(g(X_1)), \qquad n \to +\infty.$$

Say, for example,

$$\underbrace{X_1^2 + X_2^2 + ... + X_n^2}_{n} \xrightarrow{\mathbb{P}, a.s.}$$

Sometimes we are required to calculate limits of the form:

$$\lim_{n\to+\infty}\frac{g(X_1)+g(X_2)+...+g(X_n)}{n}$$

in the *Probability* or *a.s.* sense, for some nice function g.Clearly, under the condition that $\mathbb{E}(g(X_1))$ and $Var(g(X_1))$ are finite, or $\mathbb{E}(|g(X_1)|) < +\infty$, we will have

$$\frac{g(X_1)+g(X_2)+...+g(X_n)}{n} \overset{\mathbb{P},a.s.}{\longrightarrow} \mathbb{E}(g(X_1)), \qquad n \to +\infty.$$

Say, for example,

$$\frac{X_1^2 + X_2^2 + \dots + X_n^2}{n} \xrightarrow{\mathbb{P}, a.s.} \mathbb{E}(X_1^2), \qquad n \to +\infty.$$

The LLN says that the values of \overline{X}_n are concentrated around $\mathbb{E}(X_1)$.

The LLN says that the values of \overline{X}_n are concentrated around $\mathbb{E}(X_1)$. But it is not giving us an idea about how the values are distributed around that mean value.

The LLN says that the values of \overline{X}_n are concentrated around $\mathbb{E}(X_1)$. But it is not giving us an idea about how the values are distributed around that mean value. CLT helps us in this regard.

The LLN says that the values of \overline{X}_n are concentrated around $\mathbb{E}(X_1)$. But it is not giving us an idea about how the values are distributed around that mean value. CLT helps us in this regard.

To give the general idea of the CLT, let us use the following transform: for a r.v. X, let us denote

$$Standardize(X) = \frac{X - \mathbb{E}(X)}{\sqrt{Var(X)}} = \frac{X - \mathbb{E}(X)}{SD(X)},$$

the Standardization (normalization, scaling) of X.

CLT

The LLN says that the values of \overline{X}_n are concentrated around $\mathbb{E}(X_1)$. But it is not giving us an idea about how the values are distributed around that mean value. CLT helps us in this regard.

To give the general idea of the CLT, let us use the following transform: for a r.v. X, let us denote

$$Standardize(X) = \frac{X - \mathbb{E}(X)}{\sqrt{Var(X)}} = \frac{X - \mathbb{E}(X)}{SD(X)},$$

the Standardization (normalization, scaling) of X. Clearly,

$$\mathbb{E}(Standardize(X)) = 0$$
 and $Var(Standardize(X)) = 1$.

The basic idea of the CLT is the following: if we have a sequence of IID r.v. X_n , and we consider their sum S_n or their average \overline{X}_n , then

$$Standardize(S_n) \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$$

and

Standardize(
$$\overline{X}_n$$
) $\stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$.

The basic idea of the CLT is the following: if we have a sequence of IID r.v. X_n , and we consider their sum S_n or their average \overline{X}_n , then

$$Standardize(S_n) \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$$

and

Standardize(
$$\overline{X}_n$$
) $\stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$.

Btw, trivially,

$$Standardize(\overline{X}_n) = Standardize(S_n),$$

and these two versions of CLT are the same.

The basic idea of the CLT is the following: if we have a sequence of IID r.v. X_n , and we consider their sum S_n or their average \overline{X}_n , then

$$Standardize(S_n) \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$$

and

Standardize(
$$\overline{X}_n$$
) $\stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$.

Btw, trivially,

$$Standardize(\overline{X}_n) = Standardize(S_n),$$

and these two versions of CLT are the same.

So for large n, the Distribution of the $Standardize(S_n)$ or $Standardize(\overline{X}_n)$ is approximately Standard Normal.

The basic idea of the CLT is the following: if we have a sequence of IID r.v. X_n , and we consider their sum S_n or their average \overline{X}_n , then

$$Standardize(S_n) \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$$

and

$$Standardize(\overline{X}_n) \stackrel{D}{\longrightarrow} \mathcal{N}(0,1).$$

Btw, trivially,

$$Standardize(\overline{X}_n) = Standardize(S_n),$$

and these two versions of CLT are the same.

So for large n, the Distribution of the $Standardize(S_n)$ or $Standardize(\overline{X}_n)$ is approximately Standard Normal. And this independent of the initial Distribution of X_k !

The basic idea of the CLT is the following: if we have a sequence of IID r.v. X_n , and we consider their sum S_n or their average \overline{X}_n , then

$$Standardize(S_n) \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$$

and

Standardize(
$$\overline{X}_n$$
) $\stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$.

