Docket No.: R2180.0194/P194

Examiner: Not Yet Assigned

(PATENT)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of:

Eiji Noda et al.

Application No.: Not Yet Assigned

Filed: Concurrently Herewith Art Unit: N/A

For: METHOD, SYSTEM AND PROGRAM FOR

AUTHENTICATING RECORDING

MEDIUM, AND COMPUTER READABLE

RECORDING MEDIUM

CLAIM FOR PRIORITY AND SUBMISSION OF DOCUMENTS

MS Patent Application Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

Applicant hereby claims priority under 35 U.S.C. 119 based on the following prior foreign applications filed in the following foreign countries on the dates indicated:

Country	Application No.	Date
Japan	2003-083012	March 25, 2003
Japan	2003-177822	June 23, 2003
Japan	2003-328640	September 19, 2003

Application No.: Not Yet Assigned Docket No.: R2180.0194/P194

In support of this claim, a certified copy of each said original foreign application is filed herewith.

Dated: March 25, 2004

Respectfully submitted,

Thomas J. D'Amico

Registration No.: 28,371

DICKSTEIN SHAPIRO MORIN &

OSHINSKY LLP

2101 L Street NW

Washington, DC 20037-1526

(202) 785-9700

Attorney for Applicant

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 3月25日

出 願 番 号 Application Number:

特願2003-083012

[ST. 10/C]:

[J P 2 0 0 3 - 0 8 3 0 1 2]

出 願 人
Applicant(s):

株式会社リコー

特許庁長官 Commissioner, Japan Patent Office 2004年 1月29日

今井康

【書類名】 特許願

【整理番号】 0301792

【提出日】 平成15年 3月25日

【あて先】 特許庁長官 殿

【国際特許分類】 G11B 20/12

【発明の名称】 記録媒体の正当性判断方法とプログラムとコンピュータ

読み取り可能な記録媒体

【請求項の数】 14

【発明者】

【発明者】

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内

【氏名】 野田 英治

【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内

【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内

【氏名】 渡部 剛史

【識別番号】 000006747

【特許出願人】

【住所又は居所】 東京都大田区中馬込1丁目3番6号

【氏名又は名称】 株式会社リコー

【代表者】 桜井 正光

【代理人】

【識別番号】 100080931

【住所又は居所】 東京都豊島区東池袋1丁目20番2号 池袋ホワイトハ

ウスビル818号

【弁理士】

【氏名又は名称】 大澤 敬

【手数料の表示】

【予納台帳番号】 014498

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9809113

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 記録媒体の正当性判断方法とプログラムとコンピュータ読み取り可能な記録媒体

【特許請求の範囲】

【請求項1】 所定の規則に従って情報トラック上に記録された固有のデータを有する記録媒体に対して前記固有のデータの取得を試みるデータ取得手順と、該データ取得手順によって取得した前記固有のデータに基づいて前記記録媒体の正当性を判断する正当性判断手順とからなることを特徴とする記録媒体の正当性判断方法。

【請求項2】 前記所定の規則が複数種類の記録方式に基づいた規則である 請求項1記載の記録媒体の正当性判断方法。

【請求項3】 前記複数種類の記録方式がアンインタラプテッド方式とインクリメンタル方式である請求項2記載の記録媒体の正当性判断方法。

【請求項4】 前記アンインタラプテッド方式がトラック・アット・ワンス 方式であり、前記インクリメンタル方式がパケットライト方式である請求項3記 載の記録媒体の正当性判断方法。

【請求項5】 前記固有のデータが記録方式を特定するための情報である請求項1乃至3のいずれか一項に記載の記録媒体の正当性判断方法。

【請求項6】 前記固有のデータがトラック・ディスクリプタ・ユニッツ内のデータとサブコードのコントロール内のデータの少なくとも一方である請求項1万至3のいずれか一項に記載の記録媒体の正当性判断方法。

【請求項7】 前記固有のデータがラン・アウト内のデータである請求項1 乃至3のいずれか一項に記載の記録媒体の正当性判断方法。

【請求項8】 前記固有のデータが所定のパケット内のデータである請求項 1乃至3のいずれか一項に記載の記録媒体の正当性判断方法。

【請求項9】 前記固有のデータがマルチセッション方式で記録されたデータである請求項1乃至3のいずれか一項に記載の記録媒体の正当性判断方法。

【請求項10】 前記固有のデータが可変パケットで記録されたデータである請求項1乃至3のいずれか一項に記載の記録媒体の正当性判断方法。

【請求項11】 所定の規則に従って情報トラック上に可変長パケットで記録されたデータを有する記録媒体に対して前記データの取得を試みるデータ取得手順と、該データ取得手順によって取得した前記データに基づいて前記記録媒体の正当性を判断する正当性判断手順とからなることを特徴とする記録媒体の正当性判断方法。

【請求項12】 請求項1乃至11のいずれか一項に記載されたデータ取得 手順と正当性判断手順とをコンピュータに実行させるためのプログラム。

【請求項13】 請求項1乃至11のいずれか一項に記載されたデータ取得 手順と正当性判断手順とをコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。

