Krzysztof Pszeniczny nr albumu: 347208 str. 1/4 Seria: 4

Zadanie 1

Zapiszmy P – podprzestrzeń z zadania dana równaniami $x_1 + x_2 - 1 = 0$, $x_1 - x_3 + x_4 = 0$, $x_1 + x_3 - x_5 + 1 = 0$, zaś Q – szukana podprzestrzeń.

Mamy dim P=2, dim Q=3, P||Q, zatem $TP\subset TQ$. Mamy jednak, że TP jest opisane równaniami $x_1+x_2=0$, $x_1-x_3+x_4=0$, $x_1+x_3-x_5=0$.

Mamy jednak, że TP = $\{(t, -t, s-t, s-2t, s) : s, t \in \mathbb{R}\}$, co łatwo widać z układu równań (uzależniając wszystkie zmienne od x_1, x_5). Wstawiając t = 1, s = 0, a potem t = 0, s = 1 uzyskujemy łatwo TP = $\lim\{(1, -1, -1, -2, 0), (0, 0, 1, 1, 1)\}$, gdyż wektory te są liniowo niezależne (schodki na pierwszej i ostatniej współrzędnej).

Musi być TP \subset TQ, $(1,3,0,-1,2) = \omega(M_1,M_2) \in$ TQ, skad

$$lin\{(1,-1,-1,-2,0),(0,0,1,1,1),(1,3,0,-1,2)\}\subseteq TQ$$

Odejmując pierwszy wektor od ostatniego uzyskujemy

$$lin\{(1,-1,-1,-2,0),(0,0,1,1,1),(0,4,1,1,2)\} \subseteq TQ$$

Odejmując dwukrotność drugiego wektora od trzeciego i mnożąc pierwszy przez cztery mamy:

$$lin\{(4, -4, -4, -8, 0), (0, 0, 1, 1, 1), (0, 4, -1, -1, 0)\} \subseteq TQ$$

Dodając ostatni wektor do pierwszego mamy

$$lin\{(4,0,-5,-9,0),(0,0,1,1,1),(0,4,-1,-1,0)\} \subseteq TQ$$

Wektory te są liniowo niezależne (schodki na pierwszej, drugiej i ostatniej współrzędnej), zatem przez porównanie wymiarów

$$lin\{(4,0,-5,-9,0),(0,0,1,1,1),(0,4,-1,-1,0)\} = TQ$$

Zatem

$$TO = \{(4a, 4c, -5a + b - c, -9a + b - c, b) : a, b, c \in \mathbb{R}\}\$$

Zatem mamy łatwo, że przestrzeń TQ jest opisana równaniami $x_3 = -\frac{5}{4}x_1 + x_5 - \frac{1}{4}x_2$, $x_4 = -\frac{9}{4}x_1 + x_5 - \frac{1}{4}x_2$. Czyli $5x_1 + x_2 + 4x_3 - 4x_5 = 0$, $9x_1 + x_2 + 4x_4 - 4x_5 = 0$.

Aby uzyskać równania na Q należy wstawić jakiś punkt i policzyć wyrazy wolne. Wstawiając M_1 uzyskujemy $5x_1 + x_2 + 4x_3 - 4x_5 = 8$, $9x_1 + x_2 + 4x_4 - 4x_5 = 8$ i są to równania na podprzestrzeń Q.

Zadanie 2

Sformułowanie "trójkąt A, B, C" w treści zadania rozumiem jako trójka punktów w położeniu ogólnym. Stąd w szczególności aff (A, B), aff (B, C), aff (B, C) są wymiaru 1, zaś aff (A, B, C) jest wymiaru 2.

Zapiszmy $A_1 = \lambda B + (1 - \lambda)C$, $B_1 = \kappa C + (1 - \kappa)A$, $C_1 = \mu A + (1 - \mu)B$, przy czym λ , κ , $\mu \notin \{0, 1\}$.

Ponieważ A, B, C są w położeniu ogólnym, to aff $(A, B) \neq aff(A, C)$, gdyż w przeciwnym wypadku aff (A, B, C) = aff(A, B) = aff(A, C), lecz ta pierwsza przestrzeń jest wymiaru 2, a kolejne wymiaru 1. Ponadto aff $(A, B) \cap aff(A, C) \subseteq aff(A, B)$, zatem aff $(A, B) \cap aff(A, C)$ jest puste lub dim $(aff(A, B) \cap aff(A, C)) < 1$, lecz $A \in aff(A, B) \cap aff(A, C)$, zatem dim $(aff(A, B) \cap aff(A, C)) = 0$, czyli aff $(A, B) \cap aff(A, C) = \{A\}$.

