The Harman Kardon FESTIVAL 300 / 500

Intelligent music systems

Technical Manual

harman/kardon

TABLE OF CONTENTS

GENERAL SECTION

		'age
*	SPECIFICATION ·····	3
*	SAFETY PRECAUTION ·····	4, 5
*	ES DEVICE WARNING	5
*	COMPONENTS AND THEIR FUNCTION	6~10
*	ELECTRICAL PARTS LIST REFERENCE	11
*	SYSTEM FLOW CHART	12~13
*	STSTEM PACKING DRAWING	14~13

TUNER SECTION

*	INTERNAL VIEW	16
*	DISASSEMBLY PROCEDURES ·····	16
*	ALIGNMENT PROCEDURES	17~18
*	BLOCK DIAGRAM ·····	19
*	CIRCUIT DESCRIPTION	20
*	IC FUNCTIONAL BLOCK DIAGRAM	21~24
*	TIMING CHART	25~26
*	GENERAL UNIT EXPLODED VIEW TRANSPORT PARTS LIST	27
*	ELECTRICAL PARTS LIST	28~30
•	PACKING DPAWING	21

AMPLIFIER SECTION (A300)

		Page
*	INTERNAL VIEW	32
*	DISASSEMBLY PROCEDURES ·····	32~33
*	ALIGNMENT PROCEDURES	34
*	BLOCK DIAGRAM ·····	35
*	CIRCUIT DESCRIPTION	36
*	GENERAL UNIT EXPLODED VIEW TRANSPORT PARTS LIST	37
*	ELECTRICAL PARTS LIST ·····	38~39
*	PACKING DRAWING	40

AMPLIFIER SECTION (A500)

		Page
*	INTERNAL VIEW ·····	41
*	DISASSEMBLY PROCEDURES ·····	41~ 42
*	ALIGNMENT PROCEDURES	43
*	BLOCK DIAGRAM	44
*	CIRCUIT DESCRIPTION	45
*	GENERAL UNIT EXPLODED VIEW TRANSPORT PARTS LIST	47
	ELECTRICAL PARTS LIST ·····	
*	PACKING DRAWING	50

TAPE DECK SECTION

	Page
* INTERNAL VIEW ·····	51
* DISASSEMBLY PROCEDURES ·····	51
* ALIGNMENT PROCEDURES	······ 52~ 54
* BLOCK DIAGRAM ·····	55
* CIRCUIT DESCRIPTION	56
* IC FUNCTIONAL BLOCK DIAGRAM ·····	······ 57~58
* TIMING CHART ······	59
* TAPE DECK, MECHANISM EXPLODE VIEW	60
* GENERAL UNIT EXPLODED VIEW TRANSPORT PARTS LIST	61
* ELECTRICAL PARTS LIST ·····	62 ~ 63
* PACKING DRAWING	64

CDP SECTION

pag	е
* INTERNAL VIEW	,
* DISASSEMBLY PROCEDURES ······ 65	i
* ALIGNMENT PROCEDURES 66	~68
* BLOCK DIAGRAM	,
* CIRCUIT DESCRIPTION	~ 79
* IC FUNCTIONAL BLOCK DIAGRAM ····· 80	~82
* TIMING CHART 83	\$
* CDP MEHA NISM EXPLODE VIEW 84	
* GENERAL UNIT EXPLODED VIEW TRAMSPORT PARTS LIST	
	~ 87
* PACKING DRAWING ····· 88	
* SCHEMATIC DIAGRAM(TUNER) 89	,
* SCHEMATIC DIAGRAM(REMOCON)	j
* WIRING DIAGRAM(TUNER)	
* SCHEMATIC DIAGRAM(A-300)	
* WIRING DIAGRAM(A-300)	
* SCHEMATIC DIAGRAM(A-500) 93	\$
* WIRING DIAGRAM(A-300)	į
* SCHEMATIC DIAGRAM(TAPE DECK)	,
* WIRING DIAGRAM(TAPE DECK))
* SCHEMATIC DIAGRAM(CDP)	
* WIRING DIAGRAM(CDP) 98	

THE FOLLOWING MARKS FOUND IN THE PARTS LIST OF THIS MANUAL IDENFIFY THE MODEL AS FOLLOWS

USA : NORTH AMERICA AREA MODEL 1,18,88 : INTERNATIONAL MODEL

SPECIFICATION

Festival 300/500

/ /m
5/8 13 1/4
s
)KHz
30VHz
C:C
×335
8×13 1/4
).
55/ ss so so so so so so

SAFETY PRECAUTIONS

Before returning an instrument to the customer, always make a safety check of the entire instrument, including, but not limited to, the following itmes:

- a. Be sure that no built-in protective devices are defective and /or have been defeated during servicing.
 - (1) Protective shields are provided to protect both the technician and the customer, Correctly replace all missing protective shields, including any removed for servicing convenience.
 - (2) When reinstalling the chassis and/or other assembly in the cabinet, be sure to put back in place all protective devices, including, but not limited to, nonmetallic control knobs, insulating fishpapers, adjustment and compartment covers/shields, and isolation resistor/capacitor networks.

Do not operate this instrument or permit it to be operated without all protective devices correctly installed and functioning.

- b. Be sure that there are no cabinet openings through which an adult or child might be able to insert their fingers and contact a hazardous voltage, Such openings include, both are not limited to, excessively wide cabinet ventilation slots, and an improperly fitted and/or incorrectly secured cabinet back over.
- c. Leakage Current Hot Check-With the instrument completely reassembled, plug the AC line cord directly into a 120V AC outlet. (Do not use an isolation transformer during this test.) Use a leakage current tester or a metering system that complies with American National Standards Institute (ANSI) C101. 1 "Leakage Current for Appliances" and Underwriters Laboratories (UL) 1270. (34.6). With the instrument AC switch first in the ON position and then in the OFF position, measure from a known earth ground (metal waterpipe, conduit, etc.) to all exposed metal parts of the instrument (antennas, handle bracket, metal cabinet, screwheads, metallic overlays, control shafts, etc.), especially any exposed metal parts that offer an electrical return path to the chassis. Any current measured must not exceed 0.5 milliamp. Reverse the instrument power cord plug in the outlet and repeat test. ANY MEASUREMENTS NOT WITHIN THE LIMITS SPECIFIED HEREIN INDICATE A POTENTIAL SHOCK HAZARD THAT MUST BE ELIMINATED BEFORE RETURNING THE INSTRU-

d. Insulation Resistance Test

- (1) Unplug the power supply cord and connect a jumper wire between the two prongs of the plug.
- (2) Turn on the power switch of the instrument.
- (3) Measure the resistance with an ohmmeter between the jumpered AC Plug and each exposed metallic cabinet part on the instrument, such as screwheads, antenna, control shafts, handle brackets, etc. The reading should be as shown below. If it is not within the limits specified, there is the possibility of a shock hazard, and the instrument must be repaired and rechecked before it is returned to the customer.

e. Insulation Resistance Test Cold Check

- (1) Unplug the power supply cord and connect a jumper wire between the two prongs of the plug.
- (2) Turn on the power switch of instrument.
- (3) Measure the resistance with an ohmmeter between the jumpered AC plug and each exposed metallic cabinet part on the instrument, such as screwheads, antenna, control shafts, handle brackets, etc. When the exposed metallic part has a return path to the chassis, the reading should be between 1 and 5.2 Megohm. When there is no return path to the chassis, the reading must be "infinite". If it is not within the limits specified, there is the possibility of a shock hazard, and the instrument must be repaired and rechecked before it is returned to the customer.

PRODUCT SAFETY NOTICE

Some electrical and mechanical parts have special safety related characteristics which are often not evident from visual inspection, nor can the protection they give necessarily be obtained by replacing them with components rated for higher voltage, wattage, etc. parts that have special safety characteristics are identified by shading, by (A)on schematics and parts listed. Use of a substitute replacement that does not have the same safety characteristics as the recommended replacement part might create shock, fire, and/or other hazards. Products Safety is under review continuously and new instructions are issued whenever appropriate.

SERVICING PRECAUTIONS

CAUTION:Before servicing instruments covered by this manual and its supplements, read and follow the SAFETY PRECAUTIONS on this page.

NOTE:If unforeseen circumstances crated conflict between the following servicing precautions and any of the safety precautions, always follow the safety precautions.

Remember:Safety First.

General Servicing Precautions

- a. Always unplug the instrument AC power cord from the AC power source before:
 - Removing or reinstalling any component, circuit board, module, or any other instrument assembly.
 - (2) Disconnecting or reconnecting any instrument electrical plug or other electrical connection.
 - (3) Connection a test substitue in parallel with an electrolytic capacitor in the instrument.
 - **Caution:**A wrong part substitution or incorrect polarity installation of electrolytic capacitors may result in an explosion hazard.
- b. Do **not** defeat any plug/socket B+ voltage interlocks with which instruments covered by this manual might be equipped.
- c. Do **not** apply AC power to this instrument and/or any of its electrical assemblies unless all solid-state device heat sinks are correctly installed.
- d. Always connect a test instrument's ground lead to the instrument chassis ground before connecting the test instrument positive lead. Always remove the test instrument ground lead last.

NOTE: Refer to Safety Precautions on page 3.

(1) The service precautions are indicated or printed on the cabinet, chassis or components. When servicing, follow the printed or indicated service precautions and service materials.

- (2) The Components used in the unit has a specified conflammability and dielectric strength. When replacing any components, use components which has the same ratings. Components marked (△) in the circuit diagram are important for safety or for the characteristics of the unit. Always replace whit the appointed components.
- (3) An insulation tube or tape is sometimes used and some components are raised above the printed wiring board for safety. The internal wiring is sometimes clamped to prevent contact with heating components. install them as they were.
- (4) After servicing, always check that the removed screws, components and wiring have been installed correctly and that the portion around the service part have not been damaged and so on. Further check the insulation between the blades of attachment plug and accessible conductive parts.

Insulation Checking Procedure

Disconnect the attachment plug from the AC outlet and turn the power on. Connect the insulation resistance meter (500V) to the blades of the attachment plug. The insulation resistance between the each blade of the attachment plug and accessible conductive Parts (Note 1)should be more than 1 M-ohm.

Note 1:Accessible Conductive parts including Metal Panels, Output jacks, etc.

ELECTRO STATICALLY SENSITIVE(ES) DEVICES

Some semiconductor (solid state)devices can be damaged easily by static electricity. Such components commonly are called Electrostatically Sensitive (ES) Devices. Examples of typical ES devices are integrated circuits and some fieldeffect transistors and semiconductor "chip" components. The following techniques should be used to help reduce the incidence of component damage caused by static electricity.

- 1. Immediately before handling any semiconductor component or semiconductor-equipped assembly, drain off any electrostatic charge on your body by touching a known earth ground. Alternatively, obtain and wear a commercially available discharging wrist strap davice, which should be removed for potential shock reasons prior to applying power to the unit under test.
- 2. After removing an electrical assembly equipped with ES devices, place the assembly on a conductive surface as aluminum foil, to prevent electrostatic charge buildup or exposure of the assembly.
- Use only a grounded-tip soldering iron to solder or unsolder ES devices.
- 4. Use only an anti-static solder removal device. Some solder removal devices not classified as "anti-static" can generate electrical charges sufficient to damage ES devices.
- 5. Do not use freon-propelled chemicals. These can generate electrical charge sufficient to damage ES devices.
- 6. Do not remove a replacement ES device from its protective package until immediately before you are ready to install it. (Most replacement ES devices are packaged with leads electrically shorted together by conductive foam, aluminum foil or comparable conductive material).
- Immediately before removing the protective material from the leads of a replacement ES device, touch the protective material to the chassis or circuit assembly into which the device will be installed.

CAUTION:Be sure no power is applied to the chassis or circuit, and observe all other safety precautions.

8. Minimize bodily motions when handling unpackaged replacement ES devices. (Otherwise harmless motion such as the brushing together of your clothes fabric or the lifting of your foot from a carpeted floor can generate static electricity sufficient to damage an ES device).

CLASS 1 LASER PRODUCT

Product complies with DHHS rules CFR subchapter J part 1040:10 at date of manufacture.

DANGER—invisible laser radiation when open and interlock failed or defeated. Avoid direct exposure to the beam.

CAUTION-use of all controls, adjustments or performance of procedures other than those specified herein may result in hazaudous radiation exposue.

CLASS 1 LASER PRODUCT LASER KLASSE 1 LUOKAN 1 LASERLAITE KLASS 1 LASERAPPARAT

Be Careful of the Laser Pickup

Although you cannot see it from the oustide, a laser pickup is located under the disc ruay and a precision lens is built in it.

Since the laser pickup, including the lens element, is especially sensitive to dust, keep the disc tray closed when not in use.

Also do not put your hand inside the unit.

ADVARSEL

Usynlig laserstráling ved ábning nár sikkerhedsafbrydere er ude af funktion. Undgá udsættelse for stráling.

VAROITUSI

Laite sisältää laserdodin, joka lähettää näkymätöntä silmille vaarallista lasersäteilyä.

COMPONENTS AND THEIR FUNCTIONS

Press VOLUME + and - to adjust sound level up or down.

Press directional buttons \(\rightarrow \rightarrow \) and \(\rightarrow \rightarrow \) tune stations or move one track at a time through a disc or tape. (Press and hold \(\rightarrow \rightarrow \) and \(\rightarrow \rightarrow \) for two seconds to go up or down to the next radio station preset.)

Press PAUSE to mute sound. Press VOLUME + or PAUSE again to resume listening.

Press REVERSE to play the opposite side of a tape.

NOTE: When not in use the remote may be placed in the cradle on top of the CD Player.

FRONT PANEL CONTROLS AND ELECTRONIC LABELS

CD and Tape Drawers

The button to the right of the drawer on the CD and tape players can be pushed to open and close the drawer when inserting discs and tapes.

Except for the open/close buttons, all front panel controls are located on the tuner-controller within a large oval window.

All system functions are accessed through pushbuttons located across the middle of this window. Additional set-and-forget controls are located behind a pull-down gate located immediately below the row of pushbuttons.

NOTE: The speaker switch(es) behind door must be pushed in to hear music.

Operating Modes

Festival systems simplify operation by grouping all commands into three basic modes.

We call source selection the "listen mode"—LSTN for short. Programming is PROG. (program). And recording is RCRD. (record). The three of them together comprise your main menu of choices, and all functions are accessed through one or the other of the three operating modes. All functions are operated in essentially the same way, that is, by pressing the unmarked button immediately below the label designating the function on the display.

The Main Menu

Everything starts with the main menu, and you can get to the main menu one of two ways.

Press POWER on the far left of the row of buttons to turn Festival on. The display will light up, and the system will activate the source in use when the system was turned off. (When turned on for the first time, Festival will choose TUNR for the radio.)

If the power is already on, press any one of the four unmarked buttons in the middle of the row.

In either case, the main menu will appear on the display.

LISTENING

The LSTN mode lets you select the tuner, the CD player, or the cassette deck, as well as one auxiliary source. When you press LSTN the display reads:

TV refers to an auxiliary source. The other labels refer to the Festival components.

Select a source by pressing the button immediately below the electronic label. Note that when you select any source other than TV you automatically access the functions for that source and that source begins to play.

TAPE LSTN (Listen) Functions

When you select TAPE, the display presents you with two functions:

DOLB stands for Dolby® noise reduction which is selectable through the DOLB button. Press repeatedly to choose Dolby B type noise reduction, Dolby C, or no noise reduction. When Dolby noise reduction is engaged will be shown in the display along with the letter designation B or C.

CD LSTN Functions

When you select CD, the CD begins to play and the following choices appear on the display:

Note that if the CD player is empty, the drawer will slide out, prompting you to load a disc and push the drawer closed.

P-PL (program play) indicates programmed play. In order to exercise this function, you must first program your favorite selections for the current disc. Refer to the section on programming for programming directions.

R-PL (random play) indicates random play. Press R-PL and the CD player will automatically select a random order for playing back the tracks on the CD in the loading tray.

Press NAV (navigate) and the directional indicators / (and)) / will appear on the display.

/ (will automatically rewind the tape back to a previous song and) / will advance it to a subsequent song. The number of songs to be skipped forward or back are indicated to the left of the tape counter in the display.

REV — As on the remote, pressing REV reverses the tape. It can also be used to cancel fast forward or rewind. (See below.)

—7—

PLAY—Press PLAY to switch from P-PL or R-PL to normal CD play, beginning with the current track.

NAV (navigate)—Press NAV and you can move from track to track using the buttons under the / (and) / labels appearing on the display.

MORE — Press MORE and you can search up or down through the disc to any passage using the buttons beneath the { { and } } labels.

DONE always returns you to the main menu.

Pressing MORE displays:

Rewind and Fast Forward — Press ' ' to rewind to the beginning of the current side and) to fast forward to the beginning of the next side.

ZERO — Press ZERO to reset the tape counter.

Important Note: The controls on this page will function when the tape is paused by the PAUSE button. This feature can be used to set up for a manual recording. (See Appendix D).

LISTENING

TUNR LSTN Functions

To play the tuner, first select LSTN and then select TUNR from the LSTN choices. The display will now read:

Pressing either directional key will put you into the SEEK mode, and the tuner will proceed to the first strong station. Press and hold either directional key for two seconds to call up or change the PRESET number (1 to 19) in the display. Continue to hold the directional key to cycle through your presets.

AM and FM Tuning

Press MORE to activate the manual tuning function. Use the directional keys to tune up and down the bands. Note that the Festival systems do not have a manual AM/FM switch. To get from one band to another hold either directional key and run through the band you're currently occupying. You'll automatically pass into the other band. (Note that if you use FM only, push the switch on the tuner back panel to bypass the AM band when tuning.) Save your favorite stations in the presets in the PROGRAMMING MODE.

PROGRAMMING

Programming the CD player

Load the CD in the compact disc player. Enter the main menu. Select PROG (program).

The display will prompt you to choose a source to program. Note that BACK always returns you to the previous display screen.

The Festival compact disc player and tuner are programmable. Programming the tuner consists of saving station presets, while CD programming lets you choose your favorite tracks from a given CD for playback by the P-PL command.

Press CD to program the CD player. The display now reads:

Use the directional keys to select the tracks you wish to program, and with each track selection press MEM to enter the selection into memory. Then to begin programmed play press P-PL. The CD player will then play only those tracks programmed into memory.

NOTE: The program for a given CD is

NOTE: The program for a given CD is erased when you open the tray.

PROGRAMMING

Programming Tuner Presets

To program Tuner presets first enter the main menu by selecting any of the unmarked buttons. Next press PROG and then select TUNR. The display will read:

Pressing MORE will change the display to:

Use MORE and BACK to change between these two screens while in the tuner presetting mode.

Using)) / and / (to SEEK or ((and)) to tune manually (See TUNR LSTN functions, above.), tune to a station you wish to memorize. Then, by pressing)) / or / (for more than two seconds at a time, adjust the displayed preset number to the desired preset between 1 and 19.

Press MEM (memory) to save that station in that preset number. The preset will automatically be increased by 1 when you press MEM, so you needn't adjust the number manually when memorizing many stations at once.

NOTE: After a period of 10 seconds, Festival will revert to the main menu.

RECORDING

The Festival system gives you considerable flexibility in making recordings. You can record within the system from the tuner or CD player onto the cassette deck. You can also record from a system source to an outboard recorder. You can also record from an outside source onto the system cassette deck. However, when outboard components are involved the process is less automatic.

Before making a recording, you must first select the source you wish to record by entering the LSTN (listen) mode from the main menu, and, of course, you must load a blank cassette in the tape well. Then go back to the main menu and press RCRD (record). The display will read:

Note that TAPE and DOLB will not be lit if you are listening to TAPE. This prevents inadvertently recording over a favorite tape.

Recording to an external recorder

VCR should be selected when recording to an external recorder you've connected to your system. If you're using the system cassette deck to record, you can disregard this section. When you press VCR, EXTERNAL and RECORD will appear in the display to remind you to set up your external component for recording. Also, the STOP command is added to the main menu, so you can stop recording. Finally, PROGRAMMING and RECORDING commands are omitted from the main menu

while recording is in progress.

IF YOU HEAR NO SOUND AFTER
PRESSING VCR, CHECK THE CONNECTIONS AND SETTINGS OF THE EXTERNAL RECORDER.

Dolby noise reduction is selectable through the DOLB button. Press DOLB once to choose Dolby B type noise reduction, again for Dolby C, and again for no noise reduction. When noise reduction is engaged the DD will be shown on the display along with the letter designation B or C.

