# Predicting Movie Genres based on IMDB Descriptions

Sebastian Pinter, Daniel Chudý, Filip Faber, Tim Dirr

np.nan

194.093 Natural Language Processing and Information Extraction 2024/25 TU Wien, Austria





# Agenda



- The Task
- Data
- Baseline
- Identified Issues
- Improvements & Results
- Further Work



#### **Genre Prediction**



#### Predict movie genres based on textual description

- Text Classification
- Multilabel
- Hard Task!

#### Based on this:

"A Pink/Roman porno with a yakuza character or two"

#### Predict this:

["Action", "Crime"]



#### Data



# IMDB movie dataset containing genres (ground truth), textual movie plot descriptions and imdb-id

- ~190k rows, varying description lengths
- some rows with no description
- lots of rows where description is cut of ("This movie talks about the ....")
- some nonsense plot descriptions
   ("Add a plot"), ("plot unknown"), ("under wraps")
- heavy class imbalance



# Basic preprocessing



We removed nonsense description by pattern matching

Still, lots of missing and incomplete description

→ crawl IMDB database

Lemmatization



# Data - Description Length







#### Data - Genre Distribution







#### Data - Word Clouds













# BREAK: SWITCH FROM A TO B



#### Baseline - Models



#### **Text Modelling:**

Bag Of Words: Count / Tf-Idf

#### **Classifier:**

- Multilabel Classifier -> Training one clf per class
- Logistic Regression, KNN, Decision Tree, ...

Keeping it simple!



#### **Baseline - Metrics**



| CLF  | BoW    | Jaccard | Hamming | Prec. | Recall | at-least-1 | at-least-2 |
|------|--------|---------|---------|-------|--------|------------|------------|
| LReg | Count  | 0.29    | 0.09    | 0.47  | 0.35   | 0.57       | 0.14       |
| LReg | Tf-ldf | 0.33    | 0.09    | 0.52  | 0.38   | 0.62       | 0.16       |

Jaccard Score 
$$(\hat{y}, y) = \sum_{i=0}^{n_{samples}-1} \frac{1}{n_i} \frac{|\hat{y_i} \cap y_i|}{|\hat{y_i} \cup y_i|}$$
 Intersection over Union per Sample

Hamming Loss 
$$(\hat{y}, y) = \frac{1}{n_{samples} \cdot n_{labels}} \sum_{i=0}^{n_{samples}-1} \sum_{i=0}^{n_{labels}-1} \mathbf{1}(\hat{y}_{i,j} \neq y_{i,j})$$
 Fraction of wrong predictions



#### Feature Importance













# BREAK: SWITCH FROM B TO DANIEL



# Deep Learning Model



- DistilBERT (40% faster)
- dataset of 17k rows (0.8/0.1/0.1 split).
- 3 epochs
- probability threshold (0.4 ... 0.5)



# DL vs. LogReg



| Metric          | DL model | LogReg |  |
|-----------------|----------|--------|--|
| Jaccard         | 0.42     | 0.38   |  |
| Hamming<br>Loss | 0.09     | 0.10   |  |
| Accuracy        | 0.14     |        |  |
| Precision       | 0.63     | 0.55   |  |
| Recall          | 0.50     | 0.42   |  |
| At Least One    | 0.80     | 0.69   |  |
| At Least Two    | 0.25     | 0.16   |  |

Focal loss BCEWithLogitsLoss class weights



### DL vs. LogReg









# BREAK: SWITCH FROM DANIEL TO B



# Identified Issues



### Issue - Movies without genre



There are Movies without genre???



Predict-at-least-1 Mechanic

Force the MultiLabelClassifier to always predict at least one Genre, even if it has low confidence



# Issue - Genre Imbalance







### Metric / Genre-Distribution







# If nothing then drama



"Trackhouse: Get Ready chronicles the launch of one of NASCAR's newest organizations."

- Labels: ['Sport']
- Predicted: ['Drama']

"The story of the highwayman and folk hero, Juraj Janosik."

