

Source: Bodie, Kane and Marcus, Investments, 12 ed., McGraw-Hill, 2021

Investment Decision

- The investment decision is a top-down process
 - Capital allocation (risky versus risk-free)
 - 2. Asset allocation
 - 3. Security selection
- Optimal risky portfolio construction
- Efficient diversification
- Long-term vs. short-term investment horizons

Diversification and Portfolio Risk

Market risk

- Attributable to marketwide risk sources
- Remains even after diversification
- Also called systematic or nondiversifiable risk
- Firm-specific risk
 - Risk that can be eliminated by diversification
 - Also called diversifiable or nonsystematic risk

Portfolio Risk as a Function of the Number of Stocks in the <u>Portfolio</u>

• Panel A: All risk is firm specific

 Panel B: Some risk is systematic

Portfolio Diversification

Portfolios of Two Risky Assets

- Expected return
 - Weighted average of expected returns on the component securities
- Portfolio risk
 - Variance of the portfolio is a weighted sum of covariances, and each weight is the product of the portfolio proportions of the pair of assets

Portfolios of Two Risky Assets: Expected Return

 Consider a portfolio made up of equity (stocks) and debt (bonds)...

$$r_p = w_D r_D + w_E r_E$$

- where r_P = rate of return on portfolio
- w_D = proportion invested in the bond fund
- $w_F = proportion invested in the stock fund$
- r_D = rate of return on the debt fund
- $r_E = rate of return on the equity fund$

$$E(r_p) = w_D E(r_D) + w_E E(r_E)$$

Portfolios of Two Risky Assets: Risk

Variance of r_P

$$\sigma_p^2 = w_D^2 \sigma_D^2 + w_E^2 \sigma_E^2 + 2w_D w_E \text{Cov}(r_D, r_E)$$

Bond variance

$$\sigma_D^2$$

Equity variance

$$\sigma_E^2$$

Covariance of returns for bond and equity

$$Cov(r_D, r_E)$$

Portfolios of Two Risky Assets: Covariance

Covariance of returns on bond and equity

$$Cov(r_D, rE) = \rho_{DE}\sigma_D\sigma_E$$

- \square ρ_{DE} = Correlation coefficient of returns
- \square σ_D = Standard deviation of bond returns
- \square σ_E = Standard deviation of equity returns

Portfolios of Two Risky Assets: Correlation Coefficients 1

Range of values for correlation coefficient

$$-1.0 \le \rho \le 1.0$$

- If $\rho = 1.0 \rightarrow$ perfectly positively correlated securities
- If $\rho = 0 \rightarrow$ the securities are uncorrelated
- If $\rho = -1.0 \rightarrow$ perfectly negatively correlated securities

Portfolios of Two Risky Assets: Correlation Coefficients 2

• When $\rho_{DF} = 1$, there is no diversification

$$\sigma_P = w_E \sigma_E + w_D \sigma_D$$

• When $\rho_{DE} = -1$, a perfect hedge is possible

$$w_E = \frac{\sigma_D}{\sigma_D + \sigma_E} = 1 - w_D$$

Portfolios of Two Risky Assets: Example — 50%/50% Split

Table 7.1 Descriptive statistics for two mutual funds

	Debt			Equity
Expected return, <i>E</i> (<i>r</i>)	8%			13%
Standard deviation, σ	12%			20%
Covariance, $Cov(r_D, r_E)$		72		
Correlation coefficient, ρ_{DE}			0.30	

