

Modelovanie rastu nádoru

Stupakov Denys, Moskalenko Renat, Bereza Oleksandr, Kozirovskiy Yevhen

Exponenciáln rast nadoru

Modifikacia rovnice pre

Model s dvoma

Modelovanie rastu nádoru

Stupakov Denys, Moskalenko Renat, Bereza Oleksandr, Kozirovskiy Yevhen

Úvod do modelovania nádoru

Modelovanie rastu nádoru

Stupakov Denys, Moskalenko Renat, Bereza Oleksandr, Kozirovskiy Yevhen

Exponenciáln rast nadoru

Modifikacia rovnice pre liecbu

Model s dvoma

- Rast nádoru sa často dá popísať pomocou diferenciálnych rovníc.
- Uvažujeme, že veľkosť nádoru v čase t označíme ako T(t).
- Cieľom je modelovať správanie nádoru pred a po nasadení liečby.

Exponenciálny rast - bez liečby

Modelovanie rastu nádoru

Stupakov Denys, Moskalenko Renat, Bereza Oleksandr, Kozirovskiy Yevhen

Exponenciálr rast nadoru

Modifikacia rovnice pre liecbu

Model s dvoma

Základný model rastu nádoru

$$\frac{dT}{dt} = r \cdot T(t)$$

- r je konštanta − rýchlosť rastu nádoru.
- Najdeme jej riešenie:

$$T(t) = T_0 \cdot e^{rt}$$

■ T₀ – počiatočná veľkosť nádoru.

Exponenciálny rast - bez liečby

Modelovanie rastu nádoru

Stupakov Denys, Moskalenko Renat, Bereza Oleksandr, Kozirovskiy Yevhen

Exponenciálny rast nadoru

Modifikacia rovnice pre liecbu

Model s dvoma populaciami ■ Najdeme jej riešenie:

$$\frac{dT}{T(t)} = r \cdot dt$$

$$\int \frac{1}{T(t)} dT = \int r dt$$

$$\ln[T(t)] = r \cdot t + C$$

■ Nájdeme C. Začiatočná podmienka: $T(0) = T_0$.

$$\ln(T_0) = r \cdot 0 + C \\
C = \ln(T_0)$$

■ Výjadrime *T(t)*:

$$T(t) = T_0 \cdot e^{r \cdot t}$$

Koncentrácia chemoterapie: C(t)

Modelovanie rastu nádoru

Stupakov Denys, Moskalenko Renat, Bereza Oleksandr, Kozirovskiy Yevhen

Exponenciálny rast nadoru

Modifikacii rovnice pre liecbu

Model s dvoma populaciam

- lacktriangledown predstavuje rýchlosť zmeny koncentrácie C(t) v čase.
- β je konštanta, ktorá určuje rýchlosť, akou sa koncentrácia C(t) znižuje. Tento člen môže byť spojený s procesom, ktorý spôsobuje pokles koncentrácie, ako napríklad metabolizmus alebo degradácia látky.
- C je aktuálna koncentrácia látky v čase t.
- lacksquare μ je konštanta, ktorá reprezentuje prírastok alebo tvorbu látky. Môže to byť napríklad produkcia látky alebo prísun tejto látky do systému.

Koncentrácia chemoterapie: C(t)

Modelovanie rastu nádoru

Stupakov Denys, Moskalenko Renat, Bereza Oleksandr, Kozirovskiy Yevhen

Exponenciálny rast nadoru

Modifikacia rovnice pre liecbu

Model s dvoma populaciami

$$\frac{dC}{dt} = -\beta \cdot C + \mu$$

- Toto je lineárna diferenciálna rovnica prvého rádu.
- Riešenie je:

$$\frac{dC}{dt} = -\beta \cdot C + \mu$$

$$\left(\frac{dC}{dt} + \beta \cdot C\right) \cdot e^{\int \beta \, dt} = \mu \cdot e^{\int \beta \, dt}$$

$$C(t) \cdot e^{\beta \cdot t} = \int \mu \cdot e^{\beta \cdot t} \, dt$$

$$C(t) = \frac{\mu}{\beta} + C \cdot e^{-\beta t}$$

$$C(t) = \frac{\mu}{\beta} + [C_0 - \frac{\mu}{\beta}] \cdot e^{-\beta t}$$

Diferenciálna rovnica s liečbou

Modelovanie rastu nádoru

Stupakov Denys, Moskalenko Renat, Bereza Oleksandr, Kozirovskiy Yevhen

Exponenciálny rast nadoru

Modifikacia rovnice pre liecbu

Model s dvoma populaciami

$$\frac{dT}{dt} = r \cdot T(t) - a \cdot C(t) \cdot T(t)$$

Dosadíme C(t):

$$\frac{dT}{dt} = r \cdot T(t) - a \cdot \left[\frac{\mu}{\beta} + \left(C_0 - \frac{\mu}{\beta} \right) \cdot e^{-\beta t} \right] \cdot T(t)$$

