

	Kod ucznia
•	
Mile	jsce na metryczkę ucznia

Małopolski Konkurs Matematyczny dla uczniów szkół podstawowych województwa małopolskiego Etap rejonowy Rok szkolny 2020/2021

Drogi Uczniu!

- 1. Przed Tobą zestaw 18 zadań konkursowych, za które łącznie możesz uzyskać 60 punktów.
- 2. Na rozwiązanie zestawu masz **120 minut**. Komisja konkursowa 15 minut przed końcem przypomni Ci o upływającym czasie.
- 3. Pracuj uważnie, używając jedynie niezmazywalnego długopisu w kolorze czarnym lub niebieskim. Odpowiedzi udzielane przy użyciu ołówka nie będą oceniane.
- 4. Brudnopis nie podlega ocenie.
- 5. <u>Nie podpisuj kartek imieniem i nazwiskiem, zakoduj pracę zgodnie z poleceniami Komisji</u> Konkursowej.
- 6. Pamiętaj, aby nie używać korektora ani kalkulatora.
- 7. Przekaż w depozyt członkom Komisji telefon komórkowy, jeśli go posiadasz przy sobie.
- 8. Staraj się, aby Twoja praca była czytelna. Pisz i rysuj wyraźnie, nie stosuj skrótów, zapisuj słowa w pełnym brzmieniu.
- 9. Stwierdzenie niesamodzielności pracy lub przeszkadzanie innym spowoduje wykluczenie z udziału w konkursie.
- 10. Po zakończeniu pracy na ławce pozostaw: arkusz z zestawem zadań, rozwiązania zadań otwartych oraz kopertę z kartą uczestnika.

Życzymy Ci satysfakcji z uczestnictwa w konkursie i powodzenia!

Karta odpowiedzi

Kod ucznia		

Numer zadania	Liczba	Miejsce na odpowiedź					WYPEŁNIA KOMISJA		
	punktów za zadanie	A	В	С	D	E	Przyznane punkty		
1.	2								
2.	2								
3.	2								
4.	2								
5.	2								
6.	2								
7.	2								
8.	2								
9.	2								
10.	3								
11.	3								
12.	3								
13.	3								
14.	3								
15.	3								

Suma punktów za zadania zamknięte:

Numer zadania	1. – 15.	16.	17.	18.	SUMA
Liczba punktów za zadanie	36	7	7	10	60
Uzyskane punkty					

Kody sprawdzających:

Informacje dla ucznia – zadania zamknięte

- 1. W zadaniach od 1. do 9. podane są 4 odpowiedzi: A, B, C, D. W zadaniach od 10. do 15. podanych jest 5 odpowiedzi: A, B, C, D, E. Wybierz tylko jedną odpowiedź i wpisz wyraźnie znak X w odpowiedniej kratce w tabeli na karcie odpowiedzi.
 - Jeśli zaznaczysz błędną odpowiedź, otocz ją kółkiem i wpisz X w inną kratkę.
- 2. <u>Pamiętaj o wypełnieniu karty odpowiedzi, ponieważ pierwsze 15 zadań będzie ocenianych wyłącznie</u> na jej podstawie.
- 3. Ostatnie trzy strony tego arkusza są przeznaczone na brudnopis.

Zadanie 1. 2p

Poniżej podano stwierdzenia na temat zapisu liczb naturalnych z przedziału od 1 do 3999 w systemie rzymskim.

- I. Istnieje co najmniej 7 różnych liczb składających się z dwóch znaków, w których odejmujemy pierwszy ze znaków od drugiego.
- II. Można użyć tego samego znaku 4 razy w jednej liczbie.
- III. Liczba 1631 zapisana w systemie rzymskim to MLCXXXI.
- IV. Najwięcej znaków w systemie rzymskim użyjemy przy zapisie liczby 3988.

Które stwierdzenia są prawdziwe?

A. wszystkie B. tylko I i IV C. tylko II D. żadne

Zadanie 2. 2p

Jubiler, pracując od poniedziałku do piątku, sprzedaje ozdobne zakładki do książek w cenie 50 zł za sztukę. Koszt materiałów potrzebnych do wykonania jednej zakładki wynosi 12,50 zł, ale dodatkowo jubiler ponosi miesięcznie 2250 zł kosztów stałych. Ile zakładek musi średnio produkować i sprzedawać dziennie, aby w lutym 2021 roku zanotować 3000 zł zysku?

A. 1 **B.** 3 **C.** 5 **D.** 7

Zadanie 3. 2p

Po wysuszeniu śliwki powinny mieć 22% zawartości wody. Aby uzyskać 1 kg suszonych śliwek, należy zużyć 3 kg śliwek świeżych. Jaka jest procentowa zawartość wody w świeżych śliwkach?

A. 66% **B.** 66,(6)% **C.** 74% **D.** 83,(3)%

Zadanie 4. 2p

Średnia arytmetyczna pewnego zestawu danych, składającego się z dziesięciu liczb naturalnych, wynosi 6. Który z poniższych wniosków wynika z tej informacji?

