Cormac O'Malley

Mobile: +44 7807 489867 Email: c.omalley19@imperial.ac.uk

EDUCATION

PhD, Efficient and Secure Operation of Low Carbon Power Systems

Aug 2019 - Jan 2023

Imperial College London, Dept of Electrical and Information Engineering

- Designing and implementing novel methods (convex optimisation, ML/RL) to solve decarbonization challenges. Supervised by Prof Goran Strbac, Dr Fei Teng & Dr Luis Badesa.
- Extensive model development work in Python (and to a lesser extent C++), with collaborative code development (git, conda).
- Experienced Python programmer (Jupyter, Pandas, matplotlib, scipy.stats), using optimisation (PYOMO, Gurobi, MOSEK) and more recently ML/RL (fastAl, PyTorch (limited)) techniques and libraries to solve problems relating to the energy transition.
- Achieved first author publication of two journal papers on optimisation published in IEEE Trans on Power Systems, a top journal with an acceptance rate of less than 15%.
- First author of an additional 1 journal and 1 conference paper on optimisation, and 1 journal paper on RL. Requires proof via simulation, then communication of findings (LaTeX) convincingly to expert reviewers and audience.
- Delivered research to schedule and presented findings to funders on various large research projects: Innovate UK funded (£4mil) project E4Future; EPSRC funded (£7mil) project IDLES; and PhD funding body National Grid ESO.

MENG, Engineering Science: First Class (72.3%)

2014-2018

University of Oxford, Pembroke College

- 77% in final year research project.
- Achieved the top mark in the year for all power system modules.
- Academic Scholar and Paul Martins BP Engineering Scholarship, both awarded for academic achievement.

EXPERIENCE

Energy Engineer Feb-May 2022

Ministry for Business Energy and Industrial Strategy (BEIS)

- Planned and produced business case (approved by treasury) to justify spending £3.75m to set up a
 UK centre for AI in energy.
- Significantly upgraded an internal model (Python PYOMO, git), enabling the co-optimisation of renewable generation capacity, storage assets and EV charger types under different weather and demand scenarios. It is still actively being used by BEIS to inform policy decisions.
- Carried out research on the marginal value of bidirectional electric vehicle chargers over unidirectional, presented conclusions to over 40 senior civil servants

Postgraduate Teaching Assistant

2020-2022

Imperial College London

- Devised, supervised, and assessed a 1-year masters student project. Research was a success and resulted in a full journal paper (currently under peer review).
- Assessed and marked five master student theses.

OTHER RELEVANT EXPERIENCE

Founder and Host of the Podcast: Low Carbon Conversations Imperial College's Energy Futures Lab

2021

- Produced and launched podcast focussed on discussing the technical solutions to overcome UK decarbonisation challenges. Available on Spotify and Apple Podcasts.
- Accomplished average listenership of over 1,500 people per podcast.
- Demonstrates ability to explain complicated energy transition topics in simple engaging words.
- Organization and networking ability to find expert guests, graphic designer, and sound producer.

PUBLICATIONS

O'Malley, C., de Mars, P., & Strbac, G. (2022). Reinforcement Learning vs Convex Optimisation for Scheduling Power Plants in Low Carbon Systems: Comparison, Hybridisation and Opportunities. (*Writing*)

O'Malley, C., Badesa, L., Teng, F., & Strbac, G. (2022). Frequency Response from Aggregated V2G Chargers With Uncertain EV Connections. IEEE Transactions on Power Systems, available here.

O'Malley, C., Badesa, L., Parajeles, M., & Strbac, G. (2022). Chance-constrained allocation of UFLS candidate feeders under high penetration of distributed generation. International Journal of Electrical Power & Energy Systems (IJEPES).

O'Malley, C., Badesa, L., Teng, F., & Strbac, G. (2021). Probabilistic Scheduling of UFLS to Secure Credible Contingencies in Low Inertia Systems. IEEE Transactions on Power Systems, available here.

Imperial College London, Nissan Motor GB, E.ON Drive, (2021). The Drive Towards a Low-Carbon Grid: Unlocking the Value of Vehicle-to-Grid Fleets in Britain. White Paper, available here">here.

O'Malley, C., Aunedi, M., Teng, F., & Strbac, G. (2020). Value of Fleet Vehicle to Grid in Providing Transmission System Operator Services. IEEE EVER Conference, available here.