推荐模型之DeepMCP模型

原创 hellobill 比尔的新世界 8月23日

背景

DeepMCP模型是阿里19年提出的一个广告点击率预估,不同于传统的CTR预估模型刻画特征-CTR之间的联系,该模型采用多任务学习的方式进行联合训练进一步挖掘用户-广告、广告-广告之间的信息从而使得系统对于特征-CTR之间的联系刻画得更加准确。

DeepMCP模型结构

DeepMCP包括三部分: prediction subnet、matching subnet和correlation subnet。这些子网络模型对特征-点击率,用户-广告,广告-广告关系分别建模。可以看出,这是一个多目标学习框架,所有子网在训练时都是激活的,预估的时候使用部分子网,比如点击率预估使用prediction subnet,而粗排和召回可以使用matching subnet。

输入特征分为四组,用户特征(如用户id,年龄),查询特征(用户历史行为),广告特征(如广告id),其他特征(时间等)。其中,prediction subnet使用所有的四组特征,matching subnet使用用户,查询和广告特征,corelation subnet 仅使用广告序列特征,所有这些子网共享embedding。

prediction subnet

prediction subnet就是一个典型的点击率预估模型,可以替换为Wide&Deep、DeepFM等点击率模型。特征首先通过Embedding层转换为对应的Embedding,然后将特征进行横向拼接输入到DNN中,最后在输出层通过sigmoid函数来生成预测的点击率,损失函数使用logloss。

$$loss_p = -\frac{1}{|Y|} \sum_{y \in Y} [y \log \hat{y} + (1 - y) \log(1 - \hat{y})]$$

matching subnet

matching subnet对用户-广告关系建模,学习用户与广告是否匹配。这个就是召回阶段使用的双塔DSSM模型,核心思想就是分别学习得到两个Embedding向量,分别是用户侧Embedding向量和广告侧Embedding向量,然后利用这两个Embedding向量计算得到一个matching score,具体matching score计算公式如下:

$$s(\mathbf{v}_u, \mathbf{v}_a) = \frac{1}{1 + \exp(-\mathbf{v}_u^T \mathbf{v}_a)}$$

损失函数和predictionsubnet一样是logloss。全连接网络的最后一层的激活函数是tanh而不是relu,主要是因为采用relu的话,最后一层的数据会包括很多零值,这会使得计算得到的matching score更趋近于零。

corelation subnet

corelationsubnet 对广告-广告关系建模,基于对于一个用户的广告点击序列来说,在一定的时间窗口内部,广告之间存在一定的相关性的。这里用到了skip-gram的思路,对于一个广告点击序列来说,最优化的目标是最大化对数似然函数:

$$ll = \frac{1}{L} \sum_{i=1}^{L} \sum_{-C \le j \le C}^{1 \le i+j \le L, j \ne 0} \log p(a_{i+j}|a_i)$$

L是序列中广告的数量,C是上下文窗口的大小。对于上式中概率p的建模存在很多种方式,如softmax、hierarchical softmax、降采样等,文章采用的是降采样的方式,概率p如下式所示:

$$p(a_{i+j}|a_i) = \sigma(\mathbf{h}_{a_{i+j}}^T \mathbf{h}_{a_i}) \prod_{q=1}^Q \sigma(-\mathbf{h}_{a_q}^T \mathbf{h}_{a_i})$$

在此基础上correlationsubnet的损失函数被定义为最小化平均对数似然函数的负值,即:

$$\begin{split} \operatorname{loss}_{c} &= \frac{1}{L} \sum_{i=1}^{L} \sum_{-C \leq j \leq C}^{1 \leq i + j \leq L, j \neq 0} \left[-\log \left[\sigma(\mathbf{h}_{a_{i+j}}^{T} \mathbf{h}_{a_{i}}) \right] \right. \\ &\left. - \sum_{q=1}^{Q} \log \left[\sigma(-\mathbf{h}_{a_{q}}^{T} \mathbf{h}_{a_{i}}) \right] \right]. \end{split}$$

DeepMCP最终的损失函数为三个子模块损失函数加权和:

$$loss = loss_p + \alpha loss_m + \beta loss_c$$

其中α和β是调节因子, 用以调节不同子网络的权重。

线上Serving

从下表可以看出来,单独使用DeepMP效果比base就要好很多,再加入Correlation 网络,效果提升有限,而数据和模型的复杂度都提升了很多。所以阿里最终线上采用的是DeepMP,在预估准确性和模型复杂度之间达到了最好的折衷。

	Avito		Company	
Algorithm	AUC	Logloss	AUC	Logloss
LR	0.7556	0.05918	0.7404	0.2404
FM	0.7802	0.06094	0.7557	0.2365
DNN	0.7816	0.05655	0.7579	0.2360
PNN	0.7817	0.05634	0.7593	0.2357
Wide&Deep	0.7817	0.05595	0.7594	0.2355
DeepFM	0.7819	0.05611	0.7592	0.2358
DeepCP	0.7844	0.05546	0.7610	0.2354
DeepMP	0.7917	0.05526	0.7663	0.2345
DeepMCP	0.7927	0.05518	0.7674	0.2341

多目标学习共享embedding具有迁移学习的性质,prediction subnet和matching subnet两个任务之间相关性较高,是可以相互促进提升彼此单独模型的效果的。prediction subnet的预测能力能够有助于matching subnet提升表达能力,而matching subnet的表达又有助于prediction subnet提升预测能力,所以该模型除了在排序阶段使用(包括粗排和精排)prediction subnet,还可以在召回阶段使用matching subnet。