## MCMC Kameleon: Kernel Adaptive Metropolis-Hastings

Dino Sejdinovic\* joint work with: Heiko Strathmann\*, Maria Lomeli Garcia\*, Christophe Andrieu<sup>†</sup>, and Arthur Gretton\*

> \*Gatsby Unit, CSML, University College London, †School of Mathematics, University of Bristol

Kernel Methods for Big Data, Lille 31 March 2014 arXiv: 1307.5302



#### Overview

- Introduction and Motivation
- Intractable Targets
- Sternel Embeddings and Non-linear Structure
- Experiments

#### Outline

- Introduction and Motivation
- Intractable Targets
- 3 Kernel Embeddings and Non-linear Structure
- 4 Experiments

## Metropolis-Hastings MCMC

- Access to unnormalized target  $\pi(x) \propto P(x)$
- Generate a Markov chain with P as invariant distribution
  - Initialize  $x_0 \sim P_0$
  - ullet At iteration  $t \geq 0$ , propose to move to state  $x' \sim q(\cdot|x_t)$
  - Accept/Reject proposals based on the MH acceptance ratio (preserves detailed balance)

$$x_{t+1} = \begin{cases} x', & \text{w.p. min} \left\{1, \frac{\pi(x')q(x_t|x')}{\pi(x')q(x'|x_t)}\right\}, \\ x_t, & \text{otherwise}. \end{cases}$$

• What proposal  $q(\cdot|x_t)$  to use in Metropolis-Hastings algorithms?

- ullet What proposal  $q(\cdot|x_t)$  to use in Metropolis-Hastings algorithms?
  - Variance of the proposal is too small: small increments → slow convergence

- ullet What proposal  $q(\cdot|x_t)$  to use in Metropolis-Hastings algorithms?
  - Variance of the proposal is too small: small increments → slow convergence
  - Variance of the proposal is too large: too many rejections  $\rightarrow$  slow convergence

- ullet What proposal  $q(\cdot|x_t)$  to use in Metropolis-Hastings algorithms?
  - Variance of the proposal is too small: small increments  $\rightarrow$  slow convergence
- In high dimensions: very different scalings along different principal directions

- What proposal  $q(\cdot|x_t)$  to use in Metropolis-Hastings algorithms?
  - Variance of the proposal is too small: small increments  $\rightarrow$  slow convergence
  - Variance of the proposal is too large: too many rejections  $\rightarrow$  slow convergence
- In high dimensions: very different scalings along different principal directions
- Gelman, Roberts & Gilks, 1996: in random walk Metropolis with proposals  $\mathcal{N}(0,\Sigma)$  on a product target  $\pi$  (independent dimensions):
  - $\Sigma = \frac{2.38^2}{d} \Sigma_{\pi}$  is shown to be asymptotically optimal as  $d \to \infty$
  - asymptotically optimal acceptance rate of 0.234

- What proposal  $q(\cdot|x_t)$  to use in Metropolis-Hastings algorithms?
  - Variance of the proposal is too small: small increments  $\rightarrow$  slow convergence
  - Variance of the proposal is too large: too many rejections  $\rightarrow$  slow convergence
- In high dimensions: very different scalings along different principal directions
- Gelman, Roberts & Gilks, 1996: in random walk Metropolis with proposals  $\mathcal{N}(0,\Sigma)$  on a product target  $\pi$  (independent dimensions):
  - $\Sigma = \frac{2.38^2}{d} \Sigma_{\pi}$  is shown to be asymptotically optimal as  $d \to \infty$
  - asymptotically optimal acceptance rate of 0.234
- $\bullet$   $\Sigma_{\pi}$  unknown



- What proposal  $q(\cdot|x_t)$  to use in Metropolis-Hastings algorithms?
  - Variance of the proposal is too small: small increments  $\rightarrow$  slow convergence
  - Variance of the proposal is too large: too many rejections  $\rightarrow$  slow convergence
- In high dimensions: very different scalings along different principal directions
- Gelman, Roberts & Gilks, 1996: in random walk Metropolis with proposals  $\mathcal{N}(0,\Sigma)$  on a product target  $\pi$  (independent dimensions):
  - $\Sigma = \frac{2.38^2}{d} \Sigma_{\pi}$  is shown to be asymptotically optimal as  $d \to \infty$
  - asymptotically optimal acceptance rate of 0.234
- $\bullet$   $\Sigma_{\pi}$  unknown
- Simple and often effective as rules of thumb, but based on assumptions not valid for complex targets



