# Analysis of the Protein-Coding Content of the Sequence of Human Cytomegalovirus Strain AD169

M. S. Chee, A. T. Bankier, S. Beck, R. Bohni, C. M. Brown, R. Cerny, T. Horsnell, C. A. Hutchison III, T. Kouzarides, J. A. Martignetti, E. Preddie, S. C. Satchwell, P. Tomlinson, K. M. Weston, and B. G. Barrell

Introduction 126 Sequence Analysis 126 Prediction of Reading Frames 135 Criteria for Selection 135 Codon Bias 136 HCMV Map 136 Identification of Homologs 141 IE Genes 143 MIE Early Gene Region 143 HCMV US3 IE Gene 144 UL37 IE Gene 145 5.3 Early and Late Genes 145 Major Early Transcripts 145 Enzymes of Nucleotide and DNA Metabolism 147 6.2.1 Nucleotide Metabolism 147 6.2.2 DNA Replication 148 6.2.3 DNA Repair 148 6.2.4 Deoxyribonuclease 149 6.3 Phosphotransferase 149 6.4 Early Phosphoprotein genes 149 6.5 Late DNA-Binding Proteins 150 6.6 Capsid Proteins 150 Structural Phosphoprotein Genes 151 6.8 Surface Glycoproteins 154 6.8.1 Glycoproteins B and H 155 6.8.2 HLA Homolog 155 6.8.3 T-Cell Receptor Homology 156 Gene Families 157 7.1 RLII Family 157 The US6 Family 158 The US22 Family 158 The G-Protein Coupled Receptor (GCR) Family 159 Relationship to 2 and 7-Herpesvirus Genomes 160 Perspectives 162 References 163

MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK

Current Topics in Microbiolog, 2nd Immunology, Vol. 154
 C Springer-Verlag Berlin Heidelberg (996)

EXHIBIT

В

#### 1 Introduction

Large-scale sequence analysis of the AD169 strain of human cytomegalovirus (HCMV) began in this laboratory in 1984 when very little was known about the sequence or location of genetic information in the viral genome. At that time sequence analysis was confined to the major immediate-early gene (STENBERG et al. 1984), a region of the Colburn strain that contained CA tracts (JEANG and HAYWARD 1983), the L-S junction region (TAMASHIRO et al. 1984), and what has been termed the transforming region (KOUZARIDES et al. 1983). This chapter is being written in March 1989 when the sequence is complete except for some remaining polishing of certain areas which is still going on (manuscript in preparation). As far as we know there are no major discrepancies in the data which might lead to the sequence changing although of course this cannot be ruled out. We present a preliminary analysis of the HCMV genome and limit ourselves mainly to the potential protein-coding content of over 200 reading frames.

## 2 Sequence Analysis

The sequence has been determined by M13 shotgun cloning and chain termination sequencing. In this random approach each base is sequenced many times on average so that the consensus produced should be highly accurate. The sequencing strategy involved applying this random procedure to each HindIII fragment of the viral genome (ORAM et al. 1982). However, the high G+C content caused severe problems as manifested in the many compressions encountered on the sequencing gels. This entailed resequencing many clones substituting dITP or 7-deazaGTP for dGTP in the reactions to minimize the effect. All sequences have been determined on both strands. Detailed accounts of the methods used are published elsewhere (Bankier et al. 1987; Bankier and Barrell 1989). The sequences at the ends of the genome which were not generated in the HindIII library were obtained from the HindIII junction fragments C (equivalent to I and Q) and G (equivalent to K and Q) which were sequenced in their entirety, and from a portion of the HindIII B (K and H) junction fragment from the HindIII W/H end to the EcoRI site 21.2 kb downstream (Weston and Barrell 1986) (Fig. 1). Sequences were also obtained across all the HindIII sites. Double-stranded sequencing on appropriate overlapping cosmid and plasmid clones (FLECKENSTEIN et al. 1982) confirmed that the sequence was contiguous except for an extra 393-bp fragment which was found between HindIII T and E, and which we have named HindIII d. The final map in the prototypical orientation of the viral genome with the HindIII fragments predicted from the sequence is shown in Fig. 1. As the precise ends of the molecule are not known, we have chosen to number the sequence from the start of the direct repeat (DR1) found by TAMASHIRO et al. (1984). By analogy with the "a" sequence of other herpesviruses, this is the closest feature to the end of the genome (Mocarski and

LIBRARY

galovirus bout the hat time iRG et al. AYWARD rmed the ritten in ishing of we know sequence liminary protein-

nination average strategy he viral i severe uencing **GTP** for nined on sewhere is of the rom the and Q) (K and 21.2 kb obtained verlappthat the as found ap in the redicted : are not ct repeat of other

RSKI and



Fig. 1. HindIII restriction maps of the four HCMV strain AD169 isomers and their relationships to the genome structure (ORAM et al. 1982). The restriction map of the prototype isomer is topmost of the four. Individual HindIII fragments are named alphabetically by size Above the restriction maps a scale is given in kilobase pairs (kh). The uppermost line shows the genome structure with UL (long unique region) and US (short unique region) marked; each of these is flanked by their respective repeat sequences shown as blocks

BOSTON MEDICAL

•

predicted Kozak consensus ATG codons. For spliced genes exon coordinates represent open reading frame coordinates: donor and acceptor positions are not shown. Lengths are shown in amino acids. References to previous publications in which a HindIII fragment-based nomenclature is used are as follows: 1 (Weston and BARRELL 1986); 3 (Kouzakuiuse et al. 1988); 4 (Kouzakuiuses et al. 1987); 5 (Сне et al. 1989); and 6 (Сне et al. 1989a). References given in the comments section are minimal. Asterisked citations refer to assignments based on other herpesviruses, in particular HSV-1 Table 1. A compilation of reading frames of HCMV strain AD169. The orientations, coordinates, and theoretical sizes are tabulated, together with the locations of

| · •                                               | ents        |         | 0 11 0 110 |         | = HCMVIKL                              | = HCMVIRL2 | = HCMVIRL3. Glycoprotein? | = HCMVIRL4. ORF in major early | ITAINSCRIPT (CREENAWAY | and Wilkinson 1987) | = HCMVIRLS | = HCMVIRL6 | = HCMVIRL7 | = HCMVIRL8 | = HCMVIRL9 | = HCMVIRL10; D at position 38 is | N in IRL10. Glyconrotein | = HCMVIRL11. Glycoprotein | = HCMVIRL12. Glycoprotein | = HCMVIRL13. Glycoprotein exon? | First 35 amino acids identical | in IRL14. Glycoprotein exon? | rotein       | Glycoprotein exon? | •         | Ciycoprotein exon? | Clycoprotein exon? | Clycoprotein exon? | Glycoprotein exon? | Glycoprotein exon? | otein        | Glycoprotein exon? | otein        | Glycoprotein exon? | Glycoprotein<br>Glycoprotein |  |
|---------------------------------------------------|-------------|---------|------------|---------|----------------------------------------|------------|---------------------------|--------------------------------|------------------------|---------------------|------------|------------|------------|------------|------------|----------------------------------|--------------------------|---------------------------|---------------------------|---------------------------------|--------------------------------|------------------------------|--------------|--------------------|-----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------|--------------------|--------------|--------------------|------------------------------|--|
| SV-1                                              | Comments    |         | 1          |         | )::::::::::::::::::::::::::::::::::::: | = HC       | = HC                      | = HC                           | uru.                   | and                 | = HC                             | E<br>Z                   | = HC                      | = HC                      | HC;                             | rirst 3                        | <u>=</u>                     | Clycoprotein | Gycop              | į         | <u>a</u><br>5      | ב<br>פ<br>פ<br>פ   | <u>5</u>           | <u>5</u>           | Clycopi            | Glycoprotein | Glycopr            | Glycoprotein | Clycop             | Glycoprotein                 |  |
| dasca on other herpesviruses, in particular HSV-1 | Family      | •       |            |         |                                        |            |                           |                                |                        |                     |            |            |            |            |            |                                  |                          | RL11 family               | RL11 family               | D1 11 G                         | ALLI ISIMILY                   | D1 11 C                      | ALII IAMIIY  |                    | D1 11 6   | PI 11 Gmills       | NETT family        | ALLI TAMINY        | ALLI TAMILY        | ALLI Iamily        | KL!! family  | KLII lamily        | KLII Iamily  |                    |                              |  |
| ruses, in                                         | (ref)       |         | _          | _       |                                        |            |                           |                                |                        |                     |            |            |            |            |            |                                  |                          |                           |                           |                                 |                                |                              |              |                    |           | _                  |                    |                    | 4 5                | <b>-</b>           | <b>z</b> , c | <b>=</b> c         | £            |                    |                              |  |
| ci lici pesvi                                     | Old<br>Name |         |            | HKLFI   | i                                      |            |                           |                                |                        |                     |            |            |            |            |            |                                  |                          |                           |                           |                                 |                                |                              |              |                    |           |                    |                    |                    |                    |                    |              |                    |              |                    |                              |  |
| ים סוו סנו                                        | Μ           |         | 33176      | 34822   | 12324                                  | 13.252     | 24 929                    |                                |                        | 12835               | 70071      | 09771      | 27.7       | 700 51     | 10,00      | 2007                             | ,,,,,                    | 77.417                    | 15.888                    | 21 827                          |                                | 25 578                       | 6763         | 12 307             | 17.751    | 18861              | 31 447             | 24 354             | 13 787             | 26.889             | 37.366       | 31.383             | 8 250        | 54614              | 38 567                       |  |
|                                                   | Length      |         | 309        | 311     | 115                                    | 14         | 217                       |                                |                        | 114                 | : <u>=</u> | 6          | 70         | 671        | £ <u>-</u> | :                                | 224                      | 414                       | 147                       | 186                             |                                | 224                          | 9            | 105                | 152       | 991                | 284                | 222                | 122                | 228                | 326          | 275                | 73           | 473                | 343                          |  |
| 0                                                 | Stop        |         | 929        | 1 902   | 2237                                   | 3 533      | 4435                      |                                |                        | 4 607               | 6010       | 6921       | 7670       | 7 9 3 9    | 8 694      |                                  | 0.427                    | 10 681                    | 11 236                    | 11 700                          |                                | 12481                        | 13 131       | 13 330             | 13919     | 14 510             | 15463              | 16191              | 16 599             | 17 295             | 18 199       | 19119              | 19351        | 20 738             | 21 871                       |  |
|                                                   | K-ATG       |         | į          | 970     |                                        | 3 192      |                           |                                |                        | 4 266               | 5 947      | 6843       | 7 284      |            | 8 182      |                                  | 8 726                    | 9434                      | 10 796                    | 11 143                          |                                | 11810                        | 13047        | 13 324             | 13 464    | 14013              | 14612              | 15 526             | 16234              | 16612              |              | 18 295             | 19 321       | 19 320             | 20 843                       |  |
|                                                   | Start       | -       | ĵ ;        | 934     | 1 893                                  | 3 141      | 3 785                     |                                |                        | 4 185               | 5615       | 6 598      | 7227       | 7 501      | 8 101      |                                  | 8 648                    | 9431                      | 10 778                    | 11 140                          |                                | 11.771                       | 12868        | 13010              | 13434     | 13986              | 14 522             | 15 523             | 16 198             | 909 91             | 17 222       | 18 268             | 19 103       | 19 143             | 96/07                        |  |
|                                                   | Strand      | ر       | J          |         |                                        |            | ပ                         |                                |                        |                     | ပ          | U          |            |            |            |                                  |                          |                           |                           |                                 |                                | Ç                            | ى ر          | ن                  |           |                    |                    |                    |                    |                    |              | (                  | ر            |                    |                              |  |
|                                                   | Frame       | HCMVIII | HCMVTRI    | HCMVTBL | HOMMEN                                 | HCMVIRL3   | ncmvikt4                  |                                | HCMVTD16               | ICM VIALS           | HCMVIRL6   | HCMVTRL7   | HCMVTRL8   | HCMVTRL9   | HCMVTRL10  |                                  | HCMVTRLII                | HCMVTRL12                 | HCMVTRL13                 | ncmv1KL14                       | HCMAIII                        | HCMVIII                      | HCMVIII 3    | HCMVIII 4          | HCMVIII 5 | HCMVIII            | HCMVIII 2          | HCMVIII 9          | HCMVIII            | HCMAIL             | HCMVIII      | HCMVIII            | HCMVIII 13   | HCMVUL 14          |                              |  |

(Continued)

| Glycoprotein exon? Glycoprotein exon? Glycoprotein exon? Glycoprotein exon? Glycoprotein Glycoprotein Glycoprotein Glycoprotein Glycoprotein Glycoprotein Glycoprotein Glycoprotein Glycoprotein | Glycoprotein         | Glycoprotein homologous to class 1<br>HLA (Beck and BARRELL 1988) | Glycoprotein. Homologous to TCR-y? | Hydrophobic      |             |                      |                  |             |                  | I area eteriorismol aboraboneolein | Carge Structurar prosprings (pp. 50) (JAHN et al. 1987) Multiply hydrophobic. Homology to | O-protein-coupied teceptors |                  | IF elycoprofein exon 3 | IE glycoprotein exon 2 | IE glycoprotein exon 1 |              | Glycoprotein | Glycoprotein exon? | Encodes ICP36 protein family | (Leach and Mocarski 1989) Homology to large subunit of ribonucleotide reductase | (Nikas et al. 1986)* (Continued) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------|------------------------------------|------------------|-------------|----------------------|------------------|-------------|------------------|------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------|------------------|------------------------|------------------------|------------------------|--------------|--------------|--------------------|------------------------------|---------------------------------------------------------------------------------|----------------------------------|
| RL11 family                                                                                                  |                      |                                                                   |                                    |                  | US22 family | UL25 family          |                  | US22 family | US22 family      |                                    | GCR family                                                                                | 9 90 111                    | US22 family      | US22 family            |                        |                        |              |              | :                  | US22 family                  |                                                                                 |                                  |
|                                                                                                                                                                                                  |                      | 7                                                                 |                                    |                  |             |                      |                  |             |                  |                                    |                                                                                           |                             | 6                | m "                    | n m                    | m m                    |              |              |                    |                              |                                                                                 |                                  |
|                                                                                                                                                                                                  |                      | H301                                                              |                                    |                  |             |                      |                  |             |                  |                                    |                                                                                           |                             | HJLF4            | HJLF3                  | HJLFI                  | HZLF3<br>HZLF2         |              |              |                    | •                            |                                                                                 |                                  |
| 17 751<br>18 861<br>31 447<br>24 354<br>13 787<br>37 366<br>31 382<br>8 250<br>8 250<br>54 614<br>38 567                                                                                         | 35 338<br>26 148     | 126/2<br>41 736 F                                                 | 11 281<br>38 703                   | 19 940<br>14 132 | 39 341      | 73 541               | 21 156<br>69 222 | 42 739      | 40 779<br>14 047 | 19092                              | 43 806                                                                                    | 56 185                      | 47 518           |                        |                        | 36 738<br>19 116       | 13 533       | 24 368       | 17 066             | 20 993<br>46 234             | 101 670                                                                         |                                  |
| 152<br>284<br>222<br>223<br>228<br>228<br>326<br>33<br>343<br>343                                                                                                                                | 322                  | 8<br>8<br>8<br>8                                                  | 98<br>340                          | 175              | 342         | 939<br>989           | 88 G<br>908      | 379         | 360<br>121       | 694                                | 390                                                                                       | 504                         | 640<br>408.7     | 67.3                   | 14.3                   | 331<br>162.7           | 124          | 221<br>141   | 157                | 187<br>433                   | 918                                                                             |                                  |
| 13 919<br>14 510<br>15 463<br>16 191<br>16 599<br>17 295<br>19 119<br>19 351<br>20 738<br>21 871                                                                                                 | 22 604 23 103        | 23 525<br>24 740                                                  | 25 033<br>26 318                   | 27 039<br>27 646 | 28 891      | 32 024               | 32 994           | 35 893      | 37 092<br>37 533 | 39 763                             | 43 050                                                                                    | 46 01 1                     | 48 012<br>49 751 | 49 863                 | 50 842<br>51 015       | 52 138<br>52 763       | 53 395       | 53893        | 54854              | 55 245<br>56 668             | 59 400                                                                          |                                  |
| 13 464<br>14 013<br>14 612<br>15 526<br>16 234<br>16 612<br>18 295<br>19 320<br>20 843                                                                                                           | 22 414               | 23 2 1 4<br>23 6 3 7                                              | 24 740<br>25 299                   | 27 024           | 9           | 30057                | 32775            |             | 37 005<br>37 500 |                                    | 42 993                                                                                    |                             | 46 093           | 49 776                 |                        | 52 123<br>52 706       | <br> -<br> - | 53 878       |                    | 55 164<br>56 512             |                                                                                 | •                                |
| 13 43 4<br>13 98 6<br>14 522<br>15 523<br>16 198<br>17 222<br>18 268<br>19 103<br>19 143<br>20 798                                                                                               | 21 639<br>22 342     | 23 151<br>23 631                                                  | 24 701<br>25 233                   | 26 500           | 27 866      | 28 936<br>30 030     | 32 212           | 34 757      | 35 926<br>37 138 | 37 682                             | 39 850<br>43 128                                                                          | 44 500                      | 46 042<br>48 246 | 49 354                 | 49.913<br>50.893       | 51 134<br>52 218       | 53024        | 53216        | 54 384             | 54 604<br>55 214             | 56 656                                                                          |                                  |
| v                                                                                                                                                                                                | ر<br>ن               |                                                                   |                                    | U C              | ) ()        | ၁                    | ٥٠               | υ           | o c              | )                                  | ပ                                                                                         |                             | ر                | ) O                    | ပ                      | O C                    | )            | υc           | υ                  | υü                           | O                                                                               |                                  |
| HCMVUL4<br>HCMVUL5<br>HCMVUL6<br>HCMVUL7<br>HCMVUL10<br>HCMVUL11<br>HCMVUL11<br>HCMVUL12<br>HCMVUL13<br>HCMVUL13                                                                                 | HCMVULIS<br>HCMVULI6 | HCMVULI7<br>HCMVULI8                                              | HCMVUL19                           | HCMVUL21         | HCMVUL23    | HCMVUL24<br>HCMVUL25 | HCMVUL26         | HCMVUL28    | HCMVUL29         | HCMVUL31                           | HCMVUL32<br>HCMVUL33                                                                      | HCMVUL34                    | HCMVUL35         | HCMVUL36EX1            | HCMVUL37EX3            | HCMVUL38               | HCMVUL39     | HCMVUL40     | HCMVUL42           | HCMVUL43<br>HCMVUL44         | HCMVUL45                                                                        |                                  |

Table 1. (Continued)

