Designing Efficient Algorithms for Combinatorial Repairable Threshold Schemes

Bailey Kacsmar

University of Waterloo

Threshold Schemes

Threshold Schemes

Threshold Schemes and Repairability

A (τ, n) -Threshold Scheme has n participants and threshold τ

- ullet Any subset of participants of size au can determine the secret from combining their shares.
- No subset of players consisting of fewer than τ players learns the secret.

 (τ, n) -TS exists for any τ and n such that $\tau \leq n$.

Definition

A threshold scheme is *repairable* if it has a defined repairing algorithm such that a participant with a failed share can communicate with a subset of the n participants to reconstruct the failed share. Additionally, after a repair no coalition is able to learn information they did not have before the repair.

Outline

- Reliability of Combinatorial Threshold Schemes
- Algorithms for Performing a Repair
- Extending to use Different Designs

Balanced Incomplete Block Design (BIBD)

Let v, k, λ be integers, $v > k \ge \lambda$. A (v, k, λ) -BIBD is a design such that:

- 1. |X| = v, number of elements in the set X is v
- 2. each block contains exactly k points, and
- 3. every pair of distinct points is contained in exactly λ blocks.

Steiner Triple Systems

Definition

A Steiner triple system is a (v,3,1)-BIBD. There exists an STS(v) if and only if $v \equiv 1,3 \pmod 6$, $v \geq 7$.

Definition

Every point in a (v, k, λ) -BIBD occurs in exactly

$$r = \frac{\lambda(\nu-1)}{k-1}$$

blocks. The value r is termed the *replication number*.

Constructing a Repairable (2,7)-Threshold Scheme

Base Scheme

Construct a (5,7)-threshold scheme. The shares from the base scheme are $S_1, S_2 \dots, S_7$.

Distribution Design

Assign the blocks of the (7,3,1)-BIBD as follows:

$$P_1 \leftrightarrow 123$$
 P_3
 $P_2 \leftrightarrow 145$ P_4

$$P_3 \leftrightarrow 167$$

 $P_4 \leftrightarrow 246$

$$P_5 \leftrightarrow 257$$

 $P_6 \leftrightarrow 347$

$$\textit{P}_{7} \leftrightarrow 356$$

Expanded Scheme

Distribute each S_i to players with point i from the block design.

$$P_1$$
's expanded share S_1 , S_2 , S_3 .
 P_2 's expanded share S_1 , S_4 , S_5 .
 P_3 's expanded share S_1 , S_6 , S_7 .
 P_4 's expanded share S_2 , S_4 , S_6 .

$$P_5$$
's expanded share S_2, S_5, S_7 .

$$P_6$$
's expanded share S_3 , S_4 , S_7 .

$$P_7$$
's expanded share S_3 , S_5 , S_6 .

The Existence of Available Repair Sets

Example

Let the share xyz in an STS(7) require repair. Let S_1, \ldots, S_6 , be shares that intersect xyz. Let p be the probability that a participant is available and let $\mathcal{R}(p) = Pr\{\text{a repair set exists}\}.$

 $Pr\{at | least one of \{S_1, S_2\} | least one of \{S_1, S_2\} \}$

$$1 - (1 - p)^2 = 2p - p^2$$

The Existence of Available Repair Sets

Example

Let the share xyz in an STS(7) require repair. Let S_1, \ldots, S_6 , be shares that intersect xyz. Let p be the probability that a participant is available and let $\mathcal{R}(p) = Pr\{\text{a repair set exists}\}.$

 $Pr\{at least one of \{S_1, S_2\} \text{ is available}\}\$ is

$$1 - (1 - p)^2 = 2p - p^2$$

$$\mathcal{R}(p) = (2p - p^2)^3$$

Existence of An Available Repair Set for an STS(7)

Figure: Existence of an available repair set for STS(7)

Generalized Existence of Available Repair Sets

$$r = \frac{\lambda(\nu-1)}{k-1}$$

Theorem

For an STS(v), the probability that there exists at least one repairing set is:

$$\mathcal{R}(p) = (1 - (1-p)^{r-1})^3.$$

Theorem

For a (v, k, 1) – BIBD, the probability that there exists at least one repairing set is:

$$\mathcal{R}(p) = (1 - (1-p)^{r-1})^k.$$

Generalizing the Expected Available Repair Sets

Linearity of Expectation asserts that the expected value of a sum of random variables is equal to the sum of the expected values for each of the random variables.

$$r = \frac{\lambda(\nu-1)}{k-1}$$

Theorem

The expected number of available repair sets for an STS(v) is:

$$(r-1)^3p^3$$
.

