BEST AVAILABLE COPY

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-322872 (P2001-322872A)

(43)公開日 平成13年11月20日(2001.11.20)

(51) Int.Cl. ⁷		護別記号		FΙ				テーマコード(参考)
C 0 4 B	35/52			B01J	20/20		I	3 4G032
B 0 1 J	20/20						I	E 4G066
					20/28			<u> </u>
	20/28		•		20/30			
	20/30		•	C 0 4 B	35/52			3
			審査請求	未請求 請求	R項の数15	OL	(全 6]	頁) 最終頁に続く

(21)出凝番号 特願2000-314138(P2000-314138)

(22) 出願日 平成12年10月13日(2000.10.13)

(31) 優先権主張番号 特願平11-299944

(32)優先日 平成11年10月21日(1999.10.21)

(33)優先権主張国 日本(JP)

(31)優先権主張番号 特願2000-66762(P2000-66762)

(32) 優先日

平成12年3月10日(2000.3.10)

(33)優先権主張国 日本(JP)

(71)出願人 000151209

株式会社テネックス

東京都豊島区南池袋3 丁目13番5号

(71) 出願人 000005968

三菱化学株式会社

東京都千代田区丸の内二丁目5番2号

(72)発明者 内野 雅志

埼玉県川越市下赤坂591 株式会社テネッ

クス内

(74)代理人 100070600

弁理士 横倉 凍男

最終頁に続く

(54) 【発明の名称】 成型活性炭及びその製造方法

(57)【要約】

【課題】 適度な強度と高い吸着能力と脱離能力を備えたキャニスター用に適した活性炭を提供する。

【解決手段】 木屋式圧壊強度が、1kg以上であり、 比熱(25℃)が0.4J/K·cc以上である成型活性 炭、及び、粉粒状活性炭100重量部、粘土10~10 0重量部、個体蓄熱材5~200重量部及びホウ素化合 物及び/又はリン化合物2~20重量部を混練、成型 後、焼成して得られる成型活性炭、並びに成形活性炭の 製造方法。

【特許請求の範囲】

【請求項1】 木屋式圧壊強度が1 k g以上であり、比熱 $(25 \degree)$ が0. $4J/K \cdot cc$ 以上である成型活性炭。

【請求項2】 木屋式圧壊強度が、2.5mmø、長さ 4mmの成型活性炭におけるものであることを特徴とする 請求項1に記載の成型活性炭。

【請求項3】 $2.5mm\phi$ 成型活性炭において、木屋式圧壊強度が $1\sim15k$ gである請求項1又は2に記載の成形活性炭。

【請求項4】 比熱 (25℃) が0.4~0.8J/K·c cである請求項1~3のいずれかに記載の成型活性炭。

【請求項5】 平均粒径がO.5~5mmである請求項1~4のいずれかに記載の成型活性炭。

【請求項6】 粉粒状活性炭100重量部に対して、

(i) 粘土10~100重量部、(ii) 個体蓄熱材5~200重量部、並びに、(iii) ホウ素化合物及び/又はリン合物2~20重量部を配合し、混練、成型後、焼成してなる請求項1~5のいずれかに記載の成型活性炭。

【請求項7】 個体蓄熱材の比熱が、粉粒状活性炭の比熱より高い請求項6に記載の成型活性炭。

【請求項8】 個体蓄熱材が、金属粉及び/又は金属酸化物粉である請求項6に記載の成形活性炭。

【請求項9】 金属粉が、アルミニウム粉及び/又はマグネシウム粉である請求項8に記載の成型活性炭。

【請求項10】 金属酸化物粉が、アルミナ粉及び/又は酸化マグネシウム粉であることを特徴とする請求項8 に記載の成型活性炭。

【請求項11】 ホウ素化合物がホウ酸及U/又は B_2 O_3 である請求項 $6\sim10$ のいずれかに記載の成型活性 炭。

【請求項12】 焼成温度が500~900℃である請求項6~11のいずれかに記載の成型活性炭。

【請求項13】 成型後、焼成前に、転動処理を施すことを特徴とする請求項6~12のいずれかに記載の成形活性炭の製造方法。

【請求項14】 粉粒状活性炭100重量部に対して、個体蓄熱材を100~150重量部用いる請求項6~1 3のいずれかに記載の成形活性炭。

【請求項15】 蒸発燃料捕集装置用である請求項1~ 14のいずれかに記載の成型活性炭。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は成型活性炭及びその 製造方法に関し、より詳細には、蒸発燃料捕集装置(い わゆるキャニスター)用の成型活性炭及びその製造方法 に関する。

