Anthony Burrow, Ph.D.

■ anthony.r.burrow@gmail.com
in linkedin.com/in/anthony-burrow

anthonyburrow.github.io

Summary

Research scientist with a Ph.D. in Physics and a robust background in applying machine-learning concepts to complex datasets in astrophysics. Extensive work utilizing Python, C/C++, and more to develop software tools which have shown to be significant contributions to the scientific community. Experienced with the entire data science life cycle: identifying problems, data wrangling, and model deployment, evaluation, and maintenance.

EDUCATION

- Ph.D. in Physics (GPA: 3.92) July 2024, *University of Oklahoma* Dissertation on SHAREOK
- Professional Certificate, Machine Learning Ongoing, IBM
- Professional Certificate, Data Science (View) Aug. 2024, IBM
- B.S. in Astrophysics (GPA: 3.91) May 2017, University of Oklahoma

TECHNICAL SKILLS

Programming: Platforms: Technologies:

Python, SQL, C/C++, C#, Bash Linux/UNIX, Windows Git, JupyterLab, RStudio, LATEX, Slurm

Experience with Python Libraries:

NumPy pandas scikit-learn matplotlib SciPy Astropy Tensorflow GPy

Data Science Skills:

Data Wrangling Statistics Data Analysis Data Visualization Model Evaluation Automation Regression Classification Parameter Optimization Cluster Analysis Dimensionality Reduction

Research Experience

Graduate Research Assistant

University of Oklahoma, Advised by Dr. Eddie Baron

July 2019 – Present Norman, OK

- Develop Python software to implement machine-learning techniques to model the behavior of supernovae.
- Perform thorough preprocessing, standardization, and feature engineering of spectroscopic data.
- Conduct detailed **statistical analyses**, resulting in two **publications** in a peer-reviewed journal (ApJ).
- Collaborate with leading researchers from several other universities and facilities around the world (CSP, POISE).
- **Present** results to peers and collaborators at meetings and conferences.
- Synthesize models in a supercomputing environment with Slurm scripts using PHOENIX radiative transfer code.

Products:

- Burrow, Anthony, et al. (2024). Extrapolation of Type Ia Supernova Spectra into the NIR Using PCA. ApJ
- Burrow, Anthony, et al. (2020). Carnegie Supernova Project: Classification of Type Ia Supernovae. ApJ
- SNEx (Python): Spectrum extrapolation into near-infrared wavelengths using principal component analysis.
- Spextractor (Python): Fast spectrum-smoothing using Gaussian process regression.
- SNIaDCA (Python): Wrapper for probablistically classifying supernovae with Gaussian mixture models.

Undergraduate Research Assistant

June 2015 - May 2017

University of Oklahoma, Advised by Dr. John Wisniewski

Norman, OK

- Calibrated observed data by removing multiple sources of noise from raw FITS images of stars using IRAF.
- Modeled the observed light profile of stars on images using IRAF to calculate their brightness values.
- Created Python and IDL scripts needed to analyze data and propagate errors derived from observations.
- o Conducted multiple remote observations at the Apache Point Observatory to obtain more raw data for analysis.
- Presented results at the American Astronomical Society conference.