

Patent number:

JP2002001575

Publication date:

2002-01-08

Inventor:

KIBE MAKI

Applicant:

MATSUSHITA ELECTRIC IND CO LTD

Classification:

- international:

B23K35/26; C22C13/00; H01K1/46;

H05K3/34

- european:

Application number: JP20000180404 20000615 Priority number(s): JP20000180404 20000615

Report a data error here

Abstract of **JP2002001575**

PROBLEM TO BE SOLVED: To provide a leadless solder alloy having a melting temperature close to the melting temperature of Pb-Sn eutectic solder without containing a hazardous substance such as Pb, etc., a circuit board mounted with an electronic component by means of the leadless solder alloy, and a tubular bulb soldered thereby. SOLUTION: The solder alloy is composed of Sn of 86.2 mol%, Zn of 10 mold, Al of 2 mol%, and Bi of 1.8 mol%.

Data supplied from the esp@cenet database - Worldwide

This Page Biank (uspto)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-1575

(P2002-1575A)

		(43)公開日 平成14年1月8日(2002.1.8)
(51) Int.Cl. ⁷	識別記号	F I デーマコート* (参考)
B 2 3 K 35/26	3 1 0	B 2 3 K 35/26 3 1 0 A 5 E 3 1 9
C 2 2 C 13/00		C 2 2 C 13/00
H01K 1/46		H 0 1 K 1/46 X
H05K 3/34	506	H05K 3/34 506B
	5 1 2	5 1 2 C
		審査請求 未請求 請求項の数7 OL (全 6 頁)
(21)出願番号	特願2000-180404(P2000-180404)	(71) 出願人 000005821
		松下電器産業株式会社
(22) 出願日	平成12年6月15日(2000.6.15)	大阪府門真市大字門真1006番地
		(72)発明者 木部 真樹
		大阪府高槻市幸町1番1号 松下電子工業
		株式会社内
	•	(74)代理人 100095555
		弁理士 池内 寛幸 (外5名)
		Fターム(参考) 5E319 AA02 AA07 AB01 BB01 CC23
	•	
	••	

(54) 【発明の名称】 無鉛半田合金およびこの無鉛半田合金を搭載した回路基板ならびに管球

(57)【要約】

【課題】 Pb等の有害物質を含まず、Pb-Sn共晶 半田の融解温度と近い融解温度を有する無鉛半田合金お よびこの無鉛半田合金を用いて電子部品が実装された回 路基板、この無鉛半田合金を用いて半田付けされた管球 を提供する。

【解決手段】 Snが86.2モル%、Znが10モル%、Alが2モル%、Biが1.8モル%からなる半田合金。

2

【特許請求の範囲】

【請求項1】 錫(Sn)、亜鉛(Zn) およびアルミニウム(Al)の三元共晶を含むことを特徴とする無鉛半田合金。

1

【請求項2】 無鉛半田合金を構成する全成分の合計量を100モル%とした場合に、錫(Sn)、亜鉛(Zn) およびアルミニウム(Al)の含有割合が、錫(Sn)94~82モル%、亜鉛(Zn)5~15モル%、およびアルミニウム(Al)1~3モル%である請求項1に記載の無鉛半田合金。

【請求項3】 Sn、ZnおよびAlの三つの相の少なくとも一つの相に固溶し得る金属を更に含む請求項1又は2のいずれかに記載の無鉛半田合金。

【請求項4】 固溶し得る金属が、ビスマス(Bi)、インジウム(In)もしくはこれらの組み合わせから選ばれたいずれかである請求項3に記載の無鉛半田合金。

【請求項5】 無鉛半田合金を構成する全成分の合計量を100モル%とした場合に、固溶し得る金属の含有割合が、2モル%以下である請求項3又は4のいずれかに記載の無鉛半田合金。

【請求項6】 請求項1から5のいずれかに記載の無鉛 半田合金を用いて、電子部品が実装されていることを特 徴とする回路基板。

【請求項7】 請求項1から5のいずれかに記載の無鉛 半田合金を用いて、口金とリード線とが半田付けされて いることを特徴とする管球。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、鉛(Pb)を含まない無鉛半田合金およびこの無鉛半田合金を用いて電子 30部品が実装された回路基板、口金とリード線とが半田付けされた管球に関するものである。

[0002]

【従来の技術】半田合金は、各種金属の接合のために広く使われており、その中でもPb-Sn共晶半田は約183℃の共晶融解温度を持ち、一般的な半田となっている。

[0003]

【発明が解決しようとする課題】近年、ほとんどの電気機器や自動車をはじめとしてかなりの工業製品にPb-Sn共晶半田が使用されてきており、半田合金は、金属材料同士の導電性の簡便な接合材として産業界において欠くことのできない素材となっている。しかしながら、鉛は重金属であり、生体にとって有毒であり、Pb-Sn共晶半田が使用された機器類の廃棄に伴い、Pbによる環境汚染が深刻化し、近年はPbを使わない無鉛半田合金が強く望まれている。

