CS535 Fall 2022 HW5 Sample Solutions

- 1. Delete the edge covering v from M, and delete all edges incident to v in the graph. Construct the alternating forest in $O(n^2)$. Notice that v is currently an unmatched even node in the forest. Now for each deleted edge (v, u), we check if u is an even vertex in the forest. If so, there exists an augmenting path with the addition of edge (v, u), after which we reach at a perfect matching where v is matched to u, so we can add v to the list.
- 2. Let L be the list of the n members sorted by the starting time of the departure interval in the ascending order. For each $1 \le i \le n$, let $[s_i, t_i]$ be the departure interval of the i-th member. The leximal matching (i.e., pairing) is repeatedly constructed as long as L is non-empty as follows: Remove the last member q from L. If q is matchable from member in L let p the last such member, pair up q with p, and then remove p from L. We first assert the optimality of the leximal pairing. It is sufficient to show that the first pair $\{p,q\}$ is contained in some maximum matching. We prove this via an exchange argument. Consider an optimal matching M^* which does not include the pair $\{p,q\}$. Then at least one of them is matched in M^* . If exactly one of them is matched in M^* , we replace the pair by $\{p,q\}$. Then M^* is still a maximum matching and it contains $\{p,q\}$. Henceforth, we assume that both are matched in M^* , say with $\{p,p'\}$ and $\{q,q'\}$. By the greedy choice of p, we have p' < p. Since p' < p and p' > p are matchable, we have $p' \leq p \leq p$ and p' > p and p' > p are matchable. Hence by replacing p' > p and p' > p with p' > p and p' > p, we obtain a maximum matching containing p' > p.

Now, we give a linearithmic-time implementation. Initially the matching M is empty. We maintain a balanced BST T initially consisting of the last member n only. Repeat the following iteration for p = n - 1 downto 1.

- if $T = \emptyset$ then $T \leftarrow \{p\}$;
- else if $\min_{j \in T} s_j > t_p$ then insert p to T;
- else extract $q := \max \{ j \in T : s_j \le t_p \}$ from T and add $\{p, q\}$ to M.

Each iteration can be performed in $O(\log n)$ time, hence the overall running time is $O(n \log n)$. It is straightforward to show that the output M is exactly the leximal matching.

- 3. Each car requires 2 technicians with 1 specific expertise, so we make 2 vertices v_{i1}, v_{i2} for every car i and connect them with an edge. Create vertices U = {u₁, · · · , u_m} for each technician. A technician may have multiple expertises. Create edges (u_j, v_{i1}), (u_j, v_{i2}) whenever technician j has the expertise required by car i. If k cars can be repaired, there will be m − 2k technicians not assigned to any car. We create m − 2k dummy vertices D = {d₁, · · · , d_{m−2l}}. Connect between any vertex pair d ∈ D and u ∈ U. There exists a perfect matching in this graph. If a car is repaired, its 2 vertices will be matched to 2 technicians assigned to 2. If a car is not repaired, its 2 vertices will be matched to each other. The m − 2k unassigned technicians will each be matched to a separate dummy vertex. If k cars can be repaired, the max number of repairable cars is at least k, therefore we can binary search k_{max} from 0 to n by choosing k and try to compute a perfect matching in the current graph. The number of iterations is O(log(n)), the entire process is polynomial time.
- 4. (a) Start from any unvisited vertex v then select its currently heaviest edge (v, u) to add to path p then delete all its remaining edges. Then move to the next vertex u and repeat. When u has no edges to be selected other than (v, u), we stop and add the current path p to the path set P. After all possible paths have been added to P, for each $p \in P$, we add p's odd edges to matching M_1 and even edges to M_2 , and choose the heavier matching from these 2 to output.

- Each edge will be inspected only once to find the current max-weighted edge at a vertex. Each edge then will be either added to the path or deleted. Therefore the time complexity is O(n+m).
- (b) Suppose M_1 is the matching chosen from P, we have $w(M_1) \geq \frac{1}{2}w(P)$. Let M_{max} be a max weighted matching. It suffices to show that $w(P) \geq w(M_{max})$. Each edge in M_{max} is either in P or not. If an edge e is not in P, it must have been deleted at a vertex v, where another incident edge e' of v is chosen to be added to P with $w(e') \geq w(e)$. All edges in M_{max} that are not in P can be mapped to a distinct edge e' and $w(M_{max})$ can be upper-bounded by w(P).
- 5. A max weighted matching with exactly \hat{k} matched edges with cover $2\hat{k}$ vertices and leave $n-2\hat{k}$ vertices. Create $n-2\hat{k}$ dummy vertices $D=\{d_1,\cdots,d_{n-2\hat{k}}\}$. For each vertex pair $v\in V$ and $d\in D$ create an edge (v,d) with 0 weight. If a max weighted perfect matching can be computed in the extended graph, it gives a max weighted matching with \hat{k} matched edges. Now we iterate \hat{k} from 1 to k, and compute the max weighted perfect matching. In the case where k>m we stop at m. The number of iterations is O(m) which is polynomial with respect to |E|, therefore the entire algorithm finishes in polynomial time.
- 6. For every edge, make its weight 2 if both endpoints are in X, 1 if only 1 endpoint is in X, 0 otherwise. Compute a max weight matching. By the construction, the weight of matching is exactly the number of vertices in X being matched. The max weighted matching can be computed in polynomial time.