Matematisk Finansiering 1

4 timers skriftlig eksamen onsdag 30/10 2019. Sættet er på 3 sider (ekskl. forside) og indeholder 3 opgaver og ialt 10 nummererede delspørgsmål, der indgår med lige vægt i bedømmelsen. Opgaverne (hvori . bruges som decimaltegn) kan løses uafhængigt af hinanden. Beregningsmæssige resultater ønskes fuldt dokumenteret i besvarelsen. Det skal således klart fremgå, hvilke formler, der bruges, og hvorfor de bruges.

Opgave 1

I denne opgave betragtes en 4-periode-variant af standardbinomialmodellen $S_{t+\Delta t} = S_t \exp(\alpha \Delta t \pm \sigma \sqrt{\Delta t})$, for prisen (i kr.) på en dividende-fri aktie. Det antages at $S_0 = 100$, p = 1/2, $\Delta t = 1/4$, $\alpha = 0.07$ og $\sigma = 0.2$, således at gitteret ser ud som:

Aktiekurs				
				160.00
			142.26	131.00
		126.49	116.47	107.25
	112.47	103.56	95.36	87.81
100.00	92.08	84.79	78.08	71.89
0	0.25	0.5	0.75	1

Det skraverede område er tidspunkterne (målt i år); vi kan altså tale om $S_0, S_{0.25}, \ldots, S_1$. Der findes yderligere et risikofrit aktiv i modellen er, og renten er 0.

Spg. 1a

Beregn den P-forventede aktieafkastrate over det første år, $\mathbf{E}^P((S_1 - S_0)/S_0)$. Beregn også afkastratens spredning. Hvordan forholder disse tal sig til modelparametrene α og σ ?

Spg. 1b

En digital(også kaldet binær)-option med strike K og udløb T betaler 1 kr. på tidspunkt T, hvis aktiekursen på tidspunkt T er større end ("say" >) K og 0 ellers. **Beregn** arbitragefrie priser for T=1-digital-optioner med K=70 og K=110. **Find** den replikerende (aktie,bankbog)-strategi for K=110-digital-optionen.

Spg. 1c

 $\overline{\text{Antag }}\sigma$ ændres til 0.3. **Beregn** nye priser på digital-optionerne fra spg. 1b.**Kommenter**.

Spg. 1d

Vi er nu tilbage i $\sigma=0.2$ -modellen, men antager at det kun er muligt at handle i aktie og det risikofrie aktiv på tidspunkt 0. **Bestem** det arbitragefrie pris-interval for T=1, K=110-digital-optionen.

Opgave 2

Betragt nedenstående model for mulige udviklinger i den korte rente (ρ) ; den indeholder som sædvanlig tidspunkter, niveauer og (betingede) sandsynligheder. Sandsynlighederne antages at være risiko-neutrale, altså at afspejle et martingalmål (Q).

Spg. 2a

Vis at nulkuponobligationspriserne på tid 0 er (P(0,1); P(0,2); P(0,3)) = (0.9804; 0.9637; 0.9398). **Beregn** nulkuponrenterne.

Spg. 2b

Betragt en 3-periode annuitetsobligation med hovedstol 100 og kuponrente 0.03 (3%). Beregn dennes kurs. For hvilken kuponrente er obligationens kurs 100, dvs. den handler til par?

Spg. 2c

Beregn forwardprisen for en forwardkontrakt med udløb på tidspunkt 1 på en af de to obligationer fra spg. 2b. Hvad er den tilsvarende futurespris?

Spg. 2d

Beregn prisen på den konverterbare variant af par-obligationen fra spg. 2b. (Altså det tilfælde, hvor låntager kan slippe ud af sine fremtidge forpligtelser ved at betale den resterende hovedstol.)

Spg. 2e

En andelsboligforening har en variabelt forrentet gæld med en hovedstol på 50 millioner kroner. Foreningen ønsker at omlægge til et fastforrentet lån. **Diskuter** fordele og ulemper/risici ved at gøre det med de forskellige obligationer fra spg. 2b og 2d.

Opgave 3

Spg. 3a

På dagen for EU-afstemningen i Storbritanien 23/6 2016 har en bookmaker sat (decimal-)odds 4.40 på *Leave* and 1.25 på *Remain*.

Antag at udfaldet af afstemningen påvirker den britiske valutakurs: Dollar-pund-kursen (forstået som det antal dollars, man skal betale for 1 pund) er beskrevet ved binomialmodellen angivet ude til højre. Antag desuden, at reglerne sådan, at man som spiller selv – og uden at det påvirker odds – kan vælge i hvilken valuta, man vil gøre sin indsats – hvorefter evt. gevinst så udbetales i denne valuta. Endelig kan du frit låne i såvel pund som dollars, begge steder til renten 0.

Vis at man kan konstruere en arbitrage ved at låne i dollars og spille/vædde på passende vis. (Dette er der flere forskellige måder at gøre på.) Kan du konstruere en arbitrage, hvis du kun må låne i pund?