

Optimization and Statistical Perspectives

Shusen Wang Alex Gittens Michael Mahoney
UC Berkeley RPI UC Berkeley

Overview

$$\min_{\mathbf{w}} \left\{ f(\mathbf{w}) = \frac{1}{n} \left| |\mathbf{X}\mathbf{w} - \mathbf{y}| \right|_{2}^{2} + \gamma \left| |\mathbf{w}| \right|_{2}^{2} \right\}$$

Over-determined: $n \gg d$

$$\min_{\mathbf{w}} \left\{ f(\mathbf{w}) = \frac{1}{n} \left| |\mathbf{X}\mathbf{w} - \mathbf{y}| \right|_{2}^{2} + \gamma \left| |\mathbf{w}| \right|_{2}^{2} \right\}$$

- Efficient and approximate solution?
- Use only part of the data?

$$\min_{\mathbf{w}} \left\{ f(\mathbf{w}) = \frac{1}{n} \left| |\mathbf{X}\mathbf{w} - \mathbf{y}| \right|_{2}^{2} + \gamma \left| |\mathbf{w}| \right|_{2}^{2} \right\}$$

Matrix Sketching:

- Random selection
- Random projection

$$\min_{\mathbf{w}} \left\{ f(\mathbf{w}) = \frac{1}{n} \left| |\mathbf{X}\mathbf{w} - \mathbf{y}| \right|_{2}^{2} + \gamma \left| |\mathbf{w}| \right|_{2}^{2} \right\}$$

$$\min_{\mathbf{w}} \frac{1}{n} \left\| \frac{1}{n} - \frac{1}{n} \right\|_{2}^{2} + \gamma \left\| \frac{1}{n} \right\|_{2}^{2}$$

• **S**ketched solution: **w**^s

$$\min_{\mathbf{w}} \left\{ f(\mathbf{w}) = \frac{1}{n} \left| |\mathbf{X}\mathbf{w} - \mathbf{y}| \right|_{2}^{2} + \gamma \left| |\mathbf{w}| \right|_{2}^{2} \right\}$$

- Sketched solution: w^s
- Sketch size $\tilde{O}\left(\frac{d}{\epsilon}\right)$

$$\min_{\mathbf{w}} \left\{ f(\mathbf{w}) = \frac{1}{n} \left| |\mathbf{X}\mathbf{w} - \mathbf{y}| \right|_{2}^{2} + \gamma \left| |\mathbf{w}| \right|_{2}^{2} \right\}$$

- Sketched solution: w^s
- $f(\mathbf{w}^s) \le (1 + \epsilon) \min f(\mathbf{w})$

Optimization Perspective

$$\min_{\mathbf{w}} \left\{ f(\mathbf{w}) = \frac{1}{n} \left| |\mathbf{X}\mathbf{w} - \mathbf{y}| \right|_{2}^{2} + \gamma \left| |\mathbf{w}| \right|_{2}^{2} \right\}$$

$$\min_{\mathbf{w}} \frac{1}{n} \left\| \frac{1}{2} - \frac{1}{2} + \gamma \right\|_{2}^{2} + \gamma \|_{2}^{2}$$
 • Bias • Variance

Statistical Perspective

Related Work

• Least squares regression: $\min_{\mathbf{w}} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2$

Reference

- Drineas, Mahoney, and Muthukrishnan: Sampling algorithms for I2 regression and applications. In SODA, 2006.
- Drineas, Mahoney, Muthukrishnan, and Sarlos: Faster least squares approximation. Numerische Mathematik, 2011.
- Clarkson and Woodruff: Low rank approximation and regression in input sparsity time. In STOC, 2013.
- Ma, Mahoney, and Yu: A statistical perspective on algorithmic leveraging. Journal of Machine Learning Research, 2015.
- Pilanci and Wainwright: Iterative Hessian sketch: fast and accurate solution approximation for constrained least squares. *Journal of Machine Learning Research*, 2015.
- Raskutti and Mahoney: A statistical perspective on randomized sketching for ordinary least-squares. Journal of Machine Learning Research, 2016.
- Etc ...

