1. A föld hidrológiai körfolyamatában a különböző földterületek befolyásolják az időjárást és a különböző időjárások hatására a földterületek változnak. Minden földterületeknek van neve, fajtája (puszta, zöld, tavas), tárolt vízmennyisége (km³-ben). A földterületek feletti közös levegőnek ismerjük a páratartalmát (százalékban).

Az időjárás a levegő aznapi páratartalmától függ: Ha ez meghaladja a 70%-ot, esős idő lesz, és ekkor lecsökken a páratartalom 30%-ra. 40%-os páratartalom alatt az időjárás napos lesz. 40 és 70% közötti páratartalom esetén az esős időjárásnak (páratartalom-40)*3,3 százalék az esélye, egyébként felhős időjárás lesz. (Véletlenszám generátorral állítsunk el egy számot 0 és 100 között, és ha ez kisebb, mint a (páratartalom-40)*3,3 érték, akkor esős, különben felhős időjárás legyen.)

Az egyes földterületek – a megadásuk sorrendjében – reagálnak a különböző időjárásokra: először a vízmennyiségük változik, majd befolyásolják a levegő páratartalmát. Egyetlen földterület vízmennyisége sem lehet negatív.

Puszta: napos idő hatására a vízmennyiség 3 km³-rel csökken, felhős idő hatására 1 km³-rel nő, eső hatására 5km³-rel nő. A levegő páratartalmát 3%-kal növeli. 15 km³-nél több tárolt víz esetén zölddé változik.

Zöld: napos idő hatására a vízmennyiség 6 km³-rel csökken, felhős idő hatására 2 km³-rel, eső hatására 10km³-rel nő. A levegő páratartalmát 7%-kal növeli. 50km³-es vízmennyiség fölött tavassá változik. 16km³ alatt pusztává változik.

Tavas: napos idő hatására a vízmennyiség 10 km³-rel csökken, felhős idő hatására 3 km³-rel, eső hatására 15km³-rel nő. A levegő páratartalmát 10%-kal növeli. 51km³ alatt zölddé változik.

Adjuk meg 10 kör után a legvizesebb földterület tulajdonosát, vízmennyiségével együtt! Körönként mutassuk meg a földterületek összes tulajdonságát!

A program egy szövegfájlból olvassa be az adatokat! Ennek első sorában a földterületek száma szerepel. A következő sorok tartalmazzák a földterületek adatait szóközökkel elválasztva: a terület tulajdonosát (szóköz nélküli sztring), fajtáját (egy karakter azonosítja: p - puszta, z - zöld, t - tavas), és a kezdeti vízmennyiségét. Az utolsó sor a földterületek feletti levegő kezdeti páratartalmát mutatja. A program kérje be a fájl nevét, majd jelenítse is meg a tartalmát. (Feltehetjük, hogy a fájl formátuma helyes.) Egy lehetséges bemenet:

```
4
Bean t 86
Green z 26
Dean p 12
Teen z 35
98
```

2. A föld hidrológiai körfolyamatában a különböző földterületek befolyásolják az időjárást és a különböző időjárások hatására a földterületek változnak. Minden földterületeknek van neve, fajtája (puszta, zöld, tavas) , tárolt vízmennyisége (km³-ben). A földterületek feletti közös levegőnek ismerjük a páratartalmát (százalékban).

Az időjárás a levegő aznapi páratartalmától függ: Ha ez meghaladja a 70%-ot, esős idő lesz, és ekkor lecsökken a páratartalom 30%-ra. 40%-os páratartalom alatt az időjárás napos lesz. 40 és 70% közötti páratartalom esetén az esős időjárásnak (páratartalom-40)*3,3 százalék az esélye, egyébként felhős időjárás lesz. (Véletlenszám generátorral állítsunk el egy számot 0 és 100 között, és ha ez kisebb, mint a (páratartalom-40)*3,3 érték, akkor esős, különben felhős időjárás legyen.)

Az egyes földterületek – a megadásuk sorrendjében – reagálnak a különböző időjárásokra: először a vízmennyiségük változik, majd befolyásolják a levegő páratartalmát. Egyetlen földterület vízmennyisége sem lehet negatív.