Btw, trivially,

$$Standardize(\overline{X}_n) = Standardize(S_n),$$

and these two versions of CLT are the same.

So for large n, the Distribution of the $Standardize(S_n)$ or $Standardize(\overline{X}_n)$ is approximately Standard Normal. And this independent of the initial Distribution of X_k !

Easy and beautiful, isn't it?

Assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$.

Assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$.

We consider sums

$$S_n = X_1 + X_2 + ... + X_n.$$

Assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$.

We consider sums

$$S_n = X_1 + X_2 + ... + X_n.$$

We Standardize S_n :

$$Standardize(S_n) =$$

Assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$.

We consider sums

$$S_n = X_1 + X_2 + ... + X_n.$$

We Standardize S_n :

$$Standardize(S_n) = \frac{S_n - \mathbb{E}(S_n)}{\sqrt{Var(S_n)}}.$$

Assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$.

We consider sums

$$S_n = X_1 + X_2 + ... + X_n$$
.

We Standardize S_n :

$$Standardize(S_n) = \frac{S_n - \mathbb{E}(S_n)}{\sqrt{Var(S_n)}}.$$

Now we use

$$\mathbb{E}(S_n) =$$

Assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$.

We consider sums

$$S_n = X_1 + X_2 + ... + X_n$$
.

We Standardize S_n :

$$Standardize(S_n) = \frac{S_n - \mathbb{E}(S_n)}{\sqrt{Var(S_n)}}.$$

Now we use

$$\mathbb{E}(S_n) = n \cdot \mu, \qquad Var(S_n) =$$

Assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$.

We consider sums

$$S_n = X_1 + X_2 + ... + X_n.$$

We Standardize S_n :

$$Standardize(S_n) = \frac{S_n - \mathbb{E}(S_n)}{\sqrt{Var(S_n)}}.$$

Now we use

$$\mathbb{E}(S_n) = n \cdot \mu, \quad Var(S_n) = n \cdot \sigma^2.$$

Assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$.

We consider sums

$$S_n = X_1 + X_2 + ... + X_n$$
.

We Standardize S_n :

$$Standardize(S_n) = \frac{S_n - \mathbb{E}(S_n)}{\sqrt{Var(S_n)}}.$$

Now we use

$$\mathbb{E}(S_n) = n \cdot \mu, \quad Var(S_n) = n \cdot \sigma^2.$$

Then,

$$Standardize(S_n) = \frac{S_n - \mathbb{E}(S_n)}{\sqrt{Var(S_n)}} = \frac{S_n - n \cdot \mu}{\sqrt{n} \cdot \sigma}.$$

Assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$.

We consider sums

$$S_n = X_1 + X_2 + ... + X_n$$
.

We Standardize S_n :

$$Standardize(S_n) = \frac{S_n - \mathbb{E}(S_n)}{\sqrt{Var(S_n)}}.$$

Now we use

$$\mathbb{E}(S_n) = n \cdot \mu, \quad Var(S_n) = n \cdot \sigma^2.$$

Then,

Standardize
$$(S_n) = \frac{S_n - \mathbb{E}(S_n)}{\sqrt{Var(S_n)}} = \frac{S_n - n \cdot \mu}{\sqrt{n} \cdot \sigma}.$$

The CLT states:

$$\frac{S_n - n \cdot \mu}{\sqrt{n} \cdot \sigma} \xrightarrow{D} \mathcal{N}(0,1).$$

Again, assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$.

Again, assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$. We consider the Averages

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

Again, assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$. We consider the Averages

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

We Standardize \overline{X}_n :

$$Standardize(\overline{X}_n) =$$

Again, assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$. We consider the Averages

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

We Standardize \overline{X}_n :

$$Standardize(\overline{X}_n) = \frac{X_n - \mathbb{E}(X_n)}{\sqrt{Var(\overline{X}_n)}}.$$

Again, assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$. We consider the Averages

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

We Standardize \overline{X}_n :

$$Standardize(\overline{X}_n) = \frac{X_n - \mathbb{E}(X_n)}{\sqrt{Var(\overline{X}_n)}}.$$

We use

$$\mathbb{E}(\overline{X}_n) =$$

Again, assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$. We consider the Averages

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

We Standardize \overline{X}_n :

$$Standardize(\overline{X}_n) = \frac{X_n - \mathbb{E}(X_n)}{\sqrt{Var(\overline{X}_n)}}.$$

