MLDS 2018 Spring HW4-2 - Deep Q Learning

2018/6/8 ntu.mldsta@gmail.com

Notification

- If you want to present in class, please start your hw4
ASAP

Time Schedule

- June 1st 4-1 announce
 - Policy Gradient
- June 8th 4-2 announce
 - Deep Q learning
- June 15th 4-3 announce
 - Actor-Critic
- July 6th 23:59 Deadline (all in one)

Outline

Outline

- Introduction
 - Game Playing : Breakout
- Deep Reinforcement Learning
 - Deep Q-Learning (DQN)
 - Improvements to DQN
- Grading & Format
 - Grading Policy
 - Code Format
 - Report
 - Submission

Introduction

Environment

Breakout

Deep Q-Learning (DQN)

"classic" deep Q-learning algorithm:

Replay buffer

- 1. take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$, add it to \mathcal{B}
- 2. sample mini-batch $\{\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}'_i, r_j\}$ from \mathcal{B} uniformly
- 3. compute $y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$ using target network $Q_{\phi'}$
- 4. $\phi \leftarrow \phi \alpha \sum_{j} \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_{j}, \mathbf{a}_{j})(Q_{\phi}(\mathbf{s}_{j}, \mathbf{a}_{j}) y_{j})$
- 5. update ϕ' : copy ϕ every N steps

Deep Q-Learning (DQN)

- The action should act ε-greedily
 - Random action with probability ε
 - Also in testing
- Linearly decline ε from 1.0 to some small value, say 0.025
 - Decline per step
 - Randomness is for exploration, agent is weak at start
- Hyperparameters
 - Replay Memory Size 10000
 - Perform Update Current Network Step 4
 - Perform Update Target Network Step 1000
 - Learning Rate 1.5e-4
 - Batch Size 32

Improvements to DQN

- Double Q-Learning
- Dueling Network
- Prioritized Replay Memory
- Noisy DQN
- Distributional DQN

https://arxiv.org/pdf/1710.02298.pdf

Training Tips

Training Plot

- X-axis: 1000 episodes/unit
- Y-axis: Unclipped reward per episode
- Baseline is achieved within an hour of training

Training Tips

Why Reward is clipped

- Performing the same action for 4 frames
 - To use data more efficiently
- Reward may be up to 4
 - If positive, clip to $1 \rightarrow$ reduce variance
- How to see your unclipped reward
 - 1. Use the *test* function
 - 2. Turn off the *clip_reward* option of your environment and do the clipping by yourself.

Training Tips

Asynchronous Update (Optional, for Tensorflow)

- In tensorflow, feed_dict does the copy thing
 - Upon updating, the agent have to wait for it to continue exploring.
- Try run the update asynchronously
 - Main thread: Collect data
 - The other thread : Copy data to GPU
 - GPU: Training
 - Using the thread/multiprocessing module
- This is totally not necessary for you to get baseline, just some speed-up you can try.
 - This can go wrong and annoying if you're not familiar with threading, thus I recommend not to try it unless you are confident enough.

Grading Policy

• Code Baseline (5%)

Report (5%)

Baseline (5%)

- DQN (5%)
 - Getting averaging reward in 100 episodes over **40** in **Breakout**
 - With OpenAl's Atari wrapper & reward clipping
 - We will unclip the reward when testing

Code Format

- Please download the sample files from github
- Follow the instructions in README to install required packages
- **Four** functions you should implement in agent_[pg|dqn].py
 - 1. __init__(self, env, args)
 - 2. init_game_setting(self)
 - 3. train(self)
 - 4. make action(self, state, test)
- **DO NOT** add any parameter in __init__(), init_game_setting() and make_action()
- You can add new methods in the agent_[pg|dqn].py
- You can add your arguments in argument.py

Report (10%)

- Up to 6 pages (4-1 + 4-2 + 4-3), in Chinese
- Describe your DQN model (1%)
- Plot the learning curve to show the performance of your Deep Q Learning on Breakout (1%)
 - X-axis: number of time steps
 - Y-axis: average reward in last 30 episodes
- Implement 1 improvement method on page 6
 - Describe your tips for improvement (1%)
 - Learning curve (1%)
 - Compare to origin Deep Q Learning(1%)

Late submission

- Please fill the late submission form first only if you will submit HW late
- Please push your code before you fill the form
- There will be 25% penalty per day for late submission, so you get 0% after four days
- You get 0% if the required files has bug.
 - If the error is due to the format issue, please come to fix the bug at the announced time, or you will get 10% penalty afterwards.

Submission

- Deadline: 2018/7/6 23:59 (GMT+8)
- Your github **MUST** have 5 files under directory hw4/
 - agent_dir/agent_pg.py
 - agent_dir/agent_dqn.py
 - [saved model file] * 2
 - report.pdf
 - argument.py (optional)
 - README (optional)
 - download.sh (optional)
 - other files you need
- If your model is too large for github, upload it to a cloud space and write download.sh to download the model
- Do not upload any file named the same with other sample codes

Grading

- Please use Python with version >= 3.5
- The TAs will execute 'python3 test.py --test_pg --test_dqn' to run your code on ubuntu
- The execution for both model should be done within 10 minutes respectively, excluding model download
- Allowed packages
 - PyTorch v0.3.0
 - Tensorflow r1.6 (CUDA 9.0)
 - Numpy
 - Scipy
 - Pandas
 - Python Standard Lib
- No keras !!!! No keras !!!! No keras !!!! No keras !!!! No keras !!!!
- If you use other packages, please ask for permission first

