PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
B01D 53/84, 53/52, C02F 3/34, C01B
17/05

A1

(11) International Publication Number:

WO 96/30110

(43) International Publication Date:

3 October 1996 (03.10,96)

(21) International Application Number:

PCT/NL96/00126

(22) International Filing Date:

25 March 1996 (25.03.96)

(30) Priority Data:

9500577

24 March 1995 (24.03.95)

NL

(71) Applicant (for all designated States except US): PÂQUES B.V. [NL/NL]; T. de Boerstraat 11, P.O. Box 52, NL-8560 AB Balk (NL).

(72) Inventor; and

(75) Inventor/Applicant (for US only): BUISMAN, Cees, Jan, Nico [NL/NL]; Stinsenwei 1, NL-8571 RH Harich (NL).

(74) Agent: DE BRUIN, Leendert, C.; Nederlandsch Octrooibureau, Scheveningseweg 82, P.O. Box 29720, NL-2502 LS The Hague (NL). (81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report,

(54) Title: PROCESS FOR THE TREATMENT OF GASES

(57) Abstract

An installation and a method are described for the treatment of a gas containing hydrogen sulphide, the gas (1) being washed in a first gas scrubber (5) with an alkaline wash liquid and the spent wash liquid (4) being treated in an aerobic reactor (6) with oxygen in the presence of sulphide-oxidising bacteria and the effluent (9) from the aerobic reactor (6) being re-used as wash liquid (3) and the elementary sulphur formed during the treatment with oxygen being removed from the effluent (19), the effluent (13) from which sulphur has been removed being treated in an anaerobic reactor (17) with sulphate-reducing bacteria and returned to the aerobic reactor (6). The installation and the method can also be used for simultaneous removal of SO₂, COS, CS₂, NH₃ and HCN.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Кепуа	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
a	Côte d'Ivoire	ш	Liechtenstein	SK	Slovakia
CM	Cameroon	Ł.K	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	u	Luxembourg	TG	Togo
DE	Germany	LV	Larvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	π	Trinidad and Tobago
EE	Entonia	MD	Republic of Moldova	ĽA	Ukraine
ES	Spein	MG	Madagascur	ſ.C	l!ganda
FI	Finland	ML	Malı	t.8	United States of America
FR	France	MN	Mongolia	l'Z	Urbekistan
GA	Gabon	MR	Mauritania	17	Vart Nam

Process for the treatment of gases

5

10

15

20

25

30

The invention relates to a process for the treatment of a gas containing hydrogen sulphide and optionally other pollutants, the gas being washed in a first gas scrubber with an alkaline wash liquid and the spent wash liquid being treated in a first aerobic reactor with oxygen in the presence of sulphide-oxidising bacteria and the effluent from the first aerobic reactor being re-used as wash liquid and elementary sulphur formed during the treatment with oxygen being removed from the effluent.

A process of this type is disclosed in International Patent Application WO 92/10270. This process is suitable for the removal of hydrogen sulphide (H₂S) and optionally other reduced sulphur compounds, such as mercaptans and carbon disulphide, or for the removal of sulphur dioxide (SO₂).

A disadvantage of the known method is that small amounts of sulphate are produced during the biological oxidation of sulphide and that no solution is provided for preventing the undesired accumulation thereof. The known method is also not suitable for the removal of other pollutants which can be present in addition to H₂S, such as ammonia (NH₃), hydrocyanic acid (HCN), sulphur dioxide (SO₂), carbonyl sulphide (COS) and/or carbon disulphide (CS₂).

A process has now been found for the treatment of gases, which allows removal of hydrogen sulphide without appreciable residues and which also allows other undesirable gaseous components frequently encountered, such as ammonia, hydrocyanic acid, sulphur dioxide, carbon disulphide or carbonyl sulphide, to be removed without separate pretreatment or post-treatments and associated installations being required for this. The process produces only solid elementary sulphur and, if the gas to be treated also contains nitrogen compounds such as NH₃ or HCN, molecular nitrogen (N₂), both of which can be used or discharged without any drawbacks. The process is particularly suitable for the treatment of fuel gases (natural gas, coal gas) and other gases which are usefully used after treatment. The process is also suitable for the treatment of gases which will no longer be used and ultimately will be discharged, optionally after burning off, such as flue gases and industrial gases, for example Claus off-gases (gases which are produced during the reaction of high concentrations of H₂S with SO₂ with the formation of elementary sulphur).

