

TI Precision Labs – Thermistors

Presented and prepared by Bryan Padilla

1 °C Steps

Temperature (°C)	Typical Resistance (Ω)			
-40	6656			
-39	6699			
-38	6741			
-37	6784			
-36	6827			
-35	6871			
-34	6915			
-33	6959			
-32	7004			
-31	7049			
-30	7094			
-29	7139			
-28	7185			
-27	7231			
-26	7278			
-25	7324			

5 °C Steps

Temperature (°C)	Typical Resistance (Ω)				
-40	6656				
-35	6871				
-30	7094				
-25	7324				
-20	7563				
-15	7809				
-10	8063				
-5	8325				
0	8594				
5	8871				
10	9155				
15	9447				
20	9747				

:

:

- 1. Store known values in memory:
 - V_{bias} , R_{bias} , # of ADC bits (ex: 14 bit)

- 1. Store known values in memory:
 - V_{bias} , R_{bias} , # of ADC bits (ex: 14 bit)
- 2. Calculate V_{temp}

- 1. Store known values in memory:
 - V_{bias} , R_{bias} , # of ADC bits (ex: 14 bit)
- 2. Calculate V_{temp}
- 3. Calculate R_{therm}

$$R_{therm} = \frac{V_{temp}}{\left(V_{bias} - V_{temp}\right) / R_{bias}}$$

$$R_{therm} = \frac{2.0401}{\left(5 - 2.0401\right) / 10,000}$$

$$R_{therm} = 6893 \Omega$$

- 1. Store known values in memory:
 - V_{bias} , R_{bias} , # of ADC bits (ex: 14 bit)
- 2. Calculate V_{temp}
- 3. Calculate R_{therm}
- 4. Loop through LUT, return temp

```
LookupTable =
            { -40, 6656},
            {-39, 6699},
            {-38, 6741},
            {-37, 6784},
            \{-36, 6827\},\
            { -35, 6871}, <
            { -34, 6915},
            {-33, 6959},
            \{-32, 7004\},
            {-31, 7049},
            {-30, 7094}}
            R_{therm} \leq table|i||1|
           6,893 \le 6,915 True
           temp = -35
```

- 1. Store known values in memory:
 - V_{bias} , R_{bias} , # of ADC bits (ex: 14 bit)
- 2. Calculate V_{temp}
- 3. Calculate R_{therm}
- 4. Loop through LUT, return temp
- 5. Linear interpolation

LookupTable =

$$Y_{1} = -34.5$$

$$Y_{1} = -34.5$$

$$Y_{1} = -34.5$$

$$Y_{2} = -34.5$$

$$Y_{1} = -34.5$$

$$Y_{1} = -34.5$$

$$Y_{2} = -34.6915$$

$$X_{1} = -34.6915$$

$$Y = Y_1 + \left(\frac{X - X_1}{X_2 - X_1}\right)(Y_2 - Y_1)$$

X is the known value of resistance

Y is the unknown value of temperature

 X_1, X_2 = lower, upper resistance limits in table

 Y_1 , Y_2 = lower, upper temperature limits in table

Linear PTC Steinhart-Hart equation

T in ${}^{\circ}K$

1. Pre-calculate variables, store in memory

$$L_1 = ln(R_1)$$
 $L_2 = ln(R_2)$ $L_3 = ln(R_3)$

$$Y_1 = \frac{1}{T_1}$$
 $Y_2 = \frac{1}{T_2}$ $Y_3 = \frac{1}{T_2}$

 $R_1, T_1 = Resistance, Temperature @ low temp (ex: -40°C \rightarrow 233.15°K)$

 $R_2, T_2 = Resistance, Temperature @ mid temp (ex: 25°C \rightarrow 298.15°K)$

 $R_3, T_2 = Resistance, Temperature @ high temp (ex: 150°C \rightarrow 423.15°K)$

$$\gamma_2 = \frac{Y_2 - Y_1}{L_2 - L_1} \qquad \gamma_3 = \frac{Y_3 - Y_1}{L_3 - L_1}$$

