## MA111 TUTORIAL 4

GYANDEV GUPTA D1-T5 IIT Bombay February 10, 2020

1. Determine whether or not the given set is a) open, b) path-connected, and c) simply-connected.

(a) 
$$D = \{(x, y) \in \mathbb{R}^2 \mid 0 < y < 3\},\$$

(c) 
$$D = \{(x, y) \in \mathbb{R}^2 \mid 1 \le x^2 + y^2 \le 4, y \ge 0\},\$$

(d) 
$$D = \{(x,y) \in \mathbb{R}^2 \mid (x,y) \neq (1,4)\}.$$

$$D = \{(x, y) \in \mathbb{R}^2 \mid 0 < y < 3\}$$



- The set is an open set. (Show by taking a circle in the domain with suitable radius)
- Path connected since any 2 points can be joined by a path.
- Simply connected. Draw any closed curve C in D.

#### Question 1.c

$$D = \{(x, y) \in \mathbb{R}^2 \mid 1 \le x^2 + y^2 \le 4, \quad y \ge 0\}$$



- The set is not an open set.
- Path connected since any 2 points can be joined by a path.
- Simply connected since any closed curve in D will have no holes.

#### Question 1.d

$$D = \{(x, y) \in \mathbb{R}^2 \mid (x, y) \neq (1, 4)\}.$$



- The set is an open set.
- Path connected since any 2 points can be joined by a path.
- NOT Simply connected. Draw any closed curve enclosing (1,4).

3. Show that the line integral is path-independent and evaluate the integral:

$$\int_C 2xe^{-y} \, dx + (2y - x^2e^{-y}) \, dy$$

| 3   | $I = \int_{C} 2xe^{-y} dx + (2y - x^{2}e^{-y}) dy.$ (b)                                                              |
|-----|----------------------------------------------------------------------------------------------------------------------|
| 0-6 | (is any path from (1,0) to (2,1).  (is any path from (1,0) to (2,1).                                                 |
|     | $F(x,y) = 2xe^{-y}$ $F_2(x,y) = 2y - x^2e^{-y}$                                                                      |
|     | $\frac{\partial F_1}{\partial y} = -2xe^{-\frac{y}{2}} \qquad \frac{\partial F_2}{\partial x} = -2xe^{-\frac{y}{2}}$ |
|     | $\frac{\partial F_1}{\partial F_2} = \frac{\partial F_2}{\partial F_3}$                                              |
|     | Hence F is a conservative vector field.                                                                              |

$$\vec{F} = \vec{\nabla} \cdot \vec{f}$$

$$\vec{f} = \vec{f} \cdot \vec{f}$$

$$dx$$

$$df = +2xe^{-\frac{1}{2}} \cdot \vec{f}$$

$$dx$$

$$f(x,y) = +x^{2}e^{-\frac{1}{2}} + g(y)$$

$$\frac{1}{2} \cdot f(x,y) = -x^{2}e^{-\frac{1}{2}} + g'(y) = 2y - x^{2}e^{-\frac{1}{2}}$$

$$g'(y) = 2y - g(y) = y^{2} + c$$

$$f(x,y) = x^{2}e^{-\frac{1}{2}} + y^{2} + c$$

5. Let  $\mathbf{F} = \nabla f$ , where  $f(x,y) = \sin(x-2y)$ . Find curves  $C_1$  and  $C_2$  that are not closed and satisfy

$$\int_{C_1} \mathbf{F}.\mathbf{ds} = 0, \quad \int_{C_2} \mathbf{F}.\mathbf{ds} = 1.$$



# QUESTION 6.A

- 6. Determine whether or not **F** is a conservative vector field. If it is, find a function f such that  $\mathbf{F} = \nabla f$ .
  - (a)  $\mathbf{F}(x,y) = y^2 e^{xy} \mathbf{i} + (1+xy) e^{xy} \mathbf{j}$ , for all  $(x,y) \in \mathbb{R}^2$ .

### Question 6.a

| 6. a | $\vec{F}(x,y) = y^2 e^{\alpha y} \hat{j} + (1+\alpha y) e^{\alpha y} \hat{j} \qquad \forall G(y) \in \mathbb{R}^2$ |
|------|--------------------------------------------------------------------------------------------------------------------|
|      | The domain R <sup>2</sup> is an open, connected & simply connected domain. Hence we can just check if              |
|      | $\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x} = \frac{\partial F_2}{\partial x}$              |
|      | $F_1 = y^2 e^{xy}$ $F_2 = (1+xy) e^{xy}$                                                                           |

### Question 6.a

| $F_1 = y^2 e^{xy} \qquad F_2 = (1+xy) e^{xy}.$                                 |
|--------------------------------------------------------------------------------|
| $\partial f_1 = 2ye^{\alpha y} + \alpha y^2 e^{\alpha y}$                      |
| $\frac{\partial F_2}{\partial y} = y(1+\alpha y)e^{\alpha y} + ye^{\alpha y}.$ |
| $= 24e^{\alpha y} + 24e^{\alpha y}$                                            |
| $\therefore \partial F_1 = \partial F_2$                                       |
| i. $\vec{F}(\alpha,y)$ is a conservative vector field.                         |

