પ્રશ્ન 1(અ) [3 ગુણ]

કોમ્પ્યુટર નેટવર્ક શું છે? તે શા માટે મહત્વનું છે?

જવાબ:

કમ્પ્યુટર નેટવર્ક એ ઇન્ટરકનેક્ટેડ કમ્પ્યુટિંગ ડિવાઇસનો સમૂહ છે જે ડેટા એક્સચેન્જ અને રિસોર્સ શેરિંગ કરી શકે છે.

આકૃતિ:

- રિસોર્સ શેરિંગ: પ્રિન્ટર, ફાઇલ, એપ્લિકેશન શેર કરવાની સુવિધા
- કોમ્યુનિકેશન: વપરાશકર્તાઓ વચ્ચે માહિતીનું આદાન-પ્રદાન સરળ બનાવે
- સ્કેલેબિલિટી: નેટવર્કને જરૂરિયાત મુજબ વિસ્તારી શકાય છે

મેમરી ટ્રીક: "CSI" - "કનેક્ટ, શેર, ઇન્ટરેક્ટ"

પ્રશ્ન 1(બ) [4 ગુણ]

વ્યાખ્યા આપો: ૧)વેબ સર્વર, ૨)એનક્રિપ્તેડ ડેટા, ૩) હેકિંગ, ૪) ક્લાયન્ટ-સર્વર

જવાબ:

3918	વ્યાખ્યા
વેબ સર્વર	HTTP/HTTPS નો ઉપયોગ કરી ક્લાયન્ટને વેબ કન્ટેન્ટ પ્રદાન કરતું સોફ્ટવેર/હાર્ડવેર
એનક્રિપ્ટેડ ડેટા	અનધિકૃત એક્સેસને રોકવા માટે કોડમાં રૂપાંતરિત કરેલી માહિતી
હેકિંગ	સિક્યોરિટી વલ્નરેબિલિટીઝ દ્વારા કમ્પ્યુટર સિસ્ટમમાં અનધિકૃત એક્સેસ
ક્લાયન્ટ-સર્વર	સેન્ટ્રલાઈઝ્ડ સર્વર ક્લાયન્ટ કમ્પ્યુટરને સેવાઓ પ્રદાન કરે તે નેટવર્ક મોડેલ

आहृति:

મેમરી ટ્રીક: "WECHS" - "વેબ સર્વર એનક્રિપ્ટ ડેટા, ક્લાયન્ટ અને હેકર્સ સર્વરનો ઉપયોગ કરે છે"

પ્રશ્ન 1(ક) [7 ગુણ]

ટ્રાન્સમિશન મીડીયાનું ક્લાસીફીકેશન આપો અને સમજાવો.

જવાલ:

ટ્રાન્સમિશન મીડિયા એ ભૌતિક માધ્યમો છે જે નેટવર્કમાં ડેટાનું વહન કરે છે.

કેટેગરી	язіг	લાક્ષણિકતાઓ	ઉપયોગો
ગાઇડેડ મીડિયા			
ટ્વિસ્ટેડ પેર	UTP, STP	100m રેન્જ, 10Mbps-10Gbps	ઓફિસ LANs
કોએક્સિયલ કેબલ	બેસબેન્ડ, બ્રોડબેન્ડ	500m રેન્જ, 10-100Mbps	કેબલ TV, ઇન્ટરનેટ
ફાયબર ઓપ્ટિક	સિંગલ-મોડ, મલ્ટી-મોડ	લાંબું અંતર, 100Mbps-100Gbps	બેકબોન, WAN
અનગાઇકેડ મીડિયા			
રેડિયો વેવ્સ	WiFi, સેલ્યુલર	ઓમ્નિડિરેક્શનલ, 1-100Mbps	વાયરલેસ નેટવર્ક
માઇક્રોવેવ્સ	ટેરેસ્ટ્રિયલ, સેટેલાઇટ	લાઇન-ઓફ-સાઇટ, 1-10Gbps	પોઇન્ટ-ટુ-પોઇન્ટ લિંક
ઇન્ફ્રારેડ	IrDA	શોર્ટ-રેન્જ, 4-16Mbps	રિમોટ કંટ્રોલ

આકૃતિ:

- ગાઇડેડ મીડિયા: સિગ્નલને મર્યાદિત કરતા ભૌતિક માર્ગો
- અનગાઇડેડ મીડિયા: હવા/અવકાશ દ્વારા વાયરલેસ ટ્રાન્સમિશન
- પસંદગીના પરિબળો: ખર્ચ, બેન્ડવિડ્થ, અંતર, પર્યાવરણ

મેમરી ટ્રીક: "TCFRIM" - "ટ્વિસ્ટેડ પેર, કોએક્સિયલ, ફાયબર, રેડિયો, ઇન્ફ્રારેડ, માઇક્રોવેવ"

પ્રશ્ન 1(ક) અથવા [7 ગુણ]

WAN અને MAN ને સમજાવો.

જવાબ:

વાઇડ એરિયા નેટવર્ક (WAN) અને મેટ્રોપોલિટન એરિયા નેટવર્ક (MAN) એ ભૌગોલિક વિસ્તારના આધારે વર્ગીકૃત થયેલા નેટવર્ક પ્રકારો છે.

ફીચર	MAN (મેટ્રોપોલિટન એરિયા નેટવર્ક)	WAN (વાઇડ એરિયા નેટવર્ક)
કવરેજ	શહેર-વ્યાપી (5-50 km)	દેશ/વૈશ્વિક (>50 km)
સ્પીડ	10 Mbps - 10 Gbps	1.5 Mbps - 1 Gbps
માલિકી	મ્યુનિસિપલ/ટેલિકોમ	મલ્ટિપલ ઓર્ગેનાઇઝેશન
ટેકનોલોજી	Ethernet, SONET, WiMAX	Frame Relay, ATM, MPLS
ઉદાહરણો	સિટી નેટવર્ક, કેમ્પસ નેટવર્ક	ઇન્ટરનેટ, કોર્પોરેટ નેટવર્ક

આકૃતિ:

• MAN: શહેર/મેટ્રોપોલિટન એરિયામાં LANsને જોડે છે

• WAN: શહેરો/દેશો વચ્ચે મોટા ભૌગોલિક વિસ્તારોને આવરે છે

• મેનેજમેન્ટ: WAN સામાન્ય રીતે સર્વિસ પ્રોવાઇડર્સની જરૂર પડે છે

• ઇન્ફ્રાસ્ટ્રક્ચર: અલગ-અલગ ટ્રાન્સમિશન મીડિયા અને ટેકનોલોજીઓ

મેમરી ટ્રીક: "SWIM" - "સાઇઝ: WAN ઇઝ મેસિવ કમ્પેર્ડ ટુ MAN"

પ્રશ્ન 2(અ) [3 ગુણ]

વિગતવાર સમજાવો: ટ્રાન્સમિશન ટેકનોલોજી.

જવાબ:

ટ્રાન્સમિશન ટેકનોલોજી એ નેટવર્ક ડિવાઇસ વચ્ચે ડેટા ટ્રાન્સફર કરવા માટે વપરાતી પદ્ધતિઓને કહે છે.

