

- Dasar Pemrograman – Pertemuan 3

Tim Bahan Ajar Dasar Pemrograman Teknik Informatika - S1 Fakultas Ilmu Komputer

Review Materi

Capaian Kuliah Pertemuan 3

Capaian Pembelajaran

• Setelah mengikuti matakuliah ini mahasiswa dapat menjelaskan, membuat, dan mempraktikkan input/output, operasi, dan ekspresi pada pemrograman prosedural dengan diterapkan pada aksi sekuensial permasalahan komputasional sederhana.

INPUT/OUTPUT

Input

- Untuk memasukkan suatu nilai kedalam variabel biasanya digunakan assignment. Terkadang perlu juga dilakukan pembacaan dari piranti masukan seperti keyboard, mouse, dll
- Hal ini akan memungkinkan "seakan-akan" user memberikan suatu nilai yang dikirim ke komputer.
- Mekanisme tersebut disebut dengan input.
- Implementasi notasi algoritma:
 - input(<list-nama>)
- List-nama bisa di isi variabel dengan suatu tipe/konstanta/fungsi*/prosedur*

Output

- Suatu nilai yang disimpan dalam memory komputer harus dapat dikomunikasikan keluar, dalam hal ini melalui perangkat output seperti monitor atau printer misalnya.
- Jadi dibutuhkan mekanisme untuk mengeluarkan nilai tersebut (bisa juga dipicu oleh variabel/konstanta/fungsi*),
- Notasi Algoritma:
 - output(<list-nama>)
 - output(<konstanta>)
 - output(<ekspresi>)
 - output(<list-nama>,<konstanta>,<ekspresi>)
- Syarat list-nama, konstanta, ekspresi harus sudah terdefinisi nilainya.

OPERASI

Operasi

- Operasi dalam pemrograman tergantung dari tipe yang definisikan
- Operasi menggunakan berbagai operator yang berfungsi pada tipe tertentu
- Contohnya operasi menggunakan operator + akan memiliki hasil berbeda
 - Dalam tipe data numerik memiliki arti penjumlahan
 - Dalam tipe data "string" memiliki arti penggabungan kata

Operator logika pada tipe Boolean

- Boolean merupakan suatu tipe yang memiliki domain nilai benar atau salah (true or false)
- Diketahui suatu variabel a dan b bernilai Boolean.
 - **not** a

 bernilai True jika a adalah False, bernilai False jika a adalah true dalam matematika disebut negasi
 - a **and** b \rightarrow bernilai True jika keduanya True, selain itu jika salah satu salah maka salah
 - a or b \rightarrow bernilai True jika salah satu atau keduanya adalah True

а	b	a <u>and</u> b	a <u>or</u> b	<u>not</u> a	<u>not</u> b	a <u>eq</u> b	a <u>neq</u> b	Hasil
Т	Т	Т	Т	F	F	Т	F	Boolean
Т	F	F	Т	F	Т	F	Т	Boolean
F	Т	F	Т	Т	F	F	Т	Boolean
F	F	F	F	Т	Т	Т	F	Boolean

Operator Aritmatika

- Simbol yang digunakan untuk melakukan operasi aritmatika pada bilangan Bulat dan real
- + merupakan operator aritmatika untuk penjumlahan.
 - Contoh: i + j , pastikan bahwa i dan j bertipe sama (bulat atau real)
 - Jika ini diterapkan pada tipe char atau string maka akan bermakna penggabungan/ concat
- - merupakan operator aritmatika untuk pengurangan.
 - Contoh: i j, pastikan bahwa i dan j bertipe sama (bulat atau real)
- / merupakan operator artimatika untuk pembagian khusus bilangan riil.
 - Contoh: i / j
- div merupakan operator aritmatika untuk pembagian khusus bilangan bulat.
 - Contoh: i <u>div</u> j
- mod merupakan operator aritmatika untuk sisa bagi atau modulo.
 - Contoh: i mod j (bulat atau real)
- * merupakan operator aritmatika untuk perkalian.
 - Contoh: i * j (bulat atau real)
- ^ merupakan operator aritmatika untuk pangkat.
 - Contoh: i ^ j