2

The process according to the invention is characterised in that the effluent from the first aerobic reactor, from which sulphur has been separated off, is treated in an anaerobic reactor with sulphate-reducing bacteria and returned to the first aerobic reactor.

As a result of the use of the anaerobic reactor connected downstream of the aerobic reactor, the sulphate which leaves the aerobic reactor is reduced to sulphide. When the gas to be treated contains sulphur dioxide in addition to hydrogen sulphide, this sulphur dioxide (in the form of sulphite or sulphate) is reduced to sulphide as well.

5

10

15

20

25

30

The bacteria which are active for reduction of sulphate and sulphite and other oxidised sulphur compounds in the anaerobic reactor (designated here as sulphate-reducing bacteria) are, for example, bacteria of the genera Desulfovibrio, Desulfoto-maculum, Desulfomonas, Desulfobulbus, Desulfobacter, Desulfococcus, Desulfonema, Desulfosarcina, Desulfobacterium and Desulfuromonas. Bacteria of this type are available without any problem from diverse anaerobic cultures and/or grow spontaneously in the anaerobic reactor.

Reduction equivalents (electron donors) are needed for the biological reduction in the anaerobic reactor. Suitable electron donors are, inter alia, hydrogen, carbon monoxide, lower alcohols (for example methanol and ethanol) and other organic substances which can easily be oxidised by biological means, such as acetate, propionate, glucose, sucrose, starch and the like.

The sulphide-containing effluent from the anaerobic reactor is recycled to the aerobic reactor, where the sulphide is again largely converted into elementary sulphur.

The amount of oxygen fed to the aerobic reactor is regulated such that it is in the main elementary sulphur which is produced on oxidation of the absorbed sulphide. Suitable bacteria which oxidise sulphide and other sulphur compounds having a low degree of oxidation to elementary sulphur in the aerobic reactor in the presence of oxygen (designated here as sulphide-oxidising bacteria) are the autotrophic aerobic cultures known for this purpose, such as the autotrophic aerobic cultures of the genera *Thiobacillus* and *Thiomicrospira*.

The formation of sulphur in the aerobic reactor leads to a sulphur suspension, which is tapped off. The sulphur from this suspension is separated off and worked up by drying and, optionally, purifying, and re-used.

Approximately 90 % of the alkalinity used in the gas scrubber is re-formed during the oxidation in the aerobic reactor. The bulk of the other 10 % of the alkalinity is re-formed in the anaerobic reactor.

3

A portion of the effluent from the aerobic reactor is recycled to the gas scrubber as wash liquid. Preferably, said effluent has a pH of 7.5 - 9.5, in particular of 8 - 9.2. A relatively high pH, such as between 9 and 9.5, has the advantage that bicarbonate (CO_2) stays better in solution and the buffer action is thus more effective. Elementary sulphur is more stable at a lower pH of, for example, 8 - 8.5.

5

10

15

20

25

30

If necessary, the pH is adjusted by adding alkali or sodium carbonate. If the gas to be treated contains little CO₂, as in the case of natural gas, (< 5 % CO₂), CO₂ or an equivalent thereof, such as (bi)carbonate, is preferably added, both to adjust the pH and to increase the buffer action. This addition can be made in the aerobic reactor so that the pH is adjusted to the desired value in this reactor, or can be made in the (first) gas scrubber. An organic electron donor, such as acetate, sugars, and the like, can also be introduced into the anaerobic reactor, where it is converted into (bi)carbonate by the bacteria present in said reactor. In this way the electron-donating, pH-raising and buffer functions are combined.

In general, neutralising agents are not needed to lower the pH downstream of the scrubber and, therefore, hardly any salts build up in the recirculating wash liquid.

