12 The Wave Equation

The wave equation in one space and one time variable is

$$\frac{d^2u}{dt^2} - \frac{d^2u}{dx^2} = 0, \qquad u: (\mathbb{R}_x, \mathbb{R}_t) \to \mathbb{R}$$

Theorem. If $f_0, f_1 \in C^{\infty}(\mathbb{R}_x)$, $\exists ! u \in C^{\infty}(\mathbb{R}_{x,t}^2)$ satisfying the wave equation with the initial conditions $u(0,x) = f_0(x)$ and $\partial_x u(0,x) = f_1(x)$, $\forall x \in \mathbb{R}$.

Proof. We can write all solutions of the wave equation as $u(t,x) = \varphi(t+x) + \psi(t-x)$ where $u \in C^{\infty}(\mathbb{R}^2)$ and $\varphi, \psi \in C^{\infty}(\mathbb{R})$.

If $u(t, x) = \varphi(t + x) + \psi(t - x)$ obviously

$$\frac{\partial^2}{\partial t^2}\varphi(t+x) = \frac{\partial^2}{\partial x^2}\varphi(t-x)$$

Conversely if we have $\frac{d^2u}{dt^2} - \frac{d^2u}{dx^2} = 0$, $u: (\mathbb{R}_x, \mathbb{R}_t) \to \mathbb{R}$ then consider

$$v(t,x) = \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x}$$

then

$$\frac{\partial v}{\partial t} = \frac{\partial^2 u}{\partial t^2} + \frac{\partial^2 u}{\partial t \partial x}, \qquad \frac{\partial v}{\partial x} = \frac{\partial^2 u}{\partial t \partial x} + \frac{\partial^2 u}{\partial x^2}$$

then by the equality of mixed derivatives, $\frac{\partial v}{\partial t} = \frac{\partial v}{\partial x}$. If we define $v(t,x) = \varphi(s,r)$ where s = t + x and r = t - x, then

$$\frac{\partial v}{\partial t} = \frac{\partial \varphi}{\partial s} \frac{\partial s}{\partial t} + \frac{\partial \varphi}{\partial r} \frac{\partial r}{\partial t} = \frac{\partial \varphi}{\partial s} + \frac{\partial \varphi}{\partial r}$$
$$\frac{\partial v}{\partial x} = \frac{\partial \varphi}{\partial s} \frac{\partial s}{\partial x} - \frac{\partial \varphi}{\partial r} \frac{\partial r}{\partial x} = \frac{\partial \varphi}{\partial s} - \frac{\partial \varphi}{\partial r}$$

if $\partial v/\partial t = \partial v/\partial x$ then $\partial \varphi/\partial r = 0$. So φ is only a function of s, so it is a function of t + x. So $v = \partial u/\partial t + \partial u/\partial x = \varphi(t+x)$. If $\Phi' = \varphi$ then $u = \frac{1}{2}\Phi(t+x)$ satisfies that equation. So if we let $u = \varphi_1(t+x) + u'$ then $\partial u'/\partial t + \partial u'/\partial x = 0$. If we apply the same argument with the signs switched then $u' = \psi(t-x)$, and so $u = \varphi_1(t+x) - \psi(t-x)$.

Now the initial conditions:

$$u(0) = \varphi(x) + \psi(-x) = f_0$$
$$\frac{\partial u}{\partial t}(0, x) = \varphi'(x) + \psi'(-x) = f_1$$

If we differentiate the first equation we get $\varphi'(x) - \psi'(-x) = f'_0$ then

$$\varphi'(x) = \frac{1}{2}(f_1 + f_0')$$
 $\psi'(x) = \frac{1}{2}(f_1(-x) - f_0'(-x))$

If we take the following it solves the equation

$$\varphi(x) = \int_0^x \frac{1}{2} (f_1 + f_0') dx$$

Exercise $\varphi + \psi$ is not unique, but u is unique.

