

Departamento de Ingeniería Industrial y de Sistemas Pontificia Universidad Católica de Chile ICS 3213 Gestión de Operaciones

Clases 16 y 17: Pronósticos

Prof. Juan Carlos Ferrer - 2^{do} Semestre 2024

1

Motivación

- Estamos siempre pronosticando
 - > Restaurant: se acabó algún plato especial
 - > Librería: se agotó el libro para un curso universitario
 - > Fiesta: no alcanzó la comida para todos los invitados
 - > Hacemos pronósticos de eventos futuros
 - > Luego hacemos planes y tomamos cursos de acción
- Pronosticar es una de las funciones más importantes en los negocios, ya que <u>muchas decisiones</u> se basan en los pronósticos
 - > A qué mercados ir, qué productos producir, cuánto inventario mantener, cuánta gente contratar

Prof. Juan Carlos Ferrer ©2024

2

Características

- 1. Pronósticos no son perfectos
- 2. Pronósticos son más precisos para grupos de ítems que para un ítem individual
- 3. Pronósticos son más precisos en cortos horizontes de tiempo
- 4. Generalmente asumen que el mismo sistema causal que había en el pasado continuará existiendo en el futuro

OBJETIVO

Generar buenos pronósticos en el tiempo y minimizar los errores lo más posible

Prof. Juan Carlos Ferrer ©2024

3

4

Tipos de métodos de pronósticos

- Métodos cualitativos
 - > Llamados también métodos de juicio
 - > Pronósticos generados subjetivamente por el pronosticador
 - > Basados en intuición, conocimiento, y experiencia
- Métodos cuantitativos
 - > Pronósticos generados en forma rigurosa
 - > Uso de modelos matemáticos

Prof. Juan Carlos Ferrer

7

Métodos cualitativos

- Fortalezas
 - > Incorporan últimos cambios en el mercado
 - Particularmente útiles cuando se espera que el futuro sea muy diferente al pasado
- Debilidades
 - > Sesgo en el pronosticador puede causar falta de precisión en el pronóstico
 - Ej.: "Ellos fijarán mi presupuesto basados en mi pronóstico, por lo que predeciré más alto"

Prof. Juan Carlos Ferrer ©2024

8

Tipos de modelos cualitativos

Tipo	Características	Fortalezas	Debilidades
Investigación de Mercado	Uso de encuestas y entrevistas para identificar las preferencias de los consumidores	Buen determinante de las preferencias de consumidores	Podría ser muy difícil desarrollar un buen cuestionario
Opinión de Ejecutivos	Un grupo de gerentes se reune y genera un pronóstico	Bueno para pronósticos de nuevos productos o estratégicos	La opinión de una persona puede dominar en el pronóstico
Método Delphi	Busca un consenso entre un grupo de expertos	Bueno para pronosticar demanda de productos en el largo plazo	Consume mucho tiempo al desarrollar

Prof. Juan Carlos Ferrer ©2024

9

Métodos cuantitativos

- Fortalezas
 - > Consistente y objetivo
 - > Puede considerar muchos datos de una vez
- Debilidades
 - > Datos necesarios no están siempre disponibles
 - > Calidad del pronóstico depende de la calidad de los datos

Prof. Juan Carlos Ferrer ©2024

10

Tipos de métodos cuantitativos

- Modelos de series de tiempo
 - > Asume que el futuro seguirá el mismo patrón que en el pasado
- Modelos causales
 - > Exploran relaciones de causa-efecto
 - > Usa indicadores claves para predecir el futuro

Prof. Juan Carlos Ferrer ©2024

11

Lógica de modelos de series de tiempo

Datos = patrón histórico + variación aleatoria

- El patrón histórico es lo único que puede ser pronosticado
- Patrón histórico incluye
 - ➤ Nivel (promedio de largo plazo)
 - > Tendencia
 - > Estacionalidad
 - ➤ Ciclo

