日本国特許庁 JAPAN PATENT OFFICE

19.3.2004

REC'D 1 3 MAY 2004

PCT

WIPO

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年10月10日

出 願 番 号 Application Number: 特願2003-352624

[ST. 10/C]:

[] P 2 0 0 3 - 3 5 2 6 2 4]

出 顯 人
Applicant(s):

株式会社産学連携機構九州

PRIORITY DOCUMENT

COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 4月23日


```
特許願
【書類名】
              J030556TM0
【整理番号】
              特許庁長官殿
【あて先】
              B21H 3/02
【国際特許分類】
【発明者】
              福岡県福岡市早良区南庄3-28-5-303
  【住所又は居所】
              竹増 光家
  【氏名】
【発明者】
              福岡県福岡市東区高美台4-37-12
  【住所又は居所】
              宮原 洋
   【氏名】
【特許出願人】
              800000035
   【識別番号】
              株式会社産学連携機構九州
   【氏名又は名称】
【代理人】
   【識別番号】
              100099508
   【弁理士】
              加藤 久
   【氏名又は名称】
              092-413-5378
   【電話番号】
【先の出願に基づく優先権主張】
              特願2003-81247
   【出願番号】
              平成15年 3月24日
   【出願日】
【手数料の表示】
              037590
   【予納台帳番号】
```

21,000円

明細書 1

要約書 1

0015693

図面 1

特許請求の範囲 1

【納付金額】 【提出物件の目録】

【物件名】

【物件名】

【物件名】

【物件名】

【包括委任状番号】

【書類名】特許請求の範囲

【請求項1】

螺子転造ダイスにボルト材料を押し付けて転造するボルトの製造方法において、

前記螺子転造ダイスのうち少なくとも一つが、並目螺子を展開した並目螺子山の一部と、細目螺子を展開した細目螺子山と前記並目螺子山との位相ずれに応じて前記並目螺子山の谷部に周期的に形成された前記細目螺子山の一部とを備えたものであることを特徴とするボルトの製造方法。

【請求項2】

螺子転造ダイスにボルト材料を押し付けて転造するボルトの製造方法において、

前記螺子転造ダイスのうち少なくとも一つが、並目螺子を展開した並目螺子山の一部と、前記並目螺子山の谷部に前記並目螺子と同一方向のつる巻き線を持ち前記並目螺子よりもピッチの小さい細目螺子(但し、前記並目螺子と前記細目螺子のピッチの比は a 対 b であり、 a と b は最小の整数比である。)を展開したときに前記並目螺子山との位相ずれに応じて前記並目螺子山の b 巻きごとに周期的に現れる細目螺子山の一部とを有することを特徴とするボルトの製造方法。

【請求項3】

前記螺子転造ダイスは、さらに、前記並目螺子山の一部および前記細目螺子山の一部により形成される谷部に前記並目螺子と同一方向のつる巻き線を持ち前記細目螺子よりもさらにピッチの小さい最細目螺子(但し、前記並目螺子と前記細目螺子と前記最細目螺子のピッチの比はa対b対cであり、aとbとcは最小の整数比である。)を展開したときに前記並目螺子山の一部および前記細目螺子山の一部との位相ずれに応じて前記並目螺子山の c巻きごとに周期的に現れる最細目螺子山の一部を有することを特徴とする請求項2記載のボルトの製造方法。

【請求項4】

螺子転造ダイスにボルト材料を押し付けて転造するボルトの製造方法において、

前記螺子転造ダイスのうち少なくとも一つが、並目螺子を展開した並目螺子山の一部と、前記並目螺子山の谷部に前記並目螺子と同一方向のつる巻き線を持ち前記並目螺子よりもピッチが小さくかつピッチが異なる一つまたは複数の細目螺子(但し、前記並目螺子と前記一つまたは複数の細目螺子のピッチの比は a 対・・・対 n であり、 a , ・・・, n は最小の整数比である。)をそれぞれ展開したときに前記並目螺子山との位相ずれに応じて前記並目螺子山の n 巻きごとに周期的に現れるそれぞれの細目螺子山の一部とを有することを特徴とするボルトの製造方法。

【請求項5】

前記細目螺子山のうち最もピッチの小さい細目螺子山の一部は、前記細目螺子を展開したときの谷底が前記並目螺子山の谷底よりも高い位置となるように前記細目螺子を展開したときに、前記並目螺子山との位相ずれに応じて前記並目螺子山の n 巻きごとに周期的に現れるものであることを特徴とする請求項4記載のボルトの製造方法。

【請求項6】

前記細目螺子を展開したときの谷底は、前記並目螺子山の谷底よりも標準規格の細目螺子山高さの5~50%高い位置としたものであることを特徴とする請求項5記載のボルトの製造方法。

【請求項7】

前記螺子転造ダイスは、前記細目螺子山の一部の谷底にさらに切り込んだ深い溝を備えたものであることを特徴とする請求項2から4のいずれかに記載のボルトの製造方法。

【請求項8】

前記溝は、標準規格の細目螺子山高さの3~10%の深さであることを特徴とする請求 項7記載のボルトの製造方法。

【請求項9】

螺子転造ダイスにボルト材料を押し付けて転造するボルトの製造装置において、 前記螺子転造ダイスのうち少なくとも一つが、並目螺子を展開した並目螺子山の一部と

【請求項10】

螺子転造ダイスにボルト材料を押し付けて転造するボルトの製造装置において、

前記螺子転造ダイスのうち少なくとも一つが、並目螺子を展開した並目螺子山の一部と、前記並目螺子山の谷部に前記並目螺子と同一方向のつる巻き線を持ち前記並目螺子よりもピッチの小さい細目螺子(但し、前記並目螺子と前記細目螺子のピッチの比は a 対 b であり、 a と b は最小の整数比である。)を展開したときに前記並目螺子山との位相ずれに応じて前記並目螺子山の b 巻きごとに周期的に現れる細目螺子山の一部とを有するものであることを特徴とするボルトの製造装置。

