

CLAIMS

We claim:

5

1. A compound of the general formula:

wherein:

a) R_B and R_O are independently -H, unless otherwise noted to be -Cl, -Br, -I, -F, -CN, lower alkyl, -OH, -OR₆, -CH₂-OH, -NH₂, or N(R₆)(R₇), wherein R₆ and R₇ are independently hydrogen or an alkyl or branched alkyl with up to 10 carbons;

b) R₁-is-C≡N₂-C=N-R₃-CH₂-C≡R₄-C=C-R₅-C=CH-R₆-R₇-C=CH₂-C≡CH-R₈-CH₂-C≡N.

15 >C(H)-C(O)-OR₃, -O-R, -R-R₁, -O-R-R₁, OR(O)R, OR(O)R₁, ROR, ROR₁, -NHC(O)R₆, -
NRC(O)R₆, -NH₂, or N(R₆)(R₇), wherein R₆ and R₇ are independently hydrogen or an alkyl
or branched alkyl with up to 10 carbons; or a hetero group wherein the hetero group may have
more than one hetero atom and may be substituted, where R is H or a straight or branched
alkyl with up to 10 carbons or aralkyl, and in any position F may be substituted in or on the
20 carbon chain, and R₁ is -OH, -NH₂, -Cl, -Br, -I, -F or CF₃ when R₁ is terminal;

c) Z' is \geq COH unless otherwise noted to be $>$ C-OAc;

d) >C-Rg is >CH₂, >C(H)-OH, >C=O, >C=N-OH, >C(R₃)OH, >C=N-OR₃, >C(H)-NH₂, >C(H)-NHR₃, >C(H)-NR₃R₄, or >C(H)-C(O)-R₃, where each R₃ and R₄ is independently an alkyl or branched alkyl with up to 10 carbons or aralkyl; or

25 R_g is i) an alkyl of 1-10 carbon atoms that is straight chain or branched, ii) an alkenyl of 1-10 carbon atoms that is straight chain or branched having one or more double bonds at

any position from C to Z₀, iii) an alkenyl group of 1-10 carbon atoms that is straight chain or branched having one or more triple bonds at any position where chemically possible, iv) a mono or dialkyl amino group wherein each alkyl chain has from 1-10 carbon atoms and is straight chain or branched, v) (CH₂)_n-CF₂-, (CH₂)_n-CR₁ or (CH₂)_n-CF₃ wherein n=0-10
 5 carbons, or vi) H, and wherein any of i-iv are optionally substituted with an aromatic or heteroaromatic group or optionally substituted with a heterogroup and wherein R_g is either in the α or β position and; or

R_g is R_{g1} and R_{g2}, and wherein R_{g1} may be present or absent and when present is -H, an alkyl, alkenyl, or alkynyl of 1-10 carbon atoms that is straight chain or branched and is
 10 optionally substituted, and R_{g2} is a hetero group, wherein when R_{g1} is absent the heterogroup is bonded to the 17-position with a double bond, and wherein either R_{g1} or R_{g2} can be in the β position with the other group in the α position, and R₁ is -OH, -NH₂, -Cl, -Br, -I, -F or CF₃ when R₁ is terminal;

e) R_{h1} and R_{h2} are independently H, unless otherwise noted to be a straight or branched chain alkyl, alkenyl or alkynyl with up to 10 carbons that is unsubstituted, or substituted with one or more groups selected from a hetero functionality that is either not substituted, mono-substituted or multiply substituted with an alkyl, alkenyl or alkynyl chain up to 10 carbons; a halo functionality (F, Cl, Br or I); an aromatic group optionally substituted with at least one hetero, halo or alkyl; or R_{h1} and R_{h2} are independently a group containing at least one aliphatic or aromatic group optionally substituted with at least one hetero, halo or alkyl;

f) Z'' is >CH₂;

and wherein saturated bonds in any ring may be dehydrogenated;

and wherein all monosubstituted substituents have either an α or β configuration;

and wherein lower alkyl is defined as a carbon chain having 1-10 carbon atoms which
 25 may be branched or unbranched.

2. The compound of Claim 1, wherein :

R_a is -OCH₃; and

R_{g1} and R_{g2} are each H.

30 3. The compound of Claim 1, wherein :
 R_a is -OCH₃; and
 R_g is =CH₂.

