Diszkrét Matematika 1. Írásbeli vizsga, 2015. január 5. (90 perc)

NÉV: NEPTUN kód: (Leendő) szakirány:	
1. Alapvető fontosságú fogalmak	
A következő hat kérdésre 1-1 pont kapható. Ebből legalább 4 pontot kell szerezni.	
 Definiálja a komplex abszolút érték fogalmát. Írjon fel 5 olyan komplex számot algebrai alakban, melyek abszolút értéke 5. 	
2. Definiálja binér reláció értelmezési tartományát (domain). Mi az alábbi reláció értelmezési tartománya: $R=\{(x,y)\mid x,y\in\mathbb{N}, x>y\}?$	
3. Húzza alá az asszociatívakat a következő (binér) műveletek közül (az alaphalmaz ay egész számok halmaza): $(a,b)\mapsto a+b;\ (a,b)\mapsto a-b;\ (a,b)\mapsto ab;\ (a,b)\mapsto \max(a,b).$ (Itt $\max(a,b)$ az a és b számok maximumát jelöli.)	
4. Hány 3 elemű részhalmaza van egy k elemű halmaznak?	
5. Legalább hány számot kell kiválasztani a 10-nél kisebb természetes számok közül, hogy biztosan legyen köztük olyan, amely osztója a 18-nak?	
6. Definiálja a legnagyobb (kitüntetett) közös osztó fogalmát a természetes számok körében.	

2. Definíciók, tételkimondások

A következő nyolc kérdésre 1-1 pont kapható.

1. Definiálja a komplex egységgyök fogalmát, és sorolja fel a negyedik egységgyököket.

2. Mikor nevezünk tranzitívnak egy relációt?

3. Definiálja részbenrendezésnél a minimális, illetve legkisebb elem fogalmát.

4. Adjon meg egy olyan $f \colon \mathbb{N} \to \mathbb{N}$ függvényt, mely nem injektív, de szürjektív.

5.	Írja fel a szita formulát.
6.	Mondja ki az ismétléses variációk számára vonatkozó tételt.
7	Dofiniálio a manadálrogatály ág a nadulrált manadálrogatály fogolmát
1.	Definiálja a maradékosztály és a redukált maradékosztály fogalmát.
8.	Mondja ki Eukleidész tételét.

3. Bizonyítások

A következő három bizonyításra 3-3 pont kapható. Ebből legalább 3 pontot el kell érni (tételkimondásért nem jár pont). Az összpontszám alapján a ponthatárok: 10-től 2-es, 14-től 3-as, 18-tól szóbelizhet a 4-es, illetve 5-ös osztályzatért.

- 1. Mondja ki és bizonyítsa a relációkompozíció asszociativitására vonatkozó tételt.
- 2. Mondja ki és igazolja az ismétléses kombinációk számára vonatkozó tételt.
- 3. Mondja ki és igazolja az Euler–Fermat-tételt.

4. Szóbeli kiváltását lehetővé tevő opcionális tétel

Ez a feladat maximálisan 5 pontot ér. Ha ebből legalább 3 pont megvan, és az összpontszám eléri a 20, illetve 24 pontot, akkor 4-es, illetve 5-ös érdemjegyet ajánlunk.

- 1. Vezessünk be két új fogalmat: a természetes számok halmazán értelmezett háromváltozós (vagy ternér) műveleten egy $f: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ függvényt értünk. Hívjuk f-et triszociatívnak, ha minden a,b,c,d,e természetes szám esetén f(f(a,b,c),d,e) = f(a,b,f(c,d,e)). Igazoljuk, hogy az $f:(a,b,c) \mapsto a+b+c$ ternér művelet triszociatív.
- 2. Triszociatív-e $f:(a,b,c)\mapsto a+b-c$?
- 3. Triszociatív-e $f:(a,b,c)\mapsto a-b+c$?
- 4. Triszociatív-e $f:(a,b,c)\mapsto a^{(b^c)}$?
- 5. Igaz-e, hogy ha \circ egy binér asszociatív művelet, és az $f:(a,b,c)\mapsto a\circ b\circ c$ ternér művelet triszociatív, akkor \circ kommutatív?