Relational Colour Refinement for Non-Relational Signatures

Bachelor's Thesis

Theodor Teslia

August 28, 2025 RWTH Aachen University

1 Introduction

2 Relational Colour Refinement

3 Relational Colour Refinement for structures with functions

3.1 Naive Encoding of functions

A simple way to apply relational colour refinement to non-relational structures is, to encode the functions in the signature as a relation. Formally we transform a signature σ that includes function symbols to a new signature σ' : For every relation symbol $R \in \sigma$, we introduce a relation symbol $R \in \sigma'$ with the same arity and for every function symbol $f \in \sigma$ with arity f, we introduce a relational symbol $f \in \sigma'$ of arity $f \in \sigma'$

Semantically, a structure \mathfrak{A} of signature σ can then be encoded as a structure \mathfrak{A}' of signature σ' and with the same universe as \mathfrak{A} . For every relational symbol $R \in \sigma$ we set $R^{\mathfrak{A}'} := R^{\mathfrak{A}}$ and for every function symbol $f \in \sigma$ of arity k there exists a relation symbol $R_f \in \sigma'$ and we set $R_f^{\mathfrak{A}} := \{(\mathbf{x}, y) : f^{\mathfrak{A}}(\mathbf{x}) = y\}$ where \mathbf{x} is a tuple of arity k.

This procedure encodes a non-relational structure as a relational one, on which Relational Colour Refinement can now be performed. As such we say, that the Naive Relational Colour Refinement (nRCR) distinguishes two structures $\mathfrak A$ and $\mathfrak B$ if, and only if, RCR distinguishes their naive encodings $\mathfrak A'$ and $\mathfrak B'$. However, this results in a very weak logical characterisation, that does not allow nesting of terms, namely the nesting-free-fragment of $\mathsf{GF}(\mathsf C)$.

Definition 1 (nfGF(C)). Consider the definition of GF(C) given in ??. We obtain the nesting-free fragment, by allowing $f(\mathbf{x}) = y$ as a further atomic formula. Concretely, the only allowed atomic formulae are of the form $R(x_1, \ldots, x_\ell)$, x = y and $f(x_1, \ldots, x_\ell) = y$, where f has arity ℓ , free $(f(x_1, \ldots, x_\ell) = y) = \{x_1, \ldots, x_\ell\}$ and $gd(f(\mathbf{x}) = y) = 0$.

The remaining definitions stay the same.

Theorem 2. The two following statements are equivalent:

- 1. nRCR distinguishes \mathfrak{A} and \mathfrak{B} .
- 2. There exists a sentence $\varphi \in \mathsf{nfGF}(\mathsf{C})$ such that $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not\models \varphi$.
- *Proof.* 1. \Rightarrow 2.: By definition, $\mathfrak A$ and $\mathfrak B$ are distinguished by nRCR if, and only if, $\mathfrak A'$ and $\mathfrak B'$ are distinguished by RCR. Using the result of [1], we obtain a sentence $\varphi' \in \mathsf{GF}(\mathsf{C})$ that distinguishes the encoded structures. Via a structural induction on the formula, we can now translate φ' into a formula $\varphi \in \mathsf{nfGF}(\mathsf{C})$ This can be achieved by expanding formulae $R_f(x_1,\ldots,x_\ell,y)$ to $f(x_1,\ldots,x_\ell) = y$ for function symbols $f \in \sigma$ and letting everything else stay the same.
- $2. \Rightarrow 1.$: When considering nfGF(C), one can find that the transformation done at the end of the first direction can be applied in reverse. This then leads to a distinguishing sentence in GF(C) and with [1] to a distinguishing colouring of the encoded structures, which by definition is a distinguishing colouring for the structures themselves.

While the above theorem results in a nice characterisation of the naive encoding, the nesting of terms is often very desired when using functions. However, it can be shown that nesting is too powerful for such a naive encoding.

Consider the two structures \mathfrak{A} and \mathfrak{B} of signature $\sigma = \{f/1\}$ which can be seen in Figure 1. Formally they are defined as

$$\mathfrak{A} = (A = \{a_1, a_2, a_3, a_4, a_5, a_6\}, \\ f^{\mathfrak{A}} = \{ \\ a_1 \mapsto a_3, \ a_3 \mapsto a_2, \ a_2 \mapsto a_1, \\ a_4 \mapsto a_5, \ a_5 \mapsto a_6, \ a_6 \mapsto a_4 \\ \})$$

$$\mathfrak{B} = \{B = \{b_1, b_2, b_3, b_4, b_5, b_6\}, \\ f^{\mathfrak{B}} = \{ \\ b_1 \mapsto b_3, \ b_3 \mapsto b_5, \ b_5 \mapsto b_6, \\ b_6 \mapsto b_4, \ b_4 \mapsto b_2, \ b_2 \mapsto b_1 \\ \})$$

Figure 1: Two σ -structures $\mathfrak A$ and $\mathfrak B$

Consider the formula $\varphi = \exists x. (f(f(f(x))) = x)$ which utilizes term nesting to find a cycle with length three. It is obvious that $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not\models \varphi$. However, when encoding the two structures with the naive method described above, one finds that nRCR cannot distinguish them. Therefore, term nesting is too powerful for the naive encoding.

