Lab 4

SVM and performance metrics

Introduction

- Objectives
 - SPAM dataset: a binary classification problem
 - Linear and non-linear Support Vector Machine classifiers
 - Parameter validation
 - Performance metrics

SPAM dataset

Each vector in the dataset corresponds to a recevied email

Dataset:

- Classes: c=2 (spam, mail)
- Samples: N=4601 (1813 spam and 2788 mail)
- Features: d=57 frequency of a particular word in the email. The last features correspond to run-length attributes that measure the length of sequences of consecutive capital letters.

Goal: build a personalized spam filter

Dataset preprocessing (to fasten convergence and avoid overfitting):

- Feature binarization (for features 1 to 54)
- Removal of features 55 to 57

Content of a feature vector

Number	Feature	Number	Feature
1	word_freq_make: continuous.	30	word_freq_labs: continuous.
2	word_freq_address: continuous.	31	word_freq_telnet: continuous.
3	word_freq_all: continuous.	32	word_freq_857: continuous.
4	word_freq_3d: continuous.	33	word_freq_data: continuous.
5	word_freq_our: continuous.	34	word_freq_415: continuous.
6	word_freq_over: continuous.	35	word_freq_85: continuous.
7	word_freq_remove: continuous.	36	word_freq_technology: continuous.
8	word_freq_internet: continuous.	37	word_freq_1999: continuous.
9	word_freq_order: continuous.	38	word_freq_parts: continuous.
10	word_freq_mail: continuous.	39	word_freq_pm: continuous.
11	word_freq_receive: continuous.	40	word_freq_direct: continuous.
12	word_freq_will: continuous.	41	word_freq_cs: continuous.
13	word_freq_people: continuous.	42	word_freq_meeting: continuous.
14	word_freq_report: continuous.	43	word_freq_original: continuous.
15	word_freq_addresses: continuous.	44	word_freq_project: continuous.
16	word_freq_free: continuous.	45	word_freq_re: continuous.
17	word_freq_business: continuous.	46	word_freq_edu: continuous.
18	word_freq_email: continuous.	47	word_freq_table: continuous.
19	word_freq_you: continuous.	48	word_freq_conference: continuous
20	word_freq_credit: continuous.	49	char_freq_;: continuous.
21	word_freq_your: continuous.	50	char_freq_(: continuous.
22	word_freq_font: continuous.	51	char_freq_[: continuous.
23	word_freq_000: continuous.	52	char_freq_!: continuous.
24	word_freq_money: continuous.	53	char_freq_\$: continuous.
25	word_freq_hp: continuous.	54	char_freq_#: continuous.
26	word_freq_hpl: continuous.	55	capital_run_length_average: continu
27	word_freq_george: continuous.	56	capital_run_length_longest: continue
28	word_freq_650: continuous.	57	capital_run_length_total: continuou
29	word_freq_lab: continuous.		

SVM

Linear SVM classifier:

Separable classes: An SVM classifier seeks the hyperplane that best separates samples from the two classes

Support

Function to minimize:

$$L = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^{N} \alpha_i \left(y_i \left(\mathbf{w}^T \mathbf{x}_i + w_0 \right) - 1 \right)$$

We obtain a convex problem depending on α_{i} ; it can be solved using standard optimization software

$$L = \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} \alpha_{i} \alpha_{k} y_{i} y_{k} \mathbf{x}_{i}^{T} \mathbf{x}_{k} \qquad \text{subject to} \qquad \begin{cases} \alpha_{i} \ge 0 \\ \sum_{i=1}^{N} \alpha_{i} y_{i} = 0 \end{cases}$$

Classification of a vector x

$$\hat{y} = sign(g(\mathbf{x})) = sign(\mathbf{w}^T \mathbf{x} + w_0) = sign\left(\sum_{i=1}^{N_{SV}} \alpha_i y_i \mathbf{x}_i^T \mathbf{x} + w_0\right)$$

SVM

Linear SVM classifier:

Non-separable classes: no hyperplane can separate the classes without error. We permit some training vectors wrongly classified

$$y_i \left(\mathbf{w}^T \mathbf{x}_i + w_o \right) \ge 1 - \xi_i \qquad i = 1, ..., N$$

and introduce a penalization for non-null values of ξ_i :

$$L = \frac{1}{2} \left\| \mathbf{w} \right\|^2 + P \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \alpha_i \left(y_i \left(\mathbf{w}^T \mathbf{x}_i + w_0 \right) - \left(1 - \xi_i \right) \right) - \sum_{i=1}^{N} \beta_i \xi_i$$

