Agrosystems, Geosciences & Environment

Site-specific effects of winter cover crops on soil water storage

Journal:	Agrosystems, Geosciences & Environment
Manuscript ID	AGE-2021-06-0080-ORA.R2
Wiley - Manuscript type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Nichols, Gina; Arizona State University, Swette Center for Sustainable Food Systems Moore, Eric; University of North Carolina Wilmington, Department of Environmental Sciences Gailans, Stefan; Practical Farmers of Iowa Kaspar , Thomas; USDA-ARS National Laboratory for Agriculture and the Environment Liebman, Matt; Iowa State, Agronomy
Keywords:	cover crops, soil water, corn, winter rye, soil health

SCHOLARONE™ Manuscripts

Core Ideas

As part of the submission process, we ask authors to prepare highlights of their article. The highlights will consist of 3 to 5 bullet points that convey the core findings of the article and emphasize the novel aspects and impacts of the research on scientific progress and environmental problem solving.

The purpose of these highlights is to give a concise summary that will be helpful in assessing the suitability of the manuscript for publication in the journal and for selecting appropriate reviewers. If the article is accepted the highlights may also be used for promoting and publicizing the research.

Core Idea 1: Cover crop effects on soil water storage at 10-18 cm soil depth were not consistent

Core Idea 2: Cover crops increased water held at field capacity in two of four trials

Core Idea 3: Cover crops did not affect water held at saturation or increase percentage of macropores

Core Idea 4: Causal model suggests cover crop roots may be a key driver of variable results

Core Idea 5: CUST CORE IDEA 5: No data available.

Site-specific effects of winter cover crops on soil water storage 1 V.A. Nichols^{1*}, E. B. Moore², S. Gailans³, T.C. Kaspar⁴, M. Liebman⁵ 2 **Affiliations:** 3 ¹Swette Center for Sustainable Food Systems, PO Box 875502, Arizona State University, Tempe 4 AZ, 85287 5 ²Department of Environmental Sciences, 601 S. College Road, University of North Carolina 6 Wilmington, Wilmington NC, 28403 7 ³Practical Farmers of Iowa, 1615 Golden Aspen Dr, Ames IA 50010 8 ⁴USDA-Agricultural Research Service, National Laboratory for Agriculture and the 9 10 Environment, 1015 North University Boulevard, Ames, IA 50011 ⁵Department of Agronomy, 716 Farmhouse Lane, Iowa State University, Ames IA, 50011 11 *corresponding author 12 **Abbreviations:** 13 CC, cover crop 14 USDA, United States Department of Agriculture 15 16 Core ideas 17

• Cover crop effects on soil water storage at 10-18 cm soil depth were not consistent

18

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

- Cover crops increased water held at field capacity in two of four trials
- Cover crops did not affect water held at saturation or increase percentage of macropores
 - Causal model suggests cover crop roots may be a key driver of variable results

22 ABSTRACT

Addition of an over-wintering cereal rye (Secale cereale L.) cover crop (CC) to Midwestern maize (Zea mays L.)-based systems offers several environmental benefits, but the long-term effects of this practice on soil hydrological properties are not well-understood. We utilized four long-term (10+ year) trials (two commercial fields, two research plots) in Iowa, USA that included a replicated winter rye CC and no-cover treatment in no-till maize/soybean (Glycine max [L.] Merr) systems. We took intact 7.62 cm diameter soil samples from a 10-18 cm depth shortly after cash crop planting in the spring. We measured the soil water retention curve using matric potentials ranging from saturation to -500 cmH₂O. Additionally, we measured organic matter, textural composition, and bulk densities of the soil samples. At the depth sampled, CCs did not meaningfully affect bulk density, water contents at saturation, or air-entry potentials at any trial, nor increase the percentage of macropores. At two trials, soil water content at field capacity (-100 cmH₂O) in the CC treatments was 2.5 vol% (SE: 1.2%; commercial field) and 2.4 vol% (SE: 1.3%; research plot) higher compared to the no-cover treatments. This increase could meaningfully reduce the amount of water drained from a field after a saturating rain and should be considered when assessing CC impacts on landscape hydrology. The presence or absence of a CC effect on field capacity was not related to CC above-ground biomass production, previous cash crop, or soil texture at the trial sites. Based on our results, a causal model, and previous literature we hypothesize CC root characteristics are key to understanding variable effects of

- CCs on soil water storage. Our results indicate it is possible for CCs to meaningfully affect soil water storage, but more research is needed on the mechanisms by which these changes occur.
- 43 INTRODUCTION

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Addition of an over-wintering cereal rye (Secale cereale L.) cover crop (CC) to Midwestern maize (Zea mays L.)-based systems potentially offers several environmental benefits including reduced soil erosion and nutrient pollution (Strock et al., 2004; Kaspar et al., 2007; Kaspar and Singer, 2011; Kladivko et al., 2014). On average, rye CCs have no effect on maize yields compared to winter fallow in the short term (Marcillo and Miguez, 2017), but it is possible repeated use of CCs could stabilize cash crop yields over time (Williams et al. 2018). In Midwestern rain-fed systems, crops rely on stored soil water and often suffer from drought stress (Campos et al., 2006). Using CCs may induce changes in soil characteristics such as increased organic matter, lower bulk densities, increased water-stable aggregates, and more macro-pores (Blanco-Canqui and Jasa, 2019; Haruna et al., 2020). In theory, these changes could result in more water storage capacity (Hudson, 1994; Minasny and McBratney, 2018; King et al., 2020), and therefore buffer crop yields against drought stress (Williams et al., 2016; Kane et al., 2021). Cover crops might also benefit crop-water relations by increasing water infiltration or reducing evaporation through a mulching effect (Unger and Vigil, 1998; Leuthold et al., 2021). Two global meta-analyses suggest that on average, CCs increase soil's capacity to store water and increase infiltration rates (Basche and DeLonge, 2017, 2019). However, to our knowledge there are few studies supporting these findings in Midwestern cover cropping contexts, and the few existing studies report contradictory results (Villamil et al., 2006; Haruna and Nkongolo, 2015; Basche et al., 2016; Rorick and Kladivko, 2017; Irmak et al., 2018). Region-specific studies are needed, as climatic and management constraints of maize-soybean rotations can limit CC options and growth potential (Strock et al., 2004; Baker and Griffis, 2009; Nichols et al., 2020a). Furthermore, to our knowledge there are no studies that report results from fields of commercial farms, and it is therefore unclear whether results observed in a controlled research setting are transferable to large-scale production fields.

In addition to regional differences in CC effects, the number of years that CCs have been used in a field
may also influence whether changes in soil are detected. Long-term studies on tillage practices have
shown significant, but slow changes to the soil after implementing no-till (Al-Kaisi et al., 2014; Cusser et
al., 2020). Addition of CCs might likewise require several years before changes in soil hydrological
properties can be detected, necessitating data collection from long-term experiments.
On average, 75% of both maize and soybean root mass is located in the top 30 cm of the soil profile
(Nichols et al. 2019), indicating soil water storage in this increment will have important implications for
crop water use. Shallow soil depths (0-10 cm) may be more responsive to CC effects compared to deeper
soil layers (e.g. Atwood and Wood, 2021; Kaspar et al., 2006; Moore et al., 2014), but modelling and
isotope studies suggest soil water below 10 cm may be more important when considering the soil's
contribution to a crop's water supply (Williams et al., 2008; Asbjornsen et al., 2008; Rizzo et al., 2018).
In general, there is less information available about CC effects on soil at depths greater than 10 cm,
particularly about soil water retention curve parameters. Therefore, measurements taken from 10-30 cm
depth ranges at multiple sites would provide valuable information about whether cover cropping can
potentially affect crop yield stability through crop-water relations.
Lastly, to our knowledge the causal relationships between CCs and soil water storage have not been
explicitly presented. Causal models can help identify gaps in the literature and help target data collection.
When sufficient data are available, causal models can be used to construct structural equation models that
estimate the relative strength of causal factors (Smith et al., 2014). Causal modelling can also be used to
frame hypotheses, resulting in more targeted research questions that directly test the presence or absence
of causal links (Pearl, 2010). Therefore, a credible causal model can aid in advancing future research.
Given (i) the need to quantify long-term benefits of cover cropping in both research and commercial
production settings, (ii) the scarcity of Midwest-specific data at depths relevant to crop water-use, and
(iii) the lack of a framework for organizing relevant knowledge, the objectives of our study were to:

- (1) Determine what aspects of a soil's hydrological characteristics are affected by long-term cover cropping at a depth relevant to crop production
 - (2) Identify factors that affect the soil's response to cover cropping
 - (3) Propose a causal model connecting CCs to changes in soil properties to aid in targeting future research.

To achieve our objectives, we collected soil samples at a 10-18 cm depth increment from four long-term (10+ years) no-till cover crop trials located in Iowa, USA. Two trials were on commercial farm fields, and two trials were part of a United States Department of Agriculture (USDA) research experiment. We assessed the effects of long-term cover cropping on soil water content at saturation, soil water content at matric potentials approximating field capacity (-100 cm H₂O; Moore 2021), and the soil water retention curve. To complement and contextualize these data, we also measured soil texture, soil organic matter, and bulk densities of the soil samples. We used our results in combination with previous literature to construct a proposed causal model.

MATERIALS AND METHODS

Site descriptions

Three long-term sites that had been in place for at least 10 years were used for this study (**Supplemental material S1**), with one site having two trials. Therefore, a total of four trials were sampled (**Table 1**). Each trial consisted of two treatments that had been in place for at least 10 years: (1) a maize/soybean rotation (either grain- or silage-based) with a winter rye CC planted yearly in the fall following cash crop harvest and terminated in the spring, and (2) the same rotation without a CC. The West-grain and East-grain trials were production fields on commercial farms, and only one phase of the maize/soybean rotation was present each year. The Central site was a larger research study managed by the USDA and included both phases of each rotation (Korucu et al. 2018). For the present study, one commercial trial was sampled following the soybean phase (West-grain), one commercial trial following the maize phase

115

116

117

118

119

120

121

(East-grain), and the USDA site samples were only taken following the maize or maize-silage phase due to time constraints. Every trial was arranged in a randomized complete block design with four (commercial trials) or five (USDA trials) replicates. The plots within each trial were managed identically except for the planting of the CC in the fall. The exact herbicide and nutrient programs varied by site, reflective of their managers and contexts (Supplemental material S2). More detailed accounts of agronomic management practices at the sites have been published elsewhere (Moore et al., 2014; Nichols e tile
.e trials. et al., 2020b). All sites had sub-surface tile drainage at approximately 1.2 m depth and had been managed without tillage since initiation of the trials.

Table 1. Geographical, experimental, soil, weather, and sampling information for the four trials

		Dominant Soil Types,	Sand/Silt/Clay,	30-year Annual Mean		Mean Cover Crop Biomass			2019
Plot Size and Average Slope*	Treatment Replications	Depth to Water Table*	Organic Matter Content**	Air Temperature	Cumulative Precipitation	5-year	10-year	2018 Crop	Sample Date
m			%	°C	mm	Mg ha ⁻¹	Mg ha ⁻¹		
West-grain (comm	ercial farm), 41°	55'N 94 ⁰ 36'W, i	nitiated in 2008						
25 x 250 (1-3%)	4	Nicollet loam; 67 cm	29/43/28 2.86%	9.5	880	0.24	0.45	Soybean	May 23
East-grain (comme	ercial farm), 41º1	18'N 92 ⁰ 48'W, ii	nitiated in 2009						
25 x 275 (0-2%)	4	Taintor silty clay loam; 0 cm	11/56/33 3.62%	10.2	947	1.73	1.32	Maize	June 10
Central (USDA res	search plots), 42º	00'N 93°48'W							
Silage-based, initia	ated in 2002								
3.8 x 55 (1-3%)	5	Clarion loam; 100 cm	30/41/29 2.57%	9.8	907	2.38	1.98	Maize silage	June 6
Grain-based, initia	ted in 2009								
3.8 x 55 (1-3%)	5	Clarion loam; 100 cm	32/40/28 2.42%	9.8	907	1.53	0.88	Maize	June 6

^{*} From Web Soil Survey data using map unit area weighted estimates ** Field measurements averaged by trial, see Materials and Methods

Cover crop biomass sampling occurred each spring at every trial by removing two or four aboveground biomass samples from an area ranging from 0.25-0.36 m² from each plot, depending on the trial. Details about methodology are reported elsewhere (Nichols et al., 2020b) and historical values are available in both supplementary material and in a published dataset (Nichols et al. 2020c). Maize grain, maize silage, and soybean grain yields were measured yearly. Results from the commercial fields showed the effect of cover cropping on grain yields varied by trial and by year (Practical Farmers of Iowa, 2018). While understanding how long-term use of cover crops affects crop yields in different weather-years is a valuable topic of research, it is not the focus of the present study.

Soil Sampling

An aluminum ring 7.62 cm in diameter and 7.62 cm in length was used to extract intact soil samples. Sampling occurred in May or June of 2019 after maize (West-grain) or soybean (East-grain, Central-grain, Central-silage) emergence at each site. Sampling was conducted immediately following crop emergence to minimize the effects of live roots in the samples and was done two to four days following a rain to ensure the soil was fully drained, but wet enough to remain in the ring during sampling (Al-Shammary et al., 2018).

At all trials, one sample was taken in the middle of the plot between planted rows in a non-traffic area in order to minimize the effects of soil changes related to planting activities (wheel-row compaction, drill disturbance) on the results. To get intact soil cores from a 10-18 cm depth increment, a hole 10 cm deep was dug, and soil was smoothed by hand to create a flat area approximately 30 cm square. The ring was placed on the soil surface in the center of the flat area, a hollow metal cap was placed on it, and a 15 kg weight was used to evenly drive the ring into the undisturbed soil. Once the ring was fully inserted into the soil, a hole was dug around the ring. A flat sheet of metal was slid under the ring to extract it, and a knife was used to remove soil from the top and bottom of the ring by sawing in a Z-cutting motion (three sawing motions per core). The ring was wrapped in aluminum foil with the soil orientation (top, bottom)

marked. The foil-wrapped ring was then placed in an individual plastic container in a cooler. This process was repeated for each plot (eight plots at East-grain, eight at West-grain, 10 at Central-silage, and 10 at Central-grain; Table 1). Samples remained in the cooler for no more than four hours before being placed in a refrigerator.

Soil-water-retention curve

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

Analytical equipment could accommodate 12 samples at a time, so each trial's samples were run together in a batch for a total of four batches (e.g., the eight samples from the West-grain trial were run together in one batch). Our interest was in comparing relative effects within a trial, so variation between runs was included statistically in variation between trials. The samples were analyzed in the order they were collected. A given trial's cores had cheesecloth taped to the bottom of each core and an additional ring taped to the top. The batch of samples was then placed in a vacuum chamber for at least 12 hours in a solution of 0.01 M CaCl₂ filled to the top of the first ring, allowing the samples to saturate with minimal air entrapment. Following saturation, the top ring was removed from the cores. The cores were weighed, then transferred to a custom-built pressure cell apparatus (Ankeny et al. 1992). Measurements were made according to the protocol described by Kool et al. (2019). Cores were drained at atmospheric pressure for 12 hours to obtain a measurement for gravity-drained matric potential ($\Psi_m = -3.8 \text{ cmH}_2\text{O}$). Subsequent measurements were taken at Ψ_m of -10, -25, -50, -100, -200, and -500 cmH₂O. The samples were then oven dried at 60 °C for at least 48 hours, then weighed. Bulk densities were estimated by dividing the oven-dried weight of soil by the ring volume (347.5 cm³; Grossman et al., 2002). A water balance was constructed for each core individually as quality control, resulting in the removal of one replicate from the no-cover treatment of the Central-silage trial, which had a large hole visible in the center of the core upon destructive inspection, confirming its justified removal from the dataset.

