Løsningsforslag øving 6

Oppgave 1

Vi setter inntil videre at $\tau = 0 \Rightarrow e^{-\tau s} \equiv 1$.

a) Finn først $h_0(s)$ gitt ved

$$h_0(s) = \frac{K_p(1 - T_1 s)(1 + T_i s)}{T_i s \left(1 + 2\zeta \left(\frac{s}{\omega_0}\right) + \left(\frac{s}{\omega_0}\right)^2\right)}$$
(1)

Vi starter med amplitudeforløpet. Siden vi har q=1 rene integrasjoner kan vi beregne $\omega_{c,as}=K^{1/q}=\frac{K_p}{T_i}=0.2$. Vi vet nå at det går en asymptote med helning (-q)=(-1), som krysser 0-dB linjen i $\omega_{c,as}$. Generelt kan denne linje knekke opp eller ned før den når 0-dB, men i dette tilfellet sammenfaller $\omega_{c,as}$ med første knekkpunkt som er $\frac{1}{T_i}=0.2$.

Videre amplitudeforløp finnes ved å endre helningen til asymptoten i hvert knekkpunkt. Vi har i dette tilfellet 3 knekkpunkt gitt av ledd i transferfunksjonen. Knekkpunktene skisseres kronologisk etter knekkfrekvensene i tabellen under. Skissering av asymptotene for $|h_0(j\omega)|$ er vist i figur 4.

Ledd	Type	Knekkfrekvens	Helning
$(1-T_1s)$	Nullpunkt	$\frac{1}{T_1} = 5$	p=1
$(1+T_is)$	Nullpunkt	$\frac{1}{T_i} = 0.2$	p=1
$\left(1 + 2\zeta \left(\frac{s}{\omega_0}\right) + \left(\frac{s}{\omega_0}\right)^2\right)$	Resonansledd	$\omega_0 = 2$	p=-2

Videre for faseforløpet, har vi at q=1 rene integrasjoner i transferfunksjonen gir en start-fase på $(-q)90^{\circ}$. Videre forløp kan bestemmes ut fra følgende tabell. Asymptotene for $\angle h_0(j\omega)$ er vist i figur 5

Ledd	Type	Knekkfrekvens	Fasebidrag
$(1-T_1s)$	Nullpunkt i h.h.p.	$\frac{1}{T_1} = 5$	-90°
$(1+T_is)$	Nullpunkt	$\frac{1}{T_i} = 0.2$	90°
$\left(1 + 2\zeta \left(\frac{s}{\omega_0}\right) + \left(\frac{s}{\omega_0}\right)^2\right)$	Resonansledd	$\omega_0 = 2$	-180°

b) Vi har følgende approksimasjoner:

$$\begin{split} |N(j\omega)| \; (\mathrm{dB}) \; &\approx \; -|h_0(j\omega)| \; (\mathrm{dB}) \quad \text{når} \; |h_0(j\omega)| \; (\mathrm{dB}) >> 0 \\ |N(j\omega)| \; (\mathrm{dB}) \; &\approx \; 0 \; (\mathrm{dB}) \qquad \text{når} \; |h_0(j\omega)| \; (\mathrm{dB}) << 0 \\ |M(j\omega)| \; (\mathrm{dB}) \; &\approx \; 0 \; (\mathrm{dB}) \qquad \text{når} \; |h_0(j\omega)| \; (\mathrm{dB}) >> 0 \\ |M(j\omega)| \; (\mathrm{dB}) \; &\approx \; |h_0(j\omega)| \; (\mathrm{dB}) \qquad \text{når} \; |h_0(j\omega)| \; (\mathrm{dB}) << 0 \end{split}$$

Asymptotisk forløp for $|N(j\omega)|$ og $|M(j\omega)|$ er vist i figur 6.

- c) Vi overfører $h_0(j\omega)$ til Nichols-diagram og bruker denne kurva til tegning av $N(j\omega)$. Se boka side 237 og utover. Kurvene er vist i figur 7.
- d) Vi tegner først tidsforsinkelsen. Vi har at $\angle e^{-j\omega\tau} = -\omega\tau$ [rad]. Deretter legger vi denne til fasen til $h_0(j\omega)$. Merk at forløpet for amplituden blir uforandret, dvs. $|h_0(s)e^{-\tau s}| = |h_0(s)|$. Se figur 7.

Vi ser videre av figur 7 at

$$\tau = 0 : |N(j\omega)|_{\text{max}} \approx 7,0 \text{ dB}$$

 $\tau = 0.1 : |N(j\omega)|_{\text{max}} \approx 9.9 \text{ dB}$

Resonnanstoppen betyr at systemets følsomhet for forstyrrelser i området rundt kryssfrekvensen øker. Ofte inngår $|N(j\omega)|_{\text{max}}$ i spesifikasjonene for et system, fordi resonnanstoppen er et uttrykk for systemets stabilitetsmargin.

