华东理工大学 2015 - 2016 学年第二学期

《高等数学(下)》期中考试试卷(11学分)2016.4

一、(本题 8 分) 求方程 $x^2y''+(y')^2e^{-x}=(x^2+2x)y'$ 满足 y(1)=0, y'(1)=e 的特解。

解:
$$\diamondsuit y' = p$$
,则 $y'' = \frac{dp}{dx}$,

原方程化为
$$x^2 \frac{dp}{dx} + (p)^2 e^{-x} = (x^2 + 2x)p$$
,即

$$\frac{1}{p^2}\frac{dp}{dx} + x^{-2}e^{-x} = (1 + \frac{2}{x})\frac{1}{p}, \quad \text{\mathbb{Z}} \Leftrightarrow z = \frac{1}{p}, \quad \text{\mathbb{M}} \hat{\eta} \frac{dz}{dx} + (1 + \frac{2}{x})z = x^{-2}e^{-x},$$

$$z = \frac{1}{p} = e^{-\int (1+\frac{2}{x})dx} \left[C + \int x^{-2} e^{-x} e^{\int (1+\frac{2}{x})dx} dx \right],$$

$$\therefore y' = p = \frac{x^2 e^x}{x + C_1}$$
,又 $y'(1) = e$, 得 $C_1 = 0$, 故 $y' = x e^x$, $\therefore y = (x - 1)e^x + C_2$, 再由于

$$y(1) = 0$$
, $∂$ C₂ = 0, $∂$ ∴ $y = (x-1)e^x$.

二、(本题 8 分) 求满足
$$f(x) = x \int_{0}^{x} f(t)dt + x$$
 的可导函数 $f(x)$ 。

解: 原方程化为,
$$\frac{f(x)}{x} = \int_{0}^{x} f(t)dt + 1$$
, 两边求导有 $\frac{xf'(x) - f(x)}{x^2} = f(x)$,

化简后有,
$$\frac{f'(x)}{f(x)} = x + \frac{1}{x}$$
, 故 $f(x) = Cxe^{\frac{x^2}{2}}$,

又
$$\frac{f(x)}{x} = \int_{0}^{x} f(t)dt + 1$$
,得 $\lim_{x \to 0} \frac{f(x)}{x} = 1$,可知 $C = 1$,于是 $f(x) = xe^{\frac{x^2}{2}}$ 。

三、(本题 8 分) 证明两直线 l_1 : $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z+1}{3}$, l_2 : $\frac{x-3}{2} = \frac{y-2}{2} = \frac{z-3}{1}$ 异面,并求它们的距离。

解: 取 l_1 上一点A(1,-1,-1), l_2 上一点B(3,2,3), 由于

$$[\overrightarrow{AB}, \overrightarrow{l_1}, \overrightarrow{l_2}] = \begin{vmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 2 & 2 & 1 \end{vmatrix} = -1 \neq 0$$
 因此 $\overrightarrow{l_1}$ 、 $\overrightarrow{l_2}$ 为异面直线.

异面直线的距离为
$$\left| Prj_{\vec{l}_1 \times \vec{l}_2} \overrightarrow{AB} \right| = \left| \frac{\{-4,5,-2\} \cdot \{2,3,4\}\}}{\sqrt{16+25+4}} \right| = \frac{1}{3\sqrt{5}}$$

四、(本题 8 分)设
$$f(x,y) = \begin{cases} x|y|\sin\frac{1}{x^2+y^2}, & x^2+y^2 \neq 0 \\ 0, & x^2+y^2 = 0 \end{cases}$$
, (1)求 $f_x(0,0), f_y(0,0)$;

(2) 判断 f(x,y) 在(0,0) 处的连续性; (3) 判断 f(x,y) 在(0,0) 处的可微性。

解: (1)
$$f_x(0,0) = \lim_{x\to 0} \frac{f(x,0)-f(0,0)}{x} = \lim_{x\to 0} \frac{0-0}{x} = 0$$

$$f_y(0,0) = \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y} = \lim_{y \to 0} \frac{0 - 0}{y} = 0$$

(2) 由于
$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} x|y|\sin\frac{1}{x^2+y^2} = 0 = f(0,0)$$
,

故 f(x, y) 在 (0,0) 处连续。

(3) 考虑
$$\lim_{(x,y)\to(0,0)} \frac{f(x,y)-f(0,0)-f_x(0,0)x-f_y(0,0)}{\sqrt{x^2+y^2}}$$

$$= \lim_{(x,y)\to(0,0)} \frac{x|y|}{\sqrt{x^2 + y^2}} \sin\frac{1}{x^2 + y^2},$$

