Subspaces and Dimension

Lecture 3

Proposition 1. Span(S) is a subspace of V

Lecture 4

Lemma 1. $v \in \operatorname{Span}(S) \iff \operatorname{Span}(S) = \operatorname{Span}(S \cup \{v\})$

Theorem 1. The following are equivalent (and the definition of a basis)

- 1. S is a minimal spanning set
- 2. S is maximally linearly independent
- 3. Every $v \in V$ can be written as a unique linear combination of elements in S

Lecture 5

Lemma 2. (Steinitz) Let $A = \{v_1, \ldots, v_m\}$, $B = \{w_1, \ldots, w_n\}$ be linearly independent sets in V with $m \geq n$. For every $0 \leq j \leq n$, we can renumber elements of B such that the following set is linearly independent: $\{v_1, v_2, \ldots, v_j, w_{j+1}, \ldots, w_m\}$

Theorem 2. Assume $S = \{s_1, \ldots, s_n\}$ is a basis for V, then every other basis V has n elements.

Remark 1.

- 1. Dimension depends on V, not the choice of basis
- 2. Suppose V is a vector space with dimension n. If T is a linearly independent set in V, then $\dim(T) \leq n$
- 3. Any linearly independent set can be completed to a basis
- 4. $W \subseteq V$ is a subspace, then $\dim(W) \leq \dim(V)$ with equality iff W = V

Lecture 6

 $B = \{b_1, \ldots, b_n\}$ and $C = \{c_1, \ldots, c_n\}$ are bases of V. Define the following:

$$b_k = \sum_{i=1}^n m_{ik} c_i, \quad {}_{C}M_B = \begin{bmatrix} m_{11} & m_{12} & \cdots & m_{1n} \\ m_{21} & m_{22} & \cdots & m_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} & m_{n2} & \cdots & m_{nn} \end{bmatrix}$$

Theorem 3. For any $v \in V$, $[v]_C = {}_C M_B[v]_B$

Remark 2. Let f be a linear map, $f: V \to W$

- 1. $f(0_V) = 0_w$
- 2. $Ker(f) = \{v \in V \mid f(v) = 0\}$ is a subspace of V
- 3. $\operatorname{Im}(f) = \{f(v) \mid v \in V\}$ is a subspace of W

Theorem 4. Let V and W be vector spaces over \mathbb{F} . Let $B = \{b_1, \ldots, b_n\}$ be a basis for V and let $\{t_1, \ldots, t_n\}$ be any elements of W. Then there exists a unique linear map such that $f(b_i) = t_i$ for all $i = 1, \ldots, n$ (Note: this does not require W to be finite dimensional)

Theorem 5. Let V be a finite dimensional vector space, then $V \cong \mathbb{F}^n$

Corollary 1. If $T: V \to W$ is an isomorphism and $B = \{b_1, \ldots, b_n\}$ be a basis of V. Then $\{T(b_1), \ldots, T(b_n)\}$ is a basis for W (in particular, $\dim(V) = \dim(W)$.

Theorem 6. Lecture 8

Let $T:V\to W$ and V finite dimensional. If $\mathrm{Im}(T)$ is finite dimensional. Then

$$\dim(V) = \dim(\operatorname{Ker}(T)) + \dim(\operatorname{Im}(T))$$

Theorem 7. (First Iso) Let $T: V \to W$ be a linear surjective map. then $V/\text{Ker}(T) \cong W$

Theorem 8. $W_1, W_2 \subseteq V$ are subspaces. Then

$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$$

Proposition 2. Let $f: V \to W$ be a linear map and $\dim(V) = \dim(W)$. Then f is an isomorphism if f is surjective or injective

Lecture 9

Theorem 9. (Fitting's Lemma) Let V be finite dimensional and $T:V\to V$ be a linear operator. Then there exists a decomposition $V=U\oplus W$ such that

- 1. U and W are T-invariant subspaces of V
- 2. $T|_U$ is nilpotent
- 3. $T|_W$ is an isomorphism

Theorem 10.

1. Let $U, W \subseteq V$ be subspaces such that $V = U \oplus W$. Then we can define the following map as a projection:

$$P:V\to V,\quad u+w\mapsto u\quad [(u,w)\mapsto (u,0)]$$

2. If $P: V \to V$ is any projection operator and $U = \operatorname{Im}(P)$ and $W = \operatorname{Ker}(P)$, then $V = U \oplus W$ and P(v) := P(u+w) = u

Linear Maps and Matrices

Lecture 10

Theorem 11. Let $T: V \to W$ be a linear map with B being a basis for V (of size n) and C being a basis of W of size m.

