Nelineární optimalizace a numerické metody (MI–NON)

Magisterský program: Informatika

Obor: Teoretická informatika

Katedra: 18101 Katedra teoretické informatiky

Jaroslav Kruis

Evropský sociální fond

Praha & EU: Investujeme do vaší budoucnosti

Úvod

optimalizační metody = extremalizační metody = výpočty extrémů

Obecně: Hledají se extrémy účelové (cílové, cenové) funkce s eventuálními omezeními (podmínky nezápornosti).

Náš cíl: porozumění a schopnost spolupráce s ostatními inženýry řešícími minimalizaci funkcionálů numerickými metodami (mechanická rovnováha, chemická rovnováha, aj.). Schopnost vylepšit jejich počítačové programy.

Příklady úloh vedoucích k výpočtu extrémů funkcí:

- minimalizace funkcionálů numerickými metodami (mechanická rovnováha, chemická rovnováha, aj.)
- regresní výpočty (např. metoda nejmenších čtverců)
- optimalizace výrobních programů (minimalizace nákladů, maximalizace zisku, aj.)
- dopravní problémy (minimalizace nákladů, minimalizace přepravní doby, apod.)

Motivace

- reálné inženýrské úlohy modely jsou třírozměrné, uvažuje se několik fyzikálních jevů (multiphysics problem),
- numerické metody přesná řešení nejsou k dispozici, použití numerických metod je nutností, numerické metody bez počítačů jsou nepoužitelné,
- paralelní počítače rozsáhlé úlohy se nevejdou do paměti jednoprocesorového počítače a jejich řešení trvá nepřijatelnou dobu, paralelní počítače nabízejí alternativu.

Optimalizace—extrémy funkcí

- lokální extrémy
- globální extrémy
- vázané extrémy

Funkce, extrémy funkcí

- B. Budinský, J. Charvát. *Matematika I.* SNTL Nakladatelství technické literatury, Praha, 1987.
- B. Budinský, J. Charvát. *Matematika II.* SNTL Nakladatelství technické literatury, Praha, 1990. ISBN 80-03-00219-2.

Karel Rektorys a spolupracovníci. *Přehled užité matematiky I.* Nakladatelství Prometheus, Praha, 7. vydání, 2000. ISBN

Funkce, derivace

Definice. Necht jsou dány množiny $D\subset R$ a $H\subset R$. Reálná funkce jedné reálné proměnné je zobrazení z D do H. D se nazývá definiční obor, H se nazývá obor hodnot.

Poznámka. V celém následujícím textu se bude reálná funkce jedné reálné proměnné označovat zkráceně jako funkce jedné proměnné.

Definice. Necht je dána funkce f(x). Limita

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

se nazývá derivace funkce f(x) v bodě x. Někdy bude použito označení f'(x).

Derivace některých funkcí

$\int f(x)$	f'(x)	f(x)	f'(x)
$\int x^n$	nx^{n-1}	a^x	$a^x \ln a$
$\sin x$	$\cos x$	$\log_a x$	$\frac{1}{x \ln a}$
$\cos x$	$-\sin x$		

Definice. Bod $x \in D$ se nazývá stacionární právě tehdy, když platí f'(x) = 0.

Konvexní a konkávní funkce

Definice. Funkce f(x) se nazývá konvexní na množině $M\subset D$ právě tehdy, když pro každé dva body $x_1,x_2\in M$, $x_1\neq x_2$, a $\alpha\in(0,1)$, platí $f(\alpha x_1+(1-\alpha)x_2)\leq \alpha f(x_1)+(1-\alpha)f(x_2)$. Platí-li $f(\alpha_x 1+(1-\alpha)x_2)<\alpha f(x_1)+(1-\alpha)f(x_2)$, funkce f(x) se nazývá ryze konvexní.

Definice. Funkce f(x) se nazývá konkávní na množině $M\subset D$ právě tehdy, když pro každé dva body $x_1,x_2\in M$, $x_1\neq x_2$, a $\alpha\in(0,1)$, platí $f(\alpha x_1+(1-\alpha)x_2)\geq \alpha f(x_1)+(1-\alpha)f(x_2)$. Platí-li $f(\alpha x_1+(1-\alpha)x_2)>\alpha f(x_1)+(1-\alpha)f(x_2)$, funkce f(x) se nazývá ryze konkávní.

