WUCT121

Discrete Mathematics

Logic

Tutorial Exercises Solutions

- 1. Logic
- 2. Predicate Logic
- 3. Proofs
- 4. Set Theory
- 5. Relations and Functions

Section 1: Logic

Question1

- (i) If x = 3, then x < 2.
 - (a) Statement
 - **(b)** False
 - (c) $x = 3 \Rightarrow x < 2$
- (ii) If x = 0 or x = 1, then $x^2 = x$.
 - (a) Statement
 - **(b)** True
 - (c) $(x = 0 \lor x = 1) \Rightarrow x^2 = x$
- (iii) There exists a natural number x for which $x^2 = -2x$.
 - (a) Statement
 - (b) False
- (iv) If $x \in \mathbb{N}$ and x > 0, then if $\sqrt{x} > 1$ then x > 1..
 - (a) Statement
 - (b) True
 - (c) $(x \in \mathbb{N} \land x > 0) \Rightarrow (\sqrt{x} > 1 \Rightarrow x > 1)$
- (v) xy = 5 implies that either x = 1 and y = 5 or x = 5 and y = 1.
 - (a) Statement
 - (b) False. Consider x = -1 and y = -5 or x = -5 and y = -1.
 - (c) $xy = 5 \Rightarrow ((x = 1 \land y = 5) \lor (x = 5 \land y = 1))$
- (vi) xy = 0 implies x = 0 or y = 0.
 - (a) Statement
 - **(b)** True
 - (c) $xy = 0 \Rightarrow x = 0 \lor y = 0$
- (vii) xy = yx.
 - (a) Statement
 - **(b)** True
- (viii) There is a unique even prime number.
 - (a) Statement
 - **(b)** True, x = 2.

Question2

(a) If x is odd and y is odd then x + y is even.

p: x is odd. q: y is odd. r: x + y is even.

Form: $p \wedge q \Rightarrow r$.

(b) It is not both raining and hot.

p: It is raining. q: It is hot

Form: $\sim (p \wedge q)$, alternatively $\sim p \vee \sim q$

(c) It is neither raining nor hot.

p: It is raining. q: It is hot

Form: $\sim p \land \sim q$, alternatively $\sim (p \lor q)$.

(d) It is raining but it is hot.

p: It is raining. q: It is hot.

Form: $p \wedge q$.

(e) $-1 \le x \le 2$.

p:-1 < x, q:-1 = x, r: x < 2, s: x = 2.

Form: $(p \lor q) \land (r \lor s)$.

Question3

- (a) $P \vee Q$: Mathematics is easy or I do not need to study.
- **(b)** $P \wedge Q$: Mathematics is easy and I do not need to study
- (c) $\sim Q$: I need to study.
- (d) $\sim \sim Q$: I do not need to study.
- (e) $\sim P$: Mathematics is not easy.
- (f) $\sim P \wedge Q$: Mathematics is not easy and I do not need to study.
- (g) $P \Rightarrow Q$: If Mathematics is easy, then I do not need to study

Question4

(a) The truth tables for $(\sim p \lor q) \land q$ and $(\sim p \land q) \lor q$.

p	q	(~p	V	q)	٨	q	(~p	٨	q)	V	q
T	T	F	T		T		F	F		T	
T	F	F	F		F		F	F		F	
F	T	Т	T		T		T	T		T	
F	F	Т	T		F		T	F		F	
Step:		1	2		3*		1	2		3*	

The tables are the same

(b) The truth tables for $(\sim p \lor q) \land p$ and $(\sim p \land q) \lor p$.

p	q	(~p	V	<i>q</i>)	٨	p	(~p	٨	<i>q</i>)	V	p
T	T	F	T		T		F	F		T	
T	F	F	F		F		F	F		T	
F	T	T	T		F		T	T		T	
F	F	T	T		F		T	F		F	
Ste	ep:	1	2		3*		1	2		3*	

The tables are not the same. The student's guess is false

Question5

(a) The truth tables for $p \lor \sim p$ and $p \land \sim p$.

p	p	V	~p	p	٨	~p
T		T	F		F	T
F		T	T		F	F
		2*	1		2*	1

- **(b)** $p \lor \sim p$ is a tautology i.e. always true; $p \land \sim p$ is a contradiction, i.e. always false
- (c) Use truth tables.

p	q	(<i>p</i>	V	~p)	V	q	(<i>p</i>	^	~p)	^	q
T	T		T	F	T			F	F	F	
T	F		T	F	T			F	F	F	
F	T		T	T	T			F	T	F	
F	F		T	T	T			F	T	F	
Ste	ep:		2	1	3*			2	1	3*	

Notice that "true \vee anything" is true and "false \wedge anything" is false

Conclusion: If you have a compound statement R of the form " $T \lor P$ ", where T stands for a tautology (and P is any compound statement), then R is also a tautology. Similarly, if you have a compound statement, S, of the form " $F \land P$ ", where F stands for a contradiction, then S is also a contradiction.

Question6

(a) The truth tables for the statements $(p \lor \sim p) \land (q \lor r)$ and $q \lor r$.

p	q	r	(<i>p</i>	V	~p)	٨	(q	V	r)	q	V	r
T	T	T		T	F	T		T			T	
T	T	F		T	F	T		T			T	
T	F	T		T	F	T		T			T	
T	F	F		T	F	F		F			F	
F	T	T		T	T	T		T			T	
F	T	F		T	Т	T		T			T	
F	F	T		T	T	T		T			T	
F	F	F		T	T	F		F			F	
,	Step:			2	1	4*		3			1*	

Notice that the two statements are logically equivalent.

In fact, the truth value of the first is dependent entirely on the second

(b) The truth tables for the statements $(p \land \sim p) \lor (q \land r)$ and $q \land r$.

p	q	r	(<i>p</i>	^	~p)	>	(<i>q</i>	^	r)	q	^	r
T	T	T		F	F	T		T			T	
T	T	F		F	F	F		F			F	
T	F	T		F	F	F		F			F	
T	F	F		F	F	F		F			F	
F	T	T		F	T	T		T			T	
F	T	F		F	T	F		F			F	
F	F	T		F	T	F		F			F	
F	F	F		F	T	F		F			F	
	Step	:		2	1	4*		3			1*	

Notice that the two statements are logically equivalent.

In fact, the truth value of the first is again dependent entirely on the second.

Conclusion: If you have a compound statement R of the form " $T \wedge P$ ", where T stands for a tautology (and P is any compound statement), then the truth-value of R depends entirely on the truth-value of P. Similarly, if you have a compound statement, S, of the form " $F \lor P$ ", where F stands for a contradiction, then the truth-value of S depends entirely on the truth-value of P.

Question7
(a)
$$(p \Rightarrow q) \lor (p \Rightarrow \sim q)$$

	(<i>p</i>	\Rightarrow	q)	V	(<i>p</i>	\Rightarrow	7	q)
Step		1		4*		3	2	
Place F under main connective				F				
⇒ must be F		F				F		
$1^{\text{st}} \Rightarrow p$ must be T and q must be F. $2^{\text{nd}} \Rightarrow p$ must be T and q must be F	Т		F		Т		F	
q must be T								T
a cannot be both T and F thus $(n \Rightarrow a) \lor (n \Rightarrow \sim a)$ can only ever be true and is a tautology								

q cannot be both 1 and F, thus $(p \Rightarrow q) \lor (p \Rightarrow \neg q)$ can only ever be true and is a tautology

(b)
$$\sim (p \Rightarrow q) \vee (q \Rightarrow p)$$

	~(p	\Rightarrow	q)	V	(<i>q</i>	\Rightarrow	p)
Step	2		1		4*		3	
Place F under main connective					F			
~must be F and ⇒ must be F	F						F	
$1^{\text{st}} \Rightarrow \text{must be T. } 2^{\text{nd}} \Rightarrow \text{, } q \text{ must be T}$ and $p \text{ must be F}$			Т			Т		F
$1^{\text{st}} \Rightarrow p \text{ can be F and } q \text{ can be T},$ no conflict		F		Т				
There is no contradiction, thus the state	ment is	not a ta	utology	7				

(c)	$(p \land$	$q) \Rightarrow$	$(\sim r \vee$	$(p \Rightarrow q)$)
\ · /	A.	1)	((r · 1)	,

	(<i>p</i>	^	q)	\Rightarrow	(~r	V	(<i>p</i>	\Rightarrow	q)
Step		1		5*	2	4		3	
Place F under main connective				F					
∧ must be T and ∨ must be F		T				F			
$\land p$ must be T and q must be T $\lor \sim r$ must be F and \Rightarrow must be F	Т		T		F			F	
\Rightarrow p must be T and q must be F							T		F

q cannot be both T and F, thus $(p \land q) \Rightarrow (\sim r \lor (p \Rightarrow q))$ can only ever be true and is a tautology

Question8

(a)
$$(p \wedge q) \Rightarrow r \equiv \sim (p \wedge q) \vee r$$
 Implication Law
$$\equiv (\sim p \vee \sim q) \vee r$$
 De Morgan's Law
$$\equiv \sim p \vee \sim q \vee r$$
 Associativity

(b)
$$p \Rightarrow (p \lor q) \equiv \sim p \lor (p \lor q)$$
 Implication Law
$$\equiv \sim p \lor p \lor q$$
 Associativity
$$\equiv T \lor q$$
 Negation Law
$$\equiv T$$
 Dominance Law

Question9

(a)
$$LHS = \sim (p \Rightarrow q)$$

$$\equiv \sim (\sim p \lor q)$$

$$\equiv \sim \sim p \land \sim q$$

$$\equiv p \land \sim q$$

$$= RHS$$
Implication Law
De Morgan's
Double Negation

(b)
$$LHS = (p \land \sim q) \Rightarrow r$$

$$\equiv \sim (p \land \sim q) \lor r \qquad \text{Implication Law}$$

$$\equiv (\sim p \lor \sim \sim q) \lor r \qquad \text{De Morgan's}$$

$$\equiv (\sim p \lor q) \lor r \qquad \text{Double Negation}$$

$$\equiv \sim p \lor (q \lor r) \qquad \text{Associativity}$$

$$\equiv p \Rightarrow (q \lor r) \qquad \text{Implication}$$

$$= RHS$$

Question10

(a) If x is a positive integer and $x^2 \le 3$ then x = 1.

The proposition is True.

If x is a positive integer, then $x^2 \le 3 \Rightarrow x \le \sqrt{3}$.

Now
$$\sqrt{3} \approx 1.7$$
 and so $x = 1$.

(b)
$$(\sim (x > 1) \lor \sim (y \le 0)) \Leftrightarrow \sim ((x \le 1) \land (y > 0)).$$

The proposition is false. (You should have tried proving it using De Morgan's Laws and failed.)

Now find values of *x* and *y* that make the statement false.

Let
$$x = 0$$
 and $y = 1$.

$$\sim (x > 1) \lor \sim (y \le 0)$$
 is True

$$(x \le 1) \land (y > 0)$$
 is also True

Thus,
$$\sim ((x \le 1) \land (y > 0))$$
 is False

and the proposition is False.

