21AIE201-INTRODUCTION TO ROBOTICS

REVISION MCQs

1) The term: robot came from the Czech word: robata, which was introduced by a. Isaac Asimov b. Karel Capek c. Joseph Engelberger d. Victor Scheinman (a. Ob. Od.

Asimo Humanoid Robot was developed by Honda b. Unimation c. Odetics d. NASA, USA a. DEPARTMENT OF MECHANICAL ENGINEERING Dr. Golak Bihari Mahanta

Ball and Socket joint or Spherical joint used in robots consists of

(a) three rotary joints -> R-1

- b. two rotary and one translating joints
- c. one rotary and two translating joints
- d. four rotary joints

Homogeneous transformation matrix used in Robot Kinematics has the dimensions of

- a. 3 x 3
- b. 4 × 4
- c. 3×4
- d. 4 × 3

orientation orient

Homogeneous transformation matrix used in Robot Kinematics has the dimensions of

c.
$$3 \times 4$$

$$F_{object} = \begin{bmatrix} n_x & o_x & a_x & p_x \\ n_y & o_y & a_y & p_y \\ n_z & o_z & a_z & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Which one of the following statements is FALSE?

To represent the position and orientation of a 3-D object in 3-D space,

- a. We need a set of four vectors.
- b. We need a 4 × 4 matrix.
- c. We can take the help of Cartesian coordinate system.
- (d) We need a 3 × 3 matrix.

A SCARA Robot structure consists of:

- 4 DoF Prismatic,Revolute,Revolute,Revolute
- 4 DoF Revolute, Revolute, Prismatic, Revolute
- 4 DoF Revolute, Prismatic, Revolute, Revolute
- 5 DoF Revolute, Revolute, Revolute, Prismatic, Revolute

- 🔾 (3 X 3) Skew symmetric matrix 🥕 *
- 3 X 3 Orinonormal Water 400
- (4 X 4) Homogeneous transformation matrix
- 🖯 (3 X 3) Identity matrix 🔝 ⊀

$$\begin{pmatrix}
0 & 6 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

The modulus of each columns of the rotation matrix is

- 0.5
- 0.866
- 1.366

A frame 'B' is rotated by 60 degree about Z-axis of A. If the coordinate of a point P in frame B has the coordinate (1,1,1), what is its coordinate in frame A?

(B) Frame (B) is rotated by 60 degree about Z-axis of A. If the coordinate of a point P in frame B has the coordinate (1,1,1), what is its coordinate in frame A?

(B) Frame (B) is rotated by 60 degree about Z-axis of A. If the coordinate of a point P in frame B has the coordinate (1,1,1), what is its coordinate in frame A?

$$\begin{array}{c} (1.366, -0.366, 1) \\ (-1.366, 0.366, 1) \\ (0.366, -1.366, 1) \\ (-0.366, 1.366, 1) \\ (1.316, -0.366, 1) \end{array}$$

$$(-1.366, 0.366, 1)$$

 $(0.366, -1.366, 1)$

A frame 'B' is rotated by 30 degree about Z-axis of A. It is again rotated by 60 degree about X-axis of A. The combined rotation matrix is given by *, 7, 7 $R_{(3),60)}R_{(Z,30)}$ Rol (30,2) -Rof (7,60°) (2,1 $R_{(Z,30)}R_{(X,60)}$ $R_{(Y,30)}R_{(Z,30)}$ $R_{(Z,30)}R_{(Y,30)}$ ROL (X,6) (ROL 30,7) P Rot(7,60) Prow= Rot (2, 60). (1,1,1) = (-0.316, 1,5. -ROJ (x, 30)
PHON = PNOU ROJ (x13"). PNOU

Time for Discussions

Thank You!

