Analyse 1 2020/2021 - Hjemmeopgave 1

Afleveres senest kl 13:00 på Absalon, 14. maj 2021

Opgave 1.1. Lad $z \in \mathbb{C}$ være givet ved

$$z = \sqrt{3} \frac{5}{12} + i \frac{5}{12}$$

og lad $b \in \mathbb{R}$. Definér følgen $\{a_n\}_{n \in \mathbb{N}}$ ved $a_n = (b \cdot z)^n$.

a) Find polarformen af z, z^3 samt z^6 , og vis at z^6 er reel.

 $L \emptyset sning$. Polærformen af z = a + ib findes på sædvanligvis ved $z = re^{i\theta}$, hvor $r = \sqrt{a^2 + b^2}$ og $\cos(\theta) = a/r$ samt $\sin(\theta) = b/r$. Dermed ses det at

$$r = \left(3\frac{25}{144} + \frac{25}{144}\right)^{1/2} = \left(\frac{10^2}{12^2}\right)^{1/2} = \frac{5}{6},$$

og siden at a > 0 findes

$$\theta = \arctan(1/\sqrt{3}) = \pi/6.$$

Desuden findes polarformerne $z=\frac{5}{6}e^{i\pi/6}, z^3=\frac{5^3}{6^3}e^{i\pi/2}(=i\frac{5^3}{6^3})$ og $z^6=\frac{5^6}{6^6}e^{i\pi}(=-\frac{5^6}{6^6})$. Det ses fra ligheden i den sidste parantes, som følger af $e^{i\pi}=-1$, at z^6 er reel.

b) Angiv et udtryk for $|a_n|$ for alle $n \in \mathbb{N}$.

Løsning. Ved resultatet fra a) findes det at $|a_n| = (|z||b|)^n = r^n |b|^n = (\frac{5}{6})^n |b|^n$.

c) Bestem alle $b \in \mathbb{R}$, hvor $\{a_n\}_{n \in \mathbb{N}}$ er konvergent.

Løsning. Bemærk at $a_n=w^n$, hvor $w\in\mathbb{C}$ er et komplekst tal med, $|w|=\frac{5}{6}|b|$. Hvis $|b|<\frac{6}{5}$ ses det, at |w|<1 og det følger af observation 1.42 samt det velkendte faktum, at $\lim_{x\to\infty}c^x=0$ når |c|<1, at $\{a_n\}_{n\in\mathbb{N}}$ konvergerer mod 0. Hvis $|b|>\frac{6}{5}$ ses det at |w|>1 og det følger at $\{a_n\}_{n\in\mathbb{N}}$ ikke er begrænset (modulus er eksponentielt voksende). Dermed ses ved lemma 1.37, at $\{a_n\}_{n\in\mathbb{N}}$ er divergent når $|b|>\frac{6}{5}$. For $|b|=\frac{5}{6}$ ses det, at |w|=1. Men da gælder det, at $a_n=e^{i\pi n/6}$ hvis $b=\frac{6}{5}$ og $a_n=(-e^{i\pi/6})^n=e^{i7\pi n/6}$ hvis $b=-\frac{6}{5}$. I begge tilfælde konkluderes det af Proporsition 1.30, at $\{a_n\}_{n\in\mathbb{N}}$ har 12 fortætningspunkter, og det følger yderligere ved kontraposition af lemma 1.35 at $\{a_n\}_{n\in\mathbb{N}}$ er divergent. Dermed gælder det altså, at $\{a_n\}_{n\in\mathbb{N}}$ konvergerer, hvis og kun hvis $b\in(-\frac{6}{5},\frac{6}{5})$.

d) Bestem alle $b \in \mathbb{R}$, hvor $\{a_n\}_{n \in \mathbb{N}}$ har en konvergent delfølge.

