Computersystemen 2 Theorie

1. Herhaling

Inhoud

- Grootheden
- Harvard / Von Neumann architectuur
- Registers / RAM geheugen

Grootheden

Binair

Macht	van	2	
1 Ki	210	1024	1,024 K
1 Mi	2 ²⁰	10242	1,024 ² M
1 Gi	2 ³⁰	10243	1,024 ³ G
1 Ti	240	10244	1,024 ⁴ T
1 Pi	2 ⁵⁰	1024 ⁵	1,024 ⁵ P

Decimaal

Macht	van	10	
1 K	10 ³	1000	1,024 ⁻¹ Ki
1 M	10 ⁶	1000 ²	1,024 ⁻² Mi
1 G	10 ⁹	1000 ³	1,024 ⁻³ Gi
1 T	1012	10004	1,024 ⁻⁴ Ti
1 P	1015	10005	1,024 ⁻⁵ Pi

Zet om

- 68 608 = Ki
- 46 080 = Ki
- 5 242 880 = Mi
- 150 KiB = KB
- 300 MiB = MB
- 2 GB = GiB
- 5 MB = MiB
- Past een bestand van 95 GiB op een HD van 100 GB?
- $0 \times 100000 = \dots \square i$
- $0x4000\ 0000 = \dots$

Zet om

- 1. $68\ 608 = 68\ 608 / 1024\ Ki = 67\ Ki$
- $2. 46 080 = \dots$ Ki
- 3. 5 242 880 = Mi
- 4. 150 KiB = KB
- 5. $300 \text{ MiB} = 300 * 1,024^2 \text{ MB} = 314,6 \text{ MB}$
- 6. 2 GB = GiB
- 7. 5 MB = MiB
- 8. Past een bestand van 95 GiB op een HD van 100 GB?
- 9. $0x100000 = 1*16^5 = (2^4)^5 = 2^{20} = 1$ Mi
- 10. $0 \times 4000 \ 0000 = \dots$

Inhoud

- Grootheden
- Harvard / Von Neumann architectuur
- Registers / RAM geheugen

Harvard architectuur

Von Neumann

Paspberry Pi

Instructiecyclus: fetch, decode, execute

Von Neumann – with I/O devices

Inhoud

- Grootheden
- Harvard / Von Neumann architectuur
- Registers / RAM geheugen

Registers

- Gegevensregisters (= tijdelijke opslagplaatsen)
- Adresregisters
 - indexregisters
 - segmentregisters
 - stackpointer
- Stuur- en statusregisters
 - program counter
 - flags

RAM Geheugen

7FFF FFFF hoeveel geheugen is er hier? RAM 0000 0000 code

- machine-code: bytes
- instructie: instructie code + argumenten
- vb:
 - laad waarde uit geheugen nr register
 - stockeer waarde uit register in geheugen
 - · laad register met waarde
 - tel 2 registers op
 - spring naar ander adres als...
- data
 - getallen (bytes, words, floating point, ...)
 - tekst (ASCII, unicode, EBCDIC, ...)
- zowel code als data zijn <u>bytes</u>
 - data kan als code uitgevoerd worden!
 - beveiliging...

Voorbeeld Intel 8086

- 16 bit processor
 - registers zijn 16 bit
 - grootste getal in register: $2^{16} = 2^6 2^{10} = 64 \text{ Ki}$
- Adresbus 20 bit
 - maximale grootte RAM geheugen: 2²⁰ = 1 Mi
- Hoe kan je 20 bit adressen maken met 16 bit registers?
 - door combinatie van een register met een segment register
 - adres = CS * 16 + IP
 - maximale grootte: 2¹⁶ * 16 + 2¹⁶

- PS:
 - Intel Pentium: 32 bit registers en 32 bit adresbus
 - i7: 64 bit en adresbus 40->52 bit