# Phil 120, Review Notes

Stuff

May 23, 2021

## Contents

| 1 | Refe | erences 3             |   |  |  |  |  |
|---|------|-----------------------|---|--|--|--|--|
|   | 1.1  | BasicLogic Operators  | : |  |  |  |  |
|   | 1.2  | Some Logic Identities | 9 |  |  |  |  |
|   |      | Tableaux Identities   |   |  |  |  |  |

#### 1 References

## 1.1 BasicLogic Operators

The followings are for A \* B, where '\*' is an operator, A is top row, B is left column.

| $\wedge$       | $T \mid$ | F |                                                                        |
|----------------|----------|---|------------------------------------------------------------------------|
| $\overline{T}$ | Т        | F | AND. Conjuction. $A \wedge B$ is true only when both A and B are true. |
| F              | F        | F |                                                                        |

## 1.2 Some Logic Identities

| $A \vee \neg A = T$                                                                  | Excluded Middle, either A or not A must be true.                                                                 |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| $\neg(A \land \neg A)$                                                               | Non-contradiction. It is true that not both A and not A hold at the same time.                                   |
| $A \to B, A \implies B$                                                              | Modus ponenes, to prove.  If A implies and B and A is true, then B is true.                                      |
| $A \to B, \neg B \implies \neg A$                                                    | Modus tollens, to disprove.  If the conclusion is false, then the premise is false also.                         |
| $A \vee B, \neg A \implies B$                                                        | Disjunctive syllogism.  If at least one of A or B is true, then if one of them is false, the other must be true. |
| $(A \to B) \iff (\neg B \to \neg A)$                                                 | Contrapositive. Similar to Modus tollens.                                                                        |
| $A, \neg A \implies B$                                                               | Explosion.  From a false premise you can arrive at any conclusion.                                               |
| $ \neg(A \lor B) \iff \neg A \land \neg B  \neg(A \land B) \iff \neg A \lor \neg B $ | De Morgan's Law.                                                                                                 |

$$\begin{array}{c} A \vee (B \wedge C) \iff (A \vee B) \wedge (A \vee C) \\ A \wedge (B \vee C) \iff (A \wedge B) \vee (A \wedge C) \end{array} \text{ Distributability}$$

### 1.3 Tableaux Identities



Note:

- Use De Morgan's Law to deal with negations  $(\neg)$ , also,  $\neg(A \to B) = (\neg B \land A)$ .
- To prove a consequence, set the premise to true, conclusion to false. This proves that there is no possible counter example, since the negation is never satisfied.
  - If there are atomic branches left open, then those are valid counter examples.
- A branch is closed any of following pairs occurs in a branch:  $\{(\mathfrak{f}A,\mathfrak{t}A),(\mathfrak{f}A,\mathfrak{f}\neg A),(\mathfrak{t}A,\mathfrak{t}\neg A)\}$ , use a '×' to indicate a closed branch.

Example: Use tableaux to prove  $(E \to D) \vdash_1 ((D \land E) \leftrightarrow E)$ 



Since all branches are closed, the negation of the conclusion is never satisfied, thus the relation always holds for all values D and E might take on.