DAFTAR ISI

DAFTAR ISI	i
DAFTAR TABEL	ii
DAFTAR GAMBAR	iii
BAB 1. PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Target Luaran	2
1.3 Manfaat Program	2
BAB 2. TINJAUAN PUSTAKA	3
BAB 3. TAHAP PELAKSANAAN	4
3.1 Alat dan Bahan	4
3.2 Hasil Akhir yang Diharapkan	5
3.3 Tahap Pelaksanaan Kegiatan	6
3.4 Pengumpulan Informasi	7
3.5 Pemodelan Sistem	7
3.6 Pengkonfigurasian Sistem	7
3.7 Perakitan Alat	8
3.8 Pengujian Inkubator Bayi	8
3.9 Evaluasi Akhir	
BAB 4. BIAYA DAN JADWAL KEGIATAN	8
4.1 Anggaran Biaya	8
4.2 Jadwal Kegiatan	
DAFTAR PUSTAKA	10
LAMPIRAN	11
Lampiran 1. Biodata Ketua, Anggota serta Dosen Pendamping	11
Lampiran 2 Justifikasi Anggaran Kegiatan	18
Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas	
Lampiran 4. Surat Pernyataan Ketua Pelaksana	22
Lampiran 5. Gambaran Teknologi yang akan Dikembangkan	23

DAFTAR TABEL

Tabel 2.1 Analisis Perbandingan Inkubator NEONAIOT dengan Inkubator Lain.	4
Tabel 4.1 Rekapitulasi Rencana Anggaran Biaya	.8
Tabel 4.2 Jadwal Kegiatan PKM-KC	.9

DAFTAR GAMBAR

Gambar 3.1a NEONAIOT Tampak Depan (Kanan)	5
Gambar 3.1b Susunan Komponen pada NEONAIOT	
Gambar 3.2 Skema Kerja IoT pada NEONAIOT	6
Gambar 3.3 Diagram Proses Pelaksanaan Kegiatan	6

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Indonesia bersama dengan negara-negara lain berkomitmen dalam mencapai tujuan *Sustainable Development Goals* (SDGs). Salah satu targetnya adalah pada tahun 2030 dapat menurunkan Angka Kematian Neonatal (AKN). Periode neonatus (bayi dari lahir sampai dengan usia 28 hari) merupakan tahapan yang kritis dalam siklus kehidupan bayi. Hal ini disebabkan karena resiko kematiannya yang tinggi. Pada tahun 2014 Indonesia masuk peringkat 5 dari 10 negara dengan angka kelahiran prematur tertinggi dengan estimasi jumlah sebanyak 527.672 atau sebesar 10,4% dari jumlah kelahiran hidup (Chawanpaiboon et al., 2019). Sedangkan pada tahun 2016, Indonesia berada di peringkat 7 dengan angka kematian balita tertinggi yang diakibatkan oleh komplikasi dari kelahiran prematur (Chawanpaiboon et al., 2019).

Menurut Wong dkk, (2009) bayi prematur adalah bayi yang lahir sebelum akhir usia gestasi 37 minggu, tanpa memperhitungkan berat badan lahir (Padila, 2019). Semakin prematur seorang bayi maka semakin besar risiko kematiannya. Menurut Krisnadi, S. R. & dkk. 2009, hal tersebut disebabkan oleh ketidakmatangan sistem organ tubuh pada bayi prematur, seperti organ paru-paru, jantung, ginjal, hati, dan sistem pencernaan (Rizqiani, 2017). Bayi yang lahir prematur membutuhkan perawatan intensif karena sangatlah rentan terhadap penyakit yang sebagian besar dikarenakan oleh timbulnya bakteri karena suhu dan kelembaban di sekitar bayi yang tidak normal. Oleh sebab itu neonatus prematur harus mendapatkan perawatan inkubator dirumah sakit.

Inkubator bayi merupakan salah satu alat kedokteran yang sangat dibutuhkan ketersediaannya di rumah sakit atau puskesmas. Inkubator bayi berfungsi sebagai tempat untuk menjaga suhu tubuh bayi agar selalu dalam batas normal yaitu antara 33° – 35°C, terutama untuk bayi yang lahir dalam keadaan prematur (Setyaningsih, 2016). Inkubator bayi yang sering dijumpai dirumah sakit menengah ke bawah, sistem pengontrolan dan pemantauannya hanya dilakukan secara manual oleh dokter atau perawat dirumah sakit. Pemantauan secara manual menyebabkan dokter atau perawat harus sering kali masuk keruangan bayi untuk memeriksa suhu inkubator secara berkala. Kondisi ini membuat dokter atau perawat kelelahan, yang dapat menyebabkan kelalaian dalam pembacaan data serta rentan akan hilang karena tidak disusun secara sistematis, hal ini akan berakibat fatal.