Question11

$$\sim (x > 1) \Rightarrow \sim (y \le 0)$$

$$\equiv \sim (\sim (x > 1)) \lor \sim (y \le 0)$$
 Implication Law

$$\equiv (x > 1) \lor \sim (y \le 0)$$
 Double Negation

$$\equiv (x > 1) \lor (y > 0)$$
 Negation of \leq

$$(y \le 0) \Rightarrow (x > 1)$$

$$\equiv \sim (y \le 0) \lor (x > 1)$$
 Implication Law.
$$\equiv (y > 0) \lor (x > 1)$$
 Negation of \le

Question12

$$\begin{array}{ll}
\hline \sim (\sim (p \lor q) \land \sim q) \\
\equiv \sim (p \lor q) \lor \sim \sim q \\
\equiv (p \lor q) \lor q
\end{array}$$
De Morgan's
$$\equiv (p \lor q) \lor q$$
Double Negation
$$\equiv p \lor q \lor q$$
Associativity
$$\equiv p \lor q$$
Idempotent Law

Section 2: Predicate Logic

Question1

- (a) Every real number that is not zero is either positive or negative. The statement is true.
- **(b)** The square root of every natural number is also a natural number. The statement is false (consider n = 2).
- (c) Every student in WUCT121 can correctly solve at least one assigned problem. Lecturers are yet to work out if this is true or false!

Question2

- (a) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, (xy = 0 \Rightarrow (x = 0 \land y = 0))$ The statement is false (consider x = 1 and y = 0).
- **(b)** $\forall x \in \mathbb{R}, \exists y \in \mathbb{Z}, x \leq y$ The statement is true.
- (c) \exists student *s* in WUCT121, \forall lecturer's jokes *j*, *s* hasn't laughed at *j*. True or false ??

Question3 Let *H* be the set of all people (human beings).

- (a) $P: \exists p \in H, \forall q \in H, p \text{ loves } q.$ $\sim P: \sim (\exists p \in H, \forall q \in H, p \text{ loves } q)$ $\equiv \forall p \in H, \sim (\forall q \in H, p \text{ loves } q)$ $\equiv \forall p \in H, \exists q \in H, p \text{ doesn't love } q$ In a nice world, P is true!.
- (b) $P: \forall p \in H, \forall q \in H, p \text{ loves } q.$ $\sim P: \sim (\forall p \in H, \forall q \in H, p \text{ loves } q)$ $\equiv \exists p \in H, \sim (\forall q \in H, p \text{ loves } q)$ $\equiv \exists p \in H, \exists q \in H, p \text{ doesn't love } q$ In a perfect world, P is true!
- (c) $P: \exists p \in H, \exists q \in H, p \text{ loves } q.$ $\sim P: \sim (\exists p \in H, \exists q \in H, p \text{ loves } q)$ $\equiv \forall p \in H, \sim (\exists q \in H, p \text{ loves } q)$ $\equiv \forall p \in H, \forall q \in H, p \text{ doesn't love } q$ P is definitely true!
- (d) $P: \forall p \in H, \exists q \in H, p \text{ loves } q.$ $\sim P: \sim (\forall p \in H, \exists q \in H, p \text{ loves } q)$ $\equiv \exists p \in H, \sim (\exists q \in H, p \text{ loves } q)$ $\equiv \exists p \in H, \forall q \in H, p \text{ doesn't love } q$ In our world, P is probably true!

(e)
$$P: \forall x \in \mathbb{Q}, x \in \mathbb{Z}$$
.
 $\sim P: \sim (\forall x \in \mathbb{Q}, x \in \mathbb{Z})$
 $\equiv \exists x \in \mathbb{Q}, x \notin \mathbb{Z}$
 $\sim P$ is true.

(f)
$$P : \sim (\forall n \in \mathbb{N}, \exists p \in \mathbb{N}, n = 2p)$$

$$\equiv \exists n \in \mathbb{N}, \sim (\exists p \in \mathbb{N}, n = 2p)$$

$$\equiv \exists n \in \mathbb{N}, \forall p \in \mathbb{N}, n \neq 2p$$

$$\sim P : \sim \sim (\forall n \in \mathbb{N}, \exists p \in \mathbb{N}, n = 2p)$$

$$\equiv \forall n \in \mathbb{N}, \exists p \in \mathbb{N}, n = 2p$$

P is true.

(g) $P: \exists n \in \mathbb{N}, n \text{ is not prime }.$ $\sim P: \sim (\exists n \in \mathbb{N}, n \text{ is not prime})$ $\equiv \forall n \in \mathbb{N}, n \text{ is prime}$

P is true.

(h) $P: \forall \text{ triangle } T, T \text{ is a right triangle }.$ $\sim P: \sim (\forall \text{ triangle } T, T \text{ is a right triangle})$ $\equiv \exists \text{ triangle } T, T \text{ is not a right triangle}$ $\sim P \text{ is true.}$

Question4

- (a) $\forall x \in \mathbb{R}, (x > 1 \Rightarrow x > 0)$ This statement is true. Clearly, 0 < 1 < x, so x > 0
- (b) $\forall x \in \mathbb{R}, (x > 1 \Rightarrow x > 2)$ This statement is false. Let x = 1.5. Then x > 1 but x < 2.
- (c) $\exists x \in \mathbb{R}, (x > 1 \Rightarrow x^2 > x)$ This statement is true. Let x = 2. Then x > 1 and $x^2 = 4 > 2 = x$.
- (d) $\exists x \in \mathbb{R}, \left(x > 1 \Rightarrow \frac{x}{x^2 + 1} < \frac{1}{3}\right)$

This statement is true. Let x = 3. Then x > 1 and $\frac{x}{x^2 + 1} = \frac{3}{10} < \frac{1}{3}$.

- (e) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x^2 + y^2 = 9$ This statement is false. Let x = 1 and y = 1. Then $x^2 + y^2 = 2 \neq 9$.
- (f) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x^2 < y + 1$ This statement is true. For $x \in \mathbb{R}$, let $y = x^2$. Then clearly $x^2 < y + 1$.
- (g) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x^2 + y^2 \ge 0$ This statement is true. Let x = 0. For each $y \in \mathbb{R}, y^2 \ge 0$, and we have $x^2 + y^2 = y^2 \ge 0$.

(h) $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, \left(x < y \Rightarrow x^2 < y^2\right)$ This statement is true. Let x = 0 and y = 1. Then x < y and $x^2 = 0 < 1 = y^2$.

Question5 For each of the following statements,

(i)
$$\sim (\forall \, \xi > 0, \, \exists x \neq 0, \, |x| < \xi)$$

$$\equiv \exists \, \xi > 0, \, \sim (\exists x \neq 0, \, |x| < \xi)$$

$$\equiv \exists \, \xi > 0, \, \forall x \neq 0, \, |x| \ge \xi$$

The negation of the statement is false.

For any $\xi > 0$, we can take $x = \frac{\xi}{2}$ and we have $x \neq 0$ but $|x| < \xi$.

(ii)
$$\sim \left(\exists y \in \mathbb{R}, \, \forall x \in \mathbb{R}, \, y < x^2 \right)$$

$$\equiv \forall y \in \mathbb{R}, \, \sim \left(\forall x \in \mathbb{R}, \, y < x^2 \right)$$

$$\equiv \forall y \in \mathbb{R}, \, \exists x \in \mathbb{R}, \, y \ge x^2$$

The negation of the statement is false.

Let y = -1. We know $x^2 \ge 0$ for all $x \in \mathbb{R}$, i.e. $x^2 > y$.

(iii)
$$\sim \left(\forall y \in \mathbb{R}, \forall x \in \mathbb{R}, \left(x < y \Rightarrow x < \frac{x+y}{2} < y \right) \right)$$

$$\equiv \exists y \in \mathbb{R}, \sim \left(\forall x \in \mathbb{R}, \left(x < y \Rightarrow x < \frac{x+y}{2} < y \right) \right)$$

$$\equiv \exists y \in \mathbb{R}, \exists x \in \mathbb{R}, \sim \left(x < y \Rightarrow x < \frac{x+y}{2} < y \right)$$

$$\equiv \exists y \in \mathbb{R}, \exists x \in \mathbb{R}, \left(x < y \land \left(\frac{x+y}{2} \le x \lor \frac{x+y}{2} \ge y \right) \right)$$

$$\equiv \exists y \in \mathbb{R}, \exists x \in \mathbb{R}, \left(x < y \land \left(y \le x \lor x \ge y \right) \right)$$

The negation of the statement is false.

Clearly, $x < y \land (y \le x \lor x \ge y)$ is equivalent to $x < y \land x \ge y$, which is impossible.

Question6

$$\sim P :\sim (\exists x \in \mathbb{Q}, x^2 = 2)$$
$$\equiv \forall x \in \mathbb{Q}, \sim (x^2 = 2)$$
$$\equiv \forall x \in \mathbb{Q}, x^2 \neq 2$$

(b)

$$\sim Q : \sim (\forall x \in \mathbb{R}, x^2 + 1 \ge 2x)$$

$$\equiv \exists x \in \mathbb{R}, \sim (x^2 + 1 \ge 2x)$$

$$\equiv \exists x \in \mathbb{R}, x^2 + 1 < 2x$$

Question7

(a)

$$P: (\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y < x)$$

$$\sim P: \sim (\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y < x)$$

$$\equiv (\exists x \in \mathbb{R}, \sim (\exists y \in \mathbb{R}, y < x))$$

$$\equiv (\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, \sim (y < x))$$

$$\equiv (\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y \geq x)$$

The true statement is P because for a real number x, x - 1 is a smaller real number.

(b)

$$Q: (\forall x \in \mathbb{R}, (x < 0 \lor x > 0))$$

$$\sim Q: \sim (\forall x \in \mathbb{R}, (x < 0 \lor x > 0))$$

$$\equiv (\exists x \in \mathbb{R}, \sim (x < 0 \lor x > 0))$$

$$\equiv \exists x \in \mathbb{R}, \sim (x < 0) \land \sim (x > 0)$$

$$\equiv \exists x \in \mathbb{R}, x \ge 0 \land x \le 0$$

$$\equiv \exists x \in \mathbb{R}, x = 0$$

The true statement is $\sim Q$ because x = 0 is neither positive nor negative.

Question8

(a) $\sim (\forall x \in \mathbb{R}, \ x \ge 0) \equiv \exists x \in \mathbb{R}, \ \sim (x \ge 0)$ $\equiv \exists x \in \mathbb{R}, \ x < 0$

The negation is true.

