

Available online at www.sciencedirect.com

ScienceDirect

Geochimica et Cosmochimica Acta 223 (2018) 437-461

Geochimica et Cosmochimica Acta

www.elsevier.com/locate/gca

Reduced gas seepages in ophiolitic complexes: Evidences for multiple origins of the H₂-CH₄-N₂ gas mixtures

Christèle Vacquand ^a, Eric Deville ^{a,*}, Valérie Beaumont ^a, François Guyot ^b, Olivier Sissmann ^a, Daniel Pillot ^a, Carlo Arcilla ^c, Alain Prinzhofer ^{a,1}

^a IFP Energies nouvelles, 1 & 4 avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
^b IMPMC, Sorbonne Universités, MNHN, UPMC, CNRS, 61 rue Buffon, 75005 Paris, France
^c National Institute of Geological Sciences, University of the Philippines, Diliman, Quezon City, Philippines

Received 3 May 2017; accepted in revised form 16 December 2017; available online 24 December 2017

Abstract

This paper proposes a comparative study of reduced gas seepages occurring in ultrabasic to basic rocks outcropping in ophiolitic complexes based on the study of seepages from Oman, the Philippines, Turkey and New Caledonia. This study is based on analyses of the gas chemical composition, noble gases contents, stable isotopes of carbon, hydrogen and nitrogen. These seepages are mostly made of mixtures of three main components which are H_2 , CH_4 and N_2 in various proportions. The relative contents of the three main gas components show 4 distinct types of gas mixtures (H_2 -rich, N_2 -rich, N_2 -H $_2$ -CH $_4$ and H_2 -CH $_4$). These types are interpreted as reflecting different zones of gas generation within or below the ophiolitic complexes. In the H_2 -rich type, associated noble gases display signatures close to the value of air. In addition to the atmospheric component, mantle and crustal contributions are present in the N_2 -rich, N_2 - H_2 -CH $_4$ and H_2 -CH $_4$ types. H_2 -bearing gases are either associated with ultra-basic (pH 10–12) spring waters or they seep directly in fracture systems from the ophiolitic rocks. In ophiolitic contexts, ultrabasic rocks provide an adequate environment with available Fe^{2+} and alkaline conditions that favor H_2 production. CH_4 is produced either directly by reaction of dissolved CO_2 with basic-ultrabasic rocks during the serpentinization process or in a second step by H_2 -CO $_2$ interaction. H_2 is present in the gas when no more carbon is available in the system to generate CH_4 . The N_2 -rich type is notably associated with relatively high contents of crustal 4 He and in this gas type N_2 is interpreted as issued mainly from sediments located below the ophiolitic units.

Keywords: Ophiolite; Serpentinization; Hydrogen; Abiotic methane; Deep nitrogen

1. INTRODUCTION

Serpentinization generates natural emission of H_2 on Earth. The process is inherent to exposure of reduced mantle rocks to hydration conditions in a wide range of thermal conditions, at least up to the critical temperature of water

(374 °C). This occurs commonly at mid-oceanic ridges where hydrothermal fluid circulation at high temperature provides conditions for ferromagnesian mineral alteration. Indeed, at mid-oceanic ridges H₂-rich fluids are associated with N₂ and CH₄ contents and on black smokers with CO₂ (Welhan and Craig, 1979; Kelley and Früh-Green, 1999; Charlou et al., 2002; Kelley et al., 2001, 2005; Gallant and Von Damm, 2006; Kumagai et al., 2008; and others). Natural H₂ seepages are also reported onshore, in former oceanic rocks present in ophiolite complexes. Notably, H₂ seepages associated with these ultrabasic rocks have

^{*} Corresponding author.

E-mail address: eric.deville@ifpen.fr (E. Deville).

¹ Present address: GEO4U, Praia de Botafogo 501, 22250-040 Rio de Janeiro, Brazil.

been reported in the Sultanate of Oman (Neal and Stanger, 1983; Sano et al., 1993; Vacquand, 2011; Boulart et al., 2013; Miller et al., 2016), the Philippines (Abrajano et al., 1988, 1990) and Turkey (De Boer et al., 2007; Hosgörmez et al., 2008; Etiope et al., 2011). These gas seepages are often associated with ultra-basic springs (pH 10-12) that are present in many basic-ultrabasic rock exposures. Such ultra-basic waters have been interpreted as evidences of active serpentinization (Barnes et al., 1967, 1978; Neal and Stanger, 1983; Abrajano et al., 1988, 1990; Sano et al., 1993; Bruni et al., 2002; Cipolli et al., 2004; Deville et al., 2011; Szponar et al., 2013; Etiope et al., 2013; Chavagnac et al., 2013; Cardace et al., 2015; Mever-Dombard et al., 2015; Woycheese et al., 2015; Deville and Prinzhofer, 2016). In these cases, H₂-rich gas is either dissolved or present as free gas bubbling in the ultra-basic water. In other cases, H2-rich gas seepages occur in rock fractures and can locally burn spontaneously. This is notably the case of the famous Chimaera near Antalya, place of the first Olympic flame, which are known to be burning since antiquity (De Boer et al., 2007; Hosgörmez, 2007; Hosgörmez et al., 2008) and the site of "Los Fuegos Eternos" in the Philippines known since the Spanish colonization (Abrajano et al., 1988, 1990). H₂-bearing gases discovered in ophiolitic rocks onshore show lower contents in helium than those discovered in terrestrial context in non-ophiolitic rocks (Coveney et al., 1987; Ikorsky et al., 1999; Sherwood-Lollar et al., 2007; Larin et al., 2015; Zgonnik et al., 2015; Guélard et al., 2017).

H₂ is generally considered as produced by water reduction that occurs simultaneously to the hydration of ultrabasic or basic rocks, i.e., according to serpentinization reactions. In the case of ophiolitic settings, it is generally supposed to happen at low temperature (Moody, 1976; Neal and Stanger, 1983; Abrajano et al., 1988; Etiope et al., 2011). The process driving this reduction is the change of valence of transition metals, notably ferrous iron Fe^{II} into ferric iron Fe^{III}, iron being the most abundant transition metal in ultrabasic and basic rocks. Fe^{II} is a major component in ultrabasic rocks in the ophiolitic units within minerals such as olivine and pyroxene. It contributes to the formation of Fe^{III}-bearing minerals, such as magnetite. These mineral assemblages are observed in the field, where peridotites are largely serpentinized, mostly along fracture systems. The question of H₂ provenance in oceanic hydrothermal context has been largely approached by petrographic studies and experimental simulations (Allen and Seyfried, 2004; Yoshizaki et al., 2009; Klein et al., 2009; Marcaillou et al., 2011; Neubeck et al., 2011; Shibuya et al., 2015) and numerical modelling (McCollom and Bach, 2009; Klein et al., 2009; Marcaillou et al., 2011). Fe^{II} is initially provided by different minerals (such olivine and pyroxene) in the first stages of hydration, but also by serpentine or ferrous iron hydroxide, which are produced by the alteration processes, thus allowing the H₂ production to go on after olivine and pyroxene have all been transformed (Marcaillou et al., 2011). These studies have shown that depending on thermodynamic conditions, temperature, water chemistry (notably carbonate content, sulphate content and alkalinity), water/rock ratios, different mineral

assemblages and sequences are obtained as by-products together with different rates and amounts of H2. According to the numerical model proposed by McCollom and Bach (2009), the highest rates of H₂ production are obtained at high temperature (about 315 °C) while serpentine and magnetite are the main mineral assemblage of the by-products. Onshore H₂-bearing gas seepages yield not only H₂ but also methane and nitrogen, resulting in a three-component gas mixture with proportions varying in a very large range. The origin and the processes of generation of CH₄ and N₂ associated to H₂ are still a matter of discussion in terrestrial ophiolitic units. In the present paper, the geochemical properties of reduced gas seepages from four ophiolite massifs: (1) the Semail ophiolite in the Sultanate of Oman, (2) the Zambales ophiolite in the Philippines, (3) the Antalya ophiolite in southern Turkey and (4) the New Caledonia ophiolite are compared in the light of local geological features to better understand the conditions for di-hydrogen, methane and di-nitrogen production in the geological context of these ophiolite complexes (Figs. 1-3).

2. GEOLOGICAL SETTINGS

The ophiolitic units in which this study was conducted correspond to wide ophiolitic massifs (Fig. 1) containing rocks which have not been subjected to high pressure-low temperature (HP-LT) conditions. Peridotites rocks are little serpentinized in wide areas (much less than ophiolites involved in HP-LT conditions). These ophiolites units have been obducted on sediments (Fig. 2) belonging to different paleogeographic domains, either oceanic or continental, which contain, in all cases, clastics and carbonates. The fractures in the peridotite host serpentine and carbonate veins, mainly Mg-bearing carbonates (magnesite, hydromagnesite and dolomite). In the ophiolite-hosted fractured aquifers, groundwater circulations is controlled by fracture hydraulic conductivity. Ultra-basic surface seepages have been found in these ophiolitic massifs and they generally discharge close to the contact between the mantle rocks and overlying former oceanic crust rocks (Moho), and along the basal thrust plane of the ophiolite sequence. This is probably related to favorable drainage conditions in the fractured rocks at the base of the ophiolitic units and to drainage control by the more massive gabbroic units compared to the more fractured peridotites below. They release high pH fluids (commonly higher than 10) which are rich in Ca^{2+} , OH^- , H_2 and CH_4 .

More specifically, the Oman ophiolite has been extensively studied, as it is the best large exposed massif of this type in the world (see Hopson et al., 1981; Ceuleneer, 1991; Nicolas et al., 1996, 2000; Python and Ceuleneer, 2003; Arai et al., 2006 and many others). This ophiolite corresponds to parts of the oceanic lithosphere of the Arabian Sea which have been obducted on the Arabian plate during late Cretaceous times. H₂-rich gas seepages associated with Ca²⁺-OH⁻-rich groundwater in the Semail ophiolite of Oman were first studied by Neal and Stanger (1983). They proposed that H₂ is the by-product of a low temperature (20–50 °C) serpentinization that depends on Fe^{II} hydroxide availability and oxidation by meteoric water that occurs in

Fig. 1. Structural sketch-maps of the different sites studied in this work in Oman (A), the Philippines (B), Turkey (C) and New-Caledonia (D) (same scale), with the location of the sampling sites and the location of the cross-sections shown in Fig. 2. The gas seepages are associated with ophiolitic ultrabasic rocks. Gas was sampled from different types of seepages: gas seeping in water which originates from ultrabasic or hot springs and gas seeping from fractures without water flow.

2 stages: (1) oxidation by atmospheric O_2 dissolved in meteoric water; (2) oxidation by water. Sano et al. (1993) provided a new insight by analyzing noble gases. Their results confirmed that H_2 -rich gas samples are inherited from interaction of meteoric water with Fe^{II} although they propose a high temperature for the reaction (300 °C).

In the Philippines, gases were sampled in the Zambales massif, which is located in the north-western part of the Luzon Island (Nicolas and Violette, 1982; Hawkins and Evans, 1983; Abrajano et al., 1988; Yumul et al., 1998; Encarnacion et al., 1999). The gas seepages occur either as bubbling in alkaline springs or seeping out from fractured rocks, locally spontaneously burning as, for instance, in Los Fuegos Eternos and Nagsasa. Gas seepages in the Zambales massif were first studied by Abrajano et al. (1988, 1990). In their paper, they concluded that both mantle origin and serpentinization are consistent with their analytical results and they proposed a temperature of 110–125 °C for serpentinization.

The ophiolite of the Antalya region, in southern Turkey, has been extensively studied (Juteau et al., 1977; Robertson and Woodcock, 1980; Glover and Robertson, 1998a,b).

Also, the associated sedimentary sequences have been investigated (Bozcu and Yagmurlu, 2001), while oil seepages have also been observed less than 20 km away from the Chimaera site (Hosgörmez et al., 2008). The site of the Chimaera gas seepage has the most spectacular gas outlet since the flames are more intense than those in Zambales, Philippines, and are also more colorful because of a greater content in methane, relatively to the H₂. H₂ seepages associated with the site of the first Olympic fire was first reported by Hosgörmez et al. (2008). From their chemical and isotopic study, they concluded that gas seepages originate from both thermogenic maturation of organic matter and serpentinization. In a later publication, Etiope et al. (2011) confirmed previous conclusions and proposed a temperature lower than 100 °C for serpentinization.

The ophiolite of New Caledonia is among the largest onshore massifs of ultrabasic rocks preserved on Earth. The peridotites nappe was emplaced during Eocene times over (1) a basement of arc-derived formations of Pre-Cretaceous age which are overlain by basalts and formations of the Central Range that include sandstones, silt-stones, graywackes, claystones with coal of Cretaceous

Fig. 2. Geological cross-sections of the different sites studied in this work (same scale; earthquake epicenters from USGS data base).

age and Tertiary carbonate turbidites and volcaniclastic deposits, and (2) a tectonic unit of oceanic basalts of Upper Cretaceous to Eocene age, with back-arc or fore-arc

affinities which underlies the peridotites nappe (Paris, 1981). H₂-bearing gas seepages associated to alkaline to hyper-alkaline waters were found in the southern part of

Fig. 3. Examples of gas seepages. (A) Bubbling H₂-rich gas flow in ultra-basic water (Oman). (B) Bubbling N₂-H₂-CH₄ gas flow (foreshore of the Baie du Carénage, New Caledonia). (C) Bubbling N₂-rich gas flow (Rustaq, Oman). (D) Burning H₂-CH₄ gas flow (Chimaera, Turkey).

the Massif du Sud (bay of Prony) within the peridotite nappe (Deville et al., 2010; Monnin et al., 2014; Deville and Prinzhofer, 2016), while N₂-rich seepages were found below the ophiolitic units in the area of La Crouen (Deville and Prinzhofer, 2016).

3. MATERIALS AND METHODS

Gases were sampled in stainless steel tubes with heliumproof valves for chemical composition and noble gas analyses and in glass tubes for stable isotopic composition analyses. Gas sampling devices were evacuated (10⁻³ Pa vacuum) before sampling. When possible, stainless steel tubes were swept twice by the sampled gas. When gas was collected in water springs, streams or in the sea (Oman, some places in the Philippines and New-Caledonia), pH, Eh and temperature were measured directly in the field (Table 1).

