<u>Review</u>

given U sub V

with inclusion map i: U to V

[what structures does it produce?]

- Ann_{V'} = { θ in V' | θ |_U = $\mathbf{0}_{V'}$ }
- i^{v} : V^{v} to U^{v} defined by $i^{v}(\theta) = \theta |_{U}$

<u>Lem</u> Ann_{ V^{\vee} }(U) = ker(i $^{\vee}$)

also:

- quotient map q : V to V/U
- q' : (V/U)' to V'

[to finish that discussion:]

 $\underline{\mathsf{Thm}} \qquad \mathsf{Ann}_{\{\mathsf{V}^{\mathsf{v}}\}}(\mathsf{U}) = \mathsf{im}(\mathsf{q}^{\mathsf{v}})$

recall: elts of V/U are subsets v + U where v in V

<u>Lem</u> v + U = v' + U, as subsets, iff v - v' in U

$$(v + U) + (w + U) = (v + w) + U$$

 $\lambda \cdot (v + U) = \lambda v + U$

use lemma to check that these op's are well-def

Ex $V = F^2$ and $U = \{(x, x) \mid x \text{ in } F\}$ for any (a, b) in V: $(a, b) + U = \{(a + x, b + x) \mid x \text{ in } F\}$

so elts of V/U are translates of U
[draw picture] [elts of V/U are translates in gen'l]

$$\mathbf{0}_{V/U} = 0 + U = U$$
 [the trivial translate of U]

quotient map q : V to V/U defined by q(v) = v + Unote that v + U = U iff v in Utherefore:

Lem
$$U = ker(q : V to V/U)$$

Pf of Thm want Ann(U) =
$$im(q^v : (V/U)^v to V^v)$$

[first, what is
$$q^{v}$$
?] $q^{v}(\psi) = \psi \circ q$

$$\begin{array}{ll} \theta \text{ in im}(q^v) & \text{iff } \theta = \psi \circ q \text{ for some } \psi \text{ in } (V/U)^v \\ \theta \text{ in Ann}(U) & \text{iff } \theta|_U \text{ is zero} \\ & \text{iff } U \text{ sub } \ker(\theta) \end{array}$$

so want to show:
$$\theta = \psi \circ q$$
 for some ψ iff U sub ker(θ)

"only if":
$$ker(q)$$
 sub $ker(\theta)$ by PS4, #3 $U = ker(q)$ by lemma

"if": for all
$$v + U$$
 in V/U
let $\psi(v + U) = \theta(v)$

claim
$$\psi$$
 is a well-def lin map V/U to F will then have $\theta(v) = \psi(v + U) = (\psi \circ q)(v)$

well-def:
if
$$v + U = v' + U$$

then $v - v'$ in U
so $\psi(v + U) = \psi(v' + (v - v') + U) = \psi(v' + U)$

linearity of
$$\theta$$
 implies linearity of ψ :
 $\psi((v + U) + (w + U)) = \psi((v + w) + U)$

$$= \Theta(V + W)$$

$$= \theta(v) + \theta(w)$$

 $(V/U)^{v}$

$$= \psi(v + U) + \psi(w + U)$$

and similarly for scalar multiplication \square

[injective] inclusion i : U to V

[surjective] quotient q : V to V/U

s.t.
$$im(i) = U = ker(q)$$

and dually $im(q^v) = Ann_{V^v}(U) = ker(i^v)$

today – 3/31: bilinear maps, forms (§9A) tensors (§9D)

let V, W be arbitrary vector spaces recall that

$$W \times V = \{(w, v) \mid w \text{ in } W \text{ and } v \text{ in } V\}$$

forms a vector space under entrywise + and •

Goal contrast linear functionals on W × V

with

bilinear functionals on W x V

[first, the basic properties of $W \times V$:]

what is dim $W \times V$? dim $W + \dim V$

[why?] e.g., F^m x F^n is isomorphic to F^{m + n} [proof without choosing bases?]

Lem let $S: W \text{ to } W \times V$, $T: V \text{ to } W \times V$ be def by $S(w) = (w, \mathbf{0}_{-}V),$ $T(v) = (\mathbf{0}_{-}W, v)$

then $W \times V = im(S) + im(T)$, and this sum is direct

<u>Pf</u> any elt of W × V looks like (w, v) for some w in W and v in V then (w, v) = (w, $\mathbf{0}$ _V) + ($\mathbf{0}$ _W, v) so W × V = im(S) + im(T) [why is the sum is direct?] im(S) cap $im(T) = \{(\mathbf{0}_{V}, \mathbf{0}_{V})\}$ and $(\mathbf{0}_{V}, \mathbf{0}_{V})$ is the zero vector of $W \times V$

 $\underline{\text{Df}}$ due to the lemma, we write W \oplus V in place of W \times V to emphasize the <u>vec. space</u> structure on the product

W ⊕ V is also called an <u>external (direct) sum</u>

Cor dim W \oplus V = dim W + dim V

Rem note: dim $(W \oplus V)^v = \dim W^v + \dim V^v$ in fact, $(W \oplus V)^v$ is isomphe to $W^v \oplus V^v$ Df for all V, W, U: a bilinear map from W × V to U is a map β : W × V to U s.t.

 $\begin{array}{ll} \text{for all w in W,} & \beta(w,-): V \text{ to U is linear} \\ \text{for all v in V,} & \beta(-,v): W \text{ to U is linear} \end{array}$

U = F: β is called a <u>bilinear functional/pairing</u>

U = F and W = V: β is called a <u>bilinear form</u>

Ex for any n, the dot product on F^n def by

 $\delta((b1, ..., bn), (c1, ..., cn)) = sum i bi ci$

is a bilinear form on F^n

[what does bilinearity mean?]

for all w, w', v, v' in V and λ in F: $\delta(w + w', v) = \delta(w, v) + \delta(w', v)$ $\delta(w, v + v') = \delta(w, v) + \delta(w, v')$ $\delta(\lambda w, v) = \lambda \delta(w, v) = \delta(w, \lambda v)$

usually people write w • v instead of $\delta(w, v)$

Crucial Point

- I) bilinear pairings on W x V usually not linear
- II) linear funct'ls on W ⊕ V usually not bilinear

Ex δ isn't linear: e.g., we would need $\delta(aw, av) = \delta(a \cdot (w, v)) = a\delta(w, v)$ but $(aw) \cdot (av) \neq a(w \cdot v)$ in general

[already for n = 1]

Ex let θ: $F^2 = F \oplus F$ to F be θ(b, c) = b + c then θ is linear, but usually not bilinear [similar to PS6, #8]

 $\underline{\mathsf{Df}}$ $\mathsf{Bil}(\mathsf{W}, \mathsf{V}) = \{\mathsf{bilinear\ pairings\ W} \times \mathsf{V}\ \mathsf{to\ F}\}$

Lem Bil(W, V) forms a vector space under $(\beta + \beta')(w, v) = \beta(w, v) + \beta'(w, v)$ $(a \cdot \beta)(w, v) = a\beta(w, v)$

what is dim Bil(W, V)?