Estructuras Algebraicas. Segundo examen parcial. 7 /12/ 2021

Apellidos:		
Nombre:	_ DNI/NIE:	Grupo:

Ejercicio 2. (5 puntos) Sea $\mathbf{Z}[i] = \{a + bi \in \mathbb{C} : a, b \in \mathbb{Z}\}$.

(i) (1,5 puntos) Prueba que $\mathbf{Z}[i]$ es un subanillo de \mathbb{C} . ¿Es también un ideal de \mathbb{C} ?

Sean z=a+bi, z'=a'+b'i EZ[i]. Entonces

- 2) Z+z'=(a+a)+(b+b)ieZ[i], y
- 3) Z· Z' = (aa'-bb) + (ab' + ab) i ∈ Z[[]
- · Luego ZIII es un subanillo de Ci
- . Sin embargo Z[i] no es un ideal de Ci pues, por ejemplo, VZECy1EZ[i] poro VZ·1 EZ[i].

(ii) (1,5 puntos) Denotemos por I=(2) el ideal principal generado por el elemento $2 \in \mathbf{Z}[i]$. ¿Cuántos elementos tiene el anillo cociente $\mathbf{Z}[i]/I$? Escríbelos todos.

Escribamos z=a+bi en la forma z=(2m+a')+(2n+b')i
con m,n ∈ Z y a',b'=0 o 1. Entonces z+I=(a'+bi)+I con a',b'=0 o 1.

Luego ZEi f solo tiene 4 elementos: 0+I, 1+I, i+I, (1+i)+I

(iii) (1 punto) Decide qué elementos del anillo $\mathbf{Z}[i]/I$ del apartado anterior son unidades y qué elementos son divisores de cero.

(iv) (1 punto) Deduce del apartado anterior si el ideal I=(2) es primo o maximal, y si no es maximal encuentra un ideal principal $J \neq \mathbf{Z}[i]$ que lo contenga estrictamente.

Por (iii), III) tiene divisores de cero > I no es primo > I no es maximal

Br otra parte tenemos $2=(1+i)(1-i) \Rightarrow 2+(1-i) \Rightarrow (2) \subseteq (1-i)$ Tornamos J=(1-i). Hemos visto que $(2) \subseteq J$, así que falta prober que: $(2) \subseteq J$ $\subseteq (2) \subseteq J$ $\subseteq (2)$ $\supseteq (2$

- 1) 1-i¢(2) pues 1-i + (a+bi)2=2a+2bi \(\forall (a+bi)\)\(\forall \(\forall Li\)\)
- ② $1 \neq J$ pues 1 = (a + bi)(1-i), con $a + bi \in \mathbb{Z}[i]$, \Rightarrow $\Rightarrow 1 = (a + b) + (b-a)i \Rightarrow \begin{cases} a + b = 1 \\ b = a \end{cases}$ impossible con $a, b \in \mathbb{Z}$