Lokální extrémy

Definice. Funkce f(x) má v bodě $\bar{x} \in D$ lokální maximum právě tehdy, když existuje neúplné okolí $O'(\bar{x})$ bodu \bar{x} tak, že pro každé $x \in O'(\bar{x})$ platí $f(x) \leq f(\bar{x})$.

Definice. Funkce f(x) má v bodě $\bar{x} \in D$ ostré lokální maximum právě tehdy, když existuje neúplné okolí $O'(\bar{x})$ bodu \bar{x} tak, že pro každé $x \in O'(\bar{x})$ platí $f(x) < f(\bar{x})$.

Definice. Funkce f(x) má v bodě $\bar{x} \in D$ lokální minimum právě tehdy, když existuje neúplné okolí $O'(\bar{x})$ bodu \bar{x} tak, že pro každé $x \in O'(\bar{x})$ platí $f(x) \geq f(\bar{x})$.

Definice. Funkce f(x) má v bodě $\bar{x} \in D$ ostré lokální minimum právě tehdy, když existuje neúplné okolí $O'(\bar{x})$ bodu \bar{x} tak, že pro každé $x \in O'(\bar{x})$ platí $f(x) > f(\bar{x})$.

Globální extrémy

Definice. Necht' je dána množina $M\subset D$. Funkce f(x) má v bodě $\bar x\in M$ globální maximum vzhledem k M právě tehdy, když platí $f(x)\leq f(\bar x)$ pro všechna $x\in M$.

Definice. Nechť je dána množina $M\subset D$. Funkce f(x) má v bodě $\bar x\in M$ ostré globální maximum vzhledem k M právě tehdy, když platí $f(x)< f(\bar x)$ pro všechna $x\in M, x\neq \bar x$.

Definice. Nechť je dána množina $M\subset D$. Funkce f(x) má v bodě $\bar x\in M$ globální minimum vzhledem k M právě tehdy, když platí $f(x)\geq f(\bar x)$ pro všechna $x\in M$.

Definice. Necht' je dána množina $M\subset D$. Funkce f(x) má v bodě $\bar x\in M$ ostré globální minimum vzhledem k M právě tehdy, když platí $f(x)>f(\bar x)$ pro všechna $x\in M, x\neq \bar x$.

Věta. Je-li f''(x) > 0, je funkce v bodě x ryze konvexní.

Věta. Je-li f''(x) < 0, je funkce v bodě x ryze konkávní.

Věta. Jestliže v bodě $x \in D$ platí f'(x) > 0, je funkce f(x) v bodě $x \in D$ rostoucí.

Věta. Jestliže v bodě $x \in D$ platí f'(x) < 0, je funkce f(x) v bodě $x \in D$ klesající.

Věta. Jestliže v bodě $x \in D$ platí f'(x) = 0 a f''(x) > 0, má funkce f(x) v bodě x lokální minimum.

Věta. Jestliže v bodě $x \in D$ platí f'(x) = 0 a f''(x) < 0, má funkce f(x) v bodě x lokální maximum.

Příklad. Najděte extrémy funkce $f(x) = 3x^4 - 16x^3 - 6x^2 + 48x$.

Řešení. Funkce a její derivace mají tvar

$$f(x) = 3x^4 - 16x^3 - 6x^2 + 48x$$

$$f'(x) = 12x^3 - 48x^2 - 12x + 48$$

$$f''(x) = 36x^2 - 96x - 12$$

V bodech, kde se nachází extrém, musí být f'(x) = 0. Rovnice

$$f'(x) = 12x^3 - 48x^2 - 12x + 48 = 0$$

má tři kořeny $x_1 = -1$, $x_2 = 1$ a $x_3 = 4$.

Dále je třeba určit, kde je f''(x) < 0 a kde f''(x) > 0. Řešením kvadratické rovnice

$$f''(x) = 36x^2 - 96x - 12 = 0$$

vycházejí kořeny $x_4 = -0,119\,632$ a $x_5 = 2,786\,299$. Intervaly konvexity a konkavity jsou sestaveny do tabulky:

$$\forall x \in (-\infty; -0, 199) \qquad f''(x) > 0 \qquad f(x) \text{ je konvexn\'i}$$

$$\forall x \in (-0, 199; 2, 786) \qquad f''(x) < 0 \qquad f(x) \text{ je konk\'avn\'i}$$

$$\forall x \in (2, 786; \infty) \qquad f''(x) > 0 \qquad f(x) \text{ je konvexn\'i}$$

Pro stacionární body platí:

$$x_1=-1$$
 $f(x_1)=-35$ $f''(x_1)>0$ lokální minimum $x_2=1$ $f(x_2)=29$ $f''(x_2)<0$ lokální maximum $x_3=4$ $f(x_3)=-160$ $f''(x_3)>0$ globální minimum

Na následujícím obrázku je pro názornost vynesen graf funkce f(x) černě, f'(x) červeně a f''(x) zeleně.

