



#### Lecture 10

# **Axial Compressors**

Objective: The "simple" analysis of an Axial Compressor





# Turbomachinery ~Introduction

• The <u>compressor</u> raises the pressure of the air before combustion

The <u>turbine</u> extracts work from the hot high pressure combustion products to drive the compressor



Each stage consists of a row of rotor blades followed by a row of stator blades *Often preceded by an inlet guide vane* 

Each stage consists of a row of Nozzle Guide Vanes which direct the gas onto the rotor blade





# Comparison of compressor & turbine blades



**Diverging Passages** 

**Converging Passages** 

On both stator & rotor blades





### Polytropic or "Small Stage" Efficiency

The isentropic efficiency of an elemental stage, such that it is constant throughout the whole process:

For compression: 
$$\eta_{pol} = \frac{dT_O'}{dT_O} =$$
Constant

For an isentropic process: 
$$\frac{T_O}{p_O^{\gamma-1/\gamma}}$$
 = **Constant**

The Differential form being: 
$$\frac{dT_O'}{T_O} = \frac{\gamma}{\gamma - 1} \frac{dp_O}{p_O}$$





### Polytropic or "Small Stage" Efficiency

The isentropic efficiency of an elemental stage, such that it is constant throughout the whole process:

The Differential form being: 
$$\frac{dT_O'}{T_O} = \frac{\gamma}{\gamma - 1} \frac{dp_O}{p_O}$$

Substituting for 
$$dT'_o$$
 gives  $\eta_{pol} \frac{dT_o}{T_o} = \frac{\gamma}{\gamma - 1} \frac{dp_o}{p_o}$ 

Integrating from 1 to 2 gives 
$$\frac{T_{O2}}{T_{O1}} = \left(\frac{p_{O2}}{p_{O1}}\right)^{\frac{\gamma - 1}{\gamma \eta_{pol}}}$$





**Isentropic Efficiency** 
$$\eta_{isen} = \frac{T'_{O2} - T_{O1}}{T_{O2} - T_{O1}}$$

Overall Efficiency of compressors of identical aerodynamic quality reduces as overall pressure ratio increases. In a multi stage axial compressor of equal aerodynamic quality i.e. a similar  $\Delta T_0$  per stage, the pressure ratio per stage decreases.

Example: Consider a multi stage axial compressor with 5 stages. A stage is added of the same aerodynamic quality i.e. same polytropic efficiency (85%) &  $\Delta T_0$  per stage :

|        |      |                           | Pressure Ratio | Average Stage |
|--------|------|---------------------------|----------------|---------------|
| Stages | OPR  | Overall η <sub>isen</sub> | last stage     | Pressure Rise |
| 5      | 4.8  | 81.4                      | 1.29           | 1.37          |
| 6      | 6.07 | 80.9                      | 1.26           | 1.35          |





### Polytropic or "Small Stage" Efficiency

This removes the penalty for higher pressure ratios and allows compressors of differing aerodynamic quality and pressure ratio to be compared:

$$\frac{T_{O2}}{T_{O1}} = \left(\frac{p_{O2}}{p_{O1}}\right)^{\frac{\gamma - 1}{\gamma \eta_{pol}}}$$





### **Polytropic Efficiency**



Hence, for a fixed  $\eta_{poly}$ ,  $\eta_{isen}$  reduces as pressure ratio increases

Polytropic efficiency is a more fundamental concept than isentropic efficiency and is representative of compressor technology level

Jet Propulsion Cumpsty, (p124)





### **Euler Work Equation**

Applicable to both compressors & turbines

Consider an elemental mass  $\delta \dot{m}$  entering rotor in steady flow conditions. In time  $\delta t$  an equal mass must leave.



$$\mathbf{M}_1 = \delta \dot{\boldsymbol{m}} \cdot \boldsymbol{r}_1 \cdot \boldsymbol{C}_{w1}$$



