

- ■Wykłady opracowano w oparciu o książkę Ricardo Baeza-Yates, Berthier Ribeiro-Neto, "Modern Information Retrieval, the concepts and technology behind search" 2nd edition, ACM Press Books, 2011
- ■Z tego samego źródła zaczerpnięto także różne zadania i przykłady wykorzystywane w treści wykładu.

- Modelowanie w wyszukiwaniu informacji ma na celu określenie sposobu budowania funkcji rankingu
 - ■Funkcja rankingu: przypisuje określoną ocenę ilościową do dokumentu w odniesieniu do danego zapytania
- Modelowanie obejmuje dwa główne zadania:
 - Ustalenie założeń logicznych dla reprezentacji dokumentów i zapytań
 - ■Definicję funkcji rankingu pozwalającej na ilościowe wyrażenie podobieństwa zapytań i dokumentów zwracanych w odpowiedzi
- Do indeksowania i wyszukiwania dokumentów służą termy indeksujące

- Term indeksujący:
 - ■W sensie ścisłym jest to słowo kluczowe o pewnym znaczeniu, zazwyczaj rzeczownik
 - ■W sensie ogólnym dowolne słowo pojawiające się w dokumencie
- Wyszukiwanie danych opiera się na termach indeksujących

Modelowanie i ranking

Proces wyszukiwania informacji

- Ranking to uporządkowanie dokumentów odzwierciedlające ich odpowiedniość względem zapytania
- System IR przewiduje które dokumenty są istotne dla użytkownika, z pewnym stopniem niepewności

Model IR

- Model IR jest czwórką $[D,Q,F,R(q_i,d_j)]$ gdzie:
 - D zbiór logicznych perspektyw dokumentów
 - Q zbiór logicznych perspektyw zapytań
 - F założenia modelowania dokumentów i zapytań

Klasyfikacja modeli

Wyszukiwanie ad-hoc i filtracja

 Każdy dokument jest reprezentowany przez termy indeksujące – słowa lub ciągi słów

Wybrany zbiór termów reprezentuje dokument

Pojęcia podstawowe

- Słownik $V = \{k_1, ..., k_t\}$ zbiór różnych termów indeksujących
 - t liczba termów w kolekcji dokumentów
 - k_i elementarny term indeksujący

Każdy z powyższych wzorców współwystępowania termów jest koniunktywnym komponentem termów

Pojęcia podstawowe

- Z każdym dokumentem d_j (lub pytaniem q) kojarzy się jednoznaczny komponent koniunktywny termu $c(d_j)$ (lub zapytania c(q))
- Pojawienie się termu k_i w dokumencie d_j ustala relację między nimi, która jest opisana jako częstotliwość $f_{i,j}$ termu k_i w dokumencie d_i

$$egin{array}{cccc} d_1 & d_2 \ k_1 & \left[egin{array}{cccc} f_{1,1} & f_{1,2} \ f_{2,1} & f_{2,2} \ f_{3,1} & f_{3,2} \ \end{array}
ight]$$

Pojęcia podstawowe

Struktura logiczna dokumentu

Model boolowski

- Zapytania są specyfikowane jako wyrażenia boolowskie
 - ■intuicyjna i dokładna semantyka
 - zachowanie formalizmu
 - przykładowe zapytanie:

$$q = k_a \wedge (k_b \vee \neg k_c), \quad V = \{k_a, k_b, k_c\},$$

gdzie V oznacza słownik

- Stablicowane zależności term-dokument są binarne
 - $\mathbf{w}_{ij} \in \{0, 1\}$: waga związana z parą (k_i, d_i)
 - $\mathbf{w}_{iq} \in \{0, 1\}$: waga związana z parą (k_i, q)
- Noniunktywny komponent termów spełniający zapytanie q nazywa się koniunktywnym komponentem zapytania c(q)

Model boolowski

- Zapytanie q można zapisać w postaci dysjunktywnej $q_{DNF} = (1,1,1) \cup (1,1,0) \cup (1,0,0)$
- Jeżeli słownik $V = \{k_a, k_b, k_c, k_d\}$ a dokument d_j zawiera 3 pierwsze termy $c(d_j) = (1,1,1,0)$ to zapytanie q można także przedstawić w formie dysjunktywnej

