



SEQUENCE LISTING

B1

<110> Pinsky, David

Stern, David

Yan, Shi-Fang

<120> Methods for Suppressing Early Growth Response-1 Protein (Egr-1) to Reduce Vascular Injury in a Subject

<130> 0575/62683

<140> 09/648,389

<141> 2000-08-25

<160> 6

<170> PatentIn version 3.1

<210> 1

<211> 15

<212> DNA

<213> Homo sapiens

<400> 1

cttggccgct gccat

15

<210> 2

<211> 15

<212> DNA

<213> Homo sapiens

<400> 2  
taccgtcgcc gtgct

15

<210> 3

<211> 543

<212> PRT

<213> Homo sapiens

<400> 3

Met Ala Ala Ala Lys Ala Glu Met Gln Leu Met Ser Pro Leu Gln Ile  
1 5 10 15

Ser Asp Pro Phe Gly Ser Phe Pro His Ser Pro Thr Met Asp Asn Tyr  
20 25 30

Pro Lys Leu Glu Glu Met Met Leu Leu Ser Asn Gly Ala Pro Gln Phe  
35 40 45

Leu Gly Ala Ala Gly Ala Pro Glu Gly Ser Gly Ser Asn Ser Ser Ser  
50 55 60

Ser Ser Ser Gly Gly Gly Gly Gly Gly Ser Asn Ser Ser  
65 70 75 80

Ser Ser Ser Ser Thr Phe Asn Pro Gln Ala Asp Thr Gly Glu Gln Pro  
85 90 95

Tyr Glu His Leu Thr Ala Glu Ser Phe Pro Asp Ile Ser Leu Asn Asn  
100 105 110

Glu Lys Val Leu Val Glu Thr Ser Tyr Pro Ser Gln Thr Thr Arg Leu  
115 120 125

Pro Pro Ile Thr Tyr Thr Gly Arg Phe Ser Leu Glu Pro Ala Pro Asn  
130 135 140

Ser Gly Asn Thr Leu Trp Pro Glu Pro Leu Phe Ser Leu Val Ser Gly  
145 150 155 160

Leu Val Ser Met Thr Asn Pro Pro Ala Ser Ser Ser Ala Pro Ser  
165 170 175

Pro Ala Ala Ser Ser Ala Ser Gln Ser Pro Pro Leu Ser Cys  
180 185 190

Ala Val Pro Ser Asn Asp Ser Ser Pro Ile Tyr Ser Ala Ala Pro Thr  
195 200 205

Phe Pro Thr Pro Asn Thr Asp Ile Phe Pro Glu Pro Gln Ser Gln Ala  
210 215 220

Phe Pro Gly Ser Ala Gly Thr Ala Leu Gln Tyr Pro Pro Pro Ala Tyr  
225 230 235 240

Pro Ala Ala Lys Gly Gly Phe Gln Val Pro Met Ile Pro Asp Tyr Leu  
245 250 255

Phe Pro Gln Gln Gln Gly Asp Leu Gly Leu Gly Thr Pro Asp Gln Lys  
260 265 270

Pro Phe Gln Gly Leu Glu Ser Arg Thr Gln Gln Pro Ser Leu Thr Pro  
275 280 285

Leu Ser Thr Ile Lys Ala Phe Ala Thr Gln Ser Gly Ser Gln Asp Leu  
290 295 300

Lys Ala Leu Asn Thr Ser Tyr Gln Ser Gln Leu Ile Lys Pro Ser Arg  
305 310 315 320

Met Arg Lys Tyr Pro Asn Arg Pro Ser Lys Thr Pro Pro His Glu Arg  
325 330 335

Pro Tyr Ala Cys Pro Val Glu Ser Cys Asp Arg Arg Phe Ser Arg Ser  
340 345 350

Asp Glu Leu Thr Arg His Ile Arg Ile His Thr Gly Gln Lys Pro Phe  
355 360 365

Gln Cys Arg Ile Cys Met Arg Asn Phe Ser Arg Ser Asp His Leu Thr  
370                           375                           380

Thr His Ile Arg Thr His Thr Gly Glu Lys Pro Phe Ala Cys Asp Ile  
385                           390                           400

Cys Gly Arg Lys Phe Ala Arg Ser Asp Glu Arg Lys Arg His Thr Lys  
405                           410                           415

Ile His Leu Arg Gln Lys Asp Lys Lys Ala Asp Lys Ser Val Val Ala  
420                           425                           430

Ser Ser Ala Thr Ser Ser Leu Ser Ser Tyr Pro Ser Pro Val Ala Thr  
435                           440                           445

Ser Tyr Pro Ser Pro Val Thr Thr Ser Tyr Pro Ser Pro Ala Thr Thr  
450                           455                           460

Ser Tyr Pro Ser Pro Val Pro Thr Ser Phe Ser Ser Pro Gly Ser Ser  
465                           470                           475                           480

Thr Tyr Pro Ser Pro Val His Ser Gly Phe Pro Ser Pro Ser Val Ala  
485                           490                           495

Thr Thr Tyr Ser Ser Val Pro Pro Ala Phe Pro Ala Gln Val Ser Ser  
500                           505                           510

Phe Pro Ser Ser Ala Val Thr Asn Ser Phe Ser Ala Ser Thr Gly Leu  
515                           520                           525

Ser Asp Met Thr Ala Thr Phe Ser Pro Arg Thr Ile Glu Ile Cys  
530                           535                           540

<210> 4

<211> 6590

<212> DNA

<213> Homo sapiens

<400> 4

|                                                                        |      |
|------------------------------------------------------------------------|------|
| gcgggctgg gctgtggctc acacctggaa tcccagcaacttgggaggcc gaagtgggtg        | 60   |
| aatcgcttga gctcaagagt tcaagaccag cctgggcaac acagcgaaac ccctctctac      | 120  |
| gaaaatacaa aaaaaaaaaa aaaaaagtaa aagccaggcg tggtggcagg cacctgttagt     | 180  |
| ccaagctact cgagaggagg aggctggagg atcacttgag cctggaggc ggaggttgca       | 240  |
| gtgagctcgc gccactgcac tccaacctgg gtgccagcgt gagacccgt ctcagaaaga       | 300  |
| ataaaaaacat taaaaaaaaa atttggctaa ggtaccctac cagggagtgg caaaatggac     | 360  |
| attcagacac aaggccatct gcgcgtcaac agcctggcct tcctgcctt gcggcaggag       | 420  |
| tcctctgaga ggcgcacac tcctgccccca atggacaact ccgtagacag tgggagttag      | 480  |
| ccccccacct cccagcggc cttgagacgg caggctccga gacgagggag tcctggttca       | 540  |
| ttaagtttgt ttttataaaa aaacatgttt ggagggggga cagccacaaa gggattaagt      | 600  |
| ccaagaaagt tacccctcc cccacctaattccacccctgacc ccgaccccca gaggctgttgg    | 660  |
| gggtttacag aggccctcac ctccctccctt ccctctcggt gtcgtcaaacc accctccttc    | 720  |
| tccacatttc tctttctgct ttcttttaaa atccagaaaa aacagtacct cctctggatt      | 780  |
| cagagctaga gcaggaggag cttcccttcc cggaaatccctt gttcccttgg gggagcaac     | 840  |
| tgacggttcg tgccccccggg gagggttccc cttttgtttt gacccaagga agactgggaa     | 900  |
| atatttcct tagacaccac ccaccccttt ttcttttcc cttcactttt gccaggctgg        | 960  |
| ggttgaggat tgatatcccg gagttgggc gcttcggaaag tgacggttcc ccggggtttg      | 1020 |
| aaggggagcc cgggttaagc gcgtgttcag ttctgtctca tgcgtcgaag gctccccgg       | 1080 |
| ccttgctccg cggccagcgc cgcattccggg aggaggagcg aggaggcggc ggaagagccc     | 1140 |
| gcgcggccgg agtccggggc tgggagtggaa gagggAACCTT ccagggggca gcaccgagcc    | 1200 |
| gcaaaagccgg tcctctcttc ggcggccagcc cgggggtcccc -agatagccca tagggaaagcc | 1260 |
| cctcttcgg attcccgtag tggggccgg ccctccaccc ggactggata aagggggaa         | 1320 |
| agtgaccctt caccacaagg accattatct cctgggtgaga acaagaatca ggcctctttt     | 1380 |
| ggggcaatca gctttccac ttccgggtcccc caaagggtggg ctctttccgg gccccggacta   | 1440 |
| gggaacagcc ttccgggtcc gggggagcac aggggacccc aggcaccagc agcccccattcc    | 1500 |
| caccgacagg tggcagaggc aaggcagctc actgctatac agtgccttccaa gaaccaagt     | 1560 |
| gccgtgactt cctatcctca atttcccagc gacacccggaa aagacaccgt gcatagatc      | 1620 |
| gaggccccggg gtcaaggccc cgcctctccctt gggcgcccccc tgcccgaggcg ggcccgccg  | 1680 |

