Neural Acceleration for General-Purpose Approximate Programs

Hadi Esmaeilzadeh

Adrian Sampson

Luis Ceze

Doug Burger

University of Washington

Microsoft Research

computer vision

machine learning

sensory data

physical simulation

information retrieval

augmented reality

image rendering

Approximate computing

Probabilistic CMOS designs

[Rice, NTU, Georgia Tech...]

Stochastic processors

[Illinois]

Code perforation transformations

[MIT]

Relax software fault recovery

[de Kruijf et al., ISCA 2010]

Green runtime system

[Baek and Chilimbi, PLDI 2010]

Flikker approximate DRAM

[Liu et al., ASPLOS 2011]

EnerJ programming language

[PLDI 2011]

Truffle dual-voltage architecture

[ASPLOS 2012]

Accelerators

Accelerators

Approximate computing

computer vision

machine learning

sensory data

physical simulation

information retrieval

augmented reality

image rendering

An accelerator for approximate computations

Neural networks are function approximators

Trainable: implements many functions

Highly parallel

Very efficient hardware implementations

Fault tolerant

Program

Annotate an approximate program component

Annotate an approximate program component

Program

Compile the program and train a neural network

Annotate an approximate program component

Compile the program and train a neural network

Execute on a fast Neural Processing Unit (NPU)

- **Annotate** an approximate program component
- Compile the program and train a neural network
- Execute on a fast Neural Processing Unit (NPU)
- Improve performance 2.3x and energy 3.0x on average

Programming model


```
[[transform]]
float grad(float[3][3] p) {
void edgeDetection(Image &src,
                    Image &dst) {
  for (int y = ...) {
    for (int x = ...) {
      dst[x][y] =
           grad(window(src, x, y));
```

Code region criteria

✓ Hot code

Approximable

✓ Well-defined inputs and outputs

grad()

run on every 3x3 pixel window

small errors do not corrupt output

takes 9 pixel values; returns a scalar

Empirically selecting target functions

Compiling and transforming

Code observation

record(p); record(result);


```
grad(p)
323, 231, 122, 93, 321, 49
                                   53.2
49, 423, 293, 293, 23, 2
                                   94.2
                                   1.2
34, 129, 493, 49, 31, 11
21, 85, 47, 62, 21, 577
                                   64.2
                                   18.1
7, 55, 28, 96, 552, 921
5, 129, 493, 49, 31, 11
                                   92.2
49, 423, 293, 293, 23, 2
                                   6.5
34, 129, 72, 49, 5, 2
                                   120
323, 231, 122, 93, 321, 49
                                   53.2
6, 423, 293, 293, 23, 2
                                   49.7
```

test cases

instrumented program

sample arguments & outputs

Training

Training Inputs

Backpropagation Training

Training

Code generation

```
void edgeDetection(Image &src,
                    Image &dst) {
  for (int y = ...) {
    for (int x = ...) {
      p = window(src, x, y);
      NPU SEND(p[0][0]);
      NPU SEND(p[0][1]);
      NPU SEND(p[0][2]);
      dst[x][y] = NPU_RECEIVE();
```

Neural Processing Unit (NPU)

Software interface: ISA extensions

Microarchitectural interface

A digital NPU

A digital NPU

Experiments

Several benchmarks; annotated **one hot function** each FFT, inverse kinematics, triangle intersection, JPEG, K-means, Sobel

Simulated full programs on MARSSx86 Energy modeled with McPAT and CACTI Microarchitecture like Intel Penryn: 4-wide, 6-issue 45 nm, 2080 MHz, 0.9 V

Two benchmarks

edge detection 88 static instructions
56% of dynamic instructions

18 neurons

triangle intersection

1,079
static x86-64
instructions

97% of dynamic instructions

60 neurons 2 hidden layers

Speedup with NPU acceleration

2.3x average speedup
Ranges from 0.8x to 11.1x

Energy savings with NPU acceleration

3.0x average energy reduction All benchmarks benefit

Application quality loss

Quality loss below 10% in all cases

Based on application-specific quality metrics

Edge detection with gradient calculation on NPU

Also in the paper

Sensitivity to communication latency

Sensitivity to NN evaluation efficiency

Sensitivity to PE count

Benchmark statistics

All-software NN slowdown

Program

Program

Program

Neural networks can efficiently approximate functions from programs written in conventional languages.

Normalized dynamic instructions

other instructions

Slowdown with software NN

20x average slowdown
Using off-the-shelf FANN library