Overview of GPRS (General Purpose Research Simulator)

Reduced Variable (RV) Method for Compositional Flow Simulation

Huanquan Pan Hamdi Tchelepi

27th SUPRI-B Annual Meeting April 29-30, 2010

GPRS: Research Platform

GPRS Software Features

- Multiple platforms
 - Visual Studio 6/2005/2008
 - Linux

- Portable Source Code
 - Single standard C++ source code for all platforms

Ongoing GPRS Research Projects

- Automatic Differentiation (AD) based GPRS
 - Compositional modeling with arbitrary number of phases
 - Connection based formulation with TPFA & MPFA
 - Flexible nonlinear formulations
 - Advanced nonlinear solvers
 - □ Flexible AIM
 - Advanced well & facility modeling
 - Thermal capability

Ongoing GPRS Research Projects

- Reduced variable (RV) method
 - Efficient & robust implementation
 - Combine Michelson's bypass method with RV
- Chemical reaction modeling
 - Fully coupled with flow equations
 - Element-based approach
 - Application to CO2 sequestration, in-situ upgrading
- Heater well modeling

5

Ongoing GPRS Research Projects

- Multi-Segment (MS) well modeling
 - Isothermal & thermal compositional MS model
 - Homogeneous & drift flux fluid model
- Plug-in MPFA module in GOCAD
 - Discretization layer for unstructured grids
 - Link to GPRS
- Integration with well optimization
 - Reduced-order modeling
 - Adjoint-enabled GPRS

GPRS: Long-Term Goals

ADET based GPRS framework

- Automatic differentiation with expression templates
- Compositional, thermal, reactions
- General multiphase equilibrium (RV)
- □ Tie-line based parameterization (CSAT)
- Scalable multi-stage linear solvers
- General nonlinear solvers
- Geomechanics coupling
- Adjoints
- □ Parallel (openMP, MPI)

GPRS Release

- GPRS1.0 (initial version, 2002)
- GPRS1.1 8/03
- GPRS1.2 6/04
- GPRS1.3 11/04
- GPRS1.4 11/05
- GPRS2.0 6/06
- GPRS2.1 2/07
- GPRS 2.2 5/2009

New GPRS2.3 Release (July, 2010)

- Speedup compositional simulation
 - Efficient RV implementation
 - Michelsen's bypass stability analysis (with RV)
- Improvements in chemical reaction modeling

Reduced Variable (RV) Method for Compositional Simulation

Phase Equilibrium Computations

- Stability analysis
 - Determine if a mixture is single- or two-phase
 - Nc 1 nonlinear equations
 - Initial oil & gas
- Two-phase flash
 - Determine amount & compositions of gas & oil
 - Nc nonlinear equations
- Detailed models with large Nc: phase equilibrium computations can be very expensive

Phase-State Determination

Phase-Stability Analysis is Crucial

CPU time of stability analysis & flash computation using the standard method (top layer of SPE10):

	Time (sec.)		Time (stability) %
	Stability	Flash	
SPE5 (6 component)	262	0.25	99.9
SPE3 (9 component)	2613	82	97.0
Condensate2	5225	35	99.3
(15 component)			

Fast Stability Analysis Approaches: RV and Bypass

- RV (Reduced Variables): fast iterative method to replace standard (Conventional Variables, CV) method
- Michelsen's bypass scheme: empirical method to avoid stability analysis computations
- RV-based bypass method

Reduced Variables (RV) Method

- Based on Principal Component Analysis (PCA)
- Robust stability analysis:
 - Globally convergent Newton method
- Efficient for stability analysis & flash computation:
 - Fewer iteration variables
 - Fewer number of iterations

Pan & Firoozabadi: SPE J., 78-89 (2002); 380-391 (2003)

RV Method

$$G = G(n, a, b)$$
 $a(n_1^V, n_2^V, \dots, n_N^V)$

PCA:
$$a \approx \sum_{\alpha=1}^{M} \lambda_{\alpha} Q_{\alpha}^{2}$$

 λ_{α} 's Principal Eigenvalues;

$$G = G(n, Q_1, Q_2, \dots, Q_M, b)$$

M+1 for stability test, M+2 for flash.

