Выбор тензорных представлений для прогнозирования по мультимодальным измерениям

Алсаханова Н. Ю., Стрижов В. В.

alsahanova.nyu@phystech.edu, strijov@phystech.edu

В данной работе решается задача прогнозирования по измерениям с разнородных источников путем выбора оптимального тензорного представления исходных данных. Оптимальное представление предлагается получать согласованием мультимодальных измерений. Далее строится прогностическая модель путем согласования независимых и целевой переменных.

Ключевые слова: декодирование сигналов, электрокортикограмма, метод частичных наименьших квадратов, тензорый метод главных компонент. .

1 Введение

Исходные данные в области декодирования сигналов [1], [2], [3] являются многомерными и сильно избыточными. В следствие чего модели, построенные на таких данных, неустойчивы. Так же значительно увеличивается время вычислений. Для решения этих проблем применяют модели отбора признаков [4], [5] и снижения размерности [6], [27].

Часто в задаче декодирования имеется несколько входных сигналов, мультимодальные измерения. Например, в задаче восстановления траектории движения руки имеется 32 входных сигнала электрокортикограмм [2]. Для решения задачи с мультимодальными измерениями применяются две различные группы подходов, описанные в [7]. Одна группа состоит из методов, переводящих мультимодальные измерения в одно низкоразмерное представление. Другая группа методов путем согласования мультимодальных измерений проецирует их в низкоразмерное пространство, сохраняя их количество. Например, метод главных компонент РСА и его тензорные модификации, а так же автоэнкодеры. Применяется канонический корреляционный анализ (ССА) и некоторые его модификации [8], [9], [10]. Так же согласование мультимодальных измерений проводится путем применения метода частичных наименьших квадратов (PLS) и его разновидностей [11], [12].

При прогнозировании временных рядов исходные данные имеют высокую размерность, так же в пространствах целевой и независимой переменных есть скрытые зависимости. Черезмерно высокая размерность пространств и наблюдаемая множественная корреляция приводит к неустойчивости прогностичекой модели. В данном случае регрессионная модель, основанная на методе частичных наименьших квадратов широко используется для восстановления зависимостей между наборами данных [13], [14], [15], [16]. Для построения устойчивой прогностической модели так же используют метод отбора признаков, основанный на задаче квадратичного программирования (QPFS) [3]. Данный метод

максимизирует релевантность и минимизирует избыточность признаков. В статье [5] показано, что метод QPFS превосходит многие существующие методы отбора признаков для задачи одномерной регрессии.

Все вышеуказанные методы используют матричное представление данных для прогнозирования временных рядов. Но в задаче с мультимодальными измерениями данные представляются в тензорном виде. Можно решать задачу путем перехода от тензоров к матрицам, но это снижает интерпретируемость и увеличивает избыточность данных. Поэтому для работы с тензорными данными предлагались различные модели [17], [18]. Были предложены тензорные модификации метода главных компонент (tensor KPCA и MPCA) [19], [20], канонического корреляционного анализа (tensor CCA и deep tensor CCA) [21], [9] и метода частичных наименьших квадратов (HOPLS) [22]. В статьях [23], [24] были рассмотрены нелинейные версии тензорного метода частичных наименьших квадратов. В статье [27] был применен автоэнкодер, учитывающий взаимосвязь между исходными данными и целевой переменной в задаче декодирование траектории руки по ЭКоГ данным.

В данной работе предлагается модифицировать предложенный в статье [27] автоэнкодер таким образом, чтобы данные на выходе энкодера оставались в тензорном виде. Более того предлагается новая функция потерь для такого автоэнкодера, который будет учитывать взаимную корреляцию между столбцами нового признакового пространства, полученного с помощью энкодера.

2 Постановка задачи

В данной главе ставится задача декодирования временных рядов. Приводится обзор стандартных методов анализа временных рядов. Ставится задача построения оптимальной линейной регрессионной модели декодирования. Приведен обзор методов снижения размерности пространства, их обобщений и модификаций.

2.1 Предлагаемая модель

Определение 1 Временным рядом называется функция дискретного аргумента $\mathbf{s}(t)$, сопоставляющая отчетам времени $t_i \in \mathcal{T}$ вектор значения измеряемых переменных $\mathbf{s}(t_i) =$ $= s_i \in \mathbb{R}^M$.

