Autómatas y Lenguajes formales Ejercicio Semanal 6

Sandra del Mar Soto Corderi Edgar Quiroz Castañeda

14 de marzo del 2019

- 1. Para cada $ANF_{\epsilon},$ resuelve los siguientes incisos.
 - (a) Calcula la ϵ -cerradura de cada estado.
 - (b) Elimina las ϵ -transiciones obteniendo un AFN, mostrando el proceso de cálculo de las nuevas transiciones.

1. Autómata 1

Figure 1: El autómata M

La función de transición δ definida con la siguiente tabla:

q	$\delta(q,a)$	$\delta(q,b)$	$\delta(q,\epsilon)$
0	Ø	Ø	$\{1, 4\}$
1	{1}	{2}	Ø
2	{3}	Ø	Ø
3	Ø	{3}	{7}
4	{5}	{4}	Ø
5	Ø	{6}	Ø
6	{6}	Ø	{7}
7	Ø	Ø	{0}

(a) Vamos a calcular la $Cl_{\epsilon}(q)$ para todo $q\in Q$

$$Cl_{\epsilon}(q_0) = \{q_0, q_1, q_4\}$$

$$Cl_{\epsilon}(q_1) = \{q_1\}$$

$$Cl_{\epsilon}(q_2) = \{q_2\}$$

$$Cl_{\epsilon}(q_3) = \{q_3, q_7, q_0, q_1, q_4\}$$

$$Cl_{\epsilon}(q_4) = \{q_4\}$$

$$Cl_{\epsilon}(q_5) = \{q_5\}$$

$$Cl_{\epsilon}(q_6) = \{q_6, q_7, q_0, q_4, q_1\}$$

$$Cl_{\epsilon}(q_7) = \{q_7, q_0, q_4, q_1\}$$

(b) Ya con la ϵ -cerradura de cada estado podemos definir δ^* para los símbolos del alfabeto:

$$\delta^*(q_0, a) = Cl_{\epsilon}(\cup_{p \in \delta^*(q_0, \epsilon)} \delta(p, a)) = Cl_{\epsilon}(\cup_{Cl_{\epsilon}(q_0)} \delta(p, a)) = Cl_{\epsilon}(\delta(q_0, a) \cup \delta(q_1, a) \cup \delta(q_4, a)) = Cl_{\epsilon}(\varnothing \cup \{q_1\} \cup \{q_5\}) = Cl_{\epsilon}(\{q_1, q_5\}) = \{q_1, q_5\}$$

$$\delta^*(q_0, b) = Cl_{\epsilon}(\cup_{p \in \delta^*(q_0, \epsilon)} \delta(p, b)) = Cl_{\epsilon}(\cup_{Cl_{\epsilon}(q_0)} \delta(p, b)) = Cl_{\epsilon}(\delta(q_0, b) \cup \delta(q_1, b) \cup \delta(q_4, b)) = Cl_{\epsilon}(\varnothing \cup \{q_2\} \cup \{q_4\}) = Cl_{\epsilon}(\{q_2, q_4\}) = \{q_2, q_4\}$$

$$\delta^*(q_1, a) = Cl_{\epsilon}(\cup_{p \in \delta^*(q_1, \epsilon)} \delta(p, a)) = Cl_{\epsilon}(\cup_{Cl_{\epsilon}(q_1)} \delta(p, a)) = Cl_{\epsilon}(\delta(q_1, a)) = Cl_{\epsilon}(\{q_1\}) = \{q_1\}$$

$$\delta^*(q_1, b) = Cl_{\epsilon}(\cup_{p \in \delta^*(q_1, \epsilon)} \delta(p, b)) = Cl_{\epsilon}(\cup_{Cl_{\epsilon}(q_1)} \delta(p, b)) = Cl_{\epsilon}(\delta(q_1, b)) = Cl_{\epsilon}(\{q_2\}) = \{q_2\}$$

$$\delta^*(q_2, a) = Cl_{\epsilon}(\cup_{p \in \delta^*(q_2, \epsilon)} \delta(p, a)) = Cl_{\epsilon}(\cup_{Cl_{\epsilon}(q_2)} \delta(p, a)) = Cl_{\epsilon}(\delta(q_2, a)) = Cl_{\epsilon}(\{q_3\}) = \{q_3\}$$

$$\delta^*(q_2, b) = Cl_{\epsilon}(\cup_{p \in \delta^*(q_2, \epsilon)} \delta(p, b))$$

$$Cl_{\epsilon}(\cup_{Cl_{\epsilon}(q_2)} \delta(p, b)) = Cl_{\epsilon}(\delta(q_2, b))$$

$$Cl_{\epsilon}(\varnothing) = \varnothing$$

$$\delta^*(q_3, a) = Cl_{\epsilon}(\cup_{p \in \delta^*(q_3, \epsilon)} \delta(p, a)) = Cl_{\epsilon}(\cup_{Cl_{\epsilon}(q_3)} \delta(p, a)) = Cl_{\epsilon}(\delta(q_3, a) \cup \delta(q_7, a) \cup \delta(q_0, a) \cup \delta(q_1, a)) = Cl_{\epsilon}(\varnothing \cup \varnothing \cup \varnothing \cup \{q_1\}) = Cl_{\epsilon}(\{q_1\}) = \{q_1\}$$

