NAME: KALPANA PRATAPANENI(A20448916)

COLLABORATOR(S): Tushar Nitave

CS 583 – Assignment 6

1. Single-variable - Binomial

You are given a single binary variable: X with domain {T, F}. $P(X=T)=\theta$. Here are the counts for a dataset D .

X	Counts
Т	10
F	20

a. What is the MLE estimate for P(X)?

ANS:

X	MLE
Т	10/30
F	20/30

b. Assuming a uniform prior (i.e., assuming $p(\theta) = 1$)

i. What is $P(X_{next}|D)$?

X	$P(X_{next} D)$
Т	11/32
F	21/32

ii. What is
$$p(\theta|D)$$
?

 $P(\theta | D) = Beta(11, 21)$

c. Assuming $p(\theta)^{\tilde{}}$ Beta(2, 3)

i. What is $P(X_{next}|D)$?

x	MLE
Т	12/35

F	23/35

ii. What is
$$p(\theta|D)$$
?
 $P(\theta|D)$ =Beta(12, 23)

2. Singe-variable – Multinomial

You are given a single multinomial variable: X with domain {R, G, B}. $P(X) = \theta = \langle \theta_1, \theta_2, \theta_3 \rangle$. Here are the counts for a dataset D.

X	Counts
R	10
G	20

(Note that if a count is zero for a case, it is not listed. In this case, X=B has zero count.)

a. What is the MLE estimate for P(X)?

X	MLE
R	10/30 = 0.33
G	20/30 = 0.67
В	0/30 = 0

b. Assuming a uniform prior (i.e., assuming $p(\theta) = 1$)

i. What is
$$P(X_{next}|D)$$
?

х	$P(X_{next} D)$
R	11/33 = 0.33
G	21/33 = 0.64
В	1/33 = 0.03

ii. What is
$$p(\theta|D)$$
?

$$P(\theta | D) = Beta(11, 21, 1)$$

c. Assuming $p(\theta)$ Dir(2,3,4)

i. What is $P(X_{next}|D)$?

X	$P(X_{next} D)$
R	12/39
G	23/39
В	4/39

ii. What is $p(\theta|D)$? $P(\theta|D)$ =Beta(12, 23, 4)

3. Multiple variables

We have three variables: X, Y, and Z. X and Z are binary with domain $\{T, F\}$ and Y has three possible values: $\{R, G, B\}$. The Bayesian network has the following structure: $X \rightarrow Y \rightarrow Z$. Here are the counts for a dataset D. If a count is zero, it is not listed.

Х	Υ	Z	Counts
Т	R	Т	10
Т	R	F	20
Т	В	Т	30
F	R	F	40
F	В	Т	50

Note that we need to estimate P(X), P(Y|X), and P(Z|Y) for this network.

a. What are the MLE estimates?

Х	Counts	MLE
Т	60	60/150
F	90	90/150

Υ	Y X=T	MLE
R	30	30/60
G	0	0
В	30	30/60

Υ	Y X=F	MLE
R	40	40/90
G	0	0
В	50	50/90

z	Z Y=R	MLE
Т	10	10/70
F	60	60/70

z	Z Y=G	MLE
Т	0	0
F	0	0

Z	Z Y=B	MLE
Т	80	80/80
F	0	0/80

b. Assuming a uniform prior and K2 approach to Bayesian estimation, what are the predictive probabilities for next X, Y|X, and Z|Y?

x	Counts	P(X _{next} D)
Т	60	61/152
F	90	91/152

Υ	Y X=T	P(Y _{next} D)	
R	30	(30+1)/63 = 31/63	
G	0	(0+1)/63 = 1/63	
В	30	(30+1)/63 = 31/63	

Υ	Y X=F	P(Y _{next} D)	
R	40	(40+1)/93 = 41/93	
G	0	(0+1)/93 = 1/93	
В	50	(50+1)/93 = 51/93	

Z	Z Y=R	P(Z _{next} D)	
Т	10	(10+1)/72 = 11/72	
F	60	(60+1)/72 = 61/72	

Z = Z = Z = Z = Z = Z = Z = Z = Z = Z =	
---	--

Т	0	(0+1)/2 = 1/2
F	0	(0+1)/2 = 1/2

z	Z Y=B	P(Z _{next} D)	
Т	80	(80+1)/82 = 81/82	
F	0	(0+1)/82 = 1/82	

c. Assuming a |D'| = 12, and P' is uniform, and a BDe approach to estimation, what are the predictive probabilities for next X, Y | X, and Z | Y?

