```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        %matplotlib inline
        import seaborn as sns
        import warnings
        warnings.filterwarnings('ignore')
In [2]: data= pd.read_csv(r"H:\Data\.....\bank+marketing\bank\bank-full.csv")
        Dropping unrelated columns.
In [3]: | data= data.drop('contact', axis=1)
In [4]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 45211 entries, 0 to 45210
        Data columns (total 16 columns):
         #
            Column Non-Null Count Dtype
             ----
                       -----
                       45211 non-null int64
         0
             age
         1
             job
                       45211 non-null object
            marital
         2
                       45211 non-null object
         3
            education 45211 non-null object
         4
            default
                       45211 non-null object
         5
            balance
                       45211 non-null int64
         6
            housing
                       45211 non-null object
         7
             loan
                       45211 non-null object
         8
            day
                       45211 non-null int64
         9
            month
                       45211 non-null object
         10 duration
                       45211 non-null int64
         11
            campaign
                       45211 non-null int64
         12
            pdays
                       45211 non-null int64
         13
            previous
                       45211 non-null int64
         14 poutcome
                       45211 non-null object
         15
                       45211 non-null object
        dtypes: int64(7), object(9)
        memory usage: 5.5+ MB
In [5]: |data.head()
```

Out[5]:

	age	job	marital	education	default	balance	housing	loan	day	month	durati
0	58	management	married	tertiary	no	2143	yes	no	5	may	2
1	44	technician	single	secondary	no	29	yes	no	5	may	1
2	33	entrepreneur	married	secondary	no	2	yes	yes	5	may	
3	47	blue-collar	married	unknown	no	1506	yes	no	5	may	
4	33	unknown	single	unknown	no	1	no	no	5	may	1
4	33	unknown	single	unknown	no	1	no	no	5	may	1

```
In [6]:
          columns= list(data.columns)
 In [7]: from sklearn.preprocessing import LabelEncoder
          le= LabelEncoder()
 In [8]:
          for col in columns:
               if data[col].dtype == 'object':
                    data[col] = le.fit_transform(data[col])
 In [9]:
          data
Out[9]:
                  age job marital education default balance housing
                                                                        loan day month duration
                                           2
                0
                    58
                         4
                                                   0
                                                         2143
                                                                     1
                                                                           0
                                                                                5
                                                                                       8
                                                                                              261
                                 1
                1
                                 2
                                           1
                    44
                         9
                                                   0
                                                           29
                                                                     1
                                                                                5
                                                                                       8
                                                                                              151
                                                                           0
                2
                    33
                         2
                                 1
                                           1
                                                   0
                                                            2
                                                                     1
                                                                           1
                                                                                5
                                                                                       8
                                                                                               76
                                                                                               92
                3
                    47
                         1
                                 1
                                           3
                                                   0
                                                         1506
                                                                     1
                                                                           0
                                                                                5
                                                                                       8
                                 2
                                           3
                                                   0
                                                                                5
                4
                    33
                        11
                                                            1
                                                                     0
                                                                           0
                                                                                       8
                                                                                              198
               ...
                                                                                               ...
                    ...
                         ...
                                 ...
                                           ...
                                                           ...
                                                                     ...
                                                                               ...
                                                                                       ...
                                                                          ...
           45206
                         9
                                           2
                                                   0
                                                          825
                                                                                       9
                                                                                              977
                    51
                                 1
                                                                     0
                                                                           0
                                                                               17
           45207
                   71
                         5
                                 0
                                           0
                                                   0
                                                         1729
                                                                     0
                                                                                       9
                                                                           0
                                                                               17
                                                                                              456
           45208
                   72
                         5
                                                   0
                                                         5715
                                                                     0
                                                                                       9
                                                                                             1127
                                 1
                                           1
                                                                           0
                                                                               17
           45209
                    57
                                           1
                                                   0
                                                                     0
                                                                                              508
                         1
                                 1
                                                          668
                                                                           0
                                                                                       9
                                                                               17
           45210
                   37
                         2
                                 1
                                           1
                                                   0
                                                         2971
                                                                     0
                                                                           0
                                                                                       9
                                                                                              361
                                                                               17
          45211 rows × 16 columns
                                                                                                In [10]: data.isna().sum()
Out[10]:
          age
                          0
                          0
          job
          marital
                          0
          education
                          0
          default
                          0
          balance
                          0
          housing
                          0
                          0
          loan
          day
                          0
                          0
          month
                          0
          duration
                          0
          campaign
          pdays
                          0
          previous
                          0
          poutcome
                          0
                          0
          dtype: int64
```

