Министерство образования и науки РФ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Кафедра теплоэнергетики и экологии

РАСЧЕТ ГОРЕНИЯ ТОПЛИВА

Методические рекомендации к проведению практических занятий и выполнению ВКР для студентов, обучающихся по направлениям подготовки 150400 «Металлургия», 280700 «Техносферная безопасность», 140100 «Теплоэнергетика и теплотехника»

УДК 622.61(07) Р 24

Рецензент:

доцент кафедры теплогазоводоснабжения и вентиляции СибГИУ Логунова О.Я.

Р 24 Расчет горения топлива: Методические рекомендации к проведению практических занятий и выполнению ВКР / Сиб. гос. индустр.ун-т; сост.: Т.А. Михайличенко, В.В. Стерлигов: — Новокузнецк: Изд.центр СибГИУ, 2014. — 25 с.

Изложены цели и методы расчета полного горения твердого, жидкого и газообразного топлива. Содержатся практические рекомендации для выполнения расчетов горения и необходимый справочный материал. Приведен перечень рекомендуемой литературы. Предназначены для студентов, обучающихся по направлениям подготовки 150400 «Металлургия», 280700 «Техносферная безопасность», 140100 «Теплоэнергетика и теплотехника», а также могут быть полезны всем студентам, изучающим дисциплины теплотехнического профиля.

СОДЕРЖАНИЕ

1 ОБЩИЕ СВЕДЕНИЯ4
2 РАСЧЕТ ПОЛНОГО ГОРЕНИЯ ТОПЛИВА4
2.1 Основы расчета полного горения топлива4
2.2 Низшая теплота сгорания5
2.3 Определение состава влажного газообразного топлива и
рабочей массы твердого и жидкого топлива. Определение
состава смешанного газа7
2.4 Определение теоретического (L_B^0) и действительного (L_B^{π})
количества воздуха для горения11
2.5 Определение теоретического (V^0) и действительного ($V^{\scriptscriptstyle T}$)
количества продуктов сгорания13
2.6 Определение состава и плотности продуктов полного
сгорания15
2.7 Материальный баланс горения топлива16
2.8 Определение температуры горения топлива20
БИБЛИОГРАФИЧЕСКИЙ СПИСОК25

1 ОБЩИЕ СВЕДЕНИЯ

Расчет горения топлива является основой теплотехнического расчета любого нагревательного устройства, использующего топливо.

Целью расчета горения топлива является определение:

- теплоты сгорания топлива (Q_{H}^{P}) ;
- теоретического (L_B^0) и действительного (L_B^π) количества воздуха;
- теоретического (V^0) и действительного (V^{Λ}) количества продуктов сгорания;
- состава и плотности продуктов сгорания;
- температуры горения.

Эти данные необходимы для расчета теплообмена в рабочем пространстве печи, расчета теплового баланса и всех ее аэродинамических расчетов. Например, объем продуктов сгорания необходимо знать, чтобы рассчитать потери тепла с уходящими газами в тепловом балансе, а также для расчета боровов, дымовой трубы и теплоутилизирующих устройств (рекуператоров и регенераторов). По величине необходимого для горения воздуха рассчитываются воздухопроводы, дутьевые устройства (вентиляторы). Зная состав продуктов сгорания, можно определить парциальные давления составляющих дыма и, таким образом, рассчитывать теплообмен излучением.

2 РАСЧЕТ ПОЛНОГО ГОРЕНИЯ ТОПЛИВА

2.1 Основы расчета полного горения топлива

Полное сгорание топлива обеспечивает наиболее экономичную работу теплотехнических агрегатов и имеет место при следующих условиях: хорошем смешении топлива с окислителем, достаточной температуре и надлежащей подготовке топлива к сгоранию.

В основе расчета лежит анализ уравнений химических реакций окисления и их стехиометрические коэффициенты. В этом случае при расчете предполагается:

- окисление горючих составляющих топлива идет до получения продуктов полного сгорания (CO₂, H₂O, SO₂);
- отсутствует диссоциация продуктов сгорания и горючих составляющих топлива;
- горение протекает без образования продуктов химического и механического недожога;
- воздух, используемый в качестве окислителя, состоит из 79% N_2 и 21% O_2 (по объему);
- газообразное топливо, воздух и продукты сгорания находятся при нормальных условиях (T=273 K, P=101325 Пa), т.е. 1 кмоль этих газов занимает объем 22,4 м³;
- продукты термического разложения золы в расчете горения твердого топлива не учитываются.

Для удобства расчет ведется на 1 или 100 единиц — т.е. на 1 или 100 м 3 для газообразного и 1 или 100 кг для твердого и жидкого топлива. Определенные в результате расчета количества газов в м 3 при нормальных условиях в дальнейшем пересчитывают на объем реальных газов при известных рабочих условиях (T, P).

2.2 Низшая теплота сгорания

Низшей теплотой сгорания, Q_H^P , называется количество тепла, которое выделяется при полном сгорании единицы количества топлива (1 кг, 1 м³, 1 кмоль) при условии, что влага продуктов сгорания находится в парообразном состоянии при температуре 20° С (в отличие от высшей теплоты сгорания $Q_{\rm B}^{\rm P}$, которая предполагает конденсацию влаги продуктов сгорания в жидкость при температуре 0^{0} C). Понятие Q_{B}^{P} имеет лишь теоретическое значение, поскольку влага продуктов сгорания, как правило, уносится вместе с дымом из рабочего пространства печи в виде пара и если конденсируется, то за пределами системы. Поэтому в теплотехнических расчетах имеют дело с величиной $Q_{\rm H}^{\rm P}$, которая определибо экспериментально специальных приборахляется В калориметрах, либо аналитически.

Низшую теплоту сгорания газообразного топлива можно рассчитать аналитически, зная его состав и тепловые эффекты реакций горения составляющих топлива, $\kappa Д ж/м^3$,

$$Q_{H}^{p} = \sum_{i=1}^{n} q_{i} r_{i}, \qquad (1)$$

где п – количество горючих компонентов топлива;

r_i - объемные доли горючих химических веществ топлива;

q_i – тепловые эффекты реакций полного горения горючих компонентов топлива, кДж/м³.

Значения д для некоторых газов приведены в таблице 1 [1].

При содержании в топливе незначительного количества непредельных углеводородов неизвестного состава (С_пH_m) их условно принимают состоящими из этилена (С₂H₄).

