

Some linear Jacobi structures on vector bundles

David IGLESIAS, Juan C. MARRERO

Departamento de Matemática Fundamental, Universidad de La Laguna, 38200 La Laguna, Tenerife, Canary Islands, Spain. E-mail: diglesia@ull.es, jcmarrer@ull.es

Abstract. We study Jacobi structures on the dual bundle A^* to a vector bundle A such that the Jacobi bracket of linear functions is again linear and the Jacobi bracket of a linear function and the constant function 1 is a basic function. We prove that a Lie algebroid structure on A and a 1-cocycle $\phi \in \Gamma(A^*)$ induce a Jacobi structure on A^* satisfying the above conditions. Moreover, we show that this correspondence is a bijection. Finally, we discuss some examples and applications.

Quelques structures de Jacobi linéaires sur des fibrés vectoriels

Résumé. On étudie des structures de Jacobi sur le fibré dual A^* d'un fibré vectoriel A tels que le crochet de Jacobi de fonctions linéaires est à nouveau linéaire et le crochet de Jacobi d'une fonction linéaire et la fonction constante 1 est une fonction basique. On démontre qu'une structure d'algébroïde de Lie sur A et un 1-cocycle $\phi \in \Gamma(A^*)$ induisent une structure de Jacobi sur A^* qui vérifie les conditions antérieures. On voit aussi que cette correspondance est une bijection. On montre finalement quelques exemples et applications.

Version française abrégée

Soit M une variété différentiable et $\pi : A \rightarrow M$ un fibré vectoriel sur M .

Un cocycle pour une structure d'algébroïde de Lie sur $\pi : A \rightarrow M$ est une section ϕ du fibré dual $\pi^* : A^* \rightarrow M$ tel que $\phi[[\mu, \eta]] = \rho(\mu)(\phi(\eta)) - \rho(\eta)(\phi(\mu))$, pour tout $\mu, \eta \in \Gamma(A)$, où $[\cdot, \cdot]$ est le crochet de Lie sur l'espace $\Gamma(A)$ des sections de $\pi : A \rightarrow M$ et $\rho : A \rightarrow TM$ est l'application ancre (voir [13]). On dénote donc par $\tilde{\mathcal{A}}$ l'ensemble des paires $(([\cdot, \cdot], \rho), \phi)$, où $([\cdot, \cdot], \rho)$ est une structure d'algébroïde de Lie sur $\pi : A \rightarrow M$ et $\phi \in \Gamma(A^*)$ un 1-cocycle. D'ailleurs, on dénote par \mathcal{J} l'ensemble des structures de Jacobi (Λ, E) sur A^* , lesquelles satisfont les deux conditions suivantes:

- (C1) Le crochet de Jacobi de deux fonctions linéaires est linéaire.
- (C2) Le crochet de Jacobi d'une fonction linéaire et la fonction constante 1 est une fonction basique.

On démontre donc, dans cette note, qu'il y a une correspondance bijective $\Psi : \tilde{\mathcal{A}} \rightarrow \mathcal{J}$ entre les ensembles $\tilde{\mathcal{A}}$ et \mathcal{J} . L'application Ψ est défini par $\Psi(([\cdot, \cdot], \rho), \phi) = (\Lambda_{(A^*, \phi)}, E_{(A^*, \phi)})$ avec

$$\Lambda_{(A^*, \phi)} = \Lambda_{A^*} + \Delta \wedge \phi^v, \quad E_{(A^*, \phi)} = -\phi^v,$$

où Λ_{A^*} est le bi-vecteur de Poisson sur A^* induit par la structure d'algébroïde de Lie $([\cdot, \cdot], \rho)$ (voir [2, 3]), Δ est le champ de Liouville sur A^* et ϕ^v est le relèvement vertical de ϕ . Observons que les paires dans $\tilde{\mathcal{A}}$ de la forme $(([\cdot, \cdot], \rho), 0)$ correspondent, à travers Ψ , aux structures de Poisson dans \mathcal{J} . Ainsi, comme conséquence, on déduit un résultat démontré dans [2, 3].

