Homework 4 CSCI4100

Han Hai Rin:661534083 haih2@rpi.edu

September 30 2018

- 1. [300 POINTS] Exercise 2.4 Consider the input space X=1 XR^d including x0=1. Show that the VC dimension of perceptron (with d+1 parameters counting w_0) is exactly d+1 by showing that it is at least d+1 and at most d+1, as follows.
 - (a) To show that $d_{vc} \geq d+1$, find d+1 points in X that the perceptron can shatter.

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & 0 & \dots & 0 \\ 1 & 0 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

is exactly d+1

The above matrix is nonsingular, because its determinant is 1

We can shatter this dataset, because for any dicatomy on the dataset, we can use perceptron y = wx and $w = x^{-1}y$ to which for sure will have $y = sign(w^Tx)$, so it will correctly classify the data, thus we show that $d_{vc} \ge d + 1$

(b) to show that $d_{vc} \leq d+1$ show that no set of d+2 points in X can be shattered by the perceptron.

For any d+2 points $x_1, x_2...x_{d+2}$, there are more points than dimensions Therefore we must have $x_j = \sum_{i \neq j} a_i x_i$ (linearly independent), where a_i are nonzeros. The following dicatonmy, x_i with nonzero ai, $y_i = sign(a_i)$ and x_j gets $y_j = -1$ cannot be implemented. Because if we multiply the $x_j w = \sum_{i \neq j} a_i w x_i$ by w as weight of perceptron $y_i = sign(w^T x_i) = sign(ai)$ then $aiw^T x_i > 0$. therefore it's impossible to get $x_j w = y = -1$. Therefore we cannot shatter any set of d+2 and $d_{vc} \leq d+1$. Conclusion: d_{vc} for perceptron

- 2. [300 points] Problem 2.3 Compute the maximum number of dichotomies, mH(N), for these learning models, and consequently compute d_{vc} the VC dimension.
 - (a) Positive or negative ray: H contains the function which are +1 on $[(a,\infty)(\text{for some a})$ to egether with those that are +1 on $(-\infty,a]$ for a chosen at there are 2(N+1) situations for +1-1 on either side minus all +1 and all -1 two

for a chosen a, there are 2(N+1) situations for +1,-1 on either side minus all +1 and all -1 two situations, 2(N+1)-2=2N.

Therefore mH(N)=2N and largest value of N where dicaton my equals 2^N is 2, therefore, $d_{vc}(H)=2$

(b) Positive or negative interval Comparing to positive interval, when n=3, 1 new dicatonmy is added (+1,-1,+1), when n=4, 3 are added (+1,-1,-1,+1), (+1,-1,+1,+1) and (+1,+1,-1,-1), for n=5, 6 are added so it's the original

dicatomy plus
$$(n-1)C2 = \frac{1}{2}N^2 - \frac{3}{2}N + 1$$

 $\frac{1}{2}N + \frac{1}{2}N^2 + 1 + \frac{1}{2}N^2 - \frac{3}{2}N + 1 =$
 $\mathbf{mH(N)} = N^2 - N + 2$
 $mH(3) = 8 = 2^N \ mH(4) = 14 < 2^N$. Therefore, $d_{Vc} = 3$

- (c) Two concentric spheres in \mathbb{R}^d H contains the function which are +1 for $a \leq \sqrt{x_1^2 + ... x_d^2} \leq b$ We can map points to lower dimension $(x_1, x_2, x_3, x_4...x_d) \to \sqrt{x_1^2 + ...x_d^2}$. Then it becomes a positive interval problem, which we calculated previously, is $\frac{1}{2}N^2 + \frac{1}{2}N + 1$ and the $d_{vc} = 2$
- 3. [200 points] Problem 2.8 Which of the following are possible growth functions $m_H N$ for some hypothesis set?

As we've proved in Theorem 2.4. We either have a polynomial bound or 2^N for the bound, so 1 + N; $1 + n + \frac{N(N-1)}{2}$; 2^N ; are all possible growth functions, while $2^{ceil(\sqrt{N})}$ and $2^{ceil(N/2)}$ are not

possible because they are exponential $1+N+\frac{N(N-1)(N-2)}{6}$ is also not possible even thought it's polynomial, because according to theorem, if $m(k) \leq 2^k$, then for all $n, m(N) \leq N^{k-1} + 1$ for this one if k=2 and it is deduced to linear bound which contradict with the fact that this function is cub.

4. [100 points] Problem 2.10 Show that $m_H(2N) \leq m_H(N)^2$ and hence obtain a generalization bound which only involves mH(N)

for $m_H(2N)$ we can separate the points into 2 parts, $m_H(N1) + m_H(N2)$ the maximum of combined will be the product of two therefore $m_H(2N) \leq m_H(N_1) * m_H(N_2)$

and since $m_H(N_1) \leq m_H(N)$ and $m_H(N_2) \leq m_H(N)$, we get $m_H(2N) \leq m_H(N)^2$

thus we can get bound $E_{out} \leq E_{in}(g) + \sqrt{\frac{8}{N}ln\frac{4m_H(N)^2}{\delta}}$

5. [100 points]Problem 2.12 For an H with $d_{vc} = 10$ what sample size do you need to have a 95 precent confidence that your generalization error is at most 0.05? $N \geq \frac{8}{\epsilon^2} ln(\frac{4((2N)^{d_vc}+1)}{\delta})$ plus in numbers N=1000 to be initial guess $N \geq \frac{8}{0.05^2} ln(\frac{4((2N)^{10}+1)}{0.05})$ RHS is 257251, iterate the process it converges at 452957

$$N \ge \frac{8}{\epsilon^2} ln(\frac{4((2N)^{d_v c} + 1)}{\delta})$$

$$N \ge \frac{8}{0.05^2} ln(\frac{4((2N)^{10}+1)}{0.05})$$

Therefore we need a sample size of 452957