Úvod a bilance - Teoretický přehled

Fyzika - opakování a prohloubení

1 Základní pojmy

1.1 Teplota (Temperature)

Definice:

Teplota je stavová veličina vyjadřující průměrnou kinetickou energii molekul látky. Je nezávislá na množství látky.

Jednotky:

- °C (stupeň Celsia) nejběžnější v Evropě
- K (Kelvin) základní jednotka SI, absolutní teplota
- °F (stupeň Fahrenheita) používá se v USA

Převody:

$$T[K] = T[C] + 273,15$$

$$T[F] = T[C] \times \frac{9}{5} + 32$$

1.2 Teplo (Heat)

Definice:

Teplo je dějová veličina - forma energie, která se přenáší mezi tělesy s různou teplotou. Závisí na množství látky, teplotním rozdílu a druhu látky.

Jednotka: J (Joule)

1.3 Tepelný tok (Heat Flow)

Definice:

Tepelný tok udává množství tepla přenášeného za jednotku času.

Rovnice:

$$\dot{Q} = \frac{Q}{t}$$

Jednotka: W (Watt) = J/s

1.4 Entalpie (Enthalpy)

Definice:

Entalpie je fyzikální veličina rozměru energie, která vyjadřuje celkovou energii systému včetně vnitřní energie a energie spojené s tlakem a objemem.

Symbol: H Jednotka: J (Joule)

2 Základní rovnice

2.1 Diskontinuální provoz (bez průtoku v čase)

Ohřev nebo ochlazení látky:

$$Q = m \cdot c_p \cdot (T_2 - T_1)$$

Popis veličin:

Veličina	Popis	Jednotka
\overline{Q}	Teplo	J (Joule)
m	Hmotnost	kg
c_p	Měrná tepelná kapacita	${ m J/(kg{\cdot}K)}$
T_1	Počáteční teplota	°C nebo K
T_2	Konečná teplota	°C nebo K

2.2 Kontinuální provoz (s průtokem v čase)

Ohřev nebo ochlazení tekutiny:

$$\dot{Q} = \dot{m} \cdot c_p \cdot (T_2 - T_1)$$

Popis veličin:

Veličina	Popis	Jednotka
\dot{Q}	Tepelný tok	W (Watt)
\dot{m}	Hmotnostní tok	$\mathrm{kg/s}$
c_p	Měrná tepelná kapacita	$\mathrm{J/(kg \cdot K)}$
T_1	Teplota na vstupu	°C nebo K
T_2	Teplota na výstupu	°C nebo K

2.3 S fázovou změnou (var/kondenzace)

Kompletní rovnice s odpařováním:

$$\dot{Q} = \dot{m} \cdot c_{p,kapaliny} \cdot (T_{var} - T_1) + \dot{m} \cdot l_v + \dot{m} \cdot c_{p,pry} \cdot (T_2 - T_{var})$$

Popis veličin:

Veličina	Popis	Jednotka
$c_{p,kapaliny} \ c_{p,pry} \ l_v \ T_{var}$	Měrná tepelná kapacita kapaliny Měrná tepelná kapacita páry Měrné skupenské teplo varu Teplota varu	$J/(kg \cdot K)$ $J/(kg \cdot K)$ J/kg °C nebo K

Fyzikální význam:

• První člen: Ohřev kapaliny na teplotu varu

• Druhý člen: Energie potřebná ke změně skupenství (odpařování)

• Třetí člen: Ohřev páry nad teplotu varu

3 Zákony zachování

3.1 Zákon zachování hmoty

Obecná bilance:

$$Vstup = V ystup + Akumulace$$

Pro ustálený stav (akumulace = 0):

$$\dot{m}_{vstup} = \dot{m}_{vstup}$$

Fyzikální význam:

- Hmota nemůže vzniknout ani zaniknout
- V uzavřeném systému je celková hmotnost konstantní
- Hmotnostní toky do systému se rovnají hmotnostním tokům ze systému

3.2 Zákon zachování energie

První termodynamický zákon:

Energie vstupující – Energie vystupující = Akumulace energie

Pro ustálený stav:

$$\dot{Q}_{vstup} + \dot{W}_{vstup} = \dot{Q}_{vstup} + \dot{W}_{vstup}$$

Fyzikální význam:

- Energie nemůže vzniknout ani zaniknout, pouze se přeměňuje
- Celková energie izolovaného systému je konstantní
- Energetická bilance zahrnuje teplo i práci

3.3 Obecná bilance

Univerzální rovnice bilance:

$$Vstup + Výroba = Výstup + Spotřeba + Akumulace$$

Aplikace:

- Hmotnostní bilance: Výroba = 0, Spotřeba = 0
- Energetická bilance: Energie se nemění na hmotu
- Látkové bilance: Pro jednotlivé složky směsi

