```
In [51]:
```

```
#importing the libraries
import pandas as pd
import numpy as np
from sklearn.decomposition import PCA # for dementionality reduction
```

In [52]:

```
# Reading dataset

df_train = pd.read_csv("train.csv")

df_train.shape

df_test = pd.read_csv('test.csv')
```

In [53]:

```
df_train.head(3)
```

Out[53]:

	ID	у	X0	X1	X2	Х3	X4	X5	X6	X8	 X375	X376	X377	X378	X379	X380	Х3
0	0	130.81	k	٧	at	а	d	u	j	0	 0	0	1	0	0	0	
1	6	88.53	k	t	av	е	d	у	ı	0	 1	0	0	0	0	0	
2	7	76.26	az	W	n	С	d	Х	j	х	 0	0	0	0	0	0	

3 rows × 378 columns

```
→
```

In [54]:

```
# Collecting Y column values in the array
y_train = df_train['y'].values
```

In [55]:

```
y_train
# this we will use to learn the prediction output
```

Out[55]:

```
array([130.81, 88.53, 76.26, ..., 109.22, 87.48, 110.85])
```

```
In [56]:
```

```
cols = [c for c in df train.columns if 'X' in c]
print('Number of features: {}'.format(len(cols)))
print('Feature types:')
df_train[cols].dtypes.value_counts()
Number of features: 376
Feature types:
Out[56]:
int64
          368
object
            8
dtype: int64
In [57]:
# Understanding the data types by iterating all the columns having X in the name of the Col
counts = [[], [], []]
for c in cols:
    typ = df_train[c].dtype
    uniq = len(np.unique(df_train[c]))
    if uniq == 1:
        counts[0].append(c)
    elif uniq == 2 and typ == np.int64:
        counts[1].append(c)
    else:
        counts[2].append(c)
print('Constant features: {} Binary features: {} Categorical features: {}\n'.format(*[len(constant features: {}\n'.format(*]))
print('Constant features:', counts[0])
print('Categorical features:', counts[2])
Constant features: 12 Binary features: 356 Categorical features: 8
Constant features: ['X11', 'X93', 'X107', 'X233', 'X235', 'X268', 'X289', 'X
290', 'X293', 'X297', 'X330', 'X347']
Categorical features: ['X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8']
In [58]:
# removing the Id and Y data set from train and test data set
Columns_new = list(set(df_train.columns) - set(['ID','y']))
In [59]:
y_train = df_train['y'].values
id_test = df_test['ID'].values
x_train = df_train[Columns_new]
x test = df test[Columns new]
```

In [60]:

```
#Check for null and unique values for test and train sets.
def CHK(df):
    if df.isnull().any().any():
        print("no missing values")
    else:
        print("no missing values")
CHK(x_train)
CHK(x_test)
```

no missing values no missing values

In [61]:

```
##
#If for any column(s), the variance is equal to zero, then you need to remove those variabl

for column in Columns_new:
    cardinality = len(np.unique(x_train[column]))
    if cardinality == 1:
        x_train.drop(column, axis=1) # Column with only one
    # value is useless so we drop it
    x_test.drop(column, axis=1)
    if cardinality > 2: # Column is categorical
        mapper = lambda x: sum([ord(digit) for digit in x])
        x_train[column] = x_train[column].apply(mapper)
        x_test[column] = x_test[column].apply(mapper)
    x_train.head()
```

C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:12: Setting
WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

if sys.path[0] == '':

C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:13: Setting
WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

del sys.path[0]

Out[61]:

	X361	X374	X224	X244	X10	X205	X348	X240	X261	X263	 X34	X300	X168	X238
0	1	0	0	0	0	0	0	0	0	1	 0	0	0	0
1	1	0	0	0	0	1	1	0	0	1	 0	0	0	1
2	1	0	1	1	0	1	1	0	0	0	 0	0	0	0
3	1	0	0	1	0	1	1	0	0	0	 0	0	0	0
4	1	0	0	0	0	1	1	0	0	0	 0	0	0	0

5 rows × 376 columns

In [62]:

```
x_train[cols].dtypes.value_counts()
#Perform dimensionality reduction
# Linear dimensionality reduction using Singular Value Decomposition of
# the data to project it to a lower dimensional space.
n_comp = 12
pca = PCA(n_components=n_comp, random_state=20)
pca2_results_train = pca.fit_transform(x_train)
pca2_results_test = pca.transform(x_test)
```

