ECE/MATH 520, Spring 2008

Exam 2: Due Session 26

Name:	75 mins.; Total 50 pts
	, , , , , , , , , , , , , , , , , , ,

1. (16 pts.) The purpose of this question is to derive a recursive least-squares algorithm where we *remove* (instead of add) a data point. To formulate the algorithm, suppose we are given matrices A_0 and A_1 such that

$$m{A}_0 = egin{bmatrix} m{A}_1 \ m{a}_1^T \end{bmatrix},$$

where $\boldsymbol{a}_1 \in \mathbb{R}^n$. Similarly, suppose vectors $\boldsymbol{b}^{(0)}$ and $\boldsymbol{b}^{(1)}$ satisfy

$$m{b}^{(0)} = egin{bmatrix} m{b}^{(1)} \\ b_1 \end{bmatrix},$$

where $b_1 \in \mathbb{R}$. Let $\boldsymbol{x}^{(0)}$ be the least-squares solution associated with $(\boldsymbol{A}_0, \boldsymbol{b}^{(0)})$, and $\boldsymbol{x}^{(1)}$ the least-squares solution associated with $(\boldsymbol{A}_1, \boldsymbol{b}^{(1)})$. Our goal is to write $\boldsymbol{x}^{(1)}$ in terms of $\boldsymbol{x}^{(0)}$ and the "removed" data point (\boldsymbol{a}_1, b_1) . As usual, let \boldsymbol{G}_0 and \boldsymbol{G}_1 be the Grammians associated with $\boldsymbol{x}^{(0)}$ and $\boldsymbol{x}^{(1)}$, respectively.

- a. Write down expressions for the least-squares solutions $x^{(0)}$ and $x^{(1)}$ in terms of A_0 , $b^{(0)}$, A_1 , and $b^{(1)}$.
- b. Derive a formula for G_1 in terms of G_0 and a_1 .
- c. Let $P_0 = G_0^{-1}$ and $P_1 = G_1^{-1}$. Derive a formula for P_1 in terms of P_0 and a_1 . (The formula must not contain any matrix inversions.)
- d. Derive a formula for $\boldsymbol{A}_0^T \boldsymbol{b}^{(0)}$ in terms of \boldsymbol{G}_1 , $\boldsymbol{x}^{(0)}$, and \boldsymbol{a}_1 .
- e. Finally, derive a formula for $x^{(1)}$ in terms of $x^{(0)}$, P_1 , a_1 , and b_1 . Use this and part c to write a recursive algorithm associated with successive removals of rows from $(A_k, b^{(k)})$.

2. (10 pts.) Use the penalty method to solve the following problem analytically:

minimize
$$x_1^2 + 2x_2^2$$

subject to $x_1 + x_2 = 3$.

Hint: Use the penalty function $P(x) = (x_1 + x_2 - 3)^2$. The solution you find must be exact, not approximate.

3. (12 pts.) Consider a standard form LP problem. Suppose we start with an initial basic feasible solution $x^{(0)}$ and we apply one iteration of the simplex algorithm to obtain $x^{(1)}$.

As pointed out in class, it turns out that we can express $x^{(1)}$ in terms of $x^{(0)}$ as

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} + \alpha_0 \mathbf{d}^{(0)},$$

where α_0 minimizes $\phi(\alpha) = f(\boldsymbol{x}^{(0)} + \alpha \boldsymbol{d}^{(0)})$ over all $\alpha > 0$ such that $\boldsymbol{x}^{(0)} + \alpha \boldsymbol{d}^{(0)}$ is feasible.

- a. Show that $\boldsymbol{d}^{(0)} \in \mathcal{N}(\boldsymbol{A})$.
- b. As usual, assume that the initial basis is the first m columns of \boldsymbol{A} , and the first iteration involves inserting \boldsymbol{a}_q into the basis, where q>m. Let the qth column of the canonical augmented matrix be $\boldsymbol{y}_q=[y_{1q},\ldots,y_{mq}]^T$.

Express $d^{(0)}$ in terms of y_q .

c. Show that $d^{(0)}$ is a descent direction if and only if $r_q < 0$.

4. (12 pts.) Suppose we are given a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^m$ such that $b \geq 0$. We are interested in an algorithm that, given this A and b, is guaranteed to produce one of following two outputs: (1) If there exists x such that $Ax \geq b$, then the algorithm produces one such x. (2) If no such x exists, then the algorithm produces an output to declare so.

Describe in detail how to design this algorithm based on the simplex method.