Projective toric designs, difference sets, and quantum state designs

Joseph T. Iosue

arXiv:2311.13479

CodEx Seminar: 13 February 2024

Joint work with wonderful collaborators

T. C. Mooney

Adam Ehrenberg

Prof. Alexey Gorshkov

Overview

- Introduction
- 2 Complete sets of mutually unbiased bases
- 3 Bound on minimal projective toric designs
- Projective toric designs from difference sets
- 5 Almost minimal quantum state designs
- Outlook

Definition

Given a measure space (M, μ) and a set of polynomials on M, a t-design on M is a measure space $(X \subset M, \nu)$ satisfying $\int_X f \, \mathrm{d}\nu = \int_M f \, \mathrm{d}\mu$ for all polynomials f of degree $f \leq t$.

Definition

Given a measure space (M, μ) and a set of polynomials on M, a t-design on M is a measure space $(X \subset M, \nu)$ satisfying $\int_X f \, \mathrm{d}\nu = \int_M f \, \mathrm{d}\mu$ for all polynomials f of degree $f \leq t$.

$$M=S^d$$
 Spherical design $M=\mathrm{U}(d)$ Unitary design $M=\Omega_d$ Complex spherical design $M=\mathrm{PU}(d)$ Projective unitary design $M=\mathbb{CP}^d$ Quantum state design $M=\Delta^d$ Simplex design $M=T^d$ Toric design $M=F(T^d)$ Projective toric design $M=S(\mathbb{R})'$ Rigged (continuous variable) quantum state design

J. T. Iosue (UMD) arXiv:2311.13479 Introduction 3 / 27

Definition

Given a measure space (M, μ) and a set of polynomials on M, a t-design on M is a measure space $(X \subset M, \nu)$ satisfying $\int_X f \, \mathrm{d}\nu = \int_M f \, \mathrm{d}\mu$ for all polynomials f of degree $f \leq t$.

$$M=S^d$$
 Spherical design $M=\mathrm{U}(d)$ Unitary design $M=\Omega_d$ Complex spherical design $M=\mathrm{PU}(d)$ Projective unitary design $M=\mathbb{CP}^d$ Quantum state design $M=\Delta^d$ Simplex design $M=T^d$ Toric design $M=F(T^d)$ Projective toric design $M=S(\mathbb{R})'$ Rigged (continuous variable) quantum state design

J. T. Iosue (UMD) arXiv:2311.13479 Introduction 3 / 27

Definition

Given a measure space (M, μ) and a set of polynomials on M, a t-design on M is a measure space $(X \subset M, \nu)$ satisfying $\int_X f \, \mathrm{d}\nu = \int_M f \, \mathrm{d}\mu$ for all polynomials f of degree $f \leq t$.

$$M=S^d$$
 Spherical design $M=\mathrm{U}(d)$ Unitary design $M=\Omega_d$ Complex spherical design $M=\mathrm{PU}(d)$ Projective unitary design $M=\mathbb{CP}^d$ Quantum state design $M=\Delta^d$ Simplex design $M=T^d$ Toric design $M=F(T^d)$ Projective toric design $M=S(\mathbb{R})'$ Rigged (continuous variable) quantum state design

J. T. Iosue (UMD) arXiv:2311.13479 Introduction 3/27

Definition

Given a measure space (M, μ) and a set of polynomials on M, a t-design on M is a measure space $(X \subset M, \nu)$ satisfying $\int_X f \, \mathrm{d}\nu = \int_M f \, \mathrm{d}\mu$ for all polynomials f of degree $f \leq t$.

$$M=S^d$$
 Spherical design $M=\mathrm{U}(d)$ Unitary design $M=\Omega_d$ Complex spherical design $M=\mathrm{PU}(d)$ Projective unitary design $M=\mathbb{CP}^d$ Quantum state design $M=\Delta^d$ Simplex design $M=T^d$ Toric design $M=F(T^d)$ Projective toric design $M=S(\mathbb{R})'$ Rigged (continuous variable) quantum state design

J. T. Iosue (UMD) arXiv:2311.13479 Introduction 3 / 27

What is a toric design?

Definition

Let $T = \mathbb{R}/2\pi\mathbb{Z}$. A T^n *t-design* (or trigonmetric cubature rule of dimension n and degree t) is a measure space $(X \subset T^n, \nu)$ such that

$$\int_{X} \exp\left(i \sum_{j=1}^{n} \alpha_{j} \phi_{j}\right) d\nu(\phi) = \int_{T^{n}} \exp\left(i \sum_{j=1}^{n} \alpha_{j} \phi_{j}\right) d\mu_{n}(\phi)$$

for all $\alpha \in \mathbb{Z}^n$ satisfying $\sum_{i=1}^n |\alpha_i| \le t$, where μ_n is T^n 's unit-normalized Haar measure.

A T^n design is the same as a design on the diagonal unitary group T(U(n)).

