Proof Theoretic Semantics for Questions

November 14, 2016

1 Interrogatives in NM-MS

We start with a language of atomic sentences, $\mathcal{L}_0 = \{p_1, \dots, p_n\}$ and define a consequence relation over it such that $\triangleright_0 \subseteq \mathcal{P}(\mathcal{L}_0) \times \mathcal{P}(\mathcal{L}_0)$. The structure $\langle \triangleright_0, \mathcal{L}_0 \rangle$ has the following properties:

- 1. $\emptyset \not\sim_0 \emptyset$
- 2. $\mathcal{L}_0 \triangleright_0 \emptyset$
- 3. $\forall \Delta, \Lambda, p(\Delta, p \triangleright_{0} p, \Lambda)$ (Containment)

2 Interrogatives in NM-SS

In addition to \mathcal{L}_e , we construct another language, called \mathcal{L}_Q which has two categories of well-formed expressions: d-wffs and e-wffs, that is, claims and questions. (For simplicity, we drop the 'e' notation from our turnstile.) The syntax of \mathcal{L}_Q is just that of \mathcal{L}_e plus the following: ?, $\{$, $\}$, and the comma. D-wffs are just sentences of \mathcal{L}_e . E-wffs, on the other hand, are expressions of the following form: ? $\{A_1,\ldots,A_n\}$ where n>1 and $A_1\ldots A_n$ are pairwise syntactically distinct d-wffs of \mathcal{L}_e . If ? $\{A_1,\ldots,A_n\}$ is a question, then each of the d-wffs $A_1\ldots A_n$ is a possible direct answer to the question, and these are the only possible direct answers. Not that any question in \mathcal{L}_Q has at least two possible direct answers and that the set of those answers is always finite. We must stress that e-wffs are NOT sets of d-wffs, but rather singular expressions of a strictly defined form. We can paraphrase e-wffs as aksing Which of the following claims am I entitled to: A_1,\ldots,A_n ?

Here are possible rules for e-wffs:

Right rule for
$$\{A_1, \ldots, A_n\}$$

$$\frac{\Gamma, A_1 \triangleright B \dots \Gamma, A_n \triangleright B}{\Gamma, B \triangleright ?\{A_1, \dots, A_n\}} \quad \text{where } \Gamma, B \not \triangleright A_1 \dots \Gamma, B \not \triangleright A_n$$

Possible left rule for $\{A_1, \ldots, A_n\}$

$$\frac{\Gamma \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} A_{i}}{\Gamma, ?\{A_{1}, \ldots, A_{n}\} \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} \bot} \qquad \text{where } 1 \leq i \leq n$$

(Negative) Partial Answer

$$\frac{\Gamma, B \triangleright \bot}{\Gamma, ?\{A_1, \dots, A_n, B\} \triangleright ?\{A_1, \dots, A_n\}}$$

We can give the semantics for a non-factive why-question, Why B?, as follows:

$$\{A_1 \twoheadrightarrow B, \ldots, A_n \twoheadrightarrow B\}$$

Once \mathcal{L}_e is extended to include traditional logical operators, we can give the semantics for *factive* why questions, e.g. *Why B?*, as follows:

$$\{(A_1 \twoheadrightarrow B) \land B, \dots, (A_n \twoheadrightarrow B) \land B\}$$

Notice that once one has an answer to this question, one is entitled to the explanans.

$$\begin{array}{ccc} \frac{\Gamma, A \stackrel{\uparrow}{\triangleright_e} B}{\Gamma \hspace{0.2em} \vdash_e A \twoheadrightarrow B} & \text{EER} \\ \\ \frac{\Gamma \hspace{0.2em} \mid_{e} A \twoheadrightarrow B}{\Gamma, A \stackrel{\uparrow}{\triangleright_e} B} & \text{EES} \\ \\ \frac{\Gamma, A \stackrel{\uparrow}{\triangleright_e} B}{\Gamma, B, A \twoheadrightarrow B \hspace{0.2em} \mid_{e} A} & \text{EEL} \end{array}$$

Quantified Material Consequence (QMC):

$$\Gamma, A \stackrel{\uparrow W}{\sim} B \Longleftrightarrow_{df} \begin{cases} 1. \ W \subseteq \mathcal{P}(\mathcal{L}) & \text{and} \\ 2. \ \forall \Delta \in W(\Gamma, A, \Delta \triangleright B) \end{cases}$$

Modally Robust Consequence (MRC):

$$\Gamma, A \not \curvearrowright^{\mathcal{T}W} B \Longleftrightarrow_{df} \begin{cases} 1. \ \Gamma, A \not \curvearrowright^{\mathcal{T}W} B & \text{and} \\ 2. \ \forall W'(\Gamma, A \not \curvearrowright^{\mathcal{T}W'} B \Longrightarrow W' \subseteq W) & \text{and} \\ 3. \ \forall \Delta(\Gamma, A, \Delta \not \curvearrowright \bot \Longrightarrow \Delta \not\in W) \end{cases}$$

Sturdy Consequence (SC): [Sets]

$$\Gamma, \; \Sigma \not \stackrel{\uparrow}{\sim} B \Longrightarrow \begin{cases} 1. \; \Gamma, \; \Sigma \not \stackrel{\uparrow}{\sim} W \, B & \text{where } B \not \in \Sigma, \text{ and} \\ 2. \; \forall \Theta \, (\Gamma, \Theta \not \stackrel{\uparrow}{\sim} W' \, B \Longrightarrow W \not \subset W') & \text{where } B \not \in \Theta \end{cases}$$