The chemical compositions of gases were determined by gas chromatography (GC) with a Varian GC3800. Measurement uncertainties are below 0.01% mol for hydrocarbons (FID) and for other gases (TCD). The measurements of the isotopic ratios $^{13}\text{C}/^{12}\text{C}$ (CH₄ and CO₂) and D/H in (CH₄ and H₂) were performed on a MAT 253 (Thermo Fischer) mass spectrometer coupled with a gas chromatograph (GCC-IR-MS). The results are reported in δ units relative to Pee Dee Belemnite (PDB) for carbon and Standard Mean Ocean Water (SMOW)

Table 1
Temperature, pH and Eh of the studied springs. Major gas analyses (mol%).

	Sites	Coordinates (decimal deg	rees)	Water 7	Γ, pH, Eh	(mV)	Gas com Mol (%)					
		Latitude	Longitude	T	рН	Eh	He	H ₂	N ₂	CH ₄	CO_2	C ₂₊
H ₂ -rich type					1							
Oman	Magniyat	23.4061	56.8633	32	11.7	-225	< 0.01	87.3	9.8	2.9	< 0.01	< 0.01
o i i i i i i i i i i i i i i i i i i i	Hawasina	23.6833	56.9396	25.6	11.3	-244	< 0.01	85.9	9.4	4.6	< 0.01	< 0.01
	Bahla 2008	22.9922	57.2932	35	11.6	-465	< 0.01	85.7	12.4	1.9	< 0.01	< 0.01
	Bahla 2010	22.9922	57.2932	34.9	11.4	-780	_	_	_	_	_	_
	Bahla 2012	22.9922	57.2932	34.9	11.3	-447	< 0.01	85.7	12.0	2.2	< 0.01	0.02
	Kufeis	23.9588	56.4400	22.5	9.5	-80	< 0.01	85.4	14.5	0.1	< 0.01	< 0.01
	Haylayn 2010	23.6199	57.1132	28.2	11.5	-348	< 0.01	77.0	14.2	8.8	< 0.01	< 0.01
	Haylayn 2012-2a	23.6275	57.1152	_	_	_	< 0.01	75.0	15.4	9.6	< 0.01	< 0.01
	Haylayn 2012-2b	23.6275	57.1152	_	_	_	_	_	_	_	_	_
	Haylayn 2012-6	23.618	57.1064	_	_	_	< 0.01	77.8	18.1	4.0	0.05	0.05
	Haylayn 2012-8	23.6181	57.1078	_	_	_	< 0.01	79.4	16.0	4.6	< 0.01	0.01
	Barrage (Jizzi)	24.3282	56.1307	24.7	10.2	-191	< 0.01	75.2	14.9	10.0	< 0.01	< 0.01
	Halhal	23.7172	57.034	27.7	8.7	-175	< 0.01	73.4	20.8	5.8	< 0.01	< 0.01
	Alkar	23.9693	56.4219	31.5	11.7	-340	< 0.01	68.1	28.5	3.3	< 0.01	< 0.01
	Hugain	23.5352	57.3333	31.2	10.1	-500	< 0.01	65.1	32.4	2.5	< 0.01	< 0.01
	Lauriers Roses	22.8956	58.3946	29.5	11.2	-45	< 0.01	61.0	23.2	15.4	< 0.01	< 0.01
N_2 - H_2 - CH_4 type												
Oman	Abyiad 2010	23.4285	57.6683	32.9	11.1	-420	< 0.01	26.9	57.3	15.9	< 0.01	< 0.01
	Abyad 2012-29	23.4239	57.6722	23.8	11.1	-39	< 0.01	36.1	58.2	5.7	< 0.01	0.01
	Abyad 2012-30	23.4242	57.6721	37.4	11.2	-82	< 0.01	31.4	59.9	8.7	< 0.01	0.01
Philippines	Mangatarem	15.7033	120.2825	34.3	11.3	-38	< 0.01	35.1	48.0	16.7	< 0.01	< 0.01
New Caledonia	Baie du Carénage1	-22.3047	166.8408	_	10.8	-285	< 0.01	36.1	50.3	13.7	< 0.01	< 0.01
	Baie du Carénage2	-22.3047	166.8408	40.1	10.5	-800	< 0.01	32.4	51.9	15.7	< 0.01	< 0.01
	Source des Kaoris 1	-22.2992	166.8617	31.6	10.9	-480	< 0.01	26.8	61.9	11.3	< 0.01	< 0.01
	Source des Kaoris 2	-22.2992	166.8617	30.4	10.6	-230	< 0.01	32.9	55.3	11.5	< 0.01	< 0.01
	Source des Kaoris 3	-22.2992	166.8617	30.5	10.6	-285	< 0.01	29.8	58.9	11.3	< 0.01	< 0.01
N ₂ -rich type												
Oman	Al Ali	23.4701	58.3239	66.3	6.9	89	< 0.01	< 0.01	97.9	0.2	1.8	0.1
	Rustaq	23.3935	57.4113	45.3	7.2	125	0.2	< 0.01	99.2	< 0.01	0.7	< 0.01
	Nakhal	23.3754	57.8284	37.9	7.5	146	0.1	< 0.01	98.9	< 0.01	1.0	< 0.01
New Caledonia	La Crouen	-21.535	165.8889	41.5	9.2	-226	0.1	< 0.01	97.2	2.7	< 0.01	< 0.01
	La Crouen	-21.535	165.8889	41.5	9.2	-230	0.1	< 0.01	97.3	2.7	< 0.01	< 0.01
	Roc Aiguille	-22.3167	166.8333	23.5	9.9	-180	< 0.01	0.1	93.1	5.1	1.7	< 0.01
	Roc Aiguille	-22.3167	166.8333	23.5	10.0	-210	< 0.01	< 0.01	91.4	8.5	0.1	< 0.01

H_2 -CH ₄ $type$												
Philippines	Nagsasa	14.837	120.1282	I	I	I	<0.01	58.5	1.2	38.7	<0.01	<0.01
	Los Fuegos Eternos	15.5718	120.1513	I	I	ı	<0.01	44.5	1.5	52.2	<0.01	<0.01
Turkey	XI2	36.4318	30.4557	I	ı	ı	<0.01	9.4	1.8	88.4	<0.01	0.3
	XI3	36.4352	30.4532	I	ı	ı	<0.01	7.6	2.2	9.78	<0.01	0.3
Reference compositu	ons											
Air								5E-05	78.08	2E-04	0.04	
ASW								9E-07	1.23	6E - 06	0.03	

for hydrogen, respective analytical uncertainties being of 0.5% and 5%. Nitrogen isotopic compositions were measured relative to air with a MAT 253 mass spectrometer. N_2 has been purified in a vacuum line. CH_4 and H_2 were oxidized in a Cu-oxide oven to CO_2 and water vapor, respectively. These produced gases were cryogenically trapped for separation from N_2 . Analytical uncertainty for the measurement of $\delta^{15}N$ is lower than 0.1%.

The noble gases elementary compositions were determined by quadrupole mass spectrometry (Table 2). The QUADRAR line allows determining the contents of 4 He, 20 Ne, 36 Ar and Kr. The mass spectrometer is a Prisma quadripole QMA/QME200 (Pfeiffer Vacuum) with an open ion source. The analyzer allows measurements of compounds with a mass over charge ratio from 0 to 100. Global relative uncertainties for quantification of noble gases with this method are within the following range: He: $\pm 15\%$; Ne: $\pm 20\%$; Ar: $\pm 10\%$; Kr: $\pm 12\%$.

Helium isotopic ratios and contents were determined with a high-resolution magnetic sector mass spectrometer Micromass GV 5400 equipped with a modified Nier type electron impact source (Bright). The global relative uncertainty (1σ) on the quantification of ${}^4\text{He}$ is \pm 4%. The uncertainty on the quantification of the ${}^3\text{He}/{}^4\text{He}$ ratio is \pm 2%.

4. RESULTS

The sites studied in Oman are scattered over Northern Oman and comprise 14 spots of gas bubbling in water (Fig. 1A). Most of the gas samples were taken in ultrabasic springs of the Semail ophiolite and three samples were taken in non-alkaline thermal springs (Rustag, Nakhal and Al Ali) seeping from formations structurally located below the ophiolite nappe (Table 1). In the Philippines, 3 spots were sampled in the Zambales ophiolite. One site (Mangatarem) corresponds to an ultra-basic thermal spring with abundant bubbling gas, whereas the two others correspond to gas directly seeping from fractures of the peridotites (Table 1). One site corresponds to the Los Fuegos Eternos burning gas close to the Coto Chromite mine (Abrajano et al., 1988, 1990), the other one is located above the Nagsasa bay (Abrajano et al., 2006; Fig. 1B). The gas vents sampled in Turkey were seeping out of the fracture system of the ophiolite unit in the area of Chimaera, south of Antalya (Fig. 1C). In New Caledonia, all gas samples were bubbling in water (some in alkaline springs of the area of the bay of Prony, others in the non-alkaline thermal springs of the area of La Crouen; Deville and Prinzhofer, 2016; Fig. 1D).

4.1. Chemical and isotopic composition of the gas

The gas chemical compositions are listed in Table 1. Gas mixtures contain H_2 , N_2 and CH_4 as major components. Fig. 4 displays H_2 , N_2 and CH_4 molecular contents of all samples in a triangular diagram. Four distinct types of gas mixtures can be identified according to their respective contents in H_2 , CH_4 and N_2 . Three of these types are associated with water seeps: H_2 -rich type; N_2 - H_2 - CH_4 type and N_2 -rich type. The water properties associated to these gas

Table 2 $\delta^{13}C$ (PDB) values of CO₂ and CH₄ (‰). δD (SMOW) values of H₂ and CH₄ (‰). Noble gas analyses ⁴He, ²⁰Ne, ³⁶Ar, ⁸⁴Kr (ppmv), and R/Ra (helium isotopic ratios normalized to the air isotopic Ra = ³He/⁴He = 1.4 10⁻⁶). C2+ contents in all the gas samples are very low, below the threshold of analytical precision (<0.01%). Global relative uncertainties (at 1 σ) for quantification of noble gases with the method used is estimated in the range He: $\pm 10\%$; Ne: $\pm 20\%$; Ar: $\pm 5\%$; Kr: $\pm 10\%$. The global relative uncertainty (1 σ) for the R/Ra ratio is in the range $\pm 2\%$.

	Sources/wells	Per mil vs P δ^{13} C	PDB	Per mil vs S δD	SMOW	Per mil vs atm $\delta^{15}N$	Noble gas (ppm)	ses composi	tion		R/Ra
		$\overline{\text{CO}_2}$	CH ₄	$\overline{\mathrm{H_2}}$	CH ₄	N_2	⁴ He	²⁰ Ne	³⁶ Ar	⁸⁴ Kr	
H ₂ -rich type											
Oman	Magniyat	_	-12.8	_	_	_	_	_	_	_	_
	Hawasina	_	-6.2	-724	-242	_	1.87	_	6.76	0.20	0.77
	Bahla 12/2008	_	-10.1	-722	-235	_	2.50	3.687	15.19	0.38	0.37
	Bahla 01/2010	_	_	-734	-234	_	20.80	0.224	7.78	0.24	0.17
	Bahla 2012	_	_	-725	-413	_	1.16	0.864	8.80	0.25	0.93
	Kufeis	_	-7.3	_	-428	_	2.70	3.676	15.36	0.43	0.41
	Haylayn	_	4	-718	-303	_	9.43	3.800	11.41	0.24	0.21
	Haylayn 2a	_	3.9	-714	-360	_	0.96	1.552	9.28	0.23	0.84
	Haylayn 2b	_	_	_	_	_	1.31	2.819	8.33	0.22	0.77
	Haylayn 6	_	_	-712	-404	_	0.99	3.068	10.91	0.29	1.05
	Haylayn 8	_	_	-712	-391	_	0.64	2.079	8.45	0.22	0.95
	Barrage (Jizzi)	_	-9.9	-732	-319	_	15.27	1.260	4.91	0.18	0.43
	Halhal	_	-4.3	-744	-347	_	1.50	5.164	6.05	0.12	0.62
	Alkar	_	-5.8	-710	-392	_	2.85	9.750	18.44	0.41	0.70
	Huqain	_	-5.6	-745	-313	_	0.47	1.172	2.90	0.06	0.57
	Lauriers Roses	_	7.9	-717	-279	_	2.34	1.033	9.51	0.25	0.89
N_2 - H_2 - CH_4 type											
Oman	Abyiad	_	-0.3	-718	-305	_	7.43	0.543	5.41	0.13	0.76
	Abyaid 29	_	_	-711	-339	_	6.05	9.779	26.48	0.49	1.25
	Abyaid 30	_	_	-699	-324	_	3.47	8.680	28.90	0.61	0.93
Philippines	Mangatarem	_	-13.3	-735	-395	-0.1	2.66	8.204	18.62	0.40	0.71
New Caledonia	Baie du Carénage1	_	-32.4	_	_	_	3.88	14.967	2.20	0.14	1.00
	Baie du Carénage2	_	_	_	_	_	6.40	13.032	3.37	0.33	0.43
	Source des Kaoris1	_	-38.5	_	_	_	3.93	12.251	23.99	0.47	1.56
	Source des Kaoris2	_	-34.9	_	_	_	3.99	16.424	9.97	0.30	1.73
	Source des Kaoris3	_	_	_	_	_	3.99	9.550	5.08	0.16	1.76
N . 1 .											
N ₂ -rich type Oman	Al Ali				-215		14.10	12.559	16.03	0.30	0.42
Oman		-	_	_	-213	- 0.2					
	Rustaq	-16.5	_	_	_	-0.3	352.90	2.589	0.56	0.01	0.08
N C-1-1	Nakhal	-19.4	- 20	_	_	_	1382.07	1.760	12.12	0.25	0.07
New Caledonia	La Crouen	_	-39	_	_	_	320.92	10.392	3.42	0.33	0.07
	La Crouen	_	-39.2	_	_	_	99.37	11.047	13.30	1.48	0.06
	Roc Aiguille	_	-12.1	_	_	_	-	_	_	_	_
	Roc Aiguille	_	-16.4	_	_	_	_	_	_	-	

π_2 - $C\pi_4$ type											
Philippines	Nagsasa	I	-5.6	-664	-163	0.5	4.68	0.047	0.41	0.01	4.35
	Los Fuegos Eternos	ı	-6.5	-756	-175	1	4.38	0.419	3.04	0.10	0.49
Turkey	Turkey XI2	ı	-11.8	-736	-130	1	151.2	1.098	0.82	0.01	0.31
	Turkey XI3	ı	-11.8	-748	-131	ı	140.5	0.080	1.59	0.02	0.33
Reference compositions	tions										
Air		-8.6 to -7.6	-47.7 to -41.2	+100 to +200	-70 to -90 0	0	5.24	16.453	31.57	0.65	-
ASW							0.05	0.172	1.07	0.04	1

seepages are listed in Table 1 and illustrated on a Pourbaix diagram on Fig. 5. The last type (H₂-CH₄) corresponds to gas seepages in fractures without associated water flow.

