Homework 2

Mike Gao 260915701

Prof. Prakash Panangaden

Question 1

Prove F is not regular:

$$F' = \overline{F} \cap ab^*c^* = \{ab^jc^k \mid j, k \ge 0 \text{ and } j \ne k\}$$
$$F'' = \overline{F'} \cap ab^*c^* = \{ab^rc^r \mid r > 0\}$$

Since $\{a^nb^n|n\geq 0\}$ is not regular by pumping lemma, F'' is not regular, therefore, F is not regular.

Show that it satisfy the pumping lemma: We choose p=2, So $\forall w \in L$ such that $|w| \geq p$, w=xyz where $|y| \geq 1$ and $|xy| \leq p$, four cases:

- 1. i=0, so $w=b^jc^k$. Then y=b or c is the first letter of the word, and $xy^nz=b^nb^{j-1}c^k\in L$ or $xy^nz=c^nc^{k-1}\in L$.
- 2. i = 1, so j = k, $w = ab^{j}c^{j}$. Set y = a and $x = \epsilon$. $w = a^{n}b^{j}c^{j} \in L$.
- 3. i=2, so $w=a^2b^jc^k$. Set y=aa and $x=\epsilon$. $w=(aa)^nb^jc^k\in L$.
- 4. i > 2, so $w = a^i b^j c^k$. Set y = a and $x = \epsilon$. $w = a^n a^{i-1} b^j c^k \in L$.

It satisfy the pumping lemma, but is in no way contradicting, since the pumping lemma states that all regular language can be pumped, not the other way around.

Question 2

2.1

False. Suppose A = nil and B is any non regular language, clearly, $A \subseteq B$ but B not regular.

2.2

False. Let $A = \{a^*\} \subseteq \Sigma^*$ be a regular language, $B = \{a^{2n} | n \ge 0\} \subseteq \Sigma^*$ be a non regular language. AB and A are regular, but B clearly not.

2.3

False. Counterexample: Assume $\Sigma = \{x,y\}$ The sets $S_1 = \{xy\}, S_2 = \{xxyy\}, S_3 = \{xxxyyy\}$ etc are regular. While $\bigcup_{i=1}^{\inf} S_i = \{x^ny^n|n \geq 0\}$ But it is clearly not regular. So this is false.

2.4

False. Let A be some non regular language on a finite alphabet Σ , thus $A\subseteq \Sigma^*$ and Σ^* is regular.

Question 3

3.1

Let DFA $D=(S,s_0,F,\delta)$ be a DFA that recognizes L, now we construct a NFA (Q,q_0,F',δ) that recognizes CYC(L). The state space of the NFA to be $Q=S\times S\times S\times \{0,1\}$ The first S tracks v, the second and third S guess where u start at, $\{0,1\}$ tracks whether we're reading u or v.

```
Start state: Q_0 = \{(s_0, s, s, 0) | s \in S\}

Accepting state: F' = \{(s, t, s, 1) \mid t \in F\}

If b = 0 and \delta(t, a) \notin F then \Delta((s, t, t_c, b), a) = \{(s, t', t_c, b) \mid t' = \delta(t, a)\}.

If b = 0 and \delta(t, a) \in F then \Delta((s, t, t_c, b), a) = \{(s', t', t_c, b') \mid b' = 1, t' = \delta(t, a)\}

If b = 1 then \Delta((s, t, t_c, b), a) = \{(s', t, t_c, b) \mid s' = \delta(s, a)\}.
```

This works because the end of v will reach the start of u. u will end in an accepting state. So that $vu \in L$.

3.2

Let $L = a^n b a^n$, the language is not regular. $CYC(L) = a^m b a^n, m + n \equiv 0 \mod 2$ which is regular since the following DFA recognizes it.

Question 4

Counter example: Consider the following finite language $L = \{aa, ac, ba, bc, cb, db\}$, it is clear that $a \sim b$ $c \sim d$ However, it is false that $ac \sim bd$ since $ac \in L$ while $bd \notin L$. Hence \equiv_L is not a congruence relation.

