Capstone Project

Mahindra First Choice Services (MFCS)

Cohort - DSMP 28th July 2019

Team-13
Pankaj Kumar
Rinkesh Gaikwad
Piyusha Khot
Devangi Sheth

Geolocation Based Customer Analysis:

Problem
Statement-1:
Identifying the ownership pattern of cars through out the country.

Problem
Statement-2:

Identify the type of order each state receives.

Problem
Statement-3:

Customer
Lifetime value
prediction - Based
on Customer
segments.

Problem Statement - 1 Ownership Patterns

STATE WISE CUSTOMER COUNT

- ☐ Demand for customers from various states
- ☐ Highest demand seen in Maharashtra and Tamil Nadu

Govt Data - Count of Car+ Jeep+ LMV

□ Demand for Cars Make – Top 50

☐ Higher demand for 'Maruti Suzuki' & 'Mahindra and Mahindra' in 'Tamil Nadu' and 'Maharashtra'.

STATE WISE – Spending Patterns

TYPE OF ORDER EACH STATE RECEIVES

Revenue Outliers

Recommendations - Problem1

- □ States which are under performing while having great potential -> **Gujarat & Kerala**
- ☐ Indian "Make" are the biggest count makers -> stock parts & hire experts
- Revenue Outliers are Audi, Mercedes & Skoda -> CashCows

ORDER TYPES TRENDS = Problem No 2

☐ Customers majorly come for running repairs in MFC

State Wise Top Order Types

Order Type=Running Repairs
Order Type=Paid Service

ORDER TYPE VS OSL TOTAL

□ Accidental orders are majorly outsourced

Revenue Per Month – Count Of Orders

Weekly Revenue

Highest Material Used

Recommendations - Problem2

- ☐ Highest revenue & repairs during mid year (around July) -> Hire contract staff
- □ Accidental orders are outsourced -> Bit relax on TAT
- ☐ Use less load day (i.e. Sunday) -> **for training on soft skills & technical aspects**

Problem Statement – 3

Cluster Analysis via KMeans

cluster_data.head()

		Order Type	Make	State	ServiceTime_category	Data Origin	Job Card N o	KMs Reading	Labour Total	Misc Total	OSL Total	Parts Total	Total Amt Wtd Tax.	Invoice month	Partner Type	Title	Order Quantity	Net value
0	5	2	5	20	3	9	227460	0	1802.05	0.0	0.0	399.73	2201.78	6	1.0	2.0	45.5	2201.78
1	5	4	13	20	1	0	413455	0	2874.80	0.0	0.0	3151.06	6025.86	7	1.0	2.0	202.5	6025.86
2	5	4	13	20	4	0	446448	0	2799.96	0.0	0.0	664.04	3464.00	9	1.0	2.0	189.0	3464.00
3	5	4	9	20	4	0	487708	0	554.95	0.0	0.0	1510.80	2065.75	10	1.0	2.0	7.0	2065.75
4	5	4	12	20	3	0	220109	1	75.02	0.0	0.0	578.43	653.45	5	1.0	2.0	13.0	653.45
<																		>

Categorized based on Mileage & Service Efficiency

```
invoice customer plant["KMs Reading"] = invoice customer plant["KMs Reading"].astype(int)
invoice customer plant.loc[invoice customer plant["KMs Reading"] <= 100000, "KMs Reading"] = 0
invoice customer plant.loc[(invoice customer plant["KMs Reading"] > 100000)
                           & (invoice customer plant["KMs Reading"] <= 200000), "KMs Reading"] = 1
invoice customer plant.loc[(invoice customer plant["KMs Reading"] > 200000)
                           (invoice customer plant["KMs Reading"] <= 300000), "KMs Reading"] = 2</pre>
invoice customer plant.loc[(invoice customer plant["KMs Reading"] > 300000)
                           (invoice customer plant["KMs Reading"] <= 400000), "KMs Reading"] = 3</pre>
invoice customer plant.loc[(invoice customer plant["KMs Reading"] > 400000)
                           & (invoice customer plant["KMs Reading"] <= 500000), "KMs Reading"] = 4
invoice_customer_plant.loc[(invoice customer plant["KMs Reading"] > 500000)
                           & (invoice customer plant["KMs Reading"] <= 600000), "KMs Reading"] = 5
invoice customer plant.loc[(invoice customer plant["KMs Reading"] > 600000)
                           & (invoice customer plant["KMs Reading"] <= 700000), "KMs Reading"] = 6
invoice customer plant.loc[invoice customer plant["KMs Reading"] > 700000, "KMs Reading"] = 7
```

```
cpd.Timedelta(hours=13),'ServiceTime_category']='super_fast'
|>=pd.Timedelta(hours=13))&(invoice_customer_plant['ServiceTime']<pd.Timedelta(hours=36)),'ServiceTime_category']='fast'
|>=pd.Timedelta(hours=36))&(invoice_customer_plant['ServiceTime']<pd.Timedelta(hours=61)),'ServiceTime_category']='mid'
|>=pd.Timedelta(hours=61))&(invoice_customer_plant['ServiceTime']<pd.Timedelta(hours=84)),'ServiceTime_category']='slow'
|>=pd.Timedelta(hours=84),'ServiceTime_category']='super_slow'
```

