Predicting pH for ABC Beverage

DATA 624 | Glen Dale Davis & Tora Mullings

Introduction:

Our analysis of the relationship between pH and the attributes ABC Beverage measures for its products has revealed:

- The five most relevant features when accurately predicting pH are:
 - ALCH_REL | DENSITY | MNF_FLOW | BOWL_SETPOINT | BALLING
- The best of 15 models for predicting pH is a Support Vector Machines (SVM)
 Model that utilizes the above features and others and relies on K Nearest
 Neighbors (KNN) imputed data for missing values in observations
- Other models using the same data performed at least 10% worse

Model Development Process

- We built models in three broad categories:
 - o linear: Multiple Linear Regression
 - o nonlinear: Multivariate Adaptive Regression Splines (MARS), K Nearest Neighbors (KNN), and Support Vector Machines (SVMs)
 - tree-based: Single Regression Trees
- These models were all trained and tested on three different sets of data:
 - o primary: missing values in observations were imputed
 - secondary: observations with missing values were deleted
 - o tertiary: missing values in observations were imputed and skewed predictors were transformed

Model Selection Process

- Our primary concerns in model selection were:
 - performance accuracy, so we only considered the models with the lowest Root Mean Squared
 Error (RMSE)/highest Predictive R-Squared on each dataset as final contenders
- Our secondary concern was:
 - applicability, so we chose a model that could handle observations with missing values over a model that performed better, but could not handle missing values

Final Model Metrics

 Model SVM:RB:1 was selected as the final model for predicting pH. It had the lowest RMSE and the highest Predictive R-Squared among its peers:

Model	Predictive R-Squared	RMSE
Model LM:1	0.3984	0.1357
Model MARS:1	0.4532	0.1294
Model KNN:1	0.4651	0.128
Model SVM:RB:1	0.567	0.1151
Model Tree:1	0.4432	0.1306

Final Model Feature Importance

 This nonlinear model relies on features for predicting pH that some of the linear models could not utilize effectively. Their relative importance is depicted below:

Conclusions

- Nonlinear regression methods outperformed linear and tree-based regression methods in this application
- Transformations were not useful in improving model performance
- The search for the best model was by no means exhaustive, and research should continue using SVM:RB:1 as the new baseline