Les conditions (C1) et (C2) établies ci-dessus sont naturelles. En fait, on démontre que celles-ci sont vérifiées pour quelques structures de Jacobi, bien connues et importantes, définies sur l'espace

total de quelques fibrés vectoriels. En même temps, la correspondance Ψ nous permet d'obtenir de nouveaux et intéressants exemples de structures de Jacobi. On voit finalement, comme une autre application, qu'une structure d'algébroïde de Lie sur un fibré vectoriel $A \rightarrow M$ et un 1-cocycle $\phi \in \Gamma(A^*)$ induisent une structure d'algébroïde de Lie sur le fibré vectoriel $A \times \mathbb{IR} \rightarrow M \times \mathbb{IR}$.

1 Jacobi manifolds and Lie algebroids

Let M be a differentiable manifold of dimension n . We will denote by $C^\infty(M, \mathbb{IR})$ the algebra of C^∞ real-valued functions on M , by $\Omega^1(M)$ the space of 1-forms, by $\mathfrak{X}(M)$ the Lie algebra of vector fields and by $[,]$ the Lie bracket of vector fields.

A *Jacobi structure* on M is a pair (Λ, E) , where Λ is a 2-vector and E is a vector field on M satisfying the following properties:

$$[\Lambda, \Lambda]_{SN} = 2E \wedge \Lambda, \quad [E, \Lambda]_{SN} = 0. \quad (1)$$

Here $[,]_{SN}$ denotes the Schouten-Nijenhuis bracket ([1, 14]). The manifold M endowed with a Jacobi structure is called a *Jacobi manifold*. A bracket of functions (the *Jacobi bracket*) is defined by $\{\bar{f}, \bar{g}\} = \Lambda(d\bar{f}, d\bar{g}) + \bar{f}E(\bar{g}) - \bar{g}E(\bar{f})$, for all $\bar{f}, \bar{g} \in C^\infty(M, \mathbb{IR})$. Note that

$$\{\bar{f}, \bar{g}\bar{h}\} = \bar{g}\{\bar{f}, \bar{h}\} + \bar{h}\{\bar{f}, \bar{g}\} - \bar{g}\bar{h}\{\bar{f}, 1\}. \quad (2)$$

In fact, the space $C^\infty(M, \mathbb{IR})$ endowed with the Jacobi bracket is a *local Lie algebra* in the sense of Kirillov (see [8]). Conversely, a structure of local Lie algebra on $C^\infty(M, \mathbb{IR})$ defines a Jacobi structure on M (see [5, 8]). If the vector field E identically vanishes then (M, Λ) is a *Poisson manifold*. Jacobi and Poisson manifolds were introduced by Lichnerowicz ([10, 11]) (see also [1, 4, 12, 14, 15]).

A *Lie algebroid structure* on a differentiable vector bundle $\pi : A \rightarrow M$ is a pair that consists of a Lie algebra structure $[\![,]\!]$ on the space $\Gamma(A)$ of the global cross sections of $\pi : A \rightarrow M$ and a homomorphism of vector bundles $\rho : A \rightarrow TM$, the *anchor map*, such that if we also denote by $\rho : \Gamma(A) \rightarrow \mathfrak{X}(M)$ the homomorphism of $C^\infty(M, \mathbb{IR})$ -modules induced by the anchor map then: (i) $\rho : (\Gamma(A), [\![,]\!]) \rightarrow (\mathfrak{X}(M), [,])$ is a Lie algebra homomorphism and (ii) for all $\bar{f} \in C^\infty(M, \mathbb{IR})$ and for all $\mu, \eta \in \Gamma(A)$, one has $[\![\mu, \bar{f}\eta]\!] = \bar{f}[\![\mu, \eta]\!] + (\rho(\mu)(\bar{f}))\eta$ (see [13]).

