Examen final de SIN: Test del bloque 2 (1,75 puntos)

ETSINF, Universitat Politècnica de València, 17 de enero de 2023

Grupo, apellidos y nombre: 2,

Marca cada recuadro con una única opción. Puntuación: $\max(0, (\text{aciertos} - \text{errores}/3) \cdot 1, 75/9)$.

- Supóngase que tenemos dos cajas con 40 naranjas en la primera y 80 naranjas en la segunda. La primera caja contiene 26 naranjas Navelina y 14 Caracara. La segunda caja contiene tres veces más naranjas Navelina que Caracara. Ahora supóngase que se escoge una caja al azar, y luego una naranja al azar de la caja escogida. Si la naranja escogida es Navelina, la probabilidad P de que proceda de la primera caja es: P=0.46
 - A) $0/4 \le P < 1/4$.
 - B) $1/4 \le P < 2/4$.
 - C) $2/4 \le P < 3/4$.
 - D) $3/4 \le P \le 4/4$.
- 2 D Sea un problema de clasificación en cuatro clases para datos del tipo $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, con las distribuciones de probabilidad de la tabla. Indica en qué intervalo se halla el error de Bayes, ε^* :
 - A) $\varepsilon^* < 0.40$.
 - B) $0.40 < \varepsilon^* < 0.45$.
 - C) $0.45 \le \varepsilon^* < 0.50$.
 - D) $0.50 \le \varepsilon^*$.

2	ĸ	$P(c \mid \mathbf{x})$				
x_1	x_2			c=3	c=4	$P(\mathbf{x})$
0	0	0.2	0.3	0.4	0.1	0.1
0	1	0.3	0.4	0.2	0.1	0.3
1	0	0.3	0.3	0.1	0.3	0.1
1	1	0.3	0.4	0.1	0.2	0.5

$$\varepsilon^* = 0.61$$

3 A Dado el clasificador en dos clases definido por su frontera y regiones de decisión de la figura de la derecha, ¿cuál de los siguientes vectores de pesos (en notación homogénea) define un clasificador equivalente al dado?

B)
$$\mathbf{w}_1 = (0, 0, -2)^t$$
 y $\mathbf{w}_2 = (-1, 0, 0)^t$.

C)
$$\mathbf{w}_1 = (1,0,0)^t$$
 y $\mathbf{w}_2 = (0,0,2)^t$.

D) Todos los vectores de pesos anteriores definen clasificadores equivalentes.

- Supóngase que estamos aplicando el algoritmo Perceptrón, con factor de aprendizaje $\alpha=1$ y margen b=0.1, a un conjunto de 4 muestras bidimensionales de aprendizaje para un problema de 4 clases, c=1,2,3,4. En un momento dado de la ejecución del algoritmo se han obtenido los vectores de pesos $\mathbf{w}_1=(-2,-8,-12)^t$, $\mathbf{w}_2=(-2,-6,-4)^t$, $\mathbf{w}_3=(-2,-6,-4)^t$, $\mathbf{w}_4=(-2,-8,-8)^t$. Suponiendo que a continuación se va a procesar la muestra $(\mathbf{x},c)=((5,3)^t,2)$, ¿cuántos vectores de pesos se modificarán?
 - A) 0
 - B) 2
 - C) 3
 - D) 4
- 5 C Supóngase que estamos aplicando el algoritmo de aprendizaje de árboles de clasificación para un problema de dos clases, c=A,B. El algoritmo ha alcanzado un nodo t cuya impureza, medida como la entropía de la distribución empírica de las probabilidades a posteriori de las clases en t, es I=0.72. ¿Cuál es el número de muestras de cada clase en el nodo t?
 - A) 8 de clase A y 64 de clase B
 - B) 16 de clase A y 128 de clase B
 - C) 16 de clase A y 64 de clase B
 - D) 8 de clase A y 128 de clase B
- 6 D Dado el conjunto de muestras de 2 clases (∘ y •) de la figura de la derecha, ¿cuál de los siguientes árboles de clasificación es coherente con la partición representada?

