This key should allow you to understand why you choose the option you did (beyond just getting a question right or wrong). More instructions on how to use this key can be found here.

If you have a suggestion to make the keys better, please fill out the short survey here.

Note: This key is auto-generated and may contain issues and/or errors. The keys are reviewed after each exam to ensure grading is done accurately. If there are issues (like duplicate options), they are noted in the offline gradebook. The keys are a work-in-progress to give students as many resources to improve as possible.

1. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $ax^3 + bx^2 + cx + d$.

$$\frac{1}{3}$$
, 7, and $\frac{5}{3}$

The solution is $9x^3 - 81x^2 + 131x - 35$, which is option A.

- A. $a \in [2, 13], b \in [-83, -77], c \in [129, 133], \text{ and } d \in [-38, -33]$ * $9x^3 - 81x^2 + 131x - 35$, which is the correct option.
- B. $a \in [2, 13], b \in [-83, -77], c \in [129, 133]$, and $d \in [35, 38]$ $9x^3 - 81x^2 + 131x + 35$, which corresponds to multiplying everything correctly except the constant term.
- C. $a \in [2, 13], b \in [79, 93], c \in [129, 133], \text{ and } d \in [35, 38]$ $9x^3 + 81x^2 + 131x + 35$, which corresponds to multiplying out (3x + 1)(x + 7)(3x + 5).
- D. $a \in [2, 13], b \in [-77, -74], c \in [79, 80], \text{ and } d \in [35, 38]$ $9x^3 - 75x^2 + 79x + 35, \text{ which corresponds to multiplying out } (3x + 1)(x - 7)(3x - 5).$
- E. $a \in [2, 13], b \in [51, 52], c \in [-90, -84], \text{ and } d \in [-38, -33]$ $9x^3 + 51x^2 - 89x - 35, \text{ which corresponds to multiplying out } (3x + 1)(x + 7)(3x - 5).$

General Comment: To construct the lowest-degree polynomial, you want to multiply out (3x - 1)(x - 7)(3x - 5)

2. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $x^3 + bx^2 + cx + d$.

$$4-5i$$
 and 1

The solution is $x^3 - 9x^2 + 49x - 41$, which is option D.

- A. $b \in [1, 3], c \in [-11, -4], \text{ and } d \in [2, 9]$ $x^3 + x^2 - 5x + 4$, which corresponds to multiplying out (x - 4)(x - 1).
- B. $b \in [5, 20], c \in [49, 51]$, and $d \in [38, 46]$ $x^3 + 9x^2 + 49x + 41$, which corresponds to multiplying out (x - (4 - 5i))(x - (4 + 5i))(x + 1).
- C. $b \in [1,3], c \in [0,9]$, and $d \in [-11,2]$ $x^3 + x^2 + 4x - 5$, which corresponds to multiplying out (x+5)(x-1).
- D. $b \in [-17, -5], c \in [49, 51]$, and $d \in [-44, -38]$ * $x^3 - 9x^2 + 49x - 41$, which is the correct option.

This corresponds to making an unanticipated error or not understanding how to use nonreal complex numbers to create the lowest-degree polynomial. If you chose this and are not sure what you did wrong, please contact the coordinator for help.

General Comment: Remember that the conjugate of a + bi is a - bi. Since these zeros always come in pairs, we need to multiply out (x - (4 - 5i))(x - (4 + 5i))(x - (1)).

3. Which of the following equations *could* be of the graph presented below?

The solution is $8x^4(x-1)^4(x+1)^5$, which is option E.

A.
$$9x^9(x-1)^8(x+1)^{11}$$

The factor x should have an even power.

B.
$$-9x^8(x-1)^8(x+1)^7$$

This corresponds to the leading coefficient being the opposite value than it should be.

C.
$$-20x^8(x-1)^4(x+1)^4$$

The factor (x + 1) should have an odd power and the leading coefficient should be the opposite sign.

D.
$$8x^9(x-1)^8(x+1)^6$$

The factor x should have an even power and the factor (x + 1) should have an odd power.

E.
$$8x^4(x-1)^4(x+1)^5$$

General Comment: General Comments: Draw the x-axis to determine which zeros are touching (and so have even multiplicity) or cross (and have odd multiplicity).

4. Describe the zero behavior of the zero x = -4 of the polynomial below.

$$f(x) = 8(x+4)^9(x-4)^{12}(x-7)^5(x+7)^9$$

The solution is the graph below, which is option A.

^{*} This is the correct option.

General Comment: You will need to sketch the entire graph, then zoom in on the zero the question asks about.

5. Describe the zero behavior of the zero x = -8 of the polynomial below.

$$f(x) = 3(x+6)^6(x-6)^2(x-8)^9(x+8)^6$$

The solution is the graph below, which is option B.