Carbon and hydrogen isotopic composition (δ^{13} C and δ D) of H₂, CH₄, CO₂ and nitrogen isotopic composition (δ^{15} N) of N₂ are reported in Table 2. δ D of H₂ values are very negative and comprised in a narrow range from -756 to -699%, except for the sample from Nagsasa (Philippines) with δ D of H₂ = -664% (Figs. 6 and 7). The highest values of δ D of CH₄ correspond to the highest contents of methane (Fig. 8A). Relative carbon and hydrogen isotopic compositions of methane are presented in Fig. 8B. High values of δ^{13} C of CH₄ were obtained, up to +7.9%, while δ D of CH₄ are ranging from -428 to -130%

Hydrogen isotopic fractionation between H_2 and CH_4 depends on seepage types. The highest isotopic fractionations between species are observed on dry seepages where δD values of methane are the highest recorded in this study (Table 2). The nitrogen isotopic compositions were also measured for 4 samples. $\delta^{15}N$ values range from -0.3 to +0.5% (Table 2).

Noble gases contents and their isotopic ratios, when measured, are given in Table 2. The samples of the H₂-rich type are very close to the air end-member with a slight crustal contribution. Those of the N₂-H₂-CH₄ type show higher N₂ and CH₄ contents and present either a crustal (Oman), or mantle (Kaoris, New Caledonia) or crust plus mantle contribution (Oman). The samples of the H₂-CH₄ type present both crustal and mantle contributions, with a very marked mantle contribution for the Nagsasa sample (Zambales, Philippines). N₂-rich samples are made of a mixing between air and crust end-members.

4.2. Gas types

According to the gas compositions, four types can be defined (Fig. 4):

(1) The H_2 -rich type shows dominant H_2 contents (61.0– 87.3% mol) associated with some N₂ (less than 35% mol) and some CH₄ (less than 20 mol%; Figs. 4 and 8A). This type is encountered in Oman (Neal and Stanger, 1983; Sano et al., 1993; Deville et al., 2010, 2011; Vacquand, 2011; Boulart et al., 2013; Miller et al., 2016) and this type of gas exclusively seeps as bubbles from ultra-basic springs (pH between 11 and 12; Fig. 5) associated to negative to very negative Eh (from -45 to -780 mV; Fig. 5; Table 1). In addition to the high OH⁻ ion concentration responsible for the high pH, the waters are calcium-rich (Neal and Stanger, 1985). Consequently, in the alkaline springs, spectacular precipitations of calcium carbonate (calcite and aragonite) are observed due to the reaction of Ca²⁺ and OH⁻ ions with the CO₂ of the atmosphere (see supplementary material). These waters show high electrical conductivities in accordance with their relatively high salinity, essentially related to the presence of Cl⁻ and Na⁺ ions (Cl⁻ between 120 and 380 mg/l; Na⁺ between

Fig. 4. The major components of the gas mixtures sampled in Turkey, Oman, New Caledonia and the Philippines: H_2 , N_2 and CH_4 in a triangular diagram (% mol). Four different types of gas mixtures can be defined according to the relative contents of H_2 , N_2 and CH_4 . Distinct chemical features correspond to distinct seepages styles: N_2 -containing gas mixtures are associated with water and seep in water streams, whereas N_2 -free mixtures correspond to dry seepages which seep out of fractures of massive rocks and locally ignite spontaneously. The different types of water-associated seepages correspond also to specific water physical properties, notably pH and temperature (see Fig. 5).

150 and 420 mg/l; Neal and Stanger, 1985; Kelemen et al., 2011). The temperatures of these sources are almost ambient to slightly warm (between 22.5 and 35 °C). The δ^{13} C values of methane are very high (among the highest values known on Earth, between

Fig. 5. Pourbaix diagram pH-Eh of the water where the gas samples were collected in springs. Oblique lines (blue and pink) separate the stability fields of H₂, H₂O and O₂. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

- -13 and +8%c; Table 2; Fig. 8B). The gas composition shows N₂ vs fossil noble gas ³⁶Ar ratios (Table 2; Fig. 9) comprised between the air and water in equilibrium with air (classically mentioned as ASW for Air Saturated Water).
- (2) The N_2 - H_2 - CH_4 type is characterized, by higher N_2 values (from 45 to 65 mol%) compared to the previous gas type. Therefore N2 becomes the main gas. H₂ contents range from 25 to 36 mol%. CH₄ concentrations are similar to those of the H₂-rich type (below 20 mol%; Fig. 4). This second gas type is mainly found in New Caledonia (Deville and Prinzhofer, 2016) but also in some springs of Oman and of the Philippines. This type of gas mixture seeps also in ultra-basic springs. These springs are generally warmer than those of the H₂-rich type, up to 40.1 °C in New Caledonia and pH values are slightly lower, ranging from 10.5 to 11.3. They are, as well, associated with precipitations of calcium carbonate (see supplementary material). The $N_2/^{36}$ Ar ratios of this gas type are different from the previous type and higher than those recorded for ASW and air (Table 2; Fig. 9). These ratios are also correlated with H₂/³⁶Ar and ⁴He/³⁶Ar ratios (Deville and Prinzhofer, 2016). δ^{13} C of methane recorded for this gas type ranges between -38.5 and -32.4% (Deville and Prinzhofer, 2016).
- (3) In the N_2 -rich type, the dominant gas compound is N_2 (over 91 mol%). Gas mixture is H_2 -free with low CH_4 contents (up to 2.7 mol% in New Caledonia), plus substantial amounts of helium (values above

Fig. 6. Comparison of hydrogen isotopic compositions of CH₄ and H₂ for onshore settings (data from this work and two points, LFE-2 and LFE-3, from Abrajano et al. (1988)) and oceanic settings (Proskurowski et al., 2006). While a narrow range of CH₄ isotopic composition is observed for oceanic settings these values are lower for onshore settings and cover a large range. The values for the gas seeping out of fractures without associated ultra-basic water (H₂-CH₄ gas type) are close to those of oceanic setting at Lost City and might indicate a similar generation process. In contrast to the CH₄ isotopic compositions, the H₂ isotopic compositions display a large range in oceanic settings (dependent on temperature) and a narrow range in terrestrial settings for gas seeping from ultra-basic springs.

0.1 mol%). This type of springs was found in Oman (Sano et al., 1993; Vacquand, 2011) and New Caledonia (Deville and Prinzhofer, 2016) where they occur in the same structural position, i.e., at the base of ophiolitic nappes (either in the sole of the nappes or in the sediments immediately below the nappes). δ^{13} C values of CH₄ in this type are between -39.2and -12.1%. These gases come out in the form of bubbling springs with less alkaline water than previously recorded (pH from 7.5 to 10) and variable Eh (from -230 to +146 mV). The $N_2/^{36}$ Ar ratios are very high (Table 2; Fig. 9). R/Ra ratios of the gases are consistently low (between 0.06 and 0.08, except for the sample collected in Al Ali where it was not possible to avoid air contamination because of access difficulties when sampling the gas and high temperature of the spring, above 66 °C; Tables 1 and 2; Fig. 10). The dissolved species in the associated waters are very different from those of the waters containing H₂ gases. They show lower concentrations of Na⁺ and K⁺ ions and contain HCO₃ ions, which is not the case of the ultra-basic springs with H₂ seepages (Neal and Stanger, 1985). In all cases these springs are warm to hot (from 37.9 to above 66 °C; Table 1).

(4) The H_2 - CH_4 type shows mostly H_2 and CH_4 in variable proportions. This type of gas vent is characterized by focused and relatively high gas flows (> 1 1/s), coming directly out of the rock fractures in the absence of water. This gas type was found in the Philippines and in Turkey where it was mentioned respectively by Abrajano et al. (1988, 2006) and Hosgörmez et al. (2008). It has not been found in New Caledonia but Neal and Stanger (1983) mentioned locally focused high gas flows seeping out directly from fractures of ultrabasic rocks in Oman (>10 l/s). The CH₄/H₂ ratio is commonly higher compared to the types associated to alkaline springs, except for the case of Nagsasa in the Philippines. The gas is able locally to spontaneously ignite as it is the case in Turkey (Chimaera) and the Philippines (Los Fuegos Eternos and Nagsasa) forming visible flames when the CH₄/H₂ ratio is high. Nitrogen is nearly absent of these dry gas seepages (less than 2 mol%; Fig. 4) whereas since the gas is seeping out from fractures of rocks located above the water table, we would have expected that the gas would be much more easily naturally contaminated by air than in the previous cases which are bubbling in water. Indeed, these H₂-CH₄ gases do not display predominantly atmospheric features and 20Ne and

Fig. 7. CH_4 - H_2 - H_2 O hydrogen isotope systematics. Data for biological hydrogenotrophic methanogenesis are from Balabane et al. (1987), Valentine et al. (2004) and Okumura et al. (2016). FTT synthesis refer to experiments investigating abiotic methane production in the gas phase (Taran et al., 2007) and aqueous phase (Fu et al., 2008; McCollom et al., 2010). There data were presented in a similar diagram in Suda et al. (2014). This figure shows $\epsilon(H_2$ - H_2 O_{aq}) versus $\epsilon(CH_4$ - H_2 O_{aq}) for the samples from Oman, the Philippines and Turkey, compared to values from oceanic settings. The value ϵ is calculated according to the following equations: $\epsilon = 1000 \ln \alpha$ with $\alpha(H_2$ O_{aq}- H_2) = $1.0473 + 201,036/T^2 + 2.060 \times 10^9/T^4 + 0.180 \times 10^{15}/T^6$ and $\alpha(H_2$ O_{aq}- CH_4) = $1.0997 + 8456/T^2 + 0.9611 \times 10^9/T^4 - 27.82 \times 10^{12}/T^6$. The thin line indicates the CH_4 - H_2 equilibrium fractionation at a given temperature. According to this interpretation, CH_4 from fractures (dry seepages) would be produced directly from H_2 O and DIC whereas, in the H_2 -rich and N_2 - H_2 - CH_4 gas mixtures seeping in alkaline springs, an H_2 intermediate (possibly biologically mediated secondary process) would produce CH_4 . δ D of spring water is considered to be close to zero ∞ from the study made in Oman by Neal and Stanger (1985; values between -11.2 and $+10.7\infty$).

Fig. 8. A. Diagram showing δD(‰) values of CH₄ vs CH₄ contents. This shows that the H₂-CH₄ gas type shows higher CH₄ contents and δD values of CH₄ than the other gas types. B. Diagram showing carbon versus hydrogen isotopic composition of CH₄ including data from Abrajano et al. (1988) and Hosgörmez et al. (2008), domains are simplified after Schoell (1988), Whiticar (1999) and Etiope and Sherwood-Lollar (2013). The classic microbial domain presented here refers to gas generated from an organic substrate. This domain might be wider in the case of microbial gas generated from inorganic carbon. The carbon isotopic compositions of CH₄ are among the highest values recorded on Earth. The range of the carbon isotopic values of CH₄ is relatively narrow and allows no distinction between the different types of gas mixtures whereas the hydrogen isotopic values of CH₄ are scattered between −430‰ and −100‰ and show distinct ranges comparing dry seepages in fractures and seepages in ultra-basic water. This corresponds probably to different CH₄ generation processes. Note that none of the groups plot in the classical domains of conventional microbial gas or conventional thermogenic gases. Domain for CH₄ of Mid-Oceanic Ridges hydrothermal fluids is from Proskurowski et al. (2006) and Kawagucci et al. (2016).

Fig. 9. N_2 content $vs N_2/^{36}$ Ar diagram, depicting nitrogen excess in samples relative to atmospheric 36 Ar. The values from the H_2 -rich type gather along a mixing line between air and air equilibrated water, implying that probably only inherited atmospheric N_2 can be found in the gas mixture, whereas the other types show a N_2 excess, suggesting that non-atmospheric N_2 is present in the gas mixture.

Fig. 10. Mixing diagram 20 Ne/ 4 He vs R/Ra (3 He/ 4 He ratio of the sample normalized over the same ratio for the air = 1.384 × 10 $^{-6}$). The noble gas data show that except the H₂-rich type which plots around the atmospheric end-member and indicates a single shallow aquifer signature, the other gas mixtures have signatures that result from the interaction of several fluids originating either from the mantle or from the crust. The N₂-rich type is interpreted as resulting from the mixing of atmospheric and crustal end-members whereas a mantle contribution is recorded for samples of the N₂-H₂-CH₄ and H₂-CH₄ types.

⁸⁴Kr concentrations are quite low compared to other types of gas mixtures (Table 2). δ^{13} C values of CH₄ are high and fairly constant (between -12 and -5%; Fig. 8), as well as δ D of CH₄ which range from -175 to -130%. The δ D values of CH₄ are higher when compared to the H₂-rich and N₂-H₂-CH₄ gas types (Table 1), while the δ D values of H₂ vary between -756 and -664%, generally in the same order of magnitude as those recorded in the H₂-rich and N₂-H₂-CH₄ gas types (Table 1; Fig. 6). The differences of δ D values of CH₄ suggest different processes for CH₄ genesis and probably different sources for hydrogen and carbon (see discussion below).

