IV. Folgen und Konvergenz

收货性 IV.1. Konvergenz von Zahlenfolgen

Wir erinnern an den Begriff der Zahlenfolge, den wir schon im Kapitel I eingeführt haben. Im Allgemeinen ist eine Folge $(a_n)_{n=1}^{\infty} \in A^{\mathbb{N}}$ in A eine Abbildung $a_{(\cdot)} : \mathbb{N} \to A$, $n \mapsto a_n$. Folgen mit Werten in $A \subseteq \mathbb{K}$ nennen wir **Zahlenfolgen**.

Definition IV.1.

(i) Eine Zahlenfolge $(a_n)_{n=1}^{\infty} \in \mathbb{K}^{\mathbb{N}}$ heißt konvergent : \Leftrightarrow

$$\exists a \in \mathbb{K} \ \forall \varepsilon > 0 \ \exists \ n_0 \in \mathbb{N} \ \forall n \ge n_0 : \quad |a_n - a| \le \varepsilon. \tag{IV.1}$$

In diesem Fall heißt a Grenzwert oder Limes von $(a_n)_{n=1}^{\infty}$, und wir schreiben statt (IV.1) auch abkürzend

$$a_n \to a, \quad n \to \infty,$$
 (IV.2)

oder

$$\lim_{n \to \infty} \{a_n\} = a. \tag{IV.3}$$

(ii) Eine Zahlenfolge $(a_n)_{n=1}^{\infty} \in \mathbb{K}^{\mathbb{N}}$ heißt **divergent** : \Leftrightarrow

$$(a_n)_{n=1}^{\infty}$$
 ist nicht konvergent. (IV.4)

(iii) Enthält eine Zahlenfolge $(a_n)_{n=1}^{\infty} \in \mathbb{K}^{\mathbb{N}}$ eine konvergente Teilfolge $(a_{n_k})_{k=1}^{\infty}$, so heißt deren Grenzwert $\lim_{k\to\infty} \{a_{n_k}\}$ **Häufungswert** von $(a_n)_{n=1}^{\infty}$.

Bemerkungen und Beispiele.

• Wir bemerken, dass der Limes einer konvergenten Folge eindeutig ist. Ist nämlich

$$a_n \to a \quad \text{und} \quad a_n \to a', \quad n \to \infty,$$
 (IV.5)

so gibt es für jedes $\varepsilon > 0$ zwei Indizes $n_0, n'_0 \in \mathbb{N}$, so dass

$$\forall n \ge n_0: \qquad |a_n - a| \le \varepsilon, \tag{IV.6}$$

$$\forall n \ge n'_0: |a_n - a'| \le \varepsilon.$$
 (IV.7)

Für $n \ge \max\{n_0, n'_0\}$ ist demnach

$$|a - a'| \le |a_n - a| + |a_n - a'| \le 2\varepsilon. \tag{IV.8}$$

Weil $\varepsilon > 0$ beliebig klein gewählt werden kann, folgt daraus

$$a = a'.$$
 (IV.9)

- Seien $\mathbb{K} = \mathbb{R}$ und $a_n := 1/n$. Dann konvergiert $a_n \to 0$, für $n \to \infty$.
- Seien $\mathbb{K} = \mathbb{R}$ und $a_n := (-1)^n + \frac{1}{n}$. Dann ist $(a_n)_{n=1}^{\infty}$ divergent und hat die Häufungswerte $\{-1,1\}$.
- Seien $\mathbb{K} = \mathbb{C}$ und $a_n := \alpha + \frac{1}{n} + i\beta \frac{i}{n}$. Dann konvergiert $a_n \to \alpha + i\beta$, für $n \to \infty$.
- Seien $\mathbb{K} = \mathbb{C}$ und $a_n := \cos(n) + i \sin(n)$. Dann ist $(a_n)_{n=1}^{\infty}$ divergent.
- Jede konvergente Zahlenfolge $(a_n)_{n=1}^{\infty}$ in \mathbb{K} ist auch **beschränkt**. Genauer gesagt, ist dann die $Menge\ \{a_n\}_{n=1}^{\infty}\subseteq\mathbb{K}\ der\ Folgeglieder\ beschränkt$, d.h.

$$\exists R < \infty \ \forall n \in \mathbb{N} : \quad |a_n| \le R. \tag{IV.10}$$

