

In the Claims

1. (previously presented) A compound of formula (I), (II) or (III)

(I)

(II)

(III)

wherein

R_1 and R_2 are independently of each other hydrogen, C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{18} alkynyl or phenyl which are unsubstituted or substituted by NO_2 , halogen, amino, hydroxy, cyano, carboxy, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylamino or di(C_1 - C_4 alkyl)amino;

A is a group capable of forming a stable free nitroxyl radical $A\bullet$, which is bound via its oxygen atom to the carbon atom;

Y is O , NR_3 or CHR_3-X_a , wherein X_a is O , S or NR_3 ;

R_3 is hydrogen, C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{18} alkynyl or phenyl which are unsubstituted or substituted by NO_2 , halogen, amino, hydroxy, cyano, carboxy, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylamino or di(C_1 - C_4 alkyl)amino;

Q_1 is an organic radical derived from an unsubstituted or substituted triazine, from a polycarboxylic acid or polycarboxylic acid derivative having 2-6 carboxylgroups, from a multifunctional alkylating agent having 2-6 functional groups or from a polyisocyanate having 2-6 isocyanate groups;

Q_2 is an organic radical derived from a mono or polyfunctional alcohol, mono or polyfunctional aminoalcohol, mono or polyfunctional amine mono or polyfunctional mercaptane, mono or polyfunctional phenol or mono or polyfunctional thiophenol; and

n is a number from 2 to 10;

with the proviso, that in formula (I) if n is 2, R_1 is H and R_2 is

$-CH_2-O$ -tert-butyl, A is not 2,2,6,6-tetramethylpiperidine or 2,2,6,6-tetramethylpiperidine-4-carboxylic acid.

2. (canceled)

3. (original) A compound of formula (I), (II) or (III) according to claim 1, wherein R_1 and R_2 are independently of each other hydrogen, C_1-C_{12} alkyl, C_3-C_{12} alkenyl or phenyl.

4. (original) A compound of formula (II) according to claim 1, wherein Y is O or NR_3 .

5. (canceled)

6. (canceled)

7. (canceled)

8. (original) A compound of formula (II) according to claim 1, wherein Q_2 is an organic radical derived from a polyfunctional alcohol, a polyfunctional aminoalcohol or a polyfunctional amine.

9. (original) A compound of formula (II) according to claim 8, wherein Q₂ is a radical derived from a polyalcohol having 2-6 hydroxy groups, a polyaminoalcohol having 2-6 amino and/or hydroxy groups, or a polyamine having 2-6 amine groups.

10. (original) A compound of formula (I), (II) or (III) according to claim 1, wherein the radical A• derived from the group A is a stable open chain nitroxyl radical or a cyclic nitroxyl radical.

11. (previously presented) A compound of formula (I), (II) or (III) according to claim 1, wherein A is a group of formula (X)

wherein n₁ is 0 or 1

R₁₀₁, R₁₀₂, R₁₀₃ are each independently of one another hydrogen, halogen, NO₂, cyano, -CONR₁₀₅R₁₀₆, -(R₁₀₉)COOR₁₀₄, -C(O)-R₁₀₇, -OR₁₀₈, -SR₁₀₈, -NHR₁₀₈, -N(R₁₀₈)₂, carbamoyl, di(C₁-C₁₈alkyl)carbamoyl, -C(=NR₁₀₅)(NHR₁₀₆); unsubstituted C₁-C₁₈alkyl, C₂-C₁₈alkenyl, C₂-C₁₈alkynyl, C₇-C₉phenylalkyl, C₃-C₁₂cycloalkyl or C₃-C₁₂cycloalkyl containing at least one nitrogen or oxygen atom; or C₁-C₁₈alkyl, C₂-C₁₈alkenyl, C₂-C₁₈alkynyl, C₇-C₉phenylalkyl, C₃-C₁₂cycloalkyl or C₃-C₁₂cycloalkyl containing at least one nitrogen or oxygen atom, which are substituted by NO₂, halogen, amino, hydroxy, cyano, carboxy, C₁-C₄alkoxy, C₁-C₄alkylthio, C₁-C₄alkylamino or di(C₁-C₄alkyl)amino; or phenyl, which is unsubstituted or substituted by C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, halogen, cyano, hydroxy, carboxy, C₁-C₄alkylamino or di(C₁-C₄alkyl)amino; or R₁₀₂ and R₁₀₃, together with the linking carbon atom, form a C₃-C₁₂cycloalkyl radical, a (C₄-C₁₂cycloalkanone)-yl radical or a C₃-C₁₂cycloalkyl radical containing at least one O atom and/or a NR₁₀₈ group; or if n₁ is 1

