1. Twierdzenie 3.4:

Szereg $\sum_{n=1}^{\infty} a_n$ jest zbieżny \iff spełnia warunek Cauchy'ego zbieżności szeregu, tzn $\forall_{\epsilon>0} \exists_{n_0 \in \mathbb{N}} \forall_{m>n>n_0} |a_{n+1} + \cdots + a_m| <$

D: Szereg $\sum_{n=1}^{\infty} a_n$ jest zbieżny $\stackrel{\text{def.}}{\Longleftrightarrow}$ ciąg sum częs=ściowych $\{S_n\}$ jest zbieżny \iff ciąg $\{S_n\}$ spełnia warunek Cauchy'ego,

 $\forall_{\epsilon>0}\exists_{n_0\in\mathbb{N}}\forall_{m,n\geq n_0}|S_m-S_n|<\epsilon\iff\forall_{\epsilon>0}\exists_{n_0\in\mathbb{N}}\forall_{m>n\geq n_0}|(\text{po rozwinięciu i poskreślaniu})\ a_{n+1}+\dots+a_m|<\epsilon$ Uwaga 3.1: Dwa szeregi $\sum_{n=1}^{\infty}a_n$ i $\sum_{n=1}^{\infty}b_n$ różniące się skończoną liczbą wyrazów są albo jednocześnie zbieżne albo jednocześnie rozbieżne. Wynika to z warunku Cauchy'ego zbieżności szeregu, w którym n_0 możemy wziąć na tyle duże, $\dot{z}eby \ \forall_{n\geq n_0} a_n = b_n$

- 2. Twierdzenie 3.5: Niech $\sum_{n=1}^\infty a_n$ i $\sum_{n=1}^\infty b_n$ to szeregi zbieżne i $\lambda\in\mathbb{R}$ Wówczas
 - (a) $\sum_{n=1}^{\infty} \lambda a_n$ jest zbieżny $\mathbf{i} = \lambda \sum_{n=1}^{\infty} a_n$ $\mathbf{D}: \lim_{n \to \infty} (\lambda a_1 + \dots + \lambda a_n) = \lambda \lim_{n \to \infty} (a_1 + \dots + a_n) = \lambda \sum_{n=1}^{\infty} a_n$
 - (b) $\sum_{n=1}^{\infty} (a_n + b_n)$ jest zbieżny $\mathbf{i} = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$ $\lim_{n\to\infty}(b_1+\cdots+b_n)$
- 3. Szeregi o wyrazach nieujemnych:

Zakładamy, że $\forall_{n\in\mathbb{N}}a_n\geq 0$, co oznacza, że $\sum_{n=1}^{\infty}a_n$ ma wyrazy nieujemne. Wówczas $\forall_{n\in\mathbb{N}}S_{n+1}-S_n=a_{n+1}\geq 0$, co oznacza, że ciąg $\{S_n\}$ jest niemalejący \Longrightarrow

Ciąg $\{S_n\}$ jest zbieżny $\iff \{S_n\}$ jest ograniczon z góry, skąd $\sum_{n=1}^{\infty} a_n$ jest zbieżny $\iff \{S_n\}$ jest ograniczony z góry. W przypadku gdy $\sum_{n=1}^{\infty} a_n$ ma wyrazy nieujemne, możliwe są tylko dwie sytuacje: $\sum_{n=1}^{\infty} a_n$ jest zbieżny, co zapisujemy $\sum_{n=1}^{\infty} a_n < \infty$, $\sum_{n=1}^{\infty} a_n$ jest rozbieżny i $\sum_{n=1}^{\infty} a_n = \infty$ Nie jest możliwy przypadek, że $\sum_{n=1}^{\infty} a_n$ jest rozbieżny i $\lim_{n\to\infty} S_n$ nie istnieje

