Valuation spaces and metric properties of surface singularities

Lorenzo Fantini

Goethe-Universität Frankfurt am Main

August 25th, 2020

Seminario de Singularidades, Fortaleza

Includes joint works with C. Favre and M. Ruggiero, A. Belotto da Silva and A. Pichon.

Slides: https://lorenzofantini.eu/fantini-fortaleza.pdf

A long history: Wirtinger 1895, Milnor 1968...

X complex variety,

$$(X,0) \hookrightarrow (\mathbb{C}^N,0)$$

 $0 \in X$ isolated singularity

Topology: the Conical Structure Theorem

$$0 < \varepsilon \ll 1 \implies X \cap B(0, \varepsilon) \stackrel{\text{homeo}}{\sim} \text{Cone}(X \cap S(0, \varepsilon))$$

$$d_{\text{outer}}(x,y) = ||x - y||_{\mathbb{C}^N}$$

$$d_{\text{inner}}(x, y) = \inf_{\substack{\gamma \colon [0, 1] \to X, \\ \gamma(0) = x, \gamma(1) = y}} \left\{ \text{length}(\gamma) \right\}$$

- Belotto-F-Pichon 2019: inner metric germs, not bi-Lipschitz classes!
- ullet Belotto-F-Pichon 2020: we study LNE surfaces, i.e. $d_{
 m outer} \stackrel{
 m bi-Lip}{pprox} d_{
 m inner}$ (Birbrair-Mostowski, 2010)

A long history: Wirtinger 1895, Milnor 1968...

X complex variety, $0 \in X$ isolated singularity

$$(X,0) \hookrightarrow (\mathbb{C}^N,0)$$

Topology: the Conical Structure Theorem

$$0 < \varepsilon \ll 1 \implies X \cap B(0, \varepsilon) \stackrel{\text{homeo}}{\sim} \text{Cone}(X \cap S(0, \varepsilon))$$

$$d_{\text{outer}}(x,y) = ||x-y||_{\mathbb{C}^1}$$

$$d_{\text{inner}}(x, y) = \inf_{\substack{\gamma : [0, 1] \to X, \\ \gamma(0) = x, \gamma(1) = y}} \left\{ \text{length}(\gamma) \right\}$$

- Belotto-F-Pichon 2019: inner metric germs, not bi-Lipschitz classes!
- ullet Belotto-F-Pichon 2020: we study LNE surfaces, i.e. $d_{\mathrm{outer}} \stackrel{\mathrm{bi-Lip}}{pprox} d_{\mathrm{inner}}$

A long history: Wirtinger 1895, Milnor 1968...

X complex variety, $0 \in X$ isolated singularity

$$(X,0)\ \hookrightarrow (\mathbb{C}^N,0)$$

Topology: the Conical Structure Theorem

$$0 < \varepsilon \ll 1 \implies X \cap B(0, \varepsilon) \stackrel{\text{homeo}}{\sim} \text{Cone}(X \cap S(0, \varepsilon))$$

Metrics on (X,0)

$$d_{\text{outer}}(x,y) = ||x - y||_{\mathbb{C}^N}$$

$$d_{\mathrm{inner}}(x,y) = \inf_{\substack{\gamma \colon [0,1] \to X, \\ \gamma(0) = x, \gamma(1) = y}} \left\{ \mathrm{length}(\gamma) \right\}$$

- Belotto-F-Pichon 2019: inner metric germs, not bi-Lipschitz classes!
- Belotto–F–Pichon 2020: we study LNE surfaces, i.e. $d_{\text{outer}} \stackrel{\text{bi-Lip}}{\approx} d_{\text{inner}}$

1 / 12

A long history: Wirtinger 1895, Milnor 1968...

X complex variety, $0 \in X$ isolated singularity

$$(X,0) \hookrightarrow (\mathbb{C}^N,0)$$

Topology: the Conical Structure Theorem

$$0<\varepsilon\ll 1\implies X\cap B(0,\varepsilon)\stackrel{\mathsf{homeo}}{\sim}\mathsf{Cone}\big(X\cap S(0,\varepsilon)\big)$$

$$d_{\text{outer}}(x,y) = ||x - y||_{\mathbb{C}^N}$$

$$d_{\text{inner}}(x, y) = \inf_{\substack{\gamma \colon [0, 1] \to X, \\ \gamma(0) = x, \gamma(1) = y}} \left\{ \text{length}(\gamma) \right\}$$

- Belotto–F–Pichon 2019: inner metric germs, not bi-Lipschitz classes!
- Belotto–F–Pichon 2020: we study LNE surfaces, i.e. $d_{\text{outer}} \stackrel{\text{bi-Lip}}{\approx} d_{\text{inner}}$

A long history: Wirtinger 1895, Milnor 1968...

