**Topic**: Adding and subtracting rational functions

**Question**: Simplify the expression by combining the three rational functions into a single rational function.

$$\frac{x}{4y} + \frac{a}{yz^2} - \frac{m}{4z^4}$$

# **Answer choices:**

$$A \qquad \frac{xz^4 + 4az^2 - my}{4yz^4}$$

$$\mathsf{B} \qquad \frac{4yz^4}{xz^4 + 4az^2 - my}$$

$$C \qquad \frac{xz^4 - 4az^2 + my}{4yz^4}$$

$$D \qquad \frac{4yz^4}{xz^4 - 4az^2 + my}$$

122

## Solution: A

We need to combine the three fractions in the expression into one fraction, which we'll do by finding a common denominator.

The lowest common denominator will be the least common multiple of the three denominators in

$$\frac{x}{4y} + \frac{a}{yz^2} - \frac{m}{4z^4}$$

If we list the factors of each denominator, we get the following table.

|                 | Coefficients | y's | z's   |
|-----------------|--------------|-----|-------|
| 4y              | 4            | у   |       |
| yz <sup>2</sup> |              | У   | $Z^2$ |
| 4z <sup>4</sup> | 4            |     | $Z^4$ |

In order to generate the least common multiple, we have to take the least common multiple of the entries in each column, and then form the product of the results.

- The least common multiple of the entries in the coefficients column is 4.
- The least common multiple of the entries in the base-y column is y.
- The least common multiple of the entries in the base-z column is  $z^4$ .

Therefore, the least common multiple of 4y,  $yz^2$ , and  $4z^4$  is

 $4yz^4$ 

Now we need to multiply the numerator and denominator of each fraction by whatever expression is needed to make its denominator equal to  $4yz^4$ .

$$\frac{x}{4y}\left(\frac{z^4}{z^4}\right) + \frac{a}{yz^2}\left(\frac{4z^2}{4z^2}\right) - \frac{m}{4z^4}\left(\frac{y}{y}\right)$$

$$\frac{xz^4}{4yz^4} + \frac{4az^2}{4yz^4} - \frac{my}{4yz^4}$$

$$\frac{xz^4 + 4az^2 - my}{4yz^4}$$



**Topic**: Adding and subtracting rational functions

**Question**: Simplify the expression by combining the three rational functions into a single rational function.

$$\frac{m}{cx^2} + \frac{a}{2c} + \frac{z}{2cx}$$

# **Answer choices:**

$$\mathbf{A} \qquad \frac{m+a+xz}{c}$$

$$\mathsf{B} \qquad \frac{c}{m+a+xz}$$

$$C \qquad \frac{2m + ax^2 + xz}{2cx^2}$$

$$D \qquad \frac{2cx^2}{2m + ax^2 + xz}$$

## Solution: C

We need to combine the three fractions in the expression into one fraction, which we'll do by finding a common denominator.

The lowest common denominator will be the least common multiple of the three denominators in

$$\frac{m}{cx^2} + \frac{a}{2c} + \frac{z}{2cx}$$

If we list the factors of each denominator, we get the following table.

|                 | Coefficients | c's | x's                   |
|-----------------|--------------|-----|-----------------------|
| CX <sup>2</sup> |              | С   | <b>X</b> <sup>2</sup> |
| 2c              | 2            | С   |                       |
| 2cx             | 2            | С   | Х                     |

In order to generate the least common multiple, we have to take the least common multiple of the entries in each column, and then form the product of the results.

- The least common multiple of the entries in the coefficients column is 2.
- ullet The least common multiple of the entries in the base-c column is c.
- The least common multiple of the entries in the base-x column is  $x^2$ .

Therefore, the least common multiple of  $cx^2$ , 2c, and 2cx is

 $2cx^2$ 

Now we need to multiply the numerator and denominator of each fraction by whatever expression is needed to make its denominator equal to  $2cx^2$ .

$$\frac{m}{cx^2} \left(\frac{2}{2}\right) + \frac{a}{2c} \left(\frac{x^2}{x^2}\right) + \frac{z}{2cx} \left(\frac{x}{x}\right)$$

$$\frac{2m}{2cx^2} + \frac{ax^2}{2cx^2} + \frac{xz}{2cx^2}$$

$$\frac{2m + ax^2 + xz}{2cx^2}$$



**Topic**: Adding and subtracting rational functions

**Question**: Simplify the expression by combining the two rational functions into a single rational function.

$$\frac{p-2q}{4p^2q} - \frac{p+2q}{4p^2q}$$

# **Answer choices:**

$$\mathsf{A} \qquad -\frac{1}{p^2}$$

$$C \qquad \frac{-4q}{p^2}$$

D 
$$\frac{pq}{4}$$

Solution: A

To simplify the expression

$$\frac{p-2q}{4p^2q} - \frac{p+2q}{4p^2q}$$

we'll combine the numerators in the two fractions over one denominator, since we already have a common denominator.

$$\frac{p-2q-(p+2q)}{4p^2q}$$

$$\frac{p - 2q - p - 2q}{4p^2q}$$

$$\frac{-4q}{4p^2q}$$

Simplifying this fraction to lowest terms gives

$$-\frac{1}{p^2}$$