Stat Computing – Final Project BANA 6043 Section 003

Name	M-Number
Dhivya Rajprasad	M10857825

Abstract:

I have fitted the final model using 833 observations instead of the original 950 observations as 100 observations were duplicates and 17 observations were abnormal with respect to the defined parameters in the problem. The factors which impact the landing distance of a flight are the make of the aircraft, the ground speed of the aircraft and height of the aircraft when passing over the threshold of the runway. The relationship between the variables can be explained by the final regression equation

y(distance)= $2230.448-399.37x_1+0.69815x_2^2-69.97x_2+13.44x_3$ where x_1 = make of an aircraft

 x_2 = ground speed of the aircraft

 x_3 = height of the aircraft when passing over the run way.

The landing distance is impacted by the make of the aircraft with higher landing distance for boeing when compared to airbus. The details are as below:

CHAPTER 1- DATA PREPARATION AND DATA CLEANING

GOAL:

Data cleaning is the first step in the process of data analysis and forms the most important step of the process. The quality of the output of the data analysis procedure depends on the quality of the input data. Data cleaning involves finding the errors and irregularities in the data and eliminating them from the data. The steps involved varies depending on the size of the data along with the number of variables being used.

The steps which have been used in this assignment are:

- 1. Importing multiple datasets
- 2. Checking for missing rows in datasets
- 3. Removing missing rows from the dataset
- 4. Concatenating the multiple datasets into a single dataset
- 5. Finding missing values and understanding the missing values
- 6. Duplicates check
- 7. Applying conditions to the data to subset the abnormal data and finding the count of the abnormal data
- 8. Removing abnormal data
- 9. Finding the basic parameters for all classes of data

The steps may be reiterated multiple times to get a cleaner dataset when more variables are given or larger datasets are considered.

STEP 1- Importing multiple datasets:

Proc Import statement is used to import the data sets with **Out** statement specifying the dataset name once it is imported. **Datafile** statement specifies the location of the file to be imported with **DBMS** statement to specify the database format to be imported along with **replace** function to replace any variables of the same name given before. **Getnames** statement specifies if the first record in the dataset should be taken as the variable names.

```
/*Import the dataset 1*/
```

```
proc import out=flightinfo1
datafile= "/folders/myfolders/sasuser.v94/FAA1.xls"
dbms= xls replace;
getnames= yes;
```

/*Import the dataset 2*/

```
proc import out=FAA2
datafile= "/folders/myfolders/sasuser.v94/FAA2.xls"
dbms= xls replace;
getnames= yes;
```

STEP 2 - Checking for missing rows in datasets

Proc Means statement is used to find the missing rows in the data (repeated missing variables across all variables-nmiss) along with other basic parameters of the data.

/*Checking for missing rows in datasets*/ title Basic Parameters for Dataset 1; proc means data=flightinfol n nmiss mean median std max min; title Basic Parameters for Dataset 2; proc means data=FAA2 n nmiss mean median std max min; Basic Parameters for Dataset1 The MEANS Procedure

Variable	Label	N	N Miss	Mean	Median	Std Dev	Maximum	Minimum
duration	duration	800	0	154.0065385	153.9480975	49.2592338	305.6217107	14.7642071
no pasg	no pasg	800	0	60.1325000	60.0000000	7.5271686	87.0000000	29.0000000
speed ground	speed ground	800	0	79.5414195	79.6428041	19.2348870	141.2186354	27.7357153
speed air	speed air	200	600	103.8294713	100.9933978	10.4118729	141.7249357	90.0028586
heiaht	height	800	0	30.1217717	30.1467453	10.2761691	59.9459639	-3.5462524
pitch	pitch	800	0	4.0183751	4.0200665	0.5248160	5.9267842	2.2844801
distance	distance	800	0	1544.52	1267.44	938.2330999	6533.05	34.0807833

The MEANS Procedure									
Variable	Label	N	N Miss	Mean	Median	Std Dev	Maximum	Minimum	
no pasg	no pasg	150	50	60.3400000	60.5000000	7.3107717	78.0000000	44.0000000	
speed ground	speed ground	150	50	77.9173910	76.5308198	19.8788997	141.2186354	29.2276564	
speed air	speed air	39	161	103.2224489	100.2606698	11.6781942	141.7249357	90.1110133	
height	height	150	50	30.2326030	29.2596657	10.8272955	58.0835448	-3.5462524	
pitch	pitch	150	50	4.0238987	3.9877143	0.5342237	5.5563992	2.6689057	
distance	distance	150	50	1571.77	1271.99	1005.55	6533.05	425.8585610	

From the above output, we find that there are 50 missing rows in dataset 2 which is missing across all the variables and has to be removed.

