Constructive Algorithms for Discrepancy Minimization (Nikhil Bansal, FOCS 2010)

Prayesh Kothari

The University of Texas at Austin kothari@cs.utexas.edu

January 30, 2012

Discrepancy

 "Approximating a probability space by a smaller probability space"

Discrepancy

- "Approximating a probability space by a smaller probability space"
- Example: Approximating a Continuous Probability Space by A Discrete Space
- Question: How uniformly can you distribute n-points in a unit square?
- What does UNIFORM mean?

Axis Parallel Rectangles in a Grid

- Question: How uniformly can you distribute n-points in a unit square?
- What does UNIFORM mean?

Figure: Distributing Points in a Unit Square

For any axis parallel rectangle R inside the unit square,

$$|Prob_{x \in [0,1]^2}[x \in R] - Prob_{y \in S}[y \in R]|$$

is small.

• $|(\# \text{of points from S in R}) - n \cdot Area(R)|$ is small.

Discrepancy: Example 2

- "Approximating a large discrete space by a smaller discrete space."
- **Given:** A set X of n points in a unit square.
- Problem: Color each point in X red/blue such that each axis parallel rectangle has "roughly" the same number of red or blue points.
- Discrepancy: max over Rectangle R

```
((# of red points in R) – (# of blue points in R))
```

Discrepancy: Example 2

- "Approximating a large discrete space by a smaller discrete space."
- **Given:** A set X of n points in a unit square.
- Problem: Color each point in X red/blue such that each axis parallel rectangle has "roughly" the same number of red or blue points.
- Discrepancy: max over Rectangle R

```
((# of red points in R) – (# of blue points in R))
```

• Non Trivial:Random Coloring: $O(\sqrt{n \log n})$ Best:

Discrepancy: Example 2

- "Approximating a large discrete space by a smaller discrete space."
- Given: A set X of n points in a unit square.
- Problem: Color each point in X red/blue such that each axis
 parallel rectangle has "roughly" the same number of red or
 blue points.
- Discrepancy: max over Rectangle R

```
((# of red points in R) – (# of blue points in R))
```

• Non Trivial:Random Coloring: $O(\sqrt{n \log n})$ Best: $O(\log^{2.5} n)$

Combinatorial Discrepancy

- **Given :** Set System (X, \mathbb{S}) . $X = \{1, 2, ..., n\} = [n]$ and $\mathbb{S} = \{S_1, S_2, ..., S_m\}$. Each $S_i \subseteq X$.
- **Problem:** Find a coloring in red and blue such that for every $S_i \in \mathbb{S}$,

```
|(\# \text{ of } x \text{colored } red \text{ in } S_i) - (\# \text{ of } x \text{colored } blue \text{ in } S_i)| is small.
```

- A huge number of Applications!
- CS: Computational Geometry, Comb. Opt., Monte Carlo Simulation, Machine Learning, Complexity, Communication Complexity, Pseudorandomness...

Math (but not so CS): Dynamical Systems, Combinatorics, Math. Finance, Number Thy, Ramsey Thy, Algebra, Measure Theory, Numerical Calculus...

Get to the Business: Discrepancy Minimization

- **Given:** A set system (X, \mathbb{S}) Universe X:[n] Set of Subsets of X, $\mathbb{S} = \{S_1, S_2, ..., S_m\}$
- **Problem:** Find $\chi: X \to \{-1,1\}^n$ to minimize $|\chi(S)|_{\infty} = \max S_i \in \mathbb{S}, |\sum_{x \in S_i} \chi(x)|$

- $T = (X, \mathbb{S})$: A set system with |X| = n and $|\mathbb{S}| = m$.
- $\chi: X \to \{-1,1\}^n$ a random coloring.
- Chernoff Bound: $Prob[|\chi(S)| \ge c\sqrt{n}] \le e^{-\frac{c^2}{4}}$

