Ph20: Assignment 2

Ung Shu Fay

January 29, 2018

1 Extended Simpson's Formula

Let $I = \int_a^b f(x) \ dx$ and $h_N = (b-a)/N$, where $x_0 = a, x_1 = a + h_N, x_2 = a + 2h_N, \dots, x_N = b$. Since

$$I_{\text{simp}} = H\left(\frac{f(a)}{6} + \frac{4f(c)}{6} + \frac{f(b)}{6}\right),$$

where H=b-a and c=(a+b)/2, then the extended Simpson's Formula is:

$$\int_{a}^{b} f(x) dx = \int_{x_{0}}^{x_{1}} f(x) dx + \int_{x_{1}}^{x_{2}} f(x) + \dots + \int_{x_{N-1}}^{x_{N}} f(x) dx$$

$$\simeq h_{N} \left(\frac{f(x_{0})}{6} + \frac{4f(\frac{x_{0} + x_{1}}{2})}{6} + \frac{f(x_{1})}{6} \right) + h_{N} \left(\frac{f(x_{1})}{6} + \frac{4f(\frac{x_{1} + x_{2}}{2})}{6} + \frac{f(x_{2})}{6} \right)$$

$$+ \dots + h_{N} \left(\frac{f(x_{N-1})}{6} + \frac{4f(\frac{x_{N-1} + x_{N}}{2})}{6} + \frac{f(x_{N})}{6} \right)$$

$$= \frac{h_{N}}{6} \left\{ f(x_{0}) + f(x_{N}) + 2[f(x_{1}) + f(x_{2}) + \dots + f(x_{N-1})] \right\}$$

$$+ 4 \left[f\left(\frac{x_{0} + x_{1}}{2}\right) + f\left(\frac{x_{1} + x_{2}}{2}\right) + \dots + f\left(\frac{x_{N-1} + x_{N}}{2}\right) \right] \right\}$$

1.1 Local and Global Error

The Taylor expansion for $x \in [a, b]$ centered at a is

$$f(x) = f(a) + f'(a)(x - a) + f^{(2)}(a)\frac{(x - a)^2}{2!} + f^{(3)}(a)\frac{(x - a)^3}{3!} + f^{(4)}(\eta)\frac{(x - a)^4}{4!} \quad \text{with } \eta \in [a, b]$$

Integrating this we get

$$I = f(a)H + f'(a)\frac{H^2}{2!} + f^{(2)}(a)\frac{H^3}{3!} + f^{(3)}(a)\frac{H^2}{4!} + f^{(4)}(\eta)\frac{H^5}{5!} \quad \text{with } \eta \in [a, b].$$

Using (1.1) to approximate f(b) and f(c),

$$\begin{split} f(b) &\simeq f(a) + f'(a)H + f^{(2)}(a)\frac{H^2}{2!} + f^{(3)}(a)\frac{H^3}{3!} + f^{(4)}(\eta)\frac{H^4}{4!} \\ f(c) &\simeq f\left(\frac{a+b}{2}\right) = f(a) + f'(a)\frac{H}{2} + f^{(2)}(a)\frac{H^2}{8} + f^{(3)}(a)\frac{H^3}{48} + f^{(4)}(\eta)\frac{H^4}{384}. \end{split}$$

Then
$$I_{\text{simp}} = H\left[f(a) + f'(a)\frac{H}{2} + f^{(2)}(a)\frac{H^2}{6} + f^{(3)}(a)\frac{H^3}{24} + f^{(4)}(\eta)\frac{5H^4}{576}\right]$$
, with $\eta \in [a, b]$.

The local error is

$$I_{\text{simp}} - I = \frac{5}{576} f^{(4)}(\eta) H^5 - \frac{1}{5!} f^{(4)}(\eta) H^5 = f^{(4)}(\eta) \frac{H^5}{2880}.$$

and the global error is

$$-f^{(4)}(\varepsilon)\frac{h_N^5}{2880} = -(b-a)f^{(4)}(\varepsilon)\frac{h_N^4}{2880} \quad \text{with } \varepsilon \in [a,b].$$

2 Evaluating the Trapezoidal and Simpson's Formula

We will evaluate the integral of e^x with each of these formulas. Since $\int_0^1 e^x dx = e^x - 1$, we have for the errors $E_{\text{trap}}(N)$ and $E_{\text{simp}}(N)$:

$$E_{\text{trap}}(N) = |(e^x - 1) - I_{\text{trap}}(N; e^x, 0, 1)|$$

$$E_{\text{simp}}(N) = |(e^x - 1) - I_{\text{simp}}(N; e^x, 0, 1)|$$

where $I_{\text{trap}}(N; e^x, 0, 1)$ and $I_{\text{simp}}(N; e^x, 0, 1)$ represent the integral of e^x over [0, 1] evaluated with the trapezoidal and Simpson's formula respectively.

Figure 1: Plot of the errors $E_{\rm trap}(N)$ and $E_{\rm simp}(N)$ over $1 \le N \le 500$. The dashed line shows the number of partitions N required to obtain an error $\le 10^{-5}$. Simpson's formula only requires N=3 to achieve this, while the trapezoidal formula requires N=120. This is because the Lagrange polynomial interpolation of the curve underlying Simpson's formula more accurately approximates the shape of the curve.

Figure 2: Plot of the predicted global errors for each formula, divided by $f^{(4)}(\varepsilon)$ for $\varepsilon \in [0,1]$.

Eventually the error plateaus and stops decreasing. This is due to the finite precision of computers in computing numbers with a lot of decimal places.

Figure 3: Plot of the errors $E_{\text{trap}}(N)$ and $E_{\text{simp}}(N)$ against N^{-2} and N^{-4} respectively. The linear graphs show that the programs' errors follow the predicted errors' dependence on N.

2.1 Comparing Against scipy.integrate.quad and scipy.integrate.romberg

Method	Value	Error
Trapazoidal	1.71828197165	$1.43190150181 \times 10^{-7}$
Simpson's	1.71828182846	$6.66133814775 \times 10^{-16}$
scipy.integrate.quad	1.7182818284590453	$2.220446049250313 \times 10^{-16}$
scipy.integrate.romberg	1.71828182846	$3.30846461338 \times 10^{-14}$

Table 1: Value and errors for $\int_0^1 e^x dx$ computed with different methods. The trapezoidal and Simpson's formula were evaluated with N=1000. For this value of N, Simpson's formula gives a smaller error than romberg and of same order of magnitude as quad. The trapezoidal rule gives an error that is ~ 8 orders of magnitude higher than the rest.

3 Evaluating the General Purpose Routine

The general purpose routine (Question 6) is used to evaluate the integral of e^x over [0,1] and the integral of $\cos(x)$ over $[0,\pi/4]$.

Function	Relative Accuracy	Iterations	N
e^x	10^{-9}	1	100
	10^{-14}	4	1600
$\cos\left(x\right)$	10^{-14}	3	800

Table 2: $\int_0^1 e^x dx$ and $\int_0^{(\pi/4)} \cos(x) dx$ evaluated with the general routine.

Method	Accuracy	N
Trapezoidal	10^{-9}	11722
Simpson's	10^{-9}	28
	10^{-14}	496

Table 3: The number of partitions N required for the trapezoidal and Simpson's formula to achieve an accuracy of 10^{-9} and 10^{-14} for $\int_0^1 e^x \, dx$. The trapezoidal formula requires ~ 400 times more partitions than Simpson's formula to achieve an accuracy of 10^{-9} . Comparing with Table 2, much higher values of N are required to achieve the same levels of relative accuracy than accuracy alone.