Konsta Hölttä

Esteenväistö- ja liikkeensuunnittelumenetelmät liikkuville roboteille

Elektroniikan, tietoliikenteen ja automaation tiedekunta

Kandidaatintyö Espoo x.y.2010

Vastuuopettaja:

TkT Ilkka Seilonen

Työn ohjaaja:

TkT Jari Saarinen

AALTO-YLIOPISTO TEKNILLINEN KORKEAKOULU

Tekijä: Konsta Hölttä

Työn nimi: Esteenväistö- ja liikkeensuunnittelumenetelmät liikkuville roboteille

Päivämäärä: x.y.2010 Kieli: Suomi Sivumäärä:5+15

Tutkinto-ohjelma: Automaatio- ja säätötekniikka

Vastuuopettaja: TkT Ilkka Seilonen

Ohjaaja: TkT Jari Saarinen

Tutkitaan menetelmiä liikkuvien robottien reaaliaikaiseen esteenväistöön ja lokaaliin liikkeensuunnitteluun dynaamisessa ympäristössä.

Eritellään eri anturointitekniikoita, niihin soveltuvia esteentunnistusalgoritmeja ja ohjausmenetelmiä maaliin pääsemiseksi osumatta ympäristön yllättäviin muutoksiin.

Avainsanat: taika, mustaa magia, ydinfysiikka, rajatiede

Esipuhe

Glxblt. Huu haa, foo bar.

Otaniemi, x.y.2010

Konsta Hölttä

Sisältö

Tiivistelmä			
Esipuhe			
Sisällysluettelo		iv	
Symbolit ja lyhenteet			
1	Johdanto	1	
2	Aikaisempi tutkimus	2	
3	Tutkimusaineisto ja -menetelmät	9	
4	Tulokset	10	
5	Yhteenveto	11	
Viitteet		12	
Liite A		14	
\mathbf{A}	Esimerkki liitteestä	14	
Li	Liite B		
В	Toinen esimerkki liitteestä	15	

Symbolit ja lyhenteet

Lyhenteet

VFH vector field histogram
DWA dynamic window approach
AGV automated guided vehicle
RRT rapidly-exploring random tree

1 Johdanto

Liikkuva robotti, esteenväistö ja liikkeensuunnittelu ovat sellaisinaan hyvin laajoja käsitteitä. Tämän tekstin tarkoituksena on kartoittaa eri menetelmiä eri ympäristöihin, painottuen kuitenkin erityisesti ulkotiloissa maanpinnalla vaihtelevassa ympäristössä kulkeviin robotteihin. Tässä (ja myöhemmin) robotilla tarkoitetaan itsenäisesti liikkuvaa ajoneuvoa, kuten AGV:tä, eikä kiinteästi asennettavia robotteja kuten manipulaattorikäsivarsia.

Lokaaliin anturipohjaiseen esteenväistelyyn on luonnollisesti monia eri menetelmiä, joiden hyödyllisyys ja soveltuvuus riippuu robotin ympäristöstä ja anturien laadusta. On monia yleisiä menetelmiä (potentiaalikentät, neuroverkot, jne, referenssejä tähän) sekä myös näistä osittain jalostettuja kehittyneempiä tapoja (VFH, RRT, jne) kartoittamalla heikkoudet ja soveltamalla tiettyyn ympäristöön; monia on testattu käytännössä ja jotkut ovat jääneet vain kaavoiksi.

Globaalia liikkeensuunnittelua (kartta tiedossa etukäteen jonka mukaan reitti suunnitellaan) sivutaan myös hieman. Teksti keskittyy kuitenkin yhtäkkisten, odottamattomien esteiden havaitsemiseen ja väistämiseen kun jonkinlainen reitti on tiedossa ennalta – aiemmin tarkasti suunniteltu mutkineen ja risteyksineen, tai summittainen ohje luokkaa "50 metriä pohjoiseen". Reitin ja/tai ympäristön muutoksia saatetaan myös päivittää robotille reaaliajassa.