- 4. Twierdzenie 3.6 (kryterium porównawcze): Jeśli $\forall_{n\in\mathbb{N}} 0 \leq a_n \leq b_n$, to
 - (a) $\sum_{n=1}^{\infty} b_n$ jest zbieżny $\implies \sum_{n=1}^{\infty} a_n$ jest zbieżny D: Z założenia $\sum_{n=1}^{\infty} b_n$ jest zbieżny $\Longrightarrow \{b_1 + \dots + b_n\}$ jest ograniczony z góry, tzn $\exists_{M \in \mathbb{R}} \forall_{n \in \mathbb{N}} b_1 + \dots + b_n \leq M$ Stąd $\forall_{n \in \mathbb{N}} a_1 + \dots + a_n \leq b_1 + \dots + b_n < M$, co oznacza, że ciąg $\{a_1 + \dots + a_n\}$ jest ograniczony z góry $\Longrightarrow \sum_{n=1}^{\infty} a_n$ jest zbieżny
 - (b) $\sum_{n=1}^{\infty} a_n$ jest rozbieżny $\Longrightarrow \sum_{n=1}^{\infty} b_n$ jest rozbieżny D: Zakładamy, że $\sum_{n=1}^{\infty} a_n$ rozbieżny $\Longrightarrow \lim_{n\to\infty} (a_1+\cdots+a_n)=\infty$ $\forall_{n\in\mathbb{N}}a_1+\cdots+a_n\leq b_1+\cdots+b_n$, więc z tw. o 2 ciągach, otrzymujemy, że $\lim_{n\to\infty}(b_1+\cdots+b_n)=\infty\implies\sum_{n=1}^\infty b_n$ jest rozbieżny
 - (c) Kryterium porównawcze pozostaje prawdziwy, gdy $\exists_{n_0 \in \mathbb{N}} \forall_{n > n_0} 0 \leq a_n \leq b_n$
- 5. Twierdzenie 3.7 (kryterium d' Alemberta):

Jeśli $\forall_{n\in\mathbb{N}}a_n>0$ i istnieje granica $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}\stackrel{\text{ozn}}{=}g,$ to

Jesh
$$\forall_{n \in \mathbb{N}} a_n > 0$$
 i istingle g $g < 1 \implies \sum_{n=1}^{\infty} a_n < \infty$ $g > 1 \implies \sum_{n=1}^{\infty} a_n < = \infty$ $g = 1 \implies ???$

$$g > 1 \implies \sum_{n=1}^{n-1} a_n < = \infty$$

D:

1: Niech g < 1. Wówczas $\exists_{\epsilon_1 > 0} g + \epsilon_1 < 1$

Z założenia $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=g \iff \forall_{\epsilon>0}\exists_{n_0\in\mathbb{N}}\forall_{n\geq n_0}|\frac{a_{n+1}}{a_n}-g|<\epsilon.$ W szczególności biorąc $\epsilon=\epsilon_1$ otrzymjemy $\exists_{n_0\in\mathbb{N}}\forall_{n\geq n_0}|\frac{a_{n+1}}{a_n}-g|<\epsilon_1\implies \forall_{n\geq n_0}\frac{a_{n+1}}{a_n}<\epsilon_1+g.$ Stąd $a_{n_0+1}< a_{n_0}(\epsilon_1+g)$ i $a_{n_0+2}< a_{n_0+1}(\epsilon_1+g)< a_{n_0}(\epsilon_1+g)^2$, itd

 $\forall_{p \in \mathbb{N}} a_{n_0+p} < a_{n_0} (\epsilon_1 + g)^p \implies \sum_{p=1}^{\infty} a_{n_0+p}$ jest zbieżny z kryterium porównawczego, bo $\sum_{n=1}^{\infty} a_{n_0} (\epsilon_1 + g)^p$ jest zbieżny jako szereg geometryczny o ilorazie $q = \epsilon_1 + g, |q| < 1$

Skoro $\sum_{p=1}^{\infty} a_{n_0+p}$, to szereg $\sum_{n=1}^{\infty} a_n$ też jest zbieżny, bo opuszczamy skończoną liczbę wyrazów.

