MapReduce and Spark

MIE451 Scott Sanner

Slides are taken from Liping Liu and Ch. 2 of the book Mining of Massive Datasets: http://www.mmds.org/

The big data challenge

- · Google Example
 - -20+ billion web pages x 20KB = 400+ TB
 - 1 computer reads 30-35 MB/sec from disk
 - ~4 months to read the web
 - -~1,000 hard drives to store the web
 - Takes even more to **do** something useful with the data!
- With ``small data", we still want to make the program faster with parallel computing

Distributed computation: overview

- Today, a standard architecture for such problems is emerging:
 - Cluster of commodity Linux nodes
 - Commodity network (ethernet) to connect them
- Challenges:
 - How to distribute computation?
 - Distributed/parallel programming is hard
 - Machines fail:
 - One server may stay up 3 years (1,000 days)
 - If you have 1,000 servers, expect to loose 1/day
- · Map-reduce addresses all of the above

Cluster Architecture 2-10 Ghns hackhone hetween racks 1 Gbps between any pair of nodes in a rack CPU CPU CPU CPU Mem Mem Mem Mem Disk Disk Disk Disk Each rack contains 16-64 nodes In 2011 it was guestimated that Google had 1M machines, http://bit.ly/ShhQRO

Distribute computation

- · Issue: Copying data over a network takes time
- · Idea:
 - Bring computation close to the data
 - Store files multiple times for reliability
- Map-reduce addresses these problems
 - Elegant way to work with big data
 - Programming model
 - Map-Reduce
 - Storage Infrastructure File system
 - Google: GFS. Hadoop: HDFS

MapReduce Programming

- · Read data
- Map:
 - Extract something you care about
- Sort and Shuffle: Group by key
- Reduce:
 - Aggregate, summarize, filter or transform
- Write the result

6

More Specifically

- · Input: a set of key-value pairs
- · Programmer specifies two methods:
 - Map(line in data file) \rightarrow <k', v'>*
 - Takes a line in data file and outputs **set** of key-value pairs
 - There is one Map call for every data file line
 - Reduce(k', <v'>*) → <k', v">
 - All values v' with same key k' are reduced together and processed in v' order
 - There is one Reduce function call per unique key k'

Word count example

- We have a huge text document
- Count the number of times each distinct word appears in the file
 - File too large for memory, but all <word, count> pairs fit in memory
- Sample application:
 - Analyze web server logs to find popular URLs

Task: Word Count

- · A method that works on a small document
 - -words(doc.txt) | sort | uniq -c
 - where words takes a file and outputs the words in it, one per a line
- This method captures the essence of MapReduce
 - Great thing is that it is naturally parallelizable

MapReduce: Word Counting

Provided by the programmer

MAP:
Red input and produces a set of key-value pairs

The crew of the space shuttle Endeavor recently instructed to End and an adjustion. Scendiss at Reduce:

(The, 1) (crew, 1) (cre

2

Word Count Using MapReduce

map(key, value):

// key: document name; value: text of the document for each word w in value: emit(w, 1)

reduce(key, values):

// key: a word; value: an iterator over counts result = 0for each count v in values: result += v emit(key, result)

Map-Reduce: Environment

Map-Reduce environment takes care of:

- · Partitioning the input data
- Scheduling the program's execution across a set of machines
- · Performing the group by key step
- · Handling machine failures
- · Managing required inter-machine communication

Map-Reduce: In Parallel All phases are distributed with many tasks doing the work

Map-Reduce Programmer specifies: - Map and Reduce and input files Workflow: Read file lines as key-value-pairs Map transforms input kv-pairs into a new set of k'v'-pairs - Sorts & Shuffles the k'v'-pairs - All k'v'-pairs with a given k' are sent to the same reduce Reduce processes all k'v'-pairs grouped by key into new k"v"-pairs Write the resulting pairs to files All phases are distributed with many tasks doing the work

Data Flow

- · Input and final output are stored on a distributed file system (FS):
 - Scheduler tries to schedule map tasks "close" to physical storage location of input data
- Intermediate results are stored on local FS of Map and Reduce workers
- Output is often input to another MapReduce task

• Often a Map task will produce many pairs of the form (k, v_1) , (k, v_2) , ... for the same key k- E.g., popular words in the word count example

Refinement: Combiners

 Can save network time by pre-aggregating values in the mapper:

- combine(k, list(v_1)) $\rightarrow v_2$
- Combiner is usually same as the reduce function
- · Works only if reduce function is commutative and associative,
 - Consider sum, max, mean and stddev

Refinement: Combiners

- · Back to our word counting example:
 - Combiner combines the values of all keys of a single mapper (single machine):

- Much less data needs to be copied and shuffled!

Refinements: Backup Tasks

- Problem
 - Slow workers significantly lengthen the job completion time:
 - Other jobs on the machine
 - Bad disks
 - · Weird things
- Solution
 - Near end of phase, spawn backup copies of tasks
 - Whichever one finishes first "wins"
- Effect
 - Dramatically shortens job completion time

20

Coordination: Master

- Master node takes care of coordination:
 - Task status: (idle, in-progress, completed)
 - Waiting tasks get scheduled as workers become available
 - When a map task completes, it sends the master the location and sizes of its R intermediate files, one for each reducer
 - Master pushes this info to reducers
- Master pings workers periodically to detect failures

21

Storage Infrastructure

- Problem:
 - If nodes fail, how to store data persistently?
- Answer:
 - Distributed File System:
 - Provides global file namespace
- Typical usage pattern
 - Huge files (100s of GB to TB)
 - Data is rarely updated in place
 - Reads and appends are common

2

Distributed File System

- Chunk servers
 - File is split into contiguous chunks
 - Typically each chunk is 16-64MB
 - Each chunk replicated (usually 2x or 3x)
 - Try to keep replicas in different racks
- Master node
 - a.k.a. Name Node in Hadoop's HDFS
 - Stores metadata about where files are stored
- Might be replicated
- Client library for file access
 - Talks to master to find chunk servers
 - Connects directly to chunk servers to access data

Distributed File System

- Reliable distributed file system
- Data kept in "chunks" spread across machines
- Each chunk replicated on different machines
 - Seamless recovery from disk or machine failure

Bring computation directly to the data!

Chunk servers also serve as compute servers

4