	Utech
Name:	
Roll No.:	A Annual O'S among and Explana
Inviailator's Sianature :	

CS/B.TECH (ECE) (Separate Supple)/SEM-7/EC-701/2011

2011 RF & MICROWAVE ENGINEERING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

1. Choose the correct alternatives for the following:

 $10 \times 1 = 10$

- i) A rectangular cavity resonator having a = width, b = height and d = length for a > b < d, the dominant mode is
 - a) TE_{101}

b) TM_{101}

c) TE_{110}

- d) TM_{110}
- ii) The transmission loss for a 3 GHz. Microwave system for a certain distance is 130 dB. If the frequency is doubled then the transmission loss will be
 - a) 136 dB
- b) 133 dB
- c) 127 dB
- d) 139 dB.
- iii) Any two port network having a 6 dB loss will give an output power which is of input power
 - a) 0.25

b) 0.50

c) 0.707

d) None of these.

SS-155 [Turn over

				LINVERSITY OF TECHNOLOGY		
CS/B.TE	CH (ECE) (Separate Supple)	/SEM	1-7/EC-701/20915 Utleach		
iv)	A m	nicrowave component i	s sup	posed to be matched at		
	all ports if in the S matrix all diagonal elements are					
	a)	0	b)	equal but not 0		
	c)	complex	d)	none of these		
v)	The	guided wave length is	meas	ured by short circuiting		
	a waveguide and shifting the tunable probe along the					
	slot	ted line to locate the v	oltage	minima. If the shorting		
	plate is replaced by matched load, the measurement of					
	guio	ded wavelength will be				
	a)	more accurate	b)	impossible		
	c)	less accurate	d)	none of these.		
vi)	Mic	rowave components ca	ın be	characterized by		
,	parameters					
	a)	у	b)	Z		
	c)	S	d)	h.		
vii)	The dominant mode in a wave guide is characterized by					
	a) longest cutoff wavelength					
	b) shortest cutoff wavelength					
	c)	zero attenuation	Ü			
	d)	infinite attenuation.				
viii)	•	avity is a filter				
,	a)	high pass	b)	low pass		
	c)	band pass	d)	band reject		
ix)	Who	en electric field is p	resent	only in the direction		
,		_		of propagation, resulting		
	mode is					
	a)	transverse electric	b)	transverse magnetic		
	c)	longitudinal	d)	none of these.		
x)	Klystron operates on the principle of modulation					
,	a)	amplitude	b)	frequency		
	c)	pulse	d)	velocity.		
	,	-	,	•		

SS-155

CS/B.TECH (ECE) (Separate Supple)/SEM-7/EC-701/2011

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. Define Microwave Circulator. Describe the operating principle of a four port circulator. 5
- 3. a) What do you mean by cut-off frequency of a waveguide?
- b) On what factors the cut-off frequency of a waveguide depends? Derive expressions in support of your answer.
- 4. A magic TEE is match-terminated at all its ports. A signal of power 1 mW is fed to its H arm from a matched generator. Find the power output from other ports.
- 5. Describe the operation of an Isolator 5
- 6. Spellout why conventional pentode tube fails to work in GHz. range.
- 7. Define and explain Coupling factor, Directivity, Isolation and Insertion Loss of a Directional Coupler. 5

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 8. a) TE mode is propagating through a rectangular waveguide. Find the expressions for electric field and magnetic field components.
 - b) Explain Cavity Resonance. Derive expression for resonant frequency of a rectangular cavity resonator. 5
- 9. a) Define and explain what is meant by scattering matrix of a microwave junction. Illustrate with an example of four port junction.
 - b) Derive the scattering matrix of a Magic TEE. 5
 - c) Explain how a four port circulator can be designed using two Magic TEEs. Give necessary diagrams. 5

SS-155 3 Turn over

CS/	В.ТЕ	CH (ECE) (Separate Supple)/SEM-7/EC-701/2010
10.	a)	Define and elucidate what is meant by velocity
		modulation? Explain the working principle of reflex
		klystron with the use of Velocity Modulation. 5
	b)	Derive the expressions of its power output and show
		how it varies with the repeller voltage. 5
	c)	A reflex Klystron is to be operated at frequency 10 GHz.
		with DC beam voltage 300 V, repeller space 0.1 cm for
		$1\frac{3}{4}$ mode. Calculate P_{RFmax} and corresponding repeller
		voltage for a beam current 20 mA. 5
11.	a)	What are the different techniques for measuring
		Microwave power? 5
	b)	How can you measure the microwave peak power from
		average power?
	c)	Explain clearly the experimental setup to measure the
		high value of microwave power. 5
	d)	Explain the working principle of a Phase-shifter. 3
12.	a)	What is strip line and microstrip line?
	b)	What are the advantages and disadvantages of
		Microstripline?
	c)	Show the Electric and Magnetic Field Lines of
		Microstripline?
	d)	Explain the working principle of a microstrip antenna. 5

SS-155