First Price Auctions Bid Optimization with Contextual Multi Armed Bandits

by Jacob Greenbaum, Himani Gadve, Mike Arbuzov

How to win bidding wars without overpaying a fortune?

SFG SFGATE

San Francisco home sells for \$1 million over asking price

A four-bedroom home in a quiet San Francisco neighborhood shocked real estate agents Richard Woo and Holly Phan when it sold for \$1 million...

1 day ago

M Money

Housing Market Madness: This 4-Bedroom Home Just Sold for \$1 Million Over Asking Price

Whether it's your first home or your next one, Quicken Loan experts can walk you through the process. Click below to consult a mortgage expert...

1 hour ago

CBS San Francisco

'We Didn't Expect A Million Dollars More' – San Francisco Home's Astronomical Overbid Stuns Agents

SAN FRANCISCO (KPIX 5) – While high prices and overbidding have become the norm in the Bay Area real estate market, a home that sold for \$1...

3 days ago

Agenda

- 1. Tax Rolls to Sales & Feature Engineering
 - @Jacob Greenbaum
- 2. Models (QRF, QGBDT, NGBoost) & fine tuning with Optuna
 - @Himani Gadve
- 3. Multi Armed Bandits & Results
 - @Mike Arbuzov

1. Tax Rolls to Sales

How we back engineered dataset and generated features

Defining the scope

Train

Property Class: Condominium or Dwelling
Use Definition: Single Family Residential
Bathrooms <= 5
Bedrooms < 5
Stories < 5
Property Area(sqft) 500 - 5000
Home Value within 5% - 95% percentile of training

Predict

Fixtures
Improvement
Land
Personal Property

Assessed
Value

Assessed
Price

Predict on: Sale Price?!

Predict on: Sqft Price / Median Sqft Price in the Neighborhood for Last 26 weeks

Valuable features - selected with RandomForest

2. Probabilistic Forecasting

Forecasting confidence intervals with QRF, QGBDT & NGBoost

QRF - Random Forest Quantile Regressor: Predicts residual of a linear regressor

Tuned Hyperparameters:

Number of Estimators: 10

Max_depth: 120

Best MAPE value: 0.11

QGBDT - LightGBM Quantile Regressor: Predict different quantile values

Tuned Hyperparameters:

Max_depth: 4

Learning rate: 0.012

Best MAPE value: 0.11

NGBoost Regressor: Predict mean and standard deviation

Tuned Hyperparameters:

Number of Estimators: 196

Max_depth: 7

Min_samples_leaf: 25

Best MAPE value: 0.14

3. Multi Armed Bandits

Choosing optimal bidding strategy based on previous outcomes

Sampling the rewards

How MABs learn?

Reinforcement Learning:

- Context generated from Home features
- 2. Agent receives Context
- Agent chose random or optimal Action
- 4. Agent receives Reward
- Agent adjusts action selection model

Context

- 1. Train forecasting models on five years of historical data
- Create predictions for the homes selling during the following month

{ 'ngb_pred', 'ngb_std',
'QGB_10','QGB_30', 'QGB_50',
'QGB_70', 'QGB_90',
'QRF_10', 'QRF_30', 'QRF_50',
'QRF_70', 'QRF_90'}

Actions

 pick optimal bid adjustment based on the context.

Depending on market situation and forecast precision, MABs strategies range from aggressive bidding to ceasing bidding at all.

```
actions = (
    '-12', '-9', '-6', '-3', '-1',
    '0', '1', '3', '6', '9', '12',
    '-100'
prediction = (
    context['ngb pred'] +
    context['QGB 50'] +
    context['QRF 50']) / 3
bid = prediction * (100 +
int(action)) / 100
```

Reward = negative Cost

helper artificially reduces error

if no win, lost time loss = 0.5%

elif overbid within thresh%, earn commission loss = - 2.5%

else overbid by more than thresh%, loss = excess %

helper - coefficient to reduce forecasting error; helps examine how MABs strategies depend on forecast quality

```
threshold = 0.05
diff = ((bid - target) / target) * helper
if diff < 0:
    return 0.005
elif diff < threshold:
    return -0.025
else:
    return (diff - threshold)
```

Results - homes purchased / avg overbid %

MAPE	0%	1.5%	3%	6%	10%	14%
MABs	16k / 1%	16k / 3%	1k / 5%	0.8k / 9%	0.8k / 13%	0.7k / 18%
Median	8k / 0%	8k / 2%	8k / 3%	8k / 7%	8k / 12%	8k / 17%
- 5%	0k / na	0.4k / 1%	2k / 3%	4k / 6%	5k / 11%	6k / 16%
+5%	17k / 5%	17k / 5%	16k / 6%	13k / 8%	11 k / 13%	10 k / 18%

Zestimate median error is 3.5% in San Francisco, CA

(Based on 10,000 homes with Zestimates)

MAB Strategies

Prediction Error	Strategy	Purchases / Bids
0.0%	+ 1% (min premium)	16 / 17
1.5%	+ 3 % (premium > avg error)	16 / 17
3.0%	- 9% (lowball)	1 / 17

If MAP > threshold, Multi Armed Bandits figure out to refuse to bid.

4. Appendix

Quantile Regression & DASK Feature Engineering

DASK - Parallel Feature Engineering

140 features has been created with DASK for parallel computations:

- Geospatial distance to neighborhood centers, closest neighborhoods
- Time Series lags, rolling medians, and trends
- Property footprint to lot ratio, area per level, lot to property ratio and others

