世界知的所有権機関国 際 事 務 局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類7 C07D 217/06, 409/12, 409/14, 405/12, 407/12, 401/12, 309/14, A61K 31/4025, 31/381, 31/44, 31/352, 31/4709, 31/351, 31/661, 31/4725, A61P 31/18, C07F 9/655

(11) 国際公開番号 A1

WO00/68203

(43) 国際公開日

2000年11月16日(16.11.00)

(21) 国際出願番号

PCT

PCT/JP00/02825

(22) 国際出願日

2000年4月28日(28.04.00)

(30) 優先権データ

特願平11/127724

1999年5月7日(07.05.99)

(71) 出願人 (米国を除くすべての指定国について) 武田薬品工業株式会社 (TAKEDA CHEMICAL INDUSTRIES, LTD.)[JP/JP] 〒541-0045 大阪府大阪市中央区道修町四丁目1番1号

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

白石 充(SHIRAISHI, Mitsuru)[JP/JP]

〒661-0002 兵庫県尼崎市塚口町4丁目33番地の26 Hyogo, (JP)

馬場昌範(BABA, Masanori)[JP/JP]

〒891-0103 鹿児島県鹿児島市皇徳寺台3丁目54-19

Kagoshima, (JP)

瀬戸雅樹(SETO, Masaki)[JP/JP]

〒569-1142 大阪府高槻市宮田町1丁目7番1-202号 Osaka, (JP)

神崎直之(KANZAKI, Naoyuki)[JP/JP]

〒567-0867 大阪府茨木市大正町2番15-203 Osaka, (JP)

西村 紀(NISHIMURA, Osamu)[JP/JP]

〒305-0812 茨城県つくば市大宇東平塚586番地2 Ibaraki, (JP)

(74) 代理人

弁理士 高橋秀一,外(TAKAHASHI, Shuichi et al.) 〒532-0024 大阪府大阪市淀川区十三本町2丁目17番85号

武田薬品工業株式会社 大阪工場内 Osaka, (JP)

AE, AG, AL, AM, AU, AZ, BA, BB, BG, BR, BY, (81) 指定国 CA, CN, CR, CU, CZ, DM, DZ, EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LV, MA, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, TR, TT, UA, US, UZ, VN, YU, ZA, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), ARIPO特 許 (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), ユーラシ ア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM)

添付公開書類

国際調査報告書

CYCLIC COMPOUNDS AND USES THEREOF

環状化合物およびその用途 (54)発明の名称

> $-x^{1}-w-x^{2}-z^{1}-z^{2}-R^{2}$ (1)

Compounds of general formula (1) or salts thereof, exhibiting preventive and therapeutic effects against HIV infections wherein R1 is an optionally substituted five- or six-membered ring group; XI is a free valency or the like; W is a divalent group represented by, e.g., general formula (2) (wherein A and B are each an optionally substituted five- to seven-membered ring; E1 and E4 are each optionally substituted carbon or the like; E₂ and E₃ are each oxygen or the like; and a and b are each a single bond or a double bond); X² is a divalent group constituting a straight chain moiety; Z^1 is a divalent cyclic group or the like; Z^2 is a free valency or the like; and Z^2 is optionally substituted amino or the like.

HIV感染症の予防・治療効果を有する、式

$$R^{1} - X^{1} - W - X^{2} - Z^{1} - Z^{2} - R^{2}$$

[式中、R'は置換されていてもよい 5 ~ 6 員環基を示し、X'は結合手などを示し、Wは式

(式中、環Aおよび環Bはそれぞれ置換されていてもよい5~7員環を示し、EiおよびEiはそれぞれ置換されていてもよい炭素原子など、EzおよびEiはそれぞれ酸素原子などを示し、aおよびbはそれぞれ単結合または二重結合であることを示す)で表される2価の基などを示し、X²は直鎖部分を構成する2価の基などを示し、Z¹は2価の環状基などを示し、Z²は結合手などを示し、R²は置換されてもよいアミノ基などを示す]で表される化合物またはその塩を提供する。

RCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

AE アラブ育長国連邦 DM ドミニカ LC セントンア SD スーダン AL アルグニア EE エストニア LI リヒテンシュタイン SE スウェーデン AM アルグニア EF スペイン LK スリッア SI スロヴェニア AI オーストリア FI フィンランド LR リペリア SI スロヴェニア AI オーストリア FI フィンランド LR リペリア SK スロヴェニア AI オーストリア FR フランス LS レソト SK スロヴェニア AI オーストリフ FR フランス LS レソト SK スロヴェニア SSL シェガボニル AI オーストリリア GB 英国 LU ルクセンブルグ SN オロヴェニア SSL シェガボニア SSL シェガ・エア S

明細書

環状化合物およびその用途

5 技術分野

本発明は、CCR拮抗作用、特にCCR5拮抗作用を有する新規環状化合物およびその用途に関する。

背景技術

- 10 近年、AIDS(後天性免疫不全症候群)の治療法としてHIV(ヒト免疫不全ウイルス)プロテアーゼ阻害剤が開発され、従来から使用されてきた2つのHIV逆転写酵素阻害剤と組み合わせることにより、AIDSの治療が格段に進歩したが、AIDS撲滅のためには未だ十分とは言えず、さらに別の作用機構に基づく新しい抗AIDS薬の開発が望まれている。
- HIVが標的細胞に侵入する際のレセプターとして、CD4が以前から知られ 15 ているが、最近になってマクロファージ指向性HIVのセカンドレセプターとし てCCR5、T細胞指向性のセカンドレセプターとしてCXCR4と呼ばれる7 回膜貫通型でGタンパク質共役型ケモカインレセプターがそれぞれ見い出されて おり、これらのケモカインレセプターがHIVの感染成立・伝播に必須の役割を 果たしていると考えられている。事実、度重なる暴露にもかかわらずHIV感染 20 に抵抗性を示したヒトは、そのCCR5遺伝子がホモに欠失した変異をもってい たとの報告もある。したがって、CCR5拮抗物質は、新しい抗HIV薬となる ことが期待され、CCR5拮抗作用を有する新規アニリド誘導体を合成した例が、 PCT/JP98/05708 (WO99/32100),特願平10-234 388 (WO00/10965), 特願平10-363404 (PCT/JP9 25 9/07148) などの特許出願に記載されているが、現在までにCCR5拮抗 物質がAIDSの治療薬として商品化された例は未だ報告されていない。

発明の開示

本発明は、CCR拮抗作用、特にCCR5拮抗作用に基づき、HIV感染症、特にAIDSの予防・治療薬として有用な新規二環性化合物を提供するものである。

本発明者らは、CCR5拮抗作用を有する化合物につき鋭意検討した結果、下記式(I)で表わされる化合物又はその塩(以下、化合物(I)と称することがある)が、CCR拮抗作用、特に優れたCCR5拮抗作用を示すなどの臨床上望ましい医薬効果を有することを見い出し、これに基づいて本発明を完成した。

すなわち、本発明は、

(1) 式 (I)
$$R^{1} - X^{1} - W - X^{2} - Z^{1} - Z^{2} - R^{2}$$

[式中、 R^1 は置換されていてもよい $5\sim 6$ 員環基を示し、 X^1 は結合手または 直鎖部分を構成する原子数が 1 ないし 4 個である 2 価の基を示し、W は式

(式中、環Aおよび環Bはそれぞれ置換されていてもよい5~7員環を示し、E1およびE4はそれぞれ置換されていてもよい炭素原子または置換されていてもよい窒素原子を示し、E2およびE3はそれぞれ置換されていてもよい炭素原子、置換されていてもよい窒素原子、酸化されていてもよい硫黄原子または酸素原子を示し、AおよびBはそれぞれ単結合または二重結合であることを示す)で表さ

れる2価の基を示し、X²は直鎖部分を構成する原子数が1ないし4個である2 価の基を示し、Z¹は結合手または2価の環状基を示し、Z²は結合手または直鎖 部分を構成する炭素原子数が1ないし4個である2価の基を示し、R²は(1) 置換されていてもよく、窒素原子が4級アンモニウム化またはオキシド化されて いてもよいアミノ基、(2)置換されていてもよく、環構成原子として硫黄原子 または酸素原子を含有していてもよく、窒素原子が4級アンモニウム化またはオ キシド化されていてもよい含窒素複素環基、(3)硫黄原子を介して結合する基、

10 (式中、kは0または1を示し、kが0の時、燐原子はホスホニウム塩を形成していてもよく、R⁵,およびR⁶,はそれぞれ置換されていてもよい炭化水素基、置換されていてもよい水酸基または置換されていてもよいアミノ基(好ましくは、置換されていてもよい炭化水素基または置換されていてもよいアミノ基;さらに好ましくは、置換されていてもよい炭化水素基)を示し、R⁵,およびR⁶,は互いに結合して隣接する燐原子とともに環状基を形成していてもよい)で表される基、(5)置換されていてもよいアミジノ基または(6)置換されていてもよいグアニジノ基を示す]で表される化合物[但し、式 R¹-X¹-W-X²-Z¹-Z²- で表される基が式

20 (式中、 R^1 は前記と同意義を示し、W'は式

(式中、環A'は置換されていてもよい5~6員芳香環を示し、Xは置換されていてもよい炭素原子、置換されていてもよい窒素原子、硫黄原子または酸素原子

を示し、環B'は置換されていてもよい $5\sim7$ 員環を示す)で表される二価の基を示し、Zは直鎖部分を構成する炭素原子数が1ないし4個である2価の基を示す)で表される基を示すとき、 R^2 は置換されていてもよいアミジノ基または置換されていてもよいグアニジノ基を示し;式 $R^1-X^1-W-X^2-Z^1-Z^2-Z^2$

5 で表される基が式

$$R^{1} X^{1} \longrightarrow A^{"} \longrightarrow B^{"} \longrightarrow CONQ^{2} \longrightarrow Q^{3} \longrightarrow Q^{3}$$

(式中、 R^1 および X^1 は前記と同意義を示し、 $環 A^n$ は置換されていてもよいベンゼン環を示し、 Q^1 は $環 B^n$ が $5 \sim 7$ 員環を形成する二価の基を示し、 Q^2 は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示し、 Q^3 は結合手または二価の基を示す)で表される基を示すとき、 R^2 は式

$$-\mathbb{P} < \mathbb{R}^{5'}$$

10

15

20

(式中、 R^{5} "および R^{6} "はそれぞれ置換されていてもよい水酸基を示し、 R^{5} "および R^{6} "は互いに結合して隣接する燐原子とともに環状基を形成していてもよい)で表される基を示さない]またはその塩;

- (2) 前記(1) 記載の化合物またはその塩のプロドラッグ;
- (3) R^1 がそれぞれ置換されていてもよいベンゼン、フラン、チオフェン、ピリジン、シクロペンタン、シクロヘキサン、ピロリジン、ピペリジン、ピペラジン、モルホリン、チオモルホリンまたはテトラヒドロピランから水素原子 1 個を除いて形成される基である前記(1)記載の化合物;
- (4) R 1 が置換されていてもよいフェニルである前記(1)記載の化合物;
- (5) X^1 が結合手、 $-(CH_2)_a [a't1 \sim 4$ の整数を示す]、 $-(CH_2)_a X^3 [b't0 \sim 3$ の整数を示し、 X^3 は置換されていてもよいイミノ基、カルボニル基、酸素原子または酸化されていてもよい硫黄原子を示す]、-CH

=CH-、 $-C\equiv C-$ 、-CO-NH-または $-SO_2-NH-$ である前記 (1) 記載の化合物;

- (6) X¹が結合手である前記(1)記載の化合物:
- (7) X^1 が- (CH_2) $_1$ X^3 [b] は0 \sim 3 の整数を示し、 X^3 は置換され ていてもよいイミノ基、カルボニル基、酸素原子または酸化されていてもよい硫 黄原子を示す] である前記(1)記載の化合物;
 - (8) 環Aがそれぞれ置換されていてもよいフラン、チオフェン、ピロール、ピリジン、ピランまたはベンゼンである前記(1)記載の化合物;
 - (9) 環Aが置換されていてもよいベンゼンである前記(1)記載の化合物;

10 (10) 環Bが式

[式中、 E_3 は置換されていてもよい炭素原子または置換されていてもよい窒素原子を示し、 E_4 は置換されていてもよい炭素原子または窒素原子を示し、 E_4 は置換されていてもよい炭素原子または窒素原子を示し、 E_4 は置換されていてもよい炭素原子または窒素原子を示し、 E_4 は置換されていてもよい炭素原子または窒素原子を示し、 E_4 は E_4 は E_4 は E_4 E_5 に E_4 は E_4 E_5 $E_$

- (11) Yが-Y'-(CH₂)₂-[Y'は-S(O)_m-(mは0~2の整数を示す)、
- 20 -O-、-NH-または $-CH_2-$ を示す] である前記(10)記載の化合物;
 - $(1\ 2)\ E_3$ が置換されていてもよい炭素原子を示し、 E_4 が置換されていてもよい炭素原子を示し、 B_4 が置換されていてもよい皮膚を
 - $(1\,3)$ X^2 が- (CH_2) $_a$ [a' は $1\sim 4$ の整数を示す] 、- (CH_2) $_b$ X^3 [b' は $0\sim 3$ の整数を示し、 X^3 は置換されていてもよいイミノ基、カルボニル基、酸素原子または酸化されていてもよい硫黄原子を示す] 、- CH=C H- 、- $C\equiv C-$ 、- CO-NH- または- SO_2-NH- である前記(1)記

載の化合物:

- (14) X²が-CO-NH-である前記(1)記載の化合物;
- (15) Z¹が(1) 結合手または(2) それぞれ置換されていてもよいベンゼン、フラン、チオフェン、ピリジン、シクロペンタン、シクロヘキサン、ピロリジン、ピペリジン、ピペラジン、モルホリン、チオモルホリンまたはテトラヒドロピランから水素原子2個を除いて形成される2価の環状基である前記(1)記載の化合物:
 - (16) Z¹が(1) 結合手または(2) それぞれ置換されていてもよいベンゼン、シクロヘキサンまたはピペリジンから水素原子2個を除いて形成される2価の環状基である前記(1)記載の化合物;
 - (17) 2¹が置換されていてもよいフェニレンである前記(1)記載の化合物:
 - (1.8) Z^2 が結合手または置換されていてもよい C_{1-3} アルキレンである前記
 - (1) 記載の化合物;
 - (19) $Z^2 \dot{m} Z' (CH_2)_n [Z'\dot{u} CH(OH) . C(O) s.c.$
- 15 CH_2 を示し、n は $0 \sim 2$ の整数を示す] で表される骨格を有し、任意のメチレン基に置換基を有していてもよい二価の基である前記(1)記載の化合物;
 - (20) Z²が結合手またはメチレンである前記(1)記載の化合物;
 - (21) Z^1 が6員の2価の環状基であり、 Z^2 の置換位置が X^2 のパラ位である前記(1)記載の化合物;
- 20 (22) R²が(1) 置換されていてもよく、窒素原子が4級アンモニウム化またはオキシド化されていてもよいアミノ基、(2) 置換されていてもよく、環構成原子として硫黄原子または酸素原子を含有していてもよく、窒素原子が4級アンモニウム化またはオキシド化されていてもよい含窒素複素環基、(3) 置換されていてもよいアミジノ基または(4) 置換されていてもよいグアニジノ基であ
- 25 る前記(1)記載の化合物;
 - (23) R 2 が置換されていてもよいアミノ基である前記(1)記載の化合物;
 - (24) R 2 が置換されていてもよいアミジノ基または置換されていてもよいグアニジノ基である前記(1)記載の化合物;
 - (25) N-[4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミ

[-1] [-1] [-1] [-1] [-1] [-1] [-1] [-1] [-1] [-1]1-ジオキソー2、3-ジヒドロ-1-ベンゾチエピン-4-カルボキサミド、 N-[4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル] フェニル] -7- [(3-プロポキシベンジル)オキシ] -1,1-ジオキソー 2. 3-ジヒドロ-1-ベンソチエピン-4-カルボキサミド、N-[4-[N ーメチル-N-(テトラヒドロピラン-4-イル)アミノメチル]フェニル]-7-「(2-プロポキシベンジル)オキシ]-1,1-ジオキソー2,3-ジヒ ドロ-1-ベンゾチエピン-4-カルボキサミド、N-[4-[N-メチル-N − (テトラヒドロピラン−4−イル) アミノメチル] フェニル] −7− [(4− プロポキシフェニル) メトキシ] -1, 1-ジオキソー2, 3-ジヒドロ-1-10 ペンゾチエピン-4-カルボキサミド、N-[4-[N-メチル-N-(テトラ ヒドロピラン-4-イル) アミノメチル] フェニル] -7-[(4-プロポキシ エトキシフェニル) メトキシ] -1, 1-ジオキソ-2, 3-ジヒドロ-1-ベ ンゾチエピン-4-カルボキサミド、N-[4-[N-メチル-N-(テトラヒ ドロピラン-4-イル) アミノメチル] フェニル] -7- [3- (4-プロポキ シフェニル)プロポキシ]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾ チエピン-4-カルボキサミドまたはそれらの塩;

- (26) 前記(25) 記載の化合物またはそれらの塩のプロドラッグ;
- (27) 前記(1)記載の化合物またはその塩を含有する医薬組成物;
- 20 (28)式

$$R^{1}-X^{1}-W-X^{2}-Z^{1}-Z^{2}-R^{2}$$

[式中、 R^{-1} は置換されていてもよい $5\sim 6$ 員環基を示し、 X^{-1} は結合手または 直鎖部分を構成する原子数が 1 ないし 4 個である 2 価の基を示し、Wは式

(式中、環Aおよび環Bはそれぞれ置換されていてもよい5~7員環を示し、E $_1$ およびE $_4$ はそれぞれ置換されていてもよい炭素原子または置換されていてもよい窒素原子を示し、E $_2$ およびE $_3$ はそれぞれ置換されていてもよい炭素原子、置換されていてもよい窒素原子、酸化されていてもよい硫黄原子または酸素原子を示し、a および $_5$ はそれぞれ単結合または二重結合であることを示す)で表される $_5$ 2 価の基を示し、 $_5$ 2 は直鎖部分を構成する原子数が $_5$ ないし $_5$ 4 個である $_5$ 他の基を示し、 $_5$ 2 は結合手または $_5$ 2 価の基を示し、 $_5$ 2 は結合手または直鎖部分を構成する炭素原子数が $_5$ ないし $_5$ 4 個である $_5$ 2 価の基を示し、 $_5$ 2 は (1) 置換されていてもよく、窒素原子が $_5$ 4 級アンモニウム化またはオキシド化されていてもよいアミノ基、 (2) 置換されていてもよく、環構成原子として硫黄原子または酸素原子を含有していてもよく、窒素原子が $_5$ 4 級アンモニウム化またはオキシド化されていてもよく、窒素原子が $_5$ 4 級アンモニウム化またはオキシド化されていてもよく、窒素原子が $_5$ 4 級アンモニウム化またはオキシド化されていてもよく、窒素原子が $_5$ 4 級アンモニウム化またはオキシド化されていてもよく、窒素原子が $_5$ 4 級アンモニウム化またはオキシド化されていてもよい含窒素複素環基、 (3) 硫黄原子を介して結合する基、

15

10

(式中、kは0または1を示し、kが0の時、燐原子はホスホニウム塩を形成し

TO THE PROPERTY OF THE PARTY.

ていてもよく、 R^{5} および R^{6} はそれぞれ置換されていてもよい炭化水素基、 置換されていてもよい水酸基または置換されていてもよいアミノ基を示し、 R^{5} および R^{6} は互いに結合して隣接する燐原子とともに環状基を形成していても よい)で表される基、 (5) 置換されていてもよいアミジノ基または (6) 置換 されていてもよいグアニジノ基を示す] で表される化合物 [但し、式 $R^{1}-X^{1}$ $-W-X^{2}-Z^{1}-Z^{2}-$ で表される基が式

(式中、 R^{1} は前記と同意義を示し、W'は式

- 10 (式中、環A'は置換されていてもよい5~6員芳香環を示し、Xは置換されていてもよい炭素原子、置換されていてもよい窒素原子、硫黄原子または酸素原子を示し、環B'は置換されていてもよい5~7員環を示す)で表される二価の基を示し、Zは直鎖部分を構成する炭素原子数が1ないし4個である2価の基を示す)で表される基を示すとき、R²は置換されていてもよいアミジノ基または置換されていてもよいアミジノ基または置換されていてもよいグアニジノ基を示す]またはその塩を含有するCCR拮抗(好ましくはCCR5拮抗)のための医薬組成物;
 - (29) HIVの感染症の予防・治療剤である前記(28)記載の組成物;
 - (30) AIDSの予防・治療剤である前記 (28) 記載の組成物;
 - (31) AIDSの病態進行抑制剤である前記(28)記載の組成物;
- 20 (32) さらにプロテアーゼ阻害剤または/および逆転写酵素阻害剤を組み合わせてなる前記(29)記載の組成物;
 - (33) 逆転写酵素阻害剤がジドブジン、ジダノシン、ザルシタビン、ラミブジン、スタブジン、ネビラピン、デラビルジン、エファビレンツまたはアバカビルである前記(32)記載の組成物:
- 25 (34) プロテアーゼ阻害剤がサキナビル、リトナビル、インジナビル、アムプ

10

15

レナビルまたはネルフィナビルである前記(32)記載の組成物:

(35) 式
$$R^{1} - X^{1} - W - X^{2} - Z^{1} - Z^{2} - R^{2}$$

[式中、 R^1 は置換されていてもよい $5\sim 6$ 員環基を示し、 X^1 は結合手または 直鎖部分を構成する原子数が 1 ないし 4 個である 2 価の基を示し、Wは式

$$\begin{array}{c|c}
E_1 & E_2 & E_3 & E_4 \\
\hline
E_1 & E_2 & E_3 & E_4
\end{array}$$

$$\begin{array}{c|c}
E_1 & E_2 & E_3 & E_4 \\
\hline
E_1 & E_2 & E_3 & E_4
\end{array}$$

$$\begin{array}{c|c}
E_1 & E_2 & E_3 & E_4
\end{array}$$

$$\begin{array}{c|c}
E_1 & E_2 & E_3 & E_4
\end{array}$$

$$\begin{array}{c|c}
E_1 & E_2 & E_3 & E_4
\end{array}$$

$$\begin{array}{c|c}
E_1 & E_2 & E_3 & E_4
\end{array}$$

(式中、環Aおよび環Bはそれぞれ置換されていてもよい5~7員環を示し、 E_1 および E_4 はそれぞれ置換されていてもよい炭素原子または置換されていてもよい窒素原子を示し、 E_2 および E_3 はそれぞれ置換されていてもよい炭素原子、置換されていてもよい窒素原子、酸化されていてもよい硫黄原子または酸素原子を示し、A およびりはそれぞれ単結合または二重結合であることを示す)で表される2価の基を示し、A は直鎖部分を構成する原子数がA ないしA 個である2 価の基を示し、A は高針を構成する炭素原子数がA ないしA 個である2 価の基を示し、A は (1) 置換されていてもよく、窒素原子がA 級アンモニウム化またはオキシド化されていてもよいアミノ基、(2) 置換されていてもよく、環構成原子として硫黄原子または酸素原子を含有していてもよく、窒素原子がA 級アンモニウム化またはオキシド化されていてもよく、窒素原子がA 級アンモニウム化またはオキシド化されていてもよい含窒素複素環基、(3) 硫黄原子を介して結合する基、

(式中、kは0または1を示し、kが0の時、燐原子はホスホニウム塩を形成していてもよく、 R^{5} および R^{6} はそれぞれ置換されていてもよい炭化水素基、置換されていてもよい水酸基または置換されていてもよいアミノ基を示し、 R^{5} および R^{6} は互いに結合して隣接する燐原子とともに環状基を形成していてもよい)で表される基、(5)置換されていてもよいアミジノ基または(6)置換されていてもよいグアニジノ基を示す]で表される化合物 [但し、式 $R^{1}-X^{1}-W-X^{2}-Z^{1}-Z^{2}-$ で表される基が式

$$\begin{array}{c|c} R^{1} & W' & C & NH \\ \hline & 0 & \end{array}$$

10

15

 $(式中、<math>R^{1}$ は前記と同意義を示し、W'は式

(式中、環A'は置換されていてもよい5~6員芳香環を示し、Xは置換されていてもよい炭素原子、置換されていてもよい窒素原子、硫黄原子または酸素原子を示し、環B'は置換されていてもよい5~7員環を示す)で表される二価の基を示し、Zは直鎖部分を構成する炭素原子数が1ないし4個である2価の基を示す)で表される基を示すとき、R²は置換されていてもよいアミジノ基または置換されていてもよいグアニジノ基を示す]またはその塩とプロテアーゼ阻害剤または/および逆転写酵素阻害剤とのHIVの感染症の予防・治療のための使用;

- 20 (36)前記(28)記載の化合物またはその塩の有効量を哺乳動物に投与する ことを特徴とする哺乳動物におけるCCRの拮抗方法(好ましくはCCR5拮抗 方法);
 - (37) CCR拮抗 (好ましくはCCR5拮抗) のための医薬の製造のための前

記(28)記載の化合物またはその塩の使用;などに関する。

ト記式(I)中、 R^{1} で示される「置換されていてもよい $5\sim6$ 員環基」の「 $5\sim$ 6員環」としては、ベンゼンなどの6員の芳香族炭化水素、シクロペンタン、シ クロヘキサン、シクロペンテン、シクロヘキセン、シクロペンタンジエン、シク 5 ロヘキサンジエンなどの5~6員の脂肪族炭化水素、 フラン、チオフェン、ピロール、イミダゾール、ピラゾール、チアゾール、オキ サゾール、イソチアソール、イソキサゾール、テトラゾール、ピリジン、ピラジ ン、ピリミジン、ピリダジン、トリアゾールなどの窒素原子、硫黄原子および酸 素原子から選ばれた1~2種のヘテロ原子1~4個を含有する5~6員の芳香族 10 複素環、テトラヒドロフラン、テトラヒドロチオフェン、ジチオラン、オキサチ オラン、ピロリジン、ピロリン、イミダゾリジン、イミダゾリン、ピラゾリジン、 ピラゾリン、ピペリジン、ピペラジン、オキサジン、オキサジアジン、チアジン、 チアジアジン、モルホリン、チオモルホリン、ピラン、テトラヒドロピラン、テ トラヒドロチオピランなどの窒素原子、硫黄原子および酸素原子から選ばれた1 15 ~2種のヘテロ原子1~4個を含有する5~6員の非芳香族複素環などから水素 原子1個を除いて形成される基などが挙げられるが、なかでも、「5~6員環」 としては、ベンゼン、フラン、チオフェン、ピリジン、シクロペンタン、シクロ ヘキサン、ピロリジン、ピペリジン、ピペラジン、モルホリン、チオモルホリン、 テトラヒドロピラン(好ましくは、6員環)などが好ましく、とりわけベンゼン 20 が好ましい。

R¹で示される「置換されていてもよい5~6員環基」の「5~6員環」が有していてもよい「置換基」としては、例えば、ハロゲン原子、ニトロ、シアノ、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよく、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル、エステル化されていてもよいカルボキシル基、置換されていてもよい芳香族基などが用いられる。

R¹の置換基としてのハロゲンの例としては、フッ素、塩素、臭素、ヨウ素などが挙げられ、とりわけフッ素および塩素が好ましい。

R¹の置換基としての置換されていてもよいアルキルにおけるアルキルとして は、直鎖状または分枝状の炭素数1~10のアルキル、例えばメチル、エチル、 プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブ チル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、 ノニル、デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-6})アルキルが挙 げられる。該置換されていてもよいアルキルにおける置換基としては、ハロゲン (例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換され ていてもよいチオール基(例、チオール、C₁₋₄アルキルチオなど)、置換され ていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキ ルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオ モルホリン、ピロール、イミダゾールなどの5~6員の環状アミノなど)、エス テル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、C 1-4アルコキシカルボニル、カルバモイル、モノC₁₋₄アルキルカルバモイル、ジ 15 C_{1-4} アルキルカルバモイルなど)、ハロゲン化されていてもよい C_{1-4} アルコキ シ (例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、 トリフルオロエトキシなど)、ハロゲン化されていてもよいC₁₋₄アルコキシー C_{1-4} アルコキシ(例、メトキシメトキシ、メトキシエトキシ、エトキシエトキ シ、トリフルオロメトキシエトキシ、トリフルオロエトキシエトキシなど)、ホ ルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキ ルスルホニル(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、 置換基の数としては、1~3個が好ましい。

 R^{1} の置換基としての置換されていてもよいシクロアルキルにおけるシクロア ルキルとしては、例えば、シクロプロピル、シクロプチル、シクロペンチル、シクロペキシル、シクロヘプチルなどの C_{3-7} シクロアルキルなどが挙げられる。 該置換されていてもよいシクロアルキルにおける置換基としては、ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていて もよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていて

もよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの $5\sim 6$ 員の環状アミノなど)、エステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ(例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、ハロゲン化されていてもよい C_{1-4} アルコキシー C_{1-4} アルコキシ(例、メトキシメトキシ、メトキシエトキシ、エトキシエトキシ、トリフルオロメトキシエトキシ、トリフルオロエトキシなど)、ホルミル、C2-4アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、 $1\sim 3$ 個が好ましい。

 R^{1} の置換基としての置換されていてもよい水酸基における置換基としては、

- 15 (1)置換されていてもよいアルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-6})アルキルなどが挙げられる);
- 20 (2) 置換されていてもよく、ヘテロ原子を含有していてもよいシクロアルキル (例えば、シクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどの C_{3-7} シクロアルキル;テトラヒドロフラニル、テトラヒドロチェニル、ピロリジニル、ピラゾリジニル、ピペリジル、ピペラジニル、モルホリニル、チオモルホリニル、テトラヒドロピラニル、テトラヒドロチオピラニルなどの1~2個のヘテロ原子を含有する飽和の5~6員複素環基など(好ましくはテトラヒドロピラニルなど);などが挙げられる);
 - (3) 置換されていてもよいアルケニル (例えば、アリル(allyl)、クロチル、2 -ペンテニル、3-ヘキセニルなど炭素数 $2\sim1$ 0のアルケニル、好ましくは低級 (C_{2-6}) アルケニルなどが挙げられる);

- (4) 置換されていてもよいシクロアルケニル (例えば、2-シクロペンテニル、 2-シクロヘキセニル、2-シクロペンテニルメチル、2-シクロヘキセニルメ チルなど炭素数3~7のシクロアルケニルなどが挙げられる);
- (5) 置換されていてもよいアラルキル (例えば、フェニルーC₁₋₄アルキル (例、 5 ベンジル、フェネチルなど) などが挙げられる);
- (6) ホルミルまたは置換されていてもよいアシル (例えば、炭素数2~4のアルカノイル (例、アセチル、プロピオニル、ブチリル、イソブチリルなど)、炭素数1~4のアルキルスルホニル (例、メタンスルホニル、エタンスルホニルなど) などが挙げられる);
- 10 (7) 置換されていてもよいアリール (例えば、フェニル、ナフチルなどが挙げられる) などの置換基が挙げられ、

上記した (1) 置換されていてもよいアルキル、 (2) 置換されていてもよいシクロアルキル、 (3) 置換されていてもよいアルケニル、 (4) 置換されていてもよいシクロアルケニル、 (5) 置換されていてもよいアラルキル、 (6) 置換されていてもよいアラルキル、 (6) 置換されていてもよいアリールが有していてもよい置換基としては、ハロゲン (例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていてもよいチオール基 (例、チオール、C1-4アルキルチオなど)、置換されていてもよいアミノ基 (例、アミノ、モノC1-4アルキルアミノ、ジC1-4アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの

 $5\sim 6$ 員の環状アミノなど)、エステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハロゲン化されていてもよい C_{1-4} アルキル(例、トリフルオロメチル、メチル、エチルなど)、ハロゲン化されていてもよい C_{1-6} アルコキシ(例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエトキシなど;好ましくはハロゲン化されていてもよい C_{1-4} アルコキシ)、ホルミル、 C_{2}

E; 好ましくはハロケン化されていてもよい C_{1-4} アルカノイル(例、アセチル、プロビオニルなど)、 C_{1-4} アルキルスルホニル (例、メタンスルホニル、エタンスルホニルなど)、置換されていてもよい 5

25

~6員の芳香族複素環〔例、フラン、チオフェン、ピロール、イミダゾール、ピラゾール、オキサゾール、イソチアゾール、イソキサゾール、テトラゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアゾールなどの窒素原子、硫黄原子および酸素原子から選ばれた $1 \sim 2$ 種のヘテロ原子 $1 \sim 4$ 個を含有する $5 \sim 6$ 員の芳香族複素環など;該複素環が有していてもよい置換基としては、ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、チオール基、アミノ基、カルボキシル基、ハロゲン化されていてもよい C_{1-4} アルキル(例、トリフルオロメチル、メチル、エチルなど)、ハロゲン化されていてもよい C_{1-4} アルコオロメトキシ、トリフルオロエトキシなど)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、 $1 \sim 3$ 個が好ましい。」などが挙げられ、置換基の数としては、 $1 \sim 3$ 個が好ましい。」などが挙げられ、置換基の数としては、 $1 \sim 3$ 個が好ましい。」などが挙げられ、置換基の数としては、 $1 \sim 3$ 個が好ましい。

- R^{-1} の置換基としての置換されていてもよいチオール基における置換基としては、上記した「 R^{-1} の置換基としての置換されていてもよい水酸基における置換基」と同様なものが挙げられるが、なかでも
- (1)置換されていてもよいアルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソプチル、sec-ブチル、tert-ブチル、ペンチ20 ル、イソペンチル、ネオペンチル、ヘキシル、ヘブチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-6})アルキルなどが挙げられる):
 - (2) 置換されていてもよいシクロアルキル(例えば、シクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどの C_{3-7} シクロアルキルなどが挙げられる);
 - (3) 置換されていてもよいアラルキル (例えば、フェニルー C_{1-4} アルキル (例、ベンジル、フェネチルなど) などが挙げられる):
 - (4) 置換されていてもよいアリール (例えば、フェニル、ナフチルなど) が挙 げられる) などが好ましく、

上記した(1)置換されていてもよいアルキル、(2)置換されていてもよいシ クロアルキル、(3) 置換されていてもよいアラルキル、および(4) 置換され ていてもよいアリールが有していてもよい置換基としては、ハロゲン(例、フッ 素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていてもよ いチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよ いアミノ基 (例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、 テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、 ピロール、イミダゾールなどの5~6員の環状アミノなど)、エステル化または アミド化されていてもよいカルボキシル基(例、カルボキシル、С1-4アルコキ シカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキ 10 ルカルバモイルなど)、ハロゲン化されていてもよいC₁₋₄アルコキシ(例、メ トキシ、エトキシ、プロポキシ、プトキシ、トリフルオロメトキシ、トリフルオ ロエトキシなど)、ハロゲン化されていてもよいC₁₋₄アルコキシーC₁₋₄アルコ キシ (例、メトキシメトキシ、メトキシエトキシ、エトキシエトキシ、トリフル オロメトキシエトキシ、トリフルオロエトキシエトキシなど)、ホルミル、C₂₋ $_4$ アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル (例、メタンスルホニル、エタンスルホニルなど) などが挙げられ、置換基の数 としては、1~3個が好ましい。

 R^1 の置換基としての置換されていてもよいアミノ基の置換基としては、上記した「 R^1 の置換基としての置換されていてもよい水酸基における置換基」と同様な置換基を $1\sim2$ 個有していてもよいアミノ基などが挙げられるが、なかでも(1)置換されていてもよいアルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソプチル、secープチル、tertーブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-6})アルキルなどが挙げられる);

(2) 置換されていてもよいシクロアルキル(例えば、シクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどの C_{3-7} シクロアルキルなどが挙げられる);

10

- (3) 置換されていてもよいアルケニル (例えば、アリル(allyl)、クロチル、2-ペンテニル、3-ヘキセニルなど炭素数 $2\sim1$ 0のアルケニル、好ましくは低級 (C_{2-6}) アルケニルなどが挙げられる);
- (4)置換されていてもよいシクロアルケニル(例えば、2-シクロペンテニル、 2-シクロヘキセニル、2-シクロペンテニルメチル、2-シクロヘキセニルメ チルなど炭素数3~7のシクロアルケニルなどが挙げられる);
 - (5) ホルミルまたは置換されていてもよいアシル (例えば、炭素数 $2 \sim 4$ のアルカノイル (例、アセチル、プロピオニル、ブチリル、イソブチリルなど)、炭素数 $1 \sim 4$ のアルキルスルホニル (例、メタンスルホニル、エタンスルホニルなど) などが挙げられる);
 - (6) 置換されていてもよいアリール (例えば、フェニル、ナフチルなどが挙げられる) などが好ましく、

上記した(1)置換されていてもよいアルキル、(2)置換されていてもよい シクロアルキル、(3)置換されていてもよいアルケニル、(4)置換されてい てもよいシクロアルケニル、(5)置換されていてもよいアシル、および(6) 15 置換されていてもよいアリールが有していてもよい置換基としては、ハロゲン(例、 フッ素,塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていて もよいチオール基(例、チオール、C₁₋₄アルキルチオなど)、置換されていて もよいアミノ基(例、アミノ、モノC₁₋₄アルキルアミノ、ジC₁₋₄アルキルアミ ノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホ . 20 リン、ピロール、イミダゾールなどの5~6員の環状アミノなど)、エステル化 またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} ア ルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} ₄アルキルカルバモイルなど)、ハロゲン化されていてもよいC₁₋₄アルコキシ(例、 メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフル 25 オロエトキシなど)、ハロゲン化されていてもよい C_{1-4} アルコキシー C_{1-4} アル コキシ (例、メトキシメトキシ、メトキシエトキシ、エトキシエトキシ、トリフ ルオロメトキシエトキシ、トリフルオロエトキシエトキシなど)、ホルミル、C

 $_{2-4}$ アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニ

ル (例、メタンスルホニル、エタンスルホニルなど) などが挙げられ、置換基の 数としては、1~3個が好ましい。

また、R¹の置換基としての置換されていてもよいアミノ基は、アミノ基の置 換基同士が結合して、環状アミノ基(例えば、テトラヒドロピロール、ピペラジ **、ン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの** 5~6員環の環構成窒素原子から水素原子1個を除いて形成され、窒素原子上に 結合手を有する環状アミノ基など)を形成していてもよい。該環状アミノ基は、 置換基を有していてもよく、かかる置換基としては、ハロゲン(例、フッ素・塩 素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていてもよいチオ ール基(例、チオール、C₁₋₄アルキルチオなど)、置換されていてもよいアミ ノ基 (例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラ ヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロ ール、イミダゾールなどの5~6員の環状アミノなど)、エステル化またはアミ ド化されていてもよいカルボキシル基(例、カルボキシル、C1-4アルコキシカ ルボニル、カルバモイル、モノC₁₋₄アルキルカルバモイル、ジC₁₋₄アルキルカ ルバモイルなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ(例、メトキ シ、エトキシ、プロポキシ、プトキシ、トリフルオロメトキシ、トリフルオロエ トキシなど)、ハロゲン化されていてもよいC,_4アルコキシーC,-4アルコキシ (例、メトキシメトキシ、メトキシエトキシ、エトキシエトキシ、トリフルオロ メトキシエトキシ、トリフルオロエトキシエトキシなど)、ホルミル、C₂₋₄ア 20 ルカノイル (例、アセチル、プロピオニルなど)、C₁₋₄アルキルスルホニル (例、 メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数として は、1~3個が好ましい。

 R^{1} の置換基としての置換されていてもよいアシルとしては、

- 25 (1) 水素、
 - (2)置換されていてもよいアルキル(例えば、メチル、エチル、プロピル、イソプロピル、プチル、イソプチル、sec-プチル、tert-プチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-6})アルキルなどが挙げられ

る):

TO SEPTEMBER OF THE PROPERTY OF THE PROPERTY OF

15

- (3) 置換されていてもよいシクロアルキル(例えば、シクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどの C_{3-7} シクロアルキルなどが挙げられる);
- 5 (4) 置換されていてもよいアルケニル(例えば、アリル(allyl)、クロチル、2 -ペンテニル、3-ヘキセニルなど炭素数 $2\sim1$ 0 のアルケニル、好ましくは低級(C_{2-6})アルケニルなどが挙げられる);
- (5) 置換されていてもよいシクロアルケニル(例えば、2-シクロペンテニル、2-シクロペナモニル、2-シクロペンテニルメチル、2-シクロペキセニルメ10 チルなど炭素数3~7のシクロアルケニルなどが挙げられる);
 - (6) 置換されていてもよい5~6員の単環の芳香族基(例えば、フェニル、ピリジルなどが挙げられる)などがカルボニル基またはスルホニル基と結合したもの(例、アセチル、プロピオニル、プチリル、イソブチリル、バレリル、イソバレリル、ピバロイル、ヘキサノイル、ヘプタノイル、オクタノイル、シクロブタンカルボニル、シクロペンタンカルボニル、シクロヘキサンカルボニル、シクロヘプタンカルボニル、クロトニル、2-シクロヘキセンカルボニル、ベンゾイル、ニコチノイル、メタンスルホニル、エタンスルホニル等)が挙げられ、上記した(2)置換されていてもよいアルキル、(3)置換されていてもよいシクロアルキル、(4)置換されていてもよいアルケニル、(5)置換されていてもよいシ
- 20 クロアルケニル、および (6) 置換されていてもよい $5 \sim 6$ 員の単環の芳香族基が有していてもよい置換基としては、ハロゲン (例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていてもよいチオール基 (例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基 (例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒドロピロール、
- 25 ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの $5\sim6$ 員の環状アミノなど)、エステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ(例、メトキシ、エトキシ、プロ

ポキシ、プトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、ハロゲン化されていてもよい C_{1-4} アルコキシー C_{1-4} アルコキシ(例、メトキシメトキシ、メトキシエトキシ、エトキシエトキシ、トリフルオロメトキシエトキシ、トリフルオロエトキシエトキシなど)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、 $1\sim3$ 個が好ましい。

 R^{1} の置換基としてのエステル化されていてもよいカルボキシル基としては、

- (1) 水素、
- 10 (2) 置換されていてもよいアルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-6})アルキルなどが挙げられる):
- 15 (3) 置換されていてもよいシクロアルキル(例えば、シクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどの C_{3-7} シクロアルキルなどが挙げられる);
 - (4)置換されていてもよいアルケニル(例えば、アリル(allyl)、クロチル、2 -ペンテニル、3-ヘキセニルなど炭素数 $2\sim1$ 0 のアルケニル、好ましくは低
- 20 級 (C₂₋₆) アルケニルなどが挙げられる);
 - (5) 置換されていてもよいシクロアルケニル(例えば、2-シクロペンテニル、 2-シクロヘキセニル、2-シクロペンテニルメチル、2-シクロヘキセニルメ チルなど炭素数3~7のシクロアルケニルなどが挙げられる);
- (6) 置換されていてもよいアリール (例えば、フェニル、ナフチルなど) など がカルボニルオキシ基と結合したもの、好ましくはカルボキシル、低級 (C₁₋₆) アルコキシカルボニル、アリールオキシカルボニル (例、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、フェノキシカルボニル、ナフトキシカルボニルなど) などが挙げられ、上記した (2) 置換されていてもよいアルキル、(3) 置換されていてもよいシクロアルキル、(4) 置換されていてもよ

Alter Sala

いアルケニル、(5)置換されていてもよいシクロアルケニル、および(6)置 換されていてもよいアリールが有していてもよい置換基としては、ハロゲン(例、 フッ素,塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていて もよいチオール基(例、チオール、C₁₋₄アルキルチオなど)、置換されていて もよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミ 5 ノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホ リン、ピロール、イミダゾールなどの5~6員の環状アミノなど)、エステル化 またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} ア ルコキシカルポニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} 4アルキルカルバモイルなど)、ハロゲン化されていてもよいC1-4アルコキシ(例、 10 メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフル オロエトキシなど)、ハロゲン化されていてもよいC₁₋₄アルコキシーC₁₋₄アル コキシ (例、メトキシメトキシ、メトキシエトキシ、エトキシエトキシ、トリフ ルオロメトキシエトキシ、トリフルオロエトキシエトキシなど)、ホルミル、C $_{2-4}$ アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニ 15 ル(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の 数としては、1~3個が好ましい。

R¹の置換基としての置換されていてもよい芳香族基における芳香族基としては、フェニル、ピリジル、フリル、チエニル、ピロリル、イミダゾリル、ピラゾリル、チアゾリル、オキサゾリル、イソチアゾリル、イソキサゾリル、テトラゾリル、ピラジニル、ピリミジニル、ピリダジニル、トリアゾリル等の5~6 員の同素または複素環芳香族基、ベンゾフラン、インドール、ベンゾチオフェン、ベンズオキサゾール、ベンズチアゾール、インダゾール、ベンズイミダゾール、キノリン、イソキノリン、キノキサリン、フタラジン、キナゾリン、シンノリンなどの縮環複素環芳香族基などが挙げられる。これらの芳香族基の置換基としては、ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていてもよいチオール基(例、チオール、C₁₋₄アルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノC₁₋₄アルキルアミノ、ジC₁₋₄アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリ

ン、チオモルホリン、ピロール、イミダゾールなどの $5\sim6$ 員の環状アミノなど)、エステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハロゲン化されていてもよい C_{1-4} アルキル (例、トリフルオロメチル、メチル、エチルなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ(例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロエトキシなど)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、

 $1 \sim 3$ 個が好ましい。 10 かかる R^{1} の置換基は、 $1\sim4$ 個(好ましくは、 $1\sim2$ 個)同一または異なっ て環のいずれの位置に置換していてもよい。また、 ${f R}^{\ 1}$ で示される「置換されて いてもよい $5\sim6$ 員環」の「 $5\sim6$ 員環」が2個以上の置換基を有する場合、こ れらのうち、2個の置換基が互いに結合して、例えば、低級 (C1-6) アルキレ ン (例、トリメチレン、テトラメチレンなど) 、低級 (C₁₋₆) アルキレンオキ 15 > (例、 $-CH_2-O-CH_2-$ 、 $-O-CH_2-CH_2-$ 、 $-O-CH_2-CH_2$ $-CH_2-$, $-O-CH_2-CH_2-CH_2-CH_2-$, $-O-C(CH_3)(CH_3) CH_2-CH_2-$ など)、低級(C_{1-6})アルキレンチオ(例、 $-CH_2-S-CH$ $_{2}$ -, -S-CH $_{2}$ -CH $_{2}$ -, -S-CH $_{2}$ -CH $_{2}$ -CH $_{2}$ -. -S-CH $_{2}$ -C $H_2-CH_2-CH_2-$ 、 $-S-C(CH_3)(CH_3)-CH_2-CH_2-$ など)、低級 20 (C_{1-6}) アルキレンジオキシ(例、 $-O-CH_2-O-$ 、 $-O-CH_2-CH_2$ -O-、 $-O-CH_2-CH_2-CH_2-O-$ など)、低級(C_{1-6})アルキレンジ

 $_2-\text{CH}_2-\text{S}-\alpha$ ど)、オキシ低級(C_{1-6})アルキレンアミノ(例、-O-C H $_2-\text{NH}-$ 、 $-\text{O}-\text{CH}_2-\text{CH}_2-\text{NH}-$ など)、オキシ低級(C_{1-6})アルキレンチオ(例、 $-\text{O}-\text{CH}_2-\text{S}-$ 、 $-\text{O}-\text{CH}_2-\text{CH}_2-\text{S}-$ など)、低級(C_{1-6})アルキレンアミノ(例、 $-\text{NH}-\text{CH}_2-\text{CH}_2-$ 、 $-\text{NH}-\text{CH}_2-\text{CH}_2 -\text{CH}_2-$ など)、低級(C_{1-6})アルキレンジアミノ(例、 $-\text{NH}-\text{CH}_2-\text{NH} +\text{CH}_2-\text{CH}_2 +\text{CH}_2 +\text{CH}_2-$

チオ (例、 $-S-CH_2-S-$ 、 $-S-CH_2-CH_2-S-$ 、 $-S-CH_2-CH_2-S-$

 ${\it EJ}$ (例、 ${\it -S-CH_2-NH-}$ 、 ${\it -S-CH_2-CH_2-NH-}$ など)、低級(C ${\it 2-6}$)アルケニレン(例、 ${\it -CH_2-CH=CH-}$ 、 ${\it -CH_2-CH_2-CH_2-CH_2-}$ CH=CH ${\it -CH_2-CH_2-}$ CH=CH ${\it -CH_2-CH_2-}$ CH=CH ${\it -CH_2-}$ CH ${\it -CH_2-}$ CH=CH ${\it -CH_2-}$ CH ${\it -CH_2-}$ CH=CH ${\it -CH_2-}$ CH ${\it -CH_2$

5 さらに、R¹の置換基2個が互いに結合して形成する2価の基は、R¹で示される「置換されていてもよい5~6員環」の「5~6員環」が有していてもよい「置換基」と同様な置換基(ハロゲン原子、ニトロ、シアノ、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよく、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル、エステル化またはアミド化されていてもよいカルボキシル基、置換されていてもよい芳香族基など)を1~3個有していてもよい。

 R^{1} で示される「置換されていてもよい $5\sim6$ 員環基」の「 $5\sim6$ 員環」が有 していてもよい「置換基」としては、とりわけ、ハロゲン化または低級(C,__4) 15 アルコキシ化されていてもよい低級(C₁₋₄)アルキル(例、メチル、エチル、 t-ブチル、トリフルオロメチル、メトキシメチル、エトキシメチル、プロポキ シメチル、ブトキシメチル、メトキシエチル、エトキシエチル、プロポキシエチ ル、プトキシエチルなど)、ハロゲン化または低級(C_{1-4})アルコキシ化されて いてもよい低級(C₁₋₄)アルコキシ(例、メトキシ、エトキシ、プロポキシ、ブ 20 トキシ、t-ブトキシ、トリフルオロメトキシ、メトキシメトキシ、エトキシメ トキシ、プロポキシメトキシ、ブトキシメトキシ、メトキシエトキシ、エトキシ エトキシ、プロポキシエトキシ、ブトキシエトキシ、メトキシプロポキシ、エト キシプロポキシ、プロポキシプロポキシ、ブトキシプロポキシなど)、ハロゲン (例、フッ素、塩素など)、ニトロ、シアノ、 $1 \sim 2$ 個の低級(C_{1-4})アルキ 25 ル、ホルミルまたは低級 (C₂₋₄) アルカノイルで置換されていてもよいアミノ (例、 アミノ、メチルアミノ、ジメチルアミノ、ホルミルアミノ、アセチルアミノなど)、 $5 \sim 6$ 員の環状アミノ基(例、1 -ピロリジニル、1 -ピペラジニル、1 -ピペ リジニル、4ーモルホリノ、4ーチオモルホリノ、1ーイミダゾリル、4ーテト

好ましい。

ラヒドロピラニルなど) などが挙げられる。

 X^1 および X^2 で示される「直鎖部分を構成する原子数が1ないし4個である2 価の基」としては、例えば、- (CH_2) $_1$ -[a'は $1\sim4$ の整数 (好ましくは $1\sim2$ の整数)を示す]、- (CH_2) $_5$ - X^3 -[b'は $0\sim3$ の整数 (好まし くは $0\sim1$ の整数)を示し、 X^3 は置換されていてもよいイミノ基 (例、低級 (C_{1-6}) 低級アルキル、低級 (C_{3-7}) シクロアルキル、ホルミル、低級 (C_{2-7}) 低級アルカノイル、低級 (C_{1-6}) 低級アルコキシーカルボニルなどで置換されていてもよいイミノ基など)、カルボニル基、酸素原子または酸化されていてもよい硫黄原子 (例、-S(O) $_m$ --(mは $0\sim2$ の整数を示す)など)を示す]、-CH=CH-、-C \equiv C-、-CO-NH-、-SO $_2$ -NH-などが挙げられる。これらの基がWと結合するのは、左右何れの結合手であってもよいが、X

結合手を介してWと結合するのが好ましい。 $X^1 \text{としては、結合手、} - (CH_2)_1 - O - [b'は0, 1 \text{または} 2 の整数 (好 15 ましくは<math>0 \sim 1$ の整数)を示す]、 $-C \equiv C - \alpha$ どが好ましく、結合手がさらに

 1 の場合、右側の結合手を介してWと結合するのが好ましく、 X^2 の場合、左側の

上記式(I)中、Wで示される式

(式中、環Aおよび環Bはそれぞれ置換されていてもよい5~7員環を示し、E $_1$ およびE $_4$ はそれぞれ置換されていてもよい炭素原子または置換されていてもよい窒素原子を示し、E $_2$ およびE $_3$ はそれぞれ置換されていてもよい炭素原子、 置換されていてもよい窒素原子、 酸化されていてもよい硫黄原子 (例、 $_-$ S(O) $_-$ (mは0~2の整数を示す)など)または酸素原子を示し、 a およびりはそれぞれ単結合または二重結合であることを示す)で表される2価の基は、それぞれ

10

(式中の各記号は前記と同意義)のような様式で隣接する X^1 および X^2 と結合していることを示す。

上記式(I)中、Aで示される「置換されていてもよい5~7員環」の「5~7員環」としては、C₅₋₇シクロアルカン (例、シクロペンタン、シクロヘキサン、シクロヘプタン等)、C₅₋₇シクロアルケン (例、1ーシクロペンテン、2ーシクロペンテン、3ーシクロペンテン、2ーシクロペンテン、3ーシクロペンテン、2ーシクロペンタジエン、2、4ーシクロペナサジエン、2、5ーシクロヘキサジエン等)などの5~7員(好ましくは5~6員)の飽和又は不飽和の脂環式炭化水素;ペンゼンなどの6員の芳香族炭化水素;酸素原子、硫黄原子、窒素原子等から選ばれたヘテロ原子1ないし3種(好ましくは1ないし2種)を少なくとも1個(好ましくは1ないし4個、さらに好ましくは1ないし2個)含む5~7員の芳香族複素環、飽和あるいは不飽和の非芳香族複素環(脂肪族複素環)等;などが挙げられる。

15 ここで「芳香族複素環」としては、5~6員の芳香族単環式複素環(例えばフラン、チオフェン、ピロール、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、イミダゾール、ピラゾール、1,2,3-オキサジアゾール、1,2,3- 2,4-オキサジアゾール、1,3,4-オキサジアゾール、フラザン、1,2,3-

チアジアゾール、1,2,4ーチアジアゾール、1,3,4ーチアジアゾール、1,2,3ートリアゾール、1,2,4ートリアゾール、テトラゾール、ピリジン、ピリジン、ピリミジン、トリアジン等)などが挙げられ、「非芳香族複素環」としては、例えばピロリジン、テトラヒドロフラン、チオラン、ピペリジン、テトラヒドロピラン、モルホリン、チオモルホリン、ピペラジン、ピラン、オキセピン、チエピン、アゼピン等の5~7員(好ましくは5~6員)の飽和あるいは不飽和の非芳香族複素環(脂肪族複素環)など、あるいは前記した芳香族単環式複素環の一部又は全部の二重結合が飽和した5~6員の非芳香族複素環などが挙げられる。

10 Aで示される「置換されていてもよい $5 \sim 7$ 員環」の「 $5 \sim 7$ 員環」としては、 $5 \sim 6$ 員の芳香環が好ましく、さらにベンゼン、フラン、チオフェン、ピロール、ピリジン(好ましくは、6 員環)などが好ましく、とりわけベンゼンが好ましい。Aで示される「置換されていてもよい $5 \sim 7$ 員環」の「 $5 \sim 7$ 員環」が有していてもよい「置換基」としては、 R^1 で示される「置換されていてもよい $5 \sim 6$ 員環基」の「 $5 \sim 6$ 員環」が有していてもよい「置換基」と同様なものが挙げら

員環基」の「 $5\sim6$ 員環」が有していてもよい「置換基」と同様なものが挙げられる。また、かかるAの置換基は、 $1\sim4$ 個(好ましくは、 $1\sim2$ 個)同一または異なって環のいずれの位置に置換していてもよく、 E_1 および E_2 で示される位置あるいはその他の位置の何れであっても、置換可能な位置であればいずれの位置に置換基を有していてもよい。

20 上記式(I)中、Bで示される「置換されていてもよい5~7員環」の「5~7員 環」としては、例えば

25

で表される、置換可能な任意の位置に置換基を有していてもよい5~7員環など が挙げられる。

上記式中、Yで示される2価の基は、環Bが置換されていてもよい5~7員環

を形成する2価の基を示し、例えば、

- $(1) (CH_2)_{a1} O (CH_2)_{a2} (a1 およびa2 は同一または異なって0, 1または2を示す。但し、a1 およびa2 との和は2以下である)、$
- -O-(CH=CH)-, -(CH=CH)-O-,
- 5 (2) $-(CH_2)_{b1} S(O)_m (CH_2)_{b2} (mは0~2の整数を示し、b1およびb2は同一または異なって0、1または2を示す。但し、b1およびb2との和は2以下である)、$
 - $-S(O)_{m}-(CH=CH)-, -(CH=CH)-S(O)_{m}-,$
 - (3) $-(CH_2)_{d1}$ (d1は1, 2または3を示す)、 $-CH_2$ -(CH=CH)
- $10 - (CH = CH) CH_2 - CH = CH - CH = -$
 - $(4) (CH_2)_{e1} NH (CH_2)_{e2} (e1およびe2は同一または異なって0、1または2を示す。但し、e1およびe2との和は2以下である)、<math>-NH$ $(CH = CH) (CH = CH) NH (CH_2)_{e6} (N = CH) (CH_2)_{e7} (CH = N) (CH_2)_{e6} (e6およびe7はいずれか2)_{e7} (CH_2)_{e7} (CH = N) (CH_2)_{e6} (e6およびe7はいずれか2)_{e7} (CH_2)_{e7} (CH_2)_{e7} (CH_2)_{e6} (e6およびe7はいずれか2)_{e7} (CH_2)_{e7} (CH_2)_{e7} (CH_2)_{e6} (e6およびe7はいずれか2)_{e7} (CH_2)_{e7} (CH_2)_{e7} (CH_2)_{e7} (CH_2)_{e6} (e6およびe7はいずれか2)_{e7} (CH_2)_{e7} (C$
- 15 が0を示し、他方は0または1を示す)、 $-(CH_2)_{e8}-(N=N)-(CH_2)_{e9}$ -(e8およびe9はいずれかが0を示し、他方は0または1を示す)などが挙 げられる。具体的には、例えば、-O-、 $-O-CH_2-$ 、 $-O-CH_2-$ CH $_2 -(mは<math>0\sim2$ の整数を示す)、 $-S(O)_m -CH_2 -(mは<math>0\sim2$ の整数を示す)、 $-S(O)_m -CH_2 -(mは<math>0\sim2$ 0の整数を示す)、 $-S(O)_m -CH_2 -(mは<math>0\sim2$ 0の整数を示す)、 $-S(O)_m-$ -(m)
- 20 2の整数を示す)、 $-S(O)_m-CH=CH-(mは0~2の整数を示す)、<math>-CH_2-$ 、 $-(CH_2)_2-$ 、 $-(CH_2)_3-$ 、-CH=、-CH=CH-、-CH= +CH- $+CH_2-$ 、 $+CH_2 +CH_2 +CH_2-$
- 25 また、該 2 価の基は、置換基を有していてもよく、該置換基としては、 R^{1} で示される「置換されていてもよい $5\sim6$ 員環基」の「 $5\sim6$ 員環」が有していてもよい「置換基」と同様なものおよびオキソなどが挙げられるが、なかでも、低級 (C_{1-3}) アルキル(例、メチル、エチル、プロピルなど)、フェニル、オキソ、水酸基などが好ましい。さらに、該 2 価の基としては、-O-C(O) ー(環

25

Aを起点とした結合を示す)などのようなものでもよい。かかる 2 価の基の置換基は、 $1\sim4$ 個(好ましくは、 $1\sim2$ 個)同一または異なって置換していてもよい。置換位置は、該 2 価の基に結合可能であればいずれでもよい。

Yで示される 2 価の基としては、環Aを起点として $-Y'-(CH_2)m'-(Y_2)m'-(Y_2)m'-(Y_2)m'-(Y_2)m'-(Y_2)m'-(Y_2)m'-(Y_2)m'-(M'_2)m'-(M'_2)m'-(M'_2)m'-(M'_2)m'-(M'_2)m'-(M'_2)m'-(M'_2)m'-(M'_2)m'-(M'_2)m'-(M'_2)m'-(M'_2)m'-(CH_2)m'-(Y'_2)m'-(Y'_2)m'-(M'_2)m'-(Y'_2)m'-(M'_$

Bで示される「置換されていてもよい $5\sim7$ 員環」の「 $5\sim7$ 員環」が有していてもよい「置換基」としては、 R^1 で示される「置換されていてもよい $5\sim6$ 員環基」の「 $5\sim6$ 員環」が有していてもよい「置換基」と同様なものおよびオキソなどが挙げられる。また、かかるBの置換基は、 $1\sim4$ 個(好ましくは、 $1\sim2$ 個)同一または異なって環のいずれの位置に置換していてもよいが、 E_3 の位置は無置換であることが好ましい。

上記式(I)中、 E_3 および E_4 がそれぞれ置換されていてもよい炭素原子(好ましくは無置換の炭素原子)であり、Bが二重結合である化合物が好ましい。

上記式(I)中、 Z^1 で示される「2価の環状基」としては、 R^1 で示される「置換されていてもよい $5\sim6$ 員環基」の「 $5\sim6$ 員環」と同様なものから水素原子 2 個を除いて形成される基などが挙げられ、なかでもベンゼン、フラン、チオフェン、ピリジン、シクロペンタン、シクロヘキサン、ピロリジン、ピペリジン、ピペラジン、モルホリン、チオモルホリン、テトラヒドロピランなどから水素原子 2 個を除いて形成される 2 価の環状基が好ましく、とりわけベンゼン、シクロヘキサン、ピペリジン(好ましくはベンゼン)から水素原子 2 個を除いて形成さ

れる2価の環状基が好ましく用いられる。

 Z^1 で示される「2価の環状基」は、 R^1 で示される「置換されていてもよい $5\sim 6$ 員環基」の「 $5\sim 6$ 員環」が有していてもよい「置換基」と同様な置換基 を有していてもよいが、 X^2 および Z^2 以外の置換基を有していないことが好ましく、また、 Z^1 が6 員の2価の環状基(好ましくはフェニレン)であるとき、 Z^2 の置換位置は X^2 のパラ位であることが好ましい。

上記式(I)中、 Z^2 で示される「直鎖部分を構成する炭素原子数が1ないし4個である2価の基」は、置換基を有していてもよい炭素数1ないし4の炭化水素鎖を有する2価の基(例、 C_{1-4} アルキレン、 C_{2-4} アルケニレンなど、好ましくは、 C_{1-3} アルキレン、さらに好ましくはメチレン)などが挙げられる。

 Z^2 で示される 2 価の基としては、直鎖部分を構成する炭素原子数が 1 ないし 4 個である 2 価の鎖であればいずれでもよく、例えば $-(CH_2)_{k1}-(k1)_{k1}$ ~ 4 の整数)で表されるアルキレン鎖、 $-(CH_2)_{k2}-(CH=CH)-(CH_2)_{k3}$ -(k2 および k3 は同一または異なって 0 、1 または 2 を示す。但し、k2 と k3 との和は 2 以下である)で表されるアルケニレン鎖などが挙げられる。

 X^1 , X^2 および Z^2 で示される2価の基は、任意の位置(好ましくは炭素原子上)に置換基を有していてもよく、かかる置換基としては、直鎖部分を構成する2価の鎖に結合可能なものであればいずれでもよいが、例えば、低級(C_{1-6})アルキル(例、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、20 sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシルなど)、低級(C_{3-7})シクロアルキル(例、シクロプロピル、シクロプチル、シクロペンチル、シクロペンチル、シクロペンチル、ブチリルなど)、ホルミル、低級(C_{2-7})アルカノイル(例、アセチル、プロピオニル、ブチリルなど)、エステル化されていてもよいホスホノ基、エステル化されていてもよいカルボキシル基、水酸基、オキソなどが挙げられ、好ましくは、炭素数 $1\sim6$ の低級アルキル(好ましくは、 C_{1-3} アルキル)、水酸基、オキソなどが挙げられる。

該エステル化されていてもよいホスホノ基としては、 $-P(O)(OR^7)(OR^8)$ [式中、 R^7 および R^8 はそれぞれ水素、炭素数 $1\sim6$ のアルキル基または 炭素数 $3\sim7$ のシクロアルキル基を示し、 R^7 および R^8 は互いに結合して $5\sim$

7員環を形成していてもよい]で表されるものが挙げられる。

該エステル化されていてもよいカルボキシル基のエステル化されたカルボキシル基としては、カルボキシル基と炭素数 1~6のアルキル基または炭素数 3~7のシクロアルキル基とが結合したもの、例えばメトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル、ブトキシカルボニル、イソプトキシカルボニル、sec-プトキシカルボニル、tert-ブトキシカルボニル、ペンチルオキシカルボニル、ヘキシルオキシカルボニル等が挙である。

 Z^2 で示される2価の基としては、置換されていてもよい C_{1-3} アルキレン、なかでも C_{1-3} アルキル、水酸基またはオキソで置換されていてもよい C_{1-3} アルキレンが好ましい。

さらに、 Z^2 で示される2価の基としては、ベンゼン環を起点として $-Z'-(CH_2)$ n-z'-(Z'は-CH(OH) -、-C(O) -z または $-CH_2$ -を示し、z の整数を示し、各メチレン基はz のでも、ベンゼン環を起点としてz のでも、ベンゼン環を起点としてz のでいてもよい)で表される基、なかでも、ベンゼン環を起点としてz のでいても、z のを数(好ましくは、z のを示す)を

示し、各メチレン基は $1\sim 2$ 個の同一または異なった置換基を有していてもよい)で表される基、とりわけ、メチレンが好ましい。

上記式 (I) 中、 R^2 で示される「置換されていてもよく、窒素原子が4級アン モニウム化またはオキシド化されていてもよいアミノ基」の「アミノ基」として は、1~2個の置換基を有していてもよいアミノ基、3個の置換基を有し、窒素 原子が4級アンモニウム化されているアミノ基などが挙げられる。窒素原子上の 置換基が2個以上である場合、それらの置換基は同一であっても異なっていても よく、窒素原子上の置換基が3個である場合、 $-N^+R_3$ 、 $-N^+R_2$ R'および $-N^+RR'R''$ (R、R'およびR''はそれぞれ異なって、水素または置換基を 示す)のいずれのタイプのアミノ基であってもよい。また、窒素原子が4級アン 10 モニウム化されているアミノ基のカウンター・アニオンとしては、ハロゲン原子 の陰イオン (例、 Cl^- 、 Br^- 、 I^- など) などの他に、塩酸、臭化水素酸、硝 酸、硫酸、リン酸などの無機酸から誘導される陰イオン、ギ酸、酢酸、トリフル オロ酢酸、フマル酸、シュウ酸、酒石酸、マレイン酸、クエン酸、コハク酸、リ ンゴ酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸などの 15 有機酸から誘導される陰イオン、アスパラギン酸、グルタミン酸などの酸性アミ ノ酸から誘導される陰イオンなどが挙げられるが、なかでも、C1 、Br 、I一などが好ましい。

該アミノ基の置換基としては、

江南 衛衛軍不成八萬八十

- 20 (1) 置換されていてもよいアルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソプチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-6})アルキルなどが挙げられる):
- 25 (2) 置換されていてもよいシクロアルキル (例えば、シクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シアノオクチルなどのC3-8シクロアルキルなどが挙げられる);
 - (2-1) 該シクロアルキルは、硫黄原子、酸素原子および窒素原子から選ばれるヘテロ原子を1個含有し、オキシラン、チオラン、アジリジン、テトラヒドロ

フラン、テトラヒドロチオフェン、ピロリジン、テトラヒドロピラン、テトラヒドロチオピラン、テトラヒドロチオピラン 1-オキシド、ピペリジンなど(好ましくは、6 員環のテトラヒドロピラン、テトラヒドロチオピラン、ピペリジンなど)を形成していてもよく、アミノ基との結合位置は3位または4位(好ましくは、4位)が好ましい;

- (2-2) また、該シクロアルキルは、ベンゼン環と縮合し、インダン(例、インダン-1-イル、インダン-2-イルなど)、テトラヒドロナフタレン(例、テトラヒドロナフタレン-5-イル、テトラヒドロナフタレン-6-イルなど)など(好ましくは、インダンなど)を形成していてもよく;
- 10 (2-3) さらに、該シクロアルキルは、炭素数1~2の直鎖状の原子鎖を介して架橋し、ビシクロ[2.2.1] ヘプチル、ビシクロ[2.2.2] オクチル、ビシクロ[3.2.2] ノニルなど(好ましくは、炭素数1~2の直鎖状の原子鎖を介した架橋を有するシクロヘキシルなど、さらに好ましくは、ビシクロ[2.2.1] ヘプチルなど)の架橋環式炭化水素 発基を形成していてもよい;
 - (3) 置換されていてもよいアルケニル (例えば、アリル(allyl)、クロチル、2 -ペンテニル、3-ヘキセニルなど炭素数 $2\sim10$ のアルケニル、好ましくは低級 (C_{2-5}) アルケニルなどが挙げられる);
- (4) 置換されていてもよいシクロアルケニル(例えば、2-シクロペンテニル、2-シクロペンテニルメチル、2-シクロペキセニルメチル、2-シクロペンテニルメチル、2-シクロペキセニルメチルなど炭素数3~7のシクロアルケニルなどが挙げられる);
 - (5) 置換されていてもよいアラルキル (例えば、フェニルー C_{1-4} アルキル (例、ベンジル、フェネチルなど) などが挙げられる);
- (6) ホルミルまたは置換されていてもよいアシル(例えば、炭素数 $2 \sim 4$ のアルカノイル(例、アセチル、プロピオニル、ブチリル、イソブチリルなど)、炭素数 $1 \sim 4$ のアルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)、炭素数 $1 \sim 4$ のアルコキシカルボニル(例、メトキシカルボニル、エトキシカルボニル、tert-ブトキシカルボニルなど)、炭素数 $7 \sim 1$ 0のアラルキルオキシカルボニル(例、ベンジルオキシカルボニルなど)などが挙げられる);

- (7) 置換されていてもよいアリール(例えば、フェニル、ナフチルなど);
- (8) 置換されていてもよい複素環基(例えば、フラン、チオフェン、ピロール、イミダゾール、ピラゾール、チアゾール、オキサゾール、イソチアゾール、イソキナゾール、デトラゾール、ビリジン、ピラジン、ピリミジン、ピリダジン、ト
- 5 リアゾールなどの窒素原子、硫黄原子および酸素原子から選ばれた1~2種のヘ テロ原子1~4個を含有する5~6員の芳香族複素環から水素原子1個を除いて 形成される基、テトラヒドロフラン、テトラヒドロチオフェン、ジチオラン、オ キサチオラン、ピロリジン、ピロリン、イミダゾリジン、イミダゾリン、ピラゾ リジン、ピラゾリン、ピペリジン、ピペラジン、オキサジン、オキサジアジン、
- 10 チアジン、チアジアジン、モルホリン、チオモルホリン、ピラン、テトラヒドロ ピランなどの窒素原子、硫黄原子および酸素原子から選ばれた1~2種のヘテロ 原子1~4個を含有する5~6員の非芳香族複素環から水素原子1個を除いて形 成される基など;好ましくは、5~6員の非芳香族複素環から水素原子1個を除 いて形成される基など;さらに好ましくは、テトラヒドロフラン、ピペリジン、
- 15 テトラヒドロピラン、テトラヒドロチオピランなどの1個のヘテロ原子を含有する5~6員の非芳香族複素環から水素原子1個を除いて形成される基など)などの置換基が挙げられる。また、該アミノ基の置換基同士が結合して、ピペリジン、ピペラジン、モルホリン、チオモルホリンなどの5~7員の環状アミノを形成していてもよい。
- 20 上記した(1)置換されていてもよいアルキル、(2)置換されていてもよいシクロアルキル、(3)置換されていてもよいアルケニル、(4)置換されていてもよいシクロアルケニル、(5)置換されていてもよいアラルキル、(6)置換されていてもよいアシル、(7)置換されていてもよいアリール、および(8)置換されていてもよい複素環基が有していてもよい置換基としては、ハロゲン(例、
- 25 フッ素、塩素、臭素、ヨウ素など)、ハロゲン化されていてもよい低級(C_{1-4}) アルキル、ハロゲン化されていてもよい C_{1-4} アルコキシ(例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、 C_{1-4} アルキレンジオキシ(例、 $-O-CH_2-O-$ 、 $-O-CH_2-CH_2-O-$ など)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルな

- ど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)、フェニルー低級(C_{1-4})アルキル、 C_{3-7} シクロアルキル、シアノ、ニトロ、水酸基、置換されていてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの $5\sim 6$ 員の環状アミノなど)、エステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、低級(C_{1-4})アルキルカルボニル、低級(C_{7-10})アラルキルオキシーカルボニル、オキソ基(好ましくは、ハロゲン、ハロゲン化されていてもよい低級(C_{1-4})アルキル、ハロゲン化されていてもよい低級(C_{1-4})アルキル、ハロゲン化されていてもよい低級(C_{1-4})アルキル、 C_{3-7} シクロアルキル、シアノ、水酸基など)などが挙げられ、置換基の数としては、 $1\sim 3$ 個が好ましい。
- 15 上記式 (I) 中、R 2 で示される「置換されていてもよく、窒素原子が 4 級アンモニウム化またはオキシド化されていてもよいアミノ基」は、好ましくは (1) ハロゲン、シアノ、水酸基または C_{3-7} シクロアルキルを $1\sim 3$ 個有して

いてもよい直鎖または分枝状の低級(C₁₋₆)アルキル;

- (2) ハロゲン、ハロゲン化されていてもよい低級(C_{1-4})アルキルまたはフェニルー低級(C_{1-4})アルキルを $1\sim3$ 個有していてもよく、硫黄原子、酸素原子および窒素原子から選ばれるヘテロ原子を1個含有していてもよく、ペンゼン環と縮合していてもよく、炭素数 $1\sim2$ の直鎖状の原子鎖を介して架橋していてもよい C_{5-8} シクロアルキル(例、それぞれ置換されていてもよいシクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、テトラヒドロピラニル、テトラヒドロチアピラニル、ピペリジニル、インダニル、テトラヒドロナフタレニル、ビシクロ[2.2.1] ヘプチルなど);
 - (3) ハロゲン、ハロゲン化されていてもよい低級(C_{1-4})アルキルまたはハロゲン化されていてもよい低級(C_{1-4})アルコキシを $1\sim3$ 個有していてもよいフェニルー低級(C_{1-4})アルキル;

- (4) ハロゲン、ハロゲン化されていてもよい低級(C_{1-4})アルキルまたはハロゲン化されていてもよい低級(C_{1-4})アルコキシを $1\sim3$ 個有していてもよいフェニル;および
- (5) ハロゲン、ハロゲン化されていてもよい低級(C_{1-4})アルキル、ハロゲン化されていてもよい低級(C_{1-4})アルコキシ、ハロゲン化されていてもよい低級(C_{1-4})アルコキシー低級(C_{1-4})アルコキシ、フェニルー低級(C_{1-4})アルキル、シアノまたは水酸基を $1\sim3$ 個有していてもよい $5\sim6$ 員の芳香族複素環基(例、フラン、チオフェン、ピロール、ピリジンなどから水素原子1個を除いて形成される基)から選ばれる置換基を $1\sim3$ 個有していてもよいアミノ基である。
- 上記式(I)中、「置換されていてもよく、環構成原子として硫黄原子または酸 素原子を含有していてもよく、窒素原子が4級アンモニウム化またはオキシド化 されていてもよい含窒素複素環基」の「含窒素複素環」としては、ピロール、イ ミダゾール、ピラゾール、チアゾール、オキサゾール、イソチアゾール、イソキ サゾール、テトラゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、トリ アゾールなどの1個の窒素原子の他に窒素原子、硫黄原子および酸素原子から選 ばれた $1\sim2$ 種のヘテロ原子 $1\sim3$ 個を含有していてもよい $5\sim6$ 員の芳香族複 素環、ピロリジン、ピロリン、イミダゾリジン、イミダゾリン、ピラゾリジン、 ピラゾリン、ピペリジン、ピペラジン、オキサジン、オキサジアジン、チアジン、 チアジアジン、モルホリン、チオモルホリン、アザシクロヘプタン、アザシクロ オクタン (アゾカン) などの1個の窒素原子の他に窒素原子、硫黄原子および酸 素原子から選ばれた $1\sim2$ 種のヘテロ原子 $1\sim3$ 個を含有していてもよい $5\sim8$ 員の非芳香族複素環などが挙げられ、これらの含窒素複素環は、炭素数1~2の 直鎖状の原子鎖を介して架橋し、アザビシクロ[2.2.1] ヘプタン、アザビ シクロ [2.2.2] オクタン (キヌクリジン) など (好ましくは、炭素数1~ 2の直鎖状の原子鎖を介した架橋を有するピペリジンなど)の架橋環式含窒素複

上記した含窒素複素環の具体例のなかでも、ピリジン、イミダゾール、ピロリジン、ピペリジン、ピペラジン、モルホリン、チオモルホリン、アザビシクロ[2.

