

Low Rank Tensor Learning for Spatiotemporal Traffic Data Modeling

Spatiotemporal Traffic Data Imputation (STDI)

Gong Wenwu

Southern University of Science and Technology

June 27, 2023

Outline

1 Spatiotemporal Traffic Data Modeling

Traffic Data Behaviors Tensorization transformer Low-rank tensor learning

Related works Low-rankness Spatiotemporal priors

3 Baselines

Low-rankness Temporal variation Spatial regularization

4 Applications
Results Visualization

1 Spatiotemporal Traffic Data Modeling Traffic Data Behaviors

Tensorization transformer Low-rank tensor learning

- 2 Related works
- 3 Baselines
- 4 Applications

Traffic Time Series

- Multivariate: matrix form, i.e., spatial locations × time slots, such as Guangzhou speed traffic data ¹
- Multidimensional: tensor form, i.e., zones \times zones \times time slots, such as Abilene data 2
- Sparsity: insufficient sampling³
- Time-varying behavior: time series model⁴ and Bayesian factorization⁵,⁶
- Spatial similarity

⁶Xinyu Chen and Lijun Sun. "Bayesian Temporal Factorization for Multidimensional Time Series Prediction". In: *IEEE Transactions on Pattern Analysis and Machine Intelligence* (2021), pp. 1–1.

 $^{^{1} \}verb|https://github.com/xinychen/transdim|$

²https://doi.org/10.5281/zenodo

³Xinyu Chen et al. "Low-Rank Autoregressive Tensor Completion for Spatiotemporal Traffic Data Imputation". In: *IEEE Transactions on Intelligent Transportation Systems* (2021), pp. 1–10.

⁴Hsiang-Fu Yu, Nikhil Rao, and Inderjit S. Dhillon. "Temporal regularized matrix factorization for high-dimensional time series prediction". In: NIPS'16 Proceedings of the 30th International Conference on Neural Information Processing Systems. Vol. 29. 2016, pp. 847–855.

⁵Liang Xiong et al. "Temporal Collaborative Filtering with Bayesian Probabilistic Tensor Factorization". In: Proceedings of the 2010 SIAM International Conference on Data Mining (SDM). Dec. 2010, pp. 211–222.

Traffic data form

For any given partially observed traffic matrix Y whose columns IJ correspond to time slots and rows M correspond to sensors

$$oldsymbol{Y} = \left[egin{array}{ccc} ert & ert & ert \ oldsymbol{y}_1 & oldsymbol{y}_2 \cdots oldsymbol{y}_{IJ} \ ert & ert & ert \end{array}
ight] \in \mathbb{R}^{M imes (IJ)}$$

- Matrix (road segment × time series)
- Third-order tensor (road segment \times day \times time point)
- Fourth-order tensor (spatiotemporal)

1 Spatiotemporal Traffic Data Modeling

明德求是 TH新自强

Tensorization transformer Low-rank tensor learning

- 2 Related works
- 3 Baselines
- 4 Applications

Tensorization operator

Converts the traffic time series matrix into a third-order tensor⁷

In: IEEE Transactions on Intelligent Transportation Systems (2021), pp. 1-10.

⁷Xinyu Chen et al. "Low-Rank Autoregressive Tensor Completion for Spatiotemporal Traffic Data Imputation".

Tensorization operator

Converts the traffic time series matrix into a fourth-order tensor⁸

⁸Bin Ran et al. "Tensor based missing traffic data completion with spatial–temporal correlation". In: *Physica A : Statistical Mechanics and its Applications* 446 (2016), pp. 54–63.

Tensorization operator

Applies MDT⁹ /Hankelization¹⁰ operator along the spatial and temporal modes of traffic matrix

(a) Duplication matrix

¹⁰Qiquan Shi et al. Block Hankel Tensor ARIMA for Multiple Short Time Series Forecasting. 2020. arXiv: 2002.12135 [cs. LG].

⁹Farnaz Sedighin et al. "Matrix and Tensor Completion in Multiway Delay Embedded Space Using Tensor Train, With Application to Signal Reconstruction". In: IEEE Signal Processing Letters 27 (2020), pp. 810–814.

