PRÉDISEZ LA DEMANDE EN ÉLECTRICITÉ

OBJECTIF: PRÉVOIR LA DEMANDE EN ÉLECTRICITÉ DES UTILISATEURS, CHEZ ENERCOOP

LES SOURCE DES DONNÉES

RTE A LA CHARGE DE L'ÉQUILIBRE ENTRE LA PRODUCTION ET LA CONSOMMATION D'ÉLECTRICITÉ.

MÉTÉO FRANCE, PERMET DE CALCULER LES DEGRÉS JOUR (DJU) CHAUFFAGE OU CLIMATISATION

LES DONNÉES-TRAITEMENT

PROBLÈMES RENCONTRÉS

VALEURS MANQUANTES

SOLUTIONS

UTILISER « DROPNA »

ELIMINER LIGNES

DONNÉES SALES

RENOMMER VARIABLES

ELIMINER VARIABLES

UTILISER « PIVOT TABLE »

LES DONNÉES - VARIABLES

MOIS

ANNÉES: 2014 À 2018

DJU

STATION MÉTÉO: PARIS-MONTSOURIS

CONSOMMATION TOTALE

RÉGION: ÎLE DE FRANCE

DF FINAL

DJU Consommation totale

Mois		
2014-01-01	324.4	7612.0
2014-02-01	281.9	6749.0
2014-03-01	226.6	6509.0
2014-04-01	141.8	5396.0
2014-05-01	112.5	5279.0
2014-06-01	37.3	4815.0

MISSION 1

CORRIGER LES DONNÉES DE CONSOMMATION MENSUELLES DE L'EFFET TEMPÉRATURE (DUES AU CHAUFFAGE ÉLECTRIQUE) EN UTILISANT UNE RÉGRESSION LINÉAIRE.

CONSOMMATION TOTALE

RÉGRESSION LINÉAIRE

RELATION LINÉAIRE DJU/CONSOMMATION TOTALE

0.217

0.897

-0.123

2.888

Durbin-Watson:

Prob(JB):

Cond. No.

Jarque-Bera (JB):

Omnibus:

Kurtosis:

Skew:

Prob(Omnibus):

2.311

0.184

0.912

360.

RÉGRESSION LINÉAIRE

CONSOMMATION CORRIGÉE

ANALYSE DE RÉSIDUS

LAGRANDE MULTIPLIER STATISTIC: 1.0920675117297662

P-VALUE: 0.296013568751292

F-VALUE: 1.0752357620586808 F P-VALUE: 0.30406970400742883

SHAPIRO P-VALUE: 0.6627522706985474

MISSION 2

DÉSAISONNALISATION DE LA CONSOMMATION GRÂCE AUX MOYENNES MOBILES

SÉRIE TEMPORELLE - DÉFINITION

CORRÉLATION ENTRE UN TEMPS PASSÉ ET UN TEMPS PRÉSENTE

DÉSAISONNALISATION-MOYENNE MOBILE

PERMET D'OBTENIR DES SÉRIES DITES CORRIGÉES DES VARIATIONS SAISONNIÈRES (CVS).

MOYENNE MOBILE

COMBINAISON LINÉAIRE D'INSTANTS PASSÉS ET FUTURS DE LA SÉRIE TEMPORELLE

DÉSAISONNALISATION - MOYENNE MOBILE

DECOMPOSITION

DÉSAISONNALISATION

DÉSAISONNALISATION - MOYENNE MOBILE

LA TENDANCE

MODELE ADDITIVE

$$Y = G + S + R$$

MISSION 3

EFFECTUER UNE PRÉVISION DE LA CONSOMMATION SUR UN AN, EN UTILISANT LA MÉTHODE DE HOLT WINTERS PUIS LA MÉTHODE SARIMA SUR LA SÉRIE TEMPORELLE

PRÉVISION DE LA CONSOMMATION - MÉTHODE DE HOLT WINTERS

LA MÉTHODE DE LISSAGE EXPONENTIEL DOUBLE PERMET DE TRAITER DES SÉRIES PRÉSENTANT UNE TENDANCE LINÉAIRE MAIS SANS SAISONNALITÉ. LA DIFFÉRENCE ENTRE LA MÉTHODE DE HOLT-WINTERS ET LE LISSAGE EXPONENTIEL DOUBLE PORTE SUR LES FORMULES DE MISE 'A JOUR.

