Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures $(08h00 \rightarrow 10h00)$. 1 feuille A4 R/V autorisée.
- Aucune sortie avant 30 minutes.
 Aucune entrée après 30 minutes.
 Tout dispositif électronique est interdit (calculatrice, téléphone, tablette, etc.).

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ texte prévu à cet effet (si celui-ci est présent).
- Pour marquer une case, il faut **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Voir Figure 1. Colorier avec un stylo <u>noir</u>. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner la case).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse (une seule case à cocher).
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Réservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 6 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (7 points)

Pour rappel:

- Un AEFD est un automate à états fini et déterministe.
- Un AEFND est un automate à états fini et non déterministe.
- Un ϵ -AEFND est un automate à états fini et non déterministe avec ϵ -transitions.

Pour un automate quelconque, nous notons L(A) le langage reconnu par A. Nous considérons les algorithmes de calcul des états accessibles et co-accessibiles vus en cours, notés respectivement accessibilite() et co_accessibilite() s'appliquant à un AEFD et produisant un ensemble d'états. Lorsque nous souhaitons clarifier que la fonction de transition utilisée dans le calcul des états accessibles est δ , nous pouvons noter accessibilite $_{\delta}$ () Nous considérons l'algorithme de calcul du produit entre deux automates, noté produit(), s'appliquant à deux AEFDs et qui calcule l'automate reconnaissant l'intersection des langages reconnus par les deux automates passés en paramètre.

(a) KO (b) KO (c) KO (d) OK FIGURE 1-Comment marquer une case.

Question 1 \clubsuit (0,5 points) Lors du calcul de \equiv_i dans l'algorithme de minimisation, l'algorithme continue de s'exécuter pour calculer \equiv_{i+1} lorsque
Question 2 \clubsuit (0,5 points) Soient $A_1 = (Q_1, q_{\text{init}}^1, \Sigma, \delta_1, F_1)$ et $A_2 = (Q_2, q_{\text{init}}^2, \Sigma, \delta_2, F_2)$ deux AEFDs et $A = (Q, q_{\text{init}}, \Sigma, \delta, F)$ = produit (A_1, A_2) l'AEFD produit de A_1 et A_2 .
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Question 3 \clubsuit (0,5 points) Soit L un langage quelconque et L^* sa fermeture de Kleene.
a L^* est un langage à états si L est un langage à états. b $L \subset L^*$ est toujours vrai. c $L^* \subset L$ est toujours vrai. d L^* est toujours un langage à états. e $\epsilon \in L^*$. f $L^* \subseteq L$ est toujours vrai. g $L \subseteq L^*$ est toujours vrai. h Aucune des affirmations concernant L et L^* n'est correcte. li Toutes les affirmations concernant L et L^* sont correctes. li L'énoncé est absurde.
Question 4 \clubsuit (0,5 points) Soit $A = (Q, q_{\text{init}}, \Sigma, \delta, F)$ un AEFD.
a si δ est définie sur tous les symboles de Σ pour les états de F , alors $Q \subseteq \operatorname{co_accessibilite}(A)$. b si δ est totale, alors $Q \subseteq \operatorname{accessibilite}(A)$. c accessibilite $(A) = \operatorname{co_accessibilite}(A)$. e si A est complet, alors $F \subseteq \operatorname{accessibilite}(A)$. e si A est complet, alors $F \subseteq \operatorname{accessibilite}(A)$. e si A est complet, alors A est complet, alors accessibilite A si A est complet, alors accessibilite A est complete.
Question 5 (0,5 points) Soient L un langage à états, A_D un AEFD minimal qui reconnaît L , A_N l'AEFND avec le plus petit nombre d'états qui reconnaît L . a A_N a soit le même nombre d'états que A_D soit plus d'états. b A_N a forcément plus d'états que A_D . c A_N a forcément moins d'états que A_D . d A_N a soit le même nombre d'états que A_D soit moins d'états. e Aucune des affirmations concernant L , A_D et A_N n'est correcte. f Toutes les affirmations concernant L , A_D et A_N sont correctes.
Question 6 \clubsuit (0,5 points) Soient $A_1 = (Q_1, q^1_{\text{init}}, \Sigma, \delta_1, F_1)$ et $A_2 = (Q_2, q^2_{\text{init}}, \Sigma, \delta_2, F_2)$ deux AEFDs et $A = (Q, q_{\text{init}}, \Sigma, \delta, F) = \text{produit}(A_1, A_2)$ l'AEFD produit de A_1 et A_2 .
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Question 7 4 (0,5 points) Soient A un au complémentaire comme obtenu suivant la procédure de	tomate sur l'alphabet Σ et $A^{\rm c}$ son automate e complémentation vue en cours.
a accessibilite(A) = accessibilite(A ^c) b co_accessibilite(A) = co_accessibilite(A ^c) c $L(A$ ^c) = $L(A)$, si A est complet. d $L(A$ ^c) = Σ * \ $L(A)$.	
Question 8 (0,5 points) Soient L_1 et L_2 deux la	ngages à états sur un alphabet Σ .
	est indécidable. C L'énoncé est absurde.
Question 9 (0,5 points) Soient $A_1 = (Q_1, q_{\text{init}}^1, \Sigma)$ et $A = (Q, q_{\text{init}}, \Sigma, \delta, F)$ l'AEFD produit de A_1 et A_2 .	(S, δ_1, F_1) et $A_2 = (Q_2, q_{\text{init}}^2, \Sigma, \delta_2, F_2)$ deux AEFDs
si A_1 reconnaît le langage unive \Box si A_1 est complet sur \Box c si A_1 est complet sur \Box si A_1 reconnaît le langage unive \Box Aucune des affirmations n'est correcte. E L'énoncé est absurde. \Box	$L(A) = L(A_2).$ $L(A) = L(A_1).$ $L(A) = L(A_1).$ $L(A) = L(A_2).$
Question 10 (0,5 points) Soient L un langage à A_N un AEFND quelconque qui reconnaît L . a Il est possible que A_D et A_N aient le même nom b A_N a forcément moins d'états que A_D . c A_N a forcément plus d'états que A_D . d Aucune des affirmations concernant L , A_D et A_N e Toutes les affirmations concernant L , A_D et A_N	$_{ m V}$ n'est correcte.
Question 11 \clubsuit (0,5 points) Soient $A = (Q, q_{\text{init}},$ de l'automate. Un algorithme correct qui calcule l'ense est :	(Σ, δ, F) un AEFD et $q_{part} \in Q$ un état particulier emble des états finaux accessibles à partir de q_{part}
	chme 2. © l'Algorithme 1. Aucun des algorithmes proposé n'est correct.
Question 12 \clubsuit (0,5 points) Quand l'algorithme \equiv_i :	de minimisation termine juste après avoir calculé
	$\equiv_i = \equiv_{i+1}$. $\equiv_i = \equiv$. Toutes les affirmations sont correctes. des données pour répondre à la question.
Question 13 \clubsuit (0,5 points) Soit L un langage qu	
a $L \cdot \{\epsilon\} = L$. b $L \cdot \{\epsilon\} = L$. c $L \cdot \{\epsilon\} = \Sigma^*$. f Hest possible do Aucune des affirmations concernant L sont on the following concernant L sont on the following concernant L sont of L is a first concernant L sont on the following concernant L so the following concernation L so the	e trouver un automate qui reconnaît L . correctes. i L'énoncé est absurde.

