

Institut Mines-Télécom

Électronique des Systèmes d'aqcuisition

Chadi Jabbour

Amplification

Outline

Introduction

Amplificateur Elementaire

Source d'erreur et métrique d'évaluation

Outline

Introduction

Amplificateur Elementaire

Source d'erreur et métrique d'évaluation

Les amplificateurs ça sert à quoi

- Les amplificateurs sont nécessaires pour amplifier les signaux de faible amplitude
- Les amplificateurs sont aussi nécessaires pour créer les fonctions de base dans les filtres et les CANs

Les amplificateurs ça sert à quoi

69 dB d'atténuation à 5 kms

Un signal émis de $1\,\mathrm{V}$ arrive au niveau du récepteur avec une amplitude $0.36\,\mathrm{mV}$

Amplification: les ingrédients

Pour réaliser une amplification en tension, l'approche classique nécessite:

- ▶ Une source d'alimentation (une pile, un redresseur ...)
- ► Un modulateur tension/courant (transistor)
- ► Une charge qui convertit le courant en tension (résistance, inductance, un autre transistor ...)

Outline

Introduction

Amplificateur Elementaire

Source d'erreur et métrique d'évaluation

Amplificateur Idéal

Pour une source de courant idéal avec:

$$I_T = g_m V_e$$

 V_s est donnée par

$$V_s = VDD - R_d \cdot I_T$$

$$V_S = VDD - R_d \cdot g_m \cdot V_e$$

Et donc le gain de cette architecture est donné par:

$$A = \frac{\partial V_s}{\partial V_s} = -R_d \cdot g_m$$

Amplificateur Réel

- En pratique, nous n'avons pas de composant permettant de réaliser une source de courant linéaire
- Le composant qui s'en rapproche le plus est le transistor
- Mais il ne se comporte pas toujours en source de courant et la source de courant réalisée n'est pas linéaire

Transistor NMOS

- Interrupteur ouvert pour $Vgs < V_T$ où V_T est la tension de seuil du transistor
- Source de courant pour $(Vgs > V_T)$ & $(Vds > Vgs V_T)$ avec $I_T = K(Vgs V_T)^2$
- ▶ Résistance pour $(Vgs > V_T)$ & $(Vds < Vgs V_T)$ avec $R_T = \frac{K'}{Vgs V_T}$

Amplificateur Réel

Pour un transistor NMOS:

$$I_T = K(V_e - V_T)^2$$

 V_s est alors donnée par

$$V_S = VDD - R_d K (V_e - V_T)^2$$

Problème

La relation entre V_s et V_e est quadratique

Analyse statique - Fonction de transfert

Zone 1:

Interrupteur ouvert

Zone 2:

Source de courant

Zone 3:

Résistance

Au tour du point M_0 , on peut définir v_e et v_s

$$v_e = V_e - V_{E0}$$
; $v_s = V_s - V_{S0}$

 $vs \simeq A \cdot ve \Longrightarrow A$ est la pente de tangente autour de M_0

Dynamique d'entrée et sortie

- La dynamique d'entrée ΔV_e est la plage d'entrée autour de V_{E0} sur laquelle la caractéristique $V_s = f(V_e)$ peut être approximée linéaire.
- La dynamique de sortie ΔV_s est la plage de sortie autour de V_{S0} correspondante à ΔV_e .

Analyse petit signal

Analyse petit signal

L'analyse petit signal consiste à étudier le comportement d'un circuit en réponse à des signaux infiniment petit autour du point de fonctionnement. Elle permet de déterminer rapidement certaines caractéristiques d'une architecture. (gain, impédances d'entrée/sortie, fréquence de coupure ...)

Pour réaliser une analyse petit signal,

- Linéariser tous les éléments non linéaires du circuit, le transistor sera remplacé par une source linéaire $i_t = gm \cdot v_e$
- ► Court-circuiter toutes les tensions non-concernées par l'analyse notamment les tensions continues (Alimentation, polarisation) à la masse.

Modèle petit signal de l'amplificateur

En analysant le modèle petit signal, on facilement trouver le gain de l'amplificateur

$$vs = -gm \cdot Rd \cdot ve \Longrightarrow A = -gm \cdot Rd$$

Réponse en fréquence de l'amplificateur

Fonction de transfert

$$A(j\omega) = \frac{v_s(j\omega)}{v_e(j\omega)}$$

La fréquence de transition f_T correspond à $A(f_T)=1$ ou 0 dB.

