PRAGMA 39

Edge IoT, SDN based on SRv6

Kohei Ichikawa

Nara Institute of Science and Technology (NAIST), JAPAN ichikawa@is.naist.jp

Edge IoT

Edge IoT Testbed / PiK8kE (UF/NAIST/OU/TU)

An evolving international testbed for federated edge computing on Raspberry Pi 4 and Jetson Nano devices

Application on Edge IoT

Widely Distributed Federated Learning

- forms a hierarchal structure based on the geographical distribution for

SDN based on SRv6

SRv6 (Segment Routing over IPv6)

- Segment routing splits a network into multiple segments, and assigns a unique ID,
 SID, for each segment
- Routes are configured at each ingress node (source node)
- Topologies and routes are calculated by existing routing protocols (e.g. OSPF, BGP)

A list of SIDs, that specifies a route the packet should be pass through, is embedded as SRH into each packet at an ingress node

Segment SID: 02

Segment SID: 02

Segment SID: 03

Segment SID: 03

Segment SID: 03

SRv6 vs OpenFlow

- OpenFlow is a centralized approach, not scalable, needs to implement network functions from scratch, uses much resources to maintain flow tables
- SRv6 is a distributed approach. Routing is controlled at each source.
 It can be just added on the existing networks.

SRv6 Testbed in Japan

 We are deploying software routers that supports SRv6, called Kammuee,
 DPDK-based high performance router developed by NTT Comm. Hokkaido (In progress) Univ. The challenge is how to handle inter-domain SRv6 networks Kitami Institute of technology Kyushu Sangyo Fukuoka DC Kanazawa Hiroshima Univ. Univa Kyushu Kyoto Tohoku Ůniv. Kochi University of technology Tokyo Institute of technology Tokyo **National Institute** Univ. of Informatics science and technology