[0002]

【従来の技術】従来より蒸発燃料の大気放散防止のため に活性炭を用いた蒸発燃料防止装置が公知であり、この 装置は通常燃料タンク等の燃料系から発生する蒸発燃料 を活性炭に一旦吸着させ、エンジンを稼働する際に外気 を活性炭に導入することにより吸着された蒸発燃料を脱 着させエンジン内で燃焼させる仕組みとなっている。

【0003】ここで蒸発燃料に対する活性炭の吸着能力は活性炭温度が低下するほど高くなり、脱着能力は活性炭温度が高くなるほど向上するが、蒸発燃料の吸着は発熱反応で、脱着は吸熱反応である。このため、活性炭への吸着が進行すればするほど、活性炭温度が上昇し、次第に活性炭の吸着能力が低下するという問題が発生する。さらに活性炭からの脱着も進行すればするほど、活性炭温度が低下し、活性炭の脱着能力が低下するという問題があった。

【0004】これらを解決するために、例えば特開昭55-149622号公報記載の方法では活性炭充填室に放冷用のフィンを設けることにより、発生する熱を効率よく放出、吸収して活性炭の吸着時の昇温、又は脱着時の降温を防いだりして、吸脱着時の効率を高めようとしている。また、特開昭64-36962号公報記載の装置においては活性炭を製造する際に石炭粉と固体蓄熱材をバインダーと共に混練したのち、成型、粉砕、炭化、賦活することにより、活性炭より比熱の大きい固体蓄熱材を活性炭内部に分散、混入した捕集材を充填した蒸発燃料捕集装置を提案している。

【0005】しかしながら、この場合、活性炭内部に固 体蓄熱材を分散させていることから、成型活性炭におい て、十分に高められた比熱を発現させることが難しく、 また、十分な成型体の機械的強度を得ることができず、 吸着能力および脱離能力は依然として不十分であった。 また、実用レベルでは容量ベースでの吸着能を高めるた めには、嵩密度を高める処理が必要となるが、成型後 に、賦活活性化処理する方法では高い吸着能を得ようと すると、機械的強度や密度が小さくなってしまい、高強 度、高密度を維持しながら吸着能を向上させることが難 しかった。賦活活性化後に有機系バインダーで成型する 方法(特公昭56-37164 号公報、特公昭55-43402 号公 報、特公昭52-13517 号公報参照) や無機系バインダー で成型する方法(特公昭45-12565号公報、特公昭63-2 42343号公報参照)が検討されているが、吸着能力、脱 離能力の点で未だ不十分であった。

[0006]

【発明が解決しようとする課題】以上の説明の通り適度 な強度を有し、かつ、より吸着能力および脱離能力の高 い活性炭が求められているのが現状であり、本発明は、 このような特性を具備した活性炭を提供することを目的 とするものである。

[0007]

【課題を解決するための手段】本発明者等は、活性炭をより吸着能力と脱離能力が高く、かつ耐熱性、高強度化、高密度化することについて鋭意検討し、個体蓄熱材及び活性炭の相対的な粒度の比較的近いものを用いて、

