# HOOFDSTUK 4: HET ENDOMEMBRAANSYSTEEM

#### **Endomembraansysteem**

- lipiden en membraaneiwitten verdelen over cel
- transport naar de rand van de cel
- secretie naar extracellulair milieu
- opname en afbraak van voedingscomponenten



# **Endoplasmatisch reticulum**

Het endoplasmatisch reticulum is een continu netwerk van zakjes, tubules en vesikels

- **perinucleair netwerk**: membraan continu met buitenste kernmembraan
- **cisternen**: membraan omsloten zakjes, **ER lumen**: de omsloten ruimte
- functie van ER
  - o biosynthese van proteïnen → incorporatie in plasmamembraan/organellen OF export
  - o biosynthese van lipiden → triacylgycerol, sterol → belangrijkste bron membraanlipiden
- 2 types in ER: bezitten beide dezelfde luminale ruimte → zijn één organel
  - o RER: ribosomen, membranen vormen afgeplatte vlakken
  - o SER: vrij van ribosomen, membranen vormen tubulaire structuren
- morfologie vormt een reflectie van functioneel onderscheid
  - o prominent RER voor cellen gespecialiseerd in productie van secretie-eiwitten
  - o prominent SER voor steroïde-producerende eiwitten

# Synthese en maturatie van proteïnen in RER

RER: **biosynthese** van integrale membraaneiwitten & excretieproteïnen

**Co-translationele translocatie** via SRP, signaalpeptide → translocon

→ integrale eiwitten verankerd via hydrofobe sequenties of binding met membraanlipiden



Post-translationele modificatie regelt de eerste stappen van proteïne maturatie

→ glycosylatie, vorming disulfide bruggen, opvouwing, ERAD & assemblage tot multimeren

# **Functies van het SER**

# **Drugdetoxificatie**

- wordt geregeld door enzym-gekatalyseerde hydroxylatie
  - → additie van hydroxyl-groepen maakt hydrofobe drugs meer oplosbaar
  - → vnl. door cytochroom P450 superfamilie
- voorbeeld: eliminatie van barbituraten in hepatocyten
  - → toename in barbituraat-detoxificerende enzymen + proliferatie van dat ER
- pharmacogenomics: studie van differentiële drug respons door verschillen in het genoom

#### Suikermetabolisme

- ER van hepatocyten: enzymatische degradatie van opgeslagen glycogeen
- fosforylyse door enzym glucose-6-fosfatase:
  glucose-6-fosfaat → glucose —<sub>GLUT2 transporter</sub> → bloed

### Calciumopslag

- sarcoplasmatisch reticulum (soort ER in spiercellen) heeft als rol calciumopslag
- Ca<sup>2+</sup> uit SR gelost (spiercontractie) en dan terug in SR gepompt door ATP-ases

## Steroïde biosynthese

- bijnier (cortisol), ovaria (oestrogeen), testis (testosteron) → ER dé plaats v. hormoonsynthese

# **Membraanbiosynthese**

#### Primaire bron van membraanlipiden is het ER

- mitochondriën, chloroplasten, peroxisomen kunnen dit in principe zelf
  - → indien toch overdracht van ER naar deze organellen: via **fosfolipide transferproteïnes**
- biosynthese van vetzuren in het cytoplasma
  - → incorporatie in fosfolipiden aan cytoplasmatisch membraan in ER
- verdeling in membraan via flippases → vervolgens overdracht naar organellen of membraan

# Het Golgi apparaat

Het Golgi-complex bestaat uit schijfvormige membranen die op elkaar gestapeld zijn (stack)

- duidelijke polarisatie en verdeling
- CGN, TGN en med. c. zijn biochemisch & functioneel verschillend, bezitten elk eigen enzymen
  - o cis-deel CGN of cis Golgi Network
    - gericht naar het ER
    - nieuw gesynthetiseerde lipiden en proteïnen worden continu hier aangeleverd
  - o mediale cisternae
    - hier gebeurt het grootste deel van proteïnemodificaties
  - o trans-deel TGN of trans Golgi Network
    - vertrek richting endosomen, lysosomen en plasmamembraan



