FGI 2 Hausaufgaben 9

Mareike Göttsch, 6695217, Gruppe 2 Paul Hölzen, 6673477, Gruppe 1 Sven Schmidt, 6217064, Gruppe 1

19. Dezember 2016

9.3

1.

2.

Als Überdeckungsgraph zu $N_{9.3}$ für die Anfangsmarkierung $m_0=(2,1,0)^t$ ergibt sich:

Abbildung 1: Überdeckungsgraph von $N_{9.3}$

3.

Aufgabe 9.4

1.

$\Delta_{N_{LS}}$	$ t_1 $	t_2	t_3	t_4	t_5	t_6	i_1	i_2
pa	-1	0	1	-1	0	1	1	0
pp	0	-1	1	0	-4	4	0	1
p_1	1	-1	0	0	0	0	1	0
p_2	0	1	-1	0	0	0	1	1
p_3	0	0	0	1	-1	0	1	0
p_4	0	0	0	0	1	-1	1	4
j_1	1	1	1	1	1	1		
j_2	0	0	0	1	1	1		

P-Invarianten:

$$\Delta i_{1} = \Delta_{N_{LS}} \cdot \begin{pmatrix} 1\\0\\1\\1\\1\\1 \end{pmatrix} = \begin{pmatrix} -1+1\\-1\cdot 0-1+1\\1+1\cdot 0-1\\-1+1\\-4\cdot 0-1+1\\1+4\cdot 0-1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0\\0\\0\\0 \end{pmatrix}$$

$$\Delta i_{2} = \Delta_{N_{LS}} \cdot \begin{pmatrix} 0\\1\\0\\1\\0\\4 \end{pmatrix} = \begin{pmatrix} 0\\-1+1\\1\cdot 0+1-1\\0\\-4\cdot 1+-1\cdot 0+1\cdot 4\\1\cdot 0+4\cdot 1-1\cdot 4 \end{pmatrix} = \begin{pmatrix} 0\\0\\0\\0\\0\\0\\0 \end{pmatrix}$$

T-Invarianten:

$$\Delta j_{1} = \Delta_{N_{LS}} \cdot \begin{pmatrix} 1\\1\\1\\1\\1\\1 \end{pmatrix} = \begin{pmatrix} -1+1-1+1\\1-1+4+4\\1-1\\1-1\\1-1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0\\0\\0\\1\\1\\1 \end{pmatrix}$$

$$\Delta j_{2} = \Delta_{N_{LS}} \cdot \begin{pmatrix} 0\\0\\0\\0\\1\\1\\1 \end{pmatrix} = \begin{pmatrix} -1+1\\1-4+4\\0\\0\\0\\1-1\\1-1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0\\0\\0\\0\\0\\0 \end{pmatrix}$$

2.

$\Delta_{N_{Drohne}}$	t_1	t_2	t_3	t_4	t_5	t_6
p_1	-1	0	0	0	0	1
p_2	1	-1	0	0	0	0
p_3	0	1	-1	0	0	0
p_4	0	0	1	-1	0	0
p_5	-1	0	0	0	0	1
p_6	0	-1	0	0	1	0
p_7	0	0	0	1	-1	0
p_8	0	0	0	0	1	-1

3.

Die Menge aller S-Invariantenvektoren ist die Menge der Vektoren $i^{tr} = (i_0...i_7)$, die das folgende Gleichungssystem lösen:

$$\begin{array}{ll} I) & -i_0+i_1-i_4=0 \\ III) & -i_1+i_2-i_5=0 \\ III) & -i_2+i_3=0 \\ IV) & -i_3+i_6=0 \\ V) & i_5-i_6+i_7=0 \\ VI) & i_0+i_4-i_7=0 \end{array}$$

5.

$\Delta_{N_{Drohne}}$	t_1	t_2	t_3	t_4	t_5	t_6	t_7
p_1	-1	0	0	0	0	1	0
p_2	1	-1	0	0	0	0	0
p_3	0	1	-1	0	0	0	0
p_4	0	0	1	-1	0	0	0
p_5	-1	0	0	0	0	0	1
p_6	0	-1	0	0	1	0	0
p_7	0	0	0	1	-1	0	0

Aufgabe 9.5

- In einem Workflow-Netz sind Quelle a und Senke e beliebig zu wählen. Wahr oder falsch?

 (Lesestoff Woche 9, Teil 1)
- Eine Transition kann sowohl einen Uplink als auch (mehrere) Downlinks haben.

Wahr oder falsch? (Lesestoff Woche 9, Teil 2)