|             |             |             |            |            |             |      |
|-------------|-------------|-------------|------------|------------|-------------|------|
| ctcctcccc   | gcactccgg   | ttcgctctca  | cggccctga  | ggtgggggg  | cgggcctgga  | 1740 |
| tgacagcgat  | agaaccccg   | cccgactcgc  | cctcgccccc | gctctgggtc | tgggcttccc  | 1800 |
| cagcctagtt  | cacgcctagg  | agccgcctga  | gcagccgcgc | ccagcgccac | acgccacgag  | 1860 |
| ccctccccgc  | ctggcggtcc  | ccggatcccg  | cgagcgctcg | ggctccggc  | ttggaaccag  | 1920 |
| ggaggaggga  | gggagcgagg  | gagcaaccag  | ctcggaccgg | aatgcata   | gagcaggaag  | 1980 |
| gatccccgc   | cggaacaacc  | cttatttggg  | cagcaccta  | tttggagtgg | cccgatatgg  | 2040 |
| ccggcgctt   | ccggctctgg  | gaggaggaa   | gaaggcgagg | ggaggggcaa | cgcgggaact  | 2100 |
| ccggagctgc  | cggccccgg   | ggccccggcg  | gcggctagag | ctctaggctt | ccccgaagct  | 2160 |
| gggcgcctgg  | gatgcgggccc | gggcggggcc  | ctagggtgca | ggatggaggt | gccgggccc   | 2220 |
| gtcggatggg  | gggcttcacg  | tcactccggg  | tcctcccccg | gtcctgccat | attagggctt  | 2280 |
| ctgcttcca   | tatatgccat  | gtacgtcacg  | acggaggcgg | acccgtgccc | ttccagaccc  | 2340 |
| ttcaaataga  | ggcggatccg  | gggagtcgcg  | agagatccag | ccgcagaact | tggggagccg  | 2400 |
| ccgcccgc    | ccgcccgcgc  | agccagcttc  | cgccgcgc   | ggaccggccc | ctgccccagc  | 2460 |
| ctccgcagcc  | gcggcggtc   | cacgcccgc   | cgcccccagg | gcaagtcggg | gtcgcgcct   | 2520 |
| gcacgcttct  | cagtgttccc  | cgcgcgcgc   | atgtaacccg | gccaggcccc | cgcaacgggt  | 2580 |
| tccctgcag   | ctccagcccc  | gggctgcacc  | cccccgcccc | gacaccagct | ctccagcctg  | 2640 |
| ctcgtccagg  | atggccgcgg  | ccaaggccga  | gatgcagctg | atgtccccgc | tgcagatctc  | 2700 |
| tgaccgcgtt  | ggatccttcc  | ctcaactcgcc | caccatggac | aactacccta | agctggagga  | 2760 |
| gatgatgctg  | ctgagcaacg  | gggctccca   | gttcctcgcc | gccgcgggg  | ccccagaggg  | 2820 |
| cagcggcagc  | aacagcagca  | gcagcagcag  | cggggcggt  | ggagggcg   | ggggcggcag  | 2880 |
| caacagcagc  | agcagcagca  | gcacattcaa  | ccctcaggcg | gacacggcg  | agcagcccta  | 2940 |
| cgagcacctg  | accgcaggta  | agcagtggcc  | tacgcccagg | ggaaaccctt | tcgcccaccat | 3000 |
| cctggcggtcc | tgtccttcac  | cgcaggagtg  | ctcctggatc | ttagaatgag | agccgggttt  | 3060 |
| cccttcatt   | cctcgcatcc  | ccagagtcat  | gtgttagagg | gatgccaagg | aaccccacac  | 3120 |
| agcccacccc  | ctgcctcat   | ccctagcgga  | gcgcagagga | ccgagcttt  | gtttggatg   | 3180 |
| gagagctctg  | gagctgcgtg  | ggtgggtgga  | gggggagggc | ttgtttgat  | gagcggggct  | 3240 |
| gcgcacccac  | ctccagtaag  | acttgccttg  | cttgcttgc  | cgccgtccc  | caaggaagga  | 3300 |
| ccgtatcct   | tggccgtgga  | tgtccggca   | gcccggttt  | gggggcgcgc | actagccgcg  | 3360 |

gccccatggggg tgctggcggg aatccctcgcc cccgcacagcc gcccgtgcgg agcgctgcga 3420  
gctgcagtgg agggggattc tccgtatgg cgtcaactgtt gttgaaatgg gctctgccac 3480  
tggtgcgggt ccaggaacat tgcaatgtgc tgctatcaat tattaactac ctcgggagtc 3540  
aatggtagcc ggcccggtct cttgcctggc agctcgggtc gtcctcggtcc tccagtgatt 3600  
gttttccagt aaccaggcct cccgccttc tctctcctgc cagagtctt tcctgacatc 3660  
tctctgaaca acgagaaggt gctgggtggag accagttacc ccagccaaac cactcgactg 3720  
ccccccatca cctatactgg ccgcctttcc ctggagcctg cacccaacag tggcaacacc 3780  
tttgtggcccg agccctctt cagcttggtc agtggcctag tgagcatgac caacccaccc 3840  
gcctcctcgt cctcagcacc atctccagcg gcctcctccg cctccgcctc ccagagccca 3900  
cccctgagct gcgcagtgcc atccaaacgac agcagtccta tttactcagc ggcacccacc 3960  
ttccccacgc cgaacactga catttccct gagccacaaa gccaggcctt cccgggctcg 4020  
gcagggacag cgctccagta cccgcctctt gcctaccctg ccgccaagggg tggcttccag 4080  
gttccccatga tccccgacta cctgtttcca cagcagcagg gggatctggg cctgggcacc 4140  
ccagaccaga agcccttcca gggcctggag agccgcaccc agcagccttc gctaaccct 4200  
ctgtctacta ttaaggcctt tgccactcag tcgggctccc aggacctgaa ggccctcaat 4260  
accagctacc agtcccagct catcaaaccc agccgcattgc gcaagtatcc caaccggccc 4320  
agcaagacgc ccccccacga acgccttac gcttgcctcag tggagtcctg tgatgcgcgc 4380  
ttctcccgct ccgacgagct cacccgcccac atccgcattcc acacaggcca gaagcccttc 4440  
cagtgcgcga tctgcattgcg caacttcagc cgcaagcggacc acctcaccac ccacatccgc 4500  
acccacacag gcgaaaagcc cttcgctgc gacatctgtg gaagaaagtt tgccaggagc 4560  
—gatgaacgca agaggcatac caagatccac ttgcggcaga aggacaagaa agcagacaaa 4620  
agtgtgtgg cctttcgcc cacctccctt ctctttccctt acccgcccc gggtgttacc 4680  
tcttaccctgt ccccggttac tacctcttat ccattccccgg ccaccacccctc ataccatcc 4740  
cctgtgcaca cctcatttc ctctccggc tcctcgaccc acccatcccc tgtgcacagt 4800  
ggcttccctt ccccggtcggt ggccaccacg tactcctctg ttccccctgc tttccggcc 4860  
caggtcagca gcttcccttc ctcagctgtc accaactcct tcagcgccctc cacagggtt 4920  
tcggacatga cagcaacctt ttctccagg acaattgaaa tttgctaaag ggaaagggga 4980  
aagaaagggaa aaagggagaa aaagaaacac aagagactta aaggacagga ggaggagatg 5040

