P. Maurer ENS Rennes

Leçon 155 :Endomorphismes diagonalisables en dimension finie.

Devs:

- Morphismes continus de \mathbb{S}^1 vers $\mathrm{GL}_n(\mathbb{R})$
- L'exponentielle de matrice exp: $S_n(\mathbb{R}) \to S_n^{++}(\mathbb{R})$ est un homéomorphisme

Références:

- 1. Gourdon, Algèbre
- 2. Obectif Agregation

Dans tout le plan, k désigne un corps commutatif, et E est un k-espace vectoriel de dimension finie $n \in \mathbb{N}$. $f \in \mathcal{L}(E)$ désigne un endomorphisme de E et A une matrice de $\mathcal{M}_n(k)$.

1 Définitions, propriétés.

1.1 Spectre

Définition 1. Soit $\alpha \in k$. On dit que α est valeur propre de f si $(f - \alpha \operatorname{Id}) \notin \operatorname{GL}(E)$. On dit que α est valeur propre de A si $(A - \alpha I_n) \notin \operatorname{GL}_n(k)$.

Exemple 2. 0 est valeur propre de f si et seulement si Ker $f \neq \{0\}$.

Théorème 3. Si k est algébriquement clos (par exemple, $k = \mathbb{C}$), alors tout endomorphisme admet au moins une valeur propre.

Définition 4. Soit λ une valeur propre de f. L'ensemble E_{λ} : = $\{x \in E \mid f(x) = \lambda x\}$ est un sous-espace vectoriel de E, appelé sous-espace propre de f associéé à la valeur propre λ . Les élements de E_{λ} sont appelés vecteurs propres de f associés à λ .

L'ensemble des valeurs propres de f est appelé le spectre de f, noté $\mathrm{Sp}(f)$.

Proposition 5. Soit $\lambda_1, \ldots, \lambda_k$ des valeurs propres de f distinctes deux à deux. Alors les sous-espaces propres $E_{\lambda_1}, \ldots, E_{\lambda_k}$ sont en somme directe, et f induit une homothétie sur chaque espace propre.

Exemple 6. Si
$$A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$$
, $\operatorname{Sp}(A) = \{1, 3\}$, $E_1 = \operatorname{Vect}(1, 0)$ et $E_3 = \operatorname{Vect}(1, 1)$.

Si
$$A = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$$
, alors $\operatorname{Sp}(A) = \emptyset$ dans \mathbb{R} .

1.2 Algèbre $\mathcal{L}(E)$. Polynômes d'endomorphisme.

Proposition 7. $(\mathcal{L}(E), +, \circ)$ est une k-algèbre.

 $L'application \varphi_f: \begin{cases} (k[X], +, \times) & \to & (\mathcal{L}(E), +, \circ) \\ P & \mapsto & P(f) \end{cases}$ est un morphisme de k-algèbre. Son noyau est un idéal de k[X], appelé idéal annulateur.

L'ensemble $\{P(f) \mid P \in k[X]\}$ est alors une sous-algèbre commutative de $\mathcal{L}(E)$.

Définition 8. k[X] étant principal, il existe un unique polynôme unitaire $P \in k[X]$ tel que $(P) = \text{Ker } \varphi_f$. Ce polynôme s'appelle polynôme minimal de f, et est noté μ_f .

Exemple 9. Si f est un projecteur, $\mu_f = X(X+1)$. Si f est une symétrie non triviale et $\operatorname{car}(k) \neq 2$, on a $\mu_f = (X+1)(X-1)$. Si f est nilpotente d'ordre r, on a $\mu_f = X^r$.

Proposition 10. Soit $\lambda \in k$. Alors $\lambda \in \operatorname{Sp}(f) \iff \mu_f(\lambda) = 0$.

Proposition 11. μ_f est invariant par similitude : pour tout $p \in GL(E)$, $\mu_{pfp^{-1}} = \mu_f$.

Remarque 12. Ker P(f) et Im P(f) sont des sous-espaces vectoriels de E stables par f.

Théorème 13. (Lemme des noyaux)

Soit $P = P_1 \cdots P_r \in k[X]$ tels que P_1, \dots, P_r soient premiers entre eux deux à deux. Alors:

$$\operatorname{Ker} P(f) = \operatorname{Ker} P_1(f) \oplus \cdots \oplus \operatorname{Ker} P_r(f)$$

1.3 Polynôme caractéristique

Définition 14. On appelle polynôme caractéristique de A (resp. de f) le polynôme de k[X] défini par $\chi_A(X) = \det(A - XI_n)$ (resp. $\chi_f(X) = \det(f - X\operatorname{Id})$).

Proposition 15. Le polynôme caractéristique est stable par transposition : $\chi_{A^T} = \chi_A$.

Proposition 16. χ_A est un polynôme de degré n. Si $\chi_A = (-1)^n \sum_{k=0}^n a_k X^k$, alors on a = 1, $a_{n-1} = -\text{Tr}(A)$ et $a_0 = (-1)^n \det(A)$.