A method that allows for the nesting of terms will be described in the following section.

3.2 Using the transitive expansion

Let

$$\mathcal{I}(n,m) = \{(k,l,p) \in [n]^3 : k+p < k+l \le n \land k+r \cdot l+p = m \text{ for some } r \in \mathbb{N}\}.$$

The set will represents the possible ways, to decompose a path into a cycle and the path to and from it. This means, that the triple (k, ℓ, p) will represent a path, that has a beginning part of length k, then a cycle of length ℓ and a last part that consists of the first p elements of the cycle. One can see that in a structure $\mathfrak A$ with a unary function f and n elements, any path along of f with length m > n can be decomposed into a triple in the set $\mathcal I(n,m)$.

Lemma 3. Let $\psi(x_1, x_2) := f^m(x_1) = x_2$. Then there exists a formula $\vartheta(x_1, x_2) \in \mathsf{GF}(\mathsf{C})$ such that for any $\mathfrak A$ with $\|\mathfrak A\| = n$ it holds

$$\mathfrak{A}, a_1, a_2 \models \psi(x_1, x_2)$$
 if, and only if, $\mathfrak{A}, a_1, a_2 \models \vartheta(x_1, x_2)$

and for any $f^{m'}(x)$ that appears in ϑ , $m' \leq n$.

Proof. If $m \leq n$, we let $\vartheta := \psi$ and the claim follows.

Otherwise, we define

$$\vartheta(x_1, x_2) \coloneqq \bigvee_{(k,\ell,p)\in\mathcal{I}(n,m)} \zeta_{(k,\ell,p)}(x_1, x_2)$$

where

$$\zeta_{(k,\ell,p)}(x_1, x_2) := f^{k+p}(x_1) = x_2 \wedge f^k(x_1) = f^{k+\ell}(x_1)$$
$$\wedge \operatorname{E}_f^{k,\ell}(x_1)$$
$$\wedge \bigwedge_{\ell' < \ell} f^k(x_1) \neq f^{k+\ell'}(x_1)$$

and

$$E_f^{k,\ell}(t(x_1)) = \begin{cases} \top & \text{if } k = 0\\ f^{k-1}(t(x_1)) \neq f^{k-1+\ell}(t(x_1)) & \text{otherwise.} \end{cases}$$

Due to the definition of $\mathcal{I}(n,m)$ it is obvious that only $f^{m'}$ with $m' \leq n$ appears.

We now proceed to the proof of the equivalence. For the purpose of readability, we will use $f_{\mathfrak{A}}$ instead of $f^{\mathfrak{A}}$.

We will show that if \mathfrak{A} , $a_1, a_2 \models \vartheta(x_1, x_2)$, then \mathfrak{A} , $a_1, a_2 \models \psi(x_1, x_2)$. Let \mathfrak{A} , $a_1, a_2 \models \vartheta(x_1, x_2)$. By definition of ϑ , there are $(k, \ell, p) \in \mathcal{I}(n, m)$ with \mathfrak{A} , $a_1, a_2 \models \zeta_{(k, \ell, p)}(x_1, x_2)$. In particular $f_{\mathfrak{A}}^k(a_1) = f_{\mathfrak{A}}^{k+\ell}(a_1)$. It follows that

$$f_{\mathfrak{A}}^{k}(a_{1}) = f_{\mathfrak{A}}^{k+\ell}(a_{1}) = f_{\mathfrak{A}}^{k+2\ell}(a_{1}) = f_{\mathfrak{A}}^{k+3\ell}(a_{1}) = \dots = f_{\mathfrak{A}}^{k+r\cdot\ell}(a_{1})$$

for all $r \in \mathbb{N}$. By using the definition of $\mathcal{I}(n,m)$, we get

$$a_2 = f_{\mathfrak{A}}^{k+p}(a_1) = f_{\mathfrak{A}}^{k+r \cdot \ell + p}(a_1) = f_{\mathfrak{A}}^m(a_1).$$

From this we can deduce $\mathfrak{A}, a_1, a_2 \models \psi(x_1, x_2)$, where $\psi(x_1, x_2)$ has the form $f^m(x_1) = x_2$.

Now we prove that if $\mathfrak{A}, a_1, a_2 \models \psi(x_1, x_2)$, then $\mathfrak{A}, a_1, a_2 \models \vartheta(x_1, x_2)$. Let $\mathfrak{A}, a_1, a_2 \models \psi(x_1, x_2)$. By assumption m > n and by the pigeonhole principle there have to be distinct i, j such that $f_{\mathfrak{A}}^i(a_1) = f_{\mathfrak{A}}^j(a_1)$. Choose such i, j such that they are lexicographically minimal.

Now choose k := i, $\ell := j - i$ and $p := (m - i) \mod (j - i) = (m - i) \mod \ell$. Obviously $(k, \ell, p) \in \mathcal{I}(n, m)$ and what remains to be shown is that $\mathfrak{A}, a_1, a_2 \models \zeta_{(k, \ell, p)}(x_1, x_2)$. For that, we consider the parts of the conjunction and show for each one that it is satisfied.

