\bigcirc	The formula to compute the work W done on a body if the force F is
	parallel to the displacement d , as in figure 1 at the end of the text, is:

$$\boxed{\mathbf{A}} \ W = F \cdot d.$$

$$\boxed{\mathbf{B}} \ W = 2F.$$

$$\boxed{\mathbf{C}} W = m \cdot v.$$

$$\boxed{\mathbf{D}} \ W = 2d.$$

(2) The formula $W = F \cdot d$ can be used only if the force F is parallel to the displacement d.

(3) The formula to compute the work W done on a body when the force F makes an angle with the displacement d is:

$$\boxed{\mathbf{A}} \ W = F \cdot d \cdot \cos x.$$

$$\boxed{\mathbf{B}} \ W = F \cdot d \cdot \sin x.$$

$$\boxed{\mathbf{C}} \ W = F \cdot d.$$

D None of the other answers.

(4) The unit for work is J·m.

(5) When a weightlifter holds a 200 kg barbell above his head for 3 seconds before dropping it, the done work is:

- D None of the other answers.
- (6) If a force of 3 N is applied to an object that moves for 3 m, the work done is:
 - A 9 J.
 - B 3 J.
 - C 1 J.
 - D 0 J.

Figura 1

 $\ensuremath{\fbox{\Large 1}}$ If a force of 3 N is applied to an object that moves for 3 m, the work

done is:

	A 3 J.
	B 0 J.
	C 1 J.
	9 J.
2	When a weight lifter holds a 200 kg barbell above his head for 3 seconds before dropping it, the done work is:
	A None of the other answers.
	B 200 J.
	C 600 J.
	D 0 J.
3	The formula to compute the work W done on a body if the force F is parallel to the displacement d , as in figure 1 at the end of the text, is:
	$\boxed{\mathbf{A}} \ W = 2d.$
	$\boxed{\mathrm{B}} \ W = F \cdot d.$
	$\boxed{\mathrm{C}} W = m \cdot v.$
4	The formula $W = F \cdot d$ can be used only if the force F is parallel to the displacement d .
	A False.
	B True.
(5)	The unit for work is $J \cdot m$.
	A True.

- B False.
- \bigcirc The formula to compute the work W done on a body when the force F makes an angle with the displacement d is:
 - A None of the other answers.
 - $\boxed{\mathbf{B}} \ W = F \cdot d \cdot \sin x.$
 - $C W = F \cdot d \cdot \cos x.$
 - $\boxed{\mathbf{D}} \ W = F \cdot d.$

Figura 1

\bigcirc	The for	rmula	to co	mput	e the	work	W	done	on	a	body	when	the	force
	F mak	es an	angle	with	the d	lisplac	em	ent d	is:					

$$\boxed{\mathbf{A}} \ W = F \cdot d.$$

$$\boxed{\mathbf{B}} \ W = F \cdot d \cdot \sin x.$$

C None of the other answers.

$$\boxed{\mathbf{D}} \ W = F \cdot d \cdot \cos x.$$

(2) When a weightlifter holds a 200 kg barbell above his head for 3 seconds before dropping it, the done work is:

D None of the other answers.

(3) If a force of 3 N is applied to an object that moves for 3 m, the work done is:

4 The formula to compute the work W done on a body if the force F is parallel to the displacement d, as in figure 1 at the end of the text, is:

$$\boxed{\mathbf{A}} \ W = 2F.$$

$$\boxed{\mathbf{B}} \ W = m \cdot v.$$

$$C \mid W = F \cdot d.$$

$$\boxed{\mathbf{D}} W = 2d.$$

- (5) The formula $W = F \cdot d$ can be used only if the force F is parallel to the displacement d.
 - A False.
 - B True.
- 6 The unit for work is J·m.
 - A True.
 - B False.

Figura 1

1	The formula to compute the work W done on a body if the force F is
	parallel to the displacement d , as in figure 1 at the end of the text, is:

$$\boxed{\mathbf{A}} \ W = F \cdot d.$$

$$\boxed{\mathbf{B}} \ W = 2F.$$

$$\boxed{\mathbf{C}} \ W = m \cdot v.$$

$$\boxed{\mathbf{D}} \ W = 2d.$$

(3) The formula to compute the work
$$W$$
 done on a body when the force F makes an angle with the displacement d is:

$$\boxed{\mathbf{A}} \ W = F \cdot d.$$

$$\boxed{\mathbf{C}} \ W = F \cdot d \cdot \sin x.$$

 $[\]bigcirc$ If a force of 3 N is applied to an object that moves for 3 m, the work done is:

- \bigcirc The unit for work is J·m.
 - A False.
 - B True.
- (6) The formula $W = F \cdot d$ can be used only if the force F is parallel to the displacement d.
 - A True.
 - B False.

Figura 1