

离散数学第四次习题课

----- 蔡子诺 zinuocai@gmail.com

注意事项

- 1. 补交作业
- 2. 考试复习:答案可能存在问题,有问题及时和助教沟通
 - 集合论参考答案 更新时间 2022/1/4 15:38
 - 数理逻辑参考答案 更新时间 2022/1/4 12:31
 - 2021年秋离散数学复习题集合论
 - 2021年秋离散数学复习题数理逻辑
- 3. 集合论部分的习题不完整,请大家整理归纳书上要点

第一章 命题逻辑基本概念

- 1. 命题判断
- 2. 重言式、永假式、可满足式判断(1.2)
- 3. 命题形式化 (1.4)
 - ▶ 注意"除非"的表达
 - 或与异或的区别
 - 蕴含词的多种表达
- 4. 波兰表达式与逆波兰表达式 (1.8)

■ 蕴含式P→Q可以用多种方式陈述:

P是Q的充分条件	Q是P的必要条件
若P, 则Q	除非Q,才P
只要P,就Q	只有Q, 才P
Q每当P	P仅当Q
	除非Q,否则非P

第二章命题逻辑的等值和推理演算

- 1. 使用与非或者或非改写命题 (2.8)
- 2. 联结词的完备集、最小完备集判断 (2.1)

不完备集

- □ **{**∨**,**^**,→**, **↔}**不是完备的 因为¬不能仅由该集合的联结词表达出
- \Box {¬, ↔}不是完备的
- □ { ∨, ^, →, ↔}的任何子集都是不完备的 {¬, ↔}的任何子集也是不完备的 (如果一个联结词的集合是不完备的,那 么它的任何子集都是不完备的)
- □ { ∨, ^ }不是完备的
- 3. 对偶式的改写 (**2.4**)
- 4. 主合取范式与主析取范式(2.13,填空题可以尝试真值表法)

第二章 命题逻辑的等值和推理演算

- 5. 根据等值公式判断公式是否等值 (2.6)
- 6. 判断推理公式是否正确 (2.4)
- 7. 自然语句形式化+推理公式证明(2.5)

第四章 谓词逻辑的基本概念

- 1. 自由变元与约束变元 (4.5)
- 2. 量词辖域的判断 (4.5)
- 3. 合式公式的判断(暂无)
- 4. 含有量词的自然语句形式化 (4.7)
 - 所有的有理数都是实数
 - 有的实数是有理数
 - 没有无理数是有理数
 - 有的实数不是有理数
- 5. 有限域下的任意与存在量词改写 (4.2)
- 6. 判断公式是否普遍有效 (4.8)

第五章 谓词逻辑的等值和推理演算

- 1. 等值演算
 - 否定型
 - 量词对合取、析取、蕴含词的分配
- 2. 前束范式与 Skolem 标准型
 - Skolem 标准型与原式是不等值的
 - 步骤: 化联结词→否定词内移→量词左移→变元易名
- 3. 自然语句形式化+推理公式证明

集合总结

例:以下各项中正确的选项为?

$$A. \quad \emptyset \cup \{\emptyset\} = \emptyset$$

$$\mathsf{B.} \quad \big\{\emptyset, \{\emptyset\}\big\} - \big\{\{\emptyset\}\big\} = \{\emptyset\}$$

C.
$$\{\emptyset, \{\emptyset\}\} - \{\emptyset\} = \{\emptyset, \{\emptyset\}\}\$$

例: 以下()不是集合?

$$A. \quad \emptyset \times P(\emptyset)$$

B.
$$\{x \mid x \in \mathbb{Z} \}$$

C.
$$\{x | x \in \mathbb{C} \}$$

D.
$$\{x | x \odot 111x \subseteq R\}$$

例:以下各项中正确的选项为?

$$A. \quad \emptyset \cup \{\emptyset\} = \emptyset \qquad \emptyset \cup \{\emptyset\} = \{\emptyset\}$$

B.
$$\{\emptyset, \{\emptyset\}\} - \{\{\emptyset\}\} = \{\emptyset\}$$

C.
$$\{\emptyset, \{\emptyset\}\} - \{\emptyset\} = \{\emptyset, \{\emptyset\}\}\}$$
 $\{\emptyset, \{\emptyset\}\} - \{\emptyset\} = \{\{\emptyset\}\}\}$

D.
$$\{\emptyset, \{\emptyset\}\} - \emptyset = \{\{\emptyset\}\}\$$
 $\{\emptyset, \{\emptyset\}\} - \emptyset = \{\emptyset, \{\emptyset\}\}\$

例:以下()不是集合?

$$A. \quad \emptyset \times P(\emptyset) = \emptyset$$

B.
$$\{x \mid x \in \mathbb{Z}\}$$
 子集公理, \mathbb{Z} 的子集

C.
$$A = \{x | x$$
 是包含1的集合 $\}$ $A_0 = \{1\} \cup A \Rightarrow A_0 \in A_0$

D.
$$\{x \mid x \in \mathbb{R}\}$$
 子集公理, $P(\mathbb{R})$ 的子集

例: 证明 $A \times A \in P(P(A))$

例: 证明 $A \times A \in P(P(A))$

0.7	证明: (林門龍文证明)
9:1-	$A \times A = \{\langle x, y \rangle x, y \in A \} = \{\{x, y\}, \{x\} x, y \in A\}.$
	{x} EP(A), {x,y} EP(A)
	> { } x1, {x,y}} ⊆ P(A)
	=> <x,y> SP(A)</x,y>
	=> < x, y> \ PP(A)
	A XA S PP(A)
	AXA E PPP(A).

例: 假设 $A \subseteq B$,下列说法错误的是?

- $A. \cup A \subseteq \cup B$
- B. $\cap A \subseteq \cap B$
- $C. \quad P(A) \subseteq P(B)$
- $\Box. \quad A B \subseteq B A$

例: 对于有限集合 $A \setminus B$, $P(P(A) \times B)$ 的基数为______

例: 假设 $A \subseteq B$,下列说法错误的是?

- A. $\cup A \subseteq \cup B$ 广义并的性质
- B. $\cap A \subseteq \cap B$ 广义交的性质: $\cap B \subseteq \cap A$
- C. $P(A) \subseteq P(B)$ 幂集的性质
- D. $A B \subseteq B A$ 空集的性质

例: 对于有限集合 $A \setminus B$, $P(P(A) \times B)$ 的基数为 $2^{|B|2^{|A|}}$

$$|P(P(A) \times B)| = 2^{|P(A) \times B|}$$

$$|P(A) \times B| = |P(A)||B| = |B|2^{|A|}$$

关系总结

几种关系

	自反	对称	传递	相关概念
等价关系	自反	对称	传递	划分
相容关系	自反	对称		覆盖
偏序关系	自反	反对称	传递	最大元,极大元, 上界,上确界
拟序关系	非自反	反对称(非必要条件)	传递	
全序关系	链、反链			
良序关系				

例: 给定A = $\{1,2,3,4\}$ 和A上的关系 $R = \{(1,3),(1,4),(2,3),(2,4),(3,4)\}$,求其三种闭包。

例: 给定A = $\{1,2,3,4\}$ 和A上的关系 $R = \{(1,3), (1,4), (2,3), (2,4), (3,4)\}$,求其三种闭包。

$$r(R) = R \cup I_A = \{(1,3), (1,4), (2,3), (2,4), (3,4), (1,1), (2,2), (3,3), (4,4)\}$$

$$s(R) = R \cup R^{-1} = \{\langle 1, 3 \rangle, \langle 1, 4 \rangle, \langle 2, 3 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle, \langle 3, 1 \rangle, \langle 4, 1 \rangle, \langle 3, 2 \rangle, \langle 4, 2 \rangle, \langle 4, 3 \rangle\}$$

$$t(R) = R \cup R^2 \cup R^3 \cup R^4$$

其实仔细观察会发现R自身就是传递的。

$$t(R)=R$$

例: 给定 $A = \{1,2,3,4\}$,求A上的等价关系数量。

例: 给定 $A = \{1,2,3,4\}$,求A上的等价关系数量。

A上的等价关系数量等于A上划分的数量。

分4个: 1/1/1/1:1

分3个: 2/1/1: $C_4^2 = 6$

分2个: 2/2: $C_4^2/2 = 3$

3/1: $C_4^3 = 4$

分1个: 4:1

1+6+3+4+1=15

例: 设R = A中的对称关系且 $R^2 \subseteq R$, 证明 $R \cup I_A$ 是等价关系。

例: 设R = A中的对称关系且 $R^2 \subseteq R$, 证明 $R \cup I_A$ 是等价关系。

先证明自反性
< x, x> ∈ la ⇒ <x, x=""> ∈ lauR ⇒ xSx 得证</x,>
再证明对称性
xsy => xry V xlay => yrx V ylax => ysx
最后是传递。
(xsy) n (ysz)
(x [x I V x Ry) \ (y I A Z V Y Rz)
(x lay 1 y laz) v (x lay 1 yRz)
V (ARY A YIAZ) V (ARY A YRZ)
(x IAZ) V (XRZ) V (XRZ) V (XRZZ)
→ XSz.