Theorem

The expected number of available repairing sets for a (v, k, λ) – BIBD is

$$(r-1)^k p^k$$
.

Expectation Graph

Figure: Expected number of available repair sets for STS(7)

Who you gonna call?

In solving the problem of finding a repair set we need to consider:

- The Probability Model
 - ► Transient Fault
 - ▶ Permanent Fault
- The Storage requirements
- The Complexity analysis

Random Participants

- P_{ℓ} lost the shares for 123
- P_{ℓ} contacts a random P_j and wait time T for a response
- If P_j responds ask for any of 123
- Repeat until all subshares are repaired

Random Participants

- P_{ℓ} lost the shares for 123
- P_{ℓ} contacts a random P_j and wait time T for a response
- If P_j responds ask for any of 123
- Repeat until all subshares are repaired

Random Participants

- P_{ℓ} lost the shares for 123
- P_{ℓ} contacts a random P_j and wait time T for a response
- If P_j responds ask for any of 123
- Repeat until all subshares are repaired

Random Participants

- P_{ℓ} lost the shares for 123
- P_{ℓ} contacts a random P_j and wait time T for a response
- If P_j responds ask for any of 123
- Repeat until all subshares are repaired

Random Participants

- P_{ℓ} lost the shares for 123
- P_{ℓ} contacts a random P_j and wait time T for a response
- If P_j responds ask for any of 123
- Repeat until all subshares are repaired

Random Participants

- P_{ℓ} lost the shares for 123
- P_{ℓ} contacts a random P_j and wait time T for a response
- If P_j responds ask for any of 123
- Repeat until all subshares are repaired

Random Participants

Model: Transient Fault Storage: Own share

Recall:

- This is a variation of the classic coupon collector problem
- There are *n* participants corresponding to $b = \frac{vr}{k}$ blocks
- Each share consists of k = 3 subshares

the expected time $= T \frac{b}{p(r-1)} \ln k$

Stored Intersecting Participants

Model: Transient Fault Storage: Own share, $\mathcal{R} \subset \mathcal{P}$

- P_{ℓ} lost the shares for 123
- P_{ℓ} contacts a random P_j who has an intersecting share and waits time T for a response
- If P_j responds ask for any of 123
- Repeat until all subshares are repaired

Stored Intersecting Participants

Model: Transient Fault Storage: Own share, $\mathcal{R} \subset \mathcal{P}$

- P_{ℓ} lost the shares for 123
- P_{ℓ} contacts a random P_j who has an intersecting share and waits time T for a response
- If P_j responds ask for any of 123
- Repeat until all subshares are repaired

Stored Intersecting Participants

Model: Transient Fault Storage: Own share, $\mathcal{R} \subset \mathcal{P}$

Recall:

- Also a variant of the coupon collector problem
- There are k(r 1) participants intersecting participants
- Each share consists of
 k = 3 subshares

the expected time $=\frac{k \ln k}{p}$

Stored Grouped Participants

Model: Permanent Fault Storage: Own share, $\mathcal{R} = \{\{P_3, P_6, P_{11}\}, ...$

- P_{ℓ} lost the shares for 123
- To repair a subshare s, P_ℓ contacts P_j who has s in common and waits time T for a response
- If P_j responds ask for s
- Repeat for each subshare s that requires repair

Stored Grouped Participants

Model: Permanent Fault

Storage: Own share, $\mathcal{R} = \{\{P_3, P_6, P_{11}\}, ...$

- For each subshare there is a list of r-1 participants that can repair it
- Each share consists of k = 3 subshares
- The replication number r is how many times a point occurs in the design

the expected time =

$$kT\left[\frac{1-(p(r-1)+1)(1-p)^{r-1}}{p}\right]$$

Generate Intersecting Participants

Example

Let the design be a (7,3,1)-BIBD with the base block $\mathcal{B}=\{013\}$ and blocks labelled $\{B_0,B_1,B_2,B_3,B_4,B_5,B_6\}$. The resulting blocks are:

$$\{013, 124, 235, 346, 450, 561, 602\}.$$

These blocks correspond to players

$$\{P_0, P_1, P_2, P_3, P_4, P_5, P_6\}.$$

The block B_3 would be generated by computing $\{0+3 \pmod{7}, 1+3 \pmod{7}, 3+3 \pmod{7}\}$, which is block 346.

