

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC167718 1 of 146 Page:

FCC Radio Test Report FCC ID: 2AHJQ-AX11

Original Grant

Report No. TB-FCC167718

APRIX LATINOAMERICA S.A. **Applicant**

Equipment Under Test (EUT)

EUT Name Notebook

Model No. Aprix AX11

N/A Serial Model No.

Aprix Brand Name

Receipt Date 2019-07-15

2019-07-17 to 2019-07-25 **Test Date**

Issue Date 2019-07-27

FCC Part 15, Subpart E (15.407) **Standards**

Test Method ANSI C63.10: 2013

Conclusions PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC and IC requirements

Test/Witness Engineer

Jason xu Layda. Approved& **Authorized**

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Page:

Contents

COI	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	7
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	
	1.7 Test Facility	
2.	TEST SUMMARY	10
3.	TEST EQUIPMENT	11
4.	CONDUCTED EMISSION TEST	12
	4.1 Test Standard and Limit	12
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	13
	4.5 Test Data	13
5.	RADIATED EMISSION TEST	14
	5.1 Test Standard and Limit	14
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 EUT Operating Condition	17
	5.5 Test Data	17
6.	BAND EDGE EMISSIONS	18
	6.1 Test Standard and Limit	18
	6.2 Test Setup	
	6.3 Test Procedure	19
	6.4 EUT Operating Condition	19
	6.5 Test Data	19
7.	BANDWIDTH TEST	20
	7.1 Test Standard and Limit	20
	7.2 Test Setup	20
	7.3 Test Procedure	20
	7.4 EUT Operating Condition	21
	7.5 Test Data	21
8.	OUTPUT POWER TEST	22
	8.1 Test Standard and Limit	22
	8.2 Test Setup	22
	8.3 Test Procedure	22

Page: 3 of 146

	8.4 EUT Operating Condition	22
	8.5 Test Date	
9.	POWER SPECTRAL DENSITY TEST	23
	9.1 Test Standard and Limit	23
	9.2 Test Setup	23
	9.3 Test Procedure	
	9.4 EUT Operating Condition	24
	9.5 Test Data	24
10.	FREQUENCY STABILITY MEASUREMENT	25
	10.1 Test Standard and Limit	25
	10.2 Test Setup	25
	10.3 Test Procedure	25
	10.4 EUT Operating Condition	25
	10.5 Test Data	
11.	ANTENNA REQUIREMENT	27
	11.1 Standard Requirement	27
	11.2 Antenna Connected Construction	27
	11.3 Result	27
ATT	FACHMENT A CONDUCTED EMISSION TEST DATA	28
REM	MARK: ALL MODES AND CHANNELS HAVE BEEN TESTED AND ONLY LIS	STED WIFI
LINE	K MODE THAT IS WORST DATA	29
ATT	TACHMENT B RADIATED EMISSION TEST DATA	30
ATT	ACHMENT C BAND EDGE EMISSIONS TEST DATA	34
ATT	ACHMENT D BANDWIDTH TEST DATA	92
ATT	ACHMENT E OUTPUT POWER TEST DATA	114
ATT	ACHMENT F POWER SPECTRAL DENSITY TEST DATA	125

Report No.: TB-FCC167718
Page: 4 of 146

Revision History

Report No.	Version	Description	Issued Date
TB-FCC167718	Rev.01	Initial issue of report	2019-07-27
4000		may make	WO.
	1000	TOBY.	m0 33
WIND?			4087
	1		
MOBIL			MODE
TO TO	PAR		and the
033	TO DE		6000
400			TO TO
	TOUR		
			MODE
53			UR D

Page: 5 of 146

1. General Information about EUT

1.1 Client Information

Applicant: APRIX LATINOAMERICA S.A.

ADVANCED 099 BLDG SUITE 4 C CALLE BEATRIZ M DE CABAL

Address : PANAMA

Manufacturer : APRIX LATINOAMERICA S.A.

Address : ADVANCED 099 BLDG SUITE 4 C CALLE BEATRIZ M DE CABAL

PANAMA

1.2 General Description of EUT (Equipment Under Test)

EUT Name		Notebook		
Models No.		Aprix AX11		
10:11		Operation Frequency:	U-NII-1: 5180MHz~5240MHz U-NII-3: 5745MHz~5825MHz	
		RF Output Power:	U-NII-1-802.11n(HT20):6.86dBm(Max) U-NII-3-802.11a:6.84dBm(Max)	
Product Description	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	: Modulation Type:	802.11a: OFDM (QPSK, BPSK, 16QAM) 802.11n: OFDM (QPSK, BPSK, 16QAM, 64QAM)	
			802.11ac: OFDM (QPSK, BPSK, 16QAM, 64QAM, 256QAM)	
	3	Bit Rate of Transmitter:	802.11a: 6/9/12/18/24/36/48/54 Mbps 802.11n: up to 150Mbps 802.11ac: at most 433.3 Mbps	
Power Supply		AC Adapter(Aprix Net-A11): Input: AC 100-240V, 50/60Hz, 1A Output: DC 12V, 3A		
Software Version	:	N/A		
Hardware Version		EM_IG520_272B_V2.0		
Connecting I/O Port(S)		Please refer to the Use	er's Manual	

Note: More detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Note:

(1) This Test Report is FCC Part 15, Subpart E(15.407) for 802.11a/n/ac, the test procedure follows the FCC KDB 789033 D02 General UNII Test Procedures New Rules V02r01.

Page: 6 of 146

(2) Channel List:

5G Band 5150~5250 MHz (U-NII-1)					
Frequency Band	Channel No.	Frequency	Channel No.	Frequency	
	36	5180 MHz	44	5220 MHz	
5180~5240 MHz	38	5190 MHz	46	5230 MHz	
Band 1	40	5200 MHz	48	5240 MHz	
	42	5210 MHz			

Remark:

For 20 MHz Bandwidth, use channel 36, 40, 48.