 $f^{k+p}(x_1) = x_2$: We use the fact that $a = b \mod c \Leftrightarrow b = r \cdot c + a$ for some $r \in \mathbb{N}$. Then

$$f_{\mathfrak{A}}^{k+p}(a_1) = f_{\mathfrak{A}}^{i+(m-i)-r\cdot\ell}(a_1) = f_{\mathfrak{A}}^{i+r\cdot\ell+m-i-r\cdot\ell}(a_1) = f_{\mathfrak{A}}^m(a_1) = a_2.$$

Therefore $\mathfrak{A}, a_1, a_2 \models f^{k+p}(x_1) = x_2.$

 $f^k(x_1) = f^{k+\ell}(x_1)$: Consider that

$$f^k_{\mathfrak{A}}(a_1) = f^i_{\mathfrak{A}}(a_1) = f^j_{\mathfrak{A}}(a_1) = f^{j+i-i}_{\mathfrak{A}}(a_1) = f^{i+j-i}_{\mathfrak{A}}(a_1) = f^{k+\ell}_{\mathfrak{A}}(a_1).$$

This leads to $\mathfrak{A}, a_1, a_2 \models f^k(x_1) = f^{k+\ell}(x_1).$

 $\mathrm{E}_f^{k,\ell}(x_1)$: This has to be satisfied, otherwise $f_{\mathfrak{A}}^{k-1}(a_1)=f_{\mathfrak{A}}^{k-1+\ell}(a)$, but then $(k-1,\ell)$ would be lexicographically smaller than (i,j).

The same reasoning applies to $\bigwedge_{\ell' < \ell} f^k(x_1) \neq f^{k+\ell'}(x_1)$. If it weren't satisfied, there would be a (i, j') with j' < j and $f^i_{\mathfrak{A}}(a_1) = f^{i+j'}_{\mathfrak{A}}(a_1)$ which would be lexicographically smaller than (i, j).

Thus we have shown that every subformula of the conjunction and therefore the formula is being fulfilled. \Box

The above proof allows for the translation of formulae $f^m(x) = y$ to a formula $\vartheta(x, y)$ that is equivalent for structures with n elements. A natural extension would be, to allow alternation of functions, for example formulae like $g^m(f^{m'}(x)) = y$. This is also possible and will be proved in the following proof.

Lemma 4. Let $\psi(x_1, x_2) := t(x_1) = x_2$ be an atomic formula. Then there exists a formula $\vartheta_t(x_1, x_2) \in \mathsf{GF}(\mathsf{C})$, such that for any structure (of a fitting signature) \mathfrak{A} with $\|\mathfrak{A}\| = n$ it holds

$$\mathfrak{A}, a_1, a_2 \models \psi(x_1, x_2)$$
 if, and only if, $\mathfrak{A}, a_1, a_2 \models \vartheta_t(x_1, x_2)$.

Furthermore, $\vartheta_t(x_1, x_2)$ is of the form $\vartheta_t(x_1, x_2) = \bigvee \Phi(x_1, x_2)$ where all $\varphi(x_1, x_2) \in \Phi(x_1, x_2)$ are of the form

$$t'(x_1) = x_2 \wedge \bigwedge \Psi(x_1)$$

for some term $t'(x_1)$, and for every $f^m(s(x))$ that appears in ϑ_t , $m \leq n$.

Proof. We prove this via an induction on the term $t(x_1)$.

Base case: If $t(x_1) := f^m(x_1)$ for a unary function symbol f and $m \in \mathbb{N}$, we use the formula constructed in the proof of Theorem 3. It can easily be verified that it is in the correct form.

Inductive step: Assume that $t(x_1) := g^m(s(x_1))$ for a unary function symbol $g, m \in \mathbb{N}$ and term s. By induction hypothesis, we have a formula $\vartheta_s(y_1, y_2) = \bigvee \Phi_s(y_1, y_2)$ in the above defined form with $\mathfrak{A}, a_1, a_2 \models s(y_1) = y_2$ if, and only if, $\mathfrak{A}, a_1, a_2 \models \vartheta_s(y_1, y_2)$.

If $m \leq n$, we set

$$\vartheta_t(x_1, x_2) = \bigvee \Phi'(x_1, x_2),$$

where $\Phi'(x_1, x_2) := \{g^m(t'(y_1/x_1)) = x_2 \land \bigwedge \Psi(y_1/x_1) : t'(y_1) = y_2 \land \bigwedge \Psi(y_1) \in \Phi_s(y_1, y_2)\}.$ Now assume m > n.

