# **Flurochroms Comparison**

Monika Krzyżanowska

Neurobiology Unit, CSIC Barcelona, March-June 2018

# **Table of Contents**

| FΙι | urochroms Comparison                               | 1  |
|-----|----------------------------------------------------|----|
|     | Introduction                                       | 2  |
|     | Plan of experiment                                 | 2  |
|     | List of fluorochromes:                             | 3  |
|     | Methods                                            | 4  |
|     | Machine calibration                                | 5  |
|     | Dna specific fluorochromes, Results of range assay | 8  |
|     | DnaQ                                               |    |
|     | AccuBlue                                           |    |
|     | Ethydium Bromide                                   | 10 |
|     | EvaGreen                                           | 11 |
|     | PicoGreen                                          | 12 |
|     | SybrSafe                                           | 13 |
|     | Propidium lodide                                   | 14 |
|     | Hoechst 33258                                      | 15 |
|     | DNA specific fluorochromes range comparison        | 16 |
|     | Specificity of DNA fluorochromes                   | 18 |
|     | DNAQ                                               | 19 |
|     | EvaGreen                                           | 21 |
|     | PicoGreen                                          | 23 |
|     | SybrSafe                                           | 25 |
|     | Ethydium Bromide                                   |    |
|     | Comparison                                         | 27 |
|     | Discussion - DNA fluorochromes                     |    |
|     | RNA specific fluorochromes comparison              | 29 |
|     | RNA Assay Kit Quant – TT\                          |    |
|     | Protein specific fluorochromes comparison          | 30 |

## Introduction

There is wide range of fluorochromes on the market. This assay was performed to find the best fluorochrome: with the widest range of detection and specificity. It's highly possible that presence of proteins, salts, RNA, ssDNA and different molecules prompts differences in measurement, even if producent write in mannual that fluorochrome is highly specific only to one molecules (for instance dsDNA). Some of additional components can unspecific bind to fluorochrome and make fluorescence lower or higher.

- For each fluorochrome I will make measurement on spectrofluorometer machine: Gemini
  EM Gemini XPS Dual Scanning Microplate Spectrofluorometer User Guide in
  96 wells microplate. Each well can fit between 70-200 ul.
- Standard curve- to know concentration range which is possible to measure by each fluorochrome – standard curve I will prepare to wide concentrations: from 32000 ng/ml to 0.025 ng/ml (and blank repeated 4 times: fluorochrome + 100St reagent).
- To DNA I will measure standard curve from Lambda DNA. Also important is to remeber that dyes can measure different in circle DNA than linear DNA
- Each standard dilution was prepared in 100ST reagent, which is used in our lab to make direct isolation of all cell components, to be able to make fluorochrome measurement in our samples derived from direct isolation.

# Plan of experiment

- 1. Machine calibration- detection limits of machine using fluorochrome fluoresceine
- 2. Measurement- standard Curve with dilutions of Lambda DNA in 100ST reagent
- 3. Using standard curve from experiment calculate LOW (detection limit), which is value of blank fluorescence average + 3x it's standard deviation. All results below this was excluded.



without excluded points.)

In theory curve should have shape with 3 phases: slow beginning, steep acceleration and Plateau.

Measurement points from Plateau and Slow beginning were excluded, because of giving imprecise concentration. (In results are included two curves for each fluorochrome: with all received measurements and second

- 4. Comparison of all fluorochromes range. The best fluorochromes will be chose to make specificity essay.
  - 1. Choose for each fluorochrome point of the middle of steep acceleration and use this concentration for specificity measurement.
  - 2. Make measurement of triplicate of:
    - 1. dsDNA
    - 2. dsDNA + RNA in the same concentrations
    - 3. dsDNA + ssDNA in the same cocnetrations
    - 4. dsDNA + protein in the same concentration (compared concentrations was to have the same proportion fo bp per aminoacid)
    - 5. \*for RNA and protein specific assays first point was only alone RNA/protein and the next poits analogically.
  - 3. Comparison of fluorochromes specificity.

