CÁLCULO NUMÉRICO

Zeros de funções

Gustavo Bono

Universidade Federal de Pernambuco Centro Acadêmico do Agreste Núcleo de Tecnologia Caruaru - Brasil

2017.2

1) Zeros de funções: Motivação

Antes do surgimento dos computadores digitais, existiam diversas maneiras de determinar as raízes de equações algébricas e transcendentais. Em alguns casos, as raízes podiam ser obtidas por métodos diretos, como:

1) Zeros de funções: Motivação

Antes do surgimento dos computadores digitais, existiam diversas maneiras de determinar as raízes de equações algébricas e transcendentais. Em alguns casos, as raízes podiam ser obtidas por métodos diretos, como:

BHASKARA (n=2) CARDANO (n=3) (n=4)

Mas na maioria dos problemas, não existem equações como as mostradas acima !!

Um método para obter uma solução aproximada é traçar o gráfico da função e determinar o ponto no qual ele cruza o eixo da abscissas. Embora os métodos gráficos sejam úteis para obter estimativas grosseiras, eles são limitados por causa de sua falta de precisão.

1) Zeros de funções: Motivação

Diz-se que " α " é uma raiz ou zero de uma função f(x) quando $f(\alpha) = 0$. Tão importante quanto a sua determinação (dos zeros) é a sua enumeração, que consiste em dizer quantos são e de que tipo são (reais ou complexas).

Para polinômios de grau *n*, *n* raízes existem, podendo os mesmos serem reais ou complexas, diferentes ou não, conforme assegura o teorema fundamental da Álgebra. Determinar se as raízes são distintas ou não e reais ou complexas não é uma tarefa trivial.

Para funções transcendentais (seno, cosseno, etc.), o número de raízes pode ser inclusive infinito e a sua determinação uma tarefa mais elaborada. Se forem infinitas é normalmente necessário selecionar apenas as mais importantes e para isso exige-se entendimento do problema.

1) Zeros de funções: Métodos

Métodos para a solução de equações de uma variável real

- 1) Métodos Intervalares (MI): os métodos exploram o fato de que uma função normalmente muda de sinal na vizinhança de uma raiz. Essas técnicas, isolam a raiz em um intervalo e exigem duas estimativas iniciais para a raiz. Tais estimativas devem delimitar a raiz ou estar uma de cada lado dela. Os métodos descritos usam estratégias diferentes para sistematicamente diminuir a largura do intervalo e, portanto, aproximar-se da resposta correta. Os métodos são ditos convergentes porque se aproximam ao valor verdadeiro à medida que os cálculos prosseguem.
- 2) Métodos Abertos (MA): os métodos são baseados em fórmulas que exigem apenas uma único valor inicial de x ou dois valores iniciais que não delimitam necessariamente a raiz. Como tal, eles algumas vezes divergem ou se afastam da raiz verdadeira à medida que os cálculos prosseguem. Entretanto, quando os MA convergem, eles em geral o fazem muito mais rapidamente do que os MI.

1) Zeros de funções: Métodos

Métodos para a solução de equações de uma variável real

Métodos Intervalares (MI)

- a) Método da bisseção
- b) Método da falsa posição

Métodos Abertos (MA)

- a) Iteração de ponto fixo simples
- b) Método de Newton-Raphson
- c) Método da Secante

1) Zeros de funções: Existência e unicidade

O teorema de Bolzano nos fornece condições suficientes para a existência do zero de uma função. Este é uma aplicação direta do Teorema do Valor Intermediário.

Teorema de Bolzano: Se $f:[a,b] \to \mathbb{R}, y=f(x)$ é uma função contínua tal que $f(a)\cdot f(b)<0$, então existe $x^*\in(a,b)$ tal que $f(x^*)=0$.

O resultado é uma consequência imediata do **Teorema do Valor Intermediário** que estabelece que dada uma função contínua $f:[a,b] \to \mathbb{R}, \ y=f(x), \ \text{tal que } f(a) < f(b)$ (ou f(b) < f(a)), então para qualquer $d \in (f(a),f(b))$ (ou $k \in (f(b),f(a))$) existe $x^* \in (a,b)$ tal que $f(x^*) = k$. Ou seja, nestas notações, se $f(a) \cdot f(b) < 0$, então f(a) < 0 < f(b) (ou f(b) < 0 < f(a)). Logo, tomando k = 0, temos que existe $x^* \in (a,b)$ tal que $f(x^*) = k = 0$.