活性炭と固体蓄熱材を粘土及び特定の化合物を配合し、 混練、成型し、焼成して成型活性炭を得ることによっ て、個体蓄熱材の高比熱を十分に生かしつつ、十分な成 形強度を得ることができて、上記目的に適うことを見出 し、本発明を完成するに至った。即ち、本発明の要旨 は、木屋式圧壊強度が、1kg以上であり、比熱(25 また、本発明の要旨は、粉粒状活性炭100重量部に対 して、(i)粘土10~100重量部、(ii)金属粉及び/ 又は金属酸化物粉5~200重量部、ならびに(iii)ホ ウ素化合物及び/又はリン化合物2~20重量部を配合 し、混練、成型後、焼成してなる成型活性炭、に存す る。更に、また、本発明の要旨は、粉粒状活性炭100 重量部に対して、(i)粘土10~100重量部、(ii)金 属粉及び/又は金属酸化物粉5~200重量部、ならび に(iii)ホウ素化合物及び/又はリン化合物2~20重 量部を配合し、混練、成型後、焼成することを特徴とす る成形活性炭の製造方法、に存する。

【0008】本発明の好ましい実施態様の要旨としては、木屋式圧壊強度が、2.5mmか、長さ4mmの成型活性炭におけるものである成型活性炭;金属粉が、アルミニウム粉及び/又はマグネシウム粉である上記の成型活性炭;金属酸化物粉が、アルミナ粉及び/又は酸化マグネシウム粉である上記の成型活性炭;ホウ素化合物がホウ酸及び/又はB2O3である上記の成型活性炭;平均粒径が0.5~5mmである上記の成型活性炭;焼成温度が500~900℃である上記の成型活性炭;蒸発燃料捕集装置用である上記の成型活性炭が挙げられる。【0009】

【発明の実施の形態】本発明に適用される粉粒状活性炭 には、石炭系、ヤシガラ系、木質系、リグニン系等の種 々の原料を使用した、水蒸気賦活品、リン酸、塩化亜 鉛、アルカリ金属等による薬品賦活品等の賦活品が使用 出来る。これらの中でも、木質系のリン酸賦活品が好ま しい。成型性、成型炭強度の観点から、かかる粉粒状活 性炭の粒度は、通常、0.5mm 以下、好ましくは0.05 ~0.15㎜であり、中でも200メッシュパス60~ 95%が好ましい、また、100メッシュパス60%以 上、325メッシュパス50%以下であるものが好まし く、100メッシュパス80%以上、325メッシュパ ス40%以下がより好ましく、100メッシュパス80 ~90%、325メッシュパス20~40%であるもの が更に好ましい。また、本発明に適用される粉粒状活性 炭の比表面積は、通常500~2500m2/g、好ま しくは1000~2000m2/gであり、更に好まし くは、1500~2000m2/g。比表面積が小さす ぎると充分な吸着能力が得にくく、大きすぎると充分な 強度が得られにくい。

【0010】本発明に適用される粘土としては、ベントナイトが好ましく、ナトリウムベントナイト、カルシウ

ムベントナイト等が挙げられ、特に好ましくはナトリウ ムベントナイトである。なお、この粘度は粒径が1~10 Oμmであるので、活性炭の気体や液体の吸着に関連する 300Å以下の細孔には入らず、細孔をつぶさずに高吸着... 能のものが得られるので好ましい。本発明に適用される 個体蓄熱材としては、鉄、アルミニウム、マグネシウ ム、銅、鉛などの金属(複数の金属の合金であってもよ い)の粉粒体、やこれら金属(複数の金属の組み合わせ であってもよい)の酸化物や炭酸塩の粉粒体、各種セラ ミックス材料或いはガラスの粉粒体などが挙げられる。 これらの中でも、金属粉及び金属酸化物粉粒体が好まし い。これら個体蓄熱材において、ガソリン蒸気吸着炭を パージする際の、活性炭温度低下抑制の観点から、粉粒 状活性炭の比熱よりも高い比熱を有するもの、具体的に は、金属粉としてはアルミニウム粉、アルミニウム合金 粉、マグネシウム粉等、金属酸化物粉としてはアルミナ 粉、酸化マグネシウム粉、酸化ホウ素粉、炭酸金属塩と しては炭酸カルシウム、炭酸マグネシウム等が挙げら れ、好ましくはアルミニウム粉、アルミナ粉、酸化マグ ネシウム粉である。金属粉、金属酸化物粉、炭酸金属塩 はそれら単独で用いてもよいし、複数種を混合して用い てもよい。化学的安定性の観点から、金属酸化物粉を用 いるのが好ましく、アルミナ粉或いは酸化マグネシウム 粉を用いるのが最も好ましい。アルミナ粉のアルミナと しては、αーアルミナ、βーアルミナ、γーアルミナ、 ミナ、κーアルミナが挙げられ、好ましくはαーアルミ ナである。個体蓄熱材の粒度は、通常、60メッシュ9 5%パス程度、中でも、50~300μmの粒径のも の、更に好ましくは50~150 µmの粒径のものが挙 げられる。個体蓄熱材の粒度が大きすぎても小さすぎて も成型性が悪くなりやすく、成型炭強度や密度が低下し たり、取り扱いにくくなる場合がある。個体蓄熱材の粒 度は、用いられる活性炭の粒度に対して、比較的近いも の、例えば、活性炭の粒径の0.1~10倍の粒径範 囲、好ましくは0.5~3倍の粒径範囲となるように用 いることが望ましい。