(b)

$$\sim (\exists z \in \mathbb{Z}, (z \text{ is odd} \lor z \text{ is even}))$$

$$\equiv \forall z \in \mathbb{Z}, \sim (z \text{ is odd} \lor z \text{ is even})$$

$$\equiv \forall z \in \mathbb{Z}, (z \text{ is not odd} \land z \text{ is not even}) \text{ (De Morgan's)}$$

The original statement is true

(c)

$$\sim \left(\exists n \in \mathbb{N}, \left(n \text{ is even } \land \sqrt{n} \text{ is prime}\right)\right)$$

 $\equiv \forall n \in \mathbb{N}, \sim \left(n \text{ is even } \land \sqrt{n} \text{ is prime}\right)$
 $\equiv \forall n \in \mathbb{N}, \left(n \text{ is odd } \lor \sqrt{n} \text{ is not prime}\right) \text{ (De Morgan's)}$
The original statement is true.

(d)
$$\sim \left(\forall y \in \mathbb{R}, \left(y \neq 0 \Rightarrow \frac{y+1}{y} < 1 \right) \right)$$

$$\equiv \exists y \in \mathbb{R}, \sim \left(y \neq 0 \Rightarrow \frac{y+1}{y} < 1 \right)$$

$$\equiv \exists y \in \mathbb{R}, \left(y \neq 0 \land \sim \left(\frac{y+1}{y} < 1 \right) \right)$$

$$\equiv \exists y \in \mathbb{R}, \left(y \neq 0 \land \sim \frac{y+1}{y} < 1 \right)$$

The negation is true.

(e)

$$\sim (\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, xy = 1)$$

$$\equiv \forall x \in \mathbb{R}, \sim (\forall y \in \mathbb{R}, xy = 1)$$

$$\equiv \forall x \in \mathbb{R}, \exists y \in \mathbb{R}, \sim (xy = 1)$$

$$\equiv \forall x \in \mathbb{R}, \exists y \in \mathbb{R}, xy \neq 1$$
The negation is true.

(f)
$$\sim (\forall n \in \mathbb{N}, \exists p \in \mathbb{N}, n = 2p)$$

$$\equiv \exists n \in \mathbb{N}, \sim (\exists p \in \mathbb{N}, n = 2p)$$

$$\equiv \exists n \in \mathbb{N}, \forall p \in \mathbb{N}, \sim (n = 2p)$$

$$\equiv \exists n \in \mathbb{N}, \forall p \in \mathbb{N}, n \neq 2p$$
The negation is true.

(g)
$$\sim \left(\forall \varepsilon \in \mathbb{R}, \ \forall x \in \mathbb{Z}, \ \exists y \in \mathbb{Q}, \left(\varepsilon > 0 \Rightarrow \left| x - y \right| < \varepsilon \right) \right)$$

$$\equiv \exists \varepsilon \in \mathbb{R}, \sim \left(\forall x \in \mathbb{Z}, \ \exists y \in \mathbb{Q}, \left(\varepsilon > 0 \Rightarrow \left| x - y \right| < \varepsilon \right) \right)$$

$$\equiv \exists \varepsilon \in \mathbb{R}, \ \exists x \in \mathbb{Z}, \sim \left(\exists y \in \mathbb{Q}, \left(\varepsilon > 0 \Rightarrow \left| x - y \right| < \varepsilon \right) \right)$$

$$\equiv \exists \varepsilon \in \mathbb{R}, \ \exists x \in \mathbb{Z}, \ \forall y \in \mathbb{Q}, \sim \left(\varepsilon > 0 \Rightarrow \left| x - y \right| < \varepsilon \right)$$

$$\equiv \exists \varepsilon \in \mathbb{R}, \ \exists x \in \mathbb{Z}, \ \forall y \in \mathbb{Q}, \left(\varepsilon > 0 \land \sim \left(\left| x - y \right| < \varepsilon \right) \right) \text{ (Thm. 1.4.2 pt 6)}$$

$$\equiv \exists \varepsilon \in \mathbb{R}, \ \exists x \in \mathbb{Z}, \ \forall y \in \mathbb{Q}, \left(\varepsilon > 0 \land \left| x - y \right| \ge \varepsilon \right)$$

The statement is true.

Question9

(a)
$$\sim (\forall y \in \mathbb{R}, (y > -1 \Rightarrow y^2 > 1))$$

 $\equiv \exists y \in \mathbb{R}, \sim (y > -1 \Rightarrow y^2 > 1)$
 $\equiv \exists y \in \mathbb{R}, (y > -1 \land \sim (y^2 > 1))$
 $\equiv \exists y \in \mathbb{R}, (y > -1 \land y^2 \leq 1)$

The original statement is false. Take y = 0, then $y = 0 > -1 \Rightarrow y^2 = 0 < 1$)

(b)

$$\sim \left(\exists x \in \mathbb{R}, x^2 + 1 = 0 \right)$$

$$\equiv \forall x \in \mathbb{R}, \sim \left(x^2 + 1 = 0 \right)$$

$$\equiv \forall x \in \mathbb{R}, x^2 + 1 \neq 0$$

The original statement is false. For any real number, x, $x^2 \ge 0$, so $x^2 + 1 \ge 1$. Thus, $x^2 + 1 \ne 0$.

(c)

$$\sim (\forall x, y, z \in \mathbb{R}, x - (y - z) \neq (x - y) - z)$$

$$\equiv \exists x, y, z \in \mathbb{R}, \sim (x - (y - z) \neq (x - y) - z)$$

$$\equiv \exists x, y, z \in \mathbb{R}, x - (y - z) = (x - y) - z$$

The original statement is false. Let x = y = 1 and z = 0.

Then
$$1 - (1 - 0) = 1 - 1 = 0$$
 and $(1 - 1) - 0 = 0 - 0 = 0$.

(d)

$$\sim (\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y = 0)$$

$$\equiv \exists x \in \mathbb{R}, \sim (\exists y \in \mathbb{R}, x + y = 0)$$

$$\equiv \exists x \in \mathbb{R}, \forall y \in \mathbb{R}, \sim (x + y = 0)$$

$$\equiv \exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y \neq 0$$

The negation is false. For any real number x, x - x = 0, so let y = -x.

Question 10 Write the following statements using quantifiers. Find their negations and determine in each case whether the statement or its negation is false, giving brief reason where possible.

(a)
$$P: \forall n \in \mathbb{N}, \exists m \in \mathbb{N}, n > m$$

 $\sim P: \sim (\forall n \in \mathbb{N}, \exists m \in \mathbb{N}, n > m)$
 $\equiv \exists n \in \mathbb{N}, \sim (\exists m \in \mathbb{N}, n > m)$
 $\equiv \exists n \in \mathbb{N}, \forall m \in \mathbb{N}, \sim (n > m)$
 $\equiv \exists n \in \mathbb{N}, \forall m \in \mathbb{N}, n \leq m$

The statement P is false. Let n = 1. All natural numbers m are greater than n.

(b)
$$P: \forall x \in \mathbb{R}, x^2 \ge 0$$

 $\sim P: \sim \left(\forall x \in \mathbb{R}, x^2 \ge 0 \right)$
 $\equiv \exists x \in \mathbb{R}, \sim \left(x^2 \ge 0 \right)$
 $\equiv \exists x \in \mathbb{R}, x^2 < 0$

The statement $\sim P$ is false. For any real number x, x^2 is not less than 0.

(c) Let D be the set of all dogs.

 $P: \exists d \in D, d \text{ is vegetarian.}$

$$\sim P :\sim (\exists d \in D, d \text{ is vegetarian})$$

$$\equiv \forall d \in D, \sim (d \text{ is vegetarian})$$

$$\equiv \forall d \in D, d \text{ is not vegetarian}$$

The statement $\sim P$ is probably false.

- (d) $P: \exists x \in \mathbb{R}, x \text{ is rational }.$
 - $\sim P :\sim (\exists x \in \mathbb{R}, x \text{ is rational})$
 - $\equiv \forall x \in \mathbb{R}, \sim (x \text{ is rational})$
 - $\equiv \forall x \in \mathbb{R}, x \text{ is not rational}$

The statement $\sim P$ is false. The number 2 is real and rational.

- (e) Let S be the set of all students and let M be the set of all mathematics subjects. $P: \forall s \in S, \exists m \in M, s \text{ likes } m$.
 - $\sim P : \sim (\forall s \in S, \exists m \in M, s \text{ likes } m)$
 - $\equiv \exists s \in S, \sim (\exists m \in M, s \text{ likes } m)$
 - $\equiv \exists s \in S, \forall m \in M, \sim (s \text{ likes } m)$
 - $\equiv \exists s \in S, \forall m \in M, s \text{ dislikes } m$

Unfortunately, *P* is more likely to be false.

Section 3: Proofs

Question1

- (a) The statement is of the form: $(P(x) \Rightarrow Q(x)) \land P(a)$, thus the conclusion is Q(a). So, applying the universal rule of Modus Ponens, we conclude that Peter phones John.
- **(b)** The statement is of the form: $(P(x) \Rightarrow Q(x)) \land (Q(x) \Rightarrow R(x))$, thus the conclusion is $P(x) \Rightarrow R(x)$ So, applying the Law of syllogism, we know the final conclusion is as follows: Therefore, if $x^2 3x + 2 = 0$, then x = 2 or x = 1.
- (c) The statement is of the form: $(P(x) \Rightarrow Q(x)) \land \sim Q(a)$, thus the conclusion is $\sim P(a)$. So, applying the universal rule of Modus Tollens, we conclude that $y = \sqrt{-1}$ is not real.

Question2 Prove or disprove the following statements

(a) Statement is of the form $\forall x \in D, P(x)$, so must prove with general proof, or disprove with counterexample.

Disprove: Let
$$n = 29$$
. Then
 $n^2 + n + 29 = 29^2 + 29 + 29$
 $= 29(29 + 1 + 1)$
 $= 29 \times 31$

In this case, $n^2 + n + 29$ is not prime, and thus we have a counterexample. Therefore, it is false to say " $\forall n \in \mathbb{N}, n^2 + n + 29$ is prime".

(b) Statement is of the form $\exists x \in D, \forall y \in D, P(x, y)$. So, to prove, must find one $x \in D$ that for all $y \in D$, P(x, y) is true.

Prove: Let x = 0, and let $y \in \mathbb{Q}$. Then $xy = 0 \neq 1$.

Thus, the statement is true.

(c) Statement is of the form $\forall x \in D, \forall y \in D, P(x, y)$, so must prove with general proof, or disprove with counterexample.

Disprove: Let a = b = 1. Then,

$$(a+b)^2 = (1+1)^2 = 2^2 = 4$$
 and $a^2 + b^2 = 1^2 + 1^2 = 2 \neq (a+b)^2$.

Thus we have a counterexample.

Therefore, it is false to say that $\forall a,b \in \mathbb{R}, (a+b)^2 = a^2 + b^2$

(d) Statement is of the form $\forall x \in D, \forall y \in D, P(x, y)$, so must prove with general proof, or disprove with counterexample.

Disprove: Let
$$n = 1$$
 and $m = 3$, both of which are odd. Then the average is
$$\frac{n+m}{2} = \frac{1+3}{2} = 2$$
, which is not odd.

Thus we have a counterexample.

Therefore, it is false to say that the average of any two odd integers is odd.

Question3 Find the mistakes in the following "proofs".

