Data Mining Tasks

Data Mining: Mining Association Rules

- Association rules mining
 - Discovering interesting relations between objects in large databases
- Market basket analysis
 - The problem is to analyse customer buying habits by finding associations between the different items that customers place in their "shopping baskets"
 - Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Example: Market Basket Analysis

Anything interesting?

Customers who buy diapers also tend to buy beer

Indentify potential cross-selling opportunities among related items

Motivation (market basket analysis)

- If customers are buying milk, how <u>likely</u> is that they also buy bread?
- Such rules help retailers to:
 - Plan the shelf space: by placing milk close to bread they may increase the sales
 - Provide advertisements/recommendation to customers that are likely to buy some products
 - Offer discounts on items that are likely to be bought together to increase the sales

Problem Statement

Given:

- A database of transactions
- 2. Each transaction is a list of items

E.g.: items purchased by a customer in a visit

Find:

 All rules that correlate the presence of one set of items with another set of items

E.g., 80% of customers who buy {diapers} tend to buy {beer, milk}.

Association Rule Mining

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

```
{Diaper} → {Beer},
{Milk, Bread} → {Eggs,Coke},
{Beer, Bread} → {Milk},
```

...

...

Transaction data: documents

- A text document dataset
 - Each document is treated as a bag of keywords

doc1: Student, Teach, School

doc2: Student, School

doc3: Teach, School, City, Game

doc4: Baseball, Basketball

doc5: Basketball, Player, Spectator

doc6: Baseball, Coach, Game, Team

doc7: Basketball, Team, City, Game

 Unusual words appearing together in a large number of documents, e.g., "Brad" and "Angelina," may indicate an interesting relationship.

Formal Notations

- An item: an item in a basket
- An itemset is a set of items.
 - E.g., X = {milk, bread, cereal} is an itemset.
- A k-itemset is an itemset with k items.
 - E.g., {milk, bread, cereal} is a 3-itemset
- A transaction: items purchased in a basket
 - it may have TID (transaction ID)
- A transactional dataset: A set of transactions

Formal Notations

An association rule is an implication of the form:
X → Y, where:

- $X, Y \subset I$
- I is the set of all items,
- $X \cap Y = \emptyset$

e.g.: Bread, Butter → Milk Milk, Diapers → Beer

Are all rules equally interesting?!

Support and Confidence

- Rule X→Y
- Rule support
 - (absolute) support or support count:
 - frequency or count of an itemset X ∪ Y
 - (relative) support:

P for probability.

- probability that a transaction contains X U Y
- support $(X \rightarrow Y) = P(X \cup Y)$
- Support S:
 - percentage of transactions that contain both X and Y

Example: Frequent Itemsets

- Items={milk, coke, pepsi, beer, juice}.
- Support threshold = 3 baskets.

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

Frequent itemsets: {m}, {e}, {b}, {j},

 ${m,b}, {b,c}, {c,j}.$

Support and Confidence

- Rule X→Y
- Rule confidence:
 - Conditional probability
 - Confidence $(X \rightarrow Y) = P(Y \mid X) = P(X \cup Y) / P(X)$
 - Confidence C:
 - Percentage of transactions that contain Y given they contain X
 - Measures how often items in Y appear in transactions that contain X
 - Example:
 - Support (printer→ink) = support (ink→printer)
 - But, confidence (printer→ink) ≠ confidence (ink→printer)

Support and Confidence

- User-specified thresholds:
 - Minimum Support
 - min_sup
 - Minimum Confidence
 - min_conf

Rules that satisfy both *min_sup* and *min_conf* are called **strong**

Example

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

itemset	support count	support
Milk	2	40%
	_	1.576
Beer		
Nuts		
Diaper		
Eggs		
Beer, Diaper		

min_sup=50%

INFS4203 / INFS7203 Data Mining

Example

Find all the rules $X \rightarrow Y$ with minimum support and confidence

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

min_sup=50% min_conf = 50% **Rule: Diaper→Beer**

support: 3 (60%)

confidence: P(Beer, Diaper)/P(Diaper)

= 60%/80% = **75%**

Rule: Beer→**Diaper**

support: 3 (60%)

confidence: P(Beer, Diaper)/P(Beer)

= 60%/60% = 100%

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ min_sup threshold
 - 2. confidence ≥ min_conf threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the min_sup or min_conf thresholds
 - ⇒ Computationally prohibitive!