【請求項11】

前記螺子転造ダイスは、さらに、前記並目螺子山の一部および前記細目螺子山の一部により形成される谷部に前記並目螺子と同一方向のつる巻き線を持ち前記細目螺子よりもさらにピッチの小さい最細目螺子(但し、前記並目螺子と前記細目螺子と前記最細目螺子のピッチの比は a 対 b 対 c であり、 a と b と c は最小の整数比である。)を展開したときに前記並目螺子山の一部および前記細目螺子山の一部との位相ずれに応じて前記並目螺子山の c 巻きごとに周期的に現れる最細目螺子山の一部を有することを特徴とする請求項10記載のボルトの製造装置。

【請求項12】

螺子転造ダイスにボルト材料を押し付けて転造するボルトの製造装置において、

前記螺子転造ダイスのうち少なくとも一つが、並目螺子を展開した並目螺子山の一部と、この並目螺子山の谷部に前記並目螺子と同一方向のつる巻き線を持ち前記並目螺子よりもピッチが小さくかつピッチが異なる一つまたは複数の細目螺子(但し、前記並目螺子と前記一つまたは複数の細目螺子のピッチの比はa対・・・対nであり、a,・・・,nは最小の整数比である。)をそれぞれ展開したときに前記並目螺子山との位相ずれに応じて前記並目螺子山のn巻きごとに周期的に現れるそれぞれの細目螺子山の一部とを有するものであることを特徴とするボルトの製造装置。

【請求項13】

前記細目螺子山のうち最もピッチの小さい細目螺子山の一部は、前記細目螺子を展開したときの谷底が前記並目螺子山の谷底よりも高い位置となるように前記細目螺子を展開したときに、前記並目螺子山との位相ずれに応じて前記並目螺子山の n 巻きごとに周期的に現れるものであることを特徴とする請求項12記載のボルトの製造装置。

【請求項14】

前記細目螺子を展開したときの谷底は、前記並目螺子山の谷底よりも標準規格の細目螺子山高さの5~50%高い位置としたものであることを特徴とする請求項13記載のボルトの製造装置。

【請求項15】

前記螺子転造ダイスは、前記細目螺子山の一部の谷底にさらに切り込んだ溝を備えたものであることを特徴とする請求項10から12のいずれかに記載のボルトの製造装置。

【請求項16】

前記溝は、標準規格の細目螺子山高さの3~10%の深さであることを特徴とする請求項15記載のポルトの製造装置。

【請求項17】

並目螺子を展開した並目螺子山の一部と、細目螺子を展開した細目螺子山と前記並目螺子山との位相ずれに応じて前記並目螺子山の谷部に周期的に形成された前記細目螺子山の一部とを備えた螺子転造ダイス。

【請求項18】

並目螺子を展開した並目螺子山の一部と、前記並目螺子山の谷部に前記並目螺子と同一方向のつる巻き線を持ち前記並目螺子よりもピッチの小さい細目螺子(但し、前記並目螺

【請求項19】

さらに、前記並目螺子山の一部および前記細目螺子山の一部により形成される谷部に前 記並目螺子と同一方向のつる巻き線を持ち前記細目螺子よりもさらにピッチの小さい最細 目螺子(但し、前記並目螺子と前記細目螺子と前記最細目螺子のピッチの比はa対b対c であり、aとbとcは最小の整数比である。)を展開したときに前記並目螺子山の一部お よび前記細目螺子山の一部との位相ずれに応じて前記並目螺子山のc巻きごとに周期的に 現れる最細目螺子山の一部を有することを特徴とする請求項18記載の螺子転造ダイス。

【請求項20】

並目螺子を展開した並目螺子山の一部と、前記並目螺子山の谷部に前記並目螺子と同一 方向のつる巻き線を持ち前記並目螺子よりもピッチが小さくかつピッチが異なる複数の細 目螺子(但し、前記並目螺子と前記複数の細目螺子のピッチの比はa対・・・対nであり 、a, ···, nは最小の整数比である。)をそれぞれ展開したときに前記並目螺子山と の位相ずれに応じて前記並目螺子山のn巻きごとに周期的に現れるそれぞれの細目螺子山 の一部とを有する螺子転造ダイス。

【請求項21】

前記細目螺子山のうち最もピッチの小さい細目螺子山の一部は、前記細目螺子を展開し たときの谷底が前記並目螺子山の谷底よりも高い位置となるように前記細目螺子を展開し たときに、前記並目螺子山との位相ずれに応じて前記並目螺子山のn巻きごとに周期的に 現れるものであることを特徴とする請求項20記載の螺子転造ダイス。

【請求項22】

前記細目螺子を展開したときの谷底は、前記並目螺子山の谷底よりも標準規格の細目螺 子山高さの5~50%高い位置としたものである請求項21記載の螺子転造ダイス。

【請求項23】

前記細目螺子山の一部の谷底にさらに切り込んだ深い溝を備えた請求項18から20の いずれかに記載の螺子転造ダイス。

【請求項24】

前記溝は、標準規格の細目螺子山高さの3~10%の深さである請求項23記載の螺子 転造ダイス。

【請求項25】

請求項17から24のいずれかに記載の螺子転造ダイスに対し、ボルト材料を押し付け て転造した多重螺子ボルト。

【書類名】明細書

【発明の名称】ボルトの製造方法および製造装置並びにこれに用いる螺子転造ダイス並び に多重螺子ボルト

【技術分野】

[0001]

本発明は、緩み防止機能を有するボルトの製造方法および製造装置並びにこれに用いる螺子転造ダイス並びに多重螺子ボルトに関する。

【背景技術】

[0002]

近年、緩み防止機能を有する種々のボルトおよびその製造方法が研究・開発されている。例えば、特許文献1に記載のボルトは、ボルト軸部の先端部から所定部まで形成されたピッチPの並目螺子部と、少なくともボルト軸部の並目螺子部の全長もしくは先端部から並目螺子部の所定部まで並目螺子部に重ねて形成されたピッチp(p=P/n,nは2以上の整数)の細目螺子部とを備える構成である。

[0003]

このボルト (いわゆる二重螺子ボルト) では、ボルトの並目螺子部に並目ナットを螺合させた後、細目螺子部に細目ナットをこの並目ナットに重ねて螺合させて、ボルトおよび両ナット間を締結させることができる。この際、細目ナットと並目ナットのピッチが異なるので、両者が一体になって同一方向に回転すると、両ナット間の接触面(座面)に反発力が働き、並目ナットが緩み方向に回転するのを防止することができる。

