Robótica, sensores y Actuadores 2017-2018

Resumen del curso

1. Introducción a la Robótica

- 1.1. Qué es un robot
- 1.2. [Mini-historia de la robótica]
- 1.3. Clasificación de los robots
 - Clasificación según su cronología
 - Clasificación según su arquitectura
 - [Clasificación según sus atributos, morfología y campos de utilización] Saber usar la tabla

2. Robótica Móvil

- Introducción a la Robótica móvil
 - ¿Qué es la Robótica Móvil?
 - ¿Para qué sirven los Robot Móviles?
 - [Robots móviles en funcionamiento], [Prototipos de investigación]
 - Subsistemas
 - Autonomía
 - Arquitecturas de Control
 - Problemas cinemático directo e inverso
 - Cinemática del robot móvil
 - Problemas dinámico directo e inverso
 - Problemas con los sistemas reales

3.a Navegación en Robótica Móvil (1)

- Objetivo de la navegación
 - ¿Qué es la navegación en Robótica Móvil?
- Tareas
 - Mapping
 - Path planning
 - Driving
 - [Tareas, procesos y funciones]
- Autonomía/dificultad
 - Guiado continuo
 - Guiado estimativo
 - Dead Reckonig
 - Odometría
 - Guiado mediante balizas
 - Guiado mediante marcas

3.a Navegación en Robótica Móvil (2)

- Mapas
 - Definición
 - Parámetros y características de los mapas
 - Tipos de mapas
 - Métricos
 - Topológicos
 - Mixtos
 - Adquisición y uso del mapa [ejemplo de adquisición del mapa]
- Tareas y mapas
 - Mapping: localización del robot
 - Path planning: planificación de caminos
 - Planificadores topológicos
 - Planing con mapas topológicos
 - Planificadores métricos
 - Driving
 - · Evitación de obstáculos

3b. Odometría para navegación por "dead reckoning" en robótica móvil

- Dead reckoning, o navegación estimada
- Odometría
- Errores sistemáticos y no sistemáticos en odometría.
- MapasCodificadores rotatorios (rotary encoders)
 - Encoders incrementales o relativos
 - Codificadores o encoders absolutos
- [Navegación por dead reckoning con una configuración diferencial]

Prácticas

Práctica 1

- Programación de la entrada/salida de la Raspberry Pi2
 - Puesta en marcha de una Raspberry Pi2
 - Uso de las librerías
 - Compilación de programas en la Raspberry Pi2
 - Programación de las entradas/salidas

{Preparación de un computador externo más potente que el que está disponible en el robot}

Práctica 2

- Introducción al iRobot Create (Aprender a enviar comandos y programar el iRobot mediante scripts)
 - Programación mediante comandos a través de Real Term
 - Programación mediante scripts a través de Hex
 Editor Neo

{Programación del robot en su "lenguaje máquina" -> dependiente del robot}

Práctica 3

- Lectura y calibración de los sensores del iRobot mediante el iRobot Framework
 - Instalación del iRobot Framework
 - Programación de sensores del iRobot Create
 - Calibración de sensores

{Uso de un marco de trabajo de alto nivel para programación "cuasi-independiente" del robot}

Práctica 4

 Navegación mediante marcas y evitación de obstáculos con iRobot Create

Programar un algoritmo de navegación por marcas (mediante el seguimiento de una línea negra marcada en el suelo) y de evitación de obstáculos, para iRobot Create

- Uso de los sensores de barranco para seguir la línea
- Algoritmo de seguimiento de la línea
- Uso del bumper para detectar obstáculos
- Algoritmo de evitación de obstáculos

{Aplicación de las técnicas básicas de guiado (con evitación de obstáculos) de robots móviles}

Práctica 5

• Uso de mapas para plannig y driving

Programar un algoritmo capaz de encontrar caminos entre nodos de un grafo y aplicarlo a iRobot. Aplicación a la planificación de desplazamientos por un laberinto y evitación de obstáculos.

- Codificación y uso de mapas
- Planificación de rutas siguiendo algoritmos estándar
- Replanificación de la ruta cuando se encuentra un obstáculo

{Aplicación de las técnicas básicas de planificación, replanificación y guiado de robots móviles}