(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出廢公開番号

特開平8-254713

(43)公開日 平成8年(1996)10月1日

(51) Int.Cl.6

識別記号

庁内整理番号

FΙ

技術表示箇所

G 0 2 F 1/136 H01L 29/786

500

G 0 2 F 1/136

500

H01L 29/78

617T

審査請求 未請求 請求項の数23 〇L (全 12 頁)

(21)出願番号

特願平7-56939

(71)出顧人 000003078

株式会社東芝

(22)出願日

平成7年(1995) 3月16日

神奈川県川崎市幸区堀川町72番地

(72)発明者 福田 加一

神奈川県横浜市磯子区新杉田町8 株式会

社東芝横浜事業所内

(74)代理人 弁理士 樺澤 襄 (外2名)

(54) 【発明の名称】 **薄膜トランジスタ、その製造方法および液晶表示素子**

(57)【要約】

【目的】 特性、安定性、絶縁性、歩留およびプロセス 整合性に優れた薄膜トランジスタを提供する。

【構成】 ガラス基板1の一主面上にゲート電極2を形 成する。ゲート電極 2 上に、酸窒化シリコン(S i O χ N_{Y}) 膜3a、窒化シリコン(SiN_{X}) 膜3bを積層形成 し、2層でゲート絶縁膜3とする。ゲート絶縁膜3上 に、a-Si膜4を積層形成する。a-Si膜4上に、 SiN_X 膜を積層して、チャネル保護膜 5 を形成する。 ゲート絶縁膜3上にITO (Indium Tin Oxide) の画素 電極7が形成する。低抵抗半導体膜6のソース領域上に は、画素電極7と接続した状態でソース電極8を形成 し、ドレイン領域上にはドレイン電極9を形成し、保護 膜10を積層形成し、能動素子基板12となる。

【特許請求の範囲】

【請求項1】 ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタにおいて、

前記ゲート絶縁膜は、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この窒化シリコン膜が前記非単結晶シリコンに接していることを特徴とする薄膜トランジスタ。

【請求項2】 酸窒化シリコン膜は、Si, N, O, Hを主成分とし、Nの濃度が、N/Si比で0.1以上 0.8以下であり、かつ、<math>Oの濃度よりも少なく、窒化シリコン膜は、Si, N, Hを主成分とし、Nの濃度が、N/Si比で1.2以上1.6以下、<math>Oの濃度が、 5×10^{20} atoms/cm³以下であることを特徴とする請求項1記載の薄膜トランジスタ。

【請求項3】 酸窒化シリコン膜は、少なくとも一部に PおよびBのいずれか一方をドーピングしたことを特徴 とする請求項1または2記載の薄膜トランジスタ。

【請求項4】 酸窒化シリコン膜は、波長632.8n mでの屈折率が、1.49以上1.65以下であることを特徴とする請求項1ないし3いずれか記載の薄膜トランジスタ。

【請求項5】 酸窒化シリコン膜は、膜厚が200nm 以上450nm以下であり、

窒化シリコン膜は、膜厚が5nm以上200nm以下であることを特徴とする請求項1ないし4いずれか記載の薄膜トランジスタ。

【請求項6】 ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタにおいて、

前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン 膜および窒化シリコン膜の積層膜にて形成され、この酸 窒化シリコン膜は、前記酸化シリコン膜の上部を覆って 配置されるとともに、前記窒化シリコン膜は、前記非単 結晶シリコンに接していることを特徴とする薄膜トラン ジスタ。

【請求項7】 酸化シリコン膜は、少なくとも一部にP およびBのいずれか一方をドーピングしたことを特徴とする請求項6記載の薄膜トランジスタ。

【請求項8】 酸化シリコン膜は、Si、O、Hを主成分とし、Nの濃度が $5 \times 10^{20} a toms/cm^3$ 以下であることを特徴とする請求項6 または7 記載の薄膜トランジスタ。

【請求項9】 酸化シリコン膜および酸窒化シリコン膜の合計の膜厚は、200nm以上450mm以下であり、かつ、前記酸窒化シリコン膜の膜厚は<math>100nm以上であり、前記窒化シリコン膜の膜厚は<math>5nm以上200nm以下であることを特徴とする請求項6ないし8いずれか記載の薄膜トランジスタ。

【請求項10】 ゲート電極上にゲート絶縁膜を形成

し、このゲート絶縁膜上に活性層を形成し、この活性層 に非単結晶シリコンを用い、この活性層上にチャネル保 護膜を有する逆スタガード型の薄膜トランジスタにおっ て、

ゲート絶縁膜は、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この窒化シリコン膜が前記非単結晶シリコンに接し、かつ、前記チャネル保護膜が前記ゲート電極に自己整合されたことを特徴とする薄膜トランジスタ。

【請求項11】 ゲート電極上にゲート絶縁膜を形成し、このゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを活性層に用い、この活性層上にチャネル保護膜を有する逆スタガード型の薄膜トランジスタにおいて、

前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この酸窒化シリコン膜は前記酸化シリコン膜の上部を覆って配置され、前記窒化シリコン膜が前記非単結晶シリコンに接し、かつ、前記チャネル保護膜を前記ゲート電極に自己整合させたことを特徴とする薄膜トランジスタ。

【請求項12】 ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、

前記ゲート絶縁膜は、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この窒化シリコン膜が前記非単結晶シリコンに接しており、

この酸窒化シリコン膜は、原料ガスに SiH_4 、 N_2 O、 N_2 または NH_3 の混合ガスを用いたフラズマC VDによって形成することを特徴とする薄膜トランジスタの製造方法。

【請求項13】 ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、

前記ゲート絶縁膜は、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この窒化シリコン膜が前記非単結晶シリコンに接しており、

前記酸窒化シリコン膜は、原料ガスに有機シラン、

 O_2 、 N_2 または NH_3 の混合ガスを用いたフラズマC VDによって形成することを特徴とする薄膜トランジスタの製造方法。

【請求項14】 ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランシスタの製造方法において、

前記ゲート絶縁膜は、酸窒化シリコン膜および窒化シリコン膜の積層膜にで形成され、この窒化シリコン膜 (泊前記非単結晶シリコンに接しており、

前記酸窒化シリコン膜、窒化シリコン膜、非単結晶シリコンをプラズマCVDの同一反応室で連続的に形成することを特徴とする薄膜トランジスタの製造方法

【請求項15】 ゲート絶縁膜上に活性層を形成し、こ

の活性層に非単結晶シリコンを用い、表面に保護膜を形成し、この保護膜に無機絶縁膜を用いた薄膜トランジスタの製造方法において、

前記ゲート絶縁膜は、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この窒化シリコン膜が前記非単結晶シリコンに接しており、