#### Vesiculair transportmodel of stationair cisternenmodel

- → elk compartiment is een stabiele structuur
- → transport tussen compartimenten verloopt via vesikels

#### **Cisternal maturation model**

- → totale inhoud van cisternen rijpt gradueel en wordt omgezet van cis naar trans
- → gerijpte cisternen vallen t.h.v. TGN uit elkaar in verschillende blaasjes

Afbeelding 1: Live cell imaging: CGN (groen) naar TGN (rood)

- → experimenteel (foto) is dit model aangetoond, toch worden 2 modellen **wetenschappelijk niet uitgesloten**
- → **live cell imaging**: CGN proteïne groen gekleurd, TGN proteïne rood

→ er is een duidelijke geleidelijke overgang van groene naar rode fluorescentie

# Proteineglycosylatie

Glycosylatie is een progressief proces waarbij enzymen opeenvolgende stappen katalyseren

- reacties gebeuren sequentieel in verschillende compartimenten van ER en Golgi
- N-linked glycosylatie: suikergroep op N van eindstandige aminogroep van asparagine
- O-linked glycosylatie: oligosacharide op O van hydroxyl op serine/threonine

# Initiële glycosylatie in het ER

→ hier gebeuren de eerste stappen van glycosylatie, vnl. deze van N-linked glycosylatie

### Alle suikergroepen: core oligosaccharide

- bestaat uit: 2 N-acetylglucosamines GlcNAc, 9 mannoses en 3 Glc
- onderdelen sequentieel erop gezet via **dolichol fosfaat**: oligosacharide carrier
- 1. dolichol fosfaat is een oligosacharide carrier in ER membraan
- 2. **core oligosacharide synthese** begint aan cytoplasmatische kant
  - a. GlcNAc en Man worden toegevoegd aan dolichol fosfaat
- 3. translocatie van oligosacharide van cytoplasmatische naar luminale zijde via een flippase
- 4. vervolledigen van core oligosacharide als meer Man en Glc worden toegevoegd
- 5. **transfer** van het volledig core oligosaccharide naar **asparagine** residu van **doeleiwit**
- 6. final processing: verwijdering van 3 Glc en 1 Man

# Co-translationele glycosylatie: quality control voor opvouwing

- **calnexine/calreticuline** → bevorderen disulfidebrugvorming
- glucosidase: glucose wordt verwijderd
- UGGT (UDP-glucose glycoprotein glycotransferase)
  - = sensor voor juiste opvouwing van het proteïne
  - → slechte opvouwing: voegt Glc eenheid toe en cyclus start opnieuw
  - → goede opvouwing: proteïne niet meer herkend door UGGT
- als het niet lukt om goed op te vouwen
  - → polyubiquitinetag of 'kiss of death'
  - = merker zodat proteïne gedegradeerd wordt in proteasoom

# Afwerking in Golgi-complex

- → echte diversiteit in suikergroepen ontstaat pas in het Golgi
  - enkele groepen van N-linked core verwijderd, gevolgd door additie van complexe suiker
    - o vb. GlcNAc, galactose, NANA, fucose
  - trans-Golgi: O-linked oligosachariden gevormd door overdracht van nucleotide precursoren
    - → dit zijn nucleotide suikers (UDP-Gal, GDP-Man, ...)
    - → in Golgi-vesikel binden zij op OH-groep van een suiker m.b.v. glycosyltransferase
  - **mature glycoproteïnen** bevinden zich aan **luminale zijde** van ER of Golgi
    - o lumen van organel ≈ buitenzijde van cel → glycoproteïnen aan extracell. zijde membr.







# Vesiculair transport

**Vesiculair transport**: integrale of opgeloste eiwitten krijgen na modificatie een eindbestemming

- eindbestemmingen: ER zelf, Golgi, endosomen, lysosomen of plasmamembraan
- **cargo** of lading zit vast in de membraan
  - o als integraal membraaneiwit
  - o verankerd door membraangebonden receptor aan vesikelmembraan
- elk proteïne bevat een tag, het adres: deze zit vervat in
  - o az-sequentie
  - suikerketen
  - o fosfaatgroepen op fosfatidylinositol voor membraanlipiden

