FUERZA AÉREA ARGENTINA INSTITUTO UNIVERSITARIO AERONÁUTICO FACULTAD DE INGENIERÍA

PROGRAMA DE ASIGNATURA

CARRERA: INGENIE	AÑO ACADÉMICO: 2014			
ASIGNATURA: INFORMÁTICA I			COD : 503012	
DPTO: INFORMÁTICA	ÁREA: PROGRAMACIÓN		BLOQUE: TECNOLOGÍAS BÁSICAS	
HORAS TOTALES: 84		CURSO: PRIMERO	SEM: PRIMERO	

OBJETIVOS

Que el alumno sea capaz de:

- Formular y resolver problemas mediante modularización y refinamiento progresivo en forma estructurada.
- Desarrollar y aplicar procedimientos para resolver problemas complejos.
- Identificar las estructuras fundamentales de un lenguaje de programación y aplicarlas a la resolución de problemas de complejidad creciente.

TEMA	CONTENIDO
I	NOCIÓN DE ALGORITMO
	Resolución de problemas, etapas. Procesador, ambiente, acción y condición. Algoritmo: características, pseudocódigo y diagramación.
II	FORMALIZACIÓN DE ALGORITMOS
	Formalización del ambiente de un problema. Constantes y variables. Tipos de datos: numérico, lógico y carácter. Cadena de caracteres. Expresiones aritméticas, lógicas y de caracteres. Acción de asignar. Prueba de un algoritmo. Transformación del ambiente.
III	ESTRUCTURAS DE DECISIÓN Estructura de decisión: SI-SINO-FINSI. Encaje de estructuras de decisión. Estructura de decisión generalizada.
IV	ESTRUCTURAS DE REPETICIÓN Esquema: Mientras-FinMientras. Esquema: Hacer-MientrasQue. Esquema: Para-FinPara. Teorema general de la programación estructurada.
V	LENGUAJES DE PROGRAMACIÓN Perspectiva histórica y evolución de los lenguajes de programación. Concepto de paradigma de programación. Paradigmas imperativo, funcional, declarativo y orientado a objetos. Lenguajes de programación representativos de cada paradigma: lenguajes imperativos, funcionales, declarativos y orientados a objetos.
VI	ELEMENTOS BÁSICOS DEL LENGUAJE C Estructura básica de una computadora digital. Bloques principales. Datos e instrucciones. Procesamiento de un programa. Estructura general de un programa en C. Creación y ejecución de un programa en C. Depuración de un programa en C. Pruebas. Elementos de un programa en C. Tipos de datos en C. Constantes y variables. Entradas y salidas. Operadores de asignación, aritméticos, de incrementación y decrementación, relacionales y lógicos.

VII ESTRUCTURAS DE CONTROL EN C

Estructuras de control. La sentencia if. Sentencia if de dos alternativas : if_else. Sentencias if_else anidadas. Sentencia de control switch. Expresiones condicionales. La sentencia while. Repetición : el bucle for. Repetición : el bucle do_while. Comparación de bucles while, for y do-while.

VIII FUNCIONES

Subalgoritmos. Funciones. Pasaje de parámetros por valor. Variables globales y locales. Funciones sin parámetros. Uso de funciones como parámetros. Recursividad. Funciones recursivas. Recursión versus iteración.

IX ESTRUCTURAS DE DATOS. ARREGLOS

Arreglos lineales, operaciones, arreglos como parámetros formales, arreglos de caracteres. Determinación del elemento máximo y mínimo de un arreglo. Arreglos bidimensionales.

X ORDENACIÓN, BÚSQUEDA E INTERCALACIÓN

Ordenación por selección, inserción, intercambio y quicksort. Búsqueda lineal y binaria. Eficiencia de los algoritmos de búsqueda. Intercalación.

BIBLIOGRAFÍA OBLIGATORIA

• Deitel H, Deitel P. Cómo programar en C / C++ y Java. Ed. Pearson Educación; 2004.

BIBLIOGRAFÍA COMPLEMENTARIA

- Ceballos Sierra J. Curso de programación C/C++. Ed.Alfaomega. 2002.
- López G, Jeder I, Vega A. Análisis y diseño de algoritmos. Alfaomega. 2009.
- Sznajdleder, Pablo. Algoritmos a fondo. Ed. Alfaomega. 2012.

DESCRIPCIÓN DE LA ACTIVIDAD CURRICULAR

Actividades a desarrollar por el docente:

- Atender al alumno ante consultas propias de la asignatura como así también las de relación docente-alumno.
- Fomentar el estudio independiente.
- Preparar clases teóricas y/o prácticas.
- Organizar las clases de laboratorio.
- Asistir periódicamente a reuniones de cátedra.
- Preparar evaluaciones y actividades de seguimiento del alumno.
- Confeccionar, revisar y actualizar el programa de la asignatura a su cargo.
- Confeccionar, revisar y actualizar las guías de laboratorios y/o prácticos.
- Revisar y actualizar la bibliografía y material didáctico.
- Cumplir además con toda otra función que surja de su tarea para garantizar el correcto desarrollo de la carrera.

Actividades a desarrollar por el alumno:

- Asistir a clases teóricas, prácticas y laboratorios.
- Realizar consultas.
- Realizar experiencias de laboratorio y/o trabajos prácticos.
- Confeccionar informes.

Materiales, recursos, soporte:

- Textos.
- Guía de trabajos prácticos impresa y en soporte magnético.
- Búsqueda en Internet.
- Laboratorio de Informática: Equipos, PC.
- Software: C

METODOLOGÍA DE ENSEÑANZA

- Exposición dialogada.
- Investigación e indagación bibliográfica: consultas en Internet, en fuentes impresas y/o electrónicas.
- Informes.
- Resolución de problemas.
- Trabajos Grupales.
- Paneles de discusión y debate.
- Trabajos de laboratorio.

CRITERIOS Y FORMAS DE EVALUACIÓN

- Informes: Habilidad para el manejo fluido de la información y del vocabulario científico y técnico.
 - Coherencia en el orden, claridad y calidad de las presentaciones escritas y orales.
- Trabajos Prácticos de aula: Habilidad para el desarrollo de capacidades y destrezas en el planteo y resolución de problemas.
- Trabajos de Laboratorio: Habilidad para el desarrollo de capacidades y destrezas en la comunicación con la PC.
- Exámenes Parciales: Pertinencia y profundidad de los conocimientos teóricos /prácticos adquiridos por el alumno.
- Examen Final: Integración de los conocimientos teórico-prácticos adquiridos por el alumno, en función de los informes, trabajos prácticos de aula y de laboratorio, y de las clases teórico /prácticas desarrolladas.

CONDICIONES PARA LA REGULARIDAD

- Aprobar dos parciales teórico-prácticos, con la posibilidad de recuperar los dos. La nota mínima de aprobación es "cuatro" y corresponde al 50% de la prueba.
- Asistencia mínima a clase del 70%.

ACCESO A LOS RESULTADOS DE LAS EVALUACIONES

Corregidas las pruebas se entregan al alumno para su observación y revisión.