MORE OSCILLATORS AND MORE INFORMATION THEORY

Pedro A.M. Mediano

Computational Neurodynamics Group
Department of Computing

pmediano@ic.ac.uk

Imperial College, London

METASTABILITY

KURAMOTO OSCILLATORS

$$\frac{d\theta_{i}}{dt} = \omega + \frac{1}{\kappa + 1} \sum_{i} K_{ij} \sin(\theta_{i} - \theta_{i} - \alpha)$$

- \blacktriangleright We'll manipulate the *phase lag* α
 - \rightarrow Which we'll often reparametrise as $\beta = \pi/2 \alpha$

KURAMOTO OSCILLATORS

We say that the system has two attractors.

- ▶ Large $\alpha \approx \pi$ leads to a desynchronised phase
- ▶ Small $\alpha \approx$ 0 leads to a hypersynchronised phase

NETWORKS OF KURAMOTO OSCILLATORS

NETWORKS OF KURAMOTO OSCILLATORS

Strong community structure:

- ► Dense coupling
- Stronger connections

Weak diffuse connections:

- ► Uniform, random
- ► Sparse and weak

SYNCHRONISATION

▶ We define the order parameter

$$R_c(t) = \left| \langle e^{i\, heta_j(t)}
angle_{j\in c}
ight|$$

- ► This measure is
 - Instantaneous: one value per timestep
 - ▶ Local: one value per community.
- ▶ We will often use **global synchrony**, defined as

$$\xi = \langle R_c(t) \rangle_{c,t}$$

SYNCHRONISATION (ξ)

There is a **phase transition**:

- The system changes from ordered to disordered
- ► The narrow transitions represent a critical regime

CHIMERALITY

► Chimera state: the system spontaneously partitions into synchronised and desynchronised subsets.

CHIMERALITY

► Chimera state: the system spontaneously partitions into synchronised and desynchronised subsets.

How well do synchrony and desynchrony coexist?

CHIMERALITY

► Chimera state: the system spontaneously partitions into synchronised and desynchronised subsets.

How well do synchrony and desynchrony coexist?

METASTABILITY

► **Metastable state**: the system remains in a mixed state, in the vicinity of basins of attraction but never falling in.

METASTABILITY

► **Metastable state**: the system remains in a mixed state, in the vicinity of basins of attraction but never falling in.

How much do groups fluctuate in and out of synchrony?

METASTABILITY AND CHIMERALITY

A MATHEMATICAL DEFINITION

► Chimera index: spatial variance of synchronisation,

$$\chi = \langle \operatorname{var}_c R_c(t) \rangle_{t \in T}$$
.

► **Metastability**: temporal variance of synchronisation,

$$\lambda = \langle \operatorname{var}_t R_c(t) \rangle_{c \in C} .$$

PHASE TRANSITIONS

EVEN BETTER!

The critical regions are strongly metastable.

METASTABILITY (λ) AND CHIMERALITY (χ)

METASTABILITY AND CHIMERALITY

WHAT DO THEY MEAN?

 Coalition formation is metastable. Coalitions arise, are temporarily stable, and then break up as new coalitions form.

► This sort of dynamical system will be capable of visiting a large repertoire of states.

EFFECTIVE FREQUENCY

- Synchronisation is not the only interesting quantity!
- ► We can investigate *effective frequency* i.e. how fast do oscillators actually move.

$$\Omega_i(t) = \left. rac{d heta_i}{dt'}
ight|_{t'=t} - \omega_i$$
 $ar{\Omega} = \left< \Omega_i(t)
ight>_{t,i}$ $\Delta\Omega = \mathsf{var}_i \left< \Omega_i(t)
ight>_t$

EFFECTIVE FREQUENCY

INTEGRATED INFORMATION

WHAT IS INTEGRATED INFORMATION?

- Consciousness "emerges from bits of information."
- From philosophical axioms, to an informational measure of conscious level.
- We're not making claims about consciousness here.
 - → Still a valid measure of dynamical complexity.

Giulio Tononi

INFORMATION THEORY

► Information Theory is a powerful tool to study complex systems.

INFORMATION THEORY

- ► Information Theory is a powerful tool to study complex systems.
- ▶ It is substrate-independent i.e. all phenomena are reduced to *bits*.

- ► Information Theory is a powerful tool to study complex systems.
- ► It is substrate-independent i.e. all phenomena are reduced to bits.
- ▶ It operates on *probability distributions*.
 - \rightarrow Not what the state of the system *is*, but what it *could be*.

INFORMATION THEORY

- Information Theory is a powerful tool to study complex systems.
- It is substrate-independent i.e. all phenomena are reduced to bits.
- ▶ It operates on *probability distributions*.
 - \rightarrow Not what the state of the system *is*, but what it *could be*.

Caveat:

- ► Estimating continuous PDF's is often a hard problem.
- ▶ 256 real-valued phases is way too hard to do IT-things.

PAIRWISE SYNCHRONY

► When two communities are highly internally synchronised they tend to be highly synchronised with each other.

PAIRWISE SYNCHRONY

► When two communities are highly internally synchronised they tend to be highly synchronised with each other.

► Working hypothesis: we characterise the whole network by the internal synchrony of each module.

COALITIONS

 Manipulating discrete variables yields much easier calculations.

