Lógica de Predicados

<parte 4 – formalização>

LÓGICA PARA COMPUTAÇÃO

PROF. JONATHAN GIL MÜLLER

Para provar a validade de uma argumento verbal, procedemos de mesma forma como estudado na lógica proposicional:

■ 1º PASSO: Escrevemos o argumento em linguagem simbólica, utilizando a sintaxe e a semântica da linguagem formal utilizada (lógica proposicional ou de predicados);

Para provar a validade de uma argumento verbal, procedemos de mesma forma como estudado na lógica proposicional:

- 2º PASSO: Mostramos que a conclusão pode ser deduzida a partir das premissas por meio de regras de dedução formal:
 - → Se o argumento envolver *fbf*s proposicionais as alternativas são:
 - ✓ tabela-verdade;
 - ✓ método da refutação;
 - ✓ regras de inferência para a lógica proposicional;
 - → Se o argumento envolver *fbf*s predicadas podemos usar:
 - ✓ regras de inferência para a lógica de predicados

OBSERVAÇÃO: O "trânsito" entre os dois passos anteriores exige a habilidade de reconhecer a tradução entre as linguagens utilizadas, natural ↔ formal. Por isso, seguiremos o conteúdo com o estudo da formalização de sentenças predicadas!

FORMALIZAÇÃO DE SENTENÇAS

Traduzir declarações em linguagem natural para fórmulas da lógica de predicados

p(x) = x é aluno de BCC

q(x) = x 'e inteligente

fórmula	leitura	exemplo
(∀x)(p(x))	tudo é P	Todos são alunos de BCC
	todo x tem propriedade p	
$(\forall x)(p(x) \rightarrow q(x))$	todo P é Q	Todo aluno de BCC é inteligente.
	qualquer que seja x, se x é P, x é Q	
	cada P é Q	Qualquer pessoa, se é aluno de BCC, é
		inteligente.
$(\forall x)(p(x) \rightarrow \neg q(x))$	todo P não é Q	Nenhum aluno de BCC é inteligente.
	qualquer que seja x, se x é P, x não é Q	
	nenhum P é Q	Qualquer pessoa, se é aluno de BCC, não é
		inteligente.

FORMALIZAÇÃO DE SENTENÇAS

Traduzir declarações em linguagem natural para fórmulas da lógica de predicados p(x) = x é aluno de BCC

q(x) = x 'e inteligente

fórmula	leitura	exemplo
(∃x)(p(x))	alguém é P	Alguém é aluno de BCC.
	para pelo menos um x, x é P	
$(\exists x)(p(x) \land q(x))$	algum P é Q	Algum aluno de BCC é inteligente.
	para pelo menos um x, x é P e x é Q	Existe pelo menos um aluno de BCC
	existe um x, tal que x é P e x é Q	inteligente.
		Existe um aluno, tal que é de BCC e é
		inteligente.
$(\exists x)(p(x) \land \neg q(x))$	algum P não é Q	Algum aluno de BCC não é inteligente.
	para pelo menos um x, x é P e x não é Q	
	existe um x, tal que x é P e x não é Q	
$\neg((\forall x)(p(x)))$	é falso que tudo é P	É falso que todos são alunos de BCC.
$(\exists x)(\neg p(x))$	alguém não é P	Alguém não é aluno de BCC.
$\neg((\exists x)(p(x)))$	nada é P	Não existe aluno de BCC.
$(\forall x)(\neg p(x))$	tudo não é P	Ninguém é aluno de BCC.
	ninguém é P	Todos não são alunos de BCC.
	qualquer que seja x, x não é P	

Mais alguns exemplos...