1 Spatiotemporal Traffic Data Modeling
Traffic Data Behaviors
Tensorization transformer
Low-rank tensor learning

- 2 Related works
- 3 Baselines
- 4 Applications

Time line: tensor rank minimization

Low-rank tensor learning ¹¹

Candès & Recht'09: Convex nuclear norm minimization for matrix completion.

$$egin{array}{ll} \min_{m{X}} & \|m{X}\|_* \ & ext{s.t.} \ \mathcal{P}_{\Omega}(m{X}) = \mathcal{P}_{\Omega}(m{Y}) \end{array}$$

Cai, Candès & Shen'10: Singular value thresholding algorithm.

$$\left\{ \begin{array}{l} \boldsymbol{X}^{\ell} = \mathcal{D}_{\tau} \left(\boldsymbol{Z}^{\ell-1} \right) \\ \boldsymbol{Z}^{\ell} = \boldsymbol{Z}^{\ell-1} + \delta_{\ell} \mathcal{P}_{\Omega} \left(\boldsymbol{Y} - \boldsymbol{X}^{\ell} \right) \end{array} \right.$$

Zhang et al.'12: Nonconvex truncated nuclear norm minimization.

Liu et al.'13: Convex nuclear norm minimization for tensor completion.

$$egin{array}{ll} \min_{m{\mathcal{X}}} & \|m{\mathcal{X}}\|_* \ & ext{s.t.} \ \mathcal{P}_{\Omega}(m{\mathcal{X}}) = \mathcal{P}_{\Omega}(m{\mathcal{Y}}) \end{array}$$

Lu, Peng & Wei'19: Tensor nuclear norm induced by linear transform.

¹¹https://xinychen.github.io/slides/phd_project_22summer.pdf

Time line: low-rank tensor approximation

Low-rank tensor learning ¹²

¹²https://xinychen.github.io/slides/phd_project_22summer.pdf

Framework

Tucker-based low-rank tensor approximation

- 1 Spatiotemporal Traffic Data Modeling
 Traffic Data Behaviors
 Tensorization transformer
 Low-rank tensor learning
- Related works Low-rankness Spatiotemporal priors
- 3 Baselines Low-rankness Temporal variation Spatial regularization
- 4 Applications Results Visualization

Spatiotemporal Traffic Data Modeling

明德求是 T 日新自强

- 2 Related works Low-rankness Spatiotemporal priors
- Baselines
- 4 Applications

Nuclear norm minimization

Tensor representation: reshapes traffic time series into a third-order tensor¹³, ¹⁴; reshapes into fourth-order tensor¹⁵, ¹⁶

- Convex nuclear norm minimization
- Tubal rank minimization

¹⁶Xudong Wang et al. "Low-Rank Hankel Tensor Completion for Traffic Speed Estimation". In: IEEE Transactions on Intelligent Transportation Systems 24.5 (2023), pp. 4862–4871.

¹³Xinyu Chen, Jinming Yang, and Lijun Sun. "A nonconvex low-rank tensor completion model for spatiotemporal traffic data imputation". In: *Transportation Research Part C: Emerging Technologies* 117 (2020), p. 102673.

¹⁴Kun Xie et al. "Accurate Recovery of Internet Traffic Data: A Sequential Tensor Completion Approach". In: IEEE/ACM Transactions on Networking 26.2 (2018), pp. 793–806.

¹⁵Bin Ran et al. "Tensor based missing traffic data completion with spatial–temporal correlation". In: *Physica A : Statistical Mechanics and its Applications* 446 (2016), pp. 54–63.

Low-rank tensor approximation

- Low-Tucker rank: approximate spatiotemporal traffic data using bilinear or multi-linear factorization models with a predefined rank
 - Regularization¹⁷, ¹⁸
 - Toeplitz matrix¹⁹
 - Spatio-temporal predictor²⁰
- Tensor factorization²¹ and Tensor-train decomposition²²

²²Zhiyuan Zhang et al. "A tensor train approach for internet traffic data completion". In: Annals of Operations Research 06 (2021), pp. 73–84.

¹⁷Xinyu Chen, Zhaocheng He, and Jiawei Wang. "Spatial-temporal traffic speed patterns discovery and incomplete data recovery via SVD-combined tensor decomposition". In: *Transportation Research Part C: Emerging Technologies* 86 (2018), pp. 59–77.

¹⁸Yuankai Wu et al. "A Fused CP Factorization Method for Incomplete Tensors". In: IEEE Transactions on Neural Networks and Learning Systems 30.3 (2019), pp. 751–764.

¹⁹Yang Wang et al. "Traffic Data Reconstruction via Adaptive Spatial-Temporal Correlations". In: IEEE Transactions on Intelligent Transportation Systems 20.4 (2019), pp. 1531–1543.

