Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет безопасности информационных технологий

Дисциплина:

«Криптографические методы обеспечения информационной безопасности»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №5

«Цифровые подписи и сертификаты в GNU Privacy Guard. Система управления ключей Kleopatra»

Выполнили:
Чу Ван Доан, студент группы номер N3347
Pau
(подпись)
Проверил:
Таранов Сергей Владимирович
(отметка о выполнении)
(подпись)

Содержание

Содержание	2
Введение	
Ход работы	
1. Процедура генерации ключей	
2. Процедура генерации ключей	
3. Шифрование и цифровая подпись файлов	
Заключение	

Ввеление

Целью лабораторной работы является изучение основных функций программного средства шифрования информации, создание цифровых подписей GnuPG, получение навыков работы с данным программным средством.

Для достижения поставленной цели необходимо решить следующие задачи:

- установить GnuPG и менеджер ключей Kleopatra на свою операционную систему;
- сгенерировать новую пару ключей (создайте новый сертификат);
- экспортировать открытую часть сгенерированной пары ключей в файл key.asc и приложить к отчету;
- составить небольшой файл с названием notion.doc, содержащий краткое определение термина (3-4 предложения), в зависимости от варианта;
- создать цифровую подпись для файла notion.doc, используя сгенерованную пару ключей, и приложитть файл цифровой подписи notion.doc.sig к отчету;
- осуществить проверку созданной цифровой подписи и отразить результат в отчете;
- зашифровать файл notion.doc, используя импортированный открытый ключ (файл crypto.asc), который находится в приложении к тексту данной лабораторной работы, и приложить к отчету результат шифрования notion.doc.gpg;

Ход работы

1. Процедура генерации ключей.

- Создадим новую пару ключей.

Рисунок 1- Создание пары ключей

Рисунок 2- Результат процедуры генерации ключей

2. Процедура генерации ключей.

- Экспортируем открытую часть сгенерированной пары ключей в файл key.asc.

Рисунок 3- Экспорт открытого ключа

3. Шифрование и цифровая подпись файлов.

- Составим файл notion.docx

Рисунок 4- Содержание файла notion.docx

Рисунок 5 - Зашифрование файла notion.docx

- Создадим цифровую подпись для файла notion.docx.

Рисунок 6 - Создание цифровой подписи

Рисунок 7 - Создание цифровой подписи

Рисунок 8 - Дешифрование файла notion.docx.gpg

Заключение

В ходе выполнения данной лабораторной работы была успешно достигнута поставленная цель. Я изучила функциональные возможности программного обеспечения GNU Privacy Guard и систему управления ключами Kleopatra. С использованием данных инструментов я выполнила создание цифровой подписи, а также зашифровала и расшифровала файл, получив практические навыки работы с криптографическими средствами защиты данных.