Низшая теплота сгорания твердого и жидкого топлива рассчитывается по эмпирической формуле Д.И. Менделеева:

$$Q_{H}^{P} = 339,15 \text{ C}^{P} + 1256,1 \text{ H}^{P} - 108,86 \text{ (O}^{P} - \text{S}^{P}) - 25,12 \text{ (W}^{P} + 9\text{H}^{P}), кДж/кг,$$
 (2) где C^{P} , H^{P} , O^{P} , S^{P} , W^{P} – содержание горючих элементов и

влаги в рабочей массе топлива, масс.%.

Таблица 1 – Тепловые эффекты реакций горения и приближенные молекулярные массы некоторых газов

Газ	Формула газа	Молекулярная	Низшая теплота		
1 43	Формула газа	масса, кг/кмоль	сгорания, кДж/м ³		
Водород	H_2	2	10743		
Оксид углерода	CO	28	12636		
Метан	$\mathrm{CH_4}$	16	35847		
Ацетилен	C_2H_2	26	56049		
Этилен	C_2H_4	28	59059		
Этан	C_2H_6	30	63790		
Пропилен	C_3H_6	42	86022		
Пропан	C_3H_8	44	91281		
Бутилен	C_4H_8	56	113785		
Бутан	C_4H_{10}	58	118670		
Циклопентан	C_5H_{10}	70	138500		
Пентан	C_5H_{12}	72	146107		
Бензол	C_6H_6	78	142425		
Сероводород	H_2S	34	23383		

2.3 Определение состава влажного газообразного топлива и рабочей массы твердого и жидкого топлива. Определение состава смешанного газа

Состав газообразного топлива задается содержанием отдельных компонентов, как горючих, так и негорючих в об.% (СО, CO_2 , H_2O , H_2 , O_2 , H_2S , CH_4 , N_2 и т.д.), а состав твердого и жидкого топлива — содержанием отдельных элементов (С, H, O, N, S) и балластных составляющих (влаги W и золы A) в масс.%.

В справочной литературе обычно задается состав сухого газообразного топлива, поэтому перед расчетом горения состав сухого газа необходимо пересчитать на влажный по формуле:

$$x^{B} = x^{C} \frac{100}{100 + 0.1244 d_{T}}, \tag{3}$$

где x^{B} – содержание компонента во влажном газе, об.%;

 x^{c} – содержание компонента в сухом газе, об.%;

 d_{Γ} — содержание влаги в газе, г/м 3 сухого газа при нормальных условиях.

Если содержание влаги отнесено к 1 м^3 влажного газа или к 1 м^3 натурального газа (состояние которого задано конкретными P и T), то расчеты, связанные с влажностью, значительно усложняются.

Влагосодержание сухого газа, Γ/M^3

$$d_{r} = 804 \frac{P_{B.\Pi.} \cdot \varphi}{P - P_{B.\Pi.} \cdot \varphi}, \tag{4}$$

где коэффициент 804 — плотность водяных паров при нормальных условиях ($\frac{18 \kappa \Gamma / \text{моль}}{22,4 \text{м}^3 / \kappa \text{моль}} = 0,804 \kappa \Gamma / \text{м}^3 = 804 \Gamma / \text{м}^3$);

 $P_{\scriptscriptstyle B.\Pi.}$ — парциальное давление водяных паров, зависящее от температуры газа, Па;

Р – рабочее давление газа, Па;

ф – относительная влажность газа, доли единицы.

Величины, характеризующие влажность газа в зависимости от температуры насыщения при рабочем давлении влажного газа 101325 Па, приведены в таблице 2.

Искусственные газы (доменный, коксовый, генераторный) подвергается мокрой очистке почти при атмосферном давлении, поэтому они насыщены водяными парами ($\phi = 1$), и величина

влагосодержания $d_{\scriptscriptstyle \Gamma}$ может быть взята из таблицы 2 [2] по температуре насыщения, которую задают в зависимости от времени года, условий в цехе и т.д.

Природный газ перед транспортировкой с места добычи подвергается сушке во избежание образования кристаллогидратов тяжелых углеводородов, и для него $\phi = 0.6$. Рабочее давление природного газа, подаваемого на промышленные предприятия по распределительным газопроводам высокого давления, составляет 0,3-0,6 МПа, а рабочая температура $0-20^{0}$ С. Таким образом, величина влагосодержания, вычисленная по формуле (4), весьма незначительна, и можно считать, что природный газ поступает практически сухим.

Иногда в расчете требуется учесть влажность воздуха. Пересчет состава сухого воздуха на влажный проводится по формулам:

$$O_2^B = O_2^c \frac{100}{100 + 0.1244 d_a}; (5)$$

$$O_{2}^{B} = O_{2}^{c} \frac{100}{100 + 0,1244d_{B}};$$

$$N_{2}^{B} = N_{2}^{c} \frac{100}{100 + 0,1244d_{B}};$$
(5)

$$H_2O^{B} = \frac{0.1244d_{B}}{100 + 0.1244d_{B}} \cdot 100;$$
 (7)

Здесь O_2^{B} , N_2^{B} , $H_2O^{\text{B}}-$ содержание составляющих влажного воздуха, %;

 O_2^c , N_2^c — содержание составляющих сухого воздуха, %;

d_в - влагосодержание воздуха, которое определяется по формуле (4), Γ/M^3 сухого газа.

Часто для сжигания используется смесь двух газов с заданной теплотой сгорания $Q_{\text{нем}}^{\text{P}}$. В этом случае перед расчетом горения нужно определить состав смешанного газа. Для этого необходимо:

- 1. Пересчитать составы заданных сухих газов с поправкой на влажность по формулам (3), (4).
- 2. Принять объемную долю первого газа в смеси за х, а долю второго газа за (1-х). Тогда

$$Q_{H_{CM}}^{P} = Q_{H}^{P} \cdot x + Q_{H}^{P} (1-x),$$

откуда

$$x = \frac{Q_{H}^{P} - Q_{H_{CM}}^{P}}{Q_{H}^{P} - Q_{H}^{P}}.$$

Величины $Q_{_{\rm H}}^{^{\rm p'}}$ и $Q_{_{\rm H}}^{^{\rm p''}}$, теплоты сгорания первого и второго газов, рассчитываются по формуле (1).

3. Рассчитать состав смешанного газа:

Например,
$$CO_{2 \text{ см}} = CO_{2}' \cdot x + CO_{2}'' \cdot (1-x)$$
 и т.д., (8) где $CO_{2 \text{ см}} -$ содержание компонента в смеси;

со₂ – содержание компонента в первом газе;

СО2 – содержание компонента во втором газе.