Dari latar belakang diatas penulis merancang dan membuat sebuah inkubator bayi berbasis *Internet of Things* (IoT) untuk sistem monitoring jarak jauh yang dapat menampilkan data bayi secara akurat. Sistem ini juga dilengkapi dengan *Data Management System* untuk menyimpan dan menganalisis data bayi tersebut. Inkubator bayi ini akan memonitor data bayi berupa berat badan, detak jantung, suhu bayi dan inkubator, kadar oksigen serta suara bayi dengan menggunakan sensor-sensor yang diletakkan dalam inkubator dan menampilkan hasil pembacaan sensor melalui LCD 20x4 dan *smartphone* yang terhubung ke internet melalui *wifi*.

Alat ini diharapkan mampu mempermudah pihak rumah sakit dan meningkatkan kualitas fasilitas pelayanan kesehatan dasar untuk mengontrol kesehatan pertumbuhan bayi secara *real time* dengan data yang akurat serta sistematis sehingga dapat mengurangi tingkat kematian bayi premature di Indonesia dan mewujudkan *Sustainable Development Goals* (SDGs) pada poin ketiga yaitu *Kehidupan Sehat dan Sejahtera* dengan target 3.2 pada tahun 2030 mengakhiri kematian bayi baru lahir dan balita yang dapat dicegah.

1.2 Target Luaran

Luaran yang diharapkan melalui penelitian PKM-KC ini adalah:

- 1. Laporan kemajuan,
- 2. Laporan akhir,
- 3. Terbentuknya prototipe Inkubator Bayi *NEONAIOT* dengan menggunakan sensor suhu, berat badan, detak jantung dan kadar oksigen yang dilengkapi dengan akses *Internet of Things* serta *Data Management System* sebagai monitoring jarak jauh dengan media *smartphone*,
- 4. Akun media sosial.

1.3 Manfaat Program

Manfaat yang ingin didapat dari prototipe NEONAIOT ini adalah:

1. Bagi Bayi

Dapat mendeteksi kesehatan pertumbuhan bayi berdasarkan data-data yang telah dianalisis dan mengevaluasi kondisi bayi.

2. Bagi Lembaga Kesehatan

Dapat tersedia di lembaga kesehatan seperti puskesmas dan rumah sakit yang dapat mempermudah dalam mengontrol kesehatan bayi secara *real time* serta minim kesalahan alat dan data yang dihasilkan dapat tersimpan dengan rapi.

3. Bagi Tenaga Kesehatan

Meningkatkan efisiensi kerja dan meminimalisir risiko kesalahan pembacaan data yang diakibatkan oleh kelelahan pada dokter atau pun perawat saat melakukan pemeriksaan suhu tubuh, detak jantung dan berat badan bayi.

4. Bagi Mahasiswa

Dapat meningkatkan kreativitas bagi mahasiswa sekaligus memenuhi fungsi mahasiswa dalam tri darma perguruan tinggi.

5. Bagi Perguruan Tinggi

Dapat memenuhi fungsi sebagai pusat riset dan penelitian.

BAB 2. TINJAUAN PUSTAKA

Bayi prematur adalah bayi yang lahir dengan usia kehamilan kurang dari 37 minggu dan dengan berat kurang dari 2500 gram. Sebagian besar organ tubuhnya juga belum berfungsi dengan baik, karena kelahirannya masih dini. Maka dari itu, perlu diberikan perawatan khusus. Diantaranya ada penyesuaian suhu, kelembaban dan kebutuhan oksigen yang sesuai dengan kondisi dalam rahim ibu. Untuk itu perlu adanya Inkubator Bayi (Utomo dkk, 2018).

Inkubator bayi merupakan alat medis yang berfungsi untuk menjaga kestabilan suhu pada suatu ruangan sehingga suhu tetap stabil pada suhu yang telah ditentukan (Apriyadi, 2018). Inkubator bayi pada umumnya digunakan untuk bayi yang terlahir secara prematur, yang belum dapat menyesuaikan diri terhadap suhu disekitarnya. Inkubator bayi menurunkan suhu secara perlahan sehingga dapat membuat bayi merasa nyaman (Pratiwi, et al., 2014). Suhu inkubator bayi dijaga dalam batas normal sekitar 33°C sampai 35°C. Selain itu, kelembapan relatif sebesar 40% sampai 60% perlu dipertahankan juga untuk membantu stabilitas suhu tubuh bayi (Surasmi, et al., 2003).