Riešenie má tvar:

$$\frac{dT}{T} = \left[r - \frac{\alpha\mu}{\beta} - \left(\alpha \cdot C_0 - \frac{\alpha\mu}{\beta} \right) \cdot e^{-\beta t} \right] dt$$

$$\ln(T(t)) = \frac{r - \alpha\mu}{\beta} \cdot t + \frac{\alpha\beta \cdot C_0 - \alpha\mu}{\beta^2} \cdot e^{-\beta t} + C$$

• Konštanta:
$$C = \ln(T_{\text{treat}}) + \frac{\alpha\mu - \alpha\beta C_0}{\beta^2}$$

Analytické odhadnutie času zásahu

Modelovanie rastu nádoru

Stupakov Denys, Moskalenko Renat, Bereza Oleksandr, Kozirovskiy Yevhen

Exponenciálny rast nadoru

Modifikacii rovnice pre liecbu

Model s dvoma populaciam Finálne riešenie:

$$T(t) = e^{rac{r-lpha\mu}{eta}t + rac{lphaeta C_0 - lpha\mu}{eta^2} \cdot e^{-eta t} + \ln(T_{ ext{treat}}) + rac{lpha\mu - lphaeta C_0}{eta^2}}$$

■ Pred liečbou:

$$T(t) = T_0 e^{rt}$$

Predpokladajme maximálnu prípustnú veľkosť nádoru T_{max}:

$$T_0 e^{rt} = T_{\text{max}} \quad \Rightarrow \quad t = \frac{\ln(T_{\text{max}}/T_0)}{r}$$

■ Interval možného zásahu je:

$$t \in \left[0, \frac{\ln(T_{\mathsf{max}}/T_0)}{r}\right]$$

Analytické odhadnutie času zásahu

Modelovanie rastu nádoru

Stupakov Denys, Moskalenko Renat, Bereza Oleksandr, Kozirovskiy Yevhen

Exponenciálny rast nadoru

Modifikaci rovnice pre liecbu

Model s dvoma populaciam

- **Poznámka:** Pri $t \to \infty$, výraz T(t) nekonverguje k nule vždy. Z hľadiska liečby chceme zabezpečiť, aby dlhodobé správanie bolo klesajúce.
- Skúmame teda mocninu v exponenciále:

$$\frac{r-\alpha\mu}{\beta}$$

Aby $T(t) \to 0$ pre $t \to \infty$, potrebujeme:

$$\frac{r - \alpha \mu}{\beta} < 0 \quad \Rightarrow \quad r < \alpha \mu$$

 Táto nerovnosť zabezpečuje, že liečba bude dlhodobo účinná.

Modelovanie rastu nádoru

Stupakov Denys, Moskalenko Renat, Bereza Oleksandr, Kozirovskiy Yevhen

Exponenciálny rast nadoru

Modifikacii rovnice pre liecbu

Model s dvoma populaciam Úloha: Chceme nájsť najneskorší možný čas liečby t_{treat}, ktorý ešte zabezpečí, že veľkosť nádoru nikdy nepresiahne prípustnú hranicu T_{max}.

Zvolené parametre:

$$\begin{split} r &= 0.01~{\rm day}^{-1}, \quad \alpha = 0.1~\frac{{\rm I}}{{\rm mg\cdot day}}, \quad \mu = 0.8~\frac{{\rm mg}}{{\rm I\cdot day}}, \quad \beta = 10~{\rm day}^{-1}, \\ T_0 &= 0.5~{\rm cm}^3, \quad T_{\rm max} = 7~{\rm cm}^3, \quad C_0 = 8~{\rm mg/I} \end{split}$$

■ Podmienka konvergencie:

$$\frac{r - \alpha \mu}{\beta} = \frac{0.01 - 0.1 \cdot 0.8}{10} = \frac{-0.07}{10} = -0.007 < 0$$

Liečba je dlhodobo účinná.