5. DISCUSSION

5.1. Main characteristics of the different gas types

Comparing the different gas types, several characteristic features can be noticed. Gases bubbling in prings always contain N2 that is not related to air contamination (see below), while gas seepages in fractures without associated water flows are N₂-poor. The gas bubbling in springs shows CH₄ contents that never exceed 20 mol%. The specificity of the H₂-CH₄ gas type seeping in fractures without associated water flow is that their CH₄ contents locally reach high levels and that δD of CH₄ is significantly higher compared to the δD of CH_4 in the other gas types (Fig. 8). The water temperature tends to increase in the different types of springs from the H₂-rich, to the N₂-H₂-CH₄ and to the N₂-rich gas types (Table 1). Gas bubbling in springs is associated to ultra-basic conditions only when H₂ is present, whereas water is less or not basic in the springs of the N₂-rich gas type. We propose that the chemical characteristics that define gas types reflect differences in origin and transport pathways of gas mixtures.

5.2. Hydrogen origin

As mentioned in introduction, H2 sources of gas seepages in ophiolitic contexts are classically credited to modern hydration processes at low temperature during the weathering of ultrabasic and basic rocks (mostly peridotite and gabbro). At depth, within ophiolitic rocks, biological production of H₂ by fermentation processes is probably a sluggish process due to the paucity of potential organic substrates. High-temperature serpentinization (above 300 °C) is a well-known process but at temperatures below 300 °C serpentinization can occur as well (Moody, 1976). Indeed, experimental studies simulating land-based peridotite systems have shown that H₂ can be generated during serpentinization at temperatures below 100 °C (Mayhew et al., 2013; Okland et al., 2014; Neubeck et al., 2011). On hydrogen-bearing gas seepages associated with high pH waters in ophiolitic context (Neal and Stanger, 1983; Sano et al., 1993; Cipolli et al., 2004; Hosgörmez et al., 2008; Vacquand, 2011; Abrajano et al., 2006), H₂ would result from the interaction between ultrabasic rocks and water flows at depth in the fracture system, in anoxic conditions, by reduction of water and oxidation of metals (Fe^{II}, Mn^{II}, Ni^{II}, ...), Fe^{II} being by far the most abundant electron donor in ultrabasic-basic rocks. During the serpentinization process, Fe^{II}-rich minerals, such as olivine [(Mg^{II},Fe^{II})₂SiO₄] are oxided and form Fe^{III}-bearing minerals, such as magnetite [Fe^{III}₂Fe^{II}O₄] or Fe^{III}-bearing serpentine (Evans, 2008), with coeval reduction of water generating H₂. Olivine is a magnesium-iron nesosilicate forming a solid solution series between a Mg-endmember and a Fe- endmember. During olivine dissolution, the olivine Fe-endmember (fayalite, Fe₂SiO₄) tends to react as,

$$3\text{Fe}_2\text{SiO}_4 + 2\text{H}_2\text{O} \rightarrow 2\text{Fe}_3\text{O}_4 + 3\text{SiO}_2 + 2\text{H}_2$$
 (1)
Fayalite + water \rightarrow Magnetite + silica + dihydrogen

At temperature below 150 °C, dissolution of the olivine Fe-endmember is even thermodynamically more favorable when Fe-chrysotile is formed (Oze and Sharma, 2005) according to the following reaction,

$$6\text{Fe}_2\text{SiO}_4 + 7\text{H}_2\text{O} \rightarrow 3\text{Fe}_3\text{Si}_2\text{O}_5(\text{OH})_4 + \text{Fe}_3\text{O}_4 + \text{H}_2$$
 (2)
Fayalite + water \rightarrow Fe - Chrysotile + Magnetite + dihydrogen

The Mg-endmember of olivine (Forsterite, Mg₂SiO₄) reacts as,

$$\begin{split} 2Mg_2SiO_4 + 3H_2O &\rightarrow Mg_3Si_2O_5(OH)_4 + Mg^{2+} + 2OH^-(3) \\ Forsterite + water &\rightarrow Chrysotile + magnesium \ ions \\ &\quad + hydroxyl \ ions \end{split}$$

In presence of dissolved inorganic carbon (DIC) in subsurface, Mg²⁺ ions are consumed to produce magnesiumbearing carbonates (which are widespread in fractures systems of all the ophiolitic massifs studied here; see below), and (if available) remaining Mg²⁺ ions are prone to react with OH⁻ to form brucite, Mg(OH)₂ (which is commonly found in the ultra-basic springs studied here, notably in Oman; Neal and Stanger, 1984) leaving finally OH⁻ available in solution. In the case of New Caledonia, where alkaline seepages interact with sea water, this results in massive production of brucite due to the reaction between OH⁻ and Mg²⁺present in sea water as it is the case of the seepages studied in New-Caledonia (Launay and Fontes, 1985). More generally, as proposed by different authors, the coupled hydration of Mg-olivine and Ca-bearing pyroxene of peridotite rocks makes the water enriched in Ca²⁺ and OH⁻ (Barnes et al., 1967; Neal and Stanger, 1984; Bruni et al., 2002; Kelemen et al., 2011; Miller et al., 2016),

$$\begin{split} 4Mg_2SiO_4 + CaMgSi_2O_6 + 7H_2O \\ &\rightarrow 3Mg_3Si_2O_5(OH)_4 + Ca^{2+} + 2OH^- \\ &\text{Forsterite} + Clinopyroxene + water} \\ &\rightarrow Serpentine + calcium ions + hydroxyl ions \end{split}$$

As such, the interaction between peridotite and water during serpentinization is a potential source of H_2 caused by ferrous iron oxidation and water reduction associated with a rise of pH due to OH^- production and associated with the presence of Ca^{2+} in the ultra-basic water. The richer in iron is the olivine, the more H_2 and the less OH^- are produced.

It has been experimentally demonstrated that highly fractured/altered peridotite is more prone to generate $\rm H_2$ than a massive unaltered peridotite suggesting a role of the reacting surfaces and possibly that $\rm Fe^{II}$ -bearing secondary formed minerals, such as $\rm Fe^{II}$ -bearing brucite and serpentine, and the presence of N-species may also contribute to form $\rm H_2$ (experiments at 25 °C; Okland et al., 2014, see also Klein et al., 2015).

The conditions of generation of H₂ can be estimated notably using hydrogen isotopic data. In the studied ophiolitic massifs, whatever are the characteristics of the H₂-bearing gas types, δD values of H₂ are all very low in the analyzed gas samples (between -756 and -664%). Abrajano et al. (1988) mentioned, δD values of H₂ at −581 and −599‰ in the Los Fuegos Eternos of the Philippines. The lowest values are among the lowest recorded on Earth and they are significantly lower compared to δD of H₂ of hydrothermal sites on mid-oceanic ridges for which the values are more dispersed and generally higher (between -700 and -300%; Fig. 6). δD values of H₂ observed in oceanic settings decrease with temperature and appear as a thermometer for H₂ production at isotopic equilibrium with seawater (Proskurowski et al., 2006). Low δD values of H₂ in ophiolitic massifs are classically considered as revealing relatively low temperatures of the generation of H₂ (Neal and Stanger, 1983). Indeed, using either (1) the Horibe and Craig (1995) H₂O-H₂ and CH₄-H₂ geothermometers which consider isotope fractionations between liquid H₂O or CH₄ and H₂, or (2) Bottinga's (1969) water vapor-hydrogen method, this strongly suggests that the generation of H₂ occurred at lower temperature conditions than at most of the hydrothermal vents of mid-oceanic ridges. H₂O-H₂ is seen as the preferred geothermometer but it implies that chemical equilibrium between H₂ and H₂O has been reached (see discussion below). It is possible that chemical and isotopic equilibrium have been achieved between H₂ and CH₄ (see the following paragraph). Whatever the geothermometer used, either the Horibe and Craig (1995; Fig. 7) H₂O-H₂ and CH₄-H₂ geothermometers, or the Bottinga (1969) geothermometer, we obtained relatively narrow windows of temperature conditions in the ranges 17-42 °C for H₂ of the H₂-rich type and 24-50 °C for H₂ of the N2-H2-CH4 gas type, whereas the temperature conditions seem much more heterogeneous and reach much higher temperatures in the H₂-CH₄ gas type, notably for the samples of the Philippines (up to 136 °C, taking into account the δD_{H2} values from Abrajano et al., 1988).

To decipher the conditions of generation of H₂, it is possible to compare H₂ contents with those of other compounds such as noble gases tracers (Ballentine and Sherwood Lollar, 2002, Ballentine et al., 2002; Zhou et al., 2005; Burnard et al., 2013; Prinzhofer, 2013; Prinzhofer and Deville, 2013). Notably, the H₂-rich gas type displays N₂/³⁶Ar ratios between ASW and air (Table 2; Fig. 9). These features are consistent with a genesis process involving surface water charged with dissolved atmospheric components (ASW) as the main fluid reacting with the rock for H₂ production. In this case, H₂O inherited from meteoric water, initially in equilibrium with atmospheric components, is probably consumed at depth in the fracture system

of the ophiolites by water/mineral interactions. Following this interpretation, as a consequence of water consumption and H₂ production, initial gas/water equilibrium with atmosphere is disrupted and atmospheric nitrogen and noble gases are mixed with neo-formed gases (H2 and CH₄) and migrate upwards with no further addition of another gas component. The preservation of atmospheric relative proportions of fossil noble gases (20Ne, 36Ar, ⁸⁴Kr) suggests that these groundwaters reacted at a relatively shallow depth. For deeper depths of gas/water phases interaction, the difference of noble gas solubility from the surface conditions' ones (as P and T are much higher) would fractionate the relative proportions of these compounds. The ⁴He contents (<20 ppm), are in good agreement with Neal and Stanger's (1985) interpretation which asserts that Ca²⁺-OH⁻ water originates from meteoric water recharging at high elevations. The presence of ⁴He in subsurface gas is classically interpreted as the result of a lengthy residence time at depth allowing ⁴He to accumulate significantly due to natural radioactive decay of ²³⁵U, ²³⁸U and ²³²Th present in crustal rocks (Ballentine and Burnard, 2002). Paukert et al. (2012) considered, from their modelling of CO₂ consumption, that such meteoric waters reached its high pH values after 6500 years. This geological short time frame is consistent with the low ⁴He contents of these gases, which are roughly displaying atmospheric signatures.

Considering the N_2 - H_2 - CH_4 and H_2 - CH_4 gas types, the interpretation that H_2 generation is simply a result of interaction between meteoric water and ophiolitic rocks is not sustainable anymore because, notably, $N_2/^{36}$ Ar ratios are not comprised between ASW and air and noble gas contents are different from Air or ASW. This is consistent with a H_2 generation process which occurred deeper than in the H_2 -rich gas type, in higher temperature conditions as already suggested by δD values of H_2 .

5.3. Methane origin

Methane generation associated with fluid-rock interaction in ophiolitic contexts remains unclear. In terrestrial ultrabasic-basic contexts at moderate temperatures (below 150 °C), methane is interpreted to result from carbon hydrogenation involving mainly sources of inorganic carbon. Methane so formed is termed abiotic (or abiogenic), and is thought to be produced by chemical reactions that do not directly involve organic matter (see discussion in Etiope and Sherwood-Lollar, 2013; with references therein). Eventually, according to the geological conditions, methane produced by fluid-rock interaction can be mixed with biotic methane produced either by microbial processes or by thermogenic degradation of organic matter in sedimentary rocks.

In the case of hydrogenation processes of carbon, considering potential hydrogen sources (H₂O or H₂), hydrogen in CH₄ can be considered as primary (*i.e.*, issued from H₂O reacting with carbon and preceding H₂ production; Abrajano et al., 1988; Oze and Sharma, 2005; Suda et al., 2014; Okland et al., 2014), or secondary (i.e., issued from an H₂ intermediate by reactions between carbon and H₂;

Berndt et al., 1996; Foustoukos and Seyfried, 2004; Horita and Berndt, 1999; McCollom and Seewald, 2001; McCollom, 2016; Neubeck et al., 2011). The experiments of Okland et al. (2014) suggest indeed a possible primary production of CH₄ during hydration of ultrabasic rocks without an H₂ intermediate, notably with moderately altered peridotites. In both cases, hydrogen is issued from H₂O, either primarily or secondarily. Suda et al. (2014), based on a study of hydrogen isotopic data of CH₄, H₂ and H₂O (Fig. 7), defined different domains corresponding to different processes allowing to distinguish CH₄ generation by hydrogenation from water (primary) or from H₂ (secondary). Primary CH₄ production is regarded as a direct interaction between Fe^{II}-rich minerals and dissolved CO₂. CH₄ production tied to ferrous mineral reactions with CO₂ has not yet been fully explored (Neubeck et al., 2016) but there is some indication from experimental reactions of olivine that passivating layers of silica may coat reactive surfaces and slow related CH₄ generation (Garcia et al., 2010). However, early production of CH₄ (before H₂ production) has been documented by experimentation on natural peridotite rocks, at low temperature (25 °C), especially on fractured and altered peridotite, and these experiments showed a coeval production of H2 and CH4 (Okland et al., 2014), in the same proportions as those measured in this study for the H₂-rich gas type. The presence of CO₂ is a favorable factor for olivine dissolution (Oze and Sharma, 2005), which releases aqueous Fe^{II}. Primary production of CH₄ from H₂O and CO₂ (DIC in water) is achieved in a similar way as the H₂ production through the oxidation of iron (see above). The reaction of the Feendmember of olivine in presence of dissolved CO₂ can be summarized by the following reaction,

$$6\text{Fe}_2\text{SiO}_4 + 2\text{H}_2\text{O} + \text{CO}_2 \rightarrow 4\text{Fe}_3\text{O}_4 + 6\text{SiO}_2 + \text{CH}_4$$
 (5)
Fayalite + water + carbon dioxide

 \rightarrow Magnetite + silica + methane

while a coeval reaction occurs considering the Mgendmember,

$$2Mg_2SiO_4 + 2H_2O + CO_2 \rightarrow Mg_3Si_2O_5(OH)_4 + MgCO_3$$
 (6)
Forsterite + water + carbon dioxide

→ Serpentine + magnesite

Over geologic time, in natural environments that include fractured and weathered ultrabasic rocks experiencing diverse aqueous geochemical conditions, passivating silica layers may not be widespread allowing the following reaction,

$$3Mg_2SiO_4 + 4H_2O + SiO_2 \rightarrow 2Mg_3Si_2O_5(OH)_4$$
 (7)
Forsterite + water + silica \rightarrow Serpentine

Also, Fe^{II}-bearing brucite-type minerals (for example amakinite) and Fe^{II}-bearing serpentines are good candidates to react with dissolved CO₂, as suggested by experiments (Okland et al., 2014).