|                                                                          |      |
|--------------------------------------------------------------------------|------|
| gccataggag aggagggttc ctcttagtc agatggaggt tctcagagcc aagtccccc          | 5100 |
| tctctactgg agtggaaagg ctattggcca acaatcctt ctgcccactt ccccttcccc         | 5160 |
| aattactatt cccttgact tcagctgcct gaaacagcca tgtccaagtt cttcacctct         | 5220 |
| atccaaagaa cttgattgc atggatttg gataaatcat ttcagtatca tctccatcat          | 5280 |
| atgcctgacc ccttgctccc ttcaatgcta gaaaatcgag ttggaaaaat ggggtttggg        | 5340 |
| ccctcagag ccctgcccctg cacccttcta cagtgtctgt gccatggatt tcgaaaaat         | 5400 |
| tgggttactc ttgatgtgaa gataattgc atattctatt gtattatgg gagtttaggtc         | 5460 |
| ctcacttggg ggaaaaaaaaaaaaaa aaaaaaaaaaagc caagcaaacc aatggtgatc ctctatgg | 5520 |
| tgtatgtgct gtgacaataa gtttgaacct tttttttga aacagcagtc ccagtattct         | 5580 |
| cagagcatgt gtcagagtgt tgccgtta accttttgt aaatactgct tgaccgtact           | 5640 |
| ctcacatgtg gcaaaatatg gtttggttt tctttttttt ttttggaaatg gttttttctt        | 5700 |
| cgtccttttg gttaaaaag tttcacgtct tggtgcctt tgtgtgatgc ccctgctga           | 5760 |
| tggcttgaca tgtgcaattg tgagggacat gtcacccctc agcctaagg gggcaggga          | 5820 |
| gtgatgattt gggggaggct ttgggagcaa aataaggaag agggctgagc tgagcttcgg        | 5880 |
| ttctccagaa tgtaagaaaa caaaatctaa aacaaaatct gaactctcaa aagtctattt        | 5940 |
| tttaactga aaatgtaaat ttataaatat attcaggagt tggaatgtt tagttaccta          | 6000 |
| ctgagtaggc ggccgattttt gtatgttatg aacatgcagt tcattatgg gtgggtctat        | 6060 |
| tttactttgt acttgtgttt gcttaaacaag agtactgtt tggcttataa acacattgaa        | 6120 |
| tgccgtttat tgcccatggg atatgtggtg tatatccctc caaaaaatta aaacgaaaat        | 6180 |
| aaagtagctg cgattggta tgtgtttctt gggtagggg aaggactctg ccctattgag          | 6240 |
| ggctgtgagg tttctgaag acttggcctt tagagataca aggatccctc agccagagtc         | 6300 |
| aggcccactg tgtgaaactg gagttcgta tttatgagga ctgagatgg gtcttcaaatt         | 6360 |
| agggtctcgg tctatccacc caggctggag tgcaactgtg taatcacagt tcactgcagc        | 6420 |
| tttgggtgtct caggctcaag tgatccccc acctcagcct cctgagtagc tggactata         | 6480 |
| ggcacgtgcc accacactcg gttaatgtt atagagacag ggtttgcca tggtggccag          | 6540 |
| gctggagttc ttcttgataa tggccctgtt cctttcagt ctgttgggtg                    | 6590 |

<211> 543

<212> PRT

<213> Homo sapiens

<400> 5

Met Ala Ala Ala Lys Ala Glu Met Gln Leu Met Ser Pro Leu Gln Ile  
1 5 10 15

Ser Asp Pro Phe Gly Ser Phe Pro His Ser Pro Thr Met Asp Asn Tyr  
20 25 30

Pro Lys Leu Glu Glu Met Met Leu Leu Ser Asn Gly Ala Pro Gln Phe  
35 40 45

Leu Gly Ala Ala Gly Ala Pro Glu Gly Ser Gly Ser Asn Ser Ser Ser  
50 55 60

Ser Ser Ser Gly Gly Gly Gly Gly Ser Asn Ser Ser Ser  
65 70 75 80

Ser Ser Ser Ser Thr Phe Asn Pro Gln Ala Asp Thr Gly Glu Gln Pro  
85 90 95

Tyr Glu His Leu Thr Ala Glu Ser Phe Pro Asp Ile Ser Leu Asn Asn  
100 105 110

Glu Lys Val Leu Val Glu Thr Ser Tyr Pro Ser Gln Thr Thr Arg Leu  
115 120 125

Pro Pro Ile Thr Tyr Thr Gly Arg Phe Ser Leu Glu Pro Ala Pro Asn  
130 135 140

Ser Gly Asn Thr Leu Trp Pro Glu Pro Leu Phe Ser Leu Val Ser Gly  
145 150 155 160

Leu Val Ser Met Thr Asn Pro Pro Ala Ser Ser Ser Ala Pro Ser  
165 170 175

Pro Ala Ala Ser Ser Ala Ser Gln Ser Pro Pro Leu Ser Cys

180

185

190

Ala Val Pro Ser Asn Asp Ser Ser Pro Ile Tyr Ser Ala Ala Pro Thr  
195 200 205

Phe Pro Thr Pro Asn Thr Asp Ile Phe Pro Glu Pro Gln Ser Gln Ala  
210 215 220

Phe Pro Gly Ser Ala Gly Thr Ala Leu Gln Tyr Pro Pro Pro Ala Tyr  
225 230 235 240

Pro Ala Ala Lys Gly Gly Phe Gln Val Pro Met Ile Pro Asp Tyr Leu  
245 250 255

Phe Pro Gln Gln Gln Gly Asp Leu Gly Leu Gly Thr Pro Asp Gln Lys  
260 265 270

Pro Phe Gln Gly Leu Glu Ser Arg Thr Gln Gln Pro Ser Leu Thr Pro  
275 280 285

Leu Ser Thr Ile Lys Ala Phe Ala Thr Gln Ser Gly Ser Gln Asp Leu  
290 295 300

Lys Ala Leu Asn Thr Ser Tyr Gln Ser Gln Leu Ile Lys Pro Ser Arg  
305 310 315 320

