

5th Black Forest Grid Workshop (April 23th, 2009, Freiburg)

Anastasia Eifer

German Aerospace Center (DLR), Simulation and Software Technology

http://www.dlr.de/sc

The DLR
German Aerospace Research Center
Space Agency of the Federal Republic of Germany

Sites and employees

5,800 employees working in 29 research institutes and facilities

at 13 sites.

Offices in Brussels, Paris and Washington.

AeroGrid Project

AeroGrid Project Data

Grid-based cooperation between industry, research centres, and universities in aerospace engineering

AERO

Runtime: April 1, 2007 – March 30, 2010

Website: http://www.aero-grid.de

Project Partner

German Aerospace Center (DLR)

- Institute for Propulsion Technology
- → Simulation and Software Technology (Coord.)

MTU Aero Engines GmbH

T-Systems Solutions for Research GmbH

T-Systems Solutions for Research GmbH

University of the Armed Forces, Munich

Institute for Jet Propulsion

Background: Turbo MachinerySimulation Tasks

→ Simulation of turbine component

- → Design (variants)
- Optimization
- Aero elasticity
- Aero acoustics
- **→** Cooling
- → Complex geometries
- → Multistage components
- Use of the CFD-Code TRACE (Institute of Propulsion Technology)

AeroGrid

Use Cases and Project Goals

Usage scenarios

- Use of computing resources via the AeroGrid
- Collaboration in designing engine components
- Co-operative further development of TRACE code

Project goals

- Allow cooperation in research and development projects
- Use of up-to-date program versions, data, and compute resources across all locations
- → Detailed documentation of history of a computational process that leads to a certain result ("Provenance")

AeroGrid Cluster

- 45 Compute nodes with 2 quadcore processors (total 360 cores)
 - Compute node: dual Intel(R) XEON quad core
 - → Processortype: Intel(R) Xeon 5440 2.8 GHz
 - Main memory: 45 x 16 GB (aggregate 720 GB)
 - → Network: InfiniBand + Gigabit Ethernet
 - Operating system: SLES 10
 - Operating mode: batch (TORQUE)
 - Grid middleware: UNICORE 6
- ▼ Filespace: GPFS (total 2 TByte)

AeroGrid User Interfaces

Portal

- Web-based access
- Development based on GridSphere

Client applications

- Automation of recurring tasks
- Integration in existing working environments

Cooperation in AeroGrid

* Workflow service and client are not part of the project. They will be added for later user communities.

Data Management Client Software DataFinder

Introduction

Data Management Problem

Typical organizational situations

- No central data management policy
- Every employee organizes his/her data individually
- Researchers spend about 30% of their time searching for data
- Problem with data left behind by temporary staff

Increase of data size and regulations

- Rapidly growing volume of simulation and experimental data
- → Legal requirements for long-term availability of data (up to 50 years!)

Situation similar at many organizations

- → All ~30 DLR institutes
- Other research labs and agencies
- Industry

DataFinder

Short Overview

DataFinder

- Tefficient management of scientific and technical data
- → Focus on huge data sets

Development of the DataFinder by DLR

Available as Open-Source-Software

Primary functionality

- Structuring of data through assignment of meta information and selfdefined data models
- Complex search mechanism to find data
- Flexible usage of heterogeneous storage resources
- Integration in the working environment

DataFinder Overview

Basic Concept

- Client-Server solution
- Based on open and stable standards, such as XML and WebDAV
- Extensive use of standard software components (open source / commercial), limited own development at client side

DataFinder Overview

Client and Server

Client

- → User client
- Administrator client
- → Implementation: Python with Qt

Server

- WebDAV server for meta data and data structure
- → Data Store concept
 - Abstracts access to managed data
 - ▼ Flexible usage of heterogeneous storage resources
- Implementation: Various existing server solutions (third-party)

WebDAV

Web-based Distributed Authoring & Versioning

- Extension of HTTP
- Allows to manage files on remote servers collaboratively
- → WebDAV supports
 - **→** Resources ("files")
 - → Collections ("directories")
 - Properties ("meta data", in XML format)
 - Locking
- WebDAV extensions
 - → Versioning (DeltaV)
 - → Access control (ACP)
 - → Search (DASL)

DataFinder ClientGraphical User Interfaces

User Client

Administrator Client

Implementation in Python with Qt/PyQt

DataFinder ServerSupported WebDAV servers

Commercial Server Solution

▼ Tamino XML database (Software AG)

Open Source Server Solutions

Apache HTTP Web server and module mod_dav

- → Default storage: file system (mod_dav_fs)
- Module Catacomb (mod_dav_repos) + Relational database (http://catacomb.tigris.org)

Configuration and Customization

Preparing DataFinder for certain "use cases"

Requirements Analysis

Analyze data, working environment, and users workflows

Configuration

- Define and configure data model
- Configure distributed storage resources (Data Stores)

Customization

→ Write functional extensions with Python scripts

DataFinder ConfigurationData Model and Data Stores

Logical view to data

- Definition of data structuring and meta data ("data model")
- Separated storage of data structure / meta data and actual data files
- → Flexible use of (distributed) storage resources
 - → File system, WebDAV, FTP, GridFTP
 - Amazon S3 (Simple Storage Service)
 - → Tivoli Storage Manager (TSM)
 - → Storage Resource Broker (SRB)
- Complex search mechanism to find data

DataFinder

Mass Data Storage using "Data Stores"

External Medias (CD, DVD,...)

Data Structure

Customization

Python-Scripting for Extension and Automation

Integration of DataFinder with environment

→ User, infrastructure, software, ...

Extension of DataFinder by Python scripts

- → Actions for resources (i.e., files, directories)
- User interface extensions

Typical automations and customizations

- Data migration and data import
- Start of external application (with downloaded data files)
- Extraction of meta data from result files
- Automation of recurring tasks ("workflows")

DataFinder Grid Integration

GAT (Grid Application Toolkit)

- provides a simple API to several grid applications
- developed during the Gridlab project
 - mainly developed at the Albert-Einstein-Institute / Max-Plank-Institute for Gravitational Physics and
 - → at the Center for Computation and Technology at the Louisiana State University

SAGA working group (Simple API for Grid Applications)

- → treats GAT as a prototype Implementation
- the goal of SAGA is to provide a new standardized API for grid applications

DataFinder Grid Integration: JavaGAT

in der Helmholtz-Gemeinschaft

in der Helmholtz-Gemeinschaft

Turbine Simulation: Graphical User Interface

Turbine SimulationStarting External Applications

- 1. CGNS Infos / ADFview / CGNS Plot
- 2. TRACE GUI
- 3. Gnuplot

Availability

- → DataFinder core available as Open Source
 - **BSD** License
 - > http://sourceforge.net/projects/datafinder
- Extended versions / extensions are proprietary

Links

DataFinder Web site

7 http://www.dlr.de/datafinder

DataFinder Open Source

> http://sourceforge.net/projects/datafinder

Python WebDAV library

> http://sourceforge.net/projects/pythonwebdavlib

Catacomb

7 http://catacomb.tigris.org

AeroGrid Project

7 http://www.aero-grid.de

Thank you for your attention!

フ Contact:

Anastasia Eifer

DLR Simulation and Software Technology, Cologne

Email: Anastasia.Eifer@dlr.de

