Tightening bounds / redundant constraints

Consider the LP below,

Derive tightened bounds for variables x_1 and x_3 from the first constraint and eliminate redundant constraints after that.

Solution: We can obtain upper bounds for x_1 and x_3 from the first constraint. For that, we need the minimum activity $\alpha_{min} = \sum_{j:a_j>0} a_j l_j + \sum_{j:a_j<0} a_j u_j$. That is, the variables with a positive coefficient are at their lower bounds and the ones with negative coefficients at their upper bounds. This leads to the smallest possible value $a^{\top}x$. From the lecture material, we know that $a^{\top}x \leq b$ can (for a positive a_j) be written as $x_j \leq \frac{b-(a^{\top}x-a_jx_j)}{a_j}$. This is just the original constraint rearranged. The part $a^{\top}x - a_jx_j$ is the original LHS without the variable x_j . Using the idea of minimum activity, we get $x_j \leq \frac{b-(a^{\top}x-a_jx_j)}{a_j} \leq \frac{b-(\alpha_{min}-a_jl_j)}{a_j}$, where $\alpha_{min} - a_jl_j$ is the minimum activity without variable x_j .

The minimum activity for the first constraint is $\alpha_{min} = 5*0 - 2*1 + 8*1 = 6$. Thus, $x_1 \leq \frac{15 - (6 - 5*0)}{5} = \frac{9}{5}$ and $x_3 \leq \frac{15 - (6 - 8*1)}{8} = \frac{17}{8}$.

Now that we have a lower and upper bound for all constraints, minimum and maximum activities are all bounded. In the original formulation, minimum activity for the second constraint would be $\alpha_{min} = 8*0 + 3*0 - 1*\infty = -\infty$. Using the bounds

$$0 \le x_1 \le \frac{9}{5}$$
$$0 \le x_2 \le 1$$
$$1 \le x_3 \le \frac{17}{8},$$

we can obtain the minimum and maximum activity for all constraints:

Constraint	α_{min}	α_{max}	b
1	6	26	15
2	-2.125	16.4	9
3	1	4.925	6

For the first and second constraint, b is between α_{min} and α_{max} , but for the last constraint, $b>\alpha_{max}$. This means that the last constraint is redundant, since even the largest possible value for the LHS considering the variable bounds is less than the RHS.