Soil texture and organic carbon

The oven-dried soil was ground and passed through a 2 mm sieve. Two teaspoons of soil (\sim 10 grams) from each core were used for soil texture measurements. Soil texture was quantified using laser diffractometry (Miller and Schaetzl, 2012) with a Malvern Mastersizer 3000 and a HydroEV attachment (Malvern Panalytical Ltd, UK), producing estimates for the percentage of the soil that was sand (50-2000 μ m), silt (6-50 μ m), and clay (0.1-6 μ m). Half of the remaining oven-dried soil cores were sent for organic matter analysis (Agsource, Ellsworth Iowa, USA) using the loss-on-ignition method (Nelson and Sommers, 1996). While this method may not produce reliable absolute estimates of organic matter (Hoogsteen et al., 2015), our interest was in pairwise comparisons of treatments rather than in obtaining absolute estimates of organic matter.

Statistical analysis

All data analysis, figure creation, and model fitting were done using *R* version 4.0.3 (R Core Team, 2020) and the *tidyverse* meta-package (Wickham et al., 2019). Non-linear models were fit using the *nlraa* (Miguez, 2021) package functionality, with specific equation fits from the *HydroMe* (Omuto et al., 2021) and *soilphysics* (de Lima et al., 2021) packages. Linear models were fit and summarized using the *lme4* (Bates et al., 2015) package, which fits mixed effects models, and the *emmeans* (Lenth et al., 2018) package, which estimates both marginal and conditional means and confidence intervals and performs pairwise comparisons.

We fit the Gardner (Gardner, 1958) and van Genutchen (van Genuchten, 1980) models to describe the relationship between soil moisture and soil water matric potential in our datasets. We found the models produced similar Akaike's Information Criteria (AIC; Bozdogan, 1987) values, with the Gardner model showing a slightly better fit. The Gardner equation is as follows:

$$\theta(\psi) = \theta_r + \frac{\theta_s - \theta_r}{1 + a\psi^n}$$

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

where θ is the volumetric moisture content at a given soil water potential ψ ; the remaining variables are fitted parameters. θ_r and θ_s are the residual and saturated water contents, respectively; a approximates the inverse of the pressure at which the retention curve is steepest (e.g., air-entry potential; van Genutchen 1980); and n is an index for the pore size distribution, with higher values indicating a broader distribution of pore sizes. We fit the Gardner model to each experimental unit, then analyzed the air-entry and poresize distribution parameters as response variables, described below. Residual water contents (θ_r) are estimated by the model, and can occur at suction pressures greater than -15,000 cmH₂O (SSSA, 2008). The highest suction pressure applied to samples in this study was -500 cmH₂O, which could lead to less stable model fits due to lack of an anchoring value (Groenevelt and Grant, 2004). To determine whether the model produced reasonable estimates without these anchoring values, we compared (1) the modelestimated saturated water contents with the measured values, and (2) the pore-size distribution parameter estimate against values estimated using capillary rise equations, which assumes the mean pore neck diameter (in cm) of drained pores at a given pressure is equal to 0.3 divided by the head pressure (cmH₂O). Pores with mean neck diameters greater than 30 µm were considered macropores (Kirkham, 2014). The percent macropores was assessed as a response variable, described below. Volumetric water contents at saturation were extracted directly from the measured values. Volumetric water contents at field capacity were estimated as the measured volumetric water content at a matric potential of -100 cmH₂O (Moore 2021). We used this approximation because the matric potential that approximates field capacity depends on the depth to the water table. The trials sampled all had artificial tile drainage installed at ~1.2 meter depths and had shallow water tables (**Table 1**), meaning field capacity will be at matric potentials less negative than the commonly assumed value of -330 cmH₂O (Bonfante et al., 2020). Soil water retention curve data from Moore (2021) suggest that -100 cmH₂O is a better approximation for field capacity in mollic epipedons with shallow water tables, such as those sampled in the present study.

The effects of trial, CC treatment, and their interaction on response variables (soil texture, organic matter, water contents at saturation and field capacity, air-entry pressures, pore-size distribution index, percent macropores) were assessed using mixed-effect models. Trial, CC treatment, and their interaction were included as fixed effects. Percent sand was investigated as a covariate in appropriate models because texture is the dominant driver of water retention curve parameters (de Jong et al., 1983; Saxton and Rawls, 2006), has a large influence on bulk densities, and can affect soil organic matter accumulation. Models without a sand covariate had random intercept effects for replicates nested within location (East, Central, West), and models that included a sand covariate had fixed effects only. Models were compared using AIC. All statistical results are available in Supplementary material S3.

RESULTS AND DISCUSSION

Soil texture, organic matter, and bulk density

Within certain trials, the CC treatment was coincident with differences in sand, silt, as well as clay percentages (p<0.001). The percent sand did not vary by CC treatment in the Central-silage trial, but varied significantly (p<0.01) at the other three trials (**Supplementary material S3, S4**). Likewise, the percent clay varied by CC treatment in three of the four trials while the percent silt varied by CC treatment in only one trial (West-grain). However, the significant differences between CC and no-cover plots were only of a meaningful magnitude (>1% difference) at the two commercial farm trials (East-grain, West-grain; **Table 2**). In the East-grain trial, the CC plots had 3% more sand compared to the no-cover plots (p<0.001). In the West-grain trial, the CC plots had 5% more sand compared to the no-cover plots (p<0.001). The increased sand in the CC plots was compensated for by a decrease in clay (East-grain) or a decrease in both clay and silt (West-grain). At both of the Central trials, texture components of the CC and no-cover plots were within 1% of each other.

Table 2. Summary of soil texture components for rye cover crop (CC) and no-cover treatments at each trial, bolded text indicates significant differences at p<0.01 greater than 1% in magnitude; totals may not add to 100% due to rounding, see Supplemental material S4 for more precise values.

Trial -	Sand	Silt	Clay	
	Rye CC /No-cover	Rye CC/No-cover	Rye CC/No-cover	
West-grain (commercial farm)	31/26%	42/45%	27/30%	
East-grain (commercial farm)	13/10%	56/56%	32/35%	
Central-silage	30/29%	41/41%	29/30%	
Central-grain	32/32%	40/40%	28/28%	

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

While the plots in the commercial farm fields (East-grain, West-grain) were randomly assigned a CC treatment, the treatments were close to regularly alternating strips, with the four blocks laid out side-byside. If a field has a uniform texture gradient perpendicular to the blocking, this regularly alternating pattern could result in one treatment having significantly different textures compared to the other, as we observed. Additional samples taken at a later date from East-grain trial confirmed the soil texture pattern we observed in the present study (unpublished data), providing further evidence our observations were not due to chance, but rather refelected a true soil texture gradient at the sites. The Central site had six treatments in small plots and the five blocks were located in two rows within the field, with each treatment being randomly assigned within the block; this arrangement may have better randomized treatments with respect to natural patterns of soil texture within the site. Based on these results, sand was included as a covariate in statistical models for response variables potentially affected by soil texture. Soil organic matter contents ranged from 1.8 to 4.6%, with a significant trial-by-CC treatment interaction (p<0.001). Soil organic matter accumulation may be affected by soil texture (Scott et al., 1996; Bosatta and Agren, 1997), so statistics were run both with and without a sand co-variate to account for the different soil textures in the CC and no-cover treatments observed in some trials. The Central-silage trial showed a significant (p<0.01) but small (+0.25%) absolute increase in organic matter with cover

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

cropping, regardless of inclusion of a sand covariate. In the other three trials, the results depended on whether sand was included as a co-variate. Without a sand co-variate, organic matter was estimated to decrease with cover cropping compared to no-cover in three trials (p-values ranging from 0.001-0.048). When a sand co-variate was included in the statistical analysis, organic matter either did not change (Central-grain) or significantly (p<0.01) increased with cover cropping by small amounts (+0.19% and +0.26% in the East-grain and West-grain trials, respectively). Due to the sensitivity of the results and the small effect sizes, we conclude cover cropping did not meaningfully affect soil organic matter at this depth in the three grain trials, but may have resulted in a slightly higher organic matter content in the Central-silage trial. This is consistent with a previous study at this same trial, which found higher organic matter in the top 5 cm of soil in CC treatments compared to no-cover, but small differences below that depth (Moore et al., 2014). Bulk densities varied from 1.2 g cm⁻³ to 1.7 g cm⁻³. The large size of sand particles reduces packing efficiencies compared with clay, meaning a sandy soil may have lower bulk densities simply due to packing arrangements. However, regardless of the statistical model fit, all estimated CC effects were less than measurement precision of the core method for measuring bulk density (±0.12 g cm⁻³, Han et al., 2016), rendering their interpretation questionable. A recent summary of research on the effects of CCs on bulk densities likewise found few studies where an overwintering rye CC grown in the US reduced bulk densities more than typical measurement errors (Haruna et al., 2020). We therefore found no evidence that CCs meaningfully affected soil bulk density at 10-18 cm soil depths at any trial.

Soil hydrological properties

Soil texture is the dominant factor determining soil water retention (de Jong et al., 1983; Saxton and Rawls, 2006), particularly under wet conditions (i.e. saturation and field capacity; Manns and Berg, 2014). Because soil texture varied by CC treatment in the two commercial field trials (East-grain, West-

grain), sand was included as a co-variate in statistical models assessing the effects of cover cropping on these response variables.

Air-entry potential and pore distribution

The Gardner equation fitting process converged for all experimental units (**Figure 1**), with a (an estimate of the inverse of air-entry potential) ranging from 0.001 to 0.284, and n (pore-size distribution index) ranging from 0.45 to 1.49.

Figure 1. The Gardner equation was fit to each experimental unit (dotted lines); mean values (solid lines) for each trial and cover crop treatment are presented to aid in interpretation.

290

291

292

293

284

285

286

287

288

289

There was not a significant interaction between trial and CC treatment for either parameter. While both parameters differed significantly by trial (p<0.001), cover cropping did not significantly affect either parameter, with or without a sand covariate (**Table 3**; **Supplemental material S3**).

Table 3. Summary of estimated mean values, standard error of the mean (SE), and significance of the comparison between rye cover crop (CC) and no-cover treatments within a trial (p-value) for Gardner parameters and percent macropores.

Cover crop (CC) treatment	Inverse air-entry potential (Gardner model parameter <i>a</i>)		Pore-size distribution (Gardner model parameter <i>n</i>)		Percent macropores (capillary rise equation)	
	mean(SE)	p-value	mean(SE)	p-value	mean(SE)	p-value
	cmH ₂ O ⁻¹		unitless		%	
West-grain (c	rommercial farm)					
Rye CC	0.03(0.01)	0.17	0.83(0.09)	0.60	48(5)	0.05
No cover	0.05(0.01)	0.15	0.90(0.09)	0.60	61(5)	0.05
East-grain (c	ommerical farm)					
Rye CC	0.11(0.01)	0.14	0.83(0.09)	0.96	73(5)	0.75
No cover	0.08(0.01)	0.14	0.82(0.08)	0.90	71(5)	0.73
Central-grain	ı					
Rye CC	0.02(0.01)	0.97	1.15(0.08)	0.67	59(4)	0.61
No cover	0.02(0.01)	0.97	1.10(0.08)	0.67	62(4)	0.61
Central-silag	e					
Rye CC	0.03(0.01)	0.22	0.90(0.08)	0.50	54(4)	0.40
No cover	0.04(0.01)	0.32	0.82(0.09)	0.52	59(5)	0.40

When compared across trials, the *a* parameter was strongly related to the percentage of sand in the trial's soil, with the East-grain trial having the lowest sand content (mean of 11%) and highest *a* estimate (mean of 0.09), and the Central-grain trial having the highest sand content (mean of 32% sand) and lowest *a* estimate (mean of 0.02). This inverse relationship is consistent with empirical equations relating air-entry potential to soil texture (Saxton and Rawls 2006). However, even with a sand co-variate, cover cropping did not significantly affect air-entry pressures nor pore-size distributions.

Consistent with the lack of CC effect on the Gardner equation's pore-size distribution parameter (*n*) manual estimation of the pore-size distribution confirmed CCs did not increase the percentage of macropores in any trial (**Table 3**; **Supplemental material S5.** In a review of published studies, Haruna et al. (2020) found the effect of CCs on macropore makeup of the soil highly variable, but with an overall

average increase. The wide variation may be partially due to varying cut-offs in pore sizes for macropore categorization (Luxmoore, 1981), but the variability in combination with our results again demonstrates using literature averages to predict CC impacts in Midwestern systems may be inappropriate.

Soil water at saturation and field-capacity

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

For these analyses we assigned significance at p-values less than 0.10. With or without a sand covariate, no trial exhibited a significant increase in water held at saturation with the use of cover cropping (Figure 2). Water held at saturation is largely dependent on bulk density, so these findings are consistent with the lack of meaningful effect of CCs on bulk densities in our study. Field capacities were signifiantly higher in the cover cropped plots at one commercial farm (West-grain; p = 0.07) and one USDA trial (Centralsilage; p = 0.05). At the West-grain trial, the soil water at field capacity increased (after sand correction) from 33.6 to 36.0 vol%, and at the Central-silage trial from 38.1 to 40.6 vol%, respectively. An increase in the soil's ability to hold water after gravity drainage may also contribute to peak water flow regulation. By increasing volumetric water content at field capacity by 2 vol% in the 0-20 cm profile, CC fields could hold an additional 40,000 L of water in each 20-cm hectare slice, which could meaningfully reduce the amount of water drained from a field after a saturating rain. For comparison, evapotranspiration rates in an over-wintered rye cover crop with modest biomass production can be $\sim 24,000 \text{ L ha}^{-1} \text{ day}^{-1}$ (Qi and Helmers, 2010), and peak flows from sub-surface drainge tiles in central Iowa can be ~22,000 L ha⁻¹ hour ¹ (Daigh et al. 2014). To our knowledge there are limited studies examining the potential for CCs to reduce flood damage in the Midwest, but the one we are aware of accounts for only the increased evapotransipiration with the use of CCs (Antolini et al., 2020). Our study suggests that in addition to reducing run-off (Korucu et al. 2018), considering how CC-induced increases in the amount of water held in a soil at field capacity affect flood incidence and severity would be worth investigating. Furthermore, as other studies have noted, an increase in the amount of water held at field capacity results in more precipitation being stored for cash crop use (Basche et al. 2016; Leuthold et al. 2021), meaning in some cases longterm use of CCs could lead to more stable cash crop yields (Williams et al. 2018).

Figure 2. Soil volumetric water contents at saturation and field capacity (-100 cmH2O) with 10+ years of winter rye cover cropping (green) or winter fallow (brown) in a maize-soybean rotation at four trials. Bars show estimated means, line ranges are the 95% confidence intervals around the mean. Text

presents the estimated effect of cover cropping on volumetric water content in instances of a significant effect.

Factors explaining variable results

The West-grain and Central-silage trials both exhibited significantly higher soil water at field capacity with the use of cover cropping compared to winter fallows. However, the West-grain trial consistently produced the lowest above-ground CC biomass, and the Central-silage trial the highest (**Table 1**), indicating the changes in water held at field capacity are likely not associated with CC above-ground biomass production. Although a previous study suggested soil texture could mediate the effects of long-term CC-use (Blanco-Canqui and Jasa, 2019), in our dataset there was no pattern between soil textural characteristics and the magnitude of CC effect on water held at field capacity. This means knowledge of a soil's texture did not help predict whether a CC would affect water held at field capacity in our study.

The West-grain trial was sampled following a soybean crop, and the Central-silage following a silage crop, while the two trials without significant CC effects were both sampled following a maize-grain crop (**Table 1**). Soybean and maize-silage crops would leave less residue compared to a preceeding maize-grain crop, however this study did not measure residue amounts at the time of sampling. Given the lack of insight into what may be driving the variable effects given the available data, we explored potential causes for our variable results and identified additional measurements that may aid in identifying drivers of the variable effects of CCs on soil hydrological properties.

Causal model

There are several pathways by which CCs might affect a soil's capacity to hold water (**Figure 3**). The causal model was built using literature relevant to Midwestern systems, and when applicable was limited to evidence drawn from research conducted with a cereal rye cover crop (**Supplemental material S6**). The model was simplified to exclude the effects of soil erosion, soil texture, tillage, and landscape

position, which are all factors that could potentially influence how soil responds to cover cropping (Moore 2021). Rather, we present this simple casusal model to provide a base from which to build.

