Es sei $L: \mathbb{R}^2 \to \mathbb{R}^2$ die durch $L \begin{pmatrix} 2 \\ 19 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ und $L \begin{pmatrix} 307 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ bestimmte lineare Abbildung. Gibt es eine Basis B von \mathbb{R}^2 , so dass $[L]_B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$?

Behauptung. Es gibt keine wie in der Aufgabenstellung beschriebene Basis.

Beweis. Im Bild der Abbildung L liegen per Definition nämlich die linear unabhängigen Vektoren (1,-1)und (1,1), die eine Basis des \mathbb{R}^2 geben. Da das Bild einer linearen Abbildung ein Untervektorraum ist, gilt folglich im $(L) = \mathbb{R}^2$, das Bild von L ist also zweidimensional. Nach Dimensionsformel ist L damit bereits ein Isomorphismus; insbesondere besteht der Kern von L nur aus dem Nullvektor. Wäre nun $B = \{b_1, b_2\}$ aber eine Basis mit

$$[L]_B = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right),$$

so gälte also $L(b_2)=0$, der Vektor b_2 läge damit im Kern von L, was umöglich ist. Daher gibt es keine solche Basis B.

Aufgabe 2.

Man beweise oder widerlege folgende Aussage: Für jeden endlich-dimensionalen Vektorraum V über einem Körper K und alle diagonalisierbaren Endomorphismen $L_1, L_2 : V \to V$ gilt: Ist λ_1 ein Eigenwert von L_1 und λ_2 ein Eigenwert von L_2 , dann ist $\lambda_1 + \lambda_2$ ein Eigenwert von $L_1 + L_2 : V \to V$.

Behauptung. Diese Aussage ist nicht für beliebige endlich-dimensionale Vektorräume wahr.

Beweis. Auf dem reellen Vektorraum \mathbb{R}^2 sei $\{e_1, e_2\}$ die Standardbasis des \mathbb{R}^2 und

$$L_i \colon \mathbb{R}^2 \to \mathbb{R}^2, \ x_1 e_1 + x_2 e_2 \mapsto x_i e_i.$$

Per Konstruktion gilt $L_1(e_2)=0$ und $L_2(e_1)=0$ sowie $L_1(e_1)=e_1$ und $L_2(e_2)=e_2$, die beiden Endomorphismen L_1 und L_2 sind also diagonalisierbar mit Eigenwerten 0 und 1. Es gilt aber

$$(L_1 + L_2)(x_1e_1 + x_2e_2) = L_1(x_1e_1 + x_2e_2) + L_2(x_1e_1 + x_2e_2) = x_1e_1 + x_2e_2,$$

d. h. $L_1 + L_2 = \mathrm{id}_{\mathbb{R}^2}$. Aber 0 ist kein Eigenwert der Abbildung $\mathrm{id}_{\mathbb{R}^2}$, da sonst per Definition ein Vektor $v \neq 0$ mit $\mathrm{id}_{\mathbb{R}^2}(v) = 0$ existieren müsste, was nicht der Fall ist. Das Beispiel zeigt also: Die Summe zweier Eigenwerte der diagonalisierbaren Endomorphismen L_1 und L_2 ist nicht notwendigerweise ein Eigenwert des Endomorphismus $L_1 + L_2$.

Aufgabe 3.

Es sei $A_n \in M(n, n; \mathbb{R})$ definiert durch

$$A_n := \begin{pmatrix} 1 & 1 & 0 & \cdots & \cdots & 0 \\ 1 & 1 & 1 & \ddots & & \vdots \\ 0 & 1 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 1 & 0 \\ \vdots & & \ddots & 1 & 1 & 1 \\ 0 & \cdots & \cdots & 0 & 1 & 1 \end{pmatrix}.$$

