VECTOR SPACE MODEL Nos dan una base de datos con documentos. 5 documentos 21 - Intermedia Petneval Systems
22 - Information Sterage
23 - Digital Speech Synthesis Systems
C4 - Speech Filtering
C5 - Speech Retrieval. Nos don la consulta (Guerry) que querenos recupeos; avery - Informat Speech Filtering, Speech Retrieval, (nos don 2). 1) Table de precueicias (montrez de precueicias) Filtering Inform. Netneual Speach Storage Synthesis Digital Syteros 91 1 1 0 0 0 0 0 1 02 0 4 0 1 0 0 0 0 03 1 0 0 1 0 0 1 1 04 0 1 0 0 0 0 0 ds 0 0 1 0 0 0 0 1 Sum 1 2 Macernos la table y varnos rellerando dende tergamos la palabra y completamos la suma de todo tembién: 2) Precuercia inversa de documentes idf = log (n - damatos totales) suma total de la palabra - aplicamos la pormula a cada palabra Palabra DOC-Frecely IDF. Digital 1 109 (5/4) = 0,699 log (5/1) = 0,699 Filterna 1 Information 2 109 (5/2) = 0,398 109 (5/2) = 0,398 netrieval log (5/3) = 0,222 Speech log (5/1) = 0,699 Storage Synthesis log (5/4) = 0,699 Systems 109 (5/2) = 0,398 3. Calcular la montrie tp. idp. multipliamos la frecuercia de la palabra por su ilit que bever sacrado y la langitur del vector. Lenght - V palabra 12 + palabra 22 + palabra 32 Lite casa diccionario hacemas un leight. su idf. La poneuros los palabros que operescan en el diacionario, (sarriore)

de 0 de 0 de 1x0,699 de 0 de 0 de 0	Filtering C C C 1×C,699 C	1x0,397 1x0,397 0	0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4x0,222 4x0,222	1x 0,699 0	1x0pag 1x0,398
Leight 22 = 0,804 // L23 = 1,088 // 24 = 0,733 // 25 = 0,456. 4) Vector de consultor y consultor (Consulta/Query es: Information, Speech, Filtering, Speech Retrieval) L. Freazicia máximo de un término — Speech — Ducces Vector Query = Freaversia del término						
Digital Filtering Information Netneu Speach Storage Synthe Syst Leight 1 2 0,699 2 0,199 2 0,199 2 0,199 2 0,1212 2 0,009 2 0,1212 2 0,009 2 0,1212 2 0,009 2 0,1212 2 0,1						
Function de similitud = $\cos \frac{\text{vector}}{\text{cos}} \times \text{vector} \times v$						
cos Sim(dz, g) = cos Sim(dz, g) = cos Sim(dz, g) = To cos Sim(dz, g)	0,501 0,501 0,501 0,50 0,50 (0,398 × 0,19 0,50 grande s	2)+(0,699 x 0,733 9)+(0,1272 x 0 11 x 0,1733 9)+(0,1272 x 0 11 x 0,1756 300 el cos e mayor si	[0,090] =[0,79 1221] = [0,29 Sim, mos militad a	[9] 562] smilar s wenor	eva el a	a a la quez.
[au - a	5 -> 01	- 02 -	- 23			