Hodgepodge Metagenomics: A collection of novel tools for viral and bacterial sequences

Cody Glickman CPBS Update Talk

Jan 29th, 2018

Table of Contents

Introduction

Metagenomic Simulation Study

GRAB

BUD

Non-Tuberculosis Mycobacterial (NTM) Infections

Number of Cases

The number of NTM cases is estimated over 100K

Increasing Case

The rate of cases is estimated to grow at 8% every year

Populations at risk of developing NTM

- Immunocompromised individuals
- Patients with lung damage or malfunction
- Residing in warm costal areas especially Hawaii

Understanding Why NTM Develops

Hawaiian Soil Project

Identifying important soil characteristics for NTM soil culture

Pulmonary NTM

- 90% of NTM cultures are from respiratory samples
- The lung has the lowest abundance of DNA viruses in the human niche

Of "Viral" Importance

Bacteriophages aka Phages

Phages are DNA viruses that infect prokaryotes

Bacteriophage Adherence to Mucus (BAM)

- Phages act as an innate immune system in mucosal tissues
- Prior studies identified Ig-like motifs in induced phages from Pseudomonas cultures

Phages in the Lungs

The abundance of phages is significantly lower in the lungs

The BAM model

Molecular Methods to Study Phages

Difficulties of phage study

- Lack of universal marker gene
- Sequence heterogeneaity
- Misclassification in databases

Phage Isolation Methods

- Biological filtration
- In Silico Methods

Objective

Develop new tools and incorporate them into pipelines to identify and quantify bacteriophage elements in shotgun metagenomic sequences.

Secondary Goal

Identify relationships between bacteria and phages using abundance quantification across multiple studies.

Metagenomics

What is Metagenomics?

The study of genetic material from environment or clinical samples

Importance of Metagenomics

- Functional potential of a sample
- Species level distinctions
- Due to lack of a universal gene marker, phages are studied by metagenomics

Include Photo Mosaic Here

Metagenomics Gold Standard

Critical Assessment of Metagenome Interpretation (CAMI)

- 1300 newly sequenced organisms collected in simulated dataset
- 25 programs and 36 biobox implementations (binners, assemblers, taxonomic profilers)

Pyrite Standard

Viral elements worsened abundance estimates in taxonomic profilers

Supplementary Figure 41. Sensitivity metric at the superkingdom rank for each profiler on the low complexity, unfiltered sample (left) and filtered sample (right).

Improving Taxonomic Profiling

CAMI and Viruses

Filtering viruses improves abundance profile estimates for bacteria

Supplementary Figure 41. Sensitivity metric at the superkingdom rank for each profiler on the low complexity, unfiltered sample (left) and filtered sample (right).

Viral Filtration Simulation Study

Study Design

30 simulated mixed metagenomes are used to compare the viral contiguous sequence (contigs) identification performance of multiple tools

Sequencing Depth of Experiment

Each metagenome is comprised of 10 million reads

Complexity of Metagenomes

8 bacteria and 8 phages comprise the low complexity samples in each metagenome

Genomes in Simulation

Virus - 0.12 Mb

- Bacillus phage Pony
- Caulobacter phage CcrColossus
- Mycobacterium phage Bxb1
- Mycobacterium phage Che9d
- Mycobacterium phage TM4
- Pseudomonas phage vB-PaeM-C2-10-Ab1
- Staphylococcus phage CNPH82
- uncultured phage crAssphage

Bacteria - 4.72 Mb

- Bacillus subtilis subs. subtilis 168
- Clostridium acetobutylicum ATCC 824
- Clostridium perfringes str. 13
- Lactococcus lactis subsp. lactis Il1403
- Pseudomonas aeruginosa LESB58
- Staphylococcus aureus subsp. aureus N315
- Streptococcus pyogenes M1 476
- Xylella fastidiosa 9a5c