## **List of fluorochromes:**

- DNA fluorochromes:
  - o DNAQ DirectQuant
  - o EtBr
  - o SYBR Safe THERMO
  - Pico Green Thermo
  - EvaGreen Biotium
  - Propidium Iodide
  - Accu Blue Biotium
  - HOECHST33258 10 mM
- RNA fluorochromes
  - o Ribo Green Thermo
- Protein fluorochromes
  - o Nano Orange Thermo
  - o Nile Red Sigma

## **Methods**

Dilutions of fluorochromes was performed according to producent's protocol (PicoGreen, AccuBlue, DNAQ, RiboGreen, Nano Orange). Some of fluorochromes are not dedicated to spectrofluorometry assays and was diluted to concentration using in different assay (for example Eva Green). Fluorochromes dedicated to different assays (Ethydium Bromide, SybrSafe, propidium Lodide, HOECHST33258, Nile Red Sigma) was diluted and prepared using available literature.

In plate was combined 50ul fluorochrome working solution and 50 ul of standard in 100ST.

Emission and Excitation wavelength was chosen from producent's protocol or literature.

Graphs, plots and statistic analysis was performed using programs written in Python in JupyterLab software in Anaconda Navigator (software available for free for all users).

RNA standard isolated from mouse brain using Trireagent. Quality of sample was checked using agarose elctrophoresis, spectrophotometry and spectrofluorometry.

## **Machine calibration**

Serial dilution of fluoresceine in DMSO (highest concentration is 10mM)

Machine: Dual Scanning Microplate Spectrofluorometer Gemini

- · without Cutoff
- Excitation 475 nm, emission 543 nm
- Auto PMT
- 96 well plate, plastic, clarity
- 200 ul of liquid inside a well

#### Results:

"concentration [ng/ul]": [10,10/2,10/4, 10/8, 10/16,

10/32, 10/64, 10/128, 10/256,

10/512,10/1024,10/2048,10/(2048\*2),

10/(2048\*4),10/(2048\*8),10/(2048\*16),10/(2048\*32)

"fluorescence [RFU]": [21794,24583,26513,26189,

24959,21768, 16912,13631,

10450,6009,4113, 2185,

1041, 544.8, 300.9, 150.7, 5.629

Choosen detection range: to receive straight line better fitting:



Detection limit using 5 repetition of balnks (DMSO):

blank = [4.221, 4.082, 4.201, 3.963, 3.654]

detection limit: 4.6450228732899586



#### Remarks:

My observation is that this detection limit is different regarding chosen excitation wavelength, because the same wells had completely different emission in different excitations wavelengths. Maybe this experiment of machine calibration is not usefull?

In the next experiments observation is that fluorescence below machine detection limit shows straight line of fluorescence (in Propidium lodide essay).

None of fluorochromes showed the highest fluorescence close to machine upper detection limit

(machine upper limit is 5000 RFU, for the rest of fluorochromes:

DNAQ: 123.86,

AccuBlue: 1158.6

• Ethydium Bromide: 720.31,

• EvaGreen: 502.64

• PicoGreen: 175.43,

• SybrSafe: 80.253)

# Dna specific fluorochromes, Results of range assay

# DnaQ

"concentration": [32000, 16000, 8000, 4000,

2000, 1000, 500, 250,

25, 2.5, 0.25, 0.025,

0.00],

"fluorescence [RFU]": [123.86, 105.24, 83.604, 62.811,

43.786, 28.986, 28.098, 18.266,

19.419, 17.262, 17.039, 18.528,

16.818],

"concentration units" :"[ng/ml]",

"Excitation": "495 nm",

"Emission": "535 nm",

"blank": [14.725, 14.165, 14.220, 14.378, 15.063]