R_{104} is hydrogen, C_1 - C_{18} alkyl, phenyl, an alkali metal cation or a tetraalkylammonium cation;
 R_{105} and R_{106} are hydrogen, C_1 - C_{18} alkyl, C_2 - C_{18} alkyl which is substituted by at least one hydroxy group or, taken together, form a C_2 - C_{12} alkylene bridge or a C_2 - C_{12} -alkylene bridge interrupted by at least one O or/and NR_{108} atom;
 R_{107} is hydrogen, C_1 - C_{18} alkyl or phenyl;
 R_{108} is hydrogen, C_1 - C_{18} alkyl or C_2 - C_{18} alkyl which is substituted by at least one hydroxy group;
 R_{109} is C_1 - C_{12} alkylen or a direct bond;
 R_{110} is C_4 - C_{18} alkyl bound via a tertiary C-atom to the nitrogen atom, C_9 - C_{11} phenylalkyl, C_3 - C_{12} cycloalkyl or C_3 - C_{12} cycloalkyl containing at least one nitrogen or oxygen atom; or
 C_4 - C_{18} alkyl bound via a tertiary C-atom to the nitrogen atom, C_9 - C_{11} phenylalkyl, C_3 - C_{12} cycloalkyl or C_3 - C_{12} cycloalkyl containing at least one nitrogen or oxygen atom, which are substituted by NO_2 , halogen, amino, hydroxy, cyano, carboxy, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylamino or di(C_1 - C_4 alkyl)amino; or
phenyl, naphthyl, which are unsubstituted or substituted by C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, halogen, cyano, hydroxy, carboxy, C_1 - C_4 alkylamino or di(C_1 - C_4 alkyl)amino;
if n_1 is 1
 R_{111} is C_1 - C_{18} alkyl, C_7 - C_9 phenylalkyl, C_3 - C_{12} cycloalkyl or C_3 - C_{12} cycloalkyl containing at least one nitrogen or oxygen atom; or
 C_1 - C_{18} alkyl, C_7 - C_9 phenylalkyl, C_3 - C_{12} cycloalkyl or C_3 - C_{12} cycloalkyl containing at least one nitrogen or oxygen atom, which are substituted by NO_2 , halogen, amino, hydroxy, cyano, carboxy, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylamino or di(C_1 - C_4 alkyl)amino; or
phenyl, naphthyl, which are unsubstituted or substituted by C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, halogen, cyano, hydroxy, carboxy, C_1 - C_4 alkylamino or di(C_1 - C_4 alkyl)amino; or
a polycyclic cycloaliphatic ring system or a polycyclic cycloaliphatic ring system with at least one di- or trivalent nitrogen atom; or
 R_{110} and R_{111} together form a C_2 - C_{12} alkylene bridge, a C_3 - C_{12} alkylen-on bridge or a C_2 - C_{12} alkylene bridge which is interrupted by at least one O or N atom, which bridges are unsubstituted or substituted with C_1 - C_{18} alkyl, hydroxy(C_1 - C_4)alkyl, phenyl, C_7 - C_9 phenylalkyl, NO_2 , halogen, amino, hydroxy, cyano, carboxy, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylamino or di(C_1 - C_4 alkyl)amino,

