RECEIVED CENTRAL FAX CENTER

DEC 23 2009

IN THE CLAIMS:

1. (Previously presented) A method for transferring packet-based digital data between a first communications network and a second communications network, said method comprising:

receiving a stream of packet based digital data from the first communications network, the first communications network having a prioritized communications protocol;

determining a priority code associated with a data packet of said stream;
determining whether to open a channel comprising an isochronous channel or an
asynchronous channel in response to the priority code;

using the presence of the priority code as an indication for setting up the channel for communicating information in said stream of packet based digital data to a second communications network, the second communications network having a communications protocol that allows for set up and communications over discrete channels of a reserved bandwidth; and

modifying header information associated with said data packets in said stream into a format suitable for communication through said established channel for transfer to said second communications network.

- 2. (Previously presented) The method of claim 1, wherein said first communications network is an Ethernet network and said second communications network is at least one of an IEEE1394 network and HyperLan 2 network, and wherein the established channel is one of an isochronous reserved bandwidth channel over the IEEE1394 network or an asynchronous channel across the HyperLan2 network based on said priority code.
- 3.(Previously presented) The method of claim 1, wherein modifying header information comprises embedding an IP header associated with said data packet into an OSI layer 3 header in a packet suitable for transmission over said second communications network having a communications protocol that allows for set up and communication over discrete channels of a reserved bandwidth.

4. (Previously presented) The method of claim 1, further comprising the step of: determining whether said prioritized data packet requires transmission to a second device associated with said second communications network over a reserved bandwidth channel based on a priority value included in said prioritized data packet;

establishing a reserved bandwidth data transmission channel for communicating said data stream path to said second device.

5. (Previously presented) An apparatus for providing packet-based digital communications between a first communications network and a second communications network, said apparatus comprising:

a first transceiver adapted for communicating with the first communications network, the first communications network having a prioritized communications protocol;

a second transceiver adapted for communicating with the second communications network, the second communications network having a communications protocol that allows for set up and communications over discrete channels of a reserved bandwidth;

a processor, in communication with said first transceiver, for determining a priority code associated with a data packet received by said first transceiver;

said processor, further in communication with said second transceiver, for determining whether to open a channel comprising an isochronous channel and for setting up said isochronous channel of reserved bandwidth, in response to said priority code;

wherein said processor is adapted to perform a first modification process to convert a data packet received from said first transceiver into a format suitable for communication through said second transceiver to said second communications network; and

wherein said processor is further configured for performing a second modification process to convert a data packet received from said second transceiver into a format suitable for communication through said first transceiver to said first communications network.

6.(original) The apparatus of claim 5 wherein said first communications network is an Ethernet network.

7.(original) The apparatus of claim 5 wherein said second communications network is an IEEE 1394 network.

8.(original) The apparatus of claim 5 wherein said second communications network is a HyperLan 2 network.

9.(original) The apparatus of claim 5 wherein said processor establishes the need to set up a reserved bandwidth communications channel through said second transceiver based upon the value of said priority code received by said first transceiver.

10.(original) The apparatus of claim 5 wherein said first modification process embeds an IP header associated with said data packet received from said first transceiver into an OSI layer 3 header in a packet suitable for transmission over said second communications network

11.(original) The apparatus of claim 5 wherein said second modification process strips from a data packet received from said second communication network a data header associated with said second communication network; and wherein said second modification process further converts said data packet into a format suitable for transmission to said first communications network.

12. (Previously presented) A method for adapting packet-based digital communications between a first communications network and a second communications network, said method comprising:

detecting in a communication from a first device in the first communications network, a prioritized data packet, the first communications network having a prioritized communications protocol;

3.

Customer No. 24498 Attorney Docket No. PU030179 Office Action Date: 10/01/2009

determining whether said prioritized data packet requires transmission to a second device, in the second communications network, over a channel comprising an isochronous reserved bandwidth channel or an asynchronous channel based on a priority value included in said prioritized data packet, the second communications network having a communications protocol that allows for set up and communications over discrete channels of a reserved bandwidth;

establishing communications with said second device to open a reserved bandwidth data transmission channel;

determining that said reserved data transmission channel has been opened; and modifying said prioritized data packet to be suitable for communications over said second communications network.

13.(original) The method of claim 12 wherein said first communications network is an Ethernet network.

14.(original) The method of claim 12 wherein said second communications network is an IEEE 1394 network.

15.(original) The method of claim 12 wherein said second communications network is a HyperLan 2 network.

16.(original) The method of claim 12 wherein said modifying of said prioritized data packet embeds an IP header associated with said data packet received from said communication from a first device into an OSI layer 3 header in a packet suitable for transmission to said second device over said second communications network.

17.(original) The method of claim 12, further comprising determining when there is no more data to be received from said first device and establishing communications with said second device to close said reserved data transmission channel.

18.(original) The method of claim 12 further comprising

establishing communications with said second device to close said reserved data transmission channel after a predetermined period of time within which no further communication is received from said first device.

19.(original) The method of claim 12 wherein said communications with said second communications network is monitored for bandwidth usage and communications is established over said network when necessary to modify the amount of said reserved bandwidth based on said bandwidth usage.

20.(original) The method of claim 12 wherein said communications with said second device to open a reserved bandwidth data transmission channel further comprises evaluating a portion of a data header contained in said prioritized data packet and requesting a bandwidth size based on the results of said evaluation.

- 21.(Previously presented) A computer readable storage device storing code, which when executed by a processor, for performing the method of claim 12.
- 22.(Previously presented) An apparatus for adapting packet-based digital communications between a first communications network and a second communications network, said apparatus comprising:
- a first transceiver adapted for communicating with the first network, the first communications network having a prioritized communications protocol;
- a second transceiver adapted for communicating with the second communications network, the second communications network having a communications protocol that allows for set up and communications over discrete channels of a reserved bandwidth;
- a processor adapted for communicating with said first transceiver and for determining a priority code associated with a data packet received by said first transceiver;

said processor further adapted for communicating with said second transceiver to determine whether to open a channel comprising an isochronous reserved bandwidth

channel or an asynchronous channel in response to the priority code and setting up a channel of reserved bandwidth in response to said priority code;

wherein said processor is adapted to perform a first modification process to convert a data packet received from said first transceiver into a format suitable for communication through said second transceiver to said second network; and

wherein said processor is further adapted for performing a second modification process to convert a data packet received from said second transceiver into a format suitable for communication through said first transceiver to the first communications network.