Ecuaciones diferenciales

Sistemas de ecuaciones diferenciales lineales **Semana 07: Teoría**

Profesores del curso:

Hermes Pantoja Carhuavilca Sergio Quispe Rodríguez Patricia Reynoso Quispe Cristina Navarro Flores Orlando Galarza Gerónimo César Barraza Bernaola Daniel Camarena Pérez

Índice

- 1 Sistemas de ED en forma matricial
- 2 Solución de sistemas mediante el cálculo de eigenvalores y eigenvectores

Objetivos

■ **Resolver** sistemas ED de primer orden aplicando valores y vectores propios (caso 1 y 2).

SISTEMAS DE ED EN FORMA MATRICIAL

Logros

■ **Resuelve** sistemas ED de primer orden aplicando valores y vectores propios (caso 1 y 2). (L.5.7.2.2)

Multiplicación de matrices

Sean las matrices
$$A = \begin{bmatrix} 1 & 6 & 0 \\ -1 & 3 & 1 \\ 4 & 6 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 4 & 0 \\ 2 & 3 & 1 \\ 1 & -2 & 1 \end{bmatrix}$. Calcule el producto AB .

Sean las matrices
$$A = \begin{bmatrix} 1 & 6 & 0 \\ -1 & 3 & 1 \\ 4 & 6 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 4 & 0 \\ 2 & 3 & 1 \\ 1 & -2 & 1 \end{bmatrix}$. Calcule el producto AB .

<u>Solución</u>: Notemos que como ambas matrices son de tamaño 3×3 , el producto también será de tamaño 3×3 .

Sean las matrices $A = \begin{bmatrix} 1 & 6 & 0 \\ -1 & 3 & 1 \\ 4 & 6 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 4 & 0 \\ 2 & 3 & 1 \\ 1 & -2 & 1 \end{bmatrix}$. Calcule el producto AB.

<u>Solución</u>: Notemos que como ambas matrices son de tamaño 3×3 , el producto también será de tamaño 3×3 .

$$AB = \begin{bmatrix} 1 \cdot 0 + 6 \cdot 2 + 0 \cdot 1 & 1 \cdot 4 + 6 \cdot 3 + 0 \cdot (-2) & 1 \cdot 0 + 6 \cdot 1 + 0 \cdot 1 \\ (-1) \cdot 0 + 3 \cdot 2 + 1 \cdot 1 & (-1) \cdot 4 + 3 \cdot 3 + 1 \cdot (-2) & (-1) \cdot 0 + 3 \cdot 1 + 1 \cdot 1 \\ 4 \cdot 0 + 6 \cdot 2 + 2 \cdot 1 & 4 \cdot 4 + 6 \cdot 3 + 2 \cdot (-2) & 4 \cdot 0 + 6 \cdot 1 + 2 \cdot 1 \end{bmatrix}$$

Ecuaciones diferenciales

Sistemas de ecuaciones diferenciales

Un sistema de EDO de primer orden, en forma normal, se escribe como

Sistemas de ecuaciones diferenciales

Un sistema de EDO de primer orden, en forma normal, se escribe como

Si las funciones $h_1, h_2, ..., h_n$ son lineales respecto a las variables dependientes $x_1, x_2, ..., x_n$, el sistema (1) toma la siguiente forma:

Sistemas de ecuaciones diferenciales

Un sistema de EDO de primer orden, en forma normal, se escribe como

Si las funciones $h_1, h_2, ..., h_n$ son lineales respecto a las variables dependientes $x_1, x_2, ..., x_n$, el sistema (1) toma la siguiente forma:

Sistema lineal: Forma matricial

Notamos que la ecuación (2) puede escribirse en forma matricial

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ a_{21}(t) & \cdots & a_{2n}(t) \\ \vdots & \vdots & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} f_1(t) \\ f_2(t) \\ \vdots \\ f_n(t) \end{bmatrix}$$
(3)

Ecuaciones diferenciales

Sistema lineal: Forma matricial

Notamos que la ecuación (2) puede escribirse en forma matricial

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ a_{21}(t) & \cdots & a_{2n}(t) \\ \vdots & \vdots & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} f_1(t) \\ f_2(t) \\ \vdots \\ f_n(t) \end{bmatrix}$$
(3)

Ecuaciones diferenciales

o, de forma equivalente

$$X' = AX + F. (4)$$

8 / 37

Sistema lineal: Forma matricial

Notamos que la ecuación (2) puede escribirse en forma matricial

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ a_{21}(t) & \cdots & a_{2n}(t) \\ \vdots & \vdots & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} f_1(t) \\ f_2(t) \\ \vdots \\ f_n(t) \end{bmatrix}$$
(3)

Ecuaciones diferenciales

o. de forma equivalente

$$X' = AX + F. (4)$$

Cuando F = 0, se dice que el sistema es homogéneo:

$$X' = AX \tag{5}$$

Exprese en forma matricial los siguientes sistemas

$$\frac{dx}{dt} = -\frac{2x}{24} + \frac{y}{50}$$

$$\frac{dy}{dt} = \frac{4x}{50} - \frac{4y}{50}$$

$$\frac{dy}{dt} = \frac{4x}{50} - \frac{4y}{50}$$

Exprese en forma matricial los siguientes sistemas

1)

$$\begin{array}{ll} \frac{dx}{dt} & = -\frac{2x}{24} + \frac{y}{50} \\ \frac{dy}{dt} & = \frac{4x}{50} - \frac{4y}{50} \end{array} \Rightarrow X' = \begin{bmatrix} -\frac{2}{25} & \frac{1}{50} \\ \frac{4}{50} & -\frac{4}{50} \end{bmatrix} X$$

2)

$$\frac{dx}{dt} = 3x + 4y$$

$$\frac{dy}{dt} = 5x - 7y$$

Exprese en forma matricial los siguientes sistemas

1)

$$\begin{array}{ll} \frac{dx}{dt} & = -\frac{2x}{24} + \frac{y}{50} \\ \frac{dy}{dt} & = \frac{4x}{50} - \frac{4y}{50} \end{array} \Rightarrow X' = \begin{bmatrix} -\frac{2}{25} & \frac{1}{50} \\ \frac{4}{50} & -\frac{4}{50} \end{bmatrix} X$$

2)

$$\begin{array}{ccc} \frac{dx}{dt} &= 3x + 4y \\ \frac{dy}{dt} &= 5x - 7y \end{array} \Rightarrow X' = \begin{bmatrix} 3 & 4 \\ 5 & -7 \end{bmatrix} X$$

