Introduction to Hidden Markov Models

Markov Models

- Set of states: $\{S_1, S_2, \dots, S_N\}$
- Process moves from one state to another generating a sequence of states : $S_{i1}, S_{i2}, \dots, S_{ik}, \dots$
- Markov chain property: probability of each subsequent state depends only on what was the previous state:

$$P(s_{ik} \mid s_{i1}, s_{i2}, \dots, s_{ik-1}) = P(s_{ik} \mid s_{ik-1})$$

• To define Markov model, the following probabilities have to be specified: transition probabilities $a_{ij} = P(s_i \mid s_j)$ and initial probabilities $\pi_i = P(s_i)$

Example of Markov Model

- Two states: 'Rain' and 'Dry'.
- Transition probabilities: P(`Rain'|`Rain')=0.3,
- P('Dry'|'Rain')=0.7, P('Rain'|'Dry')=0.2, P('Dry'|'Dry')=0.8
- Initial probabilities: say P(`Rain')=0.4, P(`Dry')=0.6.

Calculation of sequence probability

• By Markov chain property, probability of state sequence can be found by the formula:

$$P(s_{i1}, s_{i2}, ..., s_{ik}) = P(s_{ik} | s_{i1}, s_{i2}, ..., s_{ik-1}) P(s_{i1}, s_{i2}, ..., s_{ik-1})$$

$$= P(s_{ik} | s_{ik-1}) P(s_{i1}, s_{i2}, ..., s_{ik-1}) = ...$$

$$= P(s_{ik} | s_{ik-1}) P(s_{ik-1} | s_{ik-2}) ... P(s_{i2} | s_{i1}) P(s_{i1})$$

• Suppose we want to calculate a probability of a sequence of states in our example, {'Dry','Dry','Rain',Rain'}.

$$P(\{\text{'Dry','Dry','Rain',Rain'}\}) =$$
 $P(\text{'Rain'}|\text{'Rain'}) P(\text{'Rain'}|\text{'Dry'}) P(\text{'Dry'}|\text{'Dry'}) P(\text{'Dry'}) =$
 $= 0.3*0.2*0.8*0.6$

Hidden Markov models.

- Set of states: $\{S_1, S_2, \dots, S_N\}$
- •Process moves from one state to another generating a sequence of states : $S_{i1}, S_{i2}, \ldots, S_{ik}, \ldots$
- Markov chain property: probability of each subsequent state depends only on what was the previous state:

$$P(s_{ik} \mid s_{i1}, s_{i2}, ..., s_{ik-1}) = P(s_{ik} \mid s_{ik-1})$$

- States are not visible, but each state randomly generates one of M observations (or visible states) $v_1, v_2, ..., v_M$
- To define hidden Markov model, the following probabilities have to be specified: matrix of transition probabilities $A=(a_{ij})$, $a_{ij}=P(s_i|s_j)$, matrix of observation probabilities $B=(b_i(v_m))$, $b_i(v_m)=P(v_m|s_i)$ and a vector of initial probabilities $\pi=(\pi_i)$, $\pi_i=P(s_i)$. Model is represented by $M=(A,B,\pi)$.

Example of Hidden Markov Model

Example of Hidden Markov Model

- Two states: 'Low' and 'High' atmospheric pressure.
- Two observations: 'Rain' and 'Dry'.
- Transition probabilities: P('Low'|'Low')=0.3,

$$P('High'|'Low')=0.7, P('Low'|'High')=0.2,$$

- Observation probabilities : P(`Rain'|`Low')=0.6,
- P('Dry'|'Low')=0.4, P('Rain'|'High')=0.4,

$$P('Dry'|'High')=0.3$$
.

• Initial probabilities: say P(`Low')=0.4, P(`High')=0.6.

