Molecular networks (intro)

Wessel van Wieringen w.n.van.wieringen@vu.nl

Department of Epidemiology and Biostatistics, VUmc & Department of Mathematics, VU University Amsterdam, The Netherlands

What?

Molecular biology aims to understand the molecular processes that occur in the cell. That is, e.g.:

- → which molecules present in the cell interact?
- → how is this coordinated?

For many cellular processes, it is unknown which genes play what role.

Goal

Reconstruct the cellular regulatory network.

Why?

Negative motivation

- → Differentially expressed genes: boring!
- → Yet another clustering?

Positive motivation

- → Fancy plot.
- → Different insight.
- → Network medicine

 (e.g. biomarker:
 gene-gene interaction)

Pathway = network

≈ a set of genes believed to carry one function

Pathways are loosely defined using repositories, such as:

- KEGG
- BioCarta
- GennMapp
- Reactome
- GO
- String

BioCarta: p53 signalling pathway

How?

Download from repository

- → Which? Reliable?
- → Knowledge is incomplete and biased towards a few well-studied pathways.
- → Does it apply to your situation?

Reconstruct from data

→ Data is a rare and valuable commodity!

Synthesis

Reconstruct from data with the repository as a suggestion

Network

Pathways are represented by a *graph* or *network*.

node or vertex, representing a gene.

edge or arrow, representing an interaction between two genes.

undirected and directed edges (≈ "association")

undirected (focus here)

directed

Network

Edge operationalization = direct relation

(Formally: conditional dependence)

Direct relation

Relation between two nodes without mediation of other nodes.

Indirect relation

Relation between two nodes through mediating other nodes.

No relation

None of the above.

Relations

- → node 1 and 2: directly
- → node 3 and 6: indirectedly
- → node 4 and 7: none

 \rightarrow

With?

To reconstruct which genes interact, we have available:

- → molecular profiles of *n* samples,
- → each profile comprises p features.

```
sample 1
                        sample 2
                                     sample 3
                                                 sample 4
                                                             sample 5
feature 1
            -0.21968
                        -0.42796
                                     0.26441
                                                 -5.74971
                                                             -0.96908
feature 2
            -0.08376
                        -7.21648
                                     -3.86460
                                                  0.77440
                                                             -3.18557
feature 3
           -1.08336
                        -1,14688
                                     -1,22544
                                                 -2.36134
                                                              0.19293
feature 4
          0.04333
                        -0.46377
                                     0.12756
                                                 -0.39535
                                                             -0.20215
                                                  1.23941
feature 5
          1.16542
                        0.86248
                                     1.16049
                                                              0.51927
feature 6
          -0.29687
                         0.28602
                                     -0.69624
                                                 -1,19779
                                                              0.19546
           1.76249
                         1.07556
                                     1.46201
                                                1.16076
                                                             1.29921
feature 7
feature 8
           0.46387
                         0.21271
                                     0.49455
                                                 0.58267
                                                             -0.44349
feature 9
           -1.27492
                         3.95515
                                     -0.26441
                                                 -2.95037
                                                             -0.77896
```

Possibly with:

- → network suggestion,
- → group information,
- → temporal layout.

How?

Roadmap

data

		sample	1 sa	ample 2	
gene	1	-0.2196	8 -0	9.42796	
gene	2	-0.0837	6 -7	7.21648	
gene	3	-1.0833	6 -1	1.14688	
gene	4	0.0433	3 -0	0.46377	

edge strength significantly different from zero: edge!

rags2ridges

Two-gene pathways comprise two genes, and ignore the possibility there may be more.

Scatterplots of data on two random variables. Which show association?

- → Assess association between two random variables graphically.
- → Not very exact and in boundary cases no consensus.

Ideally, a measure of interrelatedness of the two variables.

Correlation measures whether a change in one variable systematically coincides with a change in another variable.

Two-gene system

Calculate correlation between any two genes. If the correlation is large (in some sense), the two genes interact.

Eat chocolate, win the Nobel!

Even better: drink milk, win the Nobel!

Best: drink chocolate-milk, win the Nobel?

Does the involvement of more fireman result in more damage?

Possible interpretations of these data:

 $X \longrightarrow Y$ M

More firemen result in more damage.

X ← Y

More damage results in more firemen.

A bigger fire (Z) results in more firemen and more damage.

What to conclude about the relation between the expression levels of gene A and B?

Question

Could other genes be responsible for observed (in)dependence?

A possible model:

$$Y_1 = b_1 * Y_3 + error$$

 $Y_2 = b_2 * Y_3 + error$

Correlation between nodes 1 and 2 may be nonzero!

Simulation shows this:

Even though there is no direct (causal) relationship between node 1 and 2 they may be correlated.

Multi-gene pathways comprise of more than two genes, and assume no gene "lives" outside the pathway.

Correlate all possible gene pairs. This ignores the other genes, and only assesses (direct + indirect) association between a gene pair.

Example

Consider a pathway of 3 genes with underlying regulatory network:

Data

Correlation matrix:

Partial correlation coefficient

Correlation between two variables when taking into account other variables.

The partial correlation measures the direct relation between node A and B while excluding effects of nodes in C.

Denoted: $\rho(Y_a, Y_b \mid \mathbf{Y}_c)$

Partial correlation between nodes 2 and 5:

The partial correlation is a correction, thus:

$$\rho(Y_a, Y_b | \mathbf{Y}_c) \in [-1, 1]$$

with:

$$\rho(Y_a, Y_b \mid \mathbf{Y}_c) = 0 \qquad \rho(Y_a, Y_b \mid \mathbf{Y}_c) = 0.2 \qquad \rho(Y_a, Y_b \mid \mathbf{Y}_c) = 1$$

Interpretation

Let Y_1 , Y_2 , Y_3 be random variables. Then, $\rho(Y_1, Y_2 | Y_3) \approx$ amount of information in Y_1 on Y_2 after removal of all information on either of them contained in Y_3 .

$$\rho(Y_1, Y_2 \mid Y_3) = 0$$

```
Call:
lm(formula = Y1 ~ 0 + Y2 + Y3)

Coefficients:
    Estimate Pr(>|t|)
Y2 -0.01444     0.638
Y3   1.01584     <2e-16 ***</pre>
```

 Y_2 adds nothing to Y_3 in explaining variation in Y_1 .

$$\rho(Y_1, Y_2 | Y_3) \neq 0$$

```
Call:
lm(formula = Y1 ~ 0 + Y2 + Y3)

Coefficients:
    Estimate Pr(>|t|)
Y2    0.24869    2.95e-15 ***
Y3    0.96542    < 2e-16 ***</pre>
```

 Y_2 does add to Y_3 in explaining variation in Y_1 .

Example (continued)

Partial correlation matrix:

	Y1	Y2	Y 3
Y1	1.000	0.952	0.549
Y2	0.952	1.000	-0.576
Y 3	0.549	-0.576	1.000

underlying regulatory network

reconstructed (correlation)

reconstructed (partial correlation)

rags2ridges

- → calculates partial correlations ...
- → ... from high-dimensional data (in ridge fashion).
- → identifies the network from partial correlations.
- → allows for incorporation of network suggestion.
- → visualizes network.
- → exploits network (model) for down-stream purposes.
- → deals with group information: differential networks.

glasso

→ ... from high-dimensional data (in lasso fashion).

ragt2ridges

→ sibling of rags2ridges for time course data.

This material is provided under the Creative Commons Attribution/Share-Alike/Non-Commercial License.

See http://www.creativecommons.org for details.