Improving the Search Algorithm for the Best Differential/Linear Trails of Bit-Permutation-Based Ciphers Supplementary Information

Jingsui Weng^{1,2}, Wentao Zhang^{1,2(⊠)}, Ting Peng^{1,2}, and Tianyou Ding^{1,2}

¹ Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China {wengjingsui, zhangwentao[™], pengting, dingtianyou}@iie.ac.cn
² School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

1 Introduction

This paper provides supplementary information specific to the paper "Improving the Search Algorithm for the Best Differential/Linear Trails of Bit-Permutation-Based Ciphers" to make our work more accessible to the reader.

Organization. The paper is organized as follows. In Section 2, we describe in detail the framework of our improved algorithm. In Section 3, we present the merging weights strategy we employ to prevent numerical overflow, the experimental results of searching for clustering of given differential distinguishers for KNOT-256, KNOT-384, and KNOT-512, as well as the results of searching for clustering of a 31-round linear distinguisher for PRESENT. Section 4 presents detailed results of our experiments for seven bit-permutation-based ciphers: RECTANGLE, KNOT, PRESENT, GIFT, LBlock, TWINE and WARP.

2 Algorithms

2.1 Related Equations

For ease of understanding, we present the equations involved in the pseudocode, which are explained in detail in the paper *Improving the Search Algorithm for the Best Differential/Linear Trails of Bit-Permutation-Based Ciphers*.

The whole search space of all possible r-round differential trails for an r-round bit-permutation-based SPN cipher is divided into the following subsets:

$$\left(\bigcup_{N_A,v,\Delta} \mathcal{D}_{r,N_A,v,\Delta}\right) \bigcup \mathcal{D}_{r,3,0,0}. \tag{1}$$

Let $LB_{fw}[v, N_A, \Delta]$ be equal to

$$\min_{\Delta'}(w(\Delta \xrightarrow{SL} \Delta') + FWLB[v - 1, N_A, LT(\Delta')]). \tag{2}$$

Initialize the $BWLB[r_{bw}, N_A+1, LT^{-1}(\Delta)]$. When $r_{bw} = 1$, $BWLB[r_{bw}, N_A+1, LT^{-1}(\Delta)]$ is evaluated by

$$\begin{cases} w_{bw_{min}}(LT^{-1}(\Delta)) & if \ CN_A(LT^{-1}(\Delta)) \ge N_A + 1\\ infinite & otherwise \end{cases}$$
 (3)

When $r_{bw} \geq 2$, $BWLB[r_{bw}, N_A + 1, LT^{-1}(\Delta)]$ is initialized by

$$\max_{1 \le i < r_{bw}} (BWLB[r_{bw} - i, N_A + 1, LT^{-1}(\Delta)] + LB[i, N_A + 1, 0, 0]) \ (r_{bw} \ge 2). \ (4)$$

Initialize the $FWLB[r_{fw}, N_A, LT(\Delta)]$. When $r_{fw} = 1$, $FWLB[r_{fw}, N_A, LT(\Delta)]$ is evaluated by

$$\begin{cases} w_{fw_{min}}(LT(\Delta)) & if \ CN_A(LT(\Delta)) \ge N_A \\ infinite & otherwise \end{cases}$$
 (5)

When $r_{fw} \geq 2$, $FWLB[r_{fw}, N_A, LT(\Delta)]$ is initialized by

$$\max_{1 \le i < r_{fw}} (FWLB[i, N_A, LT(\Delta)] + LB[r_{fw} - i, N_A, 0, 0]) \ (r_{fw} \ge 2). \tag{6}$$

Initialize the $LB[r, N_A, v, \Delta]$. When r = 1, $LB[r, N_A, 0, 0]$ $(N_A \in \{1, 2, 3\})$ is estimated by

$$sw_{min} \times N_A$$
 (7)

When $r \geq 2$ and $N_A \in \{1, 2\}$, we initialize $LB[r, N_A, v, \Delta]$ using Equation 8:

$$w_{bw_{min}}(\Delta) + FWLB[r-1, N_A, LT(\Delta)], \tag{8}$$

or Equation 9:

$$BWLB[v-1, N_A+1, LT^{-1}(\Delta)] + LB_{fw}[r-v+1, N_A, \Delta].$$
 (9)

We traverse v and Δ to initialize $LB[r, N_A, 0, 0]$ $(N_A \in \{1, 2\})$:

$$\min(\min_{v,\Delta}(LB[r, N_A, v, \Delta]), LB[r, N'_A, 0, 0]) \ (N_A < N'_A \le 3). \tag{10}$$

When $r \geq 2$ and $N_A = 3$, $LB[r, N_A, 0, 0]$ is initialized by

$$\max_{1 \le i \le r} (LB[i, 3, 0, 0] + LB[r - i, 3, 0, 0]). \tag{11}$$

Update the array BWLB. After completing the backward direction of the search of the subset $\mathcal{D}_{r,N_A,v,\Delta}$, we update $BWLB[v-1,N_A+1,LT^{-1}(\Delta)]$ as

$$Bc_{bw} - LB_{fw}[r - v + 1, N_A, \Delta], \tag{12}$$

If $BWLB[v-1, N_A+1, LT^{-1}(\Delta)]$ is updated, it is necessary to update $BWLB[i, N_A+1, LT^{-1}(\Delta)]$ (v-1 < i < r) as follows:

$$\max_{v-1 \le k \le i} (BWLB[k, N_A + 1, LT^{-1}(\Delta)] + LB[i - k, N_A + 1, 0, 0])$$
 (13)

Update the array FWLB. Upon completion of the forward direction of the search, we update $FWLB[r-v, N_A, LT(\Delta')]$ as

$$Bc_r - BWLB[v-1, N_A+1, LT^{-1}(\Delta)] - w(\Delta \xrightarrow{SL} \Delta').$$
 (14)

When $FWLB[r - v, N_A, LT(\Delta')]$ is updated, $FWLB[i, N_A, LT(\Delta')]$ (r - v < i < r) is updated as

$$\max_{r-v \le k \le i} (FWLB[k, N_A, LT(\Delta')] + LB[i-k, N_A, 0, 0])$$
 (15)

2.2 The Framework of Algorithm

The complete search framework of our algorithm is described in Algorithm 1. Given a bit-permutation-based cipher, a number of rounds R, and the maximum number of rounds r_{pre} involving the pre-search phase, Algorithm 1 searches for the best r-round differential trail, where $r \in \{1, 2, ..., R\}$. The best 1-round trail is generated using the minimum non-zero weight of the S-box sw_{min} , and the search starts with r=2. At the beginning of the search for r rounds, the conditional best r-round trail is generated by extending the best (r-1)-round trail forward and backward respectively, and the initial value of B_r is set to its weight. Then the variables in array BWLB, FWLB and LB are initialized, followed by searching all subsets divided by Equation 1. During the search, we dynamically update the lower bounds, the candidate for the best r-round trail, and Bc_r . Upon completion, the best r-round trail and weight are obtained. If $r \leq r_{pre}$, additional searches are conducted for subsets $\mathcal{D}_{r,N_A,0,0}$ $(N_A \in \{2,3\})$ whose tightest lower bounds were not found in the previous search. This allows us to determine the exact value of all $LB[r, N_A, 0, 0]$ $(N_A \in \{2, 3\})$. In the following, we provide detailed explanations for each procedure in Algorithm 1.

Procedure InitLBArray(). This procedure is used to initialize the array used to aid the search process. We first initialize $BWLB[r-1,N_A+1,LT^{-1}(\Delta)]$, $FWLB[r-1,N_A,LT(\Delta)]$ and $LB[r,N_A,v,\Delta]$ $(1 \le v \le r)$, where $N_A \in \{1,2\}$ and Δ belongs to the set of all possible differences that have N_A active S-boxes. Subsequently, we compute the initial value of $LB[r,N_A,0,0]$ $(N_A \in \{1,2,3\})$. In the case of r=2, estimation of $LB[1,N_A,0,0]$ $(N_A \in \{1,2,3\})$ is conducted. The framework of the procedure is described in Algorithm 2.

