Kshitij Dwivedi

\$\overline{\pi}\rightarrow +49-15781325235\$

\times kshitijdwivedi93@gmail.com

\tilde{\mathbb{m}}\rightarrow https://kshitijd20.github.io/

Research Interests

• Neuroscience inspired computer vision, Lifelong learning in vision models

Education

PhD in Computer Science.

2020-present Goethe University of Frankfurt am Main, Germany (moved with supervisor).

Supervisor: Dr. Gemma Roig .

2018–2019 Singapore University of Technology & Design, Singapore.

Supervisor: Dr. Gemma Roig .

M. Tech in Electrical Engineering.

2009–2014 Indian Institute of Technology, Kanpur, India.

B. Tech in Electrical Engineering.

2009–2014 Indian Institute of Technology, Kanpur, India.

Research Experience

2019– present **Visiting student**, *FU*, Berlin, Germany, Supervisor: Dr. Radoslaw Martin Cichy.

Spatial and temporal emergence of scene/object visual representations in human brain

- Decoding visual attributes of rendered images from fMRI and EEG data to gain a better understanding of visual information processing in human brain.
- Organizing team member of workshop and challenge linking computer vision and neuroscience (Algonauts 2019, and Algonauts 2020)

2018- present **PhD Student**, Supervisor: Dr. Gemma Roig.

Brain inspired models of computational vision

- Finding functions of regions in human visual cortex using Deep Neural Network functions. (<u>Short version</u> at **CCN 2019**, <u>Short talk</u> at **Neuromatch2.0 2020**, long version under preparation)
- Assessed the relationship between different visual tasks and its application to transfer learning (in CVPR 2019, ECCV 2020)

2017- 2017 Research Engineer, ATR, Kyoto, Japan, Supervisor: Dr. Yukiyasu Kamitani.

Reconstruction of perceived images from brain activity

- Evaluated training generative models of computer vision to reconstruct images directly from fMRI activity (in Frontiers in Computational Neuroscience)
- 2014–2017 **Senior Software Engineer**, *Samsung R&D Institute India*, Bangalore.

Development of computer vision applications for Samsung smartphone cameras

- o Portrait segmentation: US Patent granted
- o Long term object tracking: Published at IEEE SPCOM 2016
- Visual saliency detection: 1st place in Large Scale Scene Understanding (LSUN) saliency challenge held in CVPR 2016. Patent filed: Suggestive zoom.

- 2016– 2016 Intern, NCBS, Bangalore, India, Supervisor: Dr. Vatsala Thirumalai.
 Studied correlation of motor neuron activity with Purkinje neuron's activity in the zebrafish by activity localization for the Calcium images of the Purkinje neuron
- 2013–2014 Master's Thesis, IIT Kanpur, Kanpur, India, Supervisor: Dr. Bahniman Ghosh.
 Switching Current Reduction Techniques For Magnetic Tunneling Junctions Based Magnetic RAMs
- 2012–2012 Intern, Mercedes-Benz Research & Development North America, Palo Alto, USA.

 Worked on vehicle detection part of a project which was aimed to provide driver assistance functions

Supervision

FU Berlin Marta Paula Balode, Bachelor's Thesis.

Raphael Leuner, Bachelor's Thesis.

SUTD Jiahui Huang, UROP.

Zirun Wang, Intern.

Samsung Aashish Kumar, Intern.

Mohit Bajaj, Intern.

Technical Skills

Programming Python, C, C++, Matlab.

Frameworks pytorch, tensorflow, caffe, torch.

Awards

- Selected as Lead TA in Neuromatch Academy summer school, 2020
- Selected to attend Brain, Minds and Machines (BMM) summer school 2019 organized by Center of Brain, Mind and Machines
- Selected to attend International Computer Vision Summer School (ICVSS) 2019 at Sicily, Italy
- SUTD President's Graduate Fellowship (January, 2018 July, 2019)
- o First place in LSUN Saliency Challenge, CVPR 2016. Team name: Deepattent
- Samsung Employee of the month award for contributing to object tracking project
- \circ Bronze award at Samsung Best Paper Award Conference 2016 for technical report describing visual saliency model, given to 8 out of 132 papers submitted by Global Multimedia Samsung R & D centers
- Best demonstration award at NIPUN 2016, an intra-Samsung competition for the demonstration of saliency and style transfer applications for smartphone cameras.

