

# Introduction to Quantum Computing

A subexponential-time quantum algorithm for the dihedral hidden subgroup problem

Colombo Alberto

#### **Table of Contents**

1. Preliminaries

2. Main Algorithm

3. Generalizations

# **Preliminaries**

1. Preliminaries

2. Main Algorithm

3. Generalizations

### Hidden Subgroup Problem

<u>Hidden Subgroup Problem</u>: Given an efficiently computable function  $f: G \to S$ , from a finite group G to a set S, that is constant on (left) cosets of some subgroup  $H \le G$  and takes distinct values on distinct cosets, *i.e.* 

$$f(g_1) = f(g_2) \iff g_1, g_2 \in cH \text{ for some } c \in G,$$

find a set of generators for H.

### Period Finding as HSP

**Goal:** find the order (or period) *r* of

$$f(a) = x^a \mod N$$
.

If we define  $G = \mathbb{Z}_{\phi(N)}$ ,  $H = \langle r \rangle = \{0, r, 2r, ..., \phi(N) - r\}$ , where  $\phi$  is the Euler function, we can cast the problem as an HSP. Indeed, f is constant on cosets s + H and distinct on different cosets.

4

#### Algorithm for Abelian HSP

- 1. Compute  $\sum_{g \in G} |g\rangle |f(g)\rangle$  and measure the second register f(g) = f(c) for some  $c \in G$ . The resulting state is  $|cH\rangle = \sum_{h \in H} |ch\rangle$  for some coset cH.
- 2. Compute the Fourier transform of the resulting state, obtaining

$$\sum_{\sigma \in \hat{G}} \frac{1}{\sqrt{|H||G|}} \sum_{h \in H} \sigma(ch) |\sigma\rangle,$$

where  $\hat{G}$  is the set of irreducible representations of G.

3. Measure the first register and observe a representation  $\sigma$ .

#### Algorithm for Abelian HSP

- 1. Compute  $\sum_{g \in G} |g\rangle |f(g)\rangle$  and measure the second register f(g) = f(c) for some  $c \in G$ . The resulting state is  $|cH\rangle = \sum_{h \in H} |ch\rangle$  for some coset cH.
- 2. Compute the Fourier transform of the resulting state, obtaining

$$\sum_{\sigma \in \hat{G}} \frac{1}{\sqrt{|H||G|}} \sum_{h \in H} \sigma(ch) |\sigma\rangle,$$

where  $\hat{G}$  is the set of irreducible representations of G.

3. Measure the first register and observe a representation  $\sigma$ .

**Key fact:** the distribution (measurement probability) of  $\sigma$  does not depend on c.

### Algorithm for Period Finding

In the order finding example, we have

- 1. Compute  $\sum_{j=0}^{N-1} |j\rangle |f(j)\rangle$  and measure the second register f(j) = f(c) for some  $c \in \{0, 1, ..., N-1\}$ . The resulting state is  $\sum_{k=0}^{m-1} |c+kr\rangle$  where m is the smallest integer for which  $mr + c \ge N$ .
- 2. Compute the Fourier transform of the resulting state, obtaining

$$\sum_{v=0}^{N-1} \frac{1}{\sqrt{Nm}} \sum_{k=0}^{m-1} e^{\frac{2\pi i}{N}(c+kr)y} |y\rangle.$$

3. Measure the first register and observe a representation label *y*.

6

#### Non Abelian Groups

- 1. Compute  $\sum_{g \in G} |g\rangle |f(g)\rangle$  and measure the second register f(g) = f(c) for some  $c \in G$ . The resulting state is  $|cH\rangle = \sum_{h \in H} |ch\rangle$  for some coset cH.
- 2. Compute the Fourier transform of the coset state, obtaining

$$\sum_{\sigma \in \hat{G}} \sqrt{\frac{d_{\sigma}}{|H||G|}} \left( \sum_{h \in H} \sigma(ch) \right)_{ij} |\sigma\rangle |i\rangle |j\rangle,$$

where  $\hat{G}$  is the set of irreducible representations of G.