Model boolowski

$$q_{DNF} = (1, 1, 1, 0) \lor (1, 1, 1, 1) \lor (1, 1, 0, 0) \lor (1, 1, 0, 1) \lor (1, 0, 0, 0) \lor (1, 0, 0, 1)$$

Podobieństwo dokumentu *d_j* do zapytania *q* można zdefiniować jako:

$$sim(d_j, q) = \begin{cases} 1 & if \ \exists c(q) | c(q) = c(d_j) \\ 0 & otherwise \end{cases}$$

Model boolowski określa czy każdy dokument jest istotny lub nie dla zapytania, bez ustalania poziomu tej istotności

- Dokumenty nie podlegają rankingowi
- Zapytanie musi być tłumaczone na wyrażenie boolowskie
- W praktyce model często uwzględnia za dużo lub za mało dokumentów

Wagi termów

- ■Termy w dokumentach nie są jednakowo użyteczne w rozróżnianiu ich treści
 - ■Np. słowo występujące we wszystkich dokumentach jest bezużyteczne dla wyszukiwania
- ■Z termem k_i w dokumecie d_j kojarzy się wagę $w_{i,j} > 0$ (=0) gdy term pojawia się (nie pojawia) w tym dokumencie
- ■Waga $w_{i,j}$ wyraża ważność termu k_i dla opisu zawartości dokumentu d_j ; jest istotna dla wyznaczenia rankingu dokumentu

Wagi TF-IDF

- ■Do ustalenia wag termów w dokumentach stosuje się formułę TF-IDF (term frequency inverse document frequency)
- ■Odwrotna częstotliwość dokumentu dla termu k_i

$$idf_i = \log \frac{N}{n_i},$$

gdzie n_i – ilość dokumentów z termem k_i , N – wielkość kolekcji dokumentów

Częstotliwość termu k_i dla całej kolekcji dokumentów

$$tf_i = 1 + \log \sum_{j=1}^{N} f_{i,j},$$

log –logarytm o podstawie 2

Wagi TF-IDF

wagi tf-idf

$$w_{i,j} = \begin{cases} (1 + \log f_{i,j}) \times \log \frac{N}{n_i} & \text{if } f_{i,j} > 0 \\ 0 & \text{otherwise} \end{cases},$$

To do is to be. To be is to do.

d

To be or not to be.
I am what I am.

 d_2

I think therefore I am. Do be do be do.

 d_3

Do do do, da da da. Let it be, let it be.

 $\widehat{d_4}$

3		d_1	d_2	d_3	d_4
1	to	3	2	-	_
2 3 4 5	do	0.830	-	1.073	1.073
3	is	4	12	- 2	12
4	be	: - :	-	-	
5	or	23	2 2 2 2 2 2	_	2-3
6	not	2.75	2	1070	10.70
7	1	-	2	2	-
7 8	am	-	2	1	(22)
9	what	276	2	1170	-
10	think	5-8	*	2 2	-
11	therefore	120	2	2	321
12	da	1-0	-	1.7	5.170
13	let	(4)	-	-	4
14	it	100	12	12	4

Warianty TF-IDF

weighting scheme	document term weight	query term weight
1	$f_{i,j} * \log rac{N}{n_i}$	$(0.5 + 0.5 \frac{f_{i,q}}{max_i f_{i,q}}) * \log \frac{N}{n_i}$
2	$1 + \log f_{i,j}$	$\log(1 + \frac{N}{n_i})$
3	$(1 + \log f_{i,j}) * \log \frac{N}{n_i}$	$(1 + \log f_{i,q}) * \log \frac{N}{n_i}$

Jeśli n_i jest częstotliwością dokumentu dla termu k_i, n(r)
 – częstotliwością rzędu r w porządku malejącym częstotliwości to r jest rangą termu k_i oraz

$$n(r) = Nr^{-\alpha},$$

dla pewnej empirycznej stałej α (np. $\alpha = 1$).

