Advanced Encryption Standard (AES) – Transformation functions

Dr. Shubhangi Sapkal

AES Transformation Functions

Four different transformations are used, one of permutation and three of substitution:

- Substitute bytes: Uses an S-box to perform a byte-by-byte substitution of the block
- ShiftRows: A simple permutation
- MixColumns: A substitution that makes use of arithmetic over GF(28)
- AddRoundKey: A simple bitwise XOR of the current block with a portion of the expanded key

Substitute Bytes Transformation

Forward and Inverse Transformations

- The **forward substitute byte transformation**, called SubBytes, is a simple table lookup. AES defines a 16 * 16 matrix of byte values, called an S-box, that contains a permutation of all possible 256 8-bit values.
- Each individual byte of **State** is mapped into a new byte in the following way:
 - The leftmost 4 bits of the byte are used as a row value and the rightmost 4 bits are used as a column value.
- These row and column values serve as indexes into the S-box to select a unique 8-bit output value.
- For example, the hexadecimal value {95} references row 9, column 5 of the S-box, which contains the value {2A}. Accordingly, the value {95} is mapped into the value {2A}.

(a) Substitute byte transformation

(b) Add round key transformation

Figure 5: AES Byte level operations

			у														
		0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Е	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
	2	В7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	В3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
	7	51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
x	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
	Α	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
	C	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
	Е	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16
	(a) S-box																

			у														
		0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Е	F
	0	52	09	6A	D5	30	36	A5	38	BF	40	A3	9E	81	F3	D7	FB
	1	7C	E3	39	82	9B	2F	FF	87	34	8E	43	44	C4	DE	E9	CB
	2	54	7B	94	32	A 6	C2	23	3D	EE	4C	95	0 B	42	FA	C3	4E
	3	08	2E	A 1	66	28	D 9	24	B2	76	5B	A2	49	6D	8B	D1	25
	4	72	F8	F6	64	86	68	98	16	D4	A4	5C	CC	5D	65	B6	92
	5	6C	70	48	50	FD	ED	B 9	DA	5E	15	46	57	A 7	8D	9 D	84
	6	90	D8	AB	00	8C	BC	D3	0 A	F7	E4	58	05	B8	В3	45	06
	7	D 0	2C	1E	8F	CA	3F	0F	02	C1	AF	BD	03	01	13	8A	6B
x	8	3A	91	11	41	4F	67	DC	EA	97	F2	CF	CE	F0	B4	E6	73
	9	96	AC	74	22	E7	AD	35	85	E2	F9	37	E8	1C	75	DF	6E
	Α	47	F1	1A	71	1D	29	C5	89	6F	B7	62	0E	AA	18	BE	1B
	В	FC	56	3E	4B	C6	D2	79	20	9 A	DB	O	FE	78	CD	5A	F4
	C	1F	DD	A 8	33	88	07	C7	31	B1	12	10	59	27	80	EC	5F
	D	60	51	7F	A 9	19	B5	4A	0 D	2D	E5	7A	9F	93	C9	9C	EF
	E	A 0	E0	3B	4D	AE	2A	F5	B 0	C8	EB	BB	3C	83	53	99	61
	F	17	2B	04	7E	BA	77	D6	26	E1	69	14	63	55	21	0C	7D

(b) Inverse S-box

Figure 6: AES S-boxes

Example of SubBytes transformatiom

EA	04	65	85
83	45	5D	96
5C	33	98	B 0
F0	2D	AD	C5

87	F2	4D	97
EC	6E	4C	90
4A	C3	46	E7
8C	D8	95	A 6

Figure 6: Construction of S-box and I-box

row y, column x of S-box

row y, column x of IS-box

Substitute Bytes Transformation

- Initialize the S-box with the byte values in ascending sequence row by row.
- The first row contains {00}, {01}, {02}, ..., {0F}; the second row contains {10}, {11}, etc.; and so on. Thus, the value of the byte at row y, column x is {yx}.
- Map each byte in the S-box to its multiplicative inverse in the finite field GF(28); the value {00} is mapped to itself.

Substitute Bytes Transformation

• Consider that each byte in the S-box consists of 8 bits labeled (b7, b6, b5, b4, b3, b2, b1, b0). Apply the following transformation to each bit of each byte in the S-box:

$$b'_t = b_t \oplus b_{(t+4) \bmod 8} \oplus b_{(t+5) \bmod 8} \oplus b_{(t+5) \bmod 8} \oplus b_{(t+6) \bmod 8} \oplus b_{(t+7) \bmod 8} \oplus c_t$$

• where ci is the ith bit of byte c with the value {63}; that is, (c7c6c5c4c3c2c1c0) = (01100011).

b_0'		T1	0	0	0	1	1	1	1	b_0		1	
b_1'		1	1	0	0	0	1	1	1	b_1		1	
b2		1	1	1	0	0	0	1	1	b_2		0	
b' ₃	_	1	1	1	1	0	0	0	1	b_3	_	0	
b_4'		1	1	1		1	0	0	0	b_4	1	0	
b' ₅		0	1	1	1	1	1	0	0	b ₅		1	
b' ₆		0	0	1	1	1	1	1	0	b_6		1	
b_7'		_0	0	0	1	1	1	1	1	b_7		0_	

- In ordinary matrix multiplication, for each element in the product matrix is the sum of products of the elements of one row and one column.
- In this case, each element in the product matrix is the bitwise XOR of products of elements of one row and one column.
- Furthermore, the final addition is a bitwise XOR. bitwise XOR is addition in GF(2⁸).

