Nitrous Oxide Decomposition over Fe-ZSM-5 in the Presence of Nitric Oxide: A Comprehensive DFT Study

Andreas Heyden,*,†,† Niels Hansen,† Alexis T. Bell,*,\$ and Frerich J. Keil†

Department of Chemical Engineering, Hamburg University of Technology, D-21073 Hamburg, Germany, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, and Department of Chemical Engineering, University of California, Berkeley, California 94720-1462

Received: May 8, 2006

A number of experimental studies have shown recently that ppm-level additions of nitric oxide (NO) enhance the rate of nitrous oxide (N_2O) decomposition catalyzed by Fe-ZSM-5 at low temperatures. In the present work, the NO-assisted N_2O decomposition over mononuclear iron sites in Fe-ZSM-5 was studied on a molecular level using density functional theory (DFT) and transition-state theory. A reaction network consisting of over 100 elementary reactions was considered. The structure and energies of potential-energy minima were determined for all stable species, as were the structures and energies of all transition states. Reactions involving changes in spin potential-energy surfaces were also taken into account. In the absence of NO and at temperatures below 690 K, most active single iron sites ($Z^{-}[FeO]^{+}$) are poisoned by small concentrations of water in the gas phase; however, in the presence of NO, these poisoned sites are converted into a novel active iron center ($Z^{-}[FeOH]^{+}$). These latter sites are capable of promoting the dissociation of N_2O into a surface oxygen atom and gas-phase N_2 . The surface oxygen atom is removed by reaction with NO or nitrogen dioxide (NO_2). N_2O dissociation is the rate-limiting step in the reaction mechanism. At higher temperatures, water desorbs from inactive iron sites and the reaction mechanism for N_2O decomposition becomes independent of NO, reverting to the reaction mechanism previously reported by Heyden et al. [*J. Phys. Chem. B* **2005**, *109*, 1857].

Introduction

Large amounts of nitrous oxide (N_2O) are emitted from industrial processes used to produce nitric and adipic acid. Since N_2O is the third most important greenhouse gas following CO_2 and CH_4 , there has been increasing interest in developing methods for its abatement. Considerable research has shown that N_2O can be decomposed into N_2 and O_2 by passage over Fe-ZSM-5 at elevated temperatures.¹⁻⁴ One peculiarity of the tail gas streams from nitric acid plants is the presence of both N_2O and nitric oxide (NO). While most catalytic systems active for N_2O decomposition are inhibited by NO_2 .^{5,6} it has been reported that NO significantly enhances the rate of N_2O decomposition over Fe-ZSM-5. This increase in the reaction rate is especially pronounced at low temperatures (<700 K).

The positive effect of NO on N₂O decomposition over Fe-ZSM-5 was first reported by Kapteijn et al.,³ who proposed that NO in the gas phase scavenged adsorbed oxygen deposited by N₂O during the oxidation of active sites, thereby leading to the formation of NO₂ and regeneration of active sites. While this mechanism explains the overall increase in the N₂O decomposition rate due to NO, it fails to explain the observations reported by Kögel et al.,⁷ Mul et al.,⁴ Pérez-Ramírez et al.,⁸ Boutarbouch et al.,⁹ and Sang et al.¹⁰ who report that relatively small amounts of NO are sufficient to induce a dramatic change in the N₂O decomposition activity. Pérez-Ramírez et al.⁸ also observed that for NO/N₂O feed ratios higher than 0.25 the rate of N₂O decomposition does not increase significantly, confirming the catalytic nature of NO on N₂O decomposition. Since these authors did not observe NO inhibition at a feed molar ratio of

 $NO/N_2O = 10$, they suggested that NO adsorption and oxygen deposition by N₂O occur at different sites in Fe-ZSM-5, and they proposed that two neighboring Fe sites are required to account for NO-assisted N2O decomposition. Pérez-Ramírez et al.8,11,12 attributed the catalytic effect of NO to its action on O-atoms released during the decomposition of N2O. The adsorbed NO₂ formed in this way is proposed to react with a second O-atom from a neighboring site, thus accelerating the recombination of oxygen from N2O and the subsequent desorption of O₂. The occurrence of this process was used to explain the promotional effect of NO under the assumption that the ratedetermining process in N₂O decomposition is O-atom recombination. Recently, Sang et al. 10 have observed a positive effect of NO on the rate of N₂O decomposition on isolated Fe cations in Fe-ZSM-5. This observation requires a mechanistic interpretation that is different from those proposed by Mul et al.⁴ and Pérez-Ramírez et al.8 which involve di-iron sites.

While numerous investigators have studied the relationship between the structure of Fe-ZSM-5 and its activity for N_2O decomposition, the nature of the active site and the mechanism of N_2O decomposition both in the absence and in the presence of NO are not fully understood. Both, mononuclear and dinuclear iron sites have been proposed as the principal active site, $^{13-36}$ and either N_2O dissociation or O_2 desorption has been suggested as the rate-limiting step in the overall process of N_2O decomposition. $^{37-47}$

Recently, we reported the results of a detailed theoretical investigation of N_2O decomposition occurring on mononuclear iron sites in Fe-ZSM-5 in the absence of $NO.^{21}$ The proposed reaction mechanism together with the rate coefficients calculated for each step was able to explain and reproduce various transient and steady-state experiments. 22 This work showed that the rate-limiting step in N_2O decomposition is N_2O dissociation and that O_2 desorption is very fast. 22 Isolated iron cations bound to a

^{*}To whom correspondence should be addressed. E-mail: heyden@chem.umn.edu (A.H.); bell@cchem.berkeley.edu (A.T.B.).

[†] Hamburg University of Technology.

University of Minnesota.

[§] University of California, Berkeley.

Figure 1. Iron nitrite, nitrate, and hydroxo zeolite cluster. Structures are potential-energy minima on the potential-energy surface with a spin multiplicity of $M_S = 5$. Atomic distances are indicated in angstroms.

single oxygen atom (viz., $Z^{-}[FeO]^{+}$) were identified as the active sites for N_2O decomposition under the reaction conditions (T > 690 K). Neighboring iron sites were not required to explain any of the experimental observations. The presence of H_2O in the feed gas was found to inhibit the rate of N_2O decomposition by deactivating active sites via the process $Z^{-}[FeO]^{+} + H_2O \Rightarrow Z^{-}[Fe(OH)_2]^{+}$. Since this process is reversible, the concentration of active sites ($Z^{-}[FeO]^{+}$) was found to increase with increasing reaction temperature.

The present study is an extension of our previous work and focuses on the energetics and kinetics of the NO-assisted N₂O decomposition occurring on single iron sites in Fe-ZSM-5. Of particular interest is understanding the interaction of NO with $Z^{-}[FeO]^{+}$, $Z^{-}[FeO_{2}]^{+}$, $Z^{-}[OFeO]^{+}$, and $Z^{-}[Fe(OH)_{2}]^{+}$, the principal iron-containing species identified in our earlier study of $N_2\bar{O}$ decomposition in the absence of $NO.^{21,22}$ It is shown that such interactions can lead to the formation of iron hydroxo, nitrite, and nitrate species, Z⁻[FeOH]⁺, Z⁻[FeONO]⁺, Z⁻[FeO₂N]⁺, and Z⁻[FeO₂NO]⁺, and that this opens up new pathways for N₂O decomposition at temperatures below 700 K. The present investigation also illustrates how the nature of the active sites can change with temperature, both in the presence and in the absence of NO. Yet another objective of this study was to examine how NO might be formed directly from N₂O at low temperatures. This part of the work was motivated by the spectroscopic results of Chen et al., 48 Grubert et al., 49 El-Malki et al.,50 and the experimental observations of Sang and Lund,51,52 Kiwi-Minsker et al., 46,53 and Nováková and Sobalík, 54 who suggested that NO might be formed on the catalyst from N_2O in the absence of NO in the feed stream.

We report here the results of theoretical calculations for a large number of elementary processes that are envisioned to occur during N_2O decomposition on isolated mononuclear Fe sites in Fe-ZSM-5 in the presence of NO. In a companion paper, we use the calculated rate parameters of the present study to simulate the effects of NO on N_2O decomposition under both steady-state and non-steady-state conditions.

Theory

The catalytically active center and a portion of the zeolite framework are represented by a 23–27 atom cluster. This model is identical to that used in our earlier work. As shown in Figure 1, the portion of the cluster describing the zeolite contains an Al-atom in the T12 position of the framework surrounded by shells of O- and Si-atoms. The terminal Si-atoms are fixed in

their crystallographic positions, as reported by Olson et al.⁵⁵ Dangling bonds are terminated by H-atoms located 1.48 Å from each terminal Si-atom oriented in the direction of the next O-atom in the zeolite matrix. This corresponds to the Si-H distance in SiH₄. Heyden²³ has demonstrated that extended charge transfer occurs to a very limited extend over the zeolite matrix, so that the constrained T5 cluster model used in this work gives reliable results for electronic energy differences. To study the influence of nitric oxide on the active iron site, the anionic cluster is charge-compensated by a metal hydroxo, nitrite, or nitrate species, [FeOH]⁺, [FeONO]⁺, [FeO₂N]⁺, or [FeO₂NO]⁺, placed between two of the four O-atoms surrounding the Al-atom (see Figure 1).

Quantum chemical calculations of the geometry and energies of potential-energy minima were performed for spin surfaces with spin multiplicities of $M_S = 2-8$, using gradient-corrected spin density functional theory (DFT). To represent the effects of exchange and correlation, Becke's three-parameter exchange functional and the correlation functional of Lee, Yang, and Parr (B3LYP)⁵⁶ were used with a very fine numerical grid size (m5).⁵⁷ The B3LYP functional has proven to be effective for a number of reactions involving iron oxide molecules, leading us to conclude that a DFT-B3LYP approach can also be used successfully to investigate N₂O decomposition on isolated Fe sites present in Fe-ZSM-5.⁵⁸⁻⁶² To speed up the calculation of potential-energy minima, all structures were preoptimized with the pure density functional BP86^{63,64} using the resolution of identity (RI) approach for computing the electronic Coulomb interaction. 65,66 Basis sets at the triple- ζ level with polarization functions (TZVP)⁶⁷ were used for all atoms, including iron. Heyden²³ has demonstrated that, for the TZVP basis set, relative electronic energies are converged with respect to the basis set size. No corrections were made for the basis set superposition error (BSSE).68,69 All calculations were carried out using the TURBOMOLE V5.7 suite of programs^{70,71} in C_1 symmetry.

Calculations on different spin potential-energy surfaces (PESs) revealed that the energy difference between different spin surfaces is usually significant so that only energies of PES minima for the ground state are reported. To approximate elementary reaction rates, first-order saddle points and minima on the seam of two PESs had to be determined. Saddle-point structures were determined only for the spin PES on which both reactant and product states have the lowest electronic energy. Likewise, minimum energy structures on the seam of two PESs were only determined for the two lowest spin PESs if the reactant and product state had ground electronic states on different spin PESs. Spin contamination was negligible for ground-state minimum structures. Some spin contamination was observed for transition states and minimum structures on a seam of two PESs. Nevertheless, in all cases, it was possible to distinguish clearly between states of different spin multiplicities.

Minimizations of the constrained cluster were performed in Cartesian coordinates with an energy convergence criterion of at least 10^{-7} Ha and a gradient norm convergence criterion of 10^{-4} Ha/bohr. At the end of all minimizations or saddle-point searches, a frequency calculation was done to confirm that all frequencies are positive for minima and only one frequency is imaginary for saddle points.

To accelerate the search for transition states, a combination of interpolation and local methods was used. The growing-string method was used in mass-weighted coordinates with a maximum of 13–16 nodes. After the two ends of the growing string joined, the growing-string method was terminated and an approximate saddle point was obtained. To refine the position of the saddle point, the modified dimer method was employed. A convergence criterion of the gradient norm of 5×10^{-4} Ha/bohr was used for transition states.

Minimum potential-energy structures on the seam of two PESs were determined with a multiplier penalty function algorithm (see Heyden et al.²¹ and Heyden²³ for details). Converged minimum energy crossing point structures had a maximum energy difference on both PESs of less than 10⁻⁶ Ha

Overall equilibrium constants and reaction rate constants were computed using standard statistical mechanics and absolute rate theory.74 We used the harmonic approximation, and included the contributions of the translational, rotational, vibrational, and electronic partition functions of all gaseous species participating in the reaction and the vibrational and electronic contribution of the zeolite cluster. Since the zeolite cluster is part of a solid, translational and rotational partition functions for the zeolite were assumed to be equal in the reactant and transition state. To calculate rates of spin-surface crossing, for example, desorption rates of oxygen, absolute rate theory was used under the assumption that the partition functions of the hypothetical transition state (minimum on the seam of two PESs) and the minimum on the PES with lower spin multiplicity (adsorbed state) are identical except for the electronic energy. This procedure completely neglects a low spin-surface crossing probability. To estimate if very low spin-surface crossing probabilities could have a significant effect on the reaction rate constants, thermally averaged spin transition probabilities are calculated with the Landau-Zener formula, 75 using a spinorbit coupling energy, H_{12} , of 395 and 825 J/mol, as calculated by Danovich and Shaik⁷⁶ for the oxidative activation of H₂ by FeO⁺. Additional details concerning the calculations of rate parameters and the estimation of errors can be found in refs 21 and 23.

It is important to note that the necessary correction for the reaction rates to account for a spin-inversion probability smaller than 1 is comparable to the error inherent in the DFT calculations of activation energies. In addition, the rates of spin-surface crossing were never rate limiting in this work and, hence, spin-surface crossing should not have an influence on the overall kinetics of the reaction network studied.

Results and Discussion

Most explanations of the promotional effect of NO on the N_2O decomposition over Fe-ZSM-5 are based on the assumption that NO adsorbs on an iron oxide species, that is, that it interacts with the same iron species responsible for N_2O decomposition in the absence of NO. Our recent theoretical work has shown that iron oxide species can indeed serve as the active species for temperatures above 700 K and in the absence of $NO.^{21,22}$ However, below this temperature, the majority of the iron sites are poisoned by water in the feed via the process $Z^-[FeO]^+ + H_2O \Rightarrow Z^-[Fe(OH)_2]^+$ and our work has shown that the iron-dihydroxide species are inactive for N_2O decomposition. 21

As noted in the Introduction, the promotional effect of NO on N₂O decomposition is especially pronounced at low temperatures (T < 700 K) (where iron-dihydroxide species are calculated to be the majority iron species in the absence of NO) and disappears at high temperatures (where iron oxide species are calculated to be the majority iron species in the absence of NO). As a result, an explanation for NO-assisted N₂O decomposition that is based on the assumption that NO interacts with iron oxide species seems improbable. An alternative explanation is that NO converts the catalytically inactive iron-dihydroxide species into active species. In what follows, we first present calculations showing how NO can convert catalytically inactive $Z^{-}[Fe(OH)_{2}]^{+}$ into catalytically active $Z^{-}[FeOH]^{+}$ sites. Second, we present a reaction mechanism for N₂O decomposition utilizing Z⁻[FeOH]⁺ sites. Third, we show that while NO can interact with iron oxide species at low temperatures to form various iron nitrite and nitrate species, these species do not

Figure 2. Activation of poisoned $Z^-[Fe(OH)_2]^+\{M_S=6\}$ sites. All energies are zero-point corrected, in kcal/mol and with reference to $Z^-[Fe(OH)_2]^+$ with the appropriate amounts of NO, *trans*-HNO₂, and *cis*-HNO₂. The numbers in parentheses correspond to *cis*-HNO₂. Energies of potential-energy minima are in black. Energies of transition states are in red. Energies of minima on the seam of two PESs are in green. Black structures are on the PES with $M_S=5$. Green structures are on the PES with $M_S=7$.

contribute significantly to N₂O decomposition either in the presence or absence of NO. Fourth, we examine several pathways for the formation of NO from N₂O on single iron sites. All quantum chemical calculations are summarized in Table 1 of the Appendix. Thermally averaged Landau—Zener transition probabilities are summarized for spin—orbit coupling energies of 395 and 825 J/mol for several temperatures in Table 2 of the Appendix. Failure to correct reaction rates for spin-inversion probabilities smaller than 1 creates errors smaller than an error in the activation barrier of 4 kcal/mol (at 700 K).

Activation of $Z^{-}[Fe(OH)_{2}]^{+}$ Sites. Figure 2 illustrates a mechanism by which NO converts $Z^{-}[Fe(OH)_2]^{+}$ sites into Z-[FeOH]+ sites, which Nobukawa et al.77 have proposed recently to be active for selective catalytic reduction of N₂O with CH₄ in Fe-BEA zeolites. Nitric oxide can adsorb from the N-end on the septet spin PES with an enthalpy of adsorption of $\Delta H_{\rm ads} = -0.9$ kcal/mol (averaged from 600 to 800 K) and $\Delta H_{\rm ads}$ = 1.1 kcal/mol for N_2O adsorption from the O-end. There is a negligible spin-change barrier of 0.1 kcal/mol from Z⁻[Fe(OH)₂]⁺- $(NO)\{M_S = 7\}$ to $Z^{-}[Fe(OH)_2]^{+}(NO)\{M_S = 5\}$ sites. The spinchange process involves an enthalpy change of $\Delta H_{\rm R} = -0.01$ kcal/mol. Once adsorbed on the quintet PES, NO interacts with one hydroxo group to form adsorbed cis- or trans-HNO₂. The transition state is characterized by a N-O distance of the N-atom from the nitric oxide and one O-atom from one of the hydroxo groups on the Fe-atom of 1.87 Å for the formation of trans-HNO₂ and 1.75 Å for the formation of *cis*-HNO₂. The Fe-OH bond length increases in the transition state from 1.80 to 1.97 Å (trans-HNO₂) or 2.05 Å (cis-HNO₂). The activation barrier for the formation of HNO₂ is $E^{\dagger} = 9.7$ kcal/mol (trans-HNO₂) or $E^{\ddagger} = 11.0 \text{ kcal/mol } (cis\text{-HNO}_2)$. The imaginary frequency associated with the transition-state mode is 196i cm⁻¹ (trans- HNO_2) or 101i cm⁻¹ (cis- HNO_2). The enthalpy of reaction is $\Delta H_{\rm R}(trans-{\rm HNO}_2) = 6.4 \text{ kcal/mol or } \Delta H_{\rm R}(cis-{\rm HNO}_2) = 8.7$ kcal/mol, respectively. HNO₂ desorbs readily from Z⁻[FeOH]⁺(HNO₂) sites to form mono-hydroxo-Fe sites. The enthalpy of desorption is $\Delta H_{\rm R}(trans-{\rm HNO}_2) = 5.9$ kcal/mol or $\Delta H_{\rm R}(cis-{\rm HNO}_2) = 4.3$ kcal/mol. Thus, in the presence of NO (and the absence of large amounts of HNO₂), Z⁻[FeOH]⁺ species can be formed readily from $Z^{-}[Fe(OH)_2]^{+}$ sites.

 N_2O Decomposition on $Z^-[FeOH]^+$ Sites. Figure 3 illustrates the catalytic cycle for N_2O decomposition on $Z^-[FeOH]^+$

Figure 3. Catalytic cycle of the N₂O dissociation on mononuclear Z⁻[FeOH]⁺{ $M_S = 5$ } sites. All energies are zero-point corrected, in kcal/mol and with reference to Z⁻[FeOH]⁺ with the appropriate amounts of N₂O, N₂, O₂, NO, and NO₂. Energies of potential-energy minima are in black. Energies of transition states are in red. Energies of minima on the seam of two PESs are in green. Black structures are on the PES with $M_S = 5$. Structures in green are on the PES with $M_S = 6$. Structures in blue are on the PES with $M_S = 7$. Multiple numbers under a PES minimum structure correspond to different catalytic cycles (see Table 1).

sites. N_2O adsorbs through the N-end with an enthalpy of adsorption of $\Delta H_{\rm ads}=-1.4$ kcal/mol and through the O-end with an enthalpy of adsorption of $\Delta H_{\rm ads} = -1.8$ kcal/mol. The transition state for the reaction of Z⁻[FeOH]⁺(ON₂) to form Z⁻[OFeOH]⁺ and N₂ is characterized by a bending of the N₂O molecule from 180° in the adsorbed state to 137.4° in the transition state, whereas the length of the $N'\!-\!O''$ bond of the N₂O molecule increases from 1.20 to 1.38 Å. The activation barrier for the decomposition is $E^{\dagger} = 24.0$ kcal/mol. The imaginary frequency associated with the transition-state mode is 473i cm⁻¹. Because the enthalpy of reaction is moderately exothermic, $\Delta H_{\rm R} = -16.1$ kcal/mol, the reverse reaction has a significant barrier and should not occur readily. Z⁻[OFeOH]⁺ sites are possible active sites for the N₂O dissociation. N₂O adsorbs on $Z^{-}[OFeOH]^{+}$ centers through the N-end with an enthalpy of adsorption of $\Delta H_{\rm ads} = -0.8$ kcal/mol and through the O-end with an enthalpy of adsorption of $\Delta H_{\rm ads} = -1.5 \, \rm kcal/$ mol. Hardly any N_2O can be expected to adsorb on $Z^-[OFeOH]^+$ sites under reaction conditions. The transition state for the reaction of Z⁻[OFeOH]⁺(ON₂) to form Z⁻[O₂FeOH]⁺ and N₂ is characterized by a bending of the N₂O molecule from 180° in the adsorbed state to 136.8° in the transition state, whereas the length of the N'-O" bond of the N₂O molecule increases from 1.20 to 1.34 Å. The O-atom from N₂O forms a bond with the lone oxygen atom from Z⁻[OFeOH]⁺. The Fe-O bond increases along the reaction coordinate from 1.62 to 1.83 Å in the transition state. The O-O bond length is 1.59 Å. The activation barrier for N₂O decomposition is $E^{\ddagger} = 46.5 \text{ kcal/}$ mol. The imaginary frequency associated with the transitionstate mode is 710i cm⁻¹. Because the enthalpy of reaction is $\Delta H_{\rm R} = -20.5$ kcal/mol, the reverse reaction has an even higher barrier and should not occur. Z⁻[O₂FeOH]⁺ species are more stable on the septet PES than on the quintet PES. A negligible spin-change barrier of about $E^{\ddagger} = 6.0$ kcal/mol was found for the spin-inversion process. The enthalpy of reaction is $\Delta H_{\rm R} =$ -4.5 kcal/mol, suggesting that $Z^{-}[O_2FeOH]^{+}$ species on the quintet and septet PES are in equilibrium. $Z^{-}[O_2FeOH]^{+}\{M_S$ = 7} species consist of a superoxide O_2^- anion and a OH group associated with an Fe³⁺ cation. The Fe-O bond distance of the superoxide anion to the iron cation is 2.06 Å. The O-O bond distance is 1.31 Å, and the O-O vibrational frequency is 1202 cm⁻¹, confirming the superoxide character of the two adsorbed O-atoms.⁷⁸ Oxygen can desorb from $Z^{-}[O_2FeOH]^{+}\{M_S$ = 7}. The O₂ desorption barrier is E^{\dagger} = 7.6 kcal/mol, and the enthalpy of desorption is $\Delta H_{\rm des} = 5.8$ kcal/mol. The imaginary frequency associated with the transition-state mode is $58i \text{ cm}^{-1}$. As in all catalytic cycles reported in this study, O₂ desorption is fast and, hence, oxygen inhibition is not projected to occur.

The highest barrier in the catalytic cycle involving Z^[FeOH]^+ sites is the second N_2O decomposition on Z^[OFeOH]^+, which has an activation barrier of over 43 kcal/mol with respect to the gas phase, making this catalytic cycle unlikely to occur except at elevated temperatures. The second N_2O dissociation barrier on Z^[OFeO]^+/Z^[FeO_2]^+ sites was previously calculated to be 12 and 17.3 kcal/mol, respectively.^21 The reason that the second N_2O dissociation barrier on Z^[OFeOH]^+ is significantly higher than that on Z^[OFeO]^+ or Z^[FeO_2]^+ is because superoxide species cannot be formed on Z^[OFeOH]^+ before the third oxygen atom is loaded on the iron atom, as is possible on Z^[OFeO]^+ or Z^[FeO_2]^+ sites.

Figure 3 illustrates alternative reaction pathways for completing the catalytic cycle in the presence of NO. To bypass the second N₂O dissociation on Z⁻[OFeOH]⁺ sites, NO can adsorb on Z⁻[OFeOH]⁺ sites, forming Z⁻[ONOFeOH]⁺ species. NO₂ can then desorb from these species. The enthalpy of NO adsorption is $\Delta H_{ads} = -31.6$ kcal/mol. The enthalpy of NO₂ desorption is $\Delta H_{\rm des} = 16.8$ kcal/mol. The highest barrier in this catalytic cycle is the N₂O decomposition, $E^{\ddagger} = 24.0$ kcal/mol, suggesting a fast reaction mechanism in the presence of NO. This catalytic cycle involves the dissociation of one N₂O molecule and the consumption of one NO molecule (one NO₂ molecule and one N2 molecule are formed). Considering that high N2O conversion rates can be achieved over Fe-ZSM-5 at low temperatures in the presence of small amounts of NO and that significant amounts of O2 are observed experimentally during N2O decomposition, NO2 should be able to interact with $Z^{-}[OFeOH]^{+}$ sites.

A reaction pathway that bypasses N₂O decomposition on Z⁻[OFeOH]⁺ sites and involves dissociation of one N₂O molecule, consumption of one NO₂ molecule, and production of one NO, O₂, and N₂ molecule is illustrated in Figure 3. NO₂ adsorption on Z⁻[OFeOH]⁺ sites involves surmounting a small barrier of $E^{\dagger} = 6.9$ kcal/mol. The enthalpy of adsorption is $\Delta H_{\rm ads}$ = -1.4 kcal/mol. The imaginary frequency associated with the transition-state mode is 400i cm⁻¹. The transition state is characterized by a O-O bond distance of 1.84 Å. In the $Z^{-}[HOFeO]^{+}(NO_2)$ adsorption complex, the O-O bond length is 1.40 Å and the N-O bond length increases to 1.53 Å. NO can readily desorb from $Z^{-}[HOFeO]^{+}(NO_2)$ to form $Z^{-}[O_2FeOH]^{+}$. Oxygen can desorb from Z⁻[O₂FeOH]⁺, as described above. The net effect of both catalytic cycles is the dissociation of N₂O molecules into N2 and O2, thereby bypassing the dissociation of N_2O on $Z^-[OFeOH]^+$ sites.

In principle, NO and HNO₂ formed in situ can also interact with the hydroxyl group on Z⁻[OFeOH]⁺ to form HNO₂ or NO₂

Figure 4. Two pathways from Z⁻[OFeOH]⁺ sites to active Z⁻[FeO]⁺{ M_S = 6} sites. All energies are zero-point corrected, in kcal/mol and with reference to Z⁻[OFeOH]⁺ with the appropriate amounts of H₂O, *trans*-HNO₂, NO, and NO₂. Energies of potential-energy minima are in black. Energies of transition states are in red. Energies of minima on the seam of two PESs are in green. Black structures are on the PES with M_S = 5. Structures in green are on the PES with M_S = 6. Structures in blue are on the PES with M_S = 7.

and H_2O and a catalytically active $Z^-[FeO]^+$ site. Figure 4 illustrates these reaction pathways and shows that these processes are endothermic and should therefore not be favored over those processes involving NO or NO_2 reaction with the oxygen atom in $Z^-[OFeOH]^+$. As a result, these pathways are not discussed further.

