

Measurement of jets in Pb-Pb collisions with ALICE

Salvatore Aiola on behalf of the ALICE Collaboration Yale University

Jets in heavy-ion collisions

 π^{\pm} , π^{0} , K^{\pm} , K^{0} , p, n, ...

Parton hard scattering

 $Q^2 >> 1 \text{ GeV}^2$

Radiation of soft gluons and quarks

Hadronization into a colorless spray of particles

Jet quenching

- √ suppression of jet yield
- √ broadening of jet shape
- √ di-jet energy imbalance
- ✓ etc.

In heavy-ion collisions scattered partons interact with the hot dense medium

Challenge: large, fluctuating background!

Tracking: $|\eta| < 0.9, 0^{\circ} < \phi < 360^{\circ}$

Analysis overview

RM_{bkg} = Background fluctuations response matrix RM_{det} = Detector effects response matrix

 $RM_{comb} = RM_{bkg} \times RM_{det}$

Jet reconstruction

- Input to the jet finder
 - p_{T} recombination scheme: constituents assumed to be massless
 - Charged tracks with $p_T > 150 \text{ MeV/}c$
 - **EMCal clusters** with $E_T > 300$ MeV after charged particle correction:

$$E_{\text{cluster}}^{\text{corr}} = E_{\text{cluster}}^{\text{orig}} - f \sum p^{\text{matched}}, \quad E_{\text{cluster}}^{\text{corr}} \ge 0$$

f = fraction of subtracted momentum = 100%

Fiducial cut requires jet fully contained in the EMCal acceptance

Jet finding algorithm → working definition of jet which must be used consistently in phenomenological models and experiments

Sequential recombination algorithms

- anti-k_T (stable area, signal jets)
- k_{T} (background)
- Infrared- and Collinear-Safe
- FastJet^[1] implementation

Average background density

 Event-by-event charged background density:

$$\rho_{\text{charged}} = \text{median} \left(\frac{p_{\text{T}}^{k_{\text{T}} \text{jet}}}{A^{k_{\text{T}} \text{jet}}} \right)$$

- Median approach reduces bias from signal jets
- Scaled to account for neutral energy:

$$\rho_{\text{scaled}} = s_{\text{EMC}} \cdot \rho_{\text{charged}}$$

- Background density in most central events:
 - ~ 200 GeV/c per unit area
 - ~ 25 GeV/c for an R = 0.2 jet!

Detector level jet spectra

Average background subtracted

Charged leading hadron $p_T > 5$ GeV/c (full symbols)

- Suppress combinatorial background
- Bias towards harder fragmentation

Comparison with inclusive jet sample (open symbols)

Background fluctuations

- Background density fluctuates within event
 - Smears jet momentum
- Fluctuation size characterized by δp_T

$$\delta p_{\mathrm{T}} = \sum p_{\mathrm{T, part}} - \rho_{\mathrm{scaled}} \pi R^2$$

- Asymmetric distribution
 - LHS: Gaussian-like dominated by soft particle production
 - RHS: tail due to hard particles (jets overlap!)

Jet momentum resolution

Background fluctuations

- smaller for 10-30% centrality
- dominate for p_T < 30 GeV/c

Detector effects

- ~ independent of centrality and p_{T}
- dominate for $p_T > 30 \text{ GeV/}c$

Jet p_T spectra in Pb-Pb collisions

- Two centrality classes
 - 0-10% and 10-30%
- **pp** measurement^[1]
- Background subtracted
- Corrections applied for both detector effects and background fluctuations through unfolding
- Unfolding methods
 - Pb-Pb: SVD, Bayesian, χ²
 - pp: bin-by-bin correction, Bayesian

ALI-PREL-77657

Nuclear modification factor in Pb-Pb collisions

- Strong jet suppression observed
- Dependence on centrality class
- Systematic uncertainties are mainly driven by unfolding and tracking efficiency
 - Partially correlated between centralities
- Consistent with ALICE published results on charged jet R_{CP}
 - The ALICE Collaboration, JHEP 1403 (2014) 013 [arXiv:1311.0633]

Jet p_T spectra in p-Pb collisions

NEW

- Jets measured by ALICE in p-Pb collisions at 5.02
 TeV using similar techniques
- Crucial test of Cold Nuclear Matter (CNM) effects
- Compared with different MC pp references

- Results consistent with no CNM effects on jets
- Posters: M. Connors
 (E-06), C. Yaldo (E-39)
- Similar conclusions from charged jet analysis: R. Haake (E-09)
- j_T spectra of charged jet constituents: J. Kral (E-16)

Comparison with theoretical models

- Well-established models: realistic geometry, initial state conditions, hadronization
 - JEWEL: arXiv:1212.1599, arXiv:1311.0048
 - YaJEM: T. Renk, Phys. Rev. C 78 (2008) 034908, Phys. Rev. C 84 (2011) 067902
 - Both models fitted to single particle R_{AA}

Comparison with CMS

- Agreement with CMS in the narrow region of overlap (only 0-10%)
- It would be interesting to extend the p_{T} ranges of both analyses to have a more significant comparison
 - Calorimeter triggered data being used by ALICE to extend to higher p_{T}
 - ➤ Poster: R. Reed (E-27)