BACK takes you back to the main menu.

RECORDING

Recording to the internal cassette

Press TAPE and the display presents you with four recording choices:

When you select NORM (normal) the cassette deck will begin recording the source immediately.

Select COPY to automatically duplicate a CD onto tape. The tape is wound back to the beginning, and the recording starts at the beginning of track one.

THE COPYING PROCESS CAN ONLY

BE INTERRUPTED BY PRESSING THE BUTTON BELOW **STOP** ON THE DISPLAY OR SHUTTING OFF THE POWER.

PCPY (programmed copy) stands for Programmed Copy. It is like COPY, but only the pre-programmed selections are copied. The CD player must have been previously programmed for the current disc.

RCPY (random copy) stands for random copy, and it is the same as COPY, except the disc is copied to tape with the songs in random order.

Choosing COPY, PCPY, or RCPY automatically places you in the optional EDIT mode where you are given the following choices:

C60, C90, and C100 refer to 60, 90, and 100 minute tapes respectively.

Festival uses this information during the copying process to record the songs to avoid running out of tape in mid track. If desired, press the button corresponding to the tape you're using, to activate the EDIT feature for this recording. After you have selected a tape length, the display reads:

Pressing DOLB repeatedly cycles you through the choices of Dolby B noise reduction, Dolby C noise reduction, or Dolby noise reduction off. DONE completes the command sequence.

OTHER FRONT PANEL CONTROLS

A hinged door directly below the row of seven pushbuttons conceals secondary controls. Press the top of the gate to lower it and expose the controls.

The SPEAKER button(s) (A and B on the Festival 500) let you turn each pair of speakers off, to listen through headphones or to one speaker pair at a time.

BALANCE adjusts the relative levels of the left and right channels.

TREBLE and BASS are tone controls.

BASS ASSIST should only be used with Festival speakers. It extends low bass response when the button is in.

PHONES is a jack for lightweight stereo headphones. (Use the SPEAKERS button(s) to turn the main speakers off.)

REAR PANEL CONTROLS

AM DEFEAT

This control is located on the tuner back panel. When this button is pressed in, only FM stations may be tuned, although AM presets that were previously memorized may still be called up in the usual way.

APPENDIX A

CONNECTING ADDITIONAL COMPONENTS TO YOUR FESTIVAL SYSTEM

The TV (Aux)input at the extreme right of the row of phono jacks on the tuner-controller will accept almost any stereo output except for that of a turntable. You can, for instance, connect the audio outputs of a stereo television, a stereo VCR, a laserdisc player, DCC, Mini-Disc, or a satellite receiver. The VCR Rec (Aux) output, which is next to the TV (Aux) input, lets you record from any of the sources comprising the Festival system onto another cassette deck, a hi-fi VCR deck, a Mini-Disc player, or a DCC deck. Keep in mind, however, that if you utilize the VCR Rec (Aux) output, you must initiate the recording from the outboard component. The Festival's system commands cannot control the recording process for any recording device aside from its own cassette deck.

AC VOLTAGE SELECTOR

Export models of the Festival systems have switches permitting the selection of either 230V or 240V AC voltages. This control is located on the integrated amplifier back panel.

CD OUTPUT LEVEL CONTROL

The CD output level is preset at the factory for optimum recording and listening performance. Some advanced users may want to customize this setting. This level control on the CD back panel has three settings: 0 dB—the standard setting, + 1.5 dB, and + 3 dB.

ELECTRICAL PARTS LIST REFERENCE

NOTE: Assignment of common parts codes. **MYLAR CAPACITOR** 1506 🗌 🖂 🖂 41 Mylar capacitor, $\pm 5\%$, 50V **RESISTOR** (1) capacity value 1118 🗌 🗎 🗎 2 🔲 Carbon film resistor, \pm 5%, 1/8W 1114 🗌 🔲 🗎 2 🔲 Carbon film resistor, \pm 5%, 1/4W **Examples** (2) lead type (1) Capacity Value (1) resistor value 0.68uF ·····684 **Examples** (1) Resistor Value **ELECTROLYTIC CAPACITOR** 0.47 ohm···478 4.7 ohm···479 68 ohm···680 142 🗌 🗎 🗎 🗎 6 🗌 Electrolytic capacitor, $\pm 5\%$, 50V 470 ohm ···471 2.7 Kohm···272 56 Kohm···563 (3) lead type (2) Lead type (2) capacity voltage PS type ···1 TP type ···5 (1) working voltage **CERAMIC CAPACITOR Examples** 1886 🗌 🗎 🗎 5 Ceramic capacitor (1) Working Voltage disc type 6.3V·····1 10V·····2 15V·····3 Temp. coeff. P350-N1000, 50V 25V·····4 35V 50V 6 (2) tolerance (capacity deviation) (2) Capacity Value (1) capacity value 4.7uF·····479 0.47uF·····478 33uF.....330 470uF······222 **Examples** (1) Lead type (1) Capacity Value A-type TP ----2 220pF ---221 4pF ...040 47pF ···470 (2) Tolerance $\pm 0.25 pF \cdots 0$ ±0.5pF1 ± 1pF·····2 ±5pF ······4 ±10pF······5 ±2pF3 $\pm 20\% \cdots \cdots 6$ +50%-20%...7 +40%-20%...8

+80%-20%----9

SYSTEM PACKING DRAWING

Festival: 300

NO	PARTS NAME	PARTS NO.	Q'TY	REMARK
1	PACKING BASE	3-324-030-01	1	USA,I,IB,BB
2	BASE LID	3-324-031-01	1	USA,I,IB,BB
3	SLEEVE INNER	3-821-103-12	1	USA,I,IB,BB
4	INNER LID	3-324-019-12	1	USA,I,IB,BB
5	CARTON OUT	3-127-815-11	1	I,IB,BB
5	CARTON OUT	3-128-607-11	1	USA
6	CDP ASS'Y	HKCD300	1	USA,I,IB,BB
7	DECK ASS'Y	HK-C300	1	USA,I,IB,BB
8	TUNER ASS'Y	HK-T300	1	USA,I,IB,BB
9	AMP ASS'Y	HK-A300	1	USA,I,IB,BB
10	PAD UPPER	3-324-018-02	1	USA,I,IB,BB
11	BATTERY ASS'Y	2-154-204-01	1	USA,I,IB,BB
12	REMOCON ASS'Y	A-221-8A0-02	1	USA,I,IB,BB
13	MANUAL	3-128-604-01	1	USA,I,IB,BB

SYSTEM PACKING DRAWING

Festival:500

NO	PARTS NAME	PARTS NO.	Q'TY	REMARK
1	PACKING BASE	3-324-030-01	1	USA,I,IB,BB
2	BASE LID	3-324-031-01	1	USA,I,IB,BB
3	SLEEVE INNER	3-821-103-12	1	USA,I,IB,BB
4	INNER LID	3-324-019-12	1	USA,I,IB,BB
5	CARTON OUT	3-127-925-11	1	I,IB,BB
6	CDP ASS'Y	HK-CD500	1	USA,I,IB,BB
7	DECK ASS'Y	HK-C500	1	USA,I,IB,BB
8	TUNER ASS'Y	HK-T300	1	USA,I,IB,BB
9	AMP ASS'Y	HK-A500	1	USA,I,IB,BB
10	PAD UPPER	3-324-018-02	1	USA,I,IB,BB
11	BATTERY ASS'Y	2-154-204-01	1	USA,I,IB,BB
12	REMOCON ASS'Y	A-221-8A0-02	1	USA,I,IB,BB
13	MANUAL	3-128-604-01	1	USA,I,IB,BB

TUNER SECTION

1 TUNER

INTERNAL VIEW

■ TOP VIEW

- ① PCB-1 Main p.c.board
- 2 PCB-2 Control p.c.board
- ③ Power trans(main)
- 4 Power trans(sub)

DISASSEMBLY PROCEDURES

1 TOP Cover Removal

Fig. 1

- 1. Remove screws 1 to 5 in Fig. 1
- 2. Remove the top cover.

2 Rear Panel Removal

1. Remove screws 1 to 6 in Fig. 2, and then remove the rear panel.

3 PCB-(13) (Main PCB) Removal.

- 1. Remove the rear panel in Fig. 2(Refer to step 2)
- 2. Remove connectors 1 to 2 in Fig. 2, and then remove pcb supports 0
- 3. Remove screws \bigcirc to \bigcirc in Fig. 2, and then remove the maim pcb \bigcirc

4 Front Panel Assembly Removal

- 1. Remove connectors 7 to 8 in Fig. 3
- 2. Remove screws 1 to 6, and then remove the front panel assembly from the unit in Fig. 3

5 PCB-6 (Control PCB) Removal.

- 1. Remove the front panel assembly in Fig. 3. (Refer to step 4)
- 2. Remove screws ① to ③ in Fig. 4, and then remove the control pcb ⑥

ALIGNMENT PROCEDURES

Tuner

Condition:Set the volume control maximum

*: Only USA version

FM Section

- Set the FM mode by pressing the directional keys to tune up and down the bands.
- ◆ Connect the FM signal generator (FM SG) to the FM antenna 75 (*300) ohm terminal through the 75(*300) ohm dummy Antenna.
- ●Set the Tuner to the FM band
 - 1) Tune the FM SG to the Tuner.
 - 2) connect the FM multiplex stereo signal generator to the FM SG external Modulation terminal

3)

1 kHz, 40 kHz deviation			
*1 kHz, 75 kHz deviation			
L + R = 22.5(%), L-R = 22.5(%), 19			
kHz = 8(%)			
* L + R = 45.5(%), L-R = 45.5(%), 19			
kHz 9(%)			

Step	FM SG(*3)		Tuner Frequency	Adjustment	Adjustment procedure
o p	Frequency	Level	Display	Location	Adjustment procedure
1	No signal		87.5 MHz		Confirm that 1.9V DC $\pm0.5V$ between terminal V_T and Ground.
2	No signal		108.0MHz		Confirm that 8.0V DC ± 0.5 V between terminal V_T and Ground.
3	98.0 MHz	72 dBf		T 201	Adjust until the DC voltage is OV $\pm5\text{mV}$ at between TP_1 and TP_2
				T 202	Adjust until distortion at output L or R terminal is minimum.
4					Repeat steps 3 for optimum the DC voltage and minimum THD
5	98 MHz set to stereo	72 dBf	98.0 MHz	I.F (within ±90°)	Adjust until Distortion at output L or R terminal is minimum.
6	98 MHz	38 dBf ±3 dBf *32 dBf ±3 dBf	98.0 MHz	VR 202	Adjust VR202 TEST POINT TUNED become OV at 38 dBf (*32dBF)
7	98 MHz set to stereo	72 dBf	98.0 MHz	VR 301	Adjust until stereo separation at output L or R terminal is maximum.

AM Section

- Connect the furnished AM loop antenna between terminals AM ANTENNA and GND.
- Connect the AM signal generator(AM SG) to the AM Antenna terminal

	AM :	SG	Tuner	Adjustment	
Step	1 kHz 30%	modulation	Frequency	Point	Adjustment procedure
	Frequency	Level	Display		
			522 kHz		1.0 V DC between terminal V _T and GND.
1	No signal		*(520 kHz)	T 204	
			1611 kHz		8.0V DC between terminal V _T and GND.
2	No signal	l	* (1710 kHz)	TC 202	
3	Repeat steps lan	ıd 2for optimun v	roltage		
	603 kHz		603 kHz		
4	* (600 kHz)	60 dB µ	* (600 kHz)	↑ 203	Adjust until maximum
	1395 kHz		1395 kHz		Sensitivity is obtained
5	* (1400 kHz)	60 dB µ	* (1400 kHz)	TC 201	
	999 kHz		999 kHz		7
6	* (1000 kHz)	60 dB µ	* (1000 kHz)	T 205	
	999 kHz	50 dB μ	999 kHz		Adjust VR201 until TEST POINT "TUNED" becomes OV
7	* (1000 kHz)	± 7 dB	* (1000 kHz)	VR 201	at 50dB μ

Tuner: Adiustment point

ç

FUSE

AC CORD

AC230V 50Hz (I.IB.BB) AC120V 60Hz (USA)

CIRCUIT DESCRIPTION

Tuner

III FM TUNER SECTION

The FM signal which has entered through the antenna is high-frequency amplified in the front end. Then it is mixed with the output of the local oscillators and converted into the 10.7 MHz intermediate-frequency.

The 10.7 MHz signal is amplified in the intermediate-frequency amplifying section which consist of F101, Q101, Q102, F102, Q103 and F103 and fed to pin 1 of IC201. In IC201, the signal is sent through the IF amplifier and after being detected in the quadrature, it is sent through the post amplifier to pin 12 and then input to pin 2 of IC301. In IC301, the pilot signal is detected and the 38 KHz signal is produced. Then by this signal, stereo signal is demodulated, output from pin 6 for the left channel and from pin 8 for the right channel and transmitted to the input selector section.

M AM TUNER SECTION

The AM signal which has entered through the antenna passes through the tuning circuit consisting of T203 and is inputted to pin 21 of IC201. Tn IC201, it undergoes radio-frequency amplification and local oscillation and is output from pin 20, and passed through the transformer (T205) and ceramic filter (F201) and enters pin 18 of IC201. It is then passed through the IF amplification and detection and is output from pin 15. This signal is fed to IC301.

SYNTHESIZER SECTION

* FM

The local oscillator output from the front end is fed to pin11 of the prescaler IC401 and after being frequency devided into 34 or 32, control output is fed from IC701, compared with the devided local oscillator frequency and output to pin 14. This voltage is level converted by Q401 and Q402, and fed to the front end.

* AM

The local oscillation output is fed from pin 24 of IC201 to pin 10 of IC401. In IC401, control output signal is fed from IC701, compared with the local oscillator frequency and output to pin 14. This voltage is level converted by Q401 and Q402, and fed to the AM local oscillator section.

IC FUNCTION BLOCK DIAGRAM

IC701: MICRO-COMPUTER

MICOM IC TERMINAL FUNCTION TABLE

MICOM	10	121	MITINAL LONG LION LABLE		
LE 1044		INPUT/			
TERMINAL NAME	No.	QUTPUT	Function Description		
DATA	1	QUTPUT	FLT SUB-MENU		
CL	2	OUTPUT	FLT 300-MENO		
DOWN	3	OUTPUT	VOLUME		
DATA	5	OUTPUT			
BÛSŶ	- 8	OUTPUT	REMOCON		
- BO3	7	OUTPUT			
TUNER	8	OUTPUT	FOR TUNER FUNCTION		
TEST1	9	OUTPUT	Test Terminal(Use with open)		
REST	10	INPUT	Reset Terminoi		
_	11	INPUT			
	12	OUTPUT			
GND	13		GND		
CF1	14	OUTPUT	CONNECT QUARTZ OSCILLATOR		
CF2	15	OUTPUT	CONNECT QUARTZ OSCILLATOR		
VDD	16		Power supply + terminal		
OPTION	17	INPUT			
OPTION	18	INPUT	8bit Input port		
K.SCAN	.19	INPUT	obit input pert		
AM/FM	20	INPUT			
HOLD	21 22	INPUT			
SD	23	INPUT	8 bit input port		
STEREO REMOTE	24	INPUT INPUT	· • • • • • • • • • • • • • • • • • • •		
1GB	25	OUTPUT			
2GB	26	OUTPUT			
3GB	27	OUTPUT			
4GB	28	OUTPUT	flj Display Controller(GRID)		
5GB	29	OUTPUT	I III Bispidy Controller (GRED)		
6GB	30	OUTPUT			
7GB	31	OUTPUT			
8GB	32	OUTPUT			
P1B P2B	33	OUTPUT			
P3B	35	OUTPUT			
P4B	36	OUTPUT			
P5B	37	OUTPUT	flT Display Controller(Segment)		
P6B	38	OUTPUT			
P7B	39	OUTPUT			
P8B	40	OUTPUT			
VDD	41		Power Supply		
VP VP	42	AUTOU?	Power Supply - (Negative)		
P9B P10B	43	OUTPUT			
P11B	44	OUTPUT			
P128	46	OUTPUT	1		
P13B	47	OUTPUT	flT Display Controller(Seament)		
P14B	48	OUTPUT	= p. = y =		
P15B	49	OUTPUT			
P16B	50	OUTPUT			
	51				
	52				
	53	_=			
	54 55	===			
	56				
DATA	57	OUTPUT			
CL.	58	OUTPUT	PLL Data		
CE	59	OUTPUT			
POWER	60	OUTPUT	Power on/off for remocon		
CL	61	OUTPUT	Function Selector		
CETE	62	OUTPUT			
RADIO MUTE	63	OUTPUT	MUTE FOR RADIO		
AUDIO MUTE	64	OUTPUT	MUTE FOR AUDIO		

IC 701 OPTION SELECTION

OPTION1 (PIN NO.18)	OPTION2 (PIN NO.17)	BAND RANGE
Н	н	FM 76.0MHz - 90.0 MHz :100KHz STEP AM 522 KHz - 1629 KHz : 9KHz STEP
н	Ĺ.	FM 87.5MHz - 107.9 MHz :200KHz STEP AM 520 KHz - 1710 KHz :10KHz STEP
L	Н	FM 87.5MHz - 108.0 MHz :100KHz STEP AM 520 KHz - 1710 KHz :10KHz STEP
L	L	FM 87.50MHz- 108.00MHz :50KHz STEP AM 522 KHz - 1629 KHz :9KHz STEP

IC 502 FUNCTION SELECTION CHART

	IC JOE ! GIVE ! TON SELECTION CHAR!									
OPERATION PIN		IC502 LC7822				IC501 GD4066B				
SELECT	LION	<u>L 1</u>	L2	L3	L4	∟5	L6	L7	LB	
	TUNER	Ĺ	! !		07		;			ON
LESTEN	CD	OΝ			ON				[]	OFF
MODE	TAPE					ON				OFF
	AUX						ON		[OFF
	TUNER → TAPE					9		ON		2 2
	CD ⇒TAPE	ON				ON		ON		OFF
RECORD	AUX ⇒TAPE			ON		ON		ON		OFF
MODE	TUNER AUX						ON		ON	ON
	CD ⇒ AUX	01					ON		ON	OFF
	AUX 🖦 AUX	-	OΝ				ON		07	OFF

IC201: LA1266 FM/AM DETECTOR

IC301: MULTIPLEX LA-3401

IC502: LC7822 FUNCTION SELECTOR

IC702: MSC 1937-01 FLT SUB MENU INDICATOR

IC501: GD4066 FUNCTION SELECTOR

IC401: LM 7001 PRESCALER

IC1001: LB1641 MOTOR DRIVE

1. FM FRONT. END(I. IB. BB) FTH 4-560H

2. FM FRONT. END(USA) FTH 3-502H

TIMING CHART

1. System Control Timing Format

Time Base is 560 µs

1) COMMAND

2) COMMAND + DATA

3) BIT WAVEFORM

Tuner:

Function switch timing

CE, CL, DI waveforms

PLL control timing

FLT sub menu control timing

EXPLODED VIEW

Tuner

NO	PARTS NAME	PARTS NO	MATERIAL	Q'TY	REMARK
1	PANEL FRONT	3-221-801-01	AL A6063-T5	1	A,B
2	PANEL BASE	3-221-802-01	ABS-720 BLACK	1	A,B
3	PANEL WINDOW	3-221-803-01	PMMA	-	A,B
4	KNOB FUNCTION	3-221-805-01	ABS-720 94-HB	1	A,B
5	LENS (A)	3-123-311-01	PMMA 60N	1	A,B
6	GUIDE FOOT	3-221-806-01	ABS-720	2	A,B
7	FOOT L	3-221-807-01	AL A6063-T5	1	A,B
8	FOOT R	3-221-808-01	AL A6063-T5	1	A,B
9	FILTER	3-221-814-01	PVC TO.5 WINE COLOR	1	A,B
10	CHASSIS MAIN	3-221-809-02	SECC T1.0	1	A,B
11	PANEL REAR	3-222-101-02	SECC TO.8	1	Α
11	PANEL REAR	3-221-810-01	SECC TO.8	1	В
12	CASE BONNET	3-221-811-01	SECC TO.8	1	A,B
13	SUPPORT PCB	3-810-518-01	NYLON 66	1	A,B
14	POWER TRANS	2-131-491-01	120V 60Hz. DC(+,-) 18V	1	A
14	POWER TRANS	2-131-490-01	230V 50Hz. DC(+,-) 18V	1	В
15	CORD AC	2-221-124-02	NDG-023-0	1	Α
15	CODR AC	2-211-109-02	NDG-009-0,VDE	1	В
16	BUSHING S/RELIEF	8-201-118-01	HEYCO SR15-1	1	A
16	BUSHING S/RELIEF	8-201-117-01	HEYCO SR14-1	1	В
17	CUSHION CHASSIS	3-810-333-01	RUBBER	2	A,B
18	KNOB PUSH	3-127-802-01	ABS-720	1 1	A,B
19	COVER SCREW	3-127-802-01	EVA GRAY T5.5X102X66	1	A,B
20	TERMINAL ANT	8-201-118-01	4P BLACK	1	A
20	TERMINAL ANT	2-155-742-01	75 OHM PAL+AM	1	A
Α	SCREW	7-344-408-01	ATZ30P080FZK	3	A,B
В	SCREW	7-764-410-01	VBZ30P100FZK	6	A,B
С	SCREW	7-768-420-01	VBZ40P200FZK	4	A,B
D	SCREW	7-464-408-01	CBZ30P080FZK	6	A,B
Ε	SCREW	7-764-408-01	VBZ30P080FZK	21	A,B