- (a) Statement is of the form $\forall x \in D, P(x)$, that is a universal statement, so requires proof with general proof, or disprove with counterexample.
- (b) The mistake is in the use of the definitions of odd and even numbers. When using an existential statement on two separate occasions, you should not use the same variable; that is, if we use k for defining n as an odd integer $(n = 2k + 1 \text{ for some } k \in \mathbb{Z})$, then we must use a different letter for defining m as an even integer (e.g. m = 2q for some $q \in \mathbb{Z}$).

Question4

(a) Statement is of the form $\forall x \in D, Q(x)$, where Q(x) is " $x^2 + 1 \ge 2x$ ".

Thus we must find a P(x) to give the form $\forall x \in D, P(x) \Rightarrow O(x)$

We know that for all $x \in \mathbb{R}$, $x^2 \ge 0$, so let P(x) be " $x^2 \ge 0$ ".

$$x^{2} \ge 0 \Rightarrow (x-1)^{2} \ge 0$$
$$\Rightarrow x^{2} - 2x + 1 \ge 0$$
$$\Rightarrow x^{2} + 1 \ge 2x$$

Therefore for $x \in \mathbb{R}$, $x^2 + 1 \ge 2x$.

(b) Statement is of the form $\forall n \in D, P(n) \Rightarrow Q(n)$, where P(n) is "n is odd" and

$$Q(n)$$
 is " n^2 is odd"
 n is odd $\Rightarrow n = 2p + 1$ $p \in \mathbb{N}$,
 $\Rightarrow n^2 = 4p^2 + 4p + 1$
 $\Rightarrow n^2 = 2(2p^2 + 2p) + 1$
 $\Rightarrow n^2 = 2q + 1$ where $q = 2p^2 + 2p \in \mathbb{N}$
 $\Rightarrow n^2$ is odd

Therefore, For $n \in \mathbb{N}$, if n is odd, n^2 is odd.

(c) Statement is of the form $\forall x \in D, \forall y \in D, P(x, y) \Rightarrow Q(x, y)$, where P(x, y) is "any two odd integers" and Q(x, y) is "sum is even".

Let x, y be any two odd integers.

$$x ext{ is odd} \Rightarrow x = 2p+1$$
 $p \in \mathbb{Z}$
 $y ext{ is odd} \Rightarrow y = 2q+1 \ q \in \mathbb{Z}$
 $x+y = (2p+1)+(2q+1)$
 $= 2p+2q+2$
 $= 2(p+q+1)$
 $= 2r$ $r = p+q+1 \in \mathbb{Z}$

Therefore, the sum of any two odd integers is even.

(d) Statement is of the form $\forall x \in D, P(x) \Rightarrow Q(x)$.

Let ABC be a triangle, with angles A, B and C.

We are given that the sum of two angles is equal to the third angle, i.e.

$$A + B = C \dots (1)$$
.

We know that $A + B + C = 180^{\circ}$, since the angle sum of a triangle is 180° .

$$A + B + C = 180^{\circ} \Rightarrow C + C = 180^{\circ}$$
 by (1)
 $\Rightarrow 2C = 180^{\circ}$
 $\Rightarrow C = 90^{\circ}$
 $\Rightarrow ABC$ is a right angled triangle

Therefore f the sum of two angles of a triangle is equal to the third angle, then the triangle is a right angled triangle

Question5 Statement is of the form $\forall x \in D, P(x) \Rightarrow Q(x)$, where P(x) is "x is negative real number", and Q(x) is " $(x-2)^2 > 4$ ".

We know that for all $x \in \mathbb{R}, x < 0$

$$x < 0 \Rightarrow x - 4 < 0$$

$$\Rightarrow x(x - 4) > 0$$

$$\Rightarrow x^2 - 4x > 0$$

$$\Rightarrow x^2 - 4x + 4 > 4$$

$$\Rightarrow (x - 2)^2 > 4$$

Therefore if x is a negative real number, then $(x-2)^2 > 4$..

Question6 Statement is of the form $\exists x \in D, P(x)$, so to prove, must show one $x \in D$, which makes P(x) true.

Let
$$n = 7$$
. $2^7 - 1 = 128 - 1 = 127$, which is prime.

Therefore, there is an integer n > 5 such that $2^n - 1$ is prime

Question7 Statement is of the form $\forall x \in D, P(x)$, where D is finite. So to prove, must show for all $x \in D$, P(x) is true.

Using the method of exhaustion:

$$n = 1$$
: $n^2 - n + 41 = 1 - 1 + 41 = 41$ is prime
 $n = 2$: $n^2 - n + 41 = 4 - 2 + 41 = 43$ is prime
 $n = 3$: $n^2 - n + 41 = 9 - 3 + 41 = 47$ is prime
 $n = 4$: $n^2 - n + 41 = 16 - 4 + 41 = 53$ is prime
 $n = 5$: $n^2 - n + 41 = 25 - 5 + 41 = 61$ is prime
 $n = 6$: $n^2 - n + 41 = 36 - 6 + 41 = 71$ is prime
 $n = 7$: $n^2 - n + 41 = 49 - 7 + 41 = 83$ is prime
 $n = 8$: $n^2 - n + 41 = 64 - 8 + 41 = 97$ is prime
 $n = 9$: $n^2 - n + 41 = 81 - 9 + 41 = 113$ is prime
 $n = 10$: $n^2 - n + 41 = 100 - 10 + 41 = 131$ is prime

Therefore, for each integer n such that $1 \le n \le 10$, $n^2 - n + 41$ is a prime number.

Question8 Statement is of the form $\forall n \in D, P(n) \Rightarrow Q(n)$, where P(n) is "n is an odd number", and Q(n) is " $(-1)^n = -1$ ".

$$\forall n \in \mathbb{Z} \quad n \text{ is odd} \Rightarrow n = 2p + 1 \qquad p \in \mathbb{Z}$$

$$(-1)^n = (-1)^{2p+1}$$

$$= (-1)^{2p} (-1)$$

$$= (1)^p (-1)$$

$$= 1 \times (-1)$$

$$= -1$$

Therefore, if *n* is an odd integer, then $(-1)^n = -1$.

Question9 Statement is of the form: $\forall n \in D, P(n) \Rightarrow Q(n)$, where P(n) is " n^2 is even", and Q(n) is "n is even".

To prove by contraposition we must show $\forall n \in D, \sim Q(n) \Rightarrow \sim P(n)$. $\sim Q(n)$ is "n is not even", i.e. "n is odd", and $\sim P(n)$ is " n^2 is not even", i.e. " n^2 is odd".

$$n ext{ is odd} \Rightarrow n = 2p+1$$
 $p \in \mathbb{Z}$,
 $\Rightarrow n^2 = 4p^2 + 4p + 1$
 $\Rightarrow n^2 = 2(2p^2 + 2p) + 1$
 $\Rightarrow n^2 = 2q + 1$ where $q = 2p^2 + 2p \in \mathbb{Z}$
 $\Rightarrow n^2 ext{ is odd}$

Therefore, if n is odd, n^2 is odd, and so by proof by contraposition, if n^2 is even, then n is even

Question 10 Statement is of the form: $\forall m \in D, P(m) \Rightarrow Q(m)$, where P(m) is "m is an integer", and Q(m) is " $m^2 + m + 1$ is always odd". Now if m is an integer, then m is even or m is odd, thus $P(m) \equiv R(m) \vee S(m)$, where R(m) is "m is even", and S(m) is "m is odd".

Hence
$$P(m) \Rightarrow Q(m) \equiv (R(m) \lor S(m)) \Rightarrow Q(m)$$

 $\equiv (R(m) \Rightarrow Q(m)) \land (S(m) \Rightarrow Q(m))$

Case 1: Prove: $R(m) \Rightarrow Q(m)$, i.e. If m is even, then $m^2 + m + 1$ is always odd n is even $\Rightarrow n = 2p$ $p \in \mathbb{Z}$, $\Rightarrow m^2 + m + 1 = 4p^2 + 2p + 1$

$$\Rightarrow m^2 + m + 1 = 4p^2 + 2p + 1$$

$$\Rightarrow m^2 + m + 1 = 2(2p^2 + p) + 1$$

$$\Rightarrow m^2 + m + 1 = 2q + 1 \qquad \text{where } q = 2p^2 + p \in \mathbb{Z}$$

$$\Rightarrow m^2 + m + 1 \text{ is odd}$$

Therefore if m is even, then $m^2 + m + 1$ is always odd

Case 2: Prove: $S(m) \Rightarrow Q(m)$, i.e. If m is odd, then $m^2 + m + 1$ is always odd m is odd $\Rightarrow m = 2k + 1$ $k \in \mathbb{Z}$,

$$\Rightarrow m^2 + m + 1 = 4k^2 + 4k + 1 + 2k + 1 + 1$$

$$\Rightarrow m^2 + m + 1 = 2(2k^2 + 3k + 1) + 1$$

$$\Rightarrow m^2 + m + 1 = 2l + 1 \qquad \text{where } l = 2k^2 + 3k + 1 \in \mathbb{Z}$$

$$\Rightarrow m^2 + m + 1 \text{ is odd}$$

Therefore if m is odd, then $m^2 + m + 1$ is always odd.

Thus if m is even or m is odd, then $m^2 + m + 1$ is always odd, and so if m is an integer, then $m^2 + m + 1$ is always odd.

Question11 Disprove the statement: $\forall a, b \in \mathbb{Z}, \ a \neq 0, b \neq 0, \ \frac{1}{a+b} = \frac{1}{a} + \frac{1}{b}$. Are there

any values for a, b that make the statement true? Explain.

Statement is of the form $\forall x \in D, P(x)$, that is a universal statement, so requires disproof with counterexample

Let a = 1 and b = 2.

Then
$$\frac{1}{a+b} = \frac{1}{1+2} = \frac{1}{3}$$
.

But,
$$\frac{1}{a} + \frac{1}{b} = \frac{1}{1} + \frac{1}{2} = \frac{3}{2} \neq \frac{1}{a+b}$$
.

Thus by counterexample the statement $\forall a, b \in \mathbb{Z}, \ a \neq 0, b \neq 0, \ \frac{1}{a+b} = \frac{1}{a} + \frac{1}{b}$ is false

There are no real values that make the statement true.

If you try to solve for *a* and *b*, you come across a quadratic with only complex solutions

Question12 Prove or disprove this statement: For all integers, a, b if a < b, then $a^2 < b^2$.

Statement is of the form $\forall x \in D, \forall y \in D, P(x, y) \Rightarrow Q(x, y)$, so requires general proof or disproof with a counterexample.

Counterexample: Let a = -5 and let b = 2.

$$a < b$$
 but $a^2 = 25 > 4 = b^2$

Thus by counterexample the statement $\forall x \in D, \forall y \in D, P(x, y) \Rightarrow Q(x, y)$ is false.

Question 13 Prove if n^2 is odd, then n is odd.

Statement is of the form: $\forall n \in D, P(n) \Rightarrow Q(n)$, where P(n) is " n^2 is odd", and Q(n) is "n is odd". Direct proof is not possible, thus use proof by contraposition.