Met Arg Lys Tyr Pro Asn Arg Pro Ser Lys Thr Pro Pro His Glu Arg  
325 330 335

Pro Tyr Ala Cys Pro Val Glu Ser Cys Asp Arg Arg Phe Ser Arg Ser  
340 345 350

Asp Glu Leu Thr Arg His Ile Arg Ile His Thr Gly Gln Lys Pro Phe  
355 360 365

Gln Cys Arg Ile Cys Met Arg Asn Phe Ser Arg Ser Asp His Leu Thr  
370 375 380

Thr His Ile Arg Thr His Thr Gly Glu Lys Pro Phe Ala Cys Asp Ile  
385 390 395 400

Cys Gly Arg Lys Phe Ala Arg Ser Asp Glu Arg Lys Arg His Thr Lys  
405 410 415

Ile His Leu Arg Gln Lys Asp Lys Lys Ala Asp Lys Ser Val Val Ala  
420 425 430

Ser Ser Ala Thr Ser Ser Leu Ser Ser Tyr Pro Ser Pro Val Ala Thr  
435 440 445

Ser Tyr Pro Ser Pro Val Thr Thr Ser Tyr Pro Ser Pro Ala Thr Thr  
450 455 460

Ser Tyr Pro Ser Pro Val Pro Thr Ser Phe Ser Ser Pro Gly Ser Ser  
465 470 475 480

Thr Tyr Pro Ser Pro Val His Ser Gly Phe Pro Ser Pro Ser Val Ala  
485 490 495

Thr Thr Tyr Ser Ser Val Pro Pro Ala Phe Pro Ala Gln Val Ser Ser  
500 505 510

Phe Pro Ser Ser Ala Val Thr Asn Ser Phe Ser Ala Ser Thr Gly Leu  
515 520 525

Ser Asp Met Thr Ala Thr Phe Ser Pro Arg Thr Ile Glu Ile Cys  
530 535 540

<210> 6

<211> 3132

<212> DNA

<213> Homo sapiens

<400> 6  
ccgcagaact tggggagccg ccgccgccccat ccggccgcccgc agccagcttc cgccgcccgc 60  
ggaccggccc ctgcccccagc ctcccgccagcc gcggcgccgtc cacgccccgcc cgcgcggcagg 120  
gcgagtcggg gtcgccccct gcacgcttct cagtgttccc cgcgcggcgc atgttaacccg 180  
gccaggcccc cgcaacggtg tccccctgcag ctccagcccc gggctgcacc cccccggcccc 240

|                                                                     |      |
|---------------------------------------------------------------------|------|
| gacaccagct ctccagcctg ctcgtccagg atggccgcgg ccaaggccga gatgcagctg   | 300  |
| atgtccccgc tgcagatctc tgaccggttc ggatccttgc ctcactcgcc caccatggac   | 360  |
| aactacccta agctggagga gatgatgctg ctgagcaacg gggctccca gttcctcggc    | 420  |
| gccgccccggg ccccagaggg cagcggcagc aacagcagca gcagcagcag cggggggcggt | 480  |
| ggagggcggcg ggggcggcag caacagcagc agcagcagca gcaccccaa ccctcaggcg   | 540  |
| gacacggcg agcagcccta cgagcacctg accgcagagt ctttcctga catctcttg      | 600  |
| aacaacgaga aggtgctggt ggagaccagt taccggcggc aaaccactcg actgcccccc   | 660  |
| atcacctata ctggccgctt ttccctggag cctgcaccca acagtggcaa caccttgtgg   | 720  |
| cccgagcccc ttttcagtt ggtcagtggc ctatgtggca tgaccaaccc accggcctcc    | 780  |
| tcgtccttag caccatctcc agcggcctcc tccgcctccg cttccagag cccacccctg    | 840  |
| agctgcgcag tgccatccaa cgacagcagt cccattact cagcggcacc cacccccc      | 900  |
| acgcccgaaca ctgacatttt ccctgagcca caaagccagg cttcccggg ctcggcaggg   | 960  |
| acagcgctcc agtacccgccc tcctgcctac cctgcccggca agggtgtttt ccaggttccc | 1020 |
| atgatccccg actacctgtt tccacagcag cagggggatc tgggcctggg cacccagac    | 1080 |
| cagaagccct tccagggcct ggagagccgc acccagcagc ctgcgttaac cccttgtct    | 1140 |
| actattaagg ctttgccac tcagtcgggc tccaggacc tgaaggccct caataccagc     | 1200 |
| taccagtccc agctcatcaa acccagccgc atgcgcaagt atcccaaccc gcccagcaag   | 1260 |
| acgccccccc acgaacgccc ttacgcttgc ccagtggagt cctgtgatcg ccgtttctcc   | 1320 |
| cgctccgacg agctcaccccg ccacatccgc atccacacag gccagaagcc cttccagtgc  | 1380 |
| cgcattgtca tgcgcactt cagccgcagc gaccacctca ccacccacat ccgcacccac    | 1440 |
| acaggcgaaa agcccttcgc ctgcgacatc tgtggaaagaa agtttgccag gagcgatgaa  | 1500 |
| cgcaagaggc ataccaagat ccacttgccg cagaaggaca agaaagcaga caaaagtgtt   | 1560 |
| gtggcctttt cggccaccc tcctctctct tcctaccgt ccccggttgc taccttttac     | 1620 |
| ccgtccccgg ttactaccc ttatccatcc cggccacca cctcatacc accccctgt       | 1680 |
| cccacccctt tctcctctcc cggctccctcg acctacccat cccctgtgca cagtggcttc  | 1740 |
| ccctccccgt cgggtggccac cacgtactcc tctgtttttt ctgctttttt ggcccaggtc  | 1800 |
| agcagcttcc cttcctcagc tgcacccaac tccttcagcg cctccacagg gctttcggac   | 1860 |
| atgacagcaa cttttctcc caggacaatt gaaatttgct aaaggaaag gggaaagaaa     | 1920 |

|                                                                       |      |
|-----------------------------------------------------------------------|------|
| ggaaaaaggg agaaaaagaa acacaagaga cttaaaggac aggaggagga gatggccata     | 1980 |
| ggagaggagg gttcctctta ggtagatgg agttctcag agccaagtcc tccctctcta       | 2040 |
| ctggagtgga aggtctattg gccaacaatc ctttctgccc acttcccctt ccccaattac     | 2100 |
| tattccctt gacttcagct gcctgaaaca gccatgtcca agttcttcac ctctatccaa      | 2160 |
| agaacttgat ttgcattggat tttggataaa tcatttcagt atcatctcca tcataatgcct   | 2220 |
| gacccttgc tcccttcaat gctagaaaat cgagttggca aaatggggtt tgggccccctc     | 2280 |
| agagccctgc cctgcaccct tgtacagtgt ctgtgccatg gattcggtt ttcttgggt       | 2340 |
| actcttgatg tgaagataat ttgcatttc tattgtatta tttggagttt ggtcctcact      | 2400 |
| tgggggaaaa aaaaaaaaaa aagccaagca aaccaatggt gatcctctat tttgtgatga     | 2460 |
| tgctgtgaca ataagttga acctttttt ttgaaacagc agtcccagta ttctcagagc       | 2520 |
| atgtgtcaga gtgttgtcc gttAACCTT ttgtAAatac tgcttgaccg tactctcaca       | 2580 |
| tgtggcaaaa tatggttgg ttttctttt ttttttttga aagtgtttt tcttcgtcct        | 2640 |
| tttggtttaa aaagttcac gtcttggc ctttgtgtg atgccccctg ctgatggcct         | 2700 |
| gacatgtgca attgtgaggg acatgctcac ctctagcctt aaaaaaaaaa gggagtgatg     | 2760 |
| atttggggga ggctttggga gcaaaataag gaagagggct gagctgagct tcggttctcc     | 2820 |
| agaatgttaag aaaacaaaat ctaaaacaaa atctgaactc tcaaaagtct attttttaa     | 2880 |
| ctgaaaatgt aaatttataa atatattcag gagttggaaat gttgtatgtt cctactgagt    | 2940 |
| aggcggcgat tttgtatgt tatgaacatg cagttcatta ttttgtggtt ctatTTTact      | 3000 |
| ttgtacttgt gtttgcttaa acaaagtgac tgTTTGGCTT ataaacacat tgaatgcgt      | 3060 |
| ttattgccccca tggatatgt ggtgtatatac cttccaaaaa attaaaacgaa aaataaaagta | 3120 |
| gctgcgattt gg                                                         | 3132 |

SEQUENCE LISTING

OCT 07 2002

PATENT & TRADEMARK OFFICE  
U.S.A.

