

Stochastic Processes

Stopping Times, Wald's Lemma, Strong Independence Property, Properties of Stopping Times

Karthik P. N.

Assistant Professor, Department of Al

Email: pnkarthik@ai.iith.ac.in

28 February 2025

Filtrations

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let \mathcal{T} be an ordered index set.

Filtrations

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let \mathcal{T} be an ordered index set.

Definition (Filtration)

Consider a collection of σ -algebras $\mathscr{G}_{\bullet} = \{\mathscr{G}_t : t \in \mathcal{T}\}$ such that $\mathscr{G}_t \subseteq \mathscr{F}$ for all t.

The above collection is called a filtration if

$$\mathscr{G}_s \subseteq \mathscr{G}_t \qquad \forall s \leq t.$$

Filtrations

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let \mathcal{T} be an ordered index set.

Definition (Filtration)

Consider a collection of σ -algebras $\mathscr{G}_{\bullet} = \{\mathscr{G}_t : t \in \mathcal{T}\}$ such that $\mathscr{G}_t \subseteq \mathscr{F}$ for all t. The above collection is called a filtration if

$$\mathscr{G}_s \subseteq \mathscr{G}_t \qquad \forall s \leq t.$$

Example:

Let $\{X_t : t \in \mathcal{T}\}$ be a stochastic process defined w.r.t. \mathscr{F} . Then,

$$\mathscr{G}_t = \sigma(X_s : s \leq t)$$

is called the natural filtration associated with the process $\{X_t : t \in \mathcal{T}\}$.

Stopping Time

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let \mathcal{T} be an ordered index set.

Fix a filtration $\mathscr{G}_{\bullet} = \{\mathscr{G}_t : t \in \mathcal{T}\}.$

Definition (Stopping Time)

A random variable τ is called a stopping time w.r.t. the filtration \mathscr{G}_{\bullet} if:

- $\mathbb{P}(\tau < +\infty) = 1$.
- For each $t \in \mathcal{T}$,

$$\{\tau \leq t\} \in \mathscr{G}_t.$$

Stopping Time

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let \mathcal{T} be an ordered index set.

Fix a filtration $\mathscr{G}_{\bullet} = \{\mathscr{G}_t : t \in \mathcal{T}\}.$

Definition (Stopping Time)

A random variable τ is called a stopping time w.r.t. the filtration \mathscr{G}_{\bullet} if:

- $\mathbb{P}(\tau < +\infty) = 1$.
- For each $t \in \mathcal{T}$,

$$\{\tau \leq t\} \in \mathscr{G}_t$$
.

If $G_t = \sigma(X_s : s \le t)$, then the question "is $\tau \le t$?" can be answered by simply looking at the process up to time t.

Stopping Time w.r.t. a Process

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let \mathcal{T} be an ordered index set.

Let $\{X_t : t \in \mathcal{T}\}$ be a process w.r.t. \mathscr{F} .

Definition (Stopping Time w.r.t. a Process)

A random variable τ is called a stopping time w.r.t. the process $\{X_t : t \in \mathcal{T}\}$ if:

- $\mathbb{P}(\tau < +\infty) = 1$.
- For each $t \in \mathcal{T}$.

$$\{\tau \leq t\} \in \sigma(X_s : s \leq t).$$

That is, the question "is $\tau \leq t$?" can be answered by simply looking at the process up to time t.

Examples

• Let $\{X_n : n \in \mathbb{N}\}$ be a process.

Fix a set $A \subseteq \mathbb{R}$.

Let τ_X^A be defined as

$$\tau_X^A := \inf\{n \in \mathbb{N} : X_n \in A\}.$$

Is τ_X^A a stopping time w.r.t. the process $\{X_n : n \in \mathbb{N}\}$?

Discrete Stopping Times

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Let $\{\mathscr{G}_n : n \in \mathbb{N}\}$ be a filtration.

Discrete Stopping Times

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{\mathscr{G}_n : n \in \mathbb{N}\}$ be a filtration.

