$$\left(-\frac{\hbar^2}{2\mu}\frac{\mathrm{d}^2}{\mathrm{d}r^2} + \frac{\hbar^2\ell(\ell+1)}{2\mu r^2} - \frac{Ze^2}{4\pi\epsilon_0 r}\right)P_{n\ell}(r) = EP_{n\ell}(r).$$
(1)

Numerical solution

The following dimensionless variables were defined:

$$\xi = r/Da_0 E' = E/\left(Z^2 \mu \hbar^2 / (2m_e^2 a_0^2)\right)$$
 (2)

In principle, E' should take the values $-1, -1/4, -1/9, \ldots$ for bound states. The variable ξ is on the interval [0,1] and D is chosen so that the wavefunction is negliably small in the vicinity of $\xi=1$. Using these variables, equation (1) can be written

$$\hat{H}u = -\beta^2 \left(\frac{d^2}{d\xi^2} - \frac{\ell(\ell+1)}{\xi^2} + \frac{2}{\beta\xi}\right) u = E'u$$
 (3)

where $\beta = m_e/(Z\mu\alpha)$. The numerical solution to (3) is written as a linear combination of n B-splines of degree k:

$$\hat{u}(\xi) = \sum_{j=0}^{n-1} c_j B_{j,k}(\xi). \tag{4}$$

The boundary conditions u(0) = u(1) = 0 are satisfied by placing multiple knot points at $\xi = 0$ and $\xi = 1$. This makes $B_{0,k}$ the only non-zero B-splines at $\xi = 0$ and $B_{n-1,k}$ the only non-zero B-spline at $\xi = 1$. Since the wavefunction is vanishing for ξ closer to one, it becomes more efficient to place distribute the knot points unevenly over [0,1] such that there are more of them closer to zero than closer to one. The knots were thus placed according to the function $2^{x^2} - 1$ where $x \in (0,1)$.

so that closer to zero than closer to one The boundary conditions are thus satisfied by setting $c_0 = c_{n-1} = 0$. Inserting this into equation (3), multiplying by $B_{i,k}(x)$ and integrating over (0,1) yields:

$$\sum_{j=1}^{n-2} c_j \int_0^1 B_{i,k} \hat{H} B_{j,k} = E' \sum_{j=1}^{n-2} c_j \int_0^1 B_{i,k} B_{j,k}$$
 (5)

which is a generalized eigenvalue problem of the form $A\mathbf{c} = E'B\mathbf{c}$. This is solved with a inverse power method, $(A-E^*B)\mathbf{c}_{j+1} = B\mathbf{c}_j$ where E^* is a guess at an eigenvalue and \mathbf{c}_j is normalized in each iteration.

Results

Figure 1

n	ℓ	$ E'-1/n^2 $
1	0	$1.7 \cdot 10^{-3}$
2	0	$4.2 \cdot 10^{-4}$
2	1	$1.1 \cdot 10^{-9}$
3	0	$1.8 \cdot 10^{-4}$
3	1	$1.2 \cdot 10^{-7}$
3	2	$3.5 \cdot 10^{-8}$
4	0	$1.0 \cdot 10^{-4}$
4	1	$2.6 \cdot 10^{-6}$
4	2	$1.2 \cdot 10^{-6}$
4	3	$2.7\cdot 10^{-7}$

Table 1