Pleiotropy testing identifies genetic variants with pleiotropic evidence lipid traits

Noah Lorincz-Comi, Xiaofeng Zhu, Ph.D., Gen Li, Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University njl96@case.edu

INTRO

 We tested for bi-directional causal relationships between four lipid traits and used causal estimates to perform genome-wide pleiotropy testing to detect novel variants with potential pleiotropy evidence.

METHODS

- 1. Data
- ~1.3M EUR^[1] (AFR, EAS, SAS, HIS in process)
- GWAS meta-analysis summary statistics
- 2. Phenotypes
- HDL, LDL, log triglycerides (logTG), total cholesterol (TC)
- 3. Tests
- Bi-directional Mendelian Randomization for causal effects using selected instruments (each lipid-lipid pair)
- Pleiotropy T-test (genome-wide)
- CPASSOC: multi-trait SNP-outcome metaanalysis (genome-wide)

Table 1: Select lipid-lipid pair causal estimates

Exposure	Outcome	Est (P)	\boldsymbol{n}	Prop. pleio.
HDL	LDL	-0.01 (0.524)	1682	0.22
HDL	logTG	-0.61 (<0.001)	1682	0.35
LDL	HDL	-0.03 (<0.001)	1277	0.28
LDL	logTG	0.11 (<0.001)	1277	0.32
logTG	HDL	-0.78 (<0.001)	1425	0.32
logTG	LDL	0.23 (<0.001)	1425	0.28

Table 2: Novel loci identified by pleiotropy testing

Signals

Lipid	GWAS	Novel	Novel loci
HDL	1675	105	53
LDL	1264	131	64
logTG	1417	192	66
TC	1568	336	132

DISCUSSION

 MR pleiotropy testing can identify novel SNP associations with lipids undetected by standard GWAS. These SNPs potentially have pleiotropic effects on respective exposure and outcome.

Figure 1: HDL GWAS & Pleiotropy testing Manhattan Plot

- HDL GWAS
- LDL → HDL Pleiotropy test
- logTG → HDL Pleiotropy test
- TC → HDL Pleiotropy test

Figure 2: CPASSOC, Pleiotropy QQ-Plot

Table 3: Genes in novel loci and their historically associated traits

Lipid	Genes in novel loci	Top 3 most common gene-associated traits in GWAS Catalog (ref. counts)
HDL	44	Blood protein levels (602), BMI (12), coronary artery disease (11)
LDL	74	White blood cell count (19), triglycerides (17), HDL (16)
logTG	71	Platelet count (24), height (18), mean corpuscular hemoglobin (18)
TC	178	Serum metabolite levels (32), red cell distribution (21), triglycerides (19)

Genes in novel loci are a priori plausibly associated with HDL, LDL, logTG, or TC

Mendelian Randomization

g is an n-vector of genetic instruments; X is an exposure; Y is an outcome.

Assume $\Gamma = \gamma \beta$. If $\Gamma_i \neq \gamma_i \beta$, instrument i is pleiotropic. Pleiotropy is a violation of an MR assumption but is of scientific interest.

Pleiotropy t-test

Pleiotropy: A SNP is associated with multiple traits. (e.g) Let $\phi(\text{HDL}, \text{LDL})$ be the causal estimate of HDL on LDL. Pleiotropy $H_{0(\text{HDL},\text{LDL})t}$:

$$\Gamma_t - \gamma_t \phi(\text{HDL, LDL}) = 0$$

for t = 1, ..., m GWAS SNPs. We test H_0 genome-wide using a t-test. If we reject H_{0t} , SNP t is potentially pleiotropic.

CPASSOC

Let $(\beta_1, ..., \beta_4)'$ be the true effects of one SNP on HDL, LDL, logTG, and TC, respectively. CPASSOC tests $H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$ and is more powerful than a single trait analysis.

Acronyms

MR: Mendelian Randomization logTG: log triglycerides
TC: total cholesterol

Funding

NLC was supported by T32HL007567 from the National Heart, Lung, and Blood Institute.

References

[1]: PMID 34887591 (Graham et al., 2021)