Procedure SearchSubset12(). Given r and N_A , this procedure is employed to search the subsets $\mathcal{D}_{r,N_A,v,\Delta}$, where $v \in \{1,2,...,r\}$ and Δ belongs to the set of all possible differences that contain N_A active S-boxes. The search is conducted in ascending order of v. Before searching the subset $\mathcal{D}_{r,N_A,v,\Delta}$, we use the lower bound $LB[r,N_A,v,\Delta]$ to determine whether there is a better candidate of the best r-round trail in the subset. If not, we terminate the search of it and search the next one; otherwise, a detailed search is performed on the subset. It should be noted that upon completion of the search of a direction or a whole, the corresponding variable must to be updated in time. The framework of SearchSubset12() is described in Algorithm 6.

J. Weng et al.

4

Procedure SearchSubset3(). This procedure is used to search the subset $\mathcal{D}_{r,3,0,0}$. Before searching, the lower bound LB[r,3,0,0] is used to determined whether there is a better candidate of the best r-round trail in the subset. If so, perform a detailed search for the subset. The framework of the procedure is described in Algorithm 7. For most bit-permutation-based SPN ciphers, the best trail are likely to have exactly 1 or 2 active S-boxes at a certain round. Hence, the value of LB[r,3,0,0] is usually greater than or equal to Bc_r , and the search is usually terminated.

Procedure PreSearch(). This procedure aims to search the subsets $\mathcal{D}_{r,N_A,0,0}$ ($N_A \in \{2,3\}$) that did not get the actual lower bound in previous searches. According to the constraints of subset, we initialize Bc_r with the corresponding approach, and use the appropriate procedure to search for the lower bounds of minimum weight of trail within it. The framework of the procedure is described in Algorithm 8, where the value of V_{add} is determined by experience.

Algorithm 1 Our improved algorithm

Input: An R-round bit-permutation-based cipher; The maximum number of rounds r_{pre} involving the pre-search;

Output: Best differential trails from 2 to R rounds

```
1: Generate a best 1-round trail that satisfies w(\Delta x_1 \xrightarrow{SL} \Delta y_1) = sw_{min} and set
    B_1 \leftarrow sw_{min}
 2: for r \leftarrow 2 to R do
 3:
        Generate a conditional best r-round differential trail and set Bc_r as its weight
 4:
        INITLBARRAY(r)
        for N_A \leftarrow 1 to 2 do
 5:
            SEARCHSUBSET12(r, N_A)
 6:
 7:
        end for
        SEARCHSUBSET3(r)
 8:
        B_r \leftarrow Bc_r
 9:
        if r \leq r_{pre} then
10:
            PreSearch(r)
11:
12:
        end if
13:
        for N_A \leftarrow 2 to 1 do
14:
            LB[r, N_A, 0, 0] \leftarrow the result of Equation 10
15:
        end for
16: end for
```

Algorithm 2 Procedure InitLBArray()

```
1: procedure INITLBARRAY(r)
 2:
        if r==2 then
             for N_A \leftarrow 1 to 3 do
 3:
                 LB[1, N_A, 0, 0] \leftarrow \text{the result of Equation 7}
 4:
 5:
 6:
        end if
 7:
        LB[r, 3, 0, 0] \leftarrow the result of Equation 11
8:
        for N_A \leftarrow 2 to 1 do
             for all \Delta \leftarrow difference that has N_A active S-boxes do
9:
10:
                 BWLB[r-1, N_A+1, LT^{-1}(\Delta)] \leftarrow \text{the result of Equation 3 or 4}
                 FWLB[r-1, N_A, LT(\Delta)] \leftarrow \text{the result of Equation 5 or 6}
11:
12:
                 for v \leftarrow 1 to r do
13:
                      LB[r, N_A, v, \Delta] \leftarrow \text{the result of Equation 9 or 8}
                 end for
14:
15:
             end for
             LB[r, N_A, 0, 0] \leftarrow \text{the result of Equation } 10
16:
         end for
17:
18: end procedure
```

Algorithm 3 Procedure FW-Round-(i)

```
1: procedure FW-Round-(i)
 2:
           \Delta x_i \leftarrow LT(\Delta y_{i-1})
 3:
           if i == r then
                w_r \leftarrow w_{fw_{min}}(\Delta x_r), \ w_{sum} \leftarrow w_b + \sum_{k=v}^r w_k
 4:
                if w_{sum} \leq Bc_r then
 5:
 6:
                      Bc_r \leftarrow w_{sum}
 7:
                end if
 8:
           else
                for all candidate of \Delta y_i do
 9:
                      w<sub>i</sub> \leftarrow w(\Delta x_i \xrightarrow{SL} \Delta y_i)

w_{sum} \leftarrow w_b + \sum_{k=v}^{i} w_k + LB[r-i, N_A, 0, 0]

if w_{sum} \leq Bc_r and CN_A(LT(\Delta y_i)) \geq N_A then
10:
11:
12:
13:
                            FW-Round-(i+1)
                      end if
14:
                 end for
15:
16:
           end if
           return to the upper procedure
17:
18: end procedure
```

Algorithm 4 Procedure BW-Round-(i)

```
1: procedure BW-Round-(i)
           \Delta y_i \leftarrow LT^{-1}(\Delta x_{i+1})
 2:
          \mathbf{if}\ i == 1\ \mathbf{then}
 3:
                w_1 \leftarrow w_{bw_{min}}(\Delta y_1), \ w_{sum} \leftarrow \sum_{k=1}^{v-1} w_k + LB_{fw}[r-v+1, N_A, \Delta]
 4:
                if w_{sum} \leq Bc_{bw} then
 5:
 6:
                     Bc_{bw} \leftarrow w_{sum}
 7:
                end if
 8:
          else
 9:
                for all candidate of \Delta x_i do
                     w_i \leftarrow w(\Delta y_i \xrightarrow{SL^{-1}} \Delta x_i)
10:
                     w_{sum} \leftarrow LB[i-1, N_A+1, 0, 0] + \sum_{k=i}^{v-1} w_k + LB_{fw}[r-v+1, N_A, \Delta]
if w_{sum} \leq Bc_{bw} and CN_A(LT^{-1}(\Delta x_i)) \geq N_A + 1 then
11:
12:
13:
                           BW-Round-(i-1)
                      end if
14:
                end for
15:
16:
           end if
           return to the upper procedure
17:
18: end procedure
```

Algorithm 5 Procedure UpdateBWArray() and UpdateFWArray()

```
1: procedure UPDATEBWARRAY(v, N_A, \Delta)
 2:
        BW[v-1, N_A+1, LT^{-1}(\Delta)] \leftarrow \text{the result of Equation } 12
 3:
        for i \leftarrow v to r-1 do
 4:
            BW[i, N_A + 1, LT^{-1}(\Delta)] \leftarrow \text{the result of Equation 13}
        end for
 5:
 6: end procedure
 7: procedure UPDATEFWARRAY(v, N_A, \Delta)
        FW[r-v, N_A, LT(\Delta)] \leftarrow \text{the result of Equation 14}
 8:
        for i \leftarrow r - v + 1 to r - 1 do
9:
             FW[i, N_A, LT(\Delta)] \leftarrow \text{the result of Equation 15}
10:
        end for
11:
12: end procedure
```

