PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION

B4

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

C07D 209/08, A61K 31/40, C07D 209/30, 409/12, 209/12

(11) International Publication Number:

WO 98/08817

(43) International Publication Date:

5 March 1998 (05.03.98)

(21) International Application Number:

PCT/US97/15026

A1

(22) International Filing Date:

26 August 1997 (26.08.97)

(30) Priority Data:

08/703,562

27 August 1996 (27.08.96)

US

(71) Applicant: AMERICAN HOME PRODUCTS CORPORA-TION [US/US]; Five Giralda Farms, Madison, NJ 07940-0874 (US).

(72) Inventors: MEWSHAW, Richard, Eric; 21 Boxwood Drive, Princeton, NJ 08540 (US). WEBB, Michael, Byron; Apartment 2401, 9071 Mill Creek Road, Levittown, PA 19054 (US).

(74) Agents: ALICE, Ronald, W.; American Home Products Corporation, Patent Law Dept. - 2B, One Campus Drive, Parsippany, NJ 07054 (US) et al.

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: 4-AMINOETHOXY INDOLES AS DOPAMIN D2 AGONISTS AND AS 5HT1A LIGANDS

(57) Abstract

Compounds of the formula (I) in which R_I is hydrogen, alkyl, cycloalkylalkyl, arylalkyl, (haloaryl)alkyl, (alkoxy-aryl)alkyl, thienylmethyl, furanylmethyl, pyridinylmethyl, alkylphenyl, 4-fluoro-butyrophenome or 6-fluoro-1,2-benzisoxasol-yl-propyl; X is hydrogen, halogen, cyano, alkyl, acetyl, trifluoroacetyl, trifluoromethyl or formyl; Y is hydrogen, halogen, alkoxy or alkyl; or a pharmaceutically acceptable salt thereof are inhibitors of dopamine synthesis and release, useful in the treatment of schizophrenia, Parkinson's Disease, Tourette's Syndrome, alcohol addiction, cocaine addiction, and addiction to analogous drugs and they also have affinity for the 5-HT_{IA} receptors which characterizes them as useful in the treatment of

$$H = \begin{pmatrix} Y \\ N \end{pmatrix} \begin{pmatrix} Y \\ N \end{pmatrix}$$

diseases attending disturbances in the serotinergic systems, such as anxiety, stress, depression, sexual dysfunctions and sleep disturbances.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	. ES	Spain	LS	Lesotho	SI	Slovenia
AM	· Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvin	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados .	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil .	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	· NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NI.	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zinibabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		EOEDWC
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	.LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

4-AMINOETHOXY INDOLES AS DOPAMIN D2 AGONISTS AND AS 5HT1A LIGANDS

BACKGROUND OF INVENTION

Efforts to induce antipsychotic activity with dopamine autoreceptor agonists have been successful [Dorsini et al., Adv. Biochem. Psychopharmacol 16, 645-648, (1977); Tamminga et al., Science 200, 567-568; and Tamminga et al., Psychiatry 398-402, (1986)]. A method for determining intrinsic activity at the dopamine D2 receptor was recently reported [Lahti et al., Mol. Pharm. 42, 432-438, (1993)]. Intrinsic activity is predicted using the ratio of the "low-affinity agonist" (LowAg) state of the receptor and the "high-affinity agonist" (HighAg) state of the receptor, i.e. LowAg/HighAg. These ratios correlate with the agonist, partial agonist and antagonist activities of a given compound, which activities characterize a compound's ability to elicit an antipsychotic effect.

15

20

10

5

U.S. Pat. Nos. 3,906,000 and 3,904,645 describe a series of indoles which are useful as oral hypoglycemic agents. Troxler et al. 66-25558F: WPIDS describes a series of indoles including 4-(2-hydroxy-3-isopropyl- or secondary butyl-amino-propoxy)-indoles which are useful as \(\beta\)-adrenergic blocking agents for the treatment of heart diseases.

DESCRIPTION OF THE INVENTION

In accordance with this invention, there is provided a group of aminoethoxy indole derivatives which are useful antipsychotic agents. In addition, this invention provides processes for preparation of the compounds and methods for their use in treating diseases of the central nervous system. The aminoethoxy indoles of the invention are illustrated by the following Formula I:

$$H \xrightarrow{Y} O \xrightarrow{N-R_1} N - R_1$$

in which:

5

10

R₁ is hydrogen, alkyl of 1 to 10 carbon atoms, cycloalkylalkyl of 6 to 12 carbon atoms, arylalkyl of 7 to 12 carbon atoms, (haloaryl)alkyl of 7 to 12 carbon atoms, (alkoxyaryl)alkyl of 8 to 12 carbon atoms, thienylmethyl, furanylmethyl, pyridinylmethyl, alkylphenyl of 7 to 12 carbon atoms, 4-fluorobutyrophenone or 6-fluoro-1,2-benzisoxazol-yl-propyl;

I

X is hydrogen, halogen, cyano, alkyl of 1 to 6 carbon atoms, acetyl, trifluoroacetyl, trifluoromethyl or formyl;

Y is hydrogen, halogen, alkoxy of 1 to 6 carbon atoms or alkyl of 1 to 6 carbon atoms;

or a pharmaceutically acceptable salt thereof.

More specifically, the compounds of this invention are 4-aminoethoxy-indoles illustrated by Formula I.

$$H \xrightarrow{Y} O \xrightarrow{N-R_1} N \xrightarrow{R_1}$$

Ι.

in which:

5

10

R₁ is hydrogen, alkyl of 1 to 10 carbon atoms, cyclohexylmethyl, arylalkyl of 7 to 12 carbon atoms, (haloaryl)alkyl of 7 to 12 carbon atoms or (alkoxyaryl)alkyl of 8 to 12 carbon atoms;

X is hydrogen, halogen, cyano, alkyl of 1 to 6 carbon atoms, acetyl, trifluoroacetyl, trifluoromethyl or formyl;

Y is hydrogen, halogen, alkoxy of 1 to 6 carbon atoms or alkyl of 1 to 6 carbon atoms;

or a pharmaceutically acceptable salt thereof.

More preferred compounds are those of Formula I in which R₁ is alkyl of 1 to 6 carbon atoms, benzyl, halobenzyl, alkoxybenzyl of 8 to 12 carbon atoms or alkylbenzyl of 8 to 12 carbon atoms; X is hydrogen, halogen or trifluoroacetyl and Y is hydrogen or halogen; or a pharmaceutically acceptable salt thereof.

