Développement. Le théorème de Wedderburn

Théorème 1. Tout corps fini est commutatif.

Preuve Soit K un corps fini. Son centre

$$Z := \{ a \in K \mid \forall x \in K, \ ax = xa \}$$

est un sous-corps commutatif fini. Notons $q \ge 2$ son cardinal. Comme le corps K est un Z-espace vectoriel, son cardinal est de la forme $|K| = q^n$ pour un entier $n \in \mathbb{N}^*$.

Raisonnons par l'absurde et supposons que le corps K n'est pas commutatif, c'est-à-dire n>1. Le groupe K^\times agit sur lui-même par conjugaison. Soit $x\in K^\times$ un élément. On note son orbite

$$\operatorname{Orb}(x) := \{yxy^{-1} \mid y \in K\} \subset K$$

et on pose l'ensemble

$$K_x := \{ y \in K \mid yx = xy \}.$$

Comme précédent, il existe un entier $d_x = d \in \mathbb{N}^*$ tel que $|K_x| = q^d$ et $d \mid n$. De plus, remarquons que l'ensemble K_x^{\times} est le stabilisateur de l'élément x si bien que l'on peut écrire

$$|\operatorname{Orb}(x)| = \frac{|K^{\times}|}{|K_x^{\times}|} = \frac{q^n - 1}{q^d - 1}.$$

Pour $m \in \mathbf{N}^*$, on considère le m-ième polynôme cyclotomique $\Phi_m \in \mathbf{Z}[X]$. Alors les propriétés de ces derniers permettent d'écrire

$$q^n - 1 = \prod_{m|n} \Phi_m(q)$$
 et $q^d - 1 = \prod_{m|d} \Phi_m(q)$

ce qui donne

$$\frac{q^n - 1}{q^d - 1} = \prod_{\substack{m \mid n \\ m \nmid d}} \Phi_m(q).$$

Lorsque $d \neq n$, l'entier $\Phi_n(q)$ divise donc le cardinal $|\operatorname{Orb}(x)|$.

Maintenant, on écrit l'équation aux classes données par l'action par conjugaison du groupe K^{\times} sur lui-même : on obtient

$$|K^{\times}| = |Z^{\times}| + \sum_{x \notin Z} |\operatorname{Orb}(x)|.$$

Or $x \notin Z \Leftrightarrow d_x \neq n$ pour tout élément $x \in K^{\times}$. La dernière relation se réécrit alors

$$q^{n} - 1 = q - 1 + \sum_{\substack{x \in K^{\times} \\ d_{x} \neq n}} |\operatorname{Orb}(x)|.$$

En vertu du dernier paragraphe, on obtient $\Phi_n(q) \mid q-1$ et donc $|\Phi_n(q)| \leq q-1$.

Notons $\zeta_1, \ldots, \zeta_\ell \in \mathbf{C}$ les racines *n*-ièmes primitives de l'unité. Comme n > 1, elles ne valent pas 1. Mais alors un rapide dessin permet de se convaincre de l'inégalité

$$|q - \zeta_i| > q - 1, \qquad i \in [1, \ell].$$

Ceci permet de conclure que

$$|\Phi_n(q)| = |(q - \zeta_1) \cdots (q - \zeta_\ell)| > (q - 1)^\ell \geqslant q - 1$$

ce qui est contradictoire avec le précédent paragraphe. Finalement, le corps K est commutatif.

Daniel Perrin. Cours d'algèbre. Ellipses, 1996.