Devoir surveillé n°01

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

1 La fonction $g: x \mapsto x + \ln(1-x)$ est définie sur $]-\infty, 1[$. De plus

$$g(x) = -\frac{x^2}{2} + o(x^2)$$

2 Par concavité de ln,

$$\forall x \in]-\infty, 1[, g(x) = x + \ln(1-x) \le 0$$

Ainsi pour tout $n \ge 2$, $u_n = g(1/n) \le 0$.

3 D'après la question 1, $u_n = \mathcal{O}\left(\frac{1}{n^2}\right)$. Comme $\sum \frac{1}{n^2}$ est une série à termes positifs convergente, $\sum u_n$ converge.

 $\boxed{\mathbf{4}}$ f est dérivable sur [0, 1] et

$$\forall x \in [0,1], \ f'(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x} \ge 0$$

Ainsi f est croissante sur [0,1]. On précise que f(0) = 0 donc f est positive sur [0,1].

5 A l'aide de la question 1, $v_n = -g(-1/n) = O\left(\frac{1}{n^2}\right)$ donc $\sum v_n$ converge.

| 6 | On remarque que $v_1 - u_1 = -\ln 2$ et

$$\forall n \in \geq 2, \ v_n - u_n = (\ln(n) - \ln(n-1)) + (\ln(n) - \ln(n+1))$$

On en déduit que

$$\begin{split} \forall \mathbf{N} \geq 3, \ \sum_{n=1}^{\mathbf{N}} v_n - u_n &= v_1 - u_1 + \sum_{n=2}^{\mathbf{N}} (\ln(n) - \ln(n-1)) + \sum_{n=2}^{\mathbf{N}} (\ln(n) - \ln(n+1)) \\ &= -\ln 2 + \ln(\mathbf{N}) + \ln(2) - \ln(n+1) = \ln(\mathbf{N}) - \ln(\mathbf{N}+1) = -\ln\left(1 + \frac{1}{\mathbf{N}}\right) \end{split}$$

Tomme les séries $\sum v_n$ et $\sum u_n$ convergent, les suites $(\sum_{n=1}^N v_n)_{N\in\mathbb{N}^*}$ et $(\sum_{n=1}^N u_n)_{N\in\mathbb{N}^*}$ convergent également vers les sommes respectives de ces deux séries. D'après la question précédente, la différence de ces deux suites converge vers 0. On en déduit que $\sum_{n=1}^{+\infty} u_n = \sum_{n=1}^{+\infty} v_n$.

Remarque. Puisque (u_n) est négative à partir du rang 2, $(\sum_{n=1}^N v_n)_{N\in\mathbb{N}^*}$ est décroissante. De plus, $v_n=f(1/n)\geq 0$ pour tout $n\in\mathbb{N}^*$ donc $(\sum_{n=1}^N v_n)_{N\in\mathbb{N}^*}$ est décroissante. Puisque la différence de ces deux suites convergent vers 0, elles sont adjacentes.

1

8 Comme $u_n \le 0$ pour $n \ge 2$,

$$\gamma = \sum_{n=1}^{+\infty} u_n \le u_1 + u_2 < 1$$

Par concavité de ln, $v_n \ge 0$ pour tout $n \in \mathbb{N}^*$,

$$\gamma = \sum_{n=1}^{+\infty} v_n \ge v_1 = 1 - \ln 2 > 0$$

Finalement, $\gamma \in]0,1[$.

 $\boxed{9}$ On a vu que (v_n) était positive donc

$$\sum_{k=1}^{n} v_k \ge 0$$

ou encore

$$\sum_{k=1}^n \ln(k+1) - \ln(k) = \sum_{k=1}^n \ln\left(1 + \frac{1}{k}\right) \le \sum_{k=1}^n \frac{1}{k}$$

et finalement $ln(n+1) \le h_n$.

