CLAIMS

1. A method of modulating microtubule polymerisation in a subject, said method comprising administering a therapeutically effective amount of at least one compound of the general formula (I)

Ι

or pharmaceutically acceptable prodrugs, salts, hydrates, solvates, crystal forms or diastereomers thereof, wherein:

R1 is H, C₁₋₄ alkyl;

Q is a bond, or C_{1-4} alkyl;

A is aryl, hetaryl optionally substituted with 0-3 substituents independently chosen from halogen, C_{1-4} alkyl, CH_2F , CHF_2 , CF_3 , CN, aryl, hetaryl, OCF_3 , OC_{1-4} alkyl, OC_{2-5} alkylNR4R5, Oaryl, Ohetaryl, CO_2R4 , CONR4R5, nitro, NR4R5, C_{1-4} alkylNR4R5, NR6C $_{1-4}$ alkylNR4R5, NR4COR5, NR6CONR4R5, NR4SO $_2$ R5;

R4, R5 are each independently H, C_{1-4} alkyl, C_{1-4} alkyl cycloalkyl, C_{1-4} alkyl cyclohetalkyl, aryl, hetaryl, C_{1-4} alkyl aryl, C_{1-4} alkyl hetaryl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR7;

R6 is selected from H, C₁₋₄ alkyl;

R7 is selected from H, C₁₄ alkyl, aryl, hetaryl, C₁₄ alkyl aryl, C₁₄ alkyl hetaryl;

R2 is 0-2 substituents independently selected from halogen, $C_{1.4}$ alkyl, OH, OC_{1.4}alkyl, CH₂F, CHF₂, CF₃, OCF₃, CN, C_{1.4}alkylNR8R9, OC_{1.4}alkylNR8R9, CO₂R8, CONR8R9, NR8R9, NR8COR9, NR10CONR8R9, NR8SO₂R9;

R8, R9 are each independently H, C_{14} alkyl, C_{14} alkyl cycloalkyl, C_{14} alkyl cyclohetalkyl, aryl, hetaryl, C_{14} alkyl aryl, C_{14} alkyl hetaryl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR11;

R10 is selected from H, C1-4 alkyl, aryl or hetaryl;

R11 is selected from H, C_{14} alkyl, aryl, hetaryl, C_{14} alkyl aryl, C_{14} alkyl hetaryl; Y is halogen, OH, NR12R13, NR14COR12, NR14CONR12R13, N14SO₂R13;

R12 and R13 are each independently H, CH_2F , CHF_2 , CF_3 , CN, C_{14} alkyl optionally substituted with OH, OC_{14} alkyl or NR15R16, cycloalkyl; cyclohetalkyl, C_{14} alkyl cyclohetalkyl, or may be joined to form an optionally substituted 3-6 membered ring optionally containing an atom selected from O, S, NR14

R14, R15 and R16 are each independently selected from H, C14 alkyl;

n = 0-4;

W is selected from H, C_{1-4} alkyl, C_{2-6} alkenyl; where C_{1-4} alkyl or C_{2-6} alkenyl may be optionally substituted with C_{1-4} alkyl, OH, OC₁₋₄alkyl, NR15R16;

R15, and R16 are each independently H, C_{14} alkyl, C_{14} alkyl cycloalkyl, C_{14} alkyl cyclohetalkyl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR17;

R17 is selected from H, C₁₋₄ alkyl.

