DESeq2 mini project

Pham Vo

2/27/2022

library(DESeq2)

```
## Loading required package: S4Vectors
## Loading required package: stats4
## Loading required package: BiocGenerics
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:stats':
##
##
       IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
       anyDuplicated, append, as.data.frame, basename, cbind, colnames,
##
##
       dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
       grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
##
##
       order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
##
       rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
##
       union, unique, unsplit, which.max, which.min
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:base':
##
##
       expand.grid, I, unname
## Loading required package: IRanges
## Loading required package: GenomicRanges
## Loading required package: GenomeInfoDb
## Loading required package: SummarizedExperiment
```

```
## Loading required package: MatrixGenerics
## Loading required package: matrixStats
##
## Attaching package: 'MatrixGenerics'
## The following objects are masked from 'package:matrixStats':
##
##
       colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
##
       colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
       colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
##
##
       colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
##
       colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
##
       colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
##
       colWeightedMeans, colWeightedMedians, colWeightedSds,
       colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
##
##
       rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
       rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
##
##
       rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
##
       rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
       rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
##
##
       rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
##
       rowWeightedSds, rowWeightedVars
## Loading required package: Biobase
## Welcome to Bioconductor
##
       Vignettes contain introductory material; view with
##
       'browseVignettes()'. To cite Bioconductor, see
       'citation("Biobase")', and for packages 'citation("pkgname")'.
##
##
## Attaching package: 'Biobase'
## The following object is masked from 'package:MatrixGenerics':
##
##
       rowMedians
## The following objects are masked from 'package:matrixStats':
##
##
       anyMissing, rowMedians
metaFile <- "GSE37704_metadata.csv"</pre>
countFile <- "GSE37704_featurecounts.csv"</pre>
# Import metadata and take a peak
colData = read.csv(metaFile, row.names=1)
head(colData)
```

```
##
                 condition
## SRR493366 control_sirna
## SRR493367 control sirna
## SRR493368 control_sirna
## SRR493369
                  hoxa1 kd
## SRR493370
                  hoxa1 kd
## SRR493371
                  hoxa1 kd
# Import countdata
countData = read.csv(countFile, row.names=1)
head(countData)
##
                   length SRR493366 SRR493367 SRR493368 SRR493369 SRR493370
## ENSG0000186092
                      918
                                  0
                                            0
                                                      0
                                                                0
## ENSG00000279928
                      718
                                  0
                                            0
                                                      0
                                                                 0
                                                                           0
## ENSG00000279457
                     1982
                                 23
                                           28
                                                     29
                                                                29
                                                                          28
## ENSG0000278566
                      939
                                  0
                                            0
                                                      0
                                                                 0
                                                                           0
## ENSG00000273547
                      939
                                  0
                                            0
                                                      0
                                                                 0
                                                                           0
## ENSG0000187634
                                124
                     3214
                                          123
                                                    205
                                                               207
                                                                         212
                   SRR493371
## ENSG0000186092
                           0
## ENSG00000279928
                           0
## ENSG00000279457
                          46
## ENSG0000278566
                           0
## ENSG0000273547
                           0
## ENSG0000187634
                         258
# Note we need to remove the odd first $length col
countData <- as.matrix(countData[,-1])</pre>
head(countData)
                   SRR493366 SRR493367 SRR493368 SRR493369 SRR493370 SRR493371
##
## ENSG0000186092
                                     0
                                               0
                           0
                                                         0
                                                                    0
                                                                              0
## ENSG00000279928
                           0
                                     0
                                               0
                                                         0
                                                                   0
                                                                              0
                          23
                                    28
                                              29
                                                         29
                                                                   28
                                                                             46
## ENSG00000279457
## ENSG00000278566
                          0
                                     0
                                               0
                                                         0
                                                                    0
                                                                              0
## ENSG0000273547
                           0
                                     0
                                               0
                                                          0
                                                                    0
                                                                              0
## ENSG0000187634
                         124
                                   123
                                             205
                                                        207
                                                                  212
                                                                            258
# Filter count data where you have 0 read count across all samples.
countData = countData[rowSums(countData[])>0,]
head(countData)
##
                   SRR493366 SRR493367 SRR493368 SRR493369 SRR493370 SRR493371
## ENSG00000279457
                          23
                                    28
                                              29
                                                        29
                                                                   28
                                                                             46
## ENSG0000187634
                         124
                                   123
                                             205
                                                       207
                                                                  212
                                                                            258
## ENSG0000188976
                        1637
                                 1831
                                           2383
                                                      1226
                                                                 1326
                                                                           1504
## ENSG0000187961
                        120
                                  153
                                             180
                                                       236
                                                                  255
                                                                            357
## ENSG0000187583
                          24
                                   48
                                                        44
                                                                  48
                                              65
                                                                             64
## ENSG0000187642
                         4
                                     9
                                              16
                                                        14
                                                                  16
                                                                             16
```