1) Zeros de funções: Existência e unicidade

O teorema de Bolzano nos fornece condições suficientes para a existência do zero de uma função. Este é uma aplicação direta do Teorema do Valor Intermediário.

Teorema de Bolzano: Se $f:[a,b] \to \mathbb{R}, y=f(x)$ é uma função contínua tal que $f(a) \cdot f(b) < 0$, então existe $x^* \in (a,b)$ tal que $f(x^*) = 0$.

Quando procuramos aproximações para zeros de funções, é aconselhável isolar cada raiz em um intervalo. Desta forma, gostaríamos de poder garantir a existência e a unicidade da raiz dentro de um dado intervalo. A seguinte proposição nos fornece as condições suficientes para tanto.

Proposição: Se $f:[a,b] \to \mathbb{R}$ é uma função diferenciável, $f(a) \cdot f(b) < 0$ e f'(x) > 0 (ou f'(x) < 0) para todo $x \in (a,b)$, então existe um único $x^* \in (a,b)$ tal que $f(x^*) = 0$.

Método da Bisseção

2.1) Zeros de funções: $M\acute{e}todo~da~BISSE \c CAO$

O método da bisseção explora o fato de que uma função contínua $f:[a,b] \to \mathbb{R}$ com $f(a)\cdot f(b) < 0$ tem um zero no intervalo (a,b). Assim, a ideia para aproximar o zero de uma função f(x) é tomar, como primeira aproximação, o ponto médio do intervalo [a,b], isto é:

2.1) Zeros de funções: Método da BISSEÇÃO

O método da bisseção explora o fato de que uma função contínua $f:[a,b] \to \mathbb{R}$ com $f(a) \cdot f(b) < 0$ tem um zero no intervalo (a,b). Assim, a ideia para aproximar o zero de uma função f(x) é tomar, como primeira aproximação, o ponto médio do intervalo [a,b], isto é:

2.1) Zeros de funções: $M\acute{e}todo~da~BISSE \c CAO$

Na figura mostram-se diversas formas gerais nas quais uma raiz pode existir em um intervalo determinado. $\sqrt[3]{m_{\rm c}}$

Será possível aplicar o método da Bisseção?

2.1) Zeros de funções: Método da BISSEÇÃO

EXEMPLO 1: use o método da bisseção

Use o método da bisseção para calcular uma solução de $e^x = x + 2$ no intervalor [-2,0] com precisão *TOL* = 10⁻¹.

NOTA:

A equação dada é equivalente a calcular o zero de

$$f(x) = e^x - x - 2$$

Como critério de parada empregar:

$$\frac{\left|b^n - a^n\right|}{2} < TOL$$

2.1) Zeros de funções: $M\acute{e}todo~da~BISSE \c CAO$

EXEMPLO 1: use o método da bisseção

Use o método da bisseção para calcular uma solução de $e^x=x+2$ no intervalor [-2,0] com precisão $TOL=10^{-1}$.

2.1) Zeros de funções: Método da BISSEÇÃO

Outro critério de parada pode ser dado em função da raiz estimada entre duas iterações sucessivas, ou seja:

$$\varepsilon_a = \left| \frac{x_r^{novo} - x_r^{velho}}{x_r^{novo}} \right| 100\%$$

onde x_r^{novo} é a raiz da iteração atual e x_r^{velho} é a raiz da iteração prévia.

O valor absoluto é usado porque, em geral, estamos interessados no módulo de ε_a em vez de no seu sinal. Quando ε_a se torna menor do que um critério de parada pré-especificado, param-se os cálculos.

2.1) Zeros de funções: Algoritmo do método da BISSEÇÃO

No pseudocódigo para o método da bisseção, mostra-se uma verificação do erro, além disso, é colocado um limite superior no número de iterações. Finalmente, é incluída uma verificação do erro para evitar divisão por zero durante o cálculo do erro.