X complex variety, $0 \in X$ isolated singularity

$$(X,0) \hookrightarrow (\mathbb{C}^N,0)$$

Topology: the Conical Structure Theorem

$$0 < \varepsilon \ll 1 \implies X \cap B(0, \varepsilon) \stackrel{\text{homeo}}{\sim} Cone(X \cap S(0, \varepsilon))$$

$$d_{\text{outer}}(x,y) = ||x - y||_{\mathbb{C}^N}$$

$$d_{\text{inner}}(x, y) = \inf_{\substack{\gamma \colon [0, 1] \to X, \\ \gamma(0) = x, \gamma(1) = y}} \left\{ \text{length}(\gamma) \right\}$$

- Belotto-F-Pichon 2019: inner metric germs, not bi-Lipschitz classes!
- Belotto–F–Pichon 2020: we study LNE surfaces, i.e. $d_{\text{outer}} \stackrel{\text{bi-Lip}}{\approx} d_{\text{inner}}$

A long history: Wirtinger 1895, Milnor 1968...

X complex variety, $0 \in X$ isolated singularity

$$(X,0) \hookrightarrow (\mathbb{C}^N,0)$$

Topology: the Conical Structure Theorem

$$0 < \varepsilon \ll 1 \implies X \cap B(0, \varepsilon) \stackrel{\text{homeo}}{\sim} \text{Cone}(X \cap S(0, \varepsilon))$$

$$d_{\text{outer}}(x,y) = ||x-y||_{\mathbb{C}^N}$$

$$d_{\text{inner}}(x, y) = \inf_{\substack{\gamma \colon [0, 1] \to X, \\ \gamma(0) = x, \gamma(1) = y}} \left\{ \text{length}(\gamma) \right\}$$

- Belotto–F–Pichon 2019: inner metric germs, not bi-Lipschitz classes!
- Belotto–F–Pichon 2020: we study LNE surfaces, i.e. $d_{\text{outer}} \stackrel{\text{bi-Lip}}{\approx} d_{\text{inner}}$ (Birbrair–Mostowski, 2010)

I will focus on the case of surfaces.

The inner rate $\mathcal{I}(E)$ of E is the contact order between the two curves $\pi_*\gamma$ and $\pi_*\gamma'$ on (X,0), with respect to the inner metric:

$$d_{\mathrm{inner}} ig(\pi_* \gamma \cap \mathcal{S}_{\mathbb{C}^n}(0, arepsilon), \pi_* \gamma' \cap \mathcal{S}_{\mathbb{C}^n}(0, arepsilon) ig) pprox arepsilon^{\mathcal{I}(E)}$$

Interpretation

The inner rate $\mathcal{I}(E)$ measures the size of a small area $\mathcal{N}(E)$ of (X,0)

___ Fine

metric structure of the germ

I will focus on the case of surfaces.

The inner rate $\mathcal{I}(E)$ of E is the contact order between the two curves $\pi_*\gamma$ and $\pi_*\gamma'$ on (X,0), with respect to the inner metric:

$$d_{\mathrm{inner}}ig(\pi_*\gamma\cap S_{\mathbb{C}^n}(0,arepsilon),\pi_*\gamma'\cap S_{\mathbb{C}^n}(0,arepsilon)ig)pprox arepsilon^{\mathcal{I}(E)}$$

Interpretation

The inner rate $\mathcal{I}(E)$ measures the size of a small area $\mathcal{N}(E)$ of (X,0)

 \leftarrow

metric structure of the germ

I will focus on the case of surfaces.

The inner rate $\mathcal{I}(E)$ of E is the contact order between the two curves $\pi_*\gamma$ and $\pi_*\gamma'$ on (X,0), with respect to the inner metric:

$$d_{\mathrm{inner}}ig(\pi_*\gamma\cap S_{\mathbb{C}^n}(0,arepsilon),\pi_*\gamma'\cap S_{\mathbb{C}^n}(0,arepsilon)ig)pprox arepsilon^{\mathcal{I}(E)}$$

Interpretation

The inner rate $\mathcal{I}(E)$ measures the size of a small area $\mathcal{N}(E)$ of (X,0)

← FI

Fine understanding of the innermetric structure of the germ

I will focus on the case of surfaces.

The inner rate $\mathcal{I}(E)$ of E is the contact order between the two curves $\pi_*\gamma$ and $\pi_*\gamma'$ on (X,0), with respect to the inner metric:

$$d_{\mathrm{inner}}ig(\pi_*\gamma\cap\mathcal{S}_{\mathbb{C}^n}(0,arepsilon),\pi_*\gamma'\cap\mathcal{S}_{\mathbb{C}^n}(0,arepsilon)ig)pprox arepsilon^{\mathcal{I}(m{E})}$$

Interpretation

The inner rate $\mathcal{I}(E)$ measures the size of a small area $\mathcal{N}(E)$ of (X,0)

Fine understanding of the inner metric structure of the germ

I will focus on the case of surfaces.

The inner rate $\mathcal{I}(E)$ of E is the contact order between the two curves $\pi_*\gamma$ and $\pi_*\gamma'$ on (X,0), with respect to the inner metric:

$$d_{\mathrm{inner}}ig(\pi_*\gamma\cap\mathcal{S}_{\mathbb{C}^n}(0,arepsilon),\pi_*\gamma'\cap\mathcal{S}_{\mathbb{C}^n}(0,arepsilon)ig)pproxarepsilon^{\mathcal{I}(m{E})}$$

Interpretation:

The inner rate $\mathcal{I}(E)$ measures the size of a small area $\mathcal{N}(E)$ of (X,0)

Fine understanding of the inner metric structure of the germ

I will focus on the case of surfaces.

