CHAP 7:

D'UN ELEMENT A L'AUTRE : LA TRANSFORMATION NUCLEAIRE

Plan du chapitre:

I Isotopes et radioactivité

II Transformations nucléaires

III Conversions d'énergie

I. <u>Isotopes et radioactivité</u>

Isotopes

Des noyaux qui ont le même nombre de protons mais un nombre de neutrons (donc de nucléons) différent sont des ISOTOPES.

Ex: ${}^{12}_{6}C$ ${}^{13}_{6}C$ sont des isotopes du carbone

Ils appartiennent au même élément chimique (même Z), ont des propriétés chimiques identiques, mais des propriétés physiques différentes.

Ex 1,5

Radioactivité

En fonction du nombre de protons et/ou de neutrons, un noyau peut s'avérer non stable.

Un noyau non stable peut se désintégrer spontanément pour en donner un autre tout en émettant une particule et de l'énergie.

Loi de SODDY:

Lors d'une réaction nucléaire, il y a conservation de la **charge électrique** et du **nombre de nucléons**.

$$_{Z}^{A}X \rightarrow _{Z1}^{A1}Y1 + _{Z2}^{A2}Y2$$
 avec $A = A1 + A2$ et $Z = Z1 + Z2$

II. Transformations nucléaires

Spontanées

Radioactivité α

Les noyaux sont instables en raison d'un trop grand nombre de nucléons. Ils se désintègrent en émettant un noyau d'hélium ${}_{2}^{4}He$, particule α .

$$\underline{\text{Ex}}: \qquad {}^{210}_{84}Po \rightarrow {}^{4}_{2}He +$$

Radioactivité β -

Par rapport à la vallée de la stabilité, les noyaux ont un nombre de protons insuffisant. Ici, il y a transformation d'un neutron en un proton. Il y a **émission d'un électron** $_{-1}^{0}e$, appelé **particule** β .

$$\underline{\text{Ex}}: \qquad {}^{60}_{27}\text{Co} \rightarrow \quad {}^{0}_{-1}\text{e} \quad +$$

Radioactivité β+

Par rapport à la vallée de la stabilité, les noyaux ont un nombre de neutrons insuffisant. Ici, il y a transformation d'un proton en un neutron. Il y a **émission d'un positon (ou positron)** ${}_{1}^{0}e$ appelé **particule** β^{+} .

$$\underline{\text{Ex}}: \qquad {}^{30}_{15}P \rightarrow {}^{0}_{1}e +$$

• Provoquées

La fission nucléaire

La fission est une réaction nucléaire au cours de laquelle un noyau lourd est scindé en deux noyaux plus légers sous l'impact d'un neutron.

Ex:
$${}^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{140}_{55}Cs + {}^{93}_{37}Rb + 3 {}^{1}_{0}n$$

Possibilités de réactions en chaine.

Beaucoup d'énergie produite. Principe utilisé dans les **centrales nucléaires** (électricité).

La fusion nucléaire

La fusion est une réaction nucléaire au cours de laquelle deux noyaux légers s'unissent pour donner un noyau plus lourd.

$$\underline{Ex}: {}^{2}_{1}H + {}^{3}_{1}H \rightarrow {}^{4}_{2}He + {}^{1}_{0}n$$

Fusion de deux noyaux légers.

Enormément d'énergie produite. Mais nécessite des températures très élevées... **Soleil,** ITER.

Ex 2,3,9,10,14,15,18