CORRIGÉ DU DM N°10 (extrait de CENTRALE TSI 2013)

PARTIE I : Réduction des matrices réelles d'ordre 2

I.A - Généralités

I.A.1) Soit $A \in \mathbb{M}_2(\mathbb{R})$, $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Un calcul rapide donne directement

$$X_{A}(\lambda) = \begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix} = X^{2} - (a + d)X + (ad - bc) = \lambda^{2} - tr(A)\lambda + \det A.$$

- **I.A.2)** Le discriminant du polynôme caractéristique est donc $\Delta = tr(A)^2 4 \det A$.
 - Supposons d'abord A diagonalisable dans M₂(C).
 Alors, dans le cas Δ = 0, A admet une seule valeur propre λ₀ (d'ailleurs, λ₀ est nécessairement un réel puisque A est à coefficients réels); étant diagonalisable, elle est semblable à λ₀I₂, soit A = P⁻¹(λ₀I₂)P avec P ∈ GL₂(C), d'où A = λ₀I₂.
 - Supposons la propriété de l'énoncé réalisée, c'est-à-dire $\Delta \neq 0$ ou $\exists \lambda_0 \in \mathbb{C}$ tq A = $\lambda_0 I_2$.
 - Dans le cas $\Delta \neq 0$, le polynôme caractéristique de A admet deux racines simples dans ℂ, donc A admet deux valeurs propres distinctes dans ℂ et est par suite diagonalisable dans $\mathbb{M}_2(\mathbb{C})$.
 - Dans le second cas, A est diagonale donc a fortiori diagonalisable.

Dans les deux cas, A est diagonalisable ce qui montre l'implication cherchée.

I.A.3) Le raisonnement est similaire à celui ci-dessus; il faut juste remarquer en plus que, lorsque A est diagonalisable dans $\mathbb{M}_2(\mathbb{R})$, elle admet nécessairement 1 ou 2 valeurs propres réelles, donc son polynôme caractéristique est scindé dans $\mathbb{R}[X]$ et a donc un discriminant positif (et réciproquement).

I.B - Applications

I.B.1) On a
$$X_{k+1} = AX_k$$
 avec $A = \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}$.

- **I.B.2**) Par récurrence immédiate : $\forall k \in \mathbb{N}$, $X_k = A^k X_0$.
- **I.B.3**) Ici $\chi_A(\lambda) = \lambda^2 \text{tr}(A)\lambda + \det A = \lambda^2 5\lambda + 6 = (\lambda 2)(\lambda 3)$. A ayant deux valeurs propres distinctes, elle est diagonalisable.

Notons $E_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $E_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ la base canonique de $\mathbb{M}_{2,1}(\mathbb{R})$.

$$A-2I_2 = \begin{pmatrix} 2 & -2 \\ 1 & -1 \end{pmatrix} \text{ donc } V_2 = E_1 + E_2 \in \text{Ker}(A-2I_2) \text{ ; } A-3I_2 = \begin{pmatrix} 1 & -2 \\ 1 & -2 \end{pmatrix} \text{ donc } V_3 = 2E_1 + E_2 \in \text{Ker}(A-3I_2).$$

La famille (V_2, V_3) est une base de vecteurs propres de A et si l'on note $P = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$ la matrice de

passage de la base canonique à cette base de vecteurs propres , on a donc $A = PDP^{-1}$ avec $D = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$.

- **I.B.4)** On aura donc (classiquement): $\forall k \in \mathbb{N}$, $A^k = PD^kP^{-1}$. On calcule $P^{-1} = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$ puis $D^k = \begin{pmatrix} 2^k & 0 \\ 0 & 3^k \end{pmatrix}$ et enfin $A^k = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \times \begin{pmatrix} 2^k & 0 \\ 0 & 3^k \end{pmatrix} \times \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 2.3^k 2^k & -2.3^k + 2^{k+1} \\ 3^k 2^k & -3^k + 2^{k+1} \end{pmatrix}$.
- **I.B.5)** Puisque $X_k = A^k X_0$ on aura $\begin{pmatrix} u_k \\ v_k \end{pmatrix} = A^k \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ d'où

$$\forall k \in \mathbb{N} \text{ , } u_k = 3.2^k - 2.3^k \text{ et } v_k = 3.2^k - 3^k \text{ .}$$

PARTIE II: Réduction de matrices d'ordre 3 ou 4

II.A - Le cas n = 3

II.A.1)
$$J^2 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 et $J^3 = I_3$.