Составы сухих газов (природного, коксового и доменного) приведены в [1, таблицы 6-8].

Состав твердого и жидкого топлива может быть задан органической, горючей или сухой массой. Перед расчетом горения заданный состав необходимо пересчитать на рабочую массу по одной из следующих формул:

$$x^{p} = x^{0} \frac{100 - S^{p} - A^{p} - W^{p}}{100},$$

$$x^{p} = x^{r} \frac{100 - A^{p} - W^{p}}{100},$$

$$x^{p} = x^{c} \frac{100 - W^{p}}{100}.$$
(9)

Здесь x^{o} , x^{r} , x^{e} , x^{p} — содержание элемента топлива соответственно в органической, горючей, сухой и рабочей массе, масс.%;

 S^p , A^p , W^p – содержание серы, золы и влаги в рабочей массе топлива (по данным технического анализа), масс.%.

Обратный пересчет можно осуществить по тем же формулам (9). Данные элементарного и технического анализа твердого и жидкого топлива представлены в [1, таблицы 11, 14].

Таблица 2 – Влагосодержание газа при полном его насыщении водяными парами при давлении 101325 Па

Температура насыщенного газа, ⁰ С	Парциальное давление водя- ного пара, Па	Абсолютная влажность газа, Γ/M^3	Содержание влаги в 1 м³ су- хого газа, г/м³	Температура насыщенного газа, ⁰ С	Парциальное давление водя- ного пара, Па	Абсолютная влажность газа, г/м ³	Содержание влаги в 1 м ³ су- хого газа, г/м ³
-20	102,93	0,81	0,8	32	4759,60	33,8	39,70
-15	165,32	1,29	1,3	34	5306,22	37,6	44,75
-10	259,98	2,04	2,0	36	6212,81	41,7	50,25
-5	401,30	3,08	3,1	38	6626,10	46,2	57,0
0	610,62	4,84	4,87	40	7372,71	51,2	63,50
2	705,27	5,56	5,65	42	8199,30	56,5	71,25
4	813,26	6,36	6,50	44	9092,56	62,3	80,0
6	935,92	7,26	7,49	46	10099,14	68,7	89,3
8	1069,24	8,26	8,80	48	11172,38	75,6	100,4
10	1226,56	9,40	9,88	50	12358,95	83,1	112,5
12	1399,88	10,7	11,3	52	13598,84	91,1	126,2
14	1599,86	12,1	12,95	54	14998,73	99,8	141,0
16	1813,18	13,6	14,64	56	16465,27	109,2	158,2
18	2058,49	15,4	16,79	58	18131,79	119,3	177,4
20	2333,14	17,3	19,05	60	19864,98	130,2	200,0
22	2646,44	19,4	21,5	62	21864,81	142,0	224,7
24	2979,78	21,8	24,5	64	23864,64	154,6	252,7
26	3359,71	24,4	27,67	66	26131,11	168,1	285,0
28	3773,01	27,2	31,25	68	28530,91	182,6	322,5
30	4226,31	30,4	35,27	70	31197,35	198,2	365,0

2.4 Определение теоретического (L_B^0) и действительного (L_B^{π}) количества воздуха для горения

Необходимо записать уравнения термохимических реакций окисления составляющих топлива для 1 кмоля горючего:

$$C + O_2 = CO_2,$$

 $S + O_2 = SO_2,$
 $H_2 + \frac{1}{2}O_2 = H_2O,$

$$CO + \frac{1}{2}O_2 = CO_2,$$
 $H_2S + \frac{3}{2}O_2 = H_2O + SO_2,$
 $CH_4 + 2O_2 = CO_2 + 2 H_2O$ и т.д.

Из анализа последнего уравнения следует, что для сжигания 1 кмоля CH_4 требуется 2 кмоля O_2 , а поскольку объем для всех газов, находящихся при нормальных условиях, по следствию из закона Авогадро есть величина постоянная $v_{\mu}=22,4$ м³/кмоль, то такое же соотношение сохраняется и для м³. Например, для сжигания 1 м³ CH_4 необходимо 2 м³ O_2 . C

Например, для сжигания 1 м 3 CH $_4$ необходимо 2 м 3 O $_2$. С этим количеством О $_2$ внесется 2 $\cdot \frac{79}{21}$ = 7,52 (м 3 или кмоля) N $_2$. Теоретическое количество воздуха L_B^0 , необходимого для полного сжигания 1 м 3 (кмоля) CH $_4$, составляет 9,52 м 3 (кмоля).

Порядок расчета L_B^A и L_B^0 следующий [3]: зная состав топлива и записав соответствующие реакции окисления горючих составляющих, можно подсчитать общий расход кислорода как сумму расходов кислорода, необходимого для сжигания отдельных горючих составляющих топлива (в $\frac{M^3O_2}{M^3TOUTUBB2}$):

$$L_{O_2}^0 = \frac{0.5CO + 0.5H_2 + 2CH_4 + 3C_2H_4 + \dots + 1.5H_2S - O_2}{100},$$
(10)

где СО, H_2 , CH_4 , C_2H_4 , H_2S — содержание горючих составляющих топлива, об.%;

 O_2 – содержание O_2 в топливе, об. %;

 $0,5;\ 1,5;\ 2,0;\ 3,0$ — стехиометрические коэффициенты в уравнениях реакций.

Тогда теоретическое количество воздуха для горения

$$L_{B}^{0} = L_{O_{2}}^{0} + L_{N_{2}}^{0} = L_{O_{2}}^{0} + \frac{79}{21} L_{O_{2}}^{0} = 4,762 L_{O_{2}}^{0} = \frac{4,762(0,5CO + 0,5H_{2} + 2CH_{4} + 3C_{2}H_{4} + ... + 1,5H_{2}S - O_{2})}{100}.$$
(11)

На практике для более полного сжигания топлива в зону горения подается воздуха больше, чем это требуется по стехиометрическим соотношениям: $L_B^{\pi} > L_B^0$. Отношение действительного количества воздуха к теоретическому называется коэффициентом расхода воздуха: $n = L_B^{\pi} / L_B^0$.

Численное значение коэффициента расхода воздуха принимается в зависимости от вида топлива и условий его сжигания (таблица 3) [4].