Warianty TF-IDF

Przykładowe wykresy tf-idf (tf dla kolekcji dokumentów) względem rangi termów

Termy dla pośrednich wartości idf oraz tf dają maksimum wag tf-idf i są najbardziej odpowiednie dla rankingu

- Dokumenty posiadają różne długości; dłuższe z nich, a niekoniecznie bardziej istotne, mają większą szansę być wyszukane w danym zapytaniu
- Aby usunąć ten niepożądany efekt dzieli się rangę każdego dokumentu przez jego długość; ten proces nazywamy normalizacją długości dokumentu
- Metody normalizacji:
 - Rozmiar w bajtach: każdy dokument traktuje się jako strumień bajtów,
 - Liczba słów: dokument jest traktowany jako pojedynczy łańcuch słów do zliczenia
 - Normy wektorowe: dokumenty są reprezentowane jako wektory termów ważonych

Normalizacja długości dokumentu

- Każdy term w zbiorze dokumentów jest związany z wersorem k_i w przestrzeni t-wymiarowej
- Term k_i w dokumencie d_j jest skojarzony ze składową $w_{i,j} \times k_i$ wektora tego dokumentu

Normalizacja długości dokumentu

wektor dokumentu:

$$\mathbf{d}_{j} = (w_{1,j}, w_{2,j}, ..., w_{t,j}),$$

długość dokumentu:

$$\left|\mathbf{d}_{j}\right| = \sqrt{\sum_{i}^{t} w_{i,j}^{2}},$$

Normalizacja długości dokumentu

Trzy warianty długości dokumentu w przykładowej kolekcji:

 d_4

	d_1	d_2	d_3	d_4
size in bytes	34	37	41	43
number of words	10	11	10	12
vector norm	5.068	4.899	3.762	7.738

- Model wektorowy uwzględnia nie tylko wystąpienie dopasowania, ale także stopień dopasowania dokumentów do zapytania poprzez wagi poszczególnych termów
- Dokumenty są uszeregowane w porządku malejącym stopnia zgodności z zapytaniem
- W modelu wektorowym:
 - Wagi $w_{i,j}$ związane z parami (k_i, d_j) są dodatnie i niebinarne
 - Termy indeksujące występują niezależnie od siebie (z założenia)
 - ■Termy są reprezentowane przez wersory w przestrzeni t-wymiarowej.

W modelu wektorowym: reprezentacje dokumentu d_j oraz zapytania q są wektorami:

$$\mathbf{d}_{j} = (w_{1,j}, w_{2,j}, ..., w_{t,j}), \quad \mathbf{q} = (w_{1,q}, w_{2,q}, ..., w_{t,q}),$$

Podobieństwo dokumentu *d*_i oraz zapytania *q*:

$$\cos(\theta) = \frac{\mathbf{d_j} \cdot \mathbf{q}}{\left| \mathbf{d_j} \right| \times \left| \mathbf{q} \right|}$$

$$sim(d_{j},q) = \frac{\sum_{i=1}^{t} w_{i,j} \times w_{i,q}}{\sqrt{\sum_{i=1}^{t} w_{i,j}^{2}} \times \sqrt{\sum_{i=1}^{t} w_{i,q}^{2}}}$$

■Wagi w modelu wektorowym są typu tf-idf

$$w_{i,q} = (1 + \log f_{i,q}) \times \log \frac{N}{n_i},$$

$$w_{i,j} = (1 + \log f_{i,j}) \times \log \frac{N}{n_i},$$

gdzie n_i – ilość dokumentów zawierających term k_i , N-ilość wszystkich dokumentów

- ■Te równania stosuje się dla termów o częstotliwości większej od 0
- Jeżeli częstotliwość termu jest zerowa odpowiednie wagi są zerowe

Rangi przykładowych dokumentów dla zapytania "to do", w modelu wektorowym z wagami tf-idf

doc	rank computation	rank
d_1	1*3+0.415*0.830 5.068	0.660
d_2	$\frac{1*2+0.415*0}{4.899}$	0.408
d_3	$\frac{1*0+0.415*1.073}{3.762}$	0.118
d_4	1*0+0.415*1.073 7.738	0.058

- Zalety modelu wektorowego:
 - wprowadza wagi termów,
 - ■częściowe dopasowanie pozwala na przybliżone wyszukiwanie,
 - ■cosinusowa funkcja rankingu sortuje dokumenty wg. podobieństwa do zapytania,
 - ■normalizacja długości dokumentu wbudowana w ranking.
- Wady:
 - ■model zakłada niezależność termów