²⁰Koh Takeuchi, Hisashi Kashima, and Naonori Ueda. "Autoregressive Tensor Factorization for Spatio-Temporal Predictions". In: 2017 IEEE International Conference on Data Mining (ICDM). 2017, pp. 1105–1110.

²¹Pan Zhou et al. "Tensor Factorization for Low-Rank Tensor Completion". In: IEEE Transactions on Image Processing 27.3 (2018), pp. 1152–1163.

Spatiotemporal Traffic Data Modeling

- 2 Related works Low-rankness Spatiotemporal priors
- Baselines
- 4 Applications

Temporal variation

- Time series model:
 - Temporal matrix factorization²³
 - AR/VAR model²⁴,²⁵
- Bayesian model: Matrix²⁶, Tensor²⁷,²⁸ factorization

²⁸Xinyu Chen and Lijun Sun. "Bayesian Temporal Factorization for Multidimensional Time Series Prediction". In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2021), pp. 1–1.

²³Hsiang-Fu Yu, Nikhil Rao, and Inderjit S. Dhillon. "Temporal regularized matrix factorization for high-dimensional time series prediction". In: NIPS'16 Proceedings of the 30th International Conference on Neural Information Processing Systems. Vol. 29. 2016, pp. 847–855.

²⁴Xinyu Chen et al. "Low-Rank Autoregressive Tensor Completion for Spatiotemporal Traffic Data Imputation". In: IEEE Transactions on Intelligent Transportation Systems (2021), pp. 1–10.

²⁵Xinyu Chen et al. "Scalable low-rank tensor learning for spatiotemporal traffic data imputation". In: Transportation Research Part C: Emerging Technologies 129 (2021), p. 103226.

²⁶Ruslan Salakhutdinov and Andriy Mnih. "Bayesian Probabilistic Matrix Factorization Using Markov Chain Monte Carlo". In: Proceedings of the 25th International Conference on Machine Learning. 2008, pp. 880–887.

²⁷Liang Xiong et al. "Temporal Collaborative Filtering with Bayesian Probabilistic Tensor Factorization". In: Proceedings of the 2010 SIAM International Conference on Data Mining (SDM). Dec. 2010, pp. 211–222.

Spatial similarity

- Graph convolutional neural networks²⁹
- Graph-based regularization³⁰, graph Laplacian matrix³¹
- Graph Fourier transform³² (graph-tensor product)

²⁹Zahraa Al Sahili and Mariette Awad. Spatio-Temporal Graph Neural Networks: A Survey. 2023.

³⁰Hsiang-Fu Yu, Nikhil Rao, and Inderjit S. Dhillon. "Temporal regularized matrix factorization for high-dimensional time series prediction". In: NIPS'16 Proceedings of the 30th International Conference on Neural Information Processing Systems. Vol. 29. 2016, pp. 847–855.

³¹Yang Wang et al. "Traffic Data Reconstruction via Adaptive Spatial-Temporal Correlations". In: IEEE Transactions on Intelligent Transportation Systems 20.4 (2019), pp. 1531–1543.

³² Lei Deng et al. "Graph Spectral Regularized Tensor Completion for Traffic Data Imputation". In: IEEE Transactions on Intelligent Transportation Systems 23.8 (2022), pp. 10996–11010.

- 1 Spatiotemporal Traffic Data Modeling
 Traffic Data Behaviors
 Tensorization transformer
 Low-rank tensor learning
- 2 Related works Low-rankness Spatiotemporal priors
- 3 Baselines Low-rankness Temporal variation Spatial regularization
- 4 Applications
 Results Visualization

Spatiotemporal Traffic Data Modeling

明德求是 T 日新自强

- 2 Related works
- 3 Baselines

Low-rankness

Temporal variation Spatial regularization

4 Applications

STH-LRTC³³

- Task: Spatiotemporal Traffic Data (Matrix) imputation (STDI) using sparse observations (high-level missing)
- Novelty: fourth-order Hankel structured tensor, balanced spatiotemporal unfolding to approximate the tensor rank

$$egin{aligned} \min_{\mathcal{X}} \left\| \mathcal{X}_{\square}
ight\|_{r,*} \ \mathrm{s.t.} & \left\{ egin{aligned} oldsymbol{X} &= \mathcal{H}_{ au_s, au_t}(oldsymbol{Z}), \ oldsymbol{Z}_{\Omega} &= oldsymbol{Y}_{\Omega} \end{aligned}
ight.$$

where

$$\mathcal{X}_{\square} = \operatorname{reshape}(\mathcal{X}, [p, q]),$$

$$p = \tau_s \times \tau_t$$
 and $q = (N - \tau_s + 1) \times (T - \tau_t + 1)$.