Определение 2 Пусть заданы набор временных рядов $\{\mathbf{s}_n(t)\}_{n=1}^{N_s}$ и набор целевых временных рядов $\{\mathbf{y}_n(t)\}_{n=1}^{N_y}$. Задача восстановления значений $\{\mathbf{y}_n(t)\}_{n=1}^{N_y}$ по предыдущим значениям $\{\mathbf{s}_n(t)\}_{n=1}^{N_s}$ называется задачей декодирования временных рядов $\{\mathbf{y}_n(t)\}_{n=1}^{N_y}$.

Пусть из временных рядов $\mathbf{s}(t)$, $\mathbf{y}(t)$ составлена выборка ($\underline{\mathbf{X}}$, \mathbf{Y}):

$$\underline{X} \in \mathbb{R}^{M \times n_1 \times \dots \times n_D}, \qquad Y \in \mathbb{R}^{M \times K},$$
 (1)

где $\mathbf{y}_m = \mathbf{y}(t_m)$, а $\underline{\mathbf{X}}_m \in \mathbb{R}^{n_1 \times \ldots \times n_D}$ - тензор (многоиндексная матрица).

Требуется восстановить значения \mathbf{y}_m по заданному тензору $\underline{\mathbf{X}}_m$, $m=1,\ldots,M$.

В данной работе предлагается применять композицию моделей h и g, такую что:

$$\varphi = h \circ g: \quad \mathbb{R}^{n_1 \times \dots \times n_D} \to \mathbb{R}^K,$$
 (2)

где функции h и g удовлетворяют процессу:

$$\underline{\mathbf{X}}_m \xrightarrow{h(\cdot,\theta)} \underline{\mathbf{Q}}_m \xrightarrow{g(\cdot,\eta)} \mathbf{Y}_m$$

Определение 3 Модель снижения размерности $h: \mathbb{R}^{n_1 \times ... \times n_D} \to \mathbb{R}^{\ell_1 \times ... \times \ell_D}$, где $\ell_i < n_i$ является преобразованием, которое переводит из пространства большей размерности $\mathbb{R}^{n_1 \times ... \times n_D}$ в пространство меньшей размерности $\mathbb{R}^{\ell_1 \times ... \times \ell_D}$, то есть $\underline{\mathbf{Q}}_m = h(\underline{\mathbf{X}}_m, \theta)$, где θ – параметры преобразования.

Определение 4 Модель согласования $g: \mathbb{R}^{\ell_1 \times ... \times \ell_D} \to \mathbb{R}^K$ – преобразование, переводящая из пространтсва меньшей размерности $\mathbb{R}^{\ell_1 \times ... \times \ell_D}$ в пространство целевой переменной \mathbb{R}^K , то есть $\mathbf{Y}_m = g(\mathbf{Q}_m, \eta)$, где η – параметры преобразования.

Модель $\varphi^*(\cdot, \theta, \eta)$ является оптимальной, если она минимизирует некоторый функционал ошибки \mathcal{L} :

$$\varphi^* = \operatorname*{arg\,min}_{\{\theta,\eta\}} \mathcal{L}\left(\varphi(\underline{X},\theta,\eta), \ Y\right) \tag{3}$$

Возможные модели снижения размерности будут рассмотренны в пункте 4. В качестве модели согласования могут быть использованы мультимодальная, тензорная и нелинейная тензорная регрессии.

2.2 Мультимодальная регрессия

Тензор признаков \underline{X} имеет D+1 размерность. Чтобы восстановить целевые временные ряды, можно матрицизовать тензор признаков \underline{X} по первой размерности:

$$\underline{\boldsymbol{X}}_{(1)} = \left[\operatorname{vec}\left(\underline{\boldsymbol{X}}_{1}\right)^{\top}, \dots, \operatorname{vec}\left(\underline{\boldsymbol{X}}_{M}\right)^{\top} \right]^{\top} \in \mathbb{R}^{M \times (n_{1} \cdot \dots \cdot n_{D})}$$

$$(4)$$

таким образом задача сводится к задаче мультимодальной регрессии, где $\mathbf{X} \in \mathbb{R}^{M \times (n_1 \cdot \ldots \cdot n_D)}$ – исходная матрица, полученная матрицизацией исходного тензора, $\mathbf{Y} \in \mathbb{R}^{M \times K}$ – целевая матрица. Требуется построить прогностическую модель $\mathbf{f} : \mathbb{R}^{M \times (n_1 \cdot \ldots \cdot n_D)} \to \mathbb{R}^{M \times K}$. Данная модель должна быть оптимальной \mathbf{f}^* , то есть минимизирующей некоторую функционал ошибки \mathcal{L} :

$$\mathbf{f}^* = \arg\min_{\mathbf{f}} \mathcal{L}(\mathbf{f}, \ \mathbf{X}, \ \mathbf{Y}) \tag{5}$$