For 40 MHz Bandwidth, use channel 38, 46.

For 80 MHz Bandwidth, use channel 42.

5G Ban	d 5745~5825	MHz(U-NII-3)

()					
Frequency Band	Channel No.	Frequency	Channel No.	Frequency	
	149	5745 MHz	157	5785 MHz	
5745~5825 MHz	151	5755 MHz	159	5795 MHz	
Band 4	153	5765 MHz	161	5805 MHz	
	155	5775 MHz	165	5825 MHz	

Remark:

For 20 MHz Bandwidth, use channel 149, 157, 165.

For 40 MHz Bandwidth, use channel 151, 159.

For 80 MHz Bandwidth, use channel 155.

(3) Antenna information:

Ant.	Model Name	Antenna Type	BAND(MHz)	Gain (dBi)
1	N/A	FPC Ant.	5150-5250	2.84
	IN/A	FPC AIII.	5725-5850	2.90

1.3 Block Diagram Showing the Configuration of System Tested **TX Mode**

Page: 7 of 146

1.4 Description of Support Units

Equipment Information					
Name	Model	FCC ID/VOC	Manufacturer	Used "√"	
777.03.63				Mark Control	

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test					
Final Test M	ode Desc	ription			
Mode 1	TX 80	2.11a Mode			
		For Radiated Test			
Test Band	Final Test Mode	Description			
	Mode 2	TX Mode 802.11a Mode Channel 36/40/48			
	Mode 3	TX Mode 802.11n(HT20) Mode Channel 36/40/48			
LI NIII 4	Mode 4	TX Mode 802.11n(HT40) Mode Channel 38/46			
U-NII-1	Mode 5	TX Mode 802.11ac(VHT20) Mode Channel 36/40/48			
	Mode 6	TX Mode 802.11ac(VHT40) Mode Channel 38/46			
	Mode 7	TX Mode 802.11ac(VHT80) Mode Channel 42			
	Mode 8	TX Mode 802.11a Mode Channel 149/157/165			
	Mode 9	TX Mode 802.11n(HT20) Mode Channel 149/157/165			
LI NIII 2	Mode 10	TX Mode 802.11n(HT40) Mode Channel 151/159			
U-NII-3	Mode 11	TX Mode 802.11ac(VHT20) Mode Channel 149/157/165			
	Mode 12	TX Mode 802.11ac(VHT40) Mode Channel 151/159			
	Mode 13	TX Mode 802.11ac(VHT80) Mode Channel 155			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

802.11a Mode: OFDM (6 Mbps) 802.11n (HT20) Mode: MCS 8 802.11n (HT40) Mode: MCS 8

802.11ac(VHT20) Mode: MCS 1/Nss2

Report No.: TB-FCC167718 Page: 8 of 146

802.11ac(VHT40) Mode: MCS 1/Nss2 802.11ac(VHT80) Mode: MCS 1/Nss2

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

Test Software Version	MUDE	RFTestTool.exe				
U-NII-1						
Mode:	5180MHz	5200MHz	5240MHz			
IEEE 802.11a	60	60	60			
IEEE 802.11n (HT20)	65	65	65			
IEEE 802.11ac (VHT20)	65	65	65			
Mode:	5190MHz	5230MHz				
IEEE 802.11n (HT40)	65	65				
IEEE 802.11ac (VHT40)	65	65				
Mode:	5210 MHz					
IEEE 802.11ac (VHT80)	65					
	U-N	III-3				
Mode:	5745MHz	5785MHz	5825MHz			
IEEE 802.11a	48	48	48			
IEEE 802.11n (HT20)	50	50	50			
IEEE 802.11ac (VHT20)	48	48	48			
Mode:	5755MHz	5795MHz				
IEEE 802.11n (HT40)	50	50				
IEEE 802.11ac (VHT40)	44	44				
Mode:	5775MHz					
IEEE 802.11ac (VHT80)	40					

Page: 9 of 146

1.7 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

FCC Accredited Test Site Number: 854351.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

10 of 146 Page:

2. Test Summary

Standa	rd Section	Tool Hom	I. dama and	Remark
FCC	IC	Test Item	Judgment	
15.203	1	Antenna Requirement	PASS	N/A
15.207	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A
15.407(b)	RSS-GEN 7.2.2	Band Edge Emissions	PASS	N/A
15.407(a)	RSS-24 A.9.2	26dB Bandwidth&99% Bandwidth	PASS	N/A
15.407(e)	RSS-210 A.9.2	6dB Bandwidth(only for UNII-3)	PASS	N/A
15.407(a)	RSS-210 A.9.2	Peak Output Power	PASS	N/A
15.407(a)	RSS-210 A.9.2	Power Spectral Density	PASS	N/A
15.407(b)	RSS-210 A.9.2	Transmitter Radiated Spurious Emission	PASS	N/A
15.407(a)	RSS-210 A.9.2	Peak Excursion	PASS	N/A
15.407(g)	RSS-210 A.9.2	Frequency Stability	PASS	N/A

N/A is an abbreviation for Not Applicable.

Report No.: TB-FCC167718
Page: 11 of 146

3. Test Equipment

Conducted Emiss	ion Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 13, 2019	Jul. 12, 2020
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 13, 2019	Jul. 12, 2020
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 13, 2019	Jul. 12, 2020
LISN	Rohde & Schwarz	ENV216	101131	Jul. 13, 2019	Jul. 12, 2020
Radiation Emission	n Test			-	
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 13, 2019	Jul. 12, 2020
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 13, 2019	Jul. 12, 2020
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Jan. 27, 2019	Jan. 26, 2020
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Jan. 27, 2019	Jan. 26, 2020
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.03, 2019	Mar. 02, 2020
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.03, 2019	Mar. 02, 2020
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jan. 27, 2019	Jan. 26, 2020
Pre-amplifier	Sonoma	310N	185903	Mar.04, 2019	Mar. 03, 2020
Pre-amplifier	HP	8449B	3008A00849	Mar.03, 2019	Mar. 02, 2020
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.03, 2019	Mar. 02, 2020
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducto	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 13, 2019	Jul. 12, 2020
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 13, 2019	Jul. 12, 2020
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 15, 2018	Sep. 14, 2019
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 15, 2018	Sep. 14, 2019
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 15, 2018	Sep. 14, 2019
333	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 15, 2018	Sep. 14, 2019
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 15, 2018	Sep. 14, 2019
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 15, 2018	Sep. 14, 2019
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 15, 2018	Sep. 14, 2019

Page: 12 of 146

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

Evanuanov	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

Report No.: TB-FCC167718
Page: 13 of 146

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please refer to the Attachment A.

