

Bambordé Baldé | Co-Founder at Zaiku Group | Twitter: @zaikubalde • zaikugroup.com • January 8, 2021

Lecture Agenda Summary

- 1. Pre-Lecture Comments
- 2. Matrix Conjugate
- 3. Hermitian Conjugate
- 4. Hermitian Matrices
- 5. Skew-Hermitian Matrices
- 6. Unitary Matrices
- 7. Matrix Similarity

Part A

- 1. Dirac Notation Comments
- 2. Quantum Axioms Remarks
- 3. Study Material Comments
- 4. Physics Lecture Reference

Part B

Foundation Module Review

Rings and Fields 101 **Matrix Algebra Quantum Axioms & Operators** #1 #2 #3 Finite dim. Hilbert Spaces **Group Theory 101 Linear Operators 101** #2 #1 #2 **Complex Vector spaces 101 Matrix Groups 101: U(2) + SU(2) Naive Set Theory Overview** #2 #2 #1

Completed —

Ongoing | #n is the number of live lectures

Foundation Module 2?

Lie Theory (Groups & Algebras) Measure Theory 101 ??? ??? **Differential Topology 101 Functional Analysis 101 Complex Analysis 101? Quantum Axioms Revisited? Topology 101**

PART A

Some Remarks

- From now on, unless otherwise stated, the Hilbert space will always be \mathbb{C}^n where n > 0. So even if we are still using the abstract notation \mathcal{H} , just insert \mathbb{C}^n in your mind!
- ▶ Recall that the elements of $M_n(\mathbb{C})$ act as linear operators on \mathbb{C}^n . In fact, any abstract linear operator acting on \mathbb{C}^n can be represented as an element of $M_n(\mathbb{C})$ by (see study materials for Linear operators 101).
- If you are interested in quantum computing stuff, you'll probably want $n = 2^k$ where k is the number of qubits under consideration.
- ▶ To help get concrete picture of things we'll try to use \mathbb{C}^2 and $M_2(\mathbb{C})$ in the definitions/examples as much as possible.
- ▶ Finally, we'll write $GL(n, \mathbb{C})$ to denote the set of all invertible elements of $M_n(\mathbb{C})$. What algebraic structure $GL(n, \mathbb{C})$ forms?

Matrix Conjugate

Definition (1.0)

For
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in M_2(\mathbb{C})$$
, we define $A^* = \begin{pmatrix} a_{11}^* & a_{12}^* \\ a_{21}^* & a_{22}^* \end{pmatrix} \in M_2(\mathbb{C})$.

- ▶ Where a_{ij}^* is the conjugate of a_{ij} i.e. if $a_{ij} = x + yi$ then $a_{ij}^* = x yi$.
- Mathematicians normally use the notation \bar{a}_{ij} to denote the conjugate of a_{ij} and so use \bar{A} .
- ▶ The definition can be extended to matrices in $M_n(\mathbb{C})$.

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \text{ and } Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

$$X^* = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Y^* = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \text{ and } Z^* = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Conjugate Transpose

Definition (1.1)

For
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in M_2(\mathbb{C})$$
, $A^{\dagger} = (A^*)^T = \begin{pmatrix} a_{11}^* & a_{21}^* \\ a_{12}^* & a_{22}^* \end{pmatrix} \in M_2(\mathbb{C})$.

- ▶ A^{\dagger} is also known as the Hermitian transpose of A and physicists often call it 'the A dagger'. Mathematicians use A^* instead of A^{\dagger} !
- ▶ The definition can be extended to matrices in $M_n(\mathbb{C})$.

Proposition (1.0)

Let $A, B \in M_2(\mathbb{C})$ and $\lambda \in \mathbb{C}$. The following identities hold:

- 1. $(A^{\dagger})^{\dagger} = A$.
- 2. $(\lambda A)^{\dagger} = \lambda^* A^{\dagger}$.
- 3. $(A + B)^{\dagger} = A^{\dagger} + B^{\dagger}$.
- 4. $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$.
- 5. $det(A^{\dagger}) = det(A)^*$.
- 6. If A is invertible then A^{\dagger} is also invertible.

Proof: Homework challenge?

▶ Of course, the properties above also apply to matrices in $M_n(\mathbb{C})$.

Hermitian Matrices

Definition (1.2)

 $A \in M_n(\mathbb{C})$ is called Hermitian if $A = A^{\dagger}$.

▶ Which of the following $M_2(\mathbb{C})$ matrices are Hermitian?

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ and $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Proposition (1.0)

Let $A, B \in M_n(\mathbb{C})$. Then the following properties hold:

- 1. $A + A^{\dagger}$ is Hermitian.
- 2. AA^{\dagger} and $A^{\dagger}A$ are Hermitian.
- 3. If A is Hermitian and invertible, then A^{-1} is Hermitian.
- 4. If A and B are Hermitian, then $\alpha A + \beta B$ is Hermitian for all $\alpha, \beta \in \mathbb{R}$.
- 5. If A is Hermitian then the main diagonal entries of A are all real.