Question 14 4 (0,5 points)

- $\boxed{\mathbf{a}}$ Un ϵ -AEFND est aussi un AEFD.
- b Un AEFD est aussi un AEFND.
- $\[\]$ Un ϵ -AEFND est aussi un AEFND.
- d Un AEFD est aussi un ϵ -AEFND.
- $\boxed{\text{e}}$ Un AEFND est aussi un ϵ -AEFND.
- f Un AEFND est aussi un AEFD.
- B Aucune des affirmations n'est correcte.
- h Toutes les affirmations sont correctes.

Partie 2: Complétion d'automates (2 points)

Question 15 4 (1 point)

Considérons l'automate ci-contre sur l'alphabet $\Sigma = \{a, b, c\}$. L'/Les automate(s) correct(s) résultant(s) de l'algorithme de *complétion* est/sont :

- a Celui de la Figure 4d.
- C Celui de la Figure 4c.
- e Aucun des automates.

- b Celui de la Figure 4a.
- d Celui de la Figure 4b.
- f Tous les automates.

Question 16 4 (1 point)

Considérons l'automate ci-contre sur l'alphabet $\Sigma = \{a, b\}$. L'/Les automate(s) correct(s) résultant(s) l'algorithme de *complétion* est/sont :

- a Celui de la Figure 2c.
- d Celui de la Figure 2d.
- b Celui de la Figure 2b.
- e Aucun des automates.
- C Celui de la Figure 2a.
- f Tous les automates.

Partie 3: Complémentation d'automates (2 points)

Question 17 (1 point)

Considérons l'automate ci-contre sur l'alphabet $\Sigma = \{a,b\}$. L'/Les automate(s) correct(s) résultant(s) de l'algorithme de *complémentation* est/sont :

 $\begin{array}{cccc}
& b & & \\
& \downarrow & & & \\
& b & & \downarrow & \\
& b & & & \\
& 4 & & & \\
\end{array}$

- a Celui de la Figure 5b.
- © Celui de la Figure 5a.
- e Aucun des automates.