Cálculo das funções 2n

2.1) Zeros de funções: Algoritmo do método da BISSEÇÃO

No pseudocódigo para o método da bisseção, mostra-se uma verificação do erro, além disso, é colocado um limite superior no número de iterações. Finalmente, é incluída uma verificação do erro para evitar divisão por zero durante o cálculo do erro.

```
FUNCTION Bisect(x1, xu, es, imax, xr, iter, ea)
    iter = 0
    fl = f(x1)
    DO
        xrold = xr
        xr = (x1 + xu) / 2
        fr = f(xr)
        iter = iter + 1
        lf xr ≠ 0 THEN
            ea = ABS((xr - xrold) / xr) * 100
    END IF
        test = fl * fr
        IF test < 0 THEN
        xu = xr
        ELSE IF test > 0 THEN
        xl = xr
        fl = fr
        ELSE
        ea = 0
        END IF
        IF ea < es OR iter ≥ imax EXIT
        END DO
        Bisect = xr
        END Bisect
```

Cálculo das funções 2n

Cálculo das funções (n+1)

2.1) Zeros de funções: Convergência do método da BISSEÇÃO

O próximo teorema nos garante a convergência do método da bisseção.

Teorema: Sejam $f:[a,b] \to \mathbb{R}$ uma função contínua tal que $f(a) \cdot f(b) < 0$ e x^* o único zero de f(x) no intervalo (a,b). Então, a sequência $\left\{x^{(n)}\right\}_{n \geq 0}$ do método da bisseção satisfaz:

$$\left| x^{(n)} - x^* \right| < \frac{b-a}{2^{n+1}}, \quad \forall n \ge 0$$

isto é, $x^{(n)} \rightarrow x^*$ quando $n \rightarrow \infty$.

Demonstração no quadro!!

2.1) Zeros de funções: Convergência do método da BISSEÇÃO

EXEMPLO 2: convergência no método da bisseção

No Ex. 1, precisamos de 4 iterações do método da bisseção para computar uma aproximação com precisão de 10^{-1} do zero de $f(x) = e^x - x - 2$ tomando como intervalo inicial [a,b] = [-2,0].

Determinar uma estimativa do número de iterações *a priori*.

2.1) Zeros de funções: $M\acute{e}todo~da~BISSE \c CAO$

O método da bisseção tem a boa propriedade de garantir convergência, bem como de fornecer uma simples estimativa da precisão da aproximação calculada.

Entretanto, a taxa de convergência linear é superada por outros métodos.

Método da Falsa Posição

2.2) Zeros de funções: $M\'{e}todo$ da FALSA POSIÇÃO

Embora a bisseção seja uma técnica perfeitamente válida para determinar raízes, sua abordagem do tipo *força bruta* é relativamente ineficiente. A falsa posição é uma alternativa baseada na seguintes percepção gráfica.

Um deficiência do método da bisseção é que, na divisão do intervalo de x_l a x_u em metades iguais, não são levados em conta os módulos de $f(x_l)$ e $f(x_u)$.

Por exemplo, se $f(x_l)$ estiver muito mais próximo de zero do que $f(x_u)$, será provável que a raiz esteja mais próxima de x_l do que de x_u .

Um método alternativo que explora essa percepção gráfica é ligar $f(x_l)$ e $f(x_u)$ com uma reta. A interseção dessa reta com o eixo x representa uma estimativa melhorada da raiz.

2.2) Zeros de funções: Método da FALSA POSIÇÃO

Usando semelhança de triângulos,

$$\frac{f(x_l)}{x_c - x_l} = \frac{f(x_u)}{x_c - x_u}$$

que pode ser reescrita como:

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

O valor de x_r calculado com a equação, substitui qualquer das duas aproximações iniciais, x_l ou x_u . O algoritmo do método da Falsa Posição (ou da Interpolação Linear) é idêntico ao da bisseção, com a diferença de que em lugar da média agora emprega-se a equação deduzida acima.

3) Zeros de funções

Os métodos abertos, são baseados em fórmulas que exigem apenas um único valor inicial de x ou dois valores iniciais que não delimitam necessariamente a raiz. Como tal, eles algumas vezes *divergem* ou se afastam da raiz verdadeira à medida que os cálculos avançam. Entretanto, quando os MA convergem, eles em geral o fazem muito mais rapidamente do que os métodos intervalares.

