Bizonyítással kért tételek az 1. zh-n

1. A szuprémum elv

Tétel: Legyen $\emptyset \neq A \subset \mathbb{R}$, felülről korlátos. Ekkor A-nak van legkisebb felső korlátja, azaz $\exists \min B$

Bizonyítás: Világos, hogy $\forall a \in A, \forall b \in B: a \leq K \Rightarrow$ (Teljességi axióma) $\exists \xi \in \mathbb{R}: a \leq \xi \leq K \ (a \in A, K \in B)$ Vagyis, $\forall a \in A: a \leq \xi \rightarrow \xi$ felső korlátja A-nak $\Rightarrow \xi \in B$ Ugyanakkor: $\forall K \in B: \xi \leq K \Rightarrow \xi$ a legkisebb felső korlát $\Rightarrow \xi = \min B$

2. Az Archimedes-tétel

Tétel: $\forall a > 0, \forall b \in \mathbb{R}, \exists n \in N : a \cdot n > b$

Bizonyítás:

- 1. Ha $b \leq 0$, akkor világos, hogy $b \leq 0 < a = a \cdot 1$, ha $n := 1 \Rightarrow n = 1$ jó választás
- 2. Feltehető, hogy b>0 Áll: $\forall b>0, \forall a>0, \exists n\in N: a\cdot n>b$ Indirekt: $\exists b>0, \exists a>0, \forall n\in N: a\cdot n\leq b$

 $A:=\{a\cdot n\in\mathbb{R}:n\in\mathbb{N}\}\Rightarrow b$ egy felső korlátja A-nak $\Rightarrow \xi=supA$ $\Rightarrow \xi-a$ már nem felső korlát, azaz $\exists n_0\in N:a\cdot n_0>\xi$ $\Rightarrow \exists n_0\in\mathbb{N}:a\cdot n_0+a>\xi\Leftrightarrow a(n_0+1)>\xi$

Mivel $n_0\in\mathbb{N}$ és \mathbb{N} induktív $\Rightarrow n_0+1\in\mathbb{N} \Rightarrow a(n_0+1)\in A\Rightarrow \xi$ nem felső korlát

Ellentmondás ⇒ ←

3. A Cantor-féle közösrész-tétel

Tétel: Legyen $[a_n,b_n]$ korlátos és zárt intervallum, melyre: $[a_{n+1},b_{n+1}]\subset [a_n,b_n]\ (n\in\mathbb{N})$

Ekkor: $\bigcap\limits_{n\in\mathbb{N}}[q_n,b_n]
eq\emptyset$

Bizonyítás: $A:=\{a_n\in\mathbb{R}:n\in\mathbb{N}\}$ $B:=\{b_n\in\mathbb{R}:n\in\mathbb{N}\}$

Ekkor: $\forall n,m\in\mathbb{N}:a_n\leq b_m$ Ha $n\leq m:q_n\leq a_m\leq b_m$ Ha $m< n:a_n\leq b_n\leq b_m$

$$\Rightarrow \text{(Teljess\'egi axi\'oma)} \ \exists \xi \in \mathbb{R}, \forall n,m \in \mathbb{N}: a_n \leq \xi \leq b_m \ \text{Spec:} \ n = m \text{, ekkor:} \\ \forall n \in \mathbb{N}: a_n \leq \xi \leq b_n \Rightarrow \xi \in [a_n,b_n] \ (n \in \mathbb{N}) \Rightarrow \xi \in \bigcap_{n \in \mathbb{N}} [a_n,b_n]$$

4. Minden sorozatnak van monoton részsorozata

Tétel: Minden sorozatnak van monoton részsorozata

Bizonyítás:

1. A sorozatnak végtelen sok csúcsa van

$$\exists a_{n_0} \ \mathsf{csúcs} \Rightarrow orall n_0 : a_{n_0} \geq a_n \Rightarrow \exists n_1 > n_0 \ \mathsf{\acute{e}s} \ a_{n_1} \ \mathsf{csúcs} \ \Rightarrow a_{n_0} \geq q_{n_1} \Rightarrow orall n_1 : a_{n_1} \geq a_n \Rightarrow \exists n_2 > n_1 \ \mathsf{\acute{e}s} \ a_{n_2} \ \mathsf{csúcs} \ \Rightarrow a_{n_1} \geq q_{n_2} \ \Rightarrow \exists a_{n_0} \geq a_{n_1} \geq a_{n_2} \geq \ldots$$