【請求項14】 読み取り専用領域と読み書き可能な領域とを有し、前記読み取り専用領域に請求項1乃至11のいずれか一項に記載されたデータ取得手順と正当性判断手順とをコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

この発明は、に関する。

本発明は、光ディスク等の記録媒体に記録されたデータが正当にコピーされた ものか不正にコピーされたものかを判断する記録媒体の正当性判断方法とその方 法の手順をコンピュータに実行させるためのプログラムとそのプログラムを記録 したコンピュータ読み取り可能な記録媒体とに関する。

 $[0\ 0\ 0\ 2]$

【従来の技術】

情報を記録する光ディスクとして、CD, CD-ROM等の光ディスク(記録媒体)が広く普及している。それらの光ディスクは、再生専用光ディスクであり、工場で多量に生産される。

再生専用光ディスクは、原盤露光装置で原盤上に形成されたピット列をスタンパに転写(「マスタリング」と呼ばれる)し、そのスタンパを型として成形基板

に転写し、その成形基板に反射膜、保護膜等を付与することにより、ピットとして時間情報 (ヘッダアドレス:物理アドレス)と共にデジタルデータを記録したデータ構造を備えており、そのピットに記録された時間情報に基づいてデータを再生している。

[0003]

CD-ROM等の再生専用光ディスクでは、ヘッダアドレスの他にロジカル・ブロック・ナンバ(Logical block number:LBN)と呼ばれる論理アドレスも記録され、主としてLBNに基づいてデータを再生する。

これに対して、書き込み可能な光ディスクとして、CD-R (CD-Recordable) ディスク、CD-RW (CD-Rewritable) ディスク が広く普及している。

上述した光ディスクは、全面に時間情報が記録されたグルーブが形成されており、そのグルーブが形成された成形基板の上に記録膜(CD-Rでは色素等、CD-RWでは相変化膜),反射膜,保護膜等が形成されており、記録された時間情報に一致するようにCD-R/RWライタでピットを書き込むことにより、ヘッダアドレス(時間情報)とデータとを記録するような構造になっている。

[0004]

CDプレーヤやCD-ROMプレーヤ等の情報再生装置では、情報記録後のCD-Rディスク, CD-RWディスクのピットに記録された時間情報に基づいてデータを再生する。

CDフォーマットでは、リードインエリア(LIA)とリードアウトエリア(LOA)に挟まれたプログラムエリア(PA)からなる単位をセッションと称し 、複数のセッションを持つものをマルチセッションディスクと呼ぶ。

その中でも、一部にプリピットが再生専用領域(読み取り専用領域)に形成されたデータ構造を持つものがあり、そのようなデータ構造を持つCD-RディスクやCD-RWディスクはハイブリッドディスクと呼ばれている。

[0005]

上記CD-RディスクやCD-RWディスク等の光ディスクでは、用途に応じたフォーマットで情報が記録される。

例えば、音楽CDの場合にはCDフォーマットで記録され、データを保存する場合にはISO9660フォーマットで記録される。

通常ISO9660フォーマットでデータを追加記録する場合、セッション単位での追記になり、リードインエリア、リードアウトエリアを記録しなければならず、小さなファイルを追加する場合でも10メガバイト(Mbyte)以上のオーバーヘッドが生じていた。

[0006]

そこで、データを記録するフォーマットとして、ユニバーサル・ディスク・フォーマット(Universal Disk Format:UDF)と呼ばれるランダムアクセス可能なフォーマットが出現している。

そのUDFでは、データは64Kバイト(32ブロック)程度のパケット単位で追記され、そのフォーマットで記録されたCD-RWディスク等の読み書き可能な光ディスクも、ISO9660フォーマットと同様にCD-ROM装置等の情報再生装置で再生可能である。

上述したような再生専用光ディスク(一部再生専用のハイブリッドディスクも含む)に記録されている情報はデジタル情報であり、コピーしても劣化しない。

[0007]

【発明が解決しようとする課題】

しかしながら、再生専用光ディスク等の記録媒体に記録されたデータやアプリケーションプログラム等の情報が不正にコピーして使用されるという問題があった。

この発明は上記の課題を解決するためになされたものであり、光ディスク等の 記録媒体に不正コピーされたデータの使用を防止することを目的とする。

[0008]

【課題を解決するための手段】

この発明は上記の目的を達成するため、次の(1) \sim (11) の記録媒体の正当性判断方法を提供する。

(1) 所定の規則に従って情報トラック上に記録された固有のデータを有する記録媒体に対して上記固有のデータの取得を試みるデータ取得手順と、そのデータ

取得手順によって取得した上記固有のデータに基づいて上記記録媒体の正当性を 判断する正当性判断手順とからなる記録媒体の正当性判断方法。

- (2) (1) の記録媒体の正当性判断方法において、上記所定の規則が複数種類の記録方式に基づいた規則である記録媒体の正当性判断方法。
- (3) (2) の記録媒体の正当性判断方法において、上記複数種類の記録方式が アンインタラプテッド方式とインクリメンタル方式である記録媒体の正当性判断 方法。

