COLLE DE PHYSIQUE - MP2I - SEMAINE 5

Déroulement de la colle

- La connaissance du **cours** étant primordiale, elle est évaluée soit avec des questions de cours, soit au travers des exercices.
- ➤ Un (ou plusieurs) **exercice(s)** sont à traiter.
- > Si la note est <u>inférieure ou égale</u> à 12, vous devez rédiger le (les) exercice(s) donné(s) en colle et me remettre votre copie (avec le sujet!) le plus rapidement possible.

Prérequis : Chapitre MI3 - Énergies du point matériel

Chapitre MI4 – Mouvement d'une particule chargée dans un champ électromagnétique

- Force électrostatique de Coulomb, énergie potentielle électrostatique, potentiel électrique – Force magnétique – Force de Lorentz
- Action d'un champ électrostatique uniforme sur une particule chargée : équation du mouvement, champ parallèle / orthogonal à la vitesse initiale
- Action d'un champ magnétostatique uniforme sur une particule chargée : aspect énergétique, champ orthogonal à la vitesse initiale : trajectoire circulaire <u>admise</u>, rayon du cercle, pulsation cyclotron

Chapitre ECT1 – Description macroscopique d'un système thermodynamique à l'équilibre

- Système thermodynamique, milieu extérieur, nature des parois en fonction des échanges entre le système et le milieu extérieur, variables d'état, grandeurs extensives et intensives (grandeurs molaires, massiques)
- <u>Équilibre thermodynamique</u>: équilibres mécanique, thermique, de diffusion; équation d'état d'un GP, d'une phase condensée incompressible et indilatable
- <u>Énergie interne</u>, capacité thermique à volume constant, variation d'énergie interne : pour un GPM, GPP, 1ère loi de Joule ; cas d'une phase condensée

Extraits Bulletin Officiel (Programme 2021)

Notions et contenus	Capacités exigibles
2.4. Mouvement de particules chargées dans des champs électrique et magnétostatique, uniformes et stationnaires	
Force de Lorentz exercée sur une charge ponctuelle ; champs électrique et magnétique.	Évaluer les ordres de grandeur des forces électrique ou magnétique et les comparer à ceux des forces gravitationnelles.
Puissance de la force de Lorentz.	Justifier qu'un champ électrique peut modifier l'énergie cinétique d'une particule alors qu'un champ magnétique peut courber la trajectoire sans fournir d'énergie à la particule.
Mouvement d'une particule chargée dans un champ électrostatique uniforme.	Mettre en équation le mouvement et le caractériser comme un mouvement à vecteur accélération constant. Effectuer un bilan énergétique pour déterminer la valeur de la vitesse d'une particule chargée accélérée par une différence de potentiel.
Mouvement d'une particule chargée dans un champ magnétostatique uniforme dans le cas où le vecteur vitesse initial est perpendiculaire au champ magnétostatique.	Déterminer le rayon de la trajectoire sans calcul en admettant que celle-ci est circulaire.
3.1. Descriptions microscopique et macroscopique d'un système : modèles du gaz parfait et de la phase condensée incompressible indilatable	
État microscopique et état macroscopique.	Préciser les paramètres nécessaires à la description d'un état microscopique et d'un état macroscopique sur un exemple. Relier qualitativement les valeurs des grandeurs macroscopiques aux propriétés du système à l'échelle microscopique.
Modèle du gaz parfait. Masse volumique, température thermodynamique, pression. Équation d'état du gaz parfait.	Exploiter l'équation d'état du gaz parfait pour décrire le comportement d'un gaz.
Ènergie interne du gaz parfait monoatomique. Capacité thermique à volume constant du gaz parfait monoatomique. Capacité thermique à volume constant d'un gaz considéré comme parfait.	Exploiter l'expression de la variation de l'énergie interne d'un gaz considéré comme parfait.
Modèle de la phase condensée incompressible et indilatable. Énergie interne et capacité thermique à volume constant d'une phase condensée considérée incompressible et indilatable.	Exploiter l'expression de la variation de l'énergie interne d'un système considéré incompressible et indilatable en fonction de sa température.