SEQUENCE LISTING <110> Shigeru NAKANO GENE INVOLVED IN GROWTH-PROMOTING FUNCTION OF ACETIC ACID BACTERIA AND <120> USES THEREOF <130> 1254-0301PUS1 US 10/561,834

<140> <141> 2005-12-22

<150> PCT/JP2004/008797

<151> 2004-06-16

JP 2003-183047 <150>

<151> 2003-06-26

<160> 7

<210> 1

<211> 2352

<212> DNA

<213> Gluconacetobacter entanii

<400>

qatccaqcca tqqacaqqtq cqqqcaqqtt tcccqqcatt cccqtttcaq ctccttcccq 60 ctggcattgc gataatggcc tcaggccaac tgtatcaaca tgcatcaggc cagtgtggaa 120 catgccccca tctccacaaa caagaaggcg tctgatcaag tatctttaag gacgggaata 180 tgcqtcttcq catqqtatta ctqqcqactq cacttggcgc agcgccattc gccaccgcaa 240 tgqccacqac qattacaqqq ccatatqtcq atatcggtgg cgggtatgac ctgacccaga 300 cccagcatgc ccatggcttt gacaagaacc agtacgaaaa caacgcaaat acggccgggt 360 atcttgatgc aacggacaac gcccgcctgc tgaaggaagc ccattcacgc gaacgcatgg 420 aacatggcga tggctggacc ggcttcgcca cgttcggctg ggggttcggc aacggcctgc 480 540 qcqcqqaaat cqaqqqqqat tacaactggt ccqccctgac cggctacaac tcggtttccg gttccgccta tggcaacaat catcagagcg gcaagtccag cggcagcgac cggtcctatg 600 qcqqattcqt caacqtcctq tatgacatcq acctcaagcq cctgtttaac attgacqtgc 660 720 ccqtqacacc attcqtcqqc qttqqcqccq qttacctqtq gcagaacqtq gatqccagca 780 catccqtqac ccqctacctq aacqtqcqcc agaacqqcac gaatgqcagc ttcqcctatc 840 agggeatggt eggeegece tatgacatee eeggtgtgee eggeetgeag atgaceaeeg 900 aataccqcat qatcqqacaq qtqqaatcct tcqccatggg caatatcagc cagactggcg gcggtgaccg cacgctgagc tacgaccatc gcttcaacca tcagttcatc gtcggcgtcc 960 getacgeett caaccacgeg ceaeegeege egeegeege geeegeegtg gegeeeetg 1020 ccccaqcqc qqcccqtacc tatctcqtat tctttqactq ggatggcgcg gtcctgaccq atcgcgcgcg cgggatcgtg gcggaagcgg cgcaggcttc cacgcatgtc cagacgaccc 1140 gtatcgaagt caacggctat accgacaaca cctcggccca ccccggacca cgtggggaga 1200 agtataacct tggcctgtcc atgcggcgcg cagacagcgt gaaggctgaa ctgatccgtg 1260 acggcgtacc cgctggcggc atcgacatcc actggtatgg cgaagcccat ccgctggtgg 1320 1380 teacceagee egatacgeqt gageegeaga acceptegegt egaaateate etgeactgae gacacatact gcaataaatt gataaatagg cttttttaca aaggggcgca caggatgcgc 1440 ccctttccat atcqaatcqt tccqatqcat cacaqqccat gaatcagccc ttccgtttcc 1500 ggcactgtcc tatgcaaaat aaaggggtct attatcggac ttcaaaaaaa accttataaa 1560 atcgggactt tttacggaat acctccaaat gccctgaaag atatgtgtgt ttttcgccac 1620 acctcgttgg catgcggcat tttgcccatt ctcaagtcgg tccagacagg ctaatcccgc 1680 atcatagett gegggtaate teaggetgee etgtateggg geaaateeat tgeeegaeea 1740 caagataggg ctctgccctg caacaacaga gttaaggact gaaacatgcg tcttcgcgca 1800 gcgttactqq ctaccagcct gctggcagcg gcaccgttcg ccgccaaagc cacgaccatc 1860