- Dla danego zapytania istnieje idealny zbiór odpowiedzi na to pytanie,
- Na podstawie tego zbioru ustala się istotne dokumenty
- Zapytanie traktuje się jako specyfikację właściwości tego idealnego zbioru
- Początkowy zbiór dokumentów wybiera się dowolnie,
- Po przejrzeniu przez użytkownika 10-20 pierwszych dokumentów korygowany jest zbiór idealny
- Powtarzanie powyższego procesu doskonali zbiór idealny

Ranking probabilistyczny

- Model probabilistyczny:
 - Estymuje prawdopodobieństwo, że dokument jest istotny dla zapytania użytkownika,
 - Zakłada, że to prawdopodobieństwo zależy jedynie od zapytania i reprezentacji dokumentów,
 - Idealny zbiór odpowiedzi R, maksymalizuje prawdopodobieństwo istotności dokumentu

Podobieństwo dokumentu do zapytania:
$$\sin(d_j,q) = \frac{P(R \mid \mathbf{d}_j,q)}{P(\overline{R} \mid \mathbf{d}_j,q)},$$

 $g \mathbf{p}$ zie R – zbiór dokumentów istotnych dla zapytania q,

zbiór dokumentów nieistotnych

Ranking

Ze wzoru Bayes'a:

$$\operatorname{sim}(d_j,q) = \frac{P(\mathbf{d}_j \mid R,q) \times P(R,q)}{P(\mathbf{d}_j \mid \overline{R},q) \times P(\overline{R},q)} \sim \frac{P(\mathbf{d}_j \mid R,q)}{P(\mathbf{d}_j \mid \overline{R},q)},$$

gdzie:

- P(R,q) prawdopodobieństwo, że dokument losowo wybrany z kolekcji jest istotny dla Zarytania q,
- prawdopodobieństwo wybrania dokumentu d_i ze zbioru R,
- Niech $p_{iR} = P(k_i | R, q), q_{iR} = P(k_i | R, q),$

Ranking

Po zlogarytmowaniu wzoru dla sim i przy założeniu

$$\forall k_i \notin q, \quad p_{iR} = q_{iR},$$

uzyskuje się

$$\operatorname{sim}(d_j, q) \sim \sum_{k_i \in q \land k_i \in d_j} \log \left(\frac{p_{iR}}{1 - p_{iR}} \right) + \log \left(\frac{1 - q_{iR}}{q_{iR}} \right).$$

- Przyjmijmy:
 - N liczba dokumentów w kolekcji,
 - R liczba dokumentów istotnych dla pytania,
 - n_i liczba dokumentów z termem k_i ,
 - r_i liczba dokumentów istotnych z termem k_i .

Tablica kontyngencji

■Na podstawie powyższych zmiennych można sformułować tablicę kontyngencji

	relevant	non-relevant	all docs
docs that contain k_i	r_i	$n_i - r_i$	n_i
docs that do not contain k_i	$R-r_i$	$N-n_i-(R-r_i)$	$N-n_i$
all docs	R	N-R	N

■Jeśli informacje z tablicy są znane dla zadanego pytania, można zapisać

$$p_{iR} = \frac{r_i}{R}, \quad q_{iR} = \frac{n_i - r_i}{N - R},$$

Formuła rankingu

■Wówczas równanie dla obliczenia rankingu może być zapisane jako:

$$\operatorname{sim}(d_j, q) \sim \sum_{k_i \in [q, d_j]} \log \left(\frac{r_i}{R - r_i} \times \frac{N - n_i - R + r_i}{n_i - r_i} \right),$$

■Dla małych wartości *r_i* dodajemy 0.5 do każdego termu we wzorze powyżej , przez co uzyskuje się równanie rankingu Robertsona-Sparcka Jonesa

$$sim(d_j, q) \sim \sum_{k_i \in [q, d_j]} log \left(\frac{r_i + 0.5}{R - r_i + 0.5} \times \frac{N - n_i - R + r_i + 0.5}{n_i - r_i + 0.5} \right),$$

Równanie powyżej wymaga znajomości początkowych przybliżeń r_i oraz R

Estymacja r_i i R

- Jedna możliwość to przyjęcie wartości $R = r_i = 0$,
- ■Druga możliwość to estymacja R i r_i przez wstępne wyszukiwanie z 10-20 dokumentów i ponowne wykonanie zapytania dla estymowanych wartości.