Будем рассматривать только класс параметрических моделей $\mathbf{f}(\mathbf{X}, \mathbf{\Theta})$, где $\mathbf{\Theta}$ – матрица параметров, для сужения пространства поиска моделей. Тогда задача (5) сводится к задаче поиска оптимальных параметров:

$$\Theta^* = \arg\min_{\mathbf{\Theta}} \mathcal{L}(\mathbf{\Theta}, \ \mathbf{X}, \ \mathbf{Y}) \tag{6}$$

В даной работе рассматриваемые пространства исходной и целевой переменных имеют избыточную размерность. В таком случае решение задачи (6) неустойчиво. Например, при восстановлении линейной регрессии:

$$\mathbf{Y} = \mathbf{X}\mathbf{\Theta} + \varepsilon, \qquad \mathbf{\Theta} \in \mathbb{R}^{(n_1 \cdot \dots \cdot n_D) \times K}$$
 (7)

Оптимальные параметры Θ^* определяются минимизацией функционала ошибки:

$$\mathcal{L}\left(\mathbf{\Theta}, \mathbf{X}, \mathbf{Y}\right) = \left\|\mathbf{Y} - \mathbf{X}\mathbf{\Theta}\right\|_{2}^{2} \to \min_{\mathbf{\Theta}}$$
 (8)

Решением задачи оптимизации (8) является:

$$\mathbf{\Theta} = \left(\mathbf{X}^{\mathsf{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{Y} \tag{9}$$

Линейная зависимость между признаками в матрице \mathbf{X} приводит к неустойчивости решения задачи (8), так как матрица $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ близка к сингулярной. Для решения данной проблемы используются методы снижения размерности пространства, описываемые в пункте 4. Они позволяют избежать сильной линейной зависимости между признаками.

2.3 Тензорная регрессия

Матрицизация тензора \underline{X} приводит к черезмерно большому количеству столбцов. Так же теряется информация для структурированных данных при матрицизации. И так как тензоры это многоиндексные матрицы, то тензорная регрессия может быть определена подобным образом, как (7):

$$\mathbf{y}_m = \langle \underline{\mathbf{X}}_m | \underline{\mathbf{W}} \rangle + \varepsilon \tag{10}$$

где $\langle \underline{\mathbf{X}}_m | \underline{\mathbf{W}} \rangle$ - тензорная свертка по первым D размерностям D-мерного исходного тензора $\underline{\mathbf{X}}_m \in \mathbb{R}^{n_1 \times \ldots \times n_D}$ и (D+1)-мерного тензора параметров модели $\underline{\mathbf{W}} \in \mathbb{R}^{n_1 \times \ldots \times n_D \times K}$, $\varepsilon \in \mathbb{R}^K$ – ошибка, $\mathbf{y}_m \in \mathbb{R}^K$ – целевой вектор.

k-ый элемент вектора, получившегося после тензорной свертки $\underline{\mathbf{X}}_m$ и $\underline{\mathbf{W}}$ считается следующим образом:

$$\langle \underline{\mathbf{X}}_m | \underline{\mathbf{W}} \rangle_k = \sum_{i_1=1}^{n_1} \cdots \sum_{i_D=1}^{n_D} x_{i_1,\dots,i_D} w_{i_1,\dots,i_D,k}$$

$$\tag{11}$$

Оптимальный тензор параметров $\underline{\mathbf{W}}^*$ находится путем минимизации квадратичной функции ошибки:

$$\underline{\mathbf{W}}^* = \arg\min_{\underline{\mathbf{w}}} \sum_{m=1}^{M} \left\| \mathbf{y}_m - \langle \underline{\mathbf{X}}_m | \underline{\mathbf{W}} \rangle \right\|_2^2$$
 (12)

На практике тензор параметров <u>W</u> представляют в раложении Такера:

$$\underline{\mathbf{W}} \approx \underline{\mathbf{G}} \times_1 \mathbf{U}^{(1)} \dots \times_D \mathbf{U}^{(D)} \times_{D+1} \mathbf{U}^{(D+1)}$$
(13)

где $\underline{\mathbf{G}}$ - центральный тензор меньшего размера, $\mathbf{U}^{(i)}$ - унитарные матрицы.

2.4 Снижение размерности

Для снижения размерности пространства часто применяется метод главных компонет PCA и его тензорные модификации. Основным недостатком которого является то, что он не учитывает взаимосвязь между объектами X и целевой переменной Y.

