

— Lecture III: IsolatedDC-DC Converters

Lecturer: Ziwei Ouyang

07-Sept.-2016, kl: 9:00-12:00

Location: B325-IT017

zo@elektro.dtu.dk

Agenda

• Review nonisolated DC-DC converters

Foward converter

Flyback converter

• Push-pull converter

Half-bridge & Full bridge

DTU Elektro

Review nonisolated DC-DC Converter

Galvanic Isolation

- ✓ for safety, preventing accidental current from reaching ground through a person's body
- ✓ to break groud loops, to suppress electrical noise in sensitive devices

- ✓ to transfer power between two circuits
- ✓ to change the transfer ratio

Topologies

Forward Converter

Why is there three windings transformer?

DTU Elektro

Institut for Elektroteknologi

07-09-2016

Magnetizing Inductance

DTU Elektro

Forward Converter (CCM)

Forward Converter

Duty cycle limitaion:

 $V_{g} \stackrel{i_{M}}{\longleftarrow} \stackrel{i_{1}}{\longleftarrow} \stackrel{i_{1}}{\longleftarrow} \stackrel{i_{1}}{\longleftarrow} \stackrel{i_{1}}{\longleftarrow} \stackrel{i_{2}}{\longleftarrow} \stackrel{i_{3}}{\longleftarrow} \stackrel{i_{2}}{\longleftarrow} \stackrel{i_{1}}{\longleftarrow} \stackrel{i_{2}}{\longleftarrow} \stackrel{i_{3}}{\longleftarrow} \stackrel{i_{3}}{\longleftarrow} \stackrel{i_{2}}{\longleftarrow} \stackrel{i_{3}}{\longleftarrow} \stackrel{i_{3}}{\longrightarrow$

the primary winding voltage $v_1(t)$ must have zero average.

$$\langle v_1 \rangle = D(V_g) + D_2(-V_g n_1/n_2) + D_3(0) = 0$$

$$D_2 = \frac{n_2}{n_1} D$$

the duty cycle D_3 cannot be negative

DTU Elektro

Forward Converter

Transfer function:

$$\frac{n_3}{n_1}V_gD = V_o(1-D)$$

$$\frac{V_o}{V_g} = \frac{n_3}{n_1} D$$

Group Discussion

Question 1:

You are going to design a 120W forward converter. The input voltage is 48 V and the output voltage is 12 V. The transformer turns ratio is 1:1:1, and the converter is operated at 100k Hz and in CCM mode. The magnetizing inductance is 12uH. The output inductance is assumed to be infinite. What is the max drain-source voltage of MOSFET, Vds, and what is the peak current of the MOSFET, Ids?

- A. 12V
- B. 48V
- C. 60V
- D. 96V

a. 2.5A

 $n_1 : n_2 : n_3$

- b. 5A
- **c.** 10A
- d. 20A

DTU Elektro

Two-switch Forward Converter

- + The maximum switch blocking voltage is equal to U_{IN} (clamped!)
- + Snubber is regenerative (for the magnetizing current)
- + Very robust (Inherently robust)
- Requires a high-side driver for switch-2
- Requires two switch elements
- The duty-cycle can never be more than 50%
- Excites only the core in one flux-direction

DTU Elektro Institut for El

DTU Elektro

Transfer function:

$$V_g DT = \frac{V_o}{n} (1 - D)T$$

$$\frac{V_o}{V_g} = \frac{nD}{1 - D}$$

Group Discussion

Question 2:

This is Flyback converter. The input voltage is 48 V and the output voltage is 12 V. The transformer turns ratio is 4:1, and the converter is operated at 100k Hz and in CCM mode. The magnetizing inductance is 100uH. What is the max drain-source voltage stress of MOSFET, Vds, and what is the max voltage stress of the diode D1?

- A. 12V
- B. 24V
- C. 48V
- D. 96V

- a. 12V
- b. 24V
- c. 48V
- d. 96V

Disadvantages:

- ☐ higher component stress
- ☐ spike and ringing due to leakage inductance
- ☐ half of core material B-H loop is utilized

Signals in a "real" flyback converter

Design Considerations

	UIN=50VDC, UOUT=5VDC, IOUT=5A, ΔIs=1A, fsw=50kHz	n=Ns/Np=1, D=1/11	n=Ns/Np=0.1, D=1/2	Ns/Np=0.05 D=2/3
Blocking voltage across switch	$U_{DS} = U_{OUT} \cdot \frac{1}{n} + U_{IN}$	55V	100V	150V
Blocking voltage across flyback diode	$U_{KA} = U_{IN} \cdot n + U_{OUT}$	55V	10V	7.5V
Peak current on primary	$I_{PP} = n \cdot I_{SP}$	6A	1.05A	0.775A
Peak current on secondary	$I_{SP} = \frac{I_{O} - \frac{1}{2} \cdot \Delta I_{S}(D - 1)}{(1 - D)}$	6A	10.5A	15.5A
Primary inductance	$L_P = n^2 \cdot L_S$	90.91uH	5mH	13.33mH
Comments:	$\left(L_{S} = \frac{U_{OUT} \cdot (1 - D)T}{\Delta I_{S}}\right)$	+ smallest output capacitor -High blocking voltage diode High loss in primary winding	+small input capacitor +low blocking voltage diode - High output capacitor	+ smallest input capacitor +lowest blocking voltage diode -highest output capacitor -high blocking voltage MOSFET

Two-Switch Flyback Converter

- + The maximum switch blocking voltage is equal to U_{IN} (clamped!)
- + Snubber is regenerative (For the primary leaking inductance)
- + Very robust (Inherently robust)
- Requires a high-side driver for switch-2
- Requires two switch elements
- The duty-cycle can never be more than 50%
- Excites only the core in one flux-direction

DTU Elektro

Institut for Elel

DTU Elektro

Push-Pull Converter

- + Does not require any high-side driver for switch-2
- + Theoretically the duty-cycle can be 100%
- + Excites the core in both flux-directions
- The switch blocking voltage is at least equal to 2xU_{IN}, (not well controlled!)
- Requires a split primary (or two equal primary windings)
- Requires two switch elements
- Diode conduction losses is comparatively high at low output voltages

Half-bridge Converter

- + The maximum switch blocking voltage is equal to U_{IN} (clamped by FET BD.)
- + Theoretically the duty-cycle can be 100%
- + Excites the core in both flux-directions
- + Does not require at split primary
- Requires a high-side driver for switch-2
- Requires two switch elements
- Diode conduction losses is comparatively high at low output voltages

DTU Elektro
Institut for Elel

Full-bridge Buck Converter

- + The maximum switch blocking voltage is equal to U_{IN} (clamped by FET BD.)
- + Theoretically the duty-cycle can be 100%
- + Excites the core in both flux-directions
- + Does not require a split primary
- Requires a high-side driver for switch-2,4
- Requires four switch elements
- Diode conduction losses is comparatively high at low output voltages

Full-bridge Boost Converter

Full-bridge Boost Converter

Please refer to **Chapter 6** in the text book "fundamentals of power electronics"