## Adaptive MCMC

• Adaptive MCMC (Haario, Saksman & Tamminen, 2001): use history of Markov chain to learn covariance  $\Sigma_{\pi}$  of target  $\pi$ , i.e., scaling in principal directions



## Adaptive MCMC

• Adaptive MCMC (Haario, Saksman & Tamminen, 2001): use history of Markov chain to learn covariance  $\Sigma_{\pi}$  of target  $\pi$ , i.e., scaling in principal directions



## Adaptive MCMC

- Adaptive MCMC (Haario, Saksman & Tamminen, 2001): use history of Markov chain to learn covariance  $\Sigma_{\pi}$  of target  $\pi$ , i.e., scaling in principal directions
- May be locally miscalibrated for strongly non-linear targets: directions of large variance depend on the current location



#### Motivation: Intractable & Non-linear Targets

 Non-linear targets: Hamiltonian Monte Carlo (HMC) or Metropolis Adjusted Langevin Algorithms (MALA) (Roberts & Stramer, 2003; Girolami & Calderhead, 2011).

#### Motivation: Intractable & Non-linear Targets

- Non-linear targets: Hamiltonian Monte Carlo (HMC) or Metropolis Adjusted Langevin Algorithms (MALA) (Roberts & Stramer, 2003; Girolami & Calderhead, 2011).
- However, those depend on gradients of the target and second order information – often unavailable or expensive to compute.

#### Motivation: Intractable & Non-linear Targets

- Non-linear targets: Hamiltonian Monte Carlo (HMC) or Metropolis Adjusted Langevin Algorithms (MALA) (Roberts & Stramer, 2003; Girolami & Calderhead, 2011).
- However, those depend on gradients of the target and second order information – often unavailable or expensive to compute.
- Extreme case: not even target can be computed Pseudo-Marginal MCMC (Beaumont, 2003; Andrieu & Roberts, 2009).

#### Outline

- Introduction and Motivation
- Intractable Targets
- 3 Kernel Embeddings and Non-linear Structure
- Experiments



## Pseudo-Marginal MCMC

• Missing data: parameters  $\theta$ , latent process  $\mathbf{f}$ , observations  $\mathbf{y}$  with

$$p(\theta, \mathbf{f}, \mathbf{y}) = p(\theta)p(\mathbf{f}|\theta)p(\mathbf{y}|\mathbf{f}, \theta)$$



## Pseudo-Marginal MCMC

• Missing data: parameters  $\theta$ , latent process  $\mathbf{f}$ , observations  $\mathbf{y}$  with

$$p(\theta, \mathbf{f}, \mathbf{y}) = p(\theta)p(\mathbf{f}|\theta)p(\mathbf{y}|\mathbf{f}, \theta)$$

Interested in posterior

$$p(\theta|\mathbf{y}) \propto p(\theta)p(\mathbf{y}|\theta) = p(\theta) \int p(\mathbf{f}|\theta)p(\mathbf{y}|\mathbf{f},\theta)d\mathbf{f}$$



## Pseudo-Marginal MCMC

• Missing data: parameters  $\theta$ , latent process  $\mathbf{f}$ , observations  $\mathbf{y}$  with

$$p(\theta, \mathbf{f}, \mathbf{y}) = p(\theta)p(\mathbf{f}|\theta)p(\mathbf{y}|\mathbf{f}, \theta)$$

Interested in posterior

$$p(\theta|\mathbf{y}) \propto p(\theta)p(\mathbf{y}|\theta) = p(\theta) \int p(\mathbf{f}|\theta)p(\mathbf{y}|\mathbf{f},\theta)d\mathbf{f}$$

• Often impossible to integrate out the latent process f, i.e., unable to compute marginal likelihood  $p(y|\theta)$ 