Этого недостатка нет у метода PLS (partial least squares), так как он находит в скрытом пространстве метрицы **T**, **U**, которые лучше всего описывают исходные матрицы **X**, **Y**. Основная идея метода PLS заключается в том, что он максимизирует ковариацию между столбцами матриц **T** и **U**. Тем самым, учитываетя взаимосвязь между **X** и **Y**. Более того, для работы с тензорными данными были разработаны тензорные модификации PLS, например HOPLS. Основным ограничением методов PLS и HOPLS является их линейность.

Еще одним из популярных методов снижения размерности пространства являются автоэнкодеры. Неглубокие автоэнкодеры по существу эквивалентны методу главных компонент (PCA). Но если автоэнкодер имеет нелинейный энкодер и декодер, то он становится эквивалентным нелинейному PCA [26]. Важным приемуществом автоенкодеров так же является то, что они работают с тензорами. Но многие автоэнкодеры обучаются, минимизируя функционал потерь, никак не учитывающим Y, тем самым не учитывается взаимосвязь между X и Y.

В данной работе предлагаются автоэнкодеры, учитывающие взаимосвязь между признаковым описанием объектов и целевой переменной, а так же корреляцию между столбцами нового признаково описания в скрытом пространстве.

В последующих главах будут подробно рассмотрены PLS, HOPLS и предлагаемые автоэнкодеры.

3 Метод частичных наименьших квадратов

Пусть задана выборка (\mathbf{X}, \mathbf{Y}) , где $\mathbf{X} \in \mathbb{R}^{m \times n}$ — матрицы объектов, $\mathbf{Y} \in \mathbb{R}^{m \times r}$ — матрица ответов. Метод частных наименьших квадратов (partial least squares, PLS) проецирует матрицу объектов \mathbf{X} и матрицу ответов \mathbf{Y} в скрытое пространсво \mathbb{R}^{ℓ} меньшей размерности ($\ell < r < n$). Метод PLS находит в скрытом пространстве матрицы $\mathbf{T}, \mathbf{U} \in \mathbb{R}^{m \times \ell}$, которые лучше всего описывают исходные матрицы \mathbf{X} и \mathbf{Y} . При этом PLS максимизирует ковариацию между столбцами матриц \mathbf{T} и \mathbf{U} соответственно.

 $\mathit{Исходная}$ матрица \mathbf{X} и целевая матрица \mathbf{Y} проецируются на скрытое пространство следующим образом:

$$\mathbf{X} = \mathbf{T} \cdot \mathbf{P}^ op + \mathbf{F} = \sum_{k=1}^\ell \mathbf{t}_k \cdot \mathbf{p}_k^ op + \mathbf{F}, \mathbf{Y} = \mathbf{U} \cdot \mathbf{Q}^ op + \mathbf{E} = \sum_{k=1}^\ell \mathbf{u}_k \cdot \mathbf{q}_k^ op + \mathbf{E}.$$

Здесь \mathbf{T} и \mathbf{U} — образы исходных матриц в скрытом пространстве, причем столбцы матрицы \mathbf{T} ортогональны; \mathbf{P} и \mathbf{Q} — матрицы перехода; \mathbf{F} и \mathbf{E} — матрицы остатков. Метод PLS восстанавливает линейную зависимость между столбцами матриц \mathbf{T} и \mathbf{U} :

$$\mathbf{U} \approx \mathbf{TB}, \quad \mathbf{B} = diag(\beta_k), \quad \beta_k = \mathbf{u}_k^{\top} \mathbf{t}_k / \|\mathbf{t}_k\|_2^2,$$

где $\{\mathbf t_k\}_{k=1}^\ell, \{\mathbf u_k\}_{k=1}^\ell$ — столбцы матриц **T** и **U** соответственно. *PLS* решает следующую оптимизационную задачу:

$$cov(\mathbf{X}\mathbf{p},\mathbf{Y}\mathbf{q})^2 = \frac{\mathbf{p}^{\top}\mathbf{X}^{\top}\mathbf{Y}\mathbf{q}}{\|\mathbf{p}\|_2\|\mathbf{q}\|_2} \to \max_{\mathbf{p},\ \mathbf{q}}, s.t \quad \mathbf{p}^{\top}\mathbf{p} = 1, \quad \mathbf{q}^{\top}\mathbf{q} = 1.$$

Линейное преобразование между объектами в исходном и скрытом пространствах имеет вид

$$T = XW^*$$
,

где
$$\mathbf{W}^* = \mathbf{W}(\mathbf{P}^\top \mathbf{W})^{-1}$$
.

