LPC-10 Speech Encoder Implementation

December 16, 2020

Karndeep Singh Rai-Bhatti

Motivation

- Speech compression for communication systems
 - Telephones
 - Voice over IP
 - Videoconferencing
- Maximize audio data compression
 - Without corrupting the words being spoken
 - Retaining an intelligible voice
 - Additional Security encryption

We want to maximally compress audio while preserving voice and meaning.

Model that Emulates Human Speech Generation – Physical Model

Physical Model of Speech and Synthesis

- Air ~ Speech volume
 - **≻**Gain
- Vocal Cords ~ Excitation signal
 - >Impulse train
 - ➤ Period = fundamental Frequency of voice
- Vocal Tract ~ Linear Transformation
 - ➤ Modeled by All Pole System
 - ➤ Our Linear Predictor
- Speech ~ Output signal
 - ➤ Pass excitation through filter with appr

LPC10 models speech synthesis based on the human vocal tract.

Modeling Speech as a LTI system

- Model holds true at small intervals (25ms)
- Unvoiced is approximated as 4th order all-pole filter
- Voiced is approximated as 10th order all-pole filter

The Vocal Tract is modeled as an LTI all-pole filter.

LPC-10 workflow

LPC10 is an encoder-decoder network.

What did I do?

- Implemented LPC-10
 - Look at system holds up to different users and emotions
- Attempted to Improve LPC-10
 - Voiced detection
 - All-Pole Filter
 - Pitch Interpolation
 - Gain Interpolation
- Implemented LPC-10 in real-time using MATLAB

I implemented and qualified LPC10, attempted to improve the algorithm and implemented it in real-time.

Data Set: EmoV-DB

- Databased for characterizing how Emotionally Expressive a Voice Generation System is
- 4 Speakers
 - Bea & Jenie (female)
 - Sam & Josh (male)
 - All Bea data recorded at 44k, so it was excluded
- 5 emotions
 - Neutral, Sleepiness, Anger, Disgust, Amusement
 - We will look at Neutral, Anger, Sleepiness
- Use to assess the quality of our LPC-10 Reconstruction

https://github.com/numediart/EmoV-DB

The encoder was tested on both genders and for 3 extremes of emotion.

Emotions and Signal Periodicity

- Emotions tied to periodicity of speech signal
- Anger/Strong Emotions: Expect More Periodicity
 - Expection: Ideal case for model
- Fatique/Weak Emotions: Speech becomes more Aperiodic
 - Expectation: Model will perform more poorly
- LPC-10 relies on the assumption that speech is periodic at small time scales (ms)
- Test the robustness of the algorithm

Angry Audio – LPC10

- Periodic Signal
- Waveforms matched closely

 Audio suffers from distortion, primarily when volume peaks

Neutral Audio – LPC10

- Appears to work a lot better on female voices
- Cadence of Voice significant factor in clarity
- Reduced
 distortion
 compared to
 Angry speech

Sleepy Audio – LPC10

- Non-vocal noises handled poorly (high frequency jitter)
 - Reconstruction is very 'Breathy'
- Slow speech significantly easier to understand

Limitation of LPC?

- Distortion failed prediction
- Voiced Determination? (all prior used zero crossing)
- Increase number of coefficients?

Linear Predictor performed poorly at times, investigated a solution in the next slides.

Voiced Detection – Energy vs Zero-Crossing

- Energy Based Approach
 - For a speech clip:
 - Absolute value ()
 - Summation ()
 - Normalize to clip length
 - If energy > energy Threshold
 - Speech
 - Else
 - Noise

- Zero-Crossing
 - For a speech clip:
 - Turn in 1s -1s depending on sign
 - Take derivative
 - Count number of flips (zero-crossings)
 - Normalize to length of clip
 - If # zero crossings > crossing Threshold
 - Noise
 - Else
 - Speech

Tests Energy or Volume

Test Periodicity

Voicing detection was done using two different metrics. Each resulted in a different audio signature.

Voiced Detection – Jenie-Sleepy

- Energy Based Approach
 - Better preserve of Pitch

- Zero-Crossing
 - Less noise/artifacts

Coefficient Estimation – Number Coefficients

- N = 10
 - Used in official Standard
- Tested on very clear sample
 - N = 5
 - N = 20
 - N = 40
- Test using both Voicing methods

Coefficient Estimation – Number Coefficients

Energy Based Voice

• N = 5

• N = 10

• N = 20

• N = 40

Zero Crossing Based Voice

• N = 5

• N = 10

• N = 20

• N = 40

Coefficient Estimation – Re-visit Sleepy Jenie

- LPC n = 10
 - From Before

- LPC n = 40
 - Subjectively better, later portion

Improvements to LPC-10: Interpolation

Pitch linear interpolation

- Pitch calculated on a window to window (200 samples)
- Idea: Linearly interpolate period from prior window
- Problem: Signal Period is Large Relative to windows
- Shift correction

Phase correction works great!

Pitch interpolation has negligible effect.

Pitch linear interpolation - Results

- Pitch interpolation Clearer
- Shift correction reduced some artifacts
- Note: Past data has the shift correction.

Pitch interpolation only:

Gain Interpolation

- Apply an envelope to signal
- Linearly Interpreting gains of each bin
- Reduces Artifacts

Gain interpolation slightly reduces high frequency artifacts.

Real Time LPC demo

- Compare different filter orders
- Has shift correction implemented

Work Cited

- Spanias, A. (1994). Speech Coding: A Tutorial Review. *Proceedings of the IEEE*, 82(10), 1541-1582. https://doi.org/10.1109/5.326413
- Kang, G., & Everett, S. (1985). Improvement of the excitation source in the narrow-band linear prediction vocoder. IEEE Trans. Acoust. Speech Signal Process., 33, 377-386.