ELECTRICAL PARTS LIST

TUNER T300

REF. No	Part No.	Description
▶: I, IB BB	₩: USA	Δ : SAFETY RELATED PARTS.
	PCB-1 MAIN P.C. BOAR	D
	INTERGRATED CIRCU	IITS
IC701	2600154011	LE1044, LC866012 CPU(μ-COM)
IC201	2441331721	LA1266 AM.FM IF DET.
IC401	2441330721	LM7001
IC301	2441353721	LA3401 MPX
IC1001	2441348721	LB1641 MOTOR DRIVER
IC502	244136172	LC7822 FUNCTION SELECTOR
IC501	244080731	GD4066B FUNCTION SELECTOR
<u> </u>	244121771	MC7812 REGULATOR (+12V)
∆ IC2	244123171	KA7912 REGULATOR (-12V)
⚠ IC3	244143842	KA7806 REGULATOR (+6V)
	TRANSISTORS	
Q403, 405, 500	240011835	KTA1266
Q402	240211815	KTC3200
Q101, 102, 103	240210125	KTC3192
▶ Q201	240211135	KTC3198
Q601, 602, 603, 604, 701	240211135	KTC3198
Q2002	240610715	KSR2001
Q1, 2001	240610815	KSR1001
	FIELD EFFECT TRANSI	STOR
Q401 ·	2404111451	2SK246Y
	DIODES	
D201, 202	2415080911	SVC321 SPA-D(VAR1-CAP)
△ D1, 2, 3, 4, 5, 6, 7, 8, 9, 10	2413581651	1N4003L
∆ D11	242122035	IN 969B, 22V ZENER
D12	242108245	IN 756A, 8.2V ZENER
D402, 403	242110035	IN 758A, 10V ZENER
D1001, 501, 502	242105135	IN 751A, 5.1V ZENER
D401	242105655	IN 752A, 5.6V ZENER
₩ D3001, 3002	241017995	155133
13, 601, 602, 603, 604, 701, 702, 703, 704 711, 710, 2001, 2002, 2003, 2004	241017995	188133
, , , , , , , , , , , , , , , , , , , ,	FILTERS	
F101	2138305011	SFE 10.7 MA8-HA(RED)
※ F102, 103	2138305011	SFF 10.7 MA8-HA(RED)
► F102, 103	2138306011	SFE 10.7MS 3G-HA(RED)
F201	2138312011	SFU 450-B
F202	2138313011	BFU 450-C4N
F301	2138358011	CSB456F11 '
▶ F302	213852101	ANTIBODY
F303, 304	213851101	19KHz. MPX
▶ FO	213860901	BPMB6A 88-108MHz
	COILS	•
T203	212710901	M7ZN-K\$29511N
T204	212943501	AM. OSC
T205	212712401	AM. IFT
T201	212974701	FM. DET 1
T202	212974801	FM. DET2
L201	101122221	RC875, 2.2MH, 5%
L701, 702	103447035	RC875, 47μH, 5%
	CERAMIC TRIMMERS	
TC201, 202	21211701	CVCNO6B200

REF. No	Part No.	Description
	RESISITORS	
RO, 3, 4, 700	111401025	1Ω, ¹/₄W, ±5%
R1003	111415025	15Ω , $\frac{1}{4}$ W, $\pm 5\%$
R1	111468225	6.8 K Ω , $^{1}/_{4}$ W, $\pm 5\%$
R2	111533225	3.3Ω , $\frac{1}{2}$ W, $\pm 5\%$
R401	111422125	220 Ω , $^{1}/_{4}W$, $\pm 5\%$
R5, 6	111810025	10Ω , $^{1}/_{8}W$, $\pm 5\%$
R313, 412, 417	111810125	100Ω , $^{1}/_{s}$ W, $\pm 5\%$
R202, 403, 405, 712, 730, 731	111810225	1KΩ, ¹/ ₈ W, ±5%
► R120, 504, 720L	111810325	10KΩ, ½W, ±5%
R201, 205, 206, 411, 505, 601, 504, 548	111810325	10K, 1/8W, ±5%
602, 701, 717, 721L	111010020	100, 7811, 2010
► R218, 320, 321	111810425	100KΩ, 1/sW, ±5%
R213, 214, 905, 906, 911, 914, 916, 918	111810425	100KΩ, ½W, ±5%
* R203	111812325	12KΩ, ½W, ±5%
R101	111812225	1.2K Ω , ${}^{1}/_{8}W$, $\pm 5\%$
R102, 109	111818125	180Ω , $\frac{1}{8}W$, $\pm 5\%$
	111818225	1.8KΩ, ½W, ±5%
R105, 110, 220, 408	111818325	$1.8K\Omega$, $\frac{1}{8}W$, $\pm 5\%$
► R219	111818325	
R714	111822025	$18K\Omega$, $^{1}/_{8}W$, $\pm 5\%$
R100		22Ω, ½W, ±5% 220Ω, ½W, ±5%
R409, 521, 523	111822125	, , , , , , , , , , , , , , , , , , ,
R104, 606, 607	111822225	2.2 K Ω , $\frac{1}{8}$ W, ± 5 %
► R314, 315	111815525	$1.5M\Omega$, $\frac{1}{8}W$, $\pm 5\%$
R106, 407	111827125	270Ω , $\frac{1}{8}$ W, $\pm 5\%$
▶ R203	111827325	27KΩ, 1/8W, ±5%
R322, 323	111827425	270KΩ, $\frac{1}{8}$ W, ±5%
R107, 113, 901, 902, 907, 909, 910	111833125	330Ω , $\frac{1}{8}$ W, $\pm 5\%$
R208, 306, 307, 308, 311	111833225	3.3 K Ω , $\frac{1}{8}$ W, ± 5 %
R503	111833325	33KΩ, ¹/ ₈ W, ±5%
R103	111839552	3.9K Ω , $1/8W$, $\pm 5\%$
R514, 515, 600	111847025	47Ω, ¹/₅W, ±5%
R410, 1001, 1002	111847125	470Ω , $\frac{1}{8}$ W, $\pm 5\%$
▶ R211, 215	111847225	4.7KΩ, 1/ ₈ W, ±5%
R112, 402, 604, 605, 708, 709, 710 R324, 702, 703, 704, 705, 706, 707, 715, 716	111847225 111847325	4.7K Ω , $\frac{1}{8}$ W, $\pm 5\%$ 47K Ω , $\frac{1}{8}$ W, $\pm 5\%$
* R720H	111847325	$47K\Omega$, $\frac{1}{8}W$, $\pm 5\%$
R603	111847425	470KΩ, 1/2W, ±5%
R608, 609	111847525	$4.7M\Omega$, $\frac{1}{8}W$, $\pm 5\%$
R404, 406	111856925	5.6Ω, ½W, ±5%
▶ R216	111856025	56Ω, ½W, ±5%
R204, 114	111856025	56Ω, '/ ₈ W, ±5%
R111	111856125	560Ω, 1/ ₈ W, ±5%
▶ R310, 549, 550, 740, 741	111856225	5.6KΩ, 1/ ₈ W, ±5%
R207	111868025	68Ω, ½W, ±5%
* R314, 315	111868425	680KΩ, ¹/ ₈ W, ±5%
R501, 502	111875125	750 Ω , $^{1}/_{s}W$, \pm 5%
R520, 522	111875325	75K Ω , $^{1}/_{8}$ W, \pm 5%
R903, 904, 912, 913	111815125	150Ω , $^{1}/_{*}W$, $\pm 5\%$
R211	111856325	56K Ω , $^{1}/_{s}W$, \pm 5%
R210, 915, 917	111827225	$2.7K\Omega$, $\frac{1}{8}W$, $\pm 5\%$
▶ R121	111868225	6.8K Ω , $\frac{1}{8}$ W, $\pm 5\%$
※ R320, 321	111812425	$120K\Omega$, $^{1}/_{8}W \pm 5\%$
* R3001, 3002	111522525	2.2M Ω , $^{1}/_{2}W \pm 5\%$
	SEMI FIXED RESISTORS	
VR201, 202	251247301	47 K Ω , 6MM(RH0615C)
VR301	251222401	220K Ω , 6MM(RH0615C)
	CAPACITORS	
C601, 602, 603	141610865	$0.1\mu F, \pm 20\%, 50V$ ELEC
C203, 208, 210, 214, 313, 314, 702, 703	141601065	1μ F, $\pm 20\%$, 50V ELEC
C302, 309, 310, 321, 505, 506	141310065	10μ F, $\pm 20\%$, $16V$ ELEC
515, 516, 604		
► C220, 226, 301	141310165	100μ F, $\pm 20\%$, $16V$ ELEC
C228, 318, 405, 513, 517, 600	141310165	100μF, ±20%, 16V ELEC
C11, 401, 501, 503	141210165	100μ F, $\pm 20\%$, $10V$ ELEC
C7	141510165	100μ F, $\pm 20\%$, 35V ELEC
C4, 5	141610165	$100\mu F, \pm 20\%, 50V$ ELEC
C315	141622865	0.22μ F, $\pm 20\%$, 50V ELEC
C8, 9	141322165	220μF, ±20%, 16V ELEC
C207	141622965	2.2μ F, $\pm 20\%$, 50V ELEC
C10	141333165	$330\mu\text{F}, \pm 20\%, 16\text{V}$ ELEC
C407, 408	141647865	0.47μ F, $\pm 20\%$, 50V ELEC
C305	141647965	4.7μ F, $\pm 20\%$, 50V ELEC

REF. No	Part No.	Description	
C13, 100, 211, 219, 1001, 2002	141347065	47μ F, $\pm 20\%$, 16V	ELEC
C2001	141247165	470μ F, $\pm 20\%$, 10V	ELEC
C312	141668865	0.68μ F, $\pm 20\%$, 50V	ELEC
∆ C1, 2	141522267	$2200\mu f_{\nu} \pm 20\%, 35V$	ELEC
► C901, 902, 905, 906, 912, 913	1599121451	120 PF, ±5%, 50V	MICA
※ 901, 902, 905, 906 912, 913	188612145	120PF $+80\% -20\% 50V$	CER
C3, 102, 204, 205, 409, 1002	175610395	$0.01\mu\text{F}$, $+80\%$. -20% , 50V	CER
C907, 1003	175610495	0.1μ F, +80%20%, 50V	CER
C908, 909, 910, 911	188612145	120 PF, ±5%, 50V	CER
C227	188615145	150 PF, \pm 5%, 50V	CER
C410, 411	180618045	18 PF, ±5%, 50V	CER(CH)
▶ C219	175622395	0.022μ F, $+80\%$. -20% , $50V$	CER
C101, 104, 201, 202, 206, 209, 212, 213, 218	175622395	$0.022\mu\text{F}$, $+80\%$. -20% , 50V	CER
224, 225, 319, 402, 406, 502, 504, 514, 518,707			CED
C304, 903, 904	188633145	330 PF, ±5%, 50V	CER
C303, 700, 420	175647395	$0.047\mu\text{F}$, $+80\%$. -20% , 50V	CER
※ 3001, 3002	175647395	$0.047 \mu\text{F} + 80\% - 20\% + 50\text{V}$	CER
※ C307, 308	188668145	680 PF, ±5%, 50V	CER
► C307, 308	1886471	470 PF, ±5%, 50V	CER
C704	171668255	0.0068µF, ±10%, 50V	CER
△ ► C12	1998104011	0.01 µF 250V	CER CER
∆ %C12	199810107	0.01µF 250V° 0.047µF, 5%, 50V	MYL
C412 (M)	150647345 153643141	430 PF, ±5%, 50V	PPP
C234(S) C701	1991134011	DB-5R5D104	
C/01	MISCELLANEOUS	DD-3K3D104	
X401	213810201	7.2 MHz	
X701	2138184011	CST 8.0 MTW	
► FRONT END	212511801	FTH-560H	
* FRONT END	212512001	FTH3-502HA	
SW1	220237301	SPWN19	
CABLE CARD	216831701	30P, 150M	
WA1	216830701	30P, VERTICAL TYPE	
WA8	2138382011	2MM, 5P	
WA7	216838401	2MM, 9P	
WA9, 10	216847901	BMW250-05, 5P	
WA2	216848001	YMWO25-02, 2P	
WA6	216848201	YMWO25-03, 6P	
WA3	216845901	YW396-03AV, 2P	
WA4	216848101	YMW025-03 3P	
CABLE HOLDER	216300501	6P	
CNI	215857901	W-D0604#01	
RCA JACK *3	215561801	4P	
ANT	215574201 215577801	75 OHM, PAL +AM 4P BLACK	
<pre>% ANT HEATSINK *2</pre>	371070203	40MM	
△ ► REL	2140131011	VS-12MBU-5, 12V, 10A	
∆ × REL	2140225021	JW1AFSN-DC12V	
IC SOCKET	215519401	WSD1F-64T(1.78MM) IC SOCKET	
△ FUSE HOLDER * 2	299911401	PBSP-H 0.3T	
⚠ ► TRANS2	213147601	AC 230V 50Hz	
⚠ * TRANS2	213136901	AC 120V 60Hz	
EARTH WIRE	289960101	1P 100MM	
TERMINAL WRAPPING * 6	215537701	NKC-007-B	
※ EARTH WIRE	289961501	IP 40MM	
		A DD	
PCB-2 I	MOTOR CONTROL P.C. BO	PARD	
	TRANSISTORS		
Q503, 504	240211134	KTC3198	
Q2003, 2004	240215425	2 SC 2878-B	
	RESISTORS		
R2001, 2002	111810325	10 KΩ, ¹/₅ W, ±5%	
R532, 534	111839125	390 Ω, ½ W, ±5%	
R541, 542	111847025	$47 \Omega_{1}^{1}/_{8} W, \pm 5\%$	
R915, 917	111827225	2.7 KΩ, ¹/₅ W, ±5% 1KΩ, ¹/₄ W, ±5%	
R533, 536	111410225	$1 \text{ K}\Omega$, $\frac{1}{8}$ W, $\pm 5\%$	
R528, 529	111810225	$150 \text{ K}\Omega$, $\frac{1}{18}$ W, $\pm 5\%$	
R531, 537	111815425 111891325	91 K Ω , $\frac{1}{8}$ W, $\pm 5\%$	
R530, 535	CAPACITOR\$	/ 1 Kau, 18 tt, ±070	
C519, 520	141310065	$10\mu F, \pm 20\%, 16V$	ELEC
C541, 544	141310165	10μr, ±20%, 16V	ELEC
C1003	175610495	$0.1\mu\text{F}$, $+80\%$, -20% , 50	CER
C542, 543	175622395	$0.022\mu\text{F}$, +80%, -20%, 50	CER
C530, 531	141668965	$6.8\mu\text{F} \pm 20\%$, 50V	ELEC
	00		

	MISCELLANEOUS		
M1	2501384011	EUW MOF F25, A54	
WA8-A	2168389011	2MM, 5P	
WA7-A	2168391011	2MM, 9P	
REF. No	Part No.	Description	
P	CB-3 BUFFER AMP P.C. BOAI	RD	
	RESISTORS		
R621, 622	111822125	220 Ω , $^{1}/_{s}$ W, \pm 5%	
R623, 625	111847225	4.7K Ω , $^{1}/_{8}$ W, $\pm 5\%$	
R624, 626	111875325	75 K Ω , $\frac{1}{8}$ W, ± 5 %	
	CAPACITORS		
C623, 624, 626, 627	141310065	10 μ F, $\pm 20\%$. 16V	ELEC
C621, 622	141347065	47 μ F, \pm 20%, 16V	ELEC
C625, 628	188633045	33 PF, 50% 50V	CER
	INTERGRATED CIRCUIT	s	
IC601	244123671	KA4558C	
	MISCELLANEOUS		
WA9-A, WA10-A	216847801	BMH250-05R, 5P	
	DOD 4 GOVERNI D.O. BOAD		
•	PCB-4 CONTROL P.C. BOAR	ט	
	INTERGRATED CIRCUIT		
IC801	24404F14011	MSC1937-01	
	TRANSISTORS		
Q801, 802, 803	240610815	KSR1001	
	DIODES		
D810, 811, 812, 813, 814, 815, 816, 817	241017995	155133	
818, 819			
	RESISTORS		
R807,841	111810125	100Ω , $\frac{1}{8}$ W, $\pm 5\%$	
R804	111810325	$10K\Omega$, $\frac{1}{8}$ W, $\pm 5\%$	
R806	111812325	$12K\Omega$, $\frac{1}{8}$ W, $\pm 5\%$	
R801	111818025	$18\Omega^{-1}/_{8}$ W, $\pm 5\%$	
R802, 803	111822325	22KΩ ¹/₅ W, ±5%	
R805	111833125	330Ω ¹ / ₈ W, ±5%	
R808, 811, 812, 813, 814, 815, 816, 817	111847325	$47K\Omega$, $^{1}/_{8}$ W, $\pm 5\%$	
818, 819, 820, 821, 823, 824, 825			
826, 827, 828, 828, 830, 831, 832, 833			
834, 835, 836, 837, 838, 839, 840			
	CAPACITORS		
C804	141347065	CEA 47μ F, $\pm 20\%$, 16V	ELEC
C802, 803	141447065	CEA 47μ F, $\pm 20\%$, 25V	ELEC
	MISCELLANCEOUS		
S801, 802, 803, 804, 805, 806, 807, 808	22089901	177-620-002	
FLT	214325501	24-MT-01GK	
WA1-A	216828901	30P, ANGLE TYPE	
REMOTE	212581601	KRM-91M(38KHz)	
FLT HOLDER	322180401	ABS	
LD812	241918335	R54MC F07	
CABLE HOLDER	216300301	4P	
EARTH WIRE	289960101	1P 100MM	

PCB-5 RIBBON P.C. BOARD

	MISCELLANCEOUS	
FUSE * 2	2998225011	TIA/250V
CABLE HOLDER	216300501	бP
WA6	216848201	YMW 025-06 6P
WA5	216846901	13P BLACK

△ ► TRANS1	213149001	AC230V 50HZ
⚠ * TRANSI	213149101	AC120V60HZ

PACKING DRAWING

Tuner

NO	PARTS NAME	PARTS NO.	Q'TY
1	PAD BOTTOM	3-127-916-01	1
2	PIN CORD	2-212-141-01	2
3	SHEET POLY	3-324-029-01	1
4	STICKER SET	3-819-817-01	1
5	inner lid	3-324-019-01	1
6	BAG POLY	3-219-009-01	1
7	ANT FM	2-213-103-01	1
8	LOOP ANTENNA AM	2-213-353-02	1
9	CONNECTOR ASS'Y	2-159-978-02	1
10	MANUAL SHEET	3-221-823-01	1

AMPLIFIER SECTION

2 HK-A300

INTERNAL VIEW

TOP VIEW

- ① PCB-1 Main p.c.board
- ② PCB-2 Power Transformer p.c.board
- 3 PCB-3 Control p.c.board
- 4 PCB-4 Control p.c.board
- ⑤ Power Transformer.