2. A sorozatnak véges sok csúcsa van

$$\exists N \in \mathbb{N}, orall n \geq N: a_n ext{ nem csúcs Legyen } n_0 = N \Rightarrow a_{n_0} ext{ nem csúcs} \ \Rightarrow \Rightarrow \exists n_1 \geq n_0: a_{n_0} < a_{n_1} \Rightarrow a_{n_1} ext{ nem csúcs} \ \Rightarrow \ n_2 \geq n_1: a_{n_1} < a_{n_2} \ldots \ \exists a_{n_0} < a_{n_1} < a_{n_2} < \ldots$$

5. Konvergens sorozat határértéke egyértelmű

Tétel: Az (a_n) konvergens sorozat határértéke egyértelmű.

Bizonyítás: Indirekt, Tfh: $\exists A_1, A_2, A_1 \neq A_2$ határértékek

$$\begin{array}{l} \Rightarrow \forall \epsilon > 0, \exists n_1 \in \mathbb{N}, \forall n \geq n_1 : |a_n - A_1| < \epsilon \\ \Rightarrow \forall \epsilon > 0, \exists n_2 \in \mathbb{N}, \forall n \geq n_2 : |a_n - A_2| < \epsilon \end{array}$$

Legyen
$$n_0=\max(n_1,n_2):$$
 \Rightarrow $orall \epsilon>0, \exists n_0\in\mathbb{N}, orall n\geq n_0: |a_n-A_1|<\epsilon$ $|a_n-A_2|<\epsilon$

Legyen
$$\epsilon < \dfrac{|A_1 - A_2|}{2} \Rightarrow \\ |A_1 - A_2| = |A_1 - a_n + a_n - A_2| \leq |A_1 - a_n| + |A_n - A_2| < 2\epsilon < |A_1 - A_2|$$

Ellentmondás, $|A_1 - A_2| \not < |A_1 - A_2|$

6. A konvergencia és a korlátosság kapcsolata

Tétel: Ha a_n konvergens, akkor korlátos.

Bizonyítás: Legyen $\lim a_n = A \in \mathbb{R} \Rightarrow \epsilon = 1$ -re is $\exists n_1 \in \mathbb{N}, \forall n \geq n_1 : |a_n - A| < 1$ $\Rightarrow |a_n| = |a_n - A + A| \leq |a_n - A| + |A| < 1 + |A|, \ \forall n \in \mathbb{N}$ $\Rightarrow |a_n| \leq max(|a_0|, |a_1|, |a_2|, \dots, |a_{n_0-1}|, |a_{n_0}|, a + |A|), \ (n \in \mathbb{N})$

7. Műveletek nullsorozatokkal

Tétel: Legyen (a_n) , (b_n) nullsorozat. Ekkor:

- 1. $(a_n + b_n)$ is nullsorozat.
- 2. Ha (c_n) korlátos, akkor $(a_n \cdot c_n)$ is nullsorozat.
- 3. $(a_n \cdot b_n)$ is nullsorozat.

Bizonyítás:

- $\begin{aligned} &1.\; (a_n)nullsor \Leftrightarrow \forall \frac{\epsilon}{2} > 0, \exists n_1 \in \mathbb{N}, \forall n \geq n_1: |a_n| < \frac{\epsilon}{2} \\ &(b_n)nullsor \Leftrightarrow \forall \frac{\epsilon}{2} > 0, \exists n_2 \in \mathbb{N}, \forall n \geq n_2: |b_n| < \frac{\epsilon}{2} \\ &\Rightarrow \forall \epsilon > 0, \exists n_0 = max(n_1,n_2), \forall n \geq n_0: \Rightarrow (a_n + b_n) \text{ nullsor} \\ &|a_n + b_n| \leq |a_n| + |b_n| < \frac{\epsilon}{2} + \frac{\epsilon}{2} < \epsilon \end{aligned}$
- $$\begin{split} &2.\; (c_n) \text{ korlátos} \Rightarrow \exists K \in \mathbb{R}, \forall n: |c_n| \leq K \; (a_n) \text{ nullsor} \\ &\Rightarrow \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0: |a_n| < \frac{\epsilon}{K} \\ &\Rightarrow \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0: \\ &|a_n \cdot c_n| < \frac{\epsilon}{K} \cdot K = \epsilon \end{split}$$
- 3. (b_n) nullsor \Rightarrow (b_n) konvergens \Rightarrow (b_n) korlátos (a_n) nullsor $\stackrel{2.miatt}{\Rightarrow} (a_n \cdot c_n)$ nullsor