素環を形成していてもよい。

2. 2] オクタン (好ましくは、6員環) が好ましい。

該「含窒素複素環」の窒素原子は、4級アンモニウム化されていてもよく、あるいは酸化されていてもよい。該「含窒素複素環」の窒素原子が4級アンモニウム化されている含窒素複素環基」のカウンター・アニオンとしては、ハロゲン原子の陰イオン(例、Cl⁻、Br⁻、I⁻など)などの他に、塩酸、臭化水素酸、硝酸、硫酸、リン酸などの無機酸から誘導される陰イオン、ギ酸、酢酸、トリフルオロ酢酸、フマル酸、シュウ酸、酒石酸、マレイン酸、クエン酸、コハク酸、リンゴ酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸などの有機酸から誘導される陰イオン、アスパラギン酸、グルタミン酸などの酸性アミノ酸から誘導される陰イオン、アスパラギン酸、グルタミン酸などの酸性アミノ酸から誘導される陰イオンなどが挙げられるが、なかでも、Cl⁻、Br⁻、I⁻などが好ましい。

該「含窒素複素環基」は、炭素原子または窒素原子のいずれを介して Z ² で示される二価の基に結合していてもよく、2-ピリジル、3-ピリジル、2-ピペリジニルなどのように環構成炭素原子上で結合していてもよいが、

$$-z_{2}-N \stackrel{=N}{\longrightarrow}, -z_{2}-N \stackrel{=}{\longrightarrow}, -z_{2} \stackrel{+}{\longrightarrow} N \stackrel{=}{\longrightarrow}, -z_{$$

などのように環構成窒素原子上で結合するのが好ましい。

該「含窒素複素環」が有していてもよい置換基としては、ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、置換されていてもよい低級(C_{1-4})アルキル、置換されていてもよい低級(C_{1-4})アルキル、置換されていてもよい低級(C_{1-4})アルコキシ、置換されていてもよいフェニル、置換されていてもよいモノまたはジフェニルー低級(C_{1-4})アルキル、置換されていてもよい C_{3-7} シクロアルキル、シアノ、ニトロ、水酸基、置換されていてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、デトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの5~6員の環状アミノなど)、エステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ

25

 C_{1-4} アルキルカルバモイルなど)、低級(C_{1-4})アルコキシーカルボニル、ホルミル、低級(C_{2-4})アルカノイル、低級(C_{1-4})アルキルスルホニル、置換されていてもよい複素環基(例えば、フラン、チオフェン、ピロール、イミダゾール、ピラゾール、チアゾール、オキサゾール、イソチアゾール、イソキサゾール、テトラゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアゾールなどの窒素原子、硫黄原子および酸素原子から選ばれた $1\sim2$ 種のヘテロ原子 $1\sim4$ 個を含有する $5\sim6$ 員の芳香族複素環から水素原子 1 個を除いて形成される基、テトラヒドロフラン、テトラヒドロチオフェン、ジチオラン、オキサチオラン、ピロリジン、ピロリン、イミダゾリジン、イミダゾリン、ピラゾリジン、チアジアジン、モルホリン、ピネラジン、オキサジン、テトラヒドロピラン、テトラヒドロチオピランなどの窒素原子、硫黄原子および酸素原子から選ばれた $1\sim2$ 種のヘテロ原子 $1\sim4$ 個を含有する $5\sim6$ 員の非芳香族複素環から水素原子

該「含窒素複素環」が有していてもよい置換基としての「置換されていてもよい低級(C_{1-4})アルキル」、「置換されていてもよい低級(C_{1-4})アルコキシ」、「置換されていてもよいそしまたはジフェニルー低級(C_{1-4})アルキル」、「置換されていてもよい C_{3-7} シクロアルキル」および「置換されていてもよい複素環基」がそれぞれ有していてもよい置換基としては、例えば、ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、ハロゲン化されていてもよい低級(C_{1-4})アルキル、低級(C_{3-10})シクロアルキル、低級(C_{3-10})シクロアルケニル、ハロゲン化されていてもよい C_{1-4} アルコキシ(例、メトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)、 C_{1-3} アルキレンジオキシ(例、メチレンジオキシ、エチレンジオキシなど)、シアノ、ニトロ、水酸基、置換されていてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4}

アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの5~6員の環状アミノなど)、エステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、低級(C_{1-4} アルコキシーカルボニルなどが挙げられ、置換基の数としては、 $1\sim3$ 個が好ましい。

上記式(I)中、「置換されていてもよく、環構成原子として硫黄原子または酸 素原子を含有していてもよく、窒素原子が4級アンモニウム化またはオキシド化 されていてもよい含窒素複素環基」の「含窒素複素環」が有していてもよい置換 10 基としては、(1)ハロゲン、(2)シアノ、(3)水酸基、(4)カルボキシ ル基、(5)低級(C_{1-4})アルコキシーカルボニル、(6)ハロゲン、水酸基 または低級(C_{1-4})アルコキシで置換されていてもよい低級(C_{1-4})アルキル、 (7) ハロゲン、水酸基または低級(C_{1-4})アルコキシで置換されていてもよ い低級(C_{1-4})アルコキシ、(8)ハロゲン、低級(C_{1-4})アルキル、水酸基、 15 低級 (C_{1-4}) アルコキシまたは C_{1-3} アルキレンジオキシで置換されていてもよ いフェニル、(9) ハロゲン、低級(C_{1-4}) アルキル、水酸基、低級(C_{1-4}) アルコキシまたは C_{1-3} アルキレンジオキシで置換されていてもよいモノまたは ジフェニル-低級(C_{1-4})アルキル、($1\ 0$)フラン、チオフェン、ピロール、 ピリジンなどの5~6員の芳香族複素環から水素原子1個を除いて形成される基 などが好ましい。

上記式 (I) 中、R 2 で示される「硫黄原子を介して結合する基」としては、式 - S (O)m - R S (式中、mは0 \sim 2 の整数を示し、R S は置換基を示す)で表される基が挙げられる。上記式中、R S で示される置換基としては、例えば

25 (1)置換されていてもよいアルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソプチル、sec-ブチル、tert-プチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-6})アルキルなどが挙げられる);

- (2) 置換されていてもよいシクロアルキル(例えば、シクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどの C_{3-7} シクロアルキルなどが挙げられる);
- (3) 置換されていてもよいアラルキル (例えば、フェニルー C_{1-4} アルキル (例、ベンジル、フェネチルなど) などが挙げられる);
- (4) 置換されていてもよいアリール (例えば、フェニル、ナフチルなどが挙げられる) などが好ましく、上記した (1) 置換されていてもよいアルキル、 (2) 置換されていてもよいシクロアルキル、 (3) 置換されていてもよいアラルキル、および (4) 置換されていてもよいアリールが有していてもよい置換基としては、
- 10 ハロゲン (例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、 置換されていてもよいチオール基 (例、チオール、 C_{1-4} アルキルチオなど)、 置換されていてもよいアミノ基 (例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの $5\sim6$ 員の環状アミノなど)、
- 15 エステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイルなど)、ハロゲン化されていてもよい C_{1-4} アルキル (例、トリフルオロメチル、メチル、エチルなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ(例、メトキシ、エトキシ、トリフルオロメトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンス

ルホニルなど)などが挙げられ、置換基の数としては、1~3個が好ましい。

上記式 (I) 中、R²で示される「式

$$- \Pr_{\mathbf{R}_{6}}^{\mathbf{R}_{6}}$$

25 (式中、kは0または1を示し、kが0の時、燐原子はホスホニウム塩を形成していてもよく、 R^{5} および R^{6} はそれぞれ置換されていてもよい炭化水素基、

置換されていてもよい水酸基または置換されていてもよいアミノ基(好ましくは、 置換されていてもよい炭化水素基または置換されていてもよいアミノ基;さらに 好ましくは、置換されていてもよい炭化水素基)を示し、 R^{5} , および R^{6} , は互 いに結合して隣接する燐原子とともに環状基を形成していてもよい)で表される 基」において、 R^{5} , および R^{6} , で示される置換されていてもよい炭化水素基に おける「炭化水素基」としては、

- (1) 置換されていてもよいアルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソプチル、sec-プチル、tert-プチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-6})アルキルなどが挙げられる);
- (2)置換されていてもよいシクロアルキル(例えば、シクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどの C_{3-7} シクロアルキルなどが挙げられる);
- 15 (3) 置換されていてもよいアルケニル (例えば、アリル(allyl)、クロチル、2 -ペンテニル、3-ヘキセニルなどの炭素数 $2\sim1$ 0 のアルケニル、好ましくは 低級 (C_{2-6}) アルケニルなどが挙げられる);
 - (4) 置換されていてもよいシクロアルケニル(例えば、2-シクロペンテニル、2-シクロペキセニル、2-シクロペンテニルメチル、2-シクロペキセニルメチルなど炭素数3~7のシクロアルケニルなどが挙げられる);
 - (5) 置換されていてもよいアルキニル(例えば、エチニル、1-プロピニル、2-プロピニル、3-ヘキシニルなどの炭素数 $2\sim10$ のアルキニル、好ましくは低級 (C_{2-6}) アルキニルなどが挙げられる);
 - (6) 置換されていてもよいアラルキル (例えば、フェニルー C₁₋₄アルキル (例、 ベンジル、フェネチルなど) などが挙げられる);
 - (7) 置換されていてもよいアリール (例えば、フェニル、ナフチルなどが挙げられる) などが挙げられ、上記した (1) 置換されていてもよいアルキル、 (2) 置換されていてもよいアルケニル、
 - (4) 置換されていてもよいシクロアルケニル、(5) 置換されていてもよいア

20

ルキニル、(6) 置換されていてもよいアラルキル、および(7) 置換されてい てもよいアリールが有していてもよい置換基としては、ハロゲン(例、フッ素, 塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていてもよいチ オール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいア 5 ミノ基(例、アミノ、モノC₁₋₄アルキルアミノ、ジC₁₋₄アルキルアミノ、テト ラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピ ロール、イミダゾールなどの $5\sim6$ 員の環状アミノなど)、エステル化またはア ミド化されていてもよいカルボキシル基(例、カルボキシル、C₁₋₄アルコキシ カルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキル 10 カルバモイルなど)、ハロゲン化されていてもよい C_{1-4} アルキル(例、トリフ ルオロメチル、メチル、エチルなど)、ハロゲン化されていてもよいC₁₋₄アル コキシ(例、メトキシ、エトキシ、トリフルオロメトキシ、トリフルオロエトキ シなど)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)な どが挙げられ、置換基の数としては、1~3個が好ましい。 15

 R^{5} 、および R^{6} 、で示される「置換されていてもよい水酸基」としては、例えば、(1)置換されていてもよいアルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-6})アルキルなどが挙げられる);

- (2) 置換されていてもよいシクロアルキル(例えば、シクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどの C_{3-7} シクロアルキルなどが挙げられる);
- 25 (3) 置換されていてもよいアルケニル(例えば、アリル (allyl)、クロチル、 $2-ペンテニル、3-ヘキセニルなど炭素数 <math>2\sim 1$ 0 のアルケニル、好ましくは 低級 (C_{2-6}) アルケニルなどが挙げられる);
 - (4) 置換されていてもよいシクロアルケニル(例えば、2-シクロペンテニル、 2-シクロヘキセニル、2-シクロペンテニルメチル、2-シクロヘキセニルメ

チルなど炭素数3~7のシクロアルケニルなどが挙げられる);

- (5) 置換されていてもよいアラルキル (例えば、フェニルー C_{1-4} アルキル (例、ベンジル、フェネチルなど) などが挙げられる);
- (6) ホルミルまたは置換されていてもよいアシル (例えば、炭素数2~4のア 5 ルカノイル (例、アセチル、プロピオニル、ブチリル、イソブチリルなど)、炭 素数1~4のアルキルスルホニル (例、メタンスルホニル、エタンスルホニルな ど) などが挙げられる);
 - (7) 置換されていてもよいアリール(例えば、フェニル、ナフチルなどが挙げられる)などを有していてもよい水酸基などが挙げられる。
- 10 上記した(1) 置換されていてもよいアルキル、(2) 置換されていてもよいシクロアルキル、(3) 置換されていてもよいアルケニル、(4) 置換されていてもよいアクロアルケニル、(5) 置換されていてもよいアラルキル、(6) 置換されていてもよいアシル、および(7) 置換されていてもよいアリールが有していてもよい置換基としては、ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、
- 15 ニトロ、シアノ、水酸基、置換されていてもよいチオール基(例、チオール、C $_{1-4}$ アルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノC $_{1}$ $_{-4}$ アルキルアミノ、ジC $_{1-4}$ アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの $_{5}$ $_{6}$ 員の環状アミノなど)、エステル化またはアミド化されていてもよいカル
- 20 ボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハロゲン化されていてもよい C_{1-4} アルキル(例、トリフルオロメチル、メチル、エチルなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ(例、メトキシ、エトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、ホルミル、 C_{2-4}
- 25 アルカノイル (例、アセチル、プロピオニルなど) 、 C_{1-4} アルキルスルホニル (例、メタンスルホニル、エタンスルホニルなど) などが挙げられ、置換基の数 としては、 $1\sim3$ 個が好ましい。

また、上記式中、R 5 、およびR 6 、は互いに結合して隣接する燐原子とともに 環状基(好ましくは、 $5\sim7$ 員環)を形成していてもよい。かかる環状基は、置

換基を有していてもよく、当該置換基としては、ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていてもよいチオール 基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基 (例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒド ロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの5~6員の環状アミノなど)、エステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハロゲン化されていてもよい C_{1-4} アルキル (例、トリフルオロメ チル、メチル、エチルなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ(例、メトキシ、エトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、1~3 個が好ましい。

15 上記式(I)中、燐原子がホスホニウム塩を形成する場合のカウンター・アニオンとしては、ハロゲン原子の陰イオン(例、Cl 、Br 、I など)などの他に、塩酸、臭化水素酸、硝酸、硫酸、リン酸などの無機酸から誘導される陰イオン、ギ酸、酢酸、トリフルオロ酢酸、フマル酸、シュウ酸、酒石酸、マレイン酸、クエン酸、コハク酸、リンゴ酸、メタンスルホン酸、ベンゼンスルホン酸、ワートルエンスルホン酸などの有機酸から誘導される陰イオン、アスパラギン酸、グルタミン酸などの酸性アミノ酸から誘導される陰イオンなどが挙げられるが、なかでも、Cl 、Br 、I などが好ましい。

 R^{5} および R^{6} で示される置換されていてもよいアミノ基としては、

- (1)置換されていてもよいアルキル(例えば、メチル、エチル、プロピル、イ 25 ソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-6})アルキルなどが挙げられる);
 - (2) 置換されていてもよいシクロアルキル(例えば、シクロプロピル、シクロ

プチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどの C_{3-7} シクロアルキルなどが挙げられる);

- (3) 置換されていてもよいアルケニル (例えば、アリル(allyl)、クロチル、2 -ペンテニル、3-ヘキセニルなど炭素数 $2\sim1$ 0 のアルケニル、好ましくは低 級 (C_{2-6}) アルケニルなどが挙げられる) ;
 - (4) 置換されていてもよいシクロアルケニル(例えば、2-シクロペンテニル、 2-シクロヘキセニル、2-シクロペンテニルメチル、2-シクロヘキセニルメ チルなど炭素数3~7のシクロアルケニルなどが挙げられる);
- (5) ホルミルまたは置換されていてもよいアシル (例えば、炭素数 2~4のア 10 ルカノイル (例、アセチル、プロピオニル、プチリル、イソブチリルなど)、炭素数 1~4のアルキルスルホニル (例、メタンスルホニル、エタンスルホニルなど) などが挙げられる);
 - (6) 置換されていてもよいアリール (例えば、フェニル、ナフチルなどが挙げられる) などを1~2個有していてもよいアミノ基などが挙げられる。
- 上記した(1)置換されていてもよいアルキル、(2)置換されていてもよいシクロアルキル、(3)置換されていてもよいアルケニル、(4)置換されていてもよいアルケニル、(5)置換されていてもよいアシル、および(6) 置換されていてもよいアリールが有していてもよい置換基としては、ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていて もよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていて もよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの5~6員の環状アミノなど)、エステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルキルカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハロゲン化されていてもよい C_{1-4} アルキル (例、トリフルオロメチル、メチル、エチルなど)、ハロゲン化されていてもよい C_{1-4}

4アルコキシ(例、メトキシ、エトキシ、トリフルオロメトキシ、トリフルオロ

エトキシなど)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニル

など)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、 $1\sim3$ 個が好ましい。

 R^2 で示される「置換されていてもよいアミジノ基」および「置換されていてもよいグアニジノ基」における置換基としては、上記した R^2 で示される「置換されていてもよく、窒素原子が4級アンモニウム化またはオキシド化されていてもよいアミノ基」における置換基と同様なものが挙げられる

 R^2 としては、(1)置換されていてもよく、窒素原子が4級アンモニウム化またはオキシド化されていてもよいアミノ基、(2)置換されていてもよく、環構成原子として硫黄原子または酸素原子を含有していてもよく、窒素原子が4級アンモニウム化またはオキシド化されていてもよい含窒素複素環基、(3)置換されていてもよいアミジノ基または(4)置換されていてもよいグアニジノ基であることが好ましく、 R^2 としては、置換されていてもよく、窒素原子が4級アンモニウム化されていてもよいアミノ基などがさらに好ましい。また、 R^2 は置換されていてもよいアミジノ基または置換されていてもよいグアニジノ基であってもよい。

10

15

 R^2 としては、式-NRR" または $-N^+RR$ ' R" で表される基(式中、R,R' およびR" はそれぞれ置換されていてもよい脂肪族炭化水素基(脂肪族鎖式炭化水素基および脂肪族環式炭化水素基)または置換されていてもよい脂環式(非芳香族)複素環基を示す)がさらに好ましい。

20 上記式中、R, R'およびR"で示される「置換されていてもよい脂肪族炭化水素基」および「置換されていてもよい脂環式複素環基」としては、置換基R2で示される「置換されていてもよいアミノ基」が有していてもよい置換基として例示された「置換されていてもよい脂肪族炭化水素基(例、それぞれ置換されていてもよいアルキル、シクロアルキル、アルケニル、シクロアルケニルなど)」および「置換されていてもよい脂環式複素環基(例、置換されていてもよい5~6員の非芳香族複素環など)」と同様なものが挙げられる。

なかでも、RおよびR'としては、置換されていてもよい鎖状炭化水素基(例、それぞれ置換されていてもよいPルキル、Pルケニルなど)が好ましく、置換されていてもよい C_{1-6} Pルキル基がさらに好ましく、置換されていてもよいメチ

ル基がとりわけ好ましい。

R"としては、置換されていてもよい脂環式炭化水素基(好ましくは、置換されていてもよいC₃₋₈シクロアルキル基;さらに好ましくは置換されていてもよいシクロヘキシル)または置換されていてもよい脂環式複素環基(好ましくは、

5 置換されていてもよい飽和の脂環式複素環基(好ましくは6員環基);さらに好ましくは、置換されていてもよいテトラヒドロピラニル、置換されていてもよいテトラヒドロチオピラニルまたは置換されていてもよいピペリジル;とりわけ好ましくは、置換されていてもよいテトラヒドロピラニル)が好ましい。

式(1)で表される化合物としては、以下に示す化合物が好ましい。

- 15 2, $3-\vec{y}$ E \vec{r} D $-1-\vec{v}$ \vec{v} \vec{y} \vec{r} T \vec{v} $-4-\vec{n}$ \vec{n} \vec{r} + \vec{v} \vec{r} ; $N-[4-[N-\vec{y}$ \vec{r} $-N-(F+\vec{r})$ E \vec{v} D \vec{v} $-4-\vec{r}$ \vec{n}) \vec{r} = \vec{r} $\vec{r$

サミド:

on an animal for the Section in the last confidence and an animal sections.

5 N-[4-[N-メチル-N-(テトラヒドロピラン-4-イル) アミノメチル] フェニル] -7-[(4-プロポキシフェニル) メトキシ] -1, 1-ジオキソ -2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボキサミド;

N-[4-[N-メチル-N-(テトラヒドロピラン-4-イル) アミノメチル] フェニル] -7-[(4-プロポキシエトキシフェニル) メトキシ] <math>-1, 1-

10 ジオキソー2, 3-ジヒドロー1-ベンゾチエピンー4-カルボキサミド; N- [4-[N-メチル-N-(テトラヒドロピランー4-イル) アミノメチル] フェニル] -7-[3-(4-プロポキシフェニル) プロポキシ] -1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボキサミド; など

本発明の式(I)で表される化合物の塩としては、薬理学的に許容される塩が好ましく、例えば無機塩基との塩、有機塩基との塩、無機酸との塩、有機酸との塩、 塩基性または酸性アミノ酸との塩などが挙げられる。無機塩基との塩の好適な例としては、例えばナトリウム塩、カリウム塩などのアルカリ金属塩;カルシウム塩、マグネシウム塩などのアルカリ土類金属塩;ならびにアルミニウム塩、アンモニウム塩などが挙げられる。有機塩基との塩の好適な例としては、例えばトリメチルアミン、トリエチルアミン、ピリジン、ピコリン、エタノールアミン、ジ

メチルアミン、トリエチルアミン、ピリジン、ピコリン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、ジシクロヘキシルアミン、N, N'-ジベンジルエチレンジアミンなどとの塩が挙げられる。無機酸との塩の好適な例としては、例えば塩酸、臭化水素酸、硝酸、硫酸、リン酸などとの塩が挙げられる。有機酸との塩の好適な例としては、例えばギ酸、酢酸、トリフルオロ酢酸、

25 フマル酸、シュウ酸、酒石酸、マレイン酸、クエン酸、コハク酸、リンゴ酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸などとの塩が挙げられる。塩基性アミノ酸との塩の好適な例としては、例えばアルギニン、リジン、オルニチンなどとの塩が挙げられ、酸性アミノ酸との塩の好適な例としては、例えばアスパラギン酸、グルタミン酸などとの塩が挙げられる。本発明の式(I)で

表される化合物は、水和物であってもよく、非水和物であってもよい。また、本発明の式(I)で表される化合物が、コンフィグレーショナル・アイソマー(配置異性体)、ジアステレオーマー、コンフォーマーなどとして存在する場合には、所望により、自体公知の分離・精製手段でそれぞれを単離することができる。また、式(I)で表される化合物がラセミ体である場合には、通常の光学分割手段により、(S)体、(R)体に分離することができ、各々の光学活性体ならびにラセミ体のいずれについても、本発明に包含される。

本発明で用いられる式 (I) で表される化合物またはその塩 [以下、化合物 (I) と称することがある。] のプロドラッグは、生体内における生理条件下で酵素や 10 胃酸等による反応により化合物(I)に変換する化合物、すなわち酵素的に酸化、 還元、加水分解等を起こして化合物(I)に変化する化合物、胃酸等により加水分 解などを起こして化合物(I)に変化する化合物をいう。化合物(I)のプロドラ ッグとしては、化合物(I)のアミノ基がアシル化、アルキル化、りん酸化された 化合物(例、化合物(I)のアミノ基がエイコサノイル化、アラニル化、ペンチル アミノカルボニル化、(5ーメチルー2ーオキソー1、3ージオキソレンー4ー 15 イル)メトキシカルボニル化、テトラヒドロフラニル化、ピロリジルメチル化、 ピバロイルオキシメチル化、tert-ブチル化された化合物など); 化合物(I) の水酸基がアシル化、アルキル化、りん酸化、ほう酸化された化合物(例、化合 物(I)の水酸基がアセチル化、パルミトイル化、プロパノイル化、ピバロイル化、 サクシニル化、フマリル化、アラニル化、ジメチルアミノメチルカルボニル化さ れた化合物など);化合物(I)のカルボキシル基がエステル化、アミド化された 化合物(例、化合物(I)のカルボキシル基がエチルエステル化、フェニルエステ ル化、カルボキシメチルエステル化、ジメチルアミノメチルエステル化、ピバロ イルオキシメチルエステル化、エトキシカルボニルオキシエチルエステル化、フ タリジルエステル化、(5-メチル-2-オキソ-1,3-ジオキソレン-4-25 イル)メチルエステル化、シクロヘキシルオキシカルボニルエチルエステル化、 メチルアミド化された化合物など);等が挙げられる。これらの化合物は自体公 知の方法によって化合物(I)から製造することができる。

また、化合物(I)のプロドラッグは、広川書店1990年刊「医薬品の開発」

第7巻分子設計163頁から198頁に記載されているような、生理的条件で化合物(I)に変化するものであってもよい。

また、化合物(I) は同位元素(例、³H, ¹⁴C, ³⁵S, ¹²⁵Iなど) などで標識されていてもよい。

本発明の式(I)で表される化合物またはその塩(以下、略して式(I)で表される化合物という場合、その塩および式(I)で表される化合物およびその塩を含むものとする)は、単独で、または薬学的に許容される担体と配合し、錠剤、カプセル剤、顆粒剤、散剤などの固形製剤;またはシロップ剤、注射剤などの液状製剤として経口または非経口的に投与することができる。

10 非経口的投与の形態としては、注射剤、点滴、坐剤、膣坐剤などが挙げられるが、

特に、陰坐剤はHIV感染症の予防のために有用である。

薬学的に許容される担体としては、製剤素材として慣用の各種有機あるいは無 機担体物質が用いられ、固形製剤における賦形剤、滑沢剤、結合剤、崩壊剤;液 状製剤における溶剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤、無痛化剤など 15 として配合される。また必要に応じて、防腐剤、抗酸化剤、着色剤、甘味剤など の製剤添加物を用いることもできる。賦形剤の好適な例としては、例えば乳糖、 白糖、D-マンニトール、デンプン、結晶セルロース、軽質無水ケイ酸などが挙げ られる。滑沢剤の好適な例としては、例えばステアリン酸マグネシウム、ステア リン酸カルシウム、タルク、コロイドシリカなどが挙げられる。結合剤の好適な 20 例としては、例えば結晶セルロース、白糖、D-マンニトール、デキストリン、ヒ ドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニ ルピロリドンなどが挙げられる。崩壊剤の好適な例としては、例えばデンプン、 カルボキシメチルセルロース、カルボキシメチルセルロースカルシウム、クロス カルメロースナトリウム、カルボキシメチルスターチナトリウムなどが挙げられ る。溶剤の好適な例としては、例えば注射用水、アルコール、プロピレングリコ ール、マクロゴール、ゴマ油、トウモロコシ油などが挙げられる。溶解補助剤の 好適な例としては、例えばポリエチレングリコール、プロピレングリコール、D-マンニトール、安息香酸ベンジル、エタノール、トリスアミノメタン、コレステ

ロール、トリエタノールアミン、炭酸ナトリウム、クエン酸ナトリウムなどが挙 げられる。懸濁化剤の好適な例としては、例えばステアリルトリエタノールアミ ン、ラウリル硫酸ナトリウム、ラウリルアミノプロピオン酸、レシチン、塩化ベ ンザルコニウム、塩化ベンゼトニウム、モノステアリン酸グリセリン、などの界 面活性剤;例えばポリビニルアルコール、ポリビニルピロリドン、カルボキシメ チルセルロースナトリウム、メチルセルロース、ヒドロキシメチルセルロース、 ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどの親水性高分 子などが挙げられる。等張化剤の好適な例としては、例えば塩化ナトリウム、グ リセリン、D-マンニトールなどが挙げられる。緩衝剤の好適な例としては、例え ばリン酸塩、酢酸塩、炭酸塩、クエン酸塩などの緩衝液などが挙げられる。無痛 10 化剤の好適な例としては、例えばベンジルアルコールなどが挙げられる。防腐剤 の好適な例としては、例えばパラオキシ安息香酸エステル類、クロロプタノール、 ペンジルアルコール、フェネチルアルコール、デヒドロ酢酸、ソルビン酸などが一 挙げられる。抗酸化剤の好適な例としては、例えば亜硫酸塩、アスコルビン酸な どが挙げられる。

本発明の式(I)で表される化合物またはその塩は、他のH I Vの感染症の予防・ 治療剤(特に、AIDSの予防・治療剤)と組み合わせて用いてもよい。この場 合、これらの薬物は、別々にあるいは同時に、薬理学的に許容されうる担体、賦 形剤、結合剤、希釈剤などと混合して製剤化し、HIVの感染症の予防・治療の ための医薬組成物として経口的にまたは非経口的に投与することができる。薬物 を別々に製剤化する場合、別々に製剤化したものを使用時に希釈剤などを用いて 混合して投与することができるが、別々に製剤化した個々の製剤を、同時に、あ るいは時間差をおいて別々に、同一対象に投与してもよい。別々に製剤化したも のを使用時に希釈剤などを用いて混合して投与するためのキット製品(例えば、 粉末状の個々の薬物を含有するアンプルと2種以上の薬物を使用時に混合して溶 25 解するための希釈剤などを含有する注射用キットなど)、別々に製剤化した個々 の製剤を、同時に、あるいは時間差をおいて別々に、同一対象に投与するための キット製品(例えば、個々の薬物を含有する錠剤を同一または別々の袋に入れ、 必要に応じ、薬物を投与する時間の記載欄を設けた、2種以上の錠剤を同時にあ

るいは時間差をおいて別々に投与するための錠剤用キットなど) なども本発明の 医薬組成物含まれる。

54

本発明の式(I)で表される化合物またはその塩と組み合わせて用いられる、他のHIVの感染症の予防・治療剤の具体的な例としては、ジドブジン(zidovudine)、ジダノシン(didanosine)、ザルシタビン(zalcitabine)、ラミブジン(lamivudine)、

- ジダノシン(didanosine)、ザルシタビン(zalcitabine)、ラミブジン(lamivudine)、スタブジン (stavudine)、アバカビル (abacavir)、アデフォビル (adefovir)、アデフォビル ジピボキシル (adefovir dipivoxil)、フォジプジン チドキシル (fozivudine tidoxil) などの核酸系逆転写酵素阻害剤;ネビラピン (nevirapine)、デラビルジン (delavirdine)、エファビレンツ (efavirenz)、
- 10 ロビリド (loviride)、イムノカル (immunocal)、オルチプラズ (oltipraz) などの非核酸系逆転写酵素阻害剤 (イムノカル (immunocal)、オルチプラズ (oltipraz) などのように抗酸化作用を有する薬剤も含む);サキナビル (saquinavir)、リトナビル (ritonavir)、インジナビル (indinavir)、ネルフィナビル (nelfinavir)、アムプレナビル (amprenavir)、パリナビル (palinavir)、ラシナビル (lasinavir) などのプロテアーゼ阻害剤;などが挙げられる。
 - 核酸系逆転写酵素阻害剤としては、ジドブジン (zidovudine) 、ジダノシン (didanosine) 、ザルシタビン (zalcitabine) 、ラミブジン (lamivudine) 、スタブジン (stavudine) などが好ましく、非核酸系逆転写酵素阻害剤としては、ネビラピン (nevirapine) 、デラビルジン (delavirdine) などが好ましく、プロテアーゼ阻害剤としては、サキナビル (saquinavir) 、リトナビル (ritonavir) 、

インジナビル(indinavir)、ネルフィナビル(nelfinavir)などが好ましい。

式(I)で表される化合物またはその塩の製造法を以下に示す。

20

式(I)で表される化合物またはその塩は自体公知の方法によって製造できる。 例えば下記の方法にしたがって製造できる。また、式(I)で表される化合物また はその塩は特開平8-73476号公報に記載の方法またはそれに準じた方法に よって製造できる。

下記の各製造法で用いられる化合物は、反応に支障を来たさない限り、化合物(I)と同様な塩を形成していてもよい。

また、下記各反応において、原料化合物は、置換基としてアミノ基、カルボキ

シル基、ヒドロキシル基を有する場合、これらの基にペプチド化学などで一般的 に用いられるような保護基が導入されたものであってもよく、反応後に必要に応 じて保護基を除去することにより目的化合物を得ることができる。

アミノ基の保護基としては、例えば置換基を有していてもよい C_{1-6} アルキルカルボニル(例えば、アセチル、プロピオニルなど)、ホルミル、フェニルカルボニル、 C_{1-6} アルキルオキシカルボニル(例えば、メトキシカルボニル、エトキシカルボニル、t ーブトキシカルボニルなど)、フェニルオキシカルボニル(例えば、ベンズオキシカルボニルなど)、 C_{7-10} アラルキルオキシカルボニル(例えば、ベンジルオキシカルボニルなど)、トリチル、フタロイルなどが用いられる。これらの置換基としては、ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素など)、 C_{1-6} アルキルカルボニル(例えば、アセチル、プロピオニル、ブチリルなど)、ニトロ基などが用いられ、置換基の数は 1 ないし 3 個程度である。カルボキシル基の保護基としては、例えば置換基を有していてもよい C_{1-6} アルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、tertーブチルなど)、フェニル、トリチル、シリルなどが用いられる。これらの置換基としては、ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素など)、 C_{1-6} アルキルカルボニル(例えば、アセチル、プロピオニル、ブチリルなど)、ホルミ

ヒドロキシ基の保護基としては、例えば置換基を有していてもよい C_{1-6} アルキル (例えば、メチル、エチル、プロピル、イソプロピル、ブチル、tert-ブチルなど)、フェニル、 C_{7-10} アラルキル (例えば、ベンジルなど)、 C_{1-6} アルキルカルボニル (例えば、アセチル、プロピオニルなど)、ホルミル、フェニルオキシカルボニル、 C_{7-10} アラルキルオキシカルボニル (例えば、ベンジルオキシカルボニルなど)、ピラニル、フラニル、シリルなどが用いられる。これらの置換基としては、ハロゲン原子 (例えば、フッ素、塩素、臭素、ヨウ素など)、 C_{1-6} アルキル、フェニル、 C_{7-10} アラルキル、ニトロ基などが用いられ、置換基の数は1ないし4個程度である。

ル、ニトロ基などが用いられ、置換基の数は1ないし3個程度である。

また、保護基の導入および除去方法としては、それ自体公知またはそれに準じる方法 [例えば、プロテクティブ・グループス・イン・オーガニック・ケミスト

リー(J. F. W. McOmieら、プレナムプレス社)に記載の方法〕が用いられるが、除去方法としては、例えば酸、塩基、還元、紫外光、ヒドラジン、フェニルヒドラジン、Nーメチルジチオカルバミン酸ナトリウム、テトラブチルアンモニウムフルオリド、酢酸パラジウムなどで処理する方法が用いられる。

5 [A法]

化合物(I)またはその塩は、以下に示す反応に従って、化合物 [II] またはその塩と化合物 [III] またはその塩とを反応させることにより、製造することができる。

10 [式中、Xa²は化合物 [III] またはその塩の置換基Xb²と反応して、X²を形成する基(例、カルボキシル基など)を示し、Xb²は化合物 [II] またはその塩の置換基Xa²と反応して、X²を形成する基(例、アミノ基など)を示し、その他の記号は、前記と同意義を有する。]

 Xa^2 がカルボキシル基であり、 Xb^2 がアミノ基であり、 X^2 が-CO-NH-である場合の製造法を以下に示す。

[式中の各記号は、前記と同意義を有する]

本法ではカルボン酸誘導体 [II-1] をアミン誘導体 [III-1] と反応させることにより化合物 [I-1] を製造する。

[[]-1] と [[]-1] の縮合反応は通常のペプチド合成手段により行われる。該 ペプチド合成手段は、任意の公知の方法に従えばよく、例えば M. Bodansky およ び M. A. Ondetti 著、ペプチド・シンセシス(Peptide Synthesis)、インター サイエンス、ニューヨーク、1966年; F. M. Finn 及び K. Hofmann 著ザ・プ ロテインズ (The Proteins)、第2巻、H. Nenrath, R. L. Hill 編集、アカデミ ック プレス インク.、ニューヨーク、1976年;泉屋信夫他著"ペプチド 合成の基礎と実験"、丸善(株)、1985年などに記載された方法、例えば、 アジド法、クロライド法、酸無水物法、混酸無水物法、DCC法、活性エステル 10 法、ウッドワード試薬Kを用いる方法、カルボニルジイミダゾール法、酸化還元 法、DCC/HONB法などの他、WSC法、シアノリン酸ジエチル (DEPC) を用いる方法等があげられる。本縮合反応は溶媒中で行うことができる。溶媒と しては、例えば無水または含水のN. N-ジメチルホルムアミド、ジメチルスルホ キシド、ピリジン、クロロホルム、ジクロロメタン、テトラヒドロフラン、ジオ キサン、アセトニトリルあるいはこれらの適宜の混合物があげられる。反応温度 は、通常約-20℃~約50℃、好ましくは約-10℃~約30℃である。反応 時間は約1~約100時間、好ましくは約2~約40時間である。このようにし て得られる化合物 [I-1] は公知の分離精製手段、例えば濃縮、減圧濃縮、溶媒抽 出、晶出、再結晶、転溶、クロマトグラフィーなどにより単離精製することがで 20 きる。

① 化合物 [I-2] で表わされる R^2 " が例えば第 3 級アミン残基である場合、化合物 [I-2] とハロゲン化アルキルまたはハロゲン化アラルキルとを反応させることにより 4 級化された化合物 [I'] を製造することができる。ここで、ハロゲン原子としては塩素、臭素、ヨウ素などが挙げられ、ハロゲン化アルキル(例、ハロゲン化低級(C_{1-6})アルキルなど)またはハロゲン化アラルキル(例、ハロゲン化低級(C_{1-4})アルキルーフェニルなど)は化合物 [I-2] 1 モルに対して通常約 1 から 5 モル用いる。本反応は、不活性溶媒、例えば、トルエン、ベンゼン、キシレン、ジクロロメタン、クロロホルム、1, 2 - ジクロロエタン、ジメチルホルムアミド(DMF)、ジメチルアセタミド等、あるいはこれらの混合溶媒の中で行うことができる。反応温度は、約 1 0 $\mathbb C$ ないし約 1 6 0 $\mathbb C$ の温度範囲で、好ましくは約 2 0 $\mathbb C$ ないし約 1 2 0 $\mathbb C$ である。反応時間は約 1 時間ないし約 1 0 時間、好ましくは約 1 9 時間である。また、本反応は好ましくは、不活性ガス(例えば窒素、アルゴン等)雰囲気下で行われる。

10

15

20

25

TO THE WAY OF THE PROPERTY OF THE STREET, THE PARTY OF TH

② 化合物 [I-2] で表わされるR ²"が例えば第2級アミン残基である場合、化合物 [I-2] とハロゲン化アルキルまたはハロゲン化アラルキルとを反応させることにより、3級化された化合物 [I'] を製造することができる。ここで、ハロゲン原子としては塩素、臭素、ヨウ素などが挙げられ、ハロゲン化アルキルまたはハロゲン化アラルキルは化合物 [I-2] 1モルに対して通常約1から2モル用いる。この反応は、必要に応じ、等モル量から3倍モル程度のトリエチルアミン、ジイソプロピルエチルアミン、ピリジン、水素化リチウム、水素化ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等を塩基として添加することにより、さらにヨウ化ナトリウム、ヨウ化カリウム等を添加することにより、円滑に反応を進行させることもできる。本三級アミノ化反応は、不活性溶媒、例えば、メタノール、エタノール、プロ

本二級アミノ化及心は、不活性各殊、例えば、スタノール,エフノール,フロパノール,イソプロパノール,nープタノール,テトラヒドロフラン,ジエチルエーテル,ジメトキシエタン,1、4ージオキサン,トルエン,ベンゼン,キシレン,ジクロロメタン,クロロホルム,1、2ージクロロエタン,ジメチルホルムアミド (DMF) ,ジメチルスルホキシド (DMSO) ,ピリジン等、あるいはこれらの混合溶媒の中で行うことができる。反応は約0℃ないし180℃の温度範

囲で、約1時間ないし約40時間行われる。また、本反応は好ましくは、不活性 ガス (例えば窒素、アルゴン等) 雰囲気下で行われる。

- ③ 化合物 [I-2] で表わされるR 2"が例えば第2級アミン残基である場合、化合物 [I-2] とアルデヒド化合物とをトリアセトキシ水素化ホウ素ナトリウム、シアン化水素化ホウ素ナトリウム、または水素化ホウ素ナトリウム等の還元的アミノ試薬の存在下、反応させることにより、3級化された化合物 [I'] を製造することができる。本還元的アミノ化反応は、使用する試薬により反応条件を変えることが望ましく、例えばトリアセトキシ水素化ホウ素ナトリウムを用いる場合、不活性溶媒、例えばジクロロメタン、クロロホルム、1、2 ジクロロエタン、テトラヒドロフラン (THF)、ジエチルエーテル、ジオキサン、アセトニトリル、ジメチルホルムアミド (DMF)等、あるいはこれらの混合溶媒の中で行うことができる。本試薬は化合物 [I-2] 1モルに対して約1から2モル等量用いる。反
- 応は通常約0℃から約80℃の温度範囲で約1時間ないし約40時間行われる。 また、本反応は好ましくは、不活性ガス(例えば窒素、アルゴン等)雰囲気下で 15 行われる。
- ④ 化合物 [I-2] で表わされる R 2 "が例えばスルフィド残基、第3級アミン残基である場合、化合物 [I-2] をm-クロロ過安息香酸、過安息香酸、パラニトロ過安息香酸、マグネシウム・モノパーオキシフタレート、過酢酸、過酸化水素、過ヨウ素酸ナトリウム、過ヨウ素酸カリウムなどの酸化剤と反応させることによって、スルフィニル基、スルホニル基、アミンオキシド基を有する化合物 [I']を製造することができる。この酸化反応は、使用する酸化剤により反応条件を変えることが望ましく、例えばm-クロロ過安息香酸を用いる場合、不活性溶媒、例えばジクロロメタン、クロロホルム、1.2 ジクロロエタン、ジエチルエーテル、テトラヒドロフラン、アセトン、酢酸エチルなど、あるいはこれらの混合溶媒の中で行うことができる。酸化剤は化合物 [I-2] 1モルに対して約1から3モル等量用いる。反応は、通常一約25℃から約80℃(好ましくは-25℃から

25℃) の温度範囲で、約1時間から約40時間行われる。

[C法]

25

$$R^{1} - X^{1} - W - X^{2} - Z^{1} - Z^{2} - V$$
 [IV]

化合物 [IV] における V は、ハロゲン原子(塩素、臭素、ヨウ素など)、スルホニルオキシ基(メタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基、ペンゼンスルホニルオキシ基、トルエンスルホニルオキシ基など)を示し、他の記号は前記と同意義を示す。

- ① 化合物 [IV] と第3級アミンを反応させることにより、4級化された化合物 [I'] を製造することができる。本反応は、不活性溶媒、例えばトルエン、ベンゼン、キシレン、ジクロロメタン、クロロホルム、1、2 ジクロロエタン、ジメチルホルムアミド (DMF)、ジメチルアセタミド等、あるいはこれらの混合溶媒の中で行うことができる。第3級アミンは、化合物 [IV] 1モルに対して約1から3モル用いる。本反応は約10℃ないし約120℃の温度範囲で、約1時間ないし約40時間行われる。また、本反応は好ましくは、不活性ガス(例えば窒素、アルゴン等)雰囲気下で行われる。
- ② 化合物 [IV] と第3級ホスフィンを反応させることにより、4級化された化 合物 [I'] を製造することができる。本反応は、不活性溶媒、例えばトルエン、ベンゼン、キシレン、ジクロロメタン、クロロホルム、1、2 ジクロロエタン、アセトニトリル、ジメチルホルムアミド (DMF) 等、あるいはこれらの混合溶媒の中で行うことができる。第3級ホスフィンは、化合物 [IV] 1モルに対して約1から2モル用いる。本反応は約20℃ないし約150℃の温度範囲で、約1時間ないし約50時間行われる。また、本反応は好ましくは、不活性ガス(例えば窒素、アルゴン等)雰囲気下で行われる。
 - ③ 化合物 [IV] と第1級ないし第2級アミン化合物またはチオール化合物とを 反応させることにより、第2級ないし第3級アミノ基またはチオ基を有する化合物 [I'] を製造することができる。第1級ないし第2級アミン化合物またはチオール化合物は、化合物 [IV] 1モルに対して、通常約1から3モル用いる。この

反応は、必要に応じ等量から3倍モル程度のトリエチルアミン、ジイソプロピルエチルアミン、ピリジン、水素化リチウム、水素化ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等を塩基として添加することにより、さらにヨウ化ナトリウム、ヨウ化カリウム等を添加することにより、円滑に反応を進行させることもできる。本置換反応は、不活性溶媒、例えば、メタノール、エタノール、プロパノール、イソプロパノール、nーブタノール、テトラヒドロフラン、ジエチルエーテル、ジメトキシエタン、1、4ージオキサン、トルエン、ベンゼン、キシレン、ジクロロメタン、クロロホルム、1、2ージクロロエタン、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、ピリジン等、あるいはこれらの混合溶媒の中で行うことができる。反応は約-10℃ないし約180℃の温度範囲で、約1時間ないし約40時間行われる。また、本反応は、好ましくは不活性ガス(例えば窒素、アルゴン等)雰囲気下で行われる。

[D法]

15

20

$$V' - W - X^2 - Z^1 - Z^2 - R^{2'}$$
 [V]

②エーテル化反応 (Mitsunobu 反応など) あるいは

③ビニル化反応 (Wittig 反応など)

①化合物 [V] [式中、V' はハロゲン原子(臭素、ヨウ素等)、スルホニルオキシ基(トリフルオロメタンスルホニルオキシ基等)を示し、他の記号は前記と同意義を示す。]を例えば Suzuki 反応 [アリールホウ酸と、例えばアリールハライドまたはアリールオキシトリフルオロメタンスルホネートとのパラジウム触媒による交叉縮合反応; A. Suzuki ら、Synth. Commun. 1981, 11, 513) に付し、 X^1 が結合手を示し、 R^1 が $5\sim 6$ 員環芳香族基を示す化合物 [I''] を製造することができる。アリールホウ酸は、化合物 [V] 1 モルに対して、約等量ないし 1.5 倍モル用いることにより、化合物 [V] 2 を得ることができる。

また、化合物 [V] を例えばパラジウム触媒 [ジクロロピス(トリフェニルホスフィン)パラジウム等]の存在下、アリールアセチレン化合物との交叉縮合反応(K. S. Y. Lau ら, J. Org. Chem., 1981, 46, 2280; J. W. Tilley, S. Zawoisky ら, J. Org. Chem., 1988, 53, 386] に付し、 X^1 が-C \equiv C-を示し、アセチレン結合を有する化合物 [I''] を製造することができる。アリールアセチレン化合物は、化合物 [V] 1モルに対して、通常、約等量ないし2倍モル用いることにより、化合物 [I''] を得ることができる。

②化合物 [V] [式中、V'は水酸基を示し、他の記号は前記と同意義を示す。] を 例えば Mitsunobu 反応 [縮合剤として、例えばトリフェニルホスフィンとアゾジ カルボン酸ジエチルを用いたエーテル化反応; O. Mitsunobu ら、Synthesis., 1981, 1] に付し、エーテル結合を有する化合物 [I''] を製造することがで きる。対応するアルコール化合物またはフェノール化合物は、化合物 [V] 1モル に対して、約等量ないし3倍モル用いることにより、化合物 [I''] を得ることが できる。

また、エーテル結合を有する化合物 [I''] は、化合物 [V] とハライド(塩化、 15 臭化、ヨウ化等)化合物、トシレート化合物、メシレート化合物などの反応性化 合物とのエーテル化反応によっても、製造することができる。 該反応性化合物は、 化合物 [V] 1 モルに対して、通常、約等量ないし 2 倍モル用いる。この反応は、 必要に応じ、約等モル量から3倍モル程度のトリエチルアミン、ジイソプロピル エチルアミン、ピリジン、水素化リチウム、水素化ナトリウム、水酸化ナトリウ 20 ム、水酸化カリウム、ナトリウムメトキシド、ナトリウムエトキシド、炭酸ナト リウム、炭酸カリウム、炭酸水素ナトリウム等を塩基として添加することにより、 さらにヨウ化ナトリウム、ヨウ化カリウム等を添加することにより、円滑に反応 を進行させることができる。本反応は、不活性溶媒、例えば、テトラヒドロフラ ン, ジエチルエーテル, ジメトキシエタン, 1,4-ジオキサン, トルエン, ベン 25 ゼン, キシレン, ジクロロメタン, クロロホルム, 1,2-ジクロロエタン, ジメ チルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、ピリジン等、 あるいはこれらの混合溶媒の中で行うことができる。反応は約−10℃ないし1 80℃の温度範囲で、約1時間ないし約40時間行われる。また、本反応は好ま

しくは、不活性ガス(例えば窒素、アルゴン等)雰囲気下で行われる。

③化合物 [V] [式中、V'は置換されていてもよいカルボニル基またはホスホニウム塩あるいはホスホン酸エステル残基を示し、他の記号は前記と同意義を示す。]を例えば Wittig 反応 [A. Maercker, Org. React., 14, 270 (1965)] や Wittig-Horner-Emmons 反応 [J. Boutagy, R. Thomas, Chem. Rev., 74, 87 (1974)] に付し、ビニル結合を有する化合物 [I''] を製造することができる。対応するカルボニル化合物またはホスホニウム塩あるいはホスホン酸エステル化合物は、化合物 [V] 1モルに対して、約等量ないし1.5倍モル用いる。 [E法]

$$R^{1} - X^{\frac{1}{2}} - W - X^{\frac{2}{2}} - Z^{\frac{1}{2}} - Z^{\frac{2}{2}} - V''$$
 [VI]

①アミジノ化反応
$$R^{1} X^{1} W - X^{2} Z^{1} Z^{2} R^{2''} [I''']$$
あるいは

10 ②グアニジノ化反応

15

①まず、化合物 [VI] [式中、V''はシアノ基を示し、他の記号は前記と同意義を示す。] とメタノール、エタノール、プロパノール等の低級アルコールとを、塩酸等の酸の存在下に反応させてイミデート化合物を得る。本反応は、通常、過剰量の上記アルコールを用いて行われ、約-10℃ないし50℃の温度範囲で、約1時間ないし約40時間行われる。また、本反応は、不活性溶媒、例えば、ジエチルエーテル、1、4ージオキサン、トルエン、ベンゼン、キシレン、ジクロロメタン、クロロホルム、1、2ージクロロエタン等、あるいはこれらの混合溶媒の中で行うことができる。

次いで、得られたイミデート化合物を第1級ないし第2級アミン化合物との置換反応に付し、アミジン化合物 [I'''] を製造することができる。第1級ないし第2級アミン化合物は、イミデート化合物1モルに対して、通常、約1ないし5モル用いる。この反応は、必要に応じ、約等モル量から3倍モル程度のトリエチルアミン、ピリジン、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド、ナトリウムエトキシド、炭酸ナトリウム、炭酸カリウム等を脱塩剤を添加することにより、円滑に反応を進行させることができる。本置換反応は、不活性溶

媒、例えば、メタノール、エタノール、プロパノール、イソプロパノール、n-ブタノール、テトラヒドロフラン、ジエチルエーテル、ジメトキシエタン、1、4-ジオキサン、トルエン、ベンゼン、キシレン、ジクロロメタン、クロロホルム、1、2-ジクロロエタン、ジメチルホルムアミド (DMF)、ジメチルスルホキシド (DMSO)、ピリジン等、あるいはこれらの混合溶媒の中で行うことができる。反応は約0℃ないし<math>150℃の温度範囲で、約1時間ないし約50時間行われる。また、本反応は好ましくは、不活性ガス(例えば窒素、アルゴン等)雰囲気下で行われる。

②化合物[VI] 「式中、V''はアミノ基を示し、他の記号は前記と同意義を示す。] 10 をS-アルキル(例えばメチル、エチル等)-イソチオウレア化合物との置換反 応に付し、グアニジン化合物 [I'''] を製造することができる。S-アルキルー イソチオウレア化合物は、化合物 [VI] 1モルに対して、通常、約等量ないし2 倍モル用いる。この反応は、必要に応じ、約等モル量から3倍モル程度のトリエ チルアミン、ピリジン、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキ シド,ナトリウムエトキシド,炭酸ナトリウム、炭酸カリウム等を脱塩剤を添加 15 することにより、円滑に反応を進行させることができる。本置換反応は、不活性 溶媒、例えば、メタノール、エタノール、プロパノール、イソプロパノール、n ープタノール,テトラヒドロフラン,ジエチルエーテル,ジメトキシエタン,1, 4-ジオキサン、トルエン、ベンゼン、キシレン、ジクロロメタン、クロロホル ム, 1,2-ジクロロエタン,ジメチルホルムアミド(DMF),ジメチルスルホ 20 キシド (DMSO), ピリジン等、あるいはこれらの混合溶媒の中で行うことが できる。反応は約0℃ないし150℃の温度範囲で、約1時間ないし約50時間 行われる。また、本反応は好ましくは、不活性ガス(例えば窒素、アルゴン等) 雰囲気下で行われる。

25 このようにして得られる化合物(!)は、公知の分離精製手段、例えば濃縮、減圧 濃縮、溶媒抽出、晶出、再結晶、転溶、クロマトグラフィーなどにより単離精製 することができる。

出発物質として用いる化合物 [II-1] は、公知の方法(例えば、特開平8-7 3476号公報に記載の方法など) またはそれに準じた方法により製造すること

ができ、例えば反応式 I で示す方法並びに後述の参考例に示す方法またはそれに 準じた方法により製造することができる。

[式中、 R^9 は C_{1-4} アルキル基を、Y''は環Bが5ないし7負環を形成する、

不飽和結合を含まない2価の基を示し、他の記号は前記と同意義を示す。]

本法では、まず式 [VII] で表される化合物をポリリン酸と共に加熱するか、あるいは化合物 [VII] を塩化チオニル、オキサリルクロリド、オキシ塩化リンまたは五塩化リン等で酸クロリドとして後、通常のフリーデルークラフツ (Friedel・Crafts) 反応により環化して化合物 [VIII] を製造する。ついで化合物 [VIII] を塩基の存在下、炭酸エステルと反応させケトエステル [IX] を製造する。化合物 [IX] は、接触水素添加または水素化ホウ素ナトリウム等による還元反応により化合物 [X] とする。化合物 [X] は常法により脱水反応に付して不飽和カルボン酸エステル [XI] を製造することができ、ついでエステル加水分解反応に付して、不飽和カルボン酸 [II'] を製造することができる。

出発物質として用いる化合物 [II] において、Xa²がカルボキシル基でない化合物 (例えば、Xa²がクロロスルホニル基、ヒドロキシメチル基、ハロ (クロロまたはプロモ) メチル基、ホルミル基、アセトアミド基などである化合物 [II]) は、例えば、反応式 I I で示す方法並びに後述の参考例に示す方法またはそれに準じた方法により製造することができる。

反応式 []

10

[式中の各記号は前記と同意義を示す。]

10

塩化スルホニル化合物 [II'a] は、式 [VIII] で表される化合物を常法により還元 (水素化ホウ素ナトリウムまたは接触水素添加等による還元)、次いで脱水反応に付して化合物 [XII] を製造し、塩化スルフリルとの反応に付して製造することができる。

ヒドロキシメチル化合物 [II'b] は、式 [XI] で表されるエステル化合物を常法により還元 (水素化ホウ素ナトリウム、水素化リチウムアルミニウム、水素化ジイソブチルアルミニウム (DIBAL)等による還元) に付して製造することができる。得られたヒドロキシメチル化合物 [II'b]

20

を塩化チオニル等によるクロル化反応あるいはトリフェニルホスフィン -四臭化炭素等によるプロム化反応に付して、ハロメチル化合物 [II'c] を製造することができる。

また、ヒドロキシメチル化合物 [!!'b] を、活性二酸化マンガン等に よる酸化反応に付して、ホルミル化合物 [II'd] を製造することができる。

さらに、アミン化合物 [II'f] は、式 [II'] で表されるカルボン酸化合物を、常法により、例えばジフェニルリン酸アミド (DPPA) - t-ブタノールによる転位反応に付し、ウレタン化合物 [II'e] を製造し、次いで酸加水分解反応に付して製造することができる。

このようにして得られた化合物 [II'a]、 [II'b]、 [II'c]、 [II'd]、 [II'e] あるいは [II'] と式 [III] で表される化合物とを、前記のアミド化反応、三級アミノ化反応、還元的アミノ化反応、ビニル化反応、エーテル化反応、アルキル(アラルキル)化反応等の各種反応に付すことにより、 X^2 がカルボニルアミド基でない式(I)で表される化合物に導くことができる。

また、化合物 [III-1] も、公知の方法(例えば、特開平8-73476号公報に記載の方法など)またはそれに準じた方法により製造することができ、例えば反応式 III で示す方法並びに後述の参考例に示す方法またはそれに準じた方法により製造することができる。

[式中の各記号は前記と同意義を示す。]

25 化合物 [XIII] の還元反応は、自体公知の方法で行うことができる。例えば、

金属による還元、金属水素化物による還元、金属水素錯化合物による還元、ジボ ランおよび置換ボランによる還元、接触水素添加等が用いられる。すなわち、こ の反応は化合物 [XIII] を還元剤で処理することにより行われる。還元剤として は、還元鉄、亜鉛末などの金属、水素化ホウ素アルカリ金属(例、水素化ホウ素 ナトリウム、水素化ホウ素リチウム等)、水素化アルミニウムリチウムなどの金 属水素錯化合物、水素化ナトリウムなどの金属水素化物、有機スズ化合物(水素 トリフェニルスズ等)、ニッケル化合物、亜鉛化合物などの金属および金属塩、 パラジウム、白金、ロジウムなどの遷移金属触媒と水素とを用いる接触還元剤お よびジボランなどが挙げられるが、パラジウム、白金、ロジウムなどの遷移金属 10 触媒と水素とを用いる接触還元、還元鉄などの金属による還元により有利に行わ れる。この反応は、反応に影響を及ぼさない有機溶媒中で行われる。該溶媒とし ては、例えば、ベンゼン、トルエン、キシレン、クロロホルム、四塩化炭素、ジ クロロメタン、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタン、ジ エチルエーテル、テトラヒドロフラン、ジオキサン、メタノール、エタノール、 プロパノール、イソプロパノール、2 - メトキシエタノール、N, N - ジメチルホ ルムアミド、酢酸あるいはこれらの混合溶媒などが還元剤の種類により適宜選択 して用いられる。反応温度は約-20℃~約150℃,とくに約0℃~約100℃ が好適であり、反応時間は、約1~約24時間程度である。

このようにして得られる化合物 [III'] は公知の分離精製手段例えば濃縮、減 20 圧濃縮、溶媒抽出、晶出、再結晶、転溶、クロマトグラフィーなどにより単離精 製することができる。

本発明の式(I)で表される化合物またはその塩は、強いCCR5拮抗作用を有するので、人における種々のHIVの感染症、例えばAIDSの予防ならびに治療のために使用される。本発明の式(I)で表される化合物またはその塩は、低毒性で安全に使用することができる。

本発明の式(I)で表される化合物またはその塩は、CCR5拮抗剤として、例えばAIDS予防治療剤およびAIDSの病態進行抑制剤として使用することができる。

式(I)で表される化合物またはその塩の1日当たりの投与量は、患者の状態

や体重、投与の方法により異なるが、経口投与の場合成人(体重50 Kg)1 人当たり活性成分 [式(I) で表される化合物またはその塩] として約5 から10 00 mg、好ましくは約10 から600 mgであり、さらに好ましくは約10 ~ 300 mgであり、とりわけ好ましくは約15 ~150 mgであり、1 日当たり 1 を1 回又は2 から3 回にわけて投与する。

また、式(I)で表される化合物またはその塩と逆転写酵素阻害剤または/およびプロテアーゼ阻害剤とを組み合わせて用いる場合、逆転写酵素阻害剤またはプロテアーゼ阻害剤の投与量は、例えば通常の投与量の約1/200ないし1/2以上、約2ないし3倍以下の範囲で適宜選択される。さらに、2種またはそれ以上の薬剤を組み合わせて用いる場合に、ある1つの薬剤がその他の薬剤の代謝に影響を及ぼすときには、各薬剤の投与量は適宜調整されるが、一般的には、各薬剤の単剤投与の時の投与量が用いられる。

代表的な逆転写酵素阻害剤およびプロテアーゼ阻害剤の通常の投与量は例えば 以下に示すとおりである。

15 ジドプジン: 100mg

ジダノシン:125~200mg

ザルシタビン: 0. 75mg

ラミブジン: 150mg

スタブジン:30~40mg

20 サキナビル: 600mg

リトナビル:600mg

インジナビル:800mg

ネルフィナビル: 750mg

また、式(I)で表される化合物またはその塩と逆転写酵素阻害剤または/お 25 よびプロテアーゼ阻害剤とを組み合わせて用いる場合の具体的な実施態様を以下 に示す。

①成人(体重50 Kg) 1 人当たり、式(I)で表される化合物またはその塩約 $10\sim300$ mgを、ジドブジン約 $50\sim200$ mgと併用の形態で、同一対象 に投与する。個々の薬物は、それぞれ同時に投与してもよく、また12 時間以内

の時間差をおいて投与してもよい。

②成人(体重50 Kg)1 人当たり、式(I)で表される化合物またはその塩約 $10\sim300$ mgを、サキナビル約 $300\sim1200$ mgと併用の形態で、同一 対象に投与する。個々の薬物は、それぞれ同時に投与してもよく、また12 時間 以内の時間差をおいて投与してもよい。

発明を実施するための最良の形態

以下に実験例、製剤例、参考例、実施例を示し、本願発明をさらに詳しく説明する。しかし、これらは、単なる例であって本発明を何ら限定するものではない。 以下に記載の遺伝子操作法は、成書(Maniatis ら、モレキュラー・クローニング、Cold Spring Harbor Laboratory、1989年)に記載されている方法もしくは試薬の添付プロトコールに記載されている方法に従った。

実施例

15 実験例

10

20

25

(1) ヒトCCR5ケモカインレセプターのクローニング

ヒト脾臓 cDNAからPCR法でCCR5遺伝子のクローニングを行った。0.5 ngの脾臓 cDNA (東洋紡、QUICK-Clone cDNA) を鋳型とし、Samsonらが報告 (Biochemistry 35 (11), 3362-3367 (1996)) しているCCR5遺伝子塩基配列を参考に作製したプライマーセット

WO99/32100の実験例(1)に記載の配列番号:1〔配列の長さ:34; 配列の型:核酸;鎖の数:一本鎖;トポロジー:直鎖状;配列の種類:他の核酸 合成DNA〕と

WO99/32100の実験例(1)に記載の配列番号:2〔配列の長さ:34; 配列の型:核酸;鎖の数:一本鎖;トポロジー:直鎖状;配列の種類:他の核酸 合成DNA〕を

各25pmol ずつ添加し、TaKaRa EX Taq(宝酒造)を使用して、PCR反応を DNAサーマルサイクラー480 (パーキンエルマー)にて行った(反応条件: 95 $^{\circ}$ 071分間、60 $^{\circ}$ 75 $^{\circ}$ 075分間を30サイクル)。そのPC

R産物をアガロースゲル電気泳動し、約1.0kb のDNA断片を回収した後、Original TA Cloning Kit (フナコシ)を用いて、CCR5遺伝子をクローニングした。

- (2) ヒトCCR5発現用プラスミドの作製
- 上記で得られたプラスミドを制限酵素XbaI(宝酒造)とBamHI(宝酒造)で消化した後、アガロースゲル電気泳動して約1.0kbのDNA断片を回収した。そのDNA断片とXbaIとBamHIで消化した動物細胞用発現プラスミド pcDNA3.1 (フナコシ)を混合し、DNA Ligation Kit Ver. 2 (宝酒造)で連結して、大腸菌JM109のコンピテントセル(宝酒造)を形質転換することでプラスミド pCKR5を得た。
 - (3) ヒトCCR5発現用プラスミドのCHO-K1細胞への導入と発現

10%ウシ胎児血清(ライフテックオリエンタル)を含むハムF12培地(日本製薬)を用いてテイッシュカルチャーフラスコ750ml(ベクトンディキンソン)で生育させたCHO-K1細胞を0.5g/L トリプシン-0.2g/L EDTA(ライフテックオリエンタル)で剥がした後、細胞をPBS(ライフテックオリエンタル)で洗浄して遠心(1000rpm,5分)し、PBSで懸濁した。次に、ジーンパルサー(バイオラッド社)を用いて、下記の条件に従って、DNAを細胞に導入した。即ち、0.4cm ギャップのキュベットに 8×10^6 細胞と 10μ g のヒトCCR5発現用プラスミド pCKR5を加え、電圧0.25kV、

- 20 キャパシタンス960 μ F 下でエレクトロポレーションした。その後、細胞を1 0%ウシ胎児血清を含むハムF12培地に移し、24時間培養後、再び細胞を剥 がして遠心し、次に、ジェネティシン(ライフテックオリエンタル)を500 μ g/mlになるように加えた10%ウシ胎児血清を含むハムF12培地で懸濁し、 10 4 細胞/mlとなるように希釈して96ウエルプレート(ベクトンディキンソ ン) に播種して、ジェネティシン耐性株を得た。
 - 次に、得られたジェネティシン耐性株を96ウエルプレート(ベクトンディキンソン)で培養した後、耐性株の中からCCR5発現細胞を選択した。即ち、200PMの [125I] -RANTES (アマーシャム)をリガンドとして添加したアッセイバッファー(0.5%BSA,20mM HEPES(和光純薬,pH7.

2)を含むハムF12培地)中で室温にて40分間結合反応を行い、氷冷したPBSで洗浄後、1M NaOHを50 μ l/ウエルで添加し撹拌して、 γ -カウンターで放射活性を測定することで、リガンドが特異的に結合した細胞、CHO/CCR5株を選択した。

5 (4) CCR5拮抗作用に基づく化合物の評価

96ウエルマイクロプレートに 5×10^4 細胞/ウエルでCHO/CCR 5 株を播種し、24時間培養して培地を吸引除去後、試験化合物($1\,\mu\rm M$)含んだアッセイバッファーを各ウエルに加え、リガンドである〔 $^{1\,2\,5}$ I〕-RANT ES(アマーシャム)を100 PMになるように添加後、室温で30 分間反応した。

10 次に、アッセイバッファーを吸引除去後、冷却したPBSで2回洗浄した。次に、200μlのマイクロシンチー20(パッカード)を各ウエルに加え、トップカウント(パッカード)で放射活性を計測した。

前記の方法に従って、試験化合物のCCR5結合阻害率を測定した。結果を表 1に示す。

15 表1

	化合物番号	結合阻害率(%)
	1 9	8 6
20	2 0	9 4
	2 1	98
	5 6	7 4
	9 4	7 6
	1 0 0	8 9
	108 .	8 6
25	121	8 2

本発明における式(I)で表される化合物またはその塩を有効成分として含有するCCR5拮抗剤(例、HIV感染症予防治療剤、AIDS予防治療剤など)は、例えば、次のような処方によって製造することができる。

製剤例

1. カプセル剤

(1) 実施例21で得られた化合物 40mg(2) ラクトース 70mg

5 (3) 微結晶セルロース

 $-9\,\mathrm{mg}$

(4) ステアリン酸マグネシウム

lmg

1カプセル 120mg

(1)、(2)と(3)および(4)の1/2を混和した後、顆粒化する。これに残りの(4)を加えて全体をゼラチンカプセルに封入する。

10 2. 錠剤

(1) 実施例21で得られた化合物 40mg

(2) ラクトース 58mg

(3) コーンスターチ 18mg

(4) 微結晶セルロース 3.5 mg

15 (5) ステアリン酸マグネシウム 0.5 mg

1錠 120mg

(1)、(2)、(3)、(4)の2/3および(5)の1/2を混和後、顆粒化する。これに残りの(4)および(5)をこの顆粒に加えて錠剤に加圧成型する。

20 参考例1

4-メトキシチオフェノール(9.66g)、4-プロモ酪酸エチル(13.5g)、炭酸カリウム(18.8g)のDMF(200ml)溶液を室温で4時間撹拌した。反応系に水を加え、酢酸エチルで抽出した。有機層を水及び飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、残渣のエタノール(200ml)溶液に、室温で1N水酸化ナトリウム水溶液(85ml)を加え、4時間撹拌した。減圧下エタノールを留去した後、ジエチルエーテルで抽出した。水層に1N塩酸(100ml)を加えた後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、析出した結晶を3過によって集めた。結晶をヘキサンで洗浄し、無色の結晶として4-[(4

-メトキシフェニル)チオ] 酪酸(13.09g) を得た。

'H-NMR (200MHz, CDCl₃) δ 1.81-1.96 (2H, m), 2.51 (2H, t, 7.3 Hz), 2.87 (2H, t, J=7.1 Hz), 3.80 (3H, s), 6.85 (2H, d, J=8.8 Hz), 7.35 (2H, d, J=8.8 Hz). 参考例 2

4-[(4-メトキシフェニル) チオ] 酪酸(10.0g) およびポリリン酸(145g) の混合物を、80-90℃で25分間撹拌した。反応混合物を氷に加えた後、酢酸エチルで抽出した。有機層を水、飽和重曹水、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(酢酸エチル/ヘキサン1:7)で分離精製し、黄色の油状物として7-メトキシ-3、4-ジヒドロ-1-ベンゾチエピン-5(2H)-オン(3.87g)を得た。

¹H-NMR (200MHz, CDCl₃) δ 2. 17-2. 31 (2H, m), 2. 94 (2H, t, J=6. 8 Hz), 3. 07 (2H, t, J=6. 6 Hz), 3. 83 (3H, s), 6. 94 (1H, dd, J=8. 6, 3. 0 Hz), 7. 383 (1H, d, J=8. 6 Hz), 8. 384 (1H, d, J=3. 0 Hz).

15 参考例3

87g) およびナトリウムメトキシド(5.0g) の炭酸ジメチル(50ml) 懸濁液を、4時間加熱還流した。反応系に1N塩酸(100m1)を加えた後、 酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥 した。減圧下濃縮し、黄色の油状物(4.96g)を得た。得られた油状物と水 20 素化ホウ素ナトリウム(0.7g)THF(50m1)混合物に、−40℃でメ タノール(5m1)を滴下し、−10℃から−20℃で1時間撹拌した。反応系 に水を加えた後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マ グネシウムで乾燥した。減圧下濃縮し、黄色の油状物(4.80g)を得た。得 られた油状物およびトリエチルアミン (7.5ml) のTHF (50ml)溶液 25 に、0℃で塩化メタンスルホニル(2.09ml)を加え、0℃で0.5時間、 室温で1時間撹拌した。反応系に1,8-ジアザビシクロ[5,4,0]-7-ウンデセン (DBU) (4.0ml)を加え、2.5時間撹拌した。反応系に水を加 え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで

乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(酢酸エチル/ヘキサン1:5)で分離精製し、黄色の油状物として7-メトキシー2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(3.00g)を得た。

'H-NMR (200MHz, CDCl₃) δ 2. 86-2. 92 (2H, m), 3. 18-3. 24 (2H, m), 3. 81 (3H, s), 3. 84 (3H, s), 6. 78 (1H, dd, J=8. 4, 3. 0 Hz), 6. 90 (1H, d, J=3. 0 Hz), 7. 41 (1H, d, J=8. 4 Hz), 7. 77 (1H, s).

参考例4

7-メトキシー2, 3-ジヒドロー1-ベンゾチエピンー4-カルボン酸メチル(3.00g)のTHF(30ml)溶液に、0℃で70%3-クロロ過安息 10 香酸(6.5g)を加え、0℃で0.5時間、室温で1時間撹拌した。反応系に チオ硫酸ナトリウム水溶液を加え数分間撹拌後、酢酸エチルで抽出した。有機層 を重曹水(3回)および飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減 圧下濃縮後、析出した結晶をろ過によって集めた。結晶をジイソプロピルエーテルで洗浄し、無色の結晶として7-メトキシー1, 1-ジオキソー2, 3-ジヒ ドロ-1-ベンゾチエピンー4-カルボン酸メチル(3.15g)を得た。

m. p. 144-145 ℃

20

'H-NMR (200MHz, CDCl₃) δ 3.04-3.10 (2H, m), 3.59-3.65 (2H, m), 3.86 (3H, s), 3.90 (3H, s), 6.96-7.02 (2H, m), 7.79 (1H, s), 8.10 (1H, d, J=10.0 Hz). 元素分析 C₁₃H₁₄O₅S Calcd. C, 55.31 ; H, 5.00 : Found. C, 55.18 ; H, 5.01. 参考例 5

7-メトキシー1, 1-ジオキソー2, 3-ジヒドロー1-ベンゾチエピンー4-カルボン酸メチル(300mg)、48%臭化水素酸(3ml)および酢酸(3ml)混合物を4時間加熱還流した。減圧下濃縮後、さらに48%臭化水素酸(3ml)、酢酸(3ml)を加え、8時間加熱還流した。減圧下濃縮し、析出した結晶をろ過によって集めた。結晶をジイソプロピルエーテルで洗浄し、淡黄色の結晶として7-ヒドロキシー1, 1-ジオキソー2, 3-ジヒドロー1-ベンゾチエピンー4-カルボン酸(224mg)を得た。

m. p. 260-265 ℃

'H-NMR (200MHz, DMSO-d_f) δ 2.84-2.90 (2H, m), 3.61-3.68 (2H, m), 6.92-7.02

78

(2H. m). 7.62 (1H. s). 7.85 (1H. d, J=8.4 Hz).

元素分析 $C_{11}H_{10}O_5S \cdot 0.1H_2O$ Calcd. C, 51.59; H, 4.02; Found. C, 51.38; H, 3.87.

参考例6

7ーヒドロキシー1、1ージオキソー2、3ージヒドロー1ーベンゾチエピンー4ーカルボン酸(856mg)のメタノール(10ml)溶液に硫酸(0.1ml)を加え、23時間加熱還流した。減圧下濃縮後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、析出した結晶をろ過によって集めた。結晶をジイソプロピルエーテルで洗浄し、淡黄色の結晶として7ーヒドロキシー1、1ージオキソー2、3ージヒドロー1ーベンゾチエピンー4ーカルボン酸メチル(848mg)を得た。

m. p. 176-178 ℃

15

20

¹H-NMR (200MHz, CDCl₃) δ 3.04-3.10 (2H, m), 3.59-3.66 (2H, m), 3.86 (3H, s), 6.01 (1H, br s), 6.90-6.94 (2H, m), 7.74 (1H, s), 8.05 (1H, d, J=9.4 Hz). 元素分析 C₁₂H₁₂O₅S Calcd. C, 53.72; H, 4.51: Found. C, 53.67; H, 4.58. 参考例 7

7-ヒドロキシー1、1-ジオキソー2、3-ジヒドロー1-ベンゾチエピンー4-カルボン酸メチル(300mg)、塩化4-クロロベンジル(210mg)、炭酸カリウム(214mg)のDMF(10ml)混合物を室温で13時間、50℃で3時間撹拌した。反応系に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(酢酸エチル/ヘキサン1:1)で分離精製し、無色の結晶として7- <math>[(4-クロロベンジル)オキシ]-1、1-ジオキソ-2、3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(272mg)を得た。

25 m.p. 130-133 ℃

'H-NMR (200MHz, CDCl₃) δ 3. 07 (2H, t, J=6. 2 Hz), 3. 58-3. 65 (2H, m), 3. 86 (3H, s), 5. 12 (2H, s), 7. 00-7. 05 (2H, m), 7. 32-7. 42 (4H, m), 7. 77 (1H, s), 8. 10 (1H, d, J=8. 4 Hz).

元素分析 C₁₉H₁₇O₅SCl Calcd. C, 58.09: H, 4.36: Found. C, 58.11; H, 4.61.

参考例8

7- [(4-クロロベンジル) オキシ] -1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(200mg)のTHF/メタノール(3/1.5ml)溶液に、室温で炭酸カリウム(140mg)の水溶液 (0.7ml)を加え、65-70℃で23時間撹拌した。室温まで冷却後、反応系に1N塩酸をpHが5になるまで加え、析出した結晶をろ過によって集めた。結晶を水、2-プロパノールおよびジイソプロピルエーテルで洗浄し、淡黄色の結晶として7- [(4-クロロベンジル)オキシ] -1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(149mg)を得た。

10 'H-NMR (200MHz, DMS0-d₆) δ 2. 91 (2H, t, J=6. 6 Hz), 3. 68 (2H, t, J=6. 6 Hz), 5. 26 (2H, s), 7. 22 (1H, dd, J=8. 8, 2. 6 Hz), 7. 37-7. 54 (5H, m), 7. 72 (1H, s), 7. 95 (1H, d, J=8. 8 Hz).

参考例9

7-ヒドロキシー1, 1-ジオキソー2, 3-ジヒドロー1-ベンゾチエピン 15 -4-カルボン酸メチル (300mg)、4-エトキシベンジルアルコール (0.36g)、トリフェニルホスフィン (0.62g)のTHF (10ml)溶液に、0℃でアゾジカルボン酸ジイソプロピル (0.47ml)を加え、室温で3.5日間撹拌した。減圧下濃縮後、残渣をカラムクロマトグラフィー(酢酸エチル/ヘキサン1:1)で分離精製し、無色の結晶として7- [(4-エトキシベンジル)オキシ]-1, 1-ジオキソー2, 3-ジヒドロ-1-ベンゾチエピン-4ーカルボン酸メチル (279mg)を得た。

¹H-NMR (200MHz, CDCl₃) δ 1. 43 (3H, t, J=7. 0 Hz), 3. 03-3. 10 (2H, m), 3. 58-3. 65 (2H, m), 3. 85 (3H, s), 4. 05 (2H, q, J=7. 0 Hz), 5. 07 (2H, s), 6. 92 (2H, d, J=8. 8 Hz), 7. 01-7. 06 (2H, m), 7. 33 (2H, d, J=8. 8 Hz), 7. 77 (1H, s), 8. 08 (1H,

25 d, J=9.2 Hz).

参考例10

7-[(4-X)+2) (3-ジト 7-[(4-X)+2) (200 mg) の 7-[(4-X)+2) (200 mg) の 7+[(4-X)+2] (137 mg)

(0.7ml)を加え、70℃で16.5時間撹拌した。室温まで冷却後、反応系に1N塩酸を加え、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、析出した結晶をろ過によって集めた。結晶をジイソプロピルエーテルで洗浄し、無色の結晶として7-[(4-エトキシベンジル)オキシ]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(147mg)を得た。

m. p. 180-184 ℃

 $^{1}\text{H-NMR}$ (200MHz, DMSO-d₆) δ 1. 33 (3H, t, J=7. 0 Hz), 2. 86-2. 93 (2H, m), 3. 65-3. 71 (2H, m), 4. 03 (2H, q, J=7. 0 Hz), 5. 15 (2H, s), 6. 95 (2H, d, J=8. 8 Hz), 7. 21 (1H, dd, J=8. 6, 2. 4 Hz), 7. 37-7. 41 (3H, m), 7. 72 (1H, m), 7. 94 (1H, d, J=8. 6 Hz).

元素分析 C₂₀H₂₀O₆S Calcd. C, 61.84; H, 5.19: Found. C, 61.85; H, 5.35. 参考例 1 1

7-ヒドロキシー1, 1-ジオキソー2, 3-ジヒドロー1-ベンゾチエピン 15 -4-カルボン酸メチル(200mg)、塩化4-フルオロベンジル(0.090ml)、炭酸カリウム(134mg)のDMF(5ml)混合物を55℃で7時間撹拌した。反応系に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(酢酸エチル/ヘキサン1:1)で分離精製し、無色の結晶として7-(4-フルオロベンジル)オキシ]-1, 1-ジオキソー2, 3-ジヒドロー1-ベンゾチエピン-4-カルボン酸メチル(162mg)を得た。

m. p. 141-143 ℃

25

THE PARTY OF THE P

 1 H-NMR (200MHz, CDCl₃) δ 3. 03-3. 10 (2H, m), 3. 58-3. 65 (2H, m), 3. 85 (3H, s), 5. 11 (2H, s), 7. 01-7. 14 (4H, m), 7. 37-7. 44 (2H, m), 7. 77 (1H, m), 8. 10 (1H, d, J=9. 2 Hz).

元素分析 C₁₉H₁₇O₅SF Calcd. C, 60.63; H. 4.55: Found. C, 60.52; H. 4.66. 参考例 1 2

 /メタノール (4/2m1) 懸濁液に、室温で炭酸カリウム (240mg) の水溶液 (1.0m1) を加え、60 ℃で20 時間撹拌した。室温まで冷却後、反応系に1 N塩酸 (5m1) を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、析出した結晶をろ過によって集めた。結晶をジイソプロピルエーテルで洗浄し、淡黄色の結晶として7-(4-7) に (4-7) が (241mg) を得た。

m. p. 270-273 ℃

 $^{1}\text{H-NMR}$ (200MHz, DMSO-d₆) δ 2. 87-2. 94 (2H, m). 3. 65-3. 72 (2H, m). 5. 23 (2H, s). 7. 20-7. 29 (3H, m), 7. 43 (1H, d, J=2. 2 Hz). 7. 50-7. 57 (2H, m), 7. 72 (1H, s), 7. 95 (1H, d, J=8. 8 Hz).

元素分析 C₁₈H₁₅O₅SF Calcd. C, 59.66; H, 4.17: Found. C, 59.43; H, 4.41. 参考例 1 3

7-ヒドロキシー1, 1-ジオキソー2, 3-ジヒドロー1-ベンゾチエピン -4-カルボン酸メチル(500mg)、3-ピリジンメタノール(405mg)、 トリフェニルホスフィン(0.98g)のTHF(10ml)溶液に、0℃でア ゾジカルボン酸ジエチル(40%トルエン溶液)(1.62g)を加え、室温で 20時間撹拌した。減圧下濃縮後、残渣をカラムクロマトグラフィー(酢酸エチ ル)で分離精製し、無色の結晶として7-(3-ピリジルメトキシ)-1, 1-ジオキソー2, 3-ジヒドロー1-ベンゾチエピン-4-カルボン酸メチル(694mg)を得た。

7-(3-ピリジルメトキシ)-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(650mg)のTHF/メタノール(6/3ml) 懸濁液に、室温で炭酸カリウム(415mg)の水溶液(1.4ml)を加え、60℃で19時間撹拌した。反応系にさらに炭酸カリウム(207mg)の水溶液(0,7ml)を加え、さらに60℃で3日間撹拌した。室温まで冷却後、pHが7-8になるまで2N塩酸を加え、析出した結晶をろ過によって集めた。結晶をジイソプロピルエーテルで洗浄し、無色の結晶として7-(3-ピリジルメトキシ)-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピンー

4-カルボン酸(493mg)を得た。

'H-NMR (200MHz, DMSO-d₆) δ 2. 87-2. 94 (2H, m), 3. 66-3. 72 (2H, m), 5. 31 (2H, s), 7. 25 (1H, dd, J=8. 8, 2. 6 Hz), 7. 43-7. 49 (2H, m), 7. 73 (1H, s), 7. 89-7. 93 (1H, m), 7. 96 (1H, d, J=8. 8 Hz), 8. 58 (1H, dd, J=4. 8, 1. 4 Hz), 8. 70 (1H, d, J=1. 4 Hz).

参考例14

5

4-ヒドロキシメチル安息香酸メチル(5.0g)のDMF(100ml)溶液に0℃で60%水素化ナトリウム(1.3g)を加え1時間撹拌した。反応系にヨウ化プロピル(3ml)を加え、室温で4日間撹拌した。反応系に水を加え、酢酸エチルで抽出した。有機層を、水及び飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(酢酸エチル/ヘキサン1:9)で分離精製し、無色の油状物として4-(プロポキシメチル)安息香酸メチル(2.09g)を得た。

'H-NMR (200MHz, CDC1₃) δ 0. 95 (3H, t, J=7. 3 Hz), 1. 57-1. 74 (2H, m), 3. 46 (2H, t, J=6. 6 Hz), 3. 92 (3H, s), 4. 56 (2H, s), 7. 41 (2H, d, J=8. 7 Hz), 8. 02 (2H, d, J=8. 7 Hz).

参考例15

水素化リチウムアルミニウム (0.40g) のジエチルエーテル (25ml) 懸濁液に、0℃で4-(プロポキシメチル) 安息香酸メチル (2.09g) のジ エチルエーテル (25ml) 溶液を1時間かけて滴下した。室温で2時間撹拌後、 反応系に水 (0.4ml)、15%水酸化ナトリウム水溶液 (0.4ml) 及び 水 (1.2ml)を0℃で加え、室温で2時間撹拌した。硫酸マグネシウムを加 えた後、ろ過によって固体を除いた。減圧下溶媒を留去し、無色の油状物として 4-(プロポキシメチル) ベンジルアルコール (1.81g) を得た。

25 'H-NMR (200MHz, CDCl₃) δ 0. 94 (3H, t, J=7. 3 Hz), 1. 57-1. 69 (3H, m), 3. 43 (2H, t, J=6. 6 Hz), 4. 51 (2H, s), 4. 69 (2H, d, J=5. 8 Hz), 7. 35 (4H, s).