3)

$$\frac{dx}{dt} = 6x + y + 4z + 4t$$

$$\frac{dy}{dt} = 8x + 7y - z + t^{2}$$

$$\frac{dz}{dt} = 2x + 9y - z + e^{t}$$

Exprese en forma matricial los siguientes sistemas

1)

$$\begin{array}{ll} \frac{dx}{dt} & = -\frac{2x}{24} + \frac{y}{50} \\ \frac{dy}{dt} & = \frac{4x}{50} - \frac{4y}{50} \end{array} \Rightarrow X' = \begin{bmatrix} -\frac{2}{25} & \frac{1}{50} \\ \frac{4}{50} & -\frac{4}{50} \end{bmatrix} X$$

2)

$$\frac{dx}{dt} = 3x + 4y \\ \frac{dy}{dt} = 5x - 7y \qquad \Rightarrow \qquad X' = \begin{bmatrix} 3 & 4 \\ 5 & -7 \end{bmatrix} X$$

3)

$$\begin{array}{ll} \frac{dx}{dt} &= 6x + y + 4z + 4t \\ \frac{dy}{dt} &= 8x + 7y - z + t^2 \quad \Rightarrow \quad X' = \begin{bmatrix} 6 & 1 & 4 \\ 8 & 7 & -1 \\ 2 & 9 & -1 \end{bmatrix} X + \begin{bmatrix} 4t \\ t^2 \\ e^t \end{bmatrix} \end{array}$$

Compruebe que los las funciones vectoriales:

$$X_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-2t} = \begin{bmatrix} e^{-2t} \\ -e^{-2t} \end{bmatrix}, \qquad X_2 = \begin{bmatrix} 3 \\ 5 \end{bmatrix} e^{6t} = \begin{bmatrix} 3e^{6t} \\ 5e^{6t} \end{bmatrix}$$

son soluciones de la ecuación: X' = AX, donde $A = \begin{bmatrix} 1 & 3 \\ 5 & 3 \end{bmatrix}$.

Compruebe que los las funciones vectoriales:

$$X_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-2t} = \begin{bmatrix} e^{-2t} \\ -e^{-2t} \end{bmatrix}, \qquad X_2 = \begin{bmatrix} 3 \\ 5 \end{bmatrix} e^{6t} = \begin{bmatrix} 3e^{6t} \\ 5e^{6t} \end{bmatrix}$$

son soluciones de la ecuación: X' = AX, donde $A = \begin{bmatrix} 1 & 3 \\ 5 & 3 \end{bmatrix}$.

Solución

Compruebe que los las funciones vectoriales:

$$X_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-2t} = \begin{bmatrix} e^{-2t} \\ -e^{-2t} \end{bmatrix}, \qquad X_2 = \begin{bmatrix} 3 \\ 5 \end{bmatrix} e^{6t} = \begin{bmatrix} 3e^{6t} \\ 5e^{6t} \end{bmatrix}$$

son soluciones de la ecuación: X' = AX, donde $A = \begin{bmatrix} 1 & 3 \\ 5 & 3 \end{bmatrix}$.

Solución

Derivando los vectores X_1 y X_2 :

$$X_1' = \begin{bmatrix} -2e^{-2t} \\ 2e^{-2t} \end{bmatrix}, \qquad X_2' = \begin{bmatrix} 18e^{6t} \\ 30e^{6t} \end{bmatrix}.$$

Compruebe que los las funciones vectoriales:

$$X_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-2t} = \begin{bmatrix} e^{-2t} \\ -e^{-2t} \end{bmatrix}, \qquad X_2 = \begin{bmatrix} 3 \\ 5 \end{bmatrix} e^{6t} = \begin{bmatrix} 3e^{6t} \\ 5e^{6t} \end{bmatrix}$$

son soluciones de la ecuación: X' = AX, donde $A = \begin{bmatrix} 1 & 3 \\ 5 & 3 \end{bmatrix}$.

Solución

Derivando los vectores X_1 y X_2 :

$$X_1' = \begin{bmatrix} -2e^{-2t} \\ 2e^{-2t} \end{bmatrix}, \qquad X_2' = \begin{bmatrix} 18e^{6t} \\ 30e^{6t} \end{bmatrix}.$$

Por otro lado, efectuando la multiplicación matricial:

Compruebe que los las funciones vectoriales:

$$X_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-2t} = \begin{bmatrix} e^{-2t} \\ -e^{-2t} \end{bmatrix}, \qquad X_2 = \begin{bmatrix} 3 \\ 5 \end{bmatrix} e^{6t} = \begin{bmatrix} 3e^{6t} \\ 5e^{6t} \end{bmatrix}$$

son soluciones de la ecuación: X' = AX, donde $A = \begin{bmatrix} 1 & 3 \\ 5 & 3 \end{bmatrix}$.

Solución

Derivando los vectores X_1 y X_2 :

$$X_1' = \begin{bmatrix} -2e^{-2t} \\ 2e^{-2t} \end{bmatrix}, \qquad X_2' = \begin{bmatrix} 18e^{6t} \\ 30e^{6t} \end{bmatrix}.$$

Por otro lado, efectuando la multiplicación matricial:

$$AX_1 = \begin{bmatrix} 1 & 3 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} e^{-2t} \\ -e^{-2t} \end{bmatrix} = \begin{bmatrix} -2e^{-2t} \\ 2e^{-2t} \end{bmatrix}, \qquad AX_2 = \begin{bmatrix} 1 & 3 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} 3e^{6t} \\ 5e^{6t} \end{bmatrix} = \begin{bmatrix} 18e^{6t} \\ 30e^{6t} \end{bmatrix}$$

Compruebe que los las funciones vectoriales:

$$X_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-2t} = \begin{bmatrix} e^{-2t} \\ -e^{-2t} \end{bmatrix}, \qquad X_2 = \begin{bmatrix} 3 \\ 5 \end{bmatrix} e^{6t} = \begin{bmatrix} 3e^{6t} \\ 5e^{6t} \end{bmatrix}$$

son soluciones de la ecuación: X' = AX, donde $A = \begin{bmatrix} 1 & 3 \\ 5 & 3 \end{bmatrix}$.

