

10/089452

1/9

Fig. 1

E V Q L L E Q P G A
GAGGTGCAGCTGCTCGAGCAGCCTGGGGCT 30

E L A K P G A S V K
GAAC TGCGAAAACCTGGGGCCTCAGTGAAG 60

M S C K A S G Y T F
ATGTCCTGCAAGGCTTCTGGCTACACCTTT 90

T N Y W I H W V K Q
ACTAAACTACTGGATTCACTGGGTGAAACAG 120

R P G Q G L K W I G
AGGCCCTGGACAGGGTCTGAAATGGATTGGA 150

Y I N P A T G S T S
TACATTAATCCTGCCACTGGTCCACTTCT 180

Y N Q D F Q D R A T
TACAATCAGGACTTCAAGGACAGGGCCACT 210

L T A D K S S T T A
TTGACCGCAGACAAGTCCTCCACCACAGCC 240

Y M Q L T S L T S E
TACATGCAGCTGACCAGCTGACATCTGAG 270

D S S V Y Y C A R E
GACTCTTCAGTCTATTACTGTGCAAGAAGAGAG 300

G Y D G F D S W G Q
GGGTACGACGGGTTTGACTCCTGGGGCAA 330

G T T L T V S S
GGCACCACTCTCACAGTCTCCTCA 360

10/089452

2/9

Fig. 2

E L V L T Q S P A I
GAGCTCGTGCTCACCCAGTCTCCAGCAATC 30

M S A S P G E K V T
ATGTCTGCATCTCCAGGGAGAAGGTCAACC 60

M T C S A S S S V N
ATGACCTGCAGTGCCAGCTCAAGTGTAAAT 90

Y M Y W Y Q Q K S G
TACATGTACTGGTACCACAGCAGAAGTCAGGC 120

T S P K R W I Y D T
ACCTCCCCAAAAGATGGATTTATGACACA 150

S K L A S G V P A R
TCCAAATTGGCTTCTGGAGTCCCTGCTCGC 180

F S G S G S G T S Y
TTCAGTGGCAGTGGGTCTGGGACCTCTTAC 210

S L T L S S M E A E
TCTCTCACACTCAGCAGCATGGAGGCTGAA 240

D A A T Y Y C Q Q W
GATGCCGCCACTTATTACTGCCAGCAGTGG 270

S S N P Y T F G G G
AGTAGTAATCCGTACACGTTGGAGGGGGG 300

T K L E I K
ACCAAGCTGGAGATAAAA 330

3/9

Fig. 3

+1 E V Q L Q Q S G A E
 GAGGTTCAGCTGCAGCAGTCTGGGGCAGAG 30

+1 L V K P G A S V K L
 CTTGTGAAGCCTGGGGCCTCAGTCAAGTTG 60

+1 S C T S S G F N I K
 TCCTGCACATCTTCTGGCTTCAACATTAAA 90

+1 D T Y V H W M K Q R
 GACACCTATGTGCACTGGATGAAACAGAGGG 120

+1 P E Q G L E W I G K
 CCTGAACAGGGCCTGGAGTGGATTGGAAAG 150

+1 I D P A N G K T K Y
 ATTGATCCCTGCGAATGGTAAAACTAAATAT 180

+1 D P I F Q A K A T M
 GACCCGATATTCCAGGCCAAGGCCACTATG 210

+1 T A D A S S N T A Y
 ACAGCAGACGCATCCCTCCAATACAGCCTAC 240

+1 L Q L S S L T S E D
 CTGCAACTCAGCAGCCTGACTTCTGAGGAC 270

+1 T A V Y Y C A L P I
 ACTGCCGTCTATTACTGTGCTCTCCCCATT 300

+1 Y Y A S S W F A Y W
 TATTACGCTAGTTCCTGGTTTGCTTACTGG 330

+1 G Q G T L V T V S A
 GGCAAGGGACTCTGGTCACTGTCTCTGCA 360

10/089452

4/9

Fig. 4

+1 D I V M T Q S H K F
GACATTGTGATGACCCAGTCTCACAAATT C 30

+1 M S T S V G D R V S
ATGTCCACATCAGTAGGAGACAGGGTCAGC 60

+1 I T C K A S Q D V G
ATCACCTGCAAGGCCAGTCAGGATGTGGGT 90

+1 T S V A W Y Q Q K P
ACTTCTGTTGCCTGGTATCAACAGAAACCT 120

+1 G H S P K L L I Y W
GGGCACTCTCCTAAATTACTGATTTACTGG 150

+1 T S T R H T G V P D
ACATCCACCCGGCACACTGGAGTCCCTGAT 180

+1 R F T G S G S G T D
CGCTTCACAGGCAGTGGATCTGGACAGAT 210

+1 F I L T I S N V Q S
TTCATTCTCACCATAGCAATGTGCAGTCT 240

+1 E D L A D Y F C Q Q
GAAGACTTGGCAGATTATTCTGTCAGCAA 270

+1 Y S S S P T F G G G
TATAGCAGCTCTCCCACGTTGGAGGGGG 300

+1 A K V E I K
GCCAAGGTGGAAATAAAA 330

+1 D I L T Q S P A I L S V S P G E
GACATCTTGC TGACTCAGTC TCCAGCCATC CTGCTGTGA GTCCAGGAGA 50

+1 R V S F S C R A S Q S I G T R I H
AAGAGTCAGT TTCTCCTGCA GGGCCAGTCA GAGCATTGGC ACAAGAAATAC 100

+1 W Y Q Q R T N G S P R L L I K Y
ACTGGTATCA ACAAGAACAA ATGGTTCTC CAAGGCTTCT CATAAACAGTAT 150
+1 G S E S I S G I P S R F S G S G S 5/9

GGTTCTGAGT CTATCTCTTG GATCCCTTCC AGGTTAGTGT GCAGTGGATC 200
+1 G T D F S L S I N S V E S E D I A

AGGGACAGAT TTAGTCTTA GCATCACACAG TGTGAGTCT GAAGATATTG 250
+1 D Y Y C Q Q S N T W P L T F G A

CAGATTATTA CTGTCAACAA AGTAATAACCT GGCGGCTCAC GTCGGTGT 300
+1 G T K L E L K

GGGACCAAGGC TGAGGCTGAA A

Fig. 5

10 03 45 2

350

10/08/452

+1 E V Q L L E E S G G G L V K P G G

GAGGTGCAGC TGCTCGAGGA GTCTGGGGA GGCTTAGTGA AGCCTGGAGG 50

+1 S L Q L S C S A S G F T F S S H F

GTCCCTGC_{AA} CTCTCCTGTT CAGCCTGG ATTCACTTC AGTAGGCCATT 100

+1 M S W V R Q T P E K R L E W V A

TCATGTCT GGTTCGCC_{AA} ACTCCAGAGA AGAGGCTGGA GTGGGTCCGA 150

+1 S I S S G G D S F Y P D S L K G R

TCCATTAGTA GTGGTGGTGA CAGTTCTAT CCAGACAGTC TGAAGGGCG 200 **6/9**

+1 F A I S R D N A R N I L F L Q M S

ATTCCGCATC TCCAGAGATA ATGCCAGGAA CATCCTGTTCTGAAATGA 250

+1 S L R S E D S A M Y F C T R D Y

GCAGTCTGAG GTCTGAGGAC TCGGCCATGT ATTCTCTGTAC AAGAGACTAC 300

+1 S W Y A L D Y W G Q G T S V T V S

TCTTGTTATG CTTGGACTA C TGGGGCAA GGAACCTCAG TCACCGTCTC 350

+1 S

CTCA

400

Fig. 8

10,089452

7/9

+1 E L Q M T Q S P S S L S A S L G D
GAGCTCCAGA TGACCCAGTC TCCATCCAGT CTGTCTGCAT CCCTTGGAGA 50

+1 T I T I T C H A S Q N I N V W L S
CACATTACC ATCACTTGCC ATGCCAGTC GAACATTAAT GTTTGGTTAA 100

+1 W Y Q A K P G D I P K L L I Y K
GCTGGTATCA GCAGAAACCA GGAGGATATCC CTAAACTATT GATCTATAAG 150

+1 A S N L H T G V P S R F S G S G S
GCTTCCAAC TGCACACACAG CGTCCCCATCA AGGTTAGTG GCAGTGGATC 200

+1 G T G F T L V I S S L Q P E D I A
TGGAACAGGG TTACATTTAG TCATCAGCAG CCTGCAGCCT GAAGACATTG 250

+1 T Y Y C Q Q G R S Y P L T F G A
CCACTTACTA CTGTCAACAG GGTCAAGTT ATCCTCTCAC GTTCGGGTGCT 300

+1 G T K L E L K
GGGACCAAGC TGGAGCTGAA A

350

Fig. 7

10/089452

+1 E V Q L L E Q S G A E L V K P G A
GAGGTGCAGC TGCTCGAGCA GTCTGGAGCT GAGCTGGTGA AGCCTGGCC 50
+1 S V K I S C K A S G Y A F S T S W

CTCAGTGAAAG ATTTCCCTGCA AGGCTTCT GG CTACGCCATT AGTACCTCCT 100

+1 M N W V K Q R P G K G L E W I G
GGATGAACTTG GGTGAAAACCAG AGGCCTGGAA AGGGTCTTGA GTGGATTGGA 150
+1 R I Y P G D G D T N Y N G K F K G

CGGATTATC CTGGAGATGG AGATACTAAC TACAATGGGA AGTTCAAGGG 200 8/9

+1 K A T L T A D K S S S T A Y M Q L
CAAGGCCACA CTGACTGCAG ACAAATCCCTC CAGCACAGGCC TACATGCAAC 250

+1 N S L T S E D S A V Y F C V R E
TCAACAGCCT GACATCTGAG GACTCTGGG TCTACTCTG TGTAAAGAGAG 300

+1 D A Y Y S N P Y S L D Y W G Q G T
GATGCCATT ATTAGTAACCC CTATAGTTG GACTACTGGG GTCAAAGGAAC 350

CTCAGTCACC GTCTCCCTCA

400

Fig. 6

10/08/2002

9/6

Fig. 9

Eradikationsverlauf von Patient CXT0002