Page: 14 of 146

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

Radiated Emission Limits (9kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Meters(at 3m)	
(MHz)	Peak	Average
Above 1000	74	54

Note:

(1) The tighter limit applies at the band edges.

(2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

Limits of unwanted emission out of the restricted bands

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
5150~5250	-27	68.2
5250~5350	-27	68.2
5470~5725	-27	68.2
	-27(Note 2)	68.2
5705 5005	10(Note 2)	105.3
5725~5825	15.6(Note 2)	110.9
	27(Note 2)	122.2

Page: 15 of 146

NOTE:

1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$\mathsf{E} = \frac{1000000\sqrt{30P}}{3}\,\mathsf{uV/m},\,\mathsf{where}\;\mathsf{P}\;\mathsf{is}\;\mathsf{the}\;\mathsf{eirp}\;\mathsf{(Watts)}$$

2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

5.2 Test Setup

Below 30MHz Test Setup

Page: 16 of 146

Below 1000MHz Test Setup

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by

Report No.: TB-FCC167718
Page: 17 of 146

3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Page: 18 of 146

6. Band Edge Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.407(b)

6.1.2 Test Limit

Limits of unwanted emission out of the restricted bands

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
5150~5250	-27	68.2
5725~5825	-27(Note 2)	68.2
	10(Note 2)	105.3
	15.6(Note 2)	110.9
an Bu	27(Note 2)	122.2

NOTE:

1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \text{ uV/m, where P is the eirp (Watts)}$$

2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

6.2 Test Setup

Report No.: TB-FCC167718 Page: 19 of 146

6.3 Test Procedure

(1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.

- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Please refer to the Attachment C.

Page: 20 of 146

7. Bandwidth Test

7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.407

7.1.2 Test Limit

FCC Part 15 Subpart C(15.407)/RSS-210			
Test Item	Limit	Frequency Range (MHz)	
26 Bandwidth	N/A	5150~5250	
6 dB Bandwidth	>500kHz	5725~5850	

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The setting of the spectrum analyser as below:

26dB Bandwidth Test			
Spectrum Parameters Setting			
Attenuation	Auto		
Span	>26 dB Bandwidth		
RBW	Approximately 1% of the emission bandwidth		
VBW	VBW>RBW		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

Page: 21 of 146

6dB Bandwidth Test				
Spectrum Parameters	Setting			
Attenuation	Auto			
Span	>6 dB Bandwidth			
RBW	100 kHz			
VBW	VBW>=3*RBW			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			
	99% Occupied Bandwidth Test			
Spectrum Parameters	Setting			
Attenuation	Auto			
RBW	1% to 5% of the OBW			
VBW	≥ 3RBW			
Detector	Peak			
Trace	Max Hold			

7.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

7.5 Test Data

Please refer to the Attachment D.

Page: 22 of 146

8. Output Power Test

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.407 (a)

8.1.2 Test Limit

FCC Part 15 Subpart E(15.407)/RSS-210				
Test Item Limit Frequency Range(M				
Conducted Output Power	Fixed: 1 Watt (30dBm) Mobile and Portable: 250mW (24dBm)	5150~5250		
	1 Watt (30dBm)	5725~5850		

8.2 Test Setup

8.3 Test Procedure

The measurement is according to section 3 of KDB 789033 D02 General UNII Test Procedures New Rules V02r01

The EUT was connected to RF power meter via a broadband power sensor as show the block above.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

8.5 Test Date

Please refer to the Attachment E.

Page: 23 of 146

9. Power Spectral Density Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.407 (a)

9.1.2 Test Limit

FCC Part 15 Subpart E(15.407)				
Test Item Limit Frequency Range(MH				
Power Spectral Density	Other than Mobile and Portable : 17dBm/MHz Mobile and Portable : 11dBm/MHz	5150~5250		
	30dBm/500kHz	5725~5850		

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to KDB 789033 D02 General UNII Test Procedures New Rules V02r01.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
 - (2) Set analyser centre frequency to transmitting frequency.
 - (3) Set the span to encompass the entire emissions bandwidth (EBW)(alternatively, the entire 99% OBW) of the signal.

(4) Set the RBW to: 1 MHz (5) Set the VBW to: 3 MHz

(6) Detector: RMS(7) Trace: Max Hold(7) Sweep time: auto

- (8) Trace average at least 100 traces in power averaging.
- (9) User the peak marker function to determine the maximum amplitude level within the RBW. Apply correction to the result if different RBW is used.

Report No.: TB-FCC167718
Page: 24 of 146

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

9.5 Test Data

Please refer to the Attachment F.

Report No.: TB-FCC167718 Page: 25 of 146

10. Frequency Stability Measurement

10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.407

10.1.2 Test Limit

FCC Part 15 Subpart C(15.407)				
Test Item	Limit	Frequency Range(MHz)		
Peak Excursion Measurement	Specified in the user's manual, the transmitter	5150~5250		
	center frequency tolerance shall be ±20 ppm maximum for the 5 GHz band (IEEE 802.11n	5725~5850		
	specification)			

10.2 Test Setup

10.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
 - (2) Set analyser centre frequency to transmitting frequency.
 - (3) Set the span to encompass the entire emissions bandwidth (EBW) of the signal.
 - (4) Set the RBW to: 10 kHz, VBW=10 kHz with peak detector and maxhold settings.
 - (5) The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value.
 - (6) Extreme temperature is 0°C~50°C

10.4 EUT Operating Condition

The EUT was set to continuously transmitting in continuously un-modulation transmitting mode.