Рассчитав по формуле (11) L_B^0 и приняв значение n, можно определить действительное количество воздуха:

$$L_{\rm B}^{\rm a}={\bf n}\cdot L_{\rm B}^{\rm o}. \tag{12}$$

При определении величин L_B^0 и L_B^π для твердого и жидкого топлива необходимо сначала сделать пересчет состава топлива, выраженного в массовых процентах, на молярный. Это связано с тем, что для твердого и жидкого топлива объемные доли и процентные содержания компонентов топлива не совпадают, как это имеет место для газообразного топлива. Для пересчета на молярный состав необходимо процентные содержания составляющих топлива поделить на их молекулярные массы, и расчет величин L_B^0 и L_B^{π} вести в кмолях, которые затем пересчитать в объемные единицы (м³) умножением на $v_{\mu} = 22,4$ м³/кмоль. Тогда теоретически необходимое количество кислорода для окисления C, H и S

топлива (в $\frac{M^3O_2}{M^3TOППИВА}$):

$$L_{O_2}^0 = \left(\frac{C^p}{\mu_c} + \frac{0.5H^p}{\mu_{H_2}} + \frac{S^p}{\mu_S} - \frac{O^p}{\mu_{O_2}}\right) \cdot \frac{V_{\mu}}{100};$$
 (13)

теоретически необходимо количество воздуха (в $\frac{M^3 BОЗДУХА}{K\Gamma$ ТОПЛИВА):

$$L_{g}^{0} = L_{O_{2}}^{0} + L_{N_{2}}^{0} = L_{O_{2}}^{0} + 3,762L_{O_{2}}^{0} = 4,762L_{O_{2}}^{0} = 4,762\left(\frac{C^{p}}{\mu_{c}} + \frac{0,5H^{p}}{\mu_{H_{2}}} + \frac{S^{p}}{\mu_{S}} - \frac{O^{p}}{\mu_{O_{2}}}\right) \cdot \frac{V_{\mu}}{100};$$
(14)

действительное количество воздуха (в $\frac{M^3 BОЗДУХА}{K\Gamma$ ТОПЛИВА):

$$L_{\rm B}^{\rm a}={\bf n}\cdot L_{\rm B}^{\rm o}. \tag{15}$$

В формулах (13), (14) C^P ; 0,5 H^P ; S^P ; O^P – содержание указанных элементов с соответствующими коэффициентами реакций горения, масс.%;

 μ_{c} , $\mu_{H_{2}}$, μ_{S} , $\mu_{O_{2}}$ — молекулярные массы, кг/кмоль;

 $v_{\mu}-$ объем 1 кмоля газа при нормальных условиях, м $^3/$ кмоль; $v_{\mu}=22,\!4.$

В том случае, если расчет ведется с учетом влажности воздуха, количество воздуха для горения будет отличаться от вычисленного по формуле (11) и будет равно (в $\frac{\text{м}^3 воздуха}{\text{м}^3 топпива}$):

$$L_{_{B}}^{0'} = L_{_{B}}^{0} (1 + 0.001244 \cdot d_{_{B}}) = 4.762(1 + 0.001244 \cdot d_{_{B}}) \times \frac{(0.5CO + 0.5H_{_{2}} + 2CH_{_{4}} + 3C_{_{2}}H_{_{4}} + ... + 1.5H_{_{2}}S - O_{_{2}})}{100},$$
(16)

где $d_{\scriptscriptstyle B}$ – влажность воздуха, г/м 3 сухого газа.

2.5 Определение теоретического (V^0) и действительного (V^{π}) количества продуктов сгорания

В состав продуктов полного сгорания могут входить CO_2 , H_2O , SO_2 , N_2 , O_2 и оксиды азота. Количество последних в дыме весьма незначительно, а определение их связано с большими сложностями, поэтому в расчете полного горения принято учитывать лишь 5 составляющих продуктов сгорания: CO_2 , H_2O , SO_2 , N_2 , O_2 . Тогда действительное количество продуктов сгорания:

$$V^{A} = V_{CO_{2}} + V_{H_{2}O} + V_{N_{2}} + V_{O_{2}} + V_{SO_{2}}.$$
 (17)

Здесь общее количество CO_2 в продуктах сгорания складывается из CO_2 , содержащегося в газообразном топливе, и CO_2 , образовавшегося при горении углеродсодержащих компонентов (в

$$\frac{\text{м}^3\text{CO}_2}{\text{м}^3\text{топлива}}$$
):

$$V_{CO_2} = \frac{CO_2 + (CO + CH_4 + 2C_2H_4 + ...)}{100},$$
(18)

где CO_2 – содержание CO_2 в газообразном топливе, %;

СО, С H_4 , С $_2H_4$ – содержание углеродсодержащих компонентов топлива, %.

Общее количество H_2O складывается из влаги топлива, влаги воздуха и водяных паров, образовавшихся при горении водородосодержащих компонентов (в $\frac{M^3H_2O}{M^3TOПЛИВА}$):

$$V_{H_2O} = \frac{H_2O + (H_2 + 2CH_4 + 2C_2H_4 + ... + H_2S)}{100},$$
(19)

где H₂O – содержание влаги в топливе, %;

 H_2 , CH_4 , C_2H_4 , C_2H_4 — содержание водородсодержащих компонентов топлива, об.%.

Общее количество N_2 складывается из N_2 , содержащегося в топливе, и N_2 , внесенного с воздухом (в $\frac{\text{м}^3 N_2}{\text{м}^3 \text{топлива}}$):

$$V_{N_2}^{\pi} = \frac{N_2 + 79 \cdot nL_B^0}{100}, \tag{20}$$

где п – коэффициент расхода воздуха;

 N_2 – содержание N_2 в топливе, % об.

 O_2 входит в состав продуктов сгорания, если n>1, и определяется как разница действительного и теоретического количества

$$O_2$$
 (в $\frac{M^3 O_2}{M^3 T O \Pi J U B a}$):

$$\begin{aligned} V_{O_{2}}^{\pi} &= L_{O_{2}}^{\pi} - L_{O_{2}}^{0} = nL_{O_{2}}^{0} - L_{O_{2}}^{0} = (n-1)L_{O_{2}}^{0} = \\ &= \frac{(n-1)(0,5CO + 0,5H_{2} + 2CH_{4} + 3C_{2}H_{4} + ... + 1,5H_{2}S - O_{2})}{100} \cdot \end{aligned}$$
(21)

 SO_2 присутствует в продуктах сгорания топлива, содержащего серу, и определяется (в $\frac{M^3SO_2}{M^3TOПЛИВА}$):

$$V_{SO_2} = \frac{H_2S}{100}, \qquad (22)$$

где H_2S – содержание H_2S в топливе, % об.

