Numerical Simulation of acoustic and electromagnetic scattering problems

October 21, 2015

Contents

1	The	acoustic scattering Problem in full space	1
	1.1	Introduction	1
	1.2	Theory for the direct Scattering Problem in \mathbb{R}^3	3

Chapter 1

The acoustic scattering Problem in full space

1.1 Introduction

We study the wave equation in full space \mathbb{R}^d , $d \in \{1, 2, 3\}$.

$$\frac{\partial^2}{\partial t^2} p + \gamma \frac{\partial}{\partial t} p = c^2 \Delta p$$

Where

$$c = c(x)$$
 speed of sound
 $\gamma = \gamma(x)$ damping coefficient

Assume time-periodic behaviour

$$p(x,t) = Re[u(x)e^{-i\omega t}]$$

with frequency ω and a real-valued function u. Since

$$\frac{\partial^2 p(x,t)}{\partial t^2} = \text{Re}[-\omega^2 u(x)e^{-i\omega t}]$$
$$\frac{\partial p(x,t)}{\partial t} = Re[-i\omega u(x)e^{-i\omega t}]$$
$$\Delta p(x,t) = \text{Re}[\Delta u(x)]e^{-i\omega t}$$

for all times t > 0, we infer

$$-\omega^2 u - \gamma i \omega u = c^2 \Delta u, \quad \text{in } \mathbb{R}^d.$$

This is equivalent to

$$\Delta u + \frac{\omega^2}{c^2} \left(1 + \frac{i\gamma}{\omega} \right) u = 0.$$

We assume, that $c = c_0$ is constant in free space (reference value). We can now define a wave number

$$\kappa = \underbrace{\frac{0}{c_0}}_{>0} > 0$$

and the index of refraction

$$n(x) = \frac{c_0^2}{c(x)^2} \left(1 + i \frac{\gamma}{\omega} \right).$$

This results in the Helmholtz-Equation

$$\Delta u + \kappa^2 n u = 0, \quad \text{in } \mathbb{R}^d.$$

We assume that there exists a > 0 such that

$$c(x) = c_0$$
 and $\gamma(x) = 0$, $\forall |x| > a$,

that means inhomogeneities of the medium lie inside some bounded region (inside a ball). Furthermore we assume, that outside this ball of radius a, $\overline{B_a(0)}$, there are sources that generate plane waves, that is functions of the type

$$u^{in}(x) = e^{ikx \cdot \hat{\theta}},$$

where $|\hat{\theta}| = 1$ for $\hat{\theta} \in \mathbb{R}^d$ and \cdot denotes the inner product in \mathbb{R}^d . Then, u^{in} satisfies

$$\Delta u^{in} + k^2 u^{in} = 0.$$

(just calculation). This u^{in} generates a scattered field u^s . The total field

$$u = u^{in} + u^s$$

satisfies

$$\Delta u + \kappa^2 n u = 0.$$

Furthermore we assume Sommerfeld's radiation condition (r = |x|):

$$\frac{\partial u^s}{\partial r} - i\kappa u^s(x) = o\left(r^{\frac{1-d}{2}}\right), \text{ as } r = |x| \to \infty$$

uniformly in $\frac{x}{|x|}$.

Figure 1.1: Visualization of the problem

1.2 Theory for the direct Scattering Problem in \mathbb{R}^3

Throughout this section d = 3 holds! Furthermore

1. $\hat{\theta} \in \mathbb{R}^3$ with $|\hat{\theta}| = 1$ defines the indicent field

$$u^{in}(x) = e^{-i\kappa\hat{\theta}\cdot x}, \quad x \in \mathbb{R}^d$$

- $2. \ \kappa \in \mathbb{R}, \kappa > 0$
- 3. $n \in L^{\infty}(\mathbb{R}^3)$, $\operatorname{Re} n \geq 0$, $\operatorname{Im} n \geq 0$ and n(x) = 1 for all $x \in \mathbb{R}^3 \setminus B_a(0)$ and some a > 0

We recall

$$H^1_{loc}(\mathbb{R}^3) := \{ u : \mathbb{R}^3 \to \mathbb{C} : u|_K \in H^1(K), \text{ for every } K = B_R(0) \text{ and any } R > 0 \}$$

The Scattering Problem reads as follows

Definition 1.1. Scattering Problem (S) Govem $\hat{\theta}, \kappa, n$ as above. Seek $u \in H^1_{loc}(\mathbb{R}^3)$ such that

$$\Delta u + \kappa^2 n u = 0$$

in \mathbb{R}^3 in the weak sense, that is

$$\int_{\mathbb{R}^3} \left(\nabla u \cdot \nabla \bar{\Psi} - \kappa n u \bar{\Psi} \right) \, dx = 0$$

for any $\Psi \in H^1(\mathbb{R}^3)$ with compact support, and s.t.

$$u^s = u - u^{in}$$

satisfies Sommerfeld's radiation condition (d = 3, sharper version)

$$\frac{\partial u^s}{\partial r} - i\kappa u^s = O\left(\frac{1}{r^2}\right), \quad \text{uniformly in } \hat{x} = \frac{x}{|x|} \text{ as } r = |x| \to \infty$$

Remark 1.2. Regularity-theory tells us, that the radiation condition is well-defined, given the assumptions from Definition 1.1.

Theorem 1.3

Rellich's Lemma Let u satisfy $\Delta u + \kappa^2 u$ for every |x| > a. The following property

$$\lim_{R \to \infty} \int_{|x|=R} |u(x)|^2 dS = 0$$

implies, that u(x) = 0 for all |x| > a.

