Sequence models & Attention mechanism

TOTAL POINTS 10

1. Consider using this encoder-decoder model for machine translation.

1 point

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence x.

- True
- False
- 2. In beam search, if you increase the beam width B, which of the following would you expect to $\frac{1 \text{ point}}{1 \text{ point}}$ be true? Check all that apply.
 - Beam search will run more slowly.
 - ✓ Beam search will use up more memory.
 - Beam search will generally find better solutions (i.e. do a better job maximizing $P(y \mid x)$)
 - Beam search will converge after fewer steps.
- 3. In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.
 - True
 - False
- 4. Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y. Your algorithm uses beam search to try to find the

1 point

value of y that maximizes $P(y \mid x)$.

On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y}=$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^*=$ "I'm building an AI system in Silicon Valley."

According to your model,

$$P(\hat{y} \mid x) = 1.09 * 10^{-7}$$

$$P(v^* \mid x) = 7.21 * 10^-8$$

Would you expect increasing the beam width B to help correct this example?

- No, because $P(y^* \mid x) \le P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
- No, because $P(y^* \mid x) \le P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.
- Yes, because $P(y^* \mid x) \le P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
- Yes, because $P(y^* \mid x) \le P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.
- 5. Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, $\begin{array}{c} 1 \text{ point} \\ 2 \text{ point} \\ 2 \text{ point} \\ 2 \text{ point} \\ 3 \text{ point} \\ 4 \text{ point} \\ 4$
 - True.
 - False.
- 6. Consider the attention model for machine translation.

1 point

Further, here is the formula for $\alpha^{< t,t'>}$.

$$\alpha^{< t, t'>} = \frac{\exp(e^{< t, t'>})}{\sum_{t'=1}^{T_{x}} \exp(e^{< t, t'>})}$$

Which of the following statements about $\alpha^{< t,t'>}$ are true? Check all that apply.

- We expect $\alpha^{< t, t'>}$ to be generally larger for values of $\alpha^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t>}$. (Note the indices in the superscripts.)
- We expect $\alpha^{< t, t'>}$ to be generally larger for values of $\alpha^{< t>}$ that are highly relevant to the value the network should output for $y^{< t'>}$. (Note the indices in the superscripts.)
- $\sum_{t} \alpha^{\langle t,t'\rangle} = 1$ (Note the summation is over t.)
- $\sum_{t'} \alpha^{< t, t'>} = 1$ (Note the summation is over t'.)
- 7. The network learns where to "pay attention" by learning the values $e^{< t, t'>}$, which are computed using a small neural network:

1 point

We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t, t'>}$ which in turn depends on $e^{< t, t'>}$; so at the time we need to evalute this network, we haven't computed $s^{< t>}$ yet.

- True
- False
- 8. Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:
 - The input sequence length T_x is large.

	$igcup_{x}$ The input sequence length T_x is small.	
9.	Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the following string collapse to?	1 point
	c_oo_o_kkb_oooooookkk	
	cokbok	
	cookbook	
	Cook book	
	coookkbooooookkk	
10.	In trigger word detection, $x^{< t>}$ is:	1 point
	lacktriangle Features of the audio (such as spectrogram features) at time t .	
	The <i>t</i> -th input word, represented as either a one-hot vector or a word embedding.	
	Whether the trigger word is being said at time <i>t</i> .	
	igcup Whether someone has just finished saying the trigger word at time t .	