Relatório: Previsão de Compra de Casa

1. Introdução	3
1.1 Objetivo	3
1.2 Descrição do Dataset	3
2. Análise Exploratória dos Dados	4
2.1 Metadados	4
2.2 Correlação	5
2.3 Distribuição de Variáveis	5
2.4 Relação entre as Variáveis Independentes e a Variável Alvo (Compra)	6
3. Pré-processamento dos Dados	
3.1 Normalização e Padronização	8
3.2 Codificação de Variáveis Categóricas	8
3.3 Divisão dos Dados	8
4. Construção do Modelo de Classificação	9
4.1 Seleção do Modelo	9
4.2 Avaliação dos Modelos	9
4.3 Random Forest	10
4.4 Ajuste de Hiperparâmetros	11
5. Interpretação dos Resultados	13
5.1 Importância das Variáveis	13
5.2 Desempenho do Modelo	13
5.3 Possíveis Melhorias	14
6. Conclusão	15
7. Código-Fonte	16

1. Introdução

1.1 Objetivo

Esse projeto tem como objetivo construir um modelo de classificação para prever se um usuário de um site imobiliário irá efetuar a compra de uma casa. A variável alvo é a classe Compra, uma variável binária (sendo 1 para comprador e 0 para não comprador). Partindo disso exploramos o conjunto de dados com várias variáveis a fim de encontrar possíveis padrões que auxiliem nas previsões de decisão de compra.

1.2 Descrição do Dataset

O dataset contém informações de usuários que visitaram um site imobiliário. As variáveis disponíveis são:

- Idade: Idade do usuário.
- Renda Anual (em \$): Renda anual do usuário em dólares.
- Gênero: Gênero do usuário (Feminino ou Masculino).
- **Tempo no Site (min)**: Tempo que o usuário passou navegando no site (em minutos).
- Anúncio Clicado: Indica se o usuário clicou em um anúncio no site (Sim ou Não).
- Compra: Indica se o usuário comprou uma casa (1 para sim, 0 para não).

2. Análise Exploratória dos Dados

2.1 Metadados

A análise exploratória começa com a obtenção de informações sobre os dados do dataset:

- Tipos das variáveis: float, int, object.
- Há 200 amostras.
- Há 6 colunas em que cada uma corresponde a uma variável.
- Colunas com valores nulos e ausentes: Idade (10), Renda Anual (11), Gênero (7), Anúncio Clicado (10).

Removendo esses elementos incomuns obtemos uma estatística descritiva mais limpa das variáveis numéricas utilizando a função *describe()*:

	ldade	Renda Anual (em \$)	Tempo no Site (min)	Compra (0 ou 1)
count	165.000000	165.000000	165.000000	165.000000
mean	39.254545	59515.151515	17.994546	0.321212
std	12.829394	26221.524872	7.191249	0.468364
min	18.000000	30000.000000	5.052596	0.000000
25%	28.000000	30000.000000	12.616978	0.000000
50%	39.000000	50000.000000	18.312317	0.000000
75%	51.000000	70000.000000	24.047671	1.000000
max	59.000000	100000.000000	29.853484	1.000000

Agora obtendo um conjunto de dados ligeiramente menor que o inicial, podemos observar de cada classe: 165 entradas únicas, proporções diferentes (como Tempo e Renda), suas respectivas médias, desvio padrão, máximos e mínimos, limite inferior (em Idade: 25% dos valores estão abaixo de 28), mediana e limite superior (em Idade: 75% dos valores estão abaixo de 51).

2.2 Correlação

As variáveis não apresentaram uma forte correlação entre si no geral, o que indica que elas são independentes umas das outras, a principal correlação encontrada foi Anúncio Clicado e Compra, e Tempo no Site e Compra, porém com apenas 14% e 13% respectivamente. O restante das variáveis têm correlação praticamente nula entre si, o que sugere utilização de técnicas específicas e mais robustas para estudar a relação entre essas variáveis e criação de novas variáveis ou interações entre as mais correlacionadas com "Compra".

