EE5147 Modern Spectral Analysis Homework Assignment #2

Notice

- **Due at 9:00pm, April 12, 2022 (Tuesday)** = T_d for the electronic copy of your solution.
- Please submit your solution to NTU COOL (https://cool.ntu.edu.tw/courses/11382)
- <u>Please justify your answers</u>. If the problem begins with "Show that" or "Prove", we expect a **rigorous proof**.
- All the figures should include labels for the horizontal and vertical axes, a title for a short description, and grid lines. Add legends and different line styles if there are multiple curves in one plot.
- No extensions, unless granted by the instructor one day before T_d .
- [MIK2005]: D. G. Manolakis, V. K. Ingle, and S. M. Kogon, *Statistical and Adaptive Signal Processing Spectral Estimation, Signal Modeling, Adaptive Filtering, and Array Processing*, Artech House, 2005.
- [SM2005]: P. Stoica and R. Moses, *Spectral Analysis of Signals*, Upper Saddle River, N.J.: Pearson/Prentice Hall, 2005.

Problems

1. (10 points) Consider the following random process

$$x(n) = A_1 e^{j2\pi f_1 n} + A_2 e^{j2\pi f_2 n} + w(n),$$
(1)

where A_1 , A_2 , and w(n) are jointly complex circularly-symmetric Gaussian distributed with zero mean. Furthermore, we assume

$$\mathbb{E}\left[A_p A_q^*\right] = \begin{cases} \sigma^2, & \text{if } p = q, \\ \frac{1}{3}\sigma^2, & \text{if } p \neq q. \end{cases}, \quad \mathbb{E}\left[w(n)w^*(n-k)\right] = \sigma_w^2 \delta(k), \quad \mathbb{E}\left[A_p w^*(n)\right] = 0. \quad (2)$$

The frequencies f_1 and f_2 are deterministic. We assume that $f_1 \neq f_2$.

- (a) (3 points) Find the mean-value function of x(n).
- (b) (5 points) Find the autocorrelation function of x(n).
- (c) (2 points) Determine whether x(n) is wide-sense stationary.

2. (10 points) We consider the exponentially damped sinusoidal components plus noise of the following form

$$x(n) = \sum_{p=1}^{P} \alpha_p e^{(\xi_p + j2\pi f_p)n} + w(n).$$
 (3)

In this model, the quantities P, α_p , f_p , and w(n) follow the same assumptions on page 9 of 04_Harmonic_MVDR.pdf. Furthermore, the damping parameter ξ_p is deterministic and negative ($\xi_p < 0$). Let

$$\mathbf{x}(n) = \begin{bmatrix} x(n) \\ x(n+1) \\ \vdots \\ x(n+M-1) \end{bmatrix}, \tag{4}$$

be the vector form of (3). We assume that P < M.

(a) (5 points) Express x(n) in the following form

$$\mathbf{x}(n) = \mathbf{\mathcal{V}}\mathbf{s}(n) + \mathbf{w}(n),\tag{5}$$

where the matrix \mathcal{V} is deterministic and the entries of the first row of \mathcal{V} are 1. Specify \mathcal{V} , s(n), and w(n).

- (b) (5 points) Illustrate the eigenvalues of $\mathbf{R} \triangleq \mathbb{E} \left[\mathbf{x}(n) \mathbf{x}^H(n) \right]$.
- 3. (10 points) Consider an AR process x(n) that is produced by filtering unit variance white circularly-symmetric Gaussian noise w(n) with the system equation.

$$x(n) + a_1 x(n-1) = w(n), (6)$$

where $|a_1| < 1$. Find the MVDR spectrum of x(n) for M = 2.

4. (10 points) Suppose the MVDR spectrum of a WSS random process x(n) is given by

$$\hat{S}_{x,\text{MVDR}}(e^{j2\pi f}) = \frac{8}{3 - \cos(2\pi f)}.$$
 (7)

We assume that M=2. Find the autocorrelations $r_x(0)$ and $r_x(1)$ that produces $\widehat{S}_{x,\text{MVDR}}(e^{j2\pi f})$.

5. (15 points) Let $\mathbf{c} = [c_0, c_1, \dots, c_{M-1}]^T$ be the linear combination coefficients for the MVDR spectrum estimation. The output $y(n) = \mathbf{c}^H \mathbf{x}(n)$, where

$$\mathbf{x}(n) = \begin{bmatrix} x(n) \\ x(n+1) \\ \vdots \\ x(n+M-1) \end{bmatrix}. \tag{8}$$

Figure 1: The system diagram for spectrum estimation driven by the *realization* $v^{(r)}(n)$ in the rth Monte-Carlo experiment.

