Extra Questions

Hanning Su

July 6, 2021

Note: the questions are adapted from unimely subject Topics in Insurance and Finance (ACTL90021)

Question 1

Let i_t be the rate of return over the peiord (t-1,t) and suppose $\{i_t: t=1,...,15\}$. Is a series of independent random variables all distributed U(0.06,0.12). Let A_{15} reperesent the accumulation, at time 15, of 1 invested at time 0.

- (a) Calculate the mean and standard deviation of A_{15} .
- (b) Making such theoretical assumptions as you feel might be appropriate, calculate the probability that $A_{15} > 4$.
- (c) Simulate and plot A_{15} and $\log A_{15}$, describe the results.

Question 2

Make the same assumptions in relation to $\{i_t : t = 1,...15\}$ as the previous exercise and let \ddot{s}_{15} represent the accumulation, at time 15, of 1 invested at times 0, 1,and 14. Calculate the mean and variance of \ddot{s}_{15} .

Question 4

Consider a sequence of n payments of $1, (1+s), (1+s)^2, ... (1+s)^{n-1}$, at unit intervals with the first payment due immediately where s is a scalar constant.

Let i_t be a random variable denoting the return over the time period (t-1,t) where $\{i_t: t=1,...,n\}$ is a set of independent and identically distributed random variables.

Calculate the first two moments and variance of:

- (i) \ddot{z}_{15} , the accumulation of this cash-flow at time 15 and
- (ii) \ddot{u}_{15} , the present value of this cash-flow.

Assume $(1+i_t)$ follows log normal distribution $\mu=0.08$ and $\sigma=0.04$ and that $(1+i_t)^{-1}$ follows log normal distribution $\mu=-0.08$ and $\sigma=0.04$.