RFID MODULE

Mifare Reader / Writer

SL018

User Manual

Version 1.9 May 2012 StrongLink

CONTENT

1. MAIN FEATURES	3
2. PINNING INFORMATION	4
3. DEVICE OPERATION	5
3-1. CLOCK AND DATA TRANSITIONS:	5
3-2. START CONDITION	
3-3. STOP CONDITION	
3-4. ACKNOWLEDGE	
3-5. BUSY STATE	
3-6. DEVICE ADDRESSING	6
3-7. WRITE OPERATIONS	
3-8. READ OPERATIONS	6
4. COMMAND DESCRIPTION	7
4-1. FORMAT	. 7
4-2. COMMAND OVERVIEW	
4-3. COMMAND LIST	
4-3-1. Select Mifare card	
4-3-2. Login to a sector	
4-3-3. Read a data block	
4-3-4. Write a data block	10
4-3-5. Read a value block	10
4-3-6. Initialize a value block	10
4-3-7. Write master key (KeyA)	11
4-3-8. Increment value	11
4-3-9. Decrement value	11
4-3-10. Copy value	12
4-3-11. Read a data page (UltraLight)	
4-3-12. Write a data Page (UltraLight)	
4-3-13. Control Red Led	
4-3-14. Reset	
4-3-15. Get firmware version	13

1. MAIN FEATURES

- Tags supported: Mifare 1k, Mifare 4k, Mifare UltraLight
- Auto detecting tag
- Integrated antenna
- 0 to 400 KHz bit-wide I²C bus communication
- 4.5 to 7.0 VDC supply voltage
- Operating distance: Up to 60 mm, depending on tag
- Storage temperature: $-40 \, ^{\circ}\text{C} \sim +85 \, ^{\circ}\text{C}$
- Operating temperature: $-20 \,^{\circ}\text{C} \sim +70 \,^{\circ}\text{C}$
- Dimension: $65 \times 45 \times 7$ mm
- The TagSta pin at low level indicates tag in detective range, and high level indicating tag out

2. PINNING INFORMATION

HOLE Dia. = 2.5mm, \times

PIN	SYMBOL	TYPE	DESCRIPTION	
1	TagSta	Output	Tag detect signal low level indicating tag in	
-		1	high level indicating tag out	
2	SDA	Input/Output	Serial Data Line	
3	SLC	Input	Serial Clock Line	
4	VCC	PWR	Power Supply	
5	GND	PWR	Ground	

3. DEVICE OPERATION

3-1. CLOCK AND DATA TRANSITIONS:

The SDA pin is normally pulled high with an external device. Data on the SDA pin may change only during SCL low time periods. Data changes during SCL high periods will indicate a start or stop condition as defined below.

3-2. START CONDITION

A high-to-low transition of SDA with SCL high is a start condition which must precede any other command

3-3. STOP CONDITION

A low-to-high transition of SDA with SCL high is a stop condition.

3-4. ACKNOWLEDGE

All addresses and data words are serially transmitted to and from the SL018 in 8-bit words. The SL018 sends a zero to acknowledge that it is not busy, and has received each word. This happens during the ninth clock cycle.

3-5. BUSY STATE

When the SL018 has received command, then don't acknowledge IIC bus until ends with the card communication.

3-6. DEVICE ADDRESSING

The SL018 devices require an 8-bit device address word following a start condition to enable the chip for a read or write operation.

The device address word consists of 7 bits addressing and 1 bit operation select bit.

The first 7 bits are the SL018 addressing, is 1010000

The eighth bit of the device address is the read/write operation select bit. A read operation is initiated if this bit is high and a write operation is initiated if this bit is low.

The first byte after the START procedure.

