

TAACCCTAACCCTAACCCTAACCCTA CCTAACCCTAACCCTAACCCTAACCC CCCTAACCCTAACCCTAACCCTAAC AACCCTAACCCTAACCCTAACCCTA ACCCTAACCCCAACCCCAACCCCAAC CTACCCTAACCCTAACCCTAACCCTA ACCCTAACCCTAACCCTAACCCTAA

Supplementary Learning Materials

叶永鑫(Adam Y. Ye) 北京大学生物信息学中心 or Biginformatics, Poking Unive

Outline

 Introduction of Likelihood and Bayesian approach

Genotyper of MAQ and SNVMix

Likelihood & Bayesian

- Likelihood function
 - a function of the parameters of a statistical model
 - $-L(\theta) = P(Data | \theta)$
- Bayesian approach
 - P(θ|Data) \propto P(θ)* P(Data|θ)
 - posterior ∝ prior * likelihood

A Simple Demostration

- Toss a biased coin, let θ = P(Head) in one trial
- Probability for seeing HTHH?

$$L(\theta) = P(Data|\theta) = P(HTHH|\theta)$$
$$= \theta \cdot (1 - \theta) \cdot \theta \cdot \theta = \theta^{3}(1 - \theta)$$

Bernoulli distribution

Probability for seeing 3 Heads in 4 trials?

$$L(\theta) = P(Data|\theta) = P(3H \text{ in } 4|\theta)$$
$$= {4 \choose 3} \theta^3 (1-\theta)$$

binomial distribution

Models for SNP Calling and Genotyping

MAQ

 Li, H., Ruan, J., and Durbin, R. (2008). Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Research 18, 1851–1858.

samtools

 Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993.

GATK

- McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al. (2010). The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20, 1297–1303.
- DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl, C., Philippakis, A.A., del Angel, G., Rivas, M.A., Hanna, M., et al. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics 43, 491–498.

SNVMix

Goya, R., Sun, M.G.F., Morin, R.D., Leung, G., Ha, G., Wiegand, K.C., Senz, J., Crisan, A., Marra, M.A., Hirst, M., et al. (2010). SNVMix: predicting single nucleotide variants from next-generation sequencing of tumors. Bioinformatics 26, 730–736.

····

- Data: a pile of bases, with baseQ
 - k nucleotide b and (n-k) nucleotide b' with error rate $\epsilon_1 \leq \cdots \leq \epsilon_k \quad \epsilon_{k+1} \leq \cdots \leq \epsilon_n$
- Goal: call genotype <b,b>, <b,b'>, <b',b'>

• For G=<b,b'>, $\Pr\{Data|G=< b,b'>\} \approx \frac{1}{2^n} \binom{n}{k}$

For G=<b,b>,

 $\alpha_{nk} = \Pr\{\text{exactly } k \text{ errors in } n \text{ bases}\}$

$$\bar{\alpha}_{nk}(\bar{\epsilon}) = \binom{n}{k} \bar{\epsilon}^k (1 - \bar{\epsilon})^{n-k}$$

 $\alpha_{nk} = \Pr\{\text{exactly } k \text{ errors in } n \text{ bases}\}$

$$\beta_{nk} = \begin{cases} \Pr{\text{more than } k \text{ errors} | \text{more than } k - 1 \text{ errors in } n \text{ bases} \} & (k > 0) \\ \Pr{\text{more than } 0 \text{ error in } n \text{ bases} \}} & (k = 0) \end{cases}$$

$$\alpha_{nk} = (1 - \beta_{nk})\beta_{n(k-1)} \cdots \beta_{n2}\beta_{n1} = (1 - \beta_{nk}) \prod_{i=0}^{\kappa-1} \beta_{ni}$$
 $\sum_{k=0}^{n} \alpha_{nk} = 1$

$$\beta_{nk} = \frac{\sum_{i=k+1}^{n} \alpha_{ni}}{\sum_{i=k}^{n} \alpha_{ni}} = \frac{1 - \sum_{i=0}^{k} \alpha_{ni}}{1 - \sum_{i=0}^{k-1} \alpha_{ni}}$$

$$\beta_{nn} = 0$$

Copyright © Peking University

$$\bar{\alpha}_{nk}(\bar{\epsilon}) = \binom{n}{k} \bar{\epsilon}^k (1 - \bar{\epsilon})^{n-k} \qquad \bar{\beta}_{nk}(\bar{\epsilon}) = \frac{1 - \sum_{i=0}^k \bar{\alpha}_{ni}}{1 - \sum_{i=0}^{k-1} \bar{\alpha}_{ni}}$$
$$\beta_{nk}(\bar{\epsilon}) = \bar{\beta}_{nk}^{f_k}(\bar{\epsilon}) \qquad 0 < f_k \le 1$$

$$\alpha_{nk}(\bar{\epsilon}) = (1 - \bar{\beta}_{nk}^{f_k}) \prod_{i=0}^{k-1} \bar{\beta}_{ni}^{f_i} = (1 - \bar{\beta}_{nk}^{f_k}) \prod_{i=0}^{k-1} \left(\frac{\bar{\beta}_{ni}}{\bar{\epsilon}}\right)^{f_i} \cdot \bar{\epsilon}^{f_i} = c_{nk}(\bar{\epsilon}) \cdot \prod_{i=0}^{k-1} \bar{\epsilon}^{f_i}$$

$$c_{nk}(\bar{\epsilon}) = (1 - \bar{\beta}_{nk}^{f_k}) \prod_{i=0}^{k-1} \left(\frac{\bar{\beta}_{ni}}{\bar{\epsilon}}\right)^{f_i}$$

