ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО

ФИЗИКА И АСТРОНОМИЯ

19 май 2011 г. – Вариант 2

УВАЖАЕМИ ЗРЕЛОСТНИЦИ,

Тестът съдържа 50 задачи по физика и астрономия. Задачите са два типа:

- задачи от затворен тип с четири отговора, от които само един е верен;
- задачи със свободен отговор.

Първите 40 задачи (от 1. до 40. вкл.) са от затворен тип с четири отговора (А, Б, В, Г), от които само един е верен. Верния отговор на тези задачи отбелязвайте с черен цвят на химикалката в листа за отговори, а не върху тестовата книжка. Листът за отговори на задачите с избираем отговор е официален документ, който ще се проверява автоматизирано, и поради това е задължително да се попълва внимателно. За да отбележите верния отговор, зачертайте със знака буквата на съответния отговор.

Например:

Ако след това прецените, че първоначалният отговор не е верен и искате да го поправите, запълнете кръгчето с грешния отговор и зачертайте буквата на друг отговор, който приемате за верен. Например:

За всяка задача трябва да е отбелязан не повече от един действителен отговор. Като действителен отговор на съответната задача се приема само този, чиято буква е зачертана със знака \searrow .

Задачите от 41. до **50**. вкл. са със свободен отговор. Запишете решенията на задачите в предоставения **свитък за свободните отговори** при съответния номер на задачата.

ПОЖЕЛАВАМЕ ВИ УСПЕШНА РАБОТА!

Отговорите на задачите от 1. до 40. вкл. отбелязвайте в листа за отговорите!

1. На чертежа е показана една от силовите линии на електростатичното поле, създадено от положителен точков заряд. В коя от означените точки би могъл да се намира този заряд?

 Γ) във всяка от трите точки

2. Силата на взаимодействие между два точкови заряда е F. Колко ще стане силата, ако намалим разстоянието между зарядите n пъти?

B)
$$n^2 F$$

B)
$$n^2 F$$
 Γ) $\frac{F}{n^2}$

3. Точков заряд се движи в еднородно електростатично поле. Под действие на електричната сила скоростта на заряда намалява. Как се изменя неговата електрична потенциална енергия?

- А) намалява
- **Б)** нараства
- В) не се изменя
- Г) отговорът зависи от знака на заряда

4. Поставяме две електронеутрални метални сфери на държатели от изолатор и ги допираме една до друга. Приближаваме към първата сфера наелектризирана с отрицателен заряд пръчка, без да докосваме сферата. В присъствие на пръчката разделяме сферите, след което отстраняваме пръчката. Какви са зарядите на сферите в края на опита?

- **Б)** 1 -положителен; 2 -положителен
- **В)** 1 отрицателен; 2 положителен
- Г) и двете сфери са електронеутрални

5. Графиката показва как зарядът q на кондензатор зависи от напрежението U между двата му електрода. Колко е капацитетът C на кондензатора?

- **A)** 1 nF
- **Б)** 5 nF
- **B)** 50 nF
- **Γ)** 200 nF

6. Съвременните електрометри са уреди, с които могат да се измерват много малки електрични заряди. Кой от изброените заряди е най-малък? **A)** 5.10^{-13} C

Б) 5 μC**B**) 5 nCΓ) 5 pC

7. Когато два еднакви резистора се свържат последователно, еквивалентното им съпротивление е $12~\Omega$. Колко е еквивалентното съпротивление, ако същите резистори се свържат успоредно?

A) 24 Ω **B)** 4 Ω Γ) 3 Ω

8. Графиките изразяват зависимостта на тока от напрежението за три проводника. Кой от тях има съпротивление $300~\Omega$?

9. През консуматор, за който е в сила законът на Ом, тече постоянен ток. Как ще се измени мощността на тока, ако напрежението между двата края на консуматора се намали 2 пъти?

А) ще нарасне 2 пъти

Б) няма да се измени

В) ще намалее 2 пъти

Г) ще намалее 4 пъти

10. Цилиндрични проводници са направени от един и същ материал. Коя група от три проводника ще използвате, за да изследвате опитно зависимостта на съпротивлението на проводниците от тяхното напречно сечение?