前記酸窒化シリコン膜、窒化シリコン膜、非単結晶シリコン、無機絶縁膜をプラズマCVDの同一反応室で連続的に形成することを特徴とする薄膜トランジスタの製造方法。

【請求項16】 ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、

前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン 膜および窒化シリコン膜の積層膜にて形成され、この酸 窒化シリコン膜は、前記酸化シリコン膜の上部を覆って 配置されるとともに、前記窒化シリコン膜は、前記非単 結晶シリコンに接しており、

【請求項17】 ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、

前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン 膜および窒化シリコン膜の積層膜にて形成され、この酸 窒化シリコン膜は、前記酸化シリコン膜の上部を覆って 配置されるとともに、前記窒化シリコン膜は、前記非単 結晶シリコンに接しており、

前記酸化シリコン膜は、有機シラン、 O_3 、 O_2 を主な原料ガスとし、 N_2 を希釈ガスに用い、常圧CVDで形成することを特徴とする薄膜トランジスタの製造方法。

【請求項18】 ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、

前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン 膜および窒化シリコン膜の積層膜にて形成され、この酸 窒化シリコン膜は、前記酸化シリコン膜の上部を覆って 配置されるとともに、前記窒化シリコン膜は、前記非単 結晶シリコンに接しており、

前記酸化シリコン膜は、 $S i H_4 & N_2 O$ を主な原料ガスとし、プラズマC V Dで形成することを特徴とする薄膜トランジスタの製造方法。

【請求項19】 ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、

前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン 膜および窒化シリコン膜の積層膜にて形成され、この酸 窒化シリコン膜は、前記酸化シリコン膜の上部を覆って 配置されるとともに、前記窒化シリコン膜は、前記非単 結晶シリコンに接しており、

前記酸化シリコン膜は、有機シランと O_2 を主な原料ガスとし、プラズマCVDで形成することを特徴とする薄膜トランジスタの製造方法。

【請求項20】 基板上にゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、

前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン 膜および窒化シリコン膜の積層膜にて形成され、この酸 窒化シリコン膜は、前記酸化シリコン膜の上部を覆って 配置されるとともに、前記窒化シリコン膜は、前記非単 結晶シリコンに接しており、

前記酸化シリコン膜の形成された基板を10 Torr以下の 真空または減圧雰囲気中でアニールし、

次いで大気に曝すことなく酸窒化シリコン膜を形成する ことを特徴とする薄膜トランジスタの製造方法。

【請求項21】 基板上にゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、

前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン 膜および窒化シリコン膜の積層膜にて形成され、この酸 窒化シリコン膜は、前記酸化シリコン膜の上部を覆って 配置されるとともに、前記窒化シリコン膜は、前記非単 結晶シリコンに接しており、

前記酸窒化シリコン膜、窒化シリコン膜、非単結晶シリコンをプラズマCVDの同一反応室で連続的に形成することを特徴とする薄膜トランジスタの製造方法。

【請求項22】 基板上にゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用い、表面に保護膜を形成し、この保護膜に無機絶縁膜を用いた薄膜トランジスタの製造方法において、

前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン 膜および窒化シリコン膜の積層膜にて形成され、この酸 窒化シリコン膜は、前記酸化シリコン膜の上部を覆って 配置されるとともに、前記窒化シリコン膜は、前記非単 結晶シリコンに接しており、

酸窒化シリコン膜、窒化シリコン膜、非単結晶シリコン、無機絶縁膜をフラズマCVDの同一反応室で連続的に形成することを特徴とする薄膜トランジスタの製造方法。

【請求項23】 請求項1ないし11いずれか記載の薄膜トランジスタをスイッチング素子として用いたことを特徴とする液晶表示素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、活性層に非単結晶シリコンを用いた薄膜トランジスタ、その製造方法およご被晶表示素子に関する。

[0002]

【従来の技術】近年、液晶を用いた表示素子としては、

テレビジョン表示やグラフィックディスプレイなどを指向した大容量、高密度化が図られている。そして、このため、たとえばラビングによる配向処理がそれぞれ施された 2 枚の基板を、これら基板の配向方向が互いに 9 0。をなすように平行に対向して配置し、この平行に配置した基板間に、ネマチックタイプの液晶組成物を挟持させた構成のいわゆるツイステッドネマチック(TN)型でアクティブマトリクス(AM)型の液晶表示素子(L CD)が注目されている。

【0003】そして、このアクティブマトリクス型液晶表示素子では、クロストークのない高コントラスト表示が行なえるように、各画素の駆動および制御を半導体スイッチで行なう方式が採用されている。そして、この半導体スイッチとしては透過型の表示が可能であり、また大面積化も容易であるなどの理由から、透明絶縁基板上に形成配置した非晶質シリコン(a-Si)系の薄膜トランジスタ(TFT)が用いられており、この活性層トランジスタは、活性層にa-Si層を用い、この活性層を挟んで下層にゲート電極、上層にソース電極およびドレイン電極を配置した逆スタガード構造が多く用いられている。

【0004】また、この薄膜トランジスタに用いるゲート絶縁膜には、窒化シリコン(SiN_X)を使用するのが一般的である。

[0005]

【発明が解決しようとする課題】そして、これら SiN_x とa-SiとはプラスマCVDでの連続形成が可能であり、接合特性に優れ良質界面を形成できるので広く用いられているものの、 SiN_x はワイドギャップが 5eV程度とあまり広くないので絶縁性が十分ではない。

【0006】また、ゲート絶縁膜に別の構造を用いる構成として、たとえばボトムゲート薄膜トランジスタの場合には、酸化タンタル(TaO_X)や酸化シリコン(SiO_X)膜などを下層に配設して、a-Siと接する上層に SiN_X を用いる構成がある。このように TaO_X や SiO_X などの他の膜と組み合わせることによって、 SiN_X の単層の場合に比べ、リーク電流の低減や層間 絶縁の歩留まり向上を図ることができる。特に、 SiO_X 膜はワイドギャップが広いので、絶縁膜への電荷に注入が少なく薄膜トランジスタ特性が安定化する。さらに、製造技術としても SiO_X 膜では熱CVDなどのパーティクル発生の少ない手法が確立されており、ビンホール欠落の密度が少なく、層間絶縁に高歩留まりが得られる。

【0007】しかしながら、通常、薄膜トランジスタは低融点のガラス基板上に形成するため、これらガラス基板内に含まれる不純物として $10^{19}\sim 10^{20}$ cm $^{-3}$ 程度のNaがNaイオンとなり、このNaイオンがゲート絶縁膜中に進入して、薄膜トランジスタの特性の不安定化を招く。なお、この点ではSiNx膜がNaイオンのブロ