Solución

Derivando los vectores X_1 y X_2 :

$$X'_1 = \begin{bmatrix} -2e^{-2t} \\ 2e^{-2t} \end{bmatrix}, \qquad X'_2 = \begin{bmatrix} 18e^{6t} \\ 30e^{6t} \end{bmatrix}.$$

Por otro lado, efectuando la multiplicación matricial:

$$AX_{1} = \begin{bmatrix} 1 & 3 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} e^{-2t} \\ -e^{-2t} \end{bmatrix} = \begin{bmatrix} -2e^{-2t} \\ 2e^{-2t} \end{bmatrix}, \qquad AX_{2} = \begin{bmatrix} 1 & 3 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} 3e^{6t} \\ 5e^{6t} \end{bmatrix} = \begin{bmatrix} 18e^{6t} \\ 30e^{6t} \end{bmatrix}$$

Así, vemos que X_1 y X_2 son soluciones de la ecuación diferencial matricial X' = AX.

Consideremos la ecuación diferencial X' = AX, donde A es una matriz de tamaño 2×2 y supongamos que X_1, X_2 son soluciones de dicha E.D. Podemos calcular el **Wronskiano**:

Consideremos la ecuación diferencial X' = AX, donde A es una matriz de tamaño 2×2 y supongamos que X_1, X_2 son soluciones de dicha E.D. Podemos calcular el **Wronskiano**:

 $W(X_1, X_2) = \det \begin{bmatrix} X_1 & X_2 \end{bmatrix}$ (Note que X_1 y X_2 son vectores columna)

Consideremos la ecuación diferencial X' = AX, donde A es una matriz de tamaño 2×2 y supongamos que X_1, X_2 son soluciones de dicha E.D. Podemos calcular el **Wronskiano**:

$$W(X_1, X_2) = \det \begin{bmatrix} X_1 & X_2 \end{bmatrix}$$
 (Note que X_1 y X_2 son vectores columna)

Luego, se tiene que

 X_1, X_2 son soluciones linealmente independientes $\iff W(X_1, X_2) \neq 0$, para todo t

Consideremos la ecuación diferencial X' = AX, donde A es una matriz de tamaño 2×2 y supongamos que X_1, X_2 son soluciones de dicha E.D. Podemos calcular el **Wronskiano**:

$$W(X_1, X_2) = \det \begin{bmatrix} X_1 & X_2 \end{bmatrix}$$
 (Note que X_1 y X_2 son vectores columna)

Luego, se tiene que

 X_1, X_2 son soluciones linealmente independientes $\iff W(X_1, X_2) \neq 0$, para todo t

Finalmente, si X_1, X_2 son soluciones linealmente independientes de X' = AX, entonces la **solución general** X esta dada por:

$$X = c_1 X_1 + c_2 X_2$$
,

donde $c_1, c_2 \in \mathbb{R}$ son constantes.

En el ejemplo anterior, vimos que $X_1 = \begin{bmatrix} e^{-2t} \\ -e^{-2t} \end{bmatrix}$ y $X_2 = \begin{bmatrix} 3e^{6t} \\ 5e^{6t} \end{bmatrix}$ son soluciones de

X' = AX, donde $A = \begin{bmatrix} 1 & 3 \\ 5 & 3 \end{bmatrix}$ Calculemos el Wronskiano:

En el ejemplo anterior, vimos que $X_1 = \begin{bmatrix} e^{-2t} \\ -e^{-2t} \end{bmatrix}$ y $X_2 = \begin{bmatrix} 3e^{6t} \\ 5e^{6t} \end{bmatrix}$ son soluciones de X' = AX, donde $A = \begin{bmatrix} 1 & 3 \\ 5 & 3 \end{bmatrix}$ Calculemos el Wronskiano:

$$W(X_1, X_2)(t) = \det \begin{bmatrix} e^{-2t} & 3e^{6t} \\ -e^{-2t} & 5e^{6t} \end{bmatrix}$$
$$= 8e^{4t} \neq \mathbf{0} \text{, para todo } t$$

En el ejemplo anterior, vimos que $X_1 = \begin{bmatrix} e^{-2t} \\ -e^{-2t} \end{bmatrix}$ y $X_2 = \begin{bmatrix} 3e^{6t} \\ 5e^{6t} \end{bmatrix}$ son soluciones de X' = AX, donde $A = \begin{bmatrix} 1 & 3 \\ 5 & 3 \end{bmatrix}$ Calculemos el Wronskiano:

$$W(X_1, X_2)(t) = \det \begin{bmatrix} e^{-2t} & 3e^{6t} \\ -e^{-2t} & 5e^{6t} \end{bmatrix}$$
$$= 8e^{4t} \neq \mathbf{0} \text{, para todo } t$$

Por lo tanto X_1, X_2 son soluciones linealmente independientes y así, la solución general de $X' = \begin{bmatrix} 1 & 3 \\ 5 & 3 \end{bmatrix} X$ es:

En el ejemplo anterior, vimos que $X_1 = \begin{bmatrix} e^{-2t} \\ -e^{-2t} \end{bmatrix}$ y $X_2 = \begin{bmatrix} 3e^{6t} \\ 5e^{6t} \end{bmatrix}$ son soluciones de X' = AX, donde $A = \begin{bmatrix} 1 & 3 \\ 5 & 3 \end{bmatrix}$ Calculemos el Wronskiano:

$$W(X_1, X_2)(t) = \det \begin{bmatrix} e^{-2t} & 3e^{6t} \\ -e^{-2t} & 5e^{6t} \end{bmatrix}$$
$$= 8e^{4t} \neq \mathbf{0} \text{, para todo } t$$

Por lo tanto X_1, X_2 son soluciones linealmente independientes y así, la solución general de $X' = \begin{bmatrix} 1 & 3 \\ 5 & 3 \end{bmatrix} X$ es:

$$X = c_1 \begin{bmatrix} e^{-2t} \\ -e^{-2t} \end{bmatrix} + c_2 \begin{bmatrix} 3e^{6t} \\ 5e^{6t} \end{bmatrix}, \ c_1, c_2 \in \mathbb{R}.$$

SOLUCIÓN DE SISTEMAS MEDIANTE EL CÁLCULO DE EIGENVALORES Y EIGENVECTORES

2

En la E.D

$$X' = \begin{bmatrix} 1 & 3 \\ 5 & 3 \end{bmatrix} X$$

Vimos que un par de soluciones linealmentes son: $X_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-2t}$, $X_2 = \begin{bmatrix} 3 \\ 5 \end{bmatrix} e^{6t}$.

En la E.D

$$X' = \begin{bmatrix} 1 & 3 \\ 5 & 3 \end{bmatrix} X$$

Vimos que un par de soluciones linealmentes son: $X_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-2t}$, $X_2 = \begin{bmatrix} 3 \\ 5 \end{bmatrix} e^{6t}$.