3. Measure the first register and observe a representation label  $\sigma$ .

#### Non Abelian Groups

- 1. Compute  $\sum_{g \in G} |g\rangle |f(g)\rangle$  and measure the second register f(g) = f(c) for some  $c \in G$ . The resulting state is  $|cH\rangle = \sum_{h \in H} |ch\rangle$  for some coset cH.
- 2. Compute the Fourier transform of the coset state, obtaining

$$\sum_{\sigma \in \hat{G}} \sqrt{\frac{d_{\sigma}}{|H||G|}} \left( \sum_{h \in H} \sigma(ch) \right)_{ij} |\sigma\rangle |i\rangle |j\rangle,$$

where  $\hat{G}$  is the set of irreducible representations of G.

3. Measure the first register and observe a representation label  $\sigma$ .

**Remark** (1):  $\sigma$  has no longer dimension 1, but it is actually a  $d_{\sigma} \times d_{\sigma}$  matrix.

#### Non Abelian Groups

- 1. Compute  $\sum_{g \in G} |g\rangle |f(g)\rangle$  and measure the second register f(g) = f(c) for some  $c \in G$ . The resulting state is  $|cH\rangle = \sum_{h \in H} |ch\rangle$  for some coset cH.
- 2. Compute the Fourier transform of the coset state, obtaining

$$\sum_{\sigma \in \hat{G}} \sqrt{\frac{d_{\sigma}}{|H||G|}} \left( \sum_{h \in H} \sigma(ch) \right)_{ij} |\sigma\rangle |i\rangle |j\rangle,$$

where  $\hat{G}$  is the set of irreducible representations of G.

3. Measure the first register and observe a representation label  $\sigma$ .

**Remark** (2): the procedure above is known as *weak Fourier sampling*, and it suffices for solving some instances of HSP, e.g. when H is a normal subgroup of  $G(gHg^{-1} = H \ \forall g \in G)$ .

7

#### HSP in the Dihedral group

The dihedral group  $D_N$  is the group of symmetries of a regular N-gon

$$D_N = \langle x, y | x^N = y^2 = yxyx = 1 \rangle = \{ y^t x^s | t = 0, 1 \text{ s} = 0, 1, ..., N \}.$$

The hidden subgroup of interest is the subgroup of reflections

$$H = \langle yx^{\overline{s}} \rangle$$

for some unknown *slope* parameter  $\bar{s}$ . Indeed, it can be proven that finding any  $H \leq D_N$  can be reduced to finding an hidden reflection (Prop 2.1).

8

# Main Algorithm

1. Preliminaries

2. Main Algorithm

3. Generalizations

#### Observation

<u>Remark</u>: (consider  $N = 2^n$ )  $D_N$  contains two subgroups that are isomorphic to  $D_{N/2}$ ,

$$F_0 = \langle x^2, y \rangle, \quad F_1 = \langle x^2, yx \rangle.$$

The hidden reflection group H is contained in  $F_{\overline{s} \mod 2}$ , so if we know an algorithm to find the parity of s, then we can apply it again on  $F_{\overline{s} \mod 2}$  and repeat  $\log_2 N$  times.

1. Compute the constant pure state

$$|D_N\rangle = \frac{1}{\sqrt{|D_N|}} \sum_{t,\,s} |y^t x^s\rangle \,.$$

2. Compute  $U_f|D_N\rangle \propto \sum_{g\in D_N}|g\rangle |f(g)\rangle$ , where  $U_f$  is the unitary embedding of f, and measure the second register obtaining in the first register

$$|cH\rangle = \frac{1}{\sqrt{|H|}} \sum_{h \in H} |ch\rangle$$

for some random  $c \in D_N$ .

3. Compute the (abelian) QFT on the *n* qubits used for describing s, as

$$F_N: |s\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i k s/N} |k\rangle.$$

Then measure  $k \in \mathbb{Z}/N$  and obtain the qubit state (on the register representing t)

$$|\psi_k\rangle \propto |0\rangle + e^{2\pi i k \bar{s}/N} |1\rangle$$
 .

11

4. Consider two of the previous states  $|\psi_k\rangle$ ,  $|\psi_\ell\rangle$ , and compute

$$\mathsf{CNOT}(|\psi_k\rangle \otimes |\psi_\ell\rangle). \tag{1}$$

If we now measure the second qubit, depending on the output of the measurement, we get

$$|\psi_{k\pm\ell}\rangle \propto |0\rangle + e^{2\pi i(k\pm\ell)\bar{s}/N} |1\rangle$$
.

