We want to show that a (p,q) torus knot, p < q has a rank p augmentation ϵ with the property that $\epsilon(a_{ij}) = \epsilon(a_{ji})$ for all $1 \le i \ne j \le p$. In fact, a much stronger statement is true. Define n by p/2 = n if p is even and (p-1)/2 = n if p is odd and consider a set of variables a_1, \ldots, a_n . For $i \ne j$ and $1 \le c \le n$, if $c = |i-j| \mod p$ then define $[a_{ij}] = a_c$. On the other hand, if $-|i-j| \mod p = c$ (and $c \ne p/2$) then define $[a_{ij}] = -a_c$. For example, if p = 4 then $[a_{12}] = [a_{21}] = [a_{23}] = [a_{32}] = [a_{34}] = [a_{43}] = x_1$, $[a_{14}] = [a_{41}] = -x_1$, and $[a_{13}] = [a_{31}] = [a_{24}] = [a_{42}] = x_2$.

Let $\sigma_1, \ldots, \sigma_{p-1}$ be the standard generators of B_p and write $\tau_p = \sigma_1 \ldots \sigma_{p-1}$ so that the closure of τ_p^q is the (p,q) torus link. We note that for any a_{ij} we have that $[\phi_{\tau_p}(a_{ij})] = [a_{ij}]$. Indeed, if i, j < p then $\phi_{\tau_p}(a_{ij}) = a_{i+1,j+1}$ and $[a_{ij}] = [a_{i+1,j+1}] = [\phi_{\tau_p}(a_{ij})]$. On the other hand, $[\phi_{\tau_p}(a_{ip})] = [-a_{i+1,1}] = -[a_{i+1,1}] = [a_{ip}]$ since $p - i = -i \mod p$. Also $[\phi_{\tau_p}(a_{pi})] = [a_{pi}]$ since $[a_{ip}] = [a_{pi}]$ and $[a_{i+1,1}] = [a_{1,i+1}]$. Thus ϕ_{τ_p} determines a well-defined map on the quotient algebra (written $[\mathcal{A}_p]$) that is the image of $a_{ij} \mapsto [a_{ij}] = \pm a_{|i-j|}$. In fact, it descends to the identity map on $[\mathcal{A}_p]$. Making everything commutative, note that $[\mathcal{A}_p]$ is a quotient of \mathcal{A}_p^{ab} .

We work with the algebra $[\mathcal{A}_p]$, but will write, for example, Φ_B^L though we understand the entries to be the classes in $[\mathcal{A}_p]$ corresponding to entries in the typical matrix of this name over \mathcal{A}_p . Note that we have

$$\Phi_{\tau_p}^L = \begin{pmatrix} -a_1 & & \\ \vdots & & \mathrm{Id}_{p-1} \\ -a_{p-1} & & \\ 1 & 0 & \dots & 0 \end{pmatrix}.$$

Let us write $Q_{ij}^k(\mathbf{a})$ for the polynomial in the variables $\mathbf{a}=(a_1,\ldots,a_{p-1})$ given by the (i,j) entry of $\Phi_{\tau_p^k}^L$ (more precisely the quotient map applied to $\Phi_{\tau_p^k}^L$). Using the factorization $\tau_p^k=\tau_p\tau_p^{k-1}$, the chain rule, that ϕ_{τ_p} descends to the identity map, and the form of $\Phi_{\tau_p}^L$ above, we see that if j>1 then $Q_{i,j-1}^k(\mathbf{a})=Q_{i,j-1}^{k-1}(\mathbf{a})$ and that

(1)
$$Q_{i1}^{k}(\mathbf{a}) = Q_{ip}^{k-1}(\mathbf{a}) - \sum_{j=1}^{p-1} Q_{ij}^{k-1}(\mathbf{a})a_{j}.$$

We could also use the factorization $\tau_p^{k-1}\tau_p$ of τ_p^k and the chain rule to get that $Q_{pj}^k(\mathbf{a}) = Q_{1j}^{k-1}(\mathbf{a})$ and that if i < p then

(2)
$$Q_{ij}^{k}(\mathbf{a}) = Q_{i+1,j}^{k-1}(\mathbf{a}) - a_i Q_{1j}^{k-1}(\mathbf{a}).$$

We first note that for j > 1 we have $Q_{1j}^k(\mathbf{a}) = Q_{1,j-1}^{k-1}(\mathbf{a}) = Q_{p,j-1}^k(\mathbf{a})$. Thus if we find a map that sends $Q_{p,j-1}^k(\mathbf{a})$ to 0 for $1 < j \le p$ then by (2) we would have that $Q_{i,j-1}^k(\mathbf{a})$ and $Q_{i+1,j-1}^{k-1}(\mathbf{a})$ have the same image for $1 < j \le p$ under this map. Thus, so do $Q_{i,j-1}^k(\mathbf{a})$ and $Q_{i+1,j}^k(\mathbf{a})$ for $1 < j \le p$

(by using the equality from the j>1 case before (1). Since we have sent $Q_{p,j-1}^k(\mathbf{a})=Q_{1j}^k(\mathbf{a})$ to 0 for $1< j\leq p$ this tells us that all the off-diagonal entries go to zero.

Also, if we send $Q_{pp}^k(\mathbf{a})$ to 1 then this tells us that the diagonal elements Q_{ii}^k , i > 1 all go to 1.

The polynomials just along bottom row are simple enough, one should be able to show they have the solutions we need once k > p, maybe using a triangular set type argument.