[0004]

また、特許文献1には、この二重螺子ボルトの製造方法についても記載されている。その製造方法は、まず、ボルト軸部の先端部から所定部まで切削によりピッチPの並目螺子部を形成し、その後、少なくともボルト軸部の並目螺子部の全長もしくはボルト軸部の先端から並目螺子部の所定部まで並目螺子部に重ねて、ピッチpの細目螺子部を切削により形成するというものである。

$[0\ 0\ 0\ 5]$

【特許文献1】国際公開第02/077466号パンフレット

【発明の開示】

【発明が解決しようとする課題】

[0006]

上記のように、まず、並目螺子部を切削により形成し、その後、この並目螺子部に重ねて細目螺子部を切削により形成する場合、1個の二重螺子ボルトを製造するために、切削工程を2回行わなければならない。さらに、1回目の切削により形成された並目螺子部に重ねて2回目の切削を行って細目螺子部の形成を行うと、重ねて切削した部分に返りが生じてしまう。そのため、この返りをワイヤブラシ等によって除去する工程が必要となる。

[0007]

また、特許文献1には、並目ダイスと細目ダイスを用いて一工程の転造により二重螺子ボルトを製造することについて言及されているが、この特許文献1に記載のように、並目ダイスと細目ダイスを一定間隔を挟んで対向して配置し、この並目ダイスと細目ダイスとの間にボルト軸部を入れて転造を行っても、実際には二重螺子ボルトを製造することは不可能である。これは、一方のダイス(並目・細目)により転造した螺子山を、他方のダイス(細目・並目)により壊すことになるからである。

[0008]

さらに、特許文献1には、並目螺子山と細目螺子山とが一体に形成されたダイスを用いても同様に実施可能であるという記載があるが、特許文献1には、並目螺子山と細目螺子山を具体的にどのようにして一体に形成すればよいのか記載されていない。並目螺子山と細目螺子山とが一体に形成されたダイスという記載は一見正しいように思われるが、実際に並目螺子山と細目螺子山とを一つのダイス上に一体に形成することはできず、この特許文献1の記載からだけでは、二重螺子ボルトを製造することは不可能である。

[0009]

このように、特許文献1に記載の二重螺子ボルトは、実際には切削により製造するしか 方法がない。ところが、上記のように切削による製造方法では、通常のボルトよりも製造 工程が多くなるため、製造コストが極めて高く、二重螺子ボルトの単価は非常に高いもの となっている。

[0010]

そこで、本発明においては、いわゆる二重螺子ボルトのような多重螺子ボルトを、より 低単価で大量生産することが可能なボルトの製造方法および製造装置並びにこれに用いる 螺子転造ダイスを提供することを目的とする。

【課題を解決するための手段】

[0011]

本発明の螺子転造ダイスは、並目螺子を展開した並目螺子山の一部と、細目螺子を展開した細目螺子山と前記並目螺子山との位相ずれに応じて前記並目螺子山の谷部に周期的に形成された前記細目螺子山の一部とを備えたものである。本発明のボルトの製造装置は、螺子転造ダイスにボルト材料を押し付けて転造するボルトの製造装置において、前記螺子転造ダイスのうち少なくとも一つを上記本発明の螺子転造ダイスとしたものである。本発明のボルトの製造方法は、螺子転造ダイスにボルト材料を押し付けて転造するボルトの製造方法において、螺子転造ダイスのうち少なくとも一つを上記本発明の螺子転造ダイスとするものである。

[0012]

本発明のボルトの製造方法および製造装置によれば、螺子転造ダイス上に形成された並目螺子山の一部および細目螺子山の一部によりボルト材料が押圧され、螺子転造ダイス上の並目螺子山の一部によりボルト材料の外周表面上に並目螺子山の一部が、螺子転造ダイス上の細目螺子山の一部によりボルト材料の外周表面上の並目螺子山の一部に細目螺子山の一部が、一工程で一度に転写される。これにより、並目螺子山の一部と細目螺子山の一部とが形成された、いわゆる二重螺子を備えたボルトが得られる。

[0013]

ここで、並目螺子とは、直径とピッチとの組み合わせが一般的で最も普通に使用されている螺子をいう。また、細目螺子とは、並目螺子に比べて直径に対するピッチの割合が細かく、谷が浅い螺子をいう。本発明の螺子転造ダイスに係る細目螺子山のピッチは、並目螺子山のピッチ以下であればよい。また、それぞれの螺子山の形状は、三角螺子、台形螺子、角螺子、鋸歯螺子、丸螺子、ポール螺子やその他の特殊螺子などのいずれでもよく、任意に組み合わせることも可能である。

[0014]

なお、本明細書中においては、つる巻き線の方向は一致するが、ピッチの異なる二つ以上の螺子山を同軸上に持つ、円筒体または円錐体のことを多重螺子という。多重螺子は、ピッチの異なる螺子山の数が2の場合、二重螺子、3の場合、三重螺子、4の場合、四重螺子、・・・、nの場合、n重螺子と呼ぶ。多重螺子は、その最も大きなピッチの螺子山と最も小さなピッチの螺子山の比を a 対 n とするとき (a と n は最小の整数比)、大きなピッチの螺子山のピッチ a ごとにその多重螺子の螺子山の形状は周期的に変化する。

[0015]

二重螺子ボルトを製造する場合、螺子転造ダイスは、並目螺子を展開した並目螺子山の一部と、この並目螺子山の谷部に並目螺子と同一方向のつる巻き線を持ち並目螺子よりもピッチの小さい細目螺子(但し、並目螺子と細目螺子のピッチの比は a 対 b であり、 a と b は最小の整数比である。)を展開したときに並目螺子山との位相ずれに応じて並目螺子山の b 巻きごとに周期的に現れる細目螺子山の一部とを有するものとする。

[0016]

また、螺子転造ダイスが、さらに、並目螺子山の一部および細目螺子山の一部により形成される谷部に並目螺子と同一方向のつる巻き線を持ち細目螺子よりもさらにピッチの小さい最細目螺子(但し、並目螺子と細目螺子と最細目螺子のピッチの比は a 対 b 対 c であ

