

SEQUENCE LISTING

<110> Synaptic Pharmaceutical Corporation

<120> DNA Encoding SNORF36a and SNORF36b Receptors

<130> 59138-B-PCT/JPW

<140>

<141>

<150> 09/518,914

<151> 2000-03-03

<150> 09/303,593

<151> 1999-05-03

<160> 48

<170> PatentIn Ver. 2.1

<210> 1

<211> 1508

<212> DNA

<213> Homo sapiens

<400> 1

caactcagga tgaaccctcc ttcggggcca agagtcccgc ccagcccaac ccaagagccc 60
agctgcattgg ccacccccc accacccaggc tggtgggaca gctcccgagag cagcatctcc 120
agcctggggcc ggcttccatc catcagttccc acagcacctg ggacttgggc tgctgcctgg 180
gtccccctcc ccacgggttga tgttccagac catgcccact ataccctggg cacagtgtatc 240
ttgctgggtgg gactcacggg gatgctgggc aacctgacgg tcatactatac cttctgcagg 300
agcagaagcc tccggacacc tgccaacatg ttcatatca acctcgcggg cagcgacttc 360
ctcatgtcct tcacccaggc ccctgtcttc ttaccaggta gcctctataa gcagtggctc 420
tttggggaga caggctgcga gttctatgcc ttctgtggag ctctctttgg catttcctcc 480
atgatcaccc tgacggccat cgccctggac cgctacactgg taatcacacg cccgctggcc 540
acctttggtg tggcgtccaa gaggcgtgcg gcatttgc tgctgggcgt ttggctctat 600
gccctggccct ggagtctgcc acccttcttc ggctggagcg cctacgtgcc cgaggggttg 660
ctgacatcct gctcctggga ctacatgagc ttacacggc ccgtgcgtgc ctacaccatg 720
cttctctgtt gcttcgtgtt cttcctccct ctgcttatca tcatactactg ctacatcttc 780
atcttcaggg ccacccggga gacaggacgg gctctccaga ccttcggggc ctgcaagggc 840
aatggcgagt ccctgtggca gcccggcgg ctgcagagcg agtgcagat ggcggccatc 900
atgctgtgg tcataccctt cttcgtgtc ttctggcgc cctatccgc tggcccttg 960
gtggcccttg ctgggtacgc acacgtcctg acaccctaca tgagctcggt gccagccgtc 1020
atcgccaaagg cctctgcaat ccacaacccc atcatttacg ccacccatcca ccccaagtac 1080
agggtggcca ttgcccagca cctggccctgc ctgggggtgc tgctgggtgt atcaccggcgg 1140
cacagtgcgc cctaccccgat ctaccgctcc acccaccgct ccacgcgtac cagccacacc 1200
tccaacctca gctggatctc catacggaggc ccctggcgc ggagagttag 1260

gtgggctgga cacacatgga ggcagcagct gtgtggggag ctgccagca agcaaatggg 1320
cggtccctct acggtcaggg tctggaggac ttgaaagcca aggcccccc cagacccca 1380
ggacacgaag cagagactcc agggaaagacc aaggggctga tccccagcca ggaccccaagg 1440
atgttaggacg cccactggct ctcccttct tctgagacac atccagcccc cccacgtctc 1500
cctcatat 1508

<210> 2
<211> 478
<212> PRT
<213> Homo sapiens

<400> 2
Met Asn Pro Pro Ser Gly Pro Arg Val Pro Pro Ser Pro Thr Gln Glu
1 5 10 15

