

FÖRELÄSNING 11

RETARDERADE POTENTIALER SOM LÖSNINGAR TILL MAXWELLS EKVATIONER Fredrik Jonsson, Uppsala Universitet, 13 december 2024

Elektrodynamiska fält och retarderade potentialer

Vi har i tidigare föreläsningar kommit in på hur Maxwells ekvationer kan omformuleras till två vågekvationer för den elektriska fältstyrkan \mathbf{E} och den magnetiska flödestätheten \mathbf{B} , med växelverkan mellan mediet och de elektromagnetiska fälten beskrivna av källtermer i högerledet enligt

$$\nabla \times \nabla \times \mathbf{E} + \frac{1}{c_0^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = -\mu_0 \frac{\partial}{\partial t} \underbrace{\left(\mathbf{J_f} + \frac{\partial \mathbf{P}}{\partial t} + \nabla \times \mathbf{M} \right)}_{\text{gemensam källterm}},$$

$$\nabla \times \nabla \times \mathbf{B} + \frac{1}{c_0^2} \frac{\partial^2 \mathbf{B}}{\partial t^2} = \mu_0 \nabla \times \underbrace{\left(\mathbf{J_f} + \frac{\partial \mathbf{P}}{\partial t} + \nabla \times \mathbf{M} \right)}_{\text{gemensam källterm}}.$$

Tidigare har vi använt den skalära potentialen $\Phi(\mathbf{x})$ och vektorpotentialen $\mathbf{A}(\mathbf{x})$ i en *elektrostatisk* respektive *magnetostatisk* analys. Specifikt har vi visat hur det statiska elektriska fältet \mathbf{E} och statiska magnetiska flödestätheten \mathbf{B} direkt kan fås fram ur dessa potentialer, och hur vi på ett strukturerat sätt kan få fram potentialerna genom relativt enkla integraler (över volymer, ytor eller linjer).

Frågan infinner sig då naturligtvis om det finns tidsberoende motsvarigheter till dessa potentialer som kan appliceras på tidsberoende elektromagnetiska fält? I så fall skulle vi kunna gå via dessa potentialer och ur dessa extrahera de tidsvarierande elektriska och magnetiska fälten. Svaret är att det finns sådana potentialer, så kallade *retarderade potentialer*, vilkas existens kan härledas fram (nästan) analogt med det elektrostatiska fallet.

Recap på vad skalära potentialen och vektorpotentialen är bra för

I en analogi med klassisk mekanik kan vi betrakta en punktmassa i ett gravitationsfält G med gravitationskonstanten g (N/kg). Partikeln startar med en horisontell hastighet v_0 vid höjden z = h och färdas nedför en backe beskriven av funktionen z = f(x). En typisk uppgift skulle här kunna vara att räkna ut sluthastigheten v vid z = 0.

Vi kan naturligtvis rent principiellt ställa upp rörelseekvationerna för denna massa, göra vissa antaganden om huruvida hastigheten är låg nog för att vi ej skall få lyft från underlaget med mera, och därefter integrera rörelseekvationerna fram till ett resultat, men alla förstår nog att en betydligt enklare approach (om vi inte söker funktionen som beskriver hastigheten som funktion av tid) helt enkelt är att istället konstatera att partikeln tappar i potential. Denna förlust i potential kan via partikelns massa m enkelt översättas till en förlust i potentiell energi, vilken istället adderas till den kinetiska energin.

Ett annat synsätt är att se partikeln som att den befinner sig i en skalär mekanisk potential $\Phi(z) = gz$, resulterande i ett gravitationsfält

$$\mathbf{G} = -\nabla \Phi(z) = -\mathbf{e}_z g, \qquad \left(\quad \Leftrightarrow \quad \mathbf{E} = -\nabla \Phi(z) \quad \right)$$

i analogi med ett statiskt elektriskt fält \mathbf{E} . Kraften (N) på punktmassan m (i analogi med kraften $\mathbf{F}=q\mathbf{E}$ på en punktladdning q i ett elektrostatikt fält) blir

$$\mathbf{F} = m\mathbf{G}.$$
 $\left(\Leftrightarrow \mathbf{F} = q\mathbf{E} \right)$

Om vi utgår ifrån planet z=0 som referens, så blir den potentiella energin (J) för partikeln på höjden z därmed

$$W = -\int_{z=0}^{z} \mathbf{F} \cdot d\mathbf{x} = mgz \qquad \left(\Leftrightarrow W = -\int_{\Gamma} \mathbf{F} \cdot d\mathbf{x} = -q \int_{\Gamma} \mathbf{E} \cdot d\mathbf{x} \right)$$

Denna aningen naivistiska analogi illustrerar hur vi rent elektrostatiskt, för statiska elektriska laddningar, kan se på den skalära potentialen Φ och hur vi kan använda den i elektrostatiska problem genom att vi kan extrahera det elektriska fältet genom $\mathbf{E} = -\nabla \Phi$. Inom magnetism, som i grund och botten handlar om laddningars dynamik (rörelse), har vi istället vektorpotentialen \mathbf{A} , från vilken vi istället får den magnetiska flödestätheten som $\mathbf{B} = \nabla \times \mathbf{A}$.