Algorithm 6 Procedure SearchSubset12()

```
1: procedure SearchSubset12(r, N_A)
 2:
        for all \Delta \leftarrow difference that have N_A active S-boxes do
             if LB[r, N_A, 1, \Delta] \leq Bc_r then
 3:
                 \Delta y_1 \leftarrow \Delta, \ w_1 \leftarrow w_{bw_{min}}(\Delta)
 4:
                 FW-Round-(2)
 5:
 6:
                  UPDATEFWARRAY(1, N_A, \Delta)
 7:
                 LB[r, N_A, 1, \Delta] \leftarrow Bc_r
 8:
             end if
9:
        end for
10:
         for v \leftarrow 2 to r do
             for all \Delta \leftarrow difference that have N_A active S-boxes do
11:
12:
                  if LB[r, N_A, v, \Delta] > Bc_r then continue
13:
14:
                 Bc_{bw} \leftarrow Bc_r, \ \Delta x_v \leftarrow \Delta
                 LB_{fw}[r-v+1,N_A,\Delta] \leftarrow \text{the result of Equation 2}
15:
                  BW-Round-(v-1)
16:
                 UPDATEBWARRAY(v, N_A, \Delta)
17:
                  if find out a best trail for the first (v-1) rounds then
18:
19:
                      w_b \leftarrow Bc_{bw} - LB_{fw}[r - v + 1, N_A, \Delta]
20:
                      if v < r then
                          for all candidate of \Delta' do
21:
                               \Delta y_v \leftarrow \Delta', \ w_v \leftarrow w(\Delta x_v \xrightarrow{SL} \Delta y_v)
22:
23:
                               w_{sum} \leftarrow w_b + w_v + FWLB[r - v, N_A, LT(\Delta')]
24:
                              if w_{sum} \leq Bc_r then
25:
                                   FW-Round-(v+1)
26:
                                   UPDATEFWARRAY(v, N_A, \Delta')
27:
                              end if
28:
                          end for
29:
30:
                          w_r \leftarrow w_{fw_{min}}(\Delta), Bc_r \leftarrow w_b + w_r
31:
                      end if
                 end if
32:
33:
                 LB[r, N_A, v, \Delta] \leftarrow Bc_r
34:
             end for
35:
         end for
36:
         return to the upper procedure
37: end procedure
```

Algorithm 7 Procedure SearchSubset3()

```
1: procedure SearchSubset3(r)
 2:
        N_A \leftarrow 3, \ v \leftarrow 1, \ w_b \leftarrow 0
        if LB[r, N_A, 0, 0] \leq Bc_r then
 3:
            for all candidate of \Delta y_1 do
 4:
 5:
                 w_1 \leftarrow w_{bw_{min}}(\Delta y_1)
                 if w_1 + LB[r-1, N_A, 0, 0] \leq Bc_r and CN_A(LT(\Delta y_1)) \geq N_A then
 6:
 7:
                     FW-Round-(2)
 8:
                 end if
9:
            end for
10:
             LB[r, N_A, 0, 0] \leftarrow Bc_r
11:
12:
         return to the upper procedure
13: end procedure
```

Algorithm 8 Procedure PreSearch()

```
1: procedure PreSearch(r)
        for each subset \mathcal{D}_{r,N_A,0,0} (N_A \in \{2,3\}) that did not get the actual lower bound
    do
 3:
           if N_A == 3 then
 4:
                while True do
                   SearchSubset3(r)
 5:
 6:
                   if find out a best trail within the subset \mathcal{D}_{r,3,0,0} then break
 7:
                   end if
 8:
                   Bc_r \leftarrow Bc_r + V_{add}
 9:
               end while
10:
            else
               Generate the conditional best r-round differential trail within \mathcal{D}_{r,N_A,0,0}
11:
12:
               Bc_r \leftarrow the weight of the conditional trail
                SEARCHSUBSET12(r, N_A)
13:
            end if
14:
15:
        end for
16: end procedure
```

3 Cluster Search for a Given Distinguisher

Merging Weights Strategy. To mitigate the problem of numerical overflow caused by an excessive number of low-weight trails, we propose *merging the weights* during the search process. For example, if two differential trails are identified with weight w, then by merging their weights, it suffices to increment the count corresponding to weight w-1 in the stored information, rather than increasing the count for weight w by two.

Cluster Search for Differential Distinguishers of KNOT Permutation.

We performed cluster searches applying the *memoization* strategy and the *merging weights* strategy for the best trails found for KNOT-256, KNOT-384, and KNOT-512:

1. The 52-round differential distinguisher of KNOT-256:

 \rightarrow_{52}

2. The 76-round differential distinguisher of KNOT-384:

 \rightarrow_{76}

3. The 100-round differential distinguisher of KNOT-512:

 \rightarrow_{100}

In Table 1, $w_{cluster1}$ and $t_{cluster1}$ represent the cluster weight and search time obtained by the memoization strategy, while $w_{cluster2}$ and $t_{cluster2}$ represent the cluster weight and search time obtained by the memoization strategy and the merging weights strategy. The cluster search using only the memoization strategy for KNOT-512 resulted in numerical overflow, making it impossible to obtain a cluster weight. The merging weights strategy allows for consideration of trails exceeding the upper bound of weight during the cluster search. Consequently, although the search time increases with the merging weights strategy, we achieve more accurate cluster weights for KNOT-256, KNOT-384 and KNOT-512.

14010	. т. цлр	CITIICITO	ai results of	one craster	scarcines for	MINOT.
Ciphers	r	B_r	$w_{cluster1}$	$t_{cluster1}$	$w_{cluster2}$	$t_{cluster2}$
KNOT-256	52	274	254.202	17.912s	253.806	73.764s
KNOT-384	76	402	368.248	36.575s	366.248	$636.037\mathrm{s}$
KNOT-512	100	530	_	_	479.569	917.042s

Table 1: Experimental results of the cluster searches for KNOT

Cluster Search for a Linear Distinguisher of PRESENT. We conducted a cluster search for the 31-round linear distinguisher of PRESENT proposed in the paper "Improving the Search Algorithm for the Best Differential/Linear Trails of Bit-Permutation-Based Ciphers":

Given the relatively fast cluster search speed for the linear distinguisher, we adopted the *merging weights* strategy to improve the accuracy of the search result. As a result, the weight of the distinguisher was successfully reduced from 120 to 82.01. The experimental results indicate that PRESENT exhibits a strong clustering effect in linear cryptanalysis.

4 Experimental Results

We apply our improved algorithm to seven bit-permutation-based symmetric-key primitives: RECTANGLE, KNOT, GIFT, LBlock, TWINE and WARP, where three versions KNOT-256, KNOT-384, KNOT-512 of KNOT as well as two versions GIFT-64, GIFT-128 of GIFT are considered. The experimental results are presented in Table 2-11, where r indicates the rounds, B_r denotes the weight of the best r-round trail, and t denote the time of searching the best trail. Our experiments were performed on a PC (Intel(R) Core(TM) i9-9900 CPU @ 3.10GHz), and we used one core for each case.

It is worth noting that, due to the large state size of WARP, which has a state size of 128 bits, the search remains time-consuming even after using the number of active S-boxes to estimate the weight lower bound and enhance pruning efficiency. Consider the fact that the best r-round weight for WARP is equal to the minimum number of active S-boxes for r rounds multiplied by the minimum non-zero weight of the S-box sw_{min} . If the lower bound of the given subset is less than Bc_r , we first search for truncated trails within the subset where the product of the number of active S-boxes and sw_{min} is less than Bc_r . Then, we focus our practical searches on these truncated trails, which are instantiated with actual values to compute their weights and determine the best one. We update the candidate of the best r-round trail and Bc_r only when the weight of the best trail obtained through truncated trails is less than Bc_r .

Constraints included limiting the maximum number of active S-boxes per round to no more than 3 and setting the upper bound UB_c to $B_r + 25$.

