集合論(第7回)の解答

問題 7-1

- (1) について.
 - (i) 反射律. $x \in \mathbb{R}$ とする. $x x = 0 \in \mathbb{Z}$ より $x \sim x$.
- (iii) 対称律. $x,y\in\mathbb{R}$ とし、 $x\sim y$ と仮定する. このとき、x-y=k $(k\in\mathbb{Z})$ と表せる. $y-x=-k\in\mathbb{Z}$ より $y\sim x$.
- (iii) 推移律. $x,y,z\in\mathbb{Z}$ とし, $x\sim y,\ y\sim z$ と仮定する. このとき, $x-y=k,\ y-z=l\ (k,l\in\mathbb{Z})$ と表せる. $x-z=k+l\in\mathbb{Z}$ より $x\sim z$.
- (2) について.
 - (i) 反射律. $x \in X$ とする. f(x) = f(x) より $x \sim x$.
- (iii) 対称律. $x,y \in X$ とし, $x \sim y$ と仮定する. このとき, f(x) = f(y). よって, f(y) = f(x) より $y \sim x$.
- (iii) 推移律. $x,y,z\in\mathbb{Z}$ とし, $x\sim y,\ y\sim z$ と仮定する. このとき, $f(x)=f(y),\ f(y)=f(z)$. よって f(x)=f(z) より $x\sim z$.

問題 7-2

(1) について.

$$\begin{split} C((0,0)) &= & \{(a,b) \in X \mid (a,b) \sim (0,0)\} \\ &= & \{(a,b) \in X \mid ab = 0\} \\ &= & \{(0,0), \ (0,1), \ (0,2), \ (1,0), \ (2,0)\}. \end{split}$$

$$C((2,1)) &= & \{(a,b) \in X \mid (a,b) \sim (2,1)\} \\ &= & \{(a,b) \in X \mid ab = 2\} \\ &= & \{(2,1), \ (1,2)\}. \end{split}$$

(2) について.

$$C((r,0)) = \{(x,y) \in \mathbb{R}^2 \mid (x,y) \sim (r,0)\}$$
$$= \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = r^2\}.$$

従って, C((r,0)) は原点を中心とする半径 r の円である.

copyright © 大学数学の授業ノート

問題 7-3

 $(x,y)\in\mathbb{R}^2$ とする. b=y-x と置くと, $(x,y)\sim(0,b)$. よって C((x,y))=C((0,b)). よって各同値類は C((0,b)) $(b\in\mathbb{R})$ のいずれかと一致する. また

$$C((0,b)) = \{(x,y) \in \mathbb{R}^2 \mid (x,y) \sim (0,b)\}$$

= \{(x,y) \in \mathbb{R}^2 \ | y = x + b\}.

よって、この同値関係は \mathbb{R}^2 を傾き 1 の直線で分割する.