Ist nämlich $a := \lim_{n \to \infty} a_n$, so können wir $\varepsilon := 1$ in (IV.1) wählen und erhalten ein $n_0 \in \mathbb{N}$, sodass

$$\forall n > n_0: |a_n| < |a| + |a_n - a| < |a| + 1.$$
 (IV.11)

Also gilt (IV.10) mit

$$R := \max\{|a_1|, |a_2|, \dots, |a_{n_0-1}|, |a|+1\} < \infty.$$
 (IV.12)

• Die Konvergenz von komplexen Folgen ist gleichbedeutend mit der Konvergenz ihres Real- und Imaginärteils,

$$(z_n)_{n=1}^{\infty} \in \mathbb{C}^{\mathbb{N}}$$
 ist konvergent \Leftrightarrow (IV.13)
 $(\operatorname{Re}\{z_n\})_{n=1}^{\infty} \in \mathbb{R}^{\mathbb{N}}$ und $(\operatorname{Im}\{z_n\})_{n=1}^{\infty} \in \mathbb{R}^{\mathbb{N}}$ sind beide konvergent.

Ist nämlich $|z_n - z| = \sqrt{\operatorname{Re}\{z_n - z\}^2 + \operatorname{Im}\{z_n - z\}^2} \le \varepsilon$, so sind auch $|\operatorname{Re}\{z_n - z\}| \le \varepsilon$ und $|\operatorname{Im}\{z_n - z\}| \le \varepsilon$.

Sind umgekehrt $|\operatorname{Re}\{z_n-z\}| \le \varepsilon$ und $|\operatorname{Im}\{z_n-z\}| \le \varepsilon$, so ist $|z_n-z| \le \sqrt{2}\varepsilon$.

Satz IV.2. Seien $\alpha \in \mathbb{K}$ und $(a_n)_{n=1}^{\infty}, (b_n)_{n=1}^{\infty} \in \mathbb{K}^{\mathbb{N}}$ zwei konvergente Zahlenfolgen und

$$a := \lim_{n \to \infty} \{a_n\}, \quad b := \lim_{n \to \infty} \{b_n\}.$$
 (IV.14)

Dann sind auch $(a_n + b_n)_{n=1}^{\infty}$ und $(\alpha a_n)_{n=1}^{\infty}$ konvergent, und es gilt

$$\lim_{n \to \infty} \{a_n + b_n\} = a + b = \lim_{n \to \infty} \{a_n\} + \lim_{n \to \infty} \{b_n\},$$
 (IV.15)

$$\lim_{n \to \infty} \{ \alpha \, a_n \} = \alpha \, a = \alpha \cdot \lim_{n \to \infty} \{ a_n \}. \tag{IV.16}$$

Beweis. Sei $\varepsilon > 0$. Dann ist auch $\varepsilon/(2+|\alpha|) > 0$. Weil $(a_n)_{n=1}^{\infty}$ konvergent ist, gibt es $n'_0 \in \mathbb{N}$, sodass

$$\forall n \ge n'_0: |a_n - a| \le \frac{\varepsilon}{2 + |\alpha|},$$
 (IV.17)

und weil $(b_n)_{n=1}^{\infty}$ konvergent ist, gibt es $n_0'' \in \mathbb{N}$, sodass

$$\forall n \ge n_0'': |b_n - b| \le \frac{\varepsilon}{2}.$$
 (IV.18)

Setzen wir nun

$$n_0 := \max\{n'_0, n''_0\},$$
 (IV.19)

dann gilt für alle $n \geq n_0$, dass

$$|(a_n + b_n) - (a + b)| = |(a_n - a) + (b_n - b)|$$

$$\leq |a_n - a| + |b_n - b| \leq \frac{\varepsilon}{2 + |\alpha|} + \frac{\varepsilon}{2} \leq \varepsilon$$
(IV.20)

und

$$|\alpha a_n - \alpha a| = |\alpha| \cdot |a_n - a| \le \frac{|\alpha| \cdot \varepsilon}{2 + |\alpha|} \le \varepsilon.$$
 (IV.21)

Satz IV.3. Seien $(a_n)_{n=1}^{\infty}$ und $(b_n)_{n=1}^{\infty} \in \mathbb{K}^{\mathbb{N}}$ zwei konvergente Zahlenfolgen und

$$a := \lim_{n \to \infty} \{a_n\}, \quad b := \lim_{n \to \infty} \{b_n\}. \tag{IV.22}$$