FORMULES DE MISE À JOURS

$$L_{t} = \alpha(x_{t} - S_{t-s}) + (1 - \alpha)(L_{t-1} + b_{t-1})$$

$$b_{t} = \beta(L_{t} - L_{t-1}) + (1 - \beta)b_{t-1}$$

$$S_{t} = \gamma(x_{t} - L_{t}) + (1 - \gamma)S_{t-s}$$

PRÉVISION DE LA CONSOMMATION - MÉTHODE DE HOLT WINTERS

PRÉVISION DE LA CONSOMMATION - MÉTHODE DE HOLT WINTERS

Dep. Variable:	endog	No. Observations:	60
Model:	ExponentialSmoothing	SSE	942682.612
Optimized:	True	AIC	611.728
Trend:	Additive	BIC	645.238
Seasonal:	Additive	AICC	628.411
Seasonal Periods:	12	Date:	Thu, 19 Mar 2020
Box-Cox:	False	Time:	12:08:06
Box-Cox Coeff.:	None		
	coeff	code	optimized
smoothing level	0.0718312	alpha	True
smoothing slope	0.0718257	beta	True
smoothing seasonal	0.00000	gamma	True
initial_level	4707.5052	1.0	True
initial_slope	2.2764563	b.0	True
initial_seasons.0	24.801501	s.0	True
initial_seasons.1	-452.08114	s.1	True
initial_seasons.2	-58.913109	s.2	True
initial_seasons.3	-582.50861	s.3	True
initial_seasons.4	-331.50433	s.4	True
initial_seasons.5	-94.923873	s.5	True
initial_seasons.6	55.899801	s.6	True
initial_seasons.7	-447.40422	s.7	True
initial_seasons.8	-277.65190	s.8	True
initial_seasons.9	-193.15944	s.9	True
initial_seasons.10	-314.67003	s.10	True
initial seasons.11	-151.39547	s.11	True

12: 0.43236262341475684 18: 0.33194225640411834 24: 0.2786306073503649 30 : 0.23474438627211555

36 : 0.2013130252825527

SEASONAL AUTO REGRESSIVE INTEGRATED MOVING AVERAGE

SARIMA[(p,d,q);(P,D,Q)]:

ÉLÉMENTS DE TENDANCE

ÉLÉMENTS SAISONNIERS

p : ORDRE D'AUTORÉGESSION DE TENDANCE.

d : ORDRE DE DIFFÉRENCE DE TENDANCE.

q: Ordre moyen de tendance mobile.

P: ORDRE SAISONNIER AUTORÉGRESSIF.

D: ORDRE DES DIFFÉRENCES SAISONNIÈRES.

Q: ORDRE MOYEN SAISONNIER.

M : LE NOMBRE DE PAS DE TEMPS POUR UNE SEULE PÉRIODE SAISONNIÈRE.

STATIONNAIRE OU PAS?

l **→ d**, D

ADF Statistic: -0.861324

p-value: 0.800442 Critical Values:

> 1%: -3.575 5%: -2.924 10%: -2.600

MODÈLE 1

```
SARIMAX Results
Dep. Variable:
                                                      No. Observations:
                   SARIMAX(1, 1, 1)x(1, 1, 1, 12)
                                                      Log Likelihood
Model:
                                                                                      -308.725
                                                                                      627.449
Date:
                                  IIIu, 19 Mai 2020
                                                      AIC
Time:
                                           16:24:46
                                                      BIC
                                                                                      636.700
                                                                                      630.931
Sample:
                                                      HQIC
                                               - 60
Covariance Type:
                                                pgo
                                                   P > |z|
                  coef
                          std err
                                                               [0.025
                                                                           0.9751
               0.1103
                            0.204
                                                   0.589
                                                              -0.290
ar.Ll
                                       0.540
                                                                            0.510
ma.L1
              -0.9992
                           11.538
                                      -0.08
                                                   0.931
                                                              23.614
                                                                           21.616
ar.S.L12
                            0.374
                                      -0.734
                                                   0.463
                                                              -1.007
                                                                            0.458
              -0.2744
                                      -0.85
                            0.614
na.S.L12
              -0.5253
                                                   0.392
                                                              -1.729
                                                                            0.679
sigma2
             2.181e+04
                          .47e+05
                                       0.088
                                                   0.930
                                                             .62e+05
                                                                         5.05e+05
Ljung-Box (Q):
                                               Jarque bera (JB):
                                      39.85
                                                                                  0.64
Prob(Q):
                                              Prob(JB):
                                       0.48
                                                                                  0.73
Heteroskedasticity (H):
                                       1.02
                                               Skew:
                                                                                 -0.07
Prob(H) (two-sided):
                                        0.96
                                               Kurtosis:
                                                                                   2.45
Warnirg.
[1] Covariance matrix calculated using the outer product of gradients (complex-step).
Retard : p-value
6: 0.8137008749795808
12: 0.8290564223497671
18: 0.7720429713834399
24 : 0.8035975142528992
30 : 0.8389365082757471
6: 0.8653529613573058
```