り、aとbとcは最小の整数比である。)を展開したときに並目螺子山の一部および細目螺子山の一部との位相ずれに応じて並目螺子山のc巻きごとに周期的に現れる最細目螺子山の一部を有するものとすることで、並目螺子山の一部と細目螺子山の一部と最細目螺子山の一部とが形成された三重螺子ボルトを製造することが可能である。

[0017]

さらに、n重螺子ボルトを製造する場合、螺子転造ダイスは、並目螺子を展開した並目螺子山の一部と、この並目螺子山の谷部に並目螺子と同一方向のつる巻き線を持ち並目螺子よりもピッチが小さくかつピッチが異なる一つまたは複数の細目螺子(但し、並目螺子と一つまたは複数の細目螺子のピッチの比はa対・・・対nであり、a,・・・,nは最小の整数比である。)をそれぞれ展開したときに並目螺子山との位相ずれに応じて並目螺子山のn巻きごとに周期的に現れるそれぞれの細目螺子山の一部とを有するものとする。これにより、並目螺子山の一部と複数の細目螺子山それぞれの一部とが形成された多重螺子ボルトを製造することが可能である。

[0018]

ここで、細目螺子山のうち最もピッチの小さい細目螺子山の一部が、細目螺子を展開したときの谷底が並目螺子山の谷底よりも高い位置となるように細目螺子を展開したときに、並目螺子山との位相ずれに応じて並目螺子山の n 巻きごとに周期的に現れるものとすれば、転造の際、転がりピッチ円径が、細目螺子を展開したときの谷底部分において谷底を高くした分の約半分ボルト材料の内側に移動する。これにより、加工終期における転がりピッチ円径の変動が減少し、ボルト材料の回転中心位置の変動が軽減される。

[0019]

また、このとき、細目螺子を展開したときの谷底は、並目螺子山の谷底よりも標準規格の細目螺子山高さの5~50%高い位置とするのが望ましい。この範囲であれば、加工中のびびり振動および騒音を有効に減少することができる。なお、5%より小さい場合、谷底高さを変化させたことによるびびり振動および騒音の改善はほとんど見られない。一方、50%を超えると、転造により製造された多重螺子ボルトの細目螺子山の高さが、標準規格の細目螺子山の有効径よりも小さくなってしまうため、この多重螺子ボルトの細目螺子山への掛かりが小さくなる。

[0020]

また、螺子転造ダイスが、細目螺子山の一部の谷底にさらに切り込んだ深い溝を備えたものとすることで、多重螺子ボルトを転造する際、この深い溝がダッシュポットの役目を果たし、螺子転造ダイスの溝部へボルト材料が完全に充填されなくても、標準規格の細目螺子寸法を有する多重螺子ボルトを製造することができる。また、完全充填されないことによって、完全充填が一つの要因となって発生する加工終期のびびり振動を抑制することができる。

[0021]

また、このとき、溝は、標準規格の細目螺子山高さの3~10%の深さとすることが望ましい。この範囲であれば、ダッシュポットの役目を十分に発揮することができ、完全な形状の細目螺子山を有する多重螺子ボルトを製造することができるとともに、加工終期のびびり振動を十分に抑制することができる。なお、3%より小さい場合、溝を設けたことによる改善はほとんど見られない。一方、10%を超えると、溝が深すぎて、多重螺子ボルトの細目螺子山形状に影響を及ぼす可能性がある。

[0022]

ここで、本発明の螺子転造ダイスが、丸ダイス上に並目螺子山の一部および細目螺子山の一部を形成したものであれば、この螺子転造ダイスを所定間隔で配置してそれぞれ同一方向に回転させ、この螺子転造ダイス間にボルト材料を押圧させることにより、二重螺子ボルトを製造することができる。

[0023]

また、本発明の螺子転造ダイスが、平ダイス上に並目螺子山の一部および細目螺子山の一部を形成したものであれば、この螺子転造ダイスを所定間隔で配置し、一方を固定して

[0024]

なお、本発明の螺子転造ダイスは、所定間隔で配置する複数の螺子転造ダイスのうち少 なくとも一つ配置すればよいが、すべての螺子転造ダイスを本発明の螺子転造ダイスとす ることも可能である。螺子転造ダイスのうち一つを本発明の螺子転造ダイスとする場合、 他の螺子転造ダイスは並目螺子のみを展開した通常の並目螺子ダイスとする。また、ロー タリプラネタリ方式のボルトの製造方法または製造装置に適用する場合、本発明の螺子転 造ダイスは丸ダイスまたはセグメントダイスのいずれか一方に適用すればよく、両方に適 用してもよい。

【発明の効果】

[0025]

(1) 並目螺子を展開した並目螺子山の一部と、細目螺子を展開した細目螺子山と並目螺 子山との位相ずれに応じて並目螺子山の谷部に周期的に形成された細目螺子山の一部とを 備えた螺子転造ダイスを少なくとも一つ配置し、螺子転造ダイスにボルト材料を押し付け て転造する構成により、螺子転造ダイス上に形成された並目螺子山の一部および細目螺子 山の一部によりボルト材料が押圧され、このボルト材料の外周表面上に並目螺子山の一部 と細目螺子山の一部とが一工程で一度に転写されるため、並目螺子山の一部と細目螺子山 の一部とが形成された、いわゆる二重螺子を備えたボルトを切削よりも低単価で大量生産 することが可能となる。

[0026]

(2) 並目螺子を展開した並目螺子山の一部と、この並目螺子山の谷部に並目螺子と同一 方向のつる巻き線を持ち並目螺子よりもピッチの小さい細目螺子(但し、並目螺子と細目 螺子のピッチの比はa対bであり、aとbは最小の整数比である。)を展開したときに並 目螺子山との位相ずれに応じて並目螺子山のb巻きごとに周期的に現れる細目螺子山の一 部とを有する螺子転造ダイスを少なくとも一つ配置し、螺子転造ダイスにボルト材料を押 し付けて転造する構成により、螺子転造ダイス上に形成された並目螺子山の一部および細 目螺子山の一部によりボルト材料が押圧され、このボルト材料の外周表面上に並目螺子山 の一部と細目螺子山の一部とが一工程で一度に転写されるため、並目螺子山の一部と細目 螺子山の一部とが形成された、いわゆる二重螺子ボルトを切削よりも低単価で大量生産す ることが可能となる。

