LP Optimization: Industrial Cogeneration Operation

MATH 7205-Fall 2020 Joshua Galloway

Presentation Outline

1. Introduction

Cogeneration Plant Operation Overview

2. Problem Statement

Fitting to Constrained Optimization Paradigm

3. Process Model and Constraints

- Process Model
- Process Constraints via Mass Balances and Equipment Limits
- Objective Function via Energy Balance
- Canonical Form

4. Results

- LP Optimization
- Solution Slightly Off LP Optimization Solution

5. Conclusion

```
Secretarian de la composition de la composition
```

Introduction

Cogeneration Plant:

- Also called Combined Heat and Power (CHP)
- Produce Superheated Steam of Varying Pressures to Supply Industrial and Other Processes
- Steam is Produced By Large Industrial Boilers from Combustion of Fuels
 - Biomass (Saw Dust, Bark, Corn Cobbs, Peanut Shells....)
 - Fossil Fuels (Natural Gas, Fuel Oils, Coal)
- Steam is Generated at Higher than Required Pressure and Then Stepped-Down Through A Steam Turbine Generator to Produce Electrical Power

Kendall Square Cogeneration Station

Introduction

Header System:

- Equipment
 - Distribution Headers
 - Industrial Boiler (Steam Producer)
 - Turbine Generators
 - Condenser
 - Pressure Reducing Valves
 - Steam Vent Valve
- Superheated Steam Enters Turbine and Is Run Across Fins to Rotate a Coil of Wire In a Magnetic Field Producing Current
- TG1 has 2 Sets of Fins (called generating sections)
- TG2 has 3 Sets and a Condenser

Problem Statement

Physical System Requirements and Optimization:

- Mass Balance
 - Steam Flows at All Nodes (Headers and Forks in Path) Must Sum to Zero
- Energy Balance
 - Energy (Enthalpy Flows) must Sum to Zero at all Nodes
- Process Requirements
 - Steam Users Must Receive Required Steam
 - Equipment Design Limits Must be Obeyed or the Equipment will Fail
- Optimization:
 - Choose the Best Path for Steam to Supply all Users and Obey Equipment Limits While Producing the Most Electricity Possible

Steam Pipe Failure, New York; Hydroelectric Turbine Failure, Russia

Process Model and Constraints

deg F

BTU/LB

825.0

1410.0

440.0

1237.0

300.0

1180.0

110.0

1109.0

 P_i = Steam Pressures [psig]

 T_i = Steam Temperatures [oF]

 H_i = Steam Specific Enthalpies [btullb]

 J_{ik} = Generator Section Electricity Productions [MW]

 F_{PB} , F_{HP} , F_{LP} = Power Boiler, HP Pressure Reducing Valve (PRV), & LP PRV Mass Flows [kpph]

 F_1 , F_{12} , F_{13} = TG1 Steam Mass Flows [kpph]

 $F_2, F_{22}, F_{23}, F_{24}$ = TG2 Steam Mass Flows $\left[kpph\right]$

Process Model and Constraints

Equipment Limits/Inequality Constraints

$ \begin{aligned} -F_{HP} &\leq -F_{HP,min} \\ F_{HP} &\leq F_{HP,max} \end{aligned} $	$(F_{HP} \text{ min})$ $(F_{HP} \text{ max})$
$-F_{LP} \le -F_{LP,min}$ $F_{LP} \le F_{LP,max}$	$(F_{HP} \text{ min})$ $(F_{LP} \text{ max})$
$ \begin{aligned} -F_1 &\leq -F_{1,min} \\ F_1 &\leq F_{1,max} \end{aligned} $	$(F_1 \text{ min})$ $(F_1 \text{ max})$
$ \begin{aligned} -F_{12} &\le -F_{12,min} \\ F_{12} &\le F_{12,max} \end{aligned} $	$(F_{12} \text{ min})$ $(F_{12} \text{ max})$
$ \begin{aligned} -F_{13} &\le -F_{13,min} \\ F_{13} &\le F_{13,max} \end{aligned} $	$(F_{13} \text{ min})$ $(F_{13} \text{ max})$

$$-F_{2} \leq -F_{2,min} \qquad (F_{2} \text{ min})$$

$$F_{2} \leq F_{2,max} \qquad (F_{2} \text{ max})$$

$$-F_{22} \leq -F_{22,min} \qquad (F_{22} \text{ min})$$

$$F_{22} \leq F_{22,max} \qquad (F_{22} \text{ min})$$

$$-F_{23} \leq -F_{23,min} \qquad (F_{23} \text{ min})$$

$$F_{23} \leq F_{23,max} \qquad (F_{23} \text{ max})$$

$$-F_{24} \leq -F_{24,min} \qquad (F_{24} \text{ min})$$

$$F_{24} \leq F_{24,max} \qquad (F_{24} \text{ max})$$

$$-F_{V} \leq -F_{V,min} \qquad (F_{V} \text{ min})$$

$$F_{V} \leq F_{V,max} \qquad (F_{V} \text{ max})$$

Mass Balances / Equality Constraints

$$F_{PB} - F_1 - F_2 - F_{HP} - F_{L1} = 0 (HP)$$

$$F_{12} + F_{22} + F_{HP} - F_{LP} - F_{L2} = 0 (IP)$$

$$F_{13} + F_{23} + F_{LP} - F_V - F_{L3} = 0 (LP)$$

$$F_1 - F_{12} - F_{13} = 0 (TG1)$$

$$F_2 - F_{22} - F_{23} - F_{24} = 0 (TG2)$$

Consider F_{PB} , F_{L1} , F_{L2} , F_{L3} as constants for a given operational scenario, then:

Process Model and Constraints

Energy Balance for Objective Function

TG 2

Electrical Production/Objective Function

$$J_{11} = F_1(H_1 - H_2)$$

$$J_{12} = F_{13}(H_2 - H_3)$$

$$J_{21} = F_2(H_1 - H_2)$$

$$J_{22} = (F_2 - F_{22})(H_2 - H_3)$$

$$J_{23} = F_{24}(H_3 - H_4)$$

Maximize

$$J = \begin{bmatrix} 0, & 0, & (H_1 - H_2), & 0, & (H_2 - H_3), & (H_1 - H_3), & (H_3 - H_2), & 0, & (H_3 - H_4), & 0 \end{bmatrix}$$

So the Problem Statement in Canonical Form is:

Minimize

$$-J = -\sum_{i}\sum_{k}J_{i,k}$$

Subject To

Mass Balances / Equality Constraints

Equipment Limits/Inequality Constraints

Results

LP Solution:

- J23 is Most
 Efficient so TG's
 are Loaded to
 Send Max Steam
 Through to
 Condenser
- An Overall Excess of Steam is Produced, So Vent is Open
- Low Press
 Extraction is at
 Max so F_LP PRV
 is Open

Results

Slightly Off LP Solution:

- Steam Moved From Condenser to Vent
- Slight Redirection of Extractions and PRV's
- Results in Loss of ~1 MW
- Worth ~ \$400K per year

LP Solution MegaWatts: 70.528 Off Solution MegaWatts: 69.574

Lost Revenue Per Year: \$400,558.18

Conclusion

We Saw...

1. Introduction

Cogeneration Plant Operation Overview

2. Problem Statement

• Fitting to Constrained Optimization Paradigm

3. Process Model and Constraints

 Mass and Energy Balances Used to Produce LP Canonical Form

4. Results

- LP Optimization and Comparison
- LP Solution Roughly \$400k More Production per Year

5. <u>Demo and Questions?</u>

