Robust fine-tuning of zero-shot models

Tae-hwi Kim

CVPR, 2022

Introduction

다양한 데이터 분포(Data Shift)에서도 잘 작동하는 모델 필요 > Robustness가 필요하다.

특히, CLIP에서는 모델을 Fine-tuning한 것이 아닌 Zero-shot으로 사용한 것이 더 높은 Robustness 성능을 보였다.

Shifting Normal Distribution to Explore K-S D-Statistic

Introduction

Figure 13. Zero-shot CLIP is much more robust to distribution shift than standard ImageNet models. (Left) An ideal robust model

Target Data Distribution에 대해 모델을 Fine-tuning하면 보통 성능이 더 오르는데, 이는 **모델의 Robustness를 희생**하면서 나타나는 결과임.

Introduction

Robustness vs. Accuracy

> 모델이 가질 수 있는 두 성능이 Trade-off 관계에 있음을 확인함. 하지만, Fine-tuning도 하면서 Distribution shift에 잘 적응하게 할 수 있지 않을까?

Methods

<u>WiSE-FT</u>를 제안, 두 가지 Step을 통해 모델을 Fine-tuning한다.

First step. Target Distribution(D_ref, no shift) 에 대해 zero-shot 모델을 Fine-tuning 한다. > Strandard fine-tuning on CLIP-like models

Accuracy on the reference distribution (e.g., ImageNet)

$$\arg\min_{\theta} \left\{ \sum_{(x_i, y_i) \in \mathcal{S}_{\text{ref}}^{\text{tr}}} \ell(f(x_i, \theta), y_i) + \lambda R(\theta) \right\}$$
$$f(x, \theta) = g(x, \mathbf{V}_{\text{enc}})^{\top} \mathbf{W}_{\text{classifier}}$$

Methods

Second step. Weight-space ensembles for fine-tuning (WISE-FT)

> Zero-shot 모델(θ_0)과 Standard fine-tuned 모델(θ_1)의 **Weight에 대한 element-wise interpolation**을 hyperparameter α를 통해 수행한다.

Accuracy on the reference distribution (e.g., ImageNet)

Schematic: our method, WiSE-FT leads to

Experimental Setting

CLIP: ViT-L/14@ 336px 사용.

사용된 데이터셋 : 악의적이거나 인공적인 조작이 없는 **Natural Distribution Shift** (e.g. lighting, geographic location)

Figure 2. Samples of the class *lemon*, from the reference distribution ImageNet [17] and the derived distribution shifts considered in our main experiments: ImageNet-V2 [81], ImageNet-R [35], ImageNet Sketch [98], ObjectNet [4], and ImageNet-A [38].

Experimental Results

5개의 Distribution Shift에 대한 평균 Acc (y), ImageNet에 대한 Fine-tuning Acc (x)

Experimental Results

		Distribution shifts					Avg	Avg
	IN (reference)	IN-V2	IN-R	IN-Sketch	ObjectNet*	IN-A	shifts	ref., shifts
CLIP ViT-L/14@336px								
Zero-shot [79]	76.2	70.1	88.9	60.2	70.0	77.2	73.3	74.8
Fine-tuned LC [79]	85.4	75.9	84.2	57.4	66.2	75.3	71.8	78.6
Zero-shot (PyTorch)	76.6	70.5	89.0	60.9	69.1	77.7	73.4	75.0
Fine-tuned LC (ours)	85.2	75.8	85.3	58.7	67.2	76.1	72.6	78.9
Fine-tuned E2E (ours)	86.2	76.8	79.8	57.9	63.3	65.4	68.6	77.4
WiSE-FT (ours)								
LC, α =0.5	83.7	76.3	89.6	63.0	70.7	79.7	75.9	79.8
LC, optimal α	85.3	76.9	89.8	63.0	70.7	79.7	75.9	80.2
E2E, α =0.5	86.8	79.5	89.4	64.7	71.1	79.9	76.9	81.8
E2E, optimal α	87.1	79.5	90.3	65.0	72.1	81.0	77.4	81.9

Table 1. Accuracy of various methods on ImageNet and derived distribution shifts for CLIP ViT-L/14@336px [79]. E2E: end-to-end; LC: linear classifier. Avg shifts displays the mean performance among the five distribution shifts, while Avg reference, shifts shows the average of ImageNet (reference) and Avg shifts. For optimal α , we choose the single mixing coefficient that maximizes the column. Results for additional models are provided in Appendix E.7.

Experimental Results

BASIC, ALIGN 과 같은 다른 Zero-shot 모델에도 적용 가능,

+) 보다 큰 모델인 ViT-H/14 모델로 실험.

Figure 4. WiSE-FT applied to BASIC-L [75], a ViT-H/14 [21] model pre-trained on JFT-300M [91] and ALIGN [44].

• Summary

- Large pre-trained 모델의 Robustness와 Fine-tuning accuracy 간의 Trade-off 해결.
- 이를 통해 보다 신뢰 가능한 Zero-shot 모델을 구축할 수 있음.
- 다만 Task가 Image Classification에 한정, 최적의 α값이 0.5인 점도 의문점으로 남아 있음.