در این تمرین به حل معادلات DLT میپردازیم.

در ابتدا حل دستی این معادلات را میبینیم:

محمر وارسلطاني RTSTATET A CUR 9177995 @ هما نكورك در المام عامل ، لو فيع دار واله بلد ، از ٢٠ نقط مهود ، ۵ ا نقط رام عنوال محمل الفي مود . و ١٢ نقطه ماجي ماندرا ولك درظ مي تويع ومهداني سيم معنشات تصويري وسكسلي محدوم). Y= ((CE.) P.) (ع) ما حد تبديل سيتم محتسات ٥ ، ٢ بورم اربزدر النقل روي دو برو يري ديم : مین و تربل عرب بر بر بر می مین در در مین در در مین ازد می دارد می دارد می دارد می دارد می دارد می مین در از می دارد می دارد می دارد می مین در از می دارد می دارد می دارد می دارد می دارد می در از می دارد می در در می دارد می مزایب حمول رامی کنم. 2= (1)X+ l+ Y+ L+ Z+ LE

4= (0)X+ L+ Y+ L+ Z+ L

Tax + L+ Y+ L+ Z+ L ﴿ لَمُنْ وَلَطْنِهِ وَهِمْ وَأَوْ كُلِي مِنْ عَالِمْ إِنَّا كَامِعَتُ نَهُ وَ مَارَبِي مِي هذاك وهمولاك ل وَعَمَلُ وَهُمْ . [: 4Xz + L, Yz + L, Zz + z - L, X - L, Y - L, Z - L = 0] = [L, L, Z - : la Xg. l, Yg+ l 11 Zg+ q - Lox-l+ Y- L, Z- Ln== $A = \begin{bmatrix} \frac{\partial f_1}{\partial L} & \frac{\partial f_2}{\partial L} & \cdots & \frac{\partial f_n}{\partial L} & \frac{\partial f_n}{\partial L} \\ \frac{\partial f_n}{\partial L} & \frac{\partial f_n}{\partial L} & \cdots & \frac{\partial f_n}{\partial L} & \frac{\partial f_n}{\partial L} \\ \end{bmatrix} \xrightarrow{\chi_{\chi_1}} A = \begin{bmatrix} -\chi_{\chi_1} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_1} - \chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_1} - \chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_1} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_1} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_1} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A = \begin{bmatrix} -\chi_{\chi_2} - \chi_{\chi_2} - \chi_{\chi_2} \\ \vdots & \ddots & \ddots & \ddots \\ A =$ EEYOUNT.

CS Scanned with CamScanne

در اصل اگر بخواهیم با مثالی توضیح بیشتری ارائه کنیم،پس از طرفین و وسطین معادلات ما بصورت زیر درآمد:

$$x (h9X + h10Y + h11Z+1) = (h1X + h2Y + h3Z+h4)$$

$$y (h9X + h10Y + h11Z+1) = (h5X + h56Y + h7Z+h8)$$

که همه را به یک سمت بردیم و مشاهدات و مجهولات مشخص شده و مشتق گیری را شروع کردیم.

$$x (h9X + h10Y + h11Z+1) - (h1X + h2Y + h3Z+h4) = 0$$

$$y (h9X + h10Y + h11Z+1) - (h5X + h56Y + h7Z+h8) = 0$$

در مورد این ۱۱ پارامتر لازم به ذکر است که:

عپارامتر توجیه خارجی

٣پارامتر توجيخ داخلي

۲ پارامتر افاین (NONORTOGONALITY-SCALE RATIO)

حال که حل دستی را دیدیم،ابتداعا بهتر است نقاط چک را با توجه به توضیع

	Report this		
i have some pixel points lets say p1(1,1) and p2(1,10)and so on			
i want to display these points on image in any color. how to do this?	?		
matiab			
1 I want to display these points on image in any color, now to do this? matiab Share Edit Follow	asked Oct 1 '10 at 18:54		
Sale Edit Older	chee 969 • 7 • 18 • 26		
Add a comment			
Answers	Active Oldest Votes		
You can just use plot:			
<pre>plot(p1(1), p1(2), 'ko'); % Small circle point in black. plot(p1(1), p1(2), 'r.'); % Small dot in red.</pre>			
Share Edit Follow	answered Oct 1 '10 at 18:55		
	Peter 118k • 49 • 169 • 207		

مناسب،بدست بياوريم.