sentença	fórmula
Todo aluno de BCC é inteligente. José é aluno de BCC.	inteligente(x) = x é inteligente
Portanto, José é inteligente.	aluno(x) = x é aluno de BCC
	((∀x)(aluno(x) → inteligente(x)) ∧ aluno(José)) → inteligente(José)
Todos os cachorros perseguem todos os coelhos.	cachorro(x) = x é cachorro
	coelho(x) = x é coelho
Qualquer animal, se for cachorro então, para qualquer	persegue(x, y) = x persegue y
outro animal, se for coelho, então cachorro persegue	
coelho.	$(\forall x)(cachorro(x) \rightarrow ((\forall y)(coelho(y) \rightarrow persegue(x, y))))$
Alguns cachorros perseguem todos os coelhos.	$(\exists x)(cachorro(x) \land ((\forall y)(coelho(y) \rightarrow persegue(x, y))))$
Apenas cachorros perseguem coelhos.	$(\forall x)((\forall y)((coelho(y) \land persegue(x, y)) \rightarrow cachorro(x)))$
Dados dois animais, se um for coelho e o outro persegui-	
lo, então o outro é um cachorro.	

Vamos aplicar tudo isso em um exemplo:

>> Mostre que o seguinte argumento é valido:

Todo os carros são novos. Alguns carros têm ar condicionado. Portanto, alguns carros são novos e têm ar condicionado.

Todo os carros são novos. Alguns carros têm ar condicionado. Portanto, alguns carros são novos e têm ar condicionado.

1º POSSO: Formolizações

Simbeles predicades:

N(x): x i mous

A(x): x tem orcondicion.

C(x): X 1 um Cons

Fernolizaçõe des premisses:

Pi: (Ax)(Cx)- N(x)) ou (Ax)(C(x) 1 N(x))

 $P_3: (\exists x) (C(x) \rightarrow A(x)) ou (\exists x) (C(x) \land A(x))$

Formolizaçõe de lanclusõe:

 $(((x) \land (x)) \land (x))$ (xE) : Q $((x) \land (x) \land A(x))$


```
2º 10550: Nouver o ralidad (dedução formal)
                                                               (XE) (C(X) (MX) / ALA)
    I. (\forall x) (C(x) \longrightarrow N(x))
                                            inemuzsa
    2. (\exists x)(C(x) \rightarrow A(x))
       C(c) - A(c) especifico
                                            \mathcal{E}\mathcal{I}(2)
        C(O) -> N(C)
                                           \epsilon \forall (1)
   5.
       Cc
                                            Ilip
   6. AC)
                                           MP(3,5)
          ! N(c)
   7.
                                            MP (4.5)
            NCC) AACC)
                                            IA (6,7)
  9. CCC) -> (NCC) 1 A(C))
                                            I -> (5,8)
  10. (∃x) (Ccx) → (Ncx) A(x))
                                            (P) EI
```


Todo os carros são novos. Alguns carros têm ar condicionado. Portanto, alguns carros são novos e têm ar condicionado.

Duho moneiro:

PREDICADOS

$$N(x) = X i mous$$

$$P_1: (\forall x)(C(x) \land N(x))$$

$$P_{\alpha}:(\exists_{x})(\subset(x)\wedge A(x))$$

$$Q:(\exists x)(C(x) \wedge N(x) \wedge A(x))$$

Argumento: $((\forall x)(C(x) \land N(x)) \land (\exists x)(C(x) \land A(x)) \rightarrow ((\exists x)(C(x) \land N(x) \land A(x)))$

Terminamos o estudo da lógica formal. O que conseguimos?

- O objetivo da lógica formal, muitas vezes chamada de lógica simbólica, é tornar os argumentos o mais sem sentido (único sentido) possível!
- A notação simbólica para a lógica proposicional e de predicados nos permite simbolizar argumentos. Um argumento colocado em notação simbólica remove qualquer possibilidade de nos deixarmos levar por nossas opiniões ou por nosso conhecimento externo sobre o tópico de um argumento, deixandoos concentrar apenas em sua estrutura para determinar sua validade lógica.

Terminamos o estudo da lógica formal. O que conseguimos?

- Além disso, as regras de inferência nos permitem produzir a demonstração da validade de um argumento por manipulação simbólica. Não há necessidade de nenhum conhecimento externo, apenas uma concordância cuidadosa com as formas e restrições das regras.
- A prática torna esse processo cada vez mais fácil porque com o tempo você se familiariza com as formas que um argumento pode tomar e reconhece quais as regras que deve tentar aplicar. Por isso, estude bastante!

LISTA DE EXERCÍCIOS 08...

Vamos estudar!!!

