Combinatorial Problem Solving (CPS)

Enric Rodríguez-Carbonell (based on materials by Javier Larrosa)

March 15, 2021

■ Global constraints are classes of constraints defined by a Boolean formula of arbitrary arity

- Global constraints are classes of constraints defined by a Boolean formula of arbitrary arity
- E.g., the alldiff $(x_1, ..., x_n)$ constraint forces that all the values of integer variables $x_1, ..., x_n$ must be different
- E.g., the $alo(x_1,...,x_n)$ constraint forces that at least one of the Boolean variables $x_1,...,x_n$ is set to true.
- E.g., the $amo(x_1,...,x_n)$ constraint forces that at most one of the Boolean variables $x_1,...,x_n$ is set to true.

- Global constraints are classes of constraints defined by a Boolean formula of arbitrary arity
- \blacksquare E.g., the alldiff (x_1, \ldots, x_n) constraint forces that all the values of integer variables x_1, \ldots, x_n must be different
- E.g., the $alo(x_1,...,x_n)$ constraint forces that at least one of the Boolean variables $x_1,...,x_n$ is set to true.
- E.g., the $amo(x_1,...,x_n)$ constraint forces that at most one of the Boolean variables $x_1,...,x_n$ is set to true.
- The dual graph translation does not work well in practice.

AC for Non-binary Problems

- Can be naturally extended from the binary case
- Value $a \in d_i$ is AC wrt. (non-binary) constraint $c \in C$ iff there exists an assignment τ (the support of a) such that:
 - ullet au assigns a value to exactly the variables in $\operatorname{scope}(c)$
 - $lack au[x_i] = a$
 - lacktriangle c(au) holds
- Constraint $c \in C$ is AC iff every $a \in d_i$ of every $x_i \in \text{scope}(c)$ has a support in c
- A CSP is AC if all its constraints are AC
- For non-binary constraints, arc consistency is also called hyperarc consistency, generalized arc consistency or domain consistency

- Consider the constraint 3x + 2y + z > 3 over $x, y, z \in \{0, 1\}$
- Value 1 for x is AC: $\tau = (x \mapsto 1, y \mapsto 1, z \mapsto 1)$ is a support
- \blacksquare Value 0 for x is not AC: it does not have any support.
- Hence, the constraint is not AC

- Note that AC depends on the syntax
- Consider $x_1 \in \{1, 2\}$, $x_2 \in \{1, 2\}$, $x_3 \in \{1, 3, 4\}$
- Case 1: constraints are $x_i \neq x_j$ for all i < j
 - ◆ All constraints are arc-consistent
- Case 2: there is only one constraint alldiff (x_1, x_2, x_3)
 - Value 1 for x_1 is AC because $\tau = (x_1 \mapsto 1, x_2 \mapsto 2, x_3 \mapsto 3)$ is a support for it.
 - lack Value 1 for x_3 is not AC: does not have any support
 - Hence, the constraint is not AC

Enforcing AC: Revise(i, c)

- Natural extension of binary case
- lacktriangle Removes values from the domain of x_i without a support in c

```
// Let (x_1,\ldots,x_{i-1},x_i,x_{i+1}\ldots,x_k) be the scope of c function \operatorname{Revise}(i,c) change := false for each a\in d_i do if \forall_{a_1\in d_1,\ldots,a_{i-1}\in d_{i-1},a_{i+1}\in d_{i+1},\ldots,a_k\in d_k} \ \neg c(x_1\leftarrow a_1,\ldots,x_i\leftarrow a,\ldots,x_k\leftarrow a_k) remove a from d_i change := \operatorname{true} return change
```

The time complexity of Revise(i,c) is $O(k \cdot |d_1| \cdots |d_k|)$ (assuming that evaluating a constraint takes linear time in the arity)

