| 4. Rela   | ační model dat                     |    |
|-----------|------------------------------------|----|
| 4.1. Rel  | lační struktura dat                | 3  |
| 4.2. Inte | egritní pravidla v relačním modelu | 9  |
| 4.2.1.    | Primární klíč                      | 9  |
| 4.2.2.    | Cizí klíč                          | 11 |
| 4.2.3.    | Relační schéma databáze            | 13 |
| 4.3. Rel  | lační algebra                      | 15 |
| 4.4. Rel  | lační kalkul                       | 22 |
| 4.4.1.    | N-ticový relační kalkul (NRK)      | 23 |
| 4.4.2.    | Doménový relační kalkul (DRK)      | 25 |
| Literatu  | ra                                 | 26 |

J. Zendulka: Databázové systémy – 4 Relační model dat

1970 - E.F.Codd: "A relational data model for large shared data banks"

- Přínos publikace:
  - > Oddělení logické struktury dat od implementace
    - > Transparentnost přístupových metod při manipulacích s daty,
    - ➤ Poskytnutí matematické podpory pro manipulaci s daty
    - Poskytnutí matematické podpory k omezení redundance při návrhu logické struktury databáze
- Složky relačního modelu dat
  - > Relační datová struktura
  - > Obecná integritní omezení pro relační databáze
  - ➤ Manipulace s daty v relační databázi

### 4.1. Relační struktura dat



Doména - pojmenovaná množina skalárních hodnot téhož typu.

Př) Doména názvů měst

Skalární hodnota - nejmenší sémantická jednotka dat, atomická (vnitřně nestrukturovaná).

Př) Josef Novák

J. Zendulka: Databázové systémy – 4 Relační model dat

Složená doména – doména složená z několika jednoduchých domén. Př) (Josef, Novák)

- Každý atribut je definován na nějaké doméně (A<sub>i</sub>:D<sub>i</sub>). Jednoduchý atribut na jednoduché, složený na složené.
- Domény omezují porovnávání hodnot.

Poznámka: Většina SŘBD pojem domén nepodporuje vůbec nebo jen částečně (pojmenované standardní datové typy).

```
Př) SQL/92, ne Oracle, SQLBase
    CREATE DOMAIN Města CHAR[20] DEFAULT '???'
    CREATE TABLE Zákazník (..., město Města, ...)
```

J. Zendulka: Databázové systémy – 4 Relační model dat

#### Relace

Relace na doménách  $D_1$ ,  $D_2$ , ...,  $D_n$  je dvojice  $\mathbf{R} = (R, R^*)$ , kde  $R = R(A_1:D_1, A_2:D_2, ..., A_n:D_n)$  je schéma relace a  $R^* \subseteq D_1 \times D_2 \times ... \times D_n$  je tělo relace. Schéma relace zapisujeme často zjednodušeně ve tvaru  $R(A_1, A_2, ..., A_n)$ . Počet atributů n relace se označuje stupeň (řád) relace, kardinalita těla relace  $m = |\mathbf{R}^*|$  se označuje kardinalita relace.

- Stupeň relace je konstantní, kardinalita proměnná
- Vztah pojmu "relace" v relačním modelu dat a pojmu "tabulka"

| relace  | základní abstraktní pojem relačního modelu |
|---------|--------------------------------------------|
| tabulka | forma znázornění relace                    |

Poznámka: Název "relační model" a "relační databáze" je odvozen od faktu, že relace je základním abstraktním pojmem modelu a jedinou strukturou databáze na logické úrovni.

J. Zendulka: Databázové systémy – 4 Relační model dat

5

### • Alternativní definice - záhlaví + tělo relace

Relace R na doménách  $D_1$ ,  $D_2$ , ...,  $D_n$  je dvojice R = (H, B), kde H značí záhlaví relace a B tělo relace.

Záhlaví relace je množina:

$$H = \{(A_1:D_1), (A_2:D_2), ..., (A_n:D_n)\}$$
  $A_i \neq A_j$  pro  $i \neq j$ ,  $A_i$  ( $i = 1, ..., n$ ) značí atributy a  $D_i$  ( $i=1, ..., n$ ) jsou odpovídající domény.