Вариант 2 3

11. На схемата е показана част от електрическа верига, през която тече ток I=8 mA. Всички резистори имат еднакво съпротивление R. Съпротивлението на амперметъра се пренебрегва. Колко е токът, който измерва амперметърът?

- **Γ)** 16 mA
- 12. Свободни електрони и йони са токовите носители във:
- А) газовете
- Б) металите
- В) полупроводниците
- Г) диелектричните кристали
- **13.** Установяваме опитно, че силициев кристал има електронна (*n*-тип) проводимост. Оттук можем да направим извода, че:
- А) кристалът не съдържа примеси
- Б) в кристала преобладават примесите, които са донори
- В) в кристала преобладават примесите, които са акцептори
- Г) кристалът е нагрят до висока температура
- **14.** Заредена с отрицателен електричен заряд частица се движи в еднородно магнитно поле, чиято индукция B е насочена към вас, перпендикулярно на равнината на чертежа. Посоката на движение на частицата в даден момент е показана със стрелка. Каква е посоката на магнитната сила, която действа на частицата в този момент?
- А) по посока на движението
- **Б)** по посока на магнитната индукция B
- **B)** наляво (←)
- Γ) надясно (\rightarrow)

- 15. Кое от следните твърдения НЕ е вярно? Магнитни полета се създават от:
- А) постоянни електрични токове
- Б) постоянни магнити
- В) променливи електрични полета
- Г) неподвижни електрични заряди
- **16.** Заредена частица се движи по окръжност в еднородно магнитно поле. Тази окръжност лежи в равнина, която:
- А) е успоредна на индукционните линии на полето
- **Б)** сключва ъгъл 45° с индукционните линии
- В) е перпендикулярна на индукционните линии
- Г) има ориентация, зависеща от знака на заряда на частицата

17. Върху желязна сърцевина са навити две намотки от покрит с изолация проводник (вж. рисунката). През първата намотка се пропуска ток I, който се изменя с течение на времето t, както е показано на графиката. През кой интервал от време амперметърът ще регистрира протичането на ток през втората намотка?

- **A)** от 0 s до 1 s
- **Б)** от 1 s до 2 s
- **В)** от 2 s до 3 s
- Γ) през цялото време

18. На фигурата е показана графика на променливо напрежение (зависимостта на напрежението U от времето t). Определете неговата честота.

- **A)** 0,02 Hz
- **Б)** 25 Hz
- **B)** 50 Hz
- **Γ)** 100 Hz

19. Променливото напрежение, чиято графика е показана на фигурата към зад. 18, е приложено между двата края на резистор със съпротивление $R = 10 \Omega$. Колко е мощността на тока (средна мощност) през резистора?

- **A)** 0,2 W
- **Б)** 0,45 W
- **B)** 2 W
- **Γ)** 90 W

20. Ако пренесем математично махало от Земята на Луната, където гравитацията е по-слаба, периодът на махалото:

- А) ще намалее
- Б) ще нарасне
- В) няма да се измени
- Г) отговорът зависи от масата на махалото

21. Теглилка с маса m е окачена на пружина. Полученото пружинно махало трепти с честота ν .

Колко ще бъде честотата на трептене, ако на същата пружина окачим теглилка с маса $\frac{m}{2}$?

- $\mathbf{A}) \mathbf{v}$
- **B)** 2v **B)** $v\sqrt{2}$
- Γ) $\frac{v}{\sqrt{2}}$

22. Трептяща система извършва принудени трептения. На фигурата е показана зависимостта на амплитудата A на принудените трептения от честотата ν на външната сила. Определете резонансната честота на системата.

23. По дълъг опънат шнур се разпространява напречна механична вълна. На фигурата е дадена снимка на част от шнура в даден момент от времето. Разстоянието между точките K и O е 150 cm. Колко е дължината на вълната?

24. Сред приведените примери за електромагнитни вълни най-висока честота има:

А) видимата светлина от Слънцето

25. През коя от означените точки на фигурата ще премине отразеният от огледалото светлинен лъч?