Retarderade potentialer och kopplingen till elektromagnetiska fält

Gauss lag för magnetiska flödestätheten $\mathbf{B}(\mathbf{x},t)$ gäller alltid generellt, och ger direkt vid hand att även en *tidsberoende* vektorpotential $\mathbf{A}(\mathbf{x},t)$ har exakt samma länk till $\mathbf{B}(\mathbf{x},t)$ som tidigare, eftersom vi vid godtycklig observationspunkt \mathbf{x} och godtycklig tid t har att

$$\nabla \cdot \mathbf{B}(\mathbf{x}, t) = 0$$
 \Leftrightarrow $\mathbf{B}(\mathbf{x}, t) = \nabla \times \mathbf{A}(\mathbf{x}, t).$

Om vi sätter in vektorpotentialen $\mathbf{A}(\mathbf{x},t)$ i Faradays induktionslag, så erhåller vi

$$\nabla \times \mathbf{E}(\mathbf{x}, t) = -\frac{\partial}{\partial t} \underbrace{\nabla \times \mathbf{A}(\mathbf{x}, t)}_{=\mathbf{B}(\mathbf{x}, t)} \qquad \Leftrightarrow \qquad \nabla \times \underbrace{\left(\mathbf{E}(\mathbf{x}, t) + \frac{\partial \mathbf{A}(\mathbf{x}, t)}{\partial t}\right)}_{=-\nabla \Phi(\mathbf{x}, t)} = 0.$$

Eftersom rotationen av argumentet är noll,¹ så betyder detta att argumentet kan skrivas som gradienten av en skalär potential, säg som

$$\mathbf{E}(\mathbf{x},t) + \frac{\partial \mathbf{A}(\mathbf{x},t)}{\partial t} = -\nabla \Phi(\mathbf{x},t) \qquad \Leftrightarrow \qquad \mathbf{E}(\mathbf{x},t) = -\nabla \Phi(\mathbf{x},t) - \frac{\partial \mathbf{A}(\mathbf{x},t)}{\partial t}.$$

Valet av negativt tecken för gradienten i potentialen kommer från vår konvention för krafter på laddningar i elektriska fält, och att positiva laddningar strävar mot minsta potential. För att förtydliga vad vi här gjort, så har vi endast använt Gauss lag för magnetiska fält samt Faradays induktionslag, för vilka paret $(\mathbf{E}(\mathbf{x},t),\mathbf{B}(\mathbf{x},t))$ är oberoende av materialegenskaperna. Med andra ord är existensen av den skalära potentialen $\Phi(\mathbf{x},t)$ och vektorpotentialen $\mathbf{A}(\mathbf{x},t)$ oberoende av det medium i vilket de analyseras, även i det elektrodynamiska (tidsberoende) fallet.

Vi kan här också notera att fälten evalueras på exakt samma punkt spatialt som vi uttrycker potentialerna i, med andra ord så har vi ännu inte infört något "retarderat" eller "fördröjt" i ekvationerna. Detta kommer dock att inkluderas härnäst.

¹ Se Griffiths sammanfattade vektoridentiteter på insidan av pärmen, $\nabla \times (\nabla f) = 0$.

Vågekvationen för retarderade potentialer

Om vi substituerar för den skalära potentialen $\Phi(\mathbf{x},t)$ och vektorpotentialen $\mathbf{A}(\mathbf{x},t)$ i Gauss och Ampères lagar² så får vi, under antagandet om en linjär elektrisk flödestäthet i homogent medium,

$$\mathbf{D}(\mathbf{x},t) = \varepsilon_0 \varepsilon_r \mathbf{E}(\mathbf{x},t),$$

från Gauss lag $\nabla \cdot \mathbf{D}(\mathbf{x},t) = \rho(\mathbf{x},t)$ för den elektriska flödestätheten att

$$\nabla \cdot \mathbf{E}(\mathbf{x},t) = -\nabla \cdot \left(\nabla \Phi(\mathbf{x},t) + \frac{\partial \mathbf{A}(\mathbf{x},t)}{\partial t} \right) = \frac{\rho(\mathbf{x},t)}{\varepsilon_0 \varepsilon_{\mathrm{r}}} \qquad \Leftrightarrow \qquad \nabla^2 \Phi(\mathbf{x},t) + \frac{\partial}{\partial t} \nabla \cdot \mathbf{A}(\mathbf{x},t) = -\frac{\rho(\mathbf{x},t)}{\varepsilon_0 \varepsilon_{\mathrm{r}}}$$

vilket vi åtminstone från förekomsten av " ∇^2 " kan börja gissa oss till kommer att handla om en vågekvation. Det som saknas här är hur vi skall tolka tidsderivatan av $\nabla \cdot \mathbf{A}(\mathbf{x}, t)$.

Från Ampères lag i dess grundform (notera att detta är punkten då vi för in de magnetiska materialegenskaperna i problemet via de konstitutiva relationerna för **H** och **D**),

$$\nabla \times \mathbf{H} = \mathbf{J}_{\mathrm{f}} + \frac{\partial \mathbf{D}}{\partial t},$$

för enkelhets skull under antagandet om ett ickemagnetiskt medium med $\mathbf{B}(\mathbf{x},t) = \mu_0 \mathbf{H}(\mathbf{x},t)$, har vi samtidigt att

$$\nabla \times \mathbf{B}(\mathbf{x}, t) = \nabla \times \underbrace{\nabla \times \mathbf{A}(\mathbf{x}, t)}_{=\mathbf{B}(\mathbf{x}, t)}$$

$$= \{ \text{Ampères lag } \}$$

$$= \mu_0 \mathbf{J}_{\mathbf{f}}(\mathbf{x}, t) + \mu_0 \frac{\partial \mathbf{D}(\mathbf{x}, t)}{\partial t}$$