Because the effluent from the aerobic reactor, from which the elementary sulphur has not yet been separated off or has not yet been completely separated off, is preferably used as wash liquid, the wash water contains elementary sulphur which promotes the absorption of H_2S , but also of SO_2 and HCN, from the gases to be treated. This leads to the formation of, respectively, disulphide and polysulphide (HS_n^- ; $n \ge 2$), thiosulphate ($HS_2O_3^-$) and thiocyanate (SCN^-). Preferably, the wash liquid contains 1 - 50, in particular 10 - 50 g elementary sulphur per 1.

Elementary sulphur in the wash liquid is useful especially in the case where HCN is present as a component in the gas. The cyanide, which is toxic to the majority of bacteria, is converted by the elementary sulphur into the far less toxic thiocyanate, which is then broken down biologically and/or chemically as can be seen from the following reaction equations:

5

10

15

20

25

30

Thus, HCN is ultimately converted to carbon dioxide and ammonia. The ammonia can be further reacted, if desired, as explained below.

When the gas to be treated contains other volatile sulphur compounds, such as lower alkyl mercaptans or carbon disulphide, in addition to H₂S, the spent wash liquid which contains the sulphur compounds can be fed directly into the aerobic reactor containing the sulphide-oxidising bacteria. When the reduced sulphur compounds have dissolved, they are termed "sulphide", but this term is also understood to include other reduced sulphur compounds, such as dissolved hydrogen sulphide (H₂S or HS⁻), disulphide, polysulphide, thiocarbonates, alkanethiolates, and the like.

If the gas also contains CO_2 , the latter will also be partially absorbed in the wash liquid. The absorbed carbon dioxide will, in the form of bicarbonate, have a favourable buffer action on the wash liquid. Moreover, some of the CO_2 will be stripped in the aerobic reactor, which leads to a rise in pH.

The sulphide concentration in the spent wash liquid, which has a pH of about 8.5, will usually be, expressed as sulphur, approximately 80 – 800 mg/l when treating gases under approximately atmospheric pressure. This is a lower concentration than the concentration reached in a conventional H₂S scrubber operating at a pH of 10 to 11. The scrubber will therefore have to be larger than a conventional scrubber and a higher water/gas stream ratio will be used, for example a ratio of water stream to gas stream of 0.1 to 0.25. In the case of compressed gases, such as fuel gas (under, for example, 20 bar) or natural gas (under, for example, 75 bar), the sulphide concentration can rise to 3 g/l and the requirements in respect of the scrubber and the water/gas ratio are thus less stringent.

The process according to the invention has advantages in particular for the treatment of gases which contain appreciable amounts of other undesirable components.

10

15

20

25

30

An important additional pollutant is ammonia. When gas has to be treated which in addition to H_2S (and possibly SO_2) also contains ammonia, this will to a certain extent be absorbed in the gas scrubber discussed and reacted in the aerobic reactor.

However, it is preferable, if it is desired drastically to restrict the quantity of ammonia to be discharged, to use a second gas scrubber, connected upstream of the first, and to wash the gas in said second scrubber using a wash liquid of a lower pH. In this way NH_3 is washed out more efficiently. With this arrangement, the wash liquid in the second gas scrubber preferably has a pH of 5 to 7.5 and in particular of 6 - 7. Preferably, the gas is first washed in the second gas scrubber which has the lower pH, mainly with a view to absorption of NH_3 , and is then washed in the gas scrubber described first which has the higher pH, especially with a view to absorption of H_2S .

The spent wash liquid from the second gas scrubber can then be combined with the spent wash liquid from the first gas scrubber and subjected successively to biological oxidation and reduction. A large proportion of the ammonia will not be converted in the aerobic reactor where sulphide is oxidised. That is why a second aerobic reactor is preferably used, said second reactor being fed with the effluent from the first aerobic reactor, from which elementary sulphur has been separated off as far as possible.

