

Софийски университет "Св. Климент Охридски" гр. София

Факултет по математика и информатика

Документация

към проект по "Бази от знания" на тема: "Онтология за книги – извличане на информация" – група А

Изготвено от: Кристияна Николова,

ИИ, 9МІЗ400442

Идея на проекта:

Идеята зад използването на онтология за книги е да създадем структурирано представяне на информацията, свързана с книгите и литературата като цяло. Целта е да предоставим по-лесен начин за търсене, организация и анализ на информацията за книгите, както и да подпомогнем автоматизирането на някои процеси в областта на литературата и издателствата. Може да е от полза на читатели, книгоиздатели, критици, библиотекари и други, които работят с книги и литературни данни.

Ето някои от предимствата и целите на използването на тази онтология:

- 1. **Извличане на информация за различни книги** потребителите могат бързо да намерят книги по зададени характеристики:
 - а. Конкретен автор
 - b. Жанр
 - с. Конкретно издателство
 - d. Година на издаване
 - е. Брой страници
- 2. Класифициране на книгите по жанрове
- 3. Извличане на книги спрямо конкретно издателство
- 4. Извличане на всички книги от конкретен жанр
- 5. Извличане на статистики/информация за автор/издателство

Използването на онтология за книги може значително да подобри начина, по който работим с информацията за книгите, като предостави по-ефективни и интелигентни инструменти за търсене, анализ и управление на литературни данни.

Описание на данните:

Данните се състоят от 4 kласа – Author, kойто е подклас на Person, Book, Genre, Publisher.

Всички property-та на kласа Book, които можем да използваме, за да извеждаме информация, можем да извлечем по следния начин:

След пускане на заявката получаваме следните 8 property-та:

Можем да извлечем и съответните домейни:

Визуализации на графа:

Прости заявки върху индивидите в базата

1. Можем да изведем всички автори, които са част от нашата онтология:

Заявка:

Резултат: Заявката извежда общо 3125 уникални резултата.

Нека да видим и от каква националност са тези автори:

Заявка:

Резултат:

Сега, нека изведем всички книги, чиито автори са българи:

Заявка:

```
query × ⊕
1 * PREFIX bko: <http://example.org/book/ontology#>
 2 PREFIX dbp: <http://dbpedia.org/property/>
 3 PREFIX dbo: <http://dbpedia.org/ontology/>
 4 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 5 - SELECT DISTINCT ?bookName ?authorName WHERE {
       ?book a bko:Book .
       ?book bko:hasAuthor ?author ;
          dbp:title ?bookName .
 8
      ?author a bko:Author ;
 9
10
                 dbp:name ?authorName :
11
                 bko:nationality "Bulgaria" .
12 }
13 ORDER BY DESC(?authorName)
```

Резултат: резултатът е сортиран в намаляващ ред – общо 12 резултата

2. Извличане на всички книги на даден автор:

За целта избираме да извлечем информация за всички произведения на Иван Вазов.

Заявка:

Резултат:

3. Търсене на автора на конкретна книга:

Заявка:

```
query X

1 PREFIX bko: <a href="http://example.org/book/ontology#">http://example.org/book/ontology#">prefix dbp: <a href="http://dbpedia.org/property/">http://dbpedia.org/property/</a>
PREFIX dbo: <a href="http://dbpedia.org/ontology/">http://dbpedia.org/ontology/</a>
PREFIX rdfs: <a href="http://www.w3.org/2000/01/rdf-schema#">http://www.w3.org/2000/01/rdf-schema#</a>
SELECT ?authorName WHERE {

?book a bko:Book .

?book bko:hasAuthor ?author;

dbp:title "Under the Yoke" .

?author a bko:Author;

dbp:name ?authorName .
```

Резултат: Ivan Vazov

4. Извличане на информация за всички жанрове, част от нашата онтология:

Заявка:

Резултат: 614 различни жанра

5. Извличане на жанра на дадено произведение:

Ще извлечем информация за жанра на всички произведения в онтологията, които са написани от български автори.

```
query X
 1 * PREFIX bko: <http://example.org/book/ontology#>
 2 PREFIX dbp: <http://dbpedia.org/property/>
 3 PREFIX dbo: <http://dbpedia.org/ontology/>
    PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 5 * SELECT ?bookName ?authorName ?genreName WHERE {
         ?book a bko:Book .
 7
         ?book bko:hasAuthor ?author ;
              dbp:title ?bookName;
 8
 9
              bko:hasGenre ?genre .
10
        ?genre dbp:name ?genreName .
11
         ?author a bko:Author ;
12
                  dbp:name ?authorName ;
13
                  bko:nationality "Bulgaria" .
14 }
```

Резултат: 13 резултата

6. Извличане на всички произведения от даден жанр:

Например, нека извлечем информация за всички произведения, които са поеми.

Заявка:

```
query X
 1 • PREFIX bko: <a href="http://example.org/book/ontology"> http://example.org/book/ontology</a>
  2 PREFIX dbp: <http://dbpedia.org/property/>
     PREFIX dbo: <http://dbpedia.org/ontology/>
     PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
  5 - SELECT ?bookName ?genreName WHERE {
         ?book a bko:Book .
  6
  7
          ?book dbp:title ?bookName ;
  8
               bko:hasGenre ?genre .
 9
          ?genre dbp:name ?genreName .
 10
          FILTER(?genreName = "poem" )
 11 }
```

Резултат: 22 поеми

7. Извличане на информация за всички издателства, част от нашата онтология:

Резултат: 637 уникални издателства

8. Извличане на издателството на дадено произведение:

Заявка:

Решение: 1 резултат – Todor Chipev

9. Извличане на всички произведения, издадени от конкретно издателство:

Ще извлечем всички произведения, които са издадени под името на "Viking Press".

Заявка:

Резултат: 34 резултата

10. Извличане на годината на издаване на дадено произведение:

Заявка:

Резултат:

11. Извличане на информация за броя на страниците на дадено произведение:

Заявка:

Резултат:

Операции с множества

1. Операция UNION:

Ще изведем всички произведения, които са или трилъри, или са написани от J. K. Rowling.

Заявка:

```
query × ⊕
  1 PREFIX bko: <a href="http://example.org/book/ontology#>"> PREFIX bko: <a href="http://example.org/book/ontology#"> PREFIX bko: <a href="http://example.org/
    2 PREFIX dbp: <http://dbpedia.org/property/>
    3 PREFIX dbo: <http://dbpedia.org/ontology/>
    4 PREFIX rdfs: <a href="http://www.w3.org/2000/01/rdf-schema">http://www.w3.org/2000/01/rdf-schema#>
     5 | SELECT ?bookName ?authorName ?genreName WHERE {
     6 *
    7
                               ?book a bko:Book .
     8
                               ?book dbp:title ?bookName ;
    9
                                                     bko:hasGenre ?genre ;
 10
                                                   bko:hasAuthor ?author .
 11
                          ?genre dbp:name ?genreName .
 12
                              ?author dbp:name ?authorName .
 13
                             FILTER(?genreName = "thriller")
 14
 15
                           UNION
 16 🔻
 17
                              ?book a bko:Book .
 18
                             ?book dbp:title ?bookName ;
 19
                                  bko:hasGenre ?genre ;
 20
                                                  bko:hasAuthor ?author .
 21
                              ?genre dbp:name ?genreName .
 22
                               ?author dbp:name ?authorName .
 23
                              FILTER(?authorName = "J. K. Rowling")
 24
 25 }
```

Резултат: 217 резултата общо – извеждаме името на произведението, автора и жанра

Interview mit Ed	Ivar Leon Menger	thriller
Das böse Zimmer - Teil 1	Hendrik Buchna	thriller
Das System	Karl Olsberg	thriller
my bad heart	Wulf Dorn	thriller
The Casual Vacancy	J. K. Rowling	political fiction
The Casual Vacancy	J. K. Rowling	tragicomedy
The Casual Vacancy	J. K. Rowling	black comedy
Harry Potter and the Philosopher's Stone	J. K. Rowling	adventure fiction

В този случаи се обединяват всички произведения, които са трилъри, с всички произведения, които са написани от J. K. Rowling, независимо дали те са трилъри или не.

