Lie Theory

October 18, 2023

Contents

Bac	kground	1
1.1	Topology	1
Top	ologcial Groups	1
2.1	Introduction	1
2.2	Neighborhoods of Identity	2
2.3		3
2.4		3
2.5		4
2.6	~ -	4
2.7		5
2.8		5
2.9	-	7
2.10		7
Lie	Group	7
3.1		7
3.2		8
3.3		8
3.4		8
	Exponential Map	9
	1.1 Top 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 Lie 3.1 3.2 3.3	2.2 Neighborhoods of Identity 2.3 Metrizable Groups 2.4 Homomorphisms 2.5 Subgroups 2.6 Connected Components of Topological Groups 2.7 Group Action 2.8 Homogeneous Spaces 2.9 Orbits and Homogeneous Spaces 2.10 Examples Lie Group 3.1 Basics 3.2 Tangent Bundle to a Manifold 3.3 Lie Groups 3.4 Lie Algebra

1 Background

1.1 Topology

Definition 1.1.1. A topological space is *locally connected* at point x if everyneighborhood of x contains a connected open neighborhood.

2 Topologcial Groups

2.1 Introduction

Definition 2.1.1. A *topological group* is a group such that

- 1. he product $p: G \times G \to G, p(g,h) = gh$, is a continuous map if $G \times G$ has the product topology;
- 2. The map $\iota: G \to G, \iota(g) = g^{-1}$, is continuous (hence, a homeomorphism, as $\iota^{-1} = \iota$).

Each element $g \in G$ defines the following maps.

- left translation: $L_q: G \to G, L_q(h) = gh;$
- right translation: $R_g: G \to G, R_g(h) = hg;$
- conjugation: $C_q: G \to G, C_q(h) = ghg^{-1}$.

2.2 Neighborhoods of Identity

An (open) neighborhood of $x \in X$, where X is a topological space, is an open set U that cointains x.

Let G be a topological group, and $1 \in G$ is the identity. V(1) refers to the set of all neighborhoods of 1.

Proposition 2.2.1 (Proposition 2.2). Let G be a t.g. (topological group), V = V(1). Then we'll have

- 1. (T1)for all $u \in V, 1 \in u$;
- 2. $(T2)u, v \in V \implies u \cap v \in V;$
- 3. (TG1) for all $u \in V$, there exists $v \in V$ s.t. $v^2 \subseteq u$;
- 4. $(TG2) u \in V \implies u^{-1} \in V$;
- 5. (TG3) $u \in V, g \in G \implies gug^{-1} \in V$.

Definition 2.2.2. Let G be a group, not necessarily topological group. A system of neighborhood of $1 \in G$ is a family of sets sastisfying (T1) to (TG3).

Definition 2.2.3. Let X be a topological space and $x \in X$. A fundamental system of neighborhoods of x is a family F of open sets containing x s.t. for all open u that contains x, there exists $v \in F$ s.t. $v \subseteq u$.

Theorem 2.2.4 (Proposition 2.5). Let G be an abstract group, V be a system of neighborhoods of 1. There exists a unique topology on G making G into a topological group and s.t. V is a fundamental system of neighborhoods of 1.

idea of proof. \Box

Proposition 2.2.5. Let G be a topological group. TFAE

- 1. topology of G is a Hausdorff
- 2. $\{1\}$ is closed in
- 3. $\bigcap_{U \in \mathcal{V}(1)} U = \{1\}$

2.3 Metrizable Groups

Definition 2.3.1. Let G be a topological group. G is metrizable if it has a left-(or right-) invariant distance which defines the tooplogy left-invariant for all $g \in G$ and d(gx, gy) = d(x, y) for all $x, y \in G$.

Theorem 2.3.2. A topological group G is metrizable iff it has a countable system of neighborhoods of 1.

2.4 Homomorphisms

We need to talk about $G \to H$ continuous homomorphisms.

Example 2.4.1. The determinant homomorphism det : $GL_n(\mathbb{R}) \to \mathbb{R}^* = GL(1,\mathbb{R})$ is continuous.

Theorem 2.4.2. Let G, H be topological group. A group homomorphism $\phi : G \to H$ is continuous iff ϕ is continuous at $1 \in G$.

Proof. \implies is obvious. Let's look at the other direction.

Note that $\phi \circ L_g = L_{\phi(g)} \circ \phi$ as maps $G \to H$ because

$$(\phi \circ L_q)(g') = \phi(gg') = \phi(g)\phi(g') = (L_{\phi(q)} \circ \phi)(g').$$

Then

$$\phi = L_{\phi(g)} \circ \phi \circ L_{g^{-1}}$$

is continuous at g, as $L_{g^{-1}}$ is continuous at g, ϕ continuous at 1, and $L_{\phi(g)}$ continuous everywhere.

