Lab 9: BJT Amplifier Design

Name: Wan-Yu Liao

ECEN 325 Section 514

TA: Mandela

Lab Date: November 1, 2019

Lab Report Due Date: November 8, 2019

Calculation

Chouse
$$V_{RE} = 1.3V$$
 $V_0 = 1.1V$ $|V_{CE,SMT}| = 0.3V$
 $5 - |II - I_{13} - 0.3| \ge |V_{RC}| \ge |II| \Rightarrow 2.3 \ge |V_{RC}| \ge |II|$
 $\Rightarrow V_{RC} = 2.3V$
 $\frac{2.3 - 0.1 - |II|}{R_H} \ge \frac{|II|}{|00|} \Rightarrow R_H \le 4s.4T \Rightarrow R_H = 38.\Omega$
 $I_{C2} = \frac{2.3 - 0.7}{33} = 48mA$
 $Chouse \quad N = 20, \quad \beta = 300, \quad R_1 = 1.5R_{\Omega}$
 $20 \cdot \frac{48m}{350} \le I_{CI} \le \frac{300}{1500} = \frac{|I_{C2}|}{|I_{S} + 0.1|} + \frac{20}{5 - I_{S} - 0.1} + \frac{20}{2.3}$
 $\Rightarrow 2.7H_1 + 20 \le I_{CI} \le 7.9MA \Rightarrow I_{CI} = 4.2MA$
 $R_C = \frac{2.3}{4.2m} = 54.7\Omega \qquad R_E = \frac{1.3}{4.2m} = 30.9\Omega$
 $R_{B1} = \frac{300(5 - 1.3 - 0.7)}{20 \cdot 4.2m} = 10.7 \text{ k}\Omega$
 $R_{B2} = \frac{300(1.3 + 0.7)}{20 \cdot 4.2m} = 7.1 \text{ k}\Omega$

Simulation

(I redo the simulation, since the simulation in pre-lab was wrong)

Figure 1: DC solutions

Figure 2-1: AC Simulation of Av

Figure 2-2: AC Simulation of Ri

Figure 3: Time-domain waveform

$$A_V = \frac{1.03 - (-0.977)}{0.05 - (-0.05)} = \mathbf{20.07} \approx \mathbf{20}$$

rigure 4: 1 nD

THD = 3.06% which is less than 5%

Measurement

Figure 5: Stage 1 Gain

(I change R_G from 15Ω to 3.33Ω since 15Ω didn't give me gain of 20)

$$A_V = \frac{1.1503}{0.04955} = \mathbf{23.21}$$

Figure 6: Stage 2 Gain

$$A_V = \frac{0.33972}{0.05055} = 6.72$$

Figure 7: THD at Stage 1

$$THD = -24.4158dB = 0.06015 = 6\%$$

Table

	Calculation	Simulation
V_{RE}	1.3V	1.34V
V_{RC}	2.3V	2.27V
I_{C1}	4.2mA	4.44mA
I_{C2}	48mA	44.4mA

Comment

The measurement part is not correct for several reasons. First, the Analog Discovery 2 can only handle up to 250mW. To make stage 2 have gain of 20, the circuit needs to be modified to reduce the power consumption at stage 1. Second, the breadboard, resistors, transistors, and capacitors in the real world are not ideal. So that why not everything work as simulation.