

Ma Yan · Intel/软件 工程师

Apache Flink China Meetup 上海 - 2019年09月07日

Contents

目录 >>

What's Intel Optane DC Persistent Memory?

3

How to use it in Flink workload?

Modes and Population

PART 01

What's Intel Optane DC Persistent Memory?

Goal: Efficient Data Centric Architecture

Apache Flink

L2 L1

LLC

L1

The best of both worlds with Intel® Optane Porcietant Mamory

Persistent Memory Memory Storage attributes Data persistence with higher Performance comparable to DRAM at low latencies¹ capacity than DRAM²

^{1. &}quot;Fast performance comparable to DRAM" - Intel persistent memory is expected to perform at latencies near DDR4 DRAM. Benchmarks and proof points forthcoming. "low latencies" - Data transferred across the memory bus causes latencies to be orders of magnitude lower when compared to transferring data across PCle or I/O bus' to NAND/Hard Disk. Benchmarks and proof points forthcoming.

^{2.} Intel persistent memory offers 3 different capacities – 128GB, 256GB, 512GB. Individual DIMMs of DDR4 DRAM max out at 256GB.

PART 02

Modes and Population

Memory Mode

- No software/application changes required
- To mimic traditional memory, data is "volatile"

Volatile mode key cleared and regenerated every power cycl

DRAM is "near memory"

- Used as a write-back cache
- Managed by host memory controller
- Within the same host memory controller, not across
- Ratio of far/near memory (PMEM/DRAM) can vary
- Overall latency
- Same as DRAM for cache hit
- Intel® Optane™ DC persistent memory + DRAM for cache miss

Memory Mode Transaction Flow

- Good locality means near-DRAM performance
 - Cache hit: latency same as DRAM
 - Cache miss: latency DRAM + Intel® Optane™ DC persistent memory
- Performance varies by workload
 - Best workloads have the following traits:
 - Good locality for high DRAM cache hit rate
 - Low memory bandwidth demand
 - Other factors:
 - #reads > #writes
 - Config vs. Workload size

Larger Memory Capacity enables new usages Apache Flink

Larger databases and data sets

More options for TCO balancing

Larger vms, More VMs¹

[root@srl	28 ~]# free -g					
	total	used	free	shared	buff/cache	available
Mem:	187	5	181	Θ	0	181
Swap:	3	Θ	3			

[root@sr1	28 ~]# free -g					
70 7	total	used	free	shared	buff/cache	available
Mem:	991	93	869	Θ	28	893
Swap:	3	Θ	3			

App Direct Mode

PMEM-aware software/application required

 Adds a new tier between DRAM and block storagenov – (SSD/HDD)

- Industry open standard programming model and Intel PMDK
- In-place persistence
 - No paging, context switching, interrupts, nor kernel code executes
- Byte addressable like memory
 - Load/store access, no page caching
- Cache Coherent
- Ability to do DMA & RDMA

Storage Over App Direct

- Operates in blocks like SSD/HDD
 - Traditional read/write instructions
 - Works with existing file systems
 - Atomicity at block level
 - Block size configurable (4K, 512B)
- NVDIMM driver required
 - Support starting kernel 4.2
- Scalable capacity
- Higher endurance than enterprise class SSDS
 High performance block storage
 Low latency, higher bandwidth, high IOPs
- - Low latency, higher bandwidth, high IOPs

App Direct Flexibility for developer to optimize

- 1. DRAM data and App Direct (Intel® Optane™ DC persistent memory) are separate regions in memory space
 - App Direct region can be used as persistent memory

- 2. Intel Optane DC persistent memory to enable larger memory data structures. Some example partitioning:
 - Move all in-memory data to persistent memory (AD)
 - Move some in-memory data to persistent memory (AD), leaving most actively accessed data in DRAM

Apache Flink

App Direct Flexibility for developer to optimize

- Intel® Optane™ DC persistent memory to accelerate data previously located on disk with significantly lower latency. Some examples:
 - Move data from disk to persistent memory, re-architect data structures from blocks to byte addressable removing software overhead
 - Used as a cache
 - Multiple modules can be interleaved for higher bandwidth
 - Storage Over AD Mount file system to App Direct (DAX mode to avoid copies) for initial testing

