1 Opakování

1.1 Vektorová norma

Definice 1 (Vektorová norma). Norma je funkcionál splňující pro libovolné vektory $x, y \in \mathbb{C}^n$ (\mathbb{R}^n) a pro libovolný skalár $\alpha \in \mathbb{C}$ (\mathbb{R}) následující podmínky:

- 1. $||x|| \ge 0$, $a ||x|| = 0 \Leftrightarrow x = 0$ (pozitivní definitnost),
- 2. $||x+y|| \le ||x|| + ||y||$ (trojúhelníková nerovnost),
- 3. $\|\alpha x\| = |\alpha| \|x\|$ (pozitivní homogenita).

1.2 Příklady vektorových norem

Nechť $x = [x_1, x_2, \dots, x_n]^T \in \mathbb{C}^n$. Mezi tři základní vektorové normy patří

jedničková norma
$$\|x\|_1 \equiv \sum_{i=1}^n |x_i|$$
euklidovská ("dvojková") norma
$$\|x\|_2 \equiv \|x\| \equiv \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}$$
maximová norma
$$\|x\|_\infty \equiv \max_{i=1,\dots,n} |x_i|.$$

Úloha 1. Pro uvedené normy nakreslete jednotkové koule v \mathbb{R}^2 , tj. množiny $\{x \in \mathbb{R}^2 : ||x|| \leq 1\}$.

Podle věty o ekvivalenci norem na konečně-dimenzionálním prostoru jsou všechny tyto normy topologicky ekvivalentní, tj. pro libovolné dvě normy $\|\cdot\|_{\alpha}$ a $\|\cdot\|_{\beta}$ existují konstanty $c,C\in\mathbb{R}$ takové, že platí

$$c||x||_{\alpha} \le ||x||_{\beta} \le C||x||_{\alpha}, \quad \forall x \in \mathbb{C}^n.$$

Jedná se o teoretický výsledek, pro praktické použití, například měření chyby, jsou konstanty c a C často příliš velké/malé.

Úloha 2. Ukažte, že platí

$$||x||_{\infty} \le ||x||_2 \le \sqrt{n} ||x||_{\infty}, \quad \forall x \in \mathbb{R}^n.$$

[Hint (geometricky): Začněte s \mathbb{R}^2 . Pro jaké vektory se normy nejvíce a nejméně liší?]

[Hint (algebraicky): Pracujte s $||x||_2^2$.]

Řešení. Platí

$$||x||_{\infty}^{2} = \max_{i} |x_{i}|^{2} \leq \sum_{i=1}^{\|x\|_{2}^{2}} |x_{i}|^{2} \leq n \max_{i} |x_{i}|^{2} = n ||x||_{\infty}^{2}.$$

Nebo prostou úvahou: normy se rovnají pro vektory kanonické báze, a nejvíce se liší pro vektor jedniček: tam je maximová 1 a dvojková \sqrt{n} .

Geometrické řešení je možné vidět přes vkládání "koulí"do sebe. Má to jeden háček: je nutno pochopit, že vztah mezi vkládáním koulí a nerovnostmi je opačný, než by intuitivně napovídalo pořadí norem v nerovnosti. Levá nerovnost plyne z toho, že 2-koule je obsažena v ∞ -kouli. Pravá nerovnost pak z toho, že ∞ -koule zmenšená $\sqrt{2}$ -krát je obsažena ve 2-kouli.

1.3 Skalární součin

Definice 2 (Skalární součin). *Skalární součin je zobrazení* $\langle \cdot, \cdot \rangle : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ splňující pro libovolné vektory $x, y, z \in \mathbb{C}^n$ a pro libovolný skalár $\alpha \in \mathbb{C}$ následující podmínky:

1.
$$\langle x, x \rangle \ge 0$$
 a $\langle x, x \rangle = 0 \Leftrightarrow x = 0$,

2.
$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$
,

3.
$$\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$$
,

4.
$$\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$$
.

Každý skalární součin indukuje normu

$$||x|| \equiv \sqrt{\langle x, x \rangle},$$

pro niž navíc platí Cauchyho-Schwarzova nerovnost

$$|\langle x, y \rangle| \le ||x|| \, ||y||.$$

Vektory x a y jsou ortogonální (kolmé), pokud platí $\langle x, y \rangle = 0$.