Cabe preguntarse si en el caso general (cuando la matriz A es de tamaño $n \times n$) uno puede obtener soluciones de esa forma, osea

En la E.D

$$X' = \begin{bmatrix} 1 & 3 \\ 5 & 3 \end{bmatrix} X$$

Vimos que un par de soluciones linealmentes son: $X_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-2t}$, $X_2 = \begin{bmatrix} 3 \\ 5 \end{bmatrix} e^{6t}$.

Cabe preguntarse si en el caso general (cuando la matriz A es de tamaño $n \times n$) uno puede obtener soluciones de esa forma, osea

$$\begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{bmatrix} e^{\lambda t} = \mathbf{K} e^{\lambda t}, \tag{6}$$

donde $\lambda, k_1, \ldots, k_n \in \mathbb{R}$

Derivando (6) y reemplazando en X' = AX, se obtiene:

$$K\lambda e^{\lambda t} = AKe^{\lambda t}$$
, dividimos ambos miembros de la ecuación entre $e^{\lambda t}$:

$$\lambda K = AK$$

 $\lambda I_n K = AK$, donde I_n es la matriz identidad de tamaño $n \times n$

$$0 = AK - \lambda I_n K$$

$$0 = (A - \lambda I_n)K \tag{7}$$

Derivando (6) y reemplazando en X' = AX, se obtiene:

$$K\lambda e^{\lambda t} = AKe^{\lambda t}$$
, dividimos ambos miembros de la ecuación entre $e^{\lambda t}$:

$$\lambda K = AK$$

 $\lambda I_n K = AK$, donde I_n es la matriz identidad de tamaño $n \times n$

$$0 = AK - \lambda I_n K$$

$$0 = (A - \lambda I_n)K \tag{7}$$

Es así, que el problema de encontrar soluciones a la E.D X' = AX, se reduce a encontrar soluciones no nulas del sistema $(A - \lambda I_n)K = 0$. Por otro lado, el sistema (7) admite una solución no nula $(K \neq [0,0,\ldots,0]^t)$ si y solo si

$$\underline{\det(A - \lambda I_n)} = 0 \leftarrow (\text{Ecuación característica})$$
polinomio característico (8)

Derivando (6) y reemplazando en X' = AX, se obtiene:

$$K\lambda e^{\lambda t}=AKe^{\lambda t}$$
, dividimos ambos miembros de la ecuación entre $e^{\lambda t}$: $\lambda K=AK$ $\lambda I_nK=AK$, donde I_n es la matriz identidad de tamaño $n\times n$ $0=AK-\lambda I_nK$

$$0 = (A - \lambda I_n)K \tag{7}$$

Es así, que el problema de encontrar soluciones a la E.D X' = AX, se reduce a encontrar soluciones no nulas del sistema $(A - \lambda I_n)K = 0$. Por otro lado, el sistema (7) admite una solución no nula $(K \neq [0,0,\ldots,0]^t)$ si y solo si

$$\underbrace{\det(A - \lambda I_n)}_{\text{polinomio característico}} = 0 \leftarrow (\text{Ecuación característica})$$
 (8)

Las soluciones de (8) son llamadas eigenvalores, y los correspondientes vectores $K \neq 0$ que resuelven (7) son llamados eigenvectores.

Cálculo de eigenvalores y eigenvectores

Dada una matriz A de tamaño $n \times n$, para calcular sus eigenvalores, primero debemos encontrar el polinomio característico $P_A(\lambda) = \det(A - \lambda I_n)$ y luego resolver la ecuación característica:

$$p_A(\lambda) = 0$$

Cálculo de eigenvalores y eigenvectores

Dada una matriz A de tamaño $n \times n$, para calcular sus eigenvalores, primero debemos encontrar el polinomio característico $P_A(\lambda) = \det(A - \lambda I_n)$ y luego resolver la ecuación característica:

$$p_A(\lambda) = 0$$

Luego de encontrar los eigenvalores de A, digamos $\lambda_1, \lambda_2, ..., \lambda_r$, debemos reemplazar cada uno de estos en (7) y resolver dicho sistema. Es decir, para cada i = 1, 2, ..., r, debemos resolver:

$$(A - \lambda_i I_n) K = 0 (9)$$

Cálculo de eigenvalores y eigenvectores

Dada una matriz A de tamaño $n \times n$, para calcular sus eigenvalores, primero debemos encontrar el polinomio característico $P_A(\lambda) = \det(A - \lambda I_n)$ y luego resolver la ecuación característica:

$$p_A(\lambda) = 0$$

Luego de encontrar los eigenvalores de A, digamos $\lambda_1, \lambda_2, ..., \lambda_r$, debemos reemplazar cada uno de estos en (7) y resolver dicho sistema. Es decir, para cada i = 1, 2, ..., r, debemos resolver:

$$(A - \lambda_i I_n) K = 0 (9)$$

Los vectores K que se encuentren al resolver (9) serán los eigenvectores de A, asociados a λ_i .

Dada una matriz A de tamaño $n \times n$, el polinomio característico de A tiene grado n, de ahí que la matriz A tendrá n eigenvalores (algunos de ellos pueden repetirse). La solución general de la E.D X' = AX, depende de los eigenvalores y eigenvectores de la matriz A, en ese sentido, se tienen los siguientes casos:

Dada una matriz A de tamaño $n \times n$, el polinomio característico de A tiene grado n, de ahí que la matriz A tendrá n eigenvalores (algunos de ellos pueden repetirse). La solución general de la E.D X' = AX, depende de los eigenvalores y eigenvectores de la matriz A, en ese sentido, se tienen los siguientes casos:

 \blacksquare La matriz A tiene n eigenvalores reales y diferentes.

Dada una matriz A de tamaño $n \times n$, el polinomio característico de A tiene grado n, de ahí que la matriz A tendrá n eigenvalores (algunos de ellos pueden repetirse). La solución general de la E.D X' = AX, depende de los eigenvalores y eigenvectores de la matriz A, en ese sentido, se tienen los siguientes casos:

- \blacksquare La matriz A tiene n eigenvalores reales y diferentes.
- La matriz *A* tiene algunos eigenvalores reales repetidos.

