Mining Discriminative Triplets of Patches for Fine-Grained Classification

Yaming Wang¹, Jonghyun Choi², Vlad I. Morariu¹ and Larry S. Davis¹ ¹University of Maryland, ²Comcast Labs DC {wym, jhchoi, morariu, lsd}@umiacs.umd.edu

IEEE 2016 Conference on Computer Vision and Pattern Recognition

CVPR2016

1. Introduction

1.1. Background

Fine-grained Classification

Subtle differences in highly localized regions

1.2. The Problems

- Extra part/3D annotations needed for accurate discriminative region localizations
- Previous mid-level approaches are not accurate enough to localize discriminative regions automatically

1.3. Our Contribution

Triplet of patches

Accurate localization without expensive annotations

Automatic discovery of discriminative triplets Local initialization – Global mining

2. Triplet of Patches with Geometric Constraints

2.1. Geometric Constraints

Order Constraint

Shape Constraint

2.2. Triplet Detector

$$\begin{split} \left\{T_{A}, T_{B}, T_{C}\right\} & \longrightarrow \left\{\omega_{A}, \omega_{B}, \omega_{C}, G_{ABC}, \Theta_{ABC}\right\} \\ \omega_{i} &= \Sigma^{-1}(T_{i} - \mu) \end{split}$$
 Given $\left\{T_{A'}, T_{B'}, T_{C'}\right\}$,
$$S_{A'B'C'} = \left(\omega_{A}^{\mathrm{T}}T_{A'} + \omega_{B}^{\mathrm{T}}T_{B'} + \omega_{C}^{\mathrm{T}}T_{C'}\right) \cdot p_{o} \cdot p_{s} \\ \text{Appearance Score} \qquad \text{Order Penalty Shape Penalty} \\ \left\{A^{*}, B^{*}, C^{*}\right\} = \operatorname{argmax} S_{A'B'C'} \end{split}$$

3. Mining Discriminative Triplets

3.1 Triplet Initialization

Nearest-neighbor based local initialization

3.2 Triplet Mining

Global discovery using entropy score

$$H(\mathbf{c} \mid \mathbf{T}) = \sum_{c} p(c \mid \mathbf{T}) \log p(c \mid \mathbf{T})$$

3.3 Mid-Level Image Representation

Maximum responses of mined triplets: Bag of Triplets (BoT)

4. Experiments

4.1 Triplet Localization

FG3DCar Dataset

Method	Localization	Improvement
	Accuracy (%)	Over Baseline (%)
Appearance Only	24.9	-
Order Constraint	27.7	11.2
Shape Constraint	34.4	38.2
Combined	35.3	41.9

4.2 Fine-Grained Classification

14-Class BMVC Cars

Method	Accuracy (%)
LLC [41]	84.5
PHOW [38]	89.0
FV [33]	93.9
structDPM [37]	93.5
BB-3D-G [25]	94.5
BoT (HOG Without Geo)	94.1
BoT (HOG With Geo)	96.6

100-Class FGVC-Aircraft

Method	Accuracy (%)	
Symbiotic [5]	75.9	
Fine-tuned AlexNet [19]	78.9	
Fisher Vector [19]	81.5	
B-CNN [28]	84.1	
BoT (CNN without Geo)	86.7	
BoT (CNN with Geo)	88.4	
1100 D		

HOG: Represent patches using HOG features

Most Discriminative **Triplets (BMVC Cars)**

196-Class Stanford Cars

Method	Accuracy (%)	
LLC*[41]	69.5	
BB-3D-G [25]	67.6	
ELLF* [23]	73.9	
AlexNet From Scratch [23]	70.5	
AlexNet Finetuned [43]	83.1	
FT-HAR-CNN [43]	86.3	
B-CNN [28]	91.3	
Best Result in [24]	92.8	
BoT(HOG Without Geo)*	84.6	
BoT(HOG With Geo)*	85.7	
BoT(CNN Without Geo)	91.2	
BoT(CNN With Geo)	92.5	
CNN: Poprosont natches using VCC 16 need features		

CNN: Represent patches using VGG-16 pool₄ features