STEP 3- Removing missing rows from the dataset:

We use **Options missing** statement to define the missing variables as a space. We then define a new dataset and **Set** the dataset 2 to it and find the missing values which is missing across all the variables and remove them.

/*Removing missing rows in dataset 2*/ options missing=' '; data flightinfo2; set FAA2; if missing(cats(of _all_)) then delete; run; proc print data=flightinfo2; run;

STEP 4- Concatenating the multiple datasets into a single dataset

We use **Set** statement to concatenate both the datasets into a single dataset.

/*Combining datasets*/ data dataset; set flightinfo1 flightinfo2; run;

STEP 5- Finding missing values and understanding them

We use **Proc Means** statement to find the missing values after combining the dataset. We get a total of 950 observations with 150 missing values in duration (which is completely absent in dataset 2) and 711 missing values in speed_air. We understand the correlation between speed_air and speed_ground which would have caused the missing values. There is no value of speed air when speed ground is less than 90 from the plot.

/*Finding missing values*/ proc means data=dataset n nmiss mean median std min max; run; /*Understanding the missing values*/ proc plot data=dataset; plot speed_air*speed_ground='@'; run;

				The MEANS P	rocedure			
Variable	Label	N	N Miss	Mean	Median	Std Dev	Minimum	Maximum
duration	duration	800	150	154.0065385	153.9480975	49.2592338	14.7642071	305.6217107
no_pasg	no_pasg	950	0	60.1652632	60.0000000	7.4900041	29.0000000	87.0000000
speed_ground	speed_ground	950	0	79.2849940	79.4129094	19.3364178	27.7357153	141.2186354
speed_air	speed_air	239	711	103.7304174	100.8916770	10.6051134	90.0028586	141.7249357
height	height	950	0	30.1392714	29.9044945	10.3593491	-3.5462524	59.9459639
pitch	pitch	950	0	4.0192472	4.0153874	0.5260322	2.2844801	5.9267842
distance	distance	950	0	1548.82	1267.44	948.6812561	34.0807833	6533.05

STEP 6- Duplicates check

We use **Proc Sort** statement to sort the data by all parameters (except duration which is absent in dataset2) along with **nodupkey** to remove the duplicates and export to a new dataset.

We use **Proc means** statement to find the basic parameters again after removing duplicates. The data has by 100 observations, which were exact duplicates to 850 observations.

/*Duplicates check*/

```
proc sort data=dataset nodupkey
out=dataset_nodups;
by aircraft no_pasg speed_ground speed_air height pitch
distance;
run;
proc means data=dataset_nodups n nmiss mean median min max;
run;
```


STEP 7- Applying conditions to the data to subset the abnormal data and finding the count of the abnormal data

We use the conditions provided in the project to subset the data and find the abnormal data using **IF and Then** statements. We also define similar classes for the normal and missing data. We then use **Proc Freq** statement to find the count of all the different classes and find 17 abnormal values and 638 missing values in the dataset. We don't remove the missing values as they are not consistent over all rows.

```
/*Finding abnormal values*/
data dataset2;
set dataset nodups;
if duration=" " then Test='MISSING';
else if speed air=" " then Test='MISSING';
else TEST='NORMAL';
if duration NE " " and duration<40 then Test='ABNORMAL';
if speed ground NE " " and 140<speed ground<30
Test='ABNORMAL' ;
if speed air NE " " and 140<speed air<30 then Test='ABNORMAL';
if height NE " " and height<6 then Test='ABNORMAL';
if distance NE " " and distance>6000 then Test='ABNORMAL';
run;
/*Count of abnormal data*/
proc freq data=dataset2;
table test;
run;
proc means data=dataset2 n nmiss mean median min max;
```


Test	Frequency	Percent	Cumulative Frequency	Cumulative Percent
ABNORMA	17	2.00	17	2.00
MISSING	638	75.06	655	77.06
NORMAL	195	22.94	850	100.00

STEP 8- Removing abnormal data

We remove the abnormal data using **IF condition** to subset only the normal and missing data. We then use **Proc Freq** statement to find the count of all the different classes and find that the 17 abnormal values are removed.

