Цепной метод поиска булевой производной

$$\frac{dy}{dx_i} = y(x_1,...,x_{i-1},0,x_{i+1},...,x_n) \oplus y(x_1,...,x_{i-1},1,x_{i+1},...,x_n)$$

Выполнив суперпозицию можна записать

$$Y = y(x_1,...,x_{k-1} * y_1(x_k,...,x_i,...,x_n))$$

$$\frac{dy}{dx_i} = \frac{dy}{dy_1} \cdot \frac{dy_1}{dx_i}$$

$$\frac{dy}{dx_i} = \frac{dy}{dy_1} \cdot \frac{dy_1}{dy_2} \cdot \dots \cdot \frac{dy_m}{dx_i}$$

Идея метода — при разумном выборе функции $y_1...y_m$ все производные в правой части берутся достаточно просто, например по правилам 7 и 8. Но это справедливо в том случае,

если при каждой суперпозиции находится единственная ϕ -ция $y_1...y_m$ которая зависит от x_i . Это соответствует комбинационной схеме без разветвлений.

74. Применение префиксной формы задания функции в цепном методе поиска булевой производной

{ВЫПИСАТЬ 73 ВОПРОС КОТОРЫЙ ВЫШЕ}

Вычисления можна упростить используя префиксную форму

$$y = (((x1+x2)_1x3x4)_3(x5+x6)_2)_4$$

$$y = (_4 \land (_3 \land (_1 \lor (x1x2)_1 x3x4)_3 (_2 \lor x5x6)_2)_4$$

Аргументы в скобках называются списком аргументов

Правило интерпретируется

$$\frac{d(\overline{\land} cnuco\kappa_aргументoв)}{d(aргумент_us_cnucкa)} = \land cnuco\kappa_aргументoв_беs_aргументaus_cnucka$$

$$\frac{d(\nabla cnuco\kappa_aргументов)}{d(apгумент_us_cnucкa)} = \overline{\wedge} cnuco\kappa_aргументов_беs_aргументаив_cnucka$$