参考例16

7-ヒドロキシ-1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(400mg)、4-(プロポキシメチル)ベンジルア

ルコール (502mg)、トリフェニルホスフィン (782mg)のTHF (10m1)溶液に、0℃でアゾジカルボン酸ジエチル (40%トルエン溶液) (1.30g)を加え、室温で68時間撹拌した。減圧下濃縮後、残渣をカラムクロマトグラフィー (酢酸エチル/ヘキサン1:1)で分離精製し、無色の結晶として7-[[4-(プロポキシメチル)ベンジル]オキシ]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル (1.15g)を得た。

7-[[4-(プロポキシメチル) ベンジル] オキシ] -1, 1-ジオキソー2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(1.15g) のTHF/メタノール(10/5ml)溶液に、室温で炭酸カリウム(622mg)の水溶液(2.1ml)を加え、60℃で2日間撹拌した。室温まで冷却後、酢酸エチルで抽出した。水層に1N塩酸をpHが2-3になるまで加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、析出した結晶をろ過によって集めた。結晶をジイソプロピルエーテルで洗浄し、無色の結晶として7-[[4-(プロポキシメチル)ベンジル]オキシ]-1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(425mg)を得た。

m. p. 210-213 ℃

'H-NMR (200MHz, DMSO-d₆) δ 0. 88 (3H, t, J=7. 4 Hz), 1. 46-1. 64 (2H, m). 20 2. 87-2. 93 (2H, m), 3. 38 (2H, t, J=6. 6 Hz), 3. 65-3. 71 (2H, m), 4. 46 (2H, s), 5. 24 (2H, s), 7. 22 (1H, dd, J=8. 8, 2. 6 Hz), 7. 33-7. 47 (5H, m), 7. 72 (1H, s). 7. 94 (1H, d, J=8. 8 Hz).

元素分析 C₂₂H₂₄O₆S Calcd. C, 63.44; H, 5.81; Found. C, 63.29; H, 5.76. 実施例1(化合物1の製造)

25 7-[(4-クロロベンジル)オキシ]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(110mg)のTHF(5ml)懸濁液に、室温で塩化チオニル(0.042ml)及びDMFを1滴加えて1時間撹拌した。減圧下溶媒を留去した後、残渣をTHF(5ml)に溶解させ、室温で4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]ア

5

CANADA OF CHARACTERS OF STREET

ニリン (70mg) およびトリエチルアミン (0.2ml) のTHF (5ml) 溶液に滴下した。室温で2.5時間撹拌した後、水を加え酢酸エチルで抽出した。 有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残 査をカラムクロマトグラフィー (エタノール/酢酸エチル1:3) および再結晶 (エタノール) によって精製し、無色の結晶として7-[(4-クロロベンジル) オキシ] -N-[4-[N-メチル-N-(テトラヒドロピラン-4-イル) アミノメチル] フェニル] -1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボキサミド (化合物1) (104mg) を得た。

m. p. 237-239 ℃

- 10 'H-NMR (200MHz, CDC1₃) δ 1. 67-1. 82 (4H, m), 2. 21 (3H, s), 2. 55-2. 72 (1H, m), 3. 09 (2H, t, J=6. 8 Hz), 3. 30-3. 44 (2H, m), 3. 58 (2H, s), 3. 69 (2H, t, J=6. 8 Hz), 3. 98-4. 09 (2H, m), 5. 12 (2H, s), 6. 98-7. 06 (2H, m), 7. 21 (1H, s), 7. 32 (2H, d, J=8. 4 Hz), 7. 37-7. 42 (4H, m), 7. 54 (2H, d, J=8. 4 Hz), 7. 91 (1H, s), 8. 10 (1H, d, J=8. 8 Hz).
- 15 元素分析 C₃₁H₃₃N₂O₅SCl Calcd. C, 64.07; H, 5.72; N, 4.82: Found. C, 64.03; H, 5.81; N, 5.00.

実施例2 (化合物2の製造)

7-[(4-エトキシベンジル)オキシ]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(110mg)のTHF(5ml)20 溶液に、室温で塩化チオニル(0.041ml)及びDMFを1滴加えて1時間撹拌した。減圧下溶媒を留去した後、残渣をTHF(5ml)に溶解させ、室温で4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]アニリン(69mg)およびトリエチルアミン(0.2ml)のTHF(5ml)溶液に滴下した。室温で1.5時間撹拌した後、水を加え酢酸エチルで抽出した。25 有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(エタノール/酢酸エチル1:3)および再結晶(エタノール)によって精製し、無色の結晶として7-[(4-エトキシベンジル)オキシ]-N-[4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]フェニル]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾ

チエピン-4-カルボキサミド(化合物2)(109mg)を得た。 m.p. 211-213 ℃

'H-NMR (200MHz, CDC1₃) δ 1. 43 (3H, t, J=7. 2 Hz). 1. 68-1. 82 (4H, m), 2. 21 (3H, s), 2. 54-2. 74 (1H, m), 3. 05-3. 12 (2H, m), 3. 29-3. 44 (2H, m), 3. 58 (2H, s), 3. 66-3. 72 (2H, m), 3. 98-4. 10 (4H, m), 5. 07 (2H, s), 6. 92 (2H, d, J=8. 8 Hz), 6. 98 (1H, d, J=2. 6 Hz), 7. 04 (1H, dd, J=8. 4, 2. 6 Hz), 7. 20 (1H, s), 7. 30-7. 35 (4H, m), 7. 54 (2H, d, J=8. 8 Hz), 7. 91 (1H, s), 8. 09 (1H, d, J=8. 4 Hz). 元素分析 C₃₃H₃₈N₂O₆S Calcd. C, 67. 10; H, 6. 48; N, 4. 74: Found. C, 66. 94; H, 6. 50; N, 4. 89.

10 実施例3(化合物3の製造)

7-(4-フルオロベンジルオキシ)-1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(170mg)のTHF(5m1)懸濁液に、室温で塩化チオニル(0.068ml)及びDMFを1滴加えて1時間撹拌した。減圧下溶媒を留去した後、残渣をTHF(10ml)に溶解させ、0℃で4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]アニリン(114mg)およびトリエチルアミン(0.2ml)のTHF(5ml)溶液に滴下した。室温で20時間撹拌した後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(エタノール/酢酸エチル1:3)および再結晶 (エタノール)によって精製し、無色の結晶として7-(4-フルオロベンジルオキシ)-N-[4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]フェニル]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボキサミド(化合物3)(206mg)を得た。

m. p. 232-234 ℃

25 'H-NMR (200MHz, CDCl₃) δ 1. 67-1. 83 (4H, m), 2. 20 (3H, s), 2. 55-2. 72 (1H, m), 3. 06-3. 13 (2H, m), 3. 31-3. 44 (2H, m), 3. 57 (2H, s), 3. 65-3. 72 (2H, m), 3. 99-4. 10 (2H, m), 5. 11 (2H, s), 6. 98-7. 15 (4H, m), 7. 21 (1H, s), 7. 32 (2H, d, J=8. 4 Hz), 7. 37-7. 44 (2H, m), 7. 53 (2H, d, J=8. 4 Hz), 7. 80 (1H, s), 8. 10 (1H, d, J=8. 8 Hz).

元素分析 C₃₁H₃₃N₂O₅SF Calcd. C, 65.94; H, 5.89; N, 4.96: Found. C, 65.59; H, 5.67; N, 4.97.

実施例4 (化合物4の製造)

7-(3-ピリジルメトキシ)-1、1-ジオキソ-2、3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(200mg)のDMF(5ml)溶液に、室温で塩化チオニル(0.084ml)を加えて1時間撹拌した。減圧下溶媒を留去した後、残渣をDMF(5ml)に溶解させ、室温で4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]アニリン(141mg)およびトリエチルアミン(0.4ml)のTHF(5ml)溶液に滴下した。室温で1018時間撹拌した後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣を塩基性シリカゲルを用いたカラムクロマトグラフィー(酢酸エチル)および再結晶(エタノール)によって精製し、無色の結晶としてN-[4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]フェニル]-7-(3-ピリジルメトキシ)-1、1-ジオキソ-2、3-ジヒドロ-1-ベンゾチエピン-4-カルボキサミド(化合物4)(77mg)を得た。

m.p. 225-229 ℃

'H-NMR (200MHz, CDCl₃) δ 1. 67-1. 80 (4H, m), 2. 21 (3H, s), 2. 55-2. 74 (1H, m), 3. 07-3. 14 (2H, m), 3. 30-3. 44 (2H, m), 3. 57 (2H, s), 3. 67-3. 73 (2H, m), 3. 99-4. 09 (2H, m), 5. 17 (2H, s), 7. 01-7. 08 (2H, m), 7. 22 (1H, s), 7. 30-7. 40 (3H, m), 7. 53 (2H, d, J=8. 4 Hz), 7. 73-7. 81 (1H, m), 7. 83-7. 89 (1H, m). 8. 12 (1H, d, J=8. 6 Hz), 8. 62-8. 70 (2H, m).

元素分析 $C_{30}H_{33}N_3O_5S \cdot 0.2H_2O$ Calcd. C. 65.36; H. 6.11; N. 7.62: Found. C. 65.13; H. 6.07; N. 7.50.

25 実施例5 (化合物5の製造)

7-[[4-(プロポキシメチル) ベンジル] オキシ] -1, 1-ジオキソー2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(200mg)のTHF(5ml)溶液に、室温で塩化チオニル(0.070ml)及びDMF(1滴)を加えて1時間撹拌した。減圧下溶媒を留去した後、残渣をTHF(10ml)

に溶解させ、0 \mathbb{C} で4 - [N-メチル-N-(テトラヒドロピラン-4-イル) γ = 1 +

5 減圧下濃縮後、残渣をカラムクロマトグラフィー(エタノール/酢酸エチル1:3)および再結晶(エタノール)によって精製し、無色の結晶としてN-[4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]フェニル]-7-[[4-(プロポキシメチル)ベンジル]オキシ]-1,1-ジオキソー2,3-ジヒドロ-1-ベンゾチエピン-4-カルボキサミド(化合物5)(1099mg)を得た。

m. p. 201-203 ℃

'H-NMR (200MHz. CDC1₃) δ 0. 95 (3H, t, J=7. 5 Hz), 1. 58-1. 84 (6H, m), 2. 20 (3H, s), 2. 56-2. 73 (1H, m), 3. 05-3. 12 (2H, m), 3. 31-3. 44 (2H, m), 3. 46 (2H, t, J=6. 6 Hz), 3. 57 (2H, s), 3. 65-3. 72 (2H, m), 3. 99-4. 10 (2H, m), 4. 52 (2H, s), 5. 15 (2H, s), 6. 98-7. 07 (2H, m), 7. 20 (1H, s), 7. 32 (2H, d, J=8. 6 Hz), 7. 39 (4H, m), 7. 53 (2H, d, J=8. 6 Hz), 7. 85 (1H, s), 8. 09 (1H, d, J=8. 8 Hz). 元素分析 C₃₃H₄₂N₂O₆S Calcd. C, 67. 94; H, 6. 84; N, 4. 53: Found. C, 67. 86; H, 6. 69; N, 4. 57.

参考例17

20 エチニルベンゼン(511mg, 5.00mmol)、7-ブロモ-2、3-ジヒドロ-1-ベンゾオキセピン-4-カルボン酸メチル(708mg, 2.50mmol)、ジクロロビス(トリフェニルホスフィン)パラジウム(176mg, 0.25mmol)、ヨウ化銅(48mg, 0.25mmol)、トリエチルアミン(15ml)の混合物を80℃で17時間撹拌した。反応液を減圧濃縮し酢酸エチル(70ml)を加えて1N塩酸(5ml×3)、飽和食塩水(5ml)で順に洗浄した。有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル35g、酢酸エチル/ヘキサン=1/19)に付した。目的画分を減圧濃縮しジイソプロピルエーテルを加え不溶物を濾取した。不溶物をジイソプロピルエーテルで洗浄後、減圧乾燥して7-フェニルエチニル-2、3-ジヒドロ-1-ベンゾオキセピンー4-カルボン酸メチル(525mg, 1.73mmol, 69%)を得た。

IR (KBr): 1709, 1501 cm⁻¹.

 $^{1}\text{H-NMR}$ (CDCl₃) δ : 2. 9-3. 05 (2H, m), 3. 83 (3H, s), 4. 2-4. 35 (2H, m), 6. 96 (1H, d. J=8. 6Hz), 7. 3-7. 6 (8H, m).

参考例18

5 7-フェニルエチニル-2, 3-ジヒドロ-1-ベンゾオキセピン-4-カルボン酸メチル (463mg, 1.52mmol)にメタノール(10ml)、THF(10ml)、IN 水酸化ナトリウム水溶液 (4.56ml)を加え室温で 24 時間撹拌した。IN 塩酸(4.56ml)を加え減圧濃縮し、水を加え不溶物を濾取した。不溶物を水、ジイソプロピルエーテルで順に洗浄後、減圧濃縮して 7-フェニルエチニル-2, 3-ジヒドロ-1-ベンゾオキセピン-4-カルボン酸(417mg, 1.44mmol, 94%)を得た。

 $^{1}H-NMR$ (DMSO- d_{6}) δ : 2. 8-2. 95 (2H, m), 4. 2-4. 35 (2H, m), 7. 02 (1H, d, J=8. 6Hz), 7. 35-7. 6 (7H, m), 7. 72 (1H, d, J=2. 2Hz).

実施例6 (化合物6の製造)

7-フェニルエチニル-2, 3-ジヒドロ-1-ベンゾオキセピン-4-カルボン酸(140mg, 0.48mmol)を DMF (7ml) に溶解し、0℃で 1-ヒドロキシベンゾトリアゾール(72mg, 0.53mmol)、4-[N-メチル-N-(4-テトラヒドロピラニル)アミノメチル]アニリン (117mg, 0.53mmol)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(139mg, 0.73mmol)、トリエチルアミン(0.202ml, 1.45mmol)、4-ジメチルアミノピリジン(3mg)を加え室温で14時間撹拌した。反応液を減圧濃縮し酢酸エチル(60ml)を加えて水(5ml×3)、飽和重曹水(5ml×3)、飽和食塩水(5ml)で順に洗浄した。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル 15g、酢酸エチル)に付した。目的画分を減圧濃縮しジイソプロピルエーテルを加え不溶物を濾取した。不溶物をジイソプロピルエーテルで洗浄後、減圧乾燥して N-[4-[N-メチル-N-(4-テトラヒドロピラニル)アミノメチル]フェニル]-7-フェニルエチニル-2,3-ジヒドロ-1-ベンゾオキセピン-4-カ

IR (KBr): 1653, 1595, 1514, 1501 cm⁻¹.

ルボキサミド (化合物6) (202mg, 0.41mmol, 85%)を得た。

'H-NMR (CDCl₃) \hat{o} : 1.5-1.85 (4H, m), 2.22 (3H, s). 2.5-2.8 (1H, m), 3.0-3.15 (2H, m), 3.3-3.45 (2H, m), 3.58 (2H, s). 3.95-4.15 (2H, m), 4.3-4.45 (2H,

m), 6.99 (1H, d, J=8.4Hz), 7.15 (1H, s), 7.25-7.6 (11H, m). 参考例19

3-ヒドロキシ-5-オキソ-6, 7, 8, 9-テトラヒドロ-5H-ベンゾシクロヘプテン (1.76g, 10.0mmol)を DMF(10ml)に溶解し炭酸カリウム(2.76g, 20.0mmol)、ベンジルブロミド(1.308ml, 11.0mmol)を加えて室温で 24 時間撹拌した。反応液を減圧濃縮し残留物に水(20ml)を加え酢酸エチル(20ml×3)で抽出した。有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル 35g, 酢酸エチル/ヘキサン=1/19)に付した。目的画分を減圧濃縮して 3-ベンジルオキシ-5-オキソ-6, 7, 8, 9-テトラヒドロ-5H-ベンゾシクロヘプテン

10 (2.79g)を得た。

IR (KBr): 1674 cm^{-1} .

'H-NMR (CDCl₃) δ : 1. 7-1. 95 (4H, m), 2. 65-2. 8 (2H, m), 2. 8-2. 95 (2H, m), 5. 08 (2H, s), 7. 04 (1H, dd, J=2. 6, 8. 4Hz), 7. 13 (1H, d, J=8. 4Hz), 7. 25-7. 5 (6H, m).

15 参考例20

20

3-ベンジルオキシ-5-オキソ-6, 7, 8, 9-テトラヒドロ-5H-ベンゾシクロヘプテン (2.72g)を炭酸ジメチル(30ml)に溶解しナトリウムメトキシド(2.70g, 50.0mmol)を加えて加熱還流下(110℃)、6 時間撹拌した。氷冷下、IN 塩酸(60ml)を加え有機溶媒を減圧留去後、水層を酢酸エチル(30ml×3)で抽出した。有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル40g, 酢酸エチル/ヘキサン=1/30)に付した。目的画分を減圧濃縮して 3-ベンジルオキシ-5-オキソ-6, 7, 8, 9-テトラヒドロ-5H-ベンゾシクロヘプテン-6-カルボン酸メチル(2.88g, 8.88mmol)を得た。

参考例21

25 3-ベンジルオキシ-5-オキソ-6, 7, 8, 9-テトラヒドロ-5H-ベンゾシクロヘプテン-6-カルボン酸メチル(2, 81g, 8, 66mmol)をジクロロメタン(40ml)、メタノール(10ml)の混合溶媒に溶解し、-40℃(内温)で水素化ホウ素ナトリウム(500mg, 13, 2mmol)を加えて-15℃~-10℃で2時間撹拌した。反応液を-40℃まで冷却し水(20ml)を加えジクロロメタン(40ml, 10ml×2)で抽出した。有機層を無水硫酸マグ

参考例22

5

ネシウムで乾燥後、減圧濃縮した。残留物を THF (30ml) に溶解し 0℃でトリエチルアミン(6.04ml, 43.3mmol)、メタンスルホニルクロリド(1.01ml, 13.0mmol)を加えて室温で 20 時間撹拌した。反応を完結させるため DBU(3.89ml, 26.0mmol)を加えて室温で 24 時間撹拌した。反応液を減圧濃縮し水(30ml)を加え酢酸エチル(30ml×3)で抽出した。有機層を IN 塩酸(5ml×3)で洗浄、無水硫酸マグネシウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル 60g, 酢酸エチル/ヘキサン=1/30→1/9)に付した。目的画分を減圧濃縮して 2-ベンジルオキシ-6,7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル(2.32g, 7.52mmol, 87%)を得た。

- 10 IR (KBr): 1709 cm⁻¹.

 'H-NMR (CDCl₃) δ: 1. 95-2. 1 (2H, m), 2. 55-2. 65 (2H, m), 2. 7-2. 8 (2H, m), 3. 81 (3H, s), 5. 06 (2H, s), 6. 84 (1H, dd, J=2. 6, 8. 4Hz), 6. 94 (1H, d, J=2. 6Hz), 7. 06 (1H, d, J=8. 4Hz), 7. 5-7. 7 (5H, m), 7. 64 (1H, s).
- 2-ベンジルオキシ-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル(2.28g, 7.39mmol)をメタノール(25ml)に懸濁し IN 水酸化ナトリウム水溶液(23ml)を加えて室温で13時間撹拌した。反応を完結させるためテトラヒドロフラン(25ml)を加え60℃で2時間撹拌した。室温で1N塩酸(23ml)を加え減圧濃縮後、水を加え不溶物を濾取した。不溶物を水で洗浄し減圧乾燥して2-ベンジルオキシ-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸(2.09g, 7.10mmol, 96%)を得た。

¹H-NMR (CDCl₃) δ : 1. 95-2. 15 (2H, m), 2. 55-2. 7 (2H, m), 2. 7-2. 85 (2H, m), 5. 07 (2H, s), 6. 87 (1H, dd, J=2. 7, 8. 3Hz), 6. 96 (1H, d, J=2. 7Hz), 7. 08 (1H, d, J=8. 3Hz), 7. 25-7. 5 (5H, m), 7. 77 (1H, s).

25 実施例7 (化合物7の製造)

2-ベンジルオキシ-6. 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸 (200mg, 0. 68mmol)、4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル] アニリン(165mg, 0. 75mmol)、1-ヒドロキシベンゾトリアゾール(101mg, 0. 75mmol)、DMF(10ml)の混合物に 0Cで 1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジ

イミド塩酸塩(235mg, 1.23mmol)、トリエチルアミン(0.284ml, 2.04mmol)を加えて室温で3日間撹拌した。反応液を減圧濃縮し残留物に酢酸エチル(40ml)を加え水(5ml×3)、飽和重曹水(5ml×3)、飽和食塩水(5ml)で順に洗浄した。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル15g, 酢酸エチル)に付した。目的画分を減圧濃縮しジイソプロピルエーテルを加え不溶物を濾取した。不溶物をジイソプロピルエーテルで洗浄後、減圧乾燥して2-ベンジルオキシ-N-[4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]フェニル]-6,7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボキサミド(化合物7)(276mg, 0.56mmol, 82%)を得た。

IR (KBr): 1651, 1601, 1514 cm⁻¹.

'H-NMR (CDCl₃) δ: 1.6-1.85 (4H, m), 2.0-2.25 (2H, m), 2.21 (3H, s), 2.5-2.85 (5H, m), 3.3-3.45 (2H, m), 3.57 (2H, s), 3.95-4.1 (2H, m), 5.07 (2H, s), 6.85 (1H, dd, J=2.7, 8.2Hz), 6.92 (1H, d, J=2.7Hz), 7.09 (1H, d, J=8.2Hz), 7.25-7.5 (5H, m), 7.31 (2H, d, J=8.6Hz), 7.55 (2H, d, J=8.6Hz), 7.58 (1H,

参考例23

参考例24

s).

15

3-ヒドロキシ-5-オキソ-6, 7, 8, 9-テトラヒドロ-5H-ベンゾシクロヘプテン (1.76g, 10.0mmol)を DMF (10ml)に溶解し炭酸カリウム(2.76g, 20.0mmol)、4-メ チルベンジルブロミド(2.04g, 11.0mmol)を加えて室温で 24 時間撹拌した。反応 液を減圧濃縮し残留物に水(20ml)を加え酢酸エチル(20ml×3)で抽出した。有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル 40g, 酢酸エチル/ヘキサン=1/30)に付した。目的画分を減圧濃縮して 3-(4-メチルベンジルオキシ)-5-オキソ-6, 7, 8, 9-テトラヒドロ-5H-ベンゾシクロヘプテン(2.74g, 9.77mmol, 98%)を得た。

25 IR (KBr): 1674 cm⁻¹.

'H-NMR (CDCl₃) δ: 1. 7-1. 95 (4H. m), 2. 36 (3H. s), 2. 7-2. 8 (2H. m), 2. 8-2. 95 (2H. m), 5. 04 (2H. s), 7. 03 (1H. dd, J=2. 8, 8. 5Hz), 7. 12 (1H. d, J=8. 5Hz), 7. 19 (2H. d, J=7. 9Hz), 7. 32 (2H. d, J=7. 9Hz), 7. 36 (1H. d, J=2. 8Hz).

3-(4-メチルベンジルオキシ)-5-オキソ-6, 7, 8, 9-テトラヒドロ-5H-ベンゾシクロヘプテン(2.67g, 9.52mmol))を炭酸ジメチル(40ml)に溶解しナトリウムメトキシド(2.57g, 47.6mmol)を加えて加熱還流下(110℃)、6 時間撹拌した。氷冷下、1N 塩酸(60ml)を加え有機溶媒を減圧留去後、水層を酢酸エチル(30ml×3)で抽出した。有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル 40g, 酢酸エチル/ヘキサン=1/30)に付した。目的画分を減圧濃縮して 3-(4-メチルベンジルオキシ)-5-オキソ-6, 7, 8, 9-テトラヒドロ-5H-ベンゾシクロヘプテン-6-カルボン酸メチル(2.84g, 8.39mmol,88%)を得た。参考例25

- 3-(4-メチルベンジルオキシ)-5-オキソ-6, 7, 8, 9-テトラヒドロ-5H-ベンゾシク 10 ロヘプテン-6-カルボン酸メチル(2.77g, 8.19mmol)をジクロロメタン(40ml)、メ タノール(10ml)の混合溶媒に溶解し、-40℃(内温)で水素化ホウ素ナトリウム (465mg, 12.3mmol)を加えて-20℃~-10℃で2時間撹拌した。反応液を-40℃まで 冷却し水(20ml)を加えジクロロメタン(40ml, 10ml×2)で抽出した。有機層を無水 硫酸マグネシウムで乾燥後、減圧濃縮した。残留物を THF (30ml) に溶解し 0℃でト 15 リエチルアミン(5.70ml, 40.9mmol)、メタンスルホニルクロリド(0.95ml, 12.3mmol)を加えて室温で 12 時間撹拌した。反応を完結させるため DBU(3.67ml, 24.5mmol)、ジクロロメタン(30ml)を加えて室温で3時間撹拌した。反応液を減圧 濃縮し水(30ml)を加え酢酸エチル(30ml×3)で抽出した。有機層を IN 塩酸(5ml× 3)で洗浄、無水硫酸マグネシウムで乾燥後、減圧濃縮し残留物をカラムクロマト 20 グラフィー(シリカゲル 60g,酢酸エチル/ヘキサン=1/30→1/9) に付した。目的画 分を減圧濃縮して 2-(4-メチルベンジルオキシ)-6,7-ジヒドロ-5H-ベンゾシクロ ヘプテン-8-カルボン酸メチル(2.40g, 7.44mmol, 91%)を得た。 IR (KBr): 1709 cm^{-1} .
- 25 'H-NMR (CDC1₃) ô: 1. 95-2. 1 (2H, m). 2. 36 (3H, s). 2. 55-2. 65 (2H, m). 2. 7-2. 8 (2H, m). 3. 81 (3H, s). 5. 01 (2H, s). 6. 83 (1H, dd. J=3. 0, 8. 4Hz). 6. 92 (1H, d, J=3. 0Hz). 7. 05 (1H, d, J=8. 4Hz). 7. 19 (2H, d, J=8. 0Hz). 7. 32 (2H, d, J=8. 0Hz). 7. 64 (1H, s).

参考例26

2-(4-メチルベンジルオキシ)-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル(2.34g, 7.26mmol)をメタノール(25ml)と THF(25ml)の混合溶媒に溶解し 1N 水酸化ナトリウム水溶液(23ml)を加えて室温で 18 時間撹拌した。室温で in 塩酸(23ml)を加え減圧濃縮後、水を加え不溶物を遮取した。不溶物を水、ヘキサンで順に洗浄し減圧乾燥して 2-(4-メチルベンジルオキシ)-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸(2.11g, 6.84mmol, 94%)を得た。

IR (KBr): 1663 cm^{-1} .

¹H-NMR (CDCl₃) δ : 1. 95-2. 1 (2H, m), 2. 36 (3H, s), 2. 55-2. 7 (2H, m), 2. 7-2. 85 (2H, m), 5. 02 (2H, s), 6. 86 (1H, dd, J=2. 7, 8. 1Hz), 6. 95 (1H, d, J=2. 7Hz), 7. 07 (1H, d, J=8. 1Hz), 7. 19 (2H, d, J=8. 1Hz), 7. 32 (2H, d, J=8. 1Hz), 7. 77 (1H, s).

実施例8 (化合物8の製造)

2-(4-メチルベンジルオキシ)-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カル ボン酸(200mg, 0.65mmol)、4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノ メチル]アニリン(157mg, 0.71mmol)、1-ヒドロキシベンゾトリアゾール(96mg, 15 0.71mmol)、DMF(10ml)の混合物に 0℃で1-[3-(ジメチルアミノ)プロピル]-3-エチ ルカルボジイミド塩酸塩(186mg, 0.97mmol)、トリエチルアミン(0.271ml, 1.94mmol)を加えて室温で4日間撹拌した。反応液を減圧濃縮し残留物に酢酸エチ ル(40ml)を加え水(5ml×3)、飽和重曹水(5ml×3)、飽和食塩水(5ml)で順に洗浄し た。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮し残留物をカラムクロマト 20 グラフィー(シリカゲル 15g, 酢酸エチル)に付した。目的画分を減圧濃縮しジイ ソプロピルエーテルを加え不溶物を濾取した。不溶物をジイソプロピルエーテル で洗浄後、減圧乾燥して 2-(4-メチルベンジルオキシ)-N-[4-[N-メチル-N-(テト ラヒドロピラン-4-イル)アミノメチル]フェニル]-6,7-ジヒドロ-5H-ベンゾシク ロヘプテン-8-カルボキサミド (化合物 8) (273mg, 0.53mmol 82%)を得た。 **25** IR (KBr): 1651, 1601, 1518 cm⁻¹.

¹H-NMR (CDCl₃) δ : 1. 6-1. 85 (4H, m), 2. 0-2. 2 (2H, m), 2. 21 (3H, s), 2. 36 (3H, s), 2. 5-2. 85 (5H, m), 3. 3-3. 45 (2H, m), 3. 57 (2H, s), 3. 95-4. 1 (2H, m), 5. 02 (2H, s), 6. 84 (1H, dd, J=2. 5, 8. 1Hz), 6. 91 (1H, d, J=2. 5Hz), 7. 08 (1H, d,

J=8. 1Hz), 7. 19 (2H, d, J=8. 3Hz), 7. 31 (2H, d, J=8. 6Hz), 7. 32 (2H, d, J=8. 3Hz), 7. 55 (2H, d, J=8. 6Hz), 7. 60 (1H, s).

参考例27

3-ヒドロキシ-5-オキソ-6, 7, 8, 9-テトラヒドロ-5H-ベンゾシクロヘプテン (1.76g, 10.0mmol)を DMF (20ml)に溶解し炭酸カリウム(2.76g, 20.0mmol)、4-フェニルベンジルブロミド(2.72g, 11.0mmol)を加えて室温で 24 時間撹拌した。反応液を減圧濃縮し残留物に酢酸エチル(30ml)、THF (30ml)を加えて水(10ml, 5ml×2)、飽和食塩水(5ml)で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮し残留物にジイソプロピルエーテルを加え不溶物を濾取した。不溶物をジイソプロピルエーテルで洗浄後、減圧乾燥して 3-(4-フェニルベンジルオキシ)-5-オキソ-6, 7, 8, 9-テトラヒドロ-5H-ベンゾシクロヘプテン(3.00g, 8.76nmol, 88%)を得た。

IR (KBr): 1674 cm^{-1} .

'H-NMR (CDCl₃) δ: 1.7-1.95 (4H, m), 2.7-2.8 (2H, m), 2.8-2.95 (2H, m), 5.13 (2H, s), 7.06 (1H, dd, J=2.6, 8.4Hz), 7.14 (1H, d, J=8.4Hz), 7.3-7.65 (10H, m).

参考例28

20

25

3-(4-フェニルベンジルオキシ)-5-オキソ-6, 7, 8, 9-テトラヒドロ-5H-ベンゾシクロヘプテン(2, 90g, 8, 47mmol)を炭酸ジメチル(80ml)に溶解しナトリウムメトキシド(2, 29g, 42, 4mmol)を加えて加熱還流下(110℃)、6 時間撹拌した。氷冷下、1N塩酸(60ml)を加え有機溶媒を減圧留去後、水層を酢酸エチルと THF の混合溶媒((30ml/15ml)×3)で抽出した。有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル 50g, 酢酸エチル/ヘキサン=1/30)に付した。目的画分を減圧濃縮しジイソプロピルエーテルを加え不溶物を適取した。不溶物をジイソプロピルエーテルで洗浄後、減圧乾燥して 3-(4-フェニルベンジルオキシ)-5-オキソ-6, 7, 8, 9-テトラヒドロ-5H-ベンゾシクロヘプテン-6-カルボン酸メチル(2, 47g, 6, 17mmol, 73%)を得た。

参考例29

3-(4-フェニルベンジルオキシ)-5-オキソ-6, 7, 8, 9-テトラヒドロ-5H-ベンゾシ

クロヘプテン-6-カルボン酸メチル(2.31g, 5.77mmo1)をジクロロメタン(50ml)、メタノール(15ml)の混合溶媒に溶解し、-40℃(内温)で水素化ホウ素ナトリウム(327mg, 8.64mmo1)を加えて-20℃~-10℃で2時間撹拌した。反応液を-40℃まで冷却し水(30mi)を加えジクロロメタン(50ml, 10ml×2)で抽出した。有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮した。残留物をジクロロメタン(40ml)に溶解し0℃でトリエチルアミン(4.02ml, 28.8mmo1)、メタンスルホニルクロリド(0.67ml, 8.7mmo1)を加えて室温で16時間撹拌した。反応を完結させるためDBU(2.59ml, 17.3mmo1)を加えて室温で12時間撹拌した。反応を完結させるためDBU(2.59ml, 17.3mmo1)を加えて室温で12時間撹拌した。反応液を減圧濃縮し水(30ml)を加え酢酸エチル(40ml, 15ml×2)で抽出した。有機層を1N塩酸(5ml×4)で洗浄、無水硫酸マグネシウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル 60g, トルエン)に付した。目的画分を減圧濃縮し酢酸エチル、ジイソプロピルエーテルを加え不溶物を濾取した。不溶物をジイソプロピルエーテルを加え不溶物を濾取した。不溶物をジイソプロピルエーテルで洗浄後、減圧乾燥して2-(4-フェニルベンジルオキシ)-6,7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル(1.31g, 3.41mmo1, 59%)を得た。

15 IR (KBr): 1707 cm⁻¹.

'H-NMR (CDCl₃) δ: 1. 95-2. 15 (2H, m), 2. 55-2. 7 (2H, m), 2. 7-2. 8 (2H, m), 3. 82 (3H, s), 5. 10 (2H, s), 6. 87 (1H, dd, J=2. 7, 8. 3Hz), 6. 96 (1H, d, J=2. 7Hz), 7. 08 (1H, d, J=8. 3Hz), 7. 3-7. 7 (10H, m).

参考例30

2-(4-フェニルベンジルオキシ)-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル(1.22g, 3.17mmol)をメタノール(20ml)と THF(35ml)の混合溶媒に溶解し 1N 水酸化ナトリウム水溶液(10ml)を加えて室温で 18 時間、60℃で 2 時間撹拌した。室温で 1N 塩酸(12ml)を加え減圧濃縮後、水を加え不溶物を濾取した。不溶物を水、ヘキサンで順に洗浄し減圧乾燥して 2-(4-フェニルベンジルオキシ)-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸(1.38g)を得た。

¹H-NMR (DMSO- d_6) δ : 1. 8-2. 0 (2H, m), 2. 4-2. 55 (2H, m), 2. 65-2. 8 (2H, m), 5. 16 (2H, s), 6. 91 (1H, dd, J=2. 6, 8. 4Hz), 7. 08 (1H, d, J=2. 6Hz), 7. 12 (1H, d, J=8. 4Hz), 7. 3-7. 75 (10H, m).

実施例9 (化合物9の製造)

2-(4-フェニルベンジルオキシ)-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸(200mg, 0.54mmol)、4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]アニリン(131mg, 0.59mmol)、1-ヒドロキシベンゾトリアゾール(80mg, 0.59mmol)、DMF(10ml)の混合物に0℃で1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド塩酸塩(207mg, 1.08mmol)、トリエチルアミン(0.226ml, 1.62mmol)を加えて室温で3日間撹拌した。反応液を減圧濃縮し残留物に酢酸エチル(40ml)を加え水(5ml×3)、飽和重曹水(5ml×3)、飽和食塩水(5ml)で順に洗浄した。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル 15g, 酢酸エチル)に付した。目的画分を減圧濃縮しジイソプロピルエーテルで洗浄後、減圧乾燥して2-(4-フェニルベンジルオキシ)-N-[4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]フェニル]-6,7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボキサミド(化合物9)(243mg, 0.42mmol,79%)を得た。IR(KBr):1651,1601,1516 cm⁻¹.

15 'H-NMR (CDC1₃) δ: 1. 55-1. 85 (4H, m), 2. 0-2. 25 (2H, m), 2. 21 (3H, s), 2. 5-2. 85 (5H, m), 3. 25-3. 45 (2H, m), 3. 58 (2H, s), 3. 95-4. 15 (2H, m), 5. 11 (2H, s), 6. 87 (1H, dd, J=2. 9, 8. 0Hz), 6. 94 (1H, d, J=2. 9Hz), 7. 10 (1H, d, J=8. 0Hz), 7. 2-7. 7 (14H, m).

参考例31

IR (KBr): 1707 cm^{-1} .

20 2-ヒドロキシ-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル (327mg, 1.50mmol)を DMF (6ml)に溶解し炭酸カリウム(415mg, 3.00mmol)、4-フルオロベンジルブロミド(0.206ml, 1.65mmol)を加えて室温で 15 時間撹拌した。反応液を減圧濃縮し残留物に酢酸エチル(40ml)を加え水(5ml×2)、飽和食塩水(5ml)で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル 15g、酢酸エチル/ヘキサン=1/25)に付した。目的画分を減圧濃縮して 2-(4-フルオロベンジルオキシ)-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル(485mg, 1.49mmol, 99%)を得た。

 $^{1}\text{H-NMR}$ (CDC1₃) δ : 1. 95-2. 15 (2H, m), 2. 55-2. 8 (4H, m), 3. 82 (3H, s), 5. 02

(2H, s), 6.83 (1H, dd, J=2.7, 8.2Hz), 6.92 (1H, d, J=2.7Hz), 7.0-7.15 (2H, m), 7.07 (1H, d, J=8.2Hz), 7.35-7.45 (2H, m), 7.64 (1H, s). 参考例32

2-(4-フルオロベンジルオキシ)-6,7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル(462mg, 1.42mmol)をメタノール(5ml)と THF(5ml)の混合溶媒に溶解し 1N 水酸化ナトリウム水溶液(4.3ml)を加えて 50℃で 2 時間撹拌した。0℃で1N 塩酸(4.3ml)を加え減圧濃縮後、水を加え不溶物を濾取した。不溶物を水で洗浄し減圧乾燥して 2-(4-フルオロベンジルオキシ)-6,7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸(458mg)を得た。

10 実施例10(化合物10の製造)

2-(4-フルオロベンジルオキシ)-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸(170mg, 0.54mmol)、4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]アニリン(144mg, 0.65mmol)、1-ヒドロキシベンゾトリアゾール(88mg, 0.65mmol)、DMF(6ml)の混合物に 0℃で1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド塩酸塩(209mg, 1.09mmol)、トリエチルアミン(0.228ml, 1.64mmol)を加えて室温で2日間撹拌した。反応液を減圧濃縮し残留物に酢酸エチル(40ml)を加え飽和重曹水(10ml, 5ml×2)で洗浄した。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル15g, 酢酸エチル)に付した。目的画分を減圧濃縮し残留物にジイソプロピルエーテルを20 加えて不溶物を適取した。不溶物をジイソプロピルエーテルで洗浄後、減圧乾燥して2-(4-フルオロベンジルオキシ)-バ-[4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]フェニル]-6,7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボキサミド(化合物10)(228mg, 0.44mmol, 81%)を得た。

IR (KBr): 1651, 1603, 1514 cm⁻¹.

25 H-NMR (CDCl₃) δ: 1. 5-1. 85 (4H. m), 2. 0-2. 25 (2H. m), 2. 21 (3H. s), 2. 55-2. 85 (5H. m), 3. 3-3. 45 (2H. m), 3. 58 (2H. s), 3. 95-4. 15 (2H. m), 5. 02 (2H. s), 6. 83 (1H. dd, J=2. 7, 8. 3Hz), 6. 90 (1H. d, J=2. 7Hz), 7. 0-7. 15 (2H. m), 7. 09 (1H. d, J=8. 3Hz), 7. 29 (1H. s), 7. 31 (2H. d, J=8. 5Hz), 7. 35-7. 45 (2H. m), 7. 55 (2H. d, J=8. 5Hz), 7. 59 (1H. s).

参考例33

2-ヒドロキシ-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル (327mg, 1.50mmol)を DMF (6ml)に溶解し炭酸カリウム (415mg, 3.00mmol)、2, 4-ジフルオロベンジルブロミド (0.212ml, 1.65mmol)を加えて室温で 17 時間撹拌した。反応液を減圧濃縮し残留物に酢酸エチル (40ml)を加え水 (5ml×2)、飽和食塩水 (5ml)で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー (シリカゲル 15g, 酢酸エチル/ヘキサン=1/25)に付した。目的画分を減圧濃縮して 2-(2, 4-ジフルオロベンジルオキシ)-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル (500mg, 1.45mmol, 97%)を得た。

'H-NMR (CDCl₃) δ: 1. 95-2. 1 (2H, m), 2. 55-2. 8 (4H, m), 3. 82 (3H, s), 5. 07 (2H, s), 6. 75-7. 0 (4H, m), 7. 07 (1H, d, J=8. OHz), 7. 4-7. 55 (1H, m), 7. 64 (1H, s). 参考例 3 4

2-(2, 4-ジフルオロベンジルオキシ)-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル(477mg, 1.39mmol)をメタノール(5ml)と THF(5ml)の混合溶媒に溶解し 1N 水酸化ナトリウム水溶液(4.2ml)を加えて50℃で2時間撹拌した。0℃で1N塩酸(4.2ml)を加え減圧濃縮後、水を加え不溶物を濾取した。不溶物を水で洗浄し減圧乾燥して2-(2,4-ジフルオロベンジルオキシ)-6,7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸(436mg, 1.32mmol, 95%)を得た。

20 実施例11 (化合物11の製造)

IR (KBr): 1709 cm^{-1} .

10

25

2-(2, 4-ジフルオロベンジルオキシ)-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸(170mg, 0.51mmol)、4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]アニリン(136mg, 0.62mmol)、1-ヒドロキシベンゾトリアゾール(83mg, 0.61mmol)、DMF(6ml)の混合物に 0℃で 1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド塩酸塩(197mg, 1.03mmol)、トリエチルアミン(0.215ml, 1.54mmol)を加えて室温で 2 日間撹拌した。反応液を減圧濃縮し残留物に酢酸エチル(40ml)を加え飽和重曹水(10ml, 5ml×2)で洗浄した。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル15g, 酢酸エチル)に付した。目的画分を減圧濃縮し残留物にジイソプロピル

エーテルを加えて不溶物を濾取した。不溶物をジイソプロピルエーテルで洗浄後、減圧乾燥して 2-(2,4-ジフルオロベンジルオキシ)-N-[4-[N-メチル-N-(テトラヒドロピラン-4-イル) アミノメチル[フェニル[-6,7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボキサミド (化合物 <math>1 1) (228mg, 0. 43mmol, 83%)を得た。

5 IR (KBr): 1651, 1601, 1510 cm⁻¹.

'H-NMR (CDCl₃) δ: 1. 5-1. 85 (4H, m), 2. 0-2. 25 (2H, m), 2. 21 (3H, s), 2. 55-2. 85 (5H, m), 3. 25-3. 45 (2H, m), 3. 57 (2H, s), 3. 95-4. 1 (2H, m), 5. 07 (2H, s), 6. 75-7. 0 (4H, m), 7. 09 (1H, d, J=8. 0Hz), 7. 29 (1H, s), 7. 31 (2H, d, J=8. 6Hz), 7. 4-7. 65 (1H, m), 7. 55 (2H, d, J=8. 6Hz), 7. 59 (1H, s).

10 参考例35

2-ヒドロキシ-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル (327mg, 1.50mmol)を DMF (6ml) に溶解し炭酸カリウム (415mg, 3.00mmol)、2, 6-ジフルオロベンジルクロリド (268mg, 1.65mmol)を加えて室温で 24 時間撹拌した。反応液を減圧濃縮し残留物に酢酸エチル (40ml)を加え水 (5ml×2)、飽和食塩水 (5ml)で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー (シリカゲル 15g, 酢酸エチル/ヘキサン=1/25) に付した。目的画分を減圧濃縮して 2-(2,6-ジフルオロベンジルオキシ)-6,7-ジヒドロー5H-ベンゾシクロヘプテン-8-カルボン酸メチル (507mg, 1.47mmol, 98%)を得た。IR (KBr): 1709 cm⁻¹.

20 H-NMR (CDCl₃) \hat{o} : 1. 95-2. 15 (2H, m), 2. 55-2. 8 (4H, m), 3. 82 (3H, s), 5. 11 (2H, s), 6. 85-7. 0 (2H, m), 6. 87 (1H, dd, J=2. 8, 8. 2Hz), 7. 08 (1H, d, J=8. 2Hz), 7. 25-7. 45 (1H, m), 7. 66 (1H, s).

参考例36

2-(2,6-ジフルオロベンジルオキシ)-6,7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル(486mg, 1.41mmol)をメタノール(7ml)と THF(7ml)の混合溶媒に溶解し 1N 水酸化ナトリウム水溶液(4.4ml)を加えて50℃で6時間撹拌した。0℃で1N塩酸(4.4ml)を加え減圧濃縮後、水を加え不溶物を濾取した。不溶物を水で洗浄し減圧乾燥して2-(2.6-ジフルオロベンジルオキシ)-6,7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸(450mg, 1.36mmol, 97%)を得た。

実施例12 (化合物12の製造)

2-(2, 6-ジフルオロベンジルオキシ)-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸(170mg, 0.51mmol)、4-[N-メチル-N-(テトラヒドロピラン-4-イル) アミノメチル]アニリン(136mg, 0.62mmol)、1-ヒドロキシベンゾトリアゾール 5 (83mg, 0.61mmol)、DMF(8ml)の混合物に 0℃で 1-[3-(ジメチルアミノ)プロピ ル]-3-エチルカルボジイミド塩酸塩(197mg, 1.03mmol)、トリエチルアミン (0.215ml, 1.54mmol)を加えて室温で3日間撹拌した。反応液を減圧濃縮し残留物 に酢酸エチル(40ml)を加え飽和重曹水(10ml, 5ml×2)で洗浄した。有機層を無水 硫酸ナトリウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカ ゲル 15g, 酢酸エチル)に付した。目的画分を減圧濃縮し残留物を酢酸エチル 10 (10ml)に溶解した。0℃で 4N 塩化水素(酢酸エチル溶液, 0.5ml)を加え不溶物を濾 取した。不溶物を酢酸エチルで洗浄後、減圧乾燥して 2-(2,6-ジフルオロベンジ ルオキシ)-N-[4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]フェ ニル]-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボキサミド塩酸塩(化合物 12) (255mg, 0.45mmol, 87%)を得た。 15

IR (KBr): 1651, 1597, 1522 cm⁻¹.

 $^{1}H-NMR \quad (DMSO-d_{6}) \quad \delta : \quad 1.55-2.2 \quad (6H, \quad m), \quad 2.45-2.65 \quad (2H, \quad m), \quad 2.59 \quad (3H, \quad s), \\ 2.65-2.85 \quad (2H, \quad m), \quad 3.2-3.6 \quad (3H, \quad m), \quad 3.9-4.1 \quad (2H, \quad m), \quad 4.12 \quad (1H, \quad d, \quad J=12.4Hz), \\ 4.44 \quad (1H, \quad d, \quad J=12.4Hz), \quad 5.11 \quad (2H, \quad s), \quad 6.93 \quad (1H, \quad dd, \quad J=2.4, \quad 8.1Hz), \quad 7.07 \quad (1H, \quad d, \quad J=2.4Hz), \quad 7.1-7.3 \quad (3H, \quad m), \quad 7.25 \quad (1H, \quad s), \quad 7.45-7.65 \quad (1H, \quad m), \quad 7.53 \quad (2H, \quad d, \quad J=8.4Hz), \quad 7.82 \quad (2H, \quad d, \quad J=8.4Hz).$

参考例37

20

25

2-ヒドロキシ-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル (327mg, 1.50mmol)を DMF (6ml)に溶解し炭酸カリウム (415mg, 3.00mmol)、3,5-ビス(トリフルオロメチル)ベンジルブロミド(0.302ml, 1.65mmol)を加えて室温で17時間撹拌した。反応液を減圧濃縮し残留物に酢酸エチル(40ml)を加え水(5ml×2)、飽和食塩水(5ml)で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル 15g. 酢酸エチル/ヘキサン=1/25)に付した。目的画分を減圧濃縮し残留物にヘキサンを加えて不溶物を濾

取した。不溶物をヘキサンで洗浄後、減圧乾燥して 2-[3,5-ビス(トリフルオロメチル)ベンジルオキシ]-6,7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル(524mg, 1.22mmol,81%)を得た。

IR (KBr): 1709 cm^{-1} .

参考例38

5 'H-NMR (CDC1₃) δ: 1. 95-2. 15 (2H, m), 2. 55-2. 7 (2H, m), 2. 7-2. 85 (2H, m), 3. 82 (3H, s), 5. 16 (2H, s), 6. 85 (1H, dd, J=2. 7, 8. 2Hz), 6. 95 (1H, d, J=2. 7Hz), 7. 11 (1H, d, J=8. 2Hz), 7. 66 (1H, s), 7. 86 (1H, s), 7. 91 (2H, s).

2-[3,5-ビス(トリフルオロメチル) ベンジルオキシ]-6,7-ジヒドロ-5H-ベンゾ シクロヘプテン-8-カルボン酸メチル(494mg, 1.15mmol)をメタノール(7ml)と THF(7ml)の混合溶媒に溶解し 1N水酸化ナトリウム水溶液(3.5ml)を加えて50℃で 4時間撹拌した。0℃で 1N塩酸(3.5ml)を加え減圧濃縮後、水を加え不溶物を濾取 した。不溶物を水で洗浄し減圧乾燥して 2-[3,5-ビス(トリフルオロメチル) ベン ジルオキシ]-6,7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸(475mg,

15 1.10mmol, 96%)を得た。

実施例13(化合物13の製造)

2-[3,5-ビス(トリフルオロメチル)ベンジルオキシ]-6,7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸(170mg, 0.40mmol)、4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]アニリン 2 塩酸塩(127mg, 0.43mmol)、1-ヒドロキシベンゾトリアゾール(64mg, 0.47mmol)、DMF(8ml)の混合物に 0℃で1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド塩酸塩(151mg, 0.79mmol)、トリエチルアミン(0.275ml, 1.97mmol)を加えて室温で3日間撹拌した。反応液を減圧濃縮し残留物に酢酸エチル(40ml)を加え飽和重曹水(10ml, 5ml×2)で洗浄した。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル 15g, 酢酸エチル)に付した。目的画分を減圧濃縮し残留物にジイソプロピルエーテルを加えて不溶物を濾取した。不溶物をジイソプロピルエーテルで洗浄後、減圧乾燥して2-[3,5-ビス(トリフルオロメチル)ベンジルオキシ]-N-[4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]フェニル]-6,7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボキサミド(化合物13)(189mg,

0.30mmol, 76%)を得た。

IR (KBr): 1653, 1601, 1514 cm⁻¹.

'H-NMR (CDCl₃) δ: 1. 6-1. 85 (4H, m), 2. 0-2. 25 (2H, m), 2. 21 (3H, s), 2. 55-2. 85 (5H, m), 3. 25-3. 45 (2H, m), 3. 58 (2H, s), 3. 95-4. 1 (2H, m), 5. 16 (2H, s), 6. 85 (1H, dd, J=2. 7, 8. 2Hz), 6. 94 (1H, d, J=2. 7Hz), 7. 13 (1H, d, J=8. 2Hz), 7. 31 (1H, s), 7. 32 (2H, d, J=8. 6Hz), 7. 55 (2H, d, J=8. 6Hz), 7. 60 (1H, s), 7. 86 (1H, s), 7. 91 (2H, s).

参考例39

トリフェニルホスフィン(590mg, 2.25mmol)、4-エトキシベンジルアルコール (342mg, 2.25mmol)、2-ヒドロキシ-6,7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル(327mg, 1.50mmol)を THF(6ml)に溶解し、0℃でジイソプロピルアゾジカルボキシレート(0.439ml, 2.23mmol)の THF(2ml)溶液を加えて室温で 6時間撹拌した。反応液を減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル 50g, 酢酸エチル/ヘキサン=1/25→1/19)に付した。目的画分を減圧濃縮し残留 物にジイソプロピルエーテルを加えて不溶物を濾取した。不溶物をジイソプロピルエーテルで洗浄後、減圧乾燥して 2-(4-エトキシベンジルオキシ)-6,7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル(308mg, 0.87mmol,58%)を得た。IR (KBr): 1709 cm⁻¹.

'H-NMR (CDC1₃) δ: 1. 42 (3H, t, J=7. 0Hz), 1. 95-2. 1 (2H, m), 2. 55-2. 8 (4H, m),

3. 81 (3H, s), 4. 05 (2H, q, J=7. 0Hz), 4. 97 (2H, s), 6. 84 (1H, dd, J=2. 7. 8. 3Hz),

6. 91 (2H, d, J=8. 7Hz), 6. 92 (1H, d, J=2. 7Hz), 7. 34 (2H, d, J=8. 7Hz), 7. 65 (1H, s).

参考例40

25

2-(4-エトキシベンジルオキシ)-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル(296mg, 0.84mmol)をメタノール(4ml)と THF(4ml)の混合溶媒に溶解し 1N 水酸化ナトリウム水溶液(2.5ml)を加えて 50℃で 4 時間撹拌した。0℃で1N 塩酸(2.5ml)を加え減圧濃縮後、水を加え不溶物を濾取した。不溶物を水で洗浄し減圧乾燥して 2-(4-エトキシベンジルオキシ)-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸(283mg, 0.84mmol)を得た。

実施例14(化合物14の製造)

2-(4-エトキシベンジルオキシ)-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸(170mg, 0.50mmol)、4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル[アニリン(133mg, 0.60mmol)、1-ヒドロキシベンゾトリアゾール(81mg, 0.60mmol)、DMF(8ml)の混合物に0℃で1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド塩酸塩(193mg, 1.01mmol)、トリエチルアミン(0.21ml, 1.51mmol)を加えて室温で24時間撹拌した。反応液を減圧濃縮し残留物に酢酸エチル(40ml)を加え飽和重曹水(10ml, 5ml×2)で洗浄した。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル15g, 酢酸エチル)に付した。目的画分を減圧濃縮し残留物にジイソプロピルエーテルを加えて不溶物を濾取した。不溶物をジイソプロピルエーテルで洗浄後、減圧乾燥して2-(4-エトキシベンジルオキシ)-N-[4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]フェニル[-6,7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボキサミド(化合物14)(234mg, 0.43mmol,86%)を得た。

15 IR (KBr): 1651, 1601, 1514 cm⁻¹.

¹H-NMR (CDCl₃) δ: 1. 42 (3H, t, J=7. 0Hz), 1. 55-1. 85 (4H, m), 2. 0-2. 25 (2H, m), 2. 21 (3H, s), 2. 55-2. 85 (5H, m), 3. 3-3. 45 (2H, m), 3. 57 (2H, s), 3. 95-4. 15 (2H, m), 4. 04 (2H, q, J=7. 0Hz), 4. 98 (2H, s), 6. 84 (1H, dd, J=2. 8, 8. 4Hz), 6. 90 (1H, d, J=2. 8Hz), 6. 91 (2H, d, J=8. 8Hz), 7. 08 (1H, d, J=8. 4Hz), 7. 28 (1H, s), 7. 31 (2H, d, J=8. 4Hz), 7. 34 (2H, d, J=8. 8Hz), 7. 55 (2H, d, J=8. 4Hz), 7. 61 (1H, s).

参考例41

25

3-メトキシ-5-オキソ-6, 7, 8, 9-テトラヒドロ-5H-ベンゾシクロヘプテン (20. 32g, 107mmol) を炭酸ジメチル (500ml) に溶解しナトリウムメトキシド (28. 85g, 534mmol) を加えて加熱還流下(100℃)、6 時間撹拌した。氷冷下、2N塩酸 (320ml) を加え有機溶媒を減圧留去後、水層を酢酸エチル (200ml, 150ml×2) で抽出した。有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル 150g、酢酸エチル/ヘキサン=1/19) に付した。目的画分を減圧濃縮して 3-メトキシ-5-オキソ-6, 7, 8, 9-テトラヒドロ-5H-ベンゾ

シクロヘプテン-6-カルボン酸メチル(24.20g, 97.5mmol, 91%)を得た。 参考例42

3-メトキシ-5-オキソ-6, 7, 8, 9-テトラヒドロ-5H-ペンゾシクロヘプテン-6-カ ルボン酸メチル(1079mg, 4.35mmol)をジクロロメタン(10ml)、メタノール(2.5ml) の混合溶媒に溶解し、-40℃(内温)で水素化ホウ素ナトリウム(300mg, 7.93mmol) 5 を加えて-15℃から-10℃で1.5時間撹拌した。反応液を-40℃まで冷却し水(10ml) を加えジクロロメタン(×3)で抽出した。有機層を無水硫酸マグネシウムで乾燥後、 減圧濃縮した。残留物をジクロロメタン(15ml)に溶解し 0℃でトリエチルアミン (3.03ml, 21.7mmol)、メタンスルホニルクロリド(0.505ml, 6.52mmol)を加えて室 温で 18 時間撹拌した。反応を完結させるために DBU(1.95ml, 13.0mmol)を加えて 10 室温で3時間撹拌した。反応液を減圧濃縮し水を加え酢酸エチル(×3)で抽出した。 有機層を 1N 塩酸(×3)、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減 圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル、酢酸エチル/ヘキサン =1/19)に付した。目的画分を減圧濃縮して 2-メトキシ-6,7-ジヒドロ-5H-ベンゾ シクロヘプテン-8-カルボン酸メチル(730mg, 3.14mmol, 72%)を得た。 . 15

IR (KBr): 1709 cm⁻¹.

'H-NMR (CDC1₃) δ : 1. 95-2. 1 (2H, m), 2. 55-2. 8 (4H, m), 3. 80 (3H, s), 3. 82 (3H, s), 6. 77 (1H, dd. J=2. 7, 8. 3Hz), 6. 85 (1H, d, J=2. 7Hz), 7. 06 (1H, d, J=8. 3Hz), 7. 66 (1H, s).

20 参考例43

25

2-メトキシ-6.7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル (5.07g, 21.8mmol)をジクロロメタン(100ml)に溶解し、-60℃から-70℃(内温)で 三臭化ホウ素 (IM ジクロロメタン溶液、87ml)を滴下して-70℃から室温まで昇温しながら 5 時間撹拌した。ジエチルエーテル、水(100ml)を順に加えジクロロメタン(100ml, 50ml×2)で抽出した。有機層を無水硫酸マグネシウムで乾燥後、減圧 濃縮した。残留物をメタノール(150ml)に溶解し硫酸(0.5ml)を加えて加熱還流下 (100℃)、24 時間撹拌した。反応液を減圧濃縮し酢酸エチル(150ml)を加え飽和食塩水(30ml×3)で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、減圧 濃縮し 残留物にジイソプロピルエーテルを加えて不溶物を濾取した。不溶物をジイソプロピルエーテルを加えて不容物を濾取した。不容物をジイソプロピルエーテルを加えて不容物を濾取した。不容物をジイソプロピルエーテルを加えて不容物を濾取した。不容物をジイソプロピルエーテルを加えて不容物を濾取した。不容物をジイソプロピルエーテルを加えて不容物を濾取した。不容物をジイソプロピルエーテルを加えて不容物を濾取した。不容物をジイソプロピルエーテルを加えて不容物を濾取した。不容物をジイソプロピルエーテルを加えて不容物を濾取した。不容物をジイソプロピルエーテルを加えて不容物を濾取した。不容物をジイソプロピルエーテルを加えて不容物を濾取した。不容物をジイソプロピルエーテルを加えて不容物を濾取した。不容物をジイソプロピルエーテルを加えて不容物を濾取した。不容物をジイソプロピルエーテルを加えて不容物を濾取した。不容物をジイソプロピルエーテルを加えて不容物を減取した。不容物をジイソプロペートに対しています。

ロピルエーテルで洗浄後、減圧乾燥して 2-ヒドロキシ-6,7-ジヒドロ-5H-ベンゾ シクロへプテン-8-カルボン酸メチル(4.31g, 19.7mmol, 90%)を得た。

IR (KBr): 1686 cm⁻¹.

'H-NMR (CDC1₃) δ: 1. 95-2. 15 (2H, m), 2. 55-2. 8 (4H, m), 3. 82 (3H, s), 6. 71 (1H, dd, J=2. 5, 8. 1Hz), 6. 81 (1H, d, J=2. 5Hz), 7. 02 (1H, d, J=8. 1Hz), 7. 63 (1H, s).

参考例44

2-ヒドロキシ-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル (400mg, 1.83mmol)を DMF (8ml)に溶解し炭酸カリウム(507mg, 3.67mmol)、シクロ ヘキシルメチルブロミド(0.511ml, 3.66mmol)を加えて室温で 23 時間、100℃で 6 時間撹拌した。反応液を減圧濃縮し残留物に水を加え酢酸エチル(×3)で抽出した。 有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル 15g, 酢酸エチル/ヘキサン=1/19)に付した。目的画分を減圧濃縮し残留物をヘキサンを加えて不溶物を濾取した。不溶物をヘキサンで洗浄 後、減圧乾燥して 2-シクロヘキシルメチルオキシ-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル(452mg, 1.44mmol, 78%)を得た。

IR (KBr): 1709 cm⁻¹.

'H-NMR (CDCl₃) δ: 0. 9-2. 1 (13H, m), 2. 55-2. 8 (4H, m), 3. 74 (2H, d, J=6. 2Hz), 3. 81 (3H, s), 6. 76 (1H, dd, J=2. 5, 8. 1Hz), 6. 84 (1H, d, J=2. 5Hz), 7. 04 (1H, 20 d, J=8. 1Hz), 7. 65 (1H, s).

参考例45

25

2-シクロヘキシルメチルオキシ-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル(425mg, 1.35mmol)をメタノール(5ml)と THF(5ml)の混合溶媒に溶解し 1N 水酸化ナトリウム水溶液(4ml)を加えて 50℃で 6 時間撹拌した。0℃で 1N 塩酸(4ml)を加え減圧濃縮後、水を加え不溶物を濾取した。不溶物を水で洗浄し減圧乾燥して 2-シクロヘキシルメチルオキシ-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸(389mg, 1.29mmol, 96%)を得た。

実施例15 (化合物15の製造)

2-シクロヘキシルメチルオキシ-6, 7-ジヒドロ-5H-ベンソシクロヘプテン-8-カ

ルボン酸 (170mg, 0.57mmol)、4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]アニリン(150mg, 0.68mmol)、1-ヒドロキシベンゾトリアゾール(84mg, 0.62mmol)、DMF (6ml)の混合物に 0℃で 1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド塩酸塩 (217mg, 1.13mmol)、トリエチルアミン(0.237ml, 1.70mmol)を加えて室温で 4 日間撹拌した。反応液を減圧濃縮し残留物に酢酸エチル(40ml)を加え飽和重曹水(10ml, 5ml×2)で洗浄した。 有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル 15g, 酢酸エチル)に付した。目的画分を減圧濃縮し残留物を酢酸エチル(10ml)に溶解した。 0℃で 4N 塩化水素(酢酸エチル溶液, 0.285ml)を加え不溶物を濾取した。不溶物を酢酸エチルで洗浄後、減圧乾燥して 2-シクロヘキシルメチルオキシ-N-[4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]フェニル]-6,7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボキサミド塩酸塩(化合物 1 5) (258mg, 0.48mmol, 85%)を得た。

IR (KBr): 1651, 1601, 1522 cm⁻¹.

15 H-NMR (DMSO-d₆) δ: 0. 9-1. 4 (5H, m), 1. 5-2. 2 (12H, m), 2. 4-2. 65 (2H, m), 2. 59 (3H, s), 2. 65-2. 8 (2H, m), 3. 2-3. 6 (3H, m), 3. 77 (2H, d, J=5. 8Hz), 3. 9-4. 1 (2H, m), 4. 12 (1H, d, J=12. 4Hz), 4. 43 (1H, d, J=12. 4Hz), 6. 80 (1H, dd, J=2. 5, 8. 6Hz), 6. 94 (1H, d, J=2. 5Hz), 7. 12 (1H, d, J=8. 6Hz), 7. 25 (1H, s), 7. 54 (2H, d, J=8. 6Hz), 7. 81 (2H, d, J=8. 6Hz), 10. 14 (1H, s).

20 参考例 4 6

25

トリフェニルホスフィン(1.18g, 4.50mmol)、シクロヘキサノール(0.468ml, 4.50mmol)、2-ヒドロキシ-6、7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル(327mg, 1.50mmol)を THF(6ml)に溶解し、0℃でジイソプロピルアゾジカルボキシレート(0.886ml, 4.50mmol)の THF(4ml)溶液を加えて室温で 3 日間撹拌した。反応液を減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル 45g, 酢酸エチル/ヘキサン=1/25)に付した。目的画分を減圧濃縮して 2-シクロヘキシルオキシ-6、7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル(434mg, 1.44mmol, 96%)を得た。

IR (KBr): 1709 cm^{-1} .

'H-NMR (CDCl₃) δ : 1.15-2.1 (12H, m), 2.55-2.65 (2H, m), 2.65-2.8 (2H, m). 3. 81 (3H, s), 4. 1-4. 3 (1H, m), 6. 77 (1H, dd, J=2. 7, 8. 1Hz), 6. 85 (1H, d, J=2. 7Hz), 7. 03 (1H, d. J=8. 1Hz), 7. 64 (1H, s).

参考例47

10

2-シクロヘキシルオキシ-6. 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン 酸メチル(412mg, 1.37mmol)をメタノール(5ml)と THF(5ml)の混合溶媒に溶解し 1N 水酸化ナトリウム水溶液 (4.0ml) を加えて 50℃で 6 時間撹拌した。0℃で 1N 塩 酸(4.0ml)を加え減圧濃縮後、水を加え不溶物を濾取した。不溶物を水で洗浄し減 圧乾燥して 2-シクロヘキシルオキシ-6,7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸(388mg, 1.35mmol, 99%)を得た。

実施例16(化合物16の製造)

2-シクロヘキシルオキシ-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン 酸(170mg, 0.59mmol)、4-[N-メチルーバー(テトラヒドロピラン-4-イル)アミノメチ ル]アニリン(157mg, 0.71mmol)、1-ヒドロキシベンゾトリアゾール(96mg, 0.71mmol)、DMF(8ml)の混合物に 0℃で 1-[3-(ジメチルアミノ)プロピル]-3-エチ ルカルボジイミド塩酸塩(228mg, 1.19mmol)、トリエチルアミン(0.248ml, 1.78nmol)を加えて室温で24時間撹拌した。反応液を減圧濃縮し残留物に酢酸工 チル(40ml)を加え飽和重曹水(10ml, 5ml×2)で洗浄した。有機層を無水硫酸ナト リウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル15g. 酢酸エチル)に付した。目的画分を減圧濃縮し残留物にジイソプロピルエーテルを 20 加えて不溶物を濾取した。不溶物をジイソプロピルエーテルで洗浄後、減圧乾燥 して 2-シクロヘキシルオキシ-N-[4-[N-メチル-N-(テトラヒドロピラン-4-イル) アミノメチル] フェニル] -6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボキサ ミド (化合物 1 6) (248mg, 0.51mmol, 85%)を得た。

IR (KBr): 1651, 1601, 1514 cm⁻¹. 25 'H-NMR (CDC1₃) δ : 1.15-2.25 (16H, m). 2.21 (3H, s), 2.5-2.85 (5H, m), 3. 25-3. 45 (2H, m), 3. 57 (2H, s), 3. 95-4. 1 (2H, m), 4. 1-4. 3 (1H, m), 6. 77 (1H, dd, J=2.7, 8.2Hz), 6.85 (1H, d, J=2.7Hz), 7.06 (1H, d, J=8.2Hz), 7.29 (1H, s), 7.31 (2H, d, J=8.4Hz), 7.55 (2H, d, J=8.4Hz), 7.60 (1H, s).

参考例48

トリフェニルホスフィン(2361mg, 9.00mmol)、1-tert-ブトキシカルボニル-4-ヒドロキシピペリジン(1812mg, 9.00mmol)、2-ヒドロキシ-6,7-ジヒドロ-5H-ペンゾシクロヘプテン-8-カルボン酸メチル(655mg, 3.00mmol)を THF(15ml)に溶解し、0℃でジイソプロピルアゾジカルボキシレート(1.772ml, 9.00mmol)の THF(2ml)溶液を加えて室温で 24 時間撹拌した。反応液を減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル 70g, 酢酸エチル/ヘキサン=1/9→1/7)に付した。目的画分を減圧濃縮して 2-[(1-tert-ブトキシカルボニルピペリジン-4-イル)オキシ]-6,7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル(1270mg)を得た。

10 IR (KBr): 1698 cm⁻¹.

'H-NMR (CDCl₃) δ: 1. 47 (9H, s), 1. 6-2. 1 (6H, m), 2. 55-2. 7 (2H, m), 2. 7-2. 8 (2H, m), 3. 2-3. 45 (2H, m), 3. 6-3. 8 (2H, m), 3. 82 (3H, s), 4. 35-4. 55 (1H, m), 6. 78 (1H, dd, J=2. 7, 8. 3Hz), 6. 87 (1H, d, J=2. 7Hz), 7. 05 (1H, d, J=8. 3Hz), 7. 63 (1H, s).

15 参考例 4 9

20

25

2-[(1-tert-ブトキシカルボニルピペリジン-4-イル)オキシ]-6,7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル(1245mg, 3.10mmol)をメタノール(10ml)と THF(10ml)の混合溶媒に溶解し 1N 水酸化ナトリウム水溶液(9.3ml)を加えて室温で 23 時間撹拌した。0℃で 1N 塩酸(9.3ml)を加え減圧濃縮後、水を加え不溶物を濾取した。不溶物を水で洗浄し減圧乾燥して 2-[(1-tert-ブトキシカルボニルピペリジン-4-イル)オキシ]-6,7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸(1150mg, 2.97mmol, 96%)を得た。

実施例17 (化合物17の製造)

2-[(1-tert-ブトキシカルボニルピペリジン-4-イル)オキシ]-6,7-ジヒドロ-5H-ペンソシクロヘプテン-8-カルボン酸(1088mg, 2.81mmol)、4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]アニリン塩酸塩(742mg, 3.37mmol)、1-ヒドロキシベンゾトリアゾール(455mg, 3.37mmol)、DMF(30ml)の混合物に 0℃で1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド塩酸塩(1077mg, 5.62mmol)、トリエチルアミン(1.174ml, 8.42mmol)を加えて室温で3日間撹拌し

た。反応液を減圧濃縮し残留物に酢酸エチル(160m1)を加え飽和重曹水(40m1, $20m1 \times 2$)で洗浄した。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル 70g, 酢酸エチル)に付した。目的画分を減圧濃縮し 2-[(1-tert-ブトキシカルボニルピペリジン-4-イル)オキシ]-N-[4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]フェニル]-6,7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボキサミド(化合物 <math>1 7)(1446mg, 2, 45mmo1, 87%)を得た。

IR (KBr): 1694, 1667, 1599, 1514 cm⁻¹.

'H-NMR (CDCl₃) δ: 1. 47 (9H, s), 1. 5-2. 0 (8H, m), 2. 0-2. 25 (2H, m), 2. 21 (3H, s), 2. 5-2. 85 (5H, m), 3. 2-3. 45 (4H, m), 3. 57 (2H, s), 3. 6-3. 8 (2H, m), 3. 95-4. 1 (2H, m), 4. 35-4. 5 (1H, m), 6. 78 (1H, dd, J=2. 6, 8. 2Hz), 6. 85 (1H, d, J=2. 6Hz), 7. 07 (1H, d, J=8. 2Hz), 7. 29 (1H, s), 7. 31 (2H, d, J=8. 4Hz), 7. 55 (2H, d, J=8. 4Hz), 7. 61 (1H, s).

参考例 5 0

トリフェニルホスフィン(1.18g, 4.50mmol)、テトラヒドロピラン-4-オール (0.429ml, 4.50mmol)、2-ヒドロキシ-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル(327mg, 1.50mmol)を THF(10ml)に溶解し、0℃でジイソプロピルアゾジカルボキシレート(0.886ml, 4.50mmol)の THF(2ml)溶液を加えて室温で3日間撹拌した。反応液を減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル 45g, 酢酸エチル/ヘキサン=1/25)に付した。目的画分を減圧濃縮して2-[(テトラヒドロピラン-4-イル)オキシ]-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸メチル(427mg, 1.41mmol, 94%)を得た。

IR (KBr): 1709 cm^{-1} .

'H-NMR (CDCl₃) δ: 1. 65-1. 9 (2H, m), 1. 9-2. 1 (4H, m), 2. 55-2. 7 (2H, m), 2. 7-2. 8 (2H, m), 3. 5-3. 65 (2H, m), 3. 82 (3H, s), 3. 9-4. 05 (2H, m), 4. 35-4. 55 (1H, m), 6. 79 (1H, dd, J=2. 4, 8. 3Hz), 6. 87 (1H, d, J=2. 4Hz), 7. 05 (1H, d, J=8. 3Hz), 7. 63 (1H, s).

参考例 5 1

2-[(テトラヒドロピラン-4-イル)オキシ]-6,7-ジヒドロ-5H-ベンゾシクロヘブ

テン-8-カルボン酸メチル(406mg, 1.34mmol)をメタノール(7ml)と THF(7ml)の混合溶媒に溶解し 1N 水酸化ナトリウム水溶液(4.0ml)を加えて60℃で5時間撹拌した。0℃で1N塩酸(4.0ml)を加え減圧濃縮後、水を加え不溶物を濾取した。不溶物を水で洗浄し減圧乾燥して2-[(テトラヒドロピラン-4-イル)オキシ]-6,7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸(370mg, 1.28mmol, 96%)を得た。実施例18(化合物18の製造)

2-[(テトラヒドロピラン-4-イル)オキシ]-6, 7-ジヒドロ-5H-ベンゾシクロヘプ テン-8-カルボン酸(170mg, 0.59mmol)、4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]アニリン 2 塩酸塩(190mg O.65mmol)、1-ヒドロキシベンゾ トリアゾール(96mg, 0.71mmol)、DMF(8ml)の混合物に 0℃で 1-[3-(ジメチルアミ 10 ノ)プロピル]-3-エチルカルボジイミド塩酸塩(226mg, 1.18mmol)、トリエチルア ミン(0.411ml, 2.95mmoi)を加えて室温で3日間撹拌した。反応液を減圧濃縮し残 留物に酢酸エチル(40ml)を加え飽和重曹水(10ml 5ml×2)で洗浄した。有機層を 無水硫酸ナトリウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シ リカゲル 15g. 酢酸エチル) に付した。目的画分を減圧濃縮し残留物を酢酸エチル 15 (10ml)に溶解した。0℃で 4N 塩化水素(酢酸エチル溶液, 0.6ml)を加え不溶物を濾 取した。不溶物を酢酸エチルで洗浄後、減圧乾燥して 2-[(テトラヒドロピラン-4-イル)オキシ]-N-[4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル] フェニル]-6, 7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボキサミド塩酸塩(化 20 合物18) (264mg, 0.50mmol, 85%)を得た。

IR (KBr): 1649, 1597, 1522 cm⁻¹.

'H-NMR (DMSO- d_6) δ : 1. 45-2. 2 (10H, m), 2. 45-2. 65 (2H, m), 2. 59 (3H, s), 2. 65-2. 8 (2H, m), 3. 2-3. 55 (5H, m), 3. 75-4. 1 (4H, m), 4. 12 (1H, d, J=13. 1Hz), 4. 44 (1H, d, J=13. 1Hz), 4. 45-4. 65 (1H, m), 6. 86 (1H, dd, J=2. 4, 8. 1Hz), 7. 02 (1H, d, J=2. 4Hz), 7. 13 (1H, d, J=8. 1Hz), 7. 25 (1H, s), 7. 55 (2H, d, J=8. 4Hz), 7. 82 (2H, d, J=8. 4Hz).

参考例52

25

7-ヒドロキシ-1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(400mg)、4-プロポキシフェネチルアルコール

(537mg)、トリフェニルホスフィン(782mg)のTHF(10ml) 溶液に、0℃でアゾジカルボン酸ジエチル(40%トルエン溶液)(1.36m 1)を加え、室温で24時間撹拌した。減圧下濃縮後、残渣をカラムクロマトグラフィー(酢酸エチル/ヘキサン1:1)で分離精製し、7-[(4-プロポキシフェネチル)オキシ]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(1.2g)を得た。

7- [(4-プロポキシフェネチル) オキシ] -1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル (1.2g)のTHF/メタノール (10/5ml)溶液に、室温で炭酸カリウム (622mg)の水溶 10 液 (2.1ml)を加え、60℃で24時間撹拌した。室温まで冷却後、酢酸エチルで抽出した。水層に1N塩酸 (10ml)を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、析出した結晶をろ過によって集めた。結晶をジイソプロピルエーテルで洗浄し、無色の結晶として7- [(4-プロポキシフェネチル)オキシ]-1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸 (330mg)を得た。

¹H-NMR (200MHz, DMSO-d₆) δ 0. 97 (3H, t, J=7. 5 Hz), 1. 62-1. 80 (2H, m), 2. 86-2. 92 (2H, m), 2. 99 (2H, t, J=7. 0 Hz), 3. 63-3. 70 (2H, m), 3. 89 (2H, t, J=6. 6 Hz), 4. 28 (2H, t, J=7. 0 Hz), 6. 86 (2H, d, J=8. 8 Hz), 7. 13 (1H, dd, J=8. 8, 2. 6 Hz), 7. 23 (2H, d, J=8. 8 Hz), 7. 33 (1H, d, J=2. 6 Hz), 7. 72 (1H, s), 7. 91 (1H, d, J=8. 8 Hz).

参考例53

7-ヒドロキシー1, 1-ジオキソー2, 3-ジヒドロー1-ベンゾチエピン ー4ーカルボン酸メチル(400mg)、3-プロポキシベンジルアルコール(4 95mg)、トリフェニルホスフィン(782mg)のTHF(10ml)溶液 に、0℃でアゾジカルボン酸ジエチル(40%トルエン溶液)(1.36ml) を加え、室温で24時間撹拌した。減圧下濃縮後、残渣をカラムクロマトグラフィー(酢酸エチル/ヘキサン1:2)で分離精製し、7-(3-プロポキシベン ジルオキシ)-1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4 -カルボン酸メチル(650mg)を得た。

7-[(3-プロポキシベンジル)オキシ]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(650mg)のTHF/メタノール(5/2.5ml)溶液に、室温で炭酸カリウム(622mg)の水溶液(2.1ml)を加え、60℃で24時間撹拌した。室温まで冷却後、酢酸エチルで抽出した。水層に1N塩酸(10ml)を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、析出した結晶をろ過によって集めた。結晶をジイソプロピルエーテルで洗浄し、無色の結晶として<math>7-[(3-プロポキシベンジル)オキシ]-1,1-ジオキソー2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(379mg)を得た。

m. p. 205-206 ℃

10

「H-NMR (200MHz, DMSO-d₆) る 0.97 (3H, t, J=7.3 Hz), 1.63-1.82 (2H, m), 2.87-2.93 (2H, m), 3.65-3.71 (2H, m), 3.93 (2H, t, J=6.4 Hz), 5.22 (2H, s), 6.88-6.93 (1H, m), 6.99-7.03 (2H, m), 7.22 (1H, dd, J=8.7, 2.5 Hz), 7.30 (1H, t, J=8.8 Hz), 7.43 (1H, d, J=2.5 Hz), 7.72 (1H, s), 7.94 (1H, d, J=8.7 Hz). 元素分析 C₂₁H₂₂O₆S Calcd. C, 62.67; H, 5.51: Found. C, 62.35; H, 5.45. 参考例 5.4

7-ヒドロキシー1、1-ジオキソー2、3-ジヒドロー1-ベンゾチエピン 20 -4-カルボン酸メチル(400mg)、2-プロポキシベンジルアルコール(5 37mg)、トリフェニルホスフィン(782mg)のTHF(10ml)溶液に、0℃でアゾジカルボン酸ジエチル(40%トルエン溶液)(1.36ml)を加え、室温で22時間撹拌した。減圧下濃縮後、残渣をカラムクロマトグラフィー(酢酸エチル/ヘキサン1:2)で分離精製し、7-[(2-プロポキシベンジル)オキシ]-1、1-ジオキソー2、3-ジヒドロ-1-ベンゾチエピンー4-カルボン酸メチル(0.67g)を得た。

7-[(2-プロポキシベンジル) オキシ]-1, 1-ジオキソー2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル <math>(0.67g) のTHF/メタノール (10/5m1) 溶液に、室温で炭酸カリウム (622mg) の水溶

液(2.1ml)を加え、60 \mathbb{C} で2.4時間撹拌した。室温まで冷却後、酢酸エチルで抽出した。水層に1 \mathbb{N} 塩酸(15 \mathbb{m} 1)を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、析出した結晶をろ過によって集めた。結晶をジイソプロピルエーテルで洗浄し、淡黄色の結晶として $7-[(2-\mathcal{J}$ \mathbb{m} \mathbb{m}

m. p. 157-160 ℃

'H-NMR (200MHz, DMSO- d_6) δ 0. 96 (3H, t, J=7. 4 Hz), 1. 64-1. 82 (2H, m), 2. 91 (2H, t, J=6. 4 Hz), 3. 68 (2H, t, J=6. 4 Hz), 4. 00 (2H, t, J=6. 4 Hz). 5. 20 (2H, s), 6. 96 (1H, t, J=7. 2 Hz), 7. 05 (1H, d, J=8. 4 Hz), 7. 20 (1H, dd, J=8. 8, 2. 4 Hz), 7. 28-7. 44 (3H, m), 7. 72 (1H, s), 7. 94 (1H, d, J=8. 8 Hz).

