DSA4020A: Natural Language Processing

Instructor: Dr. Edward Ombui

Lab Assignment 1: Exploring Language Modeling with N-Gram Sizes and

Smoothing Techniques

Due Date: 23rd Sept, 2024

Marks: 40marks

Objective

The goal of this lab assignment is to understand how different n-gram sizes and smoothing techniques affect the performance of language models. You will implement n-gram models, apply various smoothing techniques, and evaluate their performance using a sample text dataset i.e. Movie Review Dataset (available on Kaggle. Click HERE)

Background

Language modeling is a crucial task in natural language processing (NLP) that involves predicting the next word in a sequence given the previous words. N-gram models are a type of statistical language model that uses the probabilities of sequences of n words to make predictions. Smoothing techniques are employed to handle the problem of zero probabilities for unseen n-grams in the training data.

Materials Needed

- Python 3.x
- Libraries: NLTK, NumPy, Pandas, Matplotlib (for visualization)
- A text dataset (e.g., a large text corpus like the Movie Review Dataset available on Kaggle. Click <u>HERE</u>)

Assignment Steps

Step 1: Data Preparation

- 1. Select the Movie Review Dataset: It is rich in vocabulary and structure. Preprocess the Data:
 - Tokenize the text into sentences and words.

- Convert all text to lowercase.
- Remove punctuation and special characters.

2.

Step 2: Implement N-Gram Models

- 1. Create N-Gram Models:
 - Implement functions to generate n-grams from the tokenized data for various values of n (e.g., 1, 2, 3, and 4).
 - Store the frequency counts of each n-gram in a dictionary.
- 2. Calculate Probabilities:
 - For each n-gram, calculate the probability using the formula:
 - P(wn|wn-1,...,w1)=C(w1,w2,...,wn)C(w1,w2,...,wn-1)

Step 3: Apply Smoothing Techniques

Implement and test the following smoothing techniques:

- 1. Laplace Smoothing (Add-One Smoothing):
 - Modify your probability calculations to include a count for unseen n-grams.
- 2. Good-Turing Discounting:
 - Adjust probabilities based on the frequency of observed n-grams.
- 3. Kneser-Ney Smoothing:
 - Implement this more advanced technique that considers lower-order n-grams for better probability estimation.

Step 4: Evaluate Model Performance

- 1. Perplexity Calculation:
 - Define a function to calculate perplexity for your models on a held-out test set:
 - Perplexity=P(w1, w2, ..., wN)-1/N
 - Compare perplexity across different n-gram sizes and smoothing techniques.
- 2. Cross-Validation:
 - Use k-fold cross-validation to ensure robust evaluation of model performance.

Step 5: Visualization and Analysis

1. Plot Results:

- Create plots comparing perplexity for different n-gram sizes and smoothing techniques.
- Use Matplotlib to visualize how changes in n and smoothing affect model performance.

2. Analyze Findings:

- Write a brief report summarizing your findings on how n-gram size and smoothing techniques impact language model performance.
- Discuss any trade-offs observed between model complexity and accuracy.

Deliverables

- 1. A Python script or Jupyter Notebook containing your code implementation.
- 2. A report summarizing your methodology, findings, and visualizations.
- 3. Any additional insights or observations you made during the assignment.

Submission Guidelines

Please submit your completed assignment by 23rd Sept, 2024.

Ensure that your code is well-commented and organized for ease of understanding.

By completing this lab assignment, you will gain hands-on experience with language modeling concepts and develop an understanding of how different parameters influence model performance in NLP tasks. Happy coding!