Método da

bisseção

 $\label{eq:methodo} \begin{aligned} & \mathbf{M\acute{e}todo} \ \mathbf{Aberto:} \\ & \text{avançamos de } x_i \\ & \text{para } x_{i+I} \ \mathbf{de} \\ & \text{forma iterativa} \end{aligned}$

Iteração de Ponto Fixo

3.1) Zeros de funções: Iteração de PONTO FIXO SIMPLES

Os métodos abertos usam uma fórmula para prever a raiz. Tal fórmula pode ser deduzida para a iteração de ponto fixo simples (também iteração de um ponto, substituição sucessivas ou aproximações sucessivas) reescrevendo a equação f(x)=0 de modo que x esteja isolado no lado esquerdo da equação:

$$x = g(x)$$

A utilidade da equação é que ela fornece uma fórmula para prever um novo valor de x em função de um velho valor de x. Portanto, dada uma aproximação inicial para a raiz x_i , a equação pode ser usada para calcular uma nova estimativa x_{i+1} expressa pela fórmula iterativa:

$$x_{i+1} = g(x_i)$$

3.1) Zeros de funções: Iteração de PONTO FIXO SIMPLES

EXEMPLO 3: iteração de ponto fixo simples

Determinar a raiz de $f(x) = e^{-x} - x$.

A função pode ser separada diretamente e expressa na forma de

$$f(x) = e^{-x} - x$$
 $x_{i+1} = e^{-x_i}$

Começando com uma aproximação inicial x_0 = 0, essa equação iterativa pode ser usada para calcular a raiz.

3.1) Zeros de funções: Convergência da iteração de PONTO FIXO SIMPLES

Teorema do Ponto Fixo: A convergência ocorre quando |g'(x)| < 1 . Se |g'(x)| < 1 , os erros diminuem a cada iteração

3.1) Zeros de funções: Algoritmo da iteração de PONTO FIXO SIMPLES

O algoritmo computacional para a iteração de ponto fixo é extremamente simples e consiste em um laço para calcular iterativamente novas estimativas até que o critério de parada seja satisfeito.

```
FUNCTION Fixpt(x0, es, imax iter, ea) xr = x0 iter = 0 00 xrold = xr xr = g(xrold) iter = iter + 1 IF xr \neq 0 \text{ THEN} ea = \frac{|x-xrold|}{xr}.100 END IF IF ea < es \text{ OR } iter \ge imax \text{ EXIT} END DO Fixpt = xr END Fixpt
```


Método de Newton - Raphson

Isaac Newton 1642-1727 (matemático e físico inglês)

Joseph Raphson

Joseph Raphson 1648-1715 (matemático inglês)

3.2) Zeros de funções: Método de NEWTON-RAPHSON

Talvez a fórmula mais amplamente usada para localizar uma raiz seja a equação de Newton-Raphson. Se a aproximação inicial da raiz for x_i , pode-se estender uma reta tangente a partir do ponto [x_i , $f(x_i)$]. O ponto no qual essa tangente cruza o eixo x comumente representa uma estimativa melhorada da raiz.

Assumimos que x^* é um zero de uma dada função f(x) continuamente diferenciável, isto é, $f(x^*)=0$. Afim de usar a iteração do ponto fixo, observamos que, equivalentemente, x^* é um ponto fixo da função:

$$g(x) = x + \alpha(x)f(x), \quad \alpha(x) \neq 0,$$

onde $\alpha(x)$ é uma função arbitrária que queremos escolher de forma que a iteração do ponto fixo tenha ótima taxa de convergência.

Do **Teorema do Ponto Fixo** temos que a taxa de convergência é dada em função do valor absoluto da derivada de g(x). Calculando a derivada temos:

$$g'(x) = 1 + \alpha(x)f'(x) + \alpha'(x)f(x).$$

3.2) Zeros de funções: Método de NEWTON-RAPHSON

No ponto $x = x^*$, temos:

$$g'(x^*) = 1 + \alpha(x^*)f'(x^*) + \alpha'(x^*)f(x^*).$$

Como $f(x^*)=0$, temos:

$$g'(x^*) = 1 + \alpha(x^*)f'(x^*).$$

Sabemos que o processo iterativo converge tão mais rápido quanto menor for |g'(x)| nas vizinhanças de x^* . Isto nos leva a escolher:

$$g'(x^*) = 0,$$

e então temos:

$$\alpha(x^*) = -\frac{1}{f'(x^*)},$$

se
$$f'(x) \neq 0$$
.