Prof. Juan Carlos Ferrer ©2024

12

Prof. Juan Carlos Ferrer © 2024

13

Modelos de series de tiempo

1) Ingenuo

 El pronóstico es igual al valor actual observado durante el último período

2) Media simple

> El promedio de todos los datos disponibles

3) Media móvil

- Valor promedio sobre un periodo de tiempo (por ejemplo, las últimas cuatro semanas)
- Cada pronóstico nuevo elimina el dato más viejo y agrega uno nuevo

$$F_{t} = \frac{A_{t-1} + A_{t-2} + A_{t-3} + ... + A_{t-n}}{n}$$

Prof. Juan Carlos Ferrer ©2024

14

Ejemplo de Media móvil

Semana	Demanda
1	650
2	678
3	720
4	785
5	859
6	920
7	850
8	758
9	892
10	920
11	789
12	844

$$F_{t} = \frac{A_{t-1} + A_{t-2} + A_{t-3} + ... + A_{t-n}}{n}$$

Pregunta:

¿Cuáles son los pronósticos de demanda usando 3 semanas y 6 semanas en media móvil?

Asumir que solo se tiene 3 y 6 semanas de demanda real para los respectivos pronósticos

Prof. Juan Carlos Ferrer ©20

15

Ejemplo: cálculo de medias móviles							
	Semana	Demanda	3-Sem.	6-Sem.			
	1	650					
	2	678					
	3	720					
	4	785	682,67				
	5	\ 859	727,67				
	6	920	788,00				
	7	850	854,67	768,67			
	8	758	876,33	802,00			
	9	892	842,67	815,33			
	10	920	833,33	844,00			
<u>\$</u>	11	789	856,67	866,50			
IVERSIA	12	844	867,00	854,83			
Prof. Juan Car	los Ferrer ©2024						

17

4) Media móvil ponderada

$$F_{t} = w_{1}A_{t-1} + w_{2}A_{t-2} + w_{3}A_{t-3} + ... + w_{n}A_{t-n}$$

- Todos los pesos deben sumar 1 $\sum_{i=1}^{n} w_i = 1$
- Permite enfatizar algunos períodos sobre otros
- Difiere del modelo de media móvil simple en que los pesos ahí son todos iguales

Prof. Juan Carlos Ferrer ©2024

18

Ejemplo: Media móvil ponderada

<u>Pregunta</u>: Dados los pesos y demandas semanales, ¿Cuál sería el pronóstico para la cuarta semana?

Semana	Demanda
1	650
2	678
3	720
4	

Pesos: t-1 .5 t-2 .3 t-3 .2

Notar que los pesos dan más énfasis a la información más reciente, es decir, al período *t-1*

Prof. Juan Carlos Ferrer ©2024

19

Ejemplo: Media móvil ponderada

Semana	Demanda	Pronóstico
1	650	
2	678	
3	720	
3	720	002.4
4		693,4

$$F_4 = 0.5(720) + 0.3(678) + 0.2(650) = 693.4$$

Prof. Juan Carlos Ferrer ©202-

20

5) Atenuación exponencial

$$F_{t+1} = \alpha A_t + (1 - \alpha) F_t$$

- Calidad del pronóstico es altamente dependiente en la selección de alfa
 - > Valores bajos de alfa generan pronósticos más estables
 - Valores altos de alfa generan pronósticos que reponden rápidamente a datos recientes
- El punto es si cambios recientes reflejan variación aleatoria o cambios reales de largo plazo en la demanda

Prof. Juan Carlos Ferrer ©2024

21

Ejemplo: Atenuación exponencial

Demand
820
775
680
655
750
802
798
689
775

- Pregunta: Dado los datos de demanda semanal, ¿cuáles son los pronósticos usando atenuación exponencial para los períodos 2 al 10?
- Use α =0.10 y α =0.60
- Asuma F₁=D₁