Applying the reasoning of Suda et al. (2014) mentioned above to our samples, would suggest that gases from the H_2 -CH₄ type (dry seepages in fractures) contain methane which is considered as primary while, in water-related

seepages, the analytical results are more compatible with a secondary CH_4 generated from an H_2 intermediate (gas samples collected in ultra-basic springs showing δD values of CH_4 between -400 et -200%; Fig. 7).

As suggested by Suda et al. (2014) and according to the reactions shown above, a simultaneous production of methane and magnesite can occur. Mg-bearing carbonates (magnesite and dolomite) are indeed abundant in fractures in the peridotites of Oman and they are supposed to have been formed at temperatures in the range 30 to 60 °C (Kelemen et al., 2011). Methane and magnesite, have both high and similar δ^{13} C values (δ^{13} C-_{CH4} between -13 and +8%, $\delta^{13}C_{\text{magnesite}}$ between +2 and +8%; see supplementary material). This is compatible with a non-atmospheric carbon origin of CH4 that could derive from mantellic or metamorphic CO₂ or from carbonate destabilization. These values are different from the carbonates signatures found at the surface in the ultra-basic springs where carbon is interpreted as issued from atmospheric CO2 which after fractionation during carbonate precipitation give δ¹³C values between -28 and -5% (Kelemen et al., 2011; see also supplementary material).

Considering secondary production of methane, via an H_2 intermediate, several pathways of CH_4 generation involving different sources of carbon can be considered, either (1) organic carbon (or reduced carbon including elementary C) found in sediments below the ophiolites notably, or else (2) carbon issued from deep sources from the mantle or from the crust (for example Dissolved Inorganic Carbon issued from mantle gas or from carbonates within the sediments). Indeed, H_2 produced by serpentinization is susceptible to be subsequently consumed in a CH_4 producing reaction, involving a source of carbon which can be C° , CO or CO_2 , according to the general reaction (Deville and Prinzhofer, 2016),

$$(2+X)H_2 + COx \rightarrow CH_4 + XH_2O \tag{8}$$

In the case x = 0, the source of carbon can correspond to reduced carbon in sediments (graphite or overmature organic matter). In the case x = 1, the source of carbon corresponds to CO. CO has indeed, been mentioned as traces in the gas of the ophiolites of Oman (Sano et al., 1993). It might correspond to an intermediate compound preceding methane generation. In the case x = 2, this corresponds to the classical Sabatier reaction. Considering generation of high δ^{13} C methane associated with ultrabasic contexts, it is frequently considered that it corresponds to Fisher-Tropsch Type (FTT) reaction, meaning the abiotic path of the Sabatier reaction (Szatmari, 1989; Horita and Berndt, 1999; Sherwood-Lollar et al., 1988, 1993a,b, 2006, 2007; Kelley et al., 2001; Charlou et al., 2002; Foustoukos and Seyfried, 2004; McCollom and Seewald, 2001; Taran et al., 2007; Proskurowski et al., 2008; and others, see references in Etiope and Sherwood-Lollar (2013)). In the Sabatier reaction, CO₂ is reduced to CH₄ through the oxidation of H_2 (so the reaction is controlled by H_2 activity).

The kinetics of FTT reactions are slow at the temperatures considered here (below 150 °C) but Fisher-Tropsch reactions are well-known to be favored by catalytic processes. Heterogeneous catalysis, promoted by minerals

present in the ophiolitic rocks, such as chromite, magnetite, sulfides or awaruite can possibly trigger these reactions (Mayhew et al., 2013; Etiope and Ionescu, 2015 and references therein). For instance, close to Los Fuegos Eternos (in the Philippines), chromite (well-developed in the Coto mines) may promote the catalytic production of CH₄. Also, the area of Chimaera in Turkey shows chromite mines (in which an explosion caused the death of tens of underground workers). The area of Prony (New Caledonia) shows also chromite outcrops as well as at many places in the ophiolite of Oman.

Catalytic processes might also be associated with biological activity, which is well-known to reduce the activation energy necessary for chemical reactions. The Sabatier chemical reaction is actually equivalent to one of the classical routes to generate microbial methane (by CO₂ reduction) via hydrogenotroph-methanogen microorganisms. In the case of sedimentary environment with widely available sources of light C provided by organic compounds, it produces methane with δ^{13} C generally lower than -50%, far below the values obtained in the gas seepages of the ultrabasic springs (between -12.8 and +7.9%; Fig. 8), even if locally in ultra-basic springs δ^{13} C of methane are lower than -50% (Morrill et al., 2013). However, in some conditions (notably in the case of hyperthermophilic archaea), δ^{13} C values of methane can be high (Takai et al., 2004, 2008). The presence of hydrogenotrophic microorganisms has been mentioned in oceanic hydrothermal fields (Bradley and Summons, 2010) and in ultra-basic springs of ophiolitic units (Brazelton et al., 2013), and the occurrence of methanogens in ultrabasic contexts (Takai et al., 2004; Brazelton et al., 2006) raises the question, notably in Oman, of the microbial production of methane with elevated δ^{13} C in ultra-basic groundwaters (Miller et al., 2016). This interpretation is still challenged (see discussion between Etiope, 2017 and Miller et al., 2017) but, if it is confirmed, this would suppose that biological activity might contribute to elevated δ¹³C methane from inorganic sources of carbon under extreme carbon limitation. However, methanogens collected in ultra-basic springs at the surface are not necessary representative of the conditions of generation of methane at depth because there is no carbon available in the ultrabasic water flowing from depth (Neal and Stanger, 1985, see also below). Methane generation via methanogen microorganisms observed at the surface might be a surficial process resulting from a reaction between hydrogen issued from depth and a source of carbon provided by atmospheric CO₂. If the source of deep carbon is important, as in sedimentary environments with fossil organic matter, the use of isotopically light carbon in the widely available organic matter is favored by microbial activity. However, this is not possible in the case of strong restriction of the available carbon as in ophiolitic rocks, especially when the initial sources of carbon are heavy (like carbonates or mantle). Biological processes generating CH₄ from H₂ and CO₂ with progressively increasing $\delta^{13}C_{CH4}$ have been documented in large scale geological gas storages of town gas (Buzek et al., 1994). In addition, the presence of methanotrophs in the ultra-basic springs also contribute to increase the δ^{13} C values of the residual methane (Miller et al., 2016).

In the present study, the different values observed for δ¹³C of CH₄ probably reflect different sources of carbon or different CH₄ generation processes. The present study shows that (a) H_2 -rich gases from Oman display δ^{13} C of CH_4 between -12.8 and +7.9%, while (b) in the Philippines δ^{13} C of CH₄ are ranging between -13.5 and -5.6% which is compatible with the results obtained by Abrajano et al. (1988), (c) in Turkey gases from H₂-CH₄ type display a δ^{13} C of CH₄ values between -7.9 and -11.9%(Hosgörmez et al., 2008 and this study), whereas (d) for New-Caledonia some gases from N₂-H₂-CH₄ type values are between -38.5 and -32.4% (Deville and Prinzhofer. 2016). Consequently, two different types of signatures were observed corresponding initial probably (despite of fractionation processes) to two different carbon sources. The first one (high δ^{13} C between -13 and +8%) would correspond most probably to an inorganic carbon source, while the second one (lower δ^{13} C between -39 and -32%) corresponds probably to an organic source. The high δ^{13} C of CH₄ from Oman, the Philippines and Turkey might correspond to a carbon source, probably CO2, found as DIC in the reacting waters. Two different origins may be proposed for this inorganic carbon. It may correspond to mantle degassing, as it might be the case in the Philippines in link with the vicinity of the active volcanism of the Pinatubo system related to an active subduction zone, as suggested by noble gas analyses especially for one gas sample with high R/Ra values (Fig. 10), or it may come from the dissolution of carbonate rocks (for instance the carbonate sediments present under the ophiolites), as it might be the case in Oman (Nicolas et al., 2000) and Turkey (Juteau et al., 1977). Note that the H₂-bearing gas samples studied here (as well as those analyzed in previous studies) show only locally tiny traces of CO_2 for which $\delta^{13}C_{CO_2}$ measurements have to be considered with caution (not reported in Table 2). The measurements in the N₂-rich gas type of Oman (seeping out from below the ophiolites), in which CO₂ contents are more important (data from Sano et al., 1993, and this study, Tables 1 and 2), gave values between -19.4% and -9.6% which are consistent with an origin from sedimentary rocks below the ophiolites (metamorphism and/or carbonate destabilization).

Methane with δ^{13} C values comprised between -39 and -32%, in New Caledonia, could simply be issued from an organic source (Deville and Prinzhofer, 2016). In agreement with the absence or low contents of C_{2+} in the gas mixtures (below 0.01%), methane may originate from a reaction between H_2 and a mature/overmature organic matter or graphite present in the sediments below the ophiolites.

Also note that, in addition to the absence or very low contents of CO₂ in H₂-bearing gas samples, neither HCO₃⁻ nor CO₃⁻ have been found in the ultra-basic springs, notably in the case of Oman (Neal and Stanger, 1985) suggesting that almost the entire stock of available DIC was converted into CH₄ under extreme carbon limitation. Also, no form of organic matter or graphite are known within the peridotites of the areas studied. This limitation probably allows H₂ to be present in the gas, otherwise all the generated H₂ would have been consumed to generate CH₄, as it

was suggested by Milesi et al. (2016) in the Solimes Basin in Brazil

In both, H₂-rich and N₂-H₂-CH₄ gas types, CH₄ contents being lower than 20 mol%, this suggests a very limited carbon source compared with the H₂-CH₄ gas type (Figs. 4 and 8). Indeed, if we consider carbonic acid in rain water as the initial main source of carbon, its contribution is regarded as limited and rapidly buffered, whereas if the carbon source corresponds to carbonate rocks or deep CO₂ fluxes, the amount of carbon available is more abundant at depth but the connection with the ophiolites depends on the hydrodynamics and the available carbonate dissolved in circulating water. H₂-CH₄ gas type might correspond to such a system connected to deep sources of carbon

Considering oceanic hydrothermal vents, values of δD of CH_4 probably record the isotopic fractionation associated to a primary process involving a carbon compound with water, to produce methane. If open system conditions apply, δD of CH_4 depends on isotopic equilibrium at the given temperature. For dry seepages in fractures, data are in agreement with these conditions. For seepages in water, a different process would provide scattered and very low δD values of CH_4 (Fig. 6), either because the system is closed and isotopic equilibrium is not reached or because a different secondary process (eventually biology) is influencing the isotopic composition of hydrogen in methane. As such, the very low values of δD of methane in spring water raise the question of a possible microbial role in methane generation.

For the H₂-CH₄ and N₂-H₂-CH₄ gas types a remarkable correlation exists between H₂ and CH₄ when normalized to ³⁶Ar (Fig. 11A) wherever is the site studied in Oman, in the Philippines and New Caledonia. A similar correlation exists between H₂ and CH₄ when normalized to ⁸⁴Kr, (Fig. 11B). For the CH₄-H₂ and N₂-H₂-CH₄ gas types, this suggests that, independently of the considered ophiolite and geological context, generations of H₂ and CH₄ are coupled and

both related to a deep process which is independent of interactions with ASW shallow aguifers. Conversely, these correlations do not exist for the H₂-rich gas type which is in agreement with the interpretations proposed above that this type of gas underwent more influences with ASW aguifers. Also, this correlation is not observed in the samples of Turkey possibly due to a mixing with thermogenic methane. Indeed, according to other studies, some samples, notably in Turkey (H₂-CH₄ type), might comprise a thermogenic component. It has been considered that high methane content cannot be attributed univocally to dissolved carbonates reduction by H₂, for example in Chimaera (Turkey), up to 40 mol% of the CH₄ has been estimated to be thermogenic gas originating from a source rocks with highly mature kerogen in a Mesozoic limestone nearby (Hosgörmez et al., 2008; Etiope et al., 2011). This is in good agreement with occurrences of C2+ (C2-C6 alkanes) in the gas analyzed in Turkey (Hosgörmez et al., 2008; Etiope et al., 2011, and this study, see Table 2). However, whatever the geographic location of samples is, dry seepages display higher CH₄ relative contents together with higher δD of CH₄ when compared to gas seepages in water. This suggests that it can be linked to a different process as mentioned above (primary methane production) and probably higher temperature during production of methane. Gas mixtures belonging to the H₂-CH₄ type correspond probably to highly reactive zones of water reduction at higher temperature with less carbon restriction.

5.4. Nitrogen origin

In the subsurface, nitrogen gas can have different origins, either atmosphere via the hydrodynamism of air equilibrated water, or sediments (organic matter, or ammonium-bearing clay minerals, or nitrogen-bearing salt in evaporites present in sedimentary rocks), or else the deep crust or mantle degassing (Jenden et al., 1988; Zhu, 2000;

Fig. 11. Mixing diagrams comparing H_2 and CH_4 contents normalized over 36 Ar and 84 Kr contents. (A) This diagram shows a correlated enrichment in CH_4 vs H_2 when normalized over 36 Ar (linear correlation with $R^2 = 0.9894$). (B) This diagram shows also a correlated enrichment in CH_4 vs H_2 when normalized over 84 Kr (linear correlation with $R^2 = 0.9953$).

Ballentine and Sherwood Lollar, 2002). Nitrogen contents within ophiolitic rocks are low but experimental studies have however shown that adsorbed N-species can be leached out while H₂ and CH₄ are produced from altered peridotites (Okland et al., 2014).

Considering the geochemical results of this study, N_2 present in the gas of the H_2 -rich type shows $N_2/^{36}$ Ar and $N_2/^{84}$ Kr ratios generally equivalent or slightly higher than those of ASW, suggesting mainly an atmosphere origin for N_2 via a fractured aquifer (Fig. 12A and B).

Samples of the N_2 - H_2 - CH_4 gas type, which show higher N_2 contents than H_2 contents compared to the H_2 -rich gas type display notably a nitrogen enrichment relative to 36 Ar and 84 Kr (Fig. 12A and B), suggesting an addition of non-atmospheric nitrogen. This contributes to dilute the neo-formed H_2 and CH_4 (Deville and Prinzhofer, 2016). Samples of the N_2 -rich gas type show a 4 He enrichment correlated with the N_2 enrichment when compared to atmosphere (Fig. 13). This suggests that non-atmospheric N_2 might be of crustal origin associated to radiogenic helium from depth. The R/Ra ratio (3 He/ 4 He ratio of the sample normalized over the same ratio for the air = 1.384 × 10^{-6}) suggests that a crustal component exists in most of the samples and locally a mantle component is observed in the Philippines (Fig. 10).