ટેકનોલોજી ટાઇપ	นย์า	ઉદાહરણ
પોઇન્ટ-ટુ-પોઇન્ટ	બે નોડ્સ વચ્ચે સીધું કનેક્શન	લીઝ્ડ લાઇન
બ્રોડકાસ્ટ	બધા નોડ્સ દ્વારા શેર કરાતું સિંગલ કોમ્યુનિકેશન ચેનલ	વાયરલેસ LAN
મલ્ટિપોઇન્ટ	મલ્ટિપલ ડિવાઇસ એક લિંક શેર કરે	કેબલ નેટવર્ક

• એનાલોગ ટ્રાન્સમિશન: કન્ટિન્યુઅસ સિગ્નલ, નોઇઝને લગતું

- ડિજિટલ ટ્રાન્સમિશન: ડિસ્ક્રીટ સિગ્નલ, વધુ વિશ્વસનીય
- **બેસબેન્ડ**: સિંગલ સિગ્નલ સમગ્ર બેન્ડવિડ્થનો ઉપયોગ કરે છે (Ethernet)
- બ્રોડબેન્ડ: મલ્ટિપલ સિગ્નલ્સ બેન્ડવિડ્થ શેર કરે છે (કેબલ TV)

મેમરી ટ્રીક: "ABP-DMB" - "એનાલોગ ઓર બેસબેન્ડ, પોઇન્ટ-ટુ-પોઇન્ટ; ડિજિટલ ઓર મલ્ટિપોઇન્ટ, બ્રોડકાસ્ટ"

પ્રશ્ન 2(બ) [4 ગુણ]

સ્ટાર ટોપોલોજી દોરો અને સમજાવો.

જવાબ:

સ્ટાર ટોપોલોજી એ નેટવર્ક કોન્ફિગરેશન છે જ્યાં બધા ડિવાઇસ સેન્ટ્રલ હબ/સ્વિચ સાથે જોડાયેલા હોય છે.

आङ्गति:

ફાયદા	ગેરફાયદા
સરળ ઇન્સ્ટોલેશન	સિંગલ પોઇન્ટ ઓફ ફેલ્યોર (હબ/સ્વિય)
સરળ ટ્રબલશૂટિંગ	બસ ટોપોલોજી કરતાં વધુ કેબલની જરૂર
સ્કેલેબલ	સેન્ટ્રલ ડિવાઇસને કારણે ઉંચી કિંમત
બેટર પરફોર્મ-સ	હબ/સ્વિચ લિમિટ નેટવર્ક સાઇઝ નક્કી કરે છે

- ઓપરેશન: બધો ડેટા સેન્ટ્રલ ડિવાઇસમાંથી પસાર થાય છે
- ઇન્સ્ટોલેશન: મેનેજ અને એક્સપાન્ડ કરવામાં સરળ
- ફોલ્ટ આઇસોલેશન: નોડ ફેલ્યોર અન્યને અસર કરતું નથી

મેમરી ટ્રીક: "CASE" - "સેન્ટ્રલાઇઝ્ડ, ઓલ કનેક્ટેડ, સિમ્પલ એક્સપાન્શન, ઇઝી ટ્રબલશૂટિંગ"

પ્રશ્ન 2(ક) [7 ગુણ]

TCP/IP મોડેલ દોરો અને સમજાવો.

જવાબ:

TCP/IP મોડેલ એ નેટવર્ક કોમ્યુનિકેશન માટે વપરાતું કન્સેખ્ય્યુઅલ ફ્રેમવર્ક છે, જેમાં ચાર લેયર સમાવિષ્ટ છે.

આકૃતિ:

+	
APPLICATION LAYER	
(HTTP, FTP, SMTP, DNS, etc.)	
+	
TRANSPORT LAYER	
(TCP, UDP)	
+	
INTERNET LAYER	
(IP, ICMP, ARP)	
+	
NETWORK ACCESS LAYER	
(Ethernet, Wi-Fi, PPP, etc.)	
+	
PHYSICAL MEDIA	

લેચર	મુખ્ય ફંકશન	પ્રોટોકોલ્સ
એપ્લિકેશન	યુઝર ઇન્ટરફેસ, ડેટા ફોર્મેટિંગ	HTTP, FTP, SMTP, DNS
ટ્રાન્સપોર્ટ	એન્ડ-ટુ-એન્ડ કોમ્યુનિકેશન, રિલાયબિલિટી	TCP, UDP
ઇન્ટરનેટ	લોજિકલ એડ્રેસિંગ, રાઉટિંગ	IP, ICMP, ARP, IGMP
નેટવર્ક એક્સેસ	ફિઝિકલ એડ્રેસિંગ, મીડિયા એક્સેસ	Ethernet, WiFi, PPP

• એપ્લિકેશન લેચર: એપ્લિકેશન અને નેટવર્ક વચ્ચે ઇન્ટરફેસ

• ટ્રાન્સપોર્ટ લેયર: એન્ડ સિસ્ટમ્સ વચ્ચે વિશ્વસનીય ડેટા ટ્રાન્સફર

• ઇન્ટરનેટ લેચર: નેટવર્ક વચ્ચે પેકેટ રાઉટિંગ

• નેટવર્ક એક્સેસ લેયર: નેટવર્ક મીડિયા સાથે ફિઝિકલ કનેક્શન

મેમરી ટ્રીક: "ATNI" - "એપ્લિકેશન ટોક્સ, નેટવર્ક ઇન્ટરનેટ ઇન્ટરફેસીસ"

પ્રશ્ન 2(અ) અથવા [3 ગુણ]

બસ ટોપોલોજી દોરો અને સમજાવો.

જવાબ

બસ ટોપોલોજી એ નેટવર્ક કોન્ફિગરેશન છે જ્યાં બધા ડિવાઇસ એક સિંગલ કોમ્યુનિકેશન લાઇન સાથે જોડાયેલા હોય છે.

ફાયદા	ગેરફાયદા
સરળ લેઆઉટ	સિંગલ પોઇન્ટ ઓફ ફેલ્યોર (મુખ્ય કેબલ)
ઓછું કેબલિંગ	મર્યાદિત કેબલ લંબાઈ
ઓછી કિંમત	વધુ નોડ્સ સાથે પરફોર્મન્સ ઘટે છે
સરળતાથી વિસ્તારી શકાય	ટ્રબલશૂટિંગ મુશ્કેલ

• ઓપરેશન: ડેટા બંને દિશામાં બસ પર પ્રવાસ કરે છે

• ટર્મિનેટર: સિગ્નલ રિફ્લેક્શન રોકવા માટે બંને છેડે જરૂરી

• **ઉપયોગ**: મુખ્યત્વે જૂના નેટવર્ક, નાના સેટઅપમાં

મેમરી ટ્રીક: "SLUE" - "સિમ્પલ લેઆઉટ, યુઝીસ લેસ કેબલ, ઇઝી ઇન્સ્ટોલેશન"

પ્રશ્ન 2(બ) અથવા [4 ગુણ]

આર્કિટેક્ચર અન્વયે નેટવર્ક ક્લાસીફીકેશન સમજાવો.

જવાબ:

આર્કિટેક્ચરના આધારે નેટવર્ક્સને વર્ગીકૃત કરી શકાય છે જે ડિવાઇસના ઇન્ટરેક્શનની રીત વ્યાખ્યાયિત કરે છે.

