Colle **21**Dérivation

- ▶ Après votre colle, il vous est demandé de reprendre les exercices traités et de les rédiger sur feuille. Ce travail est à déposer dans la boîte en B013 avant mardi prochain.
- ▶ Vous trouverez le sujet et des indications sur la page ci-contre.

Exercice 21.1

Soient $a, b \in \mathbb{R}$ tels que a < b. Soit $f : [a, b] \longrightarrow \mathbb{R}_+^*$ dérivable. Montrer que

$$\exists c \in]a,b[: \frac{f(b)}{f(a)} = e^{(b-a)\frac{f'(c)}{f(c)}}.$$

Exercice 21.2

Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+^*$ dérivable. Soit $\ell \in \mathbb{R}$. Montrer que

$$\frac{f'(x)}{f(x)} \xrightarrow[x \to +\infty]{} \ell \implies \frac{f(x+1)}{f(x)} \xrightarrow[x \to +\infty]{} e^{\ell}.$$

Exercice 21.3

Soient $f,g:\mathbb{R}\longrightarrow\mathbb{R}$ dérivables. Soit $x_0\in\mathbb{R}$.

On suppose que

$$\forall x \in [a,b], \quad g'(x) \neq 0.$$

1. Soit $x > x_0$. Montrer que

$$\exists c \in]x, x_0[: \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(c)}{g'(c)}.$$

2. Soit $\ell \in \mathbb{R}$. Montrer que

$$\frac{f'(x)}{g'(x)} \xrightarrow[x \to x_0]{} \ell \quad \Longrightarrow \quad \frac{f(x) - f(x_0)}{g(x) - g(x_0)} \xrightarrow[x \to x_0]{} \ell.$$

Exercice 21.4

Soit h > 0. Soit $f: [-h, h] \longrightarrow \mathbb{R}$ de classe \mathscr{C}^5 . Montrer que

$$\exists c \in]-h, h[: f(h) - f(-h) = \frac{h}{3} (f'(-h) + 4f'(0) + f'(h)) - \frac{h^5}{90} f^{(5)}(c).$$

Exercice 21.5

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\begin{cases} u_0 = 0 \\ \forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{3}(4 - u_n^2). \end{cases}$$

Montrer que $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.

Exercice 21.6

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{1 + u_n}. \end{cases}$$

Montrer que $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.

Exercice 21.7

Soient $a, b \in \mathbb{R}$ tels que a < b.

Soit $f:[a,b]\longrightarrow \mathbb{R}$ de classe \mathscr{C}^1 telle que

$$\forall x \in [a, b], \quad f'(x) > 0.$$

Montrer que

$$\exists (\alpha, \beta) \in \mathbb{R}_+^* \times \mathbb{R} : \forall x \in [a, b], f(x) \geqslant \alpha x + \beta.$$

Exercice 21.8

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction dérivable. Soit $\ell \in \mathbb{R}$ tel que

$$\begin{cases} f(x) \xrightarrow[x \to +\infty]{} \ell \\ f(x) \xrightarrow[x \to +\infty]{} \ell. \end{cases}$$

Montrer que

$$\exists c \in \mathbb{R}: f'(c) = 0.$$

Exercice 21.9

Soient $a, b \in \mathbb{R}$ tels que a < b. Soit $f : [a, b] \longrightarrow \mathbb{R}$ une fonction de classe \mathscr{C}^2 telle que

$$\begin{cases} f(a) = f(b) = 0 \\ f'(a) = f'(b) = 0. \end{cases}$$

Montrer que

$$\exists c \in]a, b[: f(c) = f''(c).$$