accggcccgt atgtcgatat cggcggcggc tacaacctga cccagaccca gcacgggcac 1920 tttgccgaca cggaagacgg cccgggccgc gaaaagctgg gccaccgtca tggctggacc 1980 ggcttcggcg cattcggctg gggcttcggc aacggtctgc gtgctgaaat cgagggcgac 2040 tacaactggt ccgaaatcta cagcaagtcc cgtaatgaca agggcagcga ccqctcctat ggcggtttcq tcaacgtgct gtatgacatc gacctgaagc gtctgttcaa catcgacgtg cccgtcaccc cqttcgtcgg tgtcggcgcc ggctacctgt ggcagaacgc acatgacgtg agcgtgggca acagccccgg tcgcagcctg agcggcacca agggcggctt cgcctaccag gcatcqtcq qtqcqqccta cgacatcccc ggtgtccctg gcctgcagat gaccaccgaa taccgcatga tc <210> 2 <211> 399 <212> PRT Gluconacetobacter entanii <213> <400> Met Arg Leu Arg Met Val Leu Leu Ala Thr Ala Leu Gly Ala Ala Pro 10 Phe Ala Thr Ala Met Ala Thr Thr Ile Thr Gly Pro Tyr Val Asp Ile 25 20 Gly Gly Gly Tyr Asp Leu Thr Gln Thr Gln His Ala His Gly Phe Asp 35 40 Lys Asn Gln Tyr Glu Asn Asn Ala Asn Thr Ala Gly Tyr Leu Asp Ala 60 50 55 Thr Asp Asn Ala Arg Leu Leu Lys Glu Ala His Ser Arg Glu Arg Met 80 70 75 Glu His Gly Asp Gly Trp Thr Gly Phe Ala Thr Phe Gly Trp Gly Phe Gly Asn Gly Leu Arg Ala Glu Ile Glu Gly Asp Tyr Asn Trp Ser Ala Leu Thr Gly Tyr Asn Ser Val Ser Gly Ser Ala Tyr Gly Asn Asn His 115 120 Gln Ser Gly Lys Ser Ser Gly Ser Asp Arg Ser Tyr Gly Gly Phe Val 130 135 Asn Val Leu Tyr Asp Ile Asp Leu Lys Arg Leu Phe Asn Ile Asp Val 145 155 160 150 Pro Val Thr Pro Phe Val Gly Val Gly Ala Gly Tyr Leu Trp Gln Asn

