TUGAS BAGIAN II SK-5222 PENAMBANGAN DATA DALAM SAINS

Mohammad Rizka Fadhli - 20921004

21 Mei 2022

Contents

SOAL DAN PEMBAHASAN	
Soal I	
Pertanyaan	
Pembahasan	
K-Means Clustering pada pasangan titik random I	
Soal II	
Pertanyaan	
Pembahasan	

List of Figures

1	Flowchart Pengerjaan K-Means Clustering	(
2	Scatterplot dari Data	,

List of Tables

1	Data Soal I	,
2	Data Soal II	1
3	Hasil Perhitungan Entropy dan Purity	1

SOAL DAN PEMBAHASAN

Soal I

Diberikan 10 buah titik data sebagai berikut:

Table 1: Data Soal I

titik	X	У
p1	4.0	5.2
p2	2.1	3.9
p3	3.4	3.1
p4	2.7	2.0
p5	0.8	4.1
p6	4.6	2.9
p7	4.3	1.2
p8	2.2	1.0
p9	4.1	4.1
p10	1.5	3.0

- Lakukan klasterisasi dari data tersebut dengan menggunakan algoritma k-means dengan jumlah partisi K=2 sebanyak 10 kali.
- Tentukan sentroid awal (secara random) yang berbeda setiap melakukan klasterisasi.
- Stopping criteria untuk klasterisasi bisa ditentukan sendiri (tidak harus sampai tidak ada perubahan sentroid)

Pertanyaan

- 1. Tuliskan hasil akhir kluster yang didapat untuk setiap klasterisasi!
- 2. Hitung nilai average **SSE** untuk masing-masing hasil klusterisasi!
- 3. Hitung nilai average Sillhouette Coefficient untuk masing-masing hasil klusterisasi!
- 4. Dari hasil SSE dan Sillhouette Coefficient, menurut Anda, hasil klasterisasi mana yang memberikan hasil terbaik? Berikan alasannya!
- 5. Apakah algoritma *K-means* sudah memberikan hasil yang baik? Apa yang dapat dilakukan agar hasil klasterisasi lebih baik?

Pembahasan

Untuk melakukan k-means clustering ini, saya akan membuat algoritma sendiri dengan menggunakan 2 titik random dan akan dilakukan sebanyak 10 kali. Berikut ini adalah flowchart dari algoritma tersebut:

- ## QStandardPaths: XDG RUNTIME DIR not set, defaulting to '/tmp/runtime-rstudio-user'
- ## TypeError: Attempting to change the setter of an unconfigurable property.
- ## TypeError: Attempting to change the setter of an unconfigurable property.

Figure 1: Flowchart Pengerjaan K-Means Clustering

Sebagai pengingat, algoritma k-means clustering dilakukan secara iteratif dengan mengandalkan suatu stopping criteria tertentu. Pada tugas ini, stopping criteria yang saya gunakan adalah sebagai berikut:

konvergensi =
$$\sqrt{(x_1^{(k+1)} - x_1^{(k)})^2 + (x_2^{(k+1)} - x_2^{(k)})^2}$$

Dimana $x_1^{(k)}$ dan $x_2^{(k)}$ menandakan sentroid 1 dan 2 pada iterasi ke - k. Sebagai gambaran, berikut adalah *scatterplot* dari data soal tersebut:

Scatterplot dari Data

Figure 2: Scatterplot dari Data

Untuk menyelesaikan permasalahan ini, saya akan membuat beberapa program sebagai berikut:

Program untuk membuat sepasang titik secara random

```
# program untuk membuat titik sentroid secara random
random_titik = function(){
  list(
    sentroid_1 = runif(2,0,6),
    sentroid_2 = runif(2,0,6)
  )
}
```

Program menghitung euclidean distance

```
# program untuk menghitung jarak
jarak = function(x1,x2){
    sb_1 = (x1[1] - x2[1])^2
    sb_2 = (x1[2] - x2[2])^2
    sqrt(sb_1 + sb_2)
}
```