To summarize, in the absence of NO and at temperatures below 650 K, the majority of the active sites in Fe-ZSM-5 are in the form of Z⁻[Fe(OH)₂]⁺. The zero-point corrected energy barrier for water to desorb and to form catalytically active Z⁻[FeO]⁺ sites is about 44.5 kcal/mol. Owing to the entropy gain in desorbing a water molecule, this process occurs at high temperatures but does not occur at low temperatures (<650 K). If NO is present in the gas stream and in contact with Fe-ZSM-5, the zero-point corrected energy barrier for the formation of active Z⁻[FeOH]⁺ sites is about 13.3 kcal/mol, which is significantly lower than the activation barrier for the desorption of H₂O from Z⁻[Fe(OH)₂]⁺. As a result, if large amounts of nitric oxide are added to an Fe-ZSM-5 catalyst at low temperatures, as done by Bulushev et al.,79 the catalyst is activated immediately. Active Z⁻[FeOH]⁺ sites are formed much more rapidly than active Z⁻[FeO]⁺ species. The highest barrier for N₂O decomposition on Z⁻[FeOH]⁺ is 20.5 kcal/mol with respect to the gas phase, which is about 3.5 kcal/mol lower than the activation barrier for N₂O decomposition on Z⁻[FeO]⁺ sites. On the other hand, at elevated temperatures (>700 K), water desorption becomes the dominant process for activating Z⁻[Fe(OH)₂]⁺ sites. No net gas species are formed in the process of producing Z⁻[FeOH]⁺ sites, so that at high temperatures the entropy increase associated with desorption of H₂O should offset the higher activation barrier for the water desorption process, $Z^{-}[Fe(OH)_2]^+ \rightleftharpoons Z^{-}[FeO]^+ + H_2O.$

Interaction of NO with $Z^{-}[FeO]^{+}$, $Z^{-}[FeO_{2}]^{+}$, and $Z^{-}[OFeO]^{+}$ Sites. At elevated temperatures (T > 700 K),

Figure 5. Interaction of nitric oxide with $Z^-[FeO]^+\{M_S=6\}$ sites. All energies are zero-point corrected, in kcal/mol and with reference to $Z^-[FeO]^+\{M_S=6\}$. Energies of potential-energy minima are in black. Energies of minima on the seam of two PESs are in green. Structures in green are on the PES with $M_S=6$. Black structures are on the PES with $M_S=6$. Structures in magenta are on the PES with $M_S=4$.

isolated Fe cations are predicted to be present primarily as $Z^{-}[FeO]^{+}$, $Z^{-}[FeO_{2}]^{+}$, and $Z^{-}[OFeO]^{+}$ sites.^{21,22} In what follows, the interaction of these iron oxide species with NO to form iron nitrite and nitrate species is investigated. The purpose of this section is to show that NO has very little effect on the overall N₂O decomposition activity of single iron sites in Fe-ZSM-5 at temperatures where iron nitrite and nitrate species might be formed.

Figure 5 illustrates the interaction of NO with Z⁻[FeO]⁺ sites. Nitric oxide adsorbs on Z⁻[FeO]⁺ centers from the nitrogen end with an enthalpy of adsorption of $\Delta H_{\rm ads} = -32.9$ kcal/mol (averaged over 600-800 K), forming Z⁻[FeONO]⁺ species. During the adsorption process, spin pairing occurs. The ground state of Z⁻[FeO]⁺ is on the sextet PES, whereas the ground state of Z⁻[FeONO]⁺ is on the quintet PES. The adsorption process involves a negligible spin-change barrier of ~1.1 kcal/ mol. The bonding of Z⁻[FeONO]⁺ is illustrated in Figure 1, the Fe-O bond increases during the adsorption process from 1.66 to 1.84 Å. The O-N'-O" bond angle is calculated to be 112.9° in the adsorbed state on the PES with a spin multiplicity of $M_{\rm S} = 5$. The characteristic vibrational frequency of adsorbed nitric oxide is calculated to be 1701 cm⁻¹. In principle, nitrogen dioxide can desorb from Z⁻[FeONO]⁺; however, the enthalpy of desorption for this process is $\Delta H_{\rm des} = 66.0$ kcal/mol, making this process unlikely to occur.

A second potential-energy minimum was found for adsorbed NO, $Z^-[FeO_2N]^+$, illustrated in Figures 1 and 5. The enthalpy of adsorption was calculated to be $\Delta H_{\rm ads} = -37.8$ kcal/mol. The adsorption process involves a spin-change barrier of 1.4 kcal/mol. The reason for the difference in the spin-change barriers for the formation of $Z^-[FeONO]^+$ and $Z^-[FeO_2N]^+$ is attributable to the assumption that the zero-point energies of the adsorbed state and transition state are equivalent. The Fe–O bond length in $Z^-[FeO_2N]^+$ is 2.11 Å, and the O-N'-O'' bond angle is 111.3°. The characteristic vibrational frequencies of adsorbed nitric oxide are 1238 and 1330 cm⁻¹. The enthalpy of NO₂ desorption from $Z^-[FeO_2N]^+$ is $\Delta H_{\rm des} = 70.9$ kcal/mol, making NO₂ desorption very unlikely to occur.

Figure 6. Interaction of nitric oxide with $Z^-[FeO_2]^+\{M_S = 6\}$ and $Z^-[OFeO]^+\{M_S = 6\}$ sites. All energies are zero-point corrected, in kcal/mol and with reference to $Z^-[FeO_2]^+$ or $Z^-[OFeO]^+$. Energies of potential-energy minima are in black. Energies of minima on the seam of two PESs are in green. Structures in green are on the PES with $M_S = 6$. Black structures are on the PES with $M_S = 5$. Structures in magenta are on the PES with $M_S = 4$.

Nitric oxide might also adsorb on Z⁻[FeO]⁺ from the nitrogen end of the molecule. The enthalpy of adsorption for this process is calculated to be $\Delta H_{\rm ads} = -13.6$ kcal/mol, a value significantly lower than that for the formation of Z-[FeONO]+ and $Z^{-}[FeO_2N]^{+}$ species. Adsorption of NO through the nitrogen end of the molecule involves surmounting a negligible spinchange barrier of 0.2 kcal/mol. The N'-O' bond length is 1.15 Å and is essentially the same as that for gaseous NO. The characteristic harmonic vibrational frequency of adsorbed nitric oxide is calculated to be 1895 cm⁻¹, in good agreement with the experimental values of 1884 and 1874 cm⁻¹ reported by Mul et al.⁴ Owing to the low adsorption enthalpy, -13.6 kcal/ mol, Z⁻[OFeNO]⁺ species (or similar ones) are unlikely to play a role in N₂O decomposition at reaction temperatures above 500 K. Therefore, iron species on which NO is weakly adsorbed through the N-end are not discussed further. No other, more stable, potential-energy minimum with a nitrogen atom in direct contact with the iron atom was found in this study.

Figure 6 illustrates the interaction of NO with $Z^-[FeO_2]^+$ and $Z^-[OFeO]^+$ sites. Simulations of N₂O decomposition on Fe-ZSM-5 reveal that $Z^-[FeO_2]^+$ and $Z^-[OFeO]^+$ are always in equilibrium. While $Z^-[FeO_2]^+$ is the more abundant species,

Z⁻[OFeO]⁺ is the more active center for N₂O decomposition. Nitric oxide adsorbs from the N-end with an enthalpy of adsorption of $\Delta H_{\rm ads} = -9.0$ kcal/mol on Z⁻[FeO₂]⁺ centers, forming Z⁻[FeOONO]⁺ sites. The spin-change barrier for adsorption in this manner is 6.3 kcal/mol, suggesting a fast NO adsorption process. Nitrogen dioxide readily desorbs from Z⁻[FeOONO]⁺. The spin-change barrier from the quintet PES back to the sextet PES of the active site is below the zero-point corrected energy of Z⁻[FeO]⁺ and NO₂. The enthalpy of desorption averaged over 600–800 K is calculated to be $\Delta H_{\rm des}$ = 1.0 kcal/mol. As a result, in the presence of NO, Z⁻[FeO₂]⁺ sites are rapidly reduced to Z⁻[FeO]⁺.

Our results for the reaction $Z^{-}[FeO_{2}]^{+} + NO \rightleftharpoons Z^{-}[FeO]^{+} + NO_{2}$ can be compared with those of Sang et al. ¹⁰ These authors reported a change in electronic energy for this reaction of about -1.5 kcal/mol, a number in reasonable agreement with the zero-point corrected energy difference of -6.6 kcal/mol calculated in this work. The differences between the calculated values are attributable to the use of a cluster located in the T1 position by Sang et al. ¹⁰ rather than the T12 position used in this work and the use of a double- ζ basis set (LACVP**) rather than a triple- ζ basis set.

Nitric oxide can also adsorb on Z⁻[OFeO]⁺ sites to form Z⁻[OFeONO]⁺ or Z⁻[OFeO₂N]⁺ species. The spin-change barrier for adsorption is 3.7 or 4.6 kcal/mol, respectively, suggesting that the adsorption process is fast. The corresponding enthalpies of adsorption are $\Delta H_{\rm ads} = -30.5$ kcal/mol and $\Delta H_{\rm ads} = -34.0$ kcal/mol, respectively. The characteristic harmonic vibrational frequency of adsorbed nitric oxide on Z⁻[OFeO]⁺ sites is calculated to be 1797 cm⁻¹ for Z⁻[OFeONO]⁺ and 1256 and 1308 cm⁻¹ for Z⁻[OFeO₂N]⁺. Nitrogen dioxide can desorb from Z⁻[OFeONO]⁺ and Z⁻[OFeO₂N]⁺. The desorption barrier is 16.0 kcal/mol from Z⁻[OFeONO]⁺ sites and 19.2 kcal/mol from Z⁻[OFeO₂N]⁺ sites, suggesting that NO₂ desorption should be fast at reaction temperatures. The enthalpy of desorption is $\Delta H_{\rm des} = 14.4 \, \rm kcal/mol \, from \, Z^-[OFeONO]^+ \, sites \, and \, \Delta H_{\rm des} =$ 17.9 kcal/mol from Z⁻[OFeO₂N]⁺ centers. Consequently, Z⁻[OFeO]⁺ sites are reduced rapidly in the presence of NO to $Z^{-}[FeO]^{+}$.

Nitric oxide can also adsorb on Z⁻[OFeO]⁺ sites to form stable iron nitrate species, Z⁻[FeO₂NO]⁺. The spin-change barrier for adsorption is 5.8 kcal/mol, and the enthalpy of adsorption is $\Delta H_{\rm ads} = -58.3$ kcal/mol. The desorption barrier is 63.2 kcal/mol, suggesting that iron nitrate species once formed will be difficult to eliminate. The bonding of $Z^{-}[FeO_2NO]^{+}$ is illustrated in Figure 1; the Fe-O bond increases during the adsorption process from 1.68 Å in Z⁻[OFeO]⁺ to 2.08 Å in the iron nitrate species. The characteristic harmonic vibrational frequency of adsorbed NO in Z⁻[FeO₂NO]⁺ is calculated to be 1641 cm⁻¹. Mul et al.⁴ and Pérez-Ramírez et al.¹¹ observed a sharp infrared band at 1635 and 1632 cm⁻¹, respectively, suggesting that iron nitrate species might be formed during N2O decomposition on Fe-ZSM-5. Nitrogen dioxide can desorb from Z⁻[FeO₂NO]⁺ sites with an activation barrier of 44.2 kcal/mol, which is equal to the enthalpy of NO₂ desorption. The spinchange barrier for NO₂ adsorption on Z⁻[FeO]⁺ sites is 1.8 kcal/

Nitrogen dioxide adsorption on $Z^-[OFeO]^+$ sites was also considered. The adsorption process involves spin pairing and subsequent surmounting of a small activation barrier of E^{\ddagger} = 6.6 kcal/mol on the quintet PES. The enthalpy of adsorption is $\Delta H_{\rm ads} = -2.0$ kcal/mol. The imaginary frequency associated with the transition-state mode is 510i cm⁻¹. The transition state is characterized by an O-O bond distance of 1.79 Å (one oxygen bond to Fe, the other oxygen bond to N) and a slight elongation of the N-O bond length to 1.22 Å. Nitric oxide can desorb from $Z^-[OFeO]^+(NO_2)$ sites to form $Z^-[OFeO_2]^+$

Figure 7. Catalytic cycle of the N₂O dissociation on mononuclear Z⁻[FeONO]⁺{ $M_{\rm S}=5$ } sites. All energies are zero-point corrected, in kcal/mol and with reference to Z⁻[FeONO]⁺ with the appropriate amounts of N₂O, N₂, O₂, NO, and NO₂. Energies of potential-energy minima are in black. Energies of transition states are in red. Energies of minima on the seam of two PESs are in green. Black structures are on the PES with $M_{\rm S}=5$. Green structures are on the PES with $M_{\rm S}=6$. Structures in blue are on the PES with $M_{\rm S}=7$. Multiple numbers under a PES minimum structure correspond to different catalytic cycles (see Table 1).

species. The desorption barrier for this process is 12.0 kcal/mol. The enthalpy of desorption at reaction temperature is $\Delta H_{\rm des}$ = 12.2 kcal/mol. Since O_2 can readily desorb from $Z^-[{\rm OFeO_2}]^+$ species (see Heyden et al.²¹), the reduction of $Z^-[{\rm OFeO}]^+$ sites with NO_2 is a fast, entropy driven process (two gas molecules are produced from one NO_2 molecule).

To summarize, exposure of $Z^{-}[FeO]^{+}$, $Z^{-}[FeO_{2}]^{+}$, and $Z^{-}[OFeO]^{+}$ sites to NO leads to the formation of three new stable species, $Z^{-}[FeONO]^{+}$, $Z^{-}[FeO_{2}N]^{+}$, and $Z^{-}[FeO_{2}NO]^{+}$. The enthalpy of desorption of NO or NO₂ from these sites is $\Delta H_{\rm des} = 32.9$, 37.8, and 42.2 kcal/mol, respectively. These results suggest that if iron oxide species were present in FeZSM-5 at low temperatures, small amounts of nitric oxide in the feed gas of the N₂O decomposition would result in the formation of significant amounts of $Z^{-}[FeONO]^{+}$, $Z^{-}[FeO_{2}N]^{+}$,

Figure 8. Alternative catalytic cycle of the N₂O dissociation on mononuclear Z⁻[FeONO]⁺{ $M_{\rm S}=5$ } sites. All energies are zero-point corrected, in kcal/mol and with reference to Z⁻[FeONO]⁺ with the appropriate amounts of N₂O, N₂, O₂, NO, and NO₂. Energies of potential-energy minima are in black. Energies of transition states are in red. Energies of minima on the seam of two PESs are in green. Black structures are on the PES with $M_{\rm S}=5$. Structures in green are on the PES with $M_{\rm S}=6$.

and $Z^-[FeO_2NO]^+$ species. However, our earlier work on the simulation of N_2O decomposition on isolated Fe sites in Fe-ZSM-5 indicates that iron oxide species will not be present at low temperatures (<650 K) because such sites will react very rapidly with H_2O to form $Z^-[Fe(OH)_2]^+$ sites. Therefore, iron nitrite and nitrate species can only be formed at higher temperatures where water desorbs. The enthalpy of water desorption, $\Delta H_{des} = 43.4$ kcal/mol ($Z^-[Fe(OH)_2]^+ \rightleftharpoons Z^-[FeO]^+ + H_2O$), is higher than the enthalpy of NO_x desorption from iron nitrite or nitrate species. As a result, NO_x desorption begins at lower temperatures than H_2O desorption, and large amounts of nitric oxide are necessary to displace H_2O at lower temperatures or to form iron nitrite or nitrate species at higher temperatures.

Figures 7–12 illustrate the catalytic cycle of the N_2O decomposition on iron nitrite and nitrate species. The reaction mechanism, reaction intermediates, and transition states are very similar to those shown for N_2O decomposition on $Z^-[FeOH]^+$ species (see Figure 3). As a result, these pathways are not discussed further. More information about these reaction pathways can be found in ref 23.

In industrial tail gases, the H_2O concentration is significantly larger than the NO_x concentration. ⁸⁰ As a result, iron nitrite and nitrate species should not be present under industrial conditions. In some experimental studies, ⁷⁹ the NO_x concentration is very large so that iron nitrite and nitrate species might contribute to the N_2O decomposition. On iron nitrite and nitrate species, the first N_2O dissociation barrier with respect to the gas phase is calculated to be 21.5, 21.2, and 22.4 kcal/mol, respectively. This elementary reaction step is the rate-limiting step in the reaction

Figure 9. Catalytic cycle of the N₂O dissociation on mononuclear Z⁻[FeO₂N]⁺{ M_S = 5} sites. All energies are zero-point corrected, in kcal/mol and with reference to Z⁻[FeO₂N]⁺ with the appropriate amounts of N₂O, N₂, O₂, NO, and NO₂. Energies of potential-energy minima are in black. Energies of transition states are in red. Energies of minima on the seam of two PESs are in green. Black structures are on the PES with M_S = 5. Green structures are on the PES with M_S = 6. Structures in blue are on the PES with M_S = 7. Multiple numbers under a PES minimum structure correspond to different catalytic cycles (see Table 1).

mechanism of the NO-assisted N_2O decomposition on iron nitrite and nitrate species. On $Z^-[FeOH]^+$ species, we calculated in this study a rate-limiting barrier of 20.5 kcal/mol, and for $Z^-[FeO]^+$ sites, Heyden et al.²¹ computed an only marginally larger barrier of 24–24.3 kcal/mol. As a result, iron nitrite and nitrate species are not more active than $Z^-[FeOH]^+$ and $Z^-[FeO]^+$ species and large amounts of nitric oxide cannot significantly increase the N_2O decomposition rate.

Formation of NO from N₂O. El-Malki et al.,⁵⁰ Bulushev et al.,⁷⁹ Kiwi-Minsker et al.,^{46,53} Sang and Lund,^{51,52} and Nová-kováand Sobalík⁵⁴ have proposed that NO formed from N₂O could facilitate the decomposition of N₂O at low temperatures in the absence of NO in the feed. Figure 13 illustrates reaction pathways for the formation of NO on Z⁻[OFeO]⁺, Z⁻[ONOFeO]⁺, Z⁻[OFeO₂NO]⁺, and Z⁻[OFeOH]⁺. Since these pathways are very similar, we will only discuss that for the

Figure 10. Alternative catalytic cycle of the N₂O dissociation on mononuclear Z⁻[FeO₂N]⁺{ $M_S = 5$ } sites. All energies are zero-point corrected, in kcal/mol and with reference to Z⁻[FeO₂N]⁺ with the appropriate amounts of N₂O, N₂, O₂, NO, and NO₂. Energies of potential-energy minima are in black. Energies of transition states are in red. Energies of minima on the seam of two PESs are in green. Black structures are on the PES with $M_S = 5$. Structures in green are on the PES with $M_S = 6$.

formation of NO on Z⁻[OFeO]⁺ sites. Nitrous oxide interacts via the N-end with the O-atom on the mononuclear iron site and forms an adsorbed NO dimer. The transition state for the reaction, $Z^{-}[OFeO]^{+} + N_2O \rightleftharpoons Z^{-}[FeO]^{+}(cis-(NO)_2)$, is characterized by a decrease in the bond angle of the N2O molecule from 180 to 152.8° in the transition state, whereas the length of the N-N' bond increases from 1.12 to 1.17 Å. The N-O (oxygen bond to the iron atom) bond length is 1.67 Å in the transition state. The activation barrier for the nitric oxide dimer is $E^{\ddagger} = 28.2 \text{ kcal/mol}$, and the enthalpy of reaction is $\Delta H_{\rm R} = 24.4$ kcal/mol. The activation barrier for NO formation on $Z^-[ONOFeO]^+$, $Z^-[OFeO_2N]^+$, $Z^-[OFeO_2NO]^+$, and $Z^-[OFeOH]^+$ and the enthalpy of reaction involving these species is slightly smaller than that for $Z^{-}[OFeO]^{+}$ (see Table 1 in the Appendix). The imaginary frequency associated with the transition-state mode is 614i cm⁻¹. The activation barrier calculated for the reaction $Z^{-}[OFeO]^{+} + N_2O \rightleftharpoons Z^{-}[FeO]^{+}(cis-(NO)_2), 28.2 \text{ kcal/}$ mol, is similar to that found by Gonzalez et al.⁸¹ for the reaction $O(^{3}P) + N_{2}O \rightleftharpoons 2$ NO, 27.7 kcal/mol. The geometry of the transition-state structure is also quite similar with an O-N distance of 1.66 Å, an N-N' distance of 1.17 Å, and a N2O bending of 157.3° in the transition state. Nitric oxide can desorb from $Z^{-}[FeO]^{+}(cis-(NO)_2)$ sites. The transition state for the reaction of Z⁻[FeO]⁺(cis-(NO)₂) to form Z⁻[FeO]⁺(ON) and NO is characterized by an increase in the N-N' bond length from 1.23 Å in the adsorbed state to 1.44 Å in the transition state. The activation barrier for the dissociation is $E^{\ddagger} = 9.2 \text{ kcal/}$ mol, and the imaginary frequency associated with the transitionstate mode is 677i cm⁻¹. The enthalpy of reaction is $\Delta H_{\rm R} =$

Figure 11. Catalytic cycle of the N₂O dissociation on mononuclear Z⁻[FeO₂NO]⁺{ M_S = 5} sites. All energies are zero-point corrected, in kcal/mol and with reference to Z⁻[FeO₂NO]⁺ with the appropriate amounts of N₂O, N₂, O₂, NO, and NO₂. Energies of potential-energy minima are in black. Energies of transition states are in red. Energies of minima on the seam of two PESs are in green. Black structures are on the PES with M_S = 5. Green structures are on the PES with M_S = 6. Structures in blue are on the PES with M_S = 7. Multiple numbers under a PES minimum structure correspond to different catalytic cycles (see Table 1).

-6.1 kcal/mol. Therefore, at temperatures where N₂O decomposition occurs, the dissociation of the NO dimer will be fast. Nitric oxide rapidly desorbs from Z⁻[FeO]⁺(ON) sites. The spinchange barrier for desorption is $E^{\ddagger}=4.8$ kcal/mol, and the enthalpy of desorption is $\Delta H_{\rm des}=3.3$ kcal/mol. Thus, if under reaction conditions a significant fraction of surface sites is present in the form of Z⁻[OFeO]⁺, Z⁻[ONOFeO]⁺, Z⁻[OFeO₂N]⁺, Z⁻[OFeO₂NO]⁺, and Z⁻[OFeOH]⁺ sites, NO can be formed from nitrous oxide. The energetically most demanding step is the formation of an adsorbed NO dimer; once formed, NO production occurs readily.

Since NO_x (NO and NO_2) rapidly reduces once-oxidized iron sites (e.g., $Z^-[OFeO]^+$, $Z^-[OFeOH]^+$), NO production is not likely to occur in the presence of significant amounts of NO_x . Therefore, the only scenario in which NO produced from N_2O

Figure 12. Alternative catalytic cycle of the N₂O dissociation on mononuclear Z⁻[FeO₂NO]⁺{ M_S = 5} sites. All energies are zero-point corrected, in kcal/mol and with reference to Z⁻[FeO₂NO]⁺ with the appropriate amounts of N₂O, N₂, O₂, NO, and NO₂. Energies of potential-energy minima are in black. Energies of transition states are in red. Energies of minima on the seam of two PESs are in green. Black structures are on the PES with M_S = 5. Structures in green are on the PES with M_S = 6.

could significantly influence the rate of N_2O decomposition on Fe-ZSM-5 would be at low temperatures, where most iron sites are poisoned by water (i.e., are in the form of $Z^-[Fe(OH)_2]^+$) and the activity of Fe-ZSM-5 for N_2O decomposition is low.

Conclusions

Rate coefficients have been determined using a combination of density functional theory and transition-state theory for an ensemble of over 100 elementary reactions that might be involved in NO-promoted decomposition of N₂O on Fe-ZSM-5 at temperatures below 700 K. Under these conditions, highly active Z⁻[FeO]⁺ sites react with small amounts of water vapor to form $Z^{-}[Fe(OH)_{2}]^{+}$ sites, which are inactive for $\hat{N_{2}}O$ decomposition. NO can react with such species to form HNO₂ and Z⁻[FeOH]⁺ sites. These newly formed sites are catalytically active for N2O decomposition to N2 and O2. The reaction pathway involves the formation and decomposition of NO2 and is illustrated in Figure 3. Since the activation barrier for the formation of Z⁻[FeOH]⁺ sites is low (13.3 kcal/mol), the number of active iron sites for the N₂O decomposition increases significantly in the presence of small amounts of NO, as does the N₂O decomposition rate. At elevated temperatures, on the other hand, water desorbs from inactive Z⁻[Fe(OH)₂]⁺ sites, forming active Z⁻[FeO]⁺ sites. No net gas species are formed in the process of Z⁻[FeOH]⁺ formation, so that at high temperatures the entropy gain in splitting off an adsorbed water molecule from Z⁻[Fe(OH)₂]⁺ centers outweighs the higher energy barrier for the water desorption reaction.

While iron nitrite and nitrate species were also considered as possible intermediates in N₂O decomposition, these species

Figure 13. Possible pathways for the formation of nitric oxide. All energies are zero-point corrected, in kcal/mol and with reference to Z⁻[OFeO]⁺, Z⁻[OFeO₂N]⁺, Z⁻[OFeO₂NO]⁺, or Z⁻[OFeO₄NO]⁺ with the appropriate amounts of N₂O and NO. Energies of potential-energy minima are in black. Energies of transition states are in red. Energies of minima on the seam of two PESs are in green. Structures in magenta are on the PES with $M_S = 4$. Black structures are on the PES with $M_S = 5$. Green structures are on the PES with $M_S = 6$.

20.2

were not found to play a significant role in N₂O decomposition over Fe-ZSM-5. H₂O adsorbs on Z⁻[FeO]⁺ species more strongly than NO, and as a result, small amounts of NO cannot displace H₂O at low temperatures in order to form iron nitrite or nitrate species. At higher temperatures, both H₂O and NO desorb. In general, iron nitrite and nitrate species are about as active for N₂O decomposition as Z⁻[FeO]⁺ and Z⁻[FeOH]⁺ species. Consequently, large amounts of NO cannot increase the overall activity for N₂O decomposition by forming iron nitrite and nitrate species.

0.0

Finally, the possibility of NO formation from N₂O over Fe-ZSM-5 was investigated. Only at low temperatures, where most iron sites are poisoned by water and the overall catalyst activity for N₂O decomposition is low, it is possible for NO produced from N₂O to significantly influence the overall activity of Fe-ZSM-5 for N₂O decomposition.

Acknowledgment. The authors would like to thank Dr. Jens Döbler and Dr. Bernd Kallies for support with the TURBO-MOLE V5.6/7 software package. Computations were carried out at the "Norddeutscher Verbund für Hoch- und Höchstleistungsrechnen" (HLRN)⁸² on an IBM p690-Cluster. This work was supported by the Methane Conversion Cooperative funded by BP, the "Fonds der chemischen Industrie", and the Max-Buchner-Forschungsstiftung.