આર્કિટેક્ચર	લાક્ષણિકતાઓ	ઉદાહરણ
પીઅર-ટુ-પીઅર	સમાન અધિકારો, કોઈ ડેડિકેટેડ સર્વર નહીં	હોમ નેટવર્ક, નાના વર્કગ્રુપ
ક્લાયન્ટ-સર્વર	સેન્ટ્રલાઇઝ્ડ સર્વિસીસ, ડેડિકેટેડ સર્વર	એન્ટરપ્રાઇઝ નેટવર્ક, વેબ સર્વિસીસ
થ્રી-ટાયર	પ્રેઝન્ટેશન, એપ્લિકેશન, અને ડેટા ટાયર્સ	મોડર્ન વેબ એપ્લિકેશન
N-ટાયર	મલ્ટિપલ સ્પેશિયલાઇઝ્ડ ટાયર્સ	લાર્જ ડિસ્ટ્રિબ્યુટેડ સિસ્ટમ

```
PEER-TO-PEER:
                    CLIENT-SERVER:
 +---+
                      +----+
 |Node|----|Node|
                     |Client|
 +---+
                     +----+
      \ /
                        X
                      +----+
                     Server
 +---+
                      +----+
 |Node|----|Node|
 +---+
        +---+
```

• **પીઅર-ટુ-પીઅર**: ડાયરેક્ટ ડિવાઇસ કોમ્યુનિકેશન, ડિસ્ટ્રિબ્યુટેડ રિસોર્સિસ

• ક્લાયન્ટ-સર્વર: સેન્ટ્રલાઇઝ્ડ રિસોર્સ મેનેજમેન્ટ, બેટર સિક્યોરિટી

• હાઇબ્રિડ: બંને આર્કિટેક્ચરના તત્વોનું સંયોજન

મેમરી ટ્રીક: "PCAN" - "પીઅર-ટુ-પીઅર, ક્લાયન્ટ-સર્વર, આર્કિટેક્ચર નેટવર્ક્સ"

પ્રશ્ન 2(ક) અથવા [7 ગુણ]

IP એડ્રેસનું ક્લાસીફીકેશન સમજાવો.

જવાબ:

IP એડ્રેસને તેમની સ્ટ્રક્ચર અને હેતુના આધારે વિવિધ કેટેગરીમાં વર્ગીકૃત કરવામાં આવે છે.

IP ક્લાસિફિકેશન	રેન્જ	ડિફોલ્ટ માસ્ક	ઉપલબ્ધ નેટવર્ક્સ	હોસ્ટ્સ/નેટવર્ક
ક્લાસ A	1.0.0.0 - 127.255.255.255	255.0.0.0 (/8)	126	16,777,214
ક્લાસ B	128.0.0.0 - 191.255.255.255	255.255.0.0 (/16)	16,384	65,534
ક્લાસ C	192.0.0.0 - 223.255.255.255	255.255.255.0 (/24)	2,097,152	254
ક્લાસ D (મલ્ટિકાસ્ટ)	224.0.0.0 - 239.255.255.255	N/A	N/A	N/A
ક્લાસ E (રિઝર્વ્ડ)	240.0.0.0 - 255.255.255.255	N/A	N/A	N/A

સ્પેશ્યલ IP રેન્જીસ:

• มเฮจั่ว IPs: 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16

• **લૂપબેક**: 127.0.0.0/8 (સામાન્ય રીતે 127.0.0.1)

• **લિંક-લોકલ**: 169.254.0.0/16

आકृति:

```
CLASS A: |0|NETWORK(7 bits)| HOST(24 bits) |
CLASS B: |10| NETWORK(14 bits) | HOST(16 bits) |
CLASS C: |110| NETWORK(21 bits) | HOST(8 bits) |
CLASS D: |1110| MULTICAST ADDRESS(28 bits) |
CLASS E: |1111| RESERVED ADDRESS(28 bits) |
```

• **કલાસકુલ એડ્રેસિંગ**: મૂળ IP એડ્રેસ ક્લાસિફિકેશન સ્કીમ

- CIDR (ક્લાસલેસ): ફ્લેક્સિબલ સબનેટ માસ્ક આપતી આધુનિક અભિગમ
- **IPv4 vs IPv6**: IPv4 32-બિટ એડ્રેસ વાપરે છે, IPv6 128-બિટ એડ્રેસ વાપરે છે

મેમરી ટ્રીક: "ABCDE" - "એડ્રેસ બ્લોક્સ કેટેગરાઇઝ્ડ બાય ડિક્રીઝિંગ એન્ડ-હોસ્ટ કાઉન્ટ્સ"

પ્રશ્ન 3(અ) [3 ગુણ]

LANનું આખું નામ શું છે? LAN વિગતવાર સમજાવો.

જવાબ:

LAN એટલે Local Area Network, એક મર્યાદિત ભૌગોલિક વિસ્તારમાં સીમિત નેટવર્ક.

આકૃતિ:

LAN લાક્ષણિકતાઓ	นต์ฯ
ભૌગોલિક સ્કોપ	બિલ્ડિંગ, કેમ્પસ, અથવા નાનો વિસ્તાર (1-2 km)
ડેટા રેટ	ઉચ્ચ (10 Mbps થી 10 Gbps)
માલિકી	એક સંસ્થા અથવા વ્યક્તિ
ટેકનોલોજી	Ethernet, WiFi, Token Ring
મીડિયા	ટ્વિસ્ટેડ પેર, ફાયબર ઓપ્ટિક, વાયરલેસ

- હેતુ: રિસોર્સ શેરિંગ માટે નજીકના ડિવાઇસ કનેક્ટ કરવા
- વહીવટ: મોટા નેટવર્ક કરતાં સરળ મેનેજમેન્ટ
- **અનુપ્રયોગો**: ઓફિસ નેટવર્કિંગ, હોમ નેટવર્કિંગ

મેમરી ટ્રીક: "LOCAL" - "લિમિટેડ ઇન રેન્જ, ઓન્ડ બાય વન એન્ટિટી, કનેક્ટેડ ડિવાઇસિસ, એક્સેસ કંટ્રોલ, લો લેટન્સી"

પ્રશ્ન 3(બ) [4 ગુણ]

રીપીટર પર ટૂંકનોંધ લખો.

જવાબ

રિપીટર એ નેટવર્ક ડિવાઇસ છે જે નેટવર્ક રેન્જ વધારવા માટે સિગ્નલ્સને એમ્પ્લિફાય અને રિજનરેટ કરે છે.

आङ्गति:

ફીચર	นต์า
OSI લેયર	ફિઝિકલ લેયર (લેયર 1)
ફક્શન	સિગ્નલ રિજનરેશન અને એમ્પ્લિફિકેશન
હેતુ	નેટવર્ક ટ્રાન્સમિશન અંતર વધારવું
મર્યાદા	ટ્રાફિક ફિલ્ટર કરી શકતા નથી અથવા અલગ નેટવર્ક જોડી શકતા નથી

- ઓપરેશન: સિગ્નલ્સ રિસીવ, રિજનરેટ, અને રિટ્ટાન્સમિટ કરે છે
- ઉપયોગ: સામાન્ય મર્યાદાઓથી વધુ કેબલ લંબાઈ વધારવા
- પ્રકારો: ટ્રેડિશનલ રિપીટર્સ, હબ્સ (મલ્ટિપોર્ટ રિપીટર્સ)

મેમરી ટ્રીક: "RARE" - "રિપીટર્સ એમ્પ્લિફાઇ એન્ડ રિજનરેટ ઇલેક્ટ્રિકલ સિગ્નલ્સ"

પ્રશ્ન 3(ક) [7 ગુણ]

ટૂંકનોંધ લખો: FTP

જવાબ:

ફાઇલ ટ્રાન્સફર પ્રોટોકોલ (FTP) એ ક્લાયન્ટ અને સર્વર વચ્ચે ફાઇલ ટ્રાન્સફર માટેનો સ્ટાન્ડર્ડ નેટવર્ક પ્રોટોકોલ છે.