The differences between the H_2 -rich type and the N_2 - H_2 - CH_4 type are possibly linked to the existence of two different reactive zones for the production of H_2 -rich fluids in peridotitic ground waters: one (H_2 -rich) being more surficial than the other (N_2 - H_2 - CH_4 -rich) and that two different reactive fluids should be considered: (1) a

Fig. 13. $^4\text{He}/^{36}\text{Ar}\ vs\ N_2/^{36}\text{Ar}\ \text{mixing diagram for the gas samples}$ of the N_2 -rich gas type. This diagram shows a correlated enrichment in $^4\text{He}\ vs\ N_2$ when normalized over ^{36}Ar (linear correlation with $R^2=0.9993$).

meteoric fluid in the more surficial environment (H_2 -rich) and (2) a deep N_2 -bearing fluid with crustal signature, probably issued from sediment metamorphism from below the obducted ophiolitic units.

Samples of the N_2 - H_2 - CH_4 type could also result from the mixing of H_2 -rich gas and N_2 -rich gas. These N_2 -rich samples contain mostly N_2 and no or little H_2 . Because they were found in hot water springs, displaying pH between 6.9

Fig. 12. Mixing diagrams comparing H_2 and N_2 contents normalized over 36 Ar and 84 Kr contents. (A) The $H_2/^{36}$ Ar vs $N_2/^{36}$ Ar diagram shows different enrichment trends in H_2 vs N_2 between the H_2 -rich gas type and the N_2 - H_2 -CH₄ gas type. Note the good linear correlation between $H_2/^{36}$ Ar and $N_2/^{36}$ Ar for the N_2 - H_2 -CH₄ gas type (linear correlation $R^2 = 0.9785$). (B) The $H_2/^{84}$ Kr vs $N_2/^{84}$ Kr diagram, as the previous diagram, shows different enrichment trends in H_2 vs N_2 between the H_2 -rich gas type and the N_2 - H_2 -CH₄ gas type. Note the good linear correlation between $H_2/^{84}$ Kr and $N_2/^{84}$ Kr for the N_2 - H_2 -CH₄ gas type (linear correlation with $R^2 = 0.9739$).

and 10 and relatively high ⁴He contents which suggest a different origin, probably deeper according to water temperature (reaching locally 66 °C) and in a crustal environments as suggested by the high ⁴He contents. This deep N₂ is probably not directly produced within the peridotite units. The geological context suggests rather an origin from the underthrusted sediments below the ophiolitic units, so in this case N₂ would be issued more probably from the buried sediments, either from the water of hydrated clay (clay dewatering) or from the destabilization of ammoniumbearing clays. Reaction of such deep fluids with peridotite or mixing these fluids with H₂-rich gas type are susceptible to generate fluids with the chemical signatures of the N₂-H₂-CH₄ gas type where N₂ dilutes H₂ and is found in excess relative to ASW or air. Throughout the study of the 4 types of gas, it appears that the presence of nitrogen in the mixture is always linked to the presence of water at the seepage. This gas is almost absent from the dry seepages (H₂-CH₄ type).

δ¹⁵N measurements in the nitrogen-dominant gas types (N₂-H₂-CH₄ and N₂-rich), gave values of −0.3‰ in Rustaq (Oman), which is consistent with previous studies (Sano et al., 1993) and -0.1% in Mangatarem (Philippines; Table 2), whereas $\delta^{15}N$ measurements in the H₂-CH₄ gas type gave values comprised between -2.8% and -2.1%in the Chimaera gas seepages of Turkey (Hosgörmez et al., 2008) and +0.5% in Nagsasa in the Philippines (Table 2). The δ^{15} N value for atmospheric nitrogen being 0% (Sano and Pillinger, 1990; Nishizawa et al., 2007), it cannot be clearly distinguished from the values measured in the N₂-H₂-CH₄ and N₂-rich samples considering potential sampling bias plus analytical uncertainties of the measurements. Although these results are compatible with an atmospheric nitrogen component in the N2-H2-CH4 and N₂-rich gas mixtures, this atmospheric component is not a contamination as shown by the $N_2/^{36}Ar$ ratios for instance. This N₂ might thus be issued from pore water trapped in the sediments (initial ASW) below the ophiolites or from the metamorphism of clays from the sediments underthrusted below the ophiolitic units. However, such a nitrogen isotopic value is not a clear diagnostic. Although it is compatible with an atmospheric value, it does not exclude other origins like deeper components from mantle and/or crust because a multiple origin of nitrogen is indeed supported by the results of the noble gas analyses.

Noble gas contents suggest that there are at least two different sources of N₂. The plot of R/Ra versus ²⁰Ne/⁴He (Fig. 10) shows that the N₂-bearing gases are ranging on a mixing line between the crust and the atmospheric endmember. In the H₂-rich type, the N₂/³⁶Ar ratio is close to the air and ASW ratios (Fig. 12A). This implies that N₂ in this gas originates from the atmosphere and was carried by an aquifer equilibrated with the atmosphere or that the main nitrogen component is acquired during the gas migration upwards through the aquifer. The other samples (N₂-H₂-CH₄ and N₂-rich) do not align on these atmospheric ratios. They display a nitrogen enrichment relative to ³⁶Ar (Fig. 12A) and the contents are much too high to be only due to extraction from an aquifer related to free gas flows toward the surface.

From the plots of Fig. 12A and B, it can be inferred that N_2 -rich type gases in Oman and New Caledonia consist of a mixture of an atmospheric component and an almost pure nitrogen end-member. The proportion of the nitrogen component varies in a large range (from 10 to 90% mol). 4 He is mainly a radiogenic product issued from the continental crust. It cannot be produced in such amounts by mantle-derived ultrabasic rocks. Thus, the N_2 -rich gases can be interpreted as a crustal gas with a 4 He component. A potential interpretation for the origin of deep N_2 could be that it was produced in the sediments and/or metasediments buried under the ophiolitic units. In this case, the source could be the interstitial water in the sediments and/or the solid matrix of the sediments (organic matter or ammonium in clay sediments).

6. CONCLUSION

Integrating the results of previous studies and original results in different areas of the world, this multi-tracer approach provided new insights on gas seepages in ophiolitic contexts. Four types of gas mixtures were defined, three of them being associated with water springs and characterized by the presence of N2, CH4 in proportions under 20 mol\% and the presence of H₂ within the ultra-basic springs. The fourth type corresponds to focused gas flows seeping out directly from fractures (without water flow) and characterized by high proportions of CH₄ and low N₂. In all cases, H₂ is interpreted as a consequence of oxidation of Fe^{II}-rich minerals present in the ophiolitic rocks (even though a contribution by microorganisms by dark fermentation processes cannot be ruled out). Taking into account the pH conditions associated with the H2 generation, Fe^{III}-bearing mineral were formed at the vicinity of the sites of oxidation of FeII-bearing mineral without an important mobility of Fe²⁺. A relatively shallow H₂ production is substantiated in the H2-rich gas type by its association with quasi-atmospheric noble gases. It is consistent with the D/H isotopic data of H₂ that may correspond to a fluid rock reaction occurring at low temperature (probably below 50 °C), whereas higher temperatures are suspected for the H₂ production in the N₂-H₂-CH₄ gas type and notably in the H₂-CH₄ gas type (probably above 100 °C locally). The preservation of H₂ in the gas is directly related to extreme limitation of carbon in the geological setting. It is probably related to the carbon capture associated with massive precipitation of carbonates due to high-pH conditions. Concerning CH₄, multiple origins are supported by the carbon isotopic data. The carbon and hydrogen sources are various. Both, a primary CH₄ (from H₂O reacting with DIC) and a secondary CH₄ (from an H₂ intermediate reacting with a C source) are suspected for the H₂-CH₄ gas type and for N2-H2-CH4 and H2-rich gas types, respectively. In the gas mixtures, N₂ appears to have two distinct origins: an atmospheric component and a deep crustal component, as it was highlighted by the noble gas analyses. The different processes described involve different types of fluids, which are: a shallow meteoric fluid, a crustal fluid carrying metamorphic N₂, a deep mantle originating fluid carrying primordial CO₂. Depending on the location with respect to

Fig. 14. Synthetic conceptual cross-section of an ophiolitic system with the different gas generation zones and different types of seepages. In this interpretative sketch, H_2 is generated within the ophiolite at different depths by reduction of water, leading to different types of seepages depending on the other fluids interacting with H_2 . When H_2 is generated in a shallow aquifer, it migrates upwards and seeps out of the rock as a H_2 -rich gas seep. H_2 generated in a deeper generation zone interacts with deep fluids which can be (1) a N_2 -rich fluid issued from the sediments and the mantle below, leading to a N_2 and H_2 -rich gas, or (2) a fluid rich in CO_2 , allowing the production of CH_4 and the formation of a gas mixture that seeps at the surface as a H_2 - CH_4 gas seepages. N_2 -rich seepages occur when the deep N_2 -bearing fluid does not interact strongly with H_2 -rich fluids on its migration pathway.

the geodynamical context (Fig. 14), these different fluids interact and mix in different proportions, yielding the types of gas mixture observed at the surface seepages. The shallower kitchen is interpreted as the H₂-rich gas type from meteoric water interacting with the ophiolite. The deepest kitchen is interpreted as the H₂-CH₄ gas type from a deep fluid (carrying CO₂ from the mantle, or from dissolved carbonates or organic carbon) interacting with the ophiolite. H₂-CH₄ gas flows are generally more localized (focused) and these flows are generally higher than the other H2bearing gas flows. This is probably due to the fact that they are generated at greater depth and at higher temperature conditions. This probably induces the individualization of a gas phase preventing H₂ to react during the rise toward the surface, notably by preventing any biological consumption of H₂ which required an aqueous media. The N₂bearing fluids are probably generated mostly from the sediments located below the ophiolitic units and migrate upwards forming the N₂-rich gas type when reaching the surface or the N₂-H₂-CH₄ type if mixing occurs between the N_2 -rich and the H_2 -rich types (Fig. 14).

ACKNOWLEDGEMENTS

The authors would like to thank Georges Ceuleneer for his precious help and knowledge on the field in Oman, Mr Al Attaly for his enthusiasm towards our research and the information and help provided in Oman, Americus Perez and Zaymon Calucin for their help on the field in the Philippines, Christophe Chevillon and François Leborgne from the û Province Sud de Nouvelle-Calédonie, service de la mer et de la protection du lagon ý who helped us very efficiently in New-Caledonia, Long Li for the nitrogen isotopes measurements performed at the IPGP. This work was achieved on IFP Energies nouvelles funds.

APPENDIX A. SUPPLEMENTARY MATERIAL

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.gca.2017.12.018.

REFERENCES

Abrajano T. A., Sturchio N. C., Bohlke J. K., Lyon G. L., Poreda R. and Stevens C. (1988) Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: deep or shallow origin? *Chem. Geol.* **71**(1–3), 211–222. https://doi.org/10.1016/0009-2541(88) 90116-7.

Abrajano T. A., Sturchio N. C., Kennedy B. M., Lyon G. L., Muehlenbachs K. and Bohlke J. K. (1990) Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines. *Appl. Geochem.* **5**(5–6), 625–630. https://doi.org/10.1016/0883-2927(90)90060-I.

Abrajano J., Telling J. and Villiones R. (2006) Methane-hydrogen generation in the Zambales Ophiolite (Philippines) Revisited. AGU abstract.

- Allen D. E. and Seyfried W. E. (2004) Serpentinization and heat generation: constraints from Lost City and Rainbow hydrothermal systems. *Geochim. Cosmochim. Acta* 68(6), 1347–1354.
- Arai S., Kadoshima K. and Morishita T. (2006) Widespread arcrelated melting in the mantle section of the northern Oman ophiolite as inferred from detrital chromian spinels. *Journal of* the Geological Society 163, 869–879.
- Balabane M., Galimov E., Hermann M. and Letolle R. (1987) Hydrogen and carbon isotope fractionation during experimental production of bacterial methane. *Org. Geochem.* 11, 115–110
- Ballentine C. J. and Burnard P. G. (2002) Production, release and transport of Noble Gases in the continental crust. In *Noble Gases in Geochemistry and Cosmochemistry. Review in Mineralogy and Geochemistry*, vol. 47, pp. 481–538. Noble Gases in Geochemistry and Cosmochemistry. Review in Mineralogy and Geochemistry.
- Ballentine C. J. and Sherwood Lollar B. (2002) Regional ground-water focusing of nitrogen and noble gases into the Hugoton-Panhandle giant gas field, USA. *Geochim. Cosmochim. Acta* 66, 2483–2497.
- Ballentine C. J., Burgess R. and Marty B. (2002) Tracing fluid origin, transport and interaction in the crust. In *Noble Gases in Geochemistry and Cosmochemistry. Reviews in Mineralogy & Geochemistry*, vol. 47 (eds. D. R. Porcelli, C. J. Ballentine and R. Weiler), pp. 539–614.
- Barnes I., Lamarche V. C. and Himmelberg G. (1967) Geochemical evidence of present-day serpentinization. *Science (New York, N.Y.)* **156**(3776), 830–832. https://doi.org/10.1126/science.156.3776.830.
- Barnes I., O'Neil J. R. and Trescases J. J. (1978) Present day serpentinization in New Caledonia, Oman and Yugoslavia. Geochim. Cosmochim. Acta 42(1), 144–145. https://doi.org/ 10.1016/0016-7037(78)90225-9.
- Berndt M. E., Allen D. E. and Seyfried, Jr, W. E. (1996) Reduction of CO₂ during serpentinization of olivine at 300 °C and 500 bar. *Geology* **24**, 351–354.
- Boulart C., Chavagnac V., Minnin C., Delacourt A., Ceuleneer G. and Hoareau G. (2013) Difference in gas venting from ultramafic-hosted warm springs: the example of Oman and Voltri ophiolites. *Ofioliti* 38(2), 143–156.
- Bottinga Y. (1969) Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor. *Geochim. Cosmochim. Acta* 33, 49–64.
- Bozcu A. and Yagmurlu F. (2001) Correlation of sedimentary units in the Weseter Taurides from the point of petroleum geology. In 4th International Symposium on Eastern Mediterranean Geology, Isparta, Turkey, pp. 139–148.
- Bradley A. S. and Summons R. E. (2010) Multiple origins of methane at the Lost City hydrothermal field. *Earth Planet. Sci. Lett.* 294, 34–41.
- Brazelton W. J., Schrenk M. O., Kelley D. S. and Baross J. A. (2006) Methane- and sulfur-metabolizing microbial communities dominate the lost city hydrothermal field ecosystem. *Environ. Microbiol.* **72**(9), 6257–6270. https://doi.org/10.1128/AEM.00574-06Appl.
- Brazelton W. J., Morrill P. L., Szponar N. and Schrenk M. O. (2013) Bacterial communities associated with subsurface geochemical processes in continental serpentinite springs. *Appl. Environ. Microbiol.* 79(13), 3906. https://doi.org/10.1128/AEM.00330-13.
- Bruni J., Canepa M., Chiodini G. and Cioni R. (2002) Irreversible water-rock mass transfer accompanying the generation of the neutral, Mg-HCO₃ and high-pH, Ca-OH spring waters of the Genova province, Italy. *Appl. Geochem.* 17, 455–474.

