Package 'CRABS'

October 24, 2023

Title Congruent Rate Analyses in Birth-Death Scenarios
Version 1.2.0
Encoding UTF-8
Description Features tools for exploring congruent phylogenetic birth-death models. It can construct the pulled speciation- and net-diversification rates from a reference model. Given alternative speciation- or extinction rates, it can construct new models that are congruent with the reference model. Functionality is included to sample new rate functions, and to visualize the distribution of one congruence class. See also Louca & Pennell (2020) <doi:10.1038 s41586-020-2176-1="">.</doi:10.1038>
LazyData true
Depends R (>= 3.5.0), ggplot2
Imports magrittr, deSolve, dplyr, tibble, colorspace, patchwork, latex2exp, tidyr, pracma, ape
License GPL-3
Suggests knitr, rmarkdown
RoxygenNote 7.2.3
<pre>URL https://github.com/afmagee/CRABS</pre>
NeedsCompilation no
Author Bjørn Tore Kopperud [aut, cre], Sebastian Höhna [aut], Andrew F. Magee [aut], Jérémy Andréoletti [aut]
Maintainer Bjørn Tore Kopperud <kopperud@protonmail.com></kopperud@protonmail.com>
Repository CRAN
Date/Publication 2023-10-24 10:20:07 UTC
R topics documented:
CRABS-package

2 CRABS-package

inaex		21
Index		27
	summarize.trends	25
	summarize.posterior	
	sample.rates	23
	sample.congruence.class.posterior	
	sample.congruence.class	
	sample.basic.models.joint	
	sample.basic.models	
	read.RevBayes	
	print.CRABSsets	15
	print.CRABSset	
	print.CRABSposterior	13
	print.CRABS	
	primates_ebd_treepar	12
	primates_ebd_tess	12
	primates_ebd_log	11
	primates_ebd	11
	primates	10
	plot.CRABSset	9
	plot.CRABS	
	model2df	
	joint.congruent.models	
	full.plot.regularity.thresholds	
	create.model	5

Description

Features tools for exploring congruent phylogenetic birth-death models. It can construct the pulled speciation- and net-diversification rates from a reference model. Given alternative speciation- or extinction rates, it can construct new models that are congruent with the reference model. Functionality is included to sample new rate functions, and to visualize the distribution of one congruence class. See also Louca & Pennell (2020) doi:10.1038/s4158602021761.

References

- Louca, S., & Pennell, M. W. (2020). Extant timetrees are consistent with a myriad of diversification histories. Nature, 580(7804), 502-505. https://doi.org/10.1038/s41586-020-2176-1
- Höhna, S., Kopperud, B. T., & Magee, A. F. (2022). CRABS: Congruent rate analyses in birth–death scenarios. Methods in Ecology and Evolution, 13, 2709–2718. https://doi.org/10.1111/2041-210X.13997
- Kopperud, B. T., Magee, A. F., & Höhna, S. (2023). Rapidly Changing Speciation and Extinction Rates Can Be Inferred in Spite of Nonidentifiability. Proceedings of the National Academy of Sciences 120 (7): e2208851120. https://doi.org/10.1073/pnas.2208851120

congruent.models 3

 Andréoletti, J. & Morlon, H. (2023). Exploring congruent diversification histories with flexibility and parsimony. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.14240

Author(s)

Maintainer: Bjørn Tore Kopperud < kopperud@protonmail.com>

Authors:

- Sebastian Höhna
- Andrew F. Magee
- · Jérémy Andréoletti

See Also

Useful links:

• https://github.com/afmagee/CRABS

congruent.models

Create a set of congruent models

Description

Create a set of congruent models

Usage

```
congruent.models(
  model,
  mus = NULL,
  lambdas = NULL,
  keep_ref = TRUE,
  ode_solver = TRUE)
```

Arguments

model The reference model. An object of class "CRABS"

mus A list of extinction-rate functions
lambdas A list of speciation-rate functions

keep_ref Whether or not to keep the reference model in the congruent set ode_solver Whether to use a numerical ODE solver to solve for lambda

Value

An object of class "CRABSset"