The penalization parameter P must be validated

Large P produces overfitting

SVM

Non-linear SVM classifier:

Uses kernel functions

$$L = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} \alpha_i \alpha_k y_i y_k K(\mathbf{x}_i, \mathbf{x}_k) \qquad \text{subject to} \qquad \begin{cases} 0 \le \alpha_i \le P \\ \sum_{i=1}^{N} \alpha_i y_i = 0 \end{cases}$$

Example: a Gaussian Kernel

$$K(\mathbf{x}_{i}, \mathbf{x}_{k}) = \exp\left(-\frac{1}{\sigma^{2}} ||\mathbf{x}_{i} - \mathbf{x}_{k}||^{2}\right)$$

Classification of a vector x:

$$\hat{y} = sign\left(\sum_{i=1}^{N_{SV}} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}) + w_0\right)$$

 σ^2 is a parameter that must be validated

Validation of parameters

Dataset split into 3 subsets:

```
    Train: X_train, Labels_train, 60%, 70%, etc.
```

- Validation: X_val, Labels_val, 20%, 15%
- Test: X_test, Labels_test,
 20%, 15%

Parameter validation (brute force):

- For each pair of values to test (P, σ₂)
 - train classifier using training set
 - compute validation error
- Select the classifier (parameters) with lowest validation error
- Compute the error on the test set

Performance metrics

 w_1 : negative w_2 : positive w_2 : positive w_3 : Decide ω_1 ω_2

Precision =
$$\frac{TP}{TP + FP}$$
, Recall = $\frac{TP}{TP + FN}$

$$\begin{split} &\operatorname{Precision} = \frac{\operatorname{Pr}\left\{x > \gamma \mid w_{2}\right\} \operatorname{Pr}\left\{w_{2}\right\}}{\operatorname{Pr}\left\{x > \gamma \mid w_{2}\right\} \operatorname{Pr}\left\{w_{2}\right\} + \operatorname{Pr}\left\{x > \gamma \mid w_{1}\right\} \operatorname{Pr}\left\{w_{1}\right\}} = \\ &= \frac{\operatorname{Pr}\left\{x > \gamma \mid w_{2}\right\} \operatorname{Pr}\left\{w_{2}\right\}}{\operatorname{Pr}\left\{x > \gamma\right\}} = \operatorname{Pr}\left\{w_{2} \mid x > \gamma\right\}, \end{split}$$

$$\begin{aligned} \operatorname{Recall} &= \frac{\Pr\left\{x > \gamma \mid w_{2}\right\} \Pr\left\{w_{2}\right\}}{\Pr\left\{x > \gamma \mid w_{2}\right\} \Pr\left\{w_{2}\right\} + \Pr\left\{x < \gamma \mid w_{2}\right\} \Pr\left\{w_{2}\right\}} = \\ &= \frac{\Pr\left\{x > \gamma \mid w_{2}\right\} \Pr\left\{w_{2}\right\}}{\Pr\left\{w_{2}\right\}} = \Pr\left\{x > \gamma \mid w_{2}\right\} \end{aligned}$$

Performance metrics

Precision, Recall (=Sensitivity), Specificity:

$$P = \frac{TP}{TP + FP} = \frac{\text{\#correctly classified as SPAM}}{\text{\#classified as SPAM}}$$

$$R = Sens = \frac{TP}{TP + FN} = \frac{\text{\#correctly classified as SPAM}}{\text{\#total of SPAM}}$$

$$Sp = \frac{TN}{TN + FP} = \frac{\text{\#correctly classified as MAIL}}{\text{\#total of MAIL}}$$

F score: A measure that combines precision and recall is the harmonic mean of precision and recall, the traditional F-measure or balanced F-score:

$$F_{score} = 2\frac{P \times R}{P + R}$$

Prior measures:

$$P(\text{class=SPAM}) = \frac{\text{\#SPAM samples in the test set}}{\text{\#samples in the test set}}$$
$$P(\text{class=MAIL}) = \frac{\text{\#MAIL samples in the test set}}{\text{\#samples in the test set}}$$