AC-3

- The natural extension of binary AC-3
- $(i,c) \in Q$ means that "we cannot guarantee that all domain values of x_i have a support in c"

```
procedure \operatorname{AC3}(X,D,C) Q:=\{(i,c)\mid c\in C, x_i\in\operatorname{scope}(C)\} while Q\neq\emptyset do (i,c):=\operatorname{Fetch}(Q)\ //\ \operatorname{selects}\ \operatorname{and}\ \operatorname{removes} if \operatorname{Revise}(i,c) then Q:=Q\cup\{(j,c')|\ c'\in C, c'\neq c, j\neq i, \{x_i,x_j\}\subseteq\operatorname{scope}(c')\}
```

- Let $m = \max_i \{|d_i|\}, e = |C| \text{ and } k = \max_c \{|\operatorname{scope}(c)|\}$
- Time complexity: $O(e \cdot k^3 \cdot m^{k+1})$
- Space complexity: $O(e \cdot k)$

AC for non-binary constraints

- Enforcing AC with generic algorithms is exponentially expensive in the maximum arity of the CSP
- Only practical with constraints of very small arity
- Is it possible to develop constraint-specific algorithms?

```
procedure Revise(c) // removes every arc-inconsistent value a \in d_i for all x_i \in scope(c) endprocedure
```

- Next: alldiff constraint
- ... but first a diversion to matching theory

Begin Matching Theory

Definitions

- Given a graph G = (V, E), a matching M is a set of pairwise non-incident edges
- A vertex is matched or covered if it is an endpoint of some $e \in M$, and it is free otherwise
- A maximum matching is a matching that contains the largest possible number of edges

(edges in the matching, in blue)

In particular, a perfect matching matches all vertices of the graph

■ We have to organize one round of a football league. Compatibility relation between teams is given by a graph

Perfect matchings \leftrightarrow feasible arrangements of matches

Bipartite Matching

- Graph G=(V,E) is bipartite if there is a partition (L,R) of V (i.e., $L\cup R=V, L\cap R=\emptyset$) such that each $e\in E$ connects a vertex in L to one in R
- Now focus on maximum bipartite matching problem: given a bipartite graph, find a matching of maximum size
- From now on, assume $|V| \le 2|E|$ (isolated vertices can be removed)

Example (I)

- Assignment problem:
 - lack n workers, m tasks
 - lack list of pairs (w,t) meaning: "worker w can do task t"

Maximum matchings tell how to assign tasks to workers so that the maximum number of tasks are carried out

Example (II)

 \blacksquare We have n variables $x_1, ..., x_n$

Variable x_i can take values in $D_i \subseteq \mathbb{Z}$ finite $(1 \le i \le n)$

Constraint alldifferent $(x_1, ..., x_n)$ imposes that variables should take different values pairwise

$$D_1 = \{1\}$$
 $D_2 = \{1, 2, 3\}$
 $D_3 = \{4\}$

Matchings covering $x_1, ..., x_n$ correspond to solutions to alldifferent $(x_1, ..., x_n)$

Example (II)

 \blacksquare We have n variables $x_1, ..., x_n$

Variable x_i can take values in $D_i \subseteq \mathbb{Z}$ finite $(1 \le i \le n)$

Constraint alldifferent $(x_1, ..., x_n)$ imposes that variables should take different values pairwise

$$D_1 = \{1\}$$
 $D_2 = \{1, 2, 3\}$
 $D_3 = \{4\}$

Matchings covering $x_1, ..., x_n$ correspond to solutions to alldifferent $(x_1, ..., x_n)$

Note that matchings covering x_1, \ldots, x_n are maximum. However, a maximum matching may not cover x_1, \ldots, x_n

End Matching Theory

Arc Consistency for alldiff

[reminder]

- Consider $x_1 \in \{1, 2\}$, $x_2 \in \{2, 3\}$, $x_3 \in \{2, 3\}$ and the constraint $\mathtt{alldiff}(x_1, x_2, x_3)$
 - Value 1 for x_1 is AC since $\tau = (x_1 \mapsto 1, x_2 \mapsto 2, x_3 \mapsto 3)$ is a support for it.
 - Value 2 for x_1 is not AC: it does not have any support (no room left for x_2, x_3)
 - After enforcing AC: $x_1 \in \{1\}, x_2 \in \{2, 3\}, x_3 \in \{2, 3\}$

