

Baggrund og databeskrivelse (opgave 1-3)

Denne opgave beskæftiger sig med udbudsprisen på brugte biler. Opgaven tager udgangspunkt i datamaterialet i filen Biltorvet. jmp, hvis indhold er beskrevet på opgaveark 1.

Opgave 1 (Brugtvognsprisen)

a). Angiv de estimerede parametre i en lineær regressionsmodel med brugtvognsprisen $(Pris\ (kr))$ som responsvariabel og bilens kørte kilometer $(Km\ kørt)$ som forklarende variabel.

JMP-vink: "Analyze" -> "Fit Model". Placér Pris (kr) under "Y", Km kørt under "Construct Model Effects". Angiv modellens forklaringsgrad \mathbb{R}^2 .

- b). **Angiv** forklaringsgraderne for nedenstående tre lineære regressionsmodeller, der alle har brugtvognsprisen som forklarende variabel. **Giv** desuden mulig intuition bag forskellene i forklaringsgraden i de tre modeller ved at se på scatterplot af data:
 - i) Bilens kørte kilometer (*Km kørt*) som forklarende variabel, men hvor modellen kun estimeres for biler af mærket Citroén (*Producent*).

```
JMP-vink: Begræns datamaterialet v.hj.a. "Rows" -> "Data Filter".
```

- ii) Bilens kørte kilometer (*Km kørt*) som forklarende variabel, men hvor modellen kun estimeres for biler af mærket VW (*Producent*).
- iii) Bilens indregistreringsmåned (*Indregistrering (måned*)) som forklarende variabel (for alle producenter).

Opgave 2 (Brugtvognsprisen)

Opgave 2 omhandler udelukkende biler af mærket Kia.

JMP-vink: "Rows" -> "Data Filter"

a). Angiv de estimerede parametre i en lineær regressionsmodel med brugtvognsprisen $(Pris\ (kr))$ som responsvariabel og bilens kørte kilometer $(Km\ kørt)$ som forklarende variabel.

JMP-vink: "Analyze" -> "Fit Model". Placér Pris (kr) under "Y", Km kørt under "Construct Model Effects". Giv en fortolkning af de estimerede parametre.

b). Beregn et 95%-konfidensinterval for β_0 og giv en fortolkning af intervallet.

JMP-vink: "Regression Reports" -> "Show All Confidence Intervals" via den røde trekant øverst i JMPs regressions output-vindue.

c). **Beregn** et 95%-konfidensinterval for betydningen for den forventede brugtvognspris af en stigning på 1 kørt kilometer og **giv** en fortolkning af intervallet.

JMP-vink: "Regression Reports" -> "Show All Confidence Intervals" via den røde trekant øverst i JMPs regressions output-vindue.

Beregn et 95%-konfidensinterval for betydningen for den forventede brugtvognspris af en stigning på 1.000 kørte kilometer og **giv** en fortolkning af intervallet.

d). **Beregn** på baggrund af den estimerede regressionsmodel den forventede brugtvognspris for en bil af mærket Kia, der har kørt 50.000 km.

JMP-vink: "Factor Profiling" -> "Profiler" via den røde trekant øverst i JMPs regressions output-vindue.

Beregn på baggrund af den estimerede regressionsmodel den forventede brugtvognspris for en bil af mærket Kia, der har kørt 120.000 km.

Beregn på baggrund af den estimerede regressionsmodel den forventede brugtvognspris for en bil af mærket Kia, der har kørt 300.000 km.

Opgave 3 (kørte kilometer)

a). **Angiv** for henholdsvis diesel- og benzinbiler (*Drivmiddel*) de estimerede parametre i en lineær regressionsmodel med bilens kørte kilometer (*Km kørt*) som responsvariabel og bilens årgang (*Årgang*) som forklarende variabel.

JMP-vink: "Analyze" -> "Fit Model". Placér Km kørt under "Y", Årgang under "Construct Model Effects", Drivmiddel under "By".

Sammenlign parametrene i de to estimerede modeller.

- b). Gør rede for om der er statistisk belæg for en nulhypotese om, at bilens årgang ikke har nogen betydning for det forventede antal kørte kilometer for brugte benzinbiler (brug $\alpha = 5\%$ som signifikansniveau). Angiv i den forbindelse hypoteser samt teknisk og let forståelig konklusion.
- c). Gør rede for om der er statistisk belæg for en nulhypotese om, at for hvert år bilen er nyere (dvs. for hver ekstra 1 af variablen Årgang) reduceres det forventede antal kørte kilometer for brugte benzinbiler med 15.000 km (brug $\alpha=5\%$ som signifikansniveau). Angiv i den forbindelse hypoteser samt teknisk og let forståelig konklusion.

JMP-vink: "Regression Reports" -> "Show All Confidence Intervals" via den røde trekant øverst i JMPs regressions output-vindue.

d). Gør rede for om der er statistisk belæg for en nulhypotese om, at for hvert år bilen er nyere (dvs. for hver ekstra 1 af variablen Årgang) reduceres det forventede antal kørte kilometer for brugte benzinbiler med 13.000 km (brug $\alpha = 5\%$ som signifikansniveau). Angiv i den forbindelse hypoteser samt teknisk og let forståelig konklusion.

KORTFATTEDE TALLØSNINGER

OPGAVE 1

- a): $\hat{\beta}_0 = 183.364$, $\hat{\beta}_1 = -0.6787$, $\hat{\sigma} = 74.794$, $R^2 = 0.3632$
- b): i): $R^2 = 0.6232$, ii): $R^2 = 0.1656$, iii): $R^2 = 0.0003$

OPGAVE 2

- a): $\hat{\beta}_0 = 185.312$, $\hat{\beta}_1 = -0.9310$, $\hat{\sigma} = 67.155$
- *b*): [171.178; 199.445]
- c): [-1,1607; -0,7013] (1 km), [-1.160,7; -701,3] (1.000 km)
- d): 138.763 kr. (50.000 km), 73.595 kr. (120.000 km), -93.979 kr. (300.000 km)

OPGAVE 3

- a): Benzin : $\hat{\beta}_0 = 27.373.356$, $\hat{\beta}_1 = -13.575$, $\hat{\sigma} = 43.238$ Diesel : $\hat{\beta}_0 = 39.261.808$, $\hat{\beta}_1 = -19.469$, $\hat{\sigma} = 44.818$
- b): $H_0: \beta_1 = 0, H_a: \beta_1 \neq 0$. Nulhypotesen forkastes
- c): $H_0: \beta_1 = -15.000, H_a: \beta_1 \neq -15.000$. Nulhypotesen forkastes
- d): $H_0: \beta_1 = -13.000$, $H_a: \beta_1 \neq -13.000$. Nulhypotesen forkastes ikke