Национальный исследовательский университет информационных технологий, механики и оптики Кафедра вычислительной техники Сети ЭВМ и телекоммуникации

Домашняя работа №1 «Кодирование данных в телекоммуникационных сетях»

> Студентка: Куклина М., Р3301

1. Цели работы

Изучение методов логического и физического кодирования, используемых в цифоровых сетях передачи данных.

2. Формирование сообщений

- 1. Фамилия студента: КУКЛИНА М.Д.;
- 2. Представление в HEX: CA D3 CA CB C8 CD C0 20 CC 2E C4 2E;
- 4. Длина сообщения: 12 байт (96бит).
- 5. Пропускная способность: 10 Мбит/с.
- 6. Длительность битового интервала: $t_b = 100$ нс.

Физическое кодирование

Манчестерское кодирование

- 1. Частота основной гармоники: $f_0 = \frac{1}{t_b} = 10 \, \mathrm{M}\Gamma$ ц
- 2. Нижняя граница частот: $f_l = \frac{1}{2t_b} = 5$ Мгц
- 3. Верхняя граница частот: $f_h = 7f_0 = 70 \ \mathrm{M}\Gamma$ ц
- 4. Полоса пропускания: $f_h f_l = 70 5 = 65 \ \mathrm{M}\Gamma$ ц
- 5. Среднее значение частоты: $f_{avg}=30$ (для первых четырёх байт: $f_{avg}=\frac{4}{64}(24*f_0+\frac{20\cdot 2}{2}f_0)=27.5)$

NRZ

- 1. Частота основной гармоники: $f_0 = \frac{1}{2C} = 5$ Мгц
- 2. Нижняя граница частот: $f_l = \frac{1}{16t_b} = 0.625 \ \mathrm{M}\Gamma$ ц
- 3. Верхняя граница частот: $f_h = 7f_0 = 35 \ \mathrm{M}\Gamma\mathrm{ц}$

- 4. Полоса пропускания: $f_h f_l = 35 0.625 = 34.625 \ \mathrm{M}\Gamma$ ц
- 5. Среднее значение частоты: $f_{avg}=10$ (для первых четырёх байт: $f_{avg}=\frac{4}{32}(12f_0+\frac{16}{2}f_0+\frac{4}{4}f_0)=13.750)$

RZ

- 1. Частота основной гармоники: $f_0 = \frac{1}{t_b} = 10 \ {
 m M}\Gamma$ ц
- 2. Нижняя граница частот: $f_l = \frac{1}{2t_b} = 5 \text{ M} \Gamma \text{ц}$
- 3. Верхняя граница частот: $f_h = 7f_0 = 70 \ \mathrm{M}\Gamma$ ц
- 4. Полоса пропускания: $f_h f_l = 70 5 = 65 \ \mathrm{M}\Gamma\mathrm{ц}$
- 5. Среднее значение частоты: 30 М Γ ц (для первых четырёх байт: $f_c p = 27.5$)

Сравнительный анализ методов физического кодирования

	f_0	f_l , М Γ ц	f_h , М Γ ц	F , М Γ ц	f_{avg} , МГц
M	10	5	70	65	30
NRZ	5	0.625	35	34.625	10
RZ	10	5	70	65	30

В качестве лучшего способа кодирования мною были выбраны манчестерское кодирование и метод кодирования NRZ. Первый их них обеспечивает самосинхронизацию, обнаружение и исправление ошибок на фоне низкой стоимости реализации кодирования и отсутсвия постоянной составляющей. Второй же метод, не обладая самосинхронизацией (в исходном сообщении встречаются длинные последовательности нулей и

	M	NRZ	RZ
Минимизация спектра	-	+	-
Постоянная составляющая	-	+	_
Самосинхронизация	+	_	+
Обнаружение ошибок и их исправление	+	-	+
Низкая стоимость реализации	+	+	_

единиц), имеет более высокую минимизацию спектра в сравнении с RZ и более низкую стоимость.

Логическое кодирование

4B/5B

- 1. Фамилия студента: КУКЛИНА М.Д.;
- 2. Представление в HEX: D5 B7 5D 5B 57 D4 B5 BD 7A 9E D6 A9 CD 2A 9C;
- 4. Длина сообщения: 12 байт (120 бит).
- 5. Избыточность: 25 %
- 6. Пропускная способность: 10 Мбит/с.
- 7. Длительность битового интервала: $t_b = 100$ нс.

