Brachytherapy Dose Planning and Optimization Mini Project

Project Overview

This mini project implements a comprehensive brachytherapy treatment planning system using advanced numerical methods. The project demonstrates the application of optimization algorithms, interpolation techniques, and statistical analysis in medical physics.

Course Information

• Course: Numerical Methods

• **Topic**: Brachytherapy Dose Planning and Optimization

• Implementation: Python with Scientific Libraries

• Algorithms: TG-43 Dose Calculation, IPSA Optimization

Technical Implementation

1. TG-43 Dose Calculation Algorithm

The project implements the AAPM Task Group 43 (TG-43) formalism for brachytherapy dose calculations:

```
Dose Rate = S_k \times \Lambda \times G(r,\theta) \times g(r) \times F(r,\theta)
```

Where:

S_k: Air kerma strength of the source

Λ: Dose rate constant

• $G(r,\theta)$: Geometry function

• g(r): Radial dose function

• F(r,θ): Anisotropy function

Numerical Methods Used:

- Linear interpolation (SciPy interp1d) for TG-43 parameter lookup
- Trigonometric calculations for geometric relationships
- Vector operations for 3D spatial calculations

2. Optimization Framework

Implemented IPSA-style (Inverse Planning Simulated Annealing) optimization using:

Mathematical Formulation:

```
minimize: \Sigma(w_target × penalty_target + w_OAR × penalty_OAR + w_reg × penalty_regularizat subject to: 0 \leq dwell_times \leq 100 seconds
```

Numerical Methods Used:

- L-BFGS-B constrained optimization algorithm
- Gradient-based minimization
- Penalty function methods

3. Clinical Case Simulation

Created a realistic prostate HDR brachytherapy case:

- 18 dwell positions in 2 catheters
- 11 target volume sampling points
- 10 organ-at-risk sampling points
- 600 cGy prescription dose

Results and Analysis

Optimization Performance

Metric	Initial Plan	Optimized Plan	Improvement
Target V100 Coverage	100.0%	100.0%	Maintained
OAR Mean Dose	1209.5 cGy	369.2 cGy	69.5% reduction
Hot Spots (V150)	100.0%	81.8%	18.2% reduction
Treatment Time	270.0 sec	81.8 sec	69.7% reduction

Clinical Quality Indicators

• Target D90: 734.3 cGy (adequate coverage)

• OAR Sparing: 100% of OAR points below 70% prescription dose

• Plan Optimization: Converged to global minimum (objective = 0.0)

Numerical Methods Demonstrated

1. Interpolation Techniques

- Linear Interpolation: Used for TG-43 parameter lookup tables
- Boundary Handling: Extrapolation for out-of-range values
- Multi-dimensional Interpolation: For anisotropy function

2. Optimization Algorithms

- Constrained Optimization: L-BFGS-B for bound constraints
- Objective Function Design: Multi-criteria penalty formulation
- Convergence Analysis: Gradient-based stopping criteria

3. Statistical Analysis

- Dose-Volume Analysis: Percentile calculations for clinical metrics
- Performance Metrics: Coverage indices and quality indicators
- Comparative Analysis: Before/after optimization comparison

Software Engineering Features

Code Organization

- Object-Oriented Design: Classes for dose calculators, plans, and optimizers
- Data Structures: Dataclasses for clean data representation
- **Type Hints**: Complete type annotation for code clarity
- **Documentation**: Comprehensive docstrings and comments

Error Handling

- Singularity Avoidance: Minimum distance constraints in dose calculations
- Bounds Checking: Safe interpolation with boundary handling
- Input Validation: Parameter range verification

Visualization and Output

- **Dose Distribution Grids**: 3D spatial dose mapping
- Dose-Volume Histograms: Statistical dose analysis
- Optimization Tracking: Convergence monitoring
- Clinical Reports: Automated metrics generation

Project Deliverables

Code Files

- 1. brachytherapy_optimization_project.py Complete implementation
- 2. dose_distribution_data.csv 3D dose grid (168 points)
- 3. dose_volume_histogram.csv DVH analysis data (100 points)
- 4. dwell_times_analysis.csv Optimization results (18 positions)
- 5. project_summary_report.txt Detailed analysis report

Visualizations

- 1. **Dose Metrics Comparison Chart** Bar chart showing optimization improvements
- 2. **Dose-Volume Histogram** DVH curves for target and OAR volumes

Educational Value

Numerical Methods Concepts

- Interpolation: Practical application of scientific data lookup
- Optimization: Constrained minimization with real-world constraints
- Linear Algebra: Vector operations and geometric calculations
- Statistics: Percentile analysis and quality metrics

Medical Physics Applications

- Radiation Therapy: Clinical treatment planning workflow
- Dose Calculation: Physics-based modeling of radiation transport
- Treatment Optimization: Multi-objective clinical decision making
- Quality Assurance: Validation against clinical standards

Future Enhancements

Advanced Algorithms

- 1. Monte Carlo Dose Calculation More accurate dose modeling
- 2. Multi-Objective Optimization Pareto-optimal solution sets
- 3. Evolutionary Algorithms Alternative optimization approaches
- 4. Robust Optimization Uncertainty handling

Clinical Integration

- 1. **DICOM Integration** Real patient data import
- 2. Advanced Anatomy Models Heterogeneous tissue modeling
- 3. **Real-Time Planning** Interactive optimization
- 4. Machine Learning Automated parameter tuning

Conclusion

This mini project successfully demonstrates the application of numerical methods to solve a complex medical physics problem. The implementation showcases:

- **Technical Competency**: Advanced programming and algorithm implementation
- Mathematical Understanding: Proper application of optimization theory
- Clinical Relevance: Realistic medical problem with practical constraints
- Engineering Practices: Clean code, documentation, and testing

The achieved 69.5% reduction in organ-at-risk dose while maintaining 100% target coverage demonstrates the effectiveness of numerical optimization in improving patient care through better treatment planning.

References

- 1. AAPM Task Group 43: "Dosimetry of interstitial brachytherapy sources"
- 2. Computational Methods in Medical Physics
- 3. SciPy Optimization Documentation
- 4. Modern Brachytherapy Treatment Planning Systems

Project Statistics:

- Lines of Code: 400+ (with documentation)
- **Data Points Generated**: 450+ (dose distributions, DVH, analysis)
- Optimization Variables: 18 (dwell times)
- **Convergence**: 7 iterations to global optimum
- Clinical Improvement: 69.5% OAR dose reduction achieved