³³Xudong Wang et al. "Low-Rank Hankel Tensor Completion for Traffic Speed Estimation". In: IEEE Transactions on Intelligent Transportation Systems 24.5 (2023), pp. 4862–4871.

STH-LRTC

Spatiotemporal Traffic Data Modeling

明德求是 T 日新自强

- 2 Related works
- 3 Baselines

Low-rankness

Temporal variation

Spatial regularization

4 Applications

- Task: STDI, three Missing scenarios
- Novelty: temporal variation (AR)

$$\min_{\mathcal{X}, \mathbf{Z}, \mathbf{A}} \|\mathcal{X}\|_{r,*} + \frac{\lambda}{2} \|\mathbf{Z}\|_{\mathbf{A}, \mathcal{H}}$$
s.t. $\mathcal{X} = \mathcal{Q}(\mathbf{Z}), \ \mathcal{P}_{\Omega}(\mathbf{Z}) = \mathcal{P}_{\Omega}(\mathbf{Y}),$

Extension: slice matrix SVD³⁴

$$egin{aligned} \min_{\mathcal{X}, oldsymbol{Z}} \|oldsymbol{\mathcal{X}}\|_* + rac{\lambda}{2} \sum_t \|oldsymbol{z}_t - oldsymbol{z}_{t-1}\|_2^2 \ ext{s.t.} \left\{ egin{aligned} \mathcal{X} = \mathcal{Q}(oldsymbol{Z}), \ \mathcal{P}_{\Omega}(oldsymbol{Z}) = \mathcal{P}_{\Omega}(oldsymbol{Y}) \end{aligned}
ight.$$

³⁵Xinyu Chen et al. "Low-Rank Autoregressive Tensor Completion for Spatiotemporal Traffic Data Imputation". In: IEEE Transactions on Intelligent Transportation Systems (2021), pp. 1–10.

³⁴Xinyu Chen et al. "Scalable low-rank tensor learning for spatiotemporal traffic data imputation". In: Transportation Research Part C: Emerging Technologies 129 (2021), p. 103226.

4 □ > 4 □ > 4 □ > 4 □ >

- General idea: Integrates low-rank matrix/tensor factorization and vector autoregressive (VAR) process into a single probabilistic graphical model
- Novelty: Bayesian: perform probabilistic predictions and produce uncertainty estimates

³⁶Xinyu Chen and Lijun Sun. "Bayesian Temporal Factorization for Multidimensional Time Series Prediction". In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2021), pp. 1–1.

LSTC-Tubal³⁷


```
Algorithm 1: imputer(Y, \rho, \lambda)
```

```
Initialize \mathcal{T}^0 as zeros. Set \mathcal{P}_\Omega(\mathbf{Z}^0) = \mathcal{P}_\Omega(\mathbf{Y}) and \ell = 0. while not converged do Update \rho by \rho = \min\{1.05 \times \rho, \rho_{\max}\}; for j = 1 to J do Update \mathbf{X}_j^{\ell+1} by Eq. (13); Update \mathbf{Z}_j^{\ell+1} by Eq. (20); Update \mathcal{T}_j^{\ell+1} by Eq. (8); Transform the observation information by letting \mathcal{P}_\Omega(\mathbf{Z}^{\ell+1}) = \mathcal{P}_\Omega(\mathbf{Y}); \ell := \ell+1;
```

Transportation Research Part C: Emerging Technologies 129 (2021), p. 103226.

return recovered matrix \hat{X} .

³⁷Xinyu Chen et al. "Scalable low-rank tensor learning for spatiotemporal traffic data imputation". In:

TT-SVD³⁸

- General idea: Toeplitz matrices for unfolding tensor
- Novelty: closed-form solutions

³⁸Zhiyuan Zhang et al. "A tensor train approach for internet traffic data completion". In: *Annals of Operations Research* 06 (2021), pp. 73–84.

- General idea: Characterizing both global and local trends in STDI
- Novelty: Laplacian kernel to temporal regularization for characterizing local trends; a fast Fourier transform (FFT) solution in a relatively low time complexity

Laplacian Convolutional Representation (LCR)

For any partially observed time series $y \in \mathbb{R}^T$ with observed index set Ω , LCR utilizes circulant matrix and Laplacian kernel to characterize global and local trends in time series, respectively, i.e.,

$$\min_{\mathbf{x}} \|\mathcal{C}(\mathbf{x})\|_* + \gamma \cdot \mathcal{R}_{\tau}(\mathbf{x})$$
s.t. $\|\mathcal{P}_{\Omega}(\mathbf{x} - \mathbf{y})\|_2 \le \epsilon$

where $\mathcal{C}: \mathbb{R}^T \to \mathbb{R}^{T \times T}$ denotes the circulant operator. $\|\cdot\|_*$ denotes the nuclear norm of matrix, namely, the sum of singular values.

