Probability Theory

February 10, 2019

1 Notation

```
: Real line.
                                           : Extended real line, i.e., \mathbb{R}^* := \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}.
                                           : Non-negative extended real line, i.e., \mathbb{R}_+^* := \{r \in \mathbb{R}^*; r \geq 0\}.
   (a_n) \uparrow a, for a_n, a \in \mathbb{R}^*
                                           : (a_n) is a monotonically increasing real (extended)
                                            sequence (i.e., a_{n+1} \ge a_n, \forall n) and (a_n) converges to a.
(f_n) \uparrow f, for f, f_n : \Omega \to \mathbb{R}^*
                                            : (f_n) is a monotonically increasing real (extended)
                                            valued function sequence (i.e., f_{n+1}(\omega) \ge f_n(\omega), \omega \in \Omega)
                                            and (f_n) converges to f, i.e., \lim_{n\to\infty} f_n(\omega) = f(\omega), \forall \omega \in \Omega.
I_A
f_1 \wedge f_2, for f_1, f_2 : \Omega \to \mathbb{R}^*
                                            : Indicator function, i.e., I_A=1 if \omega\in A and I_A=0 otherwise.
                                           : f \wedge f_2 is a function from \Omega to \mathbb{R}^* defined as
                                            (f_1 \wedge f_2)(\omega) = \min \{f_1(\omega), f_2(\omega)\}.
f_1 \vee f_2, for f_1, f_2 : \Omega \to \mathbb{R}^* : f \vee f_2 is a function from \Omega to \mathbb{R}^* defined as
                                            (f_1 \vee f_2)(\omega) = \max \{f_1(\omega), f_2(\omega)\}.
```

2 Probability space

Definition: The 3-tuple (Ω, \mathcal{F}, P) is called a probability space, where

- 1. Ω is a set called the sample space.
- 2. \mathcal{F} is a σ -field.

Definition of σ **-field:** \mathcal{F} is a non-empty collection of subsets of Ω which satisfies

- (S1) $\Omega \in \mathcal{F}$.
- (S2) If $A \subseteq \Omega$ and $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$.
- (S3) If each set in the collection $\{A_n; n \in \mathbb{N}\}$ belongs to \mathcal{F} , *i.e.*, $A_n \in \mathcal{F}$, $\forall n \in \mathbb{N}$ (not necessarily disjoint), then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.

Note that $A \subseteq \Omega$ is called \mathcal{F} -set if $A \in \mathcal{F}$.

3. P is a probability measure.

Definition of probability measure: $P: \mathcal{F} \to [0,1]$ is called a probability measure if it satisfies:

- (M1) $P(\Omega) = 1$ and $P(\emptyset) = 0$.
- (M2) If $\{A_n\}_{n\in\mathbb{N}}$ is a <u>disjoint collection</u> of \mathcal{F} -sets, *i.e.*, $A_k \cap A_j = \emptyset$, for $k \neq j$, then

$$P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n).$$
 (1)

This property is called the *countable additivity of the probability measure*.

In other words, P is a set function (*i.e.*, P takes sets in \mathcal{F} to real values in [0,1]) which satisfies M1 and M2.

Remark 1. A similar concept to countable additivity is the finite additivity which is defined as follows: If $\{A_i; 1 \leq i \leq n\}$ is a finite collection of disjoint \mathcal{F} -sets, then $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$. Note that countable additivity implies finite additivity. Indeed, by considering the countable collection $\{B_i; i \in \mathbb{N}\}$, where $B_1 = A_1, \ldots, B_n = A_n$, and $B_k = \emptyset$, for k > n, the claim follows.

Remark 2. A more generalized set function is the notion of measure. A measure $\mu: \mathcal{F} \to \mathbb{R}_+^*$ (contrary to the probability measure where the range of P is contained in [0,1]) which satisfies $\mu(\emptyset) = 0$ (need not satisfy $\mu(\Omega) = 1$) and countable additivity (M2). Thus, probability measure is a measure with the additional condition that $P(\Omega) = 1$.

Lemma 1. If A and B are \mathcal{F} -sets with $A \subseteq B$, then $P(A) \leq P(B)$. Also, $P(B \setminus A) = P(B) - P(A)$.