MODÈLE 1- RÉSIDUS

	lb_stat	lb_pvalue
12	12.211059	0.428882

MODÈLE 1- PRÉDICTION

MODÈLE 2

SARIMAX Results

```
No. Observations:
Dep. Variable:
                                                                                            60
Model:
                   SARIMAX(1, 0, 1)x(1, 0, 1, 12)
                                                      Log Likelihood
                                                                                     -398.692
Date:
                                                      AIC
                                                                                      807.384
Time:
                                                                                      817.856
                                           16:24:48
                                                      BIC
                                                                                      811.480
Sample:
                                                      HQIC
                                               - 60
Covariance Type:
                                                opg
                                                   P> | z |
                 coef
                          std err
                                                               [0.025
                                                                           0.9751
               0.9996
                                                   0.000
ar.L1
                            0.004
                                     272.934
                                                               0.992
                                                                            1.007
ma.L1
              -0.9598
                            0.191
                                      -5.019
                                                   0.000
                                                               -1.335
                                                                           -0.585
                            0.058
                                                   0.000
ar.S.L12
               0.9947
                                      17.191
                                                               0.881
                                                                            1.108
ma.S.L12
              -0.8609
                            0.729
                                      -1.181
                                                   0.238
                                                               2.290
                                                                            0.568
gigma2
                         1. 6e+04
                                       1.825
                                                           -1558.409
            2.113e+04
                                                   0.068
Ljung-Box (Q):
                                      45.04
                                               Jarque-Bera (JB):
                                                                                  1.49
Prob(Q):
                                       0.27
                                               Prob(up):
                                                                                  0.48
Heteroskedasticity (H):
                                       1.16
                                               Skew:
                                                                                 -0.21
Prob(H) (two-sided):
                                       0.74
                                               Kurtosis:
Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).
Recard : p-value
6 : 0.8362486758729463
12: 0.913899044612419
18: 0.9425472704265903
24: 0.9569096932088627
30 : 0.9655277399950549
36 : 0.9712731164697139
```

MODÈLE 2- RÉSIDUS

	lb_stat	lb_pvalue
12	2.152016	0.999135

MODÈLE 2- PRÉDICTION

SARIMA -À LA RECHERCHE DU MEILLEUR MODÈLE

MODÈLE 3

MODÈLE 3- RÉSIDUS

lb_stat lb_pvalue 12 2.162964 0.999112

COMPARAISON DE RÉSULTAT

HOLT WINTERS

Mean Absolute Error: 131.182
Mean Squared Error: 4373.299
Root Mean Squared Error: 155.66
Mean absolute percentage error: 3.005
Scaled Mean absolute percentage error: 3.016
Mean forecast error: 4330.566
Normalised mean squared error: 0.365
Theil_u_statistic: 0.0

SARIMA - MODÈLE 1

Mean Absolute Error: 115.614
Mean Squared Error: 4373.299
Root Mean Squared Error: 147.039
Mean absolute percentage error: 2.657
Scaled Mean absolute percentage error: 2.663
Mean forecast error: 4343.051
Normalised mean squared error: 0.326
Theil_u_statistic: 0.0

SARIMA - MODÈLE 2

Mean Absolute Error: 116.876
Mean Squared Error: 4373.299
Root Mean Squared Error: 142.052
Mean absolute percentage error: 2.687
Scaled Mean absolute percentage error: 2.677
Mean forecast error: 4365.445
Normalised mean squared error: 0.304
Theil_u_statistic: 0.0

SARIMA - MODÈLE 3

Mean Absolute Error: 62.276
Mean Squared Error: 4373.299
Root Mean Squared Error: 80.329
Mean absolute percentage error: 1.435
Scaled Mean absolute percentage error: 1.43
Mean forecast error: 4382.347
Normalised mean squared error: 0.097
Theil_u_statistic: 0.0

COMPARAISON DE RÉSULTAT