$$= \mu_0 \mathbf{J}_{\mathbf{f}}(\mathbf{x}, t) + \mu_0 \varepsilon_0 \varepsilon_{\mathbf{r}} \frac{\partial \mathbf{E}(\mathbf{x}, t)}{\partial t}$$

$$= \{ \text{Uttryck i vektorpotentialer, } \mathbf{E} = -\nabla \Phi - \frac{\partial \mathbf{A}}{\partial t} \}$$

$$= \mu_0 \mathbf{J}_{\mathbf{f}}(\mathbf{x}, t) - \mu_0 \varepsilon_0 \varepsilon_{\mathbf{r}} \frac{\partial}{\partial t} \left(\nabla \Phi(\mathbf{x}, t) + \frac{\partial \mathbf{A}(\mathbf{x}, t)}{\partial t} \right).$$

$$= \frac{\partial \mathbf{D}(\mathbf{x}, t)}{\partial t} = \varepsilon_0 \varepsilon_{\mathbf{r}} \frac{\partial \mathbf{E}(\mathbf{x}, t)}{\partial t}$$

Om vi stuvar om termerna lite, så har vi under utnyttjandet av $\nabla \times \nabla \times \mathbf{A} \equiv \nabla(\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$ att

$$\underbrace{\left(\nabla^2 - \underbrace{\mu_0 \varepsilon_0 \varepsilon_{\mathbf{r}}}_{=1/c^2} \frac{\partial^2}{\partial t^2}\right) \mathbf{A}(\mathbf{x}, t) - \nabla \left(\nabla \cdot \mathbf{A}(\mathbf{x}, t) + \underbrace{\mu_0 \varepsilon_0 \varepsilon_{\mathbf{r}}}_{=1/c^2} \frac{\partial \Phi(\mathbf{x}, t)}{\partial t}\right)}_{=1/c^2} = -\mu_0 \mathbf{J}_{\mathbf{f}}(\mathbf{x}, t)$$
Typisk vågekvation! Fråga: "Hur bli av med denna?"

Om vi skall sammanfatta detta halvvägs, så har vi i och med detta reducerat Maxwells fyra ekvationer till två, vilka dock fortfarande är kopplade. Att de fortfarande är kopplade gör det svårt för oss att formulera hur dessa potentialer skall extraheras från kända variabler så som laddningsfördelningar och strömtätheter. Isärkopplingen av dessa två ekvationer kan dock göras genom att utnyttja en viss grad av godtycklighet som fortfarande finns inneboende i ekvationerna.

 $^{^2}$ Notera att Gauss och Ampères lagar som involverar mediets egenskaper (eftersom vi här betraktar ${\bf E}$ och ${\bf B}$ som våra elektrodynamiska "basfält") så långt ej ännu använts; detta är punkten då vi först introducerar mediets egenskaper.

Vi noterar att eftersom vektorpotentialen $\mathbf{B}(\mathbf{x},t)$ definieras utifrån rotationen

$$\mathbf{B}(\mathbf{x},t) = \nabla \times \mathbf{A}(\mathbf{x},t)$$

av vektorpotentialen (och eftersom vi alltid har att $\nabla \times \nabla f \equiv 0$), så är den senare godtycklig i den bemärkelsen att magnetfältet lämnas invariant då vi adderar en gradient av någon funktion, säg $\psi(\mathbf{x},t)$, till den,

$$\mathbf{A}(\mathbf{x},t) \rightarrow \mathbf{A}'(\mathbf{x},t) = \mathbf{A}(\mathbf{x},t) + \nabla \psi(\mathbf{x},t),$$

där $\psi(\mathbf{x},t)$ är en godtycklig två gånger differentierbar funktion, beroende av rums-koordinater och tid. För att det elektriska fältet skall vara oförändrat av denna transformation, det vill säga att

$$\mathbf{E}(\mathbf{x},t) = -\nabla\Phi(\mathbf{x},t) - \frac{\partial}{\partial t} \left[\mathbf{A}(\mathbf{x},t) + \nabla\psi(\mathbf{x},t) \right] = -\nabla \left(\Phi(\mathbf{x},t) + \frac{\partial\psi(\mathbf{x},t)}{\partial t} \right) - \frac{\partial\mathbf{A}(\mathbf{x},t)}{\partial t}$$

skall förbli oförändrad, så är kravet att den skalära potentialen samtidigt transformeras som

$$\Phi(\mathbf{x},t) \rightarrow \Phi'(\mathbf{x},t) = \Phi(\mathbf{x},t) - \frac{\partial \psi(\mathbf{x},t)}{\partial t}.$$

Den parvisa transformationen

$$\mathbf{A}'(\mathbf{x},t) = \mathbf{A}(\mathbf{x},t) + \nabla \psi(\mathbf{x},t),$$

$$\Phi'(\mathbf{x},t) = \Phi(\mathbf{x},t) - \frac{\partial \psi(\mathbf{x},t)}{\partial t},$$

kallas för gauge-transformation, och används inte bara inom klassisk elektrodynamik, utan även ofta inom kvantmekanik.

