SOLIDOS- estructura y propiedades

CB 040 Química básica

Departamento de Química

Ing. Alejandro Gobbi

Clasificación de los Sólidos

Vidrios Amorfo Ciertos Polímeros Iónico Tipos de Sólidos **Atómico** Cristalino Molecular Metálico

Diferencia entre sólido cristalino y amorfo

Distintos sólidos cristalinos

Sólidos metálicos

Redes cristalinas de átomos unidos por enlace metálico (Cu, Fe)

Sólidos de red covalente

Redes cristalinas de átomos unidos por enlaces covalentes (C, Si)

Sólidos iónicos

Redes cristalinas de iones unidos por interacciones catión-anión (NaCl, MgO)

Sólidos moleculares

Moléculas sujetas entre sí por fuerzas intermoleculares (HBr, $\rm H_2O$)

Red cristalina y celda unitaria

Clasificación de las celdas unitarias

Cúbico simples a = b = c $\alpha = \beta = \gamma = 90^{\circ}$

Tetragonal $a = b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$

Ortorrômbico $a \neq b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$

Romboédrico a = b = c $\alpha = \beta = \gamma \neq 90^{\circ}$

Monoclínico $a \neq b \neq c$ $\gamma \neq \alpha = \beta = 90^{\circ}$

Triclínico $a \neq b \neq c$ $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

Hexagonal $a = b \neq c$ $\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$

Celdas unitarias frecuentes

Reparto de unidades elementales entre celdas unitarias cúbicas

1/8 de u.e.

1/4 de u.e.

1/2 de u.e.

Red Cristalina Cúbica Simple

Nº de u.e. por celda unitaria = 8 vértices * 1/8 (u.e./vért.) = 1 u.e.

Número de coordinación = 6 →# de atomos inmediatamente proximos a un

átomo dado en la red criatalima

Empaquetamiento cúbico centrado en el cuerpo

Número de coordinación = 8

N° de u.e. por celda unit.= 1 (u.e. al centro) + 8 vért. * 1/8 (u.e./vért.)= 2 u.e.

Empaquetamiento cúbico centrado en las caras

Número de coordinación = 12

N°de u.e. por celda unit.= 6 caras*1/2(u.e./cara)+ 8 vért.*1/8 (u.e./vért.)= 4 u.e.

Empaquetamiento hexagonal compacto

Nºde u.e. por celda unit.= 12 vért.*1/6 (u.e./vért.)+2 caras*1/2(u.e./cara)+3(u.e. al centro)=6 u.e. Número de coordinación = 12

nc = 12

Relaciones geométricas en las estructuras cúbicas

Cúbica simple a = 2r

Cúbica centrada en el cuerpo

$$b^{2} = a^{2} + a^{2}$$

$$c^{2} = a^{2} + b^{2}$$

$$= 3a^{2}$$

$$c = \sqrt{3}a = 4r$$

$$a = \frac{4r}{\sqrt{3}}$$

Cúbica centrada en las caras

$$b = 4r$$

$$b^{2} = a^{2} + a^{2}$$

$$16r^{2} = 2a^{2}$$

$$a = \sqrt{8}r$$

El 90% de los metales cristaliza en alguna de estas tres estructuras:

Ejemplo de cálculo de la densidad de un metal en base a datos de su estructura cristalina.

Calcular la densidad de la plata sabiendo que sus cristales son cúbicos de cara centrada y que la arista de la celda tiene 4,086Å. El mol de plata tiene una masa de 107,87g.

Primero determinamos la masa de la celda unitaria, que es la masa de cuatro átomos de plata, luego determinamos la densidad de la celda unitaria dividiendo su masa por su volumen, y esa es la densidad de la plata.

$$\frac{? \text{ g de Ag por}}{\text{celda unitaria}} = \frac{4 \text{ átomos de Ag}}{\text{celda unitaria}} \times \frac{1 \text{ mol de Ag}}{6.022 \times 10^{23} \text{ átomos de Ag}} \times \frac{107.87 \text{ g de Ag}}{1 \text{ mol de Ag}}$$
$$= 7.165 \times 10^{-22} \text{g de Ag/celda unitaria}$$

$$V_{\text{celda unitaria}} = (4.086 \text{ Å})^3 = 68.22 \text{ Å}^3 \times \left(\frac{10^{-8} \text{ cm}}{\text{Å}}\right)^3 = 6.822 \times 10^{-23} \text{ cm}^3/\text{celda unitaria}$$

Densidad =
$$\frac{7.165 \times 10^{-22} \text{ g de Ag/celda unitaria}}{6.822 \times 10^{-23} \text{ cm}^3/\text{celda unitaria}} = 10.50 \text{ g/cm}^3$$

Propiedades de los Sólidos

Propiedades de los Sólidos	TÉRMICAS	-Punto de fusión -Conductividad		
	MECÁNICAS	-Dureza -Tenacidad -Elasticidad -Plasticidad (Maleabilidad y/o Ductilidad)		
	ELÉCTRICAS	-Conductividad		