The pharmaceutically acceptable acids from which addition salts are conventionally produced, having the same utility as the free base, include both inorganic or organic acids. For example: fumaric, maleic, benzoic, ascorbic, pamoic, succinic, bismethylenesalicylic, methanesulfonic, ethanedisulfonic, acetic, oxalic, propionic, tartaric, salicyclic, citric, gluconic, lactic, malic, mandelic, cinnamic, citraconic, aspartic, stearic, palmitic, itaconic, glycolic, p-aminobenzoic, glutamic, benzene-sulfonic, hydrochloric hydrobromic, sulfuric, cyclohexylsulfamic, phosphoric, nitric acid, and the like, are suitable for this purpose.

The compounds of Formula I are generally prepared by the overall reaction sequence indicated in Schemes I, II and III as follows:

-4-

Scheme I

HO

$$R_1$$
 R_1
 R_1

HN
$$R_1$$

NCS or

 R_1
 R_1
 R_1
 R_1
 R_1
 R_1

5

$$\begin{array}{c|c}
OH & CI \\
O & OH \\
NO_2 & MEK
\end{array}$$

$$\begin{array}{c|c}
OH & OH \\
OH$$

Scheme III

15

HN OH

$$R = \frac{13 \times 10^{-1}}{14 \times 10^{-1}}$$
 $R = \frac{13 \times 10^{-1}}{14 \times 10^{-1}}$
 $R = \frac{13 \times 10^{-1}}{14 \times 10^{-1}}$

5

10

The compounds of this invention are dopamine agonists with various degrees of intrinsic activity. Some are selective autoreceptor agonists and others bind to the postsynaptic D₂ receptors. The autoreceptor agonists act as partial agonists (i.e. activate only autoreceptors versus postsynaptic D₂ dopamine receptors). As such, they provide functional modulation of the dopamine systems of the brain without the

16

excessive blockade of the postsynaptic dopamine receptors which have been observed to be responsible for the serious side effects frequently exhibited by agents found otherwise clinically effective for the treatment of schizophrenia. Activation of the dopamine autoreceptors results in reduced neuronal firing as well as inhibition of dopamine synthesis and release and therefore provide a means of controlling hyperactivity of the dopaminergic systems with essentially no extrapyramidal side effects (EPS).

The compounds of this invention were also found to have affinity for the 5-HT1A receptors and therefore have the ability to modulate serotonergic activity. As such, they are useful in the treatment of diseases characterized by disturbances in the dopaminergic and serotinergic systems, such as schizophrenia, Parkinson's disease, Tourette's Syndrome, alcohol addiction, cocaine addiction, anxiety, stress, depression, sexual dysfunctions and sleep disturbances.

15

20

25

30

10

5

The following examples illustrate, without limitation, methods for production of the compounds of this invention.

Intermediate 1 N-Benzyl-N-(2-hydroxy-ethyl)-carbamic acid tert-butyl ester

A solution of N-benzylaminoethanol (4.8 g, 31.9 mmol) and di-tertbutyl-dicarbonate (7.5 g, 34.4 mmol) in anhydrous tetrahydrofuran (30 mL) was stirred at ambient temperature for 18 hours. The solvent was removed and the product purified by flash chromatography (ethyl acetate-hexane, 1:1) to afford 8.0 g (99%) of a thick oil.

Elemental analysis for C14H21NO3

Calc'd: C, 66.91; H, 8.42; N, 5.57

Found: C, 66.64; H, 8.59; N, 5.60

This general procedure utilizing N-methylaminoethanol afforded:

(1b) N-Methyl-N-(2-hydroxy-ethyl)-carbamic acid tert-butyl ester as a clear oil (83.7%); MS m/z 175 (M+).

- 8 -

Elemental analysis for C8H₁₇NO₃ Calc'd C, 54.84; H, 9.78; N, 7.99 Found C, 54.35; H, 10.00; N, 7.84

5

Intermediate 2

Method A

N-Benzyl-N-[2-(1H-indol-4-yloxy)-ethyllcarbamic acid tert-butyl ester

10

15

To a solution of benzyl-(2-hydroxy-ethyl)-carbamic acid tert-butyl ester (12.68 g, 50.5 mmol), 4-hydroxyindole (4.48 g, 33.6 mmol) and triphenylphosphine (14.1 g, 53.8 mmol) in anhydrous tetrahydrofuran (130 mL) was slowly added a solution of diethylazidocarboxylate (9.38 g, 53.8 mmol) in tetrahydrofuran (15 mL) at room temperature. The reaction mixture was stirred for 16 hours and then the solvent was removed and the crude product dissolved in diethyl ether and diluted with hexanes. After standing for 30 minutes, the solid was filtered and the filtrate concentrated. The product was purified by flash chromatography to afford 8.6 g of a yellow oil (69.7 %).

20

30

Elemental analysis for C22H26N2O3

Calc'd: C, 72.11; H, 7.15; N, 7.64 Found: C, 71.39; H, 7.28; N, 7.21

This general procedure utilizing N-methyl-N-(2-hydroxy-ethyl)-carbamic acid tert-butyl ester, N-(2-hydroxyethyl)-phthalimide afforded, chloroethanol or 4-chloro-3-nitrophenol afforded, respectively:

- (2b) N-Methyl-N-[2-(1H-indol-4-yloxy)-ethyl]-carbamic acid tert-butyl ester as a yellow oil; (77.2 %); MS EI m/z 290 (M+).
- (2c) N-[2-(1H-Indol-4-yloxy)-ethyl]-phthalimide as a white solid: (13.2 %); mp 155-157°C; IR (KBr) 3400, 1725 cm-1; MS EI m/e 306 (M+).

Elemental analysis for C₁₈H₁₄N₂O₃

Calc'd: C, 70.58; H, 4.61; N, 9.15.

Found: C, 70.33; H, 4.43; N, 9.11

- 5 (2d) 2-(1H-Indol-4-yloxy)-chloroethane: (57 %), mp 62-63 °C.
 - (2e) 1-(2-Chloroethoxy)-4-chloro-3-nitrobenzene: (93%); mp 46-48 °C; MS EI *m/e* 235, 237, 239 (M⁺); ¹H NMR (400 MHz, DMSO-d6) δ 3.95 (t, 2H, J=5.2 Hz), 4.36 (t, 2H, J=5.2 Hz), 7.32 (dd, 1H, J=3.2, J=8.9 Hz), 7.66, (d, 1H, J=9 Hz), 7.69, (d, 1H, J=3.2 Hz).

Elemental analysis for C8H7Cl2NO3

Calc'd: C, 40.71; H, 2.99; N, 5.93.

Found: C, 40.43, H, 2.71; N, 5.62.