The inner rate $\mathcal{I}(E)$ of E is the contact order between the two curves $\pi_*\gamma$ and $\pi_*\gamma'$ on (X,0), with respect to the inner metric:

$$d_{ ext{inner}}ig(\pi_*\gamma\cap S_{\mathbb{C}^n}(0,arepsilon),\pi_*\gamma'\cap S_{\mathbb{C}^n}(0,arepsilon)ig)pprox arepsilon^{\mathcal{I}(m{E})}$$

Interpretation:

The inner rate $\mathcal{I}(E)$ measures the size of a small area $\mathcal{N}(E)$ of (X,0)

Fine understanding of the inner metric structure of the germ

2 / 12

$$E_8 = \{x^2 + y^3 + z^5 = 0\} \subset \mathbb{C}^3$$

$$\downarrow (y, z)$$

$$E_8 = \{x^2 + y^3 + z^5 = 0\} \subset \mathbb{C}^3$$

$$\downarrow (y, z)$$

discriminant
$$\{y^3+z^5=0\}\subset \mathbb{C}^2$$

$$E_8 = \{x^2 + y^3 + z^5 = 0\} \subset \mathbb{C}^3$$

$$\downarrow (y, z)$$
discriminant $\{y^3 + z^5 = 0\} \subset \mathbb{C}^2$

$$E_8 = \{x^2 + y^3 + z^5 = 0\} \subset \mathbb{C}^3$$

$$\downarrow (y,z)$$
 discriminant
$$\{y^3 + z^5 = 0\} \subset \mathbb{C}^2$$

3 / 12

$$E_8 = \{x^2 + y^3 + z^5 = 0\} \subset \mathbb{C}^3$$

Fundamental questions (going back to Birbrair-Neumann-Pichon 2014):

- How does the geometry (X,0) influence the inner rates?
- How to compute them?

3 / 12

$$E_8 = \{x^2 + y^3 + z^5 = 0\} \subset \mathbb{C}^3$$

Fundamental questions (going back to Birbrair-Neumann-Pichon 2014):

- How does the geometry (X,0) influence the inner rates?
- How to compute them?

factoring through $\mathrm{Bl}_0(X)$ and through the Nash transform

Theorem (Belotto-F-Pichon, 2019)

Let $\pi: X_{\pi} \to X$ be a good resolution of (X,0). Then all the inner rates of (X,0) are completely determined by:

- the topology of (X,0), i.e. the weighted dual graph Γ_{π} ;
- the arrows of a generic hyperplane section;
- the arrows of the polar curves of a **generic** projection $(X,0) o (\mathbb{C}^2,0)$.

This is a consequence of an explicit formula that we will see later.

To get this, we use a new tool: the non-archimedean link of the singularity (X,0).

Definition (Boucksom–Favre–Jonsson, F)

$$\mathsf{NL}(X,0) = \left\{ v \colon \widehat{\mathcal{O}_{X,0}} \to \mathbb{R}_+ \cup \{+\infty\} \text{ semivaluation } \middle| \ \mathsf{min}_{f \in \mathfrak{M}_{X,0}} \{v(f)\} = 1 \right\}$$

$$v(0) = +\infty, v(fg) = v(f) + v(g), v(f+g) \ge \mathsf{min}\{v(f), v(g)\}$$

- if $(\gamma, 0) \subset (X, 0)$ curve germ, the order of vanishing at 0 along γ is a semivaluation
- if $\pi: (Y, D) \to (X, 0)$ is a modification (Y normal, D snc divisor), then ord_E is a semivaluation ("divisorial valuation")

It's a nice topological space, compact.

Example: $NL(\mathbb{A}^2_{\mathbb{C}}, 0) \cong valuative tree (Favre–Jonsson).$

Definition (Boucksom–Favre–Jonsson, F)

$$\text{NL}(X,0) = \left\{ v \colon \widehat{\mathcal{O}_{X,0}} \to \mathbb{R}_+ \cup \{+\infty\} \text{ semivaluation } \middle| \min_{f \in \mathfrak{M}_{X,0}} \{v(f)\} = 1 \right\}$$

$$v(0) = +\infty, v(fg) = v(f) + v(g), v(f+g) \ge \min\{v(f), v(g)\}$$

- if $(\gamma, 0) \subset (X, 0)$ curve germ, the order of vanishing at 0 along γ is a semivaluation
- if $\pi: (Y, D) \to (X, 0)$ is a modification (Y normal, D snc divisor), then ord_E is a semivaluation ("divisorial valuation")

It's a nice topological space, compact.

Example: $NL(\mathbb{A}^2_{\mathbb{C}}, 0) \cong valuative tree$ (Favre–Jonsson).

4 / 12

Definition (Boucksom–Favre–Jonsson, F)

$$\mathsf{NL}(X,0) = \left\{ v \colon \widehat{\mathcal{O}_{X,0}} \to \mathbb{R}_+ \cup \{+\infty\} \text{ semivaluation } \middle| \ \min_{f \in \mathfrak{M}_{X,0}} \{v(f)\} = 1 \right\}$$

$$v(0) = +\infty, v(fg) = v(f) + v(g), v(f+g) \ge \min\{v(f), v(g)\}$$

- if $(\gamma,0)\subset (X,0)$ curve germ, the order of vanishing at 0 along γ is a semivaluation
- if $\pi: (Y, D) \to (X, 0)$ is a modification (Y normal, D snc divisor), then ord_E is a semivaluation ("divisorial valuation")

It's a nice topological space, compact.

