18.04 Recitation 1 Vishesh Jain

- 1.1. Is is true that $e^{\log(z)} = z$? Is is true that $\log(e^z) = z$?
- 1.2. If you know one value of log(z), what are all the other values?

- 2. Let $z_1 = 2e^{i\pi/3}$ and $z_2 = 3 + 4i$.
- 2. Let $z_1 = 2e^{-iz}$ and $z_2 = 3 + 4i$. 2.1. Compute $\log(z_1)$. What is the value in the principal branch?
- 2.2. Compute $\log(z_2)$. What is the value in the principal branch? $\log 5 + i \cdot \psi + 2 \cdot i$
- 3.1. Is z^a single valued or roulti-valued? Why?
- 3.2. Suppose $z \neq 0$. Is z^a single valued or multi-valued when a is an integer?

 3.3. If a is a real number, what do all the a^{th} powers of z have in common?

4. Let
$$z_1 = 2e^{i\pi/3}$$
 and $z_2 = 3 + 4i$.

- 4.1. Compute $z_1^{z_2}$.

$$2^{t_1} = \left(2e^{\frac{1}{2}}\right)^{3+}$$

4.2. Compute
$$z_1^{1/4}$$
. How many distinct values do you get? Plot all these values in the complex plane.

$$2^{t_1} = \left(2e^{\frac{2}{3}}\right)^{3+4t_1} = \left(2e^{\frac{2}{3}}\right)^{3} \cdot \left(2e^{\frac{2}{3}}\right)^{3} \cdot \left(2e^{\frac{2}{3}}\right)^{3} \cdot \left(2e^{\frac{2}{3}}\right)^{3} = 2e^{\frac{2}{3}}$$

$$= 2e^{\frac{2}{3}} \cdot 2e^{\frac{2}{3}} \cdot 2e^{\frac{2}{3}} \cdot 2e^{\frac{2}{3}}$$

$$= 2e^{\frac{2}{3}} \cdot 2e^{\frac{2}{3}} \cdot 2e^{\frac{2}{3}}$$

MIT OpenCourseWare https://ocw.mit.edu

18.04 Complex Variables with Applications Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

18.04 Recitation 1 Vishesh Jain

- 1.1. Is is true that $e^{\log(z)} = z$? Is is true that $\log(e^z) = z$?
- 1.2. If you know one value of log(z), what are all the other values?
- 2. Let $z_1 = 2e^{i\pi/3}$ and $z_2 = 3 + 4i$.
- 2.1. Compute $log(z_1)$. What is the value in the principal branch?
- 2.2. Compute $log(z_2)$. What is the value in the principal branch?
- 3.1. Is z^a single valued or multi-valued? Why?
- 3.2. Suppose $z \neq 0$. Is z^a single valued or multi-valued when a is an integer?
- 3.3. If a is a real number, what do all the a^{th} powers of z have in common?
- 3.4. If a is a purely imaginary number, what do all the a^{th} powers of z have in common?
- 4. Let $z_1 = 2e^{i\pi/3}$ and $z_2 = 3 + 4i$.
- 4.1. Compute $z_1^{z_2}$.
- 4.2. Compute $z_1^{1/4}$. How many distinct values do you get? Plot all these values in the complex plane.

MIT OpenCourseWare https://ocw.mit.edu

18.04 Complex Variables with Applications Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.