DISASSEMBLY PROCEDURES

1 TOP Cover Removal

- 1. Remove screws ① to ⑤ in Fig. 1
- 2. Remove the top cover

2 Bottom Cover Removal

Fig. 2

1. Remove screws 1 to 1, and then remove the bottom cover in Fig. 2

3 Rear Panel Removal

Fig. 3

4 1 PCB-7 (Power Trans Former PCB) Removal

Fig. 4

- 1. Remove the rear panel in Fig. 3 (Refer to step $\boxed{3}$)
- Remove connector ①, Remove Switch rod ② from speaker selector switch

5 PCB-(5) (Main PCB) Removal

Fig·5

- 1. Remove the pcb-2(Refer to step 4)
- 2. Remove connectors ① to ④ in Fig. 5
- 3. Remove screws 5 , and then until the ground wire 6 in Fig. 5

6 Front Panel Assembly Removal

- 1. Remove connectors ① to ④ in Fig \cdot 6
- 2. Remove screws §, and then until the ground wire § in Fig. 6
- 3. Remove screws ⑦ to ⑩, and then remove the front panel assembly by pulling it toward you gently.

7 PCB-2, 7 (Control PCB) Removal.

Fig·7

- 1. Remove the front panel assembly from the unit in Fig \cdot 6 (Refer to step \bullet)
- 2. Remove serews ①, and then remove the pcb-3 ② in Fig. 6
- 3. Remove screws $\ensuremath{\mathfrak{J}}$ to $\ensuremath{\mathfrak{G}}$, and then remove the pcb-4 $\ensuremath{\mathbb{Z}}$ in Fig. 6

ALIGNMENT PROCEDURES

Amplifier : A-300

- Conditions: \bullet Set the Volume control of Tuner to minimum.
 - Set the Speaker switches to "off" position.
 - Make the adjustment at a room temperature of 77° F
 - After the Power Switch of Tuner is pushed on, Wait for 60 minutes before measuring to be sure of the most stable operation.
- \triangle NOTE: ullet Power amplifier can be serviced without TUNER by shorting Points PIN No. AC1 and JUMPER WIRE No.
 - DC OFFSET VOLTAGE should be less then 100mV after POWER ON 12sec.

IDLING CURRENT ADJUSTMENT

STEP	Connection Equipments	Adjustment	FOR
1	Connect the Digital Volt Meter to	VR101(L-Ch)	$26 \text{mV} \pm 2 \text{mV}$
	both side of R161		
2	Connect the Digital Volt Meter to	VR102(R-ch)	26mV ± 2mV
	both side of R162		

A300 Adjustment point

A-300 AMPLIFIER BLOCK DIAGRAM

CIRCUIT DESCRIPTION

Amplifier: A300

TONE CONTROLS.

Fig 1 shows the basic tone control circuit. The tone amplifier is a DC-coupled amplifier

The tone circuit consistitutes INPUT small signal Transistor (Q201) OUTPUT small signal Transistor (Q205) and CONSTANT current Transistor (Q203). Tone control (Bass, Treble) is accomplished by providing the tone amplifier NFB circuit with a frequency selective characteristic. (Bass:50Hz, Treble:10kHz)

Fig. I

POWER AMPLIFIER SECTION

The basic circuit arrangement of the power amplifier is shown in Fig 3. The first stage is a differential amplifier comprising PNP two transistors ($Q103,\ 107$).

The pre-drive stage consists of ultra low capacitance transistors (Q113, Q115).

The power stage bias voltage is supplied by the transistor (Q117). The power stage consists of drive transistors (Q119, Q121) and power transistors (Q125, Q127).

BASS ASSIST

Fig 2 shows the BASS ASSIST circuit.

The BASS ASSIST circuit consists of CONSTANT current F. E. T (Q207) and small signal transistors (Q209, Q211).

This curcuit is active low cut filter. (Accent frequency is 55Hz).

Fig. 2

The power amplifer has a over-output current protection circuit. If current exceeding the specification flows through Q125 & Q127(L-ch), Q123 & Q135 Will conduct. As result Q133 will switch OFF, and the mute line will go low(MUTE). The thermal protection circuit consists of Transistors (Q134, Q138) and posistor PO 101. When heat sink temperature exceeds 95° C, Q136 & Q134 switch ON and the MUTE line goes low(MUTE).

Fig. 3

EXPLODED VIEW

Amplifier: A300

ELECTRICAL PARTS LIST

Amplifier A300

Ref. No	Part No.	Description
	CHASSIS MISCELLANEOUS	
Δp1	221110902	AC LINE CORD (I, IB, BB)
	221112402	AC LINE CORD (USA)
▼ 11	213148901	POWER TRANSFORMER (I, IB, BB)
	213149401	POWER TRANSFORMER (USA)
⚠ FU301	218861901	FUSE T1.25A/250V (I, IB, BB)
	218864001	FUSE F2.5A/2'50V (USA 1
	PCB-1 MAIN (P.C _♦ BOARD)	
	RESISTOR	
△ R161, 162	139021401	0.22Ω , $5W+5W$
A R165, 166	114110023	10Ω, 1W, ±5%
⚠ R185, 186	114168123	680Ω, IW±5%
⚠ R183, 184	130447925	4.7 Ω , 1/4W, \pm 5% FUSE
⚠ R141, 142, 147, 148	130447025	47Ω , 1/4W, $\pm 5\%$ FUSE
⚠ R177, 178	130433125	330Ω , 1/4W, $\pm 5\%$ FUSE
⚠ R163, 164	130410025	10Ω, 1/4W, ±5% FUSE
R167, 174	111410425	100KΩ, 1/4W, ±5%
R109, 110	111410325	$10K\Omega$, $1/4W$, $\pm 5\%$
R159, 160	111410225	1KΩ, 1/4W, ±5%
R113, 114, 115, 116, 135, 136	111415225	1,5KΩ, 1/4W, ±5%
R143, 144, 145, 146	111422325	22KΩ, 1/4W, ±5%
R169	111422225	2.2KΩ, 1/4W, ±5%
R101, 102 R179, 180	111822225	2.2KΩ, 1/8W, ±5%
R131, 132	111422025	22 Ω, 1/4W, ±5%
R119, 120	111427225	2.7KΩ, 1/4W, ±5%
R103, 104, 107, 108, 170	111427125	270 Ω, 1/4W, ±5%
R176, 187	111433325	33KΩ, 1/4W, ±5%
R105, 106, 155, 156	111433225	3.3KΩ, 1/4W, ±5%
R149, 150	111433125 111436325	330 Ω, 1/4W, ±5%
R177	111439225	36KΩ, 1/4W, ±5% 3.9KΩ, 1/4W, ±5%
R153, 154, 172, 173, 175	111447225	$4.7K\Omega$, $1/4W$, $\pm 5\%$
R111, 112, 117, 118, 178	111447125	470 Ω , 1/4W, \pm 5%
R121, 122, 123, 124, 125, 126, 127, 128, 129, 130	111456125	560 Ω, 1/4W, ±5%
R133, 134, 139, 140	111456025	56 Ω, 1/4W, ±5%
R168, 171	111468325	68KΩ, 1/4W, ±5%
R158	111482125	820 Ω, 1/4W, ±5%
R151, 152	111482025	82 Ω, 1/4W, ±5%
R157	111491125	910 Ω, 1/4W, ±5%
R137, 138	111439125	390 Ω, 1/4W, ±5%
	CONTROLS	0,02, 7,, 20.0
VR101, 102	251247101	470Ω
	CAPACITOR	
C129, 142	141601065	1μ F, $\pm 20\%$, 50V, ELEC
C115, 116	141310065	10μ F, $\pm 20\%$, 16 V, ELEC
C140, 141	141610065	10μ F, $\pm 20\%$, 50V, ELEC
C130	141210165	100μ F, $\pm 20\%$, 10 V, ELEC
C131, 132, 133, 134	141422165	$220\mu\text{F}, \pm 20\%, 25\text{V}, \text{ELEC}$
C103, 104	141247065	47μ F, \pm 20%, 10V, ELEC
C119, 120	141447965	4.7μ F, $\pm 20\%$, 25V, ELEC
C109, 110, 111, 112, 135, 136	141647065	47μ F, $\pm 20\%$, 50V, ELEC
C111, 112	141147165	470μ F, $\pm 20\%$, 6.3V, ELEC
△ C137, 138	199113101	6800μ F, $\pm 20\%$, 50V, ELEC
△ C139	1998104011	10000pF, ±5% 250V (I. IB. BB)
	199810107	10000PF. ±5% 250V (USA)
C117, 118	159910145	100PF. ±5% 100V (I. IB. BB)
	188610145	100PF. ±5% 50V (USA)
C143, 144, 145, 146, 149, 150	175610495	$100000 pF$, $\pm 80\%$, -20% 50V (I. IB. B
C127, 128, 101, 102, 147, 148	159915145	150PF. ±5%, 100V (I. IB. BB)
C113, 114	188605015	5pF, ±5%, 50V
C105, 106	159968045	680PF. ±5% 100V (I. IB. BB)
	188668045	480PF + 5% 50V (LISA)

188668045

680PF. ±5% 50V (USA)

REF. No	Part No.	Description
		_
C123, 124, 125, 126 C121, 122	150610445 150668345	100000pF, 5% 50V 47000pf, 5% 50V
G(21, 122		17 000 p1, 070 001
	TRANSISTORS	
△ Q125, 126	240310321	KTD718-0
⚠ Q127, 128	240110811	KTB688-0
Q115, 116	2402116411	2SC3787S
Q113, 114	2400117411	2SA1477S
Q119, 120	240217321	KTC4370Y
Q121, 122	240015121	KTA1659Y
△ Q130	240310621	KTD1351Y
△ Q129	240110321	KTB988Y
Q117, 118, 133, 138	240211135	KTC3198GR
Q101, 102, 105, 106, 134	240011835	KTC1266GR
Q109, 110, 111, 112, 123, 124, 137	240011825	KTC3200BL
Q103, 104, 106, 107, 135, 136	240011425	KTC1268BL
	F.E.T	
Q131, 132	2404118151	2SK373
	DIODES	
⚠ D107	2413091671	PBL403
∆ D106	2413581651	1N403L
D101, 102	241017995	1SS133
△ D103, 104	242113035	ZENER, 1N964, 13V
△ D105	242106245	ZENER, 1N753, 6.2V
	00110	
	COILS	
L101, 102	212930501	0.7 <i>μ</i> H
	MISCELLANEOUS	
P0101	2505121011	POSISTOR
\$101	220237301	PUSH SWITCH
SPEAKER TERMINAL	215577701	1001101111011
INPUT JACK	215561801	
WA104	216813401	WAFER 3P
WA103, 105	216812201	WAFER 3P
WA101, 102	216812301	WAFER 4P
LUG	289960701	EARTH WIRE
PCB-	·2 CONTROL P.C. BOARD	
	CONTROLS	
VR201	250122021	250KΩ, MN
VR202, 203	250121901	100ΚΩ, 20C
	RESISTORS	
R249, 250, 207, 208	111810425	100K Ω , 1/8W, \pm 5%
R251, 252	111810325	10 K Ω , $1/8$ W, $\pm 5\%$
R217, 218, 221, 222	111810225	$1K\Omega$, $1/8W$, $\pm 5\%$
R219, 220, 239, 240	111810125	100 Ω , 1/8W, ±5%
R201, 202	111812225	1.2K Ω , 1/8W, \pm 5%
R215, 216, 207, 208	111815425	150K Ω , 1/8W, \pm 5%
R209, 210	111815325	15K Ω , 1/8W, \pm 5%
R237, 238	111822425	220K Ω , 1/8W, \pm 5%
R231, 232	111822225	2.2 K Ω , $1/8$ W, $\pm 5\%$
R229, 230	111822125	220 Ω , 1/8W, \pm 5%
R211, 212	111827125	$2.7K\Omega$, 1/8W, $\pm 5\%$
R223, 224	111827425	270K Ω , 1/8W, ±5%
R213, 214, 225, 226, 245, 248	111833125	330 Ω , 1/8W, \pm 5%
R203, 204	111839125	390 Ω , 1/8W, $\pm 5\%$
R205, 206, 235, 236	111847325	47 KΩ, 1/8W, ± 5 %
R243, 244, 246, 247	111847925	4.7 Ω, 1/8W, ±5%
R241, 242	111856225	5.6K Ω , 1/8W, ±5%
R227, 228	111882025	82 Ω, 1/8W, ±5%
R233, 234	111833025	33 Ω, 1/8W, ±5%
,		

	Part No.	Description
	CAPACITORS	
C219, 220	141610865	$0.1 \mu f$, $\pm 20\%$, 50V ELEC
C205, 206	141622965	$2.2\mu\text{F}, \pm 20\%, 50\text{V ELEC}$
C211, 212, 213, 214	141322065	$22\mu F_{r} \pm 20\%$, 16V ELEC
C223, 224	141647865	0.47μ F, $\pm 20\%$, 50V ELEC
C217, 218, 226, 227	141347065	$47\mu\text{F}, \pm 20\%, 16\text{V}$ ELEC
C210, 209	150615441	150000pF, ±5%, 50V
C207, 208	150627345	27000pF, ±5%, 50V
C201, 202	150636345	36000pF, ±5%, 50V
C221, 222	150647345	47000pF, ±5%, 50V
C203, 204	150668245	6800pF, ±5%, 50V
C215, 216	188633045	33pF, ±5%, 50V
C228, 229	188610045	10pF, ±5%, 50V
	TRANSISTORS	
Q201, Q202	240211135	KTC3198GR
Q203, 204, 205, 206	240011835	KTA1266GR
Q211, 212	240211825	KTC3200BL
Q209, 210	240011425	KTC1268BL
	F.E.T	
Q207, 208	2404111351	2SK246GR
	MISCELLANEOUS	
\$201	220219801	PUSH SWITCH
CW103	215988902	CONNECTOR ASS'Y 3P
CW101	215979001	CONNECTOR ASS'Y 4P
CW102	215989202	CONNECTOR ASS'Y 4
	PCB-3 POWER RELAY P.C. BO	ARD
	RESISTOR	
R304	1114110023	10Ω, 1W
R303	111815225	1.5KΩ, 1/8W, ±5%
R301	111847225	4.7K Ω , 1/8W, \pm 5%
	CAPACITOR	
C301	141901065	1μ F, 20%, 100V, ELEC
C302	1998104011	10000pF, ±5%, 250V (I.IB.BB
	199810107	10000pF, ±5%. 250V (USA)
	TRANSISTORS	
Q301, 302	240211135	KTC3198GR
	DIODE	
D301	241017995	1SS133
	RELAY	
RY301	214022502	JW1AFSN-DC12V
•••	MISCELLANEOUS	
\$301	219017901	SLIDE SWITCH
CW104	215998201	CONNECTOR ASS'Y 3P
	PCB-4 HEADPHONES P.C. BOA	\RD
PHONES JACK CW105	215565001	3P MINI JACK

PACKING DRAWING ,

Amplifier: A-300

NO	PARTS NAME	PARTS NO.	Q'TY
1	PAD BOTTOM	3-127-916-01	1
2	SHEET POLY	3-324-029-01	1
3	STICKER SET	3-819-817-01	1
4	INNER LID	3-324-019-01	1

3 HK-A500

INTERNAL VIEW

■ TOP VIEW

- ① PCB-1 Main p.c.board
- ② PCB-2 power Transformer p.c.board
- ③ PCB-3 Control p.c.board
- PCB-4 Control p.c.board
- ⑤ Power transformer

DISASSEMBLY PROCEDURES

1 TOP Cover Removal

Fig. 1

- 1. Remove screws 1 to 2 in Fig. 1
- 2. Remove the top cover

2 Bottom Cover Removal

Fig. 2

 ι . Remove screws ① to ② in Fig. 2, and then remove the bottom cover.

3 Rear Panel Removal

Fig. 3

1. Remove screws 1 to 2 in Fig. 3, and then remove the rear panel

4 PCB-5 (Power Trans Former PCB)Removal

Fig. 4

- 1. Remove the rear panel in Fig.3 (Refer to step 3)
- 2. Remove screws 1 to 4 in Fig. 4, and then remove the pcb-2 3 with the power transformer
- 3. Remove switch rods 6 to 7 and speaker selector switch in Fig. 4

5 PCB-(18) (Main PCB) Removal

Fig · 5

- 1. Remove the pcb-2 and power trans (Refer to step 4).
- 2. Remove connectors ① to ⑤ in Fig \cdot 5 , and then remove screws ⑥ to ⑤
- 3. Remove screw 1 in Fig \cdot 5, and then until the ground wire 1
- 4. Remove the pcb- (8) Fig. 5

6 Front Panel Assembly Removal

- 1. Remove the rotary knobs 7 to 9 in Fig. 6
- 2. Remove connectors 10 to 13 in Fig. 6
- Remove screws ① to ⑥ in Fig · 6, and then remove the front panel assembly by pulling it toward you gently.

7 PCB-2, 7 (Control PCB) Removal.

Fig • 7

- 1. Remove the front panel assembly (Refer to step (a))
- 2. Remove screw 1, in Fig \cdot 7, and then remove pcb-3 6
- 3. Remove screws $\ 2$ to $\ 5$, in Fig. 7 , and then remove pcb-4 $\ 7$

Amplifier: A500

- Conditions: Set the Volume control of Tuner to minimum.
 - Set the Speaker switches to "off" position.
 - Make the adjustment at a room temperature of 77° F (25℃).
 - After the Power Switch of Tuner is pushed on, Wait for 60 minutes before measuring to be sure of the most stable operation.
- \triangle NOTE: ullet Power amplifier can be serviced without TUNER by shorting Points PIN No. AC2 and JUMPER WIRE No.
 - DC OFFSET VOLTAGE should be less then 100mV after POWER ON 12sec.

IDLING CURRENT ADJUSTMENT

STEP	Connection Equipments	Adjustment	FOR
1	Connect the Digital Volt Meter to both side of R167	VR101(L-ch)	26mV±2mV
2	Connect the Digital Volt Meter to both side of R168	VR102 (R-ch)	26mV±2mV

A 500 Adjustment point

CIRCUIT DESCRIPTION

Amplifier: A-500

TONE CONTROLS.

Fig 1 shows the basic tone control circuit. The tone amplifier is a DC-coupled amplifier

The tone circuit consistitutes INPUT small signal Transistor (Q201) OUTPUT small signal Transistor (Q205) and CONSTANT current Transistor (Q203). Tone control (Bass, Treble) is accomplished by providing the tone amplifier NFB circuit with a frequency selective characteristic. (Bass:50Hz, Treble:10kHz)

Fig. I

POWER AMPLIFIER SECTION

The basic circuit arrangement of the power amplifier is shown in Fig 3. The first stage is a differential amplifier comprising PNP two transistors (Q103, 107).

The pre-drive stage consists of ultra low capacitance transistors (Q113, Q115).

The power stage bias voltage is supplied by the transistor (Q117). The power stage consists of drive transistors (Q119, Q121) and power transistors (Q125, Q127).

BASS ASSIST

Fig 2 shows the BASS ASSIST circuit.

The BASS ASSIST circuit consists of CONSTANT current F. E. T (Q207) and small signal transistors (Q209, Q211).

This curcuit is active low cut filter. (Accent frequency is 55Hz).

Fig. 2

The power amplifer has a over-output current protection circuit. If current exceeding the specification flows through Q125 & Q127(L-ch), Q123 & Q135 Will conduct. As result Q133 will switch OFF, and the mute line will go low(MUTE). The thermal protection circuit consists of Transistors (Q134, Q138) and posistors (PO 101, PO 102). When heat sink temperature exceeds 80° C, Q136 & Q134 switch ON and the MUTE line goes low(MUTE).

