Master theorem dla wyszukiwania binarnego

1 Wyszukiwanie binarne

Wyszukiwanie binarne jest algorytmem typu dziel i zwyciezaj. Wyznaczamy element środkowy tablicy wejściowej. Jeśli nie jest on elementem szukanym to tablice dzielimy na pół i na odpowiedniej połówce wywołujemy ten algorytm ponownie. Rekurencje ta możemy zatem zapisać wzorem:

$$T(n) = T(n/2) + \Theta(1)$$

 $\Theta(1)$ wyraża operacje porównania elementu środkowego z szukanym, co masz złożoność stała.

2 Master theorem

Master theorem jest twierdzeniem matematycznym pozwalajacym w łatwy sposób znajdować ograniczenia asymptotyczne pewnej klasy funkcji zdefiniwanych rekurencyjnie. Wyraża sie wzorem:

$$aT(n/b) + f(n)$$

Nasza funkcja f(n) = O(1) spełnia warunek f(n) = $\Theta(n^{\log_a b})$, co dla naszych a = 1, b = 1 daje wynik $\Theta(1)$. Implikuje to nam, że nasza rekurencja $T(n) = \Theta(\log n)$.

	А	В	С
1	Liczba elementów tablicy	Liczba wywołań rekurencyjnych	Liczba porównań elementów
2	1000	10	20
3	15 000	14	28
4	60 000	16	32
5	100 000	17	34

Figure 1: Stałe w $\Theta(1)$