

Initiation HPC cluster

www.southgreen.fr

https://southgreenplatform.github.io/trainings

Présentation i-Trop

Julie ORJUELA-BOUNIOL1, IE Bioinformaticienne 25%

Ndomassi TANDO, IE Administrateur systeme 100% Animateur plateau

DUBREUIL, IE

20%

Bioinformaticienne

Christine TRANCHANT-20%

Aurore COMTE, IE Bioinformaticienne 20%

Alexis DEREEPER2, IE Bioinformaticien

Bruno GRANOUILLAC3, IE Valérie NOEL, TCS Systèmes d'information Bioinformaticienne 25% 20%

Présentation i-Trop

Mise à disposition de ressources de calcul et logicielles

Développement de logiciels d'analyse et de SI

Plateau bioinformatique

Assistance et support aux équipes

Formations au Sud et au Nord

ARCHITECTURE

Qu'est ce qu'un cluster?

- une unité logique de plusieurs serveurs
- une unique machine puissante
- •une puissance de calcul élevée
- Une plus grande capacité de stockage
- Une fiabilité supérieure
- Une plus grande disponibilité des ressources

Qu'est ce qu'un cluster?

- une unité logique de plusieurs serveurs
- une unique machine puissante
- •une puissance de calcul élevée
- Une plus grande capacité de stockage
- Une fiabilité supérieure
- Une plus grande disponibilité des ressources

Qu'est ce qu'un cluster?

- une unité logique de plusieurs serveurs
- une unique machine puissante
- •une puissance de calcul élevée
- Une plus grande capacité de stockage
- Une fiabilité supérieure
- Une plus grande disponibilité des ressources

Composants d'un cluster

- Noeud maître
 Gère les ressources et les priorités des jobs
- Noeuds de calcul Ressources (CPU ou mémoire RAM)

Composants d'un cluster

- Noeud maître
 Gère les ressources et les priorités
 des jobs
- Noeuds de calcul Ressources (CPU ou mémoire RAM)

Serveur(s) NAS Stockage

Architecture: rôle des éléments

1 Noeud Maître

master.univ-ouaga.bf

Rôle:

- Lancer et prioriser les jobs sur les nœuds de calcul
- Accessible depuis Internet
- Connexion:

ssh login@master.univ-ouaga.bf

Architecture: rôle des éléments

1 Noeud Maître

master.univ-ouaga.bf

Rôle:

- Lancer et prioriser les jobs sur les nœuds de calcul
- Accessible depuis Internet
- Connexion:

ssh login@master.univ-ouaga.bf

1 Noeud de Calcul

node0

Rôle:

- Utilisé par le maître pour exécuter les jobs/calculs
- Pas accessible depuis Internet
- node0
- Connexion depuis master

srun --time=60:00 node0

Partitions disques sur le cluster

Partitions sur la machine master

master.univ-ouaga.bf

Partitions disques sur le cluster

Liens virtuels vers les partitions de node0

Etapes d'une analyse sur le cluster

Connexion à master.oua ga-univ.bf et réservation de ressources

Etape 1 salloc,srun ou sbatch

Practice

Etape 1: Connexion, sinfo

Aller sur le <u>Exercice 1</u> du github

partition	noeud	Caractéristiques RAM noeuds	Caractéristiques coeurs noeuds	Caractéristique partition
main	node0	256 Go	28 coeurs	Temps infini
short	node0	256 Go	28 coeurs	Limitée à 1 jour

Etapes d'une analyse sur le cluster

Etape 1 Etape 2

Practice

Etape 2: srun, partition

Aller sur l' <u>Exercice2</u> du github

Etapes d'une analyse sur le cluster

Copier les données depuis son ordinateur personnel vers le /home si les données à analyser ne sont pas sur le cluster

Transferts de données sur le cluster en temps normal

Transferts de données sur le cluster pour le tp

Practice

Etape3: filezilla

Aller sur l' Exercice3 du github

Etapes d'une analyse sur le cluster

La copie avec scp

Copie entre 2 serveurs distants :

scp -r source destination

Syntaxe si la source est distante :

scp -r nom_serveur:/chemin/fichier_a_copier répertoire_local

• Syntaxe si la destination est distante :

scp -r /chemin/fichier_a_copier nomserveur:/chemin/répertoire_distant

Ex: scp -r master:/home/formationX/repertoire /tmp/formationX/

Practice

Etape4: scp vers noeuds

Aller sur l' Exercice4 du github

Module Environment

- Permet de choisir la version du logiciel que l'on veut utiliser
- Surpassent les variables d'environnement