-)در ابتدا برای نشان دادن نقاط در تصویر پس از اضافه کردن و نمایش تصویر از hold onاستفاده کردیم تا نقاط را بر روی آن نمایش دهیم.

حال نقاط را انتخاب میکنیم.

در انتخاب نقاط چک به اینکه توضیع مناسبی در سطح تصویر داشته باشند و اینکه همچنین این نقاط به طریقی انتخاب شودند که بتوانند با دقت خوبی تمام نقاط موجود در تصویر را پوشش دهند همچنین از منابع زیر برای درک بهتر برای انتخاب بهتر نقاط بهره برده شد.

https://support.pix4d.com/hc/en-us/articles/115000140963-Tie-points-in-photogrammetry-project-ATP-GCP-MTP-and-CP

/https://wingtra.com/ground-control-points-how-many-do-you-need-and-when-are-checkpoints-enough

-https://support.pix4d.com/hc/en-us/articles/115000140963-Tie-points-in-photogrammetry-project-ATP-GCP-MTP-and-CP

https://www.more-connect.eu/wp-content/uploads/2017/05/3rd training-module short.pdf

پس از پایان از نقاط چک یکی از دوستان کمک خواهیم گرفت و نتایج را بررسی میکینم.

15	493.254	239.147	110.485	256.836	99.87
12	1464.7	649.8	103.472	238.175	99.811
10	1840.3	638.2	104.067	231.12	101.915
112	3055.5	741.4	103.228	207.464	102.42
114	2683.686	660.03	104.431	214.89	102.352
161	1030.3	153	112.308	246.612	100.272
14	803.315	646.428	103.043	250.674	99.869
803	3350.7	255.8	112.267	202.322	102.08
808	2747.5	201	112.896	214.077	102.758
812	2055.75	108.25	113.685	227.373	102.252
817	1983.948	903.278	99.367	228.098	102.429
902	203.996	203.94	110.955	262.203	100.567
905	773.5	209.8	111.263	251.524	100.474
909	1114.3	782.2	100.86	244.703	101.539
913	488.453	733.245	101.359	256.468	101.035

نقاط زیر، نقاط انتخابی هستند.

نقاط چک دوم که با یکی از دوستان یکسان است مطابق زیر است.

15	493.254	239.147	110.485	256.836	99.87
12	1464.7	649.8	103.472	238.175	99.811
10	1840.3	638.2	104.067	231.12	101.915
9	2384.7	253.4	111.727	220.913	99.823
5	3362.3	391	110.008	201.782	99.874
113	2755.1	738.6	103.061	213.403	102.386
808	2747.5	201	112.896	214.077	102.758
813	2000.75	105.75	113.701	228.426	102.263
816	3044.157	920.082	99.989	207.385	102.431

817	1983.948	903.278	99.367	228.098	102.429
904	646.484	208.741	111.177	253.983	100.527
910	904.535	857.269	99.326	248.573	101.861
911	600.875	822.462	99.611	254.508	100.815
913	488.453	733.245	101.359	256.468	101.035
915	1047.9	724.6	101.893	246.06	102.173

<mark>بخش اول :</mark>

در ابتدا فایل نقاط را در اکسل جدا کرده و وارد برنامه میکنیم.