21.7

21.6

Appendix

20.2

All rate parameters computed from quantum chemical data are summarized in Table 1. Calculated enthalpies of reaction are averaged over 600-800 K. To estimate if low spin-inversion probabilities could result in a significant reduction of the rates of spin-surface crossing, thermally averaged Landau-Zener transition probabilities were calculated and are summarized in Table 2 for spin-orbit coupling energies of 395 and 825 J/mol for several temperatures. All spin-inversion transmission coefficients are larger than 0.05 (at 700 K). As a result, failure to correct reaction rates for spin-inversion probabilities smaller than 1 creates errors smaller than an error in the activation barrier of 4 kcal/mol (at 700 K).

TABLE 1: Computed Rate Parameters for Elementary Steps in NO-Assisted Nitrous Oxide Dissociation over Fe-ZSM-5

	*** - **			T (K)	
reaction	$E^{\ddagger,a} \Delta H^b$ (kcal/mol)	constant	600	700	800
1. $Z^{-}[FeO]^{+}\{M=6\} + NO(g) \leftrightarrow Z^{-}[FeONO]^{+}\{M=5\}$	$\Delta H_1 = -32.9$	K_1 , bar ⁻¹	1.54×10^{4}	2.87×10^{2}	1.49×10^{1}
	$E_1^{\dagger} = 1.1$	A_1 , s ⁻¹ bar ⁻¹	1.43×10^{5}	1.68×10^{5}	1.98×10^{5}
	E = 242	k_1 , s ⁻¹ bar ⁻¹	5.93×10^4 1.25×10^{13}	7.91×10^4 1.46×10^{13}	1.02×10^5 1.67×10^{13}
	$E_{-1}^{\dagger} = 34.3$	A_{-1} , s ⁻¹ k_{-1} , s ⁻¹	3.85×10^{13}	1.46×10^{13} 2.76×10^{2}	6.90×10^{13}
2. $Z^{-}[FeONO]^{+}\{M = 5\} \leftrightarrow Z^{-}[Fe]^{+}\{M = 4\} + NO_{2}(g)$	$\Delta H_2 = 66.0$	K_{-1} , s K_2 , bar	5.56×10^{-18}	1.56×10^{-14}	5.81×10^{-12}
	$E_2^{\dagger} = 67.9$	A_2 , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
		k_2, s^{-1}	2.25×10^{-12}	9.01×10^{-9}	4.61×10^{-6}
	$E_{-2}^{\dagger} = 0.0$	A_{-2} , s ⁻¹ bar ⁻¹	4.05×10^{5}	5.76×10^{5}	7.93×10^{5}
2.7-F-01±04 (2.1-NO()) 7-F-0.NF±04 (5.1-NO())	4.11 27.0	k_{-2} , s ⁻¹ bar ⁻¹	4.05×10^{5}	5.76×10^5	7.93×10^5
3. $Z^{-}[FeO]^{+}\{M = 6\} + NO(g) \leftrightarrow Z^{-}[FeO_2N]^{+}\{M = 5\}$	$\Delta H_3 = -37.8$ $E_3^{\dagger} = 1.4$	K_3 , bar ⁻¹ A_3 , s ⁻¹ bar ⁻¹	3.07×10^5 6.19×10^4	3.18×10^3 7.00×10^4	1.06×10^2 7.98×10^4
	$E_3 - 1.4$	k_3 , s ⁻¹ bar ⁻¹	1.85×10^4	2.49×10^4	3.23×10^4
	$E_{-3}^{\dagger} = 39.3$	A_{-3} , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
	,	k_{-3} , s ⁻¹	6.04×10^{-2}	7.81×10^{0}	3.05×10^{2}
4. $Z^{-}[FeO_2N]^{+}\{M=5\} \leftrightarrow Z^{-}[Fe]^{+}\{M=4\} + NO_2(g)$	$\Delta H_4 = 70.9$	K_4 , bar	2.78×10^{-19}	1.41×10^{-15}	8.16×10^{-13}
	$E_4^{\dagger} = 72.5$	A_4, s^{-1}	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
	E = 00	k_4 , s ⁻¹	4.88×10^{-14}	3.37×10^{-10} 2.39×10^{5}	2.60×10^{-7} 3.19×10^{5}
	$E_{-4}^{\dagger} = 0.0$	A_{-4} , s ⁻¹ bar ⁻¹ k_{-4} , s ⁻¹ bar ⁻¹	1.75×10^5 1.75×10^5	2.39×10^{5} 2.39×10^{5}	3.19×10^{5} 3.19×10^{5}
5. $Z^{-}[FeO]^{+}\{M = 6\} + NO(g) \leftrightarrow Z^{-}[OFeNO]^{+}\{M = 5\}$	$\Delta H_5 = -13.6$	K_{5} , bar ⁻¹	1.05×10^{-2}	1.99×10^{-3}	5.84×10^{-4}
	$E_5^{\dagger} = 0.2$	A_5 , s ⁻¹ bar ⁻¹	5.75×10^{5}	7.38×10^{5}	9.29×10^{5}
		k_5 , s ⁻¹ bar ⁻¹	4.98×10^{5}	6.51×10^{5}	8.34×10^{5}
	$E_{-5}^{\dagger} = 14.9$	A_{-5} , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
6. $Z^{-}[FeO_2]^{+}\{M = 6\} + NO(g) \leftrightarrow Z^{-}[FeOONO]^{+}\{M = 5\}$	$\Lambda H = -0.0$	k_{-5}, s^{-1}	4.72×10^{7}	3.28×10^8 1.28×10^{-5}	1.43×10^9
$0. \ Z \ [FeOONO] \{M = 0\} + NO(g) \hookrightarrow Z \ [FeOONO] \{M = 3\}$	$\Delta H_6 = -9.0$ $E_6^{\dagger} = 6.3$	K_6 , bar ⁻¹ A_6 , s ⁻¹ bar ⁻¹	3.90×10^{-5} 2.25×10^{5}	1.28×10^{-5} 2.59×10^{5}	5.71×10^{-6} 3.00×10^{5}
	$L_{6} = 0.3$	k_6 , s ⁻¹ bar ⁻¹	1.13×10^3	2.77×10^{3}	5.65×10^3
	$E_{-6}^{\dagger} = 15.5$	A_{-6} , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
		k_{-6} , s ⁻¹	2.89×10^{7}	2.15×10^{8}	9.89×10^{8}
7. $Z^{-}[FeOONO]^{+}\{M = 5\} \leftrightarrow Z^{-}[FeO]^{+}\{M = 6\} + NO_{2}(g)$	$\Delta H_7 = 1.0$	K_7 , bar	1.14×10^7	1.32×10^7	1.42×10^7
	$E_7^{\ddagger} = 2.5$	A_7 , s ⁻¹ k_7 , s ⁻¹	1.25×10^{13} 1.50×10^{12}	1.46×10^{13} 2.37×10^{12}	1.67×10^{13} 3.40×10^{12}
	$E_{-7}^{\ddagger} = 0.0$	A_{-7} , s ⁻¹ bar ⁻¹	1.30×10^{5} 1.32×10^{5}	1.80×10^{5}	2.40×10^{5}
	2-7 0.0	k_{-7} , s ⁻¹ bar ⁻¹	1.32×10^{5} 1.32×10^{5}	1.80×10^{5}	2.40×10^{5}
8. $Z^{-}[OFeO]^{+}\{M=6\} + NO(g) \leftrightarrow Z^{-}[OFeONO]^{+}\{M=5\}$	$\Delta H_8 = -30.5$	K_8 , bar ⁻¹	6.27×10^{3}	1.57×10^{2}	1.01×10^{1}
	$E_8^{\dagger} = 3.7$	A_8 , s ⁻¹ bar ⁻¹	4.05×10^{5}	4.84×10^{5}	5.75×10^{5}
	E # 24.6	k_8 , s ⁻¹ bar ⁻¹	1.86×10^4	3.45×10^4	5.70×10^4
	$E_{-8}^{\dagger} = 34.6$	A_{-8} , s ⁻¹ k_{-8} , s ⁻¹	1.25×10^{13} 2.97×10^{0}	1.46×10^{13} 2.20×10^{2}	1.67×10^{13} 5.67×10^{3}
9. $Z^{-}[OFeONO]^{+}\{M = 5\} \leftrightarrow Z^{-}[FeO]^{+}\{M = 6\} + NO_{2}(g)$	$\Delta H_9 = 14.4$	K_{-8} , s K_9 , bar	1.88×10^{2}	1.09×10^{3}	3.89×10^{3}
y. = [0.000.0] (iii 0) = [0.00] (iii 0) . 0.02(8/	$E_9^{\dagger} = 16.0$	A_9, s^{-1}	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
		k_9, s^{-1}	1.84×10^{7}	1.46×10^{8}	7.04×10^{8}
	$E_{-9}^{\dagger} = 0.0$	A_{-9} , s ⁻¹ bar ⁻¹		1.35×10^{5}	1.81×10^{5}
10. $7^{-1}OE_{2}OI^{+1}(M-6) + NO(2) \Leftrightarrow 7^{-1}OE_{2}ONI^{+1}(M-5)$	AII - 240	k_{-9} , s ⁻¹ bar ⁻¹	9.78×10^4	1.35×10^{5}	1.81×10^{5}
10. $Z^{-}[OFeO]^{+}\{M = 6\} + NO(g) \leftrightarrow Z^{-}[OFeO_{2}N]^{+}\{M = 5\}$	$\Delta H_{10} = -34.0$ $E_{10}^{\dagger} = 4.6$	A_{10} , bar A_{10} , s ⁻¹ bar ⁻¹	3.60×10^3 2.61×10^4	5.96×10^{1} 2.82×10^{4}	2.80×10^{0} 3.10×10^{4}
	E10 4.0	k_{10} , s ⁻¹ bar ⁻¹	5.48×10^{2}	1.03×10^3	1.71×10^{3}
	$E_{-10} = 38.2$	A_{-10} , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
		k_{-10} , s ⁻¹	1.52×10^{-1}	1.73×10^{1}	6.11×10^{2}
11. $Z^{-}[OFeO_2N]^{+}\{M = 5\} \leftrightarrow Z^{-}[FeO]^{+}\{M = 6\} + NO_2(g)$	$\Delta H_{11} = 17.9$	K_{11} , bar	3.27×10^2	2.85×10^3	1.40×10^4
	$E_{11}^{\ddagger} = 19.2$	A_{11}, s^{-1}	1.25×10^{13} 1.27×10^{6}	1.46×10^{13} 1.48×10^{7}	1.67×10^{13} 9.51×10^{7}
	$E_{-11}^{\dagger} = 0.6$	k_{11} , s ⁻¹ A_{-11} , s ⁻¹ bar ⁻¹		7.86×10^{3}	9.77×10^{3}
	E-11 0.0	k_{-11} , s ⁻¹ bar ⁻¹	3.89×10^{3}	5.19×10^{3}	6.80×10^{3}
12. $Z^{-}[OFeO]^{+}\{M = 6\} + NO(g) \leftrightarrow Z^{-}[FeO_2NO]^{+}\{M = 5\}$	$\Delta H_{12} = -58.3$		1.89×10^{12}	1.70×10^{9}	8.95×10^{6}
	$E_{12}^{\dagger} = 5.8$	A_{12} , s ⁻¹ bar ⁻¹	2.87×10^4	2.93×10^4	3.07×10^4
	E ± - (2.2	k_{12} , s ⁻¹ bar ⁻¹	2.18×10^2	4.47×10^2	7.90×10^2
	$E_{-12}^{\dagger} = 63.2$	A_{-12} , s ⁻¹ k_{-12} , s ⁻¹	$1.25 \times 10^{13} \\ 1.15 \times 10^{-10}$	1.46×10^{13} 2.63×10^{-7}	1.67×10^{13} 8.83×10^{-5}
13. $Z^{-}[FeO_2NO]^{+}\{M = 5\} \leftrightarrow Z^{-}[FeO]^{+}\{M = 6\} + NO_2(g)$	$\Delta H_{13} = 42.2$	K_{-12} , s K_{13} , bar	6.23×10^{-7}	9.99×10^{-5}	4.37×10^{-3}
2 2 3 () () () () () () () () () ($E_{13}^{\dagger} = 44.2$	A_{13} , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
		k_{13}, s^{-1}	9.67×10^{-4}	2.26×10^{-1}	1.37×10^{1}
	$E_{-13}^{\ddagger} = 1.8$	A_{-13} , s ⁻¹ bar ⁻¹		8.16×10^3	9.66×10^3
14. $Z^{-}[FeONO]^{+}\{M = 5\} + N_2O(g) \leftrightarrow Z^{-}[FeONO]^{+}(N_2O)\{M = 5\}$	$\Lambda H_{-} = -2.1$	k_{-13} , s ⁻¹ bar ⁻¹ K_{14} , bar ⁻¹	1.55×10^3 4.87×10^{-5}	2.26×10^3 3.28×10^{-5}	3.14×10^3 2.50×10^{-5}
17. Z [1 cono] $\{M = 3\} + 120(g) \sim Z$ [1 cono] $(120)\{M = 3\}$	$E_{14}^{\dagger} = 0.0$	A_{14} , bar A_{14} , s ⁻¹ bar A_{14}	1.17×10^7	1.61×10^7	2.30×10^{-7} 2.15×10^{7}
	⊐ 14 0.0	k_{14} , s ⁻¹ bar ⁻¹	1.17×10^7 1.17×10^7	1.61×10^{7} 1.61×10^{7}	2.15×10^{7} 2.15×10^{7}
	$E_{-14}^{\ddagger} = 4.7$	A_{-14} , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
		k_{-14} , s ⁻¹	2.39×10^{11}	4.91×10^{11}	8.58×10^{11}

TABLE 1: (Continued)

TABLE 1. (Communical)	$E^{\ddagger,a} \Delta H^b$		<i>T</i> (K)		
reaction	(kcal/mol)	constant	600	700	800
15. $Z^{-}[FeONO]^{+}\{M = 5\} + N_2O(g) \leftrightarrow Z^{-}[FeONO]^{+}(ON_2)\{M = 5\}$	$\Delta H_{15} = -1.5$	K_{15} , bar ⁻¹		4.09×10^{-5}	3.61×10^{-5}
	$E_{15}^{\dagger} = 0.0$	A_{15} , s ⁻¹ bar ⁻¹ k_{15} , s ⁻¹ bar ⁻¹	3.99×10^7 3.99×10^7	5.64×10^7 5.64×10^7	7.65×10^7 7.65×10^7
	$E_{-15}^{\dagger} = 3.3$	A_{-15} , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
14 F-IT ONOTHON VIA STORE ONOTHIA STORE AND	10.5	k_{-15} , s ⁻¹	7.98×10^{11}	1.38×10^{12}	2.12×10^{12}
16. $Z^{-}[FeONO]^{+}(ON_2)\{M = 5\} \leftrightarrow Z^{-}[OFeONO]^{+}\{M = 5\} + N_2(g)$	$\Delta H_{16} = -12.7$ $E_{16}^{\ddagger} = 24.8$	K_{16} , bar A_{16} , s ⁻¹	5.21×10^9 3.39×10^{13}	1.16×10^9 3.97×10^{13}	3.66×10^{8} 4.52×10^{13}
		k_{16} , s ⁻¹	3.08×10^{4}	7.07×10^{5}	7.49×10^6
	$E_{-16}^{\dagger} = 36.8$	A_{-16} , s ⁻¹ bar ⁻¹	1.58×10^{8}	1.97×10^{8}	2.40×10^{8}
17. $Z^{-}[OFeONO]^{+}\{M = 5\} + N_2O(g) \leftrightarrow Z^{-}[OFeONO]^{+}(N_2O)\{M = 5\}$	$\Delta H_{17} = -0.5$	k_{-16} , s ⁻¹ bar ⁻¹ K_{17} , bar ⁻¹	5.91×10^{-6} 1.84×10^{-6}	6.11×10^{-4} 1.71×10^{-6}	2.05×10^{-2} 1.66×10^{-6}
	$E_{17}^{\dagger} = 0.0$	A_{17} , scar A_{17} , s ⁻¹ bar ⁻¹	5.24×10^6	7.03×10^6	9.15×10^6
	E ± 10	k_{17} , s ⁻¹ bar ⁻¹	5.24×10^6	7.03×10^6	9.15×10^6
	$E_{-17}^{\dagger} = 1.8$	A_{-17} , s ⁻¹ k_{-17} , s ⁻¹	1.25×10^{13} 2.85×10^{12}	1.46×10^{13} 4.10×10^{12}	1.67×10^{13} 5.50×10^{12}
18. $Z^{-}[OFeONO]^{+}\{M = 5\} + N_2O(g) \leftrightarrow Z^{-}[OFeONO]^{+}(ON_2)\{M = 5\}$	$\Delta H_{18} = -1.5$	K_{18} , bar ⁻¹		1.16×10^{-6}	1.03×10^{-6}
	$E_{18}^{\dagger} = 0.0$	A_{18} , s ⁻¹ bar ⁻¹	1.72×10^6	2.30×10^6	3.00×10^6
	$E_{-18}^{\dagger} = 2.8$	k_{18} , s ⁻¹ bar ⁻¹ A_{-18} , s ⁻¹	1.72×10^6 1.25×10^{13}	2.30×10^6 1.46×10^{13}	3.00×10^6 1.67×10^{13}
	$L_{-18} - 2.0$	k_{-18} , s ⁻¹	1.22×10^{12} 1.22×10^{12}	1.98×10^{12}	2.91×10^{12}
19. $Z^{-}[OFeONO]^{+}(ON_{2})\{M = 5\} \leftrightarrow Z^{-}[O_{2}FeONO]^{+}\{M = 5\} + N_{2}(g)$	$\Delta H_{19} = -20.7$	K_{19} , bar	2.79×10^{15}	2.35×10^{14}	3.60×10^{13}
	$E_{19}^{\dagger} = 44.9$	A_{19} , s ⁻¹ k_{19} , s ⁻¹	1.80×10^{14} 7.76×10^{-3}	2.16×10^{14} 2.03×10^{0}	2.51×10^{14} 1.33×10^{2}
	$E_{-19}^{\dagger} = 66.2$	A_{-19} , s ⁻¹ bar ⁻¹	3.64×10^6	4.05×10^6	4.53×10^6
		k_{-19} , s ⁻¹ bar ⁻¹			3.70×10^{-12}
20. $Z^{-}[O_2FeONO]^{+}\{M = 5\} \leftrightarrow Z^{-}[O_2FeONO]^{+}\{M = 7\}$	$\Delta H_{20} = -5.4$ $E_{20}^{\ddagger} = 7.1$	K_{20} , — A_{20} , s ⁻¹	4.83×10^{1} 1.25×10^{13}	2.52×10^{1} 1.46×10^{13}	1.54×10^{1} 1.67×10^{13}
	$E_{20} - 7.1$	k_{20} , s ⁻¹	3.31×10^{10}	9.02×10^{10}	1.07×10^{13} 1.95×10^{11}
	$E_{-20}^{\ddagger} = 12.4$	A_{-20} , s ⁻¹	2.22×10^{13}	2.64×10^{13}	3.05×10^{13}
21. $7^{-1}O = ONO(1 + (M - 7)) + O(7)$	A II — 2 2	k_{-20}, s^{-1}	6.85×10^8	3.58×10^9 2.05×10^5	1.26×10^{10} 2.72×10^{5}
21. $Z^{-}[O_2FeONO]^{+}\{M=7\} \leftrightarrow Z^{-}[FeONO]^{+}\{M=5\} + O_2(g)$	$\Delta H_{21} = 3.3$ $E_{21}^{\dagger} = 6.0$	K_{21} , bar A_{21} , s ⁻¹	1.35×10^5 1.11×10^{14}	1.22×10^{14}	1.30×10^{14}
		k_{21}, s^{-1}	7.12×10^{11}	1.60×10^{12}	2.94×10^{12}
	$E_{-21}^{\ddagger} = 1.5$	A_{-21} , s ⁻¹ bar ⁻¹		2.37×10^7	2.85×10^7
22. $Z^{-}[O_2FeONO]^{+}\{M = 7\} \leftrightarrow Z^{-}[FeO_2]^{+}\{M = 6\} + NO_2(g)$	$\Delta H_{22} = 17.3$	k_{-21} , s ⁻¹ bar ⁻¹ K_{22} , bar	5.28×10^6 1.68×10^0	7.82×10^6 1.37×10^1	1.08×10^7 6.40×10^1
22.2 [022001(0] [iii /] 2 [1002] [iii 0] (1002(g)	$E_{22}^{\dagger} = 19.4$	A_{22} , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
	E ±-00	k_{22}, s^{-1}	1.07×10^6	1.28×10^7	8.34×10^7
	$E_{-22}^{\dagger} = 0.0$	A_{-22} , s ⁻¹ bar ⁻¹ k_{-22} , s ⁻¹ bar ⁻¹	6.38×10^{5} 6.38×10^{5}	9.29×10^5 9.29×10^5	1.30×10^6 1.30×10^6
23. $Z^{-}[OFeONO]^{+}\{M = 5\} + NO(g) \leftrightarrow Z^{-}[Fe(ONO)_{2}]^{+}\{M = 6\}$	$\Delta H_{23} = -31.7$	K_{23} , bar ⁻¹	1.31×10^{6}	2.83×10^{4}	1.64×10^{3}
	$E_{23}^{\dagger} = 0.0$	A_{23} , s ⁻¹ bar ⁻¹	1.73×10^7	2.24×10^{7}	2.84×10^{7}
	$E_{-23}^{\dagger} = 32.9$	k_{23} , s ⁻¹ bar ⁻¹ A_{-23} , s ⁻¹	1.73×10^7 1.25×10^{13}	2.24×10^7 1.46×10^{13}	2.84×10^7 1.67×10^{13}
		k_{-23} , s ⁻¹	1.32×10^{1}	7.90×10^{2}	1.73×10^4
24. $Z^{-}[Fe(ONO)_{2}]^{+}\{M = 6\} \leftrightarrow Z^{-}[FeONO]^{+}\{M = 5\} + NO_{2}(g)$	$\Delta H_{24} = 13.2$	K_{24} , bar	2.20×10^{0}	1.10×10^{1}	3.53×10^{1}
	$E_{24}^{\dagger} = 15.6$	A_{24} , s ⁻¹ k_{24} , s ⁻¹	1.25×10^{13} 2.60×10^{7}	1.46×10^{13} 1.97×10^{8}	1.67×10^{13} 9.13×10^{8}
	$E_{-24}^{\dagger} = 0.0$	A_{-24} , s ⁻¹ bar ⁻¹	1.18×10^{7}	1.79×10^{7}	2.59×10^{7}
25 7-IE (ONO) 1+ (M - C) (A 7-IONOE) O NI+ (M - C)	A11 - 47	k_{-24} , s ⁻¹ bar ⁻¹		1.79×10^{7}	2.59×10^{7}
25. $Z^{-}[Fe(ONO)_2]^{+}\{M=6\} \leftrightarrow Z^{-}[ONOFeO_2N]^{+}\{M=6\}$	$\Delta H_{25} = -4.7$ $E_{25}^{\dagger} = 1.3$	K_{25} , $-$ A_{25} , s ⁻¹	1.39×10^{0} 8.12×10^{11}	7.98×10^{-1} 8.05×10^{11}	5.24×10^{-1} 7.99×10^{11}
		k_{25} , s ⁻¹		3.23×10^{11}	3.60×10^{11}
	$E_{-25}^{\dagger} = 5.3$	A_{-25}, s^{-1}	1.65×10^{13}	1.77×10^{13}	1.87×10^{13}
26. $Z^{-}[OFeONO]^{+}\{M=5\} \leftrightarrow Z^{-}[FeO_2NO]^{+}\{M=5\}$	$\Delta H_{26} = -27.8$	k_{-25}, s^{-1} K_{26} —	2.01×10^{11} 3.02×10^{8}	4.05×10^{11} 1.09×10^{7}	6.87×10^{11} 8.89×10^{5}
	$E_{26}^{\ddagger} = 10.0$	A_{26} , s ⁻¹	3.51×10^{12}	3.69×10^{12}	3.83×10^{12}
	F	k_{26}, s^{-1}	7.69×108	2.69×109	6.90×109
	$E_{-26}^{\dagger} = 36.5$	A_{-26} , s ⁻¹ k_{-26} , s ⁻¹	4.95×10^{13} 2.55×10^{0}	6.08×10^{13} 2.48×102	7.19×10^{13} 7.76×103
27. $Z^{-}[FeONO]^{+}\{M = 5\} \leftrightarrow Z^{-}[FeO_{2}N]^{+}\{M = 5\}$	$\Delta H_{27} = -4.9$	K_{27} , —	2.00×10^{1}	1.11×10^{1}	7.12×10^{0}
· · · ·	$E_{27}^{\dagger} = 3.0$	A_{27} , s ⁻¹	2.84×10^{13}		3.07×10^{13}
	$E_{-27}^{\dagger} = 7.5$	k_{27}, s^{-1} A_{-27}, s^{-1}	2.36×10^{12} 6.57×10^{13}	3.52×10^{12} 7.14×10^{13}	4.75×10^{12} 7.62×10^{13}
	$D_{-21} = 1.5$	k_{-27} , s ⁻¹	1.18×10^{11}	3.18×10^{11}	6.67×10^{11}
28. $Z^{-}[FeO_2N]^{+}\{M=5\} + N_2O(g) \leftrightarrow Z^{-}[FeO_2N]^{+}(N_2O)\{M=5\}$	$\Delta H_{28} = -4.2$	K_{28} , bar ⁻¹		1.89×10^{-5}	1.31×10^{-5}
	$E_{28}^{\dagger} = 0.0$	A_{28} , s ⁻¹ bar ⁻¹ k_{28} , s ⁻¹ bar ⁻¹	3.41×10^6 3.41×10^6	4.66×10^6 4.66×10^6	6.15×10^6 6.15×10^6
	$E_{-28}^{\dagger} = 5.7$	A_{-28} , s ball A_{-28} , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
	-	k_{-28} , s ⁻¹	1.07×10^{11}	2.47×10^{11}	4.69×10^{11}

TABLE 1: (Continued)