Stąd mamy, że w szczególności punkt C_1 jest różny od punktu A_1 , gdyż należą do tych przestrzeni i są różne od punktu A. $C_1 = \mu A + (1 - \mu)B$,

Analogicznie uzyskujemy, że A₁, B₁, C₁ są parami różne.

Teraz zauważmy, że $\omega(B,A_1)=\lambda\omega(B,B)+(1-\lambda)\omega(B,C)=(1-\lambda)\omega(B,C)$ oraz $\omega(A_1,C)=\lambda\omega(B,C)+(1-\lambda)\omega(C,C)=\lambda\omega(B,C)$, zatem $\omega(B,A_1)=\frac{1-\lambda}{\lambda}\omega(A_1,C)$, zatem $k_\alpha=\frac{1-\lambda}{\lambda}$. Analogicznie $k_b=\frac{1-\kappa}{\kappa}$ oraz $k_c=\frac{1-\mu}{\mu}$.

nr albumu: 347208 str. 2/4 Seria: 4

Wynikanie \Longrightarrow

Krzysztof Pszeniczny

Załóżmy, że punkty A_1, B_1, C_1 leżą na jednej prostej, czyli $A_1 \in aff(B_1, C_1)$ (z różności punktów B_1, C_1). Stąd istnieje element ciała ξ taki, że $A_1 = \xi B_1 + (1 - \xi)C_1$.

Stąd $\lambda B + (1-\lambda)C = A_1 = \xi (\kappa C + (1-\kappa)A) + (1-\xi)(\mu A + (1-\mu)B) = (\xi(1-\kappa) + (1-\xi)\mu)A + (1-\xi)\mu A + (1-\xi)\mu A$ $((1-\xi)(1-\mu)) \ B + (\xi \kappa) \ C. \ \text{Zatem} \ \xi (1-\kappa) + (1-\xi)\mu = 0, \ (1-\xi)(1-\mu) = \lambda, \ \xi \kappa = (1-\lambda).$

Stąd zaś $\xi = \frac{1-\lambda}{\kappa}$, $1-\xi = \frac{\lambda}{1-\mu}$ (ponieważ κ i $1-\mu$ są niezerowymi elementami ciała), zatem wstawiając to pierwszej równości uzyskujemy, $\frac{1-\lambda}{\kappa}(1-\kappa) + \frac{\lambda}{1-\mu}\mu = 0$, czyli $\frac{1-\lambda}{\kappa}(1-\kappa) = -\frac{\lambda}{1-\mu}\mu$, skąd z niezerowości μ, λ uzyskujemy $\frac{1-\lambda}{\lambda}\cdot\frac{1-\kappa}{\kappa}\cdot\frac{1-\mu}{\mu}=-1$, czyli $k_{a}k_{b}k_{c}=-1$.

Wynikanie \Leftarrow

Nie może wtedy na raz zachodzić $\lambda + \kappa = 1$, $\lambda + \mu = 1$, $\mu + \kappa = 1$, gdyż dawałoby to, że $\kappa = 1 - \lambda$, $\mu = 1 - \lambda$, zatem $1 = \mu + \kappa = 2 - 2\lambda$, zatem $2\lambda = 1$. Nad charakterystyką dwa jest to oczywista sprzeczność, nad każdą inną uzyskujemy $\lambda = \frac{1}{2}$, zatem i $\kappa = \mu = \frac{1}{2}$, skąd $k_a = k_b = k_c = 1$, co nie spełnia warunku $k_a k_b k_c = -1$. Zatem któraś z tych nierówności nie jest prawdziwa, bez straty ogólności załóżmy, że $\lambda + \kappa \neq 1$.

