

INSTITUTO SUPERIOR DE ENGENHARIA DE COIMBRA

DEPARTAMENTO DE FÍSICA E MATEMÁTICA

ENGENHARIA INFORMÁTICA – 1º ano /2º Semestre ANÁLISE MATEMÁTICA I

Teste 1

20-jun-2014 Duração:2h00m

Importante:

A resolução completa de cada pergunta inclui a justificação do raciocínio utilizado bem como a apresentação de todos os cálculos efetuados.

- 1. Considere a função $f(x) = \pi + arcsen(2x-1)$.
 - a. Calcule $f(\frac{1}{4})$.
 - b. Determine os zeros da função f(x).
 - c. Caracterize a função inversa de f(x), indicando domínio, contradomínio e expressão analítica.
- 2. Considere a região $A = \left\{ (x, y) \in \Re^2 : 0 \le y \le \frac{e^x}{1 + e^x} \land x 1 \le -4y^2 \right\}$ representada na figura

- a. Utilizando o cálculo integral, identifique, <u>sem calcular</u>, a expressão que lhe permite determinar a área da região.
- b. Que pode concluir sobre a existência da medida encontrada na alínea anterior? Justifique convenientemente a sua resposta.
- 3. Considere a região do plano $B = \{(x, y) \in \Re : -1 + x \le y \le 0 \land x^2 + y^2 \le 1\}$.
 - a. Represente graficamente a região B.
 - b. Reescreva o domínio plano B da forma: $\{(x,y) \in \Re^2 : g(y) \le x \le f(y) \land c \le y \le d\}$.

- c. Usando unicamente o cálculo integral, indique expressões simplificadas que lhe permitam calcular:
 - i. a área de B;
 - ii. o volume do sólido de revolução que se obtém pela rotação de B em torno do eixo OX;
 - iii. o perímetro de *B*.
- d. Determine o volume do sólido de revolução que se obtém pela rotação de B em torno do eixo OY.
- 4. Considere a seguinte função real de variável real $f(x) = \frac{1}{\sqrt[4]{2-2x}}$.
 - a. Prove que o integral $\int_{0}^{1} f(x)dx$ é impróprio de 2ª espécie e determine a sua natureza.
 - b. Identifique, justificando, cada uma das seguintes expressões:

i.
$$\int_{0}^{4} f(x)dx$$

ii.
$$\int_{-\infty}^{0} f(x)dx$$

ii.
$$\int_{-\infty}^{0} f(x)dx$$
 iii.
$$\int_{-1}^{0} f(x)dx$$

- 5. Mostre que a equação diferencial $\sqrt{1-t^2}dv-vdt=0$ é de variáveis separáveis e determine a solução particular de t = g(v) que satisfaz a condição $g(1) = \frac{1}{2}$.
- 6. Considere a seguinte equação diferencial $xy' y = 2x^3 cos(x^2)$
 - a. Verifique se $y = xsen(x^2)$ é solução da equação.
 - b. Resolva a equação diferencial.

Cotação

	1a	1b	1c	2a	2b	3a	3b	3ci	3cii	3ciii	3d	4a	4b	5	6a	6b
Ī	0,75	1,25	2,0	1,5	1,5	1	1	1	1	1,5	1	1,5	1,0	1,5	1,25	1,25