Expected Return:

$$E(r_p) = w_D E(r_D) + w_E E(r_E)$$

= .50 \times 8\% + .50 \times 13\% = 10.5\%

Variance:

$$\sigma_p^2 = w_D^2 \sigma_D^2 + w_E^2 \sigma_E^2 + 2w_D w_E \text{Cov}(r_D, r_E)$$

$$= .50^2 \times 12^2 + .50^2 \times 20^2 + 2 \times .5 \times .5 \times 72 = 172$$

$$\sigma_P = \sqrt{172} = 13.23\%$$

Portfolio Expected Return

Computation of Portfolio Variance from the Covariance Matrix

A. Bordered Covariance Matrix						
Portfolio Weights	w_D	w_{E}				
W_D	$Cov(r_D, r_D)$	$Cov(r_D, r_E)$				
$W_{\mathcal{E}}$	$Cov(r_E, r_D)$	$Cov(r_E, r_E)$				
B. Border-Multiplied Covariance Matrix						
Portfolio Weights	$w_{\scriptscriptstyle D}$	w_{E}				
W_D	$w_D w_D Cov(r_D, r_D)$	$w_D w_E Cov(r_D, r_E)$				
w_{E}	$W_EW_DCov(r_E, r_D)$	$w_E w_E Cov(r_E, r_E)$				
$w_D + w_E = 1$	$W_D W_D Cov(r_D, r_D) + W_E W_D Cov(r_E, r_D)$	$w_D w_E Cov(r_D, r_E) + w_E w_E Cov(r_E, r_E)$				
Portfolio variance	$\overline{\mathbf{w}_D \mathbf{w}_D Cov(r_D, r_D) + \mathbf{w}_E \mathbf{w}_D Cov(r_E, r_D)}$	$+ w_D w_E \text{Cov}(r_D, r_E) + w_E w_E \text{Cov}(r_E, r_E)$				

Portfolio Standard Deviation

Portfolio Expected Return as a Function of Standard Deviation

The Minimum-Variance Portfolio

- The minimum-variance portfolio has a standard deviation smaller than that of either of the individual component assets
- Risk reduction depends on the correlation:
 - If ρ = +1.0, no risk reduction is possible
 - If ρ = 0, σ_P may be less than the standard deviation of either component asset
 - If ρ = -1.0, a riskless hedge is possible

The Opportunity Set of the Debt and Equity Funds and Two Feasible CALs

Portfolio A
$$E(r_A) = 8.9\%$$
$$\sigma_A = 11.45\%$$

Portfolio B
$$E(r_B) = 9.5\%$$

$$\sigma_B = 11.70\%$$

The Sharpe Ratio

- Objective is to find the weights w_D and w_E that result in the highest slope of the CAL
- Thus, our *objective function* is the Sharpe ratio:

$$S_p = \frac{E(r_p) - r_f}{\sigma_p}$$

The Sharpe Ratio: Example

$$E(r_{A}) = 8.9\%$$

$$|\sigma_{A}| = 11.45\%$$

$$S_A = \frac{E(r_A) - r_f}{\sigma_A} = \frac{8.9\% - 5\%}{11.45\%} = .34$$

Portfolio B

$$E(r_B) = 9.5\%$$

$$|\sigma_{R}| = 11.70\%$$

$$S_B = \frac{E(r_B) - r_f}{\sigma_B} = \frac{9.5\% - 5\%}{11.70\%} = .38$$

Debt and Equity Funds with the Optimal Risky Portfolio

Optimal Risky Portfolio

$$E(r_{P}) = 11\%$$

$$\sigma_{P} = 14.2\%$$

$$S_{P} = \frac{E(r_{P}) - r_{f}}{\sigma_{P}}$$

$$= \frac{11\% - 5\%}{14.2\%}$$

$$= .42$$

Determination of the Optimal Complete Portfolio

Optimal Allocation to P

$$A = 4$$

$$y = \frac{E(r_P) - r_f}{A\sigma_P^2}$$

$$= \frac{11\% - 5\%}{4 \times (14.2\%)^2} = .7439$$

The Proportions of the Optimal Complete Portfolio

Overall Portfolio

$$E(r_P) = 11\%$$
 $y = .7439$
 $\sigma_P = 14.2\%$ $r_f = 5\%$

$$E(r_{Overall}) = y \times E(r_p) + (1 - y) \times r_f$$

$$= .7439 \times 11\% + .2561 \times 5\%$$

$$= 9.46\%$$

$$\sigma_{Overall} = .7439 \times 14.2\% = 10.56\%$$

$$S_{Overall} = \frac{9.46\% - 5\%}{10.56\%} = .42$$

Markowitz Portfolio Optimization Model 1

- Security selection
 - Determine the risk-return opportunities available
 - Minimum-variance frontier of risky assets
 - All portfolios that lie on the minimum-variance frontier from the global minimum-variance portfolio and upward provide the best risk-return combinations
 - Efficient frontier of risky assets is the portion of the frontier that lies above the global minimum-variance portfolio

