Real Analysis

Hai Le **Professor** LATEX by Rui Zhou University of Michigan

Winter 2024

Contents

4	\mathbf{Pro}	duct of Measures	2
	4.1	Products of σ -Algebras	2
	4.2	Products of Measures	3
	4.3	Order of Integration	5
	4.4	Lebesgue Integration on \mathbb{R}^n	7

Chapter 4

Product of Measures

4.1 Products of σ -Algebras

Definition 4.1.1: Rectangle

Suppose X and Y are sets. A rectangle in $X \times Y = \{(x, y) : x \in X, y \in Y\}$ is a set of the form $A \times B$, where $A \subseteq X$ and $B \subseteq Y$.

Definition 4.1.2

Suppose (X, \mathcal{S}) and (Y, \mathcal{T}) are measurable spaces. Then

- The product $(\sigma$ -algebra) $S \otimes T$ is defined to be the smallest σ -algebra on $X \times Y$ that contains $\{A \times B : A \in \mathcal{S}, B \in \mathcal{T}\}.$
- A measurable rectangle in $S \otimes T$ is a set of $A \times B$ where $A \in S$ and $B \in T$.

$$S \times T = \{(A, B) : A \in S, B \in T\}$$
$$S \otimes T \supseteq \{A \times B : A \in S, B \in T\}$$

Definition 4.1.3: Cross Section

Suppose X and Y are sets and $E \subseteq X \times Y$. Then for $a \in X$ and $b \in Y$, the cross sections $[E]_a$ and $[E]^b$ are defined by

$$\begin{split} [E]_a &:= \{y \in Y : (a,y) \in E\} \subseteq Y \\ [E]^b &:= \{x \in X : (x,b) \in E\} \subseteq X \end{split}$$

Proposition 4.1.4: Cross Sections Preserve Measurability

Suppose (X, \mathcal{S}) and (Y, \mathcal{T}) are measurable spaces. If $E \in \mathcal{S} \otimes \mathcal{T}$, then $[E]_a \in \mathcal{T}$ for all $a \in X$ and $[E]_b \in \mathcal{S}$ for all $b \in Y$.

Proof for Proposition.

Let \mathcal{E} be the collection of subsets of $X \times Y$ for which the conclusion of the result holds. Note that \mathcal{E} contains all measurable rectangles: $A \times B : A \in \mathcal{S}, B \in \mathcal{T}$.

Prove that \mathcal{E} is indeed a σ -algebra:

- $\times \in \mathcal{E}$
- (Closed under complementation) If $E \in \mathcal{E}$, then $(x,y) \setminus E \in \mathcal{E}$.
- (Closed under countable union) If $E_1, E_2, \dots \in \mathcal{S}$, then

$$[E_1 \cup E_2 \cup \cdots]_a = [E_1]_a \cup [E_2]_a \cup \cdots$$

Definition 4.1.5: Cross Section Function

Suppose X and Y are sets and $f: X \times Y \to \mathbb{R}$. For $a \in X$ and $b \in Y$, the cross section functions $[f]_a: Y \to \mathbb{R}, [f]^b: X \to \mathbb{R}$ are defined by $[f]_a(y) := f(a,y)$ for $y \in Y$, and $[f]^b(x) := f(x,b)$ for $x \in X$.

Proposition 4.1.6

f is a $S \otimes T$ -measurable function, then $[f]_a$ is a T-measurable function and $[f]^b$ is an S-measurable function.

4.2 Products of Measures

Definition 4.2.1: Finite Measure

A measure μ on a measurable space (X, \mathcal{S}) is finite if $\mu(X) < \infty$. A measure μ is called σ -finite if the whole space can be written as a countable union of sets with finite measure.

Example.

- Lebesgue measure on [0, 1] is finite.
- Lebesgue measure on $\mathbb R$ is σ -finite, because $\mathbb R = \bigcup_{n=-\infty}^\infty [n,n+1]$.
- Counting measure on $\mathbb R$ is not σ -finite.

Proposition 4.2.2

Suppose (X, \mathcal{S}, μ) and (Y, \mathcal{T}, ν) are σ -finite measure spaces. If $E \in \mathcal{S} \otimes \mathcal{T}$, then

- $x \mapsto \nu([E]_x)$ is an S-measurable function on X.
- $y \mapsto \mu([E]^y)$ is a \mathcal{T} -measurable function on Y.