TABLE 1. (Continued)	$E^{\ddagger,a} \Delta H^b$			T (K)	
reaction	(kcal/mol)	constant	600	700	800
29. $Z^{-}[FeO_2N]^{+}\{M=5\} + N_2O(g) \leftrightarrow Z^{-}[FeO_2N]^{+}(ON_2)\{M=5\}$	$\Delta H_{29} = -2.5$	K_{29} , bar ⁻¹	4.22×10^{-5}	3.06×10^{-5}	2.47×10^{-5}
	$E_{29}^{\dagger} = 0.0$	A_{29} , s ⁻¹ bar ⁻¹	1.60×10^7	2.23×10^7	2.99×10^7
	$E_{-29}^{\dagger} = 4.2$	k_{29} , s ⁻¹ bar ⁻¹ A_{-29} , s ⁻¹	1.60×10^7 1.25×10^{13}	2.23×10^7 1.46×10^{13}	2.99×10^7 1.67×10^{13}
	$L_{-29} - 7.2$	k_{-29} , s ⁻¹	3.79×10^{11}	7.28×10^{11}	1.07×10^{12} 1.21×10^{12}
30. $Z^{-}[FeO_2N]^{+}(ON_2)\{M=5\} \leftrightarrow Z^{-}[OFeO_2N]^{+}\{M=5\} + N_2(g)$	$\Delta H_{30} = -10.2$	K_{30} , bar	1.78×10^{8}	5.30×10^{7}	2.09×10^{7}
	$E_{30}^{\dagger} = 25.4$	A_{30}, s^{-1}	1.42×10^{13}	1.63×10^{13}	1.83×10^{13}
	E = 24.6	k_{30} , s ⁻¹	7.73×10^3	1.87×10^5	2.07×10^6
	$E_{-30}^{\dagger} = 34.6$	A_{-30} , s ⁻¹ bar ⁻¹ k_{-30} , s ⁻¹ bar ⁻¹	1.77×10^8 4.35×10^{-5}	2.27×10^8 3.54×10^{-3}	2.83×10^{8} 9.88×10^{-2}
31. $Z^{-}[OFeO_2N]^{+}\{M=5\} + N_2O(g) \leftrightarrow Z^{-}[OFeO_2N]^{+}(N_2O)\{M=5\}$	$\Delta H_{31} = 1.6$	K_{31} , bar ⁻¹	1.74×10^{-4}	2.07×10^{-4}	2.42×10^{-4}
	$E_{31}^{\sharp} = 0.0$	A_{31} , s ⁻¹ bar ⁻¹	1.64×10^{9}	2.37×10^{9}	3.27×10^{9}
		k_{31} , s ⁻¹ bar ⁻¹	1.64×10^{9}	2.37×10^{9}	3.27×10^{9}
	$E_{-31}^{\dagger} = 0.3$	A_{-31}, s^{-1}	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
32. $Z^{-}[OFeO_2N]^{+}\{M=5\} + N_2O(g) \leftrightarrow Z^{-}[OFeO_2N]^{+}(ON_2)\{M=5\}$	$\Delta H_{32} = -2.7$	k_{-31} , s ⁻¹ K_{32} , bar ⁻¹	9.45×10^{12} 1.45×10^{-5}	1.15×10^{13} 1.03×10^{-5}	1.35×10^{13} 8.17×10^{-6}
$32. Z [OFCO_2N] \{M - 3\} + N_2O(g) \sim Z [OFCO_2N] (ON_2)\{M - 3\}$	$E_{32}^{\dagger} = 0.0$	A_{32} , bar A_{32} , s ⁻¹ bar ⁻¹	4.90×10^6	6.79×10^6	9.08×10^6
	232 0.0	k_{32} , s ⁻¹ bar ⁻¹	4.90×10^{6}	6.79×10^6	9.08×10^{6}
	$E_{-32}^{\dagger} = 4.3$	A_{-32} , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
22 7-10F 0 NH (0N) (W 5) 7-10 F 0 NH (W 5) + N ()	A 77 1 6 1	k_{-32} , s ⁻¹	3.38×10^{11}	6.60×10^{11}	1.11×10^{12}
33. $Z^{-}[OFeO_2N]^{+}(ON_2)\{M=5\} \leftrightarrow Z^{-}[O_2FeO_2N]^{+}\{M=5\} + N_2(g)$	$\Delta H_{33} = -16.1$ $E_{33}^{\dagger} = 45.2$	A_{33} , bar A_{33} , s ⁻¹	3.81×10^{13} 1.59×10^{14}	5.61×10^{12} 1.89×10^{14}	$1.31 \times 10^{12} \\ 2.18 \times 10^{14}$
	$E_{33} - 45.2$	k_{33} , s ⁻¹	5.15×10^{-3}	1.39×10^{0} 1.39×10^{0}	9.36×10^{1}
	$E_{-33}^{\dagger} = 61.8$	A_{-33} , s ⁻¹ bar ⁻¹	4.58×10^{6}	5.07×10^6	5.65×10^6
		k_{-33} , s ⁻¹ bar ⁻¹	1.35×10^{-16}		7.15×10^{-11}
34. $Z^{-}[O_2FeO_2N]^{+}\{M=5\} \leftrightarrow Z^{-}[O_2FeO_2N]^{+}\{M=7\}$	$\Delta H_{34} = -7.7$	K_{34} , —	5.97×10^2	2.37×10^2	1.19×10^2
	$E_{34}^{\dagger} = 0.1$	A_{34} , s ⁻¹	1.25×10^{13}	1.46×10^{13} 1.32×10^{13}	1.67×10^{13}
	$E_{-34}^{\dagger} = 7.8$	k_{34} , s ⁻¹ A_{-34} , s ⁻¹	1.11×10^{13} 1.31×10^{13}	1.52×10^{13} 1.53×10^{13}	1.52×10^{13} 1.76×10^{13}
	$L_{-34} - 7.8$	k_{-34} , s ⁻¹	1.86×10^{10}	5.55×10^{10}	1.70×10 1.28×10^{11}
35. $Z^{-}[O_2FeO_2N]^{+}\{M=7\} \leftrightarrow Z^{-}[FeO_2N]^{+}\{M=5\} + O_2(g)$	$\Delta H_{35} = 0.7$	K_{35} , bar ⁻¹	2.70×10^{6}	2.99×10^{6}	3.14×10^{6}
	$E_{35}^{\dagger} = 3.0$	A_{35} , s ⁻¹ bar ⁻¹	1.30×10^{13}	1.38×10^{13}	1.44×10^{13}
	E = 12	k_{35} , s ⁻¹ bar ⁻¹	1.08×10^{12}	1.64×10^{12}	2.23×10^{12}
	$E_{-35}^{\dagger} = 1.2$	A_{-35} , s ⁻¹ k_{-35} , s ⁻¹	1.13×10^6 4.01×10^5	1.33×10^6 5.47×10^5	1.55×10^6 7.11×10^5
36. $Z^{-}[O_2FeO_2N]^{+}\{M=7\} \leftrightarrow Z^{-}[FeO_2]^{+}\{M=6\} + NO_2(g)$	$\Delta H_{36} = 19.6$	K_{36} , bar	1.68×10^{0}	1.81×10^{1}	1.04×10^2
	$E_{36}^{\ddagger} = 21.2$	A_{36} , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
		k_{36} , s ⁻¹	2.34×10^{5}	3.47×10^6	2.67×10^{7}
	$E_{-36}^{\dagger} = 0.0$	A_{-36} , s ⁻¹ bar ⁻¹	1.39×10^5	1.92×10^5	2.57×10^5
37. $Z^{-}[OFeO_2N]^{+}\{M = 5\} + NO(g) \leftrightarrow Z^{-}[ONOFeO_2N]^{+}\{M = 6\}$	$\Delta H_{37} = -32.9$	k_{-36} , s ⁻¹ bar ⁻¹ K_{37} , bar ⁻¹	1.39×10^5 3.19×10^6	1.92×10^5 5.94×10^4	2.57×10^5 3.08×10^3
$S_1 = \{S_1 = S_1 + S_2 + S_3 + S_4 \} $ [ONOT COLUMN [IM = 0]]	$E_{37}^{\dagger} = 0.0$	A_{37} , a_{37} , a_{37} , a_{37}	1.32×10^7	1.74×10^7	2.24×10^7
		k_{37} , s ⁻¹ bar ⁻¹	1.32×10^{7}	1.74×10^{7}	2.24×10^{7}
	$E_{-37}^{\dagger} = 34.2$	A_{-37} , s ⁻¹		1.46×10^{13}	1.67×10^{13}
28 7-IONOE O NI+[$M = 6$] \leftrightarrow 7-IE O NI+[$M = 5$] $+$ NO (c)	$\Lambda H = 12.0$	k_{-37}, s^{-1}	4.14×10^0 3.15×10^1	2.93×10^2 1.53×10^2	7.28×10^3 4.80×10^2
38. $Z^{-}[ONOFeO_2N]^{+}\{M = 6\} \leftrightarrow Z^{-}[FeO_2N]^{+}\{M = 5\} + NO_2(g)$	$\Delta H_{38} = 12.9$ $E_{38}^{\dagger} = 15.0$	K_{38} , bar A_{38} , s ⁻¹	1.25×10^{13}	1.33×10^{-1} 1.46×10^{13}	1.67×10^{13}
	238 13.0	k_{38} , s ⁻¹	4.24×10^7	2.99×10^{8}	1.32×10^9
	$E_{-38}^{\dagger} = 0.0$	A_{-38} , s ⁻¹ bar ⁻¹	1.35×10^{6}	1.96×10^{6}	2.75×10^{6}
20 7-10 NOT 0 NI+(1/4 - C) - 7-17 (0 N) 1+(1/4 - C)	A 77	507	1.35×10^6	1.96×10^6	2.75×10^6
39. $Z^{-}[ONOFeO_2N]^{+}\{M=6\} \leftrightarrow Z^{-}[Fe(O_2N)_2]^{+}\{M=6\}$	$\Delta H_{39} = -0.6$ $E_{39}^{\dagger} = 2.8$	K_{39} , $-$ A_{39} , s ⁻¹	4.14×10^{-2} 3.65×10^{11}	3.87×10^{-2} 3.56×10^{11}	3.67×10^{-2} 3.50×10^{11}
	$E_{39} - 2.8$	k_{39} , s ⁻¹	3.46×10^{10}	4.72×10^{10}	5.97×10^{10}
	$E_{-39}^{\ddagger} = 2.7$	A_{-39} , s ⁻¹	8.13×10^{12}	8.58×10^{12}	8.96×10^{12}
		k_{-39} , s ⁻¹	8.35×10^{11}	1.22×10^{12}	1.63×10^{12}
40. $Z^{-}[OFeO_2N]^{+}\{M=5\} \leftrightarrow Z^{-}[OFeONO]^{+}\{M=5\}$	$\Delta H_{40} = 3.5$	K_{40} , $-$	1.74×10^{0}	2.63×10^{0}	3.59×10^{0}
	$E_{40}^{\dagger} = 5.6$	A_{40} , s ⁻¹	3.73×10^{13}	4.20×10^{13}	4.61×10^{13}
	$E_{-40}^{\dagger} = 3.0$	k_{40}, s^{-1} A_{-40}, s^{-1}	3.50×10^{11} 2.41×10^{12}	7.68×10^{11} 2.45×10^{12}	1.39×10^{12} 2.49×10^{12}
	2-40 3.0	k_{-40} , s ⁻¹	2.01×10^{11}	2.92×10^{11}	3.86×10^{11}
41. $Z^{-}[FeO_2N]^{+}\{M = 5\} + N_2O(g) \leftrightarrow Z^{-}[FeO_2NO]^{+}\{M = 5\} + N_2(g)$	$\Delta H_{41} = -37.1$	K_{41} , —	3.94×10^{12}	4.63×10^{10}	1.65×10^{9}
	$E_{41}^{\dagger} = 49.6$	A_{41} , s ⁻¹	2.53×10^{8}	3.44×10^{8}	4.50×10^{8}
	F = 0 < 0	k_{41}, s^{-1}	2.11×10^{-10}		1.24×10^{-5}
	$E_{-41}^{\dagger} = 86.8$	A_{-41} , s ⁻¹ k_{-41} , s ⁻¹	2.25×10^9 5 35 × 10 ⁻²³	3.03×10^9 2.37×10^{-18}	3.92×10^9 7.51×10^{-15}
42. $Z^{-}[FeO_2NO]^{+}\{M=5\} + N_2O(g) \leftrightarrow Z^{-}[FeO_2NO]^{+}(N_2O)\{M=5\}$	$\Delta H_{42} = -1.8$	K_{-41} , s K_{42} , bar ⁻¹	2.61×10^{-5}		1.76×10^{-5}
2 3 () 2 10/ ($E_{42}^{\dagger} = 0.0$	A_{42} , s ⁻¹ bar ⁻¹	1.82×10^{7}	2.52×10^{7}	3.37×10^{7}
	_ +	k_{42} , s ⁻¹ bar ⁻¹	1.82×10^{7}	2.52×10^{7}	3.37×10^{7}
	$E_{-42}^{\dagger} = 3.4$	A_{-42} , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
		k_{-42} , s ⁻¹	6.97×10^{11}	1.23×10^{12}	1.91×10^{12}

TABLE 1: (Continued)