Aina ei välttämättä voida saada mitään ennakkotietoa ympäristöstä, jossa robotti kulkee; tällöin tieto pitää kartoittaa matkan varrella. Jatkossa keskitytään jonkinlaiseen kompromissiin täysin ennalta suunnitellun kartta/reitti-yhdistelmän ja tyhjältä pöydältä lähtemisen väliltä.

Esteitä on havainnoitava jatkuvasti ja niitä voi väistää vasta näkemisen jälkeen. Yleisiä havainnointimenetelmiä ovat ultraäänianturit, laserskannerit ja konenäkö. Hyvillä menetelmillä anturointi onnistuu jatkuvasti; toisilla robotti joutuu välillä pysähtymään mittauksia varten.

Esteiden ohi selviämisen lisäksi robotin on pysyttävä reitillään ja sen on jotenkin saatava tietoa sijainnistaan ja suunnastaan. Tämäkin riippuu robotin antureista ja niiden sopivuudesta ympäristöön. Yleisesti käytettyjä tapoja paikannukseen ovat mm. odometria, maamerkit, gps, radiomajakat ja näkyvien seinien/maanmuotojen vertaaminen karttaan. Kaikki tavat ovat tosin jossain määrin epätarkkoja, joten virhearviot on otettava huomioon ja mielellään käytettävä useampaa tapaa rinnakkain.

2 Aikaisempi tutkimus

Tässä osassa selvitetään, mitä tutkimuksen kohteena olevasta aiheesta tiedetään entuudestaan. Selvityksen tulee kattaa tasapainoisesti koko tutkimuskenttä.

Kun opinnäytetyötä kirjoitetaan, on noudatettava ohjeita, jotka koskevat opinnäytteen rakennetta, käytäntöjä, muotoseikkoja sekä ulkoasua. Esitellään näitä ohjeita tarkemmin.

Rakenne

Opinnäytteen rakenteen tulee olla hyvän tieteellisen kirjoittamisen käytännön mukainen ja sisältää vähintään seuraavat osat:

- 1. Nimiölehti
- 2. Tiivistelmä
- 3. Sisällysluettelo
- 4. Symboli- ja lyhenneluettelo
- 5. Johdanto
- 6. Aikaisempi tutkimus. Työn luonteen niin vaatiessa otsikko voi olla myös »Teoreettinen tausta» tai näiden otsikoiden yhdistelmä.
- 7. Tutkimusaineisto ja -menetelmät
- 8. Tulokset
- 9. Tarkastelu. Työn luonteen niin vaatiessa otsikko voi olla myös »Johtopäätökset» tai »Yhteenveto» tai edellä mainittujen otsikoiden yhdistelmä.
- 10. Lähteet
- 11. Liitteet.

Tiivistelmän ja symboli- sekä lyhenneluetteloiden väliin voi sijoittaa halutessaan esipuheen.

Työn osat 5-9 muodostavat tekstiosan. Työn yksittäisiä osia voidaan jakaa alaotsikoilla alaosiin, joita ei ole yllä esitetty. Alaotsikoiden käyttäminen selventää parhaimmillaan tekstiä, ja pahimmillaan sirpaloittaa sitä. Sirpaloitumista voi estää huolehtimalla siitä, että samalla sivulla ei esiinny useampaa alaotsikkoa. Tekstin jäsentelyssä on yleensä ongelmia, jos osassa on vain yksi alaosa, tai kirjoittaja joutuu käyttämään useampaa kuin kahta tasoa (osa ja alaosat): alaosien alaosat ovat harvoin tarpeen.

Sivut ja kirjaintyypit

Opinnäytteen tulee olla kirjoitettu koneella tai tekstinkäsittelyohjelmalla yksipuolisesti A4-kokoiselle paperille. Kandidaatintyön tekstiosan sopiva pituus on noin 15–20 sivua ja diplomityön noin 60 sivua. Työtä ei ole syytä tarpeettomasti pidentää.

