Contents

1	Mathematical concepts and notation Governing equations		2	
2			7	
3	Formulation of the problem		12	
	3.1	Input data of our problem	12	
	3.2	Equations of airfoil motion	14	
	3.3	ALE formulation	15	
	3.4	Weak formulation	16	
	3.5	Boundary conditions	17	
	3.6	Discrete problem	18	
4	Exis	stence of approximate solution	20	
Bibliography			24	

Chapter 1

Mathematical concepts and notation

Throughout this article, we will use the following notation:

The space under consideration will be an euclidean point space $\mathscr E$ over a vector space $\mathscr V$.

We will use the term **tensor** as a synonym for a linear mapping from $\mathscr V$ into $\mathscr V$. Let us denote the following sets of tensors:

Lin = set of all tensors,

 $\operatorname{Lin}^+ = \operatorname{set}$ of all tensors S with $\det S > 0$,

Sym = set of all symmetric tensors,

Skw = set of all skew (antisymmetric) tensors,

Psym = set of all symmetric, positive definite tensors,

Orth = set of all orthogonal tensors,

 $Orth^+ = set of all rotations.$

We will use the term **body** \mathcal{B} to describe a regular region in \mathcal{E} . We refer to \mathcal{B} as a **reference configuration**. Points $\mathbf{p} \in \mathcal{B}$ are called **material points**.

By the **deformation** of \mathscr{B} we mean a smooth, one-to-one mapping f which maps \mathscr{B} onto a closed region in \mathscr{E} , and which satisfies $\det \nabla f > 0$. The tensor $F(\mathbf{p}) = \nabla f(\mathbf{p})$ is called the **deformation gradient** and belongs to Lin^+ .

Let \mathscr{B} be a body. A **motion** of \mathscr{B} is a class C^3 function

$$x: \mathscr{B} \times \mathbb{R} \to \mathscr{E}$$

with $x(\cdot,t)$, for each fixed t, a deformation of \mathscr{B} . We refer to

$$\mathbf{x} = x(\mathbf{p}, t)$$

as the **place** occupied by a material point **p** at a time t and we write $\mathcal{B}_t = x(\mathcal{B}, t)$ for the region of space occupied by the body at t. We define the **trajectory** of the body as a set

$$\mathscr{T} = \{(\mathbf{x}, t) | \mathbf{x} \in \mathscr{B}_t, t \in \mathbb{R}\}.$$

At each $t, x(\cdot, t)$ has an inverse

$$p(\cdot,t): \mathscr{B}_t \to \mathscr{B}$$

such that

$$x(p(\mathbf{x},t),t) = \mathbf{x}, \qquad p(x(\mathbf{p},t),t) = \mathbf{p}.$$

Given $(\mathbf{x}, t) \in \mathcal{T}$,

$$\mathbf{p} = p(\mathbf{x}, t)$$

is the material point that occupies a place \mathbf{x} at a time t. The map

$$p: \mathscr{T} \to \mathscr{B}$$

is called the **reference map** of the motion.

A material field is a function with domain $\mathscr{B} \times \mathbb{R}$; a spatial field is a function with domain \mathscr{T} . We can transform a material field into a spatial field, and vice versa. We define the **spatial description** Φ_s of a material field $(\mathbf{p}, t) \to \Phi(\mathbf{p}, t)$ by

$$\Phi_s(\mathbf{x},t) = \Phi(p(\mathbf{x},t),t),$$

and the **material description** Ω_m of a spatial field $(\mathbf{x},t) \to \Omega(\mathbf{x},t)$ by

$$\Omega_m(\mathbf{p},t) = \Omega(x(\mathbf{p},t),t).$$

Given a material field Φ we write

$$\dot{\Phi}(\mathbf{p},t) = \frac{\partial}{\partial t} \, \Phi(\mathbf{p},t)$$

for a derivative with respect to time t holding the material point \mathbf{p} fixed, and

$$\nabla\Phi(\mathbf{p},t) = \nabla_p \,\Phi(\mathbf{p},t)$$

for a gradient with respect to \mathbf{p} holding t fixed.

Similarly, given a spatial field Ω we write

$$\Omega'(\mathbf{x},t) = \frac{\partial}{\partial t} \Omega(\mathbf{x},t)$$

for the derivative with respect to time t holding the place \mathbf{x} fixed, and

grad
$$\Omega(\mathbf{x}, t) = \nabla_x \Omega(\mathbf{x}, t)$$

for the gradient with respect to \mathbf{x} holding t fixed.

We define the **material time derivative** Ω of a spatial field Ω by

$$\dot{\Omega} = ((\Omega_m)^{\cdot})_s;$$

that is,

$$\dot{\Omega}(\mathbf{x},t) = \frac{\partial}{\partial t} \Omega(x(\mathbf{p},t),t)|_{\mathbf{p}=p(\mathbf{x},t)}.$$

Further, we define the **spatial divergence** div to be a divergence operation for a spatial field, so that grad is the underlying gradient. Thus, for a spatial vector field v, we have

$$\operatorname{div} v(\mathbf{x}, t) = \operatorname{tr} \operatorname{grad} v(\mathbf{x}, t).$$

We call

$$\dot{x}(\mathbf{p},t) = \frac{\partial}{\partial t} x(\mathbf{p},t)$$

the **velocity** of the material point **p**, and $v: \mathcal{T} \to \mathcal{V}$ defined by

$$v(\mathbf{x},t) = \dot{x}(p(\mathbf{x},t),t)$$

the spatial description of velocity. The spatial field

$$L = \operatorname{grad} v$$

is called the **velocity gradient**. We write

$$L = D + W$$
.

where D and W, respectively, denote the symmetric and skew parts of L.