Dann ist $(a_n \cdot b_n)_{n=1}^{\infty} \in \mathbb{K}^{\mathbb{N}}$ konvergent, und es gilt

$$\lim_{n \to \infty} \{a_n \cdot b_n\} = a \cdot b = \lim_{n \to \infty} \{a_n\} \cdot \lim_{n \to \infty} \{b_n\}.$$
 (IV.23)

Sind außerdem $b_n \neq 0$, $\forall n \in \mathbb{N}$ und $b \neq 0$, so ist auch $(a_n/b_n)_{n=1}^{\infty}$ konvergent, und es gilt

$$\lim_{n \to \infty} \left\{ \frac{a_n}{b_n} \right\} = \frac{a}{b} = \frac{\lim_{n \to \infty} \{a_n\}}{\lim_{n \to \infty} \{b_n\}}.$$
 (IV.24)

IV.2. Reelle Folgen und Monotonie

Im vorigen Abschnitt haben wir gesehen, dass der Konvergenzbegriff in $\mathbb C$ auf den in $\mathbb R$ zurückgeführt werden kann. Aus der Ordnungsstruktur in $\mathbb R$ erhalten wir allerdings noch weitere Aussagen, die keine Entsprechung in $\mathbb C$ haben.

Definition IV.4. Eine reelle Zahlenfolge $(a_n)_{n=1}^{\infty} \in \mathbb{R}^{\mathbb{N}}$

heißt
$$\left\{ \begin{array}{l} \text{monoton steigend} \\ \text{streng monoton steigend} \\ \text{monoton fallend} \\ \text{streng monoton fallend} \end{array} \right\} :\Leftrightarrow \forall n \in \mathbb{N} : \left\{ \begin{array}{l} a_n \leq a_{n+1}, \\ a_n < a_{n+1}, \\ a_n \geq a_{n+1}, \\ a_n > a_{n+1}. \end{array} \right.$$
 (IV.25)

Satz IV.5. Sei $(a_n)_{n=1}^{\infty}$ eine Folge in \mathbb{R} .

(i) Ist
$$(a_n)_{n=1}^{\infty}$$
 nach oben beschränkt und monoton steigend,
so ist $(a_n)_{n=1}^{\infty}$ konvergent. (IV.26)

(ii) Ist
$$(a_n)_{n=1}^{\infty}$$
 nach unten beschränkt und monoton fallend,
so ist $(a_n)_{n=1}^{\infty}$ konvergent. (IV.27)

Beweis. Offensichtlich sind (i) und (ii) äquivalent, wie man aus Ersetzung von a_n durch $-a_n$ ersieht. Wir zeigen nur (i). Die Menge $A := \{a_1, a_2, a_3, \ldots, \}$ ist nach oben beschränkt, und wir setzen

$$a := \sup A. \tag{IV.28}$$

Sei nun $\varepsilon > 0$. Weil a das Supremum von A ist, gibt es nach Lemma II.7 ein $a_{n_0} \in A$, so dass

$$a_{n_0} \le a \le a_{n_0} + \varepsilon.$$
 (IV.29)

Da $(a_n)_{n\in\mathbb{N}}$ monoton wachsend ist, gilt $a_{n_0} \leq a_n$ für $n \geq n_0$, und daher

$$\forall n \ge n_0: \quad 0 \le a - a_n \le a - a_{n_0} \le \varepsilon. \tag{IV.30}$$

Also ist $(a_n)_{n=1}^{\infty}$ konvergent und $\lim_{n\to\infty} \{a_n\} = a$.

Sei $(a_n)_{n=1}^{\infty} \in [-R,R]^{\mathbb{N}}$ eine nach oben und unten durch $\pm R, \ 0 < R < \infty$ beschränkte Folge. Setzen wir

$$A_m := \{a_m, a_{m+1}, a_{m+2}, \ldots\},$$
 (IV.31)

so gilt

$$[-R, R] \supseteq A_1 \supseteq A_2 \supseteq A_3 \supseteq \dots$$
 (IV.32)

Setzen wir weiter, für $m \in \mathbb{N}$,

$$b_m := \inf A_m \quad \text{und} \quad c_m := \sup A_m, \tag{IV.33}$$

so gilt

$$\forall m \in \mathbb{N}: \quad -R \leq b_m \leq c_m \leq R. \tag{IV.34}$$

Außerdem impliziert (IV.31)-(IV.32), dass

$$b_m = \inf A_m = \min \{a_m, \inf A_{m+1}\} \le \inf A_{m+1} = b_{m+1},$$
 (IV.35)

$$c_m = \sup A_m = \max \{a_m, \sup A_{m+1}\} \ge \sup A_{m+1} = c_{m+1}.$$
 (IV.36)

Also sind beide Folgen, $(b_m)_{m=1}^{\infty}$ und $(c_m)_{m=1}^{\infty}$, beschränkt und monoton und daher auch konvergent in \mathbb{R} .

