## Problem 3.2

So we first need to prove that matrix  $\Psi = \Phi(\Phi^{\top}\Phi)^{-1}\Phi^{\top}$  projects any N-dimensional vector v onto the subspace spanned by M columns of  $\Phi$  (lets denote this subspace as  $S(\Phi)$ ). Here we just assume  $(\Phi^{\top}\Phi)^{-1}$  exists (i.e.  $\Phi^{\top}\Phi$  is invertible) since it is a part of the definition of the matrix given in the problem condition.

Let us consider any N-dimensional vector v. We need to prove that there exist  $\alpha_1 \dots \alpha_M \in \mathbb{R}$  such that  $\Psi v = \alpha_1 \varphi_1(D) + \dots + \alpha_M \varphi_M(D)$ . If we denote  $\alpha = (\alpha_1, \dots, \alpha_M)^\top$ , then we need to prove there exists M-dimensional vector  $\alpha$  such that  $\Phi \cdot \alpha = \Psi v$ . We notice now that  $\alpha = (\Phi^\top \Phi)^{-1} \Phi^\top v$  is the very vector we are looking for, so it exists, so we proved that  $\Psi$  indeed projects v onto the subspace of columns of  $\Phi$ .

Lets us now consider  $w_{ML} = (\Phi^{\top}\Phi)^{-1}\Phi^{\top}t$ . We need to prove  $y = \Phi w_{ML}$  is an orthogonal projection of t onto the subspace of columns of  $\Phi$ . This means, we need to prove  $y - t \perp S(\Phi)$ . This is the same as proving that  $\Phi(\Phi^{\top}\Phi)^{-1}\Phi^{\top}t - t \perp S(\Phi)$ .

Consider left part of the statement and multiply it by  $\Phi^{\top}$ . This gives us  $\Phi^{\top}(\Phi(\Phi^{\top}\Phi)^{-1}\Phi^{\top}t - t) = (\Phi^{\top}\Phi)(\Phi^{\top}\Phi)^{-1}\Phi^{\top}t - \Phi^{\top}t = 0$ . So, we see that all the columns of  $\Phi$  are orthogonal with  $\Phi(\Phi^{\top}\Phi)^{-1}\Phi^{\top}t - t$ , which means  $\Phi(\Phi^{\top}\Phi)^{-1}\Phi^{\top}t$  is an orthogonal projection of t onto  $S(\Phi)$ .

## Problem 3.3

Since  $w^*$  is extremum, we can equate  $E_D$  gradient to zero:

$$\nabla E_D = -\sum_{n=1}^{N} r_n (t_n - w^{\top} \varphi(x_n)) \varphi^{\top}(x_n) = 0$$
(1)

Let us consider 
$$R = \begin{pmatrix} r_1 & 0 & \dots & 0 \\ 0 & r_2 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & r_n \end{pmatrix}$$

We can rewrite equation 1 in the following way:

$$\nabla E_D = -\Phi^\top R t + \Phi^\top R \Phi w = 0 \tag{2}$$

Thus we obtain

$$w^* = (\Phi^\top R \Phi)^{-1} \Phi^\top R t \tag{3}$$

We can consider the matrix R, one the one hand, as inverse data-dependent noise variance: different  $x_i$  will have different correspondent  $r_i$ , and the smaller  $r_i$  is, the smaller is the impact of  $i_{th}$  sample. So,  $r_i$  can be used as our confidence in the  $t_i$  value.

On the other hand, at least when  $r_i$  is integer, it can be considered as the number of times sample  $(x_i, t_i)$  was present in the dataset.

## Problem 3.4

Let us average error function over all possible noise values, i.e. let us compute it's expected value with respect to added noise  $\{\epsilon_i\}$ . Lets us denote  $x'_n = x_n + \epsilon_n$  - input variable with added noise.

$$E[E_D] = E\left[\frac{1}{2} \sum_{n=1}^{N} \{y(x'_n, w) - t_n\}^2\right] =$$
(4)

$$= E\left[\frac{1}{2}\sum_{n=1}^{N} \{w_0 + \sum_{i=1}^{D} w_i(x_{ni} + \epsilon_{ni}) - t_n\}^2\right] =$$
(5)

$$= E\left[\frac{1}{2}\sum_{n=1}^{N} \{w_0 + \sum_{i=1}^{D} w_i(x_{ni} + \epsilon_{ni}) - t_n\}\right] =$$
(6)

$$= \frac{1}{2} \sum_{n=1}^{N} \mathbb{E}[\{w_0 - t_n + \sum_{i=1}^{D} w_i (x_{ni} + \epsilon_{ni})\}^2] =$$
 (7)

$$= \frac{1}{2} \sum_{n=1}^{N} E[(w_0 - t_n)^2 + (w_0 - t_n) \sum_{i=1}^{D} w_i (x_{ni} + \epsilon_{ni}) + \sum_{i,j=1}^{D} w_i w_j (x_{ni} + \epsilon_{ni}) (x_{nj} + \epsilon_{nj})] =$$
(8)

$$= \frac{1}{2} \sum_{n=1}^{N} \{ (w_0 - t_n)^2 + (w_0 - t_n) \sum_{i=1}^{D} w_i x_{ni} + \sum_{i,j=1}^{D} w_i w_j (x_{ni} x_{nj} + \delta_{ij} \sigma^2) \} =$$
(9)

$$= \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, w) - t_n\}^2 + \frac{N\sigma^2}{2} w^{\top} w$$
 (10)

So, as expected, we see that error function, averaged over noise values, gives us weight-decayed sum-of-squares error function over noise-free input variables with omitted bias in regularization term, so minimizing the latter gives the same result as minimizing the former.