4 Měrné tepelné kapacity běžných látek

Látka	$c_p [\mathrm{J/(kg \cdot K)}]$	Poznámka
Voda (kapalná)	4 186	Nejvyšší ze společných látek
Vzduch	1005	Při konstantním tlaku
Led	2050	Při 0°C
Vodní pára	2010	Při 100°C
Hliník	897	Kovy obecně nízká hodnota
Měď	385	
Železo	449	
Olovo	129	
Ethanol	2440	
Rtuť	140	

Důležité poznatky:

- Voda má jednu z nejvyšších měrných tepelných kapacit
- $\bullet\,$ Kovy mají obecně nízké hodnoty c_p
- $\bullet\,$ Vyšší c_p znamená větší schopnost akumulovat teplo

5 Měrná skupenská tepla

5.1 Voda

Děj	Symbol	Hodnota	Jednotka
Tání ledu	l_t	334 000	$\rm J/kg$
Tuhnutí vody	l_t	334000	$\mathrm{J/kg}$
Var vody	l_v	2260000	$\mathrm{J/kg}$
Kondenzace páry	l_v	2260000	J/kg

Fyzikální význam:

- Skupenské teplo je energie potřebná ke změně skupenství bez změny teploty
- Při varu a kondenzaci se přenáší velké množství energie
- Proto je vodní pára efektivní pro přenos tepla (parní topení)

5.2 Další látky

Látka	Tání l_t [J/kg]	$\mathrm{Var}\ l_v\ [\mathrm{J/kg}]$
Ethanol	108 000	838 000
Hliník	397000	10900000
Olovo	23000	858000
Rtuť	11 800	272000

6 Praktické aplikace

6.1 Výpočet tepla pro ohřev vody

Bez fázové změny:

$$Q = m \cdot c_p \cdot \Delta T$$

Příklad: Ohřát 2 kg vody z 20°C na 80°C

$$Q = 2 \cdot 4186 \cdot (80 - 20) = 502,320 \text{ J} = 502,3 \text{ kJ}$$

6.2 Výpočet výkonu pro var vody

S fázovou změnou:

$$\dot{Q} = \dot{m} \cdot (c_p \cdot \Delta T + l_v)$$

 $\bf Příklad:$ Odpařit $0.1~\rm kg/s$ vody při $100^{\circ}\rm C$ (již horká voda)

$$\dot{Q} = 0.1 \cdot 2.26 \times 10^6 = 226,000 \text{ W} = 226 \text{ kW}$$

6.3 Směšování látek

Zákon zachování energie při směšování:

$$m_1 \cdot c_{p1} \cdot (T_1 - T_{vsl}) = m_2 \cdot c_{p2} \cdot (T_{vsl} - T_2)$$

Kde:

- $T_1 > T_{vsl} > T_2$
- Teplejší látka odevzdává teplo, chladnější přijímá
- $\bullet\,$ Výsledná teplota T_{vsl} leží mezi T_1 a T_2

7 Souhrn jednotek v SI

Veličina	Jednotka SI	Další jednotky	Převody
Teplota	K (Kelvin)	°C, °F	$K = {^{\circ}C} + 273,15$
Teplo	J (Joule)	kJ, MJ, cal	$1~\mathrm{cal} = 4{,}186~\mathrm{J}$
Tepelný tok	W (Watt)	kW, MW	$1~\mathrm{W} = 1~\mathrm{J/s}$
Entalpie	J (Joule)	kJ, MJ	-
Hmotnost	kg (kilogram)	g, t	$1~\mathrm{t}=1000~\mathrm{kg}$
Hmotnostní tok	kg/s	kg/h, t/h	$1~{\rm kg/h} = 0.000278~{\rm kg/s}$
Měrná tepelná kapacita	${ m J/(kg{\cdot}K)}$	$\mathrm{kJ/(kg\cdot K)}$	-
Měrné skupenské teplo	$\mathrm{J/kg}$	$\mathrm{kJ/kg},\mathrm{MJ/kg}$	-
Čas	s (sekunda)	min, h	$1~\mathrm{h} = 3600~\mathrm{s}$

Poznámky

- **Teplota vs. Teplo:** Teplota je stavová veličina (nezávisí na množství), teplo je dějová (závisí na množství)
- Uzavřený systém: Systém, který nevyměňuje hmotu s okolím (ale může vyměňovat energii)
- Izolovaný systém: Systém, který nevyměňuje ani hmotu, ani energii s okolím
- Ustálený stav: Stav, kdy se veličiny v systému nemění v čase (akumulace = 0)
- Fázová změna: Změna skupenství probíhá při konstantní teplotě (bod varu, bod tání)
- \bullet Měrná vs. celková veličina: Měrná veličina je vztažena na jednotku hmotnosti (J/kg), celková na celkové množství (J)