Salem Sets Avoiding Rough Configurations

Jacob Denson

November 11, 2019

1 Introduction

Recall that a set $X \subset \mathbf{R}^d$ is a *Salem set* of dimension t if it has Hausdorff dimension t, and for every $\varepsilon > 0$, there exists a probability measure μ_{ε} supported on X such that

$$\sup_{\xi \in \mathbf{R}^d} |\xi|^{t-\varepsilon} |\widehat{\mu}_{\varepsilon}(\xi)| < \infty. \tag{1.1}$$

It is a result of the Poisson summation formula that if μ_{ε} is compactly supported, then (1.1) is equivalent to the equation

$$\sup_{k \in \mathbf{Z}^d} |k|^{t-\varepsilon} |\widehat{\mu}_{\varepsilon}(k)| < \infty. \tag{1.2}$$

Our goal in these notes is to obtain high dimensional Salem sets avoiding rough configurations. Here is an initial result.

Theorem 1. Let $Z \subset [0,1]^{dn}$ be the countable union of sets, each with lower Minkowski dimension at most s. Then there exists a Salem set $X \subset \mathbf{R}^d$ of dimension

$$t = \frac{nd - s}{n},$$

such that for any n distinct elements $x_1, \ldots, x_n \in X$, $(x_1, \ldots, x_n) \notin Z$.

We rely on a random selection approach, like in our paper on rough configurations, to obtain such a result, since such random selections give high probability bounds on the Fourier transform of the measures we study.

2 Concentration Inequalities

Define a convex function $\psi_2: [0,\infty) \to [0,\infty)$ by $\psi_2(t) = e^{t^2} - 1$, and a corresponding Orlicz norm on the family of scalar valued random variables X over a probability space by setting

$$||X||_{\psi_2(L)} = \inf \{ A \in (0, \infty) : \mathbf{E}(\psi_2(|X|/A)) \le 1 \}.$$

The family of random variables with $||X||_{\psi_2(L)} < \infty$ are known as *subgaussian* random variables. Here are some important properties:

• If $||X||_{\psi_2(L)} \leq A$, then for each $t \geq 0$,

$$\mathbf{P}(|X| \geqslant t) \leqslant 10 \exp\left(-t^2/10A^2\right).$$

Thus Subgaussian random variables have Gaussian tails.

- If $|X| \leq A$ almost surely, then $||X||_{\psi_2(L)} \leq 10A$. Thus bounded random variables are subgaussian.
- If X_1, \ldots, X_N are independent, then

$$||X_1 + \dots + X_N||_{\psi_2(L)} \le 10 \left(||X_1||_{\psi_2(L)}^2 + \dots + ||X_N||_{\psi_2(L)}^2 \right)^{1/2}.$$

This is an equivalent way to state *Hoeffding's Inequality*, and we refer to an application of this inequality as an application of Hoeffding's inequality.

Remark 2. The constants involved in these statements are suboptimal, but will suffice for our purposes. Proofs can be found in Chapter 2 of [1].

Roughly speaking, we can think of a random variable X with $||X||_{\psi_2(L)} \le A$ as deviating from [-A, A] with extremely low probability. The Orlicz norm thus provides a convenient way to quantify concentration phenomena.

3 A Family of Cubes

Fix two integer-valued sequences $\{K_m: m \geq 1\}$ and $\{M_m: m \geq 1\}$. For convenience, we also define $N_m = K_m M_m$ for $m \geq 1$. We then define two sequences of real numbers $\{l_m: m \geq 0\}$ and $\{r_m: m \geq 0\}$, by

$$l_m = \frac{1}{N_1 \dots N_m}$$
 and $r_m = \frac{1}{N_1 \dots N_{m-1} M_m}$.

For each $m, d \ge 0$, we define two collections of strings

$$\Sigma_m^d = \mathbf{Z}^d \times [M_1]^d \times [K_1]^d \times \cdots \times [M_m]^d \times [K_m]^d$$

and

$$\Pi_m^d = \mathbf{Z}^d \times [M_1]^d \times [K_1]^d \times \cdots \times [K_{m-1}]^d \times [M_m]^d.$$

For each string $\sigma = \sigma_0 \sigma_1 \dots \sigma_{2k} \in \Sigma_m^d$, we define a vector $a(\sigma) \in (l_m \mathbf{Z})^d$ by setting

$$a(\sigma) = \sigma_0 + \sum_{k=1}^{m} \sigma_{2k-1} \cdot r_k + \sigma_{2k} \cdot l_k$$

Then each string $\sigma \in \Sigma_m^d$ can be identified with the sidelength l_m cube $Q(\sigma)$ with left-hand corner lies at $a(\sigma)$, i.e. the cube

$$Q(\sigma) = \prod_{i=1}^{d} \left[a(\sigma)_i, a(\sigma)_i + l_m \right].$$

Similarly, for each string $\sigma = \sigma_0 \dots \sigma_{2m-1} \in \Pi_m^d$, we define a vector $a(\sigma) \in (r_m \mathbf{Z})^d$ by setting, for each $1 \leq j \leq d$,

$$a(\sigma) = \sigma_0 + \left(\sum_{k=1}^{m-1} \sigma_{2k-1} \cdot r_k + \sigma_{2k} \cdot l_k\right) + \sigma_{2m-1} \cdot r_m,$$

and then define a sidelength r_m cube

$$R(\sigma) = \prod_{i=1}^{d} [a(\sigma)_i, a(\sigma)_i + r_m].$$

We let $\mathcal{Q}_m^d = \{Q(\sigma) : \sigma \in \Sigma_m^d\}$, and $\mathcal{R}_m^d = \{R(\sigma) : \sigma \in \Pi_m^d\}$. We now list some important properties of this collection of cubes:

- For each m, the two collections \mathcal{Q}_m^d and \mathcal{R}_m^d form covers of \mathbf{R}^d .
- If $Q_1, Q_2 \in \bigcup_{m=0}^{\infty} \mathcal{Q}_m^d$, then either Q_1 and Q_2 have disjoint interiors, or one cube is contained in the other. Similarly, if $R_1, R_2 \in \bigcup_{m=1}^{\infty} \mathcal{R}_m^d$, then either R_1 and R_2 have disjoint interiors, or one cube is contained in the other.

• For each cube $Q \in \mathcal{Q}_m$, there is a unique cube $Q^* \in \mathcal{R}_m$ with $Q \subset Q^*$. We refer to Q^* as the *parent cube* of Q. Similarly, if $R \in \mathcal{R}_m$, there is a unique cube in $R^* \in \mathcal{Q}_{m-1}$ with $R \subset R^*$, and we refer to R^* as the *parent cube* of R.