Fig. 3

EXPLODED VIEW

Amplifier: A 500

ELECTRICAL PARTS LIST

Amplifier A500

REF. No	Part No.	Description
	CHASSIS MISCELLANEOUS	
∆ P1	221110902	AC LINE CORD (I, IB, BB)
	221112402	AC LINE CORD (USA)
∆ T1 .	213148801	POWER TRANSFORMER (I, IB, BB
	213149301	POWER TRANSFORMER (USA)
⚠ FU301	218862501	FUSE T1.6A/250V (I, IB, BB)
	218865501	FUSE F3.5A/125V (USA)
	PCB-1 MAIN P.C. BOARD	
	RESISTOR	
⚠ R167, 168	139021401	0.22Ω , 5W+5W
⚠ R171, 172, 173, 174	114110023	10Ω, 1W, ±5%
⚠ R401, 402	114168123	680Ω, 1W±5%
∆ R179, 180	130447925	4.7Ω , $1/4$ W, $\pm 5\%$ FUSE
⚠ R145, 146, 151, 152	130447025	47Ω , 1/4W, $\pm5\%$ FUSE
△ R177, 178	130433125	330 Ω , 1/4W, $\pm 5\%$ FUSE
R184	111810425	100KΩ, 1/8W, ±5%
R188	111410425	100KΩ, $1/4$ W, ± 5 %
R111, 112	111410325	$10K\Omega$, $1/4W$, $\pm 5\%$
R101, 102	111810225	1KΩ, 1/8W, ±5%
R163, 164	111410225	1KΩ, 1/4W, ±5%
R115, 116, 117, 118, 135, 136, 139, 140	111415225	1.5KΩ, 1/4W, ±5%
R147, 148, 149, 150	111822325	22KΩ, 1/8W, ±5%
R181	111822225	2.2KΩ, 1/8W, ±5%
R175, 176	111422025	22 Ω, 1/4W, ±5%
R121, 122	111427125	270 Ω, 1/4W, ±5%
R105, 106, 109, 110, 153, 154	111433325	33KΩ, $1/4W$, $\pm 5\%$
R190	111833225	3.3KΩ, 1/8W, ±5%
R107, 108, 159, 160	111433125	330 Ω , 1/4W, \pm 5%
R141, 142	111439125	390 Ω, 1/4W, ±5%
R193	111839225	3.9KΩ, 1/8W, ±5%
R191	111439225	3.9KΩ, 1/4W, ±5%
R186, 187	111847225	
R157, 158, 189	111447225	4.7KΩ, 1/8W, ±5%
R113, 114, 119, 120, 192	111447125	4.7KΩ, 1/4W, ±5%
R182	111847325	470 Ω, 1/4W, ±5%
R123, 124, 125, 126, 127, 128, 129, 130, 133, 134	111456125	47KΩ, 1/8W, ±5%
R137, 138, 143, 144	111456025	560Ω , 1/4W, $\pm 5\%$
R183, 185	111868325	56Ω, 1/4W, ±5%
R155, 156	111882025	68KΩ, 1/8W, ±5%
R161, 162	111491125	82 Ω, 1/8W, ±5%
K101, 102		910 Ω, 1/4W, ±5%
VR101, 102	CONTROLS	
VK101, 102	251247101	470Ω
C146, 147	CAPACITOR	
	141601065	$1\mu F$, $\pm 20\%$, 50V, ELEC
C119, 120	141310065	10μF, ±20%, 16V, ELEC
C144, 145 C148	141610065	$10\mu F$, $\pm 20\%$, 50V, ELEC
	141210165	100μ F, $\pm 20\%$, $10V$, ELEC
C129, 130, 131, 132	141422165	220μF, ±20%, 25V, ELEC
C105, 106	141347065	47μ F, $\pm 20\%$, 16V, ELEC
C123, 124	141447965	4.7μ F, $\pm 20\%$, 25V, ELEC
C113, 114, 115, 116, 133, 134	141647065	47μ F, $\pm 20\%$, 50V, ELEC
C111, 112	141147165	470μ F, $\pm 20\%$, 6.3V, ELEC
A C135, 136	1991129011	8200µF, ±20%, 63V, ELEC
∆ C143	1998104011	10000PF. ±5%, 250V (I, IB, BB)
	199810107	10000PF. ±5%, 250V (USA)
C121, 122	159910145	100PF. ±5%, 100V (I, IB, BB)
	188610145	100pF, ±5%, 50V (USA)
C709, 710	175610495	
	170010770	100000pF, + 80%, -20%, 50V
C701, 702, 705, 706, 707, 708, 721, 722	150015145	1 FORE - L FO/ 1000 // 15
C701, 702, 705, 706, 707, 708, 721, 722	159915145	150PF. ±5%, 100V (I, IB, BB)
C117, 118	180602015	2pF, ±5%, 50V
	180602015 159968045	2pF, ±5%, 50V 680PF. ±5%, 100V (I, IB, BB)
C117, 118 C107, 108	180602015 159968045 188668045	$2pF$, $\pm 5\%$, $50V$ 680PF. $\pm 5\%$, $100V$ (I, IB, BB) 68pF, $\pm 5\%$, $50V$ (USA)
C117, 118	180602015 159968045	2pF, ±5%, 50V 680PF. ±5%, 100V (I, IB, BB)

REF. No	Part No.	Description
	TRANSISTORS	
∆ Q125, 126	2402167111	2SC3280
△ Q127, 128	2400148111	2SA1301
Q115, 116	2402116411	2SC3787S
Q113, 114	2400117411	2SA1477S
Q119, 120	240217321	KTC4370Y
Q121, 122	240015121	KTA1659Y
⚠ Q129	240310621	KTD1351Y
⚠ Q130	240110321	KTB988Y
Q117, 118, 133, 138	240211135	KTC3198GR
Q101, 102, 105, 106, 134	240011835	KTC1266GR
Q109, 110, 111, 112, 123, 124, 137	240011825	KTC3200BL
Q103, 104, 107, 108, 135, 136	240011425	KTA1268BL
	F.E.T	
0131 133	2404118151	2\$K373
Q131, 132	2404110131	230070
	DIODES	
⚠ D107	2413621611	PBU603
△ D106	2413581651	1N4003L
D101, 102	241017995	188133
△ D103, 104	242113035	ZENER, 1N964, 13V
△ D105	242106245	ZENER, 1N753, 6.2V
	COILS	
L101, 102	212930501	0.7 <i>μ</i> H
	MISCELLANEOUS	
PO101, 102	2505121011	POSISTOR
\$101, 102	220237301	PUSH SWITCH
SPEAKER TERMINAL	215577601	
INPUT JACK	215561801	
WA105	216813401	WAFER 3P
WA103, 104	216812201	WAFER 3P
WA101, 102	216812301	WAFER 4P
LUG	289960701	EARTH WIRE
	PCB-2 CONTROL P.C. BOA	RD
	CONTROLS	
VR201	250122021	250KΩ, MN
VR202, 203	250121901	100KΩ, 20C
0051	RESISTORS	10000 11000 1500
R251, 252	111810425	100KΩ, 1/8W, ±5%
R237, 238	111810325	10KΩ, 1/8W, ±5%
R217, 218, 221, 222 R219, 220, 243, 244	111410225 111810125	1KΩ, 1/4W, ±5% 100 Ω, 1/8W, ±5%
R201, 202	111812225	1.2KΩ, 1/8W, ±5%
R215, 216, 207, 208	111815425	150KΩ, 1/8W, ±5%
R209, 210	111815325	15KΩ, 1/8W, ±5%
R239, 240	111822425	220KΩ, 1/8W, ±5%
R231, 232	111822225	2.2 K Ω , 1/8W, ± 5 %
R229, 230	111822125	220 Ω , 1/8W, \pm 5%
R223, 224	111827425	270K Ω , 1/8W, ±5%
R211, 212	111830225	$3K\Omega$, 1/8W, $\pm 5\%$
R213, 214, 225, 226, 253, 254	111833125	330 Ω , 1/8W, \pm 5%
R233, 234	111833025	33 Ω , 1/8W, \pm 5%
R205, 206, 235, 236	111847325	47KΩ, 1/8W, ±5%
R247, 248, 249, 250	111847925	4.7 Ω , 1/4W, \pm 5%
R245, 246	111856125	560 Ω , 1/8W, \pm 5%
R227, 228	111882025	82 Ω , 1/8W, \pm 5%
	CAPACITORS	
C219, 220	141610865	$0.1 \mu F, \pm 20\%, 50V ELEC$
C205, 206	141622965	2.2μ F, $\pm 20\%$, 50V ELEC

REF. No	Part No.	Description
C211, 212, 213, 214	141322065	22µf, ±20%, 16V ELEC
C225, 226	141647865	0.47μ F, $\pm 20\%$, 50V ELEC
C217, 218	141347065	47μ F, $\pm 20\%$, 16V ELEC
C209, 210	150615441	150000 pF, $\pm 5\%$, 50 V
C207, 208	150636345	$36000 pF, \pm 5\%, 50V$
C201, 202	150630345	$30000 pF, \pm 5\%, 50V$
C223, 224	150647345	47000pF, ±5%, 50V
C203, 204	150656245	5600pF, ±5%, 50V
C215, 216	188633045	$33pF$, $\pm 5\%$, $50V$
C231, 232	188610045	10pF, ±5%, 50V
	TRANSISTORS	
Q201, Q202	240211135	KTC3198GR
Q203, 204, 205, 206	240011835	KTA1266GR
Q211, 212	240211825	KTC3200BL
Q209, 210	240011425	KTC1268BL
	F.E.T	
Q207, 208	2404111351	2\$K246GR
	MISCELLANEOUS	
\$201	220219801	PUSH SWITCH
CW103	215988902	CONNECTOR ASS'Y 3P
CW101	215979001	CONNECTOR ASS'Y 4P
CW102	215989202	CONNECTOR ASS'Y 4
	PCB-3 POWER RELAY P.C. BC	PARD
	RESISTOR	
⚠ R304	114110023	10Ω, 1W
R302	111410325	10KΩ, 1/4W, ±5%
R303	111815225	1.5K Ω , 1/8W, \pm 5%
R301	111847225	4.7K Ω , 1/8W, \pm 5%
	CAPACITOR	
C301	141601065	1μF, 20%, 50V, ELEC
∆ C302	1998104011	10000PF. ±5%, 250V (I. IB. BB)
_ 3332	199810107	10000PF. ±5%, 250V (USA)
	TRANSISTORS	
Q301, 302	240211135	KTC3198GR
	DIODE	
D301	241017995	188133
	RELAY	
⚠ RY301	2140225021	JW1AFSN-DC12V
	MICOPILANIPOLIC	
A	MISCELLANEOUS	
△ \$301	219017901	SLIDE SWITCH (I.IB.BB)
CW105	215998201	CONNECTOR ASS'Y 3P
	PCB-4 HEADPHONES P.C. BC	ARD
PHONES JACK	215565001	3P MINI JACK
CW104	215964301	CONNECTOR ASS'Y 3P

PACKING DRAWING

Amplifier: A-500

e dan kurbus

NO	PARTS NAME	PARTS NO.	Q'TY
1	PAD BOTTOM	3-127-916-01	1
2	SHEET POLY	3-324-029-01	1
3	STICKER SET	3-819-817-01	1
4	INNER LID	3-324-019-01	1

TAPE DECK SECTION

5 HK-C300

INTERNAL VIEW

■ TOP VIEW

- ① PCB-1 Main p.c.board
- ② PCB-2 Main p.c.board
- 3 PCB-3 Main P.c.board
- 4 PCB-4 Control p.c.board
- ⑤ Deck Mechanism

DISASSEMBLY PROCEDURES

1 TOP Cover Removal

Fig. 1

- 1. Remove screws ① to ⑦ in Fig. 1
- 2. Remove the top cover

2 Rear Panel Removal

Fig. 2

 Remove screws ① to ④ in Fig. 2, and then remove the rear panel.

3 PCB-(5), (6), (7) (Main PCB) Removal

Fig. 3

- 1. Remove the rear panel in Fig. 2 (Refer to step 2)
- 2. Remove connectors 1 to 9, and then remove pcb supports 10 to 10 in Fig. 3
- 3. Remove screws 3 to 4, and then remove the pcb-1 4, pcb-2 4 and pcb-3 5

4 Front Panel Assembly Removal

Fig. 4

- 1. Remove screws ① to ⑥ in Fig. 4
- 2. Remove the front panel assembly by pulling it toward you gently

5 PCB-5 (Control PCB) Removal.

Fig · 5

- 1. Remove the front panel assembly (Refer to step 4)
- 2. Pulling hooks ① to ④ in Fig \cdot 5, and then remove the contrel pcb ⑤

ALIGNMENT PROCEDURES

Tape Deck: **C300**/**C500**

STEP	Alignment	Instrument Required	Input Signal	Mode	Test point	Adjustment	FOR
	Azimuth	VTVM		РВ	OUTPUT jack	Azimuth	Maximum output
1		Oscilloscope				screw	Refer to "Azimuth Adjustment" on
'		Test tape (MTT-114 or		:			page 62
		TCC-154)					
		Frequency counter		РВ	OUTPUT jack	VR(bulit-in	3000Hz ±10Hz
2	Tape speed	Test tape (MTT-111DN				motor)	Adjust at the center of test tape.
		or TCC-112)					
	Playback	VTVM		PB	OUTPUT jack	VR101	365mV-15mV, +40mV
3	output level	Test tape (TCC-130 or				VR102	
		(MTT-150)					
	Playback frequency	VTVM		PB	OUTPUT jack	R131~	Unsolder resistors of R131 and
	characteristic confir-					R136	R132, R133 and R134, or R135
4	mation	and TCC-262B)					and R136 so that the frequency
							response is within the range as
<u> </u>							shown in page 62
5	Bias frequency con-	Frequency counter		REC/PB	ERASE HEAD	T301	105KHz ±3KHz
Ľ	firmation		,				Tape selector is METAL position
	Dolby HX PRo	VTVM		REC/PB		L 501	Maximum output
	(HK-C500)			BIAS		L 502	Tape selector is METAL position
6				TRIM		VR501	After adjustment for L501 and
				BIAS		VR502	L502, set bias fine trim(VR501 and
	At the HK-C300			CEN-		VR301	VR502) to the center position.
	BIAS CURRENT Adj			TER		VR302	VR301, VR302 is center position.
	Record level	VTVM	Apply 1KHz signal		OUTPUT jack	VR201	365mV
	(pre-adjustment)	Blank tapes	to INPUT jack.	PB		VR202	Tape selector is CrO2 Position.
7		NORMAL:AC-224(TDK)	OUTPUT voltage is	İ			Adjust VR201 and VR202 so that
		CrO2 :XL-II(MAXELL)	365mV in RECOR-				the distortion becomes 0.8%
		METAL:MX(MAXELL)	DING mode.				This confirmation should be at each
							tape selector position.
	Record/playback	VTVM	Apply 1 kHz signal	REC/PB	OUTPUT jack	(HK-C500)	So that the record/playback fre-
	EQ frequency	Blank tapes	to INPUT jack. OUT-			VR501	quency response is flat (at least
	response	NORMAL: AC -224	PUT voltage is 20dB			VR502	within the range in \pm 3dB)
8		CrO2:XL-II	below 365 mV in			L 501	This confirmation should be at each
		METAL:MX	RECORDING mode.			L 502	tape selector position.
			Them adjust with a			(HK-C300)	Preform cheking with Dolby B and
			20Hz to 20 kHz			VR301	C NR ON at each tape selector
						VR302	position.

MECHANICAL ADJUSTMENT

Tape :	Speed, Azimuth		
Mode	Test tape	Adjustment position	Specification rating(playback frequency)
PLAY	Play TCC-154 tapel 12.5 kHz) Head Azimuth Screw Adj	45 degree (fig · A)
	FRONT	FWI	Speed Adi ERSE O Head Azimuth Adjustment the PLAY mode)

■ ELECTRICAL ADJUSTMENT AND CONFIRMATION

1. Before adjustment

- After the power switch is pushed on, wait for 10 minutes before measuring to be sure of the most stable operation.
- Since head magnetization, dust accumulations etc are likely to introduce errors in the various characteristics, it is very important that the heads are properly demagnetied and cleaned before commencing any adjustment, particularly frequency response and head azimuth adjustment.

2. Instruments required

- Low frequency oscillator
- AC VTVM or dual channel AC VTVM
- Oscilloscope
- Wow/Flutter meter
- Frequency counter

3. Test tapes

Ο.	Tost tapes
•	Azimuth adjustment MTT-114 or TCC-154
•	Tape speed adjustment MTT-111 orTCC-112
•	Playback output level adjustmentTCC-130 (200nWb)
•	Playback frequency characteristic confirmation
	TCC-162B and TCC -262B
•	Reference tapes
	LN (TDK) AC-224
	CrO2 –(MAXELL) XL–II

METAL (MAXELL) MX

Note:

C-90 differes with C-60 in the thickness and bias.

Adjust with the tape as specified.

PLAYBACK FREQUENCY CHARACTERISTIC

TEST TAPE:TCC-162B,TCC-262B

RECORD/PLAYBACK FREQUENCY CHARACTERISTIC

TEST TAPE:AC-224, XL-II, MX

DOLBY NR:OFF

4. General conditions (unless otherwise noted)

Controls and Switches	Setting
Dolby NR	off

Azimuth Adjustment

- When the maximum level point of R channel is not the same as L channel, connect the oscilloscope as shown in Fig A and proceed with azimuth adjustment so that L and R channels are in phase.
- a) Connect L channel tape out to "X (orH)" and R channel to "Y (orV)". Observe the lissajous waveform.
- b) Set L and R channels to monaural. Adjust vertical and horizontal gain so that the waveform becomes 45degree.
- c) Adjust azimuth so that the mesurement of "a" becomes maximum and the measurement of "b" becomes minimum against the 45 degree Line.
- d) apply lock tight to head Azimuth Screw

Fig. A

RECORD/PLAYBACK FREQUENCY CHARACTERISTIC

TEST TAPE :AC-224, XL-II, MX

DOLBY NR :TYPE B ON

RECORD/PLAYBACK FREQUENCY CHARACTERISTIC

TEST TAPE:AC-224, XL-II, MX

DOLBY NR:TYPE C ON

RECORD/ HEAD PLAYBACK INPUT ERASE HEAD Q109~Q112 -8.5dB 365mV (P) R-cr 다양 BIAS OSC T301 30: []{ []{ Metal:H-B Metal:H-B Other:L 777 Other:L 777 PLAY 9113,9114 HT02878A រូព្រព្រួត 10801 HX Pra(C500 ONLY) L 80 REC 12/2 CIRCUII EQ CIRCUIT Ø Rec Bias ON/OFF MOTERATION MOTERATION 30 -31dB 29mV T) CTCCOTON REC MUTE Q205,Q206 PLAYBACK AMP Q101~Q104:2SC1775F _Q105~Q106;KT.C3198GR DOLBY B.C NR CIRCUIT Q11,Q12 KTR1010 DOLBY NR IC501 17.5dB 133mV other rec -10.5 dB 300mV BIAS/EQUALIZATION SELECTOR } } +12V A TYPE RN RN Q304,Q306#(TA12717 -2.2dB 775mV Metal : H Other : L မ REC LEVEL Q403,Q404 Q498,Q499 KTC3198GR PACK DETECT CASSETTE +12V A +5< +12V B CONTROL BLOCK MECHA CONTROL δ REC DETECT CLOSE +5V +12VB LINE MUTE Q401,Q402 KTC2878A POWER SUPPLY OPEN/ O1.GGEXENIGY Ø \$ CAPSTAN MOTOR . REEL MOTOR OPEN/CLOSE MOTOR SOLENOID OUTPUT -8.5dB 365mV

C-300/500 TAPE DECK BLOCK DIAGRAM

CIRCUIT DESCRIPTION

PLAYBACK SIGNAL

The signal from the playback head is amplified by the playback amplifier Q101, Q103 and Q105 (L-ch), and is applied to the pins 3(L-ch) and 28 (R-ch) of the Dolby NR IC401 (B/C type). Switching of the playback signal from the record mode (external input signal) to the playback mode is performed inside IC401.

IC401 is usually switched to the playback mode. However, the control signal transmitted to the pin 26 of IC401 from IC1 through Q13 switches IC401 from the record mode to the play mode. The input signal to IC401 is output from the pins 9(L-ch)and 22(R-ch) and applied to the OUTPUT jack. The characteristics of the playback equalizer are defined by the BIAS/EQUALIZATION switch and are selected and specified in Q119(L-ch) and Q120(R-ch)

RECORD SIGNAL

The signal from the INPUT jack is controlled by the Q429(CD REC level Adj) and is applied to pins 1(L-ch)and 30(R-ch) of the Dolby NR IC401 (B/C type). Switching of the record signal from the playback mode to the record mode is performed inside IC401. The control signal transmitted to the pin26 of IC401 from IC1 through Q13 switches IC401 from the playback mode to the record mode.

The input signal to the Dolby IC is output from pin 15(L-ch) and pin16(R-ch). The signal output from IC401 passes through the record equalizer circuit and is amplified by the record amplifier of IC201. The amplified signal is then applied to the recording head after being synthesized by a bias signal.

MUTING OPERATION

The signal that mutes the sound produced at switching to recording or playback is applied from IC1 of the logic control block.