7 A La figura siguiente muestra una partición de 5 puntos bidimensionales en dos clústers, • y o:

Si transferimos de clúster el punto $(7,1)^t$, se produce una variación de la suma de errores cuadráticos (SEC), $\Delta J = J - J'$ (SEC tras el intercambio menos SEC antes del intercambio), tal que:

A) $\Delta J < -7$.

$$\Delta J = 21.8 - 33.2 = -11.3$$

- B) $-7 \le \Delta J < 0$.
- C) $0 \le \Delta J < 7$.
- D) $\Delta J \geq 7$.
- 8 A Sea M un modelo de Markov de representación gráfica:

; Cuántas cadenas distintas de longitud 2 que empiezan por el símbolo a puede generar M? 0

- A) Ninguna.
- B) Una.
- C) Dos.
- D) Más de dos.
- 9 D Sea M un modelo de Markov de conjunto de estados $Q = \{1, 2, F\}$; alfabeto $\Sigma = \{a, b\}$; probabilidades iniciales $\pi_1 = \frac{1}{2}, \pi_2 = \frac{1}{2}$; matriz de probabilidades de transición entre estados A y de emisión de símbolos B, y matriz Forward α :

A	1	2	F
1	$\frac{2}{7}$	$\frac{2}{7}$	$\frac{3}{7}$
2	$\frac{1}{7}$	$\frac{3}{7}$	$\frac{3}{7}$

B	a	b
1	$\frac{3}{6}$	$\frac{3}{6}$
2	$\frac{1}{4}$	$\frac{3}{4}$

α	b	b
1	$\frac{1}{4}$	α_{12}
2	3 8	α_{22}

¿Cuáles son los valores correspondientes a α_{12} y α_{22} ? $\alpha_{12} = \frac{1}{4} \cdot \frac{2}{7} \cdot \frac{3}{6} + \frac{3}{8} \cdot \frac{1}{7} \cdot \frac{3}{6}$, $\alpha_{22} = \frac{1}{4} \cdot \frac{2}{7} \cdot \frac{3}{4} + \frac{3}{8} \cdot \frac{3}{7} \cdot \frac{3}{4}$

- A) $\alpha_{12} = \frac{1}{28}$, $\alpha_{22} = \frac{27}{224}$
- B) $\alpha_{12} = \frac{1}{16}$, $\alpha_{22} = \frac{27}{224}$
- C) $\alpha_{12} = \frac{1}{28}$, $\alpha_{22} = \frac{39}{224}$ D) $\alpha_{12} = \frac{1}{16}$, $\alpha_{22} = \frac{39}{224}$

Examen final de SIN: Problema del bloque 2 (2 puntos)

ETSINF, Universitat Politècnica de València, 17 de enero de 2023

Grupo, apellidos y nombre: 2,

Problema sobre Viterbi

Sea M un modelo de Markov de conjunto de estados $Q = \{1, 2, F\}$; alfabeto $\Sigma = \{a, b\}$; probabilidades iniciales $\pi_1 = \frac{1}{2}, \pi_2 = \frac{1}{2}$; y probabilidades de transición entre estados y de emisión de símbolos:

A	1	2	F
1	$\frac{1}{6}$	<u>2</u>	<u>3</u>
2	6 3 8	$\frac{2}{6}$ $\frac{3}{8}$	$\frac{2}{8}$

B	a	b
1	$\frac{2}{3}$	$\frac{1}{3}$
2	$\frac{1}{3}$	$\frac{2}{3}$

Se pide:

- 1. (1 punto) Realiza una traza del algoritmo de Viterbi para obtener la secuencia de estados más probable con la que M genera la cadena aa.
- 2. (1 punto) Dados los pares de entrenamiento, cadena secuencia de Viterbi, (ab, 12F) y (bbab, 2212F) junto con la cadena aa y su secuencia de Viterbi calculada en el apartado anterior, reestima los parámetros de M mediante una iteración del algoritmo de reestimación por Viterbi.

Solución:

1. Traza de Viterbi para la cadena aa (los estados 1 y 2 se representan como 0 y 1, respectivamente):

2. Reestimación por Viterbi a partir del par aa y 21F calculado en el apartado anterior, junto con los pares dados (ab, 12F) y (bbab, 2212F), obtenemos los parámetros reestimados deseados:

π	1	2
	$\frac{1}{3}$	$\frac{2}{3}$

A	1	2	F
1	$\frac{0}{3}$	$\frac{2}{3}$	$\frac{1}{3}$
2	$\frac{2}{5}$	$\frac{1}{5}$	$\frac{2}{5}$

B	a	b
1	$\frac{3}{3}$	$\frac{0}{3}$
2	$\frac{1}{5}$	$\frac{4}{5}$

Se puede comprobar, mediante una nueva iteración de reestimación por Viterbi, que el algoritmo converge al modelo anterior.