In said second aerobic reactor, ammonia is converted to nitrate by nitrifying bacteria in the presence of oxygen. A portion of the effluent from the nitrifying aerobic reactor is then fed into the anaerobic reactor which has already been discussed, where the nitrate is reduced to nitrogen by denitrifying bacteria in the presence of an electron donor, such as hydrogen. The effluent from the anaerobic reactor is recycled to the first aerobic reactor, as already described above. The following reactions occur:

(1)
$$NH_4^+ + 2O_2$$
 \rightarrow $NO_3^- + 2H^+ + H_2O$ second aerobic reactor

(2)
$$2NO_3^- + 5H_2 \rightarrow N_2 + 4H_2O + 2OH^-$$
 anaerobic reactor

(3)
$$2NO_3^- + 5HS^- + H_2O \rightarrow N_2 + 5S^0 + 7OH^-$$
 first aerobic reactor

As the pH of the effluent from the second aerobic reactor has been lowered as a result of nitrate formation, a portion of this effluent is advantageously used as wash liquid for the second gas scrubber. If necessary, the pH can be further adjusted by adding acid or base or by mixing with other effluents. The nitrate can then be partially converted to molecular nitrogen (reaction (3)) in the first aerobic reactor.

The process according to the invention is also outstandingly suitable for use for

the treatment of gas which also contains hydrocyanic acid in addition to H₂S (and possibly SO₂ and/or NH₃). As already described, the absorption of the HCN can be promoted by means of elementary sulphur dissolved or suspended in the wash liquid. In the case of two gas scrubbers as described above, the HCN will be absorbed mainly in the first, more alkaline gas scrubber (connected downstream of the second gas scrubber). The nitrate formed is ultimately converted to nitrogen by the combination of anaerobic and aerobic reactors.

If the gas to be treated contains carbon disulphide and/or carbonyl sulphide, the latter can likewise be effectively removed using the process according to the invention. In this case more than one gas scrubber is preferably used, as has been described above for the removal of ammonia. For very thorough removal of COS, two gas scrubbers of the alkaline type are used in series, it being possible to use effluent from the first aerobic reactor as wash liquid for both scrubbers. Absorbed COS and CS₂ is essentially converted into carbonate and sulphur in the aerobic reactor.

The gas scrubbers to be used according to the invention can be of a conventional type, provided effective contact between the gas stream and the wash liquid is produced in the gas scrubbers.

The anaerobic and aerobic reactors to be used according to the invention can be of any suitable type. Reactors of the vertical circulating type, such as are described, for example, in International Patent Application 94/29227, in which the gas to be used (this is usually air in the aerobic reactor) can provide for vertical circulation, are preferably used, in particular for the aerobic reactor(s).

The invention also relates to an installation for carrying out the process as described above. Examples thereof are shown in Figures 1 and 2.

Examples and description of the figures

Example 1

5

10

15

20

25

30

Removal of sulphur compounds in the absence of significant amounts of nitrogen compounds

Claus off-gas (approx. 40 % CO_2 , 45 % H_2O , 8 % N_2) containing H_2S and SO_2 as the main pollutants and additionally containing COS and CS_2 is treated in an installation as shown in Figure 1.

The polluted gas enters gas scrubber 5 at the bottom via line 1. The clean gas leaves the scrubber at the top via line 2. The gas is treated using wash liquid which is supplied via 3. The wash liquid laden with sulphide and, possibly, sulphite leaves the scrubber at the bottom via 4 and is fed to the aerobic reactor 6. Nutrients for the biomass can be added, if necessary, at 4.

5

10

15

20

25

30

In the aerobic reactor 6, sulphide in the wash liquid is converted mainly to sulphur by means of bacteria and oxygen. The reactor is supplied with air via aeration system 7. The spent air can usually be released via 8 into the outside air without any problem.

Some of the effluent from the aerobic reactor 6 is used as wash liquid for the gas scrubber 5. The remainder is fed via 10 to the sulphur separator 11, in which the bulk of the sulphur is removed therefrom. The sulphur slurry separated off is removed via 12, dehydrated and, if necessary, purified for re-use.

Stream 13, which contains sulphate/sulphite, is fed to the anaerobic reactor 17. An electron donor is added via 15. In the case of a gaseous electron donor, a discharge gas is released via 16 and optionally partially recycled. In the anaerobic reactor sulphate and sulphite are converted to sulphide. The effluent is recycled via 14 to the aerobic reactor 6 where the sulphide is again converted mainly to sulphur. A small discharge 18 is necessary to prevent accumulation of pollutant, non-degradable components. If the discharge is located downstream of the anaerobic reactor, as in Fig. 1, this will contain sulphide and usually has to be subjected to an after-treatment. If the discharge of low concentrations of sulphate is acceptable, the discharge can be located at the level of line 13 and this does not require any after-treatment.