When the "MUTE" button is pressed, the signal output from the pin35 of IC1 turns ON Q401(L-ch) and Q402 (R-ch) to short-circuit the output signals of the playback amplifiers for muting.

IC FUNCTION BLOCK DIAGRAM

IC1: MICRO COMPATER

IC1: CPU CONTROL LE-1041

PIN No.	Port name	Function name	1/0	Outline of Functions	
3	P3.2	LOAD IN SW	I	LOADING CLOSE - LOW	
4	P3.3	LOAD OUT SW	I	LOADING OPEN - HIGH	
5	P3.4	LOAD SPEED CONT SW	I	CLOSE PACK SLIDE DOWN - LOW	
6	P3.5/SFT0	REV REC INH	I	REV RECORDING INHIBIT TERMINAL	
7	P3.6/SFTI	FWD REC INH	I	FWD //	
8	P3.7	PACK DETECT	ı	TAPE DETECTOR INPUT TERMINAL	
9	RESET	RESET		SYSTEM RESET TERMINAL.	
10	P2.0	REEL SENSOR	I	SENSING PULSE INPUT TERMINAL	
11	P2.1	REEL SENSOR	I	SENSING PULSE INPUT TERMINAL	
12	P2.2/INITO	POWER OFF	I	POWER ON/OFF DETECTION TERMINAL . LOW LEVEL-OFF	
13	P2.3/INIT1	DATA	I/0	SYSTEM CONTROL SIGNAL I/O TERMINAL	
14	P2.4	BUSY	1/0	STSTEM CONTROL SIGNAL 1/0 TERMINAL	
15	P2.5	SONG INPUT	I	INPUT TERMINAL FOR SONG INTERVAL DETECTION.	
16	P2.6/WR	OP/CLOSE KEY	I	DOOR OPEN/CLOSE TOGGLE KEY INPUT . LOW ACTIVE	
17	P2.7	Q-REV SENSOR	I	TAPE END/START POINT DETECTION	
18	OSC1	0SC2		4MHz RESONATOR CONNECTING TERMINAL. GND TERMINAL. BA6238A 4PIN PIN NO F.P R.P FF REW STOP OPEN CLOSE CPU 23PIN 4 L H L H L L L L BA6238A SPIN CPU 22PIN 5 L L L L L H H BA6238A SPIN CPU 22PIN 6 H H H H H H L H L	
19	osco	0SC1			
20	GND	GND			
21	P1.0/A8	REEL MOTOR(6)	٥		
22	P1.1/A9	REEL MOTOR(5)	0		
23	P1.2/A10	REEL MOTOR(4)	٥		
24	P1.3/A11	NR (DOLBY)	I	DOLBY FUNCTION CONTROL.	
25	P1.4/A12	NR (DOLBY)	I	DOLD! TORO! ZON CONTROL.	
28	P1.7/A15	O/C LED	0	LOW ACTIVE	
32	P0.7/AD7	ENC/DEC	0	PLAY - HIGH REC - LOW	
33	P0.6/AD6	BAIS	0	REC - HIGH	
34	P0.5/AD5	REC MUTE	٥	REC MUTE-LOW	
35	P0.4/AD4	LINE MUTE	0	LINE MUTE - HIGH	
36	P0.3/AD3	SOL PAUSE	0	LOW VOLTAGE OUTPUT TERMINAL FOR SOLENOID DRIVE.	
37	P0.2/AD2	SOLENOID	0	SOLENOID ACTIVE - HIGH	
38	P0.1/AD1	TOQ-CONTROL	0	POWER CONTROL HIGH LEVEL - POWER DOWN.	
39	P0.0/AD0	CAPSTAN MOTOR	0	OUTPUT TERMINAL FOR CAPSTAN MOTOR DRIVE.	
40	VDD	VDD	L	+5 (POWER SUPPLY TERMINAL)	

IC501: HX PRO UPC1297CA

OUT 1 8 V OUT 2 1N1 3 6 I12 V 4 5 IN2

IC401: DOLBY B.C NR HA1217ONT

IC3: Q-REV SENSOR BA10393

IC402: MUSIC SEARCH LA 2000

IC2: MOTOR DRIVER BA6238A

TIMING CHART

Tape Deck: C300/500

EN/DEGODE SOL PAUSE BM 1 200	FF(REW)	STOP		
SOL PAUSE 20	_LINE_MUTE			
SOL PAUSE 200	REQ_MUTE			
SOL PAUSE 200	_EN/DEGQDE			
	SOL PAUSE	200		
RM 2	BM-1.			
	BM_2_			
CPM .				

OPEN(CLOSE)	CLOSE (OPEN)		
FIRE WALE			
REQ_MUJE			
1.	 		
_EN/DEGQDE			
SQL			
SOL PAUSE			
5AP-1:VAA&			
O/C LED			
	0.09		
BM_3_	0 F EN		
СБМ			

EXPLODED VIEW

Tape Deck: C-300/500

NO	PARTS NAME	PARTS NO	MATERIAL	Q'TY	REMARK
1	PANEL FRONT	3-324-003-01	AL A6063-T5	1	A.B
2	FOOT R	3-127-907-01	AL A6063-T5	11	A.B
3	FOOT L	3-127-906-01	AL A6063-T5	1	A,B
4	PANEL BASE	3-324-017-02	ABS-720 94-HB	1	A,B
5	DOOR HOLDER	3-324-007-02	ABS-720 94-HB	1	A,B
6	DOOR COVER	3-324-004-01	AL A6063-T5	1	A,B
7	LENS KNOB	3-324-012-02	SBR(K~REGIN)94-HB	1	A,B
8	KNOB TACT	3-819-804-01	ABS-720 94-HB	1	A,B
9	PCB ASS'Y	A-170-857-01	MAIN	1	A,B
10	DECK MECHANISM	2-216-109-01	HM-100LM DENON	1	A,B
11	MECHA FOOT	3-324-010-01	ABS-720 94-HB	4	A,B
12	FOOT REAR	3-324-011-01	ABS-720 94-HB	1	A,B
13	COVER SCREW	3-324-027-01	EVA GRAY	4	A.B
14	CHASSIS MAIN	3-324-016-02	SECC 1.0T	1	A,B
15	SUPPORT PCB	3-810-520-01	NYLON 66	3	A,B
16	PANEL REAR(C500)	3-324-015-11	SECC 0.8T	1	A,B
16	PANEL REAR(C300)	3-324-102-11	SECC 0.8T	1	A,B
17	TOP COVER	3-324-014-01	SECC 0.8T	1	A,B
18	MECHA BRK'T	3-324-502-01	SECC 1.2T	1	A,B
S1	SCREW	7-764-408-01	VBZ30P080FZK	16	A.B
S2	SCREW	7-768-420-01	VBZ40P200FZK	4	A,B
S3	SCREW	7-464-408-01	CBZ30P080FZK	- 8	A,B
S4	SCREW	7-344-408-01	ATZ30P080FZK	2	A,B
S5	SCREW	7-764-410-01	VBZ30P100FZK	2	A,B
ユ					

ELECTRICAL PARTS LIST

Tape Deck: C-300/500

REF. No	Part No.	Description
	PCB-1 MAIN P.C. BOARD	
	INTEGRATED CIRCUITS	
IC402	244131372	LA2000 MUSIC SEARCH
IC501 (C500)	2442241541	UPC1297CA HX Pro
IC401	2440929321	HA12170NT DOLBY B.C
	TRANSISTORS	
Q401, 402, 498, 499	240215415	KTC2878A
△ Q1, 6	240111221	KTB1366Y
Q4	240014025	KTA966AY
Q303, 305 (501, 502 : C500)	240010825	KTA1271Y
Q2, 3, 5, 7, 8, 301, 302	240211135	KTC3198GR
403, 404, 405, 497		
Q10, 13	240611115	KSR1010 R1=10K Ω
Q9, 18, 19, 307 (503 : C500)	240612715	KSC106M R1=4.7K Ω R2=47K Ω
Q14, 66	240612615	KRA106M R1=4.7K Ω R2=47K Ω
Q304, 306	240610415	KRC103M
Q308	240210925	KTC1627A-Y, PA,
	DIODES	
△ D5, 6, 9, 12, 13, 301, 303, 304 (501, 502: C500)	241017995	1SS133
△ D1, 2, 3, 4, 302	2413581651	1N4003L
D7, 11	2426128851	ZENER, HZ12B2LTA
D8	242106245	ZENER, 1N753A
D10	242105135	ZENER, IN751A
	COILS	
T301 (C500)		PLAC OCC. 105W1
T301(C300)	212935201 212921501	BIAS OSC, 105KHz
L501, 502 (C500)	213850801	RTF-057-0, LINE
,		126AN-6750 HX -Pro
VR501, 502 (C500)	CONTROLS	
VR301, 302 (C300)	251210301	10KB
11001, 502 (C300)	251210401	100KB
R1, 11	RESISTORS	
R2, 12	111415225	1.5 KΩ, ¼W, ±5%
R3, 13, 412	111447125	470 Ω , $^{1}/_{4}$, W, $\pm 5\%$
R4	111410125	100 Ω, ¹ / ₄ , W, ±5%
R5 8, 9, 81, 82, 83, 415, 416,89	130410925	1 Ω , $\frac{1}{4}$, W, $\pm 5\%$, FUSE
R6	111810225	$1K\Omega$, $\frac{1}{8}$, W, $\pm 5\%$
R7	111847125	470Ω, ¹/ ₈ W, ±5%
R10, 22, 23, 318, 313 (508: C500)	111810125	100Ω , $\frac{1}{8}$ W, $\pm 5\%$
R14	111810325	$10K\Omega$, $\frac{1}{8}W$, $\pm 5\%$
R88	111427925	2.7Ω, '/ ₄ W, ±5%
⚠ R302, 303	111847025	47Ω, ¹/ ₈ W, ±5%
R304, 305, 320	111847925	4.7Ω , $\frac{1}{8}$ W, ± 5 %
R306	111833225	3.3KΩ, ½W, ±5%
R307	111439125	390Ω, ¹/₄W, ±5%
R308, 309	111447125	470Ω, ¹/₄W, ±5%
R310, 311	111462125	620Ω, 1/ ₄ W, ±5%
R312, 316, 319, 398, 399, 405, 406, 409, 410	111439025	39Ω, ¹/₄W, ±5%
494 (503, 504, 510 : C500)	111822325	22KΩ, ¹/₃W, ±5%
R314, 315	111868225	4.80 1/34 4.50
R403, 404	111856225	6.8Ω, ½W, ±5%
R407, 408	111856125	5.6KΩ, ½W, ±5%
R411	111818325	560Ω, ¹/ ₈ W, ±5%
R417, 418	111822225	18KΩ, '/ ₈ W, ±5%
R419, 420	111882225	2.2KΩ, ¹/ ₈ W, ±5%
R421, 422		8.2KΩ, ¹/ ₈ W, ±5%
R423, 424, 429, 430, 495, 496, 497 (507, 509 : C500)	111830225 111847225	$3K\Omega$, $\frac{1}{8}W$, $\pm 5\%$
R425, 426	111833325	$4.7K\Omega$, $\frac{1}{8}$, $\pm 5\%$
R427, 428		33KΩ, ½, ±5%
R431	111818225	1.8KΩ, ½, ±5%
R432	111856425	560KΩ, ¹/ _s , ±5%
R433	111868125	680Ω, ¹/ ₈ , ±5%
R434	111818125	180Ω, ¹/s, ±5%
R498, 499	111882125	820Ω, ¹/s, ±5%
R501, 502 (C500)	111836225	3.6KΩ, ½, ±5%
R505, 506 (C500)	111818425	180KΩ, ¹/₅, ±5%
· · · · · · · · · · · · · · · · · · ·	111815325	15KΩ, ¹/₅, ±5%

REF. No	Part No.	Description
	MISCELLANEOUS	
SW999	220899901	KHH-10910 TACT SW
CN101	216812301	NKC-023-0, 4P
CN106, 107	216817901	B3B-XH, JST
CN102, 103, 104, 105	216825201	FKN1039-A, JST
CN115	216846901	52303-1311, 13P
JP102	215561801	RCA JACK, GOLD, WHITE, RED, 4P
HEA101, 102	371070203	40MM, AL, HEAT SINK
C1 2 424	CAPACITORS 175647395	47000pF, ±20%, 50V
C1, 2, 436		$47000 \mu F$, $\pm 20\%$, $25V$, ELEC
△ C3	141447267	* * * * * * * * * * * * * * * * * * * *
C4, 10	141347167	$470\mu\text{F}, \pm 20\%, 16\text{V}, \text{ELEC}$
C5, 11	141310267	1000μF, ±20%, 16V, ELEC
C7	141247165	$470\mu F$, $\pm 20\%$, 10V, ELEC
C8 (515 : C500)	141610065	$10\mu\text{F}$, $\pm 20\%$, 50V, ELEC
С9	141422267	2200μ F, $\pm 20\%$, 25V, ELEC
C12, 516	141647965	4.7μ F, $\pm 20\%$, 50V, ELEC
C13, 401, 402, 413, 414, 418	141601065	1μ F, $\pm 20\%$, 50V, ELEC
C301	150E82245	$0.0082\mu\text{F}, \pm 5\%, 400\text{V}$
C302	150610345	$0.01 \mu F, \pm 5\%, 50V$
C303, 304	150633245	$0.0033\mu\text{F}, \pm 5\%, 50\text{V}$
C305, 403, 404, 405, 406, 407, 408	150622245	0.0022μ F, $\pm 5\%$, 50V
C306	141422065	22μ F, $\pm 20\%$, 25V, ELEC
C409, 410, 411, 412, 422, 423, 434, 435	141610865	$0.1 \mu F, \pm 20\%, 50V, ELEC$
514, 517		
C415, 416	141622965	2.2μ F, $\pm 20\%$, 50V, ELEC
C420, 421	141310065	$10\mu F, \pm 20\%, 16V, ELEC$
C419, 437	141322065	$22\mu F, \pm 20\%, 16V, ELEC$
C431, 432	188618145	$180 pF, \pm 5\%, 50 V$
C433	141647865	$0.47\mu F, \pm 20\%, 50V, ELEC$
C501, 502 (C500)	188639145	390pF, ±5%, 50V
C503, 504 (C500)	188F18155	180pF, ±5%, 500V
C505, 506 (C500)	150647345	$0.047\mu\text{F}, \pm 5\%, 50\text{V}$
	150622345	0.022µf, ±5%, 50V
C507, 508 (C500)	188610345	10000pF, ±5%, 50V
C509, 510 (C500)		•
C511, 512 (C500)	188682145	820pF, ±5%, 50V
C513 (C 500) C999	188F10145 175610395	100pF, ±5%, 500V 10000pF, ±20%, 50V
	PCB-2 SUB P.C. BOARD	• • •
10201	INTEGRATED CIRCUI	TS UPC4570C
IC201	244220341	01043700
	TRANSISTORS	0001770077
Q101, 102, 103, 104	2402179651	2\$C1775FTZ
Q113, 114, 205, 206	240215415	KTC2878A, RF/SW
Q109, 110, 111, 112	240211815	KTC3200GR
Q105, 106, 115	240211135	KTC3198GR
Q12, 13, 20, 21	240611115	KSR1010, R1 = 10K Ω
Q116, 119, 120, 121, 201, 202	240612715	KRC106M R1 = 4.7 K Ω R2 = 47 K Ω
Q117	240612615	KRA106M R1 = 4.7 K Ω R2 = 47 K Ω
Q118	240011425	KTA1268BL
Q203, 204	240610415	KRC103M
	DIODES	
D101, 103, 201, 202	241017995	1SS133, TP
D102	2426105851	ZENER, HZ11B2LTA
	COILS	
1101 102	212938701	22mH, ±10%, CHOKE
L101, 102	101147221	NTH-030-0, 4.7mH, ±5%
L201, 202 L203, 204	212926101	NTH-061-0, BIAS TRAP
	CONTROLS	
V0101 102 201 202	2514202011	20KB EVNDCAA0SB24

2514203011

20KB, EVNDCAA0SB24

VR101, 102, 201, 202

REF. No	Part No.	Description
	RESISTORS	
R27	111410125	100Ω, ¹/₄W, ±5%
R117, 118	111810225	1KΩ, ¼W, ±5%
R101, 102	111810125	100 Ω, ½, W, ±5%
R103, 104	111822325	$22K\Omega$, $\frac{1}{8}W$, $\pm 5\%$
R105, 106 R107, 108, 203, 204,	111833125	330Ω , $\frac{1}{8}$ W, $\pm 5\%$
R109, 110	111856225 111847025	$5.6K\Omega$, $\frac{1}{6}W$, $\pm 5\%$ 47Ω , $\frac{1}{8}W$, $\pm 5\%$
R137, 138, 139, 140, 143, 144, 150, 151	111810325	10KΩ, 1/ ₈ W, ±5%
152, 219, 220, 221, 222, 215, 216		
R145, 146, 207, 208	111822325	22K Ω , $^{1}/_{8}$, $\pm 5\%$
R111, 112	111822425	220K Ω , $^{1}/_{8}$, $\pm 5\%$
R113, 114	111868125	680Ω , $\frac{1}{8}$, $\pm 5\%$
R119, 120	111836225	3.6KΩ, ¹ / ₈ , ±5%
R227, 228 R121, 122	111833225 111868425	$3.3K\Omega$, $\frac{1}{8}$, $\pm 5\%$
R123, 124	111891225	680KΩ, ¹/ ₈ , ±5% 9.1KΩ, ¹/ ₈ , ±5%
R125, 126	111882125	820Ω , $\frac{1}{8}$, $\pm 5\%$
R127, 128, 141, 142	111839225	3.9KΩ, ½, ±5%
R131, 132	111824225	2.4KΩ, ¹/ ₈ , ±5%
R147	111447925	4.7Ω , $^{1}/_{4}$, $\pm 5\%$
R148	111410225	$1K\Omega$, $\frac{1}{4}$, $\pm 5\%$
R149	111822225	2.2KΩ, ½, ±5%
R205, 206	111847225	4.7KΩ, ¹/ _s , ±5%
R209, 210 R211, 212 (C300)	111833325	33KΩ, ¹/₅, ±5% 150Ω, ¹/₅, ±5%
R211, 212 (C500)	111815125 111818125	180Ω , $\frac{1}{8}$, $\pm 5\%$
R213, 214 (217, 218:(C500)	111815225	1.5K Ω , $\frac{1}{8}$, $\pm 5\%$
R129, 130	111810525	$1M\Omega_{1}^{1/8}, \pm 5\%$
R115, 116	111833125	330Ω, ¹/₅, ±5%
R201, 202, 225, 226	111868225	6.8KΩ, ¹ / ₈ , ±5%
R223, 224	111882325	82K Ω , $^{1}/_{s}$, $\pm 5\%$
R217, 218(C300)	111824225	2.4K Ω , $\frac{1}{8}$, $\pm 5\%$
	CAPACITORS	
C101, 102	188633145	330pF, ±5%, 50V
C103, 104 C107, 108, 201, 202	141447965 150662245	$4.7\mu\text{F},~\pm 20\%,~25\text{V},~\text{ELEC} \ 0.0062\mu\text{F},~\pm 5\%,~50\text{V}$
C109, 110	150668245	$0.0062\mu\text{F}, \pm 5\%, 50\text{V}$ $0.0068\mu\text{F}, \pm 5\%, 50\text{V}$
C111, 112, 116	141310065	10μF, ±20%, 16V, ELEC
C113, 114	150612245	$0.0012\mu\text{F}, \pm 5\%, 50\text{V}$
C117	141333065	33μ F, $\pm 20\%$, 16V, ELEC
C115	141347167	470μ F, $\pm 20\%$, 16V, ELEC
C203, 204	141601065	1μ F, $\pm 20\%$, 50V, ELEC
C205, 206	141610065	$10\mu F$, $\pm 20\%$, 50V, ELEC
C207, 208	141615865	0.15µF, ±20%, 50V, ELEC
C209, 210 C211, 212	141647965 150612345	4.7μ F, $\pm 20\%$, 50V, ELEC 0.012μ F, $\pm 5\%$, 50V
C219, 220	150622245	0.0022µF, ±5%, 50V
C213, 214	150620345	0.02μF, ±5%, 50V
C255, 266	150610345	$0.01\mu F$, $\pm 5\%$, 50V
C257, 258	150675245	0.0075μ F, $\pm 5\%$, 50V
C315, 216	150618345	0.018μ F, $\pm 5\%$, 50 V
	MISCELLANEOUS	
CN108	216845401	B6B-XH-A JST
CN110	2168385011	53178-1110, 11P,
CN112, 114 CN111, 113	2168382011 2168387011	53178-0510, 5P
CNTT, TT3		53178-1510, 15P
	PCB-3 SUB P.C. BOARD	
R21	RESISTORS 111818125	180Ω, ¹/₅, ±5%, TP
N4 I		10032, /8, II 370, IF
10101	MISCELLANEOUS	0.5104.40 : 450.00 : 150.00
JP101 D999	21597B901 241949345	2.5MM, 4P, $L=450$ CONNECTOR R34MC F02, LED,
D///7	2T1747040	NOTIVIC FUZ, LED,

PACKING DRAWING

Tape Deck: C-300/500

ND	PARTS NAME	PARTS NO.	Q'TY
1	PAD BOTTOM	3-127-916-01	1
2	PIN CORD	2-212-140-01	2
3	SHEET POLY	3-324-029-01	1
4	STICKER SET	3-819-817-01	1
5	INNER LID	3-324-019-01	1

CDP SECTION

I HK-CD 300/500

INTERNAL VIEW

■ TOP VIEW

- ① PCB-1 Main p.c.board
- 2 PCB-2 Control p.c.board
- ③ CD Mechanism

DISASSEMBLY PROCEDURES

1 TOP Cover Removal

Fig. 1

- 1. Remove screws ① to ⑤ in Fig. 1
- 2. Remove the top cover

2 Rear Panel Removal

Fig. 2

1. Remove screws 1 to 5 in Fig. 2 , and then remove the rear panel

3 PCB-12 (Main PCB) Removal

Fig. 3

- 1. Remove the rear panel (Refer to step 2)
- 2. Remove connectors ① to ⑥ in Fig \cdot 3 , and then unsolder the ground wire ⑦ which is connected the side frame ($_{\rm L}$)
- 3. Remove screws ® to ① in Fig. 3, and then remove main pcb ② by pulling it to backward

4 Front Panel Assembly Removal

Fig. 4

- 1. Remove screws ① to ⑥ in Fig \cdot 4.
- 2. Remove the front panel assembly by pulling it toward you gently

5 PCB-(5) (Control PCB) Removal.

Fig · 5

- 1. Remove the front panel assembly (Refer to step 4)
- 2. Pull hooks ① to ④ in Fig \cdot 5, and then remove the control pcb ⑤

ALIGNMENT PROCEDURES

CDP:CD 300/500

1. METER AND JIG FOR ADJUSTMENT

1-1. Oscilloscope

1-2 Test disc (Sony type 4:YEDS-18)

1-3. Jitter meter

1-4. Low frequency oscillator

1-5. Digital frequency counter

1-6. 10:1 Oscilloscope probe 1:1 Oscilloscope probe

1-7. Focus & tracking gain adjustment

-66-

2. INITIAL SETTING OF ADJUSTMENT POTENTIOMETERS

Before adjusting, preset adjustment potentiometers like below.

