Part III – Combinatorics (Incomplete)

Based on lectures by Prof Béla Bollobás Notes taken by Yaël Dillies

Michaelmas 2023

Contents

0	Introduction	2
_	Basic Results	3
	1.1 Chains, Antichains and Scattered Sets of Vectors	3

0 Introduction

For a finite set A, we write its cardinality |A|.

For a graph G=(V,E) and $A,B\subseteq V$, we denote $\Gamma(A)=\{b|\exists a\in A,a\sim b\}$ the set of neighbors of A and e(A,B) the number of edges between A and B.

1 Basic Results

1.1 Chains, Antichains and Scattered Sets of Vectors

Lecture 1

During WW2, Littlewood and Offord were interested in roots of polynomials with random coefficients. They came up with the following neat theorem.

Theorem (Littlewood-Offord, 1943). If $z_1, \ldots, z_n \in \mathbb{C}$ with $|z_i| \geq 1$, then, for any disk D of radius r,

$$\#\{\varepsilon \in \{-1,1\}^n | \sum_i \varepsilon_i z_i \in D\} \le c \log n \frac{2^n}{\sqrt{n}}$$

for some constant c depending only on r.

Upon seeing this theorem, Erdős immediately knew he could drastically improve the bound if the z_i were real.

Theorem (Erdős, 1945). If $x_1, \ldots, x_n \in \mathbb{R}$, $|x_i| \geq 1$, then, for any interval I of length 2,

$$\#\{\varepsilon \in \{-1,1\}^n | \sum_i \varepsilon_i z_i \in I\} \le \binom{n}{\frac{n}{2}}$$

This is best possible, as we see by taking $x_1 = \cdots = x_n = 1$.

Let G be a bipartite graph with parts U and W. A **complete matching** from U to W is an injective function $f: U \to W$ such that $\forall u \in U, u \sim f(u)$.

If G has a complete matching, then certainly $|A| \leq |\Gamma(A)|$. Surprisingly, this is enough.

Theorem 1.1 (Kőnig-Egerváry-Hall Theorem, Hall's Marriage Theorem).

G has a complete matching
$$\iff \forall A \subseteq U, |A| \leq |\Gamma(A)|$$

Proof. Exercise
$$\Box$$

Let $\mathcal{F} = (F_1, \dots, F_m)$ where the F_i are finite sets. We say a_1, \dots, a_m is a **set of distinct representatives**, aka **SDR** if they are distinct and $\forall i, a_i \in F_i$. Certainly, if \mathcal{F} has SDR, then $|I| \leq \bigcup_{i \in I} F_i|$ for all $I \subseteq [m]$.

Theorem 1.2.

$$\mathcal{F}$$
 is a SDR $\iff \forall I \subseteq [m], |I| \leq \left| \bigcup_{i \in I} F_i \right|$

Proof. Define a bipartite graph G with parts [m] and $\bigcup_i F_i$ by $i \sim a \iff a \in F_i$. For all $I \subseteq [m]$, $|I| \leq \left|\bigcup_{i \in I} F_i\right| = |\Gamma(I)|$, so Theorem 1.1 applies.

Theorem 1.3. If G is a bipartite graph with parts U, W such that $\deg(u) \ge \deg(w)$ for all $u \in U, w \in W$, then there is a complete matching from U to W.

Proof. Find d such that $\deg(u) \geq d \geq \deg(w)$ for all $u \in U, w \in W$. For all $A \subseteq U$, we have

$$d|A| \le e(A, \Gamma(A)) \le d|\Gamma(A)|$$

Hence $|A| \leq |\Gamma(A)|$. We're done by Theorem 1.1.

For $A \subseteq U, B \subseteq W$, define $w(A) = \frac{|A|}{|U|}, w(B) = \frac{|B|}{|W|}$.

Say a bipartite graph G with parts U, W is (k, ℓ) -biregular if $\deg(u) = k, \deg(w) = \ell$ for all $u \in U, w \in W$.

Lemma 1.4. If G is biregular with parts U, W and $A \subseteq U$, then $w(A) \leq w(\Gamma(A))$.

Proof. First, $k|U| = e(G) = \ell |W|$. Second,

$$k |A| = e(A, \Gamma(A)) \le \ell |\Gamma(A)|$$

Dividing the inequality by the equality gives the result.

Lecture 2

Corollary 1.5. Let G be a (k, ℓ) -biregular graph with parts U, W. If $k \geq \ell$ (or equivalently $|U| \leq |W|$), then there is a complete matching from U to W.

