#### **International Olympiad in Informatics 2015**



26th July - 2nd August 2015 Almaty, Kazakhstan Day 2

horses

Language: en-CHL

# **Caballos**

Al igual que a sus ancestros, a Mansur le gusta mucho criar caballos. En este momento él posee la rebaño más grande en Kazajistán. Pero no siempre ha sido así. Hace N años, Mansur era simplemente un dzhiigit ( $hombre\ joven$  en kazajo) y únicamente tenía un caballo. El soñaba con hacer mucho dinero y convertirse finalmente en un bai ( $una\ persona\ muy\ rica$  en kazajo).

Numeremos los años de 0 a N-1 en orden cronológico (esto es el año N-1 es el más reciente). El clima de cada año influyó en el crecimiento del ganado. Para cada año i, Mansur se acuerda de un entero positivo, el coeficiente de crecimento X[i]. Si usted comenzó el año i con i caballos, entonces usted terminó con i0 caballos en su rebaño.

Los caballos se pueden vender únicamente al final de un año. Para cada año i, Mansur recuerda un entero positivo Y[i]: el precio por el cual él podría vender un caballo al final del año i. Después de cada año, era posible vender arbitrariamente muchos caballos, cada uno por el mismo precio Y[i].

Mansur se pregunta cuál es la cantidad más grande que podría tener en el momento actual si él hubiera elegido el mejor momento para vender sus caballos durante los N años. Usted ha tenido el honor de ser invitado al toi (palabra kasaja para vacaciones) y él le pidió a usted que respondiera esta pregunta.

La memoria de Mansur se mejora a lo largo de la tarde, y entonces él hace una sucesión de M actualizaciones. Cada actualización cambiará uno de los valores X[i] o uno de los valores Y[i]. Después de cada actualización, él le pide a usted nuevamente la mayor cantidad posible de dinero que él podría haber ganado vendiendo sus caballos. Las actualizaciones de Mansur son acumulativas: cada una de sus respuestas debería tener en cuenta todas las actualizaciones previas. Note que un mismo X[i] o Y[i] puede ser actualizado varias veces.

Las respuestas a las preguntas de Mansur pueden ser bastante grandes. Para evitar trabajar con números demasiado grandes se le pide que reporte la respuesta módulo  $10^9 + 7$ .

## **Ejemplo**

Suponga que hay N=3 años, con la siguiente información:

|   | 0 | 1 | 2 |
|---|---|---|---|
| Х | 2 | 1 | 3 |
| Y | 3 | 4 | 1 |

Para estos valores iniciales, Mansur puede ganar la mayor cantidad posible si él vende sus caballos al final del año 1. Todo el proceso ser verá como sigue:

■ Inicialmente, Mansur tiene 1 caballo.

- Después del año 0, él tendrá  $1 \cdot X[0] = 2$  caballos.
- Después del año 1 el tendrá  $2 \cdot X[1] = 2$  caballos.
- Él puede vender ahora los dos caballos. La ganacia total será  $2 \cdot Y[1] = 8$ .

Luego, suponga que hay M=1 actualización: cambiar Y[1] a 2.

Después de la actualización tendremos:

|   | 0 | 1 | 2 |
|---|---|---|---|
| Χ | 2 | 1 | 3 |
| Y | 3 | 2 | 1 |

En este caso, una de las soluciones óptimas es vender un caballo después del año 0 y luego tres caballos en el año 2.

Todo el proceso se ve como sigue:

- Inicialmente Mansur tiene 1 caballo.
- lacksquare Después del año 0, él tendrá  $1 \cdot X[0] = 2$  caballos.
- lacktriangle El puede ahora vender uno de esos caballos, por Y[0]=3. y le queda un caballo.
- Después de 1 año, él tendrá  $1 \cdot X[1] = 1$  caballo.
- Después de 2 años, él tendrá  $1 \cdot X[2] = 3$  caballos.
- Él puede vender ahora tres caballos por  $3 \cdot Y[2] = 3$ . La cantidad total de dinero es 3 + 3 = 6.

### Tarea

A usted le dan N, X, Y y una lista de actualizaciones. Antes de la primera actualización y después de cada actualización, calcule la cantidad máxima que Mansur podría haber obtenido módulo  $10^9 + 7$ . Usted necesita implementar las funciones init, updateX y updateY.

- init (N, X, Y) El calificador llamará esta función primero exactamente una vez.
  - N: el número de años.
  - lacktriangle X: un arreglo de longitud N. Para  $0 \leq i \leq N-1, X[i]$  da el coeficiente de crecimiento para el año i.
  - lacktriangle Y: un arreglo de longitud N. Para  $0 \leq i \leq N-1, Y[i]$  da el precio de un caballo después del año i.
  - Note que ambos X y Y especifican los valores iniciales dados por Mansur (antes de cualquier actualización).
  - Después de que init retorne, los arreglos X y Y siguen siendo válidos, y usted puede modificar su contenido si lo desea.
  - La función debe devolver la cantidad máxima de dinero que Mansur puede hacer después

de esta actualización, módulo  $10^9 + 7$ .

- updateX(pos, val)
  - pos: un entero en el rango  $0, \ldots, N-1$ .
  - val: el nuevo valor para X[pos].
  - La función debe devolver la cantidad máxima de dinero que Mansur puede hacer después de esta actualización, módulo  $10^9 + 7$ .
- updateY(pos, val)
  - pos: un entero en el rango  $0, \ldots, N-1$ .
  - val: el nuevov valor para Y[pos].
  - La función debe devolver la cantidad máxima de dinero que Mansur puede hacer después de esta actualización, módulo  $10^9 + 7$ .

Usted puede asumir que todos los valores iniciales, así como los valores actualizados de X[i] y Y[i] entán entre 1 y  $10^9$  inclusive.

Después de llamar a init, el calificador llamará updateX y updateY varias veces. El número total de llamadas a updateX y updateY será  $\pmb{M}$ .

#### **Subtareas**

| subtarea | puntos | N                       | M                       | restricciones adicionales                                                  |
|----------|--------|-------------------------|-------------------------|----------------------------------------------------------------------------|
| 1        | 17     | $1 \le N \le 10$        | M=0                     | $X[i], Y[i] \le 10, \ X[0] \cdot X[1] \cdot \ldots \cdot X[N-1] \le 1,000$ |
| 2        | 17     | $1 \leq N \leq 1,000$   | $0 \le M \le 1,000$     | nada                                                                       |
| 3        | 20     | $1 \leq N \leq 500,000$ | $0 \leq M \leq 100,000$ | $X[i] \ge 2$ y $val \ge 2$ para init y updateX respectivamente             |
| 4        | 23     | $1 \leq N \leq 500,000$ | $0 \leq M \leq 10,000$  | nada                                                                       |
| 5        | 23     | $1 \leq N \leq 500,000$ | $0 \leq M \leq 100,000$ | nada                                                                       |

## Calificador de ejemplo

El calificador de ejemplo lee la entrada del archivo horses. in en el siguiente formato:

- línea 1: N
- línea 2: X[0] ... X[N 1]
- línea 3: Y[0] ... Y[N 1]
- línea 4: M
- líneas 5, ..., M + 4: tres números type pos val (type=1 para updateX y type=2 para updateY).

El calificador ejemplo impirime el valor de retorno de init seguido por los valores de retorno para todas las llamadas de updateX y updateY.