Assignment 1

Due date: October 4, 2017

Group No: 5

Students:

Lalit Bhat: 01671833

Priya Parikh: 01679645

Objectives:

To design, build and test a counter with external control and perform the following. When no switch is triggered, the 7-segment display, displays EVEN number (0-2-0-2) in forward. When switch 1 is triggered, it displays ODD numbers (1-3-1-3) in forward. When Only switch 2 is triggered, it displays EVEN numbers (2-0-2-0) in reverse. When both switches triggered, it displays ODD numbers (3-1-3-1) in reverse.

List Of components:

Part description	Qty
Proto board PB-105T	1
17DIP8SS 8-Switch DIP Switch sets	1
08TIE524 Dual 7 Segment Display	1
74LS74 D Flipflop	1
74LS247 BCD to 7 Segment Display	1
74LS00 NAND Gate	4
74LS04 Hex Invertor	1
Function Generator	1
5V Power supply	1
330 Resistor	1
Cable, Banana with Alligator Clips	2
Jumper wires	
Wire cutter	2
Oscope Probe- Hook End Adapter	1

Experimental Approach:

1. Assigned states to the switches:

```
S1= switch1, S2= switch2
State1= 00 EVEN forward
State2= 01 EVEN reverse
State3= 10 ODD forward
State4 = 11 ODD reverse
```

- 2. Drew the truth table according to the states showing the present as well as next state of the output for every combination.
- 3. Plotted the K-maps in accordance of the truth table and deduced the equations for the next states.
- 4. Designed and simulated the circuit in Logic works.
- 5. After the successful simulation, the schematics designed on Logic works was realized on the Proto board.
- 6. We used a function generator to provide the clock pulses to the D flipflop in the circuit.
- 7. Implemented the hardware and made minor changes to fix the bugs.

Truth table

Switches		Present State		Next State				
S1	S2	Q1	Q2	Q1+	Q2+			
EVEN Forward								
0	0	0	0	1	0			
0	0	0	1	1	0			
0	0	1	0	0	0			
0	0	1	1	0	0			
EVEN Reverse								
0	1	0	0	1	0			
0	1	0	1	0	0			
0	1	1	0	0	0			
0	1	1	1	1	0			
ODD Forward								
1	0	0	0	0	1			
1	0	0	1	1	1			
1	0	1	0	1	1			
1	0	1	1	0	1			
EVEN Reverse								
1	1	0	0	1	1			
1	1	0	1	1	1			
1	1	1	0	0	1			
1	1	1	1	0	1			

K:map

$$\begin{split} Q_2^+ &= S_1 \\ Q_1^+ &= Q_1'S_1'S_2' + S_2Q_1'Q_2' + S_1Q_1'Q_2 + S_1'S_2Q_1Q_2 + S_1S_2'Q_1Q_2' \\ &= Q_1'(S_1'S_2' + S_2Q_2' + S_1Q_2) + Q_1(S_1'S_2Q_2 + S_1S_2'Q_2') \end{split}$$

Logic works schematics:

7-Segment display

PIN	Description
NO:	
1	e1
2	d1
3	c1
14	Common anode d1
15	b1
16	a1
17	g1
18	f1

Results:

During the demonstration the TA gave us several instances of the current state and which mode to run the circuit in, each of these instances gave the desired outputs.

Conclusion:

We successfully designed, simulated and made a hardware realization for a counter with external control.

FTQs:

- 1. Would the circuit be simpler with both the ODD/EVEN bit and UP/DOWN bit opposite to what you have? (Priya Parikh)
 - The states are assigned as per the designer's choice. If designer take exactly the opposite values than it won't make any difference in the logic of circuit.
- 2. Quickly redo the K-map for Q_0 with a JK flipflop. (Lalit Bhat)

Q_1	Q_2			
S ₁ S ₂	00	01	_11_	10
00	0	0	0	0
01	0	0	0	0
11	1	1	1	1
10	1	1	1	1
		К		

$$\begin{split} J &= S_1 \mbox{'} S_2 \mbox{'} + S_1 S_2 + S_2 \mbox{'} Q_2 + S_2 Q_2 \mbox{'} + Q_1 \\ K &= S_1 S_2 \mbox{'} + S_2 Q_2 \end{split}$$