Propiedades de los Sólidos Cristalinos

Tipo de Sólido		Atómico o covalente	lónico	Molecular		Metálico	
Unidad elemental en nodo		átomo no metálico	Catión o Anión	Molécula		Catión	
Interacciones entre nodos		Enlace covalente	Enlace Iónico	Atracción Intermolecular de por Puente de Van der Waals Hidrógeno		Enlace Metálico	
Carácter de la Interacción		Muy fuerte	Fuerte	Débil Medianamente débil		Generalmente fuerte	
Propiedades Térmicas	Pto. fusión Pto. ebullición	Muy altos	Altos	Bajos	Medianos	Generalmente altos	
	Conductividad	Baja	Baja	Baja	Baja	Alta	
Propiedades mecánicas	Dureza	Muy duros	Duros	Blandos	Medianamente duros	Variada	
	Elasticidad y Plasticidad	Frágil	Frágil	Deformación plástica.	Frágil	Rango de deformación elástica y rango de deformación plástica.	
Propiedades eléctricas	Conductividad eléctrica	Baja	Como Sólido es Aislante. Fundido o en solución es conductor.	Baja	Baja	Alta	
Ejemplos		C diamante, Carburo de Silicio (SiC), SiO ₂ (cuarzo)	NaCl, CsCl (Cloruro de Cesio)	Gases enfriados, "Hielo seco"(CO ₂) O ₂ , N ₂ , Ne	Hielo	Cobre, Hierro, Magnesio	

Sólidos atómicos o de red covalente

DIAMANTE

Cada átomo de carbono está unido por enlace covalente a otros cuatro átomos formando un tetrahedro.

Sólidos atómicos o de red covalente

GRAFITO

En el grafito cada átomo de carbono se une por unión covalente con otros tres átomos en un mismo plano formando una capa, las distintas capas se atraen entre sí por fuerzas de van der Waals.

Sólidos atómicos o de red covalente

CUARZO

Cada átomo de silicio está unido en forma tetrahédrica a cuatro átomos de carbono

Importa el tamaño de los Sólidos iónicos innes más chicos - quergas de attacción

RUBÍ

NaCl

mayorcs

CaF₂

Sólidos iónicos

el esfuerzo hace que se deslicen los planos de átomos

y la fuerza de repulsión entre los iones de igual carga hace que los planos se separen

Cuando el cristal iónico se somete a un esfuerzo que provoca el deslizamiento a lo largo de un plano, el incremento de la fuerza de repulsión entre los iones de igual carga hace que el cristal se rompa a lo largo de un plano cristalino.

Sólidos moleculares

Dióxido de carbono

Benceno

Las moléculas se atraen entre sí por fuerzas de atracción intermoleculares del tipo van der Waals o puente de hidrógeno y se disponen ordenadamente en el espacio.

Sólidos metálicos

HIERRO

COBRE

hierro alfa

hierro gama

cobre

Sólidos metálicos

TEORÍA DEL "MAR DE ELECTRONES"

Las fuerzas son tan
fuertes que no se puedem
explicar con las fuerzas
Coralentes

Nadie es dueño de los clectroncs. Los e- son de todos Fua re yurdito quedé

Los electrones de valencia se deslocalizan y forman un mar de electrones móviles que rodea y une a los iones metálicos en una red cristalina.

El modelo permite justificar la buena conductividad térmica y eléctrica de los metales además de su ductilidad.

Sólidos metálicos TEORÍA DEL "MAR DE ELECTRONES"

Como los cationes metálicos están inmersos en una "nube de electrones" deslocalizados, cuando el metal se somete a un esfuerzo de corte y desliza un plano, el entorno que rodea a los átomos metálicos casi no cambia, no aparecen nuevas fuerzas de repulsión, y el metal puede deformarse sin rotura. Se observa q' a la largo de un periodo los pode for crecen y lucique

Compartan más frette debetía ser la attacción

decrecem. No es consistente con este modelo xq' cuantos más e se

Sólidos metálicos TEORÍA DEL ORBITAL MOLECULAR

- Los orbitales atómicos se combinan para hacer orbitales moleculares que se extienden por toda la molécula.
- Un orbital molecular puede contener 0, 1 ó 2 electrones.
- El número de orbitales moleculares en una molécula es igual al número de orbitales atómicos que se combinan para formar los orbitales moleculares.
- El agregado de electrones a un orbital molecular enlazante fortalece el enlace, mientras que el agregado de electrones a un orbital molecular antienlazante debilita el enlace.

Sólidos metálicos

TEORÍA DEL ORBITAL MOLECULAR

Sólidos metálicos TEORÍA DEL ORBITAL MOLECULAR

Sólidos metálicos

TEORÍA DEL ORBITAL MOLECULAR

A lo largo de un período las fuerzas de atracción entre los átomos metálicos en un comienzo crece y luego disminuye, reflejándose en propiedades como el punto de fusión.

19	20	21	22	23	24	25	26	27	28	29	30
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
39.0983	40.078	44.955910	47.867	50.9415	51.9961	54.938049	55.845	58.933200	58.6934	63.546	65.39
37	38	39	40	41	42	43	44	45	46	47	48
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd
85.4678	87.62	88.90585	91.224	92.90638	95.94	[98]	101.07	102.90550	106.42	107.8682	112.411
55	56	71	72	73	74	75	76	77	78	79	80
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg
132.90545	137.327	174.967	178.49	180.9479	183.84	186.207	190.23	192.217	195.078	196.96655	200.59