AI & CHATBOT

Aula 13 - Representação de Dados

Prof. Henrique Ferreira Prof. Miguel Bozer Prof. Guilherme Aldeia Prof. Michel Fornaciali Prof. Daniel Gomes Prof. Vinicius Holanda

Ideia Geral

Ideia Geral

- Dados podem ter diferentes fontes e diferentes formatos;
- A partir dos dados é extraída a informação útil gerando conhecimento;

Leitura de instrumentos musicais

Processos Industriais

Dados brutos

Sensores, transdutores,

Imagens armazenadas

Representando informação

- Informação pode estar em diferentes mídias!
- A informação pode estar estruturada, semi-estruturada ou não estruturada!

	TABFLA									
Entrada	x_1	x_2		x_n	y	\hat{y}				
1	70.52	30	11.0	0.584	90	100				
2	60.96	27		1.254	81	90				
(est)			ere.							
\boldsymbol{k}	97.48	35		0.758	122	120				

TEXTO

Esse campo de pesquisa ganhou muita notoriedade em 1986, quando David E. Rumelhart e James L. McClelland publicaram um livro que apresentou um modelo matemático computacional capaz de realizar um treinamento supervisionado dos neurônios artificiais. Esse algoritmo é chamado de **Backpropagation** e permite otimizações globais no modelo, sem restrições. Esse algoritmo também foi chamado de regra Delta generalizada, pois foi baseado na regra Delta, algoritmo de aprendizagem das redes Adalines.

Foi a partir desses trabalhos e da criação de diversos Journals e conferências que muitas instituições fundaram institutos de pesquisas e programas educacionais que estudam redes neurais artificias e modelos de aprendizagem.

Nos próximos tópicos vamos aprender como a rede neural pode realizar predições através do algoritmo **Feedfoward** e o aprendizado ou ajustes dos pesos, com o algoritmo **Backpropagation**. Animado? Vamos começar!

IMAGEM

OBJETO

ÁUDIO

Representando texto

- Strings são objetos em linguagem de programação usados para trabalhar com caracteres;
- Os caracteres (e mais recentemente, emojis) são imagens mapeadas para um código hexadecimal (e binário);
- O mapeamento hexadecimal mais conhecido é o ASCII (American Standard Code II). Para contemplar outras línguas (além do alfabeto latino) e incorporar emojis, temos o Unicode;
- Em memória, o Unicode pode ser UTF-8, UTF-16, UTF-32;

Representando texto

- Para algoritmos de Inteligência Artificial, as strings devem ser transformadas em outras representações numéricas;
- Uma técnica muito usada na área de Processamento de Linguagem Natural é transformar as string em vetores numéricos, uma técnica chamada de Embbeding;
- Podemos ter Word Embedding quando representamos palavras por um vetor ou ainda Sentence Embedding quando representamos sentenças por vetores numéricos;
- Existem várias formas de fazer isso, entre elas:

Frases: Bag of Words (BOW) ou o TF-IDF

			te	kto =	"eu vo	ou ao	cinen	na hoje	н			
	cada	um	vou	eu	amanhã	cinema	em	hoje	е	а	ao	em
texto_vetor:	0	0	1	1	0	1	0	1	0	0	1	0

Representando imagens

- Imagens digitais podem ter vários formatos de codificação;
- Imagens em formato RGB são bitmaps de 3 matrizes sobrepostas, onde cada elemento da matriz representa a intensidade daquele canal de cor naquela posição da imagem;
- Resolução: quantidade de pixels na altura e na largura;
- Color depth: quantidade de bits usados para cada número da matriz;
- Pixels próximos tendem a estar correlacionadas; já pixels distantes, não!

Representando imagens

Color depth: como armazenamos informação digital? Quantidade usada na memória física e dinâmica? Qualidade da representação?

2 bit.png 4 colors 6 KB (-94%)

1 bit.png 2 colors 4 KB (-96%)

24 bit.png 16,777,216 colors 98 KB

8 bit.png 256 colors 37 KB (-62%)

4 bit.png 16 colors 13 KB (-87%)

Representando áudio

- Áudio analógico ou digital é um sinal, isto é, uma série temporal da amplitude sonora;
- No computador, áudio digital é implementado como um vetor finito, sendo o tamanho N do vetor o número de amostras de áudio, diretamente relacionado com o tempo total do som gravado;
- Além disso, áudio pode estar em um formato raw/bruto (.wav) ou em um formato comprimido (.mp3, .opus, .ogg) [codec];

Representando "tempo"

- Além de áudio, vários outros dados podem ser representados na forma de séries temporais;
- Séries temporais associam valores a determinados pontos do tempo, e são facilmente implementador na forma de vetores (arrays ou listas);
- Outros exemplos são:
 - Valor de uma ação na bolsa;
 - Pressão do pneu em um carro;
 - Quantidade de combustível em um veículo;
 - Luminosidade em uma célula solar ao longo do dia;
 - Umidade do solo de uma plantação ao longo da semana;

- Grafo é um conceito matemático utilizado para representar relação entre objetos de um mesmo conjunto;
- Ele é amplamente utilizado na Computação para muitos propósitos: arquitetura de redes, estrutura de dados, tipos de redes neurais, sistema de arquivos, processamento de linguagem natural, busca e inteligência artificial;
- Matematicamente um grafo é um objeto denotado por G(V, E) que é composto por V vértices (nós, nodes) e E arestas (links).

