Практические задачи по теме «Погрешности вычислений»

Задача 1.1. Напишите подпрограмму, вычисляющую указанную функцию путем суммирования части ее ряда Маклорена:

1а) функцию Бесселя первого рода
$$J_0(\mathbf{x})$$
: $J_0(\mathbf{x}) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(k!)^2} \left(\frac{\mathbf{x}}{2}\right)^{2k}$

1б) функцию ошибок
$$erf(x) = \frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{n!(2n+1)}$$
,

1в) интеграл Френеля
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+3}}{(4n+3)(2n+1)!}$$

1г) интеграл Френеля
$$C(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+1}}{(4n+1)(2n)!}$$

1д) неполная гамма-функция
$$\gamma(a,z) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{a+n}}{n!(a+n)}, \operatorname{Re} a > 0$$
,

1e) интегральный синус
$$Si(z) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)(2n+1)!}$$

Далее, используя эту подпрограмму и формулу численного дифференцирования, найдите производную функции в точках x = 0.5, 1, 5, 10, 30 с заданной точностью $\varepsilon = 10^{-6}$. Используйте несколько методов (сравните!), проведите вычисления с разными длинами мантиссы, сравните результаты с табличными. Исследуйте влияние ошибок округления. Задача 1.3*. Составить программу, моделирующую вычисления на ЭВМ с ограниченной разрядностью m. Продемонстрировать её работу, вычислив машинный эпсилон и просуммировав ряд для $\sin(x)$, x = 50.

Задача 1.4 (I.9.1 из задачника Аристовой и др.). Написать программу для вычисления $\exp(x)$, пользуясь рядом Маклорена и конечностью разрядов машинной арифметики: ввести величину SUM = 1., в цикле по I вычислять TERM = TERM * X / I, и если SUM + TERM равен SUM, то закончить вычисления и напечатать результат, а если не равен, то SUM = SUM + TERM и выполнять цикл далее. Вычислить и сравнить SUM и экспоненту от X для следующих аргументов:

$$x \in \{1, 5, 10, 15, 20, 25, -1, -5, -10, -15, -20, -25\}$$

при вычислениях с одинарной точностью. Объяснить результат. Предложить усовершенствованную процедуру для вычисления экспоненты отрицательного аргумента.

Задача 1.5 (І.9.2 из задачника Аристовой и др). Написать программу для вычисления многочлена, пользуясь схемой Горнера:

$$p = aN // \text{ for } j = N - 1 \text{ to } 0 // p = x \cdot p + aj // \text{ end for } // \text{ write } x, p$$

для многочлена $p(x) = (x-2)^9$ на интервале [1.92, 2.08] с шагом 10^{-4} . Результат нарисовать. Объяснить полученный результат. Сравнить его с вычислением по формуле $p(x)=(x-2)^9$. Почему алгоритм вычисления данного многочлена по схеме Горнера непригоден для численного определения нуля функции?

Задача 1.6. (І.9.3.) Вычислить постоянную Эйлера

$$C = \lim_{n \to \infty} \left(\sum_{k=1}^{k=n} \frac{1}{k} - \ln n \right)$$

с точностью 10^{-12}

Задача 1.7. Построить с максимально возможной точностью (вычисления производятся в типе данных real*4 и real*8) таблицу значений заданной ниже функции. Элементарные функции вычислять с необходимой точностью, используя степенные ряды. Решить обратную задачу теории погрешностей (т.е. указать максимальную погрешность аргумента, обеспечивающую максимально возможную точность вычисления функции):

1.7.1.
$$z(x) = \sqrt{1 + arctg(16.7x + 0.1)} / cos(7x + 0.3) x = 0.01(0.005)0.05$$

1.7.2.
$$z(x) = exp(1+x) * cos(\sqrt{1+x} x = 0.01(0.005)0.06$$

Задача 1.8. В теории переноса важную роль играют специальные функции, называемые интегральными экспонентами, и вводимые интегрированием двумя эквивалентными способами (заменой t на 1/x):

$$E_n(z) = \int_{1}^{\infty} \frac{e^{-zt}}{t^n} dt = \int_{0}^{1} x^{n-2} e^{-\frac{z}{x}} dx$$