1. Zeigen Sie: Für alle $n \geq 3$ gilt det $A_n = \det A_{n-1} - \det A_{n-2}$

Beweis. Es sei $n \geq 1$. Wir entwickeln die Determinante der Matrix A_{n+2} nach der ersten Zeile und erhalten

$$\det(A_{n+2}) = 1 \cdot \det(A_{n+1}) - \det(B),$$

wobei B die Matrix ist, die aus A_{n+2} durch Streichen der ersten Zeile und zweiten Spalte entsteht:

$$B = \begin{pmatrix} 1 & 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 1 & \ddots & & \vdots \\ 0 & 1 & 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & 1 & \ddots & 1 & 0 \\ \vdots & & \ddots & \ddots & 1 & 1 \\ 0 & \dots & \dots & 0 & 1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & * \\ 0 & A_n \end{pmatrix}.$$

Da B in Blockdiagonalgestalt vorliegt, gilt also

$$\det(A_{n+2}) = \det(A_{n+1}) - \det(A_n).$$

2. Für welche n ist A_n invertierbar?

Behauptung. Es gilt für alle $k \ge 1$

$$A_{3k} = (-1)^k$$
, $A_{3k-1} = 0$ und $A_{3k-2} = (-1)^{k+1}$;

insbesondere ist A_n genau dann invertierbar, wenn $n \neq 3k-1$ gilt.

Beweis. Wir beweisen die behauptete Aussage per Induktion. Es gilt zusammen mit dem vorherigen Aufgabenteil

$$\det(A_1) = 1$$
, $\det(A_2) = \det\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = 0$ und $\det(A_3) = -1$,

was die Aussage für k=1 verifiziert. Angenommen, für ein $k\geq 1$ gilt

$$A_{3k} = (-1)^k$$
, $A_{3k-1} = 0$ und $A_{3k-2} = (-1)^{k+1}$.

Dann gilt nach dem zuvor Gezeigten

$$\det(A_{3(k+1)-2}) = \det(A_{3k+1}) = \det(A_{3k}) - \det(A_{3k-1}) = (-1)^k = (-1)^{k+2},$$

sowie

$$\det(A_{3(k+1)-1}) = \det(A_{3k+2}) = \det(A_{3k+1}) - \det(A_{3k}) = (-1)^{k+2} - (-1)^k = 0$$

und

$$\det(A_{3(k+1)}) = \det(A_{3k+3}) = \det(A_{3k+2}) - \det(A_{3k+1}) = -(-1)^{k+2} = (-1)^{k+1},$$

was die Induktionsbehauptung beweist. Daher ist A_n genau dann invertierbar, wenn es kein $k \geq 1$ mit n=3k-1 gibt.

Aufgabe 4.

Es sei $V = \mathbb{R}^4$ und $W = \operatorname{Spann}_{\mathbb{R}} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \subset V$. Wir betrachten den \mathbb{R} -Vektorraum V/W. Untersuchen Sie,

ob die Teilmenge $X \subset V/W$ linear unabhängig ist, wobei

$$X = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + W, \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} + W, \begin{pmatrix} 4 \\ 4 \\ 5 \\ 6 \end{pmatrix} + W \right\}.$$

Behauptung. Die Menge X ist linear abhängig.

Beweis. Da es sich bei X um eine endliche Menge handelt, ist sie genau dann linear abhängig, wenn es $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ mit $\lambda_i \neq 0$ für ein $i \in \{1, 2, 3\}$ gibt und die Gleichung

$$\lambda_{1} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + W + \lambda_{2} \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} + W + \lambda_{3} \cdot \begin{pmatrix} 4 \\ 4 \\ 5 \\ 6 \end{pmatrix} + W = 0 + W$$

erfüllt ist. Per Definition des Quotientenraums gilt nun aber

$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + W + \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} + W - \begin{pmatrix} 4 \\ 4 \\ 5 \\ 6 \end{pmatrix} + W = \begin{pmatrix} -2 \\ -2 \\ -2 \\ -2 \\ -2 \end{pmatrix} + W = 0 + W,$$

da der Vektor (-2, -2, -2, -2) in W liegt. Daher ist die Menge X linear abhängig.

Aufgabe 5.