To prove by contraposition we must show $\forall n \in D, \sim Q(n) \Rightarrow \sim P(n). \sim Q(n)$ is "n is not odd", i.e. "n is even", and $\sim P(n)$ is " n^2 is not odd", i.e. " n^2 is even".

$$n ext{ is even} \Rightarrow n = 2p$$
 $p \in \mathbb{Z}$,
 $\Rightarrow n^2 = 4p^2$
 $\Rightarrow n^2 = 2 \times 2p^2$
 $\Rightarrow n^2 = 2q$ where $q = 2p^2 \in \mathbb{Z}$
 $\Rightarrow n^2 ext{ is even}$

Therefore, if n is even, n^2 is even, and so by proof by contraposition, if n^2 is odd, then n is odd

Question14 Prove there is no smallest positive real number.

Statement is of the form $\forall x \in D, P(x)$. Where P(x) is "there is no smallest positive real number" So to prove, must show for all $x \in D$, P(x) is true. Prove by contradiction.

Assume $\sim P(x)$, that is assume there is a smallest positive real number, $n \in \mathbb{R}$. Then $n-1 \in \mathbb{R}$, n-1 < n. This contradicts our assumption, thus $\sim P(x)$ is false and the original statement "there is no smallest positive real number" is true.

Question15 Prove each of the following using proof by cases

(a) If
$$x = 4$$
, 5, or 6, then $x^2 - 3x + 21 \neq x$.

Statement is of the form $[R(x) \lor S(x) \lor T(x)] \Rightarrow Q(x)$, where R(x) is x = 4,

$$S(x)$$
 is $x = 5$, $T(x)$ is $x = 6$ and $Q(x)$ is $x^2 - 3x + 21 \neq x$.

Case 1: Prove: $R(x) \Rightarrow Q(x)$, i.e. If x = 4, then $x^2 - 3x + 21 \neq x$.

$$4^2 - 3 \times 4 + 21$$

$$= 25$$

Therefore If x = 4, then $x^2 - 3x + 21 \neq x$.

Case 2: Prove: $S(x) \Rightarrow Q(x)$, i.e. If x = 5, then $x^2 - 3x + 21 \neq x$.

$$5^2 - 3 \times 5 + 21$$

$$= 31$$

Therefore If x = 5, then $x^2 - 3x + 21 \neq x$..

Case 3: Prove: $T(x) \Rightarrow Q(x)$, i.e. If x = 6, then $x^2 - 3x + 21 \neq x$.

$$6^2 - 3 \times 6 + 21$$

$$= 39$$

$$\neq 6$$

Therefore If x = 6, then $x^2 - 3x + 21 \neq x$..

Thus If x = 4, 5, or 6, then $x^2 - 3x + 21 \neq x$.

(b)
$$\forall x \in \mathbb{Z}, \ x \neq 0 \Rightarrow 2^x + 3 \neq 4$$

Question16 Prove there is a perfect square that can be written as the sum of two other perfect squares. (Note an integer n is a perfect square if and only if $\exists k \in \mathbb{Z}, n = k^2$) Statement is of the form $\exists n \in D, P(n)$, so we must show one example.

$$\exists n \in \mathbb{Z}$$
, (*n* is a perfect square $\land \exists k, l \in \mathbb{Z}$, $n = k^2 + l^2$).

Let
$$n = 25 = 5^2$$
. n is a perfect square and $n = 4^2 + 3^2$.

Therefore, there is a perfect square that can be written as a sum of two other perfect squares.

Question17 Prove that the product of two odd integers is also an odd integer.

Statement is of the form $\forall x \in D, \forall y \in D, P(x, y) \Rightarrow Q(x, y)$, where D is the integers, P(x, y) can be written as "x is odd and y is odd", Q(x, y) can be written as " $x \times y$ is odd".

$$x ext{ is odd} \Rightarrow x = 2k+1$$
 $k \in \mathbb{Z}$,
 $y ext{ is odd} \Rightarrow y = 2l+1$ $l \in \mathbb{Z}$,
 $x \times y = (2k+1)(2l+1)$
 $= 4kl + 2k + 2l + 1$
 $= 2(2kl + k + l) + 1$
 $= 2n+1$ where $n = 2kl + k + l \in \mathbb{Z}$
 $\therefore x \times y ext{ is odd}$

Therefore the product of two odd integers is also an odd integer

Question 18 Prove or disprove the following statements:

(a) The difference between any two odd integers is also an odd integer. Statement is of the form $\forall x \in D, \forall y \in D, P(x, y) \Rightarrow Q(x, y)$, where D is the integers, P(x, y) can be written as "x is odd and y is odd", Q(x, y) can be written as "x - y is odd". Disprove with counterexample or prove with general proof. Counterexample: Let x = 5, y = 3, x - y = 5 - 3 = 2, which is even. Hence by counterexample the statement "The difference between any two odd integers is also an odd integer" is false.

(b) For any integer n, $3 \mid n(6n+3)$.

Statement is of the form $\forall n \in D, P(n)$, where D is the integers, P(n) can be written as " $n(6n+3) = 3k, k \in \mathbb{Z}$ ". Disprove with counterexample or prove with general proof.

$$n(6n+3) = 3n(2n+1)$$

$$= 3(2n^2 + n)$$

$$= 3k, k = 2n^2 + n \in \mathbb{Z}$$

$$\therefore 3 \mid n(6n+3)$$

Therefore for any integer n, $3 \mid n(6n+3)$.

(c) The cube of any odd integer is an odd integer.

Statement is of the form $\forall x \in D, P(x) \Rightarrow Q(x)$, where *D* is the integers, P(x) can be written as "*x* is odd", Q(x) can be written as " x^3 is odd".

x is odd ⇒
$$x = 2k + 1$$
 $k \in \mathbb{Z}$,
 $x^3 = (2k + 1)^3$
 $= 8k^3 + 12k^2 + 6k + 1$
 $= 2(4k^3 + 6k^2 + 3k) + 1$
 $= 2l + 1$ where $l = 4k^3 + 6k^2 + 3k \in \mathbb{Z}$
∴ x^3 is odd

Therefore the cube of any odd integer is an odd integer

(d) For any integers a, b, c, if $a \mid c$, then $ab \mid c$.

Disprove by counterexample: Let a = 2, b = 3, c = 4.

$$c = 4 = 2 \times 2 = 2a$$
 : $a \mid c$ However $ab = 6 \mid 4$, $ab \mid c$

Thus by counterexample "For any integers a, b, c, if $a \mid c$, then $ab \mid c$ " is false.

(e) There is no largest even integer.

Proof by contradiction.

Assume that there is a largest even integer, *n*, say.

Then, $\exists k \in \mathbb{Z}, n = 2k$.

Consider the number m = n + 2 = 2k + 2 = 2(k+1).

Let $l = k + 1 \in \mathbb{Z}$. Then m = 2l.

Therefore, by definition, m is an even integer. Also, we have m > n.

However, we said that n was the largest even integer. Thus we have a contradiction.

Therefore, our assumption must be wrong.

Therefore, there must be no largest even integer

(f) For all integers a, b, c, if $a \nmid bc$, then $a \nmid b$.

Statement form is
$$P(a,b,c) \Rightarrow Q(a,b,c)$$
, where $P(a,b,c): a \nmid bc$ and $Q(a,b,c): a \mid b$

Proof by contraposition, i.e. prove
$$\sim Q(a,b,c) \Rightarrow \sim P(a,b,c)$$
. Where

$$\sim P(a,b,c)$$
: $a \mid bc$, and $\sim Q(a,b,c)$: $a \mid b$

$$a \mid b \Rightarrow b = ak \quad k \in \mathbb{Z}$$

$$\Rightarrow bc = akc$$

$$\Rightarrow bc = al$$
 $l = kc \in \mathbb{Z}$

$$\therefore a \mid bc$$

Therefore For all integers a, b, c, if $a \mid b$, then $a \mid bc$, and so by contraposition for all integers a, b, c, if $a \mid bc$, then $a \mid b$.

(g) For all integers n, $4(n^2 + n + 1) - 3n^2$ is a perfect square.

$$4(n^{2} + n + 1) - 3n^{2} = 4n^{2} + 4n + 4 - 3n^{2}$$

$$= n^{2} + 4n + 4$$

$$= (n + 2)^{2}$$

$$= k^{2} \quad k = n + 2 \in \mathbb{Z}$$

Therefore for all integers n, $4(n^2 + n + 1) - 3n^2$ is a perfect square.

(h) For any integers a, b, if $a \mid b$ then $a^2 \mid b^2$.

$$a \mid b \Rightarrow b = ak$$
 $k \in \mathbb{Z}$
 $\Rightarrow b^2 = (ak)^2$
 $\Rightarrow bc = a^2l$ $l = k^2 \in \mathbb{Z}$
 $\therefore a^2 \mid b^2$

Therefore for any integers a, b, if $a \mid b$ then $a^2 \mid b^2$.

(i) For all integers n, $n^2 - n + 41$ is prime.

Disprove by counterexample. Let n = 41.

Then $n^2 - n + 41 = (41)^2 - 41 + 41 = (41)^2$, which is clearly not prime.

(j) For all integers, n and m, if n-m is even, then n^3-m^3 is even. Statement is of the form $\forall n \in D, \forall m \in D, P(n,m) \Rightarrow Q(n,m)$, where D is the integers, P(n,m) is "n-m is even", Q(n,m) is " n^3-m^3 is even". n-m is even $\Rightarrow n-m=2k$ $k \in \mathbb{Z}$, $n^3-m^3=(n-m)(n^2+nm+m^2)$ $=2k(n^2+nm+m^2)$ $=2(kn^2+knm+km^2)$ =2l where $l=kn^2+knm+km^2 \in \mathbb{Z}$ $\therefore n^3-m^3$ is even

Therefore for all integers, n and m, if n-m is even, then n^3-m^3 is even

Question19 Prove that the product of any four consecutive numbers, increased by one, is a perfect square?

 $\forall n \in D, P(n)$, where D is the integers, P(n) is "product of any four consecutive numbers, increased by one, is a perfect square".

Let n, n+1, n+2, n+3 be four consecutive integers.

$$n(n+1)(n+2)(n+3)+1 = n^4 + 6n^3 + 11n^2 + 6n + 1$$

$$= (n^2 + 3n + 1)^2$$

$$= k^2 k = (n^2 + 3n + 1) \in Z$$
Hence $n(n+1)(n+2)(n+3) + 1$ is a perfect square

Thus the product of any four consecutive numbers, increased by one, is a perfect square.

Section 4: Set Theory

Question1

(a)
$$A \cup B = \{0, 1\}$$

= $\{x \in \mathbb{R} : 0 < x \le 1\}$

(b)
$$A \cap B = \emptyset$$

(c)
$$B \cap C = B$$

(d)
$$A \cup C = C$$

(e)
$$A \cap C = A$$

The sets A and B are disjoint.

(f) $\overline{A} = \{x \in \mathbb{R} : x \neq 1\}$

(g)
$$\overline{C} = (-\infty, 0) \cup (1, \infty)$$

= $\{x \in \mathbb{R} : x < 0 \lor x > 1\}$

(h)
$$C - A = [0, 1) = \{x \in \mathbb{R} : 0 \le x < 1\}$$

(g) $\overline{P} = \{x \in \mathbb{N} : x \text{ is not prime}\}\$ = $\{x \in \mathbb{N} : x \text{ is composite } \lor x = 1\}$

(i)
$$C - B = \{0, 1\}$$

(j)
$$A - C = \emptyset$$

(f) $\overline{A} = B$

(h) $P - A = \{2\}$

(i) A - B = A

(i) $B - P = B - \{2\}$

Question2

(a)
$$A \cup B = \mathbb{N}$$

(b)
$$A \cap B = \emptyset$$

(c)
$$B \cap P = \{2\}$$

(d)
$$A \cup P = A \cup \{2\}$$

= $\{1, 2, 3, 5, 7, 9, 11, 13, ...\}$

(e)
$$A \cap P = P - \{2\}$$

= $\{3, 5, 7, 11, 13, ...\}$

A and B are disjoint as $A \cap B = \emptyset$.

P is not a subset of A, since $2 \in P$ but $2 \notin A$.

Question3 Let $X = \{1, 2, 3, 4\}$.

(a)
$$\mathcal{P}(X) = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\} \}$$

(b)
$$\mathcal{P}(X)$$
 has $2^4 = 16$ elements.

(c) Yes, $\emptyset \in \mathcal{P}(X)$ is true.

(d) Yes, $\{\emptyset\} \subseteq \mathcal{P}(X)$ is true.

Question $\mathcal{P}(\emptyset) = \{\emptyset\}$. $\mathcal{P}(\emptyset)$ has $2^0 = 1$ element.

Question5 $\mathcal{P}(X)$ has 2^n elements.

Question6

(a) False.

Let
$$B = \{2\} \in \mathcal{P}(X)$$
 and. $C = \{1\} \in \mathcal{P}(X)$. Then $2 \in B, 2 \notin C : B \not\subset C$ also $1 \in C, 1 \notin B : C \not\subset B$

- (b) True. Let $B = \emptyset$..
- (c) True. Let B = X.
- (d) True. All subsets but *X* are proper subsets

Question 7 Since $\mathcal{P}(X)$ has four elements, $\mathcal{P}(\mathcal{P}(X))$ will have $2^4 = 16$ elements.

$$\mathcal{P}(\mathcal{P}(X)) = \mathcal{P}(\{\emptyset, \{1\}, \{2\}, \{1, 2\}\})$$

$$= \{ \emptyset, \{\emptyset\}, \{\{1\}\}, \{\{2\}\}, \{\{1, 2\}\}, \{\emptyset, \{1\}\}, \{\emptyset, \{2\}\}, \{\emptyset, \{1, 2\}\}, \{\{1\}, \{2\}\}, \{\{1\}, \{1, 2\}\}, \{\{2\}, \{1, 2\}\}, \{\emptyset, \{1\}, \{2\}\}, \{\emptyset, \{1\}, \{2\}\}, \{\{1\}, \{2\}\}, \{\{1\}, 2\}\}, \{\emptyset, \{2\}, \{1, 2\}\}, \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}, \{\emptyset, \{2\}, \{1, 2\}\}, \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}, \{\emptyset, \{2\}, \{2\}, \{2\}, \{3\}\}, \{\emptyset, \{3\}, \{4\}, \{2\}, \{4\}, 2\}\}$$

Since Y has three elements, $\mathcal{P}(\mathcal{P}(Y))$ will have $2^{2^3} = 256$ elements.

 \emptyset , $\{\{1\}\}$ and $\{\{2\}\}$ belong to $\mathcal{P}(\mathcal{P}(Y))$.

<u>Question8</u> \emptyset , [-1, 1], {1}, (0, 1), etc.

The elements of $\mathcal{P}(\mathbb{R})$ cannot be listed. (There are too many of them!)

The set $\mathcal{P}(\mathbb{R})$ has an infinite number of elements.

$$[-1, 1] = \{x \mid x \in \mathbb{R} \land -1 \le x \le 1\} \in \mathcal{P}(\mathbb{R})$$
 is true.

Question9

Question10 Omitted

Question 11 Let Claim(n) be "If $X = \{1, 2, ..., n\}$, then $\mathcal{P}(X)$ has 2^n elements."

Step 1: Claim(1) is "If $X = \{1\}$, then $\mathcal{P}(X)$ has $2^1 = 2$ elements."

 $\mathcal{P}(X) = (\emptyset, \{1\}\})$. $\mathcal{P}(X)$ has 2 elements, so, Claim(1) is true.

Step 2: Assume that Claim(k) is true for some $k \in \mathbb{N}$; that is, "If $X = \{1, 2, ..., k\}$,

then $\mathcal{P}(X)$ has 2^k elements." ...(1)

Prove Claim(k+1) is true; that is, prove that "If $X = \{1, 2, ..., k, k+1\}$, then $\mathcal{P}(X)$ has 2^{k+1} elements."

We know that the set $\{1, 2, ..., k\}$ has 2^k subsets which contain the elements 1, 2, 3, ..., k.

These subsets will also be subsets of $X = \{1, 2, ..., k, k+1\}$.

So, we already have 2^k subsets of X.

How do we take into account the element k+1? Each of these original 2^k subsets will determine a "new" subset when the element k+1 is included in the original subset and all subsets containing k+1 will be so determined.

Thus, we have the subsets of $\{1, 2, 3, ..., k\}$ and the "new" subsets.

So the total number of subsets of $X = \{1, 2, 3, ..., k, k+1\}$ is $2^k + 2^k = 2(2^k) = 2^{k+1}$. So Claim(k+1) is true.

Thus, by Mathematical Induction, Claim(n) is true for all $n \in \mathbb{N}$.

Question12

(a) Let
$$X = \{1\}$$
 and $Y = \{2\}$.
Then $\mathcal{P}(X) = \{\emptyset, \{1\}\}, \mathcal{P}(Y) = \{\emptyset, \{2\}\} \text{ and } X \cup Y = \{1, 2\}.$
 $\mathcal{P}(X) \cup \mathcal{P}(Y) = \{\emptyset, \{1\}, \{2\}\}, \mathcal{P}(X \cup Y) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$
Clearly, $\mathcal{P}(X) \cup \mathcal{P}(Y) \subset \mathcal{P}(X \cup Y)$ but $\mathcal{P}(X) \cup \mathcal{P}(Y) \neq \mathcal{P}(X \cup Y)$.

(b) Let
$$X = \{1, 2\}$$
 and $Y = \{2, 3\}$.
Then $\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}, \mathcal{P}(Y) = \{\emptyset, \{2\}, \{3\}, \{2, 3\}\} \text{ and } X \cap Y = \{2\}.$
 $\mathcal{P}(X) \cap \mathcal{P}(Y) = \{\emptyset, \{2\}\}, \mathcal{P}(X \cap Y) = \{\emptyset, \{2\}\}$
Clearly, $\mathcal{P}(X) \cap \mathcal{P}(Y) = \mathcal{P}(X \cap Y)$.

Question13

(a) Prove
$$A \subseteq B \Rightarrow A \cup C \subseteq B \cup C$$

KNOW: $A \subseteq B$, that is, $x \in A \Rightarrow x \in B \dots (1)$

PROVE: $A \cup C \subseteq B \cup C$, that is, $x \in A \cup C \Rightarrow x \in B \cup C$.

PROOF: Let $x \in A \cup C$.

$$x \in A \cup C \Rightarrow x \in A \lor x \in C$$

 $\Rightarrow x \in B \lor x \in C \text{ by (1)}$
 $\Rightarrow x \in B \cup C$

Therefore, $A \cup C \subseteq B \cup C$.

- (b) To prove $(A \cup B) \cap B = B$, we must prove two things:
- 1. $(A \cup B) \cap B \subseteq B$, that is, $x \in (A \cup B) \cap B \Rightarrow x \in B$
- 2. $B \subseteq (A \cup B) \cap B$, that is, $x \in B \Rightarrow x \in (A \cup B) \cap B$

Proof of 1:

$$x \in (A \cup B) \cap B \Rightarrow x \in (A \cup B) \land x \in B$$
$$\Rightarrow x \in B$$
$$\therefore (A \cup B) \cap B \subseteq B$$

Proof of 2:

$$x \in B \Rightarrow x \in B \land x \in B$$

$$\Rightarrow (x \in B \lor x \in A) \land x \in B \text{ (\lor-introduction)}$$

$$\Rightarrow x \in (B \cup A) \land x \in B$$

$$\Rightarrow x \in (A \cup B) \cap B$$

$$\therefore B \subseteq (A \cup B) \cap B$$

Thus, $(A \cup B) \cap B = B$

Question 14 Let U be the universal set and let A, B and C be subsets of U.

Using properties of union, intersection and complement and known set laws, simplify the following:

(a)
$$(C)$$

$$\overline{(A \cap \overline{B})} \cap A = (\overline{A} \cup B) \cap A \qquad (A \cap \emptyset) \cap U = \emptyset \cap U$$

$$= (\overline{A} \cap A) \cup (B \cap A) \qquad = \emptyset$$

$$= (B \cap A) \qquad (d)$$

$$= (B \cap A) \qquad (A \cap U) \cup \overline{A} = A \cup \overline{A}$$

$$= U$$

$$(C \cup B) \cup \overline{C} = C \cup B \cup \overline{C}$$

$$= C \cup \overline{C} \cup B$$

$$= U \cup B$$

$$= U$$

Question15

Let
$$A = \{0, 1\}, B = \left\{ n \in \mathbb{Z} : \exists k \in \mathbb{Z}, \left(n = \frac{1 + (-1)^k}{2} \right) \right\}$$

Step 1: Prove $A \subseteq B$.

Let $x \in A$. Then x = 0 or x = 1. Proof by cases.

Case 1:
$$x = 0 \Rightarrow x = \frac{1-1}{2} = \frac{1+(-1)^{1}}{2}$$
.

Therefore,
$$\exists k \in \mathbb{Z}, \left(x = \frac{1 + (-1)^k}{2}\right).$$

Case 2:
$$x = 1 \Rightarrow x = \frac{1+1}{2} = \frac{1+(-1)^2}{2}$$
.

Therefore,
$$\exists k \in \mathbb{Z}, \left(x = \frac{1 + (-1)^k}{2}\right).$$

Therefore, $A \subseteq B$.

Step 2: Prove $B \subseteq A$.

Let
$$y \in B$$
. Then $\exists k \in \mathbb{Z}, \left(y = \frac{1 + (-1)^k}{2} \right)$.

k can be an odd integer or an even integer.

Let *k* be an odd integer.

Then
$$y = \frac{1 + (-1)^k}{2} = \frac{1 + (-1)}{2} = \frac{0}{2} = 0$$
.

Let *k* be an even integer.

