В модели Эванса при γ спрос на товар задан функцией $\Phi(p)=d(t)$, предложение товара — функцией $\varphi(p)=s(t)$. Начальная цена при t=0 равна $p(0)=p_0$.

Требуется:

- 1) выразить цену p(t) как функцию времени;
- 2) найти равновесную цену p^0 и соответствующие значения спроса Φ^0 и предложения φ^0 ;
- 3) построить графическое представление дискретного аналога модели;
 - 4) построить график функции p(t).

ВАРИАНТ 8

γ	а	b	α	β	p_0
1.2	10	1.8	4	2.2	0.4

Решение.

1) Запишем модель Эванса в общем виде:

$$p(t) = p_0 e^{-\gamma(b+\beta)t} + \frac{a-\alpha}{b+\beta} \left[1 - e^{-\gamma(b+\beta)t} \right]$$

Учитывая условия, получим функцию с числовыми параметрами:

$$p(t) = 0.4e^{-1.2(1.8+2.2)t} + \frac{10-4}{1.8+2.2} \left[1 - e^{-1.2(1.8+2.2)t} \right] =$$

$$= 0.4e^{-4.8t} + \frac{6}{4} \left[1 - e^{-4.8t} \right] = 0.4e^{-4.8t} + 1.5 - 1.5e^{-4.8t} = 1.5 - 1.1e^{-4.8t}.$$
2)
$$p^{0} = \frac{a-\alpha}{b+\beta} = 1.5$$

$$\Phi^{0} = \Phi(p^{0}) = \Phi(1.5) = 10 - 1.8 \cdot 1.5 = 7.3$$

$$\phi^{0} = \phi(p^{0}) = \phi(1.5) = 4 + 2.2 \cdot 1.5 = 7.3$$

$$\Phi^{0} = \phi^{0}$$

Рисунок 1 - графическое представление дискретного аналога модели

Рисунок 2 - график функции $p(t) = 1.5 - 1.1e^{-4.8t}$