Event plane dependence of jets

NEW

• Path length dependence of jet energy loss can be investigated by measuring jet v_2 :

 $v_2^{\text{jet}} = \frac{1}{R_{\text{EP}}} \frac{\pi}{4} \frac{N_{\text{in}} - N_{\text{out}}}{N_{\text{in}} + N_{\text{out}}}$

- In central events (0-5%) zero $v_2^{\text{ch,jet}}$ hypothesis can't be excluded
- Indication of $v_2^{\text{ch,jet}} \neq 0$ in the 30-50% centrality class (2 sigma significance)
- Poster: R. Bertens (E-02)

Conclusions and outlook

- ALICE has measured jets in various collision systems
 - pp: test of pQCD at LHC energies,
 baseline measurement for heavy-ion collisions
 - p-Pb: crucial test of CNM effects, also baseline for future Pb-Pb measurements at 5 TeV
 - Pb-Pb: strong centrality dependent jet suppression observed relative to pp (binary scaling assumed)

CNM effects cannot account for the observed jet quenching
 Strong indication of hot nuclear matter effects

Backup slides

Yale

Jet cross section in pp collisions

Jet cross sections in pp collisions have been measured by ALICE^[1]

- Anti- k_T , R = 0.2 and R = 0.4
- Excellent agreement with pQCD NLO with hadronization effects
- Ratio R = 0.2 / R = 0.4 gives information on the jet structure

Yale

Effect of the leading hadron bias

- PYTHIA pp
 - 5 GeV/c over inclusive
- Pb-Pb collisions
 - 10 GeV/c over 5 GeV/c
 - Compatible with PYTHIA pp

Background fluctuations - Embedding

Single particle embedding δp_{T} (open symbols) is compared with random cones (full symbols)

Detector effects

 $p_{\rm T}^{\rm part}$ = particle level jet $p_{\rm T}$ p_{T}^{det} = detector level jet p_{T}

Jet efficiency dominated by single track efficiency of the leading hadron

- Detector effects extracted from a PYTHIA+GEANT simulation.
- Response assumed to be the same as for pp collisions, except tracking efficiency
 - HIJING simulation used to determine multiplicity effects in Pb-Pb collisions

Unfolding

SVD regularization^[1] acts like a "high frequency filter" of a Fourier decomposition Driven by an integer parameter **k**

^[1] A. Hocker and V. Kartvelishvili, *Nucl. Instrum. Meth.* A 372 (1996) 469 [arXiv:hep-ph/9509307]

$$f^{\text{det}}(p_T^{\text{det}}) = RM_{\text{comb}}(p_T^{\text{det}}, p_T^{\text{part}}) \times \epsilon(p_T^{\text{part}}) \times f^{\text{part}}(p_T^{\text{part}})$$

Unfolding

Mathematically ill-posed problem: **regularization** needed to suppress unphysical oscillations (see k = 8)

Yale

List of systematic uncertainties

	0-10%	10-30%
Unfolding: method, prior choice, regularization strength	10%	7%
Measured p_{T} range	5%	3%
Unfolded p_{T} range	1%	2%
Total unfolding	11.2%	7.9%
EMCal energy scale	3%	3%
Clusterizer	10%	6%
Resolution	1%	1%
Nonlinearity	3%	3%
Total EMCal	10.9%	7.4%
Scale factor	2%	2%
Tracking efficiency	10%	10%
Hadronic correction	7%	5%
Bkg. fluctuations (δp_{T})	5%	2%
Flow	1%	2%
Total others	13.4%	11.7
Total	~21%	~16%

- Most of the uncertainties are p_⊤ dependent
- The values shown in the table for each category correspond to the maximum uncertainty

Yale

Average background

$$S_{\text{EMC}} = \frac{\left(\sum E_{\text{T}}^{\text{cluster}} + \sum p_{\text{T}}^{\text{track}}\right)}{\sum p_{\text{T}}^{\text{track}}}$$

ALI-PREL-79552

Event-by-event charged background density:
 Median approach reduces bias from signal jets

$$\rho_{\text{charged}} = \text{median}(\frac{p_{\text{T}}^{k_{\text{T}} \text{jet}}}{A^{k_{\text{T}} \text{jet}}})$$

Scaled to account for neutral energy:

$$\rho_{\text{scaled}} = s_{\text{EMC}} \cdot \rho_{\text{charged}}$$

Charged jet R_{CP}

R = 0.3

The ALICE Collaboration, JHEP 1403 (2014) 013

 Ξ_{δ}

Charged particle R_{AA}

The ALICE Collaboration, Physics Letters B 720 (2013) 52 http://dx.doi.org/10.1016/j.physletb.2013.01.051.

The ALICE Collaboration, Physics Letters B 696 (2011) 30 http://dx.doi.org/10.1016/j.physletb.2010.12.020.

Yale

Charged jet R_{pPb}

Charged particle R_{pPb}

[arXiv:1405.2737]