Bestimmen Sie für $\lambda \in \mathbb{C}$ die Eigenwerte der Matrix

$$A_{\lambda} := \begin{pmatrix} 1 & \lambda & 0 & 0 \\ -\lambda & 1 & \lambda & 0 \\ 0 & 0 & 1 & \lambda \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Für welche λ ist A_{λ} diagonalisierbar?

Behauptung. Die Eigenwerte von A_{λ} sind 1 und $1 \pm i\lambda$. Ferner ist A_{λ} genau dann diagonalisierbar, wenn $\lambda = 0$ gilt.

Beweis. Wir fixieren $\lambda \in \mathbb{C}$ und bezeichnen mit $\chi_{\lambda} = \det(A_{\lambda} - XI_4)$ das charakteristische Polynom von A_{λ} . Da die Matrix $A_{\lambda} - XI_4$ in Blockgestalt vorliegt, gilt

$$\chi_{\lambda} = \det \begin{pmatrix} 1 - X & \lambda & 0 & 0 \\ -\lambda & 1 - X & \lambda & 0 \\ 0 & 0 & 1 - X & \lambda \\ 0 & 0 & 0 & 1 - X \end{pmatrix}$$
$$= \det \begin{pmatrix} 1 - X & \lambda \\ -\lambda & 1 - X \end{pmatrix} \cdot \det \begin{pmatrix} 1 - X & \lambda \\ 0 & 1 - X \end{pmatrix}$$
$$= ((X - 1)^2 + \lambda^2) \cdot (X - 1)^2.$$

Jedes nicht-konstante Polynom in $\mathbb C$ in zerfällt in Linearfaktoren und $(X-1)^2 + \lambda^2$ ist ein normiertes, nicht-konstantes Polynom. Es gibt daher $a,b\in\mathbb C$ mit

$$X^{2} - 2X + 1 + \lambda^{2} = (X - 1)^{2} + \lambda^{2} = (X - a)(X - b) = X^{2} - (a + b)X + ab.$$

Hieraus folgt $a+b=2 \iff a=2-b$ sowie $ab=1+\lambda^2$, was dann $(2-b)b=1+\lambda^2$ und schließlich $b^2-2b+1=-\lambda^2$ bzw. $(b-1)^2=(i\lambda)^2$ und daher $b=1\pm i\lambda$ impliziert. Folglich gilt

$$\chi_{\lambda} = (X - (1+i\lambda))(X - (1-i\lambda))(X-1)^{2}.$$

Da $A_0 = I_4$ diagonalisierbar ist, dürfen wir nachfolgend annehmen, dass $\lambda \neq 0$ gilt.

In diesem Fall ist $1+i\lambda\neq 1-i\lambda$ und A_λ besitzt die drei Eigenwerte $1+i\lambda, 1-i\lambda$ und 1, mit algebraischer Vielfachheit 1, 1 und 2, respektive. Da A_λ genau dann diagonalisierbar ist, wenn die algebraische Vielfachheit mit der geometrischen Vielfachheit übereinstimmt, ist A_λ also genau dann diagonalisierbar, wenn $A_\lambda-1\cdot I_4$ einen zweidimensionalen Kern besitzt. Aber für $\lambda\neq 0$ sind die letzten drei Spalten der Matrix

$$A_{\lambda} - I_4 = \left(egin{array}{cccc} 0 & \lambda & 0 & 0 \ -\lambda & 0 & \lambda & 0 \ 0 & 0 & 0 & \lambda \ 0 & 0 & 0 & 0 \end{array}
ight)$$

linear unabhängig und der Kern von A_{λ} daher eindimensional. Für $\lambda \neq 0$ ist A_{λ} somit nicht diagonalisierbar.

Aufgabe 6.

