Estructura de Computadores

Transparencias en Formato PDF

- Transparencias PDF [./PDF/eecc/eecc_slides.pdf]
- Si hay algún error de forma en el documento PDF que dificulte su interpretación, por favor, enviar un mensaje para su correción. Gracias.

Indice

Tema 1: Introducción a la asignatura Estructura de Computadores .

Tema 2: Representación Digital de la Información.

Tema 1 : Introducción a los Sistemas Digitales Electrónicos

- Profesorado
- · Organización Académica
 - Programa
 - Prácticas
 - Ejercicios
 - Evaluación
 - · Metodología

Profesorado

- Profesor Responsable Cándido Aramburu Mayoz.
 - Doctor Ingeniero Telecomunicación (UPNA-Universidad Politécnica de Madrid)
 - · Empresa Ikusi S.A. (Sistemas de Telemedida 1989)
 - · Profesor Titular UPNA (Dpto Ingeniería Electrónica y Comunicaciones 2000)
- Profesor Teoría: Carlos Juan de Dios
- · Profesor Prácticas: Andrés Garde
- https://www.etsit.upm.es/
- https://www.velatia.com/es/empresas-que-forman-velatia/ikusi/
- https://www.unavarra.es/eu/sites/Portada/home.html

Organización Académica

Aulas y Horarios

- Aulas
 - Teoría: G91 → A019, G1 →A113, G2→A122

- Prácticas: P91→A015, P1→A305, P2→E-ISM, P3→E-ISM
- E-ISM : Edificio "Las Encinas" , lado derecho entre la Biblioteca y el Rectorado) en el Sótano, Laboratorio de Informática "ISM"
- Horario
 - Teoría: G91(L-15:00), G1(X-17:00), G2(L-17:00)
 - Prácticas: P91(X-19:00), P1(J-17:00), P2(M-19:00), P3(M-17:00)

Tutorías

- Despacho: Edificio Los Tejos 2 Planta: Despacho 2028 (Prof. Candido Aramburu)
- Miaulario \rightarrow correo interno
- Tutorías [https://www.unavarra.es/pdi?uid=364&dato=tutorias]
 - · Lunes (10-13) y Miércoles (10-13)

Programa de la Asignatura

- Ficha Web Upna [https://www.unavarra.es/ficha-asignaturaDOA?languageId=100000&codPlan=240&codAsig=240306&anio=2023]
 - Programa en 3 partes
 - i. Circuitos Combinacionales
 - ii. Circuitos Secuenciales
 - iii. Otros: Números, Lógica Programable (VHDL), Teoría Tecnología

Bibliografía

- Fundamentos de Electrónica Digital. Cecilio Blanco
- · Circuitos Electrónicos Digitales. Manuel Mazo
- Fundamentos de Sistemas digitales. Thomas Floyd

Metodología

- Trabajo en clase: principalmente Ejercicios con su teoría asociada
- · Trabajo en casa
 - · Teoría desarrollada en los apuntes PDF en mi aulario
 - Prácticas
 - En casa: Ejercicios de diseño manual
 - En casa: Utilización de Quartus y Memorias
- Tutorías
 - Resolución de dudas

Prácticas

- Tipo de prácticas:
 - Diseño manual

- · Simulación con la herramienta software Quartus de Intel.
- Captura gráfica de Esquemas Electrónicos
- · Descripción del Circuito mediante el Lenguaje VHDL. Fabricación del Circuito en tecnología FPGA

Ejercicios

Tipo de problemas: Libro Verde → Ejercicios tipo examen → Sin calculadora y sin libros

El libro verde se adquiere en el edificio de rectorado, en la sección de comunicacion, que se encuentra en planta baja del edificio. El horario: 8 a 14:30. Precio 8.5\$.

```
* Capítulo 1: 1.1, 1.2, 1.4, 1.5, 1.6, 1.8, 1.9

* Capítulo 2: 2.1

* Capítulo 3: 3.2 3.3 -> 2º parcial

* Capítulo 4: 4.2, 4.4, 4.6

* Capítulo 5: 5.2, 5.3, 5.4

* Capítulo 6: 6.1, 6.2 -> 2º parcial

* Capítulo 7: 7.2, 7.3 y 7.4 -> 2º parcial

* Capítulo 8: 8.1, 8.3 y 8.5 -> 2º parcial
```

- · Los ejercicios del tema 2 (Representación de la Información) no están en el libro verde
 - Miaulario → Recursos → Ejercicios

Evaluación

- · Sistema de Evaluación:
 - 75% teoría y 25% prácticas
 - Evaluación continua Teoría: dos parciales (30% 1º parcial y 45% 2º parcial). Nota mínima en el 2º parcial: 4. El Primer parcial se realizará el sábado 1 de Abril a las 9:00, el segundo parcial el 24 de Mayo a las 8:00 y la recuperación el 12 de Junio a las 8:00
 - · Recuperación Teoría: Entra todo. Nota mínima: 5.
 - Evaluación Prácticas: Un único exámen el sábado XX de Mayo, no recuperable.

Tema 3 : Representación Digital de la Información

Indice

- Información: números, caracteres, imagen, sonido, etc ...
- Números
 - · Sistemas posicionales: base 10 (decimales), base 2 (binaria)
 - Naturales: bases 10,2,8,16. Conversión entre bases
 - Enteros: Signo Magnitud, Complemento a la base-1, Complemento a la base

- · Operaciones aritméticas: Suma, Resta
- · Reales: coma fija y coma flotante
- Caracteres
 - · Alfanuméricos y Signos de Puntuación
 - · ASCII standard y extendido
 - · Unicode: UTF-8

Representación Científica y Prefijos de las Unidades

Table 1. Prefijos

Prefijos	Tera	Giga	Mega	Kilo	mili	micro	nano	pico
Base 10 \rightarrow magnitudes:m,gr,Hz,	10 ¹²	10 ⁹	10 ⁶	10³	10 ⁻³	10 ⁻⁶	10 ⁻⁹	10 ⁻¹²
Base $2 \rightarrow$ magnitudes: Byte	2 ¹²	2 ⁹	2 ⁶	2 ³	2 ⁻³	2 ⁻⁶	2-9	2 ⁻¹²

- Ejemplo: representar la magnitud=100000000Hz debidamente
 - \circ Notación científica $\rightarrow 10^9 Hz$
 - ∘ Debidamente: Notación científica con prefijos $f=1GHz \rightarrow T=1/f=10^{-9}seg=1ns$

Señales: Conversión Analógica Digital

Analogica vs Digital

- Señal Continua
 - · Amplitud: ∞ valores posibles en el rango
 - Tiempo: ∞ valores posibles en el rango
- Señal Discreta ó Digital
 - · Amplitud: finitos valores posibles en el rango
 - · Tiempo: finitos valores posibles en el rango

Señales: Muestreo y Cuantificación

Codificación

Calcular para las resoluciones de 3 bit y 16 bits cual es el mínimo incremento de señal codificable o error de cuantificación: con 3 bits el número de niveles es 2³=8niveles y el mínimo relativo es 2³=1/8; con 16 bits el número de niveles es 2¹6 y el mínimo relativo es 2¹6= 1/65536.

Representación de los números en código binario: Tema 3: Representación Digital de la Información

Señales Binarias: Abstractas

Eje ordenada: valores abstractos (0/1, High/Low, ON/OFF, etc ...). Cronograma: Representación temporal de las señales digitales binarias. Esa representación típica de los libros de texto, pizarra de clase, etc ... es ideal ya que físicamente siempre habrá distorsión.

Señales Binarias: Físicas

Eje ordenada: magnitudes físicas (mV ó mA).

La señal física está distorsionada por causas como pej: línea larga de transmisión (efectos capacitivos e inductivos).

Un ejemplo típico de distorsión son los tiempos de subida y bajada, que no son nulos sino del orden de unos nanosegundos.

La distancia considerable entre los dos niveles (binario) a la entrada del receptor hace fácil la discriminación entre el '0' y el '1'.

Digitalización de las Señales

Ventajas

- Calidad: Fácil de recuperar a pesar de la distorsión
- · Almacenamiento: Fiabilidad, Diversidad Formatos
- · Compatibilidad: Diversidad de Equipos (PC, móvil, coche, etc
- · Procesamiento: Sencillo, Flexible
- Coste: Barato (componentes)

Abstracción

· Niveles: el 0 y el 1

· Lógica binaria

· Matemáticas: Algebra de Boole

Representación de los Números

Representación de los Números Decimales

Decimal

10 dígitos: 0,1,2,3,4,5,6,7,8,9

• Pesos con base 10 : 10ⁿ donde n es la posición del dígito dentro del número

• Ejemplo: número 5421

Table 2. Número 5451

Representación:	los símbolos 5421			
Posiciones:	3	2	1	0
Pesos:	$\begin{array}{c} 10^3 \rightarrow \\ 1000 \end{array}$	$10^2 \rightarrow 100$	10 ¹ →10	100→1
Dígitos:	5	4	5	1
Valores : ponderación	5*1000 =cinco mil		5*10=ci ncuenta	1*1=un o
Valor:	5*1000+4*100+5*10+1= cinco mil cuatrocientos cincuenta y uno			

Representación de los Valores Enteros en Código Binario

- ¿Número?¿Valor?¿Código?¿Representación?
 - · 2 dígitos: 0,1
 - Pesos con base 2 : 2ⁿ donde n es la posición del dígito dentro del número:-1024-512-256-128-64-32-16-8-4-2-1...
- Ejemplo: número 0b1011

Table 3. Número 0b1011

Representación:	los símbolos 1011			
Posiciones:	3	2	1	0
Pesos:	$2^3 \rightarrow 8$	$2^2 \rightarrow 4$	$2^1 \rightarrow 2$	2 ⁰ →1
Dígitos:	1	0	1	1
Valores : ponderación	1*8=oc ho	0*4=cer o	1*2=do s	1*1=un 0
Valor:	ocho+cero+dos+uno= once			

Representación de los Valores Enteros en Código Binario

- ¿Cómo se representa en binario el valor 123.125? b1111011.001
- ¿Cómo se calcula el valor del número binario b1111011.001?
- Parte Entera: divisiones sucesivas por la base 2
- Parte Fracción: multiplicaciones sucesivas por la base 2

Representación de los Valores Enteros en Código Octal

• Dígitos: 0,1,2,3,4,5,6,7

- · Posiciones y Pesos
- ¿Cómo se representa en octal el valor 123.125? 0o173.1
- ¿Cómo se calcula el valor del número octal 0o173.1?
- Parte Entera: divisiones sucesivas por la base 8
- Parte Fracción: multiplicaciones sucesivas por la base 8

Representación de los Números en Hexadecimal

- Dígitos: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F el valor de A es 10, $B \rightarrow 11$, $C \rightarrow 12$, $D \rightarrow 13$, E-14, $F \rightarrow 15$
- · Posiciones y Pesos
- ¿Cómo se representa en hexadecimal el valor 123.125? 0x7B.2
- ¿Cómo se calcula el valor del número octal 0x7B.2?
- Parte Entera: divisiones sucesivas por la base 16
- · Parte Fracción: multiplicaciones sucesivas por la base 16

Calculadora de Python

Python Interpreter Shell [https://www.programiz.com/python-programming/online-compiler/]

```
bin(123)
oct(123)
hex(123)
int(0b1111011)
int(0o173)
int(0x7B)
```

Conversiones entre el sistema binario y sistemas con base potencia de 2

- · Conversión Binaria-Hexadecimal
 - base 16=24
 - · grupos de 4 bits empezando por la dcha
 - \circ b1111011 \to 111 1011 \to 0x7B
- · Conversión Hexadecimal-Binaria
 - grupos de 4 bits
- · Conversión Binaria-Octal
 - base 8=23
 - · grupos de 3 bits empezando por la dcha
 - \circ b1111011 \rightarrow 1 111 011 \rightarrow 00173
- · Conversión Octal-Binaria
 - · grupos de 3 bits

Suma binaria

• Suma 10011011+00011011 = 10110110

```
Llevadas --> 1 1 1 1

1 0 0 1 1 0 1 1 <--sumando
+ 0 0 0 1 1 0 1 1 <--sumando

Valor suma 1 3 2 1 3 2

**********************

Resultado --> 1 0 1 1 0 1 1 0 <--suma
```

Cuando la suma en una posición específica tiene un valor es mayor o igual a la base hay que restar n
veces la base y el valor n será la llevada a sumar en la posición siguiente.

Resta binaria

• Resta 10110110 - 10011011 = 00011011

• Cuando en una posición específica el minuendo es menor que el sustraendo se suma la base al minuendo antes de realizar la resta y se suma la llevada al sustraendo de la posición siguiente.

Aritmética Modular: la rueda

Operaciones aritméticas: Octal y Hexadecimal

- Base Octal
 - · 0o675+0o304 = 0o1201
 - · 0o632-0o374 = 0o236
- · Base hexadecimal
 - \circ 0xD1B+0xAFF = 0x181A
 - \circ 0xE53-0xBAA = 0x2A9

Representación de Números con Valores Enteros

- · Signo-Magnitud
- · Complemento a la base menos 1
- · Complemento a la base

Representación en Signo-Magnitud

- Signo → un dígito
- Base 10:
 - valores positivos: el signo el dígito 0 en la posición MSD (More Significant Digit) y resto de dígitos representa el módulo

- valores negativos: el signo el dígito 9 (base-1) en la posición MSD (More Significant Dit) y resto de dígitos representa el módulo
- ∘ Ejemplo +123 \rightarrow 0123 y -123 \rightarrow 9123

Representación en Signo-Magnitud

- Signo → un bit (Binary digIT)
- Base 2:
 - valores positivos: el signo el bit 0 en la posición MSB (More Significant Bit) y resto de bits representa el mód
 - valores negativos: el signo el bit 1 (base-1) en la posición MSB (More Significant Bit) y resto de bits representa el módulo
 - \circ Ejemplo +123 \rightarrow 0b01111011 y -123 \rightarrow 0b11111011
 - Dibujar la tabla y la rueda con todos los valores con sus representaciones.
 - ¿Cuantas representaciones son posibles?¿Es simétrico el rango de valores representado?¿Cuantas representaciones tiene el cero?
 - Extender el número de bits del número sin cambiar su valor

Representación en complemento a la base menos 1. C9

- Base 10: Complemento a 9 → C9
- Signo → un dígito
- Valores positivos: igual que los valores positivos en código Signo-Magnitud
- Valores negativos: Hay que restar el código del valor en positivo del minuendo 99999999 (base-1)
 - ∘ Ejemplo +123 \rightarrow 0123 y -123 \rightarrow 9999-0123 = 9876
- El C9 de un número positivo es el código de su valor en negativo
- El C9 de un número negativo es el código de su valor en positivo

Representación en complemento a la base menos 1. C1

- Base 2 : base-1=1 → Complemento a 1 → C1
- Signo → un dígito
- · Valores positivos: igual que los valores positivos en código Signo-Magnitud
- Valores negativos: Hay que restar el código del valor en positivo del minuendo 11111111 (base-1)
 - \circ Ejemplo '+123' \to 0b01111011 y -123 \to 11111111-01111011 = 10000100
 - El código del valor negativo se puede calcular invirtiendo los bits del código del valor positivo
- El C1 de un número positivo es el código C1 de su valor en negativo y del de un número negativo es el código C1 de su valor en positivo
 - Dibujar la tabla y la rueda con todos los valores con sus representaciones.
 - ¿Cuantas representaciones son posibles?¿Es simétrico el rango de valores representado?¿Cuantas representaciones tiene el cero?
 - · Extender el número de bits del número sin cambiar su valor

Representación en complemento a la base 10 : C10

- Signo → un dígito
- Base 10: Complemento a $10 \rightarrow C10$
- · Valores positivos: igual que los valores positivos en código Signo-Magnitud
- Valores negativos: Hay que restar el código del valor en positivo del minuendo 0000000 (base)
 - \circ Ejemplo '+123' \rightarrow 0123 y -123 \rightarrow 0000-0123 = 9877
- El C10 de un número positivo es el código de su valor en negativo
- El C10 de un número negativo es el código de su valor en positivo

Representación en complemento a la base 2 : C2

- Signo → un dígito
- Base 2: Complemento a 2 → C2
- · Valores positivos: igual que los valores positivos en código Signo-Magnitud
- Valores negativos: Hay que restar el código del valor en positivo del minuendo 0000000 (base)
 - \circ Ejemplo **+123** \to 0b01111011 y **-123** \to 00000000-01111011 = 0b100000101
 - El código del valor negativo se puede calcular invirtiendo los bits del código del valor positivo y después sumarle 1
 - Equivale a calcular el C1 y sumarle 1
 - El código del valor negativo se puede calcular a partir del código del valor positivo
 - empezando por la dcha repetir los bits hasta el primer uno e invertir el resto de bits

Representación en complemento a la base 2 : C2

- El C2 de un número positivo es el código C2 de su valor en negativo
- El C2 de un número negativo es el código C2 de su valor en positivo
 - Dibujar la tabla y la rueda con todos los valores con sus representaciones.
 - ¿Cuantas representaciones son posibles?¿Es simétrico el rango de valores representado?¿Cuantas representaciones tiene el cero?
 - Extender el número de bits del número sin cambiar su valor → Extensión del bit de SIGNO

Extensión del signo en C2

Table 4. Razonamiento de la extensión de signo de un número negativo: números de 3 bits

Valor	C2 sin extensión	C2 con extensión
+33	0100001	00100001
-33	0000000 -0100001	00000000 -00100001
	1011111	11011111

Se observa que en el C2 con extensión, al hacer al resta y extender con un 0 más el minuendo y el substraendo, provoca la extensión con un bit más en la resta de valor 1 en el digito más significante. Según

añado ceros al minuendo y sustraendo, aparecen unos en la resta sin alterar su valor.

Operaciones aritméticas en C2

- Suma
 - · Se realiza como se ha visto para números naturales.
 - · Si hay llevada en el MSBit, no se tiene en cuenta, se elimina.
 - A=0b11011011. Suma A+A

- Resta
 - ∘ La resta de números con signo se puede realizar de dos formas: A-B ó A-B = A+(-B)
 - A = 0b00110110 y B = 0b10011011
 - · Si hay llevada en el MSBit, no se tiene en cuenta, se elimina.

Operaciones ariméticas C2: Overflow o Desbordamiento

- A = 0b00110110 y B = 0b10011011 \rightarrow Calcular A-B
- Con 8 bits el máximo valor es 011111111 de valor 2⁷-1=128-1=127
- La resta A-(B)=A+(-B)=54+103=157>127 \rightarrow Overflow o Desbordamiento

```
Crédito 2 2 2 2 2 2 2 0 0 1 1 0 1 1 0<--(Valor = 54)
- 1 0 0 1 1 0 1 1<--(Valor = -103)

LLevada 1 1 1 1
```

- El valor -101 en lugar de la resta correcta +157 es debido a que el resultado esta fuera de rango →
- Observarmos que hemos hecho la SUMA de dos números POSITIVOS y el resultado ha sido NEGATIVO

Operaciones ariméticas C2: Overflow

Al realizar la suma de dos valores con el mismo signo si el resultado es de signo contrario hay overflow

Operaciones aritméticas C2: Overflow

- Overflow: la operación requiere operandos con mayor número de bits manteniendo el valor para que el resultado sea correcto.
- · Si dos operandos a sumar tienen diferente signo nunca hay overflow
- Si dos operandos a sumar tienen el mismo signo y resultado tiene signo contrario : **Error** de Overflow.
- · Ejemplo:
 - Operandos de 1 byte : 011111111+011111111=111111110 → sumandos positivos y resultado negativo
 - Solución: Extensión del signo : Operandos 9 bits → 0011111111+0011111111=0111111110
 - · la repetición del bit más significativo no altera el valor de la representación
 - el bit más significativo es 0 si es positivo y 1 si es negativo. Por lo tanto, 01010 equivale a 01010 ó 001010 ó 0....0001010. Por lo tanto, 1010 equivale a 11010 ó 111010 ó 1....1111010

C2: Representación gráfica del Overflow

Si a partir de la posición 010 nos movemos dos posiciones en sentido horario llegamos a la posición 100. Si a 010 le sumamos el valor 2 nos da como resultado 100 Por lo tanto 010+010=100, es decir, $2+2=-4 \rightarrow \textbf{overflow}$ ya que el +4 necesita 4 bits y estamos trabajando con 3 bits únicamente.

Asimetría del rango en C2: -4 con 3 bits

- Con números de 3 bits los formatos S-M y C1 son simétricos con valores en el rango (+3,-3), en cambio el formato C2 tiene el rango (+3,-4)
- En C2 el valor +4 se representa como 0b0100 y necesita por lo tanto 4 bits, no se puede representar con 3 bits, y el valor -4 se reprenta con el C2(0100), es decir, 1100 también con 4 bits. El 1100 se puede comprimir ya que tiene el signo extendido con la repetición de 1 de bit más significativo, por lo que la representación 100 es la representación del -4

Complemento a 2 : Ejemplos

- 0b101010101 está en C2 → ¿Cual es su valor?
 - como es negativo no es un sistema posicional
 - · tenemos que calcular el valor negativo a través del valor positivo
 - · La representación del valor positivo es el C2 del valor negativo
 - C2(0b101010101) = 0b010101011 cuyo valor es $2^7 + 2^5 + 2^3 + 2^1 + 2^0 = 128 + 32 + 8 + 2 + 1 = +171$
 - El valor de 0b101010101 es -171
- Si la representación de -123 es 0b100000101 ¿cual es la de '+123' ?
 - · C2(0b100000101)=0b011111011 representa el valor '+123'

Aritmética Modular de valores representados en Complemento a 2

Representación de números binarios de 3 bits en C2 Operaciones de suma y resta modular \rightarrow método gráfico A partir de la posición 001 si nos movemos en sentido horario (SUMA modular) 2 posiciones obtenemos la posición 011, es decir, 1+2=3 A partir de la posición 110 si nos movemos en sentido horario (SUMA modular) 9 posiciones obtenemos la posición 111, es decir, -2+9=-1 A partir de la posición 110 si nos movemos en sentido antihorario (RESTA modular) 4 posiciones obtenemos la posición 010, es decir, -2-4=+2 Los errores de overflow se resuelven aumentando el número de bits de la

representación, pero siempre existira un rango que si lo traspasamos dará overflow.

Comparación S-M, C1 y C2

Table 5. Números de 3 bits

Valor	S-M	C1	C2
+3	011	011	011
+2	010	010	010
+1	001	001	001
0	000	000	000
	100	011	
-1	101	110	111
-2	110	101	110
-3	111	100	101
-4	-	-	100

Número en complemento a 2 y base hexadecimal

Un número binario se puede representar en hexadecimal y hacer la interpretación en complento a 2. Hay que tener cuidado con las extensiones del signo

- Calcular el valor del número 0xAAA si dicho número tiene formato en complemento a 2
 - · si lo convertimos a binario el número empieza por 1, luego es negativo
 - para saber su valor calculo su complementario C2 y tendré la representación del positivo
 - $0x000-0xAAA = 0x556 \rightarrow 5*16^2 + 5*16^1 + 5*16^0 = 5*256 + 5*16 + 5 = 1280 + 80 + 5 = '+213' \rightarrow 0xAAA$ tiene de valor -213

Número en complemento a 2 y base hexadecimal

- Realizar la suma de los números en formato complemento a 2: 0x80+0x80
 - sumar sin extender el signo de los operandos ¿Hay overflow?

Extender el número 0x80. ¿ Por qué hay que tener cuidado ?

