

Automated Probabilistic Finite Element Model Calibration Tool Based on Uncertainty Quantification and Machine Learning

Josh Fody

Structural Mechanics and Concepts Branch
NASA Langley Research Center

Patrick Leser

Durability, Damage Tolerance, and Reliability Branch NASA Langley Research Center

Sneha Narra

Department of Mechanical Engineering Carnegie Mellon University

TMS Artificial Intelligence in Materials and Manufacturing 2022
Pittsburgh, Pennsylvania
April 3rd – 6th, 2022

Introduction

Background:

- Metallic additive manufacturing (AM) → Laser Powder Bed Fusion (LPBF)
- Laser produced melt pools (~µm) to build parts (~ cm) with millions of scan passes
 - Local variation of defects and microstructure [1, 2] = variation and inconsistencies in part properties
 - Each part printed with a unique set of material properties → qualification and certification (Q&C)

NASA Transformational Tools and Technologies Project (TTT):

- Predict properties and quantify variability to ease hurdles to Q&C [3]
 - High fidelity simulations are very time costly (~100k CPU hours) and still require calibration [4]
 - High-temperature material properties
- Probabilistically calibrate and validate reduced fidelity thermal finite element (FE) model (COMSOL®)

Extract measured data (10 scans) → Calibrate FE Model at each scan → Interpolate between scans

- [1] Mahadevan, Sankaran, Paromita Nath, and Zhen Hu. "Uncertainty Quantification for Additive Manufacturing Process Improvement: Recent Advances." ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering 8.1 (2022): 010801.
- [2] Herriott, Carl, et al. "A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals." Modelling and Simulation in Materials Science and Engineering 27.2 (2019): 025009.
- [3] Blakey-Milner, Byron, et al. "Metal additive manufacturing in aerospace: A review." Materials & Design 209 (2021): 110008.
- [4] Khairallah, S., Anderson, A., Rubenchik, A., et. al., 2016, "Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones," Acta Materialia, Vol. 108, p. 36-45.

Materials and Test Matrix

Single scan passes on bare Ti-6Al-4V plate:

- EOS M290 LPBF machine at University of Pittsburgh
- Pads each contain scans 1 10 (each scan repeats 3 times)
- Process parameters (PPs): laser power and velocity
- 10 scans: 30 serial cross sections → 300 total images

Plate Top Surface

Test Matrix

Scan Number	Power (W)	Velocity (mm/s)
1	225	1250
2	225	1500
3	170	750
4	170	1000
5	170	1250
6	170	1500
7	150	750
8	150	1000
9	150	1250
10	150	1500

EOS M290 default setting. Used to validate interpolator.

The use of trademarks or names of manufacturers is for accurate reporting and does not constitute endorsement by authors and their employing organizations.

Melt Pool Contour Identification Approach

Extract measured data (10 scans) → Calibrate FE Model at each scan → Interpolate between scans

- Required to process large number of images (300 current; thousands in future)
- U-Net architecture (Convolutional Neural Network (CNN))
 - Implemented in Python (TensorFlow) using EfficientNetB3 pretrained image classification model
- Semantic segmentation of an input image into two parts: melt pool and other
- Extrema to identify melt pool dimensions (MPDs): width and depth

Training Mask

Input Image

CNN Predicted Contour

Melt Pool Contour Identification Results

CNN prediction results:

• CNN test set (9 images): average accuracy 95.2% (intersection over union)

Melt Pool Width and Depth for all 300 Images

Error bars show +/- 3x Standard Deviation and Mean

Scan Number	Power (W)	Velocity (mm/s)
1	225	1250
2	225	1500
3	170	750
4	170	1000
5	170	1250
6	170	1500
7	150	750
8	150	1000
9	150	1250
10	150	1500

Pad

Slice

Contour Reduction

Probabilistic Calibration Approach

Extract measured data (10 scans) → Calibrate FE Model at each scan → Interpolate between scans

Probabilistic calibration of FE model to experimental observations:

Predict MPDs by tuning FE model heat source parameters at each PP setpoint

Active learning loop

Iterative loop efficiently develops surrogate of FE model targeting observed data using Bayesian inference

