Phi Coefficients For Benoulli Distributed Data

$Andriy\ Fedorenko$

Friday, February 06, 2015

Introduction

Given a dataset of transactions (100k rows) from a large retailer, we should find groups of items that are frequently purchased together. Each row is a single transaction with a '1' denoting that item was in the transaction. The dataset can be found at http://bit.ly/lsCk2vd:

Solution:

We need to find groups of items that are frequently purchased together. It means that data variables, represented by the items, have to be high correlated.

##		id	${\tt item_0}$	$item_1$	$item_2$	item_3	$item_4$	$item_5$	$item_6$	$item_7$	item_8
##	1	0	0	1	0	0	0	0	0	0	0
##	2	1	0	0	0	1	0	1	0	0	0

dim(ini.data)

[1] 100000 51

Correlation between variables have meaning of similarity for Bernoulli distributed data and can be calculated as Phi coefficients based on Pearson formula

$$S_{Phi} = \frac{(ad - bc)}{\sqrt{(a+b)(a+c)(b+d)(c+d)}}$$

The object function performs following procedures:

- sample n=500 cases from the data and remove "id" variable
- remove all "only-zero" conataining cases

dim(sampled.data)

[1] 456 50

• calculate the Phi coefficients using hetcor() function

recived.het<-hetcor(sampled.data,digits=3)

Results:

The table of coefficients shows that among 50 items 16 are correlated.

recived.variables

```
##
            row col
                  5
## item_3
              3
                  7
## item_2
              2
                  9
## item_1
              1
## item_3
              3
                 22
## item_5
              5
                 22
## item 2
              2
                 29
## item_7
              7
                 29
## item 1
              1
                 35
## item_9
              9
                 35
## item 1
              1
                 39
## item 9
              9
                 39
## item_35
             35
                 39
## item_1
              1
                 42
## item_9
              9
                 42
## item_35
             35
                 42
## item_39
             39
                 42
```

For example, if we plot item_5, item_3 and item_22 we can find that in majority of cases they all show up approximately in the same samples and with the same frequency (to make data points clearer, I assigned value 1.025 to item_3 and 1.05 to item_22, left panel).

In contrast, item_13 appears rarely compare to item_5 and in different samples, illustrating that these variables are not correlated (right panel).

item_number vs Item_numer

35	1
35	9
39	1
9	1
42	1
39	9
42	9
42	39
39	35
42	35
7	2
29	2
29	7
22	3
5	3
22	5

Rearranged correlated variables can be split into three separate groups. Each variable is high correlated with another one in the same group. The "green" group consists of 5 variables 1,39,42,35,9; the "brown" group consists of 3 variables 7,29,2; the "blue" group consists of 3 variables 22,3,5. It suggests, that if customer wants to buy item 2, the chance of buying the item 29 together with 7th and 2nd is very high (in fishing store a person will buy a fishing rod together with a reel and line).

This report was generated with R (3.1.1) and pander (0.5.1) on x86_64-w64-mingw32 platform.