- (a) (5 points) Express the output y(n) into the convolution h(n) * x(n). Relate the impulse response h(n) to the coefficients $c_0, c_1, \ldots, c_{M-1}$.
- (b) (10 points) Assume that x(n) is generated from a harmonic model with P=1, frequency f_1 , magnitude σ_1 , and noise variance σ_w^2 . Let H(z) be the z-transform of h(n). Find a zero of H(z) if $\mathbf{c} = \mathbf{c}_{\text{MVDR}}$ and $\sigma_w^2 \to 0$.
- 6. (15 points) Let x(n) be a WSS random process. The vector form of x(n) is given by $\mathbf{x}(n) = [x(n), x(n+1), \dots, x(n+M-1)]^T$. The correlation matrix \mathbf{R} is defined as $\mathbb{E}[\mathbf{x}(n)\mathbf{x}^H(n)]$. Determine whether the following estimators of \mathbf{R} are unbiased or not. Why or why not?
 - (a) (5 points) The sample correlation matrix:

$$\widehat{\mathbf{R}} \triangleq \frac{1}{K} \sum_{k=1}^{K} \mathbf{x}(k) \mathbf{x}^{H}(k).$$
(9)

(b) (5 points) The sample correlation matrix with diagonal loading ($\delta > 0$):

$$\widehat{\mathbf{R}} \triangleq \frac{1}{K} \sum_{k=1}^{K} \mathbf{x}(k) \mathbf{x}^{H}(k) + \delta \mathbf{I}.$$
 (10)

(c) (5 points) The exponentially-weighted and diagonally-loaded sample correlation matrix (0 < $\lambda \le 1$ and $\delta > 0$):

$$\widehat{\mathbf{R}} \triangleq \sum_{k=1}^{K} \lambda^{K-k} \mathbf{x}(k) \mathbf{x}^{H}(k) + \delta \cdot \lambda^{K} \mathbf{I}.$$
 (11)

7. (Spectrum estimation on harmonic models, 30 points) This problem aims to compare the performance of spectrum estimators through Monte-Carlo experiments. The system model is depicted in Figure 1, where the harmonic model is characterized by

$$x(n) = \sum_{p=1}^{P} \left(\sigma_p e^{j\psi_p} \right) e^{j2\pi f_p n} + \sigma_w v(n), \tag{12}$$

where the phase ψ_p and the noise v(n) are random. We assume that ψ_1, \dots, ψ_P are independent and uniformly distributed over $[0,2\pi]$. Furthermore, v(n) is a complex circularly-symmetric white Gaussian noise with zero mean and unit variance.

To conduct Monte-Carlo experiments, please read the file MSA_HW2_Problem_7.mat for the realizations $\psi_p^{(r)}$ and $v^{(r)}(n)$ in the rth Monte-Carlo experiment. You will find two matrices in this mat file in the following layout:

$$\operatorname{Psi} \triangleq \begin{bmatrix} \psi_{1}^{(1)} & \psi_{2}^{(1)} & \dots & \psi_{P}^{(1)} \\ \psi_{1}^{(2)} & \psi_{2}^{(2)} & \dots & \psi_{P}^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ \psi_{1}^{(R)} & \psi_{2}^{(R)} & \dots & \psi_{P}^{(R)} \end{bmatrix}, \quad \mathbf{V} \triangleq \begin{bmatrix} v^{(1)}(0) & v^{(1)}(1) & \dots & v^{(1)}(N-1) \\ v^{(2)}(0) & v^{(2)}(1) & \dots & v^{(2)}(N-1) \\ \vdots & \vdots & \ddots & \vdots \\ v^{(R)}(0) & v^{(R)}(1) & \dots & v^{(R)}(N-1) \end{bmatrix}. \quad (13)$$

where R is the number of Monte-Carlo experiments. We set the following parameters

$$P = 5, (14)$$

$$f_1 = -0.3,$$
 $f_2 = -0.2,$ $f_3 = 0.05,$ $f_4 = 0.1,$ $f_5 = 0.4,$ (15)

$$f_1 = -0.3,$$
 $f_2 = -0.2,$ $f_3 = 0.05,$ $f_4 = 0.1,$ $f_5 = 0.4,$ (15)
 $\sigma_1 = 2,$ $\sigma_2 = 1,$ $\sigma_3 = 1.5,$ $\sigma_4 = 1.2,$ $\sigma_5 = 3,$ (16)

$$\sigma_w = 1, \tag{17}$$

$$M = 15. (18)$$

Save all the plots in Problem 7 to fig files. Include these fig files in your submission.

- (a) (3 points) Plot the following curves The horizontal axis is time index n. The vertical axis is the real and imaginary parts of these signals.
 - The realization $x^{(1)}(n)$.
 - The realization $x^{(2)}(n)$.
 - The realization $x^{(3)}(n)$.
- (b) (4 points) Let R be the true correlation matrix based on (12) and the statistical assumptions of ψ_p and v(n). We have two estimators of **R**:
 - i. The estimated mean $\widehat{\mathbf{R}}(n)$ over R realizations at time index n. Namely,

$$\widehat{\mathbf{R}}(n) \triangleq \frac{1}{R} \sum_{r=1}^{R} \left(\mathbf{x}^{(r)}(n) \right) \left(\mathbf{x}^{(r)}(n) \right)^{H}.$$
 (19)

ii. The sample correlation matrix in the rth Monte-Carlo trial. More specifically,

$$\widehat{\mathbf{R}}_{L}^{(r)} \triangleq \frac{1}{L} \sum_{n=0}^{L-1} \left(\mathbf{x}^{(r)}(n) \right) \left(\mathbf{x}^{(r)}(n) \right)^{H}.$$
 (20)

To assess the estimation performance, we define the following error metric

$$\mathscr{E}(\widehat{\mathbf{R}}, \mathbf{R}) \triangleq \sqrt{\frac{1}{M^2} \left\| \widehat{\mathbf{R}} - \mathbf{R} \right\|_F^2} = \frac{1}{M} \left\| \widehat{\mathbf{R}} - \mathbf{R} \right\|_F, \tag{21}$$

where $\|\cdot\|_F$ denotes the Frobenius norm of a matrix. Next, we plot the following curves. The vertical axis is in the logarithmic scale.

