SmartConnected.World 2018 ALEXPO KOREA 2018

# #Session 3. Monte Carlo Policy Evaluation & Q-Learning

김진호

경희대학교 빅데이터연구센터 경희대학교 소셜네트워크과학과

### Maze Problem

| ?     |       |       |       |       |
|-------|-------|-------|-------|-------|
|       | (1,2) | (1,3) |       | Trap  |
| (2,1) |       | (2,3) | (2,4) | (2,5) |
| (3,1) |       |       |       | (3,5) |
| (4,1) | (4,2) | (4,3) |       |       |
|       |       | (5,3) | (5,4) | Goal  |

- Trap을 피해 Goal에 도달하는 것
- 어떻게, 목표를 달성하는 Agent를 설계할 수 있을까?
- $S_t$ : Position of Agent at time t, ex. (1,1)
- $A_t$ : Possible Move on the  $S_t$ , ex. (Left, Down)
- $R_t$ : Goal = 100, Trap = -100, otherwise 0
- Policy?
  - $S_t$  에서 최적의 Action  $A_t^*$ 를 찾는 것

### Maze Problem

| ?     | (1,2) | (1,3) |       | Trap  |
|-------|-------|-------|-------|-------|
| (2,1) |       | (2,3) | (2,4) | (2,5) |
| (3,1) |       |       |       | (3,5) |
| (4,1) | (4,2) | (4,3) |       |       |
|       |       | (5,3) | (5,4) | Goal  |

- 지금까지 본 내용으로는,
  - 매 순간 최선을 다한 행동에 대해 평가를 하고,
  - 이를 학습해서 좋은 행동은 더 많이,
  - 이를 학습해서 <u>나쁜 행동은 더 적게</u>
  - 매 순간 Action에 대한 Reward의 합을 통해,
  - 최종 Reward의 합이 최대가 되게!
- Reward는 Goal, Trap에 대해서만 발생한다!
  - 매 순간의 Reward는 어떻게 추산할까..

### Maze Problem

| ?     | (1,2) | (1,3) |    | Trap  |
|-------|-------|-------|----|-------|
| (2,1) |       | (2,3) |    | (2,5) |
| (3,1) |       |       |    | (3,5) |
|       | (4,2) | (4,3) | JI |       |
|       |       | (5,3) |    | Goal  |

- Reward를 추산하기 힘드니! 겪어보자!
  - 일단 미로를 돌아다니게 해서
  - Goal에 도달하면 어쨌든, 좋은 행동
  - Trap에 도달하면 어쨌든, 나쁜 행동
- 충분히 많이 Sampling을 하면, 어느정도 되지 않을까?
  - Monte Carlo Simulation
  - Monte Carlo Policy Evaluation



### MCPE

## Monte Carlo Policy Evaluation

Sampling을 통해 다양한 경로의 움직임을 학습하고, 각 State에 대한 Policy의 가치를 학습하여, 최적의 Policy를 도출하자

### MCPE, Reward

| ?     | (1,2) | (1,3) |       | Trap  |
|-------|-------|-------|-------|-------|
| (2,1) |       | (2,3) | (2,4) | (2,5) |
| (3,1) |       |       |       | (3,5) |
| (4,1) | (4,2) | (4,3) |       |       |
|       |       | (5,3) |       | Goal  |

- Reward with Discount Factor  $\gamma$ 
  - 100 steps만에 도착한 Agent
  - 8 steps만에 도착한 Agent
  - 차이를 주고 싶은데 ..

$$R = 100 - x$$

- x는 Agent가 goal에 도착했을 때, Step의 수
  - 100 steps만에 도착하였으면, *R* = 0
  - 8 steps 만에 도착하였으면, *R* = 92
- Trap에 도착한 경우, *R* ← -R = -100 + *x*

### MCPE, Discount Factor



- Reward with Discount Factor  $\gamma$ 
  - 그림과 같이 도달한 경우, *R* = 92 (= 100 − 8)
  - (1,1), Down의 가치와, (5,4), Right 가치는 같을까?