In the case of Claus off-gas described here, the polluted gas also contains COS and/or CS₂ and the treated gas is no longer used (it is usually burnt off). The gas is then subjected to an after-treatment downstream of 5 in a biological trickling filter installation 19. To this end, air is supplied via 21 to filter installation 19, which contains a biomass similar to that in the aerobic reactor 6. COS and CS₂ residues are absorbed here and converted essentially into sulphur and/or sulphate, and CO₂. The treated gas is discharged via 20. The wash water from the bio-scrubber originates from the aerobic reactor via 22 and is returned to the aerobic reactor via 23. The results of the treatment according to this example are shown in the table below.

Table

Street	Ī	- 1 d		
Stream		Example 1	Example 2	Example 3
1	flow rate	5000 Nm ³ /h	13500 m ³ /h*	1500 m ³ /h*
	H ₂ S (vol. %)	0.4	0.3	0.3
	SO ₂ (vol. %)	0.2	_	-
	COS (ppm)	500	-	400
	CS ₂ (ppm)	280	-	
	NH ₃ (ppm)	-	_	150
	HCN (ppm)	_	_	150
2	H ₂ S (ppm)	< 5	< 5	
	SO ₂ (ppm)	< 5	-	
20	H ₂ S (ppm)	0	n/a	< 5
	COS (ppm)	125	п/a	100
	CS ₂ (ppm)	140	n/a	
	NH ₃ (ppm)	-	п/а	< 5
	HCN (ppm)	-	n/a	< 5
33/34	flow rate (m ³ /h)	n/a	n/a	85
3/4	flow rate (m ³ /h)	85	1450	1530
22/23	flow rate (m ³ /h)	20	n/a	85
12	10 % S slurry	0.4	10	10
13	flow rate (m ³ /h)	25	150	
	SO ₄ ²⁻ (g/l)	2	2	
15	H ₂ flow rate	7	150	230
18	discharge (m ³ /h)	1.4	3	
Reactor 6	volume (m ³)	200	4500	4500
Reactor 36	volume (m ³)	n'a	n/a	450
Reactor 17	volume (m ³)	70	475	750

^{*:} at 20 bar

10

15

Example 2

5

10

15

20

25

30

Removal of sulphur compounds in the absence of significant amounts of nitrogen compounds.

Fuel gas containing H_2 and CO as main constituents and containing H_2S as the main pollutant is treated in an installation as shown in Figure 1, in which, however, the trickling filter 19 with associated facilities 20 - 23 has been dispensed with.

The results of the treatment according to this example are shown in the table below. Example 3

Removal of sulphur compounds and nitrogen compounds

Fuel gas (synthesis gas) containing H_2 and CO as the main constituents and containing H_2S , COS, NH_3 and HCN as the main pollutants is treated in an installation as shown in Figure 2.

The polluted gas passes via line 1 into the bottom of gas scrubber 31, where in the main NH₃ is washed out of the gas with wash liquid which is supplied via 33 from aerobic reactor 36. The partially treated gas leaves the scrubber at the top and is fed via line 32 to the gas scrubber 5, where the bulk of H₂S and HCN is removed using wash liquid 3. In order to remove COS and residual H₂S and HCN, the gas is fed via 2 to gas scrubber 30, where it is washed with wash liquid supplied via 22. The wash liquid for scrubbers 5 and 30 originates from the aerobic reactor 6.

The loaded wash liquids 34, 4 and 23 leave the scrubbers at the bottom and are fed to the aerobic reactor 6. In the aerobic reactor 6 sulphide in the wash liquid is converted mainly to sulphur by bacteria and oxygen. Only a small portion of the ammonia is oxidised to nitrate here. The reactor is supplied with air via aeration system 7. The spent air can be fed via 8 to the second aerobic reactor and re-used for oxidation.

A portion of the effluent from the aerobic reactor 6 is used as wash liquid for the gas scrubbers 5 and 30. The remaining portion is fed via 10 to the sulphur separator 11, where the bulk of the sulphur is removed therefrom. The sulphur slurry separated off is discharged via 12, dehydrated and, if necessary, purified for re-use.