Exemple 17. (Calcul pratique de χ_A) Si n=2, $\chi_A(X)=X^2-\operatorname{Tr}(A)X+\det(A)$.

2 Section 2

Si
$$n = 3$$
, $\chi_A(X) = -X^3 + \text{Tr}(A) X^2 - \frac{1}{2} (\text{Tr}(A)^2 - \text{Tr}(A^2)) X + \det(A)$.

Ces formules permettent le calcul efficace du polynôme caractéristique en petite dimension. En grande dimension (en général, à partir de n=4) on leur préfère l'algorithme du pivot de Gauss pour le déterminant.

Exemple 18. Si f est nilpotent, $\chi_f(X) = (-1)^n X^n$.

Théorème 19. (Cayley-Hamilton) On a $\chi_f(f) = 0$. Autrement dit, $\mu_f | \chi_f$.

Corollaire 20. Les valeurs propres de f sont racines de son polynôme caractéristique (en fait, ce sont les seules).

2 Diagonalisation d'un endomorphisme. Applications.

2.1 Endomorphisme diagonalisable, critères.

Définition 21. On dit que f est diagonalisable s'il existe une base de vecteurs propres de f. On dit que A est diagonalisable si elle est semblable à une matrice diagonale.

Proposition 22. (Condition suffisante de diagonalisabilité) Si χ_f est scindé à racines simples, alors f est diagonalisable.

Théorème 23. Les propositions suivantes sont équivalents :

- f est diagonalisable.
- μ_f est scindé à racines simples dans k.
- χ_f est scindé dans k et $\dim(E_\lambda) = v_\lambda$, où v_λ désigne la multiplicité de λ en tant que racine de χ_f .
- $E = \bigoplus_{\lambda \in \operatorname{Sp}(f)} E_{\lambda}.$

Corollaire 24. Si f possède n valeurs propres distinctes, alors f est diagonalisable.

Corollaire 25. Si f est diagonalisable et que $F \subset E$ est un sous-espace vectoriel stable par f, alors $f|_F$ est diagonalisable.

Exemple 26. Les projecteurs et les symétries sont toujours diagonalisables (sauf si car(k) = 2).

Les endomorphismes nilpotents non nuls ne sont jamais diagonalisables.

Exemple 27. Les matrices de rotation de \mathbb{R}^2 (d'angle non congru à π modulo \mathbb{Z}) ne sont pas diagonalisables dans $\mathcal{M}_2(\mathbb{R})$, mais elles le sont dans $\mathcal{M}_2(\mathbb{C})$.

Théorème 28. Si $k = \mathbb{F}_q$ est fini avec $q = p^n$, f est diagonalisable si et seulement si $f^q - f = 0$.

Proposition 29. Dans $\mathcal{M}_n(\mathbb{F}_q)$, le nombre de matrices diagonalisables est :

$$\sum_{m_1+\cdots+m_q=n} \frac{|\mathrm{GL}_n(\mathbb{F}_q)|}{\prod_{i=1}^q |\mathrm{GL}_{m_i}(\mathbb{F}_q)|}$$

2.2 Diagonalisation simultannée

Proposition 30. Soit $f, g \in \mathcal{L}(E)$ tels que $f \circ g = g \circ f$. Alors:

- i. Tout sous-espace propre de f est stable par g (en particulier Ker f).
- ii. Im f est stable par g.

Théorème 31. (Diagonalisation simultannée)

Si f et $g \in \mathcal{L}(E)$ sont des endomorphismes diagonalisables qui commutent, alors ils sont diagonalisables dans une même base de vecteurs propres : on dit qu'ils sont codiagonalisables.

Remarque 32. La réciproque est vraie.

Application 33. Soit G un groupe abélien fini. Alors toute représentation irréductible de G est de dimension 1.

2.3 Endomorphismes auto-adjoints et normaux

Dans cette sous-partie, E est un espace euclidien ou hermitien (de dimension finie) muni d'un produit scalaire $\langle .|. \rangle$.

Définition 34. Il existe un endomorphisme $f^* \in \mathcal{L}(E)$ vérifiant :

$$\forall x, y \in E \quad \langle f(x)|y\rangle = \langle x|f^*(y)\rangle$$

f* est appelé adjoint de f.

Remarque 35. $f \mapsto f^*$ est un endomorphisme involutif de $\mathcal{L}(E)$.

Exemple 36. Si p est un projecteur, $p^* = p$.

Remarque 37. Si B est une base orthonormée de E, on a :

$$\operatorname{mat}_B(f^*) = \overline{\operatorname{mat}_B(f)}^T$$

Définition 38. On dit que f est autoadjoint si $f^* = f$.

Applications topologiques

On dit que f est normal si il commute avec son adjoint.

Proposition 39. Soit F un sous-espace vectoriel de E stable par f. Alors F^{\perp} est stable par f^* .

Théorème 40. Si f est autoadjoint, alors f est diagonalisable dans une base orthonormée de vecteurs propres de f, et de plus les valeurs propres de f sont réelles.