J. T. losue (UMD) arXiv:2311.13479 Introduction 4 / 27

General theme for projective designs

(Q) What makes a **projective** [complex spherical, toric, unitary] design different from a [complex spherical, toric, unitary] design? **(A)** The polynomials

J. T. Iosue (UMD) arXiv:2311.13479 Introduction

5 / 27

General theme for projective designs

(Q) What makes a **projective** [complex spherical, toric, unitary] design different from a [complex spherical, toric, unitary] design? **(A)** The polynomials

Example

On T^2 , $\exp(i(\phi_1 + \phi_2))$ is a degree 2 monomial. But it does *not* descend to a well-defined function on $P(T^2) = T^2/U(1)$.

A projective complex spherical design is a complex-projective design

J. T. Iosue (UMD) arXiv:2311.13479 Introduction

5 / 27

What is a projective toric design?

Definition

Let $P(T^n) = T^n/\mathrm{U}(1)$. A $P(T^n)$ t-design is a measure space $(X \subset P(T^n), \nu)$ such that for all $a, b \in \{1, \dots, n\}^t$,

$$\int_X \exp\left(\mathrm{i} \sum_{j=1}^t (\phi_{a_j} - \phi_{b_j})\right) \mathrm{d}\nu(\phi) = \int_{\mathcal{T}^n} \exp\left(\mathrm{i} \sum_{j=1}^t (\phi_{a_j} - \phi_{b_j})\right) \mathrm{d}\mu_{n-1}(\phi)$$

where we denote $P(T^n)$'s unit-normalized Haar measure by μ_{n-1} since $P(T^n) \cong T^{n-1}$.

A $P(T^n)$ design is the same as a design on the maximal torus of the projective unitary group T(PU(n)).

J. T. losue (UMD) arXiv:2311.13479 Introduction 6 / 27

• Consider the parameterization $|p,\phi\rangle \coloneqq \sum_{n=0}^{d-1} \sqrt{p_n} \, \mathrm{e}^{\mathrm{i}\phi_n} \, |n\rangle$ of unit vectors in \mathbb{C}^d

$$\sqrt{0}\,\mathrm{e}^{\mathrm{i}(0)}|0\rangle\!+\!\sqrt{0}\,\mathrm{e}^{\mathrm{i}(0)}|1\rangle\!+\!\sqrt{1}\,\mathrm{e}^{\mathrm{i}(0)}|2\rangle$$

J. T. Iosue (UMD) arXiv:2311.13479 Introduction 7 / 27

• Consider the parameterization $|p,\phi\rangle \coloneqq \sum_{n=0}^{d-1} \sqrt{\frac{p_n}{p_n}} \operatorname{e}^{\mathrm{i}\phi_n} |n\rangle$ of unit vectors in \mathbb{C}^d

$$\sqrt{1/2}\,\mathrm{e}^{\mathrm{i}(-\pi/2)}|0\rangle + \sqrt{1/2}\,\mathrm{e}^{\mathrm{i}(\pi/4)}|1\rangle + \sqrt{0}\,\mathrm{e}^{\mathrm{i}(0)}|2\rangle$$

J. T. Iosue (UMD) arXiv:2311.13479 Introduction 7 / 27

• Consider the parameterization $|p,\phi\rangle := \sum_{n=0}^{d-1} \sqrt{\rho_n} \, \mathrm{e}^{\mathrm{i}\phi_n} \, |n\rangle$ of unit vectors in \mathbb{C}^d

$$\sqrt{1/3}\,\mathrm{e}^{\mathrm{i}(5\pi/6)}|0\rangle + \sqrt{1/3}\,\mathrm{e}^{\mathrm{i}(-3\pi/4)}|1\rangle + \sqrt{1/3}\,\mathrm{e}^{\mathrm{i}(\pi)}|2\rangle$$

J. T. Iosue (UMD) arXiv:2311.13479 Introduction 7 / 27

• Consider the parameterization $|p,\phi\rangle := \sum_{n=0}^{d-1} \sqrt{\frac{p_n}{p_n}} \, \mathrm{e}^{\mathrm{i}\phi_n} \, |n\rangle$ of unit vectors in \mathbb{C}^d

Theorem

A simplex t-design and a toric t-design combine to yield a complex spherical t-design.

Theorem

A simplex t-design and a **projective** toric t-design combine to yield a complex **projective** t-design.

$$\sqrt{1/3} e^{i(5\pi/6)} |0\rangle + \sqrt{1/3} e^{i(-3\pi/4)} |1\rangle + \sqrt{1/3} e^{i(\pi)} |2\rangle$$

Relationship to quantum state designs

Fact

Volume integration over Ω_d is equivalent to volume integration over $\Delta^{d-1} \times T^d$

Fact

Volume integration over $\mathbb{CP}^{d-1} = \Omega_d/\mathrm{U}(1)$ is equivalent to volume integration over $\Delta^{d-1} \times P(T^d)$

- ullet Simplex design imes toric design yields complex spherical deisgn
- \bullet Simplex design \times projective toric design yields complex projective (quantum state) design

J. T. losue (UMD) arXiv:2311.13479 Introduction 8/27

Relationship to quantum state designs

Fact

Volume integration over Ω_d is equivalent to volume integration over $\Delta^{d-1} \times T^d$

Fact

Volume integration over $\mathbb{CP}^{d-1} = \Omega_d/\mathrm{U}(1)$ is equivalent to volume integration over $\Delta^{d-1} \times P(T^d)$