4 crabs.loglikelihood

Examples

```
data(primates_ebd)
lambda <- approxfun(primates_ebd$time, primates_ebd$lambda)
mu <- approxfun(primates_ebd$time, primates_ebd$mu)

## A reference model
times <- seq(0, max(primates_ebd$time), length.out = 500)
model <- create.model(lambda, mu, times = times)

mu1 <- lapply(c(0.5, 1.5, 3.0), function(m) function(t) m)

model_set1 <- congruent.models(model, mus = mu1)

model_set1

lambda0 <- lambda(0.0) ## Speciation rates must all be equal at the present bs <- c(0.0, 0.01, 0.02)
lambda1 <- lapply(bs, function(b) function(t) lambda0 + b*t)

model_set2 <- congruent.models(model, lambdas = lambda1)

model_set2</pre>
```

crabs.loglikelihood C

Compute likelihood

Description

Compute likelihood

Usage

```
crabs.loglikelihood(phy, model, rho = 1)
```

Arguments

phy an object of class "phylo"
model an object of class "CRABS"
rho the taxon sampling fraction

Value

the log-likelihood of the tree given the model

create.model 5

Examples

```
library(ape)
lambda <- function(t) exp(0.3*t) - 0.5*t
mu <- function(t) exp(0.3*t) - 0.2*t - 0.8

model <- create.model(lambda, mu, times = seq(0, 3, by = 0.005))
set.seed(123)
phy <- rcoal(25)

crabs.loglikelihood(phy, model)</pre>
```

create.model

Computes the congruent class, i.e., the pulled rates.

Description

Computes the congruent class, i.e., the pulled rates.

Usage

```
create.model(
  func_spec0,
  func_ext0,
  times = seq(from = 0, to = 5, by = 0.005),
  func_p_spec = NULL,
  func_p_div = NULL
)
```

Arguments

func_spec0 The speciation rate function (measured in time before present).

func_ext0 The extinction rate function (measured in time before present).

times the time knots for the piecewise-linear rate functions

func_p_spec the pulled speciation rate function

func_p_div the pulled net-diversification rate function

Value

A list of rate functions representing this congruence class.

Examples

```
lambda1 <- function(t) exp(0.3*t) - 0.5*t + 1
mu1 <- function(t) exp(0.3*t) - 0.2*t + 0.2
model1 <- create.model(lambda1, mu1, times = seq(0, 5, by = 0.005))
model1
data("primates_ebd")
lambda2 <- approxfun(primates_ebd[["time"]], primates_ebd[["lambda"]])
mu2 <- approxfun(primates_ebd[["time"]], primates_ebd[["mu"]])
model2 <- create.model(lambda2, mu2, primates_ebd[["time"]])
model2</pre>
```

full.plot.regularity.thresholds

Plots the rate functions after filtering them according to a given penalty and predefined thresholds.

Description

Plots the rate functions after filtering them according to a given penalty and predefined thresholds.

Usage

```
full.plot.regularity.thresholds(
  samples,
  filtering_fractions = c(0.01, 0.05, 0.2, 0.9),
  penalty = "L1",
  rates = c("lambda", "mu")
)
```

Arguments

samples A list of (congruent) CRABS models

filtering_fractions

A vector of thresholds for filtering, as fractions of the most regular trajectories.

penalty The choice of penalty, among "L1", "L2" and "L1_derivative" (penalty on derivative shifts).

rates A vector of rate(s) to be plotted, among "lambda" (speciation), "mu" (extinction), "delta" (net-diversification) and "epsilon" (turnover).

Value

Plots an array of rate trajectories for the chosen rates and thresholds.

joint.congruent.models 7

Examples

```
data("primates_ebd")
set.seed(123)
1 <- approxfun(primates_ebd[["time"]], primates_ebd[["lambda"]])</pre>
mu <- approxfun(primates_ebd[["time"]], primates_ebd[["mu"]])</pre>
times <- primates_ebd[["time"]]</pre>
model <- create.model(1, mu, times)</pre>
sample.joint.rates <- function(n) {</pre>
  sample.basic.models.joint(times = times,
                              p.delta = model$p.delta,
                              beta.param = c(0.5, 0.3),
                              lambda0 = 1(0.0),
                              mu0.median = mu(0.0)
}
joint.samples <- sample.congruence.class(model = model,</pre>
                                            num.samples = 100,
                                            rate.type = "joint",
                                            sample.joint.rates = sample.joint.rates)
full.plot.regularity.thresholds(joint.samples)
```

joint.congruent.models

Create a set of congruent models

Description

Create a set of congruent models

Usage

```
joint.congruent.models(model, mus, lambdas, keep_ref = TRUE)
```

Arguments

model The reference model. An object of class "CRABS"

mus A list of extinction-rate functions

lambdas A list of speciation-rate functions

keep_ref Whether or not to keep the reference model in the congruent set

Value

An object of class "CRABSset"

