

实验报告

数字逻辑实验(五)、实验(六)

姓	名	熊恪峥
学	号	22920202204622
日	期	2022年5月8日
学	院	信息学院
课程	名称	数字逻辑

数字逻辑实验 计算机科学系

实验七 汽车方向灯控制电路

一、实验目的

学习简单时序电路的设计。

二、实验设备和器件

数字逻辑实验箱		1 台
2 输入四与非门	(74LS00)	3 片
双D触发器	(74LS74)	1 片

三、实验内容

设计一个汽车尾方向灯控制电路。用四个发光二极管模拟四个尾灯(左右各两个)。用两个开关提供转弯信号,一个用于左转弯,一个用于右转弯。平时方向灯不亮;左转弯时左边的灯按图 7.1 所示周期地亮或暗,右边灯不亮;右转弯时右边的灯按图 7.1 所示周期地亮或暗,左边灯不亮。如果驾驶员不慎将左右两个转弯开关都按下,则两侧的灯都同样周期性亮暗。

图 7.1

再用一个开关模拟脚踩制动器,接下该开关时,如果转弯开关未按下,四个灯全亮。如果有一个转弯开关按下,对应的灯周期性亮暗,另两个灯连续亮。如果两个转弯开关都按下,四个灯全亮。

四、设计方法

1. 欲使车灯能按图 7.1 周期性亮暗,必须设计一个由二级触发器组成的四状态计数电路。由于车灯的亮暗频率很低(即计数频率低),用异步计数器完全可以满足要求。今用两个 D 触发器组成异步二进制计数器,如图 7.2 所示,由它提供灯的亮暗条件信号。

数字逻辑实验 计算机科学系

2. 今以 K 左、K 右、K 制分别代表左右转弯开关和制动开关, 开关合上时为"1"。用 LA、LB、L'A和L'B分别代表左、右四个灯。

先考虑制动开关未按下时的情况, 若 K 左合上, 左侧灯 LA、LB 周期亮暗的条件是 F1A=K 左·A, F1B=K 左·B。

再考虑制动开关按下时的情况, 如果转弯开关未按下, 四个灯全亮。如果有一个转弯开 关按下,对应的灯周期性亮暗,另两个灯连续亮。如果两个转弯开关都按下,四个灯全亮。 可列出真值表 (表 7.1), 并作卡诺图如图 7.3 所示。

K左	K右	F2 灯
0	0	1
0	1	1
1	0	0
1	1	1
	表 7 1	

图 7.3

故制动时灯常亮的条件是: K 制·F2 = K 制 (\overline{K} 左 + \overline{K} 右)

综合可得: LA = K 左·A + K 制 (K 左 + K 右)

同理可得:

 $L'A = K 右 \cdot A + K 制 (K 左 + \overline{K} 右)$ $L'B = K 右 \cdot B + K 制 (K 左 + \overline{K} 右)$

五、实验步骤

- 1. 根据上述逻辑函数表达式, 转换成用三输入与非门和二输入与非门实现的逻辑表达 式。
 - 2.根据转换后的逻辑表达式画出电路图、标上引脚标号。
 - 3. 连接电路, 检查电路无误后接通电源。根据实验结果填写下表。

K左	K右	K 制	LA	LB	L'A	L'B
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

表 7.2

七 实验内容

 K_S 代表 K_{\parallel} ,将表达式化为三输入与非门和二输入与非门的形式,如(1)

$$L_{A} = K_{L} \cdot A + K_{S} \cdot \overline{K_{L}} + K_{S} \cdot K_{R}$$

$$= \overline{K_{L} \cdot A + K_{S} \cdot \overline{K_{L}} + K_{S} \cdot K_{R}}$$

$$= \overline{K_{L} \cdot A \cdot \overline{K_{S} \cdot \overline{K_{L}}} \cdot \overline{K_{S} \cdot K_{R}}}$$
(1)

同理有(2)

$$L_{B} = \overline{K_{L} \cdot B} \cdot \overline{K_{S} \cdot K_{L}} \cdot \overline{K_{S} \cdot K_{R}}$$

$$L'_{A} = \overline{K_{R} \cdot A} \cdot \overline{K_{S} \cdot K_{L}} \cdot \overline{K_{S} \cdot K_{R}}$$

$$L'_{B} = \overline{K_{R} \cdot B} \cdot \overline{K_{S} \cdot K_{L}} \cdot \overline{K_{S} \cdot K_{R}}$$

$$(2)$$

依照题目连接电路图,如图1

表格 1: 真值表

		* * 115		<u></u>		
$\overline{K_L}$	K_R	K_S	L_A	L_B	$L_{A}^{'}$	$L_{B}^{'}$
0	0	0	0	0	0	0
0	0	1	1	1	1	1
0	1	0	0	0	A	0
0	1	1	1	1	A	1
1	0	0	A	В	0	В
1	0	1	A	В	1	В
1	1	0	A	В	A	В
1	1	1	1	1	1	1

八 实验结果

搭建电路,并记录结果,如表 2,可见结果是正确的。

表格 2: 真值表

$\overline{K_L}$	K_R	K_S	L_A	L_B	$L_{A}^{'}$	$L_{B}^{'}$
0	0	0	0	0	0	0
0	0	1	1	1	1	1
0	1	0	0	0	A	0
0	1	1	1	1	A	1
1	0	0	A	В	0	В
1	0	1	A	В	1	В
1	1	0	A	В	A	В
1	1	1	1	1	1	1

数字逻辑实验 计算机科学系

实验八 异步时序电路

一、实验目的

- 1. 掌握异步二进制计数器、十进制计数器结构及工作原理。
- 2. 掌握脉冲异步时序电路分析与测试。

二、实验设备和器件

数字逻辑实验箱		1台
4 输入二与非门	(74LS20)	1片
双D触发器	(74LS74)	2片

三、实验内容和步骤

1.分析图 8.1 电路。写出激励函数、状态表, 画出和状态图。

图 8.1

- 2. 连接电路, K1 用单脉冲发生器, L1、L2、L3 和 L4 连接到 LED 指示灯。先用 K2 开关把计数器清零, 然后记录按 16 次单脉冲按钮的实验结果, 并说明实验结果是否正确。
- 3. K1 改用逻辑电平开关。先用 K2 开关把计数器清零,然后上下拨动开关一次,记录实验结果。按此操作步骤反复进行 10 次。分析实验结果说明什么。
- 4.分析图 8.2 十进制异步计数器电路。写出激励函数、状态表,画出和状态图,说明工作原理。

图 8.2

数字逻辑实验 计算机科学系

5. 连接电路, CP 接单脉冲发生器, X1、X2、X3 和 X4 连接到 LED 指示灯。然后记录按 16 次单脉冲按钮的实验结果, 并说明实验结果是否正确。