SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: White, Mark Leslie Carroll, Stephen Fitzhugh Ma, Jeremy Kam-kuen

(ii) TITLE OF INVENTION: METHOD FOR QUANTIFYING LBP IN BODY FLUIDS

(iii) NUMBER OF SEQUENCES: 4

- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Marshall, O'Toole, Gerstein, Murray & Borun
 - (B) STREET: 6300 Sears Tower, 233 South Wacker Drive
 - (C) CITY: Chicago
 - (D) STATE: Illinois
 - (E) COUNTRY: United States of America
 - (F) ZIP: 60606-6402
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:

 - (B) FILING DATE:(C) CLASSIFICATION:
- (viii) ATTORNEY INFORMATION:

 - (A) NAME: Lin-Laures, Li-Hsien
 (B) REGISTRATION NUMBER: 33,547
 - (C) REFERENCE/DOCKET NUMBER: 27129/33783
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 312/474-6300
 - (B) TELEFAX: 312/474-0448
 - (C) TELEX: 25-3856

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1443 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..1443
- (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 76..1443
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (D) OTHER INFORMATION: "rLBP"

ll. 8 (huē 1.5 nê.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:																	
ATG Met -25	GGG Gly	GCC Ala	TTG Leu	GCC Ala	AGA Arg -20	GCC Ala	CTG Leu	CCG Pro	TCC Ser	ATA Ile -15	CTG Leu	CTG Leu	GCA Ala	TTG Leu	CTG Leu -10		48
CTT Leu	ACG Thr	TCC Ser	ACC Thr	CCA Pro -5	GAG Glu	GCT Ala	CTG Leu	GGT Gly	GCC Ala 1	AAC Asn	CCC Pro	GGC Gly	TTG Leu 5	GTC Val	GCC Ala		96
AGG Arg	ATC Ile	ACC Thr 10	GAC Asp	AAG Lys	GGA Gly	C T G Leu	CAG Gln 15	TAT Tyr	GCG Ala	GCC Ala	CAG Gln	GAG Glu 20	GGG Gly	CTA Leu	TTG Leu		144
GCT Ala	CTG Leu 25	CAG Gln	AGT Ser	GAG Glu	CTG Leu	CTC Leu 30	AGG Arg	ATC Ile	ACG Thr	CTG Leu	CCT Pro 35	GAC Asp	TTC Phe	ACC Thr	GGG Gly		192
GAC Asp 40	TTG Leu	AGG Arg	ATC Ile	CCC Pro	CAC His 45	GTC Val	GGC Gly	CGT Arg	GGG Gly	CGC Arg 50	TAT Tyr	GAG Glu	TTC Phe	CAC His	AGC Ser 55	:	240
CTG Leu	AAC Asn	ATC Ile	CAC His	AGC Ser 60	TGT Cys	GAG Glu	CTG Leu	CTT Leu	CAC His 65	TCT Ser	GCG Ala	CTG Leu	AGG Arg	CCT Pro 70	GTC Val	:	288
CCT Pro	GGC Gly	CAG Gln	GGC Gly 75	CTG Leu	AGT Ser	CTC Leu	AGC Ser	ATC Ile 80	TCC Ser	GAC Asp	TCC Ser	TCC Ser	ATC Ile 85	CGG Arg	GTC Val	;	336
CAG Gln	GGC Gly	AGG Arg 90	TGG Trp	AAG Lys	GTG Val	CGC Arg	AAG Lys 95	TCA Ser	TTC Phe	TTC Phe	AAA Lys	CTA Leu 100	CAG Gln	GGC Gly	TCC Ser	;	384
TTT Phe	GAT Asp 105	GTC Val	AGT Ser	GTC Val	AAG Lys	GGC Gly 110	ATC Ile	AGC S er	ATT Ile	TCG S er	GTC Val 115	AAC Asn	CTC Leu	CTG Leu	TTG Leu	•	432
GGC Gly 120	AGC Ser	GAG Glu	TCC Ser	TCC Ser	GGG Gly 125	AGG Arg	CCC Pro	ACA Thr	GTT Val	ACT Thr 130	GCC Ala	TCC Ser	AGC Ser	TGC Cys	AGC Ser 135	4	480
AGT Ser	GAC Asp	ATC Ile	GCT Ala	GAC Asp 140	GTG Val	GAG Glu	GTG Val	GAC Asp	ATG Met 145	TCG Ser	GGA Gly	GAC Asp	TTG Leu	GGG Gly 150	TGG Trp	!	528
CTG Leu	TTG Leu	AAC Asn	CTC Leu 155	TTC Phe	CAC His	AAC Asn	CAG Gln	ATT Ile 160	GAG Glu	TCC Ser	AAG Lys	TTC Phe	CAG Gln 165	AAA Lys	GTA Val	;	576
CTG Leu	GAG Glu	AGC Ser 170	AGG Arg	ATT Ile	TGC Cys	GAA Glu	ATG Met 175	ATC Ile	CAG Gln	AAA Lys	TCG Ser	GTG Val 180	TCC Ser	TCC Ser	GAT Asp	4	624
			TAT Tyr													•	672
TTC Phe 200	GCC Ala	GAC Asp	ATT Ile	GAT Asp	ТАТ Туг 205	AGC Ser	TTA Leu	GTG Val	GAA Glu	GCC Ala 210	CCT Pro	CGG Arg	GCA Ala	ACA Thr	GCC Ala 215	,	720
CAG Gln	ATG Met	CTG Leu	GAG Glu	GTG Val 220	ATG Met	TTT Phe	AAG Lys	GGT Gly	GAA Glu 225	ATC Ile	TTT Phe	CAT His	CGT Arg	AAC Asn 230	CAC His	•	768