LISTA DE EXERCÍCIOS 08: questão 1

1. Considere o seguinte esquema:

```
ciclista(x) \equiv x \in ciclista
```

$$veloz(x) \equiv x \in veloz$$

c₁ ≡ José

 $c_2 \equiv Maria$

Relacione a coluna da esquerda (sentenças em linguagem natural) com a coluna da direita (fórmulas da lógica de predicados):

- (🆊) Todo o ciclista é veloz.
- (🌠) Todos são ciclistas e velozes.
- (🍞) Existe ciclista que não é veloz.
- (4) Alguns são ciclistas e alguns não são.
- (🏂) Todos são ciclistas.
- (🏂) Alguém é veloz.
- (→) Somente ciclistas são velozes.
- (8) Nem todo o ciclista é veloz.
- (9) Maria é veloz e José é ciclista.

- (4) $(\exists x)(ciclista(x)) \land (\exists x)(\neg ciclista(x))$
- $() (\forall x)(veloz(x) \rightarrow ciclista(x))$
- (\bigcirc) veloz(c₂) \land ciclista(c₁)
- (5) $(\forall x)$ (ciclista(x)) \checkmark
- \neq 2) $(\forall x)(ciclista(x) \land veloz(x))$
- (**6**) (∃x)(veloz(x))
- =(3) $(\exists x)(ciclista(x) \land \neg veloz(x))$
- $\equiv (\bot) (\forall x)(\text{ciclista}(x) \rightarrow \text{veloz}(x))$

- 2. Dada a seguinte fórmula (∀x)((∃y)(ama(x, y))). Qual das seguintes sentenças em linguagem natural ela representa, considerando que ama(x, y) significa x ama y?
- (1) Alguém ama a todos.
- (2) Todos amam alguém.
- (3) Ninguém ama a todos.
- (4) Há alguém que todos amam.
- (5) Nenhuma das anteriores.

- 3. Dada a seguinte sentença "Algum homem inteligente ama Maria". Qual das seguintes fórmulas pode representá-la, considerando que a(x, y) significa x ama y, i(x) significa x é inteligente, h(x) significa x é homem?
- $(1)(\exists x)((i(x) \land h(x)) \rightarrow a(Maria, x))$
- $(2)(\exists x)((h(x) \land i(x)) \land a(Maria, x))$
- $(3)(\exists x)((h(x) \land i(x)) \land a(x, Maria))$
- (4) Nenhuma das anteriores.

4. Formalize as sentenças abaixo, utilizando o seguinte esquema:

```
médico(x) = x é médico(a)
enfermeiro(x) = x é enfermeiro(a)
ama(x, y) = x ama y
```

- a) Maria é médica. m (menio)
- b) Maria e José são médicos. (moris) 1 m (par)
- d) Maria é médica ou enfermeira <u>ou ambos.</u> (m(moris) ν e (moris)
- e) Se Maria é médica, então ela não é enfermeira. m(morio) -> 1 e(morio)
- f) José ama Maria. a (Jose, morio)
- g) José ama a si próprio. ົນ (ງ໑໙, ງ໑໙)
- h) José ama qualquer pessoa. (ᠰ) (வட்டிய், х))
- i) Qualquer pessoa ama José. (العدل (العدل))
- j) Qualquer pessoa ama a si mesma. $(\forall x)(\alpha(x,x))$
- k) Alguma pessoa ama a si mesma. $(\exists x)(\alpha(x,x))$

- I) Existe alguém que Maria não ama. $(\exists x)(\neg a (mois, x))$
- m) Existe alguém que tanto José quanto Maria amam. $(\exists_x)(\Box(\exists_x), X) \land \Box(movin, X))$
- n) <u>Existe alguém</u> que José ama e <u>alguém</u> que Maria ama. (϶ϫ)(ω(μω,κ)) Λ (϶γ)(α (μουο, γ)
- o) Logo mnudo ama todo mnudo. (Ax) (AA) (a (x/A))
- p) Alguém ama alguém. $(\exists_x)(\exists_y)(\alpha(x_{iy}))$
- q) Existe alguém que ama todo mundo. (Ⅎχ)(ϥϗ)(α (χιχ))
- r) Todo mundo é amado por alguém. (∃x)(∀y)(∞(x,y))
- s) Se José ama a si próprio, então ele ama alguma pessoa. α(μον, μον) → (∃x)(α(μον, x))
- t) Se José não ama a si próprio, então ele ama ninguém. ⊸α (ຜູ້ເພື່ອເຂົ້າ) → ¬((∃κ)(α(ω,κ)))

