<u>LAB – 3</u> PYTHON BASIC PRACTICE – III

import numpy as np

A = np.array ([2,5,10]) print(A.dtype)

B=np.array ([2.4,10.6,5.2]) print(B.dtype)

A=np.array([(3,4,5),(12,6,1)]) print(A)

Z=np.zeros((2,4)) # will create zero matrix of dimension 2x4 print(Z)

```
eg1.py
                                                                                  float64
                                                                                  [[ 3 4 5]
[12 6 1]]
[[0. 0. 0. 0.]
 import numpy as np
print(A.dtype)
B=np.array ([2.4,10.6,5.2])
                                                                                   [0. 0. 0. 0.]]
print(B.dtype)
                                                                                  [10 15 20 25]
                                                                                  CSE210905272@networklab:~/Distribu
 A=np.array([(3,4,5),(12,6,1)])
                                                                                  int64
                                                                                  float64
                                                                                  [[ 3 4
Z=np.zeros((2,4)) # will create zero matrix of dimension 2x4
                                                                                   [12 6 1]]
                                                                                  [[0. 0. 0. 0.]
[0. 0. 0. 0.]]
 S=np.arange(10,30,5)
                                                                                  [10 15 20 25]
                                                                                  [0. 0.3 0.6 0.9 1.2 1.5 1.8]
                                                                                  CSE210905272@networklab:~/Distrib
np.arange( 0, 2, 0.3 ) # it accepts float arguments
print(np.array([ 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8]))
```

import random

print(random.choice([1,2,3,4,5]))#, this will pick one number from the list randomly print(random.choice('python'))#, will pick one character from the string randomly print(random.randrange(25,50))# will pick one integer between 25 to 50 print(random.randrange(25,50,2))#, will pick one integer between 25 to 50 with step size of 2 print(random.random())#, will pick a random number between 0 to 1 print(random.uniform(5,10))#, will pick a floating point number between 5 to 10 print(random.shuffle([1,2,3,4,5]))#, will shuffle the list elements print(random.seed(10))#, to get same random value during every execution

```
import random
print(random.choice([1,2,3,4,5]))#, this will pick one number from the list randomly
print(random.choice('python'))#, will pick one character from the string randomly
print(random.randrange(25,50))# will pick one integer between 25 to 50
print(random.randrange(25,50,2))#, will pick one integer between 25 to 50 with step size of 2
print(random.random())#, will pick a random number between 0 to 1
print(random.uniform(5,10))#, will pick a floating point number between 5 to 10
print(random.shuffle([1,2,3,4,5]))#, will shuffle the list elements
print(random.seed(10))#, to get same random value during every execution
CSE210905272@networkla
5
n
33
43
0.6722759614875472
5.82545198402048
None
None
```

```
import numpy as np
a=np.array([(3,2,9),(1,6,7)])
s=0
for i in range(a.shape[0]):
         for j in range(a.shape[1]):
                  s+=a[i,j]
print(s)
# Calculate sum of all the elements in a 2D Numpy Array (iterate over elements)
s1 = 0
for row in a:
         for col in row:
                  s1+=col
print(s1)
                                                                                                  CSE210905272@networklab:
        # Calculate sum of all the elements in a 2D Numpy Array (iterate over range)
        import numpy as np
                                                                                          CSE210905272@networklab:~/Dis
                                                                                          5
        a=np.array([(3,2,9),(1,6,7)])
                                                                                          33
        for i in range(a.shape[0]):
                                                                                          43
           for j in range(a.shape[1]):
s+=a[i,j]
                                                                                          0.6722759614875472
                                                                                          5.82545198402048
                                                                                          None
        for row in a:
                                                                                          CSE210905272@networklab:~/Dist
import numpy as np
a = np.arange(15).reshape(3, 5)
np.array([[ 0, 1, 2, 3, 4],
[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
#to check the dimension
print(a.shape)
print(a.size) # will return total elements in matrix (here 15)
# to transpose a matrix
print(a.T) # transposed to 5x3 matrix
                                                                          randomeg.py
                                                                                                          CSE210905272@ne
        import numpy as np
                                                                                                  CSE210905272@networkl
       a = np.arange(15).reshape(3, 5)
np.array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
#to check the dimension
                                                                                                  (3, 5)
                                                                                                  15
                                                                                                  [[ 0 5 10]
                                                                                                  [ 1 6 11]
[ 2 7 12]
[ 3 8 13]
[ 4 9 14]]
                                                                                                     1 6 11]
       print(a.shape)
```

