Прямые методы для параллельных компьютеров

Рассмотрим систему линейных уравнений

$$Ax = b$$

с невырожденной матрицей A размера $n \times n$.

Будем полагать матрицу А заполненной и рассмотрим компьютеры параллельной архитектуры

LU – разложение

Рассмотрим параллельную систему с локальной памятью Пусть p = n, *i-*я строка матрицы A находится в *i-*м процессоре Тогда один из возможных вариантов LU разложения

Шаг 1:
$$\mathbf{a}_1 \to P_i$$
, $i=2,...,n$ В P_i ($i=2,...,n$) вычисляются I_{i1} и новые элементы a_{ij} ($j=2,...,n$)

Шаг 2:
$$a_2 \rightarrow Pi$$
 , $i=3,...,n$ В P_i ($i=3,...,n$) вычисляются I_{i2} и новые элементы a_{ij} ($j=3,...,n$)

Недостатки: 1) Значительный объем обмена данных
2) Уменьшение на один активный процессор на каждом шагу

<u>Альтернатива</u> — хранение по столбцам *i*-й столбец \rightarrow в *i*-й процессор Тогда I_{i1} вычисляется в P1 \rightarrow рассылка \rightarrow параллельная модификация

Слоистая схема хранения

Возникающие сложности – это проблема балансировки нагрузки Реально $p \le n$. В этом случае проблема балансировки смягчается Пусть n = k p и храним данные по строкам

Принцип слоистого хранения оправдан главным образом для систем с локальной памятью. Но его можно применять и в системах с глобальной памятью как средство распределения заданий между процессорами.

Однако в системах с глобальной памятью динамическая балансировка может осуществляться и с помощью банка заданий.

Обсудим LU разложение с помощью слоистой схемы

 $\frac{\text{Обычный способ}}{\text{Вычисление } I_{i1} o \text{модификация}}$ соответствующих строк

начало (рассылка второй второго шага строки остальным процессорам)

ЗАДЕРЖКА

Выход – начать рассылку второй строки, как только она сосчитана

Это стратегия опережающей рассылки

Если можно <u>совместить</u> рассылку и обмен, то пока будет идти рассы<mark>л</mark>ка, процессоры будут заниматься модификацией.

Насколько выгодна такая стратегия для конкретной машины будет зависеть от топологии межпроцессорных связей.

Стратегию опережающей рассылки можно использовать и в системах с разделяемой памятью.

Здесь при прямолинейной реализации потребовалось бы синхронизация после каждого шага (не начать следующий шаг, пока не кончен предыдущий).

Стратегия опережающей рассылки теперь носит характер

стратегии опережающих вычислений

Она меняет порядок действий, маркируя k+1 строку, как только ее модифицируют, - «ГОТОВО»

Теперь другие процессора, завершив свою работу, на *к***-м** шаге, могут немедленно приступить к *k***+1** шагу, если *k*+1 строка <u>«готова»</u>

Это – **конвейеризация**

Проблемы частичного выбора главного элемента

Дополнительные аспекты проблемы хранения информации

1. A — циклическая <u>столбцовая схема</u> \rightarrow поиск ГЭ в одном процессоре

Проста, но чревата опасностью простоя остальных процессоров во время поиска.

Эту опасность можно уменьшить, применяя

Стратегию Опережающих Вычислений и Рассылки

Ведущая строка → передать другим → параллельная работа по перестановке определена (явно или неявно)

- 2. A циклическая строчная схема \rightarrow поиск ГЭ во всех процессорах \rightarrow
- \rightarrow ответ в одном процессоре \rightarrow разослать остальным \rightarrow перестановка (2 процессора)

Надо принять решение, выполнять ли перестановку физически или переиндексировать – либо простой процессоров при работе двух, либо искажение циклической схемы хранения

г*іјк*-формы и параллельновекторные компьютеры

Приводимые обозначения

- kij, r форма kij с использованием циклической слоистой <u>строчной</u> схемы
- kij, c форма kij с использованием циклической слоистой <u>столбцовой</u> схемы
- ПВД полные векторные длины, т.е. можно работать с векторами максимальной длины, допустимыми на данном шаге LU-разложения
- ЧВД частичные векторные длины соответственно данные распределены между процессорами и, следовательно, длины векторов / число процессоров

kij_r:	Минимальные задержки	ПВД	
kij c:	Задержки на вычисление множителей и рассылку	ЧВД	
kji,-r:	Минимальные задержки	ЧВД	
kji, c:	Минимальные задержки	ПВД при наличии задержек	
ikj, r:	Сильный дисбаланс нагрузки	ЧВД	
ikj, c:	Задержки на вычисление множителей и рассылку	ЧВД	
jki, r:	Большие расходы на обмены	ЧВД	
jki, c:	Задержки на вычисление множителей и рассылку	ПВД при наличии задержек	
ijk, r:	Большие расходы на обмены		
ijk, c:	Большие расходы на обмены		
jik, r:	Большие расходы на обмены		
jik, c:	Большие расходы на обмены		