2. A method according to claim 1 wherein the compound is selected from the group consisting of:

- 3. A method according to claim 1 or claim 2, wherein said method is used in the treatment of a hyperproliferation-related disorder or disease state.
- 4. A method according to claim 2, wherein the hyperproliferation-related disorder or disease state is selected from the group consisting of Cancer, infectious diseases, vascular restenosis and inflammatory diseases.
- 5. A compound of the general formula (II)

П

or pharmaceutically acceptable prodrugs, salts, hydrates, solvates, crystal forms or diastereomers thereof, wherein:

R1 is H, C_{1-4} alkyl;

Q is a bond, or C_{1-4} alkyl;

A is aryl, hetaryl optionally substituted with 0-3 substituents independently chosen from halogen, C_{14} alkyl, CH_2F , CHF_2 , CF_3 , CN, aryl, hetaryl, OCF_3 , OC_{14} alkyl, $OC_{2.5}$ alkylNR4R5, Oaryl, Ohetaryl, CO_2R4 , CONR4R5, nitro, NR4R5, C_{14} alkylNR4R5, NR6 $C_{1.4}$ alkylNR4R5, NR4COR5, NR6CONR4R5, NR4SO₂R5;

R4, R5 are each independently H, C_{14} alkyl, C_{14} alkyl cycloalkyl, C_{14} alkyl cyclohetalkyl, aryl, hetaryl, C_{14} alkyl aryl, C_{14} alkyl hetaryl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR7;

R6 is selected from H, C₁₋₄ alkyl;

R7 is selected from H, C_{1-4} alkyl, aryl, hetaryl, C_{1-4} alkyl aryl, C_{1-4} alkyl hetaryl;

R2 is 0-2 substituents independently selected from C_{1-4} alkyl and OC_{1-4} alkyl;

Y is CH₂OH, OC₁₋₄alkylOH, OC₁₋₄alkylR12, OC₁₋₄alkylNR12NR13, C(O)R12, CH₂R12, COOR12, CONR12R13, OCONR12R13, CH₂NR12R13, NHCOR12, NHCONR12R13,

R12 and R13 are each independently H, C_{1-2} alkyl, $(CH_2)_3NEt_2$, $(CH_2)_2NMe_2$, $(CH_2)_5NH_2$, $(CH_2)_2OH$,

W is selected from H, C_{1-4} alkyl, C_{2-6} alkenyl; where C_{1-4} alkyl or C_{2-6} alkenyl may be optionally substituted with C_{1-4} alkyl, OH, OC₁₋₄alkyl, NR15R16;

R15, and R16 are each independently H, C_{14} alkyl, C_{14} alkyl cycloalkyl, C_{14} alkyl cyclohetalkyl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR17

R17 is selected from H, C₁₋₄ alkyl;

wherein when Y is CH₂R12 then R12 is not H, C₁₋₂alkyl.

6. A compound according to claim 5 selected from the group consisting of:

7. A compound of the general formula (III)

$$W$$
 R_1
 Q
 X_4
 X_3
 X_2
 R_4
 R_4

or pharmaceutically acceptable prodrugs, salts, hydrates, solvates, crystal forms or diastereomers thereof, wherein:

 X_1 , X_2 , X_3 , X_4 are selected from the following:

- (i) X_1 and X_2 are N and X_3 and X_4 are C independently substituted with Y;
- (ii) X_1 and X_4 are N and X_2 and X_3 are C independently substituted with Y;
- (iii) X_1 and X_3 are N and X_2 and X_4 are C independently substituted with Y;
- (iv) X_2 and X_4 are N and X_1 and X_3 are C independently substituted with Y;
- (v) X_1 is N and X_2 , X_3 , and X_4 are C independently substituted with Y;

- (vi) X_3 is N and X_1 , X_2 , and X_4 are C independently substituted with Y;
- (vii) X_4 is N and X_1 , X_2 , and X_3 are C independently substituted with Y;
- (viii) X_2 is N and X_1 , X_3 , and X_4 are C independently substituted with Y; and
- (ix) X_1 , X_2 and X_3 are N and X_4 is C substituted with Y;

R1 is H, C_{1-6} alkyl, C_{1-6} alkylNR5R6, C_{1-6} alkylNR5COR6, C_{1-6} alkylNR5SO₂R6, C_{1-6} alkylCO₂R5, C_{1-6} alkylCONR5R6, where R5 and R6 are each independently H, C_{1-4} alkyl, aryl, hetaryl, C_{1-4} alkylhetaryl or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR7;