Proof. Note that since $A \subseteq B$, we have $B = A \cup (B \setminus A)$ and, A and $B \setminus A$ are disjoint. Now, by the finite additivity of P, we have

$$P(B) = P(A) + \underbrace{P(B \setminus A)}_{\geq 0} \tag{2}$$

$$\Rightarrow P(B) > P(A)$$
.

This proves the first part. The second part follows from Eq. (2).

Lemma 2. If A is an \mathcal{F} -set, then $P(A^c) = 1 - P(A)$.

Proof. Note that $A \cup A^c = \Omega$. Also, A and A^c are disjoint. Therefore by finite additivity property of P and M1, we have

$$1 = P(\Omega) = P(A \cup A^c) = P(A) + P(A^c).$$

Hence, the claim follows.

2.1 Limit of sets

Definition: (Liminf of a sequence of sets) Given a sequence of sets $(A_n)_{n\in\mathbb{N}}$, where $A_n\subseteq\Omega$, we define

$$\liminf_{n} A_n = \bigcup_{n} \bigcap_{k \ge n} A_k.$$
(3)

Definition: (Limsup of a sequence of sets) Given a sequence of sets $(A_n)_{n\in\mathbb{N}}$, where $A_n\subseteq\Omega$, we define

$$\limsup_{n} A_n = \bigcap_{n} \bigcup_{k \ge n} A_k.$$
(4)

Definition: (Limit of a sequence of sets) We say the limit of the sequence of sets $(A_n)_{n\in\mathbb{N}}$ exists if $\liminf_n A_n = \limsup_n A_n$ and the $\lim_n A_n$ is that common set.

We will consider specific sequences here

2.1.1 Monotonically increasing sequence of sets

Definition: A sequence $(A_n)_{n\in\mathbb{N}}$ is called monotonically increasing sequence if $A_n\subseteq A_{n+1}, \forall n\in\mathbb{N}$.

In this case, note that for $n \in \mathbb{N}$,

$$\bigcap_{k \ge n} A_k = A_n, \text{ since } A_n \subseteq A_{n+1} \subseteq A_{n+2} \dots$$

Therefore,

$$\liminf_{n} A_n = \bigcup_{n} \bigcap_{k>n} A_k = \bigcup_{n} A_n.$$
(5)

Note that for n > 1, since $A_1 \subseteq A_2 \cdots \subseteq A_{n-1} \subseteq A_n$, we have

$$\bigcup_{k=1}^{n} A_k = A_n \Rightarrow \bigcup_{k \ge n} A_k = \bigcup_{k \ge 1} A_k \tag{6}$$

Therefore,

$$\lim\sup_{n} A_{n} = \bigcap_{n} \bigcup_{k \ge n} A_{k} = \bigcap_{n} \bigcup_{k \ge 1} A_{k} = \bigcup_{k \ge 1} A_{k}. \tag{7}$$

Therefore, by the definition of $\lim_{n} A_n$, we have

$$\lim_{n} A_n = \bigcup_{n} A_n. \tag{8}$$

The next question is what happens to the probability of the monotonically increasing sets A_n when each A_n is an \mathcal{F} -set. Indeed, we are considering the

real sequence $(P(A_n))_{n\in\mathbb{N}}$. The real sequence $(P(A_n))_{n\in\mathbb{N}}$ is bounded since $0 \leq P(A_n) \leq 1$, $\forall n \in \mathbb{N}$. Also since the set sequence $(A_n)_{n\in\mathbb{N}}$ is monotonically increasing, we have, for $n \in \mathbb{N}$,

$$A_{n+1} \supseteq A_n \Rightarrow P(A_{n+1}) \ge P(A_n)$$
, (follows from Lemma 1)

Therefore, the real sequence $(P(A_n))_{n\in\mathbb{N}}$ is a monotonically increasing bounded sequence. Hence it should converge. But where does it converges to?