- $p_{iR} = 0.5$, $q_{iR} = n_i / N$ gdzie n_i to liczba dokumentów z termem k_i
- powyższąe/p,rzybliżenie μg ożliwia wyliczenie początkowego rankingu n,

Poprawa rankingu początkowego

Ponowne przeliczenie estymat; dodajemy 0.5 aby uniknąć problemów przy $D_i = 1$ oraz $D_i = 0$:

$$p_{iR} = \frac{D_i + 0.5}{D+1}, \quad q_{iR} = \frac{n_i - D_i + 0.5}{N-D+1},$$

- gdzie
 - D zbiór dokumentów wstępnie wyszukanych,
 - $\square D_i$ zbiór dokumentów zawierających term k_i .
- ■Powyższy proces można powtórzyć wielokrotnie

- Zalety:
 - Dokumenty s szeregowane wg. malejącej istotności
- Wady:
 - ■trzeba założyć początkową wartość p_{iR},
 - ■brak normalizacji długości dokumentu,
 - metoda nie stosuje wag tf

- Modele klasyczne zakładają wzajemną niezależność termów indeksujących
- W modelu wektorowym przyjmuje się

$$\forall_{i,j} \Longrightarrow \mathbf{k}_i \bullet \mathbf{k}_j = 0,$$

- W modelu uogólnionym wektory wektory termów indeksujących nie muszą być ortogonalne
- Założenia:
 - $\mathbf{w}_{i,j}$ stanowi wagę binarną skojarzoną z $[k_i, d_j]$,
 - $V=\{k_1,k_2,...,k_t\}$ zbiór wszystkich termów.

$$(k_1, k_2, k_3, \dots, k_t)$$

$$m_1 = (0, 0, 0, \dots, 0)$$

$$m_2 = (1, 0, 0, \dots, 0)$$

$$m_3 = (0, 1, 0, \dots, 0)$$

$$m_4 = (1, 1, 0, \dots, 0)$$

$$\vdots$$

$$m_{2^t} = (1, 1, 1, \dots, 1)$$

Minterm to term składający się z literałów połączonych logicznym symbolem koniunkcji, który dla dokładnie jednej kombinacji wejść danej funkcji przyjmuje wartość 1.

- Dla każdego dokumentu d_j istnieje minterm $m_r = c(d_j)$ zawierający tylko termy z tego dokumentu i żadnego innego
- Takie mintermy budują ortogonalne wersory m_r przestrzeni 2^t wymiarowej

Ortogonalność wektorów $\mathbf{m_r}$ nie oznacza niezależności termów indeksujących k_i , które są skorelowane w ramach wektorów $\mathbf{m_r}$.

$$on(i, m_r) = \begin{cases} 1 & gdy \ k_i \in m_r \\ 0 & gdy \ k_i \notin m_r \end{cases}$$

■Wektor związany z termem *k*_i oblicza się jako:

$$\mathbf{k}_{i} = \frac{\sum_{\forall r} on(i_{m}, r) c_{i,r} \mathbf{m}_{r}}{\sqrt{\sum_{\forall r} on(i_{m}, r) c_{i,r}^{2}}}, \quad c_{i,r} = \sum_{d_{j} \mid c(d_{j}) = m_{r}} w_{i,j}$$

■Dla kolekcji *N* dokumentów tylko *N* mintermów (nie 2^t) uczestniczy w rankingu

Stopień korelacji termów k_i i k_j oblicza się jako $\mathbf{k}_i \bullet \mathbf{k}_j = \sum_{\forall r} on(i, m_r) \times c_{i,r} \times on(j, m_r) \times c_{j,r}$

Przykład:

	K_1	K_2	K_3
d_1	2	0	1
d_2	1	0	0
d_3	0	1	3
d_4	2	0	0
d_5	1	2	4
d_6	1	2	0
d_7	0	5	0
q	1	2	3

Obliczenie $c_{i,r}$

	K_1	K_2	K_3
d_1	2	0	1
d_2	1	0	0
d_3	0	1	3
d_4	2	0	0
d_5	1	2	4
d_6	0	2	2
d_7	0	5	0
q	1	2	3