Теоретическое количество продуктов сгорания можно определить, если в формулах (20), (21) принять n=1. Ясно, что

$$V_{CO_2}^{_{\rm I}} = V_{CO_2}^{_{\rm O}} \; ; \; V_{{\rm H}_2O}^{_{\rm I}} = V_{{\rm H}_2O}^{_{\rm O}} \; ; \; V_{SO_2}^{_{\rm I}} = V_{SO_2}^{_{\rm O}}$$

и соответствует стехиометрическим соотношениям (реакциям горения) независимо от величины п. Таким образом, разница между $V^{\text{д}}$ и V^{0} определяется суммой объема кислорода, превышающего теоретически необходимое количество, и объем азота, внесенного с этим количеством кислорода.

Объем продуктов полного сгорания для твердого и жидкого топлива (${\rm M}^3/{\rm K}\Gamma$) также определяется по формуле (17), в которой

$$V_{CO_2} = \frac{C^p}{\mu_C} \cdot \frac{22,4}{100} \,, \tag{23}$$

$$V_{SO_2} = \frac{S^p}{\mu_s} \cdot \frac{22,4}{100} \tag{24}$$

$$V_{N_2} = \frac{N^p}{\mu_{N_2}} \cdot \frac{22.4}{100} + 0.79 \text{nL}_{B}^{0}$$
 (25)

$$\begin{split} V_{O_2}^{\pi} &= L_{O_2}^{\pi} - L_{O_2}^{0} = nL_{O_2}^{0} - L_{O_2}^{0} = (n-1)L_{O_2}^{0} = \\ &= (n-1) \left(\frac{C^p}{\mu_C} + \frac{0.5H^p}{\mu_{H_2}} + \frac{S^p}{\mu_S} - \frac{O^p}{\mu_{O_2}} \right) \cdot \frac{22.4}{100} \end{split} , \tag{26}$$

$$V_{H_{2O}} = \left(\frac{H^{p}}{\mu_{H_{2}}} + \frac{W^{p}}{\mu_{H_{2O}}}\right) \cdot \frac{22,4}{100} + \frac{W^{\phi}}{\mu_{H_{2O}}} \cdot \frac{22,4}{100}, \qquad (27)$$

где W^{φ} – количество водяных паров для распыливания жидкого топлива в форсунках высокого давления, в % от массы топлива (для твердого топлива $W^{\varphi} = 0$).

2.6 Определение состава И плотности продуктов полного сгорания

Состав продуктов полного сгорания (в объемных %) определяется по следующим соотношениям:

$$CO_{2} = \frac{V_{CO_{2}}}{V^{\pi}} \cdot 100, \ H_{2}O = \frac{V_{H_{2}O}}{V^{\pi}} \cdot 100, \ SO_{2} = \frac{V_{SO_{2}}}{V^{\pi}} \cdot 100,$$

$$N_{2} = \frac{V_{N_{2}}}{V^{\pi}} \cdot 100, \ O_{2} = \frac{V_{O_{2}}}{V^{\pi}} \cdot 100.$$
(28)

Плотность продуктов сгорания любого вида топлива (в $\kappa\Gamma/M^3$):

$$\rho_{\text{nc}} = \frac{\mu_{\text{CO}_2} \cdot \text{CO}_2 + \mu_{\text{SO}_2} \cdot \text{SO}_2 + \mu_{\text{H}_2\text{O}} \cdot \text{H}_2\text{O} + \mu_{\text{N}_2} \cdot \text{N}_2 + \mu_{\text{O}_2} \cdot \text{O}_2}{V_{\mu} \cdot 100},$$
 (29)

где μ_{CO_2} и т.д. – молекулярные массы составляющих дыма, кг/кмоль;

СО₂ и т.д. – содержание составляющих дыма,%;

 V_{μ} – объем 1 кмоля газа при нормальных условиях, v_{μ} $=22.4 \text{ м}^3/\text{кмоль}.$

Аналогично определяется плотность газообразного топлива (B $K\Gamma/M^3$):

$$\rho_{\rm T} = \frac{\mu_{\rm CO} \cdot {\rm CO} + \mu_{\rm H_2} \cdot {\rm H}_2 + \mu_{\rm CH_4} \cdot {\rm CH}_4 + ...}{V_{\rm H} \cdot 100}$$
(30)

$$\rho_{_{B}} = \frac{\mu_{_{O_{_{2}}}} \cdot O_{_{2}} + \mu_{_{N_{_{2}}}} \cdot N_{_{2}} + \mu_{_{H_{_{2}}O}} \cdot H_{_{2}}O}{V_{_{\mu}} \cdot 100}.$$
 (31)

При этом плотность сухого воздуха принимается: $\rho_{\rm B} = 1.29 \ {\rm kg/m}^3$.

2.7 Материальный баланс горения топлива

Правильность расчета горения проверяется составлением материального баланса: масса исходных продуктов горения (топливо, воздух) должна быть равна массе получающихся продуктов сгорания. Результаты расчета рекомендуется представить в виде таблиц 4 и 5.

Таблица 4 — Материальный баланс горения газообразного топлива (на 100 м^3 газа)

Статьи прихода массы, кг	Статьи расхода массы, кг
1. Масса топлива $m_{\scriptscriptstyle T} = \rho_{\scriptscriptstyle T} \cdot L_{\scriptscriptstyle T} =$	1. Масса продуктов сго-
ρ_{T} · 100	рания
2. Macca сухого воздуха $m_{\scriptscriptstyle B}=$	$m_{nc} = \rho_{nc} \cdot v^{A}$
$ ho_{\mathtt{B}} \cdot \ L^{\scriptscriptstyle{\mathrm{I}}}_{\scriptscriptstyle{\mathtt{B}}}$	
Приход массы $m_{\text{прих}} = m_{\text{т}} + m_{\text{в}}$	$Pacxoд$ массы $m_{pacx} = m_{nc}$

Таблица 5 — Материальный баланс горения твердого и жидкого топлива (на 100 кг топлива)

Статьи прихода массы, кг	Статьи расхода массы, кг
1. Масса топлива m _т = 100	1. Масса продуктов сгора-
2. Масса сухого воздуха	ния
$m_{\scriptscriptstyle B}= ho_{\scriptscriptstyle B}\cdot L_{\scriptscriptstyle B}^{\scriptscriptstyle \Pi}$	$m_{\pi c} = ho_{\pi c} \cdot v^{\pi}$
	2. Масса золы $m_A = A^P$
Приход массы $m_{\text{прих}} = m_{\text{т}} + m_{\text{в}}$	$Pacxoд$ массы $m_{pacx} = m_{nc}$ +
_	m_{A}

Невязка баланса
$$\delta = \frac{/\,m_{\text{прих}} - m_{\text{pacx}}\,/}{m_{\text{прих}}} \cdot 100\%$$
 допускается до 0,5%.