15

ľ

10

(2f) 1-(2-Chloroethoxy)-4-chloro-3-nitrobenzene

Method B

To a 2L 3-neck round-bottom flask was added 4-chloro-3-nitro-phenol (50 g, 0.29 mol), potassium carbonate (100g, 0.72 mol), dichloroethane (315 g, 3.2 mol), potassium iodide (5 g) and 2-butanone (1 L). The mixture was mechanically stirred and heated to reflux for 44 hours then allowed to cool to room temperature and the solids were filtered. The solvent was evaporated under vacuum and the oil dissolved in diethyl ether (300 mL) and washed with 10 % sodium hydroxide. The organic layer was dried over anhydrous magnesium sulfate, filtered, and the solvent removed under vacuum. The product was dissolved in 1:1 methylene chloride-hexanes and filtered through silica. Upon concentration 54.5 g (78.% %) of product was afforded as a white solid: mp 44.5-46 °C.

30 Elemental analysis for C8H7Cl2NO3

Calc'd: C, 40.71; H, 2.99; N, 5.93.

Found: C, 40.89, H, 2.70; N, 5.83.

- 10 -

Intermediate 3 7-Chloro-4-(2-chloroethoxy)-1H-indole

To a solution of 1-(2-chloroethoxy)-4-chloro-3-nitrobenzene (10.00 g, 0.04236 mol) in THF (230 mL) stirred in a cold bath at -50 to -40 °C was added a THF solution of vinylmagnesium bromide (132 mL, 1.0 M, 0.132 mol) over 2 minutes. After stirring in the cold bath for 2-2.5 hours, saturated NH4Cl (150 mL) was added to the cold solution and it was removed from the cold bath. Enough 1 M HCl was added to dissolve the precipitated solids. This two phase system was stirred for 0.5 hour at most. The layers were separated and the aqueous phase was extracted once with Et2O. 10 Combination of the Et₂O and THF followed by drying over MgSO₄ and evaporation gave 15.43 g of a dark oil. This was purified by chromatography on silica gel using a three component elutant which consisted of 80% CH2Cl2 and 20% of a gradient of EtOAc/hexane. This gave the product as a yellow solid: 3.32 g (34%); mp 68-72 °C, MS EI m/e 229, 231, 233 (M⁺); ¹H NMR (400 MHz, DMSO-d6) δ 3.99 (t, 2H, J=5.1 Hz), 4.34 (t, 2H, J=5.0 Hz), 6.51 (t, 1H, J=2.7 Hz), 6.53 (d, 1H, J=7.8 Hz), 7.04 (d, 1H, J=8.0 Hz), 7.29 (t, 1H, J=2.7 Hz), 11.43 (s, 1H).

Elemental analysis for C₁₀H₉Cl₂NO

20 Calc'd: C, 52.20; H, 3.94; N, 6.09.

Found: C, 52.09; H, 3.92; N, 5.96.

Intermediate 4 3,7-Dichloro-4-(2-chloroethoxy)-1H-indole

25

30

35

15

To a solution of 7-chloro-4-(2-chloroethoxy)-1H-indole (4.61 g, 20.0 mmol) in acetonitrile (100 mL) was added N-chlorosuccimide (2.94 g, 2.20 mmol) at room temperature. The reaction was allowed to stir for 1.5 hour then poured into water (100 mL) and extracted with methylene chloride (200 mL). The organic layer was dried over anhydrous magnesium sulfate, filtered, and the solvent removed under vacuum to afford a dark solid. This material was chromatographed (methylene chloride-hexanes: 1:2) to afford 4.15 g (78.4 %) as a white solid: mp 106-107.5 °C; IR (KBr) 3400 cm-1; MS EI m/e 263, 265, 267, 269 (M+); 1 H NMR (CDCl₃) δ 3.91 (2H, t, J=6.2 Hz), 4.33 (2H, t, J=6.2 Hz), 6.47 (1H, d, J= 8.4 Hz), 7.08-7.13 (2H, m), 8.26 (1H, bs, NH).

Elemental analysis for C22H25N2O3Cl

Calc'd: C, 65.91; H, 6.28; N, 6.99

Found: C, 65.61; H, 6.21; N, 6.89

5

EXAMPLE 1

[2-(1H-Indol-4-yloxy)-ethyl]-(4-phenyl-butyl)-amine

A solution of the 2-(1H-indol-4-yloxy)-chloroethane (1.80 g, 9.20 mmol) and 4-phenyl-1-aminobutane (4.12g, 27.6 mmol) in anhydrous dimethylsulfoxide (25 mL) was heated to 80 °C for 6 hours. The reaction mixture was poured into water (150 mL) and extracted with methylene chloride (3x 100 mL). The organic layers were combined and dried over anhydrous magnesium sulfate, filtered, and the solvent concentrated. Purification by flash chromatography (5%-10% methanol-CH₂Cl₂) afforded 1.89 g (65.9%) of a tan oil: MS *m/e* 308 (M+). The oxalate salt was prepared in tetrahydrofuran: mp 202-204 °C.

Elemental analysis for C20H24N2O•C2H2O4•0.5H2O

Calc'd: C, 64.85; H, 6.68; N, 6.87.

Found: C, 64.66; H, 6.61; N, 6.70.

This general procedure utilizing 7-chloro-4-(2-chloroethoxy)-1H-indole or 3,7-dichloro-4-(2-chloroethoxy)-1H-indole and reacting with either benzylamine, 4-fluorobenzyl amine, 4-chlorobenzyl amine or thiophene-2-methylamine afforded:

25

20

- (1b) Benzyl-[2-(7-chloro-1H-indol-4-yloxy)-ethyl]-amine (68%). The furnarate salt was prepared in isopropanol as colorless crystals; mp 168-170 °C; MS EI *mle* 300, 302 (M⁺).
- 30 Elemental analysis for C₁₇H₁₇ClN₂O•0.5C₄H₄O₄•0.25C₃H₈O

Calc'd: C, 63.45; H, 5.66; N, 7.49

Found: C, 63.12; H, 5.61; N, 7.31.

(1c) Benzyl-[2-(3,7-dichloro-1H-indol-4-yloxy)-ethyl]-amine (67.8 %): The fumarate salt was prepared and characterized: mp 201-202 °C; MS EI m/e 334, 336, 338 (M⁺).

5 Elemental analysis for C17H16Cl2N2O•0.5C4H4O4

Calc'd: C, 58.03; H, 4.61; N, 7.12.

Found: C, 57.88; H, 4.45; N, 6.96.

(1d) 4-Fluorobenzyl-[2-(3,7-dichloro-1H-indol-4-yloxy)-ethyl]-amine (64.5 %): mp 102.5-103.5 °C.