BOSTON MEDICAL

| 66 282 66 335 982 109 962 65 25 27 16 25 22 1 109 962 65 29 21 65 335 7 10 057 2241 25 3227 HFRFO 4 6 29 21 65 335 7 10 05 7 2241 25 3227 HFRFO 4 6 73 28 7 73 75 99 668 74 122 HFRF 1 4 75 789 75 75 99 668 74 122 HFRF 1 4 75 789 75 75 99 668 74 122 HFRF 1 4 75 789 75 75 99 668 74 122 HFRF 1 4 75 789 75 75 99 668 74 122 HFRF 1 4 75 789 75 75 99 668 74 122 HFRF 1 4 75 789 75 75 99 668 74 122 HFRF 1 4 75 789 75 75 99 668 74 122 HFRF 1 4 75 789 75 75 99 668 74 122 HFRF 1 4 75 789 75 75 99 668 74 122 HFRF 1 4 75 789 75 75 99 668 74 122 HFRF 1 4 75 789 75 90 854 906 90 90 864 91 20 20 20 14 40 10 2005 HFLF 1 4 75 78 90 864 91 20 20 20 14 40 30 20 1 12 25 13 13 860 91 345 91 12 12 13 13 45 91 12 12 12 12 12 12 12 12 12 12 12 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Frame          | Strand | Start            | K-ATG            | Stop             | Length      | WW                 | Old<br>Name | (ref) | Family | Comments                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|------------------|------------------|------------------|-------------|--------------------|-------------|-------|--------|---------------------------------------------------|
| C 70403 64335 982 109962 C 70403 72112 72334 570 64382 HFLF5 4 C 73287 77372 73910 157 16968 HFLF4 4 73789 77375 73910 157 16968 HFLF3 4 73789 77379 668 74122 HFRF1 7 73789 77379 76922 376 42314 HFRF2 4 75789 75795 76922 376 42314 HFRF2 4 75789 75795 88649 9068 74212 HFRF1 4 C 84458 86077 86019 850 102008 HFLF9 4 C 84458 86077 86019 850 102008 HFLF0 4 C 92847 90281 90326 1235 13480 HFLF0 4 C 92847 90281 90326 1235 13480 C 92847 9419 94139 431 13948 C 92847 9419 94199 431 13921 C 97089 97456 97451 113 13218 C 97089 97451 100321 100431 100 532 744 82679 C 104558 105721 105751 388 43576 C 106529 105737 10153 138 44531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UL46           | U      | 59 519           | 60 388           | 60 562           |             | 33028              |             |       |        | Capsid assembly? Pertuiset et al. (1989)*         |
| C 70403 72112 72334 570 63852 HFLF5 4 C 73287 73757 73910 157 16968 HFLF4 4 73788 73789 75795 668 74122 HFRF1 4 73789 75795 76922 376 42314 HFRF1 4 75789 75795 76922 376 42314 HFRF2 4 76 80 775 83492 83654 906 102003 HFLF1 4 8 86 077 86 019 850 95870 HFLF0 4 8 85 77 90 281 90 326 1235 133 880 8 86 077 86 019 870 1235 133 880 8 86 077 86 19 573 91 877 123 1345 8 86 077 86 19 573 91 877 123 1345 8 86 077 86 19 877 123 1345 8 86 077 86 19 877 123 1345 8 86 077 86 19 877 123 1345 8 86 077 86 19 877 123 1345 8 86 077 86 19 877 123 1345 8 86 077 86 19 877 123 1345 8 86 077 86 19 877 123 1345 8 86 077 86 10 877 129 1479 8 86 077 8 98 10 10 12 12 12 12 12 12 12 12 12 12 12 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JL47<br>JL48   |        | 60 282<br>62 921 | 60 390<br>63 335 | 63 335<br>70 057 | 982<br>2241 | 109 962<br>253 227 | HFRF0       | 4     |        | Virion protein? (BATTERSON et al.                 |
| C 72072 7356 73283 397 42902 HFLF4 4  73748 73796 157799 157 16988 HFRF1 4  75789 73796 76922 376 42314 HFRF2 4  75789 73795 76922 376 42314 HFRF2 4  75789 73795 8655 1242 137104 HFLF2 4  C 80775 83492 83654 906 102005 HFLF1 4  C 81458 86007 86019 850 95870 HFLF0 4  C 81458 86007 86019 850 95870 HFLF0 4  C 91205 1573 91235 124 14418  C 92847 90281 90326 1235 133880  C 92847 94149 44310  C 92847 94159 431 44310  C 92847 94159 431 44310  C 92847 94159 431 129 1432  C 95904 96203 100 11245  96315 96203 100 11245  C 96475 98079 98100 110 12528  C 97088 97436 97451 113 13218  C 97089 97436 97451 114 13921  C 100536 105721 1065 120928  C 100528 105721 105781 388 43576  C 106128 107525 110153 743 84433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JL49           | Ö      | 70 403           | 72112            | 72 334           | 570         | 63852              | HFLFS       | 4     |        | 1963 ; MC CEOCH ET al. 1986a)*                    |
| C 73.287 73.757 73.910 157 16.968 HFLF3 4 73.789 73.796 76.792 968 74.122 HFRF1 4 75.789 75.792 368 74.122 HFRF1 4 75.789 75.792 368 74.122 HFRF1 4 76.789 75.792 365 1242 137.104 HFLF2 4 C 83.458 86.007 86.019 850 95.870 HFLF1 4 C 84.577 90.281 90.326 1235 133.880 C 91.205 91.573 91.537 124 14418 C 91.205 91.573 91.597 123 13.945 C 92.847 90.281 160 18.241 C 92.847 94.194 94.194 1729 C 93.904 97.436 97.74 129 1472 C 95.904 97.750 98.00 110 12.45 96.202 100.433 100.532 744 82.679 C 97.750 98.079 98.100 110 12.728 C 98.202 100.433 100.532 744 82.679 C 100.536 103.721 1062 120.928 C 100.536 103.721 1062 120.928 C 100.536 107.525 107.535 44.53 C 107.904 110.122 110.153 743 84.453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JL50           | O (    | 72 072           | 73 262           | 73 283           | 397         | 42 902             | HFLF4       | 4     |        | Glycoprotein?                                     |
| T3748 73796 75799 668 74122 HFRF1 4  75789 75795 76922 376 42314 HFRF2 4  76906 80631 80655 1242 137104 HFLF2 4  C 80775 83492 83654 906 102005 HFLF1 4  C 81458 86007 86019 850 95870 HFLF0 4  C 81458 86007 86019 850 95870 HFLF0 4  C 91205 123 13380 HFLF0 4  C 92336 91573 91235 124 14418  C 92347 94139 431 44310  C 92347 94139 431 44310  C 92467 9620 102 1123 1328  C 9504 9620 102 1122 1328  C 97509 8779 9879 97451 113 13218  C 97509 8779 9879 100 110 12728  C 97509 8779 100431 10652 120928  C 100536 103721 1062 120928  C 10658 105521 105751 388 43576  C 10658 107525 10758 4486  C 1066128 107525 10158 743 84453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JL.51          | U      | 73 287           | 73 757           | 73910            | 157         | 16968              | HFLF3       | 4     |        |                                                   |
| C 80 775 83 492 83 654 42314 HFRF2 4  C 80 775 83 492 83 654 906 102 005 HFLF1 4  C 81 438 86 007 86 019 850 95 870 HFLF1 4  C 81 577 90 281 90 326 1235 133 880  C 92 336 91 573 91 597 123 13945  C 92 336 91 573 91 597 123 13945  C 92 336 91 573 91 597 123 13945  C 92 336 91 573 91 597 123 13945  C 92 336 92 31 93 97 123 13945  C 92 336 92 31 93 97 123 13921  C 95 904 97 43 96 203 100 11 245  96 203 100 11 245  96 203 100 323 100 12 728  C 97 750 98 079 98 100 110 12728  C 97 750 98 079 98 100 110 12728  C 100 536 103 721 1062 120 928  C 104 559 105 721 105 71 388 43 576  C 106 528 105 723 106 535 443 84453  C 107 904 110 122 110 153 743 84453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JL52           | •      | 73 748           | 73 796           | 75 799           | 899         | 74 122             | HFRFI       | 4     |        |                                                   |
| C 76 906 80 631 80 655 1242 137 104 HFLF2 4  C 83 458 86 0077 86 019 850 95 870 HFLF1 4  C 86 577 90 281 90 326 1235 133 880  C 91 205 91 573 91 597 123 139 86  C 92 336 91 573 91 597 123 139 45  C 92 347 94 114 94 310  C 92 94 114 94 310 1129 14 792  C 95 904 97 436 97 431 113 13 218  C 97 750 98 77 30 110 110 12 728  C 97 750 98 77 31 100 232 744 82 679  C 100 536 103 721 105 71 88 43 576  C 104 558 105 727 106 138 148  C 106 128 107 727 106 15 743 84 45 576  C 107 94 110 132 110 153 173 184 84 55 65  C 107 94 110 132 110 153 173 184 84 45 576  C 107 94 110 132 110 153 743 84 45 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JL53           |        | 75 789           | 75 795           | 76922            | 376         | 42314              | HFRF2       | 4     |        |                                                   |
| C 8877 90281 905 102005 HFLF1 4  8488 86007 86019 850 95870 HFLF1 4  8607 86019 850 95870 HFLF0 4  90864 91235 1234 14418  C 91205 91573 91537 123 13945  C 92336 91573 91597 123 13945  C 92414 94764 217 23686  95331 95717 129 14792  C 95904 96203 100 11245  96331 95717 129 14792  C 96315 9620 100 11245  C 97098 97436 97451 113 13218  C 97098 97436 97451 113 13218  C 97098 97436 97451 114 13921  C 96315 100532 744 82679  C 10458 105721 105731 388 43576  C 107904 110132 110153 743 84453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JL54           | ပ      | 906 92           | 80 631           | 80 655           | 1242        | 137 104            | HFLF2       | 4     |        | DNA Polymerase (Kouzaribes et al.                 |
| C         83458         86007         86019         850         95870         HFLF0         4           C         86577         90281         90326         1235         133880         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4 <td>71.55</td> <td>U</td> <td>80 775</td> <td>83 492</td> <td>83654</td> <td>906</td> <td>102 005</td> <td>HFLF1</td> <td>4</td> <td></td> <td>gB (CRANAGE et al. 1986)</td> | 71.55          | U      | 80 775           | 83 492           | 83654            | 906         | 102 005            | HFLF1       | 4     |        | gB (CRANAGE et al. 1986)                          |
| C     86 577     90 281     90 326     1235     133 880       90 864     91 205     91 573     91 235     124     14418       C     92 336     92 815     160     18 241       C     92 847     94 139     43 10     44 310       C     92 847     94 139     43 11     44 310       C     92 847     94 139     43 10     129 14 792       C     95 331     95 717     129     14 792       C     95 331     96 620     102     11 245       G     96 315     96 620     102     11 245       G     97 304     96 620     102     11 245       G     97 436     97 451     113     13 218       C     97 750     98 709     98 100     110     12 728       C     97 750     98 775     98 743     106 532     744     82 679       C     103 239     104 471     411     45 728       C     104 558     105 751     106 5751     38     43 576       C     107 629     107 525     107 585     466     54 236       C     107 904     110 153     743     84 453                                                                                                                                                                                                                                                                                                                               | JL56           | U      | 83 458           | 86 007           | 86019            | 850         | 95870              | HFLF0       | 4     |        |                                                   |
| C         91 205         91 573         91 235         124         14418           C         92 336         91 597         123         13945           C         92 336         92 815         160         18 241           C         92 4114         94 139         431         44 310           C         94 114         94 764         217         23 686           95 331         95 717         129         14792           C         95 904         96 203         100         11 245           96 315         96 620         102         11 525           C         97 098         97 456         114         13 921           C         97 098         97 451         113         13 218           C         97 20         98 079         98 100         110         12 728           C         97 20         100 433         100 532         744         82 679           C         107 536         105 721         105 721         105 721           C         104 588         105 721         106 150         138         14 868           C         107 525         107 585         466         54 236                                                                                                                                                                               | U <b>L</b> 57  | ပ      | 86 577           | 90 281           | 90 326           | 1235        | 133 880            |             |       |        | Major DNA-binding protein                         |
| C 91 205 91 573 91 597 123 13945 C 92 336 92 815 160 18 241 C 92 847 94 139 431 44 310 C 94 114 94 764 217 23 686 95 331 95 717 129 14 792 C 95 904 96 203 100 11 245 96 315 96 620 102 11 245 C 97 750 98 079 98 100 110 12 728 C 97 750 98 079 98 100 110 12 728 C 97 750 98 079 98 100 110 12 728 C 97 750 98 079 98 100 110 12 728 C 100 536 103 721 1062 120 928 C 104 558 105 721 105 751 388 43 576 C 106 128 107 525 107 585 466 54 236 C 107 904 110 132 110 153 743 84 453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JL58           |        | 90 864           |                  | 91 235           | 124         | 14418              |             |       |        | (ANDERS and GIBSON 1988)                          |
| C 92336 92815 160 18241 C 92847 94139 431 44310 C 94114 94764 217 23686 95331 95717 129 14792 C 95904 96203 100 11245 96.315 96620 102 11525 C 97098 97436 97451 113 13218 C 97750 98079 98100 110 12728 C 97750 98079 98100 110 12728 C 97750 98079 100532 744 82679 C 100536 103721 1062 120928 C 104558 105721 105751 388 43576 C 106 128 107525 107585 466 54236 C 107904 110 132 110 153 743 84453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JLS9           | ن      | 91 205           | 91 573           | 91 597           | 123         | 13045              |             |       |        |                                                   |
| C 92847 94139 431 44310<br>C 94114 94764 217 23686<br>95331 95717 129 14792<br>C 95904 96203 100 11245<br>96315 96620 102 11525<br>C 97098 97436 97451 113 13218<br>C 97750 98079 98100 110 12728<br>C 97750 98079 98100 110 12728<br>C 97750 98079 98100 110 12728<br>C 97750 98079 100532 744 82679<br>C 100536 103721 1062 120928<br>C 104558 105721 105751 388 43576<br>C 106128 107525 107585 466 54236<br>C 107904 110132 110153 743 84453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 71.60          | U      | 92 336           |                  | 92815            | 9           | 18 24 1            |             |       |        |                                                   |
| C 94114 94764 217 23686<br>95331 95717 129 14792<br>96315 96203 100 11245<br>96315 96620 102 11525<br>C 96475 96816 114 13921<br>C 97798 97436 97451 113 13218<br>C 97750 98079 98100 110 12728<br>C 100536 103721 1062 120928<br>C 104558 105721 105751 388 43576<br>C 106128 107525 107585 466 54236<br>C 107994 110132 110153 743 84453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JL61           | U      | 92847            |                  | 94 139           | 431         | 44310              |             |       |        |                                                   |
| C 95 331 95 717 129 14 792 95 304 96 203 100 11 245 96 315 96 620 102 11 245 96 315 96 620 102 11 245 96 315 96 820 102 11 525 11 525 97 98 97 436 97 451 113 13 218 C 97 750 98 079 98 100 110 12 728 C 98 202 100 433 100 532 744 82 679 C 100 536 103 721 1062 120 928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JL62           | U      | 94114            | •                | 94 764           | 217         | 23 686             |             |       |        |                                                   |
| C 95904 96 203 100 11245<br>96 315 96 620 102 11525<br>C 96 475 96 816 114 13921<br>C 97 750 98 079 98 100 110 12728<br>C 97 202 100 433 100 532 744 82 679<br>C 100 536 103 721 1062 120 928<br>C 104 558 105 721 105 751 388 43 576<br>C 106 128 107 525 107 585 466 54 236<br>C 107 994 110 132 110 153 743 84 453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JL63           |        | 95331            |                  | 95717            | 129         | 14 792             |             |       |        |                                                   |
| 96.315 96.620 102 11.525  C 96.475 96.816 114 13.921  C 97.098 97.436 97.451 113 13.218  C 97.20 98.079 98.100 110 12.728  C 98.202 100.433 100.532 744 82.679  C 100.536 103.721 106.2 120.928  C 104.558 105.721 105.751 388 43.576  C 106.128 107.525 107.585 466 54.236  C 107.994 110.132 110.153 743 84.453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JL64           | ပ      | 95 904           |                  | 96 203           | 001         | 11 245             |             |       |        |                                                   |
| C 96475 96816 114 13921<br>C 97098 97436 97451 113 13218<br>C 97750 98079 98100 110 12728<br>C 98202 100433 100 532 744 82679<br>C 100 536 103721 1062 120 928<br>C 104558 105721 105751 388 43576<br>C 106 128 107 525 107 585 466 54 236<br>C 107 994 110 132 110 153 743 84453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 <b>L6</b> 5  |        | 96315            |                  | 96 620           | 102         | 11 525             |             |       |        | Segments in frame with 67-k Da                    |
| C 96475 96816 114 13921<br>C 97098 97436 97451 113 13218<br>C 97750 98079 98100 110 12728<br>C 98202 100433 100 532 744 82 679<br>C 100 536 103 721 1062 120 928<br>C 104 558 105 721 105 751 388 43 576<br>C 106 128 107 525 107 585 466 54 236<br>C 107 994 110 132 110 153 743 84453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |        |                  |                  |                  |             |                    |             |       |        | phosphoprotein sequence of DAVIS and HIANG (1985) |
| C 97 098 97 436 97 451 113 13 218 C 97 750 98 079 98 100 110 12 728 C 98 202 100 433 100 532 744 82 679 C 100 536 103 721 1062 120 928 C 104 558 105 721 105 751 388 43 576 C 106 128 107 525 107 585 466 54 236 C 107 994 110 132 110 153 743 84 453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JL66           | O !    | 96475            |                  | 91896            | 114         | 13921              |             |       |        | (COVI) CANONI PIIR CLASS                          |
| C 97750 98 079 98 100 110 12728 , C 98 202 100 433 100 532 744 82 679 , C 100 536 103 721 1062 120 928 C 104 558 105 721 105 751 388 43 576 C 106 128 107 525 107 585 466 54 236 C 107 994 110 132 110 153 743 84 453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JL67           | ပ      | 94 008           | 97436            | 97 451           | 13          | 13218              |             |       |        | Glycoprotein exon?                                |
| C 100 536 103 744 82 679  C 100 536 103 721 1062 120 928  C 104 558 105 721 105 751 388 43 576  C 106 128 107 372 106 150 138 14 868  C 106 128 107 525 107 585 466 54 236  C 107 994 110 132 110 153 743 84 453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )Te8           | <br>ပ  | 97 750           | 64086            | 98 100           | 01          | 12 728             | •           |       |        |                                                   |
| C 100 536 103 721 1062 120 928<br>103 239 104 471 411 45 728<br>C 104 558 105 721 105 751 388 43 576<br>105 629 105 737 106 150 138 14 868<br>C 106 128 107 525 107 585 466 54 236<br>C 107 994 110 132 110 153 743 84 453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | JL69           | ບ      | 98 202           | 100433           | 100 532          | 744         | 82679              |             |       |        | Transactivator? (McGeoch et al.                   |
| C 100 536 103 721 1062 120 928<br>103 239 104 71 411 45 728<br>C 104 588 105 721 105 751 388 43 576<br>C 106 128 107 525 107 585 466 54 236<br>C 107 994 110 132 110 153 743 84 453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :              | . (    | :                |                  |                  |             |                    |             |       |        | 1988a)*                                           |
| C 104 558 105 721 105 471 411 45 728<br>C 104 558 105 721 105 751 388 43 576<br>C 106 128 107 525 107 585 466 54 236<br>C 107 904 110 132 110 153 743 84 453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L/0            | ပ      | 100 536          |                  | 103 721          | 1062        | 120928             |             |       |        | DNA replication? (McGeoch                         |
| C 104 558 105 721 105 751 388 43 576<br>105 629 105 737 106 150 138 14 868<br>C 106 128 107 525 107 585 466 54 236<br>C 107 904 110 132 110 153 743 84 453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i              |        | ,                |                  |                  |             |                    |             |       |        | et al 1988h)*                                     |
| C 104 558 105 721 105 751 388 43 576<br>105 629 105 737 106 150 138 14 868<br>C 106 128 107 525 107 585 466 54 236<br>C 107 904 110 132 110 153 743 84 453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17.1           |        | 103 239          |                  | 104 471          | 4 1         | 45 728             |             |       |        | (2001)                                            |
| 105 629 105 737 106 150 138 14 868<br>C 106 128 107 525 107 585 466 54 236<br>C 107 904 110 132 110 153 743 84 453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17.72<br>17.72 |        | 104 558          | 105 721          | 105 751          | 388         | 43 576             |             |       |        | dilTPase? (Pueston and Eisune 1094)               |
| C 106 128 107 525 107 585 466 54 236<br>C 107 904 110 132 110 153 743 84 453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L73            |        | 105 629          | 105 737          | 106 150          | 138         | 14868              |             |       |        | Glyconestein                                      |
| C 107904 110132 110153 743 84453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L74            |        | 106 128          | 107 525          | 107 585          | 466         | 54236              |             |       |        | Glycoprofein exon                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | JL75           |        | 107 904          | 110132           | 110153           | 743         | 84453              |             |       |        | EH (CRANAGE et al. 1988)                          |

| Transactivator? (McGeox H et al. | DNA replication? (McGeoch | dUTPase? (Preston and Fisher 1984)* Glycoprotein Glycoprotein exon? gH (Cranage et al. 1988) | Virion protein? (Abbison et al. 1984*; McGeoch et al. 1988al* |                      | Assembly protein read from internal start (ROBSON and GIBSON 1989) | pp71 (Ruger et al. 1987) |                                       | Major capsid protein | (Crief et al. 17070) | Conserved herpesvirus spliced gene (CostA et al. 1985)* |                      |                       |          | Conserved herpesvirus spliced |                      | Phosphotransferase? | (CHEE et al. 1989a) DNase (McGEoch et al. 1986)* Phosphoprofein pn28 | (Merse et al. 1988) | A Constitution only | DNA replication? Position only | Virion protein? (Weller | et al. 1983*; МсGеюсн<br>et al. 1988a)* |
|----------------------------------|---------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------|--------------------------------------------------------------------|--------------------------|---------------------------------------|----------------------|----------------------|---------------------------------------------------------|----------------------|-----------------------|----------|-------------------------------|----------------------|---------------------|----------------------------------------------------------------------|---------------------|---------------------|--------------------------------|-------------------------|-----------------------------------------|
|                                  |                           | ·                                                                                            |                                                               |                      |                                                                    | UL82 family              | UL82 lamily                           |                      |                      |                                                         |                      |                       |          |                               |                      |                     |                                                                      |                     |                     |                                |                         |                                         |
|                                  |                           |                                                                                              |                                                               |                      |                                                                    |                          |                                       | 8                    |                      |                                                         |                      |                       |          |                               |                      | 9                   |                                                                      |                     |                     |                                |                         |                                         |
|                                  |                           |                                                                                              |                                                               |                      |                                                                    |                          |                                       | HaLFI                |                      |                                                         |                      |                       |          |                               |                      | HSRF3               |                                                                      |                     |                     |                                |                         |                                         |
| 82 679                           | 120928                    | 45 728<br>43 576<br>14 868<br>54 236<br>84 453<br>36 070                                     | 71 188                                                        | 47 358<br>33 846     | 73 853                                                             | 12 796 61 950            | 65 430                                | 153875               | 104 805 47 691       | 42 776                                                  | 7445<br>12028        | 22 512                | 38 382   | 34 323                        | 57 214               | 78 234              | 65 273 20 924                                                        | 42.862              | 12 184              | 85615                          | 28 637<br>78 508        |                                         |
| 744                              | 1062                      | 411<br>388<br>138<br>466<br>743<br>325                                                       | 642                                                           | 431<br>295           | 208                                                                | 116<br>559               | 286<br>386                            | 1370                 | 941<br>429           | 378                                                     | 99                   | 207                   | 345      | 296                           | 531<br>115           | 707                 | 584<br>190                                                           | 272                 | 115                 | 798                            | 249<br>697              |                                         |
| 100 532                          | 103 721                   | 104 471<br>105 751<br>106 150<br>107 585<br>110 153                                          | 112832                                                        | 114 216<br>115 779   | 117 321                                                            | 117 658                  | 123 306                               | 128 415              | 131 177 132 463      | 133 629                                                 | 133 920              | 134 742               | 137 387  | 138 803                       | 139 980 140 360      | 142 604             | 144 452<br>144 961                                                   | 146413              | 146 697             | 149 140                        | 150 108<br>152 167      |                                         |
| 100433                           |                           | 105 721<br>105 737<br>107 525<br>110 132                                                     | 110 907                                                       | 112 924              | 115 198                                                            | 119 165                  | 123 069                               | 128 295              | 128 355              |                                                         | 133 836              | 134 140               | 136353   | 138 389                       | 138388               | 140 484             | 142 701<br>144 392                                                   | 146 344             |                     |                                | 150057                  |                                         |
| 98 202                           | 100 536                   | 103 239<br>104 558<br>105 629<br>106 128<br>107 904<br>110 324                               | 110 787                                                       | 112864               | 115084                                                             | 117 31.1                 | 121312                                | 124 186              | 128 265              | 132466                                                  | 133 639              | 134 020               | 136 008  | 137 382                       | 138 352 139 821      | 140 373             | 142 626                                                              | 145229              | 146353              | 146747                         | 149 311<br>150 008      |                                         |
| , O                              | ပ                         | o oo                                                                                         |                                                               | ပ                    |                                                                    | 000                      | ى ن ر                                 | υO                   |                      | O                                                       | O                    |                       | (        | U                             |                      |                     |                                                                      | U                   |                     |                                | ပပ                      |                                         |
| HCMVUL69                         | HCMVUL70                  | HCMVUL71<br>HCMVUL72<br>HCMVUL73<br>HCMVUL74<br>HCMVUL74                                     | HCMVUL77                                                      | HCMVUL78<br>HCMVUL79 | HCMVUL80                                                           | HCMVUL81<br>HCMVUL82     | HCM VOL83<br>HCM VOL84<br>HCM VIII 85 | HCMVUL86             | HCMVUL87<br>HCMVUL88 | HCMVUL89EX2                                             | HCMVUL90<br>HCMVUL91 | HCMVUL92<br>HCMVII.93 | HCMVUL94 | HCMVUL89EXI                   | HCMVUL95<br>HCMVUL96 | HCMVUL97            | HCMVUL98<br>HCMVUL99                                                 | HCMVUL100           | HCMVUL101           | HCMVUL102                      | HCMVUL103<br>HCMVUL104  |                                         |

