1 Kompleksni brojevi

- 1. Riješite jednadžbe $x^2 2x + 2 = 0$ i $x^2 + 4 = 0$ i rješenja prikažite u kompleksnoj ravnini.
- 2. Izračunajte $z_1+z_2,\,z_1-z_2,\,z_1\cdot z_2$ i $\frac{z_1}{z_2}$ ako je
 - (a) $z_1 = 1 i$, $z_2 = 2 + 3i$;
 - (b) $z_1 = 2 i$, $z_2 = i$;
 - (c) $z_1 = 2$, $z_2 = 1 2i$.
- 3. Odredite $t \in \mathbb{R}$ takav da je $\operatorname{Im}(z_1 + z_2) = 0$ ako je $z_1 = 1 + 2ti$ i $z_2 = 3t 4i$.
- 4. Odredite $z_2 \in \mathbb{C}$ takav da je $|z_1 + z_2| = 1$ i Re $(\overline{z_1} + z_2) = 0$ ako je $z_1 = 1 + i$.
- 5. Izračunajte
 - (a) i^{2005} ;
 - (b) $\frac{i^6 + i^3}{i^2 i^7}$;
 - (c) Im $\frac{i^{20}-i}{i+1}$;
 - (d) p(2+i) ako je $p(z) = z^2 5z + 1$.
- 6. Riješite jednadžbu $z(3+2i) = i^{10}$.
- 7. Odredite kompleksne brojeve $z \in \mathbb{C}$ koji zadovoljavaju izraz

$$\frac{\overline{z} + |z| - \sqrt{29}}{2} = 1 + \frac{5}{2}i^9.$$

1

- 8. Koristeći trigonometrijski oblik kompleksnog broja izračunajte
 - (a) $(1+i)^{10}$;
 - (b) $\left(\frac{1}{2} \frac{\sqrt{3}}{2}i\right)^{50}$;
 - (c) $\sqrt[3]{1}$;
 - (d) $\sqrt[4]{-i}$;
 - (e) $\sqrt[3]{1+i\sqrt{3}}$;
 - (f) $\sqrt{-3\left(\cos\frac{\pi}{4} i\sin\frac{\pi}{4}\right)}$.

Rješenja prikažite u kompleksnoj ravnini.

9. Riješite jednadžbe

(a)
$$8z^3 + \frac{8}{\sqrt{2}} \left(\frac{1+i}{1-i} \right)^{313} = 0;$$

(b)
$$\left[\frac{1}{16}(-1+i)^8 - z\right]^4 = \frac{\frac{2}{\sqrt{3}}}{-\frac{1}{\sqrt{3}}+i}$$
.

- 10. Skicirajte u kompleksnoj ravnini skupove kompleksnih brojeva koji zadovoljavaju sljedeće izraze:
 - (a) $|z i| \ge 1$;
 - (b) $\text{Im}[(1+i)z] \le 1;$
 - (c) $|z| + \text{Re } z \le 2;$
 - (d) $2 \le |z| \le 3$;
 - (e) |z| > 2 + Im z;
 - (f) $2 \le |z| \le 3 i \frac{\pi}{3} \le \arg z \le \pi$.