Since we know k and  $\ell$  from previous measurements we can choose them in such a way they have  $m = \lceil \sqrt{n-1} \rceil$  common trailing bits, so that the resulting state  $|\psi_{k-\ell}\rangle$  have m more trailing zeroes than the original ones.

5. We can now repeat previous steps in order to produce the state

$$|\psi_{2^{n-1}}\rangle \propto |0\rangle + (-1)^{\bar{s}}|1\rangle$$
,

which measured in the  $|\pm\rangle$  basis reveals the parity of  $\bar{s}$ .

### Algorithm steps - Summary

- 1. Make a list of  $L_0$  copies of the state  $|cH\rangle$  by applying  $U_f$  to  $|D_N\rangle$  and measuring the second register. Extract  $|\psi_k\rangle$  form each  $|cH\rangle$  with a QFT-based measurement.
- 2. For  $0 \le j < m$   $(m = \lceil \sqrt{n-1} \rceil)$  we assume  $L_j$  is a list of  $|\psi_k\rangle$  with at least mj trailing zeroes. Divide  $L_j$  into pairs of qubits  $|\psi_k\rangle$   $|\psi_\ell\rangle$  that share m additional trailing bits. Extract the state  $|\psi_{k\pm\ell}\rangle$  from each pair and include in the new list  $L_{j+1}$  all states of the form  $|\psi_{k-\ell}\rangle$ .
- 3. The final list is  $L_m$ , and it consists of states  $|\psi_0\rangle$  and  $|\psi_{2^{n-1}}\rangle$  with equal probabilities. Measure one of the states  $|\psi_{2^{n-1}}\rangle$  in the  $|\pm\rangle$  basis to determine the parity of the slope  $\bar{s}$ .
- 4. Repeat 1-3 with the subgroup  $F_{\overline{s} \mod 2} \leq D_N$ .

### Proof of complexity

#### Theorem

Previous algorithm requires  $\mathcal{O}(8^{\sqrt{n}})$  queries and  $\tilde{\mathcal{O}}(8^{\sqrt{n}})$  computation time.

### Proof of complexity

We can assume that if  $|L_j| \gg 2^m$ , then we are able to pair almost every k and  $\ell$  such that they share m additional low bits. Approximately half of the pair will then form the new set  $L_{j+1}$ , so that

$$\frac{|L_{j+1}|}{|L_j|}\approx \frac{1}{4}.$$

If we then set for the final list  $|L_m| = \Theta(2^m)$ , working backward we get  $|L_0| = \Theta(8^m)$ . The computational complexity will only have logarithmic overhead due to the subroutine for matching k and  $\ell$ .

<u>Remark</u>: we should formally still prove that the assumption  $|L_j| \gg 2^m$  is enough to ensure  $|L_m| = \Theta(2^m)$  with high probability.

#### General Idea

From representation theory we have the following orthogonal decomposition of the Hilbert space  $\mathbb{C}[D_N] = \operatorname{span}\{|g\rangle \mid g \in D_N\}$ 

$$\mathbb{C}[D_N] \cong \bigoplus_{k \in \mathbb{Z}/N} V_k.$$

The projective measurement corresponding to such a decomposition can be computed using QFT.

Since the state  $|cH\rangle$  is invariant under the represented action of H, the residual state  $|\psi_R\rangle$  is too.

Moreover, each  $V_k$  is irreducible except for k=0 and k=N/2. The target of Kuperberg's algorithm is indeed  $V_{N/2}$  since the measurement corresponding to its irreducible decomposition reveals the parity of  $\bar{s}$ .

Another representation-theoretic decomposition of  $\mathbb{C}[G]$  is the Burnside decomposition

$$\mathbb{C}[G] = \bigoplus_{V} V \otimes V^*,$$

where the sum is over the set of irreducible representations (irrep) of G. The factor  $V^*$  is called the *row space* and V is the *column space* in light of matrix identification.

The decomposition is orthogonal, thus it corresponds to a projective measurement called *character measurement*.

The mixed state

$$\rho_{G/H} = \frac{1}{|G|} \sum |cH\rangle \langle cH|,$$

is equivalent to the pure state  $|cH\rangle$  (before/ignoring measurement of  $|f(g)\rangle$ ).