Theorem 2.4.3. A map $\phi: G \to H$ is a group homomorphism (G, H are just groups) iff

$$gr(\phi) := \{(g, \phi(g)) \mid g \in G\} \subseteq G \times H.$$

Proposition 2.4.4. Let X and Y be topological spaces, such that Y is Hausdorff. A map $\phi: X \to Y$ is continuous if and only if its graph $gr(\phi)$ is closed and the projection $p(x, \phi(x)) = x$ is a homeomorphism.

Proof. Suppose ϕ is continuous. Then

$$gr(\phi) = \theta^{-1}(\Delta y)$$
 w.r.t. $\theta: X \times Y \to Y \times Y$

is closed, since tehta is continuous and Δy is closed.

Theorem 2.4.5. Suppose G, H are topological groups, H is Hausdorff. The map $G \to H$ is a continuous homomorphism iff $gr(\phi)$ is a closed subgroup and $p: gr(\phi) \to G$ is a homeomorphism.

2.5 Subgroups

Let G be a topological group. $H \subseteq G$ is a topological subgroup if H is a topological group w.r.t. the induced topology.

Proposition 2.5.1. Let G be a topological group. If $H \subseteq G$ a subgroup, which is open. Then H is also closed.

Proof. Consider

$$Y = \bigcup_{g \in G - H} gH.$$

Y is open, as it is a union of open sets. H is also closed, as G-Y=H. Hence, H is closed. \square

Proposition 2.5.2. G a topological group, $H \subseteq G$ a subgroup. Then \overline{H} is also a subgroup of G.

Proof. Note that $A \subseteq X$ (subset of a topological space), $x \in \overline{A}$ iff for all open U that contains $x, U \cap A \neq \emptyset$. Then we check the followings.

1. \overline{H} is closed under $m: G \times G \to G$.

2.6 Connected Components of Topological Groups

A connected space cannot be written as the union of two disjoint open sets.

A *connected component* of a point $x \in X$ is the union of all connected sets containing x, which is also the maximal connected set containing x.

A $connected \ component$ of X is a maximal connected subset.

If $A\subseteq X$ is connected, then the closure \overline{A} is connected. Thus, every connected component is closed.

Let G be a topological group, G_0 is the connected component of $1 \in G$.

Proposition 2.6.1. G_0 is a closed normal subgroup of G. The connected components of G are exactly gG_0 for $g \in G$.

A neighborhood N of $x \in X$ is a subset $N \subseteq X$, $x \in N$ and there exists an open $U \subseteq X$ s.t $x \in U \subseteq N$.

A space is *locally connected* if for every open neighborhood of every point contains a connected open neighborhood.

Proposition 2.6.2. If G is locally conencted, then G_0 is open.

Proposition 2.6.3. If G connected, $U \in \mathcal{V}(1)$, then $G = \bigcup_{n \geq 1} U^n$.

2.7 Group Action

Suppose G a group, X a set.

Definition 2.7.1. A *left action* of a group G on a set X is a function that associates to $g \in G$ a map $a(g) : X \to X$ which satisfies the properties: 1. $a(1) = \mathrm{id}_X$, that is, a(1)(x) = x, for every $x \in X$; 2. $a(gh) = a(g) \circ a(h)$.

Definition 2.7.2. Let $\phi_x: G \times X \to X, \phi_y: G \times Y \to Y$. A map $f: X \to Y$ is G-equivariant if

$$\phi_y(g, f(x)) = f(\phi_x(g, x)).$$

Same stroy for topological groups.

Definition 2.7.3. Let G be a topological group, X a topological space, an *action* G on X should be continuous. In other words, G acts on X by homeomorphisms ϕ_g .

Action is *transitive* if X = Gx for some $x \in X$. We define the *orbit* of x to be $Gx = \{gx \mid g \in G\}$. A *stabilizer* or *isotropy subgroup* of x is $G_x = \{g \in G \mid gx = x\}$.

An action is an effective action or faithful if $gx = x, \forall x \in X \implies g = 1$, equivalently, $\bigcap_{x \in X} G_x = \{1\}$.

Proposition 2.7.4.

$$G/G_x \to X$$
 where $gG_x \mapsto gx$.

This map is equivariant.

Proposition 2.7.5. Suppose that the action of G on X is continuous and that X is a Hausdorff space. Then, any isotropy subgroup $G_x, x \in X$, is closed.