Page: 26 of 146

10.5 Test Data

Please refer to the Attachment G.

Page: 27 of 146

11. Antenna Requirement

11.1 Standard Requirement

11.1.1 Standard FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is (5150MHz-5250MHz: 2.84dBi, 5725MHz-5850MHz: 2.90dBi), and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

11.3 Result

The EUT antenna is a FPC Antenna. It complies with the standard requirement.

Antenna Type						
⊠Permanent attached antenna						
Unique connector antenna	Ellins III					
☐Professional installation antenna						

Attachment A-- Conducted Emission Test Data

Report No.: TB-FCC167718 Page: 29 of 146

Remark: All modes and channels have been tested and only listed WiFi link mode that is worst data

Report No.: TB-FCC167718
Page: 30 of 146

Attachment B-- Radiated Emission Test Data

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

30MHz~1GHz

Temperature: 25 °C					R	elative Hu	midity:	55%		
Test Volta	age:	e: AC 120V/60Hz								
Ant. Pol.		Hor	Horizontal							
Test Mod	e:	TX	802.1	1a Mod	de 5180MHz	(U-NII-1)	HAGE		1 63	
Remark:		Onl	ly wor	se case	e is reported	11:30		WILLIAM		
80.0 dBuV/	m									
							(RF)I	CC 15C 3M Radiati		
							3	Margin		
						2 X	Å .		5 X X	
30						1 m	/ \.[
	1 *					$\downarrow \downarrow \downarrow \downarrow \downarrow$	YW M	white there		
Manyan					A Mary Muse	Juny,				
120000000	₩ \\\	W. W. W.	more	mmn	MW """					
20										
30.000	40 50	60	70		(MHz)		300 400	500 600 70	0 1000.00	
No. M	k Era	200		ading	Correct	Measure	- Limi:	t Over		
INO. IVII				evel	Factor	ment				
	MH			BuV	dB/m	dBuV/m	dBuV		Detector	
1	52.20	079	44	1.51	-23.49	21.02	40.0	00 -18.98	QP	
2	251.1	804	52	2.84	-17.16	35.68	46.0	00 -10.32	QP	
3	337.2	155	54	1.89	-14.99	39.90	46.0	00 -6.10	QP	
4	401.8	385	48	3.61	-12.26	36.35	46.0	0 -9.65	QP	
5	750.1			1.32	-6.57	37.75	46.0		QP	
6 *	881.4			3.50	-4.31	42.19	46.0		QP	
	001.4	001	70	7.00	-4.01	72.13	40.0	-0.01	SZI	
*:Maximum	data x:C	over lim	nit !:ov	er margir	1					

Report No.: TB-FCC167718
Page: 31 of 146

Temperature:	25 ℃	R	elative Humi	dity: 5	5%			
Гest Voltage:	AC 120V/60Hz							
Ant. Pol.	Vertical							
Test Mode:	TX 802.11a Mode	5180MHz	(U-NII-1)	1 63		ω_{i}		
Remark:	Only worse case	is reported			3 11			
80.0 dBuV/m								
				(RF)FCC 1	5C 3M Radiation Margin -5			
			3		margin -o	6		
1			<u> </u>	1	4 5 X X	7		
30 X		2 handin		\				
	W M	mayouth	V	Mundel	المسهالات	السالم		
Jhw ^r	W W WWW	ν [,]	2004-01-01					
20 20 30.000 40 50	60 70 80	(MHz)	300	400 5	00 600 700	1000.0		
		, ,						
	Reading	Correct	Measure-					
No. Mk. Fr	req. Level	Factor	ment	Limit	Over			
М	Hz dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto		
1 46.9	948 53.97	-22.24	31.73	40.00	-8.27	QP		
2 167.2	2368 47.52	-20.62	26.90	43.50	-16.60	QP		
3 * 325.	5958 54.75	-15.37	39.38	46.00	-6.62	QP		
	2458 44.43	-9.77	34.66	46.00	-11.34	QP		
		-6.57	34.42	46.00	-11.58	QP		
5 /50	1003 40.99							
5 750.	1007 10 05	4 0 4	20.74					
6 881.4	4067 43.05	-4.31	38.74	46.00	-7.26	QP		

Page: 32 of 146

Above 1GHz

Test Mode: U-NII 1 & 802.11a Mode

10011110	<u></u>	111 1 & 002.11a iv	5180MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBμV)	Correction Factor (dB/m)	Emission Level Peak (dBµV/m)	Peak limit (dBµV/m)	Peak Margin (dB)
10360	Н	44.80	15.57	60.37	68.3	-7.93
15540	Н	46.33	19.05	65.38	68.3	-2.92
	Н	-013 -	WADS			
10360	V	42.95	15.57	58.52	68.3	-9.78
15540	V	43.51	19.05	62.56	68.3	-5.74
	V	50 5	4	= 4/1/17		110
			5200MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	Correction Factor (dB/m)	Emission Level Peak (dBµV/m)	Peak limit (dBμV/m)	Peak Margin (dB)
10400	H	45.35	15.66	61.01	68.3	-7.29
15600	Н	47.97	19.13	67.1	68.3	-1.2
	Н			40#7	(1)(1)	
10400	V	44.72	15.66	60.38	68.3	-7.92
15600	V	46.51	19.13	65.64	68.3	-2.66
U.P.	V	W. C.				
			5240MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	Correction Factor (dB/m)	Emission Level Peak (dBµV/m)	Peak limit (dBµV/m)	Peak Margin (dB)
10480	Н	44.77	15.79	60.56	68.3	-7.74
15720	Н	47.63	19.42	67.05	68.3	-1.25
	H\\			1		
10480	V	44.85	15.79	60.64	68.3	-7.66
15720	٧	47.51	19.42	66.93	68.3	-1.37
	V	3 - 6				

Note:

- 1. Emission Level= Read Level+ Correct Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 5. All modes are tested, showing only the worst patterns in the report.