/*Removing abnormal data*/ data dataset3; set dataset2; if upcase(Test) = 'MISSING' or upcase(Test) = 'NORMAL'; ; proc freq data=dataset3; table test; run; proc means data=dataset3 n nmiss mean median min max; run; The FREQ Procedure

Test	Frequency	Percent	Cumulative Frequency	Cumulative Percent
MISSING	638	76.59	638	76.59
NORMAL	195	23.41	833	100.00

Variable	Label	N	N Miss	Mean	Median	Minimum	Maximum
duration	duration	783	50	154.8336063	154.2845505	41.9493694	305.6217107
no_pasg	no_pasg	833	0	60.0396158	60.0000000	29.0000000	87.0000000
speed ground	speed ground	833	0	79.4201043	79.7453159	27.7357153	132.784676
speed air	speed air	203	630	103.4850352	101.1189240	90.0028586	132.911464
height	height	833	0	30.4420643	30.1586800	6.2275178	59.945963
pitch	pitch	833	0	4.0060661	4.0035958	2.2844801	5.926784
distance	distance	833	0	1521.71	1262.15	41.7223127	5381.9

STEP 9- Finding the basic parameters for all classes of data

proc sort data=dataset3;

by aircraft Test;

We find the basic parameters for all the classes of data using **Proc Means** statement again after sorting the data using **Proc Sort** by aircraft and by the test variables of missing and normal data.

/*Finding the basic parameters for all classes of data*/

run; proc means data=dataset3 n nmiss mean median min max; by aircraft Test; var duration no pasg speed ground speed air height pitch distance; run; The MEANS Procedure aircraft=airbus Test=MISSING Variable Mean Median Minimum duration duration 317 50 157 6727079 157.8742146 42.1462262 305 6217107 367 60.1934605 60.0000000 36.0000000 no_pasg no_pasg 0 87.0000000 speed_ground speed_ground 367 0 75.1792484 76.4571738 33.5741041 113,4273968 speed_air speed_air 359 103.0040324 101.9646303 97.6046173 height pitch height 367 Ω 30 5086484 30.2805716 6.2275178 2.2844801 54 2760427 5.5267842 367 3.8398256 3.8228940 pitch distance distance 367 0 1053.85 990.1458144 41.7223127 3738.65 aircraft=airbus Test=NORMAL Variable Minimum Label N Miss Mean Median Maximum 153.7358907 150.6005316 45.5027789 264.5933748 duration duration no pasq no paso 77 60.3116883 62.0000000 41.0000000 80.0000000 speed_ground speed_ground 77 speed air speed air 104.4454218 100.8916770 95.0113646 131.3379485 height 77 77 77 77 30.9732535 31.2634455 height 9.6972160 58.2277997 pitch pitch 3.7897389 3.8378238 2.7019237 4.9429731 distance . distance 2440.38 aircraft=boeing Test=MISSING Variable Label N Miss Mean Median Minimum Maximum 41.9493694 298.5223339 duration duration 154.3552717 155.5186161 no pasg no_pasg 271 0 59.9852399 60.0000000 29.0000000 82.0000000 271 speed_ground speed_ground 67.8871124 69.8802482 27.7357153 speed_air height speed air Ω 271 271 30.4117844 30.1382747 height 271 5.9267842 pitch pitch 0 4.2045533 4.1932644 3.0689057 1246.66 . distance . distance 1176.03 573.6217861 2123.80 aircraft=boeing Test=NORMAL Variable Label N N Miss Median Minimum Maximum duration duration 118 0 149.0213824 144.9462185 63.3295206 287.0025157 118 59 5084746 60.0000000 43.0000000 79.0000000 no_pasg no_pasg speed around speed ground 118 102.7846998 100.4315876 88.6875803 132.7846766 102.8909526 118 100.8783383 90.0028586 132.9114649 speed_air height height 118 29.9578943 29.2481455 10.2552254 58.0817896 5.3106775 118 4.2084174 4.1941122 118 2633.03 distance distance 2899.88 1780.11 5381.96

CONCLUSION:

We have now cleaned the data using different steps and iterations and have made the data ready for the next step of data analysis in accordance with CRISP DM methodology.