Манчестерское кодирование

- 1. Частота основной гармоники: $f_0 = \frac{1}{t_b} = 10 \ \mathrm{M}\Gamma$ ц
- 2. Нижняя граница частот: $f_l = \frac{1}{2t_b} = 5$ Мгц
- 3. Верхняя граница частот: $f_h = 7f_0 = 70 \ \mathrm{M}\Gamma\mathrm{ц}$
- 4. Полоса пропускания: $f_h f_l = 70 5 = 65 \ \mathrm{M}\Gamma$ ц
- 5. Среднее значение частоты: $f_{avg}=26.333$ (для первых четырёх байт: $f_{avg}=\frac{4}{64}(20*f_0+\frac{22\cdot 2}{2}f_0)=26.25)$

NRZ

- 1. Частота основной гармоники: $f_0 = \frac{1}{2C} = 5$ Мгц
- 2. Нижняя граница частот: $f_l = \frac{1}{5t_b} = 1 \ \mathrm{M}\Gamma$ ц
- 3. Верхняя граница частот: $f_h = 7f_0 = 35 \ \mathrm{M}\Gamma$ ц
- 4. Полоса пропускания: $f_h f_l = 34 \ {
 m M}\Gamma$ ц
- 5. Среднее значение частоты: $f_{avg}=13.667$ (для первых четырёх байт: $f_{avg}=\frac{4}{32}(16f_0+\frac{5\cdot 2}{2}f_0+\frac{3\cdot 2}{3}f_0)=14.375)$

Сравнительный анализ

	f_0	f_l , М Γ ц	f_h , М Γ ц	F , М Γ ц	f_{avg} , МГц
M	10	5	70	65	26.333
NRZ	5	1	35	34	13.667

Метод кодирования 4B/5B обеспечивает самосинхронизацию кодов (что можно наблюдать на последовательности закодированного сообщение методом NRZ, где ранее наличествующие длинные последовательности нулей и единиц исчезли) и возможность обнаружения ошибок. На фоне данных свойств ряд недостатков метода NRZ уменьшают вес, однако ряд достоинств манчестерского кода преумножаются в цене (к примеру, дополнительная защита от ошибок), вследствие чего манчестерский код лучший для передачи избыточного сообщения.

Скремблирование

Можно отметить отсутствие в полученном сообщении последовательности из 8-и нулей.

Манчестерское кодирование

- 1. Частота основной гармоники: $f_0 = \frac{1}{t_b} = 10 \ {
 m M}\Gamma$ ц
- 2. Нижняя граница частот: $f_l = \frac{1}{12t_b} = 5$ Мгц
- 3. Верхняя граница частот: $f_h = 7 f_0 = 70 \ {\rm M} \Gamma {\rm ц}$
- 4. Полоса пропускания: $f_h f_l = 70 5 = 65 \ \mathrm{M}\Gamma\mathrm{ц}$
- 5. Среднее значение частоты: $f_{avg}=30$ (для первых четырёх байт: $f_{avg}=\frac{4}{64}(32*f_0+\frac{16\cdot 2}{2}f_0)=30)$

NRZ

- 1. Частота основной гармоники: $f_0 = \frac{1}{2C} = 5$ Мгц
- 2. Нижняя граница частот: $f_l = \frac{1}{6t_b} = 0.8333 \ {
 m M}\Gamma$ ц
- 3. Верхняя граница частот: $f_h = 7 f_0 = 35 \ {\rm M} \Gamma {\rm ц}$
- 4. Полоса пропускания: $f_h f_l = 34.167 \ {
 m M} \Gamma {
 m II}$
- 5. Среднее значение частоты: $f_{avg}=10$ (для первых четырёх байт: $f_{avg}=\frac{4}{32}(9f_0+\frac{5\cdot 2}{2}f_0+\frac{3}{3}f_0+\frac{5\cdot 2}{5})=10.625)$

Сравнительный анализ

	f_0	f_l , М Γ ц	f_h , М Γ ц	F , М Γ ц	f_{avg} , М Γ ц
M	10	5	70	65	30
NRZ	5	0.8333	35	34.167	10

Если сравнивать полученные данные с данными, полученными в первом пунтке, то можно заметить сужение пропускной способности для NRZ, пусть и незначительное;

полученный код содержит меньшее количество последовательных нулей и единиц, что уменьшает вероятность рассинхронизации источника и проёмника, однако он всё ещё уступает манчестерскому кодированию, показатели которого не изменились, что говорит о том, что сравнительно лучше NRZ с точки зрения затрат на скремблирование.

Вывод

В ходе выполнения домашней работы были изучены методы физического и логического кодирования. При передаче исходного сообщения без дополнительных операций над ним лучшие результаты показал манчестерский метод кодирования в сравнении с NRZ и RZ и в виду собственных представлений о полезности свойств (самосинхронизация, отсутствие постоянной составляющей, цена). При анализе методов при избыточном и скремблированном сообщении было обнаружено, что манчестерский метод даёт лучшие характеристики (исключая ширину полосы пропускания) в сравнении с прочими рассмотренными.