Mining Association Rules

- 1. Apriori Algorithm
- 2. Frequent Pattern (FP) Growth Algorithm

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)

{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)

{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)

{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)

{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)

{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

Observations:

- All the above rules are partitions of the <u>same</u> itemset: {Milk, Diaper, Beer}
- Rules originating from the <u>same</u> itemset have <u>identical</u> <u>support</u> but can have <u>different</u> <u>confidence</u>
- Thus, decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset
 - each rule is a partitioning of a frequent itemset

Frequent Itemset Generation

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction <u>against every candidate</u>
- Complexity \sim O(NMw) => Expensive since M = 2^d !!!

Scale of the Problem

- WalMart:
 - Sells 100,000 items and can store billions of baskets.
- The Web
 - Has billions of words and many billions of pages.

Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Illustrating Apriori Principle

The Apriori Algorithm

The Apriori Algorithm—An Example

 $Sup_{min} = 2$

Database TDB

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

 C_I

1st scan

p

frequent items

	Itemset	sup
L_{I}	{A}	2
	{B}	3
	{C}	3
	{E}	3

- 1		
L_2	Itemset	sup
	{A, C}	2
	{B, C}	2
	{B, E}	3
	{C, E}	2

 Itemset
 sup

 {A, B}
 1

 {A, C}
 2

 {A, E}
 1

 {B, C}
 2

 {B, E}
 3

 {C, E}
 2

 C_2 $2^{\text{nd}} \text{ scan}$

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

 C_3 **Itemset** {B, C, E}

 3^{rd} scan

Itemset	sup
{B, C, E}	2

The Apriori Algorithm (Pseudo-Code)

C_k: Candidate itemset of size k

```
L_k: frequent itemset of size k
L_1 = \{ \text{frequent items} \};
for (k = 1; L_k != \emptyset; k++) do begin
   C_{k+1} = candidates generated from L_k;
   for each transaction t in database do
     increment the count of all candidates in C_{k+1} that
      are contained in t
   L_{k+1} = candidates in C_{k+1} with min_support
   end
return \bigcup_k L_k;
```

Implementation of Apriori

How to generate candidates?

 \bigcirc

- Step 1: self-joining *L*_k
- Step 2: pruning
- Example of Candidate-generation
 - L_3 ={abc, abd, acd, ace, bcd}

开头两个一样的 组合在一起

- Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace acd and ace
- Pruning: all aubset should be frequent. but in acde, there is not ade
 - acde is removed because ade is not in L_3
- $C_4 = \{abcd\}$

Candidate Generation: SQL Implementation

- SQL Implementation of candidate generation
 - Suppose the items in L_{k-1} are listed in an order

```
Step 1: self-joining L<sub>k-1</sub> insert into C<sub>k</sub> select p.item<sub>1</sub>, p.item<sub>2</sub>, ..., p.item<sub>k-1</sub>, q.item<sub>k-1</sub> from L<sub>k-1</sub> p, L<sub>k-1</sub> q where p.item<sub>1</sub>=q.item<sub>1</sub>, ..., p.item<sub>k-2</sub>=q.item<sub>k-2</sub>, p.item<sub>k-1</sub>!= q.item<sub>k-1</sub>
```

Step 2: pruning forall itemsets c in C_k do forall (k-1)-subsets s of c do if (s is not in L_{k-1}) then delete c from C

Rule Generation

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L − f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

ABC
$$\rightarrow$$
D, ABD \rightarrow C, ACD \rightarrow B, BCD \rightarrow A, A \rightarrow BCD, B \rightarrow ACD, C \rightarrow ABD, D \rightarrow ABC AB \rightarrow CD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrow AD, BD \rightarrow AC, CD \rightarrow AB,

Factors Affecting Complexity

- Choice of minimum support threshold
 - lower support threshold results in more frequent itemsets
- Dimensionality (number of items) in the data set
 - if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - Since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - This may increase max length of frequent itemsets

Midterm Guidelines

- Wednesday Sept 19th @8:00am
- Location:
 - 01-E109
 - **76-228**
- Duration: 90 minutes
- Up to and including material covered last week!
- Problem solving, short fill-in questions
- Calculator & Student ID
- Please check last years final exam questions!