 $ho_{G/H}$  is the uniform state on all *H*-invariant vectors in  $\mathbb{C}[G]$ , and can be related to Burnside decomposition through

$$ho_{\mathsf{G}/\mathsf{H}} = igoplus_{\mathsf{V}} 
ho_{\mathsf{V}^\mathsf{H}} \otimes 
ho_{\mathsf{V}^*},$$

where  $\rho_{V^H}$  is the uniform state over  $V^H$ , the invariant space of V w.r.t. the action of H, and  $\rho_{V^*}$  is the uniform state over  $V^*$ .

From this we conclude that no information about H is hidden in the row space  $V^*$ , and the state  $\rho_{G/H}$  is equivalent to a process that provides the name of a irrep V and the column state  $\rho_{V^H}$  (Prop 8.1).

From this we conclude that no information about H is hidden in the row space  $V^*$ , and the state  $\rho_{G/H}$  is equivalent to a process that provides the name of a irrep V and the column state  $\rho_{V^H}$  (Prop 8.1).

 $\rightarrow$  We here can introduce the notion of *purely H-invariant state* as a state  $\rho$  which has support over an *H*-invariant space  $V^H$ .

From this we conclude that no information about H is hidden in the row space  $V^*$ , and the state  $\rho_{G/H}$  is equivalent to a process that provides the name of a irrep V and the column state  $\rho_{V^H}$  (Prop 8.1).

- $\rightarrow$  We here can introduce the notion of *purely H-invariant state* as a state  $\rho$  which has support over an *H*-invariant space  $V^H$ .
- $\rightarrow$  In more recent literature, an approach that uses the character measurement is often referred as *strong Fourier sampling*, in opposition to the *weak Fourier sampling* (which only measure the label of the representation).

# Generalizations

1. Preliminaries

2. Main Algorithm

3. Generalizations

#### Generalized Summand Extraction

So far, the main innovation of Kuperberg's algorithm lies in the construction of the *sieve* that starts from copies of  $|\psi_R\rangle$  and  $|\psi_\ell\rangle$  and produces a measurement of the parity of the slope.

A generalization of it can be obtained by identifying the state indices k,  $\ell$  as labels of two irreducible representations V, W. Then, the extraction of  $|\psi_{k\pm\ell}\rangle$  can be seen as a decomposition of their tensor product, as

$$V \otimes W \cong \bigoplus_{X} \mathcal{H}_{X}^{W,V} \otimes X,$$

where X is an irrep of  $V \otimes W$ , and the Hilbert space  $\mathcal{H}_X^{W,V}$  is the multiplicity factor of the decomposition (dim $\mathcal{H}_X^{W,V}$  is the number of times X appears in the decomposition).

#### Abstract algorithm for HSP on Dihedral groups

- 1. Make a list of L copies of  $\rho_{G/H}$ , and extract an irrep V with a purely H-invariant state from each copy.
- 2. Choose an objective function  $\alpha(\cdot)$  on the set of irreps of G.
- 3. Find a pair of irreps V, W in L s.t.  $\alpha(V)$  and  $\alpha(W)$  are both low, but s.t.  $\alpha$  is significantly higher in at least one summand of  $V \otimes W$ . Extract an irreducible summand X and replace V and W in L with X (discard the multiplicity factor).
- 4. Repeat step 3 until  $\alpha$  is maximized on some irrep V. Perform tomography on V to reveal information about H.
- 5. Repeat previous steps to fully identify H.

### Algorithm extensions

In the article, Kuperberg also derived explicit algoritms for

- · general case N;
- accelerated version for  $N = r^n$ ;
- G is the generalized dihedral group

$$G = D_A \cong C_2 \ltimes \exp(A)$$
,

with

$$xyxy = 1 \quad \forall x \in A, \ \forall y \in C_2.$$

In particular applied to the abelian hidden shift problem, the hidden reflection problem and the hidden substring problem.

#### Reference

Greg Kuperberg. A Subexponential-Time Quantum Algorithm for the Dihedral Hidden Subgroup Problem. SIAM J. Comput. 35, 1 (2005), 170–188. https://doi.org/10.1137/S0097539703436345