Introduction to Robotics

Robotics - COMS4045A/7049A

Pravesh Ranchod

&

Benjamin Rosman

Course Details

- Lecturers:
 - Prof. Benjamin Rosman / Dr Pravesh Ranchod
- Contact details:
 - Offices: MSB UG22 / MSB UG14
 - Email: <u>Benjamin.Rosman1@wits.ac.za</u> / <u>pravesh.ranchod@wits.ac.za</u>
- Lecture Venues and Times:
 - All lectures are in MSL110 on Thursdays from 14h15 16h00.
- Format:
 - Lectures will be posted online. In person sessions will be labs and tuts. Please make sure you watch the relevant lecture before its session.
 - Robotics is a practical subject, so lab time is critical to the course!

What we'll do

- Programming a robot using ROS (Robot Operating System)
- Modelling and controlling a robot arm
 - Kinematics and dynamics
- Controlling a mobile robot
 - Control theory
- Working with sensors
- Planning Navigating environments
- Localization Requires a map
- Mapping Requires positioning information
- SLAM Simultaneous Localization and Mapping

Assessments

- Labs: 10%
 - Labs will be submitted and marked
- Assignment: 20%
 - One assignment due at the end of the course (date to be announced)
- Tests: 30%
 - There will be three invigilated tests throughout the course.
- Exam: 40%

Software and hardware

- ROS
 - Robot Operating System (Kinetic)
 - Ubuntu
 - Turtlebot Simulator
 - TUM_Simulator (AR Drone)
 - Yumi Simulator
- Singularity container
- Robots
 - Turtlebot
 - AR Drones
 - PhantomX Grippers
 - RoboMaster
 - Kuri
 - Yumi
 - A1 dog

Now onto the cool stuff...

What is a robot?

- Machine that autonomously performs intelligent tasks in some world
 - Some interaction between agent and environment

What is autonomy for a robot?

- System can achieve a task on its own
 - Otherwise: manual, tele-operated
 - Degree of human intervention?
- Maintain behaviour against disturbances
 - May involve predictions

- Affected by and affects the real world around it directly
- Closed loop:
 - Output affects subsequent input and task achievement

What is intelligence for a robot?

- Carry out tasks that require more than a pre-programmed sequence
- Adapt to dynamic environments
- Improve performance from experience
- Plan (and re-plan) appropriate
 actions given high-level goals

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

The robot's problem

- Given (ill-posed) requirements, compute actions to achieve complex goals
 - Requires clever strategies to deal with incomplete knowledge of an unknown future

What is a robot?

- An artificial system that can:
 - 1. **sense** an aspect of its environment,
 - make decisions based on this information,
 - 3. **act** in response.

- From the Czech word for worker or labourer (1920)
 - R. U. R. (Rossum's Universal Robots) - Karel Čapek

Perception-action loop architecture

Sense the environment

Plan behaviours

[video]

Execute actions

Why robotics?

• Dull, dirty, dangerous jobs

Why robotics?

• Entertainment, service industry

Why robotics?

- Science:
 - Understanding of actions and decisions
 - Incorporates all aspects of Al

Anatomy of a robot

- Sensing external and internal
 - Exteroception vs proprioception
- Moving actuators

Processing — on-board CPU

 Voice Synthesis
 Emotions
 Embedded CPU
 with Wi-Fi
 LiPo Battery

25 Degrees of Freedom

23"

Voice Recognition
2 Cameras
5 withcable Head
Prehensive Hands
Linux OS
23"

Anatomy of a robot

Links and joints (degrees of freedom)

DoF of robot

= number of joints

End effectors

Anatomy of a robot Types of Joints

Anatomy of a robot

- Configuration space vs work space
- Work space (or task space):
 - Physical environment
 - Robot occupies volume in space
 - (x,y,z) co-ordinates
- Configuration space (or joint space):
 - Space of joint values
 - Point in space corresponds to full configuration

Anatomy of a robot

What is hard?

- Uncertainty is inherent to robotics
- Robot's knowledge is limited to:
 - What it has been told (typically very high level)
 - What its sensors tell it (typically limited range and quality)
- Effects of actions are uncertain
- The world may change (and is only partially observed)
- Fuse all this information and build comprehensive models

Challenges: control

Challenges: perception

Challenges: localisation

Challenges: communication

- Human-robot interaction
- Heterogeneous teams
 - Task allocation
- Homogeneous teams
 - Swarms

Challenges: behaviour learning

- Reinforcement learning
- Learning from demonstration

Challenges: lifelong learning

- Acquiring knowledge
 - Expanding representations
 - Abstracting data
- Increasing skill sets
 - Improving skills
 - Managing skill sets
 - Selecting appropriate skills

Examples – ancient

- Hero of Alexandria (c. 10 70 AD)
- Digesting Duck Jacques de Vaucanson (1739)

Examples – humanoids

Examples – animals

Examples – multipurpose platforms

Examples – other

Examples – RoboCup

Examples – autonomous driving

Thank you!

Questions?

