Presentation Title

Gang Li Deakin University

(None)

Table of Content

Background

A

- A
- **■** B

- A
- **■** B

- A

Aggregation Functions

Product	Price	Quality	Service	Overall Rating
P_1	0.4	0.3	0.8	?
$egin{array}{c} P_1 \ P_2 \ P_3 \end{array}$	$\begin{array}{c} 0.1 \\ 0.6 \end{array}$	0.6	0.5	?
P_3	0.6	0.4	0.3	?

Product	Price	Quality	Service	Overall Rating
\overline{P}_1	0.4	0.3	0.8	?
P_2	0.1	0.6	0.5	?
P_3	0.6	0.4	0.3	?

Product	Price	Quality	Service	Overall Rating
P_1	0.4	0.3	0.8	?
$egin{array}{c} P_1 \ P_2 \end{array}$	0.1	0.6	0.5	?
P_3	0.6	0.4	0.3	?

Product	Price	Quality	Service	Overall Rating
P_1	0.4	0.3	0.8	?
P_2	0.1	0.6	0.5	?
P_3	0.6	0.4	0.3	?

A customer wants to select a product that is *inexpensive*, *good quality*, and with *good* Problem service. Choices have been narrowed down to three products with following utility values:

Product	Price	Quality	Service	Overall Rating
${P}_1$	0.4	0.3	0.8	?
P_2	0.1	0.6	0.5	?
P_3	0.6	0.4	0.3	?

? Which is the best product

Product	Price	Quality	Service	Overall Rating
P_1	0.4	0.3	0.8	
P_2	0.1	0.6	0.5	
P_3	0.6	0.4	0.3	

Product	Price	Quality	Service	Overall Rating
$\overline{P_1}$	0.4	0.3	0.8	
P_2	$egin{array}{c} 0.4 \ 0.1 \ 0.6 \ \end{array}$	0.6	0.5	
P_3	0.6	0.4	0.3	
Weights	0.5	0.25	0.25	

Weighted Arithmetic Mean

A customer wants to select a product that is *inexpensive*, *good quality*, and with *good* Problem service. Choices have been narrowed down to three products with following utility values:

Product	Price	Quality	Service	Overall Rating
P_1	0.4	0.3	0.8	?
P_2	0.1	0.6	0.5	
P_3	0.6	0.4	0.3	
Weights	0.5	0.25	0.25	

Weighted Arithmetic Mean

 P_1 0.5(0.4) + 0.25(0.3) + 0.25(0.8) = 0.475

A customer wants to select a product that is *inexpensive*, *good quality*, and with *good* Problem service. Choices have been narrowed down to three products with following utility values:

Product	Price	Quality	Service	Overall Rating
$\overline{P_1}$	0.4	0.3	0.8	0.475
P_2	0.1	0.6	0.5	?
P_3	0.6	0.4	0.3	
Weights	0.5	0.25	0.25	

Weighted Arithmetic Mean

 P_1 0.5(0.4) + 0.25(0.3) + 0.25(0.8) = 0.475

 P_2 0.5(0.1) + 0.25(0.6) + 0.25(0.5) = 0.325

A customer wants to select a product that is *inexpensive*, *good quality*, and with *good* Problem service. Choices have been narrowed down to three products with following utility values:

Product	Price	Quality	Service	Overall Rating
P_1	0.4	0.3	0.8	0.475
P_2	0.1	0.6	0.5	0.325
P_3	0.6	0.4	0.3	?
Weights	0.5	0.25	0.25	

Weighted Arithmetic Mean

 P_1 0.5(0.4) + 0.25(0.3) + 0.25(0.8) = 0.475

 P_2 0.5(0.1) + 0.25(0.6) + 0.25(0.5) = 0.325

 P_3 0.5(0.6) + 0.25(0.4) + 0.25(0.3) = 0.950

A customer wants to select a product that is *inexpensive*, *good quality*, and with *good* Problem service. Choices have been narrowed down to three products with following utility values:

Product	Price	Quality	Service	Overall Rating
P_1	0.4	0.3	0.8	0.475
P_2	0.1	0.6	0.5	0.325
P_3	0.6	0.4	0.3	0.950
Weights	0.5	0.25	0.25	

Weighted Arithmetic Mean

 P_1 0.5(0.4) + 0.25(0.3) + 0.25(0.8) = 0.475

 P_2 0.5(0.1) + 0.25(0.6) + 0.25(0.5) = 0.325

 P_3 0.5(0.6) + 0.25(0.4) + 0.25(0.3) = 0.950

A customer wants to select a product that is *inexpensive*, *good quality*, and with *good* Problem service. Choices have been narrowed down to three products with following utility values:

Product	Price	Quality	Service	Overall Rating
$\overline{P_1}$	0.4	0.3	0.8	0.475
P_2	0.1	0.6	0.5	0.325
P_3	0.6	0.4	0.3	0.950
Weights	0.5	0.25	0.25	

Weighted Arithmetic Mean

 P_1 0.5(0.4) + 0.25(0.3) + 0.25(0.8) = 0.475

 P_2 0.5(0.1) + 0.25(0.6) + 0.25(0.5) = 0.325

 P_3 0.5(0.6) + 0.25(0.4) + 0.25(0.3) = 0.950

the best product

A customer wants to select a product that is *inexpensive*, *good quality*, and with *good* Problem service. Choices have been narrowed down to three products with following utility values:

Product	Price	Quality	Service	Overall Rating
P_1	0.4	0.3	0.8	0.475
P_2	0.1	0.6	0.5	0.325
P_3	0.6	0.4	0.3	→0.950
Weights	0.5	0.25	0.25	

Weighted Arithmetic Mean

 P_1 0.5(0.4) + 0.25(0.3) + 0.25(0.8) = 0.475

 P_2 0.5(0.1) + 0.25(0.6) + 0.25(0.5) = 0.325

 P_3 0.5(0.6) + 0.25(0.4) + 0.25(0.3) = 0.950

the best product

Fuzzy Measure

Definition

A *fuzzy measure* is a set of functions $v: 2^N \to [0,1]$ on all possible combinations of n criteria, which satisfies:

- n _
 - $v(A) \le v(B)$ whenever $A \subset B$;
 - $v(\emptyset) = 0$ and v(N) = 1.

Fuzzy Measure

Definition

A fuzzy measure is a set of functions $v: 2^N \to [0,1]$ on all possible combinations of n criteria, which satisifies:

- $v(A) \le v(B)$ whenever $A \subset B$;
- $v(\emptyset) = 0$ and v(N) = 1.
- Since $A \subseteq N$ is a *coalition* of criteria, v(A) represents the importance of this coalition.

- The Choquet Integral generalises many important aggregation functions including the *mean*, weighted arithmetic mean, maximum, minimum and ordered weighted average.
 - Unlike WAM which allocates a weight to each input, it assigns a weight to all the subsets of inputs, hence 2^n parameters.
- \blacksquare *K-Additivity*: *k*-additive fuzzy measures model no interaction of groups with more than *k* criteria
 - ◆ It allows an arbitrary reduction in complexity at the expense of modelling ability.
 - ◆ In the case of 3-addivitity, we can model the interactions of pairs and triples, but not of larger groups.

- The Choquet Integral generalises many important aggregation functions including the *mean*, weighted arithmetic mean, maximum, minimum and ordered weighted average.
 - Unlike WAM which allocates a weight to each input, it assigns a weight to all the subsets of inputs, hence 2^n parameters.
- \blacksquare *K-Additivity*: *k*-additive fuzzy measures model no interaction of groups with more than *k* criteria
 - ◆ It allows an arbitrary reduction in complexity at the expense of modelling ability.
 - ◆ In the case of 3-addivitity, we can model the interactions of pairs and triples, but not of larger groups.

- The Choquet Integral generalises many important aggregation functions including the *mean*, weighted arithmetic mean, maximum, minimum and ordered weighted average.
 - Unlike WAM which allocates a weight to each input, it assigns a weight to all the subsets of inputs, hence 2^n parameters.
- \blacksquare *K-Additivity:* k-additive fuzzy measures model no interaction of groups with more than k criteria
 - ◆ It allows an arbitrary reduction in complexity at the expense of modelling ability.
 - ◆ In the case of 3-addivitity, we can model the interactions of pairs and triples, but not of larger groups.

- The Choquet Integral generalises many important aggregation functions including the *mean*, weighted arithmetic mean, maximum, minimum and ordered weighted average.
 - Unlike WAM which allocates a weight to each input, it assigns a weight to all the subsets of inputs, hence 2^n parameters.
- \blacksquare *K-Additivity:* k-additive fuzzy measures model no interaction of groups with more than k criteria
 - ◆ It allows an arbitrary reduction in complexity at the expense of modelling ability.
 - ◆ In the case of 3-addivitity, we can model the interactions of pairs and triples, but not of larger groups.