26. Как се изменя скоростта на светлинна вълна, която преминава от среда с по-малък показател на пречупване n_1 в среда с по-голям показател на пречупване n_2 ?

- А) нараства
- **Б)** намалява
- В) не се изменя

 Γ) отговорът зависи от големината на ъгъла на падане

- 27. Трите основни цвята в спектъра на видимата светлина са зелен, син и червен. На кой от тях съответства електромагнитна вълна с най-голяма дължина на вълната?
- А) на синия цвят
- **Б)** на зеления цвят
- В) на червения цвят
- Г) няма връзка между цвят и дължина на вълната
- 28. Кое от изброените явления е пример за дисперсия на светлината?
- А) небесната дъга
- **Б)** оцветяването на мазни петна върху мокър асфалт
- В) цветните ивици върху осветен от слънцето компактдиск
- Г) разлагането на бялата светлина в спектър след преминаване през дифракционна решетка
- 29. Светлината на кой от изброените източници се отличава с монохроматичност и кохерентност?
- А) луминесцентна лампа
- **Б)** лампа с нажежаема жичка
- В) Слънце
- Г) лазер
- 30. Топлинното излъчване на човешкото тяло е почти изцяло във:
- A) инфрачервената област на спектъра
- Б) видимата област
- В) ултравиолетовата област
- Γ) тялото няма топлинно излъчване
- 31. Разгледайте внимателно трите спектъра на излъчване на разредени газове, съставени от атоми. Неизвестният газ съдържа: Неизвестен газ
- А) само атоми на водорода
- **Б)** само атоми на хелия
- В) водород и хелий
- Г) водород, хелий и атоми на друг химичен елемент

- **32.** Енергията E на фотоните на монохроматична светлина може да се изрази чрез константата на Планк h, честотата v, дължината на вълната λ и скоростта на светлината c. Коя от изброените формули НЕ е вярна?

- **A)** E = hv **B)** $E = \frac{hc}{\lambda}$ **B)** $E = \frac{hc^2}{\lambda^2 v}$ Γ) $E = \frac{h\lambda^2}{c^2}$

- **А)** 2 и 3
- **Б)** 1 и 3
- **В)** 2 и 4
- **Г)** 3 и 4

34. Изотопът цезий-137 е един от основните радиоактивни замърсители на околната среда. Графиката показва как се изменя броят N на неразпадналите се ядра на този изотоп с течение на времето t. Колко е периодът на полуразпадане на цезий-137?

- **А)** 15 години
- **Б)** 30 години
- **В)** 60 години
- Г) 137 години

35. Ядро, което се намира във възбудено състояние, излъчва гама-квант. При този процес намалява:

- А) електричният заряд на ядрото
- Б) масовото число на ядрото
- В) енергията на ядрото
- Γ) броят на неутроните в ядрото

36. Алфа (α)-частиците са изградени от:

- А) два протона и два неутрона
- Б) един протон и един неутрон
- В) два позитрона и два неутрона
- Г) един електрон

37. Основният източник на енергия в реакторите на АЕЦ "Козлодуй" са процеси на:

- А) термоядрен синтез
- Б) алфа-разпадане на тежки ядра
- В) делене на урана
- Г) гама-излъчване

- **38.** Една от най-ярките звезди на нощното небе Бетелгейзе от съзвездието Орион, е стара звезда (червен гигант), която се намира в късен стадий на своята еволюция. Кой е основният фактор, който ще определи по-нататъшната съдба на Бетелгейзе?
- А) масата на звездата
- Б) температурата на повърхността на звездата
- В) скоростта, с която звездата се върти около своята ос
- Г) светимостта на звездата
- 39. Астрономи изследват неизвестна звезда. Те установяват, че температурата на повърхността на звездата е много висока, но въпреки това звездата има малка светимост. Най-вероятно това е:
- А) звезда от главната последователност
- **Б)** протозвезда
- В) бяло джудже
- Г) червен гигант
- **40.** Галактика, която се намира на разстояние r, се отдалечава от нас със скорост v. Колко е разстоянието до друга галактика, която се отдалечава от нас със скорост 3v?
- **A)** r/3
- **Б)** r/9
- **B)** 3*r*
- Γ) 9r

