ECE 3210 Midterm 1

Week of: September 30, 2019

Student's name and section:	

Instructor: Eric Gibbons ericgibbons@weber.edu 801-626-6861

You have 120 minutes for 5 problems.

- Show enough (neat) work in the clear spaces on this exam to convince us that you derived, not guessed, your answers.
- Put your final answers in the boxes at the bottom of the page.

You can use one page of notes and a calculator.

Problem	Score	Possible Points
1		20
2		20
3		20
4		20
5		20
Total score		100

1 Short answer

- (a) What is the verb form of "convolution"?
- (b) Given the following system differential equations or impulse response functions, determine if each system is stable, marginally stable, or unstable. Show work if needed.

(i)
$$(D^4 + 6D^3 + 9D^2)y(t) = (D-1)f(t)$$

(ii)
$$h(t) = e^{-t/2}u(t)$$

(iii)
$$(D^3 + 10D^2 + 26D)y(t) = D^2f(t)$$

(i)

(iii)

(c) Determine if the following functions $f_1(t)$, $f_2(t)$ and $f_3(t)$ are mutually orthogonal. Extensive derivation is not needed for this problem.

True or False:

2 Circuit analysis

Using the circuit below, please answer the following questions.

(a) Derive a differential equation relating the input f(t) and the output y(t). In your final answer, don't worry about including the units; write the ODE in the form we have seen in class.

(b) Determine the zero-input response for this system. Assume y'(0) = 1 and y(0) = 0.

 $y_n(t) =$

(c) Determine the impulse response h(t) for this system.

h(t) =

3 Convolution

Using direct integration or graphical (i.e., "flip-and-drag") methods, plot the following convolutions. (I.e., determine what the convolution is and then plot the result.)

(a)
$$(u(t-1) - u(t-3)) * 2rect(\frac{t}{4})$$

(b) $(u(t-1) - u(t-3)) * \cos(\pi t)$

4 Fourier series system response

We will use the triangle wave that we used in our Lab 3 exercise. We recall that Fourier series was written as

$$f(t) = \sum_{n=1}^{\infty} \frac{8}{n^2 \pi^2} \sin\left(\frac{n\pi}{2}\right) \sin(\pi nt).$$

(a) Convert f(t) into the complex exponential Fourier series form.

f(t) =

(b) If a LTIC system is governed by the differential equation $(D^2 + 4D + 2)y(t) = Df(t)$, derive its transfer function H(s).

H(s) =

(c) Using this transfer function, determine the system response y(t) if the input is f(t).

y(t) =

5 Fourier derivation

(a) Find the complex Fourier series of function in the following figure. Please reduce your expression to its simplest form. Recalling hyperbollic functions $\sinh(t) = \frac{e^t - e^{-t}}{2}$ and $\cosh(t) = \frac{e^t + e^{-t}}{2}$ will be helpful.

f(t) =

(b) Find the Fourier transform of $f(t) = 2\operatorname{sinc}(\pi t)\cos(\pi t)$. You may use tables or direct integration.

 $F(\omega) =$

END OF EXAM