- 1. There exists a unique $m \times n$ matrix $C[T]_B$ such that: $[Tv]_C = C[T]_B \cdot [v]_B$ for all $v \in V$
- 2. If $S, T \in \text{Hom}(V, W)$, then $C[S + T]_B = C[S]_B + C[T]_B$ and $C[\lambda T]_B = \lambda_C[T]_B$
- 3. For every $M \in M_{m \times n}(\mathbb{F})$, there is a linear map $T : V \to W$ such that $C[T]_B = M$. This implies that

$$\operatorname{Hom}(V, W) \to M_{m \times n}(\mathbb{F}), \quad T \mapsto {}_{C}[T]_{B}$$

is an isomorphism

4. If $R: W \to U$, with D being a basis for U, then $D[R \circ T]_B = D[R]_C \cdot C[T]_B$

Determinants

Lecture 11

Theorem 12. Let $n \geq 2$. There exists a unique group homomorphism, "sgn" such that

$$\operatorname{sgn}: S_n \to \{\pm 1\}$$

(with respect to multiplication) such that sgn((kl)) = -1

Lecture 12

Theorem 13. Let \mathbb{F} be a field. There exist a unique map, $\det: M_n(\mathbb{F}) \to \mathbb{F}$ such that

- 1. $\det(I_n) = 1_{\mathbb{F}}$
- 2. det is a multilinear map i.e.

$$\det(v_1,\ldots,v_i+\lambda v_i',\ldots,v_n)=\det(v_1,\ldots,v_i,\ldots,v_n)+\lambda\det(v_1,\ldots,v_i',\ldots,v_n)$$

3. det(A) = 0 if A has an identical pair of columns.

Corollary 2. For all $\tau \in S_n$,

$$\det(v_1,\ldots,v_i,\ldots,v_n) = \det(v_{\tau(1)},\ldots,v_{\tau(i)},\ldots,v_{\tau(n)}) = \operatorname{sgn}(\tau)\det(v_1,\ldots,v_i,\ldots,v_n)$$

Lecture 13

Remark 3. There is an injective group homomorphism $S_n \to GL_2(\mathbb{F})$ defined by sending $\sigma \mapsto T_{\sigma}$, where T_{σ} is defined as: $T_{\sigma}(e_i) = e_{\sigma(i)}$. (Exercise: check this is a group homomorphism)

Theorem 14. For any $A, B \in M_n(\mathbb{F})$, $\det(AB) = \det(A) \det(B)$

Theorem 15. $A^{ij} = (-1)^{i+j} A_{ij}$

Corollary 3.

$$det(A) = a_{1j}A^{1j} + \dots + a_{nj}A^{nj}, forall j \in 1, \dots, n$$
$$= a_{i1}A^{i1} + \dots + a_{in}A^{in}, forall i \in 1, \dots, n$$

Theorem 16. Define $Adj(A) = (c_{ij})$, where $c_{ij} = A^{ji}$, then

$$Adj(A)A = AAdj(A) = det(A)I_n$$

Systems of Linear Equations

Lecture 15

Corollary 4. Any homogeneous system on m equations with n unknowns acn be reduced to a system of m' equations with n unknowns, with $m' \leq n$.

Lecture 16

Remark 4.

- Every matrix is equivalent by row reduction (row equivalent) to a unique matrix in reduced echelon form
- Two matrices have the same row space \iff they are row equivalent

Theorem 17. Let $A \in M_{m \times n}(\mathbb{F})$, then $rk_R(A) = rk_C(A)$ (dimension of span of columns is equal to the dimension of span of rows of a matrix)

Corollary 5. Dimension of space of solutions: $n - rk_R(A)$

Theorem 18. (Cramer's Rule) Let $A \in M_n(\mathbb{F})$ with non-zero determinant. Then there exists a unique solution x_1, x_2, \ldots, x_n to a system Ax = b given by

$$x_i = \frac{\det(A_i)}{\det(A)} =: \frac{\det([v_1|v_2|\dots|v_{i-1}|b|v_{i+1}|\dots|v_n])}{\det(A)}$$

Lecture 17

Corollary 6. Let $A \in M_n(\mathbb{F})$ and EA is in reduced echelon form. Then A is invertible iff $EA = I_n$

Dual Spaces

Lecture 18

Remark 5. By Corollary 3.8.2 in Goren's notes,

$$\dim(\operatorname{Hom}(V, W)) = \dim(V)\dim(W).$$

This implies that $V^* := \text{Hom}(V, \mathbb{F})$ (space of linear maps from V to \mathbb{F}) has dimension equal to the dimension of V

