10.1 Infinite Sequences

Main Ideas

• Sequences

are lists of numbers where each term is defined by its index n

$$\{a_n\} = \{a_1, a_2, a_3, a_4, a_5, \dots\}$$

the n-th term of a sequence is defined by some formula

$$a_n = f(n)$$

example:
$$a_n = 2^n \implies \{a_n\} = \{2, 4, 8, 16, ...\}$$

sometimes the n-th term can be defined recursively, meaning it is a function of the previous terms

example:
$$a_n = a_{n-1} + a_{n-2}$$
 for $n \ge 3$, $a_1 = 1$, $a_2 = 1 \implies \{a_n\} = \{1, 1, 2, 3, 5, 8, ...\}$

• Continuous Function Theorem

If $\{a_n\}$ is a sequence, and f is a continuous function where $f(n) = a_n$ for all n, then

$$\lim_{n \to \infty} a_n = \lim_{x \to \infty} f(x)$$

if f(x) converges to a finite number L when $x \to \infty$, then a_n converges to L

• Sandwich Theorem

If $\{a_n\}, \{b_n\}, \{c_n\}$ are all sequences with $a_n \leq b_n \leq c_n$ for all n beyond some N, and if

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$$

meaning that $\{a_n\}$ and $\{c_n\}$ both converge to L, then

$$\lim_{n \to \infty} b_n = L$$

- Nonincreasing means that the terms of a sequence $\{a_n\}$ satisfy $a_{n+1} \leq a_n$ for all $n \geq N$ for some N
- Nondecreasing means that the terms of a sequence $\{a_n\}$ satisfy $a_{n+1} \geq a_n$ for all $n \geq N$ for some N
- Monotonic means that a sequence is either nondecreasing or nonincreasing
- Bounded above means that $a_n < M$ for all n for some M
- Bounded bellow means that $a_n > M$ for all n for some M
- Monotonic Sequence Theorem

If a sequence is both bounded bellow and above, and monotonic, then it converges