- b Celui de la Figure 5d.
- d Celui de la Figure 5c.
- f Tous les automates.

Question 18 (1 point)

Considérons l'automate ci-contre sur l'alphabet $\Sigma = \{a, b\}$. L'/Les automate(s) correct(s) résultant(s) de l'algorithme de *complémentation* est/sont :

- a Celui de la Figure 3d.
- d Celui de la Figure 3a.
- b Celui de la Figure 3b.
- e Aucun des automates.
- © Celui de la Figure 3c.
- f Tous les automates.

Partie 4 : Élimination des ϵ -transitions (3 points)

Question 19 (3 points)

Considérons l'automate ci-contre sur l'alphabet $\Sigma = \{a, b, c, d\}$. L'automate correct résultant de l'algorithme de suppression des ϵ -transitions est :

- a Celui de la Figure 7c.
- d Celui de la Figure 7b.
- b Celui de la Figure 7d.
- e Aucun des automates.
- C Celui de la Figure 7a.
- f Tous les automates.

Partie 5 : Déterminisation d'automates (3 points)

Question 20 🌲 (3 points)

Considérons l'AEFND ci-contre sur l'alphabet $\Sigma = \{a, b, c\}$. Le/les AEFD(s)s équivalent(s) à l'AEFD résultant de l'algorithme de déterminisation après avoir éventuellement ré-étiqueté les états sont :

- a Celui de la Figure 8b.
- e Celui de la Figure 8a.
- b Celui de la Figure 8d.
- f Aucun des automates.
- © Celui de la Figure 8c.
- d Celui de la Figure 8e.
- g Tous les automates.

Partie 6: Minimisation d'automates (3 points)

Nous utilisons la représentation de l'exécution de l'algorithme de minimisation sous forme de tableau vue en cours.

Question 21 (3 points)

Considérons l'AEFD ci-contre sur l'alphabet $\Sigma = \{a, b, c\}$. Les états sont en colonnes, les symboles en lignes. Les états accepteurs sont indiqués par une étoile. L'état 1 est initial. L'exécution de l'algorithme de minimisation est représentée sur :

	1*	2*	3*	4*	5*	6*	7	8
a	2	4	5	2	5	6	6	8
b	3	3	5	3	3	7	7	8
С	8	7	3	6	5	6	7	8

- a la Figure 6a.
- c la Figure 6b.
- e Aucune figure.

- b la Figure 6d.
- la Figure 6c.

Champ Libre

Vous pouvez utiliser l'espace de texte de cette question comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

Algorithme 1

```
Entrée : A = (Q, \Sigma, \delta, q_{\text{init}}, F) un AEFD et q_{\text{part}} \in Q un état de A
Sortie: Accessibles \subseteq Q ensemble des états accessibles dans A par \delta à partir de q_{\text{part}}
 1: ens d'états Accessibles, A_visiter, Deja_visite, R<sub>local</sub>;
 2: Accessibles := \{q_{init}\};
 3: A_{\text{visiter}} := \{q_{\text{init}}\};
  4: Deja_visite := ∅;
 5: tant que A_visiter \neq \emptyset faire
          soit q \in A_visiter;
          A_{\text{visiter}} := A_{\text{visiter}} \setminus \{q\};
 7:
 8:
          Deja\_visite := Deja\_visite \cup \{q\};
 9:
          R_{local} := \{ q' \in Q \mid \exists a \in \Sigma : (q, a, q') \in \delta \};
10:
          Accessibles := Accessibles \cup R_{local};
          A_{\text{visiter}} := A_{\text{visiter}} \cup (R_{\text{local}} \setminus \text{Deja\_visite});
11:
12: fin tant que
13: retourner Accessibles \cap F \cap \{q_{\text{part}}\};
```

Algorithme 2

```
Entrée : A = (Q, \Sigma, \delta, q_{\text{init}}, F) un AEFD et q_{\text{part}} \in Q un état de A
Sortie: Accessibles \subseteq Q ensemble des états accessibles dans A par \delta à partir de q_{\text{part}}
 1: ens d'états Accessibles, A_visiter, Deja_visite, R_{local};
 2: Accessibles := \{q_{\text{part}}\};
 3: A_visiter := \{q_{part}\};
 4: Deja_visite := \emptyset;
 5: tant que A_visiter \neq \emptyset faire
          soit q \in A-visiter;
          A_{\text{visiter}} := A_{\text{visiter}} \setminus \{q\};
 7.
          Deja\_visite := Deja\_visite \cup \{q\};
 8:
 9:
          R_{local} := \{ q' \in Q \mid \exists a \in \Sigma : (q, a, q') \in \delta \};
10:
          Accessibles := Accessibles \cup R_{local};
11:
          A_{\text{visiter}} := A_{\text{visiter}} \cup (R_{\text{local}} \setminus \text{Deja\_visite});
12: fin tant que
13: retourner Accessibles \cap F;
```