Using the concept of velocity gradient previously defined, one can show that $\dot{F} = L_m F$ for the material time derivative of a deformation gradient F.

By the **system of forces** for \mathscr{B} during a motion (with trajectory \mathscr{T}), we mean a pair (s,b) of functions

$$s: \mathcal{N} \times \mathcal{T} \to \mathcal{V}, \qquad b: \mathcal{T} \to \mathcal{V},$$

where \mathcal{N} is the set of all unit vectors from \mathcal{V}^1 .

By Cauchy's Theorem², there exists a spatial tensor field T (called the **Cauchy stress**) such that

¹More precise definition is in Gurtin [gu, p. 99].

²See Gurtin [gu, p. 101].

- s(n) = Tn for each unit vector n,
- T is symmetric,
- T satisfies the equation of motion

$$\operatorname{div} T + b = \rho \dot{v},$$

where ρ is the density in motion.

By the **dynamical process** we mean a pair (x, T) with

- x motion,
- T symmetric tensor field on trajectory \mathcal{T} of x,
- $T(\mathbf{x},t)$ smooth function of \mathbf{x} on \mathcal{B}_t .

A **material body** is a body \mathcal{B} together with a family \mathcal{C} of dynamical processes. \mathcal{C} is called the **constitutive class** of the body.

Let x and x^* be motions of \mathscr{B} . We say, that x and x^* are related by a change in observer, if

$$x^*(\mathbf{p}, t) = q(t) + Q(t)[x(\mathbf{p}, t) - o] \tag{1.1}$$

for every material point **p** and time t, where q(t) is a point of the space and Q(t) is a rotation.

Letting

$$L = \operatorname{grad} v, \qquad L^* = \operatorname{grad} v^*,$$

where

$$v = (\dot{x})_s, \qquad v^* = (\dot{x}^*)_s,$$

we obtain

$$L^* = QLQ^T + \dot{Q}Q^T, \qquad D^* = QDQ^T,$$

where D and D^* , respectively, are symmetric parts of L and L^* . Thus, we have $\operatorname{tr} L^* = \operatorname{tr} L$.

We say that two dynamical processes (x,T) and (x^*,T^*) are related by a change in observer if there exist C^3 functions

$$q: \mathbb{R} \to \mathscr{E}, \qquad Q: \mathbb{R} \to \operatorname{Orth}^+$$

such that

• (1.1) holds for all $\mathbf{p} \in \mathcal{B}$ and $t \in \mathbb{R}$,

• $T^* = QTQ^T$ in trajectory of x.

We say that a response of a material body is independent of the observer provided its constitutive class \mathscr{C} has the following property: if a process (x,T) belongs to \mathscr{C} , so does every dynamical process related to (x,T) by a change in observer.

Chapter 2

Governing equations

In this work, we will solve a flow of compressible Newtonian fluid, which is a material, for which the Cauchy stress is defined by the constitutive equation of the form

$$T = -\pi I + C[L], \tag{2.1}$$

where C is a linear function of the velocity gradient

$$L = \operatorname{grad} v$$
.

As considered in Gurtin [gu, p. 147], Newtonian fluid means incompressible Newtonian fluid. The Navier-Stokes equations are derived with the assumption $\operatorname{tr} L = 0$, which means incompressibility. In our case, we need to consider compressibility effects and cannot neglect the term $\operatorname{tr} L = \operatorname{div} v$. We will use the name Newtonian fluid for compressible Newtonian fluid. In order to simplify the constitutive equation, we define the **extra stress** T_0 by

$$T_0 = T + \pi I = T - \frac{1}{3} (\operatorname{tr} T)I.$$

Then the constitutive equation (2.1) takes the simple form

$$T_0 = C[L]. (2.2)$$

In view of the previous, we consider **Newtonian fluid** a compressible material body consistent with the following constitutive equation: there exists a linear response function

$$C: \operatorname{Lin} \to \operatorname{Sym}$$

such that the constitutive class \mathscr{C} is a set of all dynamical processes (x,T) which obey the constitutive equation (2.2).

In the following theorem, we will show that the response is determined by two constants.

Theorem¹ A necessary and sufficient condition for the response of a Newtonian fluid to be independent of the observer is that its response function C has the form

$$C[L] = 2\mu D + \lambda(\operatorname{tr} L)I \tag{2.3}$$

for every $L \in \text{Lin}$, where

$$D = \frac{1}{2} \left(L + L^T \right).$$

The scalar constants μ and λ are called the first and the second **viscosity coefficients** of the fluid.

Proof. Our proof will copy the one from Gurtin, so that we include the compressibility.

(Sufficiency) Assume that (2.3) holds. Let (x,T) belong to the constitutive class \mathscr{C} of the fluid. Then

$$T_0 = 2\mu D + \lambda(\operatorname{tr} L)I.$$

Let (x^*, T^*) be related to (x, T) by a change in observer. Then

$$T^* = QTQ^T, \qquad D^* = QDQ^T,$$

and

$$\operatorname{tr} T^* = \operatorname{tr} (QTQ^T) = \operatorname{tr} T.$$

Therefore

$$T_0^* = T^* - \frac{1}{3} (\operatorname{tr} T^*) I = Q T Q^T - \frac{1}{3} (\operatorname{tr} T) Q Q^T = Q T_0 Q^T$$

= $Q(2\mu D) Q^T + \lambda \operatorname{tr} (Q L Q^T) I = 2\mu D^* + \lambda (\operatorname{tr} L^*) I,$

because

$$L^* = QLQ^T + \dot{Q}Q^T, \qquad \operatorname{tr} L^* = \operatorname{tr}(QLQ^T) = \operatorname{tr} L,$$

since $\dot{Q}Q^T \in Skw$.

