《仪器系统设计基础》第五讲仪器精度理论

仪器科学与工程系专业必修课主讲: 宋开臣教授

kcsong@zju.edu.cn 13600513662

仪器精度理论讲座内容

- 一、仪器精度理论
- 二、数据处理的一般方法

一、仪器精度理论

- 1.误差的基本概念
- 2.误差的分类
- 3.仪器误差的来源
- 4.误差的简化
- 5.精度理论基本概念
- 6.阿贝原则

1. 误差的基本概念

误差的定义:测量结果与其真值的差异。

$$\Delta x = x - x_0$$

 $\Delta x - 测量误差$

x-测量结果

 x_0 - 真值

1. 误差的基本概念

真值的定义:被测量的客观真实值。

理论真值: 理论上存在、计算推导出来。如: 三角形内角和180°

约定真值: 国际上公认的最高基准值。如基准米定义: 1983年10月在巴黎召开的第十七届国际计量大会上又通过了米的新定义: "米是1/299792458秒的时间间隔内光在真空中行程的长度"。

相对真值: 利用高一等级精度的仪器或装置的测量结果作为近似真值。标准仪器的测量标准差< 1/3 测量系统标准 差→ 检定

2. 误差的分类

随机误差

- (1) 随机误差产生的原因
- (2) 随机误差的一般特性
- (3) 测量的极限误差
- (4) 随机误差的合成

系统误差

- (5) 系统误差产生的原因
- (6) 系统误差的特性

粗大误差

- (7) 粗大误差产生的原因
- (8) 粗大误差的判别准则

(1) 随机误差产生的原因

测量装置方面的因素:零部件配合的不稳定性、零部件的变形、零件表面油膜不均匀、摩擦等。

(1) 随机误差产生的原因

■ 环境方面的因素: 温度的微小波动、湿度与气压的微量变化、光照强度变化、灰尘以及电磁场变化等。

(1) 随机误差产生的原因

■ 人员方面的因素: 瞄准、读数的不稳定性等。

(2) 随机误差的一般特性

对称、单峰、抵偿、有界

对称性

绝对值相等的正负误差出现的次数相等

定义:测量结果与统一测量量的大量重复测量的平均结果之差

(3) 测量的极限误差

在一般测量中,一般认为绝对值大于3 σ 的误差是不可能出现的,通常把这个误差称为单次测量的极限误差

$$\delta_{\lim} x = \pm 3\sigma$$

3 σ 对应的概率P=99.73%

2 σ 对应的概率P=95.4%

1 σ 对应的概率P=68. 3%

(4) 随机误差的合成

若 \underline{q} 个单项随机误差,他们的标准差分别为 σ_{i} , σ_{i} , ..., $\underline{\sigma}_{q}$,其相应地<u>误差传递系数为 a_{1} , a_{2} ,…, a_{q} </u>,根据方和根 的运算方法,各个标准差合成后的总标准差为 互相关函数

$$\sigma = \sqrt{\sum_{i=1}^{q} (a_i \sigma_i)^2 + 2\sum_{1 \le i < j}^{q} \rho_{ij} a_i a_j \sigma_i \sigma_j}$$

一般情况下各个误差互不相关,相关系数 $\rho = 0$,则有

$$\sigma = \sqrt{\sum_{i=1}^{q} (a_i \sigma_i)^2}$$
 进一步的,如果采用相同的仪器测量,则各误差传递系数 $\alpha_{i=1}$

■ 测量装置方面的因素: 仪器机构设计原理

上的缺点,仪器零件制造和安装不正确,

仪器附件制造偏差。

■ 环境方面的因素:测量过程中温度、湿度等按一定规律变化的误差。

测量方法的因素:采用近似的测量方法 或近似的计算公式等引起的误差。

· 测量人员方面的因素:由于测量者的个人特点,在刻度上估计读数时,习惯偏于某一方向;动态测量时,记录某一信号有滞后的倾向。

(6) 系统误差的特性

定义:在同一测量条件下,对同一被测量进行多次重复测量时,误差大小、符号不变,在条件变化时依旧保持不变或按一定规律变化

不变的系统误差

线性变化的系统误差

周期性变化的系统误差

复杂规律变化的系统误差

(7) 粗大误差产生的原因

测量人员的主观原因:由于测量者工作责任感不强,工作过于疲劳或者缺乏经验操作不当,或在测量时不小心、不耐心、不仔细等,从而造成了错误的读数或者错误的记录,这是产生粗大误差的主要原因。

(7) 粗大误差产生的原因

■ **客观外界条件的原因**:由于测量条件意外地改变(如机械冲击、外界振动等),引起仪器示值或被测对象位置的改变而产生粗大误差。

(8) 粗大误差判别准则

3 σ 准则是最常用也是最简单的 判别粗大误差的准则。

粗大误差的剔除:

如果在测量列中,发现 有大于3 σ 的残余误差 测量值,则可认为它含 有粗大误差。

定义:在一定测量条件下,超出规定条件下预期的误差

3. 仪器误差的来源

- (1) 原理误差
- (2)制造误差
- (3)运行误差

(1) 原理误差

- 1) 理论误差
- 2) 方案误差
- 3) 技术原理误差
- 4) 机构原理误差
- 5)零件原理误差
- 6) 电路控制系统的原理误差

(2) 制造误差

基准面大体上可分为以下3种:

设计基准面:零件工作图上注尺寸的基准面;

工艺基准面:加工时,用它定位去加工其他面;

装配基准面:以它为基准,确定零件间的互相位置。

尽可能把以上3个基面统一起来,以利保证精度

(3) 运行误差

- 1) 自重变形引起的误差
- 2) 应力变形引起的误差
- 3)接触变形引起的误差
- 4) 磨损
- 5) 间隙与空程引起的误差
- 6)温度引起的误差
- 7) 振动引起的误差

4. 误差的简化

在对仪器误差进行分析时,如不进行合理的简化,那么误差的分析过程将变得非常复杂。

$$\sin \alpha \approx \alpha$$

$$\cos \alpha \approx 1$$

$$l \sin \alpha = l \alpha$$

$$l \cos \alpha = l$$

最简单的化简就是正、余弦小角度的化简

 $\sin \alpha \sin \alpha \approx \alpha \cdot \alpha \approx 0$ $\cos \alpha \sin \alpha \approx \sin \alpha \approx \alpha$

二次误差化为0的原则

5. 精度理论

- (1)精度的含义
- (2) 仪器精度分类
- (3) 线性度
- (4) 回程误差
- (5) 分辨力
- (6) 重复性
- (7) 灵敏度

(1) 精度的含义

精度(不确定度)是误差的反义词, 精度的高低是用误差来衡量的。

通常把精度区分为

①准确度:它反映了系统误差的大小;

②精密度:它反映了随机误差的大小;

③精确度:它反映了系统误差和随机误差两者的综合

(1) 精度的含义

不精密(随机误差大)

准确(系统误差小)

不精密(随机误差大)

不准确(系统误差大)

精密(随机误差小)

不准确(系统误差大)

精密(随机误差小)

准确(系统误差小)

(2) 仪器精度分类

中等精度: 直线位移精度1 µ m-10 µ m, 主轴回转精度1 µ m-10 µ m, 圆分度精度1"-10"

高精度: 直线位移精度0.1 µ m-1 µ m, 主轴回转精度0.1 µ m-1 µ m, 圆分度精度0.2"-1"

PrismMaster精密测角仪

超高精度: 直线位移精度<0.1 µm, 主轴 回转精度<0.1 µm, 圆分度精度<0.2

4

(3)线性度

定义: 检测系统输入输出曲线与理想直线的偏离程度。

亦称非线性误差(non-linearity)

表达: 相对误差 $e_L = \pm \frac{\Delta L_{\text{max}}}{y_{F.S.}} \times 100 \%$

ΔL_{max} 输出值与理想直线的最大偏差值

 $y_{F.S.}$ 理论满量程输出值

理想直线: 一般不存在或很难获得准确结果

利用测量数据,通过计算获得 —— 拟合直线

(4) 回程误差

定义: 检测系统在正行程和反行程的输入输出曲线不重合的程度,

亦称空程误差、滞后 (hysteresis)

算法: 相对误差
$$e_H = \frac{\Delta H_{\text{max}}}{y_{F.S.}} \times 100\%$$

 ΔH_{max} : 正反行程输出值的最大偏差

(5) 分辨力

定义: 能够检测出的被测量的最小变化量,

表征测量系统的分辨能力 (resolution)

分辨力时不确定度的组成部分之一

说明: 1、分辨力 --- 是绝对数值。如 0.01mm, 0.1g, 10ms,

2、分辨率 --- 是相对数值。

能检测的最小被测量的变换量相对于满量程的百分数,

3、阈值 --- 系统能够感知的最小输入量值。

在系统输入零点附近的分辨力。

(6) 重复性

定义: 同一条件下, 对同一被测量, 同一方向, 多次重复测量, 差异程度。

对同一被测量值: 各次测量数值的偏差程度

对不同被测数值: 各次测量曲线的偏差程度

重复性是检测系统最基本的技术指标,是其他各项指标的前提和保证

重复性误差:属随机误差。

标准差计算: 贝塞尔公式:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \overline{y})^2}{n-1}}$$