- ullet Simplex design imes toric design yields complex spherical deisgn
- \bullet Simplex design \times projective toric design yields complex projective (quantum state) design
- With a suitable redefinition of a "design" on an infinite simplex, one can concatenate such a design with a design on $P(T^{\infty})$ to yield a rigged continuous-variable quantum state design (losue et al. 2024)

J. T. Iosue (UMD) arXiv:2311.13479 Introduction 8 / 27

Simplex designs

Definition

The simplex Δ^{d-1} is the set of all probability distributions on d elements

$$\Delta^{d-1} = \left\{ p = (p_0, \dots, p_{d-1}) \in [0, 1]^d \mid \sum_{n=0}^{d-1} p_n = 1 \right\}$$

Simplex designs

Definition

The simplex Δ^{d-1} is the set of all probability distributions on d elements

$$\Delta^{d-1} = \left\{ p = (p_0, \dots, p_{d-1}) \in [0, 1]^d \mid \sum_{n=0}^{d-1} p_n = 1 \right\}$$

Example (Simplex 2-design)

The centroid

Simplex designs

Definition

The simplex Δ^{d-1} is the set of all probability distributions on d elements

$$\Delta^{d-1} = \left\{ p = (p_0, \dots, p_{d-1}) \in [0, 1]^d \mid \sum_{n=0}^{d-1} p_n = 1 \right\}$$

Example (Simplex 2-design)

The centroid and the extremal points of the simplex form a 2-design

Overview

- Introduction
- Complete sets of mutually unbiased bases
- 3 Bound on minimal projective toric designs
- 4 Projective toric designs from difference sets
- 5 Almost minimal quantum state designs
- Outlook

Complete set of mutually unbiased bases (CS-MUBs)

Definition

The orthonormal bases B_0, \ldots, B_d of \mathbb{C}^d form a CS-MUBs if $|\langle \psi | \phi \rangle|^2 = 1/d$ for all $\psi \in B_i$ and $\phi \in B_j$ when $i \neq j$.

Complete set of mutually unbiased bases (CS-MUBs)

Definition

The orthonormal bases B_0,\ldots,B_d of \mathbb{C}^d form a CS-MUBs if $|\langle\psi|\phi\rangle|^2=1/d$ for all $\psi\in B_i$ and $\phi\in B_j$ when $i\neq j$.

A collection of phases

$$\{ heta_k^{i,j} \mid i,j,k \in \{1,\ldots,d\}\}$$
 forms a CS-MUBs if

Orthonormal)

$$orall i,j,k: \; \sum_{\ell=1}^d \mathrm{e}^{\mathrm{i}(heta_\ell^{i,j}- heta_\ell^{i,k})} = d\delta_{jk}$$
, and

(Mutually unbiased)

$$\forall i \neq j, k, m : \left| \sum_{\ell=1}^{n} e^{i(\theta_{\ell}^{i,k} - \theta_{\ell}^{j,m})} \right|^2 = d.$$

Each $\theta^{i,j} \in T^d$

Complete set of mutually unbiased bases (CS-MUBs)

Definition

The orthonormal bases B_0,\ldots,B_d of \mathbb{C}^d form a CS-MUBs if $|\langle\psi|\phi\rangle|^2=1/d$ for all $\psi\in B_i$ and $\phi\in B_j$ when $i\neq j$.

A collection of phases

 $\{ heta_k^{i,j} \mid i,j,k \in \{1,\ldots,d\}\}$ forms a CS-MUBs if

Orthonormal)

$$orall i,j,k: \; \sum_{\ell=1}^d \mathrm{e}^{\mathrm{i}(heta_\ell^{i,j}- heta_\ell^{i,k})} = d\delta_{jk}$$
, and

(Mutually unbiased)

$$\forall i \neq j, k, m : \left| \sum_{\ell=1}^{n} e^{i(\theta_{\ell}^{i,k} - \theta_{\ell}^{j,m})} \right|^2 = d.$$

Each $\theta^{i,j} \in T^d$, but overall phase does not matter, so really $\theta^{i,j} \in P(T^d)$

CS-MUBs and projective toric 2-designs

Theorem

A collection $\Theta = \left\{ heta^{i,j} \mid i,j \in \{1,\ldots,d\} \right\} \subset P(T^d)$ forms a CS-MUBs iff

- $lack {Orthonormal}) \ orall i,j,k: \ \sum_{\ell=1}^d \mathrm{e}^{\mathrm{i}(heta_\ell^{i,j}- heta_\ell^{i,k})} = d\delta_{jk}$, and
- ② Θ is a projective toric 2-design.

CS-MUB example

Let d=p be a prime. Then $\theta_k^{i,j}=\frac{2\pi}{p}(jk+ik^2)$ is a projective toric 2-design and satisfies orthonormality.