Module Environment

- 5 types de commandes :
- Voir les modules disponibles :

module avail

• Obtenir une info sur un module en particulier :

module whatis + module name

Charger un module :

module load + modulename

Lister les modules chargés :

module list

Décharger un module :

module unload + modulename

Décharger tous les modules :

Module purge

Etapes d'une analyse sur le cluster

Charger ses logiciels avec module environment

Etape 5 module

Practice

Etape5: module environment

Aller sur l'<u>Exercice5</u> du github

Lancer une commande depuis le prompt

- Charger la version du logiciel à lancer
- Lancer l'analyse des données

\$~ commande <options> <arguments>

Avec commande: la commande à lancer

Lancer une commande sur un noeud

- Exécuter une commande bash via srun
- Lance la commande sur un noeud
- On utilise la commande:

\$~ srun "commande"

Avec commande: la commande à lancer

Etapes d'une analyse sur le cluster

Etape 5 Etape 6

Practice

Etape6: lancer l'analyse

Aller sur l' Exercice6 du github

Le transfert des résultats vers le /home

Copie entre 2 serveurs distants :

scp source destination

Syntaxe si la source est distante :

scp nom_serveur:/chemin/fichier_a_copier répertoire_local

• Syntaxe si la destination est distante :

scp /chemin/fichier_a_copier nomserveur:/chemin/répertoire_distant

Etapes d'une analyse sur le cluster

Etape 5 Etape 6 Etape 7

Practice

Etape7: Récupérer les résultats

Aller sur l'<u>Exercice7</u> du github

Supprimer les résultats des scratchs

- /tmp= espaces temporaires
- Vérifier la copie des résultats avant
- Utiliser la commande rm

```
cd /tmp
rm -rf nom_rep
```


Etapes d'une analyse sur le cluster

Etape 7 Etape 8

Practice

Etape8: suppression des données

Aller sur l'<u>Exercice8</u> du github

LANCER UN JOB

Avantages

- Le scheduler choisit les ressources automatiquement
- Lancer des jobs utilisant jusqu'à 24 coeurs
- Possibilité de paramétrer ce choix
- Jobs lancés en arrière plan
 - → possibilité d'éteindre son ordinateur
 - → récupération des résultats automatique

Lancer un job en mode batch

- C'est le fait d'exécuter un script bash via sge
- On utilise la commande:

\$~ sbatch script.sh

Avec script.sh: le nom du script

Options des commandes slurm

Options	Description	Exemple	
job-name=[name]	Donner un nom au job	sbatchjob-name=tando_blast	
-p partition	Choisir une parttion en particulier	sbatch -p main job.sh	
nodelist= <nodex></nodex>	Choisir un noeud en particulier	srunnodelist=node0	
-N <nombre coeurs="" de=""></nombre>	Lancer avec plusieurs coeurs	Srun -N 2	
mail-user= <adresse_email></adresse_email>	Envoyer un mail	sbatch mail-user=ndomassi.tando@ir d.fr	

Voir plus d'options disponibles ici:

<u>Options de base avec Slurm</u> dans la rubrique Les principales options disponibles pour lancer une analyse sous Slurm:

Syntaxe des scripts bash

Dans la première partie du script on renseigne les options d'exécution de slurm avec le mot clé #SBATCH (partie en vert)

```
#!/bin/bash
## On définit le nom du job
#SBATCH --job-name=test
## On définit le nom du fichier de sortie
#SBATCH --output=res.txt
## On définit le nombre de tâches
#SBATCH --ntasks=1
## On définit le temps limite d'éxécution
#SBATCH --time=10:00
```


Syntaxe des scripts bash

Dans la 2e partie du script on renseigne les actions à effectuer

sleep 30 hostname

Practice

Lancer un script avec qsub

Aller sur l'<u>Exercice9</u> du github

Merci pour votre attention!

Le matériel pédagogique utilisé pour ces enseignements est mis à disposition selon les termes de la licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Partage dans les Mêmes Conditions (BY-NC-SA) 4.0 International:

http://creativecommons.org/licenses/by-nc-sa/4.0/