BAYESIAN STATISTICS

HOME WORK # 3

Saturday, April 18, 2020

Problem 1. Suppose that the prior distribution of θ is uniform on some interval. Show that the posterior distribution $p(\theta/x)$ is exactly proportional to the likelihood function $f(x/\theta)$.

Problem 2. Suppose that X is a geometric random variable:

$$f(x/p) = (1-p)^{x-1}p,$$
 $x = 1, 2, 3, ...$

Let p have a prior distribution that is uniform on [0,1].

- a) What is the posterior distribution of p?
- b) What is the Bayes estimate of p under squared error loss?

Problem 3. Suppose that X has binomial distribution with parameters n=2 and p. Compare the risk functions for the following estimates of p using square error loss:

$$p_1 = \frac{X}{2},$$

$$p_2 = \frac{X+1}{3},$$

and

$$p_3 = \frac{X+1}{4}.$$

Problem 4. Suppose that a parameter Θ , takes on values $\theta_1 = 1$, $\theta_2 = 10$, and $\theta_3 = 20$. The distribution of X is discrete and depends on Θ as shown in the following table:

$$\begin{pmatrix} \theta_1 & \theta_2 & \theta_3 \\ x_1 & 0.1 & 0.2 & 0.4 \\ x_2 & 0.1 & 0.2 & 0.2 \\ x_3 & 0.2 & 0.2 & 0.2 \\ x_4 & 0.6 & 0.4 & 0.2 \end{pmatrix}$$

Assume a prior distribution of Θ is

$$p(\theta_1) = 0.5,$$
 $p(\theta_2) = 0.25,$ $p(\theta_3) = 0.25$

- a) Suppose that x_2 is observed. What is the posterior distribution of Θ ?
- b) What is the Bayes estimate under squared error loss in this case?
- c) What is the Bayes estimate for the loss function $L(\theta, \hat{\theta}) = |\theta \hat{\theta}|$?