IFN501 - System Modeling and Simulation

Session 1: Course Overview

Daniel Febrian Sengkey

Department of Electrical Engineering Faculty of Engineering Universitas Sam Ratulangi

Course Details

Introduction to Computer Simulation

Next Session

Acknowledgement

When not specifically defined, the contents of this presentation are adapted from [1].

Course Details The Rules Scoring System

Introduction to Computer Simulation

Next Session

Course Details The Rules Scoring System

Introduction to Computer Simulation

Next Session

 You can attend the class anytime you want, but to sign the List of Attendees you should not come more than 15 minutes since the class started.

- You can attend the class anytime you want, but to sign the List of Attendees you should not come more than 15 minutes since the class started.
- 2. You should attend > 80% of the meetings to get the final grade.

- You can attend the class anytime you want, but to sign the List of Attendees you should not come more than 15 minutes since the class started.
- 2. You should attend > 80% of the meetings to get the final grade.
- 3. Accepted communication lines: danielfebrian015@gmail.com, e-Learning message.

- You can attend the class anytime you want, but to sign the List of Attendees you should not come more than 15 minutes since the class started.
- 2. You should attend > 80% of the meetings to get the final grade.
- 3. Accepted communication lines: danielfebrian015@gmail.com, e-Learning message.
- If you and your friend have something to be discussed please do it outside the class, except you are assigned to do so.

- You can attend the class anytime you want, but to sign the List of Attendees you should not come more than 15 minutes since the class started.
- 2. You should attend > 80% of the meetings to get the final grade.
- 3. Accepted communication lines: <u>danielfebrian015@gmail.com</u>, e-Learning message.
- If you and your friend have something to be discussed please do it outside the class, except you are assigned to do so.
- 5. If you have a question, please raise your hand anytime during the class. No need to wait until the class finished.

- You can attend the class anytime you want, but to sign the List of Attendees you should not come more than 15 minutes since the class started.
- 2. You should attend > 80% of the meetings to get the final grade.
- 3. Accepted communication lines: danielfebrian015@gmail.com, e-Learning message.
- If you and your friend have something to be discussed please do it outside the class, except you are assigned to do so.
- If you have a question, please raise your hand anytime during the class. No need to wait until the class finished.
- Plagiarism in assignments will be rated as 0. If you cheating and/or plagiarizing in final test/assignment you will have 'E' as your final grade.

- You can attend the class anytime you want, but to sign the List of Attendees you should not come more than 15 minutes since the class started.
- 2. You should attend > 80% of the meetings to get the final grade.
- 3. Accepted communication lines: danielfebrian015@gmail.com, e-Learning message.
- If you and your friend have something to be discussed please do it outside the class, except you are assigned to do so.
- If you have a question, please raise your hand anytime during the class. No need to wait until the class finished.
- Plagiarism in assignments will be rated as 0. If you cheating and/or plagiarizing in final test/assignment you will have 'E' as your final grade.
- You are college students, please behave with the appropriate attitude.

Course Details

The Rules

Scoring System

Introduction to Computer Simulation

Next Session

Figure 1: Scoring components

Grading system follows faculty regulation:

Figure 1 : Scoring components

- Grading system follows faculty regulation:
 - n ≥ 80 Grade = A

Figure 1: Scoring components

- Grading system follows faculty regulation:
 - ▶ $n \ge 80$ Grade = A
 - ► 75 ≤ *n* < 80 Grade = B+

Figure 1 : Scoring components

- Grading system follows faculty regulation:
 - n ≥ 80 Grade = A
 - ► 75 ≤ *n* < 80 Grade = B+
 - ► 70 ≤ *n* < 75 Grade = B

Figure 1 : Scoring components

- Grading system follows faculty regulation:
 - n ≥ 80 Grade = A
 - ▶ 75 ≤ *n* < 80 Grade = B+
 - ▶ 70 ≤ *n* < 75 Grade = B
 - ▶ $65 \le n < 70 \text{ Grade} = C +$

Figure 1 : Scoring components

- Grading system follows faculty regulation:
 - n ≥ 80 Grade = A
 - ▶ 75 ≤ *n* < 80 Grade = B+
 - ► 70 ≤ *n* < 75 Grade = B
 - ▶ $65 \le n < 70 \text{ Grade} = C +$
 - ▶ $55 \le n < 65 \text{ Grade} = C$

Figure 1: Scoring components

- Grading system follows faculty regulation:
 - n ≥ 80 Grade = A
 - ▶ 75 ≤ *n* < 80 Grade = B+
 - ► 70 ≤ *n* < 75 Grade = B
 - ▶ $65 \le n < 70 \text{ Grade} = C +$
 - ▶ $55 \le n < 65 \text{ Grade} = C$
 - ▶ $35 \le n < 55$ Grade = D

Figure 1: Scoring components

- Grading system follows faculty regulation:
 - ▶ n > 80 Grade = A
 - ▶ $75 \le n < 80 \text{ Grade} = B+$
 - ► 70 ≤ *n* < 75 Grade = B
 - ► $65 \le n < 70$ Grade = C+
 - ▶ $55 \le n < 65 \text{ Grade} = C$
 - 35 ≤ n < 55 Grade = D</p>
 - ▶ n < 35 Grade = E</p>

Course Details

Introduction to Computer Simulation Simulation Defined

Next Session

Why it is important?

Reduce the risk associated with creating new systems or with making alteration to the existing ones.

Why it is important?

- Reduce the risk associated with creating new systems or with making alteration to the existing ones.
- Investment assurance

Why it is important?

- Reduce the risk associated with creating new systems or with making alteration to the existing ones.
- Investment assurance
- Decreasing margin of error while increasing precision

Course Details

Introduction to Computer Simulation
Simulation Defined
Basic Nature
Usages
Pros and Cons

Next Session

Simulation Defined

Simulation Defined

Course Details

Introduction to Computer Simulation Simulation Defined Basic Nature

Usages Pros and Cons

Next Session

Simulation Defined-Basic Nature

Branch of <u>applied mathematics</u>

Simulation Defined-Basic Nature

- Branch of applied mathematics
- Exploits computing power and improvements in programming languages to solve complex real world system that modeled as analytical or purely mathematical models

Simulation Defined-Basic Nature

- Branch of applied mathematics
- Exploits computing power and improvements in programming languages to solve complex real world system that modeled as analytical or purely mathematical models
- The challenge is about how to accurately model the <u>real world</u> system

Simulation Defined-Basic Nature

- Branch of applied mathematics
- Exploits computing power and improvements in programming languages to solve complex real world system that modeled as analytical or purely mathematical models
- ► The challenge is about how to accurately model the <u>real world</u> system

Definition

Using a computer to imitate the operation of a real world process or facility according to appropriately developed assumptions taking the form of logical, statistical, or mathematical relationships which are developed and shaped into a model.

Course Details

Introduction to Computer Simulation Simulation Defined

Basic Nature

Usages

Pros and Cons

Next Session

Simulation Defined- Usages

Table 1 : Situations warranting computer simulations

General Situation	Examples
Real system does not yet exist	Aircraft, production system, nuclear
and building a prototype is cost	reactor
prohibitive, time-consuming or haz-	
ardous.	
System is impossible to build.	National economy, biological system
Real system exists but experimenta-	Proposed Changes to a Materials
tion is too expensive, hazardous or	Handling System, Military Unit, Trans-
disruptive to conduct.	portation System, Airport Baggage
	Handling System
Forecasting is required to analyze	Population growth forest fire spread,
long time periods in a compressed	urbanization studies, pandemic flu
format.	spread
Mathematical modeling has no practi-	Stochastic problems, nonlinear differ-
cal analytical or numeric solution.	ential equations

Course Details

Introduction to Computer Simulation Simulation Defined

Basic Nature Usages

Pros and Cons

Next Session

Simulation Defined- Pros and Cons

Simulation Defined- Pros and Cons

Pros

 Allows experimentation without disruptions to the existing systems.

Simulation Defined- Pros and Cons

- 1. Allows experimentation without disruptions to the existing systems.
- 2. Concept can be evaluated before installation.

Simulation Defined- Pros and Cons

- Allows experimentation without disruptions to the existing systems.
- 2. Concept can be evaluated before installation.
- 3. Detection of unforeseen problems or bugs.

Simulation Defined- Pros and Cons

- Allows experimentation without disruptions to the existing systems.
- 2. Concept can be evaluated before installation.
- 3. Detection of unforeseen problems or bugs.
- 4. Gain in knowledge on system

Simulation Defined- Pros and Cons

- Allows experimentation without disruptions to the existing systems.
- 2. Concept can be evaluated before installation.
- 3. Detection of unforeseen problems or bugs.
- 4. Gain in knowledge on system
- 5. Speed in analysis

Simulation Defined- Pros and Cons

- Allows experimentation without disruptions to the existing systems.
- 2. Concept can be evaluated before installation.
- 3. Detection of unforeseen problems or bugs.
- 4. Gain in knowledge on system
- 5. Speed in analysis
- 6. Force system definition

Simulation Defined- Pros and Cons

- Allows experimentation without disruptions to the existing systems.
- 2. Concept can be evaluated before installation.
- 3. Detection of unforeseen problems or bugs.
- 4. Gain in knowledge on system
- 5. Speed in analysis
- 6. Force system definition
- Enhances creativity

Simulation Defined- Pros and Cons

Simulation Defined- Pros and Cons

Cons

1. Expensive

Simulation Defined- Pros and Cons

- 1. Expensive
- 2. Time consuming

Simulation Defined- Pros and Cons

- 1. Expensive
- 2. Time consuming
- 3. Only produces approximate answers

Simulation Defined- Pros and Cons

- 1. Expensive
- 2. Time consuming
- 3. Only produces approximate answers
- 4. Difficult to validate

Simulation Defined- Pros and Cons

- 1. Expensive
- 2. Time consuming
- 3. Only produces approximate answers
- 4. Difficult to validate
- Accepted as gospel

Outline

Course Details

Introduction to Computer Simulation

Next Session

References

Topic: Cases Around Us and The Needs for Computer Simulation.

- Topic: Cases Around Us and The Needs for Computer Simulation.
- Form groups of 3 or 4 students.

- Topic: Cases Around Us and The Needs for Computer Simulation.
- Form groups of 3 or 4 students.
- ► Find a case that suits the topic and discuss it with your group.

- Topic: Cases Around Us and The Needs for Computer Simulation.
- Form groups of 3 or 4 students.
- Find a case that suits the topic and discuss it with your group.
- Submit a paper that reports your case and the result of your discussion. Paper formatting should comply to the IEEE Conference format.

- Topic: Cases Around Us and The Needs for Computer Simulation.
- Form groups of 3 or 4 students.
- Find a case that suits the topic and discuss it with your group.
- Submit a paper that reports your case and the result of your discussion. Paper formatting should comply to the IEEE Conference format.
- Each group has 5-7 minutes to present the case and the findings.

- Topic: Cases Around Us and The Needs for Computer Simulation.
- Form groups of 3 or 4 students.
- Find a case that suits the topic and discuss it with your group.
- Submit a paper that reports your case and the result of your discussion. Paper formatting should comply to the IEEE Conference format.
- Each group has 5-7 minutes to present the case and the findings.
- The presentation contains only the important points. DO NOT copy-paste the text in your paper to the slides. Such presentation will be REJECTED!

Abstract

- Abstract
- Introduction

- Abstract
- Introduction
 - Explain some backgrounds about the general needs for computer simulation.

- Abstract
- Introduction
 - Explain some backgrounds about the general needs for computer simulation.
 - Give some hints about the field of study of your case (e.g. which branch of science it belongs to).

- Abstract
- Introduction
 - Explain some backgrounds about the general needs for computer simulation.
 - Give some hints about the field of study of your case (e.g. which branch of science it belongs to).
 - Outline: mention the following sections, and topic that discussed within each section.

- Abstract
- Introduction
 - Explain some backgrounds about the general needs for computer simulation.
 - Give some hints about the field of study of your case (e.g. which branch of science it belongs to).
 - Outline: mention the following sections, and topic that discussed within each section.
- The case study

- Abstract
- Introduction
 - Explain some backgrounds about the general needs for computer simulation.
 - Give some hints about the field of study of your case (e.g. which branch of science it belongs to).
 - Outline: mention the following sections, and topic that discussed within each section.
- The case study
 - Start with explaining your case. Use deductive approach.

- Abstract
- Introduction
 - Explain some backgrounds about the general needs for computer simulation.
 - Give some hints about the field of study of your case (e.g. which branch of science it belongs to).
 - Outline: mention the following sections, and topic that discussed within each section.
- The case study
 - Start with explaining your case. Use deductive approach.
 - Continue with the complexity of your case.

- Abstract
- Introduction
 - Explain some backgrounds about the general needs for computer simulation.
 - Give some hints about the field of study of your case (e.g. which branch of science it belongs to).
 - Outline: mention the following sections, and topic that discussed within each section.
- The case study
 - Start with explaining your case. Use deductive approach.
 - Continue with the complexity of your case.
 - Relate the complexity and the needs for computer simulation to solve the case.

- Abstract
- Introduction
 - Explain some backgrounds about the general needs for computer simulation.
 - Give some hints about the field of study of your case (e.g. which branch of science it belongs to).
 - Outline: mention the following sections, and topic that discussed within each section.
- The case study
 - Start with explaining your case. Use deductive approach.
 - Continue with the complexity of your case.
 - Relate the complexity and the needs for computer simulation to solve the case.
 - Give an example of the simulation scenario for that particular case.

- Abstract
- Introduction
 - Explain some backgrounds about the general needs for computer simulation.
 - Give some hints about the field of study of your case (e.g. which branch of science it belongs to).
 - Outline: mention the following sections, and topic that discussed within each section.
- The case study
 - Start with explaining your case. Use deductive approach.
 - Continue with the complexity of your case.
 - Relate the complexity and the needs for computer simulation to solve the case.
 - Give an example of the simulation scenario for that particular case.
- Conclusion: conclude your paper.

Paper Outline

- Abstract
- Introduction
 - Explain some backgrounds about the general needs for computer simulation.
 - Give some hints about the field of study of your case (e.g. which branch of science it belongs to).
 - Outline: mention the following sections, and topic that discussed within each section.
- The case study
 - Start with explaining your case. Use deductive approach.
 - Continue with the complexity of your case.
 - Relate the complexity and the needs for computer simulation to solve the case.
 - Give an example of the simulation scenario for that particular case.
- Conclusion: conclude your paper.
- Reference/Bibliography

Presentation Outline¹

► Slide 1: cover – presentation title and group members.

¹This is merely a hint. The numbers are not to be strictly followed.

Presentation Outline¹

- ► Slide 1: cover presentation title and group members.
- Slides 2-3: Background

¹This is merely a hint. The numbers are not to be strictly followed.

Presentation Outline¹

- ► Slide 1: cover presentation title and group members.
- Slides 2-3: Background
- Slides 4-7: The case study

¹This is merely a hint. The numbers are not to be strictly followed.

Presentation Outline¹

- ► Slide 1: cover presentation title and group members.
- Slides 2-3: Background
- Slides 4-7: The case study
- Slide 8: Conclusion

¹This is merely a hint. The numbers are not to be strictly followed.

Outline

Course Details

Introduction to Computer Simulation

Next Session

References

References I

[1] R. McHaney, <u>Understanding Computer Simulation</u>. Ventus Publishing, 2009.