Technologie-Evaluierung von Drehgebern und deren Anbindung an eine Java-basierte Potiboard-App

Table of Contents

Einbindung dieser Arbeit in das laufende Projekt FCC Digital Potiboard	1
Rückblick und Motivation	2
Vom alten Potiboard-Prototyp übernommende Technologieentscheidungen und neue Wege	2
Sammlung von diskutierten Anforderungen (Stichwortliste)	3
Noch in Evaluierung stehende alternative System-Architekturen und Technologien	4
Fazit	5

Einbindung dieser Arbeit in das laufende Projekt FCC Digital Potiboard

Die hier beschriebene Technologie-Evaluierung dient als Grundlage zur Entscheidungsfindung zu den in der Abbildung: Status FCC Digital Potiboard markierten *Major Milestones* und *Subprojects / Tasks*.

Project FCC Digital Potiboard

Project Lead S. Reimann

Status Date 08.07.2022						
Project Description		Subprojects / Tasks				
Development of a digital potentiometer board control for FCC - Focus: UNILAC operation - But also generally as an option for other linear accelerators or any parameters, where a rotating controller makes sense. The project includes the incremental encoder hardware and the software application.		Specify the system √ Specification approval -> open technology decision for incremental encoder -> in progress technology decision software stack -> in progress (FESA, LSA or else) general decision on UI -> open (existing or new app + developing group) build hardware prototype -> open build software prototype -> open FAT → serial production -> open				
Project Goals		Ressource Profile				
Replace the outdated UNILAC Potiboard control with a modern version compatible with fully digital control room (FCC) Full control system integration Be ready on time for the move to FCC Production of relevant spare parts		Year	Estimatedcosts[k€]	Personnel [person months]		
		2022	1	2		
		2023	4	12		
		2024	15 (inital equipment)	3		
		2025	10 (spare parts)	3		
		2026	0	0		
		Sum	30.000 Euro	20 person months		
Major Milestones		Risks, Boundary Conditions and Comments				
Q3/2022	Specification revision and approval	Major Risks: Concerned departments:				
Q4/2022	technology decision—incremental encoder hardware and communication protocol	- turnaround time too slow for adequate UNILAC control - ACO (FE, AP, IN) - OPE (APS)				
Q4/2022	decision regarding use of control system stack (FESA or LSA or else) to be able to ensure the required performance					
Q3/2023	Hardware prototype ready	Boundary Condition: - must be functional before move from HKR to FCC - existing potiboard must kept functional until move to FCC is complete Comments: - to be clarified: Responsible group for hardware maintenance		•		
Q1/2024	Software prototype ready					
Q3/2024	Live test in HKR (e.g. for HEST magnets)					
GSI Helmholt	zzentrumfür Schwerionenforschung GmbH			•		

Figure 1. Status FCC Digital Potiboard

Rückblick und Motivation

Der vor ca. 6 Jahren entwickelte Potiboard-Prototyp wurde in einem der vergangenen Potiboard-Meetings als unzureichend in seiner Technologieauswahl eingestuft. Insbesondere der Einsatz einer "closed source library" des benutzten Phidget-Mikrocontroller, der zur Verarbeitung der Encodersignale dient, wurde kritisiert. Dessen Treiber läuft zudem nicht im "Userspace" auf dem zu benutzenden Linuxderivat, was aus system-administrativer Sicht ein Nachteil ist.

Eine weitere Anforderung der Zukunft (FCC) **könnte sein**, dass die Drehgeber ihre Inkremente an eine Potiboard-App über eine nicht unerhebliche Entfernung übermittelt werden müssen. Diese Anforderung ist bis zum jetztigen Zeitpunkt noch nicht festgelegt und wurde beim alten Potiboard-Prototyp gar nicht diskutiert.

Vom alten Potiboard-Prototyp übernommende Technologieentscheidungen und neue Wege

• Optische "Rotary Quadrature Encoder" wurden wieder wegen ihrer Signalqualität, Zuverlässigkeit und Verfügbarkeit eingesetzt. Auf kugelgelagerte Modelle wurde diesmal verzichtet (Haptikgründe wegen zu hoher Leichtgängigkeit). Merkmale sind 16-128 Pulse pro 360-Rotation, keine Zahnung, 5 V. 3.3V Modelle waren auf dem Markt nicht erhältlich.

- Beispiel-Encoder sind:
 - Grayhill 63R128
 - Bourns ENA1J-B28-L00128L

Durch den Einsatz von modernen Mikrocontrollern, deren Spannung an ihren I/O Kanälen häufig auf 3,3 V limitiert ist (anstatt 5V), schränkt sich dich Auswahl der möglichen Endcoder-Modelle deutlich ein. Eventuell müssten die Encoder-Ausgangsspannungen an den Eingängen der Mikrocontroller mit Pegelumsetzern (Level-Shifter) angepasst werden, wenn 5 V Encoder-Modelle eingesetzt werden müssen.

