学院专业	班	年级	学号		共5 页 第1页
------	---	----	----	--	----------

2008 ~ 2009 学年第 2 学期期末考试试卷

《 数据结构 》(A 卷 共 5 页)

(考试时间: 2009 年 6 月 24 日)

题号	_	 三	四	五	六	七	八	成绩	核分人签字
得分									

- 一、 实做题: (每题 10 分,共计 60 分)
- 1. (10分) 有一非空树, 其度为 4, 已知度为 i 的结点数有 i 个, 其中 1≤i < 5, 试问其叶结点 个数是多少?

- 2. (10分) 已知信息为"12342343242132",请按此信息完成下列题目:
 - (1) 构造哈夫曼树
 - (2) 求出每一字符的最优编码 (哈夫曼编码)
 - (3) 计算带权路径长度 WPL

天津大学试卷专用纸

学院	专业	班	年级	学号			5 页	第 2 页
3. (10分	、) 画出对算术表达式 A-B*C/D+E 求值时操作	数栈和运算符栈的变化	过程。	构造所得哈希 0 1 2 3 14 01 68	一组关键字,按哈希函数 H(表 a.elem [015] ,表长 m	n=16 9 10 11	12 13	

5. (10分) 如图所示的带权有向图: (1) 写出其带权邻接矩阵 arcs; (2) 求出从顶点 A 到其他 各顶点之间的最短路径(要求写出求解过程)。

- 6. (10 分) 如图所示 AOE 网络, 回答以下问题:
- (1) 每一顶点的最早开始时间和最迟开始时间;
- (2) 每一活动的最早发生时间和最迟发生时间;
- (3) 这个 AOE 网络中的关键活动;
- (4) 画出这个 AOE 网络的关键路径;

学院专业	班	年级	学号		共5 页 第4页
------	---	----	----	--	----------

二、**算法设计题**: (每题 10 分,共计 40 分)

2. (10 分) 试写出折半查找的递归算法 int Binsch(ElemType A[],int low,int high,KeyType K)

1. (10 分) 已知深度为 h 的满二叉树采用顺序存储结构已存放于数组 BT[1: 2h – 1]中,请写一非递归算法,产生该二叉树的二叉链表结构。设二叉链表中链结点的构造为

lchild data rchild

根结点所在链结点的指针由T给出。

天津大学试卷专用纸

学	院	_专业	_班	年级	_学号	_姓名	共5 页 第5页
3.	(10 分) 试设计算法	法,统计一个采用邻接表存储、具有 n 个顶点的不	与向无权图 所	行有顶点的入度。 4	4. (10 分) 试编写快速排序中一	一趟排序的算法。	