De la même manière, (u_n) est positive à partir du rang 2 donc

$$\sum_{k=2}^{n} u_k \le 0$$

ou encore

$$\sum_{k=2}^{n} \ln(k) - \ln(k-1) = -\sum_{k=2}^{n} \ln\left(1 - \frac{1}{k}\right) \le \sum_{k=2}^{n} \frac{1}{k}$$

et finalement $h_n \le 1 + \ln(n)$.

10 Remarquons que pour tout $n \ge 2$,

$$f_n - f_{n-1} = \frac{1}{n} - \ln(n) + \ln(n-1) = u_n \le 0$$

donc (f_n) est décroissante.

11 D'après la question précédente,

$$f_n - f_1 = \sum_{k=2}^n f_k - f_{k-1} = \sum_{k=2}^n u_k$$

De plus, $f_1 = u_1 = 1$ donc

$$f_n = \sum_{k=1}^n u_k \xrightarrow[n \to +\infty]{} \gamma$$

12 12.a On veut surtout voir que la fonction $x \mapsto \frac{1}{x^r}$ est décroissante sur \mathbb{R}_+^* .

12.b Comme r > 1, $\lim_{t \to +\infty} \frac{1}{t^{r-1}} = 0$ de sorte que

$$I(a) = \left[\frac{1}{1-r} \cdot \frac{1}{t^{r-1}}\right]_a^{+\infty} = \frac{1}{(r-1)a^{r-1}}$$

12.c Soit un entier $k \ge N$. Par décroissance de $t \mapsto 1/t^r$,

$$\forall t \in [k,k+1], \ \frac{1}{t^r} \le \frac{1}{k^r} \text{ et } \forall t \in [k-1,k], \ \frac{1}{n^r} \le \frac{1}{k^r}$$

puis, par croissance de l'intégrale,

$$\int_k^{k+1} \frac{\mathrm{d}t}{t^r} \le \frac{1}{k^r} \le \int_{k-1}^k \frac{\mathrm{d}t}{t^r}$$

12.d Ainsi, pour $n \ge 2$,

$$\sum_{k=n}^{+\infty} \int_{k}^{k+1} \frac{\mathrm{d}t}{t^r} \leq \sum_{k=n}^{+\infty} \frac{1}{k^r} \leq \sum_{k=n}^{N} \int_{k-1}^{k} \frac{\mathrm{d}t}{t^r}$$

ou encore

$$I(n) \le \sum_{k=n}^{+\infty} \frac{1}{k^r} \le I(n-1)$$

Comme $I(n-1) = \frac{1}{(r-1)(n-1)^{r-1}} \underset{n \to +\infty}{\sim} \frac{1}{(r-1)n^{r-1}} = I(n),$

$$\sum_{k=n}^{+\infty} \frac{1}{k^r} \underset{n \to +\infty}{\sim} \frac{1}{(r-1)n^{r-1}}$$

12.e On sait que

$$w_{n+1} - w_n \sim_{n \to +\infty} \frac{\ell}{n^r}$$

Comme $\sum \frac{1}{n^r}$ est une série à termes positifs convergente convergente,

$$-w_n = \sum_{k=n}^{+\infty} w_{k+1} - w_k \underset{n \to +\infty}{\sim} \ell \sum_{k=n}^{+\infty} \frac{1}{n^r} \underset{n \to +\infty}{\sim} \frac{\ell}{(r-1)n^{r-1}}$$

On en déduit que $w_n \sim -\frac{\ell}{(r-1)n^{r-1}}$ i.e.

$$\lim_{n\to +\infty} n^{r-1}w_n = -\frac{\ell}{r-1}$$

13 On pose $w_n = \gamma - f_n$. D'après la question 11, (w_n) converge vers 0. De plus, $w_{n+1} - f_n = -u_{n+1} \underset{n \to +\infty}{\sim} \frac{1}{2n^2}$. D'apprès la question précédente avec r = 2 et $\ell = \frac{1}{2}$, $w_n \underset{n \to +\infty}{\sim} -\frac{1}{2n}$. Ceci peut s'écrire

$$\gamma - h_n + \ln(n) = \frac{1}{n \to +\infty} - \frac{1}{2n} + o\left(\frac{1}{n}\right)$$

ou encore

$$h_n = _{n \to +\infty} \ln(n) + \gamma + \frac{1}{2n} + o\left(\frac{1}{n}\right)$$