【0011】本発明に適用されるホウ素化合物としてはボラン、ジボラン等のボラン類;ホウ酸、ボリン酸及びボロン酸等の酸類;酸類のエステル;ボロキシン、ボラジン等の水素を炭素数1~20程度のアルキル基或いは炭素数6~20程度のアリール基で置換した化合物、カルボラン、 B_2O_3 等が挙げられ、好ましくはホウ酸、 B_2O_3 等が挙げられ、好ましくはホウ酸、 B_2O_3 等が挙げられ、好ましくはホウ酸、 B_2O_3 等が挙がある。ホウ酸はオルトホウ酸、メタホウ酸、次ホウ酸が知られているが、特に好ましくはオルトホウ酸である。ホウ素化合物は100メッシュ95%パス程度に粉砕して使用するのが好ましい。本発明に適用されるリン化合物としては、リン酸(オルトリン酸、縮合リン酸)、リン酸ナトリウム、リン酸カルシウム、トリポリリン酸等のリン酸塩が挙げら

れる。これらの中でも、リン酸が好ましい。ホウ素化合物やリン化合物は、成形活性炭を得る課程で、焼成処理において併用する粘度の結晶形態が変化する温度を低下する作用があり、より低温での焼成及び成形活性炭の強度を発現させることができて、母体活性炭の熱履歴による細孔収縮を抑え、吸着能/強度バランスの良い成形活性炭の製造に寄与しているものと考えられる。

【0012】本発明においては、粉粒状活性炭100重 量部に対して、粘土10~100重量部、個体蓄熱材5 ~200重量部、ホウ素化合物及び/又はリン化合物2 ~20重量部を配合する。より好ましくは粉粒状活性炭 100重量部に対して、それぞれ、粘土40~80重量 部、個体蓄熱材50~150重量部、ホウ素化合物及び /又はリン化合物 5~10重量部である。 個体蓄熱材が 100~150重量部であることが更に好ましい。例え ば、重量比で、概ね、粉粒状活性炭:粘土:個体蓄熱 材:ホウ素化合物=10:6:10:1となるように配 合することが挙げられる。粘土が多すぎると成型炭吸着 能が低下し、少なすぎると成形性・強度が低下する。ま た、個体蓄熱材が多すぎると成型性、成型炭強度が低下 し、少なすぎると吸着・脱着の向上が小さい。更に、ホ ウ素化合物及び/又はリン化合物が多すぎると、吸着・ 脱着性能が低下し、少なすぎると成型炭強度が低下す