[0027]

(3) さらに、並目螺子山の一部および細目螺子山の一部により形成される谷部に並目螺 子と同一方向のつる巻き線を持ち細目螺子よりもさらにピッチの小さい最細目螺子(但し 、並目螺子と細目螺子と最細目螺子のピッチの比はa対b対cであり、aとbとcは最小 の整数比である。)を展開したときに並目螺子山の一部および細目螺子山の一部との位相 ずれに応じて並目螺子山のc巻きごとに周期的に現れる最細目螺子山の一部を有する螺子 転造ダイスを少なくとも一つ配置し、螺子転造ダイスにボルト材料を押し付けて転造する 構成により、螺子転造ダイス上に形成された並目螺子山の一部、細目螺子山の一部および 最細目螺子山の一部によりボルト材料が押圧され、このボルト材料の外周表面上に並目螺 子山の一部と細目螺子山の一部と最細目螺子山の一部とが一工程で一度に転写されるため 、並目螺子山の一部と細目螺子山の一部と最細目螺子山の一部とが形成された、いわゆる 三重螺子ボルトを切削よりも低単価で大量生産することが可能となる。

(4) 並目螺子を展開した並目螺子山の一部と、この並目螺子山の谷部に並目螺子と同一 方向のつる巻き線を持ち並目螺子よりもピッチが小さくかつピッチが異なる一つまたは複 数の細目螺子(但し、並目螺子と複数の細目螺子のピッチの比はa対・・・対nであり、 a, ・・・, n は最小の整数比である。) をそれぞれ展開したときに並目螺子山との位相 ずれに応じて並目螺子山のn巻きごとに周期的に現れるそれぞれの細目螺子山の一部とを 有する螺子転造ダイスを少なくとも一つ配置し、螺子転造ダイスにボルト材料を押し付け て転造する構成により、螺子転造ダイス上に形成された並目螺子山の一部および複数の細 目螺子山の一部によりボルト材料が押圧され、このボルト材料の外周表面上に並目螺子山 の一部と複数の細目螺子山それぞれの一部とが一工程で一度に転写されるため、並目螺子 山の一部と複数の細目螺子山それぞれの一部とが形成された、いわゆる多重螺子ボルトを 切削よりも低単価で大量生産することが可能となる。

[0029]

(5) 細目螺子山のうち最もピッチの小さい細目螺子山の一部が、細目螺子を展開したと きの谷底が並目螺子山の谷底よりも高い位置となるように細目螺子を展開したときに、並 目螺子山との位相ずれに応じて並目螺子山の n 巻きごとに周期的に現れるものであること により、転造の際の加工終期における転がりピッチ円径の変動が減少し、ボルト材料の回 転中心位置の変動が軽減される。これにより、螺子転造ダイスの溝部への材料充填率がよ り均等に近くなり、びびり振動を大幅に抑制することができる。

[0030]

(6) 螺子転造ダイスが、細目螺子山の一部の谷底にさらに切り込んだ深い溝を備えたこ とにより、多重螺子ボルトを転造する際、螺子転造ダイスの溝部へボルト材料が完全に充 填されなくても、螺子転造ダイスの細目螺子山高さの細目螺子山を有する多重螺子ボルト を製造することができる。また、完全充填されないことによって、完全充填が一つの要因 となって発生する加工終期のびびり振動を抑制することができる。

[0031]

(7) 本発明の螺子転造ダイスを用いた転造により得られた二重螺子ボルトは、並目螺子 山と細目螺子山との境界部の先端形状が滑らかな曲率となり、切削により製造した二重螺 子ボルトのように並目螺子山と細目螺子山との境界部にエッジが発生することがない。

【発明を実施するための最良の形態】

[0032]

(実施の形態1)

図1は本発明の第1実施形態における二重螺子ボルトの製造装置を示す概略図、図2は 図1の螺子転造ダイス1を示す斜視図である。

[0033]

図1に示すように、本実施形態における二重螺子ボルトの製造装置は、所定間隔で対向 配置した一対の螺子転造ダイス1と、円柱状のボルト材料(以下、「ワーク」と称す。) 3を所定位置で支持するボルト支持部2とを備える。また、図2に示すように、螺子転造 ダイス1は、円筒形のダイス(丸ダイス)の外周に二重螺子ボルト形成用の転写パターン 4を形成したものである。

[0034]

図3は図2の螺子転造ダイス1の外周の転写パターン4の一部を平面に展開した図、図 4の(A)、(B)、(C)、(D)、(E)、(F)はそれぞれ図3のA-A線断面図 、B-B線断面図、C-C線断面図、D-D線断面図、E-E線断面図、F-F線断面図 である。

[0035]

図3に示すように、螺子転造ダイス1の外周には、製造する二重螺子ボルトに対応する 転写パターン4が1周につき16個分繰り返して形成されている。螺子転造ダイス1の外 径は173.987mmであり、二重螺子ボルトは呼び径M12で並目螺子ピッチ1.7 5 mm、細目螺子ピッチ0.875 mmである。したがって、二重螺子ボルト1個分の転 写パターン4は、螺子転造ダイス1の外周1周360°のうち22.5°の範囲に形成さ れていることになる。図3のA-A線、B-B線、C-C線、D-D線、E-E線、F-F線は、それぞれ3.75°間隔で設けたものである。

[0036]

図4の(A)~(F)に示すように、螺子転造ダイス1の転写パターン4(図4に実線 で示す。)は、並目螺子を丸ダイスの表面に展開した基準の螺子山となる並目螺子山の一 部(以下、「並目螺子山部」と称す。) 5と、この並目螺子山の谷部5aに周期的に形成

[0037]