Для этих функций справедливо рекуррентное соотношение

$$nE_{n+1}(x) = e^{-x} - xE_n(x), \quad n \ge 1,$$
 $E_n(0) = \frac{1}{n-1}, \quad n \ne 1$

Напишите программу, осуществляющую вычисление интегральных экспонент первого, второго и третьего порядка со всеми верными знаками, пользуясь представлением первой интегральной экспоненты через логарифм и быстро сходящийся ряд:

0 < x < 1

$$E_1(x) = -c - \ln x - \sum_{k=1}^{\infty} \frac{(-1)^k x^k}{k \cdot k!},$$

где c – постоянная Эйлера, c = 0.577 215 664 901 533,

а также представлением интегральных экспонент в виде бесконечной цепной дроби:

$$E_n(x) = e^{-x} \frac{1}{x + \frac{n}{1 + \frac{n+1}{1 + \frac{2}{x + \frac{n+2}{1 + \frac{n+3}{1 + \dots}}}}}}$$

Достоинством последней формулы является то, что все коэффициенты ее положительны. Для оценки точности последней формулы используйте половину разности между соседними четным и нечетным приближением цепной дроби, т.к. четные и нечетные приближения подходят к значению функции с разных сторон. При каких х нужно использовать приближение рядом, а при каких – цепной дробью?

	Задача 1.9.	Матрица А	для каждого варианта	задана в таблице:
--	-------------	-----------	----------------------	-------------------

N		A		α	β	N		A		α	β
1.9.1	31	27	22			1.9.2	30	34	19		
	32.2	28.2	24	0.1	0.4		31.4	35.4	20	0.05	0.1
	36	32	27				24	28	13		
1.9.3	3	1	13			1.9.4	9	5	6		
	13.4	11.4	23	0.05	0.1		13.5	9.5	11	0.1	0.5
	5	3	15				8	4	5		
1.9.5	-7	-8	-10			1.9.6	-3	-1	-13		
	28.6	27.6	25	0.1	0.2		26.8	22.4	46	0.1	0.1
	7	6	4				5	3	15		
	_										

элементы матрицы заданы приближенно с относительной погрешностью а) $\delta = \alpha\%$ b) $\delta = \beta\%$. (см. таблицу)

Проверить корректность постановки задачи о вычислении обратной матрицы. Если задача о вычислении обратной матрицы корректна, найти относительную погрешность результата. **Указание**: определитель матрицы является дифференцируемой функцией элементов матрицы и ее максимум достигается в точках с координатами a_{ii} ($1 \pm \delta$) (угловые точки)

И

Задача 1.9. 1. Примените алгоритм Архимеда для нахождения числа π как предела последовательности периметров правильных вписанных в круг 2^n -угольников. Существует рекурсивная связь между периметрами двух последовательных многоугольников из этого класса вида:

$$p_{n+1} = 2^n \sqrt{2\left(1 - \sqrt{1 - (p_n/2^n)^2}\right)}$$

Очевидно, $p_2 = 2\sqrt{2}$. Вычислить значение p_n для значений n = 3,4,...,60. Объясните результаты, оцените влияние вычислительной погрешности (длины мантиссы).

2. Формулу для вычисления p_n из п.1 можно улучшить (плане накопления вычислительной погрешности), устранив из нее вычитание. Запишем p_{n+1} в виде

$$p_{n+1} = 2^n \sqrt{r_{n+1}}$$
 . ГЛе

$$r_{n+1} = 2\left(1 - \sqrt{1 - (p_n/2^n)^2}\right),$$

 $r_3 = 2/(2 + \sqrt{2})$. Покажите, что

$$r_{n+1} = \frac{r_n}{2 + \sqrt{4 - r_n}}$$

Полученную итерационную формулу используйте для вычисления p_n и r_n для значений n=3,4,...,60. В конечном счете, разность $4-r_n$ будет округляться до значения 4. Таким образом, последняя формула также подвержена влиянию ошибок округления при больших значениях n. Однако есть ли теперь основания для беспокойства?

- другие задачи из задачника Аристовой и др. издания 2021 г.