Show $x \approx_L y \leftrightarrow \forall u, v \in \Sigma^*, uxv \in L \leftrightarrow uyv \in L$

Let us assume that $x \approx_L y$ and $p \approx_L q$ Let us have arbitrary $u, v \in \Sigma^*$. Since we have $x \approx_L y$, $uxpv \in L \leftrightarrow uypv \in L$ Since we have $p \approx_L q$ we can get $uypv \in L \leftrightarrow uyqv \in L$ Hence we have $xp \approx_L yq$

Question 5

5.1

Not Equivalent.

$$T = (\phi, \neg, \psi) \to (\neg \phi, \neg \psi) \to (\neg \phi, \neg \psi) \to (\neg \phi, \neg \psi) \to \cdots$$

 $T \models (\Box \Diamond \phi \implies \Box \Diamond \psi)$ since the left side of the arrow is false, and false can imply anything. However, $T \not\models \Box (\phi \implies \Diamond \psi)$.

5.2

Not Equivalent

Let T be a transition system where $\phi \wedge \neg \psi$ for all odd step and $\neg \phi \wedge \psi$ for all even step, $T \models \Diamond \phi \wedge \Diamond \psi$ however $T \not\models \Diamond (\phi \wedge \psi)$ since no step in ϕ and ψ are both true.

5.3

Equivalent

$$\bigcirc \Diamond \phi \equiv \bigcirc (\text{ true } U\phi)$$

$$\equiv (\bigcirc \text{ true })U(\bigcirc \phi)$$

$$\equiv \text{ true } U(\bigcirc \phi)$$

$$\equiv \Diamond \bigcirc \phi$$

Question 6

6.1

Formula : $\phi p = vX.p \land \bigcirc \bigcirc X$

$$(\phi p)_0 = \text{true}$$

$$(\phi p)_1 = p$$

$$(\phi p)_2 = p \land \bigcirc \bigcirc p$$

$$(\phi p)_3 = \text{true}$$

$$\vdots$$

$$(\phi p)_n = p \land \bigcirc \bigcirc p \land \bigcirc \bigcirc \bigcirc p \land \cdots \land \bigcirc^{n-1} p$$

6.2

Formula: $\star p = \mu X.p \wedge \bigcirc \bigcirc X$

$$(\star p)_0 = \text{false}$$

 $(\star p)_1 = p \land \bigcirc \bigcirc \text{false}$
 $= \text{false}$

Because it says immediately after a p there is $\neg p$ and immediately after a $\neg p$ there is a p. Odd(P) doesn't necessarily have alternating p and $\neg p$ states.

Question 7

Lets first analyze the effect of the binary operator U. Let $\phi = \psi_1 U \psi_2$ be a LTL formula. ϕ is true on σ if there exists $j \geq 0$ such that $\delta[j...] \models \psi_2$ and for all $i < j \delta[i...] \models \psi_1$ We can see that the truth value of ϕ depends on the existence of a state that satisfy ψ_2 after step $j \geq 0$ where all state before that satisfy ψ_1 no matter how many U operators were added to ϕ . The truth value stays the same for some $j \geq 0$ An example: let α and β be some states:

$$(((a) \to (b) \to (a) \to (a) \to \cdots) \models \phi) \equiv (((a) \to (a) \to (b) \to (a) \to (a) \to \cdots) \models \phi)$$
$$\equiv (((a) \to \cdots \to (a) \to (b) \to (a) \to (a) \to \cdots) \models \phi)$$

Since U has this property, other LTL operators such as \square also has this property since they can be written as U, so, in a LTL formula ϕ with U, \lozenge and \square only, ϕ has the same truth value on every σ_i for $i \ge 0$.

Now lets discuss \bigcirc : Let $\phi = \bigcirc^i \psi$. We can see that the truth value of ϕ depends soly on $\sigma[i]$ since ϕ is true on σ if $\sigma[i..] \models \psi$.