【0004】使用温度、材料が限定されなければ、Pb - Sn共晶系以外の現存する各種の半田台金を適用できるが、これまでPb-Sn共晶半田が使われてきた領域 50

では、Pb-Sn共晶半田を使用する対象となる相手の材料(半田付け部材)が、Pb-Sn共晶半田の融解温度に適合するように選定されてきてしまっており、かつ半田付け部材を接合する半田付け設備や器具も温度的にも材料的にもPb-Sn共晶半田に適合するように設計されている。

[0005] このため、半田合金成分および融解温度が従来とできるだけ変わらないこと、すなわち、融解温度がPb-Sn共晶半田の融解温度183℃に近く、かつ10 Pb-Sn共晶の融解のように狭い温度範囲で融解でき、しかも、Pbを含んでいない実用可能な半田とすることが産業上極めて望ましい。

【0006】しかしながら、現在提案されている無鉛半田合金は、その融点がPb-Sn共晶半田の融点よりも高いものが多くなっている。

【0007】本発明はこのような問題を解決するためになされたもので、Pbおよび有害物質を含まず、Pb-Sn共晶半田の融解温度と近い融解温度を有する無鉛半田合金およびこの無鉛半田合金を用いて電子部品が実装された回路基板、ならびにこの無鉛半田合金を用いて口金とリード線とが半田付けされた管球を提供することを目的とする。

[0008]

40

【課題を解決するための手段】本発明の無鉛半田合金およびこの無鉛半田合金が使用された回路基板、および管球は、次の様である。

【 0 0 0 9 】 (1) 本発明の無鉛半田合金は、錫(S n)、亜鉛(Z n) およびアルミニウム(A 1) の三元 共晶を含むことを特徴とする。

【0010】(2)前記(1)項に記載の無鉛半田合金においては、無鉛半田合金を構成する全成分の合計量を100モル%とした場合に、錫(Sn)、亜鉛(Zn) およびアルミニウム(A1)の含有割合が、錫(Sn) 94~82モル%、亜鉛(Zn)5~15モル%、およびアルミニウム(A1)1~3モル%である事がこのましい。

【0011】(3)また、前記(1)又は(2)項のいずれかに記載の無鉛半田合金においては、Sn、ZnおよびAlの三つの相の少なくとも一つの相に固溶し得る金属を更に含むことが好ましい。

【0012】(4)また、前記(3)項に記載の無鉛半田合金においては、固溶し得る金属が、ビスマス(Bi)、インジウム(In)もしくはこれらの組み合わせから選ばれたいずれかであることが好ましい。

【0013】(5)また、前記(3)項又は(4)項のいずれかに記載の無鉛半田合金においては、無鉛半田合金を構成する全成分の合計量を100モル%とした場合に、固溶し得る金属の含有割合が、2モル%以下であることが好ましい。

0 【0014】(6)また、本発明の回路基板は、前記

3

(1)~(5)項のいずれかに記載の無鉛半田合金を用いて、電子部品が実装されていることを特徴とする。 【0015】(7)また、本発明の管球は、前記(1)~(5)項のいずれかに記載の無鉛半田合金を用いて、 □金とリード線とが半田付けされていることを特徴とする。

[0016]

【発明の実施の形態】本発明の無鉛半田台金は、Sn、ZnおよびAlの三元共晶を含んだ構成を有している。これらの組成割合は、無鉛半田台金を構成する全成分の10合計量を100モル%とした場合に、錫(Sn)、亜鉛(Zn)およびアルミニウム(Al)の含有割合が、錫(Sn)94~82モル%、亜鉛(Zn)5~15モル%、およびアルミニウム(Al)1~3モル%の範囲が好ましい。

【0017】このような本発明の半田合金は、Pb-S n共晶半田の共晶融解温度である183℃に近い約19 6℃前後の共晶融解温度を有し、したがってPb-Sn 共晶半田とほぼ同様な条件で使用できる無鉛半田合金と することができ、半田付けの対象となる部材や物品とし て更に耐熱性の高い材料の使用が余儀なくされる事はな く、従来と同等の耐熱性を有する素材からなる半田付け 対象物品も使用できるし、また半田付け対象部材を接合 する半田付け設備や器具も温度的にも材料的にもPb-Sn共晶半田に使用してきたものが使用でき好ましい。 【0018】特に、本発明の無鉛半田合金においては、 Sn、ZnおよびAlの三つの相の少なくともいずれか 一つの相に固溶し得る金属を更に含むことが好ましい。 【0019】とのような固溶し得る金属(以下、固溶金 属と略称することがある。)を含ませることにより、半 30 田合金の融解温度をさらに下げたり、その他半田合金に 実用上より望ましい性質を付与したりすることができ好 ましい。