<u>Решенията на задачите от 41. до 50. вкл. запишете на предвиденото за това място в свитъка за свободните отговори срещу съответния номер на задачата!</u>

- **41.** Два точкови заряда с големини q_1 и q_2 , разположени на разстояние r един от друг, взаимодействат с електрична сила F.
- **А)** От приложения списък изберете вярната формула, по която се определя силата F.

Списък:
$$F = kq_1q_2r^2$$
; $F = \frac{r^2}{kq_1q_2}$; $F = \frac{kq_1q_2}{r^2}$; $F = \frac{kq_1q_2}{r}$.

- **Б)** Ако увеличим разстоянието между зарядите с Δr , силата на взаимодействие става $F_1 = x^2 F$. Колко е началното разстояние r между зарядите, ако $\Delta r = 4$ cm и x = 0.8?
- **42.** Поставяме положителен пробен заряд q_0 в точка A от електростатично поле и установяваме, че на заряда действа електрична сила с големина F и неговата електрична потенциална енергия е W. Как от тези данни да определим интензитета E и потенциала φ на полето в точка A?
- **A)** Изберете от предложения списък правилния израз за търсените физични величини и запишете съответните формули ($E = \dots$ и $\varphi = \dots$).

Списък:
$$q_0F$$
; FW ; $\frac{W}{q_0}$; $\frac{F}{q_0}$; q_0W .

Б) Пресметнете интензитета и потенциала на полето в т. A, ако $q_0 = 1.10^{-12}$ С, $F = 2.10^{-10}$ N и $W = 4.10^{-11}$ J.

- **43.** В точка M от електростатично поле с потенциал $\varphi_M = 6.10^3$ V е поставена неподвижна частица с положителен заряд $q_1 = 2.10^{-16}$ C.
- **А)** Колко джаула е електричната потенциална енергия W_M на частицата?
- **Б)** Частицата започва да се движи от точка M под действие на електричните сили и достига точка N с потенциал $\phi_N = 4.10^3$ V. Определете електричната потенциална енергия W_N и кинетичната енергия E_{kN} на частицата в точка N.
- **44.** Разполагате с два резистора, всеки със съпротивление R, и с един резистор със съпротивление 2R. Какво еквивалентно съпротивление R_e ще получите, ако свържете трите резистора, както е показано на схемите?

45. Намаляваме съпротивлението R на променливия резистор от електрическата верига, показана на схемата.

Какво става при това с електродвижещото напрежение ϵ и вътрешното съпротивление r на източника, с тока I и напрежението U, които измерват съответно амперметърът и волтметърът? Приемете, че уредите са идеални и много точни.

За всяка величина определете характера на нейното изменение: нараства, намалява или не се изменя.

ФИЗИЧНА ВЕЛИЧИНА

- 1. електродвижещото напрежение &
- 2. вътрешното съпротивление r на източника
- 3. токът I
- 4. напрежението U

46. Праволинеен проводник с дължина L=0.4 m, по който тече ток I, е поставен перпендикулярно на индукционните линии на еднородно магнитно поле с индукция B=0.15 Т. На проводника действа магнитна сила F=0.6 N. Посоките на силата F и на магнитната индукция B са показани на чертежа (магнитната индукция е насочена от чертежа към вас).

- **A)** Направете чертеж, от който да се вижда посоката на тока I, течащ по проводника. Кое правило сте използвали, за да определите посоката на тока ?
- **Б)** Колко ампера е токът I?
- **47.** Топче с маса m е закачено на пружина с коефициент на еластичност k (пружинно махало). Друго топче с маса 4m е закачено на нишка с дължина ℓ (математично махало). Двете махала имат еднакъв период на трептене T=1,2 s.

Определете периода T_{Π} на пружинното махало и периода T_{M} на математичното махало, ако се разменят местата на двете топчетата. Обосновете отговорите си.

