Paul Gustafson

Texas A&M University - Math 637

Instructor: Zoran Sunik

HW₃

5 Let $f: X \to Y$ be a map of topological spaces. Show that f is a homotopy equivalence iff there exists maps $g, h: Y \to X$ such that $gf \simeq 1_X$ and $fh \simeq 1_Y$.

П

Proof. We have $fg \simeq fgfh \simeq fh \simeq 1$.

- **6** (a) Prove the Borsuk-Ulam Theorem in dimension 1, i.e., prove that for every map $f: S^1 \to \mathbb{R}$ there exists a pair of antipodal points x and -x in S^1 such that f(x) = f(-x).
- (b) Is the following version of the Borsuk-Ulam Theorem for the torus correct? For every map $f: S^1 \times S^1 \to R^2$ there exists a pair of antipodal points (x,y) and (-x,-y) in $T^2 = S^1 \times S^1$ such that f(x,y) = f(-x,-y).
- Proof. (a) Let $g:[0,1]\to S^1$ be defined by $g(x)=e^{i\pi x}$. Let h(x)=f(x)-f(-x). Let $\phi=h\circ g$. Then $\phi(0)=f(1)-f(-1)$, and $\phi(1)=f(-1)-f(1)$. One of these values must be nonnegative and the other nonpositive. It follows from the intermediate value theorem that ϕ has a root. Hence h has a root, so there exists $x\in S^1$ with f(x)=f(-x).

 (b) No, let $\pi:S^1\times S^1$ be the projection on the first coordinate, and $\phi:$
- (b) No, let $\pi: S^1 \times S^1$ be the projection on the first coordinate, and $\phi: S^1 \to R^2$ be the usual inclusion. Let $f = \phi \circ \pi$. For any $(x,y) \in S^1 \times S^1$, we have $\pi(x,y) = x \neq -x = \pi(-x,-y)$. Hence $f(x,y) \neq f(-x,-y)$ since ϕ is an injection.