On Two Minimax Theorems in Graph

Daniel Blévin - George Apaaboah November 20, 2018 First theorem

Definitions

Theorem

Proof

Second theorem

Definitions

Theroem

Proof

First theorem

Branching

branching (r-arborescence): In a directed graph D=(V,A) a branching is a set of arcs not containing circuits s.t. each node of D is entered at most by one arc in A'. (So the arc in A' make up a forest).

Figure 1: A digraph D = (A, V)

Figure 2: A branching of D routed at a.

Figure 3: Two edge-disjoint branching routed respectively at *a* and *d*.

Figure 4: Two edge-disjoint *a*-routed branching.

a-cut

a-cut:

A a—cut of G determined by a set $S \subset V(G)$ is the set of edges going from S to V(G) - S. It will be denoted by $\Delta_G(S)$. We also set that $\delta_G(S) = |\Delta_G(S)|$.

Figure 5: A a-cut of D, $S = \{a\}$, $\Delta_D(S) = \{ab, ad\}$, $\delta_D(S) = 2$.

Figure 6: A minimal a-cut of D, $S = \{a, b, c, d, f\},$ $\Delta_D(S) = \{be\},$ $\delta_D(S) = 1.$

Figure 7: A minimal a-cut of D, $S = \{a, b, d, e, f\},$ $\Delta_D(S) = \{bc\},$ $\delta_D(S) = 1.$

Theorem

THEOREM (Edmonds)

The maximum number of edge-disjoint branchings (rooted at a) equals the minimum number of edges in a-cuts.

Let k be the minimum cardinality of an a-cut.

We prove by induction on k. The case k = 0 is trivial.

Let F be a set of edges such that F is an arborescence rooted at a.

$$\Delta_{G-F}(S) \ge k-1, \ \forall \ S \subset V(G), \ a \in S$$

If (1), we are done by induction. Suppose that (1) holds.

If F = E(G) then it is a branching and we are done $(G - F \text{ contains } k - 1 \text{ edge-disjoint branchings and } F \text{ is in the } k^{th} \text{ edge-disjoint branching)}.$

If $F \neq E(G)$ and only cover a set $T \subset V(G)$ we show we can add an edge $e \in \Delta_G(T)$ to F so that F + e still satisfies (1).

Consider a maximal set $A \subset V(G)$ s.t :

$$a \in A$$
 (2a)

$$A \cup T \neq V(G) \tag{2b}$$

$$\delta_{G-F}(S) = k - 1 \tag{2c}$$

If no such A exists, any edge of $\Delta_G(T)$ can be added to F.

Otherwise let $e=(x,y)\in\Delta_{G-F}(A\cup T)-\Delta_{G-F}(A)$ s.t. $x\in T-A$ and $y\in V(G)-T-A$ as shown in **figure 8**. Such an edge must exist because :

$$\delta_{G-F}(A \cup T) = \delta_G(A \cup T) \ge k > k-1 = \delta_{G-F}(A)$$

Figure 8

We claim e can be added to F s.t. F + e is an arborescence (trivial) and (1) holds.

If $e \notin \Delta_G(S)$ then

$$\delta_{G-F-e}(S) = \delta_{G-F}(S) \ge k-1$$

Now, if we have that $e \in \Delta_G(S)$ then $x \in S$ and $y \in V(G) - S$. That is, x and y are in different set of vertices of G. Next, we will use the inequality;

$$\delta_{G-F}(S \cup A) + \delta_{G-F}(S \cap A) \le \delta_{G-F}(S) + \delta_{G-F}(A)$$
(3)

From the maximality of $A: \delta_{G-F}(A) = k-1$, $\delta_{G-F}(S \cap A) \ge k-1$ and $\delta_{G-F}(S \cup A) \ge k$.

Then from (1) we have $\delta_{G-F}(S) \geq k$.

Therefore
$$\delta_{G-F-e}(S) \ge k-1$$
.

Second theorem

Definitions

Directed cut (dicuts): A directed cut of a weakly connect graph G is the set $D = \Delta_G(S)$, $(S \subset V(G), S \neq \emptyset)$ provided $\Delta_G(S)$, $(V(G) - S) = \emptyset$.

Dijoin : A dijoin is a subset $A' \subset A$ which covers all dicuts. Let $\Omega(D)$ denote the maximum number of arc-disjoint dicuts in D and let $\epsilon(D)$ be the minimum cardinality of a dijoin.

Figure 9: A weakly connected digraph containing 3 dicuts

Figure 10: Arc-disjoint dicuts $\Omega(G) = 2$

Figure 11: Dijoin of minimal cardinality $\epsilon(G) = 2$

Theorem

THEOREM (Lucchesi and Younger)The maximum number of disjoint directed cuts equals the minimum number of edges which cover all directed cuts ($\Omega(G) = \epsilon(G)$).

Case 1:

If there are no edges, then the theorem is trivially true.

Case 2:

Let k be the maximum directed cuts in G, G_e'' a digraph resulting from contraction of e, $e \in E$.

If G_e'' contains at most k-1 edge-disjoint directed cuts then, by the induction hypothesis, $\exists \ k-1$ edges covering all directed cuts of G_e'' . Hence if we add e to G_e'' , then G_e'' covers all directed cuts of G

If we subdivide all the edges of G by a point, then the graph that we will obtain contains k+1 disjoint directed cuts. Hence we can find a subdivision H of G that contains at most k disjoint directed cuts and f is an edge of H.

