2.5 Boolean algebra

Axiom

of
$$0 - 1a$$
. $0.0 = 0$

Duality: given a logic expression, if we swap $0 \Leftrightarrow 1$ and $\cdot \Leftrightarrow +$ then the resulting expression still holds.

$$5\alpha \times 0 = 0$$

$$x-D-60$$
 $x\cdot 1=x$

$$\chi = 1$$
 $7\alpha \chi \cdot \chi = \chi$

$$-Do-Do-9$$
 $\overline{\bar{\chi}}=\chi$

$$7 - 0 - 6b \quad x + 0 = x$$

$$x + 1 - 76$$
 $x + x = x$

106
$$x+y=y+x$$
 (commutative)

11a
$$\chi(y\cdot z) = (\chi \cdot y)\cdot z$$

116
$$x+(y+z)=(x+y)+z$$
 (associative)
126 $x+(y+z)=(x+y)\cdot(x+z)$ (distributive)

$$12a \ \mathcal{R}(y+z) = (x \cdot y) + (x \cdot z)$$

$$(d) \quad \chi + (y \cdot \overline{z}) = (\chi + y) \cdot (\chi + \overline{z}) \quad (d)$$

Proof for 126. by perfect induction 2 0 x 125 7 2 19 3

15a
$$\overline{x} \cdot y = \overline{x} + \overline{y}$$
 15b $\overline{x} + y = \overline{x} \cdot \overline{y}$ (Demorgan's Theorem)
 $\overline{y} - \overline{y} - \overline{y} - \overline{y} - \overline{y} - \overline{y} + \overline{y}$ $\overline{y} - \overline{y} - \overline{y}$

7.y

RHS

 $\overline{\chi} + \overline{y}$

16a
$$x+\overline{x}y=x+y$$
 16b $x\cdot(\overline{x}+y)=x\cdot y$ (Covering)
17a $x\cdot y+y\cdot z+\overline{x}z$ 17b $(x+y)(y+z)(\overline{x}+z)$
 $=x\cdot y+\overline{x}z$ included $=(x+y)(\overline{x}+z)$ (Consensus)

Lab #1 = building lagic circuits using 7400 series of logic gates

-	γ	y	AND	NAND	OR	NOR	
(0	0	0		0	1	T
(0	1	0	1	- (0	
	l	0	0	i	1	0	
		١	(Ò	i	0	
			1)	-\$\frac{1}{2}	>		-