STT 1000 - STATISTIQVES

ARTHUR CHARPENTIER

QQ Plot

Étant donné un échantillon $\mathbf{y} = \{y_1, \dots, y_n\}$, on note $\{y_{(1)}, \dots, y_{(n)}\}$ la statistique d'ordre associée, au sens où $y_{(1)} \leq y_{(1)} \leq \dots \leq y_{(n)}$

QQ Plot

Le QQ-plot pour un échantillon \boldsymbol{y} et une loi F_0 est le nuage de points

$$\left(y_{(i)}, F_0^{-1}\left(\frac{i}{n+1}\right)\right), i = 1, 2, \cdots, n.$$

Pour rappel, si \widehat{F} est la fonction de répartition empirique,

$$y_{(i)} = \widehat{F}^{-1}\left(\frac{i}{n}\right)$$

Autrement dit, on compare \widehat{F}^{-1} et F_0^{-1} en des points particulier (les i/(n+1) ou i/n).

QQ Plot

```
1 > y = sort(Davis$height)
2 > n = length(y)
3 > u = (1:n)/(n+1)
4 > plot(y, qnorm(u,170,9))
5 > qqnorm(y)
```


Note dans le cas Gaussien, si F_0 est la loi $\mathcal{N}(\mu, \sigma^2)$,

$$F_0^{-1}(u) = \mu + \sigma \Phi^{-1}(u)$$

QQ Plot

QQ Plot Gaussien

Le QQ-plot Gaussien pour un échantillon \boldsymbol{y} et une loi F_0 est le nuage de points

$$\left(y_{(i)},\Phi^{-1}\left(\frac{i}{n+1}\right)\right),\ i=1,2,\cdots,n.$$

Note simulation de quelques lois paramétriques, $\mathcal{N}(0,1)$, $\mathcal{S}td(3)$, $\mathcal{P}(100)$, et LN(0,1), pour n=100

