(第五题) 今为1,2,…,n 这n 个数的每个排列 a_1 a_2 … a_n 定义一个逆序表 b_1 b_2 … b_n ,其中 b_j 为在排列中数字j 的左边比j 大的数的个数. 例如:对于排列 5 9 1 8 2 6 4 7 3

其逆序表为

2 3 6 4 0 2 2 1 0

上述逆序表中第3个数为6表示原排列中数"3"左边有6个数比它大.

- (1) 请给出排列 1 3 5 7 9 8 6 4 2 的逆序表;
- (2) 若将一个排列映射为一个逆序表, 试证明该映射为单射.
- (1) 解:该排列的逆序表为 070503010
- (2) 证明: 记这个映射为f,设 $f(a_1\ a_2\cdots a_n)=b_1\ b_2\cdots b_n=f(a_1'a_2'\cdots a_n')$, 今证 $a_1\ a_2\cdots a_n=a_1'\ a_2'\cdots a_n'$ 。

记 $H_k(a_1 \ a_2 \cdots a_n)$ 为 $a_1 \ a_2 \cdots a_n$ 中删除 $1, 2, \cdots, n-k$,而得到的数列 (它是 $n-k+1, n-k+2, \cdots, n$ 这k个数的某个排列)。令命题 P_k 为

 $H_k(a_1 \ a_2 \cdots a_n) = H_k(a_1' \ a_2' \cdots a_n'), \ 1 \le k \le n,$

当k=1时, $H_k=[n]$,唯一确定。(其实 b_n 一定是0);

现证明 $P_k \Rightarrow P_{k+1} \quad (1 \le k \le n-1).$

注意到对于数n-k, 1, 2, \cdots , n-k-1这些较小数不会影响 b_{n-k} , 而其他较大的数都在 $H_k(a_1\ a_2\cdots a_n)$ 中,于是 $H_{k+1}(a_1\ a_2\cdots a_n)$ 必为将n-k插入 $H_k(a_1\ a_2\cdots a_n)$ 中的前 b_{n-k} 个数之后而得的数列。故 $H_{k+1}(a_1\ a_2\cdots a_n)=H_{k+1}(a_1'a_2'\cdots a_n')$ 。

于 是 $a_1 \ a_2 \cdots a_n = H_n(a_1 \ a_2 \cdots a_n) = H_n(a_1', a_2' \cdots a_n') =$ $a_1', a_2' \cdots a_n',$ 可知f为单射。证毕。