Lemma (Discrete Stopping Times)

A discrete random variable τ is a stopping time w.r.t. $\{\mathscr{G}_n\}_{n=1}^{\infty}$ if and only if

$$\mathbb{P}(\tau < +\infty) = 1, \qquad \{\tau = n\} \in \mathscr{G}_n \quad \forall n \in \mathbb{N}.$$

$$\mathbb{P}(\tau < +\infty) = 1, \qquad \{\tau \le n\} \in \mathcal{G}_n \quad \forall n \in \mathbb{N}.$$

Assume $\mathbb{P}(\tau<+\infty)=1$.

• Suppose that $\{ au=k\}\in\mathscr{G}_k$ for all $k\in\mathbb{N}$

- Suppose that $\{ au=k\}\in\mathscr{G}_k$ for all $k\in\mathbb{N}$
 - We need to prove that $\{\tau \leq n\} \in \mathscr{G}_n$ for all $n \in \mathbb{N}$

- Suppose that $\{\tau=k\}\in\mathscr{G}_k$ for all $k\in\mathbb{N}$
 - We need to prove that $\{\tau \leq n\} \in \mathscr{G}_n$ for all $n \in \mathbb{N}$
 - Observe that for any $n \in \mathbb{N}$,

$$\{\tau \le n\} = \bigcup_{k=1}^n \{\tau = k\}$$

- Suppose that $\{ au=k\}\in\mathscr{G}_k$ for all $k\in\mathbb{N}$
 - We need to prove that $\{\tau \leq n\} \in \mathscr{G}_n$ for all $n \in \mathbb{N}$
 - Observe that for any $n \in \mathbb{N}$,

$$\{\tau \leq n\} = \bigcup_{k=1}^n \{\tau = k\}$$

$$- \ \{\tau = k\} \in \mathscr{G}_k \subset \mathscr{G}_n \quad \Longrightarrow \ \{\tau = k\} \in \mathscr{G}_n \text{ for all } k \in \{1, \dots, n\}$$

Assume $\mathbb{P}(\tau < +\infty) = 1$.

- Suppose that $\{ au=k\}\in\mathscr{G}_k$ for all $k\in\mathbb{N}$
 - We need to prove that $\{\tau \leq n\} \in \mathscr{G}_n$ for all $n \in \mathbb{N}$
 - Observe that for any $n \in \mathbb{N}$,

$$\{\tau \le n\} = \bigcup_{k=1}^n \{\tau = k\}$$

$$- \ \{\tau = k\} \in \mathscr{G}_k \subset \mathscr{G}_n \quad \Longrightarrow \ \{\tau = k\} \in \mathscr{G}_n \text{ for all } k \in \{1, \dots, n\}$$

• Suppose that $\{ au \leq k\} \in \mathscr{G}_k$ for all $k \in \mathbb{N}$

- Suppose that $\{ au=k\}\in\mathscr{G}_k$ for all $k\in\mathbb{N}$
 - We need to prove that $\{\tau \leq n\} \in \mathscr{G}_n$ for all $n \in \mathbb{N}$
 - Observe that for any $n \in \mathbb{N}$,

$$\{\tau \le n\} = \bigcup_{k=1}^n \{\tau = k\}$$

$$- \ \{\tau = k\} \in \mathscr{G}_k \subset \mathscr{G}_n \quad \Longrightarrow \ \{\tau = k\} \in \mathscr{G}_n \text{ for all } k \in \{1, \dots, n\}$$

- Suppose that $\{\tau \leq k\} \in \mathscr{G}_k$ for all $k \in \mathbb{N}$
 - We need to prove that $\{ au=n\}\in\mathscr{G}_n$ for every $n\in\mathbb{N}$