- As an example, consider the input value {95}. The multiplicative inverse in GF(2⁸) is {95}⁻¹ = {8A}, which is 10001010 in binary. Using Equation, The result is {2A}, which should appear in row {09} column {05} of the S-box.
- This is verified by checking Table
- The **inverse substitute byte transformation**, called InvSubBytes, makes use of the inverse S-box shown in Table 5.2b.
- for example, the input {2A} produces the output {95}, and the input {95} to the S-box produces {2A}. The inverse S-box is constructed by applying the inverse of the transformation in Equation followed by taking the multiplicative inverse in GF(2⁸).
- The inverse transformation is

$$b'_t = b_{(t+2) \mod 8} \oplus b_{(t+5) \mod 8} \oplus b_{(t+7) \mod 8} \oplus d_t$$

• where byte $d = \{05\}$, or 00000101.

b_0'		0	0	1	0	0	1	0	1	b_0		[1]
b ₁		1	0	0	1	0	0	1	0	b_1		0
b_2'		0	1	0	0	1	0	0	1	b_2		1
b_3'		1	0	1	0	0	1	0	0	b_3		0
b_4'	_	0	1	0	1	0	0	1	0	b_4	+	0
b' ₅		0	0	1	0	1	0	0	1	b ₅		0
b ₆		1	0	0	1	0	1	0	0	b_6		0
b_{7}'		0	1	0	0	1	0	1	0	b_7		0

- To see that InvSubBytes is the inverse of SubBytes, label the matrices in SubBytes and InvSubBytes as X and Y, respectively, and the vector versions of constants c and d as C and D, respectively. For some 8-bit vector B, Equation (5.2) becomes B = XB C. We need to show that Y(XB C) D = B.
- To multiply out, we must show YXB YC D = B.

ShiftRows Transformation

Forward and Inverse Transformations

- The forward shift row transformation, called ShiftRows.
- The first row of **State** is not altered. For the second row, a 1-byte circular left shift is performed. For the third row, a 2-byte circular left shift is performed. For the fourth row, a 3-byte circular left shift is performed.

87	F2	4D	97	
EC	6E	4C	90	
4A	C3	46	E7	-
8C	D8	95	A 6	

87	F2	4D	97
6E	4C	90	EC
46	E7	4A	C3
Δ6	8C	D8	95

• The **inverse shift row transformation**, called InvShiftRows, performs the circular shifts in the opposite direction for each of the last three rows, with a 1-byte circular right shift for the second row, and so on.

MixColumns Transformation

Forward and Inverse Transformations

- The **forward mix column transformation**, called MixColumns, operates on each column individually.
- Each byte of a column is mapped into a new value that is a function of all four bytes in that column.

MixColumns Transformation

02	03	01	01	S _{0,0}	$s_{0,1}$	$s_{0,2}$	S _{0,3}	S'0,0	S'0,1	S'0,2	S'0,3
01	02	03	01	s _{1,0}	$s_{1,1}$	$s_{1,2}$	S _{1,3}	s' _{1,0}	$s'_{1,1}$	$s'_{1,2}$	s' _{1,3}
01	01	02	03	\$2,0	$s_{2,1}$	$s_{2,2}$	$s_{2,3}$	82,0	\$ 2,1	82,2	52,3
03	01	01	02	$s_{3,0}$	$s_{3,1}$	$s_{3,2}$	S _{3,3} _	S _{3,0}	$s_{3,1}'$	$s_{3,2}'$	s _{3,3}

MixColumns Transformation

- Each element in the product matrix is the sum of products of elements of one row and one column.
- In this case, the individual additions and multiplications are performed in GF(2⁸).

(b) Mix column transformation

$$s'_{0,j} = (2 \cdot s_{0,j}) \oplus (3 \cdot s_{1,j}) \oplus s_{2,j} \oplus s_{3,j}$$

$$s'_{1,j} = s_{0,j} \oplus (2 \cdot s_{1,j}) \oplus (3 \cdot s_{2,j} \oplus s_{3,j})$$

$$s'_{2,j} = s_{0,j} \oplus s_{1,j} \oplus (2 \cdot s_{2,j}) \oplus (3 \cdot s_{3,j})$$

$$s'_{3,j} = (3 \cdot s_{0,j}) \oplus s_{1,j} \oplus s_{2,j} \oplus (2 \cdot s_{3,j})$$

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} = \begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,0} & s'_{1,1} & s'_{1,2} & s'_{1,3} \\ s'_{2,0} & s'_{2,1} & s'_{2,2} & s'_{2,3} \\ s'_{3,0} & s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix}$$

