Business Case: Target SQL

- 1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset
 - 1. Data type of columns in a table

ow /	table_name	column_name	data_type
1	order_items	order_id	STRING
2	order_items	order_item_id	INT64
3	order_items	product_id	STRING
4	order_items	seller_id	STRING
5	order_items	shipping_limit_date	TIMESTAMP
6	order_items	price	FLOAT64
7	order_items	freight_value	FLOAT64
8	sellers	seller_id	STRING
9	sellers	seller_zip_code_prefix	INT64
10	sellers	seller_city	STRING
11	sellers	seller_state	STRING
12	geolocation	geolocation_zip_code_prefix	INT64
13	geolocation	geolocation_lat	FLOAT64
14	geolocation	geolocation_lng	FLOAT64
15	geolocation	geolocation_city	STRING
16	geolocation	geolocation_state	STRING
17	products	product_id	STRING

2. Time Period for which the data is given

3. Cities and States Covered in dataset

```
WITH v1 AS
(SELECT DISTINCT customer_state AS state, customer_city AS city
FROM `target-sql-368610.target.customers`
UNION ALL
SELECT DISTINCT seller_state AS state, seller_city AS city
FROM `target-sql-368610.target.sellers`)
SELECT DISTINCT * FROM v1
ORDER BY state, city
 Row
           state
                                           city
           AC
      1
                                           brasileia
           AC
                                           cruzeiro do sul
      2
      3
           AC
                                           epitaciolandia
      4
           AC
                                           manoel urbano
      5
           AC
                                           porto acre
           AC
                                           rio branco
           AC
      7
                                           senador guiomard
      8
           AC
                                           xapuri
      9
           AL
                                           agua branca
     10
           AL
                                           anadia
```

2. In-depth Exploration

1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

```
SELECT EXTRACT(YEAR FROM order_purchase_timestamp) AS YEAR, EXTRACT(MONTH FROM order_
purchase_timestamp) AS MONTH, COUNT(*) AS no_of_orders, ROUND(SUM(payment_value), 2)
AS total_cost
FROM `target.orders` o JOIN `target.payments` p ON o.order_id = p.order_id
GROUP BY 1, 2
ORDER BY 1, 2
```

Row	YEAR	MONTH	no_of_orders	total_cost
1	2016	9	3	252.24
2	2016	10	342	59090.48
3	2016	12	1	19.62
4	2017	1	850	138488.04
5	2017	2	1886	291908.01
6	2017	3	2837	449863.6
7	2017	4	2571	417788.03
8	2017	5	3944	592918.82
9	2017	6	3436	511276.38
10	2017	7	4317	592382.92

2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
WITH cte1 AS
 SELECT customer_id, order_id, order_purchase_timestamp, EXTRACT(HOUR FROM order_pur
chase_timestamp) AS Hour
FROM `target.orders`
),
cte2 AS
SELECT *,
 CASE
   WHEN Hour >= 5 AND Hour <8 THEN 'Dawn'
   WHEN Hour >= 8 AND Hour <12 THEN 'Morning'
   WHEN Hour >= 12 AND Hour <17 THEN 'Afternoon'
   WHEN Hour >= 17 AND Hour <=23 THEN 'Night'
   WHEN Hour >= 0 AND Hour <5 THEN 'Night'
   END AS time of day
FROM cte1
),
cte3 AS
SELECT customer_id, order_id, Hour, time_of_day
FROM cte2
ORDER BY 1, 2
SELECT time_of_day, COUNT(*) AS no_of_orders
FROM cte3
GROUP BY 1
```

Row	time_of_day	no_of_orders
1	Morning	20507
2	Night	44802
3	Afternoon	32211
4	Dawn	1921

3. Evolution of E-commerce orders in the Brazil region:

1. Get month on month orders by states