(Continued)

BOSTON MEDICAL

Table 1. (Continued)

| Comments     | Helicase (MARTIGNETTI 1987; | CRUTE et al. 1989)* |                        |           |           |           | ORF in transforming region | (RAZZAQUE et al. 1988)<br>Common N-terminus of four | phosphoproteins<br>(WRIGHT et al. 1988) | Probably spliced to UL112; | internal splicing?<br>(Weight et al. 1089) | Uracii-DNA glycosylase | (WORRAD and CARADONNA 1988)* | Section of the sectio | Ciycoprotein exon? | Glycoprolein expa | Glycoprofein exon: | Glycoprofein exon: | Glycoprofein | IE2A. Spliced to IE1 EX4. Also | KATG at 170599 (STENBERG | et al. 1985) | 1984; AKRIGG et al. | 1985)        | et al. 1984: Akrico et al | 1985)                                   | IE1 gene exon 2 (first coding | exon) (STENBERG et al. 1984;<br>AKBIGG et al. 1985) | Glycoprotein                        |
|--------------|-----------------------------|---------------------|------------------------|-----------|-----------|-----------|----------------------------|-----------------------------------------------------|-----------------------------------------|----------------------------|--------------------------------------------|------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|--------------------|--------------------|--------------|--------------------------------|--------------------------|--------------|---------------------|--------------|---------------------------|-----------------------------------------|-------------------------------|-----------------------------------------------------|-------------------------------------|
| Family       |                             |                     |                        |           |           |           |                            |                                                     |                                         |                            |                                            |                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |                    |                    |              |                                |                          |              |                     |              |                           |                                         |                               |                                                     |                                     |
| (ref)        |                             |                     |                        |           |           |           |                            |                                                     |                                         |                            |                                            |                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |                    |                    |              |                                |                          |              | _                   |              |                           |                                         |                               |                                                     |                                     |
| Old<br>Name  |                             |                     |                        |           |           |           |                            |                                                     |                                         |                            |                                            |                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |                    |                    |              |                                |                          |              |                     |              |                           |                                         |                               |                                                     |                                     |
| MW           | 106 501                     | 14 500              | 17374                  | 1 709     | 14 224    | 11 565    | 8 582                      | 26 415                                              |                                         | 51 105                     |                                            | 28 354                 | 34 110                       | 37.519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45 464             | 24 599            | 14 729             | 22 768             | 20138        | 51 084                         |                          | 45 622       |                     | 6865         |                           |                                         | 2 658                         |                                                     | 15887<br>11000<br>15910             |
| Length       | 956                         | 125                 | 150                    | 686       | 127       | 107       | 78                         | 252.3                                               |                                         | 499                        |                                            | 250                    | 306                          | 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 424                | 209               | 142                | 201                | 180          | 494.7                          |                          | 405.7        |                     | 61.7         |                           |                                         | 7:57                          |                                                     | 152<br>102<br>134                   |
| Stop         | 154 793                     | 155 330             | 155 869                | 157816    | 158 276   | 159 799   | 159911                     | 161 392                                             |                                         | 162 797                    |                                            | 163 758                | 164614                       | 165 564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 166 757            | 167487            | 168037             | 168 700            | 169 269      | 170878                         |                          | 172 274      |                     | 172654       |                           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 5/87/1                        |                                                     | 173 253<br>173 419<br>173 909       |
| K-ATG        | 151 926                     | 155324              |                        | 157810    |           |           | 159 678                    | 160 589                                             |                                         |                            |                                            | 163 722                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 166 745            |                   | 167983             | 168 643            | 169 236      |                                |                          |              |                     |              |                           | 376661                                  | 60/7/1                        |                                                     | 172 798                             |
| Strand Start | 151 806                     | 154950              | 155 420                | 157 517   | 157896    | 159479    | 159615                     | 160 484                                             |                                         | 106 101                    |                                            | 162973                 | 163 697                      | 164 533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 165 474            | 198 991           | 167 558            | 168 04 1           | 168 697      | 169 367                        |                          | 171 009      |                     | 172 301      |                           | 059621                                  | 6007/1                        |                                                     | 172 783<br>173 114<br>173 508       |
| Stran        |                             | ပ                   | ပ                      | ပ         | ပ         | ပ         |                            |                                                     |                                         |                            |                                            | ပ                      | ပ                            | ပ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ပ                  | ပ                 | ပ                  | ပ                  | ပ            | ر                              |                          | ပ            |                     | ပ            |                           |                                         |                               |                                                     | υυ                                  |
| Frame        | HCMVUL105                   | HCMVUL106           | HCMVUL107<br>HCMVUL108 | HCMVUL109 | HCMVUL110 | HCMVULIII | HCMVULIIIA                 | HCMVUL112                                           |                                         | ncim vol. 113              |                                            | HCMVUL114              | HCMVUL115                    | HCMVUL116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HCMVUL117          | HCMVUL118         | HCMVUL119          | HCMVUL120          | HCMVUL121    | HCM VOLI22                     |                          | HCMVUL123EX4 |                     | HCMVUL123EX3 |                           | HCMVIII 123EX2                          |                               |                                                     | HCMVULI24<br>HCMVULI25<br>HCMVULI26 |

| 1E1 gene exon 4 (STENBERG et al. 1984: Akpigg et al. | 1985) 1985) 1E1 gene exon 3 (STENBERG et al. 1984: Areses et al. | 1985) IEI gene exon 2 (first coding | exon) (Stenberg et al. 1984;<br>Akrigg et al. 1985)<br>Glycoprotein |           | į                      | Glycoprotein exon?<br>Glycoprotein exon? |                 | Cilycoprotein<br>First 35 amino acids identical | in TRL14<br>= HCMVTRL13. Glycoprotein | exon?<br>= HCMVTRL12. Glycoprotein | = HCMVTRL11. Glycoprotein<br>= HCMVTRL10: N at nocition | 38 is D in TRL10. Glycoprotein<br>= HCMVTRL9<br>= HCMVTRL8 | = HCMVTRL7<br>= HCMVTRL6 Glycoprofein | exon?<br>= HCMVTRL5<br>= HCMVTRL4. ORF in major | early transcript (GREENAWAY and WILKINSON 1987) | = HCMVTRL2<br>= HCMVTRL2<br>= HCMVTRL1 | Positions 1 to 309 overlap JIL; | V at position 190 is L in TRS1. Sequences diverse after | position 549       | Glycoprotein<br>Spliced IF elycoprotein | (Weston 1988)                 | Glycoprotein<br>Glycoprotein | The state of the s |
|------------------------------------------------------|------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------|-----------|------------------------|------------------------------------------|-----------------|-------------------------------------------------|---------------------------------------|------------------------------------|---------------------------------------------------------|------------------------------------------------------------|---------------------------------------|-------------------------------------------------|-------------------------------------------------|----------------------------------------|---------------------------------|---------------------------------------------------------|--------------------|-----------------------------------------|-------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                      |                                                                  |                                     |                                                                     |           | ·                      |                                          |                 |                                                 |                                       | RL11 family                        | KLII family                                             |                                                            |                                       |                                                 |                                                 |                                        |                                 | US22 family                                             | US1 family         | US2 family<br>US2 family                | •                             | US6 family<br>US6 family     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                      |                                                                  |                                     |                                                                     |           |                        |                                          |                 |                                                 |                                       |                                    |                                                         |                                                            |                                       |                                                 |                                                 | -                                      |                                 | -                                                       | _                  |                                         |                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                      |                                                                  |                                     |                                                                     |           |                        |                                          |                 |                                                 |                                       |                                    |                                                         |                                                            |                                       |                                                 |                                                 | HKLFI                                  |                                 | HQRFI                                                   | HQLF3              | HQLF1<br>HQLF1                          | -                             | HXLF6<br>HXLF5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 770 ci.                                              | 6 865                                                            | 2 658                               | 15887<br>11000<br>15910                                             | 15248     | 16036                  | 24 653                                   | 8 243<br>29 973 | 20 750                                          | 15888                                 | 47417                              | 19 034                                                  | 15 909                                                     | 97.18                                 | 12 835<br>24 929                                | 13 252                                          | 12 324<br>34 822                       | 36 544                          | 91 050                                                  | 23 481             | 21 575                                  |                               | 20 640<br>26 27 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                      | 61.7                                                             | 23.7                                | 152<br>102<br>134                                                   | 131       | 139                    | 214                                      | 76<br>270       | 183                                             | 147                                   | 416                                | 12.                                                     | 143<br>129<br>82                                           | 78                                    | 114                                             | <u>-</u>                                        | 311                                    | 14.                             | 846                                                     | 212                | 186                                     | 119                           | 183<br>225                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                      | 172654                                                           | 172873                              | 173 253<br>173 419<br>173 909                                       | 174887    | 175 284                | 176438                                   | 177845          | 178 327                                         | 178 689                               | 180036                             | 181 366                                                 | 181 966<br>182 240<br>182 869                              | 183 852                               | 185 282<br>185 682                              | 186 326                                         | 187 574 188 533                        | 095 681                         | 192 302                                                 | 192 967            | 194 924                                 | 195 188                       | 195 975<br>197 069           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                      |                                                                  | 172 765                             | 172 798                                                             | 174495    |                        | 176 306                                  | 177743          | 178 324                                         | 178 671                               | 180 033                            | 181 285                                                 | 182 183                                                    | 183 520                               | 185 201                                         | 186 275                                         | 188 497                                | ,                               | (9/ 69)                                                 | 193715             | 194 690                                 | 195 230                       | 192951                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                      | 172 301                                                          | 172 659                             | 172 783<br>173 114<br>173 508                                       | 174 453   | 174 868                | 175 665                                  | 176934          | 977 771                                         | 178 231                               | 178 786 180 040                    | 180 773                                                 | 181 538<br>181 797<br>182 546                              | . 183457                              | 184 860<br>185 032                              | 185934                                          | 187 230                                | 000000                          | 707 401                                                 | 192 332            | 194 133                                 | 194 832 195 203               | 196 377                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ,                                                    | ပ                                                                |                                     | ပပ                                                                  |           | ပပ                     | ن ر                                      | υO              | ပ်                                              | ပ                                     | o o                                | ပ                                                       | OO                                                         |                                       | O                                               | Ų                                               | ) U                                    |                                 |                                                         | ပပ                 | ပ                                       | ر                             | Ü                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                      | HCMVUL123EX3                                                     | HCMVUL123EX2                        | HCMVUL124<br>HCMVUL125<br>HCMVUL126                                 | HCMVUL127 | HCMVULI28<br>HCMVULI29 | HCMVUL130                                | HCMVUL132       | HCMVIRL14                                       | HCMVIRL13                             | HCMVIRL12<br>HCMVIRL11             | HCMVIRL10                                               | HCMVIRL9<br>HCMVIRL8<br>HCMVIRL7                           | HCMVIRL6                              | HCMVIRL5<br>HCMVIRL4                            | HCMVIRL3                                        | HCMVIRLI<br>HCMVIII                    | HCMVIRSI                        |                                                         | HCMVUSI<br>HCMVUS2 | HCMVUS3                                 | HCMVUS4<br>HCMVUS5<br>HCMVUS6 | HCMVUS7                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

(Continued)

Table 1. (Continued)

BOSTON MEDICAL

|             |   |              |              |              |              |                      |                      |                      |                      |                      |                      |                          |                      |                      |                      |                      |                                 |              |             |             |          |             |                                |                      |           |                                |                      |          |          |            |            |          |                    |          |          | •                               |                         | •                               | ı |
|-------------|---|--------------|--------------|--------------|--------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------------|----------------------|----------------------|----------------------|----------------------|---------------------------------|--------------|-------------|-------------|----------|-------------|--------------------------------|----------------------|-----------|--------------------------------|----------------------|----------|----------|------------|------------|----------|--------------------|----------|----------|---------------------------------|-------------------------|---------------------------------|---|
| Comments    |   | Glycoprotein | Glycoprotein | Glycoprotein | Glycoprotein | Multiply hydrophobic | returning inydiophiconic | Multiply hydrophobic | Multiply hydrophobic | Multiply hydrophobic | Multiply hydrophobic | Early nuclear protein (Mocarski | et al. 1988) |             |             |          |             | Multiply hydrophobic. Homology | to G-protein-coupled | receptors | Multiply hydrophobic. Homology | to G-protein-coupled |          |          |            |            |          | Glycoprotein exon? | -        |          | L at position 190 is V in IRS1. | Sequences diverge after | position 549 Overlaps JIL & JII |   |
| Family      |   | US6 family   | US6 family   | US6 family   | US6 family   | US12 family          | US12 family          | US12 family          | US12 family          | 11S12 family         | 11S12 family         | 11012 Fallilly           | US12 lamily          | US12 family          | US12 family          | US12 family          | US22 family                     | •            | US22 family | US22 family | •        | US22 family | GCR family                     |                      | ;         | GCR family                     |                      |          |          | US1 family | US1 family | •        |                    |          |          | US22 family                     |                         |                                 |   |
| (JeJ)       |   | _            | _            | _            | _            | _                    | _                    | _                    | _                    | _                    |                      |                          | _                    | _                    | _                    | _                    | _                               |              | -           | _           |          | -           | -                              |                      |           | _                              |                      | _        | _        | _          | _          | -        | _                  | _        |          | _                               |                         |                                 |   |
| Old<br>Name |   | HXLF4        | HXLF3        | <b>HXLF2</b> | HXLFI        | HVLF6                | HVLFS                | HVLF4                | HVLF3                | HVI F2               | HVIF                 | 77.11                    | HWLFS                | HWLF4                | HWLF3                | HWLF2                | HWLFI                           |              | HHLF7       | HHLF6       |          | HHLFS       | HHRF2                          |                      |           | HHRF3                          |                      | HHRF4    | HHRFS    | HHRF6      | HHRF7      | HHLF3    | HHRF8              | HHLF2    |          | HHLFI                           |                         |                                 |   |
| ×           |   | 26 634       | 28 054       | 20 772       | 25 265       | 32470                | 29 461               | 34 198               | 53049                | 34718                | 31910                | 30106                    | 20193                | 26 424               | 39890                | 26 586               | 12699                           |              | 98889       | 57 928      | 19655    | 70022       | 41 996                         |                      |           | 37 189                         |                      | 51 068   | 39 115   | 22936      | 22 0 58    | 15775    | 17767              | 12966    | 12352    | 83983                           |                         | 23 797                          |   |
| Length      | 5 | 227          | 247          | 185          | 215          | 281                  | 761                  | 310                  | 484                  | 300                  | 293                  | 256                      | <b>5/7</b>           | 240                  | 357                  | 239                  | 593                             |              | 592         | 200         | 179      | 603         | 362                            |                      | į         | 323                            |                      | 462      | 349      | 197        | 183        | 137      | 163                | 109      | 011      | 788                             |                         | 224                             |   |
| Stop        | - | 096 261      | 198 772      | 199 646      | 200 366      | 201 562              | 202 307              | 203 311              | 204 756              | 205091               | 206 144              | 770.200                  | 997 /07              | 208 132              | 209 177              | 209 793              | 211652                          |              | 213510      | 215105      | 215633   | 217 574     | 218989                         |                      |           | 220 168                        |                      | 221811   | 222 664  | 223 264    | 223 933    | 224 485  | 224 968            | 225 538  | 225 758  | 228 541                         |                         | 229 354                         |   |
| K-ATG       |   | 197 936      | 198 694      | 199 637      | 200 360      | 201 391              | 202 256              | 203 257              |                      | 205079               | 206 105              | 201.00                   | 761 /07              | 208 057              |                      | 209 694              |                                 |              | 213492      | 215090      |          | 217536      | 217 904                        |                      |           | 219 200                        |                      | 220 426  | 221618   |            | 223 385    |          | 224 480            |          |          | 228 478                         |                         |                                 |   |
| Start       |   | 197 256      | 197954       | 199 083      | 199 716      | 200 549              | 201474               | 202 328              | 203 305              | 204   53             | 205 227              | 727 607                  | 200 3 / 0            | 207 338              | 208 107              | 208 978              | 209 874                         |              | 211717      | 213 591     | 215097   | 215730      | 217859                         |                      |           | 219 083                        |                      | 220 420  | 221 537  | 222 674    | 223 325    | 224 075  | 224 408            | 225 212  | 225 429  | 226 115                         |                         | 228 683                         |   |
| Strand      |   | ن<br>ن       | ပ            | Ü            | Ü            | U                    | U                    | S                    | ن                    | ر                    | , C                  | ) ر                      | ا ر                  | ບ                    | ပ                    | ပ                    | O                               |              | U           | ပ           |          | ပ           |                                |                      |           |                                |                      |          |          | ٠          | •          | U        |                    | Ü        | ပ        | ر<br>ن                          |                         | ပ                               |   |
| Frame       |   | HCMVUS8      | HCMVUS9      | HCMVUS10     | HCMVUSII     | HCMVUS12             | HCMVUS13             | HCMVUS14             | HCMVUS15             | HCMVISI6             | HCMVIS17             |                          | HCM VOSI8            | HCMVUS19             | HCMVUS20             | HCMVUS21             | HCMVUS22                        |              | HCMVUS23    | HCMVUS24    | HCMVUS25 | HCMVUS26    | HCMVUS27                       |                      |           | HCMVUS28                       |                      | HCMVUS29 | HCMVUS30 | HCMVUS31   | HCMVUS32   | HCMVUS33 | HCMVUS34           | HCMVUS35 | HCMVUS36 | HCMVTRSI                        |                         | HCMVJIS                         |   |

|            |            | Glycoprotein exon?   |          | L at position 190 is V in IRS1. | Sequences diverge after position 549 | Overlane III & III |
|------------|------------|----------------------|----------|---------------------------------|--------------------------------------|--------------------|
| US1 family | USI family |                      |          | US22 family                     |                                      |                    |
|            |            | · — ·                | -        | -                               |                                      |                    |
|            |            | 17.767 HHRF8         |          |                                 |                                      | 16/ 57             |
| 161        | 137        | 69                   | 62       | 788                             | ?                                    | <b>577</b>         |
| 407 777    | 224 485    | 224 968              | 225 758  | 228 541                         | 220 354                              | 457 274            |
| 221 185    |            | 224 480              |          | 228 478                         |                                      |                    |
| 223 325    | 224075     | 224 408              | 225 429  | 226115                          | 138 866                              | 000077             |
|            | ပ          | C                    | Ö        | ပ                               | ر                                    | )                  |
| HCMVUS32   | HCMVUS33   | HCMVUS34<br>HCMVUS35 | HCMVUS36 | HCMVTRSI                        | HCMVJIS                              |                    |

ROIZMAN 1982; TAMASHIRO et al. 1984; SPAETE and Mocarski 1985b). Our sequence is numbered from base 2352 of TAMASHIRO et al. (1984) but reading backward on the complementary strand. It contains a single copy of a DR1-flanked 578-bp sequence at each end and at the junction of the internal repeats. The sequence we have determined consists of 229 354 base pairs. The long unique region (UL) is 166 972 bp and the surrounding repeats (IRL and TRL) are 11 247 bp each. The short unique region (US) is 35418 bp and is flanked by 2524-bp repeats (IRS and TRS). In the sizes given above, IRL and IRS are considered as overlapping by one copy of the DR1-flanked repeat unit. The long repeats are identical except for two base changes: a C at position 5288 and a G at position 8293 are both substituted by As in the equivalent IRL positions. The former change does not affect any predicted coding sequences, while the latter affects TRL/IRL10 (Table 1). Two differences were also found in the short repeats: in IRS, an A at position 189887 and a G at position 190 332 are substituted by C and T respectively in TRS. The former difference is silent while the latter changes a valine residue in HCMV-IRS1 to a leucine in HCMV-TRS1.

# 3 Prediction of Reading Frames

Very little of the genome has been mapped in terms of its transcription or its expression. In order to analyze the protein-coding content of the sequence we need to define the criteria for the selection of the reading frames we think are most likely to be coding. A description of the procedures we have applied is given below.

