CHEM202 Organic Chemistry

Nick Green

nick.green@otago.ac.nz, 3n11

Module 1: Spectroscopy and Characterisation

Lecture 6: Interpreting 1H NMR Spectra

NMR has been associated with 6 Nobel Prizes

- Obtaining data from spectra.
- Structural Elucidation

¹H NMR Analysis

Apply the mnemonic NIPS (For simple first order systems)

N = No. of sets of signals

gives the number of different kinds of protons in the

compound.

I = Integration gives the number of protons of each kind by using the

integrated area.

P = Position δ value gives information about the environment.

Tables of chemical shift values are available for

comparison

S = Splitting Pattern

gives information about the number of protons on the

adjacent C atoms.

¹H NMR of vinyl acetate

Each signal is a doublet of doublets (dd)
i.e. the signal is split into a doublet twice, with a corresponding coupling
constant J (splitting gap) for each split

Splitting by multiple non equivalent neighbours

¹H nmr of ethyl iodide obtained on a spectrometer with an operating frequency of 100 MHz

- Calculate the δ and J values for the observed signals.
- Tabulate the data
- Calculate the line frequencies of the spectrum when measured at 300 MHz.

- Tabulate the ¹H nmr data, obtained on a spectrometer with an operating frequency of 60 MHz, for C₄H₁₀O₂.
- Deduce a possible structure for the compound.

¹H NMR of C₅H₁₀O

¹H NMR of C₇H₁₄O

Online Resources

Blackboard

Lectures/ Module 1: Structural Characterisation and Analysis

Organic Chemistry Online: - Spectroscopy

Structure elucidation problem sets (Notre Dame)