Theorem 1. If $(A_n)_{n\in\mathbb{N}}$ is a monotonically increasing sequence of \mathcal{F} -sets, then

$$\lim_{n \to \infty} P(A_n) = P(\lim_n A_n) = P(\bigcup_n A_n). \tag{9}$$

Proof. Let $A_0 = \emptyset$. Now set

$$B_1 := A_1 \setminus A_0;$$

$$B_2 := A_1 \setminus A_1;$$

$$\vdots$$

$$B_n := A_n \setminus A_{n-1};$$

$$\vdots$$

Now note that the set sequence $(B_n)_{n\in\mathbb{N}}$ is a disjoint sequence, *i.e.*, $B_i\cap B_j=\emptyset$, for $i\neq j$. Also,

$$\bigcup_{n} B_n = \bigcup_{n} A_n. \tag{10}$$

Therefore, from Eq. (10) and the fact that the set sequence $(A_n)_{n\in\mathbb{N}}$ is monotonically increasing, we have

$$P(\lim_{n} A_{n}) = P(\bigcup_{n} A_{n}) = P(\bigcup_{n} B_{n})$$

$$= \sum_{n \in \mathbb{N}} P(B_{n}) \text{ (follows from M2)}$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} P(B_{i})$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} P(A_{i}) - P(A_{i-1}) \text{ (follows from Lemma 1)}$$

$$= \lim_{n \to \infty} P(A_{n}) - \underbrace{P(A_{0})}_{=0}$$

$$= \lim_{n \to \infty} P(A_{n}).$$

Remark 3. Note that in the proof of the above theorem, we never used the condition $P(\Omega) = 1$ of the probability measure. This implies that the above result also holds for any measure on Ω .

2.1.2 Monotonically decreasing sequence of sets

Definition: A sequence $(A_n)_{n\in\mathbb{N}}$ is called monotonically decreasing sequence if $A_{n+1}\subseteq A_n, \forall n\in\mathbb{N}$.

In this case, note that for $n \in \mathbb{N}$,

$$\bigcup_{k > n} A_k = A_n$$
, since $A_n \supseteq A_{n+1} \supseteq A_{n+2} \dots$

Therefore,

$$\lim_{n} \sup_{n} A_{n} = \bigcap_{n} \bigcup_{k > n} A_{k} = \bigcap_{n} A_{n}. \tag{11}$$

Note that for n > 1, since $A_1 \supseteq A_2 \cdots \supseteq A_{n-1} \supseteq A_n$, we have

$$\bigcap_{k=1}^{n} A_k = A_n \Rightarrow \bigcap_{k \ge n} A_k = \bigcap_{k \ge 1} A_k \tag{12}$$

Therefore,

$$\liminf_{n} A_n = \bigcup_{n} \bigcap_{k \ge n} A_k = \bigcup_{n} \bigcap_{k \ge 1} A_k = \bigcap_{k \ge 1} A_k.$$
 (13)

Therefore, by the definition of $\lim_{n} A_n$, we have

$$\lim_{n} A_n = \bigcap_{n} A_n. \tag{14}$$

What happens to the probability of the monotonically decreasing sets A_n when each A_n is an \mathcal{F} -set. Here also, the real sequence $(P(A_n))_{n\in\mathbb{N}}$ is bounded since $0 \leq P(A_n) \leq 1$, $\forall n \in \mathbb{N}$. Also since the set sequence $(A_n)_{n\in\mathbb{N}}$ is monotonically decreasing, we have, for $n \in \mathbb{N}$,

$$A_{n+1} \subseteq A_n \Rightarrow P(A_{n+1}) \le P(A_n)$$
, (follows from Lemma 1)

Therefore, the real sequence $(P(A_n))_{n\in\mathbb{N}}$ is a monotonically decreasing bounded sequence. Hence it should converge.

Theorem 2. If $(A_n)_{n\in\mathbb{N}}$ is a monotonically decreasing sequence of \mathcal{F} -sets, then

$$\lim_{n \to \infty} P(A_n) = P(\lim_n A_n) = P(\bigcap_n A_n). \tag{15}$$

Proof. Since $(A_n)_{n\in\mathbb{N}}$ is a monotonically decreasing sequence of \mathcal{F} —sets, we have $(A_n^c)_{n\in\mathbb{N}}$ to be a monotonically increasing sequence of \mathcal{F} —sets. This follows from S2.