8. Konvergens sorozatok szorzatára vonatkozó tétel

Tétel: Legyen $(a_n),(b_n)$ konvergens és $A:=\lim(a_n),B:=\lim(b_n)$. Ekkor: $(a_n\cdot b_n)$ konvergens és $\lim(a_n\cdot b_n)=A\cdot B$

Bizonyítás:

$$\begin{aligned} |a_n \cdot b_n - A \cdot B| &= |a_n b_n - A \cdot b_n + A \cdot b_n - AB| \leq \\ &\leq |a_n b_n - Ab_n| + |Ab_n - AB| = \underset{konvergens}{|b_n|} \cdot |a_n - A| + \underset{korlatos}{|A|} \cdot |b_n - B| \\ &\underset{korlatos}{\underset{korlatos}{|a_n - A|}} &\underset{nullsor}{\underset{nullsor}{|a_n - A|}} \end{aligned}$$

9. Konvergens sorozatok hányadosára vonatkozó tétel

Tétel: Legyen $(a_n),(b_n)$ konvergens, $b_n \neq 0$ és $A:=\lim(a_n), B:=\lim(b_n)$ és $B \neq 0$. Ekkor: $\left(\frac{a_n}{b_n}\right)$ konvergens és $\lim\left(\frac{a_n}{b_n}\right)=\frac{A}{B}$

$$\begin{split} \textbf{Bizonyítás:} & \left| \frac{a_n}{b_n} - \frac{A}{B} \right| = \left| \frac{a_n B - Ab_n}{b_n B} \right| = \frac{|a_n B - AB + AB - Ab_n|}{|b_n B|} \leq \\ & \leq \frac{|B|}{|b_n||B|} \cdot |a_n - A| + \frac{|A|}{|b_n||B|} \cdot |b_n - B| \\ & \frac{korlátos}{korlátos} \cdot \frac{korlátos}{korlátos} \\ \Rightarrow & \left(\frac{a_n}{b_n} - \frac{A}{B} \right) nullsor \Rightarrow \lim \left(\frac{a_n}{b_n} \right) = \frac{A}{B} \end{split}$$

10. A közrefogási elv

Tétel: Tfh: $\exists N\in\mathbb{N}, \forall n\geq N: a_n\leq b_n\leq c_n$ Ha $\lim a_n=\lim c_n$, akkor $\lim b_n=\lim a_n$

Bizonyítás: $\lim a_n = A \in \overline{\mathbb{R}}$

1.
$$A \in \mathbb{R} \Rightarrow \forall \epsilon > 0, \exists n_1, \forall n \geq n_1 : A - \epsilon < a_n < A + \epsilon$$
 $\Rightarrow \forall \epsilon > 0, \exists n_2, \forall n \geq n_2 : A - \epsilon < c_n < A + \epsilon$

Legyen $n_0 = \max(n_1, n_2, N) \Rightarrow$
 $\Rightarrow \forall \epsilon > 0, \exists n_0, \forall n \geq n_0 : A - \epsilon < a_n \leq b_n \leq c_n < A + \epsilon$
 $\Rightarrow \lim b_n = A$

2. $A = \infty : \lim a_n = \infty \Rightarrow \forall P \in \mathbb{R}, \exists n_1, \forall n \geq n_1 : a_n > P$ De

2.
$$A=\infty: lima_n=\infty \Rightarrow \forall P\in \mathbb{R}, \exists n_1, \forall n\geq n_1: a_n>P$$
 De $b_n\geq a_n, \forall n\geq N\Rightarrow \Rightarrow \lim b_n=\infty \ \forall P\in \mathbb{R}, \exists n_0=\max(n_1,N), \forall n\geq n_0: b_n\geq a_n\geq P$

11. Monoton növő sorozatok határértéke (véges és végtelen eset)

Tétel:

- 1. Ha (a_n) monoton nő és korlátos, akkor konvergens és $\lim a_n = \sup\{a_n : n \in \mathbb{N}\}$
- 2. Ha (a_n) mon nő és nem korlátos, akkor $\lim a_n = \infty$