Corresponding moment of momentum of leaving fluid at  $r_2$ :

$$\mathbf{M}_2 = \delta \dot{\boldsymbol{m}} \cdot \boldsymbol{r}_2 \cdot \boldsymbol{C}_{w2}$$

Since Torque = Rate of change of moment of momentum, then:

$$T = \dot{m} (r_2 \cdot c_{w2} - r_2 \cdot c_{w1})$$





### **Euler Work Equation**

Applicable to both compressors & turbines

Power is then given by the Euler Equation:

$$P_{ow} = T \cdot \omega$$
 &  $U = r \cdot \omega$ 



So then:

$$P_{ow} = T \cdot \omega = \dot{m} \left( U_2 \cdot C_{w2} - U_1 \cdot C_{1w} \right)$$

Where  $U_1 \& U_2$  are the speed of the blade row at inlet & outlet.

Work Input per unit mass is equal to the change in stagnation enthalpy per unit mass:

$$\Delta h_0 = C_p(T_{02} - T_{01}) = U_2 \cdot C_{w2} - U_1 \cdot C_{1w}$$

In most cases we can assume that  $r_1 = r_2$ , hence  $U_1 = U_2 = U$ :

$$\Delta h_0 = U \left( C w_2 - C w_1 \right)$$





### T - S Diagram for a Single Stage

Analysis of Single Stage for an Axial Compressor:

#### POWER ABSORBED

Steady Flow Energy Equation:

For *Rotor* (absorbs all power):

$$P_{ow} = \dot{m} \cdot C_p (T_{02} - T_{01})$$

For Stator

$$P_{ow} = 0$$

Hence 
$$T_{03} = T_{02}$$



Stator transforms KE in air to increase Static Pressure at Constant Stagnation Temperature. However there are losses due to friction.

 $p_{02}$  is less than it would have been for an isentropic process and  $p_{03} < p_{02}$  due to losses in stator.





### Velocity Triangles for a Compressor Rotor Blade

Rotor Inlet

 $V_{1r}$  &  $V_{2r}$  are the relative velocities of the incoming flow as seen from the blades

 $V_{1r}$   $\beta_1$   $\alpha_1$   $C_1$   $C_{a1}$   $V_{w1r}$   $C_{w1}$ 

 $C_1 \& C_2$  are the absolute velocities of the flow

Rotor Exit



Thus in the rotor the relative velocity  $V_{1r}$  reduces in value to  $V_{2r}$  & is deflected by an angle  $\beta_1$  -  $\beta_2$ 





# Velocity Triangles for a Single Stage

Rotor Speed = U

Combining the vectors of  $C_1$  and U to give  $V_1$  and  $\alpha_1$ 

Axial velocity =  $C_{a1}$ 

Whirl velocity =  $C_{w1}$ 

Assume Constant Axial Velocity i.e.

$$C_{a1} = C_{a2} = C_{a3} = C_a$$

Hence at Exit  $\alpha_3$  and  $C_3$  are the same as  $\alpha_1$  and  $C_1$ 







### Simple Blading Analysis

From the velocity triangles:

$$\frac{U}{C_a} = (Tan \beta_1 + Tan \alpha_1) = (Tan \beta_2 + Tan \alpha_2)$$

By consideration of Angular Momentum (see Euler Equation) it can be shown that:

$$P_{ow} = \dot{m} \cdot U \cdot (C_{w_2} - C_{w1})$$

In terms of Axial velocity & Air angles:

$$P_{ow} = \dot{m} \cdot U \cdot C_a (Tan \alpha_2 - Tan \alpha_1)$$

or in terms of  $\beta_1$ :

$$P_{ow} = \dot{m} \cdot U \cdot C_a \left( Tan \beta_1 - Tan \beta_2 \right)$$

The input Energy will be absorbed in raising pressure (useful) & overcoming frictional losses (waste).

Regardless of efficiency, <u>Power Input</u> must equal the <u>rise in Stagnation</u> <u>Temperature</u> of the stage.