357

355

356

Figure 3. Pathways by which cover crops may affect the soil pore size distributions, the amount of water stored at field capacity, and the amount of water at saturation in no-till systems. The effects of soil erosion are not included. $X \rightarrow Y$ should be read as 'X affects Y'.

Causal diagrams such as **Figure 3** are the basis for constructing structural equation models, which can greatly enhance researchers' ability to address complex research questions in agriculture (Smith et al., 2014; Wade et al., 2020). For example, in our proposed causal diagram, below-ground biomass measurements are necessary for estimating direct effects of cover cropping on pore size distributions, field capacity, and saturation. This is further supported by recent studies and reviews that identify CC roots as being a crucial component to understanding CC effects on soil properties (Williams and Weil, 2004; Haruna et al., 2020; Ogilvie et al., 2021). While there is limited data available pairing above- and below-ground biomass of CCs, data collected in Iowa over a five-year period showed no relationship between above- and below-ground rye biomass, with root-to-shoot ratios varying from 0.16-1.94 at similar levels of aboveground biomass production (Martinez-Feria et al., 2016). Therefore, above-ground biomass production cannot be used as a proxy for below-ground production with much confidence, and studies that pair above- and below-ground CC biomass with soil measurements would be advantageous in enhancing our understanding of CC effects on soil.

373 CONCLUSIONS

We found CCs increased water held at field capacity at the 10-18 cm soil range in two of the four trials sampled. The observed increases were of a meaningful magnitude that could contribute to cash crop water needs, and may have implications for flooding severity in agricultural regions and should be considered when modelling cover crop effects on landscape water balances. We were unable to explain the trial-dependent effects using the available measurements and information. Based on a proposed causal model, we suggest researchers measure CC root biomass in addition to above-ground biomass when examining the effects of CCs on soil properties. Effects of growing over-wintering CCs need to be explicitly investigated in the

382	Midwestern US, as the constraints of maize-soybean systems may render the effects smaller in
383	magnitude compared to averages reported by global meta-analyses.
384	SUPPLEMENTAL MATERIAL
385	S1 - A map of trial locations
386	S2 - Detailed description of management practices and historical cover crop biomass
387	production for each trial
388	S3 - Statistical summaries
389	S4 – Detailed soil texture results
390	S6 – Causal model literature support
391	DATA AVAILABILITY
392	The data are available as downloadable csv files in supplementary material. Additionally, all
393	data are available in an R package (https://github.com/vanichols/PFIswhc) and the R code used
394	in processing and summarizing data for this publication is available in a github repository (will
395	be created once paper is accepted).
396	CONFLICT OF INTEREST
397	The authors declare no conflicts of interest.
398	AUTHOR CONTIBUTIONS
399 400 401 402 403	VN contributed to conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, project administration, writing of original draft, and review/editing. ML contributed to funding acquisition, project administration, supervision, and review/editing of draft. SG contributed to project administration, resources, and review/editing. EM contributed to methodology, resources, and review/editing.

404	ACKNOWLEDGMENTS
405	We would like to acknowledge Dr. Robert Horton for generously allowing us to use his lab space and
406	equipment for this project, and Dr. Michael Castellano for providing suggestions about the manuscript.
407	We also thank the two farmers and Keith Kohler and Tom Kaspar for allowing us to collect data in their
408	long-term plots, and Wyatt Westfall for his help collecting and preparing samples. We also thank the
409	Practical Farmers of Iowa staff and members for their support throughout this project. This material is
410	based upon work supported in part by the National Science Foundation (Grant No. DGE-1828942), the
411	North Central Region Sustainable Research and Education Program (Grant No. 2017-38640-26916), and
412	endowment funds for the Henry A. Wallace Chair for Sustainable Agriculture at Iowa State University.
413	Lastly we thank three reviewers for their constructive comments that helped us improve this manuscript.
414	
415	REFERENCES
416	Abiven, S., S. Menasseri, and C. Chenu. 2009. The effects of organic inputs over time on soil aggregate
417	stability - A literature analysis. Soil Biology and Biochemistry 41(1): 1–12. doi:
418	10.1016/j.soilbio.2008.09.015.
419	Al-Kaisi, M.M., A. Douelle, and D. Kwaw-Mensah. 2014. Soil microaggregate and macroaggregate
420	decay over time and soil carbon change as influenced by different tillage systems. Journal of Soil
421	and Water Conservation 69(6). doi: 10.2489/jswc.69.6.574.
422	Al-Shammary, A.A.G., A.Z. Kouzani, A. Kaynak, S.Y. Khoo, M. Norton, et al. 2018. Soil bulk density
423	estimation methods: A review. Pedosphere 28(4): 581–596. doi: 10.1016/S1002-0160(18)60034-7.
424	Ankeny, M.D., Brown, H.J., Cruse, R.M., 1992. Means and method of soil water desorption. U.S. Patent
425	268 5,161,407.
426	Antolini, F., E. Tate, B. Dalzell, N. Young, K. Johnson, et al. 2020. Flood risk reduction from agricultural
427	best management practices. Journal of the American Water Resources Association 56(1): 161–179.
428	doi: 10.1111/1752-1688.12812.
420	doi. 10.1111/1/32-1000.12012.
429	Asbjornsen, H., G. Shepherd, M. Helmers, and G. Mora. 2008. Seasonal patterns in depth of water uptake
430	under contrasting annual and perennial systems in the Corn Belt region of the Midwestern US. Plant
431	and Soil 308(1–2): 69–92. doi: 10.1007/s11104-008-9607-3.
432	Atwood, L.W., and S.A. Wood. AgEvidence: Agro-environmental responses of conservation agricultural
433	practices in the US Midwest published from 1980 to 2017. Knowledge Network for Biocomplexity.
434	Austin, E.E., K. Wickings, M.D. McDaniel, G.P. Robertson, and A.S. Grandy. 2017. Cover crop root
435	contributions to soil carbon in a no-till corn bioenergy cropping system. GCB Bioenergy 9(7):
436	1252–1263. doi: 10.1111/gcbb.12428.

- Baker, J.M., and T.J. Griffis. 2009. Evaluating the potential use of winter cover crops in corn-soybean
- 438 systems for sustainable co-production of food and fuel. Agricultural and Forest Meteorology
- 439 149(12): 2120–2132. doi: 10.1016/j.agrformet.2009.05.017.
- Basche, A., and M. DeLonge. 2017. The impact of continuous living cover on soil hydrologic properties:
- 441 A meta-analysis. Soil Science Society of America Journal 81(5): 1179–1190. doi:
- 442 10.2136/sssaj2017.03.0077.
- Basche, A.D., and M.S. DeLonge. 2019. Comparing infiltration rates in soils managed with conventional
- and alternative farming methods: A meta-analysis. PLoS ONE 14(9): 1–22. doi:
- 445 10.1371/journal.pone.0215702.
- Basche, A.D., T.C. Kaspar, S. v. Archontoulis, D.B. Jaynes, T.J. Sauer, et al. 2016. Soil water
- improvements with the long-term use of a winter rye cover crop. Agricultural Water Management
- 448 172: 40–50. doi: 10.1016/j.agwat.2016.04.006.
- Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4.
- 450 Journal of Statistical Software 67(1): 1–48. doi: 10.18637/jss.v067.i01.
- Blanco-Canqui, H., and P.J. Jasa. 2019. Do grass and legume cover crops improve soil properties in the
- long term? Soil Science Society of America Journal. 83:1181-1187.
- Bonfante, A., A. Basile, and J. Bouma. 2020. Exploring the effect of varying soil organic matter contents
- on current and future moisture supply capacities of six Italian soils. Geoderma 361: 114079. doi:
- 455 10.1016/j.geoderma.2019.114079.
- Bosatta, E. and G.I. Ågren. 1997. Theoretical analyses of soil texture effects on organic matter
- dynamics. Soil Biology and Biochemistry, 29(11-12), pp.1633-1638.
- 458 Boyle, M., W.T. Frankenberger, and L.H. Stolzy. 1989. The influence of organic matter on soil
- aggregation and water infiltration. Journal of Production Agriculture 2(4): 290–299. doi:
- 460 10.2134/jpa1989.0290.
- 461 Bozdogan, H. 1987. Model selection and Akaike's Information Criterion (AIC): The general theory and
- 462 its analytical extensions. Psychometrika 52(3): 345–370. doi: 10.1007/BF02294361.
- 463 Campos, H., M. Cooper, O. Edmeades, C. Loffler, J.R. Schussler, et al. 2006. Changes in drought
- 464 tolerance in maize associated with fifty years of breeding for yield in the US corn belt. Maydica
- 465 51(2).
- 466 Cotrufo, M.F., M.D. Wallenstein, C.M. Boot, K. Denef, and E. Paul. 2013. The Microbial Efficiency-
- Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic
- 468 matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology
- 469 19(4): 988–995. doi: 10.1111/gcb.12113.
- 470 Cusser, S., C. Bahlai, S.M. Swinton, G.P. Robertson, and N.M. Haddad. 2020. Long-term research avoids
- spurious and misleading trends in sustainability attributes of no-till. Global Change Biology 26(6).
- 472 doi: 10.1111/gcb.15080.

- Edwards, W.M., L.D. Norton, and C.E. Redmond. 1988. Characterizing macropores that affect infiltration
- into non-tilled soil. Soil Science Society of America Journal 52(2): 483–487. doi:
- 475 10.2136/sssaj1988.03615995005200020033x.
- Gardner, W.R. 1958. Some steady-state solutions of the unsaturated moisture flow equation with
- application to evaporation from a water table. Soil Science 85(4): 228–232. doi: 10.1097/00010694-
- 478 195804000-00006.
- van Genuchten, M.Th. 1980. A closed-form equation for predicting the hydraulic conductivity of
- unsaturated soils. Soil Science Society of America Journal 44(5): 892–898. doi:
- 481 10.2136/sssaj1980.03615995004400050002x.
- 482 Groenevelt, P.H., and C.D. Grant. 2004. A new model for the soil-water retention curve that solves the
- problem of residual water contents. European Journal of Soil Science 55(3): 479–485. doi:
- 484 10.1111/j.1365-2389.2004.00617.x.
- 485 Grossman, R.B., and T.G. Reinsch. 2002. Bulk density and linear extensibility. In J. H. Dane & G. C.
- Topp (Eds.), Methods of soil analysis: Part 4, physical methods (pp. 201–228). SSSA.
- https://doi.org/10.2136/sssabookser5.4.c9
- Han, Y., J. Zhang, K.G. Mattson, W. Zhang, and T.A. Weber. 2016. Sample sizes to control error
- 489 estimates in determining soil bulk density in California forest soils. Soil Science Society of America
- 490 Journal 80(3): 756–764. doi: 10.2136/sssaj2015.12.0422.
- Haruna, S.I., S.H. Anderson, R.P. Udawatta, C.J. Gantzer, N.C. Phillips, et al. 2020. Improving soil
- 492 physical properties through the use of cover crops: A review. Agrosystems, Geosciences &
- 493 Environment 3(1). doi: 10.1002/agg2.20105.
- Haruna, S.I., and N.V. Nkongolo. 2015. Cover Crop Management Effects on Soil Physical and Biological
- 495 Properties. Procedia Environmental Sciences 29: 13–14. doi: 10.1016/j.proenv.2015.07.130.
- Hoogsteen, M.J.J., E.A. Lantinga, E.J. Bakker, J.C.J. Groot, and P.A. Tittonell. 2015. Estimating soil
- 497 organic carbon through loss on ignition: Effects of ignition conditions and structural water loss.
- 498 European Journal of Soil Science 66(2): 320–328. doi: 10.1111/ejss.12224.
- 499 Hudson, B.D. 1994. Available water capacity and soil organic matter. Journal of Soil and Water
- 500 Conservation 49(2): 189–194. doi: 10.1081/E-ESS-120018496.
- 501 Irmak, S., V. Sharma, A.T. Mohammed, and K. Djaman. 2018. Impacts of cover crops on soil physical
- properties: Field capacity, permanent wilting point, soil-water holding capacity, bulk density,
- hydraulic conductivity, and infiltration. Transactions of the ASABE 61(4). doi:
- 504 10.13031/trans.12700.
- de Jong, R., C.A. Campbell, and W. Nicholaichuk. 1983. Water retention equations and their relationship
- to soil organic matter and particle size distribution for disturbed samples. Canadian Journal of Soil
- 507 Science 63(2): 291–302. doi: 10.4141/cjss83-029.

- Kane, D.A., M.A. Bradford, E. Fuller, E.E. Oldfield, and S.A. Wood. 2021. Soil organic matter protects
- 509 US maize yields and lowers crop insurance payouts under drought. Environmental Research Letters
- 510 16(4). doi: 10.1088/1748-9326/abe492.
- Kaspar, T.C., D.B. Jaynes, T.B. Parkin, and T.B. Moorman. 2007. Rye cover crop and gamagrass strip
- effects on NO3 concentration and load in tile drainage. Journal of environmental quality 36(5):
- 513 1503–1511. doi: 10.2134/jeq2006.0468.
- Kaspar, T.C., D.B. Jaynes, T.B. Parkin, T.B. Moorman, and J.W. Singer. 2012. Effectiveness of oat and
- 515 rye cover crops in reducing nitrate losses in drainage water. Agricultural Water Management 110(3):
- 516 25–33. doi: 10.1016/j.agwat.2012.03.010.
- Kaspar, T.C., T.B. Parkin, D.B. Jaynes, C.A. Cambardella, D.W. Meek, et al. 2006. Examining changes
- in soil organic carbon with oat and rye cover crops using terrain covariates. Soil Science Society of
- 519 America Journal 70(4): 1168–1177. doi: 10.2136/sssaj2005.0095.
- Kaspar, T., and J. Singer. 2011. The Use of Cover Crops to Manage Soil. Publications from the USDA-
- ARS/UNL Faculty. p. 1382. https://digitalcommons.unl.edu/usdaarsfacpub/1382/
- 522 Kay, B.D., A.P. da Silva, J.A. Baldock, D. Silva, A.P. And Baldock, et al. 1997. Sensitivity of soil
- structure to changes in organic carbon content: Predictions using pedotransfer functions. Canadian
- 524 Journal of Soil Science 77(4): 655–667.
- Kim, N., M.C. Zabaloy, K. Guan, and M.B. Villamil. 2020. Do cover crops benefit soil microbiome? A
- meta-analysis of current research. Soil Biology and Biochemistry 142: 107701. doi:
- 527 10.1016/j.soilbio.2019.107701.
- King, A.E., G.A. Ali, A.W. Gillespie, and C. Wagner-Riddle. 2020. Soil organic matter as catalyst of crop
- resource capture. Frontiers in Environmental Science 8. doi: 10.3389/fenvs.2020.00050.
- Kirkham, M.B. 2014. Principles of soil and plant water relations, 2nd Edition. Elsevier Inc. ISBN
- 531 9780124200227
- Kladivko, E.J., T.C. Kaspar, D.B. Jaynes, R.W. Malone, J. Singer, et al. 2014. Cover crops in the upper
- 533 midwestern United States: Potential adoption and reduction of nitrate leaching in the Mississippi
- River Basin. Journal of Soil and Water Conservation 69(4): 279–291. doi: 10.2489/jswc.69.4.279.
- Kool, D., B. Tong, Z. Tian, J.L. Heitman, T.J. Sauer, et al. 2019. Soil water retention and hydraulic
- conductivity dynamics following tillage. Soil and Tillage Research 193: 95–100. doi:
- 537 10.1016/j.still.2019.05.020.
- Korucu, T., M.J. Shipitalo, T.C. Kaspar. 2018. Rye cover crop increases earthworm populations and
- reduces losses of broadcast, fall-applied, fertilizers in surface runoff. Soil and Tillage
- 540 Research, 180:99-106.
- Lenth, R., H. Singmann, and J. Love. 2018. Emmeans: Estimated marginal means, aka least-squares
- means. R package version 1.5.4. https://CRAN.R-project.org/package=emmeans

