TD 22 : corrigé de 4 exercices

Exercice 22.18:

1°) Notons $e = (e_1, \ldots, e_n)$ la base canonique de \mathbb{R}^n . Pour $(i, j) \in \{1, \ldots, n\}^2$, notons $u_{i,i}$ l'endomorphisme de \mathbb{R}^n dont la matrice dans e est $E_{i,i}$.

Pour tout $k \in \{1, \ldots, n\}$, $u_{i,j}(e_k) = \delta_{k,j}e_i$.

Soit
$$l \in \{1, ..., n\}$$
. $u_{i,j} \circ u_{h,k}(e_l) = u_{i,j}(\delta_{k,l}e_h) = \delta_{k,l}\delta_{j,h}e_i$,

donc $u_{i,j} \circ u_{h,k}(e_l) = \delta_{j,h} u_{i,k}(e_l)$.

Ainsi, $u_{i,j} \circ u_{h,k} = \delta_{j,h} u_{i,k}$, puis en prenant les matrices de ces endomorphismes, $E_{i,j}E_{h,k}=\delta_{j,h}E_{i,k}.$

2°) Pour
$$i \neq j$$
, $\sigma(E_{i,j}) = \sigma(E_{i,j}E_{j,j}) = \sigma(E_{j,j}E_{i,j}) = 0$.

3°)
$$\sigma(E_{i,i}) = \sigma(E_{i,j}E_{j,i}) = \sigma(E_{j,i}E_{i,j}) = E_{j,j}.$$

$$\mathbf{4}^{\circ}$$
) Soit $M = (M_{i,j}) \in \mathcal{M}_n(\mathbb{R})$.

$$\mathbf{4}^{\circ}) \text{ Soit } M = (M_{i,j}) \in \mathcal{M}_n(\mathbb{R}).$$

$$\sigma(M) = \sigma(\sum_{i,j \in \{1,\dots,n\}} M_{i,j} E_{i,j}) = \sum_{i,j \in \{1,\dots,n\}} M_{i,j} \sigma(E_{i,j}) \text{ car } \sigma \text{ est lin\'eaire.}$$

Ainsi d'après les questions précédentes, $\sigma(M) = \sigma(E_{1,1}) \sum_{i=1}^{n} M_{i,i} = \lambda Tr(M)$

où
$$\lambda = \sigma(E_{1,1})$$
.

On a montré que $\{\sigma \in L(\mathcal{M}_n(\mathbb{R}), \mathbb{R})/\forall A, B \in \mathcal{M}_n(\mathbb{R}), \ \sigma(AB) = \sigma(BA)\} \subset \mathbb{R}.Tr.$ L'inclusion réciproque est vraie car on sait que pour tout $A, B \in \mathcal{M}_n(\mathbb{R})$,

Tr(AB) = Tr(BA), ce que l'on peut redémontrer :

$$Tr(AB) = \sum_{i=1}^{n} (AB)_{i,i} = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} B_{j,i} = \sum_{j=1}^{n} \sum_{i=1}^{n} B_{j,i} A_{i,j} = \sum_{j=1}^{n} (BA)_{j,j} = Tr(BA).$$

Exercice 22.19:

Exercice 22.19:
$$\sin(i+j) = \sin i \cos j + \cos i \sin j, \text{ donc en posant } S = \begin{pmatrix} \sin 1 \\ \vdots \\ \sin n \end{pmatrix} \text{ et } C = \begin{pmatrix} \cos 1 \\ \vdots \\ \cos n \end{pmatrix}, \text{ la}$$

j-ème colonne de la matrice M de l'énoncé vaut $C_j = (\cos j)S + (\sin j)C$. Ainsi l'espace vectoriel engendré par les colonnes de M est inclus dans Vect(C, S), ce qui prouve que $rg(M) \leq 2$.

Si n=1, clairement rq(M)=1.

Supposons que $n \ge 2$. On peut alors extraire de M la matrice $\begin{pmatrix} \sin 2 & \sin 3 \\ \sin 3 & \sin 4 \end{pmatrix}$ qui est inversible car de déterminant non nul. Ainsi $rg(M) \geq 2$, puis rg(M) = 2

Exercice 22.27:

1°) L'application identiquement nulle est un élément de \mathcal{F} , donc $\mathcal{F} \neq \emptyset$.

Soit $(f, g, \lambda, \mu) \in \mathcal{F} \times \mathcal{F} \times \mathbb{R} \times \mathbb{R}$.