8 model2df

Examples

```
# This function should not have to be used externally.
# It is called in the CRABS function `sample.congruence.class` when `rate.type=="joint"`.
```

model2df

model2df

Description

model2df

Usage

```
model2df(model, gather = TRUE, rho = 1, compute.pulled.rates = TRUE)
```

Arguments

model an object of class "CRABS"

gather boolean. Whether to return wide or long data frame

rho the sampling fraction at the present. Used to calculate the pulled speciation rate

compute.pulled.rates

whether to compute the pulled rates

Value

a data frame

```
lambda <- function(t) 2.0 + sin(0.8*t)
mu <- function(t) 1.5 + exp(0.15*t)
times <- seq(from = 0, to = 4, length.out = 1000)
model <- create.model( lambda, mu, times = times)
model2df(model)</pre>
```

plot.CRABS 9

plot.CRABS

Plots the rate functions including the pulled rates.

Description

Plots the rate functions including the pulled rates.

Usage

```
## S3 method for class 'CRABS' plot(x, ...)
```

Arguments

```
x An object of class "CRABS"
... other parameters
```

Value

a patchwork object

Examples

```
data(primates_ebd)
lambda <- approxfun(primates_ebd$time, primates_ebd$lambda)
mu <- approxfun(primates_ebd$time, primates_ebd$mu)
times <- seq(0, max(primates_ebd$time), length.out = 500)
model <- create.model(lambda, mu, times = times)
plot(model)</pre>
```

plot.CRABSset

Plots the rate functions

Description

Plots the rate functions

Usage

```
## S3 method for class 'CRABSset' plot(x, ...)
```

primates primates

Arguments

x A list of congruent birth-death x

... other parameters

Value

```
a patchwork object object
```

Examples

primates

Primates phylogenetic tree

Description

The example tree taken from the RevBayes tutorial website

Usage

```
data(primates)
```

Format

An object of class phylo of length 5.

primates_ebd 11

primates_ebd

RevBayes Primates birth-death model

Description

The results of a bayesian horseshoe markov random field (HSMRF) episodic birth-death model, fitted on the primates tree. One hundred episodes. Each estimate is the posterior median. The time unit is millions of years before the present.

Usage

```
data(primates_ebd)
```

Format

An object of class tbl_df (inherits from tbl, data.frame) with 100 rows and 3 columns.

primates_ebd_log

Primates birth-death model

Description

See ?primates_ebd, but including posterior samples instead of a summary.

Usage

```
data(primates_ebd_log)
```

Format

An object of class tbl_df (inherits from tbl, data.frame) with 251 rows and 604 columns.

primates_ebd_tess

TESS Primates birth-death model

Description

The results of a bayesian episodic birth-death model in the R-package TESS, fitted on the primates tree. One hundred episodes. Each estimate is the posterior median. The time unit is millions of years before the present.

Usage

```
data(primates_ebd_tess)
```

Format

An object of class tbl_df (inherits from tbl, data.frame) with 100 rows and 3 columns.

primates_ebd_treepar TreePar Primates birth-death model

Description

The results of a birth-death model in the R-package TreePar, fitted on the primates tree. The estimated model has two epochs, that are maximum-likelihood estimates. The time unit is millions of years before the present.

Usage

```
data(primates_ebd_treepar)
```

Format

An object of class tbl_df (inherits from tbl, data.frame) with 100 rows and 3 columns.

print.CRABS 13

print.CRABS

Print method for CRABS object

Description

Print method for CRABS object

Usage

```
## S3 method for class 'CRABS'
print(x, ...)
```

Arguments

x and object of class CRABS... other arguments

Value

nothing

Examples

```
data(primates_ebd)
lambda <- approxfun(primates_ebd$time, primates_ebd$lambda)
mu <- approxfun(primates_ebd$time, primates_ebd$mu)
times <- seq(0, max(primates_ebd$time), length.out = 500)
model <- create.model(lambda, mu, times = times)
print(model)</pre>
```

```
print.CRABSposterior Title
```