Soit $k \in \mathbb{N}$. La division euclidienne de k par 3 s'écrit k = 3q + r avec $r \in \{0, 1, 2\}$, d'où $J^k = J^{3q+r} = (J^3)^q J^r = I_3 J_r = J^r$.

- II.A.2) La somme des racines n-ièmes de l'unité est nulle pour $n \ge 2$. Ici, 1, j et j^2 sont les racines cubiques de l'unité, et $1 + j + j^2 = 0$.
- **II.A.3**) Un calcul simple donne $\chi_J(\lambda) = 1 \lambda^3$ d'où $\operatorname{Sp}_{\mathbb{C}}(J) = \{1, j, j^2\}$.
- II.A.4) J admettant trois valeurs propres distinctes dans \mathbb{C} est diagonalisable dans $\mathbb{M}_3(\mathbb{C})$.

On a clairement $J.\begin{pmatrix}1\\1\\1\end{pmatrix}=\begin{pmatrix}1\\1\\1\end{pmatrix}$ donc $Ker(J-I_3)$ est la droite vectorielle de base $V_1=\begin{pmatrix}1\\1\\1\end{pmatrix}$.

Soit $V = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. $J.V = jV \iff \begin{cases} -jx + y = 0 \\ -jy + z = 0 \\ x - jz = 0 \end{cases} \iff \begin{cases} y = jx \\ z = j^2x \end{cases}$ donc $Ker(J - jI_3)$ est la droite vectorielle de

base $V_2 = \begin{bmatrix} 1 \\ j \\ \vdots 2 \end{bmatrix}$.

De la même façon, $\text{Ker}(\mathbf{J} - j^2 \mathbf{I}_3)$ est la droite vectorielle de base $\mathbf{V}_3 = \begin{pmatrix} 1 \\ j^2 \\ \vdots \end{pmatrix}$ (on rappelle que $j^2 = \overline{j}$).

(V₁, V₂, V₃) est une base de vecteurs propres de J dans laquelle l'endomorphisme canoniquement associé à J a pour matrice D = diag $(1, j, j^2)$, c'est-à-dire que l'on a J = PDP⁻¹ avec P matrice de

passage de la base canonique à la base (V_1, V_2, V_3) soit $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & j & j^2 \\ 1 & i^2 & i \end{pmatrix}$ et $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & j & 0 \\ 0 & 0 & i^2 \end{pmatrix}$.

II.A.5)

- a) $A(a,b,c) = aI_3 + bJ + cJ^2$.

b) Puisque $J = PDP^{-1}$ et $J^2 = PD^2P^{-1}$ on aura $A(a,b,c) = P(aI_3 + bD + cD^2)P^{-1}$, avec $aI_3 + bD + cD^2 = \begin{pmatrix} a+b+c & 0 & 0 \\ 0 & a+bj+cj^2 & 0 \\ 0 & 0 & a+bj^2+cj \end{pmatrix}$ diagonale, donc A(a,b,c) est diagonalisable,

et la matrice de passage P ne dépend pas de a, b, c

- c) Les valeurs propres de A(a,b,c) sont donc les éléments diagonaux de la matrice $aI_3 + bD + cD^2$ à savoir a+b+c, $a+bj+cj^2$ et $a+bj^2+cj$.
- d) On en déduit ensuite : $\det A = \det(aI_3 + bD + cD^2) = (a+b+c)(a+bj+cj^2)(a+bj^2+cj)$. Le calcul direct du déterminant donne aussi det $A = a^3 + b^3 + c^3 - 3abc$, d'où la jolie identité remarquable :

$$\forall (a,b,c) \in \mathbb{C}^3$$
, $a^3 + b^3 + c^3 - 3abc = (a+b+c)(a+bj+cj^2)(a+bj^2+cj)$.