Il existe $(\alpha_i, \beta_i)_{2 \leq i \leq n} \in \mathbb{R}^{n-1}$ et $(\alpha'_i, \beta'_i)_{2 \leq i \leq n} \in \mathbb{R}^{n-1}$ tels que, pour tout $i \in \{2, \ldots, n\}$, pour tout $x \in]a_{i-1}, a_i[$, $f(x) = \alpha_i x + \beta_i$ et $g(x) = \alpha'_i x + \beta'_i$.

Ainsi, pour tout $i \in \{2, ..., n\}$, pour tout $x \in]a_{i-1}, a_i[$,

 $(\lambda f + \mu g)(x) = (\lambda \alpha_i + \mu \alpha_i')x + (\lambda \beta_i + \mu \beta_i').$

De plus, $\lambda f + \mu g$ est continue, donc c'est un élément de \mathcal{F} .

Ainsi, \mathcal{F} est un sous-espace vectoriel de $\mathcal{F}([a,b],\mathbb{R})$.

2°) φ est une application linéaire de \mathcal{F} dans \mathbb{K}^n .

Soit $f \in \mathcal{F}$ telle que $\varphi(f) = 0$. Alors, pour tout $i \in \mathbb{N}_n$, $f(a_i) = 0$. Or, pour tout $i \in \{2, \ldots, n\}$, le graphe de f est un segment de droite. Ainsi, f est identiquement nulle sur [a, b].

Ceci montre que $Ker(\varphi) = \{0\}$, donc que φ est injective.

Ainsi, $dim(\mathcal{F}) = dim(\varphi(\mathcal{F})) \leq n$, car $\varphi(\mathcal{F})$ est un sous-espace vectoriel de \mathbb{K}^n .

3°) D'après la question précédente, il suffit de montrer que cette famille est libre.

Soit
$$(\alpha_j)_{1 \leq j \leq n} \in \mathbb{R}^n$$
 telle que $\sum_{j=1}^n \alpha_j f_j = 0$.

Soit
$$j \in \{2, ..., n\}$$
. Si $\alpha_j \neq 0$, alors $f_j = -\frac{1}{\alpha_j} \sum_{\substack{1 \leq k \leq n \\ k \neq j}} \alpha_k f_k$. Or, pour tout $k \in \mathbb{N}_n$ avec

 $k \neq j$, f_k est dérivable en a_j , donc f_j est dérivable en a_j , ce qui est faux. On en déduit que $\alpha_j = 0$, pour tout $j \in \{2, \ldots, n\}$.

Ainsi, pour tout $x \in [a, b]$, $\alpha_1 f_1 + \alpha_n f_n = 0$. En particulier, pour x = a et x = b, on obtient que $\alpha_n |b - a| = 0$ et $\alpha_1 |b - a| = 0$, donc $\alpha_n = \alpha_1 = 0$.

Ceci démontre que la famille $(f_j)_{1 \leq j \leq n}$ est une base de \mathcal{F} .

 $4^{\circ})$

• Soit f et g deux applications convexes de [a,b] dans \mathbb{R} et $(\lambda,\mu) \in \mathbb{R}^2_+$. Montrons que $\lambda f + \mu g$ est également convexe.

Soit $(x,y) \in [a,b]^2$ et $t \in [0,1]$. f et g étant convexes, $f(tx+(1-t)y) \le tf(x)+(1-t)f(y)$ et $g(tx+(1-t)y) \le tg(x)+(1-t)g(y)$, or λ et μ sont positifs, donc

 $(\lambda f + \mu g)(tx + (1-t)y) \le t(\lambda f + \mu g)(x) + (1-t)(\lambda f + \mu g)(y).$

Par récurrence, on en déduit qu'une combinaison linéaire, à coefficients positifs, de fonctions convexes sur [a, b] est aussi convexe.

Or, pour tout $j \in \{2, \ldots, n-1\}$, f_j est convexe et $x \longmapsto \alpha x + \beta$ est convexe, donc,

pour tout
$$(\gamma_j)_{2 \le j \le n-1} \in \mathbb{R}^{n-2}_+$$
, $x \longmapsto \alpha x + \beta + \sum_{j=2}^{n-1} \gamma_j |x - a_j|$ est convexe.

• Réciproquement, soit $f \in \mathcal{F}$ une application convexe. Notons $(\alpha_j)_{1 \le j \le n}$ ses coordonnées dans la base $(f_j)_{1 \le j \le n}$.