Table 2: Experimental results of RECTANGLE

	Differential property														
	* * *														
r	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
1															
2															
3															
4	4 10 0.001s 9 36 <0.001s 14 61 0.015s 19 86 0.008s 24 111 0.008s														
5	14	$< 0.001 \mathrm{s}$	10	41	0.002s	15	66	0.012s	20	91	0.007s	25	116	0.008s	
	5 14 <0.001s 10 41 0.002s 15 66 0.012s 20 91 0.007s 25 116 0.008s Pre-search time: 0.005s Search time: 0.134s Total time: 0.139s														
	Linear property														
r	B_r	t	r	B_r	t	\lim_{r}	ear pr B_r	roperty	r	B_r	t	r	B_r	t	
r	B_r	t	r 6	B_r 20	$t < 0.001 \mathrm{s}$				r 16	B_r 80	t $0.387s$	r 21	B_r 108	t 0.198s	
<u> </u>		t <0.001s				r	B_r	t							
1	2			20	< 0.001 s	11	B_r 50	t 0.004s	16	80	0.387s	21	108	0.198s	
1 2	2 4	<0.001s	6 7	20 26	<0.001s <0.001s	r 11 12	$ \begin{array}{c} B_r \\ 50 \\ 56 \end{array} $	t 0.004s 0.129s	16 17	80 84	0.387s 0.703s	21 22	108 114	0.198s 0.270s	
1 2 3	2 4 8	<0.001s 0.001s	6 7 8	20 26 32	<0.001s <0.001s 0.002s	11 12 13	B_r 50 56 62	t 0.004s 0.129s 0.083s	16 17 18	80 84 90	0.387s 0.703s 0.002s	21 22 23	108 114 120	0.198s 0.270s 1.044s	

Table 3: Experimental results of ${\tt KNOT-256}$

	Differential property													
r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t
1	2		12	60	0.214s	23	119	0.014s	34	178	0.015s	45	236	0.010s
2	4	< 0.001 s	13	66	0.461s	24	124	0.011s	35	183	0.018s	46	242	0.019s
3	7	0.001s	14	71	0.475s	25	130	0.014s	36	188	0.016s	47	247	0.015s
4	10	0.001s	15	76	0.314s	26	135	0.013s	37	194	0.021s	48	252	0.011s
5	14	0.001s	16	82	0.185s	27	140	0.010s	38	199	0.019s	49	258	0.017s
6	18	0.001s	17	87	0.059s	28	146	0.014s	39	204	0.013s	50	263	0.011s
7	25	0.001s	18	92	0.015s	29	151	0.020s	40	210	0.019s	51	268	0.008s
8	32	0.001s	19	98	0.014s	30	156	0.009s	41	215	0.014s	52	274	0.014s
9	40	0.004s	20	103	0.013s	31	162	0.015s	42	220	0.013s			
10	49	0.048s	21	108	0.010s	32	167	0.015s	43	226	0.015s			
11	55	0.138s	22	114	0.016s	33	172	0.009s	44	231	0.013s			
		Pre-sea	arch	time:	0.058s	Sea	arch ti	me: 2.39	7s	Tota	al time: 2	2.455s	3	
						Lin	ear pr	operty						
r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t
1	2		12	58	0.066s	23	124	0.352s	34	190	0.604s	45	256	0.954s
2	4	0.001s	13	64	0.126s	24	130	0.377s	35	196	0.630s	46	262	0.970s
3	8	0.002s	14	70	0.182s	25	136	0.398s	36	202	0.659s	47	268	1.004s
4	12	0.001s	15	76	0.232s	26	142	0.426s	37	208	0.703s	48	274	1.038s
5	16	0.002s	16	82	0.216s	27	148	0.441s	38	214	0.722s	49	280	1.074s
6	20	0.002s	17	88	0.229s	28	154	0.477s	39	220	0.782s	50	286	1.102s
7	26	0.001s	18	94	0.246s	29	160	0.514s	40	226	0.789s	51	292	1.125s
8	34	0.002s	19	100	0.271s	30	166	0.510s	41	232	0.826s	52	298	1.158s
9	40	0.006s	20	106	0.298s	31	172	0.532s	42	238	0.840s			
10	46	0.013s	21	112	0.322s	32	178	0.569s	43	244	0.886s			
11	52	0.028s	22	118	0.332s	33	184	0.574s	44	250	0.909s			
		Pre-sear	rch t	ime: 0	.518s	Sear	ch tin	ne: 24.52	3s	Tota	al time: 2	25.04	ls	