ફીચર	વર્ણન
પોર્ટ	કંટ્રોલ: 21, ડેટા: 20
મોડ	એક્ટિવ અથવા પેસિવ
ઓથેન્ટિકેશન	યુઝરનેમ/પાસવર્ડ (અથવા એનોનિમસ)
ટ્રાન્સફર ટાઇપ્સ	ASCII (ટેક્સ્ટ) અથવા બાઇનરી (રૉ ડેટા)
સિક્યુરિટી	બેઝિક FTP (અનસિક્યોર્ડ), FTPS, SFTP (સિક્યોર વેરિઅન્ટ્સ)

• ક્યુઅલ ચેનલ: અલગ કંટ્રોલ અને ડેટા કનેક્શન

• કમાન્ડ્સ: GET, PUT, LIST, DELETE, RENAME, વગેરે

• યુઝર ઓથેન્ટિકેશન: લોગિન ક્રેડેન્શિયલ્સની આવશ્યકતા

મેમરી ટ્રીક: "CDATA" - "કંટ્રોલ ચેનલ, ડેટા ચેનલ, એક્ટિવ/પેસિવ મોડ્સ, ટ્રાન્સફર ટાઇપ્સ, ઓથેન્ટિકેશન"

પ્રશ્ન 3(અ) અથવા [3 ગુણ]

PANનું આખું નામ શું છે? PAN વિગતવાર સમજાવો.

જવાબ

PAN એટલે Personal Area Network, વ્યક્તિની આસપાસ કેન્દ્રિત ડિવાઇસ કનેક્ટ કરવા માટેનું નેટવર્ક.

PAN લાક્ષણિકતાઓ	વર્ણન
ભૌગોલિક સ્કોપ	ખૂબ નાનો (1-10 મીટર)
ડેટા રેટ	લો થી મિડિયમ (100 Kbps - 100 Mbps)
માલિકી	વ્યક્તિગત વ્યક્તિ
ટેકનોલોજી	Bluetooth, Zigbee, NFC, Infrared
ડિવાઇસિસ	વ્યક્તિગત ડિવાઇસ (ફોન, વેરેબલ્સ, લેપટોપ)

- હેતુ: કોમ્યુનિકેશન/ડેટા શેરિંગ માટે વ્યક્તિગત ડિવાઇસ કનેક્ટ કરવા
- પ્રકારો: વાયર્ડ PAN (USB) અને વાયરલેસ PAN (Bluetooth)
- અનુપ્રયોગો: ડેટા સિન્ક્રોનાઇઝેશન, ઓડિયો સ્ટ્રીમિંગ, હેલ્થ મોનિટરિંગ

મેમરી ટ્રીક: "PIPER" - "પર્સનલ, ઇન્ડિવિજ્યુઅલ, પ્રોક્સિમિટી, ઇઝી સેટઅપ, રિક્યુસ્ડ રેન્જ"

પ્રશ્ન 3(બ) અથવા [4 ગુણ]

બ્રિજનું મહત્વ શું છે? બ્રિજ પર ટૂંકનોંધ લખો.

വവ

બ્રિજ એ નેટવર્ક ડિવાઇસ છે જે નેટવર્ક સેગમેન્ટ્સને કનેક્ટ અને ફિલ્ટર કરે છે.

આકૃતિ:

ફીચર	વર્ણન
OSI લેયર	ડેટા લિંક લેયર (લેયર 2)
ફંક્શન	સમાન નેટવર્ક સેગમેન્ટ્સ કનેક્ટ કરવા
ઇન્ટેલિજન્સ	MAC એડ્રેસનો ઉપયોગ કરીને ટ્રાફિક ફિલ્ટર કરે છે
ફાયદો	સેગમેન્ટ્સ વચ્ચે બિનજરૂરી ટ્રાફિક ઘટાડે છે

• મહત્વ: નેટવર્ક વિસ્તારે છે, કોલિઝન ડોમેન ઘટાડે છે

• **ઓપરેશન**: MAC એડ્રેસ શીખે છે, ફ્રેમ્સ સિલેક્ટિવલી ફોરવર્ડ કરે છે

• પ્રકારો: ટ્રાન્સપેરન્ટ, ટ્રાન્સલેશનલ, સોર્સ-રૂટ બ્રિજીસ

મેમરી ટ્રીક: "SELF" - "સેગમેન્ટેશન, એક્સટેન્શન, લર્નિંગ એડ્રેસિસ, ફિલ્ટરિંગ ટ્રાફિક"

પ્રશ્ન 3(ક) અથવા [7 ગુણ]

DSL શું છે? તેનાં જુદા-જુદા પ્રકાર સમજાવો.

જવાબ:

ડિજિટલ સબસ્ક્રાઇબર લાઇન (DSL) એ ટેલિફોન લાઇન્સ પર ડિજિટલ ડેટા ટ્રાન્સમિશન પ્રદાન કરતી ટેકનોલોજીઓનો પરિવાર છે.

आङ्गति:

DSL 2184	પૂરું નામ	સ્પીડ (ડાઉન/અ૫)	ડિસ્ટન્સ	અનુપ્રયોગ
ADSL	અસિમેટ્રિક DSL	8 Mbps/1 Mbps	5.5 km સુધી	રેસિડેન્શિયલ ઇન્ટરનેટ
SDSL	સિમેટ્રિક DSL	2 Mbps/2 Mbps	3 km સુધી	સ્મોલ બિઝનેસ
VDSL	વેરી હાઇ-બિટ-રેટ DSL	52-85 Mbps/16-85 Mbps	1.2 km સુધી	વિડિયો સ્ટ્રીમિંગ, બિઝનેસ
HDSL	હાઇ-બિટ-રેટ DSL	2 Mbps/2 Mbps	3.6 km સુધી	T1/E1 રિપ્લેસમેન્ટ
IDSL	ISDN DSL	144 Kbps/144 Kbps	5.5 km સુધી	ISDN ઓલ્ટરનેટિવ

- **કાર્યપ્રણાલી**: ફોન લાઇન્સ પર વપરાચેલા ફ્રિક્વન્સી સ્પેક્ટ્રમનો ઉપયોગ કરે છે
- ફાયદો: અસ્તિત્વમાં રહેલા ટેલિફોન ઇન્ફ્રાસ્ટ્રક્ચરનો ઉપયોગ કરે છે
- ઓલવેઝ-ઓન: ડાયલ-અપ વગર સતત કનેક્શન

મેમરી ટ્રીક: "SAVHI" - "સિમેટ્રિક, અસિમેટ્રિક, વેરી હાઇ-બિટ-રેટ, હાઇ-બિટ-રેટ, ISDN DSL"

પ્રશ્ન 4(અ) [3 ગુણ]

ડેટા લિંક લેચર માટે એરર કન્ટ્રોલ અને ફ્લો કન્ટ્રોલ સમજાવો.