FE Model: Calibrate Volumetric Heat Source

Reduced order FE transient thermal model physics:

- Volume:
 - Heat diffusion
 - Liquid solid phase change
 - Volumetric laser heat source (Gaussian, based on Goldak [5])
- Surface:
 - Radiation and convection heat loss
 - Liquid gas evaporation heat loss
- Ignores expensive and uncertain melt pool physics

Volumetric heat source calibration variables:

- R_s: heat source radius
- $\mathbf{D_s}$: heat source depth
- a_{eff}: effective laser power absorptivity

Predicted output variables (MPDs):

- Width
- Depth

[5] Goldak, J., Chakravarti, A., Bibby, M., 1984, "A New Finite Element Model for Welding Heat Sources," Metallurgical Transactions B, Vol. 15B, p. 299-305.

FE Model Calibration Results (Scan 5)

Surrogate predicted melt pool dimensions for posterior

Posterior: distribution of calibrated heat source parameters and 4 selected validation points

Validation of FE Model Calibration Results (Scan 5)

Surrogate validation: Absolute error at 4 validation points

Calibration approach is underconstrained:

 Subset of scan 5 posterior will be used to fit interpolator targeting 3300 K temperature maximum

Temperature history at 4 selected validation points

Interpolator: Optimize Fit of Single Points

Extract measured data (10 scans) → Calibrate FE Model at each scan → Interpolate between scans

Gaussian Process Regression optimized using custom grid search:

- Separate estimators optimized for each variable (D_s, a_{eff}, R_s) at median posterior point
- "Leave one out" k-folds cross validation for 9 of 10 points; scan 5 reserved (validation point)

Mean Relative Error (MRE) for fit of most probable points; star indicates validation point (scan 5)

Interpolator Validation: Ensemble of Fits Estimate Distribution

Scan 5 ensemble: Average MRE over all 3 variables (global MRE 14.43%)

Scan 5 posterior with overlays: Subset used for fitting (red) Ensemble predicted subset (black edge)

FE Model Predictions at Interpolated Validation Point

Probabilistic validation: 10 points over widest range

Concluding Remarks and Future Work

Summary

- 10 single scan tracks on bare Ti-6Al-4V plate cross sectioned to produce 300 images
- Melt pool width & depth extracted from images using CNN approach (95.2% accuracy on test set)
- Probabilistic calibration of thermal model to width & depth measurements (validation < 1.4 µm for scan 5)
- Ensemble of fits interpolator validated with scan 5
 - Most probable point vs. mean of observed values < 11.5% MRE
 - 10 points sample from posterior predict within 2σ observed values but do not capture full distribution

Future Work:

- Improve interpolator to better describe posterior distribution
 - Fits sensitive to hyper-parameter settings and posterior sub-set used for training and testing
- Further constrain calibration approach:
 - Maximum surface temperature from FE model as a calibration target
 - Target melt pool contour instead of width and depth

Acknowledgements

Project support

- NASA Transformational Tools and Technologies (TTT) Project
- NASA Langley Research Center, Structural Mechanics and Concepts Branch

CNN approach development

- Shannon O'Connor (Worcester Polytechnic Institute)
- S. Thomas Britt (Carnegie Mellon University)
- Hanshen Yu (Worcester Polytechnic Institute)
- Andy Ramlatchan (NASA Langley Research Center)

Physical samples and image acquisition

- Dr. Albert To and Seth Strayer (University of Pittsburgh)
- J. Andrew Newman and Harold Claytor (NASA Langley Research Center)

Trends in Melt Pool Depth: Example with Pad 1, Scan 6

FE Model Calibration Paradigm Training (Scan 5)

Active Learning

Calibration training process:

- Adaptive prior bounds automatically adjust (below) to focus active learning
 - o Gaussian Process Regression (surrogate model) extrapolates to 0
 - Accelerates convergence and reduces fails

FEA Fail

 Convergence determined by stability criterion for upper Bollinger Band[®] of percent mean relative error (β⁺ MRE %) of iterative training points (right)

LHS

Backup: Scan 5 Training Point Distribution

Backup: Scan 5 Surrogate Contour Plot