• sumar extendiendo un dígito el signo de los operandos 0x80

Extensión del signo en C2: problema de la BASE

Table 6. Extensión del Signo del Nº 0x80 en C2 en binario, hexadecimal y octal

NºBits	Binario	Hexadecimal	Octal
8	10000000	1000_0000 → 0x80	110_000_000 → 0o600
9	110000000	1111_1000_0000 → 0xF80	110_000_000 → 0o600
10	1110000000	1111_1000_0000 → 0xF80	111_110_000_000 → 007600
11	11110000000	1111_1000_0000 → 0xF80	111_110_000_000 → 0x7600
12	111110000000	1111_1000_0000 → 0xF80	111_110_000_000 → 0x77600
13	1111110000000	1111_1111_1000_0000 → 0xFF80	111_111_110_000_000 → 0x77600

Suma y Resta aritmética en C1

- -Ejemplos con datos de 4 bits \rightarrow Rango (-7,+7).
- -¿Qué ocurre si **sumamos** dos números sin que haya overflow?.
- Primer caso: dos operandos positivos 0011+0011=0110 → correcto.
- Segundo caso: dos operandos negativos donde todas ellas tienen acarreo en el MSB
- --- 1111+1111=1110 \rightarrow 0+0=-1; 1100+1100=1000 \rightarrow -3-3=-7.; 1100+1011=0111 \rightarrow -3-3=+7.
- --- el valor del resultado siempre da una **unidad menor** y siempre hay acarreo en el MSB.
- --- Solución: la suma en C1 es la suma de los sumandos más el acarreo MSB.
- --- 1111+1111=1110+1 \rightarrow 0; 1100+1100=1000+1 \rightarrow -6; 1100+1011=0111+1=1000 \rightarrow -7.
- -¿Qué ocurre si restamos dos números?.
- --- El resultado es correcto si no hay acarreo MSB.

- --- Si hay acarreo la resta da una **unidad mayor**, por lo tanto el resultado es la resta **menos uno**.
- --- El resultado es la resta menos el acarreo MSB.
- -Caso de overflow: el resultado es incorrecto por limitación del tamaño de los datos

Suma aritmética en C1

Figure 1. Razonamiento

Si nos fijamos en los números negativos su valor esta desplazado una unidad de la rueda hacia la izda: el valor cero está en la marca 1 de la rueda, el valor -1 está en la marca 2 de la rueda, etc. El valor representado por el segmento perimetral de la circunferencia tiene una unidad inferior: el valor -1 tiene un segmento de 2 marcas del 0 hacia la izda.

El segmento o distancia del cero (1111) es UNO, el del -1 es DOS, el del -2 es TRES.....

Suma aritmética en C1

Figure 2. Ejemplos a completar para A=2 y B=5

Suma y Resta aritmética en C1

- Ei_1: suma: no hay conflicto \rightarrow 2+5=7 \rightarrow 0010+0101=0111
- Ej_2: suma: sí hay conflicto : el segmento B por ser negativo tiene un segmento superior en una unidad, por lo que a la suma hay que **sumarle 1** \rightarrow -2+(-5)=-7 \rightarrow 1101+1010=0111 y acarreo_MSB \rightarrow 0111+1=1000 \rightarrow -7
- Ej_3: suma
 - $^{\circ}$ si la flecha B cruza el cero (1111), el segmento B, por ser negativa tiene un segmento mayor en 1, compensa el desplazamiento entre ceros y la suma es correcta. \rightarrow 2+(-5)=-3 \rightarrow 0010+1010=1100 \rightarrow -3
 - si la flecha B no cruza el cero (1111), a la suma hay que sumarle 1
- Ej_4: resta
 - si la flecha B cruza el cero (1111), B por ser positivo no compensa el desplazamiento entre ceros. A la resta hay que **restarle 1** \rightarrow 2-(+5)=-3 \rightarrow 0010-0101=1101 y acarreo_MSB \rightarrow 1101-1=1100 \rightarrow -3
- Ej_5: resta: no cruza el cero (1111), B por ser negativo tiene un segmento mayor en 1. A la resta hay que restarle 1 → 2-(-5)=+7 → 0010-1010=1000 y acarreo_MSB → 1000-1=0111 →+7