Running DESeq2

```
library(DESeq2)
citation("DESeq2")
##
##
     Love, M.I., Huber, W., Anders, S. Moderated estimation of fold change
##
     and dispersion for RNA-seq data with DESeq2 Genome Biology 15(12):550
     (2014)
##
##
## A BibTeX entry for LaTeX users is
##
##
     @Article{,
       title = {Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2},
##
       author = {Michael I. Love and Wolfgang Huber and Simon Anders},
##
##
       year = \{2014\},\
##
       journal = {Genome Biology},
       doi = \{10.1186/s13059-014-0550-8\},
##
##
       volume = \{15\},
       issue = \{12\},
##
##
       pages = \{550\},
##
dds = DESeqDataSetFromMatrix(countData=countData,
                              colData=colData,
                              design=~condition)
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
dds = DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## class: DESeqDataSet
## dim: 15975 6
## metadata(1): version
```

```
## assays(4): counts mu H cooks
## rownames(15975): ENSG00000279457 ENSG00000187634 ... ENSG00000276345
     ENSG00000271254
## rowData names(22): baseMean baseVar ... deviance maxCooks
## colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371
## colData names(2): condition sizeFactor
res = results(dds, alpha=0.1)
summary(res)
##
## out of 15975 with nonzero total read count
## adjusted p-value < 0.1
## LFC > 0 (up)
                      : 4349, 27%
## LFC < 0 (down)
                      : 4396, 28%
## outliers [1]
                      : 0, 0%
## low counts [2]
                      : 1237, 7.7%
## (mean count < 0)
## [1] see 'cooksCutoff' argument of ?results
## [2] see 'independentFiltering' argument of ?results
```

Volcono plot

```
plot( res$log2FoldChange, -log(res$padj) )
```



```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

# Color blue those with adjusted p-value less than 0.01
# and absolute fold change more than 2
inds <- (res$padj<0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(P-value)" )</pre>
```


