Variable Compleja

SEGUNDO EXAMEN PARCIAL

Julio 30 de 2024

ALEXIS

Juan Camilo Lozano Suárez

Ejercicio 1. Suponga que la serie

$$\sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

converge a una función analítica X(z) en algún anillo $R_1 < |z| < R_2$. La suma X(z) es llamada la **z-transformada** de x[n] $(n = 0, \pm 1, \pm 2, \ldots)$. Use la expresión (5), Sec. 66, para los coeficientes en una serie de Laurent para mostrar que si el anillo contiene la circunferencia unitaria |z| = 1, entonces la z-transformada inversa de X(z) puede escribirse como

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{i\theta}) e^{in\theta} d\theta \qquad (n = 0, \pm 1, \pm 2, \dots).$$

Prueba. Llamemos A a la región anular $R_1 < |z| < R_2$, y C a la circunferencia |z| = 1 orientada positivamente. Supongamos que C está contenido en A. Como X(z) es analítica en A y C es un contorno simple orientado positivamente alrededor de 0 y contenido en A, se sigue que X(z) tiene representación en serie de Laurent

$$X(z) = \sum_{-\infty}^{\infty} c_n z^n, \quad (z \in A)$$

donde, para todo $n \in \mathbb{Z}^+$,

$$c_n = \frac{1}{2\pi i} \int_C \frac{X(z)}{z^{n+1}} dz.$$

Como además, para todo $z \in A$ tenemos

$$X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n},$$

por la unicidad de la representación en serie de Laurent, se sigue que para todo $n \in \mathbb{Z}^+$,

$$x[n] = c_{-n}$$

$$= \frac{1}{2\pi i} \int_C \frac{X(z)}{z^{-n+1}} dz$$

$$= \frac{1}{2\pi i} \int_C X(z) z^{n-1} dz.$$

Haciendo el cambio de variable $z=e^{i\theta},\,dz=ie^{i\theta}d\theta,$ se tiene

$$\begin{split} \frac{1}{2\pi i} \int_C X(z) z^{n-1} dz &= \frac{1}{2\pi i} \int_{-\pi}^{\pi} X(e^{i\theta}) (e^{i\theta})^{n-1} i e^{i\theta} d\theta \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{i\theta}) e^{in\theta} d\theta, \end{split}$$

con lo que concluimos

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{i\theta}) e^{in\theta} d\theta \qquad (n = 0, \pm 1, \pm 2, \dots).$$