GRUPA A

1. 2 pkt.

Prawo Fouriera – przewodzenie ciepła (wzór + opis + jednostki).

Z jakiej wysokości trzeba zrzuczyć kulistego ziemniaka ($\varrho=1055\frac{\mathrm{kg}}{\mathrm{m}^3},\ c_p=3.64\frac{\mathrm{kJ}}{\mathrm{kg\cdot K}}$, średnica d=10 cm) żeby sie zagotował (zwiekszył swoja temperature z $T_1=25^{\circ}\mathrm{C}$ na $T_2=100^{\circ}\mathrm{C}$, zakładajac że cała energia kinetyczna zamieni sie na cieplna).

Obliczyć rozkład pola temperatury w sciance płaskiej (Rys. 0)

2. 4 pkt.

Obliczyć rozkład pola temperatury w sciance walca (Rys. 1) o długości $L=2\,$ m.

Obliczyć strumień ciepła które przenika przez sciane kuli (Rys. 2) oraz temperatury $T_{1,2,3}$ na granicach warstw.

3. 8 pkt.

Obliczyć temperature w środku druta oraz w miejscu styku s izolacja ceramiczna (rozkład pola temperatury dla walca). Promień druta $r_1=0.2$ cm, $\lambda_d=15$ W/mK (drut), grubość izolacji $r_2-r_1=0.5$ cm, $\lambda_i=1.2$ W/mK (izolacja). Temperatura powierzchni izolacji $T_s=45^\circ$ C. Wewnetrzne źródło ciepła $\dot{g}=50$ W/cm³. (Rys 3.)

GRUPA B

1. 2 pkt.

Prawo Stefana-Boltzmanna – promieniowanie ciepła (wzór + opis + jednostki).

Zagotowanie wody o objetości V=2 dm³ $(c_p=4.19\frac{\rm kJ}{\rm kg\cdot K},\,\varrho_{\rm H_2O}=1000\frac{\rm kg}{\rm m^3})$ oraz miedzianej kuli o średnicy d=10 cm $(c_p=0.385\frac{\rm kJ}{\rm kg\cdot K},\,\varrho_{\rm Cu}=8933\frac{\rm kg}{\rm m^3}$ która znajduje sie w wodzie o tej samej temperaturze) z temperatury $T_0=10^{\circ}{\rm C}$ do temperatury $T_1=100^{\circ}{\rm C}$, grzałka o mocy P=3 kW, zajeło $\tau=360$ s. Jakie sa straty do otoczenia i jaka jest efektywność grzałki? (3pkt.)

Obliczyć strumień ciepła które przenika przez sciane budynku (Rys. 0) oraz temperatury $T_{1,2,3,4}$ na granicach warstw.

2. 4 pkt.

Obliczyć rozkład pola temperatury w sciance kuli (Rys. 1)

Obliczyć strumień ciepła które przenika przez sciane kuli (Rys. 2) oraz temperatury $T_{1,2,3}$ na granicach warstw.

3. 8 pkt.

Kula o promieniu $r_k = 0.04$ m jest zrobiona z materialu radioaktywnego $(lambda_k = 15 \text{ W/mK})$, który stanowi wewnetrzne źródło ciepła $\dot{g} = 4 \cdot 10^7 \text{ W/m}^3$. Na powierzchni kuli jest dodatkowa warstwa ołowianej izolacji $(\lambda_i = 35.3 \text{ W/mK})$ o grubości 1.5 cm, na zewnetrznej powierzchnia izolacji jest utrzymywana temperatura $T_s = 80^{\circ}$ C. Zakładajac ustalone przewodzenie ciepła oblicz rozkład pola temperatury oraz temperature w punkcie r = 0.

Rys. 2.