## Pseudo-Marginal MCMC (2)

 Unable to compute correct Metropolis-Hasting acceptance probabilities:

$$\alpha(\theta, \theta') = \min\{1, \frac{p(\theta')p(\mathbf{y}|\theta')q(\theta|\theta')}{p(\theta)p(\mathbf{y}|\theta)q(\theta'|\theta)}\}$$



## Pseudo-Marginal MCMC (2)

 Unable to compute correct Metropolis-Hasting acceptance probabilities:

$$\alpha(\theta, \theta') = \min\{1, \frac{p(\theta')p(\mathbf{y}|\theta')q(\theta|\theta')}{p(\theta)p(\mathbf{y}|\theta)q(\theta'|\theta)}\}$$

• However, we can often obtain an unbiased Monte Carlo estimate of  $p(y|\theta)$ , e.g., by importance sampling

## Pseudo-Marginal MCMC (2)

 Unable to compute correct Metropolis-Hasting acceptance probabilities:

$$\alpha(\theta, \theta') = \min\{1, \frac{p(\theta')\hat{p}(\mathbf{y}|\theta')q(\theta|\theta')}{p(\theta)\hat{p}(\mathbf{y}|\theta)q(\theta'|\theta)}\}$$

- However, we can often obtain an unbiased Monte Carlo estimate of  $p(y|\theta)$ , e.g., by importance sampling
- Remarkably, replacing the marginal likelihood with its unbiased estimate still results in the correct invariant distribution (Andrieu & Roberts, 2009)



• GPC model: latent process f, labels y, (with covariate matrix X), and hyperparameters  $\theta$ :

$$p(f, y, \theta) = p(\theta)p(f|\theta)p(y|f)$$

where  $\mathbf{f}|\theta \sim \mathcal{N}(0, \mathcal{K}_{\theta})$  is a realization of a GP with covariance  $\mathcal{K}_{\theta}$  (covariance between latent processes evaluated at X).

• GPC model: latent process f, labels y, (with covariate matrix X), and hyperparameters  $\theta$ :

$$p(f, y, \theta) = p(\theta)p(f|\theta)p(y|f)$$

where  $\mathbf{f}|\theta \sim \mathcal{N}(0, \mathcal{K}_{\theta})$  is a realization of a GP with covariance  $\mathcal{K}_{\theta}$  (covariance between latent processes evaluated at X).

•  $\mathcal{K}_{\theta}$ : exponentiated quadratic Automatic Relevance Determination (ARD) covariance:

$$(\mathcal{K}_{ heta})_{ij} = \kappa(\mathbf{x}_i, \mathbf{x}_j' | \theta) = \exp\left(-rac{1}{2} \sum_{s=1}^d rac{(x_{i,s} - x_{j,s}')^2}{\exp(\theta_s)}
ight)$$

• GPC model: latent process f, labels y, (with covariate matrix X), and hyperparameters  $\theta$ :

$$p(f, y, \theta) = p(\theta)p(f|\theta)p(y|f)$$

where  $\mathbf{f}|\theta \sim \mathcal{N}(0, \mathcal{K}_{\theta})$  is a realization of a GP with covariance  $\mathcal{K}_{\theta}$  (covariance between latent processes evaluated at X).

•  $\mathcal{K}_{\theta}$ : exponentiated quadratic Automatic Relevance Determination (ARD) covariance:

$$(\mathcal{K}_{\theta})_{ij} = \kappa(\mathbf{x}_i, \mathbf{x}'_j | \theta) = \exp\left(-\frac{1}{2} \sum_{s=1}^d \frac{(x_{i,s} - x'_{j,s})^2}{\exp(\theta_s)}\right)$$

•  $p(y|f) = \prod_{i=1}^{n} p(y_i|f_i)$  is a product of sigmoidal functions:

$$p(y_i|f_i) = \frac{1}{1 - \exp(-y_i f_i)}, \quad y_i \in \{-1, 1\}.$$



ullet Fully Bayesian treatment: Interested in the posterior p( heta|y)



- ullet Fully Bayesian treatment: Interested in the posterior p( heta|y)
- Cannot use a Gibbs sampler on  $p(\theta, \mathbf{f}|y)$ , which samples from  $p(\mathbf{f}|\theta, y)$  and  $p(\theta|\mathbf{f}, y)$  in turns, since  $p(\theta|\mathbf{f}, y)$  is extremely sharp

- ullet Fully Bayesian treatment: Interested in the posterior p( heta|y)
- Cannot use a Gibbs sampler on  $p(\theta, \mathbf{f}|y)$ , which samples from  $p(\mathbf{f}|\theta, y)$  and  $p(\theta|\mathbf{f}, y)$  in turns, since  $p(\theta|\mathbf{f}, y)$  is extremely sharp
- Filippone & Girolami, 2013 use Pseudo-Marginal MCMC to sample  $p(\theta|y) = p(\theta) \int p(\theta, \mathbf{f}|y) p(\mathbf{f}|\theta) d\mathbf{f}$ .

- Fully Bayesian treatment: Interested in the posterior  $p(\theta|y)$
- Cannot use a Gibbs sampler on  $p(\theta, \mathbf{f}|y)$ , which samples from  $p(\mathbf{f}|\theta, y)$  and  $p(\theta|\mathbf{f}, y)$  in turns, since  $p(\theta|\mathbf{f}, y)$  is extremely sharp
- Filippone & Girolami, 2013 use Pseudo-Marginal MCMC to sample  $p(\theta|y) = p(\theta) \int p(\theta, \mathbf{f}|y) p(\mathbf{f}|\theta) d\mathbf{f}$ .
- Unbiased estimate of  $\hat{p}(\mathbf{y}|\theta)$  via importance sampling:

$$\hat{
ho}( heta|\mathbf{y}) \propto 
ho( heta)\hat{
ho}(\mathbf{y}| heta) pprox 
ho( heta)rac{1}{n_{ ext{imp}}} \sum_{i=1}^{n_{ ext{imp}}} 
ho(\mathbf{y}|\mathbf{f}^{(i)})rac{
ho(\mathbf{f}^{(i)}| heta)}{Q(\mathbf{f}^{(i)})}$$

- Fully Bayesian treatment: Interested in the posterior  $p(\theta|y)$
- Cannot use a Gibbs sampler on  $p(\theta, \mathbf{f}|y)$ , which samples from  $p(\mathbf{f}|\theta, y)$  and  $p(\theta|\mathbf{f}, y)$  in turns, since  $p(\theta|\mathbf{f}, y)$  is extremely sharp
- Filippone & Girolami, 2013 use Pseudo-Marginal MCMC to sample  $p(\theta|y) = p(\theta) \int p(\theta, \mathbf{f}|y) p(\mathbf{f}|\theta) d\mathbf{f}$ .
- Unbiased estimate of  $\hat{p}(\mathbf{y}|\theta)$  via importance sampling:

$$\hat{
ho}( heta|\mathbf{y}) \propto 
ho( heta)\hat{
ho}(\mathbf{y}| heta) pprox 
ho( heta)rac{1}{n_{ ext{imp}}} \sum_{i=1}^{n_{ ext{imp}}} 
ho(\mathbf{y}|\mathbf{f}^{(i)})rac{
ho(\mathbf{f}^{(i)}| heta)}{Q(\mathbf{f}^{(i)})}$$

• No access to likelihood, gradient, or Hessian of the target.



#### Intractable & Non-linear Target in GPC

 Sliced posterior over hyperparameters of a GP classifier (where target cannot be computed) on UCI Glass dataset (classification of window against non-window glass)



Adaptive sampler that learns the shape of non-linear targets without higher order information?

#### Outline

- Introduction and Motivation
- Intractable Targets
- Sternel Embeddings and Non-linear Structure
- Experiments

#### Use feature space covariance?

 $\bullet$  Capture non-linearities using linear covariance  $\textit{C}_{z}$  in feature space  $\mathcal{H}$ 



#### RKHS and Kernel Embedding

• For any positive semidefinite function k, there is a unique RKHS  $\mathcal{H}_k$ . Can consider  $x \mapsto k(\cdot, x)$  as a feature map.

## RKHS and Kernel Embedding

• For any positive semidefinite function k, there is a unique RKHS  $\mathcal{H}_k$ . Can consider  $x \mapsto k(\cdot, x)$  as a feature map.