blank standard deviation: 0.33840295506984

blank average: 14.510200000000001 detection limit: 15.52540886520952

Detection range: 250-16000 ng/ml



## **AccuBlue**

"concentration": [32000, 16000, 8000, 4000,

2000, 1000, 500, 250,

25, 2.5, 0.25, 0.025,

0.00],

"fluorescence [RFU]": [1158.6, 1034.3, 861.61, 639.02,

582.45, 618.61, 590.73, 700.22,

521.19, 650.60, 601.44, 562.65,

608.6600000000001],

"concentration units": "[ng/ml]",

"Excitation": "509 nm",

"Emission": "530 nm",

"blank": [564.82, 652.50]





blank standard deviation: 43.83999999999975

blank average: 608.66000000000001 detection limit: 740.1800000000001

range: 8000- 32000 ng/ml

Remarks: Standard curve is not proper, propably reason is that AccuBlue is only one fluorochrome from the rest that producent in protocol wrote to combine 190 ul working solution and 10 ul sample/standard. (Is more dificult to mix this properly, in opposite to the rest of fluorochromes, combined 50 ul fluorochrome working solution and 50 ul standard).

## **Ethydium Bromide**

#### Fluorochrome concentration:

"concentration": [32000, 16000, 8000, 4000, 2000, 1000, 500, 250,

250/2, 250/4, 250/8, 250/16, 250/32, 0.00],

"fluorescence [RFU]": [720.31, 375.62, 200.24, 126.23, 84.540, 66.349, 56.789, 58.876,

50.245, 47.108, 46.250, 47.216, 45.096, 47.012],

"concentration units": "[ng/ml]",

"Excitation": "302",

"Emission": "590",

"blank": [46.146, 47.711, 47.179]



blank standard deviation: 0.6497296873828883

blank average: 47.012

detection limit: 48.96118906214866



blank standard deviation: 0.6497296873828883

blank average: 47.012

detection limit: 48.96118906214866

Detection range: 1000 ng/ml - 32000 ng/ml (upper range can be higher, because standard curve doesn'r reach plateou.

## **EvaGreen**

"concentration": [32000, 16000, 8000, 4000, 2000, 1000, 500, 250,

25, 2.5, 0.25, 0.025, 0.00],

"fluorescence [RFU]": [502.64, 513.10, 377.65, 268.23, 149.42, 88.487, 50.581, 41.550,

26.423, 23.856, 23.395, 21.013,18.737000000000000 ],

"concentration units": "[ng/ml]",

"Excitation": "500 nm",

"Emission": "530 nm",

"blank": [19.340, 18.599, 17.683, 19.326]





blank standard deviation: 0.6783233004991057

blank average: 18.7370000000000002 detection limit: 20.771969901497318

Detection range: 0.25 -16000 ng/ml

## **PicoGreen**

"concentration [ng/ul]": [32000, 16000, 8000, 4000, 2000, 1000, 500,

250, 25, 2.5, 0.25, 0.025, 0.00],

"fluorescence [RFU]": [175.43, 167.30, 148.42, 139.03, 111.44, 79.572, 46.053, 26.756,

9.490, 7.563, 7.563, 8.116, 6.838]

"Excitation": "500 nm",

"Emission": "530 nm",

"blank": [7.022, 6.838, 6.829, 6.663]



blank standard deviation: 0.12704526752303685

blank average: 6.838

detection limit: 7.21913580256911

Detection range: 2.5 ng/ml up for 4000 ng/ml



# **SybrSafe**

### Fluorochrome concentration:

"concentration [ng/ul]": [32000, 16000, 8000, 4000, 2000, 1000, 500, 250,

25, 2.5, 0.25, 0.025, 0.00],

"fluorescence [RFU]": [80.253, 72.295, 52.659, 35.334, 21.789, 14.813, 10.962, 8.683,

7.251, 7.251, 7.618, 7.647, 7.66725

"Excitation": "280 nm",
"Emission": "530 nm",

"blank": [7.646, 7.900, 7.307, 7.816]



Range of detection is from 250 ng/ml to 32000ng/ml

## **Propidium Iodide**

Fluorochrome preparation:

"concentration": [32000, 16000, 8000, 4000, 2000, 1000, 500, 250, 25, 2.5, 0.25, 0.025, 0.00],

"fluorescence [RFU]": [7.280, 6.052, 6.502, 5.196, 3.743, 2.050, 1.392, 1.247, 1.437, 1.498, 1.033, 0.882, 1.0605],

"concentration units": "[ng/ml]",

"Excitation": "535 nm",

"Emission": "617 nm",

"blank": [1.143, 1.174, 0.962, 0.963]



blank standard deviation: 0.09861161189231216

blank average: 1.0605

detection limit: 1.3563348356769365



Detection range is from 500 to 8000 ng/ml.