In [11]: data.describe()

Out[11]:

	age	job	marital	education	default	balance
count	45211.000000	45211.000000	45211.000000	45211.000000	45211.000000	45211.000000
mean	40.936210	4.339762	1.167725	1.224813	0.018027	1362.272058
std	10.618762	3.272657	0.608230	0.747997	0.133049	3044.765829
min	18.000000	0.000000	0.000000	0.000000	0.000000	-8019.000000
25%	33.000000	1.000000	1.000000	1.000000	0.000000	72.000000
50%	39.000000	4.000000	1.000000	1.000000	0.000000	448.000000
75%	48.000000	7.000000	2.000000	2.000000	0.000000	1428.000000
max	95.000000	11.000000	2.000000	3.000000	1.000000	102127.000000
4						•

The positive correlation (+0.39) between "duration" and "y" suggests that longer conversations during the last contact are associated with a higher likelihood of the client subscribing to the term deposit.

Note: 1. The variable "y" indicates whether the client subscribed to a term deposit (binary outcome: "yes" or "no").

2. "duration" refers to the length of the last contact with a client during a marketing campaign, measured in seconds.

```
In [12]: plt.figure(figsize=(14,7))
    sns.heatmap(data.corr(), cmap= 'YlGnBu', annot= True)
    plt.show()
```



```
In [13]:
         x= data.iloc[:, :-1]
         y= data['y']
         print(x.shape)
         print(y.shape)
         (45211, 15)
         (45211,)
In [14]:
        from sklearn.model_selection import train_test_split
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.metrics import accuracy_score, confusion_matrix
In [15]: x_train, x_test, y_train, y_test= train_test_split(x, y, train_size= 0.70,
In [16]: | dt= DecisionTreeClassifier()
         dt.fit(x_train, y_train)
Out[16]: DecisionTreeClassifier()
In [17]: preds= dt.predict(x test)
In [18]:
         acc= accuracy_score(preds, y_test)
         print(f'Accuracy score:', acc)
         Accuracy score: 0.870023591860808
In [19]: confusion_matrix(preds, y_test)
Out[19]: array([[11065,
                          862],
                          736]], dtype=int64)
                [ 901,
        depths= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
In [20]:
         df= pd.DataFrame(columns= ['Max_depths', 'Accuracy'])
Out[20]:
```

Max_depths Accuracy

```
In [21]: for input_parameter in depths:
    model= DecisionTreeClassifier(max_depth= input_parameter)
    model.fit(x_train, y_train)
    Mpreds= model.predict(x_test)
    Macc= accuracy_score(Mpreds, y_test)*100
    df= df.append({'Max_depths': input_parameter, 'Accuracy': Macc}, ignore_df
```

Out[21]:

	Max_depths	Accuracy
0	1.0	88.218815
1	2.0	88.712769
2	3.0	88.823356
3	4.0	89.184606
4	5.0	89.567974
5	6.0	89.663816
6	7.0	89.877617
7	8.0	89.752285
8	9.0	89.634326
9	10.0	89.450015
10	11.0	89.354173
11	12.0	89.332055
12	13.0	89.177234
13	14.0	88.933943
14	15.0	88.602182

The decision tree classifier achieved optimal performance on this dataset when the maximum depth was set to 7.0.