Layered Explanations: Interpreting Neural Networks with Numerical Influence Measures Ho Xuan Vinh

Algorithmic Transparency: Motivation

Algorithmic Transparency: Motivation

Trustworthy

- Doctor-patient relationship
- Doctor is a specialist
- Doctor has a personal stake
- Reinforced reliability through time

Untrustworthy

- How knowledgeable is NN?
- NN faces no consequence
- Unreliable historical records

Algorithmic Transparency: Interpretable Explanation

Given $\vec{x} \in \mathbb{R}^n$, why was \vec{x} labeled $f(\vec{x})$?

- $\phi(\vec{x}) \in \mathbb{R}^n$ an explanation. May use the dataset X and additional domain knowledge.
- Linear explanation is mainly focused

Algorithmic Transparency: Interpretable Explanation

Challenges

- Features often do not have intrinsic meaning
- Individual measured effect is small

Our approach

 Measure influence in Neural Network's internal layers

Layered Explanations Framework

Step 1 – Identify Influential Layer

Motivation:

- Potentially capture high-level feature
- Receptive field are bigger

Input:

Model f

Output

• Chosen layer L_k

Method:

- Influence measures
- Linear probe
 - Most robust layer
 - Most discriminative layer

Given \vec{x} , why was \vec{x} labeled $f(\vec{x})$?

• $\phi(\vec{x})$ - an explanation. May use the dataset X and additional domain knowledge.

- *This talk*: numerical explanations
 - $\phi(x) \in \mathbb{R}^n$, where $\phi_i(\vec{x})$ is how important was feature i in determining $f(\vec{x})$?
 - MIM, QII, LIME, Parzen, DeepLIFT...
- Our method can use any numerical influence measure. We focus on MIM
 - Computationaly efficient
 - Axiomatically justified

Input:

- Datapoint $\vec{x} = \{x_1, x_2, \dots, x_n\}$
- Dataset X
- Model f

Output:

• Influence score $\phi^i(\vec{x})$ of each feature/unit i in \vec{x}

Method:

Quantitative Input Influence | Monotone Influence Measure (QII) (MIM)

Quantitative Input Influence

Monotone Influence Measure

Intuition

The obtained influence measure $\phi_{QII}(\vec{x}, X)$ tells how much each feature marginally contributes to model's outcome $Q(\vec{x}, N)$ w.r.t. instance \vec{x} .

Marginal contribution $\phi^i_{QII}(\vec{x}$, X)

$$\phi_{QII}^{i}(\vec{x}, X) = \frac{1}{n!} \sum_{\pi \in \Pi} [Q(\vec{x}, S_{\pi}(i) \cup \{i\}) - Q(\vec{x} S_{\pi}(i))]$$

Over the permutation set Π of n features

Quantitative Input Influence

Monotone Influence Measure

Intuition

The obtained influence measure $\phi_{MIM}(\vec{x}, X)$ indicates global direction that <u>strengthens</u> the current label of instance \vec{x} .

Influence measure $\phi_{MIM}^i(ec{x}$, X)

Function of Distance

$$\phi_{MIM}^{i}(\vec{x}, \mathbf{X}) = \sum_{\vec{y} \in \mathbf{X} \setminus \vec{\mathbf{X}}} (\vec{y} - \vec{x}) \alpha(||\vec{y}, \vec{x}||) \mathbb{I}(f(\vec{x}) = f(\vec{y}))$$

$$(-1,1) \text{-valued Indicator function}$$

Over all data points except for x

Step 3 - Map back identified important units to Input

Step 3 - Map back identified important units to input

Input:

- Datapoint \vec{x} and its value in each layer L_i , $\forall i \in \{1, ..., K\}$
- Influence scores at chosen layer L_k
- Neural network f

Map back identified important units to input

Output:

• Back-propagated value at input space L_1

Method:

Deconvolutional Neural Net | Guided Backpropagation (DeconvNet) (GuidedBackprop)

Step 3 – Backpropagation methods

Deconvolutional Neural Net

Guided Backpropagation

- Unpooling: switch
- Deconvolutional layer
- ReLU in backward phase

Step 3 – Backpropagation methods

Deconvolutional Neural Net

Guided Backpropagation

$$R^{i} = (f^{i} > 0).(R^{i+1} > 0).R^{i+1}$$
 where
$$R^{i+1} = \frac{\partial f^{out}}{\partial f^{i+1}}$$

