СЕМИНАР №2

В таблице ниже представлены значения зависимой переменной (y) и предиктора (x). Данные собраны по трем подгруппам (Group).

Group	1	1	1	1	1	2	2	2	2	2	3	3	3	3	3
У	8	9	11	7	5	4	3	0	1	7	2	10	2	7	14
X	14	15	10	11	10	13	14	12	16	5	8	7	12	23	10

- 1. По вышеприведенным данным оценивается парная линейная регрессия y на центрированный x, на данном этапе разделение на подгруппы не учитывается. Рассчитайте оценку константы. Запишите расчеты, в том числе, и в общем виде, что облегчит понимание, почему получилась именно такая константа.
- 2. По вышеприведенным данным оценивается парная линейная регрессия центрированного y на центрированный x, на данном этапе разделение на подгруппы не учитывается. Рассчитайте оценку константы. Запишите расчеты, в том числе, и в общем виде, что облегчит понимание, почему получилась именно такая константа.
- 3. По вышеприведенным данным оценивается парная линейная регрессия центрированного по подгруппам y на центрированный также по подгруппам x (вспомним внутригрупповое преобразование). Рассчитайте оценку константы. Запишите расчеты, в том числе, и в общем виде, что облегчит понимание, почему получилась именно такая константа.