Лабораторная работа №11.5 Туннелирование в проводниках

Драчов Ярослав Факультет общей и прикладной физики МФТИ

1 марта 2021 г.

Цель работы: исследовать принцип действия туннельного диода, измерить его вольт-амперную характеристику и основные параметры.

1 Теоретическое введение

Туннельным диодом называется сильно легированный полупроводник, уровень Ферми которого лежит в разрешенной зоне и становятся возможны туннельные переходы электронов в области узкого (p-n)-перехода.

Будем считать, что все состояния, лежащие ниже уровня Ферми, заполнены электроны, а выше — свободны. Энергетические диаграммы идеального туннельного диода и его вольт-амперная характеристика показаны на рисунке 1. μ_n и μ_p обозначены уровни Ферми в n- и p-области соответственно; E_c и E_v - границы зоны проводимости и валентной зоны. В отсутсвии внешнего поля уровни Ферми μ_n и μ_p лежат на одной горизонтали; число дырок и электронов, туннелирующих в обе стороны, одинаково, и ток отсутствует (рисунок 1.а). При приложении напряжения в прямом направлении уровень Ферми в n-области «ползет» вверх по отношению к уровню Ферми в р-области, электроны туннелируют налево, ток растет. Он достигает максимума в точке б вольт-амперной характеристики (рисунок 1. 3c), соответствующей наибольшему совпадению занятой зоны в отрицательной области и свободной в положительной. При дальнейшем увеличении внешнего напряжения перекрытие занятых уровней в п-области и свободных в р- уменьшается, и ток падает до нуля: это иллюстрирует рисунок Предельное положение соответствует энергетической диаграмме г. При дальнейшем увеличении напряжения ток, возникающий за счет туннелирующих электронов, остается равным нулю, а диффузиозный ток возникает при совпадении занятых уровней п-области с свободными уровнями зоны проводимости (рисунок $1.\partial$). На диаграмме 1.e показан ток в обратном на-

Реальная вольт-амперная характеристика туннельного диода отличается от таковой для идеального и представлена на рисунке 2. Она учитывает образование примесных зон и возможность их слияния с основными, что объясняет наличия ненулевого тока I_v в минимуме характеристики.

Вольт-амперная характеристика реального туннельного диода (см. рисунок 2) описывается следующими значениями напряжения и тока.

Рис. 1: Схема энергетических уровней и вольт-амперная характеристика идеального туннельного диода

Рис. 2: Вольт-амперная характеристика неидеальных туннельных диодов с меньшей (сплошная линия) и большей (пунктирная линия) шириной запрещенной зоны

Напряжению U_p соответствует максимум тока I_p , при котором смещение энергетических зон одинаково, причем это напряжение связано с расстоянием ξ между уровнем Ферми в n-области и зоной проводимости и энергией $E_{\rm n\ max}$, соответствующей максимуму плотности распределения электронов, следующим отношением:

$$U_p \approx \frac{\xi - E_{\text{n max}}}{e}$$

В точке U_v ток минимален, и, как следует из описания выше:

$$U_v \approx \frac{(\mu_n - E_c) + (E_v - \mu_p)}{e} = \frac{\xi + \eta}{e} \approx \frac{2\xi}{e} \approx \frac{2\eta}{e}$$

Напряжение U_f характеризует раствор вольт-амперной характеристики и определяется шириной запрещенной зоны.

2 Изучение вольт-амперной характеристики диода с помощью осциллографа

Схема установки представлена на рисунке 3. На вход Y осциллографа подается напряжение, пропорциональное току через диод, а на вход X — падение напряжения на диоде.

Рис. 3: Схема наблюдения вольт-амперной характеристики туннельного диода с помощью осциллографа

Ток I через диод зависит от напряжения U на нем по следующей формуле:

$$I = U \frac{R_1 + 2(R_2 + R_3)}{(R_1 + 2R_2) \cdot R_3}$$

Здесь R_1 , R_2 , R_3 — сопротивления соответствующих резисторов моста со схемы на рисунке 3.

Вольт-амперная характреристика исследуемого проводникового диода на экране осциллографа представлена на рис. 4. По оси X масштаб 50 мВ, значит $U_p \approx 50$ мВ, $U_v \approx 300$ мВ, $U_f \approx 400$ мВ, $I_v \approx 0.2$ мА, $I_p \approx 2$ мА. Со

Рис. 4: ВАХ в динамическом режиме

статической ВАХ на рис. 5 можно уточнить полученные результаты:

$$U_p = 34.9 \pm 0.6 \ \text{мB}, \quad I_p = 1.963 \pm 0.009 \ \text{мA},$$

$$U_v = 0.29 \pm 0.02 \ \text{B}, \quad I_v = 0.191 \pm 0.007 \ \text{мA},$$

$$U_f = 436 \pm 3 \ \text{мB}.$$

Примем $E_v=0$. Тогда из выражения для $U_v\approx 2\mu e$ можно найти энергию

Рис. 5: ВАХ в статическом режиме

Ферми $\mu_n \approx \mu_p$:

$$\mu_n \approx \mu_p \approx eU_v/2 = 0.15 \pm 0.01 \text{ sB}.$$

Из выражения для напряжения $U_p \approx (\mu_n - E_{n \text{ max}})/e$ получим энергию, соответствующую максимальной плотности распределения электронов $E_{n \text{ max}}$:

$$E_{n \text{ max}} = \mu_n - eU_p = 0.12 \pm 0.01 \text{ sB}.$$

В ходе изучения генератора на основе туннельного диода было выяснено, что частота генерации для амплитуд от 0.1 до 0.4 В остаётся постоянной.

3 Вывод

В работе исследован принцип действия туннельного диода; мы наблюдали его вольт-амперную характеристику на осциллографе и затем измерили ее непосредственно, снимая зависимость тока от напряжения.

По результатам измерений мы получили параметры диода, которые совпадают с грубой оценкой, полученной благодаря наблюдению на осциллографе.

U, B	<i>I</i> , мА
0	-0.007
0.005	0.489
0.0106	0.95
0.0149	1.24
0.02	1.518
0.025	1.722
0.0261	1.761
0.0272	1.794
0.0281	1.822
0.0293	1.854
0.03	1.869
0.0311	1.894
0.0319	1.911
0.033	1.933
0.0343	1.954
0.0349	1.963
0.2534	0.207
0.2543	0.206
0.2606	0.201
0.2616	0.2
0.2636	0.199
0.2665	0.198
0.2941	0.191
0.3047	0.194
0.3229	0.21
0.3467	0.259
0.3606	0.314
0.3754	0.41
0.3871	0.529
0.391	0.581
0.3962	0.662
0.4065	0.877
0.4137	1.076
0.4185	1.246
0.426	1.571
0.4326	1.942
0.4388	2.379
0.4423	2.674
0.4444	2.861
0.4504	3.509
0.4563	4.278
0.4613	5.059

Таблица 1: Измерения