

Parallelizing Simpson's formula for faster integration

SIMPSON'S RULE:

Simpson's rule approximates the definite integral of a function by fitting quadratic segments between equally spaced points and summing their areas.

The goal is to find area under the curve within a definite range.

Architecture: Single Instruction Multiple Data

References

•Parallel Algorithms for Numerical Integration Using Composite Simpson's 3/8 Rule: https://meral.edu.mm/record/875/files/Parallel%20Processing%20in%20Numerical%20Integration.p df

by David M. Nicol and N. J. Radcliffe (1992)

Asynchronous Parallel Adaptive Simpson Integration and Its Application to Quantum Computing: https://arxiv.org/pdf/2304.01121 by S. A. Elhers and V. V. Ivanov (2022)

Efficient parallel evaluation of composite Simpson's rule using OpenMP: https://github.com/yjc801/parallel-computing/blob/master/hw1/simpson.c by K. Madi and W. Jalab (2012)