Løsning. Vi så i løsningen til 1.b), at $\{a_n\}_{n\in\mathbb{N}}$ var begrænset hvis $|b|\leq 6/5$. Det konkluderes fra Bolzano-Weierstrass, Sætning 1.64, at $\{a_n\}_{n\in\mathbb{N}}$ i dette tilfælde har en konvergent delfølge. Hvis derimod |b|>6/5 ses det, at $(|a_n|)_{\mathbb{N}}$ er monoton og divergerer mod uendelig. Lad $\{b_n\}_{n\in\mathbb{N}}$ være en delfølge af $(|a_n|)_{\mathbb{N}}$, da er $\{|b|_n\}_{n\in\mathbb{N}}$ også monoton og divergerer mod uendelig. Det følger af opgave 1.6 på ugeseddel 1, at $\{b_n\}_{n\in\mathbb{N}}$ ikke er konvergent, og da $\{b_n\}_{n\in\mathbb{N}}$ var vilkårlig, konkluderer vi, at $\{a_n\}_{n\in\mathbb{N}}$ ikke har nogen konvergent delfølge når $b>\frac{6}{5}$. Dermed konkluderes at $\{a_n\}_{n\in\mathbb{N}}$ har en konvergent delfølge hvis og kun hvis $|b|\leq\frac{6}{5}$ eller ækvivalent $b\in\left[-\frac{6}{5},\frac{6}{5}\right]$.

Opgave 1.2. Definér følgen $\{a_n\}_{n\in\mathbb{N}}$ givet ved

$$a_n = \frac{1}{n^2} - \frac{1}{(n+1)^2}$$

a) Afgør, om $\{a_n\}_{n\in\mathbb{N}}$, $\{n^2a_n\}_{n\in\mathbb{N}}$ er konvergente, og bestem i så fald deres grænseværdier.

Løsning. Det gælder åbenlyst, at $(1/n^2)_{n\in\mathbb{N}}$ og $(1/(n+1)^2)_{n\in\mathbb{N}}$ begge konvergerer mod 0. Dermed ses per sætning 1.39.1 at $\{a_n\}_{n\in\mathbb{N}}$ konvergerer mod 0-0=0. Det gælder tydeligvis også at $n^2a_n=1-\frac{n^2}{(n+1)^2}=1-\frac{1}{(1+1/n)^2}$, hvor $\lim_{n\to\infty}\left(\frac{1}{(1+1/n)^2}\right)=1$ per sætning 1.39.1 og 1.39.4. Dermed gælder per sætning 1.39.1 at $(n^2a_n)_{n\in\mathbb{N}}$ konvergerer med grænseværdi 1-1=0.

b) Vis, at $\{n^3a_n\}_{n\in\mathbb{N}}$ er konvergent med grænseværdi 2.

 $\text{$L \not osning. Bemerk, at $a_n = \frac{(n+1)^2 - n^2}{n^2(n+1)^2} = \frac{2n+1}{n^2(n+1)^2},$ hvoraf det ses at $n^3 a_n = \frac{2n^4 + n^3}{n^4 + 2n^3 + n^2} = \frac{2+1/n}{1+2/n+1/n^2}.$ Per sætning 1.39.1 og 1.39.4 gælder det at $\{n^3 a_n\}_{n \in \mathbb{N}}$ konvergerer mod $\frac{2}{1} = 2$.}$

c) Definér følgen $\{A_N\}_{N\in\mathbb{N}}$ givet ved

$$A_N = \sum_{n=1}^N a_n = a_1 + a_2 + \ldots + a_N,$$

Vis at $\{A_N\}_{N\in\mathbb{N}}$ er konvergent med grænseværdi 1.

Løsning. Bemærk at $A_N = \sum_{n=1}^N a_n = \sum_{n=1}^N \frac{1}{n^2} - \sum_{n=1}^N \frac{1}{(n+1)^2} = \sum_{n=1}^N \frac{1}{n^2} - \sum_{n=2}^{N+1} \frac{1}{n^2} = 1 - \frac{1}{(N+1)^2}$. Det ses dermed let per Sætning 1.39, at $\{A_N\}_{N\in\mathbb{N}}$ konvergerer mod 1.

Opgave 1.3.

a) Vis, at følgen $\{x_n\}_{n\in\mathbb{N}}$ givet ved

$$x_n = \frac{1 - an}{1 + an}$$

er konvergent for alle $a \in [0, \infty)$, og bestem grænseværdien som en funktion af a.