Hvis τ økes ytterligere, så mye at $|N(j\omega)|_{\text{max}} = \infty$, blir systemet ustabilt. Tidsforsinkelsen vil da bidra med for mye negativ fasedreining.

Oppgave 2

a) Av figur 2 i oppgaveteksten får vi følgende uttrykk:

$$y(s) = \frac{h_r(s)h_u(s)}{1 + h_r(s)h_u(s)}r(s) + \frac{h_v(s)}{1 + h_r(s)h_u(s)}v(s)$$

$$u(s) = h_r(s)e(s) = \frac{h_r(s)}{1 + h_r(s)h_u(s)}r(s) - \frac{h_r(s)h_v(s)}{1 + h_r(s)h_u(s)}v(s)$$

som videre gir oss transferfunksjonene (avhengigheten av s sløyfes for enkelhets skyld):

i)
$$\frac{u}{r} = \frac{h_r}{1 + h_r h_u} = h_r \frac{1}{1 + h_0} = h_r N$$

ii)
$$\frac{u}{v} = -\frac{h_r h_v}{1 + h_r h_u} = -h_r h_v \frac{1}{1 + h_0} = -h_r h_v N$$

b) Denne oppgaven kan løses på (minst) to måter. Den mest iøynefallende er å flytte summasjonspunktet for v mot høyre og kompensere for transferfunksjoner vi "hopper over" til vi ender opp med h_v . Men siden $\frac{y}{u}(s)$ er gitt, så er det i dette tilfellet enklere å flytte v mot venste inntil v sammenfaller med u slik at vi kan benytte $\frac{y}{u}(s)$ i uttrykket. Vi viser begge metodene:

Mot venstre: Ved å flytte v til venstre for blokka K_T , må v multipliseres med $\frac{1}{K_T}$. Ved å flytte videre til venstre (forbi det første summasjonspunktet), må v i tillegg multipliseres med $L_a s + R_a$ (som er det inverse av transferfunksjonen bestående av blokkene $L_a s$ og R_a). Summasjonspunktet for v er nå flyttet til samme punkt som for u. Vi kan derfor flytte summasjonspunktet for v helt ut til v ved å multiplisere med v0. Den totale operasjonen resulterer i:

$$h_v(s) = \frac{1}{K_T} \cdot (L_a s + R_a) \cdot \frac{y}{u}(s)$$
$$= \frac{\frac{L_a s + R_a}{K_v K_T}}{s \left(1 + \frac{J R_a}{K_v K_T} s + \frac{J L_a}{K_v K_T} s^2\right)}$$

Mot høyre: Ved å flytte v til høyre for blokka $\frac{1}{J_s}$, må v multipliseres med $\frac{1}{J_s}$. Flytter vi v videre til høyre for tilbakekoblingen, så må vi også korrigere for dette. Korreksjonen består her av transferfunksjonen fra v til punktet like før integratoren for y. La oss kalle dette punktet for x = (sy(s)). Vi kan da skrive:

$$x = \frac{v}{Js} + \frac{1}{Js} \cdot \frac{K_T}{L_a s + R_a} \cdot (-K_v) x$$

$$x \left(1 + \frac{K_T K_v}{Js(L_a s + R_a)} \right) = \frac{v}{Js}$$

$$x = \frac{\frac{1}{Js} Js(R_a + L_a s)}{Js(L_a s + R_a) + K_T K_v} = \frac{R_a + L_a s}{Js(L_a s + R_a) + K_T K_v} v$$

Siden $y = \frac{1}{s}x$, før vi:

$$h_v(s) = \frac{L_a s + R_a}{J s^2 (L_a s + R_a) + K_T K_v s}, \text{ som kan omformes til:}$$

$$h_v(s) = \frac{\frac{L_a s + R_a}{K_v K_T}}{s \left(1 + \frac{J R_a}{K_v K_T} s + \frac{J L_a}{K_v K_T} s^2\right)}$$

Vi ser at vi som forventet før samme svar med de to metodene.

Oppgave 3

Gitt karakteristisk polynom

$$a_2s^2 + a_1s + a_0, (2)$$

Røttene til polynomet (2) er gitt av

$$a_2s^2 + a_1s + a_0 = a_2(s - \lambda_1)(s - \lambda_2) = a_2(s^2 - (\lambda_1 + \lambda_2)s + \lambda_1\lambda_2) = 0$$
(3)

Sammelikning av koeffisientene gir

$$-a_2(\lambda_1 + \lambda_2) = a_1 \tag{4}$$

$$a_2\lambda_1\lambda_2 = a_0 \tag{5}$$

Tilfelle 1: Reelle røtter

Dersom a_2, a_1 og a_0 har samme fortegn, så må λ_1 og λ_2 ha samme fortegn fra betingelsen (5). Dersom koeffisientene er positive, så må $\lambda_1 + \lambda_2 < 0$ og dermed begge negative pga kravet om samme fortegn. Dersom alle koeffisientene i (2) er negative så blir $|a_2|(\lambda_1 + \lambda_2) = -|a_1|$, og på tilsvarende møte må $\lambda_1, \lambda_2 < 0$.