Matrix Sketching

- Turn big matrix into smaller one.
- $\mathbf{X} \in \mathbb{R}^{n \times d} \rightarrow \mathbf{S}^T \mathbf{X} \in \mathbb{R}^{s \times d}$.
- $S \in \mathbb{R}^{n \times s}$ is called *sketching matrix, e.g.,*
 - Uniform sampling
 - Leverage score sampling
 - Gaussian projection
 - Subsampled randomized Hadamard transform (SRHT)
 - Count sketch (sparse embedding)
 - Etc.

Matrix Sketching

- Some matrix sketching methods are efficient.
 - Time cost is o(nds) lower than multiplication.
- Examples:
 - Leverage score sampling: $O(nd \log n)$ time
 - SRHT: $O(nd \log s)$ time

Objective function:

$$f(\mathbf{w}) = \frac{1}{n} \left| |\mathbf{X}\mathbf{w} - \mathbf{y}| \right|_{2}^{2} + \gamma \left| |\mathbf{w}| \right|_{2}^{2}$$

Optimal solution:

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} f(\mathbf{w})$$
$$= (\mathbf{X}^T \mathbf{X} + n\gamma \mathbf{I}_d)^{\dagger} (\mathbf{X}^T \mathbf{y})$$

• Time cost: $O(nd^2)$ or O(ndt)

• Goal: efficiently and approximately solve

$$\underset{\mathbf{w}}{\operatorname{argmin}} \left\{ f(\mathbf{w}) = \frac{1}{n} \left| |\mathbf{X}\mathbf{w} - \mathbf{y}| \right|_{2}^{2} + \gamma \left| |\mathbf{w}| \right|_{2}^{2} \right\}.$$

• Goal: efficiently and approximately solve

$$\underset{\mathbf{w}}{\operatorname{argmin}} \left\{ f(\mathbf{w}) = \frac{1}{n} \left| |\mathbf{X}\mathbf{w} - \mathbf{y}| \right|_{2}^{2} + \gamma \left| |\mathbf{w}| \right|_{2}^{2} \right\}.$$

Approach: reduce the size of X and y by matrix sketching.

• Sketched solution:

$$\mathbf{w}^{\mathbf{S}} = \underset{\mathbf{w}}{\operatorname{argmin}} \left\{ \frac{1}{n} \left| |\mathbf{S}^{T} \mathbf{X} \mathbf{w} - \mathbf{S}^{T} \mathbf{y}| \right|_{2}^{2} + \gamma \left| |\mathbf{w}| \right|_{2}^{2} \right\}$$
$$= (\mathbf{X}^{T} \mathbf{S} \mathbf{S}^{T} \mathbf{X} + n \gamma \mathbf{I}_{d})^{\dagger} (\mathbf{X}^{T} \mathbf{S} \mathbf{S}^{T} \mathbf{y})$$

$$\min_{\mathbf{w}} \frac{1}{n} \left\| \frac{1}{n} - \frac{1}{n} \right\|_{2}^{2} + \gamma \left\| \frac{1}{n} \right\|_{2}^{2}$$

Sketched solution:

$$\mathbf{w}^{\mathbf{S}} = \underset{\mathbf{w}}{\operatorname{argmin}} \left\{ \frac{1}{n} \left| |\mathbf{S}^{T} \mathbf{X} \mathbf{w} - \mathbf{S}^{T} \mathbf{y}| \right|_{2}^{2} + \gamma \left| |\mathbf{w}| \right|_{2}^{2} \right\}$$
$$= (\mathbf{X}^{T} \mathbf{S} \mathbf{S}^{T} \mathbf{X} + n \gamma \mathbf{I}_{d})^{\dagger} (\mathbf{X}^{T} \mathbf{S} \mathbf{S}^{T} \mathbf{y})$$

- Time: $O(sd^2) + T_s$
 - T_S is the cost of sketching S^TX
 - E.g. $T_s = O(nd \log s)$ for SRHT.
 - E.g. $T_S = O(nd \log n)$ for leverage score sampling.