Population examples: 2 socket system Apache Flink

- To ensure system configuration flexibility for different population, Intel® Optane™ DC persistent memory can be populated:
 - On the same channel as DRAM
 - On the slot closest to the CPU on each channel
 - Up to 6 modules per CPU
- BIOS can recognize which DDR slot(s) have Intel Optane DC persistent memory and in which mode it is running

PART 03

How to use Intel Optane Persistent Memory in Flink?

Cluster Configurations

		Master	Slave			
	Memory	128GB (8x 16GB DDR4)	192GB (16x 12GB DDR4) +1TB DCPM (8 x 1280			
l la veli va va	DCPMM Mode	N/A	Memory mode/ SoAD mode			
Hardware	Storage	1TB SSD*5	1.8TB SSD*5			
	СРИ	Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz	Intel(R) Xeon(R) Platinum 8280L CPU @ 2.70GHz			
	Hadoop	hadoop-2.8.5				
Software	Flink	Flink 1.5.1				
	OS	Fedora release 29 with kernel 5.0.5- 200.fc29.x86_64	Fedora release 29 with kernel 4.19.35- 600.nvdimm.fc29.x86_64			
	Data Scale	1TB				
Workload(TPC-DS)						
	SQL Queries	Simple query against TPC-DS table web_sales				

Demo

- Set App Direct mode
 - ipmctl create -goal PersistentMemoryType=AppDirect
 - reboot
 - ndctl list -R
 - ndctl create-namespace -m fsdax -r region0
 - ndctl create-namespace -m fsdax -r region1
 - fdisk -l
 - mount -o dax /dev/pmem0 /mnt/pmem0
 - mount -o dax /dev/pmem1 /mnt/pmem1
- Memkind library for AD mode
 - https://github.com/memkind/memkind/blob/master/examples/pmem_malloc.c
- Memcache library for AD mode
 - https://github.com/pmem/vmemcache/blob/master/tests/example.c
- Use DCPM SoAD mode in Flink
 - refer SoAD.cast
- Switch DCPM from App Direct mode to Memory mode
 - umount /mnt/pmem0
 - umount /mnt/pmem1
 - ndctl disable-namespace namespace0.0
 - ndctl destroy-namespace namespace0.0
 - ndctl disable-namespace namespace1.0
 - ndctl destroy-namespace namespace1.0
 - ndctl disable-region region0
 - ndctl disable-region region1
 - ipmctl create -goal MemoryMode=100
 - reboot
- Use DCPM memory mode in Flink
 - refer memory-mode.cast

Reference Link

https://docs.pmem.io/ndctl-users-guide/concepts/libnvdimm-pmem-and-blk-modes https://software.intel.com/en-us/articles/introduction-to-programming-with-persistent-memory-from-intel

https://software.intel.com/en-us/articles/intel-optane-dc-persistent-memory-a-major-advance-in-memory-and-storage-architecture

ndctl: https://github.com/pmem/ndctl

ipmctl: https://github.com/intel/ipmctl/releases

Flink Forward Asia

全球最大的 Apache Flink 官方会议

预计 2000+ 参会人员, 2019年11月28-30日 @北京国家会议中心

国内外一线厂商悉数参与

阿里巴巴、腾讯、字节跳动、intel、 DellEMC 、Uber、美团点评、Ververica ...

大会官网, 查看更多

Flink Forward Asia

The largest Apache Flink official conference all over the world

Expected 2000+ participants

28th November 2019 - China National Convention Center @Beijing

Numbers of Top domestic and foreign companies Alibaba, Tencent, Bytedance, Intel, DellEMC, Uber, Meituan Dianping, Ververica...

Official website

Apache Flink 社区微信公众号「 Ververica」

Meetup动态 / Release 发布信息 / Flink 应用实践

THANKS

Apache Flink China Meetup

SHANGHAI

