UFC – Quixadá – QXD0146 – Sistemas Digitais para Computadores - Prof. Cristiano – Trabalho – CPU

1) Descrição

O trabalho consiste na implementação de instruções (mostradas abaixo) para o processador desenvolvido em sala. As instruções estão divididas em grupos (0 a 3), sendo que cada equipe deverá implementar todas as instruções de 3 dos 4 grupos mostrados na tabela. Cada equipe receberá um número N, onde N corresponde ao número que a equipe não precisa implementar.

Grupo	Instrução	Operação	Tipo	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	PSH Rn	[SP] = Rn; SP	PILHA	0	0	0	0	0	-	-	-	-	-	-	Rn_2	$Rn_{_1}$	$Rn_{_{0}}$	0	1
	POP Rd	SP++; Rd = [SP]	PILHA	0	0	0	0	0	Rd ₂	$Rd_{_1}$	Rd_0	-	-	-	-	-	-	1	0
	CMP Rm, Rn	Z = (Rm = Rn)? 1:0; C = (Rm < Rn)? 1:0	ULA	0	0	0	0	0	-	-	-	Rm_2	$Rm_{_1}$	Rm_0	Rn_2	$Rn_{_1}$	Rn_0	1	1
	JMP #Im	PC = PC + #Im	DESVIO	0	0	0	0	1	Im ₈	Im ₇	Im_6	Im_{5}	Im_4	Im ₃	Im_2	$Im_{_1}$	Im_0	0	0_
	JEQ #Im	PC = PC + #Im, se Z = 1 e C = 0	DESVIO	0	0	0	0	1	Im ₈	Im ₇	Im_6	Im_{5}	Im_4	Im ₃	Im_2	$Im_{_1}$	Im_0	0	1
	JLT #Im	PC = PC + #Im, se Z = 0 e C = 1	DESVIO	0	0	0	0	1	Im ₈	Im ₇	Im_6	Im_{5}	Im_4	Im ₃	Im_2	$Im_{_1}$	Im_0	1	0
	JGT #Im	PC = PC + #Im, se Z = 0 e C = 0	DESVIO	0	0	0	0	1	Im ₈	Im ₇	Im_6	$\text{Im}_{\scriptscriptstyle{5}}$	Im_4	Im ₃	Im_2	$Im_{_1}$	Im _o	1	1
2	IN Rd	Rd = IO_read(7 0)	E/S	1	1	1	1	-	Rd ₂	$Rd_{_1}$	Rd_0	-	-	-	-	-	-	0	1
	OUT Rm	IO_write = Rm	E/S	1	1	1	1	0	-	-	-	Rm_2	$Rm_{_1}$	Rm_0	-	-	-	1	0
	OUT #Im	IO_write = #Im	E/S	1	1	1	1	1	Im ₇	Im_6	Im_{5}	0	0	0	$\text{Im}_{_{4}}$	Im ₃	Im_2	$Im_{_1}$	Im_0
3	SHR Rd, Rm, #Im	Rd = Rm >> #Im	ULA	1	0	1	1	-	Rd ₂	Rd_1	Rd_0	Rm ₂	Rm_1	Rm_0	Im ₄	Im ₃	Im ₂	$\operatorname{Im}_{\scriptscriptstyle 1}$	Im _o
	SHL Rd, Rm, #Im	Rd = Rm << #Im	ULA	1	1	0	0	-	Rd ₂	$Rd_{_1}$	Rd_0	Rm_2	$Rm_{_1}$	Rm_0	$\text{Im}_{_{4}}$	Im_3	Im_2	$\operatorname{Im}_{\scriptscriptstyle 1}$	Im_0
	ROR Rd, Rm	$Rd = Rm \gg 1$; $Rd(MSB) = Rm(LSB)$	ULA	1	1	0	1	-	Rd ₂	$Rd_{_1}$	Rd_0	Rm_2	$Rm_{_1}$	Rm_0	-	-	-	-	-
	ROL Rd, Rm	Rd = Rm << 1; Rd(LSB) = Rm(MSB)	ULA	1	1	1	0	-	Rd ₂	$Rd_{_1}$	Rd_0	Rm_2	$Rm_{_1}$	Rm_0	-	-	-	-	-

2) Avaliação

- O trabalho poderá ser feito em equipes de 4 alunos.
- − Cada grupo de instruções implementado valerá de 0,0 a 3,0 pontos, sendo que cada instrução valerá 3,0/nº de instruções do grupo.
- Será dado um ponto extra, caso o número total de instruções erradas seja menor que 2.
- O trabalho deve ser apresentado em sala na última semana de aula. A apresentação deve conter uma descrição geral de como cada instrução (ou grupo) foi implementada, destacando as alterações que forem realizadas no projeto inicial da CPU.
- − No dia da apresentação do trabalho será fornecido um código de teste para cada grupo de instruções.