Maximizing Revenue of Golf Courses

Bryan Whiting

December 8, 2014

- Introduction
- Model
 - Choice of Model
 - Assumptions & Inerpretation
 - Prior Values
- Why is This Model Good?
 - Demonstration of convergence
 - Goodness of Fit
- Results
- Conclusion

Motivating Example

A golf course wants to improve the profitability of the company

- Golf courses & tee times
- 0-4 players per tee time
- Price to charge is usually a "gut" decision

How can we maximize revenue?

What Affects Price?

$$Revenue = Price * Quantity$$

With $\pi(\theta|R)$

- What revenue can we expect at certain times?
- What tee times are "good" and which aren't?
- How does changing price affect Quantity and Revenue?

Data

- 48765 rounds
- 2056 days
- 86 tee times
- Not all tee times are played every day
- 6:20am till 8:30pm

Data Matrix

n_i	TTime
15.00	6.20
124.00	6.30
:	:
638.00	9.20
763.00	9.30
:	:
693.00	15.10
604.00	15.20
660.00	15.30
:	:
63.00	19.40
45.00	19.50
16.00	20.00

Factors in Model

- θ_i mean of each tee time
- \bullet σ^2 between-tee-time variance, variance of pop'n of tee times
- \bullet au^2 within-tee-time variance, variance of true revenue per time

Model

$$Y_{ij} \sim N(\theta_i, \sigma^2)$$
 (1)

$$\theta_i \sim N(\theta_{i-1}, \tau^2) \tag{2}$$

$$\theta_0 \sim N(m, s^2) \tag{3}$$

$$\sigma^2 \sim IG(a_{\sigma}, b_{\sigma}) \tag{4}$$

$$\tau^2 \sim IG(a_\tau, b_\tau) \tag{5}$$

With posterior distribution:

$$\pi(\underline{\theta}, \sigma^2, \tau^2 | \underline{y}) \propto f(\underline{y} | \underline{\theta}, \sigma^2) \pi(\theta_i | \theta_{i-1}, \tau^2) \pi(\tau^2) \pi(\sigma^2) \pi(\theta_0)$$
 (6)

Complete Conditionals

Complete conditional of θ_i :

$$[\theta_i] \propto f(\underline{y}|\underline{\theta}, \sigma^2)\pi(\theta_i|\theta_{i-1}, \tau^2)$$
 (7)

$$\propto \prod_{i=1}^k \prod_{n=1}^{n_i} N_{y_{ij}}(\theta_i, \sigma^2) \prod_{i=1}^k N_{\theta_i}(\theta_{i-1}, \tau^2)$$
(8)

$$\propto \prod_{j=1}^{n_i} exp \frac{(y_{ij} - \theta_i)^2}{-2\sigma^2} \exp \frac{(\theta_i - \theta_{i-1})^2}{-2\tau^2} \exp \frac{(\theta_{i+1} - \theta_i)^2}{-2\tau^2} \dots$$
(9)

$$[\theta_i] \propto N(\frac{\sigma^2(\theta_{i-1} + \theta_{i+1}) + \bar{y}n_i\tau^2}{2\sigma^2 + \tau^2n_i}, \frac{\tau^2\sigma^2}{2\sigma^2 + \tau^2n_i})$$
(10)

Complete Conditionals (Cont.)

Complete conditional of σ^2 , τ^2 :

$$[\sigma^2] \propto IG(a_{\sigma} + \frac{1}{2}\sum_{i=1}^k n_i, [\frac{1}{b_{\sigma}} + \frac{1}{2}\sum_{i=1}^k \sum_{i=1}^{n_i} (y_{ij} - \theta_i)^2]^{-1})$$
 (11)

$$[\tau^2] \propto IG(a_{\tau} + \frac{k}{2}, [\frac{1}{b_{\tau}} + \frac{1}{2} \sum_{i=1}^{k} (\theta_i - \theta_{i-1})^2]^{-1})$$
 (12)

(13)

Assumptions in Model

Assumptions in this model:

- $y_{ij} \sim N(\theta_i, \sigma^2)$ implies tee times are similar (no other effects such as d.o.w,month,weather,etc.)
- τ^2 and σ^2 are independent.
- θ_i and θ_{i-1} are correlated.

Model

Hyperparameter Settings

- $a_{\sigma} = 50$
- $b_{\tau} = 5$
- $a_{\sigma} = 15$
- $b_{\tau} = 10$
- m = 60
- $s^2 = 5$

Hyper Parameters

Figure: Determining prior values

MCMC Settings

- niter = 10000
- nburn = 500

Trace Plots

Trace plots for a sample of θ s

Trace Plots (Cont.)

Trace Plot for σ^2 and τ^2 .

Raftery Lewis Dependence Factors

Seek dependence factors < 5.

Geweke Diagnostic

 H_0 : Mean of first 10% = mean of last 50%

Geweke Diagnostic P-values: Ho: 1st 10% = Last 50%

AutoCorrelation

GoF: Posterior Predictive Checking

Figure: Posterior Predictive Checking

Covariance and Correlation Plots

Figure: Covariance and Correlation Plots

Summary Stats

•
$$E\sigma^2 = 100.62$$
, $V\sigma^2 = 8488.427$

$$\bullet$$
 E $au^2 = 6827.491$, V $au^2 = 38561.05$

Posterior Predictive Means

What we expect the average tee times per day to be:

Posterior Predictive for a Tee Time

Given the process:

Optimizing Revenue:

Probability of Losing Money given a certain cost:

Optimizing Revenue:

What's the best revenue for 11:10am? \$120

Optimizing Revenue:

What's the best revenue for 11:10am? \$120

Daily Expected Revenue for theta40

Conclusions

- Successful model
- Certain tee times are more stable than others
- Some tee times are not profitable

Thank You

Sources

 http://www.people.fas.harvard.edu/~plam/teaching/ methods/convergence/convergence_print.pdf