CSE210905272@networkl

c = np.arange(24).reshape(2,3,4) # 1st value indicates (no of planes) (3,4) is the dimension print(c)

print(c.shape)

```
import numpy as np
a = np.array([20,30,40,50])
b = np.arange(4)
print(b)
\# \operatorname{array}([0, 1, 2, 3])
c = a-b
print(c)
# array([20, 29, 38, 47])
print(b**2)
array([0, 1, 4, 9])
10*np.sin(a)
array([ 9.12945251, -9.88031624, 7.4511316, -2.62374854])
a<35
array([ True, True, False, False], dtype=bool)
import numpy as np
a = np.array([4.,2.])
b = np.array([3.,8.])
print(np.column_stack((a,b))) # returns a 2D array
print(np.array([[ 4., 3.],
[2., 8.]
np.hstack((a,b))
# the result is different
np.array([ 4., 2., 3., 8.])
print(np.hstack((a[0],b[0]))) # the result is the same
np.array([[ 4., 3.],
[ 2., 8.]])
import numpy as np
a = np.arange(10)**3
print(a)
np.array([ 0, 1, 8, 27, 64, 125, 216, 343, 512, 729])
```

```
print(a[2:5])
np.array([ 8, 27, 64])
print(a[0:6:2])
np.array([0,8,64,216])
```

```
        View
        Goto
        Tools
        Project
        Preferences
        Help

        Image: Project Preferences of Tools
        Cose Tools Project Preferences of Tool
```

import numpy as np

```
A = \text{np.array}([[1,1],[0,1]])
B = np.array([[2,0],[3,4]])
print(A*B)
# elementwise product
np.array([[2, 0],
[0, 4]]
A.dot(B)
# matrix product
np.array([[5, 4],
[3, 4]])
# (OR)
np.dot(A, B)
np.array([[5, 4],
[3, 4]])
# another matrix product
b = np.arange(12).reshape(3,4)
print(b)
np.array([[ 0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]
b.sum(axis=0)
np.array([12, 15, 18, 21])# sum of each column
b.sum(axis=1)
np.array([6, 22, 38])
```

```
| CSE210905272@networklab:-/D | matrix.py x | arrayeg.py | matrix.py x |
```

```
| forloopeg.py | 2dmatrix.py | 3dmatrix.py | arrayeg.py | matrixoperationseg.py | matrixed.py | matr
```

LAB EXERCISES:

->

Q1)Write a program to find the factors of a given number (get input from user) using for loop.

```
import numpy as np
import pandas as pd

n=int(input("Enter number: "))
print("The factors are: \n")
for i in range(1,n+1):
    if (n%i==0):
        print(i)
```

Q2)Find the sum of columns and rows using axis.

->
import numpy as np
import pandas as pd
from icecream import ic

a=np.array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
ic("ROW sum:")
print(a.sum(axis=1))
ic("COLUMN sum:")
print(a.sum(axis=0))

```
q2.py
                                                            F
                                                                 CSE210905272@networkla
         # Find the sum of columns and rows using axis
N
                                                          CSE210905272@networklab:~/[
est
         import numpy as np
1.
         import pandas as pd
                                                          [10 35 60]
         from icecream import ic
                                                          ic| 'COLUMN sum:'
2.
                                                          [15 18 21 24 27]
3.
         a=np.array([[ 0, 1, 2, 3, 4],
                                                          CSE210905272@networklab:~/[
         [ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
14.
5.
         ic("ROW sum:")
16.
         print(a.sum(axis=1))
        ic("COLUMN sum:")
    13
        print(a.sum(axis=0))
dr
```

Q3)Operations on Arrays (use numpy wherever required):

- a) Create array from list with type float
- b) Create array from tuple
- c) Creating a 3X4 array with all zeros
- d) Create a sequence of integers from 0 to 20 with steps of 5
- e) Reshape 3X4 array to 2X2X3 array