元素分析 C₂₁H₂₂O₆S Calcd. C, 62.67; H, 5.51; Found. C, 62.40; H, 5.38. 実施例19 (化合物19の製造)

- 15 7- [(4-プロポキシフェネチル) オキシ] -1, 1-ジオキソー2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(180mg)のTHF(5m1)溶液に、室温で塩化チオニル(0.063ml)及びDMF(1滴)を加えて1時間撹拌した。減圧下溶媒を留去した後、残渣をTHF(10ml)に溶解させ、室温で4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]アニリン(105mg)およびトリエチルアミン(0.18ml)のTHF(2ml)溶液に滴下した。室温で5時間撹拌した後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(エタノール/酢酸エチル1:2)および再結晶(エタノール)によって精製し、無色の結晶としてN-[4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]フェニル]ーフェー(4-プロポキシフェネチル)オキシ]-1,1-ジオキソー2、3-ジヒドロ-1-ベンゾチエピン-4-カルボキサミド(化合物19)(153mg)
 - m. p. 157-158 ℃

を得た。

'H-NMR (200MHz, CDCl₃) δ 1. 03 (3H, t, J=7. 3 Hz), 1. 62-1. 86 (6H, m), 2. 21 (3H, s), 2. 54-2. 71 (1H, m), 2. 99-3. 13 (4H, m), 3. 29-3. 45 (2H, m), 3. 57 (2H, s), 3. 63-3. 70 (2H, m), 3. 90 (2H, t, J=6. 6 Hz), 3. 97-4. 09 (2H, m), 4. 19 (2H, t, J=7. 0 Hz), 6. 84-6. 95 (4H, m), 7. 18 (2H, d, J=8. 4 Hz), 7. 19 (1H, s), 7. 32 (2H, d, J=8. 4 Hz), 7. 53 (2H, d, J=8. 4 Hz), 7. 79 (1H, s), 8. 06 (1H, d, J=8. 8 Hz). 元素分析 C₃₅H₄₂N₂O₆S Calcd. C, 67. 94; H, 6. 84; N, 4. 53; Found. C, 68. 13; H, 6. 83; N, 4. 49.

実施例20 (化合物20の製造)

7-「(3-プロポキシベンジル)オキシ]-1,1-ジオキソ-2,3-ジ ヒドロ-1-ベンソチエピン-4-カルボン酸(180mg)のTHF(5ml) 10 溶液に、室温で塩化チオニル (0.065ml) 及びDMF (1滴) を加えて1 時間撹拌した。減圧下溶媒を留去した後、残渣をTHF(10m1)に溶解させ、 室温で4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル] アニリン (108mg) およびトリエチルアミン (0.19ml) のTHF (2 m1)溶液に滴下した。室温で67時間撹拌した後、水を加え酢酸エチルで抽出 15 した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮 後、残渣をカラムクロマトグラフィー(エタノール/酢酸エチル1:3)および 再結晶(エタノール)によって精製し、無色の結晶としてN-[4-[N-メチ N-N-(F) (テトラヒドロピランー4ーイル) アミノメチル] フェニル] -7-[(3)-プロポキシベンジル)オキシ]-1,1-ジオキソー2,3-ジヒドロー1-20 ベンゾチエピンー4ーカルボキサミド(化合物20)(204mg)を得た。

m. p. 197-199 ℃

25

'H-NMR (200MHz, CDCl₃) δ 1. 04 (3H, t, J=7. 3 Hz), 1. 64-1. 87 (6H, m). 2. 20 (3H, s), 2. 54-2. 72 (1H, m), 3. 06-3. 13 (2H, m), 3. 29-3. 45 (2H, m), 3. 57 (2H, s), 3. 65-3. 72 (2H, m), 3. 93 (2H, t, J=6. 4 Hz), 3. 98-4. 09 (2H, m), 5. 12 (2H, s), 6. 85-7. 07 (4H, m), 7. 20 (1H, s), 7. 30-7. 34 (4H, m), 7. 53 (2H, d, J=8. 4 Hz), 7. 76 (1H, s), 8. 09 (1H, d, J=8. 8 Hz).

元素分析 $C_{34}H_{40}N_2O_6S$ Calcd. C, 67.53; H. 6.67; N. 4.63; Found. C, 67.49; H. 6.63; N. 4.46.

実施例21(化合物21の製造)

7-[(2-プロポキシベンジル)オキシ]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(180mg)のTHF(5ml)溶液に、室温で塩化チオニル(0.065ml)及びDMF(1滴)を加えて1時間撹拌した。減圧下溶媒を留去した後、残渣をTHF(10ml)に溶解させ、室温で4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]アニリン(108mg)およびトリエチルアミン(0.18ml)のTHF(2ml)溶液に滴下した。室温で2日間撹拌した後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(エタノール/酢酸エチル1:3)および再結

10 残渣をカラムクロマトグラフィー(エタノール/酢酸エチル1:3)および冉結晶(エタノール)によって精製し、無色の結晶としてN-[4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]フェニル]-7-[(2-プロポキシベンジル)オキシ]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボキサミド(化合物21)(139mg)を得た。

15 m. p. 190-192 ℃

'H-NMR (200MHz, CDC1₃) & 1.03 (3H, t, J=7.3 Hz), 1.63-1.87 (6H, m), 2.20 (3H, s), 2.55-2.73 (1H, m), 3.09 (2H, t, J=6.6 Hz), 3.31-3.43 (2H, m), 3.57 (2H, s), 3.68 (2H, t, J=6.6 Hz), 4.00 (2H, t, J=6.4 Hz), 3.98-4.10 (2H, m), 5.21 (2H, s), 6.90-7.02 (3H, m), 7.07 (1H, dd, J=8.8, 2.6 Hz), 7.21 (1H, s), 7.28-7.41 (4H, m), 7.53 (2H, d, J=8.4 Hz), 7.77 (1H, s), 8.08 (1H, d, J=8.4 Hz).

元素分析 $C_{34}H_{40}N_2O_6S$ Calcd. C, 67.53; H, 6.67; N, 4.63: Found. C, 67.69; H, 6.65; N, 4.53.

参考例 55

2-ヒドロキシ-5-ブロモベンジルアルコール (3.00g)、2-ブロモ -4'-メチルアセトフェノン (3.50g)及び炭酸カリウム (2.45g) のアセトン (50ml)混合液を、80℃で4時間撹拌した。室温まで冷却後、 ろ過によって固体を除き、減圧下濃縮した。残渣をカラムクロマトグラフィー(酢 酸エチル/ヘキサン2:3→1:1)で分離精製し、無色の結晶として2-[4 -プロモ-2-(ヒドロキシメチル)フェノキシ]-1-(4-メチルフェニル)-1-エタノン(3.60g)を得た。

m. p. 125-127 ℃

¹H-NMR (200MHz, CDC1₃) δ 2. 44 (3H, s), 3. 43 (1H, t, J=6. 8 Hz), 4. 73 (2H, d, J=6. 8 Hz), 5. 36 (2H, s), 6. 72 (1H, d, J=8. 8 Hz), 7. 24-7. 36 (3H, m), 7. 45 (1H, d, J=2. 6 Hz), 7. 86 (2H, d, J=8. 4 Hz).

IR (KBr) 3412, 1686, 1606, 1483, 1412, 1234, 1018, 810 cm⁻¹ 元素分析 C₁₆H₁₅O₃Br Calcd. C, 57, 33; H, 4, 51; Br, 23, 84; Found. C, 57, 33; H, 4, 41; Br, 23, 86.

10 参考例 5 6

20

2-[4-プロモ-2-(ヒドロキシメチル) フェノキシ] -1-(4-メチルフェニル) -1-エタノン(3.00g) のアセトニトリル(20m1) 溶液に、室温でトリフェニルホスフィン臭化水素塩(3.17g) を加え、窒素雰囲気下で2日間加熱還流した。室温まで冷却後、ジエチルエーテルを加え生じた結晶をろ過によって集め、無色の結晶として臭化<math>[5-プロモ-2-[2-(4-メチルフェニル) -2-オキソエトキシ]ベンジル](トリフェニル)ホスホニウム(5.94g)を得た。

 $^{1}H-NMR$ (200MHz. CDC1₃) δ 2. 44 (3H, s). 4. 82 (2H, s), 5. 29 (2H, d, J=14. 0 Hz), 6. 75 (1H, d, J=8. 8 Hz), 7. 25-7. 39 (4H, m), 7. 52-7. 81 (15H, m), 7. 88 (2H, d, J=8. 2 Hz).

IR (KBr) 1691, 1489, 1437, 1234, 1120, 816, 748, 717, 689, 505 cm⁻¹ 参考例 5 7

臭化[5-プロモー2-[2-(4-メチルフェニル)-2-オキソエトキシ] ベンジル] (トリフェニル) ホスホニウム(5.53g)のエタノール(20m
 1) 懸濁液に、室温で20%ナトリウムエトキシドのエタノール溶液(2.85g)を加え24時間撹拌した。反応系に水(15ml)を加えた後、固体をろ過によって集め、水で洗浄した。再結晶(エタノール)によって精製し、無色の結晶として6-プロモー3-(4-メチルフェニル)-2H-1-ベンゾピラン(2.16g)を得た。

m. p. 143 ℃ (dec.)

¹H-NMR (200MHz, CDCl₃) δ 2. 38 (3H, s), 5. 15 (2H, d, J=1. 4 Hz), 6. 69-6. 74 (2H, m), 7. 16-7. 28 (4H, m), 7. 33 (2H, d, J=8. 4 Hz).

IR (KBr) 1479, 1217, 898, 813 cm⁻¹

5 元素分析 C₁₆H₁₃OBr Calcd. C, 63.81; H, 4.35; Br, 26.53; Found. C, 63.67; H, 4.37; Br, 26.50.

参考例 5 8

窒素雰囲気下、6ープロモー3ー(4ーメチルフェニル) - 2 H-1ーベンゾ ピラン(0.5g)のTHF(15ml)溶液に、-78℃で1.6 Mプチルリ チウム(ヘキサン溶液)(1.14ml)を加えた。-78℃で1時間撹拌した 後、反応系にドライアイスを加え、さらに1時間撹拌した。1 N塩酸(10ml) を加えた後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネ シウムで乾燥した。減圧下濃縮して生じた結晶をろ過によって集め、結晶をジエ チルエーテル及びヘキサンで洗浄し、無色の結晶として3-(4-メチルフェニ ル)-2H-1-ベンゾピラン-6-カルボン酸(218mg)を得た。

m.p. 255 ℃ (dec.)

¹H-NMR (200MHz, CDCl₃) δ 2. 33 (3H, s), 5. 27 (2H, d, J=1.0 Hz), 6. 89 (1H, d, J=8. 2 Hz), 7. 10 (1H, s), 7. 24 (2H, d, J=8. 3 Hz), 7. 48 (2H, d, J=8. 3 Hz), 7. 71 (1H, dd, J=8. 2, 2. 2 Hz), 7. 77 (1H, d, J=2. 2 Hz).

20 IR (KBr) 2976, 1676, 1302, 1223, 806 cm⁻¹
元素分析 C₁₇H₁₄O₃ Calcd. C, 76.68; H, 5.30; Found. C, 76.47; H, 5.37.
実施例22 (化合物22の製造)

3-(4-メチルフェニル)-2H-1-ベンゾピラン-6-カルボン酸(130mg)のTHF(10ml)溶液に、室温でオキサリルクロリド(0.07m251)及びDMFを1滴加えて1時間撹拌した。減圧下溶媒を留去した後、残渣をTHF(20ml)に溶解させ、0℃で4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]アニリン(118mg)、およびトリエチルアミン(0.15ml)を加え、室温で3時間撹拌した。反応系を激しく撹拌した水に加えて反応を停止し、クロロホルムで抽出した。有機層を飽和食塩水で洗浄

し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣を再結晶(エタノール)によって精製し、淡黄色の結晶として3-(4-メチルフェニル)-N-[4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]フェニル]-2H-1-ベンゾピラン-6-カルボキサミド(化合物22)(162mg)を得た。

m. p. 230-235 ℃

5

10

20

'H-NMR (200MHz, CDC1₃) δ 1. 52-1. 84 (4H, m), 2. 21 (3H, s), 2. 39 (3H, s), 2. 56-2. 74 (1H, m), 3. 30-3. 45 (2H, m), 3. 58 (2H, s), 3. 99-4. 10 (2H, m), 5. 26 (2H, d, J=1.6 Hz), 6. 82 (1H, s), 6. 90 (1H, d, J=9. 2 Hz), 7. 22 (2H, d, J=8. 0 Hz), 7. 30-7. 37 (4H, m), 7. 56-7. 66 (4H, m), 7. 72 (1H, br s).

IR (KBr) 3305, 2947, 2843, 1647, 1599, 1518, 1491, 1406, 1315, 1238, 1140, 810 cm⁻¹

元素分析 $C_{30}H_{32}N2O_3 \cdot 0.2H_{2}O$ Calcd. C, 76.31; H, 6.92; N, 5.93: Found. C, 76.31; H, 7.02; N, 5.88.

15 参考例 5 9

ナトリウムエトキシド (20%エタノール溶液、22.2g) のトルエン (100ml) 溶液に0℃で、4ープロモベンズアルデヒド (10g) 及びアジド酢酸エチル (7.0g) のトルエン (50ml) 溶液を10分以上かけて加えた。室温で2時間撹拌した後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー (酢酸エチル/ヘキサン1:19) で分離精製し、黄色の油状物として (2) -2-アジド-3-(4-プロモフェニル) -アクリル酸エチル (6.24g) を得た。

'H-NMR (200MHz. CDCl₃) δ 1.40 (3H, ι. J=7.2 Hz), 4.38 (2H, q, J=7.2 Hz), 6.83 (1H, s), 7.51 (2H, d, J=8.6 Hz), 7.69 (2H, d, J=8.6 Hz).

IR (neat) 2121, 1713, 1398, 1379, 1315, 1281, 1250, 1076, 1011, 824 cm⁻¹

参考例 6 0

(Z) -2-アジド-3-(4-プロモフェニル) アクリル酸エチル(6.24g) のキシレン(200ml)溶液を、4時間加熱還流した。室温まで冷却後、

減圧下濃縮し、析出した結晶をろ過によって集めた。結晶をキシレン及びヘキサンで洗浄し、無色の結晶として6-プロモ-1H-インドール-2-カルボン酸エチル(3.21g)を得た。

m. p. 187-188 ℃

5 'H-NMR (200MHz, CDCl₃) δ 1.43 (3H, t, J=7.2 Hz), 4.41 (2H, q, J=7.2 Hz), 7.18-7.28 (2H, m), 7.53-7.59 (2H, m), 8.78-8.97 (1H, m).

IR (KBr) 3321, 1695, 1522, 1315, 1240, 1201, 1020, 822, 763, 733 cm⁻¹

元素分析 C₁₁H₁₀NO₂Br Calcd. C, 49.28; H, 3.76; N, 5.22; Found. C, 49.45; H. 3.63; N, 5.06.

10 参考例 6 1

アルゴン雰囲気下、6-プロモ-1 H-インドール-2-カルボン酸エチル(2.5 g)、4-メチルフェニルホウ酸(1.3 9 g) 及び炭酸カリウム(2.5 8 g) のトルエン/エタノール/水(90/9/9 m1) 混合物を室温で1時間撹拌した。反応系にテトラキストリフェニルホスフィンパラジウム(0.3 2 g)

- 20 m. p. 163-165 °C

 H-NMR (200MHz, CDC1₃) δ 1. 43 (3H, t, J=7. 2 Hz), 2. 41 (3H, s), 4. 42 (2H, q, J=7. 2 Hz), 7. 23-7. 27 (2H, m), 7. 29 (1H, s), 7. 41 (1H, dd, J=8. 4, 1. 6 Hz), 7. 51-7. 61 (3H, m), 7. 73 (1H, d, J=8. 4 Hz), 8. 86-8. 98 (1H, m).
 - IR (KBr) 3290, 1689, 1520, 1333, 1282, 1217, 820, 795 cm⁻¹
- 25 元素分析 C₁₈H₁₇NO₂ Calcd. C, 77.40; H, 6.13; N, 5.01; Found. C, 77.48; H, 6.21; N, 4.89.

参考例 6 2

6-(4-メチルフェニル) -1 H-インドール-2-カルボン酸エチル (0.6g) のエタノール/THF (10/10ml) 混合溶液に、室温で2N水酸化

ナトリウム水溶液(5 m l) を加え6 4時間撹拌した。反応系に1 N塩酸(1 5 m l) を加えた後、減圧下濃縮した。残渣に水を加え、酢酸エチルで抽出した。 有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、析出した結晶をろ過によって集めた。結晶をヘキサンで洗浄し、無色の結晶として6-(4-メチルフェニル)-1 H-インドール-2-カルボン酸(5 0 9 m g)を得た。

m. p. 260 ℃ (dec.)

10

 1 H-NMR (200MHz. DMS0-d₆) δ 2. 35 (3H, s), 7. 10 (1H, s), 7. 28 (2H, d, J=8. 0 Hz), 7. 35 (1H, dd, J=8. 4, 1. 8 Hz), 7. 56 (2H, d, J=8. 0 Hz), 7. 61 (1H, d, J=1. 8 Hz), 7. 71 (1H, d, J=8. 4 Hz), 11. 81 (1H, s).

IR (KBr) 3410, 1666, 1525, 1439, 1273, 1215, 800 cm⁻¹

元素分析 $C_{16}H_{13}NO_2$ Calcd. C, 76.48; H, 5.21; N, 5.57: Found. C, 76.66; H, 5.05; N, 5.34.

実施例23 (化合物23の製造)

6-(4-メチルフェニル)-1H-インドール-2-カルボン酸(200mg)のTHF(10ml)溶液に、室温でオキサリルクロリド(0.35ml)及びDMFを1滴加えて1時間撹拌した。減圧下溶媒を留去した後、残渣をTHF(20ml)に溶解させ、0℃で4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]アニリン(193mg)、およびトリエチルアミン(0.22ml)を加え、室温で18時間撹拌した。反応系を激しく撹拌した水に加えて反応を停止し、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、析出した結晶を再結晶(エタノール)によって精製し、無色の結晶として6-(4-メチルフェニル)-N-[4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]フェニル]-1H-インドール-2-カルボキサミド(化合物23)(97mg)を得た。

m. p. 246-250 ℃

¹H-NMR (200MHz, DMSO-d₆) δ 1. 45-1. 79 (4H, m), 2. 12 (3H, s), 2. 36 (3H, s), 2. 46-2. 69 (1H, m), 3. 19-3. 38 (2H, m), 3. 54 (2H, s), 3. 84-3. 96 (2H, m),

7. 24-7. 46 (6H. m), 7. 57 (2H, d, J=8. 0 Hz), 7. 66 (1H, s), 7. 69-7. 80 (3H, m), 10. 20 (1H, s), 11. 78 (1H, s).

IR (KBr) 3298, 1655, 1601, 1537, 1333, 812 cm⁻¹

元素分析 $C_{29}H_{31}N_3O_2 \cdot 0.2H_2O$ Calcd. C, 76.19; H, 6.92; N, 9.19: Found. C,

5 76.01; H, 6.81; N, 9.12.

参考例63

6-(4-メチルフェニル)-1H-インドール-2-カルボン酸エチル(0.9g)のDMF(10ml)溶液に、0℃で水素化ナトリウム(60%, 0.14g)を加え、15分撹拌した。反応系にヨウ化メチル(0.22ml)を加え、10室温で3時間撹拌した。反応系に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(酢酸エチル/ヘキサン1:4)で分離精製し、さらに再結晶(酢酸エチル/ヘキサン)によって、無色の結晶として1-メチル-6-(4-メチルフェニル)-1H-インドール-2-カルボン酸エチル(0.80g)

15 を得た。

m. p. 98-99 ℃

 1 H-NMR (200MHz, CDC1₃) δ 1. 42 (3H, t, J=7. 0 Hz), 2. 41 (3H, s), 4. 12 (3H, s), 4. 38 (2H, q, J=7. 0 Hz), 7. 26-7. 32 (3H, m), 7. 40 (1H, dd, J=8. 4, 1. 4 Hz), 7. 54-7. 60 (3H, m), 7. 71 (1H, d, J=8. 4 Hz).

20 IR (KBr) 1705, 1504, 1400, 1223, 1153, 1084, 822, 798 cm⁻¹ 元素分析 C₁₉H₁₉NO₂ Calcd. C. 77.79; H. 6.53; N. 4.77; Found. C. 77.99; H. 6.50; N. 4.60.

参考例64

1-メチル-6-(4-メチルフェニル)-1H-インドール-2-カルボン 酸エチル(0.7g)のエタノール/THF(20/10ml)混合溶液に、室温で2N水酸化ナトリウム水溶液(1.5ml)を加え、24時間撹拌した。反応系に1N塩酸(5ml)を加えた後、減圧下濃縮した。残渣に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、析出した結晶をろ過によって集めた。結晶をヘキサンで洗浄し、

無色の結晶として1-メチル-6-(4-メチルフェニル)-1H-インドール-2-カルボン酸(600mg)を得た。

m. p. 259 ℃ (dec.)

 $^{1}\text{H-NMR}$ (200MHz, DMS0- d_{8}) δ 2. 36 (3H, s), 4. 09 (3H, s), 7. 23 (1H, s), 7. 29 (2H, d, J=7.6 Hz), 7. 42 (1H, dd, J=8. 4, 1. 4 Hz), 7. 66-7. 74 (3H, m), 7. 80 (1H, s).

IR (KBr) 2916, 1680, 1512, 1470, 1433, 1257, 1228, 920, 820, 798 cm⁻¹ 元素分析 C₁₇H₁₅NO₂ Calcd. C, 76.96; H, 5.70; N, 5.28; Found. C, 76.87; H, 5.76; N, 5.22.

10 実施例 24 (化合物24の製造)

1 - メチル-6 - (4 - メチルフェニル) - 1 H - インドール-2 - カルボン酸 (200mg)のTHF (10ml)溶液に、室温でオキサリルクロリド (0.20ml)及びDMFを1滴加えて1時間撹拌した。減圧下溶媒を留去した後、残渣をTHF (30ml)に溶解させ、0℃で4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]アニリン(183mg)、およびトリエチルアミン(0.21ml)を加え、室温で18時間撹拌した。反応系を激しく撹拌した水に加えた後、減圧下濃縮し、析出物をろ過によって集めた。エタノール及び酢酸エチルで洗浄し、粗生成物を得た。再結晶(エタノール)によって精製し、無色の結晶として1-メチル-6-(4-メチルフェニル)-N-[40-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]フェニル]-1H-インドール-2-カルボキサミド(化合物24)(298mg)を得た。

m. p. 225-226 ℃

'H-NMR (200MHz, CDCl₃) δ 1.62-1.83 (4H, m), 2.22 (3H, s), 2.42 (3H, s), 2.56-2.75 (1H, m), 3.29-3.45 (2H, m), 3.59 (2H, s), 3.98-4.11 (2H, m), 4.14 (3H, s), 7.02 (1H, s), 7.26-7.36 (4H, m), 7.43 (1H, dd, J=8.0, 1.4 Hz), 7.57-7.61 (5H, m), 7.71 (1H, d, J=8.8 Hz), 7.91 (1H, s). IR (KBr) 3298, 1647, 1516, 1462, 1389, 1300, 1250, 1142, 810 cm⁻¹ 元素分析 C₃₀H₃₃N₃O₂ Calcd. C, 77.06 : H, 7.11 ; N, 8.99 : Found. C, 76.98 ;

H, 7.02; N, 8.99.

参考例65

7-(4-メチルフェニル)-2.3-ジヒドロ-1-ベンゾオキセピン-4-カルボン酸(280mg)のメタノール(20ml)/酢酸(10ml)懸濁 液に10%パラジウム炭素(50%含水、70mg) を加えた。水素ガスを注入し室温で17時間、50℃で3時間攪拌後、触媒をろ去した。ろ液を濃縮し、さらに酢酸エチル/ヘキサンより再結晶し、7-(4-メチルフェニル)-2,3,4,5-テトラヒドロ-1-ベンゾオキセピン-4-カルボン酸(187mg)を無色結晶として得た。

10 m. p. 182-184℃

¹H-NMR (200MHz, CDCl₃) δ : 2. 2-2. 3 (2H, m), 2. 38 (3H, s), 2. 7-2. 85 (1H, m), 3. 05-3. 3 (2H, m), 3. 8-3. 9 (1H, m), 4. 3-4. 4 (1H, m), 7. 04 (1H, d, J = 8. 6), 7. 22 (2H, d, J = 8. 2), 7. 3-7. 4 (2H, m), 7. 44 (2H, d, J = 8. 4). IR (KBr) 1692, 1491, 1310, 1250, 1227, 1051, 964, 814cm⁻¹

15 元素分析 C₁₈H₁₈O₃ Calcd. C, 76.57; H, 6.43: Found. C, 76.48; H, 6.30. 実施例 2 5 (化合物 2 5 の製造)

7-(4-メチルフェニル)-2,3,4,5-テトラヒドロ-1-ベンゾオキセピン-4-カルボン酸(141mg)、4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]アニリン(110mg)のDMF(4m201)溶液に氷冷下、シアノりん酸ジエチル(0.08m1)、トリエチルアミン(0.08m1)を加えた。0℃で30分間、室温で8時間攪拌後、氷冷下、重曹水を加えた。酢酸エチルで抽出し、食塩水で洗浄した。抽出液を乾燥後(無水硫酸マグネシウム)、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=4/1)により精製し、さらに酢酸エチル/ヘキサンより再結晶し、N-[4-[(N-メチル-N-(テトラヒドロピラン-4-イル)]アミノメチル]フェニル]-7-(4-メチルフェニル)-2,3,4,5-テトラヒドロー1-ベンゾオキセピン-4-カルボアミド(化合物25)(43mg)を無色結晶として得た。

m. p. 172-174℃

¹H-NMR (200MHz, CDC1₃) δ : 1. 4-2. 0 (4H, m), 2. 15-2. 45 (2H, m), 2. 38 (6H, s), 2. 65-2. 85 (1H, m), 2. 9-3. 1 (2H, m), 3. 2-3. 4 (3H, m), 3. 7-3. 9 (3H, m), 3. 9-4. 1 (2H, m), 4. 4-4. 55 (1H, m), 7. 05 (2H, d, J = 8. 8), 7. 22 (2H, d, J = 8. 2), 7. 3-7. 5 (5H, m), 7. 6-7. 75 (2H, m).

5 IR (KBr) 1665, 1609, 1541, 1491, 1418, 1252, 1061, 818cm⁻¹ 参考例 6 6

濃硫酸 $(30\,\mathrm{m\,I})$ に 1, 4-ジプロモベンゼン $(25\,\mathrm{g})$ を加え溶解した。 次いで、氷冷下、濃硫酸 $(30\,\mathrm{m\,I})$ / 硝酸 $(8.9\,\mathrm{m\,I})$ の混合液を滴下した。 室温で 14 時間後、氷水に注ぎ、炭酸カリウムを加え、酢酸エチルより抽出した。

- 10 重曹水、食塩水で順次洗浄し、抽出液を乾燥後(無水硫酸マグネシウム)、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン)により精製し、1,4-ジプロモー2-二トロベンゼン (13.3g)を淡黄色結晶として得た。
 「H-NMR (200MHz, CDCl₃)δ: 7.56 (dd, 1H, J=2.2, 8.6), 7.62 (d, 1H, J=8.6), 7.99 (d, 1H, J=2.2).
- 15 IR (KBr) 1537, 1458, 1352, 1034cm⁻¹. 参考例 6 7
 - 1, 4-ジプロモ-2-ニトロベンゼン(5.4g)のTHF(300ml)に液化窒素/ジエチルエーテル浴で-100℃に冷却下フェニルリチウム(11.7ml)を滴下した。30分間撹拌後、DMF(5.9ml)を滴下し、ドライアイス/アセトン浴に変え、1時間撹拌した。1N硫酸(40ml)を加え、酢酸エチルより抽出した。食塩水で洗浄し、乾燥後(無水硫酸マグネシウム)、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/8)により精製し、4-ジプロモ-2-ニトロベンズアルデヒド(3.53g)を茶色固体として得た。
- 25 $^{1}H-NMR$ (200MHz, CDCl₃) δ : 7. 85 (d, 1H, J = 8. 2), 7. 94 (dd, 1H, J = 1. 8, 8. 2), 8. 27 (d, 1H, J = 1. 8), 10. 39 (s, 1H).

IR (KBr) 1699, 1595, 1559, 1534, 1346, 1190, 878, 820cm⁻¹

参考例68

20

4-ジプロモ-2-ニトロベンズアルデヒド(1.89g)に4-メチルフェ

ニルほう酸(1.23g)、2M炭酸カリウム溶液(10m1)、エタノール(10m1)、トルエン(30m1)を加え、アルゴン雰囲気下、室温で30分間撹拌後、テトラキストリフェニルホスフィンパラジウム(380mg)を加え一晩還流した。酢酸エチルより抽出し、水、食塩水で順次洗浄し、抽出液を乾燥後(無水硫酸マグネシウム)、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン = 1/9)により精製し、4-(4-メチルフェニル)-2-ニトロベンズアルデヒド(1.17g)を淡茶色粉末として得た。

10 J = 1.6), 10.44 (s, 1H).

IR (KBr) 1696, 1609, 1534, 1520, 1350, 1188, 814cm⁻¹ 参考例 6 9

4- (4-メチルフェニル) -2-ニトロベンズアルデヒド (590mg) の THF (50ml) 溶液に亜二チオン酸ナトリウム (2.66g) /水 (25ml) 溶液を加えた。室温で10分間撹拌後、酢酸エチルより抽出し、食塩水で洗浄した。抽出液を乾燥後 (無水硫酸マグネシウム)、濃縮し、2-アミノー4-(4-メチルフェニル) ベンズアルデヒド (0.26g) を淡茶色粉末として得た。 H-NMR (200MHz, CDCl₃) δ: 2.41 (s, 3H), 5.8-6.4 (br, 2H), 6.84 (d, 1H, J=1.6), 6.98 (dd, 1H, J=1.6, 8.2), 7.26 (d, 2H, J=8.2), 7.45-7.6 (m, 3H),

20 9.89 (s, 1H).
IR (KBr) 1671, 1620, 1591, 1539, 1393, 1208, 1192, 795cm⁻¹
参考例 7 0

2-アミノー4-(4-メチルフェニル) ベンズアルデヒド(0.23g)、 ピルビン酸(192mg)のメタノール(20ml)溶液に水酸化ナトリウム(3 49mg)/メタノール(20ml)溶液を加えた。50-60℃で9時間撹拌 後、濃縮した。水で抽出し、ジエチルエーテルで2回洗浄し、水層に1N塩酸を 加えpH1-2とした。酢酸エチルより抽出し、食塩水で洗浄した。抽出液を乾燥後(無水硫酸マグネシウム)、濃縮した。残留物をシリカゲルカラムクロマトグ ラフィー(酢酸エチル/メタノール = 4/1)により精製し、4-(4-メチルフ ェニル)キノリンー 2 ーカルボン酸 (1 1 7 mg)をオレンジ色粉末として得た。 1 H-NMR(200MHz、CDCl₃) δ : 2.40 (s, 3H), 7.37 (d, 2H, J = 8.2), 7.80 (d, 2H, J = 8.2), 8.0-8.2 (m, 3H), 8.39 (s, 1H), 8.59 (d, 1H, J = 8.0). IR(KBr)1620、1555、1454、1404、1173、816cm⁻¹

5 実施例26(化合物26の製造)

4-(4-メチルフェニル)キノリン-2-カルボン酸(100mg)のTH F(5ml)溶液に氷冷下、DMF(1滴)、塩化オキサリル(0.04ml)を加え、0 \mathbb{C} で 30分間撹拌した。一方、4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]アニリン(92mg)のTHF(5ml)

- 10 溶液に氷冷下、トリエチルアミン(0.33ml)、次いで上記調整した酸クロ溶液を加え、室温で1時間攪拌した。氷冷下、水を加え、酢酸エチルで抽出した。食塩水で洗浄し、抽出液を乾燥後(無水硫酸マグネシウム)、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル/メタノール=9/1)により精製し、さらに酢酸エチル/ジエチルエーテルより再結晶し、N-[4-[(N
- 15 ーメチル-N-(テトラヒドロピラン-4-イル)] アミノメチル] フェニル] -7-(4-メチルフェニル) キノリン-2-カルボアミド(化合物 26) (2 7 m g) を無色結晶として得た。

m. p. 148-150℃

¹H-NMR (200MHz, CD₃0D) δ : 1. 6-1. 9 (m, 4H), 2. 25 (s, 3H), 2. 43 (s, 3H), 2. 6-2. 8 (m, 1H), 3. 3-3. 5 (m, 2H), 3. 66 (s, 2H), 3. 9-4. 1 (m, 2H), 7. 35 (d, 2H, J = 7. 8), 7. 39 (d, 2H, J = 7. 8), 7. 74 (d, 2H, J = 7. 8), 7. 85 (d, 2H, J = 7. 8), 7. 95-8. 05 (m, 1H), 8. 08 (d, 1H, J = 8. 8), 8. 26 (d, 1H, J = 8. 2),

8.45-8.5 (m, 1H), 8.51 (d, 1H, J = 8.2).

IR (KBr) 1678, 1522, 1497, 1410, 812cm⁻¹

25 元素分析 C₃₀H₃₁N₃O₂·0. 2H₂O Calcd. C, 76. 80; H, 6. 75; N, 8. 96: Found. C, 76. 84; H, 6. 59; N, 8. 86.

実施例27(化合物27の製造)

3-(4-メチルフェニル)-2H-1-ベンゾピラン-6-カルボン酸(150mg)のTHF(10m1)溶液に、室温でオキサリルクロリド(0.07

m1)を加え、引き続きDMFを1滴加えて1時間撹拌した。減圧下溶媒を留去した後、残渣をTHF(20m1)に溶解させ、0℃で1-(4-アミノベンジル)ホスホリナン-1-オキシド(138mg)、およびトリエチルアミン(0.16m1)を加え、室温で4時間撹拌した。反応系を激しく撹拌した水に加えて反応を停止し、クロロホルムで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣を再結晶(エタノール)によって精製し、淡黄色の結晶として3-(4-メチルフェニル)-N-(4-ペンタメチレンホスホリルメチルフェニル)-2H-1-ベンゾピラン-6-カルボキサミド(化合物27)(204mg)を得た。

10 m.p. 235 ℃ (dec.)

H-NMR (200MHz, CDCl₃) δ 1. 40-2. 16 (10H, m), 2. 39 (3H, s), 3. 15 (2H, d, J=13. 6 Hz), 5. 25 (2H, d, J=1. 4 Hz), 6. 82 (1H, s), 6. 89 (1H, d, J=9. 2 Hz), 7. 18-7. 29 (4H, m), 7. 35 (2H, d, J=8. 4 Hz), 7. 62-7. 70 (4H, m), 8. 21-8. 32 (1H, m). IR (KBr) 3226, 1645, 1603, 1541, 1514, 1491, 1410, 1329, 1201, 1165, 1134,

15 837 cm⁻¹

元素分析 C₂₉H₃₀NO₃P·O. 3H₂O Calcd. C, 73. 03 ; H, 6. 47 ; N, 2. 94 : Found. C, 73. 07 ; H, 6. 57 ; N, 2. 87.

実施例28 (化合物28の製造)

3-(4-メチルフェニル)-N-[4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]フェニル]-2H-1-ベンゾピラン-6-カルポキサミド(80mg)のDMF(30ml)溶液に、室温でヨウ化メチル(0.04ml)を加え、3日間撹拌した。減圧下溶媒を留去し、残渣に酢酸エチルを加えて生じた結晶をろ過によって集め、淡黄色の結晶としてヨウ化-N、N-ジメチル-N-[4-[[3-(4-メチルフェニル)-2H-1-ベンゾピラン-6-カルボニル]アミノ]ベンジル]-4-テトラヒドロピラニルアンモニウム(化合物28)(87mg)を得た。

m. p. 215-218 ℃

 1 H-NMR (200MHz. DMSO-d₆) δ 1. 75-2. 00 (2H, m). 2. 10-2. 23 (2H, m). 2. 34 (3H, s), 2. 89 (6H, s), 3. 26-3. 43 (2H, m), 3. 49-3. 68 (1H, m), 4. 01-4. 12 (2H, m).

4. 47 (2H, s), 5. 29 (2H, d, J=1.0 Hz), 6. 96 (1H, d, J=8.0 Hz), 7. 10 (1H, s), 7. 26 (2H, d, J=8.0 Hz), 7. 48-7. 57 (4H, m), 7. 75-7. 80 (2H, m), 7. 92 (2H, d, J=8.8 Hz), 10. 34 (1H, s).

IR (KBr) 3273, 1647, 1597, 1524, 1493, 1323, 810 cm⁻¹

5 元素分析 C₃₁H₃₅N₂O₃I·1. 2H₂O Calcd. C, 58. 90; H, 5. 96; N, 4. 43: Found. C, 58. 85; H, 5. 66; N, 4. 48.

参考例71

氷冷下硫酸(28m1)を酢酸(42m1)中に滴下し、ついでN-(2-(4-ブロモフェニル)エチル)トリフルオロアセトアミド(7.8g)とパラホル
ムアミド(1.27g)を加え、窒素雰囲気下、一晩撹拌した。反応液を氷水中に注ぎ、酢酸エチルで抽出した。有機層を炭酸水素ナトリウム水、水、飽和食塩水で洗浄後、無水硫酸マグネシウムを用いて乾燥した。減圧下、溶媒を留去し、7-ブロモ-2-トリフルオロアセチル-1,2,3,4-テトラヒドロイソキノリン(8.1g)無色オイルとして得た。

15 'H-NMR(δ ppm, CDCl₃) 2.87-2.94 (2H, m), 3.81-3.91 (2H, m), 4.72 (0.7H, s), 4.77 (1.3H, s), 7.02-7.09 (1H, m), 7.27-7.37 (2H, m).

IR(neat) ν : 2907, 1696cm⁻¹.

参考例72

7ープロモー2ートリフルオロアセチルー1, 2, 3, 4ーテトラヒドロイソ
 20 キノリン(8.1g)、4ーメチルフェニルほう酸(3.9g)、2M炭酸カリウム水溶液(40ml)、エタノール(40ml)にトルエン(100ml)を加え、アルゴン雰囲気下、室温で30分間撹拌した。テトラキストリフェニルホスフィンパラジウム(1.26g)を加え、アルゴン雰囲気下、4.5時間還流した。酢酸エチルで抽出し、有機層を水、飽和食塩水で洗浄後、無水硫酸マグネシウムを用いて乾燥した。減圧下、溶媒を留去し、残渣にメタノール(200ml)、2M炭酸カリウム水溶液(50ml)を加え、室温で一晩撹拌した。濃縮

1)、2M炭酸カリウム水溶液(50ml)を加え、室温で一晩撹拌した。濃縮 後、酢酸エチルで抽出した。有機層を水洗後、1N塩酸で逆抽出した。水層を1 N水酸化ナトリウム水溶液を用いてアルカリ性とした後、食塩で飽和し酢酸エチ ルで抽出した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムを用いて乾 燥した。減圧下、溶媒を留去し、7-(4-メチルフェニル)-1,2,3,4 -テトラヒドロイソキノリン(4.2g)を無色結晶として得た。

'H-NMR(δ ppm, CDCl₃) 2.39 (3H, s), 2.83 (1.5H, t, J=6.0Hz), 2.91-2.93 (1H, m), 3.17 (1.5H, t, J=6.0Hz), 3.33 (0.5H, s), 3.82 (0.5H, s), 4.08 (1.5H, s),

5 7.13-7.25 (4H, m), 7.36 (1H, dd, J=1.8, 7.8), 7.44-7.49 (2H, m).

IR (KBr) ν : 2919, 1427cm⁻¹.

Anal. calcd. for $C_{16}H_{17}N \cdot 0.1H_2O$: C, 85.37; H, 7.70; N, 6.22. Found C, 85.34; H, 7.57; N, 6.10.

参考例73

- 4-(クロロメチル)フェニルイソシアナート(0.38g)のテトラヒドロフラン溶液を7-(4-メチルフェニル)-1,2,3,4-テトラヒドロイソキノリン(0.5g)のテトラヒドロフラン溶液中に氷冷下滴下した。1時間撹拌後、溶媒を留去し、4-(7-(4-メチルフェニル)-1,2,3,4-テトラヒドロイソキノリン-2-イルカルボニルアミノ)ベンジルクロリド(0.
- 15 82g) を無色結晶として得た。

'H-NMR (δ ppm, CDCl₃) 2. 40 (3H, s), 2. 98 (2H t, J=5. 8Hz), 3. 77 (2H, t, J=6. 1Hz), 4. 57 (2H, s), 4. 73 (2H, s), 6. 48 (1H, br), 7. 23-7. 30 (4H, m), 7. 34-7. 49 (7H, m).

IR(KBr) ν : 3303, 3023, 1645cm⁻¹.

20 Anal. calcd. for C₂₄H₂₃ClN₂O·O. 2H₂O: C, 73. 07; H. 5. 98; N, 7. 10. Found C, 73. 04; H. 5. 86; N, 7. 10.

参考例74

氷冷下、塩化オキサリル(0.4ml)を4-プロモメチルフェニル酢酸(0.52g)のジクロロメタン(4ml)懸濁液に加えた。ついでジメチルホルムアミド(触媒量)を加え、室温で2時間撹拌した。溶媒を留去し、残渣のテトラヒドロフラン溶液を7-(4-メチルフェニル)-1,2,3,4-テトラヒドロイソキノリン(0.5g)とジイソプロピルエチルアミン(0.5ml)のテトラヒドロフラン溶液中に氷冷下滴下した。室温で30分間撹拌後、酢酸エチルを加え、沈殿物をろ去した。ろ液を水、飽和食塩水で洗浄後、無水硫酸マグネシウ

ムを用いて乾燥した。減圧下、溶媒を留去し、2-(4-7)ロモメチルフェニルアセチル)-7-(4-メチルフェニル)-1, 2, 3, 4-テトラヒドロイソキノリン(0.7g)を淡黄色オイルとして得た。

¹H-NMR(δ ppm, CDCl₃) 2. 39 (3H, s), 2. 75 (1. 1H, t, J=5. 9Hz), 2. 89 (0. 9H, t, J=6. 0Hz), 3. 69 (1. 1H, t, J=5. 9Hz), 3. 82 (2H, s), 3. 88 (0. 9H, t, J=6. 0Hz), 4. 44-4. 57 (2H, m), 4. 66 (0. 9H, s), 4. 82 (1. 1H, s), 7. 13-7. 47 (11H, m). IR (neat) ν : 3023, 2922, 1642cm⁻¹.

実施例29 (化合物29の製造)

4-(7-(4-メチルフェニル)-1, 2, 3, 4-テトラヒドロイソキノ
 10 リン-2-イルカルボニルアミノ) ベンジルクロリド(0, 2g)、1-メチルピペリジン(0, 19m1)をジメチルホルムアミド(5m1)に溶かし、窒素雰囲気下、室温で一晩撹拌した。溶媒を留去し、酢酸エチルを加え析出物をろ取した。エタノールから再結晶し、塩化1-メチル-1-(4-((7-(4-メチルフェニル)-1, 2, 3, 4-テトラヒドロイソキノリン-2-イル)カルボニルアミノ) ベンジル) ピペリジニウム(化合物29)(0, 23g)を無色結晶として得た。

mp 179-180℃ (dec.).

¹H-NMR(δ ppm, DMSO-d₆) 1. 45-1. 65 (2H, m), 1. 75-1. 95 (4H, m), 2. 34 (3H, s), 2. 86-2. 92 (5H, m), 3. 24-3. 32 (4H, m), 3. 76 (2H, t, J=5. 9Hz), 4. 48 (2H, s),

20 4. 73 (2H, s), 7. 25-7. 29 (3H, m), 7. 38-7. 49 (4H, m), 7. 55 (2H, d, J=8. 2Hz), 7. 65 (2H, d, J=8. 6Hz), 8. 91 (1H, br).

IR (KBr) ν : 3364, 3285, 2948, 1663cm⁻¹.

Anal. calcd. for C₃₀H₃₆ClN₃O·H₂O: C, 70. 92; H, 7. 54; N, 8. 27. Found C, 70. 97; H, 7. 80; N, 8. 03.

25 実施例30(化合物30の製造)

 し、塩化1-エチル-1-(4-((7-(4-メチルフェニル)-1, 2, 3, 4-テトラヒドロイソキノリン-2-イル) カルボニルアミノ) ベンジル) ピペリジニウム(化合物 0) (0, 24g) を淡赤色アモルファスとして得た。

¹H-NMR(δ ppm, DMSO-d₆) 1. 33 (3H, t, J=7. 2Hz), 1. 40-1. 65 (2H, m), 1. 75-1. 95 (4H, m), 2. 35 (3H, s), 2. 89 (2H, t, J=5. 6Hz), 3. 10-3. 33 (6H, m), 3. 76 (2H, t, J=5. 6Hz), 4. 45 (2H, s), 4. 73 (2H, s), 7. 24-7. 29 (3H, m), 7. 35-7. 48 (4H, m), 7. 55 (2H, d, J=8. 2Hz), 7. 65 (2H, d, J=8. 4Hz), 8. 91 (1H, br).

IR(KBr) δ : 3236, 2948, 1651cm⁻¹. Anal. calcd. for $C_{31}H_{38}C1N_3O \cdot 0$. $8H_2O$: C, 71. 81; H, 7. 70; N, 8. 10. Found C, 71. 87;

10 H. 7. 79; N. 7. 91.

実施例31 (化合物31の製造)

2-(4-プロモメチルフェニルアセチル)-7-(4-メチルフェニル)-1, 2, 3, 4-テトラヒドロイソキノリン(0.2g)、1-メチルピペリジン(0.17m1)をジメチルホルムアミド(5m1)に溶かし、窒素雰囲気下、

- 15 室温で一晩撹拌した。溶媒を留去し、酢酸エチルを加え析出物をろ取した。エタノールに溶かし溶媒を留去し、臭化1-メチル-1-(4-((7-(4-メチルフェニル)-1,2,3,4-テトラヒドロイソキノリン-2-イル)カルボニルメチル)ベンジル)ピペリジニウム(化合物31)(0.24g)を無色アモルファスとして得た。
- 20 H-NMR (δ ppm, DMSO-d₆) 1. 40-1. 70 (2H, m), 1. 78-1. 91 (4H, m), 2. 34 (3H, s), 2. 77-2. 88 (2H, m), 2. 93 (3H, s), 3. 21-3. 27 (4H, m), 3. 69-3. 82 (2H, m), 3. 90 (2H, s), 4. 53 (2H, d, J=8. 0Hz), 4. 76 (2H, d, J=20. 8Hz), 7. 20-7. 30 (3H, m), 7. 39-7. 56 (8H, m).

IR (KBr) ν : 3345, 2942, 1636cm⁻¹.

25 Anal. calcd. for C₃₁H₃₇BrN₂0·0. 5H₂0: C, 68. 63; H, 7. 06; N, 5. 16. Found C, 68. 54; H, 7. 06; N, 4. 95.

実施例32 (化合物32の製造)

2-(4-7ロモメチルフェニルアセチル) -7-(4-メチルフェニル) -1, 2, 3, 4-テトラヒドロイソキノリン(0, 2g)、1-エチルピペリジ

ン (0. 19ml)をジメチルホルムアミド (5ml)に溶かし、窒素雰囲気下、室温で一晩撹拌した。溶媒を留去し、酢酸エチルを加え析出物をろ取した。エタノールに溶かし溶媒を留去し、臭化1-エチル-1-(4-((7-(4-メチルフェニル)-1, 2, 3, 4-テトラヒドロイソキノリン-2-イル)カルボニルメチル)ベンジル)ピペリジニウム(化合物 3 2)(0. 2 3 g)を無色アモルファスとして得た。

¹H-NMR(δ ppm, DMSO-d₆) 1. 34 (3H, t, J=7. 2Hz), 1. 40-1. 65 (2H, m), 1. 75-1. 90 (4H, m), 2. 34 (3H, s), 2. 75-2. 85 (2H, m), 3. 20-3. 33 (6H, m), 3. 70-3. 80 (2H, m), 3. 89 (2H, s), 4. 49 (2H, d, J=8. 4Hz), 4. 76 (2H, d, J=22. 0Hz), 7. 23-7. 27

10 (3H, m), 7.40-7.56 (8H, m).

IR (KBr) ν : 3353, 2942, 1638cm⁻¹.

Anal. calcd. for $C_{32}H_{39}BrN_2O \cdot 0.5H_2O$: C, 69.06; H, 7.24; N, 5.03. Found C, 68.82; H, 7.38; N, 4.78.

参考例75

4-メトキシベンジルアミン(4.12g)とテトラヒドロー4Hーピランー4-オン(3.00g)の1,2-ジクロロエタン(50m1)溶液にトリアセトキシ水素化ホウ素ナトリウム(6.99g)を加えた。室温で2時間攪拌後、37%ホルマリン(2.5m1)溶液、トリアセトキシ水素化ホウ素ナトリウム(6.99g)を加えた。さらに1時間攪拌後、重曹水を加え、ジクロロメタンで抽出した。食塩水で洗浄し、抽出液を乾燥後(無水硫酸マグネシウム)、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル)により精製し、N-メチル-N-(テトラヒドロピラン-4-イル)-4-メトキ

シベンジルアミン (3.56g) を淡黄色油状物として得た。

"H-NMR (200MHz, CDCl₃) δ : 1. 6-1. 8 (4H, m). 2. 19 (3H, s), 2. 55-2. 75 (1H, 25 m), 3. 37 (2H, dt, J = 3. 0, 11. 2). 3. 53 (2H, s), 3. 80 (3H, s), 4. 0-4. 1 (2H, m), 6. 85 (2H, d, J = 8. 6), 7. 22 (2H, d, J = 8. 6).

IR (KBr) 1613, 1510, 1456, 1300, 1246, 1173, 1142, 1038cm⁻¹

参考例76

N-メチル-N- (テトラヒドロピラン-4-イル) -4-メトキシベンジル

アミン (2.19g) のジクロロメタン (20m1) 溶液に-78で三臭化ホウ素のジクロロメタン溶液 (11m1) を加えた。 -78 からゆっくりと室温まで昇温して 2 時間攪拌後、再び-78 で三臭化ホウ素のジクロロメタン溶液 (5m1) を追加し、さらに室温で 30 分間攪拌した。氷冷下、重曹水を加え、

- 5 ジクロロメタンで抽出し、減圧下に濃縮した。1 N 塩酸とジエチルエーテルを加え、水層を抽出した。抽出液に炭酸ナトリウムを加えpH8に調整した後、酢酸エチルで抽出した。食塩水で洗浄し、抽出液を乾燥後(無水硫酸マグネシウム)、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル/メタノール)により精製し、N-メチル-N-(テトラヒドロピラン-4-イ

IR (KBr) 1613, 1520, 1458, 1246cm⁻¹

15 参考例 7 7

7-(4-メチルフェニル)-2, 3-ジヒドロ-1-ベンゾオキセピン-4-カルボン酸(841mg)とトリエチルアミン(0.42ml)のTHF(15ml)溶液に-5℃でクロロ炭酸エチル (0.29ml)/THF(2ml)溶液を滴下した。-5℃で30分間攪拌後、不溶物をろ去した。ろ液に氷冷下、

- 20 水素化ホウ素ナトリウム(284mg)/ 水(6ml)溶液を滴下した。室温で 1.5時間攪拌後、1N塩酸を加え、酢酸エチルで抽出した。水、1N水酸化ナトリウム、水、食塩水で順次洗浄し、抽出液を乾燥後(無水硫酸マグネシウム)、減圧下に濃縮した。酢酸エチル/ジエチルエーテル/ヘキサンより再結晶し、4ーヒドロキシメチルー7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベ
- 25 ンゾオキセピン (708mg) を無色結晶として得た。

m. p. 91-92℃

¹H-NMR (200MHz. CDCl₃) δ :2. 39 (3H, s), 2. 71 (2H, t, J = 4. 8), 4. 25 (2H, s), 4. 30 (2H, t, J = 4. 8), 6. 46 (1H, s), 7. 00 (1H, d, J = 8. 4), 7. 23 (2H, d, J = 8. 2), 7. 3-7. 5 (4H, m).

IR (KBr) 1497, 1331, 1265, 1231, 1125, 1040, 1028, 918, 901, 806cm⁻¹元素分析 C₁₈H₁₈O₂ Calcd. C, 81.17; H, 6.81; Found. C, 81.29; H, 6.88. 実施例 3 3 (化合物 3 3 の製造)

4-ヒドロキシメチル-7-(4-メチルフェニル) -2, 3-ジヒドロ-1
-ベンゾオキセピン (89mg)、N-メチル-N-(テトラヒドロピラン-4
-イル)-4-ヒドロキシベンジルアミン(92mg)とトリブチルホスフィン
(0.13ml)に氷冷下、1,1-(アゾジカルボニル)ジピペリジン(129mg)を加えた。0℃で10分間、室温で1時間攪拌後、不溶物をろ去した。
酢酸エチルで抽出し、食塩水で2回洗浄した。抽出液を乾燥後(無水硫酸マグネシウム)、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン =4/1)により精製し、さらに酢酸エチル/ヘキサンより再結晶し、4-[4-[(N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]フェノキシメチル]-7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン(化合物33)(45mg)を無色結晶として得た。た。

m. p. 135-136℃

¹H-NMR (200MHz, CDCl₃) δ : 1. 6-1. 8 (4H, m), 2. 20 (3H, s), 2. 39 (3H, s), 2. 55-2. 75 (1H, m), 2. 75-2. 8 (2H, m), 3. 36 (2H, dt, J = 2. 8, 11. 2), 3. 53 (2H, s), 4. 0-4. 1 (2H, m), 4. 32 (2H, t, J = 4. 6), 4. 61 (2H, s), 6. 55 (1H, s), 6. 91 (2H, d, J = 8. 8), 7. 00 (1H, d, J = 8. 0), 7. 2-7. 3 (4H, m), 7. 3-7. 4 (2H, m), 7. 44 (2H, d, J = 8. 2).

IR (KBr) 1508, 1493, 1235, 1161, 1003, 816cm⁻¹

元素分析 C₃₁H₃₅NO₂·H₂O Calcd. C, 78.95; H, 7.91; N, 2.97; Found. C, 78.83; H, 7.55; N, 2.88.

25 参考例 7 8

20

4-ヒドロキシメチル-7-(4-メチルフェニル)-2、3-ジヒドロ-1 -ベンゾオキセピン (320mg)の ジクロロメタン (10ml)溶液にトリフェニルホスフィン (378mg)、四臭化炭素 (597mg)を加え、室温で2時間攪拌した。トリフェニルホスフィン(157mg)、四臭化炭素(249m

- g) を追加し、さらに室温で30分間攪拌後、氷冷下、重曹水を加え、酢酸エチルで抽出した。食塩水で洗浄し、抽出液を乾燥後(無水硫酸マグネシウム)、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/9)により精製し、さらにジエチルエーテル/ヘキサンで洗浄し、
- 5 4-プロモメチルー?-(4-メチルフェニル)-2,3-ジヒドロー1-ベン ソオキセピン(286mg)を白色粉末として得た。

¹H-NMR (200MHz, CDCl₃) δ : 2. 39 (3H, s), 2. 85 (2H, t, J = 4. 6), 4. 20 (2H, s), 4. 30 (2H, t, J = 4. 6), 6. 59 (1H, s), 7. 00 (1H, d, J = 8. 8), 7. 23 (2H, d, J = 8. 2), 7. 3-7. 4 (2H, m), 7. 43 (2H, d, J = 8. 2).

10 IR (KBr) 1493, 1265, 1236, 1196, 912, 808cm⁻¹ 参考例 7 9

4-[N-メチル-N-(テトラヒドロピラン-4-イル) アミノメチル] アニリン (551mg) の THF (50ml) 溶液にトリエチルアミン (0.42ml)、無水酢酸 (0.26ml) を加え、室温で3時間攪拌した。THFを留

- 15 去し、酢酸エチルで抽出した。重曹水、食塩水で順次洗浄し、抽出液を乾燥後(無水硫酸マグネシウム)、減圧下に濃縮した。残留物を酢酸エチル/ヘキサンより再結晶し、N-[4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]フェニル]アセタミド(472mg)を淡黄色結晶として得た。
- 20 'H-NMR (200MHz, CDCl₃) δ: 1.6-1.8 (4H, m), 2.17 (3H, s), 2.19 (3H, s), 2.55-2.7 (1H, m), 3.36 (2H, dt, J = 3.2, 11.4), 3.55 (2H, s), 3.95-4.1 (2H, m), 7.1-7.2 (1H, br), 7.27 (2H, d, J = 8.8), 7.44 (2H, d, J = 8.8). IR (KBr) 1665, 1601, 1537, 1408, 1316, 1140, 1009, 839cm⁻¹ 元素分析 C₁₅H₂₂N₂O₂ Calcd. C, 68.67; H, 8.45; N, 10.68; Found. C, 68.56; H, 8.38; N, 10.76.

実施例34 (化合物91の製造)

. m.p. 105-106℃

N-[4-[N-メチル-N-(テトラヒドロピラン-4-イル) アミノメチル] フェニル] アセタミド(227mg) のDMF(4ml)溶液に氷冷下、水素化ナトリウム(36mg)を加えた。室温で 20分間攪拌後、氷冷下、4-ブ

ロモメチルー7ー(4ーメチルフェニル) -2,3ージヒドロー1ーベンゾオキセピン(285mg)を加えた。室温で1時間攪拌後、氷冷下、水を加えた。塩析し、酢酸エチル/THFで抽出した。抽出液を乾燥後(無水硫酸マグネシウム)、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル/メタノール=40/1)により精製し、ジイソプロピルエーテル/ヘキサンを加えて粉末化した。ろ取し、ジイソプロピルエーテルで洗浄し、Nー[4-[(Nーメチル-N-(テトラヒドロピラン-4-イル)アミノメチル]フェニル]ーN-[[7-(4-メチルフェニル)-2,3-ジヒドロー1ーベンゾオキセピン-4-イル]メチル]アセタミド(化合物91)(209mg)を淡黄アモルファスとして得た。

¹H-NMR (200MHz, CDC1₃) δ :1. 6-1. 8 (4H, m), 1. 91 (3H, s), 2. 16 (3H, s), 2. 37 (3H, s), 2. 5-2. 65 (1H, brm), 2. 65-2. 75 (2H, m), 3. 25-3. 45 (2H, m), 3. 55 (2H, s), 3. 9-4. 1 (2H, m), 4. 23 (2H, d, J = 4. 8), 4. 50 (2H, s), 6. 06 (1H, s), 6. 96 (1H, d, J = 8. 6), 7. 08 (2H, d, J = 7. 6), 7. 15-7. 4 (8H, m).

15 IR (KBr) 1661, 1508, 1491, 1387, 1235, 814cm⁻¹ 参考例 8 O

4-ヒドロキシメチル-7-(4-メチルフェニル)-2,3-ジヒドロ-1 ーベンゾオキセピン(0.21g)のジクロロメタン(10ml)溶液に二酸化 マンガン(687mg)を加え、室温で3時間攪拌した。不溶物をろ去し、ジク ロロメタンを留去した。残留物を酢酸エチル/ヘキサンより再結晶し、7-(4 ーメチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4-カルバル デヒド(192mg)を無色結晶として得た。

m. p. 132-133℃.

¹H-NMR (200MHz, CDCl₃) δ : 2. 40 (3H, s), 2. 90 (2H, t, J = 4. 4), 4. 31 (2H, t, J = 4. 4), 7. 09 (1H, d, J = 8. 4), 7. 2-7. 3 (3H, m), 7. 4-7. 6 (4H, m), 9. 58 (1H, s).

IR (KBr) 1672, 1626, 1495, 1296, 1242, 1163, 1134, 1080, 1028, 810cm⁻¹ 元素分析 C₁₈H₁₆O₂·0. 1H₂O Calcd. C, 81. 24; H, 6. 14: Found. C, 81. 43; H, 6. 09. 実施例 3 5 (化合物 3 4 の製造)

7- (4-メチルフェニル) -2, 3-ジヒドロ-1-ベンゾオキセピンー4 ーカルバルデヒド(191mg)、4- [N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]アニリン(159mg)の1, 2-ジクロロエタン(5ml)溶液にトリアセトキシ水素化ホウ素ナトリウム(168mg)を加えた。室温で4.5時間攪拌後、トリアセトキシ水素化ホウ素ナトリウム(76mg)を追加し、さらに4日間攪拌した。氷冷下、重曹水を加え、ジクロロメタンで抽出し、食塩水で洗浄した。抽出液を乾燥後(無水硫酸マグネシウム)、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル/メタノール=10/1)により精製し、4規定塩酸を加え、析出物をろ取し、酢酸エチルで洗浄し、N-[4-[(N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]フェニル]-N-[7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4-イル]メチルアミン(化合物34)(88mg)を淡黄色粉末として得た。

m. p. 158-160℃

¹H-NMR (200MHz, DMSO-d₆) δ: 1. 6-2. 1 (4H, m), 2. 33 (3H, s), 2. 56 (3H, s), 2. 6-2. 7 (2H, m), 3. 2-3. 4 (3H, m), 3. 8-4. 0 (5H, m), 4. 15-4. 3 (3H, m), 6. 50 (1H, s), 6. 67 (2H, d, J = 8. 8), 6. 94 (1H, d, J = 8. 0), 7. 2-7. 3 (4H, m), 7. 3-7. 45 (2H, m), 7. 48 (2H, d, J = 8. 2), 8. 32 (1H, s), 9. 8-10. 0 (1H, br). IR (KBr) 1493, 1456, 1238, 816cm^{-1}

20 参考例 8 1

25

4-プロモメチル-7-(4-メチルフェニル)-2, 3-ジヒドロ-1-ベンソオキセピン(329mg)のトルエン(10m1)溶液にトリフェニルホスフィン(393mg)を加え、2時間還流した。放冷し、析出物をろ取、トルエンで洗浄した。減圧下に乾燥し、<math>[7-(4-メチルフェニル)-2, 3-ジヒドロ-1-ベンソオキセピン-4-イル]メチルトリフェニルホスホニウム臭化塩(549mg)を白色粉末として得た。

¹H-NMR (200MHz, CDCl₃) δ : 2. 35 (3H, s), 2. 35-2. 45 (2H, m), 4. 07 (2H, t, J = 4. 4), 4. 48, 4. 55 (1H, s), 6. 22, 6. 25 (1H, s), 6. 93 (1H, d, J = 8. 0), 6. 95-7. 05 (1H, m), 7. 21 (2H, d, J = 8. 6), 7. 3-7. 4 (3H, m), 7. 7-8. 0 (15H, m).

IR (KBr) 1489, 1435, 1235, 1115, 810, 723cm⁻¹ 参考例8 2

N-メチル-N-(テトラヒドロピラン-4-4-4N)-4-ヒドロキシベンジルアミン(0.94g)のジクロロメタン(20ml)溶液に二酸化マンガン(3.48g)を加え、室温で24時間攪拌した。二酸化マンガンをろ去し、ろ液を留

48g)を加え、室温で24時間攪拌した。二酸化マンガンをろ去し、ろ液を留去した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=2/1)により精製し、4- [N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]ベンズアルデヒド(931mg)を無色油状物として得た。 $^{'}$ H-NMR(200MHz、CDCl₃) δ : 1.5-1.85 (4H, m), 2.22 (3H, s), 2.55-2.75 (1H,

10 m), 3. 38 (2H, dt, J = 2. 8, 11. 4), 3. 67 (2H, s), 3. 95-4. 15 (2H, m), 7. 51 (2H, d, J = 8. 0), 7. 84 (2H, d, J = 8. 0), 10. 01 (1H, s).

IR (KBr) 1699, 1607, 1209, 1142, 1086cm⁻¹

実施例36(化合物35および36の製造)

チル]フェニル]エテニル]-7-(4-メチルフェニル)-2,3-ジヒドロー1-ベンゾオキセピン(化合物35)(80mg)を無色結晶として得た。二番目の留出液を酢酸エチル/ヘキサンで再結晶し、(E)-4-[2-[4-[(N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]フェニル]エテニル]-7-(4-メチルフェニル)-2,3-ジヒドロー1-ベンゾオキセピン(化合物36)(22mg)を無色結晶として得た。

化合物 3 5 : m.p. 115-116℃.

¹H-NMR (200MHz, CDCl₃) δ : 1. 5-1. 8 (4H, m), 2. 18 (3H, s), 2. 38 (3H, s), 2. 5-2. 7 (3H, m), 3. 36 (2H, dt, J = 2. 2, 11. 2), 3. 56 (2H, s), 3. 95-4. 1 (2H, m), 4. 16 (2H, t, J = 4. 6), 6. 32 (1H, d, J = 12. 2), 6. 49 (1H, d, J = 12. 2), 6. 52 (1H, s), 6. 97 (1H, d, J = 8. 4), 7. 15-7. 35 (8H, m), 7. 42 (2H, d, J = 8. 4). IR (KBr) 1493, 1264, 1240, 1136, 1080, 1028, 1007, 912, 862, 845, 816cm⁻¹

IR (KBr) 1493, 1264, 1240, 1136, 1080, 1028, 1007, 912, 862, 845, 816cm, 元素分析 C₃₂H₃₅NO₂ Calcd. C, 82.54; H, 7.58; N, 3.01; Found. C, 82.38; H, 7.75; N, 2.84.

化合物 3 6 : m.p. 119-120℃

 $^{1}\text{H-NMR}$ (200MHz, CDCl₃) δ : 1.6-1.8 (4H, m), 2.23 (3H, s), 2.40 (3H, s),

10 2. 6-2. 8 (1H, m), 2. 95 (2H, t, J = 4. 6), 3. 38 (2H, dt, J = 3. 0, 11. 2), 3. 59 (2H, s), 4. 0-4. 1 (2H, m), 4. 38 (2H, t, J = 4. 6), 6. 58 (1H, d, J = 17. 0), 6. 59 (1H, s), 6. 98 (1H, d, J = 17. 0), 7. 01 (1H, d, J = 8. 4), 7. 2-7. 45 (8H, m), 7. 46 (2H, d, J = 8. 4).

IR (KBr) 1491, 1377, 1262, 1231, 1140, 1086, 963, 810cm⁻¹

15 元素分析 C₃₂H₃₅NO₂ Calcd. C, 82.54; H, 7.58; N, 3.01: Found. C, 82.19; H, 7.33; N, 2.85.

参考例83

7-(4-メチルフェニル) -2, 3-ジヒドロ-1-ベンゾオキセピン-4 -カルボン酸(561mg)、ジフェニルりん酸アジド(0.43ml)、トリ

- 20 エチルアミン(0.28ml)とメタノール (10ml)を混ぜ、5時間還流した。溶媒を留去し、酢酸エチルで抽出した。5%クエン酸、水、重曹水、水、食塩水で順次洗浄し、抽出液を乾燥後(無水硫酸マグネシウム)、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/4)により精製し、4-メトキシカルボニルアミノ-7-(4-メチルフェニ
- 25 ル) -2, 3-ジヒドロ-1-ベンゾオキセピン(180mg)を淡黄色固体と して得た。

"H-NMR (200MHz. CDCl₃) δ : 2. 38 (3H, s), 2. 93 (2H, t, J = 5. 2), 3. 74 (3H, s), 4. 28 (2H, t, J = 5. 2), 6. 13 (1H, brs), 6. 62 (1H, s), 6. 96 (1H, d, J = 8. 2), 7. 2-7. 4 (4H, m), 7. 44 (2H, d, J = 8. 2).

10

IR (KBr) 1715, 1489, 1269, 1186, 1047, 1026, 959, 812cm⁻¹ 参考例 8 4

NーメチルーNー (テトラヒドロピランー4ーイル) ー4ー (ヒドロキシメチル) ベンジルアミン (0.68g)、トリフェニルホスフィン (0.91g)のジクロロメタン (10ml)溶液に四臭化炭素 (1.44g)を加え、室温で2時間攪拌した。氷冷下、重曹水を加え、酢酸エチルで抽出した。食塩水で洗浄し、抽出液を乾燥後 (無水硫酸マグネシウム)、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー (酢酸エチル/ヘキサン=1/9)により精製し、さらにジエチルエーテル/ヘキサンで洗浄し、NーメチルーNー (テトラヒドロピランー4ーイル) ー4ー (プロモメチル) ベンジルアミン (687mg)を白色固体として得た。

¹H-NMR (200MHz, CDCl₃) δ : 1. 6-1. 8 (4H, m). 2. 20 (3H, s), 2. 55-2. 75 (1H, m), 3. 37 (2H, dt, J = 3. 0, 11. 4), 3. 58 (2H, s), 4. 0-4. 1 (2H, m), 4. 50 (2H, s), 7. 3-7. 6 (4H, m).

15 IR (KBr) 1474, 1456, 1431, 1387, 1248, 1142, 1084, 1013, 853cm⁻¹ 実施例37 (化合物37の製造)

4-メトキシカルボニルアミノ-7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン(179mg)のDMF(4ml)溶液に氷冷下、水素化ナトリウム(27mg)を加えた。室温で30分間攪拌後、氷冷下、N-20 メチル-N-(テトラヒドロピラン-4-イル)-4-(プロモメチル)ベンジルアミン(273mg)を加えた。室温で1時間攪拌後、氷冷下、水を加えた。塩析し、酢酸エチルで抽出した。抽出液を乾燥後(無水硫酸マグネシウム)、減

圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=4/1)により精製し、ジイソプロピルエーテル /ヘキサンを加えて
 粉末化した。ろ取し、ジイソプロピルエーテルで洗浄し、NーメトキシカルボニルーNー [7-(4-メチルフェニル)-2,3-ジヒドロー1ーベンゾオキセピン-4-イル]-N-[4-[N-メチルーN-(テトラヒドロピラン-4-イル)]アミノメチル]フェニルメチル]アミン(化合物37)(25mg)を淡黄アモルファスとして得た。

'H-NMR (200MHz, CDCl₃) δ : 1.5-1.8 (4H, m). 2.23 (3H, brs), 2.2-2.3 (1H, m), 2.6-2.7 (2H, m), 3.25-3.4 (2H, m), 3.6-3.7 (2H, m), 3.76 (3H, s), 4.0-4.1 (2H, m), 4.1-4.2 (2H, m), 4.72 (2H, s), 6.24 (1H, s), 6.96 (1H, d, I = 8.4). 7.2-7.7 (10H, m).

5 IR (KBr) 1701, 1493, 1449, 1375, 1264, 1236, 1121cm⁻¹ 実施例 3 8 (化合物 3 8 の製造)

20 mp 110-114℃.

¹H-NMR(δ ppm, CDCl₃) 1. 60-1. 75 (4H, m), 2. 21 (3H, s), 2. 37 (3H, s), 2. 61 (2H, t, J=4. 8Hz), 2. 63-2. 75 (1H, m), 2. 97 (3H, s), 3. 36 (2H, dt, J=3. 0, 9. 7Hz), 3. 52 (2H, s), 3. 98 (2H, s), 3. 98-4. 05 (2H, m), 4. 29 (2H, t, J=4. 8Hz), 6. 33 (1H, s), 6. 72 (2H, d, J=8. 8Hz), 6. 99 (1H, d, J=9. 2Hz), 7. 15-7. 23 (4H, m),

25 7. 28-7. 33 (2H, m), 7. 43 (2H, d, J=8. 2Hz).

IR(KBr) ν : 2949, 1615, 1520, 1491cm⁻¹.

Anal. -calcd. for $C_{32}H_{38}N_2O_2 \cdot 0.2H_2O$: C, 79. 04; H, 7. 96; N, 5. 76. Found C, 79. 18; H, 7. 89; N, 5. 75.

参考例85

7-(4-メチルフェニル)-2,3,4,5-テトラヒドロ-1-ベンゾオキセピン-5-オン(1g)をエタノール(50ml)に溶かし、氷冷下、水素化ほう素ナトリウム(0.3g)を加えた。室温で30分間撹拌し、水を加え濃縮した。酢酸エチルで抽出し、有機層を水洗後、濃縮した。残渣をピス(2-メトキシエチル)エーテル(20ml)に溶かし、塩酸(5ml)を加え、75℃、1時間加熱撹拌した。水中に注ぎ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、無水硫酸マグネシウムを用いて乾燥、溶媒を留去した。析出した7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン(0.78g)をヘキサンを用いてろ取、無色結晶として得た。

10 mp 98-100℃.

¹H-NMR(δ ppm, CDCl₃) 2. 38 (3H, s), 2. 65-2. 74 (2H, m), 4. 27 (2H, t, J=4. 9Hz), 6. 01 (1H, dt, J=11. 7, 4. 4Hz), 6. 39 (1H, d, J=11. 7Hz), 7. 01 (1H, d, J=8. 0Hz), 7. 23 (2H, d, J=8. 2Hz), 7. 31-7. 38 (2H, m), 7. 45 (2H, d, J=8. 0Hz). IR (KBr) ν : 3025, 1491cm⁻¹.

15 Anal. calcd. for C₁₇H₁₆O: C, 86.41; H, 6.82. Found C, 86.17; H, 6.61. 参考例 8 6

スルホニルクロリド (0.36g) を淡黄色結晶として得た。 mp 162-166℃.

25 'H-NMR(δ ppm, CDCl₃) 2. 40 (3H, s), 3. 27 (2H, t, J=4. 7Hz), 4. 41 (2H, t, J=4. 7Hz), 7. 11 (1H, d, J=9. 6Hz), 7. 26 (2H, d, J=8. 2Hz), 7. 44 (2H, d, J=8. 2Hz), 7. 57-7. 62 (2H, m), 7. 70 (1H, s).

 $IR(KBr) \nu : 3027, 1634, 1493 cm^{-1}$.

Anal. calcd. for C₁₇H₁₅ClO₃S: C, 60. 98; H, 4. 52. Found C, 61. 14; H, 4. 26.

実施例39 (化合物39の製造)

4- (N-メチル-N- (テトラヒドロピラン-4-イル) アミノメチル) アニリン (0.13g)、トリエチルアミン (0.22ml)をテトラヒドロフラン (10ml)に溶かし、氷冷下、7- (4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4-スルホニルクロリド (0.18g)を加え、窒素雰囲気下、室温で一晩撹拌した。溶媒を留去し、水を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、無水硫酸マグネシウムを用いて乾燥、溶媒を留去した。残渣をシリカゲルカラム(酢酸エチル)により精製し、粗結晶を得た。酢酸エチル/ヘキサンから再結晶し、7- (4-メチルフェニル)-N-(4-((N-メチル-N-テトラヒドロピラン-4-イル) アミノメチル)フェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4-スルホンアミド(化合物39) (0.19g)を無色結晶として得た。mp 157-162℃.

¹H-NMR (δ ppm, CDCl₃) 1. 54-1. 71 (4H, m), 2. 12 (3H, s), 2. 39 (3H, s), 2. 50-2. 65 (1H, m), 2. 98 (2H, t, J=4. 5Hz), 3. 31 (2H, dt, J=0. 8, 11. 0Hz), 3. 49 (2H, s), 3. 97-4. 11 (2H, m), 4. 25 (2H, t, J=4. 5Hz), 7. 02 (1H, d, J=9. 2Hz), 7. 11 (2H, d, J=8. 8Hz), 7. 22-7. 26 (4H, m), 7. 40-7. 50 (5H, m).

IR (KBr) ν : 2949, 2847, 1493cm⁻¹.

Anal. calcd. for $C_{30}H_{34}N_2O_4S$: C, 69. 47; H, 6. 61; N, 5. 40. Found C, 69. 27; H, 6. 50; N, 5. 37.

参考例87

20

25

4-ニトロベンジルアミン(5.24g, 34.4mmol)、S-メチル-N, N'-ビス(tert-ブトキシカルボニル)イソチオウレア(5.00g, 17.2mmol)を THF(60ml)中、55℃で9時間、室温で11時間撹拌した。反応液を減圧濃縮し酢酸エチル(150ml)を加えて1N塩酸(30ml×3)、飽和食塩水(30ml)で順に洗浄した。有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル 150g, 酢酸エチル/ヘキサン=1/9→1/6)に付した。目的画分を減圧濃縮しジイソプロピルエーテルを加え不溶物を濾取した。不溶物をジイソプロピルエーテルで洗浄後、減圧乾燥して N-(4-ニトロベンジル)-N'、N''-ビス(tert-ブトキシカルボニル)グアニ

ジン(5.67g, 14.4mmol, 83%)を得た。

IR (KBr): 1723, 1644, 1620, 1570, 1524 cm⁻¹.

'H-NMR (CDCl₃) δ : 1. 50 (18H, s), 4. 7-4. 8 (2H, m), 7. 48 (2H, d, J=8. 5Hz), 8. 21 (2H, d, J=8. 5Hz).

5 参考例88

N-(4-ニトロベンジル)-N', N''-ビス(tert-ブトキシカルボニル)グアニジン (1.97g, 4.99mmol)を THF(25ml)とメタノール(25ml)の混合溶媒に溶解し、0℃で 臭化ニッケル(109mg, 0.50mmol)、水素化ホウ素ナトリウム(757mg, 20.0mmol)を 順に加え室温で 30 分間撹拌した。0℃で 1N 塩酸(40ml)を加え同温度で 5 分間撹拌した。60℃で 1N 塩酸(40ml)を加え同温度で 5 分間撹拌した。60和重曹水を加えて pH を約 8 とし酢酸エチルで抽出した。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮しジイソプロピルエーテルを加え不溶物を濾取した。不溶物をジイソプロピルエーテルで洗浄後、減圧乾燥して 4-[N', N''-ビス(tert-ブトキシカルボニル)グアニジノメチル]アニリン(1.21g, 3.32mmol, 66%)を得た。

15 IR (KBr): 1622, 1516 cm⁻¹.

¹H-NMR (CDCl₃) δ : 1. 47 (9H, s), 1. 52 (9H, s), 4. 45-4. 55 (2H, m), 6. 66 (2H, d, J=8. 6Hz), 7. 11 (2H, d, J=8. 6Hz).

実施例40 (化合物40の製造)

7-(4-メチルフェニル)-2, 3-ジヒドロ-1-ベンゾオキセピン-4-カルボン酸
20 (300mg, 1.07mmo1)をDMF(10ml)に溶解し、0℃で1-ヒドロキシベンゾトリアゾール(159mg, 1.18mmo1)、4-[N', N''-ピス(tert-ブトキシカルボニル)グアニジノメチル]アニリン(429mg, 1.18mmo1)、1-エチル-3-(3-ジメチルアミノプロピル)カル

ボジイミド塩酸塩(308mg, 1.61mmol)、トリエチルアミン(0.447ml, 3.21mmol)、4-ジメチルアミノピリジン(6mg)を加え室温で48時間撹拌した。反応液を減圧濃縮し酢酸エチル(70ml)を加えて水(5ml×3)、飽和重曹水(5ml×3)、飽和食塩水(5ml)で順に洗浄した。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル 15g, 酢酸エチル/ヘキサン=1/4)に付した。目的画分を減圧濃縮し混合溶媒(酢酸エチル/ヘキサン=1/1)を加え不溶物を適取した。不溶物を混合溶媒(酢酸エチル/ヘキサン=1/1)で洗浄後、減圧乾燥して

N-[4-[N', N''-ビス(tert-ブトキシカルボニル)グアニジノメチル]フェニル]-7-(4-メチルフェニル)-2, 3-ジヒドロ-1-ベンソオキセピン-4-カルボキサミド(化合 物40)(390mg, 0.62mmol, 58%)を得た。

IR (KBr): 1723, 1647, 1617, 1576, 1518 cm⁻¹.

 $^{1}\text{H-NMR}$ (CDCl₃) δ : 1.48 (9H, s), 1.52 (9H, s), 2.40 (3H, s), 3.0-3.15 (2H, m), 4.3-4.45 (2H, m), 4.55-4.7 (2H, m), 7.06 (1H, d, J=8.4Hz), 7.2-7.7 (11H, 丽).

実施例41(化合物41の製造)

N-[4-[N', N''-ビス(tert-ブトキシカルボニル)グアニジノメチル]フェニル]-10 7-(4-メチルフェニル)-2, 3-ジヒドロ-1-ベンソオキセピン-4-カルボキサミド (170mg, 0.27mmol)に 4N 塩化水素(酢酸エチル溶液, 5ml)を加え室温で 18 時間撹 拌した。反応液を減圧濃縮しジエチルエーテルを加え不溶物を濾取した。不溶物 をジエチルエーテルで洗浄後、減圧乾燥して N-(4-グアニジノメチルフェニル)-7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド 塩

酸塩 (化合物 4 1) (130mg, 0.28mmol)を得た。 15

IR (KBr): 1655, 1613, 1597, 1522 cm⁻¹.

