DATA MINING SUPERVISED LEARNING

Classification

Nearest Neighbor Classifier

Support Vector Machines (SVM)

Naïve Bayes

NEAREST NEIGHBOR CLASSIFICATION

Instance-Based Classifiers

Instance Based Classifiers

- Examples:
 - Rote-learner (机械学习)
 - Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly
 - Nearest neighbor classifier
 - Uses k "closest" points (nearest neighbors) for performing classification

Nearest Neighbor Classifiers

• Basic idea:

Nearest-Neighbor Classifiers

Requires three things

- The set of stored records
- Distance Metric to compute distance between records
- The value of k, the number of nearest neighbors to retrieve

To classify an unknown record:

- Compute distance to other training records
- 2. Identify *k* nearest neighbors
- 3. Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Nearest Neighbor Classification

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_i - q_i)^2}$$

- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the k-nearest neighbors
 - Weigh the vote according to distance
 - weight factor, w = 1/d²

Definition of Nearest Neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

Nearest Neighbor Classification...

- Problem with Euclidean measure:
 - High dimensional data
 - curse of dimensionality

"距离在高维空向失敌"

Can produce counter-intuitive results

Solution: Normalize the vectors to unit length

Nearest neighbor Classification...

- k-NN classifiers are lazy learners
 - It does not build models explicitly
 - Unlike eager learners such as decision trees
- Classifying unknown records is relatively expensive
 - Naïve algorithm: O(n)
 - Need for structures to retrieve nearest neighbors fast.
 - The Nearest Neighbor Search problem.
 - Also, Approximate Nearest Neighbor Search

KD-tree, very popular when dealing with geo locations

Issues with distance in very high-dimensional spaces

SUPPORT VECTOR MACHINES

Linear classifiers

- SVMs are part of a family of classifiers that assumes that the classes are linearly separable
- That is, there is a hyperplane that separates (approximately, or exactly) the instances of the two classes.
- The goal is to find this hyperplane

《导论》P158

Find a linear hyperplane (decision boundary) that will separate the data

One Possible Solution

Another possible solution

Other possible solutions

- Which one is better? B1 or B2?
- How do you define better?

《导论》P158

• Find hyperplane maximizes the margin: B1 is better than B2

- We want to maximize: $Margin = \frac{2}{\|\vec{w}\|}$
- Which is equivalent to minimizing: $L(\vec{w}) = \frac{\|\vec{w}\|}{2}$
- But subjected to the following constraints:

$$\overrightarrow{w} \cdot \overrightarrow{x_i} + b \ge 1 \text{ if } y_i = 1$$

 $\overrightarrow{w} \cdot \overrightarrow{x_i} + b \le -1 \text{ if } y_i = -1$

Concisely: $y_i(\overrightarrow{w} \cdot \overrightarrow{x_i} + b) \ge 1$

- This is a constrained optimization problem
 - Numerical approaches to solve it (e.g., quadratic programming)

NAÏVE BAYES CLASSIFIER

Bayes Classifier

- A probabilistic framework for solving classification problems
- A, C random variables
- Joint probability: P(A=a,C=c)

《号论》P124

- Conditional probability: P(C=c | A=a);
- P(C|A) = P(C,A)/P(A) P(A|C) = P(C,A)/P(C)
- Relationship between joint and conditional probability distributions P(C,A) = P(C|A) P(A) = P(A|C) P(C)
- Bayes Theorem:

$$P(C|A) = \frac{P(A|C)P(C)}{P(A)}$$
Posterior probability

Bayesian Classifiers

How to classify the new record X = ('Yes', 'Single', 80K)

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Find the class with the highest probability given the vector values.