Calculation of observation sequence probability

- •Suppose we want to calculate a probability of a sequence of observations in our example, {'Dry','Rain'}.
- •Consider all possible hidden state sequences:

$$\begin{split} &P(\{\text{`Dry','Rain'}\}) = P(\{\text{`Dry','Rain'}\}, \{\text{`Low','Low'}\}) + \\ &P(\{\text{`Dry','Rain'}\}, \{\text{`Low','High'}\}) + P(\{\text{`Dry','Rain'}\}, \\ &\{\text{`High','Low'}\}) + P(\{\text{`Dry','Rain'}\}, \{\text{`High','High'}\}) \end{split}$$

where first term is:

$$\begin{split} &P(\{\text{'Dry','Rain'}\}, \{\text{'Low','Low'}\}) = \\ &P(\{\text{'Dry','Rain'}\} \mid \{\text{'Low','Low'}\}) \ P(\{\text{'Low','Low'}\}) = \\ &P(\text{'Dry'}|\text{'Low'})P(\text{'Rain'}|\text{'Low'}) \ P(\text{'Low'})P(\text{'Low'}|\text{'Low}) \\ &= 0.4*0.4*0.6*0.4*0.3 \end{split}$$

Main issues using HMMs:

Evaluation problem. Given the HMM $M=(A,B,\pi)$ and the observation sequence $O=o_1o_2...o_K$, calculate the probability that model M has generated sequence O.

- **Decoding problem.** Given the HMM $M=(A, B, \pi)$ and the observation sequence $O=o_1 o_2 ... o_K$, calculate the most likely sequence of hidden states S_i that produced this observation sequence O.
- Learning problem. Given some training observation sequences $O=o_1o_2...o_K$ and general structure of HMM (numbers of hidden and visible states), determine HMM parameters $M=(A, B, \pi)$ that best fit training data.

 $O=o_1...o_K$ denotes a sequence of observations $o_k \in \{V_1, ..., V_M\}$.

Word recognition example(1).

• Typed word recognition, assume all characters are separated.

• Character recognizer outputs probability of the image being particular character, P(image|character).

Word recognition example(2).

- Hidden states of HMM = characters.
- Observations = typed images of characters segmented from the image V_{α} . Note that there is an infinite number of observations
- Observation probabilities = character recognizer scores.

$$B = (b_i(v_\alpha)) = (P(v_\alpha \mid s_i))$$

•Transition probabilities will be defined differently in two subsequent models.

Word recognition example(3).

• If lexicon is given, we can construct separate HMM models for each lexicon word.

- Here recognition of word image is equivalent to the problem of evaluating few HMM models.
- •This is an application of Evaluation problem.

Word recognition example(4).

- We can construct a single HMM for all words.
- Hidden states = all characters in the alphabet.
- Transition probabilities and initial probabilities are calculated from language model.
- Observations and observation probabilities are as before.

- Here we have to determine the best sequence of hidden states, the one that most likely produced word image.
- This is an application of **Decoding problem**.

Character recognition with HMM example.

• The structure of hidden states is chosen.

• Observations are feature vectors extracted from vertical slices.

- Probabilistic mapping from hidden state to feature vectors:
 - 1. use mixture of Gaussian models
 - 2. Quantize feature vector space.

Exercise: character recognition with HMM(1)

• The structure of hidden states:

- Observation = number of islands in the vertical slice.
- •HMM for character 'A':

Transition probabilities:
$$\{a_{ij}\}=\begin{bmatrix} .8 & .2 & 0 \\ 0 & .8 & .2 \\ 0 & 0 & 1 \end{bmatrix}$$

Observation probabilities:
$$\{b_{jk}\}=$$
 $\begin{pmatrix} .9 & .1 & 0 \\ .1 & .8 & .1 \\ .9 & .1 & 0 \end{pmatrix}$

•HMM for character 'B':

Transition probabilities:
$$\{a_{ij}\}=\begin{bmatrix} .8 & .2 & 0 \\ 0 & .8 & .2 \\ 0 & 0 & 1 \end{bmatrix}$$

Observation probabilities:
$$\{b_{jk}\}=$$

$$\begin{pmatrix}
.9 & .1 & 0 \\
0 & .2 & .8 \\
.6 & .4 & 0
\end{pmatrix}$$

Exercise: character recognition with HMM(2)

• Suppose that after character image segmentation the following sequence of island numbers in 4 slices was observed:

```
{ 1, 3, 2, 1}
```

• What HMM is more likely to generate this observation sequence, HMM for 'A' or HMM for 'B'?