```
WITH cte1 AS
 SELECT o.customer_id, c.customer_city AS city, c.customer_state AS state, EXTRACT (
MONTH FROM o.order_purchase_timestamp) AS Month, EXTRACT (YEAR FROM o.order_purchase_
timestamp) AS Year
 FROM `target.customers` c
    JOIN `target.orders` o ON c.customer_id = o.customer_id
SELECT state, city, Year, Month, COUNT(*) AS no_of_orders
FROM cte1
GROUP BY 1, 2, 3, 4
ORDER BY 1, 2, 3, 4
                                                        Month
                                                                       no_of_orders
 Row
          state
                                         Year
          AC
                                                2017
     1
                                                                  1
                                                                                 2
      2
          AC
                                                2017
                                                                  2
                                                                                 3
                                                                                 2
      3
          AC
                                                2017
                                                                  3
      4
          AC
                                                2017
                                                                                  5
                                                                  4
          AC
                                                2017
                                                                  5
                                                                                 8
      5
                                                                  6
          AC
                                                2017
                                                                                 4
          AC
      7
                                                2017
                                                                  7
                                                                                  5
      8
          AC
                                                2017
                                                                  8
                                                                                 4
      9
          AC
                                                2017
                                                                  9
                                                                                  5
     10
          AC
                                                2017
                                                                 10
                                                                                 6
     11
          AC
                                                2017
                                                                 11
                                                                                  5
     12
          AC
                                                2017
                                                                 12
                                                                                  5
     13
          AC
                                                2018
                                                                  1
                                                                                  6
          AC
                                                2018
                                                                  2
                                                                                 3
     14
```

2. Distribution of customers across the states in Brazil

```
SELECT customer_state, COUNT(*) AS no_of_customers
FROM `target.customers`
GROUP BY 1
ORDER BY 2 DESC
      customer_state
 Row
                                         no_of_customer
          SP
     1
                                               41746
     2
          RJ
                                               12852
      3
          MG
                                               11635
                                                5466
      4
          RS
      5
          PR
                                                5045
          SC
                                                3637
     7
          BA
                                                3380
     8
          DF
                                                2140
     9
          ES
                                                2033
          GO
                                                2020
     10
```

- 4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
 - 1. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) You can use "payment_value" column in payments table

```
WITH cte1 AS
 SELECT order_id, EXTRACT(YEAR FROM order_purchase_timestamp) AS Year
 FROM `target.orders`
 WHERE EXTRACT(MONTH FROM order_purchase_timestamp) in (1, 2, 3, 4, 5, 6, 7, 8)
 ORDER BY 2
),
cte2 AS
 SELECT order_id, payment_value FROM `target.payments`
),
cte3 AS
 SELECT *
 FROM cte1 AS o
   JOIN cte2 AS p ON o.order_id = p.order_id
),
cte4 AS
 SELECT Year, ROUND(SUM(payment_value), 2) AS total_payment_value
 FROM cte3
 GROUP BY 1
```

```
cte5 AS
(
    SELECT *,
    LAG(cte4.total_payment_value) OVER(ORDER BY Year DESC) AS yoy_change
    FROM cte4
    ORDER BY Year DESC
)
SELECT yoy_percentage_change FROM
(SELECT ABS(ROUND(((total_payment_value - yoy_change)/total_payment_value)*100, 2)) A
S yoy_percentage_change
FROM cte5) A
WHERE A.yoy_percentage_change IS NOT NULL

Row    yoy_percentage_
1 136.98
```

2. Mean & Sum of price and freight value by customer state