Related Materials

- Course & Tutorial:
 - Berkeley Deep Reinforcement Learning, Fall 2017
 - David Silver RL course
 - Nips 2016 RL tutorial
- Blog:
 - Andrej Karpathy's blog
 - Arthur Juliani's Blog
- Text Book:
 - Reinforcement Learning: An Introduction
- Repo:
 - https://github.com/williamFalcon/DeepRLHacks

Double DQN

- The formula $Y_t^{\text{DQN}} \equiv R_{t+1} + \gamma \max_a Q(S_{t+1}, a; \boldsymbol{\theta}_t^-)$. (3) often overestimates the maximum Q value.
- Thus instead choose the action of the max Q in the target network, choose the action of the max Q in the current network.
- $Y_t^{\text{DoubleDQN}} \equiv R_{t+1} + \gamma Q(S_{t+1}, \underset{a}{\operatorname{argmax}} Q(S_{t+1}, a; \boldsymbol{\theta}_t), \boldsymbol{\theta}_t^-).$

Dueling Network

- In many state, action does not counts.
 - DQN trys to find out the max Q in each state
- Use same network to output Value and Advantage

- Add loss constraint

$$\begin{split} Q(s, a; \theta, \alpha, \beta) &= V(s; \theta, \beta) + \\ &\left(A(s, a; \theta, \alpha) - \max_{a' \in |\mathcal{A}|} A(s, a'; \theta, \alpha) \right) \end{split}$$

- Alternative Q function, more stable (more used)

$$Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + \left(A(s, a; \theta, \alpha) - \frac{1}{|\mathcal{A}|} \sum_{a'} A(s, a'; \theta, \alpha)\right)$$

Prioritized Replay Memory

- DQN: Sample from replay memory uniformly
- We can sample the replays with large loss more often
- Thus we sample with the probability
 - TD ERROR = $R_j + \gamma_j Q_{\text{target}}(S_j, \arg \max_a Q(S_j, a)) Q(S_{j-1}, A_{j-1})$
 - p_t ∝ $|TD ERROR|^{\omega}$
 - ω is a hyperprameter, 0.5 in Rainbow

$$p_t \propto \left| R_{t+1} + \gamma_{t+1} \max_{a'} q_{\overline{\theta}}(S_{t+1}, a') - q_{\theta}(S_t, A_t) \right|^{\omega}$$

https://arxiv.org/pdf/1511.05952.pdf

Prioritized Replay Memory

- However, the resulting gradient estimator is biased, since we are sampling from a different distribution
 - Correct by inportance sampling weights

$$\tilde{v}_g \doteq \frac{\sum_{k=1}^n \rho_k Y_k}{n}.$$

- With $\rho_i = 1 / P(i)$, the IS weights

$$w_i = \left(\frac{1}{N} \cdot \frac{1}{P(i)}\right)^{\beta}$$

- β is linearly declined to 1
 - $\beta = 1 \rightarrow Unbiased$
 - Try to learn quicker → Try to converge correctly

Prioritized Replay Memory

- Using array, the complexity of sampling is *O*(*n*)
 - Try another data structure
- Sum Tree, which prioiritized sampling can be O(lgn)
 - Devide the priorities into k groups(batch size) by the max priority
 - That is if the max is 42, batch size = 6, we devide them into [1, 7], [8, 14],, [36, 42]

Randomly sample a number from each interval

- Go down the sum tree by the priority to retrieve the data at the leaf

https://arxiv.org/pdf/1511.05952.pdf

Prioritized Replay Memory

Algorithm 1 Double DQN with proportional prioritization

```
1: Input: minibatch k, step-size \eta, replay period K and size N, exponents \alpha and \beta, budget T.
 2: Initialize replay memory \mathcal{H} = \emptyset, \Delta = 0, p_1 = 1
 3: Observe S_0 and choose A_0 \sim \pi_{\theta}(S_0)
 4: for t = 1 to T do
        Observe S_t, R_t, \gamma_t
 5:
        Store transition (S_{t-1}, A_{t-1}, R_t, \gamma_t, S_t) in \mathcal{H} with maximal priority p_t = \max_{i < t} p_i
        if t \equiv 0 \mod K then
 8:
           for j = 1 to k do
               Sample transition j \sim P(j) = p_i^{\alpha} / \sum_i p_i^{\alpha}
 9:
               Compute importance-sampling weight w_i = (N \cdot P(i))^{-\beta} / \max_i w_i
10:
               Compute TD-error \delta_j = R_j + \gamma_j Q_{\text{target}}(S_j, \arg \max_a Q(S_j, a)) - Q(S_{j-1}, A_{j-1})
11:
               Update transition priority p_i \leftarrow |\delta_i|
12:
              Accumulate weight-change \Delta \leftarrow \Delta + w_i \cdot \delta_i \cdot \nabla_{\theta} Q(S_{i-1}, A_{i-1})
13:
           end for
14:
15:
           Update weights \theta \leftarrow \theta + \eta \cdot \Delta, reset \Delta = 0
           From time to time copy weights into target network \theta_{\text{target}} \leftarrow \theta
16:
        end if
17:
        Choose action A_t \sim \pi_{\theta}(S_t)
18:
19: end for
```