List 1

c_0	Isentropic speed of sound, 343m/s
C _n	Phase speed of the <i>n</i> th duct mode, defined as $\frac{ic_0}{\sqrt{(n\pi/k_0h)^2-1}}$ in where <i>i</i> is unit imaginary number
C_{nc}	Phase speed of the nth duct mode in the cavity
f	Frequency in Hz
$[f_1, f_2]$	Frequency range in which the transmission loss is everywhere equal to or higher than a criterion value TL_{cr}
h	Duct height
h_c	Cavity depth
Н	Heavside function $H(x-x') = 0$ when $x < x'$; $H(x-x') = 1$ when $x > x'$
I_j	Modal coefficient of incident wave
j	Vibration mode where $j=1,2,3$
k_n	Modal wavenumber, defined as ω/c_n
k_{nc}	Modal wavenumber of the medium in the cavity
k_0	Real wavenumber, defined as $k_0 = \omega / c_0$
l	Vibration mode where $l=1,2,3,$
L	Length of membrane
L_{ν}	Cavity length
m	Membrane-to-air mass ratio or the ratio of the structural mass to the fluid mass
P_i	Incident wave

Reflected wave, Equation 6 p_r Radiation pressure acting on the upper surface of the membrane, p_{+rad} Equation 1 Radiation pressure acting on the lower surface of the membrane p_{-rad} facing the cavity, Equation 2 Reflection of the radiated waves into the cavity by the two vertical P_{-ref} walls of the cavity, Equation 3 Transmitted wave, Equation 7 p_{t} Dimensionless axial tensile force, $T = \frac{T^2}{h^2 \rho_0 (c_0)^2}$ TTLTransmission loss TL Criterion value of transmission loss T_{opt} Optimal tensile force for maximum f₂/f₁ VVibration velocity of the membrane Vibration amplitude of the jth in-vacuo mode x, yCartesian coordinates Cartesian coordinate for the sound source Cartesian coordinates in the region of cavity where the relevant x_c, y_c duct acoustics scale is h_c , Equation 2 & 3 Cartesian coordinate for the sound source in the region of cavity x_c', y_c'

Greek symbols

 $\cdot Z_{ii}$

 δ_{0n} Kronecker delta: $\delta_{0n} = 0$ for $n \neq 0$, and $\delta_{0n} = 1$ when n = 0.

 ρ_0 Fluid density, for air it's 1.225 kg/m³

 ξ Local dimensionless variable defined as $\xi = x/L + 1/2$

where the relevant duct acoustics scale is h_c , Equation 2 & 3

a prescribed jth vibration of unit amplitude, Equation 4

Modal impedance, Ith modal coefficient of fluid loading caused by

Dimensionless source coordinate defined as $\xi' = x'/L + 1/2$

Duct acoustics mode defined as $\psi_n(y) = \sqrt{2 - \delta_{0n}} \cos(n\pi y)$, Eq. (12)

 ω Angular frequency $\omega = 2\pi f$

Linear structural operator for the jth mode which is defined as

$$L_{j} = mi\omega + \frac{T}{i\omega} \left(\frac{j\pi}{L}\right)^{2}, j = 1, 2, 3, \dots$$

Symbols with asterisks are dimensional quantities that are normalized to become dimensionless quantities by the equation following Equation 3.