Remark 1.4. Vice versa, if the property in Theorem 1.3 does not hold, then u cannot vanish for all |x| > a.

Proof. Employs spherical Bessel functions, see e.g.

For the proof of uniqueness, we require results on periodic differential equations. We recall *Fourier representations of periodic functions*:

Define

$$Q \coloneqq (-\pi, \pi)^3 \subseteq \mathbb{R}^3$$
.

The functions

$$\{\varphi_j: j \in \mathbb{Z}^3\}$$

with

$$\varphi_j(x) = \frac{1}{(2\pi)^3} e^{ij \cdot x}, \quad \forall x \in Q, j \in \mathbb{Z}^3$$

define a complete orthonormal system (ONS) of $L^2(Q)$ and every $g \in L^2(Q)$ has the expansion

$$g = \sum_{j \in \mathbb{Z}^3} g_j \varphi_j$$
, with $g_j = \int_Q g \varphi_j \, dx$, for $j \in \mathbb{Z}^3$.

Panceval's inequality shows

$$||g||_{L^2(Q)} = \sum_{j \in \mathbb{Z}^3} |g_j|^2.$$

Furthermore, if $g \in L^2(Q)$ and $\sum_{j \in \mathbb{Z}^3} |j|^2 |g_j|^2 < \infty$, where $|j| = |j_1| + |j_2| + |j_3|$, then $g \in H^1(Q)$.

Define

$$H_{per}^1(Q) := \left\{ g \in L^2(Q) : \sum_{j \in \mathbb{Z}^3} (1 + |j|)^2 |g_j|^2 < \infty \right\}$$

and identify $L^2(Q)$ and $H^1_{per}(Q)$ with the corresponding periodic functions in \mathbb{R}^3 by

$$g(2\pi j + x) = g(x), \text{ for } x \in Q, j \in \mathbb{Z}^3.$$

Lemma 1.5 Let $p \in \mathbb{R}^3$, $a \in \mathbb{R}$ and $\hat{e} = \begin{bmatrix} 1 \\ i \\ 0 \end{bmatrix}$. Then, for every t > 0 and every $g \in L^2(Q)$ there

exists a unique solution $w = w_t(g) \in H^1_{per}(Q)$ to the differential equation

$$\Delta w + \lambda_t \cdot \nabla w + \mu_t w = g \tag{*}$$

understood weakly, that is

$$\forall \Psi \in C_c^{\infty}(Q): \quad \int \left(-\nabla w \cdot \nabla \bar{\Psi} + (\lambda_t \cdot \nabla w + \mu_t w) \,\bar{\Psi} \right) \, dx = \int_Q g \bar{\Psi} \, dx$$

for $\lambda_t := 2t\hat{e} - ip$, $\mu_t = -(it + a)$. It holds that

$$||w||_{L^2(Q)} \le \frac{1}{t} ||g||_{L^2(Q)},$$

this means that

$$L_t: L^2(Q) \to L^2(Q)$$
 defined by $g \mapsto w_t(g)$

defines a bounded operator

$$||L_t|| \le \frac{1}{t}, \quad \forall t > 0.$$

PROOF. With the Fourier expansions

$$g = \sum_{j \in \mathbb{Z}^3} g_j \varphi_j$$
 and $w = \sum_{j \in \mathbb{Z}^3} w_j \varphi_j$,

Eq. (*) transforms to

$$\forall j \in \mathbb{Z}^3 : \quad c_j w_j = g_j, \quad \text{with } c_j = -|j|^2 + ij \cdot \lambda_t + \mu_t.$$

We have

$$|c_j| \ge |\operatorname{Im} c_j| \stackrel{insert}{=} |2tj \cdot \hat{e} - t| = t \underbrace{|2\hat{e} \cdot j - 1|}_{>1} \ge t.$$

Thus, the operator

$$(L_t g) \coloneqq \sum_{j \in \mathbb{Z}^3} \frac{g_j}{c_j} \varphi_j, \quad \text{with } g \in L^2(Q),$$

is well-defined and satisfies

$$||L_t|| \le \frac{1}{t}, \quad \forall t > 0.$$

It remains to show, that w is really a solution to the differential equation. In order to do so, let $\Psi \in C_c^{\infty}(Q)$. As Ψ has compact support, function-value and all derivatives are zero on the boundary of Q, and therefore we have also that Ψ is periodic. We can represent

$$\Psi = \sum_{j \in \mathbb{Z}^3} \Psi_j \varphi_j.$$

Then

$$\int_{Q} \left(-\nabla w \cdot \nabla \bar{\Psi} + (\lambda_t \nabla w + \mu_t w) \, \bar{\Psi} \right) dx = \sum_{j \in \mathbb{Z}^3} c_j w_j \cdot \bar{\Psi}_j$$

$$= \sum_{j \in \mathbb{Z}^3} g_j \cdot \bar{\Psi}_j$$

$$= \int_{Q} g \bar{\Psi} \, dx.$$

Theorem 1.6

Unique continuation principle Let $u \in H^1_{loc}(\mathbb{R}^3)$ solve $\Delta u + \kappa^2 nu = 0$, where $n \in L^{\infty}(\mathbb{R}^3)$ with n(x) = 1 for |x| > a, and let $b \geq a$, such that u(x) = 0 for all $|x| \geq b$. Then we have u = 0 in \mathbb{R}^3 .

Remark 1.7. Theorem 1.6 holds in a much more general version than we stated here.