EJERCICIOS SOBRE CÁLCULO DE DERIVADAS

I. PROBLEMAS Y EJERCICIOS RESUELTOS

1. Calcular la derivada de cada una de las siguientes funciones:

a)
$$f(x) = 3x^2 + 2x - 1$$
, b) $f(x) = (2x + 1)^3$, c) $\sqrt{x^2 + 9}$

d)
$$f(x) = \sin^3 2x$$
, e) $f(x) = arctg3x$, f) $f(x) = \log\left(\frac{x}{x+1}\right)$,

g)
$$f(x) = xe^{2x}$$
, h) $f(x) = (\log 4x)^2$, i) $f(x) = x2^{x^2}$,

j)
$$f(x) = \frac{\sin x}{1 + \cos x}$$
, k) $f(x) = \sqrt[3]{x^2 + 1}$, l) $f(x) = \arcsin \sqrt{x}$. Soluciones:

- a) Derivamos sumando a sumando: $f'(x) = 3 \cdot 2x + 2 \cdot 1 0 = 6x + 2$.
- b) Tiene la forma $f(u) = u^3$, siendo u(x) = 2x + 1. Por tanto, $f'(x) = 3u(x)^2 u'(x) = 3(2x+1)^2 \cdot 2 = 6(2x+1)^2$.
- c) $f(x) = \sqrt{u(x)}$, siendo $u(x) = x^2 + 9$. Por tanto, $f'(x) = \frac{u'(x)}{2\sqrt{u(x)}} = \frac{2x}{2\sqrt{x^2+9}} = \frac{x}{\sqrt{x^2+9}}$.
- d) $f(x) = \operatorname{sen}^3 u(x)$, siendo u(x) = 2x. Entonces, $f'(x) = 3 \operatorname{sen}^2 u(x) \cdot \cos u(x) \cdot u'(x) = 3 \operatorname{sen}^2 2x \cdot \cos 2x \cdot 2 = 6 \operatorname{sen}^2 2x \cdot \cos 2x$.
- e) $f(x) = \arctan u(x)$, donde u(x) = 3x. Entonces $f'(x) = \frac{u'(x)}{1 + u^2(x)} = \frac{3}{1 + 9x^2}$.
- f) $f(x) = \log u(x)$, donde $u(x) = \frac{x}{x+1}$. Entonces $f'(x) = \frac{u'(x)}{u(x)}$. Hacemos aparte el cálculo de u'(x):

$$u'(x) = \frac{1 \cdot (x+1) - x \cdot 1}{(x+1)^2} = \frac{1}{(x+1)^2}.$$

Por tanto, $f'(x) = \frac{u'(x)}{u(x)} = \frac{1}{(x+1)^2} : \frac{x}{x*1} = \frac{1}{x(x+1)}$.

g) Se trata de un producto de dos funciones, por tanto, $f'(x) = 1 \cdot e^{2x} + xe^{2x} \cdot 2 = e^{2x}(2x+1)$.

- h) $f(x) = u(x)^2$, siendo $u(x) = \log 4x$. Entonces $f'(x) = 2u(x) \cdot u'(x)$. Calculamos aparte la derivada de u(x). $u'(x) = \frac{4}{4x} = \frac{1}{x}$. Finalmente, $f(x) = 2u(x) \cdot u'(x) = 2\left(\log 4x\right) \cdot \frac{1}{x} = \frac{2\log 4x}{x}$.
- i) En primer lugar, calculamos la derivada de $g(x) = 2^{x^2}$. Pasamos la potencia de base 2 a base e: $g(x) = e^{(\log 2)x^2}$. Entonces $g'(x) = (\log 2) \cdot 2x \cdot e^{(\log 2)x^2} = 2(\log 2)x2^{x^2}$. Ahora obtenemos la derivada de f por la regla del producto: $f'(x) = 1 \cdot 2^{x^2} + x \cdot \left(2^{x^2}\right)' = 2^{x^2} + x \cdot 2(\log 2)x2^{x^2} = 2^{x^2}(1 + 2(\log 2)x^2)$.
- j) Se trata de la derivada de un cociente, por tanto

$$f'(x) = \frac{\cos x \cdot (1 + \cos x) - \sin x \cdot (-\sin x)}{(1 + \cos x)^2} = \frac{\cos x + \cos^2 x + \sin^2 x}{(1 + \cos x)^2} = \frac{1 + \cos x}{(1 + \cos x)^2} = \frac{1}{1 + \cos x}.$$

- k) $f(x) = \sqrt[3]{u(x)} = u(x)^{1/3}$, donde $u(x) = x^2 + 1$. Entonces $f'(x) = (1/3)u(x)^{(1/3)-1} \cdot u'(x) = (1/3)(x^2+1)^{-2/3} \cdot 2x = \frac{2x}{3\sqrt[3]{(x^2+1)^2}}$.
- l) $f(x) = \arcsin u(x)$, siendo $u(x) = \sqrt{x}$. Por tanto,

$$f'(x) = \frac{u'(x)}{\sqrt{1 - u^2(x)}} = \frac{1}{2\sqrt{x}} : \frac{1}{\sqrt{1 - x}} = \frac{1}{2\sqrt{x}\sqrt{1 - x}} = \frac{1}{2\sqrt{x - x^2}}.$$