[0009]

- (4) (3) の記録媒体の正当性判断方法において、上記アンインタラプテッド 方式がトラック・アット・ワンス方式であり、上記インクリメンタル方式がパケットライト方式である記録媒体の正当性判断方法。
- (5) (1) ~ (3) のいずれかの記録媒体の正当性判断方法において、上記固有のデータが記録方式を特定するための情報である記録媒体の正当性判断方法。
- (6) (1) ~ (3) のいずれかの記録媒体の正当性判断方法において、上記固有のデータがトラック・ディスクリプタ・ユニッツ内のデータとサブコードのコントロール内のデータの少なくとも一方である記録媒体の正当性判断方法。
- (7) (1) ~ (3) のいずれかの記録媒体の正当性判断方法において、上記固有のデータがラン・アウト内のデータである記録媒体の正当性判断方法。

[0010]

- (8) (1) ~ (3) のいずれかの記録媒体の正当性判断方法において、上記固有のデータが所定のパケット内のデータである記録媒体の正当性判断方法。
- (9) (1) ~ (3) のいずれかの記録媒体の正当性判断方法において、上記固有のデータがマルチセッション方式で記録されたデータである記録媒体の正当性判断方法。
- (10)(1)~(3)のいずれかの記録媒体の正当性判断方法において、上記固有のデータが可変パケットで記録されたデータである記録媒体の正当性判断方法。
- (11) 所定の規則に従って情報トラック上に可変長パケットで記録されたデータを有する記録媒体に対して上記データの取得を試みるデータ取得手順と、その

データ取得手順によって取得した上記データに基づいて上記記録媒体の正当性を 判断する正当性判断手順とからなる記録媒体の正当性判断方法。

[0011]

また、次の(12)のプログラムと(13)(14)のコンピュータ読み取り可能な記録媒体も提供する。

- (12) (1) 乃至(11) のいずれかのデータ取得手順と正当性判断手順とを コンピュータに実行させるためのプログラム。
- (13) (1) 乃至(11) のいずれか一項に記載されたデータ取得手順と正当 性判断手順とをコンピュータに実行させるためのプログラムを記録したコンピュ ータ読み取り可能な記録媒体。
- (14) 読み取り専用領域と読み書き可能な領域とを有し、上記読み取り専用領域に(1)乃至(11)のいずれかのデータ取得手順と正当性判断手順とをコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。

[0012]

【発明の実施の形態】

以下、この発明の実施形態を図面に基づいて具体的に説明する。

図2は、この発明の記録媒体の正当性判断方法の一実施形態である処理を実行する光ディスクドライブシステムの構成を示すブロック図である。

図1は、図2に示す光ディスク装置1の内部構成を示すブロック図である。

大容量のデータ(情報)を記録する記録媒体としてCD-ROM, CD-R, CD-RW, CD-RAM等の光ディスクが使用されている。

一般的なCD-RディスクとCD-Eディスクは、書き込みが可能な(記録可能な)CD(コンパクトディスク)である。

[0013]

前者のCD-R(CDレコーダブル)は、1回だけ書き込みが可能なCDである(なお、CD-Write Onceともいわれている)。

また、後者のCD-E(CDイレーザブル)は、複数回の書き込みが可能なCDである(なお、CD-RW:CDリライタブルともいわれている)。これらの

CD-RやCD-Eディスク、すなわち光ディスクは、図2に示すような光ディスクドライブシステム(情報処理システム)で利用される。

[0014]

図2に示すように、この光ディスクドライブシステムは、ホストコンピュータ (情報処理装置) 3に光ディスク装置(光ディスクドライブ) 1が通信ケーブル 2を介してデータのやり取りが可能に接続されている。

主制御装置35,インタフェイス34,記録装置(HDD)33,入力装置3 1及び表示装置32などを備えている。

主制御装置35は、マイクロコンピュータ、メインメモリ(いずれも公知なので図示を省略)などを含んで構成されており、ホストコンピュータ3の全体を制御する。

[0015]

インタフェイス34は、光ディスク装置1との双方向の通信インタフェイスであり、ATAPI及びSCSI等の標準インタフェイスに準拠している。

インタフェイス34は、光ディスク装置1のATAPI/SCSI・インタフェイス(I/F)25と接続されている。なお、各インタフェイス間の接続形態は、通信ケーブル(例えばSCSIケーブル)2などの通信線を用いたケーブル接続だけでなく、赤外線などを利用したワイヤレス接続であっても良い。

記録装置(ハードディスク:HDD)33には、主制御装置35のマイクロコンピュータで解読可能なコードで記述されたプログラムが格納されている。なお、ホストコンピュータ3の駆動電源がオン状態になると、上記プログラムは主制御装置のメインメモリにロードされる。

[0016]

表示装置32は、例えばCRT, 液晶ディスプレイ(LCD)及びプラズマディスプレイパネル (PDP)などの表示部 (図示省略)を備えており、主制御装置35からの各種情報を表示する。

