Realizing Associative Memory Learning through Neuromorphic Circuits

Hongyu An

The Bradley Department of Electrical and Computer Engineering Virginia Tech, Blacksburg, VA, USA May 07, 2019

Research Motivation

Associative Memory

Invertebrates

Sea slug

Mammals

Humans

Design Methodology

Neurons and Synapses

Synapse functions:

- Transfer signals between neurons
- Attenuate the spiking signals
- Synaptic strength of transmission can be modified

Cellular Level Associative Memory in Sea Slugs

Sea Slugs

Experimental Setup

E. R. Kandel, et al, Principles of neural science vol. 4: McGraw-hill New York, 2000. [2000 Nobel Prize]

Design Methodology

The Facts of Neural system

Spiking Signals

The Facts of Associative Memory

- Signal Attenuation
- The synaptic strength becomes strong during the associative memory learning
- Large signal at postsynaptic neuron indicates a successful learning

Designs

Neurons

Synapses

Neural Network

Results

Circuit Response

Biological Response

Mutual Corroboration

Signal Intensity Encoding Neuron

- Spiking signal generation;
- Positive and negative outputs;
- Magnitude and frequency corresponding to the input.

H. An, et al., "Monolithic 3D neuromorphic computing system with hybrid CMOS and memristor-based synapses and neurons," *Integration*, the VLSI Journal, 2017.

Input stimulus of a SIEN

Memristor as Synapse

- 1. The synapse should have the capability of attenuating signals;
- 2. The connecting strength of synapse is adjustable with a set voltage.

TEM image: J.-Y. Chen, et al., "Dynamic evolution of conducting nanofilament in resistive switching memories," Nano letters, 2013.

Design Methodology

Mutual Corroboration

Reproducing Cellular Associative Memory Learning

E. R. Kandel, Principles of neural science vol. 4: McGraw-hill New York, 2000.

10

High Level Associative Memory Learning System

- Distinct types of signals are preprocessed at the different regions of brain
- The outputs signals after the preprocessing converged at Lateral nucleus

E. R. Kandel, Principles of neural science vol. 4: McGraw-hill New York, 2000.

Associative Memory Learning System

Synaptic Weight Updating in Associative Memory

H. An. 13

2.4

2.2

1.8

1.6

1.4

1.2

0.8

0.6

1.6

1.4

1.2

8.0

0.6

0.2

1.6

1.6

1.6

1.6

1.6

1.6

Conclusion and Significance

• Implement a brain-like associative memory learning that relates the pronunciation (auditory signal) and image (visual signal) of digits together by associating two artificial neural networks

Engineering Contributions:

- Human-Like self-learning capability
- High adaptivity with dynamic surrounding environment
- Novel Human-computer interaction system
- Spiking Signal based power efficient system

Scientific Contributions:

- Potential explanations regarding the human learning mechanism
- Potential interpretations of memory/forgetting mechanism
- Diseases: Alzheimer's disease and visual agnosia

Thank You

Hongyu An

Virginia Tech hongyu51@vt.edu