Experiment

- Dataset & classifier:
 - MNIST (digit pair 6-9) + 3-convolutional-layer CNN
 - Dog-Fish (extracted from ImageNet) + VGG16 net
- Comparison methods:
 - MIM on input layer
 - Guided-Activation:
 - Masking $M = \mathbb{I}(|\vec{x}_{L_i}| \ge \delta)$
 - Guided-MIM: MIM + GuidedBackprop
 - Masking $M = \mathbb{I}\left(|\phi_{MIM}(\vec{x}_{L_i})| \geq \delta\right)$
- Parameters:
 - We set δ such that only top 1% influential hidden units are chosen.

Experiment: MNIST

Normalized value of $\|\phi_{MIM}^i(\vec{x}, X)\|$ of four samples.

$$L^* = \underset{L_i \in \{L_2, ..., L_{K-1}\}}{\operatorname{argmax}} \frac{\|\phi_{MIM}^i(\vec{x}, X)\|_2}{\underset{\vec{y} \in X \setminus \vec{x}}{\operatorname{max}} \|\vec{y}_{L_i} - \vec{x}_{L_i}\|_2}$$

Experiment: MNIST

Heatmaps of three methods: MIM, Guided-Activation, and Guided-MIM on four samples of the MNIST dataset, only 1% of total units in each layer backpropagated.

Experiment: Dog-fish

Normalized value of $\|\phi_{MIM}^i(\vec{x}, X)\|$ of four samples.

$$L^* = \underset{L_i \in \{L_2, ..., L_{K-1}\}}{\operatorname{argmax}} \frac{\|\phi_{MIM}^i(\vec{x}, X)\|_2}{\underset{\vec{y} \in X \setminus \vec{x}}{\operatorname{max}} \|\vec{y}_{L_i} - \vec{x}_{L_i}\|_2}$$

Experiment: Dog-fish

Experiment: Dog-fish

d) Noisy background

Experiment: Incremental examples

Dataset	Label t	$f(\vec{x}) = t$	$f(\vec{x} + \phi_{MIM}(\vec{x})) = t$	$f_P(\vec{x} + \phi_{MIM}(\vec{x})) > f_P(\vec{x})$
MNIST	Digit 6	1008	1008	262
	Digit 9	959	959	875
Dog-Fish	Dog	298	298	138
	Fish	302	302	0

Number of samples increases their predicted probabilities $f_P(.)$ by shifting toward the vector $\phi_{MIM}(\vec{x})$ on MNIST and Dog-fish dataset.

Discussion

- Guided-MIM is a preliminary step toward a better model.
 - Guided-Activation and Guided-MIM can outline the full shape of target object.
- Possible extensions:
 - Step 1: A NN slice marks transition from general to specific-class feature.
 - Step 2: Other numerical influence methods.
 - Step 3: Backpropate influence scores and redistribute to input layer.
 - Combination of different influence measure backpropagation pair requires different interpretation.
 - Quantitative evaluation
- Assumption
 - pretrained model has acceptable accuracy

Conclusion

- Proposes Layered Explanations Framework
 - Identify the greatest-explanatory layer and
 - 2. Influential units using numerical influence measures, then we
 - 3. Reconstruct relevant input regions responsible for activating these influential units.
- Experiment on MNIST & Dog-fish dataset:
 - combination of MIM and GuidedBackprop
 - able to outline target object, but no clear signal of identifying influential components.
- Possible extensions
 - applicable methods on step 2 and 3
 - possible interpretation of selected method pairs
 - quantitative evaluation

References

- **DeconvNet**: Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional networks. In European conference on computer vision, pages 818–833. Springer.
- Guided Backpropagation: Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2014). Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806
- QII: Datta, A., Sen, S., and Zick, Y. (2016). Algorithmic transparency via quantitative input influence: Theory and experiments with learning systems. In Security and Privacy (SP), 2016 IEEE Symposium on, pages 598–617. IEEE.
- MIM: Sliwinski, J., Strobel, M., & Zick, Y. (2017). A Characterization of Monotone Influence Measures for Data Classification. arXiv preprint arXiv:1708.02153.