Es sei V ein endlich-dimensionaler Vektorraum über einem Körper K, und $L_1, L_2 : V \to V$ zwei Endomorphismen von V. Zeigen Sie:

$$\operatorname{Rang}(L_1 \circ L_2) \leq \min \{\operatorname{Rang}(L_1), \operatorname{Rang}(L_2)\}.$$

Beweis. Da $\operatorname{im}(L_1 \circ L_2)$ ein Untervektorraum von $\operatorname{im}(L_1)$ ist, gilt insbesondere

$$\dim \operatorname{im}(L_1 \circ L_2) \leq \dim \operatorname{im}(L_1).$$

Andererseits stimmt im $(L_1 \circ L_2)$ mit dem Bild der Abbildung $L_{1|\operatorname{im}(L_2)}$: im $(L_2) \to V$ überein, und daher gilt auch

$$\dim \operatorname{im}(L_1 \circ L_2) = \dim \operatorname{im}(L_{1|\operatorname{im}(L_2)}) = \dim \operatorname{im}(L_2) - \dim \ker(L_{1|\operatorname{im}(L_2)}) \leq \dim \operatorname{im}(L_2).$$

Also gilt sowohl $\operatorname{Rang}(L_1 \circ L_2) \leq \operatorname{Rang}(L_1)$ als auch $\operatorname{Rang}(L_1 \circ L_2) \leq \operatorname{Rang}(L_2)$, was zur Behauptung äquivalent ist.

Aufgabe 7.

Es sei $N : \mathbb{R}^4 \to \mathbb{R}^4$ ein Endomorphismus, so dass $N^2 \neq 0$, aber $N^3 = 0$. Bestimmen Sie die Jordansche Normalform von N.

Behauptung. Bis auf Permutation der Basisvektoren ist die Jordansche Normalform von N in einer geeigneten Basis B gegeben durch

$$[N]_B = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right).$$

Beweis. Es sei B eine Basis des \mathbb{R}^4 , welche die Jordannormalform von N realisiert. Da N nilpotent ist, besitzt N nur 0 als möglichen Eigenwert. Nach Voraussetzung ist N zudem nicht die Nullabbildung, daher kann dim ker N, die geometrische Vielfachheit des Eigenwerts 0, höchstens drei sein. Da dim ker N mit der Anzahl der in $[N]_B$ auftretenden Jordankästchen übereinstimmt, ist $[N]_B$ also eine Matrix in Blockdiagonalgestalt, die sich aus höchstens drei Jordankästchen zusammensetzt. Wir listen die Basisvektoren in B so auf, dass die Jordanblöcke der Größe nach angeordnet sind und unterscheiden nun folgende Fälle.

1. Es gilt dim ker N=3. Dann muss es ein Jordankästchen der Größe 2 und zwei Jordankästchen der Größe 1 geben, es gilt also

Aber $[N]_B \cdot [N]_B = 0$, und weil die Abbildung $L(\mathbb{R}^4, \mathbb{R}^4) \to M(4, 4; \mathbb{R})$, $L \mapsto [L]_B$, ein Ringisomorphismus ist, würde daher auch $N^2 = 0$ gelten, was nach Voraussetzung ausgeschlossen ist. Dieser Fall kann also nicht eintreten.

2. Es gilt dim ker N=2. Dann kann es entweder zwei Jordankästchen der Größe 2 geben, es gilt also

$$[N]_B = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right).$$

Aber auch in diesem Fall ist $[N]_B \cdot [N]_B = 0$, was — wie wir im vorherigen Fall gesehen haben — ausgeschlossen ist. Oder es gibt ein Jordankästchen der Größe 3 und eines der Größe 1, es gilt also

$$[N]_B = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right).$$

Da $[N]_B^2 \neq 0$ und $[N]_B^3 = 0$ ist, kann dies also eine mögliche Jordannormalform von N sein.

3. Es gilt dim ker N=1. Dann gibt es nur ein Jordankästchen der Größe 4, also

$$[N]_B = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right),$$

Da $N^3 = 0$ gelten soll, aber $[N]_B^3 \neq 0$ ist, kann dieser Fall nicht eintreten.

Weil Nnilpotent ist und somit einen nicht-trivialen Kern besitzen muss, kann also nur dim kerN=2 und

$$[N]_B = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right).$$

gelten, wie behauptet.