Exemplo: grafo

Exemplo: grafo para topologia

Sete pontes de Königsberg, Leonard Euler 1736

- Redes sociais;
- Redes de computadores;
- Relação entre empresas;
- Relação entre países;
- Relação entre usuários do Netflix e os filmes/séries assistidos;

Exemplo: representação de estradas (ref. David Kopec, Classic Computer Science Problems in Python).

- Uma vez que a informação está representada em um grafo, podemos estar interessados em tarefas como Classificação de Nós, Predição de Links, Classificação de Grafos, Otimização de Caminhos;
- Cada tipo de tarefa pode exigir um tipo de característica do grafo (feature) e um tipo de algoritmo de IA diferente;

- Busca clássica: largura, profundidade, algoritmo de Dijkstra;
- Busca heurística: A* e Greedy Search;
- Aprendizado de Máquina: deepwalk, node2vec

Sistemas de recomendação pode ser baseados em predição de links pode exemplo;

Representação por tabelas

- A forma mais comum de representar dados é na forma de tabelas!
- As tabelas são fáceis de ler visualmente e podem ser facilmente implementadas como estruturas de dados;
- No nosso caso usaremos a estrutura de dados DataFrame da biblioteca Pandas (é uma classe);

model	engine_power	transmission	age_in_days	km	previous_owners	lat	lon	price
pop	69	manual	4474	56779	2	45.071079	7.46403	4490
lounge	69	manual	2708	160000	1	45.069679	7.70492	4500
lounge	69	automatic	3470	170000	2	45.514599	9.28434	4500
sport	69	manual	3288	132000	2	41.903221	12.49565	4700
sport	69	manual	3712	124490	2	45.532661	9.03892	4790

Representação por tabelas

- As tabelas são fáceis de ler visualmente e podem ser facilmente implementadas como estruturas de dados (no nosso caso usaremos a estrutura de dados DataFrame da biblioteca Pandas);
- Formalmente uma tabela é uma matriz, que pode ser entendida como uma coleção de tuplas:

(pop, 69, manual, 4474, 56779, 2, 25.07079, 7.46403, 4490)

model	engine_power	transmission	age_in_days	km	previous_owners	lat	lon	price
pop	69	manual	4474	56779	2	45.071079	7.46403	4490
ounge	69	manual	2708	160000	1	45.069679	7.70492	4500
ounge	69	automatic	3470	170000	2	45.514599	9.28434	4500
sport	69	manual	3288	132000	2	41.903221	12.49565	4700
sport	69	manual	3712	124490	2	45.532661	9.03892	4790

Representação por tabelas

- Cada linha (tupla de atributos) representa um exemplo, entrada ou instância do nossos dados;
- Exemplo: cada linha representa um carro distinto:

model	engine_power	transmission	age_in_days	km	previous_owners	lat	lon	price
e np	69	manual	1171	56779	2	45.071079	7.46403	4490
ou ge	60-	manual		160000	4	45:069679	7.70492	4600
ou. ge	69	automatic		170000	2	45.514599	9:20494	400
Sport	69	manuai	3288	132000	ż	41.903221	12.49565	4700
sport	69	manuar	3/12	124490	2	45.532661	9.03892	4/90

Exemplo: cada coluna representa uma característica (atributo, feature) diferente;

model	engine_power	transmission	age_in_days	km	previous_owners	lat	lon	price
фр	1 9	manual	1474	56/79	^ 2	45.07079	7.4603	4490
lour ge	69	manual	2708	160000	1	45.069679	7.70492	4500
lourge	69	automatic	3470	170000	2	45.514599	9.28434	4500
sport	69	mainual	3288	132000	2	41.903221	12.49565	4700
sport	\$9	manual	3712	124490	2	45.532661	9.03892	4790

Exemplo de aplicações:

- Dados, informação e conhecimento são elementos fundamentalmente importantes para a área de inteligência artificial e computacional;
- Cada algoritmo de IA irá necessitar de dados em um determinado formato, isto é, cada algoritmo
 é feito para trabalhar com certos tipos de dados (certa representação de informação ou
 conhecimento);

Exemplos:

- 1. Usar Rede Neurais Convolucionais para classificar imagens: a imagem precisa ter certo tamanho NxM pixels, com certa profundidade (bits por pixel) e quantidade de canais (monocromática, RGB, CMYK, YUV).
- 2. Um Sistema Especialista para Diagnóstico Médico precisa de um dicionário de regras e uma ontologia, ou seja, precisa de uma representação de conhecimento que é feita em conjunto entre programadores e médicos.
- 3. Um algoritmo Pathfinder para definir rotas entre duas cidades usa uma representação em grafo ponderado (distância) das cidades (nós) e estradas (arestas).

Próximos Passos

O que veremos na próxima aula

Nas próxima aulas...

- Introdução à estatística;
- Visualização de dados;
- Introdução ao Aprendizado de Máquina;

Copyright © 2022 Slides do Prof. Henrique Ferreira - FIAP

Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proíbido sem o consentimento formal, por escrito, do Professor (autor).