初一信息学选拔测试题

一、题目概况

题目名称	巧克力	游戏	小球	密码	方块	基因识别	二进制数串
文件名	eat	game	ball	code	black	gene	bin
输入文件名	eat.in	game.in	ball.in	code.in	black.in	gene.in	bin.in
输出文件名	eat.out	game.out	ball.out	code.out	black.out	gene.out	bin.out
时限	0.1 秒	0.1 秒	0.1 秒	0.1 秒	0.1 秒	0.1 秒	0.1 秒
测试点数目	10	10	10	10	10	10	10
测试点分值	10	10	10	10	10	10	10
内存限制	128M	128M	128M	128M	128M	128M	128M

第一题 吃巧克力

(eat.cpp)

【问题描述】

一只虫子在吃一块 M 行 N 列的巧克力,它从左上角开始吃,并且先吃完一行,然后顺时针转过来吃最后一列,当吃到头的时候再顺时针转过来吃最后一行,然后再顺时针转过……,直到吃完整个巧克力。

写一个程序计算这只虫子吃完整块巧克力需要转多少次。

【输入文件】

输入仅一行,为两个用空格隔开的整数 M 和 N (2<=M, N<=1000,000,000), M 表示行,N 表示列。

【输出文件】

输出为一个数,表示吃完整块巧克力需要转动的次数。

输入输出样例

样例 1	样例 2	
eat.in	eat.in	
2 3	5 3	
eat.out	eat.out	
2	5	

【数据范围】

对于 30%的数据, 保证 M,N<=5000。

第二题、游戏(game)

【问题描述】

外星人争斗的方式是很文明的,如果两个外星人看中同一样东西,他们不是用武力而是 用游戏来解决。

现在有小红和小明两个外星人在争一块地,他们决定用抛硬币的方式来确定结果。

规则很简单,他们抛一枚均匀的硬币 N 次,如果出现连续两次或更多正面朝上的情况,那么这块地就是小红的,否则这块地就是小明的。

现在小明想知道,抛N次的所有情况下,会有多少次不出现连续两次正面或更多正面朝上的情况。

【输入】

输入为一个整数 N (1<=N<=1000), 表示抛掷的次数。

【输出】

输出答案。因为输出的答可能会很大,你只需输出答案对 (10^9+7) 取模的结果,如果答案为 ans, 输出 ans % (10^9+7) 即可。

【输入输出样例】

game.in	game.out
2	3

第三题 小球(ball)

N 个小球排成一列, 第 i 个小球的颜色是 C_i 。

定义小球 i 和小球 j 的距离为 $|(C_i - C_j) \cdot (i - j)|$, 求所有小球之间距离的和。

输入

第 1 行, 1 个整数 N。第 2 行, N 个整数 C_1, C_2, \ldots, C_N 。

输出

1个整数,表示所求的值。

样例

ball.in	ball.out
5	11
0 1 1 0 1	

数据

- 对于 60% 的数据, $N \le 10^3$;
- 对于 100% 的数据, $1 \le N \le 10^5, 0 \le C_i \le 1$ 。

四、密码(code)

【问题描述】

宁宇恒最近设计了一种创建无限长字符串加密系统。对于给定一个字符串 S,把 S(比如 COW)的最后一个字符移到第一个,其它字符后移一位,得到一个字符串 S'(比如 WCO),再把 S'接在 S 后面得到一个新的字符串 S1(比如 COWWCO),并且可以一直这样重复下去,可以得到一个无限长的字符串(牛吧)。

现给定初始字符串和和数字 N。只要你算出第 N 个字符是什么,就等于破解了宁宇恒的密码。

输入格式:

输入字符串 S 和数字 N (S 为长度不超过 30 的大写字母,N<= 10^{18} ,注意 N 行大,要用 long long)

输出格式:

输出第N个字符。

样例:

样例		说明
input	output	字符串 COW 扩展过程如下:
COW 8	С	COW - > COWWCO - > COWWCOOCOWWC

第五题 黑色方块

(black.cpp)

【问题描述】

有一种在第一象限内的黑白相间的条纹图形(如下图)。

写一个程序,对于给定的一个矩形区域,计算区域内有多少个小黑色方块。

【输入文件】

第一行为 4 个整数 X1, Y1, X2, Y2 表示矩形区域的左下角(X1, Y1)和右上角(X2, Y2).

【输出文件】

输出仅一行,为给定的矩形区域小黑色方块的总数。.

样例:

black. in	black. out
2 3 7 6	8

【数据范围】

 $0 \le X1 < X2 \le 1000000, 0 \le Y1 < Y2 \le 1000000.$

第六题、基因识别(gene)

【问题描述】

为了区别两个外星人是否来自于同一个星球,需要对他们进行基因识别,看他们的相似度。外星人基因可以看成是小写字母组成的字符串,基因重复多次生成基因组。现给定两个整数N和M,以及两个外星人的基因S和T,我们按以下要求生成两个基因组A和B:

- 1、基因组A和基因组B的长度相等;
- 2、基因组A由基因S重复N次产生;
- 3、基因组B是由基因T重复M次产生。 如果基因组A中的第i个字符与基因组B中的第i个字符相同,则相似度加1。给定N、 M、S、T,请编写一个程序求两个外星人的相似度。其中N, M<=10⁹; |S|, |T|<=10⁶。

【输入】

第一行两个用空格整数 N 和 M。

第二行和第三行分别为 S 和 T。

数据保证 A 和 B 相等。

【输出】

输出为一个整数,表示基因组 A 和和基因组 B 的相似度。

【输入输出样例】

gene. in	gene. out
3 5	8
ababa	
aba	

第七题 二进制串

(bin.cpp)

【问题描述】

有N个二进制数串 B=(b_1 , b_2 , ..., b_N),我们按以下方法建立一个矩阵M: 矩阵M的第一行是二进制数串 B;

后面的每一行都是通过把前一行循环左移而得到的。

 b_1 b_2 ... b_{N-1} b_N

 b_2 b_3 ... b_N b_1

. . .

 b_{N-1} b_{N} ... b_{N-3} b_{N-2}

 $b_{\scriptscriptstyle N}$ $b_{\scriptscriptstyle 1}$... $b_{\scriptscriptstyle N-2}$ $b_{\scriptscriptstyle N-1}$

然后, 把以行为单位按字典顺序排序得到矩阵M。

请写一个程序,给出矩阵M的最后一列(排序以后),求第一行(也是排序以后的)。

【输入文件】

第一行有一个正整数N,表示二进制串B的长度,第二行有N个用空格隔开的二进制数字,表示矩阵M的最后一列。

【输出文件】

只有一行二进制串,表示矩阵M的第一行,这N个二进制数字没有用空格隔开。

样例

bin1.in	bin1.out	bin2.in	bin2.out
5	00011	8	00111011
1 0 0 1 0		1 1 0 1 1 0 1 0	

【数据范围】

 $0 < N \le 5000$