 $\mathop{\updownarrow}$ concatenate with simplex design

$$B_0,\ldots,B_d$$
 forms a CS-MUBs for \mathbb{C}^p , where $B_0=\{|j
angle\;|\;j\in\{1,\ldots,p\}\}$ and $B_i=\left\{|\psi^{i,j}
angle=rac{1}{\sqrt{p}}\sum_{k=1}^d\mathrm{e}^{\mathrm{i} heta_k^{i,j}}|k
angle\;|\;j\in\{1,\ldots,p\}
ight\}$

This is the canonical example of a CS-MUBs from (Wootters and Fields 1989)

Infinite dimensions

$$\begin{split} \left\{\theta^{\varphi,\vartheta} &= \left(\vartheta k + \varphi k^2\right)_{k \in \mathbb{N}} \mid \vartheta, \varphi \in [0,2\pi)\right\} \text{ is a } P(T^\infty) \text{ 2-design. That is,} \\ &\frac{1}{(2\pi)^2} \int_0^{2\pi} \int_0^{2\pi} \mathrm{e}^{\mathrm{i} \left(\theta_a^{\varphi,\vartheta} + \theta_b^{\varphi,\vartheta} - \theta_c^{\varphi,\vartheta} - \theta_d^{\varphi,\vartheta}\right)} \, \mathrm{d}\vartheta \, \mathrm{d}\varphi = \int_{P(T^\infty)} \mathrm{e}^{\mathrm{i} \left(\phi_a + \phi_b - \phi_c - \phi_d\right)} \, \mathrm{d}\mu_\infty \end{split}$$

↑ concatenate with simplex "design"

 $\{|j\rangle \mid j \in \mathbb{N}\} \cup \left\{ \sum_{k=1}^{\infty} \mathrm{e}^{\mathrm{i}(\vartheta k + \varphi k^2)} \mid k\rangle \mid \vartheta, \varphi \in [0, 2\pi) \right\} \text{ forms a design on the space of tempered distributions } S(\mathbb{R})' \text{ (rigged continuous-variable quantum state 2-design)}$

Overview

- Introduction
- 2 Complete sets of mutually unbiased bases
- 3 Bound on minimal projective toric designs
- 4 Projective toric designs from difference sets
- 6 Almost minimal quantum state designs
- Outlook

Root lattices and crystal ball numbers

- Consider the root lattice A_{n-1} of T(PU(n))
- ullet The roots of A_{n-1} are $\mathcal{R} = \{oldsymbol{e}_i oldsymbol{e}_j \mid i,j \in \{1,\ldots,n\}\}$
- ullet The set of all points on A_{n-1} that are at most a distance s away from the origin is $s\mathcal{R}$
- ullet The crystal ball numbers (OEIS:A108625) for A_{n-1} are $G_{n-1}(s):=|s\mathcal{R}|$

Theorem (Conway and Sloane 1997)

$$G_{n-1}(s) = {}_{3}F_{2}(1-n,-s,n;1,1;1)$$

Minimal projective toric designs

- Define $P_s^{(n)}:=s\mathcal{R}=\{m{q}-m{r}\mid m{q},m{r}\in\mathbb{N}_0^n,\ \sum_{i=1}^nq_i=\sum_{i=1}^nr_i=s\}$
- $G_{n-1}(s) = |P_s^{(n)}|$
- An element $q r \in P_s^{(n)}$ corresponds to a monomial $e^{i\sum_{j=1}^n (q_j r_j)\phi_j}$ of degree $\leq s$ on $P(T^n)$

Minimal projective toric designs

- Define $P_s^{(n)}:=s\mathcal{R}=\{m{q}-m{r}\mid m{q},m{r}\in\mathbb{N}_0^n,\ \sum_{i=1}^nq_i=\sum_{i=1}^nr_i=s\}$
- $G_{n-1}(s) = |P_s^{(n)}|$
- An element $q r \in P_s^{(n)}$ corresponds to a monomial $e^{i\sum_{j=1}^n (q_j r_j)\phi_j}$ of degree $\leq s$ on $P(T^n)$

Theorem

Let $n \in \mathbb{N}$ and X a discrete, finite $P(T^n)$ t-design.

- $|X| \geq G_{n-1}(\lfloor t/2 \rfloor)$.
- If t is even and X saturates this bound, then X is uniformly weighted.

Overview

- Introduction
- Complete sets of mutually unbiased bases
- 3 Bound on minimal projective toric designs
- 4 Projective toric designs from difference sets
- 6 Almost minimal quantum state designs
- Outlook

Group designs

- Let X be a $P(T^{\infty})$ t-design and $X \cong T$
- Then $X=zT=\{(\theta z_1,\theta z_2,\dots)\mid \theta\in [0,2\pi)\}$ for some $z\in\mathbb{Z}^\infty$
- X is a t-design iff z satisfies (B_t difference set)

$$\left(\sum_{j=1}^{t} z_{a_{j}} = \sum_{j=1}^{t} z_{b_{j}}\right) \iff (\{\!\!\{a_{j} \mid j \in \{1, \ldots, t\}\}\!\!\} = \{\!\!\{b_{j} \mid j \in \{1, \ldots, t\}\}\!\!\})$$

Group designs

- Let X be a $P(T^{\infty})$ t-design and $X \cong T$
- Then $X=zT=\{(\theta z_1,\theta z_2,\dots)\mid \theta\in [0,2\pi)\}$ for some $z\in\mathbb{Z}^\infty$
- X is a t-design iff z satisfies (B_t difference set)

$$\left(\sum_{j=1}^t z_{\mathsf{a}_j} = \sum_{j=1}^t z_{b_j}\right) \iff (\{\!\!\{ \mathsf{a}_j \mid j \in \{1,\ldots,t\} \}\!\!\} = \{\!\!\{ b_j \mid j \in \{1,\ldots,t\} \}\!\!\})$$

Example

Let $z \in \mathbb{Z}^{\infty}$ be $z_a = t^a$. Then the group $\{(z_a\theta)_{a\in\mathbb{N}} \mid \theta \in [0,2\pi)\}$ with its Haar measure is a $P(T^{\infty})$ t-design.