#### 3.1 Criteria for Selection

Analysis of other herpesvirus genomes shows that in most regions the reading frame that is coding is the longest and that such reading frames are arranged end to end on either strand with very little noncoding sequence in between. Very few overlapping genes have been found although there are sometimes small overlaps at the beginnings and ends of genes. Thus the strategy we have adopted has been to screen the sequence for reading frames that are over a certain length and then to filter out any smaller frames that overlap larger ones by a certain amount. The cutoffs that we have chosen are a minimum length of 300 bp (i.e., a coding potential of 100 amino acids) and a maximum allowable overlap of a larger reading frame of 60%. This latter figure allows for the fact that a reading frame may be open upstream of the actual initiation codon and that this may lie under the preceding gene. There are 778 reading frames over 300 bp of which 581 are screened out on the grounds that they are overlapped extensively by larger frames, leaving 197 candidate protein-coding genes. The sequence is then examined for reading frames of less than 300 bp that may lie in the gaps that are left. Likely frames are selected by experience using criteria such as logical combinations of potential transcription signals with the reading

frame and any potential translational start; homology to other reading frames or known genes; and the presence of protein structural or functional motifs in the amino acid sequence. Codon bias can also be used as described below. The whole procedure will not work where genes are spliced and the exons are small. In those regions of the genome where the genes are highly spliced or in regions which are noncoding, small background noncoding reading frames will have been included which would otherwise have been screened out if larger coding reading frames were present. We think that this is particularly true in and bordering the repeat sequences and in certain regions of the *HindIII* D and E fragments. In a few cases we have substituted a smaller frame for a larger overlapping frame where we have found compelling reasons to choose the former.

#### 3.2 Codon Bias

Patterns of codon usage that could conceivably be generated only through the genetic code are, in the absence of any other criteria, the best indication that a sequence is coding for protein. The high G + C content of HCMV (57.2%) leads to an accumulation of G and C in the third, degenerative, position of the codons. This is because in an average amino acid sequence the excess G and C cannot be accommodated in the first and second positions without biasing the sequence to amino acids encoded by GC-rich codons. Figure 2 shows a G + C plot across the entire sequence. As can be seen there is considerable variation in the G + C content across the genome, particularly in the repeat areas, the regions bordering the repeats, and the *HindIII* D fragment. Because of this variability we have not yet been able to find a single formula that we could apply equally to all areas of the genome to justify further our selection of reading frames on the basis of size and position. However, codon bias does serve as a useful check in those areas with a high G + C content.

## 3.3 HCMV Map

The preliminary map of 208 reading frames deduced from the sequence using the criteria discussed above is shown in Fig. 3. Details are given in the figure legend of individual frames that we have omitted from the original set of 197 (Sect. 3.1) and the criteria for inclusion of replacement frames. Although some of the frames shown are unlikely to be coding (for example, UL126 which overlaps the (noncoding) exon 1 of the major immediate-early gene and part of the enhancer) we preferred to include all frames meeting our minimal criteria unless a more plausible alternative candidate could be identified.

er reading frames or ctional motifs in the ed below. The whole is are small. In those in regions which are have been included reading frames were the repeat sequences a few cases we have there we have found

ed only through the est indication that a MV (57.2%) leads to n of the codons. This G and C cannot be sing the sequence to G + C plot across the in the G + C content gions bordering the we have not yet been reas of the genome to of size and position. as with a high G + C

e sequence using the 1 the figure legend of 197 (Sect. 3.1) and the the frames shown are noncoding) exon 1 of referred to include all alternative candidate



composition) of ANALYSEQ (STADEN 1986) with both span length and plot interval set at 201. The genome structure is shown above the plot, and a scale below. The orientation is that of the prototype isomer as indicated by the restriction map below the scale. The HCMV genome is relatively G + Crich (57.2% overall, 57.9% in UL, 55.7% in US, 49.9% in RL, 73.1% in RS). Within UL, marked variations in nucleotide composition are seen at either end in the HindIII fragments I, O, and E, Fig. 2. Nucleotide composition of the HCMV strain AD169 genome. The %(G + C) content was plotted over the length of the genome using option 24 (plot base and also in HindIIID. (see Honess et al. 1989 for an analysis of dinucleotide frequencies)

BOSTON MEDICAL



| 53       | 20            | 120kb                         | 81 82 83             | 41091   J                             | 108<br>106 107 109 110 111 A<br>Fig. 3. (Continued) |
|----------|---------------|-------------------------------|----------------------|---------------------------------------|-----------------------------------------------------|
| 52       | 49 50 51      | -<br>-<br>-<br>-<br>-         | 87 77 87<br>97 97    | -  <br>-  <br>-  <br>-                | 2                                                   |
| 46       | •             | a= -     -   -     -     -    | 27 17                | 82 -<br>-<br>-                        | 101 102                                             |
|          |               | -<br>-<br>-<br>-              | 2   2                | -   cc                                | 66 86                                               |
| <b>#</b> | 46            | -  <br>-  <br>0  <br>-  <br>- | 69 89                | -   -   -   -   -   -   -   -   -   - | 98 96 97                                            |
| 39       | 40 4142 43 44 | -  <br>-  <br>-               | 60 61 62 64 66 67 68 | -  <br>-  <br>-                       | 9192 91 91                                          |
|          | 36 77 38      | g—<br> -<br> -                | 50 09 65 25          | - 130                                 | 88                                                  |
| 35       | •             | -<br>-<br>-<br>-              | 99                   | -   -   -   -   -   -   -   -   -   - | 98                                                  |
| 8        | 32            | -<br>-<br>-                   | 28                   | -<br> <br> -<br> a                    | 64 95                                               |

BOSTON MEDICAL





# 4 Identification of Homologs

31 32

28 29 30

23

t B

The HCMV protein sequences were screened against the PIR (release 19.0; GEORGE et al. 1986), and SWISSPORT (release 8.0; BAIROCH 1988) libraries using the FastA program of Pearson and Lipman (1988). Searches were also performed against a herpesvirus protein library including HSV-1, VZV, and EBV sequences. In these library comparisons alignments were examined when optimized FastA scores of 90 or greater were obtained, although in some cases lower-scoring matches were also scrutinized. Some of the HCMV sequences match numerous reading frames as a result of compositional bias, which may be general throughout the sequence or localized. For example, glycine-rich stretches occur in a number of reading frames, including HCMV-UL44, 56, 102, 112, and TRS/IRS1. In most cases highly biased matches have been excluded. Sometimes, however, these similarities are likely to reflect functional similarities, if not homology. For example, HCMV-UL122, which encodes an immediate-early transactivator, is similar to HSV-IE110, also an immediate-early transactivator. The results of overall homology searches, motif searches (STADEN 1988), and comparisons of gene layout with EBV, VZV, and HSV-1 have been amalgamated in the compilation of human herpesvirus and cellular homologs. Functions ascribed to HCMV genes or their homologs are noted in Table 1. Homologies detected to the sequenced herpesviruses are shown in Table 2. A

Fig. 3. A map of predicted open reading frames in HCMV strain AD169. Two hundred and eight individual frames are recognized, some of which are known to be spliced. The reading frame map is drawn in the prototype orientation below the HindIII restriction map. The diagram is scaled in kilobase pairs. Open reading frames which overlap on the same strand are displaced in the figure. Frames are numbered separately except for three genes for which splice sites have been precisely located (HCMV-UL36, UL37, and UL123) (KOUZARIDES et al. 1988; STENBERG et al. 1984, 1985), and one gene for which the splice sites are probably conserved with other herpesviruses (HCMV-UL89) (Costa et al. 1985). Genes which may be spliced to upstream frames, but which are also capable of being initiated at a proximal ATG, are numbered separately (HCMV-UL36, UL38, UL122). Frames are designated TRL, IRL, UL, TRS, IRS, or US according to the region of the genome in which their 5' ends are located, and each of these six sets is numbered from 1. A frame which spans the DR1 repeats (Sect. 2) and hence is capable of crossing the genomic termini has been designated J (junction) 1. Three manifestations of this frame which differ in their 5' and 3' termini occur, and are shown as JIL, JIS, and JII (where L, S, and I denote long, short and internal respectively; see also Table 1). The "a" sequence is shown as a thin vertical line located within the repeats. The following frames have been included in place of longer overlapping frames; the names of the latter (not shown) are given in brackets, together with reasons for the substitution; the orientations of the substituted frames are indicated by the direction of numbering: 1, J1L, and TRL1 (TRL1X, positions 291-1361; these frames occupy the region more completely, with minimal overlap. TRL1 has a proximal TATA box and a Kozak consensus ATG). [NB. J1L completely overlaps a frame equivalent to HKRFX (Weston and Barrell 1986) (not shown, positions 873-43)]; 2, UL38 (UL38X, positions 51 098-52 141; third position G + C; see Sect. 5.3); 3, UL106 (UL106X, positions 155043-155465; third position G + C); 4, UL112 (UL112X, positions 161 638-160 466; third position G + C; mapping data; WRIGHT et al. 1988); 5, UL123 (UL123X positions 172 331-172 816; overlaps major immediate-early gene exons 2 and 3); 6, J1I and IRL1 (IRL1X, positions 189 176-188 106; see 1 above). US25X (former name HHRF1, positions 215051-215518; Weston and Barrell 1986) had an excessive overlap with US25 and was omitted without another frame being substituted in its place. The small frame UIIIIA (marked as A) was included because it has a Kozak consensus ATG, a transcript has been identified in the region, and it is a conserved feature of a transforming region in HCMVs Towne and AD169 (RAZZAQUE et al. 1988; JAHAN et al. 1989). The frame is one amino acid shorter than the Towne sequence, having a relative 3-bp deletion, but the predicted amino acid sequence is otherwise identical

Table 2. Homologs of HCMV-reading frames in the sequenced herpesviruses. Internal HCMV-related sequences as well as EBV, VZV, and HSV-1 homologs are listed, together with FastA scores (PEARSON and LIPMAN 1988). HCMV homologous families containing three or more sequences are indicated only in Table 1. We have found from experience that FastA scores above 100 are often significant, except when sequences are highly biased in composition. Homologs which were not identified by library searches, but which were inferred from their collinearity with other conserved frames, are scored as P (positionally conserved). Listings scored as P? should be regarded as tentative at best. Listings with a question mark and a FastA score show borderline similarity in the absence of supporting evidence and should be regarded as speculative. In most cases the highest scores above 90 were listed. Compositionally biassed matches were excluded for the following frames: HCMV-TRL/IRL4, TRL/IRL13, UL32, UL44, and UL113. Nomenclature for EBV, VZV and HSV-1 frames is conventional (BAER et al. 1984; DAVISON and SCOTT 1986; McGeoch et al. 1988a); the EBV sequence designated as LP (leader protein) is translated from the spliced EBNA2 mRNA (WANG et al. 1987)

| spliced EBNA2 | mRNA (WANG C    | t al. 198 | 7)       |       |                |          |        |            |
|---------------|-----------------|-----------|----------|-------|----------------|----------|--------|------------|
|               |                 |           | nologs   |       |                |          |        |            |
| Frame         | HCMV            | Score     | EBV      | Score | VZV            | Score    | HSV    | Score      |
| HCMVUL15      |                 |           | BCRF2?   | 93    |                |          |        |            |
| HCMVUL25      | HCMVUL35        | 235       |          |       |                |          | UL9?   | 87         |
| HCMVUL35      | HCMVUL25        | 235       |          |       |                |          |        |            |
| HCMVUL45      |                 |           | BORF2    | 151   | VZV19          | 178      | UL39   | 238        |
| HCMVUL46      |                 |           | BORF1?   | P     | VZV20?         | P        | UL38?  | P          |
| HCMVUL47      | HCMVUL86?       | 96        | BOLF1?   | P     | VZV21?         | P        | UL37?  | P          |
| HCMVUL48      |                 |           | BPLFI    | 143   | VZV22          | P        | UL36   | 144        |
| HCMVUL49      |                 |           | BFRF2    | 249   | VZV23          | P        | UL35   | P          |
| HCMVUL50      |                 |           | BFRF1?   | P?    | VZV24?         | P        | UL34?  | P          |
| HCMVUL51      |                 |           | BFRF1?   | P?    | VZV25          | 97       | UL33   | 106        |
| HCMVUL52      |                 |           | BFLF1    | 138   | VZV26          | 179      | UL32   | 207        |
| HCMVUL53      | HCMVUL69?       | 95        | BFLF2    | 263   | VZV27          | 99       | UL31   | 141        |
| HCMVUL54      | HCMVUL130?      | 90        | BALF5    | 343   | VZV28          | 326      | UL30   | 423        |
| HCMVUL55      | TICHTY OLISO.   | 70        | BALF4    | 720   | VZV31          | 1061     | UL27   | 1052       |
| HCMVUL56      | HCMVUL112?      | 95        | BALF3    | 321   | VZV30          | 290      | UL28   | 323        |
| HCMVUL57      | HCWIVOLITZ:     | 73        | BALF2    | 352   | VZV29          | 220      | UL29   | 298        |
|               |                 |           | LP?      | 181   | V Z V Z J      | 220      | O LZ)  | 270        |
| HCMVUL61      | HCMVUL53?       | 95        | BMLF1    | P     | VZV4           | P        | UL54   | 127        |
| HCMVUL69      | HCM VUL33:      | 73        | BSLFI    | 293   | VZV6           | 302      | UL52   | 405        |
| HCMVUL70      |                 |           | BSRF1    | 92    | VZV7?          | 702<br>P | UL51?  | 403<br>P   |
| HCMVUL71      |                 |           | BLLF2    | P     | VZV7:<br>VZV8  | P        | UL50   | 88         |
| HCMVUL72      |                 |           | BLRFI    | 134   | VZVO           | Г        | OLJO   | 00         |
| HCMVUL73      | 110043/11/1.059 | 90        | BXLF2    | 217   | VZV37          | P        | UL22   | P          |
| HCMVUL75      | HCMVUL25?       | 90        |          | 217   | VZV37<br>VZV35 | 151      | UL24   | _          |
| HCMVUL76      |                 |           | BXRF1    |       |                | 278      | UL25   | 132<br>291 |
| HCMVUL77      |                 |           | BVRF1    | - 316 | VZV34          | 177      |        |            |
| HCMVUL80      |                 | 226       | BVRF2    | 347   | VZV33          | 177      | UL26   | 243        |
| HCMVUL82      | HCMVUL83        | 325       | •        |       |                |          |        |            |
| HCMVUL83      | HCMVUL82        | 325       | 22.51    | _     |                |          | *** ** |            |
| HCMVUL85      |                 |           | BDLFI    | P     | VZV41          | 114      | UL18   | 138        |
| HCMVUL86      | HCMVUL47?       | 96        | BcLF1    | 1876  | VZV40          | 767      | UL19   | 1225       |
| HCMVUL87      |                 |           | BcRFI    | 542   | VZV38?         | P        | UL21?  | P          |
| HCMVUL89      |                 |           | BD/BGRF1 | 1181  | VZV42/45       | 1104     | UL15   | 1206       |
| HCMVUL92      |                 |           | BDLF4    | 213   | 11071/400      | _        |        | _          |
| HCMVUL93      |                 |           | BGLF1?   | P     | VZV43?         | P        | UL17?  | P          |
| HCMVUL94      |                 |           | BGLF2    | 241   | VZV44          | P        | UL16   | P          |
| HCMVUL95      |                 |           | BGLF3    | 112   | VZV46          | P        | UL14   | P          |
| HCMVUL97      |                 |           | BGLF4    | 157   | VZV47          | 112      | UL13   | 97         |
| HCMVUL98      |                 |           | BGLF5    | 191   | VZV48          | 78       | UL12   | 140        |
| HCMVUL99      |                 |           | BBLF1?   | P     | VZV49?         | P        | UL11?  | P          |
| HCMVUL100     |                 |           | BBRF3    | 417   | VZV50          | 224      | UL10   | 215        |
| HCMVUL101     |                 |           | BBLF2?   | P     | VZV51?         | P        | UL9?   | P          |
| HCMVUL102     |                 |           | BBLF3?   | P     | VZV52?         | P        | UL8?   | P          |
| HCMVUL103     |                 |           | BBRF2    | 102   | VZV53          | 91       | UL7    | 121        |
| HCMVUL104     |                 |           | BBRF1    | 357   | VZV54          | 375      | UL6    | 309        |
| HCMVUL105     |                 |           | BBLF4    | 704   | VZV55          | 642      | UL5    | 598        |
|               |                 |           |          |       |                |          |        |            |

GETON MEDICA

Internal HCMV-related h FastA scores (PEARSON nees are indicated only in a significant, except when d by library searches, but scored as P (positionally with a question mark and and should be regarded as tilly biassed matches were 32, UL44, and UL113. 984; DAVISON and SCOTT in) is translated from the

|                                                                                                         | <del></del>                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HSV                                                                                                     | Score                                                                                                                                                                                    |
| UL9?                                                                                                    | 87                                                                                                                                                                                       |
| UL39<br>UL38?<br>UL37?<br>UL36<br>UL35<br>UL34?<br>UL33<br>UL32<br>UL31<br>UL30<br>UL27<br>UL28<br>UL29 | 238<br>P<br>P<br>144<br>P<br>P<br>106<br>207<br>141<br>423<br>1052<br>323<br>298                                                                                                         |
| UL54<br>UL52<br>UL51?<br>UL50                                                                           | 127<br>405<br>P<br>88                                                                                                                                                                    |
| UL22<br>UL24<br>UL25<br>UL26                                                                            | P<br>132<br>291<br>243                                                                                                                                                                   |
| UL18<br>UL19<br>UL21?<br>UL15                                                                           | 138<br>1225<br>P<br>1206                                                                                                                                                                 |
| UL17?<br>UL16<br>UL14<br>UL13<br>UL12<br>UL11?<br>UL10<br>UL9?<br>UL8?<br>UL7<br>UL6                    | P<br>P<br>P<br>97<br>140<br>P<br>215<br>P<br>P<br>121<br>309<br>598                                                                                                                      |
|                                                                                                         | UL9? UL39 UL38? UL37? UL36 UL37: UL35 UL33 UL32 UL31 UL30 UL27 UL28 UL29 UL54 UL52 UL51? UL50 UL22 UL24 UL25 UL26 UL18 UL19 UL21? UL15 UL17? UL16 UL14 UL13 UL11? UL10? UL11? UL10? UL27 |

| Frame            | нсму      | —Hos | mologs<br>EBV | Score | VZV   | Score | HSV    | Score |
|------------------|-----------|------|---------------|-------|-------|-------|--------|-------|
| HCMVUL112        | HCMVUL56? | 95   |               |       |       |       |        |       |
| HCMVUL114        |           |      | BKRF3         | 545   | VZV59 | 461   | UL2    | 489   |
| <b>HCMVUL116</b> |           |      | BDLF3?        | 128   |       |       |        | 10,   |
| HCMVUL122        |           |      |               |       |       |       | IE110? | 90    |
| HCMVUS2          | HCMVUS3   | 169  |               |       |       |       |        | ,,    |
| HCMVUS3          | HCMVUS2   | 169  |               |       |       |       |        |       |

survey of HCMV proteins including map assignments in the AD169, Towne, and Davis strain genomes has been conducted previously by LANDINI and MICHELSON (1988).

#### 5 IE Genes

The activation of IE genes is the initial step in a viral program of gene expression. Northern hybridization studies have shown that transcription from the HCMV genome during the immediate early phase of productive infection is limited to several discrete loci, with the most active region located near one end of UL (DEMARCHI 1981; WATHEN and STINSKI 1982; McDonough and Spector 1983; Jahn et al. 1984; Wilkinson et al. 1984). This major immediate-early (MIE) region has been studied in several CMV strains, and unlike the bulk of the CMV genome is CpG suppressed (Honess et al. 1989). The MIE genes encode regulatory proteins, the expression of which requires only cellular factors, although virion components may also play a transactivating role (Spaete and Mocarski 1985a; Stinski and Roehr 1985). More recently two other immediate-early loci have been sequenced and characterized in AD169 (Kouzarides et al. 1988; Weston 1988).

#### 5.1 MIE Gene Region

The first sequence data for this region were reported for HCMV Towne (STENBERG et al. 1984) and showed the four-exon arrangement of the major immediate-early (IE1) gene. Sequence analysis of the corresponding AD169 region revealed a similar arrangement with minor differences. Only two changes were observed at the amino acid level (AKRIGG et al. 1985). The organization of the equivalent murine CMV gene is grossly similar, but differs considerably at the sequence level (KEIL et al. 1987). Analysis of the HCMV IE promoter region exposed a complex array of 21-, 19-, 18-, and 16-bp repeats upstream of the TATA and CAAT boxes (THOMSEN et al. 1984; AKRIGG et al. 1985). The upstream sequence demonstrates a potent enhancer activity, detected by its ability to rescue enhancerless SV40 genomes (BOSHART et al. 1985). Homology with the core enhancer sequence TGGAAAG/TGGTTTG was

noted in the 18-bp repeats and potential Sp1-binding sites were also found. The enhancer binds cellular factors (Ghazal et al. 1987, 1988) and dissection has shown that the 19-bp elements can mediate cAMP induction (Fickenscher et al. 1989; Hunninghake et al. 1989). Similar enhancers were also found in murine and simian CMVs (Dorsch-Hasler et al. 1985; Jeang et al. 1987). Nuclear factor 1 binding sites are associated with the enhancer region in both human and simian CMVs (Hennighausen and Fleckenstein 1986; Jeang et al. 1987).

STINSKI et al. (1983) recognized two further IE regions beginning immediately downstream of IE1. The IE2 region has more recently been called IE2a and a further region recognized as IE2b (HERMISTON et al. 1987; STENBERG et al. 1985). Under immediate-early conditions, transcription of the IE2a region starts mainly from the IE1 promoter and a set of alternatively spliced transcripts is produced. In the predominant species the IE2a exon (HCMV-UL122 in AD169) is fused to the first three exons of IE1. HCMV-UL122 encodes 494 amino acids following the splice acceptor. This is in agreement with the size predicted of the IE2a exon reported for the Towne strain by Pizzorno et al. (1988). A 1.7-kb unspliced mRNA can also originate from a promoter proximal to the IE2a frame (which also contains a Kozak consensus ATG; Kozak 1981). This transcript is more abundant at early and late times postinfection (STENBERG et al. 1985). The product of the IE2a frame may be involved in autoregulation (PIZZORNO et al. 1988). A minor transcript extending into the IE2b region has been diagrammed (HERMISTON et al. 1987). We are unable to correlate this with the AD169 sequence using the available information. However, a potential splice donor occurs before the UL122 termination codon, and a polyA signal at position 167 503 is consistent with the predicted end point of the Towne transcript. It is likely that the reading frames on either side of this signal, UL119 and UL118, are spliced together to encode a membrane glycoprotein.