Section Sect		$E^{\ddagger,a} \Delta H^b$			T(K)	
$ E_n^{\dagger} = 0.0 $						
	43. $Z^{-}[FeO_2NO]^{+}\{M = 5\} + N_2O(g) \leftrightarrow Z^{-}[FeO_2NO]^{+}(ON_2)\{M = 5\}$					
$ \begin{aligned} & + L_{0}^{2} = 2.7 & - A_{-0} s^{-1} & 1.2 s^{-1} 1.46 s^{-1} 1.6 s^{-1} $		$E_{43} - 0.0$		_	_	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$E_{-43}^{\dagger} = 2.7$	A_{-43} , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
$ E_{-4} ^2 = 3.22, A_{15}, s^{-1} \\ E_{-4} ^2 = 3.12, A_{-4}, s^{-1} \\ E_{-4} ^2 = 3.12, A_{-4} ^2 = 3.12$	44 7-1E-0 NO1+(ON)(M - 5) (2-1OE-0 NO1+(M - 5) N (1)	A11 - 70				
$ \begin{aligned} & E_{-4} & = 3112 & & E_{-4} & = 3112 & & E_{-4} & = 5112 & & 2.27 \times 10^{15} & 5.41 \times 10^{15} & 5.94 \times $	44. $Z [FeO_2NO]^*(ON_2)\{M = 5\} \leftrightarrow Z [OFeO_2NO]^*\{M = 5\} + N_2(g)$		A_{44} , bar A_{44} , s ⁻¹			
$ 45. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$						
$ 45. Z [OFeO_2NO]^{\dagger} (M = 5) + N_2O(g) \rightarrow Z [OFeO_2NO]^{\dagger} (N_2O) (M = 5) \\ E_{n_2}^{\dagger} = 0.0 \\ E_{n_2}^{\dagger} = 4.1 \\ A_{n_2}, s^{-1} \\ E_{n_2}^{\dagger} = 0.0 \\ E_{n_2}^{\dagger} = 4.1 \\ A_{n_2}, s^{-1} \\ E_{n_2}^{\dagger} = 4.1 \\ A_{n_2}, s^{-1} \\ E_{n_2}^{\dagger} = 4.1 \\ A_{n_2}, s^{-1} \\ A_{n_2}^{\dagger} = 5 \\ A_{n_2}^{\dagger} $		$E_{-44}^{\dagger} = 31.2$	A_{-44} , s ⁻¹ bar ⁻¹	2.13×10^{8}		
$ E_{-0}^{\dagger} = 4.1 \qquad A_{-0.5}^{\dagger} + 1 \text{ bar}^{-1} 3.45 \times 10^{4} 4.73 \times 10^{6} 6.27 \times 10^{6} \\ E_{-0}^{\dagger} = 4.1 \qquad A_{-0.5}^{\dagger} = 4.1 \qquad A_{-0.5}^{\dagger} = 1 1.25 \times 10^{3} 1.46 \times 10^{3} 1.67 \times 10^{6} 6.27 \times 10^{6} \\ E_{-0}^{\dagger} = 4.1 \qquad A_{-0.5}^{\dagger} = 4.1 \qquad A_{-0.5}^{\dagger} = 1 1.25 \times 10^{3} 1.46 \times 10^{3} 1.67 \times 10^{6} 1.67 \times 10^{6} \\ E_{-0}^{\dagger} = 4.1 \qquad A_{-0.5}^{\dagger} = 1 1.25 \times 10^{3} 1.46 \times 10^{3} 1.27 \times 10^{6} 2.07 \times 10^{6} \\ E_{-0}^{\dagger} = 4.5 \qquad A_{-0.5}^{\dagger} = 1 1.14 \times 10^{6} 1.57 \times 10^{6} 2.08 \times 10^{6} \\ A_{1.0} \times 10^{3} 1.07 \times 10^{6} 2.08 \times 10^{6} \\ E_{-0}^{\dagger} = 4.5 \qquad A_{-0.5}^{\dagger} = 1 1.14 \times 10^{6} 1.57 \times 10^{6} 2.08 \times 10^{6} \\ A_{1.0} \times 10^{4} 1.07 \times 10^{6} 2.08 \times 10^{6} \\ E_{-0}^{\dagger} = 4.5 \qquad A_{-0.5}^{\dagger} = 1 1.14 \times 10^{6} 1.57 \times 10^{6} 2.08 \times 10^{6} \\ A_{1.0} \times 10^{4} 1.07 \times 10^{6} 2.08 \times 10^{6} \\ A_{1.0} \times 10^{4} 1.07 \times 10^{6} 2.08 \times 10^{6} \\ E_{-0}^{\dagger} = 4.5 \qquad A_{-0.5}^{\dagger} = 1 1.14 \times 10^{6} 1.57 \times 10^{6} 2.08 \times 10^{6} \\ A_{1.0} \times 10^{4} 1.07 \times 10^{6} 1.07 \times 10^{6} \\ A_{1.0} \times 10^{4} 1.07 \times 10^{6} 1.07 \times 10^{6} \\ A_{1.0} \times 10^{4} 1.07 \times 10^{6} 1.07 \times 10^{6} \\ A_{1.0} \times 10^{4} 1.07 \times 10^{6} 1.07 \times 10^{6} \\ A_{1.0} \times 10^{4} 1.07 \times 10^{6} 1.07 \times 10^{6} \\ A_{1.0} \times 10^{4} 1.07 \times 10^{6} 1.07 \times 10^{6} \\ A_{1.0} \times 10^{4} 1.07 \times 10^{6} 1.07 \times 10^{6} \\ A_{1.0} \times 10^{4} 1.07 \times 10^{6} 1.07 \times 10^{6} \\ A_{1.0} \times 10^{4} 1.07 \times 10^{6} 1.07 \times 10^{6} \\ A_{1.0} \times 10^{4} 1.07 \times 10^{6} 1.07 \times 10^{6} \\ A_{1.0} \times 10^{4} 1.07 \times 10^{6} 1.07 \times 10^{6} \\ A_{1.0} \times 10^{4} 1.07 \times 10^{6} 1.07 \times 10^{6} \\ A_{1.0} \times 10^{4} 1.07 \times 10^{6} 1.07 \times 10^{6} \\ A_{1.0} \times 10^{4} 1.07 \times 10^{6} 1.07 \times 10^{6} \\ A_{1.0} \times 10^{4} 1.07 \times 10^{6} 1.07 \times 10^{6} \\ A_{1.0} \times 10^{4} 1.07 \times 10^{6} 1.07 \times 10^{6} \\ A_{1.0} \times 10^{4} 1.07 \times 10^{6} 1.07 \times 10^{6} \\ A_{1.0} \times 10^{4} 1.07 \times 10^{6} 1.07 \times 10^{6} \\ A_{1.0} \times 10^{4} 1.07 \times 10^{6} 1.07 \times 10^{6} \\ A_{1.0} \times 10^{4} 1.07 \times 10^{6} 1.07 \times 10^{6} \\ A_{1.0} \times 10^{4} 1.07 \times 10$	45 $Z^{-1}OFeO_2NO_1^{+1}\{M = 5\} + N_2O(\sigma) \leftrightarrow Z^{-1}OFeO_2NO_1^{+1}(N_2O)\{M = 5\}$	$\Delta H_{45} = -2.6$				
$ \begin{aligned} & \{ E_{-2}^{\pm} = 4.1 \} & \{ E_{-3}^{\pm} = 4.1 \} & \{ E_{-3}^{\pm} = 4.1 \} & \{ E_{-3}^{\pm} = 4.1 \} & \{ A_{-3}^{\pm} \le 1.1 \} & \{ A_{-4}^{\pm} \le $				3.45×10^{6}		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		E ± 44				
$ 46. Z \cdot [\text{OFeO}_{2} \text{NO}]^{+} \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{OFeO}_{3} \text{NO}]^{+} (\text{O}_{2}) \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{OFeO}_{3} \text{NO}]^{+} (\text{O}_{2}) \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]^{+} \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]^{+} \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]^{+} \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]^{+} \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]^{+} \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]^{+} \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]^{+} \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]^{+} \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]^{+} \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]^{+} \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]^{+} \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]^{+} \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]^{+} \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]^{+} \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]^{+} \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]^{+} \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]^{+} \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]^{+} \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]^{+} \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]^{+} \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]^{+} \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]^{+} \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]^{+} \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]^{+} \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]^{+} \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]^{+} \{M = 5\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]^{+} \{M = 6\} + \text{N}_{2} \text{O} \text{p} + Z \cdot [\text{O}_{2} \text{FeO}_{3} \text{NO}]$		$E_{-45}^{+} = 4.1$				
$ E_{ab}^{\dagger} = 0.0 A_{ab}, s^{-1} bar^{-1}, 11.4 \times 10^{6}, 1.57 \times 10^{6}, 2.08 \times 10^{6}, A_{ab}^{\dagger} = 0.4 \times 10^{6}, S^{-1} bar^{-1}, 11.4 \times 10^{6}, 1.57 \times 10^{6}, 2.08 \times 10^{6}, A_{ab}^{\dagger} = 0.4 \times 10^{6}, S_{ab}^{\dagger} = 0.4 \times 10^{6}, S_{ab}^{\dagger} = 0.14 \times 10^{6}, 1.57 \times 10^{6}, 2.08 \times 10^{6}, A_{ab}^{\dagger} = 0.00 \times 10^{6}, A_{ab}^{\dagger} = 0.$	46. $Z^{-}[OFeO_2NO]^{+}\{M=5\} + N_2O(g) \leftrightarrow Z^{-}[OFeO_2NO]^{+}(ON_2)\{M=5\}$	$\Delta H_{46} = -2.9$		3.87×10^{-6}		
$47. Z = [OFeO_NO]^{+}(ON_2)\{M = 5\} + Z = [O_2FeO_2NO]^{+}\{M = 5\} + N_2(g) \\ = \frac{AH_{12} - 19.2}{E_{12}} \frac{AH_{12} - 19.2}{E_{12}} \frac{AH_{13} - 19.2}{E_{13}} \frac{AH_{13} - 19.2}{E_{13}} \frac{1.02 \times 10^{13}}{1.02 \times 10^{13}} \frac{1.08 \times 10^{13}}{1.02 \times 10^{13}} \frac{1.08 \times 10^{13}}{1.02 \times 10^{13}} \frac{1.02 \times 10^{13}}{1.02 \times 10^{13}} \frac{1.08 \times 10^{13}}{1.02 \times 10^{13}} \frac{1.02 \times 10^{13}}{1.02 \times 1$		E . = 45	k_{46} , s ⁻¹ bar ⁻¹			
$ 47. Z^{-}[OFeO_{2}NO]^{+}(ON_{2})\{M = 5\} + Z^{-}[O_{2}FeO_{2}NO]^{+}\{M = 5\} + N_{2}(g) \\ E_{-4}^{-7} = 61.0 \\ E$		$E_{-46} - 4.5$				
	47. $Z^{-}[OFeO_2NO]^{+}(ON_2)\{M = 5\} \leftrightarrow Z^{-}[O_2FeO_2NO]^{+}\{M = 5\} + N_2(g)$		K_{47} , bar			
		$E_{47}^{\dagger} = 41.1$				
AB = -8.7 AB		$E_{-47}^{\dagger} = 61.0$				
$ \begin{array}{c} E_{48}^{\dagger} = 0.4 & A_{48} \mathrm{s}^{-1} \\ k_{46} \mathrm{s}^{-$			k_{-47} , s ⁻¹ bar ⁻¹	1.61×10^{-18}	2.54×10^{-15}	6.53×10^{-13}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	48. $Z^{-}[O_2FeO_2NO]^{+}\{M=5\} \leftrightarrow Z^{-}[O_2FeO_2NO]^{+}\{M=7\}$					
$49. Z^{-}[O_{2}FeO_{2}NO]^{+}\{M=7\} **Z^{-}[FeO_{2}NO]^{+}\{M=5\} + O_{2}(g) \\ AB_{0} = 0.4 \\ AB_$		$E_{48} = 0.4$				
$ 49. Z - [O_{2}FeO_{2}NO]^{+}\{M = 7\} + Z - [FeO_{2}NO]^{+}\{M = 5\} + O_{2}(g) \\ E_{0}^{+} = 3.0 \\ E_{0}^{+} = 3.0 \\ A_{0}, s^{-1} \\ A_{0}, s^$		$E_{-48}^{\dagger} = 8.9$		2.63×10^{13}		
$ E_{.0}^{\dagger} = 3.0 \qquad A_{.0}, s^{-1} \qquad 1.91 \times 10^{13} 2.04 \times 10^{13} 2.15 \times 10^{13} \\ A_{.0}, s^{-1} \qquad 1.57 \times 10^{12} 2.40 \times 10^{13} 3.30 \times 10^{10} \\ A_{.0}, s^{-1} \qquad 1.57 \times 10^{12} 2.40 \times 10^{13} 3.30 \times 10^{10} \\ A_{.0}, s^{-1} \qquad 1.57 \times 10^{12} 2.40 \times 10^{13} 3.30 \times 10^{10} \\ A_{.0}, s^{-1} \qquad 1.57 \times 10^{13} 3.60 \times 10^{10} 4.32 \times 10^{10} \\ A_{.0}, s^{-1} \qquad 1.69 \times 10^{-1} 3.07 \times 10^{10} 3.68 \times 10^{10} 4.32 \times 10^{10} \\ A_{.0}, s^{-1} \qquad 1.67 \times 10^{13} 4.61 \times 10^{13} 4.31 \times 10^{10} \\ A_{.0}, s^{-1} \qquad 1.61 \times 10^{-3} 1.61 \times 10^{13} 4.31 \times 10^{13} \\ A_{.0}, s^{-1} \qquad 1.61 \times 10^{-3} 2.65 \times 10^{-1} 1.65 \times 10^{13} \\ A_{.0}, s^{-1} \qquad 1.61 \times 10^{-3} 2.65 \times 10^{-1} 1.65 \times 10^{13} \\ A_{.0}, s^{-1} \qquad 1.67 \times 10^{13} 1.67 \times 10^{13} \\ A_{.0}, s^{-1} \qquad 1.67 \times 10^{13} 1.67 \times 10^{13} \\ A_{.0}, s^{-1} \qquad 1.67 \times 10^{13} 1.67 \times 10^{13} \\ A_{.0}, s^{-1} \qquad 1.67 \times 10^{13} 1.67 \times 10^{13} \\ A_{.0}, s^{-1} \qquad 1.67 \times 10^{13} 1.67 \times 10^{13} \\ A_{.0}, s^{-1} \qquad 1.67 \times 10^{13} 1.67 \times 10^{13} \\ A_{.0}, s^{-1} \qquad 1.67 \times 10^{13} 1.67 \times 10^{13} \\ A_{.0}, s^{-1} \qquad 1.67 \times 10^{13} 1.67 \times 10^{13} \\ A_{.0}, s^{-1} \qquad 1.67 \times 10^{13} 1.67 \times 10^{13} \\ A_{.0}, s^{-1} \qquad 1.67 \times 10^{13} 1.67 \times 10^{13} \\ A_{.0}, s^{-1} \qquad 1.67 \times 10^{13} 1.67 \times 10^{13} \\ A_{.0}, s^{-1} \qquad 1.67 \times 10^{13} 1.67 \times 10^{13} \\ A_{.0}, s^{-1} \qquad 1.67 \times 10^{13} 1.67 \times 10^{13} \\ A_{.0}, s^{-1} \qquad 1.67 \times 10^{13} 1.67 \times 10^{13} \\ A_{.0}, s^{-1} \qquad 1.77 \times 10^{-3} 1.00 \times 10^{-1} 1.67 \times 10^{13} \\ A_{.0}, s^{-1} \qquad 1.77 \times 10^{-3} 1.00 \times 10^{-1} 1.67 \times 10^{13} \\ A_{.0}, s^{-1} \qquad 1.77 \times 10^{-3} 1.00 \times 10^{-1} 1.67 \times 10^{13} \\ A_{.0}, s^{-1} \qquad 1.77 \times 10^{-3} 1.00 \times 10^{-1} 1.67 \times 10^{13} \\ A_{.0}, s^{-1} \qquad 1.77 \times 10^{-3} 1.00 \times 10^{-1} 1.67 \times 10^{13} \\ A_{.0}, s^{-1} \qquad 1.77 \times 10^{-3} 1.00 \times 10^{-1} 1.67 \times 10^{13} \\ A_{.0}, s^{-1} \qquad 1.77 \times 10^{-3} 1.00 \times 10^{-1} 1.67 \times 10^{13} \\ A_{.0}, s^{-1} \qquad 1.77 \times 10^{-3} 1.00 \times 10^{-1} 1.67 \times 10^{13} \\ A_{.0}, s^{-1} \qquad 1.77 \times 10^{-3} 1.00 \times 10^{-1} 1.67 \times 10^{13} \\ A$	40 7-10 F 0 NOI+(1/ 7) 7-1F 0 NOI+(1/ 7) 1 0 /)	A 77 0 4				
$E_{-9}^{4} = 1.5 \qquad \begin{array}{c} k_{9}, s^{-1} & 1.77 \times 10^{12} & 2.40 \times 10^{12} & 3.00 \times 10^{12} \\ 8.49, s^{-1} \text{ bar}^{-1} & 3.07 \times 10^{12} & 3.00 \times 10^{12} \\ 8.49, s^{-1} \text{ bar}^{-1} & 8.45 \times 10^{3} & 1.21 \times 10^{6} & 1.64 \times 10^{6} \\ k_{-9}, s^{-1} \text{ bar}^{-1} & 8.45 \times 10^{3} & 1.21 \times 10^{6} & 1.64 \times 10^{6} \\ k_{-9}, s^{-1} \text{ bar}^{-1} & 8.45 \times 10^{3} & 1.21 \times 10^{6} & 1.64 \times 10^{6} \\ k_{-9}, s^{-1} \text{ bar}^{-1} & 8.45 \times 10^{3} & 1.21 \times 10^{6} & 1.64 \times 10^{6} \\ k_{-9}, s^{-1} \text{ bar}^{-1} & 8.45 \times 10^{3} & 1.21 \times 10^{6} & 1.67 \times 10^{13} \\ k_{-9}, s^{-1} \text{ bar}^{-1} & 8.45 \times 10^{3} & 1.46 \times 10^{13} & 1.67 \times 10^{13} \\ k_{-9}, s^{-1} \text{ bar}^{-1} & 8.45 \times 10^{3} & 1.46 \times 10^{13} & 1.67 \times 10^{13} \\ k_{-9}, s^{-1} \text{ bar}^{-1} & 3.00 \times 10^{5} & 3.29 \times 10^{5} & 3.64 \times 10^{5} \\ k_{-9}, s^{-1} \text{ bar}^{-1} & 3.00 \times 10^{5} & 3.29 \times 10^{5} & 3.64 \times 10^{5} \\ k_{-9}, s^{-1} \text{ bar}^{-1} & 3.00 \times 10^{5} & 3.29 \times 10^{5} & 3.64 \times 10^{5} \\ k_{-9}, s^{-1} \text{ bar}^{-1} & 3.00 \times 10^{5} & 3.29 \times 10^{5} & 3.64 \times 10^{5} \\ k_{-9}, s^{-1} \text{ bar}^{-1} & 3.00 \times 10^{5} & 3.29 \times 10^{5} & 3.64 \times 10^{5} \\ k_{-9}, s^{-1} \text{ bar}^{-1} & 3.00 \times 10^{5} & 3.29 \times 10^{5} & 3.64 \times 10^{5} \\ k_{-9}, s^{-1} \text{ bar}^{-1} & 3.00 \times 10^{5} & 3.29 \times 10^{5} & 3.64 \times 10^{5} \\ k_{-9}, s^{-1} \text{ bar}^{-1} & 3.00 \times 10^{5} & 3.29 \times 10^{5} & 3.64 \times 10^{5} \\ k_{-9}, s^{-1} \text{ bar}^{-1} & 3.00 \times 10^{5} & 3.29 \times 10^{5} & 3.64 \times 10^{5} \\ k_{-9}, s^{-1} \text{ bar}^{-1} & 1.18 \times 10^{7} & 1.25 \times 10^{3} & 1.46 \times 10^{3} & 1.67 \times 10^{3} \\ k_{-1}, s^{-1} \text{ bar}^{-1} & 4.22 \times 10^{3} & 4.81 \times 10^{7} & 1.55 \times 10^{3} \\ k_{-1}, s^{-1} \text{ bar}^{-1} & 4.22 \times 10^{7} & 4.22 \times 10^{7} & 4.22 \times 10^{7} \\ k_{-1}, s^{-1} \text{ bar}^{-1} & 1.18 \times 10^{7} & 1.55 \times 10^{7} & 1.98 \times 10^{7} \\ k_{-1}, s^{-1} \text{ bar}^{-1} & 1.18 \times 10^{7} & 1.55 \times 10^{7} & 1.98 \times 10^{7} \\ k_{-2}, s^{-1} \text{ bar}^{-1} & 1.18 \times 10^{7} & 1.55 \times 10^{7} & 1.98 \times 10^{7} \\ k_{-2}, s^{-1} \text{ bar}^{-1} & 1.18 \times 10^{7} & 1.55 \times 10^{7} & 1.98 \times 10^{7} \\ k_{-2}, s^{-1} \text{ bar}^{-1} & 1.18 \times 10^{7} & 1.55 \times 10^{7} & 1.98 \times 10^{7} \\ $	$49. Z^{-}[O_{2}FeO_{2}NO]^{+}\{M=7\} \leftrightarrow Z^{-}[FeO_{2}NO]^{+}\{M=5\} + O_{2}(g)$					
$ \begin{aligned} & E_{-0}^{\dagger} = 1.5 & A_{-0}, s^{-1} bar^{-1} & 3.07 \times 10^6 & 3.68 \times 10^6 & 4.22 \times 10^6 \\ & & & & & & & & & & & & & & & & & & $		$L_{49} = 3.0$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$E_{-49}^{\dagger} = 1.5$	A_{-49} , s ⁻¹ bar ⁻¹	3.07×10^{6}		
$ E_{50}^{\dagger} = 44.0 \qquad A_{50} \text{ s}^{-1} \qquad 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ E_{-50}^{\dagger} = 0.0 \qquad A_{-50} \text{ s}^{-1} \text{ barr}^{-1} 3.00 \times 10^{5} 3.29 \times 10^{5} 3.64 \times 10^{5} \\ A_{-50} \text{ s}^{-1} \text{ barr}^{-1} 3.00 \times 10^{5} 3.29 \times 10^{5} 3.64 \times 10^{5} \\ A_{-50} \text{ s}^{-1} \text{ barr}^{-1} 3.00 \times 10^{5} 3.29 \times 10^{5} 3.64 \times 10^{5} \\ A_{-50} \text{ s}^{-1} \text{ barr}^{-1} 3.00 \times 10^{5} 3.29 \times 10^{5} 3.64 \times 10^{5} \\ A_{-50} \text{ s}^{-1} \text{ barr}^{-1} 3.00 \times 10^{5} 3.29 \times 10^{5} 3.64 \times 10^{5} \\ A_{-51} \text{ s}^{-1} \text{ barr}^{-1} 3.00 \times 10^{5} 3.29 \times 10^{5} 3.64 \times 10^{5} \\ A_{-51} \text{ s}^{-1} \text{ barr}^{-1} 3.00 \times 10^{5} 3.29 \times 10^{5} 3.64 \times 10^{5} \\ A_{-51} \text{ s}^{-1} \text{ barr}^{-1} 3.00 \times 10^{5} 3.29 \times 10^{5} 3.64 \times 10^{5} \\ A_{-51} \text{ s}^{-1} \text{ barr}^{-1} 4.22 \times 10^{-3} 4.61 \times 10^{-3} 1.00 \times 10^{-1} 2.02 \times 10^{0} \\ A_{-51} \text{ s}^{-1} \text{ barr}^{-1} 4.22 \times 10^{-3} 4.61 \times 10^{3} 1.67 \times 10^{13} \\ A_{-51} \text{ s}^{-1} \text{ barr}^{-1} 4.22 \times 10^{5} 4.61 \times 10^{3} 1.67 \times 10^{13} \\ A_{-51} \text{ s}^{-1} \text{ barr}^{-1} 4.22 \times 10^{5} 4.61 \times 10^{3} 1.67 \times 10^{13} \\ A_{-51} \text{ s}^{-1} \text{ barr}^{-1} 4.22 \times 10^{5} 4.61 \times 10^{3} 4.65 \times 10^{1} 4.65 \times 10^{1} \\ A_{-51} \text{ s}^{-1} \text{ barr}^{-1} 4.22 \times 10^{5} 4.61 \times 10^{3} 4.65 \times 10^{1} 4.65 \times 10^{$	50. $7^{-1}(0.E_2(0.N(0)^{+1}(M-7) \leftrightarrow 7^{-1}(0.E_2(0.1)^{+1}(M-6) + N(0.6))$	Λ H = 12.2				
$ \begin{array}{c} S_{0,0} = 0.0 \\ S_{0,0$	$30. \ E \left[O_2 \Gamma C O_2 \Gamma C O_1 \left\{M - T\right\} \right] \times E \left[O \Gamma C O_2\right] \left\{M - 0\right\} + \Gamma O_2(g)$	$E_{50}^{\dagger} = 44.0$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			k_{50}, s^{-1}			
$\begin{array}{llllllllllllllllllllllllllllllllllll$		$E_{-50}^{\dagger} = 0.0$	A_{-50} , s ⁻¹ bar ⁻¹	3.00×10^5		
$E_{51}^{\dagger} = 40.8 A_{51}, s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} k_{51}, s^{-1} 1.71 \times 10^{-2} 2.65 \times 10^{9} 1.18 \times 10^{2} 1.71 \times 10^{-2} 2.65 \times 10^{9} 1.18 \times 10^{2} 1.71 \times 10^{-2} 2.65 \times 10^{9} 1.18 \times 10^{2} 1.71 \times 10^{-2} 2.65 \times 10^{9} 1.18 \times 10^{2} 1.71 \times 10^{-2} 2.65 \times 10^{9} 1.18 \times 10^{2} 1.71 \times 10^{-2} 2.65 \times 10^{9} 1.18 \times 10^{2} 1.71 \times 10^{-2} 2.65 \times 10^{9} 1.18 \times 10^{2} 1.71 \times 10^{-2} 2.65 \times 10^{9} 1.18 \times 10^{2} 1.71 \times 10^{-2} $	51. $Z^{-}[OFeO_2NO]^{+}\{M = 5\} \leftrightarrow Z^{-}[OFeO]^{+}\{M = 6\} + NO_2(g)$	$\Delta H_{51} = 33.6$				
$ E_{-51}^{\dagger} = 7.2 \qquad A_{-51}, s^{-1} bar^{-1} 4.22 \times 10^{3} 4.81 \times 10^{3} 5.55 \times 10^{3} \\ A_{-51}, s^{-1} bar^{-1} 9.76 \times 10^{9} 2.65 \times 10^{1} 5.86 \times 10^{1} \\ A_{-51}, s^{-1} bar^{-1} 9.76 \times 10^{9} 2.65 \times 10^{1} 5.86 \times 10^{1} \\ A_{-51}, s^{-1} bar^{-1} 9.76 \times 10^{9} 2.65 \times 10^{1} 5.86 \times 10^{1} \\ A_{-51}, s^{-1} bar^{-1} 9.76 \times 10^{9} 2.65 \times 10^{1} 5.86 \times 10^{1} \\ A_{-51}, s^{-1} bar^{-1} 9.76 \times 10^{9} 2.65 \times 10^{1} 5.86 \times 10^{1} \\ A_{-51}, s^{-1} bar^{-1} 9.76 \times 10^{9} 2.65 \times 10^{1} 5.86 \times 10^{1} \\ A_{-51}, s^{-1} bar^{-1} 9.76 \times 10^{9} 2.65 \times 10^{1} 5.86 \times 10^{1} \\ A_{-52}, s^{-1} bar^{-1} 1.18 \times 10^{7} 1.55 \times 10^{7} 1.98 \times 10^{7} \\ A_{-52}^{\dagger} = 0.0 \qquad A_{52}, s^{-1} bar^{-1} 1.18 \times 10^{7} 1.55 \times 10^{7} 1.98 \times 10^{7} \\ A_{-52}^{\dagger} = 38.3 \qquad A_{-52}, s^{-1} 1.18 \times 10^{7} 1.55 \times 10^{7} 1.98 \times 10^{7} \\ A_{-52}^{\dagger} = 38.3 \qquad A_{-52}, s^{-1} 1.18 \times 10^{7} 1.55 \times 10^{7} 1.98 \times 10^{7} \\ A_{-52}^{\dagger} = 1.25 \qquad A_{-52}^{\dagger} s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ A_{-52}^{\dagger} = 14.5 \qquad A_{53}, s^{-1} \qquad 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ A_{-53}^{\dagger} = 14.5 \qquad A_{53}^{\dagger} s^{-1} \qquad 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ A_{-53}^{\dagger} = 14.5 \qquad A_{-53}^{\dagger} s^{-1} abr^{-1} 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ A_{-53}^{\dagger} = 14.5 \qquad A_{-53}^{\dagger} s^{-1} abr^{-1} 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ A_{-53}^{\dagger} = 14.5 \qquad A_{-53}^{\dagger} s^{-1} abr^{-1} 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ A_{-53}^{\dagger} = 1.3 \qquad A_{-54}^{\dagger} s^{-1} \qquad 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ A_{-54}^{\dagger} = 2.5 \qquad A_{-54}^{\dagger} s^{-1} \qquad 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ A_{-54}^{\dagger} = 2.5 \qquad A_{-54}^{\dagger} s^{-1} \qquad 1.55 \times 10^{13} 1.61 \times 10^{13} \\ A_{-54}^{\dagger} = 1.25 \times 10^{13} 1.61 \times 10^{13} 1.61 \times 10^{13} \\ A_{-54}^{\dagger} = 1.25 \times 10^{13} 1.61 \times 10^{13} 1.61 \times 10^{13} \\ A_{-54}^{\dagger} = 1.25 \times 10^{13} 1.61 \times 10^{13} 1.61 \times 10^{13} 1.61 \times 10^{13} \\ A_{-55}^{\dagger} = 0.5 \qquad A_{-55}^{\dagger} s^{-1} \qquad 1.25 \times 10^{13} 1.61 \times 10^{13} 1.61 \times 10^{13} \\ A_{-55}^{\dagger} = 0.5 \qquad A_{-55}^{\dagger} s^{-1} \qquad 1.25 \times 10^{13} 1.61 \times 10^{13} 1.61 \times 10^{13$			A_{51} , s ⁻¹			1.67×10^{13}
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$		E = 7.2	k_{51} , s ⁻¹			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$E_{-51} - 7.2$				
$E_{-52}^{\dagger} = 38.3 A_{-52}, s^{-1} \text{ bar}^{-1} 1.18 \times 10^7 1.55 \times 10^7 1.98 \times 10^7 \\ E_{-52}^{\dagger} = 38.3 A_{-52}, s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ K_{-52}, s^{-1} 1.39 \times 10^{-1} 1.60 \times 10^{13} 1.67 \times 10^{13} \\ K_{-52}, s^{-1} 1.39 \times 10^{-1} 1.60 \times 10^{13} 1.67 \times 10^{13} \\ E_{53}^{\dagger} = 14.5 A_{53}, s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ E_{53}^{\dagger} = 14.5 A_{53}, s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ K_{53}, s^{-1} 6.76 \times 10^7 4.46 \times 10^8 1.87 \times 10^9 \\ E_{-53}^{\dagger} = 0.0 A_{-53}, s^{-1} \text{ bar}^{-1} 1.73 \times 10^6 2.54 \times 10^6 3.57 \times 10^6 \\ E_{54}^{\dagger} = 2.5 A_{54}, s^{-1} 5.32 \times 10^{11} 5.20 \times 10^{11} 5.10 \times 10^{11} \\ E_{-54}^{\dagger} = 3.0 A_{-54}, s^{-1} 5.32 \times 10^{11} 5.20 \times 10^{11} 5.10 \times 10^{11} \\ E_{-54}^{\dagger} = 3.0 A_{-54}, s^{-1} 1.21 \times 10^{12} 1.88 \times 10^{12} 2.55 \times 10^{12} \\ E_{-55}^{\dagger} = 0.5 A_{-54}, s^{-1} 1.21 \times 10^{12} 1.88 \times 10^{12} 1.67 \times 10^{13} \\ E_{-55}^{\dagger} = 0.5 A_{-55}, s^{-1} 1.21 \times 10^{12} 1.85 \times 10^{12} 2.55 \times 10^{12} \\ E_{-55}^{\dagger} = 0.5 A_{-55}, s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ K_{-52}^{\dagger} = 0.5 A_{-55}, s^{-1} 1.73 \times 10^6 2.54 \times 10^6 3.57 \times 10^6 \\ E_{-55}^{\dagger} = 0.5 A_{-55}, s^{-1} 1.73 \times 10^6 2.54 \times 10^6 3.57 \times 10^6 \\ E_{-55}^{\dagger} = 0.5 A_{-55}, s^{-1} 1.21 \times 10^{12} 1.67 \times 10^{13} \\ K_{-52}^{\dagger} = 0.5 A_{-55}, s^{-1} 1.22 \times 10^{13} 1.67 \times 10^{13} \\ K_{-52}^{\dagger} = 0.5 A_{-55}, s^{-1} 1.22 \times 10^{13} 1.67 \times 10^{13} \\ K_{-52}^{\dagger} = 0.5 A_{-55}, s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.70 \times 10^{13} \\ K_{-52}^{\dagger} = 0.5 A_{-55}, s^{-1} 1.25 \times 10^{13} 1.67 \times 10^{13} \\ K_{-53}^{\dagger} = 0.5 A_{-55}^{\dagger} = 0.5 A_{-55}^{\dagger} = 0.5 A_{-55}^{\dagger} = 0.5 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ K_{-52}^{\dagger} = 0.5 A_{-55}^{\dagger} = 0.5 A_{-55}^{\dagger} = 0.5 1.25 \times 10^{13} 1.67 \times 10^{13} \\ K_{-52}^{\dagger} = 0.5 A_{-55}^{\dagger} = 0.5 A_{-55}^{\dagger} = 0.5 1.25 \times 10^{13} 1.46 \times 10^{13} 1.70 \times$	52. $Z^{-}[OFeO_2NO]^{+}\{M=5\} + NO(g) \leftrightarrow Z^{-}[ONOFeO_2NO]^{+}\{M=6\}$			_	_	3.46×10^{4}
$ E_{-52}^{\ddagger} = 38.3 A_{-52}, s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ k_{-52}, s^{-1} 1.39 \times 10^{-1} 1.60 \times 10^{1} 5.71 \times 10^{2} \\ k_{-52}, s^{-1} 1.39 \times 10^{-1} 1.60 \times 10^{1} 5.71 \times 10^{2} \\ k_{-53}, s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ k_{-53}, s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ k_{-53}, s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{2} \\ k_{-53}^{\ddagger} = 14.5 A_{53}, s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ k_{53}, s^{-1} 6.76 \times 10^{7} 4.46 \times 10^{8} 1.87 \times 10^{9} \\ k_{-53}, s^{-1} 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ k_{-53}, s^{-1} 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ k_{-53}, s^{-1} 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ k_{-53}, s^{-1} 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ k_{-53}, s^{-1} 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ k_{-53}, s^{-1} 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ k_{-53}, s^{-1} 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ k_{-54} = 2.5 A_{54}, s^{-1} 5.32 \times 10^{11} 5.20 \times 10^{11} 5.10 \times 10^{11} \\ k_{54}, s^{-1} 6.70 \times 10^{10} 8.80 \times 10^{10} 1.08 \times 10^{11} \\ k_{-54}, s^{-1} 1.21 \times 10^{12} 1.85 \times 10^{12} 2.55 \times 10^{12} \\ k_{-54} = 3.0 A_{-54}, s^{-1} 1.21 \times 10^{12} 1.85 \times 10^{12} 2.55 \times 10^{12} \\ k_{-54} = 0.5 A_{-55}, s^{-1} 1.21 \times 10^{12} 1.85 \times 10^{12} 2.55 \times 10^{12} \\ k_{-55} = 0.5 A_{-55}, s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ k_{-55} = 0.5 A_{-55}, s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ k_{-56} = 0.0 A_{56}, s^{-1} \text{barr} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ k_{-56} = 0.0 A_{56}, s^{-1} \text{barr} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ k_{-56} = 0.0 A_{56}, s^{-1} \text{barr} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ k_{-56} = 0.0 A_{56}, s^{-1} \text{barr} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ k_{-56} = 0.0 A_{56}, s^{-1} \text{barr} 1.25 \times 10^{13} 1.46 \times 10^$		$E_{52}^{\dagger} = 0.0$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$E_{-52}^{\dagger} = 38.3$				
$ E_{53}^{\ddagger} = 14.5 \qquad A_{53}, s^{-1} \qquad 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ k_{53}, s^{-1} \qquad 6.76 \times 10^{7} 4.46 \times 10^{8} 1.87 \times 10^{9} \\ E_{-53}^{\ddagger} = 0.0 \qquad A_{-53}, s^{-1} bar^{-1} 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ k_{-53}, s^{-1} bar^{-1} 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ k_{-53}, s^{-1} bar^{-1} 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ k_{-54}, s^{-1} 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ k_{-54}, s^{-1} 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ k_{-54}, s^{-1} 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ k_{-54}, s^{-1} 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ k_{-54}, s^{-1} 5.32 \times 10^{11} 5.10 \times 10^{11} \\ k_{-54}, s^{-1} 6.70 \times 10^{10} 8.80 \times 10^{10} 1.08 \times 10^{11} \\ k_{-54}, s^{-1} 1.52 \times 10^{13} 1.61 \times 10^{13} 1.70 \times 10^{13} \\ k_{-54}, s^{-1} 1.52 \times 10^{13} 1.61 \times 10^{13} 1.70 \times 10^{13} \\ k_{-54}, s^{-1} 1.21 \times 10^{12} 1.85 \times 10^{12} 2.55 \times 10^{12} \\ k_{-54}^{\ddagger} = 3.0 A_{-54}, s^{-1} 1.21 \times 10^{12} 1.85 \times 10^{12} 2.55 \times 10^{12} \\ k_{-54}^{\ddagger} = 0.0 A_{55}, s^{-1} bar^{-1} 2.46 \times 10^{8} 3.34 \times 10^{8} 4.39 \times 10^{8} \\ k_{-55}, s^{-1} bar^{-1} 2.46 \times 10^{8} 3.34 \times 10^{8} 4.39 \times 10^{8} \\ k_{-55}, s^{-1} bar^{-1} 2.46 \times 10^{8} 3.34 \times 10^{8} 4.39 \times 10^{8} \\ k_{-55}, s^{-1} bar^{-1} 2.46 \times 10^{8} 3.34 \times 10^{8} 4.39 \times 10^{8} \\ k_{-55}, s^{-1} bar^{-1} 2.46 \times 10^{13} 1.46 \times 10^{13} 1.21 \times 10^{13} \\ k_{-56}, s^{-1} bar^{-1} 5.01 \times 10^{7} 6.52 \times 10^{7} 8.28 \times 10^{7} \\ k_{-56}, s^{-1} bar^{-1} 5.01 \times 10^{7} 6.52 \times 10^{7} 8.28 \times 10^{7} \\ k_{-56}, s^{-1} bar^{-1} 5.01 \times 10^{7} 6.52 \times 10^{7} 8.28 \times 10^{7} \\ k_{-56}, s^{-1} bar^{-1} 5.01 \times 10^{7} 6.52 \times 10^{7} 8.28 \times 10^{7} \\ k_{-56}, s^{-1} bar^{-1} 5.01 \times 10^{7} 6.52 \times 10^{7} 8.28 \times 10^{7} \\ k_{-56}, s^{-1} bar^{-1} 5.01 \times 10^{7} 6.52 \times 10^{7} 8.28 \times 10^{7} \\ k_{-56}, s^{-1} bar^{-1} 5.01 \times$			k_{-52} , s ⁻¹	1.39×10^{-1}		5.71×10^{2}
$E_{-53}^{\ddagger} = 0.0 \begin{array}{c} k_{53}, s^{-1} & 6.76 \times 10^7 & 4.46 \times 10^8 & 1.87 \times 10^9 \\ k_{-53}, s^{-1} \text{bar}^{-1} & 1.73 \times 10^6 & 2.54 \times 10^6 & 3.57 \times 10^6 \\ k_{-53}, s^{-1} \text{bar}^{-1} & 1.73 \times 10^6 & 2.54 \times 10^6 & 3.57 \times 10^6 \\ k_{-53}, s^{-1} \text{bar}^{-1} & 1.73 \times 10^6 & 2.54 \times 10^6 & 3.57 \times 10^6 \\ k_{-53}, s^{-1} \text{bar}^{-1} & 1.73 \times 10^6 & 2.54 \times 10^6 & 3.57 \times 10^6 \\ k_{-54}, s^{-1} & 1.73 \times 10^6 & 2.54 \times 10^6 & 3.57 \times 10^6 \\ k_{-54}, s^{-1} & 1.73 \times 10^6 & 2.54 \times 10^6 & 3.57 \times 10^6 \\ k_{-54}, s^{-1} & 1.73 \times 10^6 & 2.54 \times 10^6 & 3.57 \times 10^6 \\ k_{-54}, s^{-1} & 1.73 \times 10^6 & 2.54 \times 10^6 & 3.57 \times 10^6 \\ k_{-54}, s^{-1} & 1.73 \times 10^6 & 2.54 \times 10^6 & 3.57 \times 10^6 \\ k_{-54}, s^{-1} & 1.73 \times 10^6 & 2.54 \times 10^6 & 3.57 \times 10^6 \\ k_{-54}, s^{-1} & 1.73 \times 10^6 & 2.54 \times 10^6 & 3.57 \times 10^6 \\ k_{-54}, s^{-1} & 1.73 \times 10^6 & 2.54 \times 10^6 & 3.57 \times 10^6 \\ k_{-54}, s^{-1} & 1.73 \times 10^6 & 2.54 \times 10^6 & 3.57 \times 10^6 \\ k_{-54}, s^{-1} & 1.73 \times 10^6 & 2.54 \times 10^6 & 3.57 \times 10^6 \\ k_{-54}, s^{-1} & 1.73 \times 10^6 & 2.54 \times 10^6 & 3.57 \times 10^6 \\ k_{-54}, s^{-1} & 1.73 \times 10^6 & 2.54 \times 10^6 & 3.57 \times 10^6 \\ k_{-54}, s^{-1} & 1.73 \times 10^6 & 2.54 \times 10^6 & 3.57 \times 10^6 \\ k_{-54}, s^{-1} & 1.73 \times 10^6 & 2.54 \times 10^6 & 3.57 \times 10^6 \\ k_{-54}, s^{-1} & 1.73 \times 10^6 & 1.52 \times 10^{13} & 1.61 \times 10^{13} & 1.61 \times 10^{13} \\ k_{-54}, s^{-1} & 1.52 \times 10^{13} & 1.61 \times 10^{13} & 1.61 \times 10^{13} & 1.70 \times 10^{13} \\ k_{-55}, s^{-1} bar^{-1} & 1.52 \times 10^{13} & 1.61 \times 10^{13} & 1.61 \times 10^{13} \\ k_{-55}, s^{-1} bar^{-1} & 1.52 \times 10^{13} & 1.40 \times 10^{13} & 1.67 \times 10^{13} \\ k_{-55}, s^{-1} bar^{-1} & 1.25 \times 10^{13} & 1.46 \times 10^{13} & 1.61 \times 10^{13} \\ k_{-55}, s^{-1} bar^{-1} & 1.25 \times 10^{13} & 1.46 \times 10^{13} & 1.21 \times 10^{13} \\ k_{-55}, s^{-1} bar^{-1} & 1.25 \times 10^{13} & 1.46 \times 10^{13} & 1.21 \times 10^{13} \\ k_{-55}, s^{-1} bar^{-1} & 1.25 \times 10^{13} & 1.46 \times 10^{13} & 1.21 \times 10^{13} \\ k_{-56}, s^{-1} bar^{-1} & 1.25 \times 10^{13} & 1.46 \times 10^{13} & 1.21 \times 10^$	53. $Z^{-}[ONOFeO_2NO]^{+}\{M = 6\} \leftrightarrow Z^{-}[FeO_2NO]^{+}\{M = 5\} + NO_2(g)$					
$E_{-53}^{\ddagger} = 0.0 \qquad A_{-53}, s^{-1} bar^{-1} 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ k_{-53}, s^{-1} bar^{-1} 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ k_{-53}, s^{-1} bar^{-1} 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ k_{-53}, s^{-1} bar^{-1} 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ k_{-53}, s^{-1} bar^{-1} 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ k_{-53}, s^{-1} bar^{-1} 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ k_{-54}, s^{-1} 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ k_{-54}, s^{-1} 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ k_{-54}, s^{-1} 1.73 \times 10^{6} 2.54 \times 10^{6} 3.57 \times 10^{6} \\ k_{-54}, s^{-1} 5.32 \times 10^{-2} 4.75 \times 10^{-2} 4.22 \times 10^{-2} \\ k_{-54}, s^{-1} 5.32 \times 10^{11} 5.20 \times 10^{11} 5.10 \times 10^{11} \\ k_{-54}, s^{-1} 1.52 \times 10^{13} 1.61 \times 10^{13} 1.70 \times 10^{13} \\ k_{-54}, s^{-1} 1.21 \times 10^{12} 1.85 \times 10^{12} 2.55 \times 10^{12} \\ k_{-55}, s^{-1} 1.21 \times 10^{12} 1.85 \times 10^{12} 2.55 \times 10^{12} \\ k_{-55}, s^{-1} 1.21 \times 10^{12} 1.85 \times 10^{12} 2.55 \times 10^{12} \\ k_{-55}, s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ k_{-55}, s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.21 \times 10^{13} \\ k_{-55}, s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.21 \times 10^{13} \\ k_{-56}, s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.21 \times 10^{13} \\ k_{-56}, s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ k_{-56}, s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ k_{-56}, s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ k_{-56}, s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ k_{-56}, s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ k_{-56}, s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ k_{-56}, s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ k_{-56}, s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ k_{-56}, s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ k_{-56}, s^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13$		$E_{53}' = 14.5$				
$\begin{array}{llllllllllllllllllllllllllllllllllll$		$E_{-53}^{\dagger} = 0.0$	A_{-53} , s ⁻¹ bar ⁻¹	1.73×10^{6}		
$E_{54}^{\ddagger} = 2.5 \qquad A_{54}, s^{-1} \qquad 5.32 \times 10^{11} \qquad 5.20 \times 10^{11} \qquad 5.10 \times 10^{11} \\ k_{54}, s^{-1} \qquad 6.70 \times 10^{10} \qquad 8.80 \times 10^{10} \qquad 1.08 \times 10^{11} \\ E_{-54}^{\ddagger} = 3.0 \qquad A_{-54}, s^{-1} \qquad 1.52 \times 10^{13} \qquad 1.61 \times 10^{13} \qquad 1.70 \times 10^{13} \\ k_{-54}, s^{-1} \qquad 1.21 \times 10^{12} \qquad 1.85 \times 10^{12} \qquad 2.55 \times 10^{12} \\ 55. Z^{-}[Fe(OH)_{2}]^{+}\{M = 6\} + NO(g) \leftrightarrow Z^{-}[Fe(OH)_{2}]^{+}(ON)\{M = 7\} \qquad A_{55} = 1.1 \qquad K_{55}, bar^{-1} \qquad 3.00 \times 10^{-5} \qquad 3.29 \times 10^{-5} \qquad 3.62 \times 10^{-5} \\ E_{55}^{\ddagger} = 0.0 \qquad A_{55}, s^{-1} bar^{-1} \qquad 2.46 \times 10^{8} \qquad 3.34 \times 10^{8} \qquad 4.39 \times 10^{8} \\ k_{55}, s^{-1} bar^{-1} \qquad 2.46 \times 10^{8} \qquad 3.34 \times 10^{8} \qquad 4.39 \times 10^{8} \\ k_{55}, s^{-1} bar^{-1} \qquad 2.46 \times 10^{8} \qquad 3.34 \times 10^{8} \qquad 4.39 \times 10^{8} \\ k_{55}, s^{-1} bar^{-1} \qquad 2.37 \times 10^{-5} \qquad 2.05 \times 10^{-13} \qquad 1.21 \times 10^{13} \\ k_{-55}, s^{-1} \qquad k_{-55}, s^{-1} \qquad 2.37 \times 10^{-5} \qquad 2.05 \times 10^{-5} \qquad 1.89 \times 10^{-5} \\ k_{56}, s^{-1} bar^{-1} \qquad 5.01 \times 10^{7} \qquad 6.52 \times 10^{7} \qquad 8.28 \times 10^{7} \\ k_{56}, s^{-1} bar^{-1} \qquad 5.01 \times 10^{7} \qquad 6.52 \times 10^{7} \qquad 8.28 \times 10^{7} \\ k_{-56}^{\ddagger} = 2.1 \qquad A_{-56}, s^{-1} \qquad 1.25 \times 10^{13} \qquad 1.46 \times 10^{13} \qquad 1.67 \times 10^{13} \\ k_{-56}^{\ddagger} = 2.1 \qquad A_{-56}, s^{-1} \qquad 1.25 \times 10^{13} \qquad 1.46 \times 10^{13} \qquad 1.67 \times 10^{13} \\ k_{-50} = 2.10 \times 10^{7} \qquad 6.52 \times 10^{7} \qquad 8.28 \times 10^{7} \\ k_{-56}^{\ddagger} = 2.1 \qquad A_{-56}, s^{-1} \qquad 1.25 \times 10^{13} \qquad 1.46 \times 10^{13} \qquad 1.67 \times 10^{13} \\ k_{-50} = 2.10 \times 10^{-5} \qquad 1.25 \times 10^{13} \qquad 1.46 \times 10^{13} \qquad 1.67 \times 10^{13} $	54 Z-FONOE O NOI+CH CO Z-FNO E O NOI+CH CO	4.77		1.73×10^6		
$E_{-54}^{\ddagger} = 3.0 \qquad k_{54}, \text{s}^{-1} \qquad 6.70 \times 10^{10} \qquad 8.80 \times 10^{10} \qquad 1.08 \times 10^{11} \\ E_{-54}^{\ddagger} = 3.0 \qquad A_{-54}, \text{s}^{-1} \qquad 1.52 \times 10^{13} \qquad 1.61 \times 10^{13} \qquad 1.70 \times 10^{13} \\ k_{-54}, \text{s}^{-1} \qquad 1.21 \times 10^{12} \qquad 1.85 \times 10^{12} \qquad 2.55 \times 10^{12} \\ \Delta H_{55} = 1.1 \qquad K_{55}, \text{bar}^{-1} \qquad 3.00 \times 10^{-5} \qquad 3.29 \times 10^{-5} \qquad 3.62 \times 10^{-5} \\ E_{55}^{\ddagger} = 0.0 \qquad A_{55}, \text{s}^{-1} \text{bar}^{-1} \qquad 2.46 \times 10^{8} \qquad 3.34 \times 10^{8} \qquad 4.39 \times 10^{8} \\ k_{55}, \text{s}^{-1} \text{bar}^{-1} \qquad 2.46 \times 10^{8} \qquad 3.34 \times 10^{8} \qquad 4.39 \times 10^{8} \\ k_{55}, \text{s}^{-1} \text{bar}^{-1} \qquad 2.46 \times 10^{8} \qquad 3.34 \times 10^{8} \qquad 4.39 \times 10^{8} \\ k_{55}, \text{s}^{-1} \text{bar}^{-1} \qquad 2.46 \times 10^{13} \qquad 1.46 \times 10^{13} \qquad 1.67 \times 10^{13} \\ k_{-55}^{\ddagger} = 0.5 \qquad A_{-55}, \text{s}^{-1} \qquad 1.25 \times 10^{13} \qquad 1.46 \times 10^{13} \qquad 1.21 \times 10^{13} \\ k_{-55}, \text{s}^{-1} \text{bar}^{-1} \qquad 2.37 \times 10^{-5} \qquad 2.05 \times 10^{-5} \qquad 1.89 \times 10^{-5} \\ k_{56}, \text{s}^{-1} \text{bar}^{-1} \qquad 5.01 \times 10^{7} \qquad 6.52 \times 10^{7} \qquad 8.28 \times 10^{7} \\ k_{56}, \text{s}^{-1} \text{bar}^{-1} \qquad 5.01 \times 10^{7} \qquad 6.52 \times 10^{7} \qquad 8.28 \times 10^{7} \\ k_{-56}^{\ddagger} = 2.1 \qquad A_{-56}, \text{s}^{-1} \qquad 1.25 \times 10^{13} \qquad 1.46 \times 10^{13} \qquad 1.67 \times 10^{13} \\ \text{begin parameters} \qquad 1.07 \times 10^{13} \qquad 1.07 \times 10^{13} \qquad 1.07 \times 10^{13} $	$54. Z^{-}[ONOFeO2NO]^{+}\{M = 6\} \leftrightarrow Z^{-}[NO2FeO2NO]^{+}\{M = 6\}$	$\Delta H_{54} = -1.3$ $F_{54}^{\dagger} = 2.5$				
$E_{-54}^{\ddagger} = 3.0 \qquad A_{-54}, \text{s}^{-1} \qquad 1.52 \times 10^{13} 1.61 \times 10^{13} 1.70 \times 10^{13} \\ k_{-54}, \text{s}^{-1} \qquad 1.21 \times 10^{12} 1.85 \times 10^{12} 2.55 \times 10^{12} \\ \Delta H_{55} = 1.1 \qquad K_{55}, \text{bar}^{-1} \qquad 3.00 \times 10^{-5} 3.29 \times 10^{-5} 3.62 \times 10^{-5} \\ E_{55}^{\ddagger} = 0.0 \qquad A_{55}, \text{s}^{-1} \text{bar}^{-1} \qquad 2.46 \times 10^{8} 3.34 \times 10^{8} 4.39 \times 10^{8} \\ k_{55}, \text{s}^{-1} \text{bar}^{-1} \qquad 2.46 \times 10^{8} 3.34 \times 10^{8} 4.39 \times 10^{8} \\ k_{55}, \text{s}^{-1} \text{bar}^{-1} \qquad 2.46 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ E_{-55}^{\ddagger} = 0.5 \qquad A_{-55}, \text{s}^{-1} \qquad 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ k_{-55}, \text{s}^{-1} \text{bar}^{-1} \qquad 2.37 \times 10^{-5} 2.05 \times 10^{-5} 1.89 \times 10^{-5} \\ E_{56}^{\ddagger} = 0.0 \qquad A_{56}, \text{s}^{-1} \text{bar}^{-1} \qquad 5.01 \times 10^{7} 6.52 \times 10^{7} 8.28 \times 10^{7} \\ k_{56}, \text{s}^{-1} \text{bar}^{-1} \qquad 5.01 \times 10^{7} 6.52 \times 10^{7} 8.28 \times 10^{7} \\ k_{-56}^{\ddagger} = 2.1 \qquad A_{-56}, \text{s}^{-1} \qquad 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ E_{-56}^{\ddagger} = 2.1 \qquad A_{-56}, \text{s}^{-1} \text{bar}^{-1} \qquad 5.01 \times 10^{7} 6.52 \times 10^{7} 8.28 \times 10^{7} \\ k_{-50} = 2.1 \qquad A_{-56}, \text{s}^{-1} \text{bar}^{-1} \qquad 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ \text{A}_{-50} = 10 \times 10^{-5} \text{bar}^{-1} \qquad 5.01 \times 10^{7} 6.52 \times 10^{7} 8.28 \times 10^{7} \\ \text{A}_{-56} = 2.1 \qquad A_{-56}, \text{s}^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ \text{A}_{-50} = 10 \times 10^{-5} \text{bar}^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ \text{A}_{-50} = 10 \times 10^{-5} \text{bar}^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ \text{A}_{-50} = 10 \times 10^{-5} \text{bar}^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ \text{A}_{-50} = 10 \times 10^{-5} \text{bar}^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ \text{A}_{-50} = 10 \times 10^{-5} \text{bar}^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ \text{A}_{-50} = 10 \times 10^{-5} \text{bar}^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.46 \times 10^{13} 1.67 \times 10^{13} \\ \text{A}_{-50} = 10 \times 10^{-5} \text{bar}^{-1} 1.25 \times 10^{13} 1.46 \times 10^{13} 1.46$		L ₅₄ 2.3				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$E_{-54}^{\dagger} = 3.0$	A_{-54} , s ⁻¹			
$E_{55}^{\ddagger} = 0.0 \qquad A_{55}, s^{-1} bar^{-1} \qquad 2.46 \times 10^8 \qquad 3.34 \times 10^8 \qquad 4.39 \times 10^8 \\ k_{55}, s^{-1} bar^{-1} \qquad 2.46 \times 10^8 \qquad 3.34 \times 10^8 \qquad 4.39 \times 10^8 \\ E_{-55}^{\ddagger} = 0.5 \qquad A_{-55}, s^{-1} \qquad 1.25 \times 10^{13} \qquad 1.46 \times 10^{13} \qquad 1.67 \times 10^{13} \\ k_{-55}, s^{-1} \qquad 8.18 \times 10^{12} \qquad 1.01 \times 10^{13} \qquad 1.21 \times 10^{13} \\ k_{-55}, s^{-1} \qquad 8.18 \times 10^{12} \qquad 1.01 \times 10^{13} \qquad 1.21 \times 10^{13} \\ E_{56}^{\ddagger} = 0.0 \qquad A_{56}, s^{-1} bar^{-1} \qquad 2.37 \times 10^{-5} \qquad 2.05 \times 10^{-5} \qquad 1.89 \times 10^{-5} \\ k_{56}, s^{-1} bar^{-1} \qquad 5.01 \times 10^7 \qquad 6.52 \times 10^7 \qquad 8.28 \times 10^7 \\ k_{56}, s^{-1} bar^{-1} \qquad 5.01 \times 10^7 \qquad 6.52 \times 10^7 \qquad 8.28 \times 10^7 \\ E_{-56}^{\ddagger} = 2.1 \qquad A_{-56}, s^{-1} \qquad 1.25 \times 10^{13} \qquad 1.46 \times 10^{13} \qquad 1.67 \times 10^{13} $	55 $7^{-1}[F_{e}(OH)_{e}]^{+1}M = 6$ + $NO(a) \leftrightarrow 7^{-1}[F_{e}(OH)_{e}]^{+1}(ON)$ $M = 7$	$\Lambda H_{cc} = 1.1$				
$E_{-55}^{\dagger} = 0.5 \qquad k_{55}, s^{-1} bar^{-1} \qquad 2.46 \times 10^8 \qquad 3.34 \times 10^8 \qquad 4.39 \times 10^8 \\ E_{-55}^{\dagger} = 0.5 \qquad A_{-55}, s^{-1} \qquad 1.25 \times 10^{13} \qquad 1.46 \times 10^{13} \qquad 1.67 \times 10^{13} \\ k_{-55}, s^{-1} \qquad 8.18 \times 10^{12} \qquad 1.01 \times 10^{13} \qquad 1.21 \times 10^{13} \\ E_{-56}^{\dagger} = 0.0 \qquad K_{56}, bar^{-1} \qquad 2.37 \times 10^{-5} \qquad 2.05 \times 10^{-5} \qquad 1.89 \times 10^{-5} \\ E_{56}^{\dagger} = 0.0 \qquad K_{56}, s^{-1} bar^{-1} \qquad 5.01 \times 10^7 \qquad 6.52 \times 10^7 \qquad 8.28 \times 10^7 \\ E_{-56}^{\dagger} = 2.1 \qquad A_{-56}, s^{-1} \qquad 1.25 \times 10^{13} \qquad 1.46 \times 10^{13} \qquad 1.67 \times 10^{13} $	55.2 [$\Gamma C(OH)_{2}$] $\{M = 0\} + MO(g) = 2 [\Gamma C(OH)_{2}] (OM)\{M = 1\}$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			k_{55} , s ⁻¹ bar ⁻¹	2.46×10^8	3.34×10^8	4.39×10^{8}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$E_{-55}^{\text{f}} = 0.5$				
$E_{56}^{\ddagger} = 0.0$ $A_{56}, s^{-1} bar^{-1}$ 5.01×10^{7} 6.52×10^{7} 8.28×10^{7} $k_{56}, s^{-1} bar^{-1}$ 5.01×10^{7} 6.52×10^{7} 8.28×10^{7} $E_{-56}^{\ddagger} = 2.1$ A_{-56}, s^{-1} 1.25×10^{13} 1.46×10^{13} 1.67×10^{13}	56. $Z^{-}[Fe(OH)_2]^{+}\{M = 6\} + NO(g) \leftrightarrow Z^{-}[Fe(OH)_2]^{+}(NO)\{M = 7\}$	$\Delta H_{56} = -0.9$				
$E_{-56}^{\dagger} = 2.1$ A_{-56} , s ⁻¹ 1.25×10^{13} 1.46×10^{13} 1.67×10^{13}	C ()22 C 3 (0) C () (22 () () () () ()	$E_{56}^{\dagger} = 0.0$	A_{56} , s ⁻¹ bar ⁻¹	5.01×10^{7}	6.52×10^{7}	8.28×10^7
$E_{-56} = 2.1$ A_{-56} , S 1.25×10^{13} 1.46×10^{13} 1.67×10^{13} k_{-56} , S 1.10×10^{13} 1.40×10^{13} 1.67×10^{13		E = 2.1				
		$E_{-56} = 2.1$	A_{-56} , s ⁻¹ k_{-56} , s ⁻¹			

