Department of Electrical engineering UET LHR FSD campus

	: 90 minutes, Marks=40	5 Semester (Session 2019)		2019 E	
block diagram of the tb) Calculate the value of		of reload and match registers to generate 50 Hz cycle. Also clearly mention whether 16 bit or 32		Cognitive Level 4 PLO2	06 + 04
12	Explain the use of pull-up and pu	ll-down resistors.	CLO4	Cognitive PLO2	05
13	Consider the assembly program given in the following listing. Wha will be the contents of registers R1 and R2 after the execution of the following program. Note that little endian memory format is used. AREA MyMain, CODE, READONLY data DCD 0x87654321 EXPORTmain		t CLO3	Cognitive (Level 3 PLO5	05
	UDRSH R1	=data [RO, #1]! [RO, #2]			
Q4	external interrupt. The interrupt to the pressing of the switch (green color) connected to PF3	l connected to PF4 by configuring PF4 as is generated on the falling edge, correspond. On every third key press an on-board Li is toggled and also on every key press an toggled. PORTF has an IRQ=30. Use a prior k side)	an ng ED on-	Cognitive Level 6 PLO 5	10
QS	Calculate the value of UART_BAUD_INT_R and UART_BAUD_FRAC_I for a band rate of 115200. Use HS-EN=1 and clock frequency of 16 MHz. A plot a typical UART frame.		CLO-	4 Cognitive PLO 2	05
46	 Write C code to control the low fuel warning led of a car dashboard. Port PA6 is connected to the low fuel switch that indicates whether the fuel is lower than a certain level. Port P37 is connected to the warning indicator LED. Your system is supposed to turn on the LED if the fuel is low. 		CLO	3 Cognitive Level 6 PLO 5	05

Register Addresses

GPIO Port A GPIO Port B GPIO Port F	0x40004000 0x40005000 0x40025000	~
Register GPIO AFSEL	<u>Offset</u> 0x420	
GPIO DEN	0x51C 0x400	
GPIO PUR GPIO PDR	0x510 0x514	

Registers for Q#4

Register label	Address	Reset value	Brief description
GPIO PORTE IS.R GPIO PORTE IBE.R GPIO PORTE IEV.R GPIO PORTE IM.R GPIO PORTE RIS.R GPIO PORTE MIS.R GPIO PORTE ICR.R	0x40025404 0x40025408 0x4002540C 0x40025410 0x40025414 0x40025418 0x4002541C	0x00000000 0x00000000 0x00000000 0x000000	Interrupt sense register. Interrupt on both edges register. Interrupt event register. Interrupt mask register. Interrupt mask register. Raw interrupt status register. Masked interrupt status register. Interrupt clear register.