#### 5.2 HCMV US3 IE Gene

Sequencing of the US region of HCMV revealed an enhancer element containing five 18-bp repeats with homology to the MIE 18-bp repeats and the core enhancer element (WESTON 1988). These repeats were located in the region -80 to -270 of an RNA cap site in the HCMV-US3 (HQLF1) gene. In the region -340 to -600 a further set of six novel 11-bp repeats was found. A 275-bp fragment containing the 18-bp repeats enhanced expression in an orientation-independent manner in HeLa cells, with an efficacy equivalent to the SV40 enhancer (WESTON 1988), while the MIE enhancer 18-bp repeats have recently been shown to be involved in positive autoregulation by IE1 (CHERRINGTON and MOCARSKI 1989). The significance of the 11-bp repeats is unknown. However, a hexanucleotide consensus (TRTCGC) derived from these repeats was noted to occur in the MIE enhancer (WESTON 1988). Transcription from the HCMV-US3 reading frame associated with the enhancer is highly active at IE times and produces a set of differentially spliced transcripts. The protein-coding sequence of HCMV-US3 contains signal, anchor, and N-linked glycosylation sequences, is homologous to HCMV-US2 (HQLF2), and may also be related to the RLII and US6 gene families (Sect. 8).

ere also found. The dissection has shown ENSCHER et al. 1989; n murine and simian ear factor 1 binding and simian CMVs

zinning immediately ed IE2a and a further ; et al. 1985). Under arts mainly from the is produced. In the )) is fused to the first following the splice 2a exon reported for ced mRNA can also lso contains a Kozak ant at early and late : IE2a frame may be iscript extending into 7). We are unable to rmation. However, a codon, and a polyA point of the Towne is signal, UL119 and tein.

r element containing and the core enhancer ion -80 to -270 of an -340 to -600 a further containing the 18-bp tanner in HeLa cells, 988), while the MIE involved in positive he significance of the passensus (TRTCGC) ancer (WESTON 1988). I with the enhancer is bliced transcripts. The nchor, and N-linked F2), and may also be

#### 5.3 UL37 IE Gene

A second UL IE transcription unit was identified in the region of the AD169 HindIII J and Z fragments (WILKINSON et al. 1984). The sequence of this region together with mapping data for three mRNAs has been published (KOUZARIDES et al. 1988). A 3.4kb IE transcript was shown to be spliced from four exons and, like HCMV-US3, encodes a potential glycoprotein. This mRNA is 3' coterminal with a 1.65-kb transcript which can be detected in the IE phase but is more abundant at the late stage of infection. The predicted product of the 1.65-kb mRNA is a member of the US22 homologous protein family (Sect. 7.2). A 1.7-kb transcript utilizing the same promoter as the 3.4-kb mRNA is most abundant at IE times but can also be detected late in infection. Of the mapped transcripts only this RNA contains the HCMV-UL38 (HZLF3) reading frame. However, expression of UL38 from this transcript would require the upstream UL37 exon 1 to be bypassed; alternatively, the frame may be read from an uncharacterized low-abundance transcript (KOUZARIDES et al. 1988). A 40-kDa protein synthesized in vitro from HindIII Z or J hybrid-selected mRNA is consistent with translation from UL38 (WILKINSON et al. 1984). Although a slightly longer reading frame completely overlaps UL38 on the opposite strand (UL38X, not shown), analysis of third position G + C contents suggests that of the two opposing frames UL38 is more likely to be coding (84.3% vs 62.8% G + C).

# 6 Early and Late Genes

Immediate-early proteins are required to activate genes which establish the early or delayed early (E or DE) phase of infection, the outcome of which is the replication of the viral genome. Late genes are expressed at high levels after DNA replication and are likely to encode most of the structural and assembly proteins of the virus. The distinction between E and late phases is blurred for some genes, and is further complicated by posttranscriptional regulation of gene expression (DEMARCHI 1983; GEBALLE et al. 1986a; Goins and Stinski 1986). In the following sections we attempt to correlate the available information on E and late genes with our sequence data. The organization of the following sections superficially resembles the viral timetable as convenient, but may be similarly inscrutable in places.

#### 6.1 Major Early Transcripts

The most abundantly transcribed region of HCMV at early times postinfection is situated in the long repeats of the virus and encodes a 2.7-kb transcript of unknown function (Greenaway and Wilkinson 1987; Hutchinson et al. 1986; McDonough et al. 1985). An early transcript of similar size also originates in RL of HCMV Towne (Wathen and Stinski 1982), one copy of which can be deleted without compromising viability in cultured human fibroblasts (Spaete and Mocarski 1987).

GREENAWAY and WILKINSON (1987) determined a 6220-bp sequence in HCMV AD169 which encompasses the gene for the 2.7-kb transcript. Their sequence is equivalent to positions 1635-7859 of Fig. 3 viewed in the opposite orientation. (We refer only to TRL sequence positions for clarity.) It contains two ambiguities and differs from our sequence at nine positions. However, only one of these is located within the major early transcription unit; the doublet CC beginning at position 3386 of GREENAWAY and WILKINSON (1987) is a triplet in our sequence. The open reading frame corresponding to the predicted translation product of the major 2.7-kb transcript as mapped by these authors is TRL/IRL4. The translational start is suggested to be the fourth ATG from the start of the transcript and occurs at position 4294 in our sequence. This is not a Kozak ATG in that it does not have a purine at -3 or a G at +4 (Kozak 1981, 1982). However, two upstream ATG codons fit the Kozak consensus. The first has the sequence CGGATGG and is followed by a stop codon after seven amino acids. The second has the sequence GAGATGA and begins a 35-amino-acid reading frame. These codons have been shown to inhibit translation from a downstream AUG and may therefore be cisregulatory signals (GEBALLE et al. 1986a; GEBALLE and MOCARSKI 1988). Upstream Kozak consensus ATGs precede a number of other HCMV genes, and suggest a general phenomenon in HCMV translational regulation. However, this role has yet to be demonstrated directly and so far no products have been found for the major early transcript. A less-abundant 2.0-kb transcript has been mapped immediately downstream of the 2.7-kb transcript in the Eisenhardt strain of HCMV (HUTCHINSON et al. 1986). The predicted polyadenylation site is conserved in AD169, beginning at position 6552 in our sequence. However, a similar-sized transcript was not detected (McDonough et al. 1985). It is also not possible to suggest a 5' end from the Eisenhardt strain restriction map data. There are, however, no reading frames that might obviously be utilized in this region with the exception of TRL/IRL6. A minor 1.3-kb immediate-early RNA and a 1.2-kb late RNA have also been mapped to this general region (McDonough et al. 1985; Hutchinson et al. 1986); the latter is detected at early times postinfection but is most abundant in the late phase. The polyA signal for this message was located precisely in the Eisenhardt strain and begins at position 6365 of our sequence (HUTCHINSON et al. 1986). These authors also mapped the start of the transcript by nuclease protection and found no evidence for splicing. Further mapping and sequencing studies, the latter performed on genomic as well as cDNA clones, were used to predict a coding frame of 254 amino acids within the transcript (HUTCHINSON and Tocci 1986). The region sequenced corresponds to positions 6300-7468 of Fig. 3 (displayed in the IRL orientation). However, in AD169 the 254-amino-acid reading frame is disrupted by three stop codons and two frameshifts relative to the Eisenhardt sequence and is identical in both repeats. Our data and those of GREENAWAY and WILKINSON are in agreement for the region spanned by the putative reading frame. We are unable to predict a reading frame which may be translated from this message in AD169. The first Kozak ATG occurs 164 nucleotides downstream of the transcription start predicted by HUTCHINSON and TOCCI (1986), but is followed by a stop codon after 42 intervening amino acid codons. Furthermore, although TRL/IRL7 is located in this message, it is over 500 bp from the predicted start. If

these differences between the Eisenhardt and AD169 strains are genuine, sequencing from other strains would be useful in assessing their biological relevance.

#### 6.2 Enzymes of Nucleotide and DNA Metabolism

#### 6.2.1 Nucleotide Metabolism

HONESS (1984) postulated that differences in overall base compositions between herpesvirus genomes reflect the ability of the viruses to modulate and utilize the nucleotide pool available for DNA synthesis. This hypothesis appears to be borne out in the case of the two closely related α-herpesviruses, HSV-1 and VZV. The latter is AT rich and encodes a thymidylate synthase, which does not have a homolog in the G+C rich HSV-1 genome (THOMPSON et al. 1987; McGeoch et al. 1988a). A parallel exists in the less closely related y-herpesviruses Epstein-Barr virus (EBV) and herpesvirus saimiri (HVS); the latter A + T rich virus encodes thymidylate synthase and dihydrofolate reductase, which both seem to be absent from the G+Crich EBV (Honess et al. 1986; Trimble et al. 1988; Baer et al. 1984). All four viruses also encode deoxyribonucleoside kinases, and hence can utilize the salvage pathway of dNTP synthesis (McKnight 1980; Davison and Scott 1986; Littler et al. 1986; Gompels et al. 1988a). These enzymes differ in their substrate specificity and their main role might be to allow the exploitation of specific cell types, such as may occur in latency. Genes for ribonucleotide reductase, a key enzyme in deoxyribonucleotide synthesis, have been found in HSV, VZV, and EBV as well as other herpesviruses, but have not so far been identified in HVS (GIBSON et al. 1984; DAVISON and SCOTT 1986; NIKAS et al. 1986). The HCMV genome is relatively G + C rich (Fig. 2) and it will be of interest to determine if its complement of enzymes is consistent with the theory of Honess (1984). HCMV does not appear to encode a thymidine (deoxyribonucleoside) kinase (TK); the position in the AD169 genome equivalent to the TK locus in other herpesviruses is deleted relative to the other herpesviruses (Fig. 3). However, HCMV is sensitive to the nucleoside analog DHPG, and a resistant mutant of AD169 has been isolated which accumulates less of the triphosphate form of the drug (BIRON et al. 1986). This may indicate that a deoxyribonucleoside kinase is encoded at some other locus.

The partial conservation of a ribonucleotide reductase (RR) homolog is more puzzling. Mammalian cells contain an iron-tyrosyl radical enzyme, which is the type found in herpesviruses (SJOBERG et al. 1985; REICHARD 1989). The enzyme has an  $\alpha_2\beta_2$ -structure; the HCMV-UL45 gene product is homologous to the  $\alpha$ -(large) RR subunit, and HCMV-UL45 is positionally conserved with the gene for this subunit in other herpesviruses. However, the gene for the  $\beta$ -(small) subunit does not appear to be conserved; HCMV-UL44 is positionally analogous to the small RR gene in other herpesviruses but encodes a set of late DNA-binding proteins (see Sect. 6.5). The small subunit contains the active tyrosyl radical and would be essential for function. Thus it is not clear at present if HCMV is capable of expressing a fully active ribonucleotide reductase. Although we have used loosely defined motifs to search all the predicted reading frames for a potential active site, no obvious

candidates were identified. Several explanations could account for this. For example, if HCMV-UL45 is functionally conserved with the large subunit, it might usurp the place of its cellular counterpart which mediates allosteric control as well as being involved in catalysis. Herpesviral reductases appear to be unregulated, indicating that the function is either unnecessary or perhaps detrimental in the viral context (Laniken et al. 1982; Avert et al. 1983). It is also possible that synthesis of one or both of the cellular subunits is upregulated during viral infection (STINSKI 1977). The genes for the human RR subunits are unlinked; the  $\alpha$ -subunit gene is on chromosome 11 (Engstrom et al. 1985), and the  $\beta$ -gene on chromosome 2 (Yang-Feng et al. 1987). Finally, it is worth mentioning that another key allosteric enzyme of nucleotide metabolism is dCMP deaminase; this enzyme converts dCMP to dUMP, which is the substrate for thymidylate synthase. Hence it might be an appropriate enzyme for herpesviral repertoires, particularly those which have devolved to an A + T bias.

#### 6.2.2 DNA Replication

A set of seven HSV-1 genes has been shown to be essential for the replication of an HSV-origin-containing plasmid (Wu et al. 1988; McGeoch et al. 1988b). The HCMV homologs of four of these have been identified by sequence analysis. HCMV-UL54 encodes the DNA polymerase (KOUZARIDES et al. 1987a; HEILBRONN et al. 1987) and HCMV-UL57 the major DNA-binding protein (MDBP). The latter = I CPS sequence shows 72% identity over a length of 1160 aligned amino acids to the MDBP of simian CMV (Colburn) (Anders and Gibson 1988; Anders and Gibson, personal communication). HCMV-UL105 encodes a homolog to HSV-UL5, which is probably a helicase enzyme (CRUTE et al. 1988, 1989). Helicases belong to a superfamily of proteins with functions in replication and/or recombination (HODGMAN 1988). A nucleotide-binding site in UL105 (MARTIGNETTI 1987), of the type GxxGxGK (where x = any amino acid), is common to the other members of the superfamily. HCMV-UL70 is the fourth HCMV gene with an obvious replication gene counterpart, in HSV-UL52. The product of HSV-UL52 is part of a helicaseprimase complex in HSV-1-infected cells which also contains the HSV-UL5 and UL8 proteins (CRUTE et al. 1989). HCMV genes UL102 and UL101 are positionally equivalent to HSV-UL8 and UL9 respectively, although they show no clear-cut homology. However, HCMV-UL102 is a similar length to HSV-UL8 (798 and 750 residues respectively). HSV-UL9 encodes an origin-binding protein (OLIVO et al. 1988), and the positive identification of its HCMV counterpart may require the identification of an HCMV origin of replication.

#### 6.2.3 DNA Repair

The gene for uracil-DNA glycosylase, which is involved in base excision repair, was identified in HSV-2 and is conserved in the sequenced herpesviruses (WORRAD and CARADONNA 1988; BAER et al. 1984; DAVISON and SCOTT 1986; MULLANEY et al. 1989). The corresponding HCMV-reading frame is HCMV-UL114, which is the last frame at this end of UL with detectable homology to sequenced human herpes-

viruses. A dUTPase gene is also conserved in herpesviruses, albeit less well than uracil-DNA glycosylase (Preston and Fisher 1984; Davison and Scott 1986; Baer et al. 1984). The HCMV homolog is HCMV-UL72.

#### 6.2.4 Deoxyribonuclease

A deoxyribonuclease gene found in HCMV appears to be ubiquitous in herpesviruses, as homologs are found in HHV-6 (LAWRENCE et al., unpublished results), EBV (ZHANG et al. 1987), HSV (McGEOCH et al. 1986), and VZV (DAVISON and SCOTT 1986). The role of this enzyme is currently unknown, but it may be involved in cleavage of viral concatemers and/or the processing of genome termini (CHOU and ROIZMAN 1989).

#### 6.3 Phosphotransferase

The putative phosphotransferase encoded by HCMV-UL97 is conserved in the human herpesviruses and distantly related to the protein kinase family (CHEE et al. 1989a; SMITH and SMITH 1989). Interestingly, some of the most conserved amino acids in protein kinases are variant in the herpesvirus sequences. One motif where these differences occur is shared with bacterial phosphotransferases, which vary at the same amino acid positions as do the herpesvirus proteins (BRENNER 1987). Hence it remains to be shown if HCMV-UL97 and its homologs are in fact conventional kinases. Whatever its specific role, the preservation of this gene in all of the recognized herpesvirus lineages and HHV-6 implies an important or indispensable contribution to the viral life cycle. None of the other HCMV-reading frames we have screened have detectable homology to known protein kinase motifs, which are seen in the α-herpesvirus US-encoded kinases (McGEOCH and DAVISON 1986).

#### 6.4 Early Phosphoprotein Genes

The gene for a set of phosphoproteins sharing a common N-terminus has been mapped by WRIGHT et al. (1988). These authors mapped the termini of two spliced 2.2-kb early transcripts, raised an antiserum against a synthetic peptide predicted from a 5'-terminal portion of the 5'-exon sequence (KOUZARIDES et al. 1983; RASMUSSEN et al. 1985a) and used this to detect four proteins of 34, 43, 50, and 84 kDa in infected cells (WRIGHT et al. 1988). Pulse-chase experiments did not suggest that any of the proteins were derivative in nature. Although the mapping data are as yet incomplete, it would thus appear that all four proteins are coded in alternatively spliced mRNAs sharing a 5' exon. This exon corresponds to UL112 in our sequence. A 279-bp portion of the UL113 frame (positions 161 503–161 781) is flanked by potential acceptor and donor sites, and may correspond to a 280-bp exon mapped by STAPRANS and SPECTOR (1986). The downstream exons may also be derived from UL113, which extends to position 162 797. A polyA signal begins at position 162 909, but there is an alternative polyA sequence coinciding with the end

of UL113 (ATTAAA, beginning at position 162796). It therefore seems likely that one or both of these signals indicates the end of the transcription unit. The four proteins were found to be predominantly contained in the nuclear fraction of infected cells, and were not shown to be virion structural proteins in preliminary studies (WRIGHT et al. 1988).

#### 6.5 Late DNA-Binding Proteins

Mocarski and coworkers utilized immunological screening of a \$\lambda\text{gt11}\$ expression library to map a group of proteins known as the ICP36 family to the HCMV-UL44-reading frame (Mocarski et al. 1985; Leach and Mocarski 1989). The ICP36 proteins gravitate to the nucleus, include phosphorylated and glycosylated species, and are DNA-binding proteins (Pereira et al. 1982; Gibson 1983; Mocarski et al. 1985). Regulation of HCMV-UL44 gene expression is manifested in both early and late transcription from different TATA boxes, and delayed translation of early message (Leach and Mocarski 1989; Geballe et al. 1986b). The significance of this complex control is unclear, although it is interesting that the 3'-end of the reading frame is overlapped by a gene encoding a small RNA in the same orientation. This gene is probably transcribed by RNA polymerase III (Marschalek et al. 1989).

## 6.6 Capsid Proteins

The gene for the major capsid protein (MCP) was identified by sequence homology to the MCP sequences of other human herpesviruses and the assignment confirmed immunologically (CHEE et al. 1989b). The MCP is encoded by the HCMV-UL86 reading frame. Homology searches show that the predicted protein sequence of another frame, HCMV-UL47, is similar to a region of the human herpesvirus major capsids corresponding approximately to positions 1080-1170 of Fig. 3 in (CHEE et al. 1989b). Although this match may be fortuitous, the alignment of HCMV-UL47 to conserved capsid sequences makes it of interest. However, the sequence is not obviously conserved in the EBV, VZV, and HSV-1 reading frames collinear with HCMV-UL47.

A second capsid protein, which is a constituent of incomplete capsids, has been mapped in the UL region of three CMV strains (Robson and Gibson 1989). Several lines of evidence implicate this protein in DNA packaging and/or capsid assembly (Preston et al. 1983; Irmiere and Gibson 1985; Lee et al. 1988; Rixon et al. 1988). The gene for the putative assembly protein is conserved in the human herpesviruses, and is predicted to encode proteins of 635, 605, 605, and 708 amino acids in HSV, VZV, EBV, and HCMV respectively (McGeoch et al. 1988a; Davison and Scott 1986; Baer et al. 1984) (Table 1). The sequence of a 1-kb cDNA derived from the Colburn strain of CMV shows homology only to the 3' half of HCMV-UL80, consistent with the 37-kDa size of the Colburn strain assembly protein which is probably processed at the carboxy terminus (Robson and Gibson 1989). A larger transcript of 1.8-kb is also encoded at this locus. The 5' portion of the HCMV-UL80

frame is conserved in the other sequenced human herpesviruses. It thus seems likely that at least two seperate proteins are encoded by HCMV-UL80, with a TATA box at position 115 992 being used to produce the assembly protein transcript (ROBSON and GIBSON 1989). This TATA box is located within 15 bp which are identical in Colburn and AD169 (NECKER et al. 1988 cited in ROBSON and GIBSON 1989). It is also noteworthy that the ATG downstream of this TATA box does not fit the Kozak consensus in either of the two CMV sequences. In contrast to the major DNA-binding protein (Sect. 6.2.2), the sequences for the putative assembly protein are quite divergent. The Colburn sequence from the first methionine of the predicted cDNA reading frame exhibits approximately 40% identity to the carboxy-terminal 371 amino acids of HCMV-UL80.

## 6.7 Structural Phosphoprotein Genes

HCMV virions contain three main phosphoproteins which appear to be located in the virion tegument (ROBY and GIBSON 1986). The largest of these is approximately 150 kDa in size, constitutes approximately 20% of virion protein content (IRMIERE and GIBSON 1983), and is also modified by O-linked glycosylation (BENKO et al. 1988). A 6360-bp region containing the pp150 gene sequence (which corresponds to the reading frame HCMV-UL32) has been published and spans positions 37 157-43 516 of Fig. 3 viewed in the opposite orientation. A late 6.2-kb mRNA was mapped in this region, and its termini delineated. Some processing at an alternative polyA site (ATTAAA) downstream of the orthodox signal was demonstrated. The major RNA species is predicted to encode pp150 although a range of smaller RNA species was also detected (JAHN et al. 1987).

