CÁLCULO 1: 1^{er} curso del grado de Matemáticas y doble grado MAT-IngINF Hoja 7: Polinomios de Taylor.

1.- Hallar el polinomio de Taylor de grado 4 de las siguientes funciones:

(a)
$$f(x) = \cos x$$
 en $a = \frac{\pi}{4}$ (b) $f(x) = \log x$ en $a = 1$ (c) $f(x) = x^{\frac{1}{2}}$ en $a = 1$

(d)
$$f(x) = \frac{1}{1+x^2}$$
 en $a = 0$ (e) $f(x) = \frac{1}{1+x}$ en $a = 0$ (f) $f(x) = \arctan x$ en $a = 0$

(g)
$$f(x) = x^5$$
 en $a = 3$ (h) $f(x) = \frac{e^x}{1+x^2}$ en $a = 0$ (i) $f(x) = \log(1+x)$ en $a = 0$

(j)
$$f(x) = 3 + (x - 1) + 2(x - 1)^2 + 5(x - 1)^3$$
 en $a = 0$

2.- Calcular los siguientes límites utilizando el polinomio de Taylor:

$$\lim_{x \to 0} \frac{(x - \sin x)^4}{(\log(1 + x) - x)^6}, \qquad \qquad \lim_{x \to 0} \frac{e^{-x} - 1 + x}{\cos(2x) - 1}.$$

3.- Probar que para x > 0 se cumple

$$1 + \frac{x}{2} - \frac{x^2}{8} \le \sqrt{1+x} \le 1 + \frac{x}{2}.$$

4.- Probar que para x > 0 se cumple

$$x - \frac{x^2}{2} < \log(1+x) < x.$$

5.- Probar que para x > 0 se cumple

$$1 - x + \frac{x^2}{2} - \frac{x^3}{6} \le e^{-x} \le 1 - x + \frac{x^2}{2}.$$

6.- Sea f una función 4 veces derivable en un intervalo alrededor del 0. Supongamos que

$$\lim_{x \to 0} \frac{f(x) - 1 + 3x - 5x^2}{x^3} = 0.$$

1

Calcular f(0), f'(0), f''(0) y f'''(0).

7.- Usando la función $y = \arctan x$, calcular π con un error menor que 10^{-3} .

8.- Calcular $\cos(1)$ con un error menor que 10^{-3} .