ここで、並目螺子と細目螺子のピッチの比を a 対 b (但し、 a と b は最小の整数比。図示例では 2 対 1 としている。)とすると、突起 6 は、細目螺子を展開したときに並目螺子山との位相ずれに応じて並目螺子山の b 巻き(図示例では 1 巻き)ごとに周期的に現れる細目螺子山の一部となる。図 4 の(A)~(F)に示すように、想像線 6 a で示す細目螺子山は、並目螺子山との位相ずれ7によって、この並目螺子山から突出した部分のみが、付加的な突起 6 として現れている。すなわち、突起 6 は、細目螺子山そのものではなく、位相ずれ7に応じてずれた分だけ細目螺子山の想像線 6 a に対応するように、並目螺子山に対して付加的に突出させた突起である。並目螺子山部 5 は、螺子転造ダイス 1 の表面に現れている細目螺子山の一部(突起 6 の表面)を除く部分である。

[0038]

また、図4の(A)~(F)に示す例では、基準となる並目螺子山の谷部5aの谷底5bと、突起6に対応させた細目螺子山の想像線6aの谷底6bとの位置を一致させているが、これに限るものではない。

[0039]

例えば、本実施形態における螺子転造ダイス1により製造された二重螺子ボルト(図示せず。)の並目螺子山に並目ナットを螺合させると、螺子転造ダイス1の突起6の分だけ接触面積が減ることになるが、突起6に対応させた細目螺子山の想像線6aの谷底6bの位置を図4の下方へ移動させることにより、二重螺子ボルトの並目螺子山と並目ナットとの接触面積を増やすことができる。

[0040]

なお、通常の螺子転造ダイスであれば、その表面に並目螺子山または細目螺子山のいずれか一方のみが形成されているため、並目螺子ナットまたは細目螺子ナットを嵌めることができる。しかし、本実施形態における螺子転造ダイス1の場合、並目螺子ナットおよび細目螺子ナットを嵌めようとしても嵌らない。螺子転造ダイス1の表面に、特許文献1に記載のように従来の並目螺子山と細目螺子山とが一体に形成されたもの(具体的な構造は明らかでないが)ではなく、並目螺子山部5とこの並目螺子山部5の元の並目螺子山の谷部5aに周期的な形状の突起6とが形成されたものだからである。

[0041]

上記構成の二重螺子ボルトの製造装置を用いて二重螺子ボルトを製造するには、円柱状のワーク3をボルト支持部2上に配置し、このワーク3を一対の螺子転造ダイス1間に押圧させ、一対の螺子転造ダイス1をそれぞれ同一方向(例えば、図1に矢印で示すように右回り)に回転させる。これにより、ワーク3の外周表面上に並目螺子山の一部および細目螺子山の一部が一工程で一度に転写され、並目螺子部の一部と細目螺子部の一部とが形成された二重螺子ボルトが得られる。

[0042]

こうして得られた二重螺子ボルトの外周表面には、図4の螺子転造ダイス1の転写パターン4の逆パターンの溝(並目螺子山部5および突起6に相当する溝)が形成されている

[0043]

得られた二重螺子ボルトは、従来の切削により形成した二重螺子ボルトと同様、並目螺子山が形成されたうえで、細目螺子山がえぐり取られた状態のものとなる。したがって、 得られた二重螺子ボルトには並目螺子ナットと細目螺子ナットとを嵌めることができる。

[0044]

なお、二重螺子ボルトは、この二重螺子ボルトの並目螺子山の谷部に並目螺子ナットの 並目螺子山の山部を嵌合させ、この二重螺子ボルトの並目螺子山の山部に形成された細目 螺子山の谷部に細目螺子ナットの細目螺子の山部を嵌合させるものであるため、並目螺子山の山頂の半径方向位置と細目螺子山の山頂の半径方向位置とが常に一致するように形成するのが一般的である。このような二重螺子ボルトを製造するための螺子転造ダイスの突起は、細目螺子を展開したときの谷底の位置が並目螺子山の谷底の位置と一致するように細目螺子を展開し、並目螺子山との位相ずれに応じて並目螺子山のb巻きごとに周期的に現れる細目螺子山の一部からなる。以下、このような突起を有する螺子転造ダイスを「標準ダイス」と称す。

[0045]

図5は図4の(A)、(D)の一部拡大図である。図5に示すように標準ダイスの周期的に変化する溝の深さは、並目螺子山の谷底5bの位置と突起6を形成するために展開した細目螺子の細目螺子山6aの谷底6bの位置とが互いに最もよく重なり合う部分(A-A線断面)で最も深く、両者の位置が最もずれている部分(D-D線断面)で最も浅くなっている。このため、標準ダイスで二重螺子ボルトを転造する場合、加工の最終段階における工具とワーク3の転がりピッチ(工具とワーク3が転がり接触する位置)円の径は、ワーク3からみるとA-A線断面部分で最も大きく、D-D線断面部分で最も小さくなる

[0046]

この結果、その加工時点(すなわち加工の最終なじみ段階)ではワーク3の回転中心位置は常に変動し、激しいびびり振動、騒音の原因となる。このびびり振動の程度によっては、精度不良を引き起こし、工具寿命を著しく縮め、製造装置にも悪影響を及ぼす可能性がある。また、この標準ダイスでは、各断面での溝部の断面積が異なる(すなわち、AーA線断面で最も大きく、D-D線断面で最も小さい。)ため、各断面における溝部への材料充填率に差が生じ、特に加工終期においては、溝部への材料の充填率が高いため、余剰材料の逃げ場がなくなる。これもびびり振動等の問題の原因となる。

[0047]

そこで、本実施形態において、突起6は、細目螺子を展開したときの谷底6bが並目螺子山の谷底5bよりも高い位置となるように細目螺子を展開したときに、並目螺子山との位相ずれに応じて並目螺子山のb巻きごとに周期的に現れる細目螺子山6aの一部としたものであることが望ましい。このとき、図6に示すように、展開する細目螺子は、標準規格よりも5~50%谷深さの浅い細目螺子とし、この浅くした分dhだけこの細目螺子を展開したときの谷底6bが並目螺子山の谷底5bよりも高い位置となるようにする。

[0048]

あるいは、図7に示すように、展開する細目螺子は、並目螺子山の谷底5bの位置と突起6を形成するために展開した細目螺子の細目螺子山6aの谷底6bの位置とが互いに最もよく重なり合う部分(A-A線断面)では標準規格よりも5~50%谷深さの浅い細目螺子となり、両者の位置が最もずれている部分(D-D線断面)では標準規格の谷深さとなるように滑らかに変化するものとする。