【0013】本発明の成型活性炭は、粉粒状活性炭、粘 土、個体蓄熱材金属粉、ならびにホウ素化合物及び/又 はリン化合物を、水等の可塑剤を適宜加えて混練し、成 形後、焼成することによって得ることができる。混練 は、原料を、通常、常温で、ニーダー等の捏合機を用い て、混練物が可塑性を生じ、手で握れる状態となるまで 混練すればよい。混練に用いる水の量としては、混練物 が手で握れる程度になるような量であればよく、通常、 粉粒状活性炭100重量部に対して、50~200重量 部、好ましくは100~150重量部である。次に、混 練物を押出、プレス等適当な成型機によって円柱状また は球状等の所望の形状に成型し、造粒炭を得る。好まし くは、押出造粒により造粒炭を製造し、必要に応じこの 造粒炭を適当な破砕機を用いて破砕し、整粒後、所望の 粒度範囲の造粒破砕炭としても良い。次に、これらの造 粒炭又は造粒破砕炭を酸素を含まないガス雰囲気下で、 通常、400~1000℃、好ましくは500~900 ℃で焼成して、目的の成型活性炭とする。なお、焼成に 先だって、造粒炭をタンブラー試験機などの転動装置で 転動処理を施すことにより、造粒炭表面を滑らかにし て、嵩密度を高めることができるので好ましい。転動処 理は、通常、30~300rpm、好ましくは50~10 Orpm程度で、10分~10時間、好ましくは、30分 ~3時間程度行なわれる。また、焼成の前或いは後に、 適宜洗浄処理或いは乾燥処理を施しても良い。洗浄は、 活性炭の吸着性能に影響を与えないものであればよく、

通常、脱イオン水、上水等により、数十秒~数時間、好 ましくは、10分~1時間程度、適宜加温して行われ る。加温条件としては、30~100℃であり、煮沸し てもよい。乾燥条件としては、通常、50~200℃、 好ましくは100~150℃程度で、通常、30分から 50時間、好ましくは、1時間~10時間程度である。 【0014】本発明によって得られる成型活性炭は、木 屋式圧壊強度が1kg以上、好ましくは1~15kgの範囲 である。該圧壊強度は、典型的には、 $2.5mm\phi$ 、長 さ4mmの成型活性炭におけるものとして測定することが できる。本発明の成形活性炭は自動車のキャニスター用 として好適に使用され、この観点から、3kg以上であ ることが好ましい。強度が低すぎると充填時や使用時に 粉化し、通気抵抗(圧力損失)が大きくなる。木屋式圧 壊強度は、被測定試料を試料台上に載置し、加圧円柱を 徐々に下ろして行き、円柱底面で試料を加圧し、加圧重 を増加させることによって試料を加圧した際の加圧重と 試料の抵抗値を追跡し、試料の圧砕により試料と円柱底 面の接触が断たれて抵抗値がゼロとなった時点の加圧重 で硬度を表す強度測定手法である。市販の木屋式硬度計 により容易に測定することができる。本発明において は、成形活性炭の強度として、2.5mmφ、長さ4mm の大きさに成型した際の造粒炭の木屋式圧壊強度で1kg 以上、好ましくは、3kg以上、15kg以下である。また 本発明の成型活性炭は、ガソリン蒸気吸着時の活性炭温 度の上昇防止と吸着炭のパージ後の活性炭温度低下の抑 制の観点から、比熱 (25℃)がO. 4J/K·cc 以上で あることが好ましく、より好ましくはO.5J/K·cc 以 上である。比熱が低すぎると吸着及び脱着の効果が無く なる。用いられる個体蓄熱材の比熱から、上限値は通 常、O. 8J/K・cc程度である。なお、本発明におい て、比熱(25℃)は、定法に従って測定すればよい が、例えば、パーキンエルマー社製DSC7イントラク ーラーにより、基準物質として合成サファイア等を基準 物質として用いて測定することができる。

【0015】更に本発明の成型活性炭は、自動車用キャニスターに充填して使用する観点から、平均粒径が0.5~5mmであることが好ましく、より好ましくは2~3mmである。また、成形活性炭の長さは、0.5~10mm、好ましくは、3~5mm程度である。平均粒径が小さすぎると通気抵抗が大きくなり、大きすぎると充填密度が低下し、性能が低下する。以上記載の性能を有することから、本発明の成型活性炭は、充填密度0.6~0.8g/ccにおいて、後述するDBL試験によるリーク量(2回目)値で0.009~0.012g程度のガソリン等の蒸発燃料の吸着・脱着能力を有し、蒸発燃料捕集装置(キャニスター)の吸着剤として、好適に使用できる。