General Comment: You will need to sketch the entire graph, then zoom in on the zero the question asks about.

6. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $x^3 + bx^2 + cx + d$.

-5 + 5i and 2

The solution is $x^3 + 8x^2 + 30x - 100$, which is option C.

- A. $b \in [-5, 6], c \in [-9, 1]$, and $d \in [7, 22]$ $x^3 + x^2 - 7x + 10$, which corresponds to multiplying out (x - 5)(x - 2).
- B. $b \in [-12, -2], c \in [29, 38]$, and $d \in [92, 102]$ $x^3 - 8x^2 + 30x + 100$, which corresponds to multiplying out (x - (-5 + 5i))(x - (-5 - 5i))(x + 2).
- C. $b \in [6, 14], c \in [29, 38]$, and $d \in [-106, -99]$ * $x^3 + 8x^2 + 30x - 100$, which is the correct option.
- D. $b \in [-5, 6], c \in [-1, 4], \text{ and } d \in [-21, -9]$ $x^3 + x^2 + 3x - 10, \text{ which corresponds to multiplying out } (x + 5)(x - 2).$
- E. None of the above.

This corresponds to making an unanticipated error or not understanding how to use nonreal complex numbers to create the lowest-degree polynomial. If you chose this and are not sure what you did wrong, please contact the coordinator for help.

General Comment: Remember that the conjugate of a + bi is a - bi. Since these zeros always come in pairs, we need to multiply out (x - (-5 + 5i))(x - (-5 - 5i))(x - (2)).

7. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $ax^3 + bx^2 + cx + d$.

$$\frac{1}{4}$$
, 7, and $\frac{-7}{5}$

The solution is $20x^3 - 117x^2 - 168x + 49$, which is option A.

- A. $a \in [20, 22], b \in [-122, -116], c \in [-170, -163], \text{ and } d \in [46, 52]$ * $20x^3 - 117x^2 - 168x + 49$, which is the correct option.
- B. $a \in [20, 22], b \in [165, 181], c \in [238, 243], \text{ and } d \in [46, 52]$ $20x^3 + 173x^2 + 238x + 49, \text{ which corresponds to multiplying out } (4x + 1)(x + 7)(5x + 7).$
- C. $a \in [20, 22], b \in [-109, -104], c \in [-227, -217], \text{ and } d \in [-53, -44]$ $20x^3 - 107x^2 - 224x - 49, \text{ which corresponds to multiplying out } (4x + 1)(x - 7)(5x + 7).$
- D. $a \in [20, 22], b \in [114, 125], c \in [-170, -163], \text{ and } d \in [-53, -44]$ $20x^3 + 117x^2 - 168x - 49, \text{ which corresponds to multiplying out } (4x + 1)(x + 7)(5x - 7).$
- E. $a \in [20, 22], b \in [-122, -116], c \in [-170, -163],$ and $d \in [-53, -44]$ $20x^3 - 117x^2 - 168x - 49$, which corresponds to multiplying everything correctly except the constant term.

General Comment: To construct the lowest-degree polynomial, you want to multiply out (4x - 1)(x - 7)(5x + 7)

8. Describe the end behavior of the polynomial below.

$$f(x) = 7(x+4)^3(x-4)^8(x-5)^4(x+5)^4$$

The solution is the graph below, which is option D.

General Comment: Remember that end behavior is determined by the leading coefficient AND whether the **sum** of the multiplicities is positive or negative.

9. Which of the following equations *could* be of the graph presented below?

The solution is $-4(x-1)^4(x+3)^5(x-2)^9$, which is option E.

A.
$$-5(x-1)^{10}(x+3)^6(x-2)^9$$

The factor (x + 3) should have an odd power.

B.
$$3(x-1)^{10}(x+3)^9(x-2)^6$$

The factor (x-2) should have an odd power and the leading coefficient should be the opposite sign.

C.
$$-3(x-1)^{11}(x+3)^6(x-2)^9$$

The factor 1 should have an even power and the factor -3 should have an odd power.

D.
$$18(x-1)^6(x+3)^9(x-2)^5$$

This corresponds to the leading coefficient being the opposite value than it should be.

E.
$$-4(x-1)^4(x+3)^5(x-2)^9$$

* This is the correct option.

General Comment: General Comments: Draw the x-axis to determine which zeros are touching (and so have even multiplicity) or cross (and have odd multiplicity).

10. Describe the end behavior of the polynomial below.

$$f(x) = 9(x-6)^{2}(x+6)^{3}(x+8)^{5}(x-8)^{7}$$

The solution is the graph below, which is option D.

General Comment: Remember that end behavior is determined by the leading coefficient AND whether the **sum** of the multiplicities is positive or negative.