The two other major phosphoproteins located in virions are pp71 and pp65, also known as the upper and lower matrix phosphoproteins respectively. The 65-kDa phosphoprotein is also glycosylated (CLARK et al. 1984; PANDE et al. 1984), and pp71 may be similarly modified. The genes for pp65 and pp71 are located in the HindIII L, c, b region of the genome and correspond to reading frames HCMV-UL83 and UL82 respectively. The sequence of a HindIII/BglII fragment containing these genes has been reported, and corresponds to nucleotides 117 276-121 377 of Fig. 3 viewed in the opposite orientation (RUGER et al. 1987). The published sequence is in error; position 212 (121 166 in the genome) is shown as a G but should be read as a C. This change does not affect the predicted coding sequences. Two transcripts which appear to be 3' coterminal were mapped in this region. They are an abundant 4-kb mRNA and a low-level 1.9-kb mRNA. The 5' ends of both transcripts have been located, but surprisingly no TATA box is proximal to the 4-kb transcription unit (RUGER et al. 1987). The 4-kb message should encode pp65, while the shorter mRNA would allow pp71 to be translated. The mRNA encoding pp65 (ICP27) in HCMV Towne appears to be produced efficiently both early and late in infection, but is not translated at high levels until the late phase (GEBALLE et al. 1986b; but see DEPTO and STENBERG 1989). The gene sequences for two further structural phosphoproteins have been reported (MEYER et al. 1988; Davis and Huang 1985). The data of MEYER et al. (1988) represent positions 143 791-145 191 of our sequence in the HindIII R

Table 3. HCMV glycoprotein

| Table 3. HCMV glycoprot selection of frames was bas located on the putative cylglycoprotein exons (Table that some of the potential | tein genes. A c<br>sed on criteria<br>toplasmic face<br>1), while some<br>glycoproteins | otein genes. A compilation of signal and anchor sequences and numbers of possible N-linked glycosylation sites in \$4 readi ased on criteria defined by McGeoch (1985). A questionmark after the number of NXT/S sites indicates that at least one sytoplasmic face of the sequence. Twenty-two of the frames lack at least a signal or an anchor sequence. Many of these 1), while some may encode unusual or non-N-linked glycoproteins like the pseudorabies gp50 (Petrovskis et al. 1986). It all glycoproteins may be fixed to membranes by glycosyl-phosphatidylinositol anchors (Ferguson and Williams 1988) | pers of possil<br>the number of<br>least a signa<br>like the pseu<br>idylinositol | Table 3. HCMV glycoprotein genes. A compilation of signal and anchor sequences and numbers of possible N-linked glycosylation sites in 54 reading frames. The selection of frames was based on criteria defined by McGeoch (1985). A questionmark after the number of NXT/S sites indicates that at least one of these sites is located on the putative cytoplasmic face of the sequence. Twenty-two of the frames lack at least a signal or an anchor sequence. Many of these may represent glycoprotein exons (Table 1), while some may encode unusual or non-N-linked glycoproteins like the pseudorabies gp50 (Petrovskis et al. 1986). It is also possible that some of the potential glycoproteins may be fixed to membranes by glycosyl-phosphatidylinositol anchors (Ferguson and Williams 1988) |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frame                                                                                                                               | Strand                                                                                  | Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S/TXN                                                                             | Anchor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| HCMVTRL/IRL3                                                                                                                        |                                                                                         | MYCFLFLQKDTFFHEQFLARRHAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                   | IGVLVVVCGFYFFLYLSMTVFLFFVLIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| HCMV[RL]                                                                                                                            |                                                                                         | MYPRVMHAVCFLALSLVSYVAVCAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                 | <b>EPITMLGAYSAWGAGSFVATLIVLLVVFFVIYAR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HCMVIRL/IRLII                                                                                                                       |                                                                                         | MQTYSTPLTLVIVTSLFLFTTQGSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m                                                                                 | HCAWVSGMMIFVGALVICFLR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| HCMVTRL/IRL12                                                                                                                       |                                                                                         | MRVACRRPHHLTYRHTAYTIIIFYI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23                                                                                | SRTVWTIVLVCMACIVLFFAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| HCMVIRLI3                                                                                                                           |                                                                                         | MDWRFTVMWTILISALSESCNQTCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HCMVIRUI4                                                                                                                           |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ٣                                                                                 | HAVWAGVVVSVALIALYMGSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| HCMVIII 2                                                                                                                           | ζ                                                                                       | MGMQCNTKLLLPVALIPVVIILIGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                 | HAGWAAAVVTVIMIYVLIHFNVPATLR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| HCMVUL4                                                                                                                             | )                                                                                       | MVMMLRTWRLLPMVLLAAYCYCVFG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 6                                                                               | KOIFLILVIWIVVWLKLLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| HCMVULS                                                                                                                             |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   | HTTWVTGFVLLGLTLFASLFR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| HCMVUL6                                                                                                                             |                                                                                         | MHAKMNGWAGVRLVTHCLNTRSRTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>e</u>                                                                          | LAFTYGSWGVAMLLFAAVMVLVD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| HCMVUL8                                                                                                                             |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = "                                                                               | HLALVGVIVFIALIVVCIMGWWK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| HCMVUL9                                                                                                                             |                                                                                         | MYRYTWLLWWITHIRPIOOFFYOWWK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n v                                                                               | HYSWMLIIAIILIIFIIICLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| HCMVUL10                                                                                                                            |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , m                                                                               | HSAWII IVIIIIIVVII EEEK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| HCMVULII                                                                                                                            |                                                                                         | MLLRYITFHREKVLYLAIACFFGIY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , <b>4</b> 7                                                                      | HAI WVI AVVIVIIIITEVED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| HCMVUL12                                                                                                                            | ပ                                                                                       | MLLVFLGPVNSFMKGIRDVGFGKPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · <del></del>                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HCMVUL13                                                                                                                            |                                                                                         | MLWAHCGRFLRYHLLPLLLCRLPFL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HCMVUL14                                                                                                                            |                                                                                         | MWSRVVFLRSSETQTGMGGGRLPPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                 | KIGLLAAGSVALTSLCHLLCYWCSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HCMVULI6                                                                                                                            |                                                                                         | MERRRGTVPLGWVFFVLCLSASSSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | œ                                                                                 | DIVLVSAITLFFFLLALR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| HCMVUL18                                                                                                                            |                                                                                         | MMTMWCLTLFVLWMLRVVGMHVLRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13                                                                                | RYNTMTISSVLLALLLCALLFAFLH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HCWMIII 37EX3                                                                                                                       | Ç                                                                                       | MLGIRAMLVMLDYYWIQLITNNDTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>:</u>                                                                          | RYMYLFSVSCAGITGTVSIILVSLSLLILICYYR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| HCMVUL37EX1                                                                                                                         | ט ני                                                                                    | MSPVYNI I GSVGI I AFWVESVPWI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>e</u>                                                                          | HWALLSICTVAAGSIALLSLFCILLIGLR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| HCMVUL40                                                                                                                            | Ú                                                                                       | MNKFSNTRIGETCAVMAPRTIIITV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , ,-                                                                              | ETWANTY IN A CONTROLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| HCMVUL42                                                                                                                            | Ų                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n =                                                                               | VWTEALL WALL CHEST AVAILABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| HCMVUL50                                                                                                                            | ၁                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | : ~                                                                               | RWITALLY VALCOUFLAY VFI VVINK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| HCMVUL55                                                                                                                            | ပ                                                                                       | MESRIWCLVVCVNLCIVCLGAAVSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21                                                                                | KNPFGAFTIILVAIAVVIITVIIVTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| HCMVUL67                                                                                                                            | ပ                                                                                       | MVRSLEEIIYIIYSDDSVVNISLAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HCMVUL74                                                                                                                            | ပ                                                                                       | MEWNILYLGLLYLSYVAESSGNNSS<br>MGRKEMMVRDVPKMVFLISISFLLV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30 <sup>3</sup>                                                                   | ELSLSSFAAWWTMLNALILMGAFCIVLR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                     |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| RLLMMSVYALSAIIGIYLLYR<br>RLLAYGVLAFLVFMXIILLYYTYMLAR |                          | RAFMIVILTQVVFVVFIINASFIWSWTFR | DLGLLYAVCLILSFSIVVAALWK   | DTYPTATALCGTLVVVGIVLCLSLASTVR | RIFMIVCLWCVWICLSTFLIAMFH |                           | <b>EIMKVLAILFYIVTGTSIFSFIAVLIAVVYSSCCK</b> | HVAWTIVFYSINTLLVLFIVYVTVD | RTLLVYLFSLVVLVLLTVGVSAR   | HGFFAVTLYLCCGITLLVVILALLCSITYE | RWLTIILYVFMWTYLVTLLQYCIVR | LELGVVIAICMAMVLLLGYVLAR | HVALFSFGVQVACCVYLR        | DYGAILKIYFGLFCGACVITR     | KSAQYTLMMVAVIQVFWGLYVK    | ,                        |
|------------------------------------------------------|--------------------------|-------------------------------|---------------------------|-------------------------------|--------------------------|---------------------------|--------------------------------------------|---------------------------|---------------------------|--------------------------------|---------------------------|-------------------------|---------------------------|---------------------------|---------------------------|--------------------------|
| v ∞                                                  | 4                        | 6.                            | _                         | ت.                            | •                        | ٣                         | ₩                                          | _                         | -                         | -                              | 23                        | 7                       | 7                         | 7                         | -                         | 4                        |
| MRPGLPPYLTVFTVYLLSHLPSQRY                            | MCSVLAIALVVALLGDMHGVKSST | MYRAGVTLLVVAVVSLGRWDVVTMA     | MWGCGWSRIIVLLPLMCMALMARGT | MERNSLLVCQLLCLVARAAATSTAQ     |                          | MLRLLLRHHFHCLLLCAVWATPCLA | MPAPRGLLRATFLVLVAFGLLLHID                  | MNNLWKAWVGLWTSMGPLIRLPDGI | MKPVLVLAILAVLFLRLADSVPRPL | MDLLIRLGFLLMCALPTPGERSSRD      | MRIQLLLVATLVASIVATRVEDMAT | MRRWLLVGLGCCWVTLAHAGNPY | MILWSPSTCSFFWHWCLIAVSVLSS | MLRRGSLRNPLAICLLWWLGVVAAA | MNLVMLILALWAPVAGSMPELSLTL | MNLEQLINVLGLLWIAARAVSRVG |
| υυ                                                   | S                        | ပ                             | O                         |                               | O                        | ပ                         | O                                          | O                         | O                         | O                              | ပ                         | O                       | U                         | U                         | U                         |                          |
| HCMVUL75<br>HCMVUL118                                | HCMVUL119                | HCMVUL120                     | HCMVUL121                 | HCMVUL124                     | HCMVUL129                | HCMVUL130                 | HCMVUL132                                  | HCMVUS2                   | HCMVUS3                   | HCMVUS6                        | HCMVUS7                   | HCMVUS8                 | HCMVUS9                   | HCMVUS10                  | HCMVUSII                  | HCMVUS34                 |

fragment and show the gene for a 28-kDa protein encoded by a late 1.3-kb RNA. MARTINEZ et al. (1989) and MARTINEZ and ST. JEOR (1986) mapped a 25-kDa protein to the same locus and assigned a 1.6-kDa late mRNA as the message. These RNAs are likely to be initiated from one or both of two TATA boxes proximal to HCMV-UL99. An HCMV Towne 1.4-kb late mRNA localized to this region may also denote HCMV-UL99 (Pande et al. 1988). However, the Towne protein migrates as a 32-kDa protein. If the same frame is in fact being used, nontrivial explanations for the difference could be invoked at the genetic, transcriptional, and protein-processing levels. It is interesting to note that a minor 27-kDa species was detected by Pande et al. (1988) in infected cells and virions.

An example of a phosphoprotein gene that appears not to be conserved between HCMVs Towne and AD169 was mapped and sequenced from passage 36 of HCMV Towne (Davis et al. 1984; Davis and Huang 1985). This gene encodes an abundant late transcript, and immunological evidence suggests that its product is a 67-kDa nonglycosylated phosphoprotein found in virions. The sequenced fragment corresponds very approximately to a region of AD169 HindIII D beginning at about position 95 500. There appear to be significant differences between the two genomes in this region. These include numerous point and frameshift mutations and a deletion of 61 bp in Towne relative to AD169. A consequence of some of these differences is the disruption of the putative Towne reading frame in AD169, although a portion of the predicted phosphoprotein sequence is preserved in HCMV-UL65. The reported sequence was not determined fully on both strands, and not all sequenced fragments were shown to be contiguous. Hence further comparative sequence analysis and transcript mapping will be necessary before these findings can be interpreted unambiguously, particularly as the equivalent region in AD169 contains some potential splice sites. A gene which is posttranscriptionally regulated by an mRNA 3'-end processing event was partially sequenced and shown to contain a potential stem-loop structure (Goins and Stinski 1986). This sequence maps to positions 96 753-97 076, and may therefore correspond to the 3' end of a transcription unit spanning HCMV-UL65. The putative stem-loop structure in the Towne sequence is conserved in AD169, although there are three deletions relative to AD169 clustering in the 3'-terminal 25 nucleotides of the published sequence.

# 6.8 Surface Glycoproteins

The importance of glycoproteins as surface antigens has made the major HCMV glycoproteins a focus for characterization and functional studies. A total of 54 reading frames have now been found in the sequence that have characteristics of glycoprotein genes or of exons of glycoprotein genes. These are presented in Table 3, which shows the predicted signal sequences, the number of N-linked glycosylation sites, and the anchor sequences. Twenty-two of these frames lack either a signal or an anchor. In the following sections we consider two immunologically important glycoproteins, and two which have homology to host immunoglobulin superfamily proteins. Known IE glycoprotein genes and glycoprotein gene families are considered separately in Sects. 5 and 7 respectively.

#### 6.8.1 Glycoproteins B and H

There are seven virion glycoproteins encoded by HSV-1 and one putative glycoprotein (US5) predicted from the sequence (McGeoch et al. 1988a). Of these five have counterparts in the sequence of VZV (DAVISON and SCOTT 1986) and only two in the genome of EBV (BAER et al. 1984). In addition, EBV has the gp350/220 (BLLF1a,b), BILF1, and BLRF1 glycoproteins. The latter has a homolog in HCMV-UL73. Of the other herpesvirus glycoproteins, only homologs to gB (HCMV-UL55) (CRANAGE et al. 1986; KOUZARIDES et al. 1987b; MACH et al. 1986) and gH (HCMV-UL75) (CRANAGE et al. 1988; PACHL et al. 1989) have been found in the HCMV sequence, and so gB and gH are common to all of the well-studied herpesviruses. The conservation of gH in distantly related herpesviruses (GOMPELS et al. 1988b) and the production by an HSV-1 ts mutant of noninfectious virus lacking gH (Desat et al. 1988) underpin the substantial body of immunological evidence that gH is essential for virus infectivity. Monoclonal antibodies to HCMV gH can neutralize virus in vitro unassisted by complement (RASMUSSEN et al. 1984; CRANAGE et al. 1988). Antibodies to gB are also able to neutralize virus in vitro, but require complement (CRANAGE et al. 1986). A virion envelope glycoprotein complex has been shown to contain gB, but the structural nature of this entity awaits definition (see, for example, FARRAR and GREENAWAY 1986; GRETCH et al. 1988a). The unmodified gB precursor in AD169 is predicted to be 102 kDa in size. This is processed and glycosylated to give a 145-kDa species which is proteolytically cleaved to produce a 55-kDa species, both of which can be detected in infected cells. However, the residual 90-kDa amino-terminal cleavage product is not detected (Cranage et al. 1986). The site of cleavage has been mapped to Arg<sub>450</sub> in the gB of HCMV Towne and by analogy processing of the AD169 gB is likely to occur after Arg<sub>459</sub> (Spaete et al. 1988). These authors also compare the gene and protein sequences of gB and find identities of 94% and 95% respectively between the two HCMV strains. (A similar level of conservation is found between the gH sequences of these strains; PACHL et al. 1989.) There appear to be noteworthy differences in the kinetics of gB transcription in these two strains. The AD169 gB transcripts are produced late in infection (KOUZARIDES et al. 1987b) while the Towne gB mRNA is of the early class. However, in HCMV Towne infected cells gB is not detected immunologically until late in infection (RASMUSSEN et al. 1985b), implying that the two strains might use different strategies to achieve a similar result in the regulation of gB expression.

#### 6.8.2 HLA Homolog

The identification of an HCMV glycoprotein with homology to class I major histocompatibility (MHC) antigens has implications for host-virus interactions (HCMV-UL18, BECK and BARRELL 1988). The crystal structure of a human class I histocompatibility molecule (HLA-A2) has been solved (BJORKMAN et al. 1987a). making it possible to predict that the HLA homolog is likely to have three extracellular domains analogous to the class I  $\alpha$ 1-,  $\alpha$ 2-, and  $\alpha$ 3-domains. The latter contains a  $\beta_2$ -microglobulin ( $\beta_2$ m)-binding loop which is partially conserved in the

HCMV sequence (Beck and Barrell 1988). In cellular HLA molecules, the α3domain and associated  $\beta_2$ m are both  $\beta$ -sandwich structures surmounted by the  $\alpha$ land  $\alpha 2$ -domains which each contain a long  $\alpha$ -helical region. A groove between these helices forms an antigen-binding cleft while surface residues may be involved in binding to a T-cell receptor (TCR) (BJORKMAN et al. 1987b). In contrast to the cellular sequences, both the  $\alpha 1$ - and  $\alpha 2$ -domains in the HCMV homolog are potentially heavily glycosylated as they contain a total of ten NXS/T motifs. Three or four of these motifs are located in the predicted helical and interhelical domains and hence might have a direct bearing on any antigen or TCR binding ability of the molecule. The protein expressed in vaccinia recombinants is in fact heavily glycosylated (H. Browne and A. Minson, personal communication). In light of recent evidence that murine CMV can prevent the association of specific viral antigens with MHC (DEL VAL et al. 1989), a role for the HCMV HLA homolog in infected cells can be proposed. That is, the viral protein may compete with cellular HLA for the binding of one or more specific viral antigens, and consequently interfere with their presentation on the cell surface (Townsend et al. 1989). While it is also possible that  $\beta_2$ m binding in the HCMV tegument may be due to the HLA homolog, no evidence for a link between the two has yet been presented (STANNARD 1989; GRUNDY et al. 1987a, b). Whatever the function of the protein, when coexpressed with  $\beta_2$ m from vaccinia vectors it is capable of associating with  $\beta_2$ m, which can then be detected on the cell surface (H. Browne and T. Minson, personal communication). Finally, it should be noted that this gene does not have a homolog in the other sequenced human herpesviruses, and is found in a region which appears to be unique to  $\beta$ -herpesviruses.

# 6.8.3 T-Cell Receptor Homology

Even more provocative than the identification of a HLA homolog is the finding that HCMV-UL20, which is in close proximity to the HLA-like gene, encodes a protein with similarity to T-cell receptor \gamma-chains (BECK and BARRELL, unpublished observations). However, the match is marginal in nature, and alignment of a single region with both the constant (Cy) and variable (Vy) TCRy-regions is possible. The former alignment shows approximately 16% identity over 194 amino acids, while the latter has approximately 27% identity over 82 amino acids. Although the C7 alignment matches four cysteines, two on each side of the transmembrane domain, the remainder of the alignment is less convincing. In contrast, the Vy alignment contains at least three localized clusters of homology including a highly conserved cysteine residue. However, a disulfide bond formed within Vy may not be conserved; in HCMV-UL20 the second cysteine residue is located in the putative transmembrane domain. It is clear that no conclusions can be drawn regarding the significance of this match on the basis of the alignment. As in the case of the HLA homolog, sequence data from wild-type isolates might clarify the situation. If HCMV-UL20 is in fact a TCR homolog, the virus could exploit the interaction between TCR $\gamma$  and CD3 to infect T cells, which might parallel the interaction of CD4 with the HIV gp120 protein (Borst et al. 1987; Brenner et al. 1987). Furthermore, it is interesting to note that a feline retrovirus has been shown to encode a  $TCR\beta$ -gene (Fulton et al. 1987).

#### 7 Gene Families

In addition to gB and gH, several small glycoprotein genes were identified in HCMV, in US (WESTON and BARRELL 1986). These are arranged tandemly and tend to cluster as homologous blocks of reading frames, constituting a large proportion of the gene families found in HCMV. Interestingly, the HSV US glycoprotein genes are also clustered (DAVISON and McGEOCH 1986; McGEOCH et al. 1988a). We currently recognize nine sets of homologous genes in the AD169 genome. There are three pairs (UL25 and UL35; UL82 and UL83; and US2 and 3) and six larger groups. Of the latter, three occur in US where they account for a total of at least 21 genes (WESTON and BARRELL 1986); one family occurs in UL and RL; and two families are partitioned between the long and the short regions of the genome (Table 1). The discovery of redundant protein coding sequences outside repeat regions was unexpected and presents a contrast to those single genes encoding multiple products (for example, see Sects. 6.4 and 6.5). Their presence also appears to contradict the virally frugal gene layout of HCMV. As individual family members are likely to have subtle differences in function, this paradox may be difficult to resolve. The characteristics of four gene families are discussed below. Proteins have been recognized for three of these, while the fourth is homologous to a class of cellular receptors. The evolutionary implications of these findings are discussed in Sect. 8.

#### 7.1 The RL11 Family

This family comprises fourteen members distributed in the long repeats and a portion of UL adjacent to TRL (Table 1; Fig. 1). The sequences are characterized by a motif which resembles the cellular Thy-1 in a region which is conserved with some other members of the immunoglobulin superfamily (C.A. HUTCHISON III, unpublished observations). The members of the RL11 Family are predicted to be membrane glycoproteins (Table 3). This prediction has been substantiated by the immunological detection of the Towne UL4-equivalent protein in infected cells and virions (CHANG et al. 1989a). The detected 48 kd protein is expressed during the early phase of infection, and its presence in virions has led to its classification as an early structural glycoprotein (CHANG et al. 1989a). Its published amino acid sequence is 84% identical to UL4 over 150 amino acids. Multiple alignment of the RL11 family suggests that UL4 (which does not contain an anchor sequence) may be spliced to UL5 (which has an anchor but no signal or N-glycosylation sites), as their respective RL11 homologous regions appear to dovetail somewhat. However, splicing was not observed in transcript mapping experiments (CHANG et al. 1989b). Nevertheless, Chang et al. (1989a) detect a protein reduced in size from 48 kd to 27kd protein when infected cells are treated with an inhibitor of N-linked glycosylation, although the theoretical size of UL4 alone is approximately 17 kd. While this difference could be attributable to other post-translational modifications, it is noteworthy that the theoretical size of RL11, which is homologous to both UL4 and UL5, is approximately 27 kd. The mapped transcripts, which are initiated from

three different promoters, also contain the UL5 reading frame. Hence it may be of interest to further characterize the 27 kDA protein. UL8 is truncated similarly to UL5, and therefore is also a candidate for splicing. As both these frames also contain KOZAK consensus ATG codons, a potential exists for the expression of this gene family to be regulated in a complex manner.