f) Find maximum and minimum element of array, Row wise max and min, column wise max and min and sum of elements. (Use functions max(), min(), sum())

```
->
import numpy as np
import pandas as pd
from icecream import ic
#a
list1=[1,2,3,4]
arr1=np.array(list1, dtype="float")
print(arr1)
#b
tuple1=(7,6,5,4)
arr2=np.array(tuple1, dtype="float")
print(arr2)
#c
print("Zeroes matrix:")
zeroes1=np.zeros((3,4))
print(zeroes1_
#d
print(np.arange(0,20,5))
e=zeroes1.reshape(2,2,3)
print(e)
#f
f=np.array([[1,11,2],[3,55,6]])
print("The array: ")
print(f)
print(f.max(axis=0))
print(f.min(axis=0))
print(f.max(axis=1))
print(f.min(axis=1))
print("Sum: ",f.sum())
```

```
q3.py
    # d) Create a sequence of integers from 0 to 20 with steps of 5
    # e) Reshape 3X4 array to 2X2X3 array
                                                 CSE210905272@networklab: ~/DistributedSystems/L
    import numpy as np
    import pandas as pd
    from icecream import ic
                                          [1 3]
                                          78
    list1=[1,2,3,4]
                                          CSE210905272@networklab:~/DistributedSystems/Lab
    arr1=np.array(list1, dtype="float")
                                          [1. 2. 3. 4.]
    print(arr1)
                                          [7. 6. 5. 4.]
                                          Zeroes matrix:
    tuple1=(7,6,5,4)
                                          [[0. 0. 0. 0.]
    arr2=np.array(tuple1, dtype="float")
                                           [0. 0. 0. 0.]
20
    print(arr2)
                                           [0. 0. 0. 0.]]
                                          [ 0 5 10 15]
    print("Zeroes matrix:")
                                          [[[0. 0. 0.]
    zeroes1=np.zeros((3,4))
                                            [0. 0. 0.]]
    print(zeroes1)
                                           [[0. 0. 0.]
    print(np.arange(0,20,5))
                                            [0. 0. 0.]]]
                                          The array:
                                          [[ 1 11 2]
    e=zeroes1.reshape(2,2,3)
    print(e)
                                             3 55 6]]
                                          [ 3 55 6]
                                          [ 1 11 2]
                                          [11 55]
    f=np.array([[1,11,2],[3,55,6]])
                                          [1 3]
                                          Sum: 78
    print(f)
                                          CSE210905272@networklab:~/DistributedSystems/La
    print(f.max(axis=0))
    print(f.min(axis=0))
    print(f.min(axis=1))
```

Q4)Write a program to transpose a given matrix.

```
import numpy as np
import pandas as pd
from icecream import ic

A=np.array([[1,2,3],[4,5,6],[7,8,9],[11,12,13]])
print(A)
print(A.shape)

#transpose
A=A.T
print(A)
print(A)
print(A.shape)
```

```
| The state of the
```

Q5)Write a program to add two matrices.

```
import numpy as np import pandas as pd from icecream import ic X=np.array([[12,7,3], [4,5,6], [7,8,9]])
Y=np.array([[5,8,1], [6,7,3], [4,5,9]])
Z=X+Y
print(Z)
```

```
# Write a program to add two matrices.
        import numpy as np
        import pandas as pd
                                                                                                                                               CSE210905272@networkla
        from icecream import ic
                                                                                                                                   CSE210905272@networklab:~/D
 789
        X=np.array([[12,7,3],
                                                                                                                                   [[17 15 4]
[10 12 9]
[11 13 18]]
[17, 15, 4]
[10, 12, 9]
       Y=np.array([[2,7,5]

[4 ,5,6],

[7 ,8,9]])

Y=np.array([[5,8,1],

[6,7,3],

[4,5,9]])
                                                                                                                                    [11, 13, 18]
        Z=X+Y
                                                                                                                                    CSE210905272@networklab:~/D
       X = [[12,7,3], [4,5,6], [7,8,9]]
20
21
22
23
24
25
26
27
28
29
30
31
        Y = [[5,8,1],
[6,7,3],
[4,5,9]]
                      [0,0,0],
[0,0,0]]
            for j in range(len(X[0])):
    result[i][j] = X[i][j] + Y[i][j]
33
34
```

Q6)Write a program to find element wise product between two matrices.

```
import numpy as np import pandas as pd from icecream import ic X=np.array([[12,7,3], [4,5,6], [7,8,9]])
Y=np.array([[5,8,1], [6,7,3], [4,5,9]])
Z=X*Y
print(Z)
```

```
+ ▼ 🗐 🗐 🔱 🖹
                                                                                                               q6.py
N
est
                                                                                           CSE210905272@networklab: ~/DistributedSystems/Lab
            import numpy as np
            import pandas as pd
            from icecream import ic
                                                                                  CSE210905272@networklab:~/DistributedSystems/Lab3
2.
                                                                                  [[60 56 3]
13.
           X=np.array([[12,7,3],

[4 ,5,6],

[7 ,8,9]])

Y=np.array([[5,8,1],
                                                                                   [24 35 18]
4.
                                                                                   [28 40 81]]
                                                                                  [60, 56, 3]
[24, 35, 18]
[28, 40, 81]
15.
6.
                 [6,7,3],
[4,5,9]])
np
                                                                                  CSE210905272@networklab:~/DistributedSystems/Lab3
!dr
            Z=X*Y
dr
ırra
           X = [[12,7,3], [4,5,6], [7,8,9]]
g1
orl
na
           Y = [[5,8,1],
[6,7,3],
[4,5,9]]
na
an
lic
            Z = [[0,0,0],
ta
                       [0,0,0],
[0,0,0]]
oc
03.
            for i in range(len(X)):
               for j in range(len(X[0])):
    Z[i][j] = X[i][j] * Y[i][j]
               print(r)
```