II.A.6)

- a) E est l'ensemble des combinaisons linéaires de I₃, J et J²; c'est donc le sous-espace vectoriel de $\mathbb{M}_3(\mathbb{C})$ engendré par ces 3 matrices.
- b) (I₃, J, J²) est donc une famille génératrice de E; d'autre part il est immédiat de vérifier que $aI_3 + bJ + cJ^2 = O_3 \Longrightarrow a = b = c = 0$ donc c'est aussi une famille libre et par suite c'est une base de E. D'où dim E = 3.

II.B - Le cas $n \ge 3$ quelconque

II.B.1) Compte tenu de la définition de u et de la définition de la matrice d'un endomorphisme dans une

base, on a :
$$U = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & 0 & 1 & \ddots & 0 \\ \vdots & & \ddots & \ddots & 0 \\ 0 & & & \ddots & 1 \\ 1 & 0 & \dots & \dots & 0 \end{pmatrix}$$

II.B.2)
$$u(x_{\omega}) = u\left(\sum_{k=1}^{n} \omega^{k-1} e_{k}\right) = u(e_{1}) + \sum_{k=2}^{n} \omega^{k-1} u(e_{k}) = e_{n} + \sum_{k=2}^{n} \omega^{k-1} e_{k-1} = \omega^{n} e_{n} + \sum_{k=1}^{n-1} \omega^{k} e_{k} = \sum_{k=1}^{n} \omega^{k} e_{k}$$
 donc $u(x_{\omega}) = \omega x_{\omega}$.

II.B.3) Le calcul précédent montre que toute racine n-ième de l'unité, ω, est valeur propre de u (car $x_ω \ne 0$ en est un vecteur propre associé).

u possède donc n valeurs propres distinctes, et $\dim(\mathbb{C}^n) = n$; par suite, u est diagonalisable.

Si l'on note $\omega_k = \mathrm{e}^{\frac{2\mathrm{i}k\pi}{n}}$ pour $k \in [0; n-1]$ les n racines n-ièmes de l'unité, une base de vecteurs propres de u est formée des vecteurs $(x_{\omega_0}, x_{\omega_1}), \ldots, x_{\omega_{n-1}}$.

- II.B.4) Pour tout $k \in [0; n-1]$, $u(x_{\omega_k}) = \omega_k x_{\omega_k}$ donc $u^n(x_{\omega_k}) = \omega_k^n x_{\omega_k} = x_{\omega_k}$. Les x_{ω_k} formant une base de \mathbb{C}^n , on en déduit que $u^n = \mathrm{Id}_{\mathbb{C}^n}$ (on pouvait aussi calculer directement les $u^n(e_i)$, nul besoin de diagonaliser).
- II.C Le cas n = 4

$$\textbf{II.C.1)} \quad U = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \qquad , \qquad U^2 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \qquad , \qquad U^3 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \qquad , \qquad U^4 = I_4 \ .$$

II.C.2) Les racines quatrièmes de l'unité sont 1, i, -1 et i. D'après les résultats de **II.B**, U est diagonalisable, et $U = PDP^{-1}$, où D = diag(1, i, -1, -i) et où P est la matrice de passage de la base canonique à la base

$$\left(x_{\omega_0}, x_{\omega_1}, x_{\omega_2}, x_{\omega_3}\right) \text{ c'est-\`a-dire } P = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & \mathbf{i} & -1 & -\mathbf{i} \\ 1^2 & \mathbf{i}^2 & (-1)^2 & (-\mathbf{i})^2 \\ 1^3 & \mathbf{i}^3 & (-1)^3 & (-\mathbf{i})^3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & \mathbf{i} & -1 & -\mathbf{i} \\ 1 & -1 & 1 & -1 \\ 1 & -\mathbf{i} & -1 & \mathbf{i} \end{pmatrix}.$$

Puisque V = $aI_4 + bU + cU^2 + dU^3$, on aura V = $P(aI_4 + bD + cD^2 + dD^3)P^{-1}$. Puisque la matrice $aI_4 + bD + cD^2 + dD^3$ est diagonale, la matrice V est diagonalisable; ses valeurs propres sont les termes diagonaux de la matrice $aI_4 + bD + cD^2 + dD^3$, c'est-à-dire a+b+c+d, a+ib-c-id, a-b+c-d et a-ib-c-id, une base de vecteurs propres associés étant $(x_{\omega_0}, x_{\omega_1}, x_{\omega_2}, x_{\omega_3})$.

