

Flashing STM32 using STLINK or RPI GPIO

Alok Ranjan Kesari and G. V. V. Sharma

1

2

2

2

CONTENTS

1	Components		1
2	Software Setup		1
	2.1	Install Necessary Packages	1
	2.2	Installing Openocd and	
		Programming Environment	1

Configure Openocd . . .

RPI GPIO

3 Hardware Setup 3.1 STLINK

2.3

3.2

4 Make File and Flashing

Abstract—This manual shows how to program an STM32 board using STLINK and Raspberry Pi. The procedure is the same for any Linux machine.

1 Components

The necessary components for this manual are listed in Table I.

Component	Quantity
STM32F103C8T6	1
Raspberry Pi 3	1
STLINK V2	1
Female-Female Jumper Wires	5

TABLE I

The authors are with the Department of Electrical Engineering, IIT Hyderabad alok.kesari@yahoo.co.in, gadepall@iith.ac.in

2 Software Setup

Open a terminal and execute the following commands

cd ~	
mkdir -p ~/sandbox	
cd ~/sandbox	

2.1 Install Necessary Packages

sudo apt-get install git autoconf libtool make automake texinfo pkg-config libusb-1.0-0 libusb-1.0-0-dev gcc-arm-none-eabi libnewlib-arm-none-eabi telnet

2.2 Installing Openocd and Programming Environment

git clone git://repo.or.cz/openocd.git git clone https://github.com/gadepall/ STM32F103C8T6.git

2.3 Configure Openocd

cd openocd
./bootstrap
./configure --enable-sysfsgpio --enablebcm2835gpio
make
sudo make install

While using STLINK, **/configure** without the –enable switches is sufficient.

3 Hardware Setup

3.1 STLINK

Connect the STLINK to a USB port of the Raspberry Pi. The hardware connections between the STLINK and STM32 are available in Table II. See Fig. 1 as well for the *black pill* board. Fig. 2 shows the *blue pill* board.

STM32	STLINK
GND	GND
3.3V	3.3V
SWDIO	SWDIO
SWCLK	SWCLK

TABLE II: STLINK-STM32 connections

3.2 RPI GPIO

On the RPi, type

pinout

This will give the GPIO pin configuration on the RPi. Now open

nano /usr/local/share/openocd/scripts/interface/ sysfsgpio-raspberrypi.cfg

and verify that the file contains the lines (at different locations)

- # Each of the SWD lines need a gpio number set: swelk swdio
- # Header pin numbers: 23 22 sysfsgpio_swd_nums 11 25
- # Header pin numbers: TRST -26, SRST -18 sysfsgpio_srst_num 24 reset_config_srst_only_srst_push_pull

Note that the above configuration was obtained for an **RPi Zero W**. It may be different for other RPis. Remove the # before the lines, if necessary. These lines provide information on the pin connections between the Rpi and STM32 as shown in Table III. The pin num-

Raspberry Pi	STM32
GND (Pin 6)	GND
3.3V (Pin 1)	3.3V
GPIO 25 (Pin 22)	SWDIO
GPIO 11 (Pin 23)	SWCLK
GPIO 24 (Pin 18)	RESET

TABLE III: Raspberry Pi and STM32 Connections

bers for RPi in the above table will be different for different RPis based on **sysfsgpio-raspberrypi.cfg**.

Fig. 1: STM32F103C8T6 Pin Configuration (Black Pill)

4 Make File and Flashing

1. Communicate with the STM32 board. While using STLINK,

cd ~/sandbox/openocd

sudo openocd -f /usr/local/share/openocd/ scripts/interface/stlink.cfg -f usr/local/ share/openocd/scripts/target/stm32f1x. cfg

Fig. 2: STM32F103C8T6 Pin Configuration (Blue Pill)

If only RPI GPIO is used, then

cd ~/sandbox/openocd

cp ~/sandbox/STM32F103C8T6/refs/ openocd.cfg ~/sandbox/openocd sudo openocd -f /usr/local/share/openocd/

scripts/interface/sysfsgpio-raspberrypi.

"transport select swd" -c "adapter_khz 1000" -f /usr/local/share/openocd/ scripts/target/stm32f1x.cfg

2. Open a new terminal and type

telnet localhost 4444

This will establish a connection between the RPI and STM32

3. Open another new terminal and type

cp ~/sandbox/STM32F103C8T6/examples/ blink.c ~/sandbox/STM32F103C8T6/src /main.c

sudo make bin

cp main.bin cd ~/sandbox/openocd

Ensure that the following lines in the Makefile

CC= /data/data/com.termux/files/home/gccarm-none-eabi-8-2019-q3-update/install -native/bin/arm-none-eabi-gcc OBJCOPY = /data/data/com.termux/files/ home/gcc-arm-none-eabi-8-2019-q3update/install-native/bin/arm-none-eabiobjcopyOBJDUMP = /data/data/com. termux/files/home/gcc-arm-none-eabi-8 -2019-q3-update/install-native/bin/armnone-eabi-objdump

/data/data/com.termux/files/home/gcc-armnone-eabi-8-2019-q3-update/installnative/bin/arm-none-eabi-size \$(PRJ_NAME).elf

are suitably modified based on the path in your OS.

4. Go to the telnet terminal

reset halt

flash write_image erase main.bin 0 x08000000

reset run

- 5. Align the two pin caps beside the reset button. Press the reset button. You should see an LED blinking.
- Modify main.c in the STM32F103C8T6 directory and modify the code to keep the LED on. Flash it to the STM32 and verify.