[0016]

【実施例】次に、本発明を実施例により更に具体的に説

明するがその要旨をこえない限り以下の実施例に限定されるものではない。なお、各種測定方法は下記の通り。 測定方法

<DBL試験>

- 1. キャニスターにガソリン蒸気を2g破過まで通気後、400倍量パージ
- 2. 上記操作を10サイクル実施し、11回目の吸着終 了後、常温で1日放置(ソーク)
- 3.400倍量パージ後、50%ブタンを40g/Hr で2g破過まで通気
- 4. 車種に合わせた条件でパージ後(300倍量前後) ソークし、以下のダイアーナルテスト実施
- 5. キャニスターをガソリンタンクに直結し、キャニスター出口にリーク測定のテドラーバッグ設置
- 6. ガソリン温度を18℃から41℃まで、12時間で 昇温し、リーク量測定(1回目リーク量)
- 7. ガソリン温度を41℃から18℃まで、12時間で 降温
- 8. ガソリン温度を18℃から41℃まで、12時間で 昇温し、リーク量測定(2回目リーク量)
- 9. リーク量は、テドラーバッグ内気体の(濃度)× (体積)より求める

<nブタン吸着法>

(その1)

- 1. ガラスカラムに活性炭20m1充填し、25℃恒温 とする
- 2. 活性炭カラムに n ブタン 100% ガスを 105. 4 m l / m i n で 20分間通気し、飽和吸着量を測定する 3. 次いで、25℃恒温状態で窒素ガスを 200 m l / m i n で 20分間通気し、残存吸着量を測定する
- 4. 有効吸着量を (飽和吸着量) (残存吸着量) より求める

(その2)

- 1. ガラスカラムに活性炭20m1充填し、25℃恒温 とする
- 2. 活性炭カラムに n ブタン 100% ガスを 105.4 m l / m i n で 15分間通気し、飽和吸着量を測定する 3. 次いで、25℃恒温状態で窒素ガスを 300 m l / m i n で 40分間通気し、残存吸着量を測定する
- 4. 有効吸着量を (飽和吸着量) (残存吸着量) より求める

<木屋式圧壊強度>木屋式硬度計を用い、長さ3~5mm

の大きさの成形活性炭25粒の強度を測定し、平均値を 木屋式強度として算出した。

実施例1

木質系粒状活性炭 (比表面積1500㎡/g) をサンプル ミルを使用して100メッシュパス90%程度に粉砕した。

【0017】この粉末活性炭100重量部とナトリウムベントナイト(比熱0.75J/K·g)63重量部、ホウ酸粉末(100メッシュパス)10重量部、アルミ粉末(100メッシュパス(粒径約75~150μm)、比熱(25℃)0.90J/K·g)108重量部をニーダーで15分間混合した後、水125重量部を添加し、さらに45分間混練した。得られた混練物をディスクペレッターを用いて直径2.5mm、長さ4mm程度の円柱型に成型し、タンブラー試験機で60min(50rpm)転動した。

【0018】この成型炭を一旦115℃の熱風乾燥機中で6時間乾燥した。次いで、ロータリーキルンを使用して成型炭を窒素ガス雰囲気下、650℃で1時間焼成した。焼成後の成型炭を、過剰のホウ酸を除去するため、10倍量の脱イオン水で30分間煮沸、脱水後、115℃で6時間乾燥した。焼成後の成型炭の性状と性能を表1に示す。

実施例2

アルミ粉末の代わりにアルミナ粉末(α -アルミナ粉末、粒径50~300 μ m(平均粒径約150 μ m)、 比熱(25 $\mathbb C$)0.77J/K・g)126重量部を用いた以外は実施例1と同一条件にて成型炭を試作した。 焼成後の成型炭の性状と性能を表1に示す。