2. Операция MINUS:

Ще изведем всички произведения, които написани от J. K. Rowling, но ще премахнем тези, които са crime fiction.

Първо да видим колко са всички книги, написани от J. K. Rowling.

Заявка:

```
query \times \oplus
   1 PREFIX bko: <a href="http://example.org/book/ontology#>"> PREFIX bko: <a href="http://example.org/book/ontology#"> PREFIX bko: <a href="http://example.org
     2 PREFIX dbp: <http://dbpedia.org/property/>
     3 PREFIX dbo: <http://dbpedia.org/ontology/>
      4 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
    5 * SELECT ?bookName ?authorName ?genreName WHERE {
                                        ?book a bko:Book .
                                        ?book dbp:title ?bookName ;
                                                 bko:hasGenre ?genre ;
     8
    9
                                                                        bko:hasAuthor ?author .
                                        ?genre dbp:name ?genreName .
 11
                                           ?author dbp:name ?authorName .
                                         FILTER(?authorName = "J. K. Rowling")
12
13 }
```

Резултат: 33 резултата общо

Сега да видим konko са резултатите, след kaто премахнем всички произведения на J. K. Rowling, kouto са "crime fiction".

```
query \times \oplus
   1 PREFIX bko: <a href="http://example.org/book/ontology#>">bko: <a href="http://example.org/book/ontology#>">bko: <a href="http://example.org/book/ontology#>">bko: <a href="http://example.org/book/ontology#>">bko: <a href="http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book/ontology#>">http://example.org/book
    2 PREFIX dbp: <http://dbpedia.org/property/>
     3 PREFIX dbo: <http://dbpedia.org/ontology/>
      4 PREFIX rdfs: <a href="http://www.w3.org/2000/01/rdf-schema#">http://www.w3.org/2000/01/rdf-schema#>
     5 | SELECT ?bookName ?authorName ?genreName WHERE {
     6 *
                             ?book a bko:Book .
     8
                              ?book dbp:title ?bookName ;
    9
                                                     bko:hasGenre ?genre ;
  10
                                                      bko:hasAuthor ?author .
 11
                              ?genre dbp:name ?genreName .
 12
                                ?author dbp:name ?authorName
 13
                             FILTER(?authorName = "J. K. Rowling")
                            }
 14
 15
                            MINUS
 16 🔻
 17
                                ?book a bko:Book .
 18
                                ?book dbp:title ?bookName ;
 19
                                                     bko:hasGenre ?genre ;
 20
                                                     bko:hasAuthor ?author .
 21
                                ?genre dbp:name ?genreName .
 22
                                ?author dbp:name ?authorName .
 23
                                FILTER(?genreName = "crime fiction")
 24
 25 }
```

Резултат: 27 резултата общо

Можем да заключим, че J. K. Rowling има 5 написани произведения, които са от жанр "crime fiction".

Отговаряне на по-сложни въпроси чрез FILTER

Чрез операцията FILTER можем да филтрираме произведения по зададени критерии – да включваме/изключваме определени жанрове, автори, да задаваме диапазон на годините на издаване и диапазон на брой страници.

- 1. Ще изведем всички произведения, които притежават следните характеристики:
 - a. Жанр fantasy, young adult fiction, comedy
 - b. Автор всички автори, освен тези от френски произход
 - с. Година на издаване между 2000г. и 2024г.
 - d. Брой страници между 360 и 520 страници
 - е. Издателство без ограничения

Чрез задаване на толкова конкретни критерии, можем значително по-лесно да намираме произведенията, които ни интересуват.