Page: 33 of 146

Test Mode: U-NII 3 & 802.11n(HT20) Mode

			5745MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	Correction Factor (dB/m)	Emission Level Peak (dBμV/m)	Peak limit (dBμV/m)	Peak Margin (dB)
11490	Н	44.04	16.64	60.68	68.3	-7.62
17235	Н	46.21	20.41	66.62	68.3	-1.68
	Н	(1)	- N			20 1 27
11490	V	43.02	15.57	58.59	68.3	-9.71
17235	V	45.35	20.41	65.76	68.3	-2.54
	V		4405			021
			5825MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	Correction Factor (dB/m)	Emission Level Peak (dBµV/m)	Peak limit (dBµV/m)	Peak Margin (dB)
11650	Н	44.47	16.80	61.27	68.3	-7.03
17475	Н	45.58	21.01	66.59	68.3	-1.71
	Н			(JHI)		1
11650	V	44.78	16.80	61.58	68.3	-6.72
17475	V	45.33	21.01	66.34	68.3	-1.96
(1)	V	- 1	-	all norm		(1/7)

Note:

- 6. Emission Level= Read Level+ Correct Factor
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 9. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 10. All modes are tested, showing only the worst patterns in the report.

Attachment C-- Band Edge Emissions Test Data

(1) Radiation Test a/n(20)/ac(VHT20)

Emission Level= Read Level+ Correct Factor

Page: 35 of 146

Report No.: TB-FCC167718
Page: 36 of 146

Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage:	AC 120V/60Hz	MUDE			
Ant. Pol.	Horizontal				
Test Mode:	TX 802.11a Mode 5240 I	MHz (U-NII-1)			
Remark:	TX 802.11a Mode 5180~	5240 MHz (U-NII-1) Hi	gh		

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Х	5241.000	84.94	12.58	97.52	Fundamenta	al Frequency	peak
2	*	5241.000	75.18	12.58	87.76	— Fundamenta	al Frequency	AVG
3		5350.000	40.38	12.78	53.16	68.30	-15.14	peak
4		5350.000	30.87	12.78	43.65	54.00	-10.35	AVG

Emission Level= Read Level+ Correct Factor

Page: 37 of 146

Page: 38 of 146

Page: 39 of 146

Report No.: TB-FCC167718
Page: 40 of 146

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz	MUDE	
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11n(20) Mode 52	40 MHz (U-NII-1)	
Remark:	TX 802.11 n(20) Mode 5	180~5240 MHz (U-NII-	1) CH High

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Х	5242.000	86.34	12.58	98.92	Fundamental	Frequency	peak
2	*	5242.000	75.48	12.58	88.06	Fundamental	Frequency	AVG
3		5350.000	40.46	12.78	53.24	68.30	-15.06	peak
4		5350.000	30.91	12.78	43.69	54.00	-10.31	AVG

Page: 41 of 146

Tem	peratu	ıre:	25 °	°C			Re	lative	e Hun	nidity:	5	5%		13
Test	t Volta	ge:	AC	120V/	60Hz	33			CHI	N. K.			Hilli	
Ant.	Pol.		Vert	ical				A.	10.55			133		A.
Test	t Mode	:	TX 8	302.11	n(20)	Mode 52	240 ľ	ИHz ((U-NII	-1)				
Ren	nark:		TX 8	302.11	n(20)	Mode 5	180-	-5240) MHz	(U-NI	I-1) (CH High		
120.0	0 dBuV/r	n												
		2												
		×												+
		1												-
			\mathcal{I}											4
70										ĮR.	FJFCCF	PART 15C (PE	AKJ	\dashv
										(RF) FCC	PART X5C (A	VG)	
												4 X		
														-
														4
20.0														
52	220.000 52	235.00	5250.00	5265.	DO 52	280.00 52	95.00	5310.	.00 5	325.00	5340.	00	5370.00	Mi
NI.					ding	Corre			sure-	Lim	vi4	Over		
NO	o. Mk.		•	Le		Facto	or	me		Lim		Over		
		MH	z	dB	uV	dB/m		dBu	V/m	dBu	ıV/m	dB	Dete	ecto
						47.00)	86	.54	Eunda	mental	Frequency	A۱	/G
1	*	5235.	150	69	.52	17.02	-	00.	.04	Fullua	iiiieiilai			
1 2	* X	5235. 5235.			.52 .58	17.02		99.				l Frequency	pe	ak
			600	82)	99.		Funda				