$$A = Y_1 - (B + (L_1)^2 C) L_1$$

$$B = \gamma_2 - C (L_1^2 + L_1 L_2 + L_2^2)$$

$$C = \frac{\gamma_3 - \gamma_2}{L_2 - L_2} (L_1 + L_2 + L_3)^{-1}$$

2. Convert resistance to temperature in real time

$$\frac{1}{T} = A + B[\ln(R_{therm})] + C[\ln(R_{therm})]^3$$

```
10000:
                                                                 // set the value of the Rbias (top resistor)
                                                                 // set the VBias voltage
       0.000305;
                                                                 // set the voltage per bit based on the ADC bits / VREF
float t volt = 0;
                                                                 // set up the variable for the divider voltage
float t_res = 0;
                                                                 // setup the variable for the calculated resistance
float NLog = 0;
                                                                 // setup the variable for the natural log of the resistance
float Temp = 0:
                                                                 // setup the variable for the calculated temperature
int Thermistor(int raw ADC)
     float A =
                       0.064865802
                                                                  //temperature Coefficients for the thermistor
     float B =
                       -0.009034398
                                                                  //temperature Coefficients for the thermistor
     float C =
                       0.000027785
                                                                 //temperature Coefficients for the thermistor
    t volt = raw ADC * bit volt;
                                                                 // convert the raw ADC value to a measured voltage
    t res = t volt/((VBias - t volt)/RBias);
                                                                 // convert the measured voltage to a resistance
    NLog = log(t_res);
                                                                 // calculate the natural log of the resistance
    Temp = 1 / (A + B * NLog) + (C * NLog * NLog * NLog);
                                                                 // run the Steinhart/Hart equation
     return Temp - 273.15:
                                                                 // Convert Kelvin to Celsius and return the temperature
```

Linear PTC polynomial regression

TEXAS INSTRUMENTS

T in $^{\circ}C$

$$T = A_4 R^4 + A_3 R^3 + A_2 R^2 + A_1 R + A_0$$

- No additional libraries
- No natural log function
- Up to 10x faster than Steinhart-Hart Equation

Order of values

- 1. ADC Count
- 2. V_{temp}
- 3. R_{therm}
- 4. Temperature

Shortest to longest time to obtain

Threshold detection & hysteresis

TEXAS INSTRUMENTS Threshold Detection								
Return to Menu								
Set High Temperature						Threshold values		
T_high	85.0	°C	Enter the high temperature lim	ADC_V	2.946840515 Vdc	Resistor divider voltage at temperature		
	185.0	°F			ADC	9656 bits	ADC bits at temperature	
	358.2	°K						
Resistance	14353	Ohms	Calculated resistance from the 4th order polynomials					
VBias	5.00	V	Input bias voltage for the resistor divider					
RBias	10000	Ohms	Top resistor					
ADC (bits)	14	bits	Bits of resolution					
Set low temperature	75.0	100	F-tthlt	Assembled to describe	ADO M	Threshold values		
T_low	75.0		Enter the low temperature limi	t required in degrees C	ADC_V	2.877304699 Vdc	Resistor divider voltage at temperature	
	167.0			-	ADC	9428 bits	ADC bits at temperature	
	348.2							
Resistance		Ohms	Calculated resistance from the 4th order polynomials above					
VBias	5.00		Input bias voltage for the resistor divider					
RBias		Ohms	Top resistor					
ADC (bits)	14	bits	Bits of resolution					

of ADC bits = 14

$$Total\ ADC\ Count = 2^{(14)} = 16384\ steps$$

Voltage per step =
$$\frac{V_{bias}}{Total\ ADC\ Count} = \frac{5}{16384} = 3.0517 \cdot 10^{-4}\ V$$

Shortest to longest time to obtain

Summary

Only care about certain temperatures?

> Save conversion time with threshold detections using values known prior to temperature.

Thank you!

To find more thermistor resources and products visit ti.com/thermistors