Adding gene annotation

```
library("AnnotationDbi")
library("org.Hs.eg.db")
##
```

```
columns(org.Hs.eg.db)
```

```
[1] "ACCNUM"
                      "ALIAS"
                                     "ENSEMBL"
                                                   "ENSEMBLPROT" "ENSEMBLTRANS"
  [6] "ENTREZID"
                      "ENZYME"
                                     "EVIDENCE"
                                                   "EVIDENCEALL" "GENENAME"
## [11] "GENETYPE"
                      "GO"
                                     "GOALL"
                                                   "IPI"
                                                                  "MAP"
## [16] "OMIM"
                      "ONTOLOGY"
                                     "ONTOLOGYALL" "PATH"
                                                                  "PFAM"
## [21] "PMID"
                      "PROSITE"
                                     "REFSEQ"
                                                   "SYMBOL"
                                                                  "UCSCKG"
## [26] "UNIPROT"
res$symbol = mapIds(org.Hs.eg.db,
                   keys=row.names(res),
                   keytype="ENSEMBL",
                   column="SYMBOL",
                   multiVals="first")
## 'select()' returned 1:many mapping between keys and columns
res$entrez = mapIds(org.Hs.eg.db,
                   keys=row.names(res),
                   keytype="ENSEMBL",
                   column="ENTREZID",
                   multiVals="first")
## 'select()' returned 1:many mapping between keys and columns
res$name =
            mapIds(org.Hs.eg.db,
                   keys=row.names(res),
                   keytype="ENSEMBL",
                   column="GENENAME",
                   multiVals="first")
## 'select()' returned 1:many mapping between keys and columns
head(res, 10)
## log2 fold change (MLE): condition hoxa1 kd vs control sirna
## Wald test p-value: condition hoxa1 kd vs control sirna
## DataFrame with 10 rows and 9 columns
##
                     baseMean log2FoldChange
                                                lfcSE
                                                            stat
                                                                      pvalue
##
                                  <numeric> <numeric> <numeric>
                    <numeric>
                                                                   <numeric>
## ENSG0000279457
                    29.913579
                                  ## ENSG00000187634 183.229650
                                  0.4264571 0.1402658
                                                        3.040350 2.36304e-03
## ENSG00000188976 1651.188076
                                 -0.6927205 0.0548465 -12.630158 1.43990e-36
## ENSG00000187961 209.637938
                                  0.7297556 0.1318599 5.534326 3.12428e-08
## ENSG00000187583 47.255123
                                  0.0405765 0.2718928
                                                        0.149237 8.81366e-01
                                  0.5428105 0.5215598 1.040744 2.97994e-01
## ENSG0000187642
                   11.979750
                                  2.0570638 0.1969053 10.446970 1.51282e-25
## ENSG00000188290 108.922128
## ENSG00000187608 350.716868
                                  0.2573837 0.1027266 2.505522 1.22271e-02
## ENSG00000188157 9128.439422
                                  0.3899088 0.0467163 8.346304 7.04321e-17
## ENSG0000237330
                                  0.7859552 4.0804729 0.192614 8.47261e-01
                     0.158192
##
                         padj
                                  symbol
                                                                       name
                                              entrez
##
                    <numeric> <character> <character>
                                                                <character>
## ENSG00000279457 6.86555e-01
                                  WASH9P 102723897 WAS protein family h..
```

```
## ENSG00000188976 1.76549e-35
                                                 26155 NOC2 like nucleolar ...
## ENSG00000187961 1.13413e-07
                                    KLHL17
                                                339451 kelch like family me..
## ENSG00000187583 9.19031e-01
                                   PLEKHN1
                                                 84069 pleckstrin homology ...
## ENSG00000187642 4.03379e-01
                                     PERM1
                                                 84808 PPARGC1 and ESRR ind..
## ENSG00000188290 1.30538e-24
                                     HES4
                                                 57801 hes family bHLH tran..
## ENSG00000187608 2.37452e-02
                                                  9636 ISG15 ubiquitin like..
                                     ISG15
## ENSG00000188157 4.21963e-16
                                      AGRN
                                                375790
## ENSG00000237330
                                    RNF223
                                                401934 ring finger protein ...
# Reorder these results by adjusted p-value and save them to a CSV file in your current project directo
res = res[order(res$pvalue),]
write.csv(res[order(res$padj),], "deseq_results_1.csv")
```

148398 sterile alpha motif ...

Pathway Analysis

ENSG00000187634 5.15718e-03

```
library(pathview)
```

```
## Pathview is an open source software package distributed under GNU General
## Public License version 3 (GPLv3). Details of GPLv3 is available at
## http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to
## formally cite the original Pathview paper (not just mention it) in publications
## or products. For details, do citation("pathview") within R.
## The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG
## license agreement (details at http://www.kegg.jp/kegg/legal.html).
```