2220

2280

2340 2352 165 170 175

Val	Asp	Ala	Ser 180	Thr	Ser	Val	Thr	Arg 185	Tyr	Leu	Asn	Val	Arg 190	Gln	Asr
Gly	Thr	Asn 195	Gly	Ser	Phe	Ala	Tyr 200	Gln	Gly	Met	Val	Gly 205	Ala	Ala	Tyr
Asp	Ile 210	Pro	Gly	Val	Pro	Gly 215	Leu	Gln	Met	Thr	Thr 220	Glu	Tyr	Arg	Met
Ile 225	Gly	Gln	Val	Glu	Ser 230	Phe	Ala	Met	Gly	Asn 235	Ile	Ser	Gln	Thr	Gly 240
Gly	Gly	Asp	Arg	Thr 245	Leu	Ser	Tyr	Asp	His 250	Arg	Phe	Asn	His	Gln 255	Phe
Ile	Val	Gly	Val 260	Arg	Tyr	Ala	Phe	Asn 265	His	Ala	Pro	Pro	Pro 270	Pro	Pro
Pro	Ala	Pro 275	Ala	Val	Ala	Pro	Pro 280	Ala	Pro	Ser	Ala	Ala 285	Arg	Thr	Tyr
Leu	Val 290	Phe	Phe	Asp	Trp	Asp 295	Gly	Ala	Val	Leu	Thr 300	Asp	Arg	Ala	Arg
Gly 305	Ile	Val	Ala	Glu	Ala 310	Ala	Gln	Ala	Ser	Thr 315	His	Val	Gln	Thr	Thr 320
Arg	Ile	Glu	Val	Asn 325	Gly	Tyr	Thr	Asp	Asn 330	Thr	Ser	Ala	His	Pro 335	Gly
Pro	Arg	Gly	Glu 340	Lys	Tyr	Asn	Leu	Gly 345	Leu	Ser	Met	Arg	Arg 350	Ala	Asp
Ser	Val	Lys 355	Ala	Glu	Leu	Ile	Arg 360	Asp	Gly	Val	Pro	Ala 365	Gly	Gly	Ile
Asp	Ile 370	His	Trp	Tyr	Gly	Glu 375	Ala	His	Pro	Leu	Val 380	Val	Thr	Gln	Pro
Asp 385	Thr	Arg	Glu	Pro	Gln 390	Asn	Arg	Arg	Val	Glu 395	Ile	Ile	Leu	His	

```
<210>
           3
<211>
           30
<212>
           DNA
           Artificial sequence
<213>
<220>
<223> Description of Artificial sequence: synthetic
      oligonucleotide
<400>
gtttcccgga attcccgttt cagctccttc
                                                      30
<210>
            4
<211>
            30
<212>
            DNA
<213>
            Artificial sequence
<220>
<223> Description of Artificial sequence: synthetic
      oligonucleotide
<400>
                                                       30
atatctttca gggcatttgg aggtattccg
<210>
<211>
            5734
<212>
            DNA
<213>
            Gluconacetobacter entanii
<400>
                                                                       60
catggggcgt caccccage ggccagettg getacetgat ggacagggeg ggccttetge
                                                                      120
aagccctcgg ccactgccat ctgccgggat atgaggccaa atacgaaccg aaggaaaagc
                                                                      180
gcaccttctg ctaccccacc cagaacgcca gcggctgggc tgtgcagcca tgatcgccaa
cccctccctc ttcctgagca attcggaaga gcgatttccg ccgactgaac acgtcgaaaa
                                                                      240
                                                                      300
tggcagtttt ccaccgaaaa aaggaaagga ccataggaaa ggattaatat cttattttta
                                                                      360
tctaqqqqtt tqccqatccq cqattttcgc tgggaaaccg ccaaaaatgg cttgccatta
                                                                      420
ggtcgcacca catgcgacca taaagtcgca cagtgtgcga cctattcggc ccatatacag
aggttcccca catgcggaat gtcacccgtc tcaagacccg caaagaccgg ctccgcgagg
                                                                       480
                                                                      540
accaageega cetgttgaag caageeette tgeeettege agaggaegat ggaeegatge
                                                                      600
gggatgcggt cggacggctc tacgtccaga tcaagaacct caccaccca gaccccggaa
                                                                       660
ccacggagcc gttcgtcatg atccgtcccg cccagaatcg cgccgtcacc ctctggctgc
                                                                      720
tgaagaacag taagcggccc atgaaggccg tggacgtatg gacgctgctg ttcgaccacc
                                                                      780
tgtttcccca taccggccag atcatgctga cccgtgagga aatcgcggaa aaagtcggta
tccgggtcaa cgaagttaca gccgtcatga acgagctggt gagcttcggc gcgattttct
                                                                      840
ccgagcgcga gaaggtggcc ggaatgcgcg ggccgggcct cgcccgctac tacatgaacc
                                                                      900
                                                                      960
ggcatgtggc cgaggtcggc agccgcgcca cgcaggaaga acttgcccta atcccacgcc
ccggcgccaa gctggcagtc gtgcagggtg gcaaggctta acccatgaag gtttcggaac
                                                                     1020
                                                                     1080
tggacqtgtt cgacagcqcc aaggcggcac aagacccgtt ggtgcgggaa gaactgctgc
                                                                     1140
aagcagcgca ggcggacggc cacggccccg ccctcgctca tgcccgttcc gtcatagcca
                                                                     1200
aggegeggge egggeaggae gecaaggett aaeggeeeeg eetteteeg eetegateee
                                                                     1260
ggcgggcctg tagcatctcc tgatgctcct tggcgttttt ggcccgctgc tcggcccgct
ctttctcggc cgctgcggct cttaggcgct cttcggccag ccgcatccgc tcgtccatct
                                                                     1320
gacgtttccg atctgcctcg gcatccttgg cggctcctgc cttcagccct ttgctgaaag
                                                                     1380
ccatccactt attggcggtt ttctcggctt tctgctgtat cggcggggtc agccggtcaa
                                                                     1440
```