Kvadratické programování

Motivace

Nechť je dána kvadratická funkce $f(x)=ax^2+bx+c$, kde $a,b,c\in R$ jsou dané konstanty a platí, že $a\neq 0$. Kvadratická funkce má jeden stacionární bod

$$f'(x) = 2ax + b = 0 \quad \Rightarrow \quad x = -\frac{b}{2a}$$

Z druhé derivace f''(x) = a plyne, že je funkce bud všude konvexní, nebo všude konkávní. Kvadratická funkce má tedy jeden extrém, který lze snadno nalézt. Jeho existence je navíc zaručena.

Příklad. Kmitání konstrukcí se spojitě rozloženou hmotou je popsáno pomocí frekvenčních funkcí. Jedna z nich má tvar

$$F_2(x) = -x \frac{\cosh(x)\sin(x) - \sinh(x)\cos(x)}{\cosh(x)\cos(x) - 1}$$

Graf této frekvenční funkce a detail v okolí bodu x=4,73 jsou na následujících obrázcích.

U obecné funkce není zaručeno, že má extrém(y) a její tvar může být velmi komplikovaný.

Kvadratická funkce mnoha proměnných

Nechť je dána kvadratická funkce f a počet proměnných je n. Jednotlivé proměnné x_1, x_2, \ldots, x_n lze uspořádat do vektoru \boldsymbol{x} . Funkce má tvar

$$f(\mathbf{x}) = \frac{1}{2}a_{11}x_1^2 + \frac{1}{2}a_{12}x_1x_2 + \dots + \frac{1}{2}a_{1n}x_1x_n + \frac{1}{2}a_{21}x_2x_1 + \frac{1}{2}a_{22}x_2^2 + \dots + \frac{1}{2}a_{2n}x_2x_n + \vdots$$

$$\vdots + \frac{1}{2}a_{n1}x_nx_1 + \frac{1}{2}a_{n2}x_nx_2 + \dots + \frac{1}{2}a_{nn}x_n^2 - \frac{1}{2}a_{nn}x_n^2 - \frac{1}{2}a_{nn}x_n^2 - \dots - \frac{1}{2}a_{nn}x_n^2 - \dots$$

Poloviny u koeficientů a_{ij} a znaménka minus před koeficienty b_i byly zvoleny s ohledem na další zápis. Pro obecnou kvadratickou funkci n proměnných lze vždy určit a_{ij} a b_i tak, že funkce má výše uvedený tvar .

Funkci $f(\boldsymbol{x})$ lze zapsat pomocí matice $\boldsymbol{A} \in R^{n \times n}$ a vektoru $\boldsymbol{b} \in R^n$ takto

$$f(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^T\boldsymbol{A}\boldsymbol{x} - \boldsymbol{x}^T\boldsymbol{b} + c$$

Konstanta c nemá vliv na polohu extrému, jen na jeho velikost. V dalších úvahách se bude předpokládat c=0.

Definice. Matice $\mathbf{A} \in R^{n \times n}$ se nazývá pozitivně definitní právě tehdy, když pro libovolný nenulový vektor $\mathbf{x} \in R^n$ platí $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$.

Poznámka. Velmi mnoho inženýrských úloh lze zformulovat tak, že se hledá minimum kvadratické funkce n proměnných s pozitivně definitní maticí.

Věta. Matice $\mathbf{A} \in \mathbb{R}^{n \times n}$ je pozitivně definitní právě tehdy, když jsou její všechna vlastní čísla kladná.

Věta. Nechť je matice ${m A}$ symetrická a pozitivně definitní. Funkce $f({m x})$ nabývá svého minima v bodě $\bar{{m x}}$ právě tehdy, když $\bar{{m x}}$ je řešením soustavy lineárních algebraických rovnic ${m A}\bar{{m x}}={m b}$.