If $(A, [\![,]\!], \rho)$ is a Lie algebroid over M , one can introduce the Lie algebroid cohomology complex with trivial coefficients (for the explicit definition of this complex we remit to [13]). The space of 1-cochains is $\Gamma(A^*)$, where A^* is the dual bundle to A , and a 1-cochain $\phi \in \Gamma(A^*)$ is a 1-cocycle if and only if

$$\phi[\![\mu, \eta]\!] = \rho(\mu)(\phi(\eta)) - \rho(\eta)(\phi(\mu)), \quad \text{for all } \mu, \eta \in \Gamma(A). \quad (3)$$

A Jacobi manifold (M, Λ, E) has an associated Lie algebroid $(T^*M \times \mathbb{IR}, [\![,]\!]_{(\Lambda, E)}, \#_{(\Lambda, E)})$, where T^*M is the cotangent bundle of M and $[\![,]\!]_{(\Lambda, E)}$, $\#_{(\Lambda, E)}$ are defined by

$$\begin{aligned} [\!(\alpha, \bar{f}), (\beta, \bar{g})]\!]_{(\Lambda, E)} &= (\mathcal{L}_{\#_\Lambda(\alpha)}\beta - \mathcal{L}_{\#_\Lambda(\beta)}\alpha - d(\Lambda(\alpha, \beta)) + \bar{f}\mathcal{L}_E\beta - \bar{g}\mathcal{L}_E\alpha - i_E(\alpha \wedge \beta), \\ &\quad \Lambda(\beta, \alpha) + \#_\Lambda(\alpha)(\bar{g}) - \#_\Lambda(\beta)(\bar{f}) + \bar{f}E(\bar{g}) - \bar{g}E(\bar{f})), \end{aligned} \quad (4)$$

$$\#_{(\Lambda, E)}(\alpha, \bar{f}) = \#_\Lambda(\alpha) + \bar{f}E,$$

for $(\alpha, \bar{f}), (\beta, \bar{g}) \in \Omega^1(M) \times C^\infty(M, \mathbb{IR})$, \mathcal{L} being the Lie derivative operator and $\#_\Lambda : \Omega^1(M) \rightarrow \mathfrak{X}(M)$ the mapping given by $\beta(\#_\Lambda(\alpha)) = \Lambda(\alpha, \beta)$ (see [9]).

In the particular case when (M, Λ) is a Poisson manifold we recover, by projection, the Lie algebroid $(T^*M, [\![,]\!]_\Lambda, \#_\Lambda)$, where $[\![,]\!]_\Lambda$ is the bracket of 1-forms defined by (see [1, 2, 14]):

$$[\![,]\!]_\Lambda : \Omega^1(M) \times \Omega^1(M) \rightarrow \Omega^1(M), \quad [\![\alpha, \beta]\!]_\Lambda = \mathcal{L}_{\#_\Lambda(\alpha)}\beta - \mathcal{L}_{\#_\Lambda(\beta)}\alpha - d(\Lambda(\alpha, \beta)).$$

2 Some linear Jacobi structures on vector bundles

Let $\pi : A \rightarrow M$ be a vector bundle and A^* the dual bundle to A . Suppose that $\pi^* : A^* \rightarrow M$ is the canonical projection. If $\mu \in \Gamma(A)$ and $\bar{f} \in C^\infty(M, \mathbb{R})$ then μ determines a linear function on A^* which we will denote by $\tilde{\mu}$ and $f = \bar{f} \circ \pi^*$ is a C^∞ real-valued function on A^* which is basic.

Now, assume that $(A, [\![\cdot, \cdot]\!], \rho)$ is a Lie algebroid over M . Then A^* admits a Poisson structure Λ_{A^*} such that the Poisson bracket of linear functions is again linear (see [2, 3]). The local expression of Λ_{A^*} is given as follows. Let U be an open coordinate neighbourhood of M with coordinates (x^1, \dots, x^m) and $\{e_i\}_{i=1, \dots, n}$ a local basis of sections of $\pi : A \rightarrow M$ in U . Then, $(\pi^*)^{-1}(U)$ is an open coordinate neighbourhood of A^* with coordinates (x^i, μ_j) such that $\mu_j = \tilde{e}_j$, for all j . In these coordinates the structure functions and the components of the anchor map are

$$[\![e_i, e_j]\!] = \sum_{k=1}^n c_{ij}^k e_k, \quad \rho(e_i) = \sum_{l=1}^m \rho_i^l \frac{\partial}{\partial x^l}, \quad i, j \in \{1, \dots, n\}, \quad (5)$$