© Laurent Garcin MP Dumont d'Urville

Solution 1

1. En convenant que $A_{n_0-1} = 0$:

$$\begin{split} \sum_{k=n_0}^n a_k \mathbf{B}_k &= \sum_{k=n_0}^n (\mathbf{A}_k - \mathbf{A}_{k-1}) \mathbf{B}_k \\ &= \sum_{k=n_0}^n \mathbf{A}_k \mathbf{B}_k - \sum_{k=n_0}^n \mathbf{A}_{k-1} \mathbf{B}_k \\ &= \sum_{k=n_0}^n \mathbf{A}_k \mathbf{B}_k - \sum_{k=n_0-1}^{n-1} \mathbf{A}_k \mathbf{B}_{k+1} \\ &= \mathbf{A}_n \mathbf{B}_n + \sum_{k=n_0}^{n-1} \mathbf{A}_k (\mathbf{B}_k - \mathbf{B}_{k+1}) \\ &= \mathbf{A}_n \mathbf{B}_n - \sum_{k=n_0}^{n-1} \mathbf{A}_k b_k \end{split}$$

- 2. a. La série $\sum b_n$, autrement dit la série $\sum B_{n+1} B_n$, est une série télescopique. Elle est donc de même nature que la suite (B_n) , c'est-à-dire convergente.
 - b. Tout d'abord, (A_n) est bornée donc $A_nB_n = \mathcal{O}(B_n)$. Puisque (B_n) converge vers 0, il en est de même de la suite (A_nB_n) . Ensuite, la suite (B_n) étant décroissante, la série $\sum b_n$ est une série à termes de signe constant. Or $A_nb_n = \mathcal{O}(b_n)$ et la série $\sum b_n$ converge donc la série $\sum A_nb_n$ converge. On en déduit que la suite de ses sommes partielles converge. La suite de terme général $\sum_{k=n_0}^{n-1} A_kb_k$ converge donc.

D'après la question 1, la suite de terme général $\sum_{k=n_0}^n a_k B_k$ converge donc en tant que somme de deux suites convergentes. Puisque $\sum_{k=n_0}^n a_k B_k$ est la somme de partielle de rang n de la série $\sum a_n B_n$, la série $\sum a_n B_n$ converge également.

- c. Posons $a_n = (-1)^n$ pour $n \ge n_0$. Alors A_n vaut 0, -1 ou 1 suivant la parité de n ou n_0 . En particulier, la suite (A_n) est bornée et on peut donc appliquer le résultat de la question précédente. La série $\sum (-1)^n B_n$ converge donc.
- 3. a. Il s'agit de la somme des termes d'une suite géométrique.

$$\sum_{k=1}^{n} e^{ki\theta} = e^{i\theta} \frac{e^{in\theta} - 1}{e^{i\theta} - 1} = e^{\frac{i(n+1)\theta}{2}} \frac{\sin\frac{n\theta}{2}}{\sin\frac{\theta}{2}}$$

b. Cas $\alpha \le 0$. La suite de terme général $\frac{e^{ni\theta}}{n^{\alpha}}$ ne tend pas vers 0. En effet, $\left|\frac{e^{ni\theta}}{n^{\alpha}}\right| = n^{-\alpha} \ge 1$ pour tout $n \in \mathbb{N}^*$. Cas $\alpha > 1$. La série $\sum \frac{e^{ni\theta}}{n^{\alpha}}$ converge absolument. En effet, pour tout $n \in \mathbb{N}^*$, $\left|\frac{e^{ni\theta}}{n^{\alpha}}\right| = \frac{1}{n^{\alpha}}$ et la série de Riemann $\sum \frac{1}{n^{\alpha}}$ converge puisque $\alpha > 1$.