Pengembangan dan penelitian tentang inkubator telah banyak dilakukan. (Qoyima, 2020) mengembangkan inkubator bayi dengan perancangan sistem pengendali suhu dan kecepatan respon sistem pada inkubator bayi dengan menggunakan kontrol *Fuzzy*-PID. (Nurcahya, 2016) mengembangkan inkubator dengan sistem kontrol kestabilan suhu yang melakukan pengamatan terhadap laju perpindahan suhu menggunakan Matlab/Simulink.

Dengan adanya pengembangan-pengembangan tersebut, maka penulis juga mengembangkan inkubator berbasis *Internet of Things* dan *Data Management System* bernama NEONAIOT. Dengan mengintegrasikan teknologi mikrokontroler berbasis Arduino MEGA WiFi R3 ATmega2560 ESP8266 32M serta sensor-sensor pendukung lainnya untuk memberikan informasi mengenai suhu, berat, detak jantung serta kamera secara *online* dan berkala yang dapat diakses melalui *smartphone*. Informasi-informasi tersebut akan direkam dan disimpan selama 2-3 bulan dalam *database* yang akan dianalisis dan dievaluasi untuk menentukan apakah kondisi pertumbuhan bayi berjalan normal atau ada gejala penyakit yang perlu ditangani lebih lanjut berdasarkan parameter-parameter yang telah ditentukan.

Inkubator NEONAIOT dianalisis berdasarkan kelebihan dan perbedaan dengan inkubator yang telah dibuat pada penelitian sebelumnya yaitu (Qoyima, 2020) dan (Nurcahya, 2016). Analisis kelebihan dan perbedaan inkubator NEONAIOT dengan inkubator pada penelitian sebelumnya ditampilkan pada tabel 2.1 dibawah ini.

Tabel 2.1 Analisis Perbandingan Inkubator NEONAIOT dengan Inkubator Lain

No	Inkubator	Inkubator (Qoyima,	Inkubator
	NEONAIOT	2020)	(Nurcahya, 2016)
1.	Terdapat kamera untuk	Tidak terdapat media	Tidak terdapat media
	memantau bayi melalui	untuk melihat bayi dari	untuk melihat bayi
	smartphone secara	jauh	dari jauh
	online dan berkala		
2.	Berfokus pada	Hanya berfokus pada	Hanya berfokus pada
	Kesehatan	pengendalian suhu dan	kestabilan suhu dan
	pertumbuhan bayi	respon sistem	laju perpindahan
			panas
3.	Dapat menganalisis	Tidak tersedia	Tidak tersedia
	pertumbuhan bayi		
4.	Memiliki lebih banyak	Memiliki fitur	Memiliki fitur
	fitur sebagai indikator	inkubator pada	inkubator pada
	kesehatan bayi	umumnya	umumnya
5.	Tersedia data-data	Tidak tersedia	Tidak tersedia
	pertumbuhan bayi		
	dapat diakses pada		
	website NEONAIOT		
6.	Dapat melihat kondisi	Hanya dapat melihat	Hanya dapat melihat
	bayi pada LCD 16x4	kondisi bayi melalui	kondisi bayi melalui
	dan smartphone secara	LCD 16x2.	LCD 16x2.
	online dan real time		

BAB 3. TAHAP PELAKSANAAN

3.1 Alat dan Bahan

Pembuatan prototipe NEONAIOT menggunakan alat dan bahan sebagai berikut:

- 1. Perlengkapan yang dibutuhkan oleh prototipe, seperti Arduino MEGA WiFi R3 ATmega2560 ESP8266 32MB, ESP32 CAM, breadboard, power supply, kabel adaptor, Load Cell, sensor MQ-135, sensor GY-MAX4466, sensor Pulse Heart Rate, sensor DHT22, sensor DS18B20, Limit switch, Solenoid Valve, relay 4 channel, DC to DC step down converter, lampu pijar 60 Watt, fitting lampu, switch, buzzer, kabel jumper, kabel Protector, kipas DC 12V dan LCD 20x6.
- 2. Bahan yang dibutuhkan, seperti kabel serabut, bantal bayi, triplek melamin, besi hollow, akrilik 5mm, plat besi, selang, kabel *Protector*, kayu tatakan, engsel akrilik, handle dan ban troli.

3.2 Hasil Akhir yang Diharapkan

Pada Gambar 3.1a diperlihatkan bentuk rancangan NEONAIOT atau Inkubator Bayi berbasis *Internet of Things* (IoT) dengan *Data Management System* tampak samping yang akan dibuat. Terlihat bahwa NEONAIOT menggunakan bentuk wadah menyerupai kotak persegi panjang untuk memberikan fitur kepada inkubator bayi sehingga dapat dikendalikan otomatis berdasarkan sinyal yang diberikan semua sensor serta data dan video bayi dapat diamati melalui *smartphone* dengan menggunakan *software* Blynk. Pada gambar 3.1b terlihat susunan sensor-sensor yang akan memberikan data ke mikrokontroler yang menyebabkan semua fitur yang ada pada inkubator bayi akan aktif secara otomatis.