R7 is selected from H, C₁₋₄alkyl;

R2 is selected from C₁₋₆alkylOH, OC₂₋₆alkylOH, C₁₋₆alkylNR8R9, OC₂₋₆alkylNR8R9, C₁₋₆alkylNR8COR9, OC₂₋₆alkylNR8COR9, C₁₋₆alkylhetaryl, OC₂₋₆alkylhetaryl, OCONR8R9, NR8COR9, NR10CONR8R9, CONR8R9, NR8COR12;

R8, R9 are each independently H, C₁₋₄alkyl, C₁₋₄alkylNR11R13, hetaryl, cyclohetalkyl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR14;

R12 is C₂₋₄alkyl, C₁₋₄alkylNR11R13, hetaryl, cyclohetalkyl;

R11, R13 are each independently H, C₁₋₄alkyl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR14;

R14 is selected from H, C₁₄alkyl;

R10 is H, C_{1-4} alkyl;

R3 and R4 are each independently H, halogen, C1-4alkyl, OH, OC1-4alkyl, CF3, OCF3;

O is a bond, or C₁₄ alkyl;

W is selected from H, C_{1-4} alkyl, C_{2-6} alkenyl; where C_{1-4} alkyl or C_{2-6} alkenyl may be optionally substituted with C_{1-4} alkyl, OH, OC₁₋₄alkyl, NR15R16;

R15, and R16 are each independently H, C_{1.4}alkyl, C_{1.4}alkyl cycloalkyl, C_{1.4}alkyl cyclohetalkyl, aryl, hetaryl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR17;

R17 is selected from H, C₁₋₄alkyl;

A is aryl, hetaryl optionally substituted with 0-3 substituents independently chosen from halogen, C₁₋₄ alkyl, CF₃, aryl, hetaryl, OCF₃, OC₁₋₄alkyl, OC₂₋₅alkylNR18R19, Oaryl, Ohetaryl, CO₂R18, CONR18R19, NR18R19, C₁₋₄ alkylNR18R19, NR20C₁₋₄alkylNR18R19, NR18COR19, NR20CONR18R19, NR18SO₂R19;

R18, R19 are each independently H, C_{1-4} alkyl, C_{1-4} alkyl cyclohetalkyl, aryl, hetaryl, C_{1-4} alkyl aryl, C_{1-4} alkyl hetaryl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR21;

R21 is selected from H, C14alkyl;

R20 is selected from H, C₁₋₄alkyl;

Y is selected from H, C₁₋₄alkyl, OH, NR22R23;

R22, R23 are each independently H, C₁₄alkyl.

8. A compound according to formula (III) of claim 7, wherein the compound is of the general formula (IV)

$$R2$$
 $R2$
 $R3$
 $R4$
 $R4$
 $R4$

or pharmaceutically acceptable prodrugs, salts, hydrates, solvates, crystal forms or diastereomers thereof, wherein:

 X_1 , X_2 , X_3 , X_4 are selected from the following:

- (i) X_1 and X_2 are N and X_3 and X_4 are C independently substituted with Y;
- (ii) X_1 and X_4 are N and X_2 and X_3 are C independently substituted with Y;
- (iii) X_1 and X_3 are N and X_2 and X_4 are C independently substituted with Y;
- (iv) X_2 and X_4 are N and X_1 and X_3 are C independently substituted with Y;
- (v) X_1 is N and X_2 , X_3 , and X_4 are C independently substituted with Y;
- (vi) X_3 is N and X_1 , X_2 , and X_4 are C independently substituted with Y;
- (vii) X_4 is N and X_1 , X_2 , and X_3 are C independently substituted with Y;
- (viii) X_2 is N and X_1 , X_3 , and X_4 are C independently substituted with Y; and
- (ix) X_1 , X_2 and X_3 are N and X_4 is C substituted with Y;

