Exercises: Eigenvalues, Eigenvectors, and Similarity Transformation

Problem 1. Find all the eigenvalues and eigenvectors of $\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$.

Solution. Let λ be an eigenvalue of A. To obtain all possible λ , we solve the characteristic equation of A (let I be the 3×3 identity matrix):

$$det(\mathbf{A} - \lambda \mathbf{I}) = 0 \Rightarrow$$

$$\begin{vmatrix} -\lambda & 0 & 1 \\ 0 & 1 - \lambda & 0 \\ 1 & 0 & -\lambda \end{vmatrix} = 0 \Rightarrow$$

$$(\lambda - 1)^{2}(\lambda + 1) = 0$$

Hence, A has eigenvalues $\lambda_1 = 1$ and $\lambda_2 = -1$.

To find all the eigenvectors of $\lambda_1 = 1$, we need to solve $\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ from:

$$\begin{pmatrix} (\boldsymbol{A} - \lambda_1 \boldsymbol{I})\boldsymbol{x} &=& \boldsymbol{0} \Rightarrow \\ \begin{bmatrix} -1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} &=& \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

The set of solutions to the above equation— $EigenSpace(\lambda_1)$ —includes all $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ satisfying

$$\begin{aligned}
x_1 &= u \\
x_2 &= v \\
x_3 &= u
\end{aligned}$$

for any $u, v \in \mathbb{R}$. Any non-zero vector in $EigenSpace(\lambda_1)$ is an eigenvector of \boldsymbol{A} corresponding to λ_1 .

Similarly, to find all the eigenvectors of $\lambda_2 = -1$, we need to solve $\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ from:

$$\begin{pmatrix} (A - \lambda_2 I)x & = & \mathbf{0} \Rightarrow \\ \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} & = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

The set of solutions to the above equation— $EigenSpace(\lambda_2)$ —includes all $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ satisfying

$$x_1 = u$$

$$x_2 = 0$$

$$x_3 = -u$$

for any $u \in \mathbb{R}$. Any non-zero vector in $EigenSpace(\lambda_2)$ is an eigenvector of A corresponding to λ_2 .

Problem 2. Let A be an $n \times n$ square matrix. Prove: A and A^T have exactly the same eigenvalues.

Proof. Recall that an eigenvalue of a matrix is a root of the matrix's characteristic equation, which equates the matrix's characteristic polynomial to 0. It suffices to show that the characteristic polynomial of \boldsymbol{A} is the same as that of \boldsymbol{A}^T . In other words, we want to show that $det(\boldsymbol{A} - \lambda \boldsymbol{I}) = det(\boldsymbol{A}^T - \lambda \boldsymbol{I})$. This is true because $\boldsymbol{A} - \lambda \boldsymbol{I} = (\boldsymbol{A}^T - \lambda \boldsymbol{I})^T$.

Problem 3. Let A be an $n \times n$ square matrix. Prove: A^{-1} exists if and only if 0 is not an eigenvalue of A.

Proof. If-Direction. The objective is to show that if 0 is not an eigenvalue of \mathbf{A} , then \mathbf{A}^{-1} exists, namely, the rank of \mathbf{A} is n. Suppose, on the contrary, that the rank of \mathbf{A} is less than n. Consider the linear system $\mathbf{A}\mathbf{x} = \mathbf{0}$ where \mathbf{x} is an $n \times 1$ matrix. The hypothesis that $\operatorname{rank} \mathbf{A} < n$ indicates that the system has infinitely many solutions. In other words, there exists a non-zero \mathbf{x} satisfying $\mathbf{A}\mathbf{x} = \mathbf{0}\mathbf{x} = \mathbf{0}$. This, however, indicates that 0 is an eigenvalue of \mathbf{A} , which is a contradiction.