# Basisprincipes van vesiculair transport

zowel voor de biosynthese pathway als endocytose pathway gelden volgende principes:

## 1. Vesikels worden gekenmerkt door specifieke mantelproteïnes

mantelproteinen fungeren als mechanisme om

- vlakke membraan om te buigen tot een vesikel
- selectiemechanisme voor herkenning en sortering van vesikel



## Types mantelproteïnen

- COPII-gecoate vesikels: anterograad transport van ER naar Golgi
- *COPI-gecoate vesikels*: **retrograad transport** van Golgi naar ER (van TGN naar CGN)
- Clathrine-gecoate vesikels: transport van TGN naar endosomen en lysosomen
  - van plasmamembraan naar compartimenten (endocytose)
- Caveolin-gecoate vesikels: caveolae gespecialiseerde lipid rafts voor endo- en transcytose

### 2. Monomere GTP-asen controleren de assemblage van vesikels

een klein GTP-ase regelt de assemblage en afbraak van de coat

- voor COPI en Clathrine: GTP'ase van ARF type, voor COPII: Sar1
- 1. Sec12 (membraaneiwit) stimuleert uitwisseling GDP voor GTP
- 2. dit GTP bindt op Sar1 → hydrofobe uiteinde van Sar1 plooit naar buiten (membr. verankering)
- 3. Sar1-GTP initieert vorming van COPII vesikel
- 4. **timer principe:** na vorming van het vesikel zal coat uitenvallen (hydrolyse)

### 3. Signaalsequenties bepalen de sortering

Mantelproteïnen herkennen signaalsequenties op transmembraan-cargo-proteïnen

- → mantel zal clustering van membraancargo's induceren
- → in cytoplasma zullen oplosbare proteïnen herkend worden door membraancargo's
  - → opl.: fungeren als receptoren en dirigeren hen naar celcompartimenten

## 4. Rab GTP-asen gidsen het aanmeren

Rab-proteïnen leveren een belangrijke bijdrage in vesikelfusie

- → bij activatie (GEF) wisselen zij hun GDP voor GTP en worden actief
- → Rab-effector op doelmembraan stimuleert GTP-ase activiteit: aanmeren van vesikel

# 5. **SNARE's bepalen vesikelfusie** V: Vesicle, T: Target, SNARE: attachment protein receptor

Hechting van een vesikel: fusiecomplex tussen

V-SNARE proteïnen en T-SNARE op doelmembraan

- → V- en T-snares verstrengelen en verdrijven water om energetische barrière voor fusie te verlagen
- → vb. synaps: vrijstelling neurotransmitters voor spiercontractie
- → Botox: knipt SNARE's → dit verlamt de spierfunctie rimpels worden veroorzaakt door spiercontracties



# 6. SNARE's en receptoren worden gerecupereerd

Na fusie en afgifte vesikelinhoud worden SNARE's opnieuw gescheiden m.b.v. NSF eiwit

→ V-SNARE's nemen oude plaats terug in via retrograad transport

# **Biosynthese pathway**

**Finale sortering** gebeurt t.h.v. TGN, waar lipiden en proteïnen worden verpakt in vesikels met verschillende bestemmingen

#### <u>Retentie en retrieval</u>

compositie van beide organellen moet bewaard blijven: retrieval pathway

→ via RXR-retentie tag wordt materiaal via retrograad (CGN→ER) transport teruggebracht

**Retrograde transport** via **KDEL-sequentie**: uit ER ontsnapte oplosbare moleculen met KDEL tag worden herkend door transmembraanreceptor van Golgi met KKXX sequentie

- → binding zorgt voor wijziging naar COPI gecoatg vesikel voor ER-transport
- → wordt gebruikt om SNARE-proteïnen te recupereren

#### Lysosomale targeting

- tijdens beweging in ER en Golgi worden lysosomale enzymen geglycosyleerd
  - → glycoproteïnen worden naar lysosoom gericht bij vorming **mannose-6-fosfaat** 
    - o 2 enzymen zijn hierbij betrokken: fosfotransferase en fosfodiesterase
    - o luminale zijde TGN heeft M6F-receptoren
      - → bij **binding**: **verpakking** in **vesikels** die zullen fuseren met endosomen
      - → enzymen komen los van receptor door lage pH
        - → ontwikkeling/fusie tot/met **lysosoom**
    - o merkteken om proteïne naar het lysosoom te loodsen
      - inclusion cell disease: M6F ontbreekt → lysosomale inhoud komt in intercellulair weefsel terecht