Proposition 3. Let V be a finite dimensional space with a basis $B = \{b_1, \ldots, b_n\}$. Then there exists a unique basis $B^* = \{f_1, \ldots, f_n\}$ of V^* such that

$$f_i(b_j) = \delta_{ij}$$

Proposition 4. There exists a natural isomorphism such that $V \cong V^*$

Lecture 19

Proposition 5. Let U^{\perp} be the annihilator of $U \subseteq V$ (a finite dimension space), then:

- U^{\perp} is a subspace
- $\bullet \ \ U \subseteq W \subseteq V \implies W^\perp \subseteq U^\perp$
- $\dim(U^{\perp}) = \dim(V) \dim(U)$
- $(U^{\perp})^{\perp} = U$
- $(U_1 + U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp}$
- $(U_1 \cap U_2)^{\perp} = U_1^{\perp} + U_2^{\perp}$

Proposition 6. Let $U \subset V$ (finite dimensional). There exists a natural isomorphism such that $U^* \cong V^*/U^{\perp}$ (where $U^{\perp} \cong (V/U)^*$)

Lecture 20

Proposition 7. Let T be a linear map between finite dimension spaces V and W and let T^* denote the "dual map". Then

- 1. $T^{\star\star} = T$
- 2. If B is a basis for V and C is a basis for W, then (lowercase t denotes transpose):

$$_{B^{\star}}[T^{\star}]_{C^{\star}} = _{C}[T]_{B}^{t}$$

- 3. $\operatorname{Im}(T^{\star}) = (\ker(T))^{\perp}$
- 4. $\ker(T^{\star}) = (\operatorname{Im}(T))^{\perp}$

Inner Product Spaces

Theorem 19. (Cauchy-Schwarz)Let V be an inner product space. For all $u, v \in V$,

$$|\langle u, v \rangle| \le ||u|| \cdot ||v||$$

Lecture 21

Proposition 8. $v \mapsto ||v||$ is a function such that

- $||v|| \ge 0$ with equality if and only if v = 0
- $||\alpha v|| = |\alpha| ||v||$
- $||u + v|| \le ||u|| + ||v||$

Corollary 7. d(u, v) is a function such that

- $d(u,v) \ge 0$ with equality if and only if v=u
- d(u,v) = d(v,u)
- d(u, v) < d(u, w) + d(w, v)

Theorem 20. (Gram-Schmidt) Let $\{s_1, \ldots, s_n\}$ be a basis for V. Then there exists an orthonormal basis $\{v_1, \ldots, v_n\}$ such that

$$\operatorname{span}(\{s_1,\ldots,s_n\}) = \operatorname{span}(\{v_1,\ldots,v_n\})$$

Lecture 22

Proposition 9. Let $U \subseteq V$ be finite dimensional vector spaces and let U^{\perp} denote the orthogonal complement to U. Then:

$$V = U \oplus U^{\perp}, \quad (U^{\perp})^{\perp} = U$$

Theorem 21. If $\{v_1, \ldots, v_r\}$ be an orthonormal basis for U, then

- 1. $P(v) = \sum_{i=1}^{r} \langle v, v_i \rangle v_i$
- $2. \ v P(v) \in U^{\perp}$
- 3. $P(v) \in U$ is the closest vector in U to $v \in V$

where $P: V \to U$ denotes the orthogonal projection onto U

Eigenvalues

Lecture 23

Theorem 22. If $A \sim B$, then $\Delta_A(t) = \Delta_B(t)$

Theorem 23. $\Delta_A(\lambda) = 0 \iff \lambda$ is an eigenvalue for T (where A is a matrix representing $T: V \to V$; they have the same characteristic polynomial).

Proposition 10. If $A \in M_n(\mathbb{F})$, then $\Delta_A(t) = t^n - \text{Tr}(A)t^{n-1} + \cdots + (-1)^n \det(A)$

Remark 6. $\Delta_A(t)$ is independent of basis

Lemma 3. $1 \le m_g \le m_a \le n$ for a given eigenvalue

Theorem 24. A is diagonalizable iff there exists a basis B such that $_B[T]_B$ is diagonal (with just eigenvalues) iff V has a basis of eigenvectors [do!]

Theorem 25. dim $(V) < \infty$ with $T: V \to V$. Then T is diagonalizable if and only if $m_g(\lambda) = m_a(\lambda)$ for all λ of T.

Lecture 25

Lemma 4. $A \in M_n(\mathbb{F})$ with $f \in \mathbb{F}[t]$ monic. Then

$$(tI_n - A)(B_a t^a + B_{a-1} t^{a-1} + \dots + B_0) = f(t)I_n \iff f(A) = 0$$

for some $B_a, B_{a-1}, \ldots, B_0 \in M_n(\mathbb{F})$.

Theorem 26. (Cayley Hamilton) $A \in M_n(\mathbb{F})$, then $\Delta_A(A) = 0$.