Elbow Method - WCSS

Visualize clusters using PCA

LTV

- □ LTV = average purchase value X average purchase frequency X customer lifespan
 invest in customer retention and acquisition
- ☐ Assuming cost on retention & acquisition as zero
- □ Considering 2015 data & lifespan of 1 year

TOP 20 special customer with highest LTV

	Customer No.	Make	Invoice No	Total Amt Wtd Tax.	LTV
32604	84810	TOYOTA	18	86761.728511	1.561711e+06
39442	E2003	MAHINDRA & MAHINDRA	49	30316.493458	1.485508e+06
31055	76500	MARUTI SUZUKI	9	138340.256423	1.245062e+06
30859	74406	HYUNDAI	5	188149.861583	9.407493e+05
30426	66248	MAHINDRA & MAHINDRA	5	163988.533882	8.199427e+05
30066	51811	GENERAL MOTORS	5	157266.226222	7.863311e+05
39497	MFCCM03	MAHINDRA & MAHINDRA	80	9397.866395	7.518293e+05
33571	87240	HYUNDAI	3	240759.304667	7.222779e+05
37773	96440	GENERAL MOTORS	5	140654.337400	7.032717e+05
30843	74073	MAHINDRA & MAHINDRA	15	39814.326508	5.972149e+05
20324	133669	MAHINDRA & MAHINDRA	2	294167.801684	5.883356e+05
30594	69319	GENERAL MOTORS	6	96673.902872	5.800434e+05
6176	111596	HONDA	4	144094.200189	5.763768e+05
35206	90834	SKODA	1	565487.200000	5.654872e+05
3536	106817	MAHINDRA & MAHINDRA	3	165008.090227	4.950243e+05
30025	4989	FORD	3	161254.616333	4.837638e+05
34627	89477	MAHINDRA & MAHINDRA	8	60044.711905	4.803577e+05
12372	121624	MAHINDRA & MAHINDRA	1	419840.660000	4.198407e+05
332	100620	NISSAN	3	139650.354848	4.189511e+05
4698	108907	MITSUBISHI MOTORS	5	82295.035484	4.114752e+05

LTV Modeling

df.head()

	Cust Type	State	KMs Reading	Make	Order Type	Invoice month	Partner Type	Title	ServiceTime_category	Item Category	Order Quantity	LTV
0	Retail	Maharashtra	0	FORD	Paid Service	6	1.0	2.0	super_fast	P001, P002	45.5	2201.78
4	Retail	Maharashtra	1	MAHINDRA & MAHINDRA	Running Repairs	5	1.0	2.0	super_fast	P001, P002	13.0	3827.00
5	Retail	Maharashtra	1	MAHINDRA & MAHINDRA	Paid Service	7	1.0	2.0	super_slow	P001, P002	50.0	3827.00
9	Retail	Maharashtra	0	VOLKSWAGEN	Running Repairs	1	1.0	2.0	mid	P001	85.0	35132.65
10	Retail	Maharashtra	0	VOLKSWAGEN	Running Repairs	1	1.0	2.0	fast	P001	300.6	35132.65

^{*} Used scaling & one hot encoding

MODELS USED

Model	r2_Score	MAE	RMSE
K Neighbors Regressor(KNN)	0.31546	0.011233	0.027477
Decision Tree Regressor	0.49151	0.012431	0.0299624
Linear Regression	-1.3663	2257899	182081000
Ridge	0.27303	0.011618	0.0292
Lasso	-1.55650	0.0147682	0.0432848

Recommendations - Problem3

- □ LTV high for older cars-> **Old is Gold.** Appreciate customer for good maintenance & encourage for regular checkup
- □ Retention of high LTV customers
- I. Discounts on accessories
- II. Loyalty bonus
- III. Referral Bonus
- IV. Maintenance Packages

Further Recommendations

Marketing Recommendation Customer & Revenue Prediction

Other Actions

Marketing Recommendation - Problem

Partner Type Count Plot

28

COUNT OF DATA ORIGIN

☐ According to the graph major pull of customers is seen from reference — employees and reference — customer i.e. word-of-mouth.

