TD 17 - Espaces vectoriels Dimension finie

Exercice 1: Montrer que dans \mathbb{R}^3 , les trois vecteurs

$$\vec{a} = (1, 0, 1), \ \vec{b} = (-1, -1, 2) \ \text{et} \ \vec{c} = (-2, 1, -2)$$

forment une base, et calculer les coordonnées dans cette base d'un vecteur $\vec{u} = (x, y, z)$.

Exercice 2: Dans \mathbb{R}^4 , trouver le rang de la famille de vecteurs :

$$\vec{a} = (3, 2, 1, 0), \quad \vec{b} = (2, 3, 4, 5), \quad \vec{c} = (0, 1, 2, 3), \quad \vec{d} = (1, 2, 1, 2), \quad \vec{e} = (0, -1, 2, 1).$$

 $\mathbf{Exercice} \ \mathbf{3} : \mathsf{Dans} \ E = \mathbb{R}^4 \ \mathsf{muni} \ \mathsf{de} \ \mathsf{sa} \ \mathsf{structure} \ \mathsf{canonique} \ \mathsf{de} \ \mathbb{R} ext{-ev.} \ \mathsf{On} \ \mathsf{note}$

$$e_1 = (1, 1, 1, 0), e_2 = (2, 1, 0, 1), e_3 = (4, 3, 2, 1), v_1 = (1, -1, 1, -1), v_2 = (2, 0, 0, -1), v_3 = (2, -1, 0, 0).$$

Soient $F = \text{Vect}(e_1, e_2, e_3)$ et $V = \text{Vect}(v_1, v_2, v_3)$. Donner des bases et les dimensions de F, V, F + V et $F \cap V$.

Exercice 4: Déterminer si la famille (A, B, C, D) suivante est libre ou liée. Donner la dimension du sous-espace vectoriel qu'elle engendre.

$$A = \left(\begin{array}{cc} -4 & -1 \\ 10 & 3 \end{array} \right) \hspace{1cm} B = \left(\begin{array}{cc} 2 & 1 \\ -2 & 1 \end{array} \right) \hspace{1cm} C = \left(\begin{array}{cc} 1 & 1 \\ 2 & 3 \end{array} \right) \hspace{1cm} D = \left(\begin{array}{cc} -1 & -3 \\ -14 & -12 \end{array} \right)$$

Exercice 5: Soit E le sous-espace vectoriel de $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$, engendré par les fonctions :

$$f_1(x) = \sin^2 x$$
, $f_2(x) = \cos^2 x$, $f_3(x) = 1$, $f_4(x) = \sin 2x$, $f_5(x) = \cos 2x$, $f_6(x) = \sin x$ et $f_7(x) = \cos(x)$.

Déterminer une base et la dimension de E.

Exercice 6: Soit E l'ensemble des fonctions de $\mathbb R$ dans $\mathbb R$ qui s'écrivent $\forall x \in \mathbb R$, $f(x) = (ax^2 + bx + c)e^{4x}$ avec $(a,b,c) \in \mathbb R^3$.

- 1. Montrer que E est un sous-espace vectoriel de dimension finie de l'ensemble des fonctions de $\mathbb R$ dans $\mathbb R$.
- 2. Soit D l'application définie sur E par $D: f \mapsto f'$. Montrer que D est un automorphisme de E. Déterminer son application réciproque.

Exercice 7: Dans \mathbb{K}^3 , on donne les sous espaces : $H = \{\vec{X} = (x, y, z) | x + y + z = 0\}$ et $K = \text{Vect}(\vec{k} = (1, 1, 2))$.

Déterminer dim H et en donner une base. Puis, démontrer que $H \oplus K = \mathbb{K}^3$. Enfin, donner les expressions analytiques des projection et symétrie associées : π_H et s_H .

Exercice 8: On considère la famille de polynômes (P_1, P_2, P_3) de $\mathbb{R}_2[X]$ définis par $P_1 = 1 + 3X - X^2$, $P_2 = 1 + 4X$, $P_3 = 2X - X^2$.

- 1. Montrer que $F = \text{Vect}(P_1, P_2)$ et $G = \text{Vect}(P_3)$ sont deux sous-espaces vectoriels supplémentaires.
- 2. Déterminer les expressions analytiques des projections sur F et G.

Exercice 9: Soit f définie sur $\mathbb{R}_n[X]$ par f(P) = P(X+1) - P(X-1) + 2P(X).

Montrer que $f \in \mathcal{L}(\mathbb{R}_n[X])$ puis déterminer Ker f et Im f. Donner le rang de f.

Exercice 10 : Soit $n \in \mathbb{N}^*$ et $\Delta : \mathbb{R}_n[X] \longrightarrow \mathbb{R}[X]$ définie par $P \longmapsto P(X+1) - P(X)$.