Puszta: napos idő hatására a vízmennyiség 3 km³-rel csökken, felhős idő hatására 1 km³-rel, eső hatására 5km³-rel nő. A levegő páratartalmát 3%-kal növeli. 15 km³-nél több tárolt víz esetén zölddé változik.

Zöld: napos idő hatására a vízmennyiség 6 km³-rel csökken, felhős idő hatására 2 km³-rel, eső hatására 10km³-rel nő. A levegő páratartalmát 7%-kal növeli. 50km³-es vízmennyiség fölött tavassá változik. 16km³ alatt pusztává változik.

Tavas: napos idő hatására a vízmennyiség 10 km³-rel csökken, felhős idő hatására 3 km³-rel, eső hatására 15km³-rel nő. A levegő páratartalmát 10%-kal növeli. 51km³ alatt zölddé változik.

Addig szimuláljuk a folyamatot újra és újra a földterületek megadott sorrendjében, amíg minden földterület azonos fajtájú nem lesz. Körönként mutassuk meg a földterületek összes tulajdonságát!

A program egy szövegfájlból olvassa be az adatokat! Ennek első sorában a földterületek száma szerepel. A következő sorok tartalmazzák a földterületek adatait szóközökkel elválasztva: a terület tulajdonosát (szóköz nélküli sztring), fajtáját (egy karakter azonosítja: p - puszta, z - zöld, t - tavas), és a kezdeti vízmennyiségét. Az utolsó sor a földterületek feletti levegő kezdeti páratartalmát mutatja. A program kérje be a fájl nevét, majd jelenítse is meg a tartalmát. (Feltehetjük, hogy a fájl formátuma helyes.) Egy lehetséges bemenet:

```
4
Bean t 86
Green z 26
Dean p 12
Teen z 35
98
```

3. Ismerjük a légkör egymás felett elhelyezkedő ózon, oxigén, és széndioxid anyagú légrétegeit, amelyek vastagsága a légköri viszonyoktól (zivataros, napos, egyéb) függően változik. Amikor egy légköri réteg anyagának egy része átalakul, akkor ez az anyagmennyiség fölszáll, és vastagítja a felette lévő első ugyanolyan anyagú réteget. Ha nincs fölötte ilyen réteg, akkor a légkör legtetején új réteget képez. Egy rétegnek sem csökkenhet a vastagsága fél kilométer alá. Ha ez mégis megtörténne, akkor ez a réteg is felszáll, és egyesül a fölötte lévő első ugyanilyen anyagú réteggel. Ha azonban nincs ilyen, akkor megszűnik.

A folyamat során először egymástól függetlenül reagálnak az egyes légrétegek az aktuális időjárási viszonyra, utána rétegenként alulról felfelé haladva felszállnak az újonnan keletkeztek anyagmennyiségek, illetve a túl vékony rétegek.

A következőkben megadjuk, hogy az egyes anyagok miként reagálnak a különböző időjárási viszonyokra.

anyag	zivatar	napos	más
ózon	-	-	5% oxigénné
oxigén	50% ózonná	5% ózonná	10% széndioxiddá
széndioxid	-	5% oxigénné	-

Addig szimuláljuk a folyamatot, amíg el nem fogy valamelyik anyag teljesen a legkörből. Körönként mutassuk meg a légrétegek összes tulajdonságát!

A program egy szövegfájlból olvassa be a légkör adatait! Az első sorban a légrétegek száma szerepel. A következő sorok tartalmazzák alulról felfelé haladva a légrétegek adatait szóközökkel elválasztva: anyaga (ezt egy karakter azonosítja: z - ózon, x - oxigén, s - széndioxid), és vastagsága. A rétegeket leíró részt követő sorban a változó légköri viszonyok találhatók egy karaktersorozatban (z - zivatar, n - napos, m – más). Ha a szimuláció a karaktersorozat végére ér, az elejéről folytatja.