22

Ejemplo: Atenuación exponencial

Semana	Demanda	0, 1	0,6
1	820	820,00	820,00
2	775	820,00	820,00
3	680	815,50	793,00
4	655	801,95	725,20
5	750	787,26	683,08
6	802	783,53	723,23
7	798	785,38	770,49
8	689	786,64	787,00
9	775	776,88	728,20
10		776,69	756,28

23

6) Pronósticando con Tendencia

- Atenuación exponencial con tendencia ajustada
- Proceso de tres etapas
 - > Etapa 1: Atenuar el nivel de las series

$$S_{t} = \alpha A_{t} + (1 - \alpha)(S_{t-1} + T_{t-1})$$

> Etapa 2: Atenuar la tendencia

$$T_{t} = \beta(S_{t} - S_{t-1}) + (1 - \beta)T_{t-1}$$

> Etapa 3: Calcular el pronóstico incluyendo la tendencia

$$FIT_{t+1} = S_t + T_t$$

Prof. Juan Carlos Ferrer ©2024

25

Pronósticando con Estacionalidad

- Calcular la demanda promedio por estación
 - > E.g.: demanda promedio del trimestre
- Calcular un índice de estacionalidad para cada estación de cada año
 - Dividir la demanda de una estación por la demanda promedio de todas las estaciones de ese año
- Promediar los índices por estación
 - > E.g.: promediar todos los índices de otoño, todos los de verano, ...
- Pronosticar demanda para próximo año y dividir por el número de estaciones
 - Usar métodos tradicionales de pronóstico, y luego dividir por 4 en el caso de trimestres
- Multiplicar la demanda promedio del próximo año por cada índice promedio de cada estación
 - > El resultado es un pronóstico para cada estación del próximo año

Prof. Juan Carlos Ferrer ©2024

26

8) Pronóst. con Tendencia y Estacionalidad

- Atenuación exponencial (Winter)
 - > Etapa 1: Atenuar el nivel de las series

p estaciones en un ciclo

$$S_{t} = \alpha \frac{A_{t}}{I_{t-p}} + (1 - \alpha)(S_{t-1} + T_{t-1})$$

> Etapa 2: Atenuar la tendencia

$$T_{t} = \beta(S_{t} - S_{t-1}) + (1 - \beta)T_{t-1}$$

> Etapa 3: Atenuar el indice de estacionalidad

$$I_{t} = \gamma \frac{A_{t}}{S_{t}} + (1 - \gamma)I_{t-p}$$

> Etapa 4: Calcular el pronóstico incluyendo la tendencia

$$W_{t+1} = (S_t + T_t)I_{t+1-p}$$

Prof. Juan Carlos Ferrer ©2024

27

Modelos Causales

- A menudo indicadores claves pueden ayudar a predecir la demanda
- Modelos causales están construidos sobre relaciones de causa-efecto
- Una herramienta común es regresión lineal

$$\hat{y} = a + bx$$

Prof. Juan Carlos Ferrer ©2024

28

Regresión Lineal

$$a = \overline{y} - b\overline{x}$$

$$b = \frac{\sum xy - n(\overline{y})(\overline{x})}{\sum x^2 - n(\overline{x})^2}$$

Independent Variable X

29

Regresión Lineal

- Hay supuestos que deben verificarse
 - > Las variaciones alrededor de la recta son aleatorias. Ningún patrón debiese estar presente
 - > Las variaciones tienen que tener una distribución normal
 - > Las predicciones deben hacerse solo dentro del rango de los valores observados
- Algunas debilidades
 - > Regresiones lineales aplican solo a relaciones lineales
 - Se necesitan muchos datos para poder establecer una buena relación
 - ➤ Todas las observaciones "pesan" lo mismo