• 
$$V((5,4), \mathbb{R}) = \gamma R = 0.7 \times 92 = 64.4$$

• 
$$V((5,3), \mathbb{R}) = \gamma^2 R = 0.7^2 \times 92 = 45.08$$

• 
$$V((4,3),D) = \gamma^3 R = 0.7^3 \times 92 \approx 31.56$$

• 
$$V((1,1),D) = \gamma^8 R = 0.7^8 \times 92 \approx 5.30$$



### MCPE, Value Table & Policy Table



### MCPE, Pseudo Code

#### $MC\_EVALUTAION(MDP, \pi, \gamma)$

Inputs policy  $\pi$ 

discount factor  $\gamma$ 

Output value function  $V^{\pi}$ 

Initialize V = 0

repeat

- 1. initialize  $s, \tau, \rho$
- 2. while  $s \notin T$  do
  - (a) let  $\tau = \tau \cup \{s\}$
  - (b) take action  $a = \pi(s)$
  - (c) observe reward r and next state s'
  - (d) for all  $s \in \tau$ , let  $\rho(s) = \rho(s) + r$
  - (e) let s = s'
- 3. for all  $s \in \tau$ ,  $V(s) = \gamma \cdot \rho(s)$

forever

### MCPE

## Python Code

### **MCPE**

• Goal: Learn  $v_{\pi}$  from episodes of experience under policy  $\pi$ 

$$S_1, A_1, R_2, \dots, S_k \sim \pi$$

• Recall that the return is the total discounted reward:

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

• Recall that the value function is the expected return:

$$v_{\pi}(s) = \mathbb{E}[G_t | S_t = s]$$



• Monte-Carlo policy Evaluation uses empirical mean return instead of expected return

### MCPE, First-Visit Monte-Carlo Policy Evaluation

- To evaluate state s
- The first time-step t that state s is visited in an episode,
- Increment counter  $N(s) \leftarrow N(s) + 1$
- Increment total retrun  $S(s) \leftarrow S(s) + G_t$
- Value is estimated by mean return V(s) = S(s)/N(s)
- By law of large numbers,  $V(s) \to v_{\pi}(s)$  as  $N(s) \to \infty$

$$\mu_k = \frac{1}{k} \sum_{j=1}^k x_j$$

$$= \frac{1}{k} \left( x_k + \sum_{j=1}^{k-1} x_j \right)$$

$$= \frac{1}{k} \left( x_k + (k-1)\mu_{k-1} \right)$$

$$= \mu_{k-1} + \frac{1}{k} \left( x_k - \mu_{k-1} \right)$$

- Update V(s) incrementally after episode  $S_1, A_1, R_2, ..., S_T$
- For each state  $S_t$  with retrun  $G_t$

$$N(S_t) \leftarrow N(S_t) + 1$$

$$V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} (G_t - V(S_t))$$

 In non-stationary problems, it can be useful to track a running mean, i.e. forget old episodes.

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$$

### MCPE, w/ Exploration

#### Policy Table

| State | U    | D | L    | R    |
|-------|------|---|------|------|
| (5,4) | -    | 1 | 0.98 | 0.02 |
| (5,3) | 0.03 | - | 0.97 | -    |
| 1     |      |   |      |      |

0.84

0.16

Global optimum



- Problem of Greedy Policy Improvement
  - Local Optimum
- $\varepsilon$ -greedy
  - Simplest idea for ensuring continual exploration
  - All m actions are tried with non-zero probability
  - With probability  $1 \varepsilon$ , choose the greedy action
  - With probability  $\varepsilon$ , choose an action at random

$$\pi(a|s) = \begin{cases} \frac{\varepsilon}{m} + 1 - \varepsilon & \text{if } a^* = \arg\max_{a \in A} Q(s, a) \\ \frac{\varepsilon}{m} & \text{otherwise} \end{cases}$$

(1,1)



| ?     | (1,2) | (1,3) |       | Trap  |
|-------|-------|-------|-------|-------|
| (2,1) |       | (2,3) | (2,4) | (2,5) |
| (3,1) |       |       |       | (3,5) |
| (4,1) | (4,2) | (4,3) |       | Open  |
|       |       | (5,3) | (5,4) | Goal  |

- MCPE는 과연 어떤 길을 찾아갈까?
- 최적화된 길을 가기 위해서는 어떤 방법이 좋을까?
  - MCPE는 Policy를 학습하니까..
  - 그러고, Policy에 의해 Action을 탐색하니까..
  - Policy에 의한 Action까지 학습하면 어떨까?!
- Q-Learning,
  - $Q(S_t, A_t)$ , 해당 state에서 해당 Action에 대한 값

주어진 State에서 주어진 Action에 의한 Reward의 기대값을 예측하는 함수 Q, Q를 학습함으로써, 최적의 정책을 학습하는 기법

.. Model FREE!! Algorithm



- 현재 위치에서,
  - 움직일 수 있는 후보지를 탐색한다.
  - 높은 Reward를 갖는 후보지로 이동한다.
  - 학습한다.
- (5,4)에서는 Right가 최적의 움직임이다.
  - Q((5,4),R)에 좋은 값을 넣어주자.
  - 그러고 따라간다.
- Goal에 도달하여 Episode 종료!



