

## The University of Azad Jammu & Kashmir, Muzaffarabad

## **Computer Architecture & Logic Design**

Lab 05: HALF ADDER IMPLEMENTATION

**Student Name:** Shahzad Ahmed Awan

**Roll No:** 2024-SE-15

Course Title: Computer Architecture & Logic

Design

Course Code: CS-1205

**Instructor:** Engr. Sidra Rafique

Submission Date: 03-June -2025

**Department of Software Engineering** 

## **Practical Implementation on Trainer (Using ICs)**

#### 1. Place the ICs on the breadboard:

- o IC 7486 (XOR gate)
- o IC 7408 (AND gate)



#### 2. Provide power connections:

o Connect Vcc (pin 14) and GND (pin 7) of both ICs.

#### 3. Connect input lines:

- o Use two push-button switches or toggle switches for Input A and Input B.
- o Connect these inputs to corresponding pins of both ICs.

#### 4. Connect output lines:

- o XOR output  $pin \rightarrow LED$  for sum
- o AND output  $pin \rightarrow LED$  for Carry
- 5. Use appropriate resistors (typically  $330\Omega-1k\Omega$ ) in series with LEDs to prevent overcurrent.



- 6. **Power the board** and toggle switches to test combinations:
  - $0 + 0 \rightarrow \text{Sum} = 0$ , Carry = 0
  - $\circ$  0 + 1  $\rightarrow$  Sum = 1, Carry = 0
  - $\circ$  1 + 0  $\rightarrow$  Sum = 1, Carry = 0
  - $\circ$  1 + 1  $\rightarrow$  Sum = 0, Carry = 1

# 2. Implementation in Electronics Workbench (EWB)

## Part A: Half Adder using Logic Gates

### **Components:**

- 2x SPST Switches
- 1x XOR Gate
- 1x AND Gate
- 2x LEDs
- Resistors (220 $\Omega$ )
- Power Source (+5V)

### **Steps:**

- 1. Launch **EWB** and start a new project.
- Drag and place two SPST switches labeled A and B.
- Insert one XOR gate for Sum output.
- Insert one AND gate for Carry output.
- 5. Connect:
  - Inputs A and B to both XOR and AND gates.



Figure 1: Gate Circuit of HALF ADDER

- o Output of XOR to **LED1** (Sum)
- o Output of AND to **LED2** (Carry)
- 6. Connect a  $220\Omega$  resistor in series with each LED.
- 7. Attach LEDs to **ground** to complete the path.
- 8. Power the circuit with a +5V source.
- 9. Test all 4 input combinations (00, 01, 10, 11) using switches and verify the output with the truth table.



Figure 2: Complicated Circuit Diagram of Half Adder

### Part B: Half Adder using Digital ICs

#### **ICs Used:**

- IC 7486  $\rightarrow$  XOR Gate (for Sum)
- IC 7408  $\rightarrow$  AND Gate (for Carry)

### **Components:**

- IC 7486 (Quad XOR gate)
- IC 7408 (Quad AND gate)
- 2x SPST Switches
- 2x LEDs
- Resistors (220 $\Omega$ )
- Breadboard (or simulated in EWB)
- Power Supply (+5V and GND)

### **Steps:**

- 1. Place IC 7486 and IC 7408 in your circuit.
- 2. Connect **Pin 14** of both ICs to +5V, and **Pin 7** to **GND**.
- 3. Use:
  - o IC 7486 XOR gate 1 (pins 1, 2  $\rightarrow$  input; pin 3  $\rightarrow$  Sum output)
  - o IC 7408 AND gate 1 (pins 1, 2  $\rightarrow$  input; pin 3  $\rightarrow$  Carry output)
- Inputs A and B are connected to both XOR and AND inputs using SPST switches.
- Outputs (Pin 3 from each IC) go to LEDs with 220Ω resistors.
- 6. Complete the LED connections to **ground**.



Figure 3: IC Circuit Implementation of HALF ADDER

7. Test the inputs by toggling switches and compare output LEDs with the **truth table**.

**Truth Table of Half Adder** 

| A | В | Sum (A⊕B) | Carry (A·B) |
|---|---|-----------|-------------|
| 0 | 0 | 0         | 0           |
| 0 | 1 | 1         | 0           |
| 1 | 0 | 1         | 0           |
| 1 | 1 | 0         | 1           |