 $^{1}\text{H-NMR}$ (DMSO- d_{6}) δ : 2. 35 (3H, s), 2. 9-3. 05 (2H, m), 4. 2-4. 4 (4H, m), 7. 06 (1H, d, J=8.4Hz), 7.2-7.8 (7H, m).

参考例89

A TOTAL TO THE SECOND S

- 7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4 20 ーカルボン酸(0.93g)のジクロロメタン(20ml)溶液に氷冷下、DM F (4滴)、塩化オキサリル (0.34ml)を加えた。室温で2時間後、濃縮 し、THF (20m1) に溶かした。また4-アミノベンゾニトリル (412m g) のTHF (10ml) 溶液に氷冷下、トリエチルアミン (1.38ml)、
 - 次いで上記調整した酸クロ溶液を加え、室温で17時間攪拌した。氷冷下、水を 加え、酢酸エチルで抽出した。食塩水で洗浄し、抽出液を乾燥後(無水硫酸マグ ネシウム)、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エ チル/ヘキサン=1/4)により精製し、さらに酢酸エチル/ヘキサンより再結 晶し、N-(4-シアノフェニル)-7-(4-メチルフェニル)-2,3-ジ

ヒドロー1-ベンゾオキセピンー4-カルボキサミド(986mg)を無色結晶 として得た。

m.p. 187-189℃

¹H-NMR (200MHz, CDCl₃) δ : 2.40 (s, 3H), 3.07 (t, 2H, J = 4.6), 4.36 (t, 2H, J = 4.6), 7.07 (d, 1H, J = 8.0), 7.2-7.3 (m, 3H), 7.4-7.55 (m, 4H), 7.64 (d, 2H, J = 8.8), 7.74 (d, 2H, J = 8.8).

IR (KBr) 2222, 1671, 1588, 1514, 1404, 1316, 1225, 1175, 837, 812cm⁻¹ 元素分析 C₂₅H₂₀N₂O₂ Calcd. C, 78. 93; H, 5. 30; N, 7. 36: Found. C, 78. 98; H, 5. 24; N, 7. 26.

10 参考例90

15

N- (4- > P/7 + P/7 +

'H-NMR (DMSO-d₆) δ : 1.50 (t, 2H, J = 7.0), 2.34 (s, 3H), 2.9-3.1 (m, 2H), 4.1-4.4 (m, 2H), 4.60 (q, 2H, J = 7.0), 7.06 (d, 1H, J = 8.8), 7.26 (d, 2H, J = 8.4), 7.45-7.65 (m, 4H), 7.7-7.85 (m, 1H), 8.01 (d, 2H, J = 8.8), 8.12 (d, 2H, J = 8.8), 10.59 (s, 1H), 10.8-11.2 (br, 1H).

実施例42(化合物42の製造)

N- [4-(エトキシカルボンイミドイル)フェニル]-7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド塩酸塩(364mg)に14%アンモニア/エタノール(5m1)溶液を加えた。室温で一晩撹拌後、50℃で3時間撹拌した。濃縮し、酢酸エチルに懸濁させ、4N塩酸/酢酸エチルを加えた。析出物をろ取し、酢酸エチルで洗浄後、さらにアセトニトリル/メタノール/酢酸エチルより再結晶し、N-(4-アミジノフェニル)-7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピ

ン-4-カルボキサミド塩酸塩(化合物42) (127mg)を無色結晶として 得た。

m. p. 294-296℃

 1 H-NMR(200MHz,DMSO- d_{6}) δ : 2. 35 (s, 3H), 2. 95-3. 05 (m, 2H), 4. 25-4. 35 (m, 2H), 7. 06 (d, 1H, J = 8. 4), 7. 26 (d, 2H, J = 8. 0), 7. 45 (s, 1H), 7. 56 (d, 2H, J = 8. 0), 7. 5-7. 6 (m, 1H), 7. 75-7. 85 (m, 1H), 7. 84 (d, 2H, J = 8. 8), 7. 96 (d, 2H, J = 8. 8), 8. 8-9. 0 (brm, 2H), 9. 2-9. 3 (brm, 2H), 10. 45 (s, 1H). IR (KBr) 1676, 1644, 1597, 1493, 1329, 1258, 845, 814cm⁻¹ 元素分析 $C_{25}H_{23}N_{3}O_{2}\cdot HC1\cdot 0$. $3H_{2}O$ Calcd. C. 68. 35; H, 5. 64; N, 9. 56; Found. C, 68. 09; H, 5. 56; N, 9. 87.

実施例43(化合物43の製造)

N-[4-(エトキシカルボンイミドイル) フェニル] -7-(4-メチルフェニル) -2, 3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド塩酸塩 (169mg) のエタノール懸濁液 (4ml) 溶液にエチルアミン (1ml)

- 15 を加えた。室温で4日間撹拌後、濃縮した。酢酸エチルに懸濁させ、4 N塩酸/酢酸エチルを加え、析出物をろ取した。酢酸エチル/メタノールより再結晶し、N-(4-エチルアミジノフェニル)-7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド塩酸塩(化合物43)(25mg)を無色結晶として得た。
- 20 m.p. >300℃.

¹H-NMR (200MHz, DMSO-d₆) δ : 1. 25 (t, 3H, J = 7. 2), 2. 34 (s, 3H), 2. 9-3. 1 (m, 2H), 3. 3-3. 5 (m, 2H), 4. 25-4. 4 (m, 2H), 7. 06 (d, 1H, J = 8. 6), 7. 26 (d, 2H, J = 7. 6), 7. 46 (s, 1H), 7. 5-7. 65 (m, 3H), 7. 75 (d, 2H, J = 8. 6), 7. 7-7. 8 (m, 1H), 7. 95 (d, 2H, J = 8. 6), 8. 9 (brs. 1H), 9. 33 (brs. 1H), 9. 6-9. 7 (m, 1H), 7. 95 (d, 2H, J = 8. 6), 8. 9 (brs. 1H), 9. 33 (brs. 1H), 9. 6-9. 7 (m, 1H), 9. 33 (brs. 1H), 9. 6-9. 7 (m, 1H), 9. 33 (brs. 1H), 9. 6-9. 7 (m, 1H), 9. 33 (brs. 1H), 9. 6-9. 7 (m, 1H), 9.

25 1H), 10.12 (s, 1H).

IR (KBr) 1671, 1518, 1456, 1318, 1231, 816cm⁻¹ 元素分析 C₂₇H₂₇N₃O₂·HCl·O. 5H₂O Calcd. C. 68.85; H. 6.21; N. 8.92; Found. C. 68.61; H. 6.21; N. 8.94.

実施例44(化合物44の製造)

N-[4-(エトキシカルボンイミドイル)フェニル]-7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド塩酸塩(200mg)のエタノール溶液(4ml)溶液にモルホリン(1ml)を加えた。室温で一晩撹拌後、濃縮し、重曹水を加えた。酢酸エチルより抽出し、食塩水で洗浄した。抽出液を乾燥後(無水硫酸マグネシウム)、4N塩酸/酢酸エチルを加え、析出物をろ取し、酢酸エチルで洗浄し、N-[4-(4-モルホリノ)カルボンイミドイルフェニル]-7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド塩酸塩(化合物44)(104mg)を無色結晶として得た。

10 m. p. 209-211℃

15

¹H-NMR (200MHz, DMSO-d₆) δ : 2. 3 (s, 3H), 2. 9-3. 1 (m, 2H), 3. 3-3. 55 (m, 2H), 3. 6-3. 75 (m, 2H), 3. 75-3. 9 (m, 4H), 4. 25-4. 4 (m, 2H), 7. 07 (d, 1H, J = 8. 6), 7. 27 (d, 2H, J = 7. 6), 7. 45 (s, 1H), 7. 5-7. 7 (m, 3H), 7. 60 (d, 2H, J = 7. 6), 7. 75-7. 8 (m, 1H), 7. 98 (d, 2H, J = 8. 6), 9. 30 (s, 1H), 9. 54 (s, 1H), 10. 43 (s, 1H).

IR (KBr) 1663, 1603, 1522, 1493, 1460, 1318, 1248, 1184, 1115, 850, 812cm⁻¹ 元素分析 C₂₉H₂₉N₃O₃·HCl·O. 6H₂O Calcd. C. 67.66; H. 6.11; N. 8.16: Found. C, 67.45; H. 5.96; N. 7.94.

実施例45 (化合物45の製造)

N-(4-シアノメチルフェニル)-7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド(200mg)に28%

塩化水素/エタノール/ジオキサン溶液(2ml)溶液を加えた。一晩冷蔵庫に保存後、濃縮し、残留物に エタノール(4ml)、モルホリン(1ml) を加えた。室温で1時間撹拌後、濃縮し、重曹水を加えた。酢酸エチルで抽出した。抽出液を乾燥後(硫酸マグネシウム)、濃縮し、残留物をメタノール/酢酸エチル/ヘキサンより再結晶し、N-[4-[(4-モルホリノ)カルボンイミドイルメチル]フェニル]-7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド(化合物45)(93mg)を無色結晶として得た。m.p. 196-198℃

¹H-NMR (200MHz, CDCl₃) δ : 2. 39 (3H, s), 3. 07 (2H, t, J = 4. 8), 3. 4-3. 55 (4H, m), 3. 6-3. 7 (6H, m), 4. 34 (2H, t, J = 4. 8), 7. 04 (1H, d, J = 8. 4), 7. 19 (2H, d, J = 8. 8), 7. 2-7. 3 (2H, m), 7. 4-7. 55 (5H, m), 7. 60 (2H, d, J = 8. 0), 7. 79 (1H, brs).

5 IR (KBr) 1659, 1582, 1522, 1493, 1318, 1171, 1123, 1030, 814cm⁻¹ 元素分析 C₃₀H₃₁N₃O₃·0. 5H₂O Calcd. C, 73. 45; H, 6. 57; N, 8. 57; Found. C, 73. 46; H, 6. 43; N, 8. 48.

実施例46(化合物46の製造)

N-(4-シアノメチルフェニル)-7-(4-メチルフェニル)-2,3-10 ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド(200mg)に28%塩化水素/エタノール/ジオキサン溶液(2ml)溶液を加えた。一晩冷蔵庫に保存後、濃縮し、残留物にエタノール(4ml)、ピペリジン(1ml)を加えた。室温で1時間撹拌後、濃縮し、重曹水を加えた。酢酸エチル/メタノールで抽出した。抽出液を乾燥後(硫酸マグネシウム)、濃縮した。残留物に4N塩酸/酢酸エチルを加え、析出物をろ取し、酢酸エチルで洗浄し、N-[4-[(1-ピペリジノ)カルボンイミドイルメチル]フェニル]-7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド(化合物46)(103mg)を白色粉末として得た。

m. p. 195-197℃

- 20 $^{1}\text{H-NMR}$ (200MHz, DMSO-d₆) δ : 1. 2-1. 35 (2H, m), 1. 5-1. 65 (4H, m), 2. 34 (3H, s), 2. 95-3. 05 (2H, m), 3. 42 (4H, s), 3. 5-3. 7 (2H, m), 3. 95-4. 05 (2H, m), 4. 25-4. 35 (2H, m), 7. 05 (1H, d, J = 8. 6), 7. 2-7. 4 (5H, m), 7. 5-7. 6 (3H, m), 7. 7-7. 8 (3H, m). 8. 88 (1H, brs), 9. 4-9. 5 (1H, m), 10. 07 (1H, s). IR (KBr) 1647, 1630, 1518, 1491, 1321, 1264, 814cm⁻¹
- 25 元素分析 C₃₁H₃₃N₃O₂·HCl·H₂O Calcd. C. 69.71; H. 6.79; N. 7.87: Found. C. 69.67; H. 6.84; N. 7.81.

参考例91

7-(4-メチルフェニル)-2, 3-ジヒドロ-1-ベンゾオキセピン-4-カルボン酸 (1402mg, 5,00mmol)を DMF(30ml)に溶解し 0℃で 1-ヒドロキシベンゾトリアゾー

10

20

25

ル (743mg, 5.50mmol)、2-[1-(tert-ブトキシカルボニル) ピペリジン-4-イル] エチルアミン(1256mg, 5.50mmol)、1-[3-(ジメチルアミノ) プロピル]-3-エチルカルボジイミド塩酸塩(1438mg, 7.50mmol)を加えて室温で 8 時間撹拌した。反応液を減圧濃縮し残留物に酢酸エチル(120ml)を加え水(30ml)、飽和重曹水(20ml×3)、飽和食塩水(20ml)で順に洗浄した。有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル、酢酸エチル/ヘキサン=1/2→1/1)に付した。目的画分を減圧濃縮しジイソプロピルエーテルを加え不溶物を適取した。不溶物をジイソプロピルエーテルで洗浄後、減圧乾燥して N-[2-[1-(tert-ブトキシカルボニル) ピペリジン-4-イル] エチル]-7-(4-メチルフェニル)-2、3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド(1.64g, 3.34mmol, 67%) を得た。

IR (KBr): 1694, 1674, 1653, 1617, 1539 cm⁻¹.

'H-NMR (CDCl₃) δ: 1.0-1.8 (7H, m), 1.46 (9H, s), 2.39 (3H, s), 2.6-2.8 (2H, m), 2.9-3.05 (2H, m), 3.35-3.5 (2H, m), 4.0-4.2 (2H, m), 4.25-4.35 (2H, m), 5.75-5.85 (1H, m), 7.03 (1H, d, J=8.2Hz), 7.16 (1H, s), 7.24 (2H, d, J=8.0Hz), 7.43 (1H, dd, J=2.5, 8.2Hz), 7.45 (2H, d, J=8.0Hz), 7.49 (1H, d, J=2.5Hz). 実施例47 (化合物47の製造)

N-[2-[1-(tert-ブトキシカルボニル) ピペリジン-4-イル] エチル]-7-(4-メチルフェニル)-2, 3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド(491mg, 1.00nmol)に 4N 塩化水素(酢酸エチル溶液, 10ml)を加え室温で3時間撹拌した。 反応液を減圧濃縮し残留物に酢酸エチル(15ml)を加え水(10ml)、1N 塩酸(5ml×2)

で抽出した。水層を 8N 水酸化ナトリウム水溶液で pH>11 とし、ジクロロメタン (15ml×3)で抽出した。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮しジエチルエーテルを加え不溶物を濾取した。不溶物をジエチルエーテルで洗浄後、減圧 乾燥して N-[2-(4-ピペリジル)エチル]-7-(4-メチルフェニル)-2、3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド (化合物 4 7) (361mg, 0.92mmol, 92%)を得た。

IR (KBr): 1649, 1607, 1537 cm⁻¹.

 $^{1}H-NMR$ (CDCl₃) δ : 1.05-1.8 (7H. m), 2.39 (3H. s), 2.5-2.7 (2H, m), 2.9-3.15

(4H, m), 3. 35-3. 5 (2H, m), 4. 25-4. 4 (2H, m), 5. 75-5. 85 (1H, m), 7. 03 (1H, d, J=8. 3Hz), 7. 16 (1H, s), 7. 24 (2H, d, J=8. 2Hz), 7. 43 (1H, dd, J=2. 5, 8. 3Hz), 7. 45 (2H, d, J=8. 2Hz), 7. 49 (1H, d, J=2. 5Hz).

実施例48 (化合物48の製造)

- N-[2-(4-ピペリジル) エチル]-7-(4-メチルフェニル)-2、3-ジヒドロ-1-ベンソオキセピン-4-カルボキサミド(150mg, 0.38mmol)、テトラヒドロピラン-4-オン(38mg, 0.38mmol)を 1、2-ジクロロエタン(6ml)に溶解しトリアセトキシ水素化ホウ素ナトリウム(122mg, 0.58mmol)、酢酸(0.022ml, 0.38mmol)を加えて室温で 23時間撹拌した。1N 水酸化ナトリウム水溶液(20ml)を加えジクロロメタン(20ml,
- 10 10ml×2)で抽出した。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル 15g, ジクロロメタン/メタノール=1/0 →9/1)に付した。目的画分を減圧濃縮しジイソプロピルエーテルを加え不溶物を適取した。不溶物をジイソプロピルエーテルで洗浄後、減圧乾燥して N-[2-[1-(テトラヒドロピラン-4-イル) ピペリジン-4-イル] エチル]-7-(4-メチルフェニル)-
- 15 2.3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド (化合物 4 8) (119mg. 0.25mmol, 65%)を得た。

IR (KBr): 1651, 1615, 1539 cm⁻¹.

¹H-NMR (CDC1₃) δ: 1. 2-1. 9 (11H, m). 2. 1-2. 3 (2H, m), 2. 39 (3H, s), 2. 4-2. 65 (1H, m), 2. 9-3. 1 (4H, m), 3. 25-3. 5 (4H, m). 3. 95-4. 1 (2H, m), 4. 35-4. 4 (2H, m), 5. 75-5. 9 (1H, m), 7. 03 (1H, d, J=8. 3Hz), 7. 16 (1H, s), 7. 24 (2H, d, J=8. 2Hz), 7. 43 (1H, dd, J=2. 4, 8. 3Hz), 7. 45 (2H, d, J=8. 2Hz), 7. 49 (1H, d, J=2. 4Hz).

実施例49(化合物49の製造)

N-[2-(4-ピペリジル) エチル]-7-(4-メチルフェニル)-2, 3-ジヒドロ-1-ベンソオキセピン-4-カルボキサミド(150mg, 0.38mmol)を DMF(4ml)に溶解し炭酸カリウム(106mg, 0.77mmol)、ベンジルブロミド(0.046ml, 0.39mmol)を加えて室温で20時間撹拌した。反応液を減圧濃縮し残留物に水(15ml)を加え酢酸エチル(15ml×3)で抽出した。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル 15g. 酢酸エチル/メタノール=1/0→95/5)に付

した。目的画分を減圧濃縮しジイソプロピルエーテルを加え不溶物を濾取した。 不溶物をジイソプロピルエーテルで洗浄後、減圧乾燥して N-[2-(1-ベンジルピペリジン-4-イル)エチル]-7-(4-メチルフェニル)-2、3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド (化合物 4 9) (154mg. 0.32mmol. 83%)を得た。

5 IR (KBr): 1651, 1615, 1537 cm⁻¹.

¹H-NMR (CDCl₃) δ: 1.15-1.8 (7H, m), 1.85-2.1 (2H, m), 2.39 (3H, s), 2.8-3.0 (4H, m), 3.3-3.5 (2H, m), 3.50 (2H, s), 4.25-4.35 (2H, m), 5.7-5.85 (1H, m), 7.03 (1H, d, J=8.5Hz), 7.15 (1H, s), 7.2-7.35 (5H, m), 7.24 (2H, d, J=8.0Hz), 7.43 (1H, dd, J=2.4, 8.5Hz), 7.45 (2H, d, J=8.0Hz), 7.48 (1H, d,

参考例92

J=2.4Hz).

10

7-(4-メチルフェニル)-2, 3-ジヒドロ-1-ペンゾオキセピン-4-カルボン酸 (1402mg, 5.00mmol)を DMF (30ml)に溶解し 0℃で 1-ヒドロキシベンゾトリアゾール (743mg, 5.50mmol)、[1-(tert-ブトキシカルボニル)ピペリジン-4-イル]メチルアミン(1393mg, 6.50mmol)、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド塩酸塩(1438mg, 7.50mmol)を加えて室温で 61 時間撹拌した。反応液を減圧濃縮し残留物に酢酸エチル(100ml)を加え水(10ml×3)、10%硫酸水素カリウム水溶液(10ml×3)、飽和重曹水(10ml×3)、飽和食塩水(10ml)で順に洗浄した。有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル 80g, 酢酸エチル/ヘキサン=1/2→1/1)に付した。目的画分を減圧濃縮して N-[1-(tert-ブトキシカルボニル)ピペリジン 4 イル]メチルーマー(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド(2409mg)を得た。

IR (KBr): 1671, 1617, 1537 cm⁻¹.

25 「H-NMR (CDC1₃) る: 1.0-1.85 (5H, m). 1.46 (9H, s). 2.39 (3H, s). 2.6-2.8 (2H, m). 2.9-3.05 (2H, m). 3.2-3.35 (2H, m). 4.0-4.25 (2H, m). 4.25-4.4 (2H, m). 5.85-6.05 (1H, m). 7.03 (1H, d, J=8.3Hz). 7.17 (1H, s). 7.24 (2H, d, J=8.0Hz). 7.44 (1H, dd, J=2.3, 8.3Hz). 7.45 (2H, d, J=8.0Hz). 7.49 (1H, d, J=2.3Hz). 実施例50 (化合物50の製造)

N-[I-(tert-ブトキシカルボニル)ピペリジン-4-イル]メチル-7-(4-メチルフェ ニル)-2, 3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド(1430mg, 3.00mmol) に 4N 塩化水素(酢酸エチル溶液,50ml)を加え室温で 13 時間撹拌した。反応液を 減圧濃縮し残留物に酢酸エチル(50ml)を加え不溶物を濾取した。不溶物を酢酸エ 5 チルで洗浄後、減圧乾燥して N-(4-ピペリジルメチル)-7-(4-メチルフェニル)-2, 3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド塩酸塩(化合物50) (1195mg, 2.89mmol, 96%)を得た。

IR (KBr): 1647, 1609, 1535 cm⁻¹.

 $^{1}\text{H-NMR}$ (DMSO-d₆) δ : 1. 2-1. 55 (2H, m), 1. 65-1. 95 (3H, m), 2. 34 (3H, s), 2. 65-2. 95 (4H, m), 3. 05-3. 35 (4H, m), 4. 15-4. 3 (2H, m), 7. 02 (1H, d, J=8. 4Hz), 7. 26 (1H, s), 7. 26 (2H, d, J=8. 1Hz), 7. 51 (1H, dd, J=2. 2, 8. 4Hz), 7. 55 (2H, d, J=8.1Hz), 7.67 (1H, d, J=2.2Hz), 8.15-8.3 (1H, m). 実施例51 (化合物51の製造)

N-(4-ピペリジルメチル)-7-(4-メチルフェニル)-2, 3-ジヒドロ-1-ベンゾオキ セピン-4-カルボキサミド塩酸塩(250mg, 0.61mmol)を 1,2-ジクロロエタン(10ml) 15 に懸濁しトリエチルアミン(0.101ml, 0.72mmol)、テトラヒドロピラン-4-オン (0.067ml, 0.73mmol)、トリアセトキシ水素化ホウ素ナトリウム(205mg, 0.97mmol)、 酢酸(0.042ml, 0.73mmol)を順に加えて室温で23時間撹拌した。1N水酸化ナトリ ウム水溶液(10ml)を加えジクロロメタン(10ml×3)で抽出した。有機層を無水硫酸 ナトリウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル 20 15g. ジクロロメタン/メタノール=1/0→9/1)に付した。目的画分を減圧濃縮しジ イソプロピルエーテルを加え不溶物を適取した。不溶物をジイソプロピルエーテ ルで洗浄後、減圧乾燥して N-[1-(テトラヒドロピラン-4-イル)ピペリジン-4-イ ル]メチル-7-(4-メチルフェニル)-2、3-ジヒドロ-1-ベンゾオキセピン-4-カルボ キサミド (化合物 5 1) (183mg, 0.40mmol, 66%)を得た。

IR (KBr): 1651, 1615, 1537 cm⁻¹.

25

¹H-NMR (CDCl₃) δ : 1. 2-1. 9 (9H, m), 2. 15-2. 3 (2H, m), 2. 39 (3H, s), 2. 45-2. 65 (1H, m), 2. 9-3. 1 (4H, m), 3. 2-3. 45 (4H, m), 3. 95-4. 1 (2H, m), 4. 25-4.35 (2H, m), 5.9-6.05 (1H, m), 7.03 (1H, d, J=8.4Hz), 7.18 (1H, s), 7.24 (2H, d, J=8. 2Hz), 7. 43 (1H, dd, J=2. 4, 8. 4Hz), 7. 45 (2H. d, J=8. 2Hz), 7. 50 (1H. d. J=2. 4Hz).

参考例93

7-(4-メチルフェニル)-2, 3-ジヒドロ-1-ベンゾオキセピン-4-カルボン酸 (1402mg, 5,00mmol)をDMF(30ml)に溶解しのでで1-ヒドロキシベンゾトリアゾール(743mg, 5,50mmol)、3-[1-(tert-ブトキシカルボニル)ピペリジン-4-イル]プロピルアミン(1333mg, 5,50mmol)、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド塩酸塩(1438mg, 7,50mmol)を加えて室温で18時間撹拌した。反応液を減圧濃縮し残留物に酢酸エチル(100ml)を加え水(10ml×3)、10%硫酸水素カリウム水溶液(10ml×3)、飽和重曹水(10ml×3)、飽和食塩水(10ml)で順に洗浄した。有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィー(シリカゲル 80g, 酢酸エチル/ヘキサン=1/3→1/1)に付した。目的画分を減圧濃縮して N-[3-[1-(tert-ブトキシカルボニル)ピペリジン-4-イル]プロピル]-7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド(2498mg, 4,95mmol, 99%)を得た。

IR (KBr): 1694, 1671, 1653, 1620, 1537 cm⁻¹.

'H-NMR (CDC1₃) δ : 0. 9-1. 8 (9H, m), 2. 39 (3H, s), 2. 55-2. 8 (2H, m), 2. 9-3. 0 (2H, m), 3. 3-3. 45 (2H, m), 4. 0-4. 15 (2H, m), 4. 25-4. 4 (2H, m), 5. 8-5. 9 (1H, m), 7. 03 (1H, d, J=8. 2Hz), 7. 16 (1H, s), 7. 24 (2H, d, J=8. 0Hz), 7. 43 (1H,

20 dd. 1=2 3, 8 2Hz), 7.45 (2H. d. J-8.0Hz), 7.49 (1H, d. J-2.3Hz).

実施例52 (化合物52の製造)

25

N-[3-[1-(tert-ブトキシカルボニル) ピペリジン-4-イル] プロピル]-7-(4-メチルフェニル)-2、3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド(1514mg, 3.00mmol)に 4N 塩化水素(酢酸エチル溶液、50ml)を加え室温で 16 時間撹拌した。反応液を減圧濃縮し残留物に酢酸エチル(50ml)を加え不溶物を濾取した。不溶物を酢酸エチルで洗浄後、減圧乾燥して N-[3-(4-ピペリジル) プロピル]-7-(4-メチルフェニル)-2、3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド塩酸塩(化合物52)(1286mg, 2.92mmol, 97%)を得た。

IR (KBr): 1647, 1599, 1545 cm⁻¹.

¹H-NMR (DMSO- d_6) δ : 1. 1-1. 9 (9H, m), 2. 34 (3H, s). 2. 7-2. 95 (4H, m), 3. 05-3. 4 (4H, m), 4. 15-4. 3 (2H, m), 7. 02 (1H, d, J=8. 4Hz), 7. 24 (1H, s), 7. 26 (2H, d, J=8. 0Hz), 7. 51 (1H, dd, J=2. 2, 8. 4Hz), 7. 55 (2H, d, J=8. 0Hz), 7. 64 (1H, d, J=2. 2Hz), 8. 0-8. 15 (1H, m).

5 実施例53(化合物53の製造)

N-[3-(4-ピペリジル)プロピル]-7-(4-メチルフェニル)-2、3-ジヒドロ-1-ベン ゾオキセピン-4-カルボキサミド塩酸塩(250mg, 0.57mmol)を1、2-ジクロロエタン (10ml)に懸濁しトリエチルアミン(0.095ml, 0.68mmol)、テトラヒドロピラン-4-オン(0.084ml, 0.91mmol)、トリアセトキシ水素化ホウ素ナトリウム(192mg, 0.91mmol)、酢酸(0.039ml, 0.68mmol)を順に加えて室温で16時間撹拌した。1N 水酸化ナトリウム水溶液(10ml)を加えジクロロメタン(10ml×3)で抽出した。有機 層を無水硫酸ナトリウムで乾燥後、減圧濃縮し残留物をカラムクロマトグラフィ ー(シリカゲル15g, ジクロロメタン/メタノール=1/0→9/1)に付した。目的画分 を減圧濃縮しジイソプロピルエーテルを加え不溶物を濾取した。不溶物をジイソ

15 プロピルエーテルで洗浄後、減圧乾燥して N-[3-[1-(4-テトラヒドロピラニル) ピペリジン-4-イル] プロピル] -7-(4-メチルフェニル) -2, 3-ジヒドロ-i-ベンゾオキセピン-4-カルボキサミド (化合物 5 3) (198mg, 0.41mmol, 71%)を得た。
IR (KBr): 1649, 1605, 1541 cm⁻¹.

'H-NMR (CDC1₃) δ: 1. 15-1. 9 (13H, m), 2. 05-2. 3 (2H, m), 2. 39 (3H, s), 2. 4-2. 65 (1H, m), 2. 9-3. 1 (4H, m), 3. 25-3. 5 (4H, m), 3. 95-4. 1 (2H, m), 4. 25-4. 4 (2H, m), 5. 8-5. 95 (1H, m), 7. 03 (1H, d, J=8. 3Hz), 7. 16 (1H, s), 7. 24 (2H, d, J=8. 2Hz), 7. 43 (1H, dd, J=2. 3, 8. 3Hz), 7. 45 (2H, d, J=8. 2Hz), 7. 49 (1H, d, J=2. 3Hz).

参考例94

25 7-(4-メチルフェニル)-2、3-ジヒドロ-1-ベンゾオキセピン-4-カルボン酸(1.0g)をジクロロメタン(14ml)に懸濁し、氷冷下、オキサリルクロリド(0.93ml)、ジメチルホルムアミド(1滴)を加え、室温で、1.5時間撹拌した。溶媒を留去後、テトラヒドロフラン(20ml)に溶かし、1-(t-ブトキシカルボニル)ピペリジン(1.4g)とトリエチルア

ミン (1.5 ml) のテトラヒドロフラン (10 ml) 溶液中に氷冷下、滴下した。窒素雰囲気下、室温で一晩撹拌した。溶媒を留去し、水を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、無水硫酸マグネシウムを用いて乾燥した。減圧下、溶媒を留去し、粗結晶を得た。酢酸エチル/ヘキサンから再結晶し、N-[1-(t-ブトキシカルボニル) ピペリジン-4-イル] -7-(4-メチルフェニル) -2, 3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド (1.54g) を無色プリズムとして得た。

'H-NMR(δ ppm, CDC1₃) 1. 37-1. 42 (2H, m), 1. 47 (9H, s), 1. 96-2. 04 (2H, m), 2. 39

10 (3H, s), 2. 84-2. 98 (4H, m), 3. 99-4. 11 (3H, m), 4. 31 (2H, t, J=4. 7Hz), 5. 72

(1H, d, J=7. 4Hz), 7. 03 (1H, d, J=8. 4Hz), 7. 13 (1H, s), 7. 24 (2H, d, J=9. 2Hz),

7. 41-7. 49 (4H, m).

 $IR(KBr) \nu : 2976, 1694cm^{-1}$.

Anal. calcd. for $C_{28}H_{34}N_2O_4$: C, 72. 70; H, 7. 41; N, 6. 06. Found C, 72. 51; H, 7. 20; N, 6. 20.

参考例95

mp 205-208℃.

シクロオクタノン(4.07g)、pートルエンスルホニルヒドラジド(6g) をメタノール(40ml)に懸濁し、塩酸(1ml)を加え、室温で3日間撹拌した。濃縮し、析出した結晶をろ取、メタノール、ヘキサン、ジエチルエーテルで洗い、シクロオクタノン pートルエンスルホニルヒドラゾン(7.29g)

を無色結晶として得た。

mp 140-143℃.

"H-NMR (δ ppm, CDCl₃) 1. 10-1. 25 (2H, m). 1. 35-1. 45 (4H, m), 1. 55-1. 73 (4H, m), 1. 88 (1H, br), 2. 19-2. 35 (4H, m), 2. 42 (3H, s), 7. 30 (2H, d, J=8. 3Hz),

25 7. 84 (2H, d, J=8. 3Hz).

IR (KBr) ν : 3221, 2926, 2857cm⁻¹.

Anal. calcd. for $C_{15}H_{22}N_2O_2S$: C, 61. 19; H. 7. 53; N. 9. 52. Found C, 61. 22; H. 7. 31; N. 9. 66.

参考例96

シクロオクタノン p-トルエンスルホニルヒドラゾン (4.5g) をN, N, N', N'-テトラエチレンジアミン (46ml) に懸濁し、-55℃で1.6 M n-ブチルリチウムヘキサン溶液 (38ml) を滴下した。アルゴン雰囲気下、室温で30分間撹拌後、氷冷し、DMF (5.9ml) を加え、室温で1時間撹拌した。水中に注ぎ、酢酸エチルで抽出した。有機層を1N塩酸、水、飽和食塩水で洗浄後、無水硫酸マグネシウムを用いて乾燥した。減圧下、溶媒を留去した。残渣をシリカゲルカラム(酢酸エチル:ヘキサン=1:9)により精製し、シクロオクテン-1-カルバルデヒド (1.5g) を淡黄色オイルとして得た。 'H-NMR(δ ppm, CDCl₃) 1.39-1.69 (8H, m), 2.38-2.52 (4H, m), 6.72 (1H, t, J=8.3H2), 9.41 (1H, s).

IR(neat) ν: 2932, 2859, 1675cm⁻¹.

参考例97

10

シクロノナノン(1.36g)、pートルエンスルホニルヒドラジド(1.8 1g)をメタノール(12ml)に懸濁し、塩酸(0.3ml)を加え、室温で 15 一晩撹拌した。溶媒を留去し、析出した結晶をろ取、冷メタノール、ジエチルエ ーテルーヘキサンで洗い、シクロノナノン pートルエンスルホニルヒドラゾン (2.29g)を無色結晶として得た。

mp 135-138℃.

'H-NMR (δ ppm, CDCl₃) 1.00-1.10 (2H, m), 1.10-1.25 (2H, m), 1.38-1.76 (8H, m), 2.18-2.24 (2H, m), 2.28-2.34 (2H, m), 2.41 (3H, s), 7.30 (2H, d, J=8.0Hz), 7.32 (1H, br), 7.85 (2H, d, J=8.0Hz).

 $IR(KBr) \nu : 3223, 2922cm^{-1}$

Anal. calcd. for $C_{16}H_{24}N_2O_2S$: C, 62. 30; H, 7. 84; N, 9. 08. Found C, 62. 42; H, 7. 66; N, 9. 21.

25 参考例98

シクロノナノンp - トルエンスルホニルヒドラゾン (2.0g) をN, N, N', N' - テトラエチレンジアミン (20m1) に懸濁し、-55 $\mathbb C$ $\overline v$ 1.6 M n - プチルリチウムヘキサン溶液 (16.2m1) を滴下した。アルゴン雰囲気下、室温で30 分間撹拌後、氷冷し、DMF (2.5m1) を加え、室温で1 時間撹

拌した。氷水中に注ぎ、酢酸エチルで抽出した。有機層を1N塩酸、水、飽和食塩水で洗浄後、無水硫酸マグネシウムを用いて乾燥した。減圧下、溶媒を留去した。残渣をシリカゲルカラム(酢酸エチル: ヘキサン=1:10)により精製し、シクロノネン-1-カルバルデヒド(0.7g)を淡黄色オイルとして得た。

5 'H-NMR(δ ppm, CDCl₃) 1. 35-1. 60 (8H, m), 1. 60-1. 75 (2H, m), 2. 36-2. 54 (4H, m), 6. 61 (1H, t, J=8. 8Hz), 9. 41 (1H, s).

IR(neat) v: 2928, 2857, 1684cm⁻¹.

実施例54(化合物54の製造)

N- [1-(t-ブトキシカルボニル) ピペリジン-4-イル] -7-(4-10 メチルフェニル) -2, 3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド(1.56g)を酢酸エチル(100ml)に溶かし、4N塩酸/酢酸エチル(25ml)を加え、室温で一晩撹拌した。1N水酸化ナトリウムを加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、無水硫酸マグネシウムを用いて乾燥した。減圧下、溶媒を留去し、N-(4-ピペリジニル)-7-(4-メチルフェニル)-2, 3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド(化合物54)(1.1g)を無色プリズムとして得た。

 1 H-NMR (δ ppm, CDCl₃) 1. 31-1. 50 (2H, m). 1. 98-2. 06 (2H, m), 2. 39 (3H, s), 2. 75 (2H, dt, J=2. 6, 12. 0Hz), 2. 97 (2H, t, J=4. 5Hz), 3. 12 (2H, dt, J=12. 8, 3. 4Hz),

20 3 90-4 10 (1H, m), 4 32 (2H, t, J=4, 5Hz), 5, 75 (1H, d, J=8, 2Hz), 7, 03 (1H,

d. J=8.2Hz), 7.14 (1H, s), 7.24 (2H, d, J=8.0Hz), 7.40-7.50 (4H, m).

 $IR(KBr) \nu$: 3299, 2938, $1651cm^{-1}$.

Anal. calcd. for $C_{23}H_{26}N_2O_2 \cdot 0$. $2H_2O$: C, 75. 46; H, 7. 27; N, 7. 65. Found C, 75. 49; H, 7. 15; N, 7. 56.

25 実施例55(化合物55の製造)

mp 183-185℃.

 $N-(4- \colone{1}{-}1- \col$

素雰囲気下、室温で一晩撹拌した。1N水酸化ナトリウム水溶液を用いて中和後、 濃縮し、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、無水硫酸マ グネシウムを用いて乾燥した。減圧下、溶媒を留去し、粗結晶を得た。酢酸エチ ル/ヘキサンから再結晶し、N-(1-シクロヘキシルメチルピペリジン-4-イル)-7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピ ン-4-カルボキサミド(化合物55)(0.13g)を無色プリズムとして得 た。

mp 180-181℃.

¹H-NMR (δ ppm, CDC1₃) 0. 80-1. 00 (2H, m), 1. 10-1. 17 (4H, m), 1. 40-1. 80 (7H, m), 1. 95-2. 14 (4H, m), 2. 16 (2H, d, J=7. 0Hz), 2. 39 (3H, s), 2. 81-2. 88 (2H, m), 2. 96 (2H, t, J=4. 5Hz), 3. 80-4. 00 (1H, m), 4. 31 (2H, t, J=4. 5Hz), 5. 74 (1H, br), 7. 02 (1H, d, J=8. 4Hz), 7. 14 (1H, s), 7. 24 (2H, d, J=8. 8Hz), 7. 36-7. 50 (4H, m).

IR (KBr) ν : 2924, 2851, 1651 cm⁻¹.

Anal. calcd. for C₃₀H₃₈N₂O₂: C, 78. 56; H, 8. 35; N, 6. 11. Found C, 78. 31; H, 8. 17; N, 6. 16.

実施例56(化合物56の製造)

N- (4-ピペリジニル) -7- (4-メチルフェニル) -2, 3-ジヒドロー1-ベンゾオキセピン-4-カルボキサミド(0.15g)、テトラヒドロー20 4H-ピラン-4-オン(0.06g)を1,2-ジクロロエタン(7ml)に溶かし、氷冷下、トリアセトキシ水素化ほう素ナトリウム(0.13g)を加え、窒素雰囲気下、室温で一晩撹拌した。IN水酸化ナトリウム水溶液を用いて中和後、濃縮し、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、無水硫酸マグネシウムを用いて乾燥した。減圧下、溶媒を留去し、粗結晶を得た。酢酸エチル/ヘキサンから再結晶し、N-(1-(テトラヒドロピラン-4-イル)ピペリジン-4-イル) -7-(4-メチルフェニル) -2,3-ジヒドロー1-ベンゾオキセピン-4-カルボキサミド(化合物56)(0.13g)を無色プリズムとして得た。

mp 199-204℃ (dec.).

'H-NMR (δ ppm, CDCl₃) 1. 40-1. 80 (6H, m), 2. 00-2. 15 (2H, m), 2. 25-2. 39 (2H, m), 2. 39 (3H, s), 2. 43-2. 55 (1H, m), 2. 90-3. 00 (4H, m), 3. 28 (2H, dt, J=1. 8, 11. 6Hz), 3. 80-4. 00 (1H, m), 4. 00-4. 10 (2H, m), 4. 31 (2H, t, J=4. 7Hz), 5. 72 (1H, d, J=9. 2Hz), 7. 03 (1H, d, J=8. 0Hz), 7. 14 (1H, s), 7. 24 (2H, d, J=9. 2Hz),

5 7.40-7.50 (4H, m).

IR(KBr) ν : 3287, 2951, 1651cm⁻¹.

Anal. calcd. for $C_{28}H_{34}N_2O_3 \cdot 0.2H_2O$: C, 74.70; H, 7.70; N, 6.22. Found C, 74.90; H, 7.89; N, 6.39.

実施例57(化合物57の製造)

10 N-(4-ピペリジニル)-7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド(0.15g)、シクロオクテン-1-カルバルデヒド(0.08g)を1,2-ジクロロエタン(10m1)に溶かし、氷冷下、トリアセトキシ水素化ほう素ナトリウム(0.12g)を加え、窒素雰囲気下、室温で一晩撹拌した。1N水酸化ナトリウム水溶液を用いて中和後、濃縮し、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、無水硫酸マグネシウムを用いて乾燥した。減圧下、溶媒を留去した。残渣をシリカゲルカラム(酢酸エチル)により精製し、粗結晶を得た。酢酸エチル/ジエチルエーテル/ヘキサンから再結晶し、N-(1-(シクロオクテン-1-イル)メチルピペリジン-4-イル)-7-(4-メチルフェニル)-2,3-ジヒドロ-1

20 ベンソオキセピンー4ーカルボキサミド(化合物 5 7)(0. 1 1 g)を無色 プリズムとして得た。

mp 148-151℃.

25

 1 H-NMR (δ ppm, CDCl₃) 1. 48-1. 65 (10H, m), 1. 69-2. 20 (8H, m), 2. 39 (3H, s), 2. 78-2. 84 (4H, m), 2. 96 (2H, t, J=4. 6Hz), 3. 80-4. 00 (1H, m), 4. 31 (2H, t, J=4. 6Hz), 5. 49 (1H, t, J=8. 0Hz), 5. 72 (1H, d, J=7. 8Hz), 7. 03 (1H, d, J=8. 2Hz), 7. 14 (1H, s), 7. 24 (2H, d, J=8. 8Hz), 7. 40-7. 50 (4H, m).

IR (KBr) ν : 3295, 2924, 1647, 1609cm⁻¹.

Anal. calcd. for $C_{32}H_{40}N_2O_2$: C, 79. 30; H, 8. 32; N, 5. 78. Found C, 79. 02; H, 8. 12; N, 5. 71.

10

20

実施例58 (化合物58の製造)

N- (4-ピペリジニル) -7- (4-メチルフェニル) -2, 3-ジヒドロ -1-ベンゾオキセピン-4-カルボキサミド(0.15g)、ベンズアルデヒ ド(0.05g)を1,2-ジクロロエタン(10ml)に溶かし、氷冷下、ト 5 リアセトキシ水素化ほう素ナトリウム (0.12g) を加え、窒素雰囲気下、室 温で一晩撹拌した。溶媒を留去し、IN水酸化ナトリウム水溶液を用いて中和後、 酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、無水硫酸マグネシウ ムを用いて乾燥した。減圧下、溶媒を留去し、粗結晶を得た。酢酸エチル/ヘキ サンから再結晶し、N- (1-ペンジルピペリジン-4-イル)-7- (4-メ チルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミ ド(化合物58) (0.17g) を無色プリズムとして得た。 mp 161-162℃.

 1 H-NMR (δ ppm, CDCl₃) 1.45-1.60 (2H, m), 1.95-2.05 (2H, m), 2.18 (2H, t, J=11. 5Hz), 2. 39 (3H, s), 2. 83-2. 89 (2H, m), 2. 96 (2H, t, J=4. 7Hz), 3. 53 (2H, 15 s), 3.80-4.00 (1H, m), 4.31 (2H, t, J=4.7Hz), 5.71 (1H, d, J=8.0Hz), 7.03 (1H, d, J=8.4Hz), 7.13 (1H, s), 7.22-7.30 (3H, m), 7.32-7.34 (4H, m), 7. 40-7. 50 (4H, m).

IR(KBr) ν : 3250, 2942, 1649, 1609cm⁻¹.

Anal. calcd. for $C_{30}H_{32}N_2O_2 \cdot 0.2H_2O$: C. 78. 99; H. 7. 16; N. 6. 14. Found C. 78. 97; H, 7. 10; N, 6. 20.

実施例59 (化合物59の製造)

N-(4-ピペリジニル)-7-(4-メチルフェニル)-2, 3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド(0.15g)、シクロノネン-1-カルバルデヒド(0.085g)を1,2-ジクロロエタン(10ml)に溶かし、氷冷下、トリアセトキシ水素化ほう素ナトリウム (0.12g) を加え、 25 窒素雰囲気下、室温で一晩撹拌した。溶媒を留去し、1N水酸化ナトリウム水溶 液を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、無水硫酸 マグネシウムを用いて乾燥した。減圧下、溶媒を留去した。残渣をシリカゲルカ ラム(酢酸エチル)により精製し、粗結晶を得た。酢酸エチル/ヘキサンから再

結晶し、N-(1-(シクロノネン-1-イル) メチルピペリジン-4-イル) -7-(4-メチルフェニル) -2, 3-ジヒドロ-1-ベンゾオキセピン-4 -カルボキサミド(化合物 5 9) (0.08 g) を無色プリズムとして得た。 mp 128-130 \mathbb{C} .

- 5 'H-NMR (δ ppm, CDCl₃) 1. 46-1. 67 (12H, m), 1. 96-2. 25 (8H, m), 2. 39 (3H, s), 2. 75-2. 85 (2H, m), 2. 84 (2H, s), 2. 96 (2H, t, J=4. 5Hz), 3. 80-4. 00 (1H, m), 4. 31 (2H, t, J=4. 5Hz), 5. 43 (1H, t, J=8. 6Hz), 5. 74 (1H, d, J=8. 0Hz), 7. 03 (1H, d, J=8. 4Hz), 7. 14 (1H, s), 7. 24 (2H, d, J=8. 8Hz), 7. 40-7. 50 (4H, m). IR (KBr) ν: 3299, 2926, 1647, 1609cm⁻¹.
- Anal. calcd. for $C_{33}H_{42}N_2O_2$: C, 79. 48; H, 8. 49; N, 5. 62. Found C, 79. 60; H, 8. 44; N. 5. 61.

実施例60(化合物60の製造)

N-(4-ピペリジニル)-7-(4-メチルフェニル)-2,3-ジヒドロー1-ベンゾオキセピン-4-カルボキサミド(0.15g)、シクロヘキシルアセトアルデヒド(0.07g)を1,2-ジクロロエタン(10ml)に溶かし、氷冷下、トリアセトキシ水素化ほう素ナトリウム(0.12g)を加え、窒素雰囲気下、室温で一晩撹拌した。溶媒を留去し、IN水酸化ナトリウム水溶液を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、無水硫酸マグネシウムを用いて乾燥した。減圧下溶媒を留去し、粗結晶を得た。酢酸エチル/20-ペキサンから再結晶し、N-(1-(2-シクロヘキシルエチル)ピペリジン-

4-7 (4-メチルフェニル) -2, 3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド (化合物 60) (0. 16g) を無色プリズムとして得た。

mp 193-196℃.

25 'H-NMR(δ ppm, CDCl₃) 0. 80-1. 00 (2H, m), 1. 10-1. 50 (6H, m), 1. 50-1. 74 (7H, m), 1. 95-2. 19 (4H, m), 2. 34-2. 42 (2H, m), 2. 39 (3H, s), 2. 86-2. 98 (4H, m), 3. 80-4. 00 (1H, m), 4. 32 (2H, t, J=4. 7Hz), 5. 74 (1H, d, J=7. 6Hz), 7. 03 (1H, d, J=8. 4Hz), 7. 14 (1H, s), 7. 25 (2H, d, J=9. 2Hz), 7. 40-7. 51 (4H, m). IR(KBr) ν : 3287, 2924, 2851, 1651cm⁻¹.

Anal. calcd. for $C_{31}H_{40}N_2O_2$: C, 78. 77; H, 8. 53; N, 5. 93. Found C, 78. 76; H, 8. 42; N, 6. 05.

実施例61 (化合物61の製造)

N-(4-ピペリジニル)-7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド(0.13g)、37%ホルムアルデヒド水溶液(0.04ml)を1,2-ジクロロエタン(5ml)に懸濁し、氷冷下、トリアセトキシ水素化ほう素ナトリウム(0.11g)を加え、窒素雰囲気下、室温で一晩撹拌した。溶媒を留去し、1N水酸化ナトリウム水溶液を用いて中和、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、無水硫酸マグネシウムを用いて乾燥した。減圧下、溶媒を留去し、粗結晶を得た。酢酸エチル/ヘキサンから再結晶し、N-(1-メチルピペリジン-4-イル)-7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド(化合物61)(0.11g)を無色プリズムとして得た。mp 180-182℃.

- ¹H-NMR (δ ppm, CDCl₃) 1. 47-1. 64 (2H, m), 1. 99-2. 10 (2H, m), 2. 16 (2H, dt, J=2. 2, 11. 5Hz), 2. 31 (3H, s), 2. 39 (3H, s), 2. 81-2. 87 (2H, m), 2. 96 (2H, t, J=4. 6Hz), 3. 83-3. 94 (1H, m), 4. 32 (2H, t, J=4. 6Hz), 5. 72 (1H, d, J=6. 8Hz), 7. 03 (1H, d, J=8. 6Hz), 7. 14 (1H, s), 7. 24 (2H, d, J=9. 2Hz), 7. 40-7. 51 (4H, m).
- 20 IR(KBr) ν : 3287, 2940, 1647, 1607cm⁻¹.

 Anal. calcd. for $C_{24}H_{23}N_2O_2 \cdot 0$. $1H_2O$: C, 76. 20; H, 7. 51; N, 7. 41. Found C, 76. 19; H, 7. 53; N, 7. 38.

参考例99

2-ブロモエチルアミン臭化水素塩(5.0g) および炭酸カリウム(5.0 6g)のTHF/水(20/5ml)溶液に、0℃でクロロギ酸ペンジル(4. 16g)を加え、室温で16時間撹拌した。反応系に水を加え、酢酸エチルで抽 出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃 縮し、2-ブロモエチルカルバミン酸ペンジル(7.32g)を得た。 2-ブロモエチルカルバミン酸ペンジル(7.23g)、4-ピペリジニルカル バミン酸ー t e r t - プチル・ギ酸塩(4.63g) およびトリエチルアミン(8 m1) のアセトニトリル(30m1) 溶液を24時間加熱還流した。減圧下濃縮後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、カラムクロマトグラフィー(酢酸エチル/ヘキサン)で精製し、無色の固体として2-[4-(t e r t - t e r t -

'H-NMR (200MHz, CDCl₃) δ 1. 22-1. 43 (2H, m), 1. 44 (9H, s), 1. 84-1. 97 (2H, m), 2. 01-2. 16 (2H, m), 2. 39-2. 49 (2H, m), 2. 71-2. 85 (2H, m), 3. 23-3. 35 (2H, m), 3. 36-3. 54 (1H, m), 4. 29-4. 54 (1H, m), 5. 10 (2H, s), 5. 18-5. 32 (1H, m), 7. 29-7. 42 (5H, m).

参考例100

2- [4-(tert-プトキシカルボニルアミノ) ピペリジン-1-イル] エチルカルバミン酸ベンジル (3.0g) およびPd-C (0.3g) のエタノール (100ml) 混合物を水素雰囲気下で、3日間激しく撹拌した。Pd-Cをろ過によって除き、減圧下濃縮して無色の油状物として1-(2-アミノエチル)-4-ピペリジニルカルバミン酸-tert-プチル (2.4g) を得た。'H-NMR (200MHz, CDCl₃) δ 1.28-1.46 (2H, m), 1.45 (9H, s), 1.84-2.00 (2H, m), 2.02-2.15 (2H, m), 2.39 (2H, 1, J=6.3 Hz), 2.67-2.88 (4H, m), 3.30-3.56 (1H,

m), 4, 36-4, 57 (1H, m)

参考例101

1-(2-アミノエチル)-4-ピペリジニルカルバミン酸-tert-ブチル(2.4g)、テトラヒドロ-4H-ピラン-4-オン(0,79g)のジクロロエタン(35ml)溶液に、室温で水素化トリアセトキシホウ素ナトリウム(2.19g)を加え、2.5時間撹拌した。反応系に37%ホルマリン(0.65g)および水素化トリアセトキシホウ素ナトリウム(2.19g)を加え、64時間撹拌した。反応系に重曹水を加え、クロロホルムで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、黄色のオイルとして1-[2-[N-メチル-N-(テトラヒドロピラン-4-イル)アミ

ノ] エチル] -4-ピペリジニルカルバミン酸-tert-ブチル(2.72g) を得た。

1-[2-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノ]エチル]-4-ピペリジニルカルバミン酸-tert-プチル(2.72g)のエタノール(30ml)溶液に濃塩酸(10ml)を加え、7時間撹拌した。減圧下濃縮後、残渣にエタノールおよびメタノールを加えさらに濃縮した。析出物をろ過によって集め、エタノールおよびジエチルエーテルで洗浄し、淡黄色の粉末として4-アミノ-1-[2-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノ]エチル]ピペリジン・2塩酸塩(1.65g)を得た。

10 'H-NMR (200MHz, DMSO-d₆) δ 1.64-2.30 (8H, m), 2.76 (3H, s), 2.96-3.84 (12H, m), 3.90-4.06 (2H, m), 8.30-8.54 (1H, m).

実施例62 (化合物62の合成)

(99mg) を得た。

7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンソオキセピン-4 -カルポン酸(150mg)及び1-ヒドロキシベンソトリアゾール(0.14g) のアセトニトリル (10ml) 溶液に、室温で1-エチル-3-(3'-ジ 15 メチルアミノプロピル)カルボジイミド・塩酸塩(0.20g)を加え1時間撹 拌した。反応系に4-アミノ-1-[2-[N-メチル-N-(テトラヒドロピ ラン-4-イル) アミノ] エチル] ピペリジン・2塩酸塩(282mg)、及び トリエチルアミン(0.15ml)およびジアザビシクロ[5,4,0]-7-ウンデセン(0.37g)のアセトニトリル溶液(15ml)を加え、18時間 撹拌した。減圧下濃縮した後、水を加え酢酸エチルで抽出した。有機層を飽和食 塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下溶媒を留去した後、残渣を カラムクロマトグラフィー(トリエチルアミン/エタノール/酢酸エチル1:1 0:10)で精製し、さらに再結晶(酢酸エチル/ヘキサン)で精製し、無色の 結晶として7-(4-メチルフェニル)-N-[1-[2-[N-メチル-N-25 (テトラヒドロピランー4ーイル) アミノ] エチル] ピペリジンー4ーイル] ー 2, 3-ジヒドロー1-ベンソオキセピン-4-カルボキサミド(化合物62)

¹H-NMR (200MHz, CDCl₃) δ 1.51-1.87 (8H, m), 1.95-2.08 (2H, m), 2.17-2.32 (2H,

- m), 2. 34 (3H, s), 2. 39 (3H, s), 2. 52-2. 76 (4H, m), 2. 89-3. 04 (3H, m), 3. 29-3. 44 (2H, m), 3. 80-4. 10 (3H, m), 4. 32 (2H, t, J=4. 8 Hz), 5. 69-5. 79 (1H, m), 7. 03 (1H, d, J=8. 4 Hz), 7. 15 (1H, s), 7. 24 (2H, d, J=8. 8 Hz), 7. 41-7. 51 (4H, m).
- 5 IR (KBr) 3317, 1641, 1616, 1530, 1493, 1331, 1238, 1140, 816 cm⁻¹ 元素分析 C₃₁H₄₁N₃O₃·0.5H₂O Calcd. C, 72.63; H, 8.26; N, 8.20: Found. C, 72.53; H, 8.26; N, 8.20.

参考例102

trans-4-(tert-ブトキシカルボニルアミノメチル)シクロヘキ サンカルボン酸(19.76g)、アジ化ジフェニルホスホリル(25.36g)及びトリエチルアミン(12ml)のトルエン(210ml)溶液を室温で30分間、100℃で30分間撹拌した。反応系にベンジルアルコール(9.7ml)を加え24時間加熱還流した。室温まで冷却後、水を加え酢酸エチルで抽出した。有機層を1N塩酸、水、飽和重曹水及び飽和食塩水で洗浄し、硫酸マグネシウムで洗浄した。減圧下濃縮後、残渣をカラムクロマトグラフィー(酢酸エチル/ヘキサン1:2)及び再結晶(酢酸エチル/ヘキサン)によって精製し、無色の結晶としてtrans-4-(tert-ブトキシカルボニルアミノメチル)シクロヘキシルカルバミン酸ベンジル(18.93g)を得た。

m.p. 130-131 ℃

20 'H NMR (200MHz, CDCl₃) δ 0.96-1.16 (4H, m), 1.44 (9H, s), 1.32-1.50 (1H, m), 1.70-1.83 (2H, m), 1.98-2.12 (2H, m), 2.97 (2H, t, J=6.4 Hz), 3.31-3.56 (1H, m), 4.48-4.65 (2H, m), 5.08 (2H, s), 7.27-7.39 (5H, m).

IR (KBr) 3369, 3344, 1689, 1529, 1282, 1250, 1176 cm⁻¹
元素分析 C₂₀H₃₀N₂O₄ Calcd. C, 66.27; H, 8.34; N, 7.73; Found. C, 66.16; 4.8.11; N, 7.97.

参考例103

t r a n s - 4 - (t e r t - プトキシカルボニルアミノメチル) シクロヘキシルカルバミン酸ベンジル (18.93g) に濃塩酸 (60ml) を加え、室温で16時間撹拌した。反応系にエタノールを加えた後、減圧下濃縮した。残渣に

ジエチルエーテルを加え、析出した結晶をろ過によって集めた。結晶をジエチルエーテルで洗浄し、無色の結晶としてtrans-4-7ミノメチルシクロヘキシルカルバミン酸ペンジル・塩酸塩(11.76g)を得た。

'H-NMR (200MHz, DMSO-d₆) δ 0. 86-1. 32 (4H, m), 1. 39-1. 62 (1H, m), 1. 69-1. 91 (4H, m), 2. 53-2. 70 (2H, m), 3. 12-3. 31 (1H, m), 5. 00 (2H, s), 7. 20 (1H, d, J=7. 8 Hz), 7. 29-7. 46 (5H, m), 7. 92-8. 28 (3H, m).

IR (KBr) 3365, 1693, 1527, 1267, 1232, 1041, 698 cm⁻¹

参考例104

trans-4-アミノメチルシクロヘキシルカルバミン酸ベンジル・塩酸塩

10 (11.56g)、テトラヒドロ-4H-ピラン-4-オン(3.85g)、トリエチルアミン(8ml)及び1,8-ジアザビシクロ[5,4,0]-7-ウンデセン(5.85g)の1,2-ジクロロエタン(100ml)溶液に、室温で水素化トリアセトキシホウ素ナトリウム(8.96g)を加え、14時間撹拌した。反応系に37%ホルマリン(3.43g)及び水素化トリアセトキシホウ素ナトリウムを加え、ごクロロメタンで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(エタノール/酢酸エチル1:4→1:2)で分離精製し、無色の結晶としてtrans-4-[N-メチルーN-(テトラヒドロピラン-4-イル)アミノメチル]シクロヘキシルカルバミン酸ベンジル(8.45g)を得た。

m. p. 81-84 ℃

SALVEL BERES. ST.

'H-NMR (200MHz, CDCl₃) δ 0. 81-1. 16 (4H, m), 1. 22-1. 42 (2H, m), 1. 48-1. 71 (3H, m), 1. 76-1. 91 (2H, m), 1. 96-2. 10 (2H, m), 2. 19 (2H, d, J=7. 0 Hz), 2. 23 (3H, s), 2. 41-2. 59 (1H, m), 3. 25-3. 55 (1H, m), 3. 35 (2H, dt, J=2. 8, 11. 4 Hz), 3. 93-4. 07 (2H, m), 4. 50-4. 64 (1H, m), 5. 09 (2H, s), 7. 26-7. 39 (5H, m).

IR (KBr) 3317, 1713, 1682, 1539, 1265, 1232, 1041, 741 cm⁻¹ 元素分析 C₂₁H₃₂N₂O₃ Calcd. C. 69.97; H. 8.95; N. 7.77; Found. C. 69.57; H. 8.80; N. 7.81.

参考例105

trans-4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]シクロヘキシルカルバミン酸ベンジル(6.00g)及び10%Pd-C(0.6g)のエタノール(100ml)混合物に、室温でギ酸(2.5ml)を滴下し、16時間撹拌した。Pd-Cをろ過によって除き、減圧下濃縮した。残渣にエタノール(100ml)及び濃塩酸(6ml)を加えた後、減圧下濃縮した。残渣にジエチルエーテルを加え、生じた粉末をろ過によって集め、エタノール及びジエチルエーテルで洗浄し、無色の粉末としてtrans-4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]シクロヘキシルアミン・2塩酸塩(4.07g)を得た。

10 ${}^{1}H-NMR$ (200MHz, DMSO-d₆) δ 0. 89-1. 19 (2H, m), 1. 22-1. 50 (2H, m), 1. 59-2. 21 (9H, m), 2. 65-3. 12 (6H, m), 3. 25-3. 52 (2H, m), 3. 89-4. 03 (2H, m), 8. 00-8. 21 (3H, m), 10. 00-10. 19 (1H, m).

IR (KBr) 3440, 1462, 1086, 1012cm⁻¹

実施例63(化合物63の製造)

- 15 7-(4-メチルフェニル)-2,3-ジヒドロベンゾオキセピン-4-カルボン酸(200mg)及び1-ヒドロキシベンゾトリアゾール(145mg)のアセトニトリル(10ml)懸濁液に、室温で1-エチル-3-(3'-ジメチルアミノプロピル)カルボジイミド・塩酸塩(205mg)を加え2時間撹拌した。反応系にtrans-4-[N-メチル-N-(テトラヒドロピラン-4-20 イル)アミノメチル]シクロヘキシルアミン・2塩酸塩(320mg)、1、8

10

m. p. 144-146 ℃

¹H-NMR (200MHz, CDC1₃) δ 0. 92-1. 26 (4H, m), 1. 46-1. 73 (5H, m), 1. 82-1. 96 (2H, m), 2. 02-2. 17 (2H, m), 2. 23 (2H, d, J=8. 4 Hz), 2. 25 (3H, s), 2. 39 (3H, s), 2. 43-2. 63 (1H, m), 2. 96 (2H, t, J=4. 8 Hz), 3. 29-3. 45 (2H, m), 3. 73-3. 92 (1H, m), 3. 96-4. 09 (2H, m), 4. 31 (2H, t, J=4. 8 Hz), 5. 64 (1H, d, J=7. 4 Hz), 7. 02 (1H, d, J=8. 4 Hz), 7. 12 (1H, s), 7. 24 (2H, d, J=9. 2 Hz), 7. 40-7. 50 (4H, m).

IR (KBr) 3323, 1612, 1527, 1493, 1319, 1238, 812 cm⁻¹ 元素分析 C₃₁H₄₀N₂O₃ Calcd. C. 76.19; H, 8.25; N, 5.73; Found. C, 75.90; H, 8.10; N, 5.75.

実施例64(化合物64の製造)

2-(4-メチルフェニル)-6,7-ジヒドロ-5H-ベンゾシクロヘプテン-8-カルボン酸(200mg)及び1-ヒドロキシベンゾトリアゾール(146mg)のアセトニトリル(10ml)懸濁液に、室温で1-エチル-3-(3'15-ジメチルアミノプロピル)カルボジイミド・塩酸塩(207mg)を加え2時間撹拌した。反応系にtrans-4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]シクロヘキシルアミン・2塩酸塩(323mg)、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン(326mg)及びトリエチルアミン(0.2ml)のアセトニトリル溶液(15ml)を加え、10時間撹拌した。減圧下濃縮した後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下溶媒を留去した後、残渣をカラムクロマトグラフィー(エタノール/酢酸エチル1:1)及び再結晶(酢酸エチル/ヘキサン)によって精製し、無色の結晶としてtrans-2-(4-メチルフェニル)-N-[4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]シクロヘキシル]-6,7-ジヒドロー5H-ベンゾシ

クロヘプテン-8-カルボキサミド (化合物 64) (253 mg) を得た。 m.p. 163-165 ℃

 $^{1}\text{H-NMR}$ (200MHz, CDCl₃) δ 0. 88-1. 23 (4H, m), 1. 31-1. 71 (5H, m), 1. 80-1. 95 (2H, m), 1. 99-2. 18 (4H, m), 2. . 23 (2H, d, J=8. 4 Hz), 2. 25 (3H, s), 2. 39 (3H,

s). 2.43-2.65 (3H, m). 2.76-2.88 (2H, m). 3.26-3.43 (2H, m). 3.69-3.92 (1H, m). 3.95-4.06 (2H, m). 5.64-5.75 (1H, m). 7.17-7.26 (3H, m). 7.38-7.50 (5H, m).

IR (KBr) 3354, 1641, 1616, 1514, 1446, 812 cm⁻¹

5 元素分析 $C_{32}H_{42}N_2O_2 \cdot 0.1H_2O$ Calcd. C, 78.68; H, 8.71; N, 5.73: Found. C, 78.44; H, 8.64; N, 5.70.

参考例106

trans-4-アミノメチルシクロヘキシルカルバミン酸ペンジル・塩酸塩(5.0g)、4-ピペリドン-1-カルボン酸-tert-ブチル(3.31) g)及び1,8-ジアザビシクロ[5,4,0]-7-ウンデセン(2.53g)のアセトニトリル/THF(50/100ml)溶液に室温で、水素化トリアセトキシホウ素ナトリウム(3.87g)を加え、9時間撹拌した。さらに反応系に37%ホルマリン(1.48g)及び水素化トリアセトキシホウ素ナトリウム(3.9g)を加え、さらに64時間撹拌した。減圧下溶媒を留去した後、水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、析出した結晶をろ過によって集めた。結晶をジエチルエーテルで洗浄し、無色の結晶としてtrans-4-[N-[4-(N-ペンジロキシカルボニルアミノ)シクロヘキシルメチル]-N-メチルアミノ]ピペリジン-1-カルボン酸-tert-ブチル(5.28g)を得た。

- 1.80-2.44 (5H, m), 2.52-3.00 (4H, m), 1.46 (9H, s), 1.53-1.72 (4H, m), 1.80-2.44 (5H, m), 2.52-3.00 (4H, m), 2.77 (3H, s), 3.19-3.56 (2H, m), 4.19-4.41 (2H, m), 4.61-4.71 (1H, m), 5.08 (2H, s), 7.29-7.42 (5H, m). IR (KBr) 3242, 1713, 1687, 1537, 1422, 1248, 1169, 1045, 746 cm⁻¹ 参考例 1 0 7

で洗浄し、無色の結晶としてt r a n s -4 - [N-(4-アミノシクロヘキシルメチル) - N-メチルアミノ] ピペリジン<math>-1 - カルボン酸-t e r t - プチル (2.80g) を得た。

 $^{1}H-NMR$ (200MHz, CDCl₃) δ 0.75-1.00 (2H, m), 1.24-1.56 (5H, m), 1.45 (9H, s),

5 1. 59-1. 74 (2H, m), 1. 79-1. 95 (2H, m), 2. 00-2. 26 (4H, m), 2. 21 (3H, s), 2. 33-2. 52 (1H, m), 2. 55-2. 76 (2H, m), 2. 81-3. 04 (1H, m), 3. 45-4. 00 (2H, m), 4. 04-4. 28 (2H, m).

IR (KBr) 2925, 1687, 1433, 1267, 1246, 1169 cm⁻¹ 実施例 6 5 (化合物 6 5 の製造)

- 7-(4-メチルフェニル)-2, 3-ジヒドロ-1-ベンゾオキセピン-4-カルボン酸(400mg)及び1-ヒドロキシベンゾトリアゾール(289mg)のアセトニトリル(20ml)懸濁液に、室温で1-エチル $-3-(3^{\circ}-$ ジメチルアミノプロピル)カルボジイミド・塩酸塩(0.41g)を加え2時間 撹拌した。反応系に t r a n s -4-[N-(4-アミノシクロヘキシルメチル)
- 15 $-N-メチルアミノ] ピペリジン-1-カルボン酸-tert-プチル(698 mg)及びトリエチルアミン(0.4ml)のアセトニトリル溶液(30ml)を加え、20時間撹拌した。減圧下濃縮した後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下溶媒を留去した後、残渣をカラムクロマトグラフィー(エタノール/酢酸エチル<math>1:3\rightarrow 1:$
- 20 2)及び再結晶(酢酸エチル/ヘキサン)によって精製し、無色の結晶として t rans-N-[4-[N-(1-tert-プトキシカルボニルピペリジン-4-イル)-N-メチルアミノメチル]シクロヘキシル]-7-(4-メチルフェニル)-2, 3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド(化合物 65) (560 mg)を得た。
- 25 m.p. 146-150 ℃

COMPANY CONTRACTOR CONTRACTOR

'H-NMR (200MHz, CDCl₃) δ 0.94-1.32 (4H, m), 1.46 (9H, s), 1.55-1.79 (5H, m), 1.81-1.96 (2H, m), 2.01-2.12 (2H, m), 2.22 (2H, d, J=9.0 Hz), 2.25 (3H, s), 2.39 (3H, s), 2.36-2.54 (1H, m), 2.57-2.76 (2H, m), 2.96 (2H, t, J=4.4 Hz), 3.72-3.93 (1H, m), 4.04-4.22 (2H, m), 4.31 (2H, t, J=4.4 Hz), 5.66 (1H, d,

5

J=7.8 Hz), 7.02 (1H, d, J=8.4 Hz), 7.12 (1H, s), 7.19-7.28 (2H, m), 7.38-7.52 (4H, m).

IR (KBr) 3352, 1701, 1686, 1618, 1527, 1491, 1425, 1240, 1163, 1043, 812 cm⁻¹ 元素分析 C₃₆H₄₉N₃O₄ Calcd. C, 73.56; H, 8.40; N, 7.15; Found. C, 73.38; H, 8.13; N, 7.16.

実施例66(化合物66の製造)

t r a n s - N - [4 - [N - (1 - t e r t - プトキシカルボニルピペリジン-4 - イル) - N - メチルアミノメチル]シクロヘキシル] - 7 - (4 - メチルフェニル) - 2, 3 - ジヒドロ-1 - ベンゾオキセピン-4 - カルボキサミド (0.41g)のエタノール(30ml)溶液に、室温で濃塩酸(5ml)を加え、2日間撹拌した。減圧下濃縮後、生じた結晶を再結晶(エタノール/ジエチルエーテル)によって精製し、無色の結晶として<math>t r a n s - N - [4 - [N - (ピペリジン-4 - イル) - N - メチルアミノメチル]シクロヘキシル] - 7 - (4 - メチルフェニル) - 2, 3 - ジヒドロ-1 - ベンゾオキセピン-4 - カル ボキサミド・2 塩酸塩(化合物 6 6) (381mg)を得た。

m. p. 249 ℃ (dec.)

¹H-NMR (200MHz, DMSO-d₆) δ 0. 93-1. 47 (4H, m), 1. 62-2. 28 (9H, m), 2. 34 (3H, s), 2. 73 (3H, s), 2. 79-3. 10 (4H, m), 3. 25-3. 71 (3H, m), 4. 15-4. 54 (5H, m), 7. 01 (1H, d. J=8. 4 Hz), 7. 19-7. 28 (3H, m), 7. 48-7. 57 (3H, m), 7. 62-7. 68 (1H,

20 m), 7.91 (1H, d, J=7.8 Hz), 8.98-9.29 (1H, m).

IR (KBr) 3390, 2939, 1639, 1493, 1460, 1352, 1267 cm⁻¹ 元素分析 C₃₁H₄₃N₃O₂·2.5H₂O Calcd. C, 61.48; H, 7.99; N, 6.94; Found. C, 61.68; H, 7.54; N, 6.91.

実施例67(化合物67の製造)

ノメチル]シクロヘキシルアミン・2塩酸塩(253mg)、1,8ージアザビ シクロ[5, 4, 0]-7-ウンデセン(257mg)及びトリエチルアミン(0. 16ml)のアセトニトリル溶液(20ml)を加え、5時間撹拌した。減圧下 濃縮した後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫 5 酸マグネシウムで乾燥した。減圧下溶媒を留去した後、残渣をカラムクロマトグ ラフィー (エタノール/酢酸エチル1:1) 及び再結晶 (酢酸エチル/ヘキサン) によって精製し、無色の結晶として trans-6-(4-メチルフェニル)- $N - [4 - [N - \lambda + N - N - (+ r) + r]$ シクロヘキシル] -2H-1-ベンゾピラン-3-カルボキサミド(化合物67) (144mg)を得た。

m. p. 141-143 ℃

10

 $^{1}H-NMR$ (200MHz, CDCl₃) δ 0.92-1.31 (4H, m), 1.49-1.71 (5H, m), 1.82-1.95 (2H, m), 1.98-2.13 (2H, m), 2.24 (2H, d, J=8.8 Hz), 2.26 (3H, s), 2.39 (3H, s), 2. 44-2. 63 (1H, m), 3. 28-3. 42 (2H, m), 3. 70-3. 92 (1H, m), 3. 95-4. 06 (2H, m),

15 5. 02 (2H, s), 5. 65 (1H, d, J=8. 8 Hz), 6. 90 (1H, d, J=8. 6 Hz), 6. 97 (1H, s), 7. 21-7. 30 (3H, m), 7. 40-7. 44 (3H, m).

IR (KBr) 3315, 1647, 1606, 1545, 1487, 1336, 1240, 1142, 808 cm⁻¹ 元素分析 C₃₀H₃₈N₂O₃ Calcd. C, 75.92; H, 8.07; N, 5.90: Found. C, 75.22; H, 7. 96; N, 5. 90.

実施例68(化合物68の製造)

3-(4-メチルフェニル)-2H-1-ベンゾピラン-6-カルボン酸(1 50mg) 及び1-ヒドロキシベンソトリアゾール(114mg)のアセトニト リル(15m1)懸濁液に、室温で1-エチル-3-(3'-ジメチルアミノプ ロピル)カルボジイミド・塩酸塩(162mg)を加え2時間撹拌した。反応系 にtrans-4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミ ノメチル] シクロヘキシルアミン・2塩酸塩(253mg)、1,8-ジアザビ シクロ [5, 4, 0] - 7 -ウンデセン (257mg) 及びトリエチルアミン (0.5)16ml)のアセトニトリル溶液(20ml)を加え、4時間撹拌した。減圧下 機縮した後、水を加えクロロホルムで抽出した。有機層を飽和食塩水で洗浄し、

5

m. p. 205-207 ℃

 1 H-NMR (200MHz, CDC1₃) δ 0. 96-1. 27 (4H, m), 1. 52-1. 76 (5H, m), 1. 83-1. 96 (2H, m), 2. 04-2. 20 (2H, m), 2. 24 (2H, d, J=7. 8 Hz), 2. 26 (3H, s), 2. 38 (3H, s),

10 2. 45-2. 62 (1H, m), 3. 29-3. 45 (2H, m), 3. 83-4. 09 (3H, m), 5. 22 (2H, d, J=1. 4 Hz), 5. 82 (1H, d, J=6. 8 Hz), 6. 79 (1H, s), 6. 84 (1H, d, J=7. 8 Hz), 7. 21 (2H, d, J=8. 0 Hz), 7. 34 (2H, d, J=8. 0 Hz), 7. 46-7. 51 (2H, m).

IR (KBr) 3356, 1633, 1529, 1493, 1331, 1221, 1140, 808 cm⁻¹

元素分析 C₃₀H₃₈N₂O₃ Calcd. C, 75.92; H, 8.07; N, 5.90: Found. C, 75.82;

15 H, 8. 08; N, 5. 93.

実施例69 (化合物69の製造)

2-(4-メチルフェニル)-7, 8-ジヒドロ-6H-シクロヘプタ [b] チオフェン-5-カルボン酸(150mg)及び1-ヒドロキシベンゾトリアゾール(107mg)のアセトニトリル(15m1)懸濁液に、室温で1-エチル-3-(3'-ジメチルアミノプロピル)カルボジイミド・塩酸塩(152mg)

を加え 2 時間撹拌した。反応系に t r a n s -4 - [N - λ + ν - N - (+ + ν +

- を加え、20時間撹拌した。減圧下濃縮した後、水を加え酢酸エチルで抽出した。 有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下溶媒を留去 した後、残渣をカラムクロマトグラフィー(エタノール/酢酸エチル1:2→2:
 3)及び再結晶(酢酸エチル/ヘキサン)によって精製し、淡黄色の結晶として

トラヒドロピラン-4-イル)アミノメチル]シクロヘキシル]-7,8-ジヒドロ-6H-シクロヘプタ [b] チオフェン-5-カルボキサミド(化合物 6 9) (137mg)を得た。

m. p. 192-197 ℃

- ¹H-NMR (200MHz, CDCl₃) δ 0. 81-1. 23 (4H, m), 1. 52-1. 72 (5H, m), 1. 80-1. 95 (2H, m), 2. 00-2. 15 (4H, m), 2. 24 (2H, d, J=8. 8 Hz), 2. 26 (3H, s), 2. 36 (3H, s), 2. 43-2. 63 (1H, m), 2. 65-2. 77 (2H, m), 3. 01-3. 10 (2H, m), 3. 27-3. 44 (2H, m), 3. 66-3. 92 (1H, m), 3. 96-4. 07 (2H, m), 5. 62 (1H, d, J=8. 0 Hz), 7. 05 (2H, s), 7. 17 (2H, d, J=7. 8 Hz), 7. 42 (2H, d, J=7. 8 Hz).
- 10 IR (KBr) 3278, 1641, 1608, 1535, 1452, 1319, 1236, 1140, 810 cm⁻¹ 元素分析 C₃₀H₄₀N₂O₂S·0, 2H₂O Calcd. C, 72, 60; H, 8, 20; N, 5, 64; Found. C, 72, 58; H, 8, 03; N, 5, 65.

実施例70 (化合物70の製造)

- 2-メチル-6-(4-メチルフェニル)キノリン-3-カルボン酸(150 mg)及び1-ヒドロキシベンゾトリアゾール(109 mg)のアセトニトリル(15m1)懸濁液に、室温で1-エチル-3-(3'-ジメチルアミノプロピル)カルボジイミド・塩酸塩(156 mg)を加え 2 時間撹拌した。反応系に t rans-4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]シクロヘキシルアミン・2 塩酸塩(242 mg)、1、8-ジアザビシク
- 20 ロ[5, 4, 0] 7 ウンデセン(246 mg)及びトリエチルアミン(0.15 ml)のアセトニトリル溶液(15 ml)を加え、4日間撹拌した。減圧下濃縮した後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下溶媒を留去した後、残渣をカラムクロマトグラフィー(エタノール/酢酸エチル1:2→1:1)及び再結晶(酢酸エチル/
- 25 ヘキサン) によって精製し、無色の結晶としてt r a n s -2 x + x

m. p. 163-165 ℃

'H-NMR (200MHz, CDC1₃) δ 0. 93-1. 34 (4H, m), 1. 52-1. 75 (5H, m), 1. 86-2. 00 (2H, m), 2. 12-2. 32 (2H, m), 2. 26 (2H, d, J=5. 4 Hz), 2. 27 (3H, s), 2. 43 (3H, s), 2. 45-2. 65 (1H, m), 2. 83 (3H, s), 3. 29-3. 43 (2H, m), 3. 86-4. 09 (3H, m), 5. 84 (1H, d, J=8. 8 Hz), 7. 30 (2H, d, J=8. 1 Hz), 7. 59 (2H, d, J=8. 1 Hz), 7. 91 (1H, d, J=8. 2 Hz), 7. 98 (4H, d, J=8. 2 Hz), 7. 91 (1H, d, J=8. 2 Hz), 7. 98 (4H, d, J=8. 2 Hz), 8. 00 (2H, m)

5 d, J=2. 2 Hz), 7. 98 (1H, dd, J=8. 8, 2. 2 Hz), 8. 04-8. 09 (2H, m).

IR (KBr) 3277, 1639, 1539, 1491, 1448, 1140, 812 cm⁻¹

元素分析 $C_{31}H_{39}N_3O_2 \cdot 0.2H_2O$ Calcd. C, 76.10; H, 8.12; N, 8.59; Found. C, 76.00; H, 8.03; N, 8.60.