1	
z 5	
< 0.8	
3 3	
4	
nmmmnnznnmm	

4. Ismerjük a légkör egymás felett elhelyezkedő ózon, oxigén, és széndioxid anyagú légrétegeit, amelyek vastagsága a légköri viszonyoktól (zivataros, napos, egyéb) függően változik. Amikor egy légköri réteg anyagának egy része átalakul, akkor ez az anyagmennyiség fölszáll, és vastagítja a felette lévő első ugyanolyan anyagú réteget. Ha nincs fölötte ilyen réteg, akkor a légkör legtetején új réteget képez. Egy rétegnek sem csökkenhet a vastagsága fél kilométer alá. Ha ez mégis megtörténne, akkor ez a réteg is felszáll, és egyesül a fölötte lévő első ugyanilyen anyagú réteggel. Ha azonban nincs ilyen, akkor megszűnik.

A folyamat során először egymástól függetlenül reagálnak az egyes légrétegek az aktuális időjárási viszonyra, utána rétegenként alulról felfelé haladva felszállnak az újonnan keletkeztek anyagmennyiségek, illetve a túl vékony rétegek.

A következőkben megadjuk, hogy az egyes anyagok miként reagálnak a különböző időjárási viszonyokra.

anyag	zivatar	napos	más
ózon	-	-	5% oxigénné
oxigén	50% ózonná	5% ózonná	10% széndioxiddá
széndioxid	-	5% oxigénné	1

Szimuláljuk a folyamatot, amíg a légköri rétegek száma a bemeneti rétegszám háromszorosára nem nő, vagy három alá csökken. Körönként mutassuk meg a légrétegek összes tulajdonságát!

A program egy szövegfájlból olvassa be a légkör adatait! Az első sorban a légrétegek száma szerepel. A következő sorok tartalmazzák alulról felfelé haladva a légrétegek adatait szóközökkel elválasztva: anyaga (ezt egy karakter azonosítja: z - ózon, x - oxigén, s - széndioxid), és vastagsága. A rétegeket leíró részt követő sorban a változó légköri viszonyok találhatók egy karaktersorozatban (z - zivatar, n - napos, m – más). Ha a szimuláció a karaktersorozat végére ér, az elejéről folytatja.

4	
z 5	
x 0.8	
s 3	
x 4	
mmmmnznnmm	

5. A turisták látogatása bevételt hoz egy városnak, de kis mértékben rontja is a város állapotát. Egy város, ami jó állapotban van, vonzza a turistákat. Egy rossz állapotú város taszítja az odalátogatni készülőket.

Egy turista látogatása átlagosan 100.000 Ft bevételt hoz a városnak. Ha a város bevétele egy évben meghaladja az egy milliárd forintot, az egy milliárdon felüli részt a város javítására és szépítésére fordítják, hogy több látogató érkezzen a következő évben. A város állapota 1 és 100 pont között mozog (1 alá és 100 fölé sose megy, mert az állam elkölti a fölösleget és besegít, ha már nagyon vészes a helyzet). 1 és 33 közt számít lepusztultnak, 34 és 67 között átlagosnak és 67 fölött jó állapotúnak. Minden évben egy milliárd forint bevétel fölött minden húszmillió forint hoz egy pont állapotjavulást a városnak.

A turisták 3 fajtába sorolhatók: a japánok rendet raknak maguk után, így ők nem rontják a város állapotát. A modern országokból érkező turisták kevésbé ügyelnek a környezetükre: 100-asával rontanak egy-egy pontot a város állapotán. A harmadik csoportba sorolható turisták azon országok képviselői, ahol a szemetelés kulturális szokásnak tekinthető, ők 50-esével rontanak egy-egy pontot a város állapotán.

Ha a város jó állapotban van, abban az évben 20%-kal több japánt és 30%-kal több modernt vonz, mint ahány tervezte, hogy ellátogat oda. Átlagos állapotban 10%-kal több modernt és 10%-kal több harmadik típusú turistát vonz. Lepusztult állapot esetén a japánok egyáltalán nem jönnek, a többiek pedig annyian, amennyien tervezték.

Adjuk meg, hogy a fájlban jelölt évek letelte után milyen a város állapota! Körönként mutassuk meg az érkezett turisták számát (hány tervezett és hány jött) kategóriák szerint, az éves bevételt és a város felújítás előtti állapotát (szám és kategória)!