Algorithme 3

```
Entrée : A = (Q, \Sigma, \delta, q_{\text{init}}, F) un AEFD et q_{\text{part}} \in Q un état de A
Sortie : Accessibles \subseteq Q ensemble des états accessibles dans A par \delta à partir de q_{\text{part}}
 1: ens d'états Accessibles, A_visiter, Deja_visite, R<sub>local</sub>;
 2: Accessibles := F;
 3: A_visiter := F;
 4: Deja_visite := \emptyset;
 5: tant que A_visiter \neq \emptyset faire
          soit q \in A-visiter;
 7:
          A_{\text{visiter}} := A_{\text{visiter}} \setminus \{q\};
          Deja\_visite := Deja\_visite \cup \{q\};
 8:
          R_{local} := \{ q' \in Q \mid \exists a \in \Sigma : (q, a, q') \in \delta \};
 9:
10:
          Accessibles := Accessibles \cup R_{local};
          A_{\text{visiter}} := A_{\text{visiter}} \cup (R_{\text{local}} \setminus \text{Deja\_visite});
11:
12: fin tant que
13: retourner \{ q \in Accessibles \mid \exists a \in \Sigma : \delta(q_{part}, a, q) \};
```


\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_4	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	4	4	3	3	4	4	3	3	4	4	4	3	3	3
4	4	3	3	4	4	3	3	4	4	3	3	3	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
	(;	a)	(b)				(c)				(d)			

FIGURE 6 – Des représentations de l'exécution de l'algorithme de minimisation comme vu en cours.

		1	2	3	4	5*	6*	7*	L		1	2	3	4	5*	6*	7*	L		1	$2 \mid$	3	4	5*	6*	7*		
	a	3	7	5	6	7	7		(ı	3	7	7	6	7	7			a	3	7	7	6	7	7]	
	b	2	7	7	5	7	7		l)	2	7	7	5	7	7			b	1	7	7	5	7	6		1	
	c	4	2	3	4	5	5	7		9	4	2	2	4	5	5	7		c	4	2	2	4	5	5	7]	
					(a)					(b)											(c)							
	1	2	3	4	5:	* 6	* 7	* 8	7 [1	2	3	4	5*	6*	7*	T 8	8		1	2	3	4	5*	6*	7*	8
\overline{a}	3	7	7	6	7	7 7	7 8	3 8	וֹ וֹ	a	3	7	5	8	7	7	8	1	8	a	3	7	7	6	7	7	8	8
b	2	7	7	5	7	7 7	7 8	3 8	1 [b	2	7	7	5	7	7	8	1	8	b	2	7	5	5	7	7	8	8
c	4	2	2	4	5	5 5	5 7	7 8] [c	4	2	2	4	5	5	7	8	8	c	4	2	2	4	5	6	7	8
				(d)				(e) (f)																			
T		_	-				,	1.			• 1 1			-	11 1			•	1/.					т .				

FIGURE 8 – Des automates résultant possiblement de l'algorithme de déterminisation. Les états sont en colonnes, les symboles en lignes. Les états accepteurs sont indiqués par une étoile. L'état 1 est initial.

Examen à mi-parcours du 27/10/2017 Licence Sciences et Technologies, 2ième année

 $\begin{array}{c} {\rm INF~302: Langages~et~Automates} \\ {\rm Ann\'{e}e~acad\'{e}mique~2017/2018} \end{array}$

Feuille(s) de réponses

0 1 2 3 4 5 6 7 8 9 Codez votre numéro d'étudiant ci-contre
0 1 2 3 4 5 6 7 8 9 et recopiez le manuellement dans la boite
0 1 2 3 4 5 6 7 8 9 <u>et indiquez vos nom et prénom.</u>
0 1 2 3 4 5 6 7 8 9 Numéro d'étudiant + NOM Prénom :
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
Question 1: a b c d e f g h
Question 2: a b c d e f g h
Question 3: a b c d e f g h i j
Question 4: a b c d e f g h
Question 5: a b c d e f
Question 6: a b c d e f g h i j
Question 7: a b c d e f
Question 8: a b c d
Question 9: a b c d e f g h
Question 10: a b c d e
Question 11: a b c d e
Question 12: a b c d e f g h
Question 13: a b c d e f g h i
Question 14: a b c d e f g h
Question 15: a b c d e f
Question 16: a b c d e f
Question 17: a b c d e f
Question 18: a b c d e f
Question 19: a b c d e f
Question 20: a b c d e f g
Question 21: a b c d e
Question 22: