

Dynamique et modélisation de la turbulence

6. Eléments de méthodes numériques et expérimentales pour les écoulements turbulents

Paola CINNELLA paola.cinnella@sorbonne-universite.fr

Approches numériques

Echelles spatiales de la turbulence

- Grandes échelles : échelle macroscopique ou échelle intégrale L → même ordre de grandeur que la taille caractéristique de l'écoulement
- Gamme inertielle : l'énergie cinétique turbulente k est transférée des grandes aux petites échelles
 - Temps caractéristique du transfert (analyse dimensionnelle) : $T = \frac{L}{k^{1/2}}$
 - Taux de transfert : $\frac{k}{T} = \frac{k^{3/2}}{L}$
- Gamme dissipative : l'énergie cinétique est dissipée en chaleur
 - Taux de dissipation ε lié à la taille des petites échelles et à la viscosité ν du fluide :

$$\varepsilon = v^3/\eta^4$$
 (η = échelle de Kolmogorov)

• En conditions d'équilibre, elle doit égaler l'énergie transférée des grandes échelles :

$$\frac{k^{3/2}}{L} = \frac{v^3}{\eta^4} \Longrightarrow \frac{L}{\eta} = \left(\frac{L k^{\frac{1}{2}}}{v}\right)^{3/4} = Re^{3/4}$$

- Simulation numérique directe (Direct Numerical Simulation, DNS):
 - les équations de NS sont résolues pour toutes les échelles
 - Applications limités à des écoulements bas Re
- Simulation aux grandes échelles (Large Eddy Simulation, LES):
 - on résout les grandes échelles et on modélise les petites, qui ne sont pas capturées par le maillage
 - Ecoulements à Re moyennement élevé
- Simulation de champ moyen (Reynolds-Averaged Navier-Stokes, RANS)
 - On résout des équations pour le champ moyen et on modélise les fluctuations turbulentes
 - La plus utilisée jusqu'à présent, notamment pour les applications en ingénierie
 - Approche statistique

- DNS impossible pour des écoulements à grand Reynolds
 - Nombre de mailles nécessaires pour résoudre les plus petites échelles $\approx \left(\frac{L}{n}\right)^3 = Re^{9/4}$
 - Coût de calcul $\approx Re^{11/4}$ (nombre de mailles x nombre d'itérations en temps)
- LES de plus en plus appliquée, y compris à des écoulements complexes
 - Résolution nécessaire pour un écoulement cisaillé libre : $\approx Re^{0.4}$; coût $\approx Re^{0.5}$
 - Résolution nécessaire pour un écoulement avec parois (Wall-Resolved LES, WRLES) : $\approx Re^{1,8}$; coût $\approx Re^{2,4}$
 - → résolution quasi-DNS
 - Le coût de calcul peut être réduit en modélisant l'écoulement de proche paroi (Wall-Modeled LES, WMLES) mais établir des modèles de paroi précis et généraux n'est pas une tâche simple
- RANS approche statistique, ne résout que le champ moyen, complétées par un modèle de turbulence
 - Réduction drastique du coût de calcul
 - Modèles moins universels et entachés d'incertitudes

Résolu

Modélisé

- Simulation numérique directe (DNS)
 - Le calcul doit résoudre **toutes les échelles spatiales et temporelles** de l'écoulement. Les simulations les plus avancées atteignent une résolution spatiale de quelques dizaines de milliards de points

$$N^3 \ge \text{Re}^{\frac{9}{4}}$$

Re_H	$Re_{ au}$	N^3	Time steps
12.300	360	6.7×10^{6}	32.000
30.800	800	4.0×10^{7}	47.000
61.600	1.450	1.5×10^8	63.000
230.000	4.650	2.1×10^9	114.000

Exemples de résolution pour des écoulements de canal plan de hauteur H

Champ de vitesse instantané pour un écoulement de canal plan à Re_{τ} =4096 (environ 35x10⁹ mailles) (From M. Bernardini, S. Pirozzoli, P. Orlandi, J Fluid Mech, 2014, vol. 742, 171-191)

Exemples de DNS "extrêmes"

• Re_c= 500.000 requires 5x10⁹ grid points and 10⁷ core hours

1 month on 10⁴ cores

Quality of mesh very important

 aspect ratio influences pressure iterations

Exemples de DNS "extrêmes"

Exemples de DNS "extrêmes"

Numerical wind tunnel: simulations of typical university wind tunnel experiments

Laminar Flow Control Experiment: $Re = 1*15/1.5*10^{-5} = 1x10^{6}$

Turbulent boundary layer: Re = $5*30/1.5*10^{-5} = 10x10^{6}$

- ~ 20 billion (2x10¹⁰) grid points
- 0.1 billion (10⁸) core hours
- 10 months on 10⁴ cores (0.1 peta)

Exa-scale possibilities

- 10¹¹ grid point scale to 10⁸ cores (1 exa)
- Re few million in one day

- Large Eddy Simulation (LES)
 - La simulation ne doit résoudre que les plus grandes échelles
 - Dans les couches limites toutefois, ces échelles ont une taille très petite (hairpins, stries)

$$N^3 \ge \text{Re}^{1.8}$$

Re_H	$Re_{oldsymbol{ au}}$	N_{DNS}^3	N_{LES}^3
12.300	360	6.7×10^{6}	6.1×10^{5}
30.800	800	4.0×10^{7}	3.0×10^6
61.600	1.450	1.5×10^8	1.0×10^{7}
230.000	4.650	2.1×10^9	1.0×10^{8}

Exemples de résolution pour des écoulements de canal plan de hauteur H

Visualization des structures tourbillonnaires dans un étage de compresseur à Re=300000, calcul avec 160×10^6 mailles.

(From W.A. McMullan, G.J. Page, Progress Aerosp Sci, 2012)

- Reynolds Averaged Navier-Stokes (RANS)
 - Les équations ne décrivent que le champ moyen, elles ignorent les structures cohérentes

Re_H	$Re_{ au}$	N_{DNS}^3	N_{LES}^3	RANS
230.000	4.650	2.1×10^{9}	1.0×10^{8}	1.0×10^{4}

- Robustes et peu couteuses, mais elles échouent pour des écoulements dans lesquels l'effet des structures cohérentes joue un rôle crucial pour la physique
 - o Décrochage, tremblement...
- Méthodes hybrides LES/ RANS → cherchent à réunir les meilleures propriétés des deux approches
 - Plusieurs « nuances » possibles en fonction de la part d'écoulement traitée en LES ou en RANS
 - WMLES
 - Hybride RANS/LES « zonal »
 - Hybride RANS/LES « global »

Récapitulatif

Hyérarchie des méthodes de simulation des écoulements turbulents

Exemple de modèle RANS : le modèle k-epsilon

Equations RANS

$$\begin{cases} \frac{\partial \overline{u}_i}{\partial x_i} = 0 \\ \frac{\partial \overline{u}_i}{\partial t} + \frac{\partial (\overline{u_i}\overline{u_j})}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_i} + \frac{1}{\rho} \frac{\partial}{\partial x_j} (\mu \frac{\partial \overline{u}_i}{\partial x_j} - \rho \overline{u'_i u'_j}) \end{cases}$$

$$\tau_{ij}^R = \mu \frac{\partial \overline{u}_i}{\partial x_j} = \text{contraintes turbulentes}$$

$$\tau_{ij}^R = -\rho \overline{u'_i u'_j} = \text{contraintes}$$

$$\tau_{ij}^R = -\rho \overline{u'_i u'_j} = \text{contraintes}$$

$$\tau_{ij} = \mu \frac{\partial \overline{u}_i}{\partial x_j} = \text{contraintes visqueuses}$$

$$\tau_{ij}^R = -\rho \overline{u'_i u'_j} = \text{contraintes turbulentes}$$
(tensour de Peynolds)

- Modélisation du tenseur de Reynolds :
 - Hypothèse de Boussinesq :

$$au_{ij}^R - rac{2}{3}
ho k \delta_{ij} = 2
ho k a_{ij} = 2
ho v_t ar{S}_{ij}, \quad ar{S}_{ij} = rac{1}{2} \left(rac{\partial \overline{u_i}}{\partial x_j} + rac{\partial \overline{u_j}}{\partial x_i}
ight) = ext{tenseur du taux de déformation moyen}$$

où le coefficient v_t est appelé viscosité tourbillonnaire ou viscosité turbulente (eddy viscosity)

• Le problème de modélisation se réduit alors à déterminer v_t

Exemple de modèle RANS : le modèle k-epsilon

Analyse dimensionnelle :

$$v_t = \frac{\mu_t}{\rho} = C_{\mu} \times u_t \times l_t$$

- Approximation homogène isotrope
 - Vitesse caractéristique turbulente = vitesse caractéristique des fluctuations $u_t \sim k^{\frac{1}{2}}$
 - Longueur caractéristique turbulente = longueur intégrale $l_t \sim \frac{k^{\frac{3}{2}}}{\epsilon}$
- Viscosité tourbillonnaire $v_t = C_\mu \frac{k^2}{\epsilon}$
- Calcul de k? \rightarrow équation de transport
- Calcul de ϵ ? \rightarrow plus compliqué

Equation pour l'énergie cinétique de la turbulence

Dérivée auparavant

$$\frac{\partial k}{\partial t} + \overline{u_k} \frac{\partial k}{\partial x_k} = \frac{1}{\rho} \tau_{ik}^R \frac{\partial \overline{u_i}}{\partial x_k} - \epsilon + \frac{\partial}{\partial x_k} \left[\nu \frac{\partial k}{\partial x_k} - \frac{1}{2} \overline{u_i' u_i' u_k'} - \frac{1}{\rho} \overline{p' u_k'} \right]$$

avec:

- $\frac{\partial k}{\partial t} + \overline{u_k} \frac{\partial k}{\partial x_k} = \frac{Dk}{Dt}$
- $\frac{1}{\rho} \tau_{ik}^R \frac{\partial \overline{u_i}}{\partial x_k} = \frac{1}{\rho} \tau_{ik}^R \bar{S}_{ik}$: production d'énergie cinétique turbulente \rightarrow travail du champ moyen transféré à la turbulence
- $\frac{\partial}{\partial x_k} v \frac{\partial k}{\partial x_k}$: diffusion moléculaire de $k \rightarrow$ diffusion de k par effet du mouvement d'agitation moléculaire (souvent négligeable)
- $-\frac{\partial}{\partial x_k} \frac{1}{2} \overline{u_i' u_i' u_k'}$: diffusion turbulente de $k \to diffusion$ de k par effet des fluctuations turbulentes (doit être modélisé)
- $-\frac{\partial}{\partial x_k} \frac{1}{\rho} \overline{p'u'_k}$: diffusion de pression \rightarrow forme de diffusion due à la corrélation pression/vitesse (doit être modélisé)
- $\epsilon = v \frac{\partial u_i'}{\partial x_k} \frac{\partial u_i'}{\partial x_k} \ge 0$: dissipation turbulente spécifique \rightarrow taux auquel k est détruit aux petites échelles (doit être modélisé)

Equation de transport pour k : modélisation

- $\frac{1}{\rho}\tau_{ik}^R\bar{S}_{ik}$ \rightarrow fermé par l'approximation de Boussinesq : $\tau_{ik}^R \frac{2}{3}\rho k\delta_{ik} = 2\rho v_t\bar{S}_{ik}$
- $-\frac{1}{2}\overline{u_i'u_i'u_k'} \frac{1}{\rho}\overline{p'u_k'} = \frac{v_t}{\sigma_k}\frac{\partial k}{\partial x_k}$ → modélisés ensemble par une loi de gradient (σ_k : coefficient de fermeture)
- En injectant ces modèles dans l'équation de k on obtient l'équation modélisée :

$$\frac{\partial k}{\partial t} + \overline{u_k} \frac{\partial k}{\partial x_k} = \frac{1}{\rho} \tau_{ik}^R \frac{\partial \overline{u_i}}{\partial x_k} - \epsilon + \frac{\partial}{\partial x_k} \left[\left(\nu + \frac{\nu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_k} \right]$$

avec
$$\tau_{ik}^R - \frac{2}{3}\rho k\delta_{ik} = 2\rho v_t \bar{S}_{ik}$$
 et $v_t \sim l_m v_m$, $v_m = k^{\frac{1}{2}}$

- Il reste encore à déterminer $\epsilon \rightarrow$ un grand nombre de stratégies de modélisation existe (grande variété de modèles)
 - Analyse dimensionnelle : $\epsilon \sim \frac{k^{\frac{3}{2}}}{l}$ avec l une longueur caractéristique turbulente
 - Le problème de modélisation se réduit à déterminer cette longueur turbulente

Equation pour la dissipation

- Une possibilité consiste à déterminer une équation de transport pour la dissipation
- On peut obtenir une équation exacte pour ϵ à partir de l'opérateur suivant :

$$2\nu \frac{\overline{\partial u_i'}}{\partial x_j} \frac{\partial}{\partial x_j} [NS(u_i)] = 0$$

Elle s'écrit

$$\underbrace{\frac{\partial \epsilon}{\partial t} + \overline{u}_j \frac{\partial \epsilon}{\partial x_j}}_{\underline{D}_{\overline{t}}} = \underbrace{-2\nu \left[\frac{\partial u_i'}{\partial x_k} \frac{\partial u_j'}{\partial x_k} + \overline{\frac{\partial u_k'}{\partial x_i} \frac{\partial u_k'}{\partial x_j}} \right] \frac{\partial \overline{u}_i}{\partial x_j} - 2\nu \overline{u_k'} \frac{\partial u_i'}{\partial x_j} \frac{\partial^2 \overline{u}_i}{\partial x_k \partial x_j}}_{\underline{Production de } \epsilon}$$

$$\underbrace{-2\nu \overline{\frac{\partial u_i'}{\partial x_k} \frac{\partial u_i'}{\partial x_m} \frac{\partial u_k'}{\partial x_m} - 2\nu^2 \overline{\frac{\partial^2 u_i'}{\partial x_k \partial x_m} \frac{\partial^2 u_i'}{\partial x_k \partial x_m}}_{\text{Dissipation de } \epsilon} + \underbrace{\frac{\partial}{\partial x_j} \left[\nu \frac{\partial \epsilon}{\partial x_j} - \nu \overline{u_j'} \frac{\partial u_i'}{\partial x_m} \frac{\partial u_i'}{\partial x_m} - 2 \frac{\nu}{\rho} \overline{\frac{\partial p'}{\partial x_m} \frac{\partial u_k'}{\partial x_m}} \right]}_{\text{Dissipation de } \epsilon}$$

Diffusion molculaire, turbulente, de pression de ϵ

- Remarques:
 - Beaucoup plus complexe que l'équation exacte de $k \rightarrow$ de nombreux nouveaux termes non fermés
 - Sa modélisation repose sur des <u>simplifications drastiques</u> et l'introduction de plusieurs <u>coefficients de fermeture</u>

Modèle k- ϵ "standard" (Jones-Launder, 1972 ; Launder-Sharma, 1974)

Viscosité tourbillonnaire

$$\mu_t = \rho \nu_t = \rho \ C_\mu \frac{k^2}{\epsilon}$$

Equation de transport pour k

$$\frac{\partial k}{\partial t} + \overline{u_j} \frac{\partial k}{\partial x_j} = \frac{1}{\rho} \tau_{ij}^R \frac{\partial \overline{u_i}}{\partial x_j} - \epsilon + \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\nu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j} \right]$$

Equation de transport pour le taux de dissipation

$$\frac{\partial \epsilon}{\partial t} + \overline{u}_j \frac{\partial \epsilon}{\partial x_j} = C_{\epsilon 1} \frac{\epsilon}{\rho k} \tau_{ij}^R \frac{\partial \overline{u}_i}{\partial x_j} - C_{\epsilon 2} \frac{\epsilon^2}{k} + \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\nu_t}{\sigma_{\epsilon}} \right) \frac{\partial \epsilon}{\partial x_j} \right]$$

• Constantes du modèle (Launder-Sharma) : calibrées à partir d'écoulements canoniques

$$C_{\epsilon 1} = 1.44$$
, $C_{\epsilon 2} = 1.92$, $C_{\mu} = 0.09$, $\sigma_k = 1.0$, $\sigma_{\epsilon} = 1.3$

Coefficients de fermeture

- Les coefficients sont calibrés afin de retrouver le comportement observé pour guelques écoulements canoniques
 - Turbulence homogène isotrope décroissante
 - o k- ϵ :

$$\frac{dk}{dt} = -\epsilon; \frac{d\epsilon}{dt} = -C_{\epsilon 2} \frac{\epsilon^2}{k}; \Rightarrow \frac{dk}{d\epsilon} = \frac{1}{C_{\epsilon 2}} \frac{k}{\epsilon} \Rightarrow \frac{dk}{k} = \frac{1}{C_{\epsilon 2}} \frac{d\epsilon}{\epsilon} \Rightarrow k \sim \epsilon^{\frac{1}{C_{\epsilon 2}}}; \frac{dk}{dt} \sim -k^{C_{\epsilon 2}} \Rightarrow k \sim t^{1/(1-C_{\epsilon 2})} \sim t^{-n} \Rightarrow n = \frac{1}{C_{\epsilon 2}-1}$$

n=exposant de décroissance de la turbulence homogène isotrope

• Ecoulements librement cisaillés : équilibre production/dissipation + hypothèse de Bradshaw

o k-
$$\epsilon$$
: $C_{\mu} = \left(\frac{\tau_{12}}{k}\right)^2 \approx 0.09$; $\frac{Prod \ de \ k}{\epsilon} = \frac{C_{\epsilon 2} - 1}{C_{\epsilon 1} - 1}$

• Canal plan ou une couche limite turbulente : profil de vitesse logarithmique

$$\circ \ k-\epsilon : \kappa^2 = \sigma_{\epsilon} C_{\mu}^{\frac{1}{2}} (C_{\epsilon 2} - C_{\epsilon 1})$$

- A retenir: les écoulements utilisés pour la calibration des coefficients sont au choix du développeur!
 - Il est difficile de développer un seul et même modèle capable de reproduire précisément de la turbulence homogène isotrope, des écoulements librement cisaillés, des couches limites, ...

Zoologie des modèles de turbulence

- Bien d'autres modèles sont disponibles!
 - Modèles algébriques
 - Longueur de mélange (Prandtl, 1925)
 - Viscosité tourbillonnaire
 - o Baldwin-Lomax, Cebeci-Smith, Michel...
 - Modèles à une équation de transport
 - Energie cinétique turbulente
 - Viscosité turbulente
 - Spalart-Allmaras, Baldwin-Barth
 - Modèles à deux équations de transport
 - k-ε, k-ω, k-l, k-τ, q-ω, ...
 - Modèles aux tensions de Reynolds
 - Equations de transport pour les 6 composantes du tenseur de Reynolds + une échelle de longueur
 - o Launder-Reece-Rodi, Wilcox-Rubesin,...

Simulation des grandes échelles

 Equations de NS filtrées : décomposition des grandeurs en une partie résolue (filtrée) et une partie de sous-maille (SGS)

 La vitesse filtrée dépend du temps : ce ne sont que les plus petites échelles qui sont filtrées et doivent être modélisées

Large Eddy Simulation

Définition des variables filtrées

$$u_i = \overline{u_i} + u_i'$$

$$\overline{u_i}(\vec{r},t) = \int \int \int G(\vec{r} - \vec{\xi}; \Delta) u_i(\vec{\xi},t) d^3 \vec{\xi}$$
 where ,
$$\int \int \int G(\vec{r} - \vec{\xi}; \Delta) d^3 \vec{\xi} = 1$$

- Plusieurs filtrages possibles. Un choix typique est le "box filter", qui consiste tout simplement à filtrer toutes les échelles plus petites des cellules du maillage
 - La valeur locale de la propriété filtrée correspond alors à sa moyenne sur une cellule

$$G(\vec{r} - \vec{\xi}; \Delta) = \begin{cases} 1/\Delta^3 &, |x_i - \xi_i| < \Delta x_i/2 \\ 0 &, \text{ otherwise} \end{cases}$$

Large Eddy Simulation

- La plupart des filtres commute avec les dérivées en espace
- De plus, ils respectent les propriétés :

• Linéarité :
$$\overline{u+v} = \overline{u} + \overline{v}$$

- Conservation d'une constante : Soit $a = cte \implies \overline{a} = a$
- Attention! En général $\overline{\overline{u}} \neq \overline{u}$