TABLE 1: (Continued)

TABLE 1. (Continued)				T (K)	
reaction	$E^{\ddagger,a} \Delta H^b$ (kcal/mol)	constant	600	700	800
57. $Z^{-}[Fe(OH)_2]^{+}(NO)\{M = 7\} \leftrightarrow Z^{-}[Fe(OH)_2]^{+}(NO)\{M = 5\}$	$\Delta H_{57} = -0.01$	K_{57} , —	5.20×10^{-1}	5.20×10^{-1}	5.19×10^{-1}
	$E_{57}^{\dagger} = 0.1$	A_{57}, s^{-1}	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
	$E_{-57}^{\dagger} = 0.03$	k_{57} , s ⁻¹ A_{-57} , s ⁻¹	1.19×10^{13} 2.35×10^{13}	1.40×10^{13} 2.76×10^{13}	1.61×10^{13} 3.16×10^{13}
	$E_{-57} - 0.03$	k_{-57} , s ⁻¹	2.30×10^{13} 2.30×10^{13}	2.70×10^{13} 2.70×10^{13}	3.10×10^{13} 3.10×10^{13}
58. $Z^{-}[Fe(OH)_{2}]^{+}(NO)\{M = 5\} \leftrightarrow Z^{-}[FeOH]^{+}(trans-HNO_{2})\{M = 5\}$	$\Delta H_{58} = 6.4$	K_{58} , –	2.16×10^{-5}	4.68×10^{-5}	8.29×10^{-5}
30.2 [10(011) ₂] (1(0)[11 3] 2 [10011] (11 11 11 0 ₂)[11 3]	$E_{58}^{\dagger} = 9.7$	A_{58} , s ⁻¹	3.72×10^{12}	3.75×10^{12}	3.77×10^{12}
	50	k{58}, s^{-1}	1.05×10^{9}	3.40×10^{9}	8.20×10^9
	$E_{-58}^{\dagger} = 2.3$	A_{-58} , s ⁻¹	3.22×10^{14}	3.68×10^{14}	4.09×10^{14}
		k_{-58} , s ⁻¹	4.84×10^{13}	7.26×10^{13}	9.89×10^{13}
59. $Z^{-}[Fe(OH)_{2}]^{+}(NO)\{M = 5\} \leftrightarrow Z^{-}[FeOH]^{+}(cis-HNO_{2})\{M = 5\}$	$\Delta H_{59} = 8.7$	K_{59} , –	7.12×10^{-6}	2.04×10^{-5}	4.45×10^{-5}
	$E_{59}^{\dagger} = 11.0$	A_{59}, s^{-1}	1.13×10^{11}	1.06×10^{11}	1.00×10^{11}
	$E_{-59}^{\dagger} = 1.3$	k_{59}, s^{-1} A_{-59}, s^{-1}	1.09×10^7 4.49×10^{12}	3.82×10^7 4.72×10^{12}	9.76×10^7 4.91×10^{12}
	$L_{-59} - 1.3$	k_{-59} , s k_{-59} , s ⁻¹	1.53×10^{12}	1.88×10^{12}	2.19×10^{12}
60. $Z^{-}[FeOH]^{+}(trans-HNO_2)\{M=5\} \leftrightarrow Z^{-}[FeOH]^{+}\{M=5\} +$	$\Delta H_{60} = 5.9$	K_{60} , bar	4.84×10^4	1.00×10^{5} 1.01×10^{5}	1.68×10^{5}
trans-HNO ₂ (g)	$E_{60}^{\dagger} = 7.9$	A_{60} , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
2.67	00	k_{60} , s ⁻¹	1.61×10^{10}	4.87×10^{10}	1.14×10^{11}
	$E_{-60}^{\dagger} = 0.0$	A_{-60} , s ⁻¹ bar ⁻¹	3.33×10^{5}	4.84×10^{5}	6.76×10^{5}
		k_{-60} , s ⁻¹ bar ⁻¹	3.33×10^{5}	4.84×10^{5}	6.76×10^{5}
61. $Z^{-}[FeOH]^{+}(cis-HNO_2)\{M = 5\} \leftrightarrow Z^{-}[FeOH]^{+}\{M = 5\} +$	$\Delta H_{61} = 4.3$	K_{61} , bar	6.45×10^4	1.11×10^5	1.61×10^5
cis-HNO ₂ (g)	$E_{61}^{\dagger} = 6.6$	A_{61} , s ⁻¹	1.25×10^{13}	1.46×10^{13} 1.30×10^{11}	1.67×10^{13}
	$E_{-61}^{\dagger} = 0.0$	k_{61} , s ⁻¹ A_{-61} , s ⁻¹ bar ⁻¹	5.06×10^{10} 7.85×10^{5}	1.30×10^{-6} 1.17×10^{6}	2.68×10^{11} 1.66×10^{6}
	$L_{-61} - 0.0$	k_{-61} , s bar k_{-61} , s ⁻¹ bar k_{-61}	7.85×10^{5} 7.85×10^{5}	1.17×10^6 1.17×10^6	1.66×10^6 1.66×10^6
62. $Z^{-}[FeOH]^{+}\{M = 5\} + N_2O(g) \leftrightarrow Z^{-}[FeOH]^{+}(N_2O)\{M = 5\}$	$\Delta H_{62} = -1.4$	K_{62} , bar ⁻¹	1.40×10^{-4}	1.17×10^{-4} 1.17×10^{-4}	1.05×10^{-4} 1.05×10^{-4}
	$E_{62}^{\ddagger} = 0.0$	A_{62} , s ⁻¹ bar ⁻¹	1.21×10^{8}	1.73×10^{8}	2.35×10^{8}
		k_{62} , s ⁻¹ bar ⁻¹	1.21×10^{8}	1.73×10^{8}	2.35×10^{8}
	$E_{-62}^{\dagger} = 3.2$	A_{-62} , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
		k_{-62} , s ⁻¹	8.65×10^{11}	1.48×10^{12}	2.25×10^{12}
63. $Z^{-}[FeOH]^{+}\{M = 5\} + N_2O(g) \leftrightarrow Z^{-}[FeOH]^{+}(ON_2)\{M = 5\}$	$\Delta H_{63} = -1.8$	K_{63} , bar ⁻¹	3.61×10^{-5}	2.85×10^{-5}	2.45×10^{-5}
	$E_{63}^{\dagger} = 0.0$	A_{63} , s ⁻¹ bar ⁻¹	2.45×10^7	3.42×10^7	4.60×10^7
	$E_{-63}^{\dagger} = 3.5$	k_{63} , s ⁻¹ bar ⁻¹ A_{-63} , s ⁻¹	2.45×10^7 1.25×10^{13}	3.42×10^7 1.46×10^{13}	4.60×10^7 1.67×10^{13}
	$E_{-63} - 5.5$	k_{-63} , s ⁻¹	6.79×10^{11}	1.40×10^{12} 1.20×10^{12}	1.87×10^{12}
64. $Z^{-}[FeOH]^{+}(ON_2)\{M = 5\} \leftrightarrow Z^{-}[OFeOH]^{+}\{M = 5\} + N_2(g)$	$\Delta H_{64} = -16.1$		2.31×10^{10}	3.42×10^9	7.95×10^{8}
2 2 2 3 (2 2) (2 2)	$E_{64}^{\dagger} = 24.0$	A_{64} , s ⁻¹	8.07×10^{11}	8.76×10^{11}	9.40×10^{11}
		k_{64}, s^{-1}	1.49×10^{3}	2.85×10^{4}	2.64×10^{5}
	$E_{-64}^{\dagger} = 38.8$	A_{-64} , s ⁻¹ bar ⁻¹	8.52×10^6	1.06×10^{7}	1.30×10^{7}
		k_{-64} , s ⁻¹ bar ⁻¹	6.43×10^{-8}	8.35×10^{-6}	3.32×10^{-4}
65. $Z^{-}[OFeOH]^{+}\{M = 5\} + N_2O(g) \leftrightarrow Z^{-}[OFeOH]^{+}(N_2O)\{M = 5\}$	$\Delta H_{65} = -0.8$ $E_{65}^{\dagger} = 0.0$	K_{65} , bar ⁻¹	1.25×10^{-4}	1.11×10^{-4}	1.04×10^{-4} 3.60×10^{8}
	$E_{65} - 0.0$	A_{65} , s ⁻¹ bar ⁻¹ k_{65} , s ⁻¹ bar ⁻¹	1.92×10^8 1.92×10^8	2.68×10^8 2.68×10^8	3.60×10^{8} 3.60×10^{8}
	$E_{-65}^{\dagger} = 2.5$	A_{-65} , s ⁻¹	1.92×10^{13} 1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
	2-03 2.0	k_{-65} , s ⁻¹	1.54×10^{12}	2.42×10^{12}	3.46×10^{12}
66. $Z^{-}[OFeOH]^{+}\{M = 5\} + N_2O(g) \leftrightarrow Z^{-}[OFeOH]^{+}(ON_2)\{M = 5\}$	$\Delta H_{66} = -1.5$	K_{66} , bar ⁻¹	5.86×10^{-5}	4.83×10^{-5}	4.29×10^{-5}
	$E_{66}^{\dagger} = 0.0$	A_{66} , s ⁻¹ bar ⁻¹	5.59×10^{7}	7.76×10^{7}	1.04×10^{8}
		k_{66} , s ⁻¹ bar ⁻¹	5.59×10^{7}	7.76×10^{7}	1.04×10^{8}
	$E_{-66}^{\dagger} = 3.1$	A_{-66} , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
67. $7-[OE_2OIII^+(ON)(M-5) \leftrightarrow 7-[OE_2OIII^+(M-5)] + N(\alpha)$	AH205	k_{-66}, s^{-1}	9.54×10^{11}	1.61×10^{12}	2.42×10^{12}
67. $Z^{-}[OFeOH]^{+}(ON_{2})\{M = 5\} \leftrightarrow Z^{-}[O_{2}FeOH]^{+}\{M = 5\} + N_{2}(g)$	$\Delta H_{67} = -20.5$ $E_{67}^{\dagger} = 46.5$	K_{67} , bar A_{67} , s ⁻¹	6.27×10^{13} 5.48×10^{12}	5.42×10^{12} 6.52×10^{12}	8.53×10^{11} 7.54×10^{12}
	$L_{67} - 40.3$	k_{67} , s k_{67} , s ⁻¹	6.10×10^{-5}	1.92×10^{-2}	1.45×10^{0}
	$E_{-67}^{\dagger} = 67.7$	A_{-67} , s ⁻¹ bar ⁻¹	4.70×10^6	5.09×10^6	5.56×10^6
	_ 0/ 0///	k_{-67} , s ⁻¹ bar ⁻¹		3.54×10^{-15}	
68. $Z^{-}[O_2FeOH]^{+}\{M=5\} \leftrightarrow Z^{-}[O_2FeOH]^{+}\{M=7\}$	$\Delta H_{68} = -4.5$	K_{68} , —	6.09×10^{1}	3.57×10^{1}	2.39×10^{1}
	$E_{68}^{\dagger} = 6.0$	A_{68} , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
	_ +	k_{68}, s^{-1}	8.19×10^{10}	1.96×10^{11}	3.84×10^{11}
	$E_{-68}^{\dagger} = 10.5$	A_{-68} , s ⁻¹	8.75×10^{12}	1.02×10^{13}	1.16×10^{13}
60 $7^{-1}(0.\text{FeOH})^{+1}(M-7) \leftrightarrow 7^{-1}(\text{FeOH})^{+1}(M-5) \perp 0 \ (a)$	Λ <i>H</i> — 5 9	k_{-68}, s^{-1}	1.34×10^9 3.58×10^4	5.49×10^9 7.30×10^4	1.61×10^{10} 1.21×10^{5}
69. $Z^{-}[O_2FeOH]^{+}\{M=7\} \leftrightarrow Z^{-}[FeOH]^{+}\{M=5\} + O_2(g)$	$\Delta H_{69} = 5.8$ $E_{69}^{\dagger} = 7.6$	K_{69} , bar A_{69} , s ⁻¹	3.38×10^{4} 7.23×10^{13}	7.30×10^{4} 7.93×10^{13}	1.21×10^{3} 8.50×10^{13}
	269 — 7.0	k_{69} , s ⁻¹	1.22×10^{11}	3.32×10^{11}	7.05×10^{11}
	$E_{-69}^{\dagger} = 0.8$	A_{-69} , s ⁻¹ bar ⁻¹		8.03×10^6	9.58×10^6
	0,	k_{-69} , s ⁻¹ bar ⁻¹	3.40×10^{6}	4.55×10^6	5.82×10^6
70. $Z^{-}[OFeOH]^{+}\{M = 5\} + NO(g) \leftrightarrow Z^{-}[ONOFeOH]^{+}\{M = 6\}$	$\Delta H_{70} = -31.6$	K_{70} , bar ⁻¹	2.09×10^{5}	4.56×10^{3}	2.66×10^{2}
	$E_{70}^{\dagger} = 0.0$	A_{70} , s ⁻¹ bar ⁻¹	2.60×10^{6}	3.42×10^{6}	4.42×10^{6}
	_ +	k_{70} , s ⁻¹ bar ⁻¹	2.60×10^6	3.42×10^6	4.42×10^6
	$E_{-70}^{\dagger} = 32.9$	A_{-70}, s^{-1}	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
		k_{-70} , s ⁻¹	1.24×10^{1}	7.51×10^{2}	1.66×10^{4}