A program egy szövegfájlból olvassa be az adatokat! Az első sorban a város kezdeti állapota szerepel. A második sor jelöli a szimulált évek számát. A következő sorok tartalmazzák, hogy az egyes években hány turista tervezte, hogy eljön a városba: minden sor 3 darabszámot tartalmaz (japánok, modernek, többiek). A program kérje be a fájl nevét, majd jelenítse is meg a tartalmát. (Feltehetjük, hogy a fájl formátuma helyes.) Egy lehetséges bemenet:

```
50
3
1000 4000 6000
2000 3000 8000
6500 5000 3000
```

6. A turisták látogatása bevételt hoz egy városnak, de kis mértékben rontja is a város állapotát. Egy város, ami jó állapotban van, vonzza a turistákat. Egy rossz állapotú város taszítja az odalátogatni készülőket.

Egy turista látogatása átlagosan 100.000 Ft bevételt hoz a városnak. Ha a város bevétele egy évben meghaladja az egy milliárd forintot, az egy milliárdon felüli részt a város javítására és szépítésére fordítják, hogy több látogató érkezzen a következő évben. A város állapota 1 és 100 pont között mozog (1 alá és 100 fölé sose megy, mert az állam elkölti a fölösleget és besegít, ha már nagyon vészes a helyzet). 1 és 33 közt számít lepusztultnak, 34 és 67 között átlagosnak és 67 fölött jó állapotúnak. Minden évben egy milliárd forint bevétel fölött minden húszmillió forint hoz egy pont állapotjavulást a városnak.

A turisták 3 fajtába sorolhatók: a japánok rendet raknak maguk után, így ők nem rontják a város állapotát. A modern országokból érkező turisták kevésbé ügyelnek a környezetükre: 100-asával rontanak egy-egy pontot a város állapotán. A harmadik csoportba sorolható turisták azon országok képviselői, ahol a szemetelés kulturális szokásnak tekinthető, ők 50-esével rontanak egy-egy pontot a város állapotán.

Ha a város jó állapotban van, abban az évben 20%-kal több japánt és 30%-kal több modernt vonz, mint ahány tervezte, hogy ellátogat oda. Átlagos állapotban 10%-kal több modernt és 10%-kal több harmadik típusú turistát vonz. Lepusztult állapot esetén a japánok egyáltalán nem jönnek, a többiek pedig annyian, amennyien tervezték.

Adjuk meg, hogy 10 év letelte után milyen a város állapota! Körönként mutassuk meg az érkezett turisták számát (hány tervezett és hány jött) kategóriák szerint, az éves bevételt és a város felújítás előtti állapotát (szám és kategória)!

A program egy szövegfájlból olvassa be az adatokat! Az első sorban a város kezdeti állapota szerepel. A második sor jelöli a szimulált évek számát. A következő sorok tartalmazzák, hogy az egyes években hány turista tervezte, hogy eljön a városba: minden sor 3 darabszámot tartalmaz (japánok, modernek, többiek). A program kérje be a fájl nevét, majd jelenítse is meg a tartalmát. (Feltehetjük, hogy a fájl formátuma helyes.) Egy lehetséges bemenet:

```
50
3
1000 4000 6000
2000 3000 8000
6500 5000 3000
```

7. Egy bolygón különböző fajtájú növények élnek, minden növény tápanyagot használ. Ha egy növény tápanyaga elfogy (a mennyisége 0 lesz), a növény elpusztul. A bolygón háromféle sugárzást különböztetünk meg: alfa sugárzás, delta sugárzás, nincs sugárzás. A sugárzásra a különböző fajtájú élő növények eltérő módon reagálnak. A reakció tartalmazza a tápanyag változását, illetve a következő napi sugárzás befolyásolását. A másnapi sugárzás alakulása: ha az alfa sugárzásra beérkezett igények összege legalább hárommal meghaladja a delta sugárzás igényeinek összegét, akkor alfa sugárzás lesz; ha a delta sugárzásra igaz ugyanez, akkor delta sugárzás lesz; ha a két igény közti eltérés háromnál kisebb, akkor nincs sugárzás. Az első nap sugárzás nélküli.