Example: $NL(\mathbb{A}^2_{\mathbb{C}},0)\cong valuative tree$ (Favre–Jonsson).

4 / 12

Intuition

 $\mathsf{NL}(X,0)$ is a non-archimedean version of the usual link $\mathsf{L}(X,0)$

Indeed, denote by (z_1, \ldots, z_N) a set of local coordinates of \mathbb{C}^N at 0. Then:

$$NL(X,0) = \left\{ x \in X^{\mathrm{an}} \mid \max_{i} |z_{i}(x)| = \varepsilon \right\}$$

Theorem (F–Favre)

L(X,0) degenerates towards NL(X,0).

Moreover, we have

$$H_{\text{sing}}^{i}(\operatorname{NL}(X,0),\mathbb{Q})\cong W^{0}H_{\text{sing}}^{i}(\operatorname{L}(X,0),\mathbb{Q}).$$

Intuition

 $\mathsf{NL}(X,0)$ is a non-archimedean version of the usual link $\mathsf{L}(X,0)$

Indeed, denote by (z_1, \ldots, z_N) a set of local coordinates of \mathbb{C}^N at 0. Then:

$$\mathsf{NL}(X,0) = \left\{ x \in X^{\mathrm{an}} \;\middle|\; \mathsf{max}_i \; |z_i(x)| = \varepsilon \right\}$$
Berkovich space of X w.r.t. the trivial absolute value

Theorem (F-Favre)

L(X,0) degenerates towards NL(X,0).

Moreover, we have

$$H_{\text{sing}}^{i}(\operatorname{NL}(X,0),\mathbb{Q})\cong W^{0}H_{\text{sing}}^{i}(\operatorname{L}(X,0),\mathbb{Q}).$$

Intuition

 $\mathsf{NL}(X,0)$ is a non-archimedean version of the usual link $\mathsf{L}(X,0)$

Indeed, denote by (z_1, \ldots, z_N) a set of local coordinates of \mathbb{C}^N at 0. Then:

$$\mathsf{NL}(X,0) = \left\{ x \in X^{\mathrm{an}} \, \middle| \, \mathsf{max}_i \, |z_i(x)| = \varepsilon \right\}$$
Berkovich space of X w.r.t. the trivial absolute value

Theorem (F–Favre)

L(X,0) degenerates towards NL(X,0).

Moreover, we have:

$$H_{\operatorname{sing}}^{i}(\operatorname{NL}(X,0),\mathbb{Q})\cong W^{0}H_{\operatorname{sing}}^{i}(\operatorname{L}(X,0),\mathbb{Q}).$$

Intuition

 $\mathsf{NL}(X,0)$ is a non-archimedean version of the usual link $\mathsf{L}(X,0)$

Indeed, denote by (z_1, \ldots, z_N) a set of local coordinates of \mathbb{C}^N at 0. Then:

$$\mathsf{NL}(X,0) = \left\{ x \in X^{\mathrm{an}} \, \middle| \, \mathsf{max}_i \, |z_i(x)| = \varepsilon \right\}$$
Berkovich space of X w.r.t. the trivial absolute value

Theorem (F–Favre)

L(X,0) degenerates towards NL(X,0).

Moreover, we have:

$$H^{i}_{\operatorname{sing}}(\operatorname{NL}(X,0),\mathbb{Q})\cong W^{0}H^{i}_{\operatorname{sing}}(\operatorname{L}(X,0),\mathbb{Q}).$$

Skeletons and combinatorics of NL(X, 0)

$$\mathsf{NL}(X,0) = \left\{v \colon \widehat{\mathcal{O}_{X,0}} \to \mathbb{R}_+ \cup \{+\infty\} \text{ semivaluation } \middle| \ \mathsf{min}_{f \in \mathfrak{M}_{X,0}} \{v(f)\} = 1\right\}$$

If $\pi: X_{\pi} \to X$ is a good resolution of (X,0) with dual graph Γ_{π} , there exists a natural embedding:

$$\Gamma_{\pi} \hookrightarrow \mathsf{NL}(X,0)$$

It seends a vertex v of Γ_{π} to the divisorial valuation associated with the exceptional component $E_v \subset \pi^{-1}(0)$ that corresponds to v.

This induces a canonical homeomorphism:

$$\varprojlim_{\pi} \Gamma_{\pi} \xleftarrow{\sim} \mathsf{NL}(X,0)$$

Skeletons and combinatorics of NL(X, 0)

$$\mathsf{NL}(X,0) = \left\{ v \colon \widehat{\mathcal{O}_{X,0}} \to \mathbb{R}_+ \cup \{+\infty\} \text{ semivaluation } \middle| \ \mathsf{min}_{f \in \mathfrak{M}_{X,0}} \{v(f)\} = 1 \right\}$$

If $\pi: X_{\pi} \to X$ is a good resolution of (X,0) with dual graph Γ_{π} , there exists a natural embedding:

$$\Gamma_{\pi} \hookrightarrow \mathsf{NL}(X,0)$$

It seends a vertex v of Γ_{π} to the divisorial valuation associated with the exceptional component $E_v \subset \pi^{-1}(0)$ that corresponds to v.