```
WITH cte1 AS
 SELECT order_id, price, freight_value
 FROM `target.order_items`
),
cte2 AS
 SELECT oi.order_id, o.customer_id, price, freight_value
 FROM `target.orders` o
   RIGHT JOIN `cte1` oi ON oi.order_id = o.order_id
),
cte3 AS
 SELECT a.order_id, a.customer_id, c.customer_state, price, freight_value
 FROM cte2 a
   JOIN `target.customers` c ON a.customer_id = c.customer_id
SELECT customer state,
 ROUND(SUM(price), 2) AS sum_price, ROUND(SUM(price)/COUNT(*), 2) AS mean_price,
 ROUND(SUM(freight_value), 2) AS sum_freight_value, ROUND(SUM(freight_value)/COUNT(*
), 2) AS mean_freight_value
FROM cte3
GROUP BY customer_state
```

Row	customer_state	sum_price	mean_price	sum_freight_value	mean_freight_va
1	SP	5202955.05	109.65	718723.07	15.15
2	RJ	1824092.67	125.12	305589.31	20.96
3	PR	683083.76	119.0	117851.68	20.53
4	SC	520553.34	124.65	89660.26	21.47
5	DF	302603.94	125.77	50625.5	21.04
6	MG	1585308.03	120.75	270853.46	20.63
7	PA	178947.81	165.69	38699.3	35.83
8	BA	511349.99	134.6	100156.68	26.36
9	GO	294591.95	126.27	53114.98	22.77
10	RS	750304.02	120.34	135522.74	21.74

5. Analysis on sales, freight and delivery time

- 1. Calculate days between purchasing, delivering and estimated delivery
- 2. Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:
 - time_to_delivery = order_purchase_timestamporder_delivered_customer_date
 - diff_estimated_delivery = order_estimated_delivery_dateorder_delivered_customer_date

```
WITH cte1 AS
(
    SELECT *,
    order_purchase_timestamp - order_delivered_customer_date AS time_to_delivery,
    order_estimated_delivery_date - order_delivered_customer_date AS diff_estimated_delive
ry
    FROM `target.orders`
),
cte2 AS
(
SELECT order_id, time_to_delivery, diff_estimated_delivery FROM cte1
WHERE time_to_delivery is NOT NULL
AND diff_estimated_delivery is NOT NULL
)
SELECT * FROM cte2
```

Row	order_id	time_to_delivery	diff_estimated_delivery
1	770d331c84e5b214bd9dc70a	0-0 0 -168:14:41	0-0 0 1088:52:49
2	1950d777989f6a877539f5379	0-0 0 -722:14:59	0-0 0 -310:3:51
3	2c45c33d2f9cb8ff8b1c86cc28	0-0 0 -743:13:54	0-0 0 681:6:10
4	dabf2b0e35b423f94618bf965f	0-0 0 -181:40:7	0-0 0 1065:23:1
5	8beb59392e21af5eb9547ae1a	0-0 0 -262:29:53	0-0 0 989:12:17
6	65d1e226dfaeb8cdc42f66542	0-0 0 -853:56:53	0-0 0 397:1:26
7	c158e9806f85a33877bdfd4f60	0-0 0 -565:3:54	0-0 0 228:49:34
8	b60b53ad0bb7dacacf2989fe2	0-0 0 -311:9:0	0-0 0 -133:12:27
9	c830f223aae08493ebecb52f2	0-0 0 -309:37:20	0-0 0 298:32:10
10	a8aa2cd070eeac7e4368cae3d	0-0 0 -173:39:35	0-0 0 24:37:40

3. Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

```
WITH cte1 AS
 SELECT C.customer_state, A.customer_id, A.order_id, B.freight_value,
 order_purchase_timestamp - order_delivered_customer_date AS time_to_delivery,
 order_estimated_delivery_date - order_delivered_customer_date AS diff_estimated_del
ivery
 FROM `target.orders` A
   LEFT JOIN `target.order_items` B ON A.order_id = B.order_id
   JOIN `target.customers` C ON A.customer_id = C.customer_id
),
cte2 AS
SELECT * FROM cte1
WHERE time_to_delivery is NOT NULL
AND diff_estimated_delivery is NOT NULL
SELECT customer_state,
 ROUND(SUM(freight_value)/COUNT(*), 2) AS mean_freight_value,
 SUM(time_to_delivery)/COUNT(*) AS mean_time_to_delivery,
 SUM(diff_estimated_delivery)/COUNT(*) AS mean_diff_estimated_delivery
FROM cte2
GROUP BY customer_state
```

Row	customer_state	mean_freight_vali	mean_time_to_delivery	mean_diff_estimated_de
1	RJ	20.91	0-0 0 -363:33:47.561218719	0-0 0 271:24:6.52354022
2	MG	20.63	0-0 0 -287:36:49.457072075	0-0 0 303:20:44.7063559
3	SC	21.51	0-0 0 -360:2:13.082723279	0-0 0 260:56:30.4987798
4	SP	15.11	0-0 0 -209:22:15.899683482	0-0 0 252:19:20.3648127
5	GO	22.56	0-0 0 -369:40:48.375933245	0-0 0 278:18:7.99648660
6	RS	21.61	0-0 0 -364:31:32.063916517	0-0 0 322:22:7.94179031
7	BA	26.49	0-0 0 -461:56:34.191963073	0-0 0 246:55:31.7347271
8	MT	28.0	0-0 0 -431:4:49.308582449	0-0 0 333:30:17.2748312
9	SE	36.57	0-0 0 -515:12:59.317333333	0-0 0 223:49:3.408
10	PE	32.69	0-0 0 -438:42:8.667239404	0-0 0 306:20:47.0154639

- 4. Sort the data to get the following:
- 5. Top 5 states with highest/lowest average freight value sort in desc/asc limit 5