実施例71 (化合物71の製造)

- (E) -3-[5-(4-メチルフェニル) チオフェン-2-イル] アクリル酸(200mg) 及び1-ヒドロキシベンゾトリアゾール(166mg)のアセトニトリル(10ml) 懸濁液に、室温で1-エチル-3-(3'-ジメチルアミノプロピル) カルボジイミド・塩酸塩(235mg) を加え2時間撹拌した。反応系にtrans-4-[N-メチル-N-(テトラヒドロピラン-4-イル) アミノメチル] シクロヘキシルアミン・2塩酸塩(368mg)、トリエチルアミン(0.23ml)及び1、8-ジアザビシクロ[5、4、0]-7-ウンデセン(374mg)のアセトニトリル(10ml)溶液を加え、さらに18時間撹拌した。減圧下溶媒を留去した後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、カラムクロマトグラフィー(エタノール/酢酸エチル1:1)及び再結晶(エタノール/酢
 - 酸エチル)によって精製し、黄色の結晶としてt r a n s (E) N [4 (N x + x
- 25 m. p. 199-201 °C
 'H-NMR (200MHz, CDC1₃) δ 0. 95-1. 27 (4H, m), 1. 48-1. 70 (5H, m), 1. 80-1. 93 (2H, m), 2. 02-2. 14 (2H, m), 2. 23 (2H, dd, J=8. 8 Hz), 2. 25 (3H, s), 2. 37 (3H, s), 2. 42-2. 61 (1H, m), 3. 28-3. 43 (2H, m), 3. 74-3. 93 (1H, m), 3. 96-4. 06 (2H, m),

5. 35 (1H, d, J=8. 2 Hz), 6. 13 (1H, d, J=15. 2 Hz), 7. 14-7. 22 (4H, m), 7. 49 (2H.

d, J=8. 0 Hz), 7. 69 (1H, d, J=15. 2 Hz).

IR (KBr) 3273, 1645, 1603, 1549, 1456, 1236, 1211, 797 cm⁻¹

元素分析 C₂₇H₃₆N₂O₂S·O. 2H₂O Calcd. C, 71.08; H, 8.04; N, 6.14: Found. C, 71.11; H, 7.99; N, 6.17

- 5 実施例72(化合物72の製造)
 - (E) -3-[4-(4-メチルフェニル) チオフェン-2-イル] アクリル酸 (150mg) 及び1-ヒドロキシベンゾトリアゾール(124mg)のアセトニトリル(10ml)懸濁液に、室温で1-エチル-3-(3)-ジメチルアミノプロピル)カルボジイミド・塩酸塩(177mg)を加え2時間撹拌した。
- 10 反応系にtrans-4-[N-メチル-N-(テトラヒドロピラン-4-イル) アミノメチル]シクロヘキシルアミン・2塩酸塩(276mg)、1,8-ジア ザビシクロ[5,4,0]-7-ウンデセン(281mg)及びトリエチルアミン(0.17ml)のアセトニトリル溶液(15ml)を加え、16時間撹拌した。減圧下濃縮した後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で 洗浄し、硫酸マグネシウムで乾燥した。減圧下溶媒を留去した後、残渣をカラム
- 15 洗浄し、硫酸マグネシウムで乾燥した。減圧下溶媒を留去した後、残渣をカラムクロマトグラフィー(エタノール/酢酸エチル1:2)及び再結晶(エタノール)によって精製し、無色の結晶として(trans, E)-3-[4-(4-メチルフェニル)チオフェン-2-イル]-N-[4-[N-メチルーN-(テトラヒドロピラン-4-イル)アミノメチル]シクロヘキシル]アクリルアミド(化
- 20 合物72) (191mg) を得た。

m. p. 180-183 ℃

'H-NMR (200MHz, CDCl₃) δ 0. 94-1. 26 (4H, m). 1. 50-1. 74 (5H, m), 1. 79-1. 94 (2H, m), 2. 01-2. 15 (2H, m), 2. 23 (2H, d, J=8. 4 Hz), 2. 25 (3H, s), 2. 37 (3H, s), 2. 42-2. 62 (1H, m), 3. 36 (2H, dt, J=2. 8, 11. 0 Hz), 3. 75-3. 94 (1H, m), 3. 96-4. 06 (2H, m), 5. 41 (1H, d, J=8. 4 Hz), 6. 18 (1H, d, J=15. 4 Hz), 7. 21 (2H, d, J=8. 0 Hz), 7. 36 (1H, s), 7. 43-7. 48 (3H, m), 7. 75 (1H, d, J=15. 4 Hz).

IR (KBr) 3317, 1649, 1614, 1539, 1333, 1201, 816 cm⁻¹

元素分析 C₂₇H₃₆N₂O₂S Calcd. C, 71.64; H, 8.02; N, 6.19: Found. C, 71.34; H, 7.97; N, 6.29.

実施例73 (化合物73の製造)

(E) -3- [5-(4-メチルフェニル) ピリジン-3-イル] アクリル酸 (150mg) 及び1-ヒドロキシベンゾトリアゾール (134mg) のアセト ニトリル (15m1) 懸濁液に、室温で1-エチル-3-(3'-ジメチルアミ ノプロピル)カルボジイミド・塩酸塩 (O. 19g) を加え2時間撹拌した。反 応系にtrans-4-[N-メチル-N-(テトラヒドロピラン-4-イル) アミノメチル] シクロヘキシルアミン・2塩酸塩(198mg)、1, 8-ジア ザビシクロ[5,4,0]-7-ウンデセン(0.2g)及びトリエチルアミン (0.18m1) のアセトニトリル溶液(20m1) を加え、64時間撹拌した。 減圧下濃縮した後、水を加えクロロホルムで抽出した。有機層を飽和食塩水で洗 10 浄し、硫酸マグネシウムで乾燥した。減圧下溶媒を留去した後、析出した固体を 再結晶 (エタノール/酢酸エチル) によって精製し、無色の結晶として (tra ns, E) -3-[5-(4-メチルフェニル) ピリジン-3-イル] -N-[4 -[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]シクロ ヘキシル] アクリルアミド(化合物73)(226mg)を得た。 15

m. p. 233-236 ℃

'H-NMR (200MHz, CDC1₃) δ 0.96-1.30 (4H, m), 1.51-1.71 (5H, m), 1.81-1.95 (2H, m), 2.03-2.18 (2H, m), 2.23 (2H, d, J=8.0 Hz), 2.25 (3H, s), 2.42 (3H, s), 2.45-2.61 (1H, m), 3.36 (2H, dt, J=3.0, 11.4 Hz), 3.77-4.08 (3H, m), 5.53 (1H, d, J=9.2 Hz), 6.50 (1H, d, J=15.4 Hz), 7.30 (2H, d, J=8.1 Hz), 7.49 (2H, d, J=8.1 Hz), 7.67 (1H, d, J=15.4 Hz), 7.93 (1H, dd, J=2.2, 2.2 Hz), 8.69

IR (KBr) 3302. 1659, 1612, 1541, 1344. 976. 822 cm⁻¹

(1H, d, J=2. 2 Hz), 8.78 (1H, d, J=2. 2 Hz).

元素分析 C₂₅H₃₇N₃O₂ Calcd. C, 75.13; H, 8.33; N, 9.39; Found. C, 75.06;

25 H, 8.11; N, 9.34.

実施例74 (化合物74の製造)

(E) -3-[4-(4-メチルフェニル) フラン-2-イル] アクリル酸(150mg)及び<math>1-ヒドロキシベンゾトリアゾール(133mg)のアセトニトリル(15ml)懸濁液に、室温で1-エチル-3-(3'-ジメチルアミノプ

ロピル)カルボジイミド・塩酸塩(189mg)を加え2時間撹拌した。反応系に trans-4-[N-メチル-N-(テトラヒドロピラン-4-イル) アミノメチル] シクロヘキシルアミン・<math>2塩酸塩(295mg)、1, 8-ジアザビシクロ[5, 4, 0]-7-ウンデセン(0.3g)及びトリエチルアミン(0.

- 5 18ml)のアセトニトリル溶液(15ml)を加え、4日間撹拌した。減圧下 濃縮した後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫 酸マグネシウムで乾燥した。減圧下溶媒を留去した後、残渣をカラムクロマトグ ラフィー(エタノール/酢酸エチル1:3→1:2)及び再結晶(酢酸エチル/ ヘキサン)によって精製し、淡黄色の結晶として(trans, E)-3-[4
- 10 -(4-メチルフェニル)フラン-2-イル]-N-[4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノメチル]シクロヘキシル]アクリルアミド(化合物 74) (137mg)を得た。

m.p. 165-167 ℃

'H-NMR (200MHz, CDCl₃) δ 0. 87-1. 28 (4H, m), 1. 47-1. 66 (5H, m), 1. 76-1. 96 (2H, m), 2. 02-2. 15 (2H, m), 2. 22 (2H, d, J=8. 4 Hz), 2. 24 (3H, s), 2. 38 (3H, s), 2. 42-2. 60 (1H, m), 3. 28-3. 42 (2H, m), 3. 73-3. 92 (1H, m), 3. 95-4. 06 (2H, m), 5. 40 (1H, d, J=8. 8 Hz), 6. 33 (1H, d, J=15. 4 Hz), 6. 60 (1H, d, J=3. 4 Hz), 6. 65 (1H, d, J=3. 4 Hz), 7. 20 (2H, d, J=8. 0 Hz), 7. 39 (1H, d, J=15. 4 Hz), 7. 60 (2H, d, J=8. 0 Hz).

20 IR (KBr) 3319, 1651, 1614, 1541, 1989, 1219, 1142, 955, 779 cm⁻¹ 元素分析 C₂₇H₃₆N₂O₃ Calcd. C, 74, 28; H, 8, 31; N, 6, 42; Found. C, 74, 13; H, 8, 07; N, 6, 36.

実施例75 (化合物75の製造)

trans-(E) -N-[4-(N-メチル-N-(テトラヒドロピランー25 4-イル) アミノメチルシクロヘキシル] -3-[5-(4-メチルフェニル)チオフェン-2-イル] アクリルアミド(100mg) のDMF(3ml)溶液に、室温でヨウ化メチル(0.03ml)を加え、24時間撹拌した。減圧下溶媒を留去し、エタノールを加えた。析出した結晶をろ過によって集め、淡黄色の結晶としてヨウ化-N, N-ジメチル-N-[trans-4-[(E)-3-

[5-(4-メチルフェニル)-2-チェニル]-2-プロペノイルアミノ]シクロヘキシルメチル<math>]-4-テトラヒドロピラニルアンモニウム(化合物 [5-(8.7)] を得た。

m. p. 229-232 ℃

- 5 H-NMR (200MHz, DMS0-d₆) δ 1. 12-1. 37 (4H, m), 1. 63-2. 05 (8H, m), 2. 33 (3H, s), 2. 99 (6H, s), 3. 10-3. 23 (2H, m), 3. 26-3. 42 (3H, m), 3. 46-3. 80 (2H, m), 3. 97-4. 11 (2H, m), 6. 35 (1H, d, J=15. 4 Hz), 7. 25 (2H, d, J=8. 0 Hz), 7. 34 (1H, d, J=4. 1 Hz), 7. 44 (1H, d, J=4. 1 Hz), 7. 53 (1H, d, J=15. 4 Hz), 7. 56 (2H, d, J=8. 0 Hz), 8. 03 (1H, d, J=7. 6 Hz).
- 10 IR (KBr) 3442, 3240, 2933, 1653, 1606, 1543, 1452, 808 cm⁻¹ 元素分析 C₂₈H₃₉N₂O₂SI·O. 3H₂O Calcd. C, 56.05; H, 6.65; N, 4.67; Found. C, 55.95; H, 6.50; N, 4.70.

参考例 108

- 7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4
 15 -カルボン酸(1.2g)をジクロロメタン(10ml)に懸濁し、氷冷下、オキサリルクロリド(1.1ml)、ジメチルホルムアミド(触媒量)を加え、室温で、2時間撹拌した。溶媒を留去後、テトラヒドロフラン(15ml)に溶かし、4-トリフルオロアセトアミドピペリジン(0.85g)とトリエチルアミン(1.8ml)のテトラヒドロフラン(10ml)溶液中に氷冷下、滴下した。
- 20 窒素雰囲気下、室温で一晩撹拌した。溶媒を留去し、水を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、無水硫酸マグネシウムを用いて乾燥した。減圧下、溶媒を留去し、粗結晶(1.8g)を得た。酢酸エチル/ヘキサンから再結晶し、1-(7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4-カルボニル)-4-トリフルオロアセトアミドピペリジンを無色プリズムとして得た。

mp 189-192℃.

¹H-NMR (δ ppm, CDCl₃) 1. 40-1. 62 (2H, m), 2. 05-2. 15 (2H, m), 2. 39 (3H, s), 2. 90 (2H, t, J=4. 4Hz), 2. 98-3. 15 (2H, m), 4. 00-4. 20 (1H, m), 4. 34 (2H, t, J=4. 4Hz), 4. 34-4. 45 (2H, m), 6. 30 (1H, d, J=8. 0Hz), 6. 47 (1H, s), 7. 04 (1H, d, J=8. 0Hz),

7. 24 (2H, d, J=7. 8Hz), 7. 35-7. 45 (4H, m).

IR(KBr) ν : 3250, 2926, 1715cm⁻¹.

Anal. calcd. for $C_{25}H_{25}F_3N_2O_3$: C. 65. 49; H. 5. 50; N. 6. 11. Found C. 65. 32; H. 5. 57; N. 6. 08.

5 実施例76(化合物76の製造)

1-(7-(4-メチルフェニル)-2, 3-ジヒドロ-1-ベンゾオキセピン-4-カルボニル)-4-トリフルオロアセトアミドピペリジン(1.6g)をメタノール(100ml)に溶かし、1N水酸化ナトリウム(7ml)を加え、室温で一晩撹拌した。濃縮後、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、無水硫酸マグネシウムを用いて乾燥した。減圧下、溶媒を留去し、粗料を得た、酢酸エチルノへキサンから再結晶し、4-アミノ-1-(7-(4

結晶を得た。酢酸エチル/ヘキサンから再結晶し、4-アミノ-1-(7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4-カルボニル)ピペリジン(化合物 76)(1.1g)を無色プリズムとして得た。

mp 123-127℃.

15 H-NMR (δ ppm, CDC1₃) 1. 22-1. 40 (2H, m), 1. 80-1. 95 (2H, m), 2. 39 (3H, s), 2. 90 (2H, t, J=4. 4Hz), 2. 92-3. 05 (3H, m), 4. 14-4. 36 (2H, m), 4. 34 (2H, t, J=4. 4Hz), 6. 46 (1H, s), 7. 04 (1H, d, J=8. 0Hz), 7. 24 (2H, d, J=8. 0Hz), 7. 37-7. 46 (4H, m).

IR(KBr) ν : 2938, 1605cm⁻¹.

20 Anal. calcd. for $C_{23}H_{26}N_2O_2$: C, 76. 21; H, 7. 23; N, 7. 73. Found C, 75. 92; H, 7. 14; N, 7. 77.

実施例77 (化合物77の製造)

4-アミノ-1-(7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4-カルボニル)ピペリジン(0,3g)、テトラヒドロ-4

H-ピラン-4-オン(0,083g)を1,2ジクロロエタン(6m1)に溶かし、氷冷下、トリアセトキシ水素化ほう素ナトリウム(0,25g)を加え、窒素雰囲気下、室温で一晩撹拌した。溶媒を留去し、1N水酸化ナトリウム水溶液を用いて中和、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、無水硫酸マグネシウムを用いて乾燥した。減圧下、溶媒を留去し、残渣を酢酸エチ

5

ルに溶かし4N塩酸/酢酸エチル(0.5ml)を加え、析出した粉末をろ取した。ヘキサンで洗い、1-(7-(4-メチルフェニル)-2,3-ジヒドロー1-ベンゾオキセピン-4-カルボニル)-4-((テトラヒドロピラン-4-イル)アミノ)ピペリジン塩酸塩(化合物77)(0.35g)を無色アモルファスとして得た。

¹H-NMR(δ ppm, DMS0-d₆) 1. 62 (4H, br), 1. 93-2. 13 (4H, m), 2. 34 (3H, s), 2. 80 (2H, s-like), 2. 98 (2H, br), 3. 40-3. 53 (4H, m), 3. 89-3. 94 (2H, m), 4. 17-4. 28 (4H, m), 6. 54 (1H, s), 7. 02 (1H, d, J=8. 4Hz), 7. 24 (2H, d, J=7. 8Hz), 7. 46-7. 61 (4H, m), 9. 07 (2H, br).

10 IR(KBr) ν : 2951, 2791, 2737, 2693, 1620cm⁻¹.

Anal. calcd. for $C_{28}H_{34}N_2O_3 \cdot HCl \cdot 0$. $2H_2O$: C, 69. 11; H, 7. 33; N, 5. 76. Found C, 69. 08; H, 7. 20; N, 5. 97.

実施例78 (化合物78の製造)

1-(7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピ ン-4-カルボニル)-4-((テトラヒドロピラン-4-イル)アミノ)ピペリジン塩酸塩(0.2g)、37%ホルマリン(0.05ml)、トリエチルアミン(0.06ml)を1,2-ジクロロエタン(5ml)に懸濁し、氷冷下、トリアセトキシ水素化ほう素ナトリウム(0.13g)を加え、窒素雰囲気下、室温で一晩撹拌した。溶媒を留去し、1N水酸化ナトリウム水溶液を用いて中和、

- 20 酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、無水硫酸マグネシウムを用いて乾燥した。減圧下、溶媒を留去し、残渣を酢酸エチルに溶かし4 N塩酸/酢酸エチル (0.5 ml)を加え、析出した粉末をろ取した。ジエチルエーテルで洗い、1-(7-(4-メチルフェニル)-2,3-ジヒドロ-1-ペンソオキセピン-4-カルボニル)-4-((N-メチル-N-(テトラヒドロピラン-4-イル))アミノ)ピペリジン塩酸塩(化合物78)(0.19g)を無色アモルファスとして得た。
 - 'H-NMR(δ ppm, DMSO-d₆) 1.60-1.85 (4H, m), 1.85-2.20 (4H, m), 2.34 (3H, s), 2.67 (3H, d, J=4.6Hz), 2.80 (2H, t-like), 2.96 (2H, br), 3.29-3.46 (3H, m), 3.70 (1H, br), 3.94-4.00 (2H, m), 4.25 (2H, br), 4.28 (2H, t-like), 6.59 (1H,

s), 7. 03 (1H, d, J=8. 4Hz), 7. 25 (2H, d, J=8. 0Hz), 7. 46-7. 55 (3H, m), 7. 64 (1H, d, J=2. 6Hz), 10. 07 (1H, br).

IR(KBr) ν: 2963, 2649, 1605cm⁻¹.

Anal. calcd. for $C_{29}H_{36}N_2O_3 \cdot HC1 \cdot H_2O$: C, 67. 62; H, 7. 63; N, 5. 44. Found C, 67. 48; 5 H, 7. 65; N, 5. 43.

参考例109

7- (4-メチルフェニル) -2, 3-ジヒドロ-1-ベンゾオキセピン-4-カルバルデヒド(2.0g)、4-トリフルオロアセトアミドピペリジン(1.56g)を1,2-ジクロロエタン(50ml)に溶かし、氷冷下、トリアセト1・シ水素化ほう素ナトリウム(1.8g)を加え、窒素雰囲気下、室温で撹拌した。トリエチルアミン(1.1ml)、トリアセトキシ水素化ほう素ナトリウム(0.8g)を加え、窒素雰囲気下、室温で一晩撹拌した。溶媒を留去し、炭酸水素ナトリウム水溶液を用いて中和、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、無水硫酸マグネシウムを用いて乾燥した。減圧下、溶媒を留去し、粗結晶(3.0g)を得た。一部を酢酸エチル/ヘキサンから再結晶し、1-(7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4-イルメチル)-4-トリフルオロアセトアミドピペリジンを淡黄色結晶として得た。

mp 94-96℃.

- 20 'H-NMR(δ ppm, CDCl₃) 1. 43-1. 61 (2H, m), 1. 96-2. 17 (4H, m), 2. 38 (3H, s), 2. 69 (2H, t, J=4. 8Hz), 2. 82-2. 88 (2H, m), 3. 05 (2H, s), 3. 75-3. 95 (1H, m), 4. 26 (2H, t, J=4. 8Hz), 6. 13 (1H, d, J=7. 2Hz), 6. 35 (1H, s), 6. 99 (1H, d, J=8. 0Hz), 7. 22 (2H, d, J=8. 1Hz), 7. 29-7. 36 (2H, m), 7. 44 (2H, d, J=8. 1Hz). IR (KBr) ν : 3299, 2948, 1703cm⁻¹.
- 25 Anal. calcd. for C₂₅H₂₇F₃N₂O₂·0. 2H₂O: C, 67. 01; H, 6. 16; N, 6. 25. Found C, 67. 16; H, 6. 13; N, 6. 07.

実施例79 (化合物79の製造)

g) をメタノール (200ml) に溶かし、1N水酸化ナトリウム (20ml) を加え、室温で2日間撹拌した。濃縮後、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、無水硫酸マグネシウムを用いて乾燥した。減圧下、溶媒を留去し、4-アミノ-1-(7-(4-メチルフェニル)-2,3-ジヒドロー1-ベンゾオキセピン-4-イル)メチルピペリジン(化合物79)(1.44g)を無色アモルファスとして得た。

"H-NMR(δ ppm, CDCl₃) 1. 26-1. 47 (2H, m), 1. 77-1. 83 (2H, m), 1. 92-2. 05 (2H, m), 2. 38 (3H, s), 2. 61-2. 69 (1H, m), 2. 71 (2H, t, J=4. 8Hz), 2. 80-2. 85 (2H, m), 3. 03 (2H, s), 4. 26 (2H, t, J=4. 8Hz), 6. 34 (1H, s), 6. 99 (1H, d, J=8. 4Hz),

10 7. 22 (2H, d, J=8. 0Hz), 7. 28-7. 36 (2H, m), 7. 45 (2H, d, J=8. 0Hz). IR(KBr) ν : 2936, 1576, 1493cm⁻¹.

Anal. calcd. for $C_{23}H_{28}N_20 \cdot 0.2H_20$: C, 78. 46; H, 8. 13; N, 7. 96. Found C, 78. 35; H, 7. 97; N, 7. 56.

実施例80 (化合物80の製造)

- 15 4-アミノー1-(7-(4-メチルフェニル)-2,3-ジヒドロー1-ペンパオキセピン-4-イル)メチルピペリジン(0.4g)、テトラヒドロー4H-ピラン-4-オン(0.12g)を1,2-ジクロロエタン(10ml)に溶かし、氷冷下、トリアセトキシ水素化ほう素ナトリウム(0.34g)を加えた。窒素雰囲気下、室温で一晩撹拌した。溶媒を留去し、1N水酸化ナトリウム
- 水溶液を用いて中和後、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、無水硫酸マグネシウムを用いて乾燥、溶媒を留去した。残渣をシリカゲルカラム(メタノール/トリエチルアミン/酢酸エチル)で精製し、粗結晶を得た。酢酸エチル/ヘキサンから再結晶し、1-(7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4-イル)メチル-4-((テトラヒドロピラン-4-イル)アミノ)ピペリジン(化合物80)(0.17g)を無色結晶として得た。

mp 101-103℃.

 1 H-NMR (δ ppm, CDCl₃) 1. 26-1. 50 (4H, m), 1. 78-2. 05 (6H, m), 2. 38 (3H, s), 2. 60-2. 72 (3H, m), 2. 76-2. 89 (3H, m), 3. 04 (2H, s), 3. 40 (2H, dt, J=2. 2,

11. 7Hz), 3. 94-4. 00 (2H, m), 4. 26 (2H, t, J=5. 0Hz), 6. 34 (1H, s), 6. 99 (1H, d, J=8. 0Hz), 7. 22 (2H, d, J=8. 1Hz), 7. 28-7. 36 (2H, m), 7. 45 (2H, d, J=8. 1Hz). IR(KBr) ν : 2936, 1493cm⁻¹.

Anal. calcd. for C₂₈H₃₆N₂O₂: C, 77. 74; H, 8. 39; N, 6. 48. Found C, 77. 49; H, 8. 44; 5 N, 6. 71.

実施例81 (化合物81の製造)

4-アミノ-1-(7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベ ンゾオキセピン-4-イル)メチルピペリジン(0.3g)、テトラヒドロ-4 H-ピラン-4-オン(0.09g)を1,2-ジクロロエタン(10ml)に 10 溶かし、氷冷下、トリアセトキシ水素化ほう素ナトリウム(0.26g)を加え た。窒素雰囲気下、室温で一晩撹拌した。37%ホルムアルデヒド水溶液(0. 1ml) を加え、氷冷下、トリアセトキシ水素化ほう素ナトリウム(0.3g) を加え、窒素雰囲気下、室温で一晩撹拌した。溶媒を留去し、1 N 水酸化ナトリ ウム水溶液を用いて中和後、酢酸エチルで抽出した。有機層を水、飽和食塩水で 洗浄後、無水硫酸マグネシウムを用いて乾燥、溶媒を留去した。残渣をシリカゲ 15 ルカラム(メタノール/トリエチルアミン/酢酸エチル)で精製した。酢酸エチ ルに溶かし4N塩酸/酢酸エチル(0.4m1)、ヘキサンを加え、析出した粉 末をろ取した。ヘキサンで洗い、1-(7-(4-メチルフェニル)-2,3-ジヒドロー1ーベンソオキセピンー4ーイル) メチルー4ー(NーメチルーNー (テトラヒドロピラン-4-イル)アミノ)ピペリジン二塩酸塩(化合物81) 20 (0.21g) を無色アモルファスとして得た。

¹H-NMR (δ ppm, DMSO-d₆) 1. 70-1. 99 (2H, m), 2. 07-2. 24 (2H, m), 2. 34 (3H, s), 2. 34-2. 39 (2H, m), 2. 63-2. 74 (3H, m), 2. 91 (2H, br), 3. 00-3. 20 (2H, m), 3. 26-3. 40 (2H, m), 3. 45-3. 61 (2H, m), 3. 70-3. 90 (3H, m), 3. 90-4. 20 (3H, m),

25 4. 25 (2H, br), 6. 77 (1H, s), 7. 02 (1H, d, J=8. 4Hz), 7. 26 (2H, d, J=8. 2Hz), 7. 45-7. 53 (4H, m), 11. 06 (2H, br).

IR(KBr) ν : 2940, 2654, 1493cm⁻¹.

参考例110 ...

7-フェニル-3, 4-ジヒドロナフタレン-2-カルボン酸(<math>1.00g)

をメタノール (25ml) に溶解させ、濃硫酸 (0.1ml) を加え、48時間 加熱還流した。この反応液を室温に冷却後、5%炭酸水素ナトリウム水溶液を加 え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸ナトリウムで 乾燥した後、溶媒を減圧留去した。得られた残渣をエタノール(50ml)に溶 5 解させ、乾燥10%パラジウム炭素(0.05g)を加え、水素雰囲気下、常温 常圧で48時間撹拌した。パラジウム炭素を濾過操作により除き、濾液を濃縮し た後、残渣をカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/2)で精 製し、油状物を得た。これをメタノール(15ml)に溶解させ、1N水酸化ナ トリウム水溶液(10ml)を加え3時間加熱還流した。この反応液を室温に冷 却後、希塩酸を加えて酸性とし、酢酸エチルで抽出した。有機層を飽和食塩水で 洗浄、無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。得られた残渣を 酢酸エチル/ヘキサンで再結晶することにより、7-フェニルー1,2,3,4 ーテトラヒドロナフタレン-2-カルボン酸(677mg)を無色結晶として得 た。

mp 164-166℃ 15

10

25

元素分析 C₁₇H₁₆O₂として

Calcd: C, 80. 93; H, 6. 39.

Found: C, 80.83; H, 6.30.

IR (KBr) cm⁻¹: 3030, 2924, 1693, 1483, 1294, 1234, 764, 700

¹H NMR (200MHz, CDCl₃) δ : 1.83-2.05 (1H, m), 2.22-2.35 (1H, m), 2.75-3.05 20 (3H, m), 3.12 (2H, d, J=7.4Hz), 7.18 (1H, d, J=7.8Hz), 7.27-7.46 (5H, m), 7. 52-7. 60 (2H. m).

実施例82(化合物82の製造)

7-フェニルー1,2,3,4-テトラヒドロナフタレン-2-カルボン酸(4 $0.0 \,\mathrm{mg}$)をTHF (7m1) に溶解させ、塩化オキサリル($2.0.7 \,\mu$ 1)とD MF1滴を加え、室温で1時間撹拌した。溶媒を減圧留去した後、残渣をTHF (7ml) に溶解させ、室温で1-(4-アミノベンジル) ピペリジン (333 mg) とトリエチルアミン(267 μ 1)を加えた。この反応液を室温で17時 間撹拌した後、水(100ml)を加え、酢酸エチルで抽出した。有機層を飽和

mp 185-187℃

元素分析 C₂₉H₃₂N₂O として

Calcd: C, 82.04; H, 7.60; N, 6.60.

Found: C, 81.98; H, 7.45; N, 6.63.

10 IR (KBr) cm⁻¹: 3288, 2933, 1657, 1603, 1537, 1485, 1410, 1321, 760, 696

¹H NMR (200MHz, CDCl₃) δ: 1. 35-1. 75 (6H, m), 1. 90-2. 15 (1H, m), 2. 18-2. 42

(5H, m), 2. 60-2. 78 (1H, m), 2. 88-3. 05 (2H, m), 3. 08-3. 30 (2H, m), 3. 44 (2H, m), 7. 15-7. 60 (13H, m).

実施例83 (化合物83の製造)

- N- [4-(l'(1))] パー [4-(l'(1))] パー
- 20 レン-2-カルボキサミド)ベンジル]-1-メチルピペリジニウム(化合物 8 3) (374mg)を無色結晶として得た。

mp 205-208℃

元素分析 C₃₀H₃₅N₂0I・0.5H₂0 として

Calcd: C, 62.61; H, 6.30; N, 4.87.

25 Found: C, 62.94; H, 6.08; N, 5.05.

IR (KBr) cm⁻¹: 3439, 1660, 1599, 1531, 1485, 1417, 1321, 760
¹H NMR (200MHz, DMSO-d₆) δ : 1.40-1.95 (6H, m), 2.05-2.20 (1H, m), 2.75-3.10 (9H, m), 3.20-3.35 (4H, m), 4.52 (2H, s), 7.20 (1H, d, J=8.4Hz), 7.35-7.55 (7H, m), 7.64 (2H, d, J=7.6Hz), 7.78 (2H, d, J=8.2Hz), 10.28 (1H,

s).

5

10

参考例111

3-ヒドロキシ安息香酸エチル(5.00g)、臭化ベンジル(4.29ml)、 炭酸カリウム(6.24g) およびアセトン(50ml)から成る混合物を室温 で16時間撹拌した。溶媒を減圧留去した後、残渣に水(200ml)を加え、 酢酸エチルで抽出した。有機層を濃縮した後、残渣をメタノール(50ml)に 溶解し、1N水酸化ナトリウム水溶液(50ml)を加えて2時間加熱還流した。 この反応液を室温に冷却し、濃塩酸を加えて酸性とした後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥した後、溶媒を減圧 留去した。得られた残渣を酢酸エチル/ヘキサンで再結晶することにより、3-ベンジロキシ安息香酸(5.10g)を無色結晶として得た。

mp 140-141℃

元素分析 C14H12O3として

Calcd: C, 73.67; H, 5.30.

15 Found: C, 73. 70; H, 5. 32.

IR (KBr) cm⁻¹: 3030, 2897, 1684, 1603, 1450, 1323, 1296, 1250, 1039, 760, 733

¹H NMR (200MHz, CDCl₃) δ : 5. 13 (2H, s), 7. 18-7. 28 (1H, m), 7. 28-7. 48 (6H, m), 7. 70-7. 77 (2H, m).

<u>20. 参考例</u>112

3-ヒドロキシ安息香酸エチル(5.00g)、塩化4-メチルベンジル(4.78m1)、炭酸カリウム(6.24g)、ヨウ化ナトリウム(5.41g)およびアセトン(50m1)から成る混合物を15時間加熱環流した。溶媒を減圧留去した後、残渣に水(200m1)を加え、酢酸エチルで抽出した。有機層を25 濃縮した後、残渣をメタノール(50m1)に溶解し、1N水酸化ナトリウム水溶液(50m1)を加えて3時間加熱環流した。この反応液を室温に冷却し、濃塩酸を加えて酸性とした後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。得られた残渣を酢酸エチル/ヘキサンで再結晶することにより、3-(4-メチルベンジロキシ)安息

香酸(5.92g)を無色結晶として得た。

mp 152-154℃

元素分析 CısHıdO₃として

Calcd: C. 74.36; H. 5.82.

5 Found: C. 74.16; H. 5.77.

IR (KBr) cm⁻¹: 3010, 2897, 1684, 1605, 1454, 1298, 1248, 1041, 802, 760 ¹H NMR (200MHz, CDCl₃) δ : 2. 37 (3H, s), 5. 08 (2H, s), 7. 17–7. 27 (3H, m), 7. 31–7. 43 (3H, m), 7. 70–7. 77 (2H, m).

参考例113

10 3-ヒドロキシ安息香酸エチル(5.00g)、1-(クロロメチル)ナフタレン(5.40ml)、炭酸カリウム(6.24g)、ヨウ化ナトリウム(触媒量)およびアセトン(50ml)から成る混合物を24時間加熱還流した。溶媒を減圧留去した後、残渣に水(200ml)を加え、酢酸エチルで抽出した。有機層を濃縮した後、残渣をメタノール(50ml)に溶解し、1N水酸化ナトリウム水溶液(50ml)を加えて2時間加熱還流した。この反応液を室温に冷却し、濃塩酸を加えて酸性とした後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。得られた残渣を酢酸エチル/ヘキサンで再結晶することにより、3-(1-ナフチルメトキシ)安息香酸(7.14g)を無色結晶として得た。

20 mp 177-179℃

元素分析 C₁₈H₁₄O₃として

Calcd: C, 77.68; H, 5.07.

Found: C, 77.41; H, 4.89.

IR (KBr) cm⁻¹: 3049, 2887, 1714, 1691, 1595, 1439, 1308, 1277, 1238, 1014,

25 781, 756

"H NMR (200MHz, CDCl₃) δ : 5. 55 (2H, s), 7. 24-7. 32 (1H, m), 7. 35-7. 65 (5H, m), 7. 73-7. 95 (4H, m), 8. 02-8. 10 (1H, m).

実施例84(化合物84の製造)

3-ベンジロキシ安息香酸 (800mg) をTHF (10ml) に溶解させ、

塩化オキサリル (397 μ 1) とDMF1滴を加え、室温で1時間撹拌した。溶 媒を減圧留去した後、残渣をTHF (15m1) に溶解させ、室温で1-(4-アミノベンジル) ピペリジン (733mg) とトリエチルアミン (589 μ 1) を加えた。この反応液を室温で17時間撹拌した後、水 (100m1) を加え、

5 酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。得られた残渣を酢酸エチル/ヘキサンで再結晶することにより、3-ベンジロキシ-4'-(ピペリジノメチル)ベンズアニリド(化合物84)(1.06g)を無色結晶として得た。

mp 137-138℃

15

20

25

10 元素分析 C,₆H,₈N,0,として

Calcd: C. 77.97; H. 7.05; N. 6.99.

Found: C. 77. 73; H. 7. 15; N. 6. 91.

IR (KBr) cm⁻¹: 3348, 2929, 1645, 1597, 1524, 1319, 1273, 750, 698

¹H NMR (200MHz, CDCl₃) δ : 1.38-1.70 (6H, m), 2.32-2.43 (4H, m), 3.46 (2H, s), 5.13 (2H, s), 7.11-7.20 (1H, m), 7.28-7.60 (12H, m), 7.77 (1H, s).

実施例85(化合物85の製造)

3-(4-メチルベンジロキシ)安息香酸(1.00g)をTHF(15m1)に溶解させ、塩化オキサリル($468\mu1$)とDMF1滴を加え、室温で1時間 撹拌した。溶媒を減圧留去した後、残渣をTHF(15m1)に溶解させ、室温で1-(4-アミノベンジル)ピペリジン(864mg)とトリエチルアミン($695\mu1$)を加えた。この反応液を室温で3時間撹拌した後、水(100m1)を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。得られた残渣を酢酸エチル/ヘキサンで再結晶することにより、3-(4-メチルベンジロキシ)-4'-(ピペリジノメチル)ベンズアニリド(化合物 85)(1.25g)を無色結晶として得た。

元素分析 C,,H,,,N,O, として

mp 153-155℃

Calcd: C, 78. 23; H, 7. 29; N. 6. 76.

Found: C. 78.05: H. 7.25: N. 6.75.

IR (KBr) cm⁻¹: 3348, 2941, 1655, 1597, 1581, 1524, 1410, 1321, 1269, 1051, 800

'H NMR (200MHz, CDCl₃) δ : 1. 35-1. 75 (6H, m), 2. 30-2. 45 (7H, m), 3. 47 (2H, s), 5. 09 (2H, s), 7. 10-7. 40 (9H, m), 7. 47-7. 60 (3H, m), 7. 78 (1H, s).

5 実施例86(化合物86の製造)

3-(1-ナフチルメトキシ) 安息香酸 (1.00g) をTHF (10ml) に溶解させ、塩化オキサリル $(407\mu1)$ とDMF1 滴を加え、室温で1時間 撹拌した。溶媒を減圧留去した後、残渣をTHF (15ml) に溶解させ、室温で1-(4-アミノベンジル) ピペリジン (751mg) とトリエチルアミン (6

10 04μ 1)を加えた。この反応液を室温で96時間撹拌した後、水(100m1)を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。得られた残渣を酢酸エチル/ヘキサンで再結晶することにより、3-(1-ナフチルメトキシ)-4'-(ピペリジノメチル)ベンズアニリド(化合物<math>86)(1.25g)を無色結晶として得た。

15 mp 171-173℃

20

元素分析 C₃₀H₃₀N₂O₂・0. 1H₂O として

Calcd; C, 79.65; H, 6.73; N, 6.19.

Found: C, 79.55; H, 6.76; N, 6.19.

IR (KBr) cm⁻¹: 3350, 2929, 1655, 1597, 1581, 1522, 1410, 1321, 1290, 1269, 793

¹H NMR (200MHz, CDC1₃) δ : 1. 35–1. 70 (6H, m), 2. 33–2. 43 (4H, m), 3. 47 (2H, s), 5. 57 (2H, s), 7. 20–7. 65 (12H, m), 7. 78 (1H, s), 7. 84–7. 93 (2H, m), 8. 03–8. 08 (1H, m).

実施例87(化合物87の製造)

3-ベンジロキシー4'- (ピペリジノメチル) ベンズアニリド (560mg) をDMF (3mI) に溶解させ、ヨウ化メチル ($261\mu I$) を加え、室温で 14 時間撹拌した。この反応液に酢酸エチル (100mI) を加え、生じた沈殿物を濾取することにより、ヨウ化1-[4-(3-ベンジロキシベンゾイルアミノ) ベンジル] -1-メチルピペリジニウム (化合物 87) (724mg) を無色結

晶として得た。

mp 192-194℃

元素分析 C₂₇H₃₁N₂O₂I として

Calcd: C, 59. 78; H, 5. 76; N, 5. 16.

5 Found: C, 59.51; H, 5.67; N, 5.46.

IR (KBr) cm⁻¹: 3437, 3317, 1662, 1593, 1520, 1317, 1273, 1016, 750, 700 ¹H NMR (200MHz, DMSO-d₆) δ : 1. 40-2. 00 (6H, m), 2. 92 (3H, s), 3. 20-3. 40 (4H, m), 4. 54 (2H, s), 5. 20 (2H, s), 7. 23-7. 60 (11H, m), 7. 92 (2H, d, J=8. 4Hz), 10. 42 (1H, s).

10 実施例88(化合物88の製造)

 $3-(4-メチルベンジロキシ)-4'-(ピペリジノメチル)ベンズアニリド(900mg)をDMF(5ml)に溶解させ、ヨウ化メチル(<math>405\mu$ l)を加え、室温で15時間撹拌した。この反応液に酢酸エチル(200ml)を加え、生じた沈殿物を濾取することにより、ヨウ化1-メチルー1-[4-[3-(4-メチルベンジロキシ)ベンゾイルアミノ]ベンジル]ピペリジニウム(化

合物88) (1.05g) を無色結晶として得た。

mp 210-212℃

15

25

元素分析 C₂₈H₃₃N₂O₂I・0.5H₂O として

Calcd: C, 59. 47; H, 6. 06; N, 4. 95.

20 Found: C, 59.77; H, 5.94; N, 5.10.

IR (KBr) cm⁻¹: 3298, 2949, 1657, 1595, 1520, 1483, 1416, 1321, 1275, 1213, 1012, 804

¹H NMR (200MHz, DMSO- d_6) δ : 1. 40-2. 00 (6H, m), 2. 32 (3H, s), 2. 93 (3H, s), 3. 20-3. 40 (4H, m), 4. 56 (2H, s), 5. 15 (2H, s), 7. 17-7. 60 (10H, m), 7. 93 (2H, d, J=8. 4Hz), 10. 43 (1H, s).

実施例89 (化合物89の製造)

 $3-(1-ナフチルメトキシ)-4'-(ピペリジノメチル) ベンズアニリド (950mg) をDMF (8ml) に溶解させ、ヨウ化メチル (394<math>\mu$ l) を加え、室温で38時間撹拌した。この反応液に酢酸エチル (200ml) を加え、

生じた沈殿物を濾取することにより、ヨウ化1-メチル-1- [4-[3-(1-ナフチルメトキシ)ベンゾイルアミノ] ベンジル] ピペリジニウム (化合物 8 9) (1.21g) を無色結晶として得た。

mp 211-213℃

5 元素分析 C₃₁H₃₃N₂O₂I として

Calcd: C, 62.84; H, 5.61; N, 4.73.

Found: C, 62.47; H, 5.61; N, 4.73.

IR (KBr) cm⁻¹: 3442, 3282, 1655, 1597, 1520, 1485, 1417, 1325, 1273, 793 1 H NMR (200MHz, DMSO-d₆) δ : 1. 40-2. 00 (6H, m), 2. 92 (3H, s), 3. 20-3. 40 (4H,

10 m), 4.54 (2H, s), 5.66 (2H, s), 7.35-7.75 (10H, m), 7.80-8.05 (4H, m), 8.07-8.17 (1H, m), 10.44 (1H, s).

実施例90(化合物90の製造)

3-(4-メチルベンジロキシ)-4'-(ピペリジノメチル)ベンズアニリド(150mg)をTHF(5ml)に溶解させ、0℃で70%mCPBA(m-0-0-10分を116mg)を加え、0℃で1時間撹拌した。この反応液に飽和チオ硫酸ナトリウム水溶液(10ml)と飽和炭酸カリウム水溶液(10ml)を加え、室温で30分間撹拌した後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。得られた残渣を酢酸エチル/メタノールで再結晶することにより、3-(4-メチルベンジロキシ)-4'-(1-オキシピペリジノメチル)ベンズアニリド(化合物90)(77mg)を無色結晶として得た。

mp 128-130℃

元素分析 C₂₇H₃₀N₂O₃・1.0H₂O として

Calcd: C, 72.30; H, 7.19; N, 6.25.

25 Found: C, 72.53; H, 6.96; N, 6.28.

IR (KBr) cm⁻¹: 3388, 2939, 1662, 1597, 1520, 1414, 1321, 1271, 1211, 806, 748

'H NMR (200MHz, CDCl₃) δ : 1. 15-1. 80 (4H, m), 2. 10-2. 50 (5H, m), 3. 00-3. 18 (4H, m), 4. 33 (2H, s), 5. 09 (2H, s), 7. 09-7. 60 (10H, m), 7. 77 (2H, d, J=8. 0Hz),

8.69 (1H. s).

実施例91 (化合物92の製造)

N-[4-(エトキシカルボンイミドイル)フェニル]-7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド塩酸塩(200mg)のエタノール溶液(4m1)溶液にエチレンジアミン(0.09m1)を加えた。室温で一晩撹拌後、濃縮し、重曹水を加えた。酢酸エチル/テトラヒドロフランより抽出し、食塩水で洗浄した。抽出液を乾燥後(無水硫酸マグネシウム)、濃縮し、酢酸エチル/メタノールより再結晶し、N-[4-(2-イミダゾリン-2-イル)フェニル]-7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド(化合物92)(60mg)を無色結晶として得た。

m. p. 282-283℃

'H-NMR (200MHz, DMSO-d₆) δ: 2.34 (s, 3H), 2.9-3.1 (m, 2H), 3.60 (brs, 4H), 4.2-4.4 (m, 2H), 6.87 (brs, 1H), 7.06 (d, 1H, J = 8.0), 7.27 (d, 2H, J = 8.4), 7.37 (s, 1H), 7.5-7.6 (m, 3H), 7.7-7.8 (m, 5H), 10.15 (s, 1H). IR (KBr) 1649, 1605, 1525, 1508, 1489, 1321, 1260, 810cm⁻¹ 元素分析 C₂₇H₂₅N₃O₂ Calcd. C, 76.57; H, 5.95; N, 9.92: Found. C, 76.45; H, 6.08; N, 9.97.

実施例92 (化合物93の製造)

N- [4-(2-イミダゾリン-2-イル)フェニル]-7-(メチルフェニル)-2、3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド(120mg)のTHF/DMF(10ml/1ml)溶液にトリエチルアミン(0.09ml)、塩化アセチル(0.024ml)を加え、室温で1時間攪拌した。氷冷下、水を加え、酢酸エチルで抽出した。食塩水で洗浄し、抽出液を乾燥後(無水硫酸マグネシウム)、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル/メタノール)により精製し、さらに酢酸エチル/メタノールで再結晶し、N-[4-(1-アセチル-2-イミダゾリン-2-イル)フェニル]-2、3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド(化合物93)(56mg)を無色結晶として得た。

m. p. 222-224℃

¹H-NMR (200MHz, CDCl₃) δ : 1.90 (3H, s), 2.39 (3H, s), 3.05-3.15 (2H, m), 3.85-4.15 (4H, m), 4.36 (2H, t, J = 4.6), 7.06 (1H, d, J = 8.6), 7.2-7.3 (2H, m), 7.4-7.6 (6H, m), 7.67 (2H, d, J = 8.8), 7.78 (1H, brs).

5 IR (KBr) 1665, 1649, 1530, 1512, 1391, 1279, 841, 814cm⁻¹ 元素分析 C₂₉H₂₇N₃O₃ Calcd. C, 74.82; H, 5.85; N, 9.03; Found. C, 74.58; H, 5.67; N, 8.95.

実施例93 (化合物94の製造)

N-(4-シアノメチルフェニル)-7-(4-メチルフェニル)-2,3-10 ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド(789mg)に氷冷下、24%塩化水素/エタノール/ジオキサン溶液(10ml)を加えた。室温で3時間攪拌後、濃縮した。エタノール(20ml)を加えて懸濁させ、氷冷下、エチレンジアミン(0.4ml)を加えた。室温で15時間撹拌後、濃縮し、重曹水を加えた。酢酸エチルより抽出し、食塩水で洗浄した。乾燥後(硫酸マグネシ

15 ウム)、濃縮し、酢酸エチル/メタノールより再結晶し、N-[4-[(2-1)]] ミダゾリンー 2-1 アエニル) 2-1 フェニル) 2-1 フェニル) 2-1 フェニル) 2-1 フェニル) 2-1 フェニル 2-1 (化合物 2-1) (10 名の 2-1 の 2-1 の

m. p. 210-212℃

20 'H-NMR (200MHz, CDCl₃) δ : 2. 38 (3H, s), 3. 0-3. 1 (2H, m), 3. 49 (2H, s), 3. 59 (4H, s), 4. 25-4. 35 (2H, m), 7. 03 (d, 1H, J = 8. 2), 7. 15-7. 35 (5H, m), 7. 4-7. 6 (6H, m).

IR (KBr) 1649, 1603, 1516, 1493, 1327, 1265, 1256, 816cm⁻¹ 元素分析 C₂₈H₂₇N₃O₂·O. 1H₂O Calcd. C. 73. 82; H. 6. 42; N. 9. 22; Found. C. 73. 85; 25 H. 6. 31; N. 9. 08.

実施例94(化合物95の製造)

N- [4-[(2-1)] - 7-(4-1)] フェニル[-7-(4-1)] - 7-(4-1) フェニル[-2] - 3-1 フェニル[-3] - 7-(4-1) サミド [200mg] のTHF [10ml] /DMF [1ml] 溶液にトリエチ

ルアミン(0.095ml)、塩化アセチル(0,036ml)を加え、室温で1時間攪拌した。氷冷下、重曹水を加え、酢酸エチルで抽出した。食塩水で洗浄し、抽出液を乾燥後(硫酸マグネシウム)、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル)ついで再結晶(酢酸エチル/ジエチルエーテル)により精製し、N-[4-[(1-アセチル-2-イミダゾリン-2-イル)メチル]フェニル]-7-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾオキセピン-4-カルボキサミド(化合物95)(77mg)を無色結晶として得た。

m. p. 174-176℃

10 1H-NMR (200MHz, CDC1₃) δ : 2.13 (3H, s), 2.39 (3H, s), 3.0-3.15 (2H, m), 3.8-3.9 (4H, m), 4.15 (2H, s), 4.36 (2H, t, J = 4.8), 7.05 (1H, d, J = 8.0), 7.2-7.35 (4H, m), 7.4-7.6 (7H, m).

IR (KBr) 1655, 1532, 1516, 1493, 1395, 1319, 1244, 814cm⁻¹

元素分析 C₃₀H₂₉N₃O₃·O. 8H₂O Calcd. C, 72. 94; H, 6. 24; N, 8. 51: Found. C, 72. 99;

15 H, 6.00; N, 8.53.

20

25

実施例95 (化合物96の製造)

N- [4-[(2-11)] - 7-(4-11)] - 7-(4-11) - 7-(4-11) - 7-(4-11) - 7-(4-11) - 7-(4-11) - 7-(4-11) - 7-(4-11) - 7-(4-11) - 7-(4-11) - 7-(4-11) - 7-(1

m. p. 170-171℃

'H-NMR (200MHz, CDC1₃) δ : 2.39 (3H, s), 3.07 (2H, t, J = 5.0), 3.73 (3H,

s), 3. 81 (4H, s), 4. 08 (2H, s), 4. 36 (2H, t, J = 5.0), 7. 06 (1H, d, J = 8.6), 7. 2-7. 35 (4H, m), 7. 4-7. 6 (7H, m).

IR (KBr) 1730, 1663, 1514, 1491, 1381, 1318, 1265, 1020, 810cm⁻¹ 元素分析 C₃₀H₂₉N₃O₄ Calcd. C, 72.71; H, 5.90; N, 8.48: Found. C, 72.43; H, 5.94; N, 8.33.

参考例114

3ーヒドロキシベンズアルデヒド (5.00g) をアセトン (70ml) に溶解させ、塩化4ーメチルベンジル (6.51ml)、炭酸カリウム (8.49g) およびヨウ化ナトリウム (7.36g) を加え、24時間加熱還流した後、溶媒を減圧留去した。残渣に水 (200ml) を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。得られた残渣をカラムクロマトグラフィー (酢酸エチル/ヘキサン=1/10)で精製することにより、3ー(4ーメチルベンジロキシ) ベンズアルデヒド (7.86g) を無色油状物として得た。

15 IR (KBr) cm⁻¹: 2922, 1697, 1599, 1483, 1450, 1383, 1261, 1147, 1020, 789, 683

¹H NMR (200MHz, CDCl₃) δ : 2. 37 (3H, s), 5. 09 (2H, s), 7. 17–7. 37 (5H, m), 7. 52–7. 60 (3H, m), 9. 98 (1H, s).

参考例115

α, α'ージプロモーpーキシレン(12.5g)をTHF(100ml)に溶解させ、ピペリジン(4.68ml)を加え、室温で4時間撹拌した。この反応液に1N塩酸(100ml)を加え、室温で5分間撹拌した。二相を分離後、水層をジエチルエーテルで洗浄し、1N水酸化ナトリウム水溶液を加えて塩基性とした後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄した後、そのままカラムクロマトグラフィー(酢酸エチル/ヘキサン=2/1)で精製し、溶媒量が約200mlとなるまで濃縮した。この溶液にトリフェニルホスフィン(7.46g)とトルエン(100ml)を加え、40時間加熱還流した。生じた沈殿物を濾取することにより、臭化トリフェニル[4-(ピペリジノメチル)ペンジル]ホスホニウム(8.14g)を無色結晶として得た。

mp 234-236℃

元素分析 C₃₁H₃₃NBrP として

Calcd: C, 70.19; H, 6.27; N, 2.64.

Found: C, 70.03; H, 6.37; N, 2.65.

5 IR (KBr) cm⁻¹: 2845, 1441, 1113, 995, 752, 719, 689

¹H NMR (200MHz, DMSO-d₆) δ : 1. 30-1. 55 (6H, m), 2. 12-2. 32 (4H, m), 3. 28-3. 40 (2H, m) 5. 14 (2H, d, J=15. 4Hz), 6. 91 (2H, dd, J=2. 2, 8. 0Hz), 7. 12 (2H, d, J=8. 0Hz), 7. 60-7. 78 (12H, m), 7. 85-7. 95 (3H, m).

実施例96(化合物97の製造)

- Q化トリフェニル [4-(ピペリジノメチル)ベンジル]ホスホニウム(1.06g)とTHF(10ml)から成る混合物に、窒素雰囲気下、0℃で1.6Mプチルリチウムヘキサン溶液(1.28ml)を滴下し、30分撹拌した。この反応液に3-(4-メチルベンジロキシ)ベンズアルデヒド(453mg)を加え、室温で1時間撹拌した後、水(100ml)を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。得られた残渣をカラムクロマトグラフィー(酢酸エチル/トリエチルアミン=20/1)で精製し、ヘキサンで再結晶することにより、(E)-1-[4-[3-(4-メチルベンジロキシ)スチリル]ベンジル]ピペリジン(化合物97)(330mg)を無色結晶として得た。
- 20 mp 87-88℃

元素分析 C,,H,,NOとして

Calcd: C, 84.59; H, 7.86; N, 3.52.

Found: C, 84. 30; H, 7. 78; N, 3. 60.

IR (KBr) cm⁻¹: 2924, 1601, 1578, 1443, 1281, 1157, 1036, 968, 797, 781, 685 25 'H NMR (200MHz, CDCl₃) δ : 1. 38-1. 65 (6H, m), 2. 33-2. 46 (7H, m), 3. 48 (2H, s), 5. 07 (2H, s), 6. 83-6. 90 (1H, m), 7. 05-7. 38 (11H, m), 7. 46 (2H, d, J=8. 2Hz).

実施例97 (化合物98の製造)

(E) -1- [4- [3- (4-メチルベンジロキシ) スチリル] ベンジル]

ピペリジン($150 \,\mathrm{mg}$)をDMF($3 \,\mathrm{ml}$)に溶解させ、ヨウ化メチル($70 \,\mathrm{ml}$)を加え、室温で $66 \,\mathrm{fill}$ 間撹拌した。この反応液に酢酸エチル($100 \,\mathrm{ml}$)を加え、生じた沈殿物を濾取し、酢酸エチル/メタノールで再結晶することにより、ヨウ化(E) $-1 \,\mathrm{ml}$ ーメチルー $1 \,\mathrm{ml}$ ー $1 \,\mathrm{ml}$

5 スチリル] ベンジル] ピペリジニウム(化合物100)(183mg)を無色結 晶として得た。

mp 189-192℃

元素分析 C₂₉H₃₄NOI として

Calcd: C, 64.56; H, 6.35; N, 2.60.

10 Found: C. 64.29; H. 6.27; N. 2.88.

IR (KBr) cm⁻¹: 3442, 2956, 1593, 1466, 1443, 1267, 1211, 1189, 1014, 878, 806

¹H NMR (200MHz, CDCl₃) δ: 1.75-2.05 (6H, m), 2.37 (3H, s), 3.21 (3H, s), 3.52-3.66 (2H, m), 3.75-3.90 (2H, m), 5.04 (2H, s), 5.16 (2H, s), 6.86-6.95 (1H, m), 7.03-7.15 (4H, m), 7.18-7.37 (5H, m), 7.49 (2H, d, J=8.4Hz), 7.66

参考例116

参考例117

(2H, d, J=8.4Hz).

15

2-ヒドロキシベンジルアルコール (3.00g)、2-クロロエチルプロピルエーテル (4.0m1)、ヨウ化ナトリウム (4.75g)、炭酸カリウム (6.

- 20 68g)のDMF(30ml)混合物を、90℃で24時間撹拌した。反応系に水を加え、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(酢酸エチル:ヘキサン1:2)で精製し、黄色の油状物として2-(2-プロポキシエトキシ)ベンジルアルコール(2.35g)を得た。
- ¹H-NMR (200MHz, CDCl₃) & 0.92 (3H, t, J=7.4 Hz), 1.54-1.68 (2H, m), 3.31 (1H, t, J=7.0 Hz), 3.48 (2H, t, J=6.8 Hz), 3.76-3.81 (2H, m), 4.19-4.24 (2H, m), 4.67 (2H, d, J=7.0 Hz), 6.89-6.99 (2H, m), 7.22-7.30 (2H, m).

 IR (neat) 3427, 1603, 1601, 1495, 1454, 1288, 1244, 1120, 1051, 754 cm⁻¹

7-ヒドロキシ-1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(400 mg)、2-(2-プロポキシエトキシ)ベンジルアルコール(0.63 g)、トリフェニルホスフィン(782 mg)のTHF(10 ml)溶液に、0 C でアゾジカルボン酸ジエチル(40% トルエン溶液,1.

- 5 36ml)を加え、室温で20時間撹拌した。減圧下濃縮後、残渣をカラムクロマトグラフィー(酢酸エチル:ヘキサン1:2)で分離精製し、粗7-[[2-(2-プロポキシエトキシ)ベンジル]オキシ]-1,1-ジオキソー2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(1.04g)を得た。
- 粗 7 [[2 (2 プロポキシエトキシ) ベンジル] オキシ] 1, 1 ジオ 10 キソ-2, 3 ジヒドロ-1 ベンゾチエピン-4 カルボン酸メチル (1.0 4g) のTHF メタノール (10 5 ml) 溶液に、室温で炭酸カリウム (6 2 2 mg) の水溶液 (2.1 ml) を加え、60℃で24時間撹拌した。室温まで冷却後、酢酸エチルで抽出した。水層に1N塩酸 (10 ml) を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。
- 15 減圧下濃縮し、黄色のアモルファスとしてとして7 [[2 (2 プロポキシエトキシ) ベンジル] オキシ] 1, 1 ジオキソ 2, 3 ジヒドロ 1 ベンゾチエピン 4 カルボン酸(136 mg)を得た。

 $^{t}H-NMR$ (200MHz, CDCl₃) δ 0. 91 (3H, t, J=7. 5 Hz), 1. 55-1. 65 (2H, m), 3. 05-3. 12 (2H, m), 3. 48 (2H, t, J=6. 6 Hz), 3. 59-3. 66 (2H, m), 3. 78-3. 83 (2H, m).

20 4. 17-4. 24 (2H, m), 5. 24 (2H, s), 6. 92-7. 03 (2H, m), 7. 09-7. 12 (2H, m), 7. 28-7. 41 (2H, m), 7. 87 (1H, s), 8. 09 (1H, d, J=9. 4 Hz).

参考例118

4-ヒドロキシベンジルアルコール(1.5g)、1-プロモプロパン(1.3 m 1)、炭酸カリウム(2.5g)のアセトン(50m1)混合物を、60℃で8時間撹拌した。減圧下濃縮後、水を加え酢酸エチルで抽出した。有機層を1N水酸化ナトリウム水溶液および飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、黄色の油状物として4-プロポキシベンジルアルコール(1.37g)を得た。

 $^{1}H-NMR$ (200MHz, CDCl₃) δ 1.04 (3H, t, J=7.3 Hz), 1.52 (1H, t, J=5.4 Hz),

1. 72-1. 90 (2H, m), 3. 93 (2H, t, J=6. 6 Hz), 4. 62 (2H, d, J=5. 4 Hz), 6. 89 (2H, d, J=8. 8 Hz), 7. 29 (2H, d, J=8. 8 Hz).

参考例119

cm-1

7ーヒドロキシー1、1ージオキソー2、3ージヒドロー1ーベンゾチエピンー4ーカルボン酸メチル(400mg)、4ープロポキシベンジルアルコール(495mg)、トリフェニルホスフィン(782mg)のTHF(10ml)溶液に、0℃でアゾジカルボン酸ジエチル(40%トルエン溶液、1.36ml)を加え、室温で64時間撹拌した。減圧下濃縮後、残渣をカラムクロマトグラフィー(酢酸エチル/ヘキサン1:2)で分離精製し、7ー[(4ープロポキシベンジル)オキシ]ー1、1ージオキソー2、3ージヒドロー1ーベンゾチエピンー4ーカルボン酸メチル(500mg)を得た。

7- [(4-プロポキシベンジル) オキシ] -1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(500mg)のTHF-メタノール(10-5ml)溶液に、室温で炭酸カリウム(498mg)の水溶液(1.7ml)を加え、60℃で24時間撹拌した。室温まで冷却後、酢酸エチルで抽出した。水層に1N塩酸(10ml)を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、生じた結晶をろ過によって集めた。結晶をジイソプロピルエーテルで洗浄し、淡黄色の結晶として7- [(4-プロポキシベンジル)オキシ]-1,1-ジオキソ-2,

20 3-ジヒドロー1-ベンソチエピン-4-カルボン酸(255mg)を得た。 m.p. 250-254℃

25 7.71 (1H, s), 7.93 (1H, d, J=8.8 Hz).

IR (KBr) 3075, 1674, 1597, 1566, 1512, 1416, 1294, 1277, 1163, 1128, 1069

元素分析 C₂₁H₂₂O₆S Calcd. C, 62.67; H, 5.51: Found. C, 62.36; H, 5.60. 参考例 1 2 0 2-エトキシベンジルアルコール (0.46g)のTHF (10ml)溶液に、室温で塩化チオニル (0.44ml) およびピリジン (1滴)を加え、2時間撹拌した。減圧下濃縮し、残渣のDMF (10ml)溶液に、7-ヒドロキシー1,1-ジオキソー2,3-ジヒドロー1-ベンゾチエピンー4ーカルボン酸メチル (400mg) および炭酸カリウム (615mg)を加え、60℃で20時間撹拌した。反応系に水を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー (酢酸エチル:ヘキサン1:2)で分離精製し、橙色の結晶として7ー[(2-エトキシベンジル)オキシ]-1,1-ジオキソー2,3-ジヒドロー1 ーベンゾチエピンー4ーカルボン酸メチル (249mg)を得た。

7-[(2-LN+2)(2)] オキシ] -1, 1-3オキソー2, 3-3ビドロー1-(2)7年ピンー4-(2)0mg)のTHF-メタノール(5-(2)0mg)溶液に、室温で炭酸カリウム(151mg)の水溶液(1.0ml)を加え、600で20時間撹拌した。室温まで冷却後、1N塩酸(10ml)を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、生じた結晶をろ過によって集めた。結晶をジイソプロピルエーテルで洗浄し、無色の結晶として7-[(2-LN+2)(

20 m.p. 158-160℃

15

*H=NMR (200MHz, DMSQ=d₈) & 1, 32 (3H, t, J=6.9 Hz), 2.87-2.93 (2H, m), 3.65-3.71 (2H, m), 4.10 (2H, q, J=6.9 Hz), 5.19 (2H, s), 6.92-7.07 (2H, m), 7.20 (1H, dd, J=8.6, 2.6 Hz), 7.30-7.41 (3H, m), 7.72 (1H, s), 7.94 (1H, d, J=8.6 Hz).

25 IR (KBr) 3076, 1690, 1591, 1564, 1494, 1292, 1281, 1246, 1165, 1128, 1069 cm⁻¹

元素分析 C₂₀H₂₀O₆S·O. 2H₂O Calcd. C, 61. 27; H, 5. 24; Found. C, 61. 18; H, 5. 17.

参考例121

2-メトキシベンジルアルコール (0.42g) のTHF (10ml) 溶液に、 室温で塩化チオニル (0.44ml) およびピリジン (1滴) を加え、1時間撹 拌した。減圧下濃縮し、残渣のDMF (10ml)溶液に、7-ヒドロキシー1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル (400mg) および炭酸カリウム(830mg) を加え、60℃で16時間撹 拌した。反応系に水を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で 洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグ ラフィー(酢酸エチル:ヘキサン1:2)で分離精製し、橙色の結晶として7-[(2-メトキシベンジル) オキシ] -1, 1-ジオキソー2, 3-ジヒドロー1 10 ーベンゾチエピン-4-カルボン酸メチル(250mg)を得た。

7-[(2-メトキシベンジル)オキシ]-1,1-ジオキソー2,3-ジヒド ロ-1-ベンゾチエピン-4-カルボン酸メチル(230mg)のTHF-メタ ノール (5-2.5ml) 溶液に、室温で炭酸カリウム (164mg) の水溶液 (1.0m1)を加え、60℃で20時間撹拌した。室温まで冷却後、1N塩酸 (10ml) を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫 酸マグネシウムで乾燥した。減圧下濃縮し、生じた結晶をろ過によって集めた。 結晶をジイソプロピルエーテルで洗浄し、無色の結晶として7-[(2-メトキシ ベンジル)オキシ]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピ

 $^{1}\text{H-NMR}$ (200MHz, DMSO-d₆) δ 2. 90 (2H, t, J=6. 4 Hz), 3. 68 (2H, t, J=6. 4 Hz), 3. 83 (3H, s), 5. 19 (2H, s), 6. 98 (1H, t, J=7. 3 Hz), 7. 07 (1H, d, J=7. 8 Hz), 7. 21 (1H, dd, J=8. 8, 2. 4 Hz), 7. 32-7. 44 (3H, m), 7. 73 (1H, s), 7. 94 (1H, d,

ン-4-カルボン酸(172mg)を得た。

J=8. 8 Hz).

20 m. p. 168-171℃

IR (KBr) 3185, 1676, 1588, 1497, 1325, 1296, 1283, 1252, 1165, 1128 cm⁻¹ 元素分析 C₁₉H₁₈O₆S·O. 25H₂O Calcd. C, 60. 23; H, 4. 92: Found. C, 60. 02; H, 5. 20.

参考例122

7-ヒドロキシー1、1-ジオキソー2、3-ジヒドロー1-ベンゾチエピン

-4-カルボン酸メチル(400 mg)、塩化2-クロロベンジル(0.25 m 1)、炭酸カリウム(309 mg)のDMF(10 m 1)混合物を、60 ℃で 5 時間撹拌した。反応系に水を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(酢酸エチル:ヘキサン1:2)で分離精製し、無色の結晶として7- [(2-クロロベンジル)オキシ] -1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(413 mg)を得た。

m.p. 182-184℃

¹H-NMR (200MHz, CDCl₃) δ 3. 04-3. 11 (2H, m), 3. 59-3. 66 (2H, m), 3. 86 (3H, s), 5. 25 (2H, s), 7. 04-7. 09 (2H, m), 7. 29-7. 36 (2H, m), 7. 40-7. 53 (2H, m), 7. 79 (1H, s), 8. 12 (1H, d, J=8. 4 Hz).

IR (KBr) 1701, 1588, 1433, 1329, 1312, 1285, 1260, 1167, 1128 cm⁻¹ 元素分析 C₁₉H₁₇O₅SCl Calcd. C, 58.09; H, 4.36: Found. C, 57.84; H, 4.42. 参考例 1 2 3

- 7-[(2-クロロベンジル) オキシ] -1, 1-ジオキソ-2, 3-ジヒドロー1ーベンゾチエピン-4ーカルボン酸メチル (350mg) のTHF-メタノール (7-3.5ml) 溶液に、室温で2M炭酸カリウム水溶液 (0.9mg) を加え、65℃で20時間撹拌した。室温まで冷却後、1N塩酸 (10ml) を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、生じた結晶をろ過によって集めた。結晶をジイソプロピルエーテルで洗浄し、無色の結晶として7-[(2-クロロベンジル)オキシ]
 - -1, 1-ジオキソー2, 3-ジヒドロ-1-ベンゾチエピンー<math>4-カルボン酸 (303mg) を得た。

m. p. 238-241℃

THE STANDARD STREET OF THE PRINCE

25 1 H-NMR (200MHz, DMS0-d₆) δ 2. 88 (2H, m), 3. 66-3. 73 (2H, m), 5. 30 (2H, s), 7. 25 (1H, dd, J=8. 8, 2. 6 Hz), 7. 40-7. 66 (5H, m), 7. 74 (1H, s), 7. 97 (1H, d, J=8. 8 Hz).

IR (KBr) 3086, 1672, 1590, 1318, 1296, 1260, 1167, 1127 cm⁻¹ 元素分析 C₁₈H₁₅O₅SCl Calcd. C, 57.07; H, 3.99; Found. C, 56.81; H, 4.12.

参考例124

2-ヒドロキシベンジルアルコール (2.00g)、2-プロモエチルエチルエーテル (2.7ml)、炭酸カリウム (4.45g) のDMF (20ml) 混合物を、90℃で3日間撹拌した。反応系に水を加え、酢酸エチルで抽出した。有機 層を1N水酸化ナトリウム水溶液、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(酢酸エチル:へキサン1:2)で精製し、淡黄色の油状物として2-(2-エトキシエトキシ)ベンジルアルコール (2.30g)を得た。

 $^{1}H-NMR$ (200MHz, CDC1₃) δ 1. 23 (3H, t, J=7.0 Hz), 3. 58 (2H, q, J=7.0 Hz),

10 3.76-3.81 (2H, m), 4.19-4.24 (2H, m), 4.67 (2H, s), 6.89-6.99 (2H, m), 7.22-7.31 (2H, m).

IR (neat) 3441, 1603, 1590, 1493, 1453, 1244, 1119, 1049 cm⁻¹ 参考例 1 2 5

2-(2-エトキシエトキシ) ベンジルアルコール (0.60g) のトルエン (5ml) 溶液に、室温で塩化チオニル (0.33ml) およびピリジン (1滴) を加え、1時間撹拌した。反応系に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、残渣のDM F (10ml) 溶液に、7-ヒドロキシー1, 1-ジオキソー2, 3-ジヒドロー1-ベンゾチエピンー4ーカルボン酸メチル (400mg) および炭酸カリウム (415mg) を加え、65℃で3時間撹拌した。反応系に水を加え、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(酢酸エチル:ヘキサン1:2→1:1) で分離精製し、淡黄色の油状物として7-[[2-(2-エトキシエトキシ) ベンジル] オキシ] -1, 1-ジオキソー2, 3-ジヒドロー1-ベンゾチエピンー4ーカルボン酸メチル (0.64g) を得た。

7-[[2-(2-x)+3-x)+3] ベンジル] オキシ] -1, 1-3オキソー2, 3-3ヒドロ-1-ベンゾチエピン-4-カルボン酸メチル (0.64g)のTHF-メタノール (6-3m1) 溶液に、室温で1 M炭酸カリウム水溶液 (2.9m1) を加え、60 C C C D 時間撹拌した。室温まで冷却後、酢酸エチルで抽

出した。水層に1 N塩酸(1 0 m 1)を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、生じた結晶をろ過によって集めた。結晶をジイソプロピルエーテルで洗浄し、淡黄色の結晶として7 - [[2-(2-エトキシエトキシ)ベンジル]オキシ]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(385 mg)を得た。

m. p. 134-136 ℃

一次ののは、たいと、大きのは最初のの、日の時代では、いて

^tH-NMR (200MHz, DMSO-d₆) δ 1. 04 (3H, t, J=7. 0 Hz), 2. 90 (2H, t, J=6. 4 Hz), 3. 46 (2H, q, J=7. 0 Hz), 3. 65-3. 71 (4H, m), 4. 14-4. 18 (2H, m), 5. 20 (2H, s),

10 6. 95-7. 10 (2H, m), 7. 21 (1H, dd, J=8. 8, 2. 6 Hz), 7. 30-7. 44 (3H, m), 7. 72 (1H, s), 7. 94 (1H, d, J=8. 8 Hz).

IR (KBr) 3447, 1686, 1622, 1586, 1281, 1250, 1163, 1127 cm⁻¹ 元素分析 C₂₂H₂₄O₇S Calcd. C, 61.10; H, 5.59; Found. C, 60.90; H, 5.72. 参考例126

3-ヒドロキシフェネチルアルコール(1.50g)、臭化プロパン(1.3ml)(14.9ミリモル)、炭酸カリウム(2.25g)のアセトン(50ml)混合物を、3日間加熱還流した。減圧下濃縮後、水を加え酢酸エチルで抽出した。有機層を1N水酸化ナトリウム水溶液および飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、淡黄色の油状物として3-プロポキシフェネチのルアルコール(1.70g)を得た。

"H NMR (200MHz, CDCl₃) δ 1.04 (3H, t, J=7.3 Hz), 1.40 (1H, t, J=5.8 Hz), 1.72-1.80 (2H, m), 2.84 (2H, t, J=6.4 Hz), 3.82-3.95 (4H, m), 6.74-6.82 (3H, m), 7.18-7.26 (1H, m).

IR (neat) 3289, 1601, 1583, 1487, 1449, 1392, 1259, 1157, 1047, 779, 696 cm⁻¹ 25 参考例 1 2 7

3-プロポキシフェネチルアルコール (0.54g) およびトリエチルアミン (0.84m1) のTHF(10m1) 溶液に、0 で塩化メタンスルホニル (0.35m1) を加え、1 時間撹拌した。反応系に水を加え、酢酸エチルで抽出した。 有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、残

渣のDMF (10ml) 溶液に、7-ヒドロキシ-1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル (400mg) および炭酸カリウム (0.48g) を加え、70℃で5時間撹拌した。反応系に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(酢酸エチル:-1 (1:2) で分離精製し、淡黄色の油状物として-1 (3 -プロポキシフェネチル) オキシ] -1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル (0.42g) を得た。

7-[(3-プロポキシフェネチル) オキシ] -1, 1-ジオキソ-2, 3-ジ 10 ヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(0.42g)のTHF-メタノール(10-5ml)溶液に、室温で1M炭酸カリウム水溶液(2ml) を加え、65℃で24時間撹拌した。室温まで冷却後、1N塩酸を加え酢酸エチ ルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減 圧下濃縮し、生じた結晶をろ過によって集めた。結晶をヘキサンで洗浄し、褐色 15 の結晶として目的物(291mg)を得た。

m.p. 86-88℃

 $^{1}\text{H-NMR}$ (200MHz, DMS0-d₆) δ 0. 97 (3H, t, J=7. 3 Hz), 1. 63-1. 81 (2H, m), 2. 89 (2H, t, J=7. 0 Hz), 3. 03 (2H, t, J=6. 8 Hz), 3. 67 (2H, t, J=6. 8 Hz), 3. 91 (2H, t, J=6. 4 Hz), 4. 33 (2H, t, J=7. 0 Hz), 6. 76-6. 81 (1H, m), 6. 86-6. 90 (2H, m),

20 7. 12-7. 25 (2H, m), 7. 34 (1H, d, J=2.6 Hz), 7. 72 (1H, s), 7. 92 (1H, d, J=8.8 Hz).

IR (KBr) 3466, 1682, 1588, 1291, 1260, 1161, 1127, 1067 cm⁻¹ 元素分析 C₂₂H₂₄O₆S·O. 25H₂O Calcd. C, 62. 77; H, 5. 87: Found. C, 62. 66; H, 5. 83.

25 参考例128

TO THE RESIDENCE OF THE PARTY O

2-ヒドロキシフェネチルアルコール(1.5g)、1-プロモプロパン(1.3ml)、炭酸カリウム(2.25g)のアセトン(50ml)混合物を、60 で 64 時間撹拌した。減圧下濃縮後、水を加え、酢酸エチルで抽出した。有機層を1N水酸化ナトリウム水溶液、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥

した。減圧下濃縮し、黄色の油状物として2-プロポキシフェネチルアルコール (2.02g)を得た。

¹H-NMR (200MHz, CDCl₃) δ 1. 06 (3H, t, J=7. 5 Hz), 1. 68-1. 92 (3H, m), 2. 93 (2H, t, J=6. 4 Hz), 3. 81-3. 87 (2H, m), 3. 95 (2H, t, J=6. 4 Hz), 6. 84-6. 94 (2H, m), 7. 15-7. 25 (2H, m).

IR (neat) 3343, 1601, 1494, 1474, 1454, 1242, 1119, 1049, 1019, 982, 752 cm⁻¹ 参考例 1 2 9

2 - プロポキシフェネチルアルコール (0.54g) およびトリエチルアミン (0.84ml) のTHF (10ml) 溶液に、0 ℃で塩化メタンスルホニル (0.

- 10 35ml)を加え、1.5時間撹拌した。反応系に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、残渣のDMF(10ml)溶液に、7-ヒドロキシー1,1-ジオキソー2,3-ジヒドロー1-ベンゾチエピンー4-カルボン酸メチル(400mg)および炭酸カリウム(414mg)を加え、60℃で22時間撹拌した。反応系に水
- 15 を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(酢酸エチル:ヘキサン1:2)で分離精製し、淡黄色の油状物として7-[(2-プロポキシフェネチル)オキシ]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(0.31g)を得た。
- 7-[(2-プロポキシフェネチル) オキシ]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(0.31g)のTHF-メタノール(10-5ml)溶液に、室温で1M炭酸カリウム水溶液(1.5ml)を加え、65℃で24時間撹拌した。室温まで冷却後、酢酸エチルで抽出した。水層に1N塩酸(10ml)を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、生じた結晶をろ過によって集めた。結晶をジイソプロピルエーテルで洗浄し、無色の結晶として7-[(2-プロポキシフェネチル)オキシ]-1,1-ジオキソ-2,3-ジヒ

ドロー1ーベンゾチエピンー4ーカルボン酸(136mg)を得た。

m.p. 184-186 ℃

 $^{1}\text{H-NMR}$ (200MHz, DMSO-d₆) δ 0.99 (3H, t, J=7.5 Hz), 1.65-1.81 (2H, m), 2.85-2.94 (2H, m), 3.01-3.09 (2H, m), 3.62-3.70 (2H, m), 3.96 (2H, t, J=6.4 Hz), 4.25-4.32 (2H, m), 6.83-6.98 (2H, m), 7.12-7.32 (4H, m), 7.72 (1H, s), 7.92 (1H, d, J=8.8 Hz).

5 IR (KBr) 1674, 1588, 1291, 1252, 1167, 1127 cm⁻¹ 元素分析 C₂₂H₂₄O₆S Calcd. C, 63.44; H, 5.81; Found. C, 63.06; H, 5.97. 参考例 1 3 0

4-ヒドロキシベンジルアルコール (3.00g)、2-プロモエチルエチルエーテル (4.1m1)、炭酸カリウム (6.68g) のDMF (30m1) 混合物 を、90℃で3日間撹拌した。反応系に水を加え酢酸エチルで抽出した。有機層を水、1N水酸化ナトリウム水溶液および飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(酢酸エチル:ヘキサン1:2→1:1)で分離精製し、淡黄色の油状物として4-(2-エトキシエトキシ)ベンジルアルコール (2.45g)を得た。

15 H-NMR (200MHz, CDCl₃) δ 1. 25 (3H, t, J=7. 0 Hz), 1. 56 (1H, t, J=5. 4 Hz), 3. 61 (2H, q, J=7. 0 Hz), 3. 77-3. 82 (2H, m), 4. 10-4. 15 (2H, m), 4. 62 (2H, d, J=5. 4 Hz), 6. 92 (2H, d, J=8. 6 Hz), 7. 29 (2H, d, J=8. 6 Hz).

IR (neat) 3385, 1613, 1514, 1248, 1175, 1117, 1065 cm⁻¹

参考例131

4-(2-エトキシエトキシ)ベンジルアルコール(0.60g)のトルエン(5ml)溶液に、室温で塩化チオニル(0.33ml)およびピリジン(1滴)を加え、2時間撹拌した。反応系に水を加え、酢酸エチルで抽出した。有機層を重曹水、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、残渣のDMF(10ml)溶液に、7-ヒドロキシー1,1-ジオキソー2,3-ジヒドロー1-ベンゾチエピン-4-カルボン酸メチル(400mg)および炭酸カリウム(414mg)を加え、70℃で3時間撹拌した。反応系に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(酢酸エチル:ヘキサン1:2)で分離精製し、淡黄色の油状物として7-[[4-(2-エトキシエトキ

シ) ベンジル] オキシ] -1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(0.59g)を得た。

7- [[4-(2-エトキシエトキシ) ベンジル] オキシ] -1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(0.59g) のTHF-メタノール(10-5ml)溶液に、室温で1M炭酸カリウム水溶液(2.6ml)を加え、65℃で24時間撹拌した。反応系にさらに1M炭酸カリウム水溶液(1.3ml)を加え、65℃で16時間撹拌した。室温まで冷却後、酢酸エチルで抽出した。水層に1N塩酸(10ml)を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、生じた結晶をろ過によって集めた。結晶をジイソプロピルエーテルで洗浄し、淡黄色の結晶として7-[[4-(2-エトキシエトキシ)ベンジル]オキシ]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(215mg)を得た。

m. p. 256-258℃

15 'H-NMR (200MHz, DMSO-d₆) δ 1.14 (3H, t, J=7.0 Hz), 2.90 (2H, t, J=6.2 Hz), 3.50 (2H, q, J=7.0 Hz), 3.65-3.71 (4H, m), 4.07-4.11 (2H, m), 5.16 (2H, s), 6.97 (2H, d, J=8.4 Hz), 7.21 (1H, dd, J=8.8, 2.6 Hz), 7.37-7.41 (3H, m), 7.72 (1H, s), 7.93 (1H, d, J=8.8 Hz).