R_{112} is hydrogen, $-(R_{109})COOR_{104}$, cyano, $-OR_{108}$, $-SR_{108}$, $-NHR_{108}$, $-N(R_{108})_2$, $-NH-C(O)-R_{108}$, unsubstituted C_1-C_{18} alkyl, C_2-C_{18} alkenyl, C_2-C_{18} alkynyl, C_7-C_9 phenylalkyl, C_3-C_{12} cycloalkyl or C_3-C_{12} cycloalkyl containing at least one nitrogen or oxygen atom; or C_1-C_{18} alkyl, C_2-C_{18} alkenyl, C_2-C_{18} alkynyl, C_7-C_9 phenylalkyl, C_3-C_{12} cycloalkyl or C_3-C_{12} cycloalkyl containing at least one nitrogen or oxygen atom, which are substituted by NO_2 , halogen, amino, hydroxy, cyano, carboxy, C_1-C_4 alkoxy, C_1-C_4 alkylthio, C_1-C_4 alkylamino or $di(C_1-C_4$ alkyl)amino; or phenyl, naphthyl, which are unsubstituted or substituted by C_1-C_4 alkyl, C_1-C_4 alkoxy, C_1-C_4 alkylthio, halogen, cyano, hydroxy, carboxy, C_1-C_4 alkylamino, $di(C_1-C_4$ alkyl)amino; or R_{111} and R_{112} together with the linking carbon atom form a C_3-C_{12} cycloalkyl radical;

or A is a group of formula XXa, XXb or XXc

(XXc),

wherein

Y_1 is O or CH_2 ;

Q is O or NR_{220} , wherein R_{220} is hydrogen or C_1-C_{18} alkyl;

R_{201} is tertiary C_4-C_{18} alkyl or phenyl, which are unsubstituted or substituted by halogen, OH, $COOR_{221}$ or $C(O)-R_{222}$ wherein R_{221} is hydrogen, a alkali metal atom or C_1-C_{18} alkyl and R_{222} is C_1-C_{18} alkyl; or R_{201} is C_5-C_{12} cycloalkyl, C_5-C_{12} cycloalkyl which is interrupted by at least one O or N atom, a polycyclic alkyl radical or a polycyclic alkyl radical which is interrupted by at least one O or N atom;

R_{202} and R_{203} are independently C_1-C_{18} alkyl, benzyl, C_5-C_{12} cycloalkyl or phenyl, which are unsubstituted or substituted by halogen, OH, $COOR_{221}$ or $C(O)-R_{222}$ or together with the carbon atom form a C_5-C_{12} cycloalkyl ring;

if Y_1 is O,

R_{204} and R_{212} are OH, O(alkali-metal) C_1-C_{18} alkoxy, benzyloxy, $NR_{223}R_{224}$, wherein R_{223} and R_{224} are independently from each other hydrogen, C_1-C_{18} alkyl or phenyl, which are unsubstituted or substituted by halogen, OH, $COOR_{221}$ or $C(O)-R_{222}$;

if Y_1 is CH_2 ,

R_{204} is OH, C_1-C_{18} alkoxy, benzyloxy, O-C(O)-(C₁-C₁₈)alkyl or $NR_{223}R_{224}$;

R_{212} are a group $C(O)R_{225}$, wherein R_{225} is OH, C_1 - C_{18} alkoxy, benzyloxy, $NR_{223}R_{224}$, wherein R_{223} and R_{224} are independently from each other hydrogen, C_1 - C_{18} alkyl or phenyl, which are unsubstituted or substituted by halogen, OH, $COOR_{221}$ or $C(O)-R_{222}$;

R_{205} , R_{206} , R_{207} and R_{208} are independently of each other C_1 - C_{18} alkyl, C_5 - C_{12} cycloalkyl or phenyl; or

R_{205} and R_{206} and/or R_{207} and R_{208} together with the carbon atom form a C_5 - C_{12} cycloalkyl ring;

R_{209} and R_{210} are independently of each other hydrogen, formyl, C_2 - C_{18} alkylcarbonyl, benzoyl, C_1 - C_{18} alkyl, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkyl which is interrupted by at least one O or N atom, benzyl or phenyl which are unsubstituted or substituted by halogen, OH, $COOR_{221}$ or $C(O)-R_{222}$;

R_{211} , is formyl, C_2 - C_{18} alkylcarbonyl, benzoyl, C_1 - C_{18} alkyl, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkyl which is interrupted by at least one O or N atom, benzyl or phenyl which are unsubstituted or substituted by halogen, OH, $COOR_{221}$ or $C(O)-R_{222}$,

or A is a group containing a structural element of formula (XXX)