5. Considere as relações de parentesco representadas através da seguinte árvore:

5.1. Formalize as sentenças abaixo, utilizando o seguinte esquema:

homem(x) \equiv x é do sexo masculino. mulher(x) \equiv x é do sexo feminino.

- a) Mário é homem.
- b) Pedro é homem.
- c) José é homem.
- d) Samuel é homem.
- e) Fábio é homem.
- f) Márcio é homem.

- g) Gabriel é homem.
- h) Jean é homem.
- i) Marina é mulher.
- j) Paula é mulher.
- k) Marta é mulher.
- I) Sara é mulher.

- m) Teresa é mulher.
- n) Joana é mulher.
- o) Tatiana é mulher.
- p) Patrícia é mulher.
- q) Cláudia é mulher.

LISTA DE EXERCÍCIOS 08: questão 5

GABARITO

a) Mário é homem.	homem(Mário)
b) Pedro é homem.	homem(Pedro)
c) José é homem.	homem(José)
d) Samuel é homem.	homem(Samuel)
e) Fábio é homem.	homem(Fábio)
f) Márcio é homem.	homem(Márcio)

g) Gabriel é homem.	homem(Gabriel)
h) Jean é homem.	homem(Jean)
i) Marina é mulher.	mulher(Marina)
j) Paula é mulher.	mulher(Paula)
k) Marta é mulher.	mulher(Marta)
l) Sara é mulher.	mulher(Sara)

m)	Teresa é mulher.	mulher(Teresa)
n)	Joana é mulher.	mulher(Joana)
o)	Tatiana é mulher.	mulher(Tatiana)
p)	Patrícia é mulher.	mulher(Patrícia)
q)	Cláudia é mulher.	mulher(Cláudia)

5.2. Considere que I[genitor(x, y)] = **V**, se (x é pai de y) ou (x é mãe de y). Determine para quais valores de x e y, o predicado *genitor(x, y)* é verdadeiro.

GABARITO

genitor(José, Joana) genitor(José, Márcio) genitor(José, Gabriel) genitor(Marta, Joana) genitor(Marta, Márcio) genitor(Marta, Gabriel) genitor(Pedro, Fábio) genitor(Pedro, Teresa) genitor(Paula, Fábio) genitor(Paula, Teresa)

genitor(Fábio, Tatiana) genitor(Fábio, Jean) genitor(Sara, Tatiana) genitor(Sara, Jean) genitor(Jean, Cláudia) genitor(Patrícia, Cláudia)

- 5.3. Utilizando os predicados básicos definidos anteriormente (homem(x), mulher(x), genitor(x, y)), especifique fórmulas da lógica de predicados para:
- a) pai $(x, y) \equiv x \in pai de y$
- b) $pai(x) \equiv x \in pai$
- c) $m\tilde{a}e(x, y) \equiv x \text{ \'e m\'ae de y}$
- d) $m\tilde{a}e(x) \equiv x \in m\tilde{a}e$
- e) filho(x, y) \equiv x é filho de y
- f) filho(x) = x é filho
- g) filha(x, y) \equiv x é filha de y
- h) filha(x) = x é filha

- i) casal(x, y) ≡ entre x e y existe a relação de casal com filhos
- j) irmão $(x, y) \equiv x$ é irmão de y
- k) irm $\tilde{a}(x, y) \equiv x \text{ \'e irm\'a de } y$
- I) $tio(x, y) \equiv x \in tio de y$
- m) $tia(x, y) \equiv x \in tia de y$
- n) sobrinho(x, y) \equiv x é sobrinho de y
- o) sobrinha(x, y) \equiv x é sobrinha de y