<110> Pinsky, David

Stern, David

Yan, Shi-Fang

<120> Methods for Suppressing Early Growth Response-1 Protein (Egr-1) to Reduce Vascular Injury in a Subject

<130> 0575/62683

<140> 09/648,389

<141> 2000-08-25

<160> 6

<170> PatentIn version 3.1

<210> 1

<211> 15

<212> DNA

<213> Homo sapiens

<400> 1

cttggccgct gccat

15

<210> 2

<211> 15

<212> DNA

<213> Homo sapiens

<400> 2

taccgtcgcc gtgct

15

<210> 3

<211> 543

<212> PRT

<213> Homo sapiens

<400> 3

Met Ala Ala Ala Lys Ala Glu Met Gln Leu Met Ser Pro Leu Gln Ile  
1 5 10 15

Ser Asp Pro Phe Gly Ser Phe Pro His Ser Pro Thr Met Asp Asn Tyr  
20 25 30

Pro Lys Leu Glu Glu Met Met Leu Leu Ser Asn Gly Ala Pro Gln Phe  
35 40 45

Leu Gly Ala Ala Gly Ala Pro Glu Gly Ser Gly Ser Asn Ser Ser Ser  
50 55 60

Ser Ser Ser Gly Gly Gly Gly Gly Gly Ser Asn Ser Ser  
65 70 75 80

Ser Ser Ser Ser Thr Phe Asn Pro Gln Ala Asp Thr Gly Glu Gln Pro  
85 90 95

Tyr Glu His Leu Thr Ala Glu Ser Phe Pro Asp Ile Ser Leu Asn Asn  
100 105 110

Glu Lys Val Leu Val Glu Thr Ser Tyr Pro Ser Gln Thr Thr Arg Leu  
115 120 125

Pro Pro Ile Thr Tyr Thr Gly Arg Phe Ser Leu Glu Pro Ala Pro Asn  
130 135 140

Ser Gly Asn Thr Leu Trp Pro Glu Pro Leu Phe Ser Leu Val Ser Gly  
145 150 155 160

Leu Val Ser Met Thr Asn Pro Pro Ala Ser Ser Ser Ser Ala Pro Ser  
165 170 175

Pro Ala Ala Ser Ser Ala Ser Gln Ser Pro Pro Leu Ser Cys  
180 185 190

Ala Val Pro Ser Asn Asp Ser Ser Pro Ile Tyr Ser Ala Ala Pro Thr  
195 200 205

Phe Pro Thr Pro Asn Thr Asp Ile Phe Pro Glu Pro Gln Ser Gln Ala  
210 215 220

Phe Pro Gly Ser Ala Gly Thr Ala Leu Gln Tyr Pro Pro Pro Ala Tyr  
225 230 235 240

Pro Ala Ala Lys Gly Gly Phe Gln Val Pro Met Ile Pro Asp Tyr Leu  
245 250 255

Phe Pro Gln Gln Gln Gly Asp Leu Gly Leu Gly Thr Pro Asp Gln Lys  
260 265 270

Pro Phe Gln Gly Leu Glu Ser Arg Thr Gln Gln Pro Ser Leu Thr Pro  
275 280 285

Leu Ser Thr Ile Lys Ala Phe Ala Thr Gln Ser Gly Ser Gln Asp Leu  
290 295 300

Lys Ala Leu Asn Thr Ser Tyr Gln Ser Gln Leu Ile Lys Pro Ser Arg  
305 310 315 320

Met Arg Lys Tyr Pro Asn Arg Pro Ser Lys Thr Pro Pro His Glu Arg  
325 330 335

Pro Tyr Ala Cys Pro Val Glu Ser Cys Asp Arg Arg Phe Ser Arg Ser  
340 345 350

Asp Glu Leu Thr Arg His Ile Arg Ile His Thr Gly Gln Lys Pro Phe  
355 360 365

Gln Cys Arg Ile Cys Met Arg Asn Phe Ser Arg Ser Asp His Leu Thr  
370 375 380

Thr His Ile Arg Thr His Thr Gly Glu Lys Pro Phe Ala Cys Asp Ile  
385 390 395 400

Cys Gly Arg Lys Phe Ala Arg Ser Asp Glu Arg Lys Arg His Thr Lys  
405 410 415

Ile His Leu Arg Gln Lys Asp Lys Lys Ala Asp Lys Ser Val Val Ala  
420 425 430

Ser Ser Ala Thr Ser Ser Leu Ser Ser Tyr Pro Ser Pro Val Ala Thr  
435 440 445

Ser Tyr Pro Ser Pro Val Thr Thr Ser Tyr Pro Ser Pro Ala Thr Thr  
450 455 460

Ser Tyr Pro Ser Pro Val Pro Thr Ser Phe Ser Ser Pro Gly Ser Ser  
465 470 475 480

Thr Tyr Pro Ser Pro Val His Ser Gly Phe Pro Ser Pro Ser Val Ala  
485 490 495

Thr Thr Tyr Ser Ser Val Pro Pro Ala Phe Pro Ala Gln Val Ser Ser  
500 505 510

Phe Pro Ser Ser Ala Val Thr Asn Ser Phe Ser Ala Ser Thr Gly Leu  
515 520 525

Ser Asp Met Thr Ala Thr Phe Ser Pro Arg Thr Ile Glu Ile Cys  
530 535 540

<210> 4

<211> 6590

<212> DNA

<213> Homo sapiens

<400> 4  
gcgggctgg gctgtggctc acacctggaa tcccagcaact ttgggaggcc gaagtgggtg 60  
aatcgcttga gctcaagagt tcaagaccag cctggcaac acagcgaaac ccctctctac 120  
gaaaatacaa aaaaaaaaaa aaaaaatgaa aagccaggcg tggggcagg cacctgttagt 180  
ccaagctact cgagaggagg aggctggagg atcaattgag cctggagggc ggaggttgca 240  
gtgagctcgc gccactgac tccaaacctgg gtgccagcgt gagacccgt ctcagaaaga 300  
ataaaaaacat taaaaaaaaa atttggctaa ggtaccctac cagggagtgg caaaatggac 360  
attcagacac aaggccatct gcgcgtcaac agcctggcct tcctggccctt gcggcaggag 420  
tcctctgaga ggcgcacac tcctggccca atggacaact ccgtagacag tgggagttag 480  
ccccccaccc ccccgccga cttgagacgg caggctccga gacgaggagg tcctgggtca 540  
ttaagtttgt ttttataaaa aaacatgttt ggaggggggc cagccacaaa gggatatagt 600  
ccaagaaaagt tacccttcc cccacctaatt cccctgacc ccgaccccca gaggctgttg 660  
gggtttacag aggccctcac ctccctccctt ccctctcggt gtcgtcaaac accctccctc 720  
tccacatttc tctttctgct ttcttttaa atccagaaaa aacagtacct cctctggatt 780  
cagagctaga gcaggaggag cttcccttcc cggaaatccct gttccctttg ggggagcaac 840  
tgacggttcg tggggggcggg gagggttccc ctttttgttt gacccaagga agactgggga 900  
atattttcct tagacaccac ccaccccttt ttcttttcc ctttcacttt gccaggctgg 960

