# 1 Auswertung

Vor Beginn der Messung wurde zunächst der Dunkelstrom gemessen. Dieser beträgt

$$I_{Dunkel} = 5 \,\mathrm{nA}$$

und muss von den gemessenen Stromwerten abgezogen werden.

Der ausgemessene Abstand zwischen Spalt und Detektor beträgt  $L_1=99.05\,\mathrm{cm}.$  Der Abstand zwischen dem Laser und der Dem Spalt beträgt  $L_2=5.95\,\mathrm{cm}.$ 

### 1.1 Einzelspalt 0.075 mm

In Tabelle (1) sind die gemessenen Werte für einen Einzelspalt mit einer Spaltbreite von  $b=0.075\,\mathrm{mm}$  zu finden.

Tabelle 1: Einzelspalt 0.075mm

| Abstand/ $\mu m$ | Strom / nA | $\mid$ Abstand/ $\mu m$ | Strom / nA |
|------------------|------------|-------------------------|------------|
| 3                | 7.2        | 24                      | 9          |
| 6                | 7.2        | 25                      | 5.6        |
| 6.5              | 7.6        | 27                      | 13.5       |
| 7                | 7.8        | 28                      | 11         |
| 7.5              | 8.2        | 29                      | 16         |
| 8                | 9          | 29.5                    | 19.5       |
| 8.5              | 9.4        | 30                      | 22.5       |
| 9                | 10         | 30.5                    | 24         |
| 9.5              | 10         | 31                      | 25         |
| 11               | 9.8        | 31.5                    | 24.5       |
| 11.5             | 9.2        | 32                      | 22.5       |
| 12               | 8.4        | 33                      | 17         |
| 13               | 7.6        | 34                      | 11.5       |
| 14               | 9.8        | 35                      | 8.2        |
| 15               | 17.5       | 36                      | 8          |
| 16               | 34         | 36.5                    | 9          |
| 18               | 10         | 37                      | 10         |
| 19               | 13         | 37.5                    | 11         |
| 20               | 15.5       | 38                      | 11.5       |
| 20.5             | 16.5       | 38.5                    | 11.5       |
| 21               | 16.5       | 39                      | 11         |
| 22               | 16         | 39.5                    | 10         |
| 22.5             | 15         |                         |            |

Eine Regression wurde mit der Formel

$$I(\varphi) = I_0^2 b^2 \left( \frac{\lambda}{\pi b sin(\varphi)} \right)^2 \cdot sin\left( \frac{\pi b sin(\varphi)}{\lambda} \right) \tag{1}$$

durchgeführt. Hierbei ist  $I_0$  die Amplitude und b<br/> die Spaltbreite. Der Beugungswinkel  $\varphi$  ergibt sich durch<br/>  $\frac{(x-x0)}{L_1}$ . Die Wellenlänge  $\lambda$  des Lasers wurde aus der Anleitung entnommen und beträgt 633 nm.

Die Regression wurden für zwei unterschiedliche Mittelpunkte durchgeführt. Zum einen bei  $20.5\,\mathrm{mm}$ , wo er auch bei den anderen beiden Spalten liegt und vermutet wurde, zum anderen bei  $31\,\mathrm{mm}$ . Dieser Wert wurde aus den Messwerten entnommen.

In den Graphen wurden zwei Punkte herausgenommen, da diese sehr weit von der vermuteten verteilung wegliegen und somit fehlerhaft sein müssen.

In Abbildung (1) ist die Regression für eine Verschieung um 20.5 mm zu sehen.



Abbildung 1: 1. Einzelspalt 0.075mm

Somit ergibt sich eine Spaltbreite von

$$b = (0.090 \pm 0.043)$$

Das entspricht einer Abweichung von 20% zu der tatsächlichen Spaltbreite. Wird nun der Mittelunkt auf 31 mm gelegt ergibt sich die Abbildung (2).



Abbildung 2: 2. Einzelspalt  $0.075 \mathrm{mm}$ 

Hier ergibt sich eine Spaltbreite von

$$b = (0.096 \pm 0.015)$$

Die prozentuale Abweichung zur tatsächlichen Spaltbreite beträgt 28%.