Om vi nu återvänder till grundproblemet med ekvationen för vektorpotentialen ovan, så kan vi se att vi med de gauge-transformerade potentialerna har att

t vi med de gauge-transformerade potentialerna har att
$$\underbrace{\nabla \cdot \mathbf{A}'(\mathbf{x},t) + \frac{1}{c^2} \frac{\partial \Phi'(\mathbf{x},t)}{\partial t}}_{\text{Tot vi försöker bli av med}} = \nabla \cdot \left(\mathbf{A}(\mathbf{x},t) + \nabla \psi(\mathbf{x},t) \right) + \frac{1}{c^2} \frac{\partial}{\partial t} \left(\Phi(\mathbf{x},t) - \frac{\partial \psi(\mathbf{x},t)}{\partial t} \right)$$

$$= \left\{ \text{Stuva om termer } \right\}$$

$$= \nabla \cdot \mathbf{A}(\mathbf{x},t) + \frac{1}{c^2} \frac{\partial \Phi(\mathbf{x},t)}{\partial t} + \underbrace{\left(\nabla^2 \psi(\mathbf{x},t) - \frac{1}{c^2} \frac{\partial^2 \psi(\mathbf{x},t)}{\partial t^2} \right)}_{\text{Vi har frihet att välja } \psi} .$$

$$\text{så att denna blir noll!}$$

Eftersom funktionen $\psi(\mathbf{x},t)$ är godtycklig (och vi ser nu dessutom i formen ovan varför vi kräver att funktionen är just två gånger differentierbar både i rum och tid), så innebär detta att vi kan välja den så att

$$\nabla \cdot \mathbf{A}'(\mathbf{x}, t) + \frac{1}{c^2} \frac{\partial \Phi'(\mathbf{x}, t)}{\partial t} = 0.$$

Denna relation mellan vektorpotential och skalär potential kallas allmänt *Lorenz-villkoret*. Den frihet som gauge-transformen av den skalära potentialen och vektorpotentialen bistår med innebär alltså att vi har friheten att välja potentialer $\Phi(\mathbf{x},t)$ och $\mathbf{A}(\mathbf{x},t)$ så att ekvationerna för dem frikopplas, resulterande i två inhomogena partiella differentialekvationer

$$\nabla^{2}\Phi(\mathbf{x},t) - \frac{1}{c^{2}} \frac{\partial^{2}\Phi(\mathbf{x},t)}{\partial t^{2}} = \frac{\rho(\mathbf{x},t)}{\varepsilon_{0}\varepsilon_{r}},$$

$$\nabla^{2}\mathbf{A}(\mathbf{x},t) - \frac{1}{c^{2}} \frac{\partial^{2}\mathbf{A}(\mathbf{x},t)}{\partial t^{2}} = -\mu_{0}\mathbf{J}_{r}(\mathbf{x},t).$$

Från dessa två vågekvationer ser vi direkt två saker:

- Potentialerna propagerar med ljusets hastighet c (notera att $c = c_0/n$ här fortfarande inkluderar brytningsindex $n = \sqrt{\varepsilon_r}$), så teorin bakom gauge-transformationen är tillämplig även för elektromagnetisk vågpropagation i ett dielektrikum.
- Lösningarna till vågekvationerna för potentialerna kan fås fram exakt på analogt sätt som för det elektrostatiska fallet, så länge som vi är noga med att ta i beaktande tidsfördröjningen från källa till observationspunkt, resulterande i så kallade retarderade potentialer.

[Överkurs] Gauge-transformen: Lorenz och Coulomb gauge

Lorenz gauge

Gauge-transformationen ovan, vilken sägs fixera potentialerna i den så kallade Lorenz gauge,³ säger egentligen bara att så länge som vi utnyttjar valfriheten att välja den (två gånger differentierbara i rum och tid) funktionen $\psi(\mathbf{x},t)$ så att den uppfyller

$$\nabla^2 \psi(\mathbf{x}, t) - \frac{1}{c^2} \frac{\partial^2 \psi(\mathbf{x}, t)}{\partial t^2} = -\left(\nabla \cdot \mathbf{A}(\mathbf{x}, t) + \frac{1}{c^2} \frac{\partial \Phi(\mathbf{x}, t)}{\partial t}\right),\,$$

så kommer ekvationerna för $\Phi(\mathbf{x},t)$ och $\mathbf{A}(\mathbf{x},t)$ att frikopplas till två (i allmänhet inhomogena) vågekvationer. Lorenz-villkoret är vanligast förekommande när man arbetar med retarderade potentialer, eftersom vi då får frikopplade ekvationer för den skalära potentialen och vektorpotentialen.⁴

Coulomb gauge

Den andra ofta förekommande varianten är Coulomb-villkoret för gauge-transformen, i vilket vi fixerar potentialerna i det så kallade Coulomb gauge. I detta fall väljer vi $\psi(\mathbf{x},t)$ så att

$$\nabla \cdot \mathbf{A}(\mathbf{x}, t) = 0.$$

Observera att $\nabla \cdot \mathbf{A}(\mathbf{x},t) = 0$ självfallet *inte* på något sätt innebär att $\nabla \times \mathbf{A}(\mathbf{x},t)$ (som ju är detsamma som magnetiska flödestätheten $\mathbf{B}(\mathbf{x},t)$) nödvändigtvis är noll.