Theory: Optimization Perspective

- Recall the objective function $f(\mathbf{w}) = \frac{1}{n} ||\mathbf{X}\mathbf{w} \mathbf{y}||_2^2 + \gamma ||\mathbf{w}||_2^2$.
- Bound $f(\mathbf{w}^s) f(\mathbf{w}^*)$.
- $\frac{1}{n} \left| |\mathbf{X}\mathbf{w}^{\mathsf{S}} \mathbf{X}\mathbf{w}^{\star}| \right|_{2}^{2} \leq f(\mathbf{w}^{\mathsf{S}}) f(\mathbf{w}^{\star}).$

For the sketching methods

- SRHT or leverage sampling with $s = \tilde{O}\left(\frac{\beta d}{\epsilon}\right)$,
- uniform sampling with $s = O\left(\frac{\mu \beta d \log d}{\epsilon}\right)$,

$$f(\mathbf{w}^{s}) - f(\mathbf{w}^{\star}) \le \epsilon f(\mathbf{w}^{\star})$$
 holds w.p. 0.9.

- $\mathbf{X} \in \mathbb{R}^{n \times d}$: the design matrix
- γ : the regularization parameter

•
$$\beta = \frac{||\mathbf{X}||_2^2}{n\gamma + ||\mathbf{X}||_2^2} \in (0, 1]$$

• $\mu \in \left[1, \frac{n}{d}\right]$: the row coherence of **X**

For the sketching methods

- SRHT or leverage sampling with $s = \tilde{O}\left(\frac{\beta d}{\epsilon}\right)$,
- uniform sampling with $s = O\left(\frac{\mu \beta d \log d}{\epsilon}\right)$,

$$f(\mathbf{w}^{s}) - f(\mathbf{w}^{\star}) \le \epsilon f(\mathbf{w}^{\star})$$
 holds w.p. 0.9.

$$\implies \frac{1}{n} ||\mathbf{X}\mathbf{w}^{\mathsf{S}} - \mathbf{X}\mathbf{w}^{\star}||_{2}^{2} \leq \epsilon f(\mathbf{w}^{\star}).$$

- $\mathbf{X} \in \mathbb{R}^{n \times d}$: the design matrix
- γ : the regularization parameter

•
$$\beta = \frac{||\mathbf{X}||_2^2}{n\gamma + ||\mathbf{X}||_2^2} \in (0, 1]$$

• $\mu \in \left[1, \frac{n}{d}\right]$: the row coherence of **X**

Theory: Statistical Perspective

Statistical Model

- $\mathbf{X} \in \mathbb{R}^{n \times d}$: fixed design matrix
- $\mathbf{w}_0 \in \mathbb{R}^d$: the *true* and *unknown* model
- $\mathbf{y} = \mathbf{X}\mathbf{w}_0 + \mathbf{\delta}$: observed response vector
 - $\delta_1, \cdots, \delta_n$ are random noise
 - $\mathbb{E}[\boldsymbol{\delta}] = \mathbf{0}$ and $\mathbb{E}[\boldsymbol{\delta}\boldsymbol{\delta}^T] = \xi^2 \mathbf{I}_n$

• Risk:
$$R(\mathbf{w}) = \frac{1}{n} \mathbb{E} ||\mathbf{X}\mathbf{w} - \mathbf{X}\mathbf{w}_0||_2^2$$

• \mathbb{E} is taken w.r.t. the random noise δ .

• Risk:
$$R(\mathbf{w}) = \frac{1}{n} \mathbb{E} ||\mathbf{X}\mathbf{w} - \mathbf{X}\mathbf{w}_0||_2^2$$

- \mathbb{E} is taken w.r.t. the random noise δ .
- Risk measures prediction error.

• Risk:
$$R(\mathbf{w}) = \frac{1}{n} \mathbb{E} ||\mathbf{X}\mathbf{w} - \mathbf{X}\mathbf{w}_0||_2^2$$

• $R(\mathbf{w}) = bias^2(\mathbf{w}) + var(\mathbf{w})$

• Risk:
$$R(\mathbf{w}) = \frac{1}{n} \mathbb{E} ||\mathbf{X}\mathbf{w} - \mathbf{X}\mathbf{w}_0||_2^2$$

