

QUÍMICA ANALÍTICA QUANTITATIVA

Métodos Titulométricos e Titulometria Ácido-Base CQ321 (Turmas EQA e EQB)

Gilberto Abate
gilbertoabate@ufpr.br

05/09/23

Titulometria (volumetria)

1729: Claude Joseph Geoffroy Determinação de ácido acético em vinagre.

1685 - 1752

1756: Francis
Home
Basicidade de
cinzas de plantas
e titulometria de
precipitação.

1719 - 1813

1767: Willian Lewis Determinação de KOH e uso de indicadores.

1708 - 1781

1782-1784: Louis-Bernard G. De Morveau Uso de indicadores, propôs algo similar à bureta.

Terra e Rossi, Quim. Nova, Vol. 28, 166-171, 2005

1788: François-Antoine-Henri Descroizilles Determinação de de hipoclorito (redox). Bureta, gerou grandes avanços (1806).

Titulometria (volumetria)

1832: Joseph Gay-Lussac Determinação de Ag por titulometria de precipitação.

Buretas:

1835: Gay-Lussac;

1846: Étienne O. Henry;

1855: Karl F. Mohr.

1751 - 1825

1778 - 1850

Indicadores:

1877: Fenolftaleína;

1878: Tropeolina;

1878: Alaranjado de metila

1894: Ostwald e 1913: Salm -

teoria dos indicadores;

1909: Sørensen – escala de pH.

Terra e Rossi, Quim. Nova, Vol. 28, 166-171, 2005

1920: Técnicas instrumentais;

1970: Eletrônica e computação.

Métodos titulométricos ou volumétricos (caps. 13, 14 e 16 - Skoog)

- ✓O analito (espécie de interesse) é submetido à reação com um reagente adequado, cuja concentração é conhecida com *exatidão*;
- ✓São preferíveis frente às determinações por gravimetria.

Solução padrão: Reagente cuja concentração (mol L⁻¹) é conhecida com exatidão, para quantificar um dado analito;

Titulação: Consiste em agregar a solução padrão à solução que contém o analito, até o consumo total do mesmo;

Ponto estequiométrico ou ponto de equivalência P.E.: Ponto final teórico da titulação, onde $n_{\text{titulante}} = n_{\text{titulado}}$;

Ponto final P.F.: Ponto mais próximo possível do P.E..

Uma titulação genérica

Requisitos para uma determinação por titulometria

- ✓ Reação entre o analito e o titulante (solução padrão) deve ser completa e única, com estequiometria bem definida;
- ✓ Reação deve ser rápida proporciona menor tempo entre as adições do titulante;
- ✓ Deve haver um meio adequado para detecção do P.F.; o reagente, um produto de reação ou um indicador propício;
- ✓ O titulante deve ser estável evita padronizações frequentes;
- ✓ O titulante deve ser, se possível, um *padrão primário*;
- ✓ Pode-se também empregar *padrões secundários*, previamente padronizados frente à um padrão primário.

Padrões primários e secundários

✓ Padrão primário: Composto de elevada pureza, utilizado como material de referência em métodos titulométricos.

✓ Características desejáveis de um padrão primário:

- a. Deve haver método bem estabelecido para determinação da pureza;
- b. Deve ter alta estabilidade à atmosfera;
- c. Ausência de moléculas de água de hidratação;
- d. Baixo custo;
- e. Completamente solúvel no meio da titulação;
- **f.** Elevada massa molar permite minimizar os erros durante a pesagem.
- ✓ Padrão secundário: Sua pureza é determinada por análise química. Também usado como referência em métodos titulométricos. Geralmente a pureza é obtida com base em um padrão primário.

Curvas de titulação simuladas

Classificação dos métodos titulométricos

De acordo com a natureza das reações:

- ✓ Titulações de neutralização;
- ✓ Titulações de precipitação;
- ✓ Titulações de óxido-redução;
- ✓ Titulações de complexação.

Titulometria de neutralização (ácido-base) (caps. 14 e 16 - Skoog)

Métodos baseados na reação de H₃O⁺ com OH⁻.

- ✓ Titulação de ácidos fortes com bases fortes e vice-versa;
- ✓ Titulação de ácidos fracos com bases fortes;
- ✓ Titulação de bases fracas com ácidos fortes;
- ✓ Titulação de ácidos e bases polipróticos.

São simuladas curvas de titulação para determinar o **P.E.** e selecionados **indicadores adequados** para determinar o **P.F.** (**P.F.** ≈ **P.E.**).

Titulometria de neutralização (ácido-base)

- ✓ São empregadas soluções previamente padronizadas, que permitam reações com o analito com estequiometria bem definida;
- ✓ Para titulações de bases fortes ou bases fracas, é utilizada solução de HCl, ou alternativamente H₂SO₄ ou HClO₄ padronizadas com Na₂CO₃ (P.P.) ou com soluções de NaOH previamente padronizadas (P.S.);
- ✓ Para titulações de ácidos fortes ou ácidos fracos, são utilizadas soluções de NaOH ou KOH padronizadas com hidrogenoftalato de potássio (P.P.);
- ✓ Para determinar o P.F. em uma titulação, é selecionado um indicador adequado, ou um potenciômetro para acompanhar a variação de pH.