Opinnäytteen tekstiosan kirjaintyypin tulee olla antiikva eli serif-tyyppinen ja lisäksi kursivoimaton, lihavoimaton sekä kooltaan 12 pistettä (kuten tässä esityksessä). Groteskeja eli Sans serif-tyyppisiä kirjaintyyppejä (kuten Helvetica tai Arial) ei saa käyttää varsinaisessa tekstissä, mutta otsikoissa näitä voidaan käyttää. Otsikoissa voidaan käyttää kooltaan edellä mainittua suurempaa kirjaintyyppiä sekä tyylikeinoja, kuten lihavointia tai kursivointia. Tekstissä samantasoisten otsikoiden on kuitenkin oltava tyyliltään ja kirjainlajeiltaan yhteneväisiä.

Taulukko 1: Taulukoissa ja kuvissa kirjaintyypin voi valita tarkoituksenmukaisesti, mutta kuva- ja taulukkoteksteissä tulee käyttää samaa kirjaintyyppiä kuin varsinaisessa tekstissä. Huomaa taulukon numeroinnin sijoittuminen taulukon yläpuolelle.

A	1	$e^{j\omega t}$
В	2	$\Re(c)$
C	3	$a \in \mathbb{A}$

Opinnäytteen vasen marginaali (sidonnan puoli) on 35 mm ja oikea 25 mm. Ylämarginaali on 25 mm. Leipätekstin korkeus on enimmillään 230mm. Tämän opinnäytepohjan marginaalien pitäisi olla paperille tulostettuna oikein, mutta tulostimesta ja paperista riippuen voi esiintyä yhden tai kahden millimetrin suuruisia eroja.

Asemointi

Tekstiosan tekstissä käytetään kappaleiden erottamiseen sisennystä, mutta ensimmäistä otsikon, väliotsikon tai muun katkon jälkeistä kappaleita ei sisennetä. Jos kuva tai muu katko tulee kappaleiden väliin, suositellaan katkon jälkeisen kappaleen sisentämistä.

Mikäli oikea reuna halutaan tasata, tulee käyttää tavutusta ja lisäksi tarkistaa, ettei tekstiin jää lukemista häiritseviä pitkiä sanavälejä. Jos käytät opinnäytteen tekemisessä LAT_FX-järjestelmää, tämä asia hoituu automaattisest.

Opinnäytteen riviväli on 1, mikä on myös tämän opinnäytepohjan käytäntö. Kappaleiden tulee yleensä olla ainakin kolmen rivin pituisia, mutta myös liian pitkiä kappaleita tulee välttää. Tässä opinnäytepohjassa ei tekstin luonteen vuoksi voida täysin toteuttaa kappaleen pituutta koskevia vaatimuksia.

Yksittäisiä, kappaleen päättäviä tai aloittavia rivejä sivun alussa tai lopussa on vältettävä koko työssä, myös luetteloissa ja liitteissä.

Numerointi

Opinnäytteen jokainen osa alkaa uudelta sivulta. Alaosa aloittaa uuden sivun vain edellisen sivun täytyttyä.

Työn osat numeroidaan siten, että johdanto on ensimmäinen numeroitava osa. Osien numeroinnissa käytetään arabialaisia numeroita.

Nimiölehti, tiivistelmä, esipuhe, sisällysluettelo ja symboli- ja lyhenneluettelo numeroidaan esipuheesta tai tämän puuttuessa ensimmäiseltä luettelosivulta alkaen roomalaisin numeroin.

Sivunumerointi alkaa toiselta varsinaiselta tekstisivulta, ja sivunumeroinnissa käytetään arabialaisia numeroita.

Lähdeluettelo alkaa uudelta sivulta. Lähdeluettelon sivunumerointi jatkuu viimeisestä tekstisivusta.

Jokainen liite alkaa uudelta sivulta. Liitteiden sivunumerointi jatkuu viimeisestä lähdeluettelon sivusta.

Sivunumero sijoitetaan sivun yläreunaan.