IR (KBr) 3073, 1672, 1620, 1595, 1566, 1512, 1415, 1292, 1269, 1223, 1161,

20 1128, 1067 cm⁻¹

元素分析 C₂₂H₂₄O₇S·0. 25H₂O Calcd. C, 60. 47; H, 5. 65; Found. C, 60. 40; H, 5. 62.

参考例132

4-ヒドロキシベンジルアルコール (3.00g)、2-ブロモエチルプロピル エーテル (4.0 ml)、ヨウ化ナトリウム (4.75g)、炭酸カリウム (6.68g)のDMF (30 ml)混合物を、90℃で3日間撹拌した。反応系に水を加え酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(酢酸エチル: ヘキサン1:2→1:1)で分離精製し、淡黄色の油状物として4-(2-プロ

ポキシエトキシ) ベンジルアルコール(2.27g) を得た。

 $^{1}H-NMR$ (200MHz, CDC1₃) δ 0. 93 (3H, t, J=7. 5 Hz), 1. 52-1. 69 (3H, m), 3. 50 (2H, t, J=6. 8 Hz), 3. 79 (2H, t, J=4. 9 Hz), 4. 13 (2H, t, J=4. 9 Hz), 4. 62 (2H, d, J=6. 0 Hz), 6. 92 (2H, d, J=8. 6 Hz), 7. 28 (2H, d, J=8. 6 Hz).

5 IR (neat) 3382, 1613, 1586, 1514, 1456, 1302, 1246, 1175, 1125, 1065, 1022. 1069, 993, 824 cm⁻¹

参考例133

20

4- (2-プロポキシエトキシ) ベンジルアルコール (0.63g) のトルエン (5m1) 溶液に、室温で塩化チオニル (0.33m1) およびピリジン (1 滴) を加え、1.5時間撹拌した。反応系に水を加え、酢酸エチルで抽出した。有機層を重曹水、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、残渣のDMF (10m1) 溶液に、7-ヒドロキシー1,1-ジオキソー2,3-ジヒドロー1-ベンゾチエピンー4ーカルボン酸メチル (400mg) および炭酸カリウム (414mg) を加え、65℃で2時間撹拌した。反応系に15 水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(酢酸エチル:ヘキサン1:2) で分離精製し、淡黄色の油状物として7-[[4-(2-プロポキシエトキシ) ベンジル] オキシ] -1,1-ジオキソー2,3-ジヒドロー1-ベンゾチエピンー4ーカルボン酸メチル (0.54g) を得た。

7-[[4-(2-プロポキシエトキシ) ベンジル] オキシ] -1, 1-ジオキソー2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル <math>(0.54g)のTHF-メタノール <math>(10-5m1)溶液に、室温で1M炭酸カリウム水溶液 2.4m1 (2.6ミリモル)を加え、65℃で20時間撹拌した。室温まで冷却後、酢酸エチルで抽出した。水層に1N塩酸 (10m1)を加え、酢酸エチルで抽出した。水層に1N塩酸 (10m1)を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、生じた結晶をろ過によって集めた。結晶をジイソプロピルエーテルで洗浄し、淡黄色の結晶として7-[[4-(2-プロポキシエトキシ) ベンジル] オキシ] -1, 1-ジオキソー2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸 <math>(321mg)を得た。

m. p. 244-250℃

¹H-NMR (200MHz, DMSO-d₆) δ 0. 87 (3H, t, J=7. 5 Hz), 1. 44-1. 61 (2H, m), 2. 90 (2H, t, J=6. 7 Hz), 3. 41 (2H, t, J=6. 6 Hz), 3. 64-3. 72 (4H, m), 4. 07-4. 12 (2H, m), 5. 16 (2H, s), 6. 97 (2H, d, J=8. 4 Hz), 7. 20 (1H, dd, J=8. 4, 2. 4 Hz),

5 7. 37-7. 41 (3H, m), 7. 72 (1H, s), 7. 93 (1H, d, J=8. 4 Hz).

IR (KBr) 3418 1688 1615 1588 1566 1514 1417 1292 1250 11

IR (KBr) 3418, 1688, 1615, 1588, 1566, 1514, 1417, 1292, 1250, 1163, 1128 ${\rm cm}^{-1}$

元素分析 C₂₃H₂₆O₇S·0. 5H₂O Calcd. C, 60. 65; H, 5. 97; Found. C, 60. 61; H, 5. 75.

10 参考例134

プロトカテキュアルデヒド(4.45g)をジメチルホルムアミド(65ml)に溶解させ、1ープロピルブロミド(9.91g)及び炭酸カリウム(13.4g)を加え、室温で19時間撹拌した。反応混合物を酢酸エチルで希釈し、水、1N水酸化ナトリウム水溶液、水及び飽和食塩水でそれぞれ洗浄し、有機層を無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=4:1)で精製し、黄色オイルとして3,4ージプロポキシベンズアルデヒド(6.72g)を得た。「H-NMR(200MHz, CDCl₃) & 1.06(3H, t, J=7.5 Hz), 1.07(3H, t, J=7.4 Hz), 1.88(2H, sextet, J=7.1 Hz), 1.89, (2H, sextet, J=7.1 Hz), 4.03(2H, t, J=6.6 Hz), 4.05(2H, t, J=6.6 Hz), 6.96(1H, d, J=8.4 Hz), 7.40(1H, s), 7.42(1H, dd,

参考例135

J=8.4, 2.0 Hz), 9.83 (1H, s).

A CONTRACTOR OF THE PROPERTY OF THE PERSONS

3, 4-ジプロポキベンズアルデヒド(6.65g)にメタノール(90m1)を加え、水素化ホウ素ナトリウム(1.13g)を0℃で加えた。混合物を0℃で30分間撹拌した。反応混合物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、黄色オイルとして3, 4-ジプロポキベンジルアルコール(6.22g)を得た。 「H-NMR(200MHz, CDCl₃) δ 1.040(3H, 1, J=7.5 Hz), 1.044(3H, 1, J=7.4 Hz), 1.60(1H, br s), 1.84(2H, sextet, J=7.2 Hz), 1.85, (2H, sextet, J=7.1 Hz),

3. 96 (2H, t, J=6. 5 Hz), 3. 98 (2H, t, J=6. 6 Hz), 4. 60 (2H, s), 6. 86-6. 93 (3H, m).

参考例136

- 3,4-ジプロポキシベンジルアルコール(673mg)のトルエン(5m1) 溶液に、室温で塩化チオニル(0.33m1)およびピリジン(1滴)を加え、2時間撹拌した。反応系に水を加え、酢酸エチルで抽出した。有機層を重曹水、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、残渣のDMF(10m1)溶液に、7-ヒドロキシー1,1-ジオキソー2,3-ジヒドロー1-ベンゾチエピンー4ーカルボン酸メチル(400mg)および炭酸カリウム(414mg)を加え、70℃で5時間撹拌した。反応系に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(酢酸エチル:ヘキサン1:2)で分離精製し、淡黄色の油状物として7-[(3,4-ジプロポキシ)ベンジル]オキシ]-1,1-ジオキソー2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(0.45g)を得た。
- 7- [(3, 4-ジプロポキシ) ベンジル] オキシ] -1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル (0. 45g) のT HF-メタノール (5-2.5ml) 溶液に、室温で1 M炭酸カリウム水溶液 (2.0ml) を加え、65℃で24時間撹拌した。室温まで冷却後1 N塩酸 (10ml) を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、生じた結晶をろ過によって集めた。結晶をジイソプロピルエーテルで洗浄し、無色の結晶として7-[(3, 4-ジプロポキシ)ベンジル] オキシ] -1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸 (306mg) を得た。

IR (KBr) 3076, 1674, 1593, 1566, 1512, 1294, 1275, 1256, 1163, 1128, 1067 cm⁻¹

元素分析 C₂₄H₂₈O₇S Calcd. C, 62.59; H, 6.13: Found. C, 62.36; H, 6.14. 参考例137

- 5 エチルバニリン(5.0g)、2-クロロエチルプロピルエーテル(4.6ml)、 ヨウ化ナトリウム(5.46g)、炭酸カリウム(6.23g)のDMF(50m 1)混合物を90℃で3日間撹拌した。反応系に水を加え、酢酸エチルで抽出した。 有機層を水および、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下 濃縮後、残渣をカラムクロマトグラフィー(酢酸エチル:ヘキサン1:3)で分
- 10 離精製し、淡黄色の油状物として3-エトキシ-4-(2-プロポキシエトキシ) ベンズアルデヒド(7.34g)を得た。

¹H-NMR (200MHz, CDCl₃) δ 0. 93 (3H, t, J=7. 4 Hz), 1. 47 (3H, t, J=7. 0 Hz), 1. 53-1. 70 (2H, m), 3. 53 (2H, t, J=6. 7 Hz), 3. 86 (2H, t, J=5. 0 Hz), 4. 14 (2H, q, J=7. 0 Hz), 4. 26 (2H, t, J=5. 0 Hz), 7. 02 (1H, d, J=8. 0 Hz), 7. 40-7. 45 (2H, m), 9. 84 (1H, s).

IR (neat) 1686, 1586, 1508, 1435, 1395, 1265, 1132, 1042 cm⁻¹ 参考例 1 3 8

3-エトキシー4-(2-プロポキシエトキシ)ベンズアルデヒド(7.34g)のメタノール(30m1)溶液に、0℃で水素化ホウ素ナトリウム(1.10g)

20 を加え、1時間撹拌した。減圧下濃縮後、1N塩酸を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、

無色の油状物として3-エトキシ-4-(2-プロポキシエトキシ)ペンジルアルコール (7.35g) を得た。

 1 H-NMR (200MHz, CDCl₃) δ 0. 93 (3H, t, J=7. 3 Hz), 1. 44 (3H, t, J=6. 9 Hz), 1. 62-1. 71 (3H, m), 3. 51 (2H, t, J=6. 6 Hz), 3. 81 (2H, t, J=5. 1 Hz), 4. 04-

4. 19 (4H, m), 4. 61 (2H, d, J=5. 8 Hz), 6. 83-6. 94 (3H, m).

IR (neat) 3418, 1514, 1427, 1262, 1233, 1136, 1044 cm⁻¹

参考例139

15

25

3-エトキシ-4-(2-プロポキシエトキシ)ベンジルアルコール(0.76

g)のトルエン(5m1)溶液に、室温で塩化チオニル(0.33m1)およびピリジン(1滴)を加え、2時間撹拌した。反応系に水を加え、酢酸エチルで抽出した。有機層を重曹水、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、残渣のDMF(10m1)溶液に、7-ヒドロキシー1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(400mg)および炭酸カリウム(414mg)を加え、70℃で2時間撹拌した。反応系に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(酢酸エチル:ヘキサン1:2→1:1)で分離精製し、淡黄色の油状物として7-10 [[3-エトキシー4-(2-プロポキシエトキシ)ベンジル]オキシ]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(0.76g)を得た。

7- [[3-エトキシー4-(2-プロポキシエトキシ) ベンジル] オキシ] - 1, 1-ジオキソー2, 3-ジヒドロー1-ベンゾチエピンー4-カルボン酸メ チル (0.76g) のTHF-メタノール (10-5ml) 溶液に、室温で1M 炭酸カリウム水溶液 (3.0ml) を加え、65℃で20時間撹拌した。室温まで冷却後、酢酸エチルで抽出した。水層に1N塩酸 (10ml) を加え、酢酸エチルで抽出した。水層に1N塩酸 (10ml) を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、生じた結晶をろ過によって集めた。結晶をジイソプロピルエーテルで洗浄し、淡黄色の結晶として7-[[3-エトキシー4-(2-プロポキシエトキシ) ベンジル] オキシ] -1, 1-ジオキソー2, 3-ジヒドロー1-ベンゾチエピンー4-カルボン酸 (178mg) を得た。

'H-NMR (200MHz, DMSO-d₆) δ 0. 87 (3H, t, J=7. 3 Hz), 1. 32 (3H, t, J=7. 0 Hz), 1. 44-1. 62 (2H, m), 2. 90 (2H, t, J=6. 2 Hz), 3. 43 (2H, t, J=6. 6 Hz), 3. 64-3. 71 (4H, m), 3. 98-4. 10 (4H, m), 5. 14 (2H, s), 6. 94-7. 01 (2H, m), 7. 08 (1H, s), 7. 20 (1H, dd, J=8. 8, 2. 6 Hz), 7. 41 (1H, d, J=2. 6 Hz), 7. 72 (1H, s), 7. 94 (1H, d, J=8. 8 Hz).

IR (KBr) 3422, 1674, 1593, 1568, 1514, 1294, 1258, 1163, 1128, 1065 cm⁻¹ 参考例 1 4 0

- 7-ヒドロキシー1, 1-ジオキソー2, 3-ジヒドロー1-ベンゾチエピン -4-カルボン酸メチル(400mg)、4-プロポキシフェニルホウ酸(53 6mg)、酢酸銅(II)(271mg)、MS(モレキュラーシープス)4A(1. 0g)のジクロロメタン(15ml)混合物に、室温でトリエチルアミン(1.
- 5 04ml)を加え、20時間撹拌した。ろ過によって不溶物を除去した後、減圧下濃縮した。残渣をカラムクロマトグラフィー(酢酸エチル:ヘキサン1:2)で分離精製し、淡黄色の油状物として7-(4-プロポキシフェノキシ)-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(0.31g)を得た。
- 10 H-NMR (200MHz, CDCl₃) δ 1.06 (3H, t, J=7.5 Hz), 1.74-1.90 (2H, m), 3.04-3.10 (2H, m), 3.59-3.65 (2H, m), 3.84 (3H, s), 3.94 (2H, t, J=6.4 Hz), 6.91-7.03 (6H, m), 7.70 (1H, s), 8.07 (1H, d, J=8.8 Hz).

 IR (neat) 1715, 1590, 1566, 1505, 1472, 1435, 1323, 1294, 1279, 1240, 1202, 1125, 912, 839, 747 cm⁻¹

15 参考例 1 4 1

7-(4-プロポキシフェノキシ)-1, 1-ジオキソ-2, 3-ジヒドロー1-ベンゾチエピン-4-カルボン酸メチル(0.31g)のTHF-メタノール(5-2.5ml)溶液に室温で1M炭酸カリウム水溶液(1.5ml)を加え、65℃で40時間撹拌した。室温まで冷却後、1N塩酸(10ml)を加え 酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、析出した結晶をろ過によって集めた。結晶をジイソプロピルエーテルで洗浄し、淡黄色の結晶として7-(4-プロポキシフェノキシ)-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(26mg)を得た。

25 m.p. 192-194℃

H-NMR (200MHz, DMS0- d_6) δ 1. 00 (3H, t. J=7. 3 Hz), 1. 65-1. 83 (2H, m), 2. 91 (2H, t. J=6. 7 Hz), 3. 71 (2H, t. J=6. 7 Hz), 3. 94 (2H, t. J=6. 4 Hz), 6. 99-7. 13 (5H, m), 7. 27 (1H, d, J=2. 2 Hz), 7. 66 (1H, s), 7. 98 (1H, d, J=8. 8 Hz). IR (KBr) 1696, 1508, 1472, 1296, 1242, 1202, 1127 cm⁻¹

元素分析 $C_{20}H_{20}O_6S \cdot 0.5H_2O$ Calcd. C, 60.44; H, 5.33: Found. C, 60.43; H, 5.25.

参考例142

7-ヒドロキシー1、1ージオキソー2、3ージヒドロー1ーベンゾチエピン
 5 -4-カルボン酸メチル(400mg)、3ープロポキシフェニルホウ酸(536 mg)、酢酸銅(II)(271mg)、MS4A(0.8g)のジクロロメタン(15m1)混合物に、室温でトリエチルアミン(1.04m1)を加え、17時間撹拌した。ろ過によって不溶物を除去した後、減圧下濃縮した。残渣をカラムクロマトグラフィー(酢酸エチル:ヘキサン1:2)で分離精製し、淡黄色の油状物として7-(3-プロポキシフェノキシ)-1、1-ジオキソー2、3-ジヒ

ドロー 1 ーベンゾチエピンー 4 ーカルボン酸メチル (0.39g) を得た。
'H-NMR (200MHz, CDCl₃) δ 1.04 (3H, t, J=7.3 Hz), 1.72-1.90 (2H, m), 3.05-3.12 (2H, m), 3.59-3.66 (2H, m), 3.84 (3H, s), 3.91 (2H, t, J=6.6 Hz), 6.60-6.66 (2H, m), 6.76-6.82 (1H, m), 7.04-7.09 (2H, m), 7.26-7.35 (1H, m),

15 7.12 (1H, s), 8.11 (1H, d, J=9.0 Hz).

IR (neat) 1715, 1609, 1586, 1566, 1487, 1472, 1435, 1321, 1277, 1242, 1215, 1163, 1128, 748 $\rm cm^{-1}$

参考例143

7-(3-プロポキシフェノキシ)-1, 1-ジオキソ-2, 3-ジヒドロー 1-ベンゾチエピン-4-カルボン酸メチル(0.53g)のTHF-メタノール(10-5ml)溶液に室温で1M炭酸カリウム水溶液(2.6ml)を加え、65℃で40時間撹拌した。室温まで冷却後、1N塩酸(10ml)を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、析出した結晶をろ過によって集めた。結晶をジイソプロピルエーテルで洗浄し、淡黄色の結晶として7-(3-プロポキシフェノキシ)-1, 1ージオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(412mg)を得た。

m. p. 180-181℃

 $^{1}\text{H-NMR}$ (200MHz, DMSO-d₆) δ 0.97 (3H, t, J=7.3 Hz), 1.63-1.82 (2H, m),

5

2. 88-2. 95 (2H, m), 3. 69-3. 75 (2H, m), 3. 93 (2H, t, J=6. 4 Hz), 6. 65-6-76 (2H, m), 6. 81-6. 85 (1H, m), 7. 11 (1H, dd, J=8. 8, 2. 6 Hz), 7. 31-7. 40 (2H, m), 7. 68 (1H, s), 8. 00 (1H, d, J=8. 8 Hz).

IR (KBr) 3068, 1678, 1609, 1586, 1568, 1487, 1283, 1242, 1159, 1128, 1036 cm⁻¹

元素分析 C₂₀H₂₀O₆S Calcd. C, 61.84; H, 5.19: Found. C, 61.63; H, 5.16. 参考例 1 4 4

7-ヒドロキシー1, 1-ジオキソー2, 3-ジヒドロー1-ベンゾチエピンー4-カルボン酸メチル(0.40g)、4-プロピルフェニルホウ酸(0.49g)、酢酸銅(II)(0.27g)、MS4A(0.8g)のジクロロメタン(15ml)混合物に、室温でトリエチルアミン(1.04ml)を加え、20時間撹拌した。ろ過によって不溶物を除去した後、減圧下濃縮した。残渣をカラムクロマトグラフィー(酢酸エチル:ヘキサン1:2)で分離精製し、淡黄色の油状物として7-(4-プロピルフェノキシ)-1, 1-ジオキソー2, 3-ジヒドロー1-ベンゾチエピンー4ーカルボン酸メチル(0.40g)を得た。

'H-NMR (200MHz, CDC1₃) δ 0. 97 (3H, t, J=7. 1 Hz), 1. 57-1. 77 (6H, m), 2. 62 (2H, t, J=7. 7 Hz), 3. 04-3. 11 (2H, m), 3. 59-3. 66 (2H, m), 3. 84 (3H, s), 6. 96-7. 05 (4H, m), 7. 23 (2H, d, J=8. 4 Hz), 7. 71 (1H, s), 8. 09 (1H, d, J=9. 2 Hz). IR (neat) 1714, 1586, 1564, 1505, 1323, 1294, 1279, 1252, 1215, 1167, 1127,

20 748 cm⁻¹

参考例145

7-(4-プロピルフェノキシ)-1, 1-ジオキソ-2, 3-ジヒドロ-1 -ベンゾチエピン-4-カルボン酸メチル(0.40g)のTHF-メタノール (10-5ml)溶液に室温で1M炭酸カリウム水溶液(3.0ml)を加え、 25 65℃で20時間撹拌した。室温まで冷却後、1N塩酸(10ml)を加え酢酸 エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。 減圧下濃縮し、析出した結晶をろ過によって集めた。結晶をヘキサンで洗浄し、 淡黄色の結晶として7-(4-プロピルフェノキシ)-1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(254mg)を得た。 m. p. 147-149℃

¹H-NMR (200MHz, DMSO-d₆) δ 0. 93 (3H, t, J=7. 4 Hz), 1. 52-1. 71 (2H, m), 2. 54-2. 62 (2H, m), 2. 88-2. 94 (2H, m), 3. 68-3. 75 (2H, m), 7. 03-7. 09 (3H, m), 7. 29 (2H, d, J=8. 8 Hz), 7. 33 (1H, d, J=2. 6 Hz), 7. 66 (1H, s), 7. 99 (1H, d, J=8. 4 Hz).

IR (KBr) 1692, 1588, 1566, 1505, 1294, 1254, 1211, 1167, 1127 cm⁻¹ 元素分析 C₂₀H₂₀O₅S Calcd. C, 64.50; H, 5.41; Found. C, 64.32; H, 5.21. 参考例 1 4 6

7-ヒドロキシ-1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン -4-カルボン酸メチル(0.40g)、3-エトキシ-4-(2-プロポキシエ 10 トキシ) フェニルホウ酸 (0.80g)、酢酸銅 (II) (0.27g)、MS4A (0. 8g) のジクロロメタン (15ml) 混合物に、室温でトリエチルアミン (1. 04ml)を加え、16時間撹拌した。ろ過によって不溶物を除去した後、減圧 下濃縮した。残渣をカラムクロマトグラフィー(酢酸エチル:ヘキサン1:2→ 2:3)で分離精製し、淡黄色の油状物として7-[3-エトキシ-4-(2-15 プロポキシエトキシ)フェノキシ]-1,1-ジオキソー2,3-ジヒドロー1 ベンゾチエピン-4-カルボン酸メチル(0.45g)を得た。 $^{1}\text{H-NMR}$ (200MHz, CDCl₃) δ 0.95 (3H, t, J=7.4 Hz), 1.44 (3H, t, J=7.0 Hz), 1. 56-1. 70 (2H, m), 3. 04-3. 11 (2H, m), 3. 53 (2H, t, J=6. 8 Hz), 3. 58-3. 65 (2H, m), 3.80-3.85 (5H, m), 4.03 (2H, q, J=7.0 Hz), 4.17-4.22 (2H, m), 6.56-6.63 20 (2H. m), 6.94-7.04 (3H. m), 7.70 (1H. s), 8.08 (1H. d. J=8.4 Hz). IR (neat) 1715, 1588, 1566, 1507, 1480, 1321, 1277, 1244, 1219, 1165, 1127 cm-1

参考例147...

7-[3-エトキシ-4-(2-プロポキシエトキシ)フェノキシ]-1,1
 -ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(0.45g)のTHF-メタノール(10-5ml)溶液に室温で1M炭酸カリウム水溶液(1.8ml)を加え、65℃で20時間撹拌した。室温まで冷却後、1N塩酸(10ml)を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、

硫酸マグネシウムで乾燥した。減圧下濃縮し、析出した結晶をろ過によって集めた。結晶をヘキサンで洗浄し、淡黄色の結晶として7-[3-エトキシー4-(2-プロポキシエトキシ)フェノキシ]-1,1-ジオキソー2,3-ジヒドロー1-ベンゾチエピン-4-カルボン酸(283mg)を得た。

5 m.p. 116-118℃

¹H-NMR (200MHz, DMSO-d₆) δ 0. 88 (3H, t, J=7. 5 Hz), 1. 31 (3H, t, J=7. 0 Hz), 1. 44-1. 62 (2H, m), 2. 85-2. 96 (2H, m), 3. 44 (2H, t, J=6. 6 Hz), 3. 68-3. 73 (4H, m), 4. 01 (2H, q, J=7. 0 Hz), 4. 08-4. 12 (2H, m), 6. 66 (1H, dd, J=8. 8, 2. 4 Hz), 6. 82 (1H, d, J=2. 4 Hz), 7. 01-7. 07 (2H, m), 7. 28 (1H, d, J=2. 6 Hz), 7. 66 (1H, s), 7. 98 (1H, d, J=8. 6 Hz).

IR (KBr) 3397, 1694, 1593, 1562, 1507, 1291, 1248, 1223, 1128 cm⁻¹ 元素分析 C₂₄H₂₈O₈S·O. 5H₂O Calcd. C, 59. 37; H, 6. 02; Found. C, 59. 23; H, 6. 03.

参考例148

10

2 - プロモベンジルアルコール (10.0g)のTHF (100ml)溶液に、0℃で水素化ナトリウム (60%, 2.35g)を加え、室温で2時間撹拌した。反応系に1-プロモプロパン (5.8ml)を加え、60℃で20時間撹拌した。反応系に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(酢20酸エチル:ヘキサン1:9)で分離精製し、無色の油状物として2-プロモベンジルプロピルエーテル (7.88g)を得た。

¹H-NMR (200MHz, CDCl₃) δ 0. 97 (3H, t, J=7. 3 Hz), 1. 59-1. 77 (2H, m), 3. 52 (2H, t, J=6. 6 Hz), 4. 57 (2H, s), 7. 09-7. 18 (1H, m), 7. 28-7. 35 (1H, m), 7. 45-7. 56 (2H, m).

25 参考例149

アルゴン雰囲気下、マグネシウム (0.83g) のTHF (30ml) 混合物に、室温で1,2-ジプロモエタン (0.1ml) を加え、引き続き60℃で2ープロモベンジルプロピルエーテル (7.88g) のTHF (40ml) 溶液を30分かけて滴下した。滴下後、60℃でさらに2時間撹拌した後-78℃に冷

却し、トリメチルホウ酸(12ml)のTHF(24ml)溶液を滴下した。-78℃で1時間撹拌後、室温で10時間撹拌した。反応系に1N塩酸(100ml)を加え、30分間撹拌後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、析出した結晶をろ過によって集めた。結晶をヘキサンで洗浄し、無色の結晶として2-プロポキシメチルフェニルホウ酸(2.95g)を得た。

¹H-NMR (200MHz, DMSO-d₆) δ 0.88 (3H, 1, J=7.3 Hz), 1.44-1.63 (2H, m), 3.38 (2H, t, J=6.6 Hz), 4.57 (2H, s), 7.19-7.33 (3H, m), 7.51 (1H, d, J=6.6 Hz). 参考例 1 5 0

7 - ヒドロキシー1, 1 - ジオキソー2, 3 - ジヒドロー1 - ベンゾチエピン - 4 - カルボン酸メチル(0.40g)、2 - プロポキシメチルフェニルホウ酸(0.80g)、酢酸銅(II)(0.27g)、MS4A(0.8g)のジクロロメタン(15ml)混合物に、室温でトリエチルアミン(1.04ml)を加え、20時間撹拌した。ろ過によって不溶物を除去した後、減圧下濃縮した。残渣をカラムクロマトグラフィー(酢酸エチル:ヘキサン1:2)で分離精製し、淡黄色の油状物として7-(2-プロポキシメチルフェノキシ)-1,1-ジオキソー2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(0.13g)を得た。 'H-NMR(200MHz,CDCl₃) & 0.86(3H,t,J=7.6 Hz)、1.44-1.62(2H,m),3.05-3.11(2H,m),3.39(2H,t,J=6.8 Hz),3.59-3.65(2H,m),3.84(3H,s).4.4620(2H,s),6.97-7.02(3H,m),7.35-7.40(2H,m),7.58(1H,dd,J=7.1,2.1 Hz),7.70(1H,s),8.09(1H,d,J=9.6 Hz).

参考例151

7-(2-プロポキシメチルフェノキシ)-1, 1-ジオキソー2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(0.37g)のTHF-メタノール(10-5ml)溶液に室温で1M炭酸カリウム水溶液(1.8ml)を加え、65℃で20時間撹拌した。室温まで冷却後、1N塩酸(10ml)を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮し、析出した結晶をろ過によって集めた。結晶をジイソプロピルエーテルで洗浄し、淡黄色の結晶として7-(2-プロポキシメチルフェ

ノキシ) -1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(229mg)を得た。

m. p. 139-141℃

'H-NMR (200MHz, DMSO-d₈) δ 0. 78 (3H, t, J=7.5 Hz), 1. 32-1. 50 (2H, m), 2. 91 (2H, t, J=6.3 Hz), 3. 16-3. 46 (2H, m), 3. 71 (2H, t, J=6.3 Hz), 4. 42 (2H, s), 7. 00 (1H, dd, J=8.4, 2.6 Hz), 7. 09-7. 14 (1H, m), 7. 27 (1H, d, J=2.6 Hz), 7. 31-7. 48 (2H, m), 7. 55 (1H, dd, J=7.4, 1.8 Hz), 7. 65 (1H, s), 7. 98 (1H, d, J=8.4 Hz). IR (KBr) 1676, 1563, 1296, 1264, 1219, 1123 cm⁻¹

元素分析 C₂₁H₂₂O₆S Calcd. C, 62.67; H, 5.51: Found. C, 62.28; H, 5.79.

10 実施例98 (化合物99の製造)

7- [[2-(2-プロポキシエトキシ) ベンジル] オキシ] -1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(136mg)のTHF(10ml)溶液に、室温で塩化チオニル(0.095ml)及びDMF(1滴)を加えて1時間撹拌した。減圧下溶媒を留去した後、残渣をTHF(10ml)に溶解させ、0℃で4-[[N-メチル-N-(テトラヒドロピラン-4-イル)アミノ] メチル]アニリン(79mg)およびトリエチルアミン(0.2ml)のTHF(2ml)溶液に滴下した。室温で40時間撹拌した後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(エタノール:酢酸エチル1:3)で精製し、さらに生じた結晶を再結晶(エタノール)によって精製し、無色の結晶としてN-[4-[[N-メチル-N-(テトラヒドロピランー

4-7(ル) アミノ] メチル] フェニル] -7-[[2-(2-7)ロポキシエトキシ) ベンジル] オキシ] -1, 1-33キソー2, 3-35ヒドロー1-77ンゾチエピンー4-7ルボキサミド(化合物 9 9) (6 5 m g) を得た。

25 m.p. 136-138 ℃

'H-NMR (200MHz, CDC1,) & 0.89 (3H, t, J=7.5 Hz), 1.53-1.77 (6H, m), 2.21 (3H, s), 2.54-2.74 (1H, m), 3.09 (2H, t, J=6.7 Hz), 3.31-3.45 (2H, m), 3.48 (2H, t, J=6.7 Hz), 3.57 (2H, s), 3.69 (2H, t, J=6.7 Hz), 3.78-3.83 (2H, m), 3.99-4.09 (2H, m), 4.17-4.22 (2H, m), 5.24 (2H, s), 6.91-7.09 (4H, m), 7.22

(1H, s), 7.30-7.41 (4H, m), 7.52 (2H, d, J=8.4 Hz), 7.89 (1H, s), 8.07 (1H, d, J=8.4 Hz).

IR (KBr) 3235, 1653, 1636, 1591, 1532, 1514, 1495, 1412, 1316, 1292, 1258, 1121 cm⁻¹

5 元素分析 C₃₆H₄₄N₂O₇S Calcd. C, 66.64; H, 6.84; N, 4.32; Found. C, 66.45; H, 6.96; N, 4.22.

実施例99 (化合物100の製造)

7- [(4-プロポキシベンジル) オキシ] -1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(180mg)のTHF(10ml) 溶液に、室温で塩化チオニル(0.065ml)及びDMF(1滴)を加えて1時間撹拌した。滅圧下溶媒を留去した後、残渣をTHF(10ml)に溶解させ、0℃で4-[[N-メチル-N-(テトラヒドロピラン-4-イル)アミノ]メチル]アニリン(108mg)およびトリエチルアミン(0.25ml)のTHF(2ml)溶液に滴下した。室温で40時間撹拌した後、水を加え酢酸エチルで15抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(エタノール:酢酸エチル1:3)で精製し、さらに生じた結晶を再結晶(エタノール)によって精製し、無色の結晶としてN-[4-[[N-メチル-N-(テトラヒドロピラン-4-イル)アミノ]メチル]フェニル]-7-[[(4-プロポキシベンジル)オキシ]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボキサミド(化合物100)(139mg)を得た。

m. p. 205-207 ℃

'H-NMR (200MHz, CDCl₃) δ 1. 04 (3H, t, J=7. 5 Hz). 1. 64-1. 87 (6H, m), 2. 21 (3H, s), 2. 56-2. 73 (1H, m), 3. 09 (2H, t, J=7. 0 Hz), 3. 30-3. 44 (2H, m), 3. 57 (2H, s), 3. 69 (2H, t, J=7. 0 Hz), 3. 94 (2H, t, J=7. 0 Hz). 4. 00-4. 10 (2H, m), 5. 07 (2H, s), 6. 93 (2H, d, J=8. 8 Hz), 6. 98-7. 07 (2H, m), 7. 20 (1H, s), 7. 31-7. 35 (4H, m), 7. 53 (2H, d, J=8. 4 Hz), 7. 83 (1H, s), 8. 09 (1H, d, J=8. 4 Hz). IR (KBr) 3244, 1653, 1634, 1599, 1514, 1410, 1319, 1292, 1254, 1123 cm⁻¹ 元素分析 C₃₄H₄₀N₂O₆S Calcd. C, 67. 53; II, 6. 67; N, 4. 63; Found. C, 67. 31;

H. 6. 72; N. 4. 62.

実施例100 (化合物101の製造)

7-[(2-エトキシベンジル) オキシ] -1, 1-ジオキソー2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(<math>130mg)のTHF(10ml)

- 5 溶液に、室温で塩化チオニル(0.045ml)及びDMF(1滴)を加えて1時間撹拌した。減圧下溶媒を留去した後、残渣をTHF(10ml)に溶解させ、0℃で4-[[N-メチル-N-(テトラヒドロピラン-4-イル)アミノ]メチル]アニリン(80mg)およびトリエチルアミン(0.18ml)のTHF(2ml)溶液に滴下した。室温で16時間撹拌した後、水を加え酢酸エチルで抽出
- 10 した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(エタノール:酢酸エチル1:3)で精製し、さらに生じた結晶を再結晶(エタノール)によって精製し、無色の結晶として7-[(2-エトキシベンジル)オキシ]-N-[4-[[N-メチル-N-(テトラヒドロピラン-4-イル)アミノ]メチル]フェニル]-1,1-ジオキソ
- 15 -2,3-ジヒドロ-1-ベンゾチエピン-4-カルボキサミド(化合物101) (103mg)を得た。

m. p. 211-214 ℃

¹H-NMR (200MHz, CDCl₃) δ 1. 42 (3H, t, J=7. 0 Hz), 1. 66-1. 83 (4H, m), 2. 21 (3H, s), 2. 55-2. 74 (1H, m), 3. 09 (2H, t, J=6. 6 Hz), 3. 31-3. 42 (2H, m), 3. 57 (2H, s), 3. 69 (2H, t, J=6. 6 Hz), 3. 99-4. 09 (2H, m), 4. 11 (2H, q, J=7. 0 Hz), 5. 21 (2H, s), 6. 89-7. 02 (3H, m), 7. 08 (1H, dd, J=8. 8, 2. 2 Hz), 7. 22 (1H, s),

7. 30-7. 40 (4H, m), 7. 53 (2H, d, J=8. 4 Hz), 7. 84 (1H, s), 8. 08 (1H, d, J=8. 8 Hz).

IR (KBr) 3252, 1655, 1636, 1605, 1590, 1530, 1497, 1412, 1318, 1292, 1250, 1167,

25 1121, 1044 cm⁻¹

20

元素分析 C₃₃H₃₈N₂O₆S Calcd. C, 67.10; H, 6.48; N, 4.74: Found. C, 66.93; H, 6.34; N, 4.70.

実施例101 (化合物102の製造)

7- [(2-メトキシベンジル) オキシ] -1, 1-ジオキソー2, 3-ジヒド

ロ-1-ベンゾチエピン-4-カルボン酸 (140mg) のTHF (10ml) 溶液に、室温で塩化チオニル (0.055ml) 及びDMF (1滴) を加えて1時間撹拌した。減圧下溶媒を留去した後、残渣をTHF (10ml) に溶解させ、0℃で4-[[N-メチル-N-(テトラヒドロピラン-4-イル) アミノ] メチル] アニリン (91mg) およびトリエチルアミン (0.21ml) のTHF (2ml) 溶液に滴下した。室温で16時間撹拌した後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(エタノール:酢酸エチル1:3) で精製し、さらに生じた結晶を再結晶(エタノール)によって精製し、無色の結晶として7-[(2-メトキシベンジル)オキシ]-N-[4-[[N-メチル-N-(テトラヒドロピラン-4-イル) アミノ] メチル] フェニル]-1, 1ージオキソー2,3ージヒドロ-1ーベンゾチエピン-4ーカルボキサミド(化合物102) (101mg) を得た。

m. p. 223-225 ℃

7. 化分子检查检查中,用户的工作工作。

- 15 'H-NMR (200MHz, CDC1₃) δ 1. 62-1. 82 (4H, m), 2. 21 (3H, s), 2. 55-2. 73 (1H, m), 3. 09 (2H, t, J=6. 8 Hz), 3. 31-3. 43 (2H, m), 3. 57 (2H, s), 3. 69 (2H, t, J=6. 8 Hz), 3. 88 (3H, s), 3. 98-4. 10 (2H, m), 5. 19 (2H, s), 6. 92-7. 02 (3H, m), 7. 07 (1H, dd, J=8. 8, 2. 6 Hz), 7. 21 (1H, s), 7. 30-7. 41 (4H, m), 7. 53 (2H, d, J=8. 4 Hz), 7. 84 (1H, s), 8. 08 (1H, d, J=8. 8 Hz).
- 20 IR (KBr) 3256, 1655, 1603, 1590, 1528, 1497, 1412, 1318, 1292, 1254, 1167, 1121 cm⁻¹

元素分析 $C_{32}H_{36}N_2O_6S$ Calcd. C, 66.64; H, 6.29; N, 4.86: Found. C, 66.41; H, 6.30; N, 4.80.

実施例102(化合物103の製造)

25 7-[(2-クロロベンジル) オキシ] -1, 1-ジオキソ-2, 3-ジヒドロー1-ベンゾチエピン-4-カルボン酸(180mg)のTHF(10ml)溶液に、室温で塩化チオニル(0.070ml)及びDMF(1滴)を加えて1時間撹拌した。減圧下溶媒を留去した後、残渣をTHF(15ml)に溶解させ、0℃で4-[[N-メチル-N-(テトラヒドロピラン-4-イル)アミノ]メチ

ル] アニリン (115mg) およびトリエチルアミン (0.26ml) のTHF (2ml) 溶液に滴下した。室温で20時間撹拌した後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー (エタノール:酢酸エチル1:3) で精製し、さらに生じた結晶を再結晶 (エタノール) によって精製し、無色の結晶として7- [(2-クロロベンジル) オキシ] -N- [4- [[N-メチル-N-(テトラヒドロピラン-4-イル) アミノ] メチル] フェニル] -1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボキサミド (化合物103) (131mg) を得た。

10 m.p. 205-207 ℃

¹H-NMR (200MHz, CDCl₃) δ 1. 68-1. 83 (4H, m), 2. 21 (3H, s), 2. 55-2. 72 (1H, m), 3. 10 (2H, t, J=6. 8 Hz), 3. 31-3. 43 (2H, m), 3. 57 (2H, s), 3. 70 (2H, t, J=6. 8 Hz), 3. 98-4. 09 (2H, m), 5. 25 (2H, s), 7. 01-7. 10 (2H, m), 7. 23 (1H, s), 7. 29-7. 36 (4H, m), 7. 40-7. 56 (4H, m), 7. 90 (1H, s), 8. 11 (1H, d, J=8. 8 Hz).

15 IR (KBr) 3282, 1657, 1637, 1591, 1530, 1410, 1318, 1292, 1254, 1167, 1142, 1123 cm⁻¹

元素分析 C₃₁H₃₃N₂O₅SCl·0. 3H₂O Calcd. C, 63. 48; H, 5. 77; N, 4. 78: Found. C, 63. 29; H, 5. 73; N, 4. 55.

実施例103 (化合物104の製造)

7 - [[2 - (2 - エトキシエトキシ) ベンジル]オキシ] - 1, 1 - ジオキソ<math>-2, 3 -ジヒドロ-1 -ベンゾチエピン-4 -カルボン酸(180 mg)のT

HF(10ml)溶液に、室温で塩化チオニル(0.061ml)及びDMF(1 滴)を加えて1時間撹拌した。減圧下溶媒を留去した後、残渣をTHF(10ml)に溶解させ、0℃で4-[[N-メチル-N-(テトラヒドロピラン-4-イ ル)アミノ]メチル]アニリン(102mg)およびトリエチルアミン(0.23ml)のTHF(2ml)溶液に滴下した。室温で16時間撹拌した後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(エタノール:酢酸エチル1:3)で精製し、さらに生じた結晶を再結晶(エタノール)によって精

製し、無色の結晶として7-[[2-(2-x)+2x+2) ベンジル] オキシ] -N-[4-[[N-x+n-N-(テトラヒドロピラン-4-イル) アミノ] メチル] フェニル] -1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボキサミド (化合物 104) (109 mg) を得た。

5 m. p. 132-136 ℃

'H-NMR (200MHz, CDCl₃) δ 1. 20 (3H, t, J=7. 0 Hz), 1. 68-1. 83 (4H, m), 2. 21 (3H, s), 2. 56-2. 75 (1H, m), 3. 05-3. 11 (2H, m), 3. 31-3. 45 (2H, m), 3. 57 (2H, s), 3. 59 (2H, q, J=7. 0 Hz), 3. 65-3. 72 (2H, m), 3. 79-3. 84 (2H, m), 3. 99-4. 10 (2H, m), 4. 17-4. 22 (2H, m), 5. 25 (2H, s), 6. 90-7. 10 (4H, m), 7. 23 (1H, s),

10 7. 30-7. 41 (4H, m), 7. 53 (2H, d, J=8. 4 Hz), 8. 02 (1H, s), 8. 07 (1H, d, J=8. 4 Hz).

IR (KBr) 3254, 1655, 1636, 1591, 1530, 1410, 1314, 1292, 1258, 1121 cm⁻¹ 元素分析 C₃₅H₄₂N₂O₇S Calcd. C, 66. 22; H, 6. 67; N, 4. 41: Found. C, 65. 88; H. 6. 56; N, 4. 43.

15 実施例104(化合物105の製造)

7- [(3-プロポキシフェネチル) オキシ] -1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(140mg)のTHF(10m1)溶液に、室温で塩化チオニル(0.049m1)及びDMF(1滴)を加えて1.5時間撹拌した。減圧下溶媒を留去した後、残渣をTHF(10m1)に20 溶解させ、0℃で4-[[N-メチル-N-(テトラヒドロピラン-4-イル)アミノ]メチル]アニリン(82mg)およびトリエチルアミン(0.19m1)のTHF(2m1)溶液に滴下した。室温で16時間撹拌した後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(エタノール:酢酸エチル1:

3) で精製し、さらに生じた結晶を再結晶(エタノール)によって精製し、淡黄色の結晶としてN-[4-[[N-メチル-N-(テトラヒドロピラン-4-イル)アミノ]メチル]フェニル]-7-[(3-プロポキシフェネチル)オキシ]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボキサミド(化合物105)(95mg)を得た。

m. p. 153-154 ℃

'H-NMR (200MHz, CDCl₃) δ 1. 04 (3H, t, J=7. 3 Hz), 1. 67-1. 90 (6H, m), 2. 21 (3H, s), 2. 54-2. 73 (1H, m), 3. 02-3. 14 (4H, m), 3. 29-3. 45 (2H, m), 3. 57 (2H, s), 3. 65-3. 71 (2H, m), 3. 92 (2H, t, J=6. 5 Hz), 3. 99-4. 09 (2H, m), 4. 24 (2H, t, J=7. 0 Hz), 6. 77-6. 97 (5H, m), 7. 19 (1H, s), 7. 23-7. 34 (3H, m), 7. 53 (2H, d, J=8. 4 Hz), 7. 92 (1H, s), 8. 06 (1H, d, J=8. 8 Hz).

IR (KBr) 3254, 1655, 1634, 1599, 1530, 1410, 1318, 1292, 1260, 1159, 1123 cm⁻¹

元素分析 C₃₅H₄₂N₂O₆S Calcd. C, 67.94; H, 6.84; N, 4.53; Found. C, 67.78; 10 H. 6.56; N, 4.39.

実施例105 (化合物106の製造)

7-[(2-プロポキシフェネチル) オキシ] -1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(100mg)のTHF(10m1)溶液に、室温で塩化チオニル(0.035m1)及びDMF(1滴)を加えて1.5時間撹拌した。減圧下溶媒を留去した後、残渣をTHF(10m1)に溶解させ、0℃で4-[[N-メチル-N-(テトラヒドロピラン-4-イル)アミノ]メチル]アニリン(59mg)およびトリエチルアミン(0.13m1)のTHF(2m1)溶液に滴下した。室温で20時間撹拌した後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。
20 減圧下濃縮後、残渣をカラムクロマトグラフィー(エタノール:酢酸エチル1:

3) で精製し、さらに生じた結晶を再結晶(エタノール)によって精製し、無色の結晶としてN-[4-[[N-メチル-N-(テトラヒドロピラン-4-イル)]] アミノ[2-プロポキシフェネチル] オキシ[2-7] オキャ

25 合物106)(89mg)を得た。

m. p. 161-162 ℃

A THE RESERVE OF THE PROPERTY OF THE PROPERTY OF

'H-NMR (200MHz, CDCl₃) δ 1.06 (3H, t, J=7.5 Hz), 1.63-1.94 (6H, m), 2.21 (3H, s), 2.55-2.73 (1H, m), 3.05-3.18 (4H, m), 3.29-3.45 (2H, m), 3.57 (2H, s), 3.68 (2H, t, J=6.7 Hz), 3.97 (2H, t, J=6.4 Hz), 3.99-4.09 (2H, m), 4.25 (2H, m), 4.2

t, J=7.5 Hz), 6.83-7.03 (4H, m), 7.19-7.23 (3H, m), 7.32 (2H, d, J=8.4 Hz), 7.53 (2H, d, J=8.4 Hz), 7.80 (1H, s), 8.06 (1H, d, J=8.6 Hz). IR (KBr) 3268, 1651, 1634, 1599, 1530, 1495, 1410, 1316, 1291, 1256, 1240,

IR (KBr) 3268, 1651, 1634, 1599, 1530, 1495, 1410, 1316, 1291, 1256, 1240, 1121 cm⁻¹

5 元素分析 C₃₅H₄₂N₂O₆S Calcd. C. 67.94; H. 6.84; N. 4.53: Found. C. 67.72; H. 6.56; N. 4.36.

実施例106 (化合物107の製造)

7-[[4-(2-エトキシエトキシ) ベンジル] オキシ] -1, 1-ジオキソ -2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(<math>160mg)のT

HF(10ml)溶液に、室温で塩化チオニル(0.054ml)及びDMF(1滴)を加えて1.5時間撹拌した。減圧下溶媒を留去した後、残渣をTHF(10ml)に溶解させ、0℃で4-[[N-メチル-N-(テトラヒドロピラン-4-イル)アミノ]メチル]アニリン(90mg)およびトリエチルアミン(0.

21ml)のTHF (2ml)溶液に滴下した。室温で3日間撹拌した後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(エタノール:酢酸エチル1:3)で精製し、さらに生じた結晶を再結晶(エタノール)によって精製し、無色の結晶としてN-[4-[[N-メチル-N-(テトラヒドロピランー4-イル)アミノ]メチル]フェニル]-7-[[4-(2-エトキシエトキシ)

20 ベンジル] オキシ] -1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピ ン-4-カルボキサミド (化合物 <math>107) (135mg) を得た。

m.p. 185-187 ℃

'H-NMR (200MHz, CDCl₃) δ 1. 25 (3H, t, J=7. 0 Hz), i. 66-1. 82 (4H, m), 2. 20 (3H, s), 2. 56-2. 73 (1H, m), 3. 04-3. 11 (2H, m), 3. 29-3. 44 (2H, m), 3. 57 (2H, s),

25 3. 61 (2H, q, J=7.0 Hz), 3. 66-3. 72 (2H, m), 3. 78-3. 83 (2H, m), 3. 98-4. 09 (2H, m), 4. 11-4. 16 (2H, m), 5. 07 (2H, s), 6. 94-7. 06 (4H, m), 7. 20 (1H, s), 7. 29-7. 35 (4H, m), 7. 53 (2H, d, J=8.0 Hz), 7. 96 (1H, s), 8. 08 (1H, d, J=8.8 Hz).

IR (KBr) 3227, 1655, 1638, 1597, 1518, 1410, 1314, 1292, 1254, 1123 cm⁻¹

元素分析 $C_{35}H_{42}N_2O_7S$ Calcd. C, 66.22; H, 6.67; N, 4.41: Found. C, 65.95; H, 6.57; N, 4.30.

実施例107(化合物108の製造)

7- [[4-(2-プロポキシエトキシ) ベンジル] オキシ] -1, 1-ジオキ ソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(180mg)の THF(10ml)溶液に、室温で塩化チオニル(0.059ml)及びDMF(1滴)を加えて1.5時間撹拌した。減圧下溶媒を留去した後、残渣をTHF(10ml)に溶解させ、0℃で4-[[N-メチル-N-(テトラヒドロピラン -4-イル)アミノ]メチル]アニリン(97mg)およびトリエチルアミン(0.

- 10 22ml)のTHF(2ml)溶液に滴下した。室温で18時間撹拌した後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(エタノール:酢酸エチル1:3)で精製し、さらに生じた結晶を再結晶(エタノール)によって精製し、無色の結晶としてN-[4-[[N-メチル-N-(テトラヒドロピラン
- 15 -4-イル) アミノ] メチル] フェニル] -7- [[4-(2-プロポキシエトキシ) ベンジル] オキシ] -1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボキサミド(化合物108)(141mg)を得た。

m.p. 175-176℃

20

'H-NMR (200MHz, CDCl₃) δ 0. 93 (3H, t, J=7. 3 Hz), 1. 56-1. 78 (6H, m), 2. 20 (3H, s), 2. 55-2. 71 (1H, m), 3. 05-3. 11 (2H, m), 3. 30-3. 45 (2H, m), 3. 50 (2H, t, J=6. 7 Hz), 3. 57 (2H, s), 3. 66-3. 73 (2H, m), 3. 77-3. 82 (2H, m), 3. 98-4. 09 (2H, m), 4. 11-4. 16 (2H, m), 5. 07 (2H, s), 6. 94-7. 07 (4H, m), 7. 20 (1H, s), 7. 30-7. 51 (4H, m), 7. 54 (2H, d, J=8. 4 Hz), 7. 94 (1H, s), 8. 08 (1H, d, J=8. 4 Hz).

25 IR (KBr) 3258, 1655, 1636, 1595, 1516, 1410, 1316, 1292, 1251, 1165, 1123 cm⁻¹

元素分析 $C_{36}H_{44}N_2O_7S$ Calcd. C. 66.64; H. 6.84; N. 4.32; Found. C. 66.78; H. 6.67; N. 4.08.

実施例108 (化合物109の製造)

7- [(3, 4-ジプロポキシ) ベンジル] オキシ] -1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(180mg)のTHF(10m1) 溶液に、室温で塩化チオニル(0.057m1) 及びDMF(1滴)を加えて1.5時間撹拌した。減圧下溶媒を留去した後、残渣をTHF(15m1)に溶解させ、0℃で4-[[N-メチル-N-(テトラヒドロピラン-4-イル)アミノ] メチル] アニリン(95mg) およびトリエチルアミン(0.22m1)のTHF(2m1) 溶液に滴下した。室温で20時間撹拌した後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(エタノール:酢酸エチル1:

- 3) で精製し、さらに生じた結晶を再結晶(エタノール)によって精製し、無色の結晶として7-[(3,4-ジプロポキシ)ベンジル]オキシ]-N-[4-[[N-メチル-N-(テトラヒドロピラン-4-イル)アミノ]メチル]フェニル]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボキサミド(化合物109)(161mg)を得た。
- 15 m. p. 186-187 ℃

 'H-NMR (200MHz, CDCl₃) δ 1. 04 (6H, t, J=7. 4 Hz), 1. 65-1. 93 (8H, m), 2. 20 (3H, s), 2. 53-2. 71 (1H, m), 3. 05-3. 12 (2H, m), 3. 31-3. 44 (2H, m), 3. 57 (2H, s), 3. 65-3. 72 (2H, m), 3. 97 (4H, t, J=6. 5 Hz), 3. 99-4. 10 (2H, m), 5. 05 (2H, s), 6. 90-6. 99 (4H, m), 7. 04 (1H, dd, J=8. 8, 2. 6 Hz), 7. 20 (1H, s), 7. 32 (2H, d, J=8. 6 Hz), 7. 53 (2H, d, J=8. 6 Hz), 7. 84 (1H, s), 8. 09 (1H, d, J=8. 8 Hz). IR (KBr) 3238, 1653, 1634, 1593, 1514, 1410, 1316, 1292, 1258, 1167, 1140,

元素分析 C₃₇H₄₆N₂O₇S Calcd. C, 67.04; H, 6.99; N, 4.23; Found. C, 66.83; H, 6.86; N, 4.31.

25 実施例109(化合物110の製造)

1121 cm⁻¹

7-[[3-x++>-4-(2-プロポキシエトキシ) ベンジル] オキシ] -1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(120mg)のTHF(10ml)溶液に、室温で塩化チオニル(0.036ml)及びDMF(1滴)を加えて1.5時間撹拌した。減圧下溶媒を留去した後、残

渣をTHF(10ml)に溶解させ、0℃で4-[[N-メチル-N-(テトラヒドロピラン-4-イル)アミノ]メチル]アニリン(58mg)およびトリエチルアミン(0.13ml)のTHF(2ml)溶液に滴下した。室温で20時間撹拌した後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(エタノール:酢酸エチル1:3)で精製し、さらに生じた結晶を再結晶(エタノール)によって精製し、淡黄色の結晶として7-[[3-エトキシー4-(2-プロポキシエトキシ)ベンジル]オキシ]-N-[4-[[N-メチルーN-(テトラヒドロピラン-4-イル)アミノ]メチル]フェニル]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボキサミド(化合物110)(47mg)を得た。

m. p. 146-147 ℃

10

25

¹H-NMR (200MHz, CDCl₃) δ 0. 93 (3H, t, J=7. 3 Hz), 1. 44 (3H, t, J=7. 0 Hz), 1. 54-1. 81 (6H, m), 2. 22 (3H, s), 2. 56-2. 76 (1H, m), 3. 05-3. 12 (2H, m),

3. 30-3. 44 (2H, m), 3. 52 (2H, t, J=6. 8 Hz), 3. 59 (2H, s), 3. 65-3. 72 (2H, m), 3. 82 (2H, t, J=5. 2 Hz), 3. 98-4. 12 (4H, m), 4. 18 (2H, t, J=5. 2 Hz), 5. 06 (2H, s), 6. 94-7. 07 (5H, m), 7. 21 (1H, s), 7. 33 (2H, d, J=8. 2 Hz), 7. 53 (2H, d, J=8. 2 Hz), 7. 81 (1H, s), 8. 09 (1H, d, J=8. 4 Hz).

IR (KBr) 3115, 1653, 1595, 1514, 1410, 1316, 1291, 1260, 1123 cm⁻¹

20 元素分析 C₃₈H₄₈N₂O₈S·1. OH₂O Calcd. C. 64. 20; H, 7. 09; N, 3. 94; Found. C, 64. 47; H, 6. 86; N, 3. 99.

実施例110 (化合物111の製造)

7-(4-プロポキシフェノキシ)-1, 1-ジオキソ-2, 3-ジヒドロー1-ベンゾチエピン-4-カルボン酸(<math>110mg)のTHF(10m1)溶液に、室温で塩化チオニル(0.041m1)及びDMF(1滴)を加えて1時間撹拌した。減圧下溶媒を留去した後、残渣を<math>THF(10m1)に溶解させ、0 で 4-[[N-メチル-N-(テトラヒドロピラン-4-イル)アミノ]メチルファニリン(<math>69mg)およびトリエチルアミン(0.16m1)のTHF(2m1)溶液に滴下した。室温で20時間撹拌した後、水を加え酢酸エチルで抽出し

た。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、 残渣をカラムクロマトグラフィー(エタノール:酢酸エチル1:3)で精製し、 さらに生じた結晶を再結晶(エタノール)によって精製し、無色の結晶としてN ー [4 - [[N-メチル-N-(テトラヒドロピラン-4-イル)アミノ]メチル] フェニル] -7-(4-プロポキシフェノキシ)-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボキサミド(化合物111)(68mg) を得た。

m.p. 139-141 ℃

'H-NMR (200MHz, CDC1₃) δ 1.05 (3H, 1, J=7.3 Hz), 1.61-1.88 (6H, m), 2.20 (3H, s), 2.53-2.72 (1H, m), 3.10 (2H, t, J=6.8 Hz), 3.30-3.46 (2H, m), 3.57 (2H, s), 3.70 (2H, t, J=6.8 Hz), 3.93 (2H, t, J=6.6 Hz), 3.99-4.10 (2H, m), 6.91-7.04 (6H, m), 7.15 (1H, s), 7.31 (2H, d, J=8.6 Hz), 7.52 (2H, d, J=8.6 Hz), 7.86 (1H, s), 8.08 (1H, d, J=8.8 Hz).

IR (KBr) 3262, 1649, 1601, 1534, 1503, 1410, 1318, 1308, 1294, 1236, 1204,

15 1125 cm⁻¹

元素分析 C₃₃H₃₈N₂O₆S Calcd. C, 67.10; H, 6.48; N, 4.74: Found. C, 66.99; H, 6.38; N, 4.71.

実施例111 (化合物112の製造)

7- (3-プロポキシフェノキシ) -1, 1-ジオキソ-2, 3-ジヒドロー 1-ベンゾチエピン-4-カルボン酸 (200mg) のTHF (10ml) 溶液 に、室温で塩化チオニル (0.075ml) 及びDMF (1滴) を加えて1.5 時間撹拌した。減圧下溶媒を留去した後、残渣をTHF (10ml) に溶解させ、0℃で4-[[N-メチル-N-(テトラヒドロピラン-4-イル) アミノ] メチル] アニリン (124mg) およびトリエチルアミン (0.28ml) のTHF (2ml) 溶液に滴下した。室温で67時間撹拌した後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(エタノール:酢酸エチル1:3) で精製し、さらに生じた結晶を再結晶(エタノール)によって精製し、無色の結晶としてN-[4-[[N-メチル-N-(テトラヒドロピラン-4-イル) アミノ]

メチル] フェニル] -7-(3-プロポキシフェノキシ) -1, 1-ジオキソー2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボキサミド(化合物112) (146mg) を得た。

m. p. 143-144 ℃

10

20

- 5 H-NMR (200MHz. CDC1₃) δ 1. 04 (3H, t, J=7. 3 Hz), 1. 67-1. 89 (6H, m), 2. 20 (3H, s), 2. 54-2. 70 (1H, m), 3. 08-3. 14 (2H, m), 3. 30-3. 43 (2H, m), 3. 56 (2H, s), 3. 67-3. 74 (2H, m), 3. 91 (2H, t, J=6. 6 Hz), 3. 98-4. 08 (2H, m), 6. 62-6. 66 (2H, m), 6. 78 (1H, dd, J=9. 0, 2. 2 Hz), 6. 97 (1H, d, J=2. 2 Hz), 7. 06 (1H, dd, J=8. 8, 2. 2 Hz), 7. 16 (1H, s), 7. 29-7. 50 (3H, m), 7. 51 (2H, d, J=8. 4 Hz), 7. 88 (1H, dd, J=8. 4 Hz), 7. 88 (1H, dd,
- IR (KBr) 3241, 1651, 1630, 1599, 1563, 1530, 1473, 1410, 1319, 1294, 1267, 1165, 1138, 1125 cm⁻¹

元素分析 C₃₃H₃₈N₂O₆S Calcd. C, 67.10; H, 6.48; N, 4.74; Found. C, 67.34; H, 6.50; N, 4.88.

15 実施例112 (化合物113の製造)

s), 8. 10 (1H, d, J=8. 8 Hz).

- 1) 溶液に滴下した。室温で13時間撹拌した後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(エタノール:酢酸エチル1:3)で精製し、
- 25 さらに生じた結晶を再結晶(エタノール)によって精製し、無色の結晶としてN-[4-[[N-メチル-N-(テトラヒドロピラン-4-イル) アミノ] メチル]フェニル]-7-(4-プロピルフェノキシ)-1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボキサミド(化合物 <math>1 1 3)(1 2 4 mg)を得た。

m. p. 147-149 ℃

'H-NMR (200MHz, CDCl₃) & 0. 97 (3H, t, J=6. 8 Hz), 1. 57-1. 81 (6H, m), 2. 20 (3H, s), 2. 55-2. 73 (3H, m), 3. 07-3. 14 (2H, m), 3. 29-3. 44 (2H, m), 3. 57 (2H, s), 3. 67-3. 74 (2H, m), 3. 98-4. 10 (2H, m), 6. 95-7. 06 (4H, m), 7. 15 (1H, s), 7. 23 (2H, d, J=8. 8 Hz), 7. 31 (2H, d, J=8. 4 Hz), 7. 51 (2H, d, J=8. 4 Hz), 7. 88 (1H, s), 8. 09 (1H, d, J=8. 4 Hz).

IR (KBr) 3289, 1651, 1597, 1566, 1507, 1410, 1318, 1294, 1254, 1206, 1140, 1121 cm⁻¹

元素分析 C₃₃H₃₈N₂O₅S Calcd. C, 68.96; H, 6.66; N, 4.87; Found. C, 69.22; H, 6.48; N, 4.93.

実施例113 (化合物114の製造)

7 - [3-エトキシ-4-(2-プロポキシエトキシ) フェノキシ] -1, 1ージオキソー2,3-ジヒドロー1-ベンゾチエピン-4-カルボン酸(180 mg) のTHF (10ml) 溶液に、室温で塩化チオニル (0.055ml) 及 びDMF (1滴)を加えて1.5時間撹拌した。減圧下溶媒を留去した後、残渣 15 をTHF(10ml)に溶解させ、0℃で4-[[N-メチル-N-(テトラヒド ロピラン-4-イル) アミノ] メチル] アニリン (92mg) およびトリエチル アミン (0. 21ml) のTHF (2ml) 溶液に滴下した。室温で4時間撹拌 した後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マ グネシウムで乾燥した。減圧下濃縮後、残渣をカラムクロマトグラフィー(エタ 20 ノール:酢酸エチル1:3)で精製し、さらに生じた結晶を再結晶(エタノール) によって精製し、無色の結晶として7-[3-エトキシー4-(2-プロポキシ エトキシ) フェノキシ] -N-[4-[[N-メチル-N-(テトラヒドロピラン -4-7(ル) アミノ] メチル] フェニル] -1, 1-ジオキソー2, 3-ジヒドロー1-ベンソチエピン-4-カルボキサミド (化合物114)(140mg)を 25 得た。

m. p. 159-160 ℃

 $^{1}\text{H-NMR}$ (200MHz, CDCl₃) δ 0.94 (3H, t, J=7.4 Hz), 1.44 (3H, t, J=7.0 Hz), 1.50-1.83 (6H, m), 2.20 (3H, s), 2.54-2.75 (1H, m), 3.07-3.14 (2H, m),

3. 30-3. 43 (2H, m), 3. 52 (2H, t, J=6. 7 Hz), 3. 57 (2H, s), 3. 66-3. 73 (2H, m), 3. 82 (2H, t, J=5. 0 Hz), 3. 98-4. 08 (4H, m), 4. 18 (2H, t, J=5. 0 Hz), 6. 57-6. 63 (2H, m), 6. 91-7. 04 (3H, m), 7. 15 (1H, s), 7. 31 (2H, d, J=8. 3 Hz), 7. 52 (2H, d, J=8. 3 Hz), 7. 91 (1H, s), 8. 09 (1H, d, J=8. 8 Hz).

5 IR (KBr) 3310, 1655, 1601, 1534, 1508, 1408, 1312, 1250, 1219, 1169, 1140, 1125 cm⁻¹

元素分析 $C_{37}H_{46}N_2O_8S \cdot 0.25H_2O$ Calcd. C, 65.03; H, 6.86; N, 4.10: Found. C, 65.05; H, 6.94; N, 4.03.

実施例114 (化合物115の製造)

7-(2-プロポキシメチルフェノキシ)-1,1-ジオキソー2,3-ジヒ 10 ドロー1-ベンゾチエピン-4-カルボン酸(150mg)のTHF(10ml) 溶液に、室温で塩化チオニル (0.054ml) 及びDMF (1滴) を加えて1. 5時間撹拌した。減圧下溶媒を留去した後、残渣をTHF(10ml)に溶解さ せ、0℃で4- [[N-メチル-N-(テトラヒドロピラン-4-イル)アミノ] メチル] アニリン (90mg) およびトリエチルアミン (0. 21ml) のTH 15 F (2m1)溶液に滴下した。室温で20時間撹拌した後、水を加え酢酸エチル で抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧 下濃縮後、残渣をカラムクロマトグラフィー(エタノール:酢酸エチル1:3) で精製し、さらに生じた結晶を再結晶(エタノール)によって精製し、無色の結 晶としてN-[4-[[N-メチル-N-(テトラヒドロピラン-4-イル)アミ 20 ノ] メチル] フェニル] -7- (2-プロポキシメチルフェノキシ) -1, 1-ジオキソー2, 3-ジヒドロー1-ベンゾチエピン-4-カルボキサミド(化合 物115)(130mg)を得た。

m. p. 162-164 ℃

25 H-NMR (200MHz, CDCl₃) δ 0. 86 (3H, t, J=7. 5 Hz). 1. 45-1. 80 (6H, m), 2. 20 (3H, s), 2. 55-2. 72 (1H, m), 3. 08-3. 15 (2H, m), 3. 30-3. 42 (4H, m), 3. 57 (2H, s), 3. 67-3. 74 (2H, m), 3. 99-4. 11 (2H, m), 4. 47 (2H, s), 6. 92 (1H, d, J=2. 6 Hz), 6. 99-7. 03 (2H, m), 7. 14 (1H, s), 7. 24-7. 40 (4H, m), 7. 48-7. 61 (3H, m), 7. 74 (1H, s), 8. 10 (1H, d, J=8. 8 Hz).

IR (KBr) 3329, 1646, 1626, 1599, 1562, 1531, 1512, 1411, 1314, 1259, 1159, 1125 cm⁻¹

元素分析 C₃₄H₄₀N₂O₆S Calcd. C, 67.53; H, 6.67; N, 4.63: Found. C, 67.25; H, 6.81; N, 4.51.

5 参考例152

3-メチルー4ープロポキシエトキシフェニルホウ酸(710mg)、7-ヒドロキシー1,1-ジオキソー2,3-ジヒドロー1ーベンゾチエピンー4ーカルボン酸メチル(400mg)、酢酸第二銅(270mg)をジクロロメタン(15m1)に懸濁させ、そこにトリエチルアミン(1.04m1)を加えた。塩化カルシウム管をつけて一日撹拌した後、セライトを加え不溶物を濾別した。濾液を濃縮しシリカゲルカラムクロマトグラフィーで精製して褐色の油状物として7ー[3-メチルー4-(2-プロポキシエトキシ)フェノキシ]ー1,1-ジオキソー2,3-ジヒドロー1ーベンゾチエピンー4ーカルボン酸メチル(475mg)を得た。

15 'H-NMR (200MHz, CDCl₃) δ 0.95 (t, 3H, J=7.4 Hz), 1.55-1.70 (m, 2H), 2.25 (s, 3H), 3.07 (t, 2H, J=7.2 Hz), 3.53 (t, 2H, J=6.6 Hz), 3.62 (t, 2H, J=5.8 Hz), 3.80-3.85 (m, 5H), 4.15 (t, 2H, J=4.8 Hz), 6.85-6.86 (m, 3H), 6.95-7.02 (m, 2H), 7.70 (s, 1H), 8.07 (d, 1H, J=8.2 Hz).

参考例153

7-[3-メチル-4-(2-プロポキシエトキシ)フェノキシ]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(470mg)のテトラヒドロフラン(10ml)とメタノール(5ml)の混合溶液に1N炭酸カリウム水溶液(2.9ml)を加え、65℃で一日加熱した。放冷した後、混合溶液に水を加えて1N塩酸で酸性(pH=4)にして。酢酸エチルで抽出した。有機層を水、飽和食塩水で洗い、硫酸マグネシウムで乾燥させた。溶媒を減圧下で留去して、褐色の油状物として7-[3-メチル-4-(2-プロポキシエトキシ)フェノキシ]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(375mg)を得た。

 $^{1}H-NMR$ (200MHz, CDCl₃) δ 0.95 (t, 3H, J=7.4 Hz), 1.60-1.70 (m, 2H), 2.25

(s. 3H), 3.09 (t, 2H, J=6.6 Hz), 3.54 (t, 2H, J=6.6 Hz), 3.63 (t, 2H, J=6.2 Hz), 3.83 (t, 2H, J=5.2 Hz), 4.15 (t, 2H, J=4.8 Hz), 6.85-6.86 (m, 3H), 6.98-7.02 (m, 2H), 7.79 (s, 1H), 8.09 (d, 1H, J=8.8 Hz).

実施例115 (化合物116の製造)

7-[3-メチル-4-(2-プロポキシエトキシ)フェノキシ]-1,1-5 ジオキソー2, 3-ジヒドロ-1-ベンソチエピン-4-カルボン酸(370m g) をテトラヒドロフラン(10ml)に溶かし、DMF(0.1ml)を加え た。次いで、0℃において塩化チオニル(196mg)を加えたのち、室温、窒 素雰囲気下において1.5時間撹拌した。減圧下で溶媒と過剰の塩化チオニルを 留去して得られた残渣を、テトラヒドロフラン (10ml) に溶かし、4-[[N 10 **-メチル-N- (テトラヒドロピラン-4-イル) アミノ] メチル] アニリン (2** 01mg)、トリエチルアミン(185mg)のテトラヒドロフラン(10ml) の溶液に0℃において加えた。室温に戻して終夜撹拌した後水を加えて、酢酸エ チルで抽出した。有機層を飽和食塩水で洗い硫酸マグネシウムで乾燥させた。溶 媒を減圧下で留去して得られた残渣をシリカゲルカラムクロマトグラフィーで分 15 離精製し、ヘキサン/酢酸エチルから再結晶して、無色の結晶として(化合物1 16) (94mg) を得た。

¹H-NMR (200MHz, CDCl₃) δ 0. 94 (t, 3H, J=6. 2 Hz), 1. 60-1. 80 (m, 6H), 2. 20 (s, 3H), 2. 25 (s, 3H), 2. 64 (br, 1H), 3. 10 (t, 2H, J=7. 2 Hz), 3. 36 (dt, 2H, J=11. 0, 2. 2 Hz), 3. 52 (t, 2H, J=6. 6 Hz), 3. 57 (s, 2H), 3. 70 (t, 2H, J=7. 4 Hz), 3. 81 (t, 2H, J=5. 6 Hz), 4. 04 (d, 2H, J=11. 8 Hz), 4. 14 (t, 2H, J=5. 2 Hz),

6.86-6.90 (m, 4H), 6.99 (dd, 2H, J=9.2, 2.2 Hz), 7.14 (s, 1H), 7.31 (d, 2H, J=8.2 Hz), 7.51 (d, 2H, J=8.4 Hz), 7.87 (s, 1H), 8.08 (d, 1H, J=8.8 Hz), 元素分析 C₃₆H₄₄N₂O₇S Calcd. C, 66.64 ; H, 6.84 ; N, 4.32 : Found. C, 66.59 ;

25 H, 6. 76; N, 4. 27.

20

参考例154

7-ヒドロキシー1, 1-ジオキソー2, 3-ジヒドロー1-ベンゾチエピンー4-カルボン酸メチル(400mg)、3-メトキシベンジルクロリド(350mg)及び炭酸カリウム(412mg)をDMF(15ml)に懸濁させ、6

0℃で13時間撹拌した。反応混合物を酢酸エチルで希釈し、水及び飽和食塩水でそれぞれ洗浄し、有機層を無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=4:1→ヘキサン:酢酸エチル=3:1)で精製し、7-(3-メトキシベンジロキシ)-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(459mg)を淡黄色アモルファスとして得た。

¹H NMR (200MHz, CDCl₃) δ 3. 06 (2H, t. J=6. 6 Hz), 3. 61 (2H, t. J=7. 0 Hz), 3. 83 (3H, s), 3. 85 (3H, s), 5. 13 (2H, s), 6. 87–7. 02 (4H, m), 7. 06 (1H, s), 7. 32 (1H, t. J=7. 7Hz), 7. 77 (1H, s), 8. 08 (1H, d. J=8. 4 Hz).

10 IR (KBr) 1713, 1590, 1493, 1321, 1292, 1269, 1246, 1217, 1163, 1128 cm⁻¹. 参考例 1 5 5

7-(3-メトキシベンジロキシ)-1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル $(4\ 3\ 6\ m\ g)$ をTHF-メタノール $(1\ 0-5\ m\ 1)$ に溶解させ、 $2\ M$ 炭酸カリウム水溶液 $(1.\ 2\ m\ 1)$ を加え、

- 15 60℃で14.5時間撹拌した。反応混合物を1N塩酸で処理し、そのpHを2とした。酢酸エチルで希釈し、水及び飽和食塩水でそれぞれ洗浄し、有機層を無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、析出した結晶をヘキサンー酢酸エチルですすぎ、7-(3-メトキシベンジロキシ)-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(271mg)を白
- 20 色結晶として得た。

10.1000 10.1000 10.1000 10.1000 10.1000 10.1000 10.1000 10.1000 10.1000 10.1000 10.1000 10.1000 10.1000 10.1000

mp 220-222℃.

¹H NMR (200MHz, DMSO- d_6) δ 2. 91 (2H, t-like), 3. 69 (2H, t, J=6. 2 Hz), 3. 77 (3H, s), 5. 23 (2H, s), 6. 90-6. 94 (1H, m), 7. 05 (2H, s, d-like), 7. 20-7. 43 (3H, m), 7. 72 (1H, s), 7. 95 (1H, d, J=8. 8 Hz).

25 IR (KBr) 1684, 1597, 1564, 1493, 1454, 1285, 1256, 1173, 1130, 1073, 1032, 772 cm⁻¹.

Anal. Calcd. for C₁₉H₁₈O₆S: C, 60.95; H, 4.85. Found: C, 60.70; H, 4.94. 実施例116(化合物117の製造)

7-(3-メトキシベンジロキシ)-1,1-ジオキソ-2,3-ジヒドロー

1-ベンゾチエピン-4-カルボン酸(204mg)をTHF(10ml)に懸濁させ、DMF(1滴)及び塩化チオニル(0.079ml)を加え、室温で1時間撹拌した。減圧下濃縮し、THF(10ml)に溶解した。4-[[N-メチル-N-(テトラヒドロピラン-4-イル)アミノ]メチル]アニリン2塩酸塩(192mg)をTHF(10ml)で懸濁させ、トリエチルアミン(0.57ml)を滴下し、ついで、先に調製した酸クロリドのTHF溶液を0℃で滴下した。混合物を室温で3時間撹拌した。反応混合物を濃縮し、酢酸エチルを加え、水及び飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル→酢酸エチル:エタノール=10:1)で精製し、さらにエタノールから再結晶を行い、7-(3-メトキシベンジロキシ)-N-[4-[[N-メチル-N-(テトラヒドロピラン-4-イル)アミノ]メチル]フェニル]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボキサミド(化合物117)(217mg)を淡黄色結晶として得た。

15 mp 181-185°C.

'H NMR (200MHz, CDCl₃) δ 1. 69-1. 77 (4H, m). 2. 21 (3H, s), 2. 57-2. 69 (1H, m), 3. 09 (2H, t, J=6. 6Hz), 3. 37 (2H, td, J=11. 1, 3. 3 Hz), 3. 57 (2H, s), 3. 69 (2H, t, J=6. 8 Hz). 3. 83 (3H, s), 4. 01-4. 07 (2H, m), 5. 13 (2H, s), 6. 87-7. 07 (5H, m), 7. 20 (1H, s), 7. 29-7. 37 (3H, m), 7. 53 (2H, d, J=8. 8 Hz), 7. 81 (1H, s),

20 8.09 (1H, d, J=8.4 Hz).

IR (KBr) 1667, 1597, 1566, 1522, 1491, 1410, 1314, 1287, 1267, 1163, 1142,

1127, 1065, 737 cm⁻¹.

Anal. Calcd. for $C_{32}H_{36}N_2O_6S$ (0. $4H_2O$): C, 65.82; H, 6.35; N, 4.80. Found: C, 65.76; H, 6.33; N, 4.50.

25 参考例 1 5 6

3-ヒドロキシベンジルアルコール (3.56g) にアセトン (100ml) を加え、ヨードエタン (6.7g) 及び炭酸カリウム (7.9g) を加え、61時間加熱還流した。反応混合物を濃縮し、酢酸エチルを加え、水、1N水酸化ナトリウム水溶液、水及び飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥

した。減圧下溶媒を留去し、3-エトキシベンジルアルコール (4.15) をオイルとして得た。

¹H NMR (200MHz, CDCl₃) δ 1. 42 (3H, t, J=7. 0 Hz), 1. 69-1. 73 (1H, m), 4. 05 (2H, q, J=6. 9 Hz), 4. 67 (2H, d, J=5. 8 Hz), 6. 83 (1H, dd, J=8. 2, 2. 6 Hz), 6. 91-6. 95 (2H, m), 7. 27 (1H, t, J=8. 1 Hz).

参考例157

10

3-エトキシベンジルアルコール(4. 15g)にトルエン(50ml)を加え、ピリジン1滴及び塩化チオニル(3. 0ml)を加え、室温で1時間撹拌した。反応混合物を酢酸エチルで希釈し、水、飽和炭酸水素ナトリウム水溶液、水及び飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、3-エトキシベンジルクロリド(5. 34g)をオイルとして得た。

7-ヒドロキシー1, 1-ジオキソー2, 3-ジヒドロー1-ベンゾチエピンー4-カルボン酸メチル(400mg)、上記3-エトキシベンジルクロリド(636mg)及び炭酸カリウム(515mg)をDMF(15ml)に懸濁させ、

- 15 60℃で14時間撹拌した。反応混合物を酢酸エチルで希釈し、水及び飽和食塩水でそれぞれ洗浄し、有機層を無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:1)で精製し、7-(3-エトキシベンジロキシ)-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(308mg)を黄色アモルファスとして得た。
 - ¹H NMR (200MHz, CDCl₃) δ 1. 43 (3H, t, J=7. 2 Hz), 3. 07 (2H, t, J=6. 6 Hz), 3. 61 (2H, t, J=6. 7 Hz), 3. 86 (3H, s), 4. 05 (2H, q, J=7. 2 Hz), 5. 13 (2H, s), 6. 91–7. 06 (4H, m), 7. 24–7. 31 (2H, m), 7. 77 (1H, s), 8. 08 (1H, d, J=8. 4 Hz). IR (KBr) 1713, 1590, 1289, 1267, 1215, 1163, 1128 cm⁻¹.

25 参考例158

7-(3-X)トキシベンジロキシ)-1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(<math>298mg)をTHF-メタノール(<math>10-5m1)に溶解させ、2M炭酸カリウム水溶液(0.75m1)を加え、60でで16.5時間撹拌した。反応混合物を1N塩酸で処理し、そのpH

mp 150-154℃.

15

20

25

を2とした。酢酸エチルで抽出し、有機層を無水硫酸マグネシウムで乾燥した。 減圧下溶媒を留去し、析出した結晶をヘキサンー酢酸エチルですすぎ、7-(3 -エトキシベンジロキシ)-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾ チエピン-4-カルボン酸(45mg)を白色結晶として得た。母液を減圧下、

5 濃縮し、7-(3-エトキシベンジロキシ)-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(340mg)を茶色オイルとして得た。この化合物はこれ以上精製せずに次の反応に用いた。

¹H NMR (200MHz, DMSO-d₆) δ 1. 33 (3H, t, J=7. 0 Hz), 2. 90 (2H, t, J=6. 2 Hz), 3. 67 (2H, t, J=6. 7 Hz), 4. 03 (2H, q, J=7. 1 Hz), 5. 21 (2H, s), 6. 86-6. 91 (1H, m), 6. 99-7. 02 (2H, m), 7. 21 (1H, d, J=8. 8 Hz), 7. 30 (1H, t, J=8. 0 Hz), 7. 41 (1H, d-like), 7. 72 (1H, s), 7. 94 (1H, d, J=8. 8 Hz).

IR (KBr) 1692, 1588, 1292, 1277, 1258, 1159, 1127 cm⁻¹.