Maximum Posterior Probability estimate:

 Find the value c for class C that maximizes P(C=c| X)

- How do we estimate P(C|X) for the different values of C?
- We want to estimate
 - P(C=Yes| X)
 - P(C=No| X)

Bayesian Classifiers

- In order for probabilities to be well defined:
 - Consider each attribute and the class label as random variables.
 - Probabilities are determined from the data

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Evade C

Event space: {Yes, No}

$$P(C) = (0.3, 0.7)$$

Refund A₁

Event space: {Yes, No}

$$P(A_1) = (0.3, 0.7)$$

Martial Status A₂

Event space: {Single, Married, Divorced}

$$P(A_2) = (0.4, 0.4, 0.2)$$

Taxable Income A₃

Event space: R

$$P(A_3) \sim Normal(\mu, \sigma^2)$$

 $\mu = 104$:sample mean, $\sigma^2 = 1874$:sample variance

Bayesian Classifiers

- Approach:
 - compute the posterior probability $P(C \mid A_1, A_2, ..., A_n)$ using the Bayes theorem

$$P(C|A_1, A_2, ..., A_n) = \frac{P(A_1, A_2, ..., A_n | C)P(C)}{P(A_1, A_2, ..., A_n)}$$

Maximizing

$$P(C \mid A_1, A_2, \dots, A_n)$$

is equivalent to maximizing

$$P(A_1, A_2, ..., A_n | C) P(C)$$

- The value $P(A_1, ..., A_n)$ is the same for all values of C.
- How do we estimate $P(A_1, A_2, ..., A_n | C)$?

Naïve Bayes Classifier

- Assume conditional independence among attributes A_i when class C is given:
 - $P(A_1, A_2, ..., A_n | C) = P(A_1 | C) P(A_2 | C) \cdots P(A_n | C)$
 - We can estimate $P(A_i | C)$ from the data.
 - New point $X=(A_1=\alpha_1,\dots,A_n=\alpha_n)$ is classified to class c if $P(C=c|X)=P(C=c)\prod_i P(A_i=\alpha_i|c)$

is maximum over all possible values of C.

Example

Record

```
X = (Refund = Yes, Status = Single, Income =80K)
```

- For the class C: 'Evade', we want to compute:
 P(C = Yes|X) and P(C = No| X)
- We compute:

```
P(C = Yes|X) = P(C = Yes)*P(Refund = Yes |C = Yes)
*P(Status = Single |C = Yes)
*P(Income = 80K |C = Yes)
P(C = No|X) = P(C = No)*P(Refund = Yes |C = No)
*P(Status = Single |C = No)
*P(Status = Single |C = No)
*P(Income = 80K |C = No)
```

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

$$P(C=c)=\frac{N_C}{N}$$

Class Prior Probability: $P(C = c) = \frac{N_c}{N}$ $N_c: \text{Number of records with class c}$ N = Number of records P(C = No) = 7/10 P(C = Yes) = 3/10

$$P(C = No) = 7/10$$

 $P(C = Yes) = 3/10$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Discrete attributes:

$$P(A_i = a | C = c) = \frac{N_{a,c}}{N_c}$$

 $N_{a,c}$: number of instances having attribute $A_i = a$ and belong to class c

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Discrete attributes:

$$P(A_i = a | C = c) = \frac{N_{a,c}}{N_c}$$

 $N_{a,c}$: number of instances having attribute $A_i = a$ and belong to class c

$$P(Refund = Yes|No) = 3/7$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Discrete attributes:

$$P(A_i = a | C = c) = \frac{N_{a,c}}{N_c}$$

 $N_{a,c}$: number of instances having attribute $A_i = a$ and belong to class c

$$P(Refund = Yes|Yes) = 0$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Discrete attributes:

$$P(A_i = a | C = c) = \frac{N_{a,c}}{N_c}$$

 $N_{a,c}$: number of instances having attribute $A_i = a$ and belong to class c

$$P(Status=Single|No) = 2/7$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Discrete attributes:

$$P(A_i = a | C = c) = \frac{N_{a,c}}{N_c}$$

 $N_{a,c}$: number of instances having attribute $A_i = a$ and belong to class c

$$P(Status=Single|Yes) = 2/3$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Numerical Attributes:

 Assume a normal distribution for each(A_i, c_i)pair

$$P(A_i = a \mid c_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} e^{-\frac{(a - \mu_{ij})^2}{2\sigma_{ij}^2}}$$