- **48.** На чертежа е показан светлинен сноп, част от който се пречупва, а останалата част се отразява на границата въздух—течност.
- **A)** Определете ъгъла на падане α_1 и ъгъла на пречупване α_2 .
- **Б)** Пресметнете показателя на пречупване n_2 на течността. Показателят на пречупване на въздуха е $n_1 = 1$.

Полезни данни: $\sin 30^\circ = \frac{1}{2}$; $\sin 37^\circ = \frac{3}{5}$; $\sin 53^\circ = \frac{4}{5}$; $\sin 60^\circ = \frac{\sqrt{3}}{2}$; $\sin 90^\circ = 1$.

- **49.** Две черни тела имат температури T_1 и T_2 . Максимумът в спектъра на топлинното излъчване на първото тяло е при дължина на вълната λ_1 , а на второто при дължина на вълната λ_2 .
- А) Изберете от приложения списък вярното съотношение.

Списък:
$$\frac{T_1}{\lambda_1} = \frac{T_2}{\lambda_2}$$
; $\frac{T_1^2}{\lambda_1} = \frac{T_2^2}{\lambda_2}$; $T_1\lambda_1 = T_2\lambda_2$; $T_1^2\lambda_1 = T_2^2\lambda_2$.

- **Б)** Температурата на повърхността на Слънцето е $T_1 = 5800$ K, а максимумът в спектъра на неговото топлинно излъчване е при дължина на вълната $\lambda_1 = 500$ nm. Максимумът в спектъра на топлинното излъчване на Сириус най-ярката звезда на нощното небе, е при дължина на вълната $\lambda_2 = 290$ nm. Колко келвина е температурата T_2 на повърхността на Сириус?
- **B)** Коя от двете звезди (Слънце и Сириус) е от спектрален клас A (бяла звезда), а коя от спектрален клас G (жълта звезда)?
- **50.** Метална пластинка се облъчва с монохроматична светлина и се наблюдава фотоефект. Отделителната работа за този метал е $A_{\rm e}$ = 1,9 eV.
- А) Запишете уравнението на Айнщайн за фотоефекта.
- **Б)** Определете максималната кинетична енергия $E_{\kappa \max}$ на фотоелектроните, ако фотоните на светлината имат енергия E = 3,2 eV.
- **В)** Ще се наблюдава ли фотоефект, ако същата пластинка се облъчи с монохроматична светлина, чиито фотони имат енергия 1,7 eV? Обяснете.

МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО, МЛАДЕЖТА И НАУКАТА

ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО

Физика и астрономия – 19 май 2011 г.

ВАРИАНТ № 2

Ключ с верните отговори

Въпрос	Верен отговор	Брой
		точки
1.	A	1,5
2.	В	1,5
3.	Б	1,5
3. 4.	A	1,5 1,5 1,5
5.	В	1,5
6.	A	1,5
7.	Γ	1,5 1,5 1,5 1,5 1,5
8.	Б	1,5
9.	Γ	1,5
10.	A	1,5
11.	Б	1,5 1,5
12.	A	1,5
13.	Б	1,5
14.	Γ	1,5
15.	Γ	1,5 1,5 1,5
16.	В	1,5
17.	Б	1,5
18.	В	1,5 1,5
19.	Б	1,5
20.	Б	1,5

Въпрос	Верен отговор	Брой
		точки
21.	В	1,5
22.	Б	1.5
23.	В	1,5 1,5
24.	Γ	1,5
25.	Γ	1,5 1,5 1,5 1,5 1,5
26.	Б	1,5
27.	В	1,5
28.	A	1,5
29.	Γ	1,5
30.	A	1,5
31.	В	1,5
32.	Γ	1,5 1,5 1,5 1,5 1,5
33.	A	1,5
34.	Б	1,5
35.	В	1,5
36.	A	1,5
37.	В	1,5 1,5
38.	A	1,5
39.	В	1,5
40.	В	1,5

