02393 Programming in C++ Module 9: Recursive Programming

Sebastian Mödersheim Mordor slides courtesy Christian W. Probst

October 31, 2016

Lecture Plan

#	Date	Торіс
1	29.8.	Introduction
2	5.9.	Basic C++
3	12.9.	Data Types, Pointers
4	19.9.	
		Libraries and Interfaces; Containers
5_	26.9.	
6	3.10.	Classes and Objects I
7	10.10.	Classes and Objects II
		Efterårsferie
8	24.10.	Classes and Objects III
9	31.10.	Recursive Programming
10	7.11.	Lists
11	14.11.	Trees
12	21.11.	Novel C++ features
13	28.11.	Summary
	5.12.	Exam

Definition

Recursion (lat.): see Recursion ... or Google recursion.

What is Recursion?

- Solution technique that solves large problems by reducing them to smaller problems of the same form
- It is crucial that the smaller problem has the same form
- This means we can use the same technique for the big and the small problem!

Definition

Recursion (lat.): see Recursion ... or Google recursion.

What is Recursion?

- ► Solution technique that solves large problems by reducing them to smaller problems of the same form
- ▶ It is crucial that the smaller problem has the same form
- This means we can use the same technique for the big and the small problem!

Why is Recursion... weird for some people?

- ▶ Some people are not used to inductive reasoning/abstraction...
- Other programming concepts are common in normal life:
 - repeat an action several times, on different objects (loops);
 - making decisions (if then else);
 - etc.

When using recursion we must ensure:

- Every recursion step reduces to a smaller problem.
- ► There is a smallest problem (or a set of smallest problems) that can be handled directly, without recursion.
- Every chain of recursion steps eventually reaches one of these smallest problems.

Otherwise?

Risk of non-termination!

Recursive Leap of Faith

- When writing a recursive function, we believe that the recursive call computes the right solution, if the argument to the recursive call is smaller.
- ▶ Assuming that any recursive call works correctly is called the *Recursive Leap of Faith*.

Rules of thumb

- ► Checking if you have a simple problem before decomposition.
- Solve the simple cases correctly!
- Check that decomposition makes the problem simpler!
- Ensure that decomposition eventually reaches one of the simple cases.
- ► The arguments to the recursive calls must be simpler versions of the original argument!
- When you take the recursive leap of faith, do the recursive calls provide with a correct solution to all simpler problems possible?

Examples

Mathematical definitions often use recusion:

$$n! = \begin{cases} 1 & \text{if } n = 0 \\ n \cdot (n-1)! & \text{otherwise} \end{cases}$$

Examples

Mathematical definitions often use recusion:

$$n! = \left\{ egin{array}{ll} 1 & \mbox{if } n = 0 \\ n \cdot (n-1)! & \mbox{otherwise} \end{array}
ight.$$

And can be easily transformed into a C++ program:

```
int fact(int n){
   if (n==0) return 1;
   else return n*fact(n-1);
}
```

$$n! = \begin{cases} 1 & \text{if } n = 0 \\ n \cdot (n-1)! & \text{otherwise} \end{cases}$$

Note the similarity of recursion with induction proofs.

Example Theorem and Inductive Proof

n! > 0 for all natural numbers n.

$$n! = \begin{cases} 1 & \text{if } n = 0 \\ n \cdot (n-1)! & \text{otherwise} \end{cases}$$

Note the similarity of recursion with induction proofs.

Example Theorem and Inductive Proof

n! > 0 for all natural numbers n.

Proof: trivial.

$$n! = \begin{cases} 1 & \text{if } n = 0 \\ n \cdot (n-1)! & \text{otherwise} \end{cases}$$

Note the similarity of recursion with induction proofs.

Example Theorem and Inductive Proof

n! > 0 for all natural numbers n.

Proof:

▶ Induction Base: For n = 0: 0! = 1 by definition.

$$n! = \begin{cases} 1 & \text{if } n = 0 \\ n \cdot (n-1)! & \text{otherwise} \end{cases}$$

Note the similarity of recursion with induction proofs.

Example Theorem and Inductive Proof

n! > 0 for all natural numbers n.

- ▶ Induction Base: For n = 0: 0! = 1 by definition.
- Induction Step:
 - (*) Suppose for some number n-1 we have proved that (n-1)! > 0.
 - We show: then also n! > 0.

$$n! = \begin{cases} 1 & \text{if } n = 0 \\ n \cdot (n-1)! & \text{otherwise} \end{cases}$$

Note the similarity of recursion with induction proofs.

Example Theorem and Inductive Proof

n! > 0 for all natural numbers n.

- ▶ Induction Base: For n = 0: 0! = 1 by definition.
- Induction Step:
 - (*) Suppose for some number n-1 we have proved that (n-1)! > 0.
 - We show: then also n! > 0.
 - ▶ By definition $n! = n \cdot (n-1)!$.

$$n! = \begin{cases} 1 & \text{if } n = 0 \\ n \cdot (n-1)! & \text{otherwise} \end{cases}$$

Note the similarity of recursion with induction proofs.