PARTIE III : Méthodes numériques de calcul.

III.A - Le calcul du polynôme caractéristique

- **III.A.1**) D'après le théorème de Cayley-Hamilton on a : $A^n = a_{n-1}A^{n-1} + a_{n-2}A^{n-2} + ... + a_0I_n$ donc en multipliant par X_0 à droite, on obtient l'égalité demandée.
- III.A.2) En considérant la matrice \tilde{A} écrite par blocs sous la forme $\tilde{A} = \begin{bmatrix} X_0 & AX_0 & \dots & A^{n-1}X_0 \end{bmatrix}$, c'est-à-dire

dont la j-ième colonne est $\mathbf{A}^{j-1}\mathbf{X}_0$, l'égalité de la question précédente s'écrit $\tilde{\mathbf{A}}\mathbf{X}=\mathbf{B}$ avec $\mathbf{X}=\begin{pmatrix} a_0\\a_1\\\vdots\\a_{n-1} \end{pmatrix}$ et $\mathbf{B}=\mathbf{A}^n\mathbf{X}_0$.

III.A.3) Si la famille $(X_0, AX_0, ..., A^{n-1}X_0)$ est libre, les colonnes de la matrice \tilde{A} sont indépendantes ; \tilde{A} est donc inversible et le système $\tilde{A}X = B$ est de Cramer (c'est-à-dire possède une solution unique).

L'énoncé est ici inachevé! En effet, on ne voit pas bien à quoi servent ces questions! On pouvait remarquer que, si l'on part d'un vecteur X_0 quelconque, on peut alors calculer la matrice \tilde{A} en calculant simplement les A^kX_0 pour $k \in [0; n-1]$, puis, en résolvant le système $\tilde{A}X = A^nX_0$, on trouve le vecteur X c'est-à-dire les coefficients du polynôme caractéristique (sauf si par malheur le choix de X_0 conduit à un système qui n'est pas de Cramer!). C'est la **méthode de Krylov**.

III.B - Le calcul approché des valeurs propres

- III.B.1) On montre que F est un sous-espace vectoriel de l'espace vectoriel $\mathbb{R}^{\mathbb{N}}$ des suites réelles :
 - F est non vide, car il contient la suite nulle.

– Soient x et y deux suites de F, et $\lambda \in \mathbb{R}$. On a alors, pour tout entier $k \ge 0$:

$$\begin{split} \left(\lambda x + y\right)_{n+k} &= \lambda x_{n+k} + y_{n+k} \\ &= \lambda \left(a_{n-1}x_{k+n-1} + a_{n-2}x_{k+n-2} + \dots a_0 x_k\right) + \left(a_{n-1}y_{k+n-1} + a_{n-2}y_{k+n-2} + \dots a_0 y_k\right) \\ &= a_{n-1} \left(\lambda x + y\right)_{k+n-1} + a_{n-2} \left(\lambda x + y\right)_{k+n-2} + \dots + a_0 \left(\lambda x + y\right)_k \end{split}$$

ce qui prouve que la suite $\lambda x + y$ appartient à F et démontre le résultat annoncé.

- III.B.2) Pour tout $j \in [\![1\,;n]\!]$ λ_j est une valeur propre de A, donc est racine de son polynôme caractéristique c'est-à-dire $\lambda_j^n = \sum_{i=0}^{n-1} a_i \lambda_j^i$. On aura alors, pour tout entier $k \geqslant 0$: $\lambda_j^{n+k} = \sum_{i=0}^{n-1} a_i \lambda_j^{i+k}$, ce qui signifie que la suite $\left(\lambda_j^k\right)_{k \in \mathbb{N}}$ est élément de F.
- III.B.3) Démontrons d'abord les propriétés admises par l'énoncé :
 - L'application $\varphi: \left\{ \begin{array}{l} F \longrightarrow \mathbb{R}^n \\ y \longmapsto (y_0, y_1, \ldots, y_{n-1}) \end{array} \right.$ est linéaire (vérification facile) et bijective, puisque toute suite élément de F est entièrement déterminée, et ce de façon unique, par la donnée de ses n premiers termes.