This induces a canonical homeomorphism:

$$\varprojlim_{\pi} \Gamma_{\pi} \stackrel{\sim}{\longleftarrow} \operatorname{NL}(X,0)$$

Skeletons and combinatorics of NL(X, 0)

$$\mathsf{NL}(X,0) = \left\{ v \colon \widehat{\mathcal{O}_{X,0}} \to \mathbb{R}_+ \cup \{+\infty\} \text{ semivaluation } \middle| \ \min_{f \in \mathfrak{M}_{X,0}} \{v(f)\} = 1 \right\}$$

If $\pi: X_{\pi} \to X$ is a good resolution of (X,0) with dual graph Γ_{π} , there exists a natural embedding:

$$\Gamma_{\pi} \hookrightarrow \mathsf{NL}(X,0)$$

It seends a vertex v of Γ_{π} to the divisorial valuation associated with the exceptional component $E_v \subset \pi^{-1}(0)$ that corresponds to v.

This induces a canonical homeomorphism:

$$\varprojlim_{\pi} \Gamma_{\pi} \xleftarrow{\sim} \mathsf{NL}(X,0)$$

Moreover, any proper birational map $f:(Y,D)\to (X,0)$ induces an isomorphism $NL(Y,D)\cong NL(X,0)$.

Theorem (Berkovich, Thuillier)

If $\pi: (Y, D) \to (X, 0)$ is a good resolution of (X, 0), then the retraction $NL(X, 0) \to \Gamma_{\pi} = Dual(D)$ extends to a strong deformation retraction.

In particular, NL(X,0) has the homotopy type of Γ_{π} .

NB: this works over any perfect field k, in any dimension.

Corollary (Stepanov 2006, Thuillier 2007)

The homotopy type of the dual graph of a good resolution of (X,0) does not depend on the choice of the resolution.

Remark: Dual(D) (and hence NL(X,0)) can be essentially arbitrary (Kollár), but it is contractible for isolated log terminal singularities (de Fernex–Kollár–Xu).

Moreover, any proper birational map $f:(Y,D)\to (X,0)$ induces an isomorphism $NL(Y,D)\cong NL(X,0)$.

Theorem (Berkovich, Thuillier)

If $\pi: (Y, D) \to (X, 0)$ is a good resolution of (X, 0), then the retraction $NL(X, 0) \to \Gamma_{\pi} = Dual(D)$ extends to a strong deformation retraction.

In particular, NL(X,0) has the homotopy type of Γ_{π} .

NB: this works over any perfect field k, in any dimension.

Corollary (Stepanov 2006, Thuillier 2007)

The homotopy type of the dual graph of a good resolution of (X,0) does not depend on the choice of the resolution.

Remark: Dual(D) (and hence NL(X,0)) can be essentially arbitrary (Kollár), but it is contractible for isolated log terminal singularities (de Fernex–Kollár–Xu).

Moreover, any proper birational map $f:(Y,D)\to (X,0)$ induces an isomorphism $NL(Y,D)\cong NL(X,0)$.

Theorem (Berkovich, Thuillier)

If $\pi: (Y, D) \to (X, 0)$ is a good resolution of (X, 0), then the retraction $NL(X, 0) \to \Gamma_{\pi} = Dual(D)$ extends to a strong deformation retraction.

In particular, NL(X,0) has the homotopy type of Γ_{π} .

NB: this works over any perfect field k, in any dimension.

Corollary (Stepanov 2006, Thuillier 2007)

The homotopy type of the dual graph of a good resolution of (X,0) does not depend on the choice of the resolution.

Remark: Dual(D) (and hence NL(X,0)) can be essentially arbitrary (Kollár), but it is contractible for isolated log terminal singularities (de Fernex–Kollár–Xu).

Berkovich space structure

NL(X,0) inherits from the Berkovich spaces X^{an} a non-archimedean analytic structure.

Moreover, any good resolution π induces a decomposition of NL(X,0) into (non-archimedean) discs and annuli. (Similar to the topological link!)

Application 1 (F 2014)

Non-archimedean characterization of Nash's essential valuations of a k-surface.

NL(X,0) looks like a fractal :

Application 2 (F–Favre–Ruggiero 2018)

Let (X,0) normal k-surface singularity.

NL(X,0) is self-similar

 \iff

(X,0) est is sandwich

Berkovich space structure

NL(X,0) inherits from the Berkovich spaces X^{an} a non-archimedean analytic structure.

Moreover, any good resolution π induces a decomposition of NL(X,0) into (non-archimedean) discs and annuli. (Similar to the topological link!)

Application 1 (F 2014)

Non-archimedean characterization of Nash's essential valuations of a k-surface.

divisorial valuations of the minimal resolution

NL(X,0) looks like a fractal :

Application 2 (F–Favre–Ruggiero 2018)

Let (X,0) normal k-surface singularity.

NL(X,0) is self-similar

(X,0) est is sandwich

Berkovich space structure

NL(X,0) inherits from the Berkovich spaces X^{an} a non-archimedean analytic structure.

