

Model Optimization and Tuning Phase Template

Date	9 July 2024		
Team ID	Team-740058		
Project Title	Masterful Machines: Precise Coffee Quality Predictons Through ML		
Maximum Marks	10 Marks		

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values		
Logistic	-	-		
Regression				
Decision Tree	-	-		
Classifier				
Random Forest	 -	 -		
Classifier				

NOTE: In our project not provided grid search and hyperparameters topic.

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric				
Logistic Regression					
		precision	recall	ti-score	support
	Ø 1		0.70		37 2
	accuracy macro avg weighted avg	0.52 0.92	0.68 0.69	0.69 0.48	39 39 39
Decision Tree					
Classifier		precision	recall	f1-score	support
	9	0.94	0.92		37 2
	accuracy macro avg weighted avg	0.47 0.90	0.46 0.87		39 39 39
Random Forest					
Classifier	pr	recision	recall	f1-score	support
	9	0.95	1.00	0.97	37 2
	accuracy macro avg weighted avg	0.47 0.90	0.50 0.95	0.95 0.49 0.92	39 39 39

Final Model Selection Justification (2 Marks):

Final Model	Reasoning

Random Forest was chosen for the coffee quality prediction project due to its superior accuracy and robustness against overfitting, achieving an optimized accuracy score of 94.9%. This ensemble method effectively handles non-linear relationships and is less sensitive to noise and outliers compared to other models. Additionally, Random Forest provides valuable insights into feature importance, requires minimal data preprocessing, and scales well with large datasets, making it the optimal choice for delivering consistent and reliable coffee quality assessments

Random Forest

Classifier