Pro Ser Cys Met Ala Thr Pro Ala Pro Pro Ser Trp Trp Asp Ser Ser
20 25 30

Gln Ser Ser Ile Ser Ser Leu Gly Arg Leu Pro Ser Ile Ser Pro Thr
35 40 45

Ala Pro Gly Thr Trp Ala Ala Ala Trp Val Pro Leu Pro Thr Val Asp
50 55 60

Val Pro Asp His Ala His Tyr Thr Leu Gly Thr Val Ile Leu Leu Val
65 70 75 80

Gly Leu Thr Gly Met Leu Gly Asn Leu Thr Val Ile Tyr Thr Phe Cys
85 90 95

Arg Ser Arg Ser Leu Arg Thr Pro Ala Asn Met Phe Ile Ile Asn Leu
100 105 110

Ala Val Ser Asp Phe Leu Met Ser Phe Thr Gln Ala Pro Val Phe Phe
115 120 125

Thr Ser Ser Leu Tyr Lys Gln Trp Leu Phe Gly Glu Thr Gly Cys Glu
130 135 140

Phe Tyr Ala Phe Cys Gly Ala Leu Phe Gly Ile Ser Ser Met Ile Thr
145 150 155 160

Leu Thr Ala Ile Ala Leu Asp Arg Tyr Leu Val Ile Thr Arg Pro Leu
165 170 175

Ala Thr Phe Gly Val Ala Ser Lys Arg Arg Ala Ala Phe Val Leu Leu
180 185 190

Gly Val Trp Leu Tyr Ala Leu Ala Trp Ser Leu Pro Pro Phe Phe Gly
195 200 205

Trp Ser Ala Tyr Val Pro Glu Gly Leu Leu Thr Ser Cys Ser Trp Asp
210 215 220

Tyr Met Ser Phe Thr Pro Ala Val Arg Ala Tyr Thr Met Leu Leu Cys
225 230 235 240

Cys Phe Val Phe Phe Leu Pro Leu Leu Ile Ile Ile Tyr Cys Tyr Ile
245 250 255

Phe Ile Phe Arg Ala Ile Arg Glu Thr Gly Arg Ala Leu Gln Thr Phe
260 265 270

Gly Ala Cys Lys Gly Asn Gly Glu Ser Leu Trp Gln Arg Gln Arg Leu
275 280 285

Gln Ser Glu Cys Lys Met Ala Lys Ile Met Leu Leu Val Ile Leu Leu
290 295 300

Phe Val Leu Ser Trp Ala Pro Tyr Ser Ala Val Ala Leu Val Ala Phe
305 310 315 320

Ala Gly Tyr Ala His Val Leu Thr Pro Tyr Met Ser Ser Val Pro Ala
325 330 335

Val Ile Ala Lys Ala Ser Ala Ile His Asn Pro Ile Ile Tyr Ala Ile
340 345 350

Thr His Pro Lys Tyr Arg Val Ala Ile Ala Gln His Leu Pro Cys Leu
355 360 365

Gly Val Leu Leu Gly Val Ser Arg Arg His Ser Arg Pro Tyr Pro Ser
370 375 380

Tyr Arg Ser Thr His Arg Ser Thr Leu Thr Ser His Thr Ser Asn Leu
385 390 395 400

Ser Trp Ile Ser Ile Arg Arg Gln Glu Ser Leu Gly Ser Glu Ser
405 410 415

Glu Val Gly Trp Thr His Met Glu Ala Ala Ala Val Trp Gly Ala Ala
420 425 430

Gln Gln Ala Asn Gly Arg Ser Leu Tyr Gly Gln Gly Leu Glu Asp Leu