CHAPTER 2- DATA EXPLORATION

GOAL:

Data exploration is the second step in the process of data analysis and is an informative process to gain insights into the data that has been cleaned in the previous step. The process basically consists of variable identification as predictor and target variables and forming meaningful relationships between the classes of variables to understand the impact of variables. This stage involves creating the question which needs to be answered and identifying the information necessary to answer that particular question.

The steps which have been used in this assignment are:

- 1. Plotting all the variables separated by the aircraft to understand the outliers and variation.
- 2. Plotting all the variables with distance to understand the effect of the variables on the landing distance.
- 3. Finding the Correlation between the variables to understand the relationship

The steps may be reiterated multiple times to get a cleaner dataset when more variables are given or larger datasets are considered.

STEP 1- Plotting all the variables separated by the aircraft to understand the outliers and variation.

We use **Proc boxplots** on the dataset across all the variables with the aircraft type of Boeing and Airbus and the **Insetgroup** statement to have the data displayed in the box plots. We find there is a huge difference in the minimum value for distance between the aircrafts with Boeing having a higher minimum landing distance which is causing a marked change in the distribution of data.

/*Plots for aircrafts*/

```
proc boxplot data=dataset3;
plot (duration no_pasg speed_ground speed_air height pitch
distance)*aircraft/
boxstyle = schematic
nohlabel;
insetgroup mean min max n nhigh nlow nout q1 q2 q3 range;
run;
```

STAT COMPUTING FINAL PROJECT SECTION 003

STAT COMPUTING FINAL PROJECT SECTION 003

STEP 2- Plotting all the variables with distance to understand the effect of the variables on the landing distance.

We use **Proc Sgscatter** and the **Plot function** to plot multiple plots of all the variables with distance in a single plot. We see a strong linear and positive relationship only for Speed_ground and Speed_air with the distance.

/*Plots for distance*/

proc sgscatter data=dataset3;
plot(duration no_pasg speed_ground speed_air height pitch
aircraft)*distance;

STEP 3- Finding the Correlation between the variables to understand the relationship.

We use **Proc Corr** to correlate the data by the variables to understand the correlation between the different variables pairwise. We find a strong correlation between distance and speed_air and speed_ground as expected from the plots. We also find that there is a correlation between speed ground and speed air which was shown before when understanding the missing data.

/*Correlation*/

proc corr data=dataset3;
var duration no_pasg speed_ground speed_air height pitch
distance;
Title Pairwise Correlation Coefficients;
run;

