

UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO FACULTAD DE INGENIERIA

Fundamentos de Energía Nuclear

Profesor: M.C. Edgar Salazar

Capitulo 2, Tarea 2

Nombre del alumno
1 Valor 10 puntos : Cual es la energía de un fotón gamma que tiene lomgitud de onda de 1 A (10 ⁻¹⁰ m).
2 Valor 20 puntos : El Tritio (³ H) decae por emisión de partículas beta negativas, con una vida media de 12.26 años. El peso atómico del ³ H es de 3.016.
(a) A que núcleo decae el ³ H ?
(b) Cual es la masa en gramos de 1 mCi de ³ H .
3 Valor 20 puntos: Determinar la cantidad de energía liberada en el siguiente proceso de fisión: $^{235}_{92}\text{U} \rightarrow ^{13}_{6}\text{C} + ^{222}_{86}\text{Rn}$
4 Valor 20 puntos: Determinar la cantidad de energía liberada en el siguiente proceso de fusión: ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow T + p \qquad \qquad (T = tritio = {}^{3}H)$

5.- **Valor 30 puntos:** ¿Cuáles son la energía media y la energía más probable de un neutrón en equilibrio térmico con el moderador a la temperatura ambiental? (Temperatura ambiental = $300 \, ^{\circ}$ K).