Лемма Кёнига о бесконечном пути

- 1. (Кёниг) Пусть G связный локально конечный (т.е. степень каждой вершины конечна) бесконечный граф. Докажите, что в G имеется бесконечный простой путь.
- **2.** Дан бесконечный набор конечных множеств A_1, A_2, \ldots Для любого конечного поднабора $A_{n_1}, A_{n_2}, \ldots, A_{n_m}$ существуют попарно различные элементы x_1, x_2, \ldots, x_m такие, что $x_j \in A_{n_j}, 1 \leq j \leq m$. Докажите, что существуют попарно различные элементы $a_1 \in A_1, a_2 \in A_2, \ldots$ Верно ли утверждение задачи для бесконечного набора произвольных бесконечных множеств?
- 3. Имеется конечное множество тетрадных типов с неограниченным количеством тетрад каждого типа. Требуется покрыть плоскость тетрадами таким образом, чтобы любые две смежные тетрады соприкасались сторонами с одинаковыми числами на них. Докажите, что если можно покрыть верхний правый квадрант плоскости, то можно покрыть и всю плоскость.
- 4. Пусть A бесконечное множество конечных слов в алфавите Σ . Докажите, что найдется такое бесконечное слово в алфавите Σ , что сколь угодно длинное его начало является началом какого-нибудь слова из A.
- 5. Раскраску вершин графа назовём *правильной*, если любые две смежные вершины в нём разного цвета. Граф называется k-раскрашиваемым, если его можно правильно раскрасить, используя k цветов. Докажите, что граф со счётным числом вершин k-раскрашиваемый тогда и только тогда, когда каждый конечный подграф в нём k-раскрашиваемый.