

Broadband DOA Estimation using Convolutional Neural Networks Trained with Noise Signals

Soumitro Chakrabarty and Emanuel Habets

WASPAA 2017

Motivation Signal processing methods

- Cross-correlation-based methods
 - GCC-PHAT
 - SRP-PHAT
 - MCCC...
- Subspace-based methods
 - MUSIC...
- Model-based methods
 - Maximum-likelihood estimation...

•

Challenges

- Performance
 degradation in
 presence of noise
 and reverberation
- High computational cost

Motivation Supervised learning methods

- Advantage: Supervised learning methods can be adapted to different acoustic environments
- Recently, deep neural network (DNN) based supervised learning methods have been successful across a range of applications:
 - Automatic speech recognition
 - Object recognition in images
 - Machine translation....
- Few DNN based methods that estimate DOA of a sound source from the observed signals

[1] Xiao et al. "A learning-based approach to direction of arrival estimation in noisy and reverberant environments," 2015 [2] Takeda et al. "Sound source localization based on deep neural networks with directional activate function exploiting phase information" 2016

Motivation DNN based DOA estimation

Aim: A DNN based supervised learning method for DOA estimation that

- Estimates DOA per time frame given the STFT representation of the observed signals
- Simple input representation to learn relevant features during training

Problem Formulation DOA estimation as classification

- DOA estimation is formulated as an I class classification problem
- Discretize the whole DOA range into I discrete values to obtain a set of possible DOA values: $\Theta = \{\theta_1, \dots, \theta_I\}$
- Each class corresponds to a possible DOA value in the set

Problem Formulation DOA estimation as classification

- For each frame, compute the posterior probability for each class
- DOA estimate is the DOA of the class with the highest posterior

System Overview Supervised learning framework

System Overview Supervised learning framework

Input feature representation STFT magnitude and phase component

$$Y_m(n,k) = A_m(n,k)e^{j\phi_m(n,k)}$$

Input feature representation Phase map

System Overview Supervised learning framework

CNN Architecture

- Pooling is not employed
- Experiments showed decreased performance

Training with synthesized noise signals

- CNN learns the required information for DOA estimation from the phase map
- CNN can be trained using synthesized noise signals (!?)
- Advantages:
 - No speech/audio database required
 - 2. Easier to create training data
- Spectrally white noise was used

System overview

DOA estimate

$$\hat{\theta}_n = \underset{\theta_i}{\operatorname{arg\,max}} \ p(\theta_i | \mathbf{\Phi}_n)$$

Evaluation Experiments

- 1. Generalization to speech and robustness to noise
- 2. Performance in acoustic conditions different from training
- 3. Robustness to small perturbations in microphone positions
- 4. Real acoustic environments

Evaluation

Experiments

- 1. Generalization to speech and robustness to noise
- 2. Performance in acoustic conditions different from training
- 3. Robustness to small perturbations in microphone positions
- 4. Real acoustic environments

Evaluation Performance measure

- Performance of CNN compared to SRP-PHAT
- Evaluation measure
 - Frame-level accuracy

$$A(\%) = \frac{\hat{N}_c}{N_s} \times 100,$$

 N_s – Total time frames with speech active

 \hat{N}_c – Time frames with correct estimate

Evaluation Experimental parameters

- Uniform linear array (ULA)
 - Number of microphones = 4
 - Inter-microphone distance = 3 cm
- STFT length 256, 50% overlap
- Resolution for classes: 5 degrees, I = 37 classes
- Training data is simulated using RIR generator [3]

[3] https://github.com/ehabets/RIR-Generator

Evaluation CNN training conditions

Room with training positions

Simulated training data				
Signal	Synthesized noise signals			
Room size	R1: (6×6) m , R2: (5×5) m			
Array positions in room	7 different positions in each room			
Source-array distance	1 m and 2 m for position			
$ m RT_{60}$	R1: 0.3 s, R2: 0.2 s			
SNR	Uniformly sampled from 0 to 20 dB			

Evaluation CNN training parameters

Training data: 5.6 million time frames

Validation data: 20% split from the training data

Loss: Cross-entropy

Activation: ReLU, Softmax (final layer)

Optimizer: Adam

Batchsize: 512

Nb Epochs: 10

Regularization: Dropout rate 0.5 (After Conv.3 layer, and each FC layer)

EvaluationTest conditions

Database: TIMIT test

Speech samples: 500, 4 s each

Test data size: 100000 active time frames

Simulated test data					
Signal	Speech signals from TIMIT				
Room size	Room 1: (7×6) m, Room 2: (8×8) m				
Array positions in room	1 random position for each room				
Source-array distance	1.5 m for both rooms				
$ m RT_{60}$	Room 1: 0.45 s, Room 2: 0.53 s				
SNR	2 categories: 5 dB, and 15 dB				

EvaluationTest conditions

Frame-level accuracies (%)

	Roo	om 1	Room 2		
	5 dB	15 dB	5 dB	15 dB	
CNN	56.2	69.8	54.1	68.2	
SRP-PHAT	22.6	33.6	21.8	38.4	

- Better performance compared to SRP-PHAT
- For all cases, CNN is accurate for the majority of the frames

Evaluation

Qualitative results - Room 2, 15 dB

Evaluation

Qualitative results – Average over 0.8 s

Evaluation Real environment – Measured RIRs

- Database: Multichannel Impulse Response Database from Bar-Ilan
- Source setup: $[0^{\circ}, 180^{\circ}]$, steps of 15 degrees
- Array configuration: M = 8 microphones, d = 8 cm
- Source-array distances: 1 m and 2 m
- Test sample: 15 s long speech sample

Evaluation Real environment – Measured RIRs

- Database: Multichannel Impulse Response Database from Bar-Ilan
- Source setup: $[0^{\circ}, 180^{\circ}]$, steps of 15 degrees
- Array configuration: [8,8,8,8,8,8,8], M = 8 microphones
- Source-array distances: 1 m and 2 m
- Test sample: 15 s long speech sample
- CNN was retrained for the new array geometry (with simulated data)

Evaluation Real environment – Measured RIRs

Frame-level accuracies (%)

	$RT_{60} = 0.160 \text{ s}$		$RT_{60} = 0.360 \text{ s}$		$RT_{60} = 0.610 \text{ s}$	
	1 m	$2 \mathrm{m}$	1 m	$2 \mathrm{m}$	1 m	$2 \mathrm{m}$
CNN	91.8	88.7	86.8	79.4	72.3	67.3
SRP-PHAT	94.4	69.0	87.1	68.3	71.7	62.4
						

- For 2 m distance, CNN outperforms SRP-PHAT
- SRP-PHAT performs better at lower reverberation times for 1 m source-array distance

Conclusions

- Proposed a CNN based supervised learning method for DOA estimation with a simple input representation
- CNN trained with synthesized noise signals is able to localize a speech source
- Proposed system performs better than SRP-PHAT in unmatched simulated acoustic conditions
- Adaptability to unseen real acoustic environments was also demonstrated

Current Work Multi-speaker localization

- Aim: Localize simultaneously active speakers
- Formulate multi-speaker localization as a multi-class multi-label classification problem

Current Work Multi-speaker localization

Current Work Multi-speaker localization

Still trained with synthesized noise signals!!

Thank you for your attention!

Trained model and weights available:

Soumitro-Chakrabarty/Single-speaker-localization