Definition IV.6. Sei $(a_n)_{n=1}^{\infty}$ eine Folge in \mathbb{R} .

(i.a) Ist $(a_n)_{n=1}^{\infty}$ nicht nach oben beschränkt, dann setzen wir

$$\lim_{n \to \infty} \sup \{a_n\} := \overline{\lim}_{n \to \infty} \{a_n\} := \infty.$$
 (IV.37)

(Dabei ist " ∞ " nur als Symbol zu verstehen. $\infty, -\infty \notin \mathbb{R}$.)

(i.b) Ist $(a_n)_{n=1}^{\infty}$ nach oben beschränkt, und ist $(c_m)_{m=1}^{\infty}$, mit $c_m := \sup\{a_m, a_{m+1}, \ldots\}$, nicht nach unten beschränkt, so setzen wir

$$\lim_{n \to \infty} \sup \{a_n\} := -\infty. \tag{IV.38}$$

(i.c) Ist $(a_n)_{n=1}^{\infty}$ nach oben beschränkt, und ist $(c_m)_{m=1}^{\infty}$, mit $c_m := \sup\{a_m, a_{m+1}, \ldots\}$, nach unten beschränkt, so setzen wir

$$\lim \sup_{n \to \infty} \{a_n\} := \lim_{m \to \infty} \{c_m\} = \lim_{m \to \infty} \{\sup\{a_n \mid n \ge m\}\}.$$
 (IV.39)

(ii)

$$\lim_{n \to \infty} \inf \{a_n\} := \underline{\lim}_{n \to \infty} \{a_n\} := -\lim_{n \to \infty} \sup \{-a_n\}. \tag{IV.40}$$

 $\limsup_{n\to\infty} \{a_n\}$ heißt **Limes superior** von $(a_n)_{n=1}^{\infty}$, $\liminf_{n\to\infty} \{a_n\}$ heißt **Limes inferior** von $(a_n)_{n=1}^{\infty}$.

Bemerkungen und Beispiele.

- Sei $a_n := n$ für $n \in \mathbb{N}$. Dann ist $(a_n)_{n=1}^{\infty}$ nicht nach oben beschränkt, und es gilt (i.a), also $\limsup_{n \to \infty} \{a_n\} = \infty$.
- Sei $a_n := -n$ für $n \in \mathbb{N}$. Dann ist $(a_n)_{n=1}^{\infty}$ nach oben beschränkt. Weiterhin ist $c_m = \sup \left(\{-m, -m-1, -m-2, \ldots \} \right) = -m$, deshalb ist $(c_m)_{n=1}^{\infty}$ nicht nach unten beschränkt, und es gilt (i.b), also $\limsup_{n \to \infty} \{a_n\} = -\infty$.
- Sei $a_n := (-1)^n \left(1 + \frac{1}{n}\right)$. Wegen $-2 \le a_n \le 2$ ist dann $(a_n)_{n=1}^{\infty}$ beschränkt, und es gilt (i.c). Weiterhin ist

$$c_{2k-1} = \sup \left\{ -\left(\frac{2k}{2k-1}\right), +\left(\frac{2k+1}{2k}\right), -\left(\frac{2k+2}{2k+1}\right), +\left(\frac{2k+3}{2k+2}\right), \dots \right\} = \frac{2k+1}{2k},$$

$$(IV.41)$$

$$c_{2k} = \sup \left\{ \frac{2k+1}{2k}, \frac{-2k-2}{2k+1}, \frac{2k+2}{2k+1}, \dots \right\} = \frac{2k+1}{2k},$$

also $c_m \to 1$, für $m \to \infty$, und $\limsup_{n \to \infty} \{a_n\} = 1$.