Důkaz. Nechť funkce f(x) nabývá svého minima v \bar{x} . Pro libovolný vektor v a skalární parametr s pak platí

$$f(\bar{\boldsymbol{x}} + s\boldsymbol{v}) = \frac{1}{2}\bar{\boldsymbol{x}}^T\boldsymbol{A}\bar{\boldsymbol{x}} + s\boldsymbol{v}^T\boldsymbol{A}\bar{\boldsymbol{x}} + \frac{s^2}{2}\boldsymbol{v}^T\boldsymbol{A}\boldsymbol{v} - \bar{\boldsymbol{x}}^T\boldsymbol{b} - s\boldsymbol{v}^T\boldsymbol{b}$$

Vzhledem k tomu, že $\bar{\boldsymbol{x}}$ i \boldsymbol{v} jsou dané vektory, jedinou proměnnou je s a minimum nastává pro

$$\frac{\mathrm{d}f(\bar{\boldsymbol{x}}+s\boldsymbol{v})}{\mathrm{d}s} = \bar{\boldsymbol{x}}^T\boldsymbol{A}\boldsymbol{v} + s\boldsymbol{v}^T\boldsymbol{A}\boldsymbol{v} - \boldsymbol{v}^T\boldsymbol{b} = 0$$

s uvážením, že podle předpokladu je minimum v $\bar{\boldsymbol{x}}$, platí s=0, což vede na výraz

$$\frac{\mathrm{d}f(\bar{\boldsymbol{x}}+s\boldsymbol{v})}{\mathrm{d}s} = \bar{\boldsymbol{x}}^T\boldsymbol{A}\boldsymbol{v} - \boldsymbol{v}^T\boldsymbol{b} = \boldsymbol{v}^T(\boldsymbol{A}\bar{\boldsymbol{x}}-\boldsymbol{b}) = 0$$

Vzhledem k libovolnosti $oldsymbol{v}$ musí být $oldsymbol{A}ar{x}=oldsymbol{b}$.

Nechť $ar{m{x}}$ splňuje rovnici $m{A}ar{m{x}} = m{b}$. Funkci $f(m{x})$ lze psát

$$f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} - \boldsymbol{x}^T \boldsymbol{A} \bar{\boldsymbol{x}} =$$

$$= \frac{1}{2} \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} - \boldsymbol{x}^T \boldsymbol{A} \bar{\boldsymbol{x}} + \frac{1}{2} \bar{\boldsymbol{x}}^T \boldsymbol{A} \bar{\boldsymbol{x}} - \frac{1}{2} \bar{\boldsymbol{x}}^T \boldsymbol{A} \bar{\boldsymbol{x}} =$$

$$= \frac{1}{2} (\boldsymbol{x} - \bar{\boldsymbol{x}})^T \boldsymbol{A} (\boldsymbol{x} - \bar{\boldsymbol{x}}) - \frac{1}{2} \bar{\boldsymbol{x}}^T \boldsymbol{A} \bar{\boldsymbol{x}}$$

Protože je matice ${m A}$ pozitivně definitní, minimum $f({m x})$ nastává pro ${m x}=\bar{{m x}}$ a má velikost $-\frac{1}{2}\bar{{m x}}^T{m A}\bar{{m x}}.$

Poznámka. Kvadratická funkce $f(\boldsymbol{x})$ může představovat mechanickou energii a vektor \boldsymbol{x} posunutí vybraných bodů pružného tělesa. Těleso je v rovnováze právě tehdy, když mechanická energie nabývá minimální hodnoty.

Gradient kvadratické funkce $f(\boldsymbol{x})$ má tvar

$$g(x) = \frac{\mathrm{d}f(x)}{\mathrm{d}x} = Ax - b$$

a reziduum má tvar

$$r(x) = b - Ax = -g(x)$$

V numericých metodách se budou používat aproximace x_i vektoru \bar{x} , který minimalizuje funci f(x). Chyba je definována

$$oldsymbol{e}_i = ar{oldsymbol{x}} - oldsymbol{x}_i$$

Vztah mezi reziduem a chybou je

$$oldsymbol{r}_i = oldsymbol{b} - oldsymbol{A} oldsymbol{x}_i = oldsymbol{A} oldsymbol{e}_i$$

Metoda největšího spádu

Nechť je dána kvadratická funkce n proměnných ve tvaru

$$f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} - \boldsymbol{x}^T \boldsymbol{b}$$

kde $A \in R^{n \times n}$ je symetrická pozitivně definitní matice a vektor $b \in R^n$. Hledání minima lze provést metodou největšího spádu, ve které se hledá nejmenší hodnota ve směru gradientu.

