Spam Detection Model Documentation

1. Introduction

Spam detection is a classification problem where messages are categorized as either spam (unwanted messages) or ham (legitimate messages). This document provides a detailed overview of the data processing, exploratory data analysis (EDA), model building, and improvements used in this project.

2. Data Cleaning

2.1 Dataset Loading

The dataset spam.csv is loaded using pandas with latin-1 encoding.

2.2 Dropping Unnecessary Columns

Several unnamed columns that are not useful for classification are removed:

```
df.drop(columns=['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], inplace=True)
```

2.3 Renaming Columns

The columns are renamed for better readability:

```
df.rename(columns={'v1': 'target', 'v2': 'text'}, inplace=True)
```

2.4 Encoding Target Labels

Label encoding is applied to convert categorical labels into numerical form:

```
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
df['target'] = encoder.fit_transform(df['target'])
```

2.5 Handling Missing and Duplicate Values

• Checking and removing null values:

```
df.isnull().sum()
```

• Checking and removing duplicate values:

```
df.duplicated().sum()
df = df.drop_duplicates(keep='first')
```

3. Exploratory Data Analysis (EDA)

EDA helps in understanding the distribution and characteristics of the dataset.

3.1 Data Distribution

The distribution of spam and ham messages is visualized using a pie chart:

```
plt.pie(df['target'].value_counts(), labels=['ham', 'spam'], autopct='%0.2f',
colors=['red', 'green'])
plt.show()
```

3.2 Feature Engineering

New features are created:

- num_characters: Character count in each message
- num_words: Word count
- num_sentences: Sentence count

```
df['num_characters'] = df['text'].apply(len)

df['num_words'] = df['text'].apply(lambda x: len(nltk.word_tokenize(x)))

df['num_sentences'] = df['text'].apply(lambda x: len(nltk.sent_tokenize(x)))
```

3.3 Correlation Heatmap

A heatmap is plotted to analyze feature correlations:

```
sns.heatmap(df.corr(numeric_only=True), annot=True)
```

3.4 Histogram Plots

Distribution of message length in spam and ham messages:

```
sns.histplot(df[df['target']==0]['num_characters'])
sns.histplot(df[df['target']==1]['num_characters'], color='red')
plt.show()
```

4. Data Preprocessing

Text data is transformed through:

- Lowercasing
- Tokenization
- Removing special characters, stopwords, and punctuation
- Stemming

```
from nltk.stem.porter import PorterStemmer
from nltk.corpus import stopwords
import string
ps = PorterStemmer()

def transform_text(text):
    text = text.lower()
    text = nltk.word_tokenize(text)
    y = [i for i in text if i.isalnum()]
    text = [i for i in y if i not in stopwords.words('english') and i not in string.punctuation]
    text = [ps.stem(i) for i in text]
```

```
return ' '.join(text)

df['transformed_text'] = df['text'].apply(transform_text)
```

5. Model Building

5.1 Feature Extraction

```
TF-IDF vectorization is used to convert text into numerical form:
from sklearn.feature_extraction.text import TfidfVectorizer
tfidf = TfidfVectorizer(max_features=3000)
X = tfidf.fit_transform(df['transformed_text']).toarray()
y = df['target'].values
```

5.2 Splitting Data

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

5.3 Model Training and Evaluation

Different models are trained and evaluated:

```
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score, confusion_matrix, precision_score
mnb = MultinomialNB()
mnb.fit(X_train, y_train)
y_pred = mnb.predict(X_test)
print(accuracy_score(y_test, y_pred))
print(confusion_matrix(y_test, y_pred))
```

```
print(precision_score(y_test, y_pred))
```

6. Model Comparison

Multiple classifiers are tested:

```
from sklearn.ensemble import RandomForestClassifier

clfs = {'NB': MultinomialNB(), 'RF': RandomForestClassifier(n_estimators=50,
    random_state=2)}

def train_classifier(clf, X_train, y_train, X_test, y_test):
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)
    return accuracy_score(y_test, y_pred), precision_score(y_test, y_pred)
```

7. Model Saving

The best model is saved using Pickle:

```
import pickle
pickle.dump(tfidf, open('vectorizer.pkl', 'wb'))
pickle.dump(mnb, open('model.pkl', 'wb'))
```

8. Conclusion

This project successfully builds a spam detection model using NLP techniques, EDA, and machine learning models. The best-performing model is stored for future predictions.