Mamy, $\dot{z}e \, \omega(A_1, B_1) = \omega(A_1, A) + \omega(A, B_1) = \lambda \omega(B, A) + (1 - \lambda)\omega(C, A) + \kappa \omega(A, C) = \lambda \omega(B, A) + (1 - \lambda - \lambda)\omega(B, A) + (1 - \lambda)\omega(B, A)$ κ) ω (C, A), jednak ponieważ wektory ω (B, A), ω (C, A) są liniowo niezależne, to ω (A₁, B₁) \notin lin ω (B, A), zatem $T \operatorname{aff}(A_1, B_1) \neq T \operatorname{aff}(A, B)$, zatem proste $\operatorname{aff}(A_1, B_1)$ oraz $\operatorname{aff}(A, B)$ nie są równoległe. Mamy więc ponadto, że $lin(\omega(A_1, B_1), \omega(A, B)) = T aff(A, B, C)$ (przez porównanie wymiarów), zatem stąd już łatwo mamy, że proste te przecinają się. Istotnie, istnieją w ciele elementy ξ, ζ takie, że $\xi\omega(A_1, B_1) + \zeta\omega(A, B) = \omega(A, A_1)$, zatem $aff(A, B) \ni A + \zeta \omega(A, B) = A + \omega(A, A_1) + \xi \omega(A_1, B_1) = A_1 + \xi \omega(A_1, B_1) \in aff(A_1, B_1).$

Rozpatrzmy punkt $\hat{C}_1 \in \text{aff}(A,B) \cap \text{aff}(A_1,B_1)$. Nie może być, żeby $\hat{C}_1 = A$, gdyż mielibyśmy $A \in A$ $aff(A_1, B_1)$, zatem $aff(A, B_1) \subseteq aff(A_1, B_1)$, skąd przez porównanie wymiarów (bo $A \neq B_1$) mamy aff(A, C) = $aff(A, B_1) = aff(A_1, B_1)$. Jednak ponieważ $A_1 \in aff(B, C)$, to mielibyśmy $A_1 \in aff(B, C) \cap aff(A, C)$, co jak stwierdziliśmy wcześniej, dawałoby $A_1 = C$. Zatem $\hat{C}_1 \neq A$. Analogicznie $\hat{C}_1 \neq B$. Jeszcze bardziej oczywiste jest $\hat{C}_1 \neq C$, gdyż w przeciwnym wypadku byłoby $C \in \text{aff}(A, B)$, co jest sprzeczne z tym, że dim aff(A, B, C) = 2.

Mamy $\omega(A, \hat{C}_1) = k_{\hat{c}}\omega(\hat{C}_1, B)$. Ponieważ A_1, B_1, \hat{C}_1 tworzą przestrzeń afiniczną wymiaru jeden i żaden z nich nie jest wierzchołkiem trójkąta, to $k_{\alpha}k_{b}k_{\hat{c}}=-1$. Jednak z założenia $k_{\alpha}k_{b}k_{c}=-1$, zatem $k_{c}=k_{\hat{c}}$.

Stąd zaś mamy już łatwo, że $C_1 = \hat{C}_1$ z afinicznej niezależności punktów A, B, zatem punkty A_1, B_1, C_1 leżą na jednej prostej.

Zadanie 4

Przyjmę, że należy tezę udowodnić nad ciałem liczb rzeczywistych, gdyż w przeciwnym wypadku pojęcie przeciwległych wierzchołków traci sens. Choć swoją drogą, wystarczy mi charakterystyka ciała różna od 2, 3, 5.

Zauważmy, że $\frac{3}{4}(\frac{1}{3}A + \frac{2}{3}B) + \frac{1}{4}C = \frac{1}{4}A + \frac{2}{4}B + \frac{1}{4}C = \frac{3}{4}(\frac{1}{3}C + \frac{2}{3}B) + \frac{1}{4}A$, zatem punkt $\frac{1}{4}A + \frac{2}{4}B + \frac{1}{4}C$ (oznaczony na rysunku jako X) należy do przecięcia pewnej pary poprowadzonych w zadaniu prostych.

Ponadto $\frac{3}{5}(\frac{2}{3}C + \frac{1}{3}B) + \frac{2}{5}A = \frac{2}{5}A + \frac{2}{5}C + \frac{1}{5}B = \frac{3}{5}(\frac{2}{3}A + \frac{1}{3}B) + \frac{2}{5}C$, zatem punkt $\frac{2}{5}A + \frac{1}{5}B + \frac{2}{5}C$ (oznaczony na rysunku jako Y) należy do przecięcia pewnej pary prostych z zadania.

