

Partha Pratim Das

Objectives & Outline

Database Design Object-Relational Data Models

XML: Extensible Markup Language

Database Engine
Database System

Database Users

Module Summary

Database Management Systems

Module 05: Introduction to DBMS/2

Partha Pratim Das

Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ac.in

Module Recap

Module 05

Partha Pratii Das

Objectives & Outline

Object-Relational
Data Models
XML: Extensible

Database Engin Database System

Database Users & Administrators

Module Summai

- Basic notions and terminology of database management systems
- Role of data models and languages
- Approaches to database design

Module Objectives

Module 05

Partha Pratii Das

Objectives & Outline

Database Design Object-Relational Data Models XML: Extensible Markup Language

Database Engin
Database System

Database Users & Administrator

Module Summar

- To understand models of database management systems
- To familiarize with major components of a database engine
- To familiarize with database internals and architecture
- To understand the historical perspective

Module Outline

Module 05

Partha Pratii Das

Objectives & Outline

Database Design Object-Relational Data Models XML: Extensible Markup Language

Database Engine
Database System
Internals

Database Users & Administrators

Module Summary

- Database Design
- OO Relational Model
- XML
- Database Engine
 - Storage Management
 - Query Processing
 - Transaction Management
- Database Internals and Architecture
- Database Users and Administrators

Partha Pratio

Objectives Outline

Database Design

XML: Extensible

Database Engin

Database Users & Administrator

Module Summar

Database Design

Database Design

Module 05

Partha Prati Das

Objectives Outline

Database Design

Object-Relational
Data Models
XML: Extensible
Markup Language

Database Engine
Database System

Database Users & Administrators

Module Summar

The process of designing the general structure of the database:

Logical Design

- Deciding on the database schema. Database design requires that we find a good collection of relation schema
- o Business decision
 - ▶ What attributes should we record in the database?
- Computer Science decision
 - ▶ What relation schemas should we have and how should the attributes be distributed among the various relation schemas?

Physical Design

Deciding on the physical layout of the database

Partha Pratii Das

Objectives Outline

Database Design

Data Models

XML: Extensible

Database Engine Database System

Database Users

Module Summai

• Is there any problem with this relation?

ID	пате	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

Partha Pratir Das

Objectives Outline

Database Design

Data Models

XML: Extensible

Markup Language

Database Engin
Database System
Internals

Database Users & Administrators

Module Summar

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

(a) The instructor table

dept_name	building	budget
Comp. Sci.	Taylor	100000
Biology	Watson	90000
Elec. Eng.	Taylor	85000
Music	Packard	80000
Finance	Painter	120000
History	Painter	50000
Physics	Watson	70000

(b) The *department* table

Partha Pratim Das

Design Approaches

Module 05

Partha Pratir Das

Objectives Outline

Database Design

Object-Relational Data Models XML: Extensible Markup Language

Database Engine
Database System

Database Users & Administrator

Module Summar

 Need to come up with a methodology to ensure that each relations in the database is good

- Two ways of doing so:
 - Entity Relationship Model (Chapter 7)
 - ▶ Models an enterprise as a collection of entities and relationships
 - ▷ Represented diagrammatically by an entity-relationship diagram
 - Normalization Theory (Chapter 8)
 - ▷ Formalize what designs are bad, and test for them

Object-Relational Data Models

Module 05

Partha Prati Das

Objectives Outline

Object-Relational
Data Models

XML: Extensible Markup Languag

Database Engin
Database System

Database Users & Administrator

Module Summai

Object-Relational Data Models

Object-Relational Data Models

Module 05

Partha Pratir Das

Objectives Outline

Object-Relational Data Models XML: Extensible

Database Engine

Database Users & Administrators

Module Summar

- Relational model: flat, atomic values
- Object Relational Data Models
 - Extend the relational data model by including object orientation and constructs to deal with added data types
 - Allow attributes of tuples to have complex types, including non-atomic values such as nested relations
 - Preserve relational foundations, in particular the declarative access to data, while extending modeling power
 - o Provide upward compatibility with existing relational languages

XML: Extensible Markup Language

Module 05

Partha Prati Das

Objectives Outline

Object-Relational
Data Models

XML: Extensible Markup Language

Database Engin
Database System
Internals

Database Users & Administrators

Module Summar

XML: Extensible Markup Language

XML: Extensible Markup Language

Module 05

Partha Pratir Das

Objectives Outline

Object-Relational
Data Models

XML: Extensible

Markup Language Database Engine

Database Users

Module Summar

- Defined by the WWW Consortium (W3C)
- Originally intended as a document markup language not a database language
- The ability to specify new tags, and to create nested tag structures made XML a great way to exchange data, not just documents
- XML has become the basis for all new generation data interchange formats
- A wide variety of tools is available for parsing, browsing and querying XML documents/data

Database Management Systems Partha Pratim Das 05.13

Database Engine

Module 05

Partha Prati Das

Objectives Outline

Object-Relational

XML: Extensible Markup Langua

Database Engine

Internals

& Administrators

Module Summar

Database Engine

Database Engine

Module 05

Partha Pratii Das

Objectives Outline

Database Design Object-Relational Data Models XML: Extensible

Database Engine

Internals

Database Users & Administrator

Module Summar

- Storage manager
- Query processing
- Transaction manager

Storage Management

Module 05

Partha Pratir Das

Objectives Outline

Object-Relational
Data Models
XML: Extensible
Markup Language

Database Engine

Database System
Internals

Database Users & Administrators

Module Summai

- Storage manager is a program module that provides the interface between the low-level data stored in the database and the application programs and queries submitted to the system
- The storage manager is responsible to the following tasks:
 - Interaction with the OS file manager
 - o Efficient storing, retrieving and updating of data
- Issues:
 - Storage access
 - File organization
 - Indexing and hashing

Query Processing

Module 05

Partha Pratir Das

Objectives Outline

Database Desigr Object-Relational Data Models

Database Engine

Internals

& Administrators

Module Summary

- a) Parsing and translation
- b) Optimization
- c) Evaluation

Query Processing (2)

Module 05

Partha Pratin Das

Objectives Outline

Database Design
Object-Relational
Data Models
XML: Extensible
Markup Language

Database Engine
Database System

Database Users & Administrators

Module Summar

- Alternative ways of evaluating a given query
 - Equivalent expressions
 - o Different algorithms for each operation
- Cost difference between a good and a bad way of evaluating a query can be enormous
- Need to estimate the cost of operations
 - Depends critically on statistical information about relations which the database must maintain
 - Need to estimate statistics for intermediate results to compute cost of complex expressions

Transaction Management

Module 05

Database Engine

• What if the system fails?

- What if more than one user is concurrently updating the same data?
- A transaction is a collection of operations that performs a single logical function in a database application
- Transaction-management component ensures that the database remains in a consistent (correct) state despite system failures (e.g., power failures and operating system crashes) and transaction failures.
- Concurrency-control manager controls the interaction among the concurrent transactions, to ensure the consistency of the database.

Database Management Systems Partha Pratim Das 05 19

Database System Internals

Module 05

Partha Prati Das

Objectives Outline

Database Desig Object-Relational Data Models

XML: Extensible Markup Langua

Database Engin

Database System
Internals

Database Users & Administrator

Module Summar

Database System Internals

Database System Internals

Module 05

Partha Pratir

Objectives Outline

Database Design

XML: Extensible Markup Languag

Database Engine

Database System

Internals

Database Users

Module Summary

Database Architecture

Module 05

Partha Pratii Das

Objectives Outline

Database Design
Object-Relational
Data Models
XML: Extensible
Markup Language

Database Engine
Database System

Database Users & Administrator

Module Summar

The architecture of a database system is greatly influenced by the underlying computer system on which the database is running:

- Centralized
- Client-server
- Parallel (multi-processor)
- Distributed
- Cloud

Partha Pratin Das

Objectives Outline

Database Design

XML: Extensible

Database Engine
Database System

Database Users & Administrator

Module Summar

Partha Pratii Das

Objectives Outline

Object-Relational
Data Models
XML: Extensible

Database Engine Database System

Database Users & Administrators

Module Summai

Database Users and Administrators

Database Management Systems Partha Pratim Das 05.24

Database Users and Administrators

Module 05

Partha Pratin

Objectives Outline

Object-Relational

XML: Extensible

Database Engir

Database Users & Administrators

Module Summary

05.26

Module 05

Partha Prati Das

Objective Outline

Database Design Object-Relational Data Models XML: Extensible Markup Language

Database Engin

Database Users & Administrator

Module Summary

- Introduced models of database management systems
- Familiarized with major components of a database engine
- Familiarized with database internals and architecture

Slides used in this presentation are borrowed from http://db-book.com/ with kind permission of the authors.

Edited and new slides are marked with "PPD".