What if a participant could ask for more than one subshare?

From 2-Designs to t-Designs

Definition

A (v, k, λ) -Balanced Incomplete Block Design, is a design such that:

- 1. |X| = v,
- 2. each block contains exactly k points, and
- 3. every pair of distinct points is contained in exactly λ blocks.

From 2-Designs to t-Designs

Definition

A (v, k, λ) -Balanced Incomplete Block Design, (a $2 - (v, k, \lambda)$ design) is a design such that:

- 1. |X| = v,
- 2. each block contains exactly k points, and
- 3. every pair (set of 2) of distinct points is contained in exactly λ blocks.

From 2-Designs to t-Designs

Definition

A $t - (v, k, \lambda)$ design is a design where:

- 1. |X| = v,
- 2. Each block is of size k,
- 3. Every set of t points from the set X occurs in exactly λ blocks.

Definition

A 3 - (v, 4, 1) design is a *Steiner quadruple system* of order v, denoted SQS(v). For all SQS(v), $v \equiv 2, 4 \pmod{6}$.

2-Designs and 3-Designs

Example

A $\frac{2}{2}$ – (13, 4, 1) design with the set $X = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c\}$

0139 028*c*0457 06*ab*124*a* 1568

17*bc* 235*b*

2679 346*c*

378*a* 489*b*

598*a*

Example

A $\frac{3}{3}$ – (8, 4, 1) design with the set $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$

5678

1234

1**45**8 2367

1467 2358

Reliability for a SQS(8)

Example

$$A_1 = 1234$$
 $A_2 = 5678$
 $B_1 = 1256$ $B_7 = 3478$
 $B_2 = 1278$ $B_8 = 3456$
 $B_3 = 1357$ $B_9 = 2468$
 $B_4 = 1368$ $B_{10} = 2457$
 $B_5 = 1458$ $B_{11} = 2367$
 $B_6 = 1467$ $B_{12} = 2358$

Reliability for a SQS(8)

Example

$$A_1 = 1234$$
 $A_2 = 5678$
 $B_1 = 1256$ $B_7 = 3478$
 $B_2 = 1278$ $B_8 = 3456$
 $B_3 = 1357$ $B_9 = 2468$
 $B_4 = 1368$ $B_{10} = 2457$
 $B_5 = 1458$ $B_{11} = 2367$
 $B_6 = 1467$ $B_{12} = 2358$

We can define cutsets as follows:

$$C_1 = \{B_1, B_2, B_3, B_4, B_5, B_6\}$$

$$C_2 = \{B_1, B_2, B_9, B_{10}, B_{11}, B_{12}\}$$

$$C_3 = \{B_3, B_4, B_7, B_8, B_{11}, B_{12}\}$$

$$C_4 = \{B_5, B_6, B_7, B_8, B_9, B_{10}\}.$$

Reliability for a SQS(8)

Example

$$A_1 = 1234$$
 $A_2 = 5678$
 $B_1 = 1256$ $B_7 = 3478$
 $B_2 = 1278$ $B_8 = 3456$
 $B_3 = 1357$ $B_9 = 2468$
 $B_4 = 1368$ $B_{10} = 2457$
 $B_5 = 1458$ $B_{11} = 2367$
 $B_6 = 1467$ $B_{12} = 2358$

We can define *cutsets* as follows:

 $C_1 = \{B_1, B_2, B_3, B_4, B_5, B_6\}$
 $C_2 = \{B_1, B_2, B_9, B_{10}, B_{11}, B_{12}\}$
 $C_3 = \{B_3, B_4, B_7, B_8, B_{11}, B_{12}\}$
 $C_4 = \{B_5, B_6, B_7, B_8, B_9, B_{10}\}.$