Le produit gain bande

$$PGB = A_0 \cdot f_c$$

Conservation du produit gain bande

$$A(j2\pi f) = A_0 \frac{1}{1 + j\frac{f}{f_c}}$$

 $A(j2\pi f) = A_0 \frac{1}{1 + j\frac{f}{f_c}}$ Pour $f >> f_c \mid \underbrace{A(f_T)} \mid f_T \simeq A_0 \cdot f_c \Longrightarrow f_T \simeq A_0 \cdot f_c$

Exercice

- Déterminer la fonction de transfert du montage 1-étage
- ▶ Déterminer la fonction de transfert du montage 2-étages
- ▶ Quelles sont les conditions sur R_{d1} , R_{d2} , C_{L1} et C_{L2} qui permettent de garantir la stabilité de l'amplificateur 2 étages.

Outline

Introduction

Amplificateur Elementaire

Source d'erreur et métrique d'évaluation

Source d'erreur

La précision des amplificateurs (et de tous les systèmes électroniques) est dégradée par deux sources principales:

- Le bruit modélisé par un signal aléatoire ajouté au signal utile
 - ▶ Bruit blanc: Densité Spectrale de Puissance (DSP) constante ou uniforme
 - ► Bruit coloré: DSP non uniforme
- Les distorsions sont des erreurs dont l'amplitude dépend du signal d'entrée
 - Distorsion linéaire assimilable à du filtrage
 - Distorsion non linéaire

Bruit

- Bruits blancs:
 - Bruit thermique du à l'agitation des porteurs dans les résistances et transistors
 - Bruit de quantification
 - Bruit de phase qui cause la gigue d'horloge ou jitter
- Bruits colorés
 - Bruit de scintillement, Flicker noise ou bruit 1/f
 - Pop corn noise

Distorsions non linéaires

Les causes des distorsions non linéaires sont diverses:

- Saturation
- ► Interférence entre symbole
- Désappariemments des composants ou mismatch

Les non-linéarités causent:

- Une dégradation de la résolution
- L'apparition de nouvelles composantes dans le spectre aux multiples de la fréquence d'entrée.

Distorsion non linéaires

Une modélisation plus réaliste d'un amplificateur est donné par un polynôme non-linéaire

$$V_{s-rl} = \alpha + \beta \cdot V_e + \gamma \cdot V_e^2,$$

Pour une entrée sinusoïdale $V_e = Amp \cdot \cos(\omega t)$, la sortie est donnée par

$$V_{s-rl} = \underbrace{\alpha + \frac{\gamma \cdot Amp.^2}{2}}_{V_0} + \underbrace{\beta \cdot Amp}_{V_1} \cdot \cos(\omega t) + \underbrace{\frac{\gamma \cdot Amp.^2}{2}}_{V_2} \cdot \cos(2\omega t)$$

On ainsi constater que les distorsions engendrent l'apparition de nouvelles composantes aux multiples de la fréquence d'entrée

Métriques principales

Le rapport Signal à Bruit SNR permet d'évaluer les dégradations dues au bruit:

$$SNR_{dB} = 10 \log_{10} \left(\frac{P_{signal}}{P_{Bruit}} \right)$$

Le SNDR ou SINAD (Signal to noise and distorsion ratio) permet d'évaluer les dégradations dues aux 2

$$SNDR_{dB} = 10 \log_{10} \left(\frac{P_{Signal}}{P_{Bruit} + P_{Distorsion}} \right)$$

$$SNDR_{dB} = 10 \log_{10} \left(rac{rac{V_1^2}{2}}{rac{1}{2}(V_2^2 + V_3^2 + \cdots) + V_{rms-bruit}^2}
ight)$$

Spectre amplificateur

Spectre de sortie de l'amplificateur Audio ADAU1592

Exercice 2

- ightharpoonup Déterminer l'expression linéarisée du signal de sortie V_s
- ► Calculer le gain, la puissance du signal utile en sortie ainsi que celle de la deuxième harmonique.
- ► Calculer le SNR et du SNDR r pour A=0.1, puis pour A=0.01 TELECOM

Avril 2021