Group: Friday 9:30 AM with Sophia

Names: Miriam Brody, kambeh karshe, Collins Kariuki, thomas mcconnell

- 1. On average the ratio is 8
 - a. $\theta(n^3)$
 - i. Work: O(2n) = 2, $O((2n)^2) = 4n^2$, $O((2n)^3) = 8n^3$
- 2. Ratio:
 - a. $\theta(1)$
 - We consider 8000 to be an anomaly, outside of 800 everything is constant
- 3. Ratio:
 - a. $\theta(n)$
 - A3 doubles thus it is linear
- Ratio:
 - a. $\theta(\log(n))$
 - Increases slowly by about 100 each time
- 5. Ratio:
 - a. $\theta(n^2)$
 - i. The ratio is four, so a similar logic to 1. To how we got n^3 when the ratio was 8 we get n^2 when the ratio is 4
- 6. Ratio:
 - a. $\theta(nlogn)$
 - i. While the runtimes are roughly doubling (the n part), we are also adding a constant number to the doublings (the log n part).

Recurrences

$$T(n) = 2T(n/3) + d$$
 $T(n) = 7T(n/7) + n$

if
$$f(n) = O(n^{\log_b a - \varepsilon})$$
 for $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
if $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_b a)$

if
$$f(n) = \Theta(n^{\log_b a})$$
, then $T(n) = \Theta(n^{\log_b a} \log n)$

if
$$f(n) = \Omega(n^{\log_b a + \varepsilon})$$
 for $\varepsilon > 0$ and $af(n/b) \le cf(n)$ for $c < 1$
then $T(n) = \Theta(f(n))$

$$T(n) = T(n-1) + \log n$$
 $T(n) = 8T(n/2) + n^3$

$$T(n) = 8T(\frac{n}{2}) + n^{2}$$

$$O(n^{3}, 0)$$

For $T(n) = T(n-1) + \log(n)$, we were not able to finish it up before the hour mark but we made an educated guess that the Theta complexity is $n\log(n)$ because for the total cost, despite the n decreasing we are adding up a significant amount of $\log(n)$'s multiple times, n times so we guessed that the recurrence should be big theta $n\log(n)$. We did not have enough time to validate our solution with the substitution method.

3. Everyone was at the group. Everyone felt comfortable to share and was included.