CLAIMS

1. A complex of formula I

$$L_2$$
— M — X
 L_3

wherein

M is Ca, Mg, Ba or Sr;

L₁ is selected from R¹O, R²S, R³R⁴N, R⁵R⁶P, a substituted or unsubstituted cyclopentadienide and a substituted or unsubstituted pyrazolyl group, where R¹⁶ are each independently H or hydrocarbyl;

 L_2 is selected from R^7R^8O , R^7R^8S , $R^7R^8R^9N$, $R^7R^8C=NR^9$, $PR^7R^8R^9$, or a substituted or unsubstituted heterocycle containing one or more O, N or S atoms, where R^{7-9} are each independently H or a hydrocarbyl group; or L_1 and L_2 are linked to form a bidentate ligand;

 L_3 is absent or is a solvent molecule, or a neutral ligand as defined for L_2 , wherein L_3 may be the same or different to L_2 ; or L_3 is linked to a further metal centre; or L_1 , L_2 and L_3 are linked to form a tridentate ligand; and

X is an alkyl group, an aryl group, an amide group, an aryloxide or an enolate group of formula R¹⁰R¹¹C=CR¹²O-, wherein R¹⁰⁻¹² are each independently H or hydrocarbyl;

with the proviso that when L_1 and L_2 are $\{HC(C(CH_3)=N-2,6^{-i}Pr_2C_6H_3)_2\}$ and M is magnesium, X is other than Me or tBu .

2. A complex according to claim 1 wherein R¹ and R² are hydrocarbyl, and R³⁻⁶ are H or hydrocarbyl.

- 3. A complex according to claim 1 wherein R¹ and R² are each independently selected from branched or unbranched alkyl, branched or unbranched alkenyl, or aryl, each of which may be substituted or unsubstituted.
- 4. A complex according to claim 1 wherein L₁ and L₂ are linked to form a bidentate ligand selected from a beta-diketiminate and a beta-ketoiminate.
- 5. A complex according to claim 4 of formula II or III

wherein

Y is H, hydrocarbyl or CN;

R¹³⁻¹⁶ are each independently selected from H and hydrocarbyl; or Y and R¹³ are linked to form a hydrocarbyl group; and

L₃ absent or as defined in claim 1.

6. A complex according to claim 5 wherein

Y is selected from H, CN, alkyl, aryl, haloalkyl or heteroalkyl;

R¹³⁻¹⁶ are each independently selected from alkyl, aryl, heteroalkyl, haloalkyl, cycloalkyl and a heterocyclic ring containing at least one O, N or S atom; or Y and R¹³ are linked to form an aryl group; and

L₃ is absent or is selected from R⁷R⁸O, R⁷R⁸S, R⁷R⁸R⁹N, R⁷C=NR⁸, PR⁷R⁸R⁹, thiophene and tetrahydrofuran, where R⁷⁻⁹ are each independently H or a hydrocarbyl group.

7. A complex according to claim 1 of formula V

wherein R¹³⁻¹⁶ are as defined in claim 5 or claim 6, and where R¹³ and R¹⁵ are optionally linked to form an aryl group.

8. A complex according to claim 1 wherein L₁ and L₂ form a bidentate ligand of formula VIII

VIII

wherein

Y is as defined above;

W is O, NH, NR' or CH₂ where R' is hydrocarbyl; and R^{19-20} are as defined for R^{13-16} above.

- 9. A complex according to any one of claims 1 to 3 wherein L₁, L₂ and L₃ are linked to form a tridentate ligand.
- 10. A complex according to claim 9 wherein L₁, L₂ and L₃ are linked to form a tridentate ligand selected from a beta-diketiminate with a pendant donor group, and a Schiff base derivative with a pendant donor arm.

11. A complex according to claim 10 of formula VI

$$\begin{array}{c|c}
R_{13} & R_{15} \\
 & N \\
 & N \\
 & N \\
 & N \\
 & R_{14} & L_{3}'
\end{array}$$

VI

wherein L_3 ' is defined as for L_3 in claim 1, and is linked to the nitrogen of the bidentate ligand via a linker group.

12. A complex according to claim 10 wherein said complex is of formula VII

$$R_{18}$$
 O
 M
 VII

wherein L_3 ' is defined as for L_3 in claim 1, and is linked to the nitrogen of the bidentate ligand via a linker group, and R^{17-18} are as defined for R^{13-16} above.

13. A complex according to claim 11 or claim 12 wherein the linker group is $(CH_2)_n$ where n is 0-6, an arylene group, or SiR_2 , where R is hydrocarbyl.

14. A complex according to claim 1 of formula X

wherein each R is independently H or a hydrocarbyl group.

