Wahrscheinlichkeitsrechung und Statistik

Simon Krenger

February 20, 2014

Chapter 1

Wahrscheinlichkeitsrechnung

1.1 Definitionen

Wir führen ein Experiment wie

- werfen von 2 Münzen
- werfen von 3 Würfeln
- ziehen einer Zahl aus einer Urne

durch und fragen nach möglichen Ereignissen. Also schreiben wir diese als Menge auf

$$M = \{KK, KZ, ZK, ZZ\} \tag{1.1}$$

oder

$$M = \{KK, KZ, ZZ\} \tag{1.2}$$

Definition 1. Die Menge

$$\Omega := \{\omega_1, \omega_2, \omega_3, ..., \omega_n\} \tag{1.3}$$

heisst <u>Stichprobenraum</u> (Ereignisraum), wenn jedem Versuchsausgang höchstens ein Element ω_i aus Ω zugeordnet ist.

Beim Werfen eines Würfels sind

- $\Omega_1 = \{gerade, ungerade\}$
- $\Omega_2 = \{1, 2, 3, 4, 5, 6\}$
- $\Omega_3 = \{4, keine 4\}$

mögliche Stichprobenräume.

Wie gross ist die Wahrscheinlichkeit beim Werfen von 2 (idealen) Würfeln zwei Sechsen zu erhalten? Als Stichprobenräume können wir

$$\begin{split} \Omega_1 = & \{ (1/1), (1/2), (1/3), (1/4), (1/5), (1/6), \\ & (2/2), (2/3), ..., (2/6), \\ & (3/3), (3/4), ..., (3/6), \\ & (4/4), (4/5), (4/6), \\ & (5/5), (5/6), \\ & (6/6) \} \end{split}$$

wählen. Wir unterscheiden also z.B. (2/3) und (3/2) nicht.

Auch

$$\begin{split} \Omega_1 = & \{ (1/1), (1/2), (1/3), (1/4), (1/5), (1/6), \\ & (2/1), (2/2), (2/3), ..., (2/6), \\ & (3/1), (3/2), (3/3), ..., (3/6), \\ & ... \\ & (6/1), (6/2), (6/3), ..., (6/6) \} \end{split}$$

ist ein möglicher Stichprobenraum.

Im ersten Fall ist $|\Omega_1|=21$ und im zweiten Fall ist $|\Omega_2|=36$. Sind alle Ereignisse gleichwahrscheinlich, so ist die Wahrscheinlichkeit zwei 6 zu würfeln

- im 1. Fall $p = \frac{1}{21}$
- im 2. Fall $p = \frac{1}{36}$

Welches Modell entspricht der Praxis? (Im Praxisversuch finden wir, dass $\frac{1}{36}$, also der zweite Fall, der Praxis entspricht)

Definition 2. Jede Teilmenge von Ω heisst <u>Ereignis</u>. Die leere Menge \emptyset heisst <u>unmögliches Ereignis</u> und Ω heisst <u>sicheres Ereignis</u>. Enthält ein Ereignis $E = \{a\}$ nur ein einziges Element, so heisst E ein Elementarereignis.

Beispiel 1. Beim Werfen von 2 Würfeln ist

$$\Omega = \{(1/1), (1/2), ..., (6/6)\}$$
(1.4)

und

A: zwei Sechsen würfeln, also $A = \{(6/6)\}$ ein Elementarereignis. B: nur Primzahlen würfeln, also $B = \{(2/2), (2/3), (2/5), (3/2), (3/3), (3/5), (5/2), (5/3), (5/5)\}$ C: Augensumme 9 würfeln, also $C = \{(3/6), (4/5), (5/4), (6/3)\}$ D: zweimal 7 würfeln, also $D = \emptyset$

sind mögliche Ereignisse.

Welches ist nun die Wahrscheinlichkeit für eines dieser Ereignisse?

1.2 Definition von Laplace

(Pierre Simon Laplace, 1749 bis 1827, Paris)

Hat in $\Omega = \{A_1, A_2, A_3, ..., A_n\}$ jedes Ereignis die gleiche Wahrscheinlichkeit, so ist die Wahrscheinlichkeit für ein Ereignis $E = A_1 \cup A_2 \cup ... \cup A_k (k \leq n)$ bestimmt durch

$$p(E) = \frac{|E|}{|\Omega|} \tag{1.5}$$

Es werden also die günstigen Fälle durch die möglichen Fälle dividiert:

("günstige Fälle" : "mögliche Fälle")

Für die oben genannten Ereignisse ist also $|\Omega| = 36$,

$$|A| = 1 \longrightarrow p = \frac{1}{36} \tag{1.6}$$

$$|B| = 9 \longrightarrow p = \frac{9}{36} = \frac{1}{4} \tag{1.7}$$

$$|C| = 4 \longrightarrow p = \frac{4}{36} = \frac{1}{9} \tag{1.8}$$

$$|D| = 0 \longrightarrow p = 0 \tag{1.9}$$

- 1. Zählprinzip: Es gibt n^k Möglichkeiten um n Elemente auf k Plätze (in Gruppen zu k Elementen) zu verteilen.
 - 2 Würfel: $|\Omega| = 6^2$
 - 3 Würfel: $|\Omega| = 6^3$
 - 3 Münzen: $|\Omega| = 2^3$
 - 4 Münzen: $|\Omega| = 2^4$

Beispiel 2. Wie gross ist die Wahrscheinlichkeit

1. Beim Werfen von 4 Münzen dreimal Zahl und einmal Kopf zu erhalten?

$$\begin{split} |\Omega| &= 2^4 = 16 \\ A &= \{ZZZK, ZZKZ, ZKZZ, KZZZ\} \\ \rightarrow |A| &= 4 \end{split}$$

2. Beim Werfen von 5 Würfeln vier mal eine 1 und einmal eine 6 zu erhalten?

$$\begin{split} |\Omega| &= 6^5 \\ B &= \{11116, 11161, 11611, 16111, 61111\} \\ \rightarrow |B| &= 5 \end{split}$$

3. Beim Toto zu gewinnen? Bei 13 Spielen ist

$$|\Omega| = 3^{13} = 1594323$$

und einer dieser Tipps ist richtig, also

$$p = \frac{1}{3^{13}} = 6.27 * 10^{-7}$$