Erasmus School of Economics

Machine Learning

FEM31002

Introduction

Part 3

Ilker Birbil

birbil@ese.eur.nl

FAQ

- Which predictor or classifier should we choose?
- What is the generalization performance?
- What do we mean by unseen (*future*) data?
- How to select the parameters of the algorithms?
- How about trying and comparing multiple algorithms?
- What is the setup for fair performance evaluation and comparison?

In this lecture notes, I have borrowed many ideas from the <u>work</u> of Sebastian Raschka below. We have also used his <u>code repository</u> to prepare our Python scripts.

Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning, S. Raschka, arXiv:1811.1280v2, 3 Dec 2018.

Steps to Delivery

■ **Generalization Performance** (algorithm and its hyperparameters are fixed)

Example 1: *K*-Nearest Neighbors (fixed *K*)

Example 2: Curve fitting with *m*th order polynomial (fixed *m*)

■ **Model Selection** (algorithm is fixed, its 'best' parameters are sought)

Hyperparameters: K=?, m=?, number of nodes=?, tree depth=?, ...

Different hyperparameters (≠ model parameters) lead to different models

Algorithm Selection

K-NN?, curve fitting?, neural networks?, decision trees?, ...

2 afus ERASMUS UNIVERSITEIT ROTTERDAM

Generalization Performance

Resubstitution

optimistic bias

2 afus erasmus universiteit rotterdam

Generalization Performance

Holdout

2 afus ERASMUS UNIVERSITEIT ROTTERDAM

Model Selection

2 afus erasmus universiteit rotterdam

Algorithm Selection

■ Train (TR) - Validation (VA) - Test (TE)

- Statistical tests
- Resampling
 - Cross-validation
 - Bootstrapping
- Bias Variance trade-off

2 afus -- ERASMUS UNIVERSITEIT ROTTERDAM

Settings and Rules

 $\{(x_i, y_i) : 1, \dots, n\}$

Classification problem with i.i.d. data

■ **Accuracy:** Fraction of correctly classified points

$$\delta = 1 - \frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y}_i)$$

To avoid bias <u>use the test set only once</u>

Generalization Performance

(algorithm and its parameters are fixed)

Holdout

Final Training

How about uncertainty due to random data split?

2 afus erasmus universiteit rotterdam

Repeated Holdout

$$i = 1, \dots, k$$

2 afus ERASMUS UNIVERSITEIT ROTTERDAM

Notes on (Repeated) Holdout

- Single split: point estimate (high variance)
- Repeated splits: mean estimate (low variance)
- Large Test Set Pessimistic Bias vs. Small Test Set High Variance

- Stratification: Preserving the class ratios in training and test sets
- Other resampling methods: cross-validation, bootstrap

