INCLUSÃO DO ALGORITMO DE TRANSFORMAÇÃO DE UM AUTÔMATO FINITO EM EXPRESSÃO REGULAR NO AMBIENTE "EDITOR DE AUTÔMATOS FINITOS"

Acadêmico: Fernando Rafael Piccini

Orientador: José Roque Voltolini da Silva

Roteiro da Apresentação

- > Introdução
- > Fundamentação Teórica
- > Desenvolvimento do Trabalho
- **≻ Conclusão**

<u>Introdução</u>

Editor de Autômatos Finitos (MORASTONI, 2002).

Objetivo principal:

- inclusão do algoritmo de transformação de um Autômato Finito (AF) em Expressão Regular (ER) no Editor de Autômatos Finitos.

Objetivos específicos:

- apresentar uma ER correspondente ao AF desenhado no Editor de Autômatos Finitos (EAF), utilizando o algoritmo de transformação proposto por Silva (2006);
- apresentar uma tabela de transição correspondente ao AF desenhado na ferramenta EAF;
- disponibilizar as funções para abrir e salvar a estrutura (grafo) de um AF na ferramenta EAF.

Fundamentação Teórica

- Expressões Regulares
- Autômato Finitos
- Equivalências
- Algoritmo de transformação de um AF em ER
- Protótipo que implementa o algoritmo de transformação de uma ER para um AF (GLATZ, 2000)

Expressão Regular

- ➤ Ø = para denotar a linguagem vazia;
- ε = palavra vazia;
- \triangleright (x + y) = união da linguagem X com a linguagem Y;
- (xy) = concatenação da linguagem X com a linguagem Y;
- (x^*) = fechamento da linguagem X.

Expressão Regular

expressão regular	linguagem denotada
aa	somente a palavra aa
(aa bb)	palavra com aa ou bb palavras que iniciam com a,
a(b) *	concatenado com zero ou mais ocorrências de b
(a b) ⁺	todas as palavras sobre { a, b }

Alfabeto composto pelas letras a e b ($\Sigma = \{a, b\}$).

Autômatos Finitos

$$M = (\Sigma, Q, \delta, q_0, F)$$
, onde:

- a) Σ = alfabeto de símbolos de entrada;
- b) Q = conjunto finito de estados possíveis ;
- c) δ = função de transição de estados;
- d) q_0 = estado inicial (elemento de Q);
- e) F = conjunto de estados finais (F está contido em Q).

Representação dos Autômatos Finitos

> Diagrama de transição

> Tabela de transição

	a	b
→ 0	1	_
1	_	\mathbf{fl}
* f1	fl	fl
	1	

Classificação dos Autômatos Finitos

- Autômatos Finitos Determinísticos (AFD)
- Autômatos Finitos Não-Determinísticos (AFN)
- > Autômatos Finitos com Movimento Vazio (ε-AFN)

Autômato Finito Determinístico (AFD)

➤ Ao processar um símbolo da entrada a partir do estado corrente, um AFD pode assumir um único estado.

Autômato Finito Não-Determinístico (AFN)

➤ Ao processar um símbolo de entrada a partir do estado corrente, um AFN pode ter como resultado um conjunto de novos estados.

Autômatos Finitos com Movimento Vazio (ε-AFN)

➤ Um movimento vazio é apenas uma transição sem leitura de símbolo algum e pode ser interpretado como um não determinismo.

Propriedades dos Autômatos Finitos

Estados mortos

> Estados inalcançáveis

Equivalências

> Equivalência entre as quatro notações para linguagens regulares

Fonte: Hopcroft, Ullman e Motwani (2002, p. 98)

Algoritmo de transformação de um AF em uma ER proposto em Silva (2006)

- Identificação dos estados (ID)
- Novos estados e transições
 - Estado inicial
 - Estados finais
- > Processo de transformação
 - União
 - Concatenação
 - Fechamento
 - Desdobramento

Algoritmo de transformação de um AF em uma ER proposto em Silva (2006)

Modelo de tabela para efetuar a transformação de um AF em ER

(X) linha excluida	NÓ DE ORIGEM (X)	EXPRESSÃO REGULAR (er)	NÓ DE DESTINO (Y)

Fonte: adaptado de Silva (2006)

Protótipo que implementa o algoritmo de transformação de uma ER para um AF

Tela principal do protótipo (Glatz, 2000)

Desenvolvimento do Trabalho

> Requisitos

> Especificação

> Implementação

> Operacionalidade

Principais Requisitos

- permitir abrir e salvar um arquivo contendo a estrutura (grafo) de um AF em arquivo;
- possuir um módulo para apresentação de tabela de transição;
- > gerar uma ER a partir de um AF;
- adicionar ao projeto a biblioteca RxLib para aprimoramento da interface.