	K_1	K_2	K_3
$d_1 = m_6$	1	0	1
$d_2 = m_2$	1	0	0
$d_3 = m_7$	0	1	1
$d_4 = m_2$	1	0	0
$d_5 = m_8$	1	1	1
$d_6 = m_7$	0	1	1
$d_7 = m_3$	0	1	0
$q=m_8$	1	1	1

	$c_{1,r}$	$c_{2,r}$	$c_{3,r}$
m_1	0	0	0
m_2	3	0	0
m_3	0	5	0
m_4	0	0	0
m_5	0	0	0
m_6	2	0	1
m_7	0	3	5
m_8	1	2	4

■ Obliczenie **k**_i i=1,2,3

$$\vec{k}_1 = \frac{(3\vec{m}_2 + 2\vec{m}_6 + \vec{m}_8)}{\sqrt{3^2 + 2^2 + 1^2}}$$

$$\vec{k}_2 = \frac{(5\vec{m}_3 + 3\vec{m}_7 + 2\vec{m}_8)}{\sqrt{5+3+2}}$$

$$\overrightarrow{k_3} = \frac{(1\vec{m}_6 + 5\vec{m}_7 + 4\vec{m}_8)}{\sqrt{1+5+4}}$$

	$c_{1,r}$	$c_{2,r}$	$c_{3,r}$
m_1	0	0	0
m_2	3	0	0
m_3	0	5	0
m_4	0	0	0
m_5	0	0	0
m_6	2	0	1
m_7	0	3	5
m_8	1	2	4

Obliczenie wektorów dokumentów

$$\overrightarrow{d_1} = 2\overrightarrow{k_1} + \overrightarrow{k_3}$$

$$\overrightarrow{d_2} = \overrightarrow{k_1}$$

$$\overrightarrow{d_3} = \overrightarrow{k_2} + 3\overrightarrow{k_3}$$

$$\overrightarrow{d_4} = 2\overrightarrow{k_1}$$

$$\overrightarrow{d_7} = 5\overrightarrow{k_2}$$

	K_1	K_2	K_3
d_1	2	0	1
d_2	1	0	0
d_3	0	1	3
d_4	2	0	0
d_5	1	2	4
d_6	0	2	2
d_7	0	5	0
q	1	2	3

- Dopasowanie dokumentu do termów zapytania ma charakter przybliżony
- Każdy term zapytania k_i definiuje zbiór rozmyty skojarzonych z nim dokumentów,
- Każdy dokument posiada określony stopień przynależności μ_i ∈[0,1] do takiego zbioru
- Taka interpretacja jest podstawą wszystkich rozmytych modeli IR

Model rozmyty Ogawa, Morita, Kobayashi

zapytanie boolowskie dla zbioru rozmytego dokumentów $q = k_a \wedge (k_b \vee \neg k_c)$

- D_a , D_b , D_c zbiory rozmyte dokumentów odpowiednio dla termów k_a , k_b , k_c
- cc_i , i=1,2,3 komponenty koniunktywne
- D_q –rozmyty zbiór zapytania

Model rozmyty

Dla zwykłych zbiorów D_i dysjunktywna postać normalna zapytania składa się z 3 koniunktywnych komponentów cc

$$q_{dnf} = (1, 1, 1) + (1, 1, 0) + (1, 0, 0)$$

= $cc_1 + cc_2 + cc_3$

W tym modelu przyjmuje się funkcję przynależności do iloczynu zbiorów rozmytych jako iloczyn a nie minimum z tych przynależności

$$\mu_{A\cap B}(u) = \mu_A(u)\mu_B(u)$$

Niech $\mu_{a,j}$, $\mu_{b,j}$, $\mu_{c,j}$ oznaczają stopnie przynależności documentu d_j do zbiorów rozmytych D_a , D_b , D_c .

