

Ключов режим на биполярни транзистори

Полупроводникови елементи

Основни приложения

Транзисторът като ключ се използва във всички цифрови схеми, които са в основата на компютърната техника. В този режим работят транзисторите в микропроцесорите, микроконтролерите, полупроводниковите памети и др. Компютри и компютъризирано управление на машини и оборудване се срещат навсякъде в индустрията, транспорта и в ежедневния ни живот.

Цели и предпоставки

Разглежда се работата на транзистора като ключ, преходните процеси и импулсните параметри на транзистора

Познавате

Разбирате

Анализирате

След изучаване на материала вие би трябвало да:

- Състоянията на транзистора като ключ
- Ключ в схема общ емитер
- Режими на работа в крайните състояния на ключа
- Причината за навлизане на транзистора в режим на насищане
- Процесите, протичащи при превключване
- Факторите, влияещи върху импулсните параметри.
- Връзката между токовете в транзистора при насищане
- Токовете и напреженията в схеми с транзистори

Предпоставки: биполярен транзистор

Крайни състояния на ключа

Наситен транзистор – т. В

В двете крайни състояния на ключа транзисторът е пасивен елемент и не може да се управлява.

При превключване работната точка се движи по **товарната права**, изминавайки всички точки между т. А и т. В

Ключ общ емитер

Предимства:

- Малка мощност на управление
- Малко съпротивление при включено състояние

В изходно състояние транзисторът е запушен (емитерният и колекторният преход са в обратно включване) поради подаденото преднапрежение E_B .

Състоянието на ключа се определя от амплитудата на входния положителен отпушващ импулс.

Режим на отсечка

$$I_C = \beta I_B + (1 + \beta)I_{CB0}$$

Ако
$$I_B = 0$$

$$I_C = (1 + \beta)I_{CB0} = I_{CE0}$$

Режим на дълбока отсечка

Активен режим

При подаване на положителен импулс на входа $u_{IN} > 0$, емитерният преход се отпушва и транзисторът навлиза в активен нормален режим.

С нарастване на входното напрежение работната точка се движи по товарната права.

Моментните стойности на токовете в базата и колектора са съответно:

$$i_B = \frac{u_{IN} - u_{BE}}{R_B}$$

$$i_C = \beta i_B = \beta \frac{u_{IN} - u_{BE}}{R_B}$$

Режим на дълбока отсечка

Графично изменение на токовете

Преминаване към насищане

В активен режим, когато се учеличава базисният ток I_B

- lacktriangle Нараства U_{BF} съгласно входните характеристики
- lacktriangle Намалява U_{CE} , защото

$$I_B \uparrow \implies I_C = \beta . I_B \uparrow \implies I_C . R_C \uparrow \implies \downarrow U_{CE} = E_C - I_C . R_C$$

Между напреженията в транзистора има връзка

$$U_{CE} = U_{CB} + U_{BE}$$

откъдето за напрежението на колекторния преход U_{CB} се получава

$$U_{CB} = U_{CE} - U_{BE}$$

Изменение на напреженията

В активен режим, когато се учеличава базисният ток

- \bullet Нараства U_{BE}
- ♦ Намалява U_{CF}

$$U_{CB} = U_{CE} - U_{BE}$$

При ток на базата I_{Bsat} напреженията $U_{CF} = U_{BF}$ и $U_{CB} = 0$

За ток $I_B > I_{Bsat}$ напрежението $U_{CB} < 0$ и двата прехода са в право включване — транзисторът навлиза в режим на насищане

Режим на насищане

В режим на насищане двата прехода се включват в права посока. Те инжектират токоносители в базата и напрежението $U_{CEsat} \approx 0$. (Реално $U_{CEsat} \approx 0,1 \div 0,4 \text{ V}$

Колекторният ток в режим на насищане I_{Csat} е

$$I_{Csat} = \frac{E_C - U_{CEsat}}{R_C} = \frac{E_C}{R_C}$$

 I_{Csat} не зависи от транзистора

Базисният ток на насищане I_{Bsat} е

$$I_{Bsat} = \frac{I_{Csat}}{\beta} = \frac{E_C}{R_C \beta}$$

Условие за настъпване на насищане

Условието транзисторът да навлезе в режим на насищане е базисният ток да е по-голям от базисния ток на насищане.

$$I_{B} > I_{Bsat}$$
 Тогава $I_{C} = I_{Csat} = const = \frac{E_{C}}{R_{C}}$

При $I_B > I_{Bsat}$ се сменя поляритета на напрежението U_{CB} и двата прехода се включват в права посока. В режим на насищане не важи условието $I_C = \beta . I_B$.

Насищане може да настъпи при много малки токове, тъй като то не зависи от големината на тока, а от съотношението между токовете I_B и I_{Bsat} .