Proof: Homework challenge! I really encourage you to try prove the above, even if for just $M_2(\mathbb{C})$!

Since we are dealing with finite dimensional Hilbert spaces, we'll consider the term 'Self-adjoint' to be equivalent to Hermitian i.e. being Self-adjoint operator is the same as being Hermitian operator. This is not true if the space is infinite dimensional!

Skew-Hermitian Matrices

Definition (1.3)

 $A \in M_n(\mathbb{C})$ is called skew-Hermitian if $A = -A^{\dagger}$.

Physicists normally use the term 'anti-symmetric' instead of skew-Hermitian!

Proposition (1.1)

Let $A, B \in M_n(\mathbb{C})$. Then the following properties hold:

- 1. $A A^{\dagger}$ is skew-Hermitian.
- 2. If A and B are skew-Hermitian, then $\alpha A + \beta B$ is skew-Hermitian for all $\alpha, \beta \in \mathbb{R}$.
- 3. If *A* is Hermitian, then *iA* is skew-Hermitian, where *i* is the imaginary unit in \mathbb{C} .
- 4. If *A* is skew-Hermitian, then *iA* is Hermitian!

Proof: Homework challenge! I really encourage you to try prove the above, even if for just $M_2(\mathbb{C})$!

Hermitian and skew-Hermitian Decomposition

Theorem (1.0)

Let
$$A \in M_n(\mathbb{C})$$
. Then $A = \frac{1}{2}(A + A^{\dagger}) + i((\frac{-i}{2})(A - A^{\dagger}))$.

An important note:

- 1. The term $\frac{1}{2}(A + A^{\dagger}) = H(A)$ is called the Hermitian part of A.
- 2. The term $i((\frac{-i}{2})(A A^{\dagger})) = S(A)$ is called the skew-Hermitian part of A.
- As homework challenge, consider the following $M_2(\mathbb{C})$ matrices and compute their Hermitian and skew-Hermitian parts.

For
$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $H = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$.

Hermitian and skew-Hermitian Decomposition

Theorem (1.0)

Let
$$A \in M_n(\mathbb{C})$$
. Then $A = \frac{1}{2}(A + A^{\dagger}) + i((\frac{-i}{2})(A - A^{\dagger}))$.

An important note:

- 1. The term $\frac{1}{2}(A + A^{\dagger}) = H(A)$ is called the Hermitian part of A.
- 2. The term $i((\frac{-i}{2})(A-A^{\dagger}))=S(A)$ is called the skew-Hermitian part of A.
- As homework challenge, consider the following $M_2(\mathbb{C})$ matrices and compute their Hermitian and skew-Hermitian parts.

For
$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $H = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$.

Diagonal Matrices

Definition (1.4)

 $A \in M_n(\mathbb{C})$ is called a diagonal matrix if it has the following form:

$$A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} \text{ such that } a_{ij} = 0 \text{ if } i \neq j.$$

The following elements of $M_2(\mathbb{C})$ are examples of diagonal

matrices:
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}$.

Proposition (1.2)

If $A, B \in M_n(\mathbb{C})$ are diagonal, then AB is also diagonal and AB = BA.

Proof: Homework challenge?

Invertible Diagonal Matrices

Proposition (1.3)

Let
$$D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & 0 \\ \vdots & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$
. The following statements are true:

1. *D* is invertible iff $\lambda_i \neq 0$ for all $i \in \{1, 2, ..., n\}$.

$$2. \ D^{-1} = \begin{pmatrix} \frac{1}{\lambda_1} & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda_2} & 0 & 0 \\ \vdots & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{\lambda_n} \end{pmatrix}.$$

Proof: Homework challenge?

- ▶ What is the kernel of $D: \mathbb{C}^n \longrightarrow \mathbb{C}^n$ if:
 - 1. $\lambda_i \neq 0$ for all $i \in \{1, 2, ..., n\}$.
 - 2. There is one $\lambda_i = 0$.
- ▶ *D* is called real diagonal matrix if λ_i is a real number for all $i \in \{1, 2, ..., n\}$.

Unitary Operators

Definition (1.5)

 $A \in M_n(\mathbb{C})$ is unitary if $AA^{\dagger} = A^{\dagger}A = \mathbb{I}$.

▶ The following $M_2(\mathbb{C})$ operators are of course unitary:

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
and $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Definition (1.6)

Given $\theta_1, \theta_2 \dots, \theta_n \in \mathbb{R}$, we can construct a diagonal operator of the

form
$$U(\theta_1, \theta_2, \dots, \theta_n) = \begin{pmatrix} e^{i\theta_1} & 0 & \cdots & 0 \\ 0 & e^{i\theta_2} & 0 & 0 \\ \vdots & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & e^{i\theta_n} \end{pmatrix} \in M_n(\mathbb{C}).$$

▶ Is $U(\theta_1, \theta_2, ..., \theta_n)$ unitary? What is $U(0, \pi) \in M_2(\mathbb{C})$?