Table 4: Experimental results of KNOT-384

					Ε	Differ	$_{ m ential}$	property						
r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t
1	2		17	87	0.055s	33	172	0.009s	49	258	0.014s	65	343	0.011s
2	4	$< 0.001 \mathrm{s}$	18	92	0.013s	34	178	0.014s	50	263	0.011s	66	348	0.009s
3	7	0.002s	19	98	0.015s	35	183	0.011s	51	268	0.009s	67	354	0.014s
4	10	0.002s	20	103	0.011s	36	188	0.010s	52	274	0.014s	68	359	0.010s
5	14	0.002s	21	108	0.009s	37	194	0.015s	53	279	0.011s	69	364	0.009s
6	18	0.001s	22	114	0.014s	38	199	0.010s	54	284	0.009s	70	370	0.013s
7	25	0.002s	23	119	0.010s	39	204	0.009s	55	290	0.014s	71	375	0.011s
8	32	0.002s	24	124	0.008s	40	210	0.014s	56	295	0.013s	72	380	0.009s
9	40	0.006s	25	130	0.014s	41	215	0.012s	57	300	0.009s	73	386	0.013s
10	49	0.057s	26	135	0.010s	42	220	0.009s	58	306	0.014s	74	391	0.011s
11	55	0.166s	27	140	0.008s	43	226	0.015s	59	311	0.011s	75	396	0.009s
12	60	0.235s	28	146	0.014s	44	231	0.011s	60	316	0.009s	76	402	0.015s
13	66	0.510s	29	151	0.011s	45	236	0.009s	61	322	0.015s			
14	71	0.474s	30	156	0.008s	46	242	0.016s	62	327	0.011s			
15	76	0.322s	31	162	0.014s	47	247	0.011s	63	332	0.009s			
16	82	0.206s	32	167	0.010s	48	252	0.009s	64	338	0.014s			
		Pre-se	arch	time:	0.030s	Sea	arch ti	me: 2.71	6s	Tota	al time: 2	2.746s	3	
						Lin	ear pr	operty						
r	B_r	t	r	B_r	t	Line	ear pr B_r	operty t	r	B_r	t	r	B_r	t
r 1	2	t	r 17	B_r 88		_			r 49	B_r 280	t 1.333s	r 65	376	t 1.919s
1 2	2 4	t <0.001s			t	r	B_r	t					376 382	
1	2		17	88	t 0.310s	7 33	B_r 184	t 0.732s	49	280	1.333s	65	376 382 388	1.919s 1.978s 2.101s
1 2	2 4	<0.001s	17 18	88 94	t 0.310s 0.322s	7 33 34	$\frac{B_r}{184}$	t 0.732s 0.777s	49 50	280 286	1.333s 1.372s	65 66	376 382 388 394	1.919s 1.978s 2.101s 2.138s
1 2 3	2 4 8	<0.001s 0.002s	17 18 19	88 94 100	t 0.310s 0.322s 0.348s	33 34 35	B_r 184 190 196	t 0.732s 0.777s 0.799s	49 50 51	280 286 292	1.333s 1.372s 1.402s	65 66 67	376 382 388	1.919s 1.978s 2.101s
1 2 3 4	2 4 8 12	<0.001s 0.002s 0.002s	17 18 19 20	88 94 100 106	t 0.310s 0.322s 0.348s 0.396s	33 34 35 36	B_r 184 190 196 202	t 0.732s 0.777s 0.799s 0.852s	49 50 51 52	280 286 292 298	1.333s 1.372s 1.402s 1.450s	65 66 67 68	376 382 388 394	1.919s 1.978s 2.101s 2.138s
1 2 3 4 5	2 4 8 12 16	<0.001s 0.002s 0.002s 0.002s	17 18 19 20 21	88 94 100 106 112	t 0.310s 0.322s 0.348s 0.396s 0.421s	7 33 34 35 36 37	B_r 184 190 196 202 208	t 0.732s 0.777s 0.799s 0.852s 0.878s	49 50 51 52 53	280 286 292 298 304	1.333s 1.372s 1.402s 1.450s 1.482s	65 66 67 68 69	376 382 388 394 400	1.919s 1.978s 2.101s 2.138s 2.067s
1 2 3 4 5 6	2 4 8 12 16 20	<0.001s 0.002s 0.002s 0.002s 0.002s	17 18 19 20 21 22	88 94 100 106 112 118	t 0.310s 0.322s 0.348s 0.396s 0.421s 0.437s	7 33 34 35 36 37 38	B_r 184 190 196 202 208 214	t 0.732s 0.777s 0.799s 0.852s 0.878s 0.927s	49 50 51 52 53 54	280 286 292 298 304 310	1.333s 1.372s 1.402s 1.450s 1.482s 1.523s	65 66 67 68 69 70	376 382 388 394 400 406	1.919s 1.978s 2.101s 2.138s 2.067s 2.173s
1 2 3 4 5 6 7	2 4 8 12 16 20 26	<0.001s 0.002s 0.002s 0.002s 0.002s 0.002s	17 18 19 20 21 22 23	88 94 100 106 112 118 124	t 0.310s 0.322s 0.348s 0.396s 0.421s 0.437s 0.486s	33 34 35 36 37 38 39	B_r 184 190 196 202 208 214 220	t 0.732s 0.777s 0.799s 0.852s 0.878s 0.927s 0.957s	49 50 51 52 53 54 55	280 286 292 298 304 310 316	1.333s 1.372s 1.402s 1.450s 1.482s 1.523s 1.569s	65 66 67 68 69 70 71	376 382 388 394 400 406 412	1.919s 1.978s 2.101s 2.138s 2.067s 2.173s 2.190s
1 2 3 4 5 6 7 8	2 4 8 12 16 20 26 34 40 46	<0.001s 0.002s 0.002s 0.002s 0.002s 0.002s 0.003s	17 18 19 20 21 22 23 24 25 26	88 94 100 106 112 118 124 130	t 0.310s 0.322s 0.348s 0.396s 0.421s 0.437s 0.486s 0.488s	33 34 35 36 37 38 39 40	B_r 184 190 196 202 208 214 220 226 232 238	t 0.732s 0.777s 0.799s 0.852s 0.878s 0.927s 0.957s 0.987s	49 50 51 52 53 54 55 56	280 286 292 298 304 310 316 322	1.333s 1.372s 1.402s 1.450s 1.482s 1.523s 1.569s 1.630s	65 66 67 68 69 70 71 72 73 74	376 382 388 394 400 406 412 418 424 430	1.919s 1.978s 2.101s 2.138s 2.067s 2.173s 2.190s 2.227s 2.262s 2.274s
1 2 3 4 5 6 7 8	2 4 8 12 16 20 26 34 40	<0.001s 0.002s 0.002s 0.002s 0.002s 0.002s 0.002s 0.003s 0.006s	17 18 19 20 21 22 23 24 25	88 94 100 106 112 118 124 130	t 0.310s 0.322s 0.348s 0.396s 0.421s 0.437s 0.486s 0.488s 0.512s	33 34 35 36 37 38 39 40 41	B_r 184 190 196 202 208 214 220 226 232	t 0.732s 0.777s 0.799s 0.852s 0.878s 0.927s 0.957s 0.987s 1.068s	49 50 51 52 53 54 55 56	280 286 292 298 304 310 316 322 328	1.333s 1.372s 1.402s 1.450s 1.482s 1.523s 1.569s 1.630s 1.661s	65 66 67 68 69 70 71 72 73	376 382 388 394 400 406 412 418 424	1.919s 1.978s 2.101s 2.138s 2.067s 2.173s 2.190s 2.227s 2.262s
1 2 3 4 5 6 7 8 9 10 11 12	2 4 8 12 16 20 26 34 40 46	<0.001s 0.002s 0.002s 0.002s 0.002s 0.002s 0.003s 0.006s 0.014s	17 18 19 20 21 22 23 24 25 26	88 94 100 106 112 118 124 130 136 142	$t\\0.310s\\0.322s\\0.348s\\0.396s\\0.421s\\0.437s\\0.486s\\0.488s\\0.512s\\0.538s$	33 34 35 36 37 38 39 40 41 42	B_r 184 190 196 202 208 214 220 226 232 238	t 0.732s 0.777s 0.799s 0.852s 0.878s 0.927s 0.957s 0.987s 1.068s 1.051s	49 50 51 52 53 54 55 56 57	280 286 292 298 304 310 316 322 328 334	1.333s 1.372s 1.402s 1.450s 1.482s 1.523s 1.569s 1.630s 1.661s 1.659s	65 66 67 68 69 70 71 72 73 74	376 382 388 394 400 406 412 418 424 430	1.919s 1.978s 2.101s 2.138s 2.067s 2.173s 2.190s 2.227s 2.262s 2.274s
1 2 3 4 5 6 7 8 9 10 11	2 4 8 12 16 20 26 34 40 46 52	<0.001s 0.002s 0.002s 0.002s 0.002s 0.002s 0.002s 0.003s 0.006s 0.014s 0.033s	17 18 19 20 21 22 23 24 25 26 27	88 94 100 106 112 118 124 130 136 142 148	$t\\0.310s\\0.322s\\0.348s\\0.396s\\0.421s\\0.437s\\0.486s\\0.488s\\0.512s\\0.538s\\0.572s$	33 34 35 36 37 38 39 40 41 42 43	B_r 184 190 196 202 208 214 220 226 232 238 244	t 0.732s 0.777s 0.799s 0.852s 0.878s 0.927s 0.957s 0.987s 1.068s 1.051s 1.104s	49 50 51 52 53 54 55 56 57 58	280 286 292 298 304 310 316 322 328 334 340	1.333s 1.372s 1.402s 1.450s 1.482s 1.523s 1.569s 1.630s 1.661s 1.659s 1.735s	65 66 67 68 69 70 71 72 73 74 75	376 382 388 394 400 406 412 418 424 430 436	1.919s 1.978s 2.101s 2.138s 2.067s 2.173s 2.190s 2.227s 2.262s 2.274s 2.342s
1 2 3 4 5 6 7 8 9 10 11 12	2 4 8 12 16 20 26 34 40 46 52 58	<0.001s 0.002s 0.002s 0.002s 0.002s 0.002s 0.002s 0.003s 0.006s 0.014s 0.033s 0.073s	17 18 19 20 21 22 23 24 25 26 27 28	88 94 100 106 112 118 124 130 136 142 148 154	$t\\0.310s\\0.322s\\0.348s\\0.396s\\0.421s\\0.437s\\0.486s\\0.488s\\0.512s\\0.538s\\0.572s\\0.589s$	7 33 34 35 36 37 38 39 40 41 42 43 44	B_r 184 190 196 202 208 214 220 226 232 238 244 250	$t \\ 0.732s \\ 0.777s \\ 0.799s \\ 0.852s \\ 0.878s \\ 0.927s \\ 0.957s \\ 0.987s \\ 1.068s \\ 1.051s \\ 1.104s \\ 1.151s$	49 50 51 52 53 54 55 56 57 58 59 60	280 286 292 298 304 310 316 322 328 334 340 346	1.333s 1.372s 1.402s 1.450s 1.482s 1.523s 1.569s 1.630s 1.661s 1.659s 1.735s 1.742s	65 66 67 68 69 70 71 72 73 74 75	376 382 388 394 400 406 412 418 424 430 436	1.919s 1.978s 2.101s 2.138s 2.067s 2.173s 2.190s 2.227s 2.262s 2.274s 2.342s
1 2 3 4 5 6 7 8 9 10 11 12 13	2 4 8 12 16 20 26 34 40 46 52 58 64	<0.001s 0.002s 0.002s 0.002s 0.002s 0.002s 0.002s 0.003s 0.006s 0.014s 0.033s 0.073s 0.135s	17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	88 94 100 106 112 118 124 130 136 142 148 154	$t\\0.310s\\0.322s\\0.342s\\0.396s\\0.421s\\0.437s\\0.486s\\0.512s\\0.538s\\0.572s\\0.538s\\0.572s\\0.589s\\0.652s$	7 33 34 35 36 37 38 39 40 41 42 43 44 45	B_r 184 190 196 202 208 214 220 226 232 238 244 250 256	t 0.732s 0.777s 0.799s 0.852s 0.878s 0.927s 0.957s 1.068s 1.051s 1.104s 1.151s 1.180s	49 50 51 52 53 54 55 56 57 58 59 60 61	280 286 292 298 304 310 316 322 328 334 340 346 352	1.333s 1.372s 1.402s 1.450s 1.482s 1.523s 1.569s 1.630s 1.661s 1.659s 1.735s 1.742s 1.786s	65 66 67 68 69 70 71 72 73 74 75	376 382 388 394 400 406 412 418 424 430 436	1.919s 1.978s 2.101s 2.138s 2.067s 2.173s 2.190s 2.227s 2.262s 2.274s 2.342s
1 2 3 4 5 6 7 8 9 10 11 12 13 14	2 4 8 12 16 20 26 34 40 46 52 58 64 70	<0.001s 0.002s 0.002s 0.002s 0.002s 0.002s 0.002s 0.003s 0.006s 0.014s 0.033s 0.073s 0.135s 0.206s	17 18 19 20 21 22 23 24 25 26 27 28 29 30	88 94 100 106 112 118 124 130 136 142 148 154 160	$\begin{array}{c} t \\ 0.310s \\ 0.322s \\ 0.348s \\ 0.396s \\ 0.421s \\ 0.486s \\ 0.488s \\ 0.512s \\ 0.538s \\ 0.572s \\ 0.589s \\ 0.652s \\ 0.647s \end{array}$	7 33 34 35 36 37 38 39 40 41 42 43 44 45 46	B_r 184 190 196 202 208 214 220 226 232 238 244 250 256 262	t 0.732s 0.777s 0.799s 0.852s 0.878s 0.927s 0.957s 1.068s 1.051s 1.104s 1.151s 1.180s 1.244s	49 50 51 52 53 54 55 56 57 58 59 60 61 62	280 286 292 298 304 310 316 322 328 334 340 346 352 358	1.333s 1.372s 1.402s 1.450s 1.482s 1.523s 1.569s 1.630s 1.661s 1.659s 1.735s 1.742s 1.786s 1.819s	65 66 67 68 69 70 71 72 73 74 75	376 382 388 394 400 406 412 418 424 430 436	1.919s 1.978s 2.101s 2.138s 2.067s 2.173s 2.190s 2.227s 2.262s 2.274s 2.342s