- 1. Montrer que Δ est une application linéaire et montrer que $\operatorname{Im} \Delta \subset \mathbb{R}_{n-1}[X]$.
- 2. Déterminer $\operatorname{Ker} \Delta$ puis $\operatorname{Im} \Delta$. Donner le rang de Δ .
- 3. En déduire qu'il existe $P_n \in \mathbb{R}_n[X]$ tel que $P_n(X+1) P_n(X) = X^{n-1}$. Calculer P_n pour n=2,3,4.
- 4. Démontrer que $\Delta^n \neq 0$ puis déterminer Δ^{n+1}

 $\mathbf{Exercice}$ 11 : On considère l'ensemble de matrices $F = \left\{ \left(egin{array}{cc} a & -b \ 3b & a \end{array} \right) \middle| (a,b) \in \mathbb{R}^2
ight\}.$

- 1. Montrer que F est un sev de $\mathcal{M}_2(\mathbb{R})$, en donner une base.
- 2. Montrer que F est stable par multiplication et qu'il ne contient quasiment que des matrices inversibles.
- 3. On considère l'ensemble de matrices $G = \left\{ \left(\begin{array}{cc} a+b & 0 \\ b & -a \end{array} \right) \middle| (a,b) \in \mathbb{R}^2 \right\}$. Montrer que G est un sev de $\mathcal{M}_2(\mathbb{R})$, en donner une base.
- 4. Montrer que F et G sont supplémentaires dans $\mathcal{M}_2(\mathbb{R})$.

Exercice 12: Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension n tel que $f^n=0$ et $f^{n-1}\neq 0$. Montrer qu'il existe $x_0\in E$ tel que la famille $\left(x_0,f(x_0),f^2(x_0),\ldots,f^{n-1}(x_0)\right)$ forme une base de E.

Exercice 13:

Soit $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ définie par f(x, y, z) = (x + y + z, x + y + z, z).

Montrer que f est linéaire. Déterminer Ker f et Im f.

Déterminer f(P) où P est le plan vectoriel d'équation x + y + z = 0.

Exercice 14:

On considère l'application ϕ de $\mathbb{R}_n[X]$ dans \mathbb{R} définie par $\forall P \in \mathbb{R}_n[X], \quad \phi(P) = \int_0^1 P(t) dt$.

Déterminer une base et la dimension de $\operatorname{Im} \phi$ et de $\operatorname{Ker} \phi$.

Exercice 15: Soit n, p deux entiers avec p < n et A un polynôme à coefficients réels de degré p. Soit $F_A = \{Q \times A | Q \in \mathbb{R}_{n-p}[X]\}$.

- 1. Montrer que F_A est un sous-espace vectoriel de $\mathbb{R}_n[X]$.
- 2. Montrer que F_A et $\mathbb{R}_{p-1}[X]$ sont des sous-espaces supplémentaires de $\mathbb{R}_n[X]$.

Exercice 16: Soit $P = a_0 + a_1 X + a_2 X^2 + \cdots + a_p X^p$ un polynôme. Si $M \in \mathcal{M}_n(\mathbb{K})$ est une matrice carrée, on note P(M) la matrice $P(M) = a_0 I_n + a_1 M + a_2 M^2 + \cdots + a_p M^p$.

On dit que P est un polynôme annulateur de M si P est non nul et P(M) = (0).

Démontrer par l'absurde que toute matrice carrée de $\mathcal{M}_n(\mathbb{K})$ possède un polynôme annulateur de degré inférieur ou égal à n^2+1 .

Déterminer un polynôme annulateur de degré 2 pour $M=\left(\begin{array}{cc}1&2\\3&4\end{array}\right)$.

Exercice 17: Soit E un \mathbb{K} espace vectoriel et u un endomorphisme de E.

Montrer que $\operatorname{Ker} u \cap \operatorname{Im} u = \{\overrightarrow{0}\} \iff \operatorname{Ker} u = \operatorname{Ker} u^2$.

Montrer que $E = \operatorname{Im} u + \operatorname{Ker} u \iff \operatorname{Im} u = \operatorname{Im} u^2$.

Montrer que si E est de dimension finie, les quatre propriétés sont équivalentes.

Exercice 18:

Soit E un espace vectoriel réel de dimension 4. On considère un endomorphisme u de E tel que $u^3 + u^2 + u = 0$. On pose $E_1 = \text{Ker}(u^2 + u + id)$ et $E_2 = \text{Ker} u$.

- 1. Montrer que Im $u \subset E_1$ et que E_1 et E_2 sont stables par u.
- 2. Montrer que $E=E_1\oplus E_2$ puis que $E_1=\operatorname{Im} u$ et $E_2=\operatorname{Im}(u^2+u+id)$.
- 3. (a) Montrer que pour tout x non nul de E_1 , la famille (x, u(x)) est libre.
 - (b) Montrer que si il existe deux vecteurs x, y de E_1 tels que la famille (x, u(x), y) est libre, alors la famille (x, u(x), y, u(y)) est libre.
 - (c) Quelles sont les dimensions possibles de E_1 ?