【0020】固溶金属としては、Bi、Inもしくはこれらの組み合わせが好適である。例えば、Snの一部をBi、Inもしくはこれらの組み合わせに置換し(Sn、Bi)、(Sn、In)もしくは(Sn、Bi、In)の構造にすることにより、融解温度をさらに下げることができる。

【0021】無鉛半田合金を構成する全成分の合計量を100モル%とした場合に、固溶金属の含有割合は、固溶金属の種類によって異なるが、例えばBi、Inもしくはこれらを組み合わせたものを用いた場合には、2モル%以下が好ましい。2モル%以下であると、Snと固溶金属との共晶が形成されにくく、従って半田合金の融解温度が著しく低下しすぎてしまうこともなく好まし

【0022】このようにSn、ZnおよびAlの三つの相の少なくとも一つの相に固溶し得る金属を更に含ませる場合においても、前記固溶金属を含む全成分の合計量 50

が100モル%の範囲内で適宜調整される。例えば、Bi、Inもしくはこれらの組み合わせを用いた場合、Snの含有量を調節する。

【0023】次に、本発明の回路基板は、上記無鉛半田 合金を用いて電子部品が実装されている回路基板であり、回路基板上に実装される電子部品としては、Pb-Sn共晶半田を用いて実装される電子部品と同等のものが使用できる。特に限定されるものではないが、電子部品としては、例えば、電解コンデンサーなどの電極リード線が出ているリード線を回路基板に差し込んで半田付けするような挿入部品、トランジスターや半導体部品などの表面実装部品、チップ抵抗器やチップコンデンサーなどのベアチップ部品、リード線、コネクタ等が挙げられる。

【0024】この構成により、回路基板の半田部分の無鉛化を図ることができ、しかも、半田付けの際に、Pb-Sn共晶半田による半田付けで使用してきた半田付け設備や半田付け用器具も使用でき好ましい。

【0025】次に、本発明の管球は、上記本発明の無鉛 20 半田を用いて口金とリード線とが半田付けされている管 球である。

【0026】管球は、一般家庭も含めて、使用量が極めて多く、また、電球のフィラメント切れにより、交換のために廃棄される量は極めて多いが、本発明の管球を用いることにより、管球の無鉛化を図ることができ、環境汚染を少なくすることが出来好ましい。しかも、Pb-Sn共晶半田を用いて作製されてきた管球と同等の耐熱性の部品や材料を使用することもでき、また、半田付けの際に、Pb-Sn共晶半田による半田付けで使用してきた半田付け設備や半田付け用器具も使用でき好ましい

【0027】以下、本発明の理解を容易にするため、本 発明の実施の形態についての具体的態様を図面を用いて 説明するが、本発明は、下記の具体的実施の形態例のみ に限定されるものではない。

【0028】(実施の形態1)無鉛半田合金の組成が共晶となる場合の第1の実施の形態を図1を用いて説明する。

【0029】Snを88モル%、Znを10モル%、A 1を2モル%の組成からなる半田合金を作製し、その示 差走査型熱量計(DSC)曲線を図1に示した。図1 中、3がDSC曲線、1がDSC曲線の融解吸熱ビー ク、4が温度曲線を示している。

【0030】DSC曲線には、ほぼ1本の急峻な196 ℃の融解吸熱ビーク1が見られ合金が融解していることを示し、ほぼこの組成でSn、Zn、Al の三元共晶が形成されていることが分かる。

【0031】以上のように、Sn、Zn、Alの三元共晶を有する半田合金では、共晶融解温度をPb-Sn共晶半田のそれに近い温度にすることができる。

1

.

【0032】なお、図1中、200.8℃は融解吸熱ビ ーク1の頂点の温度、-69.285J/gは、半田合 金1g当りの吸収した熱量を示している。

【0033】(実施の形態2)第1の実施の形態で示し た半田合金材料の組成にBiを追加した合金の第2の実 施の形態を図2を用いて説明する。

【0034】第1の実施の形態で示した半田合金材料の 組成比におけるSnの2モル%をBi に置換した組成比 である、Snが86.2モル%、Znが10モル%、A 1が2モル%、Biが1.8モル%からなる半田合金の 10 DSC曲線を図2に示す。図2中、3がDSC曲線、2 がDSC曲線の融解吸熱ピーク、4が温度曲線を示して いる。

【0035】DSC曲線には、185℃付近に1本の融 解吸熱ピーク2が見られ、図1に示した組成の半田合金 の融解吸熱ピーク1よりもピーク幅は広がりながら、か つ低温側にシフトしている。これは、BiがSnに固溶 したことにより、合金の共晶融解温度が幅を広げながら 下がっていることを示している。