P.P. – padrão primário e P.S. – padrão secundário.

Indicadores de pH ou indicadores ácido-base

- ✓ São compostos orgânicos (ácidos fracos ou bases fracas), que sofrem mudança na sua estrutura de acordo com a mudança do pH do meio;
- ✓ Portanto, possuem K_a (ácidos fracos) ou K_b (bases fracas) característicos de suas estruturas moleculares;
- ✓ Em função da mudança de estrutura, o indicador exibe uma modificação na sua coloração, o que pode ser útil para definir o ponto final (P.F.) de uma titulação ácido-base;
- ✓ A mudança de cor ocorre após o volume adicionado de solução padrão (titulante) consumir o analito (contido na amostra) e assim ter um mínimo excesso do titulante.

Indicadores de pH naturais

Hortênsias e a dependência do pH do solo na definição da cor

Mudança de cor do extrato de repolho roxo, em função do pH do meio

Indicadores de pH ou indicadores ácido-base

$$Hind(aq) + H_2O(1) - Ind(aq) + H_3O(aq)$$
 (indicador ácido)

$$K_{\mathbf{a}} = \frac{[\text{Ind}^-] \times [\text{H}_3\text{O}^+]}{[\text{HInd}]} \longrightarrow \frac{[\text{Ind}^-]}{[\text{HInd}]} = \frac{K_{\mathbf{a}}}{[\text{H}_3\text{O}^+]}$$

$$Ind(aq) + H_2O(1) = IndH^+(aq) + OH^-(aq)$$
 (indicador básico)

$$K_{b} = \frac{[IndH^{+}] \times [OH^{-}]}{[Ind]} \longrightarrow \frac{[IndH^{+}]}{[Ind]} = \frac{K_{b}}{[OH^{-}]}$$

Seja o indicador ácido Hind:

Hind(aq) +
$$H_2O(1) \leftrightarrows Ind^-(aq) + H_3O^+(aq)$$

cor em meio ácido cor em meio básico

$$[H_3O^+] = K_a \times \frac{[HInd]}{[Ind^-]}$$

 $pH = pK_a \pm 1 = Limites da zona de transição, faixa útil do indicador$

OH OH OHO H_3O^+

Estrutura e cores da fenolftaleína

Incolor Meio ácido

Vermelha-rósea Meio básico

Alguns indicadores ácido-base e a mudança de cor

Diferentes titulações e os indicadores

Base forte titulada com ácido forte Ácido fraco titulado com base forte Base fraca titulada com ácido forte 14 12 10 Fenolftaleina Fenolftaleina · S 8 Tornassol 6 Alaranjado 4 de metila Analito ou titulante: (b) Ácido fraco-base forte (c) Base fraca-ácido forte (a) Base forte-ácido forte Volume de base adicionada, V_{base}→ Volume de ácido adicionado, V decido

Potenciometria (cap. 21, SKOOG)

✓ Faz uso dos dados de potenciais de eletrodo para determinar as atividades. Muito útil para determinar pH e o P.F. de titulações.

$$E_{\text{cela}} = K - \frac{0,0592}{n} \text{ pH}$$

$$E_{\rm cela} = E_{\rm ind} - E_{\rm ref} + E_{\rm j}$$

Determinação de pH

$$pH = -\log a_{H_3O^+}$$

$$a_{\rm H_3O^+} = \gamma_{\rm H_3O^+} \, [\rm H_3O^+]$$

$$pH = -\log [H_3O^+]$$

$$H^{+}_{\text{solução}} + Na^{+}_{\text{vidro}}^{+}$$
 $\rightleftharpoons Na^{+}_{\text{solução}} + H^{+}_{\text{vidro}}^{+}$

Titulações potenciométricas e curva de titulação

- √ Não requer o uso de indicadores ácido-base;
- ✓ Não é necessário calibrar o eletrodo.

Determinação do ponto final da titulação

Harris, 6^a edição, capítulo 12.

Titulação de ácido forte com base forte: Influência da concentração

Volume de NaOH, mL	pH		
	50,00 mL de HCl 0,0500 mol L ⁻¹ com o NaOH 0,100 mol L ⁻¹	50,00 mL de HCl 0,000500 mol L ⁻ com o NaOH 0,00100 mol L ⁻¹	
0,00	1,30	3,30	
10,00	1,60	3,60	
20,00	2,15	4,15	
24,00	2,87	4,87	
24,90	3,87	5,87	
25,00	7,00	7,00	
25,10	10,12	8,12	
26,00	11,12	9,12	
30,00	11,80	9,80	

Figura 14-3 Curvas de titulação de HCl com NaOH. Curva A: 50,00 mL de HCl 0,0500 mol L⁻¹ com NaOH 0,1000 mol L⁻¹. Curva B: 50,00 mL de HCl 0,000500 mol L⁻¹ com NaOH 0,001000 mol L⁻¹.

