Population Structure

BIOL 1435

February 23, 2023

- 1. Quiz Review
- 2. Population Differentiation & Structure
- 3. Relative Differentiation
- 4. Absolute Differentiation
- 5. Population Structure

- 1. Quiz Review
- 2. Population Differentiation & Structure
- 3. Relative Differentiation
- 4. Absolute Differentiation
- 5. Population Structure

- 1. Quiz Review
- 2. Population Differentiation & Structure
- 3. Relative Differentiation
- 4. Absolute Differentiation
- 5. Population Structure

Q: What is a population?

Q: What is a population?

A: A group of freely interbreeding individuals.

Populations

Differentiated Populations

Population Structure

- 1. Quiz Review
- 2. Population Differentiation & Structure
- 3. Relative Differentiation
- 4. Absolute Differentiation
- 5. Population Structure

\mathbf{F}_{ST}

F_{ST}

Definition

 F_{ST} is the proportion of the genetic variance contained in population relative to the total genetic variance in the entire population.

F_{ST}

Definition

 F_{ST} is the proportion of the genetic variance contained in population relative to the total genetic variance in the entire population.

OR

F_{ST}

Definition

 F_{ST} is the proportion of the genetic variance contained in population relative to the total genetic variance in the entire population.

OR

 F_{ST} quantifies genetic drift between two populations relative to the average drift between the two populations.

Hudon's Estimator of F_{ST}

Hudon's Estimator of F_{ST}

Equation

$$F_{ST} = \frac{N}{D} \tag{1}$$

$$N = (p_1 - p_2)^2 (2)$$

$$D = p_1 (1 - p_2) + p_2 (1 - p_1)$$
 (3)

Where p_i is the frequency of the derived/alternative allele at a given site from the i^{th} population.

Hudon's Estimator of F_{ST}

Equation

$$F_{ST} = \frac{N}{D} \tag{1}$$

$$N = (p_1 - p_2)^2 (2)$$

$$D = p_1 (1 - p_2) + p_2 (1 - p_1)$$
 (3)

Where p_i is the frequency of the derived/alternative allele at a given site from the i^{th} population.

$$F_{ST} = \frac{\sum_{j=1}^{L} N_j}{\sum_{j=1}^{L} D_j}$$
 (4)

Where L is to the total number of sites.

Understanding F_{ST}

Understanding F_{ST}

Interpretation

$$F_{ST} = 0$$
: no differentiation

$$F_{ST} = 1$$
: maximum differentiation

Limitations of F_{ST}

Q: Why is F_{ST} a relative measure of population differentiation?

Limitations of F_{ST}

Q: Why is F_{ST} a relative measure of population differentiation?

A: F_{ST} is strongly influenced by within-subpopulation levels of diversity!

Linked-Selection & F_{ST}

- 1. Quiz Review
- 2. Population Differentiation & Structure
- 3. Relative Differentiation
- 4. Absolute Differentiation
- 5. Population Structure

$d_{\mathsf{X}\mathsf{Y}}$

$\mathsf{d}_{\mathsf{X}\mathsf{Y}}$

Definition

 d_{XY} average number of pairwise differences between chromosomes from two populations.

d_{XY}

Definition

 d_{XY} average number of pairwise differences between chromosomes from two populations.

Equation

$$d_{XY} = \frac{1}{n_X n_Y} \sum_{i=1}^{n_X} \sum_{j=1}^{n_Y} k_{ij}$$
 (5)

Where n_X and n_Y correspond to the number of chromosomes in populations X and Y, and k_{ii} is the number of nucleotide differences between the i^{th} and j^{th} chromosome.

Advantages of d_{XY}

- 1. Quiz Review
- 2. Population Differentiation & Structure
- 3. Relative Differentiation
- 4. Absolute Differentiation
- 5. Population Structure

Identifying Population Structure

Q: Given a set of samples how can we assess if there is population structure?

Identifying Population Structure

Q: Given a set of samples how can we assess if there is population structure?

A: Principle Component Analysis (PCA)

PCA Steps

- 1. Zero-center the allele count matrix
- 2. Calculate the covariance matrix
- 3. Perform eigendecomposition

The Allele Count Matrix (C)

$$\mathbf{C}(i,j) = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1j} \\ c_{21} & c_{22} & \cdots & c_{2j} \\ \vdots & \vdots & \ddots & \vdots \\ c_{i1} & c_{i2} & \cdots & c_{ij} \end{bmatrix}$$

Where $\mathbf{C}(i,j)$ consists of m (individuals) \times n (sites), and $\mathbf{C}(i,j) \in \{0,1,2\}$ alternative/derived allele count.

The Standardized Allele Count Matrix (M)

$$\mu(j) = \frac{\sum_{i=1}^{m} \mathbf{C}(i,j)}{m}$$

$$\mathbf{M}(i,j) = \frac{\mathbf{C}(i,j) - \mu(j)}{\sqrt{(m \times 2)p(j)(1-p(j))}}$$

Where $\mu(j)$ is the column mean, $p(j) = \mu(j) \div 2$ is the allele frequency for site j, and $\sqrt{(m \times 2) p(j) (1 - p(j))}$ is the standard deviation of the binomial distribution and is proportional to the rate change in allele frequency per generation due to genetic drift.

Covariance Matrix (X)

$$X = \frac{1}{m-1}MM^T$$

Where X is a square matrix consisting of the the covariance between all individuals.

PCA In Action