Consider a LTL formula ϕ with only \bigcirc operators, since ϕ depends solely on $\sigma[i]$ and $\sigma[i]$ remains unchanged with variation of j, ϕ has the same truth value on every σ_j for j > i.

Thus, given a proposition p and any LTL formula ϕ containing n next operators, the formula ϕ has the same truth value on every σ_i with i > n.

Now, it is pretty clear that odd(p) cannot be expressed in LTL. Let's prove this by contradiction. Assume it can be expressed in LTL ϕ . Then ϕ must have a finite number of next operators. Assume ϕ has n next operators. Then, by the statement we proved earlier, σ_i is true for all i > n which is a contradiction since one of σ_{n+1} and σ_{n+2} must be true, and the other one must be false.

Question 8

8.1

True. We want to show that both expression recognize the same language, such that: $L_{\omega}((E_1 + E_2) \cdot F^{\omega}) \equiv L_{\omega}(E_1 \cdot F^{\omega} + E_2 \cdot F^{\omega})$

$$L_{\omega}((E_{1} + E_{2}) \cdot F^{\omega}) \equiv L_{\omega}(E_{1} + E_{2}) \cdot L_{\omega}(F^{\omega})$$

$$\equiv (L_{\omega}(E_{1}) \cup L_{\omega}(E_{2})) \cdot L_{\omega}(F^{\omega})$$

$$\equiv \{xy|x \in (L_{\omega}(E_{1}) \cup L_{\omega}(E_{2})) \wedge y \in L_{\omega}(F^{\omega})\}$$

$$\equiv \{xy|x \in (L_{\omega}(E_{1}) \cup L_{\omega}(E_{2})) \wedge y \in L_{\omega}(F^{\omega})\}$$

$$\equiv \{xy|(x \in L_{\omega}(E_{1}) \wedge y \in L_{\omega}(F^{\omega})) \vee (x \in L_{\omega}(E_{2}) \wedge y \in L_{\omega}(F^{\omega}))\}$$

$$\equiv \{xy|x \in L_{\omega}(E_{1}) \wedge y \in L_{\omega}(F^{\omega})\} \cup \{xy|x \in L_{\omega}(E_{2}) \wedge y \in L_{\omega}(F^{\omega})\}$$

$$\equiv L_{\omega}(E_{1} \cdot F^{\omega}) \cup L_{\omega}(E_{2} \cdot F^{\omega})$$

$$\equiv L_{\omega}(E_{1} \cdot F^{\omega} + E_{2} \cdot F^{\omega})$$

8.2

False. Let $E = \epsilon$, $F_1 = x$, $F_2 = y$. $xyxyxyxyxy... \in E \cdot (F_1 + F_2)^{\omega}$ but $\notin E \cdot F_1^{\omega} + E \cdot F_2^{\omega}$

8.3

False. Consider E=x, F=y Then $(E^*F)^\omega\equiv (x^*y)^\omega$ while $E^*F^\omega\equiv x^*y^\omega$ $(x^*y)^\omega$ recognize word xyxyxyxyxy... but x^*y^ω is incapable of recognizing the same word.

Question 9

9.1

 $t_0 \models [a]\langle b \rangle true$ $s_0 \not\models [a]\langle b \rangle true$

The formula state that there exists a connected state over path a from which does not exist path b. s_0 satisfy this formula because the path from s0 to s3 doesn't have a b path, whereas t_0 does not satisfy it because a path leads to a state with b path.

9.2

 t_0 and s_0 agree on the following base case formulas: true, $\langle a \rangle T$, $\langle b \rangle T$, $\langle a \rangle \langle \langle b \rangle T \rangle$

By induction, they all should agree on any boolean combination of these formulas, for example, $t_0, s_0 \models (\langle a \rangle \text{true}) \wedge (\langle a \rangle \langle b \rangle \text{true})$

Question 10