Now from Theorem 1, we know that

$$\lim_{n \to \infty} P(A_n^c) = P(\lim_n A_n^c) = P(\bigcup_n A_n^c)$$
 (16)

However, note that $\bigcup_n A_n^c = (\cap_n A_n)^c$. Therefore from Lemma 2 and Eq. (16), we have

$$\lim_{n \to \infty} 1 - P(A_n) = 1 - P(\bigcap_n A_n)$$

$$\Leftrightarrow 1 - \lim_{n \to \infty} P(A_n) = 1 - P(\bigcap_n A_n)$$

$$\Leftrightarrow \lim_{n \to \infty} P(A_n) = P(\bigcap_n A_n).$$

3 Random variables

Definition: (Borel σ -field) The smallest σ -field on \mathbb{R}^* containing intervals. Recall that intervals are of the form (a,b),[a,b],[a,b),(a,b], where $a,b\in\mathbb{R}^*$ and $a\leq b$.

Remark 4. The definition is indeed well-defined. Note that given a collection C of subsets of \mathbb{R}^* , one can ask what is the smallest σ -field containing C. We denote such a sigma field as $\sigma(C)$. Indeed, one can obtain $\sigma(C)$ as follows. Consider the new collection $\mathcal{G} := \{\mathcal{H} \text{ s.t. } \mathcal{H} \text{ is a } \sigma\text{-field and } C \subseteq \mathcal{H}\}$. Note that this is a collection of σ -fields. Is \mathcal{G} non-empty? YES - since the power set of \mathbb{R}^* itself is a σ -field and it contains C. Hence the power set belongs to \mathcal{G} . Now it is easy to verify that

$$\sigma(C) = \bigcap_{\mathcal{H} \in \mathcal{G}} \mathcal{H}. \tag{17}$$

Definition: (Random variable) A function $X : \Omega \to \mathbb{R}^*$ is called a random variable (r.v.) if $X^{-1}(B) \in \mathcal{F}$, for every $B \in \mathcal{B}$. Here, $X^{-1}(B)$ is defined as follows: for $B \subseteq \mathbb{R}^*$,

$$X^{-1}(B) := \{ \omega \in \Omega : X(\omega) \in B \}. \tag{18}$$

By the above it is hard to verify whether a function $X : \omega \to \mathbb{R}^*$ is a r.v. since we don't know the sets inside \mathcal{B} . However, we do know that the intervals are inside \mathcal{B} . However, the following claim reduces this effort by providing a sufficient condition.

Theorem 3. If $X^{-1}([-\infty, a]) \in \mathcal{F}$, $\forall a \in \mathbb{R}^*$, then X is a r.v.

Proof. Given that $X^{-1}([-\infty, a]) \in \mathcal{F}$, $\forall a \in \mathbb{R}^*$, we have to show that X is a r.v. Define

$$\mathcal{C} := \{ B \subseteq \mathbb{R}^* | X^{-1}(B) \in \mathcal{F} \}$$
 (19)

If we can show that $\mathcal{B} \subseteq \mathcal{C}$ we are done. Because if so then for every $E \in \mathcal{B}$, we have $X^{-1}(E) \in \mathcal{F}$ (by definition of \mathcal{C}). To do so we show that \mathcal{C} is a σ -field containing intervals. Since \mathcal{B} (the Borel σ -field) is the smallest σ -field containing intervals, we have $\mathcal{B} \subseteq \mathcal{C}$.

