中山大学《概率论与数理统计》**2020-2021** 学年第二学期期末试卷

满分 100 分

一、 填空题(每空 3 分,共 45 分)
1、已知 P(A) = 0.92, P(B) = 0.93, P(B ₮) = 0.85, 则 P(A ₮) = P(A ∪ B) =
2、设事件 A 与 B 独立 , A 与 B 都不发生的概率为 $\frac{1}{9}$, A 发生且 B 不发生的概率与 B 发生且
A 不发生的概率相等,则 A 发生的概率为:;
3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率:
; 没有任何人的生日在同一个月份的概率;
4、已知随机变量 X 的密度函数为: $\varphi(x) = \begin{cases} Ae^x, & x < 0 \\ 1/4, & 0 \le x < 2, \\ 0, & x \ge 2 \end{cases}$, 分布函
数 <i>F(x)</i> =; 概率 <i>P</i> {-0.5 < <i>X</i> < 1} =;
5、设随机变量 X~ B(2,p)、Y~ B(1,p),若P{X≥1}=5/9,则p=,若X
与 Y 独立,则 Z=max(X,Y)的分布律:;
与 Y 独立,则 Z=max(X,Y)的分布律:;
6、设X~B(200,0.01),Y~P(4),且X与Y相互独立,则D(2X-3Y)=
COV(2X-3Y, X)=;
7、设 X_1, X_2, \cdots, X_5 是总体 $X \sim N(0,1)$ 的简单随机样本,则当 $k = $ 时,
$Y = \frac{k(X_1 + X_2)}{\sqrt{X_3^2 + X_4^2 + X_5^2}} \sim t(3) \ ;$
8、设总体 $X\sim U(0,\theta)$ $\theta>0$ 为未知参数, X_1,X_2,\cdots,X_n 为其样本, $\bar{X}=\frac{1}{n}\sum_{i=1}^n X_i$ 为样本均值
则 $ heta$ 的矩估计量为: $_{____}$ 。
9、设样本 X_1,X_2,\cdots,X_9 来自正态总体 $N(a,1.44)$,计算得样本观察值 $\bar{x}=10$,求参数 a 的置
信度为 95%的置信区间: ;

二、 计算题(35分)

1、(12分)设连续型随机变量 X 的密度函数为:

$$\varphi(x) = \begin{cases} \frac{1}{2}x, & 0 \le x \le 2\\ 0, & \sharp \dot{\Xi} \end{cases}$$

求:1) $P\{|2X-1|<2\}$; 2) $Y=X^2$ 的密度函数 $\varphi_y(y)$; 3) E(2X-1);

2、(12分)设随机变量(X,Y)的密度函数为

$$\varphi(x, y) =
\begin{cases}
1/4, & |y| < x, 0 < x < 2, \\
0, & 其他
\end{cases}$$

- 1) 求边缘密度函数 $\varphi_x(x), \varphi_y(y)$;
- 2) 问 X 与 Y 是否独立?是否相关?
- 3) 计算 Z = X + Y 的密度函数 $\varphi_z(z)$;
- 3、(11分)设总体 X 的概率密度函数为:

$$\varphi(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x \ge 0\\ 0, & x < 0 \end{cases}, \quad \theta > 0$$

X₁,X₂,...,X_n是取自总体 X 的简单随机样本。

- 1) 求参数 θ 的极大似然估计量 $\hat{\theta}$;
- 2) 验证估计量 $\hat{\theta}$ 是否是参数 θ 的无偏估计量。
- 三、 应用题(20分)
- 1、(10分)设某人从外地赶来参加紧急会议,他乘火车、轮船、汽车或飞机来的概率分别是3/10, 1/5,1/10和2/5。如果他乘飞机来,不会迟到;而乘火车、轮船或汽车来,迟到的概率分别是 1/4,1/3,1/2。现此人迟到,试推断他乘哪一种交通工具的可能性最大?
- 2.(10分)环境保护条例,在排放的工业废水中,某有害物质不得超过0.5%。,假定有害物质含量 X 服从正态分布。现在取5份水样,测定该有害物质含量,得如下数据:

0.530%, 0.542%, 0.510%, 0.495%, 0.515%

能否据此抽样结果说明有害物质含量超过了规定($\alpha = 0.05$)?