	\	
	Z001	Camp - Outdoor
	Z002	Camp - Workshop
	Z003	Emailers
	Z004	Fleet
	Z005	Reference - Customer
	Z006	Reference - Employee
	Z007	Reference - Used car dealer
	Z008	Just Dial/Other helpline
	Z009	Snapdeal/Other websites
	Z010	Company website
	Z011	Float activity
	Z012	Petrol pump activity
	Z013	Hoardings/Outdoor Advertisements
	Z014	Insurance Company
	Z015	Television AD
	Z016	Newspaper AD
	Z017	Newspaper leaflet
	Z018	Outdoor Sales Activity
	Z019	Spotted the outlet
	Z020	Mahindra Sister concern Employee
	Z021	Other outdoor activity
)	2 022	Radio

INSURANCE TRENDS

- □ Most used Insurance Company
- □ 'The New India Assurance Co. Ltd'

Recommendations - Problem4

- ☐ Major customer types are retail -> **Work on tie ups** with corporate & fleet (ola, uber, etc). Use corporate discounts & offers.
- Most used Insurance are Govt -> Better tie ups with private vendors
- □ Customers coming via word of mouth -> Need better brand building to pull customers from other sources
- I. TV ads
- II. Radio ads
- III. Online Presence

Revenue Prediction - Problem5

It is non-stationary because mean and std is not constant

Using differencing to make this time series stationary

Critical Value (10%)

dtype: float64

-2.597393e+00

^{*} The results show that the test statistic is significantly less than the 1% critical value, as its stationary.

Plot the autocorrelation function (ACF) and partial autocorrelation function (PACF)

In this plot, the 'p' and 'q' values can be determined as : p=2 , q=2.

This means that the optimal values for the ARIMA(p,d,q) model are (2,1,2).

Plotting ARIMA model

Month wise Revenue Forecasting

Customer count Prediction

It is non-stationary because mean and std is not constant

Using differencing to make this time series stationary

^{*} The results show that the test statistic is significantly less than the 1% critical value, as its stationary.

The results show that the test statistic is significantly less than the 1% critical value, as its stationary.

Plot the autocorrelation function (ACF) and partial autocorrelation function (PACF)

In this plot, the 'p' and 'q' values can be determined as : p=2 , q=2.

This means that the optimal values for the ARIMA(p,d,q) model are (2,1,2).

Plotting ARIMA model

Month wise Customer Forecasting

MORE INSIGHTS State wise plant Count

Finding New Plant Location

New Plant Location and Count

	State	Job Card No	Total Amt Wtd Tax.	Plant	New Garage Factor	New Garage Count
5	Chandigarh	5.118	7.688359	22	0.081300	0.0
1	Andhra Pradesh	19.602	21.164207	70	0.084665	0.0
25	Odisha	4.606	2.856602	11	0.108740	0.0
28	Rajasthan	26.876	24.129787	63	0.163394	1.0
19	Madhya Pradesh	26.968	29.983691	56	0.257844	1.0
16	Kamataka	58.286	51.638322	90	0.371579	2.0
31	Telangana	10.962	14.099799	20	0.386405	2.0
20	Maharashtra	77.748	80.453058	112	0.498650	2.0
27	Punjab	29.642	35.074158	39	0.683543	3.0
30	Tamil Nadu	180.828	212.942348	83	5.589482	23.0

CUSTOMER TYPE

Recommendations - extra

- □ New Plant locations -> 23 in Tamil Nadu
- Invest on referral programs & ads -> Gujarat, Haryana
 & Uttar Pradesh
- □ Count of one time customers increasing -> Loyalty programs needed
- ☐ Efficient Garages > Efficient Garage Management Platform launched "dearo"

All Action Points for MFCS

- States which are under performing while having great potential -> Gujarat & Kerala
- ☐ Indian "Make" are the biggest count makers -> stock parts & hire experts
- □ Revenue Outliers are Audi, Mercedes & Skoda -> Cash Cows

- LTV high for older cars-> Old is Gold. Appreciate customer for good maintenance & encourage for regular checkup
- □ Retention of high LTV customers
- Discounts on accessories
- II. Loyalty bonus
- III. Referral Bonus
- IV. Maintenance Packages
- □ New Plant locations -> 23 in Tamil Nadu
- Invest on referral programs & ads -> Gujarat, Haryana
 Uttar Pradesh
- Count of one time customers increasing -> Loyalty programs needed
- □ Efficient Garages -> Efficient Garage Management Platform launched "dearo"
- ☐ Highest revenue & repairs during mid year (around July) -> Hire contract staff
- ☐ Accidental orders are outsourced -> Bit relax on TAT
- □ Use less load day (i.e. Saturday) -> for training on soft skills & technical aspects

- Major customer types are retail -> Work on tie ups with corporate & fleet (ola, uber, etc). Use corporate discounts & offers.
- Most used Insurance are Govt -> Better tie ups with private vendors
- □ Customers coming via word of mouth -> Need better brand building to pull customers from other sources
- TV ads
- II. Radio ads
- III. Online Presence

Thank You