

Keras

Keras for Deep Learning Research

Feedback is greatly appreciated!

Overview

- Difference between Feedforward Neural Network (FNN) and Recurrent Neural Network (RNN)
- The importance of context
- RNN
- LSTM
- Use case

Why Recurrent Neural Network

- Humans don't start their thinking from scratch every second. As you read this essay, you understand each word based on your understanding of previous words.
- You don't throw everything away and start thinking from scratch again. Your thoughts have persistence.

Why Recurrent Neural Network

- Traditional neural networks can't do this, and it seems like a major shortcoming.
- For example, imagine you want to classify what kind of event is happening at every point in a movie.
- It's unclear how a traditional neural network could use its reasoning about previous events in the film to inform later ones.
- Recurrent neural networks address this issue.
- They are networks with loops in them, allowing information to persist.

The importance of context

- Recall the 5th digit of your phone number
- Sing your favorite song beginning at third sentence
- Recall 10th character of the alphabet

Probably you went straight from the beginning of the stream in each case...

because in sequences, order matters!

Idea: retain the information preserving the importance of order

Recurrent Neural Network

A recurrent neural network can be thought of as multiple copies of the same network, each passing a message to a successor.

Recurrent Neural Networks have loops.

An unrolled recurrent neural network.

Difference between RNN and feed forward

- Good for Sequential data, or ordered data
- Internal memory: remember important things about input
- Produces output, copies and output, loop it back into input

Example

"Unrolled" layer

Different kind of RNN

Back Propagation Through Time (BPTT): The training method has to take into account the time operations \rightarrow a cost function E is defined to train our RNN, and in this case the total error at the output of the network is the sum of the errors at each time-step

Example back-prop in time with 3 time-steps

Main problems:

- Sometimes, we only need to look at recent information to perform the present task "the clouds are in the *sky*"
- But there are also cases where we need more context "I grew up in France... I speak fluent *French*."

Main problems:

- Exploding Gradients: weights assigns high importance: unstable network.
- Vanishing Gradients: values of gradients are too small: model stops learning

Example back-prop in time with 3 time-steps

RNN vs LSTM

The repeating module in a standard RNN contains a single layer.

RNN vs LSTM

The repeating module in an LSTM contains four interacting layers.

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Core idea behind LSTM

- The key to LSTMs is the cell state, the horizontal line running through the top of the diagram.
- The LSTM does have the ability to remove or add information to the cell state, carefully regulated by structures called gates.

Gate

- Gates are a way to optionally let information through.
- They are composed out of a sigmoid neural net layer and a pointwise multiplication operation
- The sigmoid layer outputs numbers between zero and one, describing how much of each component should be let through.
- A value of zero means "let nothing through," while a value of one means "let everything through!"
- An LSTM has three of these gates, to protect and control the cell state.

Meaning Of the Symbols

- + : Adding information
- σ : Sigmoid layer
- tanh: tanh layer
- h(t-1) : Output of last LSTM unit
- c(t-1): Memory from last LSTM unit
- X(t): Current input
- c(t): New updated memory
- h(t): Current output

Forget Gate Layer

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

Input Gate Layer

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$

New contribution to cell state

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Update Cell State (memory)

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Output Gate Layer

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$

Output to next layer

$$h_t = o_t * \tanh(C_t)$$

Overfitting

- Overfitting occurs when you achieve a good fit of your model on the training data, while it does not generalize well on new, unseen data.
- In other words, the model learned patterns specific to the training data, which are irrelevant in other data

Different ways to avoid overfitting

- Get more data
- Reduce the network's capacity
- Apply regularization
- Use Dropout layers

Regularization techniques

- Regularization: adding an extra element to the loss function, which punishes our model for being too complex or, for using too high values in the weight matrix
 - L1: Least Absolute Deviations (Lasso)
 - L2: Least Square Errors (Ridge)

L1: Least Absolute Deviations (Lasso)

- Lasso shrinks the less important feature's coefficient to zero
- Removing some feature altogether.
- This works well for **feature selection** in case we have a huge number of features.

$$\sum_{i=1}^n (Y_i - \sum_{j=1}^p X_{ij}eta_j)^2 + \lambda \sum_{j=1}^p |eta_j|$$

Cost function

L2:Least Square Errors (Ridge)

• Adds "squared magnitude" of coefficient as penalty term to the loss function

$$\sum_{i=1}^n (y_i - \sum_{j=1}^p x_{ij}eta_j)^2 + \lambda \sum_{j=1}^p eta_j^2$$

Cost function

Hyperparameter Optimization

- Grid Search
- Random Search
- Hand-tuning
- Gaussian Process with Expected Improvement
- Tree-structured Parzen Estimators (TPE)

Hyperparameter Optimization

- **Grid search** capability from the scikit-learn python machine learning library
- Grid search is a model hyperparameter optimization technique
- It tune the hyperparameters of deep learning models

How to Use Keras Models in scikit-learn

• Keras models can be used in scikit-learn by wrapping them with the **KerasClassifier** or **KerasRegressor** class.