Publications

- [1] **K. Dwivedi**, J. Huang, R. M. Cichy, and G. Roig, "Duality diagram similarity: a generic framework for initialization selection in task transfer learning," in *European Conference on Computer Vision (ECCV)*, 2020.
- [2] **K. Dwivedi**, R. M. Cichy*, and G. Roig*, "Unravelling representations in scene-selective brain regions using scene parsing deep neural networks," *accepted in Journal of Cognitive Neuroscience*, 2020 (* denotes jointly directed work).

- [3] **K. Dwivedi** and G. Roig, "Representation similarity analysis for efficient task taxonomy and transfer learning," in *Computer Vision and Pattern Recognition (CVPR)*, 2019.
- [4] K. Dwivedi, M. F. Bonner, and G. Roig, "Explaining scene-selective visual areas using task-specific deep neural network representations," Conference on Cognitive Computational Neuroscience (CCN), 2019.
- [5] R. M. Cichy, G. Roig, A. Andonian, K. Dwivedi, B. Lahner, A. Lascelles, Y. Mohsenzadeh, K. Ramakrishnan, and A. Oliva, "The Algonauts Project: A Platform for Communication between the Sciences of Biological and Artificial Intelligence," arXiv e-prints, p. arXiv:1905.05675, May 2019.
- [6] G. Shen*, **K. Dwivedi***, K. Majima, T. Horikawa, and Y. Kamitani, "End-to-end deep image reconstruction from human brain activity," *Frontiers in Computational Neuroscience*, 2019 (* denotes equal contribution).
- [7] J. Huang, K. Dwivedi, and G. Roig, "Deep anchored convolutional neural networks," in Computer Vision and Pattern Recognition Workshops (CVPRW) on Compact and Efficient Feature Representation and Learning (CEFRL), 2019.
- [8] **K. Dwivedi** and G. Roig, "Task-specific vision models explain task-specific areas of visual cortex," *bioRxiv*, p. 402735, 2018.
- [9] **K. Dwivedi** and G. Roig, "Navigational affordance cortical responses explained by scene parsing model," *European Conference on Computer Vision Workshop (ECCVW)* on Brain Driven Computer Vision (BDCV), 2018.
- [10] K. Dwivedi, N. Singh, S. Shanmugham, and M. Kumar, "Deepattent: Saliency prediction with deep multiscale residual network," in Proceedings of International Conference on Computer Vision and Image Processing (CVIP), 2018
 (1st place in LSUN Saliency Challenge, CVPR 2016).
- [11] K.-H. Lee, P. P. Prabhudesai, S. R. Shanmugam, N. Jin-Hee, K. Dwivedi, S. Deshmukh, S. R. Malreddy, and H. Jong-Min, "Electronic device for processing image and method for controlling the same," Nov. 17 2016. US Patent App. 15/154,615.
- [12] K. Dwivedi, P. Prabhudesai, and S. R. Shanmugam, "A hybrid method for long term moving object tracker," in Signal Processing and Communications (SPCOM), 2016 International Conference on, pp. 1–5, IEEE, 2016.
- [13] B. Ghosh and **K. Dwivedi**, "Micromagnetic analysis of a double-barrier synthetic antiferromagnetic mtj stack," *Applied Nanoscience*, vol. 5, no. 7, pp. 771–775, 2015.
- [14] B. Ghosh and **K. Dwivedi**, "Micromagnetic analysis of heusler alloy-based perpendicular double barrier synthetic antiferromagnetic free layer mtjs," *Journal of Theoretical and Applied Physics*, vol. 9, no. 3, pp. 207–212, 2015.

Conference abstracts

- **K. Dwivedi**, M.F. Bonner, G. Roig, "Explaining Scene-selective Visual Area Using Task-specific and Category-specific DNN Units", Vision Science Society, 2019.
- **K. Dwivedi**, G. Roig, "Importance of object selection in Relational Reasoning tasks", NeurIPS Workshop on Relational Representation Learning, 2018.

- A. Murakami, K. Dwivedi, Y. Kamitani, "Decoding of depth information from human brain activity", Annual meeting of the Japan Neuroscience Society, 2018
- **K. Dwivedi**, G. Roig, "Evaluation of plug and play modules for multi-domain learning ", ECCV workshop on Interactive and Adaptive Learning, 2018.