Modelovanie rastu nádoru

Stupakov Denys, Moskalenko Renat, Bereza Oleksandr, Kozirovskiy Yevhen

Exponenciálny rast nadoru

Modifikacia rovnice pre liecbu

Model s dvoma populaciami

Postup riešenia:

- I Z modelu pred liečbou určujeme maximálny čas zásahu t_{max} .
- 2 Iteračne hľadáme najneskorší čas liečby $t_{\rm treat}$, pre ktorý platí:

$$T(t) < T_{\sf max}$$
 pre každé $t > t_{\sf treat}$

3 Zostrojenie spojitej funkcie T(t):

$$T(t) = egin{cases} T_0 e^{rt}, & t < t_{ ext{treat}} \ ext{Funkcia s liečbou}, & t \geq t_{ ext{treat}} \end{cases}$$

Modelovanie rastu nádoru

Stupakov Denys, Moskalenko Renat, Bereza Oleksandr, Kozirovskiy Yevhen

Exponenciálny rast nadoru

Modifikacia rovnice pre liechu

Model s dvoma populaciami

Modifikácia rovnice liečby

Modelovanie rastu nádoru

Stupakov Denys, Moskalenko Renat, Bereza Oleksandr, Kozirovskiy Yevhen

Exponenciálr rast nadoru

Modifikacia rovnice pre liecbu

Model s dvoma populaciam Často sa stáva, že nádor sa stáva rezistentným voči liečbe. Tento proces môžeme popísať diferenciálnou rovnicou:

Diferenciálna rovnica pre koncentráciu liečby

$$\frac{dC}{dt} = -\beta(C(t) - C_{\min})$$

- Tento model opisuje exponenciálny pokles účinnosti liečiva, kde *C*_{min} je dolná hranica koncentrácie, pri ktorej liečba už prestáva byť efektívna.
- Je to separavoteľ na diferencialna rovnica
- Riešenie ie:

$$\frac{dC}{C(t) - C_{\min}} = -\beta dt$$

$$\int \frac{1}{C - C_{\min}} dC = \int_{C} -\beta dt$$

Riešenie rovnice liečby

Modelovanie rastu nádoru

Stupakov Denys, Moskalenko Renat, Bereza Oleksandr, Kozirovskiy Yevhen

Exponenciáli rast nadoru

Modifikacia rovnice pre liecbu

Model s dvoma populaciam

$$\ln |C - C_{\min}| = -\beta t + C_1$$
 $C - C_{\min} = e^{-\beta t + C_1}$
 $C - C_{\min} = C_1 e^{-\beta t}$
 $C(t) = C_{\min} + C_1 e^{-\beta t}$

Nájdeme C_1 . Začiatočná podmienka: $C(0) = C_0$

$$C(0) = C_{\min} + C_1 e^0 = C_{\min} + C_1$$

 $C_0 = C_{\min} + C_1$

Riešenie rovnice rastu nádoru s liečbou

Modelovanie rastu nádoru

Stupakov Denys, Moskalenko Renat, Bereza Oleksandr, Kozirovskiy Yevhen

Exponenciálr rast nadoru

Modifikacia rovnice pre liecbu

Model s dvoma populaciami

$$C_1 = C_0 - C_{\min}$$

$$C(t) = C_{\min} + (C_0 - C_{\min})e^{-\beta t}$$

Teraz nájdeme riešenie rovnice rastu nádoru

$$\frac{dT}{dt} = \left[r - C_{\min} - (C_0 - C_{\min})e^{-\beta t}\right] T(t)$$

$$\frac{1}{T(t)} \frac{dT}{dt} = r - C_{\min} - (C_0 - C_{\min})e^{-\beta t}$$

$$\int \frac{1}{T(t)} dt = \int \left[r - C_{\min} - (C_0 - C_{\min})e^{-\beta t}\right] dt$$

$$\ln T(t) = (r - C_{\min})t + \frac{(C_0 - C_{\min})}{\beta}(e^{-\beta t}) + C_1$$

Riešenie rovnice rastu nádoru s liečbou

Modelovanie rastu nádoru

Stupakov Denys, Moskalenko Renat, Bereza Oleksandr, Kozirovskiy Yevhen

Exponenciáln rast nadoru

Modifikacia rovnice pre liecbu

Model s dvoma populaciam

$$T(t) = e^{(r-C_{min})t + \frac{(C_0 - C_{min})}{\beta}e^{-\beta t} + C_1}$$

• Využijeme začiatočnú podmienku $T(0) = T_0$:

$$T_0 = e^{rac{(C_0 - C_{min})}{\beta} + C_1} \quad \Rightarrow \quad e^{C_1} = T_0 \cdot e^{-rac{(C_0 - C_{min})}{\beta}}$$

Finálne riešenie:

$$T(t) = T_0 \cdot e^{(r - C_{\min})t + \frac{(C_0 - C_{\min})}{\beta}(e^{-\beta t} - 1)}$$

Riešenie úlohy s modifikovanou rovnicou

Modelovanie rastu nádoru

Stupakov Denys, Moskalenko Renat, Bereza Oleksandr, Kozirovskiy Yevhen

Exponenciáln rast nadoru

Modifikacia rovnice pre liecbu

Model s dvoma populaciam **Uloha:** Chceme zistiť, či stihne nádor sa zmenšiť do kriticky malého rozmeru do momentu, kedy liečba bude ešte efektívna.