Corollary 1.6. If $\left|s-\frac{n}{2}\right| \leq \left|r-\frac{n}{2}\right|$, then there exists an injection $f:X^{(r)} \hookrightarrow X^{(s)}$ such that either

- $r \leq s$ and $A \subseteq f(A)$ for all $A \in X^{(r)}$
- $s \le r$ and $f(A) \subseteq A$ for all $A \in X^{(r)}$

Theorem 1.7 (Sperner, 1928). Let $\mathcal{A} \subseteq \mathcal{P}(X)$ be an antichain. Then $|\mathcal{A}| \leq {n \choose \left\lfloor \frac{n}{2} \right\rfloor}$

Proof. A chain and an antichain can intersect in at most one element. If we manage to partition $\mathcal{P}(X)$ into $\binom{n}{\lfloor \frac{n}{2} \rfloor}$ chains, we win.

But we can repeatedly use Corollary 1.6 to construct matchings $X^{(0)}$ to $X^{(1)}$, $X^{(1)}$ to $X^{(2)}$, ..., $X^{(\left\lceil \frac{n}{2} \right\rceil - 1)}$ to $X^{(\left\lceil \frac{n}{2} \right\rceil)}$ and $X^{(n)}$ to $X^{(n-1)}$, $X^{(n-1)}$ to $X^{(n-2)}$, ..., $X^{(\left\lfloor \frac{n}{2} \right\rfloor + 1)}$ to $X^{(\left\lfloor \frac{n}{2} \right\rfloor)}$, then "stack" the matchings together to make chains (if an element of the middle layer). Each chain goes through $X^{(\left\lfloor \frac{r}{2} \right\rfloor)}$, so we made $\binom{n}{\left\lfloor \frac{n}{2} \right\rfloor}$.

We can now understand the observation of Erdős (1945) about Littlewood-Offord (1943).

Corollary 1.8. Let $x_1, \ldots, x_n \in \mathbb{R}$ be such that $|x_i| \geq 1$. Then at most $\binom{n}{\lfloor \frac{n}{2} \rfloor}$ of the sums $\sum_i \varepsilon_i x_i$, $\varepsilon_i = \pm 1$ fall into the interior of an interval I of length 2.

Proof. WLOG
$$\forall i, x_i \geq 1$$
. Set $F_{\varepsilon} = \{i | \varepsilon_i = 1\}$. $\{F_{\varepsilon} | \sum_i \varepsilon_i x_i \in I\}$ is an antichain (if $F_{\varepsilon} \subsetneq F_{\varepsilon'}$, then $\sum_i \varepsilon_i' x_i \geq \sum_i \varepsilon_i x_i + 2$, so both sums can't lie in I).

Definition. A partial order P is **graded** if it has a partition P_i such that

- if $x < y, x \in P_i, y \in P_j$, then i < j (in particular each P_i is an antichain)
- if x < y, $x \in P_i$, $y \in P_j$, $i + 2 \le j$, then there exists z such that x < z < y.

For $a \in P$, we call the unique i for which $a \in P_i$ the **grade** or **rank** of a.

A graded order is **regular** if for every i there exists p_i such that every $x \in P_i$ is less than exactly p_k elements of P_{i+1} .

For
$$A \subseteq P$$
, define $A_i = A \cap P_i$ and $w(A) = \sum_i \frac{|A_i|}{|P_i|}$.

TODO: Insert picture

Theorem 1.9. Let A be an antichain in a connected regular graded order P. Then $w(A) \leq 1$.

Proof. The regularity condition means that for each i the bipartite graph G_i with parts P_{i-1}, P_i and $x \sim y \iff x < y$ is (p_{i-1}, q) -biregular. In particular, $w(A_i) \leq w(\Gamma_{G_i}(A_i))$. Now, write r the maximal rank of an element of A and define

$$B := A \setminus A_r \cup \Gamma_{G_r}(A_r)$$

The fact that A is an antichain means that B is an antichain as well and $\Gamma_{G_r}(A_r)$ is disjoint from A_{r-1} . Hence

$$w(A) = w(A_r) + w(A_{r-1}) + \sum_{i < r-1} w(A_i)$$

$$\leq w(\Gamma_{G_r}(A_r)) + w(A_{r-1}) + \sum_{i < r-1} w(A_i)$$

$$= w(B_{r-1}) + \sum_{i < r-1} w(B_i)$$

$$= w(B)$$

We therefore have decreased the maximal rank without decreasing the weight. We can repeat the process until the antichain is contained in some P_i , in which case its weight is clearly at most 1.

Lecture 3

Consider maximal chains in our regular graded order. Say there are M of them. Each $x \in P_h$ lies in the same number of chains m(x), namely $\frac{m}{|P_h|}$.