LISTA DE EXERCÍCIOS 08: questão 5

GABARITO

c)	$m\tilde{a}e(x, y) \equiv x \text{ \'e m\~ae de y}$	$(\exists x)((\exists y)((mulher(x) \land genitor(x, y)) \rightarrow m\tilde{a}e(x, y)))$
d)	mãe(x) ≡ x é mãe	$(\exists x)((\exists y)((mulher(x) \land genitor(x,y)) \to m\tilde{a}e(x))) \ \ OU \ \ (\exists x)((\exists y)(m\tilde{a}e(x,y) \to m\tilde{a}e(x)))$
g)	filha(x, y) ≡ x é filha de y	$(\exists x)((\exists y)((mulher(x) \land genitor(y, x)) \rightarrow filha(x, y)))$
h)	filha(x) ≡ x é filha	$(\exists x)((\exists y)((mulher(x) \land genitor(y, x)) \to filha(x))) OU (\exists x)((\exists y)(filha(x, y) \to filha(x)))$
j)	irmão(x, y) ≡ x é irmão de y	$(\exists x)((\exists y)((\exists z)((((pai(z, y) \land pai(z, x)) \land homem(x)) \land (x \neq y)) \rightarrow irmão(x, y))))$
k)	irmã(x, y) ≡ x é irmã de y	$(\exists x)((\exists y)((\exists z)((((genitor(z, y) \land genitor(z, x)) \land mulher(x)) \land (x \neq y)) \rightarrow irm \tilde{a}(x, y))))$
I)	$tio(x, y) \equiv x \text{ \'e tio de } y$	$(\exists x)((\exists y)((\exists z)((genitor(z, y) \land irmão(x, z)) \rightarrow tio(x, y))))$
	OU	
		$(\exists x)((\exists y)((\exists z)((genitor(z, y) \land (irmão(x, z) \lor \underline{cunhado}(x, z))) \rightarrow tio(x, y))))$
		$(\exists x)((\exists y)((\exists z)(((casal(x, z) \land irmã(z, y)) \rightarrow \underline{cunhado}(x, y))))$
m)	tia(x, y) ≡ x é tia de y	
n)	sobrinho(x, y) \equiv x é sobrinho de y:	$(\exists x)((\exists y)(((tio(y, x) \lor tia(y, x)) \land homem(x)) \rightarrow sobrinho(x, y)))$
o)	sobrinha(x, y) \equiv x é sobrinha de y:	$(\exists x)((\exists y)(((tio(y, x) \lor tia(y, x)) \land mulher(x)) \rightarrow sobrinha(x, y)))$

Outras fórmulas da lógica de predicados para parentesco

outras relações de parentesco:	
avô(x, y) ≡ x é avô de y	$(\exists x)((\exists y)((\exists z)((pai(x, z) \land genitor(z, y)) \rightarrow av\hat{o}(x, y))))$
avó(x, y) ≡ x é avó de y	$(\exists x)((\exists y)((\exists z)((m\tilde{a}e(x, z) \land genitor(z, y)) \rightarrow avó(x, y))))$
neto(x, y) ≡ x é neto de y	$(\exists x)((\exists y)((\exists z)((genitor(y, z) \land filho(x, z)) \rightarrow neto(x, y))))$
OU	
	$(\exists x)((\exists y)((\exists z)((av\hat{o}(y, x) \lor av\acute{o}(y, x)) \land homem(x)) \rightarrow neto(x, y))))$
neta(x, y) ≡ x é neta de y	$(\exists x)((\exists y)((\exists z)((genitor(y, z) \land filha(x, z)) \rightarrow neta(x, y))))$

LISTA DE EXERCÍCIOS 08: questão 5

- 5.4. Utilizando os predicados básicos definidos anteriormente (homem(x), mulher(x), genitor(x, y)), especifique fórmulas da lógica de predicados para:
 - a) antepassado(x, y) \equiv x é antepassado de y, se x for genitor de y ou x for genitor de alguém que é antepassado de y
 - b) descendente(x,y) \equiv x é descendente de y