【0008】本発明は、上記問題点に鑑みなされたもので、特性、安定性、絶縁性、歩留およびフロセス整合性に優れた薄膜トランジスタ、その製造方法および液晶表示素子を提供することを目的とする。

[0009]

【課題を解決するための手段】請求項1記載の薄膜トランジスタは、ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタにおいて、前記ゲート絶縁膜は、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この窒化シリコン膜が前記非単結晶シリコンに接しているものである。

【0010】請求項2記載の薄膜トランジスタは、請求項1記載の薄膜トランジスタにおいて、酸窒化シリコン膜は、Si、N、O、日を主成分とし、Nの濃度が、N/Si比で0.1以上0.8以下であり、かつ、Oの濃度よりも少なく、窒化シリコン膜は、Si、N、日を主成分とし、Nの濃度が、N/Si比で1.2以上1.6以下、Oの濃度が、S×S1020atoms/cm3以下であるのである。

【0011】請求項3記載の薄膜トランジスタは、請求項1または2記載の薄膜トランジスタにおいて、破空化シリコン膜は、少なくとも一部にPおよびBのいずれか一方をドーピングしたものである。

【0012】請求項4記載の薄膜トランジスタは、請求項1ないし3いずれか記載の薄膜トランジスタにおいて、酸窒化シリコン膜は、波長632.8nmで、屈折率が、1.49以上1.65以下であるものである

【0013】請求項5記載の薄膜トランジスタに、清求項1ないし4いずれか記載の薄膜トランジスタにロンて、酸窒化シリコン膜は、膜厚が200nm以上 +50nm以下であり、窒化シリコン膜は、膜厚が5mm以下であるものである。

【0014】請求項6記載の薄膜トランジスタ::
ト絶縁膜上に活性層を形成し、この活性層にサローニリコンを用いた薄膜トランジスタにおいて、映 絶縁膜は、酸化シリコン膜、酸窒化シリコン膜::・・・ 化シリコン膜の積層膜にて形成され、この酸窒化 ン膜は、前記酸化シリコン膜の上部を覆って軽点に とともに、前記窒化シリコン膜は、前記非単粒 ンに接しているものである。

【0015】請求項7記載の薄膜トランジスク: こと

項6記載の薄膜トランジスタにおいて、酸化シリコン膜は、少なくとも一部にPおよびBのいずれか一方をドーピングしたものである。

【0.0.1.6】請求項8記載の薄膜トランジスタは、請求項6または7記載の薄膜トランジスタにおいて、酸化シリコン膜は、S.i.O. Hを主成分とし、Nの濃度が $5 \times 1.0.20$ atoms/cm 3 以下であるものである。

【0017】請求項9記載の薄膜トランジスタは、請求項6ないし8いずれか記載の薄膜トランジスタにおいて、酸化シリコン膜および酸窒化シリコン膜の合計の膜厚は、200nm以上450nm以下であり、かつ、前記酸窒化シリコン膜の膜厚は100nm以上であり、前記窒化シリコン膜の膜厚は5nm以上200nm以下であるものである。

【0018】請求項10記載の薄膜トランジスタは、ゲート電極上にゲート絶縁膜を形成し、このゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用い、この活性層上にチャネル保護膜を有する逆スタガード型の薄膜トランジスタにおいて、ゲート絶縁膜は、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この窒化シリコン膜が前記非単結晶シリコンに接し、かつ、前記チャネル保護膜が前記ゲート電極に自己整合されたものである。

【0019】請求項11記載の薄膜トランジスタは、ゲート電極上にゲート絶縁膜を形成し、このゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを活性層に用い、この活性層上にチャネル保護膜を有する逆スタガード型の薄膜トランジスタにおいて、前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この酸窒化シリコン膜は前記酸化シリコン膜の上部を覆って配置され、前記窒化シリコン膜が前記非単結晶シリコンに接し、かつ、前記チャネル保護膜を前記ゲート電極に自己整合させたものである。

【0020】請求項12記載の薄膜トランジスタの製造方法は、ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、前記ゲート絶縁膜は、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この窒化シリコン膜が前記非単結晶シリコンに接しており、この酸窒化シリコン膜は、原料ガスに SiH_{\downarrow} 、 N_{2} O、 N_{2} または NH_{3} の混合ガスを用いたブラズマCVDによって形成するものである。

【0021】請求項13記載の薄膜トランジスタの製造方法は、ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、前記ゲート絶縁膜は、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この窒化シリコン膜が前記非単結晶シリコンに接しており、前記酸窒化シリコン膜は、原料ガスに有機シラン、〇y、Ny

または NH_3 の混合ガスを用いたフラズマCVDによって形成するものである。

【0022】請求項14記載の薄膜トランジスタの製造方法は、ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、前記ゲート絶縁膜は、酸窒化シリコン膜がまび窒化シリコン膜の積層膜にて形成され、この窒化シリコン膜が前記非単結晶シリコンに接しており、前記酸窒化シリコン膜、窒化シリコン膜、非単結晶シリコンをプラズマCVDの同一反応室で連続的に形成するものである。

【0023】請求項15記載の薄膜トランジスタの製造方法は、ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用い、表面に保護膜を形成し、この保護膜に無機絶縁膜を用いた薄膜トランジスタの製造方法において、前記ゲート絶縁膜は、酸窒化シリコン膜が散記非単結晶シリコンに接しており、前記酸窒化シリコン膜、窒化シリコンに接しており、前記酸窒化シリコン膜、窒化シリコン膜、非単結晶シリコン、無機絶縁膜をブラズマCVDの同一反応室で連続的に形成するものである。

【0024】請求項16記載の薄膜トランジスタの製造方法は、ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この酸窒化シリコン膜は、前記酸化シリコン膜の上部を覆って配置されるとともに、前記窒化シリコン膜は、前記非単結晶シリコンに接しており、前記酸化シリコン膜は、 SiH_4 と O_2 を主な原料ガスとし、 N_2 を希釈ガスに用い、常圧CVDで形成するものである。

【0025】請求項17記載の薄膜トランジスタの製造方法は、ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この酸窒化シリコン膜は、前記酸化シリコン膜の上部を覆って配置されるとともに、前記窒化シリコン膜は、前記非単結晶シリコンに接しており、前記酸化シリコン膜は、有機シラン、 O_2 を主な原料ガスとし、 N_2 を希釈ガスに用い、常圧CVDで形成するものである。

【0026】請求項18記載の薄膜トランジスタの製造方法は、ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この酸窒化シリコン膜は、前記酸化シリコン膜の上部を覆って配置されるとともに、前記窒化シリコン膜は、前記非単結晶シリコンに接しており、前記酸化シリ

