Fiddler on the Proof - Sorting Hat

Alex Zhu

November 12, 2024

This is a solution to a Fiddler on the Proof puzzle.

To make things easier to follow, let us suppose that Logwarts' four houses are:

- Graphindor (hence referred to as \mathcal{G})
- Riemannclaw (hence referred to as \mathcal{R})
- Hexapuff (hence referred to as \mathcal{H})
- Scalerin (hence referred to as S)

Suppose that for some arbitrary round S, the probability of a student being sorted into \mathcal{G} is P_s .

Now let us work through round S+1.

If the student S was placed into \mathcal{G} , then, by the rules, student S+1 cannot be a \mathcal{G} . So we can disregard this case. On the other hand, suppose student S was placed into one of the other housees - let's denote that as \mathcal{X} , which may be any of \mathcal{R} , \mathcal{H} , \mathcal{S} .

- This student has a $^{1}/_{4}$ chance of choosing \mathcal{G} , which is allowed.
- However, this student also has a $^{1}/_{4}$ chance of choosing \mathcal{X} again, which is not allowed. So that's s a $^{1}/_{3}$ chance of the hat placing them in \mathcal{G} against their will, for a total of $^{1}/_{4}*^{1}/_{3}=^{1}/_{12}$ chance of \mathcal{G} given that the previous student S was not placed into \mathcal{G} .
- The remaining $^{1}/_{2}$ chance is that the student picks one of the other two non- \mathcal{G} and non- \mathcal{X} . This is allowed and doesn't contribute to the odds of student S+1 ending up in \mathcal{G} .

So, if student S is placed into \mathcal{X} , the chances of student S+1 being placed into \mathcal{G} are $\frac{1}{4}+\frac{1}{12}=\frac{1}{3}$.

We know the odds of student S being placed into \mathcal{X} to be $1 - P_s$, and we can disregard the P_s case as impossible for student S + 1 to be a \mathcal{G} , so that means that:

$$P_{s+1} = \frac{1}{3}(1 - P_s)$$

Let's fruther define B_s as the chances that our protagonist Barry Plotter gets his choice, given that he is S_{th} in line. Since Barry chooses \mathcal{G} , he will get his wish as long as student S-1 doesn't pick \mathcal{G} . So:

$$B_s = 1 - P_{s-1}$$

We can plug this into Excel (okay, Google Sheets) to get our results:

Round	P_s	B_s
1	1.0000	n/a (Barry can't be first)
2	0.0000	0.0000
3	0.3333	1.0000
4	0.2222	0.6667
5	0.2593	0.7778
6	0.2469	0.7407
7	0.2510	0.7531
8	0.2497	0.7490
9	0.2501	0.7503
10	0.2500	0.7499

So our solution is $B_{10} = 74.9886\%$.

Extra Credit

Define W_m as the odds that Barry gets into \mathcal{G} given that he wakes up at student M getting sorted and E_n as Barry's overall chances to get into \mathcal{G} given he is N^{th} in line.

If Barry wakes up when student M is being sorted, the problem is identical to the original prompt, except now we're starting from student M instead of student 1. So it follows that:

$$W_m = B_{n-m}$$

By the prompt, M is [1..N-1]. So W_m ranges from B_{n-1} to $B_{n-(n-1)}=B_1$.

Every value in M has an equal chance to be chosen, so E_n is simply the average of every value $(B_1..B_{n-1})$. Plug this back into Google Sheets and the table starts:

Round	P_s	B_s	E_n
1	1.0000	n/a	n/a
2	0.0000	0.0000	0.0000
3	0.3333	1.0000	0.5000
4	0.2222	0.6667	0.5556
5	0.2593	0.7778	0.6111
6	0.2469	0.7407	0.6370
7	0.2510	0.7531	0.6564
8	0.2497	0.7490	0.6696
9	0.2501	0.7503	0.6797
10	0.2500	0.7499	0.6875

We continue a while until finally $E_n > p$ at N = 4922.