```
Descending
WITH cte1 AS
 SELECT C.customer_state, A.customer_id, A.order_id, B.freight_value,
1)*(order_purchase_timestamp - order_delivered_customer_date)) AS time_to_delivery,
 order_estimated_delivery_date - order_delivered_customer_date AS diff_estimated_del
 FROM `target.orders` A
   LEFT JOIN `target.order_items` B ON A.order_id = B.order_id
   JOIN `target.customers` C ON A.customer_id = C.customer_id
),
cte2 AS
SELECT *
FROM cte1
WHERE time_to_delivery is NOT NULL
AND diff_estimated_delivery is NOT NULL
SELECT customer_state,
 ROUND(SUM(freight_value)/COUNT(*), 2) AS mean_freight_value,
 SUM(time_to_delivery)/COUNT(*) AS mean_time_to_delivery,
 SUM(diff_estimated_delivery)/COUNT(*) AS mean_diff_estimated_delivery
FROM cte2
GROUP BY customer_state
ORDER BY 2 DESC
LIMIT 5
```

Row	customer_state	mean_freight_va	mean_time_to_delivery	mean_diff_estimated_deli
1	PB	43.09	0-0 0 494:8:22.412969283	0-0 0 296:55:4.755972696
2	RR	43.09	0-0 0 677:32:39.391304347	0-0 0 422:50:27.60869565
3	RO	41.33	0-0 0 473:44:41.212454212	0-0 0 464:11:10.89010989
4	AC	40.05	0-0 0 497:10:23.516483516	0-0 0 487:59:17.45054945
5	PI	39.12	0-0 0 465:13:58.927342256	0-0 0 260:27:6.619502868

```
Ascending
WITH cte1 AS
  SELECT C.customer_state, A.customer_id, A.order_id, B.freight_value,
  ((-
1)*(order_purchase_timestamp - order_delivered_customer_date)) AS time_to_delivery,
 order_estimated_delivery_date - order_delivered_customer_date AS diff_estimated_del
ivery
  FROM `target.orders` A
    LEFT JOIN `target.order_items` B ON A.order_id = B.order_id
    JOIN `target.customers` C ON A.customer_id = C.customer_id
),
cte2 AS
SELECT *
FROM cte1
WHERE time_to_delivery is NOT NULL
AND diff_estimated_delivery is NOT NULL
SELECT customer_state,
 ROUND(SUM(freight_value)/COUNT(*), 2) AS mean_freight_value,
  SUM(time_to_delivery)/COUNT(*) AS mean_time_to_delivery,
  SUM(diff_estimated_delivery)/COUNT(*) AS mean_diff_estimated_delivery
FROM cte2
GROUP BY customer_state
ORDER BY 2
LIMIT 5
 Row
       customer_state
                        mean_freight_va
                                        mean_time_to_delivery
                                                                   mean_diff_estimated_delive
                               15.11
                                        0-0 0 209:22:15.899683482
                                                                   0-0 0 252:19:20.364812781
   1
                                                                   0-0 0 307:0:31.719242343
        PR
                               20.47
                                        0-0 0 286:43:59.571074526
                               20.63
                                        0-0 0 287:36:49.457072075
                                                                   0-0 0 303:20:44.706355965
   3
        MG
                                                                   0-0 0 271:24:6.523540223
   4
        RJ
                               20.91
                                        0-0 0 363:33:47.561218719
   5
        DF
                               21.07
                                        0-0 0 311:0:57.005944798
                                                                   0-0 0 275:49:59.438641188
```

6. Top 5 states with highest/lowest average time to delivery