Minden növény jellemzői: az egyedi neve (sztring), a rendelkezésre álló tápanyag mennyisége (egész), hogy él-e (logikai). A szimulációban részt vevő növények fajtái a következők: puffancs, deltafa, parabokor. A következőkben megadjuk, hogy az egyes fajták miként reagálnak a különböző sugárzásokra. Először a tápanyag változik, és ha a növény ezután él, akkor befolyásolhatja a sugárzást.

Puffancs: Alfa sugárzás hatására a tápanyag mennyisége kettővel nő, sugárzás mentes napon a tápanyag eggyel csökken, delta sugárzás esetén a tápanyag kettővel csökken. Minden esetben úgy befolyásolja a másnapi sugárzást, hogy az 10 egységgel növeli az alfa sugárzás igényét. Ez a fajta akkor is elpusztul, ha a tápanyag mennyisége 10 fölé emelkedik.

Deltafa: Alfa sugárzás hatására a tápanyag mennyisége hárommal csökken, sugárzás nélküli napon a tápanyag eggyel csökken, delta sugárzás hatására a tápanyag néggyel nő. Ha a tápanyag mennyisége 5-nél kisebb, akkor 4 egységgel növeli a delta sugárzás igényét, ha 5 és 10 közé esik, akkor 1 értékben növeli a delta sugárzás igényét, ha 10-nél több, akkor nem befolyásolja a másnapi sugárzást.

Parabokor: Akár alfa, akár delta sugárzás hatására a tápanyag mennyisége eggyel nő. Sugárzás nélküli napon a tápanyag eggyel csökken. A másnapi sugárzást nem befolyásolja.

Szimuláljuk a növények viselkedését és adjuk meg, hogy x nap után melyik életben maradt egyed a legerősebb! Minden lépésben írjuk ki az összes növényt a rájuk jellemző tulajdonságokkal, valamint az aktuális sugárzást!

A program egy szövegfájlból olvassa be a szimuláció adatait! Az első sorban a növények száma szerepel. A következő sorok tartalmazzák a növények adatait szóközökkel elválasztva: a növény nevét, a fajtáját és a kezdetben rendelkezésére álló tápanyag mennyiségét. A fajtát egy karakter azonosít: p - puffancs, d - deltafa, b - parabokor. A növényeket leíró részt követő sorban a szimuláció napjainak száma adott egész számként. A program kérje be a fájl nevét, majd jelenítse is meg a tartalmát. (Feltehetjük, hogy a fájl formátuma helyes.) Egy lehetséges bemenet:

```
4
Falánk p 7
Sudár d 5
Köpcös b 4
Nyúlánk d 3
```

8. Egy bolygón különböző fajtájú növények élnek, minden növény tápanyagot használ. Ha egy növény tápanyaga elfogy (a mennyisége 0 lesz), a növény elpusztul. A bolygón háromféle sugárzást különböztetünk meg: alfa sugárzás, delta sugárzás, nincs sugárzás. A sugárzásra a különböző fajtájú élő növények eltérő módon reagálnak. A reakció tartalmazza a tápanyag változását, illetve a következő napi sugárzás befolyásolását. A másnapi sugárzás alakulása: ha az alfa sugárzásra beérkezett igények összege legalább hárommal meghaladja a delta sugárzás igényeinek összegét, akkor alfa sugárzás lesz; ha a delta sugárzásra igaz ugyanez, akkor delta sugárzás lesz; ha a két igény közti eltérés háromnál kisebb, akkor nincs sugárzás. Az első nap sugárzás nélküli.

Minden növény jellemzői: az egyedi neve (string), a rendelkezésre álló tápanyag mennyisége (egész), hogy él-e (logikai). A szimulációban részt vevő növények fajtái a következők: puffancs, deltafa, parabokor. A következőkben megadjuk, hogy az egyes fajták miként reagálnak a különböző sugárzásokra. Először a tápanyag változik, és ha a növény ezután él, akkor befolyásolhatja a sugárzást.