Matrix Similarity

Definition (1.7)

Let $A \in M_n(\mathbb{C})$. $B \in M_n(\mathbb{C})$ is said to be similar to A if there exists a matrix $S \in GL(n,\mathbb{C})$ such that $B = S^{-1}AS$.

▶ We write $B \sim A$ to denote the similarity relationship between B and A.

Proposition (1.3)

The similarity relationship \sim is an equivalence relation in $M_n(\mathbb{C})$ i.e. the following properties hold:

- 1. $A \sim A$ for all $A \in M_n(\mathbb{C})$ (Reflexive).
- 2. If $B \sim A$ then $A \sim B$ for all $A, B \in M_n(\mathbb{C})$ (Symmetric).
- 3. If $B \sim A$ and $A \sim C$ then $B \sim C$ for all $A, B, C \in M_n(\mathbb{C})$ (Transitive).

Proof: Homework challenge!

PART B

Dirac Notation Comments

- ▶ Recall that the bra denoted $\langle \psi |$ is a linear functional i.e. $\langle \psi | \in \mathcal{H}^*$ (or \mathcal{H}^{\dagger} if you're a physicist). The Riesz representation theory implies that every linear functional can be written as a bra.
- Given two vectors $|\psi_1\rangle$ and $|\psi_2\rangle$ we can construct an operator $\kappa_{\psi_1,\psi_2}:\mathcal{H}\longrightarrow\mathcal{H}$ as $\kappa_{\psi_1,\psi_2}|\phi\rangle=\langle\psi_2|\phi\rangle|\psi_1\rangle$. Physicists normally write $|\psi_1\rangle\,\langle\psi_2|$ to denote the operator $\kappa_{\psi_1,\psi_2}!$
- ▶ Physicist call the operator $|\psi\rangle\langle\psi|$ projection operator!
- Researchers in QC often write $|0\rangle, |1\rangle, \dots, |n-1\rangle$ to label the elements of an ON basis for \mathbb{C}^n that they're working with. Where $n=2^k$, with k being the number of qubits under consideration.
- ▶ Be aware physicists use similar notation as above when working with systems of n— particles where |n⟩ denotes a state with n particles e.g. |1⟩ denotes a state with one particle!
- ▶ We will stick with the convention of writting $|e_1\rangle$, $|e_2\rangle$, ..., $|e_n\rangle$ to label elements of an abstract ON basis.

The Axioms of QM (Non Relativistic QM)

Axiom 1: The states of quantum systems are modelled by **normalised vectors** on **separable complex Hilbert spaces**. [<

As previously mentioned, the axiom is actually referring to what physicists call 'pure states'. There are also the so-called mixed states!

Axiom 2: The observables of quantum systems are modelled by **self-adjoint operators** on separable complex Hilbert spaces. [</br>

Since we are dealing with finite dimensional Hilbert spaces, then we know that self-adjoint operators correspond to Hermitian matrices!

MATRIX ANALYSIS

ROGER A. HORN = CHARLES R. JOHNSON

CAMBRIDGE

Subscribe to podcast

PIRSA:C19038 - PSI 2019/2020 - Quantum Theory (Branczyk/Dupuis)

PSI 2019/2020 - Quantum Theory (Branczyk/Dupuis)

Organizer(s):

Collection URL: http://pirsa.org/C19038

start 1 | 2 >>

PIRSA:19090029 (MP4 Medium Res , MP3 , PDF) which Format?
PSI 2019/2020 - Quantum Theory (Branczyk/Dupuis) - Lecture 1
Speaker(s): Agata Branczyk

Abstract:

Date: 03/09/2019 - 9:00 am

Collection: PSI 2019/2020 - Quantum Theory (Branczyk/Dupuis)

URL: http://pirsa.org/19090029/ Share: 📑 😭 🥰 Ğ

PIRSA:19090044 (MP4 Medium Res , MP3 , PDF) which Format? PSI 2019/2020 - Quantum Theory (Branczyk) - Lecture 2 Speaker(s): Agata Branczyk

Abstract:

Date: 04/09/2019 - 9:00 am

Collection: PSI 2019/2020 - Quantum Theory (Branczyk/Dupuis)

URL: http://pirsa.org/19090044/ Share: 🖪 😭 🧖 Ğ

PIRSA:19090045 (MP4 Medium Res , MP3 , PDF) which Format?
PSI 2019/2020 - Quantum Theory (Branczyk) - Lecture 3
Speaker(s): Agata Branczyk

Abstract:

Date: 05/09/2019 - 9:00 am

Collection: PSI 2019/2020 - Quantum Theory (Branczyk/Dupuis)

URL: http://pirsa.org/19090045/ Share: 🚹 😭 🥰 🖸

- GitHub (Curated study materials): github.com/quantumformalism
- YouTube: youtube.com/zaikugroup
- Twitter: @ZaikuGroup
- **Gitter:** gitter.im/quantumformalism/community