The effluent from the sulphur separator is fed via 13 to the second aerobic reactor 36. With the aid of bacteria and oxygen, the residual ammonia is converted to nitrate. The reactor is supplied with air via an aeration system. To this end, the off-gas

5

10

8 from the first aerobic reactor is supplemented with air stream 35. The spent air can usually be released via 37 into the outside air without any problem.

10

The effluent from the aerobic reactor 36 is tapped off via 38 and a portion is used as wash liquid 33 for the gas scrubber 31. The remaining portion is fed via 39 to the anaerobic reactor 17. An electron donor is added via 15. In the case of a gaseous electron donor, a discharge gas is released via 16 and, optionally, a portion of this gas is recycled. In the anaerobic reactor 17 sulphate is converted to sulphide.

The effluent is returned via 14 to the aerobic reactor 6, where the sulphide is again mainly converted to sulphur. A small discharge 18 is required to prevent accumulation of pollutant, non-degradable components. Said discharge must be aftertreated if necessary.

The results of the treatment according to this example are shown in the table above.

10

15

20

- 1. Process for the treatment of a gas containing hydrogen sulphide, the gas being washed in a first gas scrubber with an alkaline wash liquid and the spent wash liquid being treated in a first aerobic reactor with oxygen in the presence of sulphide-oxidising bacteria and the effluent from the first aerobic reactor being re-used as wash liquid and elementary sulphur formed during the treatment with oxygen being removed from the effluent, characterised in that the effluent from which sulphur has been separated off is treated in an anaerobic reactor with sulphate-reducing bacteria and returned to the first aerobic reactor.
- 2. Process according to Claim 1, wherein the wash liquid in the first gas scrubber has a pH of 8 9.5.
- 3. Process according to Claim 1 or 2, wherein an electron donor such as hydrogen or a readily oxidisable organic substance is added to the anaerobic reactor.
- 4. Process according to one of Claims 1-3, wherein the gas containing hydrogen sulphide also contains sulphur dioxide.
- 5. Process according to one of Claims 1-4, wherein the gas containing hydrogen sulphide also contains ammonia and the gas is washed in a second gas scrubber with a wash liquid and the spent wash liquid from the second gas scrubber is treated together with the spent wash liquid from the first gas scrubber.
- 6. Process according to Claim 5, wherein the gas is first washed in the second gas scrubber and the wash liquid in the second gas scrubber has a pH of 6-8.5.
- 7. Process according to Claim 5 or 6, wherein the spent wash liquid from which sulphur has been separated off is treated with nitrifying bacteria in a second aerobic reactor prior to the treatment in the anaerobic reactor.

10

15

- 8. Process according to Claim 7, wherein the effluent from the second aerobic reactor is used as wash liquid in the second gas scrubber.
- 9. Process according to one of the preceding claims, wherein the gas also contains hydrocyanic acid and the alkaline wash liquid is also provided with 1 50 g elementary sulphur per 1.
- 10. Process according to one of the preceding claims, wherein the gas also contains carbonyl sulphide and the first gas scrubber is constructed in duplicate.
- 11. Process according to one of the preceding claims, wherein the gas contains less than 5 % carbon dioxide, and carbon dioxide, (bi)carbonate or an organic substance which can be reacted to form (bi)carbonate is added to the wash liquid.
- 12. Installation for carrying out the process according to one of the preceding claims, comprising one or more gas scrubbers (5, 30, 31) with feed and discharge lines for gas (1, 2, 20, 32) and means for the supply, distribution, collection and removal of wash liquid, one or more aerobic reactors (6, 36) with feed and discharge lines for gas (7, 8, 35, 37) and means for the supply and removal of liquid, a separator for separating solid from liquid (11), and an anaerobic reactor (17) with a feed line for electron donor (15) and means for the supply and removal of liquid.
- 13. Installation according to Claim 12, wherein the means for supply and removal of liquid are connected as shown in Figure 2.