Dada una matriz A de tamaño $n \times n$, el polinomio característico de A tiene grado n, de ahí que la matriz A tendrá n eigenvalores (algunos de ellos pueden repetirse). La solución general de la E.D X' = AX, depende de los eigenvalores y eigenvectores de la matriz A, en ese sentido, se tienen los siguientes casos:

- \blacksquare La matriz A tiene n eigenvalores reales y diferentes.
- La matriz *A* tiene algunos eigenvalores reales repetidos.
- La matriz *A* tiene algunos eigenvalores complejos.

Dada una matriz A de tamaño $n \times n$, el polinomio característico de A tiene grado n, de ahí que la matriz A tendrá n eigenvalores (algunos de ellos pueden repetirse). La solución general de la E.D X' = AX, depende de los eigenvalores y eigenvectores de la matriz A, en ese sentido, se tienen los siguientes casos:

- \blacksquare La matriz A tiene n eigenvalores reales y diferentes.
- La matriz *A* tiene algunos eigenvalores reales repetidos.
- La matriz *A* tiene algunos eigenvalores complejos.

Dependiendo del caso en el que nos encontremos, la solución general de la ecuación diferencial X' = AX tomará una forma específica.

A tiene n eigenvalores diferentes

Cuando la matriz A tiene n eigenvalores **diferentes** $\lambda_1, \lambda_2, ..., \lambda_n$, también tendrá n eigenvectores $K_1, K_2, ..., K_n$, donde K_i está asociado a λ_i . En este caso, la solución general es:

$$X = c_1 K_1 e^{\lambda_1 t} + c_2 K_2 e^{\lambda_2 t} + \dots + c_n K_n e^{\lambda_n t}$$

A tiene n eigenvalores diferentes

Cuando la matriz A tiene n eigenvalores **diferentes** $\lambda_1, \lambda_2, ..., \lambda_n$, también tendrá n eigenvectores $K_1, K_2, ..., K_n$, donde K_i está asociado a λ_i . En este caso, la solución general es:

$$X = c_1 K_1 e^{\lambda_1 t} + c_2 K_2 e^{\lambda_2 t} + \dots + c_n K_n e^{\lambda_n t}$$

Ejemplo: Resuelva el siguiente sistema de ecuaciones diferenciales:

$$\frac{dx}{dt} = x + 2y$$
$$\frac{dy}{dt} = x$$

A tiene n eigenvalores diferentes

Cuando la matriz A tiene n eigenvalores **diferentes** $\lambda_1, \lambda_2, ..., \lambda_n$, también tendrá n eigenvectores $K_1, K_2, ..., K_n$, donde K_i está asociado a λ_i . En este caso, la solución general es:

$$X = c_1 K_1 e^{\lambda_1 t} + c_2 K_2 e^{\lambda_2 t} + \dots + c_n K_n e^{\lambda_n t}$$

Ejemplo: Resuelva el siguiente sistema de ecuaciones diferenciales:

$$\frac{dx}{dt} = x + 2y$$
$$\frac{dy}{dt} = x$$

Matricialmente, tenemos:

$$X' = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix} X \tag{10}$$

$$\det \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 0$$
$$\det \begin{bmatrix} 1 - \lambda & 2 \\ 1 & 0 - \lambda \end{bmatrix} = 0$$
$$\lambda^2 - \lambda - 2 = 0$$
$$(\lambda - 2)(\lambda + 1) = 0$$

$$\det \left(\begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) = 0$$

$$\det \begin{bmatrix} 1 - \lambda & 2 \\ 1 & 0 - \lambda \end{bmatrix} = 0$$

$$\lambda^2 - \lambda - 2 = 0$$

$$(\lambda - 2)(\lambda + 1) = 0$$

Por lo tanto los eigenvalores son $\lambda_1 = 2$, $\lambda_2 = -1$ (notemos que todos los eigenvalores son diferentes entre si), ahora debemos determinar los eigenvectores asociados a cada uno de ellos.

Para $\lambda_1 = 2$: Tenemos que resolver el sistema:

$$\begin{bmatrix} 1-2 & 2 \\ 1 & 0-2 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{cases} -k_1 + 2k_2 = 0 \\ k_1 - 2k_2 = 0 \end{cases}$$
$$\longrightarrow k_1 = 2k_2$$

$$\det \left(\begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) = 0$$

$$\det \begin{bmatrix} 1 - \lambda & 2 \\ 1 & 0 - \lambda \end{bmatrix} = 0$$

$$\lambda^2 - \lambda - 2 = 0$$

$$(\lambda - 2)(\lambda + 1) = 0$$

Por lo tanto los eigenvalores son $\lambda_1 = 2$, $\lambda_2 = -1$ (notemos que todos los eigenvalores son diferentes entre si), ahora debemos determinar los eigenvectores asociados a cada uno de ellos.

Para $\lambda_1 = 2$: Tenemos que resolver el sistema:

$$\begin{bmatrix} 1-2 & 2 \\ 1 & 0-2 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{cases} -k_1 + 2k_2 = 0 \\ k_1 - 2k_2 = 0 \end{cases}$$
$$\longrightarrow k_1 = 2k_2$$

Luego $\begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 2k_2 \\ k_2 \end{bmatrix}$, tomando $k_2 = 1$ (la elección del valor de k_2 es irrelevante

siempre y cuando sea no nulo) se obtiene $K_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, el eigenvector asociado a λ_1 .

Luego $\begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 2k_2 \\ k_2 \end{bmatrix}$, tomando $k_2 = 1$ (la elección del valor de k_2 es irrelevante siempre y cuando sea no nulo) se obtiene $K_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, el eigenvector asociado a λ_1 . Para $\lambda_2 = -1$: Tenemos que resolver el sistema:

Luego $\begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 2k_2 \\ k_2 \end{bmatrix}$, tomando $k_2 = 1$ (la elección del valor de k_2 es irrelevante siempre y cuando sea no nulo) se obtiene $K_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, el eigenvector asociado a λ_1 . Para $\lambda_2 = -1$: Tenemos que resolver el sistema:

$$\begin{bmatrix} 1 - (-1) & 2 \\ 1 & 0 - (-1) \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{cases} 2k_1 + 2k_2 = 0 \\ k_1 + k_2 = 0 \end{cases}$$
$$\longrightarrow k_1 = -k_2$$

Luego $\begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 2k_2 \\ k_2 \end{bmatrix}$, tomando $k_2 = 1$ (la elección del valor de k_2 es irrelevante

siempre y cuando sea no nulo) se obtiene $K_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, el eigenvector asociado a λ_1 . Para $\lambda_2 = -1$: Tenemos que resolver el sistema:

 $\begin{bmatrix} 1 - (-1) & 2 \\ 1 & 0 - (-1) \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{cases} 2k_1 + 2k_2 = 0 \\ k_1 + k_2 = 0 \end{cases}$

Así
$$\begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} -k_2 \\ k_2 \end{bmatrix}$$
, tomando $k_2 = 1$ se obtiene $K_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, el eigenvector asociado a λ_2 .

Luego $\begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 2k_2 \\ k_2 \end{bmatrix}$, tomando $k_2 = 1$ (la elección del valor de k_2 es irrelevante siempre y cuando sea no nulo) se obtiene $K_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, el eigenvector asociado a λ_1 .

Para $\lambda_2 = -1$: Tenemos que resolver el sistema:

$$\begin{bmatrix} 1 - (-1) & 2 \\ 1 & 0 - (-1) \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{cases} 2k_1 + 2k_2 = 0 \\ k_1 + k_2 = 0 \end{cases}$$
$$\longrightarrow k_1 = -k_2$$

Así $\begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} -k_2 \\ k_2 \end{bmatrix}$, tomando $k_2 = 1$ se obtiene $K_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, el eigenvector asociado a λ_2 . Finalmente, la solución general del sistema de E.D matricial (10) es:

$$X = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-t} \rightarrow \begin{cases} x = 2c_1 e^{2t} - c_2 e^{-t} \\ y = c_1 e^{2t} + c_2 e^{-t} \end{cases}$$

A tiene eigenvalores repetidos

Antes de analizar este caso, discutamos el concepto de multiplicidad de un eigenvalor. Sea A una matriz $n \times n$, entonces el polinomio característico siempre se puede factorizar de la siguiente manera:

$$p_A(\lambda) = (\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} \dots (\lambda - \lambda_r)^{m_r}$$

donde $\lambda_1, \lambda_2, \dots, \lambda_r$ son los eigenvalores de A. En este contexto, para $i = 1, 2, \dots, r$, definimos la multiplicidad de λ_i como el exponente m_i que acompaña al factor $(\lambda - \lambda_i)$. Más aún, siempre se cumple que $m_i \le n$

Ecuaciones diferenciales

Ahora, veamos cómo obtener la solución de una ecuación diferencial X' = AX, en la que la matriz A tiene eigenvalores con multiplicidad mayor que 1. Cabe resaltar que restringiremos nuestro estudio a eigenvalores cuya multiplicidad es menor o igual a tres. Sea A una matriz 3×3 y $\lambda \in \mathbb{R}$ un eigenvalor con multiplicidad m ($1 < m \le 3$). Tenemos los siguientes casos:

a) λ tiene asociados m eigenvectores linealmente independientes K_1, \dots, K_m : En este caso, en la solución general tiene la forma:

$$X = c_1 K_1 e^{\lambda t} + c_2 K_2 e^{\lambda t} + \dots + c_m K_m e^{\lambda t} + \text{otros términos}$$

donde los *otros términos* son los que provienen al analizar los demás eigenvalores.

Ejemplo

Calcule la solución general de la E.D matricial:
$$X' = \begin{bmatrix} 1 & -2 & 2 \\ -2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix} X$$

Ejemplo

Calcule la solución general de la E.D matricial:
$$X' = \begin{bmatrix} 1 & -2 & 2 \\ -2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix} X$$

Solución:

Resolvamos la ecuación característica:

$$\det \begin{bmatrix} 1 - \lambda & -2 & 2 \\ -2 & 1 - \lambda & -2 \\ 2 & -2 & 1 - \lambda \end{bmatrix} = 0$$
$$-(\lambda + 1)^{2}(\lambda - 5) = 0$$

Ejemplo

Calcule la solución general de la E.D matricial:
$$X' = \begin{bmatrix} 1 & -2 & 2 \\ -2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix} X$$

Solución:

Resolvamos la ecuación característica:

$$\det \begin{bmatrix} 1 - \lambda & -2 & 2 \\ -2 & 1 - \lambda & -2 \\ 2 & -2 & 1 - \lambda \end{bmatrix} = 0$$
$$-(\lambda + 1)^{2}(\lambda - 5) = 0$$

De esta manera A tiene los eigenvalores $\lambda_1 = -1$ (multiplicidad 2) y $\lambda_2 = 5$. A continuación debemos encontrar los eigenvectores asociados.

Para $\lambda_1 = -1$: Resolvemos,

$$\begin{bmatrix} 1 - (-1) & -2 & 2 \\ -2 & 1 - (-1) & -2 \\ 2 & -2 & 1 - (-1) \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \longrightarrow \begin{cases} 2k_1 - 2k_2 + 2k_3 = 0 \\ -2k_1 + 2k_2 - 2k_3 = 0 \\ 2k_1 - 2k_2 + 2k_3 = 0 \end{cases}$$
$$\longrightarrow 2k_1 - 2k_2 + 2k_3 = 0$$
$$\longrightarrow k_1 = k_2 - k_3$$

Para $\lambda_1 = -1$: Resolvemos,

$$\begin{bmatrix} 1 - (-1) & -2 & 2 \\ -2 & 1 - (-1) & -2 \\ 2 & -2 & 1 - (-1) \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \longrightarrow \begin{cases} 2k_1 - 2k_2 + 2k_3 = 0 \\ -2k_1 + 2k_2 - 2k_3 = 0 \\ 2k_1 - 2k_2 + 2k_3 = 0 \end{cases}$$
$$\longrightarrow 2k_1 - 2k_2 + 2k_3 = 0$$
$$\longrightarrow k_1 = k_2 - k_3$$

Luego
$$\begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} k_2 - k_3 \\ k_2 \\ k_3 \end{bmatrix} = k_2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + k_3 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$
, de esta manera obtenemos $K_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ y $K_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ eigenvectores asociados a λ_2 (notemos que la cantidad de eigenvectores

coincide con la multiplicidad)

De esta manera la solución general es:

$$X = c_1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} e^{-t} + otros \ t\'{e}rminos$$

De esta manera la solución general es:

$$X = c_1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} e^{-t} + otros \ t\'erminos$$

Para completar la solución general, debemos analizar el otro eigenvalor Para $\lambda_2 = 5$: Resolvemos,

$$\begin{bmatrix} 1-5 & -2 & 2 \\ -2 & 1-5 & -2 \\ 2 & -2 & 1-5 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \longrightarrow \begin{cases} -4k_1 - 2k_2 + 2k_3 = 0 \\ -2k_1 - 4k_2 - 2k_3 = 0 \\ 2k_1 - 2k_2 - 4k_3 = 0 \end{cases}$$
$$\longrightarrow \begin{cases} -6k_1 - 6k_2 = 0 \\ -6k_2 - 6k_3 = 0 \end{cases}$$
$$\longrightarrow \begin{cases} k_2 = -k_1 \\ k_3 = -k_{21} \end{cases}$$

Así, tenemos
$$\begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} k_1 \\ -k_1 \\ k_1 \end{bmatrix} = k_1 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$
. De esta manera $K_3 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ es un eigenvector

asociado a λ_2 . Finalmente la solución general de la E.D matricial X' = AX es

$$X = c_1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} e^{-t} + c_3 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} e^{5t}$$
aporte de λ_1 aporte de λ_2

A continuación, veremos el siguiente caso:

b) m = 2, pero se obtiene solo un eigenvector asociado al eigenvalor λ : Sea K el eigenvector asociado a λ , en este caso la solución general es:

$$X = c_1 Ke^{\lambda t} + c_2 (Kte^{\lambda t} + Pe^{\lambda t}) + otros términos,$$

donde P se obtiene al resolver

$$(A - \lambda I_n)P = K \tag{11}$$

A continuación, veremos el siguiente caso:

b) m = 2, pero se obtiene solo un eigenvector asociado al eigenvalor λ : Sea K el eigenvector asociado a λ , en este caso la solución general es:

$$X = c_1 Ke^{\lambda t} + c_2 (Kte^{\lambda t} + Pe^{\lambda t}) + otros términos,$$

donde P se obtiene al resolver

$$(A - \lambda I_n)P = K \tag{11}$$

Ejemplo: Determine la solución de la siguiente E.D diferencial:

$$X' = \begin{bmatrix} 3 & -18 \\ 2 & -9 \end{bmatrix} X \tag{12}$$

Solución: Resolvamos,

$$\det\begin{bmatrix} 3-\lambda & -18\\ 2 & -9-\lambda \end{bmatrix} = 0$$
$$(\lambda+3)^2 = 0$$

Solución: Resolvamos,

$$\det\begin{bmatrix} 3-\lambda & -18\\ 2 & -9-\lambda \end{bmatrix} = 0$$
$$(\lambda+3)^2 = 0$$

De esta manera, A tiene solo un eigenvalor $\lambda_1 = -3$ (multiplicidad 2). Calculemos sus eigenvectores, para ello analicemos el sistema

$$\begin{bmatrix} 3 - (-3) & -18 \\ 2 & -9 - (-3) \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{cases} 6k_1 - 18k_2 = 0 \\ 2k_1 - 6k_2 = 0 \end{cases}$$
$$\longrightarrow k_1 = 3k_2$$

Solución: Resolvamos,

$$\det\begin{bmatrix} 3-\lambda & -18\\ 2 & -9-\lambda \end{bmatrix} = 0$$
$$(\lambda+3)^2 = 0$$

De esta manera, A tiene solo un eigenvalor $\lambda_1 = -3$ (multiplicidad 2). Calculemos sus eigenvectores, para ello analicemos el sistema

$$\begin{bmatrix} 3 - (-3) & -18 \\ 2 & -9 - (-3) \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{cases} 6k_1 - 18k_2 = 0 \\ 2k_1 - 6k_2 = 0 \end{cases}$$
$$\longrightarrow k_1 = 3k_2$$

Luego
$$\begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = k2 \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
, es decir $K = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ es el eigenvector asociado a λ_1 .

Para encontrar el vector P debemos resolver el sistema $(A - \lambda_1 I_2)P = K$

$$\begin{bmatrix} 6 & -18 \\ 2 & -6 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \rightarrow \begin{cases} 6p_1 - 18p_2 = 3 \\ 2p_1 - 6p_2 = 1 \end{cases}$$
$$\rightarrow 2p_1 - 6p_2 = 1$$
$$\rightarrow p_1 = \frac{1}{2} + 3p_2$$

Para encontrar el vector P debemos resolver el sistema $(A - \lambda_1 I_2)P = K$

$$\begin{bmatrix} 6 & -18 \\ 2 & -6 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \rightarrow \begin{cases} 6p_1 - 18p_2 = 3 \\ 2p_1 - 6p_2 = 1 \end{cases}$$
$$\rightarrow 2p_1 - 6p_2 = 1$$
$$\rightarrow p_1 = \frac{1}{2} + 3p_2$$

Tenemos $\begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} + 3p_2 \\ p_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ 0 \end{bmatrix} + p_2 \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, tomando $p_2 = 0$, tenemos $P = \begin{bmatrix} \frac{1}{2} \\ 0 \end{bmatrix}$. Finalmente la solución general de X' = AX queda

$$X = c_1 \begin{bmatrix} 3 \\ 1 \end{bmatrix} e^{-3t} + c_2 \left(\begin{bmatrix} 3 \\ 1 \end{bmatrix} t e^{-3t} + \begin{bmatrix} \frac{1}{2} \\ 0 \end{bmatrix} e^{-3t} \right)$$

El siguiente caso que analizaremos es:

c) m = 3, pero solo se obtiene un eigenvector asociado al eigenvalor λ : Sea K el eigenvector asociado a λ , luego solución general toma la forma:

$$X = c_1 K e^{\lambda t} + c_2 \left(K t e^{\lambda t} + P e^{\lambda t} \right) + c_3 \left(K \frac{t^2}{2} e^{\lambda t} + P t e^{\lambda t} + Q e^{\lambda t} \right),$$

donde P, Q se obtienen al resolver los sistemas:

$$(A - \lambda I_n)P = K$$

$$(A - \lambda I_n) Q = P.$$

El siguiente caso que analizaremos es:

c) m = 3, pero solo se obtiene un eigenvector asociado al eigenvalor λ : Sea K el eigenvector asociado a λ , luego solución general toma la forma:

$$X = c_1 K e^{\lambda t} + c_2 \left(K t e^{\lambda t} + P e^{\lambda t} \right) + c_3 \left(K \frac{t^2}{2} e^{\lambda t} + P t e^{\lambda t} + Q e^{\lambda t} \right),$$

donde P, Q se obtienen al resolver los sistemas:

$$(A - \lambda I_n)P = K$$
$$(A - \lambda I_n)Q = P.$$

Ejemplo: Resuelva el sistema de E.D matricial:

$$X' = \begin{bmatrix} 2 & 1 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & 2 \end{bmatrix} X$$

Solución: La ecuación característica a resolver es:

$$\det\begin{bmatrix} 2-\lambda & 1 & 6\\ 0 & 2-\lambda & 5\\ 0 & 0 & 2-\lambda \end{bmatrix} = 0$$
$$-(\lambda - 2)^3 = 0$$

Solución: La ecuación característica a resolver es:

$$\det\begin{bmatrix} 2-\lambda & 1 & 6\\ 0 & 2-\lambda & 5\\ 0 & 0 & 2-\lambda \end{bmatrix} = 0$$
$$-(\lambda - 2)^3 = 0$$

Obtenemos el único eigenvalor de A, $\lambda_1 = 2$ (multiplicidad 3). Para determinar los eigenvectores, resolvemos:

$$\begin{bmatrix} 2-2 & 1 & 6 \\ 0 & 2-2 & 5 \\ 0 & 0 & 2-2 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \longrightarrow \begin{cases} k_2 + 6k_3 = 0 \\ 5z_3 = 0 \end{cases}$$
$$\rightarrow k_2 = k_3 = 0$$

Solución: La ecuación característica a resolver es:

$$\det\begin{bmatrix} 2-\lambda & 1 & 6\\ 0 & 2-\lambda & 5\\ 0 & 0 & 2-\lambda \end{bmatrix} = 0$$
$$-(\lambda - 2)^3 = 0$$

Obtenemos el único eigenvalor de A, $\lambda_1 = 2$ (multiplicidad 3). Para determinar los eigenvectores, resolvemos:

$$\begin{bmatrix} 2-2 & 1 & 6 \\ 0 & 2-2 & 5 \\ 0 & 0 & 2-2 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \longrightarrow \begin{cases} k_2 + 6k_3 = 0 \\ 5z_3 = 0 \end{cases}$$
$$\rightarrow k_2 = k_3 = 0$$

Así
$$\begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} k_1 \\ 0 \\ 0 \end{bmatrix} = k_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, de ahí que $K = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ es el único eigenvector asociado a λ_1 .

Ahora, determinemos P:

$$\begin{bmatrix} 0 & 1 & 6 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \longrightarrow \begin{cases} p_2 + 6p_3 = 1 \\ 5p_3 = 0 \end{cases}$$
$$\rightarrow p_2 = 1, p_3 = 0$$

Ahora, determinemos P:

$$\begin{bmatrix} 0 & 1 & 6 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \longrightarrow \begin{cases} p_2 + 6p_3 = 1 \\ 5p_3 = 0 \end{cases}$$
$$\rightarrow p_2 = 1, p_3 = 0$$

En consecuencia
$$\begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} = \begin{bmatrix} p_1 \\ 1 \\ 0 \end{bmatrix} = p_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
, tomando $p_1 = 0$ encontramos $P = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

Ahora, determinemos P:

$$\begin{bmatrix} 0 & 1 & 6 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \longrightarrow \begin{cases} p_2 + 6p_3 = 1 \\ 5p_3 = 0 \end{cases}$$
$$\rightarrow p_2 = 1, p_3 = 0$$

En consecuencia
$$\begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} = \begin{bmatrix} p_1 \\ 1 \\ 0 \end{bmatrix} = p_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
, tomando $p_1 = 0$ encontramos $P = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

Por otro lado, para calcular Q debemos resolver el sistema $(A - \lambda_1 I_n)Q = P$, osea

$$\begin{bmatrix} 0 & 1 & 6 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \longrightarrow \begin{cases} q_2 + 6q_3 = 0 \\ 5q_3 = 1 \end{cases}$$
$$\rightarrow q_3 = \frac{1}{5}, q_2 = -6q_3$$

$$\text{Luego} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix} = \begin{bmatrix} q_1 \\ -\frac{6}{5} \\ \frac{1}{5} \end{bmatrix} = q_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ -\frac{6}{5} \\ \frac{1}{5} \end{bmatrix}, \text{ tomando } q_1 = 0, \text{ se tiene que } Q = \begin{bmatrix} 0 \\ -\frac{6}{5} \\ \frac{1}{5} \end{bmatrix}.$$

De este modo, la solución general de la E.D matricial es:

$$X = c_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} e^{2t} + c_2 \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} t e^{2t} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} e^{2t} \right) + \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \frac{t^2}{2} e^{2t} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} t e^{2t} + \begin{bmatrix} 0 \\ -\frac{6}{5} \\ \frac{1}{5} \end{bmatrix} e^{2t} \right).$$

Actividad: Duración 10 minutos I

Objetivo: Explicar la forma de la solución de un sistema de ecuaciones diferenciales en el caso de valores propios reales repetidos.

Escenario:

La tarea es resolver el siguiente sistema de ecuaciones diferenciales lineales:

$$\begin{cases} x'_1 = x_1, & x_1(0) = b_1 \\ x'_2 = 4x_1 + x_2, & x_2(0) = b_2. \end{cases}$$

- Escribe el sistema de ecuaciones en forma matricial x' = Ax, x(0) = b.
- Averigua sobre la forma de Jordan de una matriz. Verifique que la matriz del sistema A tiene un valor propio repetido, halle el vector propio u y el vector propio generalizado v. Si se construye la matriz $P = [u \ v]$ entonces calcule la forma de Jordan de A, J, mediante la fórmula

$$J = P^{-1}AP.$$

Actividad: Duración 10 minutos II

3 Averigua sobre cómo usar la forma de Jordan de la matriz de un sistema de ecuaciones para resolver dicho sistema. Primero plantee otro sistema lineal, haciendo el cambio de variable $y = P^{-1}x$,

$$y' = Jy$$
, $y(0) = P^{-1}b$.

Halle la solución y de este sistema, y luego calcule la solución del sistema original con la fórmula x = Py. Grafica las curvas solución en función del tiempo, fijando las condiciones iniciales.

4 Halla la solución del sistema x' = Ax, x(0) = b siguiendo lo visto en el curso. Grafica las curvas solución en función del tiempo, fijando las condiciones iniciales.

¿Ambos métodos llegan a la misma solución del sistema o existen diferencias significativas al usar estos métodos? Justifica tu respuesta.

Conclusiones

- Cualquier sistema de ecuaciones diferenciales lineal de primer orden puede ser expresado en forma matricial.
- 2 Los autovectores y autovalores de una matriz permiten calcular las soluciones de sistemas de ED lineales de primer orden.

Gracias UTEC UNIVERSIDAD DE INGENIERIA YTECNOLOGÍA