Gambar 3.1a NEONAIOT Tampak Depan (Kanan)

Gambar 3.1b Susunan Komponen pada NEONAIOT

NEONAIOT juga dilengkapi dengan fitur *Internet of Things* (IoT) menggunakan Arduino MEGA WiFi R3 ATmega2560 ESP8266 32MB yang

terhubung dengan berbagai sensor sehingga dapat mengamati data suhu tubuh, berat badan, detak jantung dan kadar oksigen pada inkubator. Selain itu NEONAIOT juga menggunakan *Solenoid* pada tabung oksigen yang berfungsi sebagai pembuka dan penutup jalan masuknya oksigen. Diagram Blok *Monitoring* inkubator berbasis IoT pada NEONAIOT terlihat pada Gambar 3.2.

Gambar 3.2 Skema Kerja IoT pada NEONAIOT

3.3 Tahap Pelaksanaan Kegiatan

Untuk mendapatkan hasil akhir yang diharapkan maka tahap pelaksanaan kegiatan ini diilustrasikan oleh Gambar 3.3.

Gambar 3.3 Diagram Proses Pelaksanaan Kegiatan

3.4 Pengumpulan Informasi

Pada tahap ini dilakukan kegiatan pengumpulan informasi dari berbagai sumber referensi seperti buku, jurnal, artikel, forum dan sebagainya. Adapun hal yang diperlukan pada pengumpulan informasi seperti:

- 1. Pemrograman mikrokontroler Arduino MEGA WiFi R3 ATmega2560 ESP8266 32MB
- 2. Penggunaan Internet of Things
- 3. Penggunaan dan prinsip ESP32 CAM
- 4. Penggunaan Solenoid untuk membuka dan menutup tempat aliran oksigen
- 5. Penggunaan sensor-sensor, untuk mendeteksi suara tangis, detak jantung, berat badan dan mengukur suhu tubuh bayi serta suhu pada inkubator.
- 6. Penggunaan Switch Limit untuk membuka dan menutup pintu inkubator
- 7. Penggunaan lampu pijar untuk pemanas pada ruang inkubator.
- 8. Penggunaan Sensor Gas MQ-135 untuk mengukur kadar gas oksigen pada inkubator bayi
- 9. Penggunaan modul *relay* untuk memutuskan tegangan listrik

3.5 Pemodelan Sistem

Pada tahapan ini dilakukan perancangan model yang sesuai dengan menggunakan *software* berupa SolidWork untuk mendesain susunan komponen elektronik, kerangka inkubator dan *power supply* yang akan dikontrol oleh mikrokontroler serta pembacaan data menggunakan *software* Blynk untuk dapat diamati secara *real time*.

3.6 Pengkonfigurasian Sistem

Pengkonfigurasian sistem dilakukan untuk mengkonfigurasikan semua jenis sensor pengontrol inkubator terhadap IoT, yang dimana:

- 1. *Load Cell* Sensor dapat bekerja apabila diberi beban pada sebuah inti besi yang terdapat sebuah sensor dan dikirimkan ke *smartphone*.
- 2. Sensor *Pulse Heart Rate* bekerja dengan mendeteksi detak jantung bayi dan dikirimkan ke *smartphone*.
- 3. Sensor DS18B20 ini berperan sebagai pengukur suhu tubuh bayi yang bekerja dengan cara mengubah suhu menjadi sinyal 12 bit dalam waktu 750ms dan dikirimkan ke *smartphone*.
- 4. Sensor Suhu DHT22 ini digunakan untuk mengukur suhu dan kelembaban pada ruangan inkubator. Jika suhu dan kelembaban tidak sesuai dengan ketetapan maka kipas akan otomatis menyala untuk menormalkannya dan informasi ini dikirimkan ke *smartphone*.
- 5. Sensor Gas MQ-135 bekerja dengan mendeteksi kualitas udara (*air quality*) yang berada di dalam ruangan inkubator. Jika kadar oksigen pada inkubator terdeteksi rendah maka *solenoid* akan otomatis terbuka yang akan memasok oksigen ke dalam inkubator dan informasi ini dikirimkan ke *smartphone*.

6. Penggunaan *relay* digunakan sebagai sistem hubung bagi antara sensor DHT22 dengan kipas, Sensor gas MQ-135 dengan *Solenoid* dan semua sensor dengan *buzzer* jika keadaan bayi abnormal.

3.7 Perakitan Alat

Proses perakitan alat dilakukan setelah konfigurasi sistem telah berjalan dengan baik. Dengan demikian setiap bagian dapat disatukan menjadi inkubator bayi yang disebut NEONAIOT.