х	Counts	Imaginary Counts	P(X _{next} D)
Т	60	6	66/162
F	90	6	96/162

Y	Y X=T	Imaginary Counts	P(Y _{next} D)
R	30	2	(30+2)/66 = 32/66
G	0	2	(0+2)/66 = 2/66
В	30	2	(30+2)/66 = 32/66

Υ	Y X=F	Imaginary Counts	P(Y _{next} D)
R	40	2	(40+2)/96 = 42/96
G	0	2	(0+2)/96 = 2/96
В	50	2	(50+2)/96 = 52/96

Z Z Y=R	Imaginary Counts	P(Z _{next} D)
---------	------------------	--------------------------

Т	10	2	(10+2)/74 = 12/74
F	60	2	(60+2)/74 = 62/74

z	Z Y=G	Imaginary Counts	P(Z _{next} D)
Т	0	2	(0+2)/4 = 2/4
F	0	2	(0+2)/4 = 2/4

Z	Z Y=B	Imaginary Counts	P(Z _{next} D)
Т	80	2	(80+2)/84 = 82/84
F	0	2	(0+2)/84 = 2/84

4. Missing data

We have three variables: X, Y, and Z. All variables are binary with domain $\{0, 1\}$. The Bayesian network has the following structure: $X \rightarrow Y \rightarrow Z$. Assume we initialize these distributions as follows:

$$P(X) = \langle 0.4, 0.6 \rangle$$

 $P(Y \mid X = 0) = \langle 0.8, 0.2 \rangle$
 $P(Y \mid X = 1) = \langle 0.2, 0.8 \rangle$
 $P(Z \mid Y = 0) = \langle 0.7, 0.3 \rangle$
 $P(Z \mid Y = 1) = \langle 0.3, 0.7 \rangle$

Here is a sample dataset, where each row indicates an instance and? indicates a missing value for that variable for that instance.

Х	Υ	Z
0	0	,
0	;	1
3	1	0

?	?	0
?	1	;

a. Perform the expectation step of EM and calculate the necessary counts, i.e., counts(X), counts(Y, X), and counts(Z, Y).

COUNTS(X):

Row 3:

? 1 0:

P(X | Y=1, Z=0) = 1/Z * P(X) * P(Y/X=0) * P(Z=0 | Y=1)

P(X=0 | Y=1, Z=0) = 1/Z * 0.4*0.2*0.3 = 0.024/(0.024+0.144) = 0.143

P(X=1 | Y=1, Z=0) = 1/Z * 0.6*0.8*0.3 = 0.144/(0.024+0.144) = 0.857

Row 4:

??0:

P(X|Z=0) = 1/Z * P(X)*P(Y|X)*P(Z=0|Y)

Eliminate Y:

Х	Υ	P(X Y)P(Y Z=0)
0	0	0.8*0.7 = 0.56
0	1	0.06
1	0	0.14
1	1	0.24

Tow(X) = <0.62, 0.38>

$$P(X=0|Z=0) = 1/Z * 0.4*0.62 = 0.248/(0.248+0.228) = 0.521$$

$$P(X=1|Z=0) = 1/Z * 0.6*0.38 = 0.228/(0.248+0.228) = 0.479$$

Row 5:

?1?:

$$P(X \mid Y=1) = 1/Z * P(X) * P(X|Y=1) * P(Y=1|Z)$$

Eliminating variable Z gives a vector of 1. So,

$$P(X | Y=1) = 1/Z * P(X) * P(X | Y=1)$$

$$P(X=0 \mid Y=1) = 0.4 * 0.2 = 0.08/(0.08 + 0.48) = 0.143$$

 $P(X=1 \mid Y=1) = 0.6 * 0.8 = 0.48/(0.08 + 0.48) = 0.857$

Counts[X = 0] =
$$2 + 0.143 + 0.521 + 0.143 = 2.807$$

Counts[X = 1] = $0 + 0.857 + 0.479 + 0.857 = 2.193$

COUNTS[Y, X]:

0 ? 1 - 2nd row

counts[Y=0, X=1] = 0
counts[Y=1, X=1] = 0 Since X = 0
Counts[Y=0, X = 0] = P(Y=0, X=0 | Z = 1)
=
$$1/Z * P(X = 0) * P(Y=0|X=0) * P(Z=1|Y=0)$$

= $0.4 * 0.8 * 0.3 = 0.096/(0.096+0.056) = 0.632$
Counts[Y=1, X = 0] = P(Y=0, X=0 | Z = 1) = $0.4 * 0.2 * 0.7 = 0.056/(0.096+0.056) = 0.368$

? 10 - 3rd row

counts[Y = 1, X = 0] = P(Y=1, X = 0 | Z=0)
=
$$1/Z * P(X=0) * P(Y=1|X=0) * P(Z=0|Y=1)$$

= $0.4 * 0.2 * 0.3$
= $0.024/(0.024 + 0.144) = 0.143$
counts[Y = 1, X = 1] = P(Y=1, X = 1 | Z=0)
= $1/Z * P(X=1) * P(Y=1|X=1) * P(Z=0|Y=1)$
= $0.6 * 0.8 * 0.3$
= $0.144/(0.024 + 0.144) = 0.857$