Результаты расчета горения топлива рекомендуется представлять в виде таблиц (таблица 6 – для газообразного, таблица 7 – для твердого и жидкого топлива).

Таблица 6 – Расчет горения газообразного топлива (на 100 м³)

	Tuosingu o Tue let Topenini tusooopusiioto Tonsinibu (nu 100 m.)										
		Участвуют в горении				Образуются при горении					
		топливо (т)	OK	сислитель	продукты сгорания (пс)						
Состав	$M^{3}(\%)$	Реакция горения	O_2 ,	N_2 ,	Итого,	CO_2	H_2O	SO_2	N_2 ,	O_2 ,	Итого,
			\mathbf{M}^3	\mathbf{M}^3	\mathbf{M}^3	\mathbf{M}^3	M^3	\mathbf{M}^3	\mathbf{M}^{3}	\mathbf{M}^{3}	\mathbf{M}^3
			(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
CH ₄	93,20	$CH_4 + 2O_2 = CO_2 + 2H_2O$	186,40			93,20	186,40				
C ₂ H ₆	0,70	$C_2 H_6 + \frac{7}{2} O_2 = 2CO_2 + 3H_2 O$	2,45			1,40	2,10				
C_3H_8	0,60	$C_3 H_8 + 5O_2 = 3CO_2 + 4H_2 O$	3,00			1,80	2,40				
C ₄ H ₆	0,60	$C_4 H_6 + \frac{11}{2} O_2 = 4CO_2 + 3H_2O$	3,30			2,40	1,80				
N_2	4,90	$N_{2_{\mathrm{T}}} \rightarrow N_{2_{\mathrm{\Pi C}}}$							4,90		
n=1 Итого	100	M^3	$L_{O_2}^0$	$L_{N_2}^0$ 7	L_{B}^{0}	$V_{CO_2}^0$	$V_{\rm H_2O}^{0}$	$V_{_{SO_2}}^{0}$	$V_{_{N_{_{2}}}}^{0}$		\mathbf{V}^{0}
			195,15	34,14	929,29	98,80	192,70			-	1030,54
		(%)	21,00	79,00	100,00						100,00
n=1,1 Итого		M ³	L _{O₂}	$L_{N_2}^{\scriptscriptstyle{ m I\!\!\!/}}$	L _B	$V_{{\rm CO}_2}^{\scriptscriptstyle m I}$		$V_{_{SO_{_{2}}}}^{^{^{\mathcal{I}}}}$	$V_{N_2}^{\pi}$	$V_{\scriptscriptstyle O_2}^{\scriptscriptstyle \pi}$	V ^д 1123,47
			214,67	807,55	1022,22	98,80	192,70	-	812,45	19,52	1143,77
		(%)	21,00	79,00	100,00	8,79	17,15	-	72,32	1,74	100,00

Таблица 7 – Расчет горения жидкого и твердого топлива (на 100 кг)

	Участвуют в горении							Образуются при горении													
	топливо (т)					окислитель (в)				продукты сгорания (пс)											
											O ₂ ,	N ₂ ,	Ит	ого,	CO_2	H_2O	SO_2	N ₂ ,	O ₂ ,	Ит	гого,
Состав	KT (%)	η	КМОЛЬ	Реакция горе- ния	КМОЛЬ	КМОЛЬ	КМОЛЬ	M^3	КМОЛЬ	КМОЛЬ	КМОЛЬ	КМОЛЬ	КМОЛЬ	КМОЛЬ	M^3						
С	76,32	12	6,36	$C+O_2 = CO_2$	6,36			(6,36	ı	-	27,90	1	ı							
Н	4,08	2	2,04	$H_2 + \frac{1}{2}O_2 = H_2O$	1,02	7,42×3,76=27,90	',90=35,31	,4=790,90	-	2,04	-	-	-	-	36,64×22,4=820,70						
S	3,80	32	0,12	$S + O_2 = SO_2$	0,12	=9/	-06	4 ,	-	1	0,12	-	1	-	1 8 1						
О	3,64	32	0,11		-0,11	3,7	27,	35,31×22	-	1	-	-	-	1	22,7						
N	1,61	28	0,06	$N_{2T} \rightarrow N_{2\pi c}$	-	-	7,42+27	31>	-	-	-	0,06	-	-	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \						
W	3,00	18	0,17		-	7,	7,7	35,	-	0,17	-	-	-	-	5,6						
A	7,55	-	-		0,03			. ,	-	-	-	-	-	-	3						
					${\color{red} \mathrm{L}_{\mathrm{O}_2}^0}$	$L_{N_2}^0$	$L_{\rm B}^0$		$V_{{\rm CO}_2}^0$		$V_{SO_2}^0$	$V_{N_2}^0$	$V_{\scriptscriptstyle O_2}^{\scriptscriptstyle 0}$	V^0							
Σ	100,00	-	-	кмоль (м ³)	7,42	27,90	35,31	790,90	6,36	2,21	0,12	27,96	-	36,64	820,70						
n=1				(%)	21	79	100	100	17,36	6,02	0,32	76,30	ı	100	100						
					$L_{\mathrm{O}_2}^{\scriptscriptstyle{\mathrm{I\! I}}}$	$L_{N_2}^{\scriptscriptstyle{ m I\!\!\!/}}$	$L_{\mathrm{B}}^{\scriptscriptstyle{\mathrm{I\! I}}}$		$V_{{\rm CO}_2}^{\scriptscriptstyle m I}$	$V_{\rm H_2O}^{^{\rm J}}$	$V_{\mathrm{SO}_2}^{\scriptscriptstyle \mathrm{J}}$	$V_{N_2}^{\scriptscriptstyle m I}$	$V_{\scriptscriptstyle O_2}^{\scriptscriptstyle \mathcal{I}}$	V ^д							
Σ				кмоль (M^3)	9,27	34,87	44,14	988,70	6,36	2,21	0,12	34,93	1,85	45,47	1018,50						
n=1,25		7		(%)	21	79	100	100	13,99	4,85	0,26	76,82	4,08	100	100						

 Π р и м е ч а н и е — Предполагается, что сера входит в каменный уголь в виде FeS_2 , окисляющегося по уравнению $FeS_2 + 2,5O_2 = FeO + 2SO_2$. Поэтому расход кислорода на окисление Fe в золе составит 0,25 S (S — количество серы, моль). При избытке воздуха против теоретического расхода кислорода составляет: $O = nO_m$; $N = nN_m$. Кислород, избыточный против теоретического переходит в продукты сгорания неиспользованным. Количество его составляет: $O_2 = O_m \times (n-1)$.