入力装置31は、例えばキーボード、マウス及びポインティングデバイスなどのうち少なくとも1つの入力媒体(図示省略)を備えており、ユーザから入力された各種情報を主制御装置35に通知する。なお、入力媒体からの情報はワイヤ

レス方式で入力されても良い。また、表示装置32と入力装置31とが一体化したものとして、例えばタッチパネル付きCRTなどがある。

また、ホストコンピュータ3はオペレーティングシステム(以下「OS」という)を搭載している。そして、ホストコンピュータ3を構成する全てのデバイスはOSによって管理されている。

[0017]

図1に示すように、光ディスク装置1は、スピンドルモータ14,光ピックアップ15,モータドライバ26,リードアンプ22,サーボ27,CDデコーダ23,ATIPデコーダ19,レーザコントロール回路(レーザコントローラ)16,CDエンコーダ17,CD-ROMエンコーダ18,バッファRAM20,バッファマネージャ21,CD-ROMデコーダ24,ATAPI/SCSIインタフェイス25,D/Aコンバータ28,ROM11,CPU13,RAM12等からなり、光ディスク4に対する情報の記録及び再生を行う。同図において、矢印はデータが主に流れる方向を示している。

[0018]

ROM11には、CPU13にて解読可能なコードで記述された制御プログラムが格納されている。なお、光ディスク装置1の電源がオン状態になると、上記プログラムは図示を省略した公知のメインメモリにロードされ、CPU13はそのプログラムに従って上記各部の動作を制御すると共に、制御に必要なデータ等を一時的にRAM12に保存する。

[0019]

光ディスク装置1の構成と動作は、次のとおりである。

光ディスク4は、スピンドルモータ14によって回転駆動される。このスピンドルモータ14は、モータドライバ26とサーボ27により、線速度が一定になるように制御される。この線速度は、階段的に変更することが可能である。

光ピックアップ15は、図示を省略した公知の半導体レーザ光源(LD),光 学系,フォーカスアクチュエータ,トラックアクチュエータ,受光素子(PD) 及びポジションセンサ等を内蔵しており、レーザ光LBを光ディスク4に照射する。また、この光ピックアップ15は、シークモータによってスレッジ方向への 移動が可能である。これらのフォーカスアクチュエータ、トラックアクチュエータ、シークモータは、受光素子とポジションセンサから得られる信号に基いて、モータドライバ26とサーボ27により、レーザ光LBのスポットが光ディスク4上の目的の場所に位置するように制御される。

[0020]

そして、リード時には、光ピックアップ15によって得られた再生信号が、リードアンプ22で増幅されて2値化された後、CDデコーダ23に入力される。入力された2値化データは、このCDデコーダ23において、EFM(Eight to Fourteen Modulation)復調される。なお、記録データは、8ビットずつまとめられてEFM変調されており、このEFM変調では、8ビットを14ビットに変換し、結合ビットを3ビット付加して合計17ビットにする。この場合に、結合ビットは、それまでの「1」と「0」の数が平均的に等しくなるように付けられる。これを「DC成分の抑制」といい、DCカットされた再生信号のスライスレベル変動が抑圧される。

[0021]

復調されたデータは、デインターリーブとエラー訂正の処理が行われる。その後、このデータは、CD-ROMデコーダ24へ入力され、データの信頼性を高めるために、さらに、エラー訂正の処理が行われる。このように2回のエラー訂正の処理が行われたデータは、バッファマネージャ21によって一旦バッファRAM20に蓄えられ、セクタデータとして揃った状態で、ATAPI/SCSIインタフェイス25を介して、ホストコンピュータ3へ一気に転送される。

なお、音楽データの場合には、CDデコーダ23から出力されたデータが、D /Aコンバータ28へ入力され、アナログのオーディオ出力信号Audioとして取り出される。

$[0 \ 0^{\circ} 2 \ 2]$

また、ライト時には、ATAPI/SCSIインタフェイス25を通して、ホストコンピュータ3から送られてきたデータは、バッファマネージャ21によって一旦バッファRAM20に蓄えられる。そして、バッファRAM20内にある程度の量のデータが蓄積された状態で、ライト動作が開始されるが、この場合に

は、その前にレーザスポットを書き込み開始地点に位置させる必要がある。この 地点は、トラックの蛇行により予め光ディスク4上に刻まれているウォブル信号 によって求められる。

[0023]

ウォブル信号には、ATIPと呼ばれる絶対時間情報が含まれており、この情報が、ATIPデコーダ19によって取り出される。また、このATIPデコーダ19によって生成される同期信号は、CDエンコーダ17へ入力され、光ディスク4上の正確な位置へのデータの書き込みを可能にしている。バッファRAM20のデータは、CD-ROMエンコーダ18やCDエンコーダ17において、エラー訂正コードの付加やインターリーブが行われ、レーザコントロール回路16,光ピックアップ15を介して、光ディスク4に記録される。

[0024]

なお、EFM変調されたデータは、ビットストリームとしてチャンネルビットレート4.3218Mbps (標準速)でレーザを駆動する。この場合の記録データは、588チャンネルビット単位でEFMフレームを構成する。チャンネルクロックとは、このチャンネルビットの周波数のクロックを意味する。

[0025]

上記ホストコンピュータ3の主制御装置35が、光ディスク装置1によって光ディスク4のROM領域(読み取り専用領域,再生専用領域)に記録されたプログラムを取得し、そのプログラムを実行することによってこの発明に係る記録媒体の正当性判断方法の処理(記録媒体正当性判断処理)を実行する。

[0026]

図3は図1に示す光ディスク4のCDフォーマットの一例を示す図である。

図4は、図3に示すCDフォーマットのトラック内フォーマットを示す図である。

図 5 は、図 4 に示すランアウトブロック(RO Block),リンクブロック(Link Block),ランインブロック(RI Block)の内部フォーマットを示す図である。

図6は、図4に示すトラック・ディスクリプタ・ブロック)内のフォーマット

を示す図である。

[0027]

図3に示すように、この光ディスク4は第1セッション(Session)と第2セッション(Session)からなり、第1セッションが読み取り専用領域(ROM領域)であり、第2セッションが読み書き可能な領域(RAM領域)である。その第1セッションにこの発明に係るプログラムが記録されている。

セッション内はリードインエリア(Lead-In Area:LIA),プログラムエリア(PA),リードアウトエリア(Lead-Out Area:LIA)からなり、プログラムエリア(PA)内は1つ以上のトラック(Track)からなる。

[0028]

このようなパケット単位での情報記録方式としては、一定のサイズのパケット毎に記録される固定パケット(FixedPacket:FP)と、データのサイズにより異なるパケットサイズで記録される可変長パケット(Valuable Packet:VP)との2種類がある。

[0 0 2 9]

上記プログラムエリア(PA)は1つ以上のトラックよりなり、図4に示すように、各トラックの先頭部にはトラック・ディスクリプタ・ブロック(Track Descriptor Block:TDB),ランアウトブロック(Run Out Block:RO Block),リンクブロック(Link Block),ランインブロック(Run In Block:RI Block))等よりなるプリギャップ(PreGap)と呼ばれる領域(例えば150ブロックからなる)が設けられている。プリギャップの後にはユーザデータブロック(User Data Block)がある。

[0030]

ここで、ROブロック、リンクブロック、RIブロックは、図5に示すように、メインチャンネルのヘッダ(ブロックヘッダ)のモードバイトに記録されたブロックインジケーターによりユーザデータブロックと区別されている。ヘッダには時間情報も記録されている。

[0031]

また、図6に示すように、TDBのユーザデータフィールドのトラック・ディスクリプタ・ユニッツ(Track Descriptor Units:TD U) にはトラックの属性が記録されている。

PAのサブコードチャンネルには、トラック内の相対アドレスやディスク内の 絶対アドレスを示す時間情報の他にトラックの情報の種類を示すコントロールと ADRが記録されている。

[0032]

各トラックの情報の種類を示すコントロール・ADRはLIAのトック(Table of contents:TOC, 目次情報)にも記録されている。

連続してコピー保護記録されたデータトラックの場合、TDUのライトモード (Write Mode, 以後「<math>TDU」)は"80(=1000-000)"、コントロールは"4(=0100)"となる。

VPでコピー保護記録されたデータトラックの場合、TDUは "90 (=10 0 1 - 0 0 0 0)"、コントロールは "5 (= 0 1 0 1)" となる。

[0033]

次に、この光ディスクシステムにおけるこの発明に係る処理を説明する。

図7は、この光ディスクシステムにおける光ディスク利用時の処理を示すフローチャート図である。

図8乃至図14は図7に示す光ディスクの真贋判定処理(記録媒体の正当性判断処理)の詳細な処理を示すフローチャート図である。

[0034]

図8乃至図11に示す処理はこの発明に係る光ディスクの真贋判定処理の第1 例の処理を示すものであり、上記データ取得手順と上記正当性判断手順の処理に 相当する。

また、図8,図12乃至図14に示す処理はこの発明に係る光ディスクの真贋 判定処理の第2例の処理を示すものであり、上記データ取得手順と上記正当性判 断手順の処理に相当する。

[0035]

次に、上記光ディスクの真贋判定処理の実施例1として、図15に示すように、連続してコピー保護記録された第1トラックのある第1セッションが設けられている光ディスクの場合の不正コピー判定処理を説明する。トラックは図4(N=1の場合)の構造をもっている。

[0036]

この場合、光ディスクには、データがマルチセッションで記録されていて2つ以上のトラックからなり第1セッションの第1トラック以外の少なくとも1つのトラックがUDFで記録されていてUDFトラックに真贋の判定を行うデータが記録されている。

[0037]

