令和4年度

試験名:編人	字試験 【情報字群 情報科字類・情報メティア創成字類】
区 分	標準的な解答例又は出題意図
問題1 (数学1)	出題意図 2 重積分, 広義積分の求め方, 微分の基礎知識, 平均値の定理に関する知識を 問う.
	解答例 (1) $ (1-1) \ x = r \cos \theta, y = r \sin \theta, 0 \le r, 0 \le \theta \le \frac{\pi}{2} \ \text{とおけば,} \ dxdy = rdrd\theta \ \text{となる.} \ \text{また,} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)} dxdy \ \text{tx} \ \text{tm}, y \ \text{tm} \ \text{cything} \ \text{total cytheroids} \ \text{scho}, $ $ I = 4 \lim_{n \to \infty} \int_{0}^{\frac{\pi}{2}} \int_{0}^{n} e^{-r^2} \cdot rdrd\theta = 4 \cdot \frac{\pi}{2} \lim_{n \to \infty} \left[-\frac{1}{2} e^{-r^2} \right]_{0}^{n} = 4 \cdot \frac{\pi}{4} \lim_{n \to \infty} (1 - e^{-n^2}) = \pi. $ $ (1-2) \sqrt{ax} + \frac{b}{\sqrt{a}} y = u, \frac{\sqrt{ac - b^2}}{\sqrt{a}} y = v \ \text{とすると} \sqrt{ac - b^2} dxdy = dudv \ \text{となる.} \ \text{したがって,} \ (1-1) \ \text{より,} $ $ I = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(ax^2 + 2bxy + cy^2)} dxdy = \frac{1}{\sqrt{ac - b^2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(u^2 + v^2)} dudv = \frac{\pi}{\sqrt{ac - b^2}}. $ $ (2) f(x) = (x^2 - 2)^n \ \text{とすると,} \ f(x) \ \text{td} \text{BCH} \left[-\sqrt{2}, \sqrt{2} \right] \ \text{ceission} \text{of } \text{BCH} \left(-\sqrt{2}, \sqrt{2} \right) $ $ \text{cwhord of the odd of } \text{constants} con$
	同様に、 $f''(x)=0$ は $(-\sqrt{2},a_1)$ および $(a_1,\sqrt{2})$ においてそれぞれ 1 つ以上の解 b_1,b_2 を持つ。これを繰り返すと、 $f^{(n)}(x)=0$ は $(-\sqrt{2},\sqrt{2})$ において互いに異なる解を n 個以上持つ。ここで $f^{(n)}(x)=0$ は n 次方程式であるから、方程式は高々 n 個の解を持つ。したがって、方程式は開区間 $(-\sqrt{2},\sqrt{2})$ において互いに異なる解をちょうど n 個持つ。

令和4年度

区 分	標 準 的 な 解 答 例 又 は 出 題 意 図
問題2 (数学2)	出題意図 ベクトル空間における線形独立及び部分空間に関する知識を問う.
	解答例 (1)
	$V = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5)$ とおき、行の基本変形を行なうと、以下の階段行列を得る.
	$\begin{pmatrix} 1 & 0 & 2 & 0 & 2 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$
	これより、 v_1, v_2, v_4 が線形独立。 $v_3 = 2 \times v_1 - v_2, v_5 = 2 \times v_1 + v_4$.
	(2) (2-1) W の式を変形すると,
	$(x+2z)^2 - y^2 = (x+y+2z)(x-y+2z) = 0$
	よって,
	$W_1 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle x + y + 2z = 0 \right\}, W_2 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle x - y + 2z = 0 \right\}$
	とおくと W は $W_1 \cup W_2$ と表せる. (2-2) 部分空間の条件のうち、加法で閉じていないことを示す.
	$W_1 \cap W_2 = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$ 以外の W_1, W_2 上の点 $\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \in W_1, \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \in W_2$ を取ると、
	$\begin{pmatrix} 1\\1\\-1 \end{pmatrix} + \begin{pmatrix} -1\\1\\1 \end{pmatrix} = \begin{pmatrix} 0\\2\\0 \end{pmatrix} \notin W$
	よって部分空間ではない.
	•

令和 4 年度

14月次1日・7月八一		I I I I I I	μT 1	HTKITI	八八 一十八 /	「ノイノ后」及一块』
区 分		標準	き的な 解	答例又	は出題が	意 図
問題 3 (情報基礎1)	出 題意図 整列アルゴリズムとデータ構造に関する知識と理解を問う.					
	解答例					
	(1)	(1 2 4 9 4)				
	(1-1)	$a = \{1, 3, 4, 8, 4\}$				i e
	(1-2)	与えられた配列 させることがで		こ重複があ	る場合、この	D関数ではデータを整列
		正しく動作させるためには、連結リストを使って、1 つの箱に 2 つ以上 の値を入れられるようにすればよい.				
		別解:要素の出 従って代入する		保持しておき	き, 配列 a に	に戻す際に出現した数に
	(0)					
	(2) (2-1)					
			キー	個数	累計	
			0	0	0	
es			1	1	1	
			2	2	3	
			3	0	3	
			4	1	4	
			5	0	4	
			6	0	4	
			7	1	5	
			8	1	6	
		0	9	0	6	
			10	0	6	
	(2-2)	(ア) count[a[i (イ) count[i+		nt[i];		
	(2-3)		ーを持つさ			字在した場合に,整列後 後関係)が保たれる整列
		と置く. キー2 l b[2]に代入されまず $i=5$ で 2_B t	は、分布を る. (ウ) <i>o</i> が b[2]に代	保持する配) for ルーフ :入される.	列 count[2] °は配列 a を 続いて i=2	すの並びを $1,4,2_{\Lambda},7,8,2_{\rm B}$ =3 より,配列 ${\rm b}[1]$ から 末尾から処理するため, で 2_{Λ} が ${\rm b}[1]$ に代入され ,安定した整列となる.

(配列 a の後方から順に取り出し、配列 b のキーに対応する位置の後方から順に代入していくということが説明できていればよい)

令和 4 年度

試験名:編入等	学試験 【情報学群 情報科学類・情報メディア創成学類】
区 分	標準的な解答例又は出題意図
問題4 (情報基礎2)	出題意図 バーコードの生成と読み取り手法,言い換えると数値データ(JAN コード)とビット列(バーコード)の相互変換を通して、文章からデータ構造やアルゴリズムを理解し、プログラムとして正しく記述できるか、ソースコードからプログラムの動作を正しく読み取れるか、情報処理の基礎力を問う問題として作成した.
	解答例 (1) 3 桁目: 5, 8 桁目: 2
	(2) (ア) 6C, (イ) 44
	(3) (ウ) n >> 3 (エ) 1 << (n & 7)
	(4) (オ) 3 + 7 * m (カ) set_bit(&number, i) (キ) (jancode + m) = i
	(5) ・パリティチェックの結果, データの読み取り誤りを検出した場合の戻り 値は偽(0)となり, 読み取り誤りを検出しなかった場合の戻り値は真(1) (または偽以外)となる.
	・データ列に偶数回の誤りが発生した場合,正しく検出されなくなる.
	・誤り検出できない例:正しいデータ列が「1110010」の場合,「1111110」や「0010010」などのように、2か所で読み取り誤りが発生した場合に、パリティチェックでは誤り検出ができなくなる.