435 440 445

Glu Ala Lys Ala Pro Pro Arg Pro Gln Gly His Glu Ala Glu Thr Pro
450 455 460

Gly Lys Thr Lys Gly Leu Ile Pro Ser Gln Asp Pro Arg Met
465 470 475

<210> 3
<211> 1541
<212> DNA
<213> Homo sapiens

<400> 3
caactcagga tgaaccctcc ttccggggcca agagtccccgc ccagccaaac ccaagagccc 60
agctgcattgg ccaccccccagg accacccaggc tgggtggaca gctcccaagag cagcatctcc 120
agccctggggcc ggcttccatc catcagttccc acacgacccctg ggacttgggc tgctgcctgg 180
gtccccctcc ccacgggttga tggccagac catgcccact ataccctggg cacagtgtac 240
ttgctgggtgg gactcacggg gatgctgggc aacctgacgg tcatactatac cttctgcaga 300
gctgtgcttc gtggagtcac tgtatgtatc cagagcagaa gcctccggac acctgccaac 360
atgttcatta tcaacctcgc ggtcagcgcac ttccatgtatc cttccaccca ggccctgtc 420
ttcttcacca gtagccctcta taagcagtgg ctcttgggg agacaggctg cgagttctat 480
gccttctgtg gagctcttcc tggcatttcc tccatgtatc ccctgacggc catcgccctg 540
gaccgctacc tggtaatcac acgcccgtg gccaccccttg gtgtggcgtc caagaggcgt 600
gcggcatttg tcctgctggg cggttggctc tatgccctgg cctggagtct gccacccttc 660
ttcggcttgg ggccttacgt gcccgggggg ttgctgacat cctgcttgcgt ggactacatg 720
agcttcacgc cggccgtgcg tgcctacacc atgcttctct gctgcttgcgt gttcttcctc 780
cctctgttta tcatcatcta ctgctacatc ttcatcttca gggccatccg ggagacagga 840
cgggctctcc agacccctcg ggcctgcaag ggcaatggcg agtccctgtg gcagcggcag 900
cggtgcaga gcgagtgc aaatggccaaat atcatgctgc tggctatccct cctttcgtg 960
ctctccttggg ctcccttattc cgctgtggcc ctgggtggct ttgctggta cgcacacgtc 1020
ctgacaccct acatgagctc ggtgccagcc gtcatcgcca aggcccttgc aatccacaac 1080
cccatcattt acgccatcac ccaccccaag tacagggtgg ccattggccca gcacctggcc 1140
tgcctgggggg tgctgtggg tggatcacgc cggcacagtc gccccttaccc cagctaccgc 1200
tccacccacc gctccacgt gaccagccac accttcaacc tcagctggat ctccatacgg 1260
aggcgccagg agtccctggg ctcggagagt gaggtggct ggacacacat ggaggcagca 1320
gctgtgtggg gagctgccc gcaagcaaat gggcggtccc tctacggtca gggcttggag 1380
gacttggaaag ccaaggcacc ccccaagaccc cagggacacag aagcagagac tccagggaaag 1440
accaaggggc tgatccccag ccaggacccc aggtgttagg acgcccactg gctctccctt 1500
tcttctgaga cacatccagc ccccccacgt ctccctcata t 1541