Moreover, any good resolution π induces a decomposition of NL(X,0) into (non-archimedean) discs and annuli. (Similar to the topological link!)

Application 1 (F 2014)

Non-archimedean characterization of Nash's essential valuations of a k-surface.

divisorial valuations of the minimal resolution

NL(X,0) looks like a fractal :

Application 2 (F–Favre–Ruggiero 2018)

Let (X,0) normal k-surface singularity.

NL(X,0) is self-similar

(X,0) est is

Back to the inner rates: the Laplacian formula

Natural metric on Γ_{π} :

$$I([v,v']) = \frac{1}{m(v)m(v')}$$

where m(v) is the multiplicity of E_v in $\pi^{-1}(0)$.

\longrightarrow Metric on NL(X,0)

The inner rates $\mathcal{I}(E)$ extend to a continuous and piecewise linear map:

$$\mathcal{I} \colon \mathsf{NL}(X,0) \longrightarrow \mathbb{R}_{\geq 1}$$

Laplacian of \mathcal{I} on Γ_{π} : $\Delta_{\Gamma_{\pi}}(\mathcal{I})(v) = \text{sum of the outgoing slopes of } \mathcal{I}|_{\Gamma_{\pi}}$ at v

Canonical divisor of
$$\Gamma_{\pi}$$
: $K_{\Gamma_{\pi}}(v) = \operatorname{val}_{\Gamma_{\pi}}(v) + 2g(v) - 2 = -\chi(\check{E}_{v})$

Theorem (Belotto-F-Pichon, 2019)

 $\Delta_{\Gamma_\pi}(\mathcal{I})(v) = \mathit{m}(v) \big(\mathit{K}_{\Gamma_\pi}(v) + 2\#\{\text{hyperplane arrows at } v\} - \#\{\text{polar arrows at } v\} \big)$

Natural metric on Γ_{π} :

$$I([v,v']) = \frac{1}{m(v)m(v')}$$

where m(v) is the multiplicity of E_v in $\pi^{-1}(0)$.

$$\longrightarrow$$
 Metric on $NL(X,0)$

The inner rates $\mathcal{I}(E)$ extend to a continuous and piecewise linear map:

$$\mathcal{I} \colon \mathsf{NL}(X,0) \longrightarrow \mathbb{R}_{>1}$$

 $E_{8} \qquad (3) \qquad \frac{1}{18} \qquad \frac{1}{24} \qquad \frac{1}{18} \frac{1}{30} \qquad \frac{1}{20} \qquad \frac{1}{12} \qquad \frac{1}{6}$ $m(v) = (2) \quad (4) \qquad (6) \qquad (5) \qquad (4) \qquad (3) \qquad (2)$

Laplacian of \mathcal{I} on Γ_{π} : $\Delta_{\Gamma_{\pi}}(\mathcal{I})(v) = \text{sum of the outgoing slopes of } \mathcal{I}|_{\Gamma_{\pi}}$ at v

Canonical divisor of
$$\Gamma_{\pi}$$
: $K_{\Gamma_{\pi}}(v) = \operatorname{val}_{\Gamma_{\pi}}(v) + 2g(v) - 2 = -\chi(\check{E}_{v})$

Theorem (Belotto-F-Pichon, 2019)

 $\Delta_{\Gamma_{\pi}}(\mathcal{I})(v) = m(v) \big(K_{\Gamma_{\pi}}(v) + 2\#\{\text{hyperplane arrows at } v\} - \#\{\text{polar arrows at } v\} \big)$

Natural metric on Γ_{π} :

$$I([v,v']) = \frac{1}{m(v)m(v')}$$

where m(v) is the multiplicity of E_v in $\pi^{-1}(0)$.

$$\longrightarrow$$
 Metric on $NL(X,0)$

The inner rates $\mathcal{I}(E)$ extend to a continuous and piecewise linear map:

$$\mathcal{I} \colon \mathsf{NL}(X,0) \longrightarrow \mathbb{R}_{>1}$$

 $E_{8} \qquad (3) \qquad \frac{1}{18} \qquad \frac{1}{24} \qquad \frac{1}{18} \frac{1}{30} \qquad \frac{1}{20} \qquad \frac{1}{12} \qquad \frac{1}{6}$ $m(v) = (2) \quad (4) \qquad (6) \qquad (5) \qquad (4) \qquad (3) \qquad (2)$

slope
$$2$$
 $\Delta = 2 + 6 - 2 = 6$
 2
 $Z(v) = \frac{7}{4}$
 $\frac{8}{5}$

Laplacian of \mathcal{I} on Γ_{π} : $\Delta_{\Gamma_{\pi}}(\mathcal{I})(v) = \text{sum of the outgoing slopes of } \mathcal{I}|_{\Gamma_{\pi}}$ at v

Canonical divisor of
$$\Gamma_{\pi}$$
: $K_{\Gamma_{\pi}}(v) = \operatorname{val}_{\Gamma_{\pi}}(v) + 2g(v) - 2 = -\chi(\check{E}_{v})$

Theorem (Belotto-F-Pichon, 2019)

 $\Delta_{\Gamma_{\pi}}(\mathcal{I})(v) = m(v) \big(K_{\Gamma_{\pi}}(v) + 2\#\{\text{hyperplane arrows at } v\} - \#\{\text{polar arrows at } v\} \big)$