		Pal	wise Correl						
			The COR	R Proced	ure				
7 Var	iables:	duration no	_pasg speed	_ground	speed_air h	neight pitch	n distar	nce	
			Simple	Statistic	S				
Variable	N	Mean	Std Dev	Sum	Minimur	n Maxim	num L	Label	
duration	783 1	54.83361	48.33498	121235	5 41.9493	7 305.62	171 c	duratio	on
no_pasg	833	60.03962	7.49821	50013	3 29.0000	0 87.00	000 r	no_pa	sg
speed_ground	833	79.42010	18.87950	66157	7 27.7357	2 132.78	468 s	speed	_ground
speed_air	203 1	03.48504	9.73628	21007	7 90.0028	6 132.91	146 s	speed	_air
height	833	30.44206	9.77839	25358	6.2275	2 59.94	596 h	neight	
pitch	833	4.00607	0.52626	3337	7 2.2844	8 5.92	678 p	oitch	
distance	833	1522	895.41965	1267584	41.7223	1 5	382 d	distan	се
			rson Correl						
		l	Prob > r un Number of						
	duration	n no pas			speed air	height	n	itch	distance
duration	1.0000			05161	0.04454	0.01019			-0.05203
duration	1.0000	0.321	-	0.1491	0.5364	0.7758		2006	0.1458
	78	3 78	3	783	195	783		783	783
no_pasg	-0.0354			00563	-0.00616	0.04814	-0.01		-0.01729
no_pasg	0.321			0.8710	0.9305	0.1651		5776	0.6182
	78			833	203	833		833	833
speed_ground speed ground	-0.0516 0.149		-	00000	0.98794 <.0001	-0.05271 0.1285	-0.04	1340 2108	0.86078
opoed_ground	78			833	203	833		833	833
speed_air	0.0445			98794	1.00000	-0.07933	-0.03	3927	0.94210
speed_air	0.536			<.0001		0.2606	0.5	5780	<.0001
	19			203	203	203		203	203
height	0.0101			05271	-0.07933	1.00000		2180	0.09994
height	0.775 78:			0.1285 833	0.2606	833	0.5	833	0.0039 833
pitch	-0.0457			04340	-0.03927	0.02180	1.00	0000	0.08633
pitch	0.200			0.2108	0.5780	0.5299	1.50	,500	0.0127
	78	3 83	3	833	203	833		833	833
distance	-0.0520			86078	0.94210	0.09994		3633	1.00000
distance	0.145			<.0001	<.0001	0.0039	0.0	127	000
	78	3 83	3	833	203	833		833	833

CONCLUSION:

We have now explored the data in accordance with CRISP DM methodology using different steps and iterations and have understood the variables which have to be modelled to understand the relationship with landing distance which are- speed_air, speed_ground, height and pitch as their p values are less than 0.05 making statistically significant relationship.

CHAPTER 3 AND CHAPTER 4- MODELING AND MODEL CHECKING

GOAL:

Modeling is the third step in the process of data analysis and is used to model the predictor variables which are found to have an impact on the target variables found in the data exploration stage. In this step, typically various modeling techniques are selected and then applied and all the parameters calculated are then calibrated to obtain the optimal values. There are many modeling techniques which can be applied depending on the number of variables and the extent of data that is being provided.

The steps which have been used in this assignment are:

- 1. Regression Analysis
- 2. Regression Analysis using significant variables
- 3. Regression Analysis using transformed variable
- 4. Check the distribution of residuals by plotting to check for independence
- 5. Check if the distribution of residuals is normally distributed
- 6. Perform hypothesis testing on the residuals

STEP 1- Using regression analysis on the distance variable with respect to all variables.

We use **Proc Reg** to perform regression analysis for distance as response variable and all the remaining variables except aircraft as the predictor variables.

We find that only 195 values were considered due to lot of missing values.

We find p values below 0.05 level of significance for aircraft, speed_air and height showing statistically significant relationship with distance, which is also true from the correlation matrix. But we find no relation for speed_ground as found from correlation matrix as speed_ground and speed_air is highly correlated.

We use speed ground for further analysis as it does not have any missing values.

We find that adjusted R square value is 0.9738 i.e. 97.38% of the variability is explained by this model.

/*Regression Analysis*/

```
data dataset4;
set dataset3;
if aircraft='boeing' then aircraftcode = 0;
else aircraftcode = 1;
proc reg data=dataset4;
model distance= aircraftcode duration no_pasg speed_ground
speed_air height pitch;
title Regression analysis of the data set;
run;
```

STAT COMPUTING FINAL PROJECT SECTION 003

Regression analysis of the data set The REG Procedure Model: MODEL1 Dependent Variable: distance distance 833 **Number of Observations Read** Number of Observations Used 195 Number of Observations with Missing Values 638 Analysis of Variance Sum of Squares Mean Square F Value Model 7 18613611 130295276 1029.64 <.0001 Error 187 3380533 18078 Corrected Total 194 133675809 134.45339 R-Square 0.9747 Dependent Mean 2784.49158 Adj R-Sq 0.9738 Coeff Var 4.82865 Parameter Estimates Parameter Estimate Standard Error Variable Label DF t Value Pr > |t| Intercept Intercept -5791.65727 163.23457 -35.48 <.0001 -437.94277 aircraftcode 21.26212 -20.60 <.0001 0.12763 0.20394 0.63 0.5322 duration duration no_pasg no_pasg -1.98117 1.37797 -1.44 0.1522 speed_ground speed_ground -3.54637 6.41601 -0.55 0.5811 85.54689 6.52207 13.12 <.0001 speed_air speed_air height height 13.67560 1.03856 13.17 <.0001 -0.72 0.4694 pitch -13.48974 18.60775 pitch Regression analysis of the data set The REG Procedure Model: MODEL1 Dependent Variable: distance distance

STEP 2- Using regression analysis using only significant variables.