We say a set $E \subset \mathbf{R}^d$ is \mathcal{Q}_m discretized if it is a union of cubes in \mathcal{Q}_m^d , and we then let $\mathcal{Q}_m(E) = \{Q \in \mathcal{Q}_m^d : Q \subset E\}$. Similarly, we say a set $E \subset \mathbf{R}^d$ is \mathcal{R}_m discretized if it is a union of cubes in \mathcal{R}_m^d , and we then let $\mathcal{R}_m(E) = \{R \in \mathcal{R}_m^d : R \subset E\}$. We set $\Sigma_m(E) = \{\sigma \in \Sigma_m^d : Q(\sigma) \in \mathcal{Q}_m(E)\}$, and $\Pi_m(E) = \{\sigma \in \Pi_m^d : R(\sigma) \in \mathcal{R}_m(E)\}$. We say a cube $Q_1 \times \cdots \times Q_n \in \mathcal{Q}_m^{dn}$ is strongly non diagonal if there does not exist two distinct indices i, j, and a third index $k \in \Pi_m^d$, such that $R_k \cap Q_i, R_k \cap Q_j \neq \emptyset$.

4 A Family of Mollifiers

We now consider a family of C^{∞} mollifiers, which we will use to ensure the Fourier transform of the measure we study have appropriate decay.

Lemma 3. There exists a non-negative, C^{∞} function ψ supported on $[-1,1]^d$ such that

$$\int_{\mathbf{R}^d} \psi = 1,\tag{4.1}$$

and for each $x \in \mathbf{R}^d$,

$$\sum_{n \in \mathbf{Z}^d} \psi(x+n) = 1. \tag{4.2}$$

Proof. Let α be a non-negative, C^{∞} function compactly supported on [0,1], such that $\alpha(1/2 + x) = \alpha(1/2 - x)$ for all $x \in \mathbf{R}$, $\alpha(x) = 1$ for $x \in [1/3, 2/3]$, and $0 \le \alpha(x) \le 1$ for all $x \in \mathbf{R}$. Then define β to be the non-negative, C^{∞} function supported on [-1/3, 1/3] defined for $x \in [-1/3, 1/3]$ by

$$\beta(x) = 1 - \alpha(|x|) = 1 - \alpha(1 - |x|).$$

Symmetry considerations imply that $\int_{\mathbf{R}} \alpha + \beta = 1$, and for each $x \in \mathbf{R}$,

$$\sum_{m \in \mathbf{Z}} \alpha(x+m) + \beta(x+m) = 1. \tag{4.3}$$

If we set

$$\psi_0(x) = \alpha(x) + \beta(x),$$

In one dimension, we can set $\psi = \psi_0$. In general, define $\psi(x_1, \ldots, x_d) = \psi_0(x_1) \ldots \psi_0(x_d)$.

Fix some choice of ψ given by Lemma 3. Since ψ is C^{∞} and compactly supported, then for each $t \in [0, \infty)$, we conclude

$$\sup_{\xi \in \mathbf{R}^d} |\xi|^t |\widehat{\psi}(\xi)| < \infty. \tag{4.4}$$

Now we rescale the mollifier. For each integer $m \ge 1$, we let

$$\psi_m(x) = l_m^{-d} \cdot \psi(l_m \cdot x).$$

Then ψ_m is supported on $[-l_m, l_m]^d$. Equation (4.1) implies that for each $x \in \mathbf{R}^d$,

$$\int_{\mathbf{R}^d} \psi_m = 1. \tag{4.5}$$

Equation (4.2) implies

$$\sum_{n \in \mathbf{Z}^d} \psi(x + l_m \cdot n) = l_m^{-d}. \tag{4.6}$$

An important property of the rescaling in the frequency domain is that for each $\xi \in \mathbf{R}^d$,

$$\widehat{\psi_m}(\xi) = \widehat{\psi}(l_m \cdot \xi),\tag{4.7}$$

In particular, (4.7) implies that for each $t \ge 0$,

$$\sup_{|\xi|\in\mathbf{R}^d} |\widehat{\psi_m}(\xi)||\xi|^t = l_m^{-t} \sup_{|\xi|\in\mathbf{R}^d} |\widehat{\psi}(\xi)||\xi|^t.$$
(4.8)

Thus $\widehat{\psi}_m$ decays sharply outside of the box $[-l_m^{-1}, l_m^{-1}]^d$. Intuitively, $\{\psi_m\}$ is a 'uniform' family of wave packets.

5 Why Previous Work Fails to Produce Salem Sets

As in our previous paper, our proof of Theorem 1 will involve constructing a configuration avoiding set X by considering a nested decreasing family of sets $\{X_m : m \geq 0\}$, where $X_m \subset [0,1]^d$ is a \mathcal{Q}_m discretized set, and then

setting $X = \bigcap_{m \geq 0} X_m$. We find a strong cover of Z by sets $\{B_m\}$, where B_m is \mathcal{Q}_m discretized. Provided X_m^d is disjoint from strongly non-diagonal cubes in B_m , we conclude that for any n distinct elements $x_1, \ldots, x_n \in X$, $(x_1, \ldots, x_n) \notin Z$. We now show that the technique of our last paper as stated fails to produce Salem sets.

Let us recap the approach of our last paper. To form X_{m+1} , we chose a cube $Q_R \in \mathcal{Q}_{m+1}(R)$ uniformly at random, for each $R \in \mathcal{R}_{m+1}(X_m)$. We then let $Y_{m+1} = \bigcup Q_R$. If $s \ge d$, and

$$K_{m+1} \approx M_{m+1}^{\frac{s-d}{dn-s}},$$
 (5.1)

then with non-zero probability, we proved there is $X_{m+1} \subset Y_{m+1}$ such that X_{m+1}^d avoids strongly non-diagonal cubes in B_{m+1} , and X_{m+1} contains at least half of the cubes in $\mathcal{Q}_{m+1}(Y_{m+1})$. Then X_{m+1} will be the union of at least M_{m+1}^{-d} cubes with sidelength l_{m+1} . Provided that $K_{m+1}, M_{m+1} \gg K_1, M_1, \ldots, K_m, M_m$, we have

$$M_{m+1}^{-d} \approx r_{m+1}^{-d} \approx l_{m+1}^{-\frac{dn-s}{n-1}}.$$

Thus X has lower Minkowski dimension at most (dn - s)/(n - 1), and a more involved analysis shows the set has Hausdorff dimension exactly equal to (dn - s)/(n - 1).