コン膜は、 SiH_4 EN_2 Oを主な原料ガスとし、フラズマCVDで形成するものである。

【0027】請求項19記載の薄膜トランジスタの製造方法は、ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この酸窒化シリコン膜は、前記酸化シリコン膜の上部を覆って配置されるとともに、前記窒化シリコン膜は、前記非単結晶シリコンに接しており、前記酸化シリコン膜は、有機シランとO2を主な原料ガスとし、プラズマCVDで形成するものである。

【0028】請求項20記載の薄膜トランジスタの製造方法は、基板上にゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この酸窒化シリコン膜は、前記酸化シリコン膜の上部を覆って配置されるとともに、前記窒化シリコン膜は、前記非単結晶シリコンに接しており、前記酸化シリコン膜の形成された基板を10Torr以下の真空または減圧雰囲気中でアニールし、次いで大気に曝すことなく酸窒化シリコン膜を形成するものである。

【0029】請求項21記載の薄膜トランジスタの製造方法は、基板上にゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この酸窒化シリコン膜は、前記酸化シリコン膜の上部を覆って配置されるとともに、前記窒化シリコン膜は、前記非単結晶シリコンに接しており、前記酸窒化シリコン膜、窒化シリコン膜、非単結晶シリコンをブラズマCVDの同一反応室で連続的に形成するものである。

【0030】請求項22記載の薄膜トランジスタの製造方法は、基板上にゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用い、表面に保護膜を形成し、この保護膜に無機絶縁膜を用いた薄膜トランジスタの製造方法において、前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この酸窒化シリコン膜は、前記酸化シリコン膜の上部を覆って配置されるとともに、前記酸化シリコン膜は、前記非単結晶シリコンに接しており、酸窒化シリコン膜、窒化シリコン膜、非単結晶シリコン、無機絶縁膜をブラズマCVDの同一反応室で連続的に形成するものである。

【0031】請求項23記載の液晶表示素子は、請求項1ないし11いずれか記載の薄膜トランジスタをスイッチング素子として用いたものである。

[0032]

【作用】本発明の薄膜トランジスタは、ゲート絶縁膜として、酸窒化シリコン膜および窒化シリコン膜を用い、この窒化シリコン膜が非単結晶シリコンに接しているため、酸窒化シリコン膜はワイドギャッフで絶縁性に優れ、不純物イオンブロック効果、耐水性を期待することができるとともに、窒化シリコン膜は非単結晶シリコンとの界面性も良い。

【0.0.3.3】また、本発明の薄膜トランジスタの製造方法は、ゲート絶縁膜として、酸窒化シリコン膜および窒化シリコン膜を用い、この窒化シリコン膜が非単結晶シリコンに接しており、この酸窒化シリコン膜は、原料ガスに SiH_4 、 N_2 O、 N_2 または NH_3 の混合ガスを用いたプラズマCVDによって形成するため、簡単な方法で、絶縁性に優れ、不純物イオンブロック効果、耐水性を期待することができるとともに、窒化シリコン膜は非単結晶シリコンとの接触性も得られる。

【0034】また、本発明の液晶表示素子は、請求項1ないし11いずれか記載の薄膜トランジスタをスイッチング素子としたため、特性が安定して動作する。

[0035]

【実施例】以下、本発明の一実施例をアクティブマトリクス型の液晶表示素子に適用した場合について、図面を 参照して説明する。

【0036】図1はアクティブマトリクス型液晶表示装置(LCD)に用いる薄膜トランジスタ(TFT)を示す断面図であり、1は絶縁性基板でありたとえばガラス(コーニング社製7059)製のガラス基板で、このガラス基板1には一主面上にモリブデン・タンタル(Mo-Ta)からなるゲート電極2が形成される。

【0037】また、ゲート電極2上には、このゲート電極2を覆うように、膜厚0. 3μ mの酸窒化シリコン(SiO_XN_Y)膜3aを積層形成し、さらに、膜厚0. 05μ mの窒化シリコン(SiN_X)膜3bを積層形成し、これら SiO_XN_Y 膜3aおよび SiN_X 膜3bの2層でゲート絶縁膜3を構成する。

【0038】 さらに、このゲート絶縁膜 3 上に、膜厚 0.05μ mの非晶質シリコン(a - S i) からなる活性層としての半導体膜であるa - S i 版 i μ i

【0039】ここで、これらゲート絶縁膜3、a-Si膜4およびチャネル保護膜5の積層形成のプロセス..ついて説明する。

よびチャネル保護膜5の積層形成には、それぞれに個別 の反応室を割り当て、それら反応室を直列につないだイ ンライン式のCVD装置で形成するのが最も一般的な方 法である。一方、最も生産性を高めるにはこれら全ての 膜を同一の反応室で、同一設定温度で積層形成するのが 有効である。そして、プラズマCVDで形成する薄膜 は、 SiN_X 膜、a-Si 膜とともに応力の大きい場合 が多く、従来のゲート絶縁膜の大部分に SiN_x 膜を用 いる構成では、一つの反応室で SiN_X 膜とa-Si膜 を交互に積層すると、反応室の内壁から膜の剥がれが生 じ、パーティクル発生要因となり、同一反応室での積層 膜形成が生産性で有利なことは明らかであっても、実際 上は量産に使用することができない。しかし、SiOv N_V 膜3aは応力を小さくすることが容易であり、 $S_{1,N}$ x 膜3bに比して密着製が優れるため、積層膜に占めるS $i N_X$ 膜の膜厚を少なくすることができるので、SiOx Nv 膜3aを導入して積層膜を形成する場合には、同一 反応室での形成が十分に可能になる。

【0.041】次に、a-Si膜4およびチャネル保護膜5上にたとえば膜厚 0.05μ mの低抵抗半導体膜6を成膜し、半導体膜4および低抵抗半導体膜6を加工して、チャネル領域、ソース領域およびびドレイン領域を形成する。

【0.0.4.2】また、ゲート絶縁膜3上には1.T.O(Indium Tin Oxide)からなる画素電極7が形成される。

【0043】そして、低抵抗半導体膜6のソース領域上には、画素電極7と接続した状態でソース電極8が形成され、ドレイン領域上にはドレイン電極9が形成され、さらに、保護膜10を積層形成する。こうして、ゲート電極2、ゲート絶縁膜3、a-Si膜4、ソース電極8、ドレイン電極9および保護膜10にてスイッチング素子としての薄膜トランジスタ(TFT)口を形成し、能動素子基板12となる。

