Задача 1

Построить обратные матрицы для следующих матриц:

$$\mathbf{A} = \begin{bmatrix} 7 & 3 \\ 9 & 4 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 6 & -4 & -1 \\ 7 & -4 & -1 \\ 3 & -1 & 0 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ -1 & 1 & 2 & 0 \\ 0 & -1 & 2 & 1 \\ 0 & 0 & 2 & 1 \end{bmatrix}.$$

Ответы:

$$\mathbf{A}^{-1} = \begin{bmatrix} 4 & -3 \\ -9 & 7 \end{bmatrix}, \quad \mathbf{B}^{-1} = \begin{bmatrix} -1 & 1 & 0 \\ -3 & 3 & -1 \\ 5 & -6 & 4 \end{bmatrix}, \quad \mathbf{C}^{-1} = \begin{bmatrix} 2 & -1 & -1 & 1 \\ 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & 0 \\ -2 & 0 & 0 & 1 \end{bmatrix}.$$

Залача 2

Вычислить определители следующих матриц:

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 1 & -3 \\ 1 & -2 & 3 & -3 \\ -1 & 1 & -2 & 3 \\ -3 & -1 & -1 & 3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 2 & 0 \\ 3 & 0 & 3 & 0 & 2 \\ 0 & 1 & 0 & 3 & 0 \\ 2 & 0 & 3 & 0 & 3 \end{bmatrix},$$

$$\mathbf{C} = \begin{bmatrix} -3 & 2 & 1 & -2 \\ -3 & 2 & 2 & -1 \\ 2 & -1 & 1 & -1 \\ -3 & 2 & 3 & -3 \end{bmatrix}, \quad \mathbf{D} = \begin{bmatrix} 1 & 2 & 0 & 0 & 0 \\ 2 & 1 & 2 & 0 & 0 \\ 0 & 2 & 1 & 2 & 0 \\ 0 & 0 & 2 & 1 & 2 \\ 0 & 0 & 0 & 2 & 1 \end{bmatrix}.$$

Ответы:

$$|\mathbf{A}| = 0$$
, $|\mathbf{B}| = 1$, $|\mathbf{C}| = -3$, $|\mathbf{D}| = 33$.

Задача 3 (*)

Доказать следующие свойства обратной матрицы:

- 1) $\mathbf{E}^{-1} = \mathbf{E}$;
- 2) $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$;
- 3) $(\lambda \mathbf{A})^{-1} = (1/\lambda) \mathbf{A}^{-1}$:
- 4) $(\mathbf{A}^{\mathrm{T}})^{-1} = (\mathbf{A}^{-1})^{\mathrm{T}}$;
- 5) $(AB)^{-1} = B^{-1}A^{-1}$:
- 6) если матрица ${\bf A}$ невырожденная диагональная, то ${\bf A}^{-1}$ диагональная;
- 7) если матрица A невырожденная треугольная, то A^{-1} треугольная;
- 8) если матрица ${\bf A}$ невырожденная симметричная, то ${\bf A}^{-1}$ симметричная;
- 9) если матрица ${\bf A}$ *ортогональная*, т.е. ${\bf A}^{\rm T}{\bf A} = {\bf A}{\bf A}^{\rm T} = {\bf E}$, то ${\bf A}^{-1}$ ортогональная.

Задача 4 (*)

Доказать, что, если ${\bf A}$ — невырожденная матрица размера $n \times n$, то всякий вектор-столбец ${\bf b}$ размера $n \times 1$ является линейной комбинацией столбцов матрицы ${\bf A}$. Найти коэффициенты этой линейной комбинации.

Задача 5 (*)

Доказать, что алгебраическое дополнение $A_{ij} = (-1)^{i+j} M_{ij}$.

23.11.2017 21:49:23