Tělo relace je tvořeno časově proměnnou množinou n-tic:

$$B(t) = \{r_1, r_2, ..., r_m(t)\}, \text{ kde } r_i = \{(A_1:v_{i1}), (A_2:v_{i2}), ..., (A_n:v_{in})\}\$$
  $i = 1, 2, ..., m(t), n - stupeň$  (řád) relace,  $m$ - kardinalita relace.

- Vlastnosti relace:
  - > Neexistují duplicitní n-tice,
  - > n-tice jsou neuspořádané
  - > Hodnoty jednoduchých atributů jsou atomické
- "Prohřešky" SQL
  - DISTINCT/ALL(?), NEXT (?)

- Přínos požadavku normalizované relace (v 1NF)
  - Normalizovaná relace je jednodušší, stačí jednodušší operace.

## Př) relace Účet

#### Nenormalizovaná

|              | účet    |           |
|--------------|---------|-----------|
| r_číslo      | č_účtu  | pobočka   |
| 4440726/0672 | 4320286 | Jánská    |
|              | 2075752 | Palackého |
| 530610/4532  | 1182648 | Palackého |

#### Normalizovaná

| r_číslo      | č_účtu  | pobočka   |
|--------------|---------|-----------|
| 4440726/0672 | 4320286 | Jánská    |
| 4440726/0672 | 2075752 | Palackého |
| 530610/4532  | 1182648 | Palackého |

J. Zendulka: Databázové systémy – 4 Relační model dat

7

- Typy relací
  - pojmenované
    - bázové (reálné)
    - pohledy (virtuální)
    - materializované pohledy (snapshot)- odvozené, ale existující
    - dočasné
  - nepojmenované
    - výsledky dotazů
    - mezivýsledky

# Př) SQL/92 - příklad přechodné tabulky pro SQL sezení

CREATE GLOBAL TEMPORARY TABLE Temp (...)

[ON COMMIT {PRESERVE | DELETE} ROWS]

- Shrnutí základních vlastností relační struktury
  - Relační databáze je vnímána uživatelem (aplikací) jako kolekce časově proměnných normalizovaných relací.
  - Veškerá data v relační databázi jsou reprezentována explicitní hodnotou (žádné ukazatele apod.).

# 4.2. Integritní pravidla v relačním modelu

- omezení plynoucí z reality reprezentované daty v databázi
- Typy integritních omezení:
  - > specifická pro konkrétní aplikaci
  - obecná musí platit v každé databázi daného typu
- obecná omezení v relačním modelu se týkají primárních a cizích klíčů

#### 4.2.1. Primární klíč

atribut, který jednoznačně identifikuje n-tici v relaci

Atribut *k* relace R se nazývá *kandidátním klíčem*, když má tyto dvě časově nezávislé vlastnosti:

- 1. jednoznačnost
- 2. minimalita (neredukovatelnost).
- relaci lze chápat jako paměť s asociativním výběrem
- každá relace má alespoň jeden kandidátní klíč
- atribut, který je součástí kandidátního klíče budeme nazývat klíčový

J. Zendulka: Databázové systémy – 4 Relační model dat

9

Primárním klíčem je jeden z kandidátních klíčů (vybraný), zbývající kandidátní klíče se nazývají alternativní (někdy také sekundární).

- způsob výběru primárního klíče není v relačním modelu specifikován
- existence primárního klíče neimplikuje existenci odpovídajícího indexu
- primární klíč je základním prostředkem adresace n-tic v relačním modelu
  - Př) Použití hodnoty primárního klíče pro adresaci

```
SELECT *
FROM Klient
WHERE r_cislo='440726/0672'

SELECT *
FROM Klient
WHERE jmeno='Jan Novák';
```

### Pravidlo integrity entit

U žádné komponenty primárního klíče bázové relace nesmí chybět hodnota (nesmí být NULL).

- entity jsou identifikovatelné → n- tice musí být také
- pravidlo se vztahuje na bázové relace
- pravidlo se týká pouze primárního klíče
- ⇒ Každá n-tice bázové relace musí být v každém okamžiku jednoznačně identifikovatelná hodnotou primárního klíče.

#### 4.2.2. Cizí klíč

Př) transakce.č\_účtu - je hodnota 5270817 legální?