COALITIONS

- Manipulating discrete variables yields much easier calculations.
- ▶ We'll take the *coalitions* as our informational state:

$$X_c(t) = \begin{cases} 1 & \text{if } R_c(t) > \gamma \\ 0 & \text{otherwise} \end{cases}$$

Where γ is the *coalition threshold*.

COALITIONS

- Manipulating discrete variables yields much easier calculations.
- ▶ We'll take the *coalitions* as our informational state:

$$X_c(t) = \begin{cases} 1 & \text{if } R_c(t) > \gamma \\ 0 & \text{otherwise} \end{cases}$$

Where γ is the *coalition threshold*.

- Under this assumption the state of the system is reduced to 8 binary variables.
 - → Not always the case, but still a good proxy.

- Measures uncertainty associated with a variable X.
- Measures the size of the repertoire of states visited by the system.

$$H(X) = \sum_{i} p(x_i) \log p(x_i)$$

- Measures uncertainty associated with a variable X.
- Measures the size of the repertoire of states visited by the system.

$$H(X) = \sum_{i} p(x_i) \log p(x_i)$$

▶ Is maximal for the uniform distribution.

- Measures uncertainty associated with a variable X.
- Measures the size of the repertoire of states visited by the system.

$$H(X) = \sum_{i} p(x_i) \log p(x_i)$$

▶ Is maximal for the uniform distribution.

How spread is the distribution of X?

► A synchronised system is always in the "all 1's" coalition.

$$\rightarrow H_C = 0$$

► A desynchronised system is always in the "all 0's" coalition.

$$\rightarrow H_C = 0$$

► A critical system explores all possible states.

$$\rightarrow H_C \approx \log |X|$$

► A synchronised system is always in the "all 1's" coalition.

$$\rightarrow H_C = 0$$

► A desynchronised system is always in the "all 0's" coalition.

$$\rightarrow H_C = 0$$

► A critical system explores all possible states.

$$\rightarrow H_C \approx \log |X|$$

MUTUAL INFORMATION

- ► Measures interdependence between two variables.
- ► Technically, measures similarity between the *joint* p(x, y) and the *marginals* p(x)p(y)
- ▶ Is null when X and Y are independent.

$$MI(X; Y) = H(X) - H(X|Y)$$

MUTUAL INFORMATION

- ► Measures interdependence between two variables.
- ► Technically, measures similarity between the *joint* p(x, y) and the *marginals* p(x)p(y)
- ▶ Is null when X and Y are independent.

$$MI(X; Y) = H(X) - H(X|Y)$$

How does knowing X reduce your uncertainty about Y?

COALITIONS AND ENTROPY

- Measures uncertainty associated with a variable X.
- Measures the size of the repertoire of states visited by the system.

$$H(X) = \sum_{i} p(x_i) \log p(x_i)$$

Is maximal for the uniform distribution.

How spread is the distribution of X?

COALITIONS AND ENTROPY

- Measures uncertainty associated with a variable X.
- Measures the size of the repertoire of states visited by the system.

$$H(X) = \sum_{i} p(x_i) \log p(x_i)$$

Is maximal for the uniform distribution.

How spread is the distribution of X?

What's the maximum information X could possibly have about anything?

MUTUAL INFORMATION

▶ Effectively, the building block of integrated information Φ .

$$\varphi[X;\tau,\mathcal{P}] = MI(X_{t-\tau},X_t) - \sum_{k=1}^{p} MI(M_{t-\tau}^k,M_t^k)$$

(Tononi 2008)

▶ Effectively, the building block of integrated information Φ .

$$\varphi[X;\tau,\mathcal{P}] = MI(X_{t-\tau},X_t) - \sum_{k=1}^{p} MI(M_{t-\tau}^k,M_t^k)$$

How much predictive information do you lose if you split the system in *p* parts?

(Tononi 2008)

► Scan all possible partitions of *X*

- ► Scan all possible partitions of *X*
- Select the one with minimum φ/K

- ► Scan all possible partitions of *X*
- Select the one with minimum φ/K
- ▶ That partition's φ is the system's Φ

000

(WITH MATHS)

$$\begin{split} \varPhi[X,\tau] &= \varphi[X;\tau,\mathcal{B}^{\mathrm{MIB}}] \\ \mathcal{B}^{\mathrm{MIB}} &= \arg_{\mathcal{B}} \min \frac{\varphi[X;\tau,\mathcal{B}]}{K(\mathcal{B})} \\ \mathcal{K}(\mathcal{B}) &= \min \left\{ H(M^1), H(M^2) \right\}, \end{split}$$

If you were to split the system where you lose the least predictive information, how much would you lose?

Building Φ

(WITH MATHS)

If you were to split the system where you lose the least predictive information, how much would you lose?

INTEGRATED INFORMATION

Completely legitimate question:

Aren't we losing information by using only the coalitions?

Completely legitimate answer:

Probably.

Two natural candidates:

- ▶ Non-parametric estimators, i.e. KSG.
- ▶ Linear-Gaussian estimators, i.e. Barrett & Seth's Φ_{AR} .

Scatter plots reveal non-linear correlation between modules.

 \rightarrow The validity of Φ_{AR} might be compromised

DISCUSSION