Thus $(x^*, T^*) \in \mathscr{C}$ and the response is independent of the observer.

¹Cf. Gurtin [gu, p. 149].

The proof of necessity is facilitated by the following Lemma and Representation Theorem:

Lemma. Let $L \in \text{Lin}$ be a constant tensor. Then there exists a motion x with velocity gradient

$$\operatorname{grad} v = L. \tag{2.4}$$

Proof. Take

$$F(t) = e^{Lt}$$

so that F is a unique solution of

$$\dot{F} = LF, \qquad F(0) = I. \tag{2.5}$$

Thus

$$x(\mathbf{p}, t) = \mathbf{q} + F(t)[\mathbf{p} - \mathbf{q}]$$

defines a motion with the deformation gradient F. Further, (2.4) follows from $(2.5)_1$, since $\dot{F} = (\operatorname{grad} v)_m F$ and $L = L_m$.

Representation Theorem for Isotropic Tensor Functions.² A linear function

$$G: Sym \to Sym$$

is isotropic if and only if there exist scalars μ and λ such that

$$G(A) = 2\mu A + \lambda(\operatorname{tr} A)I \tag{2.6}$$

for every $A \in Sym$.

We now return to the proof of the previous theorem. To establish the *necessity* of (2.3) we assume that

the response is independent of the observer.
$$(2.7)$$

Let $L \in \text{Lin}$ be arbitrary, let x be the motion constructed in the previous lemma, and let $T = T_0 = C[L]$ be the constant field defined by (2.2). Then, clearly, $(x,T) \in \mathscr{C}$. Let (x^*,T^*) be related to (x,T) by a change in observer. Then by (2.7), $(x^*,T^*) \in \mathscr{C}$ and

$$T_0^* = C[L^*]. (2.8)$$

But

$$T_0^* = QT_0Q^T, \qquad L^* = QLQ^T + \dot{Q}Q^T;$$

²Cf. Gurtin [gu, p. 235].

hence (2.8) yields

$$QT_0Q^T = C[QLQ^T + \dot{Q}Q^T],$$

and we conclude from (2.2) and (2.4) that

$$QC[L]Q^T = C[QLQ^T + \dot{Q}Q^T]. \tag{2.9}$$

Clearly, this relation holds for every $L \in \text{Lin}$ (the definition scope of C) and every C^3 function $Q: \mathbb{R} \to \text{Orth}^+$. Fix L and take

$$Q(t) = e^{-Wt},$$

where

$$W = \frac{1}{2} \left(L - L^T \right).$$

Then Q(t) is rotation, since W is skew, and

$$Q(0) = I,$$
 $\dot{Q}(0) = -W.$

Using this function Q in (2.9) at t = 0 yields

$$C[L] = C[L - W] = C[D],$$

where

$$D = \frac{1}{2} \left(L + L^T \right).$$

Thus C is completely determined by its restriction to Sym. Next, let Q be a constant function with values in Orth^+ . Then (2.9) with L=D ($D\in\operatorname{Sym}$) implies that

$$QC[D]Q^T = C[QDQ^T].$$

Since this relation must hold for every $D \in \text{Sym}$ and every $Q \in \text{Orth}^+$, the restriction of C to Sym is isotropic; we therefore conclude from the representation (2.6) that

$$C[D] = 2\mu D + \lambda(\operatorname{tr} L)I$$

for all $D \in Sym$.

By (2.3) the constitutive equation (2.1) takes the form

$$T = -\pi I + 2\mu D + \lambda(\operatorname{tr} L)I. \tag{2.10}$$

We consider the equation of motion

$$\rho[v' + (\operatorname{grad} v)v] = \operatorname{div} T + b.$$

and substitute (2.10) for T. We have,

$$2 \operatorname{div} D = \operatorname{div} (\operatorname{grad} v + \operatorname{grad} v^T) = \Delta v + \operatorname{grad} \operatorname{div} v$$

and

$$\operatorname{div}(\operatorname{tr} L)I = \operatorname{grad}(\operatorname{tr} L) = \operatorname{grad}\operatorname{div} v,$$

where $\Delta = \operatorname{div}$ grad is the spatial Laplacian. Thus the equation of motion reduces to

$$\rho[v' + (\operatorname{grad} v)v] = \mu \Delta v + (\lambda + \mu)\operatorname{grad}\operatorname{div} v - \operatorname{grad} \pi + b. \tag{2.11}$$

These (vector) relations are the **Navier-Stokes equations**; given μ , λ and b they constitute a nonlinear system of partial differential equations for the velocity v, density ρ and pressure π . We supplement these equations by the continuity equation

$$\rho' + \operatorname{div}(\rho v) = 0. \tag{2.12}$$

Now, we have four equations for five unknowns, so we have to add one more equation to the system. We will consider barotropic flow³, where the pressure is a known function of the density

$$\pi = \widehat{\pi}(\rho). \tag{2.13}$$

³Cf. Feistauer et al. [fe, p. 33].

Chapter 3

Formulation of the problem

In what follows, we shall be concerned with a two-dimensional model describing an interaction of a viscous, compressible fluid with an airfoil. The airfoil is considered to be a rigid body with two degrees of freedom - its vertical and torsion vibrations (see Obrázok 3.1). Equations describing the airfoil motion will be presented later.

Figure 3.1: Airfoil model

This problem has a time-dependent boundary (moving airfoil) and therefore, a time-dependent computational domain (see Obrázok 3.2).