જવાલ

એરર અને ફ્લો કંટ્રોલ એ ડેટા લિંક લેયરના આવશ્યક કાર્યો છે જે વિશ્વસનીય ડેટા ટ્રાન્સમિશન સુનિશ્ચિત કરે છે.

મેકેનિઝમ	હેતુ	ટેકનિક્સ
એરર કંટ્રોલ	ટ્રાન્સમિશન એરર ડિટેક્ટ/કરેક્ટ કરવા	CRC, ચેકસમ, પેરિટી બિટ્સ
ફ્લો કંટ્રોલ	સેન્ડર દ્વારા રિસીવરને ઓવરવ્હેલમ થતું રોકવા	સ્ટોપ-એન્ડ-વેઇટ, સ્લાઇડિંગ વિન્ડો

આકૃતિ:

• **એરર ડિટેક્શન**: CRC, ચેકસમ દ્વારા કરપ્ટેડ ફ્રેમ્સ ઓળખવા

• **એરર કરેક્શન**: ફોરવર્ડ એરર કરેક્શન (FEC), રિટ્રાન્સમિશન

• ફ્લો કંટ્રોલ: રિસીવરમાં બફર ઓવરફ્લો રોકે છે

મેમરી ટ્રીક: "SAFE" - "સ્ટોપ-એન્ડ-વેઇટ, એકનોલેજમેન્ટ, ફ્લો કંટ્રોલ, એરર ડિટેક્શન"

પ્રશ્ન 4(બ) [4 ગુણ]

ફાયરવોલ શું છે? વિગતવાર સમજાવો.

જવાબ:

ફાયરવોલ એ નેટવર્ક સિક્યોરિટી ડિવાઇસ છે જે ઇનકમિંગ અને આઉટગોઇંગ નેટવર્ક ટ્રાફિકનું મોનિટરિંગ અને ફિલ્ટરિંગ કરે છે.

ફાયરવોલ ટાઇપ	ફંક્શનાલિટી	ઉદાહરણ
પેકેટ ફિલ્ટરિંગ	પેકેટ હેડર્સ તપાસે છે	રાઉટર ACLs
સ્ટેટફુલ ઇન્સ્પેક્શન	કનેક્શન સ્ટેટ ટ્રેક કરે છે	મોટાભાગના હાર્ડવેર ફાયરવોલ
એપ્લિકેશન લેચર	કન્ટેન્ટ ઇન્સ્પેક્ટ કરે છે	વેબ એપ્લિકેશન ફાયરવોલ
નેક્સ્ટ-જનરેશન	મલ્ટિપલ ટેકનોલોજીનું સંયોજન	પાલો આલ્ટો, ફોર્ટિનેટ

- **હેતુ**: અનધિકૃત એક્સેસથી નેટવર્ક સુરક્ષિત કરે છે
- ઇમ્પ્લિમેન્ટેશન: હાર્ડવેર, સોફ્ટવેર, અથવા ક્લાઉડ-બેઝ્ડ
- સિક્યોરિટી પોલિસી: મંજૂર/બ્લોક્ડ ટ્રાફિક નિર્ધારિત કરતા નિયમો

મેમરી ટ્રીક: "PAPSI" - "પેકેટ ફિલ્ટરિંગ, એપ્લિકેશન લેયર, પોલિસીઝ, સ્ટેટફુલ ઇન્સ્પેક્શન"

પ્રશ્ન 4(ક) [7 ગુણ]

IPV4 અને IPV6ને સરખાવો.

જવાબ:

IPv4 અને IPv6 એ ઇન્ટરનેટ પ્રોટોકોલ વર્ઝન્સ છે જેમાં એડ્રેસિંગ અને કેપેબિલિટીમાં નોંધપાત્ર તફાવત છે.

ફીચર	IPv4	IPv6
એડ્રેસ સાઇઝ	32-બિટ (4 બાઇટ્સ)	128-બિટ (16 બાઇટ્સ)
ફોર્મેટ	ડોટેડ ડેસિમલ (192.168.1.1)	હેક્સાડેસિમલ વિથ કોલન (2001:0db8:85a3::8a2e:0370:7334)
એડ્રેસ સ્પેસ	~4.3 બિલિયન એડ્રેસ	340 અંડેસિલિયન એડ્રેસ
હેડર	વેરિએબલ લેન્થ (20-60 બાઇટ્સ)	ફિક્સ્ડ લેન્થ (40 બાઇટ્સ)
ફ્રેગમેન્ટેશન	રાઉટર્સ અને સેન્ડિંગ હોસ્ટ્સ	માત્ર સેન્ડિંગ હોસ્ટ્સ
ચેકસમ	હેડરમાં સમાવિષ્ટ	હેડરમાંથી દૂર કરાયું
સિક્યોરિટી	બિલ્ટ-ઇન નથી (IPsec ઓપ્શનલ)	બિલ્ટ-ઇન IPsec સપોર્ટ

IPv4: VER IHL DSCP ECN TOTAL LENGTH
IDENTIFICATION FLAGS FRAGMENT
TTL PROTOCOL HEADER CHECKSUM
SOURCE ADDRESS
DESTINATION ADDRESS
OPTIONS
IPv6: VER TRAFFIC CLASS FLOW LABEL
PAYLOAD LENGTH NEXT HDR HOP LIMIT
SOURCE ADDRESS

- **ઓટો-કોન્ફિગરેશન**: IPv6માં સ્ટેટલેસ એડ્રેસ ઓટો-કોન્ફિગરેશન છે
- NAT: મોટા એડ્રેસ સ્પેસને કારણે IPv6માં જરૂરી નથી
- ટ્રાન્ઝિશન: ક્યુઅલ-સ્ટેક, ટનલિંગ, ટ્રાન્સલેશન મેકેનિઝમ્સ
- હેડર એફિશિયન્સી: IPv6માં બેટર પરફોર્મન્સ માટે સ્ટ્રીમલાઇન્ડ હેડર છે

મેમરી ટ્રીક: "SHAPE" - "સાઇઝ, હેડર, એડ્રેસિંગ, પરફોર્મન્સ, એક્સટેન્સિબિલિટી"

પ્રશ્ન 4(અ) અથવા [3 ગુણ]

IP એડ્રેસ શું છે? તે નેટવર્કમાં કઈ રીતે ઉપયોગી છે?

જવાબ:

IP એડ્રેસ એ ન્યુમેરિકલ આઈડેન્ટિફાયર છે જે ઇન્ટરનેટ પ્રોટોકોલનો ઉપયોગ કરતા નેટવર્કમાં કનેક્ટેડ દરેક ડિવાઇસને અસાઇન કરવામાં આવે છે.