Latwo można teraz zobaczyć, że przekątnymi z zadania są aff $(\frac{1}{4}A + \frac{2}{4}B + \frac{1}{4}C, \frac{2}{5}A + \frac{1}{5}B + \frac{2}{5}C)$, aff $(\frac{2}{4}A + \frac{1}{4}C + \frac{1}{4}C + \frac{1}{5}C)$, aff $(\frac{2}{4}A + \frac{1}{4}C + \frac{1}{4}C + \frac{1}{5}C)$ $\frac{1}{4}B + \frac{1}{4}C, \frac{1}{5}A + \frac{2}{5}B + \frac{2}{5}C), \text{ aff } (\frac{1}{4}A + \frac{1}{4}B + \frac{2}{4}C, \frac{2}{5}A + \frac{2}{5}B + \frac{1}{5}C).$

Ponadto $\frac{4}{9}(\frac{1}{4}A + \frac{2}{4}B + \frac{1}{4}) + \frac{5}{9}(\frac{2}{5}A + \frac{1}{5}B + \frac{2}{5}C) = \frac{1}{3}A + \frac{1}{3}B + \frac{1}{3}C$, zatem punkt $\frac{1}{3}A + \frac{1}{3}B + \frac{1}{3}C$ (oznaczony jako M) należy do przekątnej łączącej punkty $\frac{1}{4}A + \frac{2}{4}B + \frac{1}{4}C$ oraz $\frac{2}{5}A + \frac{1}{5}B + \frac{2}{5}C$.

Jednak analogicznie należy on do pozostałych przekątnych. Zatem przecinają się one w jednym punkcie.

Zadanie 5

Część a

Możemy zapisać $\phi(p+\nu)=q+D\phi(\nu)$, dla ustalonych punktów początkowych p, q. Mamy jednak, że ponieważ $D\phi$ nie ma wartości własnej 1, to $D\phi$ – id jest izomorfizmem. Zatem w szczególności istnieje takie v_0 , że $(D\phi - id)(v_0) = \omega(q,p)$. Zatem $D\phi(v_0) = v_0 + \omega(q,p)$, zatem zaczepiając te wektory w punkcie q uzyskujemy $\phi(p+\nu_0)=q+D(\phi(\nu_0))=q+\nu_0+\omega(q,p)=p+\nu_0$, zatem $p+\nu_0$ jest punktem stałym.

Rysunek 1: Sytuacja z zadania czwartego

Część b

Niech p będzie punktem stałym tego przekształcenia. Ponieważ możemy zapisać $\phi(p+\nu) = q + D\phi(\nu)$ dla pewnego q, zaś wstawienie $\nu = 0$ daje nam p = q, to mamy, że $\phi(p+\nu) = p + D\phi(\nu)$.

Gdyby $D\phi$ miało wartość własną 1 z wektorem własnym v_0 , to byłoby $\phi(p+v_0)=p+D\phi(v_0)=p+v_0$, zatem mielibyśmy, że $p+v_0$ byłoby punktem stałym, ale jest to punkt różny od p.

Zatem $D\varphi$ nie ma wartości własnej 1. Niech teraz U będzie podprzestrzenią niezmienniczą. Wtedy $\varphi_{|U}$ jest przekształceniem afinicznym i także nie ma wartości własnej 1. Na mocy części a, przekształcenie to ma punkt stały. Ale jedynym punktem stałym jest p, zatem $p \in U$.

Zadanie 6

Rozwiążmy układ równań f(x, y, z) = (x, y, z), czyli

$$\begin{cases} 5x - 2y - 3z &= 0 \\ -2x + 2y - 6z &= -6 \\ -3x - 6y - 3z &= -12 \end{cases}$$

Widzimy, że (x, y, z) = (1, 1, 1) spełnia ten układ równań.

Dodając drugie równanie do pierwszego oraz trzykrotność drugiego do pierwszego mamy

$$\begin{cases}
-3x - 0y - 9z &= -6 \\
-2x + 2y - 6z &= -6 \\
-9x - 0y - 21z &= -30
\end{cases}$$

Licząc wyznacznik układu det $\begin{pmatrix} -3 & 0 & -9 \\ -2 & 2 & -6 \\ -9 & 0 & -21 \end{pmatrix}$ możemy rozwinąć rozwinięciem Laplace'a względem drugiej

kolumny uzyskując $2 \cdot (-1)^{1+1} \det \begin{pmatrix} -3 & -9 \\ -9 & -21 \end{pmatrix} = -36 \neq 0$, zatem układ ten jest oznaczony i ma dokładnie jedno rozwiązanie, zatem p:= (1,1,1) jest jedynym punktem stałym przekształcenia afinicznego f.