Cas $0 < \alpha \le 1$. On utilise les résultats précédents avec $n_0 = 1$, $a_n = e^{in\theta}$ et $B_n = \frac{1}{n}$. D'après la question 3.a, pour tout $n \in \mathbb{N}^*$,

$$|A_n| = \left| e^{\frac{i(n+1)\theta}{2}} \frac{\sin \frac{n\theta}{2}}{\sin \frac{\theta}{2}} \right| \le \frac{1}{\left| \sin \frac{\theta}{2} \right|}$$

La suite (A_n) est donc bornée. La suite (B_n) est clairement décroissante de limite nulle. La question **2.b** permet alors d'affirmer que la série $\sum a_n B_n$ i.e. la série $\sum \frac{e^{in\theta}}{n^{\alpha}}$, converge. Cette série ne converge pas absolument puisque $\left|\frac{e^{in\theta}}{n^{\alpha}}\right| = \frac{1}{n^{\alpha}}$ et que la série $\sum \frac{1}{n^{\alpha}}$ ne converge pas $(\alpha \le 1)$.

© Laurent Garcin MP Dumont d'Urville

4. Rappelons que pour tout $n \ge n_0$

$$\sum_{k=n_0}^{n} a_k B_k = A_n B_n - \sum_{k=n_0}^{n-1} A_k b_k$$

La suite (B_n) converge vers 0 et (A_n) est bornée donc $\lim_{n \to +\infty} A_n B_n = 0$. Puisque (A_n) est bornée, $A_n b_n = \mathcal{O}(|b_n|)$. Or la série $\sum |b_n|$ converge car $\sum_{n \geq n_0} b_n$ est absolument convergente. De plus, la série $\sum |b_n|$ est à termes positifs donc la série $\sum A_n b_n$ converge (absolument). Ainsi la suite de terme général $\sum_{k=n_0}^{n-1} A_k b_k$ converge.

Il s'ensuit que la suite de terme général $\sum_{k=n_0}^n a_k \mathbf{B}_k$ converge également i.e. que la série $\sum_{n\geq n_0} a_n \mathbf{B}_n$ converge.

Solution 2

1. Les sempiternelles intégrales de Wallis...

Soit $n \in \mathbb{N}^*$. Les fonctions sin et \cos^{2n-1} sont de classe \mathcal{C}^1 sur $[0, \pi/2]$ de dérivées respectives cos et $-(2n-1)\sin\cos^{2n-2}$ donc, par intégration par parties,

$$C_n = \int_0^{\frac{\pi}{2}} \cos(x) \cos^{2n-1}(x) dx$$

$$= \left[\sin(x) \cos^{2n-1}(x) \right]_0^{\frac{\pi}{2}} + (2n-1) \int_0^{\frac{\pi}{2}} \sin^2(x) \cos^{2n-2}(x) dx$$

$$= \int_0^{\frac{\pi}{2}} (1 - \cos^2(x)) \cos^{2n-2}(x) dx$$

$$= (2n-1)(C_{n-1} - C_n)$$

2.

$$\int_0^{\frac{\pi}{2}} \sin^2(x) \cos^{2n-2}(x) dx = \int_0^{\frac{\pi}{2}} (1 - \cos^2(x)) \cos^{2n-2}(x) dx = C_{n-1} - C_n = \frac{C_n}{2n-1}$$

d'après la question précédente. Mais, toujours d'après la question précédente, $2nC_n = (2n-1)C_{n-1}$ puis $\frac{C_n}{2n-1} = \frac{C_{n-1}}{2n}$.

