The Ninth Grade Math Competition Class Unit Digit Anthony Wang

1. What is the units digit of $(23^{13})^3$?

 $(3^{13})^{3} = 3^{39}$

3-37

2. Find the units digit of n given that $m = 2 \cdot 1^6$ and m has a units digit of 7.

3. (a:) Find the units digit of the sum

$$1! + 2! + 3! + \cdots + 2006!$$

(b:) Find the units digit of the above sum when it is expressed in base 7.

4. A positive to value of <i>n</i> ?	two-digit integer	is divisible by n a	and its units digit i	s n . What is the	greatest possible

5. Find the units digit of $3^{2016} - 2^{2016}$.

3¹-3 3¹-3 3²-9 3³-3 3⁴-3

6. The cube of the 3-digit natural number A7B is 108531333. What is A + B?

7. How many of the positive divisors of 6^{2006} have a units digit of 6?						

- **8.** (a) Convert 1599 to base 16.
 - (b) Find all possible units digits of perfect fourth powers when written in base 16.
 - (c) Determine all non-negative integral solutions $(n_1, n_2, \dots, n_{14})$ if any, of the Diophantine equation.

$$n_1^4 + n_2^4 + \dots + n_{14}^4 = 1599.$$

(A Diophantine equation is an equation in which only integer solutions are allowed.)