Table 5: Experimental results of ${\tt KNOT-512}$

					I	Differ	ential	property	7					
r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t
1	2		21	108	0.011s	41	215	0.014s	61	322	0.017s	81	428	0.011s
2	4	$< 0.001 \mathrm{s}$	22	114	0.017s	42	220	0.011s	62	327	0.014s	82	434	0.016s
3	7	0.001s	23	119	0.013s	43	226	0.017s	63	332	0.011s	83	439	0.014s
4	10	0.002s	24	124	0.010s	44	231	0.016s	64	338	0.015s	84	444	0.010s
5	14	0.001s	25	130	0.016s	45	236	0.011s	65	343	0.013s	85	450	0.017s
6	18	0.001s	26	135	0.014s	46	242	0.017s	66	348	0.010s	86	455	0.014s
7	25	0.001s	27	140	0.010s	47	247	0.015s	67	354	0.016s	87	460	0.011s
8	32	0.002s	28	146	0.017s	48	252	0.010s	68	359	0.013s	88	466	0.016s
9	40	0.006s	29	151	0.014s	49	258	0.016s	69	364	0.010s	89	471	0.013s
10	49	0.070 s	30	156	0.011s	50	263	0.014s	70	370	0.016s	90	476	0.010s
11	55	0.200 s	31	162	0.016s	51	268	0.010s	71	375	0.014s	91	482	0.016s
12	60	0.308s	32	167	0.014s	52	274	0.015s	72	380	0.010s	92	487	0.015s
13	66	0.685s	33	172	0.010s	53	279	0.014s	73	386	0.016s	93	492	0.010s
14	71	0.677s	34	178	0.017s	54	284	0.011s	74	391	0.014s	94	498	0.017s
15	76	0.456s	35	183	0.014s	55	290	0.017s	75	396	0.010s	95	503	0.014s
16	82	0.302s	36	188	0.012s	56	295	0.014s	76	402	0.016s	96	508	0.010s
17	87	0.076s	37	194	0.018s	57	300	0.013s	77	407	0.014s	97	514	0.016s
18	92	0.018s	38	199	0.014s	58	306	0.016s	78	412	0.011s	98	519	0.014s
19	98	0.017s	39	204	0.011s	59	311	0.014s	79	418	0.016s	99	524	0.011s
20	103	0.015s	40	210	0.017s	60	316	0.011s	80	423	0.014s	100	530	0.017s
		Pre-se	arch	time:	0.091s	Se	arch t	ime: 3.93	2s	Tot	al time: 4	4.023s		
						Lin	ear pr	operty						
r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t
1	2		21	112	0.483s	41	232	1.232s	61	352	2.106s	81	472	3.000s
2	4	< 0.001 s	22	118	0.511s	42	238	1.272s	62	358	2.187s	82	478	3.024s
3	8	0.003s	23	124	0.546s	43	244	1.322s	63	364	2.227s	83	484	3.084s
4	12	0.002s	24	130	0.576s	44	250	1.368s	64	370	2.224s	84	490	3.127s
5	16	0.002s	25	136	0.605s	45	256	1.391s	65	376	2.468s	85	496	3.230s
6	20	0.003s	26	142	0.670s	46	262	1.458s	66	382	2.365s	86	502	3.474s
7	26	0.003s	27	148	0.697s	47	268	1.479s	67	388	2.447s	87	508	3.316s
8	34	0.003s	28	154	0.719s	48	274	1.539s	68	394	2.427s	88	514	3.333s
9	40	$0.007 \mathrm{s}$	29	160	0.748s	49	280	1.573s	69	400	2.457s	89	520	3.405s
10	46	0.016s	30	166	0.776s	50	286	1.694s	70	406	2.512s	90	526	3.431s
11	52	0.041s	31	172	0.819s	51	292	1.838s	71	412	2.557s	91	532	3.423s
12	F 0	0.000											F00	3.639s
1 40	58	0.089s	32	178	0.829s	52	298	1.857s	72	418	2.609s	92	538	
13	58 64	0.089s 0.177s	32 33	178 184	0.829s 0.894s	52 53	$\frac{298}{304}$	1.857s 1.780s	72 73	$418 \\ 424$	2.609s $2.618s$	93	538 544	3.842s
14														
	64	0.177s	33	184	0.894s	53	304	$1.780 \mathrm{s}$	73	424	2.618s	93	544	3.842s
14	64 70	0.177s $0.250s$	33 34	184 190	0.894s 0.916s	53 54	304 310	$1.780s\\1.905s$	73 74	$424 \\ 430$	2.618s $2.756s$	93 94	544 550	3.842s 3.589s
14 15	64 70 76	0.177s 0.250s 0.286s	33 34 35	184 190 196	0.894s 0.916s 0.938s	53 54 55	304 310 316	1.780s 1.905s 2.180s	73 74 75	424 430 436	2.618s 2.756s 2.700s	93 94 95	544 550 556	3.842s 3.589s 3.584s
14 15 16	64 70 76 82	0.177s 0.250s 0.286s 0.317s	33 34 35 36	184 190 196 202	0.894s 0.916s 0.938s 1.020s	53 54 55 56	304 310 316 322	1.780s 1.905s 2.180s 2.384s	73 74 75 76	424 430 436 442	2.618s 2.756s 2.700s 2.759s	93 94 95 96	544 550 556 562	3.842s 3.589s 3.584s 3.694s
14 15 16 17	64 70 76 82 88	0.177s 0.250s 0.286s 0.317s 0.359s	33 34 35 36 37	184 190 196 202 208	0.894s 0.916s 0.938s 1.020s 1.091s	53 54 55 56 57	304 310 316 322 328	1.780s 1.905s 2.180s 2.384s 2.017s	73 74 75 76 77	424 430 436 442 448	2.618s 2.756s 2.700s 2.759s 2.833s	93 94 95 96 97	544 550 556 562 568	3.842s 3.589s 3.584s 3.694s 3.771s
14 15 16 17 18	64 70 76 82 88 94	0.177s 0.250s 0.286s 0.317s 0.359s 0.389s	33 34 35 36 37 38	184 190 196 202 208 214	0.894s 0.916s 0.938s 1.020s 1.091s 1.100s	53 54 55 56 57 58	304 310 316 322 328 334	1.780s 1.905s 2.180s 2.384s 2.017s 2.145s	73 74 75 76 77 78	424 430 436 442 448 454	2.618s 2.756s 2.700s 2.759s 2.833s 2.835s	93 94 95 96 97 98	544 550 556 562 568 574	3.842s 3.589s 3.584s 3.694s 3.771s 3.870s