R1 is H, C_{1-6} alkyl, C_{1-6} alkylNR5R6, where R5 and R6 are each independently H, C_{1-4} alkyl, aryl, hetaryl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR7;

R7 is selected from H, C₁₋₄ alkyl;

R2 is selected from C_{1-6} alkylOH, OC_{2-6} alkylOH, C_{1-6} alkylNR8R9, OC_{2-6} alkylNR8COR9, OC_{2-6} AlkylNR8COR9,

R8, R9 are each independently H, C₁₋₄alkyl, C₁₋₄alkylNR11R13, hetaryl, cyclohetalkyl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR14;

R12 is C_{24} alkyl, C_{14} alkylNR11R13, hetaryl, cyclohetalkyl;

R11, R13 are each independently H, $C_{1.4}$ alkyl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR14;

R14 is selected from H, C14alkyl;

R10 is H, C₁₋₄alkyl;

R3 and R4 are each independently H, halogen, C₁₋₄alkyl, OH, OC₁₋₄alkyl, CF₃, OCF₃; Q is CH;

W is selected from $C_{1.4}$ alkyl, $C_{2.6}$ alkenyl; where $C_{1.4}$ alkyl or $C_{2.6}$ alkenyl may be optionally substituted with $C_{1.4}$ alkyl, OH, OC_{1.4}alkyl, NR15R16;

R15, and R16 are each independently H, C₁₋₄alkyl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR17;

R17 is selected from H, C₁₋₄alkyl;

A is aryl, hetaryl optionally substituted with 0-2 substituents independently chosen from halogen, C_{1-4} alkyl, CF_3 , aryl, hetaryl, OCF_3 , OC_{1-4} alkyl, OC_{2-5} alkylNR18R19, $OC_$

R18, R19 are each independently H, C_{1-4} alkyl, C_{1-4} alkyl cyclohetalkyl, aryl, hetaryl, C_{1-4} alkyl aryl, C_{1-4} alkyl hetaryl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR21;

R21 is selected from H, C₁₋₄alkyl;

R20 is selected from H, C₁₋₄alkyl;

Y is selected from H, C₁₋₄alkyl, NR22R23;

R22, R23 are each independently H, C₁₋₄alkyl.

9. A compound according to claim 7 wherein the compound is selected from the group consisting of:

10. A compound of the general formula (V)

or pharmaceutically acceptable prodrugs, salts, hydrates, solvates, crystal forms or diastereomers thereof, wherein:

 X_1 , X_2 , X_3 , X_4 are selected from the following:

(i) X_1 and X_2 are N and X_3 and X_4 are C independently substituted with Y;

- (ii) X_1 and X_4 are N and X_2 and X_3 are C independently substituted with Y;
- (iii) X_2 and X_4 are N and X_1 and X_3 are C independently substituted with Y;
- (iv) X_1 is N and X_2 , X_3 , and X_4 are C independently substituted with Y;
- (v) X_3 is N and X_1 , X_2 , and X_4 are C independently substituted with Y;
- (vi) X_4 is N and X_1 , X_2 , and X_3 are C independently substituted with Y;
- (vii) X_2 is N and X_1 , X_3 , and X_4 are C independently substituted with Y; and
- (viii) X_1 , X_2 and X_3 are N and X_4 is C substituted with Y;

R1 is H, C_{1-6} alkylNR5R6, C_{1-6} alkylNR5COR6, C_{1-6} alkylNR5SO₂R6, C_{1-6} alkylCO₂R5, C_{1-6} alkylCONR5R6, where R5 and R6 are each independently H, C_{1-4} alkyl, aryl, hetaryl, C_{1-4} alkylaryl, C_{1-4} alkylhetaryl or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR7;

R7 is selected from H, C₁₋₄ alkyl;

R2 is selected from OH, OC₁₋₆alkyl, C₁₋₆alkylOH, OC₂₋₆alkylOH, C₁₋₆alkylNR8R9, OC₂₋₆alkylNR8COR9, OC₂₋₆alkylNR8COR9, C₁₋₆alkylNR8COR9, C₁₋₆alkylhetaryl, OCONR8R9, NR8COR9, NR10CONR8R9, CONR8R9, NR8COR12;