Corollaire 41. Toute matrice symétrique réelle est diagonalisable.

Application 42. Soit q une forme quadratique hermitienne. Alors il existe une base orthogonale pour laquelle q est orthonormée.

Théorème 43. Les propositions suivantes sont équivalentes :

- f est normal.
- f est diagonalisable dans une base orthonormale de vecteurs propres de E.
- f et f* sont codiagonalisables dans une base orthonormale de vecteurs propres de E.

Théorème 44. Si f est normal, il existe une base orthogonale de E dans laquelle la matrice de f est $\operatorname{Diag}(\lambda_1, \ldots, \lambda_r, \tau_1, \ldots, \tau_s)$, où $\lambda_i \in \mathbb{R}$ et $\tau_j = \begin{pmatrix} a_j & -b_j \\ b_j & a_j \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ est une matrice de rotation.

Application 45. Les matrices antisymétriques réelles et les matrices orthogonales sont diagonalisables sur \mathbb{C} .

3 Décomposition de Jordan-Chevalley. Exponentielle de matrices.

Proposition 46. Soit $P = P_1 \cdots P_r$ un polynôme annulateur de f avec P_1, \dots, P_r premiers entre eux deux à deux. On a $E = \operatorname{Ker} P_1(f) \oplus \cdots \oplus \operatorname{Ker} P_r(f)$, et la projection sur $\operatorname{Ker} P_i(f)$ parallèlement à $\bigoplus_{j \neq i} \operatorname{Ker} P_j(f)$ est un polynôme en f.

Théorème 47. (Décomposition de Jordan-Chevalley)

On suppose que χ_f est scindé sur k. Alors il existe un unique couple (d,n) d'endomorphismes de $\mathcal{L}(E)$ tels que :

- d est diagonalisable, n est nilpotent.
- f = d + n et $d \circ n = n \circ d$

De plus, d et n sont des polynômes en f.

Proposition 48. On considère une norme d'algèbre $\|.\|$ sur $\mathcal{M}_n(k)$, par exemple la norme d'opérateur. On rappelle que $(\mathcal{M}_n(k), \|.\|)$ est alors un espace de Banach.

La série $\sum_{k \in \mathbb{N}} \frac{A^k}{k!}$ est normalement convergente, donc convergente.

Définition 49. On note $\exp(A) = \sum_{n=0}^{+\infty} \frac{A^n}{n!}$.

Proposition 50. Si $P \in GL_n(k)$, on $a \exp(PAP^{-1}) = P \exp(A) P^{-1}$.

Proposition 51. Si A = D + N avec D diagonalisable et N nilpotente, alors :

$$\exp(A) = \exp(D)\exp(N)$$

Remarque 52. Si χ_A est scindé sur k, la réduction de Jordan-Chevalley donne alors une méthode simple pour calculer $\exp(A)$. En effet, $\exp(D)$ se calcule facilement par la proposition 50, et le calcul de $\exp(N)$ est immédiat puisque $N^n=0$ implique que $\exp(N)=\sum_{k=0}^{n-1}\frac{N^k}{k!}$.

Développement 1 :

Théorème 53. Les morphismes continus de \mathbb{U} vers $\mathsf{GL}_n(\mathbb{R})$ sont de la forme :

$$\varphi: e^{it} \mapsto \mathsf{QDiag}(R_{tk_1}, \ldots, R_{tk_n}, 0, \ldots, 0) \ Q^{-1}$$

$$\textit{Où } Q \in \mathsf{GL}_n(\mathbb{R}), \ r \in \mathbb{N}, \ k_1, \dots, k_r \in \mathbb{Z}^* \ \textit{et} \ R_\theta = \left(\begin{array}{cc} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{array} \right) \ \textit{pour tout} \ \theta \in \mathbb{R}.$$

4 Applications topologiques

Définition 54. On définit les ensembles $\mathcal{D}_n(k)$ des matrices diagonalisables, $\mathcal{T}_n(k)$ des matrices trigonalisables, et $\mathcal{C}_n(k)$ des matrices diagonalisables à valeurs propres distinctes.

Proposition 55. Dans l'espace topologique $\mathcal{T}_n(k)$, on a $\overline{\mathcal{C}_n(k)} = \mathcal{T}_n(k)$ et $\mathcal{D}_n(k)^\circ = \mathcal{C}_n(k)$. En particulier, $\mathcal{C}_n(k)$ est un ouvert dense de $\mathcal{T}_n(k)$.

Application 56. Pour tout $A \in \mathcal{M}_n(\mathbb{C})$, $\det(\exp(A)) = \exp(\operatorname{Tr}(A))$.

Application 57. Pour l'action de $GL_n(k)$ sur $\mathcal{M}_n(k)$ par conjugaison, A est diagonalisable si et seulement si son orbite est fermée, et nilpotente si et seulement si son orbite contient zéro dans son adhérance.

Développement 2 :

Théorème 58. L'exponentielle exp: $S_n(\mathbb{R}) \to S_n^{++}(\mathbb{R})$ est un homéomorphisme.