- Genauso sieht man, dass $\liminf_{n\to\infty} \{a_n\} = -1$ für $a_n := (-1)^n \left(1 + \frac{1}{n}\right)$. Wir beobachten, dass -1 und 1 Häufungswerte der Folge $(a_n)_{n=1}^{\infty}$ sind.
- Sei $(a_n)_{n=1}^{\infty}$ eine Abzählung von $\mathbb{Q} \cap (0,1)$. Dann sind $\liminf_{n\to\infty} \{a_n\} = 0$ und $\limsup_{n\to\infty} \{a_n\} = 1$.

Satz IV.7. Sei $(a_n)_{n=1}^{\infty} \in \mathbb{R}^{\mathbb{N}}$ eine Folge in \mathbb{R} .

(i) Folgende Charakterisierungen sind gleichwertig:

$$\left\{ \limsup_{n \to \infty} \{a_n\} =: \bar{a} \in \mathbb{R} \text{ existiert} \right\}$$
 (IV.42)

$$\Leftrightarrow \left\{ \forall \varepsilon > 0 \; \exists n_0 \in \mathbb{N} \; \forall n \ge n_0 : \quad a_n \le \bar{a} + \varepsilon \quad und \right.$$

$$\forall \varepsilon > 0 \; \forall n_0 \in \mathbb{N} \; \exists n \ge n_0 : \quad a_n \ge \bar{a} - \varepsilon \right\}$$
(IV.43)

$$\Leftrightarrow \Big\{ (a_n)_{n=1}^{\infty} \text{ ist nach oben beschränkt und } \bar{a} \text{ ist ihr größter Häufungswert} \Big\}.$$
(IV.44)

(ii) Folgende Charakterisierungen sind gleichwertig:

$$\left\{ \liminf_{n \to \infty} \{a_n\} =: \underline{a} \in \mathbb{R} \text{ existient} \right\}$$
 (IV.45)

$$\Leftrightarrow \left\{ \forall \varepsilon > 0 \; \exists n_0 \in \mathbb{N} \; \forall n \ge n_0 : \quad a_n \ge \underline{a} - \varepsilon \quad und \right.$$

$$\forall \varepsilon > 0 \; \forall n_0 \in \mathbb{N} \; \exists n \ge n_0 : \quad a_n \le \underline{a} + \varepsilon \right\}$$
(IV.46)

$$\Leftrightarrow \left\{ (a_n)_{n=1}^{\infty} \text{ ist nach unten beschränkt und } \underline{a} \text{ ist ihr kleinster Häufungswert} \right\}.$$
(IV.47)

Korollar IV.8. Sei $(a_n)_{n=1}^{\infty}$ eine Folge in \mathbb{R} .

$$\left[(a_n)_{n=1}^{\infty} \text{ ist konvergent in } \mathbb{R} \right] \quad \Leftrightarrow \quad \left[\limsup_{n \to \infty} \{a_n\} = \liminf_{n \to \infty} \{a_n\} \in \mathbb{R} \right], \quad (\text{IV}.48)$$

und in diesem Fall gilt

$$\limsup_{n \to \infty} \{a_n\} = \liminf_{n \to \infty} \{a_n\} = \lim_{n \to \infty} \{a_n\}.$$
 (IV.49)

IV.3. Cauchy-Folgen

Definition IV.9. Eine Zahlenfolge $(a_n)_{n=1}^{\infty} \in \mathbb{K}^{\mathbb{N}}$ heißt Cauchy-Folge

$$:\Leftrightarrow \forall \, \varepsilon > 0 \, \exists \, n_0 \in \mathbb{N} \, \forall \, m, n \ge n_0 : \quad |a_m - a_n| \le \varepsilon.$$
 (IV.50)

Cauchy-Folgen spielen in der Analysis eine große Rolle, weil man mit ihrer Hilfe den Konvergenzbegriff einführen kann, ohne expliziten Bezug auf den Grenzwert zu nehmen.

Lemma IV.10. Sei eine $(a_n)_{n=1}^{\infty} \in \mathbb{K}^{\mathbb{N}}$ eine konvergente Folge. Dann ist $(a_n)_{n=1}^{\infty}$ eine Cauchy-Folge.