Матрица параметров модели находится следующим образом:

$$\mathbf{Y} = \mathbf{T}\mathbf{Q}^{\top} + \mathbf{E} = \mathbf{X}\mathbf{W}^{*}\mathbf{Q}^{\top} + \mathbf{E} = \mathbf{X}\boldsymbol{\Theta} + \mathbf{E}.$$

Таким образом, параметры модели равны

$$\mathbf{\Theta} = \mathbf{W}(\mathbf{P}^{\top}\mathbf{W})^{-1}\mathbf{B}\mathbf{Q}^{\top}.$$

3.1 Тензорный метод частичных наименьших квадратов

4 Автоэнкодер

Для задачи снижения размерности чато применяются автоэнкодеры. Так, например, для задачи снижения размерности при работе с данными электрокортикограмм был применен автоэнкодер ReducedNet [27]. Предсказание координат движения рук были оказалось более точным после снижения размерности с помощью ReducedNet, чем после таких методов, как PLS или KernelPCA. Поэтому было решено применить эту модель в данной работе, но с небольшими модификациями.

Предложенная в [27] модель состояла из двух блоков: модуля понижения размерности, состоящего из энкодера h и декодера ψ ; и модуля декодирования ω . Модуль понижения размерности состоял из сверточных блоков (conv1D) и LSTM блоков. Каждый сверточный блок состоял из одномерного сверточного слоя, одного слоя Batch Normalization, функции активации GELU (gaussian error linear unit) и Dropout. LSTM блок - это один LSTM слой. Модуль декодирования представлял собой один линейный слой. Единственным настраеваемым параметром нейронной сети была разменость данных на выходе из LSTM слоя.

В данной работе предлагается несколько модификаций данной нейронной сети: ModifiedReducedNet, TensorReducedNet и TensorDimReducedNet.

Рис. 1 ModifiedReducedNet.

Рис. 2 TensorReducedNet.

4.1 Автоэнкодер ModifiedReducedNet

Главным отличием ModifiedReducedNet (Puc. 1) от ReducedNet является наличие второго параметра сети, такого как количество каналов, которое получается на выходе из сверточных блоков (N_F). То есть на вход подается тензор $X \in \mathbb{R}^{T \times F \times C}$, на выходе из четвертого сверточного слоя получается тензор размерности $\mathbb{R}^{T \times N_F \times C}$. Более того было увеличено количество каналов, которое получается на выходе из первого сверточного блока, чтобы усложнить немного модель для наших данных.

Однако выход после автоэнкодера получается матричным и теряет информацию, которую можно было бы сохранить не применяя матрицизацию перед LSTM блоком.

4.2 Автоэнкодер TensorReducedNet

Тензорной модификацией ReducedNet является TensorReducedNet (Puc. 2). Данная модификация позволяет не терять исходную структуру данных, создавая на выходе энкодера тензор. Это позволяет применять как тензорные, так и матричные регрессионные модели.

4.3 Автоэнкодер TensorDimReducedNet

C помощью TensorDimReducedNet (Puc. 3) можно создавать на выходе из энкодера тензора c дополнительными размерностями, которые можно трактовать, как дополнительные нелинейные признаки. Это позволяет учитывать нелинейные взаимосвязи между \mathbf{X} и \mathbf{Y} , используя линейные модели.

4.4 Функции потерь

Для обучения автоэнкодеров, представленных выше, использовалось две разные функции потерь. Первая, как в статье [27]:

$$\mathcal{L}_1 = \mathcal{L}_{rec} + \alpha \cdot \mathcal{L}_{dec}, \tag{14}$$

Рис. 3 TensorDimReducedNet.

где:

$$\mathcal{L}_{rec} = \frac{1}{M} \sum_{m=1}^{M} \|\underline{\mathbf{X}}_{m} - h \circ \psi(\underline{\mathbf{X}}_{m})\|^{2}$$

$$\mathcal{L}_{dec} = \frac{1}{M} \sum_{m=1}^{M} \|\mathbf{Y}_m - \omega \circ h(\underline{\mathbf{X}}_m)\|^2$$

Вторая, предлагается впервые в данной работе:

$$\mathcal{L}_2 = \mathcal{L}_{rec} + \alpha \cdot \mathcal{L}_{dec} + \beta \cdot \mathcal{L}_{cor}, \tag{15}$$

где:

$$\mathcal{L}_{cor} = \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} corr(h(\underline{\mathbf{X}}_m)_i, \ h(\underline{\mathbf{X}}_m)_j)$$

где n - количество столцов в тензоре $h(\underline{\mathbf{X}}_m)$.