## Definition (Kernel embedding)

Let k be a kernel on  $\mathcal{X}$ , and P a probability measure on  $\mathcal{X}$ . The kernel embedding of P into the RKHS  $\mathcal{H}_k$  is  $\mu_k(P) \in \mathcal{H}_k$  such that  $\mathbb{E}_P f(X) = \langle f, \mu_k(P) \rangle_{\mathcal{H}_k}$  for all  $f \in \mathcal{H}_k$ .

- Alternatively, can be defined by the Bochner integral  $\mu_k(P) = \int k(\cdot, x) dP(x)$  (expected canonical feature)
- For many kernels k, including the Gaussian, Laplacian and inverse multi-quadratics, the kernel embedding  $P \mapsto \mu_P$  is injective: characteristic (Sriperumbudur et al, 2010),
- captures all moments (similarly to the characteristic function).

## Covariance operator

#### Definition

The covariance operator of P is  $C_P: \mathcal{H}_k \to \mathcal{H}_k$  such that  $\forall f, g \in \mathcal{H}_k$ ,  $\langle f, C_P g \rangle_{\mathcal{H}_k} = \text{Cov}_P [f(X)g(X)].$ 

## Covariance operator

#### Definition

The covariance operator of P is  $C_P : \mathcal{H}_k \to \mathcal{H}_k$  such that  $\forall f, g \in \mathcal{H}_k$ ,  $\langle f, C_P g \rangle_{\mathcal{H}_k} = \text{Cov}_P [f(X)g(X)].$ 

- Covariance operator:  $C_P: \mathcal{H}_k \to \mathcal{H}_k$  is given by  $C_P = \int k(\cdot, x) \otimes k(\cdot, x) \, dP(x) \mu_P \otimes \mu_P$  (covariance of canonical features)
- Empirical versions of embedding and the covariance operator:

$$\mu_{\mathbf{z}} = \frac{1}{n} \sum_{i=1}^{n} k(\cdot, z_i) \qquad C_{\mathbf{z}} = \frac{1}{n} \sum_{i=1}^{n} k(\cdot, z_i) \otimes k(\cdot, z_i) - \mu_{\mathbf{z}} \otimes \mu_{\mathbf{z}}$$

The empirical covariance captures **non-linear** features of the underlying distribution, e.g. Kernel PCA

## Kernel Adaptive Metropolis Hastings: Construction

Target  $\pi$  on  $\mathbb{R}^d$ ; Current chain state:  $\gamma$ 

**Step 1**: Obtain a subsample of the Markov chain history:  $\mathbf{z} = \{z_i\}_{i=1}^n$ , this induces empirical RKHS embedding and covariance:

$$\mu_{\mathbf{z}} = \frac{1}{n} \sum_{i=1}^{n} k(\cdot, z_i) \qquad C_{\mathbf{z}} = \frac{1}{n} \sum_{i=1}^{n} k(\cdot, z_i) \otimes k(\cdot, z_i) - \mu_{\mathbf{z}} \otimes \mu_{\mathbf{z}}$$

# Kernel Adaptive Metropolis Hastings: Construction (2)

Target  $\pi$  on  $\mathbb{R}^d$ ; Current chain state: y, a subsample of the Markov chain history:  $\mathbf{z} = \{z_i\}_{i=1}^n$ 

**Step 2**: Sample from the Gaussian Measure  $\mathcal{N}(\mu_z, \nu^2 C_z)$  on RKHS: it suffices to generate  $\beta \sim \mathcal{N}(0, \frac{\nu^2}{n} I_n)$ , then

$$f = k(\cdot, y) + \sum_{i=1}^{n} \beta_{i} [k(\cdot, z_{i}) - \mu_{z}]$$

has the correct covariance structure.

# Kernel Adaptive Metropolis Hastings: Construction (2)

$$\mathbb{E}\left[\left(f - k(\cdot, y)\right) \otimes \left(f - k(\cdot, y)\right)\right]$$

$$= \mathbb{E}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i} \beta_{j} \left(k(\cdot, z_{i}) - \mu_{z}\right) \otimes \left(k(\cdot, z_{j}) - \mu_{z}\right)\right]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{E}\left[\beta_{i} \beta_{j}\right] \left(k(\cdot, z_{i}) - \mu_{z}\right) \otimes \left(k(\cdot, z_{j}) - \mu_{z}\right)$$

$$= \frac{\nu^{2}}{n} \sum_{i=1}^{n} \left(k(\cdot, z_{i}) - \mu_{z}\right) \otimes \left(k(\cdot, z_{i}) - \mu_{z}\right)$$

$$= \nu^{2} C_{z}$$

# Kernel Adaptive Metropolis Hastings: Construction (3)

Target  $\pi$  on  $\mathbb{R}^d$ ; Current chain state: y, a subsample of the Markov chain history:  $\mathbf{z} = \{z_i\}_{i=1}^n$ , RKHS sample  $f \sim \mathcal{N}(\mu_{\mathbf{z}}, \nu^2 C_{\mathbf{z}})$ 

**Step 3**: Find a point  $x^*$  in input space  $\mathcal{X}$  with feature  $k(\cdot, x^*)$  close to f:

$$\operatorname{argmin}_{x \in \mathcal{X}} \left\{ k(x, x) - f \right\|_{\mathcal{H}}^{2} = \left\{ \underbrace{k(x, x) - 2k(x, y) - 2\sum_{i=1}^{n} \beta_{i} \left[ k(x, z_{i}) - \mu_{\mathbf{z}}(x) \right]}_{=:g(x) \text{ where } g: \mathcal{X} \to \mathbb{R}} \right\}.$$

Take a single gradient step from y w.r.t g, and (optionally) add 'exploration term'  $\xi \sim \mathcal{N}(0, \gamma^2 I_d)$ .

# Cost function g









g varies most along the high densoty regions of the target

## Construction Summary

- **1** Get a chain subsample  $\mathbf{z} = \{z_i\}_{i=1}^n$
- ② Construct  $f \sim \mathcal{N}(\mu_{\mathbf{z}}, \nu^2 C_{\mathbf{z}})$  represented by  $\beta \sim \mathcal{N}(0, \frac{\nu^2}{n} I_n)$
- **③** Find  $x^*$  close to f and add 'exploration term'  $\xi \sim \mathcal{N}(0, \gamma^2 I_d)$ .

## Construction Summary

- **1** Get a chain subsample  $\mathbf{z} = \{z_i\}_{i=1}^n$
- ② Construct  $f \sim \mathcal{N}(\mu_{\mathbf{z}}, \nu^2 C_{\mathbf{z}})$  represented by  $\beta \sim \mathcal{N}(0, \frac{\nu^2}{n} I_n)$
- **③** Find  $x^*$  close to f and add 'exploration term'  $\xi \sim \mathcal{N}(0, \gamma^2 I_d)$ .

This gives:

$$x^*|y,\beta,\xi=y-\eta\nabla_x g(x)|_{x=y}+\xi=y-M_{z,y}H\beta+\xi,$$

where  $M_{\mathbf{z},y} = 2\eta \left[ \nabla_x k(x,z_1)|_{x=y}, \dots, \nabla_x k(x,z_n)|_{x=y} \right]$  is based on kernel gradients (readily available).

## Construction Summary

- **1** Get a chain subsample  $\mathbf{z} = \{z_i\}_{i=1}^n$
- ② Construct  $f \sim \mathcal{N}(\mu_{\mathbf{z}}, \nu^2 C_{\mathbf{z}})$  represented by  $\beta \sim \mathcal{N}(0, \frac{\nu^2}{n} I_n)$
- **③** Find  $x^*$  close to f and add 'exploration term'  $\xi \sim \mathcal{N}(0, \gamma^2 I_d)$ .

This gives:

$$x^*|y,\beta,\xi=y-\eta\nabla_x g(x)|_{x=y}+\xi=y-M_{\mathbf{z},y}H\beta+\xi,$$

where  $M_{\mathbf{z},y} = 2\eta \left[ \nabla_x k(x,z_1)|_{x=y}, \dots, \nabla_x k(x,z_n)|_{x=y} \right]$  is based on kernel gradients (readily available).