### Hoechst 33258

## Fluorochrome preparation:

"concentration": [32000, 16000, 8000, 4000, 2000, 1000, 500, 250, 25, 2.5, 0.25, 0.025, 0.00],

"fluorescence [RFU]": [448.15, 186.65, 103.92, 95.257, 88.229, 81.404, 80.163, 77.141, 87.672, 90.449, 85.529, 86.477, 86.5135],

"concentration units": "[ng/ml]",

"Excitation": "351 nm",

"Emission": "454 nm",

"blank": [86.857, 89.219, 89.156, 80.822]





blank standard deviation: 3.4210269291544595

blank average: 86.5135

detection limit: 96.77658078746337

Detection range from 8000 – 32000 ng/ml, can be upper because of curve shape.

# **DNA** specific fluorochromes range comparison





Left: graph with zoom up to 1000 ng/ml.



Left: graph with zoom up to 10ng/ml.

Graph above compare detection range for all used fluorochromes. To the spacificity essay was choosen:

- PicoGreen and EvaGreen as the most sensitive
- DNAQ, SybrSafe, and Ethydium Bromide with detection range proper to measure concentrations usually presented in cells and tissues.

# **Specificity of DNA fluorochromes**

First experiment was performed to see general fluorescence tendency of grow of different molecules concentration with the presence of dsDNA. Chosen fluorochrome was picoGreen, to compare my results with prodecents informaions about specificity of this. Fluorescence line with concentration changes should be stable.

#### Producent's information:



Figure 2. Fluorescence enhancement of Quant-iT™ PicoGreen® reagent upon binding dsDNA, ssDNA, and RNA. Samples containing 500 ng/mL calf thymus DNA, M13 ssDNA, or E. coli ribosomal RNA were added to cuvettes containing Quant-iT™ PicoGreen® reagent in TE. Samples were excited at 480 nm and the fluorescence emission spectra were collected using a spectrofluorometer. Emission spectra for samples containing dye and nucleic acids, as well as for dye alone (baseline), are shown.

#### My results:

('dsDNA concentration ng/ml', [500, 500, 500, 500, 500]),

('RNA concentration ng/ml', [0, 250/2, 500, 1000, 4000]),

('Fluorescence', [34.095, 37.239, 41.686, 43.838, 54.643])

('dsDNA', [500, 500, 500, 500, 500]), ('ssDNA', [0, 500, 1000, 2000, 4000]),

("Fluorescence", [34.095, 37.010, 39.384, 41.144, 47.886])



In the presence of the same amount of RNA fluorescence grows 22%. In the presence of the same amount of RNA fluorescence grows 8%.

Next assays was performed according to planned protocol. First columns in graph are dsDNA in concetration x, second is dsDNA with concentration x + additional component in concentration x.

## **DNAQ**

#### dsDNA

'average': 51.08866666666666, 'cv': 0.04187761133288799,

'fluorescences': [48.161, 53.214, 51.891],

'name': 'dsDNA',

'standard\_deviation': 2.1394713261821368}

|     | average   | cv       | fluorescences           | name            | standard_deviation | unspecificity | specificity | fluorochrome |
|-----|-----------|----------|-------------------------|-----------------|--------------------|---------------|-------------|--------------|
| 0 5 | 55.205333 | 0.018581 | [55.14, 56.493, 53.983] | dsDNA + RNA     | 1.025744           | 8.057886      | 91.942114   | DNAQ         |
| 1 4 | 45.981333 | 0.049667 | [48.784, 43.19, 45.97]  | dsDNA + ssDNA   | 2.283755           | 9.996999      | 90.003001   | DNAQ         |
| 2 3 | 37.505667 | 0.104262 | [42.664, 36.653, 33.2]  | dsDNA + protein | 3.910422           | 26.587110     | 73.412890   | DNAQ         |