1/2

Interr that Application No PCT/NL 96/00126

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 B01D53/84 B01D53/52 C02F3/34 C01B17/05 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) B01D C02F C01B IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. A WO,A,92 10270 (PAQUES BV) 25 June 1992 1-4,11 cited in the application see page 7, line 16 - page 8, line 7; claims 1-11; figures 1,2 Α PATENT ABSTRACTS OF JAPAN 1,2,5,7, vol. 007, no. 100 (C-164), 28 April 1983 & JP,A,58 027619 (EBARA INFILCO KK), 18 February 1983, see abstract Α SULPHUR, 1.4 no. 235, 1 November 1994, pages 59-63, 65 - 67, 69, XP000475879 "EXPLOITING NATURE'S SULPHUR CYCLE" see page 65, column 1, paragraph 5 - page 66, column 3, paragraph 5; figures 4,6,7 -/--Further documents are listed in the continuation of box C. X Patent family members are listed in annex. * Special categories of cited documents: "I" later document published after the international filing date of priority date and not in conflict with the application bu-cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance. 'E' earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the "O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such de other means s, such combination being obvious to a person skilled "P" document published prior to the international filing date but ID the art. later than the priority date claimed "A" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 06.05.96 18 April 1996 Name and making address of the ISA Authorized officer European Patent Office, P.B. 5818 Patendaan 2 N.L. - 2280 HV Rupmin Tel. t = 31-70) 340-2040, Tz. 31 651 epo zd. Faz: (= 31-70) 340-3016 Eijkenboom, A

1

Form PCT ISA 210 (septed shoot) (July 1992)

Inter: nal Application No PCT/NL 96/00126

PCT/NL 96/00126				
Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT egory * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.				
Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
WO,A,93 24416 (PAQUES BV) 9 December 1993 see page 8, line 17 - page 9, line 16; claims 1-22; figure 3	1-4			
WO,A,91 16269 (PAQUES BV) 31 October 1991 see claims 1-20	1-3			
	e e			
	•			
	WO,A,93 24416 (PAQUES BV) 9 December 1993 see page 8, line 17 - page 9, line 16; claims 1-22; figure 3 WO,A,91 16269 (PAQUES BV) 31 October 1991			

Inter nal Application No PCT/NL 96/00126

				,
Patent document cited in search report	Publication date	Patent fr membe		Publication date
WO-A-9210270	25-06-92	NL-A-	9002661	01-07-92
		AT-T-	113497	15-11-94
		AU-B-	648129	14-04-94
		AU-B-	9067291	08-07-92
		BG-A-	97844	27-05-94
		CA-A-	2096660	05-06-92
		CZ-A-	9301058	19-01-94
		DE-D-	69104997	08-12-94
			69104997	23-03-95
		EP-A-	0561889	29-09-93
		ES-T-	2062883	16-12-94
		HU-A-	64875	28-03-94
		JP-B-	7075655	16-08-95
		PL-B-	168365	29-02-96
		US-A-	5354545	11-10-94
WO-A-9324416	09-12-93	NL-A-	9200927	16-12-93
		AU-B-	662828	14-09-95
		AU-B-	4359493	30-12-93
		CA-A-	2135761	09-12-93
		CN-A-	1079449	15-12-93
		EP-A-	0642472	15-03-95
		JP-T-	7506533	20-07-95
		NO-A-	944462	25-11-94
WO-A-9116269	31-10-91	NL-A-	9000877	01-11-91
		NL-A-	9000878	01-11-91
		NL-A-	9000879	01-11-91
		NL-A-	9000880	01-11-91
		AT-T-	108422	15-07-94
		AU-B-	639561	29-07-93
		AU-B-	7683791	11-11-91
		CA-A-	2057861	13-10-91
			69102848	18-08-94
			69102848	22-12-94
		EP-A-	0477338	01-04-92
		ES-T-	2056647	01-10-94
		HU-A-	66639	28-12-94
		JP-T- LT-A,B	4506629 1556	19-11-92 26-06-95

Inter and Application No PCT/NL 96/00126

Patent document cited in search report Publication date WO-A-9116269		Patent family member(s)		Publication date	
		PL-B- 168378 US-A- 5449460 US-A- 5366633	29-02-96 12-09-95 22-11-94		

Form PCT ISA, 218 (person family moves) (July 1992)