Then we set

$$\vartheta_t(x_1, x_2) = \bigvee_{(k,\ell,p) \in \mathcal{I}(n,m)} \bigvee \Phi'_{(k,\ell,p)}(x_1, x_2),$$

where

$$\Phi'_{(k,\ell,p)} := \{ g^{k+p}(t'(y_1/x_1)) = x_2 \wedge g^k(t'(y_1/x_1)) = g^{k+\ell}(t'(y_1/x_1)) \\
\wedge \operatorname{E}_g^{k,\ell}(t'(y_1/x_1)) \wedge \bigwedge_{\ell' < \ell} g^k(t'(y_1/x_1)) \neq g^{k+\ell'}(t'(y_1/x_1)) \\
\wedge \Psi(y_1/x_1) : t'(y_1) = y_2 \wedge \bigwedge \Psi(y_1) \in \Phi_s(y_1, y_2) \}$$

By using the above definitions, we get $\mathfrak{A}, a_1, a_2 \models s(y_1) = y_2$ if, and only if, $\mathfrak{A}, a_1, a_2 \models \varphi_s(y_1, y_2)$ for some $\varphi_s \in \Phi_s$ where $\varphi_s(y_1, y_2)$ is of the form $t'(y_1) = y_2 \land \bigwedge \Psi(y_1)$. Therefore

$$\mathfrak{A}, a_1, a_2 \models s(y_1) = y_2 \text{ if, and only if, } \mathfrak{A}, a_1, a_2 \models t'(y_1) = y_2 \land \bigwedge \Psi(y_1).$$
 (1)

We now proof that

$$\mathfrak{A}, a_1, a_2 \models t(x_1) = x_2$$
 if, and only if, $\mathfrak{A}, a_1, a_2 \models \vartheta_t(x_1, x_2)$.

Assume $m \leq n$. Let $\mathfrak{A}, a_1, a_2 \models \vartheta_t$. Then there is some $\varphi(x_1, x_2) := g^m(t'(y_1/x_1)) = x_2 \land \bigwedge \Psi(y_1/x_1)$ such that $\mathfrak{A}, a_1, a_2 \models \varphi(x_1, x_2)$. We then get

$$\mathfrak{A}, a_1, a_2 \models g^m(t'(y_1/x_1)) = x_2 \land \bigwedge \Psi(y_1/x_1)$$

$$\Leftrightarrow \mathfrak{A}, a_1, a_2, a_3 \models g^m(x_3) = x_2 \land \bigwedge \Psi(y_1/x_1) \land t'(y_1/x_1) = x_3 \text{ for some } a_3 \in A$$

$$\stackrel{Equation\ (1)}{\Leftrightarrow} \mathfrak{A}, a_1, a_2, a_3 \models g^m(x_3) = x_2 \land s(x_1) = x_3 \text{ for some } a_3 \in A$$

$$\Leftrightarrow \mathfrak{A}, a_1, a_2 \models g^m(s(x_1)) = x_2.$$

Now let m > n. Then there is a

$$\varphi(x_1, x_2) := g^{k+p}(t'(y_1/x_1)) = x_2 \wedge g^k(t'(y_1/x_1)) = g^{k+l}(t'(y_1/x_1))$$

$$\wedge \operatorname{E}_g^{k,l}(t'(y_1/x_1)) \wedge \bigwedge_{\ell' < \ell} g^k(t'(y_1/x_1)) \neq g^{k+\ell'}(t'(y_1/x_1))$$

$$\wedge \Psi(y_1/x_1)$$

for some $(k, \ell, p) \in \mathcal{I}(n, m)$ with $\mathfrak{A}, a_1, a_2 \models \varphi(x_1, x_2)$. And now

$$\mathfrak{A}, a_1, a_2 \models \psi(x_1, x_2)$$

$$\Leftrightarrow A, a_1, a_2, a_3 \models g^{k+p}(x_3) = x_2 \land g^k(x_3)) = g^{k+l}(x_3)$$

$$\land E_g^{k,l}(x_3) \land \bigwedge_{\ell' < \ell} g^k(x_3) \neq g^{k+\ell'}(x_3)$$

$$\land \Psi(y_1/x_1) \land t'(y_1/x_1) = x_3 \text{ for some } a_3 \in A$$

$$\stackrel{Theorem 3}{\Leftrightarrow} \mathfrak{A}, a_1, a_2, a_3 \models g^m(x_3) = x_2 \land t'(y_1/x_1) = x_3 \land \Psi(y_1/x_1) \text{ for some } a_3 \in A$$

$$\stackrel{Equation (1)}{\Leftrightarrow} \mathfrak{A}, a_1, a_2, a_3 \models g^m(x_3) = x_2 \land s(x_1) = x_3 \text{ for some } a_3 \in A$$

$$\Leftrightarrow \mathfrak{A}, a_1, a_2 \models g^m(s(x_1)) = x_2.$$

The other direction follows in both cases, as only equivalent steps have been used and it is obvious that the disjunction of a set is being fulfilled, if a formula of the set is satisfied.

Therefore we have finished the proof.

A corollary of the above lemma is that the same statement holds for an arbitrary relation, instead of equality.

Corollary 5. Let $\psi(x_1, \ldots, x_m) := R(t_1(x_1), \ldots, t_m(x_m))$ be an atomic formula. Then there exists a formula $\vartheta_{\psi} \in \mathsf{GF}(\mathsf{C})$, such that for any given structure (of fitting signature) \mathfrak{A} with $\|\mathfrak{A}\| = n$ it holds

$$\mathfrak{A}, a_1, \ldots, a_m \models \psi(x_1, \ldots, x_m)$$
 if, and only if, $\mathfrak{A}, a_1, \ldots, a_m \models \vartheta_{\psi}(x_1, \ldots, x_m)$.

