SEONJIN NA

Postdoctoral Fellow at Georgia Tech Phone: +1 404-259-3240 Email: seonjin.na@gatech.edu

Github: https://github.com/seonjinnaWebsite: https://seonjinna.github.io

RESEARCH INTERESTS

My research interests lie in GPU architecture, security, and accelerated systems for machine learning. During my Ph.D. studies, I focused on developing a secure architecture aimed at extending trusted execution environments (TEEs) to accelerators such as GPUs and NPUs, with an emphasis on reducing the performance overhead associated with security features. Currently, I am actively engaged in extending my research field to address various challenges in the GPU architecture, security, and accelerating large language models.

EMPLOYMENT

Georgia Institute of Technology

June. 2023 - present

Postdoctoral Fellow, School of Computer Science

Supervisor: Hyesoon Kim

Microsoft Research Asia Mar. 2019 - June. 2019

Visiting Fellow

Supervisors: Lintao Zhang & Yunxin Liu

EDUCATION

KAISTMar. 2018 - Feb. 2023

Doctor of Philosophy, School of Computing

Advisor: Jaehyuk Huh

Mar. 2016 - Feb. 2018

Master of Science, School of Computing

Advisor: Jaehyuk Huh

Sogang University Mar. 2012 - Feb. 2016

Bachelor of Science, Computer Science

Summa Cum Laude

Publications

- · <u>Seonjin Na</u>, Geonhwa Jeong, Byunghoon Ahn, Jeffrey Young, Tushar Krishina, Hyesoon Kim, "Understanding Performance Implications of LLM Inference on CPUs", *IEEE International Symposium on Workload Characterization* (IISWC), Sep 2024.
- · Euijun Chung, Seonjin Na, Hyesoon Kim, "Allegro: GPU Simulation Acceleration for Machine Learning Workloads", MLArchSys Workshop in the 51th International Symposium on Computer Architecture (MLArchsys Workshop in ISCA), June 2024.
- · Yuan Feng, **Seonjin Na**, Hyesoon Kim, and Hyeran Jeon, "Barre Chord: Efficient Virtual Memory Translation for Multi-Chip-Module GPUs", the 51th International Symposium on Computer Architecture (ISCA), June 2024.

- · <u>Seonjin Na</u>, Jungwo Kim, Sunho Lee, and Jaehyuk Huh, "Supporting Secure Multi-GPU Computing with Dynamic and Batched Metadata Management", the 30th IEEE International Symposium on High-Performance Computer Architecture (HPCA), March 2024.
- · Jungwoo Kim, <u>Seonjin Na</u>, Sanghyeon Lee, Sunho Lee, and Jaehyuk Huh, "Improving Data Reuse in NPU On-chip Memory with Interleaved Gradient Order for DNN Training", the 56th IEEE/ACM International Symposium on Microarchitecture (MICRO), October 2023.
- · Sunho Lee, <u>Seonjin Na</u>, Jungwoo Kim, Jongse Park, and Jaehyuk Huh, "Tunable Memory Protection for <u>Secure Neural Processing Units</u>", the 40th IEEE International Conference on Computer Design (ICCD), October 2022.
- · Sunho Lee, Jungwoo Kim, **Seonjin Na**, Jongse Park, and Jaehyuk Huh, "TNPU: Supporting Trusted Execution with Tree-less Integrity Protection for Neural Processing Unit", the 28th IEEE International Symposium on High-Performance Computer Architecture (HPCA), February 2022.
- · Seonjin Na, Sunho Lee, Yeonjae Kim, Jongse Park, and Jaehyuk Huh, "Common Counters: Compressed Encryption Counters for Secure GPU Memory", the 27th IEEE International Symposium on High-Performance Computer Architecture (HPCA), Feburary 2021.

RESEARCH EXPERIENCES

Characterizing LLM inference on latest CPUs

Feb. 2024 - Present

- · Investigated the performance implications of LLM inference on latest CPU hardware.
- · Compared LLM inference performance on CPUs with that on GPUs across various configurations.
- · Contributed as **first author**.
- · Published in IISWC 2024

Accelerating GPU Simulation for Machine Learing Workloads

April. 2024 - Present

- · Investigated the limitations of prior studies designed for GPU simulation acceleration.
- · Proposed a statistical-based sampling scheme to reduce GPU simulation time significantly.
- · Contributed as **second author**.
- · Published in MLArchSys Workshop in ISCA 2024

Efficient Row-hammer Attack Mitigation

Sep. 2023 - Present

- · Investigated the limitations of previous row-hammer mitigation mechanisms.
- · Proposed row-hammer mitigation with lower metadata overhead compared to previous works.
- · Contributed as **second author**.
- · Work-in-progress

SSD Aware GPU Thread Block Scheduling

Sep. 2023 - Present

- · Investigated the problem of previous GPU memory safety mechanisms.
- · Proposed power-side channel attack mitigation mechanisms for GPUs.
- · Contributed as **second author**.
- · Under Review

Efficient GPU Address Translation for MCM-GPU Systems

Sep. 2023 - Present

- · Investigated performance implications of address translation on MCM-GPU system.
- · Proposed efficient address translation mechanism for the MCM-GPU system.
- · Contributed as **second author**.
- · Published in ISCA 2024

GPU Power Side-channel Attack Mitigation

June. 2023 - Present

· Investigated the problem of previous GPU memory safety mechanisms.