SAMD11

NOC2I.

```
library(gage)
```

##

##

\$'hsa00983 Drug metabolism - other enzymes'

```
library(gageData)
data(kegg.sets.hs)
data(sigmet.idx.hs)
# Focus on signaling and metabolic pathways only
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
# Examine the first 3 pathways
head(kegg.sets.hs, 3)
## $'hsa00232 Caffeine metabolism'
              "1544" "1548" "1549" "1553" "7498" "9"
## [1] "10"
```

```
[1] "10"
                           "10720"
                                              "151531" "1548"
##
                  "1066"
                                    "10941"
                                                                 "1549"
                                                                          "1551"
##
    [9] "1553"
                 "1576"
                           "1577"
                                    "1806"
                                              "1807"
                                                       "1890"
                                                                 "221223" "2990"
   [17] "3251"
                  "3614"
                           "3615"
                                                                          "54576"
                                    "3704"
                                              "51733"
                                                       "54490"
                                                                 "54575"
   [25] "54577"
                  "54578"
                           "54579"
                                    "54600"
                                              "54657"
                                                       "54658"
                                                                 "54659"
                                                                          "54963"
##
   [33] "574537" "64816"
                           "7083"
                                    "7084"
                                              "7172"
                                                       "7363"
                                                                 "7364"
                                                                          "7365"
   [41] "7366"
                  "7367"
                           "7371"
                                    "7372"
                                              "7378"
                                                       "7498"
                                                                 "79799"
                                                                          "83549"
##
   [49] "8824"
                  "8833"
                           "9"
                                    "978"
##
##
## $'hsa00230 Purine metabolism'
                                     "10621"
     [1] "100"
                  "10201"
                            "10606"
                                               "10622"
                                                        "10623"
                                                                  "107"
                                                                           "10714"
##
##
     [9] "108"
                  "10846"
                            "109"
                                     "111"
                                               "11128"
                                                        "11164"
                                                                  "112"
                                                                           "113"
    [17] "114"
                   "115"
                            "122481" "122622" "124583" "132"
                                                                           "159"
                                                                  "158"
##
                   "171568" "1716"
                                     "196883" "203"
                                                        "204"
                                                                  "205"
##
    [25] "1633"
                                                                           "221823"
                  "22978"
                                     "246721" "25885"
    [33] "2272"
                            "23649"
                                                        "2618"
                                                                  "26289"
                                                                           "270"
##
                            "272"
##
    [41] "271"
                   "27115"
                                     "2766"
                                               "2977"
                                                        "2982"
                                                                  "2983"
                                                                           "2984"
##
    [49] "2986"
                   "2987"
                            "29922"
                                     "3000"
                                               "30833"
                                                        "30834"
                                                                  "318"
                                                                           "3251"
##
    [57] "353"
                  "3614"
                            "3615"
                                     "3704"
                                               "377841" "471"
                                                                  "4830"
                                                                           "4831"
                            "4860"
                                                        "4907"
##
    [65] "4832"
                   "4833"
                                     "4881"
                                               "4882"
                                                                  "50484"
                                                                           "50940"
    [73] "51082"
                  "51251"
                            "51292"
                                     "5136"
                                               "5137"
                                                        "5138"
                                                                  "5139"
                                                                           "5140"
##
                   "5142"
                            "5143"
                                                                  "5147"
##
    [81] "5141"
                                     "5144"
                                               "5145"
                                                        "5146"
                                                                           "5148"
##
    [89] "5149"
                  "5150"
                            "5151"
                                     "5152"
                                               "5153"
                                                        "5158"
                                                                  "5167"
                                                                           "5169"
    [97] "51728"
                  "5198"
                            "5236"
                                     "5313"
                                               "5315"
                                                        "53343"
                                                                  "54107"
                                                                           "5422"
##
## [105] "5424"
                   "5425"
                            "5426"
                                     "5427"
                                               "5430"
                                                        "5431"
                                                                  "5432"