- Burnard P., Zimmermann L. and Sano Y. (2013) The noble gases as geochemical tracers: history and background. In *The Noble Gases as Geochemical Tracers* (ed. Pet Burnard). Springer, pp. 1–15.
- Buzek F., Onderka V., VanCurat P. and Wolf I. (1994) Carbon isotope study of methane production in a town gas storage reservoir. Fuel 73(5), 747–752.
- Cardace D., Meyer-Dombard D. R., Woycheese K. M. and Arcilla C. A. (2015) Feasible metabolisms in high ph springs of the Philippines. *Front. Microbiol.* 6, 10. https://doi.org/10.3389/fmicb.2015.00010 (Published online 2015 Feb 10).
- Ceuleneer G. (1991) Evidence for a paleo-spreading center in the Oman ophiolite: mantle structures in the Maqsad area. 5, 147–173.
- Charlou J. L., Donval J. P., Fouquet Y., Jean-Baptiste P. and Holm N. (2002) Geochemistry of high H₂ and CH₄ vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). *Chem. Geol.* **191**, 345–359.
- Chavagnac V., Monnin C., Ceuleneer G., Boulart C. and Hoareau G. (2013) Characterization of hyperalkaline fluids produced by low-temperature serpentinization of mantle peridotites in the Oman and Ligurian ophiolites. *Geochem. Geophys. Geosyst. G3* **14**(7), 2496–2522. https://doi.org/10.1002/ggge.20147.
- Cipolli F., Gambardella B., Marini L., Ottonello G. and Vetuschi Zuccolini M. (2004) Geochemistry of high-pH waters from serpentinites of the Gruppo di Voltri (Genova, Italy) and reaction path modeling of CO₂ sequestration in serpentinite aquifers. *Appl. Geochem.* 19(5), 787–802. https://doi.org/10.1016/j.apgeochem.2003.10.007.
- Coveney R. M. J., Goebel E. D., Zeller E. J., Dreschhoff G. A. M. and Angino E. E. (1987) Serpentinization and origin of hydrogen gas in Kansas. AAPG Bull. 71, 39–48.
- De Boer J. Z., Chanton J. and Zeitlhöfler M. (2007) Homer's chimaera fires (SW of Antalya/Turkey); burning abiogenic methane gases; are they generated by a serpentinization process related to alkalic magmatism? *Zeitschrift Der Deutschen Gesellschaft Für Geowissenschaften* **158**(4), 997–1003. https://doi.org/10.1127/1860-1804/2007/0158-0997.
- Deville E., Prinzhofer A., Pillot D., Vacquand C. and Sissman O. (2010) Peridote-water interaction generating migration pathways of N₂-H₂-CH₄-rich fluids in subduction context: common processes in the ophiolites of Oman, New-Caledonia, Philippines and Turkey. *Am. Geophys. Union Trans.*, T13A–2184D
- Deville E., Prinzhofer A., Pillot D. and Vacquand C. (2011) Natural flows of H₂ and associated diagenetic processes of atmospheric CO₂ capture and sequestration: a study in the ophiolites of Oman. In *Proceedings of the Offshore Mediterranean Conference, OMC 2011* (Paper# ISBN 9788894043686, 9pages).
- Deville E. and Prinzhofer A. (2016) The origin of N₂-H₂-CH₄-rich natural gas seepages in ophiolitic context: a major and noble gases study of fluid seepages in New Caledonia. *Chem. Geol.* **440**, 139–147.
- Encarnacion J., Mukasa S. B. and Evans C. A. (1999) Subduction components and the generation of arc-like melts in the Zambales ophiolite, Philippines: Pb, Sr and Nd isotopic constraints. *Chem. Geol.* 156, 343–357.
- Etiope G. (2017) Methane origin in the Samail ophiolite: comment on "Modern water/rock reactions in Oman hyperalkaline peridotite aquifers and implications for microbial habitability". *Geochim. Cosmochim. Acta* 179, 217–241.
- Etiope G. and Ionescu A. (2015) Low-temperature catalytic CO₂ hydrogenation with geological quantities of ruthenium: a possible abiotic CH₄ source in chromitite-rich serpentinized rocks. *Geofluids* **15**, 438–445.

- Etiope G. and Sherwood-Lollar B. (2013) Abiotic methane on Earth. Rev. Geophys. 51, 276–299. https://doi.org/10.002/ rog.20011.
- Etiope G., Schoell M. and Hosgörmez H. (2011) Abiotic methane flux from the Chimaera seep and Tekirova ophiolites (Turkey): understanding gas exhalation from low temperature serpentinization and implications for Mars. *Earth Planet. Sci. Lett.* **310**(1–2), 96–104. https://doi.org/10.1016/j.epsl.2011.08.001.
- Etiope G., Vance S., Christensen L. E., Marques J. M. and Ribeiro da Costa I. (2013) Methane in serpentinized ultramafic rocks in mainland Portugal. *Mar. Pet. Geol.* 45, 12–16.
- Evans B. W. (2008) Control of the products of serpentinization by the Fe2+Mg_1 exchange potential of olivine and orthopyroxene. *J. Pet.* **49**, 1873–1887. https://doi.org/10.1093/petrology/egn050.
- Foustoukos D. I. and Seyfried, Jr., W. E. (2004) Hydrocarbons in hydrothermal fluids: the role of chromium-bearing catalysts. *Science* **304**, 1002–1005.
- Fu Q., Foustoukos D. I. and Seyfried W. E. (2008) Mineral catalyzed organic synthesis in hydrothermal systems: an experimental study using time-of-flight secondary ion mass spectrometry. *Geophys. Res. Lett.* 35 (ISI:000255201300005).
- Gallant R. M. and Von Damm K. L. (2006) Geochemical controls on hydrothermal fluids from the Kairei and Edmond Vent Fields, 23°–25°S, Central Indian Ridge. *Geochem. Geophys. Geosyst. G3* 7, 6. https://doi.org/10.1029/2005GC001067.
- Garcia B., Beaumont V., Perfetti E., Rouchon V., Blanchet D., Oger P., Dromart G., Huc A.-Y. and Haeseler F. (2010) Experiments and geochemical modelling of CO₂ sequestration by olivine: potential, quantification. *Appl. Geochem.* **25**, 1383–1396.
- Glover C. P. and Robertson A. H. F. (1998a) Role of regional extension and uplift in the Plio-Pleistocene evolution of the Aksu Basin, SW Turkey. *J. Geol. Soc.* **155**, 365–387.
- Glover C. and Robertson A. (1998b) Neotectonic intersection of the Aegean and Cyprus tectonic arcs: extensional and strike-slip faulting in the Isparta Angle, SW Turkey. *Tectonophysics* 298, 103–132
- Guélard J., Beaumont V., Guyot F., Pillot D., Jezequel D., Ader M., Newell K. D. and Deville E. (2017) Natural H₂ in Kansas: deep or shallow origin? *Geochem. Geophys. Geosyst. G*³ 18. https://doi.org/10.1002/2016GC006544.
- Hawkins D. E. and Evans C. A. (1983) Geology of the Zambales Range, Luzon, Philippines: ophiolite derived from an island arc-back arc pair. AGU Geophys. Mono., 95–123.
- Hopson C. A., Coleman R. G., Gregory R. T., Pallister J. S. and
 Bailey E. H. (1981) Geologic section through the Samail
 Ophiolite and associated rocks along a Muscat-Ibra Transect,
 southeastern Oman Mountains. J. Geophys. Res. 86, 2527–2544
- Horita J. and Berndt M. E. (1999) Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. *Science* 285, 1055–1057.
- Horibe Y. and Craig H. (1995) D/H fractionation in the system methane-hydrogen-water. *Geochim. Cosmochim. Acta* 59, 5209–5217.
- Hosgörmez H. (2007) Origin of the natural gas seep of Cirali (Chimera), Turkey: site of the first Olympic fire. *J. Asian Earth Sci.* **30**(1), 131–141.
- Hosgörmez H., Etiope G. and Yalçin M. N. (2008) New evidence for a mixed inorganic and organic origin of the Olympic Chimaera fire (Turkey): a large onshore seepage of abiogenic gas. *Geofluids* 8(4), 263–273. https://doi.org/10.1111/j.1468-8123.2008.00226.x.
- Ikorsky S. V., Gigashvili G. M., Lanyov V. S., Narkotiev V. D. and Petersilye I. A. (1999) The investigation of gases during the

- Kola superdeep borehole drilling (to 11.6 km). *Geol. Jb.* **D107**, 145–152.
- Jenden P. D., Kaplan I. R., Poreda R. J. and Craig H. (1988) Origin of nitrogen-rich natural gases in the California Great Valley: evidence from helium, carbon and nitrogen isotope ratios. Geochim. Cosmochim. Acta 52, 851–861.
- Juteau T., Nicolas A., Dubessy J., Fruchard J. C. and Bouchez J. L. (1977) Structural relationships in Antalya ophiolite complex, Turkey - possible model for an oceanic ridge. *Geol. Soc. Am. Bull.* 88, 1740–1748.
- Kawagucci et al. (2016) Fluid chemistry in the solitaire and Dodo hydrothermal fields of the Centram Indian Ridge. Geofluids 16, 988–1005.
- Kelemen P. B., Matter J., Streit E. E., Rudge J. F., Curry W. B. and Blusztajn J. (2011) Rates and mechanisms of mineral carbonation in peridotite: natural processes and recipes for enhanced, in situ CO₂ capture and storage. *Annu. Rev. Earth Planet. Sci.* 39, 545–576.
- Kelley D. S. and Früh-Green G. L. (1999) Abiogenic methane in deep-seated mid-ocean ridge environments: insights from stable isotope analyses. *J. Geophys. Res.* 104(B5), 10439–10460. https://doi.org/10.1029/1999JB900058.
- Kelley D. S., Karson J. A., Früh-Green G. L., Butterfield D. A., Lilley M. D., Olson E., Schrenk M. O., Roe K. K., Lebon G. T. and Rivizzigno P.AT3–60 Shipboard Party (2001) An off-axis hydrothermal field near the Mid-Atlantic Ridge at 30°N. *Nature* **412**, 145–149.
- Kelley D. S., Karson J. A., Fruh G. L., Yoerger D. R., Shank T. M., Butterfield D. A., Hayes J. M., Schrenk M. O., Olson E. J., Proskurowski G., Jakuba M., Bradley A., Larson B., Ludwig K., Glickson D., Buckman K., Bradley A. S., Brazelton W. J., Roe K., Bernasconi S. M., Elend M. J., Lilley M. D., Baross J. A., Summons R. E. and Sylva S. P. (2005) A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307, 1428–1434.
- Klein F., Bach W., Jöns N., McCollom T., Moskowitz B. and Berquó T. (2009) Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 73(22), 6868– 6893. https://doi.org/10.1016/j.gca.2009.08.021.
- Klein F., Grozeva N. G., Seewald J. S., McCollom T. M., Humphris S. E., Moskowitz B., Berquó T. S. and Kahl W.-A. (2015) Experimental constraints on fluid-rock reactions during incipient serpentinization of harzburgite. *Am. Mineral.* 100, 991–1002.
- Kumagai H., Nakamura K., Toki T., Morishita T., Okino K.,
 Ishibashi J.-I., Tsunogai U., Kawagucci S., Gamo T., Shibuya T., Sawaguchi T., Neo N., Joshima M., Sato T. and Takai K.
 (2008) Geological background of the Kairei and Edmond hydrothermal fields along the Central Indian Ridge: implications of their vent fluids' distinct chemistry. *Geofluids* 8, 239–251.
- Larin N., Zgonnik V., Rodina S., Deville É., Prinzhofer A. and Larin V. N. (2015) Natural molecular hydrogen seepages associated with surficial, rounded depression on the European craton in Russia. *Nat. Resour. Res.* 24(3), 363–383. https://doi. org/10.1007/s11053-014-9257-5.
- Launay J. and Fontes J. C. (1985) Les sources thermales de Prony (Nouvelle-Calédonie) et leurs précipités chimiques. Exemple de formation de brucite primaire. *Géologie de la France* 1, 83–100.
- Marcaillou C., Muñoz M., Vidal O., Parra T. and Harfouche M. (2011) Mineralogical evidence for H₂ degassing during serpentinization at 300 °C/300 bar. *Earth Planet. Sci. Lett.* **303**(3–4), 281–290. https://doi.org/10.1016/j.epsl.2011.01.006.
- Mayhew L. E., Ellison E. T., McCollom T. M., Trainor T. P. and Templeton A. S. (2013) Hydrogen generation from low-