Пример мелкозернистого алгоритма

В принципе LU-разложение можно организовать следующим образом (здесь каждый шаг соответствует параллельным вычислениям)

- Шаг.1 Вычислить первый столбец множителей l_{i1} , i = 2, ..., n.
- Шаг.2 Вычислить модифицированные элементы $a_{ii}^{-1} = a_{ii} l_{i1}a_{1i}, i = 2, ..., n, j = 2, ..., n.$
- Шаг 3. Вычислить второй столбец множителей l_{i2} , i = 3, ..., n.
- Шаг 4. Вычислить модифицированные элементы $a_{ii}^2 = a_{ii}^{\ 1} I_{i2} a_{2i}^{\ 1}, \ i = 3, ..., n, \ j = 3, ..., n.$

......

Шаг 2n-3. Вычислить последний множитель $I_{n,n-1}$.

Шаг 2n-2. Модифицировать элемент (n, n)

Поскольку для модификации любого элемента требуется две операции (+ и x), то процесс завершится за 3(n - 1) временных шагов.

В этой схеме предполагается, что в системе имеется по крайней мере $(n-1)^2$ процессоров, которые необходимы на шаге 2.

Пример мелкозернистого алгоритма (продолжение)

В приведенном примере обойден важный вопрос обменов Рассмотрим одну из схем, в которой пересылка данных между любыми двумя процессорами происходит за один шаг.

Пусть процессора пронумерованы, как элементы матрицы, т.е.

процессор P_{ii} производит пересчет элемента a_{ii}

Тогда схема предыдущего слайда модифицируется следующим образом:

```
Шаг 1. Вычислить I_{i1} в процессоре P_{i1}, i = 2, ..., n.
```

Шаг 1а. Переслать I_{i1} в процессоры P_{ij} , $i=2, ..., n, \ j=2, ..., n$

Шаг 2. Вычислить a_{ii}^{1} в процессоре P_{ij} , $i=2,...,n,\ j=2,...,n$.

Шаг 2а. Переслать a_{2i}^{-1} в P_{ii} , $i=3,...,n,\ j=2,...,n$.

Если считать, что на каждом шаге все необходимые пересылки могут быть сделаны за единицу времени, то общее количество временных шагов увеличивается до **O**(5n)

Алгоритм потока данных

Пусть n^2 процессоров расположены в виде квадратной решетки и каждый соединен с четырьмя соседями.

Предполагаем:

- (1) время пересылки = времени вычислений
- (2) пересылка и вычисления могут проходить одновременно

Возможна следующая схема:

- Шаг 1. Переслать a_{1j} из P_{1j} в P_{2j} , j = 1, ..., n.
- Шаг 2. Переслать a_{1i} из P_{2i} в P_{3i} , j=1,...,n. Вычислить I_{21} .
- Шаг 3. Переслать a_{1j} из P_{3j} в P_{4j} , j=1,...,n. Переслать I_{21} в P_{22} . Вычислить I_{31}
- Шаг 4. Переслать a_{1j} из P_{4j} в P_{5j} , j=1,...,n. Переслать I_{21} в P_{23} . Переслать I_{31} в P_{32} . Вычислить I_{41} . Вычислить $I_{21}a_{12}$ в P_{22} .
- Шаг 5. Переслать a_{1j} из P_{5j} в P_{6j} , j=1,...,n. Переслать l_{21} в P_{24} . Переслать l_{31} в P_{33} . Переслать l_{41} в P_{42} . Вычислить l_{51} Вычислить $a_{22}{}^1=a_{22}-l_{21}a_{12}$ в P_{22} Вычислить $l_{21}a_{13}$ в P_{23} . Вычислить $l_{31}a_{12}$ в P_{32}

Алгоритм потока данных (продолжение)

Количество временных шагов для завершения факторизации

В конце пятого временного шага вычислен модифицированный элемент а₂₂ множитель I₂₁ находится в P₂₄, а в P₂₃ вычислено произведение I₂₁а₁₃. На каждом из последующих временных шагов завершается модификация очередного элемента, поэтому обработка второй строки будет закончена после 5+n-2 = n+3 временных шагов (ВШ).