GABARITO

- 5.4. Utilizando os predicados básicos definidos anteriormente (homem(x), mulher(x), genitor(x, y)), especifique fórmulas da lógica de predicados para:
 - a) antepassado(x, y) \equiv x é antepassado de y, se x for genitor de y ou x for genitor de alguém que é antepassado de y
 - $(\exists x)((\exists y)((\exists z) ((genitor(x, y) \lor (genitor(x, z) \land antepassado(z, y))) \rightarrow antepassado(x, y))))$
 - b) descendente(x,y) \equiv x é descendente de y $(\exists x)((\exists y)(antepassado(y, x) \rightarrow descendente(x, y)))$ $(\exists x)((\exists y)((\exists z) ((genitor(y, x) \lor (genitor(y, z) \land descendente(x, z))) \rightarrow descendente(x, y))))$

LISTA DE EXERCÍCIOS 08: questão 6

6. Considere o organograma abaixo, com chefes e subordinados:

6.1. Considere que:

I[cargo(x, y)] = V, se (y ocupa o cargo x)

I[supervisor(x, y)] = \mathbf{V} , se (x é supervisor direto de y)

I[diretor(x)] = V, se (x é diretor)

Determine para quais valores os predicados são verdadeiros.

LISTA DE EXERCÍCIOS 08: questão 6

GABARITO

cargo(engenheiro, Ana)
cargo(engenheiro, Daniel)
cargo(engenheiro, Isabel)
cargo(engenheiro, Luís)
cargo(engenheiro, Santiago)

cargo(técnico, Ivone) cargo(técnico, José)

cargo(técnico, Laura)
cargo(técnico, Oscar)

cargo(técnico, Rogério) cargo(técnico, Sônia)

cargo(técnico, Tomas)

supervisor(Ana, Ivone) supervisor(Ana, José) supervisor(Ana, Laura)

supervisor(Isabel, Laura) supervisor(Isabel, Oscar)

supervisor(Tomas, Oscar) supervisor(Tomas, Rogério) supervisor(Tomas, Sônia) supervisor(Santiago, Ana) supervisor(Santiago, Daniel) supervisor(Santiago, Isabel) supervisor(Santiago, Luís) supervisor(Santiago, Tomas)

diretor(Santiago)

LISTA DE EXERCÍCIOS 08: questão 6

- 6.2. Utilizando os predicados básicos definidos anteriormente (cargo(x, y), supervisor(x, y), diretor(x)), especifique fórmulas da lógica de predicados para:
 - a) chefiar(x, y) ≡ x pode ser chefe de y, se (1° caso): x for técnico, x for supervisor e y for técnico; (2° caso): x for engenheiro e y for técnico, (3° caso) x for engenheiro e y for engenheiro
 - b) dirigir(x) \equiv x pode ser diretor, se x for engenheiro e x for supervisor
 - c) chefiado_por(x, y) \equiv x é chefiado por y, se y é supervisor (direto ou indireto) de x

GABARITO

- a) chefiar(x, y) ≡ x pode ser chefe de y, se (1° caso): x for técnico, x for supervisor e y for técnico; (2° caso): x for engenheiro e y for técnico, (3° caso) x for engenheiro e y for engenheiro
 - $(\exists x)((\exists y)((\exists z))$
 - $((\text{cargo}(\text{t\'ecnico},\,x) \land (\text{supervisor}(x,\,z) \land \text{cargo}(\text{t\'ecnico},\,y) \land (x \neq y)) \lor$
 - (cargo(engenheiro, x) ∧ cargo(técnico, y)) ∨
 - $(\text{cargo}(\text{engenheiro},\,x) \land \text{cargo}(\text{engenheiro},\,y) \land (x \neq y))) \rightarrow \text{chefiar}(x,\,y))))$
- b) dirigir(x) \equiv x pode ser diretor, se x for engenheiro e x for supervisor $(\exists x)((\exists y)((cargo(engenheiro, x) \land (supervisor(x, y)) \rightarrow dirigir(x)))$
- c) chefiado_por(x, y) \equiv x é chefiado por y, se y é supervisor (direto ou indireto) de x $(\exists x)((\exists y)((\exists z) ((supervisor(y, x) \lor (supervisor(y, z) \land chefiado por(x, z))) \rightarrow chefiado por(x, y))))$