【0019】実施例3

アルミナ粉末 (α -アルミナ粉末、粒径50 \sim 300 μ m (平均粒径約150 μ m、比熱 (25 $^{\circ}$) 0.77J /K·g) 108重量部を用いた以外は実施例2と同一条件にて成型炭を試作した。

実施例4

アルミ粉末の代わりに酸化マグネシウム粉末(粒径約5 $0\sim150\,\mu\mathrm{m}$ 、比熱(25°) $0.94\,\mathrm{J/K\cdot g}$)108重量部を用いた以外は実施例1と同一条件にて成形炭を試作した。焼成後の成形炭の性状と性能を表1に示す。

比較例1

アルミ粉末を添加しない以外は、実施例1と同一条件に て成型炭を試作した。焼成後の成型炭の性状と性能を表 1に示す。

比較例2

ナトリウムベントナイト配合量を129重量部、ホウ酸 粉末を20重量部とした以外は、実施例1と同一条件に て成型炭を試作した。

【0020】焼成後の成型炭の性状と性能を表1に示す。

比較例3

ナトリウムベントナイト配合量を193重量部、ホウ酸 粉末を38重量部とした以外は、実施例1と同一条件に て成型炭を試作した。焼成後の成型炭の性状と性能を表 1に示す。 市販木質系成型活性炭(直径2.2mm:粘土、金属粉、金属酸化物粉及びホウ素化合物は入っていない)の性状と性能を表1に示す。

[0021]

【表1】

比較例4

-XI/1-1

表 1

	径 (mm)	充填密 度 (g/cc)	木屋式 強度 (kg)	n ープタン吸着量* * *				DBL試験結果 リーク量 (g)		比點 (J/k	比點 (J/k
				飽和 (g/dl)	残存		脱着學 . (%)	1回目	2回目	(a ·	. cc)
	i	! 			(g/dl)						
实施例1	2. 5	0.67	3	10.3	2.8	7. 5	7 3	0.005	0.009	0.73	0.49
実施例 2	2. 5	0.77	4	11.1	1. 3	9.8	8 8	0.006 · ·	0.012	0.69	0.53
実施例3	2. 5	0.72	4	11.5	1.7	9.8	8 5	0.006	0.012	0.69	0.50
爽施例4	2. 5	0.68	3	10.4	1.5	8. 9	8 6	0.004	0.011	0.74	0.50
比较例1	2. 5	0.51	7	13.0	4. 1	8. 9	68	0.009	0.016	0.71	0.36
比较例 2	2. 5	0.61	10	11.0	3.7	7. 3	60	0.012	0.023	-	-
比較何S	2. 5	0.66	1 3	8. 5	3. 1	5. 4	64	0.016	0.033	-	-
比較例 4	2. 2	0.34	3	12.6	3.8	8. 8	70 ·	0.007	0.017	-	-

【0022】*1)実施例 $1\sim4$ については、nブタン吸着法(601)にて、比較例 $1\sim4$ については、nブタン吸着法(602)にて測定した。

[0023]

【発明の効果】本発明により、適度な強度を有し、より 吸着能力および脱離能力の高いキャニスター用に適した 活性炭を提供することができる。

フロントページの続き

(51) Int. Cl. 7

識別記号

FΙ

(参考)

CO4B 35/52

С

(72)発明者 山田 英司

埼玉県川越市下赤坂591 株式会社テネッ クス内

(72)発明者 竹田 由孝

神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内

(72) 発明者 鈴木 光雄

神奈川県横浜市青葉区鴨志田町1000番地三菱化学株式会社横浜総合研究所内

(72)発明者 山下 博史

東京都千代田区神田須田町二丁目3番16号 柏友商事株式会社内

(72) 発明者 松浦 一志

東京都千代田区有楽町一丁目10番1号 三 菱化学株式会社東京支社内

Fターム(参考) 4G032 AA01 AA21 AA23 AA24 AA29

AA30 AA41 AA43 BA00 GA12

4G066 AA02D AA05B AA16D AA19D

AA20D AA49D AA63C BA09 BA20 BA35 BA38 CA51 DA04

FA03 FA22 FA25 FA34 FA37

GA14

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

□ OTHER: _____