The approach detailed in the last paragraph is *not* guaranteed to produce a set with Fourier dimension t. Because X_{m+1} is random, it exhibits psuedorandomness properties with high probability. In particular, it supports probability measures whose Fourier transform decays fast. However, since the choice of the set Y_{m+1} is *not* chosen randomly from X_{m+1} , depending heavily on the set Z and the discretized set B_{m+1} , the set Y_{m+1} will in general not possess psuedorandomness properties. For instance, if μ is the probability measure induced by normalizing Lebesgue measure restricted to X_{m+1} , then with high probability,

$$\|\widehat{\mu}\|_{L^{\infty}(\mathbf{R}^d)} \approx l_m^t.$$

If ν is the probability measure induced by normalizing Lebesgue measure restricted to Y_{m+1} , then it is still possible for us to have

$$\|\widehat{\nu}\|_{L^{\infty}(\mathbf{R}^d)} \gtrsim 1.$$

For instance, this will be true if $Q_{m+1}(X_{m+1}) - Q_{m+1}(Y_{m+1})$ is a thickening of a subset of an arithmetic progression. Thus the method of our previous paper is not able to reliably produce Salem sets without further analysis on the psuedorandom properties of the sets $\{B_m\}$ we have to avoid.

In this paper, we take a different approach which avoids us having to analyze the psuedorandomness of the sets B_m . Instead of (5.1), we choose

$$K_{m+1} \approx M_{m+1}^{\frac{s}{dn-s}}.$$

Notice that $M_{m+1}^{\frac{s}{dn-s}} \geqslant M_{m+1}^{\frac{s-d}{dn-s}}$, so the set Y_{m+1} we will obtain will be a thinner set than X_m . In particular, Y_{m+1} will be covered by at most M_{m+1}^{-d} sidelength l_{m+1} cubes, and if $K_{m+1}, M_{m+1} \gg K_1, M_1, \ldots, K_m, M_m$;

$$r_{m+1}^{-d} \approx l_{m+1}^{-t}$$

sidelength l_{m+1} cubes, which implies X will have upper Minkowski dimension at most t. However, as a result, because the set Y_{m+1} is thinner, we find that Y_{m+1}^d is disjoint from the cubes in B_{m+1} with high probability. In particular, we can set $X_{m+1} = Y_{m+1}$. This means that X_{m+1} will be pseudorandom, and we should therefore expect X to be a Salem set of dimension t. The remainder of this paper is devoted to showing that these heuristics are correct.

6 Discrete Lemma

We now proceed to solve a discretized version of Theorem 1.

Lemma 4. Fix $s \in [1, dn)$ and $\varepsilon \in [0, (dn - s)/2)$. Let $T \subset [0, 1]^d$ be a non-empty, \mathcal{Q}_m discretized set, and let μ_T be a smooth measure compactly supported on T. Let $B \subset \mathbf{R}^{dn}$ be a non-empty, \mathcal{Q}_{m+1} discretized set such that

$$\#(\mathcal{Q}_{m+1}(B)) \leqslant (1/l_{m+1})^{s+\varepsilon}. \tag{6.1}$$

Then there exists a large constant $C(\mu_T, l_m, n, d, s, \varepsilon)$, such that if

$$K_{m+1}, M_{m+1} \geqslant C(\mu_T, l_m, n, d, s, \varepsilon, l_m), \tag{6.2}$$

and

$$M_{m+1}^{\frac{s}{dn-s}+c\varepsilon} \leqslant K_{m+1} \leqslant 2M_{m+1}^{\frac{s}{dn-s}+c\varepsilon}, \tag{6.3}$$

where

$$c = \frac{6dn}{(dn-s)^2},$$

then there exists a Q_{m+1} discretized set $S \subset T$ together with a smooth probability measure supported on S such that

(A) For any strongly non-diagonal cube

$$Q = Q_1 \times \cdots \times Q_n \in \mathcal{Q}_{m+1}(B),$$

there exists i such that $Q_i \notin \mathcal{Q}_{m+1}(S)$.

(B)
$$\mu_S(\mathbf{R}^d) \geqslant \mu_T(\mathbf{R}^d) - M_{m+1}^{-1/2}$$

(C) If
$$|k| \le 10l_{m+1}^{-d}$$
, $|\widehat{\mu}_T(k) - \widehat{\mu}_S(k)| \le r_{m+1}^{d/2} \log(M_{m+1})$.

(D) If
$$|k| \ge 10l_{m+1}^{-d}$$
, $|\widehat{\mu}_S(k)| \le |k|^{-d/2}$.

Remark 5. To make the statement of (4) more clean, we have hidden the explicit choice of constant $C(\mu_T, l_m, n, d, s, \varepsilon)$. But this constant can certainly be made explicit; such a choice can be made by ensuring that (6.2) implies (6.5), (6.11), (6.17), (6.27), (6.28), and (6.29) all hold.

Proof of Lemma 4. First, we describe the construction of the set S, and the measure μ_S . For each string $\sigma \in \Pi^d_{m+1}$, let j_{σ} be a random integer vector chosen from $\{0,\ldots,K_{m+1}-1\}^d$, such that the family $\{j_{\sigma}:\sigma\in\Pi^d_{m+1}\}$ is an independent family of random variables. Then it is certainly true that for any $j\in[K_{m+1}]^d$,

$$\mathbf{P}(j_{\sigma} = j) = K_{m+1}^{-d}. (6.4)$$

Then $\sigma j_{\sigma} \in \Sigma_{m+1}^d$. We can thus define a measure μ_S such that, for each $x \in \mathbf{R}^d$,

$$d\mu_S(x) = r_{m+1}^d \sum_{\sigma \in \Pi_{m+1}^d} \psi_{m+1}(x - a(\sigma j_{\sigma})) \cdot d\mu_T(x).$$

If we set

$$S = \bigcup \{Q \in \mathcal{Q}_{m+1}^d : \mu_S(Q) > 0\},$$

then S is \mathcal{Q}_{m+1} discretized, μ_S is supported on S, and $S \subset T$. Our goal is to show that, with non-zero probability, some choice of the family of indices $\{j_{\sigma} : \sigma \in \Pi^d_{m+1}\}$ yields a set S and a measure μ_S satisfying Properties (A) and (B) of Lemma 4. In our calculations, it will help us to decompose the

measure μ_S into components roughly supported on sidelength r_{m+1}^d cubes. For each $\sigma \in \Pi_{m+1}(T)$, define a measure μ_{σ} such that for each $x \in \mathbf{R}^d$,

$$d\mu_{\sigma}(x) = r_{m+1}^d \psi_{m+1}(x - a(\sigma j_{\sigma})) \cdot d\mu_T(x).$$

Then $\mu_S = \sum_{\sigma \in \Pi_{m+1}^d(T)} \mu_{\sigma}$. We shall split the proof of Properties (A), (B), and (C) into several more managable lemmas.