2.3 Distribuição de Variáveis

Os histogramas apresentam as distribuições das variáveis numéricas Renda, Idade e Tempo no Site:

- Renda: os usuários têm rendas anuais pontualmente de 30 mil, 50 mil, 70 mil e 100 mil, se concentrando em certos níveis de renda;
- Idade: a maior quantidade de usuários têm 20 anos e 60 anos;
- Tempo no Site: a distribuição é relativamente equilibrada;

As variáveis categórica e binária, Gênero e Anúncio Clicado, têm distribuições proporcionais.

2.4 Relação entre as Variáveis Independentes e a Variável Alvo (Compra)

Foi realizada uma análise para entender como as variáveis independentes estão relacionadas com a variável alvo:

 Idade: A relação entre a idade e a compra foi verificada por meio de histograma onde foi possível verificar que os compradores mais novos (50-60 anos) têm uma frequência de compra maior, enquanto a proporção de compradores mais novos é menos dos 20 aos 40 anos.

 Renda Anual: Foi analisada a correlação entre a renda e a compra utilizando histograma também: o público com maior renda (70 e 100 mil) são os que compram com menos frequência.

 Tempo no Site: A relação entre o tempo gasto no site e a probabilidade de compra foi analisada com histograma que indicou que quando o cliente passa mais de 15 minutos a probabilidade de que realize uma compra é considerável e maior se for depois dos 25 minutos.

• Gênero e Anúncio Clicado: A relação entre as variáveis categóricas e a compra foi analisada por gráficos de barras.

3. Pré-processamento dos Dados

3.1 Normalização e Padronização

As variáveis numéricas Idade, Renda Anual, e Tempo no Site, foram padronizadas, conforme necessário, para garantir que todas as variáveis estivessem na mesma escala e evitassem a dominância de variáveis de maior magnitude utilizando a função *StandardScaler()*. Foi adicionado no dataset original as colunas com as variáveis numéricas padronizadas.

3.2 Codificação de Variáveis Categóricas

As variáveis categóricas, como Gênero e Anúncio Clicado, foram convertidas em variáveis numéricas utilizando *LabelEncoding()*, conforme o caso, para que pudessem ser utilizadas nos modelos de machine learning. Ficaram organizadas como:

- Gênero 0: Feminino; 1: Masculino;
- Anúncio clicado 0: Não, 1: Sim.

3.3 Divisão dos Dados

Os dados foram divididos, usando *train_test_split()*, em dois conjuntos: treinamento (70%) e teste (30%). O conjunto de treinamento foi utilizado para ajustar o modelo, enquanto o conjunto de teste foi utilizado para avaliar o desempenho do modelo.

4. Construção do Modelo de Classificação

4.1 Seleção do Modelo

Foram avaliados três modelos: Random Forest, Árvores de Decisão e Regressão Logística. Esses modelos se diferem quando falamos de abordagem e métodos, sendo respectivamente um ensemble, um baseado em regras e outro linear.

A seleção foi feita seguindo o algoritmo:

- 1. Criar o dicionário de modelos simples sem ajuste de hiperparâmetros.
- 2. Criar uma lista para guardar os resultados.
- 3. Iteramos aplicando o modelo nos dados de treino e gerando as previsões para os dados de teste.
- 4. Logo após, antes de finalizar a iteração, são calculadas as métricas de acurácia, precisão, recall, F1-Score e ROC AUC.
- 5. Os resultados das métricas são armazenados na lista de resultados dos modelos.
- 6. Voltamos ao passo 3 até que todos os modelos sejam testados.
- 7. Um *dataframe* é criado com os resultados a fim de comparar os valores obtidos.
- 8. Por fim é realizada plotagem comparativa dos resultados de cada modelo para cada métrica.

As métricas utilizadas fornecem uma visão abrangente do desempenho, principalmente em situações em que temos classes desbalanceadas, onde o F1-Score e ROC AUC são indicadores importantes.

