Introduction to Machine Learning Applications

Spring 2023

Support Vector Machines (SVM)

Minor Gordon

gordom6@rpi.edu

Support Vector Machines

Want to separate "+" from "-" using a line

Data:

- Training examples:
 - $(x_1, y_1) ... (x_n, y_n)$
- Each example i:

$$x_i = (x_i^{(1)}, ..., x_i^{(d)})$$

x_i(j) is real valued

$$y_i \in \{-1, +1\}$$

Inner product:

$$\mathbf{w} \cdot \mathbf{x} = \sum_{j=1}^{d} w^{(j)} \cdot x^{(j)}$$

Which is best linear separator (defined by w)?

Largest Margin

 Distance from the separating hyperplane corresponds to the "confidence" of prediction

Example:

We are more sure about the class of A and B than of C

Largest Margin

• Margin γ : Distance of closest example from the decision line/hyperplane

The reason we define margin this way is due to theoretical convenience and existence of generalization error bounds that depend on the value of margin.

Support Vector Machines

- Separating hyperplane is defined by the support vectors
 - Points on +/- planes from the solution
 - If you knew these points, you could ignore the rest
 - Generally,
 d+1 support vectors (for d dim. data)

What about multiple classes?

Idea 1:

One against all

Learn 3 classifiers

Obtain:

$$\mathbf{w}_{+} \mathbf{b}_{+}, \mathbf{w}_{-} \mathbf{b}_{-}, \mathbf{w}_{0} \mathbf{b}_{0}$$

- How to classify?
- Return class c arg max_c w_c x + b_c

Learn 1 classifier: Multiclass SVM

- Idea 2: Learn 3 sets of weights simultaneously!
 - For each class c estimate w_c , b_c
 - Want the correct class to have highest margin:

$$\mathbf{w}_{\mathbf{y}_i} \mathbf{x}_i + \mathbf{b}_{\mathbf{y}_i} \ge 1 + \mathbf{w}_{\mathbf{c}} \mathbf{x}_i + \mathbf{b}_{\mathbf{c}} \quad \forall \mathbf{c} \ne \mathbf{y}_i , \forall i$$