Part 1: To show that C contains intervals

From the hypothesis we know that $[-\infty, a] \in \mathcal{C}$, $\forall a \in \mathbb{R}$. Now note that for $b \in \mathbb{R}^*$, we have

$$[-\infty, b) = \bigcup_{n \in \mathbb{N}} [-\infty, b - \frac{1}{n}]. \tag{20}$$

Therefore,

$$X^{-1}([-\infty,b)) = X^{-1}\left(\bigcup_{n\in\mathbb{N}} [-\infty,b-\frac{1}{n}]\right)$$

$$= \bigcup_{n\in\mathbb{N}} X^{-1}([-\infty,b-\frac{1}{n}])$$

$$\in \mathcal{F} \text{ by hypothesis}$$

$$\in \mathcal{F} \text{ by countable union}$$
• This implies that $[-\infty,b)\in\mathcal{C}, \forall b\in\mathbb{R}^*.$ (21)

Now note that

$$X^{-1}((b, +\infty]) = X^{-1}\left([-\infty, b]^c\right) = \underbrace{\left(X^{-1}([-\infty, b])\right)^c}_{\in \mathcal{F} \text{ since } X^{-1}([-\infty, b]) \in \mathcal{F} \text{ by hypothesis}}$$
• This implies that $(b, +\infty] \in \mathcal{C}, \forall b \in \mathbb{R}^*.$ (22)

Also, note that

$$X^{-1}([b, +\infty]) = X^{-1}([-\infty, b)^{c}) = \underbrace{\left(X^{-1}([-\infty, b)\right)^{c}}_{\in \mathcal{F} \text{ since } X^{-1}([-\infty, b)) \in \mathcal{F} \text{ by Eq. (21)}}$$
• This implies that $(b, +\infty] \in \mathcal{C}, \forall b \in \mathbb{R}^{*}$. (23)

Further, for $a, b \in \mathbb{R}^*$, a < b, we have

$$(a,b) = (a,+\infty] \cap [-\infty,b) \Rightarrow X^{-1}\left((a,b)\right) = \underbrace{X^{-1}\left((a,+\infty]\right)}_{\in \mathcal{F} \text{ Eq. (22)}} \cap \underbrace{X^{-1}\left([-\infty,b)\right)}_{\in \mathcal{F} \text{ Eq. (21)}}.$$

- This implies that $(a, b) \in \mathcal{C}, \forall a, \forall b \in \mathbb{R}^*, a < b.$ (24)
- Similarly, $[a, b), [a, b], (a, b] \in \mathcal{C}, \forall a, \forall b \in \mathbb{R}^*, a < b.$ (25)

Part 2: To show that C is a σ -field over \mathbb{R}^*

Note that $X^{-1}(\mathbb{R}^*) = \Omega \in \mathcal{F}$. Therefore,

$$\mathbb{R}^* \in \mathcal{C}. \tag{26}$$

If $A \in \mathcal{C}$, then $X^{-1}(A) \in \mathcal{F}$. Therefore,

$$X^{-1}(A^c) = (X^{-1}(A))^c \in \mathcal{F}$$

$$\Rightarrow A^c \in \mathcal{C}.$$
(27)

Given a countable collection $\{A_n\}_{n\in\mathbb{N}}$ with $A_n\in\mathcal{C}$, $\forall n\in\mathbb{N}$ (which implies that $X^{-1}(A_n)\in\mathcal{F}, \forall n$ by the definition of \mathcal{C}), we have

$$X^{-1}\left(\bigcup_{n=1}^{\infty} A_n\right) = \underbrace{\bigcup_{n=1}^{\infty} \underbrace{X^{-1}(A_n)}_{\in \mathcal{F}}}_{}$$

$$\Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{C}. \tag{28}$$

Therefore, \mathcal{C} is a σ -field over \mathbb{R}^* .

We now consider the simplest of random variables.

3.1 Non-negative simple functions

Definition: We call a finite collection $\{A_i\}_{i=1}^n$ an \mathcal{F} -partition of Ω if

- 1. Each $A_i \in \mathcal{F}$.
- 2. A_i 's are disjoint (i.e., $A_k \cap A_t = \emptyset$, if $k \neq t$) and
- 3. $\bigcup_{i=1}^{n} A_i = \Omega$ (i.e. their union gives the entire set Ω).