Zvolené parametre:

$$r = 0.075 \, \mathrm{day}^{-1}, \quad C_0 = 0.1 \, \mathrm{day}^{-1}, \quad C_{\mathrm{min}} = 0.06 \, \mathrm{day}^{-1},$$
 $eta = 0.003 \, \mathrm{day}^{-1}, \quad T_0 = 2.5 \, \mathrm{cm}^3, \quad T_{\mathrm{crit}} = 0.1 \, \mathrm{cm}^3$

Poznámka: Ak existuje nejaké $t_{crit} \geq 0$, pri ktorom

$$T(t_{crit}) = T_{crit},$$

môžeme liečbu považovať za úspešnú; inak (t. j. ak by vyšlo $t_{\rm krit} < 0$), liečba bola neúspešná.

Riešenie úlohy s modifikovanou rovnicou

Modelovanie rastu nádoru

Stupakov Denys, Moskalenko Renat, Bereza Oleksandr, Kozirovskiy Yevhen

Exponenciáln rast nadoru

Modifikacia rovnice pre liecbu

Model s dvoma populaciami ■ Na základe výpočtu a grafu z MATLABu, $t_{\rm crit}$ nadobudne hodnotu 2-krát, a prve pretnutie je $t_{\rm crit}$, ktore ≥ 0 , a teda liečba prebehla úspešne.

Úvod do modelu rastu nádoru

Modelovanie rastu nádoru

Stupakov Denys, Moskalenko Renat, Bereza Oleksandr, Kozirovskiy Yevhen

exponenciáln rast nadoru

Modifikacia rovnice pre liecbu

Model s dvoma populaciam

- Nádorové bunky sa môžu rozdeľovať na dve skupiny:
 - Žijúce bunky S(t) bunky, ktoré sa naďalej rozmnožujú a prispievajú k rastu nádoru.
 - Umierajúce bunky D(t) bunky, ktoré zomierajú v dôsledku liečby alebo prirodzeného procesu.
- Model popisuje dynamiku týchto dvoch populácií, pričom zohľadňuje ich vzájomný vplyv.
- Liečba (napr. chemoterapia) znižuje počet žijúcich buniek a zvyšuje počet umierajúcich buniek.
- Cieľom je nájsť optimálny čas začiatku liečby, ktorý minimalizuje riziko prekročenia kritickej veľkosti nádoru.

Model s dvoma populaciami: S(t) a D(t)

Modelovanie rastu nádoru

Stupakov Denys, Moskalenko Renat, Bereza Oleksandr, Kozirovskiy Yevhen

Exponenciálr rast nadoru

Modifikacia rovnice pre liecbu

Model s dvoma populaciami

Rovnice systému

$$\frac{dS}{dt} = K_g \cdot S - K_d \cdot \mathsf{Exposure} \cdot S$$

$$\frac{dD}{dt} = K_d \cdot \mathsf{Exposure} \cdot S - d \cdot D$$

- Označme: $\lambda = K_g K_d \cdot \mathsf{Exposure}$
- Potom riešenie pre S(t):

$$S(t) = S_0 \cdot e^{\lambda t}$$

Zostáva nájsť analytické riešenie pre D(t)

Analytické riešenie pre D(t)

Modelovanie rastu nádoru

Stupakov Denys, Moskalenko Renat, Bereza Oleksandr, Kozirovskiy Yevhen

Exponenciáln rast nadoru

Modifikacia rovnice pre liecbu

Model s dvoma populaciami Použijeme predchádzajúce riešenie $S(t) = S_0 e^{\lambda t}$

■ Dosadíme do rovnice pre D(t):

$$\frac{dD}{dt} + dD = K_d \cdot \mathsf{Exposure} \cdot S_0 \cdot e^{\lambda t}$$

■ Ide o lineárnu rovnicu. Použijeme integračný faktor e^{dt} :

$$D(t) \cdot e^{dt} = \int \mathcal{K}_d \cdot \mathsf{Exposure} \cdot \mathcal{S}_0 \cdot e^{(\lambda + d)t} \, dt$$

■ Po integrácii:

$$D(t) = \frac{K_d \cdot \mathsf{Exposure} \cdot S_0}{\lambda + d} \left(e^{\lambda t} - e^{-dt} \right)$$

■ Kompletné analytické riešenie systému je teda známe.

Celkový počet nádorových buniek:

$$T(t) = S(t) + D(t)$$

Modelovanie rastu nádoru

Stupakov Denys, Moskalenko Renat, Bereza Oleksandr, Kozirovskiy Yevhen

Exponenciálr rast nadoru

Modifikaci rovnice pre liecbu

Model s dvoma populaciami ■ Použijeme predchádzajúce výsledky:

$$S(t) = S_0 \cdot e^{\lambda t}, \quad D(t) = rac{\mathcal{K}_d \cdot \mathsf{Exposure} \cdot S_0}{\lambda + d} \left(e^{\lambda t} - e^{-dt}
ight)$$

Celkový počet buniek:

$$T(t) = S(t) + D(t) = S_0 \cdot e^{\lambda t} \left(1 + \frac{K_d \cdot \mathsf{Exposure}}{\lambda + d} \right) - \frac{K_d \cdot \mathsf{Exposure} \cdot S_0}{\lambda + d} \cdot e^{-dt}$$

- Analýza:
 - Ak \(\lambda < 0\), zdravé bunky klesajú a počet buniek môže časom klesať.
 - Ak $\lambda > 0$, nádor stále rastie treba zvýšiť liečbu (vyššie Exposure alebo K_d).
 - Rýchlosť odumierania d ovplyvňuje, ako rýchlo mizne poškodené bunky D(t).

Modelovanie rastu nádoru

Stupakov Denys, Moskalenko Renat, Bereza Oleksandr, Kozirovskiy Yevhen

Exponenciáln rast nadoru

rovnice pre liecbu

Model s dvoma populaciami

- Úloha: Nájsť najneskorší možný čas začiatku liečby $t_{\rm treat}$, ktorý zabezpečí, že celkový počet nádorových buniek T(t) = S(t) + D(t) nikdy nepresiahne kritickú hodnotu $T_{\rm max}$.
- Liečba začína v čase t_{treat} , kedy sa do modelu pridá expozícia Exposure(t) = C(t), pričom:

$$C(t) = C_0$$

Expozícia je konštantná počas celej liečby.

Použité parametre:

$$K_g = 0.1~{\rm day}^{-1}, \quad K_d = 0.4~{\rm \frac{I}{mg \cdot {\rm day}}}, \quad d = 0.05~{\rm day}^{-1},$$
 $T_0 = 0.1~{\rm cm}^3, \quad T_{\rm max} = 5~{\rm cm}^3, \quad r = 0.1~{\rm day}^{-1}, \quad C_0 = 0.3~{\rm mg/I}$

Modelovanie rastu nádoru

Stupakov Denys, Moskalenko Renat, Bereza Oleksandr, Kozirovskiy Yevhen

Exponenciáli rast nadoru

Modifikacia rovnice pre liechu

Model s dvoma populaciami Postup riešenia:

Model pred liečbou:
$$\frac{dS}{dt} = r \cdot S$$
, $D = 0 \Rightarrow T(t) = S(t) = T_0 e^{rt}$

2 Určíme maximálny možný čas zásahu:

$$T(t) = T_0 e^{rt} = T_{\text{max}} \Rightarrow t_{\text{max}} = \frac{\ln(T_{\text{max}}/T_0)}{r}$$

3 Pre každý $t_{\text{treat}} \in [0, t_{\text{max}}]$ numericky simulujeme systém:

$$\begin{cases} \frac{dS}{dt} = r \cdot S - K_d \cdot C_0 \cdot S \\ \frac{dD}{dt} = K_d \cdot C_0 \cdot S - d \cdot D \end{cases}$$

a kontrolujeme, či $T(t) = S(t) + D(t) \leq T_{\mathsf{max}}$ pre všetky t

■ Najväčší t_{treat}, ktorý to spĺňa, je hľadané riešenie.

MATLAB simulácia: výsledný priebeh nádoru

Modelovanie rastu nádoru

Stupakov Denys, Moskalenko Renat, Bereza Oleksandr, Kozirovskiy Yevhen

Exponenciálr rast nadoru

Modifikacia rovnice pre liechu

Model s dvoma populaciami

- Zobrazenie rastu nádoru s optimálnym časom začiatku liečby.
- Model zabezpečuje, že nádor nikdy nepresiahne hranicu T_{\max} .