SVAR TILL TENTAMEN I ENDIMENSIONELL ANALYS A1 DEN 7/1 2015, KL 14-19.

De två versionerna skiljer sig endast på första uppgiften och på följande sätt. Uppgift 1a är olika i version 1 och 2, men de övriga i version 2 är permutationer av de övriga i version 1. Nedstående svar till uppgifter 1b - 1j hör till version 1.

- **a.** $(1+2\sqrt{7})/9$. (version 1)
- **a.** $-13 6\sqrt{5}$. (version 2)
- **c.** $y = -\frac{1}{3}x \frac{11}{3}$. **d.** a = -15.
- **e.** x = -1.
- f. $-\frac{\sqrt{3}}{2}$. g. $-4 < x < -\frac{23}{6}$.
- **h.** x = 0, 2.
- i. $\alpha = 30^{\circ}, 330^{\circ}.$
- **j.** 2.
- **2** a. $2\pi n 3\pi/4 \le x \le 2\pi n + \pi/4, n \in \mathbb{Z}$.
- **2 b.** $x = \sqrt{3}$.
- 3 a. Se boken.
- **3 b.** x = 0, 1, -2.
- **4 a.** $f \circ g(x) = e^{(\ln x)^2 + 1}, x \ge 1$ och $g \circ f(x) = x^2 + 1, x \in \mathbb{R}$.
- **4 b.** Inversen är $f^{-1}(x) = e^{\sqrt{\ln x 1}}$, def.mängd $D_{f^{-1}} = [e, \infty)$ och värdemängd $V_{f^{-1}} = [1, \infty)$. Funktionen $g \circ f(x) = x^2 + 1$ har ingen invers.
- **5 a.** Inga lösningar då a < 0.

För $0 \le a \le 4$ får vi $x = \pm \sqrt{4+a}$ och $x = \pm \sqrt{4-a}$.

För a > 4 får vi $x = \pm \sqrt{4 + a}$.

Alltså tex för a=4 får vi 3 lösningar, $x=\pm\sqrt{8}$ och x=0.

- **5 b.** $x = \frac{1}{\sqrt{2}}, x = 0.$
- **6.** De små och den stora cirkelns radier förhåller sig som $1:1+\frac{2}{\sqrt{3}}$.