Pavel Repnikov

GitHub | Email: prepnik@mail.ru | Mobile: +79888639559

TECHNICAL SKILLS

Languages : C++, Python

Frameworks : Unreal Engine, Unity, Pytorch

Libraries : numpy, pandas, SciPy, PySR, PyClustering, XGBoost, LightGBM, CatBoost, numba, sklearn

Auxiliary tools: HTML, CSS, javascript, SQL

EDUCATION

Lomonosov Moscow State University

Moscow, Russia

Location: Moscow, Russia

MSc in Physics, Chair of Mathematical Modeling and Computer Science

2022-2024

Lomonosov Moscow State University

Moscow, Russia 2018-2022

BSc in Physics, Chair of Mathematical Modeling and Computer Science

PROJECTS IN DEVELOPMENT

Adaptive metabolic model

- Monte Carlo simulation
- · Time series clustering

Adaptive control system with fuzzy logic based on Bayesian inference

- · Cross-entropy method for reinforcement learning
- Creating a greedy optimization algorithm for physical simulation
- · Creating an analogue of the gradient descent algorithm in the function space

COMPLETED PROJECTS

Credit Scoring on a synthetic dataset

Python, XGBoost, LightGBM, CatBoost, PyClustering, SciPy

source code

- The divide and conquer principle. Building models independently for different years
- Automatic feature generation
- · Testing statistical hypotheses
- Clustering of tabular data

Furniture object detection

SQL,C#, Unity, Python, Pytorch

source code

- * Creating a synthetic dataset using Unity
- * Object detection finetuning using Pytorch

Bayesian Decision Making as a Theoretical Basis for a New Look at Fuzzy Logic Control Python, Pytorch source code

- * Creating a new machine learning white-box model from scratch
- * Creating a fuzzy inference system based on statistical inference
- * Solving a system of integral equations using Pytorch

Machine learning of noise filtering of vibroacoustic linearly distributed sensor data Python, TensorFlow source code

* Creating an optimal signal filter for recognizing different types of activity