

Data Visualization Lab

Estimated time needed: 45 to 60 minutes

In this assignment you will be focusing on the visualization of data.

The data set will be presented to you in the form of a RDBMS.

You will have to use SQL queries to extract the data.

Objectives

In this lab you will perform the following:

- · Visualize the distribution of data.
- · Visualize the relationship between two features.
- · Visualize composition of data.
- · Visualize comparison of data.

Demo: How to work with database

Download database file.

Connect to the database.

Import pandas module.

```
In [24]: ► import pandas as pd import matplotlib.pyplot as plt import seaborn as sns
```

Demo: How to run an sql query

```
In [25]: # print how many rows are there in the table named 'master'
QUERY = """
SELECT COUNT(*)
FROM master
"""

# the read_sql_query runs the sql query and returns the data as a dataframe
df = pd.read_sql_query(QUERY,conn)
df.head()
Out[25]: COUNT(*)
```

Demo: How to list all tables

11398

11

PlatformDesireNextYear

```
In [26]:  # print all the tables names in the database
QUERY = """
SELECT name as Table_Name FROM
sqlite_master WHERE
type = 'table'
"""
# the read_sql_query runs the sql query and returns the data as a dataframe
pd.read_sql_query(QUERY,conn)
```

Out[26]:	Table_Name
	0 EduOther
	1 DevType
	2 LastInt
	3 JobFactors
	4 WorkPlan
	5 WorkChallenge
	6 LanguageWorkedWith
	7 LanguageDesireNextYear
	8 DatabaseWorkedWith
	9 DatabaseDesireNextYear
1	PlatformWorkedWith

Demo: How to run a group by query

```
In [27]: N
QUERY = """
SELECT Age,COUNT(*) as count
FROM master
group by age
order by age
"""
pd.read_sql_query(QUERY,conn)
```

Out[27]:		Age	count
	0	NaN	287
	1	16.0	3
	2	17.0	6
	3	18.0	29
	4	19.0	78
	5	20.0	109
	6	21.0	203
	7	22.0	406
	8	23.0	581
	9	24.0	679
	10	25.0	738
	11	26.0	720
	12	27.0	724
	13	28.0	787
	14	29.0	697
	15	30.0	651
	16	31.0	531
	17	32.0	489
	18	33.0	483
	19	34.0	395
	20	35.0	393
	21	36.0	308
	22	37.0	
	23	38.0	279
	24	39.0	232
		40.0	
		41.0	136
	27	42.0	162
			100
		44.0	
	30	45.0	85
		46.0	66
		47.0	68
	33	48.0	64
		49.0	66
		50.0	57
	36		29
	37		41
		53.0	32
		54.0	26
	40	55.0	13
		56.0	16
		57.0	11
	43	58.0	12
		59.0	11
		60.0	2
	46	61.0	10
		62.0	5
		63.0	7
	49		2
		66.0	1
		67.0	1
	52	69.0	1
	53		2
	54	72.0	1

```
55 99.0
In [31]: ► QUERY = """
             SELECT DatabaseDesireNextYear, COUNT(DatabaseDesireNextYear) as count
             FROM DatabaseDesireNextYear
             group by DatabaseDesireNextYear
             order by count desc
             # the read_sql_query runs the sql query and returns the data as a dataframe
             df = pd.read_sql_query(QUERY,conn)
             df
   Out[31]:
                 DatabaseDesireNextYear count
               0
                            PostgreSQL
                                       4328
               1
                              MongoDB
                                       3649
               2
                                 Redis
                                       3331
                               MySQL
               3
                                       3281
                           Elasticsearch
                                       2856
               5
                      Microsoft SQL Server
                                       2706
               6
                                SQLite
                                       2437
               7
                               Firebase
                                       1650
               8
                               MariaDB
                                       1385
                             DynamoDB
                                       1044
              10
                             Cassandra
                                       1003
                                        870
              11
                                Oracle
              12
                               Other(s):
                                        645
              13
                             Couchbase
                                        390
In [34]: ► QUERY = """
             SELECT Respondent, DatabaseWorkedWith, COUNT(DatabaseWorkedWith) as count
             FROM DatabaseWorkedWith
             group by Respondent
             \# the read_sql_query runs the sql query and returns the data as a dataframe
             df = pd.read_sql_query(QUERY,conn)
```

df[(df['DatabaseWorkedWith'] == 'SQL') & (df['count'] ==1)]

Respondent DatabaseWorkedWith count

Age count

Out[34]:

Demo: How to describe a table

```
QUERY = """
            SELECT sql FROM sqlite_master
            WHERE name= '{}'
            """.format(table_name)
            df = pd.read_sql_query(QUERY,conn)
            print(df.iat[0,0])
            CREATE TABLE "master" (
             "index" INTEGER,
               "Respondent" INTEGER,
               "MainBranch" TEXT,
               "Hobbyist" TEXT,
               "OpenSourcer" TEXT,
"OpenSource" TEXT,
               "Employment" TEXT,
               "Country" TEXT,
"Student" TEXT,
               "EdLevel" TEXT,
               "UndergradMajor" TEXT,
               "OrgSize" TEXT,
               "YearsCode" TEXT,
               "Age1stCode" TEXT,
               "YearsCodePro" TEXT,
               "CareerSat" TEXT,
               "JobSat" TEXT,
               "MgrIdiot" TEXT,
               "MgrMoney" TEXT,
"MgrWant" TEXT,
               "JobSeek" TEXT,
               "LastHireDate" TEXT,
               "FizzBuzz" TEXT,
               "ResumeUpdate" TEXT,
               "CurrencySymbol" TEXT,
               "CurrencyDesc" TEXT,
               "CompTotal" REAL,
               "CompFreq" TEXT,
               "ConvertedComp" REAL,
               "WorkWeekHrs" REAL,
"WorkRemote" TEXT,
               "WorkLoc" TEXT,
               "ImpSyn" TEXT,
"CodeRev" TEXT,
               "CodeRevHrs" REAL,
               "UnitTests" TEXT,
               "PurchaseHow" TEXT,
               "PurchaseWhat" TEXT,
               "OpSys" TEXT,
               "BlockchainOrg" TEXT, "BlockchainIs" TEXT,
               "BetterLife" TEXT,
               "ITperson" TEXT,
               "OffOn" TEXT,
"SocialMedia" TEXT,
               "Extraversion" TEXT,
               "ScreenName" TEXT,
               "SOVisit1st" TEXT,
               "SOVisitFreq" TEXT,
               "SOFindAnswer" TEXT,
               "SOTimeSaved" TEXT,
               "SOHowMuchTime" TEXT,
               "SOAccount" TEXT,
               "SOPartFreq" TEXT,
               "SOJobs" TEXT,
               "EntTeams" TEXT,
               "SOComm" TEXT,
               "WelcomeChange" TEXT,
               "Age" REAL,
               "Trans" TEXT,
               "Dependents" TEXT,
               "SurveyLength" TEXT,
               "SurveyEase" TEXT
```