### Question 6.a



$$\frac{\partial f}{\partial y} = f_2$$

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial y} + e^{xy} + e^{xy} + e^{xy} + e^{xy} + e^{xy} + e^{xy}$$

$$\frac{\partial f}{\partial y} = 0 \qquad g(y) = c.$$

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial y} = c.$$

## QUESTION 7.A

- 7. Let **F** be a vector field on  $\mathbb{R}^2$ . Find a function f such that  $\mathbf{F} = \operatorname{grad} f$  and using it evaluate  $\int_{\mathbf{c}} \mathbf{F} \cdot \mathbf{ds}$ , where **F** and **c** are given below:
  - (a)  $\mathbf{F}(x, y, z) = (2xyz + \sin x)\mathbf{i} + x^2z\mathbf{j} + x^2y\mathbf{k} \text{ and } \mathbf{c}(t) = (\cos^5 t, \sin^3 t, t^4), \ 0 \le t \le \pi.$

#### Question 7.a

F(x,y,z) = 
$$(2xyz+\sin x)^2$$
  
+  $(x^2y)^2$   
 $2x^2$   
 $3x^2$   
 $3x^$ 

#### Question 7.a

$$C(t) = (cost, sin^3t, t^4)$$

$$C(0) = (1, 0, 0)$$

$$C(1) = (-1, 0, \pi^4)$$

$$\int_{C} F.ds = (-cos(1) + 0 + cos(-1) - 0)$$

$$= 2cos(1)$$

9. Let  $S = \mathbb{R}^2 \setminus \{(0,0)\}$ . Let

$$\mathbf{F}(x,y) = -\frac{y}{x^2 + y^2}\mathbf{i} + \frac{x}{x^2 + y^2}\mathbf{j} := F_1(x,y)\mathbf{i} + F_2(x,y)\mathbf{j}.$$

- (a) Show that  $\frac{\partial}{\partial y}F_1(x,y) = \frac{\partial}{\partial x}F_2(x,y)$  on S.
- (b) Compute  $\int_C \mathbf{F} \cdot \mathbf{ds}$  where C is the circle:  $x^2 + y^2 = 1$ .

|          | 1 25 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>a</u> | $\frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2$ |
|          | dy da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | $\partial F_1 = \partial (-Y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | $\frac{\partial F_1}{\partial y} = \frac{\partial}{\partial y} \left( -\frac{y}{x^2 + y^2} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | $= -1 + y \cdot (2y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | $\chi^2 + y^2 \qquad (\chi^2 + y^2)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | $= -1 + y \cdot (2y)$ $= x^{2} + y^{2}$ $= y^{2} - x^{2}$ $= (x^{2} + y^{2})^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | (x2+y2)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | $\mathcal{L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | $\frac{\partial f_2}{\partial x} = \frac{\partial}{\partial x} \left( \frac{\chi^2 + y^2}{\chi^2 + y^2} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | $=$ 1 $\sim$ (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | $= \frac{1}{\chi^{2} + y^{2}} - \frac{\chi(2\chi)}{(\chi^{2} + y^{2})^{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | $\frac{\chi^{2} + y^{2}}{2} = \frac{\chi^{2} + y^{2}}{(\chi^{2} + y^{2})^{2}}$ $= \frac{\chi^{2} - \chi^{2}}{(\chi^{2} + y^{2})^{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | (2+42)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | V. 15 ( ) 15 ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | Mence $dF_{1}(a,y) = dF_{2}(a,y)$ on 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | dy doc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| $\oint \vec{F} \cdot d\vec{3} \qquad \text{(is the cincle } \chi^2 + y^2 = 1$ |
|-------------------------------------------------------------------------------|
| $x = cost$ $y = sint$ . $t \in [0, 2\pi]$                                     |
| $\frac{1}{2} \int_{C}^{C} \frac{f(t)}{dt} dx + f_{2}(t) dy \int_{C}^{C} dt.$  |
| $= \int \left(-sint \cdot (-sint) + cost \cdot cost \cdot\right) dt$          |
| $=\int_{0}^{0.2\pi}dt$                                                        |
| $\oint_{\mathcal{C}} \vec{F} \cdot d\vec{s} = 2\pi + 0.$                      |
| Integral on a closed curve is non Zero-                                       |

| C | From (b), clearly F is not path independent<br>& hence NOT conservative.                              |
|---|-------------------------------------------------------------------------------------------------------|
|   | Also, although $\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}$ in (a), the domain |
|   | 5 is not simply connected. Hence it was we cannot conclude conservative from (a).                     |
|   | cannot conclude conservative trum (a).                                                                |

10. A radial force field is one which can be expressed as  $\mathbf{F}(x, y, z) = f(r)\mathbf{r}$  where  $\mathbf{r} = (\mathbf{x}, \mathbf{y}, \mathbf{z})$  is the position vector and  $r = ||\mathbf{r}||$ . Show that, if f is continuous,  $\mathbf{F}$  is conservative in  $\mathbb{R}^3$ .

(Hint. Try to guess what the potential function could be, provided f is continuous.)

| 10. We need to chan that it a                                       |          |
|---------------------------------------------------------------------|----------|
| 10. We need to show that F is conservative.                         | 1110     |
| It is sufficient to show that there is a function g: $\Delta g = F$ |          |
| 6                                                                   |          |
| 4) Note that since we need to only show F is a                      | enuwativ |
| we can just prove existence of g, nother the                        | an       |
| calculating g in closed form.                                       |          |
|                                                                     |          |
| 4 f (8) is given to be continuous.                                  |          |
| => & f(s) is also continuous.                                       |          |
| The same activities.                                                |          |
| Hence & g(s) is integrable i e I & g(r):                            |          |
| ~                                                                   |          |
| g(r) = Sp(s).s.ds.                                                  |          |
|                                                                     |          |
| 4) Hence F is conservative in $\mathbb{R}^3$ .                      |          |

