Simulations for Non-Proportional Hazards

Acknowledgement

- Team Leads:
 - Tianle Hu (Eli Lilly)
 - Satrajit Roychoudhury (Pfizer)
 - Keaven Anderson (Merck)
 - Julie Cong (Boehringer Ingelheim)
- Special Thanks to
 - Larry Leon (Genentech)
 - Honglu Liu (Eli Lilly)

- Team includes members from:
 - Abbvie
 - AstraZeneca
 - Bayer
 - BMS
 - Boehringer Ingelheim
 - Genentech/Roche
 - Johnson & Johnson
 - Merck
 - Pfizer
 - Sanofi
 - Takeda

Simulation Scope

Methods

- Category 1: LR, FH(0,1), FH(1,0), FH(1,1)
- Category 2: Weighted K-M, RMST
- Category 3: Breslow combo, max combo

Scenarios

- Delayed Treatment 1 & 2
- Diminishing Effect (Belly Shape)
- Crossing Hazards 1 & 2
- Proportional Hazards
- Null Scenario
- ❖ Delay scenarios are informed by CM − 141 (2L SCCHN) and CM − 017 (2L Squamous NSCLC)
- Diminishing effect scenario is is informed by AVAGAST Trial (1L Gastric Cancer)
- Crossing Hazards are informed by CM- 057 (2L Non-squamous NSCLC) and IPASS (1L NSCLC)

Simulation Setup

Sample size: 300, 600 and 1200.

Enrollment Duration: 12 mos, 18 mos and 24 mos.

Dropout hazard rate: λ =0.014.

Number of events: 210

Scenario	СР	0 ≤ t < CP		t ≥ CP			
		λC1	λE1	HR1	λC2	λE2	HR2
Delayed Effect 1	3	0.104	0.103	0.990	0.161	0.077	0.478
Delayed Effect 2	3	0.226	0.210	0.929	0.222	0.079	0.356
Diminishing Effect	6	0.134	0.098	0.731	0.140	0.137	0.979
Crossing Hazards 1	6	0.061	0.068	1.115	0.090	0.048	0.533
Crossing Hazards 2	6	0.108	0.123	1.139	0.334	0.120	0.359
Proportional Hazards	3	0.104	0.071	0.680	0.161	0.110	0.680
Null	3	0.104	0.104	1.000	0.161	0.161	1.000

Cases	events =70%*300	events =35%*600	events =17.5%*1200
12 months	N=300,12mos	N=600,12mos	N=1200,12mos
18 months	N=300,18mos	N=600,18mos	N=1200,18mos
24 months	N=300,24mos	N=600,24mos	N=1200,24mos

Testing

Null Scenario (Type 1 Error)

- All methods control type 1 error well across cases.
- There are random spikes over 2.5%, but mostly within simulation standard error (0.1% based on 20,000 iterations).
- Combo.Beslow requires asymptotic independence:
 - In finite sample, independence assumption may not hold.

Delayed Scenario

- The max combo test has clear advantage over LRT in terms of power.
- In fact, its performance is close to that of FH(0,1), which is expected to perform well.
- The advantage is larger with higher censoring.
- The K-M based test statistics don't perform as well.
- Irrespective of tests, the power increases with maturity and enrollment time.

Diminishing Scenario

- Diminishing is a challenging scenario because the "overall" treatment effect is usually small
- Under the diminishing effect, max combo has ~4% less power than LRT.
- The FH(1,0) does better, but not by a whole lot.
- Weighted K-M does well too, similar to FH(1,0)
- Irrespective of tests, the power decreases with enrollment time and maturity.

Crossing Hazards Scenario

- Crossing hazards (HR₁>1 and HR₂<1) is very similar to delayed effect
- The max combo test has a clear advantage over LRT in terms of power.
- In fact, its performance is close to that of FH(0,1), which is expected to perform well.
- The K-M based test statistics don't perform as well.

PH Scenario

- The LRT is the semi-parametric most efficient under PH.
- However, most of the tests we considered are quite competitive:
 - mostly within 10% power difference, except FH(0,1).
- max combo is about 3-4% power inferior to the LRT.
- Power only depends on the number of events

Model Selection Probabilities of Max-combo

Estimation

HR vs. Max-combo Estimate (Null and PH)

Max-combo Estimate

- Based on the simulation, with the limited set of tests in the max combo test, the bias in the point estimate is negligible.
 - under the null (HR=0.95 vs true HR of 1)
 - under the PH (HR=0.65 vs true HR of 0.68)
- In all other scenarios, the point estimate of the max.combo is the average HR, which depends on the weight function.

Procedure to Estimate Trt Effect

Perform the max-combo test to reject the "Null" hypothesis (no treatment effect)

Diagnostic Tools of NPH (GT test or Graphical tools)

If PH holds

- 1. Standard Cox PH HR
- Average HR of the max-combo with its 95% CI

If PH does not hold

- 1. Cox HR/average HR with 95% CI
- 2. Difference in RMST at t*: (pre-specified)
- 3. Difference in milestone survival at t*: (pre-specified)
- 4. <u>secondary analysis</u>: piecewise HR with 95% CI

Will illustrate this procedure in Session III

Conclusions and Recommendations

- Max combo test is robust and agnostic to the types of non-PH:
 - A very strong upside under delayed effect or crossing hazards scenarios (both quite commonly being observed within IO)
 - Acceptable loss in power under PH and diminishing effect (3-4%).
 - Such trade-off motivates the max combo to be a competitive test.
- Effect estimation under NPH is complex.
 - Max-combo estimate: the bias is negligible under the null and PH.
 - For treatment effect estimate, take a data-dependent approach
 - If PH according to the diagnostic tool (GT test or graphical tool), then report regular HR and max-combo estimate.
 - Otherwise, RMST difference, milestone rates and piecewise HR in addition.

Questions to the Panel

- Do you agree max-combo is an appropriate <u>test</u> when the trialist is uncertain of NPH?
- 2. Do you agree max-combo <u>estimate</u> is an useful measure of treatment effect?
- 3. Is a data dependent approach to estimating the treatment effect acceptable?