Степен на насищане

$$N = \frac{I_B}{I_{Bsat}} \qquad I_B > I_{Bsat} \qquad N = 2 \div 5$$

Еквивалентни схеми в насищане

Еквивалентни схеми в насищане

Бързодействие на ключа

Бързодействието на ключа зависи от продължителността на преходните процеси при превключване. Преходните процеси се дължат на:

- Инерционността на процесите на пренасяне, натрупване и разнасяне на токоносителите в базата и колектоеав транзистора
- Времето, необходимо за презареждане на капацитетите на преходите
- Наличието на паразитни капацитети на корпуса и индуктивности на изводите

В изходно състояние транзисторът е запушен. На входа му се подава отпушващ положителен импулс. Пренебрегват се преходните процеси в базата и се предполага, че напрежението е достатъчно транзисторът да влезе в насищане. След време, равно на продължителността на импулса, поляритетът на входното напрежение се променя.

Преходни процеси при превключване

Преходни процеси при превключване

Преходни процеси при включване

При подаване на отпушващ импулс i_B нараства скокообразно. Поради времето, необходимо за зареждане на C_E , i_C нараства бавно. Времето за достигане на i_C до 10% от I_{csat} се нарича време на закъснение t_D .

Преходни процеси при включване

Преходни процеси при включване

В С Изменение на неосновните токоносители в базата

3

При навлизане на транзистора в насищане, i_C достига I_{csat} , но натрупването на токоносителите продължава в зависимост от степента на насищане N за време за натрупване t_N , с което преходният процес при включване завършва.

Преходни процеси при изключване

натрупаните токоносители, но $i_C = I_{Csat}$ Дефинира се време за разнасяне на токоносителите $t_{\rm S}$, за което $i_{\rm C}$ спада до 90% от I_{Csat}

Преходни процеси при изключване

Импулсни параметри – включване

 t_D – време на закъснение – времето от подаване на отпушващ импулс до достигане на i_C = 0,1. I_{Csat}

 t_r — време за нарастване — времето нарастване на i_C от $0,1.I_{Csat}$ до $0,9.I_{Csat}$ t_H — време за натрупване — времето за натрупване на токоносителите, съответстващи на i_B = $N.I_{Bsat}$

Импулсни параметри – изключване

 $t_{\rm S}$ – време на разнасяне – времето от подаване на запушващ импулс до достигане на $i_{\rm C}$ = 0,9. $I_{\rm Csat}$

 t_f — време за спадане — времето спадане на i_C от $0.9.I_{Csat}$ до $0.1.I_{Csat}$

Импулсни параметри

 t_{ON} — време на включване

 t_{OFF} – време на изключване

Времето на изключване t_{OFF} е много по-голямо от времето за включване t_{ON} .

Импулсни параметри – зависимости

- Времената t_S и t_f зависят от I_{B2} и от честотните свойства на транзистора (геометрични размери и време на живот)
- Времето за разнасяне зависи от пълното количество носители натрупани в базата т.е от I_{B1} (от степента на насищане N)

За по-голямо бързодействие времето на разнасяне се намалява, чрез по-малко време на живот на токоносителите (легиране със злато). Това, обаче, намалява коефициента на усилване и увеличава обратния ток.

В интегралните схеми колекторният преход се шунтира с диод на Шотки, където $U_F = 0.1 - 0.3$ V. Това ограничава тока през колекторния преход при право включване и натрупването на токоносители, откъдето t_S рязко намалява. При Шотки диода липсва инжекция на неосновни токоносители.

Влияние на входното напрежение

$$U_{in} \uparrow \implies I_B = \frac{U_{in} - U_{BE}}{R_B} \uparrow I_{Bsat} = \frac{I_{Csat}}{\beta} = \frac{E_C}{R_C \beta} \implies N = \frac{I_B}{I_{Bsat}} \uparrow \implies t_{OFF} \uparrow$$

Влияние на коефициента в

$$U_{in}$$
 и $I_B = \frac{U_{in} - U_{BE}}{R_B} = \text{const}$ $I_{Bsat} = \frac{I_{Csat}}{\beta} = \frac{E_C}{R_C \beta}$ $\downarrow \Longrightarrow N = \frac{I_B}{I_{Bsat}}$ $\uparrow \Longrightarrow t_{OFF}$ \uparrow

Примери

Да се определи максималната стойност на R_B , при която транзисторът от фигурата ще работи в режим на насищане.

Да се определи минималната стойност на коефициента β, при която транзисторът от фигурата ще работи в режим на насищане.

Примери

$$I_C = ?, \ U_{CE} = ?,$$
 ако $u_{IN} = 2,7 \ V$

$$I_C = ?, U_{CE} = ?,$$
 ако $u_{IN} = 4,7 \text{ V}$