The Minimum-Variance Frontier of Risky Assets

Markowitz Portfolio Optimization Model 2

- Security selection (continued)
 - Search for the CAL with the highest Shape ratio (that is, the steepest slope)
 - Individual investor chooses the appropriate mix between the optimal risky portfolio P and T-bills
 - Everyone invests in P, regardless of their degree of risk aversion
 - More risk averse investors put less in P
 - Less risk averse investors put more in P

The Efficient Frontier of Risky Assets with the Optimal CAL

Markowitz Portfolio Optimization Model 3

- Capital allocation and the separation property
 - Portfolio choice problem may be separated into two independent tasks
 - Determination of the optimal risky portfolio is purely technical
 - Allocation of the complete portfolio to risk-free versus the risky portfolio depends on personal preference

Capital Allocation Lines with Various Portfolios from the Efficient Set

Markowitz Portfolio Optimization Model 4

- The power of diversification
 - Recall: $\sigma_p^2 = \sum_{i=1}^n \sum_{j=1}^n w_i w_j \operatorname{Cov}(r_i, r_j)$
 - Assume we define the average variance and average covariance of the securities as:

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} \sigma_{i}^{2}$$

$$Cov = \frac{1}{n(n-1)} \sum_{\substack{j=1 \ i \neq i}}^{n} \sum_{i=1}^{n} Cov(r_{i}, r_{j})$$

Markowitz Portfolio Optimization Model 5

- The power of diversification (continued)
 - We can then express portfolio variance as

$$\sigma_p^2 = \frac{1}{n}\overline{\sigma}^2 + \frac{n-1}{n}\operatorname{Cov}$$

- Portfolio variance can be driven to zero if the average covariance is zero
- The risk of a highly diversified portfolio depends on the covariance of the returns of the component securities

Risk Reduction of Equally Weighted Portfolios

		ρ = 0		ρ = 0.40	
Universe Size <i>n</i>	Portfolio Weights <i>w</i> = 1/ <i>n</i> (%)	Standard Deviation (%)	Reduction in σ	Standard Deviation (%)	Reduction in σ
1	100	50.00	14.64	50.00	8.17
2	50	35.36		41.83	
5	20	22.36	1.95	36.06	0.70
6	16.67	20.41		35.36	
10	10	15.81	0.73	33.91	0.20
11	9.09	15.08		33.71	
20	5	11.18	0.27	32.79	0.06
21	4.76	10.91		32.73	
100	1	5.00	0.02	31.86	0.00
101	0.99	4.98		31.86	

Markowitz Portfolio Optimization Model 6

- Optimal portfolios and non-normal returns
 - Fat-tailed distributions can result in extreme values of VaR and ES
 - Practice way to estimate values of VaR and ES in the presence of fat tails is called *bootstrapping*
 - If other portfolios provide sufficiently better VaR and ES values than the mean-variance efficient portfolio, we may prefer these when faced with fat-tailed distributions

Risk Pooling, Risk Sharing, and Time Diversification

- Risk pooling vs. risk sharing
 - Variance of average insurance policy payoff decreases with the number of policies

$$\operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right) = \frac{1}{n^{2}} \times n\sigma^{2} = \frac{\sigma^{2}}{n}$$

Variance of the total payoff becomes more uncertain

$$\operatorname{Var}\left(\sum_{i=1}^{n} x_{i}\right) = n\sigma^{2}$$

Time Diversification

- True diversification
 - Requires holding fixed the total funds put at risk, and spreading the exposure across multiple sources of uncertainty