Exercise: character recognition with HMM(3)

Consider likelihood of generating given observation for each possible sequence of hidden states:

• HMM for character 'A':

Hidden state sequence	Transition probabilities		Observation probabilities
$s_1 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3$.8 * .2 * .2	*	.9 * 0 * .8 * .9 = 0
$s_1 \rightarrow s_2 \rightarrow s_2 \rightarrow s_3$.2 * .8 * .2	*	.9 * .1 * .8 * .9 = 0.0020736
$s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_3$.2 * .2 * 1	*	.9 * .1 * .1 * .9 = 0.000324
			Total = 0.0023976

• HMM for character 'B':

Hidden state sequence	Transition probabilities		Observation probabilities
$s_1 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3$.8 * .2 * .2	*	.9 * 0 * .2 * .6 = 0
$s_1 \rightarrow s_2 \rightarrow s_2 \rightarrow s_3$.2 * .8 * .2	*	.9 * .8 * .2 * .6 = 0.0027648
$S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_3$.2 * .2 * 1	*	.9 * .8 * .4 * .6 = 0.006912
			Total = 0.0096768

Evaluation Problem.

- **Evaluation problem.** Given the HMM $M=(A,B,\pi)$ and the observation sequence $O=o_1o_2...o_K$, calculate the probability that model M has generated sequence O.
- Trying to find probability of observations $O=o_1 o_2 ... o_K$ by means of considering all hidden state sequences (as was done in example) is impractical:

N^K hidden state sequences - exponential complexity.

- Use Forward-Backward HMM algorithms for efficient calculations.
- Define the forward variable $\alpha_k(i)$ as the joint probability of the partial observation sequence $O_1 O_2 ... O_k$ and that the hidden state at time k is $S_i : \alpha_k(i) = P(o_1 o_2 ... o_k, q_k = S_i)$

Trellis representation of an HMM

Forward recursion for HMM

• Initialization:

$$\alpha_1(i) = P(o_1, q_1 = s_i) = \pi_i b_i(o_1), 1 \le i \le N.$$

• Forward recursion:

$$\begin{split} \alpha_{k+1}(i) &= P(o_1 o_2 \dots o_{k+1}, q_{k+1} = s_j) = \\ \sum_i P(o_1 o_2 \dots o_{k+1}, q_k = s_i, q_{k+1} = s_j) = \\ \sum_i P(o_1 o_2 \dots o_k, q_k = s_i) \ a_{ij} \ b_j(o_{k+1}) = \\ \left[\sum_i \alpha_k(i) \ a_{ij} \ b_i(o_{k+1}) \ , \quad 1 \le j \le N, \ 1 \le k \le K-1. \end{split}$$

• Termination:

$$P(o_1 o_2 ... o_K) = \sum_i P(o_1 o_2 ... o_K, q_K = S_i) = \sum_i \alpha_K(i)$$

• Complexity : N²K operations.

Backward recursion for HMM

- Define the forward variable $\beta_k(i)$ as the joint probability of the partial observation sequence $O_{k+1} O_{k+2} ... O_K$ given that the hidden state at time k is $S_i : \beta_k(i) = P(O_{k+1} O_{k+2} ... O_K | q_k = S_i)$
- Initialization:

$$\beta_{\kappa}(i)=1$$
 , 1<=i<=N.

• Backward recursion:

$$\begin{split} \beta_{k}(j) &= P(o_{k+1} o_{k+2} \dots o_{K} | q_{k} = s_{j}) = \\ \sum_{i} P(o_{k+1} o_{k+2} \dots o_{K, q_{k+1}} = s_{i} | q_{k} = s_{j}) = \\ \sum_{i} P(o_{k+2} o_{k+3} \dots o_{K} | q_{k+1} = s_{i}) a_{ji} b_{i}(o_{k+1}) = \\ \sum_{i} \beta_{k+1}(i) a_{ii} b_{i}(o_{k+1}), \quad 1 \leq j \leq N, 1 \leq k \leq K-1. \end{split}$$