<210> 4
<211> 489
<212> PRT
<213> Homo sapiens

<400> 4

Met	Asn	Pro	Pro	Ser	Gly	Pro	Arg	Val	Pro	Pro	Ser	Pro	Thr	Gln	Glu
1				5					10				15		
Pro	Ser	Cys	Met	Ala	Thr	Pro	Ala	Pro	Pro	Ser	Trp	Trp	Asp	Ser	Ser
		20						25					30		
Gln	Ser	Ser	Ile	Ser	Ser	Leu	Gly	Arg	Leu	Pro	Ser	Ile	Ser	Pro	Thr
	35					40						45			
Ala	Pro	Gly	Thr	Trp	Ala	Ala	Ala	Trp	Val	Pro	Leu	Pro	Thr	Val	Asp
	50					55				60					
Val	Pro	Asp	His	Ala	His	Tyr	Thr	Leu	Gly	Thr	Val	Ile	Leu	Leu	Val
	65				70				75				80		
Gly	Leu	Thr	Gly	Met	Leu	Gly	Asn	Leu	Thr	Val	Ile	Tyr	Thr	Phe	Cys
		85					90					95			
Arg	Ala	Val	Leu	Arg	Gly	Val	Thr	Val	Met	Met	Gln	Ser	Arg	Ser	Leu
		100					105					110			
Arg	Thr	Pro	Ala	Asn	Met	Phe	Ile	Ile	Asn	Leu	Ala	Val	Ser	Asp	Phe
	115					120						125			
Leu	Met	Ser	Phe	Thr	Gln	Ala	Pro	Val	Phe	Phe	Thr	Ser	Ser	Leu	Tyr
	130				135					140					
Lys	Gln	Trp	Leu	Phe	Gly	Glu	Thr	Gly	Cys	Glu	Phe	Tyr	Ala	Phe	Cys
	145				150				155				160		
Gly	Ala	Leu	Phe	Gly	Ile	Ser	Ser	Met	Ile	Thr	Leu	Thr	Ala	Ile	Ala
		165					170					175			
Leu	Asp	Arg	Tyr	Leu	Val	Ile	Thr	Arg	Pro	Leu	Ala	Thr	Phe	Gly	Val
		180				185						190			
Ala	Ser	Lys	Arg	Arg	Ala	Ala	Phe	Val	Leu	Leu	Gly	Val	Trp	Leu	Tyr
		195				200					205				
Ala	Leu	Ala	Trp	Ser	Leu	Pro	Pro	Phe	Phe	Gly	Trp	Ser	Ala	Tyr	Val
	210				215					220					
Pro	Glu	Gly	Leu	Leu	Thr	Ser	Cys	Ser	Trp	Asp	Tyr	Met	Ser	Phe	Thr
	225				230				235				240		
Pro	Ala	Val	Arg	Ala	Tyr	Thr	Met	Leu	Leu	Cys	Cys	Phe	Val	Phe	Phe
		245				250						255			

Leu Pro Leu Leu Ile Ile Ile Tyr Cys Tyr Ile Phe Ile Phe Arg Ala
260 265 270

Ile Arg Glu Thr Gly Arg Ala Leu Gln Thr Phe Gly Ala Cys Lys Gly
275 280 285

Asn Gly Glu Ser Leu Trp Gln Arg Gln Arg Leu Gln Ser Glu Cys Lys
290 295 300

Met Ala Lys Ile Met Leu Leu Val Ile Leu Leu Phe Val Leu Ser Trp
305 310 315 320

Ala Pro Tyr Ser Ala Val Ala Leu Val Ala Phe Ala Gly Tyr Ala His
325 330 335

Val Leu Thr Pro Tyr Met Ser Ser Val Pro Ala Val Ile Ala Lys Ala
340 345 350

Ser Ala Ile His Asn Pro Ile Ile Tyr Ala Ile Thr His Pro Lys Tyr
355 360 365

Arg Val Ala Ile Ala Gln His Leu Pro Cys Leu Gly Val Leu Leu Gly
370 375 380

Val Ser Arg Arg His Ser Arg Pro Tyr Pro Ser Tyr Arg Ser Thr His
385 390 395 400

Arg Ser Thr Leu Thr Ser His Thr Ser Asn Leu Ser Trp Ile Ser Ile
405 410 415

Arg Arg Arg Gln Glu Ser Leu Gly Ser Glu Ser Glu Val Gly Trp Thr
420 425 430

His Met Glu Ala Ala Ala Val Trp Gly Ala Ala Gln Gln Ala Asn Gly
435 440 445

Arg Ser Leu Tyr Gly Gln Gly Leu Glu Asp Leu Glu Ala Lys Ala Pro
450 455 460

Pro Arg Pro Gln Gly His Glu Ala Glu Thr Pro Gly Lys Thr Lys Gly
465 470 475 480

Leu Ile Pro Ser Gln Asp Pro Arg Met
485

<210> 5
<211> 250

<212> DNA

<213> Rattus norvegicus

<400> 5

catagccatg gaccgctatc tggtgatcac acgtccactg gccaccatcg gcatgagatc 60
caagagacgg acggcactag tcctgctagg tgtctggctc tatgccttgg cctggaggtct 120
gccgccttgc tttggcttgg a gcgcctacgt gcccgggggg ctgctgacat cctgcttcctg 180
ggactacgtg accttcacgc ccctcggtcg cgccctacacc atgctgctct tctgctttgt 240
cttcttcctc 250