- A. Jeśli w tym zestawie występuje liczba 4, to musi też wystąpić liczba 8.
- **B.** W zestawie nie może wystąpić liczba 61.
- C. 6 jest najczęściej występującą liczbą w tym zestawie.
- **D.** Co najmniej pięć liczb w tym zestawie jest równe lub większe od 6.

Zadanie 5. 2p

Łańcuch bakterii pewnego paciorkowca składa się z trzech stykających się kul o średnicach równych odpowiednio $9.8 \cdot 10^{-7}$ m, $1.1 \cdot 10^{-6}$ m oraz $9.9 \cdot 10^{-7}$ m. Na rysunku obok przedstawiono schemat tego łańcucha.

Jaka jest całkowita długość tego paciorkowca zapisana w notacji wykładniczej?

- **A.** $1.981 \cdot 10^{-8}$ m
- **B.** $3.07 \cdot 10^{-8}$ m
- **C.** $2,08 \cdot 10^{-6}$ m
- **D.** $3.07 \cdot 10^{-6}$ m

Zadanie 6. 2p

Wojtek rzuca jednocześnie trzema identycznymi sześciennymi kostkami do gry i sumuje liczbę wyrzuconych oczek. Jaka jest najmniejsza liczba rzutów, które Wojtek musi wykonać, aby mieć pewność, że jedna z sum się powtórzy?

A. 16

B. 17

C. 18

D. 19

Zadanie 7. 2p

Uczniów przyjętych do klasy pierwszej pewnego liceum wstępnie przydzielono po równo do 7 klas. Ostatecznie postanowiono, że w każdej klasie będzie o 9 osób mniej niż pierwotnie zakładano. Po tej zmianie utworzono 10 równolicznych oddziałów. Ilu łącznie uczniów przyjęto do klas pierwszych tego liceum?

A. 30

B. 210

C. 280

D. 300

Zadanie 8. 2p

Z rogów prostokątnej blachy o wymiarach 20 cm × 12 cm odcięto 4 kwadraty o boku x cm, a następnie zagięto powstałe prostokąty wzdłuż linii przerywanych pokazanych na rysunku obok. Po zespawaniu krawędzi powstał 2-litrowy pojemnik bez wieka.

Które z poniższych równań pozwoli poprawnie wyznaczyć długość x?

A.
$$x(20 - 2x)(12 - 2x) = 2000$$

B.
$$2 \cdot 1, 2 \cdot 0, 1x - 4x^3 = 2$$

C.
$$x(20 - x)(12 - x) = 2000$$

D.
$$2000 : (20 \cdot 12) = x$$

Zadanie 9. **2p**

Kod PIN do karty bankomatowej pewnego banku składa się z czterech cyfr. Pani Stasia chciała wybrać taki kod, aby jak najmniej liczb czterocyfrowych miało taki sam iloczyn cyfr jak jej kod. Która z poniższych liczb najlepiej spełnia jej wymagania?

Zadanie 10. 3p

Dany jest sześciokąt foremny, w którym krótsza przekątna ma długość 4 cm. Jakie jest pole tego sześciokata?

A.
$$\frac{4\sqrt{3}}{3}$$
 cm² **B.** $6\sqrt{3}$ cm² **C.** 8 cm² **D.** $8\sqrt{3}$ cm² **E.** $12\sqrt{3}$ cm²

B.
$$6\sqrt{3} \text{ cm}^2$$

D.
$$8\sqrt{3}$$
 cm²

E.
$$12\sqrt{3}$$
 cm²

Zadanie 11. 3p

Liczbę całkowitą k możemy opisać wyrażeniem $k=2-\frac{6}{n}$, gdzie n jest liczbą całkowita.

Ile punktów postaci (n, k) znajduje się w zacieniowanym obszarze układu współrzędnych?

D. 3

B. 1

E. 4

C. 2

Zadanie 12. 3p

Rozważmy parę różnych, dodatnich liczb całkowitych a i b. Liczby te są względnie pierwsze, co oznacza, że NWD(a, b) = 1. Wskaż zdanie fałszywe.

- **A.** Liczby *a* i *b* są liczbami pierwszymi.
- **B.** Liczby a^2 i b^2 również są względnie pierwsze.
- C. Liczby a i b mogą mieć tę samą cyfrę jedności.
- **D.** $NWW(a, b) = a \cdot b$.
- **E.** Co najmniej jedna z liczb *a* i *b* jest nieparzysta.

Zadanie 13. 3p

Dany jest trójkat o wierzchołkach w punktach A(-4, -1), B(6, 1) oraz C(-1, 3). Jaka długość ma wysokość trójkata wychodząca z wierzchołka B?

- **A.** $\sqrt{41}$
- **B.** 6.75
- **C.** 6,8
- **D.** 7
- **E.** $5\sqrt{2}$

Zadanie 14. 3p

Długość trasy rajdu podzielono na trzy odcinki w stosunku 1:4:3. Czasy przejazdu kolejnych części pozostają odpowiednio w stosunku 3:2:1. Jeśli v oznacza średnią prędkość uzyskaną na pierwszym odcinku, jakim wyrażeniem algebraicznym przedstawimy średnią prędkość przejazdu całej trasy rajdu?