## 1.2 Einzelspalt 0.15 mm

Tabelle (2) zeigt die gemessenen Werte für eine Spaltbreite von  $b=0.15\,\mathrm{mm}.$ 

Tabelle 2: Einzelspalt 0.15mm

| Abstand/ $\mu m$ | Strom / nA | $\mid$ Abstand/ $\mu m$ | Strom / nA |
|------------------|------------|-------------------------|------------|
| 9                | 9.2        | 24                      | 25         |
| 10               | 11         | 24.5                    | 13.5       |
| 10.5             | 12.5       | 25                      | 20.5       |
| 11               | 13.5       | 25.5                    | 32         |
| 11.5             | 13         | 26                      | 36         |
| 12               | 11.5       | 26.5                    | 34         |
| 13               | 10.5       | 27                      | 26         |
| 13.5             | 15         | 28                      | 13.5       |
| 14               | 22.5       | 28.5                    | 14.5       |
| 14.5             | 30         | 29                      | 18         |
| 15               | 34         | 29.5                    | 22         |
| 15.5             | 30         | 30                      | 21         |
| 16               | 21.5       | 30.5                    | 18.5       |
| 17               | 20         | 31                      | 14.5       |
| 18               | 125        | 32                      | 10.5       |
| 19               | 360        | 32.5                    | 12.5       |
| 19.5             | 480        | 33                      | 15.5       |
| 20               | 600        | 33.5                    | 17.5       |
| 20.5             | 620        | 34                      | 17.5       |
| 21               | 600        | 34.5                    | 15         |
| 21.5             | 520        | 35                      | 11.5       |
| 22               | 400        | 36                      | 8.2        |
| 23               | 150        |                         |            |

Für diese Werte wurde ebenfalls eine Regression mit der Formel (1) durchgeführt. Sie ist in Abbidung (3) zusehen. Der Mittelpunkt liegt bei  $20.5\,\mathrm{mm}$ 



Abbildung 3: Einzelspalt 0.15mm

Aus der Regression ergibt sich die experimentell bestimmte Spaltbreite.

$$b = (0.15939 \pm 0.00104) \,\mathrm{mm} \tag{2}$$

Dies entspricht einer Abweichung von 6.26% zum angegebenen Wert.

#### 1.3 Doppelspalt

In Tabelle(3) werden die Werte für einen Doppelspalt mit der Spaltbreite  $b=0.15\,\mathrm{mm}$  und dem Spaltabstand  $s=0.5\,\mathrm{mm}$  aufgelistet. In Abbildung (4) sind die gemsessenen Werte für einen den Doppelspalt, sowie eine darüber gelegte Theoriekurve zu sehen. Außerdem sind ebenfalls die gemessenen Werte für den Einzelspalt mit  $0.15\,\mathrm{mm}$  Breite aufgetragen. Die Formel für die Ausgleichsfunktion lautet

$$I(\varphi) = 4cos^2 \left(\frac{\pi s \cdot sin\varphi}{\lambda}\right) \cdot \left(\frac{\lambda}{\pi b sin\varphi}\right)^2 \cdot sin^2 \left(\frac{\pi b sin\varphi}{\lambda}\right)$$

Tabelle 3: Doppelspalt

| Abstand/ μm | Strom / µA | Abstand/ μm | Strom / µA |
|-------------|------------|-------------|------------|
| 9           | 0.0155     | 19.5        | 0.86       |
| 10          | 0.0105     | 20          | 1          |
| 10.5        | 0.001      | 20.5        | 1.5        |
| 10.75       | 0.0145     | 21          | 0.74       |
| 11          | 0.021      | 21.5        | 1.2        |
| 11.25       | 0.0235     | 22          | 0.5        |
| 11.5        | 0.0185     | 22.5        | 0.44       |
| 12          | 0.18       | 23          | 0.26       |
| 12.25       | 0.0255     | 24          | 0.04       |
| 12.5        | 0.028      | 25          | 0.07       |
| 12.75       | 0.025      | 25.5        | 0.046      |
| 13          | 0.0205     | 26          | 0.07       |
| 14          | 0.0275     | 27          | 0.026      |
| 14.25       | 0.034      | 28          | 0.018      |
| 14.5        | 0.054      | 29          | 0.022      |
| 14.75       | 0.052      | 29.5        | 0.032      |
| 15          | 0.036      | 30          | 0.024      |
| 15.5        | 0.048      | 30.5        | 0.018      |
| 15.75       | 0.056      | 31          | 0.012      |
| 16          | 0.052      | 32          | 0.02       |
| 17          | 0.058      | 32.5        | 0.018      |
| 18          | 0.36       | 33          | 0.024      |
| 18.5        | 0.28       | 33.5        | 0.018      |
| 19          | 0.94       | 34          | 0.014      |



Abbildung 4: Der Doppelspalt

Die Messwerte für den Einzelspalt wurden mit dem Faktor 413.3 an die des Doppelspaltes angepasst um diese aufeinander legen zu können. Es ist gut zu erkennen, dass die Messwerte des Einzelspaltes eine einhüllende Kurve ergeben.

# 2 Diskussion