 $Pr\{a \text{ repair set exists}\} = 1 - Pr\{at \text{ least one } C_i \text{ fails}\}$

Any C_i fails for an SQS(8)

The inclusion-exclusion principle states that given two sets A and B,

$$|A \cup B| = |A| + |B| - |A \cap B|$$

$$C_1 = \{B_1, B_2, B_3, B_4, B_5, B_6\} \qquad |C_1| = 6$$

$$C_2 = \{B_1, B_2, B_9, B_{10}, B_{11}, B_{12}\} \qquad |C_1 \cup C_2| = 10$$

$$C_3 = \{B_3, B_4, B_7, B_8, B_{11}, B_{12}\} \qquad |C_1 \cup C_2 \cup C_3| = 12$$

$$C_4 = \{B_5, B_6, B_7, B_8, B_9, B_{10}\}. \qquad |C_1 \cup C_2 \cup C_3 \cup C_4| = 12$$

Therefore, the probability a repair set exists for an SQS(8) is

$$1 - Pr\{\text{at least one } C_i \text{ fails}\} = 1 - 4(1-p)^6 + 6(1-p)^{10} - 3(1-p)^{12}$$

Generalizing Existence for SQS(v)

$$r_1 = \frac{\binom{v-1}{2}}{3} \qquad \qquad r_2 = \frac{\binom{v-2}{1}}{2}$$

Theorem

Let q = 1 - p, where p is the probability that a share is available. Then, the generalized formula for the probability of the existence of a repair set for an SQS(v) is:

$$1 - 4q^{r_1-1} + 6q^{2r_1-r_2-1} - 4q^{3r_1-3r_2} + q^{4r_1-6r_2+2}$$

Generalizing Existence for t-Designs

$$r_{j} = \frac{\binom{v-j}{t-j}}{\binom{k-j}{t-j}}$$

Theorem

Let q = (1 - p), where p is the probability that a share is available. Then, the generalized formula for the probability of existence of a repair set for an t - (v, k, 1) design is:

$$Pr\{a \text{ repair set exists}\} = 1 - \binom{k}{1}q^{e_1} + \binom{k}{2}q^{e_2} - \binom{k}{3}q^{e_3} + \dots + \binom{k}{k}q^{e_k}$$

where

$$e_i = \sum_{j=1}^{i} (-1)^{j+1} {i \choose j} (r_j - 1).$$

Comparing Existence for t = 2 and t = 3

Figure: Existence of a repair set for: SQS(28) and (28, 4, 1)-BIBD

Comparing Existence for t = 2 and t = 3

Table: Repair Set Existence Comparison for t - (v, k, 1) Designs

t	v	k	λ	b	r ₁	r ₂	Value of p for P \geq 0.99
2	13	4	1	13	4	1	0.87
2	16	4	1	20	5	1	0.78
2	25	4	1	50	8	1	0.58
2	28	4	1	63	9	1	0.53
3	14	4	1	91	26	6	0.22
3	16	4	1	140	35	7	0.17
3	26	4	1	650	100	12	0.06
3	28	4	1	819	117	13	0.06

What is a Repair Set for a Steiner Quadruple System?

Example

Let P_{ℓ} require a repair for their share 1256.

- 1. Assume P_{ℓ} contacts 1234. This provides the pair 12.
- 2. The next P_i , may provide 56, 16, 25, 15, or 26.
- 3. If the repair was not completed at the previous stage, P_{ℓ} will contact P_k to receive either 5 or 6.