- $T = (X, \mathbb{S})$: A set system with |X| = n and $|\mathbb{S}| = m$.
- $\chi: X \to \{-1,1\}^n$ a random coloring.
- Chernoff Bound: $Prob[|\chi(S)| \ge c\sqrt{n}] \le e^{-\frac{c^2}{4}}$
- Choose $c = \sqrt{4 \log 4m}$ to obtain

$$Prob[|\chi(S)| \ge \sqrt{4n\log 4m}] \le \frac{1}{2m}$$

- $T = (X, \mathbb{S})$: A set system with |X| = n and $|\mathbb{S}| = m$.
- $\chi: X \to \{-1,1\}^n$ a random coloring.
- Chernoff Bound: $Prob[|\chi(S)| \ge c\sqrt{n}] \le e^{-\frac{c^2}{4}}$
- Choose $c = \sqrt{4 \log 4m}$ to obtain

$$Prob[|\chi(S)| \ge \sqrt{4n\log 4m}] \le \frac{1}{2m}$$

Union Bound over all sets:

$$Prob[\exists S \in \mathbb{S} : |\chi(S)| \ge \sqrt{4n\log 4m}] \le \frac{1}{2}$$

- $T = (X, \mathbb{S})$: A set system with |X| = n and $|\mathbb{S}| = m$.
- $\chi: X \to \{-1,1\}^n$ a random coloring.
- Chernoff Bound: $Prob[|\chi(S)| \ge c\sqrt{n}] \le e^{-\frac{c^2}{4}}$
- Choose $c = \sqrt{4 \log 4m}$ to obtain

$$Prob[|\chi(S)| \ge \sqrt{4n\log 4m}] \le \frac{1}{2m}$$

Union Bound over all sets:

$$Prob[\exists S \in \mathbb{S} : |\chi(S)| \ge \sqrt{4n\log 4m}] \le \frac{1}{2}$$

• Thus with probability at least $\frac{1}{2}$, χ achieves a discrepancy of $O(\sqrt{n \log m})$.

- $T = (X, \mathbb{S})$: A set system with |X| = n and $|\mathbb{S}| = m$.
- $\chi: X \to \{-1,1\}^n$ a random coloring.
- Chernoff Bound: $Prob[|\chi(S)| \ge c\sqrt{n}] \le e^{-\frac{c^2}{4}}$
- Choose $c = \sqrt{4 \log 4m}$ to obtain

$$|Prob[|\chi(S)| \ge \sqrt{4n\log 4m}] \le \frac{1}{2m}$$

• Union Bound over all sets:

$$Prob[\exists S \in \mathbb{S} : |\chi(S)| \ge \sqrt{4n\log 4m}] \le \frac{1}{2}$$

- Thus with probability at least $\frac{1}{2}$, χ achieves a discrepancy of $O(\sqrt{n \log m})$.
- Analysis is tight!

• Spencer (1985): "Six Standard Deviations Suffice" There always exists a coloring with discrepancy at most $6\sqrt{n}$. (Here, m = n)

- Spencer (1985): "Six Standard Deviations Suffice"

 There always exists a coloring with discrepancy at most $6\sqrt{n}$.

 (Here, m = n)
- For arbitrary m, discrepancy = $O\left(\sqrt{n\log\frac{m}{n}}\right)$

- Spencer (1985): "Six Standard Deviations Suffice"

 There always exists a coloring with discrepancy at most $6\sqrt{n}$.

 (Here, m = n)
- For arbitrary m, discrepancy = $O\left(\sqrt{n\log\frac{m}{n}}\right)$
- Problem: "Highly" non constructive Proof. (PHP on exponentially large universe)
- Challenge: Can we find such a coloring algorithmically ?
 [Spencer 1985]

- Spencer (1985): "Six Standard Deviations Suffice"

 There always exists a coloring with discrepancy at most $6\sqrt{n}$.