Она позволяет получать новые признаковые описания объектов в скрытом пространстве слабо коррелирующие между собой.

5 Эксперимент

5.1 Данные

Таблипа	1	Танные

Название	Источники	Предсказываемый сигнал
Sensors	$\underline{\mathbf{X}} \in \mathbb{R}^{t \times 6 \times 15}$	$\mathbf{Y} \in \mathbb{R}^{t imes 3}$
ECoG	$\underline{\mathbf{X}} \in \mathbb{R}^{t \times 32 \times 27}$	$\mathbf{Y} \in \mathbb{R}^{t imes 3}$
BerkeleyMHAD-video	$\underline{\mathbf{X}} \in \mathbb{R}^{t \times 15 \times 35 \times 4}$	$\underline{\mathbf{Y}} \in \mathbb{R}^{t imes 3 imes 6}$

Данные Sensors

Рис. 4 Данные с гироскопа

Рис. 5 Признаки в частотно-временном пространстве

Одним из наборов данных для вычислительного эксперимента являются данные собранные с помощью сенсоров на телефонах (один гироскоп и два акселерометра). Это простые для предсказания данные, так как процесс записи таких данных был простым. Один из телефонов был размещен в руке, второй в кармане. Человек с телефонами сделал около 20 шагов по кругу. Данные с двух акселерометров были переведены в частотновременное представлени и объеденены в X. Данные с гироскопа были взяты за целевую

переменную Y (Рис. 4). Таким образом, $X \in \mathbb{R}^{T \times 6 \times 15}$, где 15 — количество частот (Рис. 5), и $Y \in \mathbb{R}^{T \times 3}$.

Данные ЕСоС

Рис. 6 Траектория движения руки

Рис. 7 Данные с одного канала в частотно-временном пространстве

Другим набором данных для вычислительного эксперимента являются данные электрокортикограмм (ECoG) из датасета Neurotycho [28]. Данные состоят из 32-канальных сигналов напряжения, снятых с головного мозга. Данные ECoG являются многомерными и измерения коррелируют как во временной, так и в пространственной областях. Целевой переменной являются координаты положения руки в пространстве (Puc. 6). Исходные сигналы напряжения преобразуются в частотно-временное представление с помощью вейвлет-преобразования с материнским вейвлетом Морле, так как такой тип преобразований часто используется в задачах с ECoG данными [29], [30]. Описание исходного сигнала в каждый момент времени имеет размерность 32 (каналы) \times 27 (частоты) = 864. Каждый сигнал представляет собой локальный отрезок времени длительностью $\Delta t = 1s$. Временной шаг между сигналами $\delta t = 0.05s$. Данные имеют размеры $\mathbf{X} \in \mathbb{R}^{18900 \times 32 \times 27}$ (Рис. 7) и $\mathbf{Y} \in \mathbb{R}^{18900 \times 3}$. Данные разбиты на тренировочную и тестовую выборки в соотношении 0.7.

Данные BerkeleyMHAD-video

5.2 Параметры сети

Обучение всех моделей происходило с оптимизатором Adam, с learning rate 0.01 при работе с первой функцией потерь (14) и с learning rate 0.005 при работе с второй функцией потерь (15). Learning rate умножался каждые 50 эпох на 0.75

Подбор параметров модели, таких как $N_F, N_{CH}, D_1, \ldots, D_N$, для моделей перечисленных в пункте 4 проводилось путем подсчета качества предсказания линейной регрессии по данным, полученным с помощью энкодера, на кросс-валидации с тремя фолдами. Качество предсказания оценивалось по nRMSE (normalized root mean squared error) метрике. Обучение автоэнкодера для подбора параметров проходило 200 эпох для Sensor данных и 100 эпох для ECoG данных.

Параметр α в функции потерь \mathcal{L}_1 (14). был взят, как в статье [27], то есть $\alpha = 3$. Параметры в функции потерь \mathcal{L}_2 (15) подбирались способом, аналогичным подбору параметров сети, только параметры сети были зафиксированы. Для Sensors данных оптимальными α , β оказались 10,3, соответственно. Для ECoG данных оптимальными α , β оказались 5,1, соответственно.