- Leslie, A.W., K.H. Wang, S.L.F. Meyer, S. Marahatta, and C.R.R. Hooks. 2017. Influence of cover crops
- on arthropods, free-living nematodes, and yield in a succeeding no-till soybean crop. Applied Soil
- Ecology 117–118: 21–31. doi: 10.1016/j.apsoil.2017.04.003.
- Leuthold, S.J., M. Salmerón, O. Wendroth, and H. Poffenbarger. 2021. Cover crops decrease maize yield
- variability in sloping landscapes through increased water during reproductive stages. Field Crops
- 548 Research 265. doi: 10.1016/j.fcr.2021.108111.
- de Lima, R.P., A.R. da Silva, and Á.P. da Silva. 2021. soilphysics: An R package for simulation of soil
- compaction induced by agricultural field traffic. Soil and Tillage Research 206: 104824. doi:
- 551 10.1016/j.still.2020.104824.
- Luxmoore, R.J. 1981. Micro-, meso-, and macroporosity of soil. Soil Science Society of America Journal
- 553 45(3): 671–672. doi: 10.2136/sssaj1981.03615995004500030051x.
- Manns, H.R., and A.A. Berg. 2014. Importance of soil organic carbon on surface soil water content
- variability among agricultural fields. Journal of Hydrology 516: 297–303. doi:
- 556 10.1016/j.jhydrol.2013.11.018.
- Marcillo, G.S.S., and F.E.E. Miguez. 2017. Corn yield response to winter cover crops: An updated meta-
- analysis. Journal of Soil and Water Conservation 72(3): 226–239. doi: 10.2489/jswc.72.3.226.
- 559 Martinez-Feria, R.A., R. Dietzel, M. Liebman, M.J. Helmers, and S.V. Archontoulis. 2016. Rye cover
- crop effects on maize: A system-level analysis. Field Crops Research 196: 145–159. doi:
- 561 10.1016/j.fcr.2016.06.016.
- Miguez, F. 2021. nlraa: Nonlinear regression for agricultural applications. R package version 0.83.
- https://cran.r-project.org/web/packages/nlraa/index.html
- Miller, B.A., and R.J. Schaetzl. 2012. Precision of soil particle size analysis using laser diffractometry.
- Soil Science Society of America Journal 76(5): 1719. doi: 10.2136/sssaj2011.0303.
- Minasny, B., and A.B. McBratney. 2018. Limited effect of organic matter on soil available water
- 567 capacity. European Journal of Soil Science 69(1): 39–47. doi: 10.1111/ejss.12475.
- Moore, E.B., M.H. Wiedenhoeft, T.C. Kaspar, and C.A. Cambardella. 2014. Rye cover crop effects on
- soil quality in no-till corn silage-soybean cropping systems. Soil Science Society of America Journal
- 570 78(3): 968–976. doi: 10.2136/sssaj2013.09.0401.
- Moore, E.B. 2021. Management effects on near-surface soil properties in a temperate corn-soybean
- cropping system. Graduate Theses and Dissertations. 18564. https://lib.dr.iastate.edu/etd/18564
- Nelson, D.W. and Sommers, L.E., 1996. Total carbon, organic carbon, and organic matter. Methods of
- soil analysis: Part 3 Chemical methods. pp 961-1010.
- Nichols, V.A., R.A. Ordóñez, E.E. Wright, M.J. Castellano, M. Liebman, J.L. Hatfield, M. Helmers, S.V.
- Archontoulis. 2019. Maize root distributions strongly associated with water tables in Iowa,
- 577 USA. Plant and Soil, 444(1), pp.225-238. doi: 10.1007/s11104-019-04269-6

- Nichols, V., R. Martinez-Feria, D. Weisberger, S. Carlson, B. Basso, et al. 2020a. Cover crops and weed
- suppression in the U.S. Midwest: A meta-analysis and modeling study. Agricultural &
- 580 Environmental Letters 5(1). doi: 10.1002/ael2.20022.
- Nichols, V., L. English, S. Carlson, S. Gailans, and M. Liebman. 2020b. Effects of long-term cover
- cropping on weed seedbanks. Frontiers in Agronomy 2: 591091. doi: 10.3389/fagro.2020.591091.
- Nichols, V., English, L. E., and Liebman, M. (2020c). Long term cover cropping effects on weed
- seedbanks [Dataset]. Iowa State University. doi: 10.25380/iastate.12762011.v1
- Ogilvie, C.M., W. Ashiq, H.B. Vasava, and A. Biswas. 2021. Quantifying root-soil interactions in cover
- crop systems: A review. Agriculture (Switzerland) 11(3). doi: 10.3390/agriculture11030218.
- Omuto, C.T., M. Maechler, and V. Too. 2021. HydroMe: Estimating water retention and infiltration
- model parameters using experimental data. R package version 2.0-1. https://CRAN.R-
- 589 project.org/package=HydroMe
- Pearl, J. 2010. An introduction to causal inference. International Journal of Biostatistics 6(2). doi:
- 591 10.2202/1557-4679.1203.
- 592 Practical Farmers of Iowa. 2018. Winter cereal rye cover crop effect on cash crop yield Year 10.
- Available online (Accessed September 2021): https://practicalfarmers.org/wp-
- content/uploads/2020/01/Winter Rye Effect on Yield Final.pdf
- 595 Qi, Z. and M.J. Helmers. 2010. Soil water dynamics under winter rye cover crop in central Iowa. Vadose Zone Journal, 9(1), pp.53-60.
- Rizzo, G., J.I.R. Edreira, S.V. Archontoulis, H.S. Yang, and P. Grassini. 2018. Do shallow water tables
- contribute to high and stable maize yields in the US Corn Belt? Global Food Security 18: 27–34.
- 599 doi: 10.1016/J.GFS.2018.07.002.
- Rorick, J.D., and E.J. Kladivko. 2017. Cereal rye cover crop effects on soil carbon and physical properties in southeastern Indiana. Journal of Soil and Water Conservation 72(3). doi: 10.2489/jswc.72.3.260.
- Ruehlmann, J., and M. Körschens. 2009. Calculating the effect of soil organic matter concentration on
- soil bulk density. Soil Science Society of America Journal 73(3): 876–885. doi:
- 604 10.2136/sssaj2007.0149.
- Saxton, K.E., and W.J. Rawls. 2006. Soil water characteristic estimates by texture and organic matter for
- 606 hydrologic solutions. Soil Science Society of America Journal 70(5): 1569–1578. doi:
- 607 10.2136/sssaj2005.0117.
- Scott, N.A., C.V. Cole, E.T. Elliott, S.A. Huffman. 1996. Soil textural control on decomposition and soil organic matter dynamics. Soil Science Society of America Journal, 60(4), pp.1102-1109.
- 610 Smith, R.G., A.S. Davis, N.R. Jordan, L.W. Atwood, A.B. Daly, et al. 2014. Structural equation modeling
- facilitates transdisciplinary research on agriculture and climate change. Crop Science 54(2): 475–
- 483. doi: 10.2135/cropsci2013.07.0474.

614	Society of America, Madison, WI, USA.
615 616 617	Strock, S.J., P.M. Porter, and M.P. Russelle. 2004. Cover cropping to reduce nitrate loss through subsurface drainage in the northern U.S. corn belt. Journal of environmental quality 33(3): 1010–1016. doi: 10.2134/jeq2004.1010.
618 619	Unger, P.W., and M.F. Vigil. 1998. Cover crop effects on soil water relationships. Journal of Soil and Water Conservation 53(3): 200–207.
620 621 622	Villamil, M.B., G.A. Bollero, R.G. Darmody, F.W. Simmons, and D.G. Bullock. 2006. No-till corn/soybean systems including winter cover crops. Soil Science Society of America Journal 70(6): 1936–1944. doi: 10.2136/sssaj2005.0350.
623 624 625	Wade, J., S.W. Culman, J.A.R. Logan, H. Poffenbarger, M.S. Demyan, et al. 2020. Improved soil biological health increases corn grain yield in N fertilized systems across the Corn Belt. Scientific Reports 10(1): 3917. doi: 10.1038/s41598-020-60987-3.
626 627	Wickham, H., M. Averick, J. Bryan, W. Chang, L. McGowan, et al. 2019. Welcome to the Tidyverse. Journal of Open Source Software 4(43): 1686. doi: 10.21105/joss.01686.
628 629 630	Williams, A., N.R. Jordan, R.G. Smith, M.C. Hunter, M. Kammerer, D.A. Kane, R.T. Koide, A.S. Davis, 2018. A regionally-adapted implementation of conservation agriculture delivers rapid improvements to soil properties associated with crop yield stability. Scientific Reports 8(1): 1-8.
631 632 633	Williams, A., M.C. Hunter, M. Kammerer, D.A. Kane, N.R. Jordan, et al. 2016. Soil water holding capacity mitigates downside risk and volatility in US rainfed maize: Time to invest in soil organic matter? PLoS ONE 11(8): 1–11. doi: 10.1371/journal.pone.0160974.
634 635 636	Williams, C.L., M. Liebman, J.W. Edwards, D.E. James, J.W. Singer, et al. 2008. Patterns of regional yield stability in association with regional environmental characteristics. Crop Science 48(4): 1545–1559. doi: 10.2135/cropsci2006.12.0837.
637 638 639	Williams, S.M., and R.R. Weil. 2004. Crop cover root channels may alleviate soil compaction effects on soybean crop. Soil Science Society of America Journal 68(4): 1403–1409. doi: 10.2136/sssaj2004.1403.
640	

1	Site-specific effects of winter cover crops on soil water storage Effect of Winter Cover
2	Cropping on Soil Water Storage Varies by Site
3	V.A. Nichols ^{1*} , E. B. Moore ² , S. Gailans ³ , T.C. Kaspar ⁴ , M. Liebman ⁵
4	Affiliations:
5	¹ Swette Center for Sustainable Food Systems, PO Box 875502, <u>Arizona State University</u> , Tempe
6	AZ, 85287
7	² Department of Environmental Sciences, 601 S. College Road, University of North Carolina
8	Wilmington, Wilmington NC, 28403
9	³ Practical Farmers of Iowa, 1615 Golden Aspen Dr, Ames IA 50010
10	⁴ USDA-Agricultural Research Service, National Laboratory for Agriculture and the
11	Environment, 1015 North University Boulevard, Ames, IA 50011
12	⁵ Department of Agronomy, 716 Farmhouse Lane, Iowa State University, Ames IA, 50011
13	*corresponding author
14	Abbreviations:
15	CC, cover crop
16	USDA, United States Department of Agriculture
17	
18	Core ideas

- Cover crop effects on soil water storage at 10-18 cm soil depth were not consistent
- Cover crops increased water held at field capacity in two of four trials
- Cover crops did not affect water held at saturation or increase percentage of macropores
 - Causal model suggests cover crop roots may be a key driver of variable results

23 ABSTRACT

22

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Addition of an over-wintering cereal rye (Secale cereale L.) cover crop (CC) to Midwestern maize (Zea mays L.)-based systems offers several environmental benefits, but the long-term effects of this practice on soil hydrological properties are not well-understood. We utilized four long-term (10+ year) trials (two commercial fields, two research plots) in Iowa, USA that included a replicated winter rye CC and no-cover treatment in no-till maize/soybean (Glycine max [L.] Merr) systems. We took intact 7.62 cm diameter soil samples from a 10-18 cm depth shortly after cash crop planting in the spring. We measured the soil water retention curve using matric potentials ranging from saturation to -500 cmH₂O. Additionally, we measured organic matter, textural composition, and bulk densities of the soil samples. At the depth sampled, CCs did not meaningfully affect bulk density, water contents at saturation, or air-entry potentials at any trial, nor increase the percentage of macropores. At two trials, soil water content at field capacity (-100 cmH₂O) in the CC treatments was 2.5 vol% (SE: 1.2%; commercial field) and 2.4 vol% (SE: 1.3%; research plot) higher , respectively, compared to the no-cover treatments. This increase could meaningfully reduce the amount of water drained from a field after a saturating rain and should be considered when assessing CC impacts on landscape hydrology. The presence or absence of a CC effect on field capacity was not related to CC above-ground biomass production, previous cash crop, or soil texture at the trial sites. Based on our results, a causal

42

43

44

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

model, and previous literature we hypothesize; CC root characteristics aremay be key to understanding variable effects of CCs on soil water storage. Our results indicate it is possible for CCs to meaningfully affect soil water storage, but more research is needed on the mechanisms by which these changes occur.

45 INTRODUCTION

Addition of an over-wintering cereal rye (Secale cereale L.) cover crop (CC) to Midwestern maize (Zea mays L.)-based systems potentially offers several environmental benefits including reduced soil erosion and nutrient pollution (Strock et al., 2004; Kaspar et al., 2007; Kaspar and Singer, 2011; Kladivko et al., 2014). On average, rye CCs have no effect on maize yields compared to winter fallow in the short term (Marcillo and Miguez, 2017), but it is possible repeated use of CCs could stabilize cash crop yields over time (Williams et al. 2018). In Midwestern rain-fed systems, crops rely on stored soil water and often suffer from drought stress (Campos et al., 2006). Using CCs may induce changes in soil characteristics such as increased organic matter, lower bulk densities, increased water-stable aggregates, and more macro-pores (Blanco-Canqui and Jasa, 2019; Haruna et al., 2020). In theory, these changes could result in more water storage capacity (Hudson, 1994; Minasny and McBratney, 2018; King et al., 2020), and therefore buffer crop yields against drought stress (Williams et al., 2016; Kane et al., 2021). Cover crops might also benefit crop-water relations by increasing water infiltration or reducing evaporation through a mulching effect (Unger and Vigil, 1998; Leuthold et al., 2021). Two global meta-analyses suggest that on average, CCs increase soil's capacity to store water and increase infiltration rates (Basche and DeLonge, 2017, 2019). However, to our knowledge there are few studies supporting these findings in Midwestern cover cropping contexts, and the few existing studies report contradictory results (Villamil et al., 2006; Haruna and Nkongolo, 2015; Basche et al., 2016; Rorick and Kladivko, 2017; Irmak et al., 2018). Region-specific studies are needed, as climatic and management constraints of maize-soybean rotations can limit CC options and growth potential (Strock et al., 2004; Baker and Griffis, 2009; Nichols et al., 2020a). Furthermore, to our knowledge there are no studies that report results from fields of commercial

66 farms, and it is therefore unclear whether results observed in a controlled research setting are transferable 67 to large-scale production fields. In addition to regional differences in CC effects, the number of years that CCs have been used in a field 68 69 may also influence whether changes in soil are detected. Long-term studies on tillage practices have 70 shown significant, but slow changes to the soil after implementing no-till (Al-Kaisi et al., 2014; Cusser et 71 al., 2020). Addition of CCs might likewise require several years before changes in soil hydrological 72 properties can be detected, necessitating data collection from long-term experiments. 73 On average, 75% of both maize and soybean root mass is located in the top 30 cm of the soil profile 74 (Nichols et al. 2019), indicating soil water storage in this increment will have important implications for 75 crop water use. Shallow soil depths (0-10 cm) may be more responsive to CC effects compared to deeper 76 soil layers (e.g. Atwood and Wood, 2021; Kaspar et al., 2006; Moore et al., 2014), but modelling and isotope studies suggest soil water below 10 cm may be more important when considering the soil's 77 contribution to a crop's water supply (Williams et al., 2008; Asbjornsen et al., 2008; Rizzo et al., 2018). 78 79 In general, there is less information available about CC effects on soil at depths greater than 10 cm, 80 particularly about soil water retention curve parameters. Therefore, measurements taken from 10-30 cm 81 depth ranges at multiple sites would provide valuable information about whether cover cropping can potentially affect crop yield stability through crop-water relations. 82 Lastly, to our knowledge the causal relationships between CCs and soil water storage have not been 83 84 explicitly presented. Causal models can help identify gaps in the literature and help target data collection. 85 data needs, and wWhen sufficient data are available, causal models -can be used to construct structural 86 equation models that estimate the relative strength of causal factorspaths (Smith et al., 2014). Causal modelling can also be used to frame hypotheses, resulting in more targeted research questions that 87 directly test the presence or absence of causal links (Pearl, 2010). Therefore, a credible causal model can 88 89 aid in advancing future research.