Second proof. No two elements of A lie in the same maximal chain. Hence

$$M \ge \sum_{x \in A} m(x) = \sum_{x \in A} \frac{M}{|P_{\text{rank}(x)}|} = Mw(A)$$

The following is a corollary of the above, but we provide a proof using Katona's circle method.

Theorem 1.10 (Lubell-Yamamoto-Meshalkin Inequality). If $\mathcal{A} \subseteq 2^{[n]}$ is an antichain, then $\sum_{A \in \mathcal{A}} \binom{n}{|A|}^{-1} \leq 1$

Proof. We say that $A \in 2^{[n]}$ is **contained** in a permutation π if $A = \{\pi_1, \dots, \pi_{|A|}\}$. Every permutation contains at most one element of \mathcal{A} and every $A \in \mathcal{A}$ is contained in |A|!(n-|A|)! permutations.

We say a chain $C_i \subseteq C_{i+1} \subseteq \cdots \subseteq$ is **symmetric** if $|C_j| = j$ for all j.

Example. $\{1\} \subseteq \{1,4\} \subseteq \{1,3,4\} \subseteq \{1,3,4,6\} \subseteq \{1,3,4,5,6\}$ and $\{2,4,5\}$ are symmetric chains in $2^{[6]}$. $\{2,5,6\} \subseteq \{2,4,5,6\}$ is a symmetric in $2^{[7]}$ but not in any other $2^{[n]}$.

Theorem 1.11 (Partition into Symmetric Chains). Every finite powerset can be partitioned into symmetric chains.

Proof. Induction on n:

Incomplete 5 Updated online

- $\{\{\}\}\$ is a PSC for n = 0.
- Assume we have a PSC for n. For every chain $\mathcal{C} = \{C_i, \dots, C_{n-i}\}$ in our PSC for n, add the following two chains to our PSC for n+1:

$$C' = \{C_i, \dots, C_{n-i}, C_{n-i} \cup \{n\}\}\$$

$$C'' = \{C_i \cup \{n\}, \dots, C_{n-i-1} \cup \{n\}\}\$$

TODO: Insert figure

The number of symmetric chains of length n + 1 - 2i in a PSC is

$$\binom{n}{i} - \binom{n}{i-1}$$

Theorem 1.12. Let x_1, \ldots, x_n be vectors of norm at least 1 a normed space. For $A \subseteq [n]$, set $x_A = \sum_{i \in A} x_i$. Let $A \subseteq 2^{[n]}$ such that

$$\forall A, B \in \mathcal{A}, ||x_A - x_B|| < 1$$

Then $A \leq \binom{n}{\left\lfloor \frac{n}{2} \right\rfloor}$.

Proof. Call $\mathcal{B} \subseteq 2^{[n]}$ sparse or scattered if $\forall A, B, \mathcal{B}, A \neq B, \|x_A - x_B\| \geq 1$. \mathcal{A} intersects every sparse family in at most one set, so we would be done if there existed a partition of $2^{[n]}$ into $\binom{n}{\lfloor \frac{n}{2} \rfloor}$ sparse chains. This is the next theorem.

Theorem 1.13 (Kleitman). $2^{[n]}$ has a partition into $\binom{n}{\lfloor \frac{n}{2} \rfloor}$ sparse chains.

Proof. Induction on n:

- $\{\{\}\}$ is a sparse partition for n = 0.
- Assume we have a sparse partition for n. Let f be a support functional at x_n ($\forall x, f(x) \leq ||x||$, with equality if $x = x_n$). For every sparse family $\mathcal{D} = \{D_1, \ldots, D_k\}$ in our sparse partition for n, find i maximising $f(x_{D_i})$ and add the following two sparse families to our sparse partition for n + 1:

$$\mathcal{D}' = \mathcal{D} \cup \{D_i \cup \{n\}\}\$$

$$\mathcal{D}'' = \{D_i \cup \{n\} | j \neq i\}\$$

 \mathcal{D}'' is clearly sparse. \mathcal{D}' is also sparse because for all $D \in \mathcal{D}$

$$||x_{D_{i} \cup \{n\}} - x_{D}|| = ||x_{D_{i}} + x_{n} - x_{D}||$$

$$\geq f(x_{D_{i}} + x_{n} - x_{D})$$

$$= f(x_{D_{i}}) - f(x_{D}) + ||x_{n}||$$

$$\geq 1$$

The number of sparse partitions of length n+1-2i is again $\binom{n}{i}-\binom{n}{i-1}$.

Lecture 4

Incomplete 6 Updated online