2. Estudiar el crecimiento de $f(x) = x^2 \log x$ y determinar sus extremos absolutos.

En primer lugar, nótese que el dominio de f(x) es el intervalo $D=(0,+\infty)$. Para estudiar el crecimiento, calculamos la derivada $f'(x)=2x\log x+x^2\cdot\frac{1}{x}=2x(\log x-\frac{1}{2})$. El signo de la derivada sólo depende del factor $(\log x-\frac{1}{2})$, que se anula para $x=\sqrt{e}$. Como la función logaritmo es creciente (si la base es mayor que 1) en todo su dominio, deducimos que $(\log x-\frac{1}{2})$ es negativo para $x<\sqrt{e}$ y positivo cuando $x>\sqrt{e}$. Concluimos, por tanto, que f(x) es estrictamente decreciente en el intervalo

 $(0, \sqrt{e}]$ y estrictamente creciente en $[\sqrt{e}, +\infty)$. En consecuencia, $x = \sqrt{e}$ es el mínimo absoluto de f(x). Como $\lim_{x\to +\infty} x^2 \log x = +\infty$, se sigue que f no posee máximo absoluto.

EJERCICIOS Y PROBLEMAS PROPUESTOS

1. Calcular la derivada de cada una de las funciones siguientes:

a)
$$x(x-1)^2$$
, b) $\sqrt[3]{x^2}$, c) $\sin^2 4x$, d) $tg^2 x$, e) $x^2 e^{-1/x}$,

f)
$$\frac{x^2 - a^2}{x^2 + a^2}$$
, g) $x \arctan(\frac{1}{x})$, h) $\sqrt[4]{(1 + x^4)^3}$, i) $\frac{1 + \sin x}{1 - \sin x}$,

j)
$$\log\left(\frac{1-x}{1+x}\right)$$
, k) $x\sqrt{1+x^2}$, l) $\frac{e^{2x}}{x^2}$, m) x^x , n) $2^{\frac{x+1}{x-1}}$,

$$\tilde{n}$$
) $(x^2 - 3x)^3$, o) $\sqrt{\frac{x}{x+1}}$, p) $\log(x + \sqrt{1+x^2})$, q) $\frac{\sin^2 x}{1+\sin^2 x}$,

r)
$$x^2 \log x$$
, s) $\frac{\sqrt{x+1}}{x+2}$, t) $(1 + \cos^2 x) \sin x$, u) $(\sqrt{1-x^4}) \arcsin x^2$.

Soluciones:

a)
$$(x-1)(3x-1)$$
, b) $\frac{2}{3\sqrt[3]{x}}$, c) $4 \sec 8x$, d) $\frac{2 \sec x}{\cos^3 x}$, e) $(2x-1)e^{-1/x}$,

f)
$$\frac{4a^2x}{(x^2+a^2)^2}$$
, g) $\arctan tg(1/x) - \frac{x}{x^2+1}$, h) $\frac{3x^3}{\sqrt[4]{1+x^4}}$, i) $\frac{2\cos x}{(1-\sin x)^2}$,

j)
$$\frac{-2}{x^2-1}$$
, k) $\frac{2x^2+1}{\sqrt{x^2+1}}$, l) $\frac{2e^{2x}(x-1)}{x^3}$, m) $(1+\log x)x^x$, n) $\frac{-2^{2x/(x-1)}\log 2}{(x-1)^2}$,

$$\tilde{n}$$
) $6x^3 - 27x^2 + 27x$, o) $\frac{1}{2\sqrt{x(x+1)^3}}$, p) $\frac{1}{\sqrt{x^2+1}}$, q) $\frac{\sin 2x}{(1+\sin^2 x)^2}$,

r)
$$x(1+2\log x)$$
, s) $\frac{-x}{2(x+2)^2\sqrt{x+1}}$, t) $\cos x(2-3\sin^2 x)$, u) $2x(1-\frac{x^2}{\sqrt{1-x^4}}\arcsin x^2)$.

2. Calcular la ecuación de la recta tangente a la circunferencia de ecuación $x^2+y^2=1$ en el punto $(\frac{1}{2},\frac{\sqrt{3}}{2})$ y comprobar que es perpendicular al radio que pasa por dicho punto.

Solución: $x + \sqrt{3}y = 2$.

3. Usar la definición para calcular f'(0) en cada uno de los casos siguientes:

a)
$$f(x) = \begin{cases} x^2 \sin(1/x) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0, \end{cases}$$
 $f(x) = \begin{cases} xe^{-1/x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0. \end{cases}$

c)
$$f(x) = |x|$$
, d) $f(x) =\begin{cases} x^2 \log |x| & \text{si } x \neq 0 \\ 0 & \text{si } x = 0, \end{cases}$

Solución: a) f'(0) = 0, b) f'(0) no existe, la derivada por la derecha es igual a 0, pero la drivada lateral por la izquierda es igual a $+\infty$, c) No es derivable en el origen, la derivada por la derecha es igual a 1 y por la izquierda -1, y d) f'(0) = 0.

4. Calcular el valor de a para que sea derivable en el origen la función

$$f(x) = \begin{cases} e^{ax} & \text{si } x > 0\\ x^2 + x + 1 & \text{si } x \le 0, \end{cases}$$

Solución: a = 1.

5. Demostrar que las curvas $y=\sqrt{2}/x$ e $y=\sqrt{x^2-1}$ se cortan perpendicularmente.

Solución: Se cortan en el punto $(\sqrt{2},1)$ y las pendientes de las tangentes son $-\sqrt{2}/2$ y $\sqrt{2}$, respectivamente.