Anal. Calcd. for $C_{20}H_{20}O_6S$ (0. $2H_2O$): C, 61. 27; H, 5. 19. Found: C, 61. 06; H, 5. 26.

実施例117 (化合物118の製造)

7-(3-X+Y-2, 3-Y+Y-2, 1-Y+Y-2, 3-Y+Y-2, 1-Y+Y-2, 1-Y+Y-2, 1-Y+Y-2, 1-Y+Y-2, 1-Y+Y-2, 1-Y+Y-2, 1-Y-1, 1-Y-1,

塩酸塩 (226mg) をTHF (5.0ml) で懸濁させ、トリエチルアミン(0.67ml) を滴下し、ついで、先に調製した酸クロリドのTHF溶液を0℃で滴下した。混合物を0℃で20分間、室温で16時間撹拌した。反応混合物を濃縮し、酢酸エチルを加え、水及び飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル→酢酸エチル:エタノール=10:1)で精製し、さらにエタノールから再結晶を行い、7-(3-エトキシベンジロキシ)-N-[4-[[Nーメチル-N-(テトラヒドロピラン-4-イル)アミノ]メチル]フェニル]-

1, 1-ジオキソー2, 3-ジヒドロー1-ベンゾチエピンー4-カルボキサミド (化合物118) (71mg) を白色結晶として得た。
mp 189-192°C.

¹H NMR (200MHz, CDCl₃) δ 1. 42 (3H, t, J=6. 9 Hz), 1. 60-1. 75 (4H, m), 2. 21 (3H, s), 2. 60-2. 69 (1H, m), 3. 08 (2H, t, J=6. 8 Hz), 3. 37 (2H, td, J=11. 2, 3. 1 Hz), 3. 57 (2H, s), 3. 68 (2H, t, J=6. 8 Hz), 4. 04 (2H, q, J=7. 0 Hz), 3. 99-4. 10 (2H, m), 5. 12 (2H, s), 6. 86-7. 06 (5H, m), 7. 20 (1H, s), 7. 29-7. 34 (3H, m), 7. 53 (2H, d, J=8. 4 Hz), 7. 85 (1H, s), 8. 08 (1H, d, J=8. 4 Hz).

IR (KBr) 1663, 1597, 1566, 1410, 1291, 1264, 1163, 1142, 1125, 1065, 735 cm⁻¹.

Anal. Calcd. for $C_{33}H_{38}N_2O_6S$ (0. $3H_2O$): C. 66. 49; H, 6. 53; N, 4. 70. Found: C, 66. 29; H, 6. 42; N, 4. 47.

参考例159

サリチルアルデヒド(12.2g)をDMF(100ml)に溶解させ、1-プロモプロパン(14.7g)及び炭酸カリウム(20.7g)を加え、室温で21.5時間撹拌した。反応混合物を酢酸エチルで希釈し、水及び飽和食塩水で洗浄し、有機層を無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、2-プロポキシベンズアルデヒド(15.47g)をオイルとして得た。 'H NMR(200MHz, CDCl₃)δ 1.08 (3H, t, J=7.3 Hz), 1.89 (2H, sextet, J=7.0 Hz), 4.05 (2H, t, J=6.4 Hz), 6.96-7.05 (2H, m), 7.54 (1H, td, J=7.9, 1.9 Hz), 7.84

20 (1H, dd, J=7.6, 1.8 Hz), 10.53 (1H, s).

参考例160

2-プロポキシベンズアルデヒド(15.47g)及び(トリフェニルホスホルアニリデン)酢酸メチル(36.1g)をトルエン(150ml)に懸濁させ、2時間加熱還流した。反応混合物を酢酸エチルで希釈し、水及び飽和食塩水でそれぞれ洗浄し、有機層を無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、析出したトリフェニルホスフィンオキシドを除き、エーテルで洗浄した。濾液を減圧下濃縮し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=6:1)で精製し、2-プロポキシケイ皮酸エチル(21.24g)を黄色オイルとして得た。

"H NMR (200MHz, CDCl₃, ratio; ca. 5:1) δ 1. 03 (0. 5H, t, J=7. 5 Hz), 1. 08 (2. 5H, t, J=7. 5 Hz), 1. 21 (0. 5H, t, J=7. 1 Hz), 1. 34 (2. 5H, t, J=7. 1 Hz), 1. 85 and 1. 89 (2H, each sextet, J=7. 1 Hz), 3. 94 (0. 33H, t, J=6. 4 Hz), 4. 00 (1. 67H, t, J=6. 6 Hz), 4. 14 (0. 33H, q, J=7. 4 Hz), 4. 26 (1. 67H, q, J=7. 2 Hz), 5. 95 (0. 17H, d, J=12. 4 Hz), 6. 54 (0. 83H, d, J=16. 2 Hz), 6. 85 (0. 17H, d, J=8. 4 Hz), 6. 90 (0. 83H, d, J=9. 2 Hz), 6. 94 (1H, t, J=7. 1 Hz), 7. 00 (0. 17H, d, J=12. 8 Hz), 7. 32 (1H, td, J=7. 8, 1. 6 Hz), 7. 51 (0. 83H, dd, J=7. 5, 1. 7 Hz), 7. 58 (0. 17H, dd, J=7. 5, 1. 7 Hz), 8. 02 (0. 83H, d, J=16. 6 Hz).

参考例161

10 水素化リチウムアルミニウム (6.87g) をエーテル (300m1) に懸濁させ、2-プロポキシケイ皮酸エチル (21.2g) のエーテル溶液 (100m1)を0℃で40分間かけて滴下した。滴下後、室温で1時間撹拌した。反応混合物に水 (7m1)、15%水酸化ナトリウム水溶液 (7m1)及び水 (21m1)を加え、さらに室温で1時間撹拌した。反応混合物をエーテルで希釈し、無水硫酸マグネシウムを加え、乾燥した。濾過した後、濾液を減圧下濃縮し、3-(2-プロボキシフェニル)-1-プロパノール (17.01g)を無色オイルとして得た。 'H NMR (200MHz, CDCl₃) δ 1.06 (3H, t, J=7.3 Hz), 1.75-1.93 (4H, m), 2.75 (2H, t, J=7.1 Hz), 3.60 (2H, q, J=5.7 Hz), 3.95 (2H, t, J=6.4 Hz), 6.83-6.92 (2H, m), 7.13-7.24 (2H, m).

20 参考例162

25

3-(2-プロポキシフェニル) -1-プロパノール(729mg)をTHF (35ml)に溶解させ、トリエチルアミン(1.57ml)及びメタンスルホニルクロリド(0.44ml)を0℃で加えた。0℃で20分間、室温で2時間撹拌した。反応混合物を酢酸エチルで希釈し、水及び飽和食塩水でそれぞれ洗浄し、有機層を無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、メタンスルホン酸3-(2-プロポキシフェニル)プロピル(1.06g)を無色オイルとして得た。

¹H NMR (200MHz. CDCl₃) δ 1.06 (3H, t, J=7.5 Hz), 1.83 (2H, sextet. J=7.0 Hz). 2.07 (2H, quint. J=6.9 Hz), 2.76 (2H, t. J=7.3 Hz), 2.98 (3H, s), 3.93 (2H, t, J=6.4 Hz), 4.24 (2H, t, J=6.6 Hz), 6.82-6.91 (2H, m), 7.11-7.22 (2H, m). 参考例 1.63

7-ヒドロキシー1, 1-ジオキソー2, 3-ジヒドロー1-ベンゾチエピンー4-カルボン酸メチル(400mg)、メタンスルホン酸3ー(2-プロポキシフェニル)プロピル(1.06g)及び炭酸カリウム(309mg)をDMF(15ml)に懸濁させ、60℃で3時間撹拌した。反応混合物を酢酸エチルで希釈し、水及び飽和食塩水でそれぞれ洗浄し、有機層を無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:1)で精製し、7-[3-(2-プロポキシフェニル)プロポキシ]-1, 1-ジオキソー2, 3-ジヒドロ-1-ベンゾチエピンー4ーカルボン酸メチル(832mg)を黄色オイルとして得た。

7-[3-(2-プロポキシフェニル) プロポキシ]-1, 1-ジオキソー2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(832mg)をTHF-メタノール(15-7.5ml)に溶解させ、2M炭酸カリウム水溶液(1.

- 20 4mg)を白色結晶として得た。

mp 153-157℃.

25

¹H NMR (200MHz, DMSO-d₆) δ 0. 98 (3H, t, J=7.3 Hz), 1. 70 (2H, sextet, J=6.9 Hz), 2. 00 (2H, quint-like), 2. 72 (2H, t, J=7.6 Hz), 2. 90 (2H, t, J=6.4 Hz), 3. 67 (2H, t, J=6.6 Hz), 3. 90 (2H, t, J=6.3 Hz), 4. 11 (2H, t, J=6.3 Hz), 6. 84 (1H, t, J=7.3 Hz), 6. 92 (1H, d, J=7.2 Hz), 7. 09-7. 19 (3H, m), 7. 30 (1H, d, J=2.2 Hz), 7. 72 (1H, s), 7. 92 (1H, d, J=8.8 Hz),

IR (KBr) 1674, 1597, 1566, 1493, 1454, 1319, 1296, 1279, 1251, 1167, 1130, 1071, 747, 527 cm⁻¹.

Anal. Calcd. for $C_{23}H_{26}O_6S$ (0. $4H_2O$): C. 63.11; H, 6.17. Found: C. 62.92; H,

6. 37.

実施例118 (化合物119の製造)

7-[3-(2-プロポキシフェニル)プロポキシ]-1,1-ジオキソー2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(504mg)をTHF(20ml)に懸濁させ、DMF(1滴)及び塩化チオニル(0.17ml)を加え、室温で1時間撹拌した。減圧下濃縮後、残渣をTHF(25ml)に溶解した。4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノ]メチル]アニリン2塩酸塩(412mg)をTHF(12ml)で懸濁させ、トリエチルアミン(1.22ml)を滴下し、ついで、先に調製した酸クロリドのTHF溶液を0℃で滴下した。混合物を室温で4時間撹拌した。反応混合物を濃縮し、酢酸エチルを加え、水及び飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、固体の残渣をエタノールから再結晶を行い、N-[4-[N-メチル-N-(テトラヒドロピラン-4-イル)アミノ]メチル]フェニル]-7-[3-(2-プロポキシフェニル)プロポキシ]-1,1-ジオキソー2,3-ジヒドロ-1-ベンゾチエピン-4-カルポキサミド(化合物119)(469mg)を白色結晶として得た。

mp 184-186℃.

20

¹H NMR (200MHz. CDCl₃) δ 1.05 (3H, t, J=7.5 Hz), 1.64-1.82 (4H, m), 1.80 (2H, sextet, J=7.1 Hz), 2.12 (2H, quint, J=7.3 Hz), 2.21 (3H, s), 2.57-2.72 (1H, m), 2.82 (2H, t, J=7.3 Hz), 3.08 (2H, t, J=6.6 Hz), 3.37 (2H, td, J=11.2, 3.0 Hz), 3.58 (2H, s), 3.68 (2H, t, J=6.8 Hz), 3.92 (2H, t, J=6.4 Hz),

4. 00-4. 07 (2H, m), 4. 03 (2H, t, J=6. 4 Hz), 6. 82-6. 96 (4H, m), 7. 11-7. 22 (3H, m), 7. 32 (2H, d, J=8. 4 Hz), 7. 54 (2H, d, J=8. 4 Hz), 7. 84 (1H, s), 8. 06 (1H, d, J=8. 8 Hz).

25 IR (KBr) 2940 1667, 1595, 1522, 1493, 1454, 1410, 1291, 1260, 1242, 1163, 1125, 1065, 754, 735 cm⁻¹.

Anal. Calcd. for $C_{36}H_{44}N_2O_6S$ (0. $1H_2O$): C, 68. 13; H, 7. 02; N, 4. 41. Found: C, 67. 93; H, 7. 02; N, 4. 24.

参考例164

3-ヒドロキシベンズアルデヒド(12.2g)をDMF(100ml)に溶解させ、1-プロモプロパン(14.7g)及び炭酸カリウム(20.7g)を加え、室温で17時間撹拌した。反応混合物を酢酸エチルで希釈し、水及び飽和食塩水でそれぞれ洗浄し、有機層を無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、2-プロポキシベンズアルデヒド(16.18g)をオイルとして得た。

¹H NMR (200MHz, CDCl₃) δ 1.05 (3H, t, J=7.5 Hz), 1.84 (2H, sextet, J=7.0 Hz), 3.98 (2H, t, J=6.6 Hz), 7.15-7.22 (1H, m), 7.38-7.46 (3H, m), 9.97 (1H, s). 参考例 1.65

- 10 ジエチルホスホノ酢酸エチル (24.7g) にTHF (200ml) を加え、水素化ナトリウム (60%、4.4g) を0℃で加えた後、3-プロポキシベンズアルデヒド (16.1g) のTHF (100ml) 溶液を滴下した。混合物を室温で1.5時間撹拌した。反応混合物を水に注ぎ、塩酸で中和した後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル=6:1) で精製し、3-プロポキシケイ皮酸エチル (24.0
 - ¹H NMR (200MHz, CDCl₃) δ 1. 05 (3H, t, J=7. 5 Hz). 1. 34 (3H, t, J=7. 1 Hz), 1. 82 (2H, sextet, J=7. 0 Hz), 3. 94 (2H, t, J=6. 4 Hz), 4. 27 (2H, q, J=7. 2 Hz), 6. 42 (1H, d, J=16. 2 Hz), 6. 90-6. 95 (1H, m), 7. 05-7. 12 (2H, m), 7. 29 (1H, t, J=7. 7 Hz), 7. 65 (1H, d, J=16. 2 Hz).

参考例166

20

g)を黄色オイルとして得た。

水素化リチウムアルミニウム (7.58g) をエーテル (300ml) に懸濁させ、3-プロポキシケイ皮酸エチル (24.0g) のエーテル溶液 (100ml) に懸濁1)を0℃で1時間かけて滴下した。滴下後、混合物を室温で1時間撹拌した。反応混合物に水 (7.6ml)、15%水酸化ナトリウム水溶液 (7.6ml)及び水 (22ml)を加え、さらに室温で0.5時間撹拌した。反応混合物をエーテルで希釈し、無水硫酸マグネシウムを加え、乾燥した。濾過した後、濾液を減圧下濃縮し、残渣をシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エ

チル=4:1) で精製し3-(3-プロポキシフェニル)-1-プロパノール(15.23g) を無色オイルとして得た。

'H NMR (200MHz, CDC1₃) δ 1.04 (3H, t, J=7.5 Hz), 1.27 (1H, t, J=3.7 Hz), 1.83 (2H, sextet, J=7.1 Hz), 1.81-1.96 (2H, m), 2.68 (2H, t, J=7.7 Hz), 3.68 (2H, q, J=5.9 Hz), 3.91 (2H, t, J=6.6 Hz), 6.70-6.80 (3H, m), 7.19 (1H, t, J=8.1 Hz).

参考例167

3-(3-プロポキシフェニル)-1-プロパノール(731mg)にTHF (20m1)を加え、トリエチルアミン(1.57m1)及びメタンスルホニル クロリド(0.44m1)を0℃で加えた。混合物を0℃で20分間撹拌し、室温で0.5時間撹拌した。反応混合物を酢酸エチルで希釈し、水及び飽和食塩水でそれぞれ洗浄し、有機層を無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、メタンスルホン酸3-(3-プロポキシフェニル)プロピル(1.10g)を無色オイルとして得た。

15 'H NMR (200MHz, CDCl₃) δ 1.04 (3H, t, J=7.3 Hz), 1.80 (2H, sextet, J=7.1 Hz), 2.01-2.14 (2H, m), 2.72 (2H, t, J=7.5 Hz), 3.00 (3H, s), 3.91 (2H, t, J=6.6 Hz), 4.23 (2H, t, J=6.2 Hz), 6.74-6.78 (3H, m), 7.16-7.24 (1H, m).

参考例168

20

25

7-ヒドロキシ-1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(394mg)、メタンスルホン酸3-(3-プロポキシフェニル)プロピル(1099mg)及び炭酸カリウム(304mg)をDM F(15ml)に懸濁させ、70℃で5時間撹拌した。反応混合物を酢酸エチルで希釈し、水及び飽和食塩水でそれぞれ洗浄し、有機層を無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(12 に酢酸エチル13 に精製し、13 に引きる。プロポキシフェニル)プロポキシ] 14 に対すキソー2、15 に引きる。

7-[3-(3-プロポキシフェニル) プロポキシ]-1, 1-ジオキソー2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(<math>7.6.5 mg)をT

mp 128-131℃.

¹H NMR (200MHz, DMSO-d₆) δ 0.95 (3H, t. J=7.3 Hz), 1.69 (2H, sextet, J=7.0 Hz), 2.04 (2H, quint, J=7.1 Hz), 2.71 (2H, t, J=7.4 Hz), 2.90 (2H, t, J=6.6 Hz), 3.67 (2H, t, J=6.6 Hz), 3.87 (2H, t, J=6.6 Hz), 4.09 (2H, t, J=6.2 Hz), 6.72-6.80 (3H, m), 7.14 (1H, dd, J=8.4, 2.2 Hz), 7.18 (1H, t, J=7.9 Hz), 7.32 (1H, d-like), 7.72 (1H, s), 7.93 (1H, d, J=8.4 Hz).

IR (KBr) 1698, 1595, 1564, 1319, 1291, 1277, 1258, 1163, 1130, 1071, 748 cm⁻¹.

Anal. Calcd. for $C_{23}H_{26}O_6S$ (0. $4H_2O$): C, 63. 11; H, 6. 17. Found: C, 62. 95; H, 5. 95.

実施例119(化合物120の製造)

7-[3-(3-プロポキシフェニル) プロポキシ]-1, 1-ジオキソー2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(395mg)をTHF(1

- 20 2ml) に懸濁させ、DMF (1滴) 及び塩化チオニル (0.13ml) を加え、室温で1時間撹拌した。減圧下濃縮後、残渣をTHF (10ml) に溶解した。
 4-[[N-メチル-N-(テトラヒドロピラン-4-イル) アミノ] メチル] アニリン2塩酸塩 (323mg) をTHF (12ml) で懸濁させ、トリエチルアミン (0.96ml) を滴下し、ついで、先に調製した酸クロリドのTHF溶
- 25 液を0℃で滴下した。混合物を室温で15時間撹拌した。反応混合物を濃縮し、 酢酸エチルで希釈し、水及び飽和食塩水で順次洗浄し、無水硫酸マグネシウムで 乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(酢 酸エチル→酢酸エチル:エタノール=10:1)で精製し、さらにエタノールか ら再結晶を行い、N-[4-[[N-メチル-N-(テトラヒドロピラン-4-

イル) アミノ] メチル] フェニル] -7-[3-(3-)]ロポキシフェニル) プロポキシ] -1, 1-ジオキソ-2, $3-ジヒドロ-1-ペンゾチエピン-4-カルボキサミド(化合物 <math>1\ 2\ 0$) $(3\ 0\ 2\ mg)$ を白色結晶として得た。 mp 145-146 \mathbb{C} .

- - IR (KBr) 2948, 1667, 1595, 1564, 1526, 1518, 1408, 1316, 1289, 1262, 1161, 1142, 1125, 1065 cm⁻¹.
- Anal. Calcd. for $C_{36}H_{44}N_2O_6S$ (0. $4H_2O$): C, 67. 56; H, 7. 06; N, 4. 38. Found: C, 67. 32; H, 6. 82; N, 4. 30.

参考例169

20

J=8.8 Hz).

3-(4-ヒドロキシフェニル)-1-プロパノール(1.33g)、1-ブロモプロパン(1.2ml)及び炭酸カリウム(2.25g)のアセトン(100ml)混合物を、2日間加熱還流した。減圧下濃縮後、残渣に水を加え酢酸エチルで抽出した。有機層を1N水酸化ナトリウム水溶液および飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、無色の油状物として3-(4-プロポキシフェニル)-1-プロパノール(1.61g)を得た。

'H NMR (200MHz, CDCl₃) δ 1.03 (3H, t, J=7.5 Hz), 1.70-1.91 (4H, m), 2.61-25 2.69 (3H, m), 3.67 (2H, t, J=6.5 Hz), 3.90 (2H, t, J=6.6 Hz), 6.83 (2H, d, J=8.4 Hz), 7.10 (2H, d, J=8.4 Hz).

参考例170

3-(4-プロポキシフェニル)-1-プロパノール(<math>7.3.5mg)にTHF(2.0ml)を加え、トリエチルアミン(1...5.8ml)及び塩化メタンスルホ

ニル (0.44ml)を0℃で加えた。混合物を0℃で20分間撹拌し、室温で20分間撹拌した。反応混合物を酢酸エチルで希釈し、水及び飽和食塩水でそれぞれ洗浄し、有機層を無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、メタンスルホン酸3-(4-プロポキシフェニル)プロピル(1.02g)を無色オイルとして得た。

'H NMR (200MHz, CDCl₃) δ 1.03 (3H, t, J=7.5 Hz), 1.80 (2H, sextet, J=7.0 Hz), 2.04 (2H, quint, J=7.0 Hz), 2.69 (2H, t, J=7.5 Hz), 2.99 (3H, s), 3.90 (2H, t, J=6.6 Hz), 4.22 (2H, t, J=6.4 Hz), 6.81-6.87 (2H, m), 7.07-7.11 (2H, m). 参考例 1 7 1

7ーヒドロキシー1、1ージオキソー2、3ージヒドロー1ーベンゾチエピンー4ーカルボン酸メチル(401mg)、メタンスルホン酸3ー(4ープロポキシフェニル)プロピル(1017mg)及び炭酸カリウム(310mg)をDMF(15ml)に懸濁させ、75℃で5時間撹拌した。反応混合物を酢酸エチルで希釈し、水及び飽和食塩水でそれぞれ洗浄し、有機層を無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:1)で精製し、7ー[3ー(4ープロポキシフェニル)プロポキシ]ー1、1ージオキソー2、3ージヒドロー1ーベンゾチエピンー4ーカルボン酸メチル(937mg)を黄色オイルとして得た。

7-[3-(4-プロポキシフェニル)プロポキシ]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(937mg)をTHFメタノール(15-7.5ml)に溶解させ、2M炭酸カリウム水溶液(1.5ml)を加え、60℃で18.5時間撹拌した。反応混合物を1N塩酸で処理し、そのpHを2とした。酢酸エチルで抽出し、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、析出した結晶をヘキサン-酢酸エチルですすぎ、7-[3-(4-プロポキシフェニル)プロポキシ]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(333mg)を白色結晶として得た。

mp 168-170℃.

¹H NMR (200MHz, DMSO- d_6) δ 0.97 (3H, t, J=7.3 Hz), 1.71 (2H, sextet, J=7.1

Hz), 2.00 (2H, quint-like), 2.67 (2H, t, J=7.3 Hz), 2.90 (2H, t-like), 3.67 (2H, t, J=6.6 Hz), 3.87 (2H, t, J=6.6 Hz), 4.08 (2H, t-like), 6.83 (2H, d, J=8.4 Hz), 7.10-7.14 (1H, m), 7.12 (2H, d, J=8.4 Hz), 7.30 (1H, d-like), 7.72 (1H, s), 7.93 (1H, d, J=9.0 Hz).

5 IR (KBr) 1686, 1593, 1564, 1510, 1294, 1279, 1240, 1163, 1130, 1073 cm⁻¹.

Anal. Calcd. for C₂₃H₂₆O₆S (0. 3H₂O): C, 63. 37; H, 6. 15. Found: C, 63. 07; H, 6. 21.

実施例120 (化合物121の製造)

7 - [3 - (4 - プロポキシフェニル) プロポキシ] - 1, 1 - ジオキソー 2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(260mg)をTHF(1 10 2ml) に懸濁させ、DMF (1滴) 及び塩化チオニル (0.088ml) を加 え、室温で1時間撹拌した。減圧下濃縮後、残渣をTHF(10ml)に溶解し た。4-[[N-メチル-N-(テトラヒドロピラン-4-イル)アミノ]メチ ル] アニリン2塩酸塩 (213mg) をTHF (12ml) で懸濁させ、トリエ チルアミン(0.63ml)を滴下し、ついで、先に調製した酸クロリドのTH 15 F溶液を0℃で滴下した。混合物を室温で15時間撹拌した。反応混合物を濃縮 し、酢酸エチルで希釈し、水及び飽和食塩水で順次洗浄し、無水硫酸マグネシウ ムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィ ー(酢酸エチル→酢酸エチル:エタノール=10:1)で精製し、さらにエタノ ールから再結晶を行い、N- [4- [[N-メチル-N- (テトラヒドロピラン 20 -4-イル) アミノ] メチル] フェニル] -7- [3-(4-プロポキシフェニ ル) プロポキシ] -1, 1 -ジオキソ-2, 3 -ジヒドロ-1-ベンソチエピン -4-カルボキサミド(化合物121)(281mg)を白色結晶として得た。 mp 178-181℃.

J=2. 2 Hz). 6. 94 (1H, dd, J=8. 6, 2. 4 Hz), 7. 09 (2H, d, J=8. 8 Hz), 7. 20 (1H, s), 7. 32 (2H, d, J=8. 8 Hz), 7. 53 (2H, d, J=8. 4 Hz), 7. 84 (1H, s), 8. 07 (1H, d, J=8. 8 Hz).

IR (KBr) 2942, 1665, 1595, 1512, 1408, 1314, 1289, 1244, 1163, 1125, 1065 cm⁻¹.

Anal. Calcd. for $C_{36}H_{44}N_2O_6S$ (0. $6H_2O$): C, 67. 18; H, 7. 08; N, 4. 35. Found: C, 66. 93; H, 6. 93; N, 4. 43.

参考例172

プロトカテキュアルデヒド (5.15g) をDMF (70ml) に溶解させ、 ヨウ化エタン (14.5g) 及び炭酸カリウム (15.5g) を加え、室温で17.5時間撹拌した。反応混合物を酢酸エチルで希釈し、水、1N水酸化ナトリウム水溶液、水及び飽和食塩水でそれぞれ洗浄し、有機層を無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=4:1) で精製し、3,4ージエトキシベンズアルデヒド (6.73g) を黄色オイルとして得た。

¹H NMR (200MHz, CDC1₃) δ 1. 48 (3H, t, J=6. 9 Hz), 1. 51 (3H, t, J=6. 9 Hz), 4. 16 (2H, q, J=7. 0 Hz), 4. 19 (2H, q, J=6. 9 Hz), 6. 96 (1H, d, J=8. 0 Hz), 7. 40 (1H, s), 7. 43 (1H, dd, J=8. 0, 1. 8 Hz), 9. 84 (1H, s).

参考例173

3, 4-ジエトキシベンズアルデヒド(6.68g)にメタノール(100m
 1)を加え、水素化ホウ素ナトリウム(1.30g)を0℃で加えた。混合物を0℃で45分間撹拌した。反応混合物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、3, 4-ジエトキシベンジルアルコール(6.64g)を黄色オイルとして25 得た。

¹H NMR (200MHz. CDC1₃) δ 1. 445 (3H, t, J=7.0 Hz), 1. 452 (3H, t, J=7.1 Hz), 1. 62 (1H, br s), 4. 09 (2H, q, J=6.9 Hz), 4. 11 (2H, q, J=7.0 Hz), 4. 60 (2H, s), 6. 86-6. 93 (3H, m).

参考例174

3,4-ジエトキシベンジルアルコール(736mg)をトルエン(10ml)に溶解させ、ピリジン(1滴)及び塩化チオニル(0.41ml)を加え、室温で20分間撹拌した。反応混合物を酢酸エチルで希釈し、水、飽和炭酸水素ナトリウム水溶液及び飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去し、3,4-ジエトキシベンジルクロリド(802mg)をオイルとして得た。

7-ヒドロキシー1, 1-ジオキソー2, 3-ジヒドロー1-ベンゾチエピンー4ーカルボン酸メチル(403mg)、3, 4-ジエトキシベンジルクロリド(802mg)及び炭酸カリウム(311mg)をDMF(15m1)に懸濁させ、70℃で3時間撹拌した。反応混合物を酢酸エチルで希釈し、水及び飽和食塩水でそれぞれ洗浄し、有機層を無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:1)で精製し、7-(3, 4-ジエトキシベンジロキシ)-1, 1-ジオキソー2, 3-ジヒドロー1-ベンゾチエピンー4ーカルボン酸メチル(818mg)を黄色アモルファスとして得た。

7-(3, 4-ジェトキシベンジロキシ)-1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチェピン-4-カルボン酸メチル(818mg)をTHFメタノール(15-7.5ml)に溶解させ、2 M炭酸カリウム水溶液(1.5ml)を加え、<math>60で14時間撹拌した。反応混合物を1 N塩酸で処理し、そのp Hを2とした。酢酸エチルで抽出し、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、析出した結晶をヘキサン-酢酸エチルですすぎ、7-(3, 4-ジェトキシベンジロキシ)-1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチェピン-4-カルボン酸(3.02g)を白色結晶として得た。

25 mp 145-146℃ (dec.).

20

¹H NMR (200MHz, DMSO-d₆) δ 1. 32 (6H, t, J=6. 9 Hz), 2. 90 (2H, t, J=6. 6 Hz), 3. 68 (2H, t, J=6. 4 Hz), 4. 02 (2H, q, J=7. 2 Hz), 4. 03 (2H, q, J=7. 0 Hz), 5. 14 (2H, s), 6. 94 (1H, d, J=8. 0 Hz), 6. 99 (1H, d, J=9. 8 Hz), 7. 07 (1H, s), 7. 21 (1H, dd, J=8. 9, 2. 3 Hz), 7. 41 (1H, d, J=2. 2 Hz), 7. 72 (1H, s), 7. 94 (1H, d,

J=8.8 Hz).

5

IR (KBr) 1674, 1593, 1566, 1514, 1292, 1258, 1225, 1165, 1128, 1069, 1038 cm⁻¹.

Anal. Calcd. for $C_{22}H_{24}O_7S$ (0. $3H_2O$): C, 60. 34; H, 5. 66. Found: C, 60. 15; H, 5. 58.

実施例121 (化合物122の製造)

7-(3, 4-ジエトキシベンジロキシ)-1, 1-ジオキソー2, 3-ジヒ ドロー1-ベンゾチエピン-4-カルボン酸 (293mg) をTHF (13ml) に懸濁させ、DMF(1滴)及び塩化チオニル(0.15ml)を加え、室温で 1時間撹拌した。減圧下濃縮後、残渣をTHF (10ml)に溶解した。4-[[N 10 ーメチルーN- (テトラヒドロピラン-4-イル) アミノ] メチル] アニリン2 塩酸塩(298mg)をTHF(15ml)で懸濁させ、トリエチルアミン(0. 91m1)を滴下し、ついで、先に調製した酸クロリドのTHF溶液を0℃で滴 下した。混合物を室温で60.5時間撹拌した。反応混合物を濃縮し、酢酸エチ ルで希釈し、水及び飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した。 15 減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル →酢酸エチル:エタノール=10:1) で精製し、さらにエタノールから再結晶 を行い、N-[4-[[N-メチル-N-(テトラヒドロピラン-4-イル)ア ミノ] メチル] フェニル] $-7-(3,4-ジェトキシベンジロキシ)_1,1$ ージオキソー 2, 3 ージヒドロー1 ーベンゾチエピンー4 ーカルボキサミド (化 20

mp 186-188℃.

¹H NMR (200MHz, CDCl₃) δ 1. 46 (6H, t, J=7. 0 Hz), 1. 69-1. 77 (4H, m), 2. 21 (3H, s), 2. 57-2. 70 (1H, m), 3. 09 (2H, t, J=6. 8 Hz), 3. 37 (2H, td, J=11. 2, 2. 9 Hz), 3. 57 (2H, s), 3. 69 (2H, t, J=6. 8 Hz), 4. 01-4. 05 (2H, m), 4. 11 (4H, q, J=7. 1 Hz), 5. 05 (2H, s), 6. 86-6. 98 (4H, m), 7. 04 (1H, dd, J=8. 6, 2. 4 Hz), 7. 21 (1H, s), 7. 32 (2H, d, J=8. 6 Hz), 7. 54 (2H, d, J=8. 4 Hz), 7. 87 (1H, s), 8. 09 (1H, d, J=8. 8 Hz).

合物122) (212mg) を白色結晶として得た。

IR (KBr) 1669, 1595, 1514, 1410, 1312, 1289, 1260, 1236, 1163, 1140, 1125,

1063, 1042, 737 cm⁻¹.

Anal. Calcd. for $C_{35}H_{42}N_2O_7S$ (0. $3H_2O$): C, 65. 66; H, 6. 71; N, 4. 38. Found: C, 65. 56; H, 6. 56; N, 4. 35.

参考例175

- 5 7-ヒドロキシー1, 1-ジオキソー2, 3-ジヒドロー1ーベンゾチエピンー4ーカルボン酸メチル(0.40g)を塩化メチレン(15ml)に溶解し、4-(2-プロポキシエトキシ)フェニルほう酸(0.67g)を加え、モレキュラーシーブス4A(0.8g)を加えて5分間攪拌した。酢酸銅(0.27g)、トリエチルアミン(1.04ml)を加え、室温にて5時間攪拌した。セライトろ過して、酢酸エチルにて洗浄した。得られた溶液を減圧下溶媒を除去し、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=3/2)にて精製し、7-[4-(2-プロポキシエトキシ)フェノキシ]-1,1-ジオキソー2,3-ジヒドロー1-ベンゾチエピンー4-カルボン酸メチル(0.23g)を得た。
- 15 'H-NMR (200MHz, CDCl₃) δ 0.95 (3H, t, J=7.4Hz), 1.57-1.71 (2H, m), 3.07 (2H, t, J=6.6Hz), 3.55 (2H, t, J=6.6Hz), 3.65 (2H, t, J=6.6Hz), 3.78-3.85 (2H, m), 3.84 (3H, s), 4.10-4.17 (2H, m), 6.96-7.02 (6H, m), 7.69 (1H, s), 8.08 (1H, d, J=8.8Hz)

参考例176

7- [4-(2-プロポキシエトキシ)フェノキシ]-1,1-ジオキソ-2,3-ジヒドロ-1-ペンゾチエピン-4-カルボン酸メチル(0.40g)をTHF(12m1)/メタノール(6.0ml)に溶解し、1規定水酸化カリウム(2.7ml)を加え、65度にて16時間攪拌した。室温に冷却後、減圧下溶媒を半分に濃縮した。1規定水酸化ナトリウム(3.0ml)を加え、酢酸エチルにて洗浄した。1規定塩酸にてpH=5とした後、酢酸エチルにて抽出し、飽和食塩水にて洗浄後、硫酸マグネシウムにて乾燥した。減圧下溶媒を除去し、得られた残さをヘキサン/酢酸エチル(=8/1)にて洗浄し、7-[4-(2-プロポキシエトキシ)フェノキシ]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(0.25g)を得た。

¹H-NMR (200MHz, CDC1₃) δ 0.95 (3H, t, J=7.4Hz), 1.56-1.74 (2H, m), 3.08 (2H, t, J=6.2Hz), 3.52 (2H, t, J=6.6Hz), 3.59-3.67 (2H, m), 3.79-3.84 (2H, m), 4.10-4.17 (2H, m), 6.97-7.03 (6H, m), 7.29 (1H, m), 8.09 (1H, d, J=8.6Hz) 実施例122 (化合物123の製造)

- 5 7- [4-(2-プロポキシエトキシ) フェノキシ]-1, 1-ジオキソ-2, $3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(0.25g)をTHF(7.5ml)に溶解し、DMF(二滴)、塩化チオニル(<math>50\mu1$)を加え、室温にて1時間攪拌した溶液を、4-[メチル(テトラヒドロピラニル-4-イル)アミノメチル] アニリン(140mg)、トリエチルアミン(0.40m1)のT
- 10 HF溶液 (7.5 ml) に、氷冷下滴下し、室温にて2時間攪拌した。反応液を水中に加え、酢酸エチルにて抽出した。飽和食塩水にて洗浄後、硫酸マグネシウムにて乾燥した。減圧下溶媒を除去し、得られた残さをシリカゲルカラムクロマトグラフィー(酢酸エチル/エタノール=3/1)にて精製し、ヘキサン/酢酸エチルにて再結晶し、N-[4-[N-メチル-N-(テトラヒドロピラニル-4-
- 15 イル)アミノメチル] フェニル] -7-[4-(2-プロポキシエトキシ) フェノキシ] -1, 1-ジオキソ-2, $3-ジヒドロ-1-ベンゾチエピン-4-カルボキサミド(化合物 <math>1\ 2\ 3$) ($1\ 1\ 5\ mg$) を得た。

m.p. 106-109℃

¹H-NMR (200MHz, CDCl₃) δ 0.94 (3H, t, J=7.4Hz), 1.55-1.75 (6H, m), 2.20 (3H, s), 2.64 (1H, m), 3.10 (2H, t, J=6.6Hz), 3.37 (2H, td, J=11.0, 3.0Hz), 3.50 (2H, t, J=6.6Hz), 3.57 (2H, s), 3.70 (2H, t, J=6.6Hz), 3.77-3.83 (2H, m), 4.00-4.16 (4H, m), 6.89-7.02 (5H, m), 7.04 (1H, s), 7.31 (2H, d, J=8.4Hz), 7.51 (2H, d, J=8.6Hz), 7.89 (1H, s), 8.08 (1H, d, J=8.4Hz)

IR(KBr) 3281, 2955, 1649, 1599, 1501, 1410, 1238, 1204, 1125, 988, 829cm⁻¹ 25 参考例 1 7 7

7-ヒドロキシ-1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル (0.40g) を塩化メチレン (15m1) に溶解し、3-(2-プロポキシエトキシ) フェニルほう酸 (0.67g) を加え、モレキュラーシーブス4A (0.8g) を加えて5分間攪拌した。酢酸銅 (0.27g)、

10

トリエチルアミン (1.04m1) を加え、室温にて5時間攪拌した。セライト ろ過して、酢酸エチルにて洗浄した。得られた溶液を減圧下溶媒を除去し、シリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル=3/2) にて精製し、7-[3-(2-プロポキシエトキシ)フェノキシ]-1,1-ジオキソ-2,

5 3 - ジヒドロー1 - ベンゾチエピンー4 - カルボン酸メチル (0.36g) を得た。

'H-NMR (200MHz, CDC1₃) δ 0.93 (3H, t, J=7.4Hz), 1.56-1.69 (2H, m), 3.09 (2H, t, J=6.4Hz), 3.49 (2H, t, J=6.6Hz), 3.59-3.66 (2H, m), 3.76-3.81 (2H, m), 3.84 (3H, s), 4.09-4.14 (2H, m), 6.63-6.69 (2H, m), 6.79-6.85 (1H, m), 7.03-7.09 (2H, m), 7.31-7.35 (1H, m), 7.71 (1H, s), 8.10 (1H, d, J=8.4Hz)

参考例 1.78

7-[3-(2-プロポキシエトキシ)フェノキシ]-1.1-ジオキソー2,3-ジヒドロー1-ベンゾチエピンー4-カルボン酸メチル(0.36g)をTHF(10.8ml)/メタノール(5.4ml)に溶解し、1規定水酸化カリウム(2.4ml)を加え、65度にて16時間攪拌した。室温に冷却後、減圧下溶媒を半分に濃縮した。1規定水酸化ナトリウム(3.0ml)を加え、酢酸エチルにて洗浄した。1規定塩酸にてpHを約5とした後、酢酸エチルにて抽出し、飽和食塩水にて洗浄後、硫酸マグネシウムにて乾燥した。減圧下溶媒を除去し、得られた残さをヘキサン/酢酸エチル(=8/1)にて洗浄し、7-[3-(2-プロポキシエトキシ)フェノキシ]-1,1-ジオキソー2,3-ジヒドロー1-ベンゾチエピンー4-カルボン酸(0.27g)を得た。

 1 H-NMR (200MHz, CDC1₃) δ 0. 93 (3H, t, J=7. 4Hz), 1. 54-1. 71 (2H, m), 3. 06-3. 13 (2H, m), 3. 50 (2H, t, J=6. 6Hz), 3. 60-3. 67 (2H, m), 3. 76-3. 82 (2H, m), 4. 07-4. 13 (2H, m), 6. 64-6. 69 (2H, m), 6. 79-6. 85 (1H, m), 7. 04-7. 10 (2H, m),

25 7. 26-7. 36 (1H, m), 7. 81 (1H, s), 8. 12 (1H, d, J=9. 4Hz)

実施例123 (化合物124の製造)

7-[3-(2-プロポキシエトキシ) フェノキシ] -1, 1-ジオキソ-2, $3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(0.26g)をTHF(7.8ml) に溶解し、DMF(二滴)、塩化チオニル(53<math>\mu$ 1)を加え、室温に

て1時間攪拌した溶液を、4- [メチル(テトラヒドロピラニル-4-イル)アミノメチル] アニリン(146mg)、トリエチルアミン(0.42ml)のTHF溶液(7.8ml)に、水冷下滴下して室温にて2時間攪拌した。反応液を水中に加え、酢酸エチルにて抽出した。飽和食塩水にて洗浄後、硫酸マグネシウムにて乾燥した。減圧下溶媒を除去し、得られた残さをシリカゲルカラムクロマトグラフィー(酢酸エチル/エタノール=4/1)にて精製し、ヘキサン/酢酸エチルにて再結晶し、N- [4- [N-メチル-N-(テトラヒドロピラニル-4-イル)アミノメチル] フェニル] -7- [3-(2-プロポキシエトキシ) フェノキシ] -1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボキサミド(化合物124)(108mg)を得た。

m. p. 98-102℃

"H-NMR (200MHz, CDCl₃) δ 0. 92 (3H, t, J=7. 2Hz), 1. 56-1. 82 (6H, m), 2. 20 (3H, s), 2. 65 (1H, m), 3. 10 (2H, t, J=6. 6Hz), 3. 36 (2H, td, J=11. 0, 2. 6Hz), 3. 48 (2H, t, J=6. 6Hz), 3. 57 (2H, s), 3. 64-3. 72 (2H, m), 3. 75-3. 81 (2H, m), 4. 10-4. 13 (4H, m), 6. 63-6. 68 (2H, m), 6. 77-6. 83 (1H, m), 6. 95 (1H, d, J=2. 2Hz), 7. 05 (1H, dd, J=8. 8, 2. 4Hz), 7. 17 (1H, s), 7. 26-7. 35 (3H, m), 7. 52 (2H, d, J=8. 4Hz), 8. 05 (1H, s), 8. 09 (1H, d, J=8. 4Hz)

IR(KBr) 3289, 2942, 1647, 1599, 1530, 1410, 1304, 1138, 1055cm⁻¹ 実施例1⁵24 (化合物125の製造)

mp 156-157 °C.

'H-NMR (δ ppm, CDCl₃) 1. 22 (3H, t, J = 6. 9 Hz), 1. 57-1. 76 (4H, m), 1. 84-1. 98 (2H, m), 2. 20 (3H, s), 2. 59-2. 69 (1H, m), 2. 72 (2H, t, J = 6. 2 Hz), 3. 11 (2H, t, J = 6. 6 Hz), 3. 30-3. 54 (6H, m), 3. 56 (2H, s), 3. 69 (2H, t, J = 6. 8 Hz), 4. 01-4. 07 (2H, m), 6. 95-7. 05 (4H, m), 7. 16 (1H, s), 7. 23-7. 33 (4H, m), 7. 51 (2H, d, J = 8. 4 Hz), 7. 75 (1H, s), 8. 09 (1H, d, J = 8. 4 Hz).

IR (KBr) ν : 2946, 2853, 1667, 1595, 1507 cm⁻¹.

Anal. calcd. for $C_{35}H_{42}N_2O_6S$: C, 67. 94; H, 6. 84; N, 4. 53. Found C, 67. 64; H, 6. 82; N, 4. 41.

15 実施例125 (化合物126の製造)

7 - [4 - (2 - x) + 2x + 2) - 3, 5 - ジメチルフェノキシ] - 1,1-ジオキソ-2、3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(0. 25g) をTHF (5ml) に溶かし、氷冷下、塩化チオニル (0.08ml)、 DMF (触媒量) を加え、室温で1.5時間撹拌した。減圧下溶媒を留去した。 残渣をTHF(10ml)に溶かし、4-[N-メチル-N-(テトラヒドロ-20 <u>2H-ピラン-4-イル)アミノメチル]アニリン(0.14g)、トリエチル</u> アミン (0. 4 m 1) のTHF (5 m 1) 溶液中に氷冷ト、滴下した。窒素雰囲 気下、室温で一晩撹拌した。減圧下溶媒を留去し、水を加え、酢酸エチルで抽出 した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムを用いて乾燥し た。溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/ 25 メタノール/トリエチルアミン)で精製し、粗結晶を得た。酢酸エチルーヘキサ ンから再結晶し、7- [4-(2-エトキシエトキシ)-3,5-ジメチルフェ ノキシ] -N- [4- [[N-メチル-N-(テトラヒドロー2H-ピラン-4 ーイル) アミノ] メチル] フェニル] -1, 1-ジオキソ-2, 3-ジヒドロ-

1-ベンゾチエピン-4-カルボキサミド(化合物126)(0.28g)を無 色結晶として得た。

mp 111-113 ℃.

'H-NMR (δ ppm, CDCl₃) 1. 26 (3H, t, J = 6. 9 Hz), 1. 63-1. 74 (4H, m), 2. 20 (3H, s), 2. 30 (6H, s), 2. 50-2. 71 (1H, m), 3. 11 (2H, t, J = 6. 8 Hz), 3. 37 (2H, dt, J = 3. 0, 11. 0 Hz), 3. 57 (2H, s), 3. 60-3. 80 (6H, m), 3. 94-4. 06 (4H, m), 6. 72 (2H, s), 6. 93 (1H, d, J = 2. 4 Hz), 7. 02 (1H, dd, J = 2. 4, 8. 4 Hz), 7. 16 (1H, s), 7. 31 (2H, d, J = 8. 6 Hz), 7. 51 (2H, d, J = 8. 6 Hz), 7. 72 (1H, s), 8. 09 (1H, d, J = 8. 8 Hz).

10 IR (KBr) ν : 2934, 2849, 1669, 1597, 1564, 1520 cm⁻¹.

Anal. calcd. for $C_{36}H_{44}N_2O_7S$: C, 66.64; H, 6.84; N, 4.32. Found C, 66.52; H, 6.87; N, 4.10.

参考例179

マグネシウム (0.37g) を無水THF (5ml) に懸濁後、窒素雰囲気下 撹拌し、ジブロモエタン (触媒量) 次いで1-プロモー4-(3-エトキシプロ ピル) ベンゼン (3.4g) の無水THF (30ml) 溶液を滴下した。50℃、 1.5時間加熱後、-78℃に冷却し、ほう酸トリメチル (3.1ml) を滴下 した。室温に戻し、一晩撹拌した。1N塩酸を加え、濃縮し、酢酸エチルで抽出 した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムを用いて乾燥し

20 た。溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/メタノール/トリエチルアミン)で精製し、4-(3-エトキシプロピル)フェニルほう酸(1.25g)を淡黄色オイルとして得た。

¹H-NMR (δ ppm. CDC1₃) 1. 23 (3H, t, J = 7. 0 Hz), 1. 90-2. 00 (2H, m), 2. 79 (2H, t, J = 7. 7 Hz), 3. 42-3. 55 (4H, m), 7. 34 (2H, d, J = 7. 6 Hz), 8. 16 (2H, d,

25 J = 7.6 Hz).

参考例180 -

7-ヒドロキシ-1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル (0.4g), 4-(3-エトキシプロピル) フェニルほう酸 (0.65g)、酢酸銅 (0.27g)、モレキュラーシープス4A (0.27g)

8g)をジクロロメタン(15ml)に懸濁し、トリエチルアミン(1.0ml)を加え、室温、一晩撹拌した。セライトを用いてろ過し、ろ液の溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン)で精製し、7-[4-(3-エトキシプロピル)フェノキシ]-1.1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル(0.28g)を無色結晶として得た。

mp 93-94 ℃.

¹H-NMR (δ ppm, CDC1₃) 1. 23 (3H, t, J = 6. 9 Hz). 1. 85-1. 99 (2H, m), 2. 73 (2H, t, J = 7. 7 Hz), 3. 08 (2H, t, J = 6. 6 Hz), 3. 43-3. 66 (6H, m), 3. 84 (3H, s),

10 6. 97-7. 05 (4H, m), 7. 25 (2H, d, J = 8. 4 Hz), 7. 71 (1H, s), 8. 09 (1H, d, J = 9. 6 Hz).

IR (KBr) ν : 2975, 2949, 2865, 1713 cm⁻¹.

参考例181

7- [4-(3-エトキシプロピル)フェノキシ]-1, 1-ジオキソー2,

- 15 3 ジヒドロー1 ベンゾチエピンー4 カルボン酸メチル (0.28g) をメタノール (5 m l)、THF (10 m l)に溶かし、1 N水酸化ナトリウム水溶液 (0.6 m l)を加え、70℃、5時間加熱した。濃縮後、1 N塩酸を用いて中和し、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムを用いて乾燥した。溶媒を留去し、7 [4 (3 エトキシプロピクロール)フェノキシー 1 ジオキソー2 3 ジヒドロー1 ベンゾチエピン
- 20 ル) フェノキシ] -1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン <math>-4-カルボン酸 (0.12g) を無色結晶として得た。

¹H-NMR (δ ppm, CDCl₃) 1. 23 (3H, t, J = 7. 2 Hz), 1. 85-1. 99 (2H, m), 2. 73 (2H, t, J = 7. 9 Hz), 3. 09 (2H, t, J = 6. 6 Hz), 3. 43-3. 56 (4H, m), 3. 64 (2H, t, J = 6. 8 Hz), 6. 96-7. 05 (4H, m), 7. 23-7. 26 (2H, m), 7. 81 (1H, s), 8. 10 (1H,

25 d, J = 9.6 Hz).

IR (KBr) ν : 2975, 2934, 2870, 1713 cm⁻¹.

参考例182

60%水素化ナトリウム(4.4g)をDMF(50ml)に懸濁し、氷冷下、 4-プロモ-2.6-ジメチルフェノール(20g)のDMF(100ml)溶 液を滴下した。窒素雰囲気下、室温、2時間撹拌後、プロモエチルエチルエーテル (12.3 ml)、よう化ナトリウム (16.4g)を加え、75℃、一晩加熱した。水中に注ぎ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムを用いて乾燥した。溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン)で精製し、5ープロモー2ー(2ーエトキシエトキシ)ー1、3ージメチルベンゼン(24.1g)を無色オイルとして得た。

 $^{1}H-NMR$ (δ ppm, $CDCl_{3}$) 1. 25 (3H, t, J = 7. 0 Hz), 2. 26 (6H, s), 3. 60 (2H, q, J = 7. 0 Hz), 3. 72-3. 77 (2H, m), 3. 88-3. 93 (2H, m), 7. 13 (2H, s).

10 IR (neat) ν: 2975, 2926, 2870, 1472 cm⁻¹.

参考例183

15

マグネシウム (2.36g) を無水THF (100ml) に懸濁後、窒素雰囲気下撹拌し、ジブロモエタン (触媒量) 次いで5ープロモー2ー(2ーエトキシエトキシ) −1,3ージメチルペンゼン(24.1g)の無水THF(100ml)溶液を滴下した。55℃、2.5時間加熱後、−78℃に冷却し、ほう酸トリメチル(19.8ml)を滴下した。室温に戻し、一晩撹拌した。1N塩酸を加え、濃縮し、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムを用いて乾燥した。溶媒を留去し、4ー(2ーエトキシエトキシ) −3,5ージメチルフェニルほう酸(8.4g)を無色結晶として得た。

20 $^{1}H-NMR$ (δ ppm, CDCl₃) 1.16 (3H, t, J = 7.2 Hz), 2.21 (3H, s), 2.26 (3H, s), 3.46 (2H, q, J = 7.2 Hz), 3.65-3.69 (2H, m), 3.85-3.90 (2H, m), 7.48 (2H, s).

参考例184.

7-ヒドロキシー1、1-ジオキソー2、3-ジヒドロー1-ベンゾチエピン -4-カルボン酸メチル(0.4g)、4-(2-エトキシエトキシ)-3,5 -ジメチルフェニルほう酸(0.71g)、酢酸銅(0.27g)、モレキュラーシープス4A(0.8g)をジクロロメタン(15ml)に懸濁し、トリエチルアミン(1.0ml)を加え、室温、一晩撹拌した。セライトを用いてろ過し、ろ液の溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチ

ル/ヘキサン)で精製し、7-[4-(2-x)+2x+2)-3, 5-3x チルフェノキシ] -1, 1-3x+2-2, 3-3x+2-1-2 -4-3x+3 を淡黄色オイルとして得た。

¹H-NMR (δ ppm, CDCl₃) 1. 27 (3H, t, J = 7. 0 Hz), 2. 31 (6H, s), 3. 08 (2H, t, J = 6. 4 Hz), 3. 58-3. 68 (4H, m), 3. 76-3. 81 (2H, m), 3. 84 (3H, s), 3. 95-4. 00 (2H, m), 6. 71 (2H, s), 6. 99-7. 04 (2H, m), 7. 71 (1H, s), 8. 08 (1H, d, J = 8. 4 Hz).

IR (neat) v: 2975, 2951, 2926, 2868, 1713 cm⁻¹. 参考例185

- 7- [4-(2-エトキシエトキシ) -3, 5-ジメチルフェノキシ] -1, 1-ジオキソ-2, 3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸メチル (0.39g) をメタノール (5ml)、THF (10ml) に溶かし、1M炭酸カリウム水溶液 (2.5ml)を加え、70℃、一晩加熱した。濃縮後、1N塩酸を用いて中和し、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、
- 15 無水硫酸マグネシウムを用いて乾燥した。溶媒を留去し、7-[4-(2-エトキシエトキシ)-3,5-ジメチルフェノキシ]-1,1-ジオキソ-2,3-ジヒドロ-1-ベンゾチエピン-4-カルボン酸(0.33g)を無色結晶として得た。

mp 149-153 ℃.

20 'H-NMR (δ ppm, CDC1₃) 1. 27 (3H, t, J = 7. 0 Hz), 2. 31 (6H, s), 3. 10 (2H, t, J = 6. 4 Hz), 3. 58-3. 69 (4H, m), 3. 77-3. 81 (2H, m), 3. 96-4. 00 (2H, m), 6. 72 (2H, s), 7. 02-7. 06 (2H, m), 7. 83 (1H, s), 8. 10 (1H, d, J = 9. 0 Hz).

IR (KBr) ν: 2976, 2865, 1709, 1694 cm⁻¹.

Anal. calcd. for $C_{23}H_{26}O_7S$: C, 61.87; H. 5.87. Found C, 61.59; H. 5.71.

25 産業上の利用可能性

本発明の式(I)で表される化合物またはその塩は、強いCCR5拮抗作用を有するので、ヒトにおける種々のHIVの感染症、例えばAIDSの予防ならびに治療のために有利に使用できる。

265

請求の範囲

1. 式
$$R^{1} - X^{1} - W - X^{2} - Z^{1} - Z^{2} - R^{2}$$

5 [式中、 R^1 は置換されていてもよい $5\sim 6$ 員環基を示し、 X^1 は結合手または 直鎖部分を構成する原子数が 1 ないし 4 個である 2 価の基を示し、Wは式

$$\begin{array}{c|c}
A & B \\
E_1 & E_2 & E_3
\end{array}$$

$$\begin{array}{c|c}
B & E_4
\end{array}$$

(式中、環Aおよび環Bはそれぞれ置換されていてもよい5~7員環を示し、E 」およびE $_4$ はそれぞれ置換されていてもよい炭素原子または置換されていてもよい窒素原子を示し、E $_2$ およびE $_3$ はそれぞれ置換されていてもよい炭素原子、置換されていてもよい窒素原子、酸化されていてもよい硫黄原子または酸素原子を示し、 $_4$ およびbはそれぞれ単結合または二重結合であることを示す)で表される $_4$ 2 位の基を示し、 $_4$ 2 は直鎖部分を構成する原子数が $_4$ 1 ないし $_4$ 個である $_4$ 個である $_4$ 個である $_4$ 個である $_4$ 個である $_4$ 個である $_4$ の場と示し、 $_4$ は $_4$ 間換されていてもよく、窒素原子が $_4$ 級アンモニウム化またはオキシド化されていてもよいアミノ基、(2)置換されていてもよく、環構成原子として硫黄原子または酸素原子を含有していてもよく、窒素原子が $_4$ 級アンモニウム化またはオキシドスにはオキュトはな

キシド化されていてもよい含窒素複素環基、(3)硫黄原子を介して結合する基、(4)式

10

(式中、kは0または1を示し、kが0の時、燐原子はホスホニウム塩を形成していてもよく、 R^{5} 、および R^{6} 、はそれぞれ置換されていてもよい炭化水素基、置換されていてもよい水酸基または置換されていてもよいアミノ基を示し、 R^{5} 、および R^{6} 、は互いに結合して隣接する燐原子とともに環状基を形成していてもよい)で表される基、(5)置換されていてもよいアミジノ基または(6)置換されていてもよいグアニジノ基を示す]で表される化合物 [但し、式 $R^{1}-X^{1}-X^{2}-X^{2}-Z^{1}-Z^{2}-$ で表される基が式

(式中、 R^1 は前記と同意義を示し、W) は式

(式中、環A'は置換されていてもよい5~6員芳香環を示し、Xは置換されていてもよい炭素原子、置換されていてもよい窒素原子、硫黄原子または酸素原子を示し、環B'は置換されていてもよい5~7員環を示す)で表される二価の基を示し、Zは直鎖部分を構成する炭素原子数が1ないし4個である2価の基を示す)で表される基を示すとき、R²は置換されていてもよいアミジノ基または置換されていてもよいグアニジノ基を示し;式 R¹-X¹-W-X²-Z¹-Z²-で表される基が式

$$\begin{array}{c|c}
 & Q^{1} \\
\hline
 & B^{"} \\
\hline
 & CONQ^{2} \\
\hline
 & Q^{3} \\
\hline
\end{array}$$

(式中、 R^1 および X^1 は前記と同意義を示し、環 A^n は置換されていてもよいベンゼン環を示し、 Q^1 は環 B^n が $5\sim7$ 員環を形成する二価の基を示し、 Q^2 は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示し、 Q^3 は結合手または二価の基を示す)で表される基を示すとき、 R^2 は式

$$-\mathbb{P}^{<\mathbb{R}^{5}}$$

(式中、 R^{5} "および R^{6} "はそれぞれ置換されていてもよい水酸基を示し、 R^{5} "および R^{6} "は互いに結合して隣接する燐原子とともに環状基を形成していてもよい)で表される基を示さない]またはその塩。

- 2. 請求項1記載の化合物またはその塩のプロドラッグ。
- 3. R ¹ がそれぞれ置換されていてもよいベンゼン、フラン、チオフェン、ピリジン、シクロペンタン、シクロヘキサン、ピロリジン、ピペリジン、ピペラジン、モルホリン、チオモルホリンまたはテトラヒドロピランから水素原子 1 個を除い
- 15 て形成される基である請求項1記載の化合物。
 - $4. R^{1}$ が置換されていてもよいフェニルである請求項1記載の化合物。
- 5. X^1 が結合手、 $-(CH_2)_a$ -[a'は1~4の整数を示す]、 $-(CH_2)_b$ $-X^3$ $-[b'は0~3の整数を示し、<math>X^3$ は置換されていてもよいイミノ基、カルボニル基、酸素原子または酸化されていてもよい硫黄原子を示す]、 $-CH_2$ $-CH_3$ $-CH_4$ $-CH_5$ $-CH_5$ $-CH_5$ $-CH_5$ $-CH_6$ $-CH_6$
 - 6. X1が結合手である請求項1記載の化合物。
 - 7. X^1 が $-(CH_2)_{\mathfrak{h}}-X^3-[\mathfrak{h}]$ は $0\sim3$ の整数を示し、 X^3 は置換されていてもよいイミノ基、カルボニル基、酸素原子または酸化されていてもよい硫黄

原子を示す] である請求項1記載の化合物。

- 8. 環Aがそれぞれ置換されていてもよいフラン、チオフェン、ピロール、ピリジン、ピランまたはベンゼンである請求項1記載の化合物。
- 9. 環Aが置換されていてもよいベンゼンである請求項1記載の化合物。

5 10. 環Bが式

15

20

化合物。

[式中、 E_3 は置換されていてもよい炭素原子または置換されていてもよい窒素原子を示し、 E_4 は置換されていてもよい炭素原子または窒素原子を示し、 E_4 は置換されていてもよい炭素原子または窒素原子を示し、 E_4 は置換されていてもよい炭素原子または窒素原子を示し、 E_4 は一般のでは、 E_4 は置換されていてもよい、 E_4 は置換を示す。 E_4 は置換を示す。 E_4 は、 E_4

11. Yが $-Y'-(CH_2)_2-[Y'd-S(O)_m-(md0~2の整数を示す)、$ $-O-(NH-または-CH_2-を示す]$ である請求項10記載の化合物。

 $12. E_3$ が置換されていてもよい炭素原子を示し、 E_4 が置換されていてもよい炭素原子を示し、Bが二重結合であることを示す請求項1記載の化合物。

13. X^2 が- (CH₂) - [a'は1~4の整数を示す]、- (CH₂) - X^3

- [b' は0~3の整数を示し、 X^3 は置換されていてもよいイミノ基、カルボニル基、酸素原子または酸化されていてもよい硫黄原子を示す]、- CH=CH -、- C \equiv C 、- CO- NH- または- S O_2 NH- である請求項1 記載の
- 14. X²が-CO-NH-である請求項1記載の化合物。
- 15. Z¹が(1)結合手または(2)それぞれ置換されていてもよいペンゼン、
- 25 フラン、チオフェン、ピリジン、シクロペンタン、シクロヘキサン、ピロリジン、 ピペリジン、ピペラジン、モルホリン、チオモルホリンまたはテトラヒドロピラ

ンから水素原子2個を除いて形成される2価の環状基である請求項1記載の化合物。

- 16. Z¹が(1) 結合手または(2) それぞれ置換されていてもよいベンゼン、シクロヘキサンまたはピペリジンから水素原子2個を除いて形成される2価の環 5 状基である請求項1記載の化合物。
 - $17. Z^1$ が置換されていてもよいフェニレンである請求項1記載の化合物。
 - $18. \ Z^2$ が結合手または置換されていてもよい C_{1-3} アルキレンである請求項1記載の化合物。
 - 19. Z^2 が $-Z'-(CH_2)n-[Z'は-CH(OH)-、-C(O)-または-C$
- 10 H_2 を示し、n は $0 \sim 2$ の整数を示す] で表される骨格を有し、任意のメチレン基に置換基を有していてもよい二価の基である請求項1 記載の化合物。
 - 20. Z²が結合手またはメチレンである請求項1記載の化合物。
 - $21. Z^1$ が 6 員の 2 価の環状基であり、 Z^2 の置換位置が X^2 のパラ位である請求項 1 記載の化合物。
- 15 22. R²が(1)置換されていてもよく、窒素原子が4級アンモニウム化またはオキシド化されていてもよいアミノ基、(2)置換されていてもよく、環構成原子として硫黄原子または酸素原子を含有していてもよく、窒素原子が4級アンモニウム化またはオキシド化されていてもよい含窒素複素環基、(3)置換されていてもよいアミジノ基または(4)置換されていてもよいグアニジノ基である
- 20 請求項1記載の化合物。
 - $23.~R^{2}$ が置換されていてもよいアミノ基である請求項1記載の化合物。
 - 24. R 2 が置換されていてもよいアミジノ基または置換されていてもよいグアニジノ基である請求項1記載の化合物。
 - 25. N- [4- [N-メチル-N- (テトラヒドロピラン-4-イル) アミノ
- 25 メチル] フェニル] -7 [2 (4 プロポキシフェニル) エトキシ] 1, 1 ジオキソ 2, 3 ジヒドロ 1 ベンゾチエピン 4 カルボキサミド、N <math>[4 [N メチル N (テトラヒドロピラン 4 イル) アミノメチル]フェニル] -7 [(3 プロポキシベンジル) オキシ] 1, 1 ジオキソ 2, 3 ジヒドロ 1 ベンゾチエピン 4 カルボキサミド、N <math>[4 [N]]

ーメチルーNー (テトラヒドロピランー4ーイル) アミノメチル] フェニル] ー 7ー [(2ープロポキシベンジル) オキシ] ー1, 1ージオキソー2, 3ージヒドロー1ーベンゾチエピンー4ーカルボキサミド、Nー [4ー [NーメチルーNー(テトラヒドロピランー4ーイル) アミノメチル] フェニル] ー7ー [(4ー5 プロポキシフェニル) メトキシ] ー1, 1ージオキソー2, 3ージヒドロー1ーベンゾチエピンー4ーカルボキサミド、Nー [4ー [NーメチルーNー(テトラヒドロピランー4ーイル) アミノメチル] フェニル] ー7ー [(4ープロポキシエトキシフェニル) メトキシ] ー1, 1ージオキソー2, 3ージヒドロー1ーベンゾチエピンー4ーカルボキサミド、Nー [4ー [NーメチルーNー(テトラヒドロピランー4ーイル) アミノメチル] フェニル] ー7ー [3ー(4ープロポキシフェニル) プロボキシ] ー1, 1ージオキソー2, 3ージヒドロー1ーベンゾチエピンー4ーカルボキサミドまたはそれらの塩。

- 26. 請求項25記載の化合物またはそれらの塩のプロドラッグ。
- 27. 請求項1記載の化合物またはその塩を含有する医薬組成物。
- 15 28. 式 R^{1} — X^{1} —W—— X^{2} — Z^{1} — Z^{2} — R^{2}

[式中、 R^1 は置換されていてもよい $5\sim 6$ 員環基を示し、 X^1 は結合手または 直鎖部分を構成する原子数が 1 ないし 4 個である 2 価の基を示し、Wは式

271

(式中、環Aおよび環Bはそれぞれ置換されていてもよい $5\sim7$ 員環を示し、E」およびE₄はそれぞれ置換されていてもよい炭素原子または置換されていても よい窒素原子を示し、 E_2 および E_3 はそれぞれ置換されていてもよい炭素原子、

- 置換されていてもよい窒素原子、酸化されていてもよい硫黄原子または酸素原子 を示し、aおよびbはそれぞれ単結合または二重結合であることを示す)で表さ れる2価の基を示し、 X^2 は直鎖部分を構成する原子数が1ないし4個である2価の基を示し、 Z^1 は結合手または2価の環状基を示し、 Z^2 は結合手または直鎖 部分を構成する炭素原子数が1ないし4個である2価の基を示し、R 2 は(1)
- 置換されていてもよく、窒素原子が4級アンモニウム化またはオキシド化されて いてもよいアミノ基、(2)置換されていてもよく、環構成原子として硫黄原子 または酸素原子を含有していてもよく、窒素原子が4級アンモニウム化またはオ キシド化されていてもよい含窒素複素環基、(3)硫黄原子を介して結合する基、 (4)式

$$-\mathbb{P} < \mathbb{R}^{5'}$$

$$(0)_{k}$$

15

(式中、kは0または1を示し、kが0の時、燐原子はホスホニウム塩を形成し

ていてもよく、 R^{5} 'および R^{6} 'はそれぞれ置換されていてもよい炭化水素基、置換されていてもよい水酸基または置換されていてもよいアミノ基を示し、 R^{5} 'および R^{6} 'は互いに結合して隣接する燐原子とともに環状基を形成していてもよい)で表される基、(5)置換されていてもよいアミジノ基または(6)置換されていてもよいグアニジノ基を示す]で表される化合物 [但し、式 $R^{1}-X^{1}-W-X^{2}-Z^{1}-Z^{2}-$ で表される基が式

(式中、 R^1 は前記と同意義を示し、W'は式

- 10 (式中、環A'は置換されていてもよい5~6員芳香環を示し、Xは置換されていてもよい炭素原子、置換されていてもよい窒素原子、硫黄原子または酸素原子を示し、環B'は置換されていてもよい5~7員環を示す)で表される二価の基を示し、Zは直鎖部分を構成する炭素原子数が1ないし4個である2価の基を示す)で表される基を示すとき、R²は置換されていてもよいアミジノ基または置換されていてもよいグアニジノ基を示す]またはその塩を含有するCCR拮抗のための医薬組成物。
 - 29. HIVの感染症の予防・治療剤である請求項28記載の組成物。
 - 30. AIDSの予防・治療剤である請求項28記載の組成物。
 - 31.AIDSの病態進行抑制剤である請求項28記載の組成物。
- 20 32. さらにプロテアーゼ阻害剤または/および逆転写酵素阻害剤を組み合わせてなる請求項29記載の組成物。
 - 33. 逆転写酵素阻害剤がジドブジン、ジダノシン、ザルシタビン、ラミブジン、スタブジン、ネビラピン、デラビルジン、エファビレンツまたはアバカビルである請求項32記載の組成物。
- 25 34. プロテアーゼ阻害剤がサキナビル、リトナビル、インジナビル、アムプレ

ナビルまたはネルフィナビルである請求項32記載の組成物。

35.
$$\pm$$
 $R^{1} - X^{1} - W - - X^{2} - Z^{1} - Z^{2} - R^{2}$

[式中、 R^{-1} は置換されていてもよい $5\sim 6$ 員環基を示し、 X^{-1} は結合手または 直鎖部分を構成する原子数が 1 ないし 4 個である 2 価の基を示し、W は式

(式中、環Aおよび環Bはそれぞれ置換されていてもよい $5\sim7$ 員環を示し、 E_1 および E_4 はそれぞれ置換されていてもよい炭素原子または置換されていてもよい窒素原子を示し、 E_2 および E_3 はそれぞれ置換されていてもよい炭素原子、

10 置換されていてもよい窒素原子、酸化されていてもよい硫黄原子または酸素原子を示し、a および b はそれぞれ単結合または二重結合であることを示す)で表される 2 価の基を示し、X 2 は直鎖部分を構成する原子数が 1 ないし 4 個である 2 価の基を示し、Z 1 は結合手または 2 価の環状基を示し、Z 2 は結合手または直鎖部分を構成する炭素原子数が 1 ないし 4 個である 2 価の基を示し、R 2 は (1)

15 置換されていてもよく、窒素原子が4級アンモニウム化またはオキシド化されていてもよいアミノ基、(2) 置換されていてもよく、環構成原子として硫黄原子または酸素原子を含有していてもよく、窒素原子が4級アンモニウム化またはオキシド化されていてもよい含窒素複素環基、(3) 硫黄原子を介して結合する基、

(式中、kは0または1を示し、kが0の時、燐原子はホスホニウム塩を形成していてもよく、 R^5 、および R^6 、はそれぞれ置換されていてもよい炭化水素基、置換されていてもよい水酸基または置換されていてもよいアミノ基を示し、 R^5 、および R^6 、は互いに結合して隣接する燐原子とともに環状基を形成していてもよい)で表される基、(5)置換されていてもよいアミジノ基または(6)置換されていてもよいグアニジノ基を示す]で表される化合物 [但し、式 $R^1-X^1-W-X^2-Z^1-Z^2-$ で表される基が式

10

(式中、R¹は前記と同意義を示し、W'は式

(式中、環A'は置換されていてもよい5~6員芳香環を示し、Xは置換されていてもよい炭素原子、置換されていてもよい窒素原子、硫黄原子または酸素原子を示し、環B'は置換されていてもよい5~7員環を示す)で表される二価の基を示し、Zは直鎖部分を構成する炭素原子数が1ないし4個である2価の基を示す)で表される基を示すとき、R²は置換されていてもよいアミジノ基または置換されていてもよいグアニジノ基を示す]またはその塩とプロテアーゼ阻害剤または/および逆転写酵素阻害剤とのHIVの感染症の予防・治療のための使用。

- 20 36. 請求項28記載の化合物またはその塩の有効量を哺乳動物に投与することを特徴とする哺乳動物におけるCCRの拮抗方法。
 - 37. CCR拮抗のための医薬の製造のための請求項28記載の化合物またはその塩の使用。

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP00/02825

	·		PCI/	JP00/02825	
Int A61 A61 According	SSIFICATION OF SUBJECT MATTER 1. C1 ⁷ C07D217/06, 409/12, 409 1. K31/4025, 31/381, 31/44, 31/3 1. P31/18, C07F9/655 1. to International Patent Classification (IPC) or to both	31/4709,	31/351, 3	401/12, 309/14, 31/661, 31/4725,	
	OS SEARCHED	,			
Int A61	documentation searched (classification system follow .Cl ⁷ C07D217/06, 409/12, 409 K31/4025, 31/381, 31/44, 31/3 P31/18, C07F9/655	/14, 405/12,	407/12,	401/12, 309/14, 31/661, 31/4725,	
	ation searched other than minimum documentation to				
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAPLUS (STN), REGISTRY (STN)					
C. DOCU	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where			Relevant to claim No.	
EA	WO, 2000/37455, A1 (Takeda Che 29 June, 2000 (29.06.00), Full text (Family: none) & Database CAPLUS on STN, AM (ACS),(Columbus, OH, USA),DN.1	BRICAN CHEMICA			
PA	WO, 2000/10965, A1 (Takeda Che 02 March, 2000 (02.03.00), Full text & JP, 2000-128842, A& US, 6096		s, Ltd.),	1-34,37	
PA	WO, 99/32468, Al (Takeda Chemi 01 July, 1999 (01.07.99), Full text & JP, 11-263764, A & AU, 9916			1-34,37	
PA	WO, 99/32100, Al (Takeda Chemi 01 July, 1999 (01.07.99), Full text & JP, 2000-128782, A& US, 6096			1-34,37	
	documents are listed in the continuation of Box C.	See patent family	annex.		
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document the principle or theory underlying the invention document the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered nove					
			2000 (22.	08.00)	
Japan	Japanese Patent Office				
acsimile No.		Telephone No.			

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP00/02825

Category*	Citation of document, with indication, where appropriate, of the relevant	ant passages	Relevant to claim No.	
Α .	WO, 97/24325, A1 (Takeda Chemical Industries 10 July, 1997 (10.07.97), Full text & JP, 10-81665, A & AU, 9712083, A1	s, Ltd.),	1-34,37	
		·		
			·	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.

Box I O		PCT/JP00/02825	
This intern	servations where certain claims were found unsearchable (Continuation titional search report has not been established in respect of security in the continuation to the continuation of the continuation in the continuation of th	of item 1 -45	
. ms anema	tional search report has not been established in respect of certain claims unde	or item 1 of Mrst sheet)	
i _	- Commonwealth and the common and th	Article 17(2)(a) for the following reason	
1. 🛛 C	aims Nos : 35 36		
be	cause they relate to subject matter not required to be searched by this Authori		
Clair	ns 35 and 36 includes the required to be searched by this Authori	ity, namely:	
thus re	lete to subject the human be	.d., 1.	
Claims 35 and 36 include methods for treatment of the human body by surgery or therapy, and thus relate to subject matters which this International Searching Authority is not required, under the provisions of Article 17(2)(a)(i) of the PCT and Rule 39.1 (iv) of the Regulations under			
the PC	I, to search.	(iv) of the Regulation	
2. Cla	ims Nos.:	regulations under	
bec	Buse they relate to name a Callant		
exte	ause they relate to parts of the international application that do not comply wi int that no meaningful international search can be carried out, specifically:	ith the prescribed require	
1	scarch can be carried out, specifically:	requirements to such an	
ļ			
ĺ			
I _			
3. Clair	ns Nos.:		
becar	use they are dependent claims and are not drafted in accordance with the secondards where unity of invention is lacking (Continued).		
Box II Obser	vations where unity of invention is lacking (Continuation of item 2 of first al Searching Authority found multiple inventions.	nd and third sentences of Rule 6.4(a).	
This Internation	nal Searching Authority found multiple inventions in this international applica	st sheet)	
	and the state of t	ation, as follows:	
		•	
•			
. As all m			
· [] As all re	equired additional scarch fees were timely paid by the applicant, this internation		
	- Pyticuta, uns internati	onal search report covers all searchable	
As all so	archable claims could be		
of any ac	archable claims could be searched without effort justifying an additional fee,	this Authority did not invite	
As only :	ome of the required additional search free were timely		
omy mos	ome of the required additional search fees were timely paid by the applicant, e claims for which fees were paid, specifically claims Nos.:	this international search report covers	
	· · · · · · · · · · · · · · · · · · ·		
		İ	
•		ĺ	
No require	1 additional L a		
search repo	I additional search fees were timely paid by the applicant. Consequently, this rt is restricted to the invention first mentioned in the claims; it is covered by	international	
•	a definition of the second research tees were timely paid by the applicant. Consequently, this restricted to the invention first mentioned in the claims; it is covered by one of the content of the covered by one of the content of the covered by one of the covered	claims Nos.:	
	· · · · · · · · · · · · · · · · · · ·		
*		1	
		1.	
ork on Protoce	/ T1		
ark on Protest	The additional search fees were accompanied by the applicant's prof	Inst	
	The additional search fees were accompanied by the applicant's prot No protest accompanied the payment of additional search fees. continuation f first sheet (1)) (July 1992)	dest.	

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl ⁷ C07D217/06, 409/12, 409/14, 405/12, 407/12, 401/12, 309/14, A61K31/4025, 31/381, 31/44, 31/352, 31/4709, 31/351, 31/661, 31/4725, A61P31/18, C07F9/655 B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl ⁷ C07D217/06, 409/12, 409/14, 405/12, 407/12, 401/12, 309/14, A61K31/4025, 31/381, 31/44, 31/352, 31/4709, 31/351, 31/661, 31/4725, A61P31/18, C07F9/655					
調査を行った最小限資料(国際特許分類(IPC)) Int.CI ⁷ C07D217/06, 409/12, 409/14, 405/12, 407/12, 401/12, 309/14, A61K31/4025, 31/381, 31/44, 31/352,					
調査を行った最小限資料(国際特許分類(IPC)) Int.CI ⁷ C07D217/06, 409/12, 409/14, 405/12, 407/12, 401/12, 309/14, A61K31/4025, 31/381, 31/44, 31/352,					
最小限資料以外の資料で調査を行った分野に含まれるもの					
ACTION OF THE CHILD OF THE CHIL					
国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CAPLUS(STN)、REGISTRY(STN)					
C. 関連すると認められる文献					
引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番					
EA WO, 2000/37455, A1 (Takeda Chemical 1-34,37					
Industries, Ltd.)					
29.6月.2000(29.06.00)					
全文(ファミリーなし)					
& Database CAPLUS on STN, AMERICAN CHEMICAL SOCIETY (ACS), (Columbus, OH, USA), DN. 133:73955					
(Columbus, On, USA), DN. 155-75955					
x C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。					
* 引用文献のカテゴリー の日の後に公表された文献					
「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であっ もの て出願と矛盾するものではなく、発明の原理又は					
もの て出願と矛盾するものではなく、発明の原理又は 「E」国際出願日前の出願または特許であるが、国際出願日					
以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発					
「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1					
文献(理由を付す) 上の文献との、当業者にとって自明である組合せ					
「O」ロ頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの					
「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献					
国際調査を完了した日 国際調査報告の発送日					
11. 08. 00 2 2.08.00					
国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4C 984					
「国际副主成機り2右4小及いのした 「付計」」番重旨(性敗りのる収束) 「なし」するも					
国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4 C 9 8 4 1					

C(続き).	関連すると認められる文献	関連する
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
PA	WO, 2000/10965, A1 (Takeda Chemical	1-34, 37
	Industries, Ltd.)	· [
	2.3月.2000 (02.03.00) 全文	1
:	& JP, 2000-128842, A	
	& US, 6096780, A	
•		
PΑ	WO, 99/32468, A1 (Takeda Chemical	1-34, 37
	Industries, Ltd.)	
	1. 7月. 1999 (01. 07. 99)	
	全文 & JP, 11-263764, A	
	& AU, 9916830, A1	
4		
PA	WO, 99/32100, A1 (Takeda Chemical	1-34, 37
I A	Industries, Ltd.)	
	1. 7月. 1999 (01. 07. 99)	
	全文 & JP, 2000-128782, A	
	& JP, 2000-128782, M & US, 6096780, A	·
į		
	WO, 97/24325, A1 (Takeda Chemical	1-34, 37
A	Industries, Ltd.)	
	10.7月.1997 (10.07.97)	
	全文 10 - 81665 A	
į	& JP, 10-81665, A & AU, 9712083, A1	
		1
	·	
		1
	,	

第1欄 請求の範囲の一部の調査ができないときの意見 (第1ページの2の続き) 法第8条第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。
1. x 請求の範囲 35,36 は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
請求の範囲35,36は手術または治療による人体の処置方法を包含するものであるので、PCT第17条(2)(a)(i)及びPCT規則39.1(iv)の規定により、この国際調査機関が調査することを要しない対象に係るものである。
2. 請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3. □ 請求の範囲は、従風請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅱ欄 発明の単一性が欠如しているときの意見 (第1ページの3の続き)
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2. □ 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追 加調査手数料の納付を求めなかった。
3. 田願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
追加調査手数料の異議の申立てに関する注意 □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□