Na mocy części b zadania piątego, każda podprzestrzeń niezmiennicza musi zawierać ten punkt stały. Ponadto można zapisać $f(p+\nu)=p+Df(\nu)$. Jeśli U jest podprzestrzenią niezmienniczą, to znaczy, że dla $p+\nu\in U$ zachodzi $p+Df(\nu)\in U$, zatem z tego, że $\nu\in TU$ wynika, że $Df(\nu)\in TU$. W drugą stronę, jeśli z tego, że $\nu\in TU$ wynika, że $Df(\nu)\in TU$ oraz $p\in U$, to $p+\nu\in U$, zatem $p+Df(\nu)\in U$.

Wystarczy więc teraz znaleźć przestrzenie niezmiennicze przekształcenia Df, gdyż przestrzenie niezmiennicze przekształcenia f będą to tamte przestrzenie zaczepione w punkcie p.

Jednak zauważmy, że Df(1,2,3) = (-7,-14,-21) = -7(1,2,3), Df(3,0,-1) = (21,0,-7) = 7(3,0,-1), Df(0,3,-2) = (0,21,-14) = 7(0,3,-2).

Ponieważ (3,0,-1) oraz (0,3,-2) są liniowo niezależne (schodki), to przestrzeń własna związana z wartością własną 7 jest wymiaru dwa, stąd łatwo widzimy (z teorii związanej z postaciami Jordana), że $\mathbb{R}^3 = \text{lin}(1,2,3) \oplus \text{lin}(3,0,-1) \oplus \text{lin}(0,3,-2)$, i są to przestrzenie niezmiennicze.

Krzysztof Pszeniczny

nr albumu: 347208 str. 4/4 Seria: 4

Rozpatrzmy jakąś przestrzeń niezmienniczą U. Jeśli U nie jest przestrzenią zerową, to zawiera jakiś wektor $x = \alpha \nu_1 + \beta \nu_2 + \gamma \nu_3$, gdzie $\nu_1 = (1, 2, 3)$, $\nu_2 = (3, 0, -1)$, $\nu_3 = (0, 3, -2)$. W takim wypadku zawiera też wektor $f(x) = -7\alpha \nu_1 + 7\beta \nu_2 + 7\gamma \nu_3$. Zatem zawiera też wektor $f(x) + 7x = 14\beta \nu_2 + 14\gamma \nu_3$ oraz wektor $f(x) - 7x = -14\alpha \nu_1$.

Stąd łatwy wniosek, że $U = (U \cap \text{lin} \nu_1) \oplus (U \cap \text{lin}(\nu_2, \nu_3))$ i są to przestrzenie niezmiennicze. Co więcej, jeśli T jest podprzestrzenią niezmienniczą $\text{lin} \nu_1$, zaś V jest podprzestrzenią niezmienniczą $\text{lin}(\nu_2, \nu_3)$, to $T \oplus V$ jest podprzestrzenią niezmienniczą przestrzeni \mathbb{R}^3 .

Podprzestrzenie niezmiennicze przestrzeni $\lim v_1$ to przestrzeń zerowa i całe $\lim v_1$.

Podprzestrzenie niezmiennicze przestrzeni $\lim(\nu_2,\nu_3)$ mogą być wymiaru 0, 1 lub 2. Łatwo teraz widać, że mogą to być przestrzenie postaci: $\{0\}$, $\lim\nu_1$, $\lim(\xi\nu_1+\nu_2)$ (dla dowolnego ξ) oraz $\lim(\nu_1,\nu_2)$. Wynika to stąd, że jeśli taka podprzestrzeń zawiera dwie nieproporcjonalne kombinacje liniowe wektorów ν_1,ν_2 , to jest już wymiaru 2, zatem jest równa $\lim(\nu_1,\nu_2)$.

Zatem podsumujmy: podprzestrzeniami niezmienniczymi przekształcenia f są:

- $(1,1,1)+\{0\}$
- (1,1,1) + lin(1,2,3)
- (1,1,1) + lin(3,0,-1)
- $(1,1,1) + lin\{(1,2,3), (3,0,-1)\}$
- $(1,1,1) + lin\{\xi(1,2,3) + (0,3,-2)\}$
- $(1,1,1) + lin\{(1,2,3), \xi(1,2,3) + (0,3,-2)\}$
- $(1,1,1) + \lim\{(3,0,-1),(0,3,-2)\}$
- $(1,1,1) + lin\{(1,2,3), (3,0,-1), (0,3,-2)\}$