Løsning. For a=0 gælder det, at $x_n=\frac{1}{1}=1$ og $\{x_n\}_{n\in\mathbb{N}}$ konvergerer åbenlyst mod 1. For $a\neq 0$ gælder at $x_n=\frac{1/n-a}{1/n+a}$, og siden at $\lim_{n\to\infty}\frac{1}{n}=0$, følger det af sætning 1.39 at $\{x_n\}_{n\in\mathbb{N}}$ konvergerer mod $\frac{-a}{a}=-1$. Dermed ses det, at

$$\lim_{n \to \infty} x_n = \begin{cases} 1 & \text{for } a = 0, \\ -1 & \text{for } a > 0. \end{cases}$$
 (1)

b) Vis, at følgen $\{y_n\}_{n\in\mathbb{N}}$ givet ved

$$y_n = n^2 \cos\left(\frac{1}{n}\right) - n^2$$

er konvergent, og bestem grænseværdien.

Løsning. Betragt funktionen $f: \mathbb{R} \to \mathbb{R}$ givet ved

$$f(x) = \begin{cases} \frac{\cos(x) - 1}{x^2} & x \neq 0, \\ -1/2 & x = 0. \end{cases}$$

Det ses let, at f er kontinuert i x for alle $x \neq 0$, idet at f er et produkt af to kontinuerte funktioner på $\mathbb{R} \setminus \{0\}$. At f er kontinuert i 0 ses ved brug af L'Hôpital's regel $\lim_{x \to 0} f(x) = \lim_{x \to 0} \left(\frac{-\sin(x)}{2x}\right) = -1/2$. Bemærk nu, at $y_n = f(1/n)$, og det følger da af sætning 1.43 og den velkendte grænse, $\lim_{n \to \infty} (1/n) = 0$, at $\{y_n\}_{n \in \mathbb{N}}$ er konvergent med grænseværdien $\lim_{n \to \infty} y_n = f(0) = -1/2$.

c) Vis, at følgen $\{z_n\}_{n\in\mathbb{N}}$ givet ved

$$z_n = \sum_{k=1}^n \frac{1}{n+k}$$

er konvergent, og bestem grænseværdien. [Vink: Omskriv z_n til $\sum_{k=1}^n \frac{1}{1+\frac{k}{n}} \frac{1}{n}$ og bemærk at udtrykket er en middelsum for integralet af funktionen 1/x over et passende valgt interval.]

Løsning. Bemærk, at $z_n = \sum_{k=1}^n \frac{1}{1+\frac{k}{n}} \frac{1}{n}$. Lad nu $f:[1,2] \to \mathbb{R}$ være givet ved $f(x) = \frac{1}{x}$. Det ses let, at $z_n = \sum_{k=1}^n f(t_k)(t_k - t_{k-1})$, hvor $t_k = 1 + k/n$ for k = 0, 1, 2, ..., n, således at $t_k - t_{k-1} = \frac{1}{n}$ for k = 1, 2, ..., n. Det noteres, at $\{t_k\}_{k=0}^n$ udgør en ækvidistant inddeling af intervallet [1,2]. Da f er kontinuert er den Riemann integrabel og dermed er z_n en middelsum for integralet af 1/x på intervallet [1,2]. Siden f er Riemann integrabel, findes der per definition for ethvert $\varepsilon > 0$ et $\delta > 0$ således at $\left| \int_1^2 f(x) dx - z_n \right| < \varepsilon$ for $n > \frac{1}{\delta}$ (husk at $\frac{1}{n}$ er finheden af inddelingen udgjort af $\{t_k\}_{k=0}^n$). Ækvivalent gælder der, at $\{z_n\}_{n \in \mathbb{N}}$ konvergerer mod $\int_1^2 f(x) dx = \int_1^2 \frac{1}{x} dx$. Det følger da ved analysens fundamentalsætning at $\lim_{n \to \infty} z_n = \log(2) - \log(1) = \log(2)$.