atacctagac	caccctctcg	aagccctcac	gcatggcgtt	gacggcctgc	gccagtttag	1500
ccagggggaa	atctatcacc	tcaacccact	gagcattete	ggcccggata	cgccggttgt	1560
gattaccaat	cggggtctgg	taacccttcc	attccagage	caccacattc	ggccccatgt	1620
gccgctctgg	aacgcggtct	agcccctgct	ccgcattgct	ccggtgatct	atccgggcct	1680
cttgcccage	ccgctctagc	acaacattaa	caaggcccgc	ccatagctgc	cggatttcct	1740
	ggcggccttc					1800
	gtctccaaag					1860
taatcataat	gtgcgcgtga	tgattccggt	catcaccete	gtcacccgga	agatgcacgg	1920
ccacatccac	ggccaccccg	taccactaga	ccaactcacq	cacaaaacta	tccgccagtt	1980
caacacacta	ctcgctggtg	anttcatgag	adaddaccac	aacccattcc	ctcccaatac	2040
	gcgtttctct					2100
	cggaatgaaa					2160
tatattaata	cccgtcaacc	tcattaatca	aatcctcgcc	accacgatac	acsaccacsa	2220
ccacaaccca	acgccctgcg	ctccaactaa	tcaatttcat	ttctqcqcqa	tagattgcca	2280
ccacaacyya	gcctaccttt	tagaattaaa	cagaaaatta	addddddda	agccaccatg	2340
	tgcacttgtg					2400
						2460
gatatgtggt	attcgtttga	aacyyaacyy	atagatgaag	aggatgatat	catcaaagat	2520
	ttgagaacgc					2580
	aagcagctaa					2640
	tggtaaaact					2700
cttttgaagc	tggtggatcg	tccatcagac	eggaaggegt	regaggigii	aggaataga	2760
	ccctgcccac					2820
	tttgaactgt					2880
catggagcgg	ctggccgccg	aacaagatgc	caggtgcaag	accalticag	acgeegeegg	2940
aaaagcctct	aaattggccg	aggaagccgg	tgacaccttc	acagcatcca	agaggegtet	3000
gatgatctgg	acggccctct	gegeggetet	gctggtctgt	ggcgggtggt	tggcgggtta	
ttggctggga	caccgtgacg	gttgggcctc	tggcacggcc	cacgacgtct	aagaaaccat	3060
	acattaacct					3120
	gacggtgaaa					3180
tctgtaagcg	gatgccggga	gcagacaagc	ccgtcagggc	gcgtcagcgg	gtgttggcgg	3240
gtgtcggggc	tggcttaact	atgcggcatc	agagcagatt	gtactgagag	tgcaccatat	3300
gcggtgtgaa	ataccgcaca	gatgcgtaag	gagaaaatac	cgcatcaggc	gccattcgcc	3360
attcaggctg	cgcaactgtt	gggaagggcg	atcggtgcgg	gcctcttcgc	tattacgcca	3420
gctggcgaaa	gggggatgtg	ctgcaaggcg	attaagttgg	gtaacgccag	ggttttccca	3480
gtcacgacgt	tgtaaaacga	cggccagtgc	caagcttgca	tgcctgcagg	tcgactctag	3540
	ggtaccgagc					3600
	gctcacaatt					3660
	atgagtgagc					3720
	cctgtcgtgc					3780
gtttgcgtat	tgggcgctct	tccgcttcct	cgctcactga	ctcgctgcgc	tcggtcgttc	3840
ggctgcggcg	agcggtatca	gctcactcaa	aggcggtaat	acggttatcc	acagaatcag	3900
	aggaaagaac					3960
aggccgcgtt	gctggcgttt	ttccataggc	tccgccccc	tgacgagcat	cacaaaaatc	4020
gacgctcaag	tcagaggtgg	cgaaacccga	caggactata	aagataccag	gcgtttcccc	4080
ctggaagctc	cctcgtgcgc	tctcctgttc	cgaccctgcc	gcttaccgga	tacctgtccg	4140
	ttcgggaagc					4200
	cgttcgctcc					4260
	atccggtaac					4320
cactggcagc	agccactggt	aacaggatta	gcagagcgag	gtatgtaggc	ggtgctacag	4380
	gtggtggcct					4440
	gccagttacc					4500
	tagcggtggt					4560
	agatcctttg					4620
cacattaaga	gattttggtc	atgagattat	caaaaaqqat	cttcacctag	atccttttaa	4680
attaaaaato	aagttttaaa	tcaatctaaa	gtatatatga	gtaaacttqq	tctgacagtt	4740
accaatoctt	aatcagtgag	gcacctatct	cagogatota	tctatttcqt	tcatccatag	4800