2.8 Определение температуры горения топлива

Под температурой горения понимают температуру, которую приобретают продукты сгорания за счет тепла, выделенного при сжигании топлива.

Различают температуру горения действительную:

$$T_{_{\rm II}} = \frac{Q_{_{\rm H}}^{^{\rm p}} + Q_{_{\varphi_{\rm B}}} + Q_{_{\varphi_{\rm T}}} - q_{_{\rm IMCc}} - q_{_{\rm nor}} - q_{_{\rm o.c.}}}{V_{_{\rm nc}} \cdot c_{_{\rm nc}}}, \tag{32}$$

теоретическую

$$T_{_{\rm T}} = \frac{Q_{_{\rm H}}^{_{\rm p}} + Q_{_{\varphi_{\rm B}}} + Q_{_{\varphi_{\rm T}}} - q_{_{{\rm дисc}}}}{V_{_{\rm nc}} \cdot c_{_{\rm nc}}} \quad \text{и}$$
(33)

калориметрическую:

$$T_{\kappa} = \frac{Q_{H}^{p} + Q_{\phi B} + Q_{\phi T}}{V_{\text{nc}} \cdot c_{\text{nc}}}, \tag{34}$$

где $Q_{\rm H}^{\rm P}$ - теплота сгорания топлива, кДж/м³ или кДж/кг;

 $Q_{\phi B}$ и $Q_{\phi T}$ — соответственно физическое тепло подогретых воздуха и топлива, кДж/м³ или кДж/кг;

 $q_{\text{дисс}}$ — тепло, затраченное на диссоциацию продуктов сгорания, кДж/м 3 или кДж/кг;

 $q_{\text{пот}}$ – потери тепла вследствие химического и механического недожога, кДж/м 3 или кДж/кг;

 $q_{o.c.}$ — потери тепла в окружающую среду, кДж/м 3 или кДж/кг;

 v_{nc} – объем продуктов сгорания, образующихся при сгорании единицы топлива, ${\rm M}^3/{\rm M}^3$ или ${\rm M}^3/{\rm K}\Gamma$;

 c_{nc} – теплоемкость продуктов сгорания, кДж/м³К.

Точно определить $T_{\rm d}$ практически невозможно, так как нельзя точно учесть влияние потерь тепла в окружающую среду. Весьма трудоемким является также и определение теоретической температуры горения $T_{\rm T}$ [4], которая бывает необходима в некоторых теплотехнических расчетах, например, при определении средней температуры печи. Сложность расчета $T_{\rm T}$ связана с необходимостью учета диссоциации продуктов сгорания при высоких температурах. Для приближенных расчетов $T_{\rm T}$ можно воспользоваться I-t диаграммой, предложенной Π . Розином и P. Фелингом [4]. Однако для температур, развивающихся в рабочем пространстве нагревательных печей, диссоциация CO_2 и H_2O незначитель-

на, поэтому теоретическую температуру горения можно считать равной калориметрической.

Если воздух и топливо подаются в зону горения без предварительного подогрева, то формула (34) принимает вид:

$$T_{\kappa} = \frac{Q_{H}^{p}}{V_{\text{nc}} \cdot c_{\text{nc}}} \tag{35}$$

Сложность определения калориметрической температуры по формуле (36) заключается в том, что теплоемкость продуктов сгорания зависит от температуры, которую требуется определить.

Определение T_{κ} производится либо графическим способом [2], либо аналитически методом последовательных приближений и интерполяции. Сущность метода заключается в следующем. После преобразования формулы (35) получаем:

$$\frac{Q_{H}^{p}}{V_{nc}} = T_{\kappa} \cdot c_{nc} = I_{\kappa}$$
 (36)

где $I_{\kappa} = \frac{Q_{\pi}^{p}}{V_{nc}}$ — энтальпия продуктов сгорания, соответствующая калориметрической температуре, кДж/м³.

Рассчитав Q_H^P и V_{nc} , определяем величину I_{κ} . Далее задаемся предполагаемой температурой горения T_1 и определяем энтальпию продуктов сгорания, соответствующую этой температуре:

$$I_{1} = \frac{CO_{2} \cdot i_{CO_{2}} + H_{2}O \cdot i_{H_{2}O} + SO_{2} \cdot i_{SO_{2}} + N_{2} \cdot i_{N_{2}} + O_{2} \cdot i_{O_{2}}}{100},$$
(37)

где CO_2 ; H_2O ; SO_2 , N_2 ; O_2 — содержание компонентов в продуктах сгорания, % об.

 $i_{\text{CO}_2}, i_{\text{H}_2\text{O}}, i_{\text{SO}_2}, i_{\text{N}_2}, i_{\text{O}_2}$ — энтальпии составляющих продуктов сгорания, соответствующие предполагаемой температуре T_1 , кДж/м 3 .

Значения энтальпий некоторых газов приведены в таблице 8 [5].

Полученное значение I_1 сравниваем с I_{κ} , и если $I_1 < I_{\kappa}$, то задаемся другим значением $T_2 = T_1 + 100 {\rm K}$ и т.д. до тех пор, пока не получим $I_{n+1} > I_{\kappa}$, рисунок 1.