Example Theorem and Inductive Proof

n! > 0 for all natural numbers n.

- ▶ Induction Base: For n = 0: 0! = 1 by definition.
- Induction Step:
 - (*) Suppose for some number n-1 we have proved that (n-1)! > 0.
 - We show: then also n! > 0.
 - ▶ By definition $n! = n \cdot (n-1)!$.
 - We have that n > 0 (since $n 1 \ge 0$) and (n 1)! > 0 (by
 - *). It then trivially follows that $n \cdot (n-1)! > 0$.

$$n! = \begin{cases} 1 & \text{if } n = 0 \\ n \cdot (n-1)! & \text{otherwise} \end{cases}$$

Note the similarity of recursion with induction proofs.

Example Theorem and Inductive Proof

n! > 0 for all natural numbers n.

- ▶ Induction Base: For n = 0: 0! = 1 by definition.
- ► Induction Step:
 - (*) Suppose for some number n-1 we have proved that (n-1)! > 0.
 - We show: then also n! > 0.
 - ▶ By definition $n! = n \cdot (n-1)!$.
 - We have that n > 0 (since $n 1 \ge 0$) and (n 1)! > 0 (by \star). It then trivially follows that $n \cdot (n 1)! > 0$.
 - ▶ Thus n! > 0.

Induction proofs also work for recursive programs

```
int fact(int n){
   if (n==0) return 1;
   else return n*fact(n-1);
}
```

Example Theorem and Inductive Proof fact(n) > 0 for all natural numbers n.

Induction proofs also work for recursive programs

```
int fact(int n){
   if (n==0) return 1;
   else return n*fact(n-1);
}
```

```
Example Theorem and Inductive Proof fact(n) > 0 for all natural numbers n. Proof:
```

Induction proofs also work for recursive programs

```
int fact(int n){
   if (n==0) return 1;
   else return n*fact(n-1);
}
```

Example Theorem and Inductive Proof fact(n) > 0 for all natural numbers n. Proof:

▶ Induction Base: For n == 0: fact(0) == 1 by the program.

```
int fact(int n) {
   if (n==0) return 1;
   else return n*fact(n-1);
}
```

Example Theorem and Inductive Proof

```
fact(n) > 0 for all natural numbers n.
```

- ▶ Induction Base: For n == 0: fact(0) == 1 by the program.
- ► Induction Step:
 - (*) Suppose for some number n-1 we have proved that fact(n-1) > 0.
 - We show: then also fact(n) > 0.

```
int fact(int n) {
   if (n==0) return 1;
   else return n*fact(n-1);
}
```

Example Theorem and Inductive Proof

```
fact(n) > 0 for all natural numbers n.
```

- ▶ Induction Base: For n == 0: fact(0) == 1 by the program.
- ► Induction Step:
 - (*) Suppose for some number n-1 we have proved that fact(n-1) > 0.
 - We show: then also fact(n) > 0.
 - ▶ By the program $fact(n) == n \cdot fact(n-1)$.

```
int fact(int n) {
   if (n==0) return 1;
   else return n*fact(n-1);
}
```

Example Theorem and Inductive Proof

fact(n) > 0 for all natural numbers n.

- ▶ Induction Base: For n == 0: fact(0) == 1 by the program.
- ► Induction Step:
 - (*) Suppose for some number n-1 we have proved that fact(n-1) > 0.
 - We show: then also fact(n) > 0.
 - ▶ By the program $fact(n) == n \cdot fact(n-1)$.
 - ▶ We have that n > 0 (since $n 1 \ge 0$) and fact(n 1) > 0 (by \star). It then trivially follows that $n \cdot fact(n 1) > 0$.

```
int fact(int n){
   if (n==0) return 1;
   else return n*fact(n-1);
}
```

Example Theorem and Inductive Proof

fact(n) > 0 for all natural numbers n.

- ▶ Induction Base: For n == 0: fact(0) == 1 by the program.
- ► Induction Step:
 - (*) Suppose for some number n-1 we have proved that fact(n-1) > 0.
 - We show: then also fact(n) > 0.
 - ▶ By the program $fact(n) == n \cdot fact(n-1)$.
 - We have that n > 0 (since $n 1 \ge 0$) and fact(n 1) > 0 (by
 - ★). It then trivially follows that n · fact(n 1) > 0.
 ► Thus n! > 0.
 - ► Thus fact(n) > 0.

- Toy examples: factorial, sum.
- ► Efficient search binary search
 - ▶ Naive search (linear search) of an element in a set takes O(n).
 - ▶ Binary search is a divide-and-conquer $O(\log n)$ solution.
- ▶ Efficient exponentiation in cryptography $(a^n \mod p)$
 - Naive exponentiation: O(n)
 - Efficient exponentiation: $O(\log n)$
 - ▶ Efficient solution is hard to program without recursion!
- Efficient sorting: merge sort
 - ► The recursion paradigm directly triggers an efficient solution!