この不正コピー判定処理を実行する不正コピー判定モジュールは、つぎの(1)~(5)の手順を実行する。

- (1) ReadTOCコマンドにより、トラックのユーザデータの開始アドレス
- (n), ユーザデータの長さ (x) 及びコントロール (Ctrl) を取得。
- (2) Readコマンドにより、n-8以下のアドレスにあるTDBのユーザデータフィールドよりTDUを取得。
- (3) Readコマンドにより、n+x-2及びn+x-1のアドレスにあるR Oブロックのブロックインジケータを取得。

[0038]

(4)正規なディスクのCtrlは"4(=0100)", TDUは"80(=1000-0000)"である。

C t r l の B i t 2 と T D U の B i t 7、 C t r l の B i t 0 と T D U の B i t 5 が ともに同じ値で、かつ C t r l が [5] である場合は [1 (真)]、異なる、もしくは C t r l が [5] で無い場合は [-1 (偽)]、コマンドエラーとなった場合は [0] を変数 [-1] を変数 [-1] に代入。

(5) 正規なディスクのRO1は"111", RO2は"110"である。

RO1, RO2の何れかが不正な値の場合は[-1(偽)]、RO1, RO2の全てが正しい値の場合は[1(真)]、コマンドエラーとなった場合は[0]を変数[-1]2に代入。

[0039]

不正コピー判定モジュールは、アプリケーションプログラムからの不正コピー 判定命令に対して、上記(1)~(5)を行い、J1, J2の値を戻り値として 返す。アプリケーションプログラムは、戻り値により次の表1に示すテーブルに 基づいて光ディスクの正当性を判断し、セキュリティレベルに応じて後の処理の 継続を決定する。

[0040]

【表1】

J1 J2	1	0	-1
1	1	1	- 1
О	1	0	- 1
- 1	— 1	- 1	– 1

[0041]

例えば、J1, J2の値に基づく光ディスクの正当性の半番結果が"1""0"の場合はデータが正当にコピーされた光ディスク又はオリジナルのデータが記録された光ディスクと判断して、正規な光ディスクに対する処理としてアプリケーションの実行等の処理を行う。

また、J1, J2の値に基づく光ディスクの正当性の半番結果が"-1"の場合はデータが不正(不当)にコピーされた光ディスクと判断して、不正な光ディスクに対する処理としてアプリケーションの実行を禁止等の処理を行う。

[0042]

次に、上記光ディスクの真贋判定処理の実施例2として、図16に示すように、連続してコピー保護記録された第1トラックのある第1セッションと連続してコピー保護記録された第2トラックのある第2セッションが設けられている光ディスクの場合の不正コピー判定処理を説明する。トラックは図4(N=1, 2の

場合)の構造をもっている。

[0043]

この場合、光ディスクには、光ディスクの各トラックのプリギャップのTDUの値と各トラックのサブコードのコントロールの値もしくはTOCの各トラック情報のコントロールの値の整合性を元に真贋の判定を行う手段と各トラックあるいは各パケットのリンク部のランアウトの値が正常であることを元に真贋の判定を行う手段の少なくとも一方の手段をコンピュータに実行させるプログラムが記録されている。

[0044]

この不正コピー判定処理を実行する不正コピー判定モジュールは、つぎの(6) \sim (10) の手順を実行する。

- (6) ReadTOCコマンドにより、第1トラック・第2トラックのユーザデータの開始アドレス (n, m) , ユーザデータの長さ (x, y) 及びコントロール (Ctrl1, Ctrl2) を取得。
- (7) Readコマンドにより、第1トラックのn-8以下のアドレスにあるT DBのユーザデータフィールドよりTDU1と、第2トラックのm-8以下のア ドレスにあるTDBのユーザデータフィールドよりTDU2を取得。
- (8) Readコマンドにより、第1トラックのn+x-2及びn+x-1のアドレスにあるROブロックのブロックインジケータRO11, R12と第2トラックのm+y-2及びm+y-1のアドレスにあるROブロックのブロックインジケータRO21, R22を取得。

[0045]

 Ctrl1のBit2とTDU1のBit7, Ctrl1のBit0とTDU

 1のBit5がともに同じ値で、かつCtrl1が[5]である場合は[1(真)]、異なる、もしくはCtrl1が[5]で無い場合は[-1(偽)]、コマンドエラーとなった場合は[0]を変数J11に代入。

Ctrl2oBit2とTDU2oBit7, Ctrl2oBit0とTDU

2のBit5がともに同じ値で、かつCtrl2が[5]である場合は[1(真)]、異なる、もしくはCtrl2が[5]で無い場合は[-1(偽)]、コマンドエラーとなった場合は[0]を変数[-1]12に代入。

 J11, J12の何れかが [-1] の場合は [-1 (偽)]、J11, J12

 がともに [1] の場合は [1 (真)]、その他の場合は [0] を変数 J1に代入。

[0046]

(10) 正規なディスクのRO11及びRO21は"111"、RO12及びRO22は"110"である。RO11, RO12, RO21, RO22の何れかが不正な値の場合は[-1(偽)]。RO11, RO12, RO21, RO22の全てが正しい値の場合は[1(真)]。コマンドエラーとなった場合は[0]を変数 J 2 に代入。