with $c_{ij}^k, \rho_i^l \in C^\infty(U, \mathbb{R})$, and the Poisson structure Λ_{A^*} is given by

$$\Lambda_{A^*} = \sum_{i < j} \sum_k c_{ij}^k \mu_k \frac{\partial}{\partial \mu_i} \wedge \frac{\partial}{\partial \mu_j} + \sum_{i, l} \rho_i^l \frac{\partial}{\partial \mu_i} \wedge \frac{\partial}{\partial x^l}. \quad (6)$$

Next, we will show an extension of the above results for the Jacobi case.

We will denote by Δ the *Liouville vector field* of A^* and by $\phi^v \in \mathfrak{X}(A^*)$ the *vertical lift* of $\phi \in \Gamma(A^*)$. Note that if (x^i, μ_j) are fibred coordinates on A^* as above and $\phi = \sum_{i=1}^n \phi_i e^i$, with $\phi_i \in C^\infty(U, \mathbb{R})$ and $\{e^i\}$ the dual basis of $\{e_i\}$, then

$$\Delta = \sum_{i=1}^n \mu_i \frac{\partial}{\partial \mu_i}, \quad \phi^v = \sum_{i=1}^n \phi_i \frac{\partial}{\partial \mu_i}. \quad (7)$$

Thus, using (1), (3), (5), (6) and (7), we deduce

Theorem 1 *Let $(A, [\![\cdot, \cdot]\!], \rho)$ be a Lie algebroid over M and $\phi \in \Gamma(A^*)$ a 1-cocycle. Then, there is a unique Jacobi structure $(\Lambda_{(A^*, \phi)}, E_{(A^*, \phi)})$ on A^* with Jacobi bracket $\{\cdot, \cdot\}_{(A^*, \phi)}$ satisfying*

$$\{\tilde{\mu}, \tilde{\eta}\}_{(A^*, \phi)} = \widetilde{[\![\mu, \eta]\!]}, \quad \{\tilde{\mu}, \bar{f} \circ \pi^*\}_{(A^*, \phi)} = (\rho(\mu)(\bar{f}) + \phi(\mu)\bar{f}) \circ \pi^*, \quad \{\bar{f} \circ \pi^*, \bar{g} \circ \pi^*\}_{(A^*, \phi)} = 0,$$

for $\mu, \eta \in \Gamma(A)$ and $\bar{f}, \bar{g} \in C^\infty(M, \mathbb{R})$. The Jacobi structure is given by

$$\Lambda_{(A^*, \phi)} = \Lambda_{A^*} + \Delta \wedge \phi^v, \quad E_{(A^*, \phi)} = -\phi^v.$$

Now, we will prove a converse of Theorem 1.

Theorem 2 *Let $\pi : A \rightarrow M$ be a vector bundle over M and let (Λ, E) be a Jacobi structure on the dual bundle A^* satisfying:*

(C1) *The Jacobi bracket of linear functions is again linear.*

(C2) *The Jacobi bracket of a linear function and the constant function 1 is a basic function.*

Then, there is a Lie algebroid structure on $\pi : A \rightarrow M$ and a 1-cocycle $\phi \in \Gamma(A^)$ such that $\Lambda = \Lambda_{(A^*, \phi)}$ and $E = E_{(A^*, \phi)}$.*

Proof: Denote by $\{ , \}$ the Jacobi bracket on A^* induced by the Jacobi structure (Λ, E) and suppose that $\mu, \eta \in \Gamma(A)$ and that $\bar{f}, \bar{g} \in C^\infty(M, \mathbb{IR})$. If $\pi^* : A^* \rightarrow M$ is the canonical projection, the function $\{(\bar{f} \circ \pi^*)\tilde{\mu}, 1\} = \{\tilde{\mu}, 1\}$ is basic. Thus, from (2) and (C2), we have that