I detta fall blir vårt krav på $\psi(\mathbf{x},t)$ att funktionen istället uppfyller

$$\nabla^2 \psi(\mathbf{x}, t) - \frac{1}{c^2} \frac{\partial^2 \psi(\mathbf{x}, t)}{\partial t^2} = -\frac{1}{c^2} \frac{\partial \Phi(\mathbf{x}, t)}{\partial t},$$

och vi ser att de partiella differentialekvationerna för potentialerna istället antar formen

$$\begin{split} \nabla^2 \Phi(\mathbf{x},t) &= -\frac{\rho(\mathbf{x},t)}{\varepsilon_0 \varepsilon_\mathrm{r}}, \\ \bigg(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \bigg) \mathbf{A}(\mathbf{x},t) &= -\mu_0 \mathbf{J}_\mathrm{f}(\mathbf{x},t) + \frac{1}{c^2} \nabla \frac{\partial \Phi(\mathbf{x},t)}{\partial t}, \end{split}$$

det vill säga att den skalära potentialen $\Phi(\mathbf{x},t)$ nu (tämligen oväntat) uppfyller den vanliga statiska Poisson-ekvationen (notera att vi i denna ekvation saknar tidsderivata, och att högeroch vänsterled är direkt kopplade utan någon tidsfördröjning mellan källa och observationspunkt),
med omedelbar verkan från en laddningsfördelning $\rho(\mathbf{x},t)$, med lösningen

$$\Phi(\mathbf{x},t) = \frac{1}{4\pi\varepsilon_0\varepsilon_r} \iiint_{\mathbb{R}^3} \frac{\rho(\mathbf{x},t)}{|\mathbf{x}-\mathbf{x}'|} dV'.$$

Ett annat sätt att se på detta är att vi i denna gauge har den skalära potentialen som en direkt och omedelbar Coulomb-potential från laddningstätheten $\rho(\mathbf{x},t)$, därav att detta betecknas som Coulomb gauge. I denna gauge löser vi principiellt först för den skalära potentialen (och ignorerar det faktum att potentialer likt de elektromagnetiska fälten i verkligheten självfallet propagerar

³ Om Lorenz gauge (Wikipedia): "It is unique among the constraint gauges in retaining manifest Lorentz invariance. Note, however, that this gauge was originally named after the Danish physicist Ludvig Lorenz and not after Hendrik Lorentz; it is often misspelled "Lorentz gauge". (Neither was the first to use it in calculations; it was introduced in 1888 by George F. FitzGerald.)"

⁴ För en intressant utläggning kring historiken och utvecklingen av teorin bakom gauge-transformationen, se till exempel J. D. Jackson, *Historical roots of gauge invariance*, Rev. Mod. Phys. **73**, 663 (2001); https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.73.663.

med ljusets hastighet), varvid vi använder lösningen $\Phi(\mathbf{x},t)$ som en källterm i den inhomogena vågekvationen för vektorpotentialen $\mathbf{A}(\mathbf{x},t)$.

Coulomb-villkoret (Coulomb gauge) används ofta för fältproblem då vi har avsaknad av fria laddningar eller strömmar. I detta fall är den skalära potentialen $\Phi(\mathbf{x},t)=0$, och vektorpotentialen uppfyller då den homogena vågekvationen

$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \mathbf{A}(\mathbf{x}, t) = 0.$$

Det elektriska fältet $\mathbf{E}(\mathbf{x},t)$ och magnetiska flödestätheten $\mathbf{B}(\mathbf{x},t)$ fås då som

$$\mathbf{E}(\mathbf{x},t) = -\frac{\partial \mathbf{A}(\mathbf{x},t)}{\partial t}, \qquad \mathbf{B}(\mathbf{x},t) = \nabla \times \mathbf{A}(\mathbf{x},t).$$

Eftersom vi uppenbarligen har en ofysikalisk situation i det att den skalära potentialen i Coulomb gauge *omedelbart* får en effekt på en observationspunkt på ett avstånd från källan (och därmed bryter mot den grundläggande fysikaliska pricipen att ingenting kan färdas fortare än ljusets hastighet), så infinner sig frågan om detta verkligen kan vara korrekt?

Här måste vi hålla isär begreppet potential och fält, och först av allt konstatera att vektorpotentialen $\mathbf{A}(\mathbf{x},t)$, som i Coulomb gauge bistår med både det elektriska och magnetiska fältet, följer en vågekvation som propagerar lösningen med ljushastigheten. I denna vågekvation ingår den omedelbara skalära potentialen som en slags $artificiell\ k\"allterm$, från vilken vi aldrig direkt extraherar några fält. Med andra ord, så är Coulomb gauge användbar i frånvaro av fria laddningar och strömmar, men vi måste då vara noga med att inte tolka in några elektrodynamiska effekter direkt från den skalära potentialen.

Om inga speciella omständigheter råder, är en generell rekommendation att använda Lorenz gauge närhelst det är möjligt, då detta inte kan ge upphov till eventuella misstolkningar av de retarderade potentialerna som bistår med lösningarna.

Retarderade potentialer på integralform

Vi kommer nu att fortsätta under antagandet att vi fixerar potentialerna under Lorenz-villkoret. Som vi sett kan vi om vi fixerar den skalära potentialen och vektorpotentialen i *Lorenz gauge* frikoppla ekvationerna från varandra, till två inhomogena vågekvationer.