Modelo	Acurácia	Precisão	Recall	F1-Score	ROC AUC
Random Forest	66,67%	60%	25%	35,29%	51,59%
Regressão Logística	63,64%	0%	0%	0%	55,95%
Árvores de Decisão	51,52%	33,33%	33,33%	33,33%	47,62%

O Random Forest apresentou a melhor performance em geral em termos de acurácia e F1-Score, Árvores de Decisão teve um desempenho intermediário enquanto a Regressão Logística teve resultados insatisfatórios. No geral o desempenho de todos os modelos não foi tão satisfatório, mas devido as métricas o Random Forest foi selecionado para aprimoramento.

4.2 Avaliação dos Modelos

O modelo foi avaliado utilizando as seguintes métricas:

- Acurácia: A porcentagem de previsões corretas.
- **Precisão**: A capacidade do modelo de não classificar incorretamente exemplos negativos como positivos.
- Recall: A capacidade do modelo de capturar todos os exemplos positivos.
- **F1-Score**: A média harmônica entre precisão e recall.
- ROC AUC: Capacidade de fazer a separação corretamente das variáveis.
- Matriz de Confusão: Para visualizar o desempenho do modelo em termos de verdadeiros positivos, falsos positivos, verdadeiros negativos e falsos negativos.

4.3 Random Forest

O Random Forest foi testado novamente sem hiperparâmetros definidos e mostrou uma acurácia de 62% e AUC de 55%. O relatório com as principais métricas de avaliação utilizando o *classification_report()*:

	precision	recall	f1-score	support
~	0.55		0.74	20
Não Comprador	0.66	0.84	0.74	32
Comprador	0.44	0.22	0.30	18
accuracy			0.62	50
macro avg	0.55	0.53	0.52	50
weighted avg	0.58	0.62	0.58	50

A Precisão diz respeito a porcentagem de previsões corretas, o Recall indica a porcentagem de exemplos positivos indicados corretamente e F1-Score é a média harmônica entre a precisão e o recall.

4.4 Ajuste de Hiperparâmetros

Foi realizada uma busca por hiperparâmetros utilizando GridSearchCV para encontrar a melhor combinação de parâmetros do modelo: número de árvores (n_estimators), profundidade máxima (max_depth), número mínimo de amostras para dividir um nó (min_samples_split), número mínimo de amostras em cada folha (min_samples_leaf), número de recursos a serem considerados para dividir um nó (max_features) e penalização para lidar com desbalanceamento de classes (class_weight).

O *make_scorer()* foi utilizado para otimizar o F1-Score com base na classe Comprador e a Acurácia, isto é, avaliar qual combinação tem melhor desempenho para essa métrica. Assim, definimos o *grid_search()* com um cross-validation de 5 folds.

Para o teste otimizando o F1-Score obtivemos:

```
Melhores hiperparâmetros: {'bootstrap': False, 'class_weight': {0: 1, 1: 2}, 'max_depth': None, 'max_features': 'log2', 'min_samples_leaf': 2, 'min_samples_split': 10, 'n_estimators': 50}

Melhor F1-Score (validação cruzada): 0.36897651368239603
```

E para o teste otimizando a Acurácia obtivemos:

```
Melhores hiperparâmetros: {'bootstrap': True, 'class_weight': None, 'max_depth': None, 'max_features': 'log2', 'min_samples_leaf': 4, 'min_samples_split': 5, 'n_estimators': 200}

Melhor Acurácia (validação cruzada): 0.7304347826086955
```

Ambos apresentaram as seguintes matrizes de confusão para Acurácia e F1-Score , respectivamente:

Podemos notar que de fato os hiperparâmetros definidos com base no F1-Score (direita) apresentaram um desempenho melhor (100%) em determinar compradores, mas em comparação a matriz dos hiperparâmetros definidos com base na acurácia o número de Falsos Positivos foi maior também. Como a maior quantidade de acertos foi no geral pelos hiperparâmetros de acurácia, esses serão os hiperparâmetros escolhidos.