3.8 Pengujian Inkubator Bayi

Pengujian dilakukan untuk mengukur keakuratan dan kehandalan dari inkubator yang dirancang. Parameter yang akan diuji adalah seberapa akurat sensor suara, berat badan, suhu tubuh dan detak jantung bayi. Selain itu dilakukan juga pengukuran kecepatan respon sistem terhadap pembacaan sensor dan memastikan data yang diuji dari sensor masuk ke sistem manajemen data yang dirancang. Jika hasil yang diharapkan tidak tercapai akan dilakukan analisis masalah dan dilakukan pemodelan sistem kembali.

3.9 Evaluasi Akhir

Evaluasi akhir beserta laporan akan dibuat sebagai dokumentasi hasil dari pengujian prototipe Inkubator Bayi. Seluruh rangkaian kegiatan akan dipublikasikan secara reguler melalui akun media sosial NEONAIOT berupa postingan mingguan. Sebanyak 5 postingan diantaranya akan diberi *adsense* (*ads*) yang akan ditayangkan pada tanggal 25 April 2023, 25 Mei 2023, 25 Juni 2023, 25 Juli 2023, dan 25 Agustus 2023, pukul 12.00 WIB.

BAB 4. BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Anggaran biaya yang diperlukan dalam kegiatan ini ditampilkan pada Tabel 4.1 dibawah ini.

No	Jenis Pengeluaran	Sumber Dana	Besaran Dana (Rp)
		Belmawa	4.079.000
1	Bahan habis pakai	Perguruan Tinggi	500.000
		Instansi Lain	-
		Belmawa	1.000.000
2	Sewa dan jasa	Perguruan Tinggi	200.000
		Instansi Lain	-
3	Transportasi lokal	Belmawa	1.025.000
3	Transportasi lokal	Perguruan Tinggi	100.000

Tabel 4.1 Rekapitulasi Rencana Anggaran Biaya

		Instansi Lain	-
		Belmawa	1.000.000
4	Lain-lain	Perguruan Tinggi	200.000
		Instansi Lain	-
	Jumlah		8.104.000
		Belmawa	7.104.000
	Dakan Sumbar Dana	Perguruan Tinggi	1.000.000
	Rekap Sumber Dana	Instansi Lain	-
		Jumlah	8.104.000

4.2 Jadwal Kegiatan

Rencana kegiatan yang akan dilaksanakan dapat dilihat pada Tabel 4.2.

Tabel 4.2 Jadwal Kegiatan PKM-KC

Nic	Touris IV anis 4 an	Bulan			n		Person Penanggung
No	Jenis Kegiatan	1	2	3	4	5	jawab
1	Pengumpulan Informasi yang						Muhammad Farras
	terkait dengan kegiatan						Al-Khairy
2	Pemodelan sistem dan						
	perancangan prototipe dengan						Dizlay Dwi Fouzon
	integrasi daripada						Rizky Dwi Fauzan SAT
	mikrokontroler dan sensor-						SAI
	sensor.						
3	Konfigurasi sistem terhadap						Ridho Setiawan
	keseluruhan bagian prototipe						Riuno Senawan
4	Pengujian prototipe untuk						
	mengetahui fungsionalitas						Lailani Sabrina
	dan mengukur kesalahan						
5	Analisis prototipe untuk						
	mengoptimal kan dan						Ridho Setiawan
	menyempurnakan prototipe						
6	Evaluasi berkala setiap akhir						
	bulan untuk penyempurnaan						Kurniawan Siddiq
	prototipe dan aplikasi						
7	Posting konten PKM di akun						Muhammad Farras
	media sosial NEONAIOT						Al-Khairy
8	Penulisan Laporan Kemajuan						Lailani Sabrina
9	Penulisan Laporan Akhir						Kurniawan Siddiq

