LP problems

• A standard linear programming (LP) problem is:

$$\min_{z} cz$$
s.t. $Az \ge b$

$$z \ge 0$$
(1)

- -z is the vector of decision variables, the *solutions*.
- -c is called objective coefficients.
- Problem (1) is to determine an optimal value of z (searching for the best z), denoted as z^* , such that cz^* is the minimum.
- $-Az \ge b$ represent the *constraints* in a matrix form. Each row of $Az \ge b$ is a *constraint*.
- b is called the right-hand-side (rhs) vector.
- -A is the left-hand-side (lhs) matrix.
- -z can have upper bounds and lower bounds. Here the lower bounds are 0 and upper bounds are ∞ .
- Gurobi (a solver) solves Problem (1). Above list the inputs for Gurobi.
- (Note) Gurobi does not recommend dense matrix form shown above. Check the comments in the example dense_c.c. Gurobi does not store A in a dense matrix, but in a sparse matrix (CSR format) which ignores 0's.
- Task 1 Write a function: given any size of matrices A, b and c, implement mip1_c.c with x, y and z are continuous and non-negative (as in dense_c.c.).
- Task 2 Read data from a csv file and store as c array (matrix).

DEA problems

- $X = [x_r] = [x_1 \ x_2 \ \cdots \ x_n]$ where x_r is a $p \times 1$ vector.
- $Y = [y_r] = [y_1 \ y_2 \ \cdots \ y_n]$ where y_r is a $q \times 1$ vector.
- Data envelopment analysis (DEA) problem:

$$\min_{\theta,\lambda} \theta$$
s.t. $X\lambda \le x_r \theta$

$$Y\lambda \ge y_r$$

$$e\lambda = 1$$

$$\lambda \ge 0$$
(2)

where is a $\lambda = [\lambda_1 \ \lambda_2 \ \cdots \ \lambda_n]$ is a $1 \times n$ vector (or $n \times 1$ vector). x_r and y_r are the rth column of X and Y, respectively.

It is equivalent to:

$$\min_{\theta,\lambda} \theta$$
s.t. $-X\lambda \ge -x_r\theta$

$$Y\lambda \ge y_r$$

$$e\lambda = 1$$

$$\lambda \ge 0$$
(3)

It can be rearranged as:

$$\min_{\theta,\lambda} \theta$$
s.t. $x_r \theta - X\lambda \ge \mathbf{0}$

$$\mathbf{0}\theta + Y\lambda \ge y_r$$

$$0\theta + e\lambda = 1$$

$$\lambda \ge 0, \theta \ge 0$$
(4)

Solving Problem (4)

• I want to solve Problem (2) (equivalently, Problem (4)), which is an instance of Problem (1). Comparing Problems (1) and (4), we have

$$A = \begin{bmatrix} x_r & -X \\ \mathbf{0} & Y \end{bmatrix}$$
$$b = \begin{bmatrix} \mathbf{0} \\ y_r \end{bmatrix}$$

 x_r and y_r are the rth column of X and Y respectively. Thus here A is a $(p+q) \times (1+n)$ matrix, and b is a $(p+q) \times 1$ vector. **0** is a $p \times 1$ vector with zeros.

$$c = \begin{bmatrix} 1 & \mathbf{0} \end{bmatrix}$$

c is a $(1+n) \times 1$ (or $1 \times (1+n)$) vector.

$$z = \begin{bmatrix} \theta & \lambda \end{bmatrix}$$

z is a $(1+n) \times 1$ (or $1 \times (1+n)$) vector.

- X and Y are read from a csv file, in which row r represent column $[x_r, y_r]$. In the csv file, the first few columns associates with X, and follow by Y. For example, in file 5-2-25k_10.csv, the first two columns are X^T (transpose of X) and the last three column are Y^T .
- $0\theta + e\lambda = 1$ in (4) is an an equality constraint, or constraint with equality. It is that you replace \leq or \geq by =. Check the manual for how to set it up. It means that the coefficient matrix (vector) is a $1 \times (1+n)$ vector, [0,e], where $e = [1,1,1\cdots,1]$ is a $1 \times n$ vector with values 1.
- Task: We need to do the following.

Algorithm 1: Naive DEA

Input: X, Y

Output: optimal objective values

- 1 for $r = 1, \dots, n$ do
- **2** populates A, b, c defined above;
- $\theta_r^* \leftarrow \text{solve Problem } (4) ;$

// get optimal value

- 4 write θ_r^* 's to a csv.
 - Each iteration of Algorithm (1) computes an LP problem.
 - Please record the total computation time, but ignore the IO time.