Description

Title

Usage

```
## S3 method for class 'CRABSposterior' print(x, ...)
```

14 print.CRABSset

Arguments

```
x a list of CRABS objects... additional parameters
```

Value

nothing

Examples

```
data(primates_ebd_log)
posterior <- read.RevBayes(primates_ebd_log, max_t = 65, n_samples = 20)
print(posterior)</pre>
```

print.CRABSset

Print method for CRABSset object

Description

Print method for CRABSset object

Usage

```
## S3 method for class 'CRABSset' print(x, ...)
```

Arguments

x an object of class CRABSset

... other arguments

Value

nothing

print.CRABSsets 15

```
models <- congruent.models(model, mus = mus)
print(models)</pre>
```

print.CRABSsets

print.CRABSsets

Description

```
print.CRABSsets
```

Usage

```
## S3 method for class 'CRABSsets'
print(x, ...)
```

Arguments

x a list of (congruent) CRABS sets

... additional parameters

Value

nothing

16 sample.basic.models

read.RevBayes

read RevBayes log file

Description

read RevBayes log file

Usage

```
read.RevBayes(x, n_times, max_t = 100, n_samples = 20, summary_type = "none",
extinction_prefix = "extinction_rate.", speciation_prefix = "speciation_rate.")
```

Arguments

x path to log, or data frame n_{times} number of time knots

max_t tree height

n_samples first n posterior samples

summary_type either "none" for all the posterior samples, or "mean" or "median" for the poste-

rior mean/median

extinction_prefix

the prefix string for the extinction rate column names. Must be unique

speciation_prefix

the prefix string for the speciation rate column names. Must be unique

Value

a set of CRABS models, each being a sample in the posterior

Examples

```
data(primates_ebd_log)
posterior <- read.RevBayes(primates_ebd_log, n_times = 500, max_t = 65, n_samples = 20)</pre>
```

sample.basic.models

Samples simple increase/decrease models through time with noise.

Description

Samples simple increase/decrease models through time with noise.

sample.basic.models 17

Usage

```
sample.basic.models(
   times,
   rate0 = NULL,
   model = "exponential",
   direction = "decrease",
   noisy = TRUE,
   MRF.type = "HSMRF",
   monotonic = FALSE,
   fc.mean = 3,
   rate0.median = 0.1,
   rate0.logsd = 1.17481,
   mrf.sd.scale = 1,
   min.rate = 0,
   max.rate = 10
)
```

Arguments

times	the time knots
rate0	The rate at present, otherwise drawn randomly.
model	"MRF" for pure MRF model, otherwise MRF has a trend of type "exponential", "linear", or "episodic <n>"</n>
direction	"increase" or "decrease" (measured in past to present)
noisy	If FALSE, no MRF noise is added to the trajectory
MRF.type	"HSMRF" or "GMRF", type for stochastic noise.
monotonic	Whether the curve should be forced to always move in one direction.
fc.mean	Determines the average amount of change when drawing from the model.
rate0.median	When not specified, rate at present is drawn from a lognormal distribution with this median.
rate0.logsd	When not specified, rate at present is drawn from a lognormal distribution with this sd
mrf.sd.scale	scale the sd of the mrf process up or down. defaults to 1.0
min.rate	The minimum rate (rescaling fone after after drawing rates).
max.rate	The maximum rate (rescaling fone after after drawing rates).

Value

Speciation or extinction rate at a number of timepoints.

```
data("primates_ebd")

1 <- approxfun(primates_ebd[["time"]], primates_ebd[["lambda"]])</pre>
```

sample.basic.models.joint

Jointly samples speciation and extinction trajectories through time, with noise.

Description

Jointly samples speciation and extinction trajectories through time, with noise.

Usage

```
sample.basic.models.joint(
  times,
 p.delta,
 lambda0,
 mu0 = NULL,
 MRF.type = "HSMRF",
 beta.param = c(0.3, 0.3),
 mu0.median = 0.1,
 mu0.logsd = 1.17481,
 mrf.sd.scale = 1,
 min.lambda = 0,
 min.mu = 0,
 max.lambda = 10,
 max.mu = 10,
 min.p = -0.05,
 max.p = 1.05
)
```

Arguments

times	the time knots
p.delta	The The pulled diversification rate function (measured in time before present).
lambda0	The speciation rate at present.
mu0	The extinction rate at present, otherwise drawn randomly.
MRF.type	"HSMRF" or "GMRF", type for stochastic noise.
beta.param	Parameters of the Beta distribution used for
mu0.median	When not specified, extinction rate at present is drawn from a lognormal distribution with this median.
mu0.logsd	When not specified, extinction rate at present is drawn from a lognormal distribution with this sd
mrf.sd.scale	scale the sd of the mrf process up or down. defaults to 1.0
min.lambda	The minimum speciation rate (rescaling done after after drawing rates).
min.mu	The minimum extinction rate (rescaling done after after drawing rates).
max.lambda	The maximum speciation rate (rescaling done after after drawing rates).
max.mu	The maximum extinction rate (rescaling done after after drawing rates).
min.p	The lower bound of parameter p's trajectory.
max.p	The upper bound of parameter p's trajectory.