ttqcctqact	cccgtcgtg	tagataacta	cgatacggga	gggcttacca	tctggcccca	4860
,	5 5 - 5	J	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

```
gtgctgcaat gataccgcga gacccacgct caccggctcc agatttatca gcaataaacc
                                                                      4920
agccagccgg aagggccgag cgcagaagtg gtcctgcaac tttatccqcc tccatccagt
                                                                      4980
                                                                      5040
ctattaattq ttqccqqqaa qctaqaqtaa gtagttcqcc agttaatagt ttqcqcaacq
ttgttgccat tgctacaggc atcgtggtgt cacgctcgtc gtttggtatg gcttcattca
                                                                      5100
                                                                      5160
qctccqqttc ccaacqatca aqqcqaqtta catqatcccc catqttqtqc aaaaaaqcqg
ttagctcctt cggtcctccg atcgttgtca gaagtaagtt ggccgcagtg ttatcactca
                                                                      5220
tggttatggc agcactgcat aattctctta ctgtcatgcc atccgtaaga tgcttttctg
                                                                      5280
                                                                      5340
 tgactggtga gtactcaacc aagtcattct gagaatagtg tatgcggcga ccgagttgct
cttgcccggc gtcaatacgg gataataccg cgccacatag cagaacttta aaagtqctca
                                                                      5400
                                                                      5460
tcattqqaaa acqttcttcq qqqcqaaaac tctcaaqqat cttaccqctg ttgagatcca
                                                                      5520
 ttcgatgtaa cccactcgtg cacccaactg atcttcagca tcttttactt tcaccagcgt
                                                                      5580
 ttctqqqtqa qcaaaaacaq qaaqqcaaaa tqccqcaaaa aagggaataa gggcgacacg
gaaatgttga atactcatac tcttcctttt tcaatattat tgaagcattt atcagggtta
                                                                      5640
ttgtctcatg agcggataca tatttgaatg tatttagaaa aataaacaaa taggggttcc
                                                                      5700
                                                                    5734
gcgcacattt ccccgaaaag tgccacctga cgtc
<210>
             6
<211>
             30
 <212>
             DNA
 <213>
             Artificial sequence
<220>
 <223> Description of Artificial sequence: synthetic
       oligonucleotide
 <400>
                                                        30
cgctgacgtc gtgggccgtg ccagaggccc
             7
<210>
 <211>
             30
 <212>
             DNA
<213>
             Artificial sequence
<220>
 <223> Description of Artificial sequence: synthetic
       oligonucleotide
<400>
             7
                                                        30
ggccaagacg tctgcagcat ggggcgtcac
```