In [63]:

```
#training Xaboast
import xgboost as xgb
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test split
x_train, x_valid, y_train, y_valid = train_test_split(pca2_results_train,y_train, test_size
d_train = xgb.DMatrix(x_train, label=y_train)
d_valid = xgb.DMatrix(x_valid, label=y_valid)
\#d test = xqb.DMatrix(x test)
d_test = xgb.DMatrix(pca2_results_test)
params = \{\}
params['objective'] = 'reg:linear'
params['eta'] = 0.02
params['max_depth'] = 4
def xgb_r2_score(preds, dtrain):
    labels = dtrain.get_label()
    return 'r2', r2_score(labels, preds)
watchlist = [(d_train, 'train'), (d_valid, 'valid')]
clf = xgb.train(params, d_train,1000, watchlist, early_stopping_rounds=50,
                feval=xgb_r2_score, maximize=True, verbose_eval=10)
# Predict your test_df values using XGBoost.
p_test = clf.predict(d_test)
sub = pd.DataFrame()
sub['ID'] = id_test
sub['y'] = p_test
sub.to_csv('xgb.csv', index=False)
sub.head()
[15:43:43] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_
1.1.0/src/objective/regression_obj.cu:170: reg:linear is now deprecated in f
avor of reg:squarederror.
```

```
train-rmse:99.04150
                                valid-rmse:98.70239
                                                         train-r2:-59.47071
valid-r2:-61.96931
Multiple eval metrics have been passed: 'valid-r2' will be used for early st
opping.
Will train until valid-r2 hasn't improved in 50 rounds.
       train-rmse:81.18310
                                valid-rmse:80.84457
                                                         train-r2:-39.62955
[10]
valid-r2:-41.24502
       train-rmse:66.63157
                                valid-rmse:66.31034
                                                         train-r2:-26.36975
[20]
valid-r2:-27.42080
[30]
                                valid-rmse:54.48565
                                                         train-r2:-17.50624
        train-rmse:54.79031
valid-r2:-18.18837
       train-rmse:45.17240
                                valid-rmse:44.87848
                                                         train-r2:-11.57931
[40]
valid-r2:-12.01817
[50]
       train-rmse:37.38147
                                valid-rmse:37.10155
                                                         train-r2:-7.61437
valid-r2:-7.89729
                                valid-rmse:30.81077
                                                         train-r2:-4.95669
[60]
        train-rmse:31.08475
valid-r2:-5.13591
                                                         train-r2:-3.17446
                                valid-rmse:25.75129
[70]
        train-rmse:26.02225
```

valid-r2:-3.28620		
[80] train-rmse:21.97581	valid-rmse:21.70392	train-r2:-1.97715
valid-r2:-2.04474 [90] train-rmse:18.76038	valid-rmse:18.51956	train-r2:-1.16967
valid-r2:-1.21684		
[100] train-rmse:16.23822 valid-r2:-0.66101	valid-rmse:16.03058	train-r2:-0.62550
[110] train-rmse:14.28560 valid-r2:-0.28898	valid-rmse:14.12169	train-r2:-0.25808
[120] train-rmse:12.79751 valid-r2:-0.03994	valid-rmse:12.68434	train-r2:-0.00963
[130] train-rmse:11.66980 valid-r2:0.12748	valid-rmse:11.61849	train-r2:0.16047
[140] train-rmse:10.82814	valid-rmse:10.84801	train-r2:0.27720
valid-r2:0.23937 [150] train-rmse:10.19603	valid-rmse:10.29407	train-r2:0.35913
valid-r2:0.31507 [160] train-rmse:9.74740	valid-rmse:9.91110	train-r2:0.41428
valid-r2:0.36508		
[170] train-rmse:9.42132 valid-r2:0.39916	valid-rmse:9.64146	train-r2:0.45282
[180] train-rmse:9.17672 valid-r2:0.42225	valid-rmse:9.45435	train-r2:0.48086
[190] train-rmse:8.98255	valid-rmse:9.33140	train-r2:0.50260
valid-r2:0.43718 [200] train-rmse:8.84733	valid-rmse:9.24928	train-r2:0.51746
valid-r2:0.44705 [210] train-rmse:8.74914	valid-rmse:9.19070	train-r2:0.52811
valid-r2:0.45403		
[220] train-rmse:8.67841 valid-r2:0.45894	valid-rmse:9.14922	train-r2:0.53571
[230] train-rmse:8.61728 valid-r2:0.46290	valid-rmse:9.11569	train-r2:0.54223
[240] train-rmse:8.57079	valid-rmse:9.09691	train-r2:0.54715
valid-r2:0.46511 [250] train-rmse:8.52579	valid-rmse:9.08043	train-r2:0.55190
valid-r2:0.46705 [260] train-rmse:8.49246	valid-rmse:9.06914	train-r2:0.55539
valid-r2:0.46837		
[270] train-rmse:8.46504 valid-r2:0.46975	valid-rmse:9.05737	train-r2:0.55826
[280] train-rmse:8.44270 valid-r2:0.47029	valid-rmse:9.05279	train-r2:0.56059
[290] train-rmse:8.41492	valid-rmse:9.04791	train-r2:0.56347
valid-r2:0.47086 [300] train-rmse:8.38943	valid-rmse:9.04598	train-r2:0.56611
valid-r2:0.47109 [310] train-rmse:8.36044	valid-rmse:9.04093	train-r2:0.56911
valid-r2:0.47168		
[320] train-rmse:8.33151 valid-r2:0.47216	valid-rmse:9.03678	train-r2:0.57208
[330] train-rmse:8.30380 valid-r2:0.47269	valid-rmse:9.03222	train-r2:0.57493
[340] train-rmse:8.27550	valid-rmse:9.03083	train-r2:0.57782
valid-r2:0.47286 [350] train-rmse:8.25459	valid-rmse:9.02774	train-r2:0.57995
valid-r2:0.47322 [360] train-rmse:8.22770	valid-rmse:9.02454	train-r2:0.58268
valid-r2:0.47359		
[370] train-rmse:8.20476 valid-r2:0.47385	valid-rmse:9.02231	train-r2:0.58500