[0047]

不正コピー判定モジュールは、アプリケーションプログラムからの不正コピー 判定命令に対して、上記(6)~(10)を行い、J1, J2の値を戻り値とし て返す。アプリケーションプログラムは、戻り値により上記表1に示すテーブル に基づいて光ディスクの正当性を判断し、セキュリティレベルに応じて後の処理 の継続を決定する。

[0048]

例えば、J1, J2の値に基づく光ディスクの正当性の半番結果が"1""0"の場合はデータが正当にコピーされた光ディスク又はオリジナルのデータが記録された光ディスクと判断して、正規な光ディスクに対する処理としてアプリケーションの実行等の処理を行う。

また、J1, J2の値に基づく光ディスクの正当性の半番結果が"-1"の場合はデータが不正(不当)にコピーされた光ディスクと判断して、不正な光ディスクに対する処理としてアプリケーションの実行を禁止等の処理を行う。

本実施例2では、上記実施例1の判定が2重に行われるので判定の信頼性を増 すことができる。

[0049]

次に、上記光ディスクの真贋判定処理の実施例3として、図17に示すように連続してコピー保護記録された第1トラックと連続してコピー保護記録された第2トラックのある第1セッションが設けられている光ディスクでもよい。

この場合、光ディスクには、光ディスクのUDFトラックのデータが正しいこと(予め定められた値である)を元に真贋の判定を行う手段をコンピュータに実行させるプログラムが記録されている。

本3実施例では、セッションが1つなのでリードイン, リードアウトの記録に よるオーバーヘッドが無い。

[0050]

次に、上記光ディスクの真贋判定処理の実施例4として、上記実施例3の第2 トラックがVPでコピー保護記録された光ディスクでもよい。

この場合、VPでコピー保護記録された第2トラックのC t r 1 2 t "5 (= 0 1 0 1)",TDU 2 t" 9 0 (= 1 0 0 1 - 0 0 0 0)"が正規値である。また、この場合の光ディスクは、データ記録がROMピットでなされているハイブリッドディスクである。

本実施例4では、トラックの構造が通常のCDROM(図16の構造)には無い形態となり、DAOでの不正コピーを困難にすることができる。また、判定材料が増えてより判定の信頼性を増すことができる。

[0051]

次に、上記光ディスクの真贋判定処理の実施例 5 として、実施例 4 の V P でコピー保護記録された第 2 トラックの先頭のパケットのユーザデータフィールドに "F F"の繰り返しによる真贋判定データを設けられている光ディスクの場合の 不正コピー判定処理を説明する。

[0052]

この不正コピー判定処理を実行する不正コピー判定モジュールは、つぎの(11)~(17)の手順を実行する。

(11) ReadTOCコマンドにより、第1トラック・第2トラックのユーザデータの開始アドレス(n, m), ユーザデータの長さ(x, y)及びコントロール(Ctrll, Ctrl2)を取得。

- (12)Readコマンドにより、第1トラックのn-8以下のアドレスにある TDBのユーザデータフィールドよりTDU1と、第2トラックのm-8以下の アドレスにあるTDBのユーザデータフィールドよりTDU2を取得。
- (13) Readコマンドにより、第1トラックのn+x-2及びn+x-1のアドレスにあるROブロックのブロックインジケータRO11, R12と第2トラックのm+y-2及びm+y-1のアドレスにあるROブロックのブロックインジケータRO21, R22を取得。

[0053]

(14) 正規な光ディスクのC t r l l は "4 (=0100)"、TDU1及びTDU2は"80(=1000-0000)"である。VPでコピー保護記録された第2トラックのC t r l 2は"5 (=0101)", TDU2は"90(=1001-0000)"が正規な値である。

 CtrllのBit2とTDU1のBit7, CtrllのBit0とTDU

 1のBit5がともに同じ値で、かつCtrllが[5]である場合は[1(真)]、異なる、もしくはCtrllが[5]で無い場合は[-1(偽)]、コマンドエラーとなった場合は[0]を変数J11に代入。

 Ctrl2のBit2とTDU2のBit7, Ctrl2のBit0とTDU

 2のBit5がともに同じ値で、かつCtrl2が[5]である場合は[1(真)]、異なる、もしくはCtrl2が[5]で無い場合は[-1(偽)]、コマンドエラーとなった場合は[0]を変数 J12に代入。

J 1 1 1 2 の何れかが [-1] の場合は [-1 (偽)] 、J 1 1 1 , J 1 2 がともに [1] の場合は [1 (真)] 、その他の場合は [0] を変数 J 1 に代入

[0054]

(15) 正規な光ディスクのRO11及びRO21は"111"、RO12及びRO22は"110"である。

RO11, RO12, RO21, RO22の何れかが不正な値の場合は [-1 (偽)]。RO11, RO12, RO21, RO22の全てが正しい値の場合は [1 (真)]。コマンドエラーとなった場合は [0]を変数 J 2 に代入。

