

Generate by each subscriber T_i of the at least three subscribers a respective message $N_i = (g^{z_i} \bmod p)$ from a publicly known element g of large order of a publicly known mathematical group G and a respective random number z_i and send the respective message from the respective subscriber to all other subscribers T_j of the at least three subscribers, each respective random number z_i being selected or generated by the respective subscriber T_i

~ 102

Generate by each subscriber T_i a transmission key k^i from the messages N_j received from the other subscribers T_j , $j \neq i$, and the respective random number z_i according to $k^i := N_j^{z_i} = (g^{z_j})^{z_i}$

~ 104

Send by each subscriber T_i the respective random number z_i in encrypted form to all other subscribers T_j by generating the message M_{ij} according to $M_{ij} := E(k^j, z_i)$, $E(k^j, z_i)$ being a symmetrical encryption algorithm in which the data record z_i is encrypted with the transmission key k^j

~ 106

Determine a common key k by each subscriber T_i using the respective random number z_i and the random numbers z_j , $j \neq i$, received from the other subscribers according to
$$k := f(z_1, \dots, z_n),$$

 f being a symmetrical function which is invariant under a permutation of its arguments

~ 108

FIG. 1