# With current gene mapping techniques, can I predict the location of a gene based on its composition?

Beth Fawcett

# Background

- DNA
- Chromosomes
- Genes
  - Locus
- Proteins
  - Strand +/-
  - Amino acids





#### **Business Case**

- Drug Development
- Individualized Medicine
- Advancement in understanding mechanism behind chromosomal based disease processes
- Health applications

# Methodology

- Supervised Learning
  - **Techniques**
- Loci with > 50 occurrences
- □ Chromosome 19 has 48
  - instances of loci with > 50
    - occurrences
- Locus Study
- Strand Study

- Obtain Data
- Scrub Data
- Explore Data
- Modeling
- Interpret

# **Findings**

A commonly known fact is that as length of amino acids in protein increases, the molecular weight increases.



# **Findings**

Tryptophan, a heavy protein, was frequently found.

Methenamine, was also found frequently, but it is the start of all proteins.



# **Findings**

Cystine and
 Tryptophan's
 weights are high for
 the distribution.



# Findings - Random Forest

**Locus Study** 

**Test Accuracy: 99%** 

Strand Study
Test Accuracy: 73%





#### **Future Work**

- Grid Search with PCA
- Other types of classifiers: SVM, XGBoost
- Additional chromosomes
- SMOTE (Synthetic Minority Over-sampling Technique) to assist with expanding to all loci in chromosome
- Neural Network
- Build a chromosome from predicted values

# Thank you!

For more information:

Beth Fawcett

elizabethfawcett47@gmail.com

github.com/eannefawcett