Necht' je známa aproximace x_k polohy extrému \bar{x} v k-tém kroku minimalizace. Nová aproximace se předpokládá ve tvaru

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{r}_k,$$

kde $oldsymbol{r}_k$ je vektor rezidua (vektor opačný ke gradientu $oldsymbol{g}_k$)

$$oldsymbol{r}_k = oldsymbol{b} - oldsymbol{A} oldsymbol{x}_k = -oldsymbol{g}_k.$$

Dosazením $oldsymbol{x}_{k+1}$ do funkce $f(oldsymbol{x})$ vychází

$$f(\boldsymbol{x}_{k+1}) = \frac{1}{2} \boldsymbol{x}_k^T \boldsymbol{A} \boldsymbol{x}_k - \alpha_k \boldsymbol{x}_k^T \boldsymbol{A} \boldsymbol{r}_k + \frac{1}{2} \boldsymbol{r}_k^T \boldsymbol{A} \boldsymbol{r}_k - \boldsymbol{x}_k^T \boldsymbol{b} - \alpha_k \boldsymbol{r}_k^T \boldsymbol{b},$$

což je kvadratická funkce jedné proměnné α_k .

Její minimum se určí z podmínky

$$\frac{\mathrm{d}f(\alpha_k)}{\mathrm{d}\alpha_k} = \boldsymbol{r}_k^T \boldsymbol{A} \boldsymbol{x}_k + \alpha_k \boldsymbol{r}_k^T \boldsymbol{A} \boldsymbol{r}_k - \boldsymbol{r}_k^T \boldsymbol{b} = 0,$$

odkud vychází

$$lpha_k = rac{oldsymbol{r}_k^T oldsymbol{b} - oldsymbol{r}_k^T oldsymbol{A} oldsymbol{x}_k}{oldsymbol{r}_k^T oldsymbol{A} oldsymbol{r}_k} = rac{oldsymbol{r}_k^T oldsymbol{r}_k}{oldsymbol{r}_k^T oldsymbol{A} oldsymbol{r}_k}.$$

Reziduum v k+1-ním kroku má tvar

$$\boldsymbol{r}_{k+1} = \boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}_{k+1} = \boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}_k - \alpha_k \boldsymbol{A}\boldsymbol{r}_k = \boldsymbol{r}_k - \alpha_k \boldsymbol{A}\boldsymbol{r}_k$$

Algoritmus metody největšího spádu

volba počáteční aproximace $oldsymbol{x}_0$

výpočet počátečního rezidua $oldsymbol{r}_0 = oldsymbol{b} - oldsymbol{A} oldsymbol{x}_0$

iterace
$$k = 0, 1, \ldots$$

$$lpha_k = rac{oldsymbol{r}_k^T oldsymbol{r}_k}{oldsymbol{r}_k^T oldsymbol{A} oldsymbol{r}_k}$$

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{r}_k$$

$$r_{k+1} = r_k - \alpha_k A r_k$$

pokud $\|m{r}_{k+1}\|>arepsilon$, další krok, jinak konec

Příklad. Soustava rovnic

$$\begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

má řešení

$$\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 3 \\ 4 \end{array}\right)$$

Rovnice elipsy

Rovnice elipsy má tvar

$$\frac{1}{2}a_{11}x^2 + a_{12}xy + \frac{1}{2}a_{22}y^2 - b_1x - b_2y + c = 0,$$

jsou-li hlavní poloosy rovnoběžné s osami souřadného systému, platí

$$\frac{(x-x_s)^2}{a^2} + \frac{(y-y_s)^2}{b^2} - 1 = 0,$$

kde (x_s, y_s) je střed elipsy a a, b jsou velikosti hlavních poloos.

Transformace souřadnic

$$x = x' \cos \varphi - y' \sin \varphi + x_s$$
$$y = x' \sin \varphi + y' \cos \varphi + y_s$$

dosazením transformačních vztahů do obecného tvaru elipsy vychází u smíšeného členu $x^\prime y^\prime$ koeficient

$$\frac{1}{2}a_{11}\sin 2\varphi + a_{12}\cos 2\varphi + \frac{1}{2}a_{22}\sin 2\varphi$$

má-li být smíšený člen vynulován, musí být

$$tg2\varphi = \frac{2a_{12}}{a_{11} - a_{22}}$$

je-li čárkovaný souřadnicový systém pootočen vůči původnímu o úhel φ , má elipsa tvar

$$\frac{1}{2}a'_{11}x'^2 + \frac{1}{2}a'_{22}y'^2 - b'_1x' - b'_2y' + c = 0,$$

nyní je možné doplnit výrazy na čtverec

$$\frac{(x'-x_s')^2}{a^2} + \frac{(y'-y_s')^2}{b^2} - 1 = 0,$$

Příklad. Najděte extrém funkce

$$f(x,y) = x^2 - xy + \frac{1}{2}y^2 - 2x - y$$

Řešení. Jedná se o kvadratickou funkci dvou proměnných.