# Exocytose (secretorische pathway)

materiaal wordt via het ER en Golgi verpakt in blaasjes die versmelten met plasmamembraan

- → binnenste, luminaal membraan van blaasje versmelt buitenste lipidenlaag plasmamembraan
- → exocytose is **gepolariseerd:** secretie zal enkel aan apicaal deel (verteringsenzymen) of aan synapsen (neuronen) plaatsvinden

#### Constitutieve exocytose

- = voortdurende secretie van eiwitten (bv. in darmmucosa of opbouw extracellulaire matrix)
  - → lijkt een ongereguleerd proces van continu migrerende vesikels die fuseren met plasmamembraan om inhoud te lossen via exocytose
    - o wordt eigenlijk geregeld door korte aminozuursequenties

## Gereguleerde exocytose

- = secretorische blaasjes accumuleren in de cel en fuseren enkel pas met membraan na signaal
  - → vesikels ondergaan **maturatie**, proteïnen worden geconcentreerd (**condensatie**) en wachten dan op plaats van secretie op ECM-signaal voor fusie
  - → vb. zymogeenkorrels in pancreascellen of neurotransmitters in neuronen
    - o binding van hormonen of neurotransmitters leidt tot vrijstelling second messengers
    - o fusie van synaptische blaasjes voorkomen door een klem: synaptotagmine
      - → door calcium flux wordt blokkade opgeheven → vesikelfusie

# **Endocytose pathway**



#### **Endocytose**

- om materiaal vanuit de plasmamembraan in te snoeren en op te nemen
- om bepaalde componenten uit de membraan te recupereren
- voedingsbestanddelen opnemen via fagocytose en pinoctose → lysosomen
  - → afbraakproducten door lysosomale wand in cytoplasma transporteren

#### Fagocytose

- grote partikels: aggregaten, organellen, micro-organismen of cellen
- unicellulaire organismen: voedingswijze, multicellulaire organismen: defensie (macrofaag)
- vormen van **membraanuitstulpingen** of **pseudopodia**: omarmen het object
  - → vorming van fagocytotische vacuole of **fagosoom**
- fagocytose gaat gepaard met mobilisatie van cytoskelet, pinocytose niet

#### Receptor-gemedieerde endocytose

of clathrine-afhankelijke endocytose: primair proces voor opname van macromoleculen

- 1. receptoren binden liganden (macromoleculen) en bewegen ze rond in het membraan
- 2. ze komen een **coated pit** tegen: collectie en internalisatie van macromoleculen
- 3. curvatuur en **invaginatie** als receptor-ligand complexen ophopen  $\rightarrow$  vormig gecoat vesikel
  - → rekrutering van proteïnen (clathrine, adaptine en dynamine)
- 4. clathrine-mantel verdwijnt: 'naakt' vesikel fusioneert met TGN om vroeg endosoom te vormen
  - → efficiënte sortering van membraancomponenten
  - → endosoom rijpt verder tot laat endosoom en lysosoom
- 5. ATP-ase gekoppelde H+-pomp zal endosoominhoud verzuren → receptor komt los van ligand
  - → receptor wordt gerecycleerd naar plasmamembraan



Receptorrecyclage gebeurt niet altijd:

- receptor-ligand complexen kunnen in lysosomen worden gedegradeerd
- andere worden naar TGN vervoerd
- **transcytose**: terug naar <u>andere</u> regio van plasmamembraan gevoerd om gesecreteerd te w.