```
Highest
WITH cte1 AS
(
SELECT C.customer_state, A.customer_id, A.order_id, B.freight_value,
```

```
((-
1)*(order_purchase_timestamp - order_delivered_customer_date)) AS time_to_delivery,
  order_estimated_delivery_date - order_delivered_customer_date AS diff_estimated_del
ivery
 FROM `target.orders` A
   LEFT JOIN `target.order_items` B ON A.order_id = B.order_id
    JOIN `target.customers` C ON A.customer id = C.customer id
),
cte2 AS
SELECT *
FROM cte1
WHERE time_to_delivery is NOT NULL
AND diff_estimated_delivery is NOT NULL
SELECT customer_state,
 SUM(time_to_delivery)/COUNT(*) AS mean_time_to_delivery
GROUP BY customer_state
ORDER BY 2 DESC
LIMIT 5
          customer_state
                                          mean_time_to_delivery
                                          0-0 0 677:32:39.391304347
      1
          RR
      2
          AP
                                          0-0 0 676:56:34.925925925
      3
          AM
                                          0-0 0 633:22:59.564417177
          AL
                                          0-0 0 587:44:21.852459016
      4
          PA
                                          0-0 0 570:5:50.211574952
      5
Lowest
WITH cte1 AS
 SELECT C.customer_state, A.customer_id, A.order_id, B.freight_value,
1)*(order_purchase_timestamp - order_delivered_customer_date)) AS time_to_delivery,
  order_estimated_delivery_date - order_delivered_customer_date AS diff_estimated_del
ivery
 FROM `target.orders` A
   LEFT JOIN `target.order_items` B ON A.order_id = B.order id
   JOIN `target.customers` C ON A.customer_id = C.customer_id
),
cte2 AS
SELECT *
FROM cte1
WHERE time_to_delivery is NOT NULL
AND diff_estimated_delivery is NOT NULL
SELECT customer state,
SUM(time_to_delivery)/COUNT(*) AS mean_time_to_delivery
FROM cte2
GROUP BY customer state
```

ORDER BY 2

LIMIT 5		
Row /	customer_state	mean_time_to_delivery
1	SP	0-0 0 209:22:15.899683482
2	PR	0-0 0 286:43:59.571074526
3	MG	0-0 0 287:36:49.457072075
4	DF	0-0 0 311:0:57.005944798
5	SC	0-0 0 360:2:13.082723279

7. Top 5 states where delivery is really fast/ not so fast compared to estimated date

```
Descending
WITH cte1 AS
  SELECT C.customer_state, A.customer_id, A.order_id, B.freight_value,
1)*(order_purchase_timestamp - order_delivered_customer_date)) AS time_to_delivery,
  order_estimated_delivery_date - order_delivered_customer_date AS diff_estimated_del
ivery
 FROM `target.orders` A
   LEFT JOIN `target.order_items` B ON A.order_id = B.order_id
   JOIN `target.customers` C ON A.customer_id = C.customer_id
),
cte2 AS
SELECT *
FROM cte1
WHERE time_to_delivery is NOT NULL
AND diff_estimated_delivery is NOT NULL
SELECT customer_state,
 SUM(diff_estimated_delivery)/COUNT(*) AS mean_diff_estimated_delivery
FROM cte2
GROUP BY customer_state
ORDER BY 2 DESC
LIMIT 5
 Row
           customer_state
                              mean_diff_estimated_delivery
                              0-0 0 487:59:17.450549450
      1
           AC
      2
          RO
                              0-0 0 464:11:10.890109890
      3
                              0-0 0 461:25:29.638036809
          AM
      4
           AP
                              0-0 0 426:26:28.518518518
      5
           RR
                              0-0 0 422:50:27.608695652
Ascending
WITH cte1 AS
```

