

Presentación de plan de trabajo - Semana 4

Carrito analizador de Infraestructura de una mina y detector de CO2

Curso:

Curso Integrador I: Diseño Electrónico

Alumnos:

Rodríguez Tapia Gerardo Gabriel	U22203808
Chagua Tasaico Alexis Magno	U21310742
Santibañez Pastor Jose Alexander	1400058
Vicente Balcazar Stheveen slittle	U21216580
Girón Aguilar Aron Neil	U20209814

Docente:

Motta Zorrilla, Bryan

Índice:

Problemática del Proyecto:	4
Identificación del Problema:	4
Problema General:	4
Problema Específico:	4
Objetivo General:	5
Objetivos específicos:	5
Justificación:	5
Disgregación del Trabajo:	5
Plan de Trabajo (Diagrama de Tiempos y Actividades):	7
Diagrama de Gantt:	7
Marco teórico:	8
Antecedentes:	8
Base teórica:	9
Marco conceptual:	9
Variables del Problema:	10
Hipótesis del Problema:	10
Operacionalización de variables:	10
Metodología:	11
Descripción del enfoque metodológico:	11
Esquemático detallado del circuito:	12
Anexo:	13
Presupuesto y componentes:	13
Bibliografía:	16

Problemática del Proyecto:

Identificación del Problema:

Una de las principales limitaciones en las operaciones subterráneas es la falta de monitoreo en tiempo real de las estructuras de túneles, lo cual impide detectar de forma oportuna posibles deformaciones o desplazamientos. Esta deficiencia aumenta considerablemente el riesgo de derrumbes. A esto se suma la detección ineficiente de la acumulación de dióxido de carbono (CO₂), el cual, en niveles elevados, representa un serio riesgo para la salud de los trabajadores, ya que puede causar asfixia y, en ciertas condiciones, incluso provocar explosiones.

Problema General:

Problema general:

¿Es posible diseñar un Carrito analizador de Infraestructura de una mina y detector de CO2?

Problema Específico:

- Problemas específicos:
 - ¿Se puede detectar de manera precisa y en tiempo real las deformaciones o fallas estructurales en los túneles?
 - ¿Es posible garantizar una medición continua y fiable de los niveles de CO₂ para prevenir riesgos de intoxicación o explosión?
 - ¿Es posible integrar sensores y tecnología de escaneo en un sistema automatizado que opere eficientemente en entornos mineros adversos?

Objetivo General:

 Diseñar e implementar un carrito autónomo capaz de monitorear la integridad estructural de túneles mineros y detectar niveles peligrosos de dióxido de carbono (CO₂) en tiempo real.

Objetivos específicos:

- Integrar sensores que permitan medir con precisión la concentración de CO₂ en entornos subterráneos.
- Desarrollar un sistema de navegación autónoma para el carrito que permita recorrer rutas predeterminadas dentro de los túneles.
- Incorporar sensores para evaluar variables ambientales como temperatura y humedad, que pueden influir en la estructura del túnel.
- Establecer un sistema de monitoreo de la integridad estructural basado en la lectura de datos recogidos por el carrito.
- Validar la efectividad del sistema en condiciones simuladas que representen un entorno minero real.

Justificación:

Una de las principales limitaciones en las operaciones subterráneas es la falta de monitoreo en tiempo real de las estructuras de túneles, lo cual impide detectar de forma oportuna posibles deformaciones o desplazamientos. Esta deficiencia aumenta considerablemente el riesgo de derrumbes. A esto se suma la detección ineficiente de la acumulación de dióxido de carbono (CO₂), el cual, en niveles elevados, representa un serio riesgo para la salud de los trabajadores, ya que puede causar asfixia y, en ciertas condiciones, incluso provocar explosiones.

Disgregación del Trabajo:

- A. Subsistema de Movilidad Autónoma
 - Chasis robótico:
 - Ruedas todoterreno con tracción en terrenos irregulares.
 - Motores de alta eficiencia energética.
 - Navegación:
 - Sensores LIDAR y cámaras 3D para mapeo en tiempo real.