Furthermore, $\vartheta_{\psi}(x_1,\ldots,x_m)$ is of the form $\bigvee \Phi(x_1,\ldots,x_m)$ where all $\varphi \in \Phi$ are of the form

$$R(t'_1(x_1),\ldots,t'_m(x_m)) \wedge \bigwedge \Psi_1(x_1) \wedge \cdots \wedge \bigwedge \Psi_m(x_m),$$

and for every $f^m(s(x))$ that appear in ϑ_{ψ} , where f is a unary function symbol and s is a term, $m \leq n$.

Proof. Let $\mathfrak{A}, a_1, \ldots, a_m \models \psi(x_1, \ldots, x_m)$. This is equivalent to

$$\mathfrak{A}, a_1, \ldots, a_m, b_1, \ldots, b_m \models R(b_1, \ldots, b_m) \land t_1(x_1) = b_1 \land \cdots \land t_m(x_m) = b_m$$

for some $b_1, \ldots, b_m \in A$. By applying the previous lemma, we get the equivalent statement

$$\mathfrak{A}, a_1, \dots, a_m, b_1, \dots, b_m \models R(y_1, \dots, y_m) \land \bigvee_{i_1} \left(t'_{1,i_1}(x_1) = y_1 \land \bigwedge \Psi_{1,i_1}(x_1) \right)$$

$$\land \dots$$

$$\land \bigvee_{i_m} \left(t'_{m,i_m}(x_m) = y_m \land \bigwedge \Psi_{m,i_m}(x_m) \right).$$

Through distribution of boolean formulae we get

$$\mathfrak{A}, a_1, \dots, a_m, b_1, \dots, b_m \models \bigvee_{i_1} \dots \bigvee_{i_m} (R(y_1, \dots, y_m) \wedge t'_{1, i_1}(x_1) = y_1 \wedge \bigwedge \Psi_{1, i_1}(x_1)$$

$$\wedge \dots$$

$$\wedge t'_{m, i_m}(x_m) = y_m \wedge \bigwedge \Psi_{m, i_m}(x_m).$$

Finally, we can resubstitute variables and get

$$\mathfrak{A}, a_1, \ldots, a_m \models \bigvee_{i_1} \cdots \bigvee_{i_m} R(t'_{1,i_1}(x_1), \ldots, t'_{m,i_m}(x_m)) \wedge \bigwedge \Psi_{1,i_1}(x_1) \wedge \cdots \wedge \bigwedge \Psi_{m,i_m}(x_m) =: \vartheta_{\psi}(x_1, \ldots, x_m).$$

One can see that ϑ_{ψ} is of the correct form. The equality follows from the fact that only equivalences have been used to derive ϑ_{ψ} from ψ .

To obtain our characterising result for structures with (unary) functions, we have to define how the functions should be encoded.

Definition 6 (Transitive Expansion). Let $\sigma := \sigma_{\text{Rel}} \dot{\cup} \sigma_{\text{Func}}$ be a signature with relation symbols σ_{Rel} and unary function symbols σ_{Func} and let \mathfrak{A} be a structure of signature σ with $\|\mathfrak{A}\| = n$. For readability, we define the family of sets Alters $_n^0(\sigma) := \emptyset$ and

$$\operatorname{Alters}_n^k(\sigma) := \operatorname{Alters}_n^{k-1}(\sigma) \cup \{f_1^{m_1} f_2^{m_2} \dots f_k^{m_k} : f_1 f_2 \dots f_k \in (\sigma_{\operatorname{Func}})^k, 0 \le m_i \le n \text{ for } 1 \le i \le k\}$$

For an arbitrary $k \in \mathbb{N}$, we define the transitive expansion with alternation depth k as a structure $\widetilde{\mathfrak{A}}$ of signature $\widetilde{\sigma}$, where

$$\widetilde{\sigma} := \sigma_{\mathrm{Rel}} \dot{\cup} \{ F_{\alpha} : \alpha \in \mathrm{Alters}_{n}^{k}(\sigma) \}$$

and the F_{α} are binary relations. Semantically, we have

$$F_{\alpha}^{\widetilde{\mathfrak{A}}} := \{(a,b) : \alpha^{\mathfrak{A}}(a) = b\}.$$

We now can define the algorithm for relational colour refinement for (unary) functions.

Definition 7 (RCR for structures with unary functions). Let σ be a signature with relation and unary function symbols and let \mathfrak{A} and \mathfrak{B} be structures of signature σ .

We say that \mathfrak{A} and \mathfrak{B} are being distinguished by RCR with alternation depth k (RCR_k), if $\|\mathfrak{A}\| \neq \|\mathfrak{B}\|$ or the transitive expansions with alternation depth k, $\widetilde{\mathfrak{A}}$ and $\widetilde{\mathfrak{B}}$, are being distinguished by RCR.

