

Поняття про полімери на прикладі поліетилену

Повідомлення мети уроку

Ви зможете:

- характеризувати склад і фізичні властивості поліетилену;

- розрізняти поліетилен й етен за складом;

- складати загальну схему полімеризації етену.

Актуалізація опорних знань

Пригадайте, які типи реакцій характерні для насичених вуглеводнів?

Із якими представниками ненасичених вуглеводнів ви вже знайомі?

Які реакції характерні для цих представників?

Чи існують у вільному стані в природі ці речовини?

Мотивація навчальної діяльності

Хімії належить одне з перших місць у науково-технічному прогресі. З повітря й води, вугілля й нафти, горючих газів і деревини хіміки створюють такі речовини й матеріали, яких немає у природі. А ось одна група матеріалів, створених людиною, дійсно, дивовижна. Що ж це за матеріали? Такими речовинами є пластмаси, в основі яких полімерні матеріали. Що ж таке полімери? Сьогодні ми про це дізнаємося на прикладі поліетилену.

Вивчення нового матеріалу

Якщо етилен нагріти до 150—200°С і піддати високому тиску, його молекули почнуть сполучатися одна з одною у великі молекули. Сполучення молекул відбувається за рахунок розриву в кожній з них подвійних зв'язків з утворенням одинарних.

Унаслідок розриву подвійного зв'язку з'являються дві вільні валентності, за рахунок яких і відбуваються реакції приєднання. Одна із цих реакцій — реакція полімеризації. Її назва походить від грецького слова полімерес — утворений з багатьох частин.

$$CH_2=CH_2 + CH_2=CH_2 + CH_2=CH_2 + \rightarrow -CH_2-CH_2- + -CH_2-CH_2- + -CH_2-CH_2-.... \rightarrow -CH_2-CH_2-CH_2-CH_2-...$$

Реакція полімеризації

Реакція полімеризації — це реакція сполучення однакових молекул в одну макромолекулу. Цю реакцію можна записати і у скороченому вигляді:

тСН₂=CH₂ → | —CH₂—CH₂— |п экономкер — спруктурна ланка

3 грецької «polys-» - численний, великий, більший за норму. Тому полімери зовсім небезпідставно називають велетнями органічного світу. Адже, порівняно з іншими органічними сполуками, їхня молекулярна маса величезна - від десятків тисяч до мільйонів. Молекули полімерів побудовані з численних елементарних структурних ланок - залишків молекул низькомолекулярних сполук. Такі низькомолекулярні сполуки називають мономерами - від грецького «mono-» - один. Утворення полімеру шляхом послідовного сполучення молекул мономера називають полімеризацією.

Поняття про полімеризацію

Полімеризація— це процес послідовного сполучення молекул низькомолекулярної речовини з утворенням високомолекулярної.

Рівняння полімеризації:

n CH₂= CH₂
$$\rightarrow$$
 (-CH₂ - CH₂-)_n

n CH₂= CH₂ → (-CH₂ - CH₂-)_n — ступінь полімеризації

Мономер Структурна ланка Полімер

Мономер – вихідна низькомолекулярна речовина
Полімер – це високомолекулярна речовина, що утворюється в результаті реакції полімеризації

Структурна ланка (елементарна, мономерна ланка) – фрагмент (група атомів), що багаторазово повторюється в молекулі полімеру.

Робота з термінами

<u>Структурна ланка</u> - це група атомів, що повторюються і становлять основу хімічної будови полімерного ланцюга.

<u>Термопластичність -</u> термопластичні пластмаси можна багаторазово розм'якшувати нагріванням і робити вироби різної форми.

<u>Термореактивність — термоактивні пластмаси після затвердінням виробу не підлягають повторному розплавленню чи повторній переробці.</u>

Ступінь полімеризації

Рівняння полімеризації:

 $n CH_2 = CH_2 \rightarrow (-CH_2 - CH_2 -)_n$

Ступінь полімеризації (n) — число, яке показує, скільки молекул мономеру вступило в реакцію. Ступінь полімеризації (n) в молекулі поліетилену може коливатися в певних межах:

n = 20 – рідина, має властивості мастил;

n= 1500-2000 – тверда, пластична, гнучка;

n = 5000-6000 – тверда, міцна

Тому заведено говорити про середню відносно молекулярну масу поліетилену.

Властивості поліетилену

Ознака	Фізичні властивості поліетилену	
Агрегатний стан	Тверда речовина	
Колір	Білого кольору, легко забарвлюється	
На дотик	Масний на дотик (нагадує твердий парафін)	
Міцність	Міцний (важко розірвати)	
Розчинність у воді	Нерозчинний у воді	
Температура плавлення	Легкоплавкий	
Пластичність	Термопластичний	
Електропровідність	Діелектрик	
Характер горіння	Горить блакитним полум'ям	
Дія кислот, основ, окисників	Стійкий до дії кислот, лугів, окисників (виняток	
	HNO _{3 конц.} роз'їдає поліетилен)	

BCIM

Перші згадки про синтетичні полімери відносяться у часі до 1838 р. (полівінілхлорид) і 1839р. (полістирол).