Finite group designs

Definition

 $z \in \mathbb{Z}_m^n$ is a $B_t \mod m$ set of size n if the sum mod m of any t element of z is unique.

Finite group designs

Definition

 $z \in \mathbb{Z}_m^n$ is a $B_t \mod m$ set of size n if the sum mod m of any t element of z is unique.

Theorem

Group $P(T^n)$ t-designs isomorphic to the cyclic group \mathbb{Z}_m are in one-to-one correspondence with B_t mod m sets of size n.

Finite group designs

Definition

 $z \in \mathbb{Z}_m^n$ is a $B_t \mod m$ set of size n if the sum mod m of any t element of z is unique.

Theorem

Group $P(T^n)$ t-designs isomorphic to the cyclic group \mathbb{Z}_m are in one-to-one correspondence with B_t mod m sets of size n.

Corollary

Any $B_t \mod m$ set must have size n satisfying $m \ge G_{n-1}(\lfloor t/2 \rfloor)$.

Singer sets

- Studying finite fields, Singer constructed $B_t \mod \frac{(n-1)^{t+1}-1}{n-2}$ sets of size n whenever n-1 is a prime power.
- Hence, via these Singer sets, we have an explicit construction of $P(T^n)$ t-designs of size $\frac{(n'-1)^{t+1}-1}{n'-2}$ for all n and t, where n' is the smallest integer $\geq n$ such that n'-1 is a prime power.

Singer sets

- Studying finite fields, Singer constructed $B_t \mod \frac{(n-1)^{t+1}-1}{n-2}$ sets of size n whenever n-1 is a prime power.
- Hence, via these Singer sets, we have an explicit construction of $P(T^n)$ t-designs of size $\frac{(n'-1)^{t+1}-1}{n'-2}$ for all n and t, where n' is the smallest integer $\geq n$ such that n'-1 is a prime power.
- Twirling over an overall factor of a U(1) (2t)-design, we can turn a $P(T^n)$ t-design into a T^n (2t)-design.
- This therefore gives explicit T^n (2t)-designs of size $(2t+1) \times \frac{(n'-1)^{t+1}-1}{n'-2}$ for all t and n

Sidon sets

• When t = 2, a $B_t \mod m$ set of size n is a Sidon set of size $n \mod m$

Lower bound

$$G_{n-1}(\lfloor t/2 \rfloor) = n(n-1)+1$$

Singer construction

$$\frac{(n'-1)^{t+1}-1}{n'-2} = n'(n'-1)+1$$

Sidon sets

• When t = 2, a $B_t \mod m$ set of size n is a Sidon set of size $n \mod m$

$$G_{n-1}(\lfloor t/2 \rfloor) = n(n-1)+1$$

Singer construction

$$\frac{(n'-1)^{t+1}-1}{n'-2} = n'(n'-1)+1$$

The Singer construction therefore yields minimal $P(T^n)$ 2-designs whenever n-1 is a prime power

Overview

- Introduction
- 2 Complete sets of mutually unbiased bases
- 3 Bound on minimal projective toric designs
- 4 Projective toric designs from difference sets
- 5 Almost minimal quantum state designs
- Outlook

ullet Recall: simplex design imes projective toric design yields quantum state design

- ullet Recall: simplex design imes projective toric design yields quantum state design
- Simplex extremal points correspond to basis states $\{|1\rangle,\ldots,|d\rangle\}\subset\mathbb{C}^d$

- ullet Recall: simplex design imes projective toric design yields quantum state design
- Simplex extremal points correspond to basis states $\{|1\rangle,\ldots,|d\rangle\}\subset\mathbb{C}^d$
- Simplex centroid becomes $\frac{1}{\sqrt{d}} \sum_{k=1}^{d} e^{i\phi_k} |k\rangle$, where the phases $\phi \in P(T^n)$ come from a design

- ullet Recall: simplex design imes projective toric design yields quantum state design
- Simplex extremal points correspond to basis states $\{|1\rangle\,,\ldots,|d\rangle\}\subset\mathbb{C}^d$
- Simplex centroid becomes $\frac{1}{\sqrt{d}} \sum_{k=1}^{d} e^{i\phi_k} |k\rangle$, where the phases $\phi \in P(T^n)$ come from a design

Singer's Sidon sets yield quantum state 2-designs of size d^2+1 whenever d+1 is a prime power

