1.) Determine MUX size

3 operations: load, swap, clear

present value

->Use 4x1 MUX

2.) Create MUX Operation Table

S1	S0	Operation
0	0	Maintain Present Value
0	1	Load data to register
1	0	Clear Registers
1	1	Swap consecutive bits

3.) Connect MUX Inputs

4.) Map Control Lines

Inputs		Outputs			
cl	ld	sw	S1	S0	Operation
0	0	0	0	0	Maintain Present Value
0	0	1	1	1	Swap consecutive bits
0	1	X	0	1	Load data to register
1	X	X	1	0	Clear Registers

S0 = cl'.ld'.sw + cl'.ld

S1 = cl'.ld'.sw + cl

Entire Register Circuit with 6 Inputs:

