Sterowanie Procesami Dyskretnymi

Tomasz Strama 226275

Adrian Sobieraj 226427

Sprawozdanie z laboratorium nr 1.

Flowshop:

Przygotowano trzy zestawy testowe dla wariantu z dwiema maszynami:

	I zestaw		II zestaw		III zestaw	
nr	maszyna	maszyna	maszyna	maszyna	maszyna	maszyna
zadania	1	2	1	2	1	2
1	11	8	4	8	5	3
2	3	5	9	1	6	4
3	10	3	3	4	2	6
4	3	5	10	2	3	10
5	5	7	6	7	9	8
6			2	5	7	5
7			1	12	5	11
8			5	6	8	4
9					5	4
10					3	8

Metodą przeglądu zupełnego wygenerowano wszystkie możliwe kombinacje ułożenia zadań, dla zestawu 5 prac uzyskano 5!, czyli 120 możliwości, dla zestawu 8 prac 8!, czyli 40320 możliwości, a dla zestawu 10 zadań otrzymano 10!, czyli 3628800 możliwości.

Dzięki temu można zauważyć, że najlepszy makespan uzyskały:

Dla zestawu I: Kombinacje z wynikiem 35

Dla zestawu II: Kombinacje z wynikiem 46

Dla zestawu III: Kombinacje z wynikiem 66

Algorytm Jonhsona wyznaczył następujące kolejności zadań:

Dla zestawu I: 2 4 5 1 3

Dla zestawu II: 7 6 3 1 8 5 4 2

Dla zestawu III: 3 4 10 9 7 5 6 8 2 1

Wyniki otrzymane za pomocą obu metod się pokrywają, ponieważ kombinacje wyznaczone przez Algorytm Johnsona są jednymi z tych, które osiągały najniższy makespan.

Algorytm Johnsona jest jednak korzystniejszym rozwiązaniem, ponieważ przy dużej ilości zadań jak np. w zestawie III, wygenerowanie wszystkich permutacji zajmuje dużo czasu.

Problem RPQ:

Przygotowano zestawy testowe składające się z 6, 10, 20, 50, 100 i 200 prac do wykonania.

Korzystając z metody przeglądu zupełnego generujemy wszystkie możliwe kombinacje kolejności zadań.

Pozwala to na porównanie i wybór najkorzystniejszego rozwiązania. Dla podanych zestawów testowych otrzymano następujące wartości makespan:

Dla zestawu 6 prac - 32

Dla zestawu 10 prac - 927

Metoda SortR

Metoda SortR wyznacza rozwiązanie sortując czasy przygotowania zadania.

Za pomocą tej metody uzyskano następujące wyniki

Dla zestawu 6 prac - 34

Dla zestawu 10 prac - 599

Dla zestawu 20 prac - 1103

Dla zestawu 50 prac - 1790

Dla zestawu 100 prac - 3789

Dla zestawu 200 prac - 7703

Dla zestawu 500 prac - 13952

Zestawienie optymalnych wyników dla powyższych zestawów:

6 prac - 32

10 prac - 641

20 prac - 1267

50 prac - 1492

100 prac - 3070

200 prac - 6398

Przegląd Zupełny pozwala na wgląd do wszystkich możliwych rozwiązań, jednak przy dużych sporych wejściowych zajmuje dużo czasu.

Metoda SortR nie zawsze podaje nam rozwiązanie o najlepszym makespan, jednak czas jej wykonywania jest o wiele krótszy niż w przypadku przeglądu zupełnego.