

Chapter 8

SEQUENTIAL LOGIC

Sequential Logic

- Current output depends on past inputs as well as current inputs
- Can have different output response when the same input is reapplied to the circuit
- Example sequential circuits are latches, flip-flops, state machines, counters, and registers

Block Diagram of a Sequential Logic

- defined from the knowledge of its signals at discrete times
- use flip-flops (FF)

- Asynchronous
 - system whose behaviour can be defined from the order in which its input signals change
 - uses gates with feedback to form memory elements
 - uses time-delay devices

Latches and Flip-flops

- In the same way that gates are the building blocks of combinational circuits, latches and flip-flops are the building blocks of sequential circuits.
- Both are circuit elements whose output depends not only on the current inputs, but also on previous inputs and outputs.

Latch vs. Flip-flop

- Latch (asynchronous)
 - Single-bit storage
 - It changes state at any time due to input change
 - Types
 - SR Latch
 - !S-!R Latch

- Flip-flop (synchronous)
 - Single-bit storage
 - It changes stateONLY when a clockedge or pulse isapplied
 - Types
 - SR flip-flop
 - JK flip-flop
 - D flip-flop
 - T flip-flop

- SR Latch is the simplest latch, where S and R stand for SET and RESET.
- It is constructed from a pair of cross-coupled NOR gates.

S	R	Q	Q'
1	0	1	0
0	0	1	0
0	1	0	1
0	0	0	1
1	1	0	0

!S-!R Latch

 A latch that is constructed using two crosscoupled NAND gates

S	R	Q	Q'
1	0	0	1
1	1	0	1
0	1	1	0
1	1	1	0
0	0	1	1

Flip-flops

- Four types:
 - SR Flip-flops
 - JK Flip-flops
 - D-type flip-flops
 - T-type flip-flops

SR Flip-flop

Logic Diagram

Q	S	R	Q(t+1)
0	0	0	0
0	0	1	0
O	1	0	1
O	1	1	Indeterminate
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	Indeterminate

JK Flip-flop

Block Diagram

Logic Diagram

Q	J	K	Q(t+1)
0	0	0	0
0	O	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

- If J and K are different, the Q(t+1) is always the same as the value of J.
- If J and K are both equal to zero, nothing happens.
- If J and K are both equal to one, the output toggles.

Block Diagram

T-type Flip-flop

Logic Diagram

Q(t+1)
0
1
1
0

Characteristic Table

Block Diagram

		Q(t+1)	
S	R	NOR	NAND
0	0		
0	1		
1	0		
1	1		

J	K	Q(t+1)
0	0	
0	1	
1	0	
1	1	

D	Q(†+1)
0	
1	

T	Q(†+1)
0	
1	

		Q(t+1)	
S	R	NOR	NAND
0	0	Q(t)	
0	1	0	
1	0	1	
1	1	Ś	

J	K	Q(t+1)
0	0	
0	1	
1	0	
1	1	

D	Q(†+1)
0	
1	

T	Q(†+1)
0	
1	

		Q(t+1)	
S	R	NOR	NAND
0	0	Q(t)	Ś
0	1	0	1
1	0	1	0
1	1	Ś	Q(t)

J	K	Q(t+1)
0	0	
0	1	
1	0	
1	1	

D	Q(t+1)
0	
1	

T	Q(t+1)
0	
1	

		Q(t+1)	
S	R	NOR	NAND
0	0	Q(t)	Ś
0	1	0	1
1	0	1	0
1	1	Ś	Q(t)

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q'(†)

D	Q(†+1)
0	
1	

Т	Q(t+1)
0	
1	

		Q(t+1)	
S	R	NOR	NAND
0	0	Q(t)	Ś
0	1	0	1
1	0	1	0
1	1	Ś	Q(t)

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q'(t)

D	Q(†+1)
0	0
1	1

T	Q(t+1)
0	
1	

		Q(t+1)	
S	R	NOR	NAND
0	0	Q(t)	Ś
0	1	0	1
1	0	1	0
1	1	Ś	Q(t)

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q'(†)

D	Q(t+1)
0	0
1	1

T	Q(†+1)
0	Q(t)
1	Q'(t)

Triggering of Flip-flops

- Trigger
 - Momentary change in the input signal
 - Clocked flip-flops are triggered by pulses
 - Edge-triggered flip-flops
 - Pulse-triggered flip-flops

Edge-Triggered Flip-flops

- Positive edge-triggered
 - Leading edge or rising edge triggering
 - Indicated by a triangle placed inside the clock terminal
- Negative edge-triggered
 - Trailing edge triggered
 - Indicated by a bubble outside the clock terminal

Edge-Triggered Flip-flops

Positive Edge-triggered FF

Negative Edge-triggered FF

Example: Edge-Triggered SR FF

Negative edge-triggered

Indeterminate = 1

Negative edge-triggered

Indeterminate = 1

Negative edge-triggered

Indeterminate = 1

Negative edge-triggered

Negative edge-triggered

Negative edge-triggered

Negative edge-triggered

Negative edge-triggered

Pulse-Triggered Flip-flops

- Master-slave design
- Data are entered into the flip-flop on the rising edge of the clock pulse, but the output does not reflect the input state until the falling edge of the clock pulse

Example: Pulse-Triggered FF

How many times will the positive edge-triggered T flip flop change state from 0 to 1?