Titulação de base forte com ácido forte: Influência da concentração

Figura 14-4 Curvas de titulação para NaOH com HC1. Curva A: 50,00 mL de NaOH 0,0500 mol L⁻¹ com HC1 0,1000 mol L⁻¹. Curva B: 50,00 mL de NaOH 0,00500 mol L⁻¹ com HC1 0,0100 mol L⁻¹.

Titulação de ácido fraco com base forte: Influência da concentração

Variações no pH Durante a Titulação de um Ácido Fraco com uma Base Forte				
Volume de NaOH, mL	pH			
	50,00 mL de HAc 0,1000 mol L ⁻¹ NaOH 0,1000 mol L ⁻¹	50,00 mL de HAc 0,001000 mol L ⁻¹ com NaOH 0,001000 mol L ⁻¹		
0,00	2,88	3,91		
10,00	4,16	4,30		
25,00	4,76	4,80		
40,00	5,36	5,38		
49,00	6,45	6,46		
49,90	7,46	7,47		
50,00	8,73	7,73		
50,10	10,00	8,09		
51,00	11,00	9,00		
60,00	11,96	9,96		
70,00	12,22	10,25		

Figura 14-5 Curva para a titulação de ácido acético com hidróxido de sódio. Curva A: ácido 0,1000 mol L⁻¹ com uma base 0,1000 mol L⁻¹. Curva B: ácido 0,001000 mol L⁻¹ com uma base 0,001000 mol L⁻¹.

Titulação de ácido fraco com base forte: Influência do valor de $K_{\rm a}$

Titulação de base fraca com ácido forte: Influência do valor de $K_{ m b}$

Titulação de Ácidos polifuncionais e a influência do valor de K_a

Figura 15-4 Curvas de titulações de ácidos polipróticos. Uma solução de NaOH 0,1000 mol L⁻¹ foi empregada para titular 25,00 mL de H₃PO₄ 0,1000 mol L⁻¹ (curva A), ácido oxálico 0,1000 mol L⁻¹ (curva B) e H₂SO₄ 0,1000 mol L⁻¹ (curva C).

Ácido	K_{a_1}	K_{a_2}	K_{a_1}/K_{a_2}
Maleico	1,5 X 10 ⁻²	2,6 X 10 ⁻⁷	5,8 X 10 ⁴
Carbônico	$4,6 \times 10^{-7}$	$5,6 \times 10^{-11}$	$8,2 \times 10^3$
Oxálico	$5,6 \times 10^{-2}$	$5,2 \times 10^{-5}$	1,1 X 10 ³
Fosfórico	$7,5 \times 10^{-3}$	$6,2 \times 10^{-8}$	1,2 X 10 ⁵

Titulação de ácidos polifuncionais: H₃PO₄

$$H_3PO_4 + H_2O \rightleftharpoons H_2PO_4^- + H_3O^+ K_{a1} = \frac{[H_3O^+][H_2PO_4^-]}{[H_3PO_4]} = 7,11 \times 10^{-3}$$

$$H_2PO_4^- + H_2O \rightleftharpoons HPO_4^{2-} + H_3O^+ \qquad K_{a2} = \frac{[H_3O^+][HPO_4^{2-}]}{[H_2PO_4^-]} = 6.32 \times 10^{-8}$$

$$HPO_4^{2-} + H_2O \rightleftharpoons PO_4^3 + H_3O^+$$
 $K_{a3} = \frac{[H_3O^+][PO_4^{3-}]}{[HPO_4^{2-}]} = 4.5 \times 10^{-13}$

Curva de titulação de uma solução de H_3PO_4 com solução de NaOH, ambas em concentração analítica (c_{Δ}) 0,1000 mol L⁻¹.

Titulação de bases polifuncionais: Na₂CO₃

$$CO_3^{2-} + H_2O \rightleftharpoons OH^- + HCO_3^- \qquad K_{b1} = \frac{K_w}{K_{a2}} = \frac{1,00 \times 10^{-14}}{4,69 \times 10^{-11}} = 2,13 \times 10^{-4}$$

$$HCO_3^- + H_2O \rightleftharpoons OH^- + CO_2(aq) \qquad K_{b2} = \frac{K_w}{K_{a1}} = \frac{1,00 \times 10^{-14}}{4,2 \times 10^{-7}} = 2,4 \times 10^{-8}$$

Figura 15-5 Curva de titulação de 25,00 mL de Na_2CO_3 0,1000 mol L^{-1} com HCl 0,1000 mol L^{-1} .

Algumas aplicações práticas da titulometria ácido-base

- ✓ Em diversos segmentos industriais para determinação da pureza de ácidos e bases fortes e fracos, acidez em alimentos, bebidas, etc. As titulações geralmente são diretas, pois as reações são muito rápidas;
- ✓ Contudo, também podem ser empregadas titulações indiretas (titulações de retorno ou retro titulações):
- Determinação da % de ésteres e índice de saponificação, com solução padrão de KOH;
- Determinação de Mg(OH)₂ em antiácido;
- Determinação de nitrogênio / proteínas (Kjeldahl).

Método indireto de Kjeldahl

Johann Kjeldahl (1849-1900)

Determinação de ésteres e índice de saponificação