Natural metric on Γ_{π} :

$$I([v,v']) = \frac{1}{m(v)m(v')}$$

where m(v) is the multiplicity of E_v in $\pi^{-1}(0)$.

$$\longrightarrow$$
 Metric on $NL(X,0)$

The inner rates $\mathcal{I}(E)$ extend to a continuous and piecewise linear map:

$$\mathcal{I} \colon \mathsf{NL}(X,0) \longrightarrow \mathbb{R}_{>1}$$

 $E_{8} \qquad (3) \qquad \frac{1}{18} \qquad \frac{1}{24} \qquad \frac{1}{18} \frac{1}{30} \qquad \frac{1}{20} \qquad \frac{1}{12} \qquad \frac{1}{6}$ $m(v) = (2) \quad (4) \qquad (6) \qquad (5) \qquad (4) \qquad (3) \qquad (2)$

slope
$$2$$
 $\Delta = 2 + 6 - 2 = 6$
 2
 $Z(v) = \frac{7}{4}$
 $\frac{8}{5}$

Laplacian of \mathcal{I} on Γ_{π} : $\Delta_{\Gamma_{\pi}}(\mathcal{I})(v) = \text{sum of the outgoing slopes of } \mathcal{I}|_{\Gamma_{\pi}}$ at v

Canonical divisor of
$$\Gamma_{\pi}$$
: $K_{\Gamma_{\pi}}(v) = \operatorname{val}_{\Gamma_{\pi}}(v) + 2g(v) - 2 = -\chi(\check{E}_{v})$

Theorem (Belotto-F-Pichon, 2019)

 $\Delta_{\Gamma_{\pi}}(\mathcal{I})(v) = m(v) \big(K_{\Gamma_{\pi}}(v) + 2\#\{\text{hyperplane arrows at } v\} - \#\{\text{polar arrows at } v\} \big)$

Natural metric on Γ_{π} :

$$I([v,v']) = \frac{1}{m(v)m(v')}$$

where m(v) is the multiplicity of E_v in $\pi^{-1}(0)$.

$$\longrightarrow$$
 Metric on $NL(X,0)$

The inner rates $\mathcal{I}(E)$ extend to a continuous and piecewise linear map:

$$\mathcal{I} \colon \mathsf{NL}(X,0) \longrightarrow \mathbb{R}_{>1}$$

$$E_{8} \qquad (3) \qquad \frac{1}{18} \qquad \frac{1}{24} \qquad \frac{1}{18} \qquad \frac{1}{30} \qquad \frac{1}{20} \qquad \frac{1}{12} \qquad \frac{1}{6}$$

$$m(v) = (2) \quad (4) \qquad (6) \qquad (5) \qquad (4) \qquad (3) \qquad (2)$$

Laplacian of \mathcal{I} on Γ_{π} : $\Delta_{\Gamma_{\pi}}(\mathcal{I})(v) = \text{sum of the outgoing slopes of } \mathcal{I}|_{\Gamma_{\pi}}$ at v

Canonical divisor of
$$\Gamma_{\pi}$$
: $K_{\Gamma_{\pi}}(v) = \operatorname{val}_{\Gamma_{\pi}}(v) + 2g(v) - 2 = -\chi(\check{E}_{v})$

Theorem (Belotto-F-Pichon, 2019)

$$\Delta_{\Gamma_{\pi}}(\mathcal{I})(v) = \textit{m}(v) \big(\textit{K}_{\Gamma_{\pi}}(v) + 2\#\{\text{hyperplane arrows at } v\} - \#\{\text{polar arrows at } v\}\big)$$

Theorem (Belotto–F–Pichon, 2019)

$$\Delta_{\Gamma_{\pi}}(\mathcal{I})(v) = \mathit{m}(v) \big(\mathit{K}_{\Gamma_{\pi}}(v) + 2\#\{ \frac{\mathsf{hyperpl. arrows at } v \} - \#\{ \mathsf{polar arrows at } v \} \big)$$

Proof: lifting the formula for $NL(\mathbb{C}^2,0)$ to the singular case, studying the topology and monodromy of the Milnor fiber of a generic linear form, Dehn twists.

Applications

- Simple explicit computation of the inner rates
- Lê-Greuel-Teissier Formula
- We obtain strong restrictions on the relative positions of arrows.

Theorem (Belotto-F-Pichon, 2019)

$$\Delta_{\Gamma_\pi}(\mathcal{I})(v) = \textit{m}(v) \big(\textit{K}_{\Gamma_\pi}(v) + 2\#\{\text{hyperpl. arrows at } v\} - \#\{\text{polar arrows at } v\}\big)$$

Proof: lifting the formula for $NL(\mathbb{C}^2,0)$ to the singular case, studying the topology and monodromy of the Milnor fiber of a generic linear form, Dehn twists.

Applications:

- Simple explicit computation of the inner rates
- Lê-Greuel-Teissier Formula
- We obtain strong restrictions on the relative positions of arrows.

