Chapter 1 Introduction

Kuang-Hao Liu

Institute of Communications Engineering National Tsing Hua University

Outline

- Background
- Concept of Cooperative Relaying
- Concept of Base Station Cooperation
- Summary

Jennifer, should I choose MVC as my booster shot?

Let me make a call.

The best choice ever!

Why Cooperation?

Background

Envision of 6G

- Very high speed: ↑ 100 Gigabits 3G: 2Mbps; 3.5G: 14.4Mbps; 4G: 3Gbps; 5G: 10 Gbps
- Massive connectivity: 10⁷ devices/Km²
- **E**xtremely-high reliability: 10μ sec

Fundamental challenge: signals transmitted over wireless attenuated in various forms

Background (Cont'd)

Signal attenuation

- Path loss
- Shadowing
- Multipath propagation

Pathloss and shadowing may be mitigated by power control

Multipath propagation is tackled by diversity techniques

Diversity

Send the same (redundant) information over different _____

Spatial Diversity

- Transmit diversity (MISO)
- Receive diversity (SIMO)
- Transmit and receive diversity (MIMO)

Spatial Diversity

- Antennas should be separated by the distance of a few wavelengths
- ullet E.g., wavelength = 0.33 m for 900 MHz signal
- For small form factor of mobile (handheld) devices, large antenna array is not feasible

Virtual Antenna Array

- Forming a Virtual antenna array (VAA) by distributing antennas in the network [Dohler'02]
- Promising alternative to MIMO without the need of collocated antennas

Implementation of VAA

Two approaches to implement VAA

VAA connected through coaxial cables or fibers

Outdoor Distributed Antenna System

Concept of Cooperative Relaying

Figure from J. N. Laneman et al. '03

Benefit of Cooperative Relaying

Diversity gain: a metric to evaluate the increase in the error rate slope as a function of SNR

Standardization Activity

- Included feature of IEEE 802.16j
- Mobile relays discussed in 3GPP

G. Noh, H. Chung, and I. Kim, "Mobile relay technology for 5G," IEEE Wireless Commun., 2020.

Base Station Cooperation

Coordinated scheduling

 $Coordinated\ beamforming$

Avoid interference by coordination between BSs.

Base Station Cooperation (cont'd)

BS₁

Dynamic point selection

■ Enhance signal strength by coordination between BSs.

UE 4

Compared with JT, DPS introduces less interference.

Support of BS Cooperation in 5G

To support flexible coordination between BSs, 5G NR splits a physical BS into functional blocks.

Summary

- The notion of node (relay, base station) cooperation offers an alternative to overcome channel impairments
- Cooperative relaying exploits the broadcast nature of wireless transmissions to achieve spatial diversity
- Base station cooperation facilitates signal enhancement/interference cancellation provided with backhaul links

Topics to be covered next week

Characterization of Wireless Channels

Topics

- Basic principles of wireless communications
- Simulation techniques
- Insights from theoretical analysis

Textbooks

Wireless Communications by A. Goldsmith

Cooperative Communications and Networking by Y.-W. Hong

Topics

Ch01 Introduction Ch02 Characterization of Wireless Channels (Assignment # 1) Ch03 Diversity Techniques for Fading Channels (Assignment # 2) Ch04 Cooperative Communications with Single Relay (Assignment # 3) Ch05 Cooperative Communications with Multiple Relays (Assignment #4) Ch06 Cooperative Communications with Multiple Sources Ch07 Medium Access Control in Cooperative Networks Ch08 Energy-Harvesting Relays Ch09 Base Station Cooperation (Assignment # 5) Ch10 Selected Applications (if time permits)

Grading Policy

- Midterm: 20% (Tentative date: April 13th)
- Project: 40%
- Assignment: 30%
 - Numerical questions
 - Simulation: Python sample code will be provided
 - Hand-in: prepared in English (will not be evaluated otherwise)

Past class performance: 87/100, 43% graded over 90

Course Project

- Purpose: Exercise basic skills of doing research.
- "New design" or "Redo" for selected topics in two months.

The END