Matemaattiset kaavat numeroidaan arabialaisin numeroin. Kaavanumerointi ei saa katketa osien välissä (eikä niin tapahdukaan, jos käytät tätä opinnäytepohjaa). Kaikkia kaavoja ei tarvitse numeroida, vaan kirjoittaja voi käyttää harkintaa numeroinnin tarpeellisuudessa. Liitteissä olevat kaavat numeroidaan siten, että liitteen ajatellaan muodostavan numeroinnin kannalta itsenäisen ja yhtenäisen kokonaisuuden. Kaavan numero sijoitetaan oikealle puolelle alla olevan esimerkin mukaisesti

$$D(xy) = (Dx)y + x(Dy), x, y \in \mathbb{A}. (1)$$

Kaikki kuvat ja taulukot numeroidaan erillisen juoksevan numeroinnin mukaisesti kuten taulukosta 1 ja kuvasta ?? käy ilmi. Liitteissä olevat kuvat ja taulukot numeroidaan siten, että liitteen ajatellaan muodostavan numeroinnin kannalta itsenäisen ja yhtenäisen kokonaisuuden. Liitteissä A ja B on esimerkkejä kaavojen (kaavat A1–A2 tai kaavat B1–B2), kuvien (kuva ??) ja taulukoiden (taulukko B1) numeroimisesta. Liitteet numeroidaan suuraakkosin (esimerkiksi Liite A, Liite B tai pelkästään A, B).

Lähdeviittausten käyttö

Lähdeviittaukset tulee tehdä huolellisesti ja johdonmukaisesti numeroviitejärjestelmän mukaisesti. Numeroviitteet järjestetään lähdeluetteloon viittausjärjestykseen, mutta jos lähdeluettelo on hyvin laaja (useita sivuja), järjestetään viitteet pääsanan mukaiseen aakkosjärjestykseen. Alaviitejärjestelmää ¹ ei käytetä.

Viitteen sijoittelussa noudatetaan seuraavia sääntöjä: Jos viite kohdistuu vain yhteen virkkeeseen tai virkkeen osaan, viite [1] sijoitetaan virkkeen sisään ennen virkettä päättävää pistettä. Jos taas viite koskee tekstin useampaa virkettä tai kokonaista kappaletta, sijoitetaan viite kappaleen loppuun pisteen jälkeen. [1]

¹Myöskään alaviitteenä olevia kommentteja ei suositella käytettäviksi.

Lähdeluettelo

Lähdeluettelossa esiintyy tavallisesti seuraavassa esitettäviä lähteitä, joista on numeroviitejärjestelmässä ilmoitettava asianomaisessa kohdassa vaaditut tiedot.

Kirjasta ilmoitetaan seuraavat tiedot:

- tekijät
- julkaisun nimi
- painos, jos useita
- kustannuspaikka
- julkaisija tai kustantaja
- julkaisuaika
- mahdollinen sarjamerkintö.

Viitteet [1]–[3] ovat esimerkkejä kirjan esittämisestä lähdeluettelossa. Viite [3, s. 83–124] on esimerkki lähdeluettelossa esiintyvän kirjan tiettyjen sivujen esittämisestä tekstissä.

Artikkelista kausijulkaisussa ilmoitetaan seuraavat tiedot:

- tekijät
- artikkelin nimi
- kausijulkaisun nimi
- julkaisuvuosi
- kausijulkaisun volyymi tai ilmestymisvuosi
- kausijulkaisun numero
- sivut, joilla artikkeli on.

Viitteet [4]–[5] ovat esimerkkejä artikkelin esittämisestä lähdeluettelossa. Kokoomateoksen luvusta tai osasta ilmoitetaan seuraavat tiedot:

- luvun tai osan tekijät
- luvun tai osan nimi
- maininta »Teoksessa»
- koko teoksen toimittajat sekä maininta »(toim.)»
- koko teoksen tai konferenssin nimi

- konferenssiesitelmän kyseessä ollessa sen pitopaikka ja -aika
- painos, jos useita
- kustannuspaikka
- julkaisija tai kustantaja, jos aihetta tämän ilmoittamiseen on
- julkaisuaika
- sivut, joilla luku tai osa on
- mahdollinen sarjamerkintä.