Definition 4.2.3

Suppose (X, \mathcal{S}, μ) is a measurable space. $g: X \to [-\infty, \infty]$. $\int g(x) d\mu(x)$ means $\int g d\mu$, where $d\mu(x)$ indicates that variables other than x should be treated as constants.

Definition 4.2.4: Iterated Integrals

Definition (Iterated Integrals) Suppose (X, \mathcal{S}, μ) and (Y, \mathcal{T}, ν) are σ -finite measure spaces. $f: X \times Y \to \mathbb{R}$.

$$\int_{X} \int_{Y} f\left(x,y\right) \; \mathrm{d}\nu\left(y\right) \; \mathrm{d}\mu\left(x\right) = \int_{X} \left(\int_{Y} f\left(x,y\right) \; \mathrm{d}\nu\left(y\right)\right) \; \mathrm{d}\mu\left(x\right).$$

Example.

If λ is the Lebesgue measure on \mathbb{R} , then

$$\int_{[0,4]} \int_{[0,4]} (x^2 + y) \, d\lambda(y) \, d\lambda(x) = \int_{[0,4]} (4x^2 + 8) \, d\lambda(x) = \frac{352}{3}.$$

Definition 4.2.5

Suppose (X, \mathcal{S}, μ) and (Y, \mathcal{T}, ν) are measure spaces. For $E \in \mathcal{S} \otimes \mathcal{T}$, define $(\mu \times \nu)$ (E) by

$$(\mu \times \nu)(E) := \int_{X} \int_{Y} \chi_{E}(x, y) \, d\nu(y) \, d\lambda(x).$$

Proposition 4.2.6

 $\mu \times \nu$ is a measure on $(X \times Y, \mathcal{S} \otimes \mathcal{T})$.

Proof for Proposition.

It is trivial to see that $(\mu \times \nu)$ () = 0.

 $(\mu \times \nu)$ is countably additive: Suppose E_k 's are disjoint sets in $\mathcal{S} \otimes \mathcal{T}$,

$$(\mu \times \nu) \left(\bigcup_{k=1}^{\infty} E_k \right) = \int_X \int_Y \chi_{\bigcup_{k=1}^{\infty} E_k} (x, y) \, d\nu (y) \, d\lambda (x)$$

$$= \int_X \nu \left(\left[\bigcup_{k=1}^{\infty} E_k \right]_x \right) \, d\mu (x)$$

$$= \int_X \nu \left(\bigcup_{k=1}^{\infty} [E_k]_x \right) \, d\mu (x)$$

$$= \int_X \sum_{k=1}^{\infty} \nu ([E_k]_x) \, d\mu (x)$$

$$= \sum_{k=1}^{\infty} \int_X \nu ([E_k]_x) \, d\mu (x)$$

$$= \sum_{k=1}^{\infty} (\mu \times \nu) (E_k)$$

Note that you may change the order of infinite series and integral by monotone convergence theorem.

4.3 Order of Integration

Theorem 4.3.1: Tonellis's Theorem

Suppose (X, \mathcal{S}, μ) and (Y, \mathcal{T}, ν) are σ -finite measure spaces. Suppose $f: X \times Y \to [0, \infty]$ is $\mathcal{S} \otimes \mathcal{T}$ -measurable. Then

- $x \mapsto \int_{V} f(x,y) \, d\nu(y)$ is an S-measurable function on X.
- $y \mapsto \int_{X} f(x, y) d\mu(x)$ is a \mathcal{T} -measurable function on Y.

Proof for Theorem

Essentially, we only need to check if the theorem is true for $f = \chi_{A \times B}(x, y)$.

$$\int_{X \times Y} \chi_{A \times B} d\mu \times \nu = \int_{X} \left(\int_{Y} \chi_{A \times B} (y) \right) d\mu (x)$$

$$= \int_{X} \nu (B) d\mu (x)$$

$$= \nu (B) \mu (A)$$

$$= \mu \times \nu (A \times B)$$

note that the equality in the last line is simply by definition of $\mu \times \nu$.

Example.

