Алгебра Страница 2

1 Семинар 1.04

Листок 1.

Задача 1. Найдите число бинарных отношений на множестве из n элементов.

Решение 1. Для каждой пары $(a, b) \in M \times M$ мы |M| способами определяем то, куда отправляется пара. То есть способов n^{n^2} .

Пример. Рассмотрим отношение $(a,b) \to 2ab$ над \mathbb{N} . Заметим, что это полугруппа, т.к. $(a \circ b) \circ c = 4abc = a \circ (b \circ c)$. Но не моноид, т.к. $a \circ e = a = 2ae$, то есть e = 2e, что невозможно.

Пример. Рассмотрим матрицы вида $\begin{bmatrix} x & y \\ 0 & 0 \end{bmatrix}$ и обычное умножение. Это будет полугруппа (так как замкнуто относительно умножения), но не моноид, так как единицы нет.

Задача 2. Докажите, что если в группе G выполняется тождество $x^2 = e$, то G коммутативна.

Решение 2. Хотим показать, что $\forall a, b \in G: a \circ b = b \circ a$. Домножим на a слева и на b справа, получим:

$$a \circ a \circ b \circ b = (a \circ a) \circ (b \circ b) = e = a \circ b \circ a \circ b = (a \circ b) \circ (a \circ b) = e$$

Задача 3. Приведите пример элемента порядка 13 в группе $GL_2(\mathbb{R})$.

Решение 3. Найдем такое $\omega \in \mathbb{C}$, где $\omega = \sqrt[13]{1}$. В явном виде $\omega = \cos \varphi + i \sin \varphi$, где $\varphi = \frac{2\pi}{13}$. Его можно представить в виде невырожденной матрицы 2×2 :

$$\omega = \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}$$

Заметим, что матрица невырожденна, так как $\cos^2 \varphi + \sin^2 \varphi = 1$.

Задача 4. Приведите пример бесконечной группы, в которой все элементы имеют конечный порядок.

Решение 4. Вот несколько возможных вариантов:

- 1. Всевозможные комплексные корни из 1, то есть $G = \{\omega \in \mathbb{C} \mid \exists n \in \mathbb{N} : \omega^n = 1\}$.
- 2. Множество векторов столбцов над \mathbb{Z}_2 , то есть $G = \bigcup_{n=1}^{\infty} \mathbb{Z}_2^n$.

Задача 5. Докажите, что всякая подгруппа циклической группы является циклической.

Решение 5. Если G — циклическая, то $\exists g \in G : G = \langle g \rangle$. Пусть $H \subseteq G$ — подгруппа. Возьмем произвольный $h \in H$. Заметим, что $\exists k \in \mathbb{N} : g^k = h$. По определению, $e \in H$.

Задача 6. Найдите все подгруппы в группах S_3 и A_4 .

Решение 6. Просто перебор. Пользуемся теоремой Лагранжа, порядок подгруппы делит порядок группы. Берем произвольный элемент множества, смотрим на все другие элементы, которые должны лежать с ним в подгруппе.

а) $|S_3| = 6$. Тогда группы порядка:

$$1 \rightarrow \{e\}$$

Алгебра Страница 3

```
2 \to \{(12), (23), (13)\}, то есть транспозиции 3 \to \{(123), (132)\} 6 \to \{(12), (23), (13), (123), (132)\}
```

Задача 7. Опишите разбиение группы S_3 на левые и на правые смежные классы

- а) по подгруппе $\langle (12) \rangle$
- b) по подгруппе A_3

Решение 7. По определению, $gH = \{g \circ h \mid h \in H\}$. Для первого пункта просто переберем все возможные перестановки:

```
eH = \{e, (12)\}\
(12)H = \{(12), e\}\
(23)H = \{(23), (132)\}\
(13)H = \{(123), (13)\}\
(123)H = \{(13), (123)\}\
(132)H = \{(132), (23)\}\
```

Теперь второй пункт. Сначала левый смежный класс. Заметим, что $S_n = eA_n \sqcup (12)A_n$, таким образом мы получаем четные и нечетные перестановки. Теперь правый. Здесь $S_n = A_n e \sqcup (S \setminus A_n)$.