Autoencoders

A brief introduction

Overview

- What are autoencoders?
- Toy Examples
- Neural Network Autoencoder
- PCA, and K-Means as an Autoencoder
- Variational Autoencoders
- Applications

 Autoencoders are a type of neural networks that try to reconstruct the provided input

Where can I use autoencoders?

• Everywhere!

Image / Video

Lorem ipsum dolor sit am eiusmod tempor incididun enim ad minim veniam, qu nisi ut aliquip ex ea co reprehenderit in volupta nulla pariatur. Excepteu sunt in culpa qui offici sed ut perspiciatis unde accusantium doloremque 1

Text

Audio

DNA

- Autoencoders typically have two components:
 - **Encoder:** maps input (x) into an intermediate representation (z)
 - **Decoder:** maps the intermediate representation (z) into the input (x)

- Intermediate representation (z) = embedding vector, hidden representation, bottleneck, latent space, code, ...
- Ideally, z will capture the essential information of the data

• The **encoder**, $\varphi(x)$, and **decoder**, $\omega(z)$, are typically neural networks: Multi-layer perceptron (MLP), convolutional neural networks (CNN), recurrent neural networks (RNN), graph neural networks (GNN), transformers...

• The parameters of encoder, $\varphi(x)$, and decoder, $\omega(z)$, are trained by minimizing the reconstruction error

$$Error = ||x - \tilde{x}||^2 = ||x - \omega(\varphi(x))||^2$$

Toy examples

$$z = \varphi(x)$$

$$\widetilde{x} = \omega(z)$$

$$z = 0.5 x$$

$$\hat{x} = 2z = x$$

$$z = Ax$$

$$\hat{x} = Bz = BAx$$

$$z = Wx$$

$$\hat{x} = W^T z = W^T W x$$

PCA is a linear autoencoder

 A linear autoencoder will learn a rotated Principal Component Analysis projection / a Singular Value Decomposition

$$\underline{z} = \varphi(\underline{x})$$
 $\underline{\widetilde{x}} = \omega(\underline{z})$ $z = Wx$ $\hat{x} = W^T z = W^T W x$

Principal Components
$$Z = XW$$
 $U\Sigma = XW$
 $U\Sigma W^T = X$

PCA is a linear autoencoder

Why non-linear autoencoders?

Linear vs nonlinear dimensionality reduction

Neural network autoencoder

• The size of the embedding will affect how much the data is compressed, and how good is the reconstruction error

K-Means vs Soft K-Means

Hard choices: points are colored red or blue depending on their cluster membership.

Soft choices: points are assigned "red" and "blue" responsibilities r_{blue} and r_{red} ($r_{\text{blue}} + r_{\text{red}} = 1$)

K-Means vs Soft K-Means

ADMIXTURE/Soft K-means as an Autoencoder

 ADMIXTURE is a likelihood approach typically used in population genetics similar to Soft K-Means

$$X \approx QP = \boldsymbol{\varphi}(X)P$$

$$z = Q = \varphi(X)$$

 $\widetilde{\mathbf{x}} = \omega(\mathbf{z}) = QP$

ADMIXTURE as an Autoencoder

- What if we inject a random vector into the decoder?
- How do we know which type of vector we need to input in order to get a good output?

• We would like the embedding vectors to follow a know statistical distribution (e.g., a gaussian)

- If the latent vectors (z) follow a Gaussian distribution, they will be:
 - Centered and constrained: points closer to the origin will provide good simulations
 - Smooth: neighboring points will provide similar simulations

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

- Centered and constrained: an L2 regularization is applied to the mean of the latent code → larger values are penalized
- Smooth: small gaussian noise is applied to the latent code → reparameterization trick
- Gaussian: the KL Divergence between the z and a gaussian is applied

$$\mathbf{z} \sim q_{oldsymbol{\phi}}(\mathbf{z} \mid \mathbf{x}) = \mathcal{N}(oldsymbol{\mu}, oldsymbol{\sigma}^2) \qquad \mathbf{z} = oldsymbol{\mu} + oldsymbol{\sigma} \odot oldsymbol{arepsilon}.$$

$$\mathcal{L} = -\sum_{j=1}^{J} \frac{1}{2} \left[1 + \log \left(\sigma_i^2 \right) - \sigma_i^2 - \mu_i^2 \right] - \frac{1}{L} \sum_{l} E_{\sim q_{\theta}(z|x_i)} \left[\log p(x_i|z^{(i,l)}) \right]$$

3-way Latent space interpolation for faces

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Other autoencoders

• Besides Gaussian VAE, there are many flavors:

Hyperbolical

https://arxiv.org/pdf/1901.06033.pdf

Spherical

https://arxiv.org/pdf/1804.00891.pdf

Other autoencoders - Bernoulli

• Besides Gaussian VAE, there are many flavors:

Binarization $\mathbf{b} = f_{\mathbf{b}}(\mathbf{z})$ Encoder $\mathbf{g}_{\phi}(\mathbf{X})$ \mathbf{x} Encoder $\mathbf{g}_{\phi}(\mathbf{x})$ \mathbf{x} \mathbf{x}

http://proceedings.mlr.press/v119/fajtl20a/fajtl20a.pdf

Other autoencoders - VQ-VAE

https://arxiv.org/abs/1711.00937v2

Other autoencoders - Denoising Autoencoder

Generative Networks

https://lilianweng.github.io/lil-log/2021/07/11/diffusion-models.html

Cool Applications!

Inpainting Autoencoder

Super-resolution

https://arxiv.org/pdf/2006.05218.pdf

Image Compression

Simulation and Interpolation

https://houxianxu.github.io/assets/project/dfcvae (animated gif)

3D Mesh Modeling

3D Voxel Modeling

Deepfakes

Generation

Image Translation

https://arxiv.org/pdf/1703.00848.pdf

Image Translation

Clothing Simulation

https://arxiv.org/pdf/1901.02284.pdf

Anomaly Detection

DNA Simulation

https://arxiv.org/pdf/1911.13220.pdf

DALL-E

TEXT PROMPT

an illustration of a baby daikon radish in a tutu walking a dog

AI-GENERATED IMAGES

Edit prompt or view more images ↓

TEXT PROMPT

an armchair in the shape of an avocado [...]

AI-GENERATED IMAGES

Edit prompt or view more images ↓

Thank you!

dmasmont@stanford.edu