LSD4RF-2F717N01 WOR 应用报告

型号: LSD4RF-2F717N01

提交日期:2014.04

文件修改记录台帐

项目名称		WOR 应用报告 v1.0	项目型号			
编制人		于海波	编制日期		2014. 04	
审核人			审核日期			
序号		修改日志	文件 版本号	修改人	审核人	修改日期 (XXXX-XX-XX)
1		新建				2014. 4
				E	0	
		和尔达科	技算			

目 录

第一章	简介	4
第二章	概述	4
第三章	应用实例	4

第一章 简介

本章主要是讲解LSD4RF-2F717N01 WOR应用报告,以及WOR注意事项。

第二章 概述

LSD4RF-2F717N01 的 WOR 的工作原理如下图所示。

RF 遂时间周期的切换 sleep 模式与接收模式

这里我们定义 Timer1 为低功耗睡眠时间区间, Timer2 为功耗比较大的接收时间区间。

RF 唤醒 WOR 的工作原理

从上图可以看出,若要可靠唤醒 WOR,发送包的前导码必须大于 T1+2*T2 才能可靠唤醒。其中负载部分可以定义为被唤醒的节点的 ID 等,可由客户自定义。

以上图示为 WOR 的工作过程,但需要注意的是,在 LORA 调制模式下,由于 LORA 模式是拓频传输,LORA 只能用软件 WOR 方式,T2 时间的接收采用 CAD 方式实现。换句话来解释就是,MCU 发命令让 RF 进入睡眠,MCU 定时 T1 时间,时间到,MCU 发送命令让 RF 进入 CAD 模式,以此循环整个过程,即实现了软件 WOR 的过程。

第三章 应用实例

下面以 WOR CodeExamples 为例,介绍如何利用 DEMO 程序设计一个完整的 WOR 的过程。

- 1. 初始化 WOR。LSD_RF_WORInit(); //WOR 初始化
- 2. 调用 LSD RF WOR Execute(0); //启动执行 WOR

启动 WOR 函数主要内容是 LSD_RF_Sleepmode(); //进入睡眠模式

ON Sleep Timerout(); //启动睡眠超时定时器

可以看出,启动WOR 后,MCU 命令RF 进入睡眠,同时开启了一个4s的定时器。

3. 四秒定时器时间到后,调用 LSD_RF_WOR_Execute(1); //启动 CAD 采样一次。 函数主要内容为。OFF_Sleep_Timerout(); //关闭睡眠超时定时器 LSD_RF_CAD_Sample(); //启动 CAD 一次

可以看出, 4s 的时间到后, MCU 命令 RF 进入 CAD 模式, 采用一次。

- 4. CAD 采用结束后, LSD_RF_WOR_Execute(0); //重新进入睡眠模式
- 5. 以此循环整个过程,即实现了睡眠---->CAD----->睡眠的一个循环过程,也就是 WOR 的过程。
- 6. 唤醒包调用 LSD_RF_Awake (WakeAddr, 2);即可唤醒 WOR, WakeAddr 为唤醒包的载荷,可以自定义唤醒地址。

睡眠时间如下:

从上图显示,模块 4s 的睡眠,睡眠时间到,进入 CAD, 以此循环整个过程。 CAD 时间如下:

4s 时间到后,进入 CAD 模式,从上图可以看出,整体分为三个部分,一个是切换过程,一个是接收过程,

一个是计算过程,整个三个部分组合一体为一个 CAD 过程。

详细如下。

一: 切换时间为 320us

二: CAD 的接收时间,约为 4.28ms

三: CAD 的计算时间

其中 CAD 的接收时间= (2^{SF+32}) /BW=(2⁹⁺³²)/125K=4.35ms。与时间测试结果基本一致。

平均功耗约=11000mA*4.3ms/4000ms+5500mA*2.8ms/4000ms+1.7uA+3.5uA(MCU全速定时器运行保守功耗)=11.8uA+3.85uA+1.7uA+3.5uA约=21uA左右。

从以上案例可以看出,整个WOR的过程的平均功耗,取决于MCU定时器定时睡眠的睡眠时间,这里的案例是采用的4s,用户可以自己调整,而CAD的时间,取决于SF和BW,DEMO程序的SF和BW是固定的。用户不需要修改。

发送唤醒包需要注意的是如下,

从上图可以看出,若要保证成功唤醒,唤醒的前导码必须大于 T1+2*T2. 从刚才计算和截图可以知道前导时间=4000ms+2*(4. 3+2. 8)ms=4015ms,为了能可靠唤醒,需要大于 4015ms,这里我取值为 4116ms 作为前导码的时间唤醒。因为每个LORA 码源的时间是 TS=2^SF/BW=2^9/125K=4. 1ms/symb. 所以可以计算出前导长度值=41116/4. 1=0x03EC。这样 LSD_RF_Awake(uint8_t*cbuf, uint8_t csize)唤醒换算里的前导码就应该是。

SX1276Write(REG_LR_PREAMBLEMSB, 0x03);//set preamble length
SX1276Write(REG_LR_PREAMBLELSB, 0xEC);//set preamble length
若客户需要修改不同长度的前导,可根据以上计算方法得到不同的前导时间。

注意:对代码移植和使用过程中遇到疑问,欢迎联系利尔达 WSN 事业部 RF 团队提供支持。