Ofta kan fältekvationerna för $\mathbf{E}(\mathbf{x},t)$ och $\mathbf{B}(\mathbf{x},t)$ lösas genom att precis som i det elektrostatiska fallet först beräkna integralerna för (den genom Lorenz-villkoret frikopplade) skalära potentialen och vektorpotentialen. Dessa potentialer är dock för det elektrodynamiska fallet tidsberoende, oavsett att de i Lorenz gauge är frikopplade, och deras värden $\Phi(\mathbf{x},t)$ respektive $\mathbf{A}(\mathbf{x},t)$ vid tidpunkten t kommer att bero på summan av deras infinitesimala bidrag $d\Phi(\mathbf{x},t')$ och $d\mathbf{A}(\mathbf{x},t')$ från en tidigare tidpunkt t'.

Den tid som det tar för den elektromagnetiska potentialen (eller för den delen, det elektromagnetiska fältet) att nå observationspunkten \mathbf{x} från källpunkten \mathbf{x}' är helt enkelt $\Delta t = |\mathbf{x} - \mathbf{x}'|/c$, vilket innebär att när vi summerar alla infinitesimala bidrag i den vanliga volymsintegralen för potentialerna, så måste vi vara noga med att inte bara summera över rummet, utan även ta hänsyn till den tid som det tar för potentialen att nå observationspunkten. Härav att vi kallar den elektrodynamiska varianten av den skalära potentialen och vektorpotentialen för retarderade potentialer (eller "fördröjda" potentialer, om man så vill). Dessa potentialer formuleras som volymintegralerna

$$\Phi(\mathbf{x},t) = \frac{1}{4\pi\varepsilon_0} \iiint_{\mathbb{R}^3} \frac{\rho(\mathbf{x}',t')}{|\mathbf{x}-\mathbf{x}'|} dV', \qquad \mathbf{A}(\mathbf{x},t) = \frac{\mu_0}{4\pi} \iiint_{\mathbb{R}^3} \frac{\mathbf{J}(\mathbf{x}',t')}{|\mathbf{x}-\mathbf{x}'|} dV',$$

där

$$t' = t - |\mathbf{x} - \mathbf{x}'|/c$$

är den retarderade tiden som beror av avståndet mellan källa \mathbf{x}' och observationspunkt \mathbf{x} . Utifrån dessa två integraler fås därefter de elektromagnetiska fälten $\mathbf{E}(\mathbf{x},t)$ och $\mathbf{B}(\mathbf{x},t)$ direkt från relationerna

$$\mathbf{B}(\mathbf{x},t) = \nabla \times \mathbf{A}(\mathbf{x},t), \qquad \qquad \mathbf{E}(\mathbf{x},t) = -\nabla \Phi(\mathbf{x},t) - \frac{\partial \mathbf{A}(\mathbf{x},t)}{\partial t}.$$

Notera att denna evaluering av potentialerna självfallet sker vid den aktuella tiden t (vid vilken vid evaluerar fälten); all tidigare historik hos alla delbidragande volymselement för de retarderade potentialerna har ju inkluderats genom själva integrationen.

Exempel: Halvvågsantenn och emitterade elektromagnetiska fält

Som ett handfast exempel på den praktiska tillämpningen av de retarderade potentialerna $\Phi(\mathbf{x},t)$ och $\mathbf{A}(\mathbf{x},t)$ skall vi nu genom dessa potentialer beräkna de emitterade elektriska och magnetiska fälten $\mathbf{E}(\mathbf{x},t)$ och $\mathbf{B}(\mathbf{x},t)$ från en halvvågsantenn (så kallad "dipolantenn"), riktad längs \mathbf{e}_z och matad med strömmen

$$I(z,t) = I_0 \cos(2\pi z/\lambda) \sin(\omega t),$$

för $-\lambda/4 \le z \le \lambda/4$ och med $\omega/c = 2\pi/\lambda$. Evaluera fälten vid en punkt $\mathbf{x} = x\mathbf{e}_x$ där $x \gg \lambda$.

Först av allt: Några kvalificerade gissningar

- Fälten bör i punkten $\mathbf{x} = x\mathbf{e}_x$ rimligen breda ut sig med en vågvektor riktad längs x-axeln.
- I punkten $\mathbf{x} = x\mathbf{e}_x$ bör det elektriska fältet av symmetriskäl hos källan vara riktat längs med z-axeln.
- Eftersom den magnetiska flödesttätheten är ortogonal mot både vågvektorn och det elektriska fältet, så bör det vara riktat längs y-axeln (inåt i figurens plan).
- Vi kan gissa oss till att en rimlig arbetsgång är att från strömmen söka potentialerna och ur dessa fälten,

$$I(z,t) \rightarrow \underbrace{\Phi(\mathbf{x},t), \mathbf{A}(\mathbf{x},t)}_{\text{retarderade potentialer}} \rightarrow \underbrace{\frac{\mathbf{E}(\mathbf{x},t) = -\nabla\Phi(\mathbf{x},t) - \frac{\partial\mathbf{A}(\mathbf{x},t)}{\partial t}}_{\text{fält}}$$

• Vektorpotentialen kan beräknas ur den givna strömmen; dock behöver vi för den skalära potentialen även den elektriska laddningen på antennen. Även om denna inte är given, så kan vi gissa oss till att denna i alla händelser kan tas fram ur det allmänt giltiga kontinuitetssambandet (konserveringslagen) för elektrisk laddning)