Theorem (Belotto-F-Pichon, 2019)

$$\Delta_{\Gamma_\pi}(\mathcal{I})(v) = \textit{m}(v) \big(\textit{K}_{\Gamma_\pi}(v) + 2\#\{\text{hyperpl. arrows at } v\} - \#\{\text{polar arrows at } v\}\big)$$

Proof: lifting the formula for $NL(\mathbb{C}^2,0)$ to the singular case, studying the topology and monodromy of the Milnor fiber of a generic linear form, Dehn twists.

Applications:

- Simple explicit computation of the inner rates
- Lê-Greuel-Teissier Formula
- We obtain strong restrictions on the relative positions of arrows.

Theorem (Belotto-F-Pichon, 2019)

$$\Delta_{\Gamma_\pi}(\mathcal{I})(v) = \textit{m}(v) \big(\textit{K}_{\Gamma_\pi}(v) + 2\#\{\text{hyperpl. arrows at } v\} - \#\{\text{polar arrows at } v\}\big)$$

Proof: lifting the formula for $NL(\mathbb{C}^2,0)$ to the singular case, studying the topology and monodromy of the Milnor fiber of a generic linear form, Dehn twists.

Applications:

- Simple explicit computation of the inner rates
- Lê-Greuel-Teissier Formula
- We obtain strong restrictions on the relative positions of arrows.

Polar exploration

Question

Given a resolution graph Γ , which configurations of arrows (both hyperplane and polar) on Γ can be realized by a surface singularity (X,0)?

First answer (Belotto-F-Pichon 2020)

There are only finitely many possible configurations of arrows on T.

In fact, very few possible solutions: given the hyperplane arrows, the polar arrows are limited by the Laplacian formula.

 $n=\#V(\Gamma_\pi)$ equations in 2n unknown + geometry of Lipman cones

Example: only one possibility for E_8 .

Polar exploration

Question

Given a resolution graph Γ , which configurations of arrows (both hyperplane and polar) on Γ can be realized by a surface singularity (X,0)?

First answer (Belotto-F-Pichon 2020)

There are only finitely many possible configurations of arrows on Γ .

In fact, very few possible solutions: given the hyperplane arrows, the polar arrows are limited by the Laplacian formula

 $n = \#V(\Gamma_{\pi})$ equations in 2n unknown + geometry of Lipman cones

Example: only one possibility for E_8 .

Polar exploration

Question

Given a resolution graph Γ , which configurations of arrows (both hyperplane and polar) on Γ can be realized by a surface singularity (X,0)?

First answer (Belotto-F-Pichon 2020)

There are only finitely many possible configurations of arrows on Γ .

In fact, very few possible solutions: given the hyperplane arrows, the polar arrows are limited by the Laplacian formula

 $n = \#V(\Gamma_{\pi})$ equations in 2n unknown + geometry of Lipman cones

Example: only one possibility for E_8 .

- via point blowups (Zariski 1939)
 → hyperplane sections
- ullet via Nash transformations (Spivakovsky 1990) \longrightarrow polar curves

Lê Dũng Tráng (\sim 2000): Are these two methods dual? Duality between hyperplane sections and polar curves?

In both methods a crucial role is played by minimal singularities.

Theorem (Spivakovsky 1990)

Let (X,0) be a surface germ with a minimal singularity.

Then the topological type of (X,0) determines the weighted dual graph of the minimal resolution of (X,0) that factors through the blowup at 0 and by its Nash transform, together with the arrows of its hyperplane sections and those of its polar curves.

- via point blowups (Zariski 1939)
 → hyperplane sections
- ullet via Nash transformations (Spivakovsky 1990) \longrightarrow polar curves

Lê Dũng Tráng (\sim 2000): Are these two methods dual? Duality between hyperplane sections and polar curves?

In both methods a crucial role is played by minimal singularities.

Theorem (Spivakovsky 1990)

Let (X,0) be a surface germ with a minimal singularity.

Then the topological type of (X,0) determines the weighted dual graph of the minimal resolution of (X,0) that factors through the blowup at 0 and by its Nash transform, together with the arrows of its hyperplane sections and those of its polar curves.

- via point blowups (Zariski 1939) → hyperplane sections
- ullet via Nash transformations (Spivakovsky 1990) \longrightarrow polar curves

Lê Dũng Tráng (\sim 2000): Are these two methods dual? Duality between hyperplane sections and polar curves?

In both methods a crucial role is played by minimal singularities.

Theorem (Spivakovsky 1990)

Let (X,0) be a surface germ with a minimal singularity.

Then the topological type of (X,0) determines the weighted dual graph of the minimal resolution of (X,0) that factors through the blowup at 0 and by its Nash transform, together with the arrows of its hyperplane sections and those of its polar curves.

- via point blowups (Zariski 1939)
 → hyperplane sections
- ullet via Nash transformations (Spivakovsky 1990) \longrightarrow polar curves

Lê Dũng Tráng (\sim 2000): Are these two methods dual? Duality between hyperplane sections and polar curves?

In both methods a crucial role is played by minimal singularities.

Theorem (Spivakovsky 1990, Belotto-F-Pichon 2020)

Let (X,0) be a surface germ with a minimal LNE singularity.

Then the topological type of (X,0) determines the weighted dual graph of the minimal resolution of (X,0) that factors through the blowup at 0 and by its Nash transform, together with the arrows of its hyperplane sections and those of its polar curves and all its inner rates.