${\rm Mek4100}$ The π theorem and scaling

Geir Pedersen

Department of Mathematics, UiO

August 21, 2020

The Buckingam π theorm

Problem contains

- Basic units L_i , j = 1, n
- Parameters q_k , k = 1, m

$$q_k = p_k \prod_{j=1}^n L_j^{a_{jk}} = p_k L_1^{a_{1k}} \cdot ... L_n^{a_{nk}}.$$

Seek dimensionless combinations on the form

$$\begin{array}{lcl} \pi & = & \prod_{k=1}^m q_k^{\alpha_k} \\ & \sim & L_1^{a_{11}\alpha_1 + a_{12}\alpha_2 + \ldots + a_{1m}\alpha_m} \\ & & \cdot L_2^{a_{21}\alpha_1 + a_{22}\alpha_2 + \ldots + a_{2m}\alpha_m} \\ & & \cdot \ldots \\ & & \cdot L_n^{a_{n1}\alpha_1 + a_{n2}\alpha_2 + \ldots + a_{nm}\alpha_m} \end{array}$$

 π dimensionless when

$$a_{11}\alpha_1 + a_{12}\alpha_2 + ... + a_{1m}\alpha_m = 0$$

.... = 0
 $a_{n1}\alpha_1 + a_{n2}\alpha_2 + ... + a_{nm}\alpha_m = 0$

Matrix form

$$AX = 0$$
.

n equations with m unknowns, where

- $A = \{a_{ik}\}$ is the Dimension matrix
- $X = \{\alpha_k\}$

Linear algebra \Rightarrow solution space of dimension m-r, where $r = \text{rank}(A) \leq \min(n, m)$.

In other words: We have m-r independent solutions for π . Infinite number of derived solutions (as π_1^2 , $\pi_1\pi_2$) makes choice of π 's ambiguous.

π theorem, part i

There are exactly m-r independent dimensionless numbers.

Important consequnce:

We obtain the numbers by inspection, selection etc. As long as we find m-r independent ones we are good!

Gaussion elimination on AX = 0 should be used as last resort, only.

Rescaling

$$\hat{L}_j = \lambda_j L_j.$$

$$q_k = p_k \prod_{j=1}^n L_j^{a_{jk}} = \hat{p}_k \prod_{j=1}^n \hat{L}_j^{a_{jk}}, \quad \hat{p}_k = p_k \prod_{j=1}^n \lambda_j^{a_{jk}}$$

Logan leaves out p_k and treatise of second part if π theorem is flawed.

Unit-free relation

No good definition in Logan. No good counter-examples.

Attempted definition

Any relation $F(q_1,...,q_m)=0$ implies a relation between the numeral values $f(p_1,...,p_m)=0$. If f is independent of the choice of units the relation is unit-free.

All useful relations are like this.

π theorem, part ii

Any unit-free relation $F(q_1,...,q_m)=0$ can be expressed in terms of dimensionless numbers; $G(\pi_1,...,\pi_{m-r})=0$

We skip the proof.

Example; mathematical pendulum revisited

Parameters

$$\begin{array}{c|cccc} m & \ell & g & \omega \\ \hline M & L & LT^{-2} & T^{-1} \end{array}$$

Use of π theorem, part i

Units on m, ℓ and ω independent $\Rightarrow r = 3$.

Number of π : 4-3=1.

m cannot enter; only quantity with mass.

Remove time between ω and g: $\omega^2/g \sim L^{-1}$.

Remove length $\pi = \ell \omega^2/g$.

$$\pi = \frac{\ell\omega^2}{\mathsf{g}}$$

Use of π theorem, part ii

We seek ω expressed by the other parameters:

$$F(\omega, m, \ell, g) = 0$$

Can be expressed as

$$G(\pi) = 0 \Rightarrow \pi = \text{const.}$$

Then

$$\pi = \frac{\ell \omega^2}{g} = \text{const.} \quad \Rightarrow \quad \omega = \text{const.} \sqrt{\frac{g}{\ell}}.$$

Where const. may be a different constant each time.

Mathematical pendulum with finite excursion

New parameter: maxiumum horizontal excursion x

Use of π theorem, part i

Still we have r = 3.

Number of π : 5-3=2.