Proposition 11. $m_A(t)$ is a monic polynomial of minimal degree such that $m_A(A) = 0$. Then

- 1. If f(A) = 0 for some $f \in \mathbb{F}[t]$, then $m_A(t)|f(t)$
- 2. $m_A(t) \mid \Delta_A(t) \mid (m_a(t))^n$

Lecture 26

Lemma 5. Suppose $f \in \mathbb{F}[t]$ satisfies f(T) = 0 (i.e. $m_T(t)|f(t)$) and factors f(t) = g(t)h(t) with gcd(f,h) = 1. Then

- 1. $\ker(g(T))$ and $\ker(h(T))$ are T-invariant,
- 2. $V = \ker(g(T)) \oplus \ker(h(T))$ with $\ker(g(T)) = \operatorname{Im}(h(T))$ and $\ker(h(T)) = \operatorname{Im}(g(T))$.
- 3. Assume $f(t) = m_T(t)$ then we also get

$$g(t) = \min \text{ poly } T\big|_{\ker(g(T))}, \quad h(t) = \min \text{ poly } T\big|_{\ker(h(T))}$$

Theorem 27. Let $\dim(V) < \infty$ and $T: V \to V$ with

$$m_T(t) = f_1(t)^{n_1} \cdots f_r(t)^{n_r}$$

with f_i irreducible and distinct. Set $W_i = \ker(f_i(T)^{n_i})$ then

- 1. W_i is T-invariant i.e. $T(W_i) \subseteq W_i$
- 2. $V = W_1 \oplus \cdots \oplus W_r$ i.e. every $v \in V$ can be written uniquely as

$$v = w_1 + \dots + w_r, \quad w_i \in W_i$$

3. $f_i(t)^{n_i}$ is the minimal polynomial of

$$T_i := T|_{W_i} : W_i \to W_i.$$

Theorem 28. A matrix A is diagonalizable:

- 1. iff $\Delta_A(t)$ can be split into linear factors with $m_a(\lambda) = m_g(\lambda)$ for all λ ,
- 2. iff $\Delta_A(t)$ plits into distinct linear factors

Remark 7. Method 1 and Method 2 (proof is exercise kms) for computing if a matrix is diagonalizable

Jordan Canonical Form

Lecture 28

Proposition 12. Let $U:V\to V$ be nilpotent (with V finite dimensional). Then there exists a basis B such that $_B[U]_B$ is block diagonal with standard nilpotent matrices.

Theorem 29. Let $T: V \to V$ such that

$$\Delta_T(t) = (t - \lambda_1)^{n_1} \cdots (t - \lambda_r)^{n_r}; \quad m_T(t) = (t - \lambda_1)^{m_1} \cdots (t - \lambda_r)^{m_r}.$$

Then there exists a basis B such that $_B[T]_B$ is block diagonal with Jordan blocks such that

- 1. The maximal block size for λ_i is m_i
- 2. Total size of blocks for λ_i is n_i
- 3. Number of blocks for λ_i is $m_g(\lambda_i)$
- 4. Number of blocks for λ_i of size b is given by

$$2\mathrm{null}(U_i^b) - (\mathrm{null}(U_i^{b-1}) + \mathrm{null}(U_i^{b+1}))$$

Lecture 29

Examples

Applications (Chapter 10)

Lecture 30

Let $\dim(V) < \infty$ and $T: V \to V$ is a linear operator. Then there exists a unique operator (adjoint operator)

$$T^*: V \to V$$
, s.t $\langle Tu, v \rangle = \langle u, T^*v \rangle$, $\forall u, v \in V$.

Further, if B is an orthonormal basis, then $[T^*]_B = [T]_B^* = \overline{[T]_B^t}$

Lecture 31

Theorem 30. Let $\dim(V) < \infty$ and consider a self-adjoint $T: V \to V$. Then every eigenvalue is real and if $\lambda \neq \mu$ (distinct eigenvalues) then $E_{\lambda} \perp E_{\mu}$

Lecture 32

Let $\dim(V) < \infty$ and $T: V \to V$ be self-adjoint. Then there exists an orthonormal basis B such that $[T]_B$ is diagonal.

Corollary 8. If A is hermitian, there exists a unitary matrix U such that U^*AU is diagonal [over \mathbb{R} , symmetric matrices are always diagonal]

Lecture 33

Theorem 31. Let $T: V \to V$ be a normal operator. Then there exists an orthonormal basis B such that $[T]_B$ is diagonal.

Remark 8. A normal operator gives the following decomposition:

$$V = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_r}$$

with $E_{\lambda_i} \perp E_{\lambda_j}$ if $\lambda_i \neq \lambda_j$.

Lecture 34