Energía:

- Baterías de litio recargables con autonomía de 8+ horas.
- Opción de panel solar para minas a cielo abierto.

- B. Subsistema de Análisis Estructural
 - Sensores de integridad:
 - Ultrasonido para detectar grietas internas.
 - Acelerómetros para vibraciones anómalas.
 - Procesamiento de datos:
 - Software de comparación con modelos BIM de la mina.
 - Alertas automáticas por deformaciones críticas.
- C. Subsistema de Detección de CO₂
 - Sensores de gas:
 - Calibración automática para evitar deriva.
 - o Protocolos de seguridad:
 - Alarmas sonoras/visuales en el carrito y notificaciones remotas vía.

Plan de Trabajo (Diagrama de Tiempos y Actividades):

Diagrama de Gantt:

Diagrama de C	-		÷															
							6-	13-	20-	27-								
	25-	1-	8-	15-	22-	29-	Ma	Ma	Ма	Ma	3-	10-	17-	24-	1-	8-	15-	22-
ACTIVIDADE	Mar	Abr	Abr	Abr	Abr	Abr	У	У	У	У	Jun	Jun	Jun	Jul	Jul	Jul	Jul	Jul
S	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15	S16	S17	S18
Definición de																		
proyecto																		
Plan de trabajo																		
Busqueda de																		
información																		
Avance del																		
proyecto 1																		
Adquisición de	ļ.																	
materiales																		
Programación																		
Avance																		
proyecto 2																		
Etapa de																		
Diseño																		
Implementació																		
n parcial																		
Avance																		
proyecto 3																		
Pruebas																		
iniciales																		
Avance																		
proyecto 4																		
Ensamblaje e																		
implementació																		
n final																		
Pruebas																		
finales																		
Avance																		
proyecto 5															-			
Redacción																		
informe final																		
Proyecto final																		

Marco teórico:

Antecedentes:

El monitoreo de gases tóxicos y la revisión del estado de la infraestructura en ambientes mineros ha sido una preocupación constante en la automatización de la minería. Diversos trabajos han demostrado la necesidad de sistemas autónomos capaces de operar en entornos hostiles, mejorando la seguridad de los trabajadores.

Garcia et al. (2019), en su artículo "Detección de la orientación mediante visión artificial para el control de equilibrio en robots humanoides" describen cómo la visión artificial permite mejorar la estabilidad de robots en entornos complicados mediante el análisis de grados de libertad y detección de inclinación. Esta metodología puede adaptarse para navegación segura de un carrito dentro de una mina.

Ramos et al. (2019), en el artículo presentado en el Congreso SBAI, desarrollaron un robot explorador diseñado para minas subterráneas con el fin de detectar grietas en la estructura y realizar monitoreo ambiental. Utilizaron sensores de gas, controladores Arduino y comunicación inalámbrica. Los resultados demostraron eficiencia en la detección de CO₂ y estructuras comprometidas.

Por otro lado, en el artículo "Safe Mining System" publicado por IJRASET, se plantea el diseño de un sistema basado en IoT para monitorear condiciones peligrosas dentro de minas. Utiliza sensores de gas (MQ-135), sensores de temperatura, humedad, y una interfaz de alerta. La propuesta destaca por su bajo costo y fácil implementación en ambientes reales.

"Diagrama de flujo de Ramos et sobre su Sistema robótico explorador para monitoreo ambiental y estructural en minería subterránea."

"IA detecta deformaciones" (Sistema robótico explorador para monitoreo ambiental y estructural en minería subterránea)

Base teórica:

Vehículos móviles autónomos en minería:

Los vehículos móviles autónomos han cobrado protagonismo en operaciones mineras, especialmente en labores de inspección, monitoreo y detección de peligros en zonas de difícil acceso. Estos sistemas no requieren intervención humana directa y son programados para desplazarse y recolectar información del entorno. A diferencia de los robots humanoides, los carritos analíticos suelen tener tracción diferencial, sensores ambientales y módulos de procesamiento que les permiten operar de manera eficiente en terrenos irregulares y con poca visibilidad.