G_1 , G_2 , G_3 , G_4 are independently C_1 - C_6 alkyl or G_1 and G_2 or G_3 and G_4 , or G_1 and G_2 and G_3 and G_4 together form a C_5 - C_{12} cycloalkyl group;

G_5 , G_6 independently are H, C_1 - C_{18} alkyl, phenyl, naphthyl or a group $COOC_1$ - C_{18} alkyl;

or A is a group of formula (XLa) or (XLb)

R_{301} , R_{302} , R_{303} and R_{304} independently of each other are C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{18} alkinyl, C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{18} alkinyl which are substituted by OH, halogen or a group $-O-C(O)-R_{305}$, C_2 - C_{18} alkyl which is interrupted by at least one O atom and/or NR_{305} group, C_3 - C_{12} cycloalkyl or C_6 - C_{10} aryl or R_{301} and R_{302} and/or R_{303} and R_{304} together with the linking carbon atom form a C_3 - C_{12} cycloalkyl radical;

R_{305} , R_{306} and R_{307} independently are hydrogen, C_1 - C_{18} alkyl or C_6 - C_{10} aryl;

Z_1 is O or NR_{308} ;

R_{308} is hydrogen, OH, C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{18} alkinyl, C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{18} alkinyl which are substituted by one or more OH, halogen or a group $-O-C(O)-R_{305}$, C_2 - C_{18} alkyl which is interrupted by at least one O atom and/or NR_{305} group, C_3 - C_{12} cycloalkyl or C_6 - C_{10} aryl, C_7 - C_9 phenylalkyl, C_5 - C_{10} heteroaryl, $-C(O)-C_1-C_{18}$ alkyl, $-O-C_1-C_{18}$ alkyl or $-COOC_1-C_{18}$ alkyl;

Q_4 is a direct bond or a divalent radical $CR_{309}R_{310}$, $CR_{309}R_{310}-CR_{311}R_{312}$, $CR_{309}R_{310}CR_{311}R_{312}CR_{313}R_{314}$, $C(O)$ or $CR_{309}R_{310}C(O)$, wherein R_{309} , R_{310} , R_{311} , R_{312} , R_{313} and R_{314} are independently hydrogen, phenyl or C_1 - C_{18} alkyl.

12. (previously presented) A compound of formula (I) or (II) according to claim 11, wherein A is a group of formula (X)

n_1 is 1

R_{101} is cyano;

R_{102} and R_{103} are each independently of one another unsubstituted C_1 - C_{12} alkyl or phenyl; or R_{102} and R_{103} , together with the linking carbon atom, form a C_5 - C_7 cycloalkyl radical;

R_{110} is C_4 - C_{12} alkyl bound via a tertiary C-atom to the nitrogen atom, C_9 - C_{11} phenylalkyl or phenyl;

R_{11} is C_1 - C_{18} alkyl, C_7 - C_9 phenylalkyl or C_3 - C_{12} cycloalkyl; or

R_{110} and R_{111} together form a C_2 - C_6 alkylene bridge which is unsubstituted or substituted with C_1 - C_4 alkyl; and

R_{112} is C_1 - C_4 alkyl;

or wherein A is a group of formula (XXa)

R_{201} is tertiary C_4 - C_8 alkyl;

R_{202} and R_{203} are methyl, ethyl or together with the carbon atom form a C_5 - C_6 cycloalkyl ring;

R_{204} is C_1 - C_{18} alkoxy, benzyloxy or $NR_{223}R_{224}$, wherein R_{223} and R_{224} are independently of each other hydrogen or C_1 - C_8 alkyl;

or wherein A is a group of formula (XXb), wherein Q is O;

R_{205} , R_{206} , R_{207} and R_{208} are independently of each other methyl or ethyl; or

R_{205} and R_{206} and/or R_{207} and R_{208} together with the carbon atom form a C_5 - C_6 cycloalkyl ring;

R_{209} and R_{210} are independently of each other formyl, C_2 - C_8 alkylcarbonyl, benzoyl, C_1 - C_8 alkyl, benzyl or phenyl;

or wherein A is a group of formula (XXc), wherein Y_1 is O;

R_{205} , R_{206} , R_{207} and R_{208} are independently of each other methyl or ethyl; or

R_{205} and R_{206} and/or R_{207} and R_{208} together with the carbon atom form a C_5 - C_6 cycloalkyl ring;

