Comparaison de plusieurs moyennes

L'analyse de variance (ANOVA) permet de comparer **les moyennes de plusieurs échantillons**. Les conditions préalables sont :

- les échantillons soient indépendants
- les distributions des mesures étudiées (les échantillons) soient issues de distributions parentes normales: *normalité des données*.
- les échantillons sont extraits de distributions parente de même variance (les variances observées sont homogènes): homogénéité des variances.

Remarque; ces conditions sont identiques à celles du test de Student dans la comparaison de 2 moyennes.

Si l'une de ces hypothèses n'est pas remplie, l'utilisation de l'ANOVA risquerait d'aboutir à des conditions erronées. L'exemple suivant est repris d'un cours consultable sur internet (http://www.univ-tours.fr/ash/psycho)

Analyse de variance à 1 facteur:

Supposons que l'on étudie les notes obtenues à une épreuve de math par 4 écoles différentes.

Groupes	A	В	С	D	
Notes	x_{A1}	x_{B1}	x_{C1}	x_{D1}	
			x_i		
Effectif	n_A	n_{B}	n_{C}	$n_{ m D}$	$N = n_A + n_B + n_C + n_D$
Total	$T_{\mathbb{A}}$	T_{B}	$T_{\mathbb{C}}$	T_{D}	$T_{G} = T_{A} + T_{B} + T_{C} + T_{D}$
Moyenne	$-{x_A}$	x_B	$\overset{-}{x_C}$	\bar{x}_D	$\bar{x}_G = T_G/N$

Les trois conditions sont supposées vérifiées :

- « Les écoles sont indépendantes »
- La variable (note en math) se distribue normalement dans les ensembles parents des 4 classes.
- Les ensembles parents des 4 classes ont les mêmes variances.

Les hypothèses statistiques:

(H0) : moyennes identiques $\mu_A = \mu_B = \mu_C = \mu_D = \mu_G$

 (H_1) : Au moins l'une des moyennes est différentes de $\,\mu_G$

La solution repose sur la décomposition de la variation de la variable en une variation 'intra' groupe et une variation dite 'inter' groupe (variation ou somme des carrés).

La variation totale:

$$SC_T = \sum_{i=1}^{N} (x_i - \overline{x_G})^2$$

La variation entre les classes (variation inter-groupe ou factorielle)

$$SC_F = n_A(\overline{x_A} - \overline{x_G})^2 + \dots + n_D(\overline{x_D} - \overline{x_G})^2$$

La variation à l'intérieur de chaque classe (variation intra-groupe ou résiduelle)

$$SC_r = \sum_{i=1}^{n_A} (x_{Ai} - \overline{x_A})^2 + \dots + \sum_{i=1}^{n_D} (x_{Di} - \overline{x_D})^2$$

On en déduit les variances (ou carrés moyens):

$$CM_T = \frac{SC_T}{N-1}$$

$$CM_F = \frac{SC_F}{k-1}$$

$$CM_r = \frac{SC_r}{N - k}$$

Remarques:

$$SM_T = SM_F + SM_r$$

$$ddl_T = ddl_F + ddl_r$$

La statistique de décision:

Le rapport entre la variance inter-groupe et la variance intra-groupe suit une loi de Fisher Snédécor avec les degrés de liberté (ddl Inter, ddl Intra).

$$F = \frac{\text{variance inter}}{\text{variance intra}} = \frac{CM_F}{CM_r}$$

A partir des résultats que l'on observe sur les échantillons, on calcule une valeur de F et on compare cette valeur à une valeur critique (choisie avec un certain seuil, généralement 5% ou 1%).

- Si le f que l'on calcule est inférieur au f critique alors on est dans la zone de non rejet de H₀, le test est non significatif.
- Par contre si le f calculé est supérieur au f critique alors on est dans la zone de rejet de H₀. On accepte donc H₁ et on en conclut qu'une moyenne diffère des autres avec le risque d'erreur α. Il y a un effet du facteur étudié.

Source de variation	Somme des carrés des écarts	Nombre de ddl	Carrés moyens (variances)	F
Entre les groupes (inter)	$SC_F = \sum_{j=1}^k \left(\frac{T_j^2}{n_j}\right) - \frac{T_G^2}{N}$	k-1	$CM_F = \frac{SC_F}{k-1}$	$\frac{CM_F}{CM_r}$
A l'intérieur des groupes (intra)	$SC_r = \sum_{i=1}^{N} x_i^2 - \sum_{j=1}^{k} \left(\frac{T_j^2}{n_j}\right)$	N-k	$CM_r = \frac{SC_r}{N - k}$	
Total	$SC_T = \sum_{i=1}^{N} x_i^2 - \frac{T_G^2}{N}$	N-1		

Exemple: On reprend l'exemple précédent avec les notes suivantes

Groupes	Α	В	С	D
	6	8	7	4
	3	8	4	3
	7	5	8	6
Notes	5	6	6	3
	4	7	5	
		6	9	
		2		

Supposons que nous ayons vérifié les hypothèses de normalité et d'homogénéité des variances pour les 4 groupes.

Tester l'effet du facteur « écoles » sur les notes obtenues en math.

1/ La méthode utilisée sera bien entendu une méthode d'analyse de variance. Posez les hypothèses nulle et alternative à tester.

2/ Faites ensuite tous les calculs nécessaires :

Source de variation	Somme des carrés des écarts	Nombre de ddl	Carrés moyens (variances)	F
Entre les groupes				
(inter)				
A l'intérieur des				
groupes (intra)				
				-
Total				

F de Snédécor avec 3 et 18 ddl:

$$p(F < 3.16) = 0.95$$
 et $p(F < 5.09) = 0.99$

$$p(F < 5.09) = 0.99$$

3/ Conclusion