How to Tune Batch Size and Number of Epochs

```
model = KerasClassifier(build_fn=model,verbose=0)
batch_size = [10, 20, 40]
epochs = [1, 2, 3]
param_grid = dict(batch_size=batch_size, epochs=epochs)
from sklearn.model_selection import GridSearchCV
grid = GridSearchCV(estimator=model, param_grid=param_grid)
grid_result = grid.fit(X_train, Y_train)
# summarize results
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
```


Results

Best: 0.846411 using {'batch_size': 40, 'epochs': 3}

List of hyperparameters to be tuned

Optimization Algorithm

optimizer = ['SGD', 'RMSprop', 'Adagrad', 'Adadelta', 'Adam', 'Adamax', 'Nadam']

Network Weight Initialization

- init_mode = ['uniform', 'lecun_uniform', 'normal', 'zero', 'glorot_normal',
 'glorot_uniform', 'he_normal', 'he_uniform']

Neuron Activation Function

- activation = ['softmax', 'softplus', 'softsign', 'relu', 'tanh', 'sigmoid', 'hard_sigmoid',
 'linear']

Dropout Regularization

- dropout_rate = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

Use case: Sentiment Analysis using LSTM

SENTIMENT ANALYSIS NEGATIVE NEUTRAL POSITIVE Totally dissatisfied with the Brilliant effort guys! Loved Good Job but I will expect a service. Worst customer lot more in future. Your Work. care ever.

Sentiment Classification

- The process of computationally identifying and categorizing opinions expressed in a piece of text
- In order to determine whether the writer's attitude towards a particular topic, product, etc. is positive, negative, or neutral.

First GOP Debate Twitter Sentiment

 Analyze tweets on the first 2016 GOP Presidential Debate

keeping the necessary columns

Only keeping the necessary columns.

```
data = pd.read_csv('../input/Sentiment.csv')
# Keeping only the neccessary columns
data = data[['text', 'sentiment']]
```


Filtering the tweets, using Tokenizer to vectorize, convert text into Sequences

```
data['text'] = data['text'].apply(lambda x: x.lower())
data['text'] = data['text'].apply((lambda x: re.sub('[^a-zA-z0-9\s]','',x)))
for idx, row in data.iterrows():
            row[0] = row[0].replace('rt',')
max features = 2000
tokenizer = Tokenizer(num_words=max_fatures, split='')
tokenizer.fit on texts(data['text'].values)
X = tokenizer.texts_to_sequences(data['text'].values)
X = pad\_sequences(X)
```


composing the LSTM Network

```
embed_dim = 128
lstm_out = 196
model = Sequential()
model.add(Embedding(max_fatures, embed_dim,input_length = X.shape[1]))
model.add(LSTM(lstm_out, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(3,activation='softmax'))
model.compile(loss = 'categorical_crossentropy', optimizer='adam',metrics = ['accuracy'])
(model.summary())
```


Defining training and test data

```
labelencoder = LabelEncoder()
 integer_encoded = labelencoder.fit_transform(data['sentiment'])
 Y = to_categorical(integer_encoded)
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = 0.33, random_state = 42)
(X train.shape, Y train.shape)
(X_test.shape, Y_test.shape)
batch_size = 32
model.fit(X_train, Y_train, epochs = 7, batch_size=batch_size, verbose = 2)
```


Evaluating the model

```
score,acc = model.evaluate(X_test, Y_test, verbose = 2, batch_size = batch_size)

("score: %.2f" % (score))

("acc: %.2f" % (acc))
```


References

- https://stats.stackexchange.com/questions/181/how-to-choose-the-number-of-hidden-layers-and-nodes-in-a-feedforward-neural-netw
- https://stackoverflow.com/questions/47788799/grid-search-the-number-of-hidden-layers-with-keras
- https://medium.com/@erikhallstrm/hello-world-rnn-83cd7105b767
- https://towardsdatascience.com/exploring-activation-functions-for-neural-networks-73498da59b02
- https://medium.com/lingvo-masino/introduction-to-recurrent-neural-network-d77a3fe2c56c
- http://colah.github.io/posts/2015-08-Understanding-LSTMs/
- https://www.slideshare.net/ashraybhandare/deep-learning-cnn-and-rnn?qid=0f39b4da-a290-4e9e-9d31-ed21816598e3&v=&b=&from_search=27
- https://machinelearningmastery.com/truncated-backpropagation-through-time-in-keras/
- https://medium.com/explore-artificial-intelligence/an-introduction-to-recurrent-neural-networks-72c97bf0912
- https://medium.com/datadriveninvestor/how-do-lstm-networks-solve-the-problem-ofvanishing-gradients-a6784971a577

Cheat Code

- Code for saving the model: model.save('model.h5')
- Code for loading the model:
 - from keras.models import load_model
 - model = load_model('model.h5')
- Code for predicting on new data:
 - model.predict([''new text']