Beweis. Seien $\varepsilon > 0$ und $a := \lim_{n \to \infty} \{a_n\}$. Dann gibt es ein $n_0 \in \mathbb{N}$, so dass

$$\forall n > n_0: \quad |a_n - a| < \varepsilon/2. \tag{IV.51}$$

Also ist

$$\forall m, n \ge n_0: |a_m - a_n| \le |a_m - a| + |a_n - a| \le \varepsilon.$$
 (IV.52)

Satz IV.11 (Cauchy-Kriterium). Ist $(a_n)_{n=1}^{\infty} \in \mathbb{R}^{\mathbb{N}}$ eine reelle Cauchy-Folge, so ist $(a_n)_{n=1}^{\infty}$ konvergent.

Beweis. Sei $(a_n)_{n=1}^{\infty} \in \mathbb{R}^{\mathbb{N}}$ eine reelle Cauchy-Folge. Wählen wir $\varepsilon := 1$, dann gibt es nach (IV.50) ein $n_0 \in \mathbb{N}$, so dass (mit $m := n_0$)

$$\forall n \ge n_0: |a_n - a_{n_0}| \le 1.$$
 (IV.53)

Also ist

$$\forall n \ge n_0: |a_n| \le |a_{n_0}| + |a_n - a_{n_0}| \le |a_{n_0}| + 1,$$
 (IV.54)

und daher

$$\forall n \in \mathbb{N}: |a_n| \le 1 + \max\{|a_1|, |a_2|, \dots, |a_{n_0}|\}, \quad (IV.55)$$

d.h. $(a_n)_{n=1}^{\infty}$ ist nach oben und nach unten beschränkt. Nach Definition IV.6 sind deshalb

$$\bar{a} := \limsup_{n \to \infty} \{a_n\}, \quad \underline{a} := \liminf_{n \to \infty} \{a_n\} \in \mathbb{R},$$
 (IV.56)

und es genügt zu zeigen, dass $\bar{a} = \underline{a}$. Sei dazu $\varepsilon > 0$ gewählt. Weil $(a_n)_{n=1}^{\infty}$ eine Cauchy-Folge ist, gibt es ein $n_0 \in \mathbb{N}$, so dass

$$\forall n \ge n_0: \quad |a_n - a_{n_0}| \le \varepsilon, \tag{IV.57}$$

was

$$\forall n \ge n_0: \quad a_{n_0} - \varepsilon \le a_n \le a_{n_0} + \varepsilon \tag{IV.58}$$

impliziert. Daher gilt auch,

$$a_{n_0} - \varepsilon \le \inf_{n \ge n_0} \{a_n\} =: b_{n_0} \le c_{n_0} := \sup_{n \ge n_0} \{a_n\} \le a_{n_0} + \varepsilon.$$
 (IV.59)

Aus (IV.59) und der Tatsache, dass b_m monoton steigt und c_m monoton sinkt, erhalten wir

$$a_{n_0} - \varepsilon \le b_{n_0} \le \lim_{n \to \infty} \{b_m\} = \underline{a}$$
 (IV.60)

und

$$\bar{a} = \lim_{n \to \infty} \{c_m\} \le c_{n_0} \le a_{n_0} + \varepsilon, \tag{IV.61}$$

also

$$0 \leq \bar{a} - \underline{a} \leq (a_{n_0} + \varepsilon) - (a_{n_0} - \varepsilon) = 2\varepsilon.$$
 (IV.62)

Da $\varepsilon > 0$ beliebig klein gewählt werden kann, folgt daraus, dass

$$a = \bar{a},$$
 (IV.63)

was nach Korollar IV.8 die Konvergenz von $(a_n)_{n=1}^{\infty}$ zur Konsequenz hat.

IV.4. Ergänzungen

IV.4.1. Vertauschung von Limiten mit Produkt und Quotient

Beweis. (Beweis von Satz IV.3) Als konvergente Folgen sind $(a_n)_{n=1}^{\infty}$ und $(b_n)_{n=1}^{\infty}$ beschränkt. Es gibt also ein $R < \infty$, so dass

$$\max \left\{ \sup_{n} |a_n|, \sup_{n} |b_n|, |a|, |b| \right\} \le R.$$
 (IV.64)

Sei $\varepsilon > 0$. Dann gibt es $n_0', n_0'' \in \mathbb{N}$, so dass

$$\forall n \ge n'_0: |a_n - a| \le \frac{\varepsilon}{2R},$$
 (IV.65)

$$\forall n \ge n_0'': |b_n - b| \le \frac{\varepsilon}{2R}.$$
 (IV.66)

Setzen wir $n_0 := \max\{n'_0, n''_0\}$, dann gilt, für alle $n \ge n_0$

$$|a_n b_n - ab| = |a_n b_n - ab_n + ab_n - ab|$$

$$\leq |a_n - a| \cdot |b_n| + |a| \cdot |b_n - b| \leq \frac{\varepsilon}{2R} \cdot R + R \cdot \frac{\varepsilon}{2R} = \varepsilon.$$
 (IV.67)

Also ist $\lim_{n\to\infty} \{a_n b_n\} = ab$.