We use

$$\mathbb{E}(\overline{X}_n) = \mu, \quad Var(\overline{X}_n) =$$

Again, assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$. We consider the Averages

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

We Standardize \overline{X}_n :

$$Standardize(\overline{X}_n) = \frac{X_n - \mathbb{E}(X_n)}{\sqrt{Var(\overline{X}_n)}}.$$

We use

$$\mathbb{E}(\overline{X}_n) = \mu, \qquad Var(\overline{X}_n) = \frac{\sigma^2}{n}.$$

Again, assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$. We consider the Averages

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

We Standardize \overline{X}_n :

$$Standardize(\overline{X}_n) = \frac{X_n - \mathbb{E}(X_n)}{\sqrt{Var(\overline{X}_n)}}.$$

We use

$$\mathbb{E}(\overline{X}_n) = \mu, \qquad Var(\overline{X}_n) = \frac{\sigma^2}{n}.$$

Then,

$$Standardize(\overline{X}_n) = \frac{X_n - \mathbb{E}(X_n)}{\sqrt{Var(\overline{X}_n)}} = \frac{X_n - \mu}{\sigma/\sqrt{n}}.$$

Again, assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$. We consider the Averages

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

We Standardize \overline{X}_n :

$$Standardize(\overline{X}_n) = \frac{X_n - \mathbb{E}(X_n)}{\sqrt{Var(\overline{X}_n)}}.$$

We use

$$\mathbb{E}(\overline{X}_n) = \mu, \qquad Var(\overline{X}_n) = \frac{\sigma^2}{n}.$$

Then,

$$S$$
tandardize $(\overline{X}_n) = rac{\overline{X}_n - \mathbb{E}(\overline{X}_n)}{\sqrt{Var(\overline{X}_n)}} = rac{\overline{X}_n - \mu}{\sigma/\sqrt{n}}.$

The CLT states:

$$\frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} \xrightarrow{D} \mathcal{N}(0,1).$$

Two forms of CLT

Of course, these two forms of the CLT are the same: we have

$$Standardize(S_n) = \frac{S_n - \mathbb{E}(S_n)}{\sqrt{Var(S_n)}} = \frac{S_n - n \cdot \mu}{\sqrt{n} \cdot \sigma}$$

and

$$Standardize(\overline{X}_n) = \frac{X_n - \mathbb{E}(X_n)}{\sqrt{Var(\overline{X}_n)}} = \frac{X_n - \mu}{\sigma/\sqrt{n}}.$$

Two forms of CLT

Of course, these two forms of the CLT are the same: we have

$$Standardize(S_n) = \frac{S_n - \mathbb{E}(S_n)}{\sqrt{Var(S_n)}} = \frac{S_n - n \cdot \mu}{\sqrt{n} \cdot \sigma}$$

and

$$Standardize(\overline{X}_n) = \frac{X_n - \mathbb{E}(X_n)}{\sqrt{Var(\overline{X}_n)}} = \frac{X_n - \mu}{\sigma/\sqrt{n}}.$$

Now,

$$\frac{S_n - n \cdot \mu}{\sqrt{n} \cdot \sigma} = \frac{n \cdot (\frac{S_n}{n} - \mu)}{\sqrt{n} \cdot \sigma} = \frac{\frac{S_n}{n} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}},$$

so

$$Standardize(S_n) = Standardize(\overline{X}_n).$$

Hence, the above two versions of CLT are the same, just one is in terms of S_n , the other one is in terms of \overline{X}_n .

```
T \/icually
n < 600 # Sample Size
m <- 1000 # no of Samples
rate <- 0.2
x <- rexp(n*m, rate = rate)
theo.mean <- 1/rate #theoretical mean
theo.sd <- 1/rate #theoretical SD
m <- matrix(x, ncol = m); d <- data.frame(m)
avgs <- sapply(d, mean)
a = theo.mean-3*theo.sd/sqrt(n); b = theo.mean+3*theo.sd/sqrt(n)
hist(avgs, freq = F, xlim = c(a, b), ylim=c(0,3))
par(new = T)
t <- seq(a,b, 0.01)
y <- dnorm(t, mean = theo.mean, sd = theo.sd/sqrt(n))
plot(t,y, type = "l", col="red", lwd = 2, , xlim = c(a,b), ylim=c(0,3))</pre>
```

Histogram of avgs

CLT, Visually, v2 n <- 600 # Sample Size m <- 1000 # no of Samples rate <- 0.2 x <- rexp(n*m, rate = rate) m <- matrix(x, ncol = m); d <- data.frame(m) avgs <- sapply(d, mean)</pre>

qqnorm(avgs, ylab = "Averages"); qqline(avgs)