• $R(\mathbf{w}) = bias^2(\mathbf{w}) + var(\mathbf{w})$

Optimal Solution • bias(
$$\mathbf{w}^*$$
) = $\gamma \sqrt{n} ||(\mathbf{\Sigma}^2 + n\gamma \mathbf{I}_d)^{-1} \mathbf{\Sigma} \mathbf{V}^T \mathbf{w}_0||_2$, • var(\mathbf{w}^*) = $\frac{\xi^2}{n} ||(\mathbf{I}_d + n\gamma \mathbf{\Sigma}^{-2})^{-1}||_2^2$,

Sketched bias(
$$\mathbf{w}^{s}$$
) = $\gamma \sqrt{n} \left| \left| (\mathbf{\Sigma} \mathbf{U}^{T} \mathbf{S} \mathbf{S}^{T} \mathbf{U} \mathbf{\Sigma} + n \gamma \mathbf{I}_{d})^{\dagger} \mathbf{\Sigma} \mathbf{V}^{T} \mathbf{w}_{0} \right| \right|_{2}$,

Solution var(\mathbf{w}^{s}) = $\frac{\xi^{2}}{n} \left| \left| (\mathbf{U}^{T} \mathbf{S} \mathbf{S}^{T} \mathbf{U} + n \gamma \mathbf{\Sigma}^{-2})^{\dagger} \mathbf{U}^{T} \mathbf{S} \mathbf{S}^{T} \right| \right|_{2}^{2}$,

• Here $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ is the SVD.

Statistical Perspective

For the sketching methods

- SRHT or leverage sampling with $s = \tilde{O}\left(\frac{d}{\epsilon^2}\right)$,
- uniform sampling with $s = O\left(\frac{\mu d \log d}{\epsilon^2}\right)$,

- $\mathbf{X} \in \mathbb{R}^{n \times d}$: the design matrix $\mu \in \left[1, \frac{n}{d}\right]$: the row coherence of \mathbf{X}

the followings hold w.p. 0.9:

$$1 - \epsilon \le \frac{\operatorname{bias}(\mathbf{w}^{s})}{\operatorname{bias}(\mathbf{w}^{\star})} \le 1 + \epsilon,$$

$$(1 - \epsilon) \frac{n}{s} \le \frac{\operatorname{var}(\mathbf{w}^s)}{\operatorname{var}(\mathbf{w}^*)} \le (1 + \epsilon) \frac{n}{s}.$$

Good!

Bad! Because $n \gg s$.

Statistical Perspective

For the sketching methods

- SRHT or leverage sampling with $s = \tilde{O}\left(\frac{d}{\epsilon^2}\right)$,
- uniform sampling with $s = O\left(\frac{\mu d \log d}{\epsilon^2}\right)$,

- $\mathbf{X} \in \mathbb{R}^{n \times d}$: the design matrix $\mu \in \left[1, \frac{n}{d}\right]$: the row coherence of \mathbf{X}

the followings hold w.p. 0.9:

$$1 - \epsilon \le \frac{\operatorname{bias}(\mathbf{w}^{\mathsf{s}})}{\operatorname{bias}(\mathbf{w}^{\mathsf{*}})} \le 1 + \epsilon,$$

$$(1 - \epsilon) \frac{n}{s} \le \frac{\operatorname{var}(\mathbf{w}^s)}{\operatorname{var}(\mathbf{w}^*)} \le (1 + \epsilon) \frac{n}{s}.$$

If y is noisy

variance dominates bias

 $\Rightarrow R(\mathbf{w}^s) \gg R(\mathbf{w}^*).$

Conclusions

- Use sketched solution to initialize numerical optimization.
 - Xw^s is close to Xw^{*}.

Optimization Perspective

Conclusions

- Use sketched solution to initialize numerical optimization.
 - Xw^s is close to Xw^{*}.

Optimization Perspective

- $\mathbf{w}^{(t)}$: output of the t-th iteration of CG algorithm.
- Initialization is important.

Conclusions

- Use sketched solution to initialize numerical optimization.
 - Xw^s is close to Xw^{*}.
- Never use sketched solution to replace the optimal solution.
 - Much higher variance bad generalization.