Visión artificial y análisis de infraestructura

El uso de OpenCV permite al sistema analizar grietas o deterioro en paredes mediante técnicas como detección de bordes (Canny), segmentación y detección de patrones. Esto es vital para evaluar el estado de la infraestructura minera.

Inteligencia artificial en análisis de datos

El uso de redes neuronales o algoritmos de aprendizaje supervisado permite clasificar tipos de fallas estructurales o niveles peligrosos de CO₂, lo que mejora la toma de decisiones autónomas por parte del carrito.

Normativa de seguridad minera

Según regulaciones internacionales, como las promovidas por la OSHA o equivalentes locales, los niveles de CO_2 en espacios cerrados deben ser monitoreados constantemente para evitar intoxicaciones. La integración de estos sistemas ayuda a cumplir con dichos estándares.

Marco conceptual:

- CO₂ (Dióxido de Carbono): Gas incoloro y tóxico en altas concentraciones.
- Sensores de detección de gases: MQ-135
- MQ-135: Sensor utilizado para la detección de gases nocivos, incluyendo el CO₂.
- Visión artificial: Aplicación de cámaras y algoritmos (OpenCV) para analizar visualmente el entorno.
- TensorFlow: Biblioteca de aprendizaje automático útil para clasificar imágenes o niveles de gases.
- Tracción diferencial: Tipo de locomoción robótica utilizada en el carrito para desplazamiento autónomo.
- Soldadura SMD: Técnica de ensamblaje de componentes electrónicos que se usará en el diseño del sistema electrónico.
- Diseño de circuitos: Planificación y construcción de la parte electrónica del carrito.

Variables del Problema:

- Variables Independientes:

- Concentración de CO₂ (ppm)
- Ruta del carrito
- Altura del sensor de CO₂ respecto al suelo
- Temperatura y humedad

- Variable Dependiente:

- Integridad estructural

Hipótesis del Problema:

Problema: ¿Se puede implementar un sistema de sensores de CO2 y visualizador de estructuras en un carrito para investigar el nivel de peligro en una mina?

Hipótesis del problema: Los recursos de las minas son muy valiosos, pero explorarlos y extraer recursos supone un gran problema para el personal humano.

Operacionalización de variables:

Variables Variables independientes	Dimensión	Indicador			
Concentración de CO ₂	Calidad de aire	Nivel de CO ₂ en el aire.			
Ruta del carrito	Alcance de señal	Comunicación y control			
Altura del sensor de CO ₂ respecto del suelos	Complejidad del trayecto	Numero de curvas, desniveles u obstáculos en la ruta			
Temperatura	Nivel térmico ambiente	Grados Celsius (°C)			
Humedad	Variación de humedad	Cambio de humedad en el tiempo (%)			
Variables dependientes	riables dependientes Dimensión				
Integridad estructural	Estabilidad estructural	Desviación o deformación de la estructura (cm o %)			

Metodología:

Descripción del enfoque metodológico:

- Tipo de Enfoque

Tendremos un enfoque Cuantitativo por las variables que se usara en el sensor para detectar los niveles de CO2, al igual que la base de la IA para detectar imágenes dentro de la mina.

- Método de investigación

Sera un método descriptivo ya que los sensores y la IA nos mandaran señales con las muestras de las condiciones dentro de la mina.

- Diseño de Investigación

Nuestro diseño de investigación será longitudinal ya que se irán actualizando los datos conforme se vaya moviendo el vehículo dentro de la mina dándonos informes continuos del estado dentro de la mina (un intervalo de 2 minutos).

Esquemático detallado del circuito:

Circuito del carro

Circuito del sensor de CO₂

Anexo:

Presupuesto y componentes:

- **HC-05** (S/25): Manejo a control del vehículo de exploración, como prototipo nos comunicamos mediante vía bluetooth, tiene una señal en óptimas condiciones de hasta 10 metros.

 L298N (S/ 11): Controlador de motor, podemos manejar la dirección y velocidad de los motorreductores

 Arduino UNO (S/ 40): la base principal para el funcionamiento del proyecto, se apoyará con el uso los sensores y actuadores para mandarlos la señal del ambiente y camino.