- Given (i) the need to quantify long-term benefits of cover cropping in both research and commercial production settings, (ii) the scarcity of Midwest-specific data at depths relevant to crop water-use, and (iii) the lack of a framework for organizing relevant knowledge, the objectives of our study were to:
 - (1) Determine what aspects of a soil's hydrological characteristics are affected by long-term cover cropping at a depth relevant to crop production
 - (2) Identify factors that affect the soil's response to cover cropping
 - (3) Propose a causal model connecting CCs to changes in soil properties to aid in targeting future research.

To achieve our objectives, we collected soil samples at a 10-18 cm depth increment from four long-term (10+ years) no-till cover crop trials located in Iowa, USA. Two trials were on commercial farm fields, and two trials were part of a United States Department of Agriculture (USDA) research experiment. We assessed the effects of long-term cover cropping on soil water content at saturation, soil water content at matric potentials approximating field capacity (-100 cm H₂O; Moore 2021), and the soil water retention curve. To complement and contextualize these data, we also measured soil texture, soil organic matter, and bulk densities of the soil samples. We used our results in combination with previous literature to construct a proposed causal model.

MATERIALS AND METHODS

Site descriptions

Three long-term sites that had been in place for at least 10 years were used for this study (**Supplemental** material S1), with one site having two trials. Therefore, a total of four trials were sampled (**Table 1**). Each trial consisted of two treatments that had been in place for at least 10 years: (1) a maize/soybean rotation (either grain- or silage-based) with a winter rye CC planted yearly in the fall following cash crop harvest and terminated in the spring, and (2) the same rotation without a CC. The West-grain and East-

grain trials were production fields on commercial farms, and only one phase of the maize/soybean
rotation was present each year. The Central site was a larger research study managed by the USDA and
included both phases of each rotation (Korucu et al. 2018). For the present study, one commercial trial
was sampled following the soybean phase (West-grain), one commercial trial following the maize phase
(East-grain), and the USDA site samples were only taken following the maize or maize-silage phase due
to time constraints. For the present study, at the USDA site samples were only taken following the maize
or maize-silage phase due to time constraints. Every trial was arranged in a randomized complete block
design with four (commercial trials) or five (USDA trials) replicates. The plots within each trial were
managed identically except for the planting of the CC in the fall. The exact herbicide and nutrient
programs varied by site, reflective of their managers and contexts (Supplemental material S2). More
detailed accounts of agronomic management practices at the sites have been published elsewhere (Moore
et al., 2014; Nichols et al., 2020b). All sites had sub-surface tile drainage at approximately 1.2 m depth
and had been managed without tillage since initiation of the trials.
and had been managed without tillage since initiation of the trials.

126

Table 1. Geographical, experimental, soil, weather, and sampling information for the four trials

		Dominant Soil Types,	, Sand/Silt/Clay,30-yea		nnual Mean		Mean Cover Crop Biomass		2019
Plot Size and Average Slope*	Treatment Replications	Depth to Water Table*	Organic Matter Content**	Air Temperature	Cumulative Precipitation	5-year	10-year	2018 Crop	Sample Date
m			%	°C	mm	Mg ha ⁻¹	Mg ha ⁻¹		
West-grain (comm	ercial farm), 41°	55'N 94 ⁰ 36'W, i	nitiated in 2008						
25 x 250 (1-3%)	4	Nicollet loam; 67 cm	29/43/28 2.86%	9.5	880	0.24	0.45	Soybean	May 23
East-grain (commo	ercial farm), 41 ⁰ 1	18'N 92 ⁰ 48'W, ii	nitiated in 2009						
25 x 275 (0-2%)	4	Taintor silty clay loam; 0 cm	11/56/33 3.62%	10.2	947	1.73	1.32	Maize	June 10
Central (USDA re	search plots), 42 ⁰	00'N 93°48'W							
Silage-based, initia	ated in 2002								
3.8 x 55 (1-3%)	5	Clarion loam; 100 cm	30/41/29 2.57%	9.8	907	2.38	1.98	Maize silage	June 6
Grain-based, initia	ted in 2009								
3.8 x 55 (1-3%)	5	Clarion loam; 100 cm	32/40/28 2.42%	9.8	907	1.53	0.88	Maize	June 6

^{*} From Web Soil Survey data using map unit area weighted estimates ** Field measurements averaged by trial, see Materials and Methods

Cover crop biomass sampling occurred each spring at every trial by removing two or four aboveground biomass samples from an area ranging from 0.25-0.36 m² from each plot, depending on the trial. Details about methodology are reported elsewhere (Nichols et al., 2020b) and historical values are available in both supplementary material and in a published dataset (Nichols et al. 2020c). Maize grain, maize silage, and soybean grain yields were measured yearly. Results from the commercial fields showed the effect of cover cropping on grain yields varied by trial and by year (Practical Farmers of Iowa, 2018). While understanding how long-term use of cover crops affects crop yields in different weather-years is a valuable topic of research, it is not the focus of the present study.

Soil Sampling

An aluminum ring 7.62 cm in diameter and 7.62 cm in length was used to extract intact soil samples. Sampling occurred in May or June of 2019 after maize (West-grain) or soybean (East-grain, Central-grain, Central-silage) emergence at each site. Sampling was conducted immediately following crop emergence to minimize the effects of live roots in the samples and was done two to four days following a rain to ensure the soil was fully drained, but wet enough to remain in the ring during sampling (Al-Shammary et al., 2018).

At all trials, one sample was taken in the middle of the plot between planted rows in a non-traffic area in order to minimize the effects of soil changes related to planting activities (wheel-row compaction, drill disturbance) on the results. To get intact soil cores from a 10-18 cm depth increment, a hole 10 cm deep was dug, and soil was smoothed by hand to create a flat area approximately 30 cm square. The ring was placed on the soil surface in the center of the flat area, a hollow metal cap was placed on it, and a 15 kg weight was used to evenly drive the ring into the undisturbed soil. Once the ring was fully inserted into the soil, a hole was dug around the ring. A flat sheet of metal was slid under the ring to extract it, and a knife was used to remove soil from the top and bottom of the ring by sawing in a Z-cutting motion (three sawing motions per core). The ring was wrapped in aluminum foil with the soil orientation (top, bottom)

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

marked. The foil-wrapped ring was then placed in an individual plastic container in a cooler. This process was repeated for each plot (eight plots at East-grain, eight at West-grain, 10 at Central-silage, and 10 at Central-grain; Table 1). Samples remained in the cooler for no more than four hours before being placed in a refrigerator.

Soil-water-retention curve

Analytical equipment could accommodate 12 samples at a time, so each trial's samples were run together in a batch for a total of four batches (e.g., the eight samples from the West-grain trial were run together in one batch). Our interest was in comparing relative effects within a trial, so variation between runs was included statistically in variation between trials. The samples were analyzed in the order they were collected. A given trial's cores had cheesecloth taped to the bottom of each core and an additional ring taped to the top. The batch of samples was then placed in a vacuum chamber for at least 12 hours in a solution of 0.01 M CaCl₂ filled to the top of the first ring, allowing the samples to saturate with minimal air entrapment. Following saturation, the top ring was removed from the cores. The cores were weighed, then transferred to a custom-built pressure cell apparatus (Ankeny et al. 1992). Measurements were made according to the protocol described by Kool et al. (2019). Cores were drained at atmospheric pressure for 12 hours to obtain a measurement for gravity-drained matric potential ($\Psi_m = -3.8 \text{ cmH}_2\text{O}$). Subsequent measurements were taken at Ψ_m of -10, -25, -50, -100, -200, and -500 cmH₂O. The samples were then oven dried at 60 °C for at least 48 hours, then weighed. Bulk densities were estimated by dividing the oven-dried weight of soil by the ring volume (347.5 cm³; Grossman et al., 2002). A water balance was constructed for each core individually as quality control, resulting in the removal of one replicate from the no-cover treatment of the Central-silage trial, which had a large hole visible in the center of the core upon destructive inspection, confirming its justified removal from the dataset.

Soil texture and organic carbon

The oven-dried soil was ground and passed through a 2 mm sieve. Two teaspoons of soil (\sim 10 grams) from each core were used for soil texture measurements. Soil texture was quantified using laser diffractometry (Miller and Schaetzl, 2012) with a Malvern Mastersizer 3000 and a HydroEV attachment (Malvern Panalytical Ltd, UK), producing estimates for the percentage of the soil that was sand (50-2000 μ m), silt (6-50 μ m), and clay (0.1-6 μ m). Half of the remaining oven-dried soil cores were sent for organic matter analysis (Agsource, Ellsworth Iowa, USA) using the loss-on-ignition method (Nelson and Sommers, 1996). While this method may not produce reliable absolute estimates of organic matter (Hoogsteen et al., 2015), our interest was in pairwise comparisons of treatments rather than in obtaining absolute estimates of organic matter.

Statistical analysis

All data analysis, figure creation, and model fitting were done using *R* version 4.0.3 (R Core Team, 2020) and the *tidyverse* meta-package (Wickham et al., 2019). Non-linear models were fit using the *nlraa* (Miguez, 2021) package functionality, with specific equation fits from the *HydroMe* (Omuto et al., 2021) and *soilphysics* (de Lima et al., 2021) packages. Linear models were fit and summarized using the *lme4* (Bates et al., 2015) package, which fits mixed effects models, and the *emmeans* (Lenth et al., 2018) package, which estimates both marginal and conditional means and confidence intervals and performs pairwise comparisons.

We fit the Gardner (Gardner, 1958) and van Genutchen (van Genuchten, 1980) models to describe the relationship between soil moisture and soil water matric potential in our datasets. We found the models produced similar Akaike's Information Criteria (AIC; Bozdogan, 1987) values, with the Gardner model showing a slightly better fit. The Gardner equation is as follows:

$$\theta(\psi) = \theta_r + \frac{\theta_s - \theta_r}{1 + a\psi^n}$$

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

where θ is the volumetric moisture content at a given soil water potential ψ ; the remaining variables are fitted parameters. θ_r and θ_s are the residual and saturated water contents, respectively; a approximates the inverse of the pressure at which the retention curve is steepest (e.g., air-entry potential; van Genutchen 1980); and n is an index for the pore size distribution, with higher values indicating a broader distribution of pore sizes. We fit the Gardner model to each experimental unit, then analyzed the air-entry and poresize distribution parameters as response variables, described below. Residual water contents (θ_r) are estimated by the model, and can occur at suction pressures greater than -15,000 cmH₂O (SSSA, 2008). The highest suction pressure applied to samples in this study was -500 cmH₂O, which could lead to less stable model fits due to lack of an anchoring value (Groenevelt and Grant, 2004). To determine whether the model produced reasonable estimates without these anchoring values, we compared (1) the modelestimated saturated water contents with the measured values, and (2) the pore-size distribution parameter estimate against values estimated using capillary rise equations, which assumes the mean pore neck diameter (in cm) of drained pores at a given pressure is equal to 0.3 divided by the head pressure (cmH₂O). Pores with mean neck diameters greater than 30 µm were considered macropores (Kirkham, 2014). The percent macropores was assessed as a response variable, described below. Volumetric water contents at saturation were extracted directly from the measured values. Volumetric water contents at field capacity were estimated as the measured volumetric water content at a matric potential of -100 cmH₂O (Moore 2021). We used this approximation because the matric potential that approximates field capacity depends on the depth to the water table. The trials sampled all had artificial tile drainage installed at ~1.2 meter depths and had shallow water tables (**Table 1**), meaning field capacity will be at matric potentials less negative than the commonly assumed value of -330 cmH₂O (Bonfante et al., 2020). Soil water retention curve data from Moore (2021) suggest that -100 cmH₂O is a better approximation for field capacity in mollic epipedons with shallow water tables, such as those sampled in the present study.

The effects of trial, CC treatment, and their interaction on response variables (soil texture, organic matter, water contents at saturation and field capacity, air-entry pressures, pore-size distribution index, percent macropores) were assessed using mixed-effect models. Trial, CC treatment, and their interaction were included as fixed effects. Percent sand was investigated as a covariate in appropriate models because texture is the dominant driver of water retention curve parameters (de Jong et al., 1983; Saxton and Rawls, 2006), has a large influence on bulk densities, and can affect soil organic matter accumulation. Models without a sand covariate had random intercept effects for replicates nested within location (East, Central, West), and models that included a sand covariate had fixed effects only. Models were compared using AIC. All statistical results are available in Supplementary material S3.

RESULTS AND DISCUSSION

Soil texture, organic matter, and bulk density

WithinIn certain trials, the CC treatment was coincident with differences in sand, silt, as well as clay percentages (p<0.001). The percent sand did not vary by CC treatment in the Central-silage trial, but varied significantly (p<0.01) at the other three trials (Supplementary material S3, S4). Likewise, the percent clay varied by CC treatment in three of the four trials while the percent silt varied by CC treatment in only one trial (West-grain). However, the significant differences between CC and no-cover plots were only of a meaningful magnitude (>1% difference) at the two commercial farm trials (East-grain, West-grain; Table 2). In the East-grain trial, the CC plots had 3% more sand compared to the no-cover plots (p<0.001). In the West-grain trial, the CC plots had 5% more sand compared to the no-cover plots (p<0.001). The increased sand in the CC plots was compensated for by a decrease in clay (East-grain) or a decrease in both clay and silt (West-grain). At both of the Central trials, texture components of the CC and no-cover plots were within 1% of each other.

Table 2. Summary of soil texture components for rye cover crop (CC) and no-cover treatments at each trial, bolded text indicates significant differences at p<0.01 greater than 1% in magnitude; totals may not add to 100% due to rounding, see Supplemental material S4 for more precise values.

Trial -	Sand Rye CC /No-cover	Silt Rye CC/No-cover	Clay Rye CC/No-cover
West-grain (commercial farm)	31/26%	42/45%	27/30%
East-grain (commercial farm)	13/10%	56/56%	32/35%
Central-silage	30/29%	41/41%	29/30%
Central-grain	32/32%	40/40%	28/28%

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

While the plots in the commercial farm fields (East-grain, West-grain) were randomly assigned a CC treatment, the treatments were close to regularly alternating strips, with the four blocks laid out side-byside. If a field has a uniform texture gradient perpendicular to the blocking, this regularly alternating pattern could result in one treatment having significantly different textures compared to the other, as we observed. Additional samples taken at a later date from East-grain trial confirmed the soil texture pattern we observed in the present study (unpublished data), providing further evidence our observations were not due to chance, but rather refelected a true soil texture gradient at the sites. The Central site had six treatments in small plots and the five blocks were located in two rows within the field, with each treatment being randomly assigned within the block; this arrangement may have better randomized treatments with respect to natural patterns of soil texture within the site. Based on these results, sand was included as a covariate in statistical models for response variables potentially affected by soil texture. Soil organic matter contents ranged from 1.8 to 4.6%, with a significant trial-by-CC treatment interaction (p<0.001). Soil organic matter accumulation may be affected by soil texture (Scott et al., 1996; Bosatta and Agren, 1997), so statistics were run both with and without a sand co-variate to account for the different soil textures in the CC and no-cover treatments observed in some trials. The Central-silage trial showed a significant (p<0.01) but small (+0.25%) absolute increase in organic matter with cover

cropping, regardless of inclusion of a sand covariate. In the other three trials, the results depended on whether sand was included as a co-variate. Without a sand co-variate, organic matter was estimated to decrease with cover cropping compared to no-cover in three trials (p-values ranging from 0.001-0.048). When a sand co-variate was included in the statistical analysis, organic matter either did not change (Central-grain) or significantly (p<0.01) increased with cover cropping by small amounts (+0.19% and +0.26% in the East-grain and West-grain trials, respectively). Due to the sensitivity of the results and the small effect sizes, we conclude cover cropping did not meaningfully affect soil organic matter at this depth in the three grain trials, but may have resulted in a slightly higher organic matter content in the Central-silage trial. This is consistent with a previous study at this same trial, which found higher organic matter in the top 5 cm of soil in CC treatments compared to no-cover, but small differences below that depth (Moore et al., 2014). Bulk densities varied from 1.2 g cm⁻³ to 1.7 g cm⁻³. The large size of sand particles reduces packing efficiencies compared with clay, meaning a sandy soil may have lower bulk densities simply due to packing arrangements. However, regardless of the statistical model fit, all estimated CC effects were less than measurement precision of the core method for measuring bulk density (±0.12 g cm⁻³, Han et al., 2016), rendering their interpretation questionable. A recent summary of research on the effects of CCs on bulk densities likewise found few studies where an overwintering rye CC grown in the US reduced bulk densities more than typical measurement errors (Haruna et al., 2020). We therefore found no evidence that CCs meaningfully affected soil bulk density at 10-18 cm soil depths at any trial.