Example of MixColumns

87	F2	4D	97
6E	4C	90	EC
46	E7	4A	C3
A6	8C	D8	95

47	40	A3	4C
37	D4	70	9F
94	E4	3A	42
ED	A5	A 6	BC

```
 (\{02\} \cdot \{87\}) \oplus (\{03\} \cdot \{6E\}) \oplus \{46\} \oplus \{A6\} = \{47\} 
 \{87\} \oplus (\{02\} \cdot \{6E\}) \oplus (\{03\} \cdot \{46\}) \oplus \{A6\} = \{37\} 
 \{87\} \oplus \{6E\} \oplus (\{02\} \cdot \{46\}) \oplus (\{03\} \cdot \{A6\}) = \{94\} 
 (\{03\} \cdot \{87\}) \oplus \{6E\} \oplus \{46\} \oplus (\{02\} \cdot \{A6\}) = \{ED\}
```

For the first equation, we have $\{02\} \cdot \{87\} = (0000 \ 1110) \oplus (0001 \ 1011) = (0001 \ 0101)$ and $\{03\} \cdot \{6E\} = \{6E\} \oplus (\{02\} \cdot \{6E\}) = (0110 \ 1110) \oplus (1101 \ 1100) = (1011 \ 0010)$. Then,

$$\{02\} \cdot \{87\} = 0001 \ 0101$$

 $\{03\} \cdot \{6E\} = 1011 \ 0010$
 $\{46\} = 0100 \ 0110$
 $\{A6\} = 1010 \ 0110$
 $0100 \ 0111 = \{47\}$

The **inverse mix column transformation**, called InvMixColumns, is defined by the following matrix multiplication:

$$\begin{bmatrix} 0E & 0B & 0D & 09 \\ 09 & 0E & 0B & 0D \\ 0D & 09 & 0E & 0B \\ 0B & 0D & 09 & 0E \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} = \begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,0} & s'_{1,1} & s'_{1,2} & s'_{1,3} \\ s'_{2,0} & s'_{2,1} & s'_{2,2} & s'_{2,3} \\ s'_{3,0} & s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix}$$

AddRoundKey Transformation

- In the forward add round key transformation, called AddRoundKey, the 128 bits of State are bitwise XORed with the 128 bits of the round key.
- The operation is viewed as a column wise operation between the 4 bytes of a **State** column and one word of the round key; it can also be viewed as a byte-level operation.

47	40	A3	4C
37	D4	70	9F
94	E4	3A	42
ED	A5	A 6	BC

	AC	19	28
	77	FA	D1
\oplus	66	DC	29
,	F3	21	41

57

5C

00

6A

EB	59	8B	1B
40	2E	A 1	C3
F2	38	13	42
1E	84	E7	D6

Constant inputs

AES Key Expansion

Key Expansion Algorithm

```
KeyExpansion (byte key[16], word w[44])
    word temp
    for (i = 0; i < 4; i++) w[i] = (key[4*i], key[4*i+1],
                                     key[4*i+2],
                                     key[4*i+3]);
     for (i = 4; i < 44; i++)
      temp = w[i - 1];
      if (i mod 4 = 0) temp = SubWord (RotWord (temp))

    Rcon[i/4];

      w[i] = w[i-4] \oplus temp
```


Figure: AES Key Expansion

(a) Overall algorithm

- The AES key expansion algorithm takes as input a four-word (16-byte) key and produces a linear array of 44 words (176 bytes).
- The key is copied into the first four words of the expanded key.
- The remainder of the expanded key is filled in four words at a time.
 Each added word w[i] depends on the immediately preceding word,
 w[i 1], and the word four positions back, w[i 4].
- In three out of four cases, a simple XOR is used.
- For a word whose position in the **w** array is a multiple of 4, a more complex function is used.
- The function g consists of the following subfunctions.

- 1. RotWord performs a one-byte circular left shift on a word. This means that an input word [B0, B1, B2, B3] is transformed into [B1, B2, B3, B0].
- **2.** SubWord performs a byte substitution on each byte of its input word, using the S-box.
- 3. The result of steps 1 and 2 is XORed with a round constant, Rcon[j].
- The round constant is a word in which the three rightmost bytes are always 0.
- Thus, the effect of an XOR of a word with Rcon is to only perform an XOR on the leftmost byte of the word. The round constant is different for each round and is defined as Rcon[j] = (RC[j], 0, 0, 0), with RC[1] = 1, RC[j] = 2 # RC[j-1] and with multiplication defined over the field GF(2⁸). The values of RC[j] in hexadecimal are

j	1	2	3	4	5	6	7	8	9	10
RC[j]	01	02	04	08	10	20	40	80	1B	36

For example, suppose that the round key for round 8 is

EA D2 73 21 B5 8D BA D2 31 2B F5 60 7F 8D 29 2F

Then the first 4 bytes (first column) of the round key for round 9 are calculated as follows:

i (decimal)	temp	After RotWord	After SubWord	Rcon (9)	After XOR with Rcon	w[i-4]	w[i] = temp $w[i-4]$
36	7F8D292F	8D292F7F	5DA515D2	1B000000	46A515D2	EAD27321	AC7766F3