Prof. Juan Carlos Ferrer ©2024

30

Precisión de pronósticos

- Los pronósticos no son perfectos
- Se necesita saber cuánto confiar en el método de pronóstico utilizado
- Cuantificando el error de pronóstico

$$E_t = A_t - F_t$$

Notar que:

sobre-pronosticar = errores negativos, y
sub-pronosticar = errores positivos

Prof. Juan Carlos Ferrer ©202

31

Registrar errores de pronóstico en el tiempo

- Mean Absolute Deviation (MAD)
 - > Una buena medida del error actual en un pronóstico
- $MAD = \frac{\sum |A_t F_t|}{n}$
- El MAD ideal sería cero. No habría error de pronóstico
- > Mientrás más grande el MAD, peor es el modelo
- Mean Absolute Percentage Error (MAPE):
 - > Malo para cantidades pequeñas

$$MAPE = \frac{\sum |(A_t - F_t)/A_t|}{n}$$

- Mean Square Error (MSE):
 - > Penaliza errores extremos

$$MSE = \frac{\sum (A_t - F_t)^2}{n}$$

Prof. Juan Carlos Ferrer ©2024

32

Identificación de sesgos

- Tracking Signal (TS)
 - > Revela sesgos (positivos y negativos)

$$TS = \frac{\sum (\text{actual - forecast})}{MAD}$$

- TS es una medida que indica si los pronósticos están siguiendo alguna trayectoria por sobre (o por debajo) de la demanda real, en forma sistemática
- > TS puede ser usado de la misma forma que un diagrama de control de calidad
- > Rangos razonables son ±4

Prof. Juan Carlos Ferrer ©2024

33

Ej.: Predicción de ventas anuales de cerveza

Botellas vendidas por precio

Beer Type	Bottles Sold	Price per bottle
1	603	\$7.00
2	636	\$5.85
3	434	\$7.15
4	825	\$3.95
5	534	\$6.50
6	638	\$7.00
7	936	\$5.25
8	659	\$7.00
9	620	\$5.75
10	1109	\$3.45
11	781	\$4.25
12	822	\$5.60
13	619	\$7.30
14	848	\$3.50
•••	•••	
48	849	\$3.00

- El pub vendió 48 diferentes tipos de cerveza el año pasado, a precios desde \$2.00 - \$9.00
- El pub está evaluando vender nuevas cervezas. Los precios son: \$3.65, \$7.25, \$9.50, y \$12.00
- Nos gustaría estimar las ventas esperadas de estas cervezas.

Source: DMD course at Sloan MIT

35

36

Aplicando el modelo para hacer predicciones

- Nuestro modelo: Sales = 1246.46 94.822*Price + &
 - E~N(0,S)
 - S = 111.15
- ¿Cuáles son las ventas esperadas para una cerveza con precio \$3.65?
 - E(Sales) = 1246.46 94.822*3.65 + 0
 - E(Sales) = 900.35
- ¿Cuál es la probabilidad de alcanzar ventas de al menos 850 botellas?

Prof. Juan Carlos Ferrer ©2024

Source: DMD course at Sloan MIT

38

Prediciendo ventas... Continuación.

• ¿Cuál es la probabilidad de que X sea mayor o igual que 850?

 $X \sim N(900.35, 111.15)$

$$Pr(X \ge 850) = Pr\left(Z \ge \frac{850 - 900}{111.15}\right)$$
$$= 1 - F(-.4)$$
$$= 1 - .3$$
$$= .68$$

Prof. Juan Carlos Ferrer ©2024

Source: DMD course at Sloan MIT

39

Extrapolando más allá del rango

- ¿Deberíamos usar este modelo para predecir cervezas con precio \$9.50?
- ¿Y una con precio de \$12.00?