A discussão acima nos motiva a introduzir o método de Newton-Raphson, cujas iterações são dadas por:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

3.2) Zeros de funções: Método de NEWTON-RAPHSON (1)

A fórmula iterativa geral do método de Newton também pode ser deduzida a partir da série de Taylor. A expansão em série de Taylor de f(x) em torno de x_{I} , é dada por:

$$f(x) = f(x_1) + (x - x_1)f'(x_1) + \frac{1}{2!}(x - x_1)^2 f''(x_1) + \dots$$

Se x_2 é uma solução da equação f(x)=0 e x_1 é um ponto próximo a x_2 , então:

$$f(x_2) = 0 = f(x_1) + (x_2 - x_1)f'(x_1) + \frac{1}{2!}(x_2 - x_1)^2 f''(x_1) + \dots$$

Considerando apenas os dois primeiros termos da série, uma solução aproximada pode ser determinada resolvendo a equação mostrada acima para x_2 :

$$f(x_2) = 0 = f(x_1) + (x_2 - x_1)f'(x_1)$$
 $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$

O resultado é o mesmo obtido na dedução anterior. Na iteração seguinte, a expansão em série de Taylor é escrita em torno do ponto x_2 , e uma solução aproximada x_3 é calculada. A fórmula geral fica: f(x)

 $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$

3.2) Zeros de funções: Interpretação geométrica do método de NEWTON-RAPHSON

Seja dada uma função f(x), escolhemos uma aproximação inicial $x^{(I)}$ e computamos:

$$x^{(2)} = x^{(1)} - \frac{f(x^{(1)})}{f'(x^{(1)})}.$$

Geometricamente, o ponto x $^{(2)}$ é a interseção da reta tangente ao gráfico da função f(x) no ponto x=x $^{(I)}$ com o eixo das abscissas. A equação da reta é dada por:

$$y = f'(x^{(1)})(x - x^{(1)}) + f(x^{(1)}).$$

Assim, a interseção da reta com o eixo das abscissas ocorre quando y=0:

$$f'(x^{(1)})(x-x^{(1)}) + f(x^{(1)}) = 0 \Rightarrow x = x^{(1)} - \frac{f(x^{(1)})}{f'(x^{(1)})}.$$

ou seja, dado $x^{(n)}$ a próxima aproximação $x^{(n+1)}$ é o ponto de interseção entre o eixo das abscissas e a reta tangente ao gráfico da função no ponto $x=x^{(n)}$.

3.2) Zeros de funções: Convergência do método de NEWTON-RAPHSON

Seja f(x) uma função com derivadas primeira e segunda contínuas tal que $f(x^*)=0$ e $f'(x^*)\neq 0$. Seja também a função g(x) definida como:

$$g(x) = x - \frac{f(x)}{f'(x)}.$$

Expandimos em série de Taylor em torno de $x = x^*$, obtemos:

$$g(x) = g(x^*) + g'(x^*)(x - x^*) + \frac{g''(x^*)}{2}(x - x^*)^2 + O\left((x - x^*)^3\right).$$

Observamos que,

$$g(x^*) = x^*$$

$$g'(x^*) = 1 - \frac{f'(x^*)f'(x^*) - f(x^*)f''(x^*)}{(f'(x^*))^2} = 0$$

3.2) Zeros de funções: Convergência do método de NEWTON-RAPHSON

Portanto,

$$g(x) = x^* + \frac{g''(x^*)}{2}(x - x^*)^2 + O((x - x^*)^3)$$

Com isso, temos:

$$x^{(n+1)} = g(x^{(n)}) = x^* + \frac{g''(x^*)}{2}(x^{(n)} - x^*)^2 + O\left((x - x^*)^3\right),$$

ou seja,

$$\left| x^{(n+1)} - x^* \right| \le C \left| x^{(n)} - x^* \right|^2$$

Isto mostra que o método de Newton-Raphson tem taxa de convergência quadrática!!