Value Graph of alldiff

Given variables $X = \{x_1, \ldots, x_n\}$ with domains D_1, \ldots, D_n , the value graph of $\text{alldiff}(x_1, \ldots, x_n)$ is the bipartite graph $G = (X \cup \bigcup_{i=1}^n D_i, E)$ where $(x_i, v) \in E$ iff $v \in D_i$

alldiff
$$(x_1, x_2, x_3)$$

 $D_1 = \{1, 2\}$
 $D_2 = \{2, 3\}$
 $D_3 = \{2, 3\}$

- We say a matching M covers a set S iff every vertex in S is covered (i.e, is an endpoint of an edge in M)
- \blacksquare Solutions to alldiff(X) = matchings covering X

alldiff
$$(x_1, x_2, x_3)$$

$$D_1 = \{1, 2\} \qquad x_1 = 1$$

$$D_2 = \{2, 3\} \qquad x_2 = 2$$

$$D_3 = \{2, 3\} \qquad x_3 = 3$$

- We say a matching M covers a set S iff every vertex in S is covered (i.e, is an endpoint of an edge in M)
- \blacksquare Solutions to alldiff(X) = matchings covering X

alldiff
$$(x_1, x_2, x_3)$$

$$D_1 = \{1, 2\} \qquad x_1 = 1$$

$$D_2 = \{2, 3\} \qquad x_2 = 3$$

$$D_3 = \{2, 3\} \qquad x_3 = 2$$

- We say a matching M covers a set S iff every vertex in S is covered (i.e, is an endpoint of an edge in M)
- \blacksquare Solutions to alldiff(X) = matchings covering X

alldiff
$$(x_1, x_2, x_3)$$

$$D_1 = \{1, 2\} \qquad x_1 = 1$$

$$D_2 = \{2, 3\} \qquad x_2 = 3$$

$$D_3 = \{2, 3\} \qquad x_3 = 2$$

$$x_3 \longrightarrow 3$$

- \blacksquare A matching covering X is a maximum matching
- \blacksquare There are solutions to alldiff(X) iff size of maximum matchings is |X|

Algorithm for checking feasibility of $\operatorname{alldiff}(X)$: (with Hopcroft-Karp, in time $O(dn\sqrt{n})$, where n=|X|, $d=\max_i\{|D_i|\}$)

// Returns true iff there is a solution to $\operatorname{alldiff}(X)$
// G is the value graph of $\operatorname{alldiff}(X)$
M = COMPUTE_MAXIMUM_MATCHING(G)
if (|M| < |X|) return false
return true

Algorithm for checking feasibility of alldiff(X): (with Hopcroft-Karp, in time $O(dn\sqrt{n})$, where n=|X|, $d=\max_i\{|D_i|\}$)

```
// Returns true iff there is a solution to \operatorname{alldiff}(X) // G is the value graph of \operatorname{alldiff}(X) M = \operatorname{COMPUTE\_MAXIMUM\_MATCHING}(G) if (|M| < |X|) return false else REMOVE_EDGES_FROM_GRAPH(G, M) // Remove non-AC values return true
```

- But in addition to check feasibility we want to find arc-inconsistent values
- Assume alldiff(X) has a solution corresponding to matching M. Then: value v from the domain of variable x is arc-inconsistent iff there is no solution to alldiff(X) that assigns value v to x iff there is no matching covering X that contains edge (x,v) iff there is no maximum matching that contains edge (x,v)
- So we have to remove the edges not contained in any maximum matching
- lacktriangle Next we'll extend the algorithm to do so using (maximum) matching M

Filtering

- We want to remove the edges not contained in any maximum matching
- We will identify the complementary set: the edges contained in some maximum matching
- We say an edge is vital if it belongs to all maximum matchings
- Given a matching M, an alternating path is a simple path in which the edges belong alternatively to M and not to M.
- Given a matching M, an alternating cycle is a cycle in which the edges belong alternatively to M and not to M.