2.8 Homogeneous Spaces

Let G be a topological group.

Definition 2.8.1. A homogeneous G-space is just G/H for a subgroup H of G.

Definition 2.8.2. A topological space X without regards to group is *homogeneous* if for all $x, y \in X$, there exists a homeomorphism $\phi : X \to X$ s.t. $\phi(x) = y$.

Topology on G/H is that of a quotient: $\pi:G\to G/H$. In other words, $U\subseteq G/H$ open if $\pi^{-1}(U)\subseteq G$ open.

Note: action of G on G/H is continuous:

$$G \times G/H \to G/H$$
 where $(x, gH) \mapsto xgH$.

Proposition 2.8.3. We have the following facts.

1. G/H is a homogeneous space in the sense of topology.

- 2. $\pi: G \to G/H$ is an open map (it takes open sets to open sets).
- 3. H compact implies that π is a closed map.
- 4. G/H is Hausdorff iff H is closed.
- 5. G/H discrete iff H open. (HW2)
- 6. If G is compact, G/H discrete and finite iff H is open.
- 7. $H \triangleleft G$ implies G/H is a topological group.
- 8. $H := \overline{\{1\}}$. Then H is a normal subgroup of G, and G/H is Hausdorff topological group.

Proof of 1. Consider left translation

$$L_x: gH \mapsto xgH.$$

This is a homeomorphism since $L_{x^{-1}}$ is an inverse and both are continuous. \square

Proof of 2. We need to show that $\pi^{-1}\pi(U)$ is open. (Omitted, just do image preimage and write it as union of right cosets).

Proof of 3. Take $F \subseteq G$ closed, if H is a compact subset, then $FH \subseteq G$ is closed. (From a proposition from textbook).

Notice that $\pi(F)$ closed iff $\pi^{-1}\pi(F)$ closed, and the latter equals to FH. \square

Proof of 4. We first show \implies . Note that $H=\pi^{-1}(H)$, which is a point of G/H, so it's closed. Thus H is closed.

Then we show \Leftarrow . Consider the homeomorphism

$$f: G/H \times G/H \to G \times G/H \times H$$
 where $(g_1H, g_2H) \mapsto (g_1, g_2)H \times H$.

Denote $\Delta = \{(gH, gH)\}$. Then $f(\Delta) = \{(g, g)H \times H\}$ is closed iff $\pi_{G \times G}^{-1} f(\Delta)$ is closed, which equals to $\{(g_1, g_2) \mid g_1 H = g_2 H\} = \{(g_1, g_2) \mid g_1^{-1} g_2 \in H\}$. \square

Let G be a topological group, $H \subseteq G$ a subgroup.

Proposition 2.8.4. If H and G/H are compact, then so is G.

Proof.

$$\pi:G\to G/H$$

is a *perfect map*, i.e., a continuous subjective closed map with compact fibers $\pi^{-1}(x), \forall x \in G/H$.

Proposition 2.8.5. If G/H and H are connected, then so is G.

Proof. Suppose G is not connected, then there exists $A \bigsqcup B = G$, $A, B \neq \emptyset$ open, disjoin $\subseteq G$. Then $\pi(A), \pi(B) \neq \emptyset$, open because π is always open, $\pi(A) \cup \pi(B) = G/H$, which is connected. Therefore $\pi(A) \cap \pi(B) \neq \emptyset$. Thus there exists $gH \in G/H$ s.t. $gH \cap A \neq \emptyset$ and $gH \cap B \neq \emptyset$.

2.9 Orbits and Homogeneous Spaces

Homogeneous space G/G_x , we hav ea bijection:

$$G/G_x \to G \cdot x$$
 where $gG_x \mapsto gx$.

Proposition 2.9.1. Let $G \times X \to X$ be a continuous and transitive action of G on X. Fix $x \in X$ and consider the bijection

$$\xi_x: G/G_x \to X \text{ given by } \xi_x(gG_X) = gx.$$

Then ξ_x is continuous with respect to the quotient topology in G/G_x .

Proposition 2.9.2. Let $G \times X \to X$ be a topological transitive group action. Suppose G is locally compact and spearable (i.e., has a countable dense subset) and X is Hausdorff and locally compact, Then

$$\xi_x: G/G_x \to X = G \cdot x \quad \forall x \in X$$

is a homeomorphism.