# EvaGreen

## dsDNA

{'average': 122.27666666666666, 'cv': 0.02873806050680054,

'fluorescences': [121.96, 126.73, 118.14],

'name': 'dsDNA',

'standard\_deviation': 3.513994245236547}

| ; |   | average    | cv       | fluorescences             | name            | standard_deviation | unspecificity | specificity | fluorochrome |
|---|---|------------|----------|---------------------------|-----------------|--------------------|---------------|-------------|--------------|
|   | 0 | 157.123333 | 0.031559 | [163.57, 156.29, 151.51]  | dsDNA + RNA     | 4.958611           | 28.498214     | 71.501786   | EvaGreen     |
|   | 1 | 112.560000 | 0.024698 | [115.34, 109.78]          | dsDNA + ssDNA   | 2.780000           | 7.946460      | 92.053540   | EvaGreen     |
|   | 2 | 96.867000  | 0.247895 | [125, 59, 105.84, 97.628] | dsDNA + protein | 24.012857          | 20.780471     | 79.219529   | EvaGreen     |



## **PicoGreen**

## dsDNA

'average': 35.626000000000005, 'cv': 0.04480319772823956,

'fluorescences': [35.694, 37.546, 33.638],

'name': 'dsDNA',

'standard\_deviation': 1.5961587222662628}

|   | average   | cv       | fluorescences            | name            | standard_deviation | unspecificity | specificity | fluorochrome |
|---|-----------|----------|--------------------------|-----------------|--------------------|---------------|-------------|--------------|
| 0 | 39.809333 | 0.049989 | [39.195, 37.738, 42.495] | dsDNA + RNA     | 1.990028           | 11.742360     | 88.257640   | PicoGreen    |
| 1 | 26.924667 | 0.053524 | [28.496, 27.263, 25.015] | dsDNA + ssDNA   | 1.441109           | 24.424110     | 75.575890   | PicoGreen    |
| 2 | 29.914333 | 0.035666 | [31.322, 29.681, 28.74]  | dsDNA + protein | 1.066932           | 16.032299     | 83.967701   | PicoGreen    |



# **SybrSafe**

### dsDNA

'average': 33.06166666666667, 'cv': 0.013103438746895445,

'fluorescences': [32.919, 32.617, 33.649],

'name': 'dsDNA',

'standard\_deviation': 0.4332215240369416}

| : |   | average   | cv       | fluorescences            | name            | standard_deviation | unspecificity | specificity | fluorochrome |
|---|---|-----------|----------|--------------------------|-----------------|--------------------|---------------|-------------|--------------|
|   | 0 | 38.014667 | 0.032483 | [36.691, 39.663, 37.69]  | dsDNA + RNA     | 1.234842           | 14.981096     | 85.018904   | SybrSafe     |
|   | 1 | 30.820667 | 0.049567 | [28.692, 32.205, 31.565] | dsDNA + ssDNA   | 1.527703           | 6.778243      | 93.221757   | SybrSafe     |
|   | 2 | 28.205000 | 0.067691 | [29.192, 29.888, 25.535] | dsDNA + protein | 1.909237           | 14.689721     | 85.310279   | SybrSafe     |



# **Ethydium Bromide**

### dsDNA

average': 92.25900000000001, 'cv': 0.020334885750596044,

'fluorescences': [94.81, 91.615, 90.352],

'name': 'dsDNA',

'standard\_deviation': 1.8760762244642408

| average             | cv       | fluorescences            | name            | standard_deviation | unspecificity | specificity | fluorochrome     |
|---------------------|----------|--------------------------|-----------------|--------------------|---------------|-------------|------------------|
| <b>0</b> 160.490000 | 0.042999 | [152.53, 159.58, 169.36] | dsDNA + RNA     | 6.900884           | 73.955928     | 26.044072   | Ethydium Bromide |
| <b>1</b> 153.583333 | 0.024453 | [148.87, 153.82, 158.06] | dsDNA + ssDNA   | 3.755532           | 66.469757     | 33.530243   | Ethydium Bromide |
| <b>2</b> 114.723333 | 0.012456 | [116.67, 113.28, 114.22] | dsDNA + protein | 1.428993           | 24.349205     | 75.650795   | Ethydium Bromide |