- 20
25
30
4. The compound of Claim 1, wherein :
- R_a is -OCH₃;
- R_{g1} is absent; and
- 5 R_{g2} is =NOH.
5. The compound of Claim 1, wherein :
- R_a is -OCH₃;
- R_{g1} is β-H₁; and
- 10 R_{g2} is α-OH.
6. The compound of Claim 1, wherein :
- R_a is -OCH₃;
- R_{g1} is -H; and
- R_{g2} is -NH₂.
7. The compound of Claim 1, wherein :
- R_a is -OCH₃;
- Z' is >C-OAc;
- R_{g1} is -H; and
- R_{g2} is -OAc.
8. The compound of Claim 1, wherein :
- R_a is -OCH₃;
- R_{g1} is -H; and
- 25 R_{g2} is -CH₂CH₂CH₃.
9. The compound of Claim 1, wherein :
- R_a is -OCH₃;
- R_{g1} is -H; and
- 30 R_{g2} is -CH₃.

10. The compound of Claim 1, wherein :

R_a is -OCH₃; and

R_g is =CHCH₂CH₃.

5 11. The compound of Claim 1, wherein :

R_a is -OCH₃;

R_{g1} is -H; and

R_{g2} is -NHCH₂CH₂CH₃.

10 12. The compound of Claim 1, wherein :

R_a is -OCH₃; and

R_g is =CHCH₃.

13. The compound of Claim 1, wherein :

R_a is -OCH₃;

R_{g1} is -H; and

R_{g2} is -CH₂CH₃.

14. The compound of Claim 1, wherein :

R_a is -OCH₃; and

R_g is =N-NH-(SO₂)-C₆H₄-p-CH₃.

15. The compound of Claim 1, wherein :

R_a is -OCH₃;

R_{g1} is H; and

R_{g2} is -COOH.

25

16. A method of modifying estradiol analogs for preventing or hindering demethylation, oxidation and conjugation with another molecule during metabolism.

30

17. The method claim 16 wherein the method comprises adding steric bulk or modification of chemical or electrostatic characteristics or a combination thereof to estradiol analogs for retarding or preventing metabolic deactivation.

18. The compound of Claim 1, wherein:
Ra is -OCH₃;
>C-Rg1 is >CH;
5 >C-Rg2 is >COH; and
R_{h1} and R_{h2} are independently -H and Et.
19. The compound of Claim 1, wherein:
Ra is -OCH₃;
10 >C-Rg1 is >CH;
>C-Rg2 is >COH; and
R_{h1} and R_{h2} are independently H and n-Pr.
20. The compound of Claim 1, wherein:
Ra is -OCH₃;
>C-Rg1 is >CH;
>C-Rg2 is >COH; and
R_{h1} and R_{h2} are independently H and i-Bu.
21. The compound of Claim 1, wherein:
Ra is -OCH₃;
>C-Rg1 is >CH;
20 >C-Rg2 is >COH; and
R_{h1} and R_{h2} are independently H and CH₂OH.
- 25 22. The compound of Claim 1, wherein :
Ra is -OCH₃;
>C-Rg1 is >CH;
>C-Rg2 is >COH; and
30 R_{h1} and R_{h2} are independently H and n-Bu.

23. The compound of Claim 1, wherein :

R_a is -OCH₃;

>C-Rg1 is >CH;

>C-Rg2 is >COH; and

5 Z" is >CH₂, and

R_{h1} and R_{h2} are independently H and Me.

24. The compound of Claim 1, wherein :

R_a is -OCH₃;

10 >C-Rg1 is >CH;

>C-Rg2 is >COH; and

R_{h1} and R_{h2} are independently H and -CH₂N(CH₃)₂.

25. The compound of Claim 1, wherein :

R_a is -C(O)CH₃;

>C-Rg1 is >CH; and

>C-Rg2 is >COH.

26. The compound of Claim 1, wherein :

R_a is -C(O)H;

>C-Rg1 is >CH; and

>C-Rg2 is >COH.

27. The compound of Claim 1, wherein :

25 R_a is -CH₂OH;

>C-Rg1 is >CH; and

>C-Rg2 is >COH.

28. The compound of Claim 1, wherein :

30 R_a is -NO₂;

>C-Rg1 is >CH; and

>C-Rg2 is >COH.

29. The compound of Claim 1, wherein :
- R_a is -N(CH₃)₂;
- >C-R_{g1} is >CH; and
- 5 >C-R_{g2} is >COH.
30. The compound of Claim 1, wherein :
- R_a is -NH₂;
- >C-R_{g1} is >CH; and
- 10 >C-R_{g2} is >COH.
31. The compound of Claim 1, wherein :
- R_a is -C≡C-CH₃;
- >C-R_{g1} is >CH; and
- 15 >C-R_{g2} is >COH.
32. The compound of Claim 1, wherein :
- R_a is -CH₂CH₃;
- >C-R_{g1} is >CH; and
- 20 >C-R_{g2} is >COH.
33. The compound of Claim 1, wherein :
- R_a is -CH₃;
- >C-R_{g1} is >CH; and
- 25 >C-R_{g2} is >COH.
34. The compound of Claim 1, wherein :
- R_a is -NH₂; and
- R_{g1} and R_{g2} are each H.