- ullet Recall: simplex design imes projective toric design yields quantum state design
- Simplex extremal points correspond to basis states $\{|1\rangle\,,\dots,|d\rangle\}\subset\mathbb{C}^d$
- Simplex centroid becomes $\frac{1}{\sqrt{d}} \sum_{k=1}^{d} \mathrm{e}^{\mathrm{i}\phi_k} |k\rangle$, where the phases $\phi \in P(T^n)$ come from a design

Singer's Sidon sets yield quantum state 2-designs of size d^2+1 whenever d+1 is a prime power

• Recall that minimal quantum state 2-designs (SIC-POVMs) are of size d^2 (though it is still unknown if SIC-POVMs always exist)

These 2-designs were first constructed in (Bodmann and Haas 2016) via a totally different method

Overview

- Introduction
- 2 Complete sets of mutually unbiased bases
- 3 Bound on minimal projective toric designs
- 4 Projective toric designs from difference sets
- 5 Almost minimal quantum state designs
- Outlook

- We studied projective toric designs and their relationship to many other mathematical objects
- We constructed infinite families of toric and projective toric *t*-designs

- We studied projective toric designs and their relationship to many other mathematical objects
- We constructed infinite families of toric and projective toric t-designs
- Is our lower bound on the size of $P(T^n)$ t-designs tight? (Conjecture: when t is even)

- We studied projective toric designs and their relationship to many other mathematical objects
- We constructed infinite families of toric and projective toric t-designs
- Is our lower bound on the size of $P(T^n)$ t-designs tight? (Conjecture: when t is even)
- Must minimal designs be group designs?

- We studied projective toric designs and their relationship to many other mathematical objects
- We constructed infinite families of toric and projective toric t-designs
- Is our lower bound on the size of $P(T^n)$ t-designs tight? (Conjecture: when t is even)
- Must minimal designs be group designs?
- Connection to affine/projective planes via relationship to CS-MUBs?

- We studied projective toric designs and their relationship to many other mathematical objects
- We constructed infinite families of toric and projective toric t-designs
- Is our lower bound on the size of $P(T^n)$ t-designs tight? (Conjecture: when t is even)
- Must minimal designs be group designs?
- Connection to affine/projective planes via relationship to CS-MUBs?
- Nice simplex t-designs to generate quantum state designs via our infinite family of projective toric designs?

- We studied projective toric designs and their relationship to many other mathematical objects
- We constructed infinite families of toric and projective toric t-designs
- Is our lower bound on the size of $P(T^n)$ t-designs tight? (Conjecture: when t is even)
- Must minimal designs be group designs?
- Connection to affine/projective planes via relationship to CS-MUBs?
- Nice simplex t-designs to generate quantum state designs via our infinite family of projective toric designs?
- Concatenating designs yields a design on (effectively) the cartesion product; what about twisted products?

J. T. Iosue (UMD) arXiv:2311.13479 Outlook 26 / 27

References

- Conway, J. H. and N. J. A. Sloane (Nov. 1997). "Low-dimensional lattices. VII. Coordination sequences". In: *Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences* 453.1966, pp. 2369–2389.
 - losue, Joseph T. et al. (Nov. 2023). "Projective toric designs, difference sets, and quantum state designs". In: arXiv:2311.13479.
 - losue, Joseph T. et al. (Feb. 2024). "Continuous-Variable Quantum State Designs: Theory and Applications". In: *Phys. Rev. X* 14, p. 011013.
- Kuperberg, Greg (May 2006). "Numerical Cubature from Archimedes' Hat-box Theorem". In: SIAM Journal on Numerical Analysis 44.3, pp. 908–935.
- Tao, Terence and Van H Vu (2006). *Additive combinatorics*. Vol. 105. Cambridge Studies in Advanced Mathematics. Cambridge University Press.
 - Wootters, William K and Brian D Fields (Sept. 1989). "Optimal state-determination by mutually unbiased measurements". In: *Annals of Physics* 191.2, pp. 363–381.

J. T. Iosue (UMD) arXiv:2311.13479 Outlook 27 / 27

Additional slides

What is a *t*-design?

• Let $X \subset \mathbb{R}^2$ be the triangle with vertices (0,0), (1,0), (0,1)

1/8

J. T. losue (UMD) arXiv:2311.13479 Additional slides

What is a *t*-design?

- Let $X \subset \mathbb{R}^2$ be the triangle with vertices (0,0), (1,0), (0,1)
- Let $\mathcal{D} = \{(0, 1/2), (1/2, 0), (1/2, 1/2)\} \subset X$

1/8

J. T. losue (UMD) Additional slides

What is a *t*-design?