[0049]

これらの修正を加えた螺子転造ダイスを用いて二重螺子ボルトを転造した場合、標準ダイスを用いて転造する場合と比べて、A-A線断面における転がりピッチ円径が、細目螺子を展開したときの谷底 6 bの深さを浅くした分 d hの約半分ワーク 3 の内側に移動し、その分だけD-D線断面における転がりピッチ円径に近づく。そのため、加工終期における転がりピッチ円径の変動が減少し、ワーク 3 の回転中心位置の変動が軽減される。また、A-A線断面の溝部の断面積がD-D線断面積の溝部の断面積に近づくため、各断面の溝部の材料充填率がより均等に近くなり、びびり振動を大幅に抑制することができる。

[0050]

一方、このような修正を加えた螺子転造ダイスを用いて転造した二重螺子ボルトでは、 当然ながら細目螺子部の山高さが(特に、A – A線断面に相当する部分で)標準規格のも のより低くなる。しかしながら、二重螺子ボルトはその並目螺子部で締め付け力のほとん どを得るため、これにより静的強度や動的疲労強度が損なわれることはほとんどなく、ま

[0051]

ところで、上記のように修正を加えた螺子転造ダイスを用いて二重螺子ボルトを転造した場合、標準ダイスを用いた転造におけるびびり振動等の問題は解決できるが、製造された二重螺子ボルトは細目螺子部の山高さが標準規格のものよりも低くなる。しかし、細目螺子部の強度、細目螺子ナットの掛かり具合あるいは商品性を考える場合、細目螺子部の山高さの完全性が求められる場合もある。

[0052]

この場合、螺子転造ダイスは、図8に示すように、突起6として現れた細目螺子山6 a の一部の谷底6 b にさらに切り込んだ溝6 c を備えたものとする。この溝6 c の深さ d v は、細目螺子山6 a の高さの3~10%である。このような螺子転造ダイスにより二重螺子ボルトを転造する場合、溝6 c がダッシュポットの役目を果たし、螺子転造ダイスの溝部へワーク3が完全に充填されなくても、標準高さの細目螺子山を有する二重螺子ボルトを製造することができる。これにより、完全充填が一つの要因となって発生する加工終期のびびり振動を抑制することもできる。

[0053]

(実施の形態2)

図9は本発明の第2実施形態における二重螺子ボルトの製造装置を示す概略図である。

[0054]

図9に示すように、本実施形態における二重螺子ボルトの製造装置は、所定間隔で対向 配置した一対の螺子転造ダイス8を備える。一対の螺子転造ダイス8の一方を固定し他方 を平行移動可能に配設するか、または相互に反対方向に平行移動可能に配設する。

[0055]

螺子転造ダイス8は、平板状のダイス(平ダイス)の片面に二重螺子ボルト形成用の転 写パターン9を形成したものである。転写パターン9は、第1実施形態における転写パタ ーン4と同様のものを平面に展開したものである。

[0056]

このような二重螺子ボルトの製造装置を用いて二重螺子ボルトを製造するには、一対の螺子転造ダイス8間に円柱状のワーク3を押圧させ、一方の螺子転造ダイス8を他方の螺子転造ダイス8と平行を維持したまま平行移動させるか、または互いに逆方向に平行移動させる。これにより、第1実施形態と同様に、ワーク3の外周表面上に並目螺子山の一部および細目螺子山の一部が一工程で一度に転写され、並目螺子部の一部と細目螺子部の一部とが形成された二重螺子ボルトが得られる。

[0057]

(実施の形態3)

図10は本発明の第3実施形態における三重螺子ボルト用の螺子転造ダイス10の断面図である。螺子転造ダイス10の外周には、製造する三重螺子ボルトに対応する転写パターンが1周につき16個分繰り返して形成されており、図10の(A)、(B)、(C)、(D)、(E)、(F)は螺子転造ダイス10の外周の断面を3.75°間隔で示した図である。

[0058]

図10に示すように三重螺子ボルト用の螺子転造ダイス10では、さらに、並目螺子山部5および突起6により形成される谷部11に、展開した並目螺子山の元の並目螺子と同一方向のつる巻き線を持ち、突起6を形成する元となった細目螺子よりもさらにピッチの小さい最細目螺子(但し、並目螺子と細目螺子と最細目螺子のピッチの比は a 対 b 対 c とし、a と b と c は最小の整数比とする。図示例では4対2対1としている。)を展開したときに、並目螺子山部5および突起6との位相ずれに応じて並目螺子山のc巻き(図示例では1巻き)ごとに周期的に現れる最細目螺子山(図10に点線(想像線)12aで示す。)の一部からなる突起12を有する。

[0059]

[0060]

なお、図示していないが、n重螺子ボルトを転造する場合には、並目螺子を展開した並 目螺子山の一部と、この並目螺子山の谷部に並目螺子と同一方向のつる巻き線を持ち並目 螺子よりもピッチが小さくかつピッチが異なる一つまたは複数の細目螺子(但し、並目螺 子と一つまたは複数の細目螺子のピッチの比はa対・・・対 n とし、a,・・・, n は最 小の整数比とする。)をそれぞれ展開したときに並目螺子山との位相ずれに応じて並目螺 子山のn巻きごとに周期的に現れるそれぞれの細目螺子山の一部からなる突起とを有する 螺子転造ダイスを用いればよい。

[0061]

なお、この n 重螺子ボルトを転造する螺子転造ダイスにおいても、第1実施形態におけ る螺子転造ダイスと同様に修正を加えることが可能である。谷深さに修正を加える場合に は、最もピッチの小さい細目螺子を展開したときの谷底が並目螺子山の谷底よりも高い位 置となるように細目螺子を展開したときに、並目螺子山との位相ずれに応じて並目螺子山 のn巻きごとに周期的に現れる細目螺子山の一部となるようにすればよい。

【実施例1】

[0062]