ggtttagggat tgttatcccg gagttgggc gtttcggaag tgacggttcc ccggggtttg 1020  
aaggggagcc cgggttaagc gcctgttcag ttcgtgctca tgcgtcgaag gctccccgg 1080  
ccttgctccg cgcccagcgc cgcatccgg aggaggagcg aggaggcggc ggaagagccc 1140  
gcgcggccgg agtccggggc tgggagtgga gagggaacct ccagggggca gcaccgagcc 1200  
gcaaagccgg tcctcttttc gcgcaggcc cgggtcccc agatagccca taggaaagcc 1260  
cctcttcgg attcccgag tgtggccgg ccctccaccc ggactggata aagggggaa 1320  
agtgaccctt caccacaagg accattatct cctggtgaga acaagaatca ggcctcttt 1380  
ggggcaatca gttcccccac ttcggtcccc caaaggtgg ctcttgccg gcggggacta 1440  
gggaacagcc ttgcgggttcc ggggagcac agggacccc aggaccagc agcccatcc 1500  
caccgacagg tggcagagggc aaggcagctc actgctatac agtgtccaa gaaccaagt 1560  
gcgtgactt cctatcctca atttcccagc gacacccgga aagacaccgt gccatagatc 1620  
gaggccggg gtcaaggccc cgccctctcct gggcggcccc tgcccaaggcg ggcccagccg 1680  
ctcctccccc gcactcccg ttgcgtctca cggccctga ggtggcggg cggccctgga 1740  
tgacagcgat agaaccccg cccgactcgc cctcgcccc gctctgggtc tgggcttccc 1800  
cagcctagtt cacgcctagg agccgcctga gcagccgcgc ccagcgcac acgccacgag 1860  
ccctccccgc ctggcgttcc cggatcccg cgagcgtcgc ggctcccgcc ttgaaaccag 1920  
ggaggaggga gggagcgagg gagcaaccag ctcggaccgg aatgcatata gagcaggaag 1980  
gatccccgc cggaaacaacc cttatttggg cagcaccta tttggagtgg cccgatatgg 2040  
ccggcgctt cggcgtctgg gaggaggaa gaaggcggag ggagggcaa cgccggact 2100  
ccggagctgc cggcccccgg gggccggcg gcggctagag ctctaggctt cccgaaagct 2160  
gggcgcctgg gatgcggggc gggccggcc ctagggtgca ggtggaggt gccggcgct 2220  
gtcggatggg gggcttcacg tcactccggg tccctccccg tccctgcccattttagggctt 2280  
ctgcttccca tatatgcccgtacgtc acggaggcgg acccggtccg ttccagaccc 2340  
ttcaaatacg ggcggatccg gggagtcgcg agagatccag ccgcagaact tgggagccg 2400  
ccgcccgcatttccgc acggcgttc cggcccccgcg gggccggcc ctagggcgct 2460  
ctccgcagcc gcggcgcgtc cacggccgc cggcccccagg gcgagtcggg gtgcggcct 2520  
gcacgcttct cagtggtccc cggcccccgc atgttaacccg gccaggcccc cgcaacgggt 2580  
tcccctgcag ctccagcccc gggctgcacc ccccccggcc gacaccagct ctccagcctg 2640  
ctcggtccagg atggccgcgg ccaaggccga gatgcagctg atgtccccgc tgcaagatctc 2700  
tgaccctgttc ggtatccttc ctcactcgcc caccatggac aactacccta agctggagga 2760  
gatgatgctg ctgagcaacg gggctccccat ttcctcgcc gccggccgggg ccccaagagg 2820  
cagcggcagc aacagcagca gcagcagcag cggggccgggt ggaggcggcg gggccggcag 2880

caacagcagc agcagcagca gcaccccaa ccctcaggcg gacacggcg agcagcccta 2940  
cgagcacctg accgcaggta agcagtggcc tacgccgagg gggAACCTT tcGCCACCAT 3000  
cctggcgTCC tgtcTTcac cgCAGGAGTG ctccTGGATC ttAGAATGAG agCCGGTTT 3060  
cccttcatt cctcgcatcc ccAGAGTCAT gtgttagagg gatGCCAAGG AACCCCACAC 3120  
agcccACCCC ctGCCCTCAT ccTAGCGGA GCGCAGAGGA CCGAGCTTT gtttggatg 3180  
gagagCTCTG gagCTGCgtg ggtgggtgga gggggagggc ttgtttgtat gagCgggct 3240  
gcgcCcCcAc ctccAGTAAG acttgCttG cttgCttGc cgcctgtccc caAGGAAGGA 3300  
ccgtgatcct tggccgtgga tgccccggca gccccggTTT gggggcgcgc actagcccg 3360  
gcCAtggggg tgctggcggg aatccctcgC ccgcACAGC CCGCTGCGG agcgctgcga 3420  
gctgcagtgg agggggattc tccgtatttG cgtcaCTGtt gttgaaatgg gctctGCCAC 3480  
tggtgCgggt ccaggaACAT tgcaatgtgc tgctatcaat tattaactac ctCgggAgTC 3540  
aatggtagcc ggcccggTct ctgcctggc agctcgggTC gtccTGTCC tccagtGATT 3600  
gtttccagt aaccaggcct cccgcttctc tctctcctGc cagagtcttt tcctgacatc 3660  
tctctgaaca acgagaAGGT gctggTggag accagttacc ccAGCCAAAC cactcgactG 3720  
ccccccatca cctataactgg ccgcTTTCC ctggagcctg cacccaACAG tggcaACACC 3780  
ttgtggcccg agccccttt cagcttggtc agtggcctag tgagcatgac caACCCACCG 3840  
gcctcctcgT cctcAGCACC atctccAGCg gcctcctccg cctccgcctc ccAGAGCCCA 3900  
cccctgagct ggcAGTgCC atccAAACgAC agcAGTCCCA tttaCTCAGC ggcACCCACC 3960  
ttccccacgc cgaACACTGA catTTCCCT gagccACAAA gCcAGGcCTT cccgggctcg 4020  
gcaggGACAG cgcTCCAGTA cccgcctcct gcctaccctg ccGCCAAGGG tggcttccag 4080  
gttcccata tccccgacta cctgtttcca cagcAGCAGG gggatctggg cctggcacc 4140  
ccagaccaga agccCTTCCA gggcCTGGAG agccgcACCC AGCAGCCTTC gctaACCCCT 4200  
ctgtctacta ttaAGGCCTT tgccactcag tcgggCTCCC aggacctgaa ggcctcaat 4260  
accagctacc agtcccAGCT catCAAACCC AGCCGcatGC gcaAGTATCC caACCGGCC 4320  
agcaAGACGC cccccCACGA acgcCCTTAC gcttgcccAG tggAGTcCTG tgatGCCGC 4380  
ttctcccgt ccgacgAGCT cACCCGCCAC atccgcATCC ACACAGGCCA gaAGCCCTC 4440  
cagtGCCGCA tctgcATGCG caacttcAGC CGCAGCGACC acCTCACCAC ccACATCCGC 4500  
ACCCACACAG GCGAAAAGCC cttcgCCTGc gacatCTGT GAAGAAAAGTT tgccAGGAGC 4560  
gatGAACGCA agaggcatac caagatCCAC ttgcGGCAGA aggacaAGAA agcAGACAAA 4620  
agtgttgtgg cctcttcggc cacccctct ctctcttcc acccgTCCCC ggttgctacc 4680  
tcttACCCGT ccccggttac tacctcttat ccATCCCCGG ccACCCACCTC atACCCATCC 4740  
cctgtGCCA cctccttctc ctctcccggc tcctcgacCT ACCCATCCCC TGTGACAGT 4800

