Measure Theory

Mark Ibrahim

*based on Principles of Real Analysis by Aliprantis and Burkinshaw

Contents

1	Prel	iminar	ies										1
2	2.12.22.32.4	Semiri 2.1.1 2.1.2 Measu 2.2.1 Outer 0.4.1	nd Measures ngs and Sigma-algebras of Sets semirings					· · · · · · · · · · · · · · · · · · ·					1 1 2 2 2 2 3 3
	2.5	Lebesg 2.5.1 2.5.2	gue Measure (section 18) What are the Borel sets in the Regular Borel Measure	reals? .									3 4
3	3.1 3.2	Measu 3.1.1 3.1.2	rable Functions (section 16) . Sequences of Functions and N Ergov's Theorem (16.7)	Measurabi 	lity .						 		4 4 4 5
4	Que	stions											5
1	Pı	relim	inaries	2	Alg	ebr	as a	nd	M	[ea	ısı	ur	es
\leftarrow	$\Rightarrow f^-$	-1(open unded s	$A \rightarrow B$ is continuous set) is an open set. sequence a_n has a $\limsup \{a_N, a_{N+1}, \dots \}$	2.1.1		ebra	ngs s of					gn cti	

 $N \rightarrow \infty$ "largest tail"

 a_n converges if $\limsup = \liminf$.

A Hausdorff topological space (T2 space) is a topological space where any two points can be seperated by open sets.

$$\max\{a, b\} = \frac{a+b}{2} + \frac{|a-b|}{2}.$$

union of countably sets is countable.

a collection S of subsets of a set X is called a semiring if

- 1. $\emptyset \in S$,
- 2. $A \cap B \in S$, and
- 3. $A-B=C_1\cup\ldots C_n$ for $C_1,\ldots C_n\in$

Any countable union in S can be written as a countable **disjoint** union.

e.g., $S = \{[a,b)|a \le b \in \mathbb{R}\}$ is a semiring, not an algebra. * note $[a,a) = \emptyset$.

2.1.2 algebras

a nonempty collection S of subsets of a set X is an **algebra** if

- 1. $A \cap B \in S$
- 2. and $A^c \in S$.

Nice properties of algebras are:

- $\emptyset, X \in S$
- *S* is closed under finite unions and finite intersections as well as subtraction

a σ -algebra is an algebra that is closed under countable unions.

Borel sets of a topological space (X, T) is a σ -algebra generated by the open sets.

2.2 Measures on Semirings (section 13)

A function μ from a semiring S to $[0, \infty]$ is a **measure on** S if

1.
$$\mu(\emptyset) = 0$$

2. countably additive: $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$.

* $\bigcup_{n=1}^{\infty} A_n$ must be in S and each is disjoint. • If $A \subseteq B$, $(A, B \in S)$, then $\mu(A) \le \mu(B)$.

Alternatively, can show μ is a measure if and only if "squeeze"

1.
$$\mu(\emptyset) = 0$$

2.
$$\sum_{i=1}^{n} \mu(A_i) \leq \mu(A) \text{ if } \bigcup_{i=1}^{n} A_i \subseteq A$$
 and A_i are disjoint.

3.
$$\mu(B) \leq \sum_{n=1}^{\infty} \mu(B_n)$$
, "subadditive" if $B \subseteq \bigcup_{n=1}^{\infty} B_n$.

2.2.1 Examples of Measures on S

- Counting Measure $\mu(A) = |A|$
- Dirac Measure Fix $a \in X$, $\mu_a(A) = 0$ if $a \notin A$, else 1.
- Lebesgue Stieltjes For $f: \mathbb{R} \to \mathbb{R}$, increasing, left continuous and $S = \{[a,b)|a \leq b \in \mathbb{R}\}, \, \mu([a,b)) = f(b) f(a).$
 - **Lebesgue Measure on** S, denoted λ is defined by $\lambda([a,b)) = b a$.