Für den Beweis von (IV.24) zeigen wir zunächst, dass die Folge $(\frac{1}{b_n})_{n=1}^{\infty}$ beschränkt ist. Dazu setzen wir $\varepsilon' := \frac{|b|}{2}$. Aus der Konvergenz von $(b_n)_{n=1}^{\infty}$ folgt dann die Existenz von $\tilde{n}_0 \in \mathbb{N}$, so dass

$$\forall n \ge \tilde{n}_0: |b_n - b| \le \varepsilon' = \frac{|b|}{2}.$$
 (IV.68)

Damit ist aber

$$\forall n \ge \tilde{n}_0: |b_n| = |b + b_n - b| \ge |b| - |b_n - b| \ge \frac{|b|}{2}.$$
 (IV.69)

Also ist

$$\max\left\{\frac{|1|}{|b|}, \sup_{n} \left|\frac{1}{b_{n}}\right|\right\} \leq R := \frac{2}{|b|} + \max\left\{\frac{|1|}{|b_{k}|} \mid 1 \leq k \leq \tilde{n}_{0}\right\} < \infty.$$
 (IV.70)

Für $\varepsilon > 0$ impliziert wiederum die Konvergenz von $(b_n)_{n=1}^{\infty}$ die Existenz von $n_0 \in \mathbb{N}$, so dass

$$\forall n \ge n_0: |b - b_n| \le \frac{\varepsilon}{R^2}.$$
 (IV.71)

Somit ist dann

$$\forall n \ge n_0: \quad \left| \frac{1}{|b|} - \frac{1}{b} \right| = \frac{|b - b_n|}{|b| \cdot |b_n|} \le R^2 \cdot \frac{\varepsilon}{R^2} = \varepsilon. \tag{IV.72}$$

Also konvergiert $(\frac{1}{b_n})_{n=1}^{\infty}$ in K gegen $\frac{1}{b}$. Die Behauptung (IV.24) folgt nun aus (IV.23). \square

IV.4.2. Limes Superior/Inferior als größter/kleinster Häufungswert

Beweis. (Beweis von Satz IV.7) Aussagen (i) und (ii) sind offenbar wieder äquivalent, und wir zeigen nur (i). Dazu zeigen wir

$$(IV.42) \Rightarrow (IV.43) \Rightarrow (IV.44) \Rightarrow (IV.42).$$
 (IV.73)

 $(IV.42) \Rightarrow (IV.43)$: Sei $\limsup_{n\to\infty} \{a_n\} = \bar{a} \in \mathbb{R}$, und sei $\varepsilon > 0$. Nehmen wir an, es gäbe unendlich viele $a_n \geq \bar{a} + \varepsilon$, also eine Teilfolge $(a_{n_j})_{j=1}^{\infty}$ mit $a_{n_j} \geq \bar{a} + \varepsilon$. Wegen $n_j \to \infty$, für $j \to \infty$, gibt es zu jedem $m \in \mathbb{N}$ ein $n_j \geq m$ und deshalb ist

$$\forall m \in \mathbb{N}: \sup_{n>m} \{a_n\} \geq a_{n_j} \geq \bar{a} + \varepsilon, \tag{IV.74}$$

also

$$\limsup_{n \to \infty} \{a_n\} \geq \bar{a} + \varepsilon = \limsup_{n \to \infty} \{a_n\} + \varepsilon. \tag{IV.75}$$

Widerspruch. Daraus folgt die Existenz eines $n_0 \in \mathbb{N}$, so dass

$$\forall n \ge n_0: \quad a_n \le \bar{a} + \varepsilon. \tag{IV.76}$$

Gäbe es nur endlich viele $n \in \mathbb{N}$ mit $a_n \geq \bar{a} - \varepsilon$, so müsste es $n'_0 \in \mathbb{N}$ geben, so dass

$$\forall n_0 \ge n_0': \quad a_n \le \bar{a} - \varepsilon. \tag{IV.77}$$

Dann wäre aber

$$\limsup_{n \to \infty} \{a_n\} \le \sup_{n \ge n'_0} \{a_n\} \le \bar{a} - \varepsilon = \limsup_{n \to \infty} \{a_n\} - \varepsilon.$$
 (IV.78)

Widerspruch. Daraus folgt die Existenz einer Teilfolge $(a_{n_j})_{j=1}^{\infty}$ mit $a_{n_j} \geq \bar{a} - \varepsilon$, für alle $j \in \mathbb{N}$.

