These questions are for practice, in preparation for Workshop 2.

1. Let $A = \{Argentina, Indonesia, China, Peru, France, Spain\}.$

A relation $R \subseteq A \times A$ is defined by

Argentina ← → Peru

 $aRb \iff a \text{ and } b \text{ are part of the same continent.}$

Indonesia ← ← ← China

(The continents are Africa, Antartica, Asia, Australia, Europe, N.America, S.America)

France ← Spain

Draw a graph representing this relation.

(Note two-way arrows)

2. Let $A = \{a, b, c, d\}$, $B = \{\alpha, \beta, \gamma, \delta\}$. Draw graphs representing the following relations.

(a)
$$R_1 = \{(a, \alpha), (b, \beta), (c, \gamma), (d, \delta)\}$$

(b)
$$R_2 = \{(a, \beta), (b, \alpha), (c, \delta), (d, \alpha), (d, \beta)\}.$$

 $R_1: egin{array}{cccc} a & \longrightarrow & lpha \ b & \longrightarrow & eta \ c & \longrightarrow & \gamma \ d & \longrightarrow & \delta \end{array}$

(c) $R_3 = \{(a, \alpha), (a, \beta), (a, \gamma), (a, \delta)\}.$

3. Let $S = \{a, b, c, d, e\}$ be a set of senators and $P = \{\alpha, \beta, \gamma, \delta\}$ be a set of policies. Let $R \subseteq S \times P$ be the relation defined by sRp if s supports p, using the graph below.

(a) Draw a graph of the inverse relation R^{-1} .

- (b) What does $pR^{-1}s$ mean? Answer in words, referring to senators and policies. Policy p is supported by senator s.
- (c) What is $\{s \in S ; pR^{-1}s\}$? Answer in words, referring to senators and policies. The set of senators that support policy p.

4. For each of the following relations $R \subseteq \{a, b, c\} \times \{\alpha, \beta, \gamma\}$ decide whether R is a function. If not, say why.

- (a) $R_1 = \{(a, \alpha), (b, \beta), (c, \gamma)\}$. Yes. There is exactly one pair containing a, exactly one pair containing b and exactly one pair containing c.
- (b) $R_2 = \{(a, \alpha), (a, \beta), (a, \gamma)\}.$ No. There is more than one pair containing a. (Also no pair containing b, nor c.)
- (c) $R_3 = \{(a, \alpha), (b, \alpha), (c, \alpha)\}.$ Yes. Same reason as for (a).
- (d) $R_4 = \{(a, \alpha), (b, \alpha), (c, \gamma)\}$. Yes. Same reason as for (a).
- 5. Let A, B, C be sets, each with at least two members. Define a function F as shown at right: (a) Is F injective (one-to-one)? Why or why not? $(a, b, c) \mapsto b.$
- (a) Is F injective (one-to-one)? Why or why not? No. Suppose $a_1, a_2 \in A, \ a_1 \neq a_2, \ b_1 \in B, \ c_1 \in C$. Then $F(a_1, b_1, c_1) = b_1 = F(a_2, b_1, c_1)$.

So two different members of the domain have the same value.

- (b) Is F surjective (onto)? Why or why not?
 Yes. ∀b ∈ B, F(a₁, b, c₁) = b.
 So every member of the codomain is the image of some member of the domain.
- **6.** Let U be a set, and $p \in U$. Let $F \subseteq \mathcal{P}(U) \times \mathcal{P}(U)$ be defined by SFT if and only if $S \cup \{p\} = T$. Note that F is a function, with rule $F(S) = S \cup \{p\}$.
- (a) State the domain and codomain of F. Domain = Codomain = $\mathcal{P}(U)$.
- (b) Determine the range of F. Range $= \{T \subseteq U : p \in T\}$. (Since $\forall T \in \mathcal{P}(U) \ p \in T \implies T = F(T)$.)
- (c) Is F injective (one-to-one)? Why or why not? No. Counterxample: $F(\emptyset) = F(\{p\}) = \{p\} \text{ (and } \emptyset \neq \{p\}).$
- (d) Is F surjective (onto)? Why or why not? No. Counterexample: $\emptyset \in \text{Codomain but } \emptyset \not\in \text{Range}$.
- 7. Let $\mathbb Z$ denote the set of integers; $\mathbb Z=\mathbb N\cup\{0\}\cup\{-n\ ;\ n\in\mathbb N\}$ Define functions F and G by $F:\ \mathbb Z\to\mathbb Z\qquad G:\ \mathbb Z\to\mathbb Z\\ z\mapsto z^2.\qquad z\mapsto z+1.$
- (a) Explain why G is bijective (a one-to-one correspondence). G is injective because if $z_1 \neq z_2$ then $z_1 + 1 \neq z_2 + 1$; i.e. $G(z_1) \neq G(z_2)$ G is surjective because $\forall y \in \mathbb{Z} \ \exists z \in \mathbb{Z} \ G(z) = y$; viz z = y 1.
- (b) Complete each of the following by providing signature and rule:

$$G^{-1}: \mathbb{Z} \to \mathbb{Z}$$
 $FoG: \mathbb{Z} \to \mathbb{Z}$ $GoF: \mathbb{Z} \to \mathbb{Z}$ $z \mapsto z - 1.$ $z \mapsto (z + 1)^2.$ $z \mapsto z^2 + 1.$