Filtrage des équations de Navier-Stokes

 Tout comme pour les équations moyennées, le filtrage des termes non linéaires donne lieu à des termes supplémentaires

$$\overline{u_{i}u_{j}} = \overline{u_{i}} \overline{u_{j}} + \underbrace{L_{ij}}_{\text{Leonard stresses}} + \underbrace{C_{ij}}_{\text{Cross stresses}} + \underbrace{R_{ij}}_{\text{Reynolds stresses}}$$

$$a\text{vec}$$

$$L_{ij} = \overline{u_{i}} \overline{u_{j}} - \overline{u_{i}} \overline{u_{j}} \qquad C_{ij} = \overline{u_{i}} \overline{u_{j}} - \overline{u_{i}} \overline{u_{j}} \qquad R_{ij} = \overline{u_{i}} \underline{u_{j}}_{j}$$

$$\overline{u_{i}} \neq \overline{u_{i}}$$

- Tenseur de Léonard → fluctuations des interactions entre échelles résolues → =0 pour RANS
- Tenseur des contraintes croisées → interactions directes entre les échelles résolues et celles non résolues →
 =0 pour RANS
- Tenseur de Reynolds de sous-maille → effet des échelles non résolues sur le champ résolu

Filtrage des équations de Navier-Stokes

- Les contraintes de Léonard (L_{ii}) sont de l'ordre de (δx)² et sont souvent négligées
- Les contraintes croisées (Cii) sont typiquement modelisées avec celles de Reynolds

$$\tau_{ij}^{SGS} = C_{ij} + R_{ij}$$

Le premier modèle de sous-maille (qui reste encore parmi les plus utilisés) est le modèle de Smagorinsky,
 qui utilise une modélisation de type "viscosité tourbillonnaire" pour le tenseur de sous-maille

$$au_{ij} = 2\mu_t S_{ij}$$
, where $S_{ij} = \frac{1}{2} \left(\frac{\partial \overline{u_i}}{\partial x_j} + \frac{\partial \overline{u_j}}{\partial x_i} \right)$

where

$$\mu_t = \rho(C_s \Delta)^2 \sqrt{S_{ij} S_{ij}}$$
, and $C_s \sim [0.10; 0.24]$

Filtrage des équations de Navier-Stokes

Modèle de Smagorinsky (1963)

$$\frac{\partial}{\partial t}(\rho \overline{u_i}) + \frac{\partial}{\partial x_j} \left[\rho \overline{u}_i \overline{u}_j\right] - \frac{\partial}{\partial x_j} \left[\mu \left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i}\right) - \tau_{ij}\right] + \frac{\partial P}{\partial x_i} = S_{\boldsymbol{v}} ,$$

$$\tau_{ij} = -\rho (Q_{ij} - \frac{1}{3} Q_{kk} \delta_{ij}) = 2\mu_t S_{ij}$$

$$P = \overline{p} + \frac{1}{3} Q_{kk} \delta_{ij}$$

$$Q_{ij} = R_{ij} + C_{ij}$$

$$\mu_t = \rho (C_s \Delta)^2 \sqrt{S_{ij} S_{ij}} , \text{ and } C_s \sim [0.10; 0.24]$$

LES d'écoulements avec parois

- Résolution des structures cohérentes fortement anisotropes dans la région de proche paroi
 ← → maillages extrêmement fins
 - → limitation sur le nombre de Reynolds
- "Lois de paroi" ou bien couplage avec modèles RANS à 0, une ou deux équations de transport dans la région de proche paroi

LES d'écoulements avec parois

- Les lois de parois ne fonctionnent que pour des écoulements « en équilibre »
- En cas d'écoulements décollés, transition, etc., recours à des modèles plus avancés
 - URANS dans la couche proche de la paroi, LES ailleurs (WMLES)

Spalart, Ann Rev 2009

Modèles hybrides RANS/LES

- Deux catégories
 - Approches "zonales"
 - o Equations différentes dans différentes zones du maillage
 - © Permet de mieux optimiser le temps de calcul
 - © Permet de mieux cibler les zones à traiter avec l'une ou l'autre approche
 - ☼ Traitement des interfaces délicat
 - ☼ Mal adapté aux géométries complexes et/ou solveurs non structurés
 - Approches globales
 - o On résout les memes équations partout
 - o Le modèle bascule de façon automatique de RANS à LES
 - © Généralité, robustesse
 - © Controle des zones d'interface plus difficile