J. Zendulka: Databázové systémy – 4 Relační model dat

11

Atribut *FK* bázové relace **R2** se nazývá *cizí klíč*, právě když splňuje tyto časově nezávislé vlastnosti:

- 1. Každá hodnota FK je buď plně zadaná nebo plně nezadaná.
- 2. Existuje bázová relace R1 s primárním klíčem *PK* takovým, že každá zadaná hodnota *FK* je identická s hodnotou *PK* nějaké n-tice relace R1.
- cizí a odpovídající primární klíč by měly být definovány na téže doméně
- referenční cesta, sebeodkazující relace, referenční cykly
- soulad hodnot cizích a primárních klíčů představuje vztahy mezi nticemi ("drží databázi pohromadě")

## Pravidlo referenční integrity

DB nesmí obsahovat žádnou nesouhlasnou hodnotu cizího klíče.

- pravidlo referenční integrity se týká stavu databáze

## 4.2.3. Relační schéma databáze

Relačním schématem databáze nazýváme dvojici (R, I), kde  $R = \{R_1, R_2, ..., R_k\}$  je množina schémat relací a  $I = \{I_1, I_2, ..., I_l\}$  je množina integritních omezení.

Někdy jsou lokální integritní omezení rozdělena mezi jednotlivá schémata, tj.

$$R = \{(R_1, I_1), (R_2, I_2), ..., (R_k, I_k)\}$$

(*Přípustnou*) relační databází se schématem (R, I) nazýváme množinu relací  $R_1$ ,  $R_2$ , ...,  $R_k$  takových, že prvky těla relací splňují všechna integritní omezení z I. Říkáme také, že relace, resp. data jsou konzistentní.

J. Zendulka: Databázové systémy - 4 Relační model dat

13

# Diagram schématu databáze



# 4.3. Relační algebra

Relační algebrou rozumíme dvojici RA = (R, O), kde nosičem R je množina relací a O je množina operací, která zahrnuje:

- tradiční množinové operace (sjednocení, průnik, rozdíl, součin),
- speciální relační operace, mezi které patří projekce, selekce (restrikce), spojení a dělení.
- Tradiční operace

Relace jsou množiny n-tic, proto mají tradiční operace obvyklý význam s respektováním vlastností relací (není libovolná množina).

Sjednocením relací R1 =  $(R, R1^*)$  a R1 =  $(R, R2^*)$  se schématem R je relace R1 UNION R2 =  $(R, R1^* \cup R2^*)$ .

Analogicky pro *průnik* (R1 INTERSECT R2) a rozdíl (R1 MINUS R2). Kartézským součinem relací R1 =  $(R1, R1^*)$  a R2 =  $(R2, R2^*)$  je relace R1 TIMES R2 =  $((R1,R2), R1^* \times R2^*)$ .

J. Zendulka: Databázové systémy – 4 Relační model dat

15

- Speciální relační operace
  - projekce, selekce (restrikce) unární; spojení, dělení binární
  - > Projekce

Projekce relace R1 na atributy X, Y, ..., Z ( je relace R1[X, Y, ..., Z]

se schématem (X, Y, ..., Z) a tělem zahrnujícím všechny n-tice t = (x, y, ..., z) takové, že v  $R1^*$  existuje n-tice t s hodnotou atributu X rovnou x, Y rovnou y, ... Z rovnou z.

## Př) Klient [r\_číslo, jméno]

| r_číslo     | jméno       |
|-------------|-------------|
| 440726/0672 | Jan Novák   |
| 530610/4532 | Petr Veselý |
| 601001/2218 | Ivan Zeman  |
| 510230/048  | Pavel Tomek |
| 580807/9638 | Josef Mádr  |
| 625622/6249 | Jana Malá   |

#### > Selekce (restrikce)

Necht'  $\theta$  reprezentuje operátor porovnání dvou hodnot (<, >, <>, =, atd.).  $\theta$  selekce (restrikce) relace R na atributech X a Y je relace R WHERE X  $\theta$  Y,

která má stejné schéma jako relace R a obsahuje všechny n-tice  $t \in R^*$ , pro které platí  $x \theta y$ , kde x je hodnota atributu X a y hodnota atributu Y v n-tici t.

