# Privacy preserving similarity detection for data analysis

#### **CSAR 2013**

Iraklis Leontiadis<sup>1</sup>

Melek Önen<sup>1</sup>

Refik Molva<sup>1</sup>

M.J. Chorley<sup>2</sup>

G.B. Colombo<sup>2</sup>

<sup>1</sup>Eurecom - France

<sup>2</sup>Cardiff - UK

# Privacy vs Utility



Personality test

Clustering

Similarity



#### Naïve solutions

- Encrypt data with standard crypto
  - Renders operations infeasible.
- Data separation
  - Vertical separation is not always applicable.
- Anonymizing techniques
  - Don't protect individuals data.

# Our Approach

Combine crypto with data processing



| User  | Data              | Data analysis        |
|-------|-------------------|----------------------|
| Alice | $A_1', \dots An'$ | $F(A_1', \dots An')$ |
| Bob   | $B_1', \dots Bn'$ | $F(B_1', \dots Bn')$ |

#### Outline

- Our solution
  - Cosine similarity
  - Privacy with Geometrical Transformations
- Security Analysis
- Performance Evaluation
  - Hierarchical clustering
  - Results
- Looking Ahead

# Cosine similarity



#### Random Scaling

- Data encoded as unique vectors in  $\mathbb{R}^n$
- $\phi_r: \mathbb{R}^n \to \mathbb{R}^n$  s.t:

$$cos(a,b) = cos(\varphi_{r1}(a), \varphi_{r2}(b))$$

Random scaling

$$-\mathbf{r} \leftarrow \mathbb{R}^n$$

$$-S(r,A) = r \cdot A = \begin{bmatrix} r & \cdots \\ \vdots & r & \vdots \\ \cdots & r \end{bmatrix} \cdot A$$

#### **Vector Rotation**

• Rotation by a common angle  $\lambda^{\circ}$ 

#### Our solution

Dimension reduction



Random Scaling

$$S(r_1, A_1) = r_1 \cdot \bigcirc$$

$$S(r_2, A_2) = r_2 \cdot \boxed{\phantom{a}}$$

$$S(r_3, A_3) = r_3 \cdot \bigcirc$$

Rotation

$$R_{\lambda^{\circ}}(r_1 \cdot A_1) = R_{\lambda^{\circ}} \cdot r_1 \cdot$$

$$R_{\lambda^{\circ}}(r_2 \cdot A_2) = R_{\lambda^{\circ}} \cdot r_2 \cdot$$

$$R_{\lambda^{\circ}}(r_3 \cdot A_3) = R_{\lambda^{\circ}} \cdot r_3 \cdot$$

# Security analysis



 $V'_1 = R_{\lambda^{\circ}}(S(r_1, d_1, d_2), S(r_2, d_3, d_4), S(r_3, d_1d_5))$ 





- External:
  - Rotation angle remains unknown.

- Internal:
  - Rotation angle is known.

## Security analysis cont'd



#### **Evaluation**





4sqPersonality

- 173 users willing to run 4sqPersonality test
- 5 factor personality test
  - Openness, Conscientiousness, Extraversion,
     Agreeableness, Neuroticism.



# Clustering approach

- Hierarchical Agglomerative clustering (HAC)
  - Input: n points and N\*N similarity matrix
  - Output: Single cluster containing all n points

```
C=MakeSingletonClusters();
for i=0 to i=n:
    Find "closest" clusters c1,c2;
    Merge(c1,c2);
    RecomputeDistances(C);
    if #C=1 exit();
Agglomerative: O(n³)
Divisible: O(2n)

Cosine
Similarity

Cosine
Cosine
Similarity

Cosine
Cosin
```



## Results

#### Plaintext data





#### Recap

- 1. Pairwise cosine similarity for multidimensional vectors.
- 2. Geometrical transformations compatible with cosine similarity.



Privacy preserving similarity detection for data analysis

# **Looking Ahead**

- Other privacy preserving similarity detection algorithms.
- Privacy preserving data analysis algorithms:
  - MAX,MIN

#### Thank you!

Iraklis Leontiadis leontiad@eurecom.fr