ALGEBRA 1, Lista 14

Ćwiczenia 28.01.2020 i Konwersatorium 29.01.2020.

- 0S. Materiał teoretyczny: Chińskie twierdzenie o resztach. Ideał w pierścieniu R. Ideał główny. Pierścień euklidesowy jest dziedziną ideałów głównych. Pierścień ilorazowy. Jądro i obraz homomorfizmu pierścieni przemiennych z jedynką oraz zasadnicze twierdzenie o homomorfiźmie pierścieni. Opis pierścienia ilorazowego K[X]/(W) (K jest ciałem), postać normalna elementów tego pierścienia oraz implikacja: jeśli W jest nierozkładalny, to pierścień K[X]/(W) jest ciałem.
- 1S. W następujących pierścieniach ilorazowych sporządzić tabelki dodawania i mnożenia. Znaleźć wszystkie dzielniki zera w tych pierścieniach.
 - (a) $\mathbb{Z}_6/(3)$.
 - (b) $\mathbb{Z}_3 \times \mathbb{Z}_3/((1,2))$.
- 2K. Niech R będzie dziedziną i $a, b \in R$. Załóżmy, że a nie dzieli b oraz element a jest nierozkładalny. Udowodnić, że największy wspólnik dzielnik a i b to 1.
- 3K. Rozłożyć podane wielomiany na czynniki nierozkładalne w podanych pierścieniach:
 - (a) $X^4 9X + 3 \le \mathbb{Q}[X]$;
 - (b) $X^3 4X + 1 \le \mathbb{Q}[X]$;
 - (c) $X^8 16 \le \mathbb{Q}[X]$;
 - (d) $X^8 16 \le \mathbb{R}[X]$;
 - (e) $X^8 16 \le \mathbb{C}[X];$
 - (f) $X^8 16 \le \mathbb{Z}_{17}[X]$.
- 4K. Czy dane wielomiany są nierozkładalne w podanym pierścieniu?
 - (a) $X^3 + X^2 + X + 1 \le \mathbb{Q}[X]$.
 - (b) $3X^8 4X^6 + 8X^5 10X + 6 \le \mathbb{Q}[X]$.
 - (c) $X^4 + X^2 6 \le \mathbb{Q}[X]$.
 - (d) $4X^3 + 3X^2 + X + 1 \le \mathbb{Z}_5[X]$.
 - (e) $X^5 + 15 \le \mathbb{Q}[X]$.
 - (f) $X^4 2X^3 + X^2 + 1 \le \mathbb{R}[X]$.
- 5K. Rozważmy pierścień

$$\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}\$$

(podpierścień ciała liczb rzeczywistych) oraz funkcję

$$d: \mathbb{Z}[\sqrt{2}] \to \mathbb{N}, \quad d\left(n + m\sqrt{2}\right) = \left|n^2 - 2m^2\right|.$$

- (a) Udowodnić, że dla $x\in\mathbb{Z}[\sqrt{2}]$ przedstawienie x w postaci $n+m\sqrt{2}$ $(n,m\in\mathbb{Z})$ jest jednoznaczne.
- (b) Udowodnić, że dla $x, y \in \mathbb{Z}[\sqrt{2}]$ mamy d(xy) = d(x)d(y).
- (c) Udowodnić, że dla $x \in \mathbb{Z}[\sqrt{2}]$ mamy: $x \in \mathbb{Z}[\sqrt{2}]^*$ wtedy i tylko wtedy, gdy d(x) = 1.
- (d) Wskazać nieskończenie wiele elementów $\mathbb{Z}[\sqrt{2}]^*$.
- (e) Znaleźć rozkład liczby 2 na iloczyn czynników nierozkładalnych w pierścieniu $\mathbb{Z}[\sqrt{2}]$.
- 6. Obliczyć sumę i iloczyn danych elementów w podanych pierścieniach ilorazowych i podać wyniki w postaci normalnej. Które z tych pierścieni ilorazowych są ciałami?
 - (a) 3X + 4 + I i 5X 2 + I w $\mathbb{R}[X]/(X^2 7)$.
 - (b) $X^2 + 3X + 1 + I$ i $-2X^2 + 4 + I$ w $\mathbb{Q}[X]/(X^3 + 2)$.
 - (c) $X^2 + 1 + I$ i X + 1 + I w $\mathbb{Z}_2[X]/(X^3 + X + 1)$.

- 7. Udowodnić istnienie poniższych izomorfizmów. Wskazówka: w każdym przypadku znaleźć epimorfizm pierścieni, którego jądrem jest odpowiedni ideał i zastosować zasadnicze twierdzenie o homomorfizmie pierścieni.
 - (a) $\mathbb{R}[X]/(X^2+5) \cong \mathbb{C}$.
 - (b) $\mathbb{Q}[X]/(X^2 7) \cong \mathbb{Q}[\sqrt{7}] = \{a + b\sqrt{7} : a, b \in \mathbb{Q}\}.$
 - (c) $\mathbb{Z}_{14}/(2) \cong \mathbb{Z}_2$.
 - (d) $\mathbb{R}[X,Y]/(X+Y) \cong \mathbb{R}[Y]$.
- 8. Wyznacznik | 676 | 117 | 522 | 375 | 65 | 290 | jest dodatni i mniejszy od 100. Obliczyć ten wyznacznik 825 | 143 | 639 |

za pomocą chińskiego twierdzenia o resztach.

Wskazówka: obliczyć wartość wyznacznika modulo 10 i modulo 11.

9. Załóżmy, że I, J są ideałami w pierścieniu R. Udowodnić, że $I \cap J$ oraz

$$I + J := \{i + j \mid i \in I, j \in J\}$$

też są ideałami w R. Podać przykład, gdzie $I \cup J$ nie jest ideałem w R.

- 10. Wskazać generatory następujących ideałów w danych pierścieniach euklidesowych:
 - (a) $(2) \cap (3) \le \mathbb{Z};$
 - (b) $(12) \cap (18) \le \mathbb{Z}$;
 - (c) $(X^2 1) \cap (X + 1)$ w $\mathbb{Q}[X]$.

Zauważyć ogólną prawidłowość.

- 11. Wskazać generatory następujących ideałów w danych pierścieniach euklidesowych:
 - (a) $(2,3) \le \mathbb{Z}$;
 - (b) $(9,12) \le \mathbb{Z}$;
 - (c) $(X^2 + X + 1, X^2 + 1)$ w $\mathbb{Z}_2[X]$.

Zauważyć ogólna prawidłowość.