Puffancs: Alfa sugárzás hatására a tápanyag mennyisége kettővel nő, sugárzás mentes napon a tápanyag eggyel csökken, delta sugárzás esetén a tápanyag kettővel csökken. Minden esetben úgy befolyásolja a másnapi sugárzást, hogy az 10 egységgel növeli az alfa sugárzás igényét. Ez a fajta akkor is elpusztul, ha a tápanyag mennyisége 10 fölé emelkedik.

Deltafa: Alfa sugárzás hatására a tápanyag mennyisége hárommal csökken, sugárzás nélküli napon a tápanyag eggyel csökken, delta sugárzás hatására a tápanyag néggyel nő. Ha a tápanyag mennyisége 5-nél kisebb, akkor 4 egységgel növeli a delta sugárzás igényét, ha 5 és 10 közé esik, akkor 1 értékben növeli a delta sugárzás igényét, ha 10-nél több, akkor nem befolyásolja a másnapi sugárzást.

Parabokor: Akár alfa, akár delta sugárzás hatására a tápanyag mennyisége eggyel nő. Sugárzás nélküli napon a tápanyag eggyel csökken. A másnapi sugárzást nem befolyásolja.

Szimuláljuk a növények viselkedését, amíg két egymás utáni napon nincs sugárzás! Minden lépésben írjuk ki az összes növényt a rájuk jellemző tulajdonságokkal, valamint az aktuális sugárzást!

A program egy szövegfájlból olvassa be a szimuláció adatait! Az első sorban a növények száma szerepel. A következő sorok tartalmazzák a növények adatait szóközökkel elválasztva: a növény nevét, a fajtáját és a kezdetben rendelkezésére álló tápanyag mennyiségét. A fajtát egy karakter azonosít: p - puffancs, d - deltafa, b - parabokor. A növényeket leíró részt követő sorban a szimuláció napjainak száma adott egész számként. A program kérje be a fájl nevét, majd jelenítse is meg a tartalmát. (Feltehetjük, hogy a fájl formátuma helyes.) Egy lehetséges bemenet:

```
4
Falánk p 7
Sudár d 5
Köpcös b 4
Nyúlánk d 3
```

9. A hobbi állatoknak az életkedvük megőrzéséhez a táplálékon túl egyéb dolgokra is szükségük van: a halaknak oxigén dús, megfelelő hőmérsékletű vízre; a madaraknak tágas, tiszta kalitkára; a kutyáknak rendszeres foglalkoztatásra. Pisti számos hobbi állatot tart: halakat, madarakat és kutyákat. Állatainak van neve és ismerhető az életkedvüket mutató 0 és 100 között szám (0 esetén az állat elpusztul). Pistinek vannak jobb és rosszabb napjai. Mikor nagyon jó kedvű, egyik állatáról sem feledkezik meg: ilyenkor a halak életkedve 1-gyel, a madaraké 2-vel, a kutyáké 3-mal nő. Átlagos napokon csak a kutyáival foglalkozik, a többi állat életkedve ilyenkor csökken: a halaké 3-mal, a madaraké 1-gyel. Amikor rosszkedvű, csak a legszükségesebb teendőket látja el és ezért minden állat egy kicsit szomorúbb lesz: a halak 5 egységgel, a madarak 3-mal, a kutyák 10-zel.

Pisti kedve egy adott napon egy kategóriával jobb lesz attól, ha minden élő kedvencének az életkedve legalább 5.

Nevezze meg a legszomorúbb (legkisebb az életkedvű) állatot, amelyik még nem pusztult el a vizsgált napok után! Ha több ilyen életkedvű állat is létezik, akkor írja ki az összesnek a nevét! Naponként mutassa meg az állatok összes tulajdonságát!

Az állatok adatait egy szöveges állományban találjuk. Az első sor tartalmazza az állatok számát, amelyet külön-külön sorban az állatok adatai követnek. Ebben egy karakter azonosítja az állat fajtáját (H – hal, M – madár, K – kutya), amit szóköz után az állat neve követ, majd újabb szóköz után a kezdeti életkedve. Az állományban az állatok felsorolását követő utolsó sorban egy betű sorozat (sztring) írja le Pisti kedvének az egymás utáni napokon való alakulása: j – jó kedvű, a – átlagos, r – rosszkedvű. Feltehetjük, hogy a fájl formátuma helyes.