2.3 Outer Measures (section 14)

an **outer measure** is a function $\bar{\mu}$: $P(X) \rightarrow [0, \infty \text{ such that}]$

1.
$$\bar{\mu}(\emptyset) = 0$$

2. if
$$A \subseteq B$$
, $\bar{\mu}(A) < \mu(B)$

3. countably subadditive: $\bar{\mu}(\bigcup_{n=1}^{\infty} A_n)$ $\leq \sum_{n=1}^{\infty} \mu(A_n)$

*an outer measure is not always a measure!

A subset E of X is **measurable** if for all $A \subseteq X$,

$$\bar{\mu}(A) = \bar{\mu}(A \cap E) + \bar{\mu}(A \cap E^c)$$

A nicer equivalent way to show E is measurable is by considering all A in S with $\mu^*(A) < \infty$ and showing

$$\mu(A) > \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

Nice Properites

 $^{^{1}(}X, T)$ is a topological space with a set X and subsets T if $\emptyset, X \in T$, and T is closed under unions (even uncountable), finite intersections.

- every A in S is μ^* -measurable
- if $\bar{\mu}(E) = 0$, E is measurable
- for E_i measurable and any $A \subseteq X$, $\bar{\mu}(\cup_{i=1}^n A \cap E_i) = \sum_{i=1}^n \bar{\mu}(A \cap E_i)$

the collection of measurable subsets is denoted by Λ . This collection is a σ -algebra!

Remarkably, the outer measure $\bar{\mu}$ restricted to Λ is a measure!

2.4 Outer Measures generated by a measure (section 15)

The outer measure μ^* generated by a measure μ is defined for any subset A of X, $\mu^*(A) =$

$$\inf\{\sum_{n=1}^{\infty}\mu(A_n): A\subseteq \cup_{n=1}^{\infty}A_n \text{ for } A_n\in S\}$$

 μ^* is called the Cathéodory extension of $\mu.$ By convention $\mu^*(A)=\infty$ if no cover exits in S.

On semiring S, $\mu * = \mu$.

For E_n measurable, if $E_n \uparrow E$, then $\mu^*(E_n) \uparrow \mu^*(E)$ For B_n measurable with $\mu^*(B_n) < \infty$, if $B_n \downarrow B$, then $\mu^*(B_i) \downarrow \mu^*(B)$.

a measure space if **finite** if $\mu^*(X) < \infty$.

For X a **finite measure** space E is measurable, if and only if

$$\mu^*(E) + \mu^*(E^c) = \mu^*(X)$$

For all $A \subseteq X$, there is a measurable set E such that $A \subseteq E$ and $\mu^*(A) = \mu^*(E)$.

2.4.1 Cantor Set

Cantor set
$$C = \bigcap_{n=1}^{\infty} c_n$$
, where $c_1 = [0, 1] - (1/3, 2/3)$

$$c_2 = c_1 - ((1/9, 2/9) \cup (7/9, 8/9))$$

each c_n is closed, because it's a closed set minus open sets.

- C has measure 0
- $|C| = |\mathbb{R}|$
- every point of C is an accumulation point of C

Vitali set is an example of a **non-measurable** subset of \mathbb{R} .

2.5 Lebesgue Measure (section 18)

Outer Lebesgue measure λ^* is defined

as
$$\lambda^*(A) = \inf\{\sum_{i=n}^{\infty} \lambda(a_n, b_n) : A \subset$$

$$\bigcup_{n=1}^{\infty} (a_n, b_n) \}$$
* note $\lambda(a, b) = b - a$.

* often, we say Lebesgue measure instead of outer Lebesgue measure.

By result about $E_n \uparrow E$ from section 15, we can show (a, b), [a, b], and (a, b] are all measurable with same measure.

 $E \subseteq \mathbb{R}$ is **Lebesgue measurable** \iff there is open $O \subseteq \mathbb{R}$ for each ϵ such that $E \subseteq O$ and $\lambda(O - E) < \epsilon$.