3.1 Input data of our problem

We consider the problem in the domain

$$\widetilde{\Omega} := \bigcup_{t \in [0,T]} \Omega_t \times \{t\}.$$

Figure 3.2: Problem setting

We split the domain boundary into four parts. Three of them are time independent, whereas the part representing the moving airfoil depends on time:

$$\begin{split} \Gamma_I &:= \Gamma_I \times [0,T] & \text{inlet,} \\ \Gamma_O &:= \Gamma_O \times [0,T] & \text{outlet,} \\ \Gamma_W &:= \Gamma_W \times [0,T] & \text{virtual flow wall,} \\ \Sigma &:= \bigcup_{t \in [0,T]} \Gamma_{W_t} \times \{t\} & \text{airfoil.} \end{split}$$

In the domain $\widetilde{\Omega}$, we consider the Navier-Stokes equations, the continuity equation and the condition of barotropic flow:

$$\rho[v' + (\operatorname{grad} v)v] = \mu \Delta v + (\lambda + \mu)\operatorname{grad}\operatorname{div} v - \operatorname{grad} \pi + b \qquad \text{in } \widetilde{\Omega},$$

$$\rho' + \operatorname{div}(\rho v) = 0 \qquad \qquad \text{in } \widetilde{\Omega},$$

$$\pi = \widehat{\pi}(\rho) \qquad \qquad \text{in } \widetilde{\Omega}.$$
(3.1)

Boundary conditions for the time independent part of the boundary:

$$v = v_D \quad \text{on } \Gamma_I \cup \Gamma_W,$$

$$-(\pi - \pi_{ref})n + \mu \left(\operatorname{grad} v\right)n + (\lambda + \mu)(\operatorname{div} v)n = 0 \quad \text{on } \Gamma_O,$$

$$\rho = \rho_D \quad \text{on } \Gamma_I.$$
(3.2)

Initial conditions:

$$v(x,0) = v_0(x) \qquad \text{in } \Omega_0,$$

$$\rho(x,0) = \rho_0(x) \qquad \text{in } \Omega_0.$$
(3.3)

We also need to prescribe boundary conditions on the part Σ of the boundary and initial conditions on Ω_0 . This will be discussed further.

The fact that the domain occupied by the fluid depends on time causes difficulties. In order to overcome them, we can use Arbitrary Lagrangian-Eulerian

(ALE) formulation for the mathematical description of the problem with a moving boundary.

3.2 Equations of airfoil motion

In our case, the airfoil can perform its vertical and torsion vibrations. These vibrations are described by two degrees of freedom: airfoil deflection angle α and vertical displacement h. The evolution of these values for small angles of deflection is described by the following differential equations¹

$$m\ddot{h} + D_{hh}\dot{h} + D_{h\alpha}\dot{\alpha} + S_{\alpha}\ddot{\alpha} + k_{hh}h = -L_2,$$

$$I_{\alpha}\ddot{\alpha} + D_{\alpha h}\dot{h} + D_{\alpha \alpha}\dot{\alpha} + S_{\alpha}\ddot{h} + k_{\alpha \alpha}\alpha = M.$$
(3.4)

Here we use the following notation:

$$\begin{split} m &= \int_{\Pi_t} \rho \; dx & \text{weight of airfoil,} \\ S_\alpha &= \int_{\Pi_t} x \rho \; dx & \text{static momentum,} \\ I_\alpha &= \int_{\Pi_t} x^2 \rho \; dx & \text{momentum of inertia,} \\ L_2 &= -\int_{\Gamma_{W_t}} \sum_{j=1}^2 T_{2j} n_j \; dS & \text{aerodynamic lift,} \\ M &= -\int_{\Gamma_{W_t}} \sum_{i,j=1}^2 T_{ij} n_j r_i^{ort}) \; dS & \text{aerodynamic momentum,} \end{split}$$

where Π_t is the area of the airfoil, $\Gamma_{W_t} = \partial \Pi_t$, T is the stress tensor obtained from (2.10), $r_1^{ort} = -(x_2 - x_{EA2})$ and $r_2^{ort} = x_1 - x_{EA1}$. Further,

$$k_{hh}$$
 vertical stiffness,
 $k_{\alpha\alpha}$ torsion stiffness,
 $D_{hh}, D_{h\alpha}, D_{\alpha h}, D_{\alpha \alpha}$ components of viscous damping

are given (constant) parameters.

Equations (3.4) are supplemented with these initial conditions

$$\alpha(0) = \alpha_0, \quad \dot{\alpha}(0) = \alpha_1, h(0) = h_0, \quad \dot{h}(0) = h_1.$$

¹See Růžička [ru, p. 17].

Figure 3.3: Airfoil vibrations

3.3 ALE formulation

We consider the Navier-Stokes equations in a moving domain $\widetilde{\Omega} = \Omega_t \times [0, T]$ (which means $\bigcup_{t \in [0,T]} \Omega_t \times \{t\}$ - the so-called non-cylindrical domain). In order to simulate a fluid flow on a moving domain, we employ the *Arbitrary Lagrangian-Eulerian* (ALE) method².

Let Ω_0 be the original domain and Ω_t be the computational domain at a (later) time t. We introduce the ALE mapping

$$\mathcal{A}_t: \Omega_0 \to \Omega_t$$

 $X \mapsto y = y(X, t) = \mathcal{A}_t(X),$

which maps the original domain Ω_0 onto the computational domain Ω_t , such that \mathscr{A}_t is continuous and bijective on Ω_0 .