## Clathrine-gecoate vesikels

Clathrine-coat vormt triskelion complexen die op hun beurt een polygonaal rasterwerk vormen

Tussen clathrine-skelet en membraan bevinden zich adaptor proteins

→ concentratie van juiste macromoleculen in coated pits

Dynamine (GTP-ase) regelt de finale afsnoering uit de membraan

- → wikkelt zich rond de nekregio
- → verbruikt GTP voor constrictie

# Clathrine-onafhankelijke endocytose

#### vloeistof-fase endocytose

- vorm van pinocytose: niet-specifieke opname
- vrij consante snelheid: compenseert voor exocytose

# Caveolae, caveoline-gemedieerde endocytose

- flesvormige instulpingen van lipid rafts, met langs cytoplasmatische kant caveolines
- vermoeden: vorming van neutrale endosomale vesikels of **caveosomen** (misbruik dr virus)

# Weefseldifferentiatie door endo- en exocytose

Ontwikkeling van bloedvaten is essentieel voor een organisme

- via time-laps en fluorescerende **quantum dots**
- lumen van bloedvat ontstaat door **intra- en intercellulaire uitholling** van endotheliale cellen
  - o **intracellulair**: vorming en fusie van vacuoles afkomstig van pinocytose
  - o **intercellulair**: versmelten van gelijkaardige vacuoles met aangrenzende cellen
    - → vorming van een intercellulaire ruimte





# Lysosomen

Lysosomen zijn de verteringsapparaten van de cel

- enzymen voor grote klassen biomoleculen af te breken
  - o fosfatasen, proteasen, nucleasen, lipasen, glycosidasen en sulfatasen
- omsloten door een lipidendubbellaag
- **luminale** zijde is sterk **geglycosyleerd** → bescherming cytosol tegen proteasen en lage pH
  - o zure pH bevordert degradatie door activatie hydrolases en denaturatie macromoleculen

## Herkomst

Lysosomale enzymen worden gesynthetiseerd op ER en gemodificeerd en gesorteerd in Golgi

- → krijgen specifieke mannose-6-fosfaat modificatie
- → via clathrine-gecoate vesikels migreren ze naar endosomale compartimenten

**Endosomale compartimenten** ontstaan door fusie van blaasjes TGN & blaasjes v. plasmamembr.

- → rijpen tot late endosomen waarbij de pH daalt
  - → d.m.v. ATP-ase pomp daalt pH verder tot 4: activatie hydrolases → begin digestie

# Lysosomale enzymen katalyseren verteringsprocessen

**heterofagische lysosomen**: lysosomen met extracellulair materiaal **autofagische lysosomen**: lysosomen met intracellulair materiaal

## Heterofagie in bescherming en voeding

**Lysosomen** ontstaan door fusie van fagocytotische vacuoles met vroege endosomen **Vroege endosomen** ontstaan door fusie van receptor-gemedieerde endocytotische vesikels met pre-lysosomale blaasjes afgesplits door TGN

Na digestie worden oplosbare moleculen als nieuwe bron van nutritiënten aangewend

- → debris komt terecht in **residueel lichaampje** 
  - o accumulatie van dit debris draagt bij aan cellulaire veroudering
  - o in witte bloedcellen wordt dit gebruikt om immuunsysteem te trainen debris → macrofagen → B- en T-lymfocyten → vorming geheugencellen stimuleren

#### Autofagie als recyclagesysteem

ook vertering van cellulaire structuren of organellen die beschadigd of niet meer nodig zijn

- → in de meeste cellen; toch prominent in rode bloedcellen
  - → hier worden quasi alle organellen verwijderd door autofagie (meer O<sub>2</sub> kunnen binden)
- → **uithongeren** van cellen resulteert in autofagie als wanhoopspoging voor voedselvoorziening

**macro-autofagie**: organel/structuur omgeven door dubbele membraan uit ER → **autofagosoom micro-autofagie**: kleinere blaasjes uit cytoplasma omhuld door enkel membraan

## Extracellulaire digestie

lysosomale enzymen via exocytose afgeven aan ECM: bvb. door spermacel voor eicelwand

# Lysosomale opslagziekten

# **Peroxisomen**

Peroxisomen zijn niet afkomstig van het ER en behoren dus niet tot het endomembraansysteem

- kristallijne kern van uraatoxidase
- aanwezigheid van catalase ( $H_2O_2 \rightarrow H_2O$ ) en ook enzymen voor vorming van  $H_2O_2$