Then
$$y = \frac{1 + (-1)^k}{2} = \frac{1+1}{2} = \frac{2}{2} = 1$$
.

Therefore, y = 0 or y = 1.

Thus, $y \in A$.

Therefore, $B \subseteq A$.

Therefore, by Step 1 and Step 2, A = B.

Question 16
$$A = \{1, 3, 5, 9, ...\}$$
 $B = \{2, 5, 8, 11, ...\}$.
 $t \in A \cap B \Rightarrow t \in A \land t \in B$
 $\Rightarrow \exists k \in \mathbb{Z} \ (t = 2k - 1) \land \exists w \in \mathbb{Z} \ (t = 3w + 2)$
 $\Rightarrow 2k - 1 = 3w + 2$
 $\Rightarrow 2k = 3w + 3 = 3(w + 1)$. But $2k$ is even so $w + 1$

must be even.

 \Rightarrow w is an odd number

Therefore, there is an odd integer $w \in \mathbb{Z}$ such that t = 3w + 2.

Thus,
$$t \in A \cap B \Rightarrow \exists w \in \mathbb{Z} (w \text{ is odd } \land t = 3w + 2)$$
.

Now, let t be an integer such that $\exists w \in \mathbb{Z} (w \text{ is odd } \land t = 3w + 2)$.

 $t \in B$ by the definition of B. We must show that $t \in A$.

 $t \in \mathbb{Z}$ such that $\exists w \in \mathbb{Z} (w \text{ is odd } \land t = 3w + 2)$

$$\Rightarrow p \in \mathbb{Z} (w = 2p + 1 \land t = 3(2p + 1) + 2)$$

$$\Rightarrow p \in \mathbb{Z} (w = 2p + 1 \land t = (6p + 3) + 2 = 2(3p + 3) - 1)$$

$$\Rightarrow t \in A$$

Therefore, $t \in A \cap B$.

Thus, $\exists w \in \mathbb{Z} (w \text{ is odd } \land t = 3w + 2) \Rightarrow t \in A \cap B$

Question17

(a) We must prove two things:

1.
$$(\overline{A \cup B}) \subseteq \overline{A} \cap \overline{B}$$
, that is, $x \in (\overline{A \cup B}) \Rightarrow x \in \overline{A} \cap \overline{B}$

2.
$$\overline{A} \cap \overline{B} \subseteq \overline{(A \cup B)}$$
, that is, $x \in \overline{A} \cap \overline{B} \Rightarrow x \in \overline{(A \cup B)}$

Proof of 1.:

$$x \in \overline{(A \cup B)} \Rightarrow \sim (x \in A \cup B)$$

$$\Rightarrow \sim (x \in A \lor x \in B)$$

$$\Rightarrow \sim (x \in A) \land \sim (x \in B)$$

$$\Rightarrow x \in \overline{A} \land x \in \overline{B}$$

$$\Rightarrow x \in \overline{A} \cap \overline{B}$$

$$\therefore \overline{(A \cup B)} \subseteq \overline{A} \cap \overline{B}$$

Proof of 2: Reverse the steps for proof of 1. $\therefore \overline{A} \cap \overline{B} \subseteq \overline{(A \cup B)}$

Therefore,
$$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$$

(b) We must prove two things:

1.
$$A \cap (B - C) \subseteq (A \cap B) - C$$
, that is $x \in A \cap (B - C) \Rightarrow x \in (A \cap B) - C$

$$2.(A \cap B) - C \subseteq A \cap (B - C)$$
, that is $x \in (A \cap B) - C \Rightarrow x \in A \cap (B - C)$

Proof of 1:

$$x \in A \cap (B - C) \Rightarrow x \in A \land x \in B - C$$

$$\Rightarrow x \in A \land (x \in B \land x \notin C)$$

$$\Rightarrow (x \in A \land x \in B) \land x \notin C$$

$$\Rightarrow x \in A \cap B \land x \notin C$$

$$\Rightarrow x \in (A \cap B) - C$$

$$\therefore A \cap (B - C) \subset (A \cap B) - C$$

Proof of 2: Reverse the steps for proof of 1. $(A \cap B) - C \subseteq A \cap (B - C)$

Therefore,
$$A \cap (B - C) = (A \cap B) - C$$

Question 18 Let U be the universal set and let A, B and C be subsets of U.

Using properties of union, intersection and complement and known set laws, simplify the following:

$$(C \cap U) \cup \overline{C} = (C \cup \overline{C}) \cap (U \cup \overline{C})$$

$$= U \cap U$$

$$= U$$

$$= U$$

$$= U$$

$$= U$$

$$= U$$

$$= C \cap \overline{C}$$

$$= 0$$

$$\overline{(A \cap U)} \cup \overline{A} = (\overline{A} \cup \emptyset) \cup \overline{A}
(b) = \overline{A} \cup \overline{A}
= \overline{A}$$

$$(A \cap B) \cap \overline{A} = A \cap B \cap \overline{A}
= (A \cap \overline{A}) \cap B
= \emptyset \cap B
= \emptyset$$

Question19

(a) Let $n \in T$. Then n^2 is an odd integer.

Let's assume that n is an even integer.

Then,
$$\exists k \in \mathbb{Z} (n = 2k)$$

$$\Rightarrow n^2 = (2k)^2 = 4k^2 = 2(2k^2).$$

Therefore, n^2 is an even integer.

This leads us to a contradiction, as n^2 is an odd integer.

So our assumption must be wrong.

Therefore, *n* must be an odd integer $\Rightarrow n \in O$.

Thus, $T \subseteq O$.

(b) Let $m \in O$.

Then *m* is an odd integer $\Rightarrow \exists k \in \mathbb{Z} (m = 2k + 1)$

$$\Rightarrow m^2 = (2k+1)^2$$

$$= 4k^2 + 4k + 1$$

$$= 2(2k^2 + 2k) + 1,$$

$$(2k^2 + 2k) \in \mathbb{Z}$$

Therefore, m^2 is an odd integer, so $m \in T$.

Thus, $O \subseteq T$.

(c) From Part (a) $T \subseteq O$ and from part (b) $O \subseteq T$. Therefore T = O.

Question 20 Let x = 1 and y = 4. $x^2 + y^2 = 1 + 16 = 17$ and $17 \notin E$.

Thus, T is not a subset of E.

Question21

(a) Prove $A \cap B = A \Rightarrow A \subset B$.

KNOW: $A \cap B = A$, that is $x \in A \Rightarrow x \in A \cap B$ and $x \in A \cap B \Rightarrow x \in A$...(1)

PROVE: $A \subseteq B$, that is, $x \in A \Rightarrow x \in B$.

$$x \in A \Rightarrow x \in A \cap B \text{ (by 1)}$$

 $\Rightarrow x \in A \land x \in B$
 $\Rightarrow x \in B$

Thus, $A \subset B$.

(b) Disprove the statement.

Let
$$A = \{1, 2\}, B = \{2, 3\}$$
 and $C = \{2\}.$

Then $A \cap B = A \cap C = \{1\}$, but $B \neq C$.

Question22 Determine if the following statements are true or false:

(a) True

Prove $A \cap B = \emptyset \Rightarrow A \subset \overline{B}$.

KNOW: $A \cap B = \emptyset$.

PROVE: $A \subset \overline{B}$, that is, $x \in A \Rightarrow x \in \overline{B}$.

Let $x \in A$. Suppose $x \in B$.

Then $x \in A \cap B$, but $A \cap B = \emptyset$.

Therefore, we have a contradiction and $x \notin B$, that is, $x \in \overline{B}$.

(b) True

Prove
$$(A \subseteq \overline{B} \land \overline{A} \subseteq \overline{B}) \Rightarrow B = \emptyset$$
.

KNOW: $A \subseteq \overline{B}$ and $\overline{A} \subseteq \overline{B}$.

PROVE: $B = \emptyset$.

Let $B \neq \emptyset$, that is, there exists x such that $x \in B$.

Now, we have two cases.

Either $x \in A$ or $x \in \overline{A}$.

 $x \in A \Rightarrow x \in \overline{B}$, which is a contradiction.

 $x \in \overline{A} \Rightarrow x \in \overline{B}$, which is also a contradiction.

Therefore, x does not exist, so $B = \emptyset$.

(c) True

Prove A and B - A are disjoint, that is $A \cap (B - A) = \emptyset$.

Suppose
$$A \cap (B-A) \neq \emptyset$$
, that is, there exists x such that $x \in A \cap (B-A)$

$$\Rightarrow x \in A \land x \in (B - A)$$
$$\Rightarrow x \in A \land (x \in B \land x \notin A)$$
$$\Rightarrow x \in A \land x \notin A \land x \in B$$

This statement is false.

Therefore, $A \cap (B - A) = \emptyset$.

Section 5: Relations and Functions

Question1

(a)

(ii)
$$A \times A = \{(1,1), (1,2), (2,1), (2,2)\}$$

(iii)
$$B \times A = \{(0,1), (0,2), (2,1), (2,2), (3,1), (3,2)\}$$

(b) Is
$$A \times B \subseteq B \times B$$
 No

(c)
$$A \cup B = \{0,1,2,3\} \ (A \cup B) \times C$$

 $(A \cup B) \times C = \{(0,a),(0,b),(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$
 $(A \times C) = \{(1,a),(1,b),(2,a),(2,b)\}.$

$$(B \times C) = \{(0,a), (0,b), (2,a), (2,b), (3,a), (3,b) \\ (A \times C) \cup (B \times C) = \{(0,a), (0,b), (1,a), (1,b), (2,a), (2,b), (3,a), (3,b) \}$$
What do you notice? $(A \cup B) \times C = (A \times C) \cup (B \times C)$

What do you notice? $(A \cup B) \times C = (A \times C) \cup (B \times C)$

(d)
$$(A \times B) \times C = \{(1,0,a), (1,0,b), (1,2,a), (1,2,b), (1,3,a), (1,3,b), \\ (2,0,a), (2,0,b), (2,2,a), (2,2,b)(2,3,a), (2,3,b)\}$$

$$C \times (A \times A) = \{(a,1,1), (a,1,2), (a,2,1), (a,2,2), \\ (b,1,1), (b,1,2), (b,2,1), (b,2,2)\}$$

Question2 $D \times A = \{(a,1),(b,1),(a,2,),(b,2)\}.$ $A \times D = \{(1,a),(1,b),(2,a),(2,b)\}, \text{ they are not equal}$

Question3 Let $A = \{x \in \mathbb{R} : 0 < x < 1\}$, $B = \{x \in \mathbb{R} : -1 < x < 3\}$ and $C = \{x \in \mathbb{R} : 0 \le x \le 1\}$.

(a) Sketch the graph of $A \times B$ in \mathbb{R}^2 . The unshaded area:

(b) Sketch the graph of $C \times C$ in \mathbb{R}^2 . Note: $C \times C$ is called the until square in \mathbb{R}^2 . The area inside the square:

(c) Sketch the graph of $C \times \mathbb{R}$ in \mathbb{R}^2 . The unshaded area:

Question4 Let $A = \{a_1, a_2, ..., a_n\}$ and $B = \{b_1, b_2, ..., b_m\}$.