We define the *domain velocity* field at points X of the original domain at each time level t

$$\tilde{w}(X,t) = \frac{\partial}{\partial t} y(X,t) = \frac{\partial}{\partial t} \mathscr{A}_t(X),$$

which, in spatial coordinates has the form

$$w = \tilde{w} \circ A_t^{-1}, \qquad \text{i.e.} \quad w(y,t) = \tilde{w}(\mathscr{A}_t^{-1}(y),t).$$

For a function $f: \widetilde{\Omega} \to \mathbb{R}$, we define the *ALE derivative* of f as

$$\frac{D^{\mathscr{A}}}{Dt} f(y,t) = \frac{\partial}{\partial t} \tilde{f}(X,t),$$

²See, e.g. Quarteroni [qa, p. 37]; Sváček [sv, p. 6].

where $\tilde{f} = f \circ \mathscr{A}_t$ and $X = \mathscr{A}_t^{-1}(y)$.

Using the chain rule for derivative, we obtain

$$\begin{split} \frac{D^{\mathscr{A}}}{Dt} \, f(y,t) &= \frac{\partial}{\partial t} \, f(\mathscr{A}_t(X),t) \\ &= \frac{\partial}{\partial t} \, f(y,t) + \operatorname{grad} f(y,t) \cdot \frac{\partial}{\partial t} \, \mathscr{A}_t(X)|_{X = \mathscr{A}_t^{-1}(y)} \\ &= \frac{\partial}{\partial t} \, f(y,t) + \operatorname{grad} f(y,t) \cdot w(y,t). \end{split}$$

Using ALE derivative, we can rewrite the Navier-Stokes equations in the form

$$\rho\left[\frac{D^{\mathscr{A}}}{Dt}v + (\operatorname{grad}v)(v - w)\right] = \mu\Delta v + (\lambda + \mu)\operatorname{grad}\operatorname{div}v - \operatorname{grad}\pi + b$$

$$\frac{D^{\mathscr{A}}}{Dt}\rho + \operatorname{div}(\rho v) - \operatorname{grad}\rho \cdot w = 0$$

$$\pi = \widehat{\pi}(\rho)$$
(3.5)

where all equations are considered on the domain $\widetilde{\Omega}$. Note, that the continuity equation can be written in the form

$$\frac{D^{\mathscr{A}}}{Dt} \rho + \rho \operatorname{div}(v) + \operatorname{grad} \rho \cdot (v - w) = 0.$$
(3.6)

Boundary and initial conditions remain the same as before.

3.4 Weak formulation

First, we define the spaces of test functions. Let $q \in Q = L^2(\Omega_t)$ and $u \in V = \{u \in H^1(\Omega_t)^2 : u|_{\Gamma_D} = 0\}$, where $\Gamma_D = \Gamma_I \cup \Gamma_W \cup \Gamma_{W_t}$ is the part of the boundary, where we prescribe the Dirichlet condition.

Multiplying equation $(3.5)_1$ with any $u \in V$, integrating over Ω_t and using Green's theorem, we obtain

$$\int_{\Omega_{t}} \rho \frac{D^{\mathscr{A}}}{Dt} v \cdot u \, dx + \int_{\Omega_{t}} \rho(\operatorname{grad} v)(v - w) \cdot u \, dx =$$

$$- \mu \int_{\Omega_{t}} \operatorname{grad} v \cdot \operatorname{grad} u \, dx - (\lambda + \mu) \int_{\Omega_{t}} \operatorname{div} v \, \operatorname{div} u \, dx$$

$$+ \int_{\Omega_{t}} \pi \operatorname{div} u \, dx + \int_{\Omega_{t}} b \cdot u \, dx$$

$$+ \int_{\Gamma_{0}} [-\pi + \mu (\operatorname{grad} v) + (\lambda + \mu) (\operatorname{div} v)] \, n \cdot u \, dS$$

Same proceeding with (3.6), in which we use any $q \in Q$, yields

$$\int_{\Omega_t} \frac{D^{\mathscr{A}}}{Dt} \rho \ q \ dx + \int_{\Omega_t} \rho \operatorname{div} v \ q \ dx + \int_{\Omega_t} \operatorname{grad} \rho \cdot (v - w) \ q \ dx = 0$$

For simplicity, we define the following forms³:

$$a(v, u) = \mu (\operatorname{grad} v, \operatorname{grad} u) + (\lambda + \mu)(\operatorname{div} v, \operatorname{div} u),$$

$$b(u, q) = (\operatorname{div} u, q),$$

$$\alpha(v, \rho, q) = (v \cdot \operatorname{grad} \rho, q),$$

$$d(\rho, w, v, u) = (\rho(\operatorname{grad} v)w, u),$$

$$e(\rho, v, q) = (\rho \operatorname{div} v, q).$$

Then, we can rewrite the previous equations in the form

$$(\rho \frac{D^{\mathscr{A}}}{Dt}v, u) + d(\rho, v - w, v, u) + a(v, u)$$

$$= b(u, \pi) + (b, u) + \int_{\Gamma_O} \pi_{ref} n \cdot u \, dS,$$

$$(\frac{D^{\mathscr{A}}}{Dt}\rho, q) + e(\rho, v, q) + \alpha(v - w, \rho, q) = 0,$$

$$(3.7)$$

where we put the so-called soft boundary condition $(3.2)_2$.

3.5 Boundary conditions

We assume that for each $t \in [0,T]$ there exists $v^* \in H^1(\Omega_t)^2$, such that

$$v^*(x,t) = v_D(x,t), \quad x \in \Gamma_I \cup \Gamma_W$$

 $v^*(x,t) = w(x,t), \quad x \in \Gamma_{W_t}$

(in the sense of traces). Then the weak formulation reads:

- Find v, such that $v-v^*\in V;\,\rho\in Q$
- equation $(3.7)_1$ is satisfied $\forall u \in V$.