<210> 6

<211> 83

<212> PRT

<213> Rattus norvegicus

<400> 6

Ile Ala Met Asp Arg Tyr Leu Val Ile Thr Arg Pro Leu Ala Thr Ile
1 5 10 15

Gly Met Arg Ser Lys Arg Arg Thr Ala Leu Val Leu Leu Gly Val Trp
20 25 30

Leu Tyr Ala Leu Ala Trp Ser Leu Pro Pro Phe Phe Gly Trp Ser Ala
35 40 45

Tyr Val Pro Glu Gly Leu Leu Thr Ser Cys Ser Trp Asp Tyr Val Thr
50 55 60

Phe Thr Pro Leu Val Arg Ala Tyr Thr Met Leu Leu Phe Cys Phe Val
65 70 75 80

Phe Phe Leu

<210> 7

<211> 1473

<212> DNA

<213> Rattus norvegicus

<400> 7

ttaagtctt ccaagagcct gagcatgaac ttccttcag aatcaagagt ccctcaagc 60
ttaactcagg atccccagtt taccgcgcgc cctgcctcc tacaaggcat ttggAACAGC 120
actcagaaca tctccgtcag agtccagctt ctatccgtta gccccacgac acctgggctt 180
caggctgtcg cctgggtccc cttccccaca gtcgacgtcc cagatcatgc tcactatacc 240
ctaggcacgg tgatcctgct ggtgggactc acaggatgc tggtaacct gacagtcatc 300
tacaccttct gcaggaatag aggctgcgg acaccggcaa acatgctcat catcaacctg 360

gcagtcagcg acttccttat gtcgttcaact caggccccgg tcttcttgc cagcagccctc 420
 tacaagaagt ggctttcgg ggagacaggt tgcaagttct atgccttctg tggggctgtc 480
 tttggcatcg ttccatgtat caccctgaca gccatagcca tggaccgcta tctggtgatc 540
 acacgtccac tggccaccat cggcatgaga tccaagagac ggacggcact agtcctgcta 600
 ggtgtctggc tctatgccct ggcctggagt ctggccctt tctttggctg gagcgcctac 660
 gtgcccgggg ggctgtcac atccgtctcc tggactacg tgaccttcac gcccctcg 720
 cgccctaca ccatgctgtctt gtcttcttcc tccctctgct cattatcatc 780
 ttctgctaca tcttcatctt cagggccatt cgagagacag gccggccctg tgagggctgt 840
 ggtgagtccc ctctggcg gccggcgtgg cagcggctac agagtgaatg gaagatggcc 900
 aaggtcgacat tgatcgcat tctcctctt gtgtgtcctt gggctcccta ctccactgtg 960
 gcccgggtgg gcttgctgg gtactcgacat ccctgacgc cctacatgag ctgggtgcca 1020
 gccgtcatgg ccaaggcctc ggccatccac aatcctatca tctatgcat cactcacccc 1080
 aagtacaggg cggccattgc tcagcacttg cttgccttgg ggggtgttctt tggagtatca 1140
 gcccggcgca gccacccctc cctcagctac cgctctaccc atcgctccac actgagcagc 1200
 cagtcctcag acctcagctg gatctctggg cagaagcgcc aagagtcctt ggggtctgag 1260
 agtgaagtgg gctggacaga cacagaaaca acagctcggt ggggagctgc ccagcaagca 1320
 agtggacaat cttctgcag tcatgacctg gaagatggag aagtcaaggc tccttccagc 1380
 ccccaggaac agaaatccaa gactcccaag accaagagac acctccccag tctggaccga 1440
 aggatgttagg atgcccagtc ccgtccctc cct 1473

<210> 8

<211> 474

<212> PRT

<213> Rattus norvegicus

<400> 8

Met	Asn	Ser	Pro	Ser	Glu	Ser	Arg	Val	Pro	Ser	Ser	Leu	Thr	Gln	Asp
1									10					15	