TABLE 1: (Continued)

TABLE 1. (Communical)	$E^{\ddagger,a} \Delta H^b$	T^b		T(K)	
reaction	(kcal/mol)	constant	600	700	800
71. $Z^{-}[ONOFeOH]^{+}\{M = 6\} \leftrightarrow Z^{-}[FeOH]^{+}\{M = 5\} + NO_{2}(g)$	$\Delta H_{71} = 16.8$	K_{71} , bar	4.32×10^{0}	3.32×10^{1}	1.47×10^2
	$E_{71}^{\dagger} = 18.6$	A_{71} , s ⁻¹ k_{71} , s ⁻¹	1.25×10^{13} 2.08×10^{6}	1.46×10^{13} 2.25×10^{7}	1.67×10^{13} 1.37×10^{8}
	$E_{-71}^{\ddagger} = 0.0$	A_{-71} , s ⁻¹ bar ⁻¹		6.80×10^{5}	9.32×10^{5}
		k_{-71} , s ⁻¹ bar ⁻¹	4.81×10^{5}	6.80×10^5	9.32×10^{5}
72. $Z^{-}[OFeOH]^{+}\{M = 5\} + NO(g) \leftrightarrow Z^{-}[FeO]^{+}(trans-HNO_2)\{M = 6\}$	$\Delta H_{72} = -0.2$	K_{72} , bar ⁻¹	1.14×10^{-6}	1.07×10^{-6}	1.05×10^{-6}
	$E_{72}^{\dagger} = 0.0$	A_{72} , s ⁻¹ bar ⁻¹ k_{72} , s ⁻¹ bar ⁻¹	4.28×10^6 4.28×10^6	5.56×10^6 5.56×10^6	7.07×10^6 7.07×10^6
	$E_{-72}^{\ddagger} = 1.4$	A_{-72} , s $^{-1}$	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
	72	k_{-72} , s ⁻¹	3.74×10^{12}	5.19×10^{12}	6.75×10^{12}
73. $Z^{-}[FeO]^{+}(trans-HNO_2)\{M=6\} \leftrightarrow Z^{-}[FeO]^{+}\{M=6\} +$	$\Delta H_{73} = 11.2$	K_{73} , bar	3.08×10^{2}	1.21×10^{3}	3.25×10^{3}
trans-HNO ₂ (g)	$E_{73}^{\dagger} = 13.5$	A_{73} , s ⁻¹ k_{73} , s ⁻¹	1.25×10^{13} 1.55×10^{8}	1.46×10^{13} 9.06×10^{8}	1.67×10^{13} 3.47×10^{9}
	$E_{-73}^{\ddagger} = 0.0$	A_{-73} , s ⁻¹ bar ⁻¹	5.01×10^5	7.48×10^{5}	1.07×10^6
	_ ,3	k_{-73} , s ⁻¹ bar ⁻¹	5.01×10^{5}	7.48×10^{5}	1.07×10^{6}
74. $Z^{-}[OFeOH]^{+}\{M=5\} + trans-HNO_{2}(g) \leftrightarrow$	$\Delta H_{74} = -8.8$	K_{74} , bar ⁻¹	7.84×10^{-6}		1.23×10^{-6}
$Z^{-}[OFeOH]^{+}(trans-HNO_{2})\{M=5\}$	$E_{74}^{\ddagger} = 0.0$	A_{74} , s ⁻¹ bar ⁻¹	3.33×10^4	4.16×10^4 4.16×10^4	5.15×10^4 5.15×10^4
	$E_{-74}^{\dagger} = 9.5$	k_{74} , s ⁻¹ bar ⁻¹ A_{-74} , s ⁻¹	3.33×10^4 1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
	E=/4 7.5	k_{-74} , s ⁻¹	4.25×10^9	1.55×10^{10}	4.18×10^{10}
75. $Z^{-}[OFeOH]^{+}(trans-HNO_{2})\{M = 5\} \leftrightarrow Z^{-}[OFeOH_{2}]^{+}(NO_{2})\{M = 5\}$		K_{75} , —	7.07×10^{0}	5.99×10^{0}	5.30×10^{0}
	$E_{75}^{\ddagger} = 1.9$	A_{75}, s^{-1}	2.06×10^{12}	2.14×10^{12}	2.22×10^{12}
	$E_{-75}^{\dagger} = 3.9$	k_{75} , s ⁻¹ A_{-75} , s ⁻¹	4.02×10^{11} 1.52×10^{12}	5.27×10^{11} 1.47×10^{12}	6.51×10^{11} 1.44×10^{12}
	L=/5 — 3.7	k_{-75} , s ⁻¹	5.68×10^{10}	8.81×10^{10}	1.23×10^{11}
76. $Z^{-}[OFeOH_{2}]^{+}(NO_{2})\{M = 5\} \leftrightarrow Z^{-}[OFeOH_{2}]^{+}(NO_{2})\{M = 7\}$	$\Delta H_{76} = 7.3$	K_{76} , –	6.63×10^{0}	1.59×10^{1}	3.06×10^{1}
	$E_{76}^{\dagger} = 6.8$	A_{76} , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
	$E_{-76}^{\dagger} = 0.8$	k_{76} , s ⁻¹ A_{-76} , s ⁻¹	4.22×10^{10} 1.29×10^{10}	1.11×10^{11} 1.28×10^{10}	2.33×10^{11} 1.30×10^{10}
	$E_{-76} - 0.8$	k_{-76} , s ⁻¹	6.37×10^9	7.00×10^9	7.63×10^9
77. $Z^{-}[OFeOH_{2}]^{+}(NO_{2})\{M = 7\} \leftrightarrow Z^{-}[FeO]^{+}(OH_{2})\{M = 6\} + NO_{2}(g)$	$\Delta H_{77} = 3.7$	K_{77} , bar	1.04×10^{5}	1.66×10^{5}	2.30×10^{5}
	$E_{77}^{\dagger} = 5.2$	A_{77} , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
	$E_{-77}^{\dagger} = 0.0$	k_{77} , s ⁻¹	1.64×10^{11}	3.56×10^{11}	6.47×10^{11} 2.82×10^{6}
	$E_{-77} = 0.0$	A_{-77} , s ⁻¹ bar ⁻¹ k_{-77} , s ⁻¹ bar ⁻¹	$1.58 \times 10^{\circ}$ $1.58 \times 10^{\circ}$	2.14×10^6 2.14×10^6	$2.82 \times 10^{\circ}$ $2.82 \times 10^{\circ}$
78. $Z^{-}[FeO]^{+}(OH_2)\{M=6\} \leftrightarrow Z^{-}[FeO]^{+}\{M=6\} + H_2O(g)^c$	$\Delta H_{78} = 16.3$	K_{78} , bar	1.01×10^{0}	7.35×10^{0}	3.14×10^{1}
	$E_{78}^{\ddagger} = 17.3$	A_{78} , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}
	E ± 0.0	k_{78} , s ⁻¹	6.13×10^6	5.70×10^7	3.09×10^{8}
	$E_{-78}^{\dagger} = 0.0$	A_{-78} , s ⁻¹ bar ⁻¹ k_{-78} , s ⁻¹ bar ⁻¹	6.04×10^{6} 6.04×10^{6}	7.75×10^6 7.75×10^6	9.82×10^6 9.82×10^6
79. $Z^{-}[FeO]^{+}(OH_2)\{M=6\} \leftrightarrow Z^{-}[Fe(OH)_2]^{+}\{M=6\}$	$\Delta H_{79} = -27.1$		1.83×10^9	7.10×10^7	6.26×10^6
t 3 \ 2/t 3 \ t \ /23 t 3	$E_{79}^{\ddagger} = 9.2$	A_{79} , s ⁻¹	2.28×10^{12}	2.18×10^{12}	2.13×10^{12}
	E ± 264	k_{79}, s^{-1}	1.03×10^9	2.97×10^9	6.60×10^9
	$E_{-79}^{\dagger} = 36.4$	A_{-79} , s ⁻¹ k_{-79} , s ⁻¹	1.08×10^{13} 5.63×10^{-1}		9.69×10^{12} 1.05×10^{3}
80. $Z^{-}[OFeO]^{+}\{M = 6\} + N_2O(g) \leftrightarrow Z^{-}[FeO]^{+}(cis-(NO)_2)\{M = 6\}$	$\Delta H_{80} = 24.4$	K_{80} , bar ⁻¹			4.07×10^{-14}
2 (6)	$E_{80}^{\sharp} = 28.2$	A_{80} , s ⁻¹ bar ⁻¹	2.55×10^{6}	3.08×10^{6}	3.65×10^{6}
	.	k_{80} , s ⁻¹ bar ⁻¹		4.91×10^{-3}	
	$E_{-80}^{\dagger} = 4.5$	A_{-80} , s ⁻¹ k_{-80} , s ⁻¹	2.45×10^{13} 5.72×10^{11}		3.01×10^{13} 1.80×10^{12}
81. $Z^{-}[FeO]^{+}(cis-(NO)_{2})\{M = 6\} \leftrightarrow Z^{-}[FeO]^{+}(ON)\{M = 5\} + NO(g)$	$\Delta H_{81} = -6.1$	K_{-80} , s K_{81} , bar	3.40×10^{12}		9.85×10^{11}
= [= = 0] (== (= = 0)/2/[== = 0] = [= = 0] (== 0)/[== = 0] = = = (@)	$E_{81}^{\ddagger} = 9.2$	A_{81} , s ⁻¹	4.78×10^{13}	5.62×10^{13}	6.40×10^{13}
		k_{81}, s^{-1}	2.18×10^{10}	_	2.00×10^{11}
	$E_{-81}^{\dagger} = 16.6$	A_{-81} , s ⁻¹ bar ⁻¹		6.82×10^3 4.54×10^{-2}	6.87×10^3
82. $Z^{-}[FeO]^{+}(ON)\{M = 5\} \leftrightarrow Z^{-}[FeO]^{+}\{M = 6\} + NO(g)$	$\Delta H_{82} = 3.3$	k_{-81} , s ⁻¹ bar ⁻¹ K_{82} , bar	0.40×10^{-3} 2.60×10^{4}	4.54×10^{-2} 4.01×10^{4}	2.03×10^{-1} 5.41×10^{4}
2.2 [reo] (01) [m o] + 10 (g)	$E_{82}^{\dagger} = 4.8$	A_{82} , S^{-1}		1.46×10^{13}	1.67×10^{13}
		k_{82} , s ⁻¹	2.28×10^{11}	4.72×10^{11}	8.28×10^{11}
	$E_{-82}^{\dagger} = 0.0$	A_{-82} , s ⁻¹ bar ⁻¹		1.17×10^7	1.53×10^7
83. $Z^{-}[ONOFeO]^{+}\{M=5\} + N_2O(g) \Leftrightarrow$	$\Delta H_{83} = 22.2$	k_{-82} , s ⁻¹ bar ⁻¹ K_{83} , bar ⁻¹		1.17×10^7 8 33 × 10 ⁻¹³	1.53×10^7 6.22×10^{-12}
85. $Z = [ONOFeO] \cdot \{M = 5\} + N_2O(g) \cdot V$ $Z = [FeONO] \cdot \{(cis - (NO)_2)\} \{M = 5\}$	$E_{83}^{\dagger} = 23.8$	A_{83} , a_{83} , a_{83} , a_{83}	4.06×10^{7}	5.31×10^{7}	6.22×10^{-10} 6.71×10^{7}
[] ((/2/[]]		k_{83} , s ⁻¹ bar ⁻¹	8.37×10^{-2}		2.05×10^{1}
	$E_{-83}^{\ddagger} = 3.2$	A_{-83} , s ⁻¹	2.07×10^{13}	2.29×10^{13}	2.48×10^{13}
94 7-IE-ONO!+(-:- (NO) \((M = 5) \)	A11 - 20	k_{-83}, s^{-1}	1.41×10^{12}		3.30×10^{12}
84. $Z^{-}[FeONO]^{+}(cis-(NO)_{2})\{M = 5\} \leftrightarrow Z^{-}[FeONO]^{+}(ON)\{M = 4\} + NO(g)$	$\Delta H_{84} = -3.0$ $E_{84}^{\dagger} = 6.1$	K_{84} , bar A_{84} , s ⁻¹	1.02×10^{10} 2.59×10^{13}		5.69×10^9 3.25×10^{13}
2 [100110] (011)[m - T] + 110(g)	204 - 0.1	k_{84} , s ⁻¹	1.51×10^{11}	3.59×10^{11}	6.89×10^{11}
	$E_{-84}^{\dagger} = 9.7$	A_{-84} , s ⁻¹ bar ⁻¹	4.92×10^{4}	5.05×10^{4}	5.31×10^{4}
		k_{-84} , s ⁻¹ bar ⁻¹	1.48×10^{1}	4.83×10^{1}	1.21×10^{2}

TABLE 1: (Continued)

TABLE 1. (Continued)						
	$E^{\ddagger,a} \Delta H^b$			T(K)		
reaction	(kcal/mol)	constant	600	700	800	
85. $Z^{-}[FeONO]^{+}(ON)\{M = 4\} \leftrightarrow Z^{-}[FeONO]^{+}\{M = 5\} + NO(g)$	$\Delta H_{85} = 0.04$	K_{85} , bar	8.65×10^4	9.01×10^{4}	9.05×10^4	
	$E_{85}^{\dagger} = 1.7$	A_{85} , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}	
	_ +	k_{85} , s ⁻¹	3.12×10^{12}	4.44×10^{12}	5.89×10^{12}	
	$E_{-85}^{\ddagger} = 0.0$	A_{-85} , s ⁻¹ bar ⁻¹		4.93×10^{7}	6.51×10^7	
96.7 - 100 = 0.01 + (M - 5) + N.O(a) < 2.7 - 100 = 0.01 + (-1 - (NO)) + (M - 5)	A // - 21 2	k_{-85} , s ⁻¹ bar ⁻¹	3.61×10^{7}	4.93×10^7 1.95×10^{-12}	6.51×10^7	
86. $Z^{-}[OFeO_2N]^{+}\{M = 5\} + N_2O(g) \leftrightarrow Z^{-}[FeO_2N]^{+}(cis-(NO)_2)\{M = 5\}$	$E_{86}^{\dagger} = 21.2$	K_{86} , bar ⁻¹ A_{86} , s ⁻¹ bar ⁻¹	4.88×10^{7}	6.48×10^{7}	8.29×10^{7}	
	$L_{86} - 21.6$	k_{86} , s -1 bar -1	5.64×10^{-1}	1.02×10^{1}	9.24×10^{1}	
	$E_{-86}^{\ddagger} = 2.3$	A_{-86} , s ⁻¹	2.47×10^{13}	2.73×10^{13}	2.95×10^{13}	
	00	k_{-86} , s ⁻¹	3.58×10^{12}	5.22×10^{12}	6.93×10^{12}	
87. $Z^{-}[FeO_2N]^+(cis-(NO)_2)\{M=5\} \leftrightarrow$	$\Delta H_{87} = -4.2$		1.07×10^{11}	6.68×10^{10}	4.58×10^{10}	
$Z^{-}[FeO_2N]^{+}(ON)\{M=4\} + NO(g)$	$E_{87}^{\dagger} = 7.9$	A_{87} , s ⁻¹	2.19×10^{13}	2.51×10^{13}	2.80×10^{13}	
	T + 100	k_{87} , s ⁻¹	2.96×10^{10}	8.73×10^{10}	1.98×10^{11}	
	$E_{-87} = 12.9$	A_{-87} , s ⁻¹ bar ⁻¹		1.40×10^4	1.45×10^4	
88. $Z^{-}[FeO_2N]^{+}(ON)\{M=4\} \leftrightarrow Z^{-}[FeO_2N]^{+}\{M=5\} + NO(g)$	$\Delta H_{88} = 0.8$	k_{-87} , s ⁻¹ bar ⁻¹ K_{88} , bar	2.77×10^{-1} 1.09×10^{5}	1.31×10^{0} 1.25×10^{5}	4.31×10^{0} 1.34×10^{5}	
$88. Z [FeO2N] (ON)\{M - 4\} Y Z [FeO2N] \{M - 3\} + NO(g)$	$E_{88}^{\dagger} = 2.3$	A_{88} , S^{-1}	$1.09 \times 10^{1.05}$ 1.25×10^{13}	1.23×10^{13} 1.46×10^{13}	1.67×10^{13}	
	2.3	k_{88} , s ⁻¹	1.76×10^{12}	2.72×10^{12}	3.84×10^{12}	
	$E_{-88}^{\ddagger} = 0.0$	A_{-88} , s ⁻¹ bar ⁻¹		2.18×10^{7}	2.86×10^{7}	
	00	k_{-88} , s ⁻¹ bar ⁻¹	1.62×10^{7}	2.18×10^{7}	2.86×10^{7}	
89. $Z^{-}[OFeO_2NO]^{+}\{M=5\} + N_2O(g) \leftrightarrow$	$\Delta H_{89} = 17.2$	K_{89} , bar ⁻¹			1.74×10^{-10}	
$Z^{-}[FeO_2NO]^{+}(cis-(NO)_2)\{M=5\}$	$E_{89}^{\dagger} = 18.0$	A_{89} , s ⁻¹ bar ⁻¹	4.92×10^{7}	6.55×10^{7}	8.40×10^{7}	
	E	k_{89} , s ⁻¹ bar ⁻¹	1.41×10^{1}	1.61×10^2	1.04×10^3	
	$E_{-89}^{\dagger} = 2.4$	A_{-89} , s ⁻¹	2.29×10^{13}	2.55×10^{13}	2.76×10^{13}	
90. $Z^{-}[FeO_2NO]^+(cis-(NO)_2)\{M=5\} \leftrightarrow$	$\Delta H_{90} = -5.0$	k_{-89}, s^{-1}	2.97×10^{12} 1.24×10^{11}	4.42×10^{12} 7.08×10^{10}	5.96×10^{12} 4.54×10^{10}	
$Z^{-}[FeO_2NO]^{+}(ON)\{M = 4\} + NO(g)$	$E_{90}^{\dagger} = 7.4$	A_{90} , S^{-1}	1.60×10^{13}	1.80×10^{13}	1.99×10^{13}	
E[100](01)[m-4]+10(g)	£90 7.4	k_{90} , s ⁻¹	3.26×10^{10}	8.92×10^{10}	1.91×10^{11}	
	$E_{-90}^{\dagger} = 13.2$	A_{-90} , s ⁻¹ bar ⁻¹		1.63×10^{4}	1.67×10^4	
		k_{-90} , s ⁻¹ bar ⁻¹	2.62×10^{-1}	1.26×10^{0}	4.20×10^{0}	
91. $Z^{-}[FeO_2NO]^{+}(ON)\{M = 4\} \leftrightarrow Z^{-}[FeO_2NO]^{+}\{M = 5\} + NO(g)$	$\Delta H_{91} = 0.8$	K_{91} , bar	1.03×10^{5}	1.18×10^{5}	1.27×10^{5}	
	$E_{91}^{\dagger} = 2.4$	A_{91} , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}	
	E	k_{91}, s^{-1}	1.61×10^{12}	2.52×10^{12}	3.58×10^{12}	
	$E_{-91}^{\ddagger} = 0.0$	A_{-91} , s ⁻¹ bar ⁻¹	1.57×10^7 1.57×10^7	2.14×10^7 2.14×10^7	2.82×10^7 2.82×10^7	
92. $Z^{-}[OFeOH]^{+}\{M=5\} + N_{2}O(g) \leftrightarrow Z^{-}[FeOH]^{+}(cis-(NO)_{2})\{M=5\}$	$\Delta H_{92} = 22.2$				5.21×10^{-12}	
$92.2 \text{ [OFCOII] } \{M = 5\} + 1020(g) = 2 \text{ [FCOII] } (6.65-(100)2)\{M = 5\}$	$E_{92}^{\dagger} = 24.6$	A_{92} , s^{-1} bar ⁻¹	1.18×10^{7}	1.60×10^{7}	2.08×10^{7}	
	292 2	k_{92} , s ⁻¹ bar ⁻¹	1.33×10^{-2}	3.42×10^{-1}	4.03×10^{0}	
	$E_{-92}^{\dagger} = 4.3$	A_{-92} , s ⁻¹	9.79×10^{12}	1.08×10^{13}	1.16×10^{13}	
		k_{-92} , s ⁻¹	2.65×10^{11}	4.88×10^{11}	7.74×10^{11}	
93. $Z^{-}[FeOH]^{+}(cis-(NO)_2)\{M=5\} \leftrightarrow$	$\Delta H_{93} = 0.9$	K_{93} , bar	3.25×10^{8}	3.72×10^{8}	4.03×10^{8}	
$Z^{-}[FeOH]^{+}(ON)\{M=4\} + NO(g)$	$E_{93}^{\ddagger} = 8.5$	A_{93} , s ⁻¹	7.34×10^{12}	8.14×10^{12}	8.83×10^{12}	
	$E_{-93}^{\dagger} = 8.5$	k_{93} , s ⁻¹ A_{-93} , s ⁻¹ bar ⁻¹	5.96×10^9	1.83×10^{10} 2.22×10^4	4.25×10^{10} 2.22×10^4	
	E_{-93} — 8.3	k_{-93} , s ⁻¹ bar ⁻¹	1.84×10^{1}	4.91×10^{1}	1.05×10^{2}	
94. $Z^{-}[FeOH]^{+}(ON)\{M = 4\} \leftrightarrow Z^{-}[FeOH]^{+}\{M = 5\} + NO(g)$	$\Delta H_{94} = -0.1$		1.04×10^{6} 1.01×10^{6}	1.04×10^6	1.04×10^6	
	$E_{94}^{\dagger} = 1.5$	A_{94} , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}	
		k_{94} , s ⁻¹	3.70×10^{12}	5.14×10^{12}	6.69×10^{12}	
	$E_{-94}^{\dagger} = 0.0$	A_{-94} , s ⁻¹ bar ⁻¹		4.94×10^{6}	6.46×10^{6}	
		k_{-94} , s ⁻¹ bar ⁻¹		4.94×10^{6}	6.46×10^6	
95. $Z^{-}[OFeO]^{+}\{M = 6\} + NO_{2}(g) \leftrightarrow Z^{-}[OFeO]^{+}(NO_{2})\{M = 5\}$	$\Delta H_{95} = -2.0$			1.09×10^{-7}		
	$E_{95}^{\dagger} = 6.6$	A_{95} , s ⁻¹ bar ⁻¹	1.74×10^5	2.13×10^5	2.56×10^5	
	$E_{-95}^{\ddagger} = 10.0$	k_{95} , s ⁻¹ bar ⁻¹	6.61×10^2 2.03×10^{13}	1.79×10^3 2.15×10^{13}	3.91×10^3 2.25×10^{13}	
	L=95 - 10.0	k_{-95} , s ⁻¹	4.69×10^9	1.64×10^{10}	4.21×10^{10}	
96. $Z^{-}[OFeO]^{+}(NO_2)\{M = 5\} \leftrightarrow Z^{-}[OFeO_2]^{+}\{M = 4\} + NO(g)$	$\Delta H_{96} = 12.2$		6.31×10^{3}	2.82×10^4	8.49×10^4	
[$E_{96}^{\dagger} = 12.0$	A_{96} , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}	
		k_{96} , s ⁻¹	5.09×10^{8}	2.52×10^{9}	8.50×10^{9}	
	$E_{-96}^{\dagger} = 0.0$	A_{-96} , s ⁻¹ bar ⁻¹		8.92×10^4	1.00×10^{5}	
		k_{-96} , s ⁻¹ bar ⁻¹		8.92×10^4	1.00×10^{5}	
97. $Z^{-}[OFeONO]^{+}\{M = 5\} + NO_{2}(g) \leftrightarrow Z^{-}[OFeONO]^{+}(NO_{2})\{M = 6\}$	$\Delta H_{97} = -1.8$	K_{97} , bar ⁻¹		7.29×10^{-7}	6.31×10^{-7}	
	$E_{97}^{\dagger} = 6.8$	A_{97} , s ⁻¹ bar ⁻¹ k_{97} , s ⁻¹ bar ⁻¹	9.95×10^5 3.30×10^3	1.28×10^6 9.62×10^3	1.62×10^6 2.23×10^4	
	$E_{-97}^{\ddagger} = 10.7$		2.81×10^{13}	9.62×10^{3} 2.90×10^{13}	2.23×10^{13} 2.98×10^{13}	
	2-9/ 10.7	k_{-97} , s k_{-97} , s ⁻¹	3.54×10^9	1.32×10^{10}	3.53×10^{10}	
98. $Z^{-}[OFeONO]^{+}(NO_2)\{M = 6\} \leftrightarrow Z^{-}[O_2FeONO]^{+}\{M = 5\} + NO(g)$	$\Delta H_{98} = 12.3$	K_{98} , bar	5.60×10^{3}	2.54×10^{4}	7.70×10^4	
	$E_{98}^{\ddagger} = 12.4$	A_{98} , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}	
		k_{98} , s ⁻¹	3.65×10^{8}	1.89×10^{9}	6.62×10^9	
	$E_{-98}^{\ddagger} = 0.0$	A_{-98} , s ⁻¹ bar ⁻¹		7.45×10^4	8.59×10^4	
		k_{-98} , s ⁻¹ bar ⁻¹	6.51×10^4	7.45×10^4	8.59×10^4	