The one from previous example is still applicable

$$\pi_1 = rac{\ell \omega^2}{g}$$

Need one more. Obvious choice

$$\pi_2 = \frac{x}{\ell}$$

Since x is part of π_2 , but not π_1 , the two π 's are independent.

Use of π theorem, part ii

We seek ω expressed by the other parameters:

$$F(\omega, m, \ell, g, x) = 0$$

Can be expressed as

$$G(\pi_1,\pi_2)=0 \quad \Rightarrow \quad \pi_1=h(\pi_2),$$

where h is an unknown function.

Then

$$\pi_1 = \frac{\ell\omega^2}{g} = h(\pi_2) \quad \Rightarrow \quad \omega = \sqrt{\frac{g}{\ell}} \hat{h}\left(\frac{x}{\ell}\right).$$

Where $\hat{h} = h^{\frac{1}{2}}$.

Scaling; The projectile example.

$$\begin{split} m \frac{\mathrm{d}^2 h}{\mathrm{d}t^2} &= -\frac{GmM}{(h+R)^2} \\ h(0) &= 0, \quad \frac{\mathrm{d}h(0)}{\mathrm{d}t} = V \end{split}$$

From Newton's 2 law.

At school: h very small (meaning what ?) $\Rightarrow h = Vt - \frac{1}{2}gt^2$ Goal:

- Identify small parameter that tells when h is small
- Make problem dimensionless such that small h limit is OK.

Reshuffling equation $(g = MG/R^2)$

$$\frac{\mathrm{d}^2 h}{\mathrm{d}t^2} = -\frac{g}{\left(1 + \frac{h}{R}\right)^2}$$
$$h(0) = 0, \quad \frac{\mathrm{d}h(0)}{\mathrm{d}t} = V$$

Solution h = h(V, g, R, t)

Observations:

- m cancels out
- M and G always appeared as single entity MG
- Often useful to do some simplifications at the very beginning.

Scaling

$$\overline{t} = \frac{t}{t_c}, \quad \overline{h} = \frac{h}{h_c}.$$

Choice of characteristic time (t_c) and height (h_c) ambiguous, but dimensionless time and height hould be of order unity.

$$\frac{h_c}{t_c^2} \frac{\mathrm{d}^2 \overline{h}}{\mathrm{d}\overline{t}^2} = -\frac{g}{\left(1 + \frac{h_c}{R} \overline{h}\right)^2}$$
$$\overline{h}(0) = 0, \quad \frac{h_c}{t} \frac{\mathrm{d}\overline{h}(0)}{\mathrm{d}\overline{t}} = V$$

Observation: Both \overline{t} and \overline{h} must be π 's.

Dimension analysis

Number of π : 5-2=3. Choice

- **1** Obvious: $\pi_1 = \frac{h}{R}$.
- 2 Now, one with t and not h: $\pi_2 = \frac{Vt}{R}$.
- **3** Finally, neither h nor t. Then, the subset g, R, V provide a single number (use π theorem on subset!) $\pi_3 = \frac{V}{\sqrt{gR}}$

Feasible scalings:

$$\overline{t} = p(\pi_3)\pi_2, \quad \overline{h} = P(\pi_3)\pi_1.$$

where p and P are functions to be selected. Low orbit; requirement cannot contain t or h

$$\pi_3 \ll 1$$

« means "a magnitude smaller".

Scaling; attempt 1

Simply put p = P = 1

$$\overline{t}=\pi_2=rac{Vt}{R},\quad \overline{h}=\pi_1=rac{h}{R}.$$
 $t_c=rac{R}{V},\quad h_c=R.$

Scaled eqs:

$$\pi_3^2 \frac{\mathrm{d}^2 \overline{h}}{\mathrm{d} \overline{t}^2} = -\frac{1}{\left(1 + \overline{h}\right)^2}, \quad \overline{h}(0) = 0, \quad \frac{\mathrm{d} \overline{h}(0)}{\mathrm{d} \overline{t}} = 1.$$

Limit $\pi_3 \to 0$ ill behaved. Must have $|\frac{\mathrm{d}^2\overline{h}}{\mathrm{d}\overline{t}^2}| \to \infty$ as $\pi_3 \to 0$. Rubbish scaling.

Scaling; attempt 2. Use g instead of V in \overline{t} .