Visualizing distribution of data

Histograms

Plot a histogram of ConvertedComp.

```
In [8]:  # your code goes here
QUERY = """
SELECT * FROM master
"""

df = pd.read_sql_query(QUERY,conn)
df.hist(column='ConvertedComp')
```

Out[8]: array([[<AxesSubplot:title={'center':'ConvertedComp'}>]], dtype=object)

Box Plots

Plot a box plot of Age.

```
In [9]: # your code goes here
QUERY = """
SELECT * FROM master
"""

df = pd.read_sql_query(QUERY,conn)
df.boxplot(column='Age')
Out[9]: <AxesSubplot:>
```


Visualizing relationships in data

Scatter Plots

Create a scatter plot of Age and WorkWeekHrs.

```
In [13]: # your code goes here

df.plot(kind='scatter', x='Age', y='WorkWeekHrs', figsize=(5, 5), color='red')

plt.title('Developers\' Age and Weekly Working Hours')
plt.xlabel('Age')
plt.ylabel('WorkWeekHrs')

plt.show()
```


Bubble Plots

Create a bubble plot of WorkWeekHrs and CodeRevHrs, use Age column as bubble size.

Visualizing composition of data

Pie Charts

Create a pie chart of the top 5 databases that respondents wish to learn next year. Label the pie chart with database names. Display percentages of each database on the pie chart.

```
In [16]: 

# your code goes here

QUERY = """
              SELECT DatabaseDesireNextYear, COUNT(*) as count
              from\ Database Desire Next Year
              group by DatabaseDesireNextYear
              order by count(DatabaseDesireNextYear) DESC LIMIT 5
              df=pd.read_sql_query(QUERY,conn)
              df.set_index('DatabaseDesireNextYear', inplace=True)
              colors_list=['gold', 'yellowgreen', 'lightcoral', 'lightskyblue', 'lightgreen', 'pink']
              df['count'].plot(kind='pie', figsize=(20,6), autopct='%1.1f%%', labels=None, startangle=90, colors=colors_list, shadow=True, pctd
              plt.legend(labels=df.index, loc='upper right')
              plt.title('Top 5 Databases Respondents Wish To Learn')
              plt.axis('equal')
              plt.show()
                                                                    Top 5 Databases Respondents Wish To Learn
                                                                                                                                           PostgreSQL
MongoDB
                                                                                            16.4%
                                                                                                                                           Redis
                                                                                                                                            MySQL

    Elasticsearch

                                                                                                      18.8%
                                                                  20.9%
```

19.1%

Stacked Charts

Create a stacked chart of median WorkWeekHrs and CodeRevHrs for the age group 30 to 35.

Visualizing comparison of data

Line Chart

Plot the median ConvertedComp for all ages from 45 to 60.

```
In [18]: # your code goes here
QUERY = """
SELECT ConvertedComp, Age FROM master
WHERE Age BETWEEN 45 AND 60
"""

df = pd.read_sql_query(QUERY,conn)
df1 = df.groupby('Age').median()

df1.plot(kind='line', figsize=(20, 6))

plt.title('Median ConvertedComp for Those Age 45 to 60')
plt.ylabel('ConvertedComp')
plt.show()
```


Bar Chart

Create a horizontal bar chart using column MainBranch.

```
In [19]: # your code goes here
QUERY = """
SELECT MainBranch, COUNT(*) as MainBranch
from master
group by MainBranch
"""

df=pd.read_sql_query(QUERY,conn)
df.plot(kind='bar', figsize=(10,6), color='blue')
plt.show()
```


Close the database connection.

Authors

Ramesh Sannareddy

Other Contributors

Rav Ahuja

Change Log

Date (YYYY-MM-DD)	Version	Changed By	Change Description
2020-10-17	0.1	Ramesh Sannareddy	Created initial version of the lab

Copyright © 2020 IBM Corporation. This notebook and its source code are released under the terms of the MIT License (https://cognitiveclass.ai/mit-license? utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10006555&utm_id=NA-SkillsNetwork-Channel-utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_sou SkillsNetworkCoursesIBMDA0321ENSkillsNetwork21426264-2022-01-01&cm_mmc=Email_Newsletter-_-Developer_Ed%2BTech-_-WW_WW-_-SkillsNetwork-Courses-IBM-DA0321EN-SkillsNetwork-

21426264&cm_mmca1=000026UJ&cm_mmca2=10006555&cm_mmca3=M12345678&cvosrc=email.Newsletter.M12345678&cvo_campaign=000026UJ).