Porovnáním s obecným tvarem kvdaratické funkce n proměnných

vychází

$$a_{11} = 2$$
 $a_{12} = a_{21} = -1$
 $a_{22} = 1$
 $b_1 = 2$
 $b_2 = 1$

Řešením soustavy ${m A}{m x}={m b}$ vychází x=3 a y=4. To jsou souřadnice bodu, v němž má zadaná kvadratická funkce extrém. Dosazením vychází f(3,4)=5.

Grafem funkce

$$f(x,y) = z = x^2 - xy + \frac{1}{2}y^2 - 2x - y$$

je nerotační paraboloid. Transformací souřadného systému do hlavních os lze získat polohu a velikost extrému.

Souřadný systém je třeba otočit o úhel

$$tg2\varphi = \frac{2a_{12}}{a_{11} - a_{22}} = \frac{-2}{2 - 1} = -2 \implies \varphi = -0,553\,574\,\text{rad}$$

Po transformaci vychází

$$f(x',y') = \left(\frac{1}{2}a_{11}\cos^{2}\varphi + a_{12}\sin\varphi\cos\varphi + \frac{1}{2}a_{22}\sin^{2}\varphi\right)x'^{2} + \left(\frac{1}{2}a_{11}\sin^{2}\varphi - a_{12}\sin\varphi\cos\varphi + \frac{1}{2}a_{22}\cos^{2}\varphi\right)y'^{2} + \left(-b_{1}\cos\varphi - b_{2}\varphi\right)x' + (b_{1}\sin\varphi - b_{2}\cos\varphi)y'$$

číselně pak

$$f(x', y') = 1,309 016x'^{2} + 0,190 983y'^{2} - 1,175 570x' - 1,902 113y'$$

doplnění na čtverec

$$f(x', y') = 1,309 016(x' - 0,449 027)^{2} + 0,190 983(y' - 4,979 796)^{2} - 5$$

souřadnice středu elipsy v čárkovaném souřadném systému

$$x'_{s} = 0,449\,027$$
 $y'_{s} = 4,979\,796$

v původním systému

$$x_s = x_s' \cos \varphi - y_s' \sin \varphi = 3$$
$$y_s = x_s' \sin \varphi + y_s' \cos \varphi = 4$$

dalšími úpravami vychází

$$f(x',y') = \frac{(x'-0,449\ 027)^2}{1,954\ 395^2} + \frac{(y'-4,979\ 796)^2}{5,116\ 672^2} - 1$$

Poloosy elipsy jsou

$$a = 1,954395$$
 $b = 5,116672$

Kvadriky v \mathbb{R}^n

Obecná kvadrika má tvar

$$f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} - \boldsymbol{x}^T \boldsymbol{b} + c = 0$$

Problém vlastních čísel

$$Av = \lambda v$$

 λ je vlastní číslo, $oldsymbol{v}
eq oldsymbol{0}$ je vlastní vektor

Věta. Pro dvě různá vlastní čísla λ_i a λ_j platí $oldsymbol{v}_i^Toldsymbol{v}_j=0$.

Důkaz. Necht' je problém vlastních čísel zapsán pro i-tý a j-tý vektor

$$oldsymbol{A}oldsymbol{v}_i = \lambda_ioldsymbol{v}_i$$

$$oldsymbol{A}oldsymbol{v}_j \ = \ \lambda_joldsymbol{v}_j$$

První problém lze zleva vynásobit vektorem $m{v}_j^T$, druhý problém lze zleva vynásobit vektorem $m{v}_i^T$. Odečtením obou rovnic vychází

$$\boldsymbol{v}_j^T \boldsymbol{A} \boldsymbol{v}_i - \boldsymbol{v}_i^T \boldsymbol{A} \boldsymbol{v}_j = 0 = \lambda_i \boldsymbol{v}_j^T \boldsymbol{v}_i - \lambda_j \boldsymbol{v}_i^T \boldsymbol{v}_j = (\lambda_i - \lambda_j) \boldsymbol{v}_j^T \boldsymbol{v}_i$$