- temperature water–rock reactions. *Nat. Geosci.* **6**(6), 478–484. https://doi.org/10.1038/ngeo1825.
- McCollom T. M. (2016) Abiotic methane formation during experimental serpentinization of olivine. *Proc. Natl. Acad.* Sci. USA 113(49), 13965–13970.
- McCollom T. M. and Bach W. (2009) Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. *Geochim. Cosmochim. Acta* **73**(3), 856–875. https://doi.org/10.1016/j.gca.2008.10.032.
- McCollom T. M. and Seewald J. S. (2001) A reassessment of the potential for reduction of dissolved CO₂ to hydrocarbons during serpentinization of olivine. *Geochim. Cosmochim. Acta* 65, 3769–3778.
- McCollom T. M., Lollar B. S., Lacrampe-Couloume G. and Seewald J. S. (2010) The influence of carbon source on abiotic organic synthesis and carbon isotope fractionation under hydrothermal conditions. *Geochim. Cosmochim. Acta* 74, 2717–2740.
- Meyer-Dombard D. R., Woycheese K. M., Yargıçoğlu E. N., Cardace D., Güleçal Y., Temel M. and Shock E. (2015) High pH microbial ecosystems in a newly discovered, ephemeral, serpentinizing fluid seep at Yanartaş (Chimaera), Turkey. Front. Microbiol. 5, 723. https://doi.org/10.3389/fmicb.2014.00723.
- Milesi V., Prinzhofer A., Guyot F., Benedetti M. and Rodrigues R. (2016) Contribution of siderite-water interaction for the unconventional generation of hydrocarbon gases in the Solimões basin, north-west Brazil. Mar. Pet. Geol. 71, 168–182.
- Miller H. M., Matter J. M., Kelemen P., Ellison E. T., Conrad M. E., Fierer N., Ruchala T., Tominaga M. and Templeton A. S. (2016) Modern water/rock reactions in Oman hyperalkaline peridotite aquifers and implications for microbial habitability. *Geochim. Cosmochim. Acta* 179, 217–241.
- Miller H. M., Matter J. M., Kelemen P., Ellison E. T., Conrad M. E., Fierer N., Ruchala T., Tominaga M. and Templeton A. S. (2017) Reply to "Methane origin in the Samail ophiolite: Comment on 'Modern water/rock reactions in Oman hyperal-kaline peridotite aquifers and implications for microbial habitability'. Geochim. Cosmochim. Acta 197, 471–473.
- Monnin C., Chavagnac V., Boulart C., Ménez B., Gérard M., Gérard E., Quéméneur M., Erauso G., Postec A., Guentas-Dombrowski L., Payri C. and Pelletier B. (2014) The low temperature hyperalkaline hydrothermal system of the Prony Bay (New Caledonia). *Biogeosci. Discuss.* 11, 6221–6267.
- Moody J. B. (1976) Serpentinization: a review. *Lithos* **9**, 125–138.
- Morrill P. L., Kuenen J. G., Johnson O. J., Suzuki S., Rietze A., Sessions A. L., Fogel M. L. and Nealson K. H. (2013) Geochemistry and geobiology of a present-day serpentinization site in California: The Cedars. *Geochim. Cosmochim. Acta* 109, 222–240.
- Neal C. and Stanger G. (1983) Hydrogen generation from mantle source rocks in Oman. *Earth Planet. Sci. Lett.* **66**, 315–320. https://doi.org/10.1016/0012-821X(83)90144-9.
- Neal C. and Stanger G. (1984) Calcium and magnesium hydroxide precipitation from alkaline groundwaters in Oman, and their significance to the process of serpentinization. *Mineral. Mag.* 48, 237–241.
- Neal C. and Stanger G. (1985) Past and present serpentinisation of ultramafic rocks; an example from the Semail ophiolite nappe of Northern Oman. In *The Chemistry of Weathering* (ed. J. I. Dever). D. Reidel Publishing Company, pp. 249–275.
- Neubeck A., Duc N. T., Bastviken D., Crill P. and Holm N. G. (2011) Formation of H₂ and CH₄ by weathering of olivine at temperatures between 30 and 70 °C. *Geochem. Trans.* **12**(1), 6. https://doi.org/10.1186/1467-4866-12-6.

- Neubeck A., Nguyen D. T. and Etiope G. (2016) Low-temperature dunite hydration: evaluating CH₄ and H₂ production from H₂O and CO₂. *Geofluids* **16**, 408–442.
- Nicolas A. and Violette J. F. (1982) Mantle flow at oceanic spreading centers - models derived from ophiolites. *Tectono-physics* 81, 319–339.
- Nicolas A., Boudier F. and Ildefonse B. (1996) Variable crustal thickness in the Oman ophiolite: implication for oceanic crust. *Journal of Geophysical Research-Solid Earth* 101, 17941–17950.
- Nicolas A., Boudier F., Ildefonse B. and Ball E. (2000) Accretion of Oman and United Arab Emirates ophiolite – discussion of a new structural map. *Mar. Geophys. Res.* 21, 147–179.
- Nishizawa M., Sano Y., Ueno Y. and Maruyama S. (2007) Speciation and isotope ratios of nitrogen in fluid inclusions from seafloor hydrothermal deposits at ~3.5 Ga. *Earth Planet. Sci. Lett.* **254**(3–4), 332–344. https://doi.org/10.1016/j.epsl.2006.11.044.
- Okland I., Huang S., Thorseth I. H. and Pedersen R. B. (2014) Formation of H₂, CH₄ and N-species during low-temperature experimental alteration of ultramafic rocks. *Chem. Geol.* **387**, 22–34.
- Okumura T., Kawagucci S., Saito Y., Matsui Y., Takai K. and Imachi H. (2016) Hydrogen and carbon isotope systematics in hydrogenotrophic methanogenesis under H₂-limited and H₂-enriched conditions: implications for the origin of methane and its isotopic diagnosis. *Prog. Earth Planet. Sci.* **3**, 14. https://doi.org/10.1186/s40645-016-0088-3.
- Oze C. and Sharma M. (2005) Have olivine, will gas: serpentinization and the abiogenic production of methane on Mars. *Geophys. Res. Lett.* **32**, L10203. https://doi.org/10.1029/2005GL022691.
- Paris J. P. (1981) Paris, J.P., 1981. Géologie de la Nouvelle-Calédonie. Mém.. BRGM 133, 1–278.
- Paukert A. N., Matter J. M., Kelemen P. B., Shock E. L. and Havig J. R. (2012) Reaction path modeling of enhanced in situ CO₂ mineralization for carbon sequestration in the peridotite of the Samail Ophiolite, Sultanate of Oman. *Chem. Geol.* 330–331, 86–100. https://doi.org/10.1016/j.chemgeo.2012.08.013.
- Prinzhofer A. (2013) Noble gases in oil and gas accumulations. In *The Noble Gases as Geochemical Tracers* (ed. Pet Burnard). Springer, pp. 225–247.
- Prinzhofer A. and Deville E. (2013) Origins of hydrocarbon gas seeping out from offshore mud volcanoes in the Nile delta. *Tectonophysics* **591**, 52–61.
- Proskurowski G., Lilley M. D., Kelley D. S. and Olson E. J. (2006) Low temperature volatile production at the Lost City Hydrothermal Field, evidence from a hydrogen stable isotope geothermometer. *Chem. Geol.* **229**(4), 331–343. https://doi.org/ 10.1016/j.chemgeo.2005. 11.005.
- Proskurowski G., Lilley M. D., Seewald J. S., Früh-Green G. L., Olson E. O., Lupton J. E., Sylva S. P. and Kelley D. S. (2008) Abiogenic hydrocarbon production at lost city hydrothermal field. *Science* **319**(5863), 604–607.
- Python M. and Ceuleneer G. (2003) Nature and distribution of dykes and related melt migration structures in the mantle section of the Oman ophiolite. *Geochem. Geophys. Geosyst.* 4 (7), 8612. https://doi.org/10.1029/2002GC00035.
- Robertson A. H. F. and Woodcock N. H. (1980) Strike slip related sedimentation in the Antalya Complex, SW Turkey. Spec. Publ. Int. Assoc. Sedimentol. 4, 127–145.
- Sano Y. and Pillinger C. T. (1990) Nitrogen isotopes and N_2/Ar ratios in cherts: an attempt to measure time evolution of atmospheric $\delta^{15}N$ value. *Geochem. J.* **24**, 315–324.
- Sano Y., Urabe A., Wakita H. and Wushiki H. (1993) Origin of hydrogen-nitrogen gas seeps, Oman. Appl. Geochem. 8(1), 1–8. https://doi.org/10.1016/0883-2927(93)90053-J.

- Schoell M. (1988) Multiple origins of methane in the Earth. *Chem. Geol.* **71**, 1–10
- Sherwood-Lollar B., Fritz P., Frape S. K., Macko S. A., Weise S. M. and Welhan J. A. (1988) Methane occurrences in the Canadian Shield. *Chem. Geol.* 71, 223–236.
- Sherwood-Lollar B., Frape S. K., Fritz P., Macko S. A., Welhan J.
 A., Blomqvist R. and Lahermo P. W. (1993a) Evidence for bacterially generated hydrocarbon gas in Canadian Shield and Fennoscandian Shield rocks. *Geochim. Cosmochim. Acta* 57, 5073-5085
- Sherwood-Lollar B., Frape S. K., Weise S. M., Fritz P., Macko S. A. and Welhan J. A. (1993b) Abiogenic methanogenesis in crystalline rocks. *Geochim. Cosmochim. Acta* 57, 5087–5097.
- Sherwood-Lollar B., Lacrampe-Couloume G., Slater G. F., Ward J., Moser D. P., Gihring T. M., Lin L.-H. and Onstott T. C. (2006) Unravelling abiogenic and biogenic sources of methane in the Earth's deep subsurface. *Chem. Geol.* **226**, 328–339.
- Sherwood-Lollar B., Voglesonger K., Lin L.-H., Lacrampe-Couloume G., Telling J., Abrajano T. A., Onstott T. C. and Pratt L. M. (2007) Hydrogeologic controls on episodic H₂ release from Precambrian fractured rocks-energy for deep subsurface life on Earth and Mars. *Astrobiology* 7, 971–986.
- Shibuya T., Yoshizaki M., Sato M., Shimizu K., Nakamura K., Omori S., Suzuki K., Takai K., Tsunakawa H. and Maruyama S. (2015) Hydrogen-rich hydrothermal environments in the Hadean ocean inferred from serpentinization of komatiites at 300 °C and 500 bar. *Prog. Earth Planet. Sci.* **2**, 46.
- Suda K., Ueno Y., Yoshizaki M., Nakamura H., Kurokawa K., Nishiyama E., Yoshino K., Hongoh Y., Kawachi K., Omori S., Yamada K., Yoshida N. and Maruyama S. (2014) Origin of methane in serpentinite-hosted hydrothermal systems: The CH₄-H₂-H₂O hydrogen isotope systematics of the Hakuba Happo hots spring. *Earth Planet. Sci. Lett.* 386, 112–125.
- Szatmari P. (1989) Petroleum formation by Fischer-Tropsch synthesis in plate tectonics. Am. Assoc. Pet. Geol. Bull. 73, 989–998
- Szponar N., Brazelton W. J., Schrenk M. O., Bower D. M., Steele A. and Morrill P. L. (2013) Geochemistry of a continental site of serpentinization, the Tablelands Ophiolite, Gros Morne National Park: a Mars analogue. *Icarus* 224, 286–296. https:// doi.org/10.1016/j.icarus.2012.07. 004.
- Takai K., Gamo T., Tsunogai U., Nakayama N., Hirayama H., Nealson K. H. and Horikoshi K. (2004) Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field. Extremophiles 8, 269–282.
- Takai K., Nakamura K., Toki T., Tsunogai U., Miyazaki M., Miyazaki J., Hirayama H., Nakagawa S., Nunoura T. and Horikoshi K. (2008) Cell proliferation at 122 °C and isotopi-

- cally heavy CH₄ production by a hyperthermophilic methanogen under high-pressure cultivation. *Proc. Natl. Acad. Sci.* **105** (31), 10949–10954.
- Taran Y. A., Kliger G. A. and Sevastianov V. S. (2007) Carbon isotope effects in the open-system Fischer-Tropsch synthesis. *Geochim. Cosmochim. Acta* 71, 4474–4487.
- Vacquand C. (2011).Genèse et mobilité de l'hydrogène naturel: source d'énergie ou vecteur d'énergie stockable ? Ph.D thesis IFPEN-IPGP, 174pages.
- Valentine D. L., Chidthaisong A., Rice A., Reeburgh W. S. and Tyler S. C. (2004) Carbon and hydrogen isotope fractionation by moderately thermophilic methanogens. *Geochim. Cos-mochim. Acta* 68, 1571–1590.
- Welhan J. A. and Craig H. (1979) Methane and hydrogen in East Pacific Rise hydrothermal fluids. *Geophys. Res. Lett.* **6**, 829–831
- Whiticar M. J. (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. *Chem. Geol.* 161, 291–314.
- Woycheese K. M., Meyer-Dombard D. R., Cardace D., Argayosa A. M. and Arcilla C. A. (2015) Out of the dark: transitional subsurface-to-surface microbial diversity in a terrestrial serpentinizing seep (Manleluag, Pangasinan, the Philippines). Front. Microbiol. 6, 44. https://doi.org/10.3389/fmicb.2015.00044 L82 (Special Issue: Portals to the Deep Biosphere. Front Microbiol.).
- Yoshizaki M., Shibuya T., Suzuki K., Shimizu K., Nakamura K., Takai K., Omori S. and Maruyama S. (2009) H₂ generation by experimental hydrothermal alteration of komatiitic glass at 300 °C and 500 bars: a preliminary result from on-going experiment. *Geochem. J.* **43**, e17–e22.
- Yumul G. P., Dimalanta C. B., Faustino D. V. and de Jesus J. V. (1998) Translation and docking of an arc terrane: geological and geochemical evidence from the southern Zambales Ophiolite Complex, Philippines. *Tectonophysics* 293, 255–272.
- Zgonnik V., Beaumont V., Deville E., Larin N., Pillot D. and Farrell K. (2015) Evidences for natural hydrogen seepages associated with rounded subsident structures: the Carolina bays (Northern Carolina, USA). *Prog. Earth Planet. Sci.* 2, 31. https://doi.org/10.1186/s40645-015-0062-5.
- Zhou Z., Ballentine C. J., Kipfer R., Schoell M. and Thibodeaux S. (2005) Noble gas tracing of groundwater/coalbed methane interaction in the San Juan Basin, USA. Geochim. Cosmochim. Acta 69, 5413–5428.
- Zhu Y. (2000) The isotopic compositions of molecular nitrogen: implications on their origins in natural gas accumulations. *Chem. Geol.* **164**(3–4), 321–330.

Associate editor: Jun-ichiro Ishibashi