Pro	Ser	Phe	Thr	Ala	Ser	Pro	Ala	Leu	Leu	Gln	Gly	Ile	Trp	Asn	Ser
									25					30	

Thr	Gln	Asn	Ile	Ser	Val	Arg	Val	Gln	Leu	Leu	Ser	Val	Ser	Pro	Thr
									35					40	

35									40					45	
Thr	Pro	Gly	Leu	Gln	Ala	Ala	Ala	Trp	Val	Pro	Phe	Pro	Thr	Val	Asp
									50					55	

50									55					60	
Val	Pro	Asp	His	Ala	His	Tyr	Thr	Leu	Gly	Thr	Val	Ile	Leu	Leu	Val
									65					70	

65									70					75	
Gly	Leu	Thr	Gly	Met	Leu	Gly	Asn	Leu	Thr	Val	Ile	Tyr	Thr	Phe	Cys
									85					90	

85									90					95	
Arg	Asn	Arg	Gly	Leu	Arg	Thr	Pro	Ala	Asn	Met	Leu	Ile	Ile	Asn	Leu
									100					105	

Ala Val Ser Asp Phe Leu Met Ser Phe Thr Gln Ala Pro Val Phe Phe
115 120 125

Ala Ser Ser Leu Tyr Lys Lys Trp Leu Phe Gly Glu Thr Gly Cys Lys
130 135 140

Phe Tyr Ala Phe Cys Gly Ala Val Phe Gly Ile Val Ser Met Ile Thr
145 150 155 160

Leu Thr Ala Ile Ala Met Asp Arg Tyr Leu Val Ile Thr Arg Pro Leu
165 170 175

Ala Thr Ile Gly Met Arg Ser Lys Arg Arg Thr Ala Leu Val Leu Leu
180 185 190

Gly Val Trp Leu Tyr Ala Leu Ala Trp Ser Leu Pro Pro Phe Phe Gly
195 200 205

Trp Ser Ala Tyr Val Pro Glu Gly Leu Leu Thr Ser Cys Ser Trp Asp
210 215 220

Tyr Val Thr Phe Thr Pro Leu Val Arg Ala Tyr Thr Met Leu Leu Phe
225 230 235 240

Cys Phe Val Phe Phe Leu Pro Leu Leu Ile Ile Ile Phe Cys Tyr Ile
245 250 255

Phe Ile Phe Arg Ala Ile Arg Glu Thr Gly Arg Ala Cys Glu Gly Cys
260 265 270

Gly Glu Ser Pro Leu Arg Arg Arg Gln Trp Gln Arg Leu Gln Ser Glu
275 280 285

Trp Lys Met Ala Lys Val Ala Leu Ile Val Ile Leu Leu Phe Val Leu
290 295 300

Ser Trp Ala Pro Tyr Ser Thr Val Ala Leu Val Gly Phe Ala Gly Tyr
305 310 315 320

Ser His Ile Leu Thr Pro Tyr Met Ser Ser Val Pro Ala Val Ile Ala
325 330 335

Lys Ala Ser Ala Ile His Asn Pro Ile Ile Tyr Ala Ile Thr His Pro
340 345 350

Lys Tyr Arg Ala Ala Ile Ala Gln His Leu Pro Cys Leu Gly Val Leu
355 360 365

Leu Gly Val Ser Gly Gln Arg Ser His Pro Ser Leu Ser Tyr Arg Ser
370 375 380

Thr His Arg Ser Thr Leu Ser Ser Gln Ser Ser Asp Leu Ser Trp Ile
385 390 395 400

Ser Gly Gln Lys Arg Gln Glu Ser Leu Gly Ser Glu Ser Glu Val Gly
405 410 415

Trp Thr Asp Thr Glu Thr Thr Ala Ala Trp Gly Ala Ala Gln Gln Ala
420 425 430

Ser Gly Gln Ser Phe Cys Ser His Asp Leu Glu Asp Gly Glu Val Lys
435 440 445

Ala Pro Ser Ser Pro Gln Glu Gln Lys Ser Lys Thr Pro Lys Thr Lys
450 455 460

Arg His Leu Pro Ser Leu Asp Arg Arg Met
465 470

<210> 9

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer/probe

<400> 9

catcgccctc gacgtgctgt gctgcacctc atccatcttg cacct 45

<210> 10

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer/probe

<400> 10

catggacagg tcgcgctacc gcgtgtccac gttctaccta ctcca 45

<210> 11

<211> 45

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 11
ggcatcatca tggcacctt catcctctgc tggctgccct tcttc 45

<210> 12
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 12
gcagaaggc agaacaagag ccacgatgaa gaagggcagc cagca 45

<210> 13
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 13
tggctgtcat cgacatcac ttgttgact gcctccatcc tgcac 45

<210> 14
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 14
gtacgggtcc agggcgatga cacagaggtg caggatggag gcagt 45

<210> 15
<211> 27

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 15
ccagccgaag aagggtggca gactcca

27

<210> 16
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 16
cttcttaggcc tgtacggaag tgtta

25

<210> 17