Emission Level= Read Level+ Correct Factor

Report No.: TB-FCC167718
Page: 42 of 146

Tem	peratu	ıre:	25	$^{\circ}$			R	elativ	e Hu	ımid	lity:	55	5%			
Test	Volta	ge:	AC	120V	/60Hz	133					N. S.					
Ant.	Pol.		Hor	izonta	al			18			6	Mr.	1999			9.
Test	Mode	:	TX	802.1	1ac(VI	HT20) [Mode	5180	MHz	z (U-	NII-1	1)		128	M	
Rem	ark:		TX	802.1	1 ac(V	HT20)	Mode	5180)~52 <u>4</u>	40 N	1Hz (U-N	II-1) C	ΗL	ow	
110.0	dBuV/m															7
													4 ×			
													3 X_			
												1	7			
-											F) FCC	PART 1	15.407 (P	EAK)		
60										1 X	(RI) FCC	PART 15) JAVE	i)	ł
										2	كرمر			/		
10.0																
5015	5.000 50	35.00 50	055.00	5075	.00 50	95.00	5115.00	5135	5.00	5155.	00	5175.0	00	5	215.00	МН
					ading	Cor		Mea	sure	9-			_			
No	. Mk	Fre	eq.	Le	evel	Fac	ctor	m	ent		Lim	It	Ove	er		
		МН	Z	d	BuV	dB/	m	dB	uV/m		dBu\	V/m	dB		Dete	cto
1		5150.	000	46	6.06	12.	41	58	3.47		68.	30	-9.8	33	pe	ak
2		5150.	000	33	3.12	12.	41	45	5.53		54.	00	-8.4	17	A۱	/G
3	*	5179.	000	78	3.89	12.	46	91	.35		Funda	menta	l Freque	ncy	A۱	/G
4	Χ	5179.	500	89	9.66	12.	47	10	2.13	3	Funda	menta	l Freque	ncy	pe	ak

Page: 43 of 146

Page: 44 of 146

lem	peratu	re:	25 °C			Relativ	ve Hum	idity: 5	5%	
Test	Voltag	e:	AC 1	20V/60Hz	33		CHI	1000		MAR
۱nt.	Pol.		Horiz	zontal		(1)			133	
Test	Mode:		TX 8	02.11ac(VH	1T20) Mo	de 5180) MHz (l	J-NII-1)		
Ren	nark:		TX 8	02.11 ac(V	HT20) Mc	de 518	0~5240	MHz (U-N	III-1) CH H	igh
120.0) dBuV/m	_								
	2 X									
	1 X									
								(RF) FCC	PART 15C (PEAK]
70									3	
)	1	lacksquare					(DE) ECC	X C PART 15C (AVG	
								(1117) 1 61	X	
20.0										
	24.000 523	39.00 52	54.00	5269.00 52	284.00 5299	9.00 531	14.00 53	329.00 5344	.00 5	374.00 Mi
				Reading	Corre	ct Me	asure-			
	Mk.	Fre		Laural	Facto			Limit	Over	
N			q.	Level	racio	or n	nent	2		
N		МН		dBuV	dB/m		nent BuV/m	dBuV/m	dB	Detect
1	*		z			dl		dBuV/m	dB al Frequency	Detect
	* X	МН	z 050	dBuV	dB/m	dl	BuV/m	dBuV/m — Fundament		
1		MH 5234.0	z 050 500	dBuV 75.86	dB/m 17.02	dl 2 9	BuV/m)2.88	dBuV/m — Fundament	al Frequency	AVC

Page: 45 of 146

Page: 46 of 146

N	lo. M	lk. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		5725.000	47.89	9.78	57.67	122.30	-64.63	peak
2	*	5749.800	89.27	9.84	99.11	122.30	-23.19	peak

Page: 47 of 146

Temperature:	25 ℃	Relative Humidity:	55%	A B
Test Voltage:	AC 120V/60Hz	Miles		All
Ant. Pol.	Vertical		4000	
Test Mode:	TX 802.11a Mode 5745	MHz (U-NII-3)		
Remark:	N/A			NU.

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		5725.000	46.55	9.78	56.33	122.30	-65.97	peak
2	*	5744.000	88.45	9.83	98.28	122.30	-24.02	peak

Page: 48 of 146

emperature:	25 ℃	Relative Humidity:	55%
est Voltage:	AC 120V/60Hz	MUDE	
nt. Pol.	Horizontal		30133
est Mode:	TX 802.11a Mode 5825	MHz (U-NII-3)	
lemark:	N/A		
130.0 dBuV/m			
		1	
90		way water	
			(RF) FCC PART 15C
			Margin -6 dB
www.hallelallelallelallelallelallelallelall	there were the description and the market market	2 2	meliphyria again again again a sa again an again an again

	No.	Mk.	Freq.			Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
•	1	*	5829.800	86.88	10.08	96.96	122.30	-25.34	peak
2	2		5850.000	46.31	10.13	56.44	122.30	-65.86	peak

Page: 49 of 146

Tempera	ature:	25 ℃	Relative Humidity:	55%
Test Vol	tage:	AC 120V/60Hz	MUDE	
Ant. Pol		Vertical		
Test Mo	de:	TX 802.11a Mode 5825 M	MHz (U-NII-3)	
Remark:	1	N/A		
130.0 dBu	N/m			

N	o. MI	k. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	5820.800	85.48	10.05		122.30	-26.77	peak
2		5850.000	46.58	10.13	56.71	122.30	-65.59	peak

Page: 50 of 146

Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	AC 120V/60Hz							
Ant. Pol.	Horizontal							
Test Mode:	TX 802.11n(20) Mode 57	45 MHz (U-NII-3)						
Remark:	mark: N/A							
130.0 dBuV/m								

N	o. I	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1			5725.000	47.18	9.78	56.96	122.30	-65.34	peak
2	*	t	5751.400	88.68	9.85	98.53	122.30	-23.77	peak

Page: 51 of 146

	Temperature:	25 ℃	Relative Humidity:	55%				
	Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
	Ant. Pol.	Vertical						
	Test Mode:	TX 802.11n(20) Mode 57	45 MHz (U-NII-3)					
Remark: N/A								

1	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1			5725.000	46.15	9.78	55.93	122.30	-66.37	peak
2		*	5742.800	88.32	9.83	98.15	122.30	-24.15	peak

Page: 52 of 146

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz Horizontal					
Ant. Pol.	Horizontal						
Test Mode:	TX 802.11n(20) Mode 58	25 MHz (U-NII-3)					
Remark:	N/A						
130.0 dBuV/m							

No.	Mk.	Freq.	_		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	5827.600	86.83	10.06	96.89	122.30	-25.41	peak
2		5850.000	46.12	10.13	56.25	122.30	-66.05	peak

