1

Random Numbers

Gautam Singh

1

2

3

CONTENTS

1	Uniform	Random	Numbers
1	CIMIULIII	Nanuviii	Tumbers

Central Limit Theorem

3 From Uniform to Other

2

Abstract—This manual provides a simple introduction to the generation of random numbers

1 Uniform Random Numbers

Let U be a uniform random variable between 0 and 1.

1.1 Generate 10^6 samples of U using a C program and save into a file called uni.dat.

Solution: Download the following files and execute the C program.

curl https://github.com/gadepall/probability/ raw/master/manual/codes/exrand.c wget https://github.com/gadepall/probability/ raw/master/manual/codes/coeffs.h

1.2 Load the uni.dat file into python and plot the empirical CDF of *U* using the samples in uni.dat. The CDF is defined as

$$F_U(x) = \Pr\left(U \le x\right) \tag{1.1}$$

Solution: The following code plots Fig. 1.2

wget https://github.com/gadepall/probability/ raw/master/manual/codes/cdf plot.py

1.3 Find a theoretical expression for $F_U(x)$.

Solution: The CDF of U is given by

$$F_U(x) = \Pr(U \le x) = \int_0^x p_U(u) du \qquad (1.2)$$

We now have three cases:

- a) x < 0: $p_X(x) = 0$, and hence $F_U(x) = 0$.
- b) $0 \le x < 1$: Here,

$$F_U(x) = \int_0^x du = x$$
 (1.3)

Fig. 1.2: The CDF of U

c) $x \ge 1$: Put x = 1 in (1.3) as *U* is uniform in [0, 1] to get $F_U(x) = 1$.

Therefore,

$$F_U(x) = \begin{cases} 0 & x < 0 \\ x & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$$
 (1.4)

This is verified in Figure (1.2)

1.4 The mean of U is defined as

$$E[U] = \frac{1}{N} \sum_{i=1}^{N} U_i$$
 (1.5)

and its variance as

$$var[U] = E[U - E[U]]^2$$
 (1.6)

Write a C program to find the mean and variance of U.

1.5 Verify your result theoretically given that

$$E\left[U^{k}\right] = \int_{-\infty}^{\infty} x^{k} dF_{U}(x) dx \tag{1.7}$$

Solution: We write

$$E\left[U^{2}\right] = \int_{-\infty}^{\infty} x^{2} dF_{U}(x) \tag{1.8}$$

$$= \int_{-\infty}^{\infty} x^2 p_U(x) dx \tag{1.9}$$

$$= \int_0^1 x^2 dx = \frac{1}{3} \tag{1.10}$$

and

$$E[U] = \int_{-\infty}^{\infty} x dF_U(x)$$
 (1.11)

$$= \int_{-\infty}^{\infty} x p_U(x) dx \tag{1.12}$$

$$= \int_0^1 x dx = \frac{1}{2} \tag{1.13}$$

Now, using linearity of expectation,

$$var[U] = E[U - E[U]]^2$$
 (1.14)

$$= E \left[U^2 - 2UE [U] + (E [U])^2 \right]$$
 (1.15)

$$= E[U^{2}] - 2(E[U])^{2} + (E[U])^{2}$$
 (1.16)

$$= E[U^2] - (E[U])^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12} \quad (1.17)$$

(1.18)

and this answer checks out with the output of the C program.

2 Central Limit Theorem

2.1 Generate 10⁶ samples of the random variable

$$X = \sum_{i=1}^{12} U_i - 6 \tag{2.1}$$

using a C program, where U_i , i = 1, 2, ..., 12 are a set of independent uniform random variables between 0 and 1 and save in a file called gau.dat

2.2 Load gau.dat in python and plot the empirical CDF of *X* using the samples in gau.dat. What properties does a CDF have?

Solution: The CDF of *X* is plotted in Fig. 2.2

2.3 Load gau.dat in python and plot the empirical PDF of *X* using the samples in gau.dat. The PDF of *X* is defined as

$$p_X(x) = \frac{d}{dx} F_X(x) \tag{2.2}$$

Fig. 2.2: The CDF of X

Fig. 2.3: The PDF of X

What properties does the PDF have? **Solution:** The PDF of *X* is plotted in Fig. 2.3 using the code below

wget https://github.com/gadepall/probability/ raw/master/manual/codes/pdf_plot.py

- 2.4 Find the mean and variance of *X* by writing a C program.
- 2.5 Given that

$$p_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), -\infty < x < \infty, \quad (2.3)$$

repeat the above exercise theoretically. **Solution:** The mean is given by

$$E[X] = \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) = 0$$
 (2.4)

as the integrand is odd. The variance is given by

$$var[X] = E[X^2] - (E[X])^2$$
 (2.5)

$$= \int_{-\infty}^{\infty} x^2 \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx \qquad (2.6)$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp{-\frac{x^2}{2}} dx = 1 \qquad (2.7)$$

(2.8)

where we have integrated by parts.

3 From Uniform to Other

3.1 Generate samples of

$$V = -2\ln(1 - U) \tag{3.1}$$

and plot its CDF.

3.2 Find a theoretical expression for $F_V(x)$. Solution: Note that the function

$$v = f(u) = -2\ln 1 - u \tag{3.2}$$

is monotonically increasing in [0, 1] and $v \in \mathbb{R}^+$. Hence, it is invertible and the inverse function is given by

$$u = f^{-1}(v) = 1 - \exp\left(-\frac{v}{2}\right)$$
 (3.3)

Therefore, from the monotonicity of v,

$$F_{V}(v) = F_{U}(1 - \exp(-fracv2)) = \begin{cases} 0 & v < 0\\ 1 - \exp(-\frac{v}{2}) & (3.4) \end{cases}$$