Especificação

Orientação a objetos representado através dos:

- diagramas de casos de uso;
- diagramas de atividades;
- diagrama de classes.
- > Enterprise Architect

Caso de Uso: Desenhar AF

- Abrir um nova janela de edição no EAF;
- Criar estado inicial;
- Criar outros estados;
- Definir estados finais;
- > Criar transições entre os estados.

Diagrama de Atividade: Desenhar AF

Caso de Uso: Apresentar ER

- Escolher opção "Expressão Regular";
- Ferramenta executa o algoritmo de transformação de um AF para ER;
- EAF apresenta uma nova janela com a ER correspondente ao AF desenhado na tela de edição.

Diagrama de Atividade: Apresentar ER

Diagrama de Classe

Implementação

- **Ambiente**
 - Borland Delphi 7
- **Componentes**
 - TDesenha e TDesenhaLinha
- **Biblioteca**
 - RxLib

Algoritmo de transformação de um AF em uma ER proposto em Silva (2006)

(LE)	[(X)]	(ER)	[(Y)]	
F	1	a	2	
F	2	Ъ	2	
F	2	a	3	
F	2	b	3	
F	0	3	1	
F	3	3	4	

Modelo de tabela para efetuar a transformação de um AF em ER

União

(LE)	(X)	(ER)	(Y)
F	0	a	1
F	0	b	1

(LE)	(X)	(ER)	(Y)
\overline{T}	0	a	1
\overline{T}	0	ь	1
F	0	(a b)	1

Concatenação

(LE)	(X)	(ER)	(Y)
F	0	a	1
F	1	b	2

→ (0)—	ab	$\sqrt{2}$

(LE)	(X)	(ER)	(Y)
$\frac{\overline{T}}{T}$	0	a	1
\overline{T}	1	b	2
F	0	ab	2

Fechamento

(LE)	(X)	(ER)	(Y)
F	0	a	1
F	1	b	1
F	1	С	2

→	a(b)*c	$\sqrt{2}$

(LE)	(X)	(ER)	(Y)
T	0	a	1
T	1	ь	1
T	1	С	2
F	0	a (b)*c	2

Desdobramento

(LE)	(X)	(ER)	(Y)
F	0	a	1
F	1	b	2
F	2	С	3
$\overline{\mathbf{F}}$	2	\Box d	1

N1 =	1b
------	----

(LE)	(X)	(ER)	(Y)	
F	0	a	1	
\overline{T}	1	ь	2	A
F	2 1	bc	3	В
$\overline{\mathbf{F}}$	2 1	bd	1	В

Operacionalidade

> Tabela de Transição

> Expressão Regular

Tabela de Transição

Tabela de Transição

Expressão Regular

Expressão Regular

Expressão Regular

Resultados e Discussão

- > RxLib (Interface):
 - cores
 - padrões
 - formatos

Validação do Algoritmo de Transformação de um AF para uma ER

Interface antes da utilização da biblioteca RxLib

Interface após a utilização da biblioteca RxLib

AF₁ submetido para apresentação de uma expressão regular no EAF

ER₁ equivalente ao AF₁

ER₁ submetida há geração do AF₂ na ferramenta de Glatz (2000)

Apresentação do AF₂ gerado a partir da ER₁ "(a(cd|b(b)*c)e)"

ER₂ equivalente ao AF₂ apresentado

ER₂ submetida há geração do AF₃ na ferramenta de Glatz (2000)

Validação do AF₂ e AF₃ através da equivalência de Moore

Processo de Transformação AF para ER

Conclusão

- > Foram atingidos os objetivos propostos:
 - permitir abrir e salvar a estrutura (grafo) de um AF em arquivo;
 - apresentar tabela de transição correspondente a um AF especificado na tela de edição do EAF;
 - adicionar biblioteca RxLib;
 - validar o algoritmo de transformação através de exemplos de AFs editados na ferramenta.
- Observa-se que os componentes TDesenha e TDesenhaLinha não foram desenvolvidos nesse trabalho, porém o código fonte destes encontra-se disponível junto a aplicação.

Extensões

- > aplicar algoritmos de minimização em AFDs;
- implementar algoritmo para minimizar a expressão regular, gerada pelo algoritmo proposto em Silva (2006);
- identificar os estados que geram o nãodeterminismo;
- determinar a complexidade do algoritmo proposto por Silva (2006);
- comparar o algoritmo proposto por Silva (2006) com outro algoritmo, objetivando verificar qual deles é mais eficiente.