We can integrate out RKHS samples and gradient step (i.e.,  $\beta$  and  $\xi$ ) and obtain a marginal Gaussian proposal on the input space:

$$q_{\mathbf{z}}(x^*|y) = \mathcal{N}(y, \gamma^2 I_d + \nu^2 M_{\mathbf{z}, y} H M_{\mathbf{z}, y}^{\mathsf{T}})$$



## MCMC Kameleon

Input: unnormalized target  $\pi$ ; subsample size n; scaling parameters  $\nu, \gamma$ , kernel k; update schedule  $\{\delta_t\}$ 

At iteration t+1,



- With probability  $\delta_t$ , update a random subsample  $\mathbf{z} = \{z_i\}_{i=1}^n$  of the chain history  $\{x_i\}_{i=0}^{t-1}$ ,
- ② Sample proposed point  $x^*$  from  $q_z(\cdot|x_t) = \mathcal{N}(x_t, \gamma^2 I_d + \nu^2 M_{z,x_t} H M_{z,x_t}^\top)$ ,
- Accept/Reject with standard MH ratio:

$$x_{t+1} = \begin{cases} x^*, & \text{w.p. min } \left\{1, \frac{\pi(x^*)q_{\mathbf{z}}(x_t|x^*)}{\pi(x_t)q_{\mathbf{z}}(x^*|x_t)}\right\}, \\ x_t, & \text{otherwise.} \end{cases}$$



## MCMC Kameleon

*Input*: unnormalized target  $\pi$ ; subsample size n; scaling parameters  $\nu, \gamma$ , kernel k; update schedule  $\{\delta_t\}$ 

At iteration t+1.



- With probability  $\delta_t$ , update a random subsample  $\mathbf{z} = \{z_i\}_{i=1}^n$  of the chain history  $\{x_i\}_{i=0}^{t-1}$ ,
- 2 Sample proposed point  $x^*$  from  $q_{\mathbf{z}}(\cdot|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_t, \gamma^2 I_d + \nu^2 M_{\mathbf{z}, \mathbf{x}_t} H M_{\mathbf{z}, \mathbf{x}_t}^{\top}),$
- Accept/Reject with standard MH ratio:

$$x_{t+1} = \begin{cases} x^*, & \text{w.p. min } \left\{1, \frac{\pi(x^*)q_z(x_t|x^*)}{\pi(x_t)q_z(x^*|x_t)}\right\}, \\ x_t, & \text{otherwise.} \end{cases}$$

Convergence to target  $\pi$  preserved as long as  $\delta_t \to 0$ .

## Locally aligned covariance



Kameleon proposals capture local covariance structure

# Locally aligned covariance



# Locally aligned covariance



## Examples of Covariance Structure for Standard Kernels

• Linear kernel:  $k(x, x') = x^{\top} x'$ 

$$q_{\mathbf{z}}(\cdot|\mathbf{y}) = \mathcal{N}(\mathbf{y}, \gamma^2 \mathbf{I} + 4\nu^2 \mathbf{Z}^{\mathsf{T}} \mathbf{HZ})$$

which results in the classical Adaptive Metropolis of Haario et al 1999;2001.

## Examples of Covariance Structure for Standard Kernels

• Linear kernel:  $k(x, x') = x^{\top} x'$ 

$$q_{\mathbf{z}}(\cdot|\mathbf{y}) = \mathcal{N}(\mathbf{y}, \gamma^2 \mathbf{I} + 4\nu^2 \mathbf{Z}^{\mathsf{T}} \mathbf{HZ})$$

which results in the classical Adaptive Metropolis of Haario et al 1999;2001.

• Gaussian kernel:  $k(x, x') = \exp\left(-\frac{1}{2}\sigma^{-2} \|x - x'\|_{2}^{2}\right)$ 

$$\begin{aligned} \left[\operatorname{cov}[q_{\mathsf{z}(\cdot|y)}]\right]_{ij} &= \gamma^2 \delta_{ij} + \frac{4\nu^2}{\sigma^4} \sum_{a=1}^n \left[k(y, z_a)\right]^2 (z_{a,i} - y_i)(z_{a,j} - y_j) \\ &+ \mathcal{O}(\frac{1}{n}). \end{aligned}$$

The influence of the previous points  $z_a$  on the covariance is weighted by their similarity  $k(y, z_a)$  to the current location y.

