SISTEMAS OPERACIONAIS II

Prof. Renato Jensen

• Carregamento dinâmico de memória

- A rotina não é carregada até ser chamada.
- Rotinas não utilizadas não são carregadas.
- Sem suporte especial do sistema operacional; responsabilidade do usuário projetar.

- As partições variáveis foram desenvolvidas para substituir as partições fixas.
- Os jobs são posicionados no lugar em que se encaixam.
- Inicialmente, nenhum espaço é desperdiçado.
- Pode ocorrer fragmentação externa quando algum processo for removido.

Designações de partições iniciais na programação por partição variável

"Lacunas" de memória em multiprogramação por partição variável

Multiprogramação por partição variável

Existem várias formas de combater a fragmentação externa:

Coalescência:

- Reúne blocos livres adjacentes em um único bloco grande.
- Em geral isso não é suficiente para obter uma quantidade significativa de memória.

• Compactação:

- Às vezes é chamada coleta de lixo (que não deve ser confundida com a coleta de lixo nas linguagens orientadas a objeto).
- Reorganização da memória em um único bloco contíguo de espaço livre e em um único bloco contíguo de espaço ocupado.
- Possibilita que todos espaços livres fiquem disponíveis.
- A sobrecarga é significativa.

Coalescência de "lacunas" de memória em multiprogramação por partição variável

Compactação de memória em multiprogramação por partição variável

- Estratégias de posicionamento de memória em partição variável:
 - Estratégia First-Fit o primeiro que couber:
 - O processo é posicionado na primeira lacuna de tamanho suficiente encontrada.
 - Sobrecarga baixa e elementar em tempo de execução.

Estratégia First-Fit – o primeiro que couber

- Estratégias de posicionamento de memória em partição variável:
 - Estratégia Best-Fit o que melhor couber:
 - O processo é posicionado na lacuna que deixar o menor espaço não utilizado ao seu redor.
 - Maior sobrecarga em tempo de execução.

Estratégia Best-Fit – o que melhor couber

- Estratégias de posicionamento de memória em partição variável:
 - Estratégia Worst-Fit o que pior couber:
 - O processo é posicionado na lacuna que deixar o maior espaço não utilizado ao seu redor.
 - Nesses casos, é deixada uma outra grande lacuna, o que permite que outro processo caiba nessa lacuna.

Estratégia Worst-Fit – o que pior couber