DD2437 Presentation Lab 2

Part I: RBF networks and Competitive Learning

Effect of the number of RBF units

Figure 1: Sin(2x)

Figure 1: Square(2x)

No noise → the absolute residual error decreases

Noisy patterns Delta rule in batch mode

Figure 3: Sin(2x)

Figure 5

Figure 4: Square (2x)

Figure 6

No need to have many RBF units

Same value of convergence but the smaller eta, the quicker the convergence

Noisy patterns Delta rule in sequential mode

Figure 7

Figure 8

The error is high → sequential mode is not adapted for approximation

Noisy patterns

RBF network trained with LMS

Figure 9 Figure 10 Absolute residual error ~ 0.1 → good approximation

One-hidden-layer perceptron trained in batch mode

Figure 11 Figure 12
Absolute residual error > 0.4 → poor approximation

Competitive Learning for RBF unit initialisation

Figure 13

RBF units node are better placed with soft competition

Results for ballist and balltest datasets

Figure 14

Figure 15

There is still a few dead units but the output seems

satisfactory

Figure 16

Just a few RBF units are enough

Part II: Self-organizing maps

4.1 Topological ordering of animal species

SOM algorithm on a one-dimensional curve in the 84-dimensional input space

```
RESULT = ["beetle", "'dragonfly","'grasshopper","'moskito","'butterfly", "'housefly", "spider","'duck", "'pelican", "penguin", "ostrich","frog", "seaturtle", "crocodile", "walrus","bear", "hyena", "dog", "kangaroo","skunk", "bat", "elephant", "rabbit","rat", "ape", "cat", "lion", "horse","camel", "giraffe", "pig", "antelop"]
```

Coherent. Insects together, animals producing eggs together, mammals...

4.2 Cyclic Tour

- Two dimension
- Needs to be circular: we have to count the last and the first output nodes as neighbours

FIG 17 : Beginning of the Algorithm. Epoch 1

FIG 18: End of the algorithm, 100 epochs, 0.3 of learning rate.

- Good results in a short time.
- Circular, seems to be an optimal route.

4.3 Data clustering: Vote of MPs

Party2
Party3
Party4

Party7
Party8

8

6

0

2

4

2

0

0

2

4

6

8

Figure 19: Male and Female

 Almost the same number of men/women voting for different laws.

Not a criteria to classify the data.

Figure 20 : different parties

- Clear blocks, few outliers.
- Left/Right, liberal/anti-liberal.
- Definetely a good criteria to classify the data.

Figure 21: different districts

- Almost random.
- District is not a good criteria to classify the data.

Remarks

- SOM Algorithm very useful to classify data in term of coherence.
- Very interesting for 2D-dataset because it is visually striking, can help you to know which criteria to choose to discriminate the dataset.