$$\{\bar{f} \circ \pi^*, 1\} = 0. \quad (8)$$

On the other hand, the function $\{\tilde{\mu}, (\bar{f} \circ \pi^*)\tilde{\eta}\} = \{\tilde{\mu}, \widetilde{\bar{f}\eta}\}$ is linear. Therefore, from (2), (C1) and (C2), we obtain that the function $\{\tilde{\mu}, \bar{f} \circ \pi^*\}$ is basic. Consequently, the Jacobi bracket of a linear function and a basic function is a basic function. In particular, $\{\bar{f} \circ \pi^*, (\bar{g} \circ \pi^*)\tilde{\mu}\} = \{\bar{f} \circ \pi^*, \widetilde{\bar{g}\mu}\}$ is basic. This implies that (see (2) and (8))

$$\{\bar{f} \circ \pi^*, \bar{g} \circ \pi^*\} = 0. \quad (9)$$

Now, we define the section $\llbracket \mu, \eta \rrbracket$ of the vector bundle $\pi : A \rightarrow M$ and the C^∞ real-valued functions on M , $\phi(\mu)$ and $\rho(\mu)(\bar{f})$, which are characterized by the following relations

$$\widetilde{\llbracket \mu, \eta \rrbracket} = \{\tilde{\mu}, \tilde{\eta}\}, \quad \phi(\mu) \circ \pi^* = \{\tilde{\mu}, 1\}, \quad \rho(\mu)(\bar{f}) \circ \pi^* = \{\tilde{\mu}, \bar{f} \circ \pi^*\} - (\bar{f} \circ \pi^*)\{\tilde{\mu}, 1\}. \quad (10)$$

From (2), (8), (9) and (10), we deduce that ϕ can be considered as a $C^\infty(M, \mathbb{IR})$ -linear map $\phi : \Gamma(A) \rightarrow C^\infty(M, \mathbb{IR})$ (that is, $\phi \in \Gamma(A^*)$) and that ρ can be considered as a $C^\infty(M, \mathbb{IR})$ -linear map $\rho : \Gamma(A) \rightarrow \mathfrak{X}(M)$. Moreover, using (2), (3), (10) and the fact that $\{ , \}$ is the Jacobi bracket of a Jacobi structure (see Section 1), it follows that the triple $(A, \llbracket \cdot, \cdot \rrbracket, \rho)$ is a Lie algebroid over M and that $\phi \in \Gamma(A^*)$ is a 1-cocycle. Finally, by (9), (10) and Theorem 1, we conclude that $(\Lambda, E) = (\Lambda_{(A^*, \phi)}, E_{(A^*, \phi)})$. QED

Remark 1 That condition (C1) does not necessarily imply condition (C2) is illustrated by the following simple example. Let M be a single point and $A^* = \mathbb{IR}^2$ endowed with the Jacobi structure (Λ, E) , where $\Lambda = xy \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}$ and $E = x \frac{\partial}{\partial x}$. It is easy to prove that the Jacobi bracket satisfies (C1) but not (C2).

Let M be a differentiable manifold and $\pi : A \rightarrow M$ a vector bundle. Denote by $\tilde{\mathcal{A}}$ and \mathcal{J} the following sets. $\tilde{\mathcal{A}}$ is the set of the pairs $((\llbracket \cdot, \cdot \rrbracket, \rho), \phi)$, where $(\llbracket \cdot, \cdot \rrbracket, \rho)$ is a Lie algebroid structure on $\pi : A \rightarrow M$ and $\phi \in \Gamma(A^*)$ is a 1-cocycle. \mathcal{J} is the set of the Jacobi structures (Λ, E) on A^* which satisfy the conditions (C1) and (C2) (see Theorem 2).

Then, using Theorems 1 and 2, we obtain

Theorem 3 *The mapping $\Psi : \tilde{\mathcal{A}} \rightarrow \mathcal{J}$ between the sets $\tilde{\mathcal{A}}$ and \mathcal{J} given by*

$$\Psi((\llbracket \cdot, \cdot \rrbracket, \rho), \phi) = (\Lambda_{(A^*, \phi)}, E_{(A^*, \phi)})$$

is a bijection.