Table 6: Experimental results of PRESENT

	Differential property														
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$														
r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t	
1	2		8	32	0.003s	15	66	0.003s	22	96	0.003s	29	128	0.004s	
2															
3 8 0.003s 10 41 0.003s 17 74 0.004s 24 106 0.005s 31 136 0.003s 4 12 0.002s 11 46 0.004s 18 78 0.004s 25 110 0.004s															
4	4 12 0.002s 11 46 0.004s 18 78 0.004s 25 110 0.004s														
5	20	0.002s	12	52	0.005s	19	82	0.002s	26	116	0.005s				
6	24	0.005s	13	56	0.003s	20	86	0.003s	27	120	0.002s				
7	28	0.002s	14	62	0.006s	21	90	0.003s	28	124	0.003s				
	7 28 0.002s 14 62 0.006s 21 90 0.003s 28 124 0.003s Pre-search time: 0s Search time: 0.100s Total time: 0.100s														
						Lin	ear p	roperty							
r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t	
1	2		8	28	0.006s	15	56	0.011s	22	84	0.007 s	29	112	0.006s	
2	4	$< 0.001 \mathrm{s}$	9	32	0.006s	16	60	0.007s	23	88	0.009s	30	116	0.006s	
3	8	0.006s	10	36	0.007s	17	64	0.010s	24	92	0.007s	31	120	0.007s	
4	12	0.005s	11	40	0.007s	18	68	0.010s	25	96	0.008s				
5	16	0.005s	12	44	0.007s	19	72	0.009s	26	100	0.006s				
6	20	0.006s	13	48	0.010s	20	76	0.007s	27	104	0.006s				
7	24	0.006s	14	52	0.006s	21	80	0.007s	28	108	0.006s				
		Pre-sea	arch	$_{ m time:}$	0.082s	Se	arch	time: 0.2	06s	Tot	al time:	0.288	3s		

Table 7: Experimental results of GIFT-64

	Differential property														
r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t	
1															
2															
3															
4	1 11.415 <0.001s 10														
5															
6	22.415	0.001s	12	58	0.009s	18	88	0.003s	24	118	0.003s				
		Pre-s	earc	ch time:	0s Se	earch	tim	e: 0.080s		Total	time: 0.0	80s			
					L	inea	r pr	operty							
r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t	
1	2		7	26	0.001s	13	68	0.017s	19	104	0.001s	25	140	0.002s	
2	4	$< 0.001 \mathrm{s}$	8	32	0.002s	14	74	0.206s	20	110	0.062s	26	146	0.099s	
3	6	$< 0.001 \mathrm{s}$	9	40	0.002s	15	80	0.011s	21	116	0.001s	27	152	0.002s	
4	10	$< 0.001 \mathrm{s}$	10	50	0.016s	16	86	0.119s	22	122	0.086s	28	158	0.099s	
5	14	0.001s	11	58	0.509s	17	92	0.002s	23	128	0.001s				
6	20	0.001s	12	62	$<\!0.001\mathrm{s}$	18	98	0.059s	24	134	0.101s				
		Pre-sea	arch	time: 0.	368s S	Sear	ch ti	me: 1.402	s	Tot	al time: 1	.770	s		

Table 8: Experimental results of GIFT-128

	Differential property														
r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t	
1	1.415		9	45.415	0.183s	17	96.415	3.368s	25	157.415	0.781h	33	210.415	0.572h	
2	3.415	0.023s	10	49.415	0.075s	18	103.415	$21.683 \mathrm{s}$	26	162.415	$190.578 \mathrm{s}$	34	217.415	0.314h	
3	7	0.013s	11	54.415	0.083s	19	110.83	$39.355 \mathrm{s}$	27	168.415	$384.132\mathrm{s}$	35	224.83	0.740h	
4	11.415	0.013s	12	60.415	0.173s	20	121.415	360.412s	28	174.415	0.296h	36	234.415	3.523h	
5															
6	22.415 0.013s 14 79 24.645s 22 132.415 30.739s 30 193 2.612h 38 246.415 1.063h														
7	28.415	0.016s	15	85.415	2.840s	23	139.415	$170.537\mathrm{s}$	31	198.415	0.331h	39	253.415	0.617h	
8	39	0.260s	16	90.415	1.321s	24	146.83	$274.807\mathrm{s}$	32	204.415	$286.450\mathrm{s}$	40	260.415	1.149h	
		Pre-se	earc	ch time:	176.240s	3	Search	time: 12.	783	3h To	otal time:	12	.832h		
							Linear	property							
r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t	
1	2		9	44	0.109s	17	102	0.018s	25	172	1.807h	33	234	1.015h	
2	4	$< 0.001 \mathrm{s}$	10	52	2.346s	18	112	$150.076 \mathrm{s}$	26	182	8.276h	34	242	3.670h	
3	6	0.019s	11	62	5.737s	19	118	0.531s	27	188	5.102h	35	252	0.738h	
4	10	0.020s	12	72	101.982s	20	128	299.405s	28	196	2.994h	36	260	8.954h	
5	14	0.018s	13	76	0.017s	21	136	121.294s	29	202	1.516h	37	266	0.018s	
6	20	0.020s	14	82	$22.521\mathrm{s}$	22	148	0.553h	30	210	1.588h	38	274	185.825s	
7	26	0.019s	15	90	$119.870\mathrm{s}$	23	158	1.706h	31	216	2.565h	39	280	4.593h	
8	34	0.062s	16	96	218.117s	24	164	0.726h	32	224	$636.726 \mathrm{s}$	40	286	0.017s	
		Pre-s	sea	rch time	e: 7.227h		Search	time: 46.3	3221	n To	tal time:	53.	549h		

