TULeCZech: Jazykový embedovací model pro český jazyk

Autor: Denis Tauchman

28. dubna 2025

Abstrakt

Tento článek popisuje vývoj a trénování embedovacího jazykového modelu optimalizovaného pro český jazyk, založeného na architektuře **xlm-RoBERTa-base**. Cílem projektu bylo vytvořit model vhodný pro vektorizaci textů v českém jazyce za účelem vyhledávání a porovnávání sémantické podobnosti.

1 Úvod

V rámci bakalářské práce na Technické univerzitě v Liberci byl vytvořen embedovací model TULeCZech, zaměřený na reprezentaci českých textů ve formě vektorů.

2 Cíl projektu

Cílem bylo vytvořit jazykový model optimalizovaný pro český jazyk, vhodný pro vyhledávání relevantních odpovědí a porovnávání sémantické podobnosti za pomocí kosinové podobnosti

3 Použité metriky

Pro objektivní vyhodnocení výkonu jazykového modelu pro navrácení relevantních dokumentů byly použity standardní metriky přesnosti známé jako Top@k accuracy, konkrétně ve variantách acc@1, acc@3 a acc@10. Tyto metriky měří, zda se očekávaný (správný) výstup nachází mezi prvními k výsledky navrácenými modelem. Hodnota metriky se pohybuje v rozmezí od 0 do 1 (nebo 0–100 %), kde vyšší číslo indikuje lepší výkon modelu.

- acc@1 (Top1 accuracy): Měří, zda je správný výsledek hned na první pozici. Jedná se o velmi přísné kritérium, protože model musí přesně odhadnout nejlepší odpověď.
- acc@3 (Top3 accuracy): Umožňuje modelu chybu na první pozici, ale stále hodnotí úspěch, pokud je správná odpověď mezi prvními třemi výsledky.
- acc@10 (Top10 accuracy): Hodnotí, zda se správná odpověď nachází mezi prvními deseti návrhy. Tato metrika lépe reflektuje praktické použití v technice RAG, jelikož se z vektorové databáze vrací více částí dokumentů najednou, pro lepší přenost a kontext.

4 Výběr základního modelu

Byly porovnány dostupné open-source modely založené na architekturách **RoBERTa**, **BERT** a **ELECTRA**. Výsledky shrnuje Tabulka 1.

Model	acc@1 (%)	acc@3 (%)	acc@10 (%)
multilingual-e5-base	65.4	86.8	91.7
multilingual-e5-small	63.1	85.1	90.6
sentence-transformers-multilingual-e5-small	63.1	85.1	90.6
paraphrase-multilingual-mpnet-base-v2	44.1	69.6	79.1
distiluse-base-multilingual-cased-v2	42.6	68.6	77.3
LaBSE	42.3	68.3	77.0
Seznam/simcse-dist-mpnet-czeng-cs-en	36.1	62.1	71.8
Seznam/retromae-small-cs	27.1	49.9	59.9
Seznam/simcse-small-e-czech	3.4	9.9	14.8

Tabulka 1: Výsledky modelů na datasetu SQuAD dev2.0

5 Použité datasety

- **SQuAD** (**cz**) překlad anglického datasetu upravený na dvojice (korpus, otázka).
- DaReCZech dataset Seznam.cz s dvojicemi (dotaz, dokument).
- iDnes dataset vlastní dataset vytvořený scrapingem článků.

V rámci experimentů, se testovaly různé kombinace datasetů, následný graf zobrazuje přesnost modelu za použití různých kombinací modelů

Obrázek 1: Doladění pomocí různých kombinací datasetů - acc@10

6 Architektura a trénink

Model je založen na **xlm-RoBERTa-base** a trénován na úloze návratu relevantních dokumentů

Architektura **xlm-RoBERTa-base** byla vybrána také z důvodu předtrénování na datasetu, který obsahuje více jak 100 jazyků, což výrazně pomohlo v případě dotrénování na českém jazyce

7 Hyperparametry

Nastavení tréninku:

• Maximální délka vstupu: 512 tokenů

• Batch size: 56

• Optimalizátor: Adam + AdamW

• Počet epoch: 30

• Learning rate: 2e-5

• Loss funkce: MultipleNegativesRankingLoss

8 Experimentální část

Při experimentování bylo testováno několik variant:

• Learning rate: [1e-6 - 6e-5]; nejlepší stabilita a konvergence byla při 2e-5.

Learning rate	acc@1 [%]
1e-6	49.3
2e-6	52.2
3e-6	53.3
4e-6	53.4
5e-6	54.2
6e-6	54.1
7e-6	54.4
8e-6	54.3
9e-6	54.5
1e-5	54.5
2e-5	55.3
3e-5	53.6
4e-5	54.1
5e-5	53.1
6e-5	52.6

Tabulka 2: Výsledná přesnost modelu při různých hodnotách learning rate

• Batch size: 4-64; větší batch size zrychlila konvergenci.

Batch size	acc@1 [%]		
4	34.6		
8	43.1		
16	50.2		
24	53.4		
32	53.9		
48	55.1		
56	56.3		
64	55.7		

Tabulka 3: Výsledná přesnost modelu při různých hodnotách batch size

• Počet epoch: mezi 20 a 40 epochami; optimální byl 30 epoch.

9 Výsledky modelu

Vytvořený model dokázal překonat všechny vyhodnocené modely v metrice acc@10, která je z hlediska praktičnosti nejvíce relevantní

model	acc@1 [%]	acc@3 [%]	acc@10 [%]
Multilingual-E5-base	65.4	86.8	91.7
Multilingual-E5-small	63.0	85.0	90.5
distiluse-base-multilingual-cased-v2	42.6	68.5	77.3
LaBSE	42.3	68.2	76.9
Seznam/simcse-dist-mpnet-czeng-cs-en	36.1	62.1	71.8
${\bf Seznam/RetroMAE\text{-}small\text{-}cs}$	27.0	49.9	59.9
Seznam/simcse-small-e-czech	3.3	9.9	14.8
E5-Czech-Base	63.2	81.2	92.0

Tabulka 4: Porovnání s ostatními modely

10 Závěr

Projekt TULeCZech přináší kvalitní embedovací model pro český jazyk. V porovnání s existujícími modely dosahuje konkurenceschopných výsledků a je vhodný pro různé NLP účely.