 $(IV.43) \Rightarrow (IV.44)$: Seien $\varepsilon > 0$ und $n_0 \in \mathbb{N}$ und $(a_{n_j})_{j=1}^{\infty}$ so, dass

$$(\forall m \ge n_0: a_m \le \bar{a} + \varepsilon) \land (\forall j \in \mathbb{N}: a_{n_j} \ge \bar{a} - \varepsilon).$$
 (IV.79)

Dann gilt

$$\forall j \in \mathbb{N}, \, n_j \ge n_0 : \quad |a_{n_j} - \bar{a}| \le \varepsilon, \tag{IV.80}$$

und \bar{a} ist ein Häufungswert von $(a_n)_{n=1}^{\infty}$. Außerdem ist $(a_n)_{n=1}^{\infty}$ nach (IV.79) offensichtlich nach oben beschränkt.

Ist nun $b > \bar{a}$, so wählen wir $\varepsilon := \frac{b-\bar{a}}{3} > 0$. Nach (IV.43) gibt es ein $n_0 \in \mathbb{N}$, so dass

$$\forall m \ge n_0: \quad a_m \le \bar{a} + \varepsilon = b - 2\varepsilon.$$
 (IV.81)

Also kann b kein Häufungswert von $(a_n)_{n=1}^{\infty}$ sein. Somit ist \bar{a} der größte Häufungswert von $(a_n)_{n=1}^{\infty}$.

 $(IV.44) \Rightarrow (IV.42)$: Seien $(a_n)_{n=1}^{\infty}$ eine nach oben beschränkte Folge und \bar{a} ihr größter Häufungswert. Weil $(a_n)_{n=1}^{\infty}$ nach oben beschränkt ist, ist $\limsup_{n\to\infty} \{a_n\} < \infty$. Ist

andererseits $\varepsilon > 0$, so gibt es eine Teilfolge $(a_{n_j})_{j=1}^{\infty}$ mit $a_{n_j} \geq \bar{a} - \varepsilon$, für alle $j \in \mathbb{N}$. Dann ist

$$\limsup_{n \to \infty} \{a_n\} = \lim_{n \to \infty} \left(\sup_{m \ge n} \{a_m\} \right) \ge \lim_{n \to \infty} \left(\sup_{j \in \mathbb{N}: n_j \ge n} \{a_{n_j}\} \right) \ge \bar{a} - \varepsilon, \quad (IV.82)$$

und mit $\varepsilon \to 0$ folgt

$$\bar{a} \leq \limsup_{n \to \infty} \{a_n\} < \infty.$$
 (IV.83)

Sei nun $c_n := \sup_{m \ge n} \{a_m\}$. Dann ist c_n monoton fallend und $\limsup_{n \to \infty} \{a_n\} = \lim_{n \to \infty} \{c_n\}$. Weiterhin gibt es zu jedem $n \in \mathbb{N}$ einen Index $m(n) \ge n$, so dass

$$c_n - \frac{1}{n} \le a_{m(n)} \le c_n, \tag{IV.84}$$

nach Definition des Supremums. O.B.d.A. können wir m(n) < m(n+1) annehmen und erhalten eine konvergente Teilfolge $(a_{m(n)})_{n=1}^{\infty}$ mit

$$\lim_{n \to \infty} \{a_{m(n)}\} = \lim_{n \to \infty} \{c_n\} = \limsup_{n \to \infty} \{a_n\}.$$
 (IV.85)

Also ist $\limsup_{n\to\infty} \{a_n\}$ ein Häufungswert von $(a_n)_{n=1}^{\infty}$. Weil \bar{a} der größte Häufungswert ist, folgt

$$\lim_{n \to \infty} \sup \{a_n\} = \bar{a}. \tag{IV.86}$$