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{J_f} = 0.$$

Lösning

Vi vet redan på förhand att vektorpotentialen kan tas fram direkt ur den givna strömmen i antennen. För den skalära potentialen behöver vi dock även laddningsdensiteten längs antennen, något som ej är givet direkt i uppgiften. Från den generella lagen om konservering av laddning i tre dimensioner får vi dock fram laddningsdensiteten per längdenhet $\rho_{\ell}(z,t)$ på antennen från den kända strömmen, som:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{J_f} = 0 \qquad \Rightarrow \qquad \frac{\partial \rho_{\ell}(z, t)}{\partial t} + \frac{\partial I(z, t)}{\partial z} = 0,$$

det vill säga, om vi nu integrerar detta i tiden (från, säg, t = 0) för att få fram laddningen per längdenhet längs antennen,

$$\begin{split} \underbrace{\rho_{\ell}(z,t)}_{\text{(C/m)}} &= -\int_{0}^{t} \frac{\partial I(z,\tau)}{\partial z} \, d\tau \\ &= \left\{ \begin{array}{l} I(z,t) = I_{0} \cos(2\pi z/\lambda) \sin(\omega t) \, \right\} \\ &= -I_{0} \quad \underbrace{\frac{\partial \cos(2\pi z/\lambda)}{\partial z}}_{\text{0}} \quad \underbrace{\int_{0}^{t} \sin(\omega \tau) \, d\tau}_{\text{ω}} \\ &\left(-\frac{2\pi}{\lambda} \sin(2\pi z/\lambda) \right) \left(-\frac{(\cos(\omega t) - 1)}{\omega} \right) \\ &= \frac{2\pi I_{0}}{\lambda \omega} \sin(2\pi z/\lambda) (1 - \cos(\omega t)) \\ &= \left\{ \begin{array}{l} \lambda \omega = \lambda (2\pi c/\lambda) = 2\pi c \, \right\} \\ &= \underbrace{(I_{0}/c)}_{\text{(C/m)}} \sin(2\pi z/\lambda) (1 - \cos(\omega t)) \\ &\underbrace{(C/m)} \end{split}$$

Ur detta får vi därefter direkt den retarderade skalära potentialen som

$$\begin{split} \Phi(\mathbf{x},t) &= \frac{1}{4\pi\varepsilon_0} \iiint_{\mathbb{R}^3} \frac{\rho(\mathbf{x}',t')}{|\mathbf{x}-\mathbf{x}'|} dV' \\ &= \{ \text{ linjeladdning } \to \text{ en-dimensionell integral } \} \\ &= \frac{1}{4\pi\varepsilon_0} \int_{-\lambda/4}^{\lambda/4} \frac{\rho_\ell(\mathbf{x}',t')}{|\mathbf{x}-\mathbf{x}'|} dz' \\ &= \frac{I_0}{4\pi\varepsilon_0 c} \int_{-\lambda/4}^{\lambda/4} \frac{\sin(2\pi z'/\lambda)(1-\cos(\omega t'))}{|x\mathbf{e}_x-z'\mathbf{e}_z|} dz' \\ &= \{ \text{ retarderad tid, } t' = t - |\mathbf{x}-\mathbf{x}'|/c = t - \sqrt{x^2 + z'^2}/c \} \} \\ &= \frac{I_0}{4\pi\varepsilon_0 c} \int_{-\lambda/4}^{\lambda/4} \frac{\sin(2\pi z'/\lambda)(1-\cos(\omega(t-\sqrt{x^2+z'^2}/c)))}{\sqrt{x^2+z'^2}} dz' \\ &= \{ \text{ Antagande i problemet: } x \gg \lambda \Leftrightarrow x \gg z \in [-\lambda/4, \lambda/4] \} \\ &= \frac{I_0}{4\pi\varepsilon_0 cx} (1-\cos(\omega(t-x/c))) \underbrace{\int_{-\lambda/4}^{\lambda/4} \sin(2\pi z'/\lambda) dz'}_{=0} \\ &= 0 \end{split}$$

Detta något snöpliga resultat är något vi faktiskt borde ha anat redan utifrån den symmetriska integralen längs z och den anti-symmetriska formen på integranden $\sin(2\pi z/\lambda)$. Att den skalära potentialen $\Phi(\mathbf{x},t)$ är identiskt noll betyder dock inte att det elektriska fältet är noll, vilket vi

lätt kan förledas att tro ifrån det elektrostatiska sambandet $\mathbf{E} = -\nabla \Phi$, vilket inte är applicerbart rätt av för elektrodynamiska (tidsberoende) problem som detta. Istället är det tidsderivatan av vektorpotentialen som kommer att bistå med detta.

Den retarderade vektorpotentialen fås (som vi tidigare nämnt) direkt från den givna strömfördelningen I(z,t) som

$$\mathbf{A}(\mathbf{x},t) = \frac{\mu_0}{4\pi} \iiint_{\mathbb{R}^3} \frac{\mathbf{J}(z',t')}{|\mathbf{x} - \mathbf{x}'|} dV'$$

$$= \{ \text{ linjeström; även noga att vi använder } retarderad \text{ tid } t' \}$$

$$= \frac{\mu_0}{4\pi} \int_{-\lambda/4}^{\lambda/4} \frac{I(z',t')\mathbf{e}_z}{|x\mathbf{e}_x - z'\mathbf{e}_z|} dz'$$

$$= \frac{\mu_0 I_0}{4\pi} \mathbf{e}_z \int_{-\lambda/4}^{\lambda/4} \frac{\cos(2\pi z'/\lambda)\sin(\omega t')}{\sqrt{x^2 + z'^2}} dz'$$

$$= \{ \text{ retarderad tid, } t' = t - |\mathbf{x} - \mathbf{x}'|/c = t - \sqrt{x^2 + z'^2}/c \}$$