$$C = \left| \frac{g''(x^*)}{2} \right|$$

3.2) Zeros de funções: Algoritmo do método de NEWTON-RAPHSON

O algoritmo computacional para o método de *N-R*, pode ser obtido facilmente fazendo algumas alterações no algoritmo da iteração de ponto fixo.

```
FUNCTION Fixpt(x0, es, imax iter, ea) xr = x0 iter = 0 00 xrold = xr xr = \frac{g(xrold)}{fter} iter = iter + 1 1Fx r \neq 0 THEN ea = \frac{xr - xrold}{xr} \cdot 100 END IF IF ea < es OR iter <math>\ge i imax EXIT END DO Fixpt = xr END Fixpt
```


3.2) Zeros de funções: Algoritmo do método de NEWTON-RAPHSON

O algoritmo computacional para o método de *N-R*, pode ser obtido facilmente fazendo algumas alterações no algoritmo da iteração de ponto fixo.

```
INPUT initial approximation p_0; tolerance TOL: maximum number of iterations N_0. OUTPUT approximate solution p or message of failure. 

Step 1 Set i=1.

Step 2 While i \le N_0 do Steps 3-6.

Step 3 Set p=p_0-f(p_0)/f'(p_0). (Compute p_i.)

Step 4 If |p-p_0| < TOL then OUTPUT (p); (The procedure was successful.) STOP.

Step 5 Set i=i+1.

Step 6 Set p_0=p. (Update p_0.)

Step 7 OUTPUT ('The method failed after N_0 iterations, N_0=i, N_0); (The procedure was unsuccessful.) STOP.
```


3.2) Zeros de funções: Método de NEWTON-RAPHSON

EXEMPLO 4: use o método de N-R

Determinar a raiz de $f(x) = 5x^2 + 7x - 52$ no intervalo [0,6].

3.2) Zeros de funções: Método de NEWTON-RAPHSON

EXEMPLO 4: use o método de N-R

Determinar a raiz de $f(x) = 5x^2 + 7x - 52$ no intervalo [0,6].

3.2) Zeros de funções: Problemas de convergência no método de N-R

Embora o método de *N-R* seja em geral muito eficiente, há situações nas quais ele tem um desempenho insatisfatório. Problemas de convergência ocorrem tipicamente quando o valor de f'(x) é próximo de zero na vizinhança da solução, ou seja, f(x) = 0.

 ${f 3.2})$ Zeros de funções: Problemas de convergência no método de N-R

EXEMPLO 5: use o método de N-R

Determinar a raiz positiva de $f(x) = x^{10} - 1$ usando o método de *N-R* e uma aproximação inicial de x = 0,5.

3.2) Zeros de funções: Problemas de convergência no método de N-R

EXEMPLO 5: use o método de N-R

Determinar a raiz positiva de $f(x) = x^{10} - 1$ usando o método de *N-R* e uma aproximação inicial de x = 0.5.

	iteracao	x_i	f(xi)	df(xi)	erro	x_i+
	1	0.5	-0.99902	0.019531	0.99032	51.6
	2	51.65	1.3511e+017	2.616e+016	0.11111	46.48
	3	46.485	4.7112e+016	1.0135e+016	0.11111	41.83
	4	41.837	1.6427e+016	3.9264e+015	0.11111	37.65
	5	37.653	5.7277e+015	1.5212e+015	0.11111	33.88
	6	33.888	1.9971e+015	5.8934e+014	0.11111	30.49
	7	30.499	6.9635e+014	2.2832e+014	0.11111	27.44
	8	27.449	2.428e+014	8.8456e+013	0.11111	24.70
	9	24.704	8.466e+013	3.427e+013	0.11111	22.23
	10	22.234	2.9519e+013	1.3277e+013	0.11111	20.0
	11	20.01	1.0293e+013	5.1437e+012	0.11111	18.00
	12	18.009	3.5888e+012	1.9928e+012	0.11111	16.20
- 4	13	16.208	1.2514e+012	7.7204e+011	0.11111	14.58
27	35	1.597	106.93	675.8	0.10997	1.438
100K	36	1.4388	37.021	264.26	0.10787	1.298
	37	1.2987	12.65	105.1	0.10214	1.178
SY	38	1.1784	4.1613	43.801	0.087696	1.083
NAN	39	1.0833	1.2268	20.555	0.058305	1.023
1	40	1.0237	0.26351	12.343	0.021299	1.002
*	41	1.0023	0.023403	10.21	0.002292	
	42	1	0.00023937	10.002	2.3932e-005	
	43	1	2.5776e-008	10	2.5776e-009	
	44	1	0	1.0	0	