Donc φ est un isomorphisme d'espaces vectoriels, d'où dim $F = \dim \mathbb{R}^n = n$.

- Les λ_j étant n réels distincts, montrons que les suites $\left(\lambda_j^k\right)_{k\in\mathbb{N}}$ forment une famille libre. Pour cela, supposons qu'il existe une combinaison linéaire de ces suites qui soit égale à la suite nulle, c'est-à-dire qu''il existe n scalaires α_i tels que, pour tout $k\in\mathbb{N}$, on ait $\sum_{i=1}^n \alpha_j \lambda_j^k = 0$.

On a alors, en particulier, lorsque $k \in \llbracket 0; n-1 \rrbracket$, le système $\begin{cases} \alpha_1 + \alpha_2 + \ldots + \alpha_n & = & 0 \\ \alpha_1 \lambda_1 + \alpha_2 \lambda_2 + \ldots + \alpha_n \lambda_n & = & 0 \\ \alpha_1 \lambda_1^2 + \alpha_2 \lambda_2^2 + \ldots + \alpha_n \lambda_n^2 & = & 0 \\ \ldots & \ldots & \ldots \\ \alpha_1 \lambda_1^{n-1} + \alpha_2 \lambda_2^{n-1} + \ldots + \alpha_n \lambda_n^{n-1} & = & 0 \end{cases}$

Il s'agit d'un système linéaire homogène dont la matrice est $\begin{pmatrix} 1 & 1 & \dots & 1 \\ \lambda_1 & \lambda_2 & \dots & \lambda_n \\ \lambda_1^2 & \lambda_2^2 & \dots & \lambda_n^2 \\ \vdots & \dots & \dots & \vdots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \dots & \lambda_n^{n-1} \end{pmatrix}, \text{ qui est une}$

matrice de Vandermonde inversible, les λ_j étant distincts. Par suite ce système possède pour seule solution $\alpha_1 = \alpha_2 = \dots = \alpha_n = 0$, ce qui démontre le résultat annoncé.

- D'après ce qui précède, les suites $\left(\lambda_j^k\right)_{k\in\mathbb{N}}$ pour $j\in [\![1\,;n]\!]$ forment une famille libre de n éléments dans l'espace vectoriel F de dimension n, donc en forment une base. Toute suite y de F s'écrit donc comme combinaison linéaire de façon unique de ces suites, c'est-à-dire qu'il existe n réels $\alpha_1,\alpha_2,\ldots,\alpha_n$ tels que, pour tout $k\in\mathbb{N}$, $y_k=\sum_{j=1}^n\alpha_j\lambda_j^k$.
- **II.B.4)a)** Avec les notations précédentes, on a, pour tout $k \in \mathbb{N}$, $\frac{y_k}{\lambda_1^k} = \alpha_1 + \sum_{j=2}^n \alpha_j \left(\frac{\lambda_j}{\lambda_1}\right)^k$. Puisque pour $j \ge 2$ $\left|\frac{\lambda_j}{\lambda_1}\right| < 1$ on a $\lim_{k \to +\infty} \left(\frac{\lambda_j}{\lambda_1}\right)^k = 0$ d'où $\lim_{k \to +\infty} \frac{y_k}{\lambda_1^k} = \alpha_1$. Puisque $\alpha_1 \ne 0$ on en déduit $y_k \underset{k \to +\infty}{\sim} \alpha_1 \lambda_1^k$.
 - **b)** λ_1 est non nulle puisque l'énoncé a supposé $|\lambda_1| > |\lambda_2| > \dots$. On a donc pour tout entier k $\alpha_1 \lambda_1^k \neq 0$ et l'équivalent trouvé ci-dessus implique que y_k est non nul au moins à partir d'un certain rang (résultat du cours).
 - c) On peut donc pour k assez grand considérer le quotient $\frac{y_{k+1}}{y_k}$, et l'on aura $\frac{y_{k+1}}{y_k} \sim \frac{\alpha_1 \lambda_1^{k+1}}{\alpha_1 \lambda_1^k}$ puis $\lim_{k \to +\infty} \frac{y_{k+1}}{y_k} = \lambda_1$.