【0044】また、図2に示すように、絶縁性基板であるガラス基板1の一主面上には、ITOからなる共通電極21が形成され、対向基板22が構成される。

【0045】そして、能動素子基板12の一主面上に全面にたとえば低温キュア型のポリイミド(PI)からなる配向膜25が形成し、また、対向基板23の一主面上に全面にたとえば同様に低温キュア型のPIからなる配向膜26を形成する。また、能動素子基板12と対向基板23との一主面上には、各々の配向膜25、26を所定の方向に布などで擦ることにより、ラビングによる配向処理がそれぞれ施される。さらに、能動素子基板12と対向基板23とは互いの一主面側が対向し、かつ、互いの配向膜25、26の配向軸が概略90°をなすように配置し、これら能動素子基板12と対向基板23との間隙に液晶27を封入挟持する。

【0046】ここで、能動素子基板12と対向基板23とを組み合わせる際には、配向膜25、26のラビング方向は、良視角方向が正面方向に向くように設定される。そし

て、能動素子基板12と対向基板23の他主面側には、それぞれ偏光板28、29を被着し、液晶表示装置(LCD)30を構成し、能動素子基板12と対向基板23のどちらか一方の他主面側から照明を行なう。

【0047】次に、図3を参照して、上述の液晶表示装置30を製造するフラズマCVD装置31の構成を説明する。

【0048】このフラズマCVD装置31は、中央に真空中でのガラス基板1の搬送を行なう搬送機構を備えた共通室32を有し、この共通室32の周囲を放射状に取り囲むように4つの反応室33~36、加熱室37および2つの搬出入室38、39が配設されている。

【0.049】そして、成膜を行なう各反応室 $33\sim36$ には、直径1.50mmの円形高周波電極およびこの円形高周波電極に対向しガラス基板1.620、 N_2 0、 N_2 0、 N_3 1 N_4 1 N_5 2 N_6 3 N_6 3 および N_6 3 および N_6 3 および N_6 4 N_6 3 および N_6 4 N_6 5 N_6 5 N_6 7 N_6 7 N_6 7 N_6 8 N_6 8 N_6 8 N_6 9 N_6

【0.050】一方、成膜を行なわない共通室32、加熱室37、搬出入室38、39には、 N_2 のガス供給系とドライホンプからなる排気系とが接続されている。そして、ガラス基板1は搬出入室38、39のいずれかに搬入され、共通室32を経て、加熱室37にて加熱され、約1.0分の加熱後、再び共通室32を経て反応室33に導入される。また、反応室33では、基板温度3.2.0℃にて膜厚0.3.2 無の3.1.0 にの3.2 に以上のの3.2 に以上の3.2 にはい上の3.2 にはいまたの3.2 にはいる3.2 にはいる3.2 にはいる3.2 にはいる3.2 にはいる3.2 にはいる3.2 にはいる3.2 にはいることの3.2 にはいる3.2 にはいる。3.2 にはいる3.2 にはいる 3.2 に

【0051】なお、これらの間、反応室33のサセフタの設定温度は一定に保つ。膜種によって温度を変えることも可能だが、温度安定化を図る待機時間だけスルーフットが落ちるので現実的ではない。

【0052】そして、ガラス基板1は、三たび共通室32を経て搬出入室38、39のいずれかにより搬出される。なお、反応室 $34\sim36$ は反応室32と同様に SiO_xN_y 膜3a、 SiN_x 膜3b、a-Si 膜 4 および SiN_x のチャネル保護膜 5 の 4 層形成に使用するようになっており、並行処理が行なわれる。

【0.053】一方、ゲート絶縁膜3からチャネル保護膜5までの4層を全て同一の反応室33~36で形成する方法は、前述のように同一温度という制約がかかるので、海膜トランジスタ11の特性ではやや不利となる。特に、チャネル保護膜5の形成中に、活性層であるa-S+膜1が熱劣化を受けてしまう。そこで、 $S+O_X$ 下、 以 膜 a-S+膜4の 3 層までを基板温度 3.20 ℃にて同一反応室33~36で積層し、別の反応室33~36で5+N $_X$ のチャネル保護膜5 を基板温度 3.00 にて形

成する方法がある。すなわち、図3のブラズマCVD装 置に対応させると、2層のゲート絶縁膜3およびa-S i膜4の3層を反応室33で形成し、共通室32を経て反応 室35にガラス基板 1 を移動させてSiNxのチャネル保 護膜5を形成し、その後共通室32を経て搬出させる。同 様の処理を反応室34および反応室36でも実施して並行処 理する。この場合、ゲート絶縁膜3からチャネル保護膜 5の4層を一括して形成するものに比較すると生産性で は若干劣るが、特性に優れた薄膜トランジスタロの製造 が可能になる。

【0054】いずれの場合も、Si O_{χ} N_{V} 膜3aを用い ることで、ゲート絶縁膜3と半導体膜4との積層形成を 同一の反応室33~36で実質的に行なえるので、従来の個 別の反応室による積層膜形成に比べて生産性が向上す

【0055】次に、SiO $_{\chi}$ $N_{
m V}$ 膜3aの形成プロセスに ついて説明する。

【0056】図3に示すプラズマCVD装置31で反応室 33~36においてガラス基板1を加熱したサセプタにクラ ンプさせ320℃に調節する。なお、ガラス基板1の温 度は300℃から360℃の範囲であることが望まし い。そして、ガラス基板1に対向するシャワー電極か ら、原料ガスとして SiH_4 、 N_2 Oおよび N_2 をそれ ぞれ20、120、400 sccm導入し、排気バルブの開 度を調節して気圧をたとえば1.2 Torrに調圧する。こ の状態で、13.56MHzの高周波電力200Wを印 加するとシャワー電極およびサセブタ間に放電が生じ、 SiO_XN_V 膜3aがガラス基板 1 上に堆積される。

【0057】なお、ガス流量は堆積する膜の組成に大き く影響する。すなわち、No Oは主にO源として、No はN源として働くので、これらガス流量の調節によって 所望の組成の膜を得ている。また、成膜時の気圧は0. 5~5 Torr程度の広範囲で成膜が可能であるが、この気 圧も膜の組成に大きく影響する。一般に、高圧で成膜す るほどNが減ってOが多く取り込まれる傾向がある。さ らに、サセプタとシャワー電極との電極間隔は10mmか ら40mmの範囲で、膜厚の均一性に優れる間隔を選択す ると良く、最適の電極間隔は圧力との相関が強く、概ね 圧力に反比例し、高圧で成膜する場合ほど狭い電極間隔 が必要となる。実際、上述の成膜条件では20mm程度が 適当である。また、放電の周波数をたとえば27MH z、 $41\,MHz$ あるいは $54\,MHz$ と高くする場合にも 狭い電極間隔が必要となる。