Definition: A function $s:\Omega\to\mathbb{R}_+^*$ is called a non-negative simple function if it has the form

$$s(\omega) = \sum_{i=1}^{n} a_i I_{A_i}(\omega), \text{ where } a_i \in \mathbb{R}_+^*, 1 \le \forall i \le n.$$
 (29)

Note that s is a r.v. To see that, lets assume that $a_1 < a_2 < a_3 < \cdots < a_n$ (if not, then re-number). Then

$$s^{-1}([-\infty, a]) = \begin{cases} \emptyset, & \text{if } a < a_1. \\ A_1, & \text{if } a_1 \le a < a_2. \\ A_1 \cup A_2, & \text{if } a_2 \le a < a_3. \\ A_1 \cup A_2 \cup A_3, & \text{if } a_3 \le a < a_4. \\ \vdots \\ \Omega, & \text{if } a \ge a_n. \end{cases}$$

Thus $s^{-1}([-\infty, a]) \in \mathcal{F}, \forall a \in \mathbb{R}^*$. Therefore s is a r.v.

We denote by \mathbb{L}_0^+ the collection of non-negative simple functions.

$$\mathbb{L}_0^+ := \{ s : \Omega \to \mathbb{R}_+^* | s \text{ is a non-negative simple function} \}. \tag{30}$$

Properties:

Proposition 1. If $s_1, s_2 \in \mathbb{L}_0^+$, then

- 1. $s_1 + s_2 \in \mathbb{L}_0^+$ and $s_1 s_2 \in \mathbb{L}_0^+$.
- 2. $cs_1 \in \mathbb{L}_0^+$, for $c \in \mathbb{R}_+^*$.
- 3. $s_1 \wedge s_2 \in \mathbb{L}_0^+$.
- 4. $s_1 \vee s_2 \in \mathbb{L}_0^+$.

Proof. Let

$$s_1 = \sum_{i=1}^n a_i I_{A_i}$$
 and $s_2 = \sum_{j=1}^m b_j I_{B_j}$.

1. It is easy to verify that $\{A_i \cap B_j; 1 \leq i \leq n, 1 \leq j \leq m\}$ is a \mathcal{F} -partition. Then

$$s_1 + s_2 = \sum_{i=1}^n \sum_{j=1}^m (a_i + b_j) I_{A_i \cap B_j}.$$
 (31)

To justify this claim, note that

For
$$\omega \in \Omega \Rightarrow \omega \in A_i$$
 and $\omega \in B_j$, for some $i, j, 1 \le i \le n, 1 \le j \le m$,
since $\{A_i\}, \{B_j\}$ are \mathcal{F} – partitions.
 $\Leftrightarrow \omega \in A_i \cap B_j$
 $\Leftrightarrow s_1(\omega) = a_i$ and $s_2(\omega) = b_j$ with $\omega \in A_i \cap B_j$
 $\Leftrightarrow (s_1 + s_2)(\omega) = s_1(\omega) + s_2(\omega) = a_i + b_j$, with $\omega \in A_i \cap B_j$
 $\Leftrightarrow s_1 + s_2 = \sum_{i=1}^n \sum_{j=1}^m (a_i + b_j) I_{A_i \cap B_j}$.

Therefore $s_1 + s_2 \in \mathbb{L}_0^+$.

2. Similarly, $s_1 s_2 \in \mathbb{L}_0^+$ with

$$s_1 s_2 = \sum_{i=1}^n \sum_{j=1}^m a_i b_j I_{A_i \cap B_j}.$$
 (32)

3. Also, for $c \in \mathbb{R}_+^*$, $cs_1 \in \mathbb{L}_0^+$ with

$$cs_1 = \sum_{i=1}^n \sum_{i=1}^m ca_i I_{A_i}.$$
 (33)

4. $s_1 \wedge s_2 \in \mathbb{L}_0^+$ with

$$s_1 \wedge s_2 = \sum_{i=1}^n \sum_{j=1}^m \min\{a_i, b_j\} I_{A_i \cap B_j}.$$
 (34)

5. $s_1 \vee s_2 \in \mathbb{L}_0^+$ with

$$s_1 \lor s_2 = \sum_{i=1}^n \sum_{j=1}^m \max\{a_i, b_j\} I_{A_i \cap B_j}.$$
 (35)

The simple functions even though are simple are not that simple. They are strong enough to approximate any non-negative r.v.