Note that $\Psi(\mathcal{A}) = \mathcal{P}$, where \mathcal{P} is the subset of the Jacobi structures of \mathcal{J} which are Poisson and \mathcal{A} is the subset of $\tilde{\mathcal{A}}$ of the pairs of the form $((\llbracket \cdot, \cdot \rrbracket, \rho), 0)$, that is, \mathcal{A} is the set of the Lie algebroid structures on $\pi : A \rightarrow M$. Therefore, from Theorem 3, we deduce a well known result (see [2, 3]): the mapping Ψ induces a bijection between the sets \mathcal{A} and \mathcal{P} .

3 Examples and applications

In this section we will present some examples and applications of the results obtained in Section 2.

1.- Let $(\mathfrak{g}, [\cdot, \cdot])$ be a real Lie algebra of dimension n . Then, \mathfrak{g} is a Lie algebroid over a point. The resultant Poisson structure $\Lambda_{\mathfrak{g}^*}$ on \mathfrak{g}^* is the well known *Lie-Poisson structure* (see (6)). Thus, if $\phi \in \mathfrak{g}^*$ is a 1-cocycle then, using Theorem 1, we deduce that the pair $(\Lambda_{(\mathfrak{g}^*, \phi)}, E_{(\mathfrak{g}^*, \phi)})$ is a Jacobi structure on \mathfrak{g}^* , where

$$\Lambda_{(\mathfrak{g}^*, \phi)} = \Lambda_{\mathfrak{g}^*} + R \wedge C_\phi, \quad E_{(\mathfrak{g}^*, \phi)} = -C_\phi,$$

R is the radial vector field on \mathfrak{g}^* and C_ϕ is the constant vector field on \mathfrak{g}^* induced by $\phi \in \mathfrak{g}^*$.

2.- Let $(TM, [\cdot, \cdot], Id)$ be the trivial Lie algebroid. In this case, the Poisson structure Λ_{T^*M} on T^*M is the *canonical symplectic structure*. Therefore, if ϕ is a closed 1-form on M , then the pair

$$\Lambda_{(T^*M, \phi)} = \Lambda_{T^*M} + \Delta \wedge \phi^v, \quad E_{(T^*M, \phi)} = -\phi^v,$$

is a Jacobi structure on T^*M . Furthermore, we can prove that the map $\#_{\Lambda_{(T^*M, \phi)}} : \Omega^1(T^*M) \rightarrow \mathfrak{X}(T^*M)$ is an isomorphism and consequently, using the results of [5, 8] (see also [4]), it follows that $(\Lambda_{(T^*M, \phi)}, E_{(T^*M, \phi)})$ is a *locally conformal symplectic structure*.

3.- Let (M, Λ) be a Poisson manifold and $(T^*M, \llbracket \cdot, \cdot \rrbracket_\Lambda, \#_\Lambda)$ the associated cotangent Lie algebroid (see Section 1). The induced Poisson structure on TM is the *complete lift* Λ^c to TM of Λ (see [3]). Thus, if $X \in \mathfrak{X}(M) = \Gamma(TM)$ is a 1-cocycle, that is, X is a Poisson infinitesimal automorphism ($\mathcal{L}_X \Lambda = 0$), we deduce that

$$\Lambda_{(TM, X)} = \Lambda^c + \Delta \wedge X^v, \quad E_{(TM, X)} = -X^v,$$

is a Jacobi structure on TM .

4.- The triple $(TM \times \mathbb{IR}, [\cdot, \cdot], \pi)$ is a Lie algebroid over M , where $\pi : TM \times \mathbb{IR} \rightarrow TM$ is the canonical projection over the first factor and $[\cdot, \cdot]$ is the bracket given by

$$[(X, \bar{f}), (Y, \bar{g})] = ([X, Y], X(\bar{g}) - Y(\bar{f})), \text{ for } (X, \bar{f}), (Y, \bar{g}) \in \mathfrak{X}(M) \times C^\infty(M, \mathbb{IR}). \quad (11)$$