5. Interpretação dos Resultados

5.1 Importância das Variáveis

Utilizando o método feature_importances_ do Random Forest, identificamos as variáveis que mais influenciam na decisão do modelo. As variáveis com maior importância foram Idade, Renda Anual, e Tempo no Site. Podemos ver no gráfico abaixo:

Em modelos como Random Forest e Árvores de Decisão já é realizada uma seleção implícita com base nas variáveis mais relevantes ao construir as árvores, reduzir o número de features, pode não ter tanto impacto.

5.2 Desempenho do Modelo

O modelo testado com os hiperparâmetros obtidos no GridSearchCV utilizando a acurácia como otimizador tiveram os seguintes resultados:

- O valor médio da validação cruzada foi de 70,4% o que indica uma performance geral acima da média, porém a variação entre os folds indica uma instabilidade do modelo a depender dos dados usados.
- O modelo tem um ótimo desempenho para a classe Não Comprador com 30 previsões corretas, porém teve dificuldades em determinar a classe Comprador acertando apenas 3 e apresentando 15 Falsos Negativos.
- A Precisão para Não Comprador e Comprador foi respectivamente 67% e 60%.
- O Recall para verdadeiros positivos foi bem alto 94%, enquanto para verdadeiros positivos foi de 17%.
- O F1-Score para Comprador foi de apenas 26% e enquanto para Não comprador foi 78%.

 A curva ROC com AUC foi de 0.60 significando que o modelo tem dificuldade de separação das classes sendo apenas ligeiramente melhor que o acaso (0.5).

5.3 Possíveis Melhorias

As variáveis parecem se relacionar muito melhor com a classe Não Comprador do que com a classe Comprador, além de não terem tanta relação entre si, para isso pode ser interessante fazer uma engenharia de features, isto é, removendo correlações fracas, transformar o dado caso a padronização não seja satisfatória ou criar novas variáveis a partir das existentes.

É válido também, analisar outros algoritmos de classificação como:

- KNN usa a classe de vizinhos dominante para classificar com base em similaridade;
- Support Vector Machine mais robusto que utiliza um hiperplano que melhor cubra os dados;
- Naive Bayes utiliza probabilidade condicional com base em conhecimento prévio para calcular a probabilidade de uma classe;

É interessante fazer uma análise mais profunda das features como por exemplo utilizar o SHAP e fazer um tratamento das features mais impactantes, além de verificar quais se relacionam mais com a classe que não apresentou resultados bons. Um caminho possível também é aplicar técnicas de balanceamento como undersampling ou oversampling para melhorar a representatividade da classe 'Comprador'.

6. Conclusão

Neste trabalho, analisamos e construímos diferentes modelos de classificação para prever o comportamento de compra de uma casa com base em variáveis como idade, renda anual, tempo no site, gênero e interação com anúncios. O modelo Random Forest obteve o melhor desempenho geral com uma Acurácia média de 70% e uma área sob a curva ROC (AUC) de 0.60. Porém, observamos dificuldades de todos os modelos em predizer corretamente a classe 'Comprador' o que resultou num recall de 17% para essa categoria.

Os resultados indicaram que o modelo teve uma boa capacidade de predição para identificar os usuários que não realizam compras ('Não Comprador'). A dificuldade em prever compradores pode estar relacionada ao desbalanceamento das classes ou a falta de variáveis altamente correlacionadas com o comportamento da compra.

O principal desafio encontrado foi a baixa correlação entre as variáveis preditoras e o alvo, que mesmo após os ajustes e utilizando o GridSearchCV apresentou um desempenho distante do que seria ideal, existindo a possibilidade dos dados disponíveis não serem o suficiente para transpor os fatores relevantes.

Como próximo passo, é interessante coletar mais variáveis que expliquem melhor o comportamento de compra e também aplicar técnicas de balanceamento para mitigar os efeitos da falta de balanceamento, assim como explorar técnicas que ajudem a explorar relações mais complexas e menos lineares.

7. Código-Fonte

https://github.com/xndrxssx/HouseBuyers