                                                                           "5433"
## [113] "5434"
                   "5435"
                            "5436"
                                     "5437"
                                               "5438"
                                                        "5439"
                                                                  "5440"
                                                                           "5441"
## [121] "5471"
                  "548644" "55276"
                                     "5557"
                                               "5558"
                                                                           "55821"
                                                        "55703"
                                                                  "55811"
## [129] "5631"
                  "5634"
                            "56655"
                                     "56953"
                                               "56985"
                                                        "57804"
                                                                  "58497"
                                                                           "6240"
## [137] "6241"
                   "64425"
                            "646625" "654364" "661"
                                                        "7498"
                                                                  "8382"
                                                                           "84172"
## [145] "84265"
                  "84284"
                            "84618"
                                     "8622"
                                               "8654"
                                                        "87178"
                                                                  "8833"
                                                                           "9060"
## [153] "9061"
                            "953"
                                     "9533"
                                               "954"
                                                        "955"
                                                                  "956"
                                                                           "957"
                  "93034"
## [161] "9583"
                   "9615"
foldchanges = res$log2FoldChange
names(foldchanges) = res$entrez
head(foldchanges)
                             1465
                                      51232
                                                  2034
##
        1266
                 54855
                                                            2317
## -2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792
# Get the results
keggres = gage(foldchanges, gsets=kegg.sets.hs)
attributes(keggres)
## $names
## [1] "greater" "less"
                            "stats"
# Look at the first few down (less) pathways
head(keggres$less)
##
                                              p.geomean stat.mean
                                                                          p.val
## hsa04110 Cell cycle
                                          8.995727e-06 -4.378644 8.995727e-06
```

```
9.424076e-05 -3.951803 9.424076e-05
## hsa03030 DNA replication
                                      1.375901e-03 -3.028500 1.375901e-03
## hsa03013 RNA transport
## hsa03440 Homologous recombination 3.066756e-03 -2.852899 3.066756e-03
## hsa04114 Oocyte meiosis
                                       3.784520e-03 -2.698128 3.784520e-03
## hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                             q.val set.size
##
## hsa04110 Cell cycle
                                      0.001448312 121 8.995727e-06
## hsa03030 DNA replication
                                      0.007586381
                                                       36 9.424076e-05
                                                      144 1.375901e-03
## hsa03013 RNA transport
                                       0.073840037
## hsa03440 Homologous recombination 0.121861535
                                                       28 3.066756e-03
## hsa04114 Oocyte meiosis
                                       0.121861535
                                                      102 3.784520e-03
## hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                       53 8.961413e-03
head(keggres$greater)
                                         p.geomean stat.mean
                                                                  p.val
## hsa04640 Hematopoietic cell lineage
                                      0.002822776 2.833362 0.002822776
## hsa04630 Jak-STAT signaling pathway
                                       0.005202070 2.585673 0.005202070
## hsa00140 Steroid hormone biosynthesis 0.007255099 2.526744 0.007255099
## hsa04142 Lysosome
                                       0.010107392 2.338364 0.010107392
## hsa04330 Notch signaling pathway
                                       0.018747253 2.111725 0.018747253
## hsa04916 Melanogenesis
                                       0.019399766 2.081927 0.019399766
                                           q.val set.size
## hsa04640 Hematopoietic cell lineage 0.3893570 55 0.002822776
## hsa04630 Jak-STAT signaling pathway
                                       0.3893570
                                                    109 0.005202070
## hsa00140 Steroid hormone biosynthesis 0.3893570
                                                     31 0.007255099
                                       0.4068225 118 0.010107392
## hsa04142 Lysosome
## hsa04330 Notch signaling pathway
                                       0.4391731
                                                     46 0.018747253
## hsa04916 Melanogenesis
                                       0.4391731
                                                     90 0.019399766
pathview(gene.data=foldchanges, pathway.id="hsa04110")
## 'select()' returned 1:1 mapping between keys and columns
## Info: Working in directory /Users/phamvo/Desktop/Bioinformatics/week 8/DESeq2 mini project
## Info: Writing image file hsa04110.pathview.png
## Focus on top 5 upregulated pathways here for demo purposes only
keggrespathways <- rownames(keggres$greater)[1:5]</pre>
# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids
## [1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"
pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
## 'select()' returned 1:1 mapping between keys and columns
```

```
## Info: Working in directory /Users/phamvo/Desktop/Bioinformatics/week 8/DESeq2 mini project
## Info: Writing image file hsa04640.pathview.png
## 'select()' returned 1:1 mapping between keys and columns
## Info: Working in directory /Users/phamvo/Desktop/Bioinformatics/week 8/DESeq2 mini project
## Info: Writing image file hsa04630.pathview.png
## 'select()' returned 1:1 mapping between keys and columns
## Info: Working in directory /Users/phamvo/Desktop/Bioinformatics/week 8/DESeq2 mini project
## Info: Writing image file hsa00140.pathview.png
## 'select()' returned 1:1 mapping between keys and columns
## Info: Working in directory /Users/phamvo/Desktop/Bioinformatics/week 8/DESeq2 mini project
## Info: Writing image file hsa04142.pathview.png
## Info: writing image file hsa04142.pathview.png
## Info: writing image file hsa04310.pathview.png
## Select()' returned 1:1 mapping between keys and columns
## Info: Working in directory /Users/phamvo/Desktop/Bioinformatics/week 8/DESeq2 mini project
## Info: Working in directory /Users/phamvo/Desktop/Bioinformatics/week 8/DESeq2 mini project
## Info: Working in directory /Users/phamvo/Desktop/Bioinformatics/week 8/DESeq2 mini project
## Info: Working in directory /Users/phamvo/Desktop/Bioinformatics/week 8/DESeq2 mini project
## Info: Working in directory /Users/phamvo/Desktop/Bioinformatics/week 8/DESeq2 mini project
```