3-7. WRITE OPERATIONS

The host device send a command(refer chapter 4) to SL018 via write operation, then SL018 will carry out the order that receive. Finished time according to different order

3-8. READ OPERATIONS

The host device passes to read the operation gets the order carries out the result

4. COMMAND DESCRIPTION

4-1. FORMAT

Host Write Command to SL018:

Address Len Command Data

Address: 1 byte, 0xA0

Len: 1 byte, indicating the bytes number from Command code to the end of Data

Command: 1 byte Command code, see Table 3

Data: Variable length depends on the command type

Host Read The Result:

Address Len Command Status Data

Address: 1 byte, 0xA1

Len: 1 byte, indicating the bytes number from Command code to the end of Data

Command: 1 byte Command code, see Table 3 Status: 1 byte Command status, see Table 4

Data: Variable length depends on the command type.

4-2. COMMAND OVERVIEW

Table 3

Command	Description		
0x01	Select Mifare card		
0x02	Login to a sector		
0x03	Read a data block		
0x04	Write a data block		
0x05	Read a value block		
0x06	Initialize a value block		
0x07	Write master key (key A)		
0x08	Increment value		
0x09	Decrement value		
0x0A	Copy value		
0x10	Read a data page (ultra_light)		
0x11	Write a data page (ultra_light)		
0x40	Control the red led		
0xF0	Get firmware version		
0xFF	Reset		

STATUS OVERVIEW

Table 4

Status	Description
0x00	Operation succeed
0x01	No tag
0x02	Login succeed
0x03	Login fail
0x04	Read fail
0x05	Write fail
0x06	Unable to read after write
0x0A	Collision occur
0x0C	Load key fail
0x0D	Not authenticate
0x0E	Not a value block

4-3. COMMAND LIST

4-3-1. Select Mifare card

Host Write:

Len 0x01

Host Read:

Len 0x01 Status UID Type

Status: 0x00: Operation succeed

0x01: No tag

0x0A: Collision occur

UID: The uniquely serial number of Mifare card

Type: 0x01: Mifare 1k, 4 byte UID

0x02: Mifare 1k, 7 byte UID [1]

0x03: Mifare UltraLight, 7 byte UID

0x04: Mifare 4k, 4 byte UID 0x05: Mifare 4k, 7 byte UID [1] 0x06: Mifare DesFire, 7 byte UID

0x0A: Other

4-3-2. Login to a sector

Host Write:

Len 0x02 Sector Type	Key
----------------------	-----

Sector: Sector need to login

Type: Key type (0xAA: authenticate with KeyA, 0xBB: authenticate with KeyB)

Key: Authenticate key, 6 bytes

Host Read:

Len 0x02 Status

Status: 0x02: Login succeed

0x01: No tag 0x03: Login fail 0x0C: Load key fail

4-3-3. Read a data block

Host Write:

Len 0x03 Block

Block: The block number to be read, 1 byte

Host Read:

Len 0x03 Status Data

Status: 0x00: Operation succeed

0x04: Read fail

0x0D: Not authenticate

0x01: No tag

Data: Block data returned if operation succeeds, 16 bytes.

4-3-4. Write a data block

Host Write:

Len 0x04 Block Data

Block: The block number to be written, 1 byte.

Data: The data to write, 16 bytes.

Host Read:

Len 0x04 Status Data

Status: 0x00: Operation succeed

0x01: No tag 0x05: Write fail

0x06: Unable to read after write0x07: Read after write error0x0D: Not authenticate

Data: Block data written if operation succeeds, 16 bytes.

4-3-5. Read a value block

Host Write:

Len 0x05 Block

Block: The block number to be read, 1 byte.

Host Read:

Len 0x05 Status Value

Status: 0x00: Operation succeed

0x01: No tag 0x04: Read fail

0x0D: Not authenticate 0x0E: Not a value block

Value: Value returned if the operation succeeds, 4 bytes.

4-3-6. Initialize a value block

Host Write:

Len 0x06 Block Value

Block: The block number to be initialized, 1 byte.

Value: The value to be written, 4 bytes.