- Let $X \subset \mathbb{R}^2$ be the triangle with vertices (0,0), (1,0), (0,1)
- Let $\mathcal{D} = \{(0, 1/2), (1/2, 0), (1/2, 1/2)\} \subset X$

\mathcal{D} is a 2-design for X

If
$$g(x, y) = ax^2 + by^2 + cxy + dx + ey + f$$
, then

$$\frac{1}{6} \sum_{(x,y) \in \mathcal{D}} g(x,y) = \int_X g(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

1/8

J. T. losue (UMD) arXiv:2311.13479 Additional slides

Fubini-Study measure

Fact

Volume integration over \mathbb{CP}^{d-1} is equivalent to volume integration over $\Delta^{d-1} \times T^{d-1}$

- Consider $|p,\phi\rangle\coloneqq\sum_{n=0}^{d-1}\sqrt{p_n}\mathrm{e}^{\mathrm{i}\phi_n}|n\rangle$ for $p\in\Delta^{d-1}$ and $\phi\in\{0\}\times(\mathbb{R}/2\pi\mathbb{Z})^{d-1}\cong T^{d-1}$
- Consider $|\alpha\rangle := \sum_{n=0}^{d-1} \alpha_n |n\rangle$ for $\alpha_n \in \mathbb{C}$, $\alpha \in S^{2d-1}$
- The natural measure on S^{2d-1} is $\prod_n d^2 \alpha_n$
- Under $\alpha_n \mapsto \sqrt{p_n} e^{i\phi_n}$, the measure becomes

$$\mathrm{d}^2 lpha_{\it n} \mapsto \mathrm{d} \it p_{\it n} \, \mathrm{d} \phi_{\it n} \cdot \mathsf{abs} \, \mathsf{det} \begin{pmatrix} rac{\mathrm{e}^{\mathrm{i}\phi_{\it n}}}{2\sqrt{\it p_{\it n}}} & \mathrm{i}\sqrt{\it p_{\it n}}\mathrm{e}^{\mathrm{i}\phi_{\it n}} \\ rac{\mathrm{e}^{-\mathrm{i}\phi_{\it n}}}{2\sqrt{\it p_{\it n}}} & -\mathrm{i}\sqrt{\it p_{\it n}}\mathrm{e}^{-\mathrm{i}\phi_{\it n}} \end{pmatrix} = \mathrm{d} \it p_{\it n} \, \mathrm{d} \phi_{\it n}$$

J. T. Iosue (UMD) Additional slides

What is a design?

Definition (Cubature)

Let $X \subset \mathbb{R}^n$ and $d\mu$ a measure on X. A **degree** t **cubature** rule for X is a finite collection of points $D \subset \mathbb{R}^n$ and a weight function $w \colon D \to \mathbb{R}$ satisfying

$$\sum_{x \in D} w(x)g(x) = \int_X g(x) \, \mathrm{d}\mu(x)$$

for any polynomial $g \in \mathbb{R}[x_1, \dots, x_n]$ of degree t or less.

What is a design?

Definition (Cubature)

Let $X \subset \mathbb{R}^n$ and $d\mu$ a measure on X. A **degree** t **cubature** rule for X is a finite collection of points $D \subset \mathbb{R}^n$ and a weight function $w : D \to \mathbb{R}$ satisfying

$$\sum_{x \in D} w(x)g(x) = \int_X g(x) \, \mathrm{d}\mu(x)$$

for any polynomial $g \in \mathbb{R}[x_1, \dots, x_n]$ of degree t or less.

Definition (Design)

A **t-design** for X is a degree t cubature rule (D, w) satisfying $D \subset X$ and $\mathrm{Im}(w) \subset (0, \infty)$.

Why are designs interesting?

$$X=S^d$$
 $X=\mathrm{U}(d)$ $X=\mathbb{CP}^{d-1}$ spherical design unitary design qudit design

Numerical integration $X \subset \mathbb{R}^n$ e.g. Stroud 1971

Error correction $X = S^d$ e.g. Conway, Sloane 1999

Randomized benchmarking X = U(d) e.g. Dankert, Cleve, Emerson, Livine 2006

State tomography $X = \mathbb{CP}^{d-1}$ e.g. Scott 2006

State distinction $X = \mathbb{CP}^{d-1}$ e.g. Ambainis, Emerson 2007

Shadow tomography $X=\mathbb{CP}^{d-1}$ e.g. Huang, Kueng, Preskill 2020

J. T. losue (UMD) Additional slides

What is a quantum state design?

• Complex-projective space $\mathbb{CP}^{d-1}\cong S^{2d-1}/\mathrm{U}(1)$ is the set of all pure quantum states in \mathbb{C}^d identified up to proportionality

Definition (Complex-projective t-design)

Let $X \subset \mathbb{CP}^{d-1}$ and $w: X \to (0, \infty)$. The pair (X, w) is a **complex-projective t-design** if

$$\sum_{\phi \in X} w(\phi) f(\phi) = \int_{\mathbb{CP}^{d-1}} f(\psi) \, \mathrm{d}\psi$$

for any polynomial $f(\psi)$ of degree t or less in the amplitudes and conjugate amplitudes of $|\psi\rangle$.

J. T. Iosue (UMD) Additional slides

Generalization to arbitrary measure space

Let $X \subset \mathbb{CP}^{d-1}$ and $w: X \to (0, \infty)$. The pair (X, w) is a complex-projective t-design if

$$\sum_{\phi \in X} w(\phi) f(\phi) = \int_{\mathbb{CP}^{d-1}} f(\psi) \, \mathrm{d}\psi$$

for any polynomial $f(\psi)$ of degree t or less in the amplitudes and conjugate amplitudes of $|\psi\rangle$.