10. Kati házi kedvencei a tarantulák, az arany hörcsögök és a macskák. Az állatoknak az életerejük megőrzéséhez a táplálékon túl egyéb dolgokra is szükségük van: a tarantuláknak száraz és meleg terráriumra; az arany hörcsögöknek puha alomra, ahová befúrhatják magukat, a macskáknak rendszeres simogatásra. Kati állatainak van neve és ismerhető az életerejüket mutató 0 és 70 között szám (0 esetén az állat elpusztul). Katinak vannak jobb és rosszabb napjai. Mikor vidám, egyik állatáról sem feledkezik meg: ilyenkor a tarantulák életereje 1-gyel, a hörcsögöké 2-vel, a macskáké 3-mal nő. Átlagos napokon csak a macskáival foglalkozik (életerejük 3-mal nő), a többi állat életereje ilyenkor csökken: a tarantuláké 2-vel, a hörcsögöké 3-mal. Amikor szomorú, csak a legszükségesebb teendőket látja el és ezért minden állat egy kicsit gyengébb lesz: a tarantulák 3 egységgel, a hörcsögök 5-tel, a macskák 7-tel.

Kati kedve egy adott napon egy kategóriával jobb lesz attól, ha minden élő kedvencének az életéreje legalább 5.

Naponként mutassa meg az állatok összes tulajdonságát, valamint nevezze meg az egyes napok végén a legéletrevalóbb állat(oka)t!

Az állatok adatait egy szöveges állományban találjuk. Az első sor tartalmazza az állatok számát, amelyet külön-külön sorban az állatok adatai követnek. Ebben egy karakter azonosítja az állat fajtáját (T – tarantula, H – hörcsög, M – macska), amit szóköz után az állat neve követ, majd újabb szóköz után a kezdeti életereje. Az állományban az állatok felsorolását követő utolsó sorban egy betű sorozat (sztring) írja le Kati kedvének az egymás utáni napokon való alakulása: v – vidám, a – átlagos, s – szomorú. Feltehetjük, hogy a fájl formátuma helyes.

11. A tundra élővilágát zsákmányállat-kolóniák és ragadozókolóniák alkotják, amelyek egyedszámai hatással vannak a többire. Ha a zsákmányállatok száma nagyon nagy, nagyrészük elvándorol, mert nem talál élelmet. Ha a ragadozók száma nagy, gyorsabban fogy a zsákmányállatok száma, mert vadásznak rájuk.

Három ragadozófajt különböztetünk most meg: hóbaglyot, sarki rókát és farkast. Háromfajta zsákmányállat van: lemming, sarki nyúl és ürge. Az egyes kolóniáknak van beceneve, faja, illetve egyedszáma. A következőkben megadjuk, hogy a zsákmányállat-kolóniák miként reagálnak a rájuk vadászó ragadozókolóniákra:

Lemming: ha vadásznak rájuk, az egyedszámuk a rájuk vadászó kolónia számának 4-szeresével csökken. Minden második körben megduplázódik az egyedszámuk. 200 fölötti egyedszámnál csökken a számuk 30-ra.

Nyúl: ha vadásznak rájuk, az egyed számuk a rájuk vadászó kolónia számának 2-szeresével csökken. Minden második körben másfélszeresére nő az egyedszámuk. 100 fölötti egyedszámnál csökken a számuk 20-ra.

Ürge: ha vadásznak rájuk, az egyed számuk a rájuk vadászó kolónia számának 2-szeresével csökken. Minden negyedik körben megduplázódik az egyedszámuk. 200 fölötti egyedszámnál csökken a számuk 40-re.

A ragadozó kolóniák minden körben véletlenszerűen kiválasztanak egy zsákmány kolóniát, amit megtámadnak. Ha nincs elegendő állat a megtámadott kolóniában (azaz nincs annyi egyed, amennyivel fogy a zsákmányok száma, ha megtámadják őket), akkor fogy a ragadozók száma is: közül minden negyedik elpusztul. Minden nyolcadik körben a hóbaglyok 4 egyedenként 1, a rókák 4 egyedenként 3, a farkasok 4 egyedenként 2 utódot fialnak.