41. A)
$$F = \frac{kq_1q_2}{r^2}$$
 1 точка

Б) Записваме закона на Кулон за двете разстояния между зарядите
$$F = \frac{kq_1q_2}{r^2}; \quad x^2F = \frac{kq_1q_2}{(r+\Delta r)^2}$$
 1 точка

От тези две равенства получаваме отношението

$$\frac{r^2}{(r+\Delta r)^2} = x^2$$
 1 точка

откъдето определяме разстоянието r:

$$r = \frac{x}{1-x} \Delta r = 4\Delta r = 16 \text{ cm}$$
 1 точка

42. A)
$$E = \frac{F}{q_0}$$
 1 точка $\phi = \frac{W}{q_0}$ 1 точка

Б)
$$E = \frac{2.10^{-10} \text{ N}}{1.10^{-12} \text{ C}} = 200 \frac{\text{N}}{\text{C}}$$
 1 точка $\phi = \frac{4.10^{-11} \text{ J}}{1.10^{-12} \text{ C}} = 40 \text{ V}$ 1 точка

43. A)
$$W_M = q_1 \varphi_M = 1, 2.10^{-12} \text{ J}$$
 1 точка

Б)
$$W_N = q_1 \varphi_N = 0.8 \cdot 10^{-12} \text{ J}$$
 1 точка

От закона за запазване на енергията следва равенството $W_{M} = W_{N} + E_{kN}$, 1 точка откъдето определяме кинетичната енергия на частицата

$$E_{kN} = W_M - W_N = 0, 4.10^{-12} \text{ J}$$
 1 точка

44. A)
$$R_{\rm e} = 4R$$
 1 точка **Б)** $R_{\rm e} = \frac{5}{2}R$ **1** точка **В)** $R_{\rm e} = \frac{5}{3}R$ **2** точки

45. 1. електродвижещото напрежение
$$\varepsilon$$
не се изменя1 точка2. вътрешното съпротивление r на източникане се изменя1 точка3. токът I нараства1 точка4. напрежението U намалява1 точка

Забележка. Напрежението U се определя по закона на Ом за цялата верига $U = \varepsilon - Ir$. Следователно, когато токът I нараства, напрежението U намалява. (В задачата се оценява само дали отговорите са верни – не е необходимо те да бъдат обосновавани.)

1 точка

$$lacktriangle$$
 $lacktriangle$ $lacktriang$

1 точка

47. Периодът на математично махало не зависи от масата на махалото.
 Следователно
$$T_{\rm M} = T = 1,2~{\rm s}$$

 1 точка

Периодът на пружинното махало е
$$T_{_{\Pi}} = 2\pi \sqrt{\frac{m}{k}}$$
 1 точка

Следователно, когато масата на махалото нарасне 4 пъти, периодът ще нарасне 2 пъти: $T_{\rm n} = 2T = 2,4 {\rm s}$ 1 точка

 $\alpha_2 = 180^{\circ} - \alpha_1 - 90^{\circ} = 37^{\circ}$ **48. A)** $\alpha_1 = 90^{\circ} - 37^{\circ} = 53^{\circ}$ **1 точка** 1 точка **Б)** От закона на Снелиус $\frac{\sin \alpha_1}{\sin \alpha_2} = \frac{n_2}{n_1}$ 1 точка определяме показателя на пречупване на течността $n_2 = \frac{4}{3}$ 1 точка 49. A) $T_1\lambda_1=T_2\lambda_2$ 1 точка $T_2 = \frac{T_1 \lambda_1}{\lambda_2} = 10\ 000\ \text{K}$ Б) 2 точки В) Сириус е от спектрален клас А (бяла звезда), Слънцето – от спектрален клас G (жълта звезда). 1 точка $E = E_{\kappa \max} + A_{\rm e}$ 50. A) 1 точка $E_{\rm K \, max} = E - A_{\rm e} = 1,3 \, \, {\rm eV}$ Б) 1 точка B) 1 точка Фотоефект няма да се наблюдава, защото енергията на кванта е по-малка от отделителната работа, т.е. тя не е достатъчна за откъсването 1 точка на електрон от метала.