$$= \frac{\mu_0 I_0}{4\pi} \mathbf{e}_z \int_{-\lambda/4}^{\lambda/4} \frac{\cos(2\pi z'/\lambda)\sin(\omega(t - \sqrt{x^2 + z'^2}/c))}{\sqrt{x^2 + z'^2}} dz'$$

$$= \{ x \gg \lambda \}$$

$$\approx \frac{\mu_0 I_0 \sin(\omega(t - x/c))}{4\pi x} \mathbf{e}_z \int_{-\lambda/4}^{\lambda/4} \cos(2\pi z'/\lambda) dz'$$

$$= \frac{\mu_0 I_0 \lambda \sin(\omega(t - x/c))}{4\pi^2 x} \mathbf{e}_z$$

Från detta erhålls den magnetiska flödestätheten vid observationspunkten ${\bf x}$ som

$$\begin{split} \mathbf{B}(\mathbf{x},t) &= \nabla \times \mathbf{A}(\mathbf{x},t) \\ &= \left(\mathbf{e}_x \frac{\partial}{\partial x} + \mathbf{e}_y \frac{\partial}{\partial y} + \mathbf{e}_z \frac{\partial}{\partial z}\right) \times \frac{\mu_0 I_0 \lambda \sin(\omega(t-x/c))}{4\pi^2 x} \mathbf{e}_z \\ &= \underbrace{\left(\mathbf{e}_x \times \mathbf{e}_z\right)}_{=-\mathbf{e}_y} \frac{\mu_0 I_0 \lambda}{4\pi^2} \frac{\partial}{\partial x} \left(\frac{\sin(\omega(t-x/c))}{x}\right) \\ &= -\mathbf{e}_y \frac{\mu_0 I_0 \lambda}{4\pi^2} \left(\frac{-(\omega/c)\cos(\omega(t-x/c)) \cdot x - \sin(\omega(t-x/c)) \cdot 1}{x^2}\right) \\ &= \mathbf{e}_y \frac{\mu_0 I_0 \lambda}{4\pi^2} \left(\frac{(\omega x/c)\cos(\omega(t-x/c)) + \sin(\omega(t-x/c))}{x^2}\right) \\ &= \mathbf{e}_y \frac{\mu_0 I_0 \lambda}{4\pi^2} \left(\frac{\omega \cos(\omega(t-x/c))}{x} + \frac{\sin(\omega(t-x/c))}{x^2}\right) \end{split}$$

På samma sätt erhålles den elektriska fältstyrkan vid observationspunkten ${\bf x}$ som

$$\mathbf{E}(\mathbf{x},t) = -\underbrace{\nabla \Phi(\mathbf{x},t)}_{=0} - \frac{\partial \mathbf{A}(\mathbf{x},t)}{\partial t}$$

$$= -\mathbf{e}_z \frac{\partial}{\partial t} \left(\frac{\mu_0 I_0 \lambda \sin(\omega(t-x/c))}{4\pi^2 x} \right)$$

$$= -\mathbf{e}_z \frac{\mu_0 I_0 \lambda \omega}{4\pi^2} \frac{\cos(\omega(t-x/c))}{x}$$

$$= \{ \omega \lambda = 2\pi c \}$$

$$= -\mathbf{e}_z \frac{\mu_0 c I_0 \lambda \omega}{2\pi} \frac{\cos(\omega(t-x/c))}{x}$$

Några intressanta saker att observera ur lösningen

- De elektriska och magnetiska fälten är riktade precis så som vi förväntade oss, med ${\bf E}$ längs ${\bf e}_z$ och med ${\bf B}$ längs ${\bf e}_y$.
- Vi kan enkelt verifiera lösningarna (utför gärna denna exercis!) för fälten $\mathbf{E}(\mathbf{x},t)$ och $\mathbf{B}(\mathbf{x},t)$ mot varandra genom att utvärdera höger- och vänsterledet i Faradays lag,

$$\nabla \times \mathbf{E}(\mathbf{x}, t) = -\frac{\partial \mathbf{B}(\mathbf{x}, t)}{\partial t}.$$

- Något mer förvånande är att det elektriska fältet avtar med avståndet från antennen som $\mathbf{E} \sim 1/x$, medan magnetfältet \mathbf{B} består av två termer med den ena $\sim 1/x$ och den andra $\sim 1/x^2$. Vi måste här dock hålla i minnet att vi då vi närmar oss närfältet, så gäller inte antagandet om en direkt proportionalitet mellan det elektriska och magnetiska fältet. Faradays lag, som är grunden även för denna avvikelse mellan fältens avtagande med x i närfältet, gäller dock alltid.
- Eftersom \mathbf{E} för $x \gg \lambda$ avtar som $\sim 1/x$, så avtar fältstyrkan effektivt på samma sätt som en motsvarande statisk elektrisk monopol. Att vi vi har avtagandet som $\mathbf{E} \sim 1/x$ är faktiskt förutsättningen för långdistanskommunikation med radiofrekvenser! (Man skulle möjligen, i en analogi med det elektrostatiska fallet, annars kunna förvänta sig att fältet spreds som från en elektrostatisk dipol, som $\mathbf{E} \sim 1/x^2$, men detta är alltså felaktigt.)
- Alltså: Det *elektrodynamiska* (tidsberoende) fälten skiljer sig radikalt från de *elektrostatiska* (tidsberoende)!