If we again subdivide an edge f of H by a point, then it will contain k+1 disjoint directed cuts. Hence H contains k+1 directed cuts D_1, \ldots, D_{k+1} such that only two of them have f as a common edge.

From above, H_f'' arises from either G or G_f'' by subdivision. Hence from the assumption made above, H contains k disjoint directed cuts c_1, \ldots, c_k and f not in c_i . Thus $D_1, \ldots, D_{k+1}, c_1, \ldots, c_k$ is a collection of directed cuts of G_0 and any edge belongs to at most two of them.

Next, we have the lemma:

LEMMA

If a digraph G contains at most k disjoint directed cuts, and F is any collection of directed cuts in G such that any edge belongs to at most two of them, then $|F| \leq 2k$.

Proof of Lemma

Let S_D be a set uniquely determined by a directed cut DLet $D_1, D_2 \in F$ be called a laminar if $S_{D_1} \cap S_{D_2} = \emptyset$ or $S_{D_1} \subseteq S_{D_2}$, or $S_{D_2} \subseteq S_{D_1}$ or $S_{D_1} \cup S_{D_2} = V(G)$. Else D_1, D_2 is a crossing

Let D_1 , D_2 be a crossing pair and set the following:

$$D'_{1} = \Delta_{G}(S_{D_{1}} \cup S_{D_{2}})$$

$$D'_{2} = \Delta_{G}(S_{D_{1}} \cap S_{D_{2}})$$

$$F' = F \cup \{D'_{1}, D'_{2}\} - \{D_{1}, D_{2}\}$$

From these, we can see that D'_1 , D'_2 are directed cuts and cover any edge the same number of times as D_1 , D_2 . Hence |F'| = |F|.

Also,

$$\sum_{D \in F} |S_D|^2 < \sum_{D \in F'} |S_D|^2$$

since

$$|S_{D_1} \cup S_{D_2}|^2 + |S_{D_1} \cap S_{D_2}| > |S_{D_1}|^2 + |S_{D_2}|^2$$

Hence, we cannot repeat the same process of F for F' and achieve a cycle. We get a collection F_0 of directed cuts such that any e belongs to 2 of them, any 2 are laminar and $|F_0| = |F|$.

Next, we prove the *Lemma* for the case when *F* consist of pairwise laminar cuts.

Let $F = \{D_1, \dots, D_N\}$, then we construct a graph G' as follows:

 $V(G') = \{v_1, \dots, v_N\}$ and join v_i to v_j iff $D_i \cap D_j \neq \emptyset$.

Then G' contains at most k independent points.

Now we will show that G' is bipartite.

Consider a circuit (v_1, \ldots, v_m) in G' and the corresponding sets S_{D_1}, \ldots, S_{D_m} .

Then D_1, \ldots, D_m must be different.

If $D_V=D_\mu$ then each edge of D_V also belongs to D_μ and no other member of F. Hence v_V has degree 1 and cannot occur in any circuit of G'.

Since $D_i \cap D_{i+1} \neq \emptyset$, we have either $S_{D_i} \subset S_{D_{i+1}}$ or $S_{D_i} \supset S_{D_{i+1}}$

We claim that both possibilities occur alternatively and this will prove that m is even.

Proof of claim

Suppose not, example, $S_{D_0} \subset S_{D_1} \subset S_{D_2}$.

We say D_i is to the left from D_j if either $S_{D_i} \subset S_{D_j}$ or $V(G) - S_{D_i} \subset S_{D_j}$.

 D_i is to the right from D_j if $S_{D_i} \subset V(G) - S_{D_j}$ or $V(G) - S_{D_i} \subset V(G) - S_{D_j}$.

Now, since F consist of laminar cuts, each $D_i \neq D_j$ is either to the left or to the right from D_i .

Since D_2 is to the right from D_1 but $D_0 = D_m$ is to the left from D_1 , there is a j, $1 \le j \le m-1$ such that D_j is to the right from D_1 but D_{j+1} is to the left from D_1 .

Since D_j and D_{j+1} have a common edge e, which must belong to D_1 . Hence e belongs to three cuts, which is a contradiction.

Figure for you george

Figure 12: Illustration of the definition of being to the right and left for cuts. In (a) the dicuts $\ref{1}$ is on right, in (b) ... $\ref{1}$???

To be cite as figure 12.

Lovasz, L. (1976). On two minimax theorems in graph. Journal of Combinatorial Theory, Series B, 21(2), 96-103.

Thank you, questions?

Appendix

Definitions:

A hypergraph H is a finite collection of finite sets. These sets are called edges and the elements of the edges are called vertices. Let V(H) denote the set of vertices. If E_1, \ldots, E_m are the edges and v_1, \ldots, v_n are the vertices of H, then we define

$$a_{ij} = \begin{cases} 1, & \text{if } v_i \in E_j \\ 0, & \text{otherwise} \end{cases}$$

Theorem (Hypergraph)

If any hypergraph H' arising from H by multiplication of the vertices satisfies $v_2(H') = 2v(H')$ then $\tau(H) = v(H)$.

Proof.

First we show that

1. If *F* is a collection of pairwise laminar directed cut then its incidence matrix *A* is totally unimodular.