Заявка:

```
query X
    1 PREFIX bko: <a href="http://example.org/book/ontology#>"> PREFIX bko: <a href="http://example.org/book/ontology#"> PREFIX bko: <a href="http://exa
    2 PREFIX dbp: <http://dbpedia.org/property/>
    3 PREFIX dbo: <http://dbpedia.org/ontology/>
    4 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
    5 | SELECT ?bookName ?authorName ?nationality ?genreName ?year ?pages WHERE {
                          BIND(YEAR(?releaseDate) as ?year)
    7
                          ?book a bko:Book .
                         ?book dbp:title ?bookName ;
    9
                                                bko:hasGenre ?genre ;
                                                 bko:hasAuthor ?author ;
 10
                                                 bko:releaseDate ?releaseDate ;
 11
 12
                                                 bko:numberOfPages ?pages .
 13
                            ?genre dbp:name ?genreName .
                             ?author dbp:name ?authorName ;
 14
 15
                                                         bko:nationality ?nationality .
 16
                            FILTER(?genreName in ("fantasy", "young adult fiction", "comedy"))
 17
                             FILTER(?nationality not in ("France"))
 18
                             FILTER(?year ≥ 2000 && ?year ≤ 2024)
 19
                             FILTER(?pages ≥ 360 && ?pages ≤ 520)
 20 }
```

Резултат: получаваме само 4 произведения, които отговарят на зададените критерии

Chart Config			Showing results from 0 to 4 c	of 4. Query took 0).3s, minutes ago.
bookName	authorName	nationality	genreName	year	pages
The Legend of Sigurd and Gudrún	Christopher Tolkien	United Kingdom	fantasy	2,009	384
The Legend of Sigurd and Gudrún	J. R. R. Tolkien	United Kingdom	fantasy	2,009	384
The Buried Giant	Kazuo Ishiguro	United Kingdom	fantasy	2,015	415
Something Rotten	Jasper Fforde	United Kingdom	fantasy	2,004	393

Създаване на нови променливи чрез BIND

Можем да използваме функцията BIND, за да създаваме нови променливи в рамките на заявката чрез присвояване на стойности и резултати от изрази. Това е полезно за изпълнение на различни операции като изчисления, преобразувания или добавяне на допълнителни данни към резултатите. В нашия случай, например, чрез BIND можем да създадем допълнителна променлива, която указва дали произведението е сравнително ново (издадено след 2022г.), дали произведението е кратко, средно дълго или дълго и т.н.

Ще преработим малко горната заявка.

```
query X (+)
1 PREFIX bko: <http://example.org/book/ontology#>
 2 PREFIX dbp: <http://dbpedia.org/property/>
 3 PREFIX dbo: <http://dbpedia.org/ontology/>
 4 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 5 * SELECT ?bookName ?authorName ?nationality ?genreName ?year ?basedOnYear ?pages ?basedOnPages WHERE {
       VALUES ?genres {"fantasy" "young adult fiction" "comedy"}
 7
      ?book a bko:Book .
 8
       ?book dbp:title ?bookName ;
 9
            bko:hasGenre ?genre ;
             bko:hasAuthor ?author ;
11
             bko:releaseDate ?releaseDate ;
             bko:numberOfPages ?pages .
12
      ?genre dbp:name ?genreName .
13
14
      ?author dbp:name ?authorName ;
15
               bko:nationality ?nationality .
16
       FILTER(?genreName in (?genres))
17
       FILTER(?nationality not in ("France"))
18
       FILTER(?year ≥ 2000 && ?year ≤ 2024)
19
       FILTER(?pages ≥ 140 && ?pages ≤ 520)
20
       BIND(YEAR(?releaseDate) as ?year)
21
        BIND(IF(?year ≥ 2015, "New Book", "Old Book") as ?basedOnYear)
        BIND(IF(?pages ≤ 150, "Short Length", IF(?pages ≤ 450, "Medium Length", "Long Length")) as ?basedOnPages)
22
23 }
```

Чрез функцията VALUES задаваме, че променливата ?genres може да приема само стойностите в скобите. Така постигаме по-подреден вид на заявката.

Heka разгледаме ред 20 — чрез функцията YEAR извличаме само годината на издаване и я записваме в променливата ?year.

Нека разгледаме ред 21 — правим проверка дали произведението е ново — всичко, издадено след 2015 година, се счита за "ново", а всичко преди това — "за старо". Резултатът се записва съответно в променливата ?basedOnYear.

