(4)

(6)

MATHEMATIK FÜR PHYSIKER 1 Aufgabenblatt 9

Abgabe: 11.01.2022 bis 15:00 Uhr in der Übungsgruppe. **Bitte in 2-3er Gruppen abgeben**.

Hausaufgaben (20 Punkte)

A9.1 Es sei $f:[0,1] \to [0,1]$ stetig. Zeigen Sie, dass f einen Fixpunkt besitzt, also dass ein $x_0 \in [0,1]$ existiert, sodass $f(x_0) = x_0$. (4)

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) := \begin{cases} x^2 \cos\left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

differenzierbar aber nicht stetig differenzierbar ist.

A9.3 Beweisen Sie Satz 5.22, also dass für $f, g: I \to \mathbb{R}$ n-mal differezierbar gilt, dass (4)

$$(f \cdot g)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} \cdot g^{(n-k)}.$$

Hinweis: Induktion; Vergleiche Binomialformel.

A9.4 Berechnen Sie die Ableitungen der folgenden Funktionen

$$i) f_1(x) := \frac{x^2 - 3x}{x^2 - x}, x \neq 0; 1$$
 $ii) f_2(x) := x^x, x > 0$ $iii) f_3(x) := \sin(\ln(x^2)), x \neq 0$ $iv) f_4(x) := \sin(\cos(\sin(x))).$

A9.5 Wir betrachten

$$tan: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}, \qquad \tan(x) := \frac{\sin(x)}{\cos(x)}.$$

Nach Vorlesung gilt $\tan'(x) = \frac{1}{\cos(x)^2}$, also ist tan streng monoton wachsend womit leicht zu sehen ist, dass tan bijektiv ist (dies brauchen Sie nicht zu zeigen). Wir definieren nun

$$\arctan: \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

als dessen Umkehrfunktion.

i) Zeigen Sie, dass
$$\arctan'(x) = \frac{1}{1+x^2}$$
. (2)

ii) Folgern Sie für
$$x \in (-1,1)$$
 gilt (2)

$$\arctan(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1}.$$

A9.6 (Bonusaufgabe) Es sei

 $f: \mathbb{R} \to \mathbb{R}, \qquad f(x) := \begin{cases} e^{-\frac{1}{x^2}}, & x > 0\\ 0, & x \le 0. \end{cases}$

Zeigen Sie, dass f unendlich oft stetig differenzierbar ist, und dass $f^{(n)}(0) = 0$ für alle $n \in \mathbb{N}$.

Hinweis: Zeigen Sie induktiv, dass für x > 0 gilt $\left(\frac{d}{dx}\right)^k e^{-\frac{1}{x^2}} = \frac{P_k(x)}{Q_k(x)} \cdot e^{-\frac{1}{x^2}}$. Wobei P_k und Q_k Polynome sind.

Anmerkung: Diese Aufgabe zeigt, dass reelle Funktionen nicht immer in Potenzreihen entwickelt werden können.