Theorem 4. If X is a non-negative r.v., then there exists a sequence (s_n) , where $s_n \in \mathbb{L}_0^+$ s.t. $s_n \uparrow X$. This means that for each $\omega \in \Omega$, we have $(s_n(\omega))$ is a monotonically increasing sequence and $\lim_{n\to\infty} s_n(\omega) = X(\omega)$.

Proof. We will create the sequence (s_n) as follows: Let

$$E_{n,k} := \left[\frac{k-1}{2^n}, \frac{k}{2^n}\right), 1 \le k \le n2^n \text{ and } E_{n,\infty} = [n, +\infty].$$
 (36)

Also, let

$$A_{n,k} := X^{-1}(E_{n,k}), 1 \le k \le n2^n \text{ and } A_{n,\infty} = X^{-1}(E_{n,\infty}).$$
 (37)

Define

$$s_n = \sum_{k=1}^{n2^n} \frac{k-1}{2^n} I_{A_{n,k}} + nI_{A_{n,\infty}}.$$
 (38)

It is easy to verify that $s_n \in \mathbb{L}_0^+$ since $\{A_{n,k}, 1 \leq k \leq n2^n; A_{n,\infty}\}$ is an \mathcal{F} -partition.

It is also easy to verify from Fig. 2 that

$$s_{n+1}(\omega) \ge s_n(\omega), \forall \omega \in \Omega.$$
 (39)

Now we will verify that $\lim_{n\to\infty} s_n(\omega) = X(\omega), \forall \omega \in \Omega$.

For $\omega \in \Omega$, there are two cases possible

1) Either $\omega \in A_{n,k}$ for some $1 \le k \le n2^n$. In this case,

$$\begin{split} s_n(\omega) &= \frac{k-1}{2^n} \text{ and } X(\omega) \in E_{n,k} \\ \Rightarrow \frac{k-1}{2^n} &\leq X(\omega) < \frac{k}{2^n} \\ \Rightarrow \frac{k-1}{2^n} - \frac{k-1}{2^n} &\leq X(\omega) - s_n(\omega) < \frac{k}{2^n} - \frac{k-1}{2^n} \\ \Rightarrow 0 &\leq X(\omega) - s_n(\omega) < \frac{1}{2^n}. \\ \Rightarrow \lim_{n \to \infty} s_n(\omega) &= X(\omega) \text{ (by squeeze theorem)}. \end{split}$$

2) Or $\omega \in A_{n,\infty}$. In this case, we have

$$s_n(\omega) = n \text{ and } X(\omega) \in [n, +\infty]$$

 $\Rightarrow s_n(\omega) = n \text{ and } X(\omega) \ge n.$

Hence, we cannot obtain the bound similar to the earlier case. However, one can consider two sub-cases here: 1) If $X(w) < +\infty$. In this case, by the Archimedean theorem, there exists an $N \in \mathbb{N}$ s.t. $N > X(\omega)$. Therefore, $\forall n \geq N$, we have the bound

$$\Rightarrow 0 \le X(\omega) - s_n(\omega) < \frac{1}{2^n}. \tag{40}$$

Figure 1: Partitions

Therefore, $\lim_{n\to\infty} s_n(\omega) = X(\omega)$, by squeeze theorem. 2) If If $X(w) = +\infty$. In this case, we have $s_n(\omega) = n$. Therefore,

$$\lim_{n\to\infty} s_n(\omega) = +\infty = X(\omega).$$

Thus, we have addressed every possible scenario. Therefore,

$$\lim_{n \to \infty} s_n(\omega) = X(\omega), \forall \omega \in \Omega.$$
(41)

Figure 2: Illustration to show that $s_{n+1} \geq s_n$

4 Expectation of a random variable

Goal:

We first define the expectation of the non-negative simple functions as follows: For $s \in \mathbb{L}_0^+$ with $s = \sum_{i=1}^n a_i I_{A_i}$, ($\{A_i\}$ is an \mathcal{F} -partition and $a_i \in \mathbb{R}_+^*$), we define

$$\mathbb{E}\left[s\right] = \sum_{i=1}^{n} a_i P(A_i). \tag{42}$$

Properties of expectation of non-negative simple functions

Theorem 5. For $s_1, s_2 \in \mathbb{L}_0^+$ with $s_1 = \sum_{i=1}^n a_i I_{A_i}$ and $s_2 = \sum_{j=1}^m b_j I_{B_j}$, $(\{A_i; 1 \leq i \leq n\} \text{ and } \{B_j; 1 \leq j \leq m\} \text{ are } \mathcal{F}\text{-partitions and } a_i, b_j \in \mathbb{R}_+^*)$, we have