Program untuk menghitung sentroid baru hasil iterasi ke-i

Program untuk menghitung konvergensi

```
# program untuk menghitung selisih sentroid baru dengan sentroid lama
konvergen_yn = function(){
   part1 = sentroid_baru$sentroid_1 - sentroid_1
   part2 = sentroid_baru$sentroid_2 - sentroid_2
   sqrt(sum(part1^2) + sum(part2^2))
}
```

Program untuk menghitung SSE

Program untuk menghitung Silhouette Coefficient

```
sil_coeff = function(df){
  # menghitung distance matrix
 tes =
   df %>%
   select(x,y)
 mat_dist = dist(tes,upper = T) %>% as.matrix()
 # mengambil id titik per cluster
 id_cl_1 = which(df_1$cluster_no == 1)
 id_cl_2 = which(df_1$cluster_no == 2)
 # menghitung nilai a
 a1 = mat_dist[id_cl_1,id_cl_1] %>% mean()
 a2 = mat_dist[id_cl_2,id_cl_2] %>% mean()
 a = mean(a1,a2)
 # menghitung nilai b
 b = rep(NA, 10)
 for(i in 1:10){
    if(i %in% id_cl_1){
     b[i] = mat_dist[i,id_cl_2] %>% mean()
   } else
    if(i %in% id_cl_2){
     b[i] = mat_dist[i,id_cl_1] %>% mean()
   }
 }
 b = min(b)
  # menghitung silhouette coefficient
 s coeff = (b-a)/max(a,b)
 return(s_coeff)
}
```

K-Means Clustering pada pasangan titik random I

Menggunakan titik random berikut ini:

```
random = random titik()
random
## $sentroid 1
## [1] 2.303229 5.946158
## $sentroid 2
## [1] 5.666725 1.667516
Saya akan lakukan clustering berikut ini:
# initial sentroid
sentroid 1 = random$sentroid 1
sentroid 2 = random$sentroid 2
# menyiapkan template untuk menghitung jarak
df$jarak_sentroid1 = NA
df$jarak sentroid2 = NA
# initial konvergensi
konvergensi = 1000
# proses iterasi k-means hingga konvergensi tercapai
while(konvergensi > 10^(-7)){
  # hitung jarak terhadap sentroid
  for(i in 1:nrow(df)){
    titik = c(df$x[i],df$y[i])
    df$jarak sentroid1[i] = jarak(titik,sentroid 1)
    df$jarak_sentroid2[i] = jarak(titik,sentroid_2)
  }
  # memasukkan masing-masing titik ke cluster terdekat
  df =
    df %>%
    mutate(cluster no = ifelse(jarak sentroid1 < jarak sentroid2,1,2))</pre>
  # menghitung sentroid baru
  sentroid baru = new sentroid(df)
  # menghitung konvergensi
  konvergensi = konvergen_yn()
  # update sentroid baru
  sentroid_1 = sentroid_baru$sentroid_1
  sentroid_2 = sentroid_baru$sentroid_2
}
# hasil final
df_1
##
                  y jarak_sentroid1 jarak_sentroid2 cluster_no
      titik
```

```
3.2092367
## 1
      p1 4.0 5.2
                          1.8840382
                                                               1
       p2 2.1 3.9
                                           2.2924223
                                                               1
## 2
                          0.4308132
## 3
       p3 3.4 3.1
                          1.3159027
                                           1.0607544
                                                               2
                                                               2
## 4
       p4 2.7 2.0
                          2.0696860
                                           0.7410803
## 5
        p5 0.8 4.1
                          1.7004705
                                           3.3486117
                                                               1
       p6 4.6 2.9
                                                               2
## 6
                          2.3990832
                                           1.4440222
                                                               2
## 7
        p7 4.3 1.2
                          3.3792899
                                           1.2021647
        p8 2.2 1.0
                                                               2
                          3.0746707
                                           1.6183943
## 8
## 9
       p9 4.1 4.1
                          1.6004999
                                           2.1631459
                                                               1
## 10
        p10 1.5 3.0
                          1.4572577
                                           2.1645323
                                                               1
# sentroid 1
sentroid_1
## [1] 2.50 4.06
# sentroid 2
```