Soil hydrological properties

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

Soil texture is the dominant factor determining soil water retention (de Jong et al., 1983; Saxton and Rawls, 2006), particularly under wet conditions (i.e. saturation and field capacity; Manns and Berg, 2014). Because soil texture varied by CC treatment in the two commercial field trials (East-grain, West-

289

290

291

292

293

grain), sand was included as a co-variate in statistical models assessing the effects of cover cropping on these response variables.

Air-entry potential and pore distribution

The Gardner equation fitting process converged for all experimental units (**Figure 1**), with a (an estimate of the inverse of air-entry potential) ranging from 0.001 to 0.284, and n (pore-size distribution index) ranging from 0.45 to 1.49.

Figure 1. The Gardner equation was fit to each experimental unit (dotted lines); mean values (solid lines) for each trial and cover crop treatment are presented to aid in interpretation.

294

295

296

297

There was not a significant interaction between trial and CC treatment for either parameter. While both parameters differed significantly by trial (p<0.001), cover cropping did not significantly affect either parameter, with or without a sand covariate (**Table 3**; **Supplemental material S3**).

Table 3. Summary of estimated mean values, standard error of the mean (SE), and significance of the comparison between rye cover crop (CC) and no-cover treatments within a trial (p-value) for Gardner parameters and percent macropores.

Cover crop (CC) treatment	Inverse air-entry (Gardner n paramete	nodel	Pore-size dis (Gardner paramete	model	Percent macropores (capillary rise equation)		
	mean(SE)	p-value	mean(SE)	p-value	mean(SE)	p-value	
	cmH_2O^{-1}		unitless		%		
West-grain (c	ommercial farm)						
Rye CC	0.03(0.01)	0.15	0.83(0.09)	0.60	48(5)	0.05	
No cover	0.05(0.01)	0.15	0.90(0.09)	0.60	61(5)	0.05	
East-grain (co	ommerical farm)						
Rye CC	0.11(0.01)	0.14	0.83(0.09)	0.96	73(5)	0.75	
No cover	0.08(0.01)	0.14	0.82(0.08)	0.90	71(5)	0.73	
Central-grain							
Rye CC	0.02(0.01)	0.97	1.15(0.08)	0.67	59(4)	0.61	
No cover	0.02(0.01)	0.97	1.10(0.08)	0.67	62(4)	0.61	
Central-silage	ę						
Rye CC	0.03(0.01)	0.22	0.90(0.08)	0.52	54(4)	0.40	
No cover	0.04(0.01)	0.32	0.82(0.09)	0.52	59(5)	0.40	

When compared across trials, the *a* parameter was strongly related to the percentage of sand in the trial's soil, with the East-grain trial having the lowest sand content (mean of 11%) and highest *a* estimate (mean of 0.09), and the Central-grain trial having the highest sand content (mean of 32% sand) and lowest *a* estimate (mean of 0.02). This inverse relationship is consistent with empirical equations relating air-entry potential to soil texture (Saxton and Rawls 2006). However, even with a sand co-variate, cover cropping did not significantly affect air-entry pressures nor pore-size distributions.

Consistent with the lack of CC effect on the Gardner equation's pore-size distribution parameter (*n*) manual estimation of the pore-size distribution confirmed CCs did not increase the percentage of macropores in any trial (**Table 3**; **Supplemental material S5.** In a review of published studies, Haruna et al. (2020) found the effect of CCs on macropore makeup of the soil highly variable, but with an overall

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

average increase. The wide variation may be partially due to varying cut-offs in pore sizes for macropore categorization (Luxmoore, 1981), but the variability in combination with our results again demonstrates using literature averages to predict CC impacts in Midwestern systems may be inappropriate.

Soil water at saturation and field-capacity

For these analyses we assigned significance at p-values less than 0.10. With or without a sand covariate, no trial exhibited a significant increase in water held at saturation with the use of cover cropping (Figure 2). Water held at saturation is largely dependent on bulk density, so these findings are consistent with the lack of meaningful effect of CCs on bulk densities in our study. Field capacities were signifiantly higher in the cover cropped plots at one commercial farm (West-grain; p = 0.07) and one USDA trial (Centralsilage; p = 0.05). At the West-grain trial, the soil water at field capacity increased (after sand correction) from 33.6 to 36.0 vol\%, and at the Central-silage trial from 38.1 to 40.6 vol\%, respectively. An increase in the soil's ability to hold water after gravity drainage may also contribute to peak water flow regulation. By increasing volumetric water content at field capacity by 2 vol% in the 0-20 cm profile, CC fields could hold an additional 40,000 L of water in each 20-cm hectare slice, which could meaningfully reduce the amount of water drained from a field after a saturating rain. For comparison, evapotranspiration rates in an over-wintered rye cover crop with modest biomass production can be ~ 24,000 L ha⁻¹ day⁻¹ (Qi and Helmers, 2010), and peak flows from sub-surface drainge tiles in central Iowa can be ~22,000 L ha⁻¹ hour ¹ (Daigh et al. 2014). To our knowledge there are limited studies examining the potential for CCs to reduce flood damage in the Midwest, but the one we are aware of accounts for only the increased evapotransipiration with the use of CCs (Antolini et al., 2020). Our study suggests that in addition to reducing run-off (Korucu et al. 2018), considering how CC-induced increases in the amount of water held in a soil at field capacity affect flood incidence and severity would be worth investigating. Furthermore, as other studies have noted, an increase in the amount of water held at field capacity results in more precipitation being stored for cash crop use (Basche et al. 2016; Leuthold et al. 2021), meaning in some cases longterm use of CCs could lead to more stable cash crop yields (Williams et al. 2018).

Figure 2. Soil volumetric water contents at saturation and field capacity (-100 cmH2O) with 10+ years of winter rye cover cropping (green) or winter fallow (brown) in a maize-soybean rotation at four trials. Bars show estimated means, line ranges are the 95% confidence intervals around the mean. Text

presents the estimated effect of cover cropping on volumetric water content in instances of a significant effect.

Factors explaining variable results

The West-grain and Central-silage trials both exhibited significantly higher soil water at field capacity with the use of cover cropping compared to winter fallows. However, the West-grain trial consistently produced the lowest above-ground CC biomass, and the Central-silage trial the highest (**Table 1**), indicating the changes in water held at field capacity are likely not associated with CC above-ground biomass production. Although a previous study suggested soil texture could mediate the effects of long-term CC-use (Blanco-Canqui and Jasa, 2019), in our dataset there was no pattern between soil textural characteristics and the magnitude of CC effect on water held at field capacity. This means knowledge of a soil's texture did not help predict whether a CC would affect water held at field capacity in our study.

The West-grain trial was sampled following a soybean crop, and the Central-silage following a silage crop, while the two trials without significant CC effects were both sampled following a maize-grain crop (**Table 1**). Soybean and maize-silage crops would leave less residue compared to a preceeding maize-grain crop, however this study did not measure residue amounts at the time of sampling. Given the lack of insight into what may be driving the variable effects given the available data, we explored potential causes for our variable results and identified additional measurements that may aid in identifying drivers of the variable effects of CCs on soil hydrological properties.

Causal model

There are several pathways by which CCs might affect a soil's capacity to hold water (**Figure 3**). The causal model was built using literature relevant to Midwestern systems, and when applicable was limited to evidence drawn from research conducted with a cereal rye cover crop (**Supplemental material S6**). The model was simplified to exclude the effects of soil erosion, soil texture, tillage, and landscape

position, which are all factors that could potentially influence how soil responds to cover cropping (Moore 2021). Rather, we present this simple casusal model to provide a base from which to build.

361

359

360

Figure 3. Pathways by which cover crops may affect the soil pore size distributions, the amount of water stored at field capacity, and the amount of water at saturation in no-till systems. The effects of soil erosion are not included. $X \rightarrow Y$ should be read as 'X affects Y'.

Causal diagrams such as **Figure 3** are the basis for constructing structural equation models, which can greatly enhance researchers' ability to address complex research questions in agriculture (Smith et al., 2014; Wade et al., 2020). For example, in our proposed causal diagram, below-ground biomass measurements are necessary for estimating direct effects of cover cropping on pore size distributions, field capacity, and saturation. This is further supported by recent studies and reviews that identify CC roots as being a crucial component to understanding CC effects on soil properties (Williams and Weil, 2004; Haruna et al., 2020; Ogilvie et al., 2021). While there is limited data available pairing above- and below-ground biomass of CCs, data collected in Iowa over a five-year period showed no relationship between above- and below-ground rye biomass, with root-to-shoot ratios varying from 0.16-1.94 at similar levels of aboveground biomass production (Martinez-Feria et al., 2016). Therefore, above-ground biomass production cannot be used as a proxy for below-ground production with much confidence, and studies that pair above- and below-ground CC biomass with soil measurements would be advantageous in enhancing our understanding of CC effects on soil.

377 CONCLUSIONS

We found CCs increased water held at field capacity at the 10-18 cm soil range in two of the four trials sampled. The observed increases were of a meaningful magnitude that could contribute to cash crop water needs, and may have implications for flooding severity in agricultural regions and should be considered when modelling cover crop effects on landscape water balances. We were unable to explain the trial-dependent effects using the available measurements and information. Based on a proposed causal model, we suggest researchers measure CC root biomass in addition to above-ground biomass when examining the effects of CCs on soil properties. Effects of growing over-wintering CCs need to be explicitly investigated in the

386	Midwestern US, as the constraints of maize-soybean systems may render the effects smaller in
387	magnitude compared to averages reported by global meta-analyses.
388	SUPPLEMENTAL MATERIAL
389	S1 - A map of trial locations
390	S2 - Detailed description of management practices and historical cover crop biomass
391	production for each trial
392	S3 - Statistical summaries
393	S4 – Detailed soil texture results
394	S6 – Causal model literature support
395	DATA AVAILABILITY
396	The data are available as downloadable csv files in supplementary material. Additionally, all
397	data are available in an R package (https://github.com/vanichols/PFIswhc) and the R code used
398	in processing and summarizing data for this publication is available in a github repository (will
399	be created once paper is accepted).
400	CONFLICT OF INTEREST
401	The authors declare no conflicts of interest.
402	AUTHOR CONTIBUTIONS
403 404 405 406 407	VN contributed to conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, project administration, writing of original draft, and review/editing. ML contributed to funding acquisition, project administration, supervision, and review/editing of draft. SG contributed to project administration, resources, and review/editing. EM contributed to methodology, resources, and review/editing.

408	ACKNOWLEDGMENTS
409 410 411 412 413 414 415 416 417	We would like to acknowledge Dr. Robert Horton for generously allowing us to use his lab space and equipment for this project, and Dr. Michael Castellano for providing suggestions about the manuscript. We also thank the two farmers and Keith Kohler and Tom Kaspar for allowing us to collect data in their long-term plots, and Wyatt Westfall for his help collecting and preparing samples. We also thank the Practical Farmers of Iowa staff and members for their support throughout this project. This material is based upon work supported in part by the National Science Foundation (Grant No. DGE-1828942), the North Central Region Sustainable Research and Education Program (Grant No. 2017-38640-26916), and endowment funds for the Henry A. Wallace Chair for Sustainable Agriculture at Iowa State University. Lastly we thank three reviewers for their constructive comments that helped us improve this manuscript.
418	
419	REFERENCES
420 421 422	Abiven, S., S. Menasseri, and C. Chenu. 2009. The effects of organic inputs over time on soil aggregate stability - A literature analysis. Soil Biology and Biochemistry 41(1): 1–12. doi: 10.1016/j.soilbio.2008.09.015.
423 424 425	Al-Kaisi, M.M., A. Douelle, and D. Kwaw-Mensah. 2014. Soil microaggregate and macroaggregate decay over time and soil carbon change as influenced by different tillage systems. Journal of Soil and Water Conservation 69(6). doi: 10.2489/jswc.69.6.574.
426 427	Al-Shammary, A.A.G., A.Z. Kouzani, A. Kaynak, S.Y. Khoo, M. Norton, et al. 2018. Soil bulk density estimation methods: A review. Pedosphere 28(4): 581–596. doi: 10.1016/S1002-0160(18)60034-7.
428 429	Ankeny, M.D., Brown, H.J., Cruse, R.M., 1992. Means and method of soil water desorption. U.S. Patent 268 5,161,407.
430 431 432	Antolini, F., E. Tate, B. Dalzell, N. Young, K. Johnson, et al. 2020. Flood risk reduction from agricultural best management practices. Journal of the American Water Resources Association 56(1): 161–179. doi: 10.1111/1752-1688.12812.
433 434 435	Asbjornsen, H., G. Shepherd, M. Helmers, and G. Mora. 2008. Seasonal patterns in depth of water uptake under contrasting annual and perennial systems in the Corn Belt region of the Midwestern US. Plant and Soil 308(1–2): 69–92. doi: 10.1007/s11104-008-9607-3.
436 437	Atwood, L.W., and S.A. Wood. AgEvidence: Agro-environmental responses of conservation agricultural practices in the US Midwest published from 1980 to 2017. Knowledge Network for Biocomplexity.
438 439 440	Austin, E.E., K. Wickings, M.D. McDaniel, G.P. Robertson, and A.S. Grandy. 2017. Cover crop root contributions to soil carbon in a no-till corn bioenergy cropping system. GCB Bioenergy 9(7): 1252–1263. doi: 10.1111/gcbb.12428.

- Baker, J.M., and T.J. Griffis. 2009. Evaluating the potential use of winter cover crops in corn-soybean
- systems for sustainable co-production of food and fuel. Agricultural and Forest Meteorology
- 443 149(12): 2120–2132. doi: 10.1016/j.agrformet.2009.05.017.
- Basche, A., and M. DeLonge. 2017. The impact of continuous living cover on soil hydrologic properties:
- A meta-analysis. Soil Science Society of America Journal 81(5): 1179–1190. doi:
- 446 10.2136/sssaj2017.03.0077.
- Basche, A.D., and M.S. DeLonge. 2019. Comparing infiltration rates in soils managed with conventional
- and alternative farming methods: A meta-analysis. PLoS ONE 14(9): 1–22. doi:
- 449 10.1371/journal.pone.0215702.
- 450 Basche, A.D., T.C. Kaspar, S. v. Archontoulis, D.B. Jaynes, T.J. Sauer, et al. 2016. Soil water
- improvements with the long-term use of a winter rye cover crop. Agricultural Water Management
- 452 172: 40–50. doi: 10.1016/j.agwat.2016.04.006.
- Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4.
- 454 Journal of Statistical Software 67(1): 1–48. doi: 10.18637/jss.v067.i01.
- Blanco-Canqui, H., and P.J. Jasa. 2019. Do grass and legume cover crops improve soil properties in the
- long term? Soil Science Society of America Journal. 83:1181-1187.
- Bonfante, A., A. Basile, and J. Bouma. 2020. Exploring the effect of varying soil organic matter contents
- on current and future moisture supply capacities of six Italian soils. Geoderma 361: 114079. doi:
- 459 10.1016/j.geoderma.2019.114079.
- Bosatta, E. and G.I. Ågren. 1997. Theoretical analyses of soil texture effects on organic matter
- dynamics. Soil Biology and Biochemistry, 29(11-12), pp.1633-1638.
- Boyle, M., W.T. Frankenberger, and L.H. Stolzy. 1989. The influence of organic matter on soil
- aggregation and water infiltration. Journal of Production Agriculture 2(4): 290–299. doi:
- 464 10.2134/jpa1989.0290.
- 465 Bozdogan, H. 1987. Model selection and Akaike's Information Criterion (AIC): The general theory and
- 466 its analytical extensions. Psychometrika 52(3): 345–370. doi: 10.1007/BF02294361.
- 467 Campos, H., M. Cooper, O. Edmeades, C. Loffler, J.R. Schussler, et al. 2006. Changes in drought
- 468 tolerance in maize associated with fifty years of breeding for yield in the US corn belt. Maydica
- 469 51(2).
- 470 Cotrufo, M.F., M.D. Wallenstein, C.M. Boot, K. Denef, and E. Paul. 2013. The Microbial Efficiency-
- 471 Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic
- 472 matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology
- 473 19(4): 988–995. doi: 10.1111/gcb.12113.
- 474 Cusser, S., C. Bahlai, S.M. Swinton, G.P. Robertson, and N.M. Haddad. 2020. Long-term research avoids
- spurious and misleading trends in sustainability attributes of no-till. Global Change Biology 26(6).
- 476 doi: 10.1111/gcb.15080.