Optimization Perspective

Statistical Perspective

Model Averaging

Model Averaging

- Independently draw S_1, \dots, S_g .
- Compute the sketched solutions $\mathbf{w}_1^{\mathrm{S}}, \cdots, \mathbf{w}_q^{\mathrm{S}}$.
- Model averaging: $\mathbf{w}^{\mathrm{S}} = \frac{1}{g} \sum_{i=1}^{g} \mathbf{w}_{i}^{\mathrm{S}}$.

• For sufficiently large s,

$$\frac{f(\mathbf{w}_1^{\mathsf{S}}) - f(\mathbf{w}^{\star})}{f(\mathbf{w}^{\star})} \le \epsilon \quad \text{holds w.h.p.}$$

Without model averaging

• For sufficiently large s,

$$\frac{f(\mathbf{w}_1^{\mathsf{S}}) - f(\mathbf{w}^{\star})}{f(\mathbf{w}^{\star})} \le \epsilon \quad \text{holds w.h.p.}$$

Without model averaging

Using the same matrix sketching and same s,

$$\frac{f(\mathbf{w}^{\mathrm{S}}) - f(\mathbf{w}^{\star})}{f(\mathbf{w}^{\star})} \le \frac{\epsilon}{g} + \epsilon^{2} \quad \text{holds w.h.p.}$$

For sufficiently large s,

$$\frac{f(\mathbf{w}_1^{\mathrm{S}}) - f(\mathbf{w}^{\star})}{f(\mathbf{w}^{\star})} \leq \epsilon \quad \text{holds w.h.p.}$$

Without model averaging

Using the same matrix sketching and same s,

$$\frac{f(\mathbf{w}^{\mathrm{S}}) - f(\mathbf{w}^{\star})}{f(\mathbf{w}^{\star})} \le \frac{\epsilon}{g} + \epsilon^{2} \quad \text{holds w.h.p.}$$

For sufficiently large s,

$$\frac{f(\mathbf{w}_1^{\mathsf{S}}) - f(\mathbf{w}^{\star})}{f(\mathbf{w}^{\star})} \leq \epsilon \quad \text{holds w.h.p.}$$

Without model averaging

Using the same matrix sketching and same s,

$$\frac{f(\mathbf{w}^{\mathrm{S}}) - f(\mathbf{w}^{\star})}{f(\mathbf{w}^{\star})} \le \frac{\epsilon}{g} + \epsilon^{2} \quad \text{holds w.h.p.}$$

If
$$s \gg d \implies \epsilon^2$$
 is very small \implies error bound $\propto \frac{\epsilon}{g}$.

- Risk: $R(\mathbf{w}) = \frac{1}{n} \mathbb{E} ||\mathbf{X}\mathbf{w} \mathbf{X}\mathbf{w}_0||_2^2 = \text{bias}^2(\mathbf{w}) + \text{var}(\mathbf{w})$
- Model averaging :
 - bias(\mathbf{w}^{s}) = $\gamma \sqrt{n} \left| \left| \frac{1}{g} \sum_{i=1}^{g} (\mathbf{\Sigma} \mathbf{U}^{T} \mathbf{S}_{i} \mathbf{S}_{i}^{T} \mathbf{U} \mathbf{\Sigma} + n \gamma \mathbf{I}_{d})^{\dagger} \mathbf{\Sigma} \mathbf{V}^{T} \mathbf{w}_{0} \right| \right|_{2}$,
 - $\operatorname{var}(\mathbf{w}^{s}) = \frac{\xi^{2}}{n} \left| \left| \frac{1}{g} \sum_{i=1}^{g} (\mathbf{U}^{T} \mathbf{S}_{i} \mathbf{S}_{i}^{T} \mathbf{U} + n \gamma \mathbf{\Sigma}^{-2})^{\dagger} \mathbf{U}^{T} \mathbf{S}_{i} \mathbf{S}_{i}^{T} \right| \right|_{2}^{2}$
 - Here $X = U\Sigma V^T$ is the SVD.