Полівінілхлорид

Полістирол

BCIM

Утворення поліетилену

$$nCH_2 = CH_2 \rightarrow$$

 $\rightarrow (-CH_2-CH_2-)n$

Робота в групах

Ми всі знаємо, що є поліетиленові пакети, які витримують вагу 3 та 15 кг. Які з них виготовлені при низькому тиску, а які при високому?

Скажіть чи можна використовувати посуд, виготовлений з поліетилену для нагрівання та кип'ятіння речовин?

Чи можна використовувати посуд, виготовлений з поліетилену, для нагрівання та кип'ятіння речовин?

Чому синтетичні полімери називають «безсмертними мешканцями» Землі?

Перегляд відео

Джерело: <u>youtu.be/mzU_r_xqpCY</u>

Робота в зошиті

На підставі матеріалу параграфа зробіть висновок про доцільність використання поліетилену для зберігання хімічно активних речовин, виготовлення посуду, у якому нагрівають або кип'ятять речовини.

Поліетилен має низьку хімічну активність, тому його використовують для зберігання хімічно активних речовин, наприклад, луги і кислоти зберігають у скляній або поліетиленовій тарі. Поліетилен легкоплавка і горюча речовина, тому його не використовують для виготовлення посуду, у якому нагрівають або кип'ятять речовини.

Робота в зошиті

Обчисліть середню молекулярну масу поліетилену зі ступенем полімеризації 5000.

$$M_r((-CH_2 - CH_2 -)_{5000}) = 5000 \cdot M_r(C_2H_4) = 5000 \cdot (2 \cdot A_r(C) + 4 \cdot A_r(H)) = 5000 \cdot (2 \cdot 12 + 4 \cdot 1) = 5000 \cdot 28 = 140000.$$

Робота в зошиті

Іноді поліетилен називають високомолекулярним насиченим вуглеводнем. Чим, на вашу думку, зумовлена така назва?

Поліетилен називають високомолекулярним насиченим вуглеводнем, бо на відміну від вихідного мономера етилену, який є ненасиченим вуглеводнем (має подвійний зв'язок), поліетин не містить подвійних зв'язків у своїй структурі.

Самостійна робота

І варіант завдання

Полімерний матеріал тефлон, що використовується для виготовлення посуду з антипригарними властивостями, виробляють із мономеру тетрафторетену. Складіть рівняння полімеризації тетрафторетену. Вкажіть мономер, полімер, ступінь полімеризації, полімерну ланку.

II варіант завдання

Скориставшись словами для довідки, підпишіть основні компоненти реакції полімеризації хлорвінілу: n CH₂= CHCl → (-CH₂ – CHCl-)n Слова для довідки: мономер, полімер, ступінь полімеризації, полімерна ланка.

Застосування поліетилену

	Застосування поліетилену	Властивості поліетилену
•	Для ізоляції проводів	Не проводить електричний струм
	Для виробництва плівок для	Не пропускає гази і воду, але
	теплиць, пакувальний матеріал	пропускають світло і
		ультрафіолетове проміння
10		.,
4	Виготовлення труб, деталей	Хімічна стійкість
	технічної апаратури	
	Виготовлення предметів	Легкість, не токсичність
	побутового призначення (фляги,	
	кухлі, пакети)	
	Виготовлення броні, корпусів для	Міцність
	човнів	
L		

BCIM pptx

Перегляд відео

Джерело: <u>youtu.be/o7047nFLv2o</u>

Вироби з поліетилену

Поліпропіленові басейни

Пластмаси : за і проти

Перевага пластмас	Недоліки пластмас
- легкі;	- низька
- хімічно стійкі;	термостійкість;
- низька	- горючість;
теплопровідність;	- крихкість;
- можливість	- пластмаси дуже
забарвлювання;	важко
- високі оптичні якості.	розкладаються під
	дією світла і бактерій.

Хімічний диктант

Процес послідовного сполучення молекул низькомолекулярної речовини з утворенням високомолекулярної називається

Полімеризація

Вихідна низькомолекулярна речовина - ...

Мономер

Високомолекулярна речовина, що утворюється в результаті реакції полімеризації -

Полімер

Фрагмент (група атомів), що багаторазово повторюється в молекулі полімеру - ...

Структурна ланка

Число, яке показує, скільки молекул мономеру вступило в реакцію - ...

Ступінь полімеризації

Поліетилен – один з найбільш корисних і важливих полімерів.

Завдяки своїм властивостям він набув широкого застосування в медицині, техніці, сільському господарстві, побуті.

Необхідно запобігати накопиченню полімерів, здійснювати їх переробку.

Створювати полімери, які можуть бути зруйновані мікроорганізмами.

BCIM pptx

Домашнє завдання

1. Підготувати проєкт: Сьогодення і майбутнє полімерів.