120/2020	110j00t_1 00py1 00	pyter Notebook
[380] train-rmse:8.17463 valid-r2:0.47399	valid-rmse:9.02108	train-r2:0.58805
[390] train-rmse:8.14605	valid-rmse:9.01614	train-r2:0.59092
valid-r2:0.47457 [400] train-rmse:8.11499	valid-rmse:9.01335	train-r2:0.59404
valid-r2:0.47490 [410] train-rmse:8.08766	valid-rmse:9.01116	train-r2:0.59677
valid-r2:0.47515 [420] train-rmse:8.06851	valid-rmse:9.01002	train-r2:0.59867
valid-r2:0.47528		
[430] train-rmse:8.04146 valid-r2:0.47523	valid-rmse:9.01051	train-r2:0.60136
[440] train-rmse:8.01826 valid-r2:0.47547	valid-rmse:9.00841	train-r2:0.60366
[450] train-rmse:7.99330 valid-r2:0.47591	valid-rmse:9.00465	train-r2:0.60612
[460] train-rmse:7.96281	valid-rmse:9.00382	train-r2:0.60912
valid-r2:0.47601 [470] train-rmse:7.92897	valid-rmse:9.00038	train-r2:0.61244
valid-r2:0.47641 [480] train-rmse:7.90437	valid-rmse:9.00123	train-r2:0.61484
valid-r2:0.47631 [490] train-rmse:7.87299	valid-rmse:8.99948	train-r2:0.61789
valid-r2:0.47651		
[500] train-rmse:7.85183 valid-r2:0.47659	valid-rmse:8.99876	train-r2:0.61994
[510] train-rmse:7.82470 valid-r2:0.47663	valid-rmse:8.99847	train-r2:0.62256
[520] train-rmse:7.80249 valid-r2:0.47666	valid-rmse:8.99821	train-r2:0.62470
[530] train-rmse:7.78171	valid-rmse:8.99747	train-r2:0.62670
valid-r2:0.47674 [540] train-rmse:7.76155	valid-rmse:8.99624	train-r2:0.62863
valid-r2:0.47689 [550] train-rmse:7.74025	valid-rmse:8.99394	train-r2:0.63067
valid-r2:0.47715 [560] train-rmse:7.71530	valid-rmse:8.99372	train-r2:0.63304
valid-r2:0.47718		
[570] train-rmse:7.69898 valid-r2:0.47711	valid-rmse:8.99432	train-r2:0.63459
[580] train-rmse:7.68065 valid-r2:0.47741	valid-rmse:8.99173	train-r2:0.63633
[590] train-rmse:7.66357 valid-r2:0.47755	valid-rmse:8.99054	train-r2:0.63795
[600] train-rmse:7.63724	valid-rmse:8.99124	train-r2:0.64043
valid-r2:0.47747 [610] train-rmse:7.62298	valid-rmse:8.99168	train-r2:0.64177
valid-r2:0.47742 [620] train-rmse:7.60773	valid-rmse:8.99306	train-r2:0.64320
valid-r2:0.47726 [630] train-rmse:7.59036	valid-rmse:8.99265	train-r2:0.64483
valid-r2:0.47730		
[640] train-rmse:7.57303 valid-r2:0.47741	valid-rmse:8.99169	train-r2:0.64645
Stopping. Best iteration: [593] train-rmse:7.65176	valid-rmse:8.98975	train-r2:0.63906
valid-r2:0.47764		

[15:43:45] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_ 1.1.0/src/objective/regression_obj.cu:170: reg:linear is now deprecated in f avor of reg:squarederror.

Out[63]:

У	ID	
79.049286	1	0
96.350510	2	1
81.374931	3	2
77.107979	4	3
111.473167	5	4

In []: