Batch Normalization

조희철

2018년 2월 20일

1 Batch Normalization

Batch Normalization Layer는 Activation Function 앞에 놓여진다. Batch Normalization의 backward propagation은 Computational Graph를 통해서 계산 할 수 있다.

Forward Propagation			Backward Propagation		
		X	$dX = dX_c + \frac{1}{N}d\mu$		
	\	\downarrow	†	_	
$\mu = \frac{1}{N} \sum X$					$d\mu = -\sum dX_c$
	\searrow	\downarrow	†	7	
		$X_c = X - \mu$	$dX_c = \frac{1}{\sigma}dX_n + \frac{2X_c}{N}dV$		
	<	\downarrow	†	_	
$V = \frac{X_c^2}{N}$					$dV = \frac{d\sigma}{2\sigma}$
\downarrow		\downarrow	†		↑
$\sigma = \sqrt{V}$					$d\sigma = -\sum \frac{X_c \circ dX_n}{\sigma^2}$
	\searrow	↓	†	7	
γ,eta		$X_n = \frac{X_c}{\sigma}$	$dX_n = \gamma \circ dY$		$d\gamma = \sum X_n \circ dY$ $d\beta = \sum dY$
	\searrow	\downarrow	<u> </u>	7	
		$Y = \gamma X_n + \beta$	dY		

♠ Back Propagation Speed Up 구현 1

N 개의 $\mathrm{data}\ x_1,\cdots,x_n(x_i\in\mathbb{R}^m)$ 에 대하여

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i,$$

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{n} (x_i - \mu)^2,$$

$$\bar{x}_i = \frac{x_i - \mu}{\sigma},$$

$$y_i = \gamma \bar{x}_i + \beta.$$

이제 Loss Function L에 대한 gradient $\frac{\partial L}{\partial x_i}$ 를 계산해 보자.

$$\frac{\partial L}{\partial x_i} = \frac{\partial L}{\partial \bar{x_i}} \; \frac{\partial \bar{x_i}}{\partial x_i} \;\; + \;\; \frac{\partial L}{\partial \sigma^2} \; \frac{\partial \sigma^2}{\partial x_i} \;\; + \;\; \frac{\partial L}{\partial \mu} \; \frac{\partial \mu}{\partial x_i}$$

 $\frac{\partial L}{\partial x_i}$ 는 3개 식의 합으로 표현되는데, 각각을 나누어서 계산해 보자.

¹https://costapt.github.io/2016/07/09/batch-norm-alt/

• 첫번째 식 $\frac{\partial L}{\partial \bar{x_i}}$ $\frac{\partial \bar{x_i}}{\partial x_i}$ 의 두 식은 각각 다음과 같이 계산된다.

$$\begin{array}{cccc} \frac{\partial L}{\partial \bar{x_i}} & = & \frac{\partial L}{\partial y_i} \, \frac{\partial y_i}{\partial \bar{x_i}} \\ & = & \frac{\partial L}{\partial y_i} \, \gamma, \\ \\ \frac{\partial \bar{x_i}}{\partial x_i} & = & \frac{1}{\sigma}, \\ \\ \frac{\partial L}{\partial \bar{x_i}} \, \frac{\partial \bar{x_i}}{\partial x_i} & = & \frac{\gamma}{\sigma} \, \frac{\partial L}{\partial y_i}. \end{array}$$

• 두번째 식 $\frac{\partial L}{\partial \sigma^2} \frac{\partial \sigma^2}{\partial x_i}$:

$$\begin{split} \frac{\partial L}{\partial \sigma^2} &= \sum_{i}^{N} \frac{\partial L}{\partial \bar{x}_i} \frac{\partial \bar{x}_i}{\partial \sigma^2} \\ &= \sum_{i}^{N} \frac{\partial L}{\partial y_i} \gamma \ (x_i - \mu) \Big(-\frac{1}{2\sigma^3} \Big) \\ &= -\frac{\gamma}{2\sigma^3} \sum_{i}^{N} \frac{\partial L}{\partial y_i} (x_i - \mu), \\ \frac{\partial L}{\partial \sigma^2} \frac{\partial \sigma^2}{\partial x_i} &= -\frac{\gamma}{2\sigma^3} \Big[\sum_{j}^{N} \frac{\partial L}{\partial y_j} (x_j - \mu) \Big] \left(\frac{2}{N} (x_i - \mu) \right) \\ &= -\frac{\gamma}{N\sigma} \Big[\sum_{j}^{N} \frac{\partial L}{\partial y_j} \bar{x}_j \Big] \bar{x}_i \quad \leftarrow \frac{\partial L}{\partial \gamma} = \sum_{j}^{N} \frac{\partial L}{\partial y_j} \bar{x}_j \\ &= -\frac{\gamma}{N\sigma} \frac{\partial L}{\partial \gamma} \bar{x}_i. \end{split}$$

• 마지막 세번째 식 $\frac{\partial L}{\partial \mu}$ $\frac{\partial \mu}{\partial x_i}$:

$$\begin{split} \frac{\partial L}{\partial \mu} &= \sum_{i=1}^{N} \frac{\partial L}{\partial \bar{x}_{i}} \frac{\partial \bar{x}_{i}}{\partial \mu} + \frac{\partial L}{\partial \sigma^{2}} \frac{\partial \sigma^{2}}{\partial \mu} \\ &= \sum_{i=1}^{N} \frac{\partial L}{\partial y_{i}} \gamma \left(-\frac{1}{\sigma} \right) + \frac{\partial L}{\partial \sigma^{2}} \sum_{i=1}^{N} -\frac{2}{N} (x_{i} - \mu) \\ &= -\frac{\gamma}{\sigma} \sum_{i=1}^{N} \frac{\partial L}{\partial y_{i}}, \\ \frac{\partial L}{\partial \mu} \frac{\partial \mu}{\partial x_{i}} &= -\frac{\gamma}{N\sigma} \sum_{i=1}^{N} \frac{\partial L}{\partial y_{i}} \\ &= -\frac{\gamma}{N\sigma} \frac{\partial L}{\partial \beta} \leftarrow \frac{L}{\beta} = \sum_{i=1}^{N} \frac{\partial L}{\partial y_{i}}. \end{split}$$

• 이제 세 식을 합치면

$$\frac{\partial L}{\partial x_i} \quad = \quad \frac{\gamma}{N\sigma} \Big(N \frac{\partial L}{\partial y_i} - \frac{\partial L}{\partial \gamma} \bar{x_i} - \frac{\partial L}{\partial \beta} \Big)$$

```
def batchnorm_backward_alt(dout, cache):
    gamma, xhat, istd = cache # istd = 1/std, xhat = Xn
    N, _ = dout.shape

dbeta = np.sum(dout, axis=0)
    dgamma = np.sum(xhat * dout, axis=0)
    dx = (gamma*istd/N) * (N*dout - xhat*dgamma - dbeta)

return dx, dgamma, dbeta
```