### Simple Blading Analysis

Hence:

$$\dot{m} \cdot C_p (T_{03} - T_{01}) = \dot{m} \cdot U \cdot C_a (Tan \beta_1 - Tan \beta_2)$$

Stage Temperature rise:

$$T_{03} - T_{01} = U \cdot \frac{C_a}{C_p} \cdot (Tan \beta_1 - Tan \beta_2)$$

$$\downarrow$$

$$\frac{T_{03}}{T_{01}} = 1 + U \cdot \frac{C_a}{C_p \cdot T_{01}} \cdot (Tan \beta_1 - Tan \beta_2)$$

Isentropic Efficiency:

$$\eta_s = \frac{T'_{03} - T_{01}}{T_{03} - T_{01}}$$

Hence Stage Pressure rise:

$$\frac{p_{03}}{p_{01}} = \left(1 + \eta_s \frac{\left(T_{03} - T_{01}\right)}{T_{01}}\right)^{\frac{\gamma}{\gamma - 1}} \qquad \frac{p_{03}}{p_{01}} = \left(1 + \frac{\eta_s U C a \left(\tan \beta_1 - \tan \beta_2\right)}{C_p T_{01}}\right)^{\frac{\gamma}{\gamma - 1}}$$

Or using Polytropic Efficiency:

$$\frac{p_{03}}{p_{01}} = \left(1 + \frac{UCa(\tan \beta_1 - \tan \beta_2)}{C_p T_{01}}\right)^{\frac{\eta_p \gamma}{\gamma - 1}}$$





# Factors effecting Stage Pressure Ratio

- Blade Speed
- Axial velocity
- High Deflection in Rotor Blades
- Efficiency

 $\frac{p_{03}}{p_{01}} = \left(1 + \frac{UCa(\tan \beta_1 - \tan \beta_2)}{C_p T_{01}}\right)^{\frac{q_p r}{r-1}}$ 



de Haller Number =  $V_2/V_1$ 

For minimum losses  $V_2/V_1 > 0.72$ 

**Effect of increasing deflection** 





# Blade Spacing & Blockage



Blade spacing and velocity distribution through passage



Axial velocity distributions: (a) at first stage, (b) at fourth stage





# High Mach numbers - aim to control Peak Mach number Use of CFD to improve Design

Pre-shock Mn reduced from 1.5 to 1.25

Original Design





1.25 1.15





# Dimensional Relationships

### Non-Dimensional

### Quasi-dimensionless Group

$$\frac{C}{\sqrt{\gamma RT}}$$

$$\frac{ND}{\sqrt{RT_O}}$$

$$\frac{N}{\sqrt{T_O}}$$

$$\frac{m\sqrt{RT_O}}{Ap_O}$$

$$\frac{m\sqrt{T_O}}{p_O}$$





### Pressure & velocity changes through an axial compressor







# **Overall Compressor Characteristics**



Simplified constant speed characteristic





# Typical three spool compressor







### Types of Axial Compressor Construction

#### **Constant Inner Diameter**



Constant Mean Diameter

#### **Constant Outer Diameter**







# Typical Rotor Blades & Methods of Fixing









# Variable Stator Vanes







# **FANS**







# Single Stage Fans



Typical fan characteristic

Fan blades





# Fan Blade technology



**Clappered** 



Improved efficiency reduced weight reduced noise







### Fans - Some Numbers

### Large Civil Turbofan Engine

• Thrust 355kN

• Mass flow 1125kg/sec

• Volume flow 990m<sup>3</sup>/sec

• Shaft speed 3200 rpm

• Fan Diameter 2.8m

• By-pass ratio Approx 8:1

• Centrifugal force on each blade equivalent to the weight of a fully laden B757 aircraft







### Wide Chord Fan - Hollow Construction









### Honeycomb and DB/SPF core comparison

Stress concentration



Honeycomb core

DB/SPF line core





### The Next Step



Objective Lecture 6: To describe the workings of a Centrifugal Compressor