 (Here, m = n)
- For arbitrary m, discrepancy = $O\left(\sqrt{n\log\frac{m}{n}}\right)$
- Problem: "Highly" non constructive Proof. (PHP on exponentially large universe)
- Challenge: Can we find such a coloring algorithmically ?
 [Spencer 1985]
- Conjecture: Not Possible! [Alon and Spencer]

Approximating Discrepancy

- Question : Suppose a set system has low discrepancy (much lower than \sqrt{n}). Is it possible to find it?
- Answer:

Approximating Discrepancy

- Question : Suppose a set system has low discrepancy (much lower than \sqrt{n}). Is it possible to find it?
- Answer: NO! [Charikar-Newman-Nikolov 2011] : Distinguishing between discrepancy of 0 and \sqrt{n} is NP-Complete

Approximating Discrepancy

- Question : Suppose a set system has low discrepancy (much lower than \sqrt{n}). Is it possible to find it?
- Answer: NO! [Charikar-Newman-Nikolov 2011] : Distinguishing between discrepancy of 0 and \sqrt{n} is NP-Complete
- What if a set system has low hereditary discrepancy?
 [Matousek]

•

$$Herdisc(X, \mathbb{S}) = max_{Y \subseteq X} disc(Y, \mathbb{S}_Y)$$

 Why Hereditary Discrepancy?
 Well studied, more robust notion of discrepancy, much used in Computational Geometry PLUS fits naturally into the technique!

The Results

Theorem (Constructive Spencer)

Given a set system (X,\mathbb{S}) with $|X| = |\mathbb{S}| = n$, there exists a poly(m,n) algorithm to construct a coloring χ with discrepancy $O(\sqrt{n})$.

Theorem (Constructive Low Hereditary Discrepancy)

Given a set system (X, \mathbb{S}) with |X| = n, $|\mathbb{S}| = m$, and a guarantee that $herdisc(X, \mathbb{S}) \leq \lambda$, there exists an algorithm running in time poly(m, n) to construct a coloring with discrepancy $O(\lambda \log (mn))$.

 A neat technique! May have applications waiting to be discovered in making several other existential results algorithmic.

A first Attempt: Convex Relaxations

Theorem (Constructive Low Hereditary Discrepancy)

Given a set system (X, \mathbb{S}) with |X| = n, $|\mathbb{S}| = m$, and a guarantee that $herdisc(X, \mathbb{S}) \leq \lambda$, there exists an algorithm running in time poly(m, n) to construct a coloring with discrepancy $O(\lambda \log (mn))$.

A first Attempt: Convex Relaxations

Theorem (Constructive Low Hereditary Discrepancy)

Given a set system (X, \mathbb{S}) with |X| = n, $|\mathbb{S}| = m$, and a guarantee that $herdisc(X, \mathbb{S}) \leq \lambda$, there exists an algorithm running in time poly(m, n) to construct a coloring with discrepancy $O(\lambda \log (mn))$.

A first attempt: LP

$$-\sqrt{n} \le \sum_{x \in S_i} u_x^+ - \sum_{x \in S_i} u_x^- \le \sqrt{n} \ \forall S_i \in \mathbb{S}$$
$$u_x^+ + u_x^- = 1 \ \forall u \in X$$
$$u_x^+, u_x^- \ge 0 \ \forall u \in X$$

A first Attempt: Convex Relaxations

Theorem (Constructive Low Hereditary Discrepancy)

Given a set system (X, \mathbb{S}) with |X| = n, $|\mathbb{S}| = m$, and a guarantee that $herdisc(X, \mathbb{S}) \leq \lambda$, there exists an algorithm running in time poly(m, n) to construct a coloring with discrepancy $O(\lambda \log (mn))$.