³Denotation from Feistauer et al. [fe, p. 368].

The boundary condition for the density ρ prescribed on inlet Γ_I is formulated in the so-called weak integral sense⁴

$$(\frac{D^{\mathscr{A}}}{Dt}\rho, q) + e(\rho, v, q) + \alpha(v - w, \rho, q) - \gamma \int_{\Gamma_I} \rho v_D \cdot nq \ dS =$$

$$- \gamma \int_{\Gamma_I} \rho_D v_D \cdot nq \ dS \qquad \forall q \in Q,$$

where γ is a suitable parameter.

3.6 Discrete problem

Let $\{\mathscr{T}_h\}_{h\in(0,T)}$ be a regular system of triangulations of the domain $\widetilde{\Omega}=\Omega_t\times\{t\}$. In a time interval [0,T] we construct a partition $t_n=n\tau, n=0,\ldots,r$ with time step τ . For a function f defined in $\widetilde{\Omega}$, we set

$$\frac{D^{\mathscr{A}}}{Dt} f(y_n, t_n) = \frac{\partial}{\partial t} \tilde{f}(X, t_n)$$

$$\approx (\tilde{f}(X, t_n) - \tilde{f}(X, t_{n-1}))/\tau$$

$$= (f(y_n, t_n) - f(y_{n-1}, t_{n-1}))/\tau,$$

where $y_n = \mathscr{A}_{t_n}(X)$.

For simplicity, we will write $f^n = f(y_n, t_n)$ and $d_{\mathscr{A}_t} f^n = (f^n - f^{n-1})/\tau$.

The approximate solution will be sought at each time level t_n in finite dimensional spaces of finite elements X_h and Q_h .

sional spaces of finite elements X_h and Q_h . We set $Q_h = X_h^{(m)}$, $X_h = [X_h^{(k)}]^2$, $V_h = \{v_h \in [X_h^{(k)}]^2; v_h|_{\Gamma_D} = 0\}$, where $X_h^{(p)} = \{v_h \in C(\bar{\Omega}_h); v_h|_K \in P^p(K) \ \forall K \in \mathcal{T}_h\}$ and $P^p(K)$ is a set of all polynomials on K of degree $\leq p$.

First, we approximate the spaces V and Q by V_h and Q_h respectively. We use the approximations

$$\begin{split} v^n &\approx v_h^n \in V_h, \\ \rho^n &\approx \rho_h^n \in Q_h, \\ \frac{D^\mathscr{A}}{Dt} \, v^n &\approx (v^n - v^{n-1})/\tau \approx (v_h^n - v_h^{n-1})/\tau = d_{\mathscr{A}_t} \, v_h^n, \\ \frac{D^\mathscr{A}}{Dt} \, \rho^n &\approx (\rho^n - \rho^{n-1})/\tau \approx (\rho_h^n - \rho_h^{n-1})/\tau = d_{\mathscr{A}_t} \, \rho_h^n \end{split}$$

⁴See Feistauer et al. [fe, p. 373].

Moreover, we will use the streamline diffusion test function

$$q_h + \delta q_{h\beta}$$
 with $q_{h\beta} = (v_h^{n-1}, \operatorname{grad} q_h)$

for suitable constant $\delta > 0$, which will be used instead of q_h to avoid Gibb's phenomenon in the numerical solution⁵.

Let $v_h^* \in X_h$ be the approximation of v^* , we can use the approximation

$$\begin{aligned}
v_h^*(P_i, t) &= v_D(P_i, t) & \forall P_i \in \Gamma_I \cup \Gamma_W, \\
v_h^*(P_i, t) &= w(P_i, t) & \forall P_i \in \Gamma_{W_t}, \\
v_h^*(P_i, t) &= 0 & \forall P_i \in \Omega_t.
\end{aligned}$$

We obtain the following formulation of the discrete problem: Find $v_h^n \in X_h$, such that $v_h^n - v_h^{*n} \in V_h$; $\rho_h^n \in Q_h$ and the following equations holds:

$$(\rho_{h}^{n-1} d_{\mathscr{A}_{t}} v_{h}^{n}, u_{h}) + d(\rho_{h}^{n-1}, v_{h}^{n-1} - w_{h}^{n-1}, v_{h}^{n}, u_{h}) + a(v_{h}^{n}, u_{h})$$

$$= b(u_{h}, \pi_{h}^{n-1}) + (b_{h}^{n-1}, u_{h}) + \int_{\Gamma_{O}} \pi_{ref} u_{h} \cdot n \, dS \qquad \forall u_{h} \in V_{h},$$

$$(d_{\mathscr{A}_{t}} \rho_{h}^{n}, q_{h}) + e(\rho_{h}^{n-1}, v_{h}^{n}, q_{h} + \delta q_{h\beta})$$

$$+ \alpha(v_{h}^{n-1} - w_{h}^{n-1}, \rho_{h}^{n}, q_{h} + \delta q_{h\beta}) - \gamma \int_{\Gamma_{I}} \rho_{h}^{n} v_{D}^{n} \cdot n q_{h} \, dS$$

$$= -\gamma \int_{\Gamma_{I}} \rho_{D}^{n} v_{D}^{n} \cdot n q_{h} \, dS \qquad \forall q_{h} \in Q_{h},$$

$$\pi_{h}^{n} = \widehat{\pi}(\rho_{h}^{n}).$$

$$(3.8)$$

We can write

$$v_h^n = v_h^{*n} + z_h^n$$
, with $z_h^n \in V_h$.

Assuming that $u_h^{n-1}, \rho_h^{n-1}, \pi_h^{n-1}, w_h^{n-1}$ are known, using substitution for v_h^n , we get a linear system for parameters determining the unknown functions z_h^n and ρ_h^n .