Definice 3 (Euklidovský skalární součin).

$$\langle x, y \rangle \equiv y^* x = \sum_{i=1}^n \overline{y}_i x_i, \quad x, y \in \mathbb{C}^n.$$

1.4 Matice - připomenutí

• matice $A \in \mathbb{C}^{n \times m}$, $A = [a_{i,j}], i = 1, ..., n, j = 1, ..., m$,

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,m} \\ a_{2,1} & a_{2,2} & \dots & a_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,m} \end{bmatrix}$$

- matice transponovaná $A^T = [a_{j,i}] \in \mathbb{C}^{m \times n}$, hermitovsky sdružená $A^* = [\overline{a}_{j,i}] \in \mathbb{C}^{m \times n}$
- $A \in \mathbb{C}^{n \times n}$ nazveme symetrickou, platí-li $A = A^T$, a hermitovskou, pokud $A = A^*$
- $A \text{ reálná} \Rightarrow A^T = A^*$
- pro libovolnou čtvercovou matici A platí $\langle Ax, y \rangle = y^*Ax = (A^*y)^*x = \langle x, A^*y \rangle$

- čtvercová matice je $singulární \Leftrightarrow \exists x \neq 0$: Ax = 0; matice, která není singulární, se nazývá regulární
- vektor $v \neq 0$ a skalár λ jsou vlastním vektorem/číslem matice A, pokud $Av = \lambda v$
- hermitovskou matici nazveme pozitivně definitní (HPD), pokud $\forall x \neq 0 : x^*Ax > 0$
- matice A je normální, pokud splňuje $AA^* = A^*A$, ekvivalentně je to unitárně diagonalizovatelná komplexní matice
- komplexní (reálná) čtvercová matice U typu $n \times n$ je unitární, pokud její sloupce/ řádky tvoří ON bázi prostoru \mathbb{C}^n (\mathbb{R}^n); ekvivalentně $U^*U = UU^* = I$

1.5 Matice jako lineární zobrazení

Matice $A \in \mathbb{C}^{n \times m}$ definuje zobrazení z \mathbb{C}^m do \mathbb{C}^n , které vektoru $x \in \mathbb{C}^m$ přiřazuje vektor $Ax \in \mathbb{C}^n$,

$$A: \mathbb{C}^m \longrightarrow \mathbb{C}^n, \qquad A: x \longmapsto Ax.$$

Uvažujme matici

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}.$$

Tato matice má vlastní čísla $\lambda_1 = 2$ a $\lambda_2 = 4$ a odpovídající vlastní vektory $v_1 = \frac{\sqrt{2}}{2}(-1,1)^T$ a $v_2 = \frac{\sqrt{2}}{2}(1,1)^T$. Působení matice A na jednotkovou kružnici lze nahlédnout na obrázku 1.

Obrázek 1: Zobrazení jedničkové kružnice pomocí matice A, zvýrazněné vlastní vektory.

1.6 Unitární transformace

Mnoho různých algoritmů na řešení soustav lineárních rovnic, problému nejmenších čtverců či problému výpočtu vlastních čísel je založeno na unitárních transformacích vektoru či matice,

$$x \mapsto Ux$$
, $A \mapsto UA$, U unitární.

- Jaké znáte vlastnosti unitárních matic?
- Uveďte některé příklady unitárních matic.

Úloha 3. Rozmyslete si, zda unitární transformace zachovávají jedničkovou či maximovou vektorovou normu. Pokud ne, najděte jednoduchý protipříklad. Pokud ano, zkuste zdůvodnit.

 $\check{R}e\check{s}en\acute{i}$. Unitární transformace obecně nezachovává ani jedničkovou ani maximovou vektorovou normu. Uvažujme například obraz kanonického vektoru při rotaci o úhel ϕ v \mathbb{R}^2 .

$$\begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \phi \\ \sin \phi \end{bmatrix}$$

Pro obecný úhel ϕ nejsou součet velikostí souřadnic ani velikost největší z nich rovny 1. \Box

2 Maticové normy

V analýze chování různých algoritmů pro řešení soustav lineárních rovnic, problémů nejmenších čtverců, problému vlastních čísel, etc. se často dostaneme do situace, kdy chceme odhadnout velikost nějakého vektoru, např. chyby, a máme jej vyjádřený jako obraz jiného vektoru při lineárním zobrazení, Ax. Potřebovali bychom jedním číslem odhadnout jeho velikost, například takto:

$$||Ax|| \le ||A|| ||x||. \tag{1}$$

Tedy velikost Ax je nanejvýš velikost x krát nějaké číslo, které je vlastností matice A – nazvěme ho normou matice A.

Pokusme se nyní objevit co nejvíce věcí o normě matice. Co nás tedy zajímá?