Minimal repair sets for a SQS(v) can take the following forms:

- 1. "pair, pair"
- 2. "pair, point, point"
- 3. "point, point, point, point"

"Pair, Point, Point" forms for SQS(v)

Figure: "Pair, Point, Point" Repair Set Types

Expected Number of Available Repair Sets

The expected number of minimal repair sets for an SQS(v) can be computed as the sum of:

- The expected number of "pair, pair" repair sets Clearly, $3(r_2-1)^2p^2$
- The expected number of "point, point, point, point" repair sets Clearly, $((r_1-1)-3(r_2-1))^4p^4$
- The expected number of "pair, point, point" repair sets Expands into three forms
 - * Basic
 - ★ Mixed
 - ★ Connected

The expected number of minimal repair sets of size two, three, or four for an SQS(v) can be computed as:

$$3(r_2-1)^2p^2+2(r_2-1)(3r_1^2-12r_1r_2+6r_1+11r_2^2-10r_2+2)p^3+(r_1-3r_2+2)^4p^4$$

Contacting Repair Sets for t-Designs

Grouping Intersecting Participants

Let the design be an SQS(10). Let P_{ℓ} correspond to block 1245.

```
R_1 = \{1237, 1358, 1468, 1567, \dots, 1289, 1590, 1369, 1340, 1260\}
R_2 = \{1237, 2356, 2348, 2469, \dots, 1289, 2580, 2390, 1260, 2470\}
R_4 = \{2348, 2469, 3467, 2469, \dots, 1468, 1479, 4890, 1340, 2470\}
R_5 = \{1358, 2356, 3459, 3570, \dots, 5689, 1567, 2579, 2580, 1590\}
```

Contacting Repair Sets for t-Designs

Grouping Intersecting Participants

Let the design be an SQS(10). Let P_{ℓ} correspond to block 1245.

```
R_1 = \{1237, 1358, 1468, 1567, \dots, 1289, 1590, 1369, 1340, 1260\}
R_2 = \{1237, 2356, 2348, 2469, \dots 1289, 2580, 2390, 1260, 2470\}
R_4 = \{2348, 2469, 3467, 2469, \dots, 1468, 1479, 4890, 1340, 2470\}
R_5 = \{1358, 2356, 3459, 3570, \dots 5689, 1567, 2579, 2580, 1590\}
R_{12} = \{1237, 1260, 1289\}
R_{45} = \{3459, 4578, 4560\}
R_{14} = \{1340, 1468, 1479\}
R_{15} = \{1358, 1567, 1590\}
R_{24} = \{2348, 2469, 2470\}
R_{25} = \{2356, 2579, 2580\}
```

Contacting Repair Sets for t-Designs

Grouping Intersecting Participants

Let the design be an SQS(10). Let P_{ℓ} correspond to block 1245.

```
R_1 = \{1237, 1358, 1468, 1567, \dots, 1289, 1590, 1369, 1340, 1260\}
R_2 = \{1237, 2356, 2348, 2469, \dots 1289, 2580, 2390, 1260, 2470\}
R_4 = \{2348, 2469, 3467, 2469, \dots, 1468, 1479, 4890, 1340, 2470\}
R_5 = \{1358, 2356, 3459, 3570, \dots 5689, 1567, 2579, 2580, 1590\}
R_{12} = \{1237, 1260, 1289\}
R_{45} = \{3459, 4578, 4560\}
                                       R_1^* = \{1780, 1369\}
R_{14} = \{1340, 1468, 1479\}
                                       R_2^* = \{2678, 2390\}
R_{15} = \{1358, 1567, 1590\}
                                       R_4^* = \{3467, 4890\}
                                       R_{5}^{*} = \{3570, 5689\}
R_{24} = \{2348, 2469, 2470\}
R_{25} = \{2356, 2579, 2580\}
```

Summary

- Evaluated and generalized reliability with respect to the existence and the expected number of available sets of participants sufficient to perform a repair.
- Designed and analyzed algorithms for contacting participants sufficient to perform a repair with trade-offs between storage and complexity
- Presented and evaluated t-designs, for $t \ge 2$, as distribution designs.

Summary

- Evaluated and generalized reliability with respect to the existence and the expected number of available sets of participants sufficient to perform a repair.
- Designed and analyzed algorithms for contacting participants sufficient to perform a repair with trade-offs between storage and complexity
- Presented and evaluated t-designs, for $t \ge 2$, as distribution designs.

t-Designs for $\tau = 2$

Theorem

An SQS(v) can be used as a (2,4,6)-distribution design to produce a (2,2,b)-repairable threshold scheme, where $b=\frac{vr}{k}$ is the number of blocks in the SQS(v).