35. The compound of Claim 1, wherein :

R_a is -C(O)NH₂; and

R_{g1} and R_{g2} are each H.

5 36. The compound of Claim 1, wherein :

R_a is -NH₂⁺CH₃; and

R_{g1} and R_{g2} are each H.

37. The compound of Claim 1, wherein :

10 R_a is -N(CH₃)₂; and

R_{g1} and R_{g2} are each H.

38. The compound of Claim 1, wherein :

R_a is -NH⁺(CH₃)₂ (or N(CH₃)₂-HCl); and

R_{g1} and R_{g2} are each H.

39. The compound of Claim 1, wherein :

R_a is -NH⁺(CH₃)₂ or N(CH₃)₂-HCl; and

>C-R_{g1} is >CH; and

>C-R_{g2} is >COH.

40. The compound of Claim 1, wherein :

R_a is -OCH₃;

>C-R_{g1} is >CH;

25 >C-R_{g2} is >COH; and

an olefin at C9-C11.

41. The compound of Claim 1, wherein :

R_a is -OCH₂CH₃;

30 R_{g1} is absent; and

R_{g2} is =CHCH₃.

42. The compound of Claim 1, wherein :

R_a is -C≡C-CH₃;

R_{g1} is absent; and

R_{g2} =CHCH₃.

5

43. The compound of Claim 1, wherein :

R_a is -C(O)H;

R_{g1} is absent; and

R_{g2} =CHCH₃.

10

44. The compound of Claim 1, wherein :

R_a is -NHC(O)H or -NNC(O)N;

R_{g1} is absent; and

R_{g2} =CHCH₃.

45
15
20

45. The compound of Claim 1, wherein :

R_a is -CH₂OH;

R_{g1} is absent; and

R_{g2} =CHCH₃.

20
25

46. The compound of Claim 1, wherein :

R_a is -CH₂CH₃;

R_{g1} is absent; and

R_{g2} =CHCH₃.

25

47. The compound of Claim 1, wherein :

R_a is -CH₃;

R_{g1} is absent; and

R_{g2} =CHCH₃.

30

48. The compound of Claim 1, wherein:
 R_a is $-CH=CHCH_3$;
 R_g1 is absent; and
 $R_g2 = CHCH_3$.

5

49. The compound of Claim 1, wherein:
R_a is -OCH₂CH₃;
R_{g1} is absent; and
R_{g2} =CH₂.

19

50. The compound of Claim 1, wherein :

R_a is $-C\equiv CCH_3$;

R_g1 is absent; and

$R_g2 = CH_2$.

卷之三

51. The compound of Claim 1, wherein:

 - R_a is -C(O)H;
 - R_{g1} is absent; and
 - R₂ =CH₂.

20

52. The compound of Claim 1, wherein:
 R_3 is $-NHC(O)H$;
 R_8 is absent; and
 $R_{8.2} = CH_2$.

25

53. The compound of Claim 1, wherein:

 - R_a is -CH₂OH;
 - R_{g1} is absent; and
 - R_{g2} =CH₂.

30

54. The compound of Claim 1, wherein :

R_a is -CH₂CH₃;

R_{g1} is absent; and

R_{g2} =CH₂.

5

55. The compound of Claim 1, wherein :

R_a is -CH₃;

R_{g1} is absent; and

R_{g2} =CH₂.

10

56. The compound of Claim 1, wherein :

R_a is -CH=CHCH₃;

R_{g1} is absent; and

R_{g2} =CH₂.

20
TOKUZO'S 20220506

57. The compound of Claim 1, wherein :

R_a is -OCH₂CH₃; and

R_{g1} and R_{g2} are each H.

58. The compound of Claim 1, wherein :

R_a is -C≡CCH₃; and

R_{g1} and R_{g2} are each H.

25

59. The compound of Claim 1, wherein :

R_a is -C(O)H; and

R_{g1} and R_{g2} are each H.

30

60. The compound of Claim 1, wherein :

R_a is -NHC(O)H; and

R_{g1} and R_{g2} are each H.