2.10 Examples

We have

$$O(N) = \{ g \in GL(n, \mathbb{R}) \mid gg^T = I_n(\det g = 1) \}.$$

O(n) acts on \mathbb{R}^n with orbits being $S_r^{n-1} - \{x \in \mathbb{R}^n \mid |x| = r\}, r \geq 0$.

Induction implies that O(n), SO(n) are compact, SO(n) connected.

Also $SL(n,\mathbb{R})$ is connected, as it has for n > -2 has 2 orbits on $\mathbb{R}^n : \{0\}, \mathbb{R}^n - \{0\}$. Also $SL(n,\mathbb{C})$ is connected.

Consider unitary groups

$$U(n) = \{ g \in GL(n, \mathbb{C}) \mid gg^{-T} - I_n(\det g = 1) \}.$$

 $GL(n,\mathbb{F})$ acts on \mathbb{F}^{n-1} , which is the set of lines through 0 in \mathbb{F}^n .

 $Gr_k(n,\mathbb{F})$ is the set of k-dimensional subspaces of \mathbb{F}^n , which is the quotient of the set of $n \times k$ -matrices of rank k by $GL(k,\mathbb{F})$ acting on the right.

3 Lie Group

3.1 Basics

Definition 3.1.1. A Lie group G is a group and a manifold such that

$$m: G \times G \to G$$

is smooth.

The composition of two smooth maps is smooth.

Proposition 3.1.2. The inverse map $\iota: G \to G$ is a diffeomorphism with

$$d\iota_q = -(dL_{q^{-1}})_1 \circ (dR_{q^{-1}})_q.$$

Particularly, $\iota_1 = -\operatorname{id}$.

3.2 Tangent Bundle to a Manifold

A fiber bundle is a structure (E, B, π, F) , where E, B, and F are topological spaces and $\pi: E \to B$ is a continuous surjection satisfying a local triviality condition outlined below. The space B is called the base space of the bundle, E the total space, and F the fiber. The map π is called the projection map (or bundle projection). We shall assume in what follows that the base space B is connected.

We require that for every $x \in B$, there is an open neighborhood $U \subseteq B$ of x (which will be called a trivializing neighborhood) such that there is a homeomorphism $\varphi: \pi^{-1}(U) \to U \times F$ (where $\pi^{-1}(U)$ is given the subspace topology, and $U \times F$ is the product space) in such a way that π agrees with the projection onto the first factor. That is, the following diagram should commute:

ADD THIS!

Denote the tangent bundle

$$TM = \bigcup_{x \in M} T_x M$$
 $T_x M = \{ m(t) \mid m(0) = x \} / \sim .$

3.3 Lie Groups

Let TG be the tangent bundle to a Lie group G. We define

$$d(L_q)_h: T_hG \to T_{qh}G$$
 where $h'(t) \mapsto (gh)'(t)$.

Notice that then

$$d(L_q)_1: T_1G \simeq T_qG.$$

Moreover,

$$G \times T_1 G \simeq TG$$
 where $(g, v) \mapsto (g, d(L_q)_1 v)$.

Thus, TG is trivial as a vector bundle for a Lie group G. i.e. G is parallelizable.

3.4 Lie Algebra

Proposition 3.4.1.

$$[\phi*X,\phi*Y] = \phi*([X,Y]).$$

Definition 3.4.2. Let G be a Lie group. A vector field X on G is said to be

• right invariant if, for every $g \in G, (R_g)_* X = X$. In detail,

$$d(R_a)_k(X(h)) = X(hg)$$

for every $g, h \in G$;

• left invariant if, for every $g \in G, (L_g)_* X = X$, that is,

$$d(L_q)_h(X(h)) = X(gh).$$

Definition 3.4.3. We define Maurer-Cartan forms, which are differential 1 forms on G with values in T_1G . They are defined by right or left translations by

$$\omega_g^r(v) = d\left(R_{g^{-1}}\right)_q(v) \quad \text{ and } \quad \omega_g^l(v) = d\left(L_{g^{-1}}\right)_q(v)$$

for $g \in G$ and $v \in T_aG$.

Proposition 3.4.4. If $X \in Vect(G)$ is right-invariant, then $\omega^r(X) = X(1)$, the constant T_1G -valued function. Similarly, if X is left-invariant, then $\omega^l(X) = X(1)$.

Definition 3.4.5. We define the set of right invariant fields as

$$Inv_r = \bigcap_{g \in G} ker\left((R_g)_* - Id_{vect(G)}\right) \subseteq Vect(G).$$

Theorem 3.4.6. Let $Inv_r \cong T_1G \cong Inv_e$

Definition 3.4.7. $\mathfrak{g} = (Inv_r, [,])$ is the *Lie algebra* of a Lie group G.

