A collaborative LaTeX document

Class of ID2090, Third Trimester of 2021 batch $\label{eq:June 14} \text{June 14, 2022}$

Contents

1	Introduction	3
2	AE21B003	4
3	AE21B028	5
4	AE21B045	6
5	AE21B056	7
6	AE21B062	8
7	AE21B107	9
8	BE21B016	10
9	BE21B040	11
10	CE19B020	12
11	CE21B021	13
12	CE21B088	14
13	CE21B097	15
14	CE21B112	16
15	CE21B115	17
16	CH21B067	18
17	CH21B079	19
18	CH21B101	20
19	ME21B050	21
20	ME21B060	22
21	ME21B065	23

22 ME21B079	24
23 ME21B088	2 5
24 ME21B091	26
25 ME21B186	27
26 ME21B190	28
27 ME21B196	29
28 ME21B204	30
29 ME21B217	31
30 MM21B012 30.1 Bernoulli's equation for in-compressible flow	
31 MM21B024	33
32 MM21B032	34
33 MM21B044	35
34 MM21B046	36
35 MM21B059	37
36 MM21B063	38
37 NA21B002	39
38 NA21B005	40
39 NA21B006	41
40 NA21B007	42
41 NA21B020	43
42 NA21B048	44
43 NA21B052	45
44 Conclusions	46
45 References	46

List of Figures

List of Tables

1 Introduction

This file includes tex files from the folders of each student. The students are expected to update the file named after their roll number and place any images in the same folder. Students do not have to edit this master document. Once the student has sent a pull request which is accepted and processed successfully, his/her assignment submission is deemed to be complete.

You are also welcome to add references and cite them. Examples on how to do that are on the course repository [?].

8 BE21B016

9 BE21B040

10 CE19B020

16 CH21B067

17 CH21B079

18 CH21B101

Bernoulli's Equation MM21B012 July, 2022

30.1 Bernoulli's equation for in-compressible flow

$$\Psi = \frac{1}{2}\rho v^2 + \rho gz + p \tag{1}$$

Symbol	Description
V	v is the flow speed at a point on the streamline
g	g is the acceleration due to gravity
Z	z is the elevation of the point above a reference plane, (in the direction
	opposite to acceleration due to gravity)
h	h is the pressure at the chosen point
ρ	ρ is the density of the fluid at all points of the fluid (as the fluid
	is in-compressible, it will be constant for all points of the the fluid)
Ψ	Ψ is a constant

30.2 Explanation

In fluid dynamics, Bernoulli's principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid's potential energy. The principle is named after Daniel Bernoulli who published it in his book Hydrodynamica in 1738. Although Bernoulli deduced that pressure decreases when the flow speed increases, it was Leonhard Euler in 1752 who derived Bernoulli's equation in its usual form. The principle is only applicable for isentropic flows: when the effects of irreversible processes (like turbulence) and non-adiabatic processes (e.g. heat radiation) are small and can be neglected. Bernoulli's principle can be derived from the principle of conservation of energy. This states that, in a steady flow, the sum of all forms of energy in a fluid along a streamline is the same at all points on that streamline. This requires that the sum of kinetic energy, potential energy and internal energy remains constant. Thus an increase in the speed of the fluid – implying an increase in its kinetic energy (dynamic pressure) – occurs with a simultaneous decrease in (the sum of) its potential energy (including the static pressure) and internal energy. If the fluid is flowing out of a reservoir, the sum of all forms of energy is the same on all streamlines because in a reservoir the energy per unit volume (the sum of pressure and gravitational potential ρ gh) is the same everywhere.

$31\quad \mathrm{MM21B024}$

44 Conclusions

If this master tex file could be compiled successfully, it means that the class has learnt the concepts of Git as well as LaTeX properly.

45 References

References

[1] Repository for id2090 course. https://github.com/gphanikumar/mm2090. Accessed: 2022-06-13.