- Edwards, W.M., L.D. Norton, and C.E. Redmond. 1988. Characterizing macropores that affect infiltration
- into non-tilled soil. Soil Science Society of America Journal 52(2): 483–487. doi:
- 479 10.2136/sssaj1988.03615995005200020033x.
- 480 Gardner, W.R. 1958. Some steady-state solutions of the unsaturated moisture flow equation with
- 481 application to evaporation from a water table. Soil Science 85(4): 228–232. doi: 10.1097/00010694-
- 482 195804000-00006.
- van Genuchten, M.Th. 1980. A closed-form equation for predicting the hydraulic conductivity of
- unsaturated soils. Soil Science Society of America Journal 44(5): 892–898. doi:
- 485 10.2136/sssaj1980.03615995004400050002x.
- 486 Groenevelt, P.H., and C.D. Grant. 2004. A new model for the soil-water retention curve that solves the
- problem of residual water contents. European Journal of Soil Science 55(3): 479–485. doi:
- 488 10.1111/j.1365-2389.2004.00617.x.
- 489 Grossman, R.B., and T.G. Reinsch. 2002. Bulk density and linear extensibility. In J. H. Dane & G. C.
- Topp (Eds.), Methods of soil analysis: Part 4, physical methods (pp. 201–228). SSSA.
- 491 https://doi.org/10.2136/sssabookser5.4.c9
- 492 Han, Y., J. Zhang, K.G. Mattson, W. Zhang, and T.A. Weber. 2016. Sample sizes to control error
- 493 estimates in determining soil bulk density in California forest soils. Soil Science Society of America
- 494 Journal 80(3): 756–764. doi: 10.2136/sssaj2015.12.0422.
- Haruna, S.I., S.H. Anderson, R.P. Udawatta, C.J. Gantzer, N.C. Phillips, et al. 2020. Improving soil
- 496 physical properties through the use of cover crops: A review. Agrosystems, Geosciences &
- 497 Environment 3(1). doi: 10.1002/agg2.20105.
- 498 Haruna, S.I., and N.V. Nkongolo. 2015. Cover Crop Management Effects on Soil Physical and Biological
- 499 Properties. Procedia Environmental Sciences 29: 13–14. doi: 10.1016/j.proenv.2015.07.130.
- Hoogsteen, M.J.J., E.A. Lantinga, E.J. Bakker, J.C.J. Groot, and P.A. Tittonell. 2015. Estimating soil
- organic carbon through loss on ignition: Effects of ignition conditions and structural water loss.
- 502 European Journal of Soil Science 66(2): 320–328. doi: 10.1111/ejss.12224.
- 503 Hudson, B.D. 1994. Available water capacity and soil organic matter. Journal of Soil and Water
- 504 Conservation 49(2): 189–194. doi: 10.1081/E-ESS-120018496.
- 505 Irmak, S., V. Sharma, A.T. Mohammed, and K. Djaman. 2018. Impacts of cover crops on soil physical
- properties: Field capacity, permanent wilting point, soil-water holding capacity, bulk density,
- 507 hydraulic conductivity, and infiltration. Transactions of the ASABE 61(4). doi:
- 508 10.13031/trans.12700.
- de Jong, R., C.A. Campbell, and W. Nicholaichuk. 1983. Water retention equations and their relationship
- 510 to soil organic matter and particle size distribution for disturbed samples. Canadian Journal of Soil
- 511 Science 63(2): 291–302. doi: 10.4141/cjss83-029.

- Kane, D.A., M.A. Bradford, E. Fuller, E.E. Oldfield, and S.A. Wood. 2021. Soil organic matter protects
- 513 US maize yields and lowers crop insurance payouts under drought. Environmental Research Letters
- 514 16(4). doi: 10.1088/1748-9326/abe492.
- Kaspar, T.C., D.B. Jaynes, T.B. Parkin, and T.B. Moorman. 2007. Rye cover crop and gamagrass strip
- effects on NO3 concentration and load in tile drainage. Journal of environmental quality 36(5):
- 517 1503–1511. doi: 10.2134/jeq2006.0468.
- Kaspar, T.C., D.B. Jaynes, T.B. Parkin, T.B. Moorman, and J.W. Singer. 2012. Effectiveness of oat and
- 519 rye cover crops in reducing nitrate losses in drainage water. Agricultural Water Management 110(3):
- 520 25–33. doi: 10.1016/j.agwat.2012.03.010.
- Kaspar, T.C., T.B. Parkin, D.B. Jaynes, C.A. Cambardella, D.W. Meek, et al. 2006. Examining changes
- in soil organic carbon with oat and rye cover crops using terrain covariates. Soil Science Society of
- 523 America Journal 70(4): 1168–1177. doi: 10.2136/sssaj2005.0095.
- Kaspar, T., and J. Singer. 2011. The Use of Cover Crops to Manage Soil. Publications from the USDA-
- ARS/UNL Faculty. p. 1382. https://digitalcommons.unl.edu/usdaarsfacpub/1382/
- 526 Kay, B.D., A.P. da Silva, J.A. Baldock, D. Silva, A.P. And Baldock, et al. 1997. Sensitivity of soil
- 527 structure to changes in organic carbon content: Predictions using pedotransfer functions. Canadian
- 528 Journal of Soil Science 77(4): 655–667.
- Kim, N., M.C. Zabaloy, K. Guan, and M.B. Villamil. 2020. Do cover crops benefit soil microbiome? A
- meta-analysis of current research. Soil Biology and Biochemistry 142: 107701. doi:
- 531 10.1016/j.soilbio.2019.107701.
- King, A.E., G.A. Ali, A.W. Gillespie, and C. Wagner-Riddle. 2020. Soil organic matter as catalyst of crop
- resource capture. Frontiers in Environmental Science 8. doi: 10.3389/fenvs.2020.00050.
- Kirkham, M.B. 2014. Principles of soil and plant water relations, 2nd Edition. Elsevier Inc. ISBN
- 535 9780124200227
- Kladivko, E.J., T.C. Kaspar, D.B. Jaynes, R.W. Malone, J. Singer, et al. 2014. Cover crops in the upper
- 537 midwestern United States: Potential adoption and reduction of nitrate leaching in the Mississippi
- River Basin. Journal of Soil and Water Conservation 69(4): 279–291. doi: 10.2489/jswc.69.4.279.
- Kool, D., B. Tong, Z. Tian, J.L. Heitman, T.J. Sauer, et al. 2019. Soil water retention and hydraulic
- 540 conductivity dynamics following tillage. Soil and Tillage Research 193: 95–100. doi:
- 541 10.1016/j.still.2019.05.020.
- Korucu, T., M.J. Shipitalo, T.C. Kaspar. 2018. Rye cover crop increases earthworm populations and
- reduces losses of broadcast, fall-applied, fertilizers in surface runoff. Soil and Tillage
- S44 Research, 180:99-106.
- Lenth, R., H. Singmann, and J. Love. 2018. Emmeans: Estimated marginal means, aka least-squares
- means. R package version 1.5.4. https://CRAN.R-project.org/package=emmeans

- Leslie, A.W., K.H. Wang, S.L.F. Meyer, S. Marahatta, and C.R.R. Hooks. 2017. Influence of cover crops on arthropods, free-living nematodes, and yield in a succeeding no-till soybean crop. Applied Soil Ecology 117–118: 21–31. doi: 10.1016/j.apsoil.2017.04.003.
- Leuthold, S.J., M. Salmerón, O. Wendroth, and H. Poffenbarger. 2021. Cover crops decrease maize yield
 variability in sloping landscapes through increased water during reproductive stages. Field Crops
 Research 265. doi: 10.1016/j.fcr.2021.108111.
- de Lima, R.P., A.R. da Silva, and Á.P. da Silva. 2021. soilphysics: An R package for simulation of soil compaction induced by agricultural field traffic. Soil and Tillage Research 206: 104824. doi: 10.1016/j.still.2020.104824.
- Luxmoore, R.J. 1981. Micro-, meso-, and macroporosity of soil. Soil Science Society of America Journal
 45(3): 671–672. doi: 10.2136/sssaj1981.03615995004500030051x.
- Manns, H.R., and A.A. Berg. 2014. Importance of soil organic carbon on surface soil water content
 variability among agricultural fields. Journal of Hydrology 516: 297–303. doi:
 10.1016/j.jhydrol.2013.11.018.
- Marcillo, G.S.S., and F.E.E. Miguez. 2017. Corn yield response to winter cover crops: An updated metaanalysis. Journal of Soil and Water Conservation 72(3): 226–239. doi: 10.2489/jswc.72.3.226.
- Martinez-Feria, R.A., R. Dietzel, M. Liebman, M.J. Helmers, and S.V. Archontoulis. 2016. Rye cover
 crop effects on maize: A system-level analysis. Field Crops Research 196: 145–159. doi:
 10.1016/j.fcr.2016.06.016.
- Miguez, F. 2021. nlraa: Nonlinear regression for agricultural applications. R package version 0.83.
 https://cran.r-project.org/web/packages/nlraa/index.html
- Miller, B.A., and R.J. Schaetzl. 2012. Precision of soil particle size analysis using laser diffractometry.
 Soil Science Society of America Journal 76(5): 1719. doi: 10.2136/sssaj2011.0303.
- 570 Minasny, B., and A.B. McBratney. 2018. Limited effect of organic matter on soil available water 571 capacity. European Journal of Soil Science 69(1): 39–47. doi: 10.1111/ejss.12475.
- Moore, E.B., M.H. Wiedenhoeft, T.C. Kaspar, and C.A. Cambardella. 2014. Rye cover crop effects on
 soil quality in no-till corn silage-soybean cropping systems. Soil Science Society of America Journal
 78(3): 968–976. doi: 10.2136/sssaj2013.09.0401.
- Moore, E.B. 2021. Management effects on near-surface soil properties in a temperate corn-soybean cropping system. Graduate Theses and Dissertations. 18564. https://lib.dr.iastate.edu/etd/18564
- Nelson, D.W. and Sommers, L.E., 1996. Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 3 Chemical methods. pp 961-1010.
- Nichols, V.A., R.A. Ordóñez, E.E. Wright, M.J. Castellano, M. Liebman, J.L. Hatfield, M. Helmers, S.V.
- Archontoulis. 2019. Maize root distributions strongly associated with water tables in Iowa,
- USA. Plant and Soil, 444(1), pp.225-238. doi: 10.1007/s11104-019-04269-6

- Nichols, V., R. Martinez-Feria, D. Weisberger, S. Carlson, B. Basso, et al. 2020a. Cover crops and weed
- suppression in the U.S. Midwest: A meta-analysis and modeling study. Agricultural &
- Environmental Letters 5(1). doi: 10.1002/ael2.20022.
- Nichols, V., L. English, S. Carlson, S. Gailans, and M. Liebman. 2020b. Effects of long-term cover
- cropping on weed seedbanks. Frontiers in Agronomy 2: 591091. doi: 10.3389/fagro.2020.591091.
- Nichols, V., English, L. E., and Liebman, M. (2020c). Long term cover cropping effects on weed
- seedbanks [Dataset]. Iowa State University. doi: 10.25380/iastate.12762011.v1
- Ogilvie, C.M., W. Ashiq, H.B. Vasava, and A. Biswas. 2021. Quantifying root-soil interactions in cover
- crop systems: A review. Agriculture (Switzerland) 11(3). doi: 10.3390/agriculture11030218.
- Omuto, C.T., M. Maechler, and V. Too. 2021. HydroMe: Estimating water retention and infiltration
- model parameters using experimental data. R package version 2.0-1. https://CRAN.R-
- 593 project.org/package=HydroMe
- Pearl, J. 2010. An introduction to causal inference. International Journal of Biostatistics 6(2). doi:
- 595 10.2202/1557-4679.1203.
- 596 Practical Farmers of Iowa. 2018. Winter cereal rye cover crop effect on cash crop yield Year 10.
- Available online (Accessed September 2021): https://practicalfarmers.org/wp-
- content/uploads/2020/01/Winter Rye Effect on Yield Final.pdf
- Qi, Z. and M.J. Helmers. 2010. Soil water dynamics under winter rye cover crop in central Iowa. Vadose Zone Journal, 9(1), pp.53-60.
- Rizzo, G., J.I.R. Edreira, S.V. Archontoulis, H.S. Yang, and P. Grassini. 2018. Do shallow water tables
- contribute to high and stable maize yields in the US Corn Belt? Global Food Security 18: 27–34.
- doi: 10.1016/J.GFS.2018.07.002.
- Rorick, J.D., and E.J. Kladivko. 2017. Cereal rye cover crop effects on soil carbon and physical properties in southeastern Indiana. Journal of Soil and Water Conservation 72(3). doi: 10.2489/jswc.72.3.260.
- Ruehlmann, J., and M. Körschens. 2009. Calculating the effect of soil organic matter concentration on
- soil bulk density. Soil Science Society of America Journal 73(3): 876–885. doi:
- 608 10.2136/sssaj2007.0149.
- Saxton, K.E., and W.J. Rawls. 2006. Soil water characteristic estimates by texture and organic matter for
- 610 hydrologic solutions. Soil Science Society of America Journal 70(5): 1569–1578. doi:
- 611 10.2136/sssaj2005.0117.
- Scott, N.A., C.V. Cole, E.T. Elliott, S.A. Huffman. 1996. Soil textural control on decomposition and soil
- organic matter dynamics. Soil Science Society of America Journal, 60(4), pp.1102-1109.
- 614 Smith, R.G., A.S. Davis, N.R. Jordan, L.W. Atwood, A.B. Daly, et al. 2014. Structural equation modeling
- facilitates transdisciplinary research on agriculture and climate change. Crop Science 54(2): 475–
- 483. doi: 10.2135/cropsci2013.07.0474.