Let $X\subset \mathbb{CP}^{d-1}$. The measure space (X,Σ,μ) is a complex-projective t-design if

$$\int_{X} f(\phi) \, \mathrm{d}\mu(\phi) = \int_{\mathbb{CP}^{d-1}} f(\psi) \, \mathrm{d}\psi$$

for any polynomial $f(\psi)$ of degree t or less in the amplitudes and conjugate amplitudes of $|\psi\rangle$.

- Consider the parameterization $|p,\phi\rangle := \sum_{n=0}^{d-1} \sqrt{p_n} \mathrm{e}^{\mathrm{i}\phi_n} |n\rangle$ for $p \in \Delta^{d-1}$ and $\phi \in (\mathbb{R}/2\pi\mathbb{Z})^{d-1} \cong \mathcal{T}^d$
- ullet Consider the projection $\pi\colon \mathbb{CP}^{d-1} o \Delta^{d-1}$, $\pi(\psi)=\left(|\langle 0|\psi
 angle|^2,\ldots,|\langle d-1|\psi
 angle|^2
 ight)$

- Consider the parameterization $|p,\phi\rangle := \sum_{n=0}^{d-1} \sqrt{p_n} \mathrm{e}^{\mathrm{i}\phi_n} |n\rangle$ for $p \in \Delta^{d-1}$ and $\phi \in (\mathbb{R}/2\pi\mathbb{Z})^{d-1} \cong \mathcal{T}^d$
- ullet Consider the projection $\pi\colon \mathbb{CP}^{d-1} o \Delta^{d-1}$, $\pi(\psi)=\left(|\langle 0|\psi
 angle|^2\,,\ldots,|\langle d-1|\psi
 angle|^2
 ight)$

Fact

Volume integration over \mathbb{CP}^{d-1} is equivalent to volume integration over $\Delta^{d-1} \times \mathcal{T}^{d-1}$

- Consider the parameterization $|p,\phi\rangle := \sum_{n=0}^{d-1} \sqrt{p_n} \mathrm{e}^{\mathrm{i}\phi_n} |n\rangle$ for $p \in \Delta^{d-1}$ and $\phi \in (\mathbb{R}/2\pi\mathbb{Z})^{d-1} \cong T^d$
- ullet Consider the projection $\pi\colon \mathbb{CP}^{d-1} o \Delta^{d-1},\ \pi(\psi)=\left(|\langle 0|\psi
 angle|^2,\ldots,|\langle d-1|\psi
 angle|^2
 ight)$

Fact

Volume integration over \mathbb{CP}^{d-1} is equivalent to volume integration over $\Delta^{d-1} \times \mathcal{T}^{d-1}$

Theorem (Informal)

If X is a \mathbb{CP}^{d-1} t-design, then $\pi(X)$ is a Δ^{d-1} t-design

- Consider the parameterization $|p,\phi\rangle := \sum_{n=0}^{d-1} \sqrt{p_n} \mathrm{e}^{\mathrm{i}\phi_n} |n\rangle$ for $p \in \Delta^{d-1}$ and $\phi \in (\mathbb{R}/2\pi\mathbb{Z})^{d-1} \cong T^d$
- ullet Consider the projection $\pi\colon \mathbb{CP}^{d-1} o \Delta^{d-1}$, $\pi(\psi)=\left(|\langle 0|\psi
 angle|^2,\ldots,|\langle d-1|\psi
 angle|^2
 ight)$

Fact

Volume integration over \mathbb{CP}^{d-1} is equivalent to volume integration over $\Delta^{d-1} \times \mathcal{T}^{d-1}$

Theorem (Informal)

If X is a \mathbb{CP}^{d-1} t-design, then $\pi(X)$ is a Δ^{d-1} t-design

Theorem (Informal)

If $P\subset \Delta^{d-1}$ and $S\subset T^{d-1}$ are simplex and torus t-designs, then $P\times S$ is a \mathbb{CP}^{d-1} t-design

A useful characterization of state designs

Lemma

Let $X \subset \mathbb{CP}^{d-1}$. The measure space (X, Σ, μ) is a complex-projective t-design iff

$$\int_{X} (|\phi\rangle\langle\phi|)^{\otimes t} d\mu(\phi) = \int_{\mathbb{CP}^{d-1}} (|\psi\rangle\langle\psi|)^{\otimes t} d\psi$$

A useful characterization of state designs

Lemma

Let $X \subset \mathbb{CP}^{d-1}$. The measure space (X, Σ, μ) is a complex-projective t-design iff

$$\int_{X} (|\phi\rangle\langle\phi|)^{\otimes t} d\mu(\phi) = \int_{\mathbb{CP}^{d-1}} (|\psi\rangle\langle\psi|)^{\otimes t} d\psi = \frac{\Pi_{t}^{(d)}}{\operatorname{Tr} \Pi_{t}^{(d)}}$$

Example (Projector onto the symmetric subspace)

- $\Pi_1^{(d)} = \mathbb{I}$
- $\Pi_2^{(d)} = \frac{1}{2} \left(\mathbb{I} \otimes \mathbb{I} + \mathsf{SWAP} \right)$

Additional slides