Vertical reflection: y = -f(x)

- Vertical reflection (reflection over the x axis)
- Let corresponding points (x_1, y_1) and (x_2, y_2) exist such that $y_1 = f(x_1)$ if and only if $y_2 = -f(x_2)$.
 - Then we know $x_2 = x_1$ and $y_2 = -y_1$. (Negate the y values.)
 - In other words: $(a,b) \rightarrow (a,-b)$ for any point (a,b) on curve y=f(x).
 - For example, (3,1) is on y=f(x) if and only if (3,-1) is on y=-f(x)

$$y = f(x)$$

 $y = -f(x)$

Horizontal reflection: y = f(-x)

- Horizontal reflection (reflection over the y axis)
- Let corresponding points (x_1, y_1) and (x_2, y_2) exist such that $y_1 = f(x_1)$ if and only if $y_2 = f(-x_2)$.
 - Then we know $x_2 = -x_1$ and $y_2 = y_1$. (Negate the x values.)
 - In other words: $(a,b) \to (-a,b)$ for any point (a,b) on curve y=f(x).
 - For example, (3,1) is on y=f(x) if and only if (-3,1) is on y=f(-x)

Inverse function: $y = f^{-1}(x)$

- Reflection over the y = x line.
- Let f represent a one-to-one function.
- Let corresponding points (x_1, y_1) and (x_2, y_2) exist such that $y_1 = f(x_1)$ if and only if $y_2 = f^{-1}(x_2)$.
 - Then we know $x_2 = y_1$ and $y_2 = x_1$. (Swap the x and y.)
 - In other words: $(a, b) \rightarrow (b, a)$ for any point (a, b) on curve y = f(x).
 - For example, (3,1) is on y=f(x) if and only if (1,3) is on $y=f^{-1}(x)$

Double reflection: y = -f(-x)

- Double reflection over x axis and then y axis (or 180° rotation around origin).
- Let corresponding points (x_1, y_1) and (x_2, y_2) exist such that $y_1 = f(x_1)$ if and only if $y_2 = -f(-x_2)$.
 - Then we know $x_2 = -x_1$ and $y_2 = -y_1$. (Negate the x and y values.)
 - In other words: $(a,b) \to (-a,-b)$ for any point (a,b) on curve y=f(x).
 - For example, (3,1) is on y=f(x) if and only if (-3,-1) is on y=-f(-x)

$$y = f(x)$$

$$y = -f(-x)$$