- · Proposed power-side channel attack mitigation mechanisms for GPUs.
- · Contributed as **second author**.
- · Under Review

Hardware-based Efficient GPU Memory Safety

June. 2023 - Present

- · Investigated the problem of previous GPU memory safety mechanisms.
- · Proposed a practical GPU memory safety mechanism with low-performance overhead.
- · Contributed as **fourth author**.
- · Under Review

Privacy-aware ML Program Cloning

June. 2023 - Present

- · Investigated the privacy-aware tracing mechanism to prevent DNN model extraction attacks.
- · Contributed as **first author**.
- $\cdot \ \, \textbf{Work-in-progress}$

NPU Side-channel Attack Protection

Jan. 2022 - Present

- · Investigated the side-channel attack-based vulnerability of execution on NPUs.
- · Contributed as second author
- · Work-in-progress

Dynamic Secure-granularity Management for Heterogeneous System Jan. 2022 - Present

- · Investigated the performance impacts of data protection techniques on heterogeneous processors.
- · Contributed as **second author**
- · Under Review

Efficient On-chip Memory Management and Scheduling on NPUs Dec. 2021 - Jul. 2023

- · Analyzed the data dependency of tensor computations in DNN training.
- · Proposed mechanisms to maximize data reuse in NPU on-chip memory.
- \cdot Contributed as \mathbf{second} author
- · Published in MICRO 2023

Efficient Data Protection Technique for Multi-GPU Systems

Sep. 2021 - Present

- · Investigated the performance impact of prior data protection methods on a multi-GPU system.
- · Analyzed the communication characteristics of GPU workloads.
- · Proposed an efficient data protection technique to minimize the secure communication overhead.
- · Contributed as **first author**.
- · Published in HPCA 2024

Efficient Memory Protection Mechanism for Secure NPU

Sep. 2020 -March. 2021

- · Investigated a significant performance degradation of CPU memory protection schemes on NPUs.
- · Proposed selective memory protection and multi-granular counter mode encryption techniques.
- · Contributed as **second author**.
- · Published in ICCD 2022

Trusted NPU Architecture

Sep. 2019 - Sep. 2021

- · Extended the existing CPU TEE design to isolate the NPU execution context from OS.
- · Proposed a tree-less integrity protection by exploiting a tensor-based NPU execution model.
- · Contributed as third author.
- · Published in **HPCA 2022**

Efficient Memory Protection Mechanism for Secure GPU Memory Sep. 2017 - Sep. 2020

- · Analyzed memory update behaviors of GPU benchmarks and real-world applications using the NVbit.
- · Proposed efficient GPU data protection scheme to significantly reduce performance degradation.

- · Contributed as **first author**.
- · Published in **HPCA 2021**

PATENTS

Dynamic One-time Pad Table Management for Secure Multi-GPU Communication

- · Jaehyuk Huh, **Seonjin Na**, Jungwoo Kim, Sunho Lee
- · Korea Patent; Pending

Improving the Utilization of NPU On-chip Memory with Computation Rearrangement for DNN Training

- · Jaehyuk Huh, Jungwoo Kim, Seonjin Na, Sanghyeon Lee, Sunho Lee
- · Korea Patent; Pending

Apparatus and Method for Providing Secure Execution Environment for NPU

- · Jaehyuk Huh, Sunho Lee, **Seonjin Na**
- · US Patent (With Samsung Electronics); Pending

Hardware-based Security Architecture for Trusted Neural Processing Unit

- · Jaehyuk Huh, Sunho Lee, Seonjin Na
- · Korean Patent (With Samsung Electronics); Filling Date: 2021/07/23;

Efficient Encryption Method and Apparatus for Hardware-based Secure GPU Memory

- · Jaehyuk Huh, Seonjin Na, Sunho Lee, Yeonjae Kim, and Jongse Park
- · Korea Patent; Filling Date: 2020/11/23; Isseud Date: 2022/02/16

AWARDS AND HONORS

Best Paper Award

2022

· TNPU: Supporting Trusted Execution with Tree-less Integrity Protection for Neural Processing Unit, 3th place

National Scholarship

Mar. 2016 - 2023 Feb

 \cdot KAIST

Smumma CumLaude

Feb. 2016

· Sogang University

Gold Prize

Nov. 2015

· The 2015 ACM-ICPC Asia Daejeon Regional Contest 4th place

Honorable Mention

Nov. 2013

· The 2013 ACM-ICPC Asia Daejeon Regional Contest 13th place

Academic Scholarship, 8 semesters

Mar. 2012 - Sep. 2015

· Sogang University

ACADEMIC SERVICES

Reviewer

- · International Conference for High Performance Computing, Networking, Storage, and Analysis (SC) 2024
- · IEEE Transactions on Dependable and Secure Computing 2023
- · IEEE Computer Architecture Letter 2023

Program Committee

· International Conference for High Performance Computing, Networking, Storage, and Analysis (SC) 2024

Travel Grant Chair

· International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS) 2025

Artifact Evaluation Committee

 \cdot EuroSYS 2025, ASPLOS 2025, USENIX ATC 2024, USENIX OSDI 2024, ISCA 2024

Web Chair

· IEEE Computer Society TCuARCH

TEACHING EXPERIENCE

KAIST

- · CS510 Computer Architecture: Spring 2020
- · CS230 System Programming: Fall 2016, Spring 2017, Fall 2018, Fall 2020
- · CS311 Computer Organization: Fall 2019

Sogang University

· Introduction to C Programming: Winter 2014

SKILLS

- · Programming Languages : C/C++, Go, CUDA, Python, Java
- · Library/Frameworks : NVBit, Pytorch, Tensorflow
- · Simulators: GPGPU-Sim, MGPU-Sim, Gem5, Gem5-gpu, Scale-Sim, SST, ChampSim, Macsim