³⁹ Xinyu Chen et al. Laplacian Convolutional Representation for Traffic Time Series Imputation. 2022. arXiv: 2212.01529 [cs.LG].

Spatiotemporal Traffic Data Modeling

明德求是 T 日新自强

- 2 Related works
- 3 Baselines

Low-rankness
Temporal variation
Spatial regularization

4 Applications

GT-SVD⁴⁰

- General idea: exploits the underlying topological structure of the traffic and constructs temporal regularization
- Novelty: introduces graph Fourier transform and adopts the high-order Toeplitz matrices

⁴⁰Lei Deng et al. "Graph Spectral Regularized Tensor Completion for Traffic Data Imputation". In: IEEE Transactions on Intelligent Transportation Systems 23.8 (2022), pp. 10996–11010.

- 1 Spatiotemporal Traffic Data Modeling
 Traffic Data Behaviors
 Tensorization transformer
 Low-rank tensor learning
- Related works Low-rankness Spatiotemporal priors
- 3 Baselines
 Low-rankness
 Temporal variation
 Spatial regularization
- 4 Applications
 Results Visualization

Spatiotemporal Traffic Data Modeling

明德求是 T 日新自强

- 2 Related works
- 3 Baselines
- 4 Applications
 Results Visualization

Missing data pattern⁴¹

In: IEEE Transactions on Intelligent Transportation Systems (2021), pp. 1-10.

⁴¹Xinyu Chen et al. "Low-Rank Autoregressive Tensor Completion for Spatiotemporal Traffic Data Imputation".

Cumulative eigenvalue percentage

A few leading singular values have a significant contribution, e.g., the first 42 singular values cover 90% of all singular values, showing the low-rank feature.

Heatmaps of imputation RMSE values

Heatmaps of unitary transform matrices (Slice matrices (Slice

Performance comparison

Data	Missing	LATC	LAMC	LRTC-TNN	BTMF	SPC
(G)	30%, RM	5.71/2.54	9.51/4.04	6.99/3.00	7.54/3.27	7.37/5.06
	70%, RM	7.22/3.18	10.40/4.37	8.38/3.59	8.75/3.73	8.91/4.44
	90%, RM	9.11/3.86	11.65/4.79	9.55/4.05	10.02/4.21	10.60/4.85
	30%, NM	9.63/4.09	10.11/4.23	9.61/ 4.07	10.32/4.33	9.13/5.29
	70%, NM	10.37/4.35	11.15/4.60	10.36/4.34	11.36/4.85	11.15/5.17
	30%, BM-6	9.23/3.91	12.15/5.17	9.45/3.97	12.43/7.04	11.14/5.13
(H)	30%, RM	19.12/24.97	22.65/42.94	18.87/24.90	22.37/28.66	19.82/26.21
	70%, RM	20.25/28.25	25.30/51.26	20.07/28.13	25.65/32.23	21.02/31.91
	90%, RM	24.32/ 34.44	32.30/66.13	23.46/35.84	31.51/46.24	24.97/49.68
	30%, NM	19.93/47.38	22.93/67.08	19.94/50.12	25.61/77.00	27.46/68.56
	70%, NM	24.30/47.30	29.23/63.95	23.88/45.06	34.50/70.11	46.86/98.81
	30%, BM-6	21.93/28.64	30.78/66.03	21.40/27.83	52.15/57.61	22.49/37.53
(S)	30%, RM	4.90/3.16	5.98/3.73	4.99/3.20	5.91/3.72	5.92/3.62
	70%, RM	5.96/3.71	8.02/4.70	6.10/3.77	6.47/3.98	7.38/4.30
	90%, RM	7.47/4.51	10.56/5.91	8.08/4.80	8.17/4.81	9.75/5.31
	30%, NM	7.11/4.33	6.99/4.25	6.85/4.21	9.26/5.36	8.87/4.99
	70%, NM	9.46/5.42	9.75/5.60	9.23/5.35	10.47/6.15	11.32/5.92
	30%, BM-12	9.44/5.36	27.05/13.66	9.52/5.41	14.33/13.60	11.30/5.84

Residuals

Imputed values

Imputed values

Thank You!