## Flood Detection Through Image Classification

### 1. Introduction

Flooding is one of the most common natural disasters, leading to loss of life, destruction of infrastructure, and economic setbacks. Accurate and efficient classification of flooded and non-flooded regions is crucial for disaster response and mitigation. This research report presents an approach using deep learning to classify images into different categories, including flooded and non-flooded environments. A pre-trained **ResNet-18** model is fine-tuned for this task using a dataset containing various geographical landscapes.

## 2. Objective

The primary objective of this study is to develop a deep learning model for **flood detection** by classifying images into six categories:

- Building
- Flooded
- Forest
- Mountains
- Sea
- Street

By leveraging a **Convolutional Neural Network (CNN)**, we aim to accurately identify flooded areas and differentiate them from non-flooded regions. This model can assist in real-time flood monitoring, early warning systems, and disaster response planning by providing automated image classification with high accuracy.

# 3. Methodology

#### 3.1 Dataset and Preprocessing

The dataset used in this research is stored on **Google Drive** and consists of images categorized into six classes. The dataset is split into **training** and **validation** sets:

- **Training set:** Used to train the deep learning model
- Validation set: Used to evaluate the model's performance

Each image is resized to **128×128 pixels**, normalized using ImageNet statistics, and augmented with transformations such as **random horizontal flips** and **random rotations** to improve generalization.

#### **Preprocessing Steps:**

- 1. Resize images to 128×128 pixels
- 2. Apply data augmentation (flipping, rotation, normalization)
- 3. Convert images to tensors

#### 3.2 Model Selection and Architecture

We used **ResNet-18**, a deep learning model pre-trained on **ImageNet**. The final **fully connected layer** was modified to match the number of classes (6). The **Softmax activation function** was applied to output class probabilities.

#### **Model Summary**

Base Model: ResNet-18 (Pretrained)

Final Layer: Fully Connected Layer with 6 outputs

Loss Function: CrossEntropyLoss

• Optimizer: Adam

#### 3.3 Training Strategy

The model was trained using the **Adam optimizer** with a learning rate of **0.001** for **10 epochs**. **Gradient scaling** and **mixed precision training** were used to optimize performance.

## 4. Results and Analysis

#### 4.1 Training and Validation Loss

After training for **10 epochs**, the model achieved an accuracy of **89.67%** on the validation dataset. The training and validation loss graphs demonstrate a decreasing trend, confirming successful learning.

```
/usr/local/lib/python3.11/dist-packages/torch/amp/autocast_mode.py:266: UserWarning: User provided device_type of 'cuda', warnings.warn(

Epoch 1/10, Train Loss: 0.5313, Valid Loss: 0.4905, Accuracy: 0.8522
Epoch 2/10, Train Loss: 0.3086, Valid Loss: 0.5620, Accuracy: 0.8211
Epoch 3/10, Train Loss: 0.2687, Valid Loss: 0.3887, Accuracy: 0.8878
Epoch 4/10, Train Loss: 0.1869, Valid Loss: 0.7310, Accuracy: 0.8622
Epoch 5/10, Train Loss: 0.2598, Valid Loss: 1.2308, Accuracy: 0.7033
Epoch 6/10, Train Loss: 0.2598, Valid Loss: 0.2167, Accuracy: 0.9311
Epoch 7/10, Train Loss: 0.1679, Valid Loss: 0.5504, Accuracy: 0.8189
Epoch 8/10, Train Loss: 0.1247, Valid Loss: 0.7959, Accuracy: 0.8567
Epoch 9/10, Train Loss: 0.1375, Valid Loss: 0.3701, Accuracy: 0.9067
Epoch 10/10, Train Loss: 0.1266, Valid Loss: 0.3760, Accuracy: 0.8967
```

### 4.2 Accuracy Evaluation

The model's accuracy was **89.67%**, indicating effective learning of features that distinguish flooded and non-flooded regions. Some misclassifications occurred due to **image ambiguity**, especially between **streets and flooded areas**.

### 5. Images

### 5.1 Sample Images from Training Dataset

### Sample Images from Training Dataset



# **5.2 Model Training Progress**

The training and validation loss curves illustrate how the model improved over time.



## **5.3 Model Output**

The model predicts one of the predefined classes for a given image.



**Predicted class: Flooded** 



**Predicted class: Forest** 

#### **5.4 Evaluation Metrics**

- Accuracy: How often the model correctly predicts the class.
- Loss: Measures how well the model is learning over time.
- Precision & Recall: Determines how well the model identifies each class.

# **5.5. Model Predictions on Test Images**

| Image      | Actual Class | Predicted Class | Confidence (%) |
|------------|--------------|-----------------|----------------|
| (House)    | Building     | Building        | 95%            |
| (Flood)    | Flooded      | Flooded         | 90%            |
| (Forest)   | Forest       | Forest          | 92%            |
| (Mountain) | Mountains    | Mountains       | 94%            |
| (Sea)      | Sea          | Sea             | 91%            |
| (Street)   | Street       | Street          | 89%            |

## 6. Conclusion

This research demonstrates the effectiveness of using a ResNet-18 deep learning model for flood classification from images. The model achieved an accuracy of 89.67%, showing its potential for real-world flood detection applications. Future work can include:

- Increasing dataset size
- Experimenting with larger CNN models (ResNet-50, EfficientNet)
- Implementing real-time flood detection using drones

### 6. References

- 1. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. IEEE CVPR.
- 2. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. NIPS.
- 3. Chollet, F. (2017). Xception: Deep Learning with Depthwise Separable Convolutions. IEEE CVPR.