Uwaga: Prędkość średnia to iloraz całkowitej przebytej drogi do całkowitego czasu od początku do końca ruchu.

- **A.** $\frac{3}{4}v$ **B.** $\frac{4}{3}v$
- C. $\frac{16}{9}v$
- **D.** 4*v*
- **E.** $\frac{16}{3}v$

Zadanie 15. 3p

Ile wynosi miara kąta ACD pomiędzy najkrótszą z przekątnych a bokiem ośmiokata foremnego ABCDEFGH?

A. 102,5°

D. 127,5°

B. 112,5°

E. 135°

C. 120°

Informacje dla ucznia – zadania otwarte

- **1.** Rozwiązania i odpowiedzi do zadań otwartych od **16.** do **18.** zapisz czytelnie na kartkach papieru zapewnionych przez Komisję Konkursową.
- **2.** Na górze każdej kartki zapisz swój **kod ucznia** oraz tytuł: ROZWIĄZANIE ZADANIA NR ... Każde z zadań rozwiąż na osobnej kartce.
- 3. Pamiętaj o zapisaniu wszystkich obliczeń i odpowiedzi. Błędne obliczenia przekreślaj i zapisuj nowe.

Zadanie 16. 7p

Dany jest prostopadłościan widoczny na rysunku obok. Przyjmijmy |AB| = x, |BC| = y oraz |CG| = z.

a) (**1p**) Zapisz wzór na długość przekątnej *AC* podstawy *ABCD* prostopadłościanu w zależności od długości *x* i *y*.

Przekątna prostopadłościanu AG tworzy wraz z przekątną podstawy i wysokością trójkąt prostokątny.

- b) (2p) Wykaż, że długość przekątnej AG możemy wyrazić wzorem $|AG| = \sqrt{x^2 + y^2 + z^2}$.
- c) (**4p**) Obszar, w którym porusza się dron, wyznaczony jest przez prostopadłościan *ABCDEFGH* (rysunek powyżej). Podstawa *ABCD* prostopadłościanu znajduje się na poziomie morza, punkt D leży na północ od *A*, a punkt *B* na wschód od *A*. Dron znajdujący się w punkcie *G* jest na wysokości 50 m nad poziomem morza, 96 m na wschód i 72 m na północ od celu w punkcie *A*. Ile co najmniej sekund zajmie mu przelot w linii prostej do celu, jeśli maksymalna prędkość tego drona to 78km/h? Zapisz obliczenia.

Zadanie 17. 7p

Dany jest trapez równoramienny o podstawach AB i CD (/AB/>/CD/) widoczny na rysunku obok.

Wewnątrz trapezu na podstawach skonstruowano dwa trójkąty równoboczne tak, że wierzchołek większego trójkąta leży na podstawie *CD*. Częścią wspólną skonstruowanych trójkątów jest zacieniowany romb.

- a) (3p) Wykaż, że jeśli czworokat *AECF* jest równoległobokiem, to $|AB| = 1.5 \cdot |CD|$.
- b) (4p) Jaki procent pola trapezu ABCD stanowi pole zacieniowanego rombu, jeśli |AB| = 6 cm oraz |CD| = 4 cm? Zapisz obliczenia.

Zadanie 18. 10p

- I. Samorząd szkolny organizuje loterię walentynkową. Losów ma być tyle, ile różnych liczb trzycyfrowych, a na każdym losie inna liczba trzycyfrowa. Kupujący wygrywa, jeśli wylosuje liczbę podzielną przez 14.
 - a) (2p) Podaj, która z liczb na losach wygrywających jest najmniejsza, a która największa.
 - b) (**2p**) Jakie jest prawdopodobieństwo wygranej przy powyższych założeniach przy kupnie jednego losu? Zapisz obliczenia.
- II. Przewodniczący samorządu zdecydował, że na organizowaną loterię walentynkową on przygotuje losy wygrywające, a jego zastępca przegrywające. W ostateczności okazało się, że przewodniczący wykonał wszystkie zaplanowane losy wygrywające, a zastępca tylko 161 kolejnych losów przegrywających od 100 wzwyż.
 - a) (2p) Ile razy wzrosło prawdopodobieństwo wygranej? Zapisz obliczenia.
 - b) (4p) Jaka była największa liczba na losie przegrywającym? Zapisz obliczenia.

Pamiętaj! Rozwiązania zapisz na osobnych kartkach. Żadne zapiski na stronach 7 i 8 **nie będą sprawdzane**.

BRUDNOPIS

Pamiętaj! Wszelkie zapisy obliczeń i rozwiązań na tej stronie nie podlegaja ocenie.

BRUDNOPIS

Pamiętaj! Wszelkie zapisy obliczeń i rozwiązań na tej stronie nie podlegaja ocenie.

BRUDNOPIS

Pamiętaj! Wszelkie zapisy obliczeń i rozwiązań na tej stronie nie podlegaja ocenie.

