Regression

Given examples $\langle \mathbf{X}, \mathbf{y} \rangle$ a regression task is to predict

- ullet a continous ${f y}$
- ullet from a vector of features ${f x}$

This differs from a Classification task (e.g., predicting the digit represented by an image)

ullet where the $oldsymbol{y}$ are discrete values

To be concrete: imagine we need to predict the Price $\hat{\mathbf{y}}$ of a house given only its Size \mathbf{x} .

We could imagine an approach similar to the KNN algorithm used for classification

- compare ${\bf x}$ to each ${\bf x^{(i)}}$ in the training set ${\bf X}$
 - ullet measure the "distance" from ${f x}$ to ${f x^{(i)}}$ to come up with a weight
- ullet predict $\hat{f y}$ as the weighted average of the ${f y}^i p$

A strong criticism of KNN is that Θ , the parameters, comprised all m training examples

- large
- memorization versus generalization

The fact that y is *continous* rather than discrete opens the possibility of a *numerical* relationship between features x and labels y.

We will take advantage of this in our first Regression model.

Linear Regression

Our first predictor/estimator/model is called Linear Regression.

Linear Regression restricts the form of relationship between ${f y}$ and ${f x}$ to

$$\hat{\mathbf{y}} = \Theta^T \cdot \mathbf{x}$$

That is: the predicted $\hat{\mathbf{y}}$ is a linearly-weighted (with weights from vector Θ) sum of features \mathbf{x} .

Anyone who has fit a straight line to a cloud of points has performed Linear Regression.

A straight line has intercept Θ_0 and slope Θ_1

$$\hat{\mathbf{y}} = \Theta_0 + \Theta_1 * \mathbf{x}_1$$

In our example

- ullet we expect the Price to increase with Size ${f x}_1$
 - ullet Θ_1 tells us how much each extra unit of Size increases the Price

Rather than writing the intercept Θ_0 as a separate term we can modify ${\bf x}$ and Θ

$$egin{array}{lll} \Theta^T &=& (\Theta_0,\Theta_1) \ \mathbf{x}'^T &=& (1,\mathbf{x}_1) \end{array}$$

so that the straight line may be written as

$$\hat{\mathbf{y}} = \Theta^T \cdot \mathbf{x}'$$

Because the size of Θ^T and ${\bf x}$ must match

- ullet we augmented ${f x}$ with a "constant" feature 1
 - that corresponds to the intercept

The real power of Linear Regression can be seen when there is more than 1 non-constant feature.

- Predict Price given features Size, Number of bedrooms, Number of bathrooms,
 Proximity to transportation
- Θ_j tells us how much each unit increase in feature \mathbf{x}_j affects Price.

The prediction y is linear in each feature x_j , hence the name *linear* regression

Anyone recognize this expression: $\Theta^T \cdot \mathbf{x}$?

It's our friend the dot product, as promised in the introductory lecture.

Watch out, this will be a regularly recurring character in our series.

Linear Regression in matrix form

We will typically augment ${\bf x}$ with the leading "constant feature 1" to capture the intercept.

$$egin{array}{lll} \Theta^T &=& (\Theta_0,\Theta_1,\ldots,\Theta_n) \ \mathbf{x}'^T &=& (1,\mathbf{x}_1,\ldots,\mathbf{x}_n) \end{array}$$

We do this for each example in X so that X becomes

$$\mathbf{X}' = egin{pmatrix} 1 & \mathbf{x}_1^{(1)} & \dots & \mathbf{x}_n^{(1)} \ 1 & \mathbf{x}_1^{(2)} & \dots & \mathbf{x}_n^{(2)} \ dots & dots & \dots & dots \ 1 & \mathbf{x}_1^{(m)} & \dots & \mathbf{x}_n^{(m)} \end{pmatrix}$$

We sometimes refer to X as the *design matrix*.

So we could simultaneously obtain our prediction for *all* training examples by the matrix product

$$\hat{\mathbf{y}} = \mathbf{X}'\Theta$$

Using matrix notation

- mimics an implementation using a language(such as numPy) with matrix arithmetic
- allows us to evaluate examples in parallel

Examples

Some examples

- Predict the Price of a stock given Earnings ($||\mathbf{x}||=1$)
- ullet Predict the Price of a stock given Earnings, Dividend, and Sales ($||\mathbf{x}||=3$)