M is small in practice

RV Method

- Research on standalone phase equilibrium computations
- Limited integration with compositional flow simulation
 - Different RV method (transform kij to h & g)
 - 2D, 400 cells with IMPEC simulation
- Extensive study of RV based compositional flow simulations in large reservoir models with complex fluids
 & large time steps is key for practical use

Okuno, R., Johns, R.T., and Sepehrnoori, K. 2008: Use of a Reduced Method in Compositional Simulation. Paper presented at the 11th ECMOR, Bergen, Norway, 8-11 September.

Fluids & Eigenvalues

Fluid	SPE3	SPE5	Oil1	Condensate1	Condensate2
Nc	9	6	26	8	15
M=1	8.586	5.964	25.39	7.723	14.46
2	0.3323	0.07022	0.4385	0.2101	0.4179
3	0.1932	-0.03379	0.1854	0.09831	0.1205
4	-0.09432		0.08774	-0.02971	0.07151
5	-0.0233		-0.07572	-1.865e-3	-0.05175
6	9.158e-3		-0.03192	-1.471e-3	-0.01916
7	-3.590e-3		0.02191	1.27e-3	2.722e-3
8			-0.01892	-5.57e-6	
9			1.546e-3		
10			-2.1e-4		
11			-1.49e-5		

Reservoir I

Top layer of SPE 10, $220 \times 60 = 13,200 \text{ cells}$

Production well: BHP control

Injection well: BHP control

Stream: separator gas at standard conditions

Reservoir I: Properties

SPE3: Well Flow Rates

SPE3: Execution Time

SPE3: CPU Time vs. Number of Components (Nc)

Condensate2: Well Flow Rates

Condensate2: Execution Time

Condensate2: Performance

CV vs. RV performance for Stability Analysis (SA) & Flash Computation (FC)

Method	CV	RV-M4
Number of SA	9,131,772	9,139,801
Time (second) of SA	5,225	1,480
Time (second) per	5.72	1.62
10000 SA		
Number of FC	12,351	13,508
Time (second) of FC	35	14
Time (second) per	28.34	10.36
10000 FC		

Reservoir II

- 5,227 discrete fracture cells
- Permeability: $0.1 \sim 10^6$ md
- Porosity: 0.25 ~ 1.0
- Volume: $10^{-3} \sim 10^3 \, \text{ft}^3$

Reservoir II: Wells

Injection stream: separator gas at standard conditions

Oil1: Well Flow Rates

Oil1: Execution time

Oil1: Well Flow Rates for 6 & 26 components

Advantages of RV over CV

- Much better nonlinear behavior
 - Linear increase of CPU time with number of RV
 - Very slow increase of CPU time with increase of number of components
- Fewer variables
- Significant CPU-time reduction

How Many Eigenvalues (M) to Keep?

Fluid	SPE3	SPE5	Oil1	Condensate1	Condensate2
Nc	9	6	26	8	15
M=1	8.586	5.964	25.39	7.723	14.46
2	0.3323	0.07022	0.4385	0.2101	0.4179
3	0.1932	-0.03379	0.1854	0.09831	0.1205
4	-0.09432		0.08774	-0.02971	0.07151
5	-0.0233		-0.07572	-1.865e-3	-0.05175
6	9.158e-3		-0.03192	-1.471e-3	-0.01916
7	-3.590e-3		0.02191	1.27e-3	2.722e-3
8			-0.01892	-5.57e-6	
9			1.546e-3		
10			-2.1e-4		
11			-1.49e-5		

$$Abs(\lambda_{\alpha}) > 0.07$$

How to Determine M?

- M depends strongly on the complexity of the phase behavior of the reservoir fluid
- Reservoir properties (porosity, perms. etc.) have little effect
- Results from compositional flow simulations with the target fluid system in a small homogenous model (e.g., hundreds of cells) provide good estimate of M

Michelsen's Bypass Method

- Empirical method to bypass stability analysis
- Standalone testing without flow simulation results
- Integrate with compositional flow simulation
- Develop an RV based version of the method

Rasmussen C.P., Krejbjerg K., Michelsen M.L., Bjurstrom K.E. 2006 Increasing of Computational Speed of Flash Calculations with Applications for Compositional, Transient Simulations, *SPE Res Eval & Eng*, **9**(1): 32-38..