$$\delta^*(q_3, b) = Cl_{\epsilon}(\cup_{p \in \delta^*(q_3, \epsilon)} \delta(p, b)) = Cl_{\epsilon}(\cup_{Cl_{\epsilon}(q_3)} \delta(p, b)) = Cl_{\epsilon}(\delta(q_3, b) \cup \delta(q_7, b) \cup \delta(q_0, b) \cup \delta(q_1, b)) = Cl_{\epsilon}(\emptyset \cup \emptyset \cup \emptyset \cup \{q_2\}) = Cl_{\epsilon}(\{q_2\}) = \{q_2\}$$

$$\delta^*(q_4, a) = Cl_{\epsilon}(\cup_{p \in \delta^*(q_4, \epsilon)} \delta(p, a)) = Cl_{\epsilon}(\cup_{Cl_{\epsilon}(q_4)} \delta(p, a)) = Cl_{\epsilon}(\delta(q_4, a)) = Cl_{\epsilon}(\{q_5\}) = \{q_5\}$$

$$\delta^*(q_4, b) = Cl_{\epsilon}(\cup_{p \in \delta^*(q_4, \epsilon)} \delta(p, b)) = Cl_{\epsilon}(\cup_{Cl_{\epsilon}(q_4)} \delta(p, b)) = Cl_{\epsilon}(\delta(q_4, b)) = Cl_{\epsilon}(\{q_4\}) = \{q_4\}$$

$$\delta^*(q_5, a) = Cl_{\epsilon}(\cup_{p \in \delta^*(q_5, \epsilon)} \delta(p, a)) = Cl_{\epsilon}(\cup_{Cl_{\epsilon}(q_5)} \delta(p, a)) = Cl_{\epsilon}(\delta(q_5, a)) = Cl_{\epsilon}(\varnothing) = \varnothing$$

$$\delta^*(q_5, b) = Cl_{\epsilon}(\cup_{p \in \delta^*(q_5, \epsilon)} \delta(p, b)) = Cl_{\epsilon}(\cup_{Cl_{\epsilon}(q_5)} \delta(p, b)) = Cl_{\epsilon}(\delta(q_5, b)) = Cl_{\epsilon}(\{q_6\}) = \{q_6\}$$

$$\delta^*(q_6, a) = Cl_{\epsilon}(\cup_{p \in \delta^*(q_6, \epsilon)} \delta(p, a)) = Cl_{\epsilon}(\cup_{Cl_{\epsilon}(q_6)} \delta(p, a)) = Cl_{\epsilon}(\delta(q_6, a) \cup \delta(q_7, a) \cup \delta(q_0, a) \cup \delta(q_1, a)) = Cl_{\epsilon}(\{q_6\} \cup \varnothing \cup \varnothing \cup \{q_1\}) = Cl_{\epsilon}(\{q_6, q_1\}) = \{q_6, q_7, q_0, q_1\}$$

$$\delta^*(q_6, b) = Cl_{\epsilon}(\cup_{p \in \delta^*(q_6, \epsilon)} \delta(p, b)) = Cl_{\epsilon}(\cup_{Cl_{\epsilon}(q_6)} \delta(p, b)) = Cl_{\epsilon}(\delta(q_6, b) \cup \delta(q_7, b) \cup \delta(q_0, b) \cup \delta(q_1, b)) = Cl_{\epsilon}(\varnothing \cup \varnothing \cup \varnothing \cup \{q_2\}) = Cl_{\epsilon}(\{q_2\}) = \{q_2\}$$

$$\delta^*(q_7, a) = Cl_{\epsilon}(\cup_{p \in \delta^*(q_7, \epsilon)} \delta(p, a)) = Cl_{\epsilon}(\cup_{Cl_{\epsilon}(q_7)} \delta(p, a)) = Cl_{\epsilon}(\delta(q_7, a) \cup \delta(q_0, a) \cup \delta(q_1, a)) = Cl_{\epsilon}(\varnothing \cup \varnothing \cup \{q_1\}) = Cl_{\epsilon}(\{q_1\}) = \{q_1\}$$

$$\delta^*(q_7, b) = Cl_{\epsilon}(\cup_{p \in \delta^*(q_7, \epsilon)} \delta(p, b)) = Cl_{\epsilon}(\cup_{Cl_{\epsilon}(q_7)} \delta(p, b)) = Cl_{\epsilon}(\delta(q_7, b) \cup \delta(q_0, b) \cup \delta(q_1, b)) = Cl_{\epsilon}(\emptyset \cup \emptyset \cup \{q_2\}) = Cl_{\epsilon}(\{q_2\}) = \{q_2\}$$

Vamos a construir un AFN M_n eliminando las $\epsilon\text{-transiciones}.$

 $M_N = \langle Q, \Sigma, \delta_N, q_0, F_n \rangle$, donde:

$$\begin{split} Q &= \{q_0,q_1,q_2,q_3,q_4,q_5,q_6,q_7\} \\ \Sigma &= \{a,b\} \\ \delta_N(q,\sigma) &= \delta^*(q,\sigma), \text{ así que se define con la siguiente tabla:} \end{split}$$

q	$\delta_N(q,a)$	$\delta_N(q,b)$
0	$\{1, 5\}$	$\{2, 4\}$
1	{1}	{2}
2	{3}	Ø
3	{1}	{2}
4	{5}	{4}
5	Ø	{6}
6	$\{0, 1, 6, 7\}$	{2}
7	{1}	{2}

 $F_N = F$ pues $Cl_{\epsilon}(q_0) \cap F = \emptyset$. Y visto de forma gráfica, AFN es:

Figure 2: El autómata M_N

2. Autómata 2

