Nombra: Casar Antonio Hoyos Pal	. cic 2
C.C: 1007328843.	
Problema	
	portícula da musa m con anargia
cinatica trav) qua sa di	riga a un eampo magnatico
uniforma B an divacción Z, a	il vector relocidad de la particula
forma en angulo da o gran	dos con B.
Parimatros compotacionales	
En= 18.6 aV	Pua garanal la gráfica poada radiza
O - 30°	1000 itarucionas con posos da 0.01.
m=9.11 ×10-36 kg	
B = 600 MT	
Espangamos que la posición in	icial da la purticula viana dada por
P(0)=0 x su valocidad co	one $\vec{V}(0) = \vec{V}_0 = (V_{0,x}, 0, V_{0,z}).$
Adamas, al compo magná	tico está en la dirección 2,
por lando B = (0,0,B)	
La lax que describe al mov.	og mer benticaja on on combo ajactro.
magnático as la fourter der	Lovarutz. Asi:
F=9(E+ Vx	
Dado que no hay præsencio	de compo éléctrico entoners fo
Por Louto: 2de Las	r de Narwton
mai = 9 v x B	

La axprasión subarior, an términos de valocidados so pueda ascribin como: $m\vec{\nabla} = q\vec{v} \times \vec{8}$ doube $\vec{\nabla} = d\vec{\nabla}$ basavolemos la ecantarion da forma mutricial con al fin de ancontrar coda una da las componantas de la valocidad: $m\vec{v} = q dat \begin{pmatrix} \hat{\lambda} & \hat{j} & \hat{k} \\ v_x & v_y & v_z \\ B_x & B_y & B_z \end{pmatrix}$ Dasda al problema original ser tiene ex=Bx=0. Por tonto: $m(v_{x}\hat{\lambda} + v_{x}\hat{J} + v_{z}\hat{k}) = q d\alpha + (v_{x} v_{y} v_{z})$ m (vx 2 + vx 3 + vz k) = 92 (Vx Bz) - 93 (Vx Bz) + 92 (0) Asi, comparendo los términos sa tiana qua $m V_x = 9 V_y B$ < mv, = - 2 Vx B m vz = 0 Dado que hay un fuctou comon dasde la lisica sa dafina la fracionio di dotronica como: W== 4B/m Por Euro, las ecis vasoltantas son:

Vx = We Vy (1) Acf: E. Rexas. Electrodinamica I. Vz = 0 - El movimiento de la portícula en a diverción de campo no as atactado por la prosancia del compo Davivando la ec. ci) con vargacto al tiampo: d vx = wed vy -> vx = wevy Da (2) $\dot{V}_{x} = w_{c}(-w_{c}V_{x}) \rightarrow \dot{V}_{x} + w_{c}^{2}V_{x} = 0$ (3) Por o tro ludo, darivondo (a ec. (2) con respecto d fíampo sa trava: $\frac{\partial}{\partial t} \stackrel{\circ}{V_y} = -w_c \frac{\partial}{\partial t} V_x \longrightarrow \stackrel{\circ}{V_y} = -w_c (w_c V_y)$ $\longrightarrow \stackrel{\circ}{V_y} + w_c^2 V_y = 0 \qquad (4)$ Las ecis (3) y (4) son ecis diferenciales de sequido orden que travan solucionas armónicas por tanto. Vx + we2 Vx = 0 -> Vx = A 8 u (wet) + Bcos(red) (5) Vy + Wc Vx = 0 -> Vy = c sin(wet) + > cos(wet). (6) · CI para (S) Cuando to Vx(0)=Vox Vo, x= B cos (wc. o) -> Vo, x= B

• CT para (6)	
condo to Vyco) =0 -> b=0	
Ast	
Vx = A sin (wet) + Vo, x cos (wet) (7)	
Vy= Csin (wet) (8)	
barrondo (8) con vaspacto a t.	
Vy = Cwccoswct	
\triangleright_{α} (2)	
cuccos wet = - we Asin (wet) - we vo, x cos wet	
Compando componente a componente de la exp	างรเอ็น
ontarion es facil rar que	
[A=0] y C=-Vo,x	
Contento los ecis para Vx y Ux son:	
Mx= Vo,x cos (wet)	
(Vy = - vo, x sin (wet)	
Ahova para Vz sa tanta:	
V2=0 -> Vz= Et + F con E, F ctc's	
Por un lado V2(0)=V0,2 -> F=V0,2, AsT:	
Vz - Et + Vo, 2	
Darrando con respecto a f sa tranci:	

Elavardo el acadrado (131 y LA) a unhas lados, y sumando astas mismus expresiones, sa figua que: $\frac{V_{x^{2}} + V_{y^{2}} - V_{o}x^{2}}{V_{z} = V_{o}x} \longrightarrow \text{Esto moastra que en al plano } xy \text{ 3c}$ former un circulo da radio Vox y su contre sobre al aja Uz a una distancia Voz del origen de Vz. Por otro lado haciando uso da las ecis (11) que representar como avoluciona la partícula an cada una da las coord con raspacto a t sa poada construir la trajactoria qua siqua la particula un al aspucio da lus coord. XLt) - Vex Sin(wet) (16) (2Ct)= Vozt Elavardo al avadrado cada una da las ecis enterviores: $\chi^2(t) - \frac{U_{0x}^2}{W_{1}^2} \sin^2(w_0 t)$ (14) $(y(t) + y_0)^2 = \frac{v_0 x^2}{w_0^2} \cos^2(w_0 t)$ (20) Soundar $y_0 = \frac{v_0 x}{w_0^2}$ Z2(t) = V2t2 Somando (19) y (20)