Proposition 3.4.8. This bracket gives the following bracket on T_1G :

$$A \in T_1G \to A^r(g) = d(R_q)_1A.$$

Moreover

$$[A, B] := [A, B]_r = [A^r, B^r](1).$$

Proposition 3.4.9. Let $A, B \in T_1G$. Then, $[A, B]_r = -[A, B]_l$.

$$[A, B] = -[A, B]_e = BA - AB.$$

3.5 Exponential Map

Remarks on flows on manifolds.

Let X be a vector field on manifold $M, X \in C^{\infty}(M, TM)$. A flow ϕ_t^x defined by $\phi_t^x(x) = x(t), t \in (-\epsilon, \epsilon)$, and $\frac{dx}{dt} = X(x), x(0) = x$.

Another notation is $X_t = \phi_t^x$.

WTS

$$X_{s+t} = X_s \circ X_t = X_t \circ X_s.$$

Take $X \in \mathfrak{g} = Inv^r$ right invariant vector field

Then $X_t(g)$ the flow equals to g(t) and is given by

$$\frac{dg}{dt} = X(g), \quad g(0) = g.$$

For $g \in G, g(t) : (-\epsilon, \epsilon) \to G$.

Lemma 3.5.1. For $X \in Inv^r$, we have

$$X_t(gh) = X_t(g)h \quad \forall g, h \in G.$$

Theorem 3.5.2. A right-invariant vector field X is complete, i.e., defined for all $t \in \mathbb{R}$.

G a lie group, $\mathfrak{g} = T_1 G$ its lie algebra.

Definition 3.5.3. The exponential map

$$\exp:\mathfrak{g}\to G$$

is defined by $X \in \mathfrak{g}$ generates the right invariant vector field $X^r(g) = d(R_g)_1 X, g \in G$.

Then we create a flow, denoted by $X_t^r = g(t)$, for $\frac{dg(t)}{gt} = X^r(g(t)), g(0) = g$, which gives that $X_t^r(1)|_{t=1} = \exp(X)$.

Proposition 3.5.4. By doing the same procedure using left-invariant vector field X^l gives the same result:

$$X_t^l(1) \mid_{t=1} = X_t^r(1) \mid_{t=1} = \exp(X).$$

Moreover,

$$X_t^l(1) = X_t^r(1) \quad \forall t \in \mathbb{R}.$$

Proof. Denote $g(t_0) = X_t^r(1), g(0) = 1$. It's sufficient to show that $\frac{dg}{dt} = X^l(g)$. We know that

$$\begin{split} \frac{dg}{dt} &= \frac{d}{dt} \left(X_t^r(1) \right) = \frac{d}{ds} \left(X_{s+t}^r(1) \right) |_{s=0} \\ &= \frac{d}{ds} \left(X_t^r(X_s^r(1)) \right) |_{s=0} \\ &= \frac{d}{ds} \left(X_t^r(1) X_s^r(1) \right) |_{s=0} \\ &= \frac{d}{ds} \left(L_{X_t^r(1)} X_s^r(1) \right) |_{s=0} \\ &= d(L_{X_t^r(1)})_1 \frac{d}{ds} \left(X_s^r(1) \right) |_{s=0} \\ &= d(L_{X_t^r(1)})_1 X^r(1) \\ &= d(L_{X_t^r(1)})_1 X \\ &= X^l(X_t^r(1)) \\ &= X^l(g(t)) \end{split}$$
 chain rule

We have

$$X_t(1): (\mathbb{R}, t) \to G.$$

a homomorphism, sometimes we call it a *one-parametric* subgroup of G generated by a right invariant vector field X^r .

Q: What is $X_t^r(1)$ and $X_t^l(1)$ via exp?

A: Suppose Y a vector field on M. Suppose we run a corresponding flow Y_t on M. Let $a \in \mathbb{R}$, then $(aY)_t = Y_{at}$ whenever flow Y_{at} and Y_t are defined.

$$(tY)_s|_{s=1} = Y_t.$$

10

APplying this to $M = G, Y = X^r$ at $g = 1, tX^r = (tX)^r$, we have

$$\exp(tX) = (tX)_s^r(1)|_{s=1} = (tX^r)_s(1)|_{s=1} = X_t^r(1).$$

Then

$$X_t^r(1) = \exp(tX) \quad X_t^l(1) = \exp(tX).$$

$$(\phi_*X)(y)=(d\phi)_{\phi^{-1}(y)}X(\phi^{-1}(y))$$
 pushforward