To show that this definition may be sensible, we want to execute RCR₁ on the structures \mathfrak{A} and \mathfrak{B} from Figure 1. First we compute $\tilde{\sigma}$ as $\{F_{f^i}: 0 \leq i \leq 6\}$ and by performing the translation we obtain:

$$\begin{split} \widetilde{\mathfrak{A}} &= (A, F_{f^0}^{\widetilde{\mathfrak{A}}}) = \{(a_1, a_1), (a_2, a_2), (a_3, a_3), (a_4, a_4), (a_5, a_5), (a_6, a_6)\}, \\ &F_{f^1}^{\widetilde{\mathfrak{A}}} = \{(a_1, a_3), (a_2, a_1), (a_3, a_2), (a_4, a_5), (a_5, a_6), (a_6, a_4)\}, \\ &F_{f^2}^{\widetilde{\mathfrak{A}}} = \{(a_1, a_2), (a_2, a_3), (a_3, a_1), (a_4, a_6), (a_5, a_4), (a_6, a_5)\}, \\ &F_{f^3}^{\widetilde{\mathfrak{A}}} = \{(a_1, a_1), (a_2, a_2), (a_3, a_3), (a_4, a_4), (a_5, a_5), (a_6, a_6)\}, \\ &F_{f^4}^{\widetilde{\mathfrak{A}}} = \{(a_1, a_3), (a_2, a_1), (a_3, a_2), (a_4, a_5), (a_5, a_6), (a_6, a_4)\}, \\ &F_{f^5}^{\widetilde{\mathfrak{A}}} = \{(a_1, a_2), (a_2, a_3), (a_3, a_1), (a_4, a_6), (a_5, a_4), (a_6, a_5)\}, \\ &F_{f^6}^{\widetilde{\mathfrak{A}}} = \{(a_1, a_1), (a_2, a_2), (a_3, a_3), (a_4, a_4), (a_5, a_5), (a_6, a_6)\}, \end{split}$$

and

$$\begin{split} \widetilde{\mathfrak{B}} &= (B, F_{f^0}^{\widetilde{\mathfrak{B}}}) = \{(a_1, a_1), (a_2, a_2), (a_3, a_3), (a_4, a_4), (a_5, a_5), (a_6, a_6)\}, \\ &F_{f^1}^{\widetilde{\mathfrak{B}}} = \{(a_1, a_3), (a_2, a_1), (a_3, a_5), (a_4, a_2), (a_5, a_6), (a_6, a_4)\}, \\ &F_{f^2}^{\widetilde{\mathfrak{B}}} = \{(a_1, a_5), (a_2, a_3), (a_3, a_6), (a_4, a_1), (a_5, a_4), (a_6, a_2)\}, \\ &F_{f^3}^{\widetilde{\mathfrak{B}}} = \{(a_1, a_6), (a_2, a_5), (a_3, a_4), (a_4, a_3), (a_5, a_2), (a_6, a_1)\}, \\ &F_{f^4}^{\widetilde{\mathfrak{B}}} = \{(a_1, a_4), (a_2, a_6), (a_3, a_2), (a_4, a_5), (a_5, a_1), (a_6, a_3)\}, \\ &F_{f^5}^{\widetilde{\mathfrak{B}}} = \{(a_1, a_2), (a_2, a_4), (a_3, a_1), (a_4, a_6), (a_5, a_3), (a_6, a_5)\}, \\ &F_{f^6}^{\widetilde{\mathfrak{B}}} = \{(a_1, a_1), (a_2, a_2), (a_3, a_3), (a_4, a_4), (a_5, a_5), (a_6, a_6)\}) \end{split}$$

By using [1], we know that RCR distinguishes $\widetilde{\mathfrak{A}}$ and $\widetilde{\mathfrak{B}}$ if, and only if, there is a formula $\widetilde{\varphi} \in \mathsf{GF}(\mathsf{C})$ of signature $\widetilde{\sigma}$ that distinguishes them. Notice that $F_{f^0}^{\widetilde{\mathfrak{A}}} = F_{f^0}^{\widetilde{\mathfrak{A}}} = F_{f^0}^{\widetilde{\mathfrak{A}}}$, $F_{f^1}^{\widetilde{\mathfrak{A}}} = F_{f^2}^{\widetilde{\mathfrak{A}}}$ and $F_{f^2}^{\widetilde{\mathfrak{A}}} = F_{f^5}^{\widetilde{\mathfrak{A}}}$, while only $F_{f^0}^{\widetilde{\mathfrak{A}}} = F_{f^6}^{\widetilde{\mathfrak{A}}}$. Therefore the sentence

$$\exists^{\geq 6}(x,y).\left(F_{f^1}(x,y)\wedge F_{f^4}(x,y)\right)\in\mathsf{GF}(\mathsf{C})$$

is satisfied by $\widetilde{\mathfrak{A}}$, but not $\widetilde{\mathfrak{B}}$.

We see, that this procedure distinguishes structures, that were not distinguished by nRCR. To formalise this, we want to characterise this algorithm logically, as well as combinatorially.