• Termination:

$$P(o_1 o_2 ... o_K) = \sum_i P(o_1 o_2 ... o_K, q_1 = S_i) =$$

$$\sum_i P(o_1 o_2 ... o_K | q_1 = S_i) P(q_1 = S_i) = \sum_i \beta_1(i) b_i(o_1) \pi_i$$

Decoding problem

- **Decoding problem.** Given the HMM $M=(A, B, \pi)$ and the observation sequence $O=o_1 o_2 ... o_K$, calculate the most likely sequence of hidden states S_i that produced this observation sequence.
- We want to find the state sequence $Q = q_1 ... q_K$ which maximizes $P(Q \mid o_1 o_2 ... o_K)$, or equivalently $P(Q, o_1 o_2 ... o_K)$.
- Brute force consideration of all paths takes exponential time. Use efficient **Viterbi algorithm** instead.
- Define variable $\delta_k(i)$ as the maximum probability of producing observation sequence $O_1O_2...O_k$ when moving along any hidden state sequence $Q_1...Q_{k-1}$ and getting into $Q_k = S_i$.

$$\delta_k(i) = \max P(q_1...q_{k-1}, q_k = s_i, o_1 o_2...o_k)$$

where max is taken over all possible paths $Q_1 \dots Q_{k-1}$.

Viterbi algorithm (1)

• General idea:

if best path ending in $Q_k = S_j$ goes through $Q_{k-1} = S_i$ then it should coincide with best path ending in $Q_{k-1} = S_i$.

- $\begin{array}{l} \bullet \; \delta_{\mathbf{k}}(\mathbf{i}) = \max \; P(q_{1} \ldots \; q_{\mathbf{k-1}}, q_{\mathbf{k}} = s_{\mathbf{j}} \; , o_{1} o_{2} \ldots \; o_{\mathbf{k}}) = \\ \max_{\mathbf{i}} \; [\; a_{\mathbf{i}\mathbf{j}} \; b_{\mathbf{j}}(o_{\mathbf{k}}) \; \max \; P(q_{1} \ldots \; q_{\mathbf{k-1}} = s_{\mathbf{i}} \; , o_{1} o_{2} \ldots \; o_{\mathbf{k-1}}) \;] \\ \end{array}$
- To backtrack best path keep info that predecessor of S_j was S_i .

Viterbi algorithm (2)

• Initialization:

$$\delta_1(i) = \max P(q_1 = s_i, o_1) = \pi_i b_i(o_1), 1 \le i \le N.$$

•Forward recursion:

$$\begin{split} & \delta_{k}(j) = \max \ P(q_{1} \ldots \ q_{k-1}, q_{k} = s_{j} \ , o_{1} o_{2} \ldots \ o_{k}) = \\ & \max_{i} \left[\ a_{ij} \ b_{j} \left(o_{k} \right) \ \max \ P(q_{1} \ldots \ q_{k-1} = s_{i} \ , o_{1} o_{2} \ldots \ o_{k-1}) \ \right] = \\ & \max_{i} \left[\ a_{ij} \ b_{i} \left(o_{k} \right) \ \delta_{k-1}(i) \ \right] \ , \quad 1 <= j <= N, \ 2 <= k <= K. \end{split}$$

- Termination: choose best path ending at time K $max_i \ [\ \delta_K(i)\]$
- Backtrack best path.

This algorithm is similar to the forward recursion of evaluation problem, with Σ replaced by max and additional backtracking.

Learning problem (1)

- •Learning problem. Given some training observation sequences $O=o_1o_2...o_K$ and general structure of HMM (numbers of hidden and visible states), determine HMM parameters $M=(A, B, \pi)$ that best fit training data, that is maximizes P(O|M).
- There is no algorithm producing optimal parameter values.
- Use iterative expectation-maximization algorithm to find local maximum of $P(O\mid M)$ Baum-Welch algorithm.

