Homework

Yu Zhao

February 21, 2016

- First, we prove that there exist $a_0 < a \le b < b_0$, s.t. $y \in (a_0, b_0)$ regular for f. If not, we assume $\{x_i\}$ are a sequence of critical values of f with $f(x_i) \to a_0$. Notice f is proper then $f^{-1}[a_0 \epsilon, a_0]$ is bounded for $\epsilon > 0$. Hence x_i are bounded. So we can find a cauchy sequence of $\{x_i\}$, denoted by $\{y_i\}$, which converges to y, the $f(y) = a_0$, which contradicts to the fact that the regular values form an open set.
- Second, we prove that there exists a vector field Y in Rⁿ, s.t ∃a₁, b₁, s.t. a₀ < a₁ < a ≤ b < b₁ < b₀ and ∀x ∈ f⁻¹[a₁, b₁], we have Tf|_x(Y) = ∂/∂t.
 To prove this, for any x ∈ f⁻¹(a₀, b₀), we can find a neighboorhood U_x of x with another local coordinate s.t. f|U_x(x₁, x₂,...,x_n) = x₁. then let Y_x = ∂/∂x_i. Then let φ_x a partition of unity of Y_x on f⁻¹(a₀, b_o). Then we have Y₁ = ∑_x φ_xY_x and Tf|_x(Y₁) = ∂/∂t for ∀x ∈ f⁻¹(a₀, b₀). Extend Y₁|f⁻¹[a₁, b₁] to a global vector field Y on Rⁿ, then Y satisfy the following condition.
- Let $\epsilon = min\{a a_0, b_0 b\}$, then for $\forall 0 < \delta < \epsilon$, $X_{\delta}f^{-1}(a) = f^{-1}(a + \delta)$ for all $a \in [a, b]$. And notice X_t is an isomorphism for all t. Let d = (b a)/n for a sufficient large integer n. Then $f^{-1}(b) = X_d^n(f^{-1}(a))$ and hence the conclusion is proved.