CSC 339 – Theory of Computation Fall 2023

14. Time and Space Complexities

Outline

- Time complexity
- Polynomial time algorithms
- Exponential time algorithms
- Non-Determinism
- Space complexity

Consider a deterministic Turing Machine M which decides a language L.

For any string w the computation of M terminates in a finite amount of transitions.

Initial

state

Accept or Reject *W*

Consider now all strings of length n

 $T_M(n)$ = maximum time required to decide any string of length n

Time Complexity Class: TIME(T(n))

All Languages decidable by a deterministic Turing Machine in time O(T(n)).

Example: $L_1 = \{a^n b : n \ge 0\}$

This can be decided in O(n) time.

TIME(n)

$$L_1 = \{a^n b : n \ge 0\}$$

Other example problems in the same class

TIME(n)

$$L_1 = \{a^n b : n \ge 0\}$$

 $\{ab^naba: n,k \geq 0\}$

 $\{b^n: n \text{ is even}\}$

 $\{b^n: n=3k\}$

Examples in class: $TIME(n^{2})$ $\{a^{n}b^{n}: n \geq 0\}$ $\{ww^{R}: w \in \{a,b\}\}$ $\{ww: w \in \{a,b\}\}$

Examples in class:

$TIME(n^3)$

$$L_2 = \{\langle G, w \rangle : w \text{ is generated by }$$

context - free grammar $G\}$

$$L_3 = \{ \langle M_1, M_2, M_3 \rangle : n \times n \text{ matrices}$$

and $M_1 \times M_2 = M_3 \}$

Polynomial time algorithms: $TIME(n^k)$ With constant k > 0

Represents tractable algorithms:

For small k we can decide the result fast.

The Time Complexity Class P

$$P = \bigcup_{k>0} TIME(n^k)$$

Represents:

- Polynomial time algorithms.
- "Tractable" problems.

Exponential time algorithms: $TIME(2^{n^k})$

Represent intractable algorithms:

Some problem instances may take centuries to solve.

Example 1: The Hamiltonian Path Problem

Question: is there a Hamiltonian path from s to t?

A solution: search exhaustively all paths

```
L = {<G,s,t>: there is a Hamiltonian path in G from s to t}
```

 $L \in TIME(n!) \approx TIME(2^{n^k})$ Exponential time Intractable problem

Example 2: The Satisfiability Problem

Boolean expressions in Conjunctive Normal Form (CNF):

$$t_1 \wedge t_2 \wedge t_3 \wedge \cdots \wedge t_k$$

Clauses

$$t_i = x_1 \lor \overline{x}_2 \lor x_3 \lor \dots \lor \overline{x}_p$$
 Variables

Question: is the expression satisfiable?

Example:
$$(\bar{x}_1 \lor x_2) \land (x_1 \lor x_3)$$

Satisfiable:
$$x_1 = 0, x_2 = 1, x_3 = 1$$

 $(\bar{x}_1 \lor x_2) \land (x_1 \lor x_3) = 1$

Example: $(x_1 \lor x_2) \land \overline{x}_1 \land \overline{x}_2$

Not satisfiable

 $L = \{w : \text{expression } w \text{ is satisfiable}\}$

 $L \in TIME(2^{n^k})$ Exponential

Algorithm:

Search exhaustively all the possible binary values of the variables.

Non-Determinism

Language class: NTIME(T(n))

A Non-Deterministic Turing Machine decides each string of length n in time O(T(n)).

Non-Deterministic Polynomial time algorithms:

$$L \in NTIME(n^k)$$

The class NP

Non-Deterministic Polynomial time

$$NP = \bigcup_{k>0} NTIME(n^k)$$

Example: The satisfiability problem

 $L = \{w : \text{expression } w \text{ is satisfiable}\}$

Non-Deterministic algorithm:

- Guess an assignment of the variables.
- Check if this is a satisfying assignment.

 $L = \{w : \text{expression } w \text{ is satisfiable}\}$

Time for *n* variables:

- Guess an assignment of the variables: O(n)
- Check if this is a satisfying assignment: O(n)

Total time: O(n)

 $L = \{w : \text{expression } w \text{ is satisfiable}\}$ $L \in NP$

The satisfiability problem is an NP- Problem.

Open Problem: P = NP?

Example: Does the Satisfiability problem have a polynomial time deterministic algorithm?

We don't know the answer, so far.

Space complexity

- Let *M* be a deterministic Turing machine that halts on all inputs.
- The space complexity of M is the function:
 f: N → N, where f(n) is the maximum number of tape cells that M scans on any input of length n.
- We say that M runs in space f(n).

Space complexity

- If *M* is a nondeterministic Turing machine wherein all branches halt on all inputs.
- The space complexity of *M* is the function:

 $f: \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of tape cells that M scans on any branch of its computation for any input of length n.

Space complexity class SPACE(f(n))

- Let $f: \mathbb{N} \to \mathbb{R}^+$ be a function.
- The space complexity class SPACE(f(n)) is defined by:

```
SPACE(f(n)) = \{L | L \text{ is a language decided by an } O(f(n)) \text{ space deterministic Turing machine} \}
```

Space complexity class NSPACE(f(n))

- Let $f: \mathbb{N} \to \mathbb{R}^+$ be a function.
- The space complexity class NSPACE(f(n)) is defined by:

NSPACE $(f(n)) = \{L | L \text{ is a language decided by an } O(f(n)) \text{ space nondeterministic Turing machine} \}$

Savitch's theorem

• For any function $f: \mathbb{N} \to \mathbb{R}^+$, where $f(n) \ge n$, $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$

Space complexity class PSPACE

• PSPACE is the class of languages that are decidable in polynomial space on a deterministic Turing machine:

$$PSPACE = \bigcup_{k} SPACE(n^k)$$