આકૃતિ:

IP એડ્રેસ ઉપયોગ	વર્ણન
આઈડેન્ટિફિકેશન	નેટવર્ક પર ડિવાઇસને અનન્ય રીતે ઓળખે છે
રાઉટિંગ	ડેટા પેકેટ્સ માટે પાથ નક્કી કરે છે
એડ્રેસિંગ	ચોક્કસ ડેસ્ટિનેશન પર ડેટા મોકલવાની સુવિધા આપે છે
નેટવર્ક ડિવિઝન	સબનેટ્સમાં વિભાજન કરવાની મંજૂરી આપે છે

- સ્ટ્રક્ચર: નેટવર્ક પોર્શન અને હોસ્ટ પોર્શન
- અસાઇનમેન્ટ: સ્ટેટિક (મેન્યુઅલ) અથવા ડાયનેમિક (DHCP)
- **વર્ઝન્સ**: IPv4 (32-બિટ) અને IPv6 (128-બિટ)

મેમરી ટ્રીક: "IRAN" - "આઈડેન્ટિફિકેશન, રાઉટિંગ, એડ્રેસિંગ, નેટવર્ક ડિવિઝન"

પ્રશ્ન 4(બ) અથવા [4 ગુણ]

FDDI અને CDDIને સરખાવો.

જવાબ:

FDDI (ફાયબર ડિસ્ટ્રિબ્યુટેડ ડેટા ઇન્ટરફેસ) અને CDDI (કોપર ડિસ્ટ્રિબ્યુટેડ ડેટા ઇન્ટરફેસ) એ હાઈ-સ્પીડ નેટવર્ક ટેકનોલોજીઓ છે.

ફીચર	FDDI	CDDI
મીડિયમ	ફાયબર ઓપ્ટિક કેબલ	કોપર ટ્વિસ્ટેડ પેર
સ્પીડ	100 Mbps	100 Mbps
ડિસ્ટન્સ	કુલ 200 km સુધી, સ્ટેશન વચ્ચે 2 km	સ્ટેશન વચ્ચે 100 m સુધી
ટોપોલોજી	ક્યુઅલ કાઉન્ટર-રોટેટિંગ રિંગ્સ	ડ્યુઅલ કાઉન્ટર-રોટેટિંગ રિંગ્સ
કોસ્ટ	ઉચ્ચ	ઓછી
રિલાયબિલિટી	ખૂબ ઉચ્ચ	મધ્યમ
સ્ટાન્ડર્ડ	ANSI X3T9.5	FDDI જેવું જ (ક્રોપર માટે અડાપ્ટેડ)

આકૃતિ:

- રિડન્ડન્સી: ફોલ્ટ ટોલરન્સ માટે સેકન્ડરી રિંગ
- એક્સેસ મેથડ: ટાઇમ્ડ ટોકન રોટેશન સાથે ટોકન પાસિંગ
- અનુપ્રયોગો: FDDI બેકબોન્સ માટે, CDDI વર્કસ્ટેશન્સ માટે

મેમરી ટ્રીક: "FDDI ફ્લાઇઝ, CDDI ક્રોલ્સ" - લાંબા અંતર માટે ફાયબર, ટૂંકા રન માટે કોપર

પ્રશ્ન 4(ક) અથવા [7 ગુણ]

OSI રેફરન્સ મોડેલ દોરો અને વિગતવાર સમજાવો.

જવાબ

OSI (ઓપન સિસ્ટમ્સ ઇન્ટરકનેક્શન) મોડેલ એ નેટવર્ક ફંક્શન્સને સાત લેયરમાં સ્ટાન્ડર્ડાઇઝ કરતું કન્સેપ્ચ્યુઅલ ફ્રેમવર્ક છે.

આકૃતિ:

+-----+

APPLICATION (7)
User interface, apps
++
PRESENTATION (6)
Data format, encryption
++
SESSION (5)
Connection management
++
TRANSPORT (4)
End-to-end reliability
++
NETWORK (3)
Routing between networks
++
DATA LINK (2)
Node-to-node reliability
++
PHYSICAL (1)
Physical transmission
++

લેયર	પ્રાથમિક ફંક્શન	પ્રોટોકોલ્સ/સ્ટાન્ડર્ડ્સ	ડેટા યુનિટ
એપ્લિકેશન	યુઝર ઇન્ટરફેસ, નેટવર્ક સર્વિસિસ	HTTP, FTP, SMTP	ÌSI
પ્રેઝન્ટેશન	ડેટા ફોર્મેટિંગ, એન્ક્રિપ્શન	SSL/TLS, JPEG, MIME	ÌSI
સેશન	કનેક્શન સ્થાપના, મેનેજમેન્ટ	NetBIOS, RPC	ÌSI
ટ્રાન્સપોર્ટ	એન્ડ-ટુ-એન્ડ ડિલિવરી, ફ્લો કંટ્રોલ	TCP, UDP	સેગમેન્ટ્સ
નેટવર્ક	લોજિકલ એડ્રેસિંગ, રાઉટિંગ	IP, ICMP, OSPF	પેકેટ્સ
ડેટા લિંક	ફિઝિકલ એડ્રેસિંગ, મીડિયા એક્સેસ	Ethernet, PPP, HDLC	ફ્રેમ્સ
ફિઝિકલ	બિટ ટ્રાન્સમિશન, કેબલિંગ, સિગ્નલિંગ	USB, Ethernet, Bluetooth	બિટ્સ

- લેયર ઇન્ડિપેન્ડન્સ: દરેક લેયર ચોક્કસ ફંક્શન્સ પરફોર્મ કરે છે
- એન્કેપ્સલેશન: ડેટા દરેક લેયરમાં હેડર સાથે રેપ થાય છે
- સ્ટાન્ડર્ડાઇઝેશન: સિસ્ટમ્સ વચ્ચે ઇન્ટરઓપરેબિલિટી પ્રમોટ કરે છે
- ટ્રબલશૂટિંગ: પ્રોબ્લેમ્સને ચોક્કસ લેચર્સમાં આઇસોલેટ કરે છે

મેમરી ટ્રીક: "All People Seem To Need Data Processing" (લેયર 7 થી 1)

પ્રશ્ન 5(અ) [3 ગુણ]

ISO શું છે? ઇન્ફોમેશન સિક્યોરિટીમાં કઈ રીતે કામ કરે છે?

જવાબ:

ISO (ઇન્ટરનેશનલ ઓર્ગેનાઇઝેશન ફોર સ્ટાન્ડર્ડાઇઝેશન) ઇન્ફોર્મેશન સિક્યોરિટી સહિતના સ્ટાન્ડર્ડ્સ વિકસાવે અને પ્રકાશિત કરે છે.

