2020 年全国青少年信息学奥林匹克 浙江省队选拔赛第二试

竞赛时间: 6月21日9:00-14:00

题目名称	染色游戏	抽卡	密码
目录	game	straight	password
可执行文件名	game	straight	password
输入文件名	game.in	straight.in	password.in
输出文件名	game.out	straight.out	password.out
每个测试点时限	1s	5s	1s
内存限制	512MB	512MB	512MB
测试点数目	20	10	10
每个测试点分值	5	10	10
是否有部分分	否	否	否
题目类型	传统型	传统型	传统型
是否有附加文件	是	是	是

提交源程序必须加后缀

对于 C++ 语言	game.cpp	straight.cpp	password.cpp
对于 C 语言	game.c	straight.c	password.c
对于 Pascal 语言	game.pas	straight.pas	password.pas

编译开关

对于 C++ 语言	-O2 -lm	-O2 -lm	-O2 -lm
对于 C 语言	-O2 -lm	-O2 -lm	-O2 -lm
对于 Pascal 语言	-O2	-O2	-O2

1 染色游戏

1.1 题目描述

Alice 和 Bob 在玩一个染色游戏。游戏在一张 N 个点 $M(N-1 \le M \le N)$ 条边的连通图上进行, Bob 想要围住 Alice, 而 Alice 想要逃出 Bob 的包围。

游戏开始时,Alice 将 1 号点涂成了黑色表示占领了 1 号点,Bob 将点集 S 中的所有点涂成了白色表示占领了这 |S| 个点,保证 1 不在 S 中。接下来两个人轮流进行操作,由 Alice 先手,每轮中轮到的玩家可以从一个被自己占领的点出发 (对于 Alice 为黑色点对于 Bob 为白色点),选择一个相邻且未被染色的点,占领该点并染上自己的颜色。如果不存在可以染色的点,那么这位玩家必须跳过这个回合。当所有点都被染完色时,游戏结束。

Alice 和 Bob 约定了一个图中的非空点集 T,如果游戏结束时 T 中的点全都涂成白色,则代表 Bob 成功围住了 Alice,Bob 获胜。反之一定存在一个 T 中的点被涂成黑色,那么 Alice 获胜。注意这里的 T 可能会包含 S 中的点和 1 号点。

Alice 和 Bob 都会使用最优策略。Bob 注意到,在有些局面下,Alice 优势很大,如果能让 Alice 主动跳过 Alice 的一些行动回合来获得一个更加公平的局面,这个游戏会更有可玩性。Bob 想知道,如果 Alice 跳过前 k 个回合之后自己能够获胜,那么这个 k 的最小值是多少。Alice 只会跳过 Alice 的前 k 个回合,并且在剩下的回合中采用最优策略,即你可以理解为 Bob 在 Alice 的第一回合行动之前额外行动了 k 个回合。注意如果 Bob 在 Alice 跳过的一个回合中没有合法行动,那么 Bob 仍需按照规则跳过自己的回合。如果在原图上就是 Bob 获胜那么输出 0。如果 k=10000000 时 Bob 也不能取胜,则输出 10000000。

由于这个图可能很大,我们用如下的方式生成。

- 首先生成一个含有标号为 1 到 n 一共 n 个点的空图。
- 接下来加入 m 条链, 第 i 条链记作 (u_i, v_i, l_i) , 其中 $1 \le u_i, v_i \le n$ 且 $u_i \ne v_i$ 。
 - 首先我们加入 l_i 个点,记作 $x_1^i, x_2^i, \ldots, x_{l_i}^i$ 。
 - 然后在 $(u_i, x_1^i), (x_1^i, x_2^i), (x_2^i, x_3^i), \dots, (x_{l-1}^i, x_{l}^i), (x_{l}^i, v_i)$ 之间连上无向边。
 - 在这次操作之后,本轮中新加入的 l_i 个点不会再与其他的点之间连边,即不同的链中的 $x_1^i \dots x_{l_i}^i$ 均为互不相同的点。特别地,如果 l=0,那么就不添加新点,直接在 (u_i,v_i) 之间连上无向边。

保证 S 集合以及 T 集合的点均为一开始生成的 n 个点之一。

1.2 输入格式

第一行输入一个整数 C,表示数据组数。

对于每组数据:

- 第一行输入四个整数 $n, m, |S|, |T| (1 \le |S| \le n 1, 1 \le |T| \le n, n 1 \le m \le n)$.
- 接下来 m 行每行输入 3 个非负整数 $u_i, v_i, l_i (1 \le u_i, v_i \le n, 0 \le l_i \le 10^6)$,表示题面中的 第 i 条链。

- 接下来一行输入 |S| 个数 $s_1 \dots s_{|S|}$ 表示 S 集合中的所有元素 $(2 \le s_i \le n$ 且不重复)。
- 接下来一行输入 |T| 个数 $t_1 ... t_{|T|}$ 表示 T 集合中的所有元素 $(1 \le t_i \le n$ 且不重复)。

即每组数据按照如下格式输入:

 $n \ m \ |S| \ |T|$ $u_1 \ v_1 \ l_1$ $u_2 \ v_2 \ l_2$ \dots $u_m \ v_m \ l_m$ $s_1 \ s_2 \ \cdots \ s_{|S|}$ $t_1 \ t_2 \ \cdots \ t_{|T|}$

保证 $u_i \neq v_i$ (即没有自环), 保证没有相同的 (u_i, v_i) 对 (即没有重边), 保证给出的图是一个连通图。

1.3 输出格式

输出 T 行,对于每组测试数据,输出为了让 Bob 取胜 Alice 至少要跳过的回合数 k。如果 在原图上就是 Bob 获胜那么输出 0。如果 k=1000000 时 Bob 也不能取胜,则输出 1000000。

1.4 样例输入 1

3 5 0

```
4 5
2 3
8 8 1 2
1 2 2
2 3 1
3 4 0
4 5 0
5 6 0
6 7 0
7 2 1
5 8 0
8
3 7
8 8 1 2
1 2 3
2 3 0
3 4 0
4 5 0
5 6 0
6 7 0
7 2 0
5 8 0
```

1.5 样例输出 1

8 3 7

1.6 样例输入输出 2

见下发文件

1.7 数据范围与约定

测试点	n	m	其他约定	
1	无	=n-1	图为一条链	
2		=n-1	无	
3			$l_i = 0$	
4	12	=n-1 或 n	$\iota_i = 0$	
5			无	
6			<i>)</i> L	
7	=5			
8	=6		无	
9	=8			
10		无 $=n$ $=n$ $=n-1$ 或 n	图为一个环	
11			环上一定存在至少两个白色点即 S 中的点	
12			环上一定存在至少一个白色点即 S 中的点	
13			环上一定存在至少一个 T 中的点	
14				NT 711/ET2
15	无		T =1	
16			S = 1	
17				
18				
19		无		
20				

对于 100% 的数据, m=n 或 n-1, $3\leq n\leq 500$, C=10000, $0\leq l_i\leq 10^6$, $1\leq |S|\leq n-1, 1\leq |T|\leq n$ 且保证图中不存在点数(只计算前 n 个点的数量)大于 100 的环,每个测试点中最多只有 10 组数据满足 n>50,最多只有 1000 组数据满足 n>20。

2 抽卡

2.1 题目描述

Bob 喜欢抽卡。

Bob 最近入坑了一款叫"主公连结"的抽卡游戏。游戏中共有 n 个不同的角色,编号为 $1 \sim n$ 。当 Bob 获得其中的编号连续的 k 张卡时,就可以组出理论最强阵容。

当期卡池中共有m张不同的卡,每次抽卡,Bob都可以等概率随机获得一张卡池中的卡。如果Bob抽到了一张他已经拥有的卡,那么什么事都不会发生,等于Bob浪费了这次抽卡机会。Bob是个谨慎的人,他想知道,如果他不停地抽卡直到抽到编号连续的k张卡时停止抽卡,期望需要抽多少轮。

2.2 输入格式

第一行输入两个整数 m,k。

第二行输入 m 个两两不同的整数 a_1, a_2, \dots, a_m ,表示卡池中有哪些角色。

题面中的 n 即为最大的 a_i 的值。

2.3 输出格式

输出一行一个整数,代表期望轮数对 p=998244353 取模后的结果。即,如果期望轮数的最简分数表示为 $\frac{a}{b}$,你需要输出一个整数 c 满足 $c\times b\equiv a\pmod{p}$