Bizonyítás:

$$\begin{array}{l} \text{1. } (a_n) \text{ korlátos} \Rightarrow \exists \xi = \sup \{a_n : n \in \mathbb{N}\} < \infty \Rightarrow a_n \leq \xi, \forall n \text{ \'es} \\ \forall \epsilon > 0, \exists n_0 : \xi - \epsilon < a_{n_0} \leq \xi \Rightarrow \qquad \qquad = |a - \xi| < \epsilon \\ \Rightarrow \forall \epsilon > 0, \exists n_0, \forall n \geq n_0 : \xi - \epsilon < a_{n_0} \leq a_n \leq \xi \\ \Rightarrow \lim a_n = \xi \\ (a_n) \text{ nem korlátos} \Rightarrow (a_n) \text{ felülről nem korlátos} \\ \Rightarrow \forall P \in \mathbb{R}, \exists n_0, \forall n \geq n_0 : a_n > P \Rightarrow \\ \Rightarrow \forall P \in \mathbb{R}, \exists n_0, \forall n \geq n_0 : a_n \leq a_{n_0} > P \Rightarrow \\ \Rightarrow \lim a_n = \infty \end{array}$$

12. A Cauchy-féle konvergencia kritérium sorozatokra

Tétel: (a_n) konvergens $\Leftrightarrow (a_n)$ Cauchy

Bizonyítás: (\Rightarrow) bizonyítása: Tfh: (a_n) konvergens. Megmutatjuk, hogy (a_n) Cauchy $A:=\lim(a_n), \ \forall \epsilon>0, \exists N\in\mathbb{N}, \forall n\in\mathbb{N}, n\geq\mathbb{N}: |a_n-A|<\epsilon$ Legyen $m,n\in\mathbb{N},m,n\geq N$ Ekkor: $|a_n-a_m|=|a_n-A+A-a_m|\leq |a_n-A|+|a_m-A|<2\epsilon$ Tehát $\forall \epsilon>0, \exists N\in\mathbb{N}, \forall n,m\in\mathbb{N},m,n\geq\mathbb{N}: |a_n-a_m|<2\epsilon\Rightarrow (a_n)$ Cauchy

 $(\Leftarrow)bizonyitasa:$ Tfh: (a_n) Cauchy. Megmutatjuk, hogy (a_n) korlátos. Mivel (a_n) Cauchy, ezért $\exists N \in \mathbb{N}, orall n, m \in \mathbb{N}, m, n \geq N: |a_n - a_m| < 1$ $\Rightarrow orall n \in \mathbb{N}, n \geq N: |a_n| = |a_n - a_N + a_N| \leq |a_n - a_N| + |a_N| < 1 + |a_N|$ $\Rightarrow \forall n \in \mathbb{N}, n > N : |a_n| < K := \max\{|a_0|, |a_1|, \dots, |a_{N-1}|, |a_N| + 1\} \Rightarrow (a_n)$ korlátos \Rightarrow (ld.: Bolzano - Weierstrass): $\exists (a_{n_k})$ konvergens részsorozat és $A:=\lim(a_{n_k})$ Megmutatjuk, hogy (a_n) is konvergens és $\lim(a_n)=A$ $|a_n - A| = |a_n - a_{n_k} + a_{n_k} - A| \le |a_n - a_{n_k}| + |a_{n_k} - A|$ Mivel (a_n) Cauchy: $\exists N \in \mathbb{N}, orall n, n_k \in \mathbb{N}, n, n_k \geq N_0: |a_n - a_{n_k}| < \epsilon \, ext{Mivel lim}(a_{n_k}) = A \, ext{ez\'ert}$ $orall \epsilon > 0, \exists N_1 \in \mathbb{N}, orall n \in \mathbb{N}, n \geq N_1: |a_{n_k} - A| < \epsilon$

Tehát: $\forall \epsilon>0, \exists N:=\max\{N_0,N_1\}\in\mathbb{N}, \forall n\in\mathbb{N}, n\geq N: |a_n-A|<2\cdot\epsilon$ \Rightarrow (a_n) konvergens és $\lim(a_n) = A$

13. A geometriai sorozat határértékére vonatkozó tétel

Tétel: Legyen
$$q\in\mathbb{R}$$
. Ekkor: $lim(q^n)=\left\{egin{array}{ll} +\infty, & ha\ q>1 \\ 1, & ha\ q=1 \\ 0, & ha\ |q|<1 \\
ot \exists, & ha\ q\leq -1 \end{array}
ight\}$

