C01-01: Ensembles de Nombres

La version pdf de ce cours est téléchargeable ici. (version 2021-2022)

1. Activité : Classer des nombres

- 1. Dans la liste ci-dessus, deux écritures sont interdites. Lesquelles et pourquoi?
- 2. Classer les nombres restants en **cinq groupes**, en justifiant vos choix.

i Différence entres propriétés et écritures

Un nombre peut être écrit de différentes manières, plus ou moins compliquées. Par exemple :

$$2=rac{6}{3}=20 imes 10^{-1}=\sqrt{4}=-\left(-2
ight)=2,0000$$

Pour autant, ce qui nous intéresse en mathématiques c'est d'étudier les **propriétés** de ce nombre, qui elles sont indépendantes de l'écriture de ce nombre.

2. Nombres entiers naturels et relatifs

6 Définitions

- L'ensemble des entiers naturels, noté \mathbb{N} , est l'ensemble des nombres permettant de dénombrer une collection d'objets, de personnes, etc, c'est-à-dire la suite naturelle 0; 1; 2; 3; ...
- L'ensemble des entiers relatifs, noté \mathbb{Z} , est l'ensemble des entiers naturels et leurs opposés, c'est-à-dire la suite \ldots ; -3; -2; -1; 0; 1; 2; 3; \ldots

1 Info

- L'ensemble $\mathbb N$ possède un plus petit élément, c'est 0.
- Les nombres entiers naturels sont tous positifs ou nuls.
- Tous les entiers naturels sont aussi des entiers relatifs.

6 Vocabulaire et notations

- Appartenance : On dit que 5 appartient à \mathbb{N} , et on note $5 \in \mathbb{N}$. De même -2 n'appartient pas à \mathbb{N} , et on note $-12 \notin \mathbb{N}$.
- Inclusion : Tous les éléments de $\mathbb N$ sont aussi des éléments de $\mathbb Z$. On dit alors que $\mathbb N$ est un sous-ensemble de $\mathbb Z$ et on note alors $\mathbb N \subset \mathbb Z$ (qui se lit $\mathbb N$ est inclus dans $\mathbb Z$).

Fig. Application: choix du bon symbole

>

3. Nombres décimaux

b définition : Nombres décimaux

Un nombre décimal est un nombre pouvant s'écrire sous la forme d'une fraction décimale, c'est à dire sous la forme $\$ \dfrac{a}{10^n} \\$ avec $a \in \mathbb{Z}$ et $n \in \mathbb{N}$.

L'ensemble des décimaux est noté \mathbb{D} .

Application : Nombres décimaux et puissances de 10

>

Remarques

- Les entiers relatifs sont des décimaux, car si $k \in \mathbb{Z}$, on peut aussi écrire $k = \frac{k}{1} = \frac{k}{10^0}$. On a donc la propriété $\mathbb{Z} \subset \mathbb{D}$.
- Un nombre décimal possède une écriture décimale finie.

4. Nombres rationnels

b Définition : Nombres rationnels

Un nombre rationnel est un nombre pouvant s'écrire sous la forme $rac{a}{b}$ avec $a\in\mathbb{Z}$ et $b\in\mathbb{N}^*$ (c'est-à-dire \mathbb{N} privé de 0).

L'ensemble des nombres rationnels est noté \mathbb{Q} .

Un nombre décimal est par définition un nombre rationnel.

Par définition de \mathbb{D} et \mathbb{Q} , on a la propriété $\mathbb{D} \subset \mathbb{Q}$.

6 Propriété : Caractérisation des rationnels non décimaux

Tous les nombres rationnels ne possèdent pas d'écriture décimale finie. En particulier, $\frac{1}{3}$ n'est pas décimal.

Remarques

- Les nombres rationnels non décimaux possèdent une écriture décimale infinie périodique, c'est-à-dire avec une série de chiffres qui se répètent à l'infini. Par exemple $\frac{1}{7}=0,14285714285714...$ (on constate la répétition de la séquence 142857}).
- Réciproquement, si un nombre possède une écriture décimale infinie périodique, alors c'est un rationnel.

Méthode : Déterminer une fraction égale à une écriture décimale infinie périodique

On considère le nombre a dont l'écriture décimale est infinie périodique a=2,71347134... Démontrons que ce nombre est rationnel.

Application : Calculs avec les rationnels

5. Nombres réels

b Définition : Nombres réels

Un {==nombre réel est un nombre exprimant une longueur, ou l'opposé d'un nombre exprimant une longueur.

L'ensemble des nombres rationnels est noté \mathbb{R} .

Remarques

- Un nombre réel est un nombre dont le carré est positif ou nul.
- Par définition, tous les nombres rationnels sont des réels. On a alors $\mathbb{Q} \subset \mathbb{R}$.
- Certains nombres réels ne sont pas rationnels. Par exemple π n'est pas rationnel, tout comme $\sqrt{2}$ (on le montrera en exercice). Ces nombres sont dits **irrationnels** .

>

6 Propriété : Ensembles de nombres

Des remarques précédentes, on à la propriété :

 $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{D}\subset\mathbb{Q}\subset\mathbb{R}$

6 Propriété : Droite des réels

Tout nombre réel est représenté par l'abscisse d'un point sur la droite numérique (appelée aussi droite des réels).

Application : Représenter sur la droite des réels

 $file: ///home/fabien/Documents/GitHub/ZoneNSI. md/site/Maths/Seconde/C01/C01_01_Ensembles_Nombres/tmprm0qx2zj. html/site/Maths/Seconde/C01/C01_01_Ensembles_Nombres/tmprm0qx2zj. html/site/Maths/Seconde/C01/C01_O1_Ensembles_Nombres/tmprm0qx2zj. html/site/Maths/Seconde/C01/C01_O1_Ensembles_Nombres/tmprm0qx2zj. html/site/Maths/Seconde/C01/C01_Ensembles_Nombres/tmprm0qx2zj. html/site/Maths/Seconde/C01/C01_Ensembles_Nombres/tmprm0qx2zj. html/site/Maths/Seconde/C01/C01_Ensembles_Nombres/tmprm0qx2zj. html/site/Maths/Seconde/C01/C01_Ensembles_Nombres/tmprm0qx2zj. html/site/Maths/Seconde/C01/C01_Ensembles_Nombres/tmprm0qx2zj. html/site/Maths/Seconde/C01/C01_Ensembles_Nombres/tmprm0qx2zj. html/site/Maths/Seconde/C01/C01_Ensembles_Nombres/tmprm0qx2zj. html/site/Maths/Seconde/C01/C01_Ensembles_Nombres/tmprm0qx2zj. html/site/Maths/Seconde/C01/C01_Ensembles_Nombres/tmprm0qx2zj. html/site/Maths/Seconde/C01/C01_Ensembles_Nombres/tmprm0qx2zj. html/site/Maths/Seconde/C01/C01_Ensembles_Nombres/tmprm0qx2zj. html/site/Maths/Seconde/C01/C01/Ensembles_Nombres/tmprm0qx2zj. html/site/Maths/Seconde/C01/C01/Ensembles/tmprm0qx2zj. html/site/Maths/Seconde/C01/C01/Ensembles/tmprm0qx2zj. html/site/M$