- Without σ -finite:
 - $-([0,1],\mathcal{B}.\lambda)$: Lebesgue measure space on [0,1].
 - $-([0,1],\mathcal{B},\mu)$: Counting measure space on [0,1].
 - Let D be the diagonal of $[0,1] \times [0,1]$, $D = \{(x,x) : x \in [0,1]\}$.

$$\int_{[0,1]} \int_{[0,1]} \chi_D \, d\lambda \, d\mu = \int_{[0,1]} 0 \, d\mu = 0$$
$$\int_{[0,1]} \int_{[0,1]} \chi_D \, d\mu \, d\lambda = \int_{[0,1]} 1 \, d\lambda = 1$$

• Without non-negativity:

$$\int_{[0,1]} \int_{[0,1]} \frac{x^2 - y^2}{\left(x^2 + y^2\right)^2} \, \mathrm{d}x \, \mathrm{d}y \neq \int_{[0,1]} \int_{[0,1]} \frac{x^2 - y^2}{\left(x^2 + y^2\right)^2} \, \mathrm{d}y \, \, \mathrm{d}x$$

Theorem 4.3.2: Fubini's Theorem

Suppose (X, \mathcal{S}, μ) and (Y, \mathcal{T}, ν) are σ -finite measure spaces. Suppose $f: X \times Y \to [-\infty, \infty]$ is $\mathcal{S} \otimes \mathcal{T}$ -measurable, and $\int_{X \times Y} |f| \ d\mu \times \nu < \infty$. Then

- $\int_{Y} |f(x,y)|(y) < \infty$ for almost every $x \in X$, and $\int_{X} |f(x,y)| d\mu(y) < \infty$ for almost every $y \in Y$.
- $x \mapsto \int_{Y} f(x, y) \, d\nu(y)$ is an S-measurable function on X. $y \mapsto \int_{X} f(x, y) \, d\mu(x)$ is a \mathcal{T} -measurable function on Y.
- $\int_{X \times Y} f(x, y) d(\mu \times \nu) = \int_{X} \left(\int_{Y} f(x, y) (y) \right) d\mu(x) = \int_{Y} \left(\int_{X} f(x, y) d\mu(x) \right) (y).$

Proof for Theorem

Apply Tonellis's theorem to f^+ , f^- and $|f| < \infty$ makes sure that both $\int f^+$ and $\int f^-$ are finite.

Definition 4.3.3: Under-Graph Region

Definition () Suppose X is a set and $f: X \to [0, \infty]$ is a function. The region under the graph f, denoted as U_f , is defined by

$$U_f = \{(x, t) \in (X, (0, \infty)) : 0 < t < f(x)\}$$

Proposition 4.3.4

Suppose (X, \mathcal{S}, μ) is a σ -finite measure space, and $f : X \to [0, \infty]$ is an \mathcal{S} -measurable function. Consider $((0, \infty), \mathcal{B}, \lambda)$ (where λ is the Lebesgue measure). Then

$$U_f \in \mathcal{S} \times \mathcal{B}$$

and

$$\mu \times \nu (U_f) = \int_X f \, d\mu$$
$$= \int_{(0,\infty)} \mu \left(\left\{ x \in X : 0 < t < f(x) \right\} \right) \, d\lambda (t)$$

Proof for Proposition.

Apply Tonellis' theorem to $\chi_{U_f}(x,t)$ to finish the proof.

4.4 Lebesgue Integration on \mathbb{R}^n

Consider the n-dimensional space

$$\mathbb{R}^n = \{(x_1, x_2, \cdots, x_n) : x_1, x_2, \cdots, x_n \in \mathbb{R}\}\$$

Pick any norm $\|\cdot\|_2$ on \mathbb{R}^n . We can define open balls:

$$B(x, \delta) := \{ y \in \mathbb{R}^n : ||x - y||_2 < \delta \}$$

Definition 4.4.1: Borel σ -algebra \mathcal{B}_n of \mathbb{R}^n

The Borel σ -algebra \mathcal{B}_n of \mathbb{R}^n is the smallest σ -algebra that contains all open balls.

Proposition 4.4.2

$$\mathcal{B}_m \otimes \mathcal{B}_n = \mathcal{B}_{m+n}$$

Relate this result to $\mathbb{R}^m \times \mathbb{R}^n = \mathbb{R}^{m+n}$.

Definition 4.4.3: Lebesgue measure on \mathbb{R}^n

The Lebesgue measure on \mathbb{R}^n , λ_n is defined inductively:

$$\lambda_n := \lambda_{n-1} \times \lambda_1$$

where λ_1 is the Lebesgue measure on $(\mathbb{R}, \mathcal{B}_1)$.

$$\lambda_{m+n} = \lambda_m \times \lambda_n.$$