Lemma 6. If

$$M_{m+1} \geqslant \left(3^d \sqrt{d} \cdot l_m \|\nabla \mu\|_{L^{\infty}(\mathbf{R}^d)}\right)^2, \tag{6.5}$$

then $\mu_S(\mathbf{R}^d) \geqslant \mu_T(\mathbf{R}^d) - M_{m+1}^{-1/2}$.

Proof. Fix $\sigma \in \Pi_{m+1}^d$. If $j_0, j_1 \in \{0, \dots, K_{m+1} - 1\}^d$, then

$$|a(\sigma j_0) - a(\sigma j_1)| = |j_0 - j_1| \cdot l_{m+1} \le (\sqrt{d} \cdot K_{m+1}) \cdot l_{m+1} = \sqrt{d} \cdot r_{m+1}. \quad (6.6)$$

Together with (4.5), (6.6) implies

$$\left| r_{m+1}^{d} \int_{\mathbf{R}^{d}} \psi_{m+1}(x - a(\sigma j_{0})) \mu_{T}(x) - r_{m+1}^{d} \int_{\mathbf{R}^{d}} \psi_{m+1}(x - a(\sigma j_{1})) \mu_{T}(x) \right|$$

$$\leq r_{m+1}^{d} \int_{\mathbf{R}^{d}} \psi_{m+1}(x) \left| \mu_{T}(x + a(\sigma j_{0})) - \mu_{T}(x + a(\sigma j_{1})) \right|$$

$$\leq \sqrt{d} \cdot r_{m+1}^{d+1} \cdot \|\nabla \mu_{T}\|_{L^{\infty}(\mathbf{R}^{d})} \int_{\mathbf{R}^{d}} \psi_{m+1}$$

$$= \sqrt{d} \cdot r_{m+1}^{d+1} \cdot \|\nabla \mu_{T}\|_{L^{\infty}(\mathbf{R}^{d})}.$$
(6.7)

Thus (6.7) implies that for each σ ,

$$|\mu_{\sigma}(\mathbf{R}^d) - \mathbf{E}(\mu_{\sigma}(\mathbf{R}^d))| \leq \sqrt{d} \cdot r_{m+1}^{d+1} ||\nabla \mu||_{L^{\infty}(\mathbf{R}^d)}.$$
 (6.8)

Furthermore, (4.6) implies

$$\sum_{\sigma \in \Pi_{m+1}^{d}} \mathbf{E}(\mu_{\sigma}(\mathbf{R}^{d}))$$

$$= r_{m+1}^{d} \sum_{(\sigma,j) \in \Sigma_{m+1}^{d}} \mathbf{P}(j_{\sigma} = j) \int_{\mathbf{R}^{d}} \psi_{m+1}(x - a(\sigma j_{\sigma})) d\mu_{T}(x)$$

$$= \frac{r_{m+1}^{d}}{K_{m+1}^{d}} \int_{\mathbf{R}^{d}} \left(\sum_{(\sigma,j) \in \Sigma_{m+1}^{d}} \psi_{m+1}(x - a(\sigma j)) \right) d\mu_{T}(x)$$

$$= \frac{r_{m+1}^{d} l_{m+1}^{-d}}{K_{m+1}^{d}} \mu_{T}(\mathbf{R}^{d}) = \mu_{T}(\mathbf{R}^{d}).$$
(6.9)

For all but at most $3^d r_{m+1}^{-d}$ indices $\sigma \in \Pi_{m+1}^d$, $\mu_{\sigma} = 0$ almost surely. Thus we can apply the triangle inequality together with (6.8) and (6.9) to conclude that

$$|\mu_{S}(\mathbf{R}^{d}) - \mu_{T}(\mathbf{R}^{d})| = \left| \sum_{\sigma \in \Pi_{m+1}^{d}} \left[\mu_{\sigma}(\mathbf{R}^{d}) - \mathbf{E}(\mu_{\sigma}(\mathbf{R}^{d})) \right] \right|$$

$$\leq \sum_{\sigma \in \Pi_{m+1}^{d}} \left| \mu_{\sigma}(\mathbf{R}^{d}) - \mathbf{E}(\mu_{\sigma}(\mathbf{R}^{d})) \right|$$

$$\leq \left(3^{d} r_{m+1}^{-d} \right) \left(\sqrt{d} \cdot r_{m+1}^{d+1} \| \nabla \mu \|_{L^{\infty}(\mathbf{R}^{d})} \right)$$

$$= \left(3^{d} \sqrt{d} \| \nabla \mu \|_{L^{\infty}(\mathbf{R}^{d})} \right) \cdot r_{m+1}$$

$$= \frac{3^{d} \sqrt{d} \cdot l_{m} \| \nabla \mu \|_{L^{\infty}(\mathbf{R}^{d})}}{M_{m+1}}.$$

$$(6.10)$$

Thus (6.5) and (6.10) imply that, $|\mu_S(\mathbf{R}^d) - \mu_T(\mathbf{R}^d)| \leq M_{m+1}^{-1/2}$.

Lemma 7. If

$$M_{m+1} \geqslant \left(10 \cdot 3^{dn} \cdot l_m^{-(s+\varepsilon)}\right)^{1/\varepsilon},\tag{6.11}$$

then

$$P(S \text{ does not satisfies Property } (A)) \leq 1/10.$$

Proof. For any cube $Q \in \Sigma_{m+1}^d$, there are at most 3^d indices $\sigma j \in \Sigma_{m+1}^d$ such that $Q_{\sigma j} \cap Q \neq \emptyset$, and so a union bound together with (6.4) gives

$$\mathbf{P}(Q \in \mathcal{Q}_{m+1}(S)) \leqslant \sum_{Q_{\sigma j} \cap Q \neq \emptyset} \mathbf{P}(j_{\sigma} = j) \leqslant 3^{d} K_{m+1}^{-d}. \tag{6.12}$$