【0.05.8】また、 $S.i.O_X.N_V$. 膜3aの原料ガスにはN2 の代わりにNH3 を用いることも可能であり、NH3 は N_2 に比較して分解が容易であるため、少量でも膜に Nが取り込まれる。さらに、N H_3 中のH も膜に取り込 まれて N_2 系とは異なるエッチング速度の膜が得られる ので、使い分けることでエッチング速度の制御が可能に なる。

【0059】一方、原料ガスにSiH」の代わりに有機 シランを用いると、堆積表面での流動性によって、ステ ップカバレージに優れたSi〇 $_{\chi}$ N_{χ} 膜3aが得られる。 たとえばボトムゲート薄膜トランジスタにする場合に は、ゲート電極2から連続する図示しない配線にテーハ 加工を施さなくても十分な被覆がなされ、完全ではない までも平坦化ができる。もちろんトップゲート薄膜トラ ンジスタの場合でもステッフカバレージに優れたゲート 絶縁膜3は有効である。なお、有機シランとしては、具 体的にはTEOS (Tetraethylorthosilicate : Si $[OC_2 H_5]_4$), TMS (Trimethylsilicate: S $i H [OCH_3]_3$), TRIES (Triethylsilicat $e: SiH [OC_2 H_5]_3$, Hexamethyldisilazane: [CH3] 3 SiNHSi [CH3] 3. Hexamethyldi silane: [XH3] 3 S i S i [CH3] 3) , Hexamet hyldisiloxane: [CH3] 3 SiOSi [CH3] 3 などが良く、特にTEOSは半導体の分野ではSi〇ヶ 膜の原料として最も広く知られている材料であり、安価 に入手可能である。なお、これらの原料ガスの〇源とし てはN2 Oでは酸化能力が弱いので()。を用いることが 望ましく、窒化能力も〇ヶの酸化能力に対抗する必要が、 あるので N_2 よりもは NH_3 の方が良く、 N_2 ()や N_2 の場合には大流量が必要となる。

【0060】また、有機シランの供給にはバブリングが 必要な場合が多いが、このバブリングにはN。またはH e、Arなどの不活性ガスを用いる。半導体分野におい て、TEOSを代表とする有機シランから作製するSi O₂ 膜では膜中の水分、あるいは、後から水を取り込む 吸湿性がしばしば問題となる。薄膜トランジスタ口でも ゲート絶縁膜3に水分が含まれているものを用いれば、 薄膜トランジスタロの安定性などに不具合を生ずる。と ころが、この発明のように膜中にNを導入すれば、ステ ップカバレージ性の良好さを維持して、かつ、水の諸問 題を解決できる。

【0061】上述のものでも、不純物と水のブロックを 両立させるには \mathbf{S} \mathbf{i} \mathbf{O}_{X} \mathbf{N}_{V} 膜 $\mathbf{3}$ aの組成に最も効果的な 範囲があり、SiOړNړ膜3aはSi、N、〇およびH を主成分とし、組成はN/Si比が0.1~0.8であ り、O/SiがN/Siよりも多いと良い。さらに、こ の範囲内でも、絶縁特性はワイドギャッフの広いSi〇 $_{X}$ 膜3bに近い方が優れるので、N/S i 比が0 . 3 \sim 0.5、O/Si比が1.2~1.5の範囲とすること が望ましい。具体的には、たとえばSi〇が1、25で Nが0. 45程度の組成が適当である。これら組成の調 整には、ガスの流量、圧力、放電ハワーおよび電極間隔 の少なくともいずれかを変えることによって行なう。 【0062】一方、活性層であるa-Si膜 4 と接する SiN_X 膜3bの組成は、Si、Nおよび日を主成分と

し、組成はN/Si比が1、2以上とするが、薄膜トラ ンジスタ11の信頼性を考慮した場合、科学量論的組成の

1. 33以上とするとなお好ましい。 SiN_{χ} 膜3b中に は不純物として〇が取り込まれるが、〇の含有量を5× 10^{20} atoms/cm 3 以下としないと、a-Si膜4との良 好な界面が形成できない。また、 SiO_XN_V 膜3aの上 に SiN_X 膜3bを形成するので、特に、同一の反応室33 ~ 36 にて成膜する場合には、 SiO_XN_V 膜3aの成膜後 にN₂ Oを速やかに除去するよう注意が必要である。こ の場合、短時間で除去するには高真空排気よりもたとえ ○含有量を少なくするほど良いというものではなく、パ ージ時間を長く取ることは生産性に影響するので、薄膜 トランジスタロの特性に影響のない範囲に抑えればよ い。また、 SiO_XN_V 膜3aと SiN_X 膜3bとを同一の 反応室33~36にて成膜する場合の間のパージ時間は、そ れぞれ5秒以上、60秒以下が好ましく、SiNx膜3b 中の〇含有量の適切な範囲は、5×1018atoms/cm3以 上 5×10^{20} atoms/cm³以下である。

部に、PまたはBをドーピングすると、PSG、BS G、BPSGと同様に不純物イオン、特にNaイオンを ゲッタリングする効果が得られる。薄膜トランジスタ11 はガラス基板1上に形成するので、ガラスからのNaイ オンを捕らえる機能を設けておけば、薄膜トランジスタ Π の信頼性が増す。具体的には、SiO_xN_y 膜3aをさ らに2層に分割し、ガラス基板1あるいはゲート電極2 に近い側にのみPをドーピングをする。そして、Naイ オンはSiOx Nv 膜3aのPがドーピングされたSiO $_{X}$ N_{Y} 層にゲッタリングされ、薄膜トランジスタ Π の特 性の変動などに悪影響をおよぼさなくなる。なお、Pを ドーピングするとゲート絶縁膜3の絶縁などの電気特性 はやや劣るので、非ドーピング層を積層することでこれ を補う。具体例として、ボトムゲート薄膜トランジスタ の場合には、PをドーピングしたSi O_x N_y 層は30 ~80nm程度で、ゲート電極2の直上に形成し、この ゲート電極2の上を非ドーピングのSiO、N、層で覆 いこれら2つの SiO_XN_Y 層で SiO_XN_Y 膜3aとす

【0.0.6.5】また、ドービング層とゲート電極の間に薄層の非ドーピング $S.i.O_x.N_y$ 層を挿入し、ドービング

層を非ドーピング層でサンドイッチすることも効果的であり、 SiO_xN_y 膜3aへのPのドーピングは原料ガスにPH $_3$ を添加することで容易であり、Bをドーヒングする場合には、B $_2$ H $_6$ またはBF $_3$ などを用いればよい。ただし、これらPあるいはBのドーヒングを施した膜を形成する反応室 $33\sim36$ と、a-Si 層 4 を形成する反応室 $35\sim36$ とは別にすることが好ましい。

