Calculer la mémoire

Calculer adresse de fin

 ${\bf Adr.Fin} = {\bf Adr.Deb} + {\bf Taille} - 1$

Calculer adresse de début

 ${\bf Adr.Deb} = {\bf Adr.Fin-Taille+1}$

Calculer la taille

 $\mathrm{Taille} = 1 \ll \log_2(2^n)$

Saut inconditionnel

L'opcode pour un saut inconditionnel prends 5 bits et le reste est alloué pour donner l'adresse de la prochaine instruction à exécuter.

Calcul de l'adresse de saut

Pour calculer l'adresse de saut il suffit d'utiliser la formule suivante :

 $Adr = PC + extension_16bits(offset_{11} * 2) + 4$

Code d'instruction	Incrément
Adr	Adresse finale du saut
PC	Adresse de l'instruction courante
Extension 16 bits	Extension de l'adresse de saut en y ajoutant la valeur du bit de signe
Offset	Correspond à l'instruction moins les 5 bits de l'opcode
4	Valeur en fixe à ajouter à l'adresse de saut

Saut conditionnel

Pour calculer l'adresse de saut il suffit d'utiliser la formule suivante attention elle est légèrement différente de celle pour le saut inconditionnel :

 $Adr = PC + extension_16bits(offset_8*2) + 4$

Gestion de la condition

- Bits de condition (N Z C V)

 N = Résultat d'une opération de l'ALU négat
- Z = Résultat d'une opération de l'ALU nul
- C = Carry(report) provenant de l'AL
- V = Overflow (dépassement) d'une opération de l'ALU