2.1 Otázky

- Jak měřit matici jedním číslem?
- Jak lze normu matice definovat?
- Jaké vlastnosti bychom od normy matice očekávali?
- Vymyslíme nějaké speciální případy? Nějaké matice, pro které víme, kolik by měla být norma?

2.2 Definice

Definice 4 (Generovaná norma). *Maticovou normou generovanou vektorovou normou nazýváme funkcionál*

$$||A||_{\alpha} \equiv \max_{x \neq 0} \frac{||Ax||_{\alpha}}{||x||_{\alpha}} = \max_{||x||_{\alpha} = 1} ||Ax||_{\alpha}.$$

Takto definovaný funkcionál je normou ve smyslu definice normy. Z definice také triviálně vyplývá, že

$$||Ax||_{\alpha} \le ||A||_{\alpha} ||x||_{\alpha}.$$

Platí (pro počítání jednotlivých norem)

$$\|A\|_1 = \max_{1 \le j \le m} \sum_{i=1}^n |a_{ij}|, \qquad \text{(maximum přes sloupcové součty abs. hodnot)}$$

$$\|A\| \equiv \|A\|_2 = \sigma_1 = \sqrt{\varrho(A^*A)}, \qquad \text{(spektrální norma)}$$

$$\|A\|_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^m |a_{ij}|, \qquad \text{(maximum přes řádkové součty abs. hodnot)}$$

kde σ_1 je největší singulární číslo matice a $\varrho(\cdot)$ označuje spektrální poloměr, tj. $\varrho(B) \equiv \max\{|\lambda|, \lambda \in \operatorname{sp}(B)\}.$

Příkladem negenerované normy je Frobeniova norma, která je analogií 2-normy pro matice (díváme se na matici jako vektor o $n \times m$ složkách).

Definice 5 (Frobeniova norma).

$$||A||_F \equiv \left(\sum_{i=1}^n \sum_{j=1}^m |a_{ij}|^2\right)^{1/2},$$

Poznámka. Jiné možné zápisy Frobeniovy normy:

$$||A||_F^2 = \sum_{j=1}^m ||a_{*j}||^2 = \sum_{i=1}^n ||a_{i*}||^2 = \operatorname{trace}(A^*A),$$

kde a_{*j} značí j-tý sloupec, a_{i*} značí i-tý řádek matice A a trace $(B) = \sum_{i=1}^{m} b_{ii}$ je tzv. stopa matice $B \in \mathbb{C}^{m \times m}$.

2.3 Vlastnosti a doplňující úlohy

Kromě odhadu (1) by bylo velmi užitečné, kdyby maticové normy byly multiplikativní, tj.,

$$||AB||_{\alpha} \le ||A||_{\alpha} ||B||_{\alpha},$$

Úloha 4. Proč nelze obecně očekávat rovnost $||AB||_{\alpha} = ||A||_{\alpha}||B||_{\alpha}$ a $||AB||_{F} = ||A||_{F}||B||_{F}$?

 $\check{R}e\check{s}en\acute{\iota}$. Pro Frobeniovu normu rovnost neplatí ani pro A=B=I.

Následující řešení platí pro všechny generované normy. Kdyby rovnost platila, pak z definice musí platit:

$$||AB|| = ||A|| ||B||$$

$$\max_{||x||=1} ||ABx|| = \max_{||y||=1} ||Ay|| \cdot \max_{||z||=1} ||Bz||$$

Pozorujme, že na pravé straně vybírám vektory y a z nezávisle na sobě, ale na levé straně volím jen jeden vektor x. Zvolme takový vektor x, pro který se maximum nalevo nabývá. Norma ABx je pak rovna $\|Bx\|$ (tj. kolikrát vektor x zvětšila matice B) krát $\|A\frac{Bx}{\|Bx\|}\|$ (tj. kolikrát obraz vektoru x při zobrazení B zvětšilo vynásobení maticí A). Ale obecně nemusí platit, že $\|A\frac{Bx}{\|Bx\|}\| = \|A\|$ a zároveň $\|Bx\| = \|B\|$ pro ten samý vektor x. Konkrétní protipříklady jsou:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \text{ nebo } A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix},$$

nebo třeba také $A=B^{-1}$ pro B regulární (která není jen skalárním násobkem identity).

Úloha 5. Jsou zavedené maticové normy multiplikativní?

[Hint: Začněte generovanými normami, pro Frobeniovu je to obtížnější otázka.]

