Travel planning for flight data

HIERARCHICAL AND RECURSIVE QUERIES IN SQL SERVER

Dominik Egarter
Data Engineering Enthusiast

Scoreboard of an airport

How is a flight data set structured?

Departure	Arrival	FlightNumber	Cost	Time
London	Paris	LH3827	90	2
Vienna	New York	MH2370	379	8
New York	Paris	LH9832	489	9
Vienna	Paris	SU2389	200	3
London	Chicago	OP1230	650	10
New York	Chicago	NL5460	150	2

How to build a flight route?

- Use recursion to get all possible flight routes
- A route is defined by the **departure** airport and the **destination** airport
- Limit the number of possible layovers to create realistic flight routes

Building a flight route - step 1

```
WITH flightRoute (Departure, Arrival, stops) AS(
    -- Anchor query
SELECT f.Departure, f.Arrival, 0
    FROM flightPlan f
    WHERE Departure = 'Vienna'
    -- Recursive query
UNION ALL
    SELECT p.Departure, f.Arrival, p.stops + 1
    FROM flightPlan f, flightRoute p
    WHERE p.Arrival = f.Departure AND
    p.stops < 5
)</pre>
```

```
SELECT Departure, Arrival, stops
FROM flightRoute
```

Building a flight route - step 2

```
WITH flightRoute (Departure, Arrival, stops, route) AS(
    SELECT f.Departure, f.Arrival, 0,
    CAST(Departure + '->' + Arrival AS VARCHAR(MAX))
        FROM flightPlan f
        WHERE Departure = 'Vienna'

UNION ALL
    SELECT p.Departure, f.Arrival, p.stops + 1,
    p.totalCost + f.Cost,
    CAST(p.route + '->' + f.Arrival AS VARCHAR(MAX))
        FROM flightPlan f, flightRoute p

    WHERE p.Arrival = f.Departure AND p.stops < 5
)</pre>
```

- Introduce route in the anchor member
- Track route s in recursive member
- Limit the number of stops

Building a flight route - result

```
SELECT Departure, Arrival, Route
FROM flightRoute
```

```
Departure | Arrival | route
London | New York | London -> Vienna -> Chicago -> New York
Vienna | Chicago | Vienna -> London -> Chicago
Paris | Los Angeles | Paris -> Toronto -> Los Angeles
Chicago | New York | Chicago -> New York
Rome | New York | Rome -> London -> Chicago -> New York
```


Querying for possible flight with limits

```
WITH flightRoute (Departure, Arrival, stops, totalCost, route) AS(
    SELECT f.Departure, f.Arrival, 0, Cost,
    CAST(Departure + '->' + Arrival AS NVARCHAR(MAX))
    FROM flightPlan f
    WHERE Departure = 'New York'
UNION ALL
SELECT p.Departure, f.Arrival, p.stops+1,
    p.totalCost + f.Cost, p.route + '->' + f.Arrival
    FROM flightPlan f, flightRoute p
    WHERE p.Arrival = f.Departure AND p.stops < '...'
)</pre>
```

```
SELECT '...'
FROM flightRoute
WHERE '...';
```

Find all possible destination airports where:

- The departure airport is fixed
 - New York
- The number of stops is limited to n
- The output is limited by a condition
 - cost limit
 - cheapest route to some destination

Let's find possible flight routes!

HIERARCHICAL AND RECURSIVE QUERIES IN SQL SERVER

How to assemble a car?

HIERARCHICAL AND RECURSIVE QUERIES IN SQL SERVER

Dominik Egarter
Data Engineering Enthusiast

Disassemble a car

List of parts of a car

Different levels of components:

- Level 1: SUV, Cabrio
- Level 2: Body, Engine, Interior Decoration, Wheel
- Level 3: Door, Hood, Engine Body, Cylinder, Seats

Create the data model

Elements to create hierarchy:

• PartID & SubPartID

Elements to describe **characteristics**:

- Component : Engine
- Title : V6BiTurbo
- Vendor : BMW
- ProductKey : EV3891ASF
- Cost : 3000
- Quantity :_1_

BillOfMaterial

+ PartID: INT primary key

+ SubPartID: INT

+ Component: VARCHAR(255)

+ Title: VARCHAR(255)

+ Vendor: VARCHAR(255)

+ ProductKey: CHAR(32)

+ Cost: INT

+ Quantity: INT

Use the hierarchical data model

What are the levels of components that build up a car?

Use the hierarchical data model

• What is the total quantity of each component required to build the car for each component level?

```
Component
              | Quantity
SUV
Body
Wheels
```

Let's assemble a car!

HIERARCHICAL AND RECURSIVE QUERIES IN SQL SERVER

Modeling a power grid

HIERARCHICAL AND RECURSIVE QUERIES IN SQL SERVER

Dominik Egarter
Data Engineering Enthusiast

The power grid

Modeling a power grid

You need three ID values:

- ID of the power line: EquipmentID
- ID of the first connected power line: EquipmentID_From
- ID of the second connected power line: EquipmentID_To

Characteristics of power lines

Voltage Level

```
HV - high Voltage, MV - medium voltage, LV - low voltage
```

Description

```
Cable, Overhead Line, Transformer
```

- Construction Year: Year of construction
- Inspection Year: Year of the last inspection
- Condition Assessment:

```
good, bad, repair, exchange
```

Common task for grid maintenance

Find the power lines to be replaced

- Find the power lines that are connected to each other: use recursion to find the connected power lines
- Find power lines with bad, exchange or repair condition

+	-+
Line	Condition
	-
1	exchange
2	repair
3	bad

Let's find the power lines to be maintained!

HIERARCHICAL AND RECURSIVE QUERIES IN SQL SERVER

Summary of the course

HIERARCHICAL AND RECURSIVE QUERIES IN SQL SERVER

Dominik Egarter

Data Engineering Enthusiast

Chapter 1: Recursion and CTEs

What is recursion?

Recursion is the use of a procedure, subroutine, function, or algorithm that calls itself one or more times until a specified condition is met

Definition of a Common Table Expression (CTE):

Specifies a temporary named result set, known as a common table expression (CTE)

Chapter 2: Hierarchical and recursive queries

Definition of a recursive CTE:

```
WITH cte_name AS (
   -- Anchor member
   <cte_initial_query>
   UNION ALL
   -- Recursive member
   <cte_recursive_query> )
SELECT *
FROM cte_name
```

Real-world examples:

- 1. Mathematical problems
- 2. Hierarchy of an organization
- 3. Hierarchy of a family tree

Chapter 3: Creating data models on your own

Manipulating a table:

• CREATE , INSERT , ALTER , DROP

Relational data model:

• The relational database model is the most widely used database model.

Hierarchical and networked data model:

- Represented as tree structure
- Has one (hierarchy) or many (networked)
 root element

Chapter 4: Hierarchical queries of real world examples

Common tasks:

- Create a hierarchy data model
- Query the hierarchy recursively
- Get the level of a hierarchy

How to assemble a car?

Travel planning of flight data:

Modeling a power grid

Congratulations!

HIERARCHICAL AND RECURSIVE QUERIES IN SQL SERVER

