히스토그램 분석을 통한 유사도 계산

서정현, 송민준

Calculation of similarity through histogram analysis

Jeong Hyeon Seo, Min Joon Song

요 약

두 이미지의 여러 개의 Region of Interest를 히스토그램으로 분석하고 비교해서 유사점을 찾을 수 있다.

Abstract

Find similarities by analyzing and comparing multiple Region of Interests in two images in a histogram.

Key words histogram, ROI

1. 서 론

컴퓨터비전 분야에서 이미지 유사성 관련 연구가 활발하게 진행이 되고 있다. 이미지 분석 라이브러 리는 OpenCV가 대중적이며, MVTex의 Halcon Library, Cognex의 VisionPro Library 등으로 다양하 다.

Ⅱ. 실험 결과

서로 다른 두 개의 책 이미지를 (600, 800)으로 크기를 조정하여 각각 4개의 ROI를 설정해 각각 비 교해보았다. 이 때 ROI의 Patch size는 9와 19로 설 정하여 두 번 실험하였다.

[그림 1, 2] Patch size 9(상단), 19(하단)

구체적인 결괏값은 다음과 같았다.

	1-1	1-2	1-3	1-4
2-1	-0.09	-0.05	0.65	0.22
2-2	-0.02	0.07	-0.03	0.13
2-3	0.12	0.16	0.00	0.06
2-4	0.44	0.07	-0.07	-0.11

[표 1] 유사도 결괏값 (Patch size = 9)

	1-1	1-2	1-3	1-4
2-1	0.29	-0.07	-0.11	0.89
2-2	0.00	0.00	-0.08	-0.07
2-3	-0.12	0.01	0.59	-0.08
2-4	0.00	0.27	0.04	-0.07

[표 2] 유사도 결괏값 (Patch size = 19)

히스토그램을 출력하면 다음과 같았다.

[그림 3] 히스토그램 분석 (Patch size = 9)

[그림 4] 히스토그램 분석 (Patch size = 19)

Ⅲ. 결 론

Patch Size를 각각 9, 19로 두 번 실험해 봤는데, Patch Size가 큰 경우가 유사도 결괏값이 더 크게 나오는 경향성이 있었다. 이를 통해 Patch size가 더 큰 경우 책의 모서리를 실수로 잘못 클릭해도, 분석하는 영역이 훨씬 커서 더 안정적인 결과가 나온다고 볼 수 있다. 유사도 수치뿐만 아니라 위의 히스토그램 그림을 보아도 시각적으로 유사한 Patch를 대략적으로 찾을 수 있다.

Ⅳ. 부 록

- GitHub 주소

https://github.com/tjwjdgus12/computer-vision

- 역할 분담

서정현(20172864): 마우스 이벤트 처리, 계산된 유사도를 이용해 비교 결과 시각화

송민준(20176342): 히스토그램 리스트 계산, matplotlib 이용해서 히스토그램 출력, 히스토그램을 이용한 유사점 계산