Protože platí $\lambda_i \neq \lambda_j$ a zároveň $(\lambda_i - \lambda_j) \boldsymbol{v}_j^T \boldsymbol{v}_i = 0$, musí být $\boldsymbol{v}_j^T \boldsymbol{v}_i = 0$. Vlastní vektory dvou různých vlastních čísel jsou ortogonální.

transformace souřadnic

$$oldsymbol{x} = \sum_{i=1}^n oldsymbol{v}_i y_i = oldsymbol{V} oldsymbol{y}$$

Věta. Necht' je dána matice \boldsymbol{A} , jejíž všechna vlastní čísla jsou nenulová a vzájemně různá. Inverzní matici \boldsymbol{A}^{-1} lze psát ve tvaru $\boldsymbol{A}^{-1} = \sum_{i+1}^n \frac{1}{\lambda_i} \boldsymbol{v}_i \boldsymbol{v}_i^T$.

Důkaz. Necht' je dána soustava rovnic ve tvaru $m{A}m{x}=m{b}$. Použitím transformace $m{x}=\sum_{i=1}^n m{v}_i y_i = m{V}m{y}$ vychází

$$oldsymbol{A}oldsymbol{x} = \sum_{i=1}^n oldsymbol{A}oldsymbol{v}_i y_i = \sum_{i=1}^n \lambda_i oldsymbol{v}_i y_i = oldsymbol{b}_i$$

Vynásobením předcházející rovnice vlastním vektorem $oldsymbol{v}_j^T$, vyjde y_j

$$\sum_{i=1}^n \lambda_i \boldsymbol{v}_j^T \boldsymbol{v}_i y_i = \delta_{ij} \lambda_i y_i = \lambda_j y_j = \boldsymbol{v}_j^T \boldsymbol{b} \quad \Rightarrow \quad y_j = \frac{1}{\lambda_j} \boldsymbol{v}_j^T \boldsymbol{b} \;,$$

protože vlastní tvary jsou ortogonální. Dosazením y_j zpět do

transformačních vztahů vychází

$$oldsymbol{x} = \sum_{i=1}^n oldsymbol{v}_i y_i = \sum_{i=1}^n rac{1}{\lambda_i} oldsymbol{v}_i oldsymbol{v}_i^T oldsymbol{b} = oldsymbol{A}^{-1} oldsymbol{b} \ .$$

Porovnáním dvou stran poslední rovnosti se získá výsledek

$$oldsymbol{A}^{-1} = \sum_{i=1}^n rac{1}{\lambda_i} oldsymbol{v}_i oldsymbol{v}_i^T \,.$$

Dosazením transformace $oldsymbol{x} = oldsymbol{V} oldsymbol{y}$ do $f(oldsymbol{x})$ vychází

$$f(\mathbf{y}) = \frac{1}{2} \mathbf{y}^{T} \mathbf{V}^{T} \mathbf{A} \mathbf{V} \mathbf{y} - \mathbf{y}^{T} \mathbf{V}^{T} \mathbf{b} + c =$$

$$= \frac{1}{2} \mathbf{y}^{T} \mathbf{\Lambda} \mathbf{y} - \mathbf{y}^{T} \tilde{\mathbf{b}} + c =$$

$$= \sum_{i=1}^{n} \left(\frac{1}{2} \lambda_{i} y_{i}^{2} - y_{i} \tilde{b}_{i} \right) + c =$$

$$= \sum_{i=1}^{n} \frac{\lambda_{i}}{2} \left(y_{i}^{2} - 2 \frac{\tilde{b}_{i}}{\lambda_{i}} y_{i} + \left(\frac{\tilde{b}_{i}}{\lambda_{i}} \right)^{2} - \left(\frac{\tilde{b}_{i}}{\lambda_{i}} \right)^{2} \right) + c =$$

$$= \sum_{i=1}^{n} \frac{\lambda_{i}}{2} \left(y_{i} - \frac{\tilde{b}_{i}}{\lambda_{i}} \right)^{2} - \sum_{i=1}^{n} \frac{\tilde{b}_{i}^{2}}{2\lambda_{i}} + c$$