ggcttccccct ccccgtcggt ggccaccacg tactcctctg ttccccctgc tttcccgccc 4860  
caggtcagca gcttcccttc ctcaagctgtc accaactcct tcagcgccctc cacaggcgtt 4920  
tcggacatga cagcaacctt ttctcccagg acaattgaaa tttgctaaag ggaaaggggaa 4980  
aagaaaggga aaagggagaa aaagaaacac aagagactta aaggacagga ggaggagatg 5040  
gccataggag aggagggttc ctcttaggtc agatggaggt tctcagagcc aagtccccc 5100  
tctctactgg agtggaaaggctt ctattggcca acaatcctt ctgcccactt ccccttcccc 5160  
aattactatt cccttgact tcagctgcct gaaacagcca tgtccaagtt cttcacctct 5220  
atccaaagaa cttgatttgc atggattttg gataaatcat ttcaagtatca tctccatcat 5280  
atgcctgacc ccttgctccc ttcaatgcta gaaaatcgag ttggcaaaat ggggtttggg 5340  
cccctcagag ccctgcccctg caccctgtt cagtgctgt gccatggatt tcgttttct 5400  
tgggtactc ttgatgtgaa gataatttgc atattctatt gtattatttg gagtttaggtc 5460  
ctcacttggg gaaaaaaa aaaaaaaagc caagcaaacc aatggtgatc ctctattttg 5520  
tgatgatgct gtgacaataa gtttgaacct ttttttttga aacagcagtc ccagtattct 5580  
cagagcatgt gtcagagtgt tgttccgtt accttttgtt aaatactgct tgaccgtact 5640  
ctcacatgtg gcaaaatatg gtttggttt tctttttttt ttttggaaatg gttttttctt 5700  
cgtccttttgg tttaaaaag tttcacgtct tggtgccctt tggatgtgc cccttgctga 5760  
tggcttgaca tgtcaatttgc tgagggacat gctcacctct agccttaagg gggcaggga 5820  
gtgatgattt gggggaggct ttgggagca aataaggaag aggctgagc tgagcttcgg 5880  
ttctccagaa tgtaagaaaa caaaatctaa aacaaaatct gaactctcaa aagtctattt 5940  
tttaactga aaatgtaaaat ttataaatat attcaggagt tgaatgttg tagttaccta 6000  
ctgagtaggc ggcgattttt gtatgttatg aacatgcagt tcattattttt gtggttctat 6060  
tttactttgt acttgtgttt gcttaaacaatgactgtt tggcttataaa acacattgaa 6120  
tgcgctttat tgcccatggg atatgtggtg tatatccttc caaaaaatta aaacgaaaat 6180  
aaagtagctg cgattgggtt tggatgtttt gggtagggg aaggactctg ccctatttag 6240  
ggctgtgagg ttttctgaag acttggcctt tagagataca aggatcctcc agccagagtc 6300  
aggcccactg tgtgaaactg gagttcggtt tttatgagga ctgagttatgg gtcttcaaatt 6360  
tttgggtctt caggctcaag tgatcctccc acctcagcct cctgagtagc tggactata 6420  
ggcacgtgcc accacactcg gttaatgtttt atagagacag ggttttgcca tggccag 6480  
gctggagttc ttcttgataa tggcctgtt cctttcagt ctgttgggtg 6540  
gctggagttc ttcttgataa tggcctgtt cctttcagt ctgttgggtg 6590

<211> 543

<212> PRT

<213> Homo sapiens

<400> 5

Met Ala Ala Ala Lys Ala Glu Met Gln Leu Met Ser Pro Leu Gln Ile  
1 5 10 15

Ser Asp Pro Phe Gly Ser Phe Pro His Ser Pro Thr Met Asp Asn Tyr  
20 25 30

Pro Lys Leu Glu Glu Met Met Leu Leu Ser Asn Gly Ala Pro Gln Phe  
35 40 45

Leu Gly Ala Ala Gly Ala Pro Glu Gly Ser Gly Ser Asn Ser Ser Ser  
50 55 60

Ser Ser Ser Gly Gly Gly Gly Gly Gly Ser Asn Ser Ser Ser  
65 70 75 80

Ser Ser Ser Ser Thr Phe Asn Pro Gln Ala Asp Thr Gly Glu Gln Pro  
85 90 95

Tyr Glu His Leu Thr Ala Glu Ser Phe Pro Asp Ile Ser Leu Asn Asn  
100 105 110

Glu Lys Val Leu Val Glu Thr Ser Tyr Pro Ser Gln Thr Thr Arg Leu  
115 120 125

Pro Pro Ile Thr Tyr Thr Gly Arg Phe Ser Leu Glu Pro Ala Pro Asn  
130 135 140

Ser Gly Asn Thr Leu Trp Pro Glu Pro Leu Phe Ser Leu Val Ser Gly  
145 150 155 160

Leu Val Ser Met Thr Asn Pro Pro Ala Ser Ser Ser Ala Pro Ser  
165 170 175

Pro Ala Ala Ser Ser Ala Ser Ala Ser Gln Ser Pro Pro Leu Ser Cys  
180 185 190

Ala Val Pro Ser Asn Asp Ser Ser Pro Ile Tyr Ser Ala Ala Pro Thr  
195 200 205

Phe Pro Thr Pro Asn Thr Asp Ile Phe Pro Glu Pro Gln Ser Gln Ala

210

215

220

Phe Pro Gly Ser Ala Gly Thr Ala Leu Gln Tyr Pro Pro Pro Ala Tyr  
225 230 235 240

Pro Ala Ala Lys Gly Gly Phe Gln Val Pro Met Ile Pro Asp Tyr Leu  
245 250 255

Phe Pro Gln Gln Gln Gly Asp Leu Gly Leu Gly Thr Pro Asp Gln Lys  
260 265 270

Pro Phe Gln Gly Leu Glu Ser Arg Thr Gln Gln Pro Ser Leu Thr Pro  
275 280 285

Leu Ser Thr Ile Lys Ala Phe Ala Thr Gln Ser Gly Ser Gln Asp Leu  
290 295 300

Lys Ala Leu Asn Thr Ser Tyr Gln Ser Gln Leu Ile Lys Pro Ser Arg  
305 310 315 320

Met Arg Lys Tyr Pro Asn Arg Pro Ser Lys Thr Pro Pro His Glu Arg  
325 330 335

Pro Tyr Ala Cys Pro Val Glu Ser Cys Asp Arg Arg Phe Ser Arg Ser  
340 345 350

Asp Glu Leu Thr Arg His Ile Arg Ile His Thr Gly Gln Lys Pro Phe  
355 360 365

Gln Cys Arg Ile Cys Met Arg Asn Phe Ser Arg Ser Asp His Leu Thr  
370 375 380

Thr His Ile Arg Thr His Thr Gly Glu Lys Pro Phe Ala Cys Asp Ile  
385 390 395 400