??0-4th row

Counts[Y=0, X=0] = P(Y, X | Z=0) =
$$1/Z * P(X=0) * P(Y=0|X=0) * P(Z=0|Y=0)$$

= $0.4 * 0.8 * 0.7 = 0.224/(0.224 + 0.024+0.084+0.144) = 0.471$

Counts[Y=1, X=0] = P(Y, X | Z=0) =
$$1/Z * P(X=0) * P(Y=1|X=0) * P(Z=0|Y=1)$$

= $0.4 * 0.2 * 0.3 = 0.024/(0.224 + 0.024+0.084+0.144) = 0.050$
Counts[Y=0, X=1] = P(Y, X | Z=0) = $1/Z * P(X=1) * P(Y=0|X=1) * P(Z=0|Y=0)$
= $0.6 * 0.2 * 0.7 = 0.084/(0.224 + 0.024+0.084+0.144) = 0.176$
Counts[Y=1, X=1] = P(Y, X | Z=0) = $1/Z * P(X=1) * P(Y=1|X=1) * P(Z=0|Y=1)$
= $0.6 * 0.8 * 0.3 = 0.144/(0.224 + 0.024+0.084+0.144) = 0.303$

? 1? - 5th row

Counts[Y=0, X=0] = 0

Counts[Y=0, X=1] = 0 Since Y=1

Counts[Y=1, X=0] =
$$P(X=0)$$
 $P(Y=1|X=0) = 0.4 * 0.2 = 0.08/(0.08+0.48) = 0.143$

Counts[Y=1, X=1] =
$$P(X=1)$$
 $P(Y=1|X=1) = 0.6 * 0.9 = 0.48/(0.08+0.48) = 0.857$

Finally,

Counts[Y=0, X=1] =
$$0+0+0+0.176+0 = 0.176$$

COUNTS[Z, Y]:

00? - 1st row

Counts
$$[Z=0, Y=1] = 0$$

Counts
$$[Z=1, Y=1] = 0$$

Counts[Z, Y= 0] =
$$1/Z * P(Y=0/X=0) * P(Z/Y=0)$$

= $1/Z * <0.8 * 0.7, 0.8 * 0.3> = <0.56/(0.56+0.24), 0.24/(0.56+0.24)>$
= <0.7, 0.3>

0 ? 1 - 2nd row:

Counts
$$[Z=0, Y=0] = 0$$

Counts
$$[Z=0, Y=1] = 0$$
 Since $Z=1$

Counts
$$[Z=1, Y] = P(Z=1 | X = 0)$$

= <0.096/(0.096+0.056), 0.056/(0.096+0.056)>

= <0.632, 0.368>

??0-4th row

Counts[Z=1, Y=0] = 0, Counts[Z=1, Y=1] = 0 Since Z = 0
Counts[Z=0, Y] =
$$<0.308/(0.308+0.168)$$
, $0.168/(0.308+0.168)$ >
= <0.647 , 0.353 >

? 1? - 5th row

Counts
$$[Z=0, Y=0] = 0$$

Counts
$$[Z=1, Y=0] = 0$$
 Since Y=1

Counts[
$$Z=0$$
, $Y=0$] = 0.7 + 0 + 0 + 0.647 + 0 = 1.347

Counts[
$$Z=0$$
, $Y=1$] = $0 + 0 + 1 + 0.353 + 0.3 = 1.653$

Counts[
$$Z=1$$
, $Y=0$] = 0.3 + 0.632 + 0 + 0 + 0 = 0.932

Counts[
$$Z=1$$
, $Y=1$] = 0 + 0.368 + 0 + 0 + 0.7 = 1.068

b. Perform the maximization step of EM and reestimate P(X), P(Y|X), and P(Z|Y) using the counts from part a.

P(X):

$$P(X) = \langle 2.807/(2.807+2.193), 2.193/(2.807+2.193) \rangle$$

$$P(X) = <0.56, 0.44>$$

P(Y | X):

$$P(Y|X=0) = \langle \#(Y=0, X=0)/\#(X=0), \#(Y=1, X=0)/\#(X=0) \rangle$$

$$P(Y|X=1) = \langle \#(Y=0, X=1)/\#(X=1), \#(Y=1, X=1)/\#(X=1) \rangle$$

<u>P(Z|Y):</u>

$$P(Z|Y=0) = <1.347/(2.103+0.176), 0.932/(2.103+0.176)> = <0.59, 0.41>$$

$$P(Z|Y=1) = <1.653/(0.704+2.017), 1.068/(0.704+2.017)> = <0.61, 0.39>$$