X-ray classification project

Jonathan Marks

Agenda

- Business Problem
- Data Understanding
- Models
- Results
- Recommendations and Future work

Business Problem

- A radiologist classifies x-rays as Pneumonia or normal.
- Supplied pre-classified x-rays
- Build a model for challenging x-rays

Data Understanding

- 5,856 chest x-ray images.
- Each image is labelled as either normal or pneumonia.
- 25% of the images are labelled normal and 75% pneumonia.
- Below: condition appears cloudy color.

Models

- Baseline random guess yields: 73% Accuracy
- Use Neural network with hidden layers
- Tune model/algorithm to achieve greatest accuracy
- Experimental CNN Model

Validation and training accuracies

Model 3 performs better

/		Baseline guessing	Model 3
	Validation	73%	90%
	Training	73%	90%

Results/conclusions

- 88% accuracy compared to 73%
- 19 false negatives, 148 false positives out of 1460 predictions

	Predicted Pneumonia	Predicted Normal
Actual Pneumonia	1061	19
Actual Normal	148	232

■ This model can be used as a check by the radiologist.

Recommendations and Future work

- Use as a check by the radiologist.
 - on less certain x-rays
- Users should determine the important features to find the most important parts of the image.
- ► Future work
 - More fully develop CNN model
 - Alter activation functions

Thank you

- Questions?
- jmarksk@gmail.com