Нека разгледаме ред 22 — правим проверка дали произведението е кратко, средно дълго или дълго. Всичко под 150 страници се счита за "short length", всичко между 150 и 450 — за "medium length", а всичко над 450 страници — за "long length". Резултатът се записва в променливата ?basedOnPages.

Резултат: 7 резултата

Chart Config Showing results from 0 to 7 of 7. Query took 0.1s, moments ag							
bookName	authorName	nationality	genreName	year	basedOnYear	pages	basedOnPages
The Legend of Sigurd and Gudrún	Christopher Tolkien	United Kingdom	fantasy	2,009	Old Book	384	Medium Length
The Legend of Sigurd and Gudrún	J. R. R. Tolkien	United Kingdom	fantasy	2,009	Old Book	384	Medium Length
The Buried Giant	Kazuo Ishiguro	United Kingdom	fantasy	2,015	New Book	415	Medium Length
Harry Potter and the Cursed Child	J. K. Rowling	United Kingdom	fantasy	2,016	New Book	328	Medium Length

Ще променим малко заявката, за да изведем книги с различна дължина.

Заявка: само книги под 150 страници

```
query X
 1 PREFIX bko: <http://example.org/book/ontology#>
 2 PREFIX dbp: <http://dbpedia.org/property/>
 3 PREFIX dbo: <http://dbpedia.org/ontology/>
 4 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 5 * SELECT ?bookName ?pages ?basedOnPages WHERE {
 6
       ?book a bko:Book .
 7
        ?book dbp:title ?bookName ;
 8
            bko:numberOfPages ?pages .
 9
        FILTER(?pages \geq 0 && ?pages \leq 150)
10
        BIND(IF(?pages \le 150, "Short Length", IF(?pages \le 450, "Medium Length", "Long Length")) as ?basedOnPages)
11 }
```

Резултат: 49 резултата

Заявка: само книги между 150 и 450 страници

```
query X
1 PREFIX bko: <http://example.org/book/ontology#>
 2 PREFIX dbp: <http://dbpedia.org/property/>
 3 PREFIX dbo: <http://dbpedia.org/ontology/>
 4 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 5 | SELECT ?bookName ?pages ?basedOnPages WHERE {
       ?book a bko:Book .
 7
        ?book dbp:title ?bookName ;
 8
            bko:numberOfPages ?pages .
 9
        FILTER(?pages \geq 151 && ?pages \leq 450)
10
        BIND(IF(?pages ≤ 150, "Short Length", IF(?pages ≤ 450, "Medium Length", "Long Length")) as ?basedOnPages)
11 }
```

Резултат: 156 резултата

Chart Config	Showing results from 0 to 156 of 156. Query took 0.1s, moments as
bookName	pages basedOnPages
L'Ecossaise	204 Medium Length
Master of the World	317 Medium Length
Paris in the Twentieth Century	216 Medium Length
A Happy Death	230 Medium Length

Зая6ka: само книги над 450 страници

Резултат: 45 резултата

Chart Config	Showing results from 0 to	45 of 45. Query took 0.1s, moments ago.
bookName	pages	basedOnPages
Journey to the End of the Night	623	Long Length
Madness and Civilization	672	Long Length
Histoire naturelle du Sénégal	624	Long Length
Capital and Ideology	1,197	Long Length
The Unknown Revolution	690	Long Length

Aggregation Functions

Както знаем, агрегиращите функции (като COUNT, SUM, AVG, MIN, MAX) са полезни за изчисляване на статистики, събиране на данни и получаване на обобщена информация. В нашия случай, можем да ги използваме, за да преброим колко автори са от дадена националност, колко произведения притежава даден автор, изчисляване на средната дължина на книгите на даден автор и т.н. Това би било изключително полезно при съставянето на някакви статистики.

Нека покажем как се работи с тези функции чрез няколко примера.