Make \bar{t} from t, g and R (unique, why?)

$$\overline{t} = \pi_2 = \sqrt{\frac{g}{R}}t, \quad \overline{h} = \frac{h}{R}.$$

$$t_c = \sqrt{\frac{R}{g}}, \quad h_c = R, \quad p(\pi_3) = \frac{1}{\pi_3}.$$

Scaled eqs:

$$\frac{\mathrm{d}^2\overline{h}}{\mathrm{d}\overline{t}^2} = -\frac{1}{\left(1+\overline{h}\right)^2}, \quad \overline{h}(0) = 0, \quad \frac{\mathrm{d}\overline{h}(0)}{\mathrm{d}\overline{t}} = \pi_3.$$

Limit $\pi_3 \to 0$: "start from rest"; \overline{h} becomes immedeately negative; no upward motion Rubbish again.

Why failure?

Scaling 1

- $h_c = R$. Low orbit: characteristic h not radius of Earth.
- $t_c = \frac{R}{V}$. Time spent by traveling to center of Earth with speed V. Too large for t_c .

 h_c and t_c not characteristic at all!

Scaling 2

- $h_c = R$. Still bad.
- $t_c = \sqrt{\frac{R}{g}}$. Like time spent to center of Earth from rest with accelration g. Again too large for t_c .

Equally stupid as 1.

Proper attempt; leave R out of scaling

express t_c and h_c in terms of V and g, only

$$t_c = \frac{V}{g}, \quad h_c = \frac{V^2}{g}.$$

Observe: $p = P = \pi_3^{-2}$.

 t_c is time for retardation from V to 0 by g.

 h_c is such that potential energy gh_c is comparable to kinetic energy at t=0. And, $h_c=Vt_c$.

Scaled eqs:

$$\frac{\mathrm{d}^2\overline{h}}{\mathrm{d}\overline{t}^2} = -\frac{1}{\left(1 + \pi_3^2\overline{h}\right)^2}, \quad \overline{h}(0) = 0, \quad \frac{\mathrm{d}\overline{h}(0)}{\mathrm{d}\overline{t}} = 1.$$

Limit $\pi_3 \to 0$: $\overline{h} = \overline{t} - \frac{1}{2}\overline{t}^2$. "School result" reproduced.

Lessons learned

- \bullet π theorem alone is not sufficient.
- Correct scaling guided by sound interpretations of h_c and t_c .
- Dimensionless variables and coefficients of dimensionless equations are π 's.

Finally. Interpretation of low-orbit requirement

$$\pi_3 = \frac{V}{\sqrt{gR}} \ll 1.$$

 \sqrt{gR} describes "free fall velocity to center of Earth". That V is much less than this is a reasonable requirement.

But, honestly

Instructive as it may be, that was also a lot of fuzz. Funny how a little theory may make you dance. Here is another approach.

The equation set, once more

$$\frac{\mathrm{d}^2 h}{\mathrm{d}t^2} = -\frac{g}{\left(1 + \frac{h}{R}\right)^2}, \quad h(0) = 0, \quad \frac{\mathrm{d}h(0)}{\mathrm{d}t} = V.$$

Fairly clear that the red term should be small for a low orbit. Deletion gives the trivial set

$$\frac{\mathrm{d}^2 h}{\mathrm{d}t^2} = -g, \quad h(0) = 0, \quad \frac{\mathrm{d}h(0)}{\mathrm{d}t} = V,$$

which gives a position

$$h = Vt - \frac{1}{2}gt^2.$$

Ah well, identifying a simplified problem that was easily solved gave an approximate solution

$$h=Vt-\frac{1}{2}gt^2.$$

The peak positon then becomes

$$h_{\max} = h(t_{\max}) = V^2/(2g), \quad t_{\max} = V/g.$$

Choosing h_c and t_c accordingly, and claiming $h/R \ll 1$ we find

$$t_c = rac{V}{g}, \quad h_c = rac{V^2}{g} = V t_c, \quad \epsilon \equiv rac{V^2}{gR} \ll 1$$

The defined ϵ (standard name for small parameter) equals π_3^2 . Next, the full set is scaled accordingly, ϵ will appear and we are ready to invoke a perturbation scheme.

In a more complex case we would often combine simplified solutions, or even heuristic arguments, with dimension analysis to get the equation set into shape and prepare for solution – numerical or analytical.