Ecoulement autour d'une sphère à Re=10000

Costantinescu & Squire 2005

Décrochage massif

Approches expérimentales

Techniques expérimentales

- Visualisations (Schlieren, traceurs, ...) → approches qualitatives
- Approches quantitatives
 - Hot Wire Anemometry (HWA)
 - Laser Doppler Velocimetry or Anenometry (LDV, LDA)
 - Particule Image Velocimetry (PIV)

- Principe de fonctionnement :
 - Un écoulement d'air sur un solide chaud le réfroidit d'autant plus que sa vitesse est élevée
 - La résistance électrique d'un fil conduisant l'électricité varie en fonction de sa température
 - Une variation de la résistance d'un circuit pour une intensité de courant fixée produit une variation de tension

- usually wire made of platinum or tungsten, $d \simeq 2$ to 5 μ m, $2l \simeq 0.5$ to 1mm
- wire cooling by forced convection, King's law heat balance: Joule energy brought to the wire ~ heat loss by forced convection

$$Nu_d = f(Re_d, Pr) = a Pr^{1/5} + b Pr^{1/3} Re_d^{1/2}$$

with
$$\operatorname{Re}_d = \frac{U_n d}{v}$$
 $\operatorname{Nu}_d = \frac{R_w I_w^2}{2\pi l \lambda (T_w - T)}$

 Selon le nombre et l'orientation de fils chauds on mesure une ou plusieurs composantes de vitesse

single wire set normal to the mean flow \overline{U}_1

$$\begin{cases} U_{n_1} \simeq (\overline{U}_1 + u_1')\cos\bar{\phi}_1 - u_2'\sin\bar{\phi}_1 \\ U_{n_2} \simeq (\overline{U}_1 + u_1')\cos\bar{\phi}_2 + u_2'\sin\bar{\phi}_2 \end{cases}$$

La variation de potentiel est mesurée à l'aide d'un pont de Wheatstone

CTA principle

- Servo amplifier keeps the bridge in balance (by controlling the current)
- Temperature is kept constant
- •Bridge voltage (E) represents the heat transfer = direct measure of the fluid velocity

Thermal inertia of HW << High gain of the servo amplifier

> Very fast response

Avantages et inconvénients

- + High frequency response
 - > Study of boundary layers, turbulence of a flow field
- Intrusive, accurate but small spatial resolution

Vélocimétrie laser Doppler (LDA)

 Exploite l'effet Doppler : changement de fréquence d'un rayon diffracté par une particule en mouvement

Doppler effect for a fluid particle P moving at velocity u in a medium of refractive index n

$$\Delta f = f_s - f_0 = \frac{1}{\lambda} \boldsymbol{u} \cdot (\boldsymbol{e}_s - \boldsymbol{e}_i)$$

Vélocimétrie laser Doppler (LDA)

Avantages

- non intrusif
- sensible uniquement à la vitesse u'_i , $\overline{u'_i u'_j}$
- accès aux décollements, zones avec taux de turbulence élevés (réponse linéaire), recirculations

Inconvénients

- ensemencement de l'écoulement (optiquement transparent)
- détection (échantillonnage alétaoire)
- mesure de vitesses de particules,

$$f_{\text{max}} \le 10 \text{ kHz pour } \phi_{\text{particule}} \simeq \frac{1}{4} \mu \text{m}$$

- relativement coûteux

Principe : 2 images successives, $\Delta t \sim \mu s$, obtenues par un plan laser

$$u_1 \simeq \Delta x_1/\Delta t$$
 $u_2 \simeq \Delta x_2/\Delta t$

Avantages

- non intrusif
- sensible uniquement à la vitesse u_i' , $\overline{u_i'u_i'}$ et corrélations en deux points
- vue instantanée globale du champ de vitesse
- facile d'emploi

Inconvénients

- ensemencement de l'écoulement (optiquement transparent)
- fréquence d'acquisition faible, $f \le 100 \text{ Hz}$
- mesure ponctuelle de vitesses de particules (cf. LDV)
- relativement coûteux

Plusieurs types de PIV, plus ou moins sophistiqués

Exemples

Exemples

Circular cylinder flow (Scarano and Poelma, 2009)

Truncated cylinder obstacle (Hain et al, 2008)

Exemples

Scarano, 2012 46

Next time...

THE END