ISO સિક્યોરિટી સ્ટાન્ડર્ડ્સ	હેતુ
ISO/IEC 27001	ઇન્ફોર્મેશન સિક્યોરિટી મેનેજમેન્ટ સિસ્ટમ્સ
ISO/IEC 27002	સિક્યોરિટી કંટ્રોલ્સ માટે કોડ ઓફ પ્રેક્ટિસ
ISO/IEC 27005	ઇન્ફોર્મેશન સિક્યોરિટી રિસ્ક મેનેજમેન્ટ
ISO/IEC 27017	ક્લાઉડ સિક્યોરિટી
ISO/IEC 27018	પર્સનલી આઈડેન્ટિફાયેબલ ઇન્ફોર્મેશનનું પ્રોટેક્શન

ઇન્ફોર્મેશન સિક્યોરિટીમાં કાર્ય:

- ફ્રેમવર્ક-બેઝ્ડ: સિક્યોરિટીના સ્ટ્રક્યર્ડ અભિગમ પ્રદાન કરે છે
- રિસ્ક-બેઝ્ડ: જોખમોની ઓળખ અને શમન પર ધ્યાન કેન્દ્રિત કરે છે
- પ્રોસેસ-ઓરિએન્ટેડ: સતત સુધારણા ચક્ર સ્થાપિત કરે છે
- સર્ટિફિકેશન: સંસ્થાઓને કમ્પ્લાયન્સ માટે સર્ટિફાઇડ કરી શકાય છે

મેમરી ટ્રીક: "PRIMP" - "પોલિસીઝ, રિસ્ક અસેસમેન્ટ, ઇમ્પ્લિમેન્ટેશન, મોનિટરિંગ, પ્રોસેસ ઇમ્પ્રુવમેન્ટ"

પ્રશ્ન 5(બ) [4 ગુણ]

ક્રિપ્ટોગ્રાફીની ટર્મ વિગતવાર સમજાવો: ૧) એનક્રિપ્શન ૨) ડીક્રિપ્શન

જવાબ:

એન્ક્રિપ્શન અને ડિક્રિપ્શન માહિતીને સુરક્ષિત કરતી ક્રિપ્ટોગ્રાફીની મૂળભૂત પ્રક્રિયાઓ છે.

2ห์	વ્યાખ્યા	પ્રકારો	એલ્ગોરિધમ ઉદાહરણો
એન્ક્રિપ્શન	એલ્ગોરિધમ અને કી વાપરીને પ્લેનટેક્સ્ટને સાયફરટેક્સ્ટમાં કન્વર્ટ કરવાની પ્રક્રિયા	સિમેટ્રિક, એસિમેટ્રિક, હાઇબ્રિડ	AES, RSA, ECC
ડિક્રિપ્શન	એલ્ગોરિધમ અને કી વાપરીને સાયફરટેક્સ્ટને પાછા પ્લેનટેક્સ્ટમાં કન્વર્ટ કરવાની પ્રક્રિયા	સિમેટ્રિક, એસિમેટ્રિક, હાઇબ્રિડ	AES, RSA, ECC

એન્ક્રિપ્શન:

• હેતુ: માહિતીની ગોપનીયતાનું રક્ષણ કરે છે

• **પદ્ધતિઓ**: સબ્સ્ટિટ્યુશન, ટ્રાન્સપોઝિશન, બ્લોક સાયફર, સ્ટ્રીમ સાયફર

• ક્રી મેનેજમેન્ટ: સિક્યોર એન્ક્રિપ્શનનો ક્રિટિકલ પાસો

ડિક્રિપ્શન:

• હેતુ: એન્ક્રિપ્ટેડ ફોર્મમાંથી ઓરિજિનલ ઇન્ફોર્મેશન રિટ્રીવ કરે છે

• આવશ્યકતાઓ: સાચો એલ્ગોરિધમ અને કી

• ઇમ્પ્લિમેન્ટેશન: હાર્ડવેર અથવા સોફ્ટવેર-બેઝડ

મેમરી ટ્રીક: "PACK-DUKE" - "પ્લેનટેક્સ્ટ એલ્ગોરિધમ સાયફર કી - ડિકોડિંગ યુઝિંગ કી ફોર એક્સટ્રેક્શન"

પ્રશ્ન 5(ક) [7 ગુણ]

ટૂંકનોંધ લખો ૧) ઈ-મેઈલ 2) DNS

જવાબ:

1) ઈ-મેઈલ (ઇલેક્ટ્રોનિક મેઇલ):

ઈ-મેઇલ એ કોમ્યુનિકેશન નેટવર્ક પર ડિજિટલ મેસેજ એક્સચેન્જ કરવાની પદ્ધતિ છે.

આકૃતિ:

કોમ્પોનન્ટ	ફંક્શન
મેઇલ યુઝર એજન્ટ (MUA)	એન્ડ-યુઝર્સ દ્વારા વપરાતું ઇમેઇલ ક્લાયન્ટ સોફ્ટવેર
મેઇલ ટ્રાન્સફર એજન્ટ (MTA)	ઇમેઇલ ટ્રાન્સફર કરતું સર્વર સોફ્ટવેર
મેઇલ ડિલિવરી એજન્ટ (MDA)	રિસિપિયન્ટના મેઇલબોક્સમાં ઇમેઇલ ડિલિવર કરે છે
પ્રોટોકોલ્સ	SMTP (સેન્ડિંગ), POP3/IMAP (રિસીવિંગ)

• સ્ટ્રક્ચર: હેડર્સ (To, From, Subject) અને બોડી

• **સિક્યોરિટી**: એન્ક્રિપ્શન (TLS), ઓથેન્ટિકેશન (SPF, DKIM) જેવા ફીચર્સ

• એટેચમેન્ટ્સ: ટેક્સ્ટ ટ્રાન્સમિશન માટે એન્કોડેડ બાઇનરી ફાઇલ્સ

• ફીચર્સ: ફોરવર્ડિંગ, ફિલ્ટરિંગ, ઓર્ગેનાઇઝિંગ, સર્ચિંગ

2) DNS (ડોમેન નેમ સિસ્ટમ):

DNS એ ડોમેન નેમ્સને IP એડ્રેસમાં ટ્રાન્સલેટ કરવા માટેની હાયરાર્કિકલ અને ડિસેન્ટ્રલાઇઝ્ડ નેમિંગ સિસ્ટમ છે.

आङ्गति:

DNS કોમ્પોનન્ટ	ફંક્શન	
રૂટ સર્વર્સ	DNS હાયરાર્કીનું ટોપ	
TLD સર્વર્સ	ટોપ-લેવલ ડોમેન મેનેજ કરે છે (.com, .org)	
ઓથોરિટેટિવ સર્વર્સ	ચોક્કસ ડોમેન માટે DNS રેકોર્ડ્સ સ્ટોર કરે છે	
રિકર્સિવ રિઝોલ્વર્સ	ડોમેન નેમ્સ રિઝોલ્વ કરવા અન્ય સર્વર્સને ક્વેરી કરે છે	
DNS રેકોર્ડ્સ	રિસોર્સ રેકોર્ડ્સ (A, AAAA, MX, CNAME, વગેરે)	

- હેતુ: હ્યુમન-રીડેબલ નેમ્સને મશીન-રીડેબલ એડ્રેસમાં મેપ કરવા
- રિઝોલ્યુશન પ્રોસેસ: હાયરાર્કી દ્વારા રિકર્સિવ અથવા ઇટરેટિવ ક્વેરીઝ
- **કેશિંગ**: પરફોર્મન્સ સુધારવા માટે રિઝલ્ટ્સનો ટેમ્પરરી સ્ટોરેજ
- **સિક્યોરિટી**: DNSSEC ઓથેન્ટિકેશન અને ઇન્ટિગ્રિટી પ્રદાન કરે છે

મેમરી ટ્રીક: "MAPS" - "મેઇલ નીડ્સ એડ્રેસિસ, પ્રોટોકોલ્સ, એન્ડ સર્વર્સ" મેમરી ટ્રીક: "HARD" - "હાયરાર્કી, એડ્રેસિંગ, રિઝોલ્યુશન, ડિસ્ટ્રિબ્યુટેડ સિસ્ટમ"

પ્રશ્ન 5(અ) અથવા [3 ગુણ]

સિક્યોરીટી ટોપોલોજી અને સિક્યોરીટી ઝોન શું છે?