- **MOTORREDUCTOR** (S/ 3.5): Son 4 motorreductores para mantener un mejor equilibrio del vehículo, no necesita mucho voltaje para funcionar.

- CABLE UTP (S/ 1): Cable económico para conectar circuitos

- **MQ-135** (S/ 12): Podemos detectar la calidad del aire en el ambiente que estamos.

- LCD 12x2: Nos muestra los niveles de CO₂

- Potenciómetro (S/ 1): Subirle y bajarle el brillo al LCD.

Bibliografía:

 Contador, C., Muñoz, L., Pérez, R., & Tapia, C. (2021). Technological innovation for mine monitoring using IoT systems. ACG Publications. https://papers.acg.uwa.edu.au/p/2135_13_Contador/

Este artículo presenta un sistema de monitoreo de infraestructura minera utilizando tecnologías IoT. Describe sensores, redes de comunicación y métodos de recolección de datos en minas subterráneas, contribuyendo a la seguridad y mantenimiento predictivo.

 Danielbernalb. (s.f.). LibreCO2 – Instrucciones en Español. GitHub. https://github.com/danielbernalb/LibreCO2/blob/main/INSTRUCCIONES%20en%20Es pa%C3%B1ol.md

Repositorio en GitHub que detalla cómo construir un dispositivo portátil para medir dióxido de carbono (CO₂) usando sensores de bajo costo. Incluye código, diagramas y materiales necesarios, útil para replicar o adaptar el diseño en entornos industriales o educativos.

 MediciónCO2. (s.f.). Proyecto medidor de CO₂. GitHub. https://github.com/medicionco2/proyecto_medidor_co2

Proyecto colaborativo de código abierto orientado a la creación de medidores de CO₂ en tiempo real. Ofrece esquemas electrónicos, instrucciones de ensamblaje, y programación del dispositivo con enfoque educativo y de monitoreo ambiental.

Red Iberoamericana de Innovación y Transferencia de Tecnología (REDILAT). (2022).
 Sistema de monitoreo de CO₂ en ambientes laborales confinados usando Arduino y sensores de bajo costo. Latinoamérica Tecnología, 2(1), 40–55.
 https://latam.redilat.org/index.php/lt/article/view/1640/2008

Publicación académica que presenta un sistema de monitoreo de CO₂ diseñado para ambientes confinados, como túneles o minas. Se basa en el uso de Arduino, sensores MQ y WiFi. Evalúa su efectividad con pruebas de campo, destacando su bajo costo y fácil implementación.

- Sahu, P. R., & Pradhan, R. (2022). Safe Mining System. International Journal for Research in Applied Science and Engineering Technology (IJRASET), 10(4). https://www.ijraset.com/best-journal/safe-mining-system Este proyecto desarrolla un sistema de minería seguro utilizando sensores de gas (MQ135), sensores de temperatura y una unidad de alarma conectada por Wi-Fi. Su objetivo es detectar condiciones peligrosas en minas y emitir alertas en tiempo real para proteger al personal minero.
- Ramos, J. S., Silva, H. L. C., & Moreira, R. A. (2019). Desenvolvimento de um sistema autônomo para mapeamento de áreas confinadas com ênfase em mineração. Cadernos de Graduação - Ciências Exatas e Tecnológicas, Centro Universitário de Volta Redonda. https://revistas.unifoa.edu.br/cadernos/article/view/3784

Este artículo describe el desarrollo de un robot autónomo para exploración de minas subterráneas. El sistema incluye sensores de distancia y cámara, además de control por Arduino. Se enfoca en mejorar la seguridad mediante el mapeo autónomo de áreas peligrosas.

 Garcia, A., Ramos, P., Silva, M., & Souza, L. (2019). Detección de la orientación mediante visión artificial para el control de equilibrio en robots humanoides. En Anais do Simpósio Brasileiro de Automação Inteligente (SBAI). https://doi.org/10.21528/CBIC2019-28

El estudio propone el uso de visión artificial para detectar la orientación y mantener el equilibrio en robots humanoides. Analiza algoritmos de seguimiento visual y la implementación de grados de libertad para estabilización, ofreciendo bases aplicables a sistemas móviles de detección y navegación autónoma.