12.1 Fourier Series solutions

From the uniqueness of u if f_0 and f_1 are both 2π -periodic then

$$f_i(x+2\pi) = f_i(x), \ \forall x \in \mathbb{R} \Longrightarrow u(t,x+2\pi) = u(t,x), \ \forall t,x \in \mathbb{R}^2$$

Because the equation is translation invariant, $\tilde{u}(t,x) = u(t,x+2\pi)$ satisfies

$$\frac{\partial^2 \tilde{u}}{\partial t^2}(t,x) = \frac{\partial^2 u}{\partial t^2}(t,x+2\pi), \qquad \frac{\partial^2 \tilde{u}}{\partial x^2}(t,x) = \frac{\partial^2 u}{\partial x^2}(t,x+2\pi)$$

 $\tilde{u}(0,x) = f_0(x+2\pi).$

Now, we can expand the solution in the fourier series

$$\begin{cases} u(t,x) = \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} c_k(t) e^{ixk} \\ c_k(t) = \int_{-\pi}^{\pi} u(t,x) e^{-ixk} dx \end{cases}$$

when we combine our wave equation condition with $\partial^2 u/\partial t^2 = \partial^2 u/\partial x^2$ with the below, we get

$$\frac{d^2c_k(t)}{dt^2} = \int_{-\pi}^{\pi} \frac{\partial^2 u}{\partial t^2}(t, x)e^{-ixk}dx = \int_{-\pi}^{\pi} \frac{\partial^2 u}{\partial x^2}(t, x)e^{-ixk}dx$$

Integrate by parts (there are no boundary terms by periodicity) and this is

$$\int_{-\pi}^{\pi} u(t,x) \frac{d^2}{dx^2} e^{-ixk} dx = -k^2 \int_{-\pi}^{\pi} u(t,x) e^{-ixk} dx = -k^2 c_k(t)$$

So the Fourier coefficients of u(t,x) with f_0, f_1 are 2π -periodic (initial conditions/driving system 2π periodic) satisfy

$$\left(\frac{d^2}{dt^2} + k^2\right)c_k(t) = 0$$

So the general solution for the Fourier coefficients are of the form $c_k(t) = a_k e^{itk} + b_k e^{-itk}$. So if the initial data is 2π -periodic and smooth, then the solutions are 2π periodic in t (as well as space).

Now to solve for a_k, b_k :

$$c_k(0) = \int_{-\pi}^{\pi} u(0, x) e^{-ixk} dx = \int_{-\pi}^{\pi} f_0(x) e^{-ixk} dx = c_k(f_0)$$

$$c'_k(0) = \frac{d}{dt} c_k(0) = \int_{-\pi}^{\pi} \frac{du}{dt} (0, x) e^{-ixk} dx = \int_{-\pi}^{\pi} f_1 e^{-ixk} dx = c_k(f_1)$$

but $c_k(0) = a_k + b_k$ and $c'_k(0) = ia_k - ib_k$, and so the coefficients are

$$a_k = \frac{1}{2}(c_k(0) + \frac{1}{ik}c'_k(0)), \qquad b_k = \frac{1}{2}(c_k(0) - \frac{1}{ik}c'_k(0))$$

and for k=0, $c_k(0)=a_0$ and $c'_k(0)=b_0$. And the solution is 2π -periodic in t if and only if $b_0 = \int_{-\pi}^{\pi} f_1(x) dx = 0.$ So now we have 2 ways of solving the equation for 2π -period input data

- 1. By using $u(t,x) = \varphi(t+x) + \psi(t-x)$.
- 2. If we set

$$\alpha_k = \int_{-\pi}^{\pi} f_0 e^{-ixk} dx, \qquad \beta_k = \int_{-\pi}^{\pi} f_1 e^{-ixk} dx$$

then the Fourier series solution is

$$u(t,x) = \frac{1}{2\pi} \sum_{k \neq 0} \left[\underbrace{\frac{1}{2} (\alpha_k + \frac{1}{ik} \beta_k)}_{a_k} e^{i(t+x)k} + \underbrace{\frac{1}{2} (\alpha_k - \frac{1}{ik} \beta_k)}_{b_k} e^{i(x-t)k} \right] + \underbrace{\frac{1}{2\pi} (\alpha_0 + \beta_0 t)}_{k=0 \text{ term}}$$

Note: k^2 are the eigenvalues of $\frac{d^2}{dx^2}$ on $[-\pi, \pi]$.