- 1. $\mathbb{E}[s_1] \geq 0$.
- 2. $\mathbb{E}[s_1 + s_2] = \mathbb{E}[s_1] + \mathbb{E}[s_2]$.
- 3. For $c \in \mathbb{R}_+^*$, $\mathbb{E}[cs_1] = c\mathbb{E}[s_1]$.
- 4. If $s_1 \geq s_2$, then $\mathbb{E}[s_1] \geq \mathbb{E}[s_2]$. (Note that $s_1 \geq s_2$ means that $s_1(\omega) \geq s_2(\omega), \forall \omega \in \Omega$)

Proof. 1

$$\mathbb{E}[s_1] = \sum_{i=1}^n \underbrace{a_i}_{\geq 0} \underbrace{P(A_i)}_{\geq 0}$$

$$> 0.$$

2. We know that

$$s_{1} + s_{2} = \sum_{i=1}^{n} \sum_{j=1}^{m} (a_{i} + b_{j}) I_{A_{i} \cap B_{j}}$$

$$\Rightarrow \mathbb{E}[s_{1} + s_{2}] = \mathbb{E}\left[\sum_{i=1}^{n} \sum_{j=1}^{m} (a_{i} + b_{j}) I_{A_{i} \cap B_{j}}\right]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} (a_{i} + b_{j}) P(A_{i} \cap B_{j})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} P(A_{i} \cap B_{j}) + \sum_{i=1}^{n} \sum_{j=1}^{m} b_{j} P(A_{i} \cap B_{j})$$

$$= \sum_{i=1}^{n} a_{i} P(A_{i} \cap (\bigcup_{j=1}^{m} B_{j})) + \sum_{j=1}^{m} b_{j} P((\bigcup_{i=1}^{n} A_{i}) \cap B_{j}) \text{ (by M2)}$$

$$= \sum_{i=1}^{n} a_{i} P(A_{i} \cap \Omega) + \sum_{j=1}^{m} b_{j} P(\Omega \cap B_{j})$$

$$= \sum_{i=1}^{n} a_{i} P(A_{i}) + \sum_{j=1}^{m} b_{j} P(B_{j})$$

$$= \mathbb{E}[s_{1}] + \mathbb{E}[s_{2}].$$

3. Again,

$$cs_1 = \sum_{i=1}^n ca_i I_{A_i}$$

$$\Rightarrow \mathbb{E}[cs_1] = \sum_{i=1}^n ca_i P(A_i) = c \sum_{i=1}^n a_i P(A_i) = c \mathbb{E}[s_1].$$

4. For $s_1 \geq s_2$, we have

$$\mathbb{E}[s_1] = \mathbb{E}\left[\sum_{i=1}^n a_i I_{A_i}\right]$$

$$= \sum_{i=1}^n a_i P(A_i \cap \Omega)$$

$$= \sum_{i=1}^n \sum_{j=1}^m a_i P(A_i \cap B_j)$$

$$= \sum_{i=1}^n \sum_{j=1}^m a_i P(A_i \cap B_j) \text{ (by M2)}$$

$$= \sum_{i=1}^n \sum_{j=1}^m a_i P(A_i \cap B_j)$$

$$\geq \sum_{i=1}^n \sum_{j=1}^m a_i P(A_i \cap B_j)$$

$$\geq \sum_{i=1}^n \sum_{j=1}^m b_j P(A_i \cap B_j)$$

$$= \sum_{i=1}^n \sum_{j=1}^m b_j P(A_i \cap B_j)$$

$$= \mathbb{E}[s_2].$$

Lemma 3. Let $(s_n) \uparrow s$, where $s_n, s \in \mathbb{L}_0^+$. Then $(\mathbb{E}[s_n]) \uparrow \mathbb{E}[s]$.