Elemental analysis for C17H15FCl2N2O

Calc'd: C, 57.81; H, 4.28; N, 7.93.

Found: C, 57.68; H, 4.16; N, 7.86.

15

(1e) 4-Chlorobenzyl-[2-(3,7-dichloro-1H-indol-4-yloxy)-ethyl]-amine (59.9 %): mp 115-116 °C; MS EI 368 m/e (M⁺).

Elemental analysis for C17H15Cl3N2O+0.25H2O

20 Calc'd: C, 54.57; H, 4.17; N, 7.49.

Found: C, 54.43; H, 3.82; N, 7.32.

(1f) Thien-2-ylmethyl-[2-(3,7-dichloro-1H-indol-4-yloxy)-ethyl]-amine (76.3%): mp 99-101 °C, MS EI 340, 342, 344 m/e (M+).

25

Elemental analysis for C15H15Cl2N2OS

Calc'd: C, 52.70; H, 4.13; N, 8.21.

Found: C, 52.70; H, 3.95; N, 8.19.

30

Intemediate 5 N-Benzyl-N-[2-(1H-indol-3-(2.2.2-trifluoroethanoyl)-4-

yloxy)-ethyll-carbamic acid tert-butyl ester

To a stirring anhydrous solution of benzyl-[2-(1H-indol-4-yloxy)-ethyl]-35 carbamic acid tert-butyl ester (1.85 g, 5.05 mmol) and TEA (0.8 mL, 0.6 g, 6 mmol) in CH₂Cl₂ was added trifluoroacetic acid anhydride (1.1 mL, 1.6 g, 7.8 mmol) over 5 minutes at room temperature. The reaction mixture was stirred at room temperature over-night. It was washed twice with H₂O and then dried over MgSO₄. Evaporation of solvent gave 3.38g of residue. This was purified by chromatography on silica gel with a hexane/EtOAc gradient to give the title compound as an amorphous light yellow solid: 1.15g (49%); MS EI *mle* 462 (M⁺); IR(KBr) 1719 cm⁻¹, 1744 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ 1.33 and 1.38 (2s, 9H, rotamers), 3.50-3.63 (2m, 2H, rotamers), 4.15 (t, 2H, J=5.5 Hz), 4.54 (s, 2H), 6.77 (d, 1H, J=7.9 Hz), 7.15 (d, 1H, J=8.1 Hz), 7.20-7.27 (m, 4H), 7.29-7.35 (m, 2H), 8.32 (s, 1H), 12.58 (s, 1H).

10

15

5

Intermediate 6 N-[2-(1H-indol-4-yloxy)-ethyll-N-(4-phenyl-butyl)-trifluoroacetamide

To a solution of [2-(1H-indol-4-yloxy)-ethyl]-(4-phenyl-butyl)-amine (2.38 g, 7.72 mmol) and triethylamine (1.56 g, 15.4 mmol) in anhydrous methylene chloride (30 mL) at room temperature was slowly added trifluoroacetic anhydride (2.42 g, 11.6 mmol) over 10 minutes. The reaction was stirred for 1 hour and then poured into a 1:1 solution of saturated sodium carbonate-water (50 mL) and extracted with methylene chloride (2x100 mL). The organic layer dried over anhydrous magnesium sulfate, filtered, and the solvent evaporated. Purification by flash chromatography (20% ethyl acetate-hexanes) afforded 1.61 g (51.6%) of an off-white solid: mp 70-72 °C; MS m/e 404 (M+); IR (KBr) 3360, 2950, 1725 cm⁻¹.

25

20

Intermediates 7 & 8 N-Benzyl-N-[2-(7-chloro-1H-indol-4-yloxy)ethyll-2.2.2-trifluoro-acetamide and

N-Benzyl-N-[2-(7-chloro-3-trifluoroacetyl-1H-indol-4-yloxy)ethyll-2.2.2-trifluoro-acetamide

30

35

To a solution of benzyl-[2-(7-chloro-1H-indol-4-yloxy)-ethyl]-amine (4.55 g, 15.1 mmol) in CH₂Cl₂ (200 mL) at room temperature was added triethylamine (TEA) (2.15 mL, 1.56 g, 15.4 mmol) and then trifluoroacetic acid anhydride (4.5 mL, 6.7 g, 32 mmol) over 20 minutes. The solution was stirred at room temperature over-night. It

was washed twice with H₂O. Drying over MgSO₄ and evaporation of the solvent gave 7.33 g of residue which consisted primarily of the two products. These were separated and purified by chromatography on silica gel with a gradient of CH₂Cl₂/hexane/EtOAc (10/80/10, 4/82/14, 0/86/14, 0/80/20) which first eluted N-benzyl-N-[2-(7-chloro-1H-indol-4-yloxy)-ethyl]-2,2,2-trifluoro-acetamide as light yellow crystals: 2.79 g (47%); mp 114-116 °C; MS EI *m/e* 396 (M⁺); IR (KBr) 1682 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.79 and 3.86 (2t, 2H, J=5.6 Hz, J=5.0 Hz, rotamers), 4.28 and 4.31 (2t, 2H, J=5.6 Hz, J=5.0 Hz, rotamers), 4.89 and 4.93 (2s, 2H, rotamers), 6.38 and 6.40 (2d, 1H, J=8.3 Hz, J=8.5 Hz, rotamers), 6.64-6.68 (m, 1H), 7.05 and 7.08 (2d, 1H, J=8.1 Hz, J=8.3 Hz, rotamers); 7.19-7.44 (m, 6H), 8,42 (s, 1H).

Elemental analysis for C₁₉H₁₆ClF₃N₂O₂

Calc'd: C, 57.51; H, 4.06; N, 7.06.

Found: C, 57.11; H, 3.88; N, 7.01.

15

20

10

5

N-Benzyl-N-[2-(7-chloro-3-trifluoroacetyl-1H-indol-4-yloxy)-ethyl]-2,2,2-trifluoro-acetamide was then eluted off the column to afford 3.18 g (43%) of crystalline solid; mp 152-154 °C; MS FAB m/e 493 (MH+); IR (KBr) 1685 cm⁻¹, 1699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.84 and 4.01 (2t, 2H, J=5.0 Hz, J=5.3 Hz, rotamers), 4.26 and 4.31 (2t, 2H, J=5.5 Hz, J=5.0 Hz, rotamers), 4.92 and 5.00 (2s, 2H, rotamers), 6.63 and 6.66 (2d, 1H, J=8.8 Hz, J=8.8 Hz, rotamers), 7.27-7.42 (m, 6H), 8.04-8.08 (m, 1H), 9.13 (s, 1H).

Elemental analysis for C21H15ClF6N2O3)

25 Calcd: C, 51.18; H, 3.07; N, 5.68.

Found: C, 51.31; H, 2.89; N, 5.58.

Intermediate 9 N-Benzyl-N-[2-(3-chloro-1H-indol-4-yloxy)-ethyllcarbamic acid tert-butyl ester

30

35

To a solution of N-benzyl-N-[2-(1H-indol-4-yloxy)-ethyl]-carbamic acid tert-butyl ester (6.3 g, 17.2 mmol) in tetrahydrofuran (100 mL) was added N-chlorosuccinimide (2.3 g, 17.2 mmol) in two portions over 1 hour. The reaction was allowed to stir for 18 hours and the solvent removed under vacuum. The mixture was

dissolved in diethyl ether and the insoluble solids filtered. The solvent was again removed and the product purified by chromatography (30% ethyl acetate-hexanes) to afford 5.65 g of white solid (81.9 %): mp 114-116 °C.

Elemental analysis for C22H25N2O3Cl

Calc'd: C, 65.91; H, 6.28; N, 6.99

Found: C, 65.61; H, 6.21; N, 6.89

This general procedure utilizing N-methyl-N-[2-(1H-indol-4-yloxy)-ethyl]carbamic acid tert-butyl ester, N-[2-(1H-Indol-4-yloxy)-ethyl]-phthalimide, N-benzylN-[2-(7-chloro-1H-indol-4-yloxy)-ethyl]-2,2,2-trifluoro-acetamide and [2-(1H-indol-4-yloxy)-ethyl]-(4-phenyl-butyl)-trifluoroacetamide afforded, respectively:

(9b) N-Methyl-N-[2-(3-chloro-1H-indol-4-yloxy)-ethyl]-carbamic acid tert-butyl ester as a white solid: (74.9 %); mp 153-154 °C; MS FAB m/z 325 (M⁺+H⁺).

Elemental analysis for C₁₆H₂₁N₂O₃Cl Calc'd C, 59.17; H, 6.52; N, 8.62 Found C, 59.08; H, 6.33; N, 8.49

20

5

(9c) N-[2-(3-Chloro-1H-indol-4-yloxy)-ethyl]-phthalimide as yellowish white crystals: mp 161-163 °C.

Elemental analysis for C18H13N2O3•0.33H2O

25 Calc'd: C, 62.36; H, 3.97; N, 8.08

Found: C, 62.37; H, 3.68; N, 8.07

(9d) N-Benzyl-N-[2-(3,7-dichloro-1H-indol-4-yloxy)-ethyl]-2,2,2-trifluoro-acetamide as a white solid: (82%); mp 156-158 °C; MS EI *m/e* 430, 432, 434 (M⁺); IR(KBr) 1680 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.76 and 3.81 (2t, 2H, J=1.3 Hz, J=1.4 Hz, rotamers), 4.14 and 4.15 (2t, 2H, J=1.5 Hz, J=1.6 Hz, rotamers), 4.95 and 4.96 (2s, 2H, rotamers), 6.41 and 6.43 (2d, 1H, J=8.4 Hz, J=8.7 Hz, rotamers), 7.095 and 7.097 (2d, 1H, J=8.2 Hz, J=8.2 Hz, rotamers), 7.16 (d, 1H, J=2.5 Hz), 7.22-7.41 (m, 5H), 8.27-8.35 (m, 1H).

- 16 -

Elemental analysis for C19H15Cl2F3N2O2

Calc'd: C, 52.92; H, 3.51; N, 6.50

Found: C, 52.54; H, 3.26; N, 6.29.

5 (9e) N-[2-(3-chloro-1H-indol-4-yloxy)-ethyl]-N-(4-phenyl-butyl)-trifluoroacetamide: (71.4 %), mp 113-114°C; MS m/e 438 (M+).

Elemental analysis for C22H22N2O2ClF3

Calc'd: C, 60.21; H, 5.05; N, 6.38

10 Found: C, 60.51; H, 4.94; N, 6.31.

EXAMPLE 2 [2-(3-Chloro-1H-indol-4-yloxy)ethyll-(4-phenyl-butyl)-amine

15

20

25

A mixture of [2-(3-chloro-1H-indol-4-yloxy)-ethyl]-(4-phenyl-butyl)-trifluoro-acetamide(1.15 g, 2.62 mmol) and potassium carbonate (2.53 g, mmol) in a solution of methanol-water (50 mL:3 mL) was heated to reflux for 3 hours. The solvent was removed under vacuum and the crude product was dissolved in methylene chloride (150 mL) and washed with water (100 mL). The aqueous layer was extracted again with methylene chloride (100 mL) and the combined organic layers dried over anhydrous magnesium sulfate, filtered, and the solvent evaporated. The product was purified by flash chromatography (5% methanol-methylene chloride) to afford 847 mg (94.3 %) of a tan oil: MS m/e 342 (M+), 344 (M+). The fumarate salt was prepared in isopropanol: mp 195-196 °C.

Elemental analysis for C20H23N2OCl•0.5C4H4O4

Calc'd: C, 65.91; H, 6.29; N, 6.99

Found: C, 66.15; H, 6.38; N, 6.81.

30

This general procedure utilizing N-benzyl-N-[2-(3,7-dichloro-1H-indol-4-yloxy)-ethyl]-2,2,2-trifluoro-acetamide, and N-benzyl-N-[2-(7-chloro-1H-indol-4-yloxy)-ethyl]-2,2,2-trifluoro-acetamide afforded, respectively:

- (2b) Benzyl-[2-(3,7-dichloro-1H-indol-4-yloxy)-ethyl]-amine, 92 %. The fumarate salt was prepared from ethanol as a white powder; mp 201-202 °C; MS EI m/e 334, 336, 338 (M⁺).
- 5 Elemental analysis for C₁₇H₁₆Cl₂N₂O•0.5C₄H₄O₄ Calc'd: C, 58.03; H, 4.61; N, 7.12. Found: C, 57.88; H, 4.45; N, 6.96.
- (2c) 1-[4-(2-Benzylamino-ethoxy)-7-chloro-1H-indol-3-yl]-2,2,2-trifluoro-10 ethanone: (80 %). The furnarate salt was prepared in ethanol: mp 215 °C (dec); MS FAB m/e 397 (MH⁺).

Elemental analysis for C19H16ClF3N2O2•0.5C4H4O4

Calc'd: C, 55.46; H, 3.99; N, 6.16.

15 Found: C, 55.24; H, 3.80; N, 6.08.

EXAMPLE 3

1-[4-(2-Benzylamino-ethoxy)-1H-indol-3yl]-2,2,2-trifluoro-ethanone

20

25

30

To a solution of N-benzyl-N-[2-(1H-indol-3-(2,2,2-trifluoroethanoyl)-4-yl-oxy)-ethyl]-carbamic acid tert-butyl ester (1.1 g, 2.4 mmol) in methylene chloride (60mL) was added trifluoroacetic acid (TFA) (0.21 g, 1.8 mmol). Thin layer chromatography (TLC) (CH2Cl2/CH3OH, 88/12v/v) showed no change after 1 hour at room temperature. TFA (0.74 g, 6.5 mmol) was added and the mixture stirred 2 hours. Some product was then visible in the TLC. TFA (0.86 g, 7.5 mmol) was added and the mixture was stirred overnight. TLC showed some starting material. TFA (0.06 g, 0.5 mmol) was added and the mixture was stirred for 1 hour. The reaction mixture was washed once with saturated NaHCO3 (30-40 mL). It was dried over MgSO4. Evaporation of the solvent gave 1.02 g of residue. This was purified by chromatography on silica gel with a gradient of CH2Cl2/CH3OH (96/4 and 95/5) to give the product as a light tan oil (0.78 g, 90%).

To a hot solution of fumaric acid (0.2557 g, 2.203 mmol) in EtOH (15 mL) was added a hot solution of the base in EtOH (15 mL). This mixture stood at room temperature for 2 hours. It was filtered to give the title compound as a white powder: 0.5398 g (54%); decomp. >220 °C; MS EI m/e 362 (M+); IR (KBr) 1660 cm⁻¹.

5

Elemental analysis for C19H17F3N2O2•0.5C4H4O4

Calc'd: C, 60.00; H, 4.56; N, 6.66.

Found: C, 60.12; H, 4.40; N, 6.75.

10

This general procedure utilizing benzyl-[2-(1H-indol-4-yloxy)-ethyl]-carbamic acid tert-butyl ester afforded

(3b) N-Benzyl-[2-(1H-indol-4-yloxy)]-ethylamine, (26 %). The fumarate salt was prepared in isopropanol: mp 158-165 °C.

15

Elemental analysis for C17H18N2O•C4H4O4

Calc'd: C, 65.96; H, 5.80; N, 7.33.

Found: C, 65.94; H, 5.87; N, 7.19.

20

Affinity for the dopamine autoreceptor was established by a modification of the standard experimental test procedure of Seemen and Schaus, European Journal of Pharmacology 203, 105-109 (1991), wherein homogenized rat striatal brain tissue is incubated with ³H-quinpirole (Quin.) and various concentrations of test compound, filtered and washed and counted in a Betaplate scintillation counter.

25

30

High affinity for the dopamine D-2 receptor was established by the standard experimental test procedure of Fields, et al., Brain Res., 136, 578 (1977) and Yamamura et al., eds., Neurotransmitter Receptor Binding, Raven Press, N.Y. (1978) wherein homogenized limbic brain tissue is incubated with ³H-spiroperidol (Spiper.) and various concentrations of test compound, filtered and washed and shaken with Hydrofluor scintillation cocktail (National Diagnostics) and counted in a Packard 460 CD scintillation counter.

High affinity for the serotonin 5-HT₁A receptor was established by testing the claimed compound's ability to displace [³H] 8-OHDPAT (dipropylaminotetralin) from the 5-HT₁A serotonin receptor following the procedure of Hall et al., J. Neurochem.

5 44, 1685 (1985). This procedure is employed to analogize this property of the claimed compounds with that of buspirone, which is a standard for anxiolytic activity, and, like the compounds of this invention, displays potent affinity for the 5-HT₁A serotonin receptor subtype. The anxiolytic activity of buspirone is believed to be, at least partially, due to its 5-HT₁A receptor affinity (Vander Maclen et al., Eur. J. Pharmacol. 1986, 129 (1-2) 133-130).

The results of these standard experimental test procedures were as follows:

Example No.	IC50 (nM) D2 Quin.	IC ₅₀ (nM) D ₂ Spiper	IC ₅₀ (nM) 5-HT _{1A}	Ratio ant/agonist
(1a)	10.5	184	0.71	18
(1b)	14.9	183	386	12
(1c)	13.6	284	438	21
(1f)	22.5	405	-	18
(2a)	9.55	193	0.99	20
(2b)	13.6	284	438	21
(2c)	54.8	449	102	8
(3a)	5.93	286	60	48
(3b)	19.4	501	36	26

Hence, the compounds of this invention effect the synthesis of the neurotransmitter dopamine and thus are useful in the treatment of dopaminergic disorders such as schizophrenia, Parkinson's disease, Tourette's Syndrome, alcohol addiction, cocaine addiction, and addiction to analagous drugs. These compounds also have affinity for the 5-HT1A receptors and therefore have the ability to modulate serotinergic activity. As such, they are also useful in the treatment of diseases characterized by disturbances in the serotinergic systems, such as anxiety, stress, depression, sexual dysfunctions and sleep disturbances.

10

15

20

5

Applicable solid carriers for pharmaceutical compositions containing the compounds of this invention can include one or more substances which may also act as flavoring agents, lubricants, solubilizers, suspending agents, fillers, glidants, compression aids, binders or tablet-disintergrating agents or an encapsulating material. In powders, the carrier is a finely divided solid which is in admixture with the finely divided active ingredient. In tablets, the active ingredient is mixed with a carrier having the necessary compression properties in suitable proportions and compacted in the shape and size desired. The powders and tablets preferably contain up to 99% of the active ingredient. Suitable solid carriers include, for example, calcium phosphate, magnesium stearate, talc, sugars, lactose, dextrin, starch, gelatin, cellulose, methyl cellulose, sodium carboxymethyl cellulose, polyvinylpyrrolidine, low melting waxes and ion exchange resins.

Liquid carriers may be used in preparing solutions, suspensions, emulsions, syrups and elixirs. The active ingredient of this invention can be dissolved or suspended in a pharmaceutically acceptable liquid carrier such as water, an organic solvent, a mixture of both or pharmaceutically acceptable oils or fat. The liquid carrier can contain other suitable pharmaceutical additives such as solubilizers, emulsifiers, buffers, preservatives, sweeteners, flavoring agents, suspending agents, thickening agents, colors, viscosity regulators, stabilizers or osmo-regulators. Suitable examples of liquid carriers for oral and parenteral administration include water (particularly containing additives as above e.g. cellulose derivatives, preferably sodium carboxymethyl cellulose solution), alcohols (including monohydric alcohols and polyhydric alcohols e.g. glycols) and their derivatives, and oils (e.g. fractionated coconut oil and arachis oil). For parenteral administration the carrier can also be an oily

5

10

15

20

ester such as ethyl oleate and isopropyl myristate. Sterile liquid carriers are used in sterile liquid form compositions for parenteral administration.

Liquid pharmaceutical compositions which are sterile solutions or suspensions can be utilized by, for example, intramuscular, intraperitoneal or subcutaneous injection. Sterile solutions can also be administered intravenously. Oral administration may be in either liquid or solid composition form.

Preferably the pharmaceutical composition is in unit dosage form, e.g. as tablets or capsules. In such form, the composition is sub-divided in unit dose containing appropriate quantities of the active ingredient; the unit dosage forms can be packaged compositions, for example packeted powders, vials, ampoules, prefilled syringes or sachets containing liquids. The unit dosage form can be, for example, a capsule or tablet itself, or it can be the appropriate number of any such compositions in package form.

The dosage to be used in the treatment of a specific psychosis must be subjectively determined by the attending physician. The variables involved include the specific psychosis and the size, age and response pattern of the patient.

WHAT IS CLAIMED IS:

(1) A compound of formula I

I

in which:

5

10

20

R₁ is hydrogen, alkyl of 1 to 10 carbon atoms, cycloalkylalkyl of 6 to 12 carbon atoms, arylalkyl of 7 to 12 carbon atoms, (haloaryl)alkyl of 7 to 12 carbon atoms, (alkoxyaryl)alkyl of 8 to 12 carbon atoms, thienylmethyl, furanylmethyl, pyridinylmethyl, alkylphenyl of 7 to 12 carbon atoms, 4-fluorobutyrophenone or 6-fluoro-1,2-benzisoxazol-yl-propyl;

X is hydrogen, halogen, cyano, alkyl of 1 to 6 carbon atoms, acetyl, trifluoroacetyl, trifluoromethyl or formyl;

Y is hydrogen, halogen, alkoxy of 1 to 6 carbon atoms or alkyl of 1 to 6 carbon atoms;

or a pharmaceutically acceptable salt thereof.

(2) A compound of Claim 1 in which:

R₁ is hydrogen, alkyl of 1 to 10 carbon atoms, cyclohexylmethyl, arylalkyl of 7 to 12 carbon atoms, (haloaryl)alkyl of 7 to 12 carbon atoms or (alkoxyaryl)alkyl of 8 to 12 carbon atoms;

X is H, halogen, cyano, alkyl of 1 to 6 carbon atoms, acetyl, trifluoroacetyl, trifluoromethyl or formyl;

Y is hydrogen, halogen, alkoxy of 1 to 6 carbon atoms or alkyl of 1 to 6 carbon atoms;

or a pharmaceutically acceptable salt thereof.

5

- (3) A compound of Claim 1 in which R₁ is alkyl of 1 to 6 carbon atoms, benzyl, halobenzyl, alkoxybenzyl of 8 to 12 carbon atoms or alkylbenzyl of 8 to 12 carbon atoms; X is hydrogen, halogen or trifluoroacetyl and Y is hydrogen or halogen; or a pharmaceutically acceptable salt thereof.
- (4) The compound of Claim 1 which is [2-(1H-indol-4-yloxy)-ethyl]-(4-phenyl-butyl)-amine or a pharmaceutically acceptable salt thereof.
- 10 (5) The compound of Claim 1 which is benzyl-[2-(7-chloro-1H-indol-4-yloxy)-ethyl]-amine or a pharmaceutically acceptable salt thereof.
 - (6) The compound of Claim 1 which is benzyl-[2-(3,7-dichloro-1H-indol-4-yloxy)-ethyl]-amine or a pharmaceutically acceptable salt thereof.
- 15
 (7) The compound of Claim 1 which is 4-fluorobenzyl-[2-(3,7-dichloro-1H-indol-4-yloxy)-ethyl]-amine or a pharmaceutically acceptable salt thereof.
- (8) The compound of Claim 1 which is 4-chlorobenzyl-[2-(3,7-dichloro-1H-indol-20 4-yloxy)-ethyl]-amine or a pharmaceutically acceptable salt thereof.
 - (9) The compound of Claim 1 which is thien-2-ylmethyl-[2-(3,7-dichloro-1H-indol-4-yloxy)-ethyl]-amine or a pharmaceutically acceptable salt thereof.
- 25 (10) The compound of Claim 1 which is [2-(3-chloro-1H-indol-4-yloxy)-ethyl]-(4-phenyl-butyl)-amine or a pharmaceutically acceptable salt thereof.
 - (11) The compound of Claim 1 which is benzyl-[2-(3,7-dichloro-1H-indol-4-yloxy)-ethyl]-amine or a pharmaceutically acceptable salt thereof.
- 30 (12) The compound of Claim 1 which is 1-[4-(2-benzylamino-ethoxy)-7-chloro-1H-indol-3-yl]-2,2,2-trifluoro-ethanone or a pharmaceutically acceptable salt thereof.
- (13) The compound of Claim 1 which is 1-[4-(2-benzylamino-ethoxy)-1H-indol-3-yl]-2,2,2-trifluoro-ethanone or a pharmaceutically acceptable salt thereof.

- (14) The compound of Claim 1 which is (N-benzyl-[2-(1H-indol-4-yloxy)]-ethylamine or a pharmaceutically acceptable salt thereof.
- (15) A pharmaceutical composition of matter comprising a compound of the formula:

H N N R

I

in which:

10 R₁ is hydrogen, alkyl of 1 to 10 carbon atoms, cycloalkylalkyl of 6 to 12 carbon atoms, arylalkyl of 7 to 12 carbon atoms, (haloaryl)alkyl of 7 to 12 carbon atoms, (alkoxyaryl)alkyl of 8 to 12 carbon atoms, thienylmethyl, furanylmethyl, pyridinylmethyl, alkylphenyl of 7 to 12 carbon atoms, 4-fluorobutyrophenone or 6-fluoro-1,2-benzisoxazol-yl-propyl;

15

5

X is hydrogen, halogen, cyano, alkyl of 1 to 6 carbon atoms, acetyl, trifluoroacetyl, trifluoromethyl or formyl;

Y is hydrogen, halogen, alkoxy of 1 to 6 carbon atoms or alkyl of 1 to 6 carbon atoms;

or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier therefor.

(16) A method for reducing dopamine synthesis and release in a patient suffering from hyperactivity of the dopaminergic systems, which comprises administering to said patient a compound of the formula:

$$H = N = N - R_1$$

I

in which:

5

R₁ is hydrogen, alkyl of 1 to 10 carbon atoms, cycloalkylalkyl of 6 to 12 carbon atoms, arylalkyl of 7 to 12 carbon atoms, (haloaryl)alkyl of 7 to 12 carbon atoms, (alkoxyaryl)alkyl of 8 to 12 carbon atoms, thienylmethyl, furanylmethyl, pyridinylmethyl, alkylphenyl of 7 to 12 carbon atoms, 4-fluorobutyrophenone or 6-fluoro-1,2-benzisoxazol-yl-propyl;

15 X is hydrogen, halogen, cyano, alkyl of 1 to 6 carbon atoms, acetyl, trifluoroacetyl, trifluoromethyl or formyl;

Y is hydrogen, halogen, alkoxy of 1 to 6 carbon atoms or alkyl of 1 to 6 carbon atoms;

or a pharmaceutically acceptable salt thereof, in an amount sufficient to modulate the dopamine systems of the brain.

(17) A method for treating schizophrenia which comprises administering to a patient suffering from schizophrenia, orally or parenterally, a compound of the formula:

$$H \longrightarrow O \longrightarrow N \longrightarrow R_1$$

I

5

10

15

in which:

R₁ is hydrogen, alkyl of 1 to 10 carbon atoms, cycloalkylalkyl of 6 to 12 carbon atoms, arylalkyl of 7 to 12 carbon atoms, (haloaryl)alkyl of 7 to 12 carbon atoms, (alkoxyaryl)alkyl of 8 to 12 carbon atoms, thienylmethyl, furanylmethyl, pyridinylmethyl, alkylphenyl of 7 to 12 carbon atoms, 4-fluorobutyrophenone or 6-fluoro-1,2-benzisoxazol-yl-propyl;

X is hydrogen, halogen, cyano, alkyl of 1 to 6 carbon atoms, acetyl, trifluoroacetyl, trifluoromethyl or formyl;

Y is hydrogen, halogen, alkoxy of 1 to 6 carbon atoms or alkyl of 1 to 6 carbon atoms;

or a pharmaceutically acceptable salt thereof, in an amount sufficient to alleviate the symptoms of schizophrenia.

SDOCID: <WO__9808817A1_I_>

INTERNATIONAL SEARCH REPORT

Inte. onal Application No PCT/US 97/15026

A. CLASSIFI IPC 6	CO7D209/08 A61K31/40 CO7D209	9/30 C07D409/12 C0	70209/12
According to	International Patent Classification (IPC) or to both national classific	oation and IPC	
8. FIELDS 9	BEARCHED		
Minimum doc IPC 6	currentation searched (classification system followed by classifica CO7D A61K	aum symbols)	_
Documentation	on searched other than minimum documentation to the extent that	such documents are included in the fields	searched
Electronio da	sta base consulted during the international search (name of data b	ase and, where practical, search terms us	a d)
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the re	elevant passages	Helevant to claim No.
A	US 5 541 199 A (RICHARD E. MESH 1996 see example 4	AW) 30 July	1,15
A	US 5 013 761 A (EDWARD E. BEEDL May 1991 see column 9	E ET AL) 7	1,15
х	US 3 906 000 A (JAMES M. MCMANU September 1975 cited in the application * column 11,compound on line 44		1
Furt	her documents are listed in the continuation of box C.	X Patent family members are is	sted in annex.
"A" docume	stegories of cited documents : ent defining the general state of the art which is not dered to be of particular relevance	"I" later document published after the or priority date and not in conflict cited to understand the principle invention	with the application but or theory underlying the
filing c "L" docume which citatio "O" docum	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another on or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	"X" document of particular relevance; cannot be considered novel or ci involve an inventive step when it "Y" document of particular relevance; cannot be considered to involve document is combined with one ments, such combination being or	annot be considered to be document is taken alone the claimed invention an inventive step when the or more other such doou-
P docum	means ent published prior to the international filing date but than the priority date claimed	in the art. "&" document member of the same p	atent family
[actual completion of the international search December 1997	Date of mailing of the international 9.	•
	mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Authorized officer Van Bijlen, H	

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

PCT/US 97/15026

Box I Observations where certain cla	aims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been	established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter	not required to be searched by this Authority, namely:
see FURTHER INFORMATIO	· · · · · · · · · · · · · · · · · · ·
2. Claims Nos.:	
because they relate to parts of the inte an extent that no meaningful internation	ernational Application that do not comply with the prescribed requirements to such onal Search can be carried out, specifically:
Claims Nos. because they are dependent claims are	 and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of inv	rention is lacking (Continuation of Item 2 of first sheet)
	ltiple inventions in this international application, as follows:
As all required additional search fees we searchable claims.	vere timely paid by the applicant, this International Search Report covers all
As all searchable claims could be search of any additional fee	ched without effort justifying an additional fee, this Authority did not invite payment
3. As only some of the required additional covers only those claims for which fees	search fees were timely paid by the applicant, this International Search Report were paid, specifically claims Nos.:
No required additional search fees were restricted to the invention first mentione	e timely paid by the applicant. Consequently, this International Search Report is d in the claims; it is covered by claims Nos.:
· · ·	
Remark on Protest	The additional search fees were accompanied by the applicant's protest.
	No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Remark: Although claims 16 and 17 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inter. Inal Application No. PCT/US 97/15026

Datast day	1	1 101/0	101/03 97/13026	
Patent document cited in search report	Publication date	Patent family member(s)	Publication date	
US 5541199 A	30-07-96	NONE		
US 5013761 A	07-05-91	US 5420294 A	30-05-95	
		US 5554640 A	10-09-96	
		AT 117980 T	15-02-95	
	•	AU 609997 B	09-05-91	
		AU 3601989 A	07-12-89	
		CA 1336911 A	05-09-95	
		CN 1045774 A,B	03-10-90	
		DE 68920913 D	16-03-95	
		DE 68920913 T	22-06-95	
		DK 271889 A	05-12-89	
·		EP 0345056 A	06-12-89	
		ES 2067541 T	01-04-95	
		IE 66225 B	13-12-95	
		IL 90498 A	08-12-95	
	•	JP 2025416 A	26-01-90	
		PT 90716 B	01-03-95	
		SU 1795965 A	15-02-93	
IS 3906000 A	16-09-75	US 3833591 A	03-09-74	
.		BE 795451 A	16-08-73	
		DE 2306605 A	06-09-73	
		FR 2181738 A	07-12-73	
		GB 1418354 A	17-12-75	
		JP 1027972 C	25-12-80	
		JP 48092400 A	30-11-73	
		JP 55016434 B	01-05-80	
		US 3904645 A	09-09-75	
		US 3898245 A	05-08-75	