10 + 79.25 = 89.25

Course: COM219

Name: Sylvia Le

Homework 2

Question 4

20/20

System	Description	Cycle Time (T)	Clock Frequency (f)		Processor Bandwidth (BW)
Α	No pipeline; instruction latency 20 ns, cycle time 5 ns	5 ns (as it states) 🗸	f = 1/T = 1/(5x10 ⁻⁹) = 200 MHz	20 ns (as it states) 🗸	BW = 1000/latency = 1000/20 = 50 MIPS
В	No pipeline; instruction completion time 25 ns, clock frequency 250 MHz.	T = 1/f = 1/(2.5x10 ⁸) = 4 ns	250 MHz (as it states)	25 ns (as it states)	BW = 1000/latency = 1000/25 = 40 MIPS \rightarrow
С	7-stage pipeline, instruction completion time 35 ns	Latency = instr. completion time = 35ns = nT = 7T → T = 5 ns	f = 1/t = 1/(5x10 ⁻⁹) = 200 MHz	35 ns (as it states) 🗸	BW = 1000/T = 1000//5 = 200 MIPS
	froguency 1 CHz	T = $1/f = 1/10^9 = 1$ ns (and hence, number of stages = $10/1 = 10$ stages)	1 GHz (as it states)	10 ns (as it states) 🗸	BW = 1000/T = 1000/1 = 1000 MIPS 1 BIPS
	5-stage pipeline, cycle time 5 ns	5 ns (as it states)	f = 1/T = 1/(5x10 ⁻⁹) = 200 MHz	Latency = instr. completion time = nT = 5x5 = 25 ns	BW = 1000/T = 1000/5 = 200 MIPS
F	processor bandwidth	BW = 1000/T → T = 1000/BW = 1000/250 = 4 ns	f = 1/T = 1/(4x10 ⁻⁹) = 250 MHz	Latency = instr. completion time = nT = 4x4 = 16 ns	250 MIPS (as it states)

^{✓→} System D is the fastest, since it has the greatest BW = greatest rate of instructions being issued per second

Question 5 14.5 / 15

	01101011	10011001
Pure Binary	$1x2^{0} + 1x2^{1} + 1x2^{3} + 1x2^{5} + 1x2$	$16 1x2^0 + 1x2^3 + 1x2^4 + 1x2^7$
	= 107 🗸	= 153 🗸
Sign-magnitude	$1x2^0 + 1x2^1 + 1x2^3 + 1x2^5 + 1x2$	$1^6 1 \times 2^0 + 1 \times 2^3 + 1 \times 2^4$
	= 107.	= 25
	The most significant bit is $0 \rightarrow 107 \checkmark$	The most significant it is 1 → negative → -25 ✓
Two's Complement	$0x(-2)^7 + 1x2^0 + 1x2^1 + 1x2^3 + 1x2^5 + 1x2^6$	$-2^7 + 1x2^0 + 1x2^3 + 1x2^4$
	= 107 🗸	= -103 🗸
Excess 128	Unsigned base-10 value: 107	Unsigned base-10 value: 153
	107-128 = -21 🗸	153-128 = 25
BCD	Use the lookup table	Use the look up table
	First group: 0110 = 6	First group = second group =
	Second group: 1011 = N.A	1001 = 9
	→ N.A ✓	→ 99 ✓
Hexadecimal	Use the lookup table	Use the look up table
	First group: 0110 = 6	First group = second group =
	Second group: 1011 = B	1001 = 9
	→ 6BH -0.25	→ 99 H _{-0.25}

Question 6

14.75 / 21 -3 (-0.25 per correct answer) no work/calculations shown

Original Number		Value as interpreted with the new representation
11 (Pure Binary, k=4)	1011 🗸	3 🗸
-14 (Sign-magnitude, k=5)	11110	-2
68 (Pure Binary, k=6)	Number out of range ✓	N.A.

-27 (Two's Complement, k=6)	100101 🗸	37 🗸
-76 (Two's Complement, k=8)	10110100 🗸	B4H -0.25
72 (interpret as 2-digit BCD)	01110001× -1.5	113× -1.5
6DH (interpret as 2-digit Hex)	01101101	-19 🗸

(a) Average instruction execution time for type A instruction: fetch instruction time + execute time = 100 + 10 = 110 cycles

Average instruction execution time for type B instruction:

Fetch instruction time + jetch operand time + execute time = 100+100+100 = 300 cycles

→ Average instruction execution time: $\frac{110 \times 80 + 300 \times 20}{100} = 148$ cycles $\sqrt{}$

(b) Cycle time = $\frac{1}{J} = \frac{1}{10^6} = 1000 \text{ ns} = 1 \text{ µs}$ (microsec)

→ Average instruction execution time: 148 x 1 = 148 pms

@ Average instruction execution time in second: 148 x 106 s

→ Instruction execution rate = $\frac{1}{148 \times 10^{-6}}$ = 6756 (round down from 6756.756) Cips) \checkmark

(d) Cycle time = $\frac{1}{1} = \frac{1}{20 \times 10^6} = 50 \text{ ns}$

-) Average instruction execution time: 148 x 50 = 7400 ns = 7.4 x 10 5

→ Instruction execution rate: $\frac{1}{7.4 \times 10^{-6}}$ = 136135 (i.ps) \checkmark

Phogram completion time = $M \times t_k = 5,000,000 \times 7.4 \times 10^{-6}$ = $37 (s) \checkmark$

$$\frac{1}{3} = \frac{1}{T} = \frac{1}{16 \times 10^{-9}} = 62.5 \text{ MHz} \checkmark$$

Every instruction take 3 cycles to complete

⇒ BW =
$$\frac{1}{3T}$$
 = $\frac{1}{16 \times 5 \times 10^{-9}}$ ≈ 20.833 MIPS \checkmark

Since now there is new instruction issued every cycles.

Since this is number of cycles persec