上海科技大学

2017-2018 学年第1学期本科生第2次期中考试卷

		姓名:	
开课单位:	信息学院	学院:	
授课教师:	周平强	学号:	
本 7441 日	// 由 映 甘 z山 \\	, ,,	

考试科目:《电路基础》

课程代码: EE111

考试时间: 2016年11月28日10点15分-12点15分。

考试成绩录入表:

题目	1	2	3	4	5	总分
计分						
复核						

评卷人签名: 复核人签名:

日期: 日期:

编写说明:

- 1. 要求评卷人和复核人不能是同一人。
- 2. 试卷内页和答题纸编排格式由各学院和出题教师根据实际需要自定,每页须按顺序标注页码(除封面外),要求排版清晰、美观,便于在页面左侧装订。为方便印刷归档,建议使用 A4 双面印刷(学校有印刷一体机提供)。
- 3. 主考教师编写试卷时尽可能保证试题科学、准确、合理,如考试过程中发现试题有误,主考教师需负责现场解释,此类情况学校将作为教学评估记录的一部分。

Problem 1 (15 pts) — First-Order RL Circuit Analysis

The current and voltage at the terminals of the inductor in Fig. 1 are

$$i(t) = (4 + 4e^{-40t})A, t \ge 0; \ v(t) = -80e^{-40t}V, t \ge 0.$$

- a) Find the numerical values of V_s , R, L, and I_0 (the initial current of L at t=0);
- b) How many milliseconds after the switch has been closed does the energy stored in the inductor reach 9 Joule?

Fig. 1 for Problem 1.

Problem 2 (20 pts) — First-order RL Circuit Analysis

Before it closes at time t = 0, the switch in the circuit shown in Fig. 2 has been open for a long time. Find the current through the inductor $i_o(t)$ for $t \ge 0$.

Fig. 2 for Problem 2.

Problem 3 (20 pts) — Second-order RLC circuit

The initial value of the voltage v in the circuit shown in Fig. 4 is zero, and the initial value of the capacitor current, $i_c(0^+)$, is 45mA. The expression for the capacitor current is known to be $i_c(t) = A_1 e^{-200t} + A_2 e^{-800t}$, $t \ge 0^+$. $R = 250\Omega$. Find

- a) The values of L, C, A_1 and A_2 .
- b) The express for v(t), $t \ge 0$.

Fig. 5 for Problem 5.

Problem 4 (15 pts) — Second-order RLC circuit

Determine the Thevenin equivalent circuit of the circuit shown in Fig. 5 at terminals (a, b), given that $v_s(t) = 12\cos 2500t \text{ V}$, $i_s(t) = 0.5\cos(2500t - 30^\circ)\text{A}$.

Fig. 5 for Problem 5.

Problem 5 (30 pts) — Second-order RLC circuit

In the circuit shown in Fig. 6, the switch was closed at t = 0 and re-opened at t = 0.5s. Determine the response $i_L(t)$ for $t \ge 0$. Before t = 0, there is no energy stored in the inductor and capacitor.

Assume that $V_s=18\text{V}$, $R_s=1\Omega$, $R_1=5\Omega$, $R_2=2\Omega$, L=2H, and $C_1=\frac{1}{17}\text{F}$.

Fig. 6 for Problem 6.