Recorda-se que o método de Gauss permite transformar uma matriz

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pn} \end{bmatrix}$$

numa matriz em escada através de operações sobre as linhas que podemos resumir do seguinte modo. Vamos denotar por $L_1, ..., L_p$ as linhas e $C_1, ..., C_n$ as colunas. Se C_1 não for nula, um dos a_{i1} é não nulo e, trocando eventualmente linhas, podemos supor que $a_{11} \neq 0$, ou seja que a_{11} é o pivô da linha L_1 . Usando este pivô, podemos anular o resto da coluna C_1 efetuando as seguintes operações:

Aqui M é a matriz de ordem $(p-1) \times (n-1)$ obtida efetuando as operações indicadas. Repetimos depois o processo na matriz M e assim sucessivamente (podendo entretando trocar linhas e/ou simplificar linhas através de operações $L_i \leftarrow \lambda L_i$ com $\lambda \neq 0$) até obter uma matriz em escada. Se a coluna C_1 for nula, começamos o trabalho com a coluna C_2 .

Exercício 16a): Considera-se o sistema em \mathbb{R}^3 dado por $\begin{cases} x+3y-z&=1\\ 2x-y+z&=1\\ -3x-2y+2z&=0 \end{cases}$

A matriz ampliada do sistema é dada por

$$[A|b] = \begin{bmatrix} 1 & 3 & -1 & 1 \\ 2 & -1 & 1 & 1 \\ -3 & -2 & 2 & 0 \end{bmatrix}$$

De modo a transformar a matriz [A|b] numa matriz em escada efetuamos as seguintes operações:

Designando por $[\tilde{A}|\tilde{b}]$ a matriz obtida (em que \tilde{A} é a matriz formada pelas 3 primeiras colunas), podemos concluir, considerando o número de pivôs, que $\operatorname{car}([A|b]) = \operatorname{car}([\tilde{A}|\tilde{b}]) = 3$ e que $\operatorname{car}(A) = \operatorname{car}(\tilde{A}) = 3$. Como $\operatorname{car}([A|B]) = \operatorname{car}(A)$, o sistema é possível. Este sistema é equivalente ao sistema

$$\begin{cases} x + 3y - z &= 1\\ -7y + 3z &= -1\\ 2z &= 2 \end{cases}$$

que podemos resolver por substituição inversa obtendo $S = \{(2/7, 4/7, 1)\}.$

Exercício 16c): Considera-se o sistema em \mathbb{R}^3 dado por $\begin{cases} 5y + 2z = 5 \\ x + y = 2 \\ 2x + 3y = 2 \\ 3x - 2z = 2 \end{cases}$

A matriz ampliada do sistema é dada por

$$[A|b] = \begin{bmatrix} 0 & 5 & 2 & 5 \\ 1 & 1 & 0 & 2 \\ 2 & 3 & 0 & 2 \\ 3 & 0 & -2 & 2 \end{bmatrix}$$

Efetuemos primeiro trocas de linha de modo a colocar a linha L_2 em primeira posição e usar depois o pivô desta linha. Escolhemos aqui de trocar linhas de modo a colocar também a linha L_1 na última posição obtendo assim a seguinte matriz

$$[\hat{A}|\hat{b}] = \begin{bmatrix} 1 & 1 & 0 & 2\\ 2 & 3 & 0 & 2\\ 3 & 0 & -2 & 2\\ 0 & 5 & 2 & 5 \end{bmatrix}$$

De modo a transformar a matriz $[\hat{A}|\hat{b}]$ numa matriz em escada efetuemos agora as seguintes operações:

Efuando ainda a operação $L_4 \leftarrow L_4 + L_3$ obtemos a matriz

$$[\tilde{A}|\tilde{b}] = \begin{bmatrix} 1 & 1 & 0 & 2\\ 0 & 1 & 0 & -2\\ 0 & 0 & -2 & -10\\ 0 & 0 & 0 & 5 \end{bmatrix}$$

e podemos concluir, pelo número de pivôs em cada matriz, que $\operatorname{car}([A|b]) = \operatorname{car}([\tilde{A}|\tilde{b}]) = 4$ e que $\operatorname{car}(A) = \operatorname{car}(\tilde{A}) = 3$. Como $\operatorname{car}([A|B]) \neq \operatorname{car}(A)$, o sistema é impossível e $\mathcal{S} = \emptyset$.