DAFTAR PUSTAKA

- Apriyadi, M. R. 2018. Sistem Monitoring Inkubator Bayi Multifungsi dengan Fototerapi dan Ayunan Mekanis Berbasis ESP32. *Jurnal EECCIS*. 14(3):115-119.
- Chawanpaiboon, S., Vogel, J. P., Moller, A. B., Lumbiganon, P., Petzold, M., Hogan, D., Landoulsi, S., Jampathong, N., Kongwattanakul, K., Laopaiboon, M., Lewis, C., Rattanakanokchai, S., Teng, D. N., Thinkhamrop, J., Watananirun, K., Zhang, J., Zhou, W., & Gülmezoglu, A. M. 2019. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. *The Lancet Global Health*. 7(1): e37–e46.
- Krisnadi, S. R. & dkk. 2009. Prematuritas. *Sub Bagian Kedokteran Fetomaternal Bagian Obstetri dan Ginekologi*. Fakultas Kedokteran Universitas Padjadjaran RS Dr. Hasan Sadikin.
- Nurcahya, B., Widhiada, I. W., Subaiga, I. D. G. A. 2016. Sistem Kontrol Kestabilan Suhu Pada Inkubator Bayi Berbasis Arduino Uno Dengan Matlab/Simulink. *Jurnal METTEK*. 2(1): 35–42.
- Padila., Agustien, I. 2019. Suhu Tubuh Bayi Prematur Di Inkubator Dinding Tunggal Dengan Inkubator Dinding Tunggal Disertai Sungkup. *Jurnal Keperawatan Silampari*. 2(2):113-122.
- Pratiwi, D. P., Rizal, A. & Hadiyoso, S. 2014. Sistem Monitoring Inkubator Bayi Multifungsi dengan Fototerapi dan Ayunan Mekanis Berbasis ESP32. *Jurnal EECCIS*. 14(3):115-119.
- Qoyima, R. A. N. 2020. Desain Inkubator Bayi Otomatis Dengan Menggunakan Kontrol Fuzzy PID. *Skripsi*. Universitas Jember
- Rizqiani, R, F dan Yuliana, L. 2017. Faktor-faktor Yang Memengaruhi Kematian Bayi Prematur Di Indonesia. *Jurnal IlmiahWIDYA Kesehatan dan Lingkungan*. 1(2):135-141.
- Setyaningsih, N, Y, D., Rozaq, I, A. 2016. Kendali suhu inkubator bayi menggunakan pid. *Simetris J. Tek. Mesin, Elektro dan Ilmu Komputer*. 7(2). 489.
- Surasmi, A., Handayani, S. & Kusuma, H. N., 2003. Sistem Monitoring Inkubator Bayi Multifungsi dengan Fototerapi dan Ayunan Mekanis Berbasis ESP32 *Jurnal EECCIS.* 14(3):115-119.
- Utomo, A, S., Satrya, A, B, Tapparan, Y. 2018. Monitoring Baby Inkubator Sentral Dengan Komunikasi Wireless. *Jurnal SIMETRIS*. 9(1).
- Wong, D L, Easton. M. H, Wilson, H, Winkelstein, M. L, and Schwartz, P. (2009). *Buku Ajar Keperawatan Pediatrik*. Alih Bahasa Agus Sutarna, Neti Juniarti, H.Y Kuncara. Edisi Ke-6. EGC.

LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota serta Dosen Pendamping Biodata Ketua

A. Identitas Diri

1	Nama Lengkap	Kurniawan Siddiq		
2	Jenis Kelamin	Laki-laki		
3	Program Studi	Teknik Elektro		
4	NIM	210402038		
5	Tempat dan Tanggal Lahir	Upah, 03 Desember 2002		
6	Alamat Email	kurniawansiddiq12@gmail.com		
7	Nomor Telepon/HP	082210359837		

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Ikatan Mahasiswa Teknik Elektro	Anggota	November 2022 – sekarang di USU
2	UKM Robotik Sikonek	Anggota	Oktober 2022 – sekarang di USU
3	Solar Boat Team	Anggota	Januari 2022 - sekarang di USU

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	-	-	•

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Medan, 14-2-2023 Ketua

Kurniawan Siddiq

A. Identitas Diri

1	Nama Lengkap	Muhammad Farras Al - Khairy
2	Jenis Kelamin	Laki-laki
3	Program Studi	Teknik Elektro
4	NIM	210402016
5	Tempat dan Tanggal	Lhokseumawe, 08 Juni 2003
	Lahir	
6	Alamat Email	farraskhairy82@gmail.com
7	Nomor Telepon/HP	081264987122

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Ikatan Mahasiswa	Anggota	November 2022 -
	Teknik Elektro		sekarang di USU
2	UKM Robotik Sikonek	Anggota	Oktober 2022 -
			sekarang di USU

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Medan, 14-2-2023

Anggota Tim

Muhammad Farras Al - Khairy

A. Identitas Diri

1	Nama Lengkap	Ridho Setiawan
2	Jenis Kelamin	Laki-laki
3	Program Studi	Teknik Elektro
4	NIM	210402034
5	Tempat dan Tanggal Lahir	Teluk Nilap, 04 Februari 2003
6	Alamat Email	rdhostwn@gmail.com
7	Nomor Telepon/HP	081289096745

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Jenis Kegiatan Status dalam Kegiatan Waktu dan Ter		an Temp	at
1	UKM Robotik Sikonek	Anggota	Oktober	2022	_
			sekarang di USU		

C. Penghargaan yang Pernah Diterima

No Jenis Penghargaan		Pihak Pemberi Penghargaan	Tahun	
1	•	-	-	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Medan, 14-2-2023 Anggota Tim,