Tilfelle 2: Komplekskonjugerte røtter

Benytter generelle egenverdier $\lambda_{1,2} = c \pm jd$. Produktet av egenverdiene blir da $\lambda_1\lambda_2 = c^2 + d^2$. Likning (5) vil derfor være oppfylt uavhengig av fortegnet på c. Summen av egenverdiene blir $\lambda_1 + \lambda_2 = 2c$. Dermed blir likning (4) $-a_22c = a_1$, som gir at c må ha negativt fortegn. Dermed er $\text{Re}(\lambda_{1,2} < 0)$.

Dette viser at systemet med karakteristisk polynom (2) vil være asymptotisk stabilt dersom koeffisientene a_2, a_1 og a_0 har samme fortegn.

Oppgave 4

Denne oppgaven løses ved først å forstå hvordan kurvene endrer seg med forskjellige K_p og deretter benytte den grafiske tolkningen av Nyquists stabilitetskriterium. Figur 1(a) viser Nyquist kurven for $h_{10}(j\omega) = \frac{K_p}{a+j\omega}$ for positive frekvenser. Husk at amplituden til denne transferfunksjonen (i lineær skala) kan skrives

$$|h_{10}(j\omega)| = 10^{(\log|K_p| - \log|a + j\omega|)} = \frac{10^{\lg|K_p|}}{10^{\lg|a + j\omega|}}.$$
(6)

Det er dermed enkelt å se at ved å øke $|K_p|$ så øker vi lengden på vektoren $|h_{10}(j\omega)|$, og også radiusen på sirkelen i figur 3 i oppgaveteksten.

Figur 1: Nyquist diagrammer oppgave 4

i) Den høyre sirkelen i figur 1(b) er det åpent stabile systemet $h_1(j\omega)$. For at systemet skal forbli stabilt når det lukkes, må punktet (-1,0) ligge utenfor stedkurven til $h_1(j\omega)$. Uansett verdi av K_p , så vil

$$h_{10}(j\omega) = \frac{K_p}{j\omega + 2} \to 0 \quad \text{når} \quad \omega \to \infty$$
 (7)

Figur 2 viser stedkurven for forskjellig verdier av K_p . Av figuren kan det sees at systemet med $h_1(s)$ som transferfunksjon forblir stabilt når sløyfen lukkes og systemet reguleres med en proposjonalregulator dersom $K_p > -2$. For verdier av $K_p \le -2$ vil stedkurven omslutte (-1,0) og det lukkede system blir ustabilt. Den kritiske verdien av K_p kan i <u>dette</u> tilfellet også finnes ved å løse for stasjonært tilfelle:

$$h_{10}(0) = \frac{K_p}{2} > -1 \quad \Rightarrow \quad K_p > -2.$$
 (8)

Figur 2: Nyquist diagram for $\frac{K_p}{j\omega+2}$ for forskjellige verdier av K_p .

ii) For $h_{20}(j\omega)=\frac{K_p}{j\omega-2}$ er situasjonen motsatt. Dette systemet er åpent ustabilt, med $N_p=1$ poler i høyre halvplan. Da må sirkelen for $h_{20}(j\omega)$ omslutte punktet (-1,0) en gang når ω går fra $-\infty$ til $+\infty$. Dette tilsvarer at vinkelbidraget $\Delta \angle (1+h_{20}(s))=2\pi$ når ω går fra $-\infty$ til $+\infty$. Den polare stedkurvne for $h_{20}(j\omega)$ for forskjellig verdier av K_p er vist i figur 3. Tilsvarende analyse som for h_1 gir at $K_p>2$ for at det åpne ustabile systemet $h_2(s)$ skal bli stabilt når sløyfen lukkes.

Figur 3: Nyquist diagram for $\frac{K_p}{j\omega - 2}$ for forskjellige verdier av K_p .

Nyquist diagramet i figur 2 og 3 for forskjellige verdier av forsterkningen K_p kan finnes i MATLAB med kommandoen nyquist(tf([kp],[1 a])) i kommandovinduet. Prøv med forskjellige verdier av kp og $a \pm 2$ og observer hva som skjer med den polare stedkurven.

Figur 4: Asymptotisk og eksakt amplitudeforløp $|h_0(j\omega)|$ for oppgave 1(a)

Figur 5: Asymptotisk og eksakt faseforløp for $h_0(j\omega)$ i oppgave 1(a). Faseforløpet til $h_p(j\omega)$ er ogsåtegnet inn.

Figur 6: Asymptotisk og eksakt amplitudeforløp for $|N(j\omega)|$ og $|M(j\omega)|$ i oppgave 1(b). Asymptotisk og eksakt forløp for $|h_0(j\omega)|$ er også tegnet inn for sammenlikning.

Figur 7: Asymptotisk og eksatkt faseforløp for $|N(j\omega)|$ og $|M(j\omega)|$ i oppgave 1(c)-(d).