Universidade do Minho

Engenharia de Segurança

Vulnerabilities Mapping

Raphael J. S. Pinheiro pg37160@alunos.uminho.pt

Vulnerability Management

- Area of Information Security
- Management of vulnerabilities found in:
 - o pentests
 - bug bounty programs
 - user contribution
 - researches

Vulnerability Management

- Various Data Source
 - Nessus
 - Qualys
 - Acunetix
 - OpenVas
 - Nmap
 - Nexpose
 - o so on

Vulnerability Representation

	Nessus	Qualys
ID	10669	10340
Name	A1Stats Multiple Script Traversal Arbitrary File Access	Drummon Miles A1Stats Directory Traversal Vulnerability
Categories	infos	Remote Discovery, Patch Available, Exploit Available
Family	CGI abuses	CGI
CVE	CVE-2001-0561	CVE-2001-0561
CVSS Score	Medium / CVSS Base Score : 5.0	7.5
Bugtraq ID	2705	2705

Problem

How to map vulnerabilities from different sources?

Solution

- Compare the attributes:
 - o Title
 - o CVE
 - References
- Calculate the similarity

Solution

- 2 reference datasets:
 - Known matches
 - Known unique vulnerabilities (non-matches)

Build Reference Datasets

- Matches:
 - 141 entries
 - N to N

- Not Matches:
 - 67 entries/scanner
 - 134 entries total
 - Vulns that do not have mappings

Build Test DB

- Actual DB: ~150MB (csv files) and ~220k entries
- Test DB: <1MB (csv files) and 407 entries

Comparing Attributes

- Python FuzzyWuzzy
- Title:
 - Token Sort Ratio (doesn't ignore duplicates, but ignores order)
 - Never empty
- CVE:
 - Token Set Ratio (ignores duplicates)
 - May be empty
- Refs:
 - Token Set Ratio (ignores duplicates)
 - May be empty

Calculating Similarity

```
Similarity = (TitleRatio + 2*CVERatio + 2*RefsRatio) / (1 + <math>2*[0|1] + 2*[0|1])

Example:

Similarity = (0.65856 + 2*0.72341 + 2*0) / (1 + 2 + 0) = 0.70179
```

[0|1] => If CVE/Refs were empty, it doesn't count

Matches Results

True Positives:

- For each entry *E* on the DB, do:
 - \blacksquare s = similarity(P, E)
- if E == Q and s > 0.65:
 - True Positive

False Positives:

- For each entry *E* on the DB, do:
 - \blacksquare s = similarity(P, E)
- o if E == Q and s < 0.65:
 - False Positive

Confusion Matrix

Accuracy, Precision, Recall and F₁ Score

- Accuracy = Correct Classification / Total Entries = 0.4945
- Precision = TP / (TP + FP) = 127 / (127 + 14) = 0.9007
- Recall = TP / (TP + FN) = 127 / (127 + 125) = 0.5040
- F₁ Score = 2*(Precision * Recall)/(Precision + Recall) = 0.6463

Future Work

- Graphs:
 - ROC (Receiver Operating Characteristic)
 - AUC (Area Under the Curve)
- Adjust Similarity Formula
- Use more attributes to compose the formula
- Run it through the actual DB (~220k entries)
- Add other sources (OpenVAS, Acunetix, etc)