Análisis asintótico de algoritmos

Sergio Revilla Velasco

Resumen

El objetivo de esta práctica es estudiar la complejidad asintótica de los algoritmos de ordenación más comunes (selección (selection-sort), inserción (insertion-sort), burbuja (bubble-sort), ordenación rápida (quick-sort) y ordenación por mezcla (mergesort)) por medio de un programa escrito en $\mathbf{C}++$.

Índice

1.	Instrucciones de compilación y dependencias	2
2.	Prolegómenos	3
3.	Método de obtención de tiempos y gráficas	4
4.	Análisis de resultados	5
	4.1. Ordenación por inserción	5
	4.2. Ordenación por selección	5
	4.3. Ordenación por burbuja	7
	4.4. Ordenación rápida	8
5 .	Comentarios adicionales	9

1. Instrucciones de compilación y dependencias

1. Dependencias:

- Windows: MinGW http://www.mingw.org
- Linux: GCC Compiler Collection http://gcc.gnu.org
- Mac Os X: Xcode Tools con utilidades de línea de comando instaladas https: //developer.apple.com/xcode/
- GnuPlot: usado para generar las gráficas desde archivos de texto http://www.gnuplot.info

2. Instrucciones de compilación:

- Compilar el archivo "main.cpp" contenido en la carpeta "src"
- Ejecutar desde la consola el comando "gnuplot script.gnuplot" desde el mismo directorio donde se generaron los archivos de datos.
- El script generará archivos png con las gráficas.

2. Prolegómenos

Todos los algoritmos analizados en este trabajo parten de unas precondiciones y postcondiciones comunes a toda especificación de algoritmo de ordenación, esto es, partiendo de un array de números enteros positivos de tamaño n > 0, construimos un nuevo array con los elementos ordenados. La especificación formal puede expresarse como:

• Precondición:

$$P \equiv \{lon(V) = n > 0 \land V[n] \ge 0\}$$
 (Vector no vacío de enteros positivos)

Definición:

ordena(int &V[], int n) (Devuelve el vector ordenado por referencia)

Postcondición:

$$Q \equiv \{ \forall i : 0 \leq i < n-1 : V[i] \leq V[i+1] \}$$

O expresado de otra manera:[1]

- Entrada: una secuencia de n enteros positivos $(a_1, a_2, a_3, \ldots, a_n)$
- Salida: una permutación (reordenación) de la secuencia de entrada tal que $(a_1 \le a_2 \le a_3, \ldots, \le a_n)$

Cada método de ordenación se expresa como un algoritmo: un procedimiento de cálculo bien definido que toma algún valor o conjunto de valores como entrada y produce un cierto valor o conjunto de valores como salida.[1]

3. Método de obtención de tiempos y gráficas

- 1. El programa preguntará por el tamaño del problema (la longitud del array)
- 2. También podemos elegir el mayor entero a generar (un entero puede tener un valor máximo de 32767)
- 3. El programa preguntará por el salto (gap) entre iteraciones. Cuanto menor sea el tamaño de la iteración, más ajustada será la gráfica. Se recomienda un salto de entre 50 y 100.
- 4. En primera instancia se genera un array con números aleatorios que sirve como base para las ordenaciones. De esta manera las copias del array original se hacen del tamaño que corresponde a la iteración, en lugar de hacer copias con el tamaño original del problema y así evitar problemas de memoria para tamaños del problema muy grandes (n > 20000). Así, si el tamaño del array a ordenar en cada iteración es de n elementos, el programa copia el array en intervalos de 0 < gap < n hasta alcanzar el tamaño del problema n.
- 5. El programa genera un archivo con los datos separados por un salto de línea. Cada línea contiene el tamaño del problema y el tiempo empleado para la ordenación expresado en milisegundos (ms)
- 6. Con los archivo de datos, pueden ejecutarse órdenes con la sintaxis de *GnuPlot* que generen las gráficas de las métricas generadas

4. Análisis de resultados

4.1. Ordenación por inserción

Un buen algoritmo de ordenación para un número pequeño elementos. Funciona de la manera análoga a la que se ordenaría un mazo de cartas:

- 1. Empezamos con la mano izquierda vacía y las cartas boca abajo sobre la mesa.
- 2. A continuación, cogemos una carta de la mesa, y la insertamos en la posición correcta en la mano izquierda.
- Para encontrar la posición correcta en la que insertar la carta, se compara con cada una de las cartas que ya tenemos en la mano izquierda, recorriendo de derecha a izquierda.
- 4. En todo momento, las cartas sujetas con la mano izquierda se ordenan, permaneciendo las cartas originales sin ordenar encima de la pila en la mesa.

Figura 1: Ordenación por inserción

4.2. Ordenación por selección

Es un algoritmo de ordenación por comparación. Su complejidad es de $O(n^2)$. Resulta ineficiente en tamaños de problema grandes, y suele funcionar peor que la ordenación por inserción. Se caracteriza por su sencillez, y también tiene ventajas de rendimiento sobre

algoritmos más complicados en determinadas situaciones, sobre todo cuando la memoria auxiliar es limitada. El algoritmo divide la lista de entrada en dos partes: la lista secundaria de los elementos que ya están ordenados, dispuestos de izquierda a derecha, y la lista secundaria de los elementos restantes a ser ordenados, ocupando el resto de la lista. Inicialmente, la sublista ordenada está vacía y la sublista sin ordenar es la lista original menos los elementos ordenados. El algoritmo continúa encontrando siempre el elemento inmediatamente superior (según orden de clasificación) y lo cambia con el último elemento del array.

Figura 2: Ordenación por selección

4.3. Ordenación por burbuja

Figura 3: Ordenación por burbuja

4.4. Ordenación rápida

Figura 4: Ordenación rápida

5. Comentarios adicionales

Referencias

[1] Cormen, Thomas H. and Leiserson, Charles E. and Rivest, Ronald L. and Stein, Clifford. *Introduction to Algorithms, Second Edition*, MIT Press.