R_{211} is formyl, C_2 - C_{18} alkylcarbonyl, benzoyl, C_1 - C_{18} alkyl, benzyl or phenyl and

R_{212} is OH, C_1 - C_{18} alkoxy, benzyloxy, $NR_{223}R_{224}$, wherein R_{223} and R_{224} are independently of each other hydrogen or C_1 - C_{18} alkyl,

or wherein A is a group of formula (XXXA), (XXXB) or (XXXO)

wherein

G_1 , G_2 , G_3 and G_4 are independently alkyl of 1 to 4 carbon atoms, or G_1 and G_2 together and G_3 and G_4 together, or G_1 and G_2 together or G_3 and G_4 together are pentamethylene;

G_5 and G_6 are independently hydrogen or C_1 - C_4 alkyl;

m is a number from 1-4;

p is a number from 1-3;

R , if m is 1, is hydrogen, C_1 - C_{18} alkyl which is uninterrupted or C_2 - C_{18} alkyl which is interrupted by one or more oxygen atoms, cyanoethyl, benzoyl, glycidyl, a monovalent radical of an aliphatic carboxylic acid having 2 to 18 carbon atoms, of a cycloaliphatic carboxylic acid having 7 to 15 carbon atoms, or

an α,β -unsaturated carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms, where each carboxylic acid can be substituted in the aliphatic, cycloaliphatic or aromatic moiety by 1 to 3 $-COOZ_{12}$ groups, in which Z_{12} is H, C_1-C_{20} alkyl, C_3-C_{12} alkenyl, C_5-C_7 cycloalkyl, phenyl or benzyl; or

R is a monovalent radical of a carbamic acid or phosphorus-containing acid or a monovalent silyl radical;

R, if m is 2, is C_2-C_{12} alkylene, C_4-C_{12} alkenylene, xylylene, a divalent radical of an aliphatic dicarboxylic acid having 2 to 36 carbon atoms, or a cycloaliphatic or aromatic dicarboxylic acid having 8-14 carbon atoms or of an aliphatic, cycloaliphatic or aromatic dicarbamic acid having 8-14 carbon atoms, where each dicarboxylic acid may be substituted in the aliphatic, cycloaliphatic or aromatic moiety by one or two $-COOZ_{12}$ groups; or

R is a divalent radical of a phosphorus-containing acid or a divalent silyl radical;

R, if m is 3, is a trivalent radical of an aliphatic, cycloaliphatic or aromatic tricarboxylic acid, which may be substituted in the aliphatic, cycloaliphatic or aromatic moiety by

$-COOZ_{12}$, of an aromatic tricarbamic acid or of a phosphorus-containing acid, or is a trivalent silyl radical,

R, if m is 4, is a tetravalent radical of an aliphatic, cycloaliphatic or aromatic tetracarboxylic acid; p is 1, 2 or 3,

R_{401} is C_1-C_{12} alkyl, C_5-C_7 cycloalkyl, C_7-C_8 aralkyl, C_2-C_{18} alkanoyl, C_3-C_5 alkenoyl or benzoyl; when p is 1,

R_{402} is C_1-C_{18} alkyl, C_5-C_7 cycloalkyl, C_2-C_8 alkenyl unsubstituted or substituted by a cyano, carbonyl or carbamide group, or is glycidyl, a group of the formula $-CH_2CH(OH)-Z_4$ or of the formula $-CO-Z_4-$ or $-CONH-Z_4$ wherein Z_4 is hydrogen, methyl or phenyl; or

when p is 2,

R_{402} is C_2-C_{12} alkylene, C_6-C_{12} -arylene, xylylene, a $-CH_2CH(OH)CH_2-O-B-O-CH_2CH(OH)CH_2-$ group, wherein B is C_2-C_{10} alkylene, C_6-C_{15} arylene or C_6-C_{12} cycloalkylene; or, provided that R_{401} is not alkanoyl, alkenoyl or benzoyl; or

R_{402} is a divalent acyl radical of an aliphatic, cycloaliphatic or aromatic dicarboxylic acid or dicarbamic acid, or is the group $-CO-$; or

