Рачунарска интелигенција

Генетско програмирање

Александар Картељ

kartelj@matf.bg.ac.rs

Ови слајдови представљају прилагођење слајдова: A.E. Eiben, J.E. Smith, Introduction to Evolutionary computing: Genetic programming

Датум последње измене: 11.12.2019.

Генетско програмирање

- Развијено у Америци 90-тих година, Ј. Коза
- Обично се примењује у:
 - машинском учењу (предикција, класификација...)
- Конкурентан неуронским мрежама и сличним методама
 - Али захтева огромне популације (хиљаде јединки)
 - Релативно спор
- Специјлане карактеристике:
 - Нелинеарни хромозоми: стабла, графови
 - Мутација могућа, али није неопходна

GP техничке карактеристике

Репрезентација	Стабло		
Укрштање	Размена подстабала		
Мутација	Случајна промена у дрвету		
Селекција родитеља	Фитнес сразмерна		
Селекција преживелих	Генерацијска замена		

Уводни пример: одређивање кредитне способности

- Банка хоће да направи разлику између добрих и лоших кандидата за давање позајмица
- Потребно је узети у обзир историјске податке

ID	Број деце	Плата	Брачни статус	ОК?
ID-1	2	45000	Married	0
ID-2	0	30000	Single	1
ID-3	1	40000	Divorced	1

Уводни пример: одређивање кредитне способности (2)

• Могући модел:

IF (број деце = 2) AND (плата > 80000) THEN добар ELSE лош

• Општи приступ:

IF формула THEN добар ELSE лош

- Непозната је формула по којој се одређује?
- Простор претраге (фенотип) је скуп свих формула
- Фитнес формуле: проценат добро класификованих примера
- Природна репрезентација формуле (генотип) је стабло

Уводни пример: одређивање кредитне способности (3)

IF (број деце = 2) AND (плата > 80000) THEN добар ELSE лош се може представити следећим стаблом:

Репрезентација стабла

- Стабла имају способност представљања великог броја формула
- Аритметичка формула

• Логичка формула

• Програм

$$2 \cdot \pi + \left((x+3) - \frac{y}{5+1} \right)$$

$$(x \land true) \rightarrow ((x \lor y) \lor (z \longleftrightarrow (x \land y)))$$

Репрезентација стабла (2)

$$2 \cdot \pi + \left((x+3) - \frac{y}{5+1} \right)$$

Репрезентација стабла (3)

Репрезентација стабла (4)

Репрезентација стабла (5)

- У генетским алгоритмима (GA), еволутивним стратегијама (ES), еволутивном програмирању (EP), хромозоми су линеарне структуре
 - Низови битова
 - Низови целих бројева
 - Низови реалних бројева
 - Пермутације
 - •
- Стабло-хромозоми су нелинеарне структуре
- Код GA, ES, EP, величина хромозома је фиксна
- Стаблау GP могу да имају произвољну дубину и ширину

Репрезентација стабла (6)

- Симболички изрази могу бити дефинисани помоћу
 - Скупа термова Т
 - Скупа функција F (са придруженим арностима)
- Потом се може користити следећа рекурзивна дефиниција:
 - 1. Сваки t ∈ T је коректан израз
 - 2. $f(e_1, ..., e_n)$ је коректан израз ако $f \in F$, arity(f)=n и $e_1, ..., e_n$ су коректни изрази
 - 3. Не постоје друге коректне форме израза
- У општем случају, изрази у GP нису типизирани (сваки f ∈ F може узети било који g ∈ F као аргумент)

Генерисање потомака

Поређење:

- GA користи укрштање **И** мутацију секвенцијално (случајно)
- GP користи укрштање **ИЛИ** мутацију (случајно)

GA дијаграм тока интелигенција - генетско програм радијаграм тока

Мутација

• Најчешћи оператор мутације: замени случајно одабрано подстабло новим случајно генерисаним стаблом

Мутација (2)

- Мутација има два параметра:
 - Вероватноћа р_т одабира мутације (у супротном укрштање)
 - Вероватноћа одабира унутрашње тачке (корена подстабла)
- Савет је да р_m буде 0 (Koza'92),
 или јако блиско 0, нпр. 0.05 (Banzhaf et al. '98)
- Величина детета може да буде већа од величине родитеља

Укрштање

- Најчешћи оператор укрштања:
 замена два случајно одабрана подстабла између родитеља
- Укрштање има два параметра:
 - Вероватноћа р_с за одабир укрштања (или мутације у супротном)
 - Вероватноћа одабира унутрашње тачке (корена подстабла) као позиције за укрштање код сваког од родитеља
- Величина детета може да буде већа од величине родитеља

Селекција

- Селекција родитеља је обично фитнес-сразмерна
- Селекција у веома великим популацијама
 - Рангирај популацију према фитнесу и подели их у две групе:
 - група 1: најбољих х% популације
 - група 2 осталих (100-х)%
 - 80% операција селекције изврши над групом 1, преосталих 20% над групом 2
 - За популације величине = 1000, 2000, 4000, 8000 x = 32%, 16%, 8%, 4%
 - Ови проценти су одређени емпиријски
- Селекција преживелих:
 - Стандардни приступ: генерацијски
 - Модел са стабилним стањем и елитизмом постаје популаран у последње време

Иницијализација популације

- Поставља се максимална дубина стабла D_{max}
- Балансирани приступ (тежи се ка балансираном стаблу дубине D_{max}):
 - Чвоорви на дубини d < D_{max} се случајно бирају из скупа функција F
 - Чворови на дубини d = D_{max} се случајно бирају из скупа термова Т
- Ограничени приступ (тежи се ка стаблу ограничене дубине $\leq D_{max}$):
 - Чворови на дубини d < D_{max} се случајно бирају из скупа $F \cup T$
 - Чворови на дубини d = D_{max} се случајно бирају из скупа Т
- Стандардна GP иницијализација: комбиновани приступ који користи и балансирани и ограничени приступ (сваки по пола популације)

Приступ заснован на повећавању

- Bloat = "тенденција ка удебљавању", стабла унутар популације током времена расту
- Дебата у научним истраживањима
 - Сетимо се "окамове бритве"
- Потребне су контрамере, e.g.
 - Спречавање употребе оператора који доводе до "превелике" деце
 - Пенализација "превеликих" јединки

Пример примене: симболичка регресија

- За дате тачке у \mathbf{R}^2 , (x_1, y_1) , ..., (x_n, y_n)
- Пронаћи функцију f(x) такву да ∀i = 1, ..., n : f(x_i) = y_i
- Могуће GP решење:
 - Дати функцијски симболи $F = \{+, -, /, \sin_n \cos\}$, и термови $T = \mathbf{R} \cup \{x\}$
 - Фитнес представља грешку $err(f) = \sum_{i=1}^{n} (f(x_i) y_i)^2$
 - Стандардни оператори
 - Величина популације= 1000, употреба приступа пола-пола

Дискусија

Да ли се GP:

Може користити за еволуцију рачунарских програма? Шта је са другим репрезентацијама поред стабла?