(a) There will be mn elements in $A \times B$.

$$A \times B = \{(a_1, b_1), (a_1, b_2), \dots (a_1, b_m), (a_2, b_1), (a_2, b_2), \dots (a_2, b_m), \dots (a_n, b_1), (a_n, b_2), \dots (a_n, b_m)\}$$

Question5

$$(a,b) \in (A \cup B) \times C$$
$$\Leftrightarrow a \in (A \cup B) \land b \in C$$

$$\Leftrightarrow$$
 $(a \in A \lor a \in B) \land b \in C$

$$\Leftrightarrow$$
 $(a \in A \land b \in C) \lor (a \in B) \land b \in C)$

$$\Leftrightarrow$$
 $(a,b) \in A \times C \lor (a,b) \in B \times C$

$$\Leftrightarrow$$
 $(a,b) \in (A \times C) \cup (B \times C)$

$$\therefore (A \cup B) \times C = (A \times C) \cup (B \times C)$$

Question6 Sketch the graphs of the following relations in \mathbb{R}^2 .

(a) $R_1 = \{(x, y) : x = y \land x = -y\}$.

(c) $R_3 = \{(x, y) : y^2 = 2 + x\}.$

(d) $R_4 = \{(x, y) : (x^2 - y)(x - y) = 0\}$.

Question7 Sketch the graphs of the following relations in \mathbb{R}^2 .

(a) $R_1 = \{(x, y) : |x| = |y|\}$

(b) $R_2 = \{(x, y) : (x^2 - y)(4x^2 + 9y^2 - 36) = 0\}$

Question8

- (a) $R = \{(2, 6), (2, 8), (2, 10), (3, 6), (4, 8)\}$
- **(b)** Graph $A \times B$ and circle the elements of R.

- (c) True or false?
 - (i) 4R6 False, 4 is not a factor of 6
 - (ii) 4R8 True, $8 = 4 \times 2$
 - (iii) $(3,8) \in R$ False, 3 is not a factor of 8
 - (iv) $(2,10) \in R$ True, $10 = 2 \times 5$
 - (v) $(4,12) \in R$ False, $12 \notin B$

Question9

(a)
$$R \cup S = R$$

(b)
$$R \cap S = S$$

Question 10 Write down the domain and range of the relation R on the given set A. $A = \{h : h \text{ is a human being}\}$ $R = \{(h_1, h_2) : h_1 \text{ is the sister of } h_2\}$

Dom $R = \{ f \in A : f \text{ is female} \land f \text{ has a sibling} \},$

Range $R = \{ p \in A : p \text{ has a sister} \}$

Question11 $R = \{(3, 4), (3, 5), (3, 6), (4, 5), (4, 6), (5, 6)\}.$ $R^{-1} = \{(4, 3), (5, 3), (6, 3), (5, 4), (6, 4), (6, 5)\}$

Question 12
$$T^{-1} = \{(x, y) : \frac{y^2}{4} + \frac{x^2}{9} = 1\}$$
.

Sketch of *T*:

Sketch of T^{-1} :

<u>Question13</u> Determine whether or not the given relation is reflexive, symmetric or transitive. Give a counterexample in each case in which the relation does not satisfy the property.

(a) R_1 on the set $A = \{h : h \text{ is a human being}\}$ given by

$$R_1 = \{(h_1, h_2) : h_1 \text{ is the sister of } h_2\}$$

 R_1 is not reflexive, symmetric or transitive. Consider a family with three siblings, Jane, Mary and John.

 R_1 is not reflexive as Jane is not her own sister

 R_1 is not symmetric as Jane is John's sister, however John is not Jane's sister

 R_1 is not transitive as Jane is Mary's sister and Mary is Jane's sister, however, Jane is not her own sister.

(b) R_2 on the set $A = \{a, b, c, d\}$ given by

$$R_2 = \{(a,a),(a,b),(b,a),(b,b),(b,c),(c,b),(c,c),(d,d)\}$$

 R_2 is reflexive on $A = \{a, b, c, d\}$:

$$(a, a) \in R_2$$
, $(b, b) \in R_2$, $(c, c) \in R_2$ and $(d, d) \in R_2$.

 R_2 is symmetric:

$$(a, b) \in R_2$$
 and $(b, a) \in R_2$; $(b, c) \in R_2$ and $(c, b) \in R_2$.

All other elements in R_2 are of the form (x, x) so satisfy the symmetry property.

 R_2 is not transitive:

$$(a, b) \in \mathbb{R}_2$$
 and $(b, c) \in \mathbb{R}_2$. However, $(a, c) \notin \mathbb{R}_2$.

So transitivity fails.

Question14 Determine whether or not the following relation is an equivalence relation.

R on
$$A = \{0, 1, 2, 3\}$$
 given by $R = A \times A$.

$$R = A \times A = \{(x, y) : x, y \in A\}$$
. That is, $\forall x, y \in A, (x, y) \in \mathbb{R}$.

R is Reflexive:
$$\forall x \in A, (x, x) \in A \times A \Rightarrow (x, x) \in \mathbb{R}$$
.

R is Symmetric:

$$\forall x, y \in A, (x, y) \in A \times A$$
$$\Rightarrow y, x \in A$$
$$\Rightarrow (y, x) \in A \times A$$

Thus,
$$\forall x, y \in A, (x, y) \in R \Rightarrow (y, x) \in R$$

R is Transitive:

$$\forall x, y, z \in A, (x, y) \in A \times A, (y, z) \in A \times A, \text{ and } (x, z) \in A \times A.$$

Thus,
$$\forall x, y, z \in A$$
, $(x, y) \in \mathbb{R} \land (y, z) \in \mathbb{R} \Rightarrow (x, z) \in \mathbb{R}$.

Therefore, the relation R is an equivalence relation on A

Question 15 Show that the relation *R* on the set $A = \{0, 1, 2, 3, 4\}$ given by

$$R = \{(0,0),(0,4),(1,1),(1,3),(2,2),(3,1),(3,3),(4,0),(4,4)\}$$
 is an equivalence relation.

Find all the classes of *R*.

R is Reflexive on $A = \{0, 1, 2, 3, 4\}$:

$$(0,0) \in R, (1,1) \in R, (2,2) \in R, (3,3) \in R \text{ and } (4,4) \in R.$$

Thus, $\forall a \in A, (a, a) \in R$.

R is Symmetric:

$$(0,4) \in R$$
 and $(4,0) \in R$; $(1,3) \in R$ and $(3,1) \in R$.

All other elements in R are of the form (x, x), so satisfy the symmetry property.

Thus,
$$\forall a, b \in A, (a, b) \in R \Rightarrow (b, a) \in R$$
.

R is Transitive:

$$(0,0), (0,4) \in R$$
 and $(0,4) \in R$;

$$(0, 4), (4, 0) \in R \text{ and } (0, 0) \in R;$$

$$(0,4), (4,4) \in R \text{ and } (0,4) \in R;$$

$$(1, 1), (1, 3) \in R \text{ and } (1, 3) \in R;$$

$$(1,3), (3,1) \in R \text{ and } (1,1) \in R;$$

$$(1,3),(3,3) \in R \text{ and } (1,3) \in R;$$

$$(3,1), (1,1) \in R \text{ and } (3,1) \in R;$$

$$(3,1), (1,3) \in R \text{ and } (3,3) \in R;$$

$$(3,3), (3,1) \in R$$
 and $(3,1) \in R$;

$$(4, 0), (0, 0) \in R \text{ and } (4, 0) \in R;$$

$$(4, 0), (0, 4) \in R \text{ and } (4, 4) \in R;$$

$$(4, 4), (4, 0) \in R \text{ and } (4, 0) \in R$$
.

Elements of the form (x, x) also satisfy the transitive property.

Thus,
$$\forall a, b, c \in A, (a, b), (b, c) \in R \Rightarrow (a, c) \in R$$
.

Therefore, R is an equivalence relation.

class(0) =
$$\{0, 4\}$$
; class(1) = $\{1, 3\}$; class(2) = $\{2\}$; class(3) = $\{1, 3\}$ = class(1);

$$class(4) = \{0, 4\} = class(0)$$
.

Question16 Is the following relation a function? Give brief reason.

R on
$$[-2, 2] = \{x \in \mathbb{R} : -2 \le x \le 2\}$$
, where

$$R = \{(x, y) : y = \sqrt{1 - (x - 1)^2} \lor y = 1 - \sqrt{1 - (x + 1)^2} \}.$$

Dom
$$R = [-2, 2] = \{x \in \mathbb{R} : -2 \le x \le 2\}.$$

However, the relation doesn't satisfy the vertical line test as both (0,0) and (0,1) are elements of the relation

Question17

(i) Let
$$A = \{1, 5, 9\}$$
 and $B = \{3, 4, 7\}$. $F_1 \subseteq A \times B$ and $F_1 = \{(1, 7), (5, 3), (9, 4)\}$

(a) F_1 is one-to-one as each element in the range appears only once.

(b)
$$F_1$$
 is onto as range $F_1 = B$

(ii) F_2 on \mathbb{Z} and $F_2 = \{(x, y) : y = 2x\}$

- (a) The function satisfies the horizontal line test, thus F_2 is one-to-one
- **(b)** Range $F_2 = \{2n : n \in \mathbb{Z}\} \neq \mathbb{Z}$, thus, F_2 is not onto

Question 18 Let $A = \{4, 5, 6\}$ and $B = \{5, 6, 7\}$ and define the relations S and T from A to B as follows: $S = \{(x, y) : x - y \text{ is even}\}$ and $T = \{(4, 6), (6, 5), (6, 7)\}$.

- (a) S^{-1} from B to A, $S^{-1} = \{(5,5), (6,4), (6,6), (7,5)\}$. and T^{-1} from B to A, $T^{-1} = \{(6,4), (5,6), (7,6)\}$
- **(b)** $S = \{(4,6), (5,5), (5,7), (6,6)\}, (5,5) \in S \text{ and } (5,7) \in S \text{ thus } S \text{ is not a function,}$ Dom $T = \{4,6\} \neq A \text{ and } (6,5) \in T \text{ and } , (6,7) \in T \text{ , thus } T \text{ is not a function,}$ $(6,4) \in S^{-1} \text{ and } (6,6) \in S^{-1} \text{ , thus } S^{-1} \text{ is not a function}$ Dom $T^{-1} = \{5,6,7\} = B \text{ each element in the domain appears only once, thus } T^{-1} \text{ is a function.}$

Question19 Simplify the following:

- (a) $(1 \ 3 \ 4)(3 \ 2 \ 4) = (1 \ 2 \ 4)$
- **(b)** $(1 \ 3 \ 4)^{-1} = (4 \ 3 \ 1)$
- (c) $(2 \ 5 \ 4 \ 1)^{-1} = (1 \ 4 \ 5 \ 2)$
- **(d)** (3 2)(3 2 4)(3 1)(4 2) = (3 2 1 4)