Entregable 2

Contador aleatorio

CARLOS EDUARDO VARGAS TORREALBA Alu0101604077@ull.edu.es 1º Grado Informática Universidad de La Laguna 30/3/2023

Índice

1.	Introducción y objetivos	1
	Tabla de transiciones	
	Mapas de Karnaugh	
	Circuito del contador implementado	
	·	
	Código VHDL del contador	
6.	Cronograma de simulación	5

1.- Introducción y objetivos

En esta práctica se va a proceder a la implementar un contador aleatorio. Éste tendrá como señales de control una señal de reinicio (reset) y una señal de reloj; y como salidas se muestra la cuenta en binario y codificada para su representación en un display de 7 segmentos.

El contador aleatorio asignado es el siguiente:

Alumno	Secuencia	Flip-flops				Cíclico		
210 Vargas Torrealba, Carlos	1,9,8,7,5,0,4,3,2,6	Т	D	D	D	Sí		
Eduardo								

2.- Tabla de transiciones

La tabla de transiciones del contador aleatorio asignado es:

	Estado actual			Estado siguiente								
	Q_{A}	Q_{B}	Q _C	Q_{D}	Q_A^+	Q _B ⁺	Q _C ⁺	$Q_{\rm D}^+$	T_A	D_{B}	D _C	T_{D}
0	0	0	0	0	0	1	0	0	0	1	0	0
1	0	0	0	1	1	0	0	1	1	0	0	1
2	0	0	1	0	0	1	1	0	0	1	1	0
3	0	0	1	1	0	0	1	0	0	0	1	0
4	0	1	0	0	0	0	1	1	0	0	1	1
5	0	1	0	1	0	0	0	0	0	0	0	0
6	0	1	1	0	0	0	0	1	0	0	0	1
7	0	1	1	1	0	1	0	1	0	1	0	1
8	1	0	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	0	0	0	0	0	0	0
10	1	0	1	0	X	X	X	X	X	X	X	X
11	1	0	1	1	X	X	X	X	X	X	X	X
12	1	1	0	0	X	X	X	X	X	X	X	X
13	1	1	0	1	X	X	X	X	X	X	X	X
14	1	1	1	0	X	X	X	X	X	X	X	X
15	1	1	1	1	X	X	X	X	X	X	X	X

3.- Mapas de Karnaugh

Los mapas de Karnaugh de las entradas de los biestables son:

MAPA 3 MAPA 4

MAPA 1: Ta(Qa,Qb,Qc,Qd) = Qa'Qb'Qc'Qd + QaQd'

ROJO: Qa' Qb' Qc' Qd

AZUL: QaQd'

MAPA 2: Ta(Qa,Qb,Qc,Qd) = QbQcQd + Qb'Qd'

ROJO: QbQcQd AZUL: Qb'Qd' MAPA 3: Ta(Qa,Qb,Qc,Qd) = QbQc'Qd' + Qb'Qc + QaQd'

ROJO: QbQc'Qd' AZUL: Qb'Qc MORADO: QaQd'

MAPA 4: Ta(Qa,Qb,Qc,Qd) = Qa'Qb'Qc'Qd + QbQd' + QaQd' + QbQc

ROJO Qa'Qb'Qc'Qd

AZUL: QbQd' MORADO: QaQd' VERDE: QbQc

4.- Circuito del contador implementado

A continuación, se muestra el circuito del contador que se ha implementado:

5.- Código VHDL del contador

En este apartado se muestra el código VHDL del contador implementado:

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity contador is
  Port (ce: in STD_LOGIC;
     reset: in STD_LOGIC;
     count : out STD_LOGIC_VECTOR (3 downto 0);
     clk: in STD LOGIC);
end contador;
architecture Behavioral of contador is
COMPONENT ffT_reset
      PORT(
            reset: IN STD_LOGIC;
            clk: IN STD_LOGIC;
            ce: IN STD_LOGIC;
            t: IN STD_LOGIC;
            q: OUT STD_LOGIC
            );
      END COMPONENT;
COMPONENT ffD_reset
      PORT(
            clk: IN STD LOGIC;
            reset: IN STD_LOGIC;
            ce: IN STD_LOGIC;
            d: IN STD LOGIC;
            q: OUT STD_LOGIC
            );
      END COMPONENT;
COMPONENT ffD_preset
      PORT(
            clk: IN STD_LOGIC;
            preset: IN STD LOGIC:
            ce: IN STD_LOGIC;
            d: IN STD_LOGIC;
            q: OUT STD_LOGIC
```

```
END COMPONENT;
       signal ta, db, dc, dd: STD_LOGIC;
       signal qa, qb, qc, qd: STD_LOGIC;
begin
unitA: ffT_reset PORT MAP(
              reset => reset,
              clk => clk,
              ce => ce,
              t => ta,
              q => qa
       );
unitB: ffD_reset PORT MAP(
              clk => clk,
              reset => reset,
              ce => ce,
              d \Rightarrow db,
              q => qb
       );
unitC: ffD_reset PORT MAP(
              clk => clk,
              reset => reset,
              ce => ce,
              d \Rightarrow dc,
              q => qc
       );
unitD: ffD_preset PORT MAP(
              clk => clk,
              preset => reset,
              ce => ce,
              d \Rightarrow dd,
              q => qd
       );
ta <= (not qa and not qb and not qc and qd) or (qa and not qd);
db <= (not qb and not qd) or (qb and qc and qd);
dc <= (qb and not qc and not qd) or (not qb and qc) or(qa and not qd);
dd <= (not qa and not qb and not qc and qd) or (qb and not qd) or (qb and qc) or (qa and
not qd);
count <= qa & qb & qc & qd;
end Behavioral;
```

6.- Cronograma de simulación

A continuación, se muestra el cronograma de simulación del sistema implementado con las salidas del contador y del decodificador de 7 segmentos.