Page: 53 of 146

Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	AC 120V/60Hz							
Ant. Pol. Vertical								
Test Mode:	TX 802.11n(20) Mo	de 5825 MHz (U-NII-3)						
Remark:	N/A							
130.0 dBuV/m								

N	0.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	4	k	5822.400	85.54	10.05	95.59	122.30	-26.71	peak
2			5850.000	46.57	10.13	56.70	122.30	-65.60	peak

2

Report No.: TB-FCC167718

Page: 54 of 146

Temperature:	25 ℃	R	elative Humid	l ity : 55	5%	
Test Voltage:	AC 120V/60H	z				W.
Ant. Pol.	Horizontal			and the same	1,373	
Test Mode:	TX 802.11ac(VHT20) Mode	5745 MHz (U-	NII-3)		1180
Remark:	N/A				a WW	
130.0 dBuV/m						
	Ir			(R	F) FCC PART 150	
					Margin -6 dB	\neg
		2 				
90						
90						
in on he had a section	1 Natikan Nasighan dipolence badharan dipol	retail Way	Advendingly in sking to had in deal the	وينائل المتحددة	ra, white his make	n. Radia d
50.0	Charles Per Demokratikathard (Sea Santana)		A settled a deducated in	Aldred a C. Affections, one States	THE THE THE THE THE THE THE	13.1-3,14
5655.000 5675.00	5695.00 5715.00	5735.00 5755.00	5775.00 5795.0	00 5815.00	585	5.00 MH
No. Mk.	Readir Freq. Leve	•	Measure- ment	Limit	Over	
	MHz dBuV	dB/m	dBuV/m	dBuV/m	dB I	Detecto

9.84

98.68

122.30

-23.62

peak

Emission Level= Read Level+ Correct Factor

88.84

5749.800

Page: 55 of 146

1	Temperature:	25 ℃	Relative Humidity:	55%			
	Test Voltage:	AC 120V/60Hz Vertical					
	Ant. Pol.						
	Test Mode:	TX 802.11ac(VHT20) Mode 5745 MHz (U-NII-3)					
Remark: N/A							

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		5725.000	46.46	9.78	56.24	122.30	-66.06	peak
2	*	5745.000	88.45	9.83	98.28	122.30	-24.02	peak

Page: 56 of 146

Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage:	AC 120V/60Hz	MULL			
Ant. Pol.	11133				
Test Mode:	TX 802.11ac(VHT20) Mode 5825 MHz (U-NII-3)				
Remark:	N/A				
130.0 dBuV/m					

		1
90		
		(RF) FCC PART TSC
		Margin -6 dB
	mofere of place a later of the compression of the state of the compression of the complete of	Without 2
0.0		

١	No.	Mk.	Freq.	_		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	5828.800	86.92	10.07	96.99	122.30	-25.31	peak
2			5850.000	45.68	10.13	55.81	122.30	-66.49	peak

50.0

5725.000 5745.00

5765.00

5785.00

5805.00

Report No.: TB-FCC167718

Page: 57 of 146

5925.00 MHz

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60Hz	THUE				
Ant. Pol.	Vertical		100			
Test Mode: TX 802.11ac(VHT20) Mode 5825 MHz (U-NII-3)						
Remark:	N/A					
130.0 dBuV/m						
	1					
90	from the					
			(RF) FCC PART 15C			
			Margin -6 dB			
n m	and the second s	Mary and Mary and an arrange	and the second of the second o			

N	lo.	Mk.	Freq.	Reading Level		Measure- ment	Limit Over		
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	5822.400	85.45	10.05	95.50	122.30	-26.80	peak
2			5850.000	47.43	10.13	57.56	122.30	-64.74	peak

5825.00

5845.00

5865.00

5885.00

Report No.: TB-FCC167718 Page: 58 of 146

n(40)/ac(VHT40)

Page: 59 of 146

			MI MILE						
Temperature:	25 ℃	Relative Hum	idity: 55%						
Test Voltage: AC 120V/60Hz									
Ant. Pol. Vertical									
Test Mode: TX 802.11n (40) Mode 5190 MHz (U-NII-1)									
Remark:	TX 802.11n (40	0) Mode 5190~5230 MHz	(U-NII-1) CH Low						
110.0 dBuV/m				-					
			4 ×						
			3	-					

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		5150.000	46.84	8.78	55.62	68.30	-12.68	peak
2		5150.000	35.04	8.78	43.82	54.00	-10.18	AVG
3	*	5177.400	76.12	8.79	84.91	Fundamental Frequency		AVG
4	X	5180.800	86.87	8.79	95.66	Fundamental	Frequency	peak

Report No.: TB-FCC167718
Page: 60 of 146

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60Hz						
Ant. Pol.	Ant. Pol. Horizontal						
Test Mode:	TX 802.11n (40) Mode 52	230 MHz (U-NII-1)	1000				
Remark: TX 802.11n (40) Mode 5190~5230 MHz (U-NII-1) CH High							

No. Mk.		. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	5234.240	84.21	17.02	101.23	Fundamental Frequency		peak
2	*	5234.690	71.85	17.02	88.87	Fundamental	Frequency	AVG
3		5350.000	45.67	16.77	62.44	74.00	-11.56	peak
4		5350.000	34.25	16.77	51.02	54.00	-2.98	AVG

Page: 61 of 146

Page: 62 of 146

Report No.: TB-FCC167718
Page: 63 of 146

°C Relative Humidity: 55%	
C 120V/60HZ	
rtical	33
(802.11ac (40) Mode 5190 MHz (U-NII-1)	
(802.11ac (40) Mode 5190~5230 MHz (U-NII-1) CH	1 Low
3	
X	
4 ×	
(RF) FCE PART	15C (PEAK)
, / V	
X (RF) FCC PART	OT 15C (AVC)
2	ii isc Avaj
0 5142.00 5152.00 5162.00 5172.00 5182.00 5192.00	5212.00 M
Reading Correct Measure-	_
20101 Tactor mont	Over
dBuV _{dB/m} dBuV/m dBuV/m	dB Detect
0 45.04 17.21 62.25 74.00 -	-11.75 pea
31.45 17.21 48.66 54.00 -	-5.34 AV
0 81.19 17.11 98.30 Fundamental Fred	equency pea
0 68.93 17.11 86.04 Fundamental Fred	equency AV(
) 68.93 17.11 86.04 Fundamental Fred	auencv