Theorem

A t-(v,k,1) design can be used as a (3,2k,3k-3(t-1)) distribution design to produce a $(3,\lceil\frac{k}{t-1}\rceil,b)$ -repairable threshold scheme if $k\geq 3t-2$, where b is the number of blocks in the t-(v,k,1) design.

t-Designs for $\tau = 3$

Definition

An inversive plane is a $3 - (q^2, q + 1, 1)$ design where q is a prime number.

Theorem

For all prime powers q, there exists a $3 - (q^2, q + 1, 1)$ design.

Theorem

An inversive plane can be used as a (3, 2(q+1), 3q-3)-distribution design to produce a $(3, \lceil \frac{q+1}{2} \rceil, b)$ -repairable threshold scheme if $q \ge 6$ is a prime power.

t-Designs for $\tau = 3$

Definition

A spherical geometry is a $3 - (q^n + 1, q + 1, 1)$ design where q is a prime number and $n \ge 2$.

Theorem

Known infinite families of t - (v, k, 1) designs include $3 - (q^n + 1, q + 1, 1)$ designs where q is a prime number and $n \ge 2$.

Theorem

A spherical geometry can be used as a (3,2(q+1),3(q+1)-6)-distribution design to produce a $(3,\lceil \frac{q+1}{2}\rceil,b)$ -repairable threshold scheme if $q \geq 6$.

t-Designs for au

Theorem

A t-(v,k,1) design can be used as a $(\tau,(\tau-1)k,\tau k-\binom{\tau}{2}(t-1))$ distribution design to produce a $(\tau,\lceil\frac{k}{t-1}\rceil,b)$ -repairable threshold scheme if $k\geq\binom{\tau}{2}(t-1)+1$, where b is the number of blocks in the t-(v,k,1) design.

Generalizing Expectation Beyond SQS(v)

Example

Consider a 3 - (v, 5, 1) design. Minimal repair sets could take the following forms:

- pair, pair, point
- pair, point, point, point
- point, point, point, point, point

"pair, pair, point" and "pair, point, point, point" would each have sub-cases

Example

Consider a 3 - (v, 6, 1) design. Minimal repair sets could take the following forms:

- pair, pair, pair
- pair, pair, point, point
- pair, point, point, point, point
- point, point, point, point, point

"pair, pair, point, point" and "pair, point, point, point, point" would each have sub-cases

Generalizing Expectation Beyond SQS(v)

Example

Consider a 4 - (v, 5, 1) design. Minimal repair set forms:

- triple, pair
- triple, point, point
- pair, pair, point
- pair, point, point, point
- point, point, point, point, point

All but "point, point, point, point, point" will have multiple sub-cases.

Example

Consider a 4 - (v, 6, 1) design. Minimal repair set forms:

- triple, triple
- triple, pair, point,
- triple point, point, point
- pair, pair, pair
- pair, pair, point, point
- pair, point, point, point, point
- point, point, point, point, point

In this case, all but "triple, triple" and "point, point, point, point, point, point, point, point" have sub-cases.

The Expected Number of Available Repair Sets

Table: Repair Set Probability Distribution for STS(7)

Number of sets X	1	2	4	8
Pr of X	$(2p-2p^2)^3$	$3(2p-2p^2)^2p^2$	$3(2p-2p^2)p^4$	p^6

Let X be the number of available repairing sets. Then,

$$E(X) = 1(2p - 2p^{2})^{3} + 2 \cdot 3(2p - 2p^{2})^{2}p^{2} + 4 \cdot 3(2p - 2p^{2})p^{4} + 8p^{6}$$

$$= 8p^{3}$$

$$= 2^{3}p^{3}$$

Comparing Repair Set Forms for SQS(10)

Figure: Expected number of Repair Sets By Type: SQS(10)

A Comparison for SQS(28) and (28, 4, 1)-BIBD

Table: Available Repair Sets of Different Sizes for v = 28

	Value of p f	or $X \geq 1$	X for p = 0.5		
Repair Set Size	2-(28,4,1)	SQS(28)	2-(28,4,1)	SQS(28)	
2	-	0.049	-	108	
3	-	0.012	-	75744	
4	0.130	0.013	256	2560000	
any	0.130	0.010	256	2635850	