3.2.1 Logical characterisation of RCR_k

Definition 8 (Alternation bounded GF(C)). The fragment of GF(C) with an alternation bound of k ($GF(C)_k$) is GF(C) with the constraint that for all formulae $\varphi \in GF(C)_k$ of signature σ and every term t that appears in φ , there is an $n \in \mathbb{N}$ and an $\alpha \in Alters_n^k(\sigma)$ such that $\alpha = t$. Atomic formulae are defined as usual, that is, the formulae $R(t_1(x_1), t_2(x_2), \ldots, t_n(x_n))$ and $t_1(x_1) = t_2(x_2)$ for terms t_1, t_2, \ldots, t_n and variables x_1, x_2, \ldots, x_n are atomic formulae.

Theorem 9. Let \mathfrak{A} and \mathfrak{B} be two structures of the same signature σ with relation and unary function symbols and let $k \in \mathbb{N}$ The two following statements are equivalent:

- 1. RCR_k distinguishes \mathfrak{A} and \mathfrak{B} .
- 2. There exists a sentence $\varphi \in GF(C)_k$ such that $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not\models \varphi$.

Proof. We prove that 1. implies 2.. Let \mathfrak{A} and \mathfrak{B} be distinguished by RCR_k . If they are of different sizes, assume without loss of generality that

$$\|\mathfrak{A}\| = n > n' = \|\mathfrak{B}\|.$$

Then define $\varphi := \exists^{\geq n} x. \top \in \mathsf{GF}(\mathsf{C})_k$, which obviously distinguishes the structures.

Now assume $\|\mathfrak{A}\| = \|\mathfrak{B}\| = n$. By definition, RCR distinguishes $\widetilde{\mathfrak{A}}$ and $\widetilde{\mathfrak{B}}$. When using the proof from [1], we obtain a formula $\widetilde{\varphi} \in \mathsf{GF}(\mathsf{C})$ of signature $\widetilde{\sigma}$ that distinguishes the expansions. This formula $\widetilde{\varphi}$ can then be translated to a formula $\varphi \in \mathsf{GF}(\mathsf{C})_k$ of signature σ .

For every atomic subformula $R(\mathbf{x})$, where $R \in \sigma_{\text{Rel}}$, let the formula stay the same. For every atomic subformla $F_{\alpha}(x,y)$, where $\alpha \in \text{Alters}_{n}^{k}(\sigma)$, replace it by the formula $\alpha(x) = y$. Obviously, if a structure's expansion satisfied $\widetilde{\varphi}$, it also satisfies φ and vice versa.

Therefore, we get a formula $\varphi \in \mathsf{GF}(\mathsf{C})_k$ that distinguishes \mathfrak{A} and \mathfrak{B} . Now we prove that \mathfrak{Z} . implies 1.. Let $\varphi \in \mathsf{GF}(\mathsf{C})_k$ such that $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not\models \varphi$. Our approach will be, to transform φ to a formula $\widetilde{\varphi}$ that only uses symbols from $\widetilde{\sigma}$. However, through the transformation, we introduce a syntactical form that is not allowed in the definition of $\mathsf{GF}(\mathsf{C})$. Therefore we will define a new class of formulae, called disjunctive- $\mathsf{GF}(\mathsf{C})$, of which $\widetilde{\varphi}$ will be an element of. Furthermore, we will derive a winning strategy of the Guarded Game for the Spoiler (cf. [1], Lemma 5.7), which then will conclude the proof.

Using Theorem 5 we can obtain a formula ϑ_{ψ} for every atomic subformula ψ of φ with $\mathfrak{A} \models \psi$ if, and only if, $\mathfrak{A} \models \vartheta_{\psi}$. Now replace every subformula ψ in φ with this newly constructed formula. This yields us $\varphi' \in \mathsf{C}$.

Claim 10. The two formulae φ and φ' are equivalent.

Proof. Base cases: If φ is an atomic formula, that is, either a term equivalence or a relation, then replace φ with ϑ_{φ} . The equivalence follows directly from the above lemmas.

Inductive cases: In the cases where φ is of the form $\neg \vartheta$ and $\vartheta_1 \wedge \vartheta_2$, the claim follows directly using the induction hypothesis.

Let φ be of the form $\exists^{\geq \ell} \mathbf{v}. \Delta \wedge \vartheta$. In addition to translating Δ and ϑ respectively, we also want to distribute them to allow for easier definitions in the following proofs. As such, we want to translate φ to $\varphi' := \exists^{\geq \ell} \mathbf{v}. \bigvee (\Delta' \wedge \bigwedge \Psi \wedge \vartheta')$.

In the following we prove the equivalence of these two formulae. Let $\mathfrak{A} \models \varphi$. This means there are at least ℓ tuples $\mathbf{a} \in A$, such that $(\mathfrak{A}, \mathbf{a}) \models \Delta(\mathbf{v}) \wedge \vartheta(\mathbf{v})$. Using the induction hypothesis we get that this is equivalent to $(\mathfrak{A}, \mathbf{a}) \models \bigvee (\Delta' \wedge \bigwedge \Psi) \wedge \vartheta'$, which, using the distributive law of propositional logic, is equivalent to $(\mathfrak{A}, \mathbf{a}) \models \bigvee (\Delta' \wedge \bigwedge \Psi \wedge \vartheta')$.