1. COUNT – да преброим konko са авторите от дадена националност

Заявка:

Резултат:

Сега да преброим колко произведения притежава всеки автор, който е французин.

```
query X
        1 PREFIX bko: <a href="http://example.org/book/ontology#>"> PREFIX bko: <a href="http://example.org/book/ontology#"> PREFIX bko: <a href="http://exa
                       PREFIX dbp: <http://dbpedia.org/property/>
                        PREFIX dbo: <a href="http://dbpedia.org/ontology/">http://dbpedia.org/ontology/>
                        PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
        5 * SELECT DISTINCT ?authorName (COUNT(?book) as ?number) WHERE {
        6
                                                     ?book a bko:Book .
        7
                                                    ?book bko:hasAuthor ?author .
                                                     ?author bko:nationality "France";
        8
        9
                                                                                                    dbp:name ?authorName .
   10
                          GROUP BY ?authorName
```

Резултат: 848 резултата

Да изведем топ 3 на издателите, които имат най-много издадени книги.

Заявка:

Резултат:

Chart Config	Showing results from 0 to 3 of 3. Query took 0.1s, moments ago.
publisherName	total_books
HarperCollins	164
Hodder & Stoughton	120
Macmillan Publishers	101

2. SUM – да преброим общия брой страници на θсички произθедения на даден аθтор, който е от френски произход

Заявка:

```
query X
 1 PREFIX bko: <http://example.org/book/ontology#>
 2 PREFIX dbp: <http://dbpedia.org/property/>
 3 PREFIX dbo: <http://dbpedia.org/ontology/>
    PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 5 * SELECT DISTINCT ?authorName (SUM(?pages) as ?total_pages) WHERE {
        ?book a bko:Book .
 6
 7
        ?book bko:hasAuthor ?author ;
 8
             bko:numberOfPages ?pages .
 9
        ?author bko:nationality "France";
                dbp:name ?authorName .
10
11
12 GROUP BY ?authorName
```

Резултат: 93 резултата

3. AVG – да изведем средната дължина на произведенията на всеки автор, който е от български произход

```
query X
 1 PREFIX bko: <http://example.org/book/ontology#>
 2 PREFIX dbp: <http://dbpedia.org/property/>
 3 PREFIX dbo: <http://dbpedia.org/ontology/>
   PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 5 SELECT DISTINCT ?authorName (AVG(?pages) as ?avg_length)
 6 ▼ WHERE {
        ?book a bko:Book .
 7
        ?book bko:hasAuthor ?author ;
 8
 9
             bko:numberOfPages ?pages .
10
        ?author bko:nationality "Bulgaria" ;
11
                dbp:name ?authorName .
12 }
13 GROUP BY ?authorName
```

Резултат: 2 резултата

Въпреки че в онтологията съществува информация за 10 различни български автора, нашата заявка връща само 2 резултата, защото само за тези двама автори съществува информация относно дължината на произведенията им.

За да се справим с този проблем, да изведем всички книги, независимо дали има информация за брой страници или не, можем да използваме OPTIONAL функцията. Сега ще изведем общия брой на книгите на всеки автор и средната дължина на всяка книга.

```
query \times \oplus
   1 PREFIX bko: <a href="http://example.org/book/ontology#>"> PREFIX bko: <a href="http://example.org/book/ontology#"> PREFIX bko: <a href="http://example.org/book/ontology#"> PREFIX bko: <a href="http://example.org/book/ontology#"> PREFIX bko: <a href="http://example.org/book/ontology#"> PREFIX bko: <a hre
     2 PREFIX dbp: <http://dbpedia.org/property/>
     3 PREFIX dbo: <http://dbpedia.org/ontology/>
      4 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
     5 * SELECT DISTINCT ?authorName (COUNT(?book) as ?total_books) (ROUND(AVG(?pages) * 100) / 100 as ?avg_pages) WHERE {
     6
                                      ?book a bko:Book .
                                      ?book bko:hasAuthor ?author .
     8
                                     ?author dbp:name ?authorName .
     9 *
                                     OPTIONAL {
 10
                                                          ?book bko:numberOfPages ?pages .
 11
 13 GROUP BY ?authorName
 14 ORDER BY DESC(?total_books)
```

Резултат: 3125 резултата – средната дължина е закръглена до втория знак след десетичната запетая