- na místě buď X nebo Y může být literál

## Př) Klient where r číslo = '440726/0672'

| r_číslo     | jméno     | ulice  | město |
|-------------|-----------|--------|-------|
| 440726/0672 | Jan Novák | Cejl 8 | Brno  |

rozšíření podmínky o logické spojky:

R1 WHERE c1 AND c2  $\equiv$  (R1 WHERE c1) INTERSECT (R1 WHERE c2)

- podobně OR, NOT.

J. Zendulka: Databázové systémy – 4 Relační model dat

17

## ➤ Spojení

Necht' R1 je relace se schématem R1(X1,X2,..,Xm,Y1,Y2,...,Yn) a R2 relace se schématem (Y1,Y2, ...,Yn, Z1,Z2,...,Zk). Uvažujme složené atributy X=(X1,X2,...,Xm), Y=(Y1,Y2,...,Yn) a Z=(Z1,Z2,...,Zk). Potom přirozené spojení relací R1 a R2 je relace

### R1 JOIN R2

se schématem (X, Y, Z) a tělem zahrnujícím všechny n-tice t = (x, y, z) takové, že v R1\* existuje n-tice t's hodnotou x atributu X a hodnotou y atributu Y a v X2\* existuje n-tice t''s hodnotou y atributu Y a hodnotou z atributu Z.

# Př) Účet JOIN Transakce

|         |       |             | · ———     |             |
|---------|-------|-------------|-----------|-------------|
| č_účtu  | stav  | r_číslo     | č_účtu    | č_transakce |
| 4320286 | 52000 | 440726/0672 | 4320286   | 1           |
| 1182648 | 10853 | 530610/4532 | 4320286   | 2           |
| č_účtu  | stav  | r_číslo     | č_transak | ce          |
| 4320286 | 52000 | 440726/0672 | 1         |             |
| 4320286 | 52000 | 440726/0672 | 2         |             |

Další typy spojení

Obecné spojení - theta join:

 $R1 [X \theta Y] = df$  (R1 TIMES R2 WHERE  $X \theta Y$ )

Polospojení (levé): R1 SEMIJOIN R2 = df (R1 JOIN R2) [atributy R1]

Vnější spojení (levé): R1 OUTER JOIN R2

#### ➤ Dělení

Nechť R1 je relace se schématem (X, Y), kde X a Y jsou obecně složené atributy a R2 relace se schématem (Y). Výsledkem dělení relace R1 relací R2 je relace

#### **R1** DIVIDEBY **R2**

se schématem (X) a tělem obsahujícím množinu všech n-tic t = (x) takových, že v  $R1^*$  existují n-tice  $t_1 = (x, y_1), t_2 = (x, y_2), ..., t_k = (x, y_k),$  kde  $y_1, y_2, ..., y_k$  jsou všechny hodnoty atributu Y v n-ticích V  $R2^*$ .

J. Zendulka: Databázové systémy – 4 Relační model dat

19

# Př) Účet [r\_číslo, pobočka] DIVIDEBY Pobočka[RENAME název TO pobočka]

| r_číslo     | pobočka   |
|-------------|-----------|
| 440726/0672 | Jánská    |
| 530610/4532 | Palackého |
| 440726/0672 | Palackého |

| název     |  |
|-----------|--|
| Jánská    |  |
| Palackého |  |

r\_číslo 440726/0672

- Minimální množina operací relační algebry
  - Sjednocení, rozdíl, kartézský součin, projekce, selekce
- Rozšířená relační algebra
  - Definice dalších operací a pojmů (přiřazení, přejmenování (rename), agregační funkce,...)

Poznámka: V literatuře se často používají pro operace relační algebry následující symboly:

| $\sigma_{\theta}$ (R) | R WHERE θ    |
|-----------------------|--------------|
| $\Pi_{X,Y}(R)$        | R [X, Y]     |
| $R\bowtie S$          | R JOIN S     |
| R÷S                   | R DIVIDEBY S |

- Výrazy relační algebry jako dotazovací jazyk
   Jazyk výrazů relační algebry je procedurálním dotazovacím jazykem.
  - Př) "Kteří klienti prováděli transakce v říjnu?"