- For Class=Yes and attribute Income
 - sample mean $\mu = 90$
 - sample variance $\sigma^2 = 25$
- For Income = 80

$$P(Income = 80 \mid Yes) = \frac{1}{\sqrt{2\pi}(5)} e^{-\frac{(80-90)^2}{2(25)}} = 0.01$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Numerical Attributes:

 Assume a normal distribution for each(A_i, c_i)pair

$$P(A_i = a \mid c_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} e^{-\frac{(a-\mu_{ij})^2}{2\sigma_{ij}^2}}$$

- For Class=No and attribute Income
 - sample mean $\mu = 110$
 - sample variance $\sigma^2 = 2975$
- For Income = 80

$$P(Income = 80 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)}e^{-\frac{(80-110)^2}{2(2975)}} = 0.0062$$

Example

Record

```
X = (Refund = Yes, Status = Single, Income =80K)
```

• We compute:

 Creating a Naïve Bayes Classifier, essentially means to compute counts:

Total number of records: N = 10

Class No:

Number of records: 7

Attribute Refund:

Yes: 3

No: 4

Attribute Marital Status:

Single: 2

Divorced: 1

Married: 4

Attribute Income:

mean: 110

variance: 2975

Class Yes:

Number of records: 3

Attribute Refund:

Yes: 0

No: 3

Attribute Marital Status:

Single: 2

Divorced: 1

Married: 0

Attribute Income:

mean: 90

variance: 25

naive Bayes Classifier:

```
P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1
```

P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced|No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single|Yes) = 2/7
P(Marital Status=Divorced|Yes)=1/7
P(Marital Status=Married|Yes) = 0

For taxable income:

If class=No: sample mean=110

sample variance=2975

If class=Yes: sample mean=90

sample variance=25

Given a Test Record:

```
X = (Refund = Yes, Status = Single, Income = 80K)
```

naive Bayes Classifier:

```
P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1
P(Marital Status=Single | No) = 2/7
P(Marital Status=Divorced | No)=1/7
P(Marital Status=Married | No) = 4/7
P(Marital Status=Single | Yes) = 2/7
P(Marital Status=Divorced | Yes)=1/7
P(Marital Status=Married | Yes) = 0
For taxable income:
If class=No:
             sample mean=110
              sample variance=2975
             sample mean=90
If class=Yes:
              sample variance=25
```

```
P(X|C|ass=No) = P(Refund=Yes|C|ass=No)
                  × P(Married| Class=No)
                   × P(Income=120K| Class=No)
                 = 3/7 * 2/7 * 0.0062 = 0.00075
   P(X|Class=Yes) = P(Refund=No| Class=Yes)
                   × P(Married| Class=Yes)
                   × P(Income=120K| Class=Yes)
                 = 0 * 2/3 * 0.01 = 0
• P(No) = 0.3, P(Yes) = 0.7
Since P(X|No)P(No) > P(X|Yes)P(Yes)
Therefore P(No|X) > P(Yes|X)
      => Class = No
```

Naïve Bayes Classifier

 If one of the conditional probabilities is zero, then the entire expression becomes zero

Laplace Smoothing:

$$P(A_i = a | C = c) = \frac{N_{ac} + 1}{N_c + N_i}$$

• N_i : number of attribute values for attribute A_i

 Creating a Naïve Bayes Classifier, essentially means to compute counts:

Total number of records: N = 10


```
Class Yes:
Number of records: 3
Attribute Refund:
         Yes: 0
        No: 3
Attribute Marital Status:
        Single:
         Divorced:
        Married:
Attribute Income:
                  90
        mean:
        variance: 25
```

Creating a Naïve Bayes Classifier, essentially means to compute

counts:

With Laplace Smoothing

Total number of records: N = 10

Class No:

Number of records: 7

Attribute Refund:

Yes: 3 +1

No: 4 +1

Attribute Marital Status:

Single: 2 +1

Divorced: 1 +1

Married: 4 +1

Attribute Income:

mean: 110

variance: 2975

Class Yes:

Number of records: 3

Attribute Refund:

Yes: 0 +1

No: 3 +1

Attribute Marital Status:

Single: 2 +1

Divorced: 1 +1

Married: 0 +1

Attribute Income:

mean: 90

variance: 25

```
P(Refund=Yes|No) = 4/9
```

P(Refund=No|No) = 5/9 P(Refund=Yes|Yes) = 1/5

P(Refund=No|Yes) = 4/5

P(Marital Status=Single | No) = 3/10

naive Bayes Classifier:

P(Marital Status=Divorced | No)=2/10

P(Marital Status=Married | No) = 5/10

P(Marital Status=Single|Yes) = 3/6

P(Marital Status=Divorced | Yes)=2/6

P(Marital Status=Married | Yes) = 1/6

For taxable income:

If class=No: sample mean=110

sample variance=2975

If class=Yes: sample mean=90

sample variance=25

Given a Test Record:

With Laplace Smoothing

```
X = (Refund = Yes, Status = Single, Income = 80K)
```

naive Bayes Classifier:

```
P(Refund=Yes|No) = 4/9
P(Refund=No|No) = 5/9
P(Refund=Yes|Yes) = 1/5
P(Refund=NolYes) = 4/5
P(Marital Status=Single | No) = 3/10
P(Marital Status=Divorced | No)=2/10
P(Marital Status=Married | No) = 5/10
P(Marital Status=Single | Yes) = 3/6
P(Marital Status=Divorced | Yes)=2/6
P(Marital Status=Married | Yes) = 1/6
For taxable income:
If class=No:
             sample mean=110
              sample variance=2975
              sample mean=90
If class=Yes:
              sample variance=25
```

```
P(X|Class=No) = P(Refund=No|Class=No)
                   × P(Married| Class=No)
                    × P(Income=120K| Class=No)
                  = 4/9 \times 3/10 \times 0.0062 = 0.00082
   P(X|Class=Yes) = P(Refund=No| Class=Yes)
                    × P(Married| Class=Yes)
                    × P(Income=120K| Class=Yes)
                  = 1/5 \times 3/6 \times 0.01 = 0.001
  P(No) = 0.7, P(Yes) = 0.3
• P(X|No)P(No) = 0.0005
• P(X|Yes)P(Yes) = 0.0003
    => Class = No
```

Implementation details

- Computing the conditional probabilities involves multiplication of many very small numbers
 - Numbers get very close to zero, and there is a danger of numeric instability
- We can deal with this by computing the logarithm of the conditional probability

$$\log P(C|A) \sim \log P(A|C) + \log P(C)$$

$$= \sum_{i} \log P(A_{i}|C) + \log P(C)$$

Naïve Bayes for Text Classification

- Naïve Bayes is commonly used for text classification
- For a document with k terms $d = (t_1, ..., t_k)$, its probability of being in class c:

$$P(c|d) = P(c)P(d|c) = P(c)\prod_{t_i \in d} P(t_i|c)$$
 Fraction of documents in c

• $P(t_i|c)$ = Fraction of terms from all documents in c that are t_i .

- Easy to implement and works relatively well
- Limitation: Hard to incorporate additional features (beyond words).
 - E.g., number of adjectives used.

Example

News titles for Politics and Sports

Politics

documents

"Obama meets Merkel"

"Obama elected again"

"Merkel visits Greece again"

$$P(p) = 0.5$$

terms

Vocabulary size: 14

obama:2, meets:1, merkel:2, elected:1, again:2, visits:1, greece:1

Total terms: 10

Sports

"OSFP European basketball champion"

"Miami NBA basketball champion"

"Greece basketball coach?"

$$P(s) = 0.5$$

OSFP:1, european:1, basketball:3, champion:2, miami:1, nba:1, greece:1, coach:1

Total terms: 11

New title: X = "Obama likes basketball"

$$P(Politics|X) \sim P(p)*P(obama|p)*P(likes|p)*P(basketball|p)$$

= 0.5 * 3/(10+14) *1/(10+14) * 1/(10+14) = 0.000108

$$P(Sports|X) \sim P(s)*P(obama|s)*P(likes|s)*P(basketball|s)$$

= 0.5 * 1/(11+14) *1/(11+14) * 4/(11+14) = 0.000128