Método da Secante

3.3) Zeros de funções: Método da SECANTE

O método da secante é um esquema usado para se obter a solução numérica de uma equação na forma f(x)=0. O método é uma variação do método de *N-R*, evitando a necessidade de conhecerse a derivada analítica de f(x).

A derivada pode ser aproximada por uma diferença finita regressiva, como:

$$f'(x_i) \cong \frac{f(x_{i-1}) - f(x_i)}{x_{i-1} - x_i}$$

Essa aproximação pode ser substituída na equação iterativa do método de *N-R*, $x_{i+1}=x_i-\frac{f\left(x_i\right)}{f\left(x_i\right)}$, para fornecer a seguinte equação iterativa:

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

A equação é a fórmula do método da secante. Observe que a abordagem exige duas estimativas iniciais de x. No entanto, como não é exigido que f(x) mude de sinal entre as estimativas , ele não é classificado como um método intervalar.

3.3) Zeros de funções: Interpretação geométrica do método da SECANTE

Enquanto, o método de N-R está relacionado às retas tangentes ao gráfico da função objetivo f(x), o método das secantes, como o próprio nome indica, está relacionado às retas secantes.

Sejam f(x) e as aproximações x^I e x^2 do zero x^* desta função, a iteração do método das secantes fornece:

$$x^{(3)} = x^{(2)} - f(x^{(2)}) \frac{x^{(2)} - x^{(1)}}{f(x^{(2)}) - f(x^{(1)})}.$$

De fato, x^3 é o ponto de interseção da reta secante ao gráfico de f(x) pelos pontos x^I e x^2 com o eixos das abscissas. A equação da reta secante fica definida como:

$$y = \frac{f(x^{(2)}) - f(x^{(1)})}{x^{(2)} - x^{(1)}} (x - x^{(2)}) + f(x^{(2)}).$$

Esta reta intercepta o eixo das abscissas no ponto x tal que y= 0, isto é:

$$\frac{f(x^{(2)}) - f(x^{(1)})}{x^{(2)} - x^{(1)}} (x - x^{(2)}) + f(x^{(2)}) \Rightarrow x = x^{(2)} - f(x^{(2)}) \frac{x^{(2)} - x^{(1)}}{f(x^{(2)}) - f(x^{(1)})}.$$

3.3) Zeros de funções: Algoritmo do método da SECANTE

```
INPUT initial approximations p_0, p_1; tolerance TOL; maximum number of iterations N_0. OUTPUT approximate solution p or message of failure. 

Step 1 Set i=2; q_0=f(p_0); q_1=f(p_1). q_1=f(p_1). q_1=f(p_1). Step 2 While i\leq N_0 do Steps 3-6. 

Step 3 Set p=p_1-q_1(p_1-p_0)/(q_1-q_0). (Compute p_i.) Step 4 If |p-p_1|<TOL then OUTPUT (p); (The procedure was successful.) STOP. 

Step 5 Set i=i+1. Step 6 Set p_0=p_1; (Update p_0,q_0,p_1,q_1.) q_0=q_1; p_1=p; q_1=f(p). 

Step 7 OUTPUT ('The method failed after N_0 iterations, N_0=', N_0); (The procedure was unsuccessful.) STOP.
```


3.3) Zeros de funções: $M\'{e}todo$ da SECANTE

EXEMPLO 6: use o método da Secante

Encontre a raiz de $f(x) = \cos(x) - x$ com um erro de 10⁻⁴. Escolha como pontos de