• A first attempt: LP

$$\begin{split} -\sqrt{n} &\leq \sum_{x \in S_i} u_x^+ - \sum_{x \in S_i} u_x^- \leq \sqrt{n} \ \forall S_i \in \mathbb{S} \\ u_x^+ + u_x^- &= 1 \ \forall u \in X \\ u_x^+, u_x^- &\geq 0 \ \forall u \in X \end{split}$$

• **Problem:** Absolutely No Information! $u_X^+ = u_X^- = \frac{1}{2}$

A modified first attempt: SDPs

• SDP:

$$||\sum_{x \in S_i} v_x||^2 \le n \ \forall S_i \in \mathbb{S}$$
$$||v_x||^2 = 1 \ \forall x \in X$$
$$v_x \in \mathbb{R}^n \ \forall x \in X$$

A modified first attempt: SDPs

• SDP:

$$\|\sum_{x \in S_i} v_x\|^2 \le n \ \forall S_i \in \mathbb{S}$$
$$\|v_x\|^2 = 1 \ \forall x \in X$$
$$v_x \in \mathbb{R}^n \ \forall x \in X$$

• **Problem :** $v_x = e_x \ \forall x \in X$ always a solution!

A modified first attempt: SDPs

• SDP:

$$\|\sum_{x \in S_i} v_x\|^2 \le n \ \forall S_i \in \mathbb{S}$$
$$\|v_x\|^2 = 1 \ \forall x \in X$$
$$v_x \in \mathbb{R}^n \ \forall x \in X$$

- **Problem**: $v_x = e_x \ \forall x \in X$ always a solution!
- **Observation:** Tighten Some Constraints a Little Bit for some sets, and the trivial solution disappears...
- Example :

$$||\sum_{x\in S_i} v_x||^2 \le \frac{n}{\log n}$$

The Algorithm

A random walk over fractional colorings of X

- ullet Each move adds an increment generated by a suitable SDP δ_t to the current coloring.
- Whenever a label hits $\{-1,1\}^n$, we freeze the label.
- Random Walk over different *directions* is (nicely!) correlated.

The Algorithm: Analysis

- Random Walk over each direction has a *high* variance. \Rightarrow converge to $\{-1,1\}^n$ fast.
- Walk over Discrepancies of each set has low variance ⇒ Discrepancy is bounded!

The Algorithm: Generating a Step

- Let $U \subseteq X$ be the set of vertices which haven't hit $\{-1,1\}^n$ at the start of a fixed iteration.
- The following SDP is feasible:

$$||\sum_{x \in S_i \cap U} v_x||^2 \le \lambda \ \forall S_i \in \mathbb{S}$$

$$||v_x||^2 = 1 \ \forall x \in U$$

- Rounding: Choose a random vector of independent $\mathcal{N}(0,1)$ variables $(g_1, g_2, ..., g_n)$
- For each x, let the update be: $\eta_x = \langle v_x, g \rangle$

Why the rounding works

Fact (Additivity of Gaussians)

If $(g_1, g_2, ..., g_n)$ is a vector of independent gaussians of variance 1, then $\langle v_x, g \rangle \sim \mathcal{N}(0, ||v_x||^2)$

- High Variance Walk on coordinates : $\eta_x = \langle v_x, g \rangle \sim \mathcal{N}(0, 1)$
- Low Variance Walk on Discrepancies For each set $S_i \in \mathbb{S}$, $\sum_{x \in S_i} \eta_x \sim \mathcal{N}(0, \sigma^2)$ with $\sigma \leq \lambda$.

Algorithm

- Start with the coloring $\chi_0 = (0, 0, ..., 0)$
- Update each coloring: $\chi_t = \chi_{t-1} + \gamma \cdot \eta$ (γ is tiny $\sim \frac{1}{r^2}$ step size, chosen to control error due to rounding)
- Whenever $\chi(x) \ge (1 1/n)$ or $\chi(x) \le (-1 + 1/n)$ round $\chi(x)$ and fix.
- Thus, color of an element does a random walk with each step $\gamma \mathcal{N}(0,1)$ discrepancy of each set does a random walk with each step $\gamma \mathcal{N}(0,\lambda^2)$

Discrepancy: The Problem History Hereditary Discrepancy Setting Spencer's Setting: Adapting Previous Approach Open Qu

Analysis

Claim (Half the vertices are colored in each iteration)

With probability at least $\frac{1}{2}$, $\frac{n}{2}$ coordinates are colored in the first iteration.

Claim (Half the vertices are colored in each iteration)

With probability at least $\frac{1}{2}$, $\frac{n}{2}$ coordinates are colored in the first iteration.