Ridho Setiawan

A. Identitas Diri

1	Nama Lengkap	Rizky Dwi Fauzan SAT
2	Jenis Kelamin	Laki-laki
3	Program Studi	Teknik Elektro
4	NIM	210402125
5	Tempat dan Tanggal Lahir	Asahan, 07 Februari 2003
6	Alamat Email	rdfauzan7@gmail.com
7 Nomor Telepon/HP 081360461258		081360461258

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	•	-	-

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Medan, 14-2-2023

Anggota Tin,

Rizky Dwi Fauzan SAT

A. Identitas Diri

1	Nama Lengkap	Lailani Sabrina
2	Jenis Kelamin	Perempuan
3	Program Studi	Kesehatan Masyarakat
4	NIM	211000071
5	Tempat dan Tanggal Lahir	Pabatu, 02 Oktober 2003
6	Alamat Email	ponselmbc183@gmail.com
7	Nomor Telepon/HP	085765575272

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	-	-	-

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	-		-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Medan, 14-2-2023

Anggota Tim

Lailani Sabrina

Biodata Dosen Pendamping

A. Identitas Diri

1	Nama Lengkap	Ryandika Afdila ST., M.Eng.Sc	
2 Jenis Kelamin Laki-laki		Laki-laki	
3	Program Studi	Teknik Elektro	
4	NIP/NIDN	199204242021021001/0024049203	
5	Tempat dan Tanggal Lahir	Lhokseumawe, 24 April 1992	
6	Alamat Email	ryandika@usu.ac.id	
7 Nomor Telepon/HP		081397908339	

B. Riwayat Pendidikan

No	Jenjang	Bidang Ilmu	Institusi	Tahun Lulus
1	Sarjana (S1)	Teknik Elektro	Universitas Sumatera Utara	2015
2	Magister (S2)	Teknik Telekomunikasi	University of New South Wales	2019
3	Doktor (S3)	-	-	

C. Rekam Jejak Tri Dharma PT

Pendidikan/Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	sks
1	Elektronika Digital	Wajib	3
2	Sistem Kendali	Wajib	3
3	Pengolahan Sinyal Digital	Wajib	4
4	Teknik Pengaturan	Wajib	2
5	Pemrograman Komputer	Wajib	3
6	Sensor dan Transducer	Wajib	2
7	Pemrograman 2	Wajib	2
8	Sistem Digital	Wajib	3

Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun	
1	OPTIMALISASI PENCAHAYAAN ALAMI DENGAN KINETIC SHADING Studi Pada Perumahan Masyarakat Berpenghasilan Rendah di Kabupaten Deli Serdang	Utara	2022	
2	Sistem Kontrol Foermasi Robot Majemuk Terdistribusi Pada	TALENTA USU	2021	

	Lingkungan Dinamis dengan Menggunakan Algoritma Consensus		
Pen	gabdian kepada Masyarakat		
No	Judul Pengabdian Kepada Masyarakat	Penyandang Dana	Tahun
1	Penerapan Teknologi Pompa Air Bertenaga Surya bagi Santri Pondok Pesantren Umar Bin Al Khattab Medan Marelan		2022

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Medan, 14-2-2023 Dosen Pendamping

Ryandika Afdila

Lampiran 2 Justifikasi Anggaran Kegiatan

No	Jenis Pengeluaran	Volume	Harga Satuan	Nilai (Rp)
			(Rp)	\ T/
1	Bahan habis pakai			
	ESP32 CAM	1 buah	180.000	180.000
	Arduino MEGA WiFi R3 ATmega2560	1 buah	350.000	350.000
	ESP8266 32MB			
	Sensor MQ-135	1 buah	35.000	35.000
	Sensor Load Cell	1 buah	60.000	60.000
	Sensor DHT22	1 buah	70.000	70.000
	Limit Switch	1 buah	10.000	10.000
	Sensor GY-MAX4466	1 buah	80.000	80.000
	Sensor DS18B20	1 buah	30.000	30.000
	Pulse Heart Rate Sensor	1 buah	60.000	60.000
	DC to DC Step Down Converter	1 buah	60.000	60.000
	Power Supply dan Kabel Adaptor	1 buah	160.000	160.000
	Lampu Pijar 60 Watt	4 buah	30.000	120.000
	Modul Relay 4 channel	1 buah	70.000	70.000
	LCD 20x4	1 buah	100.000	100.000
	Switch	1 buah	7.000	7.000
	Buzzer	1 buah	15.000	15.000
	Kabel Serabut	1 gulung	40.000	40.000
	Breadboard	2 buah	40.000	80.000
	Heatshrink	6 meter	3.000	18.000
	Kabel Protector	3 buah	10.000	30.000
	Solenoid Valve	1 buah	80.000	80.000
	Kabel Jumper	3 set	20.000	60.000
	Kipas DC 12V	1 buah	30.000	30.000
	Besi Hollow	4 batang	150.000	600.000
	Fitting Lampu	4 buah	20.000	80.000
	Handle	1 buah	100.000	100.000
	Triplek Melamin	2 lembar	285.000	570.000
	Roda Troli	4 buah	55.000	220.000
	Akrilik 5mm	5 lembar	200.000	1.000.000
	Engsel Akrilik	2 buah	7.000	14.000
	Kayu Balok	1 batang	55.000	55.000
	Bantal Bayi	1 buah	60.000	60.000
	Plat Besi	1 lembar	100.000	100.000