Tools Used in Study

The tools used in this study are selected based on recent publications

Assembler

MEGAHIT - Effective at assembling viromes Roux, Simon, et al. PeerJ 2017

Filtration Methods

VirFinder - Viral contig K-mer identification model Ren, Jie, et al. Microbiome 2017

Blastx - Filtering against a viral protein database Camacho C., et al. BMC Bioinformatics 2008

Tools Used in Study Continued

Simulation Tools

BBMAP - a suite of tools designed for sequencing data $_{\mbox{\scriptsize Bushnell},\mbox{\ B.},\mbox{\ JGI}\ 2016}$

Taxonomic Identification

Kraken - A reference-free K-mer taxonomic identifier Wood, Derrick E., and Steven L. Salzberg Genome 2014

Blastx - Referenced against a viral protein database Camacho C., et al. BMC Bioinformatics 2008

Prophage Identification

Phaster - A popular prophage discovery web tool Arndt, David, et al., Nucleic Acids Research 2016

Performance Measurements

True Viral Contigs

True viral contigs are defined by BLAST hits (E-value 10-05) against a custom database of reference phages and bacterial prophage elements.

Term Definitions

FN = False Negative TP = True Positive FP = False PositivePerformance Metrics

- Recall = TP / (TP + FN)
- Precision = TP / (TP + FP)
- F1 = (2*TP) / (2*TP + FP + FN)

Recall

Precision

F1

Conclusions and Future Directions

Performance

The variance of performances suggests that no one tool is optimal for viral filtration

Expansion of Tools

Inclusion of binners MetaBat and MetaWatt 3.5

Expanded Dataset

Filter viral elements from CAMI data

Tool Parameter Optimization

VirFinder is currently trained against only phages

Custom BLAST Databases

Command-line BLAST

Released in 2008 to allow users to run BLAST on local machines

makeblastdb Function

Allows user to create custom BLAST databases from local sequences

Sequence Batch Retrieval

NCBI Webserver, ESearch function, biomart R package

Current Batch Retrieval

Nucleotide	mycobacterial abscessus	⊗ Search
	Create alert Advanced	
Summary -	20 per page → Sort by Default order → Send to: →	Filters: Manage Filters
Selected:	co 20 of 9604 2	n [Tree] n abscess
Mycobacte 1. 5,067,172	vacterium abscessus chromosome, complete sequence 172 bp circular DNA	ard nimmund n chelona n phage 0 um minut
Assemb	on: NC_010397.1 GI: 169627108 Download 2 items. Pormat FASTA Graphics Download 2 items. Format FASTA \$	ta
+ 4	Sort by Default order \$ \tag{\phi}\$	xt
2. 5,067,	acterium abscessus ATCC 19977 chromosome, comp 172 bp circular DNA Show GI Create File	
Assemb	*	Search details
	nk FASTA Graphics	mycobacterial[All Fi abscessus[All Fields

Obstacles to Current Systems

Taxonomic Querying

Querying multiple bacteria by taxonomy requires long command

A Priori Knowledge

ESearch requires knowledge of accession numbers to query

Required Programming Knowledge

The biomart R Package requires knowledge of IDE and data manipulation

[&]quot;Mycobacterium abscessus"[Organism] OR "Mycobacterium avium"[Organism]

Genomic Retrieval and Blast Database Creation (GRAB)

A Batch Retrieval System for Biologists Well-Documented Command Line and Web interface

Allows for Taxonomic Querying

Elaine Epperson

HongWei Chu

Michael Strong

....

Davidson Lab

Rebecca Davidson

Computational Bioscience Program

Chris Miller

Cathy Lozupone

James Costello

Kirk Harris

<u>Funding</u>

NLM: 5 T15 LM 9451-09

Questions?

Cody Glickman

cody.glickman@ucdenver.edu www.github.com/glickmac www.codyglickman.com

Bias in Average Fold Coverage by GC

Average Fold Coverage by GC Content

References

Barr, Jeremy, et al., PNAS 2013 Tariq, Mohammad, et al., Frontiers in Microbiology 2015

My Pipeline