Value

Speciation or extinction rate at a number of timepoints.

```
data("primates_ebd")
1 <- approxfun(primates_ebd[["time"]], primates_ebd[["lambda"]])</pre>
mu <- approxfun(primates_ebd[["time"]], primates_ebd[["mu"]])</pre>
times <- primates_ebd[["time"]]</pre>
model <- create.model(1, mu, times)</pre>
sample.joint.rates <- function(n) {</pre>
  sample.basic.models.joint(times = times,
                              p.delta = model$p.delta,
                              beta.param = c(0.5, 0.3),
                              lambda0 = 1(0.0),
                              mu0.median = mu(0.0))
}
joint.samples <- sample.congruence.class(model = model,</pre>
                                            num.samples = 40,
                                            rate.type = "joint",
                                            sample.joint.rates = sample.joint.rates)
joint.samples
```

```
sample.congruence.class
```

Stochastic exploration of congruent models.

Description

Stochastic exploration of congruent models.

Usage

```
sample.congruence.class(
  model,
  num.samples,
  rate.type = "both",
  sample.speciation.rates = NULL,
  sample.extinction.rates = NULL,
  sample.joint.rates = NULL
)
```

Arguments

Value

A named list with congruent rates.

```
data("primates_ebd")

1 <- approxfun(primates_ebd[["time"]], primates_ebd[["lambda"]])
mu <- approxfun(primates_ebd[["time"]], primates_ebd[["mu"]])
times <- primates_ebd[["time"]]

model <- create.model(1, mu, primates_ebd[["time"]])

# Sampling extinction rates</pre>
```

```
extinction_rate_samples <- function(){</pre>
   res <- sample.basic.models(times = times,</pre>
                                rate0 = 0.05,
                                model = "MRF",
                                MRF.type = "HSMRF",
                                fc.mean = 2.0,
                                min.rate = 0.0,
                                max.rate = 1.0)
   return(res)
}
samples <- sample.congruence.class(model,</pre>
                                     num.samples = 8,
                                     rate.type = "extinction",
                                     sample.extinction.rates = extinction_rate_samples)
samples
# Jointly sampling speciation and extinction rates
sample.joint.rates <- function(n) {</pre>
  sample.basic.models.joint(times = times,
                              p.delta = model$p.delta,
                              beta.param = c(0.5, 0.3),
                              lambda0 = 1(0.0),
                              mu0.median = mu(0.0)
}
joint.samples <- sample.congruence.class(model = model,</pre>
                                            num.samples = 40,
                                            rate.type = "joint",
                                            sample.joint.rates = sample.joint.rates)
joint.samples
```

```
sample.congruence.class.posterior
```

Stochastic exploration of congruent models for all samples in the posterior

Description

This function takes a posterior sample as input: a list of CRABS objects. It will then iterate over the samples, and for each posterior sample it will sample from the posterior class. It will sample using the sample.basic.models function, and all additional parameters are passed to sample.basic.models.

Usage

```
sample.congruence.class.posterior(
  posterior,
  num.samples,
  rate.type = "extinction",
  mu0.equal = FALSE,
  rate0 = NULL,
  ...
)
```

Arguments

```
a list of CRABS model objects
posterior
                  The number of samples to be drawn
num.samples
                  either "extinction", "speciation", "both" or "joint"
rate.type
mu0.equal
                  whether to propose alternative mu starting at mu0 equal to the posterior sample.
                  default to FALSE
rate0
                  rate0 allows the user to fix the extinction rate at the present to a single value.
                  defaults to NULL, for drawing it randomly
                  Arguments passed on to sample.basic.models
                  times the time knots
                  model "MRF" for pure MRF model, otherwise MRF has a trend of type "expo-
                      nential", "linear", or "episodic<n>"
                  direction "increase" or "decrease" (measured in past to present)
                  noisy If FALSE, no MRF noise is added to the trajectory
                  MRF. type "HSMRF" or "GMRF", type for stochastic noise.
                  monotonic Whether the curve should be forced to always move in one direc-
                      tion.
                  fc.mean Determines the average amount of change when drawing from the
                       model.
                  rate0.median When not specified, rate at present is drawn from a lognormal
                       distribution with this median.
                  rate0.logsd When not specified, rate at present is drawn from a lognormal
                       distribution with this sd
                  mrf.sd.scale scale the sd of the mrf process up or down. defaults to 1.0
                  min.rate The minimum rate (rescaling fone after after drawing rates).
                  max.rate The maximum rate (rescaling fone after after drawing rates).
```

Value

A named list with congruent rates.

sample.rates 23

Examples

sample.rates

Sample custom functions through time.

