Homework 6 for ECS 20

${\bf Tamim~Nekaien~(915803826)}$

November 18, 2019

This assignment was made with \heartsuit (and \LaTeX).

Contents

1	Question 1	ii
2	Question 2	ii
3	Question 3	ii
4	Question 4 4.1 part a 4.2 part b	ii ii iii
5	Question 5	iii
6	Question 6	iii

1 Question 1

For B: The first result in the set of Natural numbers is $1 \in CUBE$

For I: $x + 3x^{2/3} + 3x^{1/3} + 1$

For E: no other $x \in CUBE$.

POST SOLUTION CHECKING CORRECTION: The I step can be rewritten as $(x^{\frac{1}{3}} + 1)^3$

2 Question 2

$$||x-3|-5|=10=|x-3|=15,-5$$

Since absolute value cannot be negative, the second situation is not considered.

$$|x-3| = 15 = x = 18, -12$$

-12 and 18 are the two solutions for x.

POST SOLUTION CHECKING CORRECTION: Forgot intermediate step $\mid x-3\mid \geq 5$

3 Question 3

Proof by Induction:

Base Case: $n = 2, L_2 = L_1 + L_0 = 2 + 1 = 3$ and $L_2 = F_1 + F_3 = 1 + 2 = 3$

Inductive Step: $L_k = F_{k-1} + F_{k+1}$ and $L_k = L_{k-1} + L_{k-2}$

Use definition of Fibonacci numbers: $L_{k+1} = F_{k+1} + F_{k-1} + F_{k-2} + F_k$ and $L_{k-1} + L_{k-2} = F_{k+1} + F_{k-1} + F_{k-2} + F_k$

 \therefore The Lucas numbers hold true for k+1 terms in the given function using Fibonacci numbers.

4 Question 4

4.1 part a

The print statement: It is called on ixj times, which is $(\frac{n^2+n}{2})$

BIg O: To find Big O you need to look at the highest power term: in this

case it's $O(n^2)$

4.2 part b

The print statement: It depends on whether the number is even or odd.

If even: The statement is run $n = 2^x$ times, or log(n)times

If odd: The statement runs an extra time because of the ceiling, so log(n)+1

Big O: The big O for this is O(log(n)).

5 Question 5

First proof: $\frac{x^3+7x^2+3}{2x+1} \leq Cx^2$ Raise all terms to highest power and solve- $\frac{x^3+7x^3+3x^3}{2x} \leq Cx^2$ Then $C=\frac{11}{2}, k=1$ Second: $x^2 \leq C\frac{x^2+7x^2+3}{2x+1}.$ Express highest power: $\frac{x^3}{4x} \text{ or } \frac{1}{4}x^2$ So $C=\frac{1}{4}$ and k=1

POST SOLUTION CHECKING CORRECTION*= I didn't show the relationship between x and k, x > k, and x > 1.

6 Question 6

```
Given some n to calculate:
int first = 1;
for (int i = 1; i \mid n; i++)
first = first*(i);
```

The psuedocode will multiply n times.

POST SOIUTION CHECKING CORRECTION*= It's n-1, because i never reaches n, so there are n-1 calculations. And I could've just used a while loop instead.