- $\mathscr{E}(\widehat{\mathbf{R}}(n), \mathbf{R})$ over n, where $n = 0, 1, \dots, N M$.
- $\mathscr{E}(\widehat{\mathbf{R}}_L^{(1)}, \mathbf{R})$ over L, where $L = 1, 2, \dots, N M + 1$.
- $\mathscr{E}(\widehat{\mathbf{R}}_L^{(2)}, \mathbf{R})$ over L, where $L = 1, 2, \dots, N-M+1$.
- $\mathscr{E}(\widehat{\mathbf{R}}_L^{(3)}, \mathbf{R})$ over L, where $L = 1, 2, \dots, N M + 1$.
- (c) (3 points) Let $\lambda_{\ell}(\mathbf{A})$ be the eigenvalues of a Hermitian matrix $\mathbf{A} \in \mathbb{C}^{M \times M}$. These eigenvalues are sorted in the descending order $\lambda_1(\mathbf{A}) \geq \lambda_2(\mathbf{A}) \cdots \geq \lambda_M(\mathbf{A})$. Plot the following curves.
 - $\lambda_{\ell}(\mathbf{R})$ over ℓ , where $\ell = 1, 2, \dots, M$.
 - $\lambda_{\ell}(\widehat{\mathbf{R}}_{L}^{(1)})$ over ℓ , where $L=\lfloor 0.5(N-M+1) \rfloor$ and $\ell=1,2,\ldots,M$.
 - $\lambda_{\ell}(\widehat{\mathbf{R}}_{L}^{(1)})$ over ℓ , where L=N-M+1 and $\ell=1,2,\ldots,M$.
- (d) (10 points) Let $\widehat{S}_{x,\mathrm{MVDR}}^{(r)}(e^{j2\pi f})$ be the MVDR spectrum associated with $\widehat{\mathbf{R}}_{L}^{(r)}$ and L=N-M+1. Plot the following curves in one plot for $-\frac{1}{2} \leq f \leq \frac{1}{2}$. The vertical axis is in the logarithmic scale.
 - The MVDR spectrum $\widehat{S}_{x,\text{MVDR}}^{(1)}(e^{j2\pi f})$. Mark the first P dominant peaks and specify their coordinates.
 - The MVDR spectrum $\widehat{S}_{x,\text{MVDR}}^{(2)}(e^{j2\pi f})$. Mark the first P dominant peaks and specify their coordinates.
 - The MVDR spectrum $\widehat{S}_{x,\text{MVDR}}^{(3)}(e^{j2\pi f})$. Mark the first P dominant peaks and specify their coordinates.
 - The estimated mean of the MVDR spectrum over *R* Monte-Carlo trials. More specifically,

$$\widehat{\mathcal{M}}_{\text{MVDR}}(e^{j2\pi f}) \triangleq \frac{1}{R} \sum_{r=1}^{R} \widehat{S}_{x,\text{MVDR}}^{(r)}(e^{j2\pi f}).$$
 (22)

- (e) (10 points) Let $\widehat{P}_{x,\mathrm{MUSIC}}^{(r)}(e^{j2\pi f})$ be the MUSIC pseudospectrum associated with $\widehat{\mathbf{R}}_{L}^{(r)}$ and L=N-M+1. Plot the following curves in one plot for $-\frac{1}{2} \leq f \leq \frac{1}{2}$. The vertical axis is in the logarithmic scale.
 - The MUSIC pseudospectrum $\widehat{P}_{x,\mathrm{MUSIC}}^{(1)}(e^{j2\pi f})$. Mark the first P dominant peaks and specify their coordinates.
 - The MUSIC pseudospectrum $\widehat{P}_{x,\mathrm{MUSIC}}^{(2)}(e^{j2\pi f})$. Mark the first P dominant peaks and specify their coordinates.
 - The MUSIC pseudospectrum $\widehat{P}_{x,\mathrm{MUSIC}}^{(3)}(e^{j2\pi f})$. Mark the first P dominant peaks and specify their coordinates.
 - ullet The estimated mean of the MUSIC pseudospectrum over R Monte-Carlo trials. More specifically,

$$\widehat{\mathcal{M}}_{\text{MUSIC}}(e^{j2\pi f}) \triangleq \frac{1}{R} \sum_{r=1}^{R} \widehat{P}_{x,\text{MUSIC}}^{(r)}(e^{j2\pi f}).$$
 (23)

Last updated April 7, 2022.