Viitteet [6]–[7] ovat esimerkkejä kokoomateoksen luvun tai osan esittämisestä lähdeluettelossa.

Opinnäytetyöstä ilmoitetaan seuraavat tiedot:

- tekijä
- työn nimi
- opinnäytetyön tyyppi
- oppilaitoksen nimi
- osaston, laitoksen tai ohjelman nimi
- oppilaitoksen sijaintipaikka
- vuosiluku.

Viitteet [8]–[10] ovat esimerkkejä opinnäytteen esittämisestä lähdeluettelossa. Standardista ilmoitetaan seuraavat tiedot:

- standardin tunnus ja numero
- standardin nimi
- painos, mikäli ei ole ensimmäinen
- julkaisupaikka
- julkaisija
- julkaisuvuosi
- sivumäärä.

Viite [11] on esimerkki standardin esittämisestä opinnäytteen lähdeluettelossa. Haastattelusta ilmoitetaan seuraavat tiedot:

- haastatellun henkilön nimi
- haastatellun henkilön arvo tai asema
- haastatellun henkilön edustama organisaatio
- organisaation osoite
- maininta siitä, että kyseessä on haastattelu ja haastattelun päivämäärä.

Viite [12] on esimerkki haastattelun esittämisestä lähdeluettelossa.

Osa sähköisessä muodossa olevista artikkeleista on saatavissa myös painettuina. Vain verkosta saatavissa olevasta artikkelista esitetään seuraavat tiedot:

- tekijät
- artikkelin nimi
- kausijulkaisun nimi
- viestintyyppi
- laitos tai volyymi
- kausijulkaisun yksittäistä osaa koskeva merkintä tai numero
- julkaisuvuosi tai maininta »Päivitetty» ja päivitysaika
- maininta »Viitattu» ja viittaamisen ajankohta
- maininta »Saatavissa» ja URL tai maininta »DOI» ja DOI-numero (DOI=Digital Object Identifier).

Viitteet [13]–[15] ovat esimerkkejä sähköisessä muodossa olevan artikkelin esittämisestä opinnäytteen lähdeluettelossa. Viitteet [13] ja [14] ovat saatavissa sekä painettuna että verkosta, joten viitteiden esitystapa mukailee painetun artikkelin viitteen esitystapaa, mutta sen lisäksi kerrotaan julkaisun olevan verkkolehti ja lehden olevan saatavissa myös painettuna. Viite [15] on saatavissa vain verkosta ja siitä esitetään yllä vaaditut tiedot.

Valitettavasti sähköisessä muodosssa olevasta artikkelista ei ole aina saatavissa laitos-, volyymi- tai numerotietoja.

Sähköisessä muodossa olevasta opinnäytetyöstä ilmoitetaan seuraavat tiedot:

- tekijä
- työn nimi
- viestintyyppi
- opinnäytetyön tyyppi

- oppilaitoksen nimi
- osaston, laitoksen tai ohjelman nimi
- oppilaitoksen sijaintipaikka
- vuosiluku
- viittamisen ajankohta
- maininta »Saatavissa» ja URL tai maininta »DOI» ja DOI-numero.

Viite [16] on esimerkki sähköisessä muodossa olevan opinnäytteen esittämisestä lähdeluettelossa.

Viite [17] on esimerkki itsenäisen kirjoituksen sisältävästä verkkosivusta. Tällainen lähde on rinnastettavissa erillisteokseen. Verkkosivusta esitetään tiedot:

- tekijät
- otsikko
- maininta »Päivitetty» ja päivitysaika
- maininta »Viitattu» ja viittaamisen ajankohta
- Maininta »Saatavissa» ja URL.

Joskus verkkosivun kirjoitus on jaettu useammalle sivulle, jolloin lähdeluetteloon kirjataan vain sellainen verkko-osoite, joka koskee koko kirjoitusta tai sen etusivua, ellei sitten todella tarkoiteta kirjoituksen yksittäistä sivua.