• For sufficiently large s, the followings hold w.h.p.:

$$\frac{\operatorname{bias}(\mathbf{w}^{s})}{\operatorname{bias}(\mathbf{w}^{\star})} \leq 1 + \epsilon \quad \text{and} \quad \frac{\operatorname{var}(\mathbf{w}^{s})}{\operatorname{var}(\mathbf{w}^{\star})} \leq \frac{n}{s} (1 + \epsilon).$$

• For sufficiently large s, the followings hold w.h.p.:

$$\frac{\operatorname{bias}(\mathbf{w}^{\mathrm{s}})}{\operatorname{bias}(\mathbf{w}^{\star})} \le 1 + \epsilon$$
 and $\frac{\operatorname{var}(\mathbf{w}^{\mathrm{s}})}{\operatorname{var}(\mathbf{w}^{\star})} \le \frac{n}{s} (1 + \epsilon).$

Without model averaging

• Using the **same** sketching methods and **same** *s*, the followings hold w.h.p.:

$$\frac{\operatorname{bias}(\mathbf{w}^{\mathrm{s}})}{\operatorname{bias}(\mathbf{w}^{\star})} \le 1 + \epsilon \quad \text{and} \quad \frac{\operatorname{var}(\mathbf{w}^{\mathrm{s}})}{\operatorname{var}(\mathbf{w}^{\star})} \lesssim \frac{n}{s} \left(\frac{1}{\sqrt{g}} + \epsilon\right)^{2}$$

• For sufficiently large s, the followings hold w.h.p.:

$$\frac{\operatorname{bias}(\mathbf{w}^{\operatorname{s}})}{\operatorname{bias}(\mathbf{w}^{\star})} \leq 1 + \epsilon \quad \text{and} \quad \frac{\operatorname{var}(\mathbf{w}^{\operatorname{s}})}{\operatorname{var}(\mathbf{w}^{\star})} \leq \frac{n}{s} \left(1 + \epsilon\right).$$

Without model averaging

• Using the **same** sketching methods and **same** *s*, the followings hold w.h.p.:

$$\frac{\operatorname{bias}(\mathbf{w}^{\mathrm{s}})}{\operatorname{bias}(\mathbf{w}^{\star})} \le 1 + \epsilon \quad \text{and} \quad \frac{\operatorname{var}(\mathbf{w}^{\mathrm{s}})}{\operatorname{var}(\mathbf{w}^{\star})} \lesssim \frac{n}{s} \left(\frac{1}{\sqrt{g}} + \epsilon\right)^{2}$$

• For sufficiently large s, the followings hold w.h.p.:

$$\frac{\operatorname{bias}(\mathbf{w}^{\operatorname{s}})}{\operatorname{bias}(\mathbf{w}^{\star})} \leq 1 + \epsilon \quad \text{and} \quad \frac{\operatorname{var}(\mathbf{w}^{\operatorname{s}})}{\operatorname{var}(\mathbf{w}^{\star})} \leq \frac{n}{s} \left(1 + \epsilon\right).$$

Without model averaging

• Using the **same** sketching methods and **same** *s*, the followings hold w.h.p.:

$$\frac{\operatorname{bias}(\mathbf{w}^{\mathrm{s}})}{\operatorname{bias}(\mathbf{w}^{\star})} \le 1 + \epsilon \quad \text{and} \quad \frac{\operatorname{var}(\mathbf{w}^{\mathrm{s}})}{\operatorname{var}(\mathbf{w}^{\star})} \lesssim \frac{n}{s} \left(\frac{1}{\sqrt{g}} + \epsilon\right)^{2}$$

With model averaging

If ϵ is small, then $var(\mathbf{w}^s) \propto \frac{1}{g}$.

Applications to Distributed Optimization

- $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ are (randomly) split among g machines.
- Equivalent to uniform sampling with $s = \frac{n}{g}$.

- Application to distributed optimization:
 - If $s = \frac{n}{g} \gg d$, \mathbf{w}^s is very close to \mathbf{w}^* (provably).
 - w^s is good initialization of distributed optimization algorithms.

Application to distributed machine learning:

- If $s = \frac{n}{g} \gg d$, then $R(\mathbf{w}^s)$ is comparable to $R(\mathbf{w}^*)$.
- If low-precision solution suffices, then \mathbf{w}^{s} is a good substitute of \mathbf{w}^{\star} .
- One-shot solution.

Thank You!

The paper is at arXiv:1702.04837