Cys Gly Arg Lys Phe Ala Arg Ser Asp Glu Arg Lys Arg His Thr Lys  
405 410 415

Ile His Leu Arg Gln Lys Asp Lys Ala Asp Lys Ser Val Val Ala  
420 425 430

Ser Ser Ala Thr Ser Ser Leu Ser Ser Tyr Pro Ser Pro Val Ala Thr  
435 440 445

Ser Tyr Pro Ser Pro Val Thr Thr Ser Tyr Pro Ser Pro Ala Thr Thr  
450 455 460

Ser Tyr Pro Ser Pro Val Pro Thr Ser Phe Ser Ser Pro Gly Ser Ser  
465 470 475 480

Thr Tyr Pro Ser Pro Val His Ser Gly Phe Pro Ser Pro Ser Val Ala  
485 490 495

Thr Thr Tyr Ser Ser Val Pro Pro Ala Phe Pro Ala Gln Val Ser Ser  
500 505 510

Phe Pro Ser Ser Ala Val Thr Asn Ser Phe Ser Ala Ser Thr Gly Leu  
515 520 525

Ser Asp Met Thr Ala Thr Phe Ser Pro Arg Thr Ile Glu Ile Cys  
530 535 540

<210> 6

<211> 3132

<212> DNA

<213> Homo sapiens

<400> 6  
ccgcagaact tggggagccg ccggccgcat ccggccggcg agccagcttc cgccgcccga 60  
ggaccggccc ctgccccagc ctccgcagcc gcggcgcgtc cacgccccgcc cgccgcccagg 120  
gcgagtcggg gtcgcccgcgc acacgcttct cagtgttccc cgccgccccgc atgttaaccccg 180  
gccaggcccc cgcaacggtg tcccctgcag ctccagcccc gggctgcacc ccccccggccc 240  
gacaccagct ctccagcctg ctcgtccagg atggccgcgg ccaaggccga gatgcagctg 300  
atgtccccgc tgcaaatctc tgaccgttc ggatcctttc ctcactcgcc caccatggac 360  
aactacccta agctggagga gatgatgctg ctgagcaacg gggctccca gttcctcggc 420  
ggccgcgggg cccccagaggg cagcggcagc aacagcagca gcagcagcag cggggggcggt 480  
ggaggcggcg ggggcggcag caacagcagc agcagcagca gcaccttcaa ccctcaggcg 540  
gacacggcg agcagcccta cgagcacctg accgcagagt ctttcctga catctctctg 600  
aacaacgaga aggtgcttgtt ggagaccagt taccccagcc aaaccactcg actgcccccc 660  
atcacctata ctggccgcctt ttccctggag cctgcacccca acagtggcaa caccttgtgg 720  
cccgagcccc tcttcagctt ggtcagtggc cttagtgagca tgaccaaccc accggcctcc 780  
tcgtcctcag caccatctcc agcggcctcc tccgcctccg cctcccagag cccacccctg 840  
agctgcccag tgccatccaa cgacagcagt cccatttact cagcggcacc caccttcccc 900  
acgcccgaaca ctgacattt ccctgagcca caaagccagg cttcccccggg ctcggcaggg 960

acagcgctcc agtaccgcgc tcctgcctac cctgcccggca aggggtggc tt ccaggttccc 1020  
atgatccccg actacactgtt tccacagcag cagggggatc tgggcctggg cacccca gac 1080  
cagaaggccct tccaggccct ggagagccgc acccagcagc ctgcgtta ac ccctctgtct 1140  
actattaagg cctttgccac tcagtcggc tcccaggacc tgaaggccct caataccagc 1200  
taccagtccc agctcatcaa acccagccgc atgcgcaagt atcccaaccg gcccagcaag 1260  
acgccccccc acgaacgccc ttacgcttgc ccagtggagt cctgtgatcg ccgcttctcc 1320  
cgctccgacg agctcacccg ccacatccgc atccacacag gccagaagcc cttccagtgc 1380  
cgcatctgca tgcgcaactt cagccgcagc gaccaccta ccacccacat ccgcacccac 1440  
acaggcgaaa agcccttcgc ctgcgacatc tgtgaaagaa agtttgccag gagcgatgaa 1500  
cgcaagaggc ataccaagat ccacttgcgg cagaaggaca agaaagcaga caaaagtgtt 1560  
gtggcctctt cggccaccc tcctctctct tcctaccctgt ccccggttgc tacctcttac 1620  
ccgtccccgg ttactacctc ttatccatcc cggccacca cctcataccat atcccctgt 1680  
cccacccctc tctcctctcc cggctcctcg acctacccat cccctgtgca cagtggcttc 1740  
ccctccccgt cggtggccac cacgtactcc tctgttcccc ctgctttccc ggcccaggc 1800  
agcagcttcc cttcctcagc tgtcaccaac tccttcagc cctccacagg gctttcggac 1860  
atgacagcaa cctttctcc caggacaatt gaaatttgct aaaggaaag gggaaagaaa 1920  
gggaaaaggg agaaaaagaa acacaagaga cttaaaggac aggaggagga gatggccata 1980  
ggagaggagg gttcctctta ggtcagatgg aggttctcag agccaagtcc tccctctcta 2040  
ctggagtgga aggtctattt gccaacaatc ctttctgccc acttcccctt ccccaattac 2100  
tattcccttt gacttcagct gcctgaaaca gccatgtcca agttcttcac ctctatccaa 2160  
agaaccttatgat ttgcattggat tttggataaa tcatttcagt atcatctcca tcatatgcct 2220  
gacccttgc tcccttcaat gctagaaaat cgagttggca aaatggggtt tggggccctc 2280  
agagccctgc cctgcacccct tgtacagtgt ctgtgccatg gatttcgtt ttcttgggg 2340  
actcttgatg tgaagataat ttgcattttc tattgttatta ttggagttt ggtcctcact 2400  
tggggaaaa aaaaaaaaaa aagccaaagca aaccaatggt gatcctctat tttgtgatga 2460  
tgctgtgaca ataagttga acctttttt ttgaaacagc agtcccagta ttctcagagc 2520  
atgtgtcaga gtgttgttcc gttaaccttt ttgtaaatac tgcttgaccg tactctcaca 2580  
tgtggcaaaa tatggtttg ttttctttt ttttttttga aagtgtttt tcttcgtcct 2640  
tttggttaa aaagtttac gtcttggtgc cttttgtgtg atgcccctg ctgatggc 2700  
gacatgtgca attgtgaggg acatgctcac ctctagcctt aagggggca gggagtgtatg 2760  
atttggggga ggcttggga gcaaaataag gaagaggcgt gagctgagct tcgggttctcc 2820  
agaatgtaaag aaaacaaaaat ctaaaacaaa atctgaactc tcaaaagtct attttttaa 2880

|                                                                      |      |
|----------------------------------------------------------------------|------|
| ctgaaaatgt aaatttataa atatattcag gagttggaaat gtttagtta cctactgagt    | 2940 |
| aggcggcgat ttttgtatgt tatgaacatg cagttcatta ttttggtt ctattttact      | 3000 |
| ttgtacctgt gtttgcttaa acaaagtgc ac ttggc tt aaaaacat tgaatgcgct      | 3060 |
| ttattgccccca tgggatatgt ggtgtatatc cttccaaaaa attaaaacga aaataaaagta | 3120 |
| gctgcgattg gg                                                        | 3132 |