例:下面四个关系中()是拟序关系?

- A. R中的>关系
- B. **N** − {**0**}中的整除关系
- C. $\mathbb{N} \{0\}$ 中的互素关系
- D. $R = \{\langle x, y \rangle | (x y)$ 被5整除, $x, y \in \mathbb{Z}$

例: 设R = A中的一个关系 $I_A \subseteq R$,若有 $\langle a, b \rangle \in R \land \langle a, c \rangle \in R \Rightarrow \langle b, c \rangle \in R$,则下列说法最准确的是:

- A. R是等价关系
- B. R是相容关系
- C. R是偏序关系
- D. R是拟序关系

例: 下面四个关系中()是拟序关系?

- A. R中的>关系 非自反、反对称、传递
- B. $N \{0\}$ 中的整除关系 自反、反对称、传递
- C. $N \{0\}$ 中的互素关系 非自反、对称、不传递
- D. $R = \{\langle x, y \rangle | (x y)$ 被5整除, $x, y \in \mathbb{Z}\}$ 自反、对称、传递

例: 设R = A中的一个关系 $I_A \subseteq R$,若有 $\langle a, b \rangle \in R \land \langle a, c \rangle \in R \Rightarrow \langle b, c \rangle \in R$,则下列说法最准确的是:

- A. R是等价关系 主要是证明对称性: 设 $\langle a,b\rangle \in R$, 由于 $I_A \subseteq R$, 故 $\langle a,a\rangle \in R$, 故 $\langle b,a\rangle \in R$
- B. R是相容关系 $\langle a,b\rangle \in R \land \langle b,c\rangle \in R \Rightarrow \langle b,a\rangle \in R \land \langle b,c\rangle \in R \Rightarrow \langle a,c\rangle \in R$
- C. R是偏序关系
- D. R是拟序关系

例: R_1 , R_2 均为A中的关系,下面结论正确的是()。

- A. 若 R_1 , R_2 均为对称关系,则 $R_1 \circ R_2$ 为对称关系;
- B. 若 R_1 是偏序关系,则 R_1^{-1} 也为偏序关系
- $C. \quad t(R_1) \cup t(R_2) = t(R_1 \cup R_2)$
- $\Box. \quad st(R_1) = ts(R_1)$

例: R_1 , R_2 均为A中的关系,下面结论正确的是()。

- A. 若 R_1 , R_2 均为对称关系,则 $R_1 \circ R_2$ 为对称关系; {(1,2), (2,1)} \circ {(2,3), (3,2)} = {(3,1)}
- C. $t(R_1) \cup t(R_2) = t(R_1 \cup R_2);$ {\langle 1,2 \rangle, \langle 2,3 \rangle}, \langle \langle 3,4 \rangle, \langle 4,5 \rangle}

函数总结

例: 函数 $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 - x^2 + x$ 是()

- A. 满射但不是单射的
- B. 单射但是不满射的
- C. 双射的
- D. 既不是满射也不是单射的

例:设f,g为函数若g不是单射,则()

- A. $f \circ g$ 不是单射
- B. $g \circ f$ 不是单射
- C. A,B都不对
- D. 不一定

例: 函数
$$f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 - x^2 + x$$
是()

- A. 满射但不是单射的
- B. 单射但是不满射的
- C. 双射的
- D. 既不是满射也不是单射的

例:设f,g为函数若g不是单射,则()

A.
$$f \circ g$$
不是单射 $g(a) = g(b), f \circ g(x) = f(g(x)) \Rightarrow f \circ g(a) = f \circ g(b)$

- B. $g \circ f$ 不是单射 $f(x) = x (x > 0), g(x) = |x| (x \in R)$
- C. A,B都不对
- D. 不一定

谢谢!