Muuta huomioitavaa lähdeluettelossa

Lähdeluettelossa työn ja julkaisun nimi kirjoitetaan alkuperäisessä muodossaan. Julkaisijan kotipaikka kirjoitetaan alkukielisessä muodossaan.

Viittamista koskevassa suomalaisessa standardissa SFS 5342 [11] vaaditaan julkaisuista ilmoitettavaksi myös ISBN- tai ISSN-numerot, mutta näissä opinnäyteohjeissa ei ISBN- ja ISSN-numeroita vaadita.

3 Tutkimusaineisto ja -menetelmät

Tässä osassa kuvataan käytetty tutkimusaineisto ja tutkimuksen metodologiset valinnat, sekä kerrotaan tutkimuksen toteutustapa ja käytetyt menetelmät.

4 Tulokset

Tässä osassa esitetään tulokset ja vastataan tutkielman alussa esitettyihin tutkimuskysymyksiin. Tieteellisen kirjoitelman arvo mitataan tässä osassa esitettyjen tulosten perusteella.

Tutkimustuloksien merkitystä on aina syytä arvioida ja tarkastella kriittisesti. Joskus tarkastelu voi olla tässä osassa, mutta se voidaan myös jättää viimeiseen osaan, jolloin viimeisen osan nimeksi tulee »Tarkastelu». Tutkimustulosten merkitystä voi arvioida myös »Johtopäätökset»-otsikon alla viimeisessä osassa.

Tässä osassa on syytä myös arvioida tutkimustulosten luotettavuutta. Jos tutkimustulosten merkitystä arvioidaan »Tarkastelu»-osassa, voi luotettavuuden arviointi olla myös siellä.

5 Yhteenveto

Opinnäytteen tekijä vastaa siitä, että opinnäyte on tässä dokumentissa ja opinnäytteen tekemistä käsittelevillä luennoilla sekä harjoituksissa annettujen ohjeiden mukainen muotoseikoiltaan, rakenteeltaan ja ulkoasultaan.

Viitteet

- [1] Kauranen, I., Mustakallio, M. ja Palmgren, V. Tutkimusraportin kirjoittamisen opas opinnäytetyön tekijöille. Espoo, Teknillinen korkeakoulu, 2006.
- [2] Itkonen, M. Typografian käsikirja. 3. painos. Helsinki, RPS-yhtiöt, 2007.
- [3] Koblitz, N. A Course in Number Theory and Cryptography. Graduate Texts in Mathematics 114. 2. painos. New York, Springer, 1994.
- [4] Bardeen, J., Cooper, L. N. ja Schrieffer, J. R. Theory of Superconductivity. *Physical Review*, 1957, vol. 108, nro 5, s. 1175–1204.
- [5] Deschamps, G. A. Electromagnetics and Differential Forms. *Proceedings of the IEEE*, 1981, vol. 69, nro 6, s. 676–696.
- [6] Sihvola, A. et al. Interpretation of measurements of helix and bihelix superchiral structures. Teoksessa: Jacob, A. F. ja Reinert, J. (toim.) *Bianisotropics '98 7th International Conference on Complex Media.* Braunschweig, 3.–6.6.1998. Braunscweig, Technische Universität Braunschweig, 1998, s. 317–320.
- [7] Lindblom-Ylänne, S. ja Wager, M. Tieteellisten opinnäytetöiden ohjaaminen. Teoksessa: Lindblom-Ylänne, S. ja Nevgi, A. (toim.) Yliopisto- ja korkeakouluopettajan käsikirja. Helsinki, WSOY, 2004, s. 314–325.
- [8] Miinusmaa, H. Neliskulmaisen reiän poraamisesta kolmikulmaisella poralla. Diplomityö, Teknillinen korkeakoulu, konetekniikan osasto, Espoo, 1977.
- [9] Loh, N. C. High-Resolution Micromachined Interferometric Accelerometer. Master's Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1992.
- [10] Lönnqvist, A. Applications of hologram-based compact range: antenna radiation pattern, radar cross section, and absorber reflectivity measurements. Väitöskirja, Teknillinen korkeakoulu, sähkö- ja tietoliikennetekniikan osasto, 2006.
- [11] SFS 5342. Kirjallisuusviitteiden laatiminen. 2. painos. Helsinki, Suomen standardisoimisliitto, 2004. 20 s.
- [12] Palmgren, V. Suunnittelija. Teknillinen korkeakoulu, kirjasto. Otaniementie 9, 02150 Espoo. Haastattelu 15.1.2007.
- [13] Ribeiro, C. B., Ollila, E. ja Koivunen, V. Stochastic Maximum-Likelihood Method for MIMO Propagation Parameter Estimation. *IEEE Transactions on Signal Processing*, verkkolehti, vol. 55, nro 1, s. 46–55. Viitattu 19.1.2007. Lehti ilmestyy myös painettuna. DOI: 10.1109/TSP.2006.882057.
- [14] Stieber, T. GnuPG Hacks. *Linux Journal*, verkkolehti, 2006, maaliskuu, nro 143. Viitattu 19.1.2007. Lehti ilmestyy myös painettuna. Saatavissa: http://www.linuxjournal.com/article/8732.