Page: 64 of 146

Page: 65 of 146

em	peratu	re:	25 °	C		R	elative	Humi	idity:	55%		
est	Voltag	je:	AC 120V/60HZ									
nt.	Pol.		Verti	cal			8.1			1197		•
TX 802.11ac (40) Mode 5230 MHz (U-NII-1)												
em	ark:		TX 8	02.11ac	(40) Mo	ode 519	0~523	0 MHz	(U-NII-1) CH High		
20.0	dBuV/m											
												ĺ
-		2 X										
		1 X										
-									(RF) FC(PART 15C (PEA	ıK)	
70									(,		,	
		V									3	
ŀ	<u> </u>			<u> </u>	-				(RF) FO	C PART 15C (AV		1
						-					4 ×	ĺ
-												
-												
20.0 521	07.000 52	22 NN .	5237.00	5252.00	5267.00	5282.00	5297.	00 531	12.00 532	7.00	5357.00] Me
				Readii	na C	orrect	Mea	sure-				
N	o. Mk	Fr	eq.	Leve		actor	me		Limit	Over		
		MI	Hz	dBuV	,	dB/m	dBu	ıV/m	dBuV/r	n dB	Dete	ct
1	*	5225	.300	67.7	5 1	7.04	84	.79	Fundamen	tal Frequency	A۷	/(
2	X	5225	.600	80.84	4 1	7.04	97	.88	Fundamen	tal Frequency	pe	a
3		5350	.000	41.16	3 1	6.77	57	.93	74.00	-16.07	pe	a
4		5350	.000	28.62	2 1	6.77	45	.39	54.00	-8.61	A۷	/(
4		5350	.000	28.62	2 1	0.77	45	.39	54.00	8.61	A	١V

Page: 66 of 146

Temperature:	25 ℃	Relative Humidity:	55%						
Test Voltage:	AC 120V/60Hz								
Ant. Pol.	Horizontal	lorizontal							
Test Mode:	TX 802.11n(40) Mode 57	TX 802.11n(40) Mode 5755MHz (U-NII-3)							
Remark:	N/A								

No.	Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		5725.000		9.78		122.30	-66.84	peak
2	*	5750.600	84.78	9.85	94.63	122.30	-27.67	peak

Page: 67 of 146

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz	MUDE	
Ant. Pol.	Vertical		Will be
Test Mode:	TX 802.11n(40) Mode 57	55MHz (U-NII-3)	
Remark:	N/A		
130.0 dBuV/m			

N	o. Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		5725.000	47.08	9.78	56.86	122.30	-65.44	peak
2	*	5764.600	85.54	9.89	95.43	122.30	-26.87	peak

Page: 68 of 146

			NIMI I
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal		3000
Test Mode:	TX 802.11n(40) Mod	de 5795 MHz (U-NII-3)	
Remark:	N/A	CHILD ST	
130.0 dBuV/m			

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	5798.400		9.98		122.30	-28.37	peak
2		5850.000	45.87	10.13	56.00	122.30	-66.30	peak

2

Report No.: TB-FCC167718

Page: 69 of 146

Гет	peratu	re:	25 °	C		Rela	tive Hum	idity: 5	55%	
Test	t Volta	je:	AC 1	20V/60H	lz			100		Alle
۱nt.	. Pol.		Verti	cal					11,373	
Test	t Mode	:	TX 8	02.11n(4	I0) Mode	5795 MI	Hz (U-NII-	3)		
Ren	nark:		N/A		33		CHILD			
130.0) dBu∀/m									
90				1					RF] FCC PART Margin -6	\ \
	Markenstraker	n.Hegelwayuwa	كعلمشار بالهماميه		hin	harmandamadan	2 h///h/194/~~4/4/da	our somewhat	aternational production	wantenan
50.0	725.000 57	(5.00 S	765.00	5785.00	5805.00 5	825.00 5	845.00 586	5.00 5885.0	nn F	925.00 MHz
N	lo. Mk		eq.	Readir Leve	l Fac	rect IV	leasure- ment	Limit	Over	
		M	Ιz	dBu∀	dB/	m	dBuV/m	dBuV/m	dB	Detecto

Emission Level= Read Level+ Correct Factor

5850.000

46.27

10.13

56.40

122.30

-65.90

peak

2

Report No.: TB-FCC167718

Page: 70 of 146

Temperature:	25 ℃	Re	lative Humid	dity: 55	%	
Test Voltage:	AC 120V/60Hz	13				
Ant. Pol.	Horizontal				333	
Test Mode:	TX 802.11ac(VHT	Γ40) Mode 5	755 MHz (U-	·NII-3)		M
Remark:	N/A				1 W.	
130.0 dBuV/m						
	\mathcal{J}			(RI	F) FCC PART 1	5C \\
					Margin -6 (dB \
		2				
90		Lander Market Comments Comments of Comment	Month			
			7.6	land of proper deliberation of the control	د . د مسلم	
50.0	done in the stand of the standard of the stand		January Control	May hat was and the sales	Mariting and Michigan and A	rsone minery
5655.000 5675.00	5695.00 5715.00 5735	5.00 5755.00	5775.00 5795.	.00 5815.00) 58	855.00 MH
	Reading	Correct	Measure-			
No. Mk. Fr	eq. Level	Factor	ment	Limit	Over	
M	Hz dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto

Emission Level= Read Level+ Correct Factor

85.11

9.87

94.98

122.30 -27.32

peak

5761.000