Every Borel set in \mathbb{R} is λ -measurable

2.5.1 What are the Borel sets in the reals?

By definition, it's the σ -algebra generated by open sets in \mathbb{R} . (Borel σ -algebra is generated by intervals of the form $(-\infty, a]$, for $a \in \mathbb{Q}$).

Borel sets contain:

- all closed sets
- union of all open sets or closed sets
- intersection of all open/closed sets
- * we can write any open set in \mathbb{R} as disjoint countable union of open intervals!

2.5.2 Regular Borel Measure

For X, a Hausdorff topological space and B the borel sets in X, a measure μ on B is called a **regular borel measure** if

- 1. $\mu(K) < \infty$ if K is compact
- 2. for B a borel set, $\mu(B) = \inf\{\mu(O)|O \text{ is open } B\subseteq O\}$
- 3. for O open, $\mu(O) = \sup\{\mu(K)|K \text{ is compact and } K\subseteq O\}$
- 1. λ is a regular borel measure
- 2. Durac measure is a regular borel measures
- 3. Counting measure is not for example [0,1] is compact, but has infinite measure
- 4. any **translation invariant** regular borel measure on \mathbb{R} is $c\lambda$ for some $c \in \mathbb{R}^+$

3 Integration: functions

3.1 Measurable Functions (section 16)

a relation holds **almost everywhere** if set where it fails has measure 0.

 $f:X\to\mathbb{R}$ is a measurable function if

- $f^{-1}(O)$ is measurable, for all open sets O
- $f^{-1}(a,\infty)$ is measurable, for all a in $\mathbb R$

If $f, g: X \to \mathbb{R}$, f = g almost everywhere and f is measurable, then g is measurable too!

"= a.e. means measurability carries over"

If $f, g: X \to \mathbb{R}$ are **measurable** then $\{x \in X | f(x) > g(x)\}$ is measurable.

Sum, product, constant multiple, ||, \max , and f^{+} of measurable functions is also measurable!

3.1.1 Sequences of Functions and Measurability

recall (from analysis): $f_n \to f$ uniformly means $|f_x(x) - f(x)| < \epsilon$ for all x if you go out far enough in the sequence.

Key Theorem: If $f_n \to f$ uniformly and f_n are continuous, then f is continuous.

We can define \limsup (\liminf) for any **bounded** sequence.

For a sequence of measurable functions $\{f_n\}_{n=1}^{\infty}$

- If $f_n \to f$ a.e., then f is measurable func.
- If $\{f_n\}_{n=1}^{\infty}$ is bounded, then \limsup is a measurable function (so is \liminf)

A sequence of functions, $\{f_n\}_{n=1}^{\infty}$ $(f_n: X \to \mathbb{R})$ converges **almost uniformly** on X if for any ϵ , there exists a measurable set F where $\mu(F) < \epsilon$ and $\{f_n\} \to f$ **uniformly** on X - F.

If $f_n \to f$ almost uniformly on X and $\mu(X) < \infty$ then, $|f_n(x) - f(x)| < \epsilon$ for all $n > \text{some } N \in \mathbb{N}$, and all x in a set J where $\mu(J^c) < \delta$.

3.1.2 Ergov's Theorem (16.7)

If $f_n \to f$ almost uniformly on X, then $f_n \to f$ pointwise almost everywhere on X.

Also, if $\mu(X) < \infty$ and $f_n \to f$ pointwise on X, then $f_n \to f$ uniformly on X.

 $^{^{2}} f^{+} = f(x) \text{ if } f(x) \geq 0 \text{ or } 0 \text{ otherwise.}$

counter example: if $\mu(X)$ is not finite, consider $X=\mathbb{R},\,\mu=\lambda$ and $f_n=\chi_{[n,n+1)}.$ Then, $f_n\to 0$, but not almost uniformly

3.2 Simple and step functions (section 17)

4 Questions

1. If
$$A \subseteq B$$
, is $\mu^*(B - A) = \mu^*(B) - \mu^*(A)$?