- II.B.5) Je vois ici deux réponses possibles, pas très satisfaisantes (erreurs d'arrondi nombreuses et qui s'accumulent!):
 - Une fois λ_1 obtenu, on peut effectuer la division euclidienne du polynôme caractéristique $\chi_A(\lambda)$ par $\lambda \lambda_1$, et réitérer le processus avec le nouveau polynôme obtenu et de nouvelles suites définies par récurrence...
 - On peut aussi considérer la suite (z_k) définie par $z_k = y_k \alpha_1 \lambda_1^k$ (où α_1 aura été calculé en utilisant $\lim_{k \to +\infty} \frac{y_k}{\lambda_1^k} = \alpha_1$). Ainsi, $z_k = \sum_{j=2}^n \alpha_j \lambda_j^k$ et, en supposant que α_2 est non nul, on aura alors, de la même façon que ci-dessus, $\lim_{k \to +\infty} \frac{z_{k+1}}{z_k} = \lambda_2$.

III.C - Illustration sur un exemple

- **III.C.1**) Pour la matrice A de l'exemple, on trouve $\chi_A(\lambda) = \lambda^2 3\lambda + 2$, $\lambda_1 = 2$ et $\lambda_2 = 1$.
- **III.C.2**) D'après Cayley-Hamilton on a $A^2 = 3A 2I_2$; la relation de récurrence associée est donc : $y_{k+2} = 3y_{k+1} 2y_k$.
- III.C.3) Pas de difficulté ici.

```
def Suite_DM1o(n):
    # les n premiers termes de la suite
    yo = o
    y1 = 1
    suite = [yo, y1]
    for i in range(n-2):
        y = 3*y1 - 2*y0
        suite.append(y)
        yo = y1
        y1 = y
    return suite
```

print (Suite_DM10(10))

Remarque : les méthodes habituelles pour les suites récurrentes linéaires d'ordre 2 donne facilement $y_k = 2^k - 1$. Donc le programme précédent n'a strictement aucun intérêt...

III.C.4) Puisqu'on ne connaît pas λ_1 , (enfin si, mais on fait semblant...) on ne peut pas directement trouver k tel que $\left|\frac{y_{k+1}}{y_k} - \lambda_1\right| < \epsilon$.

On peut écrire un programme un peu plus élaboré qui détermine la valeur de l'entier k tel que $\left|\frac{y_{k+2}}{y_{k+1}} - \frac{y_{k+1}}{y_k}\right| < \varepsilon$ où ε est donné, puis qui renvoie la valeur de k et l'approximation obtenue. Pour cela, il suffit de ne stocker à tout instant que les valeurs de y_k , y_{k+1} et y_{k+2} . Puisque $y_0 = 0$, on commencera à k = 1:

def ApproxValeurPropre(eps):

```
k = 1
    yk = 1
           # représente y[k]
    yk1 = 3 \# représente y[k+1]
    yk2 = 7 \# représente y[k+2]
    quotient1 = yk1 / yk
    quotient2 = yk2 / yk1
    while abs(quotient2 - quotient1) > eps:
        k = k+1
        yk3 = 3*yk2 - 2*yk1
        quotient1 = quotient2
        quotient2 = yk3 / yk2
        yk = yk1
        yk1 = yk2
        yk2 = yk3
    return (k, quotient2)
S = ApproxValeurPropre(1e-6)
print(" rang k = ",S[o],"valeur approchée = ",S[1])
```

Remarque : là encore, puisque l'on sait ici que $y_k = 2^k - 1$ et $\lambda_1 = 2$, ce programme n'a guère d'intérêt!