3. PLL (VCO) ADJUSTMENT

- (1) Connect digital frequency counter to WA302(PLCK) and WA302 (GND).
- (2) Shortcircuit WA301 (ASY) and WA301 (GND).
- (3) Adjust VR201so that the frequency counter reading becomes 3. $5MHz(\pm 10KHz)$.

4. E-F BALANCE ADJUSTMENT

- (1) Connect the oscilloscope to WA104 (pin\$-TEO)and WA104 (Pin\$-GND).
- (2) Place test disc on turntable.
- (3) Shortcircuit WA104 (pin 4)-TEI) and WA104(pin 3)-GND)
- (4) Adjust VR101 so that the amplitude above and below the zero DC line becomes equal (amplitude A=B).
- (5) Open circuit WA104 (pin 4-TEI)and WA104 (pin 3-GND)

- (1) Place test disc on the turntable.
- (2) Put unit into play mode.
- (3) Connect oscilloscope to WA101 (RF) and wa101(GND).
- (4) Adjust VR102 so that eye pattern become clear and waveform (V_{p-p}) is maximum.

NOTE: When confirming eye pattern, you have to use 10:1 probe.

6. FOCUS OFFSET ADJUSTMENT (with jitter meter)

- (1) Connect the jitter meter to WA101 (RF) and WA101 (GND), set the input selection switch of jitter meter to position of " \times 1".
- (2) Place test disc on the turntable.
- (3) Put unit into play mode.
- (4) Adjust VR102 so that the jitter meter reading is minimum.

NOTE: Jitter meter must have input "x"made selection switch.

Oscilloscope 10:1 PROBE 10:1 PROBE 10:1 PROBE A OV B TP804 (pin\$-TE0) A= B

10:1 PROBE WA101(RF) WA101(GND)

Oscilloscope

7. FOCUS GAIN ADFUSTMENT (with jig)

- (1) Connect CN804 from gain adjustment jig to WA104 on the main P. C. board pin to pin.
- (2) Connect audio frequncy oscillator to A. F. OSC terminal and GND on the gain adjustment jig. Set the audio frequency oscillator outpqu to 550 Hz, 4 V_{RMS}

Low Frequency Oscillator (A F OSC)

- (4) Insert test disc and put unit into play mode on track.
- (5) Set swich SW2 on the gain adjustment jig to the position of "F".
- (6) Set switch SW1 on.
- (7) Adjust VR104 so that the waveform on the oscilloscope becomes like below.

Good dajustment (Optimum focus gain)

Bad adjustment (In the case of low focus gain)

Bad adjustment
(In the case of high focus gain)

8. FOCUS GAIN ADJUSTMENT (without jig)

- (1) Connect the Oscilloscope to WA104 (pin @-FEO) and WA104 (pin @-GND)
- (2) Insert test disc and put unit into play mode on track.
- (3) Adjust VR104 so that the waveform on the oscilloscope becomes like below.

100mV/div:Volt/div. 2mS/div: Time/div.

80mV(The DC level of FEO waveform)

NOTE:According to VR104 setting position, DC level of waveform varies.

Good adjustment (Optimum focus gain)

Bad adjustment

(In the case of high focus gain)

(4) This method will be convenient in the field. In spite of simple method, this method will not make serious problems.

9. TRACKING GAIN ADJUSTMENT (with jig)

- (1) Connect CN804 from gain adjustment jig to WA104 on the main P. C. board pin to pin.
- (2) Connect audio frequency oscillator to A. F. OSC terminal and GND on the gain adjustment jig.

Set the audio frequency oscillator output to 550Hz, $4~V_{RMS}$

- (4) Insert test disc and put unit into play mode on track.
- (5) Set switch SW2 on the gain adjustment jig to the position of "T".
- (6) Set switch SW1 on.
- (7) Adjust VR103 so that the waveform on the oscilloscope becomes like below.
- ① Good adjustment (Optimum tracking gain)
- 2) Bad adjstment (In the case of low tracking gain)
- (3) Bad adjustment (In the case of high tracking gain)

Bad adjustment (In the case of low focus gain)

Low Frequency Oscillator (A F OSC)

1

CIRCUIT DESCRIPTION

-CDP-

1. APC CIRCUIT

A semiconductor laser is used as the light source for the optical pickup. As the output from the semiconductor laser changes radically with changes in temperature, a circuit must be provided to stabilize this output. For this purpose, a monitor diode which detects the optical output of the laser diode is used in the semiconductor laser.

As the laser diode emits light from its bonded surface, light is emitted both in front and behind. The light emitted behind is monitored with the monitor diode installed on its rear surface, and the optical output is thus controlled. The light emitted in front becomes the light source for the pickup.

Fig. 1 shows the APC circuit.

When the temperature rises and the optical output decreases, the monitor diode current (IS) decreases, the electric potential of IC101 pin 5 rises, the base current of the driving transistor increases, and the laser diode current increases. This causes the reduced optical output to return to its former level.

Fig. I

2. FOCUS SERVO

2-1. Optical pickup

This set employs a three-beam optical pickup comprised of six division photodiodes, A through F as shown in Fig. 2. The four photodiodes (A through D) at the center provide focus error detection by using their property to allow the beam to focus into a round image only at a certain point.

The sums of outputs from diagonal two elements of four division photodiodes (A+C) and B+D are compared by the differential amplifier in IC101 to detect the shape of the beam image.

The remaining two diodes (E and F) provide tracking error detection by means of sub-beam spots.

2-2. Focus error detecting operation

The reflected laser beam from a disc is polarized 90° with the beam-splitter and sent to the cylindrical lens. The beam passed through this cylindrical lens is then sent to the four division photodiodes and focuses into an image whose shape varies with the distance between the disc and the objective lens. Such change in the beam shape causes the current flowing from the photodiodes to vary.

Three spotted (six-division) photo diodes

Fig. 2

Shown in Fig. 3 is the Principle of the focus error detection.

The currents from the photodiodes (A+C and B+D) are applied to pins 7 and 8 of IC101 and converted to voltage by RF I–V amplifiers (1) and (2) included in IC101.

Fig. 3

2-3. Focus servo servo control operation

The focus error signal, after begin converted to voltage by the RF I-V amplifier, is transmitted to the operation amplifier in the IC and output from pin 19.

When the disc to objective lens distance is in just focus, the beam forms a true round. In this state, the beams applied to four elements of four division photodiodes become equal and thus the output provided then is O (zero). When the disc to objective lens distance is too close (near focus), the beam is reflected divergently to form an oval in crosswise direction. In this state, the outputs provided from

photodiodes A and C are higher than those from B and D, resulting in negative (–) output voltage. On the other hand, when the distance is too far (far focus), the beam is reflected convergently to form an oval in longitudinal direction. Then the outputs from photodiodes B and D are higher, resulting in positive (+) output.

The output voltage(focus error signal)from pin 19 of IC101 passes through IC201, in from pin 48 and out from pin 5, and IC202, in from pin 4 out from pin 6 as shown in Fig. 4. It is amplified in each IC and fed to the focus coil which then drives the objective lens of the pickup.

Fig. 4

2.4 Tracking error detection system

Fig. 5 shows the principle of the tracking error detection system which employs the three beam system.

The laser beam is divided into the main beam and two sub-beams by diffraction grating and they are arranged on one line. The center line connecting these three beams has a slight offset angle against the main beam. The main beam is received by photodiodes A, B, C and D and two sub-beams by E and F respectively.

Fig. 5–A shows the on-track state. As both auxiliary beams 1 and 2

are slightly on the track in this state, the outputs of photodiodes E and F are equal and the tracking signal is O(zero). When the track is shifted to the left (Fig. 5-B), the auxiliary beam 1 is off the pit. This allows more light to be received by the photodiode E, resulting in positive (+)tracking signal output. On the other hand, when the track is shifted to the right (Fig. 5–C), the amount of light received by the photodiode F increases, resulting in negative(-) tracking signal output. And these extreme signals are detected as tracking error signals.

Fig. 5

2-5. Tracking servo control operation

When a tracking error signal is detected by photodiodes E and F, it is fed to pins 11 and 10 of IC101 respectively as shown in Fig. 6. In IC101, the signal is converted into voltage by the E I–V amplifier and F I–V amplifier, transmitted to the tracking error amplifier and

output through pin 20. While it passes through IC201, in from pin 45 and out from pin 11, and IC202, in from pin 3 and out from 7, it is amplified in each IC and sent to the tracking coil to adjust pickup so that the amount of track shift is reduced as closely to none as possible.

3. Regenerative Circuit

3-1 RF circuit

The currents from photodiodes (a, b, c and d)are fed to IC101 through pins 7 and 8 and converted to voltage by RF I–V amplifiers (1) and (2) respectively there, added by the RF summing amplifier

and output from pin 2 as a signal. As it is sent to pin 5 of IC301, it can be checked at the test point (WA101) provided on its way by means of the eye pattern check.

Fig. 7

3-2. EFM demodulation, error correction, serial/parallel conversion

EFM demodulation, error correction and serial/parallel conversion are performed by the internal circuitry of IC301. The eye-pattern signals from pin 27 of IC101 are sent to pin 5 of IC301, then de-

modulated from 14 bits to 8 bits by EFM readjustment. At the same time any error, if found, is corrected (CIRC) and the signals are sent to the D/A converter interface. After that, they are output as 18-bit digital signals from pins 76, 78 and 80 of IC301 and fed to the D/A converter of IC601.

Fig. 8

4. 1-bit D/A Converter

Conventionally, high-precision D/A conversion was mainly carried out using resistor ladder systems. There was, however, one main drawback with these systems, which was that zero cross distortion was likely to be generated. To achieve production of a high-precision D/A converter with a minimum amount of zero cross distortion, it would be necessary to carry out complicated and bothersome processes such as laser trimming processing. In addition, use of such D/A converter would require a sampling-and-hold circuits(or deglitcher circuit) and an intricate analog filter with special characteristics When mounting it.

To solve these difficulties, we used a 1-bit D/A converter with 3rd order noise

shaping technology(IC601: MIN 6471M)

4-1. Features and Configuration of MN6471M

Features

- 1. No zero cross distortion
- 2. No non linear distortion
- 3. Built-in 4 times oversampling digital filter
- 4. 2 channels (left and right) built in
- 5. 4DAC configuration possible
- 6. Single 5V power supply operation

The black diagram is shown in Fig. 9. The MN6471M is configured of a digital filter, a 3rd order noise shaping circuit, and a PWM.

Fig. 9

4-2. Configuration of MN6471M

Fig. 10 shows the configuration of the MN6471M. The sampling frequency of the input data is expressed in fs, so the 3rd order noise shaping circuit operates at 32fs. This means that a 32-times oversampling filter is required. In this LSI, however, oversampling is carried out first at 4fs in the first digital filter, and following that, a O order hold takes place in the 3rd order noise shaping circuit. This enables conversion of the 4fs signal to a 32fs signal.

The digital filter, using 384fs as clock signals, and the noise shaping section, uses 64fs, carry out time division processing on the data for the left and right channels. The PWM section, using 768fs as a clock signal, carries out signal processing for the left and right channels independently.

In the noise shaping section, the 19-bit 32fs signal is converted to 11 values and pulse width modulation (PWM) in carried out on these signals in the PWM section. D/A conversion is carried out in this way. Following are the descriptions of the various blocks.

Fig. 10

5. Digital filter

Fig. 11 shows the signal data of an audio signal up to $20\,\mathrm{kHz}$ that has been digitalized, along with the frequency distribution of the signal data. The graphs show the conditions for a sampling frequency of 44. 1 kHz, plus its doubled frequency, $88.2\,\mathrm{kHz}$, and its quadrupled frequency, $176.4\,\mathrm{kHz}$.

As the figure shows, for the same signal up to $20 \, kHz$, the noise portion of the digitalized signal component tends to shift toward the higher range of the signal if the sampling frequency is increased. However, at any sampling frequency, the volume of necessary audio signal information remains constant up to $20 \, kHz$. This allows certain important results to be derived; that is, if the information represented in section (a) is obtained, then it should be possible to create a signal in the form shown in(b) or (c).

When the noise caused by sampling shifts to the higher frequency range, as shown in (b) or (C), the low pass filter characteristic-to eliminate noise during re-conversion to an audio signal need not be steep but can be rather gradual as shown. It is comparatively simple to provide a high audio quality low pass filter of such characteristic with little phase fluctuation or distortion.

The question now becomes how to make a signal sampled at 44. $1\,\mathrm{kHz}$ resemble one sampled at a much higher frequency. Fig. 12 shows the signal sequence sampled at the same 44.1 kHz as in Fig. 11 and its frequency distuibrtion.

Fig. 11

If the frequency is to be doubled as the first step in increasing the sampling frequency of the signal, zero-level data is added between the data marked with X in Fig. 12(b). In the original signal sequence sampled at 44.1 kHz, there are data only at the points of the sampling timing, while the intervals between those points have all been made zero-level. Introducing zero data in these intervals does not change the original data in any way, nor is the frequency distribution altered. Only the sampling frequency is double.

Passing this data in its modified form through a digital filter with the characteristic shown in Fig. 12(c) causes the portion corresponding

to N1 to be eliminated, resulting in a signal sequence with the frequency distribution shown in (d). This signal sequence possesses exactly the same shape as that obtained for the signal in Fig. 11(b), sampled at $88.2\,\mathrm{kHz}$. In other words, this method enables the sampling frequency to be doubled.

The digital filter used in this unit is a Finite Inpulse Response type. Its circuit diagram is shown in Fig. 13.

The sampling frequency of this unit has been quadrupled, and the phase characteristic has been improved by using a softer analog low-pass filter.

Fig. 12

Fig. 13

6. Noise shaper

a) Single-integration noise shaper

as follows:

$$Y = X + (1 - Z^{-1})V_{Q} \cdot \cdot \cdot \cdot (1)$$

The quantization error Vq is a random value, and $(1-Z^{-1})$ express-

spectrum of the quantization error Vq for the single-integration noise shaper has a characteristic of 6dB/oct, and the lower the frequency The block diagram is shown in Fig. 14. is, the greater the attenuation becomes, (This is because the noise distribution can be changed by the noise shaper). According to the figure, the relation between input X and output Y is b) Double-integration noise shaper

The block diagram is shown in Fig. 15.

In Fig. 15, the path to the output seen from W has a configulation identical to that of the single-integration noise shaper, so that relation between W and Y is:

$$Y = W + (1 - Z^{-1})V_{Q} \cdot \cdot \cdot \cdot \cdot (2)$$

The relation between X and Y is:

$$W = \frac{1}{1 - Z^{-1}} (X - Z^{-1}Y) \cdots (3)$$

And the result obtained from above equations (2) and (3) is:

$$Y = X + (1-Z^{-1})^2Vq \cdot \cdot \cdot \cdot (4)$$

Comparison with equation (1) shows that the term $(1-Z^{-1})$ is a square of itself. In other words, with the double-integration nosie shaper, the spectrum of the quantization error Vq is attenuated at a slope of 12dB/oct.

Fig. 15

es the differential characteristic. Thus, according to equation (1), the

Fig. 16 shows the output spectrum of the noise shaper.

Fig. 16

6-2. 3rd order noise shaper

The black diagram of the 3rd order noise shaper is shown in Fig. 17.

This configuration shows that the first stage uses a single-integration noise shaper and the following stage uses a double-integration noise shaper. The quantization error of the first stage is input at the second stage.

In this configuration, single-integration and double-integration noise shapers are connected at several stages, and the quantization error of the provious state is quantified again at the following stage, so that the quantization error included in the output of the previous stage is negated. In this way, compensation is carried out.

In this noise shaping circuit, the input is expressed as X, the output as Y, and the re-quantized error as Vq, and their relation for each order is shown in the following equations.

(1st order) $Y = X + (1 - Z^{-1})V_{Q}$ (2nd order) $Y = X + (1 - Z^{-1})^2 V_Q$ (3rd order) $Y = X + (1 - Z^{-1})^3 V_q$

In noise shaping, as the order of the transfer coefficient called(1-Z-1)becomes larger, the noise in the 1/2 fs audio band moves higher in the frequency range. The result is that, within a narrow audio band, an 18-bit performance can be obtained even from a 1-bit DAC

$$Y_1 = X + (1 - Z^{-1}) V q_1$$
 (5)
 $Y_2 = V q^1 + (1 - Z^{-1})^2 V q_2$ (6)
 $Y = Y_1 + (1 - Z^{-1}) Y_2$ (7)

The result obtained from above equations (5)–(7) is:

$$Y = X + (1-Z^{-1})^3 Vq^2$$
(8)

7. PWM Output Section

In the output from the MN6471M noise shaper, the 11 value data of the 32fs is output. In the PWM section, pulse width modulation (PWM)is carried out on that signal, enabling D/A conversion.

Fig. 18 shows the PWM section of the MN6471M.

The 11 value digital data output from the noise shaper is converted (1-bit data stream) to pulse signal With11 pulse widths precisely controlled by the crystal OSC and output as an analog signal. In the PWM output section, signals from both left and right channels are output as differential output so that the synchronous-phase noise is eliminated and the 2nd order high-frequency distortion is reduced.

Fig. 18

8. Audio Circuit

Fig. 19 shows a block diagram of the audio circuit.

The outputs from Pin 14(OUT L(+)) and Pin 11 OUT (-) pass through the 2-step LPF which consists of C702, R704 and R702 for one and C704 and R 706 for the other, and the high frequency component of the PWM output from DAC is removed.