pomocné úpravy

$$egin{array}{lll} ilde{b_i} &=& oldsymbol{v}_i^T oldsymbol{b} \ ilde{b_i}^2 &=& oldsymbol{b}^T oldsymbol{v}_i oldsymbol{v}_i^T oldsymbol{b} \ \sum_{i=1}^n rac{ ilde{b_i}^2}{2\lambda_i} &=& \sum_{i=1}^n rac{1}{2\lambda_i} oldsymbol{b}^T oldsymbol{v}_i oldsymbol{v}_i^T oldsymbol{b} = rac{1}{2} oldsymbol{b}^T oldsymbol{A}^{-1} oldsymbol{b} \end{array}$$

označení

$$f_{min} = -\sum_{i=1}^{n} \frac{\tilde{b_i}^2}{2\lambda_i} + c = -\frac{1}{2} \boldsymbol{b}^T \boldsymbol{A}^{-1} \boldsymbol{b} + c$$

$$\hat{b_i} = \frac{\tilde{b_i}}{\lambda_i}$$

$$\hat{\boldsymbol{b}} = \boldsymbol{\Lambda}^{-1} \tilde{\boldsymbol{b}}$$

Nelineární optimalizace a numerické metody

s novým označením má funkce tvar

$$f(\boldsymbol{y}) = \frac{1}{2} (\boldsymbol{y} - \hat{\boldsymbol{b}})^T \boldsymbol{\Lambda} (\boldsymbol{y} - \hat{\boldsymbol{b}}) + f_{min}$$

Nelineární optimalizace a numerické metody

$$f(x,y) = x^2 - xy + \frac{1}{2}y^2 - 2x - y$$

Řešení. Porovnáním s obecným tvarem kvdaratické funkce n proměnných vychází

$$a_{11} = 2$$
 $a_{12} = a_{21} = -1$
 $a_{22} = 1$
 $b_1 = 2$
 $b_2 = 1$

Problém vlastních čísel

$$m{A}m{v} = \lambda m{v}$$
 $(m{A} - \lambda m{I})m{v} = m{0}$

Pro zadaný problém platí

$$\begin{vmatrix} 2-\lambda & -1 \\ -1 & 1-\lambda \end{vmatrix} = \lambda^2 - 3\lambda + 1 = 0$$

Řešením rovnice jsou kořeny $\lambda_1=0,381~966$ a $\lambda_2=2,618~033$.

Dosazením vlastních čísel do soustavy vychází

$$\begin{pmatrix} 2 - \lambda_1 & -1 \\ -1 & 1 - \lambda_1 \end{pmatrix} \begin{pmatrix} \hat{v}_{1(1)} \\ \hat{v}_{2(1)} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Jedna ze složek se volí, např. $\hat{v}_{2(1)}=1$, druhá se dopočítá $\hat{v}_{1(1)}=0,618~033$.

$$\begin{pmatrix} 2 - \lambda_2 & -1 \\ -1 & 1 - \lambda_2 \end{pmatrix} \begin{pmatrix} \hat{v}_{1(2)} \\ \hat{v}_{2(2)} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Jedna ze složek se volí, např. $\hat{v}_{2(2)}=1$, druhá se dopočítá $\hat{v}_{1(2)}=-1,618~033$.

Normováním vektorů se získají normované vlastní vektory

$$\mathbf{v}_1 = \begin{pmatrix} v_{1(1)} \\ v_{2(1)} \end{pmatrix} = \begin{pmatrix} 0,525731 \\ 0,850650 \end{pmatrix}$$

Nelineární optimalizace a numerické metody

$$\mathbf{v}_2 = \begin{pmatrix} v_{1(2)} \\ v_{2(2)} \end{pmatrix} = \begin{pmatrix} -0,850650 \\ 0,525731 \end{pmatrix}$$

$$\tilde{b}_1 = \mathbf{v}_1^T \mathbf{b} = 1,902 113$$
 $\tilde{b}_2 = \mathbf{v}_2^T \mathbf{b} = 1,175 570$

$$\hat{b}_1 = \frac{\hat{b}_1}{\lambda_1} = 4,979796$$

$$\hat{b}_2 = \frac{\tilde{b}_2}{\lambda_2} = 0,449\,027$$

funkce má po transformaci souřadnic tvar

$$f(\mathbf{y}) = \sum_{i=1}^{2} \frac{\lambda_i}{2} \left(y_i - \frac{\tilde{b}_i}{\lambda_i} \right)^2 - f_{min} =$$

$$= 0,190 983(y_1 - 4,979 796)^2 +$$

$$+ 1,309 016(y_2 - 0,449 027)^2 - 5$$

který je totožný s tvarem získaným dříve