4) Zeros de funções: Diferença entre os métodos da SECANTE e da FALSA POSIÇÃO

5) Zeros de funções: Comparativo entre os métodos

Método	Convergência	Erro	Critério de parada
Bisseção	Linear $(p=1)$	$\epsilon_{n+1} = \frac{1}{2}\epsilon$	$\frac{b_n - a_n}{2} < \text{erro}$
Iteração de ponto fixo	Linear $(p=1)$	$\epsilon_{n+1} \approx \phi'(x^*) \epsilon_n$	$\frac{\frac{ \Delta_n }{1 - \frac{\Delta_n}{\Delta_{n-1}}} < \text{erro}}{\Delta_n < \Delta_{n-1}}$
Newton	Quadrática $(p=2)$	$\epsilon_{n+1} \approx \frac{1}{2} \left \frac{f''(x^*)}{f'(x^*)} \right \epsilon_n^2$	$ \Delta_n < ext{erro}$
Secante	$p = \frac{\sqrt{5} + 1}{2}$ $\approx 1,618$	$\varepsilon_{n+1} \approx \left \frac{f''(x^*)}{f'(x^*)} \right \varepsilon_n \varepsilon_{n-1}$	$ \Delta_n < { m erro}$

Cálculo Numérico – Um livro Colaborativo, UFRGS, 2017.

5) Zeros de funções: Comparativo entre os métodos (1)

Method	Formulation	Graphical Interpretation	Errors and Stopping Criteria
		Bracketing methods:	
Bisection	$x_r = \frac{x_l + x_u}{2}$	P(x) Root	Stopping criterion:
	If $f(x)f(x) < 0$, $x_c = x_c$ $f(x)f(x) > 0$, $x_l = x_c$	L/2	$\left \frac{x_r^{new} - x_r^{old}}{x_r^{new}}\right 100\% \le \epsilon$
False position	$x_c = x_o - \frac{f[x_o][x_i - x_o]}{f[x_i] - f[x_o]}$	no.	Stopping criterion:
	if $f(x)f(x) < 0$, $x_0 = x$, $f(x)f(x) > 0$, $x_1 = x$.		$\left \frac{x_i^{\text{prew}} - x_i^{\text{old}}}{x_i^{\text{prew}}}\right 100\% \le \epsilon$
Newton-Raphson		I(x) Tangent	Stopping criterion:
	$\mathbf{x}_{i+1} = \mathbf{x}_i - \frac{f[\mathbf{x}_i]}{F[\mathbf{x}_i]}$	1, 1 × x	$\left \frac{x_{i+1} - x_i}{x_{i+1}} \right 100\% \le \epsilon_s$ Error: $E_{i+1} = 0\{E_i^2\}$
Secont	$f(\mathbf{x})(\mathbf{x}_{i-1} - \mathbf{x})$	/(x)	Stopping criterion: $ x_{i-1} - x_i $
	$x_{i+1} = x_i - \frac{f[x_i](x_{i-1} - x_i)}{f[x_{i-1}] - f[x_i]}$	X, X, X, X, X	$\left \frac{x_{i+1}-x_i}{x_{i+1}}\right 100\% \le \varepsilon_s$

Métodos Numéricos para Engenharia, Chapra e Canale, 2016.

5) Zeros de funções: Comparativo entre os métodos

EXEMPLO 7: use os métodos da Bisseção, de N-R e da Secante

Determinar a raiz de $f(x) = 5x^2 + 7x - 52$ no intervalo [0,6] com um erro de 10⁻⁴.

5) Zeros de funções: Comparativo entre os métodos

EXEMPLO 7: use os métodos da Bisseção, de N-R e da Secante

Determinar a raiz de $f(x) = 5x^2 + 7x - 52$ no intervalo [0,6] com um erro de 10-4.

6) Zeros de funções

- 1. Como se pode melhorar a *taxa de convergência* dos métodos apresentados ?
- 2. Que outros métodos existem e como aumentam sua eficiência?
- 3. Como revolvemos um problema de raízes múltiplas ? Por exemplo, f(x) = (x-3)(x-1)(x-1)
- 4. Quais são os principais comandos usados na obtenção de raízes no MATLAB/Octave/etc. ?
- 5. Os comandos no MATLAB/Octave/etc. são baseados em quais métodos ?

Dúvidas ??

Obrigado

Críticas e sugestões serão bem-vindas, pois assim poderão ser melhoradas as aulas/slides. bonogustavo@gmail.com

