УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

	УНИВЕРСИТЕТ	итмо
--	--------------------	------

работе допущен
абота выполнена

Рабочий протокол и отчет по лабораторной работе №5

Вын	ужденные элект	ромагнитные колебания

1)Цель работы:

- 1) Изучение вынужденных колебаний и явления резонанса напряжений в последовательном колебательном контуре.
- 2) Изучение закона Ома для цепи переменного тока.

2)Задачи, решаемые при выполнении работы:

- 1)Собрать схему виртуальной установки.
- 2)Вычислить добротность контура.
- 3)Постройте графики зависимостей $Ui = Ui(\Omega)$, где i = C, L, R, $\Omega = 2\pi f$ для R.
- 4) Рассчитайте коэффициент затухания.

3)Объект исследования:

Цепь, состоящая из последовательно соединенных индуктивности, емкости и активного сопротивления в которую включен источник внешней электродвижущей силы.

4)Метод экспериментального исследования:

Наблюдение

5)Рабочие формулы и исходные данные:

$$\begin{cases} \Omega_{R_{res}} = \Omega_0 = \frac{1}{\sqrt{LC}}; \\ \Omega_{C_{res}} = \Omega_0 \sqrt{1 - 2\left(\frac{\beta}{\Omega_0}\right)^2}; \text{ (Гц), где C} - \text{значение ёмкости, L} - \text{значение индуктивности} \\ \Omega_{L_{res}} = \frac{\Omega_0}{\sqrt{1 - 2\left(\frac{\beta}{\Omega_0}\right)^2}}; \text{ ,R} - \text{значение сопротивления, } \Omega_0 - \text{резонансная частота} \\ \Omega_{L_{res}} = \frac{\Omega_0}{\sqrt{1 - 2\left(\frac{\beta}{\Omega_0}\right)^2}}; \end{cases}$$

$$Q(L,C,R) = \frac{1}{R}\sqrt{\frac{L}{C}}.$$
 $\beta_{1,2} = \frac{R_{1,2}}{2L}$ (c⁻¹)

6)Измерительные приборы

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора	
1	Конденсатор	Элемент цепи	100n % 300n нФ	-	
2	Катушка индуктивности	Элемент цепи	10и % 20и мкГн	-	
3	Резистор	Элемент цепи	1 % 5 Om	-	
4	Источник синусойды	Элемент цепи	10 % 130 Гц	-	

7)Схема установки:

8)Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

1	O	M

Nº	f, Гц	Ω, рад/с	U_C, B	U_L, B	U_R, B	U_L, MKB	U_R, MKB
1	10	62,832	5	0,00006	0,00006	59	63
2	15	94,248	5	0,00013	0,00009	133	94
3	20	125,664	5	0,00024	0,00013	237	126
4	25	157,080	5	0,00037	0,00016	370	157
5	30	188,496	5	0,00053	0,00019	533	188
6	35	219,911	5	0,00073	0,00022	725	220
7	40	251,327	5	0,00095	0,00025	947	251
8	45	282,743	5	0,00120	0,00028	1199	283
9	50	314,159	5	0,00148	0,00031	1480	314
10	55	345,575	5	0,00179	0,00035	1791	346
11	60	376,991	5	0,00213	0,00038	2132	377
12	65	408,407	5	0,00250	0,00041	2502	408
13	70	439,823	5	0,00290	0,00044	2902	440
14	75	471,239	5	0,00330	0,00047	3301	471
15	80	502,655	5	0,00379	0,00050	3790	503
16	85	534,071	5	0,00428	0,00053	4278	534
17	90	565,487	5	0,00480	0,00057	4797	565
18	95	596,903	5	0,00534	0,00060	5344	597
19	100	628,319	5	0,00592	0,00063	5922	628
20	105	659,734	5	0,00653	0,00066	6529	660
21	110	691,150	5	0,00717	0,00069	7165	691
22	115	722,566	5	0,00783	0,00072	7832	723
23	120	753,982	5	0,00853	0,00075	8527	754
24	125	785,398	5	0,00925	0,00079	9253	785
25	130	816,814	5	0,01001	0,00082	10008	817

3 Om

Nº	f, Гц	Ω, рад/с	U_C, B	U_L, B	U_R, B	U_L, MKB	U_R, MKB
1	10	62,832	5	0,00000006	0,00018850	59	188
2	15	94,248	5	0,00000013	0,00028274	133	283
3	20	125,664	5	0,00000024	0,00037799	237	378
4	25	157,080	5	0,00000037	0,00047100	370	471
5	30	188,496	5	0,00000053	0,00056549	533	565
6	35	219,911	5	0,00000073	0,00065974	725	660
7	40	251,327	5	0,00000095	0,00075398	947	754
8	45	282,743	5	0,00000120	0,00084823	1199	848
9	50	314,159	5	0,00000148	0,00094248	1480	942
10	55	345,575	5	0,00000179	0,00103700	1791	1037
11	60	376,991	5	0,00000213	0,00113100	2132	1131
12	65	408,407	5	0,00000250	0,00122500	2502	1225
13	70	439,823	5	0,00000290	0,00131900	2902	1319
14	75	471,239	5	0,00000333	0,00141400	3331	1414
15	80	502,655	5	0,00000379	0,00150800	3790	1508
16	85	534,071	5	0,00000428	0,00160200	4278	1602
17	90	565,487	5	0,00000480	0,00169600	4797	1696
18	95	596,903	5	0,00000534	0,00179100	5344	1791
19	100	628,319	5	0,00000592	0,00188500	5922	1885
20	105	659,734	5	0,00000653	0,00197900	6529	1979
21	110	691,150	5	0,00000717	0,00207300	7165	2073
22	115	722,566	5	0,00000783	0,00216800	7832	2168
23	120	753,982	5	0,00000853	0,00226200	8527	2262
24	125	785,398	5	0,00000925	0,00235600	9253	2356
25	130	816,814	5	0,00001001	0,00245000	10008	2450

9)Расчет результатов косвенных измерений (таблицы, примеры расчетов):

10)Графики

11)Выводы и анализ результатов работы:

В ходе лабораторной работы, мной были найдены резонансные частоты ёмкости, индуктивности и сопротивления соответственно:

ΩRres,κΓμ 577 ΩCres,κΓц 575

> Q(при 10_м) 8,66

Q(при 30_м

2.89

Также были найдены добротности контуров Q при сопротивлении 1 Ом и 3 Ом: Можно заметить, что при увеличении сопротивления, значение

добротности уменьшается.

И каэффициенты затухания β:

Также можно заметить, что чем больше значение сопротивления, тем больше значение каэффициента затухания.

Были построены графики зависимостей U_i от Ω , где i=C,L,RКакие выводы можно сделать? При увеличении значения сопротивления, вид зависимости не изменяется, как, например, в $U L(\Omega)$ остаётся положительная показательная зависимость.

Или, как в случае с $U_R(\Omega)$, остаётся положительная линейная зависимость.

Но различия, всё же, есть. При R=3 Ом, значение U_L меньше, чем при R=1 Ом, а U_R , напротив, больше. Следовательно, при увеличении значения сопротивления в резисторе, напряжение на катушку индуктивности падает, а на резистор возрастает.