617 618	SSSA. 2008. Glossary of Soil Science Terms 2008. American Society of Agronomy and Soil Science Society of America, Madison, WI, USA.
619 620 621	Strock, S.J., P.M. Porter, and M.P. Russelle. 2004. Cover cropping to reduce nitrate loss through subsurface drainage in the northern U.S. corn belt. Journal of environmental quality 33(3): 1010–1016. doi: 10.2134/jeq2004.1010.
622 623	Unger, P.W., and M.F. Vigil. 1998. Cover crop effects on soil water relationships. Journal of Soil and Water Conservation 53(3): 200–207.
624 625 626	Villamil, M.B., G.A. Bollero, R.G. Darmody, F.W. Simmons, and D.G. Bullock. 2006. No-till corn/soybean systems including winter cover crops. Soil Science Society of America Journal 70(6): 1936–1944. doi: 10.2136/sssaj2005.0350.
627 628 629	Wade, J., S.W. Culman, J.A.R. Logan, H. Poffenbarger, M.S. Demyan, et al. 2020. Improved soil biological health increases corn grain yield in N fertilized systems across the Corn Belt. Scientific Reports 10(1): 3917. doi: 10.1038/s41598-020-60987-3.
630 631	Wickham, H., M. Averick, J. Bryan, W. Chang, L. McGowan, et al. 2019. Welcome to the Tidyverse. Journal of Open Source Software 4(43): 1686. doi: 10.21105/joss.01686.
632 633 634	Williams, A., N.R. Jordan, R.G. Smith, M.C. Hunter, M. Kammerer, D.A. Kane, R.T. Koide, A.S. Davis, 2018. A regionally-adapted implementation of conservation agriculture delivers rapid improvements to soil properties associated with crop yield stability. Scientific Reports 8(1): 1-8.
635 636 637	Williams, A., M.C. Hunter, M. Kammerer, D.A. Kane, N.R. Jordan, et al. 2016. Soil water holding capacity mitigates downside risk and volatility in US rainfed maize: Time to invest in soil organic matter? PLoS ONE 11(8): 1–11. doi: 10.1371/journal.pone.0160974.
638 639 640	Williams, C.L., M. Liebman, J.W. Edwards, D.E. James, J.W. Singer, et al. 2008. Patterns of regional yield stability in association with regional environmental characteristics. Crop Science 48(4): 1545–1559. doi: 10.2135/cropsci2006.12.0837.
641 642 643	Williams, S.M., and R.R. Weil. 2004. Crop cover root channels may alleviate soil compaction effects on soybean crop. Soil Science Society of America Journal 68(4): 1403–1409. doi: 10.2136/sssaj2004.1403.
644	

Supplementary Material for 'Winter Cover Cropping Effects on Soil Water-Holding Capacity Vary by Site'

Nichols et al. 2021

6/15/2021

Supplemental material S1. Map of sites

Figure 1: Map of site locations in Iowa

Supplemental material S2. General Site Management Summary

Table 1: General Site Description

Site	General	Treatment	Year	Crop	Number	Sampled in 2019
Description	Location	Description	of Ini- tiation	Planted in 2019	of Treat- ment Repli- cates	Sampled III 2019
0 + 10 :	Boyd Farm, Boone, field 44	maize/soybea grain rotation, with and without rye cover crop	2009	maize	5	Y
Central Grai	ⁿ Boyd Farm, Boone, field 42	maize/soybean grain rotation, with and without rye cover crop	2009	soy	5	Y
0 4 101	Boyd Farm, Boone, field 44	maize silage/soybea grain rotation, with and without rye cover crop	2002	maize silage	5	Y
Central Silag	Boyd Farm, Boone, field 42	maize silage/soybean grain rotation, with and without rye cover crop	2002	soy	5	N
West	Jefferson, IA	maize/soybea grain rotation, with and without rye cover crop	2008	maize	4	Y
East	Washington, IA	maize/soybean grain rotation, with and without rye cover crop	2009	soybeans	4	Y

Table 2: 2018-2019 Herbicide Use

Site Description	Herbicides Used in 2018 Growing Season	Herbicdes Used in Fall 2018	Herbicides Used in Spring 2019
Central Grain Central Grain	glyphosate 1 week before soybean planting	none	glyphosate 1 week before maize planting; metalochlor, atrazine, and mesotrione at planting
Central Grain	glyphosate 1 week before maize planting; metalochlor, atrazine, and mesotrione at planting	none	glyphosate 1 week before soybean planting
Central Silage	glyphosate 1 week before soybean planting	none	glyphosate 1 week before maize planting; metalochlor, atrazine, and mesotrione at planting
Central Silage	glyphosate 1 week before maize planting; metalochlor, atrazine, and mesotrione at planting	none	glyphosate 1 week before soybean planting
West	glyphosate before planting; glyphosate and fluthiacet-methyl at planting	none	glyphosate before planting; glyphosate and fluthiacet-methyl at planting
East	glyphosate and acetochlor before planting (April 15), atrazine, acetochlor at planting (May 14); acetochlor and glyphosate after planting (June 15)	none	chlorimuron-ethyl, flumioxazin, pyroxasulfone, and glyphosate before planting, dicamba and acetochlor after planting

Table 3: General Management

Site Description	General Herbicide Regime	General Date of Cover Crop Termina- tion	General Date of Crop Planting	Inorganic Fertilizer Used	Organic Fertilizer Used	Tillage Used
Central Grain	burndown, residual herbicide at maize planting	15-Apr	26-Apr	Y	NA	N
Central Grain	burndown, residual herbicide at maize planting	25-Apr	5-May	Y	NA	N
Central Silage	burndown, residual herbicide at maize planting	15-Apr	26-Apr	Y	NA	N
Central Silage	burndown, residual herbicide at maize planting	25-Apr	5-May	Y	NA	N
West	burndown, pre-emergent herbicide	1-May	10-May	Y	chicken or turkey manure	N
East	burndown, residual herbicide at planting, another application on maize at ~V6	1-May	5-May	Y	liquid swine, ~3000 gal/ac every other year to entire field	N

Cover crop biomass production over past 10 years of trials

Table 4: Historical cover crop biomass production (Mg/ha) by trial

trial	2010	2011	2012	2013	2014	2015	2016	2017	2019	2018
Central_grain	0.86	0.28	1.37	0.25	0.47	0.61	2.22	2.76	1.29	NA
$Central_silage$	1.59	1.72	3.32	1.26	0.91	1.76	4.23	2.21	2.05	NA
East_grain	2.11	1.46	0.00	0.92	0.00	0.36	0.51	7.30	0.30	0.19
$West_grain$	2.11	0.21	1.33	0.00	0.00	0.04	0.45	0.63	0.00	0.09

Supplemental material S3. Statistical summaries

Clay, silt, and sand components

Table 5: Statistical analysis of cover crop effect on clay

site_sys	respvar	cc	no	contrast	est_diff	diff_se	diff_pval
Central_grain	clay	27.740	28.000	cc - no	-0.260	0.186	0.164
$Central_silage$	clay	28.751	29.895	cc - no	-1.144	0.208	< 0.001
East_grain	clay	31.730	34.606	cc - no	-2.876	0.208	< 0.001
$West_grain$	clay	27.349	29.511	cc - no	-2.162	0.208	< 0.001

Table 6: Statistical analysis of cover crop effect on silt

site_sys	respvar	$^{\rm cc}$	no	contrast	est_diff	${\rm diff_se}$	$diff_pval$
Central_grain	silt	39.772	40.399	cc - no	-0.627	0.206	0.003
$Central_silage$	silt	41.313	40.793	cc - no	0.520	0.230	0.025
East_grain	silt	55.552	55.557	cc - no	-0.005	0.230	0.983
West_grain	silt	41.896	44.728	cc - no	-2.831	0.230	< 0.001

Table 7: Statistical analysis of cover crop effect on sand

site_sys	respvar	$^{\rm cc}$	no	contrast	est_diff	diff_se	diff_pval
Central_grain	sand	32.486	31.600	cc - no	0.886	0.299	0.003
$Central_silage$	sand	29.811	29.233	cc - no	0.578	0.335	0.085
East_grain	sand	12.715	9.837	cc - no	2.877	0.335	< 0.001
$West_grain$	sand	30.506	25.610	cc - no	4.896	0.335	< 0.001

Soil organic matter

Table 8: Statistical analysis of cover crop effect on organic matter, with and without sand covariate

cov	$site_sys$	respvar	cc	no	contrast	est_diff	${\rm diff_se}$	diff_pval
none	Central_grain	om	2.360	2.480	cc - no	-0.120	0.051	0.02
nono	$Central_silage$	om	2.640	2.416	cc - no	0.224	0.057	< 0.001
none none	$East_grain$	om	3.575	3.675	cc - no	-0.100	0.057	0.082
	$West_grain$	om	2.750	2.975	cc - no	-0.225	0.057	< 0.001
sand	Central_grain	om	3.034	3.066	cc - no	-0.032	0.082	0.696
gond	$Central_silage$	om	3.049	2.772	cc - no	0.278	0.088	0.002
sand	$East_grain$	om	2.290	2.105	cc - no	0.185	0.093	0.048
	West_grain	om	3.228	2.968	cc - no	0.260	0.096	0.007

Soil bulk density

Table 9: Mean bulk density (g/cm3) by trial

site_name	sys_trt	crop_trt	cc_trt	bulkden_mean	bulkden_sd
Central	grain	soy	cc	1.42	0.08
Control	grain	soy	no	1.37	0.07
Central Central	silage	soy	cc	1.46	0.06
	$_{\rm silage}$	soy	no	1.44	0.07
East	grain	soy	cc	1.44	0.05
Last	grain	soy	no	1.49	0.04
West	grain	corn	cc	1.57	0.14
vvest	grain	corn	no	1.47	0.21

Table 10: Statistical analysis of cover crop effect on bulk density, with and without sand covariate

cov	site_sys	respvar	cc	no	contrast	est_diff	diff_se	diff_pval
none	Central_grain	bd	1.422	1.374	cc - no	0.048	0.010	< 0.001
nono	$Central_silage$	bd	1.464	1.436	cc - no	0.028	0.011	0.012
none none	$East_grain$	bd	1.437	1.488	cc - no	-0.050	0.011	< 0.001
	$West_grain$	bd	1.573	1.472	cc - no	0.101	0.011	< 0.001
sand	Central_grain	bd	1.309	1.275	cc - no	0.033	0.013	0.011
sand	$Central_silage$	bd	1.395	1.386	cc - no	0.010	0.014	0.483
sand	East_grain	bd	1.653	1.752	cc - no	-0.098	0.015	< 0.001
	$West_grain$	bd	1.493	1.473	cc - no	0.020	0.015	0.188

Soil moisture (%vol) at saturation

Table 11: Statistical analysis of cover crop effect on soil water at saturation, with and without sand covariate

cov	$site_sys$	term	contrast	estimate	$\operatorname{std.error}$	df	statistic	adj.p.value	param
sand	Central_grain	cc_trt	cc effect	-0.013	0.008	26.000	-1.688	0.103	saturation
and	$Central_silage$	cc_trt	cc effect	0.004	0.008	26.000	0.510	0.614	saturation
sand	$East_grain$	cc_trt	cc effect	0.011	0.009	26.000	1.271	0.215	saturation
	$West_grain$	cc_trt	cc effect	-0.007	0.009	26.000	-0.729	0.473	saturation
none	Central_grain	cc_trt	cc effect	-0.016	0.008	13.050	-1.959	0.072	saturation
nono	$Central_silage$	cc_trt	cc effect	0.002	0.009	14.068	0.246	0.809	saturation
none none	East_grain	cc_trt	cc effect	0.002	0.009	13.050	0.228	0.823	saturation
	$West_grain$	cc_trt	cc effect	-0.022	0.009	13.050	-2.430	0.030	saturation

Soil moisture (%vol) at field capacity (-100 cm water)

Table 12: Statistical analysis of cover crop effect on soil water at field capacity, with and without sand covariate

cov	site_sys	term	contrast	estimate	std.error	df	statistic	adj.p.value	param
sand	Central_grain	cc_trt	cc effect	-0.002	0.006	26.000	-0.430	0.671	field capacity
and	Central_silage	cc_trt	cc effect	0.012	0.006	26.000	2.041	0.052	field capacity
sand	$East_grain$	cc_trt	cc effect	-0.002	0.006	26.000	-0.353	0.727	field capacity
	$West_grain$	cc_trt	cc effect	0.012	0.007	26.000	1.835	0.078	field capacity
none	Central_grain	cc_trt	cc effect	-0.004	0.005	13.044	-0.800	0.438	field capacity
nono	$Central_silage$	cc_trt	cc effect	0.012	0.006	14.005	2.242	0.042	field capacity
none none	$East_grain$	cc_trt	cc effect	-0.007	0.006	13.044	-1.317	0.211	field capacity
	$West_grain$	cc_trt	cc effect	0.003	0.006	13.044	0.597	0.561	field capacity

Fitted parameters a and ${\bf n}$

Table 13: Table of 'a' Gardener parameter estimate

site_sys	cc_trt	rep	estimate	std.error
		1	0.043	0.010
		2	0.025	0.006
	cc	3	0.015	0.012
		4	0.021	0.010
Central_grain		5	0.002	0.001
Central_grain		1	0.020	0.010
		2	0.025	0.009
	no	3	0.010	0.005
		4	0.013	0.007
		5	0.041	0.014
		1	0.028	0.014
		2	0.030	0.013
	cc	3	0.011	0.008
		4	0.015	0.011
Central_silage		5	0.044	0.013
		1	0.049	0.029
	no	2	0.046	0.014
	no	3	0.048	0.014
		4	0.016	0.007
		1	0.100	0.027
	СС	2	0.180	0.046
	CC	3	0.054	0.022
		4	0.085	0.024
$East_grain$		1	0.088	0.022
		2	0.080	0.028
	no	3	0.073	0.026
		4	0.080	0.024
		5	0.092	0.029
		1	0.007	0.008
	cc	2	0.026	0.006
	CC	3	0.039	0.016
West_grain		4	0.032	0.015
west_grain		1	0.013	0.013
	no	2	0.029	0.012
	110	3	0.051	0.017
		4	0.102	0.017

Table 14: Table of 'n' Gardener parameter estimate

site_sys	cc_trt	rep	estimate	std.error
		1	0.987	0.079
		2	1.099	0.073
	cc	3	1.106	0.219
		4	1.086	0.141
Central grain		5	1.468	0.198
Central_grain		1	0.999	0.154
		2	1.007	0.110
	no	3	1.291	0.139
		4	1.264	0.153
		5	0.949	0.112
		1	0.813	0.158
		2	0.850	0.137
	cc	3	1.006	0.220
		4	1.173	0.212
Central_silage		5	0.639	0.116
		1	0.923	0.197
	no	2	0.705	0.108
	110	3	0.614	0.121
		4	1.041	0.125
		1	0.772	0.104
	СС	2	0.817	0.115
	CC	3	0.994	0.140
		4	0.740	0.105
$East_grain$		1	0.651	0.099
		2	0.973	0.133
	no	3	0.880	0.131
		4	0.880	0.110
		5	0.737	0.116
		1	1.009	0.305
	00	2	0.834	0.071
	cc	3	0.488	0.175
West_grain		4	0.997	0.145
west_gram		1	1.039	0.268
	no	2	0.970	0.133
	110	3	0.837	0.110
		4	0.743	0.064

Figure 2: Non-linear model fitted parameters

Macro-pore percentages

Table 15: Table of macropores estimates and comparisons

$site_sys$	cc_trt	estimate	df	conf.low	conf.high	contrast	est_diff	$pval_diff$
Central-grain	cc	0.589	26.228	0.518	0.660	cc - no	-0.029	0.606
	no	0.618	26.228	0.547	0.689	cc - no		
Central-silage	cc	0.535	26.228	0.464	0.606	cc - no	-0.051	0.403
Celitral-shage	no	0.586	26.989	0.506	0.665	cc - no	-0.031	0.405
East-grain	cc	0.731	26.989	0.651	0.811	cc - no	0.019	0.750
East-grain	no	0.712	26.228	0.641	0.783	cc - no	0.019	0.750
West grain	cc	0.478	26.989	0.399	0.558	cc - no	-0.127	0.053
West-grain	no	0.605	26.989	0.525	0.685	cc - no	-0.127	0.055

Supplemental material S4. Detailed soil texture results

Figure 3: Soil texture components varied by trial and cover crop treatment, with the cover cropped plots having significantly more sand bolded orange color, and significantly less clay at the West-grain and East-grain trials both, commercial fields

Table with values:

Table 16: Table of values

site_sys	cc_trt	clay	sand	silt	tot	sig_sand_diff
Central-grain	cc	0.28	0.32	0.40	1	
Central-grain	no	0.28	0.32	0.40	1	No
Central-silage	cc	0.29	0.30	0.41	1	NO
Central-snage	no	0.30	0.29	0.41	1	
East main	cc	0.32	0.12	0.56	1	
East-grain	no	0.35	0.09	0.56	1	Yes
West-grain	cc	0.27	0.31	0.42	1	res
west-grain	no	0.30	0.25	0.45	1	

Page 72 of 71

Table 17: Table of sand statistics

site_sys	respvar	$^{\rm cc}$	no	contrast	$\operatorname{est_diff}$	${\rm diff_se}$	pval
Central_grain	sand	32.486	31.600	cc - no	0.886	0.299	0.003
$Central_silage$	sand	29.811	29.233	cc - no	0.578	0.335	0.085
East_grain	sand	12.715	9.837	cc - no	2.877	0.335	< 0.001
$West_grain$	sand	30.506	25.610	cc - no	4.896	0.335	< 0.001