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 17
gcacaggctg cgagttctat tcctt

25

<210> 18
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 18
ctggtaatca cacacccgct ggccacctt ggtgtggcgt ccaag

45

<210> 19
<211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 19
agatcatgct gctgggtcatc ctcc

24

<210> 20
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 20
tcgtgctctc ctgggctccc t

21

<210> 21
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 21
tcctccatga tcaccctgac ggc

23

<210> 22
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 22
tctggagagc ccgtcctgtc tcc

23

<210> 23
<211> 48

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 23
cggccgtgcg tgcctacacc atgcttctct gctgcttcgt gttcttcc 48

<210> 24
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 24
ttggacgcca caccaaaggt ggcc 24

<210> 25
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 25
ggtatagatg accgtcaggt tgcc 24

<210> 26
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 26
cgaacaggat cctctctgtg ggctcgagca aggacc 36

<210> 27
<211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 27
acgtgtgcgt acccagcaaa ggcc

24

<210> 28
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 28
gtccccacagc acctgggact tgggctgc

28

<210> 29
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 29
gcagcccaag tcccaggtgc tgtgggac

28

<210> 30
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 30
ggcaacctga cggcatcta tacc

24

<210> 31
<211> 35

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 31
cagcataa~~gc~~ ttcc~~a~~gtggg cgtcctacat cctgg

35

<210> 32
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 32
cagtagat~~ga~~ tgataa~~gc~~cag agg

23

<210> 33
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 33
cgaacaggat cccatagcca tggaccgcta tctgg

35

<210> 34
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 34
cctagca~~aa~~gc ttgaggaaga agacaa~~aa~~gca gaagagc

37

<210> 35
<211> 48

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 35
cggacggcac tagtcctgct aggtgtctgg ctctatgccc tggcctgg 48

<210> 36
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 36
ggctgcgagt tctatgcctt 20

<210> 37
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 37
ttaccaggtt gcggtccagg 20

<210> 38
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 38
agctctcttt ggcatttcct ccatgatca 29

<210> 39
<211> 18

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 39
ctgggcaacc tgacggtc

18

<210> 40
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 40
caggtgtccg gaggcttct

19

<210> 41
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 41
tgtgcttcgt ggagtcactg tcatatgt

27

<210> 42
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 42
tccactggcc accatcg

17

<210> 43
<211> 22

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 43
gggcatagag ccagacacct ag

22

<210> 44
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 44
catgagatcc aagagacgga cggca

25

<210> 45
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 45
tcctccatga tcaccctgac ggc

23

<210> 46
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer/probe

<400> 46
tctggagagc ccgtcctgtc tcc

23

<210> 47
<211> 24

<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer/probe

<400> 47

ggcaacctga cggtcatcta tacc

24

<210> 48

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer/probe

<400> 48

ttggacgcca caccaaagggt ggcc

24