# Modern Fizika Labor

## Fizika BSC

| A mérés<br>dátuma: | A mérés száma és címe:       | Értékelés: |
|--------------------|------------------------------|------------|
| 2009.04.6.         | 11, Spektroszkópia           |            |
|                    |                              |            |
|                    |                              |            |
| A beadás           | A mérést végezte:            |            |
| dátuma:            | Meszéna Balázs, Tüzes Dániel |            |
|                    |                              |            |
|                    |                              |            |
|                    |                              |            |

#### Bevezető

A mérés során egy komplex egyensúlyi állandóját határozzuk meg. A mérés leírása megtalálható a http://wigner.elte.hu/~koltai/labor/parts/11komplex.pdf oldalon. A jegyzőkönyv további részeiben a leírás konvenciót használjuk.

#### Mérés kivitelezése

A méréshez vas- ammónium-szulfát és szalicilsav anyagokat tartalmazó 2mM-es sósav oldatokból készítünk különböző térfogatarányú, hozzávetőleg 5*ml*-es oldatokat. Az arányok 10:0, 9:1, 8:2,..., 2:8 és 1:9. Ezen anyagokból öntünk mintatartó küvettábákba, a küvettákat egyesével a spektroszkópba helyezzük. A spektroszkóp által kapott eredményeket PC-vel rögzítjük az utólagos kiértékelés végett. A mérés során először a spektroszkóp egyik fényútjába sem helyezünk mintát kalibrációs célból, majd az egyikbe helyezünk vas- ammónium-szulfátot, a másikba pedig 2mM-es sósavat teszünk. A vas- ammónium szulfátot tartalmazó küvettát cseréljük le más-más térfogatarányú mintát tartalmazó küvettára.

### Mérési eredmények

Mérés során a spektroszkóp az **1. ábrán** látható adatokat rögzítette. A mérés vizsgált mennyisége a komplex koncentrációja, de mivel a vas- ammóniumszulfát elnyeli a fényt, ezért egyszerű arányítással a többi mérési eredményből levonhatjuk az általa okozott fényelnyelést. Tehetjük mindezt azért, mert feltételezzük, hogy a vizsgált minták koncentrációja elhanyagolható az oldószerhez képest, ami átlátszó, akárcsak a szalacilsav. A korrigált eredményeket már csak a számunkra releváns, 510-540*nm*-es tartományon ábrázolja a grafikon a **2. ábrán**. Ezen a tartományon érik el a görbék a maximumokat, mely mennyiség releváns a mérés szempontjából. A mérési eredmények maximum közeli pontjaira másodfokú görbét illesztve, annak paramétereiből meghatározható a görbék maximum helyei felvett értékei. Ezen értékek:

| arány             | 1sav : | 2sav : | 3sav : | 4sav : | 5sav : | 6sav : | 7sav : | 8sav : | 9sav : |
|-------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|                   | 9vas   | 8vas   | 7vas   | 6vas   | 5vas   | 4vas   | 3vas   | 2vas   | 1vas   |
| S,                | 0,4    | 0,3    | 0,2    | 0,1    | 0      | -0,1   | -0,2   | -0,3   | -0,4   |
| maximum<br>helye  | 528,1  | 527,9  | 528,1  | 528,1  | 528,2  | 528,2  | 528,0  | 528,3  | 526,6  |
| maximum<br>értéke | 0,417  | 0,786  | 1,168  | 1,565  | 1,739  | 1,590  | 1,180  | 0,758  | 0,413  |

Ábrázolva egymás függvényben a  $\xi$ -t és a maximum érékét, az alábbi grafikonhoz jutottunk (egyből

feltüntetve rajta a később illesztett görbét):

Gnuplottal való manipulálással a leírásban szereplő *k* értéke megkapható. Az illesztendő függvény:

$$f\left(\xi,k,c\right)\!=\!\left(k\!-\!\sqrt{k^2-1\!+\!4\xi^2}\right)\!/\,c$$
, ahol  $c\cdot f\left(\xi,k',c\right)\!=a_*$ . Az egymáshoz tartozó értékpárokat tabulátorral lettek elválasztva, első értékként a  $\xi$ -t tüntetve fel. Az adatokat az adat. txt-ben elmentve, annak egy sora:



Gnuplot gyökerébe elhelyezve a filet, az alábbi utasítások kerültek kiosztásra a Gnuplotnak:

```
k=10
c=1
f(x,k,c)=(k-sqrt(k*k-1+4*x*x))/c
fit f(x,k,c) "adat.txt" via k,c
```

Az illesztés után a kapott eredmény:  $k=1,0097\pm0,0039$  . Ebből K megkapható, ugyanis  $K=\kappa$  /  $c_0$  , ahol  $\kappa$ -t az  $k=\frac{1+\kappa}{\kappa}$  egyenlet definiálja, illetve  $c_0=2,5 \mathrm{mM}$  . Ebből  $K=\frac{1}{k-1}\cdot\frac{1}{2,5 \mathrm{mM}}=41$  / mM . A hibát az alábbi

formulából számolhatjuk:  $\Delta K = K \frac{\Delta k}{k-1} = 16$ , tehát  $K = (41\pm16)/\,\mathrm{mM}$ . Ekkora hibánál a hibaszámítás képletei nem érvényesek. Megjegyzem, hogy a gnuplot számításai  $k \in \{1,2,100\}$  esetén "nem jó" értékekhez konvergáltak, csak a fent leírt kezdeti paraméterrel elindítva kaptunk értékelhető eredményt.



