EPFL CS439 Exercises
I am not affiliated with EPFL, I am just solving the exercises for self-study. Course material: EPFL CS439 GitHub

Siddhartha Bhattacharya

Week 1

Problem 1

(Exercise 2) Prove Jensen's inequality.

Lemma 0.1 (Jensen's Inequality). Let f be convex, $x_1, \ldots, x_m \in \mathbf{dom}(f)$, $\lambda_1, \ldots, \lambda_m \in \mathbb{R}_{\geq 0}$ such that $\sum_{i=1}^m \lambda_i = 1$. Then

$$f\left(\sum_{i=1}^{m} \lambda_i x_i\right) \le \sum_{i=1}^{m} \lambda_i f(x_i) \tag{1}$$

Proof. First, since f is convex, we have that for any $x, y \in \mathbf{dom}(f)$ and $0 \le \lambda \le 1$,

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

We proceed by induction. For the base case, let k = 2 and $0 \le \lambda_1, \lambda_2 \le 1$ such that $\lambda_1 + \lambda_2 = 1$. Note that this implies $\lambda_2 = 1 - \lambda_1$.

$$f\left(\sum_{i=1}^{2} \lambda_i x_i\right) = f(\lambda_1 x_1 + \lambda_2 x_2)$$
$$= f(\lambda_1 x_1 + (1 - \lambda_1) x_2)$$

Next, since f is convex,

$$f(\lambda_1 x_1 + (1 - \lambda_1)x_2) \le \lambda_1 f(x_1) + (1 - \lambda_1)f(x_2)$$

Now, substituting $\lambda_2 = (1 - \lambda_1)$, we get that

$$f(\lambda_1 x_1 + \lambda_2 x_2) \leq \lambda_1 f(x_1) + \lambda_2 f(x_2)$$

So, (8) holds for k=2. Now, suppose for induction that (8) holds for an arbitrary $k\geq 2$. We show that it holds for k+1. Let $1=\sum_{i=1}^{k+1}\lambda_i$. If we let $\beta=\sum_{i=1}^k\lambda_i$, then $\lambda_{k+1}=1-\beta$. Using this, we can rewrite the convex combination $\sum_{i=1}^{k+1}\lambda_ix_i$ as:

$$\sum_{i=1}^{k+1} \lambda_i x_i = \beta \left(\sum_{i=1}^k \frac{\lambda_i}{\beta} x_i \right) + \lambda_{k+1} x_{k+1}$$
$$= \beta \left(\sum_{i=1}^k \frac{\lambda_i}{\beta} x_i \right) + (1 - \beta) x_{k+1}$$

And since f is convex,

$$f\left(\beta\left(\sum_{i=1}^{k} \frac{\lambda_i}{\beta} x_i\right) + (1-\beta)x_{k+1}\right) \le \beta f\left(\sum_{i=1}^{k} \frac{\lambda_i}{\beta} x_i\right) + (1-\beta)f(x_{k+1})$$

And by inductive hypothesis on the first k terms, we know that $f\left(\sum_{i=1}^k \frac{\lambda_i}{\beta} x_i\right) \leq \sum_{i=1}^k \frac{\lambda_i}{\beta} f(x_i)$, which is a valid convex combination, since we defined $\beta = \sum_{i=1}^k \lambda_i$, implying that $\sum_{i=1}^k \frac{\lambda_i}{\beta} = \frac{\sum_{i=1}^k \lambda_i}{\beta} = \frac{\beta}{\beta} = 1$.

Thus,

$$\beta f\left(\sum_{i=1}^{k} \frac{\lambda_i}{\beta} x_i\right) + (1-\beta)f(x_{k+1}) \le \beta \left(\sum_{i=1}^{k} \frac{\lambda_i}{\beta} f(x_i)\right) + (1-\beta)f(x_{k+1})$$

And by the definition of the convex combination, $\beta\left(\sum_{i=1}^k \frac{\lambda_i}{\beta} f(x_i)\right) + (1-\beta)f(x_{k+1}) = \sum_{i=1}^{k+1} \lambda_i f(x_i)$, we are done.

Problem 2

(Exercise 4) Prove that the function $d_y: \mathbb{R}^d \to \mathbb{R}, \ x \mapsto \|x - y\|^2$ is strictly convex for any $y \in \mathbb{R}^d$ (use Lemma 1.25)

Proof. First, we show that d_y is twice continually differentiable. Let $x \in \mathbb{R}^d$. Then,

$$d_y(x) = ||x - y||^2 = (x - y)^T (x - y) = x^T x - 2x^T y + y^T y$$
$$\nabla d_y(x) = 2x - 2y$$
$$\nabla^2 d_y(x) = 2I$$

Thus, d_y is twice continually differentiable. Furthermore, $z^T \nabla^2 f(x) z = 2z^T z > 0$ for all $z \neq 0$, so $\nabla^2 f(x)$ is positive definite. Since f(x) is twice continually differentiable and $\nabla^2 f(x)$ is positive definite, f(x) is strictly convex, by Lemma 1.25.