Exercício 14b). Trocando a segunda e terceira equação, o sistema dado é equivalente ao seguinte sistema (em \mathbb{R}^4):

$$\begin{cases}
x_1 + x_2 + x_3 + x_4 = 3 \\
-x_2 + x_3 - 2x_4 = -3 \\
-7x_4 = -7
\end{cases}$$

Resolvendo por substituição inversa, obtemos

$$(S) \Leftrightarrow \begin{cases} x_1 &= 3 - x_2 - x_3 - x_4 \\ x_2 &= 3 + x_3 - 2x_4 \\ x_4 &= 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_1 &= 3 - (1 + x_3) - x_3 - 1 \\ x_2 &= 1 + x_3 \\ x_4 &= 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_1 &= 1 - 2x_3 \\ x_2 &= 1 + x_3 \\ x_4 &= 1 \end{cases}$$

e obtemos que o conjunto de soluções é dado por $(1, 1, 0, 1) + \langle (-2, 1, 1, 0) \rangle$.

Um algoritmo para calcular a inversa de uma matriz invertível

Seja A um matriz quadrada de ordem $n \times n$ invertível.

Ideia: Se efetuando uma sequência de operações elementares sobre as linhas transformamos A na matriz I_n isto significa que multiplicámos A à esquerda por uma matriz P tendo obtido $PA = I_n$ e P será precisamente A^{-1} . De modo a obter explicitamente a matriz $P = A^{-1}$ vamos formar a matriz $[A|I_n]$ e efetuar sobre esta matriz as operações que transformam A em I_n passando assim de $[A|I_n]$ a $[PA|PI_n] = [I_n|P] = [I_n|A^{-1}]$ o que permitíra a identificação da matriz A^{-1} .

Consideremos o seguinte exemplo:

$$A = \left[\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array} \right]$$

Como A é de ordem 3×3 , A é invertível se e só se car(A) = 3. As seguintes operações

transformam A numa matriz em escada:

$$A \xrightarrow[L_2 \leftarrow L_2 - L_1]{} \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow[L_3 \leftarrow L_3 + L_2]{} \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

Denotando por \tilde{A} a matriz obtida, tem-se $\operatorname{car}(A) = \operatorname{car}\tilde{A} = 3$ pelo que A é invertível. Para calcular A^{-1} , formamos a matriz $[A|I_3]$ e efetuamos operações sobre as linhas que permitam passar de A em I_3 . As operações podem ser organizadas do seguinte modo.

1) O primeiro grupo de operações que efectuamos corresponde às operações do método de Gauss que permitem transformar a matriz A numa matriz em escada ou, mais precisamente aqui, numa matriz triângular superior:

$$[A|I_{3}] = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{L_{2} \to L_{2} - L_{1}} \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & -1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{L_{3} \to L_{3} + L_{2}} \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 2 & -1 & 1 & 1 \end{bmatrix}$$

2) O segundo grupo de operações consiste em multiplicações das linhas por números (não nulos) apropriados e tem o objectivo de substituir a diagonal da matriz do quadro de esquerdo por uma diagonal de 1:

$$\begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & -1 & 1 & 0 \\ 0 & 0 & 2 & -1 & 1 & 1 \end{bmatrix} \xrightarrow{L_2 \to -L_2} \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 & -1 & 0 \\ 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

3) O último grupo de operações tem o objectivo de substituir por zeros os elementos que formam o triângulo por cima da diagonal na matriz do quadro esquerdo. A fim de fazer isto, vamos utilizar a última linha para transformar em 0 os elementos da última coluna que estão por cima da diagonal, e repetir depois a mesma estrátegia com a matriz obtida esquecendo a última linha e a última coluna. Estaremos assim a aplicar o método de Gauss de "baixo para cima" e da direita para a esquerda. Fazendo assim, obtemos:

$$\begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 & -1 & 0 \\ 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \xrightarrow{L_2 \to L_2 + L_3} \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Podemos assim concluir que

$$A^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

TPC: Determine a inversa da matriz B do exercício 19 da Folha 4.