【0066】上述のように、ゲート絶縁膜3を構成する SiO_XN_y 膜3aと SiN_X 膜3bの膜厚は、 SiO_XN_y 膜3aの膜厚が200nm以上450nm以下であり、 SiN_X 膜3bの膜厚が5nm以上200nm以下とするのが好ましい。すなわち、絶縁性は SiO_XN_y 膜3aに、a-Si 膜4との界面特性は SiN_X 膜3bに分担させるものであるから、 SiN_X 膜3bは SiO_XN_y 膜3aよりも薄い膜とする方が好ましいものであり、両者を合わせたゲート絶縁膜3の全体の膜厚は300nm~500nmの範囲が適正である。

【0067】次に、他の実施例を図4を参照して説明する。この図4に示す実施例も図1に示す実施例と同様に図2に示す液晶表示装置30の一部を構成する。

【0068】この図4に示す実施例は、図1に示す実施例において、ゲート絶縁膜3として、ゲート電極2を覆うように、膜厚0.15 μ mの酸化シリコン(SiOx)膜3cを形成し、このSiOx 膜3c上に膜厚0.15 μ mの酸窒化シリコン(SiOx Ny)膜3dを積層形成し、このSiOx Ny 膜3d上に膜厚0.05 μ mの窒化シリコン(SiNx)膜3eを形成し、そして、膜厚0.05 μ mのa-Si膜4を形成したものである。【0069】このように、ゲート絶縁膜3の一部にフィ

ドギャップの広いS i O_X 膜3cを用いることで絶縁性、耐圧をさらに改善し、一方で、S i O_X 膜の閉点である吸湿性や不純物イオンの可動性をS i O_X Ny 膜固との積層でカバーし、さらには、a - S i 膜 4 との界面特性はS i N_X 膜3c で確保している。

【0070】ここで、この薄膜トランジスタロニケート 絶縁膜3、a-Si膜4およびチャネル保護膜5. 電層 形成のプロセスについて説明する。

【0071】まず、 SiO_x 膜3cの形成は、常生・ V D、滅圧CVD、プラズマCVDあるいはRF 2 クなどの任意の方法により形成する。また、次に乗りまた SiO_x Ny 膜3dとの間に真空を維持すると、 は特には必要とせず、 SiO_x Ny 膜3d、 SiN_x に は特には必要とせず、 SiO_x Ny 膜3d、 SiN_x に 2 e、a-Si 膜4 およびチャネル保護膜5 は、 3 に す実施例と同様に、たとえばフラズマCVD 3 に る。

【0072】また、 SiO_X 膜3cの形成に常り、法、減圧CVDの熱CVDフロセスを用いる。 基板1を概ね400で以上に加熱必要がある。 イクル発生が少なく、ヒンホール欠落の少なここと 縁膜3が得られる。具体的には、たとえば413 とここ第 熱したガラス基板1にSi H_4 、 O_2 および N_2 をそれぞれ100sccm、2slm、20slm 導入すると、SiOx 膜3cが形成される。この場合の N_2 は希釈ガスであって成膜に直接は寄与しない。

【0073】さらに、常圧CVD法で原料ガスにSiH 4 膜の代わりに有機シランを用いると、堆積表面での流 動性によって、ステップカバレージに優れた $S \mid O_X$ 膜 が得られる。たとえばボトムゲート薄膜トランジスタの 場合には、ゲート電極2から連続した図示しない配線に テーパー加工を施さなくても、十分な被覆がなされ、完 全ではないまでも平坦化できる。もちろんトップゲート 薄膜トランジスタの場合でもステップカバレージに優れ たゲート絶縁膜3は有効である。なお、有機シランの具 体例としては、前述のTEOS、TMS、TRIESな どであり、これらの原料ガスの○源としては○りだけで は参加能力が弱いのでオゾナイザで育成させた()3 をも 用いることが必要である。なお、常圧CVD法で有機シ ランから作製したSiOx 膜は特に吸湿性に富んでいる ので、薄膜トランジスタに適用する場合、耐水性の高い SiO_XN_V 膜3dとの組み合わせが必要である。

【0074】次に、 SiO_X 膜3cの形成にフラズマCVDを用いる場合について説明する。この場合も、前述のプラズマCVD装置31で、反応室 $33\sim36$ において加熱したサセプタにガラス基板1をクランプさせて320 Cに調節する。そして、ガラス基板1の温度は300 Cから360 Cの範囲であることが望ましい。この場合、熱CVDに比べて低温にて形成でき、ガラス基板1へのダメージが少ない点が有利である。

【0075】そして、ガラス基板1に対向するシャワー電極から、原料ガスとして SiH_4 、 N_2 Oをそれぞれ20sccm、800sccm導入し、たとえば排気バルブの開度を調節して気圧をたとえば1. 2Torrに調圧する。ここで13. 56MHzの高周波電力300Wを印加すると放電が生じ、 SiO_X 膜3cがガラス基板1上に堆積される。また、ガス流量は膜室がSiリッチにならないよう、 SiH_4 に対して N_2 Oを20倍以上供給することが望ましい。

【0076】また、成膜時の圧力は0.5~5 Torr程度の広範囲で成膜が可能だが、低圧成膜の方が膜中への日の取り込みが少なく良質な絶縁膜となるので0.6~1.8 Torrが適当である。そして、サセフタとシャワー電極との間の電極間隔は10mmから40mmの範囲で、膜厚の均一性に優れる間隔を選択すると良い。なお、最適の電極間隔は圧力との相関が強く、概ね圧力に反比例し、高圧で成膜する場合ほど狭い電極間隔が必要となる。

【0.0.7.7】そして、常圧CVDと同様、フラズマCVDにおいても、 $S.i.O_x$ 膜3cの原料ガスに $S.i.H_4$ の代わりに有機シランを用いると、堆積表面での流動性によって、ステップカバレージに優れた $S.i.O_x$ N $_x$ 膜3dが

得られる。この場合の有機シランの具体例は前述のTEOS、TMS、TRIESなどがある。なお、これらの原料ガスの $の源としてはN_2$ Oでは参加能力が弱いので O_2 が好ましく、やはり吸湿性が高いのでS i O_x N_y 膜3dとS i O_x N_y $N_$