Only-If Direction. The objective is to show that if A^{-1} exists, then 0 is not an eigenvalue of A. The existence of A^{-1} means that the rank of A is n, which in turn indicates that Ax = 0 has a unique solution x = 0. In other words, there is no non-zero x' satisfying Ax' = 0x', namely, 0 is not an eigenvalue of A.

Problem 4. Let A be an $n \times n$ square matrix such that A^{-1} exists. Prove: if λ is an eigenvalue of A, then $1/\lambda$ is an eigenvalue of A^{-1} .

Proof. Since λ is an eigenvalue of A, there is a non-zero $n \times 1$ matrix x satisfying

which completes the proof.

Problem 5. Diagonalize the following matrix:

$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}$$

Solution. Matrix A has two eigenvalues $\lambda_1 = 3$ and $\lambda_2 = 2$. Since (i) A is a 2×2 matrix and (ii) it has 2 distinct eigenvalues, we can apply the diagonalization method we discussed in class.

Specifically, we obtain an arbitrary eigenvector v_1 of λ_1 , say $v_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ and, and an arbitrary eigenvector v_2 of λ_2 , say $v_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Then, we form:

$$Q = \begin{bmatrix} 1 & 1 \\ -2 & -1 \end{bmatrix}$$

by using v_1 and v_2 as the first and second columns, respectively. Q has the inverse:

$$Q^{-1} = \begin{bmatrix} -1 & -1 \\ 2 & 1 \end{bmatrix}$$

We thus obtain the following diagonalization of A:

$$\mathbf{A} = \mathbf{Q} \operatorname{diag}[3, 2] \mathbf{Q}^{-1}.$$

Problem 6. Consider again the matrix A in Problem 5. Calculate A^t for any integer $t \ge 1$.

Solution. We already know that A:

$$\mathbf{A} = \mathbf{Q} \operatorname{diag}[3, 2] \mathbf{Q}^{-1}.$$

Hence:

$$A^{t} = Q \operatorname{diag}[3^{t}, 2^{t}] Q^{-1}$$

$$= \begin{bmatrix} 1 & 1 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} 3^{t} & 0 \\ 0 & 2^{t} \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} -3^{t} + 2^{t+1} & -3^{t} + 2^{t} \\ 2 \times 3^{t} - 2^{t+1} & 2 \times 3^{t} - 2^{t} \end{bmatrix}$$

Problem 7. Diagonalize the matrix A in Problem 1.

Solution. Recall that all symmetric matrices are diagonalizable. A is a 3×3 matrix. The key is to find three linearly independent eigenvectors.

From the solution of Problem 1, we know that \boldsymbol{A} has eigenvalues $\lambda_1 = 1$ and $\lambda_2 = -1$.

$$EigenSpace(\lambda_1)$$
 includes all $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ satisfying

$$\begin{array}{rcl}
x_1 & = & u \\
x_2 & = & v \\
x_3 & = & u
\end{array}$$

for any $u, v \in \mathbb{R}$. The vector space $EigenSpace(\lambda_1)$ has dimension 2 with a basis $\{v_1, v_2\}$ where

$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
 (given by $u = 1, v = 0$) and $\mathbf{v_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ (given by $u = 0, v = 1$).

Similarly,
$$EigenSpace(\lambda_2)$$
 includes all $\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}$ satisfying
$$x_1 = u$$

$$x_2 = 0$$

$$x_3 = -u$$

for any $u \in \mathbb{R}$. The vector space $EigenSpace(\lambda_2)$ has dimension 1 with a basis $\{v_3\}$ where $v_3 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ (given by u = 1).

So far, we have obtained three linearly independent eigenvectors v_1, v_2, v_3 of A. We can then apply the diagonalization method exemplified in Problem 5 to diagonalize A. Specifically, we form:

$$Q = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{bmatrix}$$

 \boldsymbol{Q} has the inverse:

$$Q^{-1} = \begin{bmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & -1/2 \end{bmatrix}$$

We thus obtain the following diagonalization of A:

$$A = Q diag[1, 1, -1] Q^{-1}.$$