Struktury iteracyjne w algorytmach

W praktyce bardzo często zachodzi potrzeba wielokrotnego wykonywania jakiejś części algorytmu, w której zmienia się jeden lub więcej parametrów. Realizuje się to za pomocą algorytmów iteracyjnych (ang. *iteration* – powtarzanie), w których stosuje się różnorodne pętle. Liczba powtórzeń wykonania pętli może być z góry znana lub niewiadoma, zależna od zmiany innych parametrów.

Pętla z licznikiem – liczba powtórzeń (iteracji) czynności jest z góry znana. W konstrukcji tej można wyróżnić pewne ogólne elementy:

- a) warunki początkowe grupa działań, która występuje przed pierwszym wykonaniem treści pętli. Musi ona zawierać operację nadawania wartości początkowej licznika pętli,
- b) treść pętli grupa działań do wielokrotnego wykonania, którą pętla obejmuje i która stanowi obszar działania pętli,
- c) modyfikacja licznika (zmiennej sterującej) operacja lub grupa operacji, zawierająca zmianę wartości licznika sterującego pętlą,
- d) koniec obliczeń jest warunkiem decydującym, czy ma wystąpić powtórzenie treści pętli, czy też wyjście z pętli i przejście do dalszej sekwencji algorytmu.

Ogólny schemat pętli z licznikiem jest następujący:

Z rysunku wynika, że element warunkujący zakończenie działania pętli znajduje się po wykonaniu jej treści. Możliwy jest też wariant odwrotny, gdy najpierw analizowana jest sytuacja, czy jest sens wejścia do pętli, a dopiero później wykonywana jej treść. Wniosek stąd jest taki, że pierwszy rodzaj pętli wykona się przynajmniej jeden raz, natomiast w drugim przypadku możliwe jest niewchodzenie do pętli.

Z konstrukcją pętli wiążą się też duże zagrożenia. Jeśli zostanie popełniony błąd w określeniu warunków działania pętli, może dojść do sytuacji zwanej pętlą nieskończoną. Algorytm zapętlony nigdy nie zakończy swojego działania. Ważna jest zatem staranna analiza warunków działania pętli.

Przykład

Utwórz dwa schematy blokowe algorytmu, którego zadaniem jest wypisanie kolejnych liczb naturalnych od 1 do 10 – jeden z badaniem warunku zakończenia działania na wejściu, a drugi na wyjściu.

Ad. 1. Warunek zakończenia działania na wejściu.

Ad. 2. Warunek zakończenia działania na wyjściu.

Pętle wielokrotne

Treść pętli nie zawiera żadnych ograniczeń. Oznacza to, iż w szczególności treść pętli może również stanowić pętlę, w której z kolei treścią może być następna pętla itd. Jest to często spotykany przypadek pętli wielokrotnej (złożonej lub zagnieżdżonej).

Przykład

Opracuj schemat blokowy algorytmu obliczającego tabliczkę mnożenia od 1 do zadanej przez użytkownika wartości N.

Specyfikacja:

Dane: i, j – liczby całkowite dodatnie

Wynik: – iloczyn liczb i * j (liczba całkowita dodatnia)

