Predicting Network Fault Severity

Capstone Presentation by Ivy Chiang

Introduction

- → Background
 - ◆ Data Set
 - **♦** Exploratory Analysis
 - ◆ Model Building
 - ◆ Results and Discussion
- → Recommendation
 - ◆ Further studies

Background

: Predicting Network Fault Severity :

Why?

Customers

- Emergencies
- Communication
- Business
- Information

Telecom Company

- Service output
- Maintenance cost
- Reputation
- Compensation

Background

: Reasons - service disruption :

High service volume

- Emergencies
- Celebrations

Physical damage

Storms

Repair Maintenance

- Known
- unknown

Dataset

Data name	Data type	Brief description	
id	integer	Record's identifier , time point	
location	Integer (factor)	Fault location	
faulty_severity	Integer (factor)	3 levels, 0= no fault; 1 = few; 2 = many - actual data from reported fault from users	
log_feature	Integer (factor)	Assumption: network service's faulting feature	
volume	integer	Assumption: unit measure of faulting feature	
resource_type	Integer (factor)	10 distinct types	
event_type	Integer (factor)	Assumption: Network service feature's fault behaviour	
severity_type	Integer (factor)	5 unordered types - warning message received from monitoring machines	

- **Data Cleaning** type conversion, trimming, splitting
- **Missing data** 2 tables network & incident_log
- **Limitation** assumption of feature = output feature , event = fault behaviour

Scatterplot matrix - discrete distribution, mapping patterns and cross-relations

Relationship **features by id (time)**

- Some locations
- always on

(1a) col = resource

(4) Event type

(5) Severity type

Relationship log feature by location

- Micmicking Resource_type
- Event_type
- Severity_type

Feature start to separate

Distinct event_types
to describe each
resource_type

Set pattern between event_type and Log_feature

Which also correlates with severity_type X resource_type

Then talking about **Severity_type & resource_type**, there's a **similarity** with scales of **fault_severity** & **volume**

Model Building

Random Forest - for categorical, complex non-linear data

- use of decision trees

Feature Engineering - simplify

- 1. Combination study
- 2. Extract counts

Model Building

Features

variable	description	reason	
resource_type	unit measure of faulting feature	High correlation in scatterplot	
severity_type	5 unordered types - warning message received from monitoring machines	High correlation in scatterplot	
volume	unit measure of faulting feature	High correlation in scatterplot	
t_feature	Tally of unique service that location registers fault on	Influences portion of logs against the location	
t_resource	Tally of unique resources that location utilises	Influences portion of logs against the location	
t_event	Tally of unique events occurring at that location	High relation to feature and severity_type	
sev_res.rf	Probability of severity_type rating with a particular	Gives a weighing	

Results and Discussion

Winning model:

Overall Accuracy ~ 74%

Results and Discussion

To predict information need:

- No# of feature services the location performs How busy?
- 2. The *knowledge* of the resource_type's **severity message type**?
- 3. The service volume output *How busy?*
- 4. Number of frequently logged events *Fault history range*

Results and Discussion

Limitation:

- 1. Other location specific variable metro / climate
- 2. Accuracy of the severity_type message
- 3. Locations of low traffic hence **fault** -> no user impact
- 4. ...Or Excellent disruption bypass routes

Recommendation

- Unique alert from high traffic service locations.
 currently fault_severity rating 2 is clouded by type 1 or 2 band
- Invest innovative monitoring system to ensure accuracy severity_type warnings
- 3. Quality materials and workmanship to prolong equipment life. Avoid aging equipment that attract long-term accumulated maintenance cost

Further studies

- 1. Better feature engineering max use of data
 - a. Probability theories
 - b. Mosaic plotting

- 2. Hybrid use of modelling methods with Random Forest
 - a. Clustering
 - b. Gradient boosting (XGBoost)

thank you!

Introduction

sample