Teorema de Caracterización de Pesos A_1

David Cabezas Berrido

Introducción

Vamos a demostrar el teorema de caracterización de los pesos A_1 . Nuestra referencia principal será el libro "Análisis de Fourier" de Javier Duoandikoetxea. Fijemos primero algo de notación.

Trabajaremos en el espacio \mathbb{R}^n . En adelante w denotará un peso, es decir, una función medible, no negativa y localmente integrable en \mathbb{R}^n . Para cada conjunto medible $E \subset \mathbb{R}^n$, notaremos $w(E) = \int_E w dx$, donde la integral es respecto a la medida de Lebesgue en \mathbb{R}^n . La medida de Lebesgue de un conjunto medible E se denota por |E|.

Consideramos el funcional maximal de Hardy-Littlewood M definido por

$$Mf(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f(y)| dy \tag{1}$$

para cada f localmente integrable en \mathbb{R}^n $(f \in L^1_{loc}(\mathbb{R}^n))$. El supremo de la expresión de arriba es en todos los cubos diádicos Q que contienen al punto $x \in \mathbb{R}^n$.

La condición para que un peso w esté en la clase A_1 es

$$\frac{w(Q)}{|Q|} \le Cw(x) \tag{2}$$

para casi todo $x \in Q$ y para todo cubo diádico Q. La constance C no puede depender ni de x ni de Q, se le llama constante A_1 de w..

Demostración del teorema

Primero enunciaremos dos resultados que necesitaremos para la prueba del teorema. El primero es la desigualdad de Kolmogorov.

Lema 1. Si T es un operador (1,1)-débil y $\delta \in [0,1[$, se tiene

$$\int_{E} |Tf|^{\delta} dx \le C(\delta) |E|^{1-\delta} ||f||_{1}^{\delta}$$

para alguna constante $C(\delta)$ dependiente de δ válida para toda f integrable.

Sabemos que el operador M es (1,1)-débil, por lo que podremos aplicarle éste resultado. El siguiente es la $desigualdad\ de\ H\"{o}lder\ inversa.$

Lema 2. Si $w \in A_p$ con $1 . Existe <math>\varepsilon > 0$ dependiente sólo de p y de la constante A_p de w tal que

$$\left(\frac{1}{|Q|}\int_Q w^{1+\varepsilon}\right)^{\frac{1}{1+\varepsilon}} \le \frac{C}{|Q|}\int_Q \int w,$$

donde la constante C es válida para todo cubo diádico Q.

Ya estamos en condiciones de demostrar el teorema de caracterización de pesos A_1 .

Teorema 3.

Esencialmente, TODO

Demostración. TODO

Referencias

[1] J. Duoandikoetxea: Análisis de Fourier. Universidad Autónoma de Madrid, 1995.