Как видно из рисунка 1, искомая калориметрическая температура находится в интервале $T_n - T_{n+1} = 100 \mathrm{K}$ и может быть определена по интерполяционной формуле, полученной следующими несложными рассуждениями: повышение температуры на $T_n - T_{n+1} = 100 \mathrm{K}$ соответствует повышению энтальпии на $(I_{n+1} - I_n)$, а повышение температуры на $(T_{\kappa} - T_n)$ – повышению энтальпии на $(I_{\kappa} - I_n)$, то есть

$$\frac{I_{n+1} - I_n}{100} = \frac{I_{\kappa} - I_n}{T_{\kappa} - T_n}, \text{ откуда}$$

$$T_{\kappa} = T_n + \frac{I_{\kappa} - I_n}{I_{n+1} - I_n} \cdot 100. \tag{38}$$

Калориметрическую температуру можно приближенно определять также графическим методом с помощью I-t диаграмм (рисунок 2), построенных С.Г. Тройбом [2]. Для пользования I-t диаграммами необходимо определить калориметрическую энтальпию продуктов сгорания, кДж/м 3 ,

$$I_{K} = \frac{Q_{H}^{p} + Q_{\phi B} + Q_{\phi T}}{V_{TIC}},$$
(39)

где Q_H^P – теплота сгорания топлива, кДж/м³;

 $Q_{_{\varphi_B}}$ — физическое тепло подогретого воздуха, кДж/м³; $Q_{_{\varphi_B}} \! = \! L_{_B}^{^{_{\mathcal{I}}}} \cdot I_{_{B}}$;

 $Q_{\phi r}$ – энтальпия топлива, кДж/м³; $Q_{\phi r} = I_{r}$;

 $I_{\text{в}}$ – энтальпия подогретого воздуха, кДж/м³; и содержание воздуха в продуктах горения (%):

$$l = \frac{L_s^0 - L_s^0}{V_{nc}} \cdot 100. \tag{40}$$

Таблица 8 – Энтальпия газов

Темпе-	Энтальпия газов, кДж/м ³										
ратура, ⁰ С	CO_2	H ₂ O	Воздух	N_2	O_2	H_2	СО	SO_2	CH ₄	C_2H_4	
0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
100	171,3	150,0	130,0	130,0	132,3	129,2	130,2	182,0	160,9	210,1	
200	360,6	302,4	261,9	261,6	267,2	259,6	261,5	379,2	349,4	465,9	
300	563,9	418,7	395,7	394,6	409,4	390,6	395,7	589,5	563,2	759,5	
400	777,1	623,4	533,0	530,1	551,4	521,7	532,2	810,2	800,7	1080,0	
500	1001,1	690,2	672,4	667,8	699,6	654,0	671,0	1037,9	1060,2	1447,0	
600	1236,4	964,3	814,7	389,4	850,8	785,9	802,2	1272,4	1341,8	1830,5	
700	1475,1	1143,0	959,0	950,9	1004,5	919,5	960,7	1510,7	1549,5	2233,8	
800	1718,8	1328,9	1106,9	1098,7	1160,5	1086,9	1110,3	1751,8	1968,3	2675,5	
900	1967,5	1526,8	1259,4	1247,7	1320,3	1041,3	1261,1	1997,6	2300,3	2991,2	
1000	2219,5	1721,0	1412,3	1399,3	1479,7	1330,2	1414,4	2243,6	2647,0	3564,8	
1100	2476,6	1910,9	1564,9	1553,8	1629,0	1469,6	1570,1	2655,5	-	-	
1200	2732,8	2113,6	1721,7	1708,3	1802,5	1614,5	1726,3	2738,3	-	-	
1300	2992,4	2321,1	1879,5	1862,8	1970,2	1758,5	1926,8	2994,9	-	-	
1400	3256,3	2536,3	2038,6	2021,9	2133,4	1904,2	2042,8	3246,2	-	-	
1500	3520,0	2750,9	2272,6	2180,6	2298,2	2072,5	2199,8	3497,4	-	-	
1600	3784,6	2977,4	2355,6	2337,6	2463,2	2200,3	2361,5	3747,4	-	-	
1700	4049,7	3204,6	2515,5	2496,7	2629,8	2350,5	2521,8	4005,3	-	-	
1800	4316,8	3430,4	2677,2	2660,0	2801,5	2505,5	2683,9	4262,4	-	-	
1900	4584,8	3656,1	2836,3	2818,7	2974,9	2658,7	2847,2	4932,3	-	-	
2000	4852,7	3889,7	3000,4	2980,7	3146,6	2813,7	3007,9	4651,7	-	-	
2100	5124,8	4127,5	3162,4	3142,7	3315,3	2970,2	3174,2	5024,4	-	-	
2200	5397,0	4362,8	3321,1	3309,0	3485,7	3132,3	3337,5	5284,0	-	-	
2300	5669,2	4601,5	3510,3	3472,3	3661,1	3291,8	3502,4	5539,4	-	-	
2400	5937,2	4840,1	3650,2	3636,4	3838,2	3452,6	3667,8	5799,0	-	-	
2500	6213,5	5078,8	3820,6	3802,2	4012,3	3615,5	3834,8	6054,4	-	-	
2600	6481,4	5325,8	3983,5	3968,8	4191,2	3779,1	4002,7	6309,8	-	-	
2700	6753,6	5564,5	4151,8	4131,3	4362,8	3940,0	4166,9	6569,4	-	-	

Рисунок 2 – I-t диаграмма.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Самохвалов Г.В. Учебно-методическое пособие по проектированию металлургических печей. Новокузнецк: Изд. СМИ, 1971.-132 с.
- 2. Арсеев А.В. Сжигание природного газа. М.: Металлургия, 1963. 407 с.
- 3. Линчевский В.П. Топливо и его сжигание. М.: Металлургиздат, 1959. 398 с.
- 4. Филимонов Ю.П., Старк С.Б., Морозов В.А. металлургическая теплотехника. Т. 2. М.: Металлургия, 1974. 519 с.
- 5. Расчеты нагревательных печей. / Под. ред. Н.Ю. Тайца. Киев: Техника, 1955. 264 с.

Учебное издание

Составители: Михайличенко Татьяна Алексеевна Стерлигов Владислав Викторович

РАСЧЕТ ГОРЕНИЯ ТОПЛИВА

Методические рекомендации к проведению практических занятий и выполнению ВКР для студентов, обучающихся по направлениям подготовки 150400 «Металлургия», 280700 «Техносферная безопасность», 140100 «Теплоэнергетика и теплотехника»

Издано в полном соответствии с авторским оригиналом

Подписано в печать Формат бумаги 60х84 1/16. Бумага писчая. Печать офсетная. Усл. печ. л. Уч.-изд. л. Тираж экз. Заказ

ФГБОУ ВПО «Сибирский государственный индустриальный Университет» 654007, г. Новокузнецк, ул. Кирова, 42. Издательский центр СибГИУ