Bizonyítás: Ha $q=1,\ q=0,\ q=-1$ akkor triviális. Tfh: q>1. Ekkor $\exists h \in \mathbb{R}, h > 0: q = 1 + h \Rightarrow q^n = (1 + h)^n \geq 1 + nh \geq n \cdot h \rightarrow +\infty$ Tfh: $q \in (-1,1) \setminus \{0\}, \text{azaz } 0 < |q| < 1$ $\Rightarrow rac{1}{|q|} > 1 \Rightarrow rac{1}{|q|} = 1 + h \Rightarrow \left(rac{1}{|q|}
ight)^n = (1+h)^n \geq$ $0 \geq 1 + nh \geq n \cdot h \Rightarrow 0 \leq \left|q\right|^n \leq rac{1}{nh} o 1 \Rightarrow \lim(\left|q
ight|^n) = 0 ext{ \'es } \lim(q^n) = 0$

Tfh: q < -1, akkor $q^2 > 1$. Ekkor:

- $egin{aligned} ullet & q^{2n} = (q^2)^n
 ightarrow +\infty \ ullet & q^{2n+1} = q(q^2)^n
 ightarrow -\infty \end{aligned}$

 $\Rightarrow \exists \lim (q^n)$

14. Az $(\sqrt[n]{a})$ és az $(\sqrt[n]{n})$ sorozat határértéke

Tétel: $\forall a \in \mathbb{R}, a > 0, : \lim(\sqrt[n]{a}) = 1$

Bizonyítás: Ha a=1 \checkmark Tfh: $a>1 \Rightarrow \forall n \in \mathbb{N}, n > 2: \sqrt[n]{a} > 1$ $\Rightarrow \exists h_n > 0: \sqrt[n]{a} = 1 + h_n$ $a\Rightarrow a=(1+h_n)^n\geq 1+nh_n\Rightarrow 0< h_n\leq rac{a-1}{n} o 0\Rightarrow \lim(h_n)=0$ $\Rightarrow \lim(\sqrt[n]{a}) = \lim(1+h_n) = \lim(1) + \lim(h_n) = 1 \checkmark ext{ Tfh: } 0 < a < 1, ext{ akkor}$ $rac{1}{a}>1\Rightarrow \sqrt[n]{rac{1}{a}}
ightarrow 1\Rightarrow \lim(\sqrt[n]{a})=\lim(rac{nullsor}{\sqrt[n]{rac{1}{a}}})
ightarrow rac{1}{1}=1\checkmark$

15. Pozitív szám m-edik gyökének előállítása rekurzív módon megadott sorozatok határértékével

Tétel: Legyen $2 \le m \in \mathbb{N}$, Ekkor:

$$egin{align} 1. \ orall A>0, \exists !lpha>0: lpha^n=A \ 2. \ orall a_0>0, a_{n+1}:=rac{1}{m}igg(rac{A}{a_n^{m-1}}+(m-1)a_nigg) \ \ (n\in\mathbb{N}) \ \end{array}$$

Az így definiált sorozat konvergens és $\lim(a_n)=lpha$

Bizonyítás: $a_n > 0 \ (n \in \mathbb{N})$, (ld:: Teljes indukció) $\Rightarrow (a_n)$ alulról korlátos, ill.:

$$rac{m}{a_{n+1}} = \left(rac{rac{A}{a_n^{m-1}} + (m-1)a_n}{m}
ight)^{rac{ ext{számtani-mértani}}{2}} rac{A}{a_n^{m-1}} \cdot a_n \cdot a_n \cdot \ldots \cdot a_n = A \ \ (n \in \mathbb{N})$$

Azaz: $a_1 \geq A, a_2 \geq A, a_3 \geq A, \ldots$ Mutassuk meg, hogy az (a_{n+1}) elshiftelt sorozat monoton fogyó, azaz $\forall n \in \mathbb{N}: \frac{a_{n+2}}{a_{n+1}} \leq 1$

$$rac{a_{n+2}}{a_{n+1}} = rac{1}{a_{n+1}} \cdot rac{1}{m} igg(rac{A}{a_{n+1}^{m-1}} + (m-1)a_{n+1}igg) = rac{1}{m} igg(rac{A}{a_{n+1}^m} + (m-1)igg) =$$

$$=rac{1}{m}igg(rac{A-a_{n+1}^m}{a_{n+1}^m}+migg)=rac{A-a_{n+1}^m}{m\cdot a_{n+1}^m}+1\Rightarrow\leq 1$$
, monoton fogyó $\Rightarrow (a_{n+1})$

korlátos és monoton fogyó \Rightarrow konvergens $\Rightarrow \exists \alpha \in \mathbb{R} : \lim(a_{n+1}) = \alpha$