Download slide:

"https://liuqi6776.github.io/2019/04/02/researchexpect/"

LSTM and CNN Applications to Forecast Earthquake Magnitude Probability Distribution

LIU QI (49-186421) from総合分析情報学コース

LSTM AND CNN APPLICATIONS TO FORECAST EARTHQUAKE MAGNITUDE PROBABILITY DISTRIBUTION

GSII :Applied Computer Science Course ID:49 | 8642 |

CONTENTS

- Brief Introduction
- Earthquake Events
- Experiment(LSTM)
- Analysis
- Expect
- Summary
- References

BRIEF INTRODUCTION

About earthquake prediction:

The Tohoku earthquake Three points:

1,WHEN

2,WHERE

3,WHAT(magnitude)

BRIEF INTRODUCTION

Accuracy:

when:one day

Where: approximate 300km*300km(longitude3 *latitude3)

What: Max (-4)

EARTHQUAKE EVENTS

EARTHQUAKE EVENTS

From January 2000-March 2011

Power law distribution (Continue)

EARTHQUAKE EVENTS

| | March 20 | | → | 2 March 20 | |

EXPERIMENT

DATA

Miller's cylindrical projection(3D-2D)

Longitude (3 degree), Latitude(3 degree), depth<100km

January 2000 --- March 2011

Every day(4087), for every box (49) has a table

One table:

Magnitude distribution value(The maximum value, Median, Mean, Variance, Size(events number))

DATA

Training datasets: 95% of all datasets(3882*49)

Validation(Testing) datasets: 5% of all datasets(205)

Testing_2 datasets: M>6 in Validation datasets(71)

LSTM STRUCTURE

Wang, Qianlong, et al. "Earthquake prediction based on spatio-temporal data mining: an LSTM network approach." IEEE Transactions on Emerging Topics in Computing (2017).

LSTM FOR NLP(NATURAL LANGUAGE PROCESSING)

To be or not to be, that's a question.

Give every man thy ear, but few thy voice.

Take each man's censure, but reserve thy judgement.

-William Shakespeare "Hamlet"

Time window=5 words

X

Dataset I "To be or not to"

Dataset2 "be or not to be"

Dataset22"censure but reserve thy"

Y(label)

"be"

"that

:

"judgement"

If the LSTM learn all of the Shakespeare's book, AI will write like Shakespeare.

LSTM STRUCTURE OPTIMIZATION

MSE (Mean squared error)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Hyperparameter:

EPOCH=200
BATCH_SIZE=50
TIME_WINDOW=1
LR=0.001

EPOCH=200
BATCH_SIZE=50
TIME_WINDOW=10
LR=0.001

Graph:

Epoch

LSTM STRUCTURE OPTIMIZATION

Hyperparameter space:

POCH=50
BATCH_SIZE=50
TIME_WINDOW=[0~60]
LR=0.001

POCH=50
BATCH_SIZE=50
TIME_WINDOW=[0~60]
LR=0.001

POCH=50
BATCH_SIZE=50
TIME_WINDOW=[0~60]
LR=0.001

Training

Validation

Testing

LSTM RESULT

2011/3/11

ANALYSIS

Problem:

- I:Validation MSE divergence when training MSE converges(time window <= 30)
- 2: Validation variance is large when the Validation MSE converges.(time window >=50)

Result:

- I:Testing_2 MSE diverge with training MSE converge (time window=100)
- 2: Giant earthquake has a <u>same trend</u> of distribution with all before earthquake as time series data in LSTM.

EXPECT

Optimize the model in Hyper-parameter space

X=(Batch size, Time window, LR, Epoch)

Y=Validation datasets MSE(30 epoch MSE average after model convergence)

a=(XY)^t(transpose)

New datasets of hyper parameter: A:{a|(XY)^t}

In A space find optimized point a.

And find hyper-parameter's law from MDS(Multidimensional scaling)

EXPECT

After we got optimize model:

Epoch=20 BATCH_SIZE=50 TIME_WINDOW=10 LR=0.005

Epoch=20 BATCH_SIZE=50 **TIME_WINDOW=30** LR=0.005

Optimize

Epoch=100
BATCH_SIZE=50
TIME_WINDOW=?
LR=?

Space scale -> I degree

SUMMARY

- Brief introduction (result)P2-P3
- Introduction of Earthquake eventsP4-P7
 - 2000-2011earthquake
 - 2011/3/11 earthquake
- Introduction of my experiment and analysis.P7-P14
 - Data
 - Model structure and optimization
 - Analysis
- ExpectPI5-PI6

REFERENCES

- http://colah.github.io/posts/2015-08Understanding-LSTMs/
- http://karpathy.github.io/2015/05/21/rnn-effectiveness/
- Li Z, Meier M A, Hauksson E, et al. Machine Learning Seismic Wave Discrimination: Application to Earthquake Early Warning[]]. Geophysical Research Letters, 2018.
- Goodfellow, lan, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.
- https://wwweic.eri.u-tokyo.ac.jp/db/jma.deck/index-j.html
- Wang, Qianlong, et al. "Earthquake prediction based on spatio-temporal data mining: an LSTM network approach." IEEE Transactions on Emerging Topics in Computing (2017).