

EVIDENCIA # 4 MÉTODOS ESTADÍSTICOS

MET. ALEJANDRA CERDA

NOMBRES: Jennifer Priscila de León Flores y Valeria Guadalupe García Salazar

Considere los siguientes datos sobre cajas almacenadas x y el tiempo en minutos y :

х	У
25	10.15
6	2.96
8	3
17	6.88
2	0.28
13	5.06
23	9.14
30	11.86
28	11.69
14	6.04
19	7.57
4	1.74
24	9.38
1	0.16
5	1.84

a. Realice un análisis de regresión y complete la tabla de modelos linealizables correspondiente a los datos. Identifique el mejor modelo justificando dicha elección.

	TABLA DE MODELOS LINEALIZABLES						
		. Modelo lineal		Prueba de signi			
MODELO	Ecuación estimada	asociado	Hipótesi s	p valor	Conclusión	R ²	
Lineal	y estimada= 0.093+0.4071x	****	H ₀ :B ₁ =0 H _a :B ₁ dif de 0	6.79701 E-16	Regresión significativ a, B ₁ dif de 0	99.47 %	
Potencia	y estimada= 0.9119x ^{0.4071}	y=- 1.616+1.2513x	$H_0:B_1=0$ $H_a:B_1$ dif de 0	1.69108E -10	Regresión significativa , B ₁ dif de 0	96.44 %	
Exponenci al	y estimada=0.68440e ^{0.1141}	y=- 0.3792+0.114 1x	$H_0:B_1=0$ $H_a:B_1$ dif de 0	7.92292E -05	Regresión significativa , B ₁ dif de 0	73.93 %	
Logaritmo	y estimada=- 2.6216169+3.6507654ln (x)	y=- 2.6261+3.650 7x	H ₀ :B ₁ =0 H _a :B ₁ dif de 0	8.55441E -07	Regresión significativa , B ₁ dif de 0	86.87 %	

Recíproco	y estimada=x/- 0.3330235x-6.5776643	y=- 0.333+6.577x	H ₀ :B ₁ =0 H _a :B ₁ dif de 0	1 / 1 / 1 / 1 / 1	Regresión significativa , B ₁ dif de 0	96.44 %	
-----------	--	---------------------	---	-------------------	---	------------	--

Se eligió el modelo lineal ya que el coeficiente de determinación es más alto que los demás.

b. Calcule los intervalos de confianza del 95% para los parámetros de la regresión elegida y comente al respecto.

	Intervalo		
	Li	Ls	
В			<muestra de<="" evidencia="" th=""></muestra>
B ₀	-0.40393581	0.2164242	regresión al origen
			<x afecta="" de="" manera="" positiva<="" th=""></x>
B_1			Υ
	0.38934571	0.42486742	

c. En caso de existir evidencia de regresión al origen recalcule la ecuación de regresión bajo el modelo elegido y realice la prueba de significancia.

Modelo lineal

La ecuación sería y=0.402618x

d. Grafique los datos x vs y sobreponiendo la ecuación del modelo elegido.

х	у	y nueva
25	10.15	10.065
6	2.96	2.4156
8	3	3.2208
17	6.88	6.8442
2	0.28	0.8052
13	5.06	5.2338
23	9.14	9.2598
30	11.86	12.078
28	11.69	11.2728
14	6.04	5.6364
19	7.57	7.6494
4	1.74	1.6104
24	9.38	9.6624
1	0.16	0.4026
5	1.84	2.013

e. Analice el cumplimiento de supuestos de los residuales incluyendo gráficas y comentarios al respecto

Media cero y distribución normal

H0: Los residuales provienen de población normal con media cero

Ha: Los residuales provienen de alguna otra distribución

# clases	4	
MIN	-0.525237158	
Max	0.544288525	
Rango	1.069525683	
ancho	0.267381421	0.2674

MEDIA	0	
DESV EST	0.29739036	

			Frecuenci			
Clases	Li	Ls	а	Probabilidad	Esperado	Cociente
	-					
	0.52523715				2.8945689	
1	8	-0.257837158	2	0.192971266	9	0.2764673
	-					
	0.25783715				4.7978228	1.0107885
2	8	0.009562842	7	0.319854854	1	5
	0.00956284				4.6699119	0.5971431
3	2	0.276962842	3	0.311327461	1	3
	0.27696284				2.6376962	0.0497646
4	2	0.544362842	3	0.175846419	8	3

EP	1.934163605	
X ² de tabla	5.991464547	

Región de rechazo:

Rechazo H₀ si EP=1.93>X² de tabla=5.99

No rechazo H₀

Los residuales provienen de distribución normal con media cero con una confianza del 95%

Varianza constante

Dada la gráfica, no se aprecian patrones visibles, por lo que se cumple el supuesto de varianza constante

<u>Incorrelación</u>

Residuos	Residuos^2	Restas	Restas^2
0.08453552	0.007146254		
0.54428852	0.296249998	0.459753005	0.21137283
-0.22094863	0.048818299	-0.765237158	0.58558791
0.03548415	0.001259125	0.256432787	0.06575777
-0.52523716	0.275874073	-0.560721311	0.31440839
-0.17404153	0.030290454	0.351195628	0.12333837
-0.12022732	0.014454609	0.053814208	0.00289597
-0.21855738	0.047767327	-0.098330055	0.0096688
0.41667978	0.17362204	0.635237158	0.40352625
0.40333989	0.162683067	-0.013339891	0.00017795
-0.07975301	0.006360542	-0.483092896	0.23337875
0.12952568	0.016776903	0.209278689	0.04379757
-0.2828459	0.080001804	-0.412371585	0.17005032
-0.24261858	0.058863775	0.040227322	0.00161824
-0.1730929	0.029961151	0.069525683	0.00483382

H₀: Los residuales están incorrelacionados

Ha: Los supuestos están correlacionados

EP 1.73615059

α=0.05				
n	dL	dU		
15	1.08	1.36		
20	1.2	1.41		

EP>dL EP>dU

Como EP>du>dL

No rechazo H₀, con 95% de confianza los residuos están incorrelacionados, es decir son independientes

Conclusión: Los residuales cumplen los supuestos del modelo.

f. Calcule los residuales y residuales estandarizados del modelo elegido e indique la presencia de datos atípicos.

Observación	Pronóstico y	Residuos	Residuos estándares
1	10.06546448	0.08453552	0.29282447
2	2.415711475	0.54428852	1.885373157
3	3.220948634	-0.22094863	-0.7653489
4	6.844515847	0.03548415	0.122914349
5	0.805237158	-0.52523716	-1.819380705
6	5.23404153	-0.17404153	-0.602866337
7	9.260227322	-0.12022732	-0.416458103
8	12.07855738	-0.21855738	-0.757065772
9	11.27332022	0.41667978	1.443346386
10	5.636660109	0.40333989	1.397138041
11	7.649753005	-0.07975301	-0.276258214
12	1.610474317	0.12952568	0.448666902
13	9.662845902	-0.2828459	-0.979756226
14	0.402618579	-0.24261858	-0.840411907
15	2.013092896	-0.1730929	-0.599580343

Sin evidencia de datos atípicos, ya que el valor absoluto de los residuales no es mayor a 3

g. Considerando el modelo elegido finalmente, estime el tiempo de abastecimiento cuando la cantidad de cajas es de 7

El tiempo estimado seria de 2.8183301 minutos