Then the (+) side component of the PWM is inputted directly, and its (-) side componenty through the inverted darligton buffer circuit consisting of Q704 and Q706 to the discrete circuit amplifier cocsisting of Q708, Q710, Q712 and Q714, where they are synthesized into an approximately 2V signal voltage which is then output to the LPF circuit of the next stage.

The emphasis data from the disc is output through the terminal (Pin 57) of IC401. When a disc to which emphasis is applied is played back, this terminal is set high and Q403 turns ON. Following this. Q702 are also turned ON. Then connected C706 and R710 provides the DE-Emphasis characteristics. Fig. 20 shows the buffer circuit and the differential amplifier. (Right channel only)

9. Low-Pass filter

Fig. 21 shows a final-stage circuit which includes a low-pass filter and other elements.

The portion of Fig. 21 enclosed by the broken line is 3rd -other active LPF. This LPF causes noise in the high range to be cut. Q718 and Q720 (Left channel) and Q717 and Q719 (Right channel) are buffer circuit of inverted darlington configuration. Q716 and Q715 are FET controlled constant current circuits. Q725, Q726, Q722, Q721, Q723 and Q724 are power muting circuit.

IC FUNCTIONAL BLOCK DIAGRAM

IC 401: MICRO COMPUTER LE1043(HMCS 408 AC)

LE 1043		INPUT/	FUNCTION DESCRIPTION	
TERMINAL				
OP/SW	1	INPUT	SWITCH INPUT INDICATING THAT TRAY IS OPEN"CON ACTIVE"	
CL/SW	2	INPUT	SWITCH INPUT INDICATING THAT TRAY IS CLOSE"CON ACTIVE"	
GFS	3	INPUT	IMPORT TERMINAL FOR REVOLUTION SYNCHRONOUS SIGNAL.	
SENSE	4	INPUT	DETECTING SIGNAL FORSERVO MODE.	
PL/LED	5	OUTPUT	CONTROL OUTPUT FOR ON/OFF OF PLAY LED	
N.C	6-19		UNUSED.	
FOK	20	INPUT	INPUT TERMINNAL FOR FOCUS SYNCHRONOUS SIGNAL.	
PiC	21	INPUT	PIN FOR DETECTING A SIGNL FOR THE ON/OFF LIMIT SWITCH OF THE PICK-UP.	
SCOR	22	INPUT	SYNCHRONOUS SIGNAL INPUT OF SUB-CODE.	
N.C	23		UNUSED.	
X-TAL CON	24	OUTPUT	CONTROL OUTPUT FOR ON/OFF OF X-TAL(33, 86MHz)	
N.C	25-31		UNUSED.	
VCC	32		POWER SUPPLY DC+5V.	
SOCK	33	IN/OUTPUT	CLOCK FOR READING SUB-CODE	
SUBQ	34	INPUT	IMPORT TERMINAL FOR SUB-CODE DATA.	
N.C	35-40		UNSED.	
OP/CL SW	41	INPUT	OPEN/CLOSE KEY INPUT TERMINAL.	
N.C	42-48		UNUSED.	
RESET	49	INPUT	C.P.U RESET INPUT.	
TEST	50	INPUT	UNUSED, CONNECT TO VCC.	
OSCI	51	INPUT	CVCVCNA CLOCK OCCUL ATOD FOLK A CANUL	
OSC2	OSC2 52 OUTPUT		SYSYEM CLOCK OSCILLATOR.FCLK = 3.0MHz	
GND	53	INPUT	GROUNDING TERMINAL.	
SIRL/RX/TX	54	IN/OUTPUT	COUTDO COM IN COUTDO TO COMPTE	
BUSY	55	IN/OUTPUT	CONTROL SIGNAL IN/OUTPUT OF SYSTEM.	
LD/ON	56	OUTPUT	CONTROL OUTPUT FOR ON/OFF LASERDIODE. "LOW ACTIVE"	
EMP	57	OUTPUT	EMPHASSIS DETECT,	
CLK	58	OUTPUT	OUTPUT TERMINAL OF SIGNAL TRANSFER CLOCK FOR SERVO CONTROL SIGNAL.	
XLT	59	OUTPUT	OUTPUT TERMINAL OF LATCH FOR SERVO SYNCHRONOUS SIGNAL.	

IC 201: CX A 1082 BQ OPTICAL PICK-UP SERVO CONTROL

IC 101: CX A 1081 S RF AMP

IC 301: CX D 1167Q DIGITAL SIGNAL PROCESSOR AND DYNAMIC RAM

Note) These pins are for the QFP. For VQFP they are different, See Pin Description

IC 601:MN 6471 M DIGITAL FILTER & D/A CONVERTER

IC 202:STA 341 M TR ARRAY

IC 402:MC 4558 C 2-CH OP-AMP

TIMING CHANT

Vcc 5.0 V

ltem	S	Symbol	
Clock frequency	f _{ck}		MHz
Clock pulse width	f_{wck}	500	ns
Hode time	t _{su}	500	ns
Steup time	th	500	ns
Delay time	t _D	500	ns
Latch pulse width	twL	1000	ns

CD MECHANISM EXPLODED VIEW

EXPLODED VIEW

NOTE: A=(USA), B=(I,IB,BB)

NO:	PARTS NAME	PARTS NO	MATERIAL	Q'TY	REMARK
1	DOOR .COVER	3-821-102-01	A6063-T5	1	A,B
2	PANEL . FRONT	3-819-802-01	A6063-T5	1	A,B
3	FOOT (L)	3-819-806-02	A6063-T5	1	A,B
4	FOOT (R)	3-819-807-01	A6063-T5	1	A,È
5	HOLDER , DOOR	3-819-805-04	ABS-720	1.	A,B
6	PANEL . BASE	3-819-803-05	ABS-720	1	A,B
7	KNOB , TACT	3-819-804-01	ABS-720	1	A,B
8	LENS KNOB	3-324-012-02	SBR (K-RESIN)	1	A,B
9	PCB . UNIT ASS'Y	A-170-856-02	MAIN	1	A,B
ō	MECHANISM . CDP	2-219-116-01	SONY, MECHANISM	1	A,B
11	CHASSIS . MAIN	3-819-808-05	SECC T1.0	1	A,B
12	FOOT REAR	3-324-011-01	ABS-720	1	A,B
13	PANEL .REAR	3-819-810-21	SECC TO.8	1	A,B
14	WINDOW , MECHA.	3-819-812-02	PMMA-60N	1	A,B
15	TOP . COVER	3-819-809-01	SECC TO.8 (SPRAY)	1	A,B
16	CUSHION . DOOR	3-819-815-03	FELT + TAPE (TO.5)	1	A,B
17	COVER . SCREW	3-819-816-01	EVA GRAY T5.5	2	A,B
18	DOOR . COVER(CD500)	3-821-002-01	A6063-T5	1	A,B
Α	SCREW	7-464-408-01	CBZ 30P080FZK	9	A,B
Φ	SCREW	7-764-408-01	VBZ 30P080FZK	11	A,B
C	SCREW	7-999-166-01	PBT 30P100FZK	1	A,B
D	SCREW	7-764-410-01	VBZ 30P100FZK	1	A,B
£	SCREW	7-344-408-01	ATZ 30P080FZK	4	A,B

ELECTRICAL PARTS LIST

REF. No	Part No.	Description
	PCB-1 MAIN P.C. BOARD	
	RESISTORS	
R505, 506	111510925	1Ω 1/2W, ±5%
R733, 734, 735, 736, 739, 740, 741, 742	111822925	$2.2\Omega^{1/8}W, \pm 5\%$
R507, 765, 766, 767, 768	111847925	4.7Ω ½W, ±5%
R602	111810025	
R105		10Ω ¹/ ₈ W, ±5%
R757, 758	111822025	22Ω ¹/ ₈ W, ±5%
	111847025	$47\Omega^{1}/_{8}W, \pm 5\%$
R601, 749, 750, 755, 756	111810125	100Ω ½W, ±5%
R405, 727, 728	111822125	220Ω $^{1}/_{s}W$, $\pm 5\%$
R307, 725, 726	111833125	330Ω ¹/₅W, ±5%
R303, 304, 305, 501, 502, 737, 738	111847125	470Ω ¹/₅W, ±5%
R743, 744, 753, 754	111856125	560Ω ¹/₅W, ±5%
R110, 111, 411, 503, 504, 604, 605, 711, 712, 717	111810225	1KΩ ¹/ ₈ W, ±5%
718, 731, 732,745, 746, 747, 748, 420, 421		
R772, 773	111812225	$1.2K\Omega '/_{8}W, \pm 5\%$
R214, 404, 713, 714	111822225	2.2KΩ ¹/₅W, ±5%
R101, 774, 775	111839225	3.9KΩ ¹/ _k W, ±5%
R106, 107, 415, 603	111847225	4.7 K $\Omega^{-1}/_{8}$ W, $\pm 5\%$
R769, 770	111868225	
R206		6.8KΩ ¹ / ₈ W, ±5%
	111882225	8.2K $\Omega^{-1}/_{8}W$, $\pm 5\%$
R103, 109, 210, 211, 212, 302, 701, 702, 703	111810325	10KΩ ¹/₅W, ±′5%
704, 705, 706, 707, 708, 729, 730	111010005	
R709, 710	111812325	12K Ω / _s W, \pm 5%
R403, 761, 762, 763, 764	111815325	15K Ω $^{1}/_{s}W$, $\pm 5\%$
R102	111818325	$18K\Omega^{-1}/_{s}W, \pm 5\%$
R104, 204, 216	111822325	$22K\Omega^{1}/_{8}W$, $\pm 5\%$
R411, 406, 416	111847325	$47K\Omega^{-1}/_{8}W, \pm 5\%$
R402, 721, 722	111868325	$68K\Omega^{-1}/_{8}W, \pm 5\%$
R 7 51, 752	111875325	75 K Ω $^{1}/_{8}$ W, $\pm 5\%$
R201, 715, 716	111882325	82KΩ ¹/₅W, ±5%
R108, 202, 207, 209, 301, 407, 408, 719, 720	111810425	100KΩ ¹ / ₈ W, ±5%
759, 760		, ,
R203, 205, 213, 409, 410	111812425	120KΩ ¹/ ₈ W, ±5%
R414	111815425	150KΩ 1/ ₆ W, ±5%
R723, 724	111818425	180KΩ ½, ±5%
R208	111851425	510KΩ ½W, ±5%
R219, 401, 412, 413	111810525	
K217, 101, 172, 110		$1M\Omega^{1}/_{8}W, \pm 5\%$
	CONTROLS	
VR701	250139301	20KB X 2 RK16K1250101-20KB
VR101, 103, 104	251222301	6MM(RH0615C), 22K
VR102	251247301	6MM(RH0615C), 47K
VR201	251222201	6MM(RH0615C), 2.2K
	CAPACITOR\$	
C715, 716	197610011	10pF, ±5%, 50V, MICA
C703, 704	19Y633041	33pF, ±5%, 50V, MICA
C701, 702	19Y682041	82pF, ±5%, 50V, MICA
C711, 712	194310065	10μF, ±20%, 16V, AH ELEC
C713, 714	194233065	33µF, ±20%, 10V, AH ELEC
C601, 602, 603, 604, 605, 606	194247065	
C717, 718, 723, 724, 727, 728	194210167	47μ F, $\pm 20\%$, 10V, AH ELEC
C706, 707, 708, 709		$100\mu F, \pm 20\%, 10V, AH ELEC$
C607, 608	194222167	220μ F, $\pm 20\%$, 10V, AH ELEC
	180605015	5pF, CH, 50V, \pm 5%, CERAMIC
C401, 402	180610015	10pf, CH, 50V, \pm 5%, CERAMIC
C102	180612045	12pf, CH, 50V, \pm 5%, CERAMIC
C106, 112, 210, 301, 303, 404, 609	175647345	47000pf, f, 50V, \pm 5%, CERAMIC
C103	150610245	1000pF, 50V, \pm 5%, MYLAR
C705, 706, 719, 720, 721, 722	150615245	1500pF, 50V, \pm 5%, MYLAR
C101	150622245	2200pF, 50V, ±5%, MYLAR
C116, 117, 211	150647245	4700pF, 50V, ±5%, MYLAR
C725, 726	150656245	5600pF, 50V, ±5%, MYLAR
C108, 111, 207, 208, 215	150610345	10000pF, 50V, ±5%, MYLAR
• •		10000p1, 001, ±070, WILLAK

		Description
ŘEF. No	Part No.	Description
C105, 109, 216	150633345	33000pF, 50V, ±5%, MYLAR
C202	150647345	47000pF, 50V, ±5%, MYLAR
C201, 204, 501, 502,	150610445	100000pF ± 50V, ±5%, MYLAR
C110, 217	141647865	0.47µF, ±20%, 50V, ELEC
C212, 213. 403	141601065	$1\mu F$, $\pm 20\%$, 50V, ELEC
C203, 403	141647965	$4.7\mu\text{F}, \pm 20\%, 50\text{V}, \text{ELEC}$
C206	141610065	10μF, ±20%, 50V, ELEC
C104, 107, 113, 114, 115, 205, 209, 214, 219	141247065	47μ F, $\pm 20\%$, 10V, ELEC
302, 304, 405	141000175	200.5 + 200V 14V FLEC
△ C505, 506	141322165	220µF, ±20%, 16V, ELEC
△ C507, 508	141210267	1000μ F, $\pm 20\%$, 10 V, ELEC 4700μ F, $\pm 20\%$, 16 V, ELEC
△ C503, 504	141347267 144622965	$2.2\mu\text{F}, \pm 20\%, 50\text{V}, \text{ELEC}$
C406		2.2µ1, ±20%, 50¥, title
	INTEGERATED CIRCUITS	
IC101	2440418741	CXA-1081S(DIP TYPE)
IC201	2440408741	CXA-1082BQ
IC301	2440423741	CXD-1167Q, DSP+SRAM
IC401	2600103011	ZTAT, HD4074008S
	R 2600153021	LE1043, HMCS408AC
IC601	2441437511	MN6471M
IC202	2442026791	STA341M
IC402	244123671	MC4558C
•	TRANSISTORS	
Q501, 502, 701, 702, 715, 716	2404111351	2SK24GR F.E.T
	240111221	KTB1366
⚠ Q503 ⚠ Q504	240215321	KTD2058
Q505, 507, 703, 704, 707, 708, 713, 714,	240218035	2SC1571G
719, 720	240210033	25010710
Q506, 508, 705, 706, 709, 710, 711, 712	240015735	2\$A929G
717, 718	210010700	20/1/270
Q201, 403, 602	240211125	KTC3198Y
Q402	240211425	KTC3203Y
Q101, 202, 401	240010825	KTA1271Y
Q203	240215215	MPSA25(DARINGTON)
Q725	240610715	KSR2001
Q726	240610915	KSR1003
Q601	240610615	KRA103M
Q721, 722, 723, 724	240215415	KTC2878A
	DIODES	
△ D501, 502, 503, 504	2413581651	1N4003L
D101, 402, 403	241017995	1SS133
△ D505, 506	242106245	ZENER 1N73A 6.2V
	MISCELLANEOUS	
X401	213816601	6MHZ, X-TAL(at IC401:HD4074008S)
C	R 213816701	3MHZ, X-TAL(at IC401:LE1043, HMCS408AC)
X601	213818101	33.8688MHZ(3RD)
WA101, 301, 302	216812101	2.5M/M, 2P, NKCO21
WA104, 403	216812401	2.5M/M, 5P, NICC-024-0
WA102	216842401	STRAIGHT TYPE, 8P, 2M/M
WA401, 402	216810101	2P, 2MM
WA201	216836001	00-8283-0412-0000 4P, 2M/M
WA103	216844501	4P, 2M/M, RED
WA202	216844601	4P, 2M/M, YELLOW
WA501	216846901	13P, 52303–1311, BLACK
CN401, 402	215997901	2P, 2M/M, 350M/M 10UH, AL03(7MM) ±10%
L101	103410035	
HS501	371070203 215561701	40MM, AL GOLD WHITE. RED, P:14
JAC701	213301701	GOLD WHITE. RED, 1:14
PCE	3-2 CONTROL P.C. BOARD	
	RESISTORS	
R406	111833125	330Ω ¹/₅W, ±5%
NTOU		
	L.E. DIOED	
D401	241949345	R34MC F02, F=4MM
	SWITCH	
SW401	220899901	177-620-002-000, KHH-10910

REF. No	Part No.	Description
	PCB-4 SUB P.C. BOARD	
	INTEGRATED CIRCUITS	
IC1	2600151011	LE1041 MSM65511RS CPU
IC2	2440323631	BA6238A MOTOR DRIVER
IC3	2440324631	BA10393
	TRANSISTORS	
Q15, 16	240210925	KTC1627A-Y, PA
Q17	240215215	MPSA26, DARINGTON
Q22, 23	240211135	KTC3198GR
	CONTROLS	
VR1	2514203011	20KB EVNDCAAO3B24
	RESISTORS	
R33, 43	111415225	1.5KΩ, ¹/₄W, ±5%
R84, 85	111810225	$1K\Omega$, $^{1}/_{8}W$, $\pm 5\%$
R42	111847125	470Ω, ¹/ ₈ W, ±5%
R15, 16, 17, 24, 25, 43	111810325	10 K Ω , $^{1}/_{8}$ W, $\pm 5\%$
R18	111822325	$22K\Omega$, $\frac{1}{8}W$, $\pm 5\%$
R19, 37, 48, 49, 50, 51, 52, 53, 54, 55	111847325	47KΩ, ¹/₅W, ±5%
56, 57, 75, 77, 78 R4O	111822125	220Ω, ¹/ ₈ W, ±5%
R26	111410025	10Ω, ¹/¿W, ±5%
R28, 29, 30	111418225	1.8K Ω , 1/4W, \pm 5%
R31	111433225	3.3KΩ, ¹ / ₄ W, ±5%
R32	111439225	3.9KΩ, 1/ ₄ W, ±5%
R35, 36	111447025	47Ω, ¹/₄W,±5%
R39	111822425	220KΩ, ¹/ ₈ W, ±5%
R68	111868325	68KΩ, ½W,±5%
R41	111847225	$4.7 \text{K}\Omega$, $\frac{1}{8} \text{W}, \pm 5\%$
R44	111810525	$1M\Omega$, $\frac{1}{8}W$, $\pm 5\%$
R45, 46	111812325	$12K\Omega$, $^{1}/_{8}W$, $\pm 5\%$
R59, 60, 61, 72, 73	111810425	100 K Ω , $^{1}/_{8}$ W, $\pm 5\%$
R63, 64, 67	111822225	2.2 K Ω , $\frac{1}{8}$ W, ± 5 %
R65, 66, 68	111833325	$33K\Omega$, $^{1}/_{8}W$, $\pm 5\%$
	CAPACITORS	
C15, 16, 17	175647395	47000pF, ±20%, 50V
C18, 20	175610395	$10000pF, \pm 20\%, 50V$
C22	175610495	100000pF, ±20%,50V
C55	175610395	$10000 pF, \pm 20\%, 50 V$
	MISCELLANEOUS	
CN109	2168456011	SBRK16S-1 16P
WA110	2168392011	52257-1110, 11P,
WA112, 114	2168389011	52257-0510, 5P,
WA111, 113	2168394011	52257-1510, 15P,
XI	2138185011	FCR4.0, MCT3, CERAMIC OSC

PACKING DRAWING

3: 7,3

ND	PARTS NAME	PARTS NO.	Q'TY
1	PAD BOTTOM	3-819-811-01	1
2	PIN CORD	2-212-140-01	1
3	SHEET POLY	3-324-029-01	-1
4	STICKER SET	3-819-817-01	1
5	INNER LID	3-324-019-01	1

SCHEMATIC DIAGRAM (TUNER)

bcB-S

bcB-S

CONTROL UNIT ASS'Y

SCHEMATIC DIAGRAM (A300)

Pi AC 230V/240V, 50Hz (1-18.88)

PCB-2

CONTROL P.C.B

SCHEMATIC DIAGRAM (A500)

SCHEMATIC DIAGRAM (C300/C500)

WIRING DIAGRAM

C300/500

SCHEMATIC DIAGRAM (CD300/CD500)

CD 300/500

WIRE COLOR ABBREVIATIONS

YEL : YELLOW

PUP : PURPLE

BLK : BLACK

RED : RED

GRN : GREEN