2.4 样例输入 1

3 2

1 2 3

2.5 样例输出 1

499122180

2.6 样例解释 1

如果第一轮抽到的是 2 号卡,那么期望需要抽 $1+\frac{3}{2}$ 轮;如果第一轮抽到的是 1 号卡或 3 号卡,那么期望需要抽 1+3 轮。故答案为 $\frac{1}{3}(1+\frac{3}{2})+\frac{2}{3}(1+3)=3.5$

2.7 样例输入 2

10 2

2.8 样例输出 2

839792873

2.9 数据范围与约定

对于前 10% 的数据, $m \le 10$ 。

对于另外 10% 的数据, $m \le 500$ 且 k = m - 1。

对于另外 10% 的数据, $m \le 500$ 且保证有且仅有一组理论最强阵容。

对于另外 10% 的数据, $m \le 500$ 且保证任意两组可抽出的理论最强阵容不交。

对于前 50% 的数据, $m \le 500$ 。

对于前 70% 的数据, $m \le 5000$ 。

对于另外 10% 的数据, k=5。

对于另外 10% 的数据, k = 2000。

对于 100% 的数据, $1 \le m \le 200000, 1 \le a_i \le 2m, 2 \le k \le m$,保证卡池中至少存在一组可抽出的理论最强阵容(即编号连续的 k 张卡)。

3 密码

3.1 题目描述

Bob 喜欢 Alice。

Alice 和 Bob 想要进行加密通信,于是他们自己设计了一套加密算法进行身份验证。你知道这个加密算法并不可靠,并截获了 Alice 和 Bob 之间的信息。现在你想要恢复出 Alice 的密钥。

Alice 和 Bob 约定了一个大质数 p, 一个随机范围值 err 和一个在 $0 \sim p-1$ 之间均匀随机 生成的整数密钥 x。其中 p 和 err 的值是公开的,而 x 的值只有 Alice 和 Bob 知道。

当 Bob 想要确认 Alice 的身份时,Bob 会生成 m 个在 $0 \sim p-1$ 之间均匀随机生成的 a_i 并发给 Alice。对于每个 a_i ,Alice 会返回给 Bob a_ix 模 p 的值。为了防止窃听,Alice 会给结果加上一个在 $-\lceil \frac{err}{2} \rceil$ 到 $\lceil \frac{err}{2} \rceil$ 之间均匀随机生成的扰动。

即, Alice 会返回给 Bob m 组形如 $a_i x + b \equiv c_i \pmod{p}$ 的等式,其中 b 为一个不公开的在 $-\lceil \frac{err}{2} \rceil$ 到 $\lceil \frac{err}{2} \rceil$ 之间均匀随机生成的数, a_i 为随机生成的数, a_i, p, err, c_i 为公开的数。

你获得了 Alice 返回的这 m 组等式 (即 $m \land a_i$ 和 c_i), 你需要求出 x 的值。

3.2 输入格式

第一行输入一个整数 T,表示数据组数。

对于每组数据,第一行输入三个整数 m, p, err。接下来 m 行,每行两个整数 a_i, c_i 。符号的含义和题面中相同。

3.3 输出格式

输出 T 行,对于每组测试数据,输出一个 0 到 p-1 之间整数表示答案。数据保证有解并且解唯一。

3.4 样例输入输出 1

见下发文件。该样例满足题目中提到的所有随机生成的性质。

3.5 数据范围与约定

对于前 10% 的数据,满足 $err \leq 10^6$ 。

对于前 20% 的数据,满足 $err \leq 10^8$ 。

对于前 30% 的数据,满足 $err \le 10^{11}$ 。

对于前 40% 的数据,满足 $err < 10^{12}$ 。

对于另外 20% 的数据,满足 $p \le 10^{16}, m = 2000$ 。

对于 100% 的数据,满足 $10^{15} \le p \le 10^{18}, 50 \le m \le 2000, 1 \le err \le 0.01p, 1 \le T \le 5, 0 \le a_i, c_i \le p-1$,保证 p 为素数。

3.6 关于 128 位整数

最终评测时不支持 __int128, 如有需要请使用其他方式手动实现 128 位整数,由此造成的编译错误后果自负。