R8, R9 are each independently H, C₁₋₄alkyl, C₁₋₄alkylNR11R13, hetaryl, cyclohetalkyl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR14;

R12 is C₂₋₄alkyl, C₁₋₄alkylNR11R13, hetaryl, cyclohetalkyl;

R11, R13 are each independently H, C₁₋₄alkyl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR14;

R14 is selected from H, C₁₋₄alkyl;

R10 is H, C_{1-4} alkyl;

R3 and R4 are each independently H, halogen, C14alkyl, OH, OC14alkyl, CF3, OCF3;

Q is a bond, or C₁₋₄alkyl;

W is selected from H, C_{1-4} alkyl, C_{2-6} alkenyl; where C_{1-4} alkyl or C_{2-6} alkenyl may be optionally substituted with C_{1-4} alkyl, OH, OC₁₋₄alkyl, NR15R16;

R15, and R16 are each independently H, C₁₋₄alkyl, C₁₋₄alkyl cycloalkyl, C₁₋₄alkyl cyclohetalkyl, aryl, hetaryl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR17;

R17 is selected from H, C₁₋₄alkyl;

A is aryl, hetaryl optionally substituted with 0-3 substituents independently chosen from halogen, C₁₋₄ alkyl, CF₃, aryl, hetaryl, OCF₃, OC₁₋₄alkyl, OC₂₋₅alkylNR18R19, Oaryl, Ohetaryl, CO₂R18, CONR18R19, NR18R19, C₁₋₄ alkylNR18R19, NR20C₁₋₄alkylNR18R19, NR18COR19, NR20CONR18R19, NR18SO₂R19;

R18, R19 are each independently H, $C_{1.4}$ alkyl, $C_{1.4}$ alkyl cyclohetalkyl, aryl, hetaryl, $C_{1.4}$ alkyl aryl, $C_{1.4}$ alkyl hetaryl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR21;

R21 is selected from H, C₁₋₄ alkyl;

R20 is selected from H, C_{1-4} alkyl;

Y is selected from H, C₁₋₄alkyl, OH, NR22R23;

R22, R23 are each independently H, C₁₋₄ alkyl.

11. A compound according to claim 10 selected from the group consisting of:

12. A compound of the formula:

or a pharmaceutically acceptable prodrug, salt, hydrate, solvate, crystal form or a diastereomer thereof

13. A compound of the formula:

or a pharmaceutically acceptable prodrug, salt, hydrate, solvate, crystal form or a diastereomer thereof

- 14. A composition comprising a carrier and at least one compound according to any one of claims 5 to 13.
- 15. A method of treatment of a hyperproliferation-related disorder or disease state in a subject, said method comprising administering a therapeutically effective amount of at least one compound according to any one claims 1 to 13 or a composition according to 14.
- 16. A method of treatment according to claim 15, wherein the hyperproliferation-related disorder or disease state is treatable by the modulation of microtubule polymerisation.
- 17. A method according to claim 15 or claim 16, wherein the hyperproliferation-related disorder or disease state is selected from the group consisting of Cancer, infectious diseases, vascular restenosis or inflammatory diseases.
- 18. A method of treatment of a protein-kinase related disorder or disease state in a subject, said method comprising administering a therapeutically effective amount of at least one compound according to any one of claims 1 to 13 or a composition according to 14.
- 17. A method according to claim 18, wherein the protein-kinase related disorder or disease state is selected from the group consisting of Atopy, Cell Mediated Hypersensitivity, Rheumatic Diseases, Other autoimmune diseases and Viral Diseases.
- 18. A method of treatment of diseases and conditions associated with inflammation and infection in a subject, said method comprising administering a therapeutically effective amount of at least one compound according to any one of claims 1 to 13 or a composition according to claim 14.