3. C'est reparti pour une intégration par parties :

$$C_n = \int_0^{\frac{\pi}{2}} 1 \cdot \cos^{2n}(x) dx$$

$$= \left[x \cos^{2n}(x) \right]_0^{\frac{\pi}{2}} + 2n \int_0^{\frac{\pi}{2}} x \sin(x) \cos^{2n-1}(x) dx$$

$$= n \int_0^{\frac{\pi}{2}} 2x \sin(x) \cos^{2n-1}(x) dx$$

Devinez quoi ? Une intégration par parties !

$$\int_0^{\frac{\pi}{2}} 2x \sin(x) \cos^{2n-1}(x) dx = \left[x^2 \sin(x) \cos^{2n-1}(x) \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} x^2 \left(\cos^{2n}(x) - (2n-1) \sin^2(x) \cos^{2n-2}(x) \right) dx$$

$$= -\int_0^{\frac{\pi}{2}} x^2 \left(\cos^{2n}(x) - (2n-1)(1 - \cos^2(x)) \cos^{2n-2}(x) \right) dx$$

$$= (2n-1) D_{n-1} - 2n D_n$$

Ainsi $C_n = n(2n-1)D_{n-1} - 2n^2D_n$.

4. On divise l'égalité précédente par n^2C_n pour obtenir

$$\frac{1}{n^2} = \frac{2n-1}{n} \cdot \frac{D_{n-1}}{C_n} - \frac{2D_n}{C_n}$$

Mais d'après la pénultième question $\frac{C_n}{2n-1} = \frac{C_{n-1}}{2n}$ donc

$$\frac{1}{n^2} = 2\left(\frac{\mathbf{D}_{n-1}}{\mathbf{C}_{n-1}} - \frac{\mathbf{D}_n}{\mathbf{C}_n}\right)$$

5. **a.** Comme $\sin'' = -\sin$ est négative sur $[0, \pi/2]$, sin est concave sur cet intervalle. Notamment, le graphe de f est situé au-dessus de sa corde reliant les points d'abscisses 0 et $\frac{\pi}{2}$. Ceci signifie que $\sin x \ge \frac{2}{\pi}x$ pour tout $x \in [0, \pi/2]$.

b. On a donc $x^2 \le \frac{\pi^2}{4} \sin^2(x)$ pour tout $x \in [0, \pi/2]$. Par croissance de l'intégrale, on en déduit que

$$D_n = \int_0^{\frac{\pi}{2}} x^2 \cos^{2n}(x) \, dx \le \frac{\pi^2}{4} \int_0^{\frac{\pi}{2}} \sin^2(x) \cos^{2n}(x) \, dx$$

Mais, d'après la question 2,

$$\int_0^{\frac{\pi}{2}} \sin^2(x) \cos^{2n}(x) dx = \frac{C_n}{2n+2}$$

de sorte que $D_n \le \frac{\pi^2}{4} \cdot \frac{C_n}{2n+2}$.

6. La série $\sum \frac{1}{n^2}$ converge donc, d'après la question **4**, la série télescopique $\sum \frac{D_{n-1}}{C_{n-1}} - \frac{D_n}{C_n}$ converge et on peut affirmer que

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = 2 \sum_{n=1}^{+\infty} \frac{D_{n-1}}{C_{n-1}} - \frac{D_n}{C_n} = 2 \left(\frac{D_0}{C_0} - \lim_{n \to +\infty} \frac{D_n}{C_n} \right)$$

On calcule aisément, $C_0 = \frac{\pi}{2}$ et $D_0 = \frac{\pi^3}{24}$. La question précédente montre que

$$0 \le \frac{\mathbf{D}_n}{\mathbf{C}_n} \le \frac{\pi^2}{8(n+1)}$$

 $(C_n \text{ et } D_n \text{ sont manifestement positives})$, ce qui permet d'affirmer grâce au théorème des gendarmes que $\lim_{n \to +\infty} \frac{D_n}{C_n} = 0$. On en déduit bien que

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = 2 \cdot \frac{\pi^3/24}{\pi/2} = \frac{\pi^2}{6}$$