Description

Sample custom functions through time.

Usage

```
sample.rates(
   times,
   lambda0 = NULL,
   rsample = NULL,
   rsample0 = NULL,
   autocorrelated = FALSE
)
```

Arguments

times the time knots

lambda0 The rate at present

rsample Function to sample next rate

rsample0 Function to sample rate at present

autocorrelated Should rates be autocorrelated?

Value

Sampled rate vector

24 summarize.posterior

Examples

```
data("primates_ebd")

1 <- approxfun(primates_ebd[["time"]], primates_ebd[["lambda"]])
mu <- approxfun(primates_ebd[["time"]], primates_ebd[["mu"]])
times <- primates_ebd[["time"]]

model <- create.model(1, mu, times)

rsample <- function(n) runif(n, min = 0.0, max = 0.9)
mu <- sample.rates(times, 0.5, rsample = rsample)

model_set <- congruent.models(model, mus = mu)
model_set</pre>
```

summarize.posterior

Summarize trends in the posterior

Description

Summarize trends in the posterior

Usage

```
summarize.posterior(posterior, threshold = 0.01, rate_name = "lambda",
return_data = FALSE, rm_singleton = FALSE, per_time = TRUE,
window_size = 1, relative_deltas = FALSE)
```

Arguments

posterior	a list of CRABS objects, each one representing a sample from the posterior	
threshold	a threshold for when $\Delta \lambda i$ should be interpreted as decreasing, flat, or increasing	
rate_name	either "lambda" or "mu" or "delta"	
return_data	instead of plots, return the plotting dataframes	
rm_singleton	whether or not to remove singletons. Pass starting at present, going towards ancient	
per_time	whether to compute $\Delta \lambda i$ that are in units of per time, i.e. divide by Δt	
window_size	the window size "k" in $\Delta \lambda i = \lambda i - \lambda (i-k)$	
relative_deltas		
	whether to divide $\Delta \lambda i$ by the local lambda value	

Value

```
a ggplot object
```

summarize.trends 25

Examples

summarize.trends

Summarize trends in the congruence class

Description

Summarize trends in the congruence class

Usage

```
summarize.trends(model_set, threshold = 0.005, rate_name = "lambda",
window_size = 1, method = "neighbour", per_time = TRUE, return_data = FALSE,
rm_singleton = FALSE, relative_deltas = FALSE, group_names = NULL)
```

Arguments

model_set	an object of type "CRABSset"	
threshold	a threshold for when $\Delta \lambda i$ should be interpreted as decreasing, flat, or increasing	
rate_name	either "lambda" or "mu" or "delta"	
window_size	the window size "k" in $\Delta \lambda i = \lambda i - \lambda (i-k)$	
method	default to "neighbour", i.e. to compare rate values at neighbouring time points.	
per_time	whether to compute $\Delta \lambda i$ that are in units of per time, i.e. divide by Δt	
return_data	instead of plots, return the plotting dataframes	
rm_singleton	whether or not to remove singletons. Pass starting at present, going towards ancient	
relative_deltas		
	whether to divide $\Delta \lambda i$ by the local lambda value	
group_names	a vector of prefixes, if you want to group the models in a facet. For example 'c("reference", "model")'	

Value

a patchwork object

26 summarize.trends

Index

```
* datasets
    primates, 10
    primates_ebd, 11
    primates_ebd_log, 11
    primates_ebd_tess, 12
    primates_ebd_treepar, 12
congruent.models, 3
CRABS (CRABS-package), 2
CRABS-package, 2
crabs.loglikelihood,4
create.model, 5
full.plot.regularity.thresholds, 6
{\tt joint.congruent.models,7}
model2df, 8
plot.CRABS, 9
plot.CRABSset, 9
primates, 10
primates_ebd, 11
primates_ebd_log, 11
primates_ebd_tess, 12
primates_ebd_treepar, 12
print.CRABS, 13
print.CRABSposterior, 13
print.CRABSset, 14
print.CRABSsets, 15
read.RevBayes, 16
sample.basic.models, 16, 21, 22
{\tt sample.basic.models.joint, 18}
sample.congruence.class, 20
sample.congruence.class.posterior, 21
sample.rates, 23
summarize.posterior, 24
summarize.trends, 25
```