# 7.2 The US6 Family

This family corresponds to family 2 described by Weston and Barrell (1986) and is characterized by two areas of sequence homology, the second of which (region 2 (WESTON and BARRELL 1986)) is less well conserved. The region 1 core motif can be defined as C(VY)x(DQKR) (7-10) WxxxGxF where the bracketed residues are alternatives and x is any residue. The region 2 motif is characterized by cysteine and proline residues: PCxxC (4-6) CxPxxxxPWxP. The six members of this family are predicted to be membrane glycoproteins (Tables 1 and 3). GRETCH et al. (1988b) have recently used a MAb to demonstrate that this family correlates with the gp47-52 virion envelope glycoprotein complex they described previously (GRETCH et al. 1988a). Northern hybridization revealed three early transcripts from this region, two of which were minor species. The 1.6-kb size of the major transcript was consistent with initiation from the HCMV-US11 (HXLF1) TATA box, and in vitro translation experiments suggested it was bicistronic in nature. GRETCH et al. (1988a) suggest on the basis of these data and amino acid composition analysis that the main constituents of gp47-52 might be HCMV-US10 and US11 proteins. However, no direct correlation was established between the abundance of the putative transcript and the composition of gp47-52.

## 7.3 The US22 Family

This family is distributed in UL, US and RS and sequences for eight of the thirteen recognized members have been published, including the family 4 members described by WESTON and BARRELL (1986). Genes attributed to this family contain one or more of three sequence motifs (Kouzarides et al. 1988). The first motif (ooCCxxxLxxoG, where o is any hydrophobic residue and x any residue) is found in all of the members except IRS/TRS1 and UL28. Interestingly, in HCMV-UL36 the junction of exons 1 and 2 occurs immediately before the motif (Kouzarides et al. 1988). As HCMV-UL42 ends within the motif (FLCCDKFLPG-COO-), it seems possible that this gene, and perhaps other members of the family apart from HCMV-UL36, encode spliced transcripts. The remainder of the pattern comprises two motifs which are largely hydrophobic and may overlap in function. The IRS/TRS1 genes, identical over most of their length, diverge shortly after the third motif. Apart from the conserved motifs, several of these sequences contain short runs of charged residues in their carboxy-terminal domains, and 6 of the 12 members of the US22 gene family have at least 1 N-linked glycosylation site. However, there does not appear to be any obvious correlation between these latter features. The only present correlation between this gene family and viral proteins comes from the identification of the HCMV-US22 gene product ICP22. This is an early protein localizing in the nucleus which is also detectable in the cytoplasm and may be secreted from infected cells (Mocarski et al. 1988). Interestingly, the MAb used identifying US22 does not appear to recognize any of its homologs.

### 7.4 The G-Protein Coupled Receptor (GCR) Family

Several HCMV-reading frames, mostly located in US, are predicted to be integral membrane proteins capable of spanning the membrane several times (Table 1). All of these have seven potential membrane-spanning regions. Three of the reading frames, HCMV-US27 and HCMV-US28 (originally named HHRF2 and HHRF3; WESTON and BARRELL 1986), and HCMV-UL33, show homology to the opsin family of cell surface receptors (CHEE et al., submitted). Members of this diverse family of receptors



Fig. 4. An alignment of the three HCMV G-protein-coupled receptor homologs with bovine rhodopsin (NATHANS and HOGNESS 1983), human  $\beta$ -2-adrenergic receptor (B-2-ADR) (KOBILKA et al. 1987), and porcine muscarinic acetylcholine receptor (MAR) (KUBO et al. 1986). The NXT/S motifs are underlined in the N-terminal extracellular domain and identities which correspond in at least five of the six sequences are boxed. The seven membrane-spanning helical domains are indicated by numbered bars beneath the alignment. Each transmembrane domain and its disposition is defined by a motif unique within the sequence. The alignment has been truncated within the cytoplasmic C-terminal domains which possess receptor-specific functions, and sections of 30 and 134 amino acids have been excised from the B-2-ADR and MAR sequences respectively beginning at position 248. The two conserved cysteine residues at alignment positions 117 and 203 have been shown to be essential for function in bovine rhodopsin (KARNIK et al. 1988)

transduce different signals in a variety of systems, and have roles in vision, olfaction, memory and learning, and regulation of the circulatory system, among others (DOHLMANN et al. 1987; NATHANS 1987). The best-known subgroups of this family are the rhodopsins which absorb light via bound 11-cis-retinal, the  $\beta$ -adrenergic receptors which binds catecholamine hormones, and the muscarinic acetylcholine receptors. All of the above transduce signals through the membrane by activating G proteins. HCMV-US27, US28, and UL33 show the same membrane-spanning topography, are of similar size (362, 323, and 390 amino acids respectively), and are probably unspliced. US27 and US28 also have N-linked glycosylation sites at the Nterminus in common with the cellular members of the family. Apart from the overall similarity there is homology at the amino acid level mostly in and around the membrane-spanning sequences. An alignment of these sequences is shown in Fig. 4. The homology consists of short motifs that can uniquely define each membranespanning segment. At present the function of these genes is unknown. However, the downstream signal amplification by many of these receptors involves cAMP synthesis, which is suggestive in light of the presence of cAMP-responsive elements in the major immediate-early gene enhancer (Sect. 5.1).

# 8 Relationships to $\alpha$ and $\gamma$ -Herpesvirus Genomes

The accumulated sequence data have begun to provide a broad evolutionary view of the herpesvirus family as a whole (Honess 1984; Honess et al. 1989). One feature in the evolution of herpesviruses is the movement of gene blocks within the genome, resulting in new arrangements of genes and presumably the disruption and formation of genes at recombinatorial junctions. Figure 5 shows the relationships of conserved sequences between the long unique regions of the sequenced human herpesviruses. The relationships between these regions of VZV, EBV, and HSV-1 have been analyzed previously (Davison and Taylor 1987; McGeoch et al. 1988a; McGeoch 1987). A comparison of the gene layout in HCMV HindIII F to equivalent regions in EBV and HSV-1 has also been published (KOUZARIDES et al. 1987b). As can be seen from Fig. 5, while the gene layouts of EBV and the  $\alpha$ herpesviruses are grossly more similar to each other than to HCMV, there do not appear to be any large blocks of genes that are not conserved between all three of the herpesvirus families. This is consistent with the notion that a core of herpesvirus genes is common to, and helps to define, the herpesvirus type. It also suggests that the three families of herpesviruses have diverged to such an extent that at the genetic level little else than this core set of genes remains in common between them. However, at the protein sequence level HCMV is more closely related to EBV than the  $\alpha$ -herpesviruses, while the genes within each block show widely varying levels of conservation, ranging to undetectable or nonexistent (Table 2). While sequence comparisons with other herpesviruses help in establishing cladistic relationships, the following distinctive features of the HCMV genome give additional clues to its evolutionary past:

1. 1.



UL indicated by the scale at the top of the diagram. The middle map depicts regions of EBV conserved with HCMV, and the lower map shows herpesviruses are located within the unshaded sections of the HCMV UL. The approximate boundary positions of the homology blocks within their respective genomes are marked in boldtype in kilobase pairs (positions are taken from Table 1 and BAER et al. 1984, DAVISON and SCOTT 1986; MCGEOCH et al. 1988a). Note that these numbers represent only the termini of the endmost detected homologous frames blocks in EBV and VZV (but not HSV-1) is shown relative to their published maps (BEAR et al. 1984; Davison and Scott 1986); rightward arrowheads denote collinearity. The order of the blocks within each genome is shown by a block number, these read from left to right across the genome in ascending order. Three of the five locations of nonhomologous reading frames found between the UL regions of HSV-1 and VZV are marked in the lower map (x) (McGEOCH et al. 1988a) Fig. 5. Conserved blocks of sequence between HCMV and EBV, VZV, and HSV-1. The uppermost map represents a section of the HCMV VZV and HSV-1 homologies, also to HCMV. Only the HCMV map is drawn to scale. All homologies found so far with the a- and yin each genome, and that some of these homologies are tentative (Table 2). The names of the frames are given. The orientation of each of the

The genes in HCMV that are conserved in the other herpesvirus families all appear to lie between approximately 50 to 170 kb in UL on the prototype genome. In contrast the extended HCMV gene families and the majority of the glycoprotein genes lie within US and in UL at left hand end of the prototype genome. Members of two families (the RL11 and US22 families) occur in RL and RS.

Two families (the US22 and GCR families) are partitioned between the short and the long regions of the genome. It also seems possible that the RL11, US2, and US6 families, together with HCMV-US34, are all members of a HCMV gene "superfamily" which is also partitioned between the short and long regions. These sequences all encode glycoproteins (or putative glycoprotein exons) which are mostly in the range of 200 amino acids in length. Multiple sequence alignment reveals short regions of amino acid homology between US2 and US3 and some members of the RL11 family. For example, the RL11 family anchor sequences are characterized by the motif HxxW, which is also seen in US2 (Table 3). The distinguishing motifs of the RL11 and US6 families also show some similarity, and may also be echoed in HCMV-US34:

GxF RL11 Family (7-10)Cxx (QEKR) motif: GxY(YFLI) Nx (ST) xxxx US6 Family Cxx (NQEKTY) (4-6) FLSRFNV GDF motif: NAT **VGVA CLAE** HCMV-US34:

Finally, the majority of the genes in families are present as tandemly repeated copies. These observations suggest that the HCMV gene repertoire has been expanding by gene duplication and divergence, a process which may be mediated by the HCMV DNA replication machinery (WEBER et al. 1988) and which may be related to expansion and contraction of repeat sequences (WHITTON and CLEMENTS 1984; DAVISON and McGEOCH 1986). Furthermore, there appears to have been at least one recombination event involving the long and short regions of HCMV which led to the distribution of gene families between both regions. A possible scenario for such an event might be an internal duplication of a terminal segment leading to the conversion of an ancestral non-inverting genome to a fourisomer genome. Genes partitioned between the repeats of the two new subsegments might then diverge, together with the expansion and contraction of the repeats. The characterization of other betaherpesvirus sequences may help to clarify the evolutionary history of HCMV, and it will be of interest to see if the propensity of HCMV for gene duplication is a general characteristic of the  $\beta$ -herpesviruses.

# 9 Perspectives

This project is a contribution to a set of genomic sequences which now represents the three main branches of the herpesvirus family. The prior sequencing of EBV, VZV, and HSV-1 has greatly facilitated the analysis of the HCMV genome, and features which unify this highly divergent group of viruses are now coming into focus at the genetic level. The sequences have facilitated the correlation of biological and genetic experiments, and allowed much of this work to be generalized. The growing body of relational knowledge should make it increasingly informative to begin the characterization of herpesvirus genomes by sequencing. These data will continue to provide predictions which can be tested, and which promise to shed further light on the herpesviruses and their eukaryotic environment.

Acknowledgments. We thank Jon Oram and Peter Greenaway for providing the HindIII clones used in the sequence analysis and Bernard Fleckenstein for providing the cosmid clones used for determining the overlaps of the HindIII sites. We are grateful to Tony Minson and Helena Browne for advice and for making available results prior to publication, and to Mark Stinski for comments on parts of the manuscript. M.C. thanks the Commonwealth Scholarships Commission for support.

#### References

Addison C, Rixon FJ, Palfreyman JW, O'Hara M, Preston VG (1984) Characterisation of a herpes simplex virus type 1 mutant which has a temperature-sensitive defect in penetration of cells and assembly of capsids. Virology 138: 246-259

Akrigg A, Wilkinson GWG, Oram JD (1985) The structure of the major immediate early gene of human cytomegalovirus strain AD169. Virus Res 2: 107-121

Anders DG, Gibson W (1988) Location, transcript analysis, and partial nucleotide sequence of the cytomegalovirus gene encoding an early DNA-binding protein with similarities to ICP8 of herpes simplex virus type 1. J Virol 62: 1364-1372

Avertt DR, Lubbers C, Elion GB, Spector T (1983) Ribonucleotide reductase induced by herpes simplex virus type 1. Characterisation of a distinct enzyme. J Biol Chem 258: 9831-9838

Baer R, Bankier AT, Biggin MD, Deininger PL, Farrell PJ, Gibson TJ, Hatfull G, et al. (1984) DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310: 207-211

Bairoch A (1988) Swiss-Prot protein sequence data bank release 8.0. Department de Biochimie Medicale, Centre Medical Universitaire, Geneva

Bankier AT, Barrell BG (1989) Sequencing single strand DNA using the chain termination method. In: Ward S, Howe C (eds) Nucleic acids sequencing: a practical approach. IRL, Oxford (in press)

Bankier AT, Weston KM, Barrell BG (1988) Random cloning and sequencing by the M13/dideoxynucleotide chain termination method. Methods Enzymol 155: 51-93

Batterson W, Furlong D, Roizman B (1983) Molecular genetics of herpes simplex virus VIII. Further characterization of a temperature-sensitive mutant defective in release of viral DNA and in other stages of the viral reproductive cycle. J Virol 45: 397-407

Beck S, Barrell BG (1988) Human cytomegalovirus encodes a glycoprotein homologous to MHC class-I antigens. Nature 331: 269-272

Benko DM, Haltiwanger RS, Hart GW, Gibson W (1988) Virion basic phosphoprotein from human cytomegalovirus contains O-linked N-acetyl glucosamine. Proc Natl Acad Sci USA 85: 2573-2577

Biron KK, Fyfe JA, Stanat SC, Leslie LK, Sorrell JB, Lambe CU, Coen DM (1986) A human cytomegalovirus mutant resistant to the nucleoside analog 9-{[2-hydroxy-1-(hydroxymethyl)ethoxy]methyl} guanine (BW B759U) induces reduced levels of BW B759U triphosphate. Proc Natl Acad Sci USA 83: 8769-8773

Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987a) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329: 506-512

Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987b) The foreign antigen binding site and T-cell recognition regions of class I histocompatibility antigens. Nature 329: 512-518 Boshart M, Weber F, Jahn G, Dorsch-Hasler K, Fleckenstein B, Schaffner W (1985) A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41: 521-

Brenner S (1987) Phosphotransferase sequence homology. Nature 329: 21

Brenner MB, McLean J, Scheft H, Riberdy J, Ang S-L, Seidman JG, Devlin P, Krangel MS (1987) Two forms of the T-cell receptor yprotein found on peripheral blood cytotoxic T lymphocytes. Nature

Chang C-P, Vesole DH, Nelson J, Oldstone MBA, Stinski MF (1989a) Identification and expression of a

human cytomegalovirus early glycoprotein. J Virol 63: 3330-3337 Chang C-P, Malone CL, Stinski MF (1989b) A human cytomegalovirus early gene has three inducible promoters that are regulated differentially at various times after infection. J Virol 63: 281-290 Chee MS, Lawrence GL, Barrell BG (1989a) Alpha-, beta-, and gammaherpesviruses encode a putative

phosphotransserase. J Gen Virol 70 (in press) Chee MS, Rudolph S-A, Plachter B, Barrell BG, Jahn G (1989b) Identification of the major capsid protein gene of human cytomegalovirus. J Virol 63: 1345-1353

Chee MS, Satchwell SC, Preddie E, Weston KM, Barrell BG. Human cytomegalovirus encodes three Gprotein coupled receptor homologues. Submitted for publication.

Cherrington JM, Mocarski ES (1989) Human cytomegalovirus iel transactivates the a promoterenhancer via an 18-base-pair repeat element. J Virol 63: 1435-1440

Chou J, Roizman B (1989) Characterization of DNA sequence-common and sequence-specific proteins binding to cis-acting sites for cleavage of the terminal a sequence of the herpes simplex virus 1 genome.

Clark BR, Zaia JA, Balce-Directo L, Ting Y-P (1984) Isolation and partial chemical characterization of a 64,000-dalton glycoprotein of human cytomegalovirus. J Virol 49: 279-282

Costa RH, Draper KG, Kelly TJ, Wagner EK (1985) An unusual spliced herpes simplex virus type 1 transcript with sequence homology to Epstein-Barr virus DNA. J Virol 54: 317-328
Cranage MP, Kouzarides T, Bankier AT, Satchwell SC, Weston KW, Tomlinson P, Barrell BG, et al.

(1986) Identification of the human cytomegalovirus glycoprotein B gene and induction of neutralizing antibodies via its expression in recombinant vaccinia virus. EMBO J 5: 3057-3063

Cranage MP, Smith GL, Bell SE, Hart H, Brown C, Bankier AT, Tomlinson P, et al. (1988) Identification and expression of a human cytomegalovirus glycoprotein with homology to the Epstein-Barr virus BXLF2 product, varicella-zoster virus gpIII, and herpes simplex virus type 1 glycoprotein H. J Virol

Crute JJ, Mocarski ES, Lehman IE (1988) A DNA helicase induced by herpes simplex virus type 1.

Crute JJ, Tsurumi T, Zhu L, Weller SK, Olivo PD, Challberg MD, Mocarski ES, Lehman IR (1989) Herpes simplex virus 1 helicase-primase: a complex of three herpes-encoded gene products. Proc. Natl

Davis MG, Huang E-S (1985) Nucleotide sequence of a human cytomegalovirus DNA fragment encoding a 67-kilodalton phosphorylated viral protein. J Virol 56: 7-11

Davis MG, Mar E-C, Wu Y-M, Huang E-S (1984) Mapping and expression of a human cytomegalovirus

major viral protein. J Virol 52: 129-135 Davison AJ, McGeoch DJ (1986) Evolutionary comparisons of the S segments in the genomes of herpes simplex virus type 1 and varicella-zoster virus. J Gen Virol 67: 597-611

Davison AJ, Scott JE (1986) The complete DNA sequence of varicella-zoster virus. J Gen Virol 67: 1759-

Davison AJ, Taylor P (1987) Genetic relations between varicella-zoster virus and Epstein-Barr virus. J

Del Val M, Munch K, Reddehase MJ, Koszinowski UH (1989) Presentation of CMV immediate-early antigen to cytolytic T lymphocytes is selectively prevented by viral genes expressed in the early phase.

DeMarchi JM (1981) Human cytomegalovirus DNA: restriction enzyme cleavage maps and map locations for immediate-early, early, and late RNAs. Virology 114: 23-38

DeMarchi JM (1983) Post-transcriptional control of human cytomegalovirus gene expression. Virology

Depto AS, Stenberg RM (1989) Regulated expression of the human cytomegalovirus pp65 gene: octamer sequence in the promoter is required for activation by viral gene products. J Virol 63: 1232-1238 Desai PJ, Schaffer PA, Minson AC (1988) Excretion of non-infectious virus particles lacking glycoprotein

H by a temperature-sensitive mutant of herpes simplex virus type 1: evidence that gH is essential for virion infectivity. J Gen Virol 69: 1147-1156

- Dohlman HG, Caron MG, Lefkowitz RJ (1987) A family of receptors coupled to guanine nucleotide regulatory proteins. Biochemistry 26: 2657-2664
- Dorsch-Hasler K, Keil GM, Weber F, Jasin M, Schaffner W, Koszinowski UH (1985) A long and complex enhancer activates transcription of the gene coding for the highly abundant immediate early mRNA in murine cytomegalovirus. Proc Natl Acad Sci USA 82: 8325-8329
- Engstrom Y, Francke U (1985) Assignment of the structural gene for subunit M1 of human ribonucleotide reductase to the short arm of chromosome 11. Exp Cell Res 158: 477-483
- Farrar GH, Greenaway PJ (1986) Characterization of glycoprotein complexes present in human cytomegalovirus envelopes. J Gen Virol 67: 1469-1473
- Ferguson MAJ, Williams AF (1988) Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annu Rev Biochem 57: 285-320
- Fickenscher H, Stamminger T, Ruger R, Fleckenstein B (1989) The role of a repetitive palindromic sequence element in the human cytomegalovirus immediate early enhancer. J Gen Virol 70: 107-123
- Fleckenstein B, Muller I, Collins J (1982) Cloning of the complete human cytomegalovirus genome in cosmids. Gene 18: 39-46
- Fulton R, Forrest D, McFarlane R, Onions D, Neil JC (1987) Retroviral transduction of T-cell antigen receptor β-chain and myc genes. Nature 326: 190-194
- Geballe AP, Mocarski ES (1988) Translational control of cytomegalovirus gene expression is mediated by upstream AUG codons. J Virol 62: 3334-3340
- Geballe AP, Spaete RR, Mocarski ES (1986a) A cis-acting element within the 5' leader of a cytomegalovirus β transcript determines kinetic class. Cell 46: 865-872
- Geballe AP, Leach FS, Mocarski EM (1986b) Regulation of cytomegalovirus late gene expression: y genes are controlled by posttranscriptional events. J Virol 57: 864-874
- George DG, Barker WC, Hunt LT (1986) The protein identification resource (PIR). Nucleic Acids Res
- Ghazal P, Lubon H, Fleckenstein B, Hennighausen L (1987) Binding of transcription factors and creation of a large nucleoprotein complex on the human cytomegalovirus enhancer. Proc Natl Acad Sci USA 84: 3658-3662
- Ghazal P. Lubon H, Hennighausen L (1988) Specific interactions between transcription factors and the promoter-regulatory region of the human cytomegalovirus major immediate-early gene. J Virol 62: 1076-1079
- Gibson W (1983) Protein counterparts of human and simian cytomegalovirus. Virology 128: 391-406 Gibson T, Stockwell P, Ginsburg M, Barrell BG (1984) Homology between two EBV early genes and HSV ribonucleotide reductase and 38K genes. Nucleic Acids Res 12: 5087-5099
- Goins WF, Stinski MF (1986) Expression of a human cytomegalovirus late gene is posttranscriptionally regulated by a 3'-end-processing event occurring exclusively late after infection. Mol Cell Biol 6: 4202-4213
- Gompels UA, Craxton MA, Honess RW (1988a) Conservation of gene organization in the lymphotropic herpesviruses herpesvirus saimiri and Epstein-Barr virus. J Virol 62: 757-767
- Gompels UA, Craxton MA, Honess RW (1988b) Conservation of glycoprotein H (gH) in herpesviruses: nucleotide sequence of the gH gene from herpesvirus saimiri. J Gen Virol 69: 2819-2829
- Greenaway PJ, Wilkinson GWG (1987) Nucleotide sequence of the most abundantly transcribed early gene of human cytomegalovirus strain AD169. Virus Res 7: 17-31
- Gretch DR, Kari B, Rasmussen L, Gehrz RC, Stinski MF (1988a) Identification and characterization of three distinct families of glycoprotein complexes in the envelopes of human cytomegalovirus. J Virol 62: 875-881
- Gretch DR, Kari B, Gehrz RC, Stinski MF (1988b) A multigene family encodes the human cytomegalovirus glycoprotein complex gcII (gp47-52 complex). J Virol 62: 1956-1962
- Grundy JE, McKeating JA, Griffiths PD (1987a) Cytomegalovirus strain AD169 binds  $\beta_1$  microglobulin in vitro after release from cells. J Gen Virol 68: 777–784
- Grundy JE, McKeating JA, Ward PJ, Sanderson AR, Griffiths PD (1987b) β<sub>2</sub> Microglobulin enhances the infectivity of cytomegalovirus and when bound to the virus enables class 1 HLA molecules to be used as a virus receptor. J Gen Virol 68: 793-803
- Heilbronn R, Jahn G, Burkle A, Freese U-K, Fleckenstein B, zur Hausen H (1987) Genomic localization, sequence analysis, and transcription of the putative human cytomegalovirus DNA polymerase gene. J Virol 61: 119-124
- Hennighausen L, Fleckenstein B (1986) Nuclear factor 1 interacts with five DNA elements in the promoter region of the human cytomegalovirus major immediate early gene. EMBO J 5: 1367-1371
- Hermiston TW, Malone CL, Witte PR, Štinski MF (1987) Identification and characterization of the human cytomegalovirus immediate-early region 2 gene that stimulates gene expression from an inducible promoter. J Virol. 61: 3214-3221
- Hodgman TC (1988) A new superfamily of replicative proteins. Nature 333: 22-23