Второй этап разложения начинается через четыре временных шага после первого. Т.о. обработка третьей строки завершится через n+7 ВШ. Продолжая действовать т.о. можно показать, что процесс факторизации потребует n+3+4(n-2) = **5n** – **5** ВШ

$$S_p = \frac{O(2/3 n^3)}{O(5n)} = O(n^2)$$

Ленточные матрицы

Для
$$k = 1$$
 до $n - 1$
Для $i = k + 1$
до $\min(k+\beta, n)$
 $l_{ik} = a_{ik}/a_{kk}$
Для $j = k + 1$
до $\min(k+\beta, n)$
 $a_{ij} = a_{ij} - l_{ik}a_{kj}$

Для
$$k = 1$$
 до $n - 1$

Для $s = k + 1$

до $min(k+\beta, n)$
 $l_{sk} = a_{sk}/a_{kk}$

Для $j = k + 1$

до $min(k+\beta, n)$

Для $i = k + 1$

до $min(k+\beta, n)$
 $a_{ij} = a_{ij} - l_{ik}a_{kj}$

LU-разложение ленточной матрицы для строчно и столбцово ориентированных алгоритмов

При достаточно больших β псевдокод для полнозаполненных матриц может быть основой как для векторных, так и для параллельных компьютеров. При уменьшении β такой подход совершенно не подходит

Строчная (столбцовая) схема хранения ленточных матриц

При параллельной реализации способ решения подобен векторным способам. β может рассматриваться как степень параллелизма. Для полного использования процессоров должно соблюдаться условие $\beta \geq p$ Однако при выполнении этого условия дисбаланс нагрузки более вероятен

Перестановки

Перестановки, возникающие при выборе главного элемента в ленточной матрице при сохранении *LU*-разложения увеличивают β Последствия для векторных и параллельных компьютеров более серьезные, чем для последовательных.

Пример. На первом шаге переставлены первая и пятая строка при β =4

В результате во 2,3,4,5 строках возникает заполнение. Т.о. ширина ленты над главной диагональю фактически удваивается; так будет и в дальнейшем, если потребуются дополнительные «наихудшие» перестановки

$$a_{\beta+1}$$
 3 $\beta+1$

$$a_n$$
 β +'

Последовательный вариант решения ленточных матриц

$$Ax = F$$

$$A_i x_{i-1} + B_i x_i + C_i x_{i+1} = F_i$$

Трехдиагональная матрица

Идея метода прогонки

$$x_i = lpha_{i+1} x_{i+1} + eta_{i+1}$$
 - предположение $i = n-1, n-2, \dots, 1$

выразим x_{i-1} и x_i через x_{i+1}

$$\left(A_ilpha_ilpha_{i+1}+B_ilpha_{i+1}+C_i
ight)x_{i+1}+A_ilpha_ieta_{i+1}+A_ieta_i+B_ieta_{i+1}-F_i=0$$

$$\left\{egin{aligned} A_ilpha_ilpha_ilpha_{i+1}+B_ilpha_{i+1}+C_i=0\ A_ilpha_ieta_{i+1}+A_ieta_i+B_ieta_{i+1}-F_i=0 \end{aligned}
ight.$$

Идея метода прогонки (1)

$$\left\{egin{aligned} lpha_{i+1} &= rac{-C_i}{A_ilpha_i+B_i} & ext{Из} \ eta_{i+1} &= rac{F_i-A_ieta_i}{A_ilpha_i+B_i} & \end{aligned}
ight.$$

Из первого уравнения получим:

$$\left\{egin{array}{l} lpha_2=-C_1/B_1\ eta_2=F_1/B_1 \end{array}
ight.$$

$$x_i = lpha_{i+1} x_{i+1} + eta_{i+1}, i = n-1 \dots 1$$

$$x_n = rac{F_n - A_n eta_n}{B_n + A_n lpha_n}$$

Блочные методы

Рассмотренные методы хороши, когда β большая. Если β небольшое, то можно рассмотреть «блочные методы»

Здесь q = n/p и A_i – матрица $q \times q$, x_i , b_i – вектора длины q

Пусть A_i – невырожденная и достаточно устойчивая к LU-разложению матрица

Решим параллельно q частных наборов систем уравнений

$$A_iW_i=B_i; \quad A_iV_i=C_i; \quad A_id_i=b_i$$

$$\begin{bmatrix} A_1^{-1} & & & & & \\ & A_2^{-1} & & & \\ & & & \ddots & \\ 0 & & & & A_p^{-1} \end{bmatrix} \begin{bmatrix} A_1 & B_1 & & & \\ C_2 & A_2 & B_2 & & \\ & & \ddots & & \\ & & & C_p & A_p \end{bmatrix} = \begin{bmatrix} A_1^{-1}A_1 & A_1^{-1}B_1 & & \\ A_2^{-1}A_2 & A_2^{-1}A_2 & A_2^{-1}B_2 & \\ & & \ddots & \ddots & \ddots & \\ & & & \ddots & \ddots & \ddots \end{bmatrix} = \begin{bmatrix} I & W_1 & & & \\ V_2 & I & W_2 & & \\ & \ddots & \ddots & \ddots & \ddots & \\ & & & V_p & I \end{bmatrix}$$