- 처음부터 돌다니면서,
  - 움직일 수 있는 후보지를 탐색한다.
  - 어차피 빈칸이니, 큰 값이 없어 랜덤하게..
- (5,3)에 도착하였더니, (5,4), R에 큰 값이 있다.
  - (5,4) 로 갈 수 있도록,
  - Q((5,3),R)에 좋은 값을 넣어주자.
- (5,4)에 도착하였더니, 이미 갈 길이 정해져있다.
  - 골에 도달하였다!
  - Episode 종료



- 처음부터 돌다니면서,
  - 움직일 수 있는 후보지를 탐색한다.
  - 어차피 빈칸이니, 큰 값이 없어 랜덤하게..
- (4,3)에 도착하였더니, (5,3), R에 큰 값이 있다.
  - (5,3) 로 갈 수 있도록,
  - Q((4,3),D)에 좋은 값을 넣어주자.
- (5,3)에 도착하였더니, 이미 갈 길이 정해져있다.
- (5,4)에 도착하였더니, 이미 갈 길이 정해져있다.
  - 골에 도달하였다!
  - Episode 종료



| Trajectory                                                                           | Q-Learning                           |
|--------------------------------------------------------------------------------------|--------------------------------------|
| (5,4) →(5,5)                                                                         | Q((5,4),L) = Reward = 100            |
| $(5,3) \rightarrow (5,4) \rightarrow (5,5)$                                          | Q((5,3),L)=0.7max(Q((5,3),a))=70     |
| $(4,3) \rightarrow (5,3) \rightarrow (5,4)$<br>$\rightarrow (5,5)$                   | Q((4,3),D) = 0.7max(Q((5,3),a))=49   |
| $(4,2) \rightarrow (4,3) \rightarrow (5,3)$<br>$\rightarrow (5,4) \rightarrow (5,5)$ | Q((4,2),L) = 0.7max(Q((4,3),a))=34.3 |

- 최적화된 경로가 학습,
  - (1,1)에서 goal인 (5,5)까지 최대 Reward를 갖는 state와 action을 따라간다.

### Q-Learning, Pseudo Code

#### Q\_LEARNING $(MDP, \pi, \epsilon)$

Inputs discount factor  $\gamma$ 

rate of exploration  $\epsilon$ 

Output action-value function  $Q^*$ 

Initialize Q = 0

1. initialize s, a

2. while  $s \notin T$  do

- (a) take action a
- (b) observe reward r and next state s'
- (c)  $Q_{(s,a)} = Q_{(s,a)} + [r + \gamma \max_{a'} Q(s', a') Q(s, a)]$
- (d) choose action a'
- (e) s = s', a = a'

## Python Code

- We now consider off-policy learning of action-values Q(s,a)
- No importance sampling is required
- Next action is chosen using behaviour policy  $A_{t+1} \sim \mu(\cdot | S_t)$
- But we consider alternative successor action  $A' \sim \pi(\cdot | S_t)$
- And update  $Q(S_t, A_t)$  towards value of alternative action

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left( R_{t+1} + \gamma Q(S_{t+1}, A') - Q(S_t, A_t) \right)$$

- We now allow both behaviour and target policies to improve
- The target policy  $\pi$  is greedy with respect to Q(s, a)

$$\pi(S_{t+1}) = \arg\max_{a'}(Q_{t+1}, a')$$

- The behaviour policy  $\mu$  is e.g.  $\varepsilon$ -greedy w.r.t. Q(s,a)
- The Q-learning target then simplifies:

$$R_{t+1} + \gamma Q(S_{t+1}, A')$$

$$= R_{t+1} + \gamma Q\left(S_{t+1}, \arg\max_{a'} Q(S_{t+1}, a')\right)$$

$$= R_{t+1} + \max_{a'} \gamma Q(S_{t+1}, a')$$



$$R_{t+1} + \gamma Q(S_{t+1}, A')$$

$$= R_{t+1} + \gamma Q\left(S_{t+1}, \arg\max_{a'} Q(S_{t+1}, a')\right)$$

$$= R_{t+1} + \max_{a'} \gamma Q(S_{t+1}, a')$$

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma \max_{a'} Q(S',a') - Q(S,A)\right)$$

Q-Learning control converges to the optimal action-value function,  $Q(S,A) \rightarrow q_*(s,a)$