G 1		10.000	10.000	
Selang	1 meter	10.000	10.000	
Tatakan Kayu	1 buah	25.000	25.000	
SUB TOTAL			4.579.000	
2 Sewa dan jasa				
Sewa tabung oksigen medis	2 bulan	325.000	650.000	
Jasa penyambungan kerangka prototipe	1 orang	550.000	550.000	
SUB TOTAL	I.	1	1.200.000	
3 Transportasi lokal			1	
Biaya pengantaran bahan	1 kali	250.000	250.000	
Biaya ongkos kirim pembelian	1 kali	350.000	350.000	
bahan melalui online shop	1 Kan	330.000	330.000	
Perjalanan tes uji coba	5 orang	75.000	325.000	
Kegiatan pengumpulan data	1 kali	200.000	200.000	
SUB TOTAL				
4 Lain-lain			l	
Adsense akun media sosial	5 kali	100.000	500.000	
Uji dan Validasi	10 kali	30.000	300.000	
Masker	2 kotak	50.000	100.000	
Hand Sanitizer	5 buah	20.000	100.000	
Pencetakan administrasi	1 paket	200.000	200.000	
SUB TOTAL	•		1.200.000	
GRAND TOTAL				
GRAND TOTAL (Terbilang delapan juta sera	itus empat ri	bu rupiah)		

Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas

Lam	piran 3. Susui	nan Organi	13451 1 1111 1 618	aksana dan Pem	Dagian Tugas
No	Nama/NIM	Program Studi	Bidang Ilmu	Alokasi Waktu (jam/minggu)	Uraian Tugas
1	Kurniawan Siddiq / 210402038	S1	Teknik Elektro	18	 Penanggung jawab dan koordintor tim Memimpin evaluasi setiap bulan untuk mengetahui kinerja dan kendala prototipe Menyusun Laporan Akhir
2	Muhamma d Farras Al-Khairy / 210402016	S1	Teknik Elektro	12	 Pengumpulan informasi yang terkait dengan kegiatan Membuat postingan di akun media sosial NEONAIOT terkait kegiatan pelaksanaan
3	Ridho Setiawan / 210402034	S1	Teknik Elektro	12	 Konfigurasi sistem terhadap keseluruhan bagian prototipe Analisis prototipe untuk mengoptimalka n dan menyempurnak an prototipe
4	Rizky Dwi Fauzan SAT / 210402125	S1	Teknik Elektro	12	Pemodelan sistem dan perakitan alat untuk menempatkan

					mikrokontroler,
					sensor,
					<i>solenoid</i> , dan
					tabung oksigen
5	Lailani	S 1	Kesehatan	12	 Pengujian
	Sabrina /		Masyarakat		prototipe untuk
	211000071				mengetahui
					fungsionalitas,
					serta mengukur
					kesalahan
					 Menyusun
					laporan
					kemajuan

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang bertanda tangan di bawah ini:

Nama Ketua Tim	:	Kurniawan Siddiq	
Nomor Induk Mahasiswa	:	210402038	
Program Studi	:	Teknik Elektro	
Nama Dosen Pendamping	:	Ryandika Afdila ST., M.Eng.Sc	
Perguruan Tinggi	:	Universitas Sumatera Utara	

Dengan ini menyatakan bahwa proposal PKM-KC saya dengan judul "NEONAIOT": Inkubator Cerdas Berbasis *Internet of Things* (IoT) dan *Data Management System* Guna Menurunkan Angka Kematian Neonatal (AKN)" yang diusulkan untuk tahun anggaran 2023 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

ZE5AKX152144329

Medan, 14-2-2023 Yang menyatakan,

Kurniawan Siddiq NIM. 210402038

Lampiran 5. Gambaran Teknologi yang akan Dikembangkan

Lampiran 5.1 NEONAIOT tampak Depan (Kanan)

Lampiran 5.2 NEONAIOT tampak Belakang (Kanan)

Lampiran 5.3 Susunan Komponen pada NEONAIOT