- 1000 800 700 600
500 400 300 200
100 50 20 10
61. The compound of Claim 1, wherein :
- R_a is -CH₂OH; and
- R_g1 and R_g2 are each H.
- 5 62. The compound of Claim 1, wherein :
- R_a is -CH₂CH₃; and
- R_g1 and R_g2 are each H.
- 10 63. The compound of Claim 1, wherein :
- R_a is -CH₃; and
- R_g1 and R_g2 are each H.
64. The compound of Claim 1, wherein :
- R_a is -CH=CHCH₃; and
- R_g1 and R_g2 are each H.
65. The compound of Claim 1, wherein :
- R_a is -OCH₂CH₃;
- R_g1 is H; and
- R_g2 is CH₃.
66. The compound of Claim 1, wherein :
- R_a is -C≡CCH₃;
- R_g1 is H; and
- R_g2 is CH₃.
67. The compound of Claim 1, wherein :
- R_a is -C(O)H;
- R_g1 is H; and
- R_g2 is CH₃.

68. The compound of Claim 1, wherein:
 R_a is $-NHC(O)$;
 R_g1 is H; and
 R_g2 is CH_3 .

5

69. The compound of Claim 1, wherein:
R_a is -CH₂OH;
R_{g1} is H; and
R_{g2} is CH₃.

10

70. The compound of Claim 1, wherein :

R_a is -CH₂CH₃;

R_{g1} is H; and

R_{g2} is CH₃.

71. The compound of Claim 1, wherein :

R_a is -CH₃;

R_{g1} is H; and

R_{g2} is CH₃.

21

72. The compound of Claim 1, wherein :

R_a is -CH=CHCH₃;

R_{g1} is H; and

R_{g2} is CH₃.

25

73. The compound of Claim 1, wherein:
R_a is -OCH₂CH₃;
R_{g1} is H; and
R_{g2} is CH₂CH₃.

30

74. The compound of Claim 1, wherein :

R_a is -C≡CCH₃;

R_{g1} is H; and

R_{g2} is CH₂CH₃.

5

75. The compound of Claim 1, wherein :

R_a is -C(O)H;

R_{g1} is H; and

R_{g2} is CH₂CH₃.

10

76. The compound of Claim 1, wherein :

R_a is -NHC(O)H;

R_{g1} is H; and

R_{g2} is CH₂CH₃.

TD 280-8125E660
25
20

77. The compound of Claim 1, wherein :

R_a is -CH₂OH;

R_{g1} is H; and

R_{g2} is CH₂CH₃.

25

78. The compound of Claim 1, wherein :

R_a is -CH₂CH₃;

R_{g1} is H; and

R_{g2} is CH₂CH₃.

30

79. The compound of Claim 1, wherein :

R_a is -CH₃;

R_{g1} is H; and

R_{g2} is CH₂CH₃.

80. The compound of Claim 1, wherein :

R_a is -CH=CHCH₃;

R_{g1} is H; and

R_{g2} is CH₂CH₃.

5

81. The compound of Claim 1, wherein :

R_a is -OCH₂CH₃;

R_{g1} is absent; and

R_{g2} is =CHCH₂CH₃.

10

82. The compound of Claim 1, wherein :

R_a is -C≡CCH₃;

R_{g1} is absent; and

R_{g2} is =CHCH₂CH₃.

TD280 81263660
20

83. The compound of Claim 1, wherein :

R_a is -C(O)H;

R_{g1} is absent; and

R_{g2} is =CHCH₂CH₃.

25

84. The compound of Claim 1, wherein :

R_a is -NHC(O)H;

R_{g1} is absent; and

R_{g2} is =CHCH₂CH₃.

25

85. The compound of Claim 1, wherein :

R_a is -CH₂OH;

R_{g1} is absent; and

R_{g2} is =CHCH₂CH₃.

30

86. The compound of Claim 1, wherein :

R_a is -CH₂CH₃;

R_{g1} is absent; and

R_{g2} is =CHCH₂CH₃.

5

87. The compound of Claim 1, wherein :

R_a is -CH₃;

R_{g1} is absent; and

R_{g2} is =CHCH₂CH₃.

10

88. The compound of Claim 1, wherein :

R_a is -CH=CHCH₃;

R_{g1} is absent; and

R_{g2} is =CHCH₂CH₃.

TO 220-31265-660
20

89. The compound of Claim 1, wherein :

R_a is -OCH₃;

R_{g1} is H; and

R_{g2} is -CH₂OH.

25

90. The compound of Claim 1, wherein :

R_a is -OCH₃;

>C-R_{g1} is >CH;

>C-R_{g2} is >COH; and

an olefin at C6-C7.

25

91. The compound of Claim 1, wherein :

R_a is -N₃; and

>C-R_g is >CH.

30

90. The compound of Claim 1, wherein :

R_a is -H; and

>C-R_g is >CH.