Filtering

- We want to remove the edges not contained in any maximum matching
- We will identify the complementary set: the edges contained in some maximum matching
- **Theorem.** Let M be an arbitrary maximum matching. An edge belongs to some maximum matching iff
 - it is vital; or
 - lacktriangle it belongs to an alternating cycle wrt. M; or
 - lacktriangle it belongs to an even-length simple alternating path starting at a free vertex wrt. M

Orienting Edges

- It simplifies things to orient edges:
 - lacktriangle Edges $e \in M$ are oriented from left to right
 - lacktriangle Edges $e \notin M$ are oriented from right to left

Orienting Edges

- lacktriangle Corollary. Let M be an arbitrary maximum matching. An edge belongs to some maximum matching iff
 - it belongs to a cycle, or
 - lack it belongs to a simple path starting at a free vertex wrt. M, or
 - it is vital

in the oriented graph.

Removing Arc-Inconsistent Edges

- We will actually identify AC edges, and the remaining ones will be non-AC
- An edge (u, v) belongs to a cycle in a digraph G iff u, v belong to the same strongly connected component (SCC) of G

REMOVE_EDGES_FROM_GRAPH(G, M)

- 0) Mark all edges in G as UNUSED
- 1) Compute SCC's, and mark as USED edges with vertices in same SCC
- 2) Do a depth-first search from free vertices, and mark as USED edges in simple paths starting at free vertices
- 3) Mark UNUSED edges of M as VITAL
- 4) Remove remaining UNUSED edges

Time complexity: linear in the size of the value graph

Computing SCC's

- Given a directed graph G = (V, E), SCC's can be computed in time O(|V| + |E|), e.g. with Kosaraju's algorithm:
 - 1. Do DFS
 - 2. Reverse the direction of the edges
 - 3. Do DFS in reverse chronological order of finish times wrt. step 1.
 - 4. Each tree in the previous DFS forest is a SCC

- Variables $\{w, x, y, z\}$
- Domains

$$d(w) = \{b, c, d, e\},\$$

$$d(x) = \{b, c\},\$$

$$d(y) = \{a, b, c, d\},\$$

$$d(z) = \{b, c\}$$

- Variables $\{w, x, y, z\}$
- Domains

$$d(w) = \{b, c, d, e\},\$$

$$d(x) = \{b, c\},\$$

$$d(y) = \{a, b, c, d\},\$$

$$d(z) = \{b, c\}$$

- Variables $\{w, x, y, z\}$
- Domains

$$d(w) = \{b, c, d, e\},\$$

$$d(x) = \{b, c\},\$$

$$d(y) = \{a, b, c, d\},\$$

$$d(z) = \{b, c\}$$

- Variables $\{w, x, y, z\}$
- Domains

$$d(w) = \{b, c, d, e\},\$$

$$d(x) = \{b, c\},\$$

$$d(y) = \{a, b, c, d\},\$$

$$d(z) = \{b, c\}$$

- Variables $\{w, x, y, z\}$
- Domains

$$d(w) = \{b, c, d, e\},\$$

$$d(x) = \{b, c\},\$$

$$d(y) = \{a, b, c, d\},\$$

$$d(z) = \{b, c\}$$

- Variables $\{w, x, y, z\}$
- Domains

$$d(w) = \{b, c, d, e\},\$$

$$d(x) = \{b, c\},\$$

$$d(y) = \{a, b, c, d\},\$$

$$d(z) = \{b, c\}$$

- We assume we already have a maximum matching
- All variables are covered

■ Direct the edges

■ Compute SCC's

Compute all simple paths starting at a free vertex

Identify vital edges (none in this case)

Remove unused edges that are not vital

■ Remove unused edges that are not vital

After enforcing arc consistency:

$$d(w) = \{d, e\},\$$

 $d(x) = \{b, c\},\$
 $d(y) = \{a, d\},\$
 $d(z) = \{b, c\}$

Complexity

- Consider CSP with a single constraint $\operatorname{alldiff}(x_1,\ldots,x_k)$ where $m=\max_i\{|D_i|\}$
- Cost of enforcing AC with AC-3: $O(k^3m^{k+1})$
- \blacksquare Cost of enforcing AC with bipartite matching: $O(km\sqrt{k})$
 - Cost of constructing maximum matching: $O(km\sqrt{k})$
 - lacktriangle Cost of removing edges: O(km)