- ► Toy examples: factorial, sum.
- Efficient search binary search
 - ▶ Naive search (linear search) of an element in a set takes O(n).
 - ▶ Binary search is a divide-and-conquer $O(\log n)$ solution.
- ▶ Efficient exponentiation in cryptography $(a^n \mod p)$
 - Naive exponentiation: O(n)
 - Efficient exponentiation: $O(\log n)$
 - ▶ Efficient solution is hard to program without recursion!
- ► Efficient sorting: merge sort
 - ► The recursion paradigm directly triggers an efficient solution!
 - Naive bubble sort:

- Toy examples: factorial, sum.
- Efficient search binary search
 - ▶ Naive search (linear search) of an element in a set takes O(n).
 - ▶ Binary search is a divide-and-conquer $O(\log n)$ solution.
- ▶ Efficient exponentiation in cryptography $(a^n \mod p)$
 - Naive exponentiation: O(n)
 - Efficient exponentiation: $O(\log n)$
 - ▶ Efficient solution is hard to program without recursion!
- ► Efficient sorting: merge sort
 - ► The recursion paradigm directly triggers an efficient solution!
 - ▶ Naive bubble sort: $O(n^2)$ for array of size n.
 - ► Merge sort:

- Toy examples: factorial, sum.
- Efficient search binary search
 - ▶ Naive search (linear search) of an element in a set takes O(n).
 - ▶ Binary search is a divide-and-conquer $O(\log n)$ solution.
- ▶ Efficient exponentiation in cryptography $(a^n \mod p)$
 - Naive exponentiation: O(n)
 - Efficient exponentiation: $O(\log n)$
 - ▶ Efficient solution is hard to program without recursion!
- ► Efficient sorting: merge sort
 - ► The recursion paradigm directly triggers an efficient solution!
 - ▶ Naive bubble sort: $O(n^2)$ for array of size n.
 - ▶ Merge sort: $O(n \log n)$ (theoretical optimum).

Maze (Labyrinth)

- Standard example for recursion
- Classic: Daedalus, Theseus, and the Minotaur
- Problem: We want to find the way out of the maze

Maze (Labyrinth)

- Standard example for recursion
- Classic: Daedalus, Theseus, and the Minotaur
- ▶ Problem: We want to find the way out of the maze

Difficult to solve with iteration (while or for loop):

- avoid going in cycles
- detecting if there is no solution

Maze (Labyrinth)

- Standard example for recursion
- ► Classic: Daedalus, Theseus, and the Minotaur
- ▶ Problem: We want to find the way out of the maze

Difficult to solve with iteration (while or for loop):

- avoid going in cycles
- detecting if there is no solution

Maze (Labyrinth)

- Standard example for recursion
- Classic: Daedalus, Theseus, and the Minotaur
- Problem: We want to find the way out of the maze

Difficult to solve with iteration (while or for loop):

- avoid going in cycles
- detecting if there is no solution

Recursive Procedure findExit

findExit recursively calls itself for all neighboring fields that are not walls...

Maze (Labyrinth)

- Standard example for recursion
- Classic: Daedalus, Theseus, and the Minotaur
- Problem: We want to find the way out of the maze

Difficult to solve with iteration (while or for loop):

- avoid going in cycles
- detecting if there is no solution

- findExit recursively calls itself for all neighboring fields that are not walls...
- ... and that have not been visited before.

Maze (Labyrinth)

- Standard example for recursion
- Classic: Daedalus, Theseus, and the Minotaur
- Problem: We want to find the way out of the maze

Difficult to solve with iteration (while or for loop):

- avoid going in cycles
- detecting if there is no solution

- findExit recursively calls itself for all neighboring fields that are not walls...
- ... and that have not been visited before.
 - ▶ If there is a way out, then there is one without going in cycles.

Maze (Labyrinth)

- Standard example for recursion
- ► Classic: Daedalus, Theseus, and the Minotaur
- Problem: We want to find the way out of the maze

Difficult to solve with iteration (while or for loop):

- avoid going in cycles
- detecting if there is no solution

- findExit recursively calls itself for all neighboring fields that are not walls...
- ... and that have not been visited before.
 - ▶ If there is a way out, then there is one without going in cycles.
- Backtracking: findExit fails if all recursive calls fail.

findExit (Pseudocode)

```
bool findExit(int x, int y){
  if (isExit(x,y)) return true;
  if (isWall(x,y)) return false;
  if (isMarked(x,y)) return false;
  mark(x,y):
  return
  (findExit(x-1,y) \mid |
   find Exit (x,y-1)
   find Exit (x+1,v)
   findExit(x,y+1)
}
```

given suitable implementations of isExit, isWall, isMarked, and mark.