Without loss of generality, removing cubes from B if necessary, we may assume all cubes in B are strongly non-diagonal. Let $Q = Q_1 \times \cdots \times Q_n \in \mathcal{Q}_{m+1}(B)$ be such a cube. Since Q is strongly diagonal, the events $\{Q_k \in S\}$ are independent from one another for $k \in \{1, \ldots, n\}$, which together with (6.12) implies that

$$\mathbf{P}(Q \in \mathcal{Q}_{m+1}(S^n)) = \mathbf{P}(Q_1 \in S) \dots \mathbf{P}(Q_n \in S) \le 3^{dn} K_{m+1}^{-dn}.$$
 (6.13)

Taking expectations over all cubes in B, and applying (6.1) and (6.13) gives

$$\mathbf{E}(\#(\mathcal{Q}_{m+1}(B) \cap \mathcal{Q}_{m+1}(S^{n}))) \leqslant \#(\mathcal{Q}_{m+1}(B)) \cdot (3^{dn} K_{m+1}^{-dn})$$

$$\leqslant l_{m+1}^{-(s+\varepsilon)} (3^{dn} K_{m+1}^{-dn})$$

$$= \frac{3^{dn} l_{m}^{-(s+\varepsilon)} M_{m+1}^{s+\varepsilon}}{K_{m+1}^{dn-s-\varepsilon}}.$$
(6.14)

Since $\varepsilon \leq (dn - s)/2$, we conclude

$$(dn - s - \varepsilon) \left(\frac{s}{dn - s} + c\varepsilon \right) = s + \varepsilon \left(c(dn - s - \varepsilon) - \frac{s}{dn - s} \right)$$

$$\geqslant s + \varepsilon \left(\frac{c(dn - s)}{2} - \frac{s}{dn - s} \right)$$

$$= s + \varepsilon \frac{3dn - s}{dn - s} \geqslant s + 2\varepsilon.$$

Applying (6.3), we therefore conclude that

$$K_{m+1}^{dn-s-\varepsilon}\geqslant M_{m+1}^{(dn-s-\varepsilon)\left(\frac{s}{dn-s}+c\varepsilon\right)}\geqslant M_{m+1}^{s+2\varepsilon}$$

Combined with (6.11), we conclude that

$$\frac{3^{dn} l_m^{-(s+\varepsilon)} M_{m+1}^{s+\varepsilon}}{K_{m+1}^{dn-s-\varepsilon}} \leqslant \frac{3^{dn} l_m^{-(s+\varepsilon)}}{M_{m+1}^{\varepsilon}} \leqslant 1/10.$$
 (6.15)

We can then apply Markov's inequality with (6.14) and (6.15) to conclude

$$\mathbf{P}(\mathcal{Q}_{k+1}(B) \cap \mathcal{Q}_{k+1}(S^n) \neq \emptyset) = \mathbf{P}(\#(\mathcal{Q}_{k+1}(B) \cap \mathcal{Q}_{k+1}(S^n)) \geqslant 1)$$

$$\leq \mathbf{E}(\#(\mathcal{Q}_{m+1}(B) \cap \mathcal{Q}_{m+1}(S^n)))$$

$$\leq 1/10.$$

Lemma 8. Set $D = \{k \in \mathbf{Z}^d : |k| \le 10l_{m+1}^{-1}\}$. Then if

$$K_{m+1} \le M_{m+1}^{\frac{2dn}{dn-s}},$$
 (6.16)

and

$$M_{m+1} \ge \exp\left(\frac{10^7 (3dn - s)d^2}{dn - s}\right),$$
 (6.17)

then

$$\mathbf{P}\left(\|\widehat{\mu}_S - \widehat{\mu}_T\|_{L^{\infty}(D)} \geqslant r_{m+1}^{d/2} \log(M_{m+1})\right) \leqslant 1/10 \tag{6.18}$$

Proof. For each $\sigma \in \Pi_{m+1}^d$, and $k \in \mathbf{Z}$, define $X_{\sigma k} = \widehat{\mu_{\sigma}}(k) - \widehat{\mathbf{E}(\mu_{\sigma})}(k)$. Applying (4.2) gives

$$\sum_{\sigma \in \Pi_{m+1}^d} \widehat{\mathbf{E}(\mu_{\sigma})}(k) = \sum_{\sigma \in \Pi_{m+1}^d} l_{m+1}^d \sum_{j \in [K_{m+1}]^d} \int_{\mathbf{R}^d} e^{-2\pi i k \cdot x} \psi_{m+1}(x - a(\sigma j)) d\mu_T(x)$$

$$= \int_{\mathbf{R}^d} e^{-2\pi i k \cdot x} d\mu_T(x) = \widehat{\mu_T}(k).$$
(6.19)

For each σ and k, the standard (L^1, L^{∞}) bound on the Fourier transform, combined with (6.8), shows

$$||X_{\sigma k}||_{\psi_{2}(L)} \leq 10|X_{\sigma k}|$$

$$\leq 10[|\mu_{\sigma}(\mathbf{R}^{d})| + \mathbf{E}(\mu_{\sigma})(\mathbf{R}^{d})]$$

$$\leq 10^{2} \left(\mathbf{E}(\mu_{\sigma})(\mathbf{R}^{d}) + \sqrt{d} \cdot r_{m+1}^{d+1} ||\nabla \mu_{T}||_{L^{\infty}(\mathbf{R}^{d})}\right).$$
(6.20)

For a fixed k, the family of random variables $\{X_{\sigma k} : \sigma \in \Pi_{m+1}^d\}$ are independent. Furthermore, $\sum X_{\sigma k} = \widehat{\mu_S}(k) - \widehat{\mathbf{E}(\mu_S)}(k)$. Equations (4.6) and (6.4) imply that

$$\mathbf{E}(\widehat{\mu_{S}}(k)) = \frac{r_{m+1}^{d}}{K_{m+1}^{d}} \int_{\mathbf{R}^{d}} e^{-2\pi i k \cdot x} \left(\sum_{(\sigma,j) \in \Sigma_{m+1}^{d}} \psi_{m+1}(x - a(\sigma j)) \right) d\mu_{T}(x)$$

$$= \frac{r_{m+1}^{d} l_{m+1}^{-d}}{K_{m+1}^{d}} \int_{\mathbf{R}^{d}} e^{-2\pi i k \cdot x} d\mu_{T}(x)$$

$$= \frac{r_{m+1}^{d} l_{m+1}^{-d}}{K_{m+1}^{d}} \widehat{\mu_{T}}(k) = \widehat{\mu_{T}}(k).$$
(6.21)