# Comparison

| specificity_data_names       | specificity with ssDNA presence | specificity with RNA presence | Specificity with potein presence |
|------------------------------|---------------------------------|-------------------------------|----------------------------------|
| sybrsafe_specificity         | 93.221757                       | 85.018904                     | 85.310279                        |
| dnaq_specificity             | 90.003001                       | 91.942114                     | 73.412890                        |
| picogreen_specificity        | 75.575890                       | 88.257640                     | 83.967701                        |
| evagreen_specificity         | 92.053540                       | 71.501786                     | 79.219529                        |
| ethydium_bromide_specificity | 33.530243                       | 26.044072                     | 75.650795                        |







### **Discussion - DNA fluorochromes**

Among all fluorochromes the worst specificity has Ethydium Bromide.

Interesting thing is that specificity is prompt because fluorochrome binds to different molecule imiting or not emitting fluorescence. For example: DNAQ with protein presence has lower fluorescence – fluorochrome binds to protein and doesn't emit fluorescence, in opposite to RNA presence. It's important to have this knowledge during fluorochrome assay to find explanation to received results. It's impossible to precise compare concentration of pure DNA sample with DNA sample with protein presence.

In comparison to different popular technique – spectrophotometry, spectrofluorometry has vary high specificity. Spectrophotometry specificity is 0%, in comparison to spectrofluorometry essay: between 71% and 93%.

If there is no spectrofluorometer, spectrofluorometry assay can be performed in qPCR machine thermocycler which has proper channel of excitation and emmision. All fluorochromes assay should be performed in room temperature.

# RNA specific fluorochromes comparison

Comparison is not available because it is only one fluorochrome on the market

## RNA Assay Kit Quant - TT\

"standard name": "TRIZOL RNA from mouse brain",

"concentration": [128000, 64000, 32000, 16000, 8000, 4000,2000, 1000, 500, 250, 2.5, 0.025, 0.00],

"fluorescence [RFU]": [10.794, 12.641, 13.596, 9.545,5.955, 3.411, 3.423, 1.640,

1.183, 1.044, 1.347, 1.479, 0.8196666666666667],

"Excitation": "644 nm",

"Emission": "673 nm",

"fluorochrome": "RNA Assay Kit Quant - TT",

"blank": [1.327, 0.455, 0.677]





concentration [ng/ml]

blank standard deviation: 0.3700102100693379

#### Observations:

-this experiment requieres repeat, because producent's protocol is to combine 190 ul of fluorochrome working solution and 10 ul of sample. This ratio 190:10 doesn't allow to proper dilution and have high mistake. Next experiment should be applied with ration 1:1 between working solution and sample, the same that was used in the rest of fluorochromes.

# Protein specific fluorochromes comparison

During this experiment some problem appeared:

- Excitation and Emission Wave length wasn't exactly known thus spectrum was checked using the highest concentration of protein with fluorochrome working solution
  - In every measurement peak with emission didn't appear
  - the same spectrum pattern was in the empty wells (!) -

To check if this problem is only in protein fluorochromes (NileRed and NanoOrange) I used Ethydium Bromide with Lambda DNA (concentration 142 000 ng/ml):

- Emission peak was observed in expected wave length for Ethydium Bromide (590 nm)
- The same spectrum with the same peak was observed in empty wells, without any fluorochrome and any DNA standard.

#### Questions:

- Why not emission peak is visible in protein fluorochromes spectrum?
- Why empty wells in 96-well plate had the same spectrum that wells with fluorochrome working solution and sample?
- Why some substances allows to see emission peak in spectrum but some not?