Table 9: Experimental results of LBlock

	Differential property														
r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t	
1	0		8	22	0.002s	15	66	0.204s	22	102	1.138s	29	135	0.369s	
2															
3															
4															
5															
6	12	$< 0.001 \mathrm{s}$	13	56	0.386s	20	92	1.118s	27	126	1.473s				
7	16	$< 0.001 \mathrm{s}$	14	62	0.196s	21	96	0.887s	28	131	0.873s				
		Pre-sea	rch ti	me: (0.438s	Sea	rch ti	ime: 20.4	37s	Tot	tal time:	20.43	37s		
						Lin	ear p	roperty							
r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t	
1	0		8	22	0.002s	15	66	0.252s	22	100	0.677s	29	132	2.801s	
2	2		9	28	0.005s	16	72	0.377s	23	104	0.275s	30	138	0.294s	
3	4	$< 0.001 \mathrm{s}$	10	36	0.012s	17	74	0.507s	24	110	0.671s	31	144	1.350s	
4	6	$< 0.001 \mathrm{s}$	11	44	0.038s	18	80	0.187s	25	112	1.197s	32	148	2.581s	
5	8	$< 0.001 \mathrm{s}$	12	48	0.040s	19	84	0.030s	26	118	0.046s				
6	12	$< 0.001 \mathrm{s}$	13	54	0.219s	20	90	0.119s	27	124	0.441s				
7	16	$< 0.001 \mathrm{s}$	14	60	0.012s	21	94	0.463s	28	130	1.492s				
		Pre-sea:	rch ti	me: (0.380s	Sea	rch ti	ime: 14.0	88s	Tot	tal time:	14.46	38s		

Table 10: Experimental results of TWINE

	Differential property																						
r	$egin{array}{ c c c c c c c c c c c c c c c c c c c$																						
_			_			_			_			_											
2	2		10	38	0.018s	18	83	1.214s	26	122	0.403s	34	161	0.419s									
3	4	< 0.001 s	11	46	0.133s	19	88	0.870s	27	126	0.014s	35	166	0.348s									
	4 6 <0.001s 12 51 0.056s 20 94 1.502s 28 132 0.677s 36 172 1.419s																						
!	5 8 <0.001s 13 58 4.345s 21 97 1.045s 29 136 0.205s																						
	5 8 <0.001s 13 58 4.345s 21 97 1.045s 29 136 0.205s 6 12 <0.001s 14 64 5.588s 22 103 0.720s 30 142 1.266s																						
7	16	0.001s $0.001s$	15	68	4.736s	23	107	0.120s $0.127s$	31	146	0.282s												
						l			1														
8	8 22 0.001s 16 74 6.746s 24 113 0.766s 32 152 1.241s																						
		Pre-sea	rch t	ıme:	0.607s	Sea	rch ti	me: 37.7	8 22 0.001s 10 74 0.740s 24 113 0.760s 32 152 1.241s Pre-search time: 0.607s Search time: 37.716s Total time: 38.323s														
	Linear property r B_ t t r B_ t																						
r	B_r	t	r	B_r	t	Li ₁	$\frac{1}{B_r}$	roperty	r	B_r	t	r	B_r	t									
r 1	B_r	t	r 9	B_r 28	t 0.005s	_			r 25	B_r 108	t 0.001s	7 33	B_r 144	t 0.002s									
		t				r	B_r	t															
1	0	t <0.001s	9	28	0.005s	r 17	B_r 72	t 0.007s	25	108	0.001s	33	144	0.002s									
1 2	0 2	· · · · · · · · · · · · · · · · · · ·	9 10	28 36	0.005s 0.013s	17 18	B_r 72 78	t 0.007s 0.003s	25 26	108 114	0.001s 0.001s	33 34	144 150	0.002s 0.001s									
1 2 3	0 2 4	<0.001s	9 10 11	28 36 44	0.005s 0.013s 0.044s	17 18 19	B_r 72 78 82	t 0.007s 0.003s 0.004s	25 26 27	108 114 118	0.001s 0.001s 0.003s	33 34 35	144 150 154	0.002s 0.001s 0.002s									
1 2 3 4	0 2 4 6	<0.001s <0.001s	9 10 11 12	28 36 44 48	0.005s 0.013s 0.044s 0.070s	17 18 19 20	$ \begin{array}{c c} B_r \\ 72 \\ 78 \\ 82 \\ 88 \\ \end{array} $	t 0.007s 0.003s 0.004s 0.004s	25 26 27 28	108 114 118 124	0.001s 0.001s 0.003s 0.002s	33 34 35	144 150 154	0.002s 0.001s 0.002s									
1 2 3 4 5	0 2 4 6 8	<0.001s <0.001s <0.001s	9 10 11 12 13	28 36 44 48 54	0.005s 0.013s 0.044s 0.070s 0.016s	r 17 18 19 20 21	$ \begin{array}{c} B_r \\ 72 \\ 78 \\ 82 \\ 88 \\ 90 \end{array} $	t 0.007s 0.003s 0.004s 0.004s 0.002s	25 26 27 28 29	108 114 118 124 126	0.001s 0.001s 0.003s 0.002s 0.002s	33 34 35	144 150 154	0.002s 0.001s 0.002s									
1 2 3 4 5 6	0 2 4 6 8 12	<0.001s <0.001s <0.001s <0.001s	9 10 11 12 13 14	28 36 44 48 54 60	0.005s 0.013s 0.044s 0.070s 0.016s 0.011s	17 18 19 20 21 22	B _r 72 78 82 88 90 96	t 0.007s 0.003s 0.004s 0.004s 0.002s 0.001s	25 26 27 28 29 30	108 114 118 124 126 132	0.001s 0.001s 0.003s 0.002s 0.002s 0.001s	33 34 35	144 150 154	0.002s 0.001s 0.002s									

Table 11: Experimental results of WARP

						Di	fferent	ial propert	у					
r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t
1	0		10	34	0.001s	19	132	22.447s	28	202	2.720h	37	290	966.541s
2	2		11	44	0.003s	20	140	10.310s	29	212	70.975s	38	300	0.383h
3	4	0.108s	12	56	0.202s	21	150	$27.883 \mathrm{s}$	30	218	$6.207 \mathrm{s}$	39	308	0.972h
4	6	$< 0.001 \mathrm{s}$	13	68	2.712s	22	158	19.125s	31	228	18.211s	40	318	$213.574\mathrm{s}$
5	8	$< 0.001 \mathrm{s}$	14	80	13.145s	23	164	$13.369 \mathrm{s}$	32	240	88.656s	41	324	2.546h
6	12	0.001s	15	94	$89.970\mathrm{s}$	24	170	15.344s	33	252	$271.083\mathrm{s}$			
7	16	0.001s	16	104	41.125s	25	178	16.547s	34	262	266.790s			
8	22	0.001s	17	114	$19.814\mathrm{s}$	26	186	30.166s	35	270	$153.741\mathrm{s}$			
9	28	0.001s	18	122	8.193s	27	194	$179.661\mathrm{s}$	36	280	212.332s			
			Pre-	search	time: 623	3.313	s Sear	ch time: 7.3	393h	Total	time: 7.566	3h		
							Linear	property						
r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t	r	B_r	t
1	0		10	34	0.002s	19	132	21.352s	28	202	$105.050\mathrm{s}$	37	290	937.453s
2	2		11	44	0.005s	20	140	10.489s	29	212	67.206s	38	300	0.373h
3	4	0.001s	12	56	0.251s	21	150	26.402s	30	218	5.863s	39	308	0.972h
4	6	$< 0.001 \mathrm{s}$	13	68	2.503s	22	158	$18.786 \mathrm{s}$	31	228	17.131s	40	318	$221.591\mathrm{s}$
5	8	$< 0.001 \mathrm{s}$	14	80	12.998s	23	164	21.389s	32	240	$83.686 \mathrm{s}$	41	324	2.608h
6	12	0.002s	15	94	$88.943\mathrm{s}$	24	170	13.679s	33	252	$247.202\mathrm{s}$			
7	16	0.001s	16	104	$41.219\mathrm{s}$	25	178	$17.601\mathrm{s}$	34	262	259.413s			
8	22	0.001s	17	114	$18.803\mathrm{s}$	26	186	$36.088 \mathrm{s}$	35	270	$146.967\mathrm{s}$			
9	28	0.001s	18	122	7.962s	27	194	0.621h	36	280	$215.591\mathrm{s}$			
		Pre	-sear	ch tin	ne: 474.05	ls	Sear	ch time: 5.5	308h	Te	otal time: 5	5.440	h	