## Outline

- Introduction and Motivation
- Intractable Targets
- 3 Kernel Embeddings and Non-linear Structure
- Experiments



## Setup

- (SM) Standard Metropolis with the isotropic proposal  $q(\cdot|y) = \mathcal{N}(y, \nu^2 I)$  and scaling  $\nu = 2.38/\sqrt{d}$
- (AM-FS) Adaptive Metropolis with a learned covariance matrix and fixed global scaling  $\nu=2.38/\sqrt{d}$
- (AM-LS) Adaptive Metropolis with a learned covariance matrix and global scaling  $\nu$  learned to bring the acceptance rate close to  $\alpha^* = 0.234$
- (KAMH-LS) MCMC Kameleon with the global scaling  $\nu$  learned to bring the acceptance rate close to  $\alpha^*=0.234$



## UCI Glass dataset



mean comparison

8-dimensional non-linear posterior  $p(\theta|\mathbf{y})$ : no ground truth, performance with respect to a long-run, heavily thinned benchmark sample.

## UCI Glass dataset



comparison in terms of all mixed moments up to order 3

8-dimensional non-linear posterior  $p(\theta|\mathbf{y})$ : no ground truth, performance with respect to a long-run, heavily thinned benchmark sample.

## Synthetic targets

Banana:  $\mathcal{B}(b,v)$ : take  $X \sim \mathcal{N}(0,\Sigma)$  with  $\Sigma = \text{diag}(v,1,\ldots,1)$ , and set  $Y_2 = X_2 + b(X_1^2 - v)$ , and  $Y_i = X_i$  for  $i \neq 2$ . (Haario et al, 1999; 2001)



# Synthetic targets: convergence statistics



Moderately twisted 8-dimensional  $\mathcal{B}(0.03,100)$  target; iterations: 40000, burn-in: 20000

# Synthetic targets: convergence statistics



Strongly twisted 8-dimensional  $\mathcal{B}(0.1,100)$  target; iterations: 80000, burn-in: 40000

# Synthetic targets

**Flower**:  $\mathcal{F}(r_0, A, \omega, \sigma)$ , a *d*-dimensional target with:

$$egin{aligned} \mathcal{F}(x;r_0,A,\omega,\sigma) &\propto \ &\exp\left(-rac{\sqrt{x_1^2+x_2^2}-r_0-A\cos\left(\omega an2\left(x_2,x_1
ight)
ight)}{2\sigma^2}
ight) \ & imes \prod_{j=3}^d \mathcal{N}(x_j;0,1). \end{aligned}$$

Concentrates on  $r_0$ -circle with a periodic perturbation (with amplitude A and frequency  $\omega$ ) in the first two dimensions.



# Synthetic targets: convergence statistics



8-dimensional  $\mathcal{F}(10,6,6,1)$  target; iterations: 120000, burn-in: 60000



• A simple, versatile, gradient-free adaptive MCMC sampler



- A simple, versatile, gradient-free adaptive MCMC sampler
- Proposals automatically conform to the local covariance structure of the target distribution at the current chain state



- A simple, versatile, gradient-free adaptive MCMC sampler
- Proposals automatically conform to the local covariance structure of the target distribution at the current chain state
- Outperforms existing approaches on nonlinear target distributions

- A simple, versatile, gradient-free adaptive MCMC sampler
- Proposals automatically conform to the local covariance structure of the target distribution at the current chain state
- Outperforms existing approaches on nonlinear target distributions
- Future directions: tradeoff between the sub-sampling and convergence; samplers on non-Euclidean domains

- A simple, versatile, gradient-free adaptive MCMC sampler
- Proposals automatically conform to the local covariance structure of the target distribution at the current chain state
- Outperforms existing approaches on nonlinear target distributions
- Future directions: tradeoff between the sub-sampling and convergence; samplers on non-Euclidean domains

- preprint: http://arxiv.org/abs/1307.5302
- code: https://github.com/karlnapf/kameleon-mcmc