System (3.8) can be solved in two separate steps. First, we find v_h^n by solving the first equation. Using the result, we can find ρ_h^n by solving the second one.

⁵See Feistauer et al. [fe, p. 346]

Chapter 4

Existence of approximate solution

Assume homogenous Dirichlet condition $v_D = 0$ given on the whole boundary $\partial \Omega$. We obtain equations

$$(\rho_{h}^{n-1} d_{\mathscr{A}_{t}} v_{h}^{n}, u_{h}) + d(\rho_{h}^{n-1}, v_{h}^{n-1} - w_{h}^{n-1}, v_{h}^{n}, u_{h}) + a(v_{h}^{n}, u_{h})$$

$$= b(u_{h}, \pi_{h}^{n-1}) + (b_{h}^{n-1}, u_{h}) \quad \forall u_{h} \in V_{h},$$

$$(d_{\mathscr{A}_{t}} \rho_{h}^{n}, q_{h}) + e(\rho_{h}^{n-1}, v_{h}^{n}, q_{h} + \delta q_{h\beta})$$

$$+ \alpha(v_{h}^{n-1} - w_{h}^{n-1}, \rho_{h}^{n}, q_{h} + \delta q_{h\beta}) = 0 \quad \forall q_{h} \in Q_{h}.$$

$$(4.1)$$

For this problem, we will prove existence of approximate solution on next time level under assumptions of existence of approximate solution from previous time level and constraints for time step τ and for constant δ .

Theorem¹ Let v_h^{n-1}, ρ_h^{n-1} be approximate solution in time level t_{n-1} , such that $\rho_h^{n-1} \ge \rho_0$, where $\rho_0 > 0$ is a positive constant. Denote

$$K_{n-1} = \max\{\|v_h^{n-1}\|_{\infty}, \|v_h^{n-1} - w_h^{n-1}\|_{\infty}, \|\rho_h^{n-1}\|_{\infty}\}.$$

$$(4.2)$$

Further, let

$$\tau \le \frac{\mu \rho_0}{2K_{n-1}^4}, \quad \frac{3}{2}\tau \le \delta \le \frac{\mu}{4NK_{n-1}^2}.$$
 (4.3)

Then there exists a unique solution v_h^n, ρ_h^n of problem (4.1) on time level t_n .

Proof. Denote forms

¹See. Feistauer et al. [fe, p. 371].

$$\tilde{a}(v,\rho,u,q) = \frac{1}{\tau} (\rho_h^{n-1} v, u) + d(\rho_h^{n-1}, v_h^{n-1} - w_h^{n-1}, v, u) + a(v, u) + \frac{1}{\tau} (\rho, q) + e(\rho_h^{n-1}, v, q + \delta q_\beta) + \alpha(v_h^{n-1} - w_h^{n-1}, \rho, q + \delta q_\beta), \quad (4.4)$$

$$F(u,q) = b(u, \pi_h^{n-1}) + (b_h^{n-1}, u) + \frac{1}{\tau} (\rho_h^{n-1} v_h^{n-1}, u) + \frac{1}{\tau} (\rho_h^{n-1}, q)$$

Problem (4.1) with unknowns $v = v_h^n \in V_h$, $\rho = \rho_h^n \in Q_h$ can be written in a form

$$\tilde{a}(v, \rho, u, q) = F(u, q) \quad \forall u \in V_h, \forall q \in Q_h.$$
 (4.5)

To prove existence and uniqueness, we show that \tilde{a} is positively definite.

We will use Cauchy's inequality and Young's inequality in a form $\alpha\beta \le \varepsilon\alpha^2 + \beta^2/(4\varepsilon)$. For arbitrary $\varepsilon_1, \ldots \varepsilon_4 > 0$ we can write

$$\frac{1}{\tau} (\rho_{h}^{n-1} v, v) \geq \frac{\rho_{0}}{\tau} \|v\|^{2},
|d(\rho_{h}^{n-1}, v_{h}^{n-1} - w_{h}^{n-1}, v, v)| \leq \|\rho_{h}^{n-1} (v_{h}^{n-1} - w_{h}^{n-1})\|_{\infty} \|\operatorname{grad} v\| \|v\|
\leq \varepsilon_{1} \|\operatorname{grad} v\|^{2} + \frac{K_{n-1}^{4}}{\varepsilon_{1}} \|v\|^{2},
|\alpha(v_{h}^{n-1} - w_{h}^{n-1}, \rho, \rho + \delta\rho_{\beta})| = |(\rho_{\beta}, \rho) + \delta \|\rho_{\beta}\|^{2}|
\leq \varepsilon_{2} \|\rho_{\beta}\|^{2} + \frac{1}{4\varepsilon_{2}} \|\rho\|^{2} + \delta \|\rho_{\beta}\|^{2}
|e(\rho_{h}^{n-1}, v, \rho + \delta\rho_{\beta})| \leq \varepsilon_{3} \|\operatorname{grad} v\|^{2} + \frac{N K_{n-1}^{2}}{4\varepsilon_{3}} \|\rho\|^{2}
+ \varepsilon_{4} \|\operatorname{grad} v\|^{2} + \frac{N K_{n-1}^{2} \delta^{2}}{4\varepsilon_{4}} \|\rho_{\beta}\|^{2}.$$
(4.6)