- Suppose that $\{ au=k\}\in\mathscr{G}_k$ for all $k\in\mathbb{N}$
 - We need to prove that $\{\tau \leq n\} \in \mathscr{G}_n$ for all $n \in \mathbb{N}$
 - Observe that for any $n \in \mathbb{N}$,

$$\{\tau \le n\} = \bigcup_{k=1}^n \{\tau = k\}$$

$$- \ \{\tau = k\} \in \mathscr{G}_k \subset \mathscr{G}_n \quad \Longrightarrow \ \{\tau = k\} \in \mathscr{G}_n \text{ for all } k \in \{1, \dots, n\}$$

- Suppose that $\{\tau \leq k\} \in \mathscr{G}_k$ for all $k \in \mathbb{N}$
 - We need to prove that $\{\tau = n\} \in \mathscr{G}_n$ for every $n \in \mathbb{N}$
 - Observe that

$$\{\tau=n\}=\{\tau\leq n\}\setminus\{\tau\leq n-1\}$$

- Suppose that $\{\tau=k\}\in\mathscr{G}_k$ for all $k\in\mathbb{N}$
 - We need to prove that $\{\tau \leq n\} \in \mathscr{G}_n$ for all $n \in \mathbb{N}$
 - Observe that for any $n \in \mathbb{N}$,

$$\{\tau \le n\} = \bigcup_{k=1}^n \{\tau = k\}$$

$$- \ \{\tau = k\} \in \mathscr{G}_k \subset \mathscr{G}_n \quad \Longrightarrow \ \{\tau = k\} \in \mathscr{G}_n \text{ for all } k \in \{1, \dots, n\}$$

- Suppose that $\{\tau \leq k\} \in \mathscr{G}_k$ for all $k \in \mathbb{N}$
 - We need to prove that $\{τ = n\}$ ∈ \mathscr{G}_n for every $n ∈ \mathbb{N}$
 - Observe that

$$\{\tau = n\} = \{\tau \le n\} \setminus \{\tau \le n - 1\}$$

$$- \{\tau = n-1\} \in \mathscr{G}_{n-1} \subset \mathscr{G}_n$$

Example

• Let $\{X_n\}_{n=1}^{\infty}$ be an \mathbb{N} -valued process.

Fix $y \in \mathbb{N}$.

Let $au_{\mathtt{y}}^{(0)}\coloneqq 0$, and

$$\tau_{y}^{(k)} = \inf\{n > \tau_{y}^{(k-1)} : X_{n} = y\}, \qquad k \in \mathbb{N}.$$

For each $k \in \mathbb{N}$, prove that $\tau_{\gamma}^{(k)}$ is a stopping time w.r.t. the process $\{X_n\}_{n=1}^{\infty}$.

Wald's Lemma

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Wald's Lemma

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Lemma (Wald's Lemma [Wal44, Wal45])

Let $\{X_n\}_{n=1}^{\infty}$ be an IID process w.r.t. \mathscr{F} , with $\mathbb{E}|X_1|<+\infty$.

For each $n \in \mathbb{N}$, let

$$S_n = \sum_{i=1}^n X_i.$$

If τ is a stopping time w.r.t. the process $\{X_n\}_{n=1}^{\infty}$, with $\mathbb{E}|\tau|<+n\infty$, then

$$\mathbb{E}[S_{\tau}] = \mathbb{E}\left[\sum_{i=1}^{\tau} X_i\right] = \mathbb{E}[\tau] \cdot \mathbb{E}[X_1].$$

Example

• Suppose $X_1, X_2, \cdots \stackrel{\text{i.i.d.}}{\sim}$ Geometric (0.5). For each $n \in \mathbb{N}$, let $S_n = \sum_{i=1}^n X_i$.

$$au \coloneqq \inf \Big\{ n \geq 1 : \mathcal{S}_n = 33 \Big\}.$$

Determine $\mathbb{E}[\tau]$.

References

On cumulative sums of random variables.

The Annals of Mathematical Statistics, 15(3):283-296, 1944.

Abraham Wald.

Some generalizations of the theory of cumulative sums of random variables.

The Annals of Mathematical Statistics, 16(3):287–293, 1945.