Hoeffding's inequality, together with (6.20) and (6.21), imply that

$$\|\widehat{\mu}(k) - \widehat{\mu_T}(k)\|_{\psi_2(L)} \le 10^3 \sqrt{d} \left(\left(\sum \mathbf{E}(\mu_\sigma) (\mathbf{R}^d)^2 \right)^{1/2} + r_{m+1}^{d/2+1} \|\nabla \mu_T\|_{L^{\infty}(\mathbf{R}^d)} \right).$$
 (6.22)

Equation (4.5) shows

$$\mathbf{E}(\mu_{\sigma})(\mathbf{R}^{d}) = l_{m+1}^{d} \sum_{j \in [K_{m+1}]^{d}} \int \psi_{m+1}(x - a(ij)) d\mu_{T}(x)$$

$$\leq r_{m+1}^{d} \|\mu_{T}\|_{L^{\infty}(\mathbf{R}^{d})}.$$
(6.23)

Combining (6.22) and (6.23) gives

$$\|\widehat{\mu}(k) - \widehat{\mu_T}(k)\|_{\psi_2(L)} \le 10^3 \sqrt{d} \left[\|\mu_T\|_{L^{\infty}(\mathbf{R}^d)} + \|\nabla \mu_T\|_{L^{\infty}(\mathbf{R}^d)} \right] r_{m+1}^{d/2}.$$
 (6.24)

We can then apply a union bound over the set D, which has cardinality at most $10^{d+1}l_{m+1}^{-d}$, together with (6.24) to conclude that

$$\mathbf{P}\left(\|\widehat{\mu}_{S} - \widehat{\mu}_{T}\|_{L^{\infty}(D)} \geqslant r_{m+1}^{d/2} \log(M_{m+1})\right)
\leqslant 10^{d+2} \cdot l_{m+1}^{-d} \exp\left(-\frac{\log(M_{m+1})^{2}}{10^{7}d}\right)
= 10^{d+2} l_{m}^{-d} \exp\left(d\log(M_{m+1}K_{m+1}) - \frac{\log(M_{m+1})^{2}}{10^{7}d}\right).$$
(6.25)

Combined with (6.16) and (6.17), (6.25) implies

$$\mathbf{P}\left(\|\widehat{\mu}_{S} - \widehat{\mu}_{T}\|_{L^{\infty}(D)} \geqslant r_{m+1}^{d/2} \log(M_{m+1})\right) \leqslant 1/10.$$
 (6.26)

Thus $\widehat{\mu_S}$ and $\widehat{\mu_T}$ are highly likely to differ only by a negligible amount over small frequencies.

Since μ_T is compactly supported, we can define, for each t > 0,

$$A(t) = \sup_{\xi \in \mathbf{R}^d} |\widehat{\mu_T}(\xi)| |\xi|^t < \infty.$$

In light of (4.7), if we define, for each t > 0,

$$B(t) = \sup_{\xi \in \mathbf{R}^d} |\widehat{\psi}(\xi)| |\xi|^t,$$

then

$$\sup_{\xi \in \mathbf{R}^d} |\widehat{\psi_{m+1}}(\xi)| |\xi|^t = l_{m+1}^{-t} B(t).$$

Lemma 9. Suppose that

$$N_{m+1}^d \ge 10 \cdot 2^{3d/2+1} A(3d/2+1),$$
 (6.27)

$$N_{m+1}^d \ge \frac{10 \cdot 2^{3d}}{1 + d/2} A(3d/2 + 1),$$
 (6.28)

and

$$N_{m+1}^d \ge 10 \cdot 2^{7d/2+1} B(3d/2+1).$$
 (6.29)

then if $|\eta| \ge 10l_{m+1}^{-1}$,

$$|\widehat{\mu}_S(\eta)| \leqslant \frac{1}{|\eta|^{d/2}}.\tag{6.30}$$

Proof. Define a random measure

$$\alpha = r_{m+1}^d \sum_{\substack{\sigma \in \Pi_{m+1}^d \\ d(a(\sigma), T) \leq 2r_{m+1}^{-1}}} \delta_{a(ij_i)}.$$

Then $\mu_S = (\alpha * \psi_{m+1})\mu_T$. Thus we have $\widehat{\mu_S} = (\widehat{\alpha} \cdot \widehat{\psi_{m+1}}) * \widehat{\mu_T}$. The measure α is the sum of at most $2^d r_{m+1}^{-d}$ delta functions, scaled by r_{m+1}^d , so $\|\widehat{\alpha}\|_{L^{\infty}(\mathbf{R}^d)} \le \alpha(\mathbf{R}^d) \le 2^d$. Thus

$$|\widehat{\mu_S}(\eta)| \le 2^d \int |\widehat{\mu_T}(\eta - \xi)| |\widehat{\psi_{m+1}}(\xi)| d\xi. \tag{6.31}$$

If $|\xi| \leq |\eta|/2$, $|\eta - \xi| \geq |\eta|/2$, and since (4.5) implies $\|\widehat{\psi}_{m+1}\|_{L^{\infty}(\mathbf{R}^d)} \leq 1$, we find that for all t > 0,

$$\int_{0 \le |\xi| \le |\eta|/2} |\widehat{\mu_T}(\eta - \xi)| |\widehat{\psi_{m+1}}(\xi)| \ d\xi \le \frac{A(t)2^{t-d}}{|\eta|^{t-d}}.$$
 (6.32)

Set t = 3d/2 + 1. Equation (6.32), together with (6.27), implies

$$\int_{0 \leq |\xi| \leq |\eta|/2} |\widehat{\mu_T}(\eta - \xi)| |\widehat{\psi_{m+1}}(\xi)| d\xi$$

$$\leq \frac{A(3d/2 + 1)2^{1+d/2}|\eta|^{-1}}{|\eta|^{d/2}}$$

$$\leq \frac{A(3d/2 + 1)2^{1+d/2}l_{m+1}}{|\eta|^{d/2}}$$

$$\leq \frac{1}{10 \cdot 2^d \cdot |\eta|^{d/2}}.$$
(6.33)

Conversely, if $|\xi| \ge 2|\eta|$, then $|\eta - \xi| \ge |\xi|/2$, so for each t > d,

$$\int_{|\xi| \ge 2|\eta|} |\widehat{\mu_T}(\eta - \xi)| |\widehat{\psi}_{m+1}(\xi)| d\xi \leqslant \int_{|\xi| \ge 2|\eta|} \frac{A(t)2^t}{|\xi|^t}
\leqslant 2^d \int_{2|\eta|}^{\infty} r^{d-1-t} A(t)2^t
\leqslant \frac{4^d A(t)}{t - d} |\eta|^{d-t}.$$
(6.34)