In this case, the Poisson structure $\Lambda_{T^*M \times \mathbb{IR}}$ on $T^*M \times \mathbb{IR}$ is just the *canonical cosymplectic structure* of $T^*M \times \mathbb{IR}$, that is, $\Lambda_{T^*M \times \mathbb{IR}} = \Lambda_{T^*M}$. Now, it is easy to prove that $\phi = (0, -1) \in \Omega^1(M) \times C^\infty(M, \mathbb{IR}) = \Gamma(T^*M \times \mathbb{IR})$ is a 1-cocycle (see (3) and (11)). Moreover, using Theorem 1, we have that the Jacobi structure $(\Lambda_{(T^*M \times \mathbb{IR}, \phi)}, E_{(T^*M \times \mathbb{IR}, \phi)})$ on $T^*M \times \mathbb{IR}$ is the one defined by the *canonical contact 1-form* η_M . We recall that η_M is the 1-form on $T^*M \times \mathbb{IR}$ given by $\eta_M = dt + \lambda_M$, λ_M being the *Liouville 1-form* of T^*M (see [12]).

5.- Let (M, Λ, E) be a Jacobi manifold and $(T^*M \times \mathbb{IR}, \llbracket \cdot, \cdot \rrbracket_{(\Lambda, E)}, \#_{(\Lambda, E)})$ the associated Lie algebroid (see Section 1). From (1), (3) and (4), it follows that $\phi = (-E, 0) \in \mathfrak{X}(M) \times C^\infty(M, \mathbb{IR}) = \Gamma(TM \times \mathbb{IR})$ is a 1-cocycle. On the other hand, a long computation, using (4), (6), (7) and Theorem 1, shows that

$$\Lambda_{(TM \times \mathbb{IR}, \phi)} = \Lambda^c + \frac{\partial}{\partial t} \wedge E^c - t \left(\Lambda^v + \frac{\partial}{\partial t} \wedge E^v \right), \quad E_{(TM \times \mathbb{IR}, \phi)} = E^v,$$

where Λ^c (resp. Λ^v) is the complete (resp. vertical) lift to TM of Λ and E^c (resp. E^v) is the complete (resp. vertical) lift to TM of E . We remark that in [6] the authors characterize the conformal infinitesimal automorphisms of (M, Λ, E) as Legendre-Lagrangian submanifolds of the Jacobi manifold $(TM \times \mathbb{IR}, \Lambda_{(TM \times \mathbb{IR}, \phi)}, E_{(TM \times \mathbb{IR}, \phi)})$.

6.- Let $(A, \llbracket \cdot, \cdot \rrbracket, \rho)$ be a Lie algebroid over M and $\phi \in \Gamma(A^*)$ a 1-cocycle. Denote by $\hat{\Lambda}_{A^* \times \mathbb{IR}}$ the Poissonization of the Jacobi structure $(\Lambda_{(A^*, \phi)}, E_{(A^*, \phi)})$, that is, $\hat{\Lambda}_{A^* \times \mathbb{IR}}$ is the Poisson structure

on $\hat{A}^* = A^* \times \mathbb{I}\mathbb{R}$ given by (see [5, 11])

$$\hat{\Lambda}_{A^* \times \mathbb{I}\mathbb{R}} = e^{-t} \left(\Lambda_{(A^*, \phi)} + \frac{\partial}{\partial t} \wedge E_{(A^*, \phi)} \right). \quad (12)$$

\hat{A}^* is the total space of a vector bundle over $M \times \mathbb{I}\mathbb{R}$ and, from (12), we obtain that the Poisson bracket of two linear functions on \hat{A}^* is again linear. This implies that the dual vector bundle $\hat{A} = A \times \mathbb{I}\mathbb{R} \rightarrow M \times \mathbb{I}\mathbb{R}$ admits a Lie algebroid structure $([], \hat{\rho})$. Note that the space $\Gamma(\hat{A})$ can be identified with the set of time-dependent sections of $A \rightarrow M$. Under this identification, we deduce that (see (10) and (12))