```
SELECT C.customer_state, A.customer_id, A.order_id, B.freight_value,
1)*(order_purchase_timestamp - order_delivered_customer_date)) AS time_to_delivery,
 order_estimated_delivery_date - order_delivered_customer_date AS diff_estimated_del
 FROM `target.orders` A
   LEFT JOIN `target.order_items` B ON A.order_id = B.order_id
   JOIN `target.customers` C ON A.customer_id = C.customer_id
),
cte2 AS
SELECT *
FROM cte1
WHERE time_to_delivery is NOT NULL
AND diff_estimated_delivery is NOT NULL
SELECT customer_state,
 SUM(diff_estimated_delivery)/COUNT(*) AS mean_diff_estimated_delivery
FROM cte2
GROUP BY customer_state
ORDER BY 2
LIMIT 5
           customer_state
                           mean_diff_estimated_delivery
 Row
      1
           AL
                            0-0 0 193:22:34.871194379
      2
                            0-0 0 221:24:4.645
           MA
      3
           SE
                            0-0 0 223:49:3 408
      4
           ES
                            0-0 0 238:46:51.880898876
      5
           BA
                            0-0 0 246:55:31.734727124
```

6. Payment type analysis:

1. Month over Month count of orders for different payment types

```
WITH cte1 AS
(
    SELECT *, EXTRACT(MONTH FROM order_purchase_timestamp) AS Month
    FROM `target.payments` p
        JOIN `target.orders` o ON o.order_id = p.order_id
),
    cte2 AS
(
    SELECT Month, payment_type, COUNT(*) AS order_count
    FROM cte1
    GROUP BY 1, 2
    ORDER BY 1
)
```

Row / Mon	th /	payment_type	order_count
1	1	voucher	477
2	1	credit_card	6103
3	1	debit_card	118
4	1	UPI	1715
5	2	credit_card	6609
6	2	voucher	424
7	2	UPI	1723
8	2	debit_card	82
9	3	voucher	591
10	3	credit_card	7707

2. Count of orders based on the no. of payment instalments

	ment_installment et-sql-368610.ta	
GROUP BY 1		
Row	payment_install	count_of_orders
1	0	2
2	1	52546
3	2	12413
4	3	10461
5	4	7098
6	5	5239
7	6	3920
8	7	1626
9	8	4268
10	9	644

7. Insights

1. Top 5 product categories sold on Target

Row	product_category	products_sold
1	bed table bath	11115
2	HEALTH BEAUTY	9670
3	sport leisure	8641
4	Furniture Decoration	8334
5	computer accessories	7827

2. Least sold product categories on Target

Row	product_category //	products_sold /
1	insurance and services	2
2	Fashion Children's Clothing	8
3	PC Gamer	9
4	La Cuisine	14
5	cds music dvds	14

- 3. The time to delivery is high in all cases which might lead to increased customer churn rate.
- 4. There is a wide gap between estimated delivery date and actual delivery date owing to which the customer might get uncertain about receiving the order leading to cancellations.
- 5. Most people who have paid in instalments have mostly paid 1 instalment. While the no of instalments more than 1 or 2 was opted by a fraction of people.

8. Recommendations

- 1. Ads spend on products belonging to top sold product categories can be increased while decreasing ad spend on least sold product categories
- 2. Delivery time should be reduced significantly to cater to customer satisfaction. The estimated time should also be calculated more accurately to give the customer a better picture about when their order will arrive.
- 3. Zero cost instalments can be introduced to encourage customers to buy more without worrying about a huge one-time cost, thereby increasing the company revenue and sales in longer term.
- 4. Increase footprint in states with highest sales in terms of physical store or online presence.
- 5. More ads can be shown during peak hours during the day. Peak hours as follows

Row	Hour	count_of_orders
1	16	6675
2	11	6578
3	14	6569
4	13	6518
5	15	6454