$$\alpha_{nk}(\epsilon_1, \cdots, \epsilon_k; \epsilon_{k+1}, \cdots, \epsilon_n) \approx c_{nk}(\bar{\epsilon}) \cdot \prod_{i=0}^{k-1} \epsilon_{i+1}^{f_i}$$

$$\log \bar{\epsilon} = \frac{\sum_{i=0}^{k-1} f_i \log \epsilon_{i+1}}{\sum_{i=0}^{k-1} f_i} \qquad \prod_{i=0}^{k-1} \bar{\epsilon}^{f_i} = \prod_{i=0}^{k-1} \epsilon_{i+1}^{f_i}$$

$$\prod_{i=0}^{k-1} \bar{\epsilon}^{f_i} = \prod_{i=0}^{k-1} \epsilon_{i+1}^{f_i}$$

$$f_k = 0.85^k$$

$$\alpha_{nk}(\epsilon_1, \cdots, \epsilon_k; \tilde{\epsilon}_1, \cdots, \tilde{\epsilon}_k; \epsilon_{k+1}, \cdots, \epsilon_n; \tilde{\epsilon}_{k+1}, \cdots, \tilde{\epsilon}_n) \approx c_{nk}(\bar{\epsilon}) \prod_{i=0}^{k-1} \epsilon_{i+1}^{f_i} \cdot c_{n\bar{k}}(\bar{\tilde{\epsilon}}) \prod_{\bar{i}=0}^{\bar{k}-1} \tilde{\epsilon}_{\bar{i}+1}^{f_i}$$

- For G= $\langle b,b \rangle$, $\Pr\{Data|G=\langle b,b \rangle\} = \alpha_{nk}(\epsilon_1,\cdots,\epsilon_k;\epsilon_{k+1},\cdots,\epsilon_n)$
- For G=<b,b'>, $\Pr\{Data|G=<b,b'>\} \approx \frac{1}{2^n} \binom{n}{k}$
- For G= $\langle b', b' \rangle$, $\Pr\{Data|G = \langle b', b' \rangle\} = \alpha_{n,n-k}(\epsilon_{k+1}, \dots, \epsilon_n; \epsilon_1, \dots, \epsilon_k)$

 $\Pr\{G|Data\} \propto \Pr\{G\} \cdot \Pr\{Data|G\}$

• For G=<b,b>,

 $\Pr\{G = \langle b, b \rangle | Data\} =$

$$\Pr\{G = \langle b, b \rangle\} \cdot \Pr\{Data | G = \langle b, b \rangle\}$$

 $\Pr\{G = < b, b >\} \cdot \Pr\{Data | G = < b, b >\} + \Pr\{G = < b, b' >\} \cdot \Pr\{Data | G = < b, b' >\} + \Pr\{G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b',$

• For G=<b,b'>,

 $\Pr\{G = < b, b' > |Data\} =$

$$\Pr\{G=< b,b'>\}\cdot\Pr\{Data|G=< b,b'>\}$$

 $\Pr\{G = < b, b > \} \cdot \Pr\{Data | G = < b, b > \} + \Pr\{G = < b, b' > \} \cdot \Pr\{Data | G = < b, b' > \} + \Pr\{G = < b', b' > \} \cdot \Pr\{Data | G = < b', b' > \}$

 $\Pr\{G = < b', b' > |Data\} =$

$$\Pr\{G = \langle b', b' \rangle\} \cdot \Pr\{Data | G = \langle b', b' \rangle\}$$

 $\Pr\{G = < b, b >\} \cdot \Pr\{Data | G = < b, b >\} + \Pr\{G = < b, b' >\} \cdot \Pr\{Data | G = < b, b' >\} + \Pr\{G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\} \cdot \Pr\{Data | G = < b', b' >\}$

Genotyping Model used in SNVMix

- Probabilistic Graphical Model
 - position i, read j, genotype k
 - G_i: genotype
 - a_i: match reference allele or not?
 - q_i: prob. of correct base calling
 - z_i: alignment correct or not?
 - $-r_i^i$: prob. of correct mapping
 - $-\mu_k$: parameter of binomial for genotype k

SNVMix2 model

Goya, R., et al. (2010). SNVMix: predicting single nucleotide variants from next-generation sequencing of tumors. Bioinformatics 26, 730–736.

Genotyping Model used in SNVMix

$$p(G_i|\pi) = \text{Multinomial}(G_i|\pi,1)$$

$$p(\pi|\delta) = \text{Dirichlet}(\pi|\delta)$$

$$p(a'_j|G_i = k, \mu_k) = \text{Bernoulli}(a'_j|\mu_k)$$

$$p(\mu_k | \alpha_k, \beta_k) = \text{Gamma}(\mu_k | \alpha_k, \beta_k)$$

SNVMix2 model

Goya, R., et al. (2010). SNVMix: predicting single nucleotide variants from next-generation sequencing of tumors. Bioinformatics 26, 730–736.

Genotyping Model used in SNVMix

$$p(z_j^i) = \text{Bernoulli}(z_j^i|0.5)$$

$$p(q_j^i|a_j^i, z_j^i) = \begin{cases} q_j^i & \text{if } a_j^i = 1, z_j^i = 1\\ 1 - q_j^i & \text{if } a_j^i = 0, z_j^i = 1\\ 0.5 & \text{if } z_j^i = 0 \end{cases}$$

$$p(r_j^i|z_j^i) = \begin{cases} r_j^i & \text{if } z_j^i = 1\\ 1 - r_j^i & \text{if } z_j^i = 0 \end{cases}$$

SNVMix2 model

Goya, R., et al. (2010). SNVMix: predicting single nucleotide variants from next-generation sequencing of tumors. Bioinformatics 26, 730–736.

Thank you for your attention