IVERSO (A)

Prof. Juan Carlos Ferrer ©2024

Source: DMD course at Sloan MIT

40

Bote	llas vendi	das por F	Precio, Days	Available	e, Days o	of Promotion
	Beer Type	Bottles Sold	Price per Bottle	Days Available	Days of Promotion	
	1	603	\$7.00	189	11	
	2	636	\$5.85	147	7	
	3	434	\$7.15	21	8	
	4	825	\$3.95	128	7	
	5	534	\$6.50	108	5	
	6	638	\$7.00	287	2	
	7	936	\$5.25	310	12	
	8	659	\$7.00	230	8	
	9	620	\$5.75	177	2	
	10	1109	\$3.45	362	5	
	11	781	\$4.25	55	12	
	12	822	\$5.60	273	5	
	13	619	\$7.30	213	7	
	14	848	\$3.50	134	10	
			<u>,</u>			
h	48	849	\$3.00	62	3	

SUMMARY OUTPUT						
		Modelo				
Regression Sta	rtistics		=			
Multiple R	0.987	Y = 1061	.04 - 99	.22(x₁)	$+ 1.01(x_2)$	+ 4.55()
R Square	0.974			(1/	ν 2,	`
Adjusted R Square	0.972					
Standard Error	28.941	S = 28.94	4			
Observations	48					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	3	1364245.078	454748.359	542.926	9.24164E-35	
Residual	44	36853.906	837.589			
Total	47	1401098.984				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	1061.037	19.775	53.655	0.000	1021.183	1100.89
	-99.221	3.020	-32.850	0.000	-105.308	-93.13
Price		2.2.2	25 114	0.000	0.925	1.08
Days on Sale	1.005	0.040	25.114	0.000	0.525	

42

Aplicando el modelo para predecir ventas

- Sales = 1061.04
 - 99.22(Price)
 - + 1.01(Days Available)
 - + 4.55(Days of Promotion) + &
 - E ~N(0,S)
 - S = 28.94
- ¿Cuáles son las ventas esperadas para una cerveza Lager con precio \$3.65, disponible por 30 días, con 5 días de promoción?
 - E(Sales) = 1061.04 99.22(3.65) + 1.01(30) + 4.55(5) + 0
 - E(Sales) = 751.64

IVERIO SA

Prof. Juan Carlos Ferrer ©2024

Source: DMD course at Sloan MIT

43

Aplicando el modelo para predecir ventas

- Sales = 1061.04
 - 99.22(Price)
 - + 1.01(Days Available)
 - + 4.55(Days of Promotion) + &
- E(Sales) = 751.64
- ¿Cuál es la probabilidad de alcanzar ventas de al menos 800 botellas?
 - E ~N(0,S)

Prof. Juan Carlos Ferrer ©2024

Source: DMD course at Sloan MIT

44

Probablidad de ventas de al menos 800 botellas

• Given Y:

$$> Y \sim N(751.64, 28.94)$$

$$Pr(X \ge 800) = Pr\left(Z \ge \frac{800 - 75}{28.94}\right)$$
$$= 1 - F(1.6)$$
$$= 1 - .952$$
$$= .047!$$

Prof. Juan Carlos Ferrer ©2024

Source: DMD course at Sloan MIT

45

Extrapolando más allá del rango

Botellas vendidas por Price, Days Available, Days of Promotion

Beer Type	Bottles Sold	Price per Bottle	Days Available	Days of Promotion
1	603	\$7.00	189	11
2	636	\$5.85	147	7
3	434	\$7.15	21	8
4	825	\$3.95	128	1
5	534	\$6.50	108	5
6	638	\$7.00	287	1
7	936	\$5.25	310	12
8	659	\$7.00	230	8
9	620	\$5.75	177	
10	1109	\$3.45	362	
11	781	\$4.25	55	12
12	822	\$5.60	273	
13	619	\$7.30	213	
14	848	\$3.50	134	10
48	849	\$3.00	62	3

- ¿Debieramos usar este modelos para pronosticar ventas de una cerveza con precio \$11.00, con 400 días disponibles y 100 días de promoción?
- ¿Y una con precio \$7.00, 62 días disponible y 10 días de promoción?

Source: DMD course at Sloan MIT

46