

Exam File Provided By The VofS IEEE Student Branch

ieee.usask.ca

University of Saska

Department of Mathemati

Time: 3 hours

MATH 224.3 Final Examination

April 18, 2002

Instructors: H. Teismann (02), A. Karassev (04), B. Friberg (06)

- Encode your student number and PRINT your name on the opscan sheet.
- CLOSED BOOK NO CALCULATORS ALLOWED
- TWO SHEETS OF FORMULA ALLOWED
- 22 questions: Questions 1–17 are worth 5 marks each.

18-22 are worth 3 marks each.

Total: 100 Marks.

Answer choices for questions 1–14

- (A) 0
- (B) 1
- (C) 2 (D) 3 (E) 4

- (F) 5
- (G) 6
- (H) 7
- (I) 8
- (J) 9

1. If
$$y = y(x)$$
 is the solution to the IVP $\frac{dy}{dx} = \frac{2y}{x^2 + 2x}$; $y(1) = 3$, then $y(4) = \frac{1}{x^2 + 2x}$

2. If
$$y = y(x)$$
 is the solution to the IVP $\frac{dy}{dx} - \frac{3y}{x} = x^4$; $y(1) = -\frac{1}{2}$, then $y(2) = -\frac{1}{2}$

3. If
$$y = y(x)$$
 is the solution to the IVP $y'' + 2y' + y = 0$; $y(0) = 3$; $y'(0) = -3$, then $y(\ln(\frac{1}{3})) =$

4. If
$$y = y(x)$$
 is the solution to the IVP $[2 + \sin(y)]dx + [(x - y)\cos(y) - \sin(y) - 2]dy = 0$; $y(1) = 1$, then $y(5) = 0$

5. If
$$y = y(x)$$
 is the solution to the IVP $\frac{dy}{dx} = \frac{x+2y}{x}$; $y(1) = -\frac{3}{4}$, then $y(6) =$

6. If
$$y = y(x)$$
 is the solution to the IVP $y'' + 5y' + 6y = 36x$; $y(0) = -5$; $y'(0) = 6$, then $y(2) =$

- 7. If $y = \sum_{n=0}^{\infty} c_n x^n$ is a power series solution to the IVP xy' 3y = 2x 6; y(1) = 3, then $c_3 =$
- 8. For the sequence $a_n = \left(\frac{n-7}{2n+4}\right)^{\frac{3n-2}{1-n}}$ $\lim_{n\to\infty} a_n =$
- 9. For the sequence $a_n = \frac{(2n)^{2n}}{\left[(n+4)!\right]^2}$, the limit of the ratio of successive terms $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$ exists and is equal to ae^b where a+b=
- 10. In the Maclaurin series for $f(x) = \frac{x^4(4-x)^{3/2}}{3}$, the coefficient of x^6 is equal to 2^{-a} where a =
- 11. The sum of the series $\sum_{n=1}^{\infty} \frac{3^n 2^{n+1}}{4^{n-1}}$ is
- 12. The sum of the series $\sum_{n=5}^{\infty} \frac{24}{n^2 2n}$ is
- 13. The sum of the series $\sum_{n=1}^{\infty} (-1)^{n-1} 5 \left(\frac{1}{4}\right)^n$ is
- 14. In the Maclaurin series for $\frac{d}{dx}(5x^2\arctan(x))$, the coefficient of x^6 is

Answer choices for questions 15-17

(A) only converges for
$$x = 0$$
 (B) $(-\infty, \infty)$ (C) $(-1, 1)$ (D) $(-1, 1]$

(E)
$$[-1,1)$$
 (F) $[-1,1]$ (G) $(-e,e)$ (H) $(-e,e]$ (I) $[-e,e)$ (J) $[-e,e]$

15. Find the interval of convergence of the power series
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{n+1} x^n.$$

16. Find the interval of convergence of the power series
$$\sum_{n=2}^{\infty} (-1)^n \frac{e}{\sqrt{n} \ln(n)} x^n.$$

17. Find the interval of convergence of the power series
$$\sum_{n=1}^{\infty} (-1)^n \frac{10^{500n}}{n!} \left(1 + \frac{1}{n}\right)^{-n} x^n.$$

Answer choices for questions 18-22

- A. Converges absolutely
- B. Converges conditionally
- C. Diverges to ∞
- D. Diverges to $-\infty$
- E. Diverges (not to $\pm \infty$)

Choose the answer choice which best describes the indicated series.

18.
$$\sum_{n=0}^{\infty} (-1)^n \frac{n^2}{n^3 + 1}$$
 19.
$$\sum_{n=0}^{\infty} (-1)^{n+1} \cos(n\pi)$$
 20.
$$\sum_{n=0}^{\infty} (-1)^n \frac{n!}{n^n}$$

21.
$$\sum_{n=0}^{\infty} (-1)^n \left(\frac{n}{2n+1}\right)^n$$
 22. $\sum_{n=0}^{\infty} \left(\frac{2^{1000n}}{n!} - \frac{1}{1000n}\right)^n$

** The End **