Table 4 Equation style summary of line-by-line description of FieldML example XML

Line number	Object	Name	Equation	Description
13	Import: Ensemble Type	trilinearLagrange.points	$LL3c = \{1,2,,8\}$	Set of identifiers, essentially for the 8 corners of the unit cube
12	Import: Continuous Type	trilinearLagrange.parameters	$LL3p = \mathbb{R}^8$	8 real numbered nodal DOF values for the 8 corners of the unit cube for tri-linear Lagrange interpolation.
			$LL3p = (LL3c \to \mathbb{R})$	Alternate view of the above.
16	Import: Argument Evaluator	trilinearLagrange.parameters. argument		
19	Import: Argument Evaluator	chart.3d.argument	$\xi \in \mathbb{R}^3$	Unit cube
18	Import: External Evaluator	trilinearLagrange.interpolator	$LL3: \mathbb{R}^3 \times LL3p \to \mathbb{R}$	tri-linear Lagrange interpolation basis functions
21	Import: External Evaluator	shape.unit.cube	$pU3: \mathbb{R}^3 \to \mathbb{B}$	Shape predicate

25	Ensemble type	mesh1.nodes	$m1n = \{1,2,,20\}$	
34	Argument Evaluator	mesh1.nodes.argument	$m1na \in m1n$	
38	Argument Evaluator	mesh1.node.dofs.argument	$m1dof: m1n \to \mathbb{R}$	
46	Mesh type's ensemble	mesh1.mesh.type.elements	$m1e = \{1, 2,, 4\}$	Four elements in mesh
45	Mesh Type	mesh1.mesh.type	$m1 = m1e \times U3$	Four unit squares
54	Predicate		$U3 = [0,1] \times [0,1] \times [0,1]$	Unit square
83	Parameter Evaluator	mesh1.trilinearLagrange. connectivity	$m1c: m1e \rightarrow LL3c \rightarrow m1n$	Local node to global node mapping. This is a matrix.
94 Aggr	Aggregate Evaluator	mesh1.trilinearLagrange. parameters	$a1:m1e \rightarrow LL3p$	Forms parameter vector of the 8 parameters required for tri-linear Lagrange interpolation of a scalar field for each element
			$a1: m1e \to (LL3c \to \mathbb{R})$	Alternative view of the above
			$a1: m1e \to LL3c \to \mathbb{R}$	Alternative view of the above, using currying style.
98, 100			a1(e,n) = m1dof(m1c(e,n))	Behaviour of the above: get global node from local to global node mapping,

				get DOF from nodal parameters for field.
106	Reference Evaluator	mesh1.trilinear.interpolator	$r1: m1 \to \mathbb{R}$ $r1(e,\xi) = LL3(\xi, (n \mapsto a1(e,n)))$	The definition of $r1$ implies that $\xi \in U3$, $e \in m1e$ and $a1(e) \in \mathbb{R}^8$.
120	Piecewise Evaluator	mesh1.template.trilinear	$m1pw: m1e \rightarrow (U3 \times LL3p \rightarrow \mathbb{R})$ $\forall e \in m1e, m1pw(e) = LL3$	
222	Parameter Evaluator	mesh1.node.pressure	$pn: m1n \to \mathbb{R}$	Pressure nodal DOFs
232	Reference Evaluator	pressure	$pr: (m1n \to \mathbb{R}) \to (m1 \to \mathbb{R})$ $pr: (m1n \to \mathbb{R}) \to m1 \to \mathbb{R}$	Pressure field declaration, equivalent forms.
			$pr(pn,(e,\xi)) = s(\xi,l)$ where $s = m1pw(e) = LL3$ $l = (n \mapsto pn(m1c(e,n)))$	Pressure field definition
165	Parameter Evaluator	mesh1.node.coordinates	$l \in LL3p$ $cn: m1n \to \{1,2,3\} \to \mathbb{R}$	3D geometric coordinates DOFs. This is a matrix.

179	Aggregate Evaluator	coordinates	$gc:(m1n \to \mathbb{R}) \to (m1 \to \mathbb{R}^3)$	Coordinates field
			$gc: (m1n \to \mathbb{R}) \to m1 \to (\{1,2,3\} \to \mathbb{R})$	declaration, equivalent
				forms.
			$gc:(m1n \to \mathbb{R}) \to m1 \to \{1,2,3\} \to \mathbb{R}$	
			∀ <i>d</i> ∈ {1,2,3},	Coordinate field
			$gc(cn,(e,\xi),d) = s(\xi,l)$	definition
			where	
			s = m1pw(e) = LL3	
			$l = (n \mapsto cn(m1c(e, n), d))$	
			$l \in LL3p$	