Путин Павел Александрович, группа 7-1 Лабораторная работа № 1

Вариант № 3-b

Моделирование случайных величин

Цель работы

Исследовать алгоритмы генерации случайных величин в среде Matlab. Научиться вычислять значения выборочных характеристик случайной величины.

Задание

Постройте график зависимости значения выборочной дисперсии от числа реализаций СВ. Так же отобразите на графике значение дисперсии, вычисленное на основе соотношения для гауссовского распределения.

Гауссовское случайное распределение:

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left[-\frac{(x-\mu)^2}{2\sigma^2} \right],$$

$$m = \mu$$
, $D = \sigma^2$

Код программы (внесённые изменения в шаблон кода выделены)

%% Вычисление выборочных характеристик гауссовской случайной величины (ГСВ)

clear all
close all

%% Условие варианта 3b

% 3 - Гауссовское распределение b - Построить график зависимости значения выборочной

% дисперсии от числа реализаций СВ. Так же отобразить на графике значение дисперсии,

% вычисленное на основе соотношения D = sig^2

%% 1. Задание исходных данных

% Параметры распределения

```
mu = 1;
sig = 0.5;
```

% Параметры генерации

n = 12; % размерность равномерной случайной величины (PCB)

N = 1000; % число реализаций

%% 2. Вычисление значений статистических характеристик ГСВ

m = mu; % мат. ожидание

d = sig^2; % дисперсия

% Функция для вычисления значений плотности распределения

```
p = \omega(x) 1 / (sig * sqrt(2*pi)) * exp(-(x - mu).^2 / (2 *
sig^2));
% 3. Генерация реализаций случайной величины
% Генерация реализаций стандартной РСВ
alf = rand(n, N); % матрица из N столбцов по n элементов
% Генерация реализаций ГСВ (суммирование выполняется по
столбцам матрицы alf)
x = sig * (sum(alf) - 6) + mu;
%% 4. Вычисление выборочных характеристик
M = mean(x); % выборочное среднее D = var(x); % выборочная дисперсия
% Вывод значений теоретических и выборочных характеристик
disp('Среднее значение (теоретическое)');
disp(m);
disp('Среднее значение (выборочное)');
disp(M);
disp('Дисперсия (теоретическая)');
disp(d);
disp('Дисперсия (выборочная)');
disp(D);
% 5. Вычисление зависимости выборочной дисперсии и
выборочного среднего от числа реализаций ГСВ
Ds = zeros(1, N); % создаём массив для хранения значений
выборочной дисперсии
Ms = zeros(1, N); % создаём массив для хранения значений
выборочного среднего
for N i = 1 : N
    % Запись нового значения выборочной дисперсии
    D i = var(x(1:N i));
    Ds(N i) = D i;
    % Запись нового значения выборочного среднего
    M i = mean(x(1:N i));
    Ms(N i) = M i;
end
sizes = 1:N;
% Отрисовка зависимостей выборочной дисперсии от числа
реализаций СВ
disp("Зависимость выборочной дисперсии от числа реализации
CB");
figure;
plot(Ds);
```

```
hold on;
plot(d * ones(N));
legend("Значение выборочной дисперсии", "Дисперсия,
рассчитанная теоретически");
% Отрисовка зависимостей выборочного среднего от числа
реализаций СВ
disp("Зависимость выборочного среднего от числа реализации
CB");
figure;
plot(Ms);
hold on;
plot(m * ones(N));
legend("Значение выборочного среденего", "Математическое
ожидание, рассчитанное теоретически");
%% б. Расчёт изменения ошибки между величинами выборочного
среднего и математического ожидания
% Массив разностей между выборочным средним для числа
реализаций от 1 до N
M diff = Ms - m;
% Визуализация ошибки
disp("Ошибка между величинами выборочного среднего и
математического ожидания");
figure;
plot(M diff);
```

Результаты выполнения задания

Рисунок 1 - Зависимость выборочной дисперсии от числа реализаций СВ

Рисунок 2 - Зависимость выборочного среднего от числа реализаций СВ

Рисунок 3 - Ошибка между величинами выборочного среднего и математического ожидания

Выводы

- 1. По мере увеличения числа реализаций СВ в выборке ошибка между выборочным средним и математическим ожиданием стремится к 0, что следует из графика на рисунке 3.
- 2. На основе графиков на рисунках 1 и 2 можно сделать вывод, что для оптимальной оценки выборочного среднего достаточно 700 значений, а для оценки выборочной дисперсии достаточно 400 значений.