После подбора всех параметров моедли обучались 600 эпох для Sensor данных и 200 эпох для ECoG данных. С помощью энкодера из обученной модели были получены данные в пространстве меньшей размерности. После этого целевая переменная была предсказана с помощью линейной регрессии (LR) по матрицизированным данным, либо тензорной регрегрессией (TR).

5.3 Результаты

Таблица 2 Результаты экспериментов с автоэнкодером с функцией потерь \mathcal{L}_1 (14)

Данные	Модель	Количество компонент	RMSE	Количество парамет- ров
Sensors	PLS	5	0.757	-
	HOPLS	3 imes 1	0.811	-
	MatrixReducedNet	6	0.720	24163
	${\tt TensorReducedNet+LR}$	5×2	0.682	3069
	${\tt TensorReducedNet+TR}$	5×2	0.675	3069
	${\tt TensorDimReducedNet+LR}$	$2 \times 6 \times 2$	0.710	3163
	${\tt TensorDimReducedNet+TR}$	$2 \times 6 \times 2$	0.691	3163
ECoG	PLS	4	0.957	-
	HOPLS	1 imes 1	1.138	-
	MatrixReducedNet	19	0.925	57106
	${\tt TensorReducedNet+LR}$	6×14	0.926	12418
	${\tt TensorReducedNet+TR}$	6×14	0.922	12418
	${\bf Tensor Dim Reduced Net + LR}$	$2 \times 5 \times 14$	0.937	12808
	${\tt TensorDimReducedNet+TR}$	$2 \times 5 \times 14$	0.931	12808

6 Заключение

Литература

- [1] Jean Faber Alexander Wyss Napoleon Torres Corinne Mestais Alim Louis Benabid Andrey Eliseyev, Cecile Moro and Tetiana Aksenova. L1-penalized n-way pls for subset of electrodes selection in bci experiments. Journal of neural engineering, 9(4), 2012.
- [2] Andrey Eliseyev and Tatiana Aksenova. Stable and artifact-resistant decoding of 3d hand trajectories from ecog signals using the generalized additive model. Journal of neural engineering, 11(6), 2014.

Данные	Модель	Количество компонент	RMSE	Количество парамет- ров
Sensors	$\begin{tabular}{ll} TensorReducedNet+LR\\ TensorReducedNet+TR\\ TensorDimReducedNet+LR\\ TensorDimReducedNet+TR\\ \end{tabular}$	2×3 2×3 $6 \times 4 \times 1$ $6 \times 4 \times 1$	0.705 0.654 0.704 0.664	3076 3076 3165 3165
ECoG	$\begin{array}{c} {\rm TensorReducedNet+LR} \\ {\rm TensorReducedNet+TR} \\ {\rm TensorDimReducedNet+LR} \\ {\rm TensorDimReducedNet+TR} \end{array}$	6×9 6×9 $2 \times 4 \times 10$ $2 \times 4 \times 10$	0.939 0.941 0.970 0.973	10548 10548 11169 11169

Таблица 3 Результаты экспериментов с автоэнкодером с функцией потерь \mathcal{L}_2 (15)

Рис. 8 Сравнение моделей на Sensors данных

Рис. 9 Сравнение моделей на ЕСоG данных

- [3] Anastasia Motrenko and Vadim Strijov. Multi-way feature selection for ecog-based brain-computer interface. Expert Systems with Applications, 114:402–413, 2018.
- [4] Lars Snipen Tahir Mehmood, Kristian Hovde Liland and Solve Saebo. A review of variable selection methods in partial least squares regression. Chemometrics and Intelligent Laboratory Systems, 118(12):62–69, 2012.