Michelsen's Bypass Method

36

Michelsen's Bypass Criteria

$$\begin{aligned} \left|z_{i}-z_{i,old}\right| &< b_{old} / 10 \\ \left|P-P_{old}\right| &< Pb_{old} / 10 \\ \left|T-T_{old}\right| &< 10b_{old} \end{aligned}$$

b: smallest eigenvalue of matrix B

$$B_{ij} = \delta_{ij} + \sqrt{n_i n_j} \left(\frac{\partial \ln \phi_i}{\partial n_j} \right)_{P,T}$$

$$\delta_{ij} = 1 \quad i = j$$

$$\delta_{ij} = 0 \quad i \neq j$$

Extend Bypass Criteria to RV

$$B_{ij} = \delta_{ij} + \sqrt{n_i n_j} \left(\frac{\partial \ln \phi_i}{\partial n_j} \right)_{P,T}$$

Chain rule to calculate matrix B in RV method:

$$\left(\frac{\partial \ln \phi_i}{\partial n_j}\right) = \sum_{\alpha=1}^{M+1} \left(\frac{\partial \ln \phi_i}{\partial Q_\alpha}\right) \left(\frac{\partial Q_\alpha}{\partial n_j}\right)$$

Simulations & Results

- Reservoir I (top layer of SPE10, 13,200 cells)
- Wells: one injector & one producer
- Fluids: SPE3, Condensate2
- Methods: CV, CV-b, RV, RV-b
- Simulation results:
 - No accuracy deterioration from bypass method
 - □ Deviation of well flow rate (injection, production) <0.1%

SPE3 (9 Components): CPU Time

SPE3: Stability Analysis Performance

Number of Stability Analysis (SA)

Method	CV	CV-b	RV-M3	RV-M3-b
Total Number of	3,939,240	3,939,240	4,289,425	4,289,425
SA				
Number of	0	3,627,210	0	3,831,448
Bypassed SA				
Number of	3,939,240	312,030	4,289,425	457,977
Calculated SA		(8%)		(11%)
Time (second) of	2,613	231	349	44
SA				

Condensate2: CPU Time

CPU time for Condesate2 (15 components)

Condensate2: Stability Analysis Performance

Number of Stability Analysis (SA)

Method	CV	CV-b	RV-M4	RV-M4-b
Total Number of	9,084,864	9,084,864	9,092,585	9,092,585
SA				
Number of	0	7,311,421	0	7,218,734
Bypassed SA				
Number of	9,084,864	1,773,443	9,092,585	1,873,850
Calculated SA		(19.5%)		(20.6%)
Time (second) of	5,225	1,232	1,480	360
SA				

CPU Time: Various Methods Oil1 (26 Components) in a Model with Discrete Fractures (5,227 Cells)

Simulation time: 10 years

Time steps: 186

Newton iterations: 805

Future Work: Extend RV & Bypass Methods to Three-Phase Systems

- Three phases
 - Hydrocarbons
 - □ Thermal with steam
- Expect more efficiency gains for three-phase compared with two-phase systems

Remarks

- Significant GPRS based research activities
- Reduced Variables (RV) method is superior to Conventional Variables (CV) for phase equilibrium computations in compositional flow simulation
- Bypass method is robust & greatly improves simulation performance
- Fully integrated RV with Michelsen's bypass method into GPRS

Remarks

- Extensive simulation studies with complex fluids and reservoir models confirm efficiency & robustness of both RV and the bypass methods in compositional flow simulation
- Combined RV & bypass strategy shows best performance
- RV & bypass have great potential for thermal simulation
 & three-phase systems

Backup Slides

SPE3: Pressure

SPE3: Gas Saturation

SPE5: Execution Time vs. Nc

Condensate2: Pressure

Condensate2: Gas Saturation

Simple Simulations to Determine M

Fluid	SPE3	SPE5	Condensate2
Dimension (ft x ft x ft)	10000x1000x50	15000x15000x100	10000x1000x50
Number of Cells	10x10x5	30x30x3	10x10x5
Kx (mD)	100	100	100
Ky (mD)	100	100	100
Kz (mD)	10	25	10
porosity	0.1	0.3	0.1
W-I location*	(1,1,1)	(1,1,1)	(1,1,1)
W-P location*	(10,10,5)	(30,30,3)	(10,10,5)

*W-I: Injection Well W-P: Production Well

- Simulation: multi-contact miscible displacement
- M value is the same as in Reservoir I

M=3 (SPE3), M=2 (SPE5), M=4 (Condensate2)