Diseñando y Programando un Rover de Exploración Espacial con Micro y Robot Maqueen

1. Objetivo

Los estudiantes simularán el diseño y la programación de un rover de exploración espacial, similar al rover Curiosity de la NASA, utilizando la placa Micro y el robot Maqueen. Con la ayuda de ROBO, los estudiantes aprenderán a programar sensores y actuadores para navegar y recolectar datos en un entorno simulado de otro planeta. Esta actividad permite consolidar su comprensión sobre exploración espacial y las tecnologías utilizadas en los rovers, integrando habilidades de programación y diseño de robots.

2. Duración

4 horas

3. Materiales Necesarios

- Placa Micro con adaptador para expansión
- Robot Maqueen con sensores (sensor de línea, sensor ultrasónico, sensor de luz, etc.)
- Sensores adicionales compatibles con Micro (sensor de temperatura, sensor de humedad, etc.)
- Elementos de construcción para crear un entorno planetario simulado (arena, rocas, obstáculos, etc.)
- Ordenadores con acceso a MakeCode para programación de Micro
- Acceso a Internet para investigar ejemplos y técnicas

4. Estructura de la Actividad

4.1. Introducción a la Exploración Espacial y Rovers

 Presentación: Introducción a la exploración espacial, el papel de los rovers como el Curiosity en la recolección de datos científicos en Marte, y las tecnologías empleadas en estos rovers. • Planteamiento de la Actividad: ROBO presentará la misión de diseñar y programar un rover que pueda navegar y recolectar datos en un entorno planetario simulado.

4.2. Formación de Grupos y Planificación de la Misión

- Divide a los estudiantes en grupos de 4-5 personas.
- Cada grupo planificará su misión definiendo objetivos científicos (como medir la temperatura, detectar obstáculos, analizar "muestras" simuladas) y cómo programarán el Maqueen para lograr estos objetivos.

4.3. Diseño y Programación del Rover

- Cada grupo utilizará la placa Micro y el robot Maqueen para diseñar su rover de exploración espacial.
- Aprenderán a programar los sensores y actuadores utilizando MakeCode.

• Ejemplos de programación incluyen:

- Navegación Autónoma: Programar el Maqueen para seguir una ruta predefinida usando el sensor de línea o evitar obstáculos utilizando el sensor ultrasónico.
- Recolección de Datos: Utilizar sensores adicionales para recolectar datos del entorno simulado.

4.4. Construcción del Entorno Simulado

- Cada grupo construirá un entorno planetario simulado utilizando elementos de construcción como arena, rocas y obstáculos.
- Diseñarán el entorno para presentar desafíos realistas que un rover como el Curiosity enfrentaría en Marte.

4.5. Ejecución de la Misión

- Los grupos ejecutarán su misión de exploración espacial en el entorno simulado.
- Durante la misión, observarán el comportamiento de su rover, harán ajustes en tiempo real y resolverán problemas a medida que surjan.

4.6. Análisis de Datos y Presentación de Resultados

- Cada grupo analizará los datos recolectados por su rover y evaluará el éxito de su misión.
- Los estudiantes presentarán sus hallazgos a la clase.

4.7. Discusión y Reflexión

Discusión grupal sobre las diferentes misiones. Reflexión sobre la importancia de la exploración espacial y cómo la tecnología puede mejorar futuras misiones.

5. Rúbrica de Evaluación

Criterio	No Entrega	Mejorable	Bien	Excelente
Conocimiento de Componentes y Funciones	No se entrega trabajo. (0 puntos)	Faltan varios conceptos clave y conexiones. (1 punto)	La mayoría de los conceptos están incluidos y las conexiones son correctas. (2 puntos)	Todos los conceptos clave están incluidos y conectados de manera lógica y precisa. (2.5 puntos)
Diseño y Programación del Rover	No se entrega trabajo. (0 puntos)	El diseño y programación son básicos, con errores en la lógica. (1 punto)	El rover está bien diseñado y programado, con uso correcto de sensores y actuadores. (2 puntos)	El rover está diseñado y programado de manera óptima, utilizando eficientemente todos los componentes. (2.5 puntos)
Trabajo en Equipo y Colaboración	No participa en la actividad. (0 puntos)	Participa mínimamente o con aportaciones poco relevantes. (1 punto)	Participa activamente en el equipo, contribuyendo con ideas relevantes. (2 puntos)	Demuestra liderazgo y excelente colaboración en la planificación y ejecución de la misión. (2.5 puntos)
Capacidad de Resolver Problemas	No se observan intentos de resolución. (0 puntos)	Necesita apoyo constante para resolver problemas.	Resuelve problemas con mínima orientación, ajustando estrategias según lo necesario. (2 puntos)	Demuestra habilidad avanzada para resolver problemas de forma autónoma y creativa. (2.5 puntos)

6. Objetivos de Desarrollo Sostenible (ODS) relacionados

- **ODS 4: Educación de calidad:** Promover la comprensión de tecnologías avanzadas y su aplicación en contextos educativos.
- **ODS 9: Industria, innovación e infraestructura**: Fomentar la innovación y la comprensión de la tecnología mediante proyectos prácticos.

7. Principios del Diseño Universal para el Aprendizaje (DUA)

- Múltiples medios de representación: Uso de diferentes formatos (físicos y digitales) para explorar conceptos de robótica.
- **Múltiples medios de acción y expresión**: Flexibilidad en cómo los estudiantes diseñan y programan sus rovers.
- **Múltiples medios de compromiso**: Involucrar a los estudiantes en tareas prácticas basadas en la exploración y solución de problemas reales.

8. Resultados Esperados

- Los estudiantes obtendrán una comprensión práctica de cómo se utilizan los rovers de exploración espacial para recolectar datos en entornos desconocidos.
- Desarrollarán habilidades en programación y control de robots.
- Desarrollarán habilidades críticas de resolución de problemas y trabajo en equipo.