Chart Config	Showing results from 0 to 10	000 of 3125. Query took 0.2s, moments ago.
authorName	total_books	avg_pages
Agatha Christie	214	256
Jules Verne	77	266.5
Arthur Conan Doyle	74	305
Terry Pratchett	66	448.67
Voltaire	51	133
H. G. Wells	50	0.0
Piers Anthony	47	0.0
Arther C. Clark	44	273.5
Tanith Lee	42	0.0
P. G. Wodehouse	34	224

4. MIN/MAX – да изведем максималната дължина на произведение на всеки автор, който е с английски произход

Заявка:

```
query X
 1 * PREFIX bko: <http://example.org/book/ontology#>
 2 PREFIX dbp: <http://dbpedia.org/property/>
 3 PREFIX dbo: <http://dbpedia.org/ontology/>
 4 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 5 SELECT DISTINCT ?authorName (MAX(?pages) as ?longest)
 6 ▼ WHERE {
 7
       ?book a bko:Book .
 8
        ?book bko:hasAuthor ?author :
 9
            bko:numberOfPages ?pages .
10
       ?author bko:nationality "United Kingdom" ;
11
               dbp:name ?authorName .
12 }
13 GROUP BY ?authorName
```

Резултат: 115 резултата

Заявки за логически извод

Reasoning-а позволява на потребителите да извличат скрита информация — например вместо да се извежда информация само за директни инстанции на даден kлас, reasoning-а ни позволява да извеждаме информация и за под-класовете на съответен kлас. Във всички заявки до тук сме използвали само включен reasoning. Ще дадем пример с 3 заявки към онтологията, която използваме за целите на проекта — с включен и изключен reasoning.

1. Може би най-добрият начин да покажем как точно работи reasoning-ът в нашата онтология е чрез извеждането на книгите, които са поредици. Всички книги, които са част от някаква поредица, притежават свойството followedBy, което "сочи" към следващата книга в поредицата.

При изключен reasoning се извеждат само книгите, които пряко следват след дадена книга.

```
query X

1  PREFIX bko: <http://example.org/book/ontology#>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

5  SELECT ?bookName ?followedByName WHERE {
    ?book a bko:Book .
    ?book dbp:title ?bookName ;
    bko:followedBy ?followingBook .
    ?followingBook dbp:title ?followedByName .

10 }
```

Резултат: 1046 резултата

При включен reasoning се извеждат всички книги, които следват след дадена книга. Така се включват не само преките наследници, но и тези по-надълбоко в йерархията.

Заявка:

Резултат: 4398 резултата

2. Сега да изберем една поредица – например "The Sea Serpent", за да покажем по-нагледно как работи reasoning-ът.

```
\oplus
query X
 1 PREFIX bko: <http://example.org/book/ontology#>
 2
    PREFIX dbp: <http://dbpedia.org/property/>
    PREFIX dbo: <http://dbpedia.org/ontology/>
 3
    PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 4
 5 | SELECT ?bookName ?followedByName WHERE {
        ?book a bko:Book .
 6
 7
        ?book dbp:title ?bookName ;
               bko:followedBy ?followingBook .
 8
 9
        FILTER(?bookName = "The Sea Serpent")
10
        ?followingBook dbp:title ?followedByName .
11
```

Резултат:

• Без reasoning: 1 резултат

Получаваме само книгата, която следва директно след "The Sea Serpent".

Нека изведем книгата след "The Kip Brothers".

```
query X
           \oplus
 1  PREFIX bko: <http://example.org/book/ontology#>
 2 PREFIX dbp: <http://dbpedia.org/property/>
 3 PREFIX dbo: <http://dbpedia.org/ontology/>
 4 PREFIX rdfs: <a href="http://www.w3.org/2000/01/rdf-schema">http://www.w3.org/2000/01/rdf-schema#>
 5 * SELECT ?bookName ?followedByName WHERE {
        ?book a bko:Book .
 6
        ?book dbp:title ?bookName ;
 7
 8
               bko:followedBy ?followingBook .
 9
         FILTER(?bookName = "The Kip Brothers")
         ?followingBook dbp:title ?followedByName .
10
11 }
```

о **Без reasoning:** 1 резултат

о C reasoning: 6 резултата

Chart Config		Charries as with faces One 6 of 6 Occasionals O.1 a security and
Chart Conlig		Showing results from 0 to 6 of 6. Query took 0.1s, moments ago.
bookName	followedByName	
The Kip Brothers	Master of the World	
The Kip Brothers	Invasion of the Sea	
The Kip Brothers	The Lighthouse at the End of the World	
The Kip Brothers	The Golden Volcano	
The Kip Brothers	Traveling Scholarships	
The Kip Brothers	A Drama in Livonia	

C reasoning: 7 резултата

Получаваме всички книги, които са част от поредицата, и следват след "The Sea Serpent".

bookName	followedByName
The Sea Serpent	Master of the World
The Sea Serpent	Invasion of the Sea
The Sea Serpent	The Lighthouse at the End of the World
The Sea Serpent	The Golden Volcano
The Sea Serpent	The Kip Brothers
The Sea Serpent	Traveling Scholarships
The Sea Serpent	A Drama in Livonia

3. В нашите данни Author е подклас на класа Person. Следователно това също е още един хубав пример, с който да покажем как работи reasoning-a.

Ще разгледаме общо 4 случая:

а. Използване на knaca Person без reasoning:

Заявка:

```
query X
             \oplus
 1 PREFIX bko: <a href="http://example.org/book/ontology#>"> PREFIX bko: <a href="http://example.org/book/ontology#>"> http://example.org/book/ontology#></a>
 2 PREFIX dbp: <a href="http://dbpedia.org/property/">http://dbpedia.org/property/>
 3 PREFIX dbo: <http://dbpedia.org/ontology/>
 4 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 5 * SELECT ?authorName ?bookName WHERE{
         ?book a bko:Book .
 7
         ?book bko:hasAuthor ?author ;
 8
            dbp:title ?bookName .
 9
          ?author a dbo:Person;
10
                        dbp:name ?authorName .
11 }
```

Резултат:

Заявката не извежда нищо, защото Author е подклас на Person (а всички автори в онтологията са от knac Author), а без reasoning не може да се постигне логически извод.

b. Използване на knaca Person c reasoning:

Резултат: 7660 резултата

С включен reasoning се извеждат всички автори от класа Author, които са наследници на класа Person.

с. Използване на knaca Author без reasoning:

Заявка:

```
query × ⊕
1 PREFIX bko: <http://example.org/book/ontology#>
 2 PREFIX dbp: <http://dbpedia.org/property/>
 3 PREFIX dbo: <http://dbpedia.org/ontology/>
 4 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 5 SELECT ?authorName ?bookName WHERE{
      ?book a bko:Book .
 7
      ?book bko:hasAuthor ?author ;
 8
         dbp:title ?bookName .
      ?author a bko:Author;
 9
10
                dbp:name ?authorName .
11 }
```

Резултат: 7660 резултата

Chart Config		Showing results from 0 to 1000 of 7660. Query took 0.1s, moments ago.
authorName	bookName	A
Émile Durkheim	Suicide	
Émile Durkheim	The Rules of Sociological Method	
Arthur Rimbaud	Le Bateau ivre	
Arthur Rimbaud	Poésies	
Arthur Rimbaud	Voyelles	
Arthur Rimbaud	Le Cœur supplicié	

Дори без включен reasoning, получаваме същия отговор като горе, защото всички автори са от клас Author, т.е. заявката търси всички директни инстанции, а не подкласове.

d. Използване на knaca Author c reasoning:

Абсолютно същите резултати като в горната заявка. Няма значение в случая дали изпълняваме заявката с включен или изключен reasoning. Щеше да е от значение, ако например Author имаше подкласове като Novelist, Poet, Journalist, Playwriter и т.н.

Източници

1. SPARQL Tutorial – How to use FILTER, BIND and IF-ELSE in BIND:

https://www.wikidata.org/wiki/Wikidata:SPARQL_tutorial

2. How to use ROUND in SPARQL:

https://stackoverflow.com/questions/66296758/sparql-query-round-a-floating-number-to-third-digit-after-decimal-point

3. Lectures