- The Choquet Integral generalises many important aggregation functions including the *mean*, weighted arithmetic mean, maximum, minimum and ordered weighted average.
 - Unlike WAM which allocates a weight to each input, it assigns a weight to all the subsets of inputs, hence 2^n parameters.
- \blacksquare *K-Additivity:* k-additive fuzzy measures model no interaction of groups with more than k criteria
 - ◆ It allows an arbitrary reduction in complexity at the expense of modelling ability.
 - ◆ In the case of 3-addivitity, we can model the interactions of pairs and triples, but not of larger groups.

Application and Analysis

Source *Tripadvisor* website (www.tripadvisor.com)

Extractor Visual Web Ripper
Data

- 8561 records about ratings on *Singapore* hotel *features* and overall *ratings*;
- Demographic, Region, Travel Types, etc

- 8561 records about ratings on *Singapore* hotel *features* and overall *ratings*;
- Demographic, Region, Travel Types, etc

- 8561 records about ratings on *Singapore* hotel *features* and overall *ratings*;
- Demographic, Region, Travel Types, etc

- 8561 records about ratings on *Singapore* hotel *features* and overall *ratings*;
- Demographic, Region, Travel Types, etc

- 8561 records about ratings on *Singapore* hotel *features* and overall *ratings*;
- Demographic, Region, Travel Types, etc

■ Hotel Rating Data Collections:

■ Hotel Rating Data Collections:

Travel Type	Region	Size	
Business	Asia Europe North America Oceania	1210 instances 581 instances 407 instances 381 instances	
Couple	Asia Europe North America Oceania	1169 instances 1389 instances 320 instances 1188 instances	
Family	Asia Europe North America Oceania	951 instances 309 instances 131 instances 525 instances	
	Total:	8561 instances	

Model Evaluation

■ *Choquet Integral* is evaluated against typical aggregation methods such as AM, WAM and OWA;

Model Evaluation

- *Choquet Integral* is evaluated against typical aggregation methods such as AM, WAM and OWA;
- Evaluation using the *mean absolute error* (MAE) based on 10-fold cross validation.

		Data Sets			
Algorithms		Business	Couple	Family	
AM		0.0757	0.0689	0.0706	
OWA		0.0718	0.0666	0.0682	
WAM		0.0701	0.0633	0.0665	
CI	kadd = 1	0.0701	0.0633	0.0665	
	kadd = 2	0.0661	0.0614	0.0646	
	kadd = 3	0.0618	0.0556	0.0611	
	kadd = 4	0.0619	0.0561	0.0620	
	kadd = 5	0.0579	0.0541	0.0598	
	kadd = 6	0.0576	0.0540	0.0591	

Related Resources

- [1] Gang Li, Rob Law, Huy Quan Vu, Jia Rong. Discovering the Hotel Selection Preferences of Hong Kong Inbound Travelers Using the Choquet Integral, *Tourism Management*, Accepted on 21/10/2012 ¹
- [2] Huy Quan Vu, Gleb Beliakov, Gang Li. A Choquet Ingtegral Toolbox and its Application in Customer's Preference Analysis, in *Data Mining Applications with R*, Book Chapter, *Elsevier* 2013 2 3

¹An extensive invesigation on *HK* hotels preferences.

²RFMTool usage and a case study on *Singapore* hotels preferences.

³RFMTool: A R toolbox package publically available at TULIP Portal: http://www.tulip.org.au/resources/rfmtool

■ This work has extended practical capability of feature-based sentiment mining;

- This work has extended practical capability of feature-based sentiment mining;
- introduced a new aggregation techniques for effective MCMD modeling;

- This work has extended practical capability of feature-based sentiment mining;
- introduced a new aggregation techniques for effective MCMD modeling;
- constructed a hotel preference profile for travels from different areas and under different travel modes. This will be also helpful for hotel managers in strategic planning and decision making.

- This work has extended practical capability of feature-based sentiment mining;
- introduced a new aggregation techniques for effective MCMD modeling;
- constructed a hotel preference profile for travels from different areas and under different travel modes. This will be also helpful for hotel managers in strategic planning and decision making.

Questions?

Contact Information

Associate Professor *Gang Li*School of Information Technology
Deakin University, Geelong, Australia

Email GANGLI@ACM.ORG

Lab TEAM FOR UNIVERSAL LEARNING AND INTELLIGENT PROCESSING