نمونه كد اين مرحله:

ب<mark>خش دوم :</mark>

باید سیستم مختصات پیکسلی را به فتوگرامتریک تبدیل کنم.

$$\binom{x}{y} = \binom{(c-c0)*ps}{(r-r0)*ps}$$

7

ب<mark>خش سوم :</mark>

باید ماتریس ضرایب را پر کنیم.

$$A = \begin{pmatrix} \frac{\partial F1}{\partial L1} & \cdots & \frac{\partial F1}{\partial L11} \\ \\ \frac{\partial F2}{\partial L1} & \cdots & \frac{\partial F2}{\partial L11} \end{pmatrix}$$

```
L1 = zeros(2*NOG, 1);
for i=1:NOG
   A(2*i-1,1) = Xg(i);
   A(2*i-1,2) = Yg(i);
   A(2*i-1,3) = Zg(i);
   A(2*i-1,4) = 1;
    A(2*i-1,5) = 0.;
    A(2*i-1,6) = 0.;
   A(2*i-1,7) = 0.;
   A(2*i-1,8) = 0.;
   A(2*i-1,9) = -Xg(i)*x(i);
   A(2*i-1,10) = -Yg(i)*x(i);
    A(2*i-1,11) = -Zg(i)*x(i);
    L1(2*i-1,1) = x(i);
    A(2*i,1) = 0.;
   A(2*i,2) = 0.;
   A(2*i,3) = 0.;
   A(2*i,4) = 0.;
   A(2*i,5) = Xg(i);
    A(2*i,6) = Yg(i);
    A(2*i,7) = Zg(i);
   A(2*i,8) = 1;
   A(2*i,9) = -Xg(i)*y(i);
   A(2*i,10) = -Yg(i)*y(i);
    A(2*i,11) = -Zg(i)*y(i);
    L1(2*i,1) = y(i);
end
xcap = inv(A' * A) * A' * L1 ;
```

```
x_com = zeros(NOC,1);
y_com = zeros(NOC,1);
for i=1:NOC
    x_com(i,1) = ( xcap(1)*Xc(i) + xcap(2) *Yc(i) + xcap(3) *Zc(i) +xcap(4) ) /
...
    ( xcap(9)*Xc(i) + xcap(10)*Yc(i) + xcap(11)*Zc(i) +1 );
    y_com(i,1) = ( xcap(5)*Xc(i) + xcap(6) *Yc(i) + xcap(7) *Zc(i) +xcap(8) ) /
...
    ( xcap(9)*Xc(i) + xcap(10)*Yc(i) + xcap(11)*Zc(i) +1 );
end
xrem = zeros(NOC,1);
yrem = zeros(NOC,1);
for i=1:NOC
    xrem(i,1) = x_com(i)-x_c(i);
    yrem(i,1) = y_com(i)-y_c(i);
end
```

```
teta = zeros(NOC,1);
dr = zeros(NOC,1);
for i=1:NOC
    teta(i,1) = atand(yrem(i)/xrem(i));
    dr(i,1) = sqrt((xrem(i))^2 + (yrem(i))^2);
end
RMSE = 0;
for i=1:NOC
    RMSE = RMSE + sqrt((dr(i)^2) / (NOC-1));
end
RMSE
```

RMSE = 0.00407844111834676

در حالت بعدی که نقاط کنترل را مشابه جناب طاهرزاده گرفتم نتایج بصورت زیر شد:

همانطور که مشاهده میشود خطا در مرحله اول کمتر بوده است.

تحليل:

همانطور که در RMSEمشاهده شد ،مقدار خطای ما بسیار پایین است که نشانه بسیار خوبی میباشد؛در ادامه میتوان برای مقایسه این مقدار با مقدار خطا در هم خطی با هم صفحه ای ، به نتایج کامل رسید؛

در حال حاظر میدانیم که معادلات DLTبه خوبی جواب داده اند و داده های ما داده های با دقت خوبی هستند، اما از معایب این معادلات میتوان به مشخص نبودن دقیق مقادیر مجهولات و توجیه های داخلی،خارجی و ۲ پارامتر image refinement اشاره کرد که همان یکسان نبودن مقیاس ها در دو راستای ایکس و ایگرگ و non orthogonality هستند.

پس این معادلات در اصل معادلات ریاضی با دقت قابل قبولی هستند که "پار امتریک به قضیه نگاه نمیکنند."