Addig szimuláljuk a folyamatot, amíg minden ragadozó kolónia egyedszáma 4 alá nem csökken, vagy a ragadozók összesített száma meg nem duplázódik a kiinduló értékhez képest. Körönként mutassuk meg a kolóniák összes tulajdonságát!

A program egy szövegfájlból olvassa be a kolóniák adatait! Az első sorban a zsákmánykolóniák és a ragadozó kolóniák darabszámai szerepelnek szóközzel elválasztva. A következő sorok tartalmazzák a kolóniák adatait szóközökkel elválasztva: a becenevüket (szóközök nélküli sztring), a fajukat (amit egy karakter azonosít: h - hóbagoly, s – sarki róka, f – farkas, l – lemming, n – nyúl, u - ürge), és a kezdeti egyedszámukat.

```
4 2
kicsik 1 86
picik 1 90
szaporak n 26
szorgosak u 12
ehesek f 12
tollasak h 6
```

12. A tundra élővilágát zsákmányállat-kolóniák és ragadozókolóniák alkotják, amelyek egyedszámai hatással vannak a többire. Ha a zsákmányállatok száma nagyon nagy, nagyrészük elvándorol, mert nem talál élelmet. Ha a ragadozók száma nagy, gyorsabban fogy a zsákmányállatok száma, mert vadásznak rájuk.

Három ragadozófajt különböztetünk most meg: hóbaglyot, sarki rókát és farkast. Háromfajta zsákmányállat van: lemming, sarki nyúl és ürge. Az egyes kolóniáknak van beceneve, faja, illetve egyedszáma. A következőkben megadjuk, hogy a zsákmányállat-kolóniák miként reagálnak a rájuk vadászó ragadozókolóniákra:

Lemming: ha vadásznak rájuk, az egyedszámuk a rájuk vadászó kolónia számának 4-szeresével csökken. Minden második körben megduplázódik az egyedszámuk. 200 fölötti egyedszámnál csökken a számuk 30-ra.

Nyúl: ha vadásznak rájuk, az egyed számuk a rájuk vadászó kolónia számának 2-szeresével csökken. Minden második körben másfélszeresére nő az egyedszámuk. 100 fölötti egyedszámnál csökken a számuk 20-ra.

Ürge: ha vadásznak rájuk, az egyed számuk a rájuk vadászó kolónia számának 2-szeresével csökken. Minden negyedik körben megduplázódik az egyedszámuk. 200 fölötti egyedszámnál csökken a számuk 40-re.

A ragadozó kolóniák minden körben véletlenszerűen kiválasztanak egy zsákmány kolóniát, amit megtámadnak. Ha nincs elegendő állat a megtámadott kolóniában (azaz nincs annyi egyed, amennyivel fogy a zsákmányok száma, ha megtámadják őket), akkor fogy a ragadozók száma is: közül minden negyedik elpusztul. Minden nyolcadik körben a hóbaglyok 4 egyedenként 1, a rókák 4 egyedenként 3, a farkasok 4 egyedenként 2 utódot fialnak.

Addig szimuláljuk a folyamatot, amíg minden zsákmány kolónia ki nem hal, vagy a zsákmányállatok összesített száma meg nem négyszereződik a kiinduló értékhez képest. Körönként mutassuk meg a kolóniák összes tulajdonságát!

A program egy szövegfájlból olvassa be a kolóniák adatait! Az első sorban a zsákmánykolóniák és a ragadozó kolóniák darabszámai szerepelnek szóközzel elválasztva. A következő sorok tartalmazzák a kolóniák adatait szóközökkel elválasztva: a becenevüket (szóközök nélküli sztring), a fajukat (amit egy karakter azonosít: h - hóbagoly, s – sarki róka, f – farkas, l – lemming, n – nyúl, u - ürge), és a kezdeti egyedszámukat.

```
4 2
kicsik 1 86
picik 1 90
szaporak n 26
szorgosak u 12
ehesek f 12
tollasak h 6
```