- [15] Pohjois-Koivisto, T. Voiko kone tulevaisuudessa arvata tahtosi? *Apropos*, verkkolehti, helmikuu, nro 1, 2005. Viitattu 19.1.2007. Saatavissa: http://www.apropos.fi/1-2005/prima.php.
- [16] Adida, B. Advances in Cryptographic Voting Systems. Verkkodokumentti. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, 2006. Viitattu 19.1.2007. Saatavissa: http://crypto.csail.mit.edu/~cis/theses/adida-phd.pdf.
- [17] Kilpeläinen, P. WWW-lähteisiin viittaaminen tutkielmatekstissä. Verkkodokumentti. Päivitetty 26.11.2001. Viitattu 19.1.2007. Saatavissa: http://www.cs.uku.fi/~kilpelai/wwwlahteet.html.

A Esimerkki liitteestä

Liitteet eivät ole opinnäytteen kannalta välttämättömiä ja opinnäytteen tekijän on kirjoittamaan ryhtyessään hyvä ajatella pärjäävänsä ilman liitteitä. Kokemattomat kirjoittajat, jotka ovat huolissaan tekstiosan pituudesta, paisuttavat turhan helposti liitteitä pitääkseen tekstiosan pituuden annetuissa rajoissa. Tällä tavalla ei synny hyvää opinnäytettä.

Liite on itsenäinen kokonaisuus, vaikka se täydentääkin tekstiosaa. Liite ei siten ole pelkkä listaus, kuva tai taulukko, vaan liitteessä selitetään aina sisällön laatu ja tarkoitus.

Liitteeseen voi laittaa esimerkiksi listauksia. Alla on listausesimerkki tämän liitteen luomisesta.

```
\clearpage
\appendix
\addcontentsline{toc}{section}{Liite A}
\section*{Liite A}
...
\thispagestyle{empty}
...
tekstiä
...
\clearpage
```

Kaavojen numerointi muodostaa liitteissä oman kokonaisuutensa:

$$d \wedge A = F, \tag{A1}$$

$$d \wedge F = 0. \tag{A2}$$

B Toinen esimerkki liitteestä

Liitteissä voi myös olla kuvia, jotka eivät sovi leipätekstin joukkoon: Liitteiden taulukoiden numerointi on kuvien ja kaavojen kaltainen: Kaavojen numerointi muodostaa

Taulukko B1: Taulukon kuvateksti.

9.00-9.55	Käytettävyystestauksen tiedotustilaisuus
	(osanottajat ovat saaneet sähköpostitse
	valmistautumistehtävät, joten tiedotusti-
	laisuus voidaan pitää lyhyenä).
9.55-10.00	Testausalueelle siirtyminen

liitteissä oman kokonaisuutensa:

$$T_{ik} = -pg_{ik} + wu_i u_k + \tau_{ik}, \tag{B1}$$

$$n_i = nu_i + v_i. (B2)$$