Prove: if a is in **F** and $a^2 = a$, then a = 1 or a = 0.

Problem Solving - What are the terms/strategies I may need? What do I know?

Field Axioms:

name	addition	multiplication
associativity	(a+b)+c=a+(b+c)	(a b) c = a (b c)
commutativity	a+b=b+a	a b = b a
distributivity	a(b+c) = ab + ac	(a+b) c = a c + b c
identity	a + 0 = a = 0 + a	$a \cdot 1 = a = 1 \cdot a$
inverses	a + (-a) = 0 = (-a) + a	$a a^{-1} = 1 = a^{-1} a \text{ if } a \neq 0$

0 Property:

If a is in a field \mathbf{F} with additive inverse 0, then 0a = 0.

Prove: if a is in **F** and $a^2 = a$, then a = 1 or a = 0.

Steps & Process – Try to answer the question writing in many steps to avoid small errors.

We first note that we have two cases: a = 0, or $a \ne 0$.

Case 1: a = 0

If a = 0 we see that:

 $a^2 = (a)(a)$ (Definition of a^2)

= (0)(0) (Case 1)

= 0 (0 Property)

Thus a = 0 will satisfy $a^2 = a$, this means if $a^2 = a$, a = 0 is a possible solution.

Case 2: a ≠ 0

If a \neq 0, then there exists an a^{-1} such that $aa^{-1} = a^{-1}a = 1$

(Multiplicative inverses)

Thus, we see that:

$$a^2 = a$$

aa = a (Definition of a^2)

 $a^{-1}(aa) = a^{-1}a$ (Multiply both sides by a^{-1})

 $(a^{-1}a)a = a^{-1}a$ (Multiplication is associative)

(1)a = 1 (Multiplicative inverses)

a = 1 (Multiplicative identity)

Prove: if a is in **F** and $a^2 = a$, then a = 1 or a = 0.

Solidify Understanding – Explain why the steps makes sense by connecting to math you know.

Why do we need to have the cases a = 0 or $a \ne 0$?

Why can we not just substitute a = 0, and a = 1 and show that $a^2 = a$ in both cases?

For Video Please click the link below:

<u>Video</u>