A round $T = O(\frac{1}{\gamma^2})$ steps.

Claim (Low Discrepancy Rise)

Each set has discrepancy $O(\lambda)$ in expectation in each round.

Claim (Half the vertices are colored in each iteration)

With probability at least $\frac{1}{2}$, $\frac{n}{2}$ coordinates are colored in the first iteration.

A round $T = O(\frac{1}{\gamma^2})$ steps.

Claim (Low Discrepancy Rise)

Each set has discrepancy $O(\lambda)$ in expectation in each round.

Claim

Every element is colored in $O(\log n)$ rounds.

Claim (Half the vertices are colored in each iteration)

With probability at least $\frac{1}{2}$, $\frac{n}{2}$ coordinates are colored in the first iteration.

A round $T = O(\frac{1}{2})$ steps.

Claim (Low Discrepancy Rise)

Each set has discrepancy $O(\lambda)$ in expectation in each round.

Claim

Every element is colored in $O(\log n)$ rounds.

Claim

Expected discrepancy for any set in all rounds is at most $O(\lambda \log n)$

Claim (Half the vertices are colored in each iteration)

With probability at least $\frac{1}{2}$, $\frac{n}{2}$ coordinates are colored in the first iteration.

A round $T = O(\frac{1}{2})$ steps.

Claim (Low Discrepancy Rise)

Each set has discrepancy $O(\lambda)$ in expectation in each round.

Claim

Every element is colored in $O(\log n)$ rounds.

Claim

Expected discrepancy for any set in all rounds is at most $O(\lambda \log n)$

Discrepancy: The Problem History Hereditary Discrepancy Setting Spencer's Setting: Adapting Previous Approach Open Qu

Summary

- Each Step generated by some SDP which introduces correlation between updates on colors of different elements.
- Use Hereditary Discrepancy to guarantee feasibility.
- High Variance of the Walk along each coordinate.
- Low Variance walk on the set of discrepancies.

- Spencer's Setting: (X, \mathbb{S}) , |X| = n and $|\mathbb{S}| = m$.
- Suppose we use $\lambda = \sqrt{n}$ we obtain : discrepancy of $O(\sqrt{n}\sqrt{\log n \log m})$.

- Spencer's Setting: (X, \mathbb{S}) , |X| = n and $|\mathbb{S}| = m$.
- Suppose we use $\lambda = \sqrt{n}$ we obtain : discrepancy of $O(\sqrt{n}\sqrt{\log n \log m})$.
- **Idea!** : Tighten bounds on constraints in successive SDPs by using Spencer's bound itself!

- Spencer's Setting: (X, \mathbb{S}) , |X| = n and $|\mathbb{S}| = m$.
- Suppose we use $\lambda = \sqrt{n}$ we obtain : discrepancy of $O(\sqrt{n}\sqrt{\log n \log m})$.
- Idea!: Tighten bounds on constraints in successive SDPs by using Spencer's bound itself!
- Nope! :-(Doesn't work. Gives $O(\sqrt{n \log m})$
- Issue: The notorious Union Bound.

Cool Idea: SDP from Spencer's Proof

Want:

- 1) Tighter Constraints on SDPs to guarantee lower discrepancy.
- 2) Forbid the nasty union bound.

Problem (Beck Fiala Conjecture)

Given a set system (X, \mathbb{S}) such that each $x \in X$ appears in at most t sets in \mathbb{S} , construct a coloring of X with minimum discrepancy.

- History: Discrepancy 2t 1 [Beck and Fiala, 1981], $O(C\sqrt{t\log m}\log n)$ [Beck, 1981], 2t-3 by [Bednarchak and Helm, 1997 and Helm, 1999]
- $O(\sqrt{t \log n})$ [Banaszczyk, 1998], and a constructive version by [Srinivasan,]
- Beck and Fiala conjectured a discrepancy of $O(\sqrt{t})$ WIDELY OPEN!

Thank You!

QUESTIONS?