TABLE 1: (Continued)

	$E^{\ddagger,a} \Delta H^b$		T(K)			
reaction	(kcal/mol)	constant	600	700	800	
99. $Z^{-}[OFeO_2N]^{+}\{M=5\} + NO_2(g) \leftrightarrow Z^{-}[OFeO_2N]^{+}(NO_2)\{M=6\}$	$\Delta H_{99} = -2.9$	K ₉₉ , bar ⁻¹	6.22×10^{-5}	4.30×10^{-5}	3.39×10^{-5}	
	$E_{99}^{\dagger} = 5.1$	A_{99} , s ⁻¹ bar ⁻¹	1.21×10^{7}	1.63×10^{7}	2.13×10^{7}	
		k_{99} , s ⁻¹ bar ⁻¹	1.70×10^{5}	4.22×10^{5}	8.67×10^{5}	
	$E_{-99}^{\dagger} = 10.3$	A_{-99} , s ⁻¹	1.56×10^{13}	1.63×10^{13}	1.68×10^{13}	
		k_{-99} , s ⁻¹	2.73×10^{9}	9.81×10^{9}	2.56×10^{10}	
100. $Z^{-}[OFeO_2N]^{+}(NO_2)\{M = 6\} \leftrightarrow Z^{-}[O_2FeO_2N]^{+}\{M = 5\} + NO(g)$	$\Delta H_{100} = 16.8$	K_{100} , bar	1.18×10^{1}	9.12×10^{1}	4.13×10^{2}	
	$E_{100}^{\dagger} = 16.9$	A_{100} , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}	
		k_{100} , s ⁻¹	8.48×10^{6}	7.53×10^{7}	3.94×10^{8}	
	$E_{-100}^{\dagger} = 0.0$	A_{-100} , s ⁻¹ bar ⁻¹	7.19×10^{5}	8.25×10^{5}	9.54×10^{5}	
		k_{-100} , s ⁻¹ bar ⁻¹		8.25×10^{5}	9.54×10^{5}	
101. $Z^{-}[OFeO_2NO]^{+}\{M = 5\} + NO_2(g) \leftrightarrow Z^{-}[OFeO_2NO]^{+}(NO_2)\{M = 6\}$	$\Delta H_{101} = -6.8$	K_{101} , bar ⁻¹	2.91×10^{-3}	1.25×10^{-3}	6.89×10^{-4}	
	$E_{101}^{\dagger} = 1.2$	A_{101} , s ⁻¹ bar ⁻¹	1.91×10^{7}	2.56×10^{7}	3.31×10^{7}	
		k_{101} , s ⁻¹ bar ⁻¹	7.24×10^{6}	1.11×10^{7}	1.60×10^{7}	
	$E_{-101}^{\dagger} = 10.3$			1.51×10^{13}	1.55×10^{13}	
		k_{-101} , s ⁻¹	2.49×10^{9}	8.92×10^9	2.32×10^{10}	
102. $Z^{-}[OFeO_2NO]^{+}(NO_2)\{M = 6\} \leftrightarrow Z^{-}[O_2FeO_2NO]^{+}\{M = 5\} + NO(g)$	$\Delta H_{102} = 17.4$	K_{102} , bar	1.15×10^{1}	9.58×10^{1}	4.58×10^{2}	
	$E_{102}^{\dagger} = 17.5$	A_{102} , s ⁻¹	1.25×10^{13}	1.46×10^{13}	1.67×10^{13}	
		k_{102} , s ⁻¹	5.44×10^{6}	5.15×10^{7}	2.83×10^{8}	
	$E_{-102}^{\dagger} = 0.0$	A_{-102} , s ⁻¹ bar ⁻¹		5.38×10^{5}	6.17×10^{5}	
		k_{-102} , s ⁻¹ bar ⁻¹		5.38×10^{5}	6.17×10^{5}	
103. $Z^{-}[HOFeO]^{+}\{M = 5\} + NO_{2}(g) \leftrightarrow Z^{-}[HOFeO]^{+}(NO_{2})\{M = 6\}$	$\Delta H_{103} = -1.4$	K_{103} , bar ⁻¹	1.90×10^{-5}	1.56×10^{-5}		
	$E_{103}^{\dagger} = 6.9$	A_{103} , s ⁻¹ bar ⁻¹	1.12×10^{7}	1.55×10^{7}	2.08×10^{7}	
		k_{103} , s ⁻¹ bar ⁻¹	3.50×10^4	1.11×10^{5}	2.76×10^{5}	
	$E_{-103}^{\dagger} = 10.9$	A_{-103} , s ⁻¹		1.75×10^{13}	1.82×10^{13}	
		k_{-103} , s ⁻¹	1.84×10^{9}	7.12×10^9	1.96×10^{10}	
104. $Z^{-}[HOFeO]^{+}(NO_{2})\{M = 6\} \leftrightarrow Z^{-}[HOFeO_{2}]^{+}\{M = 5\} + NO(g)$	$\Delta H_{104} = 12.2$	1017	2.56×10^{2}	1.14×10^{3}	3.40×10^{3}	
	$E_{104}^{\dagger} = 12.3$	A_{104} , s ⁻¹		1.46×10^{13}	1.67×10^{13}	
		k_{104}, s^{-1}	4.13×10^{8}	2.11×10^{9}	7.27×10^9	
	$E_{-104}^{\ddagger} = 0.0$	A_{-104} , s ⁻¹ bar ⁻¹		1.85×10^{6}	2.14×10^{6}	
		k_{-104} , s ⁻¹ bar ⁻¹	1.61×10^{6}	1.85×10^{6}	2.14×10^{6}	

^a Calculated activation energy including zero-point energy correction. ^b Calculated enthalpy averaged over 600–800 K. ^c The numbers presented in refs 21 and 22 for this reaction are wrong.

TABLE 2: Norm of the Gradient Difference at the Point of Spin-Surface Crossing and Thermally Averaged Landau-Zener Transition Probabilities at a Temperature of 600, 700, and $800~\mathrm{K}^a$

	$ \operatorname{grad}(E_1) $	$P_{\rm LZ} (H_{12} = 395 \text{ J/mol})$			$P_{\rm LZ}$ (F	$H_{12} = 825$.	J/mol)
	$\operatorname{grad}(E_2)$	T =	T =	T =	T =	T =	T =
reaction	(kJ/mol/Å)	600 K	700 K	800 K	600 K	700 K	800 K
1. $Z^{-}[FeO]^{+}\{M=6\} + NO(g) \leftrightarrow Z^{-}[FeONO]^{+}\{M=5\}$	0.446	0.992	0.990	0.988	1.000	1.000	1.000
3. $Z^{-}[FeO]^{+}\{M = 6\} + NO(g) \leftrightarrow Z^{-}[FeO_2N]^{+}\{M = 5\}$	0.446	0.992	0.990	0.988	1.000	1.000	1.000
5. $Z^{-}[FeO]^{+}\{M = 6\} + NO(g) \leftrightarrow Z^{-}[OFeNO]^{+}\{M = 5\}$	0.446	0.992	0.990	0.988	1.000	1.000	1.000
6. $Z^{-}[FeO_2]^{+}\{M = 6\} + NO(g) \leftrightarrow Z^{-}[FeOONO]^{+}\{M = 5\}$	141	0.070	0.066	0.062	0.205	0.195	0.186
7. $Z^{-}[FeOONO]^{+}\{M = 5\} \leftrightarrow Z^{-}[FeO]^{+}\{M = 6\} + NO_{2}(g)$	1.47	0.906	0.893	0.882	0.998	0.998	0.997
8. $Z^{-}[OFeO]^{+}\{M=6\} + NO(g) \leftrightarrow Z^{-}[OFeONO]^{+}\{M=5\}$	514	0.026	0.025	0.024	0.086	0.081	0.077
9. $Z^{-}[OFeONO]^{+}\{M = 5\} \leftrightarrow Z^{-}[FeO]^{+}\{M = 6\} + NO_{2}(g)$	1.47	0.906	0.893	0.882	0.998	0.998	0.997
10. $Z^{-}[OFeO]^{+}\{M = 6\} + NO(g) \leftrightarrow Z^{-}[OFeO_{2}N]^{+}\{M = 5\}$	514	0.026	0.025	0.024	0.086	0.081	0.077
11. $Z^{-}[OFeO_2N]^{+}\{M = 5\} \leftrightarrow Z^{-}[FeO]^{+}\{M = 6\} + NO_2(g)$	1.47	0.906	0.893	0.882	0.998	0.998	0.997
12. $Z^{-}[OFeO]^{+}\{M = 6\} + NO(g) \leftrightarrow Z^{-}[FeO_2NO]^{+}\{M = 5\}$	514	0.026	0.025	0.024	0.086	0.081	0.077
13. $Z^{-}[FeO_2NO]^{+}\{M = 5\} \leftrightarrow Z^{-}[FeO]^{+}\{M = 6\} + NO_2(g)$	1.47	0.906	0.893	0.882	0.998	0.998	0.997
20. $Z^{-}[O_2FeONO]^{+}\{M = 5\} \leftrightarrow Z^{-}[O_2FeONO]^{+}\{M = 7\}$	454	0.034	0.032	0.030	0.108	0.102	0.097
34. $Z^{-}[O_2FeO_2N]^{+}\{M=5\} \leftrightarrow Z^{-}[O_2FeO_2N]^{+}\{M=7\}$	164	0.072	0.068	0.064	0.211	0.201	0.192
48. $Z^{-}[O_2FeO_2NO]^{+}\{M=5\} \leftrightarrow Z^{-}[O_2FeO_2NO]^{+}\{M=7\}$	185	0.065	0.061	0.058	0.192	0.182	0.174
51. $Z^{-}[OFeO_2NO]^{+}\{M = 5\} \leftrightarrow Z^{-}[OFeO]^{+}\{M = 6\} + NO_2(g)$	1.05	0.953	0.945	0.937	1.000	1.000	0.999
57. $Z^{-}[Fe(OH)_2]^{+}(NO)\{M = 7\} \leftrightarrow Z^{-}[Fe(OH)_2]^{+}(NO)\{M = 5\}$	1.87	0.671	0.742	0.725	0.981	0.977	0.973
68. $Z^{-}[O_2FeOH]^{+}\{M=5\} \leftrightarrow Z^{-}[O_2FeOH]^{+}\{M=7\}$	129	0.082	0.078	0.074	0.237	0.225	0.215
76. $Z^{-}[OFeOH_2]^{+}(NO_2)\{M = 5\} \leftrightarrow Z^{-}[OFeOH_2]^{+}(NO_2)\{M = 7\}$	10.1	0.399	0.382	0.367	0.771	0.752	0.736
82. $Z^{-}[FeO]^{+}(ON)\{M = 5\} \leftrightarrow Z^{-}[FeO]^{+}\{M = 6\} + NO(g)$	0.446	0.992	0.990	0.988	1.000	1.000	1.000
85. $Z^{-}[FeONO]^{+}(ON)\{M = 4\} \leftrightarrow Z^{-}[FeONO]^{+}\{M = 5\} + NO(g)$	11.7	0.400	0.383	0.368	0.772	0.753	0.737
88. $Z^{-}[FeO_2N]^{+}(ON)\{M = 4\} \leftrightarrow Z^{-}[FeO_2N]^{+}\{M = 5\} + NO(g)$	5.92	0.567	0.546	0.529	0.907	0.894	0.883
91. $Z^{-}[FeO_2NO]^{+}(ON)\{M = 4\} \leftrightarrow Z^{-}[FeO_2NO]^{+}\{M = 5\} + NO(g)$	12.4	0.381	0.364	0.350	0.751	0.732	0.715
94. $Z^{-}[FeOH]^{+}(ON)\{M = 4\} \leftrightarrow Z^{-}[FeOH]^{+}\{M = 5\} + NO(g)$	2.14	0.815	0.797	0.782	0.991	0.988	0.985

^a Landau-Zener probabilities are calculated for spin-orbit coupling energies of $H_{12} = 395$ and 825 J/mol. The reaction numbers are the same as those in Table 1.

References and Notes

⁽¹⁾ Kapteijn, F.; Rodriguez-Mirasol, J.; Moulijn, J. A. Appl. Catal., B 1996, 9, 25.

⁽²⁾ Mul, G.; Pérez-Ramírez, J.; Kapteijn, F.; Moulijn, J. A. Catal. Lett. ${\bf 2001},~77,~7.$

⁽³⁾ Wood, B. R.; Reimer, J. A.; Bell, A. T. J. Catal. 2002, 209, 151.

- (4) Zhu, Q.; van Teeffelen, R. M.; van Santen, R. A.; Hensen, E. J. M. J. Catal. 2004, 221, 575.
- (5) Oi, J.; Obuchi, A.; Bamwenda, G. R.; Ogata, A.; Yagita, H.; Kushiyama, S.; Mizuno, K. *Appl. Catal.*, B **1997**, *12*, 277.
- (6) Centi, G.; Galli, A.; Montanari, B.; Perathoner, S.; Vaccaria, A. Catal. Today 1997, 35, 113.
- (7) Kögel, M.; Abu-Zied, B. M.; Schwefer, M.; Turek, T. Catal. Commun. 2001, 2, 273.
- (8) Pérez-Ramírez, J.; Kapteijn, F.; Mul, G.; Moulijn, J. A. J. Catal. 2002, 208, 211.
- (9) Boutarbouch, M. N. D.; Cortés, J. M. G.; El Begrani, M. S.; de Lecea, C. S. M.; Pérez-Ramírez, J. *Appl. Catal., B* **2004**, *54*, 115.
- (10) Sang, C.; Kim, B. H.; Lund, C. R. F. J. Phys. Chem. B 2005, 109, 2295.
- (11) Pérez-Ramírez, J.; Mul, G.; Kapteijn, F.; Moulijn, J. A. Kinet. Catal. **2003**, *44*, 639.
- (12) Pérez-Ramírez, J.; Kumar, M. S.; Brückner, A. *J. Catal.* **2004**, *223*, 13.
- (13) Lobree, L. J.; Hwang, I. C.; Reimer, J. A.; Bell, A. T. *J. Catal.* **1999**, *186*, 242.
 - (14) Kucherov, A. V.; Shelef, M. J. Catal. 2000, 195, 106.
- (15) Choi, S. H.; Wood, B. R.; Bell, A. T.; Janicke, M. T.; Ott, K. C. J. Phys. Chem. B **2004**, 108, 8970.
- (16) Choi, S. H.; Wood, B. R.; Ryder, J. A.; Bell, A. T. J. Phys. Chem. B 2003, 107, 11843.
- (17) Pirngruber, G. D.; Luechinger, M.; Roy, P. K.; Cecchetto, A.; Smirniotis, P. J. Catal. 2004, 224, 429.
- (18) Berlier, G.; Ricchiardi, G.; Bordiga, S.; Zecchina, A. J. Catal. 2005, 229, 127.
- (19) Dubkov, K. A.; Ovanesyan, N. S.; Shteinman, A. A.; Starokon, E. V.; Panov, G. I. *J. Catal.* **2002**, *207*, 341.
- (20) Overweg, A. R.; Crajé, M. W. J.; van der Kraan, A. M.; Arends, I. W. C. E.; Ribera, A.; Sheldon, R. A. J. Catal. 2004, 223, 262.
- (21) Heyden, A.; Peters, B.; Bell, A. T.; Keil, F. J. J. Phys. Chem. B **2005**, 109, 1857.
 - (22) Heyden, A.; Bell, A. T.; Keil, F. J. J. Catal. 2005, 233, 26.
- (23) Heyden, A. Theoretical investigation of the nitrous oxide decomposition over iron zeolite catalysts. Ph.D. Thesis, Department of Chemical Engineering, Hamburg University of Technology, 2005.
- (24) Zhu, Q.; Mojet, B. L.; Janssen, R. A. J.; Hensen, E. J. M.; van Grondelle, J.; Magusin, P. C. M. M.; van Santen, R. A. *Catal. Lett.* **2002**, *81*, 205.
- (25) Kiwi-Minsker, L.; Bulushev, D. A.; Renken, A. Catal. Today 2004, 91, 165.
 - (26) Joyner, R.; Stockenhuber, M. J. Phys. Chem. B 1999, 103, 5963.
- (27) Hensen, E. J. M.; Zhu, Q.; Hendrix, M. M. R. M.; Overweg, A. R.; Kooyman, P. J.; Sychev, M. V.; van Santen, R. A. *J. Catal.* **2004**, *221*, 560
- (28) Battiston, A. A.; Bitter, J. H.; Koningsberger, D. C. Catal. Lett. **2000**, *66*, 75.
- (29) Battiston, A. A.; Bitter, J. H.; de Groot, F. M. F.; Overweg, A. R.; Stephan, O.; van Bokhoven, J. A.; Kooyman, P. J.; van der Spek, C.; Vankó, G.; Koningsberger, D. C. *J. Catal.* **2003**, *213*, 251.
- (30) Battiston, A. A.; Bitter, J. H.; Heijboer, W. M.; de Groot, F. M. F.; Koningsberger, D. C. *J. Catal.* **2003**, *215*, 279.
- (31) Battiston, A. A.; Bitter, J. H.; Koningsberger, D. C. J. Catal. 2003, 218, 163.
- (32) Marturano, P.; Drozdová, L.; Kogelbauer, A.; Prins, R. *J. Catal.* **2000**, *192*, 236.
- (33) Marturano, P.; Drozdová, L.; Pirngruber, G. D.; Kogelbauer, A.; Prins, R. *Phys. Chem. Chem. Phys.* **2001**, *3*, 5585.
- (34) Jia, J.; Sun, Q.; Wen, B.; Chen, L. X.; Sachtler, W. M. H. Catal. Lett. 2002, 82, 7.
- (35) Sun, K.; Xia, H.; Hensen, E.; van Santen, R.; Li, C. J. Catal. 2006, 238, 186
- (36) Krishna, K.; Makkee, M. Catal. Lett. 2006, 106, 183.
- (37) Panov, G. I.; Sobolev, V. I.; Kharitonov, A. S. J. Mol. Catal. 1990, 61, 85.
- (38) Chang, Y.-F.; McCarty, J. G.; Zhang, Y. L. Catal. Lett. 1995, 34, 63.
- (39) Nobukawa, T.; Tanaka, S.; Ito, S.; Tomishige, K.; Kameoka, S.; Kunimori, K. Catal. Lett. 2002, 83, 5.
- (40) El-Malki, E. M.; van Santen, R. A.; Sachtler, W. M. H. Microporous Mater. 2000, 35–36, 235.

- (41) Kiwi-Minsker, L.; Bulushev, D. A.; Renken, A. J. Catal. 2003, 219, 273.
 - (42) Pirngruber, G. D. J. Catal. 2003, 219, 456.
- (43) Wood, B. R.; Reimer, J. A.; Bell, A. T.; Janicke, M. T.; Ott, K. C. J. Catal. 2004, 224, 148.
- (44) Pérez-Ramírez, J.; Kapteijn, F. Catal. Commun. 2003, 4, 333.
- (45) Kaucký, D.; Sobalík, Z.; Schwarze, M.; Vondrová, A.; Wichterlová, B. J. Catal. 2006, 238, 293.
- (46) Bulushev, D. A.; Renken, A.; Kiwi-Minsker, L. J. Phys. Chem. B **2006**, 110, 305.
 - (47) Pirngruber, G. D.; Pieterse, J. A. Z. J. Catal. 2006, 237, 237.
- (48) Chen, H.-Y.; Voskoboinikov, T.; Sachtler, W. M. H. J. Catal. 1998, 180, 171
- (49) Grubert, G.; Hudson, M. J.; Joyner, R. W.; Stockenhuber, M. J. Catal. 2000, 196, 126.
- (50) El-Malki, E. M.; van Santen, R. A.; Sachtler, W. M. H. *J. Catal.* **2000**. *196*, 212.
 - (51) Sang, C.; Lund, C. R. F. Catal. Lett. 2000, 70, 165.
 - (52) Sang, C.; Lund, C. R. F. Catal. Lett. 2001, 73, 73.
- (53) Kiwi-Minsker, L.; Bulushev, D. A.; Renken, A. Catal. Today 2005, 110, 191.
 - (54) Nováková, J.; Sobalík, Z. Catal. Lett. 2005, 105, 169.
- (55) Olson, D. H.; Kokotallo, G. T.; Lawton, S. L.; Meier, W. M. J. Phys. Chem. 1981, 85, 2238.
- (56) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.
 - (57) Treutler, O.; Ahlrichs, R. J. Chem. Phys. 1995, 102, 346.
- (58) Koch, W.; Holthausen, M. C. A chemist's guide to density functional theory, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2001.
- (59) Yoshizawa, K.; Shiota, Y.; Yamabe, T. J. Chem. Phys. **1999**, 111, 538
- (60) Zilberberg, I.; Gora, R. W.; Zhidomirov, G. M.; Leszczynski, J. J. Chem. Phys. 2002, 117, 7153.
- (61) Zygmunt, S. A.; Mueller, R. M.; Curtiss, L. A.; Iton, L. E. *THEOCHEM* **1998**, *430*, 9.
 - (62) Furche, F.; Perdew, J. P. J. Chem. Phys. 2006, 124, 044103.
 - (63) Becke, A. D. Phys. Rev. A 1988, 38, 3098.
 - (64) Perdew, J. P. Phys. Rev. B 1986, 33, 8822.
- (65) Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, R. Chem. Phys. Lett. 1995, 242, 652.
- (66) Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. *Theor. Chem. Acc.* **1997**, *97*, 119.
- (67) Schäfer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829.
- (68) Kestner, N. R.; Combariza, J. E. In *Reviews in Computational Chemistry*; Lipkowitz, K. B., Boyd, D. B., Eds.; Wiley-VCH: New York, 1999; Vol. 13.
- (69) Van Duijneveldt, F. B.; van Duijnevelde-van de Rijdt, J. G. C. M.; van Lenthe, J. H. *Chem. Rev.* **1994**, *94*, 1873.
- (70) Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Chem. Phys. Lett. 1989, 162, 165.
- (71) Ahlrichs, R. v.; Armin, M. In *Methods and Techniques in Computational Chemistry: METECC-95*; Clementi, E., Corongiu, G., Eds.; STEF: Calgari, 1995.
- (72) Peters, B.; Heyden, A.; Bell, A. T.; Chakraborty, A. J. Chem. Phys. **2004**, 120, 7877.
- (73) Heyden, A.; Bell, A. T.; Keil, F. J. J. Chem. Phys. 2005, 123, 224101.
- (74) McQuarrie, D. A. Statistical Mechanics; Harper Collins Publisher: New York, 1973.
 - (75) Stern, A. E.; Eyring, H. J. Chem. Phys. 1935, 3, 778.
 - (76) Danovich, D.; Shaik, S. J. Am. Chem. Soc. 1997, 119, 1773.
- (77) Nobukawa, T.; Yoshida, M.; Kameoka, S.; Ito, S.; Tomishige, K.; Kunimori, K. Stud. Surf. Sci. Catal. 2004, 154, 2514.
 - (78) Che, M.; Tench, A. J. Adv. Catal. 1983, 32, 1.
- (79) Bulushev, D. A.; Kiwi-Minsker, L.; Renken, A. J. Catal. 2004, 222, 389.
- (80) Pérez-Ramírez, J. Catalyzed N_2O activation. Promising (new) catalysts for abatement and utilization; Ph.D. Thesis, Technische Universiteit Delft, 2002.
- (81) Gonzalez, M.; Valero, R.; Sayos, R. Chem. Phys. Lett. 2001, 343, 119.
 - (82) http://www.hlrn.de.