上記本発明の第1実施形態における二重螺子ボルトの製造装置を用いて二重螺子がボル トに転写されるメカニズムについて解析した。図11、図12、図13は、それぞれ図3 のA-A線断面、B-B線断面、D-D線断面での材料流動の様子を示した図である。な お、図11~図13において、(a)~(h)は、一対の螺子転造ダイス1を同一方向に 回転させながら、互いの間の距離を連続的に狭めていったときの様子を、約 $0.\,\,1\sim0.\,$ 2 mmステップで最終的に螺子転造ダイス 1 がワーク 3 に約 1 mm押し込まれた状態まで 示したものである。

[0063]

図11~図13に示すように、螺子転造ダイス1がワーク3に徐々に押し込まれるに連 れて、ワーク3は、まず螺子転造ダイス1の並目螺子山部5の表面に沿って塑性変形しな がら並目螺子山の谷部5aを埋めていった。そして、途中まで埋めたところで、今度は並 目螺子山に付加的に突出した突起6の表面に沿って塑性変形しながら、谷部5aを埋めて いった。これにより、並目螺子部の一部と細目螺子部の一部とが形成された二重螺子ボル トが得られた。

【実施例2】

[0064]

上記本発明の第1実施形態において修正を加えた螺子転造ダイスと標準ダイスによる二 重螺子ボルト製造の比較試験を行った。表1は、呼び径M12とM16の二種類について 、それぞれ細目螺子山の谷底6bの深さを変化させた場合と溝6cの深さを変化させた場 合の加工中のびびり振動と騒音について測定した結果である。なお、M12の二重螺子ボ ルトの製造に用いた螺子転造ダイスのピッチ比は1.75対0.875、M16について は2対1である。

[0065]

【表1】

谷底深さ	溝深さ	びびり振動	騒音
	0 %	大	大
5 %	0 %	中	中
10%	0 %	小	低
20%	0 %	無し	低
40%	0 %	無し	低
0 %	5 %	中	中
0 %	10%	中	中
	1 0 % 2 0 % 4 0 % 0 %	0 % 0 % 5 % 0 % 1 0 % 0 % 2 0 % 0 % 4 0 % 0 % 0 % 5 %	0% 0% 大 5% 0% 中 10% 0% 小 20% 0% 無し 40% 0% 無し 0% 5% 中

[0066]

表 1 から分かるように、細目螺子山の谷底 6 b の深さを変化させて修正した螺子転造ダ イスでは、谷底6bの深さを標準規格の細目螺子山に対して5%から40%まで浅くした ときに、浅くすればするほど加工時のびびり振動および騒音が低減された。一方、溝6 c の深さを変化させて修正した螺子転造ダイスでは、溝6cの深さを標準規格の細目螺子山 高さの5%と10%とした場合に、加工時のびびり振動および騒音の改善が確認された。

[0067]

なお、これらの螺子転造ダイスは、すべて米国航空規格NAS3354振動試験法によ る緩み試験に合格した。また、アムスラー式引張強度試験法による静的強度試験および油 圧サーボ式試験法による動的強度試験において、標準螺子ボルトと同等の能力を備えてい ることが確認できた。

【産業上の利用可能性】

[0068]

本発明は、緩み防止機能を有する多重螺子ボルトを転造により製造する場合に有用であ る。

【図面の簡単な説明】

[0069]

- 【図1】本発明の第1実施形態における二重螺子ボルトの製造装置を示す概略図であ
- 【図2】図1の螺子転造ダイスを示す斜視図である。
- 【図3】図2の螺子転造ダイスの外周の転写パターンの一部を平面に展開した図であ る。
- 【図4】 (A)、(B)、(C)、(D)、(E)、(F) はそれぞれ図3のA-A 線断面図、B-B線断面図、C-C線断面図、D-D線断面図、E-E線断面図、F -F線断面図である。
 - 【図5】図4の(A)、(D)の一部拡大図である。
 - 【図6】修正を加えた螺子転造ダイスの図5に対応する一部拡大図である。
 - 【図7】修正を加えた螺子転造ダイスの図5に対応する一部拡大図である。
 - 【図8】修正を加えた螺子転造ダイスの図5に対応する一部拡大図である。
- 【図9】本発明の第2実施形態における二重螺子ボルトの製造装置を示す概略図であ る。
- 【図10】本発明の第3実施形態における三重螺子ボルト用の螺子転造ダイスの断面 図である。
- 【図11】図3のA-A線断面での材料流動の様子を示した図である。
- 【図12】図3のB-B線断面での材料流動の様子を示した図である。
- 【図13】図3のD-D線断面での材料流動の様子を示した図である。

【符号の説明】

[0070]

1,8,10 螺子転造ダイス

- 2 ボルト支持部
- 3 ワーク (ボルト材料)
- 4,9 転写パターン
- 5 並目螺子山部
- 5 a 谷部
- 5 b 谷底
- 6 突起
- 6 a 細目螺子山の想像線
- 6 b 谷底
- 6 c 溝
- 11 谷部
- 12 突起
- 12a 最細目螺子山の想像線

【図2】

3/

【図4】

【図5】

【図7】

【要約】

いわゆる二重螺子ボルトのような多重螺子ボルトを、より低単価で大量生産す 【課題】 ることが可能なポルトの製造方法および製造装置並びにこれに用いる螺子転造ダイスを提 供する。

所定間隔で対向配置した一対の螺子転造ダイス1と、円柱状のボルト材料 【解決手段】 3を所定位置で支持するボルト支持部2とを備えるボルトの製造装置である。螺子転造ダ イス1は、並目螺子を展開した並目螺子山の一部である並目螺子山部5と、細目螺子を展 開した想像線6aで示す細目螺子山と並目螺子山との位相ずれに応じて並目螺子山の谷部 5 a に周期的に形成された細目螺子山 6 a の一部である突起 6 とからなる転写パターン 4 を備える。

【選択図】

図 4

ページ: 1/E

認定・付加情報

特許出願の番号 特願2003-352624

受付番号 50301695850

書類名 特許願

担当官 鈴木 紳 9764

作成日 平成15年10月17日

<認定情報・付加情報>

【提出日】 平成15年10月10日

特願2003-352624

出願人履歴情報

識別番号

[800000035]

1. 変更年月日

2000年10月18日

[変更理由]

住所変更

住 所

福岡県福岡市東区箱崎6丁目10番1号

氏 名 株式会社産学連携機構九州