જવાબ:

સિક્યોરિટી ટોપોલોજી અને સિક્યોરિટી ઝોન એ નેટવર્ક સિક્યોરિટી કન્સેપ્ટ્સ છે જે નેટવર્ક રિસોર્સિસનું આયોજન અને રક્ષણ કરે છે.

કન્સેપ્ટ	વ્યાખ્યા	ઉદાહરણો
સિક્યોરિટી ટોપોલોજી	સિક્યોરિટી કંટ્રોલ્સની ફિઝિકલ અને લોજિકલ ગોઠવણી	DMZ, ડિફેન્સ-ઇન-ડેપ્થ
સિક્યોરિટી ઝોન	ચોક્કસ સિક્યોરિટી આવશ્યકતાઓ સાથે નેટવર્કનો ભાગ	DMZ, ઇન્ટ્રાનેટ, એક્સટ્રાનેટ

આકૃતિ:

- **સિક્યોરિટી ટોપોલોજી**: સમગ્ર સિક્યોરિટી આર્કિટેક્ચર ડિઝાઇન
- **સિક્યોરિટી ઝોન્સ**: કન્સિસ્ટન્ટ સિક્યોરિટી પોલિસીઓ સાથેની લોજિકલ બાઉન્ડરીઝ
- ડિફેન્સ-ઇન-ડેપ્થ: સિક્યોરિટી કંટ્રોલ્સના મલ્ટિપલ લેયર્સ

મેમરી ટ્રીક: "TIPS" - "ટોપોલોજી આઇસોલેટ્સ એન્ડ પ્રોટેક્ટ્સ સિસ્ટમ્સ"

પ્રશ્ન 5(બ) અથવા [4 ગુણ]

વોઇસ અને વિડીયો IP પર ટૂંકનોંધ લખો.

જવાભ

વોઇસ અને વિડિયો ઓવર IP (VoIP/Video IP) એ IP નેટવર્ક પર વોઇસ અને વિડિયો કોમ્યુનિકેશન ટ્રાન્સમિટ કરવાની ટેકનોલોજી છે.

કોમ્પોનન્ટ	ફંક્શન
કોડેક્સ	ઓડિયો અને વિડિયો એન્કોડ/ડિકોડ કરે છે (G.711, H.264)
સિગ્નલિંગ પ્રોટોકોલ્સ	કોલ સેટઅપ/ટિયરડાઉન (SIP, H.323)
ટ્રાન્સપોર્ટ પ્રોટોકોલ	રિયલ-ટાઇમ મીડિયા ટ્રાન્સપોર્ટ (RTP/RTCP)
QoS મેકેનિઝમ્સ	વોઇસ/વિડિયો ટ્રાફિકને પ્રાયોરિટાઇઝ કરે છે

વોઇસ ઓવર IP (VoIP):

• ફાયદા: કોસ્ટ સેવિંગ, ફ્લેક્સિબિલિટી, એપ્સ સાથે ઇન્ટિગ્રેશન

• ચેલેન્જીસ: લેટન્સી, જિટર, પેકેટ લોસ

• **અનુપ્રયોગો**: IP ફોન, સોફ્ટફોન, કોન્ફરન્સિંગ

વિડિયો ઓવર IP:

• પ્રકારો: વિડિયો કોન્ફરન્સિંગ, સ્ટ્રીમિંગ, સર્વેલન્સ

• આવશ્યકતાઓ: ઉચ્ચ બેન્ડવિડ્થ, લો લેટન્સી

• ટેકનોલોજીઓ: WebRTC, SIP વિડિયો, RTSP સ્ટ્રીમિંગ

મેમરી ટ્રીક: "CLEAR" - "કોડેક્સ કમ્પ્રેસ, લેટન્સી મેટર્સ, એન્કોડ્સ ઓડિયો/વિડિયો, એપ્લિકેશન્સ ઇન્ટિગ્રેટ, રિયલ-ટાઇમ ટ્રાન્સપોર્ટ"

પ્રશ્ન 5(ક) અથવા [7 ગુણ]

IP સિક્યોરીટી શું છે? વિગતવાર સમજાવો.

જવાબ:

IP સિક્યોરિટી (IPsec) એ દરેક IP પેકેટને ઓથેન્ટિકેટ અને એન્ક્રિપ્ટ કરીને IP કોમ્યુનિકેશન સિક્યોર કરવા માટે ડિઝાઇન કરાયેલ પ્રોટોકોલ્સનો સમૂહ છે.

IPsec પ્રોટોકોલ	ફંક્શન	પ્રોટેક્શન
ઓથેન્ટિકેશન હેડર (AH)	ડેટા ઇન્ટિગ્રિટી, ઓથેન્ટિકેશન	એન્ક્કિપ્શન નહીં
એન્કેપ્સુલેટિંગ સિક્યોરિટી પેલોડ (ESP)	કોન્ફિડેન્શિયાલિટી, ઇન્ટિગ્રિટી, ઓથેન્ટિકેશન	ડેટા એન્ક્રિપ્ટ કરે છે
ઇન્ટરનેટ કી એક્સચેન્જ (IKE)	કી એક્સયેન્જ, SA નેગોશિએશન	સિક્યોર કી મેનેજમેન્ટ

IPsec મોડ્સ:

મોડ	વર્ણન	યુઝ કેસ
ટ્રાન્સપોર્ટ મોડ	માત્ર પેલોડનું રક્ષણ કરે છે	હોસ્ટ-ટુ-હોસ્ટ કોમ્યુનિકેશન
ટનલ મોડ	સમગ્ર પેકેટનું રક્ષણ કરે છે	સાઇટ-ટુ-સાઇટ VPNs, રિમોટ એક્સેસ

સિક્યોરિટી સર્વિસિસ:

• ઓથેન્ટિકેશન: કોમ્યુનિકેટિંગ એન્ટિટીઓની ઓળખ યકાસે છે

• **કોન્ફિડેન્શિયાલિટી**: ડેટાને અનધિકૃત જાહેરાતથી રક્ષણ આપે છે

• ડેટા ઇન્ટિગ્નિટી: ડેટા ટ્રાન્ઝિટમાં બદલાયો નથી તે સુનિશ્ચિત કરે છે

• રિપ્લે પ્રોટેક્શન: પેકેટ રિપ્લે એટેક્સને રોકે છે

• એક્સેસ કંટ્રોલ: નેટવર્ક રિસોર્સિસની એક્સેસને મર્યાદિત કરે છે

અનુપ્રયોગો:

• VPNs: રિમોટ એક્સેસ અને સાઇટ-ટુ-સાઇટ કનેક્શન

• સિક્યોર રાઉટિંગ: રાઉટિંગ પ્રોટોકોલ્સનું રક્ષણ કરે છે

• સિક્યોર હોસ્ટ-ટુ-હોસ્ટ: એન્ડ-ટુ-એન્ડ સિક્યોરિટી

મેમરી ટ્રીક: "AVID TC" - "ઓથેન્ટિકેશન, વેરિફિકેશન, ઇન્ટિગ્નિટી, ડેટાગ્રામ પ્રોટેક્શન, ટ્રાન્સપોર્ટ મોડ, કોન્ફિડેન્શિયાલિટી"