Pour tout
$$x \in [a, b]$$
, $f(x) = \sum_{j=1}^{n} \alpha_j |x - a_j| = \alpha_1 (x - a_1) - \alpha_n (x - a_n) + \sum_{j=2}^{n-1} \alpha_j |x - a_j|$,

donc
$$f(x) = (\alpha_1 - \alpha_n)x - \alpha_1 a_1 + \alpha_n a_n + \sum_{j=2}^{n-1} \alpha_j |x - a_j|$$
, donc il suffit de montrer que,

pour tout $j \in \{2, \ldots, n-1\}, \alpha_j \geq 0$.

Soit $j_0 \in \{2, \dots, n-1\}$. Pour tout $x \in]a_{j_0-1}, a_{j_0+1}[$,

$$f(x) = \sum_{j=1}^{j_0-1} \alpha_j(x - a_j) + \sum_{j=j_0+1}^n \alpha_j(-x + a_j) + \alpha_{j_0}|x - a_{j_0}|,$$

donc il existe $(A, B) \in \mathbb{R}^2$ tel que $\alpha_{j_0}|x - a_{j_0}| = f(x) + Ax + B$. Or $x \longmapsto f(x) + Ax + B$ est convexe, en tant que somme d'applications convexes, donc $x \longmapsto \alpha_{j_0}|x - a_{j_0}|$ est convexe. On en déduit que $\alpha_{j_0} \geq 0$.

Exercice 22.28:

1°)

 \diamond Supposons que A est monotone.

Soit $X \in \mathbb{R}^n$ tel que $AX \geq 0$. En notant $X_{i,1}$ le *i*-ème coefficient du vecteur colonne

$$X$$
, on a $X_{i,1} = [A^{-1}AX]_{i,1} = \sum_{j=1}^{n} [A^{-1}]_{i,j} [AX]_{j,1}$, donc $X_{i,1} \ge 0$, car A^{-1} est positive et car AX est positif. Ainsi $X > 0$.

 \diamond Réciproquement, supposons que pour tout $X \in \mathbb{R}^n$, si AX est positif, alors X est aussi positif.

Soit $X \in \mathbb{R}^n$ tel que AX = 0. Alors $AX \ge 0$ et $A(-X) \ge 0$, donc $X \ge 0$ et $-X \ge 0$, ce qui implique X = 0. Ceci prouve que A est inversible.

Soit $j \in \{1, ..., n\}$: Posons $Y = (\delta_{i,j})_{1 \le i \le n} \in \mathbb{R}^n$. Alors $A^{-1}Y$ est égal à la j-ème colonne de A^{-1} . Or $Y \ge 0$ et $Y = A(A^{-1}Y)$, donc d'après l'hypothèse, $A^{-1}Y \ge 0$. On a montré que toutes les colonnes de A^{-1} sont positives, donc A^{-1} est bien une matrice positive.

2°) Supposons par l'absurde que A n'est pas une matrice monotone. D'après la première question, il existe $X \in \mathbb{R}^n$ tel que $AX \geq 0$ avec X non positive. Posons $X = (x_i)_{1 \leq i \leq n}$ et convenons que $x_0 = x_{n+1} = 0$. Ainsi, le i-ème coefficient de AX vaut $-x_{i-1} + (2+a_i)x_i - x_{i+1}$. Il est positif par hypothèse alors qu'il existe $i_0 \in \{1, \ldots, n\}$ tel que $x_{i_0} = \min_{1 \leq i \leq n} x_i < 0$.

On a $-x_{i_0-1} + (2+a_{i_0})x_{i_0} - x_{i_0+1} \ge 0$, donc $-x_{i_0-1} - x_{i_0+1} \ge (2+a_{i_0})(-x_{i_0}) \ge 2(-x_{i_0})$, car $-x_{i_0} > 0$ et $a_{i_0} \ge 0$, mais par définition de i_0 , on a $x_{i_0-1} + x_{i_0+1} \ge 2x_{i_0}$, donc $x_{i_0-1} + x_{i_0+1} = 2x_{i_0}$, c'est-à-dire : $(x_{i_0-1} - x_{i_0}) + (x_{i_0+1} - x_{i_0}) = 0$. Or $x_{i_0-1} - x_{i_0}$ et $x_{i_0+1} - x_{i_0}$ sont positifs, donc ils sont tous deux nuls. Ainsi, $x_{i_0-1} = x_{i_0} = x_{i_0+1}$.

On a donc montré que si le minimum de $\{x_i/1 \le i \le n\}$ est atteint en i_0 , il est aussi atteint en $i_0 - 1$. Par récurrence, on en déduit que ce minimum est atteint en x_0 , ce qui est faux car $x_0 = 0$.

Ainsi A est monotone.