Propiedades de Semigrupo

DEFINICIÓN. Un conjunto no vacío S se dice que es un *semigrupo* si en S está definida una operación binaria, denotada por \cdot , tal que para cualesquiera $a, b, c \in S$ se cumple:

- 1. $a \cdot b \in S$. (cerradura)
- 2. $a \cdot (b \cdot c) = (a \cdot b) \cdot c$. (asociatividad)

Propiedades de Grupo

DEFINICIÓN: Un conjunto no vacío de elementos G se dice que forma un grupo si en G está definida una operación binaria, llamada producto y denotada por (\cdot) tal que:

- 1. $a, b \in G$ implica que $a \cdot b \in G$ (cerradura).
- 2. $a, b, c \in G$ implica que $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (ley asociativa).
- 3. Existe un elemento $e \in G$ tal que $a \cdot e = e \cdot a = a$ para todo $a \in G$ (existencia de un elemento identidad en G).
- 4. Para todo $a \in G$ existe un elemento $a^{-1} \in G$ tal que $a \cdot a^{-1} = a^{-1} \cdot a = e$ (existencia de inversos en G).

Además, un grupo G se dice que es *abeliano* (o conmutativo) si para cualesquiera $a,b \in G$ se tiene: $a \cdot b = b \cdot a$.

Propiedades de Anillo

DEFINICIÓN. Un conjunto no vacío R se dice que es un anillo asociativo si en R están definidas dos operaciones, denotadas por " + " y " · " respectivamente tales que para cualesquiera a,b,c de R:

- 1. a + b está en R. (cerradura para +)
- 2. a + b = b + a. (conmutatividad)
- 3. (a+b)+c=a+(b+c). (asociatividad)
- 4. Hay un elemento 0 en R tal que a + 0 = a (para todo a en R).
- 5. Existe un elemento -a en R tal que a + (-a) = 0.
- 6. $a \cdot b$ está en R.
- 7. $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- 8. $a \cdot (b+c) = a \cdot b + a \cdot c$ y $(b+c) \cdot a = b \cdot a + c \cdot a$ (las dos leyes distributivas).

En caso que exista un elemento 1 en R tal que $a \cdot 1 = 1 \cdot a = a$ para toda a en R; si tal elemento existe diremos que R es un anillo con elemento unitario.

Si la multiplicación de R es tal que $a \cdot b = b \cdot a$ para todo a, b en R entonces llamamos a R anillo conmutativo.

Propiedades de Campo

DEFINICIÓN. Un conjunto no vacío F se dice que es un campo si en F están definidas dos operaciones, denotadas por " + " y " · ", respectivamente, tales que para cualesquiera $a,b,c\in F$:

- 1. a + b está en F. (cerradura para +)
- 2. a + b = b + a. (conmutatividad para +)
- 3. (a+b)+c=a+(b+c). (asociatividad para +)
- 4. Hay un elemento 0 en F tal que a + 0 = a (para todo a en F).
- 5. Existe un elemento -a en F tal que a + (-a) = 0.
- 6. $a \cdot b$ está en F. (cerradura para ·)
- 7. $a \cdot b = b \cdot a$. (conmutatividad para ·)
- 8. $a \cdot (b \cdot c) = (a \cdot b) \cdot c$. (asociatividad para ·)
- 9. Hay un elemento $1 \neq 0$ en F tal que $a \cdot 1 = a$ para todo a en F.
- 10. Para todo $a \neq 0$ en F, existe un elemento a^{-1} en F tal que $a \cdot a^{-1} = 1$.
- 11. $a \cdot (b+c) = a \cdot b + a \cdot c$ y $(b+c) \cdot a = b \cdot a + c \cdot a$ (las dos leyes distributivas).