- [5] Alexandr Katrutsa and Vadim Strijov. Comprehensive study of feature selection methods to solve multicollinearity problem according to evaluation criteria. Expert Systems with Applications, 76:1–11, 2017.
- [6] Alexandr Katrutsa and Vadim Strijov. Stress test procedure for feature selection algorithms. Chemometrics and Intelligent Laboratory Systems, 142:172–183, 2015.
- [7] Yingming Li, Ming Yang, and Zhongfei Zhang. A survey of multi-view representation learning. IEEE transactions on knowledge and data engineering, 31(10):1863–1883, 2018.
- [8] Adrian Benton, Huda Khayrallah, Biman Gujral, Drew Reisinger, Sheng Zhang, and Raman Arora. Deep generalized canonical correlation analysis. CoRR, abs/1702.02519, 2017.
- [9] Hok Shing Wong, Li Wang, Raymond H. Chan, and Tieyong Zeng. Deep tensor cca for multi-view learning. CoRR, abs/2005.11914, 2020.
- [10] Heather D. Couture, Roland Kwitt, J. S. Marron, Melissa A. Troester, Charles M. Perou, and Marc Niethammer. Deep multi-view learning via task-optimal cca. CoRR, abs/1907.07739, 2019.
- [11] Andrey Eliseyev and Tetiana Aksenova. Penalized multi-way partial least squares for smooth trajectory decoding from electrocorticographic (ecog) recording. PloS one, 11(5), 2016.
- [12] Roman Rosipal. Nonlinear partial least squares an overview. Chemoinformatics and advanced machine learning perspectives: complex computational methods and collaborative techniques, pages 169–189, 2011.
- [13] Roman Rosipal and Nicole Kramer. Overview and recent advances in partial least squares. C. Saunders et al. (Eds.) SLSFS 2005, LNCS 3940, page 34–51, 2006.
- [14] Alexander E. Stott, Bruno Scalzo Dees, Ilia Kisil, and Danilo P. Mandic. A class of multidimensional nipals algorithms for quaternion and tensor partial least squares regression. Signal Process., 160:316–327, 2019.
- [15] Solve Sæbø Tahir Mehmood and Kristian Hovde Liland. Comparison of variable selection methods in partial least squares regression. Journal of Chemometrics, 2020.
- [16] Petre Manolescu Julien Lauzon-Gauthier and Carl Duchesne. The sequential multi-block pls algorithm (smb-pls): Comparison of performance and interpretability. Chemometrics and Intelligent Laboratory Systems, (180):72–83, 2018.
- [17] Eric F. Lock. Tensor-on-tensor regression. Journal of Computational and Graphical Statistics, 27(3):638–647, 2018.
- [18] Kamran Paynabar Mostafa Reisi Gahrooei, Hao Yan and Jianjun Shi. Multiple tensor-on-tensor regression: An approach for modeling processes with heterogeneous sources of data. Technometrics, 2020.
- [19] Johan A. K. Suykens Lynn Houthuys. Tensor learning in multi-view kernel pca. Artificial Neural Networks and Machine Learning ICANN 2018, 11140, 2018.
- [20] Haiping Lu, Konstantinos N. Plataniotis, and Anastasios N. Venetsanopoulos. Multilinear principal component analysis of tensor objects for recognition. pages 776–779, 2006.

- [21] Yong Luo, Dacheng Tao, Yonggang Wen, Kotagiri Ramamohanarao, and Chao Xu. Tensor canonical correlation analysis for multi-view dimension reduction. CoRR, abs/1502.02330, 2015.
- [22] Qibin Zhao, Cesar F Caiafa, Danilo P Mandic, Zenas C Chao, Yasuo Nagasaka, Naotaka Fujii, Liqing Zhang, and Andrzej Cichocki. Higher order partial least squares (hopls): a generalized multilinear regression method. IEEE transactions on pattern analysis and machine intelligence, 35(7):1660–1673, 2012.
- [23] Y. Xu X. Feng and Y. Meng. Short-term load forecasting with tensor partial least squares-neural network. Energies, 990(12), 2019.
- [24] Qibin Zhao, Liqing Zhang, and Andrzej Cichocki. Multilinear and nonlinear generalizations of partial least squares: an overview of recent advances. Wiley Interdiscip. Rev. Data Min. Knowl. Discov., 4(2):104–115, 2014.
- [25] Jun Huang, Kehua Su, Jamal El-Den, Tao Hu, and Junlong Li. An mpca/lda based dimensionality reduction algorithm for face recognition. Mathematical Problems in Engineering, 2014:1–12, 08 2014.
- [26] Yoshua Bengi Ian Goodfellow. Deep learning. 2006.
- [27] Chen W. Yvert B. Zhang S. Ran, X. A hybrid autoencoder framework of dimensionality reduction for brain-computer interface decoding. Computers in Biology and Medicine, page 148, 2022.
- [28] Nagasaka Y. Chao Z. C. Fujii N. Shimoda, K. Decoding continuous three-dimensional hand trajectories from epidural electrocorticographic signals in japanese macaques. Journal of neural engineering, page 9(3), 2012.
- [29] Aksenova T. Eliseyev, A. Penalized multi-way partial least squares for smooth trajectory decoding from electrocorticographic (ecog) recording. PloS one, page 11(5), 2016.
- [30] Nagasaka Y. Fujii N. Chao, Z. C. Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkey. Frontiers in neuroengineering, page 3, 2010.