- 15. A compound according to any preceding claim wherein X is an alkyl group
- 16. A compound according to claim 15 wherein X is ⁱPr.
- 17. A compound according to any one of claims 1 to 14 wherein X is an amide group.
- 18. A compound according to claim 17 wherein X is NPrⁱ₂.
- 19. A compound according to any one of claims 1 to 14 wherein X is an enolate group of formula R¹⁰R¹¹C=CR¹²O-, wherein R¹⁰ and R¹¹ are H and R¹² is an aryl group.
- 20. A compound according to claim 19 wherein X is -OC (=CH₂)Ar, wherein Ar is 2,4,6,-Me₃C₆H₂.
- 21. A complex comprising a dimer of a complex according to any preceding claim.
- 22. A complex according to claim 1 selected from the following: {HC(C(CH₃)=N-2,6-ⁱPr₂C₆H₃)₂}MgⁱPr [1]; [{HC(C(CH₃)=N-2,6-ⁱPr₂C₆H₃)₂}Mg(OC(=CH₂)Ar)]₂ [2]; [{HC(C(CH₃)=N-2,6-ⁱPr₂C₆H₃)₂}Mg(OC(=CH₂)Ar)•Et₂O] [3];

wherein $Ar = 2,4,6,-Me_3C_6H_2;$

 $\{HC(C(^{t}Bu)=N-2,6-^{i}Pr_{2}C_{6}H_{3})_{2}\}Mg(OC(=CH_{2})-2,4,6-Me_{3}C_{6}H_{2})$ [4];

 $\{HC(C(Me)=N-2,6^{-i}Pr_2C_6H_3)(C(Me)=N-2-OMeC_6H_4)\}Mg^{i}Pr$ [5];

 ${HB(3,5-Me_2C_3N_2H)_3}Mg(OC(=CH_2)-2,4,6-Me_3C_6H_2)$ [6];

 $\{HC(C(Me)=N-2,6^{-i}Pr_2C_6H_3)_2\}Ca(OC(=CH_2)-2,4,6-Me_3C_6H_2)\bullet THF [7];$

 $[{HC(C(Me)=N-2,6^{-i}Pr_2C_6H_3)_2}Ca(OC(=CH_2)-2,4,6-Me_3C_6H_2)]_n$ [8] where n =

1 or 2; and

 $\{HC(C(CH_3)=N-2,6^{-i}Pr_2C_6H_3)_2\}MgNPr_2^{i}$ [9].

23. Use of a complex of formula Ia as a polymerisation initiator,

$$L_1$$
 L_2
 M
 L_3
Ia

wherein

M is Ca, Mg, Ba or Sr;

L₁ is selected from R¹O, R²S, R³R⁴N, R⁵R⁶P, a substituted or unsubstituted cyclopentadienide, and a substituted or unsubstituted pyrazolyl group, where R¹ are each independently H or hydrocarbyl;

 L_2 is selected from R^7R^8O , R^7R^8S , $R^7R^8R^9N$, $R^7R^8C=NR^9$, $PR^7R^8R^9$, and a substituted or unsubstituted heterocycle containing one or more O, N or S atoms, where R^{7-9} are each independently H or a hydrocarbyl group; or L_1 and L_2 are linked to form a bidentate ligand;

 L_3 is absent or is a solvent molecule, or a neutral ligand as defined for L_2 , wherein L_3 may be the same or different to L_2 ; or L_3 is linked to a further metal centre; or L_1 , L_2 and L_3 are linked to form a tridentate ligand; and

X is an alkyl group, an aryl group, an amide group, or an enolate group of formula R¹⁰R¹¹C=CR¹²O-, wherein R¹⁰⁻¹² are each independently H or hydrocarbyl;

with the proviso that when L_1 and L_2 are {HC(C(CH₃)=N-2,6- i Pr₂C₆H₃)₂}, M is magnesium, X is other than Me or t Bu.

- 24. Use according to claim 23 in the polymerisation of acrylate and/or alkyl acrylate monomers.
- 25. Use according to claim 23 or 24 which further comprises the use of a chain transfer reagent.
- 26. A process for the polymerisation of acrylate and/or alkylacrylate monomers, said process comprising contacting an initiating amount of a complex of formula Ia as defined in claim 23 with an acrylate and/or an alkylacrylate monomer in the presence of a suitable solvent.
- 27. A process according to claim 26 wherein the ratio of monomer to the complex is between 10:1 and $10^6:1$.
- 28. An article prepared by a process according to claims 26 or 27.
- 29. A composition comprising an acrylate and/or an alkylacrylate monomer and a complex of formula Ia as defined in claim 23.
- 30. A composition comprising poly(alkylacrylate) and poly(alkylmethacrylate) or copolymers thereof, and a complex of formula Ia as defined in claim 23.

31. A process for preparing a complex of formula II as defined in claim 5, where X is alkyl, said process comprising reacting a compound of formula IX with (a) ⁿBuLi, and (b) XMgCl

32. A process for preparing a complex of formula II as defined in claim 5, where X is alkyl, said process comprising reacting a compound of formula IX with MgX₂

- 33. A process for preparing a complex of formula II, as defined in claim 5, where X is an enolate group of formula R¹⁰R¹¹C=CR¹²O-, said process comprising reacting the product obtained from the process of claim 31 or claim 32 with a compound of formula HR¹⁰R¹¹C-C(O)R¹².
- 34. A method for producing polymethacrylate having greater than 75% syndiotacticity, said method comprising contacting methacrylate monomer with a complex of formula Ia as defined in claim 23 in the presence of a suitable solvent.

34
A method according to claim 34 which is carried out at a temperature in excess 35. of -40°C.