R_{401} and R_{402} together when p is 1 can be the cyclic acyl radical of an aliphatic or aromatic 1,2- or 1,3-dicarboxylic acid; or

R_{402} is a group

where T_7 and T_8 are independently hydrogen, alkyl of 1 to 18 carbon atoms, or T_7 and T_8 together are alkylene of 4 to 6 carbon atoms or 3-oxapentamethylene;

when p is 3,

R_{402} is 2,4,6-triazinyl;

or wherein in formula (XLa) or (XLb)

R_{301} , R_{302} , R_{303} and R_{304} independently of each other are C_1 - C_4 alkyl, which is unsubstituted or substituted by OH, or a group $-O-C(O)-R_{305}$, or R_{301} and R_{302} and/or R_{303} and R_{304} together with the linking carbon atom form a C_5 - C_6 cycloalkyl radical;

R_{305} is hydrogen or C_1 - C_4 alkyl,

R_{306} and R_{307} independently are hydrogen, methyl or ethyl;

Z_1 is O or NR_{308} ;

Q_4 is a direct bond or a divalent radical CH_2 , CH_2CH_2 , $CH_2-CH_2-CH_2$, $C(O)$, $CH_2C(O)$ or $CH_2-CH-CH_3$;

R_{308} is hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkyl which is substituted by OH, or benzyl.

13. (previously presented) A compound according to claim 12, wherein in formula (XXXA), (XXXB) or (XXXO) G_1 and G_3 are methyl and G_2 and G_4 are ethyl or propyl, or G_1 and G_2 are methyl and G_3 and G_4 are ethyl or propyl.

14. (previously presented) A compound according to claim 12, wherein in formula (XXXA) G_1 and G_3 are methyl and G_2 and G_4 are ethyl or propyl, or G_1 and G_2 are methyl and G_3 and G_4 are ethyl or propyl, one of G_5 and G_6 is hydrogen and the other is methyl or both are hydrogen, m is 1 and R is C_1 - C_{18} alkyl or the monovalent radical of a C_2 - C_{18} carboxylic acid.

15. (original) A compound according to claim 11 wherein in formula (XLa) and (XLb) at least two of R₃₀₁, R₃₀₂, R₃₀₃ and R₃₀₄ are ethyl, propyl or butyl and the remaining are methyl.

16. (canceled)

17. (previously presented) A polymerizable composition, comprising
a) at least one ethylenically unsaturated monomer or oligomer, and
b) a compound of formula (I), (II) or (III) according to claim 1.

18. (canceled)

19. (previously presented) A polymerizable composition according to claim 17, wherein the ethylenically unsaturated monomer or oligomer is selected from the group consisting of ethylene, propylene, n-butylene, i-butylene, styrene, substituted styrene, conjugated dienes, acrolein, vinyl acetate, vinylpyrrolidone, vinylimidazole, maleic anhydride, (alkyl)acrylic acid anhydrides, (alkyl)acrylic acid salts, (alkyl)acrylic esters, (meth)acrylonitriles, (alkyl)acrylamides, vinyl halides and vinylidene halides.

20. (previously presented) A process for preparing an oligomer, a cooligomer, a polymer or a copolymer (block or random) by free radical polymerization of at least one ethylenically unsaturated monomer or oligomer, which comprises (co)polymerizing the monomer or monomers/oligomers in the presence of an initiator/regulator compound of formula (I), (II) or (III) according to claim 1 under reaction conditions capable of effecting scission of the O-C bond to form two free radicals, the •C radical being capable of initiating polymerization.

21. (original) A process according to claim 20, wherein the scission of the O-C bond is effected by ultrasonic treatment, heating or exposure to electromagnetic radiation, ranging from γ to microwaves.

22. (original) A process according to claim 20, wherein the scission of the O-C bond is effected by heating and takes place at a temperature of between 50°C and 160°C.

23. (original) A process according to claim 20, wherein a cooligomer or copolymer of star, comb or block structure is prepared.

24. (previously presented) A process according to claim 20, wherein the compound of formula (I), (II) or (III) is present in an amount of from 0.01 to 30 mol % based on the monomer or monomer mixture.

25. (original) A oligomer, cooligomer, polymer or copolymer prepared by a process according to claim 20.

26-29. (canceled)