$$[\hat{\mu}, \hat{\eta}] = e^{-t} \left([\hat{\mu}, \hat{\eta}] + \phi(\hat{\mu}) \left(\frac{d\hat{\eta}}{dt} - \hat{\eta} \right) - \phi(\hat{\eta}) \left(\frac{d\hat{\mu}}{dt} - \hat{\mu} \right) \right), \quad \hat{\rho}(\hat{\mu}) = e^{-t} \left(\rho(\hat{\mu}) + \phi(\hat{\mu}) \frac{\partial}{\partial t} \right),$$

for all $\hat{\mu}, \hat{\eta} \in \Gamma(\hat{A})$, where $\frac{d\hat{\mu}}{dt}$ (resp. $\frac{d\hat{\eta}}{dt}$) is the derivative of $\hat{\mu}$ (resp. $\hat{\eta}$) with respect to the time. Note that if $t \in \mathbb{I}\mathbb{R}$ then the sections $\hat{\mu}$ and $\hat{\eta}$ induce, in a natural way, two sections $\hat{\mu}_t$ and $\hat{\eta}_t$ of $A \rightarrow M$ and that $[\hat{\mu}, \hat{\eta}]$ is the time-dependent section of $A \rightarrow M$ given by $[\hat{\mu}, \hat{\eta}](x, t) = [\hat{\mu}_t, \hat{\eta}_t](x)$, for all $(x, t) \in M \times \mathbb{I}\mathbb{R}$.

The construction of the Lie algebroid $(\hat{A}, [], \hat{\rho})$ from the Lie algebroid $(A, [], \rho)$ and the cocycle ϕ plays an important role in [7].

Acknowledgments. Research partially supported by DGICYT grant PB97-1487 (Spain). D. Iglesias wishes to thank the Spanish Ministerio de Educación y Cultura for a FPU grant.

References

- [1] K.H. Bhaskara, K.Viswanath: *Poisson algebras and Poisson manifolds*, Research Notes in Mathematics, 174, Pitman, London, 1988.
- [2] A. Coste, P. Dazord, A. Weinstein: Groupoïdes symplectiques, *Pub. Dép. Math. Lyon*, **2/A** (1987), 1-62.
- [3] T.J. Courant: Dirac manifolds, *Trans. A.M.S.* **319** (1990), 631-661.
- [4] P. Dazord, A. Lichnerowicz and Ch.M. Marle: Structure locale des variétés de Jacobi, *J. Math. Pures Appl.*, **70** (1991), 101-152.
- [5] F. Guédira, A. Lichnerowicz: Géométrie des algèbres de Lie locales de Kirillov, *J. Math. Pures Appl.*, **63** (1984), 407-484.
- [6] R. Ibáñez, M. de León, J.C. Marrero and D. Martín de Diego: Co-isotropic and Legendre-Lagrangian submanifolds and conformal Jacobi morphisms, *J. Phys. A: Math. Gen.* **30** (1997), 5427-5444.
- [7] D. Iglesias, J.C. Marrero: Generalized Lie bialgebroids and Jacobi structures, *Preprint* (2000).
- [8] A. Kirillov: Local Lie algebras, *Russian Math. Surveys*, **31** (1976), 55-75.
- [9] Y. Kerbrat, Z.Souici-Benhammadi: Variétés de Jacobi et groupoïdes de contact, *C.R. Acad. Sci. Paris*, **317** Sér. I (1993), 81-86.
- [10] A. Lichnerowicz: Les variétés de Poisson et leurs algèbres de Lie associées, *J. Differential Geometry*, **12** (1977), 253-300.
- [11] A. Lichnerowicz: Les variétés de Jacobi et leurs algèbres de Lie associées, *J. Math. Pures Appl.*, **57** (1978), 453-488.
- [12] P. Libermann, Ch. M. Marle: *Symplectic Geometry and Analytical Mechanics*, Kluwer, Dordrecht, 1987.
- [13] K. Mackenzie: *Lie groupoids and Lie algebroids in differential geometry*, Cambridge University Press, 1987.
- [14] I. Vaisman: *Lectures on the Geometry of Poisson Manifolds*, Progress in Math. 118, Birkhäuser, Basel, 1994.
- [15] A. Weinstein: The local structure of Poisson manifolds, *J. Differential Geometry*, **18** (1983), 523-557, Errata et Addenda **22** (1985), 255.