Řešení. Ano, plyne to přímo z vlastnosti (1): $||ABx||_{\alpha} \leq ||A||_{\alpha} ||Bx||_{\alpha} \leq ||A||_{\alpha} ||B||_{\alpha} ||x||_{\alpha}$. Frobeniova norma je také multiplikativní:

$$||AB||_F^2 = \sum_{i=1}^n \sum_{j=1}^m |\overline{\langle b_{*j}, \overline{a}_{i*} \rangle}|^2 \stackrel{\text{C-S}}{\leq} \sum_{i=1}^n \sum_{j=1}^m ||\overline{a}_{i*}||^2 ||b_{*j}||^2 = \sum_{i=1}^n ||a_{i*}||^2 \sum_{j=1}^m ||b_{*j}||^2 = ||A||_F^2 ||B||_F^2.$$

Úloha 6. Pomocí nástrojů z prvního ročníku najděte vyjádření 2-normy matice pro symetrické pozitivně definitní matice.

[Hint: Použijte geometrickou představu matice jako lineární zobrazení.]

Řešení. Pro SPD matice je obraz jednotkové koule (ve 2-normě) elipsoid s nejdelší osou délky největšího vlastního čísla. Tedy 2-norma symetrické matice je největší vlastní číslo (v absolutní hodnotě). Protože pro SPD matice vlastní a singulární čísla splývají, je 2-norma rovna také největšímu singulárnímu číslu.

Úloha 7. Je zřejmé, že obecně $||A||_1 \neq ||A^*||_1$ a $||A||_{\infty} \neq ||A^*||_{\infty}$. Dokažte, že pro $||A||_2$ však platí $||A||_2 = ||A^*||_2$.

 $\check{R}e\check{s}eni$. Singulární čísla matic A a A^* jsou stejná, tedy i norma.

2.4 Vlastnosti norem vzhledem k unitárním transformacím

Úloha 8 (Unitární invariance norem). Ukažte, že pro unitární matici $U \in \mathbb{C}^{n \times n}$ a libovolnou matici $A \in \mathbb{C}^{n \times n}$ platí

$$\|U\| = 1,$$

 $\|UA\| = \|A\|,$
(Navíc) $\|UA\|_F = \|A\|_F.$

[Hint: Může vám pomoci singulární rozklad matice A.]

[Hint: Spektrální i Frobeniova norma jsou multiplikativní (viz úloha 5), tedy

$$||AB|| \le ||A|| ||B||, \quad ||AB||_F \le ||A||_F ||B||_F.$$

 $\check{R}e\check{s}en\acute{i}$. Normu získáme ze znalosti singulárních čísel unitární matice. Například: singulární čísla U jsou vlastní čísla U^*U (vzpomeňte na to, jak se SVD odvozoval), a $U^*U=I$. Nebo: U=UII je singulární rozklad U.

Protože spektrální norma je multiplikativní a ||U|| = 1, platí

$$||UA|| \le ||U|| ||A|| = ||A|| = ||\widehat{U}^* \widehat{U} A|| \le ||\widehat{U}^*|| ||UA|| = ||UA||,$$

což dohromady dává ||UA|| = ||A||.

Frobeniova norma je sice také multiplikativní, ale předchozí postup pro ni nebude fungovat, protože $\|U\| = \sqrt{n}$.

Využijeme-li definice Frobeniovy normy pomocí stopy matice, pak

$$||UA||_F^2 = \operatorname{trace}(A^* \widetilde{U^*U} A) = \operatorname{trace}(A^*A) = ||A||_F^2.$$

 $||UA||_F = ||A||_F$ plyne také z toho, že násobit maticí U zleva znamená násobit jednotlivé sloupce matice A. Násobení unitární maticí U nemění jejich euklidovskou normu. Kvadrát Frobeniovy normy je jen součet kvadrátů euklidovských norem řádků/sloupců.

Úloha 9. Rozmyslete si, zda unitární transformace zachovává jedničkovou či maximovou maticovou normu. Pokud ne, najděte protipříklad. Pokud ano, zkuste zdůvodnit.

 $\check{R}e\check{s}en\acute{i}$. Normy se nezachovávají, lze argumentovat rozličně:

- Vektor je speciální případ matice s jedním sloupcem. Z úlohy 3 již víme, že se vektorová (a v důsledku tedy i maticová) norma nezachovává.
- Jednoduchý protipříklad pomocí zobrazení rotace:

$$\begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$$

kde jedničková i maximová norma výsledné matice je $|\cos\phi|+|\sin\phi|.$