[1] 3.44 2.04

 ${\tt sentroid_2}$

Berikut adalah SSE dari perhitungan ini:

```
# menghitung SSE
SSE = hitung_SSE(df_1)
SSE
```

[1] 19.136

Berikut adalah *silhouette coefficient* dari perhitungan ini:

```
SC = sil_coeff(df_1)
SC
```

[1] 0.08707463

Soal IIDiberikan *confusion matrix* sebagai berikut:

v

Table	2:	Data	Soal	II

cluster	entertainment	financial	foreign	metro	national	sports	Total
#1	1	1	0	11	4	676	693
#2	27	89	333	827	253	33	1562
#3	326	465	8	105	16	29	949
Total	354	555	341	943	273	738	3204

Pertanyaan

Hitung nilai entropy dan purity untuk matriks tersebut! Berikan analisis untuk hasil yang didapat!

Pembahasan

Entropi untuk masing-masing cluster dihitung sebagai berikut:

Entropy 1 =
$$-\frac{1}{693} \log_2(\frac{1}{693}) - \frac{1}{693} \log_2(\frac{1}{693})$$

 $-0 - \frac{11}{693} \log_2(\frac{11}{693})$
 $-\frac{4}{693} \log_2(\frac{4}{693}) - \frac{676}{693} \log_2(\frac{676}{693})$
= 0.200

$$\begin{array}{ll} \text{Entropy 2} = & -\frac{27}{1562}\log_2(\frac{27}{1562}) - \frac{89}{1562}\log_2(\frac{89}{1562}) \\ & -\frac{333}{1562}\log_2(\frac{333}{1562}) - \frac{872}{1562}\log_2(\frac{872}{1562}) \\ & -\frac{253}{1562}\log_2(\frac{253}{1562}) - \frac{33}{1562}\log_2(\frac{33}{1562}) \\ & = 1.841 \end{array}$$

Entropy 3 =
$$-\frac{326}{949} \log_2(\frac{326}{949}) - \frac{465}{949} \log_2(\frac{465}{949}) - \frac{8}{949} \log_2(\frac{8}{949}) - \frac{105}{949} \log_2(\frac{105}{949}) - \frac{16}{949} \log_2(\frac{105}{949}) - \frac{29}{949} \log_2(\frac{29}{949}) = 1.696$$

Sedangkan untuk *purity* dihitung dengan cara:

$$\begin{array}{lll} \text{Purity 1} = & \frac{676}{693} & = 0.975 \\ \text{Purity 2} = & \frac{827}{1562} & = 0.529 \\ \text{Purity 3} = & \frac{465}{949} & = 0.490 \end{array}$$

Total entropy dihitung sebagai berikut:

$$\text{Total entropy} = \frac{693 \times 0.200 + 1562 \times 1.841 + 949 \times 0.490}{3204} = 0.614$$

Total purity dihitung sebagai berikut:

Total purity =
$$\frac{693 \times 0.975 + 1562 \times 0.529 + 949 \times 1.696}{3204} = 1.443$$

Berikut jika disajikan dalam bentuk tabel:

Table 3: Hasil Perhitungan Entropy dan Purity

cluster	entertainme	ntfinancial	foreign	metro	national	sports	Total	Entropy	Purity
#1	1	1	0	11	4	676	693	0.200	0.975
#2	27	89	333	827	253	33	1562	1.841	0.529
#3	326	465	8	105	16	29	949	1.696	0.490
Total	354	555	341	943	273	738	3204	0.614	1.443

Dari tabel di atas, kita bisa dapatkan informasi sebagai berikut:

Cluster #1 memiliki purity yang sangat tinggi dan entropy terendah. Artinya, cluster ini berhasil mengelompokkan data yang unique karakteristiknya (berasal dari satu atribut dominan). Berbeda dengan cluster #2 dan #3 yang tidak memiliki satu atribut yang dominan. Tapi secara keseluruhan, cluster yang dihasilkan sudah bisa memisahkan data menjadi 3 kelompok dengan karakteristik yang berbeda-beda.