(2) INFORMATION FOR SEQ ID NO:2:

A STATE OF S

44

| init

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 481 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (D) OTHER INFORMATION: "rLBP"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Gly Ala Leu Ala Arg Ala Leu Pro Ser Ile Leu Leu Ala Leu Leu -25 -15 -10

Leu Thr Ser Thr Pro Glu Ala Leu Gly Ala Asn Pro Gly Leu Val Ala
-5 1 5

Arg Ile Thr Asp Lys Gly Leu Gln Tyr Ala Ala Gln Glu Gly Leu Leu 10 15 20

Ala Leu Gln Ser Glu Leu Leu Arg Ile Thr Leu Pro Asp Phe Thr Gly 25 30 35

Asp Leu Arg Ile Pro His Val Gly Arg Gly Arg Tyr Glu Phe His Ser 40 45 50

Leu Asn Ile His Ser Cys Glu Leu Leu His Ser Ala Leu Arg Pro Val 60 65 70

Pro Gly Gln Gly Leu Ser Leu Ser Ile Ser Asp Ser Ser Ile Arg Val 75 80 85

Gln Gly Arg Trp Lys Val Arg Lys Ser Phe Phe Lys Leu Gln Gly Ser 90 95 100

Phe Asp Val Ser Val Lys Gly Ile Ser Ile Ser Val Asn Leu Leu Leu 105 110 115

Gly Ser Glu Ser Ser Gly Arg Pro Thr Val Thr Ala Ser Ser Cys Ser 120 125 130 135

Ser Asp Ile Ala Asp Val Glu Val Asp Met Ser Gly Asp Leu Gly Trp 140 145 150

Leu Leu Asn Leu Phe His Asn Gln Ile Glu Ser Lys Phe Gln Lys Val 155 160 165

Leu Glu Ser Arg Ile Cys Glu Met Ile Gln Lys Ser Val Ser Ser Asp 170 175 180

Leu Gln Pro Tyr Leu Gln Thr Leu Pro Val Thr Thr Glu Ile Asp Ser 185 190 195

Phe Ala Asp Ile Asp Tyr Ser Leu Val Glu Ala Pro Arg Ala Thr Ala 200 205 210 215

Gln Met Leu Glu Val Met Phe Lys Gly Glu Ile Phe His Arg Asn His 220 225 230

Arg Ser Pro Val Thr Leu Leu Ala Ala Val Met Ser Leu Pro Glu Glu 235 240 245

His Asn Lys Met Val Tyr Phe Ala Ile Ser Asp Tyr Val Phe Asn Thr 250 255 260

Ala Ser Leu Val Tyr His Glu Glu Gly Tyr Leu Asn Phe Ser Ile Thr 265 270 275

FI - FF 15 TO TO THE TO SEC. I TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL THE THE TOTAL TO THE TOTAL THE TOTAL TO THE TOTAL

Asp 280	Glu	Met	Ile	Pro	Pro 285	Asp	Ser	Asn	Ile	Arg 290	Leu	Thr	Thr	Lys	Ser 295
Phe	Arg	Pro	Phe	Val 300	Pro	Arg	Leu	Ala	Arg 305	Leu	Tyr	Pro	Asn	Met 310	Ası
Leu	Glu	Leu	Gln 315	Gly	Ser	Val	Pro	Ser 320	Ala	Pro	Leu	Leu	Asn 325	Phe	Sei
Pro	Gly	Asn 330	Leu	Ser	Val	Asp	Pro 335	Tyr	Met	Glu	Ile	Asp 340	Ala	Phe	Va]
Leu	Leu 345	Pro	Ser	Ser	Ser	Lys 350	Glu	Pro	Val	Phe	Arg 355	Leu	Ser	Val	Ala
Thr 360	Asn	Val	Ser	Ala	Thr 365	Leu	Thr	Phe	Asn	Thr 370	Ser	Lys	Ile	Thr	Gly 375
Phe	Leu	Lys	Pro	Gly 380	Lys	Val	Lys	Val	Glu 385	Leu	Lys	Glu	Ser	Lys 390	Val
Gly	Leu	Phe	Asn 395	Ala	Glu	Leu	Leu	Glu 400	Ala	Leu	Leu	Asn	Tyr 405	Tyr	Ile
Leu	Asn	Thr 410	Phe	Tyr	Pro	Lys	Phe 415	Asn	Asp	Lys	Leu	Ala 420	Glu	Gly	Phe
Pro	Leu 425	Pro	Leu	Leu	Lys	Arg 430	Val	Gln	Leu	Tyr	Asp 435	Leu	Gly	Leu	Gln
Ile 440	His	Lys	Asp	Phe	Leu 445	Phe	Leu	Gly	Ala	Asn 450	Val	Gln	Tyr	Met	Arg 455
Val											`				
(2)	INFO	RMAT	MOI	FOR	SEQ	ID N	O:3:								

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 591 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..591
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (D) OTHER INFORMATION: "rLBP25"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
- GCC AAC CCC GGC TTG GTC GCC AGG ATC ACC GAC AAG GGA CTG CAG TAT

 Ala Asn Pro Gly Leu Val Ala Arg Ile Thr Asp Lys Gly Leu Gln Tyr

 1 10 15
- GCG GCC CAG GAG GGG CTA TTG GCT CTG CAG AGT GAG CTG CTC AGG ATC

 Ala Ala Gln Glu Gly Leu Leu Ala Leu Gln Ser Glu Leu Leu Arg Ile

 20 25 30
- ACG CTG CCT GAC TTC ACC GGG GAC TTG AGG ATC CCC CAC GTC GGC CGT
 Thr Leu Pro Asp Phe Thr Gly Asp Leu Arg Ile Pro His Val Gly Arg

40

35

M

nê.

nğ.

18

		35					40					45			
Gly	Arg 50	Tyr	Glu	Phe	His	Ser 55	Leu	Asn	Ile	His	Ser 60	Cys	Glu	Leu	Leu
His 65	Ser	Ala	Leu	Arg	Pro 70	Val	Pro	Gly	Gln	Gly 75	Leu	Ser	Leu	Ser	Ile 80
Ser	Asp	Ser	Ser	Ile 85	Arg	Val	Gln	Gly	Arg 90	Trp	Lys	Val	Arg	Lys 95	Ser
Phe	Phe	Lys	Leu 100	Gln	Gly	Ser	Phe	Asp 105	Val	Ser	Val	Lys	Gly 110	Ile	Ser
Ile	Ser	Val 115	Asn	Leu	Leu	Leu	Gly 120	Ser	Glu	Ser	Ser	Gly 125	Arg	Pro	Thr
Val	Thr 130	Ala	Ser	Ser	Cys	Ser 135	Ser	Asp	Ile	Ala	Asp 140	Val	Glu	Val	Asp
Met 145	Ser	Gly	Asp	Leu	Gly 150	Trp	Leu	Leu	Asn	Leu 155	Phe	His	Asn	Gln	Ile 160
Glu	Ser	Lys	Phe	Gln 165	Lys	Val	Leu	Glu	Ser 170	Arg	Ile	Cys	Glu	Met 175	Ile
Gln	Lys	Ser	Val 180	Ser	Ser	Asp	Leu	Gln 185	Pro	Tyr	Leu	Gln	Thr 190	Leu	Pro
Val	Thr	Thr 195	Glu	Ile											

•