- Es wurden wieder Mikrokontroller evaluiert, die die Inkremente der bis zu acht (8!) Encoder, ohne spürbare Zeitverzögerung, weiterverarbeiten können. Statt des im alten Prototypen verwendeten Phidget-Mikrocontroller (1047) wurden folgende Mikrocontroller stattdessen betrachtet:
 - Raspberry Pi 4
 - STM32H7, STM32F7
 - Teensy 4.1 (Arduino kompatibel)
 - Raspberry Pi Pico

Alle drei Systeme stellen nachbaubare Hardware dar (Ersatzteilversorgung scheint gesichert) und lassen sich mit Open-Source Hardware betreiben. Pro Einheit bewegen sie sich in einem Kostenrahmen von 30-100 US \$. Der Mikrocontroller-Code zur Weiterverarbeitung der Encoder-Inkremente muss bzw. musste in C oder Python geschrieben und gewartet werden.

Sammlung von diskutierten Anforderungen (Stichwortliste)

Lebensdauer und Wartbarkeit Hardware

Die Funktion der eingesetzten Drehgeber und Mirkocontroller muss durch Verfügbarkeit am Markt oder durch Reserveteile-Einlagerung für möglichst mehrere Jahrzehnte mit finanziell überschaubarem Aufwand absicherbar sein.

Lebensdauer und Wartbarkeit Software

Die eingesetzte Software auf Mikrocontroller und auf Potiboard-App Seite sollte aus möglichst gut gepflegten und verständlichen Open-Source Projekten mit hoher Verbreitung stammen. Dies kann auch Auswirkungen auf die Wahl des Mikrocontrollers haben. Der notwendige selbst geschriebene Soure-Code sollte möglichst einfach wartbar sein.

Geschwindigkeit Signalübertragung

Die vom Nutzer über den Drehgeber zum Mikrocontroller und dann in das Java-Programm sollte mind. zwischen 1 ms bis 10 ms (0.1 Hz - 1 Hz) liegen.

Reference Implementation with USB-serial and Spring WebFlux ARM-based MC Teensy 4.1 (Arduino) or STM32 3-5V-Interrupt-Bus Bright Arm Stein WebFlux Network WebFlux Network Diagram Potiboard 1., A. Bloch-Spath, M.Stein

Figure 2. Test-Implementation 1

Es wurde ein Referenzsystem, wie im oberen Bild dargestellt, auf Basis eines Teensy 4.1 Mikrocontrollers entwickelt, der die Inkremente der Encoder in hoher Geschwindigkeit bis in eine Beispiel-JavaFX-Applikation weiterreicht. Das Referenzsystem kann in einem späteren Meeting genauer vorgestellt werden.

Die im Referenzsystem eingesetzte Datenübermittlungstechnologie basiert auf der Technologie Spring Webflux und dem "Reactive Toolkit" Project Reactor. Sie wurde ausgewählt, da sie der "GSI Controls Server-Technologie" entspricht, die für die Operating-Applikationen im FCC und HKR eingesetzt werden soll und teilweise schon eingesetzt wird.

Ein Nachteil und in mancherlei Hinsicht sicher auch Vorteil dieser Architektur ist die Einführung eines Webflux-Servers (siehe Bild EncoderPositionsServerPC), der ein PC-System mit Controlskonformen OS sein sollte. Es ist also eine Schicht (Tier) notwendig, um die Inkremente der verschiedenen Encoder (z.B. im WebFlux-Format) zu versenden.

Auf der Habenseite dieser Architektur steht die Anpassbarkeit und Wartbarkeit nach den Richtlinien der Controls Abteilung und damit eine sichere, kontrollierbare Netzwerkkommunikation im ACC-Netzwerk auf lange Sicht und keine Insellösung im ACC-Netz.

Noch in Evaluierung stehende alternative System-Architekturen und Technologien

Implementation with ZeroMQ or similar messaging library

ARM-based STM32 Nucleo128 or MC Teensy 4.1 (Arduino) 3-5V-Interrupt-Bus ■ MicroController Encoder_1 Encoder 2 Encoder_n ZeroMQ Network □ ZeroMQ ACC-Net

System/Network Diagram Potiboard 2., A. Bloch-Späth, M.Stein

PotiboardApp

vereinfachte Eine Architektur könnte der Einsatz einer "leichteren Netzwerk-Übertragungstechnologie" (im Vergleich mit Spring WebFlux) mit sich bringen. Ein Kanditat ist zum Beispiel die Technolgie ZeroMQ, die sich von einem Raspberry Pi 4 aus leicht einsetzen läßt. Ausstehend sind noch Evaluierungen der Netzwerkkommunikationsmöglichkeiten mit dem leistungsfähigen STM32 Micro-Controller.

Fazit

Das Ziel dieser Technologie-Evaluierungen und Grundlage für eine neue Potiboard-Generation ist die Gegenüberstellung von mind. zwei möglichen Lösungen und deren Vergleich in Bezug auf Faktoren wie Kosten, Laufzeitverhalten, Wartbarkeit, System-Lebenserwartung, usw..