Reactome Analysis

Reactome is database consisting of biological molecules and their relation to pathways and processes

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))
## [1] "Total number of significant genes: 8147"
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quote=FALSE)</pre>
```

Then, to perform pathway analysis online go to the Reactome website (https://reactome.org/PathwayBrowser/#TOOL=AT). Select "choose file" to upload your significant gene list. Then, select the parameters "Project to Humans", then click "Analyze".

GO online

To perform Gene Set GO Enrichment online go to the website http://www.geneontology.org/page/go-enrichment-analysis. Paste your significant gene list from section 4. Then, select "biological process" and "homo sapiens", and click submit.

sessionInfo()

```
## R version 4.1.2 (2021-11-01)
## Platform: x86 64-apple-darwin17.0 (64-bit)
## Running under: macOS Big Sur 10.16
## Matrix products: default
           /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## attached base packages:
## [1] stats4
                 stats
                           graphics grDevices utils
                                                          datasets methods
## [8] base
##
## other attached packages:
## [1] gageData_2.32.0
                                    gage_2.44.0
## [3] pathview_1.34.0
                                    org.Hs.eg.db_3.14.0
## [5] AnnotationDbi 1.56.2
                                    DESeq2 1.34.0
## [7] SummarizedExperiment_1.24.0 Biobase_2.54.0
## [9] MatrixGenerics_1.6.0
                                    matrixStats_0.61.0
## [11] GenomicRanges_1.46.1
                                    GenomeInfoDb_1.30.1
## [13] IRanges_2.28.0
                                    S4Vectors_0.32.3
## [15] BiocGenerics_0.40.0
## loaded via a namespace (and not attached):
## [1] httr_1.4.2
                               bit64_4.0.5
                                                       splines_4.1.2
## [4] highr_0.9
                               blob_1.2.2
                                                       GenomeInfoDbData_1.2.7
## [7] yaml_2.3.5
                               pillar_1.7.0
                                                       RSQLite_2.2.10
## [10] lattice 0.20-45
                                                       digest_0.6.29
                               glue_1.6.2
                                                       colorspace_2.0-3
## [13] RColorBrewer 1.1-2
                               XVector_0.34.0
## [16] htmltools_0.5.2
                               Matrix_1.4-0
                                                       XML 3.99-0.9
## [19] pkgconfig_2.0.3
                               genefilter_1.76.0
                                                       zlibbioc_1.40.0
                                                       xtable_1.8-4
## [22] GO.db_3.14.0
                               purrr_0.3.4
## [25] scales 1.1.1
                                                       tibble 3.1.6
                               BiocParallel_1.28.3
## [28] annotate 1.72.0
                               KEGGREST 1.34.0
                                                       generics 0.1.2
## [31] ggplot2_3.3.5
                                                       cachem_1.0.6
                               ellipsis_0.3.2
## [34] cli_3.2.0
                                survival_3.2-13
                                                       magrittr_2.0.2
## [37] crayon_1.5.0
                               KEGGgraph_1.54.0
                                                       memoise_2.0.1
## [40] evaluate_0.15
                               fansi_1.0.2
                                                       graph_1.72.0
## [43] tools_4.1.2
                               lifecycle_1.0.1
                                                       stringr_1.4.0
## [46] munsell_0.5.0
                               locfit_1.5-9.4
                                                       DelayedArray_0.20.0
## [49] Biostrings_2.62.0
                                compiler_4.1.2
                                                       rlang_1.0.1
## [52] grid_4.1.2
                               RCurl_1.98-1.6
                                                       rstudioapi_0.13
## [55] bitops_1.0-7
                               rmarkdown_2.11
                                                       gtable_0.3.0
## [58] DBI_1.1.2
                               R6_2.5.1
                                                       knitr_1.37
                               fastmap_1.1.0
## [61] dplyr 1.0.8
                                                       bit 4.0.4
## [64] utf8 1.2.2
                               Rgraphviz_2.38.0
                                                       stringi_1.7.6
## [67] parallel_4.1.2
                               Rcpp_1.0.8
                                                       vctrs_0.3.8
## [70] geneplotter_1.72.0
                               png_0.1-7
                                                       tidyselect_1.1.2
## [73] xfun_0.29
```