 y_i ---测量输出值,i=1,2,...,ny---输出值的平均值

(7) 灵敏度

定义:测量系统在稳态下输出量的增量与输入量的增量之比。 斜率 (灵敏度系数):

$$K = \Delta y / \Delta x$$
 K=2pF/nm

说明: a. 线性检测系统: 灵敏度为常数;

$$y = a + bx$$
 $K = b$

b. 非线性检测系统: 灵敏度为变数。

$$y = f(x)$$

$$K = \frac{df(x)}{dx}$$

6. 仪器设计基本原则——阿贝原则

要使量仪给出准确的测量结果,必须将被测件布置在基准元件沿运动方向的延长线上

游标卡尺 不符合阿贝原则

螺旋测微仪 符合阿贝原则

6. 仪器设计基本原则——阿贝原则

误差 $\approx e = a \tan \theta \approx a\theta$

6. 仪器设计基本原则——阿贝原则

读数线、测 量线共线

$$\frac{\theta}{a}$$
 读数线

$$e = a(1 - \cos \theta) = a[1 - (1 - \frac{\theta^2}{2} + \frac{\theta^4}{4} + \cdots)] \approx \frac{a}{2}\theta^2$$

二、数据处理的一般方法

- 1. 最小二乘法
- 2. 线性拟合与非线性修正
- 3. 计算机误差修正方法

1. 最小二乘法

为了确定t个不可直接测量的未知量 X_1 , X_2 , ..., X_t 的估计值 x_1 , x_2 , ..., x_t , 可对与该t个未知量有函数关系的直接测量量Y进行n次测量,得测量数据 l_1 , l_2 , ..., l_n , 其关系如下:

$$Y_1 = f_1(X_1, X_2, \cdots X_t)$$

$$Y_2 = f_2(X_1, X_2, \cdots X_t)$$

$$\vdots$$

$$Y_n = f_n(X_1, X_2, \cdots X_t)$$

4

1. 最小二乘法

若*n=t*,则可由前面的式子直接求得未知量。由于测量数据不可避免地包含着测量误差,所以求得的结果也必定包含一定的误差。为提高精度,应适当增加测量次数*n*,以便利用抵偿性减小随机误差的影响。但此时由于方程个数>未知数个数,不能从方程中直接得到结果。最小二乘法原理指出,最可信赖值应在使残余误差平方和最小的条件下求得。

$$v_{1} = l_{1} - f_{1}(x_{1}, x_{2}, \dots x_{t})$$

$$v_{2} = l_{2} - f_{2}(x_{1}, x_{2}, \dots x_{t})$$

$$\vdots$$

$$v_{n} = l_{n} - f_{n}(x_{1}, x_{2}, \dots x_{t})$$

$$v_{1}^{2} + v_{2}^{2} + \dots + v_{n}^{2} = \sum_{i=1}^{n} v_{i}^{2} = \frac{1}{2} \sqrt{y_{i}^{2}}$$

2. 线性拟合与非线性修正

(1) 线性拟合方法

作图法(最大包容)

最小二乘法

(2) 非线性修正方法

分段线性拟合与插值

曲线拟合与插值

(2) 非线性修正方法

作图法(直观判断)

作图法(最大包容)

最小二乘法

(2) 非线性修正方法

分段线性拟合与插值

通常还要保证折线时连续的

(2) 非线性修正方法

曲线拟合与插值(二次、三次样条、多项式)

3.计算机误差修正方法

(1) 公式法 有规律的系统误差

(2) 查表法 无规律系统误差

误差修正方法只适用于系统误差, 效果与重复性好坏有关

(1) 公式法

公式法对修正有规律的系统误差非常有效

(2) 查表法

对于规律性不强的系统误差的修正,则只能预先将误差的特性曲线输入计算机,通过查表法来得到。

参考资料

- 1.《误差理论与数据处理》 费业泰主编 机械工业出版社
- 2.《测量误差与不确定度评定》 王中宇等著 科学出版社
- 3.《智能检测技术与系统》 胡向东编 高等教育出版社
- 4. 《现代精密仪器设计》 李庆祥等 清华大学出版社
- 5. 《智能仪器工程设计》尚振东等 西安电子科技大学出版社

课后作业

- 1. 真值的定义是什么?有几种真值?
- 2. 叙述系统误差、随机误差和粗大误差的定义。描述它们的基本特征。如何合成系统误差和随机误差?如何剔除粗大误差?
- 3. 分辨力与不确定度有什么不同,分析二者的相互关系。分辨力与灵敏度的区别是什么?
- 4. 对测量仪器校准时为什么要做线性拟合。描述最小二乘线性拟合方法。
- 5. 解释非线性误差的定义。如何修正非线性误差。