## Peroxisomale functies

## 1. Waterstofperoxide metabolisme

- Oxidasen katalyseren oxideerbaar substraat RH<sub>2</sub> met  $O_2$  (RH<sub>2</sub> +  $O_2 \rightarrow$  R + H<sub>2</sub>O<sub>2</sub>)
- Catalase kan waterstofperoxide detoxificeren op 2 manieren

## 2. Detoxificatie van schadelijke componenten

**Peroxisoom** speelt belangrijke rol in detoxificatie van:

- toxische substraten (R'H<sub>2</sub>, vb. methanol, fenol) die catalase gebruikt als peroxidase
- ontmijning van **ROS**, **reactive oxygen species** (zoals superoxide O<sub>2</sub>- of hydroxylradicaal OH)
  - o worden gevormd bij normaal metabolisme en accumuleren bij oxidatieve stress

#### 3. Oxidatie van vetzuren

20-25% van vetzuurafbraak via β-oxidatie in peroxisomen (rest in mitochondriën)

→ primair eindproduct, acetyl-co-enzym A, naar cytosol om deel te nemen in citroenzuurcyclus

## 4. Metabolisme van stikstof-bevattende producten

**Uraat oxidase**: afbraak van uraat dat ontstaat tijdens nucleïnezuurafbraak **Aminotransferasen**: transfer van aminogroep van aminozuren naar  $\alpha$ -ketozuren

#### 5. Katabolisme van ongewone substanties

→ sommige substraten van peroxisomale oxidases zijn zeldzame producten waar cel geen andere degradatiemechanismen voor heeft, zoals: D-aminozuren of xenobiotica

# <u>Peroxisoombiogenese</u>

**Endosomen** en **lysosomen** ontstaan door knopvorming van vesikels van TGN en plasmamembraan **⇔ peroxisomen** groeien en delen uit bestaande peroxisomen

- → proteïnen voor peroxisomale functie worden gemaakt in vrije ribosomen
  - → post-translationeel geïmporteerd

#### Take-home messages

- → Het **endomembraansysteem** zorgt voor **uitwisseling van macromoleculen** tussen de cel en de extracellulaire omgeving door exo- en endocytose
- → De belangrijkste componenten van het endomembraansysteem zijn het ER, het Golgi apparaat, de plasmamembraan en de lysosomen.
- → Het **ruw** ER zorgt voor **synthese en maturatie van secretorische eiwitten** en lipiden. Het **glad** ER is verantwoordelijk voor drug **detoxificatie**, **glycosylatie**, **calcium** opslag en **steroïde** synthese.
- → Een slecht opgevouwen proteïne wordt gemerkt met een **polyubiquitine** staart en gedegradeerd in het **proteasoom**.
- → Het Golgi apparaat is een **gepolariseerd compartiment** dat instaat voor proteïne **glycosylatie** en finale **proteïnesortering**
- → De biosynthese en endocytose pathways maken gebruik van **vesiculair transport**. Proteïnesortering in vesikels berust op de aanwezigheid van **signaalsequenties** en wordt gekenmerkt door **specifieke mantelproteïnes**. **GTP-asen** controleren **assemblage** en aanmeren van vesikels. **SNARE's mediëren vesikelfusie**.
- → De **biosynthese pathway** start in het ER en heeft als **eindbestemming** de **plasmamembraan** tenzij er signalen voor **retentie**, **retrieval** of **lysosomale targeting** aanwezig zijn.
- → In tegenstelling tot **constitutieve exocytose**, dat **continu** plaatsvindt, gebeurt **gereguleerde exocytose** op basis van een **extracellulair signaal**.
- → Cellen nemen materiaal op via **fagocytose**, **pinocytose** of **receptor-gemedieerde endocytose**. De eindbestemming is meestal het lysosoom.
- → De **balans** tussen **exo- en endocytose** bepaalt de **samenstelling** van de **plasmamembraan**. De combinatie van beide processen wordt ook gebruikt bij weefselvorming (bloedvaten).
- → Lysosomen zijn **zure verteringsorganellen** die extern (heterofagie) of cel-eigen (autofagie) materiaal afbreken.
- $\rightarrow$  Peroxisomen staan in voor de afbraak van peroxiden, vetzuren ( $\beta$ -oxidatie) en vreemde en/of schadelijke componenten.