$$\begin{bmatrix} A_{1}^{-1} & & & & 0 \\ & A_{2}^{-1} & & & \\ & & & & \\ 0 & & & A_{p}^{-1} \end{bmatrix} \begin{bmatrix} b_{1} \\ \vdots \\ b_{p} \end{bmatrix} = \begin{bmatrix} A_{1}^{-1}b_{1} \\ \vdots \\ A_{1}^{-1}b_{1} \\ \vdots \\ A_{p}^{-1}b_{p} \end{bmatrix} = \begin{bmatrix} d_{1} \\ \vdots \\ d_{p} \end{bmatrix}$$

$$\begin{bmatrix} I & W_1 & & \\ V_2 & I & W_2 & \\ & \cdot & \cdot & \cdot & \cdot \\ & & V_p & I \end{bmatrix} \begin{bmatrix} x_1 \\ \cdot \\ x_p \end{bmatrix} = \begin{bmatrix} d_1 \\ \cdot \\ d_p \end{bmatrix}$$

ј-й столбец матрицы W_i/V_i заполнен, если не равны нулю соответствующие

столбцы в матрицах В_і/С_і

Структура редуцированной системы

Предполагаем, что $W_{i1}, W_{i3}, V_{i1}, V_{i3}$ имеют размерность β х β , а, соответственно, W_{i2}, V_{i2} имеют размерность (q - 2β) х β Аналогичным образом представлены x_i и d_i

$$W_{i} = \begin{bmatrix} W_{i1} & 0 \\ W_{i2} & 0 \\ W_{i3} & 0 \end{bmatrix}, \quad V_{i} = \begin{bmatrix} 0 & V_{i1} \\ 0 & V_{i2} \\ 0 & V_{i3} \end{bmatrix}, \quad x_{i} = \begin{bmatrix} x_{i1} \\ x_{i2} \\ x_{i3} \end{bmatrix}, \quad d_{i} = \begin{bmatrix} d_{i1} \\ d_{i2} \\ d_{i3} \end{bmatrix}$$

Пользуясь этими представлениями, можно записать первое блочное уравнение

Аналогично, второе блочное уравнение V_2 **x**₁ + **x**₂ + W_2 **x**₃ = **d**₂

$$\begin{bmatrix} V_{21} \\ V_{22} \\ V_{23} \end{bmatrix} x_{13} + \begin{bmatrix} x_{21} \\ x_{22} \\ x_{23} \end{bmatrix} + \begin{bmatrix} W_{21} \\ W_{22} \\ W_{23} \end{bmatrix} x_{31} = \begin{bmatrix} d_{21} \\ d_{22} \\ d_{23} \end{bmatrix}$$

Тоже самое делается для остальных блочных уравнений.

$$x_{13}+W_{13}x_{21}=d_{13},$$
 $V_{21}x_{13}+x_{21}+W_{21}x_{31}=d_{21},$ Редуцированная система $V_{23}x_{13}+x_{23}+W_{23}x_{31}=d_{23},$

$$x_{12} = d_{12} - W_{12}x_{21}, \quad x_{22} = d_{22} - V_{22}x_{13} - W_{22}x_{31}$$

$$x_{i2} = d_{i2} - V_{i2}x_{i-1,3} - W_{i2}x_{i+1,1}$$

Блочный алгоритм Лори-Самеха

- Шаг 1. Выполнить *LU*-разложение для A_i и решить системы для V_i, W_i, d_i
- Шаг 2. Решить редуцированную систему относительно векторов X_{i1}, X_{i3}
- Шаг 3. Вычислить векторы x_{i2}, а затем вычислить x₁₁, x_{p3}
- Шаги 1,3 имеют степень параллелизма р и решение i-го уравнения поручается i-му процессору.
- Потенциально узкое место решение редуцированной системы

Блочный алгоритм Лори-Самеха (продолжение)

Порядок редуцированной системы для различных р и β (2 β (p-1))

p \ β	1	2	10	20	50
2	2	4	20	40	100
10	18	36	180	360	900
20	38	76	380	760	1900
50	98	196	980	1960	4900