We use **Proc Reg** using only the three significant variables in the model. We find that 833 observations are now taken into account. The adjusted R square value predicts about 84% of the variability. We find all the variables are statistically significant for distance.

/*Second iteration using significant variables*/

proc reg data=dataset4; model distance= aircraftcode speed_ground height; title Regression analysis of significant variables; run;

STEP 3- Regression analysis using transformed variable

We use a new transformed variable for speed_ground which is a square of the variable in accordance with the transformation principles. We then use **Proc Reg** on the dataset with the four variables to achieve an optimum model. We get an adjusted R square of 97.60% to explain the variability for this model. We also find our assumptions of no relationship in residuals satisfied in the model. The final regression equation can be summed up as

STAT COMPUTING FINAL PROJECT SECTION 003

y(distance)= $2230.448-399.37x_1+0.69815x_2^2-69.97x_2+13.44x_3$ where x_1 = make of an aircraft x_2 = ground speed of the aircraft x_3 = height of the aircraft when passing over the run way.

/*Third Iteration to achieve randomness of residuals*/

data dataset5;
set dataset4;
speed_ground_squared = speed_ground**2;
proc reg data=dataset5;
model distance= aircraftcode speed_ground_squared speed_ground

title Regression analysis adjusting for speed_ground;
run;

Regression analysis adjusting for speed_ground

The REG Procedure
Model: MODEL1
Dependent Variable: distance distance

Number of Observations Read	833
Number of Observations Used	833

Analysis of Variance										
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F					
Model	4	651139538	162784884	8456.68	<.0001					
Error	828	15938385	19249							
Corrected Total	832	667077923								

Root MSE	138.74169	R-Square	0.9761
Dependent Mean	1521.70929	Adj R-Sq	0.9760
Coeff Var	9.11749		

	Parameter Estimates											
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t						
Intercept	Intercept	1	2230.44821	66.59631	33.49	<.0001						
aircraftcode		1	-399.37924	9.76662	-40.89	<.0001						
speed_ground_squared		1	0.69815	0.01019	68.50	<.0001						
speed_ground	speed_ground	1	-69.97520	1.65206	-42.36	<.0001						
height	height	1	13.44866	0.49270	27.30	<.0001						

STEP 4: Check the distribution of residuals by plotting

We can check the distribution of residuals by plotting all the residual against all the different variables using scatter plots. We don't find any relationship being explained by the residuals which satisfies the first condition of error terms being independent.

/*Plotting the residuals*/

proc sgscatter data=diagnostics;
plot(duration no_pasg speed_ground speed_air height pitch
aircraft distance)*residual;
run;

STEP 5: Check if the distribution of residuals is normally distributed

We use **Proc Chart** function on the diagnostic data and plot the histogram of the residuals which will test for normality of the graphs and is found to be normal.

/*Plot the histogram of residuals*/

```
proc chart data= diagnostics;
hbar residual;
run;
```


STEP 6: Perform hypothesis testing on the residuals

We use **Proc TTest** to test the residuals for the normality and for mean=0. We find that the data is normally distributed and that the p value is around 1 which helps us to accept the null hypothesis of mean=0.

```
/* T Test*/
proc ttest data=diagnostics;
var residual;
run;
```


CONCLUSION:

We have now modeled and checked the model in accordance with CRISP DM methodology using different steps and iterations. We have also reframed our model with transformation to account for more variability and to also use predictor variables to define the relationship instead of the residuals. We find all the assumptions of the regression model satisfied which is

- 1. The error terms are independent.
- 2. The error terms are normally distributed.
- 3. Their mean is zero
- 4. They have constant variance.