【0078】次に、上述の方法によって形成したSi〇 $_{\chi}$ 膜3c上にSi O_{χ} N_{χ} 膜3dを形成するときは以下の点 で注意する必要がある。このSi〇、膜3cは、形成方法 によって程度の差歯あるものの、成膜終了時点において すでに膜中に水分を内包しており、フラズマCVDより は常圧CVD、SiH4系よりは有機シラン系となるほ ど水を含んでいる。また、大気に曝した場合には吸湿も する。したがって、 $S i O_{\chi} N_{\chi}$ 膜3dの形成に際しては 事前にこの水分を放出させることが必要である。この水 分を放出させる方法としては、真空または10Torr以下 の減圧雰囲気中でアニールし、その後、大気に曝するこ となく SiO_XN_V 膜3dで覆ってしまうと良い。なお、 SiO_X 膜3cと SiO_X N_Y 膜3dの形成が別装置である ときはもちろんのこと、同じ装置で連続形成するときに も一度アニール処理でSiOx膜3c中の水分を追い出す ことが望ましい。また、アニール温度は SiO_xN_y 膜 3dの形成温度よりも10℃~40℃高温で行なうことが 好ましく、1~2分でもガラス基板1の昇温だけなら可 能であるが水分脱離に関しては不十分であるので、アニ ール時間は5分以上できれば10分以上必要である。

【0.0.7.9】一方、 $S.i.O_x$ 膜3cの組成は、S.i.、O.5 よびHを主成分とし、 $S.i.O_x$ 膜中には形成方法によってはNが取り込まれるが、良好な絶縁特性を得るためにはNの含有量を 5×1.0^{20} a $i.oms/cm^3$ 以下とすべきである。

【0080】また、ゲート絶縁膜3を構成する SiO_X 膜3c、 SiO_X Ny 膜3dと SiN_X 膜3eの膜厚は、 SiO_X Ny 膜3dの合計膜厚が200nm以上450nm以下であり、かつ、 SiO_X Ny 膜3dの膜厚が100nm以上、 SiN_X 膜3eの膜厚が5nm以上200nm以下とするのが好ましい。そして、絶縁性は SiO_X 膜3cと SiO_X Ny 膜3dとで、耐水性と不純物イオンのブロックを SiO_X Ny 膜3dとで、耐水性と不純物イオンのブロックを SiO_X Ny 膜3dで、a-Si 膜4との界面特性は SiN_X 膜3eに分担させる。また、 SiO_X 膜3cは絶縁性が確実でビンホール欠落密度が少ないため、絶縁性が確実になる。さらに、 SiO_X 膜3c、 SiO_X Ny 膜3dと SiN_X 膜3eの全部を合わせたゲート絶縁膜3の全体の膜厚は、300nm~500nmの範囲が適正である。

【0081】また、他の実施例を図5を参照して説明する。この図5に示す実施例も図1に示す実施例と同様に図2に示す液晶表示装置30の一部を構成する、

【0082】この図5に示す実施例は、図1に示す実施例において、薄膜トランジスタ11の形状に特徴があり、 チャネル保護膜5の幅はゲート電極2に裏面露光を用い て自己整合しているものである。

【0083】そして、ゲート絶縁膜3の構成は、図1に示す実施例と同様にSi O_x N $_y$ 膜3aとSi N_x 膜3bの積層である。

【0084】この様にチャネル保護膜5の幅、すなわち チャネル長とゲート電極2の幅を一致させた薄膜トラン ジスタ11は、ゲート・ソース間の寄生容量が少ない利点 がある。しかし、チャネル保護膜5の長さよりゲート電 極2の大きい薄膜トランジスタに比べて、ガラス基板1 からの汚染に弱い。すなわち、ガラス基板1からたとえ ばNaなどの不純物イオンが拡散しても、チャネル保護 膜5は大きなゲート電極2によって保護されて影響を受 けない、または軽減されている。これに対して自己整合 型の薄膜トランジスタロでは、チャネル保護膜5に不純 物イオン拡散に対して強い構造にしておく必要がある が、SiOx Nv 膜3aとSiNv 膜3hの積層型のゲート 絶縁膜3とすることで、薄膜トランジスタ11の特性の信 頼性向上に、特に顕著な効果が現れる。もちろん、Pや Bを SiO_XN_V 膜3aの一部にドーピングすることで不 純物に対する効果がより向上する。

【0085】さらに、他の実施例を図6を参照して説明する。この図6に示す実施例も図4に示す実施例と同様に図2に示す液晶表示装置30の一部を構成する。

【0086】この図6に示す実施例は、図4に示す実施例において、チャネル保護膜5の幅はゲート電極2に裏面露光を用いて自己整合しているものである。

【0.0.8.7】そして、ゲート絶縁膜3.0構成は、S.i.O.x 膜3c、S.i.O.x Ny 膜3dおよびS.i.N.x 膜3eを積層したもので、図.5に示す実施例と同様の効果を有している。

【0088】上記いずれの実施例においても、歩留まりが向上するため、低コスト化につながり、また、薄膜トランジスタロの特性が安定化して、より厳しい駆動条件下での使用を可能とする。

【0089】なお、上記実施例では液晶表示装置につい

て説明したが、a-S i 密着センサなどにも適用できる。

[0090]

【発明の効果】本発明によれば、ゲート絶縁膜として、酸窒化シリコン膜および窒化シリコン膜を用い、この窒化シリコン膜が非単結晶シリコンに接しているため、酸窒化シリコン膜はワイドギャッフで絶縁性に優れ、不純物イオンブロック効果、耐水性を期待することができるとともに、窒化シリコン膜は非単結晶シリコンとの界面性も良く、特性を向上できる。

【図面の簡単な説明】

【図1】本発明の一実施例を用いたアクティブマトリクス型液晶表示素子に用いる薄膜トランジスタを示す断面図である。

【図2】同上液晶表示装置の構成を示す断面図である。

【図3】同上液晶表示装置を製造するプラズマCVD装置を示す構成図である。

【図4】同上他の実施例のアクティブマトリクス型液晶 表示素子に用いる薄膜トランジスタを示す断面図であ る。

【図5】同上また他の実施例のアクティブマトリクス型 液晶表示素子に用いる薄膜トランジスタを示す断面図で ある。

【図6】同上さらに他の実施例のアクティブマトリクス 型液晶表示素子に用いる薄膜トランジスタを示す断面図 である。

【符号の説明】

- 3 ゲート絶縁膜
- 3a 酸窒化シリコン膜
- 3b **窒化シリコン**膜
- 3c 酸化シリコン膜
- 3d 酸窒化シリコン膜
- 3e **窒化シリコン膜**
- 4 活性層としてのa-Si膜
- 11 スイッチング素子としての薄膜トランジスタ

【図5】

[図6]

【図2】

【図3】

【図4】