Set t = 3d/2 + 1. Equation (6.28), applied to (6.34), allows us to conclude

$$\int_{|\xi| \ge 2|\eta|} |\widehat{\mu_T}(\eta - \xi)||\widehat{\psi}_{m+1}(\xi)| \ d\xi \le \frac{1}{10 \cdot 2^d \cdot |\eta|^{s/2}}.$$
 (6.35)

Finally, if t > 0, we use the fact that $\|\widehat{\mu}_T\|_{L^{\infty}(\mathbf{R}^d)} \leq 1$ to conclude that

$$\int_{|\eta|/2 \le |\xi| \le 2|\eta|} |\widehat{\mu_T}(\eta - \xi)||\widehat{\psi_{m+1}}(\xi)| d\xi \le \frac{2^{d+t}B(t)}{|\eta|^{t-d}}.$$
 (6.36)

Set t = 3d/2 + 1. Then (6.36) and (6.29) imply

$$\int_{|\eta|/2 \le |\xi| \le 2|\eta|} |\widehat{\mu_T}(\eta - \xi)||\widehat{\psi_{m+1}}(\xi)| d\xi \le \frac{1}{10 \cdot 2^d \cdot |\eta|^{d/2}}.$$
 (6.37)

It then suffices to sum up (6.33), (6.35), and (6.37), and apply (6.31).

Proof of Lemma 4, Continued. Let us now put all our calculations together. In light of Lemma 7 and Lemma 8, there exists some choice of j_{σ} for each σ , and a resultant non-random pair (μ_S, S) such that S satisfies Property (A) of the Lemma, and μ_S satisfies (6.18), implying that μ_S satisfies Property (C) of the Lemma. But Lemma 6 shows that μ_S always satisfies Property (B), and Lemma (9) shows Property (D) is also always satisfied. This completes the proof.

7 Construction of the Salem Set

Let us now choose the parameters to construct our configuration avoiding set. First, we fix some preliminary parameters. Write $Z \subset \bigcup_{i=1}^{\infty} Z_i$, where Z_i has lower Minkowski dimension at most s for each i. Then choose an infinite sequence $\{i_m : m \ge 1\}$ which repeats every positive integer infinitely many times. Also, choose an arbitrary, decreasing sequence of positive numbers $\{\varepsilon_m : m \ge 1\}$, with $\varepsilon_m < (dn-s)/2$ for each m. We choose our parameters $\{M_m\}$ and $\{K_k\}$ inductively. First, set $X_0 = [0,1]^d$, and μ_0 an arbitrary smooth probability measure supported on X_0 . At the mth step of our construction, we have already found a set X_{m-1} and a measure μ_{m-1} . We then choose K_m and M_m such that

$$K_m, M_m \geqslant C(\mu_{m-1}, n, d, s, \varepsilon_m),$$

such that

$$M_m^{\frac{s}{dn-s}+c\varepsilon_m} \leqslant K_m \leqslant 2M_m^{\frac{s}{dn-s}+c\varepsilon},$$

and such that the set Z_{i_m} is covered by at most $l_m^{-(s+\varepsilon_m)}$ cubes in \mathcal{Q}_m , the union of which, we define to be equal to B_m . We can then apply Lemma 4 with $\varepsilon = \varepsilon_m$, $T = X_{m-1}$, $\mu_T = \mu_{m-1}$, and $B = B_m$. This produces a \mathcal{Q}_{m+1} discretized set $S \subset T$, and a measure μ_S supported on S. We define $X_m = S$, and $\mu_m = \mu_S$.

Thus we recursively obtain an infinite sequence $\{X_m\}$. We set $X = \bigcap X_m$. Just as in our previous paper, it is easy to see X must be a configuration avoiding set. It remains to show that X is a Salem set.

8 Proof that X is Salem

We begin by showing that the sequence of measures $\{\mu_m\}$ converge weakly to some measure μ .

Lemma 10. There exists a measure μ supported on X such that $\mu_m \to \mu$ weakly.

Proof. Given that the mass of the measures is bounded, it suffices to show that the sequence $\{\mu_m\}$ is Cauchy, i.e. that for each real-valued continuous function $f \in C(\mathbf{R})$, the sequence

$$\int f(x)d\mu_m(x)$$

is Cauchy. But

But since the measures μ_m are all supported on $[0,1]^d$, we may assume that f is compactly supported, and in particular, is uniformly continuous. Thus for each $\varepsilon > 0$, there is M such that if $m \ge M$, we can find a sequence of values $\{c_Q : Q \in \mathcal{Q}_m^d\}$ such that if $x \in Q$, $|f(x) - c_Q| \le \varepsilon$. But this means that

$$\sum (a_Q - \varepsilon) \mathbf{I}_Q \leqslant f \leqslant \sum (a_Q + \varepsilon) \mathbf{I}_Q.$$

Thus

As in my thesis, it is easy to prove that the measures μ_k converge weakly to some measure μ weakly. Repeated applications of Property (C) of Lemma

4 imply

$$\mu(\mathbf{R}^d) = \lim_{m \to \infty} \mu_m(\mathbf{R}^d) \geqslant 1 - \sum_{m=1}^{\infty} M_m^{-1/2}.$$

In particular, μ is a non-zero measure if the sequence $\{M_m\}$ is rapidly increasing. Moreover, for each $k \in \mathbf{Z}^d$,

$$\widehat{\mu}(k) = \lim_{m \to \infty} \widehat{\mu_m}(k).$$

Thus

$$|\widehat{\mu}(k)| \leq |\widehat{\mu}_0(k)| + \sum_{m=0}^{\infty} |\widehat{\mu}_{m+1}(k) - \widehat{\mu}_m(k)|.$$