- (16) Readコマンドにより、第2トラックの任意のユーザデータブロックのアドレスのユーザデータフィールドを取得。
- (17) "FF" の繰返しによる真贋判定データでない場合は [-1 (偽)]、真贋判定データである場合は [1 (真)]。コマンドエラーとなった場合は [0] を変数 [1] 3 に代入。

[0055]

不正コピー判定モジュールは、アプリケーションプログラムからの不正コピー 判定命令に対して、上記(11)~(17)を行い、J1, J2, J3の値を戻 り値として返す。アプリケーションプログラムは、戻り値により光ディスクの正 当性を判断し、セキュリティレベルに応じて後の処理の継続を決定する。

例えば、パケットライトソフトで記録された光ディスクは、先頭のパケットの データを全て "FF" にすることは不可能であり、本実施例 5 によりパケットラ イトソフトによる不正コピーされたデータの使用を防止することができる。

本実施例5では真贋判定データとして"FF"の繰り返しを用いたが、任意の 文字列の2バイトコードの繰り返しでもよい。

また、真贋判定データの値を不正コピー判定モジュールに定数として記録するようにしても良いが、ファイルやキー入力で供給されるようにしても良い。

[0056]

PC環境やドライブによっては、コマンドがエラーになったり、コマンドがソフトウェア上でブロックされている場合がある。

上記実施例1~5ではコマンドエラーの場合の戻り値 [0] を定義したが、セキュリティレベルによってはコマンドエラーの場合も [-1 (偽)] としてもよい。

また、上記実施例ではアプリケーションプログラムは不正コピー判定手段と共に光ディスク上に記録されているが、HD上やネットワークサーバー上にあってもよい。

[0057]

さらに、上記実施例 $1 \sim 5$ の構造の光ディスクは書き込みソフトウェアにより CD-R (RW) ディスクに記録することで作成できるが、予め領域にプログラ

ムが記録された成形基板の上に、記録層としての色素膜,反射層,保護層を形成 することで、生産性が著しく向上する。

[0058]

【発明の効果】

以上説明してきたように、この発明の記録媒体の正当性判断方法とプログラムとコンピュータ読み取り可能な記録媒体によれば、光ディスク等の記録媒体に不正コピーされたデータの使用を防止することができる。

【図面の簡単な説明】

【図1】

図2に示す光ディスク装置1の内部構成を示すブロック図である。

【図2】

この発明の記録媒体の正当性判断方法の一実施形態である処理を実行する光ディスクドライブシステムの構成を示すブロック図である。

図3】

図1に示す光ディスク4のCDフォーマットの一例を示す図である。

【図4】

図3に示すCDフォーマットのトラック内フォーマットを示す図である。

【図5】

図4に示すランアウトブロック, リンクブロック, ランインブロックの内部フォーマットを示す図である。

図6

図4に示すトラック・ディスクリプタ・ブロック内のフォーマットを示す図である。

【図7】

この光ディスクシステムにおける光ディスク利用時の処理を示すフローチャート図である。

【図8】

図7に示す光ディスクの真贋判定処理(記録媒体の正当性判断処理)の詳細な 処理を示すフローチャート図である。

ページ: 21/E

【図9】

図8の続きの処理を示すフローチャート図である。

【図10】

図9の続きの処理を示すフローチャート図である。

【図11】

図10の続きの処理を示すフローチャート図である。

【図12】

図8の他の続きの処理を示すフローチャート図である。

【図13】

図12の続きの処理を示すフローチャート図である。

【図14】

図13の続きの処理を示すフローチャート図である。

図15]

連続してコピー保護記録された第1トラックのある第1セッションが設けられている光ディスクのフォーマットを示す図である。

【図16】

連続してコピー保護記録された第1トラックのある第1セッションと連続して コピー保護記録された第2トラックのある第2セッションが設けられている光ディスクのフォーマットを示す図である。

【図17】

連続してコピー保護記録された第1トラックと連続してコピー保護記録された 第2トラックのある第1セッションが設けられている光ディスクのフォーマット を示す図である。

【符号の説明】

1:光ディスク装置 2:通信ケーブル

3:ホストコンピュータ 31:入力装置

32:表示装置 33:記録装置

34:インタフェイス 35:主制御装置

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

54 44 49 01 50 01 01 01 01 80 FF FF FF 00 00 00 ··· テーブル

TDU

【図7】

【図8】

【図9】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【書類名】

要約書

【要約】

【課題】 光ディスク等の記録媒体に不正コピーされたデータの使用を防止。

【解決手段】 ホストコンピュータ3の主制御装置35は、光ディスク装置1に装着された所定の規則に従って情報トラック上に記録された固有のデータを有する光ディスクに対して上記固有のデータの取得を試みるデータ取得手順と、そのデータ取得手順によって取得した上記固有のデータに基づいて光ディスクの正当性を判断する正当性判断手順とを実行する。

【選択図】 図1

特願2003-083012

出願人履歴情報

識別番号

[000006747]

1. 変更年月日

2002年 5月17日

[変更理由]

住所変更

住 所

東京都大田区中馬込1丁目3番6号

氏 名 株式会社リコー