由于
$$0 \le \left| \frac{x|y|}{\sqrt{x^2 + y^2}} \sin \frac{1}{x^2 + y^2} \right| \le \frac{|xy|}{\sqrt{x^2 + y^2}} \le \frac{1}{2} \sqrt{x^2 + y^2}$$
,根据夹逼定理,

$$\lim_{(x,y)\to(0,0)} \frac{x|y|}{\sqrt{x^2+y^2}} \sin\frac{1}{x^2+y^2} = 0, 故 f(x,y) 在 (0,0) 处可微。$$

五、填空题(每小题 4 分, 共 52 分)

1、微分方程 y'''+2y''+y'=0 的通解为_____。

答:
$$y = C_1 + C_2 e^{-x} + C_3 x e^{-x}$$

2、微分方程 $y' = e^{2x-y}$ 的通解为______。

答:
$$e^y = \frac{1}{2}e^{2x} + C$$

答:
$$\sin \frac{y}{x} = \ln x$$

4、微分方程 *y*'+*y* = *x* 的通解为______。

答:
$$y = Ce^{-x} + x - 1$$

- 5、微分方程 $yy''=(y')^2$ 的通解为_____。
- 答: $y = C_2 e^{C_1 x}$
- 6、求过点 A(1,2,-3) 且与两个平面 x + y + z = 1, x y z = 3 都平行的直线方程为:

答:
$$\frac{x-1}{0} = \frac{y-2}{-1} = \frac{z+3}{1}$$

- 7、过点 *A*(-1,1,2) 和 *z* 轴的平面方程为______
- 答: x + y = 0
- 8、曲线 $\begin{cases} z = 2x^2 + y^2 \\ x + y + z = 1 \end{cases}$ 在 xOy 面上的投影曲线为______。
- 答: $\begin{cases} 2x^2 + y^2 + x + y = 1 \\ z = 0 \end{cases}$
- 9、函数 $u = \ln(x + y^2 + z^3)$ 在 (1,1,1) 处沿 $\vec{l} = \{3,4,12\}$ 的方向导数 $\frac{\partial u}{\partial l} =$
- 答: $\frac{47}{39}$
- 10、设z = z(x,y)由方程 $F(xy,y+z,x^2z) = 0$ 确定,其中F具有一阶连续偏导数,则

$$\frac{\partial z}{\partial x} =$$

答:
$$-\frac{yF_1 + 2xzF_3}{F_2 + x^2F_3}$$

11、设 $u = f(xy, y^2z)$, 其中 f 具有一阶连续偏导数,则

$$\frac{\partial u}{\partial y} =$$

答: $xf_1 + 2yzf_2$

12、设 y_1 , y_2 为二阶常系数线性方程 $y''+py'+qy=e^x$ 的两个特解,且 $y_1-y_2=x$,则该 微分方程的通解为

```
答: y = C_1 x + C_2 + e^x
```

13、坐标原点关于平面 π : 6x + 2y - 9z + 121 = 0的对称点的坐标为______

答: (-12,-4,18)

六、选择题(每题4分,共16分)

1、微分方程 $y''-y=e^x+1$ 的一个特解应具有形式(式中 a,b 为常数)(

(A)
$$ae^{x} + b$$
; (B) $axe^{x} + b$

(C)
$$ae^x + bx$$
; (D) $axe^x + bx$

答: B

2、设
$$z = e^{\frac{y}{x}}$$
,则 $dz = ($

(A)
$$\frac{1}{x^2} e^{\frac{y}{x}} [(y'x - y)dx + xdy]$$
 (B) $-\frac{1}{x^2} e^{\frac{y}{x}} (ydx - xdy)$

(C)
$$\frac{1}{x^2}e^{\frac{y}{x}}(ydx + xdy)$$
 (D)
$$-\frac{1}{x^2}e^{\frac{y}{x}}(xdy - ydx)$$

答: B

3、函数
$$z = \sin(x^2 + y^2)$$
 在点 (-3,4) 处的等值线的法线方程为 ()

(A)
$$3x + 4y = 0$$
 (B) $3x - 4y = 0$

(B)
$$3x - 4y = 0$$

(c)
$$4x + 3y = 0$$
 (D) $4x - 3y = 0$

(D)
$$4x - 3v = 0$$

答: C

4、已知
$$|\overline{a}|=2$$
, $|\overline{b}|=3$, $|\overline{a}-\overline{b}|=\sqrt{7}$,则 $\overline{a},\overline{b}$ 的夹角为 (

(A)
$$\frac{1}{2}$$

(A)
$$\frac{1}{2}$$
 (B) $-\frac{1}{2}$

(c)
$$\frac{2\pi}{3}$$
 (D) $\frac{\pi}{3}$

(D)
$$\frac{\pi}{3}$$

答: D