Host Read:

Len	0x06	Status	Value	
Status	: 0x00:	Operat	ion succe	ed

0x01: No tag 0x05: Write fail

0x06: Unable to read after write 0x07: Read after write error

0x0D: Not authenticate

Value: Value written if the operation succeeds, 4 bytes.

4-3-7. Write master key (KeyA)

Host Write:

Len 0x07 Sector Key

Sector: The sector number to be written, 1 byte.

Key: Authentication key, 6 bytes

Host Read:

Len 0x07 Status Key

Status: 0x00: Operation succeed

0x01: No tag 0x05: Write fail 0x0D: Not authenticate

Key: Authentication key written if the operation succeeds, 6 bytes.

4-3-8. Increment value

Host Write:

Len 0x08 Block Value

Block: The block number to be increased, 1 byte.

Value: The value to be increased by, 4 bytes.

Host Read:

Len 0x08 Status Value

Status: 0x00: Operation succeed

0x01: No tag 0x05: Write fail

0x06: Unable to read after write

0x0D: Not authenticate 0x0E: Not a value block

Value: The value after increment if the operation succeeds, 4 bytes

4-3-9. Decrement value

Host Write:

-	0.00	D1 1	T 7 1
Len	0x09	Block	Value

Block: The block number to be decreased, 1 byte Value: The value to be decreased by, 4 bytes

Host Read:

Len	0x09	Status	Value	
Ctatura	$\Omega_{rr}\Omega\Omega_{r}$	0		

Status: 0x00: Operation succeed

0x01: No tag 0x05: Write fail

0x06: Unable to read after write

0x0D: Not authenticate 0x0E: Not a value block

Value: The value after decrement if the operation succeeds, 4 bytes

4-3-10. Copy value

Host Write:

Len 0x0A Source Destination

Source: The source block copy from, 1 byte Destination: The destination copy to, 1 byte

The source and destination must in the same sector

Host Read:

Len 0x0A Status Value

Status: 0x00: Operation succeed

0x01: No tag 0x05: Write fail

0x06: Unable to read after write

0x0D: Not authenticate

0x0E: Not a value block (Source)

Value: The value after copy if the operation succeeds, 4 bytes

4-3-11. Read a data page (UltraLight)

Host Write:

Len 0x10 Page

Page: The page number to be read, 1 byte

Host Read:

Len 0x10 Status Data

Status: 0x00: Operation succeed

0x01: No tag 0x04: Read fail

Data: Block data returned if operation succeeds, 4 bytes.

4-3-12. Write a data Page (UltraLight)

Host Write:

Len 0x11 Page Data

Page: The page number to be written, 1 byte.

Data: The data to write, 4 bytes.

Host Read:

Len 0x11 Status Data

Status: 0x00: Operation succeed

0x01: No tag 0x05: Write fail

0x06: Unable to read after write 0x07: Read after write error

Data: page data written if operation succeeds, 4 bytes.

4-3-13. Control Red Led

Host Write:

Len 0x40 Code

Code: 0 command red led turn off, other red led turn on, 1 byte

Host Read:

Len 0x40 Status

Status: 0x00: Operation succeed

4-3-14. Reset

Host Write:

Len 0xFF

No return

4-3-15. Get firmware version

Host Write:

 Len
 0xF0

 Host Read:
 [2]

Len 0xF0 Status Data

Status: 0x00: Operation succeed

Data: firmware version.

Remark

 $^{[1]}\,$ In order to supports 7 byte UID Mifare class, the firmware of SL018 has been updated to Ver2.2 in Mar 2011.

And older firmware version (such as Ver1.0, 1.6, 2.0, etc) only supports 4 byte UID. Please refer to NXP <u>Customer Letter UID</u> for detailed information of 4 byte & 7 byte UID of Mifare products.

[2] One sample of SL018 response

	Len	Command	Status	Data (Firmware version)
HEX	0B	F0	00	53 4C 30 31 38 2D 32 2E 32
ASCII				"SL018-2.2"