Honess RW (1984) Herpes simplex and the 'herpes complex': diverse observations and a unifying

Honess RW, Bodemer W, Cameron KR, Niller H-H, Fleckenstein B, Randall RE (1986) The A + T-rich genome of herpesvirus saimiri contains a highly conserved gene for thymidylate synthase. Proc Natl

Honess RW, Gompels UA, Barrell BG, Craxton M, Cameron KR, Staden R, Chang Y-N, Hayward GS (1989) Deviations from expected frequencies of CpG dinucleotides in herpesvirus DNAs may be diagnostic of differences in the states of their latent genomes. J Gen Virol 70: 837-855

Hunninghake GW, Monick MM, Liu B, Stinski MF (1989) The promoter-regulatory region of the major immediate-early gene of human cytomegalovirus responds to T-lymphocyte stimulation and contains functional cyclic AMP-response elements. J Virol 63: 3026-3033

Hutchinson NI, Tocci MJ (1986) Characterization of a major early gene from the human cytomegalovirus long inverted repeat; predicted amino acid sequence of a 30-kDa protein encoded by the 1.2 kb

Hutchinson NI, Sondermeyer RT, Tocci MJ (1986) Organization and expression of the major genes from the long inverted repeat of the human cytomegalovirus genome. Virology 155: 160-171

Irmiere A, Gibson W (1983) Isolation and characterization of a noninfectious virion-like particle released from cells infected with human strains of cytomegalovirus. Virology 130: 118-133

Irmiere A, Gibson W (1985) Isolation of human cytomegalovirus intranuclear capsids, characterization of their protein constituents, and demonstration that the B-capsid assembly protein is also abundant

Jahan N, Razzaque A, Brady J, Rosenthal LJ (1989) The human cytomegalovirus mtrII colinear region in

strain Tanaka is transformation defective. J Virol 63: 2866-2869 Jahn G, Knust E, Schmolla H, Sarre T, Nelson JA, McDougall JK, Fleckenstein B (1984) Predominant immediate-early transcripts of human cytomegalovirus AD169. J Virol 49: 363-370

Jahn G, Kouzarides T, Mach M, Scholl, B-C, Plachter B, Traupe B, Preddie E, et al. (1987) Map position and nucleotide sequence of the gene for the large structural phosphoprotein of human cytomegalo-

Jeang K-T, Hayward GS (1983) A cytomegalovirus DNA sequence containing tracts of tandemly repeated CA dinucleotides hybridises to highly repetitive dispersed elements in mammalian cell

Jeang KT, Rawlins DR, Rosenfeld P, Shero JH, Kelly T, Hayward GS (1987) Multiple tandemly repeated binding sites for cellular nuclear factor 1 that surround the major immediate-early promoters of simian and human cytomegalovirus. J Virol 61: 1559-1570

Karnik SS, Sakmar TP, Chen H-B, Khorana HG (1988) Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc Natl Acad Sci USA 85: 8459-8463 Keil GM, Ebeling-Keil A, Koszinowski UH (1987) Sequence and structural organization of murine

cytomegalovirus immediate-early gene 1. J Virol 61: 1901-1908 Kobilka BK, Dixon RAF, Frielle T, Dohlman HG, Bolanowski MA, Sigal IS, Yang-Feng TL, et al. (1987) cDNA for the human  $\beta_2$ -adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-

derived growth factor. Proc Natl Acad Sci USA 84: 46-50 Kouzarides T, Bankier AT, Barrell BG (1983) Nucleotide sequence of the transforming region of human

Kouzarides T, Bankier AT, Satchwell SC, Weston K, Tomlinson P, Barrell BG (1987a) Sequence and transcription analysis of the human cytomegalovirus DNA polymerase gene. J Virol 61: 125-133 Kouzarides T, Bankier AT, Satchwell SC, Weston K, Tomlinson P, Barrell BG (1987b) Large-scale

rearrangement of homologous regions in the genomes of HCMV and EBV. Virology 157: 397-413 Kouzarides T, Bankier AT, Satchwell SC, Preddie E, Barrell BG (1988) An immediate early gene of human cytomegalovirus encodes a potential membrane glycoprotein. Virology 165: 151-164

Kozak M (1981) Possible role of flanking nucleotides in recognition of the AUG initiator codon by

Kozak M (1982) Analysis of ribosome binding sites from the s1 message of reovirus: initiation at the first

Kubo T, Fukuda K, Mikami A, Maeda A, Takahashi H, Mishina M, Haga T, et al. (1986) Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor.

Landini M-P, Michelson S (1988) Human cytomegalovirus proteins. Prog Med Virol 35: 152-185 Laniken H, Graslund A, Thelander L (1982) Induction of a new ribonucleotide reductase activity after infection of mouse L cells with pseudorables virus. J Virol 41: 893-900

Leach FS, Mocarski ES (1989) Regulation of cytomegalovirus late-gene expression: differential use of three start sites in the transcriptional activation of ICP36 gene expression. J Virol 63: 1783-1791

- Lee JY, Irmiere A, Gibson W (1988) Primate cytomegalovirus assembly: evidence that DNA packaging occurs subsequent to B capsid assembly. Virology 167: 87-96
- Littler E, Zeuthen J, McBride AA, Trost-Sorensen E, Powell KL, Walsh-Arrand JE, Arrand JR (1986) Identification of an Epstein-Barr virus-coded thymidine kinase. EMBO J 5: 1959-1966
- Mach M, Utz U, Fleckenstein B (1986) Mapping of the major glycoprotein gene of human cytomegalovirus. J Gen Virol 67: 1461-1467
- Marschalek R, Amon-Bohm E, Stoerker J, Klages S, Fleckenstein B, Dingermann T (1989) CMER, an RNA encoded by human cytomegalovirus is most likely transcribed by RNA polymerase III. Nucleic Acids Res 17: 631-643
- Martignetti JA (1987) Sequence analysis of HCMV. Dissertation, Cambridge University
- Martinez J, St Jeor SC (1986) Molecular cloning and analysis of three cDNA clones homologous to human cytomegalovirus RNAs present during late infection. J Virol 60: 531-538
- Martinez J, Lahijani RS, St Jeor SC (1989) Analysis of a region of the human cytomegalovirus (AD169) genome coding for a 25-kilodalton virion protein. J Virol 63: 233-241
- McDonough SH, Spector DH (1983) Transcription in human fibroblasts permissively infected by human cytomegalovirus strain AD169. Virology 125: 31-46
- McDonough SH, Staprans SI, Spector DH (1985) Analysis of the major transcripts encoded by the long repeat of human cytomegalovirus strain AD169. J Virol 53: 711-718
- McGeoch DJ (1985) On the predictive recognition of signal peptide sequences. Virus Res 3: 271-286
  McGeoch DJ (1987) The genome of herpes simplex virus: structure, replication and evolution. J Cell Sci
  [Suppl] 7: 67-94
- McGeoch DJ, Davison AJ (1986) Alphaherpesviruses possess a gene homologous to the protein kinase gene family of eukaryotes and retroviruses. Nucleic Acids Res 14: 1765-1777
- McGeoch DJ, Dalrymple MA, Davison AJ, Dolan A, Frame MC, McNab D, Perry LJ, et al. (1988a) The complete sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69: 1531-1574
- McGeoch DJ, Dolan A, Frame MC (1986) DNA sequence of the region in the genome of herpes simplex virus type 1 containing the exonuclease gene and neighbouring genes. Nucleic Acids Res 14: 3435-3448
- McGeoch DJ, Dalrymple MA, Dolan A, McNab D, Perry L, Taylor P, Challberg MD (1988b) Structures of herpes simplex virus type 1 genes required for replication of virus DNA. J Virol 62: 444-453
- McKnight SL (1980) The nucleotide sequence and transcript map of the herpes simplex virus thymidine kinase gene. Nucleic Acids Res 8: 5949-5963
- Meyer H, Bankier AT, Landini MP, Brown CM, Barrell BG, Ruger B, Mach M (1988) Identification and procaryotic expression of the gene coding for the highly immunogenic 28-kilodalton structural phosphoprotein (pp28) of human cytomegalovirus. J Virol 62: 2243-2250
- Mocarski ES, Roizman B (1982) Structure and role of the herpes simplex virus DNA termini in inversion, circularization and generation of virion DNA. Cell 31: 89-97
- Mocarski ES, Pereira L, Michael N (1985) Precise localization of genes on large animal virus genomes: use of λgt11 and monoclonal antibodies to map the gene for a cytomegalovirus protein family. Proc Natl Acad Sci USA 82: 1266-1270
- Mocarski ES, Pereira L, McCormick AL (1988) Human cytomegalovirus ICP22, the product of the HWLF1 reading frame, is an early nuclear protein that is released from cells. J Gen Virol 69: 2613–2621
- Mullaney J, Moss HWMcL, McGeoch DJ (1989) Gene UL2 of herpes simplex virus type 1 encodes a uracil-DNA glycosylase. J Gen Virol 70: 449-454
- Nathans J (1987) Molecular biology of visual pigments. Annu Rev Neurosci 10: 163-194
- Nathans J, Hogness DS (1983) Isolation, sequence analysis, and intron-exon arrangement of the gene coding bovine rhodopsin. Cell 34: 807-814
- Nikas I, McLauchlan J, Davison AJ, Taylor WR, Clements JB (1986) Structural features of ribonucleotide reductase. Proteins 1: 376-384
- Olivo PD, Nelson NJ, Challberg MD (1988) Herpes simplex virus DNA replication: the UL9 gene encodes an origin-binding protein. Proc Natl Acad Sci USA 85: 5414-5418
- Oram JD, Downing RG, Akrigg A, Doggleby CJ, Wilkinson GWG, Greenaway PJ (1982) Use of recombinant plasmids to investigate the structure of the human cytomegalovirus genome. J Gen Virol 59: 111-129
- Pachl C, Probert WS, Hermsen KM, Masiarz FR, Rasmussen L, Merigan, TC, Spaete RR (1989) The human cytomegalovirus strain Towne glycoprotein H gene encodes glycoprotein p86. Virology 169: 418-426
- Pande H, Baak SW, Riggs AD, Clark BR, Shively JE, Zaia JA (1984) Cloning and physical mapping of a gene fragment coding for a 64-kilodalton major late antigen of human cytomegalovirus. Proc Natl Acad Sci USA 81: 4965-4969

Pande H, Campo K, Churchill MA, Clark BR, Zaia JA (1988) Genomic localization of the gene encoding a 32-kDa capsid protein of human cytomegalovirus. Virology 167: 306-310

Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci

Pereira L, Hoffman M, Gallo D, Cremer N (1982) Monoclonal antibodies to human cytomegalovirus: three surface membrane proteins with unique immunological and electrophoretic properties specify

Pertuiset B, Boccara M, Cerbrian J, Berthelot N, Chousterman S, Puvion-Dutilleul F, Sisman J, Sheldrick P (1989) Physical mapping and nucleotide sequence of a herpes simplex virus type 1 gene

Petrovskis EA, Timmins JG, Armentrout MA, Marchioli CC, Yancey RJ Jr, Post LE (1986) DNA sequence of the gene for pseudorabies virus gp50, a glycoprotein without N-linked glycosylation. J

Pizzorno MC, O'Hare P, Sha L, La Femina RL, Hayward GS (1988) trans-Activation and autoregulation of gene expression by the immediate-early region 2 gene products of human cytomegalovirus. J Virol Preston VG, Fisher FB (1984) Identification of the herpes simplex virus type 1 gene encoding the

Preston VG, Coates JAV, Rixon FJ (1983) Identification and characterization of a herpes simplex virus gene product required for encapsidation of virus DNA. J Virol 45: 1056-1064

Rasmussen LE, Nelson RM, Kelsall DC, Merigan TC (1984) Murine monoclonal antibody to a single protein neutralizes the infectivity of human cytomegalovirus. Proc Natl Acad Sci USA 81: 876-880 Rasmussen RD, Staprans SI, Shaw SB, Spector DH (1985a) Sequences in human cytomegalovirus which

hybridize with the avian retrovirus oncogene v-myc are G + C rich and do not hybridize with the

Rasmussen L, Mullenax J, Nelson R, Merigan TC (1985b) Viral polypeptides detected by a complementdependent neutralizing murine monclonal antibody to human cytomegalovirus. J Virol 55: 274-280 Razzaque et al. (1988) Localization and DNA sequence analysis of the transforming domain (mtrII) of

Reichard P (1989) Interactions between deoxyribonucleotide and DNA synthesis. Annu Rev Biochem human cytomegalovirus. Proc Natl Acad Sci USA 85: 5709-5713

Rixon FJ, Cross AM, Addison C, Preston VG (1988) The products of herpes simplex virus type 1 gene UL26 which are involved in DNA packaging are strongly associated with empty but not with full

Robson L, Gibson W (1989) Primate cytomegalovirus assembly protein: genome location and nucleotide

Roby C, Gibson W (1986) Characterization of phosphoproteins and protein kinase activity of virions, noninfectious enveloped particles, and dense bodies of human cytomegalovirus. J Virol 59: 714-727 Ruger B, Klages S, Walla B, Albrecht J, Fleckenstein B, Tomlinson P, Barrell BG (1987) Primary structure and transcription of the genes coding for the two virion phosphoproteins pp65 and pp71 of

Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primerdirected enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487-

Sjoberg B-M, Eklund H, Fuchs JA, Carlson J, Standart NM, Ruderman JV, Bray SJ, Hunt T (1985) Identification of the stable free radical tyrosine residue in ribonucleotide reductase. FEBS Lett

Smith RF, Smith TF (1989) Identification of new protein kinase-related genes in three herpes viruses, herpes simplex virus, varicella-zoster virus and Epstein-Barr Virus. J Virol 63: 450-455

Spacte RR, Mocarski ES (1985a) Regulation of cytomegalovirus gene expression:  $\alpha$  and  $\beta$  promoters are trans activated by viral functions in permissive human fibroblasts. J Virol 56: 135-143 Spaete RR, Mocarski ES (1985b) The a sequence of the cytomegalovirus genome functions as a

cleavage/packaging signal for herpes simplex virus defective genomes. J Virol. 54: 817-824 Spaete RR, Mocarski ES (1987) Insertion and deletion mutagenesis of the human cytomegalovirus

Spacte RR, Thayer RM, Probert WS, Masiarz FR, Chamberlain SH, Rasmussen L, Merigan TC, Pachl C (1988) Human cytomegalovirus strain Towne glycoprotein B is processed by proteolytic cleavage.

Staden R (1986) The current status and portability of our sequencing handling software. Nucleic Acids

Staden R (1988) Methods to define and locate patterns of motifs in sequences. CABIOS 4: 53-60

Stannard LM (1989)  $\beta_2$  microglobulin binds to the tegument of cytomegalovirus: an immunogold study. J Gen Virol 70: 2179–2184

Staprans SI, Spector DH (1986) 2.2-kilobase class of early transcripts encoded by cell-related sequences in human cytomegalovirus strain AD169. J Virol 57: 591-602

Stenberg RM, Thomsen DR, Stinski MF (1984) Structural analysis of the major immediate early gene of human cytomegalovirus. J Virol 49: 190-191

Stenberg RM, Witte PR, Stinski MF (1985) Multiple spliced and unspliced transcripts from human cytomegalovirus immediate-early region 2 and evidence for a common initiation site within immediate-early region 1. J Virol 56: 665-675

Stinski MF (1977) Synthesis of proteins and glycoproteins in cells infected with human cytomegalovirus. J Virol 23: 751-767

Stinski MF, Roehr TJ (1985) Activation of the major immediate early gene of human cytomegalovirus by cis-acting elements in the promoter-regulatory sequence and by virus-specific trans-acting components. J Virol 55: 431-441

Stinski MF, Thomsen DR, Stenberg RM, Goldstein LC (1983) Organization and expression of the immediate early genes of human cytomegalovirus. J Virol 46: 1-14

Tamashiro JC, Filpula D, Friedmann T, Spector DH (1984) Structure of the heterogeneous L-S junction region of human cytomegalovirus strain AD169 DNA. J Virol 52: 541-584

Thompson R, Honess RW, Taylor L, Morran J, Davison AJ (1987) Varicella-zoster virus specifies a thymidylate synthetase. J Gen Virol 68: 1449-1455

Thomsen DR, Stenberg RM, Goins WF, Stinski MF (1984) Promoter-regulatory region of the major immediate early gene of human cytomegalovirus. Proc Natl Acad Sci USA 81: 659-663

Townsend A, Ohlen C, Bastin J, Ljunggren H-G, Foster L, Karre K (1989) Association of class I major histocompatibility heavy and light chains induced by viral peptides. Nature 340: 443-448

Trimble JJ, Murthy CS, Bakker A, Grassmann R, Desrosiers RC (1988) A gene for dihydrofolate reductase in a herpesvirus. Science 239: 1145-1147

Wang F, Petti L, Braun D, Seung S, Kieff E (1987) A bicistronic Epstein-Barr virus mRNA encodes two nuclear proteins in latently infected, growth-transformed lymphocytes. J Virol 61: 945-954

Wathen MW, Stinski MF (1982) Temporal patterns of human cytomegalovirus transcription: mapping the viral RNAs synthesized at immediate early, early, and late times after infection. J Virol 41: 462-477

Weber PC, Challberg MD, Nelson NJ, Levine M, Glorioso JC (1988) Inversion events in the HSV-1 genome are directly mediated by the viral DNA replication machinery and lack sequence specificity. Cell 54: 369-381

Weller SK, Aschman DP, Sacks WR, Coen DM, Schaffer PA (1983) Genetic analysis of temperaturesensitive mutants of HSV-1: the combined use of complementation and physical mapping for cistron assignment. Virology 130: 290-305

Weston K (1988) An enhancer element in the short unique region of human cytomegalovirus regulates the production of a group of abundant immediate early transcripts. Virology 162: 406-416

Weston K, Barrell BG (1986) Sequence of the short unique region, short repeats and part of the long repeat of human cytomegalovirus. J Mol Biol 192: 177-208

Whitton JL, Clements JB (1984) The junctions between the repetitive and the short unique sequences of the herpes simplex virus genome are determined by the polypeptide-coding regions of two spliced immediate-early mRNAs. J Gen Virol 65: 451-466

Wilkinson GWG, Akrigg A, Greenaway PJ (1984) Transcription of the immediate early genes of human

cytomegalovirus strain AD169. Virus Res 1: 101-116

Worrad DM, Caradonna S (1988) Identification of the coding sequence for herpes simplex virus uracil-DNA glycosylase. J. Virol. 62: 4774-4777 Wright DA, Staprans SI, Spector DH (1988) Four phosphoproteins with common amino termini are

encoded by human cytomegalovirus AD169. J Virol 62: 331–340

Wu CA, Nelson NJ, McGeoch DJ, Challberg MD (1988) Identification of herpes simplex virus type I genes required for origin-dependent DNA synthesis. J Virol 62: 435-443

Yang-Feng TL, Barton DE, Thelander L, Lewis WH, Srinivasan PR, Francke U (1987) Ribonucleotide reductase M2 subunit sequences mapped to four different chromosomal sites in humans and mice: functional locus identified by its amplification in hydroxyurea-resistant cell-lines. Genomics 1: 77-86

Zhang CX, Decaussin G, de Turenne Tessier M, Daillie J, Ooka T (1987) Identification of an Epstein-Barr virus-specific deoxyribonuclease gene using complementary DNA. Nucleic Acids Res 15: 2707-2717