晶を有する半田合金材料に、Snに固溶できるBiを加 えた半田合金では、共晶融解温度をPb-Sn共晶半田 のそれとほぼ同じ温度にすることができる。

【0037】なお、図2中、197.6℃は吸熱ピーク 2の頂点の温度、-66.631J/gは、半田合金1 g当りの吸収した熱量を示している。

【0038】また、上記の実施の形態ではSnの一部を Bi に置換した場合について説明したが、これに限ると となく、例えばSnの一部をInに置換した場合でも、 共晶融解温度をPb-Sn共晶半田のそれとほぼ同じ温 30 度にすることができる。

【0039】(実施の形態3)第1の実施の形態あるい は第2の実施の形態で示した無鉛半田を用いて電子部品 が実装された回路基板を図3を用いて説明する。

【0040】図3は、電子部品15の部品リード15a と、回路基板13に設けられた配線パターンのランド1 4とが本発明の無鉛半田16により接合されている状態 を示している。電子部品15の接合方法は、回路基板1 3の半田付け面にフラックスを塗布した後、溶融半田に ディップするフロー手法である。フロー条件をPb-S n共晶半田の時と同様に、回路基板11のプリヒート温 度を295~305℃とし、基板溶融半田の温度を25 0~255℃とした。酸化されやすい半田であることか ら、窒素雰囲気下でフローを行う工夫が必要であるが、 設備的には従来のPb-Sn共晶半田の場合と何ら変わ らずに半田付けが可能であった。

【0041】上記の実施の形態では電子部品15は電解 コンデンサであるが、回路基板 13 に実装される電子部 品としては、挿入部品、表面実装部品、ベアチップ部 品、リード線、コネクタ等、他の電子部品を用いてもよ 50 融解吸熱ピーク

64

【0042】(実施の形態4)第1の実施の形態あるい は第2の実施の形態で示した本発明の無鉛半田を用いて 口金と発光管から出るリード線とが半田付けされた本発 明の管球、例えば白熱電球を図4を用いて説明する。

【0043】図4は、白熱電球の概略断面図であるが、 発光管 17の部分は断面ではなく外形のみ記載した概略 一部分断面図である(これを単にここでは概略断面図と 称する。)。図4は、発光管17から出るリード線18 と、接着剤19により発光管17と接着されている口金 20とが本発明の無鉛半田16により接合されている状 態を示している。この時の接合方法として、糸状半田あ るいは棒状半田と半田ごてを用いたポイント半田付けが 一般化しているが、上記本発明の無鉛半田を糸状あるい は棒状に加工し、適切なフラックスを選ぶことによって 従来のPb-Sn共晶半田と変わらない半田とて温度で ポイント半田付けが可能であった。

【0044】なお、上記の実施の形態では白熱電球の発 光管リード線と口金との接合の場合について説明した 【0036】以上のように、Sn、Zn、Alの三元共 20 が、例えば電球型蛍光ランプの発光管リード線と回路基 板端子との接合あるいは電球型蛍光ランプの電源リード 線と□金との接合でも同じである。

[0045]

【発明の効果】以上説明したように、本発明は従来の半 田合金の主要な成分の一つであるSnを主成分とし、有 害なPbを含まない無害物質からなり、従って環境汚染 の防止に有効であり、かつ従来のPb-Sn共晶半田に 近い融解温度を示すことにより、従来のPb-Sn共晶 半田において使用されている半田設備ないしは半田器具 をそのまま使用できるというすぐれた効果を有する無鉛 半田合金を提供することができる。また、この無鉛半田 合金を用いることにより従来のРb-Sn共晶半田を用 いて半田付けしていた半田付け対象部品の素材を耐熱性 などの点で変更することなく半田付けができ、しかも無 鉛化されることにより環境汚染の問題を軽減しうる回路 基板、管球を提供することができる。

【図面の簡単な説明】

【図1】Sn、Zn、Alの組成比が三元共晶となる本 発明の無鉛半田合金のDSC曲線。

【図2】本発明の無鉛半田合金の組成にBiを追加した 場合の本発明の無鉛半田合金のDSC曲線。

【図3】本発明の無鉛半田合金を用いて電子部品を実装 した回路基板の断面図。

【図4】本発明の無鉛半田合金を用いて口金とリード線 を半田付けした白熱電球の概略断面図。

【符号の説明】

 Sn-Zn-Al合金のDSC曲線における融解吸 熱ピーク

2 Sn-Zn-Al-Bi合金のDSC曲線における

(5) 特開2002-1575

8

 3 DSC曲線
 *16 無鉛半田

 4 温度曲線
 17 発光管

 13 回路基板
 18 リード線

 14 ランド
 19 接着剤

 15 電子部品
 20 口金

 15 a 部品リード
 *

(6)

特開2002-1575

• -