Therefore the number of tuples that satisfy $\Delta \wedge \vartheta$ must be the same as for $\bigvee (\Delta' \wedge \bigwedge \Psi \wedge \vartheta')$ and $\mathfrak{A} \models \exists^{\geq \ell} \mathbf{v}. \bigvee (\Delta' \wedge \bigwedge \Psi \wedge \vartheta')$ follows.

Note that for every term α that appears in φ' it is either a variable or there is a $F_{\alpha} \in \widetilde{\sigma}$. This follows from the properties of the translation in Theorem 5. Furthermore, for guards we have to distribute the formulae a bit more.

Now we can transform φ' to a formula of signature $\tilde{\sigma}$. We will define this transformation inductively over the structure of the formula ψ . Furthermore, we use this induction to prove that this does not change, whether a structure satisfies the formula.

Claim 11. It holds that $\mathfrak{A} \models \varphi'$ if, and only if, $\widetilde{\mathfrak{A}} \models \widetilde{\varphi}$.

Proof. Base cases: If ψ is of the form t(x) = y for a term t, then there exists a relation F_t in $\tilde{\sigma}$. Therefore we set the transformed formula to $F_t(x, y)$.

If ψ is of the form $R(t_1(x_1), \ldots, t_m(x_m))$, then there are relations F_{t_i} for $1 \leq i \leq m$ in $\tilde{\sigma}$. Therefore we set the transformed formula to $R(y_1, \ldots, y_m) \wedge F_{t_1}(x_1, y_1) \wedge \cdots \wedge F_{t_m}(x_m, y_m)$.

The claim obviously follows from the definition of the transitive expansion.

Inductive cases: Given the formulae ϑ_1 and ϑ_2 , as well as their transformed forms $\widetilde{\vartheta_1}$ and $\widetilde{\vartheta_2}$, which fulfil the above claim.

We then have the following translations, for which the claim can easily be shown using the induction hypothesis.

- $\neg \vartheta_1$ to $\neg \widetilde{\vartheta_1}$,
- $\vartheta_1 \wedge \vartheta_2$ to $\widetilde{\vartheta_1} \wedge \widetilde{\vartheta_2}$ and
- $\exists^{\geq \ell} \mathbf{v}.\vartheta_1$ to $\exists^{\geq \ell} \mathbf{v}.\widetilde{\vartheta_1}$.

The resulting formula is a formula in the logic disjunctive-GF(C), which we will define in the following.

Definition 12 (disjunctive-GF(C)). The logic disjunctive-GF(C) is a syntactical extension of GF(C). As such it is defined by the rules given in $\ref{eq:grade}$? of GF(C) in addition to a sixth rule:

For two disjunct sets of variables $\mathbf{x} = \{x_1, \dots, x_m\}$ and $\mathbf{y} = \{y_1, \dots, y_m\}$, atomic formulae Δ_i with free $(\Delta_i) \subseteq \mathbf{y}$, formulae ϑ_i with free $(\vartheta_i) \subseteq \mathbf{x}$, binary relations R_j , $\ell \in \mathbb{N}$ and a set $\mathbf{x}' \subseteq \mathbf{x}$, the formula

$$\exists^{\geq \ell} \mathbf{x}'. \bigvee_i \left(\Delta(\mathbf{y}) \wedge \bigwedge_j R_j(x_j, y_j) \wedge \vartheta(\mathbf{x}) \right)$$

is a formula of disjunctive-GF(C).

We can now extend the proof of Lemma 5.7 from [1] to find a winning strategy for Spoiler for a formula in disjunctive-GF(C). This will then conclude the proof of this theorem.

Lemma 13. Let \mathfrak{A} and \mathfrak{B} be structures of strictly equal size and let $\mathbf{a} \in A^k$, $b \in B^k$ be arbitrary tuples of arity k. Let \mathbf{x} be a tuple of k distinct variables. If there exists a formula $\varphi \in \text{disjunctive-GF}(\mathsf{C})$ with $\text{free}(\varphi) \subseteq \{x_1, \ldots, x_k\}$ such that $(\mathfrak{A}, \mathbf{a}) \models \varphi(\mathbf{x}) \iff (\mathfrak{B}, \mathbf{b}) \not\models \varphi(\mathbf{x})$, then Spoiler has a $\text{gd}(\varphi)$ -round winning strategy for the Guarded-Game on $(\mathfrak{A}, \mathbf{a}), (\mathfrak{B}, \mathbf{b})$.

Proof. By looking at the definition of disjunctive-GF(C), we find that all cases but one are covered in the analogous proof in [1]. Therefore we only have to consider the case added in Theorem 12.

Let $\varphi(\mathbf{x})$ be of the form

4 Relational Colour Refinement for symmetric structures

5 Conclusion

References

[1] Benjamin Scheidt and Nicole Schweikardt. Color Refinement for Relational Structures, January 2025. arXiv:2407.16022, doi:10.48550/arXiv.2407.16022.