Operator Perbandingan

- Simbol yang digunakan untuk melakukan operasi pembandingan pada bilangan Bulat dan real.
- Hasil perbandingan akan bernilai Boolean
- Contoh operator perbandingan
 - a == 10 → operator untuk menguji kesamaan dua nilai
 - a ≠ 10 → operator untuk menguji apakah kedua ekspresi berbeda nilainya.
 - a > 10 → operator lebih dari
 - a ≥ 10 → operator lebih dari sama dengan
 - a < 10 → operator kurang dari
 - a ≤ 10 → operator kurang dari sama dengan

EKSPRESI

Ekspresi

- Ekspresi bisa disebut juga rumus perhitungan.
- Terdiri dari operan dan operator
- Operan harus terdefinisi nilainya dengan suatu tipe tertentu.
- Hasilnya adalah suatu nilai yang sesuai dengan tipe operator yang bersangkutan.
- Contoh:
 - ekspresi 3 + 2 menunjukkan perhitungan untuk objek 5 dengan tipe bilangan bulat.
 - Ekspresi 3.0 + 2.5 menunjukkan perhitungan untuk objek 5.5 dengan tipe bilangan real.
- Jenis ekspresi: logika/boolean, numerik, karakter, dan string.

Jenis Ekspresi

- Ekspresi Uner: ekspresi dengan operator yang hanya butuh satu operan
- Ekspresi Biner: ekspresi dengan operator yang membutuhkan dua operan
 - Infix: operator ditengah

• Prefix: operator diawal

$$-+*35 \text{ div } 47*a \text{ b} \text{ adalah } -((+(*35)(\text{div } 47))(*a \text{ b}))$$

Sufix: operator di akhir

$$35*47 \text{ div a } b*+-\text{ adalah} (35*) ((47 \text{ div})(ab*)+)-$$

Contoh Ekspresi Karakter

Algoritma keliling persegi panjang

Contoh Ekspresi Boolean

Pastikan bahwa variabel hasil dan b bertipe Boolean

Contoh Ekspresi Boolean

Pastikan bahwa variabel hasil, s1, s2 bertipe String

- String merupakan tipe untuk menyimpan suatu nilai berupa kata atau kalimat dengan nilai di apit oleh tanda "<petik>"
- Bentuk satuan dari string adalah tipe char

Notasi Algoritmik untuk Aksi Sekuensial yang memanfaatkan Operator dan Ekspresi

Program Sequential1

Program Sequential1

{Contoh penulisan aksi sekuensial dengan memanfaatkan apa yang sudah dipelajari sebelumnya}

KAMUS

i : <u>integer</u>

x : <u>real</u>

hasil : <u>integer</u>

Initial State

ALGORITMA

input(i)

x ← 12.5

hasil ← i * 10

output(i)

output(x+5.4)

output(i,x,hasil)

Final State

Program PersegiPanjang

Program PersegiPanjag

{program untuk menghitung keliling dan luas persegi panjang}

KAMUS

p : <u>real</u> l : real

hasilKeliling : <u>real</u> hasilLuas : real

ALGORITMA

input(p)
input(l)
hasilKeliling ← 2 * (p+l)
hasilLuas ← p*l
output(hasilKeliling)
output(hasilLuas)

Referensi

Utama:

- 1. Liem, Inggriani. Diktat Pemrograman Prosedural Informatika ITB. IF-ITB. 2007
- 2. Bjarne Stroustrup, 2014, Programming: Principles and Practice Using C++ (Second Edition), Addison-Wesley Professional

Pendukung:

- 1. Introduction to Computer Science and Programming in Python, MIT https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016
- 2. Introduction to Computer Science and Programming, MIT https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00sc-introduction-to-computer-science-and-programming-spring-2011/index.htm