Домашняя работа

Выполнил Галиуллин Арслан, 1 курс факультета физики, группа 171. 1233550v@mail.ru

Желаемая оценка - 10.

Домашняя работа по дифференциированию и интегрированию. Все коды программы лежат на гитхабе.

1. Найдём производную синуса

Посчитаем её по формуле $f'(x) = \frac{f(x+h) - f(x-h)}{2h}$. Погрешность будет составлять $O(h^2)$.

Видно, что производная и косинус визуально совпали. Погрешность наименьшая при $h=10^{-5.1},$ её квадрат равен $\Delta^2=10^{-11}.$

2. Найдём производную экспоненты

$$h = 10^{-6.9}, \, \Delta^2 = 10^{-5}$$

3. Зависимость погрешности от h

 $\sin(x)$

exp(x)

4. Посчитаем те же производные точнее

$$f'(x) = \frac{2f(x+h) + f(x+2h) - f(x-2h) - 2f(x-h)}{4h}$$
, точность $O(h^3)$.

 $h=10^{-5.1},\,\Delta^2=10^{-11}$ - то же самое.

 $h=10^{-6.9},\,\Delta^2=10^{-5}$ - то же самое.

5. Вторые производные

$$f''(x) = \frac{f(x+h)-2f(x)+f(x-h)}{h^2}$$
, погрешность $O(h^2)$.

 $h=10^{-3.7},~\Delta^2=10^{-9}$ - погрешность растёт.

 $h=10^{-3.7},\,\Delta^2=10^{-3}$ - погрешность растёт.

6. Интегрирование

Будем считать интеграл $I=\int\limits_a^bf(x)dx=\sum_{i=1}^Nf(x_i)h,$ где $h=\frac{b-a}{N}.$

 $\Delta^2=0.5$ - погрешность ощутимая из-за того, что функция быстро растёт. Она считалась после сдвига графика интеграла вверх на единицу. Относительная погрешность $\varepsilon^2=10^{-3}$

7. Попробуем теперь продифференцировать и проинтегрировать функцию

$$\Delta^2 = 0.6, \, \varepsilon^2 = 10^{-3}$$

$$\Delta^2 = 10^{-3}$$

8. Посчитаем какой-нибудь интеграл, а потом сравним с тем, что считает Mathematica

$$I = \int_{0.524(\pi/6)}^{1.047(\pi/3)} \frac{\sin^2(x)}{\cos^2(x)\sqrt{\tan(x)}} dx = \begin{cases} 0.581895835761243, & \text{программа} \\ 0.5818958362420757, & Mathematica \end{cases}$$

Относительная разница $\varepsilon^2 = 10^{-18}$. Весьма точно.

Разбиение при подсчёте было на 109 точек. Считало долго.

9. Интеграл 1/х

Чтобы посчитать интеграл функции, уходящей симметрично на бесконечность (например, 1/x), нужно считать интеграл так, чтобы обе бесконечности занулились.

Для
$$1/\mathbf{x}$$
 он будет выглядеть так: $I=\int\limits_{-1}^{1}\frac{1}{x}dx=\sum_{i=1}^{N}\frac{f(x+h/2)+f(x-h/2)}{2}h=10^{-4}$