Model rozmyty

Wówczas:

$$cc_1 = \mu_{a,j}\mu_{b,j}\mu_{c,j}$$

$$cc_2 = \mu_{a,j}\mu_{b,j}(1 - \mu_{c,j})$$

$$cc_3 = \mu_{a,j}(1 - \mu_{b,j})(1 - \mu_{c,j})$$

Przynależność dokumentu d_i do zapytania q:

$$\begin{array}{lll} \mu_{q,j} & = & \mu_{cc_1+cc_2+cc_3,j} \\ \\ & = & 1 - \prod_{i=1}^{3} (1 - \mu_{cc_i,j}) \\ \\ & = & 1 - (1 - \mu_{a,j}\mu_{b,j}\mu_{c,j}) \times \\ \\ & & (1 - \mu_{a,j}\mu_{b,j}(1 - \mu_{c,j})) \times (1 - \mu_{a,j}(1 - \mu_{b,j})(1 - \mu_{c,j})) \end{array}$$

Model rozmyty

Aby powiązać dokument d_j z termem k_i poprzez zbiór rozmyty buduje się słownik jako macierz korelacji C typu term-term

 $c_{i,l} = \frac{n_{i,l}}{n_i + n_l - n_{i,l}},$

gdzie n_i – liczba dokumentów zawierających k_i , n_l – liczba dokumentów zawierających k_l , $n_{i,l}$ – liczba dokumentów zawierających zarówno k_i jak k_l

W zbiorze rozmytym dokumentów z termem k_i dokument d_j posiada stopień uczestnictwa µ_{i,j} określony przez korelację k_i i innych termów indeksujących w dokumencie d_j

$$\mu_{i,j} = 1 - \prod_{k_l \in d_i} (1 - c_{i,l})$$

Model neuronowy

Model sieci neuronowej dla wyszukiwania informacji

■Węzły dokumentów i ich termów mają wbudowane progi aktywacji

Model neuronowy

- siła sygnałów propagowanych między węzłami sieci jest wyrażona poprzez wagi połączeń synaptycznych
- Termy zapytań emitują sygnały jednostkowe
- ■Wagi powiązań między węzłami termów zapytań k_q i termów dokumentowych $w_{i,q} = \frac{k_i \cdot w_{i,q}}{\sqrt{\sum_{i=1}^t w_{i,q}^2}}$,

■Wagi powiązań węzła termu dokumentowego k_i z węzłem dokumentu $\mathcal{A}_{ij} = \frac{W_{i,j}}{\sqrt{\sum_{i=1}^{t} W_{i,j}^2}}$,

Model neuronowy

■Poziom aktywacji węzła dokumentowego *d_j* odpowiadający modelowi wektorowemu

$$\sum_{i=1}^{t} \overline{w_{i,q} w_{i,j}} = \frac{\sum_{i=1}^{t} w_{i,q} w_{i,j}}{\sqrt{\sum_{i=1}^{t} w_{i,q}^2} \times \sqrt{\sum_{i=1}^{t} w_{i,j}^2}},$$

Nowe sygnały mogą być wymieniane między węzłami dokumentów i termów dokumentowych w procesie uczenia się sieci, przy ustawieniu określonego minimalnego progu aktywacji

Model BM25 (Best Match 25)

- BM25 powstał w wyniku serii eksperymentów nad modelami probabilistycznymi
- Do wyznaczania wag termów wykorzystuje on:
 - odwrotną częstotliwość dokumentu,
 - ■częstotliwość termów,
 - normalizację długości dokumentu.
- Klasyczny model probabilistyczny BM1 uwzględnia tylko pierwszą z wymienionych pozycji
- Formuła BM1 rankingu dokumentu gdy brak informacji o istotności:

$$sim(d_j,q) \sim \sum_{k_i \in q \land k_i \in d_j} \log \frac{N - n_i + 0.5}{n_i + 0.5},$$

Model BM25 (Best Match 25)

Równanie rankingu dla modelu BM25

$$sim_{BM25}(d_j,q) \sim \sum_{k_i \in q \land k_i \in d_j} B_{i,j} \times \log \frac{N - n_i + 0.5}{n_i + 0.5},$$

■ *B_{ij}* stanowi współczynnik określony wzorem

$$B_{i,j} = \frac{(K_1 + 1)f_{i,j}}{K_1 \left[(1 - b) + b \frac{len(d_j)}{\overline{len}} \right] + f_{i,j}},$$

gdzie $b \in [0,1]$ i K_1 – stałe empiryczne, zazwyczaj b=0.75 oraz K_1 =1

- ■b=0 redukuje model do BM15
- ■b=1 redukuje model do BM11
- Stałe empiryczne można wyznaczyć z eksperymentów