2: Niech
$$g>1$$
 wtedy $\exists_{\epsilon_2>0}g-\epsilon_2>1$. $\exists_{n_0\in\mathbb{N}}\forall_{n\geq n_0}|\frac{a_{n+1}}{a_n}-g|<\epsilon_2\implies \forall_{n\geq n_0}\frac{a_{n+1}}{a_n}>-\epsilon_2+g>1$

Stad $a_{n_0+1} > a_{n_0}, a_{n_0+2} > a_{n_0+1} > a_{n_0}$, itp

 $\forall_{p \in \mathbb{N}} a_{n_0+p} > a_{n_0} > 0 \implies \lim_{n \to \infty} a_n \neq 0$, bo gdyby granica ta istniała, to mielibyśmy $\lim_{n \to \infty} a_n \geq a_{n_0} > 0$ co oznacza, że $\sum_{n=1}^{\infty} a_n$ nie spełnia podstawowego warunku zbieżności szeregu, więc jest rozbieżny

6. Twierdzenie 3.8 (kryterium Cauchy'ego)

Załóżmy, ze $\forall_{n\in\mathbb{N}}a_n\geq 0$ i oznaczmy, że $g=\limsup \sqrt[n]{a_n}$ Wówczas

Zafozmy, ze
$$\forall_{n \in \mathbb{N}} a_n \ge 0$$
 1 oz $g < 1 \implies \sum_{n=1}^{\infty} a_n < \infty$ $g > 1 \implies \sum_{n=1}^{\infty} a_n < = \infty$ $g = 1 \implies ???$

$$q > 1 \implies \sum_{n=1}^{\infty} a_n \le \infty$$

7. Twierdzenie 3.9 (kryterium całkowe)

Jeśli $f: < 1, \infty) \to \mathbb{R}$ jest nieujemna i nierosnąca, to $\sum_{n=1}^{\infty} f(n)$ jest zbieżny $\iff \int_{1}^{\infty} f(x)dx$ jest zbieżna D: $f(2) + \cdots + f(n) \le \int_{1}^{n} f(x)dx \le f(1) + \cdots + f(n-1)$ $S_{n} - f(1) \le \int_{1}^{n} f(x)dx \le S_{n-1}$ \iff :: Zakładamy, że $\int_{1}^{\infty} f(x)dx$ jest zbieżna $\implies \lim_{n \to \infty} \int_{1}^{n} f(x)dx = g \implies \text{ciąg } b_{n} = \int_{1}^{n} f(x)dx$ jest zbieżny, więc jest

też ograniczony, tzn $\exists_{M \in \mathbb{R}} \forall_{n \in \mathbb{N}} \int_{1}^{n} f(x) dx \leq M$ Zatem $\forall_{n \geq 2} S_n \leq \int_{1}^{n} f(x) dx + f(1) \leq M + f(1) \implies \{S_n\}$ jest ograniczony z góry, a ponieważ $\sum_{n=1}^{\infty} f(n)$ to szereg wyrażeń nieujemnych, to $\sum_{n=1}^{\infty} f(n)$ jest zbieżny \implies ::Pokazanie że implikacja jest prawdziwa, jest równoważne pokazaniu, że $\int_{1}^{\infty} f(x) dx$ jest rozbieżna $\implies \sum_{n=1}^{\infty} f(n)$

jest rozbieżna

Załóżmy, że $\int_1^\infty f(x)dx$ jest rozbieżna, tzn $\lim_{n\to\infty} \int_1^n f(x)dx = \infty$

 $\forall_{n\geq 2} \int_1^n f(x) dx \leq S_{n-1}$ więc z two 2 ciągach otrzymujemy $\lim_{n\to\infty} S_{n-1} = \infty$ czyli $\lim_{n\to\infty} S_n = \infty$