    (Klient JOIN Účet JOIN Transakce) WHERE datum >= '1.10.2003'

    AND datum <= '31.10.2003'
- Význam relační algebry
  - > vhodný základ pro optimalizaci zpracování dotazů
  - referenční prostředek pro hodnocení vlastností a porovnání relačních dotazovacích jazyků

Databázový jazyk je *relačně úplný* (relationally complete), je-li alespoň tak mocný jako relační algebra.

J. Zendulka: Databázové systémy – 4 Relační model dat

21

## 4.4. Relační kalkul

- dotazovací jazyk na bázi logiky
- neprocedurální dotazovací jazyk (CO chceme dostat)

Př) "Kteří klienti mají účet u pobočky Jánská?" RA:

(Klient JOIN Účet) WHERE pobočka='Jánská'

RK (zavedený Coddem):

 $\{k | k \in Klient \land \exists u \in \acute{U}\check{c}et (k.r\_\check{c}islo=u.r\_\check{c}islo \land u.pobo\check{c}ka='Jánská') \}$ 

- Typy relačního kalkulu
  - > n-ticový relační kalkul (NRK)
  - doménový relační kalkul (DRK)

## 4.4.1. N-ticový relační kalkul

- Termy
  - > n-ticové proměnné definované na n-ticích relací
  - > odkazy na atributy (např. z.jméno)
  - ➤ konstanty (hodnoty z domény)
- Predikátové symboly {<,>,<=,>=,=,<>} ...  $\theta$
- Atomická formul
  - > R(x), kde R je relace a x je n-ticová proměnná
  - $\succ$  x.A  $\theta$  y.B, resp. x.A  $\theta$  'c'
- Formule (WFF Well Formed Formula)
  - > atomická formule
  - > je-li P1 formule, pak i NOT P1 a (P1) jsou formule
  - ≽ jsou-li P1 a P2 formule, pak i
    P1 AND P2, P1 OR P2 a IF P1 THEN P2 jsou formule
  - $\triangleright$  je-li P(x) formule s volnou n-ticovou proměnnou x, pak i EXISTS  $x \in R$  (P(x)) a FORALL  $x \in R$  (P(x)) jsou formule (s tzv. omezenými kvantifikátory).

J. Zendulka: Databázové systémy – 4 Relační model dat

23

# Jazyk NRK jsou výrazy tvaru:

seznam\_komponent\_volných\_proměnných where formule\_dotazu

• Problém bezpečnosti výrazů

Výraz je *bezpečný*, pokud všechny hodnoty výsledku jsou vytvořeny z n-tic v databázi.

Př) výraz, který není bezpečný

- x WHERE NOT R(x)
- pro bezpečné výrazy musí být syntaxe omezena

NRK omezený na bezpečné výrazy je ekvivalentní relační algebře.

Př) "Kteří klienti mají účet u pobočky Jánská?"

k WHERE Klient(k) AND EXISTS u ∈ Účet(u.r\_číslo = k.r\_číslo AND u.pobočka = 'Jánská')

## 4.4.2. Doménový relační kalkul (DRK)

- Termy
  - > doménové proměnné definované na doménách
  - konstanty (hodnoty z domény)
- Predikátové symboly {<,>,<=,>=,=,<>} ... θ
- Atomická formule:

```
R(A_1:t_1, A_2:t_2, ..., A_n:t_n), t_1 \theta t_1
```

- Formule viz NRK
- Problém bezpečnosti výrazů
  - analogicky jako u NRK

Př) výraz, který není bezpečný x where not R(jméno:x)

Př) "Kteří klienti mají účet u pobočky Jánská?"

rc, j, u, m WHERE Klient(r\_číslo: rc, jméno: j, ulice: u, město: m)
AND Účet(r\_číslo:rc, pobočka: 'Jánská)'

J. Zendulka: Databázové systémy – 4 Relační model dat

25

## Literatura

- 1. Silberschatz, A., Korth H.F, Sudarshan, S.: Database System Concepts. Fourth Edition. McGRAW-HILL. 2001, str. 79 131.
- 2. Pokorný, J.: Dotazovaci jazyky. Science, Veletiny, 1994, str. 21 46.
- 3. Pokorný, J.: Databazová abeceda. Science, Veletiny, 1998, str. 145 148.
- 4. Date C.J.: An Introduction to Database Systems. Sixth edition. Addison-Wesley, 1995, str. 79 218.