Learning problem (2)

• If training data has information about sequence of hidden states (as in word recognition example), then use maximum likelihood estimation of parameters:

$$a_{ij} = P(s_i | s_j) = \frac{\text{Number of transitions from state } S_j \text{ to state } S_i}{\text{Number of transitions out of state } S_j}$$

$$b_i(v_m) = P(v_m | s_i) = \frac{\text{Number of times observation } V_m \text{ occurs in state } s_i}{\text{Number of times in state } s_i}$$

Baum-Welch algorithm

General idea:

$$a_{ij} = P(s_i | s_j) = \frac{\text{Expected number of transitions from state } S_i \text{ to state } S_i}{\text{Expected number of transitions out of state } S_j}$$

$$b_{i}(v_{m}) = P(v_{m} | s_{i}) = \frac{\text{Expected number of times observation } V_{m} \text{ occurs in state } S_{i}}{\text{Expected number of times in state } S_{i}}$$

$$\pi_i = P(s_i) = \text{Expected frequency in state } s_i \text{ at time } k=1.$$

Baum-Welch algorithm: expectation step(1)

• Define variable $\xi_k(i,j)$ as the probability of being in state S_i at time k and in state S_j at time k+1, given the observation sequence $O_1 O_2 \dots O_K$.

$$\xi_k(i,j) = P(q_k = s_i, q_{k+1} = s_j | o_1 o_2 ... o_K)$$

$$\xi_{k}(i,j) = \frac{P(q_{k} = s_{i}, q_{k+1} = s_{j}, o_{1} o_{2} ... o_{k})}{P(o_{1} o_{2} ... o_{k})} =$$

$$\frac{P(q_k=s_i,o_1o_2...o_k)a_{ij}b_j(o_{k+1})P(o_{k+2}...o_K|q_{k+1}=s_j)}{P(o_1o_2...o_k)} =$$

$$\frac{\alpha_{k}(i) \ a_{ij} \ b_{j}(o_{k+1}) \ \beta_{k+1}(j)}{\sum_{i} \sum_{i} \alpha_{k}(i) \ a_{ij} \ b_{i}(o_{k+1}) \ \beta_{k+1}(j)}$$

Baum-Welch algorithm: expectation step(2)

• Define variable $\gamma_k(i)$ as the probability of being in state S_i at time k, given the observation sequence $O_1 O_2 ... O_K$.

$$\gamma_k(i) = P(q_k = S_i \mid O_1 O_2 \dots O_K)$$

$$\gamma_{\textbf{k}}(\textbf{i}) = \quad \frac{P(q_{\textbf{k}} = s_{\textbf{i}} \,, o_{1} \, o_{2} \, ... \, o_{\textbf{k}})}{P(o_{1} \, o_{2} \, ... \, o_{\textbf{k}})} \quad = \quad \frac{\alpha_{\textbf{k}}(\textbf{i}) \, \beta_{\textbf{k}}(\textbf{i})}{\sum_{\textbf{i}} \alpha_{\textbf{k}}(\textbf{i}) \, \beta_{\textbf{k}}(\textbf{i})}$$

Baum-Welch algorithm: expectation step(3)

•We calculated
$$\xi_k(i,j) = P(q_k = s_i, q_{k+1} = s_j \mid o_1 o_2 \dots o_K)$$

and $\gamma_k(i) = P(q_k = s_i \mid o_1 o_2 \dots o_K)$

- Expected number of transitions from state S_i to state $S_j = \sum_k \xi_k(i,j)$
- Expected number of transitions out of state $S_i = \sum_k \gamma_k(i)$
- Expected number of times observation V_m occurs in state $S_i = \sum_k \gamma_k(i)$, k is such that $O_k = V_m$
- Expected frequency in state S_i at time $k=1: \gamma_1(i)$.

Baum-Welch algorithm: maximization step

$$a_{ij} = \frac{\text{Expected number of transitions from state } s_{j} \text{ to state } s_{i}}{\text{Expected number of transitions out of state } s_{j}} = \frac{\sum_{k} \xi_{k}(i,j)}{\sum_{k} \gamma_{k}(i)}$$

$$b_{i}(v_{m}) = \frac{\text{Expected number of times observation } v_{m} \text{ occurs in state } s_{i}}{\text{Expected number of times in state } s_{i}} = \frac{\sum_{k} \xi_{k}(i,j)}{\sum_{k,o_{k}=v_{m}} \gamma_{k}(i)}$$

$$\pi_i = (\text{Expected frequency in state } S_i \text{ at time } k=1) = \gamma_1(i).$$