Fix $\varepsilon > 0$. Since $l_m \leq 2^{-m}/10$, we find that for $m \geq \log(k)$, $|k| \leq 10l_{m+1}^{-1}$. Thus

$$\begin{split} \sum_{m=0}^{\infty} |\widehat{\mu_{m+1}}(k) - \widehat{\mu_{m}}(k)| &\leq 2 \log(k) |k|^{-d/2} + \sum_{m=\log(k)}^{\infty} r_{m+1}^{d/2} \log(M_{m+1}) \\ &\lesssim_{\varepsilon} |k|^{\varepsilon - t/2} \left(1 + \sum_{m=\log(k)}^{\infty} |k|^{t/2 - \varepsilon} r_{m+1}^{d/2} \log(M_{m+1}) \right) \\ &\leq |k|^{\varepsilon - t/2} \left(1 + 10^{t/2 - \varepsilon} \sum_{m=\log(k)}^{\infty} l_{m+1}^{\varepsilon - t/2} r_{m+1}^{d/2} \log(M_{m+1}) \right) \\ &\lesssim_{\varepsilon} |k|^{\varepsilon - t/2} \left(1 + \sum_{m=\log(k)}^{\infty} \frac{1}{K_{m+1}^{\varepsilon}} \frac{K_{m+1}^{t/2}}{M_{m+1}^{d/2 - t/2}} \right) \\ &\lesssim |k|^{\varepsilon - t/2} \left(1 + \sum_{m=\log(k)}^{\infty} \frac{M_{m+1}^{c\varepsilon_{m}(t/2)}}{K_{m+1}^{\varepsilon}} \frac{M_{m+1}^{(t/2)\left(\frac{s}{dn-s}\right)}}{M_{m+1}^{d/2 - t/2}} \right) \\ &= |k|^{\varepsilon - t/2} \left(1 + \sum_{m=\log(k)}^{\infty} \frac{M_{m+1}^{c\varepsilon_{m}(t/2)}}{K_{m+1}^{\varepsilon}} \frac{M_{m+1}^{(t/2)\left(\frac{s}{dn-s}\right)}}{M_{m+1}^{d/2 - t/2}} \right) \\ &\leq |k|^{\varepsilon - t/2} \left(1 + \sum_{m=\log(k)}^{\infty} \frac{M_{m+1}^{c\varepsilon_{m}(t/2)}}{K_{m+1}^{\varepsilon}} \frac{M_{m+1}^{(t/2)\left(\frac{s}{dn-s}\right)}}{M_{m+1}^{d/2 - t/2}} \right) \\ &\leq |k|^{\varepsilon - t/2} \left(1 + \sum_{m=\log(k)}^{\infty} \frac{M_{m+1}^{c\varepsilon_{m}(t/2)}}{K_{m+1}^{\varepsilon}} \right) \\ &\leq |k|^{\varepsilon - t/2} \left(1 + \sum_{m=\log(k)}^{\infty} \frac{M_{m+1}^{c\varepsilon_{m}(t/2)}}{K_{m+1}^{\varepsilon}} \right) \\ &\leq |k|^{\varepsilon - t/2} \left(1 + \sum_{m=\log(k)}^{\infty} \frac{M_{m+1}^{c\varepsilon_{m}(t/2)}}{K_{m+1}^{\varepsilon}} \right) \\ &\leq |k|^{\varepsilon - t/2} \left(1 + \sum_{m=\log(k)}^{\infty} \frac{M_{m+1}^{c\varepsilon_{m}(t/2)}}{K_{m+1}^{\varepsilon}} \right) \\ &\leq |k|^{\varepsilon - t/2} \left(1 + \sum_{m=\log(k)}^{\infty} \frac{M_{m+1}^{c\varepsilon_{m}(t/2)}}{K_{m+1}^{\varepsilon}} \right) \\ &\leq |k|^{\varepsilon - t/2} \left(1 + \sum_{m=\log(k)}^{\infty} \frac{M_{m+1}^{c\varepsilon_{m}(t/2)}}{K_{m+1}^{\varepsilon}} \right) \\ &\leq |k|^{\varepsilon - t/2} \left(1 + \sum_{m=\log(k)}^{\infty} \frac{M_{m+1}^{c\varepsilon_{m}(t/2)}}{K_{m+1}^{\varepsilon}} \right) \\ &\leq |k|^{\varepsilon - t/2} \left(1 + \sum_{m=\log(k)}^{\infty} \frac{M_{m+1}^{c\varepsilon_{m}(t/2)}}{K_{m+1}^{\varepsilon}} \right) \\ &\leq |k|^{\varepsilon - t/2} \left(1 + \sum_{m=\log(k)}^{\infty} \frac{M_{m+1}^{c\varepsilon_{m}(t/2)}}{K_{m+1}^{\varepsilon}} \right) \\ &\leq |k|^{\varepsilon - t/2} \left(1 + \sum_{m=\log(k)}^{\infty} \frac{M_{m+1}^{\varepsilon_{m}(t/2)}}{K_{m+1}^{\varepsilon}} \right) \\ &\leq |k|^{\varepsilon - t/2} \left(1 + \sum_{m=\log(k)}^{\infty} \frac{M_{m+1}^{\varepsilon_{m}(t/2)}}{K_{m+1}^{\varepsilon}} \right) \\ &\leq |k|^{\varepsilon - t/2} \left(1 + \sum_{m=\log(k)}^{\infty} \frac{M_{m+1}^{\varepsilon_{m}(t/2)}}{K_{m+1}^{\varepsilon}} \right) \\ &\leq |k|^{\varepsilon - t/2} \left(1 + \sum_{m=\log(k)}^{\infty} \frac{M_{m+1}^{\varepsilon_{m}(t/2)}}{K_{m+1}^{\varepsilon}} \right) \\ &\leq |k|^{\varepsilon - t/2} \left(1 + \sum_{m=\log(k)}^{\infty} \frac{M_{m+1}^{\varepsilon_{m}(t/2)}}{K_{m+1}^{\varepsilon_{m}(t/2)}} \right)$$

The last inequality follows because $\varepsilon_m \to 0$, and so the series is summable if the sequence $\{K_m\}$ increases rapidly enough. Since μ_0 is smooth and compactly supported, we also find $|\widehat{\mu}_0(k)| \lesssim_{\varepsilon} |k|^{\varepsilon - t/2}$. This gives decay for $\widehat{\mu}$ for each $\varepsilon > 0$, and so we conclude X has Fourier dimension at least t.

Because X_m is the union of $(M_1
ldots M_m)^d$ sidelength l_m cubes, one can easily show using (6.3) that the lower Minkowski dimension of X is upper bounded by (dn-s)/n. Thus X has Hausdorff dimension (dn-s)/n as well, and so X is Salem.

9 Körner's Work

The last sections gives a first, positive result finding Salem sets avoiding rough configurations. However, given the same assumptions, one can find a set X with Hausdorff dimension (dn - s)/(n - 1) avoiding configurations. Improving the dimension to obtain this result requires a deeper knowledge of the stochastic behaviour of the set $Q_{m+1}(B) \cap Q_{m+1}(S^n)$, when N_{m+1} is chosen significantly smaller relative to M_{m+1} . In the next section, we provide a summary of an argument due to Körner, which deals with a very similar situation.

References

[1] Roman Vershynin, *High Dimensional Probability*, Cambridge Series in Statistical and Probabilistic Mathematics, 2018.