Putting previous estimates together, we get

$$\begin{split} \tilde{a}(v,\rho,v,\rho) &\geq \left(\frac{\rho_0}{\tau} - \frac{K_{n-1}^4}{4\varepsilon_1}\right) \|v\|^2 \\ &+ (\mu - \varepsilon_1 - \varepsilon_3 - \varepsilon_4) \|\text{grad }v\|^2 + (\lambda + \mu) \|\text{div }v\|^2 \\ &+ \left(\delta - \varepsilon_2 - \frac{N \, \delta^2 \, K_{n-1}^2}{4\varepsilon_4}\right) \|\rho_\beta\|^2 \\ &+ \left(\frac{1}{\tau} - \frac{1}{4\varepsilon_2} - \frac{N \, K_{n-1}^2}{4\varepsilon_3}\right) \|\rho\|^2. \end{split}$$

Let $\varepsilon_i = \mu/4$ for i = 1, 3, 4, $\varepsilon_2 = \delta/2$ and using (4.3) we obtain

$$\tilde{a}(v, \rho, v, \rho) \ge \frac{\rho_0}{2\tau} \|v\|^2 + \frac{\mu}{4} \|\operatorname{grad} v\|^2 + (\lambda + \mu) \|\operatorname{div} v\|^2 + \frac{\delta}{4} \|\rho_\beta\|^2 + \frac{1}{2\tau} \|\rho\|^2.$$

Now, it is obvious that form \tilde{a} is positively definite. Thus problem (4.5) has exactly one solution.

Let us assume generally nonzero Dirichlet boundary condition for velocity given on the whole boundary $\partial\Omega$. Problem (3.8) will have a form

$$(\rho_{h}^{n-1} d_{\mathcal{A}_{t}} v_{h}^{n}, u_{h}) + d(\rho_{h}^{n-1}, v_{h}^{n-1} - w_{h}^{n-1}, v_{h}^{n}, u_{h}) + a(v_{h}^{n}, u_{h})$$

$$= b(u_{h}, \pi_{h}^{n-1}) + (b_{h}^{n-1}, u_{h}) \quad \forall u_{h} \in V_{h},$$

$$(d_{\mathcal{A}_{t}} \rho_{h}^{n}, q_{h}) + e(\rho_{h}^{n-1}, v_{h}^{n}, q_{h} + \delta q_{h\beta})$$

$$+ \alpha(v_{h}^{n-1} - w_{h}^{n-1}, \rho_{h}^{n}, q_{h} + \delta q_{h\beta}) - \gamma \int_{\Gamma_{I}} \rho_{h}^{n} v_{D}^{n} \cdot n q_{h} dS \qquad (4.7)$$

$$= -\gamma \int_{\Gamma_{I}} \rho_{D}^{n} v_{D}^{n} \cdot n q_{h} dS \qquad \forall q_{h} \in Q_{h},$$

$$\pi_{h}^{n} = \widehat{\pi}(\rho_{h}^{n}),$$

Let $v^* \in H^1(\Omega_t)^2$, $v^*|_{\partial\Omega} = v_D$ be a realization of the boundary condition, we find solution $v = v_h^n$, $\rho = \rho_h^n$, such that $v - v^* \in V_h$, $\rho \in Q_h$. Let $v = v^* + z$ for $z \in V_h$, we may write problem (4.7) in a form

$$\tilde{a}(z+v^*,\rho,u,q) - \gamma \int_{\Gamma_I} \rho v_D^n \cdot nq \, dS$$

$$= F(u,q) - \gamma \int_{\Gamma_I} \rho_D^n v_D^n \cdot nq \, dS \quad \forall u \in V_h, \forall q \in Q_h,$$

$$(4.8)$$

where we use denotation from the proof of previous theorem. Define following forms

$$\hat{a}(z,\rho,u,q) = \tilde{a}(z,\rho,u,q) - \gamma \int_{\Gamma_I} \rho v_D^n \cdot nq \, dS,$$

$$\hat{F}(u,q) = F(u,q) - \tilde{a}(v^*,\rho,u,q) - \gamma \int_{\Gamma_I} \rho_D^n v_D^n \cdot nq \, dS.$$

Problem (4.8) will have this form

$$\hat{a}(z, \rho, u, q) = \hat{F}(u, q) \quad \forall u \in V_h, \forall q \in Q_h$$
 (4.9)

for unknowns $z \in V_h$ and $\rho \in Q_h$.

Theorem² Let assumptions from previous theorem hold. Moreover, assume $\gamma > 0$ and let $v_D \cdot n < 0$ on Γ_I . Let $v^* \in H^1(\Omega_t)^2$ be the realization of boundary condition for velocity. Then, there exists a unique solution $v = v_h^n$, $\rho = \rho_h^n$ of the problem (4.7), where $v - v^* \in V_h$, $\rho \in Q_h$.

Proof. We need to show that \hat{a} is positively definite. We may write

$$\hat{a}(z,\rho,z,\rho) = \tilde{a}(z,\rho,z,\rho) - \gamma \int_{\Gamma_L} \rho^2 v_D^n \cdot n \ dS.$$

Second term in righthand side is positive (under the assumptions of the theorem), form \tilde{a} is positively definite by the previous theorem.

²See Feistauer et al. [fe, p. 374].

Bibliography

- [fe] M. Feistauer, J. Felcman, I. Straškraba: Mathematical and Computational Methods for Compressible Flow, Oxford University Press, New York, 2003.
- [gu] M. E. Gurtin: An Introduction to Continuum Mechanics, Academic Press, New York, 1981.
- [qa] A. Quarteroni:Simulation of Fluid and Structure Interaction,European Mathematical Society, Prague, 2001.
- [ru] M. Růžička: Interaction of Incompressible Fluid and Moving Bodies, Master Thesis, MFF UK, Prague, 2005.
- [sv] P. Sváček: Numerical Solution of Fluid Over a Moving Profile, MFF UK, Prague, 2005.