- Labels: ['Animation']
- Predicted: ['Drama']



#### **Confusion Matrix Drama**



#### Many False Positives for Drama!















# BREAK: SWITCH FROM B TO DANIEL



#### Genre co-occurrence matrix





History 0.69
War 0.68
Biography 0.64

Animation 0.12



# Metric differences DL (NoDrama - Orig)







# Feature Importances and Tf-idf vectors



[2.50, 2.11, 1.90, ...., -1.37, -1.43, -1.75]

normalisation

[1.00, 0.98, 0.96, ...., -0.92, -0.95, -1.00]



# Feature Importances - Similarity to Drama



| Genre     | Cosine Similarity |  |  |
|-----------|-------------------|--|--|
| War       | 0.36              |  |  |
| Biography | 0.35              |  |  |
| History   | 0.32              |  |  |
| Crime     | 0.30              |  |  |
|           |                   |  |  |
| Animation | -0.25             |  |  |
| Horror    | -0.52             |  |  |

| Genre     | Euclidean Distance |  |  |  |
|-----------|--------------------|--|--|--|
| Biography | 6.957              |  |  |  |
| War       | 7.432              |  |  |  |
| Crime     | 7.834              |  |  |  |
| History   | 8.485              |  |  |  |
|           |                    |  |  |  |
| Mystery   | 10.528             |  |  |  |
| Horror    | 10.930             |  |  |  |





# Feature Importances - Similarity to Drama





| Genre     | Euclidean<br>Distance |  |  |  |
|-----------|-----------------------|--|--|--|
| Biography | 6.957                 |  |  |  |
| War       | 7.432                 |  |  |  |
| Crime     | 7.834                 |  |  |  |
| History   | 8.485                 |  |  |  |
|           |                       |  |  |  |
| Mystery   | 10.528                |  |  |  |
| Horror    | 10.930                |  |  |  |



# Tf-idf vectors - Similarity to Drama





| Genre     | Cosine<br>Similarity |  |  |
|-----------|----------------------|--|--|
| History   | 0.8818               |  |  |
| Crime     | 0.8645               |  |  |
| War       | 0.8452               |  |  |
| Biography | 0.809                |  |  |
|           |                      |  |  |
| Horror    | 0.6279               |  |  |
| Animation | 0.5010               |  |  |



# Removing Drama - Changes in Predictions





Both co-occurrence with Drama and Support of genres matter Low-support high co-occurrence see the biggest changes Similarities of Feat. Importances and Tf-idf vectors confirms this

BUT!!!





# BREAK: SWITCH FROM DANIEL TO C



# **Pruning Descriptions**



We assume there are different "types" of descriptions.

#### Some actually describe content

"Anny works in a cigar shop. Wholesaler Willmann fancy Anny and hire her as her ...."

#### Some are "Meta"-Descriptions

- "The life of queen victoria"
- "An epic italian film, 'Quo Vadis' influenced many later works"

#### Some contain author information at the end e.g.

"... lawyer who has robbed him. [Synopsis from BIOSCOPE ...]"



**Pruning Descriptions** 



# Oversampling



- MultiLabelClassifier trains individual Classifiers (e.g. LogReg)
- Ratio between positive and negative samples very unbalanced (much more negative then positive samples)



Oversampling

- SMOTE for Oversampling (generating new samples)
- Decided on a ratio of #pos\_samples = 0.5 \* #neg\_samples



# **Experiments**



- Predict at least one (!)
- Address class imbalance
- Pruning description
- Dropping "meta" descriptions (e.g. "starring, produced by, directed by")
- Removing weird chars (e.g. ", " ", -, "-,)
- Less Drama (?)
- Remove low-support genres
- Increase classifier probabilities based on frequently occurring words per genre (Hard-coded)



#### Results



| CLF  | Improvements | Jaccard | Hamming | Prec. | Recall | at-least-1 |
|------|--------------|---------|---------|-------|--------|------------|
| LReg | Baseline     | 0.333   | 0.088   | 0.521 | 0.385  | 0.623      |
| LReg | AL1          | 0.377   | 0.088   | 0.613 | 0.428  | 0.700      |
| LReg | AL1,P        | 0.378   | 0.088   | 0.608 | 0.430  | 0.716      |
| LReg | AL1,O        | 0.378   | 0.096   | 0.554 | 0.487  | 0.753      |
| LReg | AL1,P,O,C    | 0.382   | 0.116   | 0.487 | 0.604  | 0.843      |
| DL   | -            | 0.423   | 0.086   | 0.621 | 0.504  | 0.785      |

**AL1**=Predict-at-least-1 **O**=Oversampling **C**=Balanced Class Weights **P**=Prune

All LReg Models trained with lemmatized descriptions and tf-idf



#### **Further Works**



- Include titles and/or reviews of movies
- More sophisticated description analysis
- More sophisticated text modeling?
- Include information on Genre description

Apply insights from removing Drama to the predict\_at\_least\_1 function



### Future Works: Adding the Title



"Lance Hayward, a silent movie star, appears as various characters, killing quite a handful of unfortunates, using various weapons."

Labels: ['Horror']

Predicted: ['Action']

#### Note:

The title ("Terror Night") would provide the missing Horror signal.



# Did you extract your information?



- Yes? Good
- No?

QUESTION!?

