Implementation of primality test in polynomial time

(Implementation of primality test in polynomial time)(Implementacja algorytmu, sprawdzającego pierwszość liczby w czasie wielomianowym)

Martyna Siejba

Praca licencjacka

Promotor: prof. Krzysztof Loryś

Uniwersytet Wrocławski Wydział Matematyki i Informatyki Instytut Informatyki

18 stycznia 2019

Streszczenie

Spis treści

Rozdział 1.

Wstęp

- 1.1. Przesłanki
- 1.2. Uwagi odnośnie notacji

Rozdział 2.

Podstawy algebraiczne

Aby udowodnić poprawność algorytmu AKS potrzebne nam będą podstawowe pojęcia oraz twierdzenia algebry abstrakcyjnej, w szczególności własności pierścieni ilorazowych oraz wielomianów cyklotomicznych i pierwiastków z jedności nad ciałem. Poniższy rozdział poświęcony jest więc wprowadzeniu tych pojęć oraz udowodnieniu twierdzeń przydatnych później w dowodzie poprawności algorytmu AKS.

2.1. Pierścień, ciało, pierścień ilorazowy

Zdefiniujmy najpierw podstawowe struktury algebraiczne, których własności będziemy często wykorzystywać w dowodach lematów i twierdzeń, prowadzących do udowodnienia poprawności algorytmu.

Definicja 1. Zbiór R zamknięty na dwie operacje binarne \oplus oraz \odot nazywamy *pierścieniem*, jeśli

- \oplus jest przemienna $(\forall_{a,b\in R} \ a \oplus b = b \oplus a)$ oraz łączna $(\forall_{a,b,c\in R} \ (a \oplus b) \oplus c = a \oplus (b \oplus c));$
- zawiera element zerowy $(\exists_{0 \in R} \forall_{a \in R} a \oplus 0 = 0 \oplus a = 0);$
- dla każdego elementu zawiera element odwrotny $(\forall_{a \in R} \exists_{(-a) \in R} a \oplus (-a) = 0);$
- \odot jest łączna $(\forall_{a,b,c\in R} (a\odot b)\odot c=a\odot (b\odot c));$
- \oplus jest rozdzielna względem \odot $(\forall_{a,b,c\in R} \ a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c) \wedge (a \oplus b) \odot c = (a \odot c) \oplus (b \odot c)$.

Obserwacja 1. Każdy pierścień jest grupą.

Uwaga. W przypadku, gdy oczywistym jest, jaka operacja mnożenia jest rozważana, wyrażenie ab będzie skróconym zapisem operacji mnożenia argumentów a, b.

Definicja 2. Pierścień $\langle R, \oplus, \odot \rangle$ nazywamy **przemiennym** jeśli $\forall_{a,b \in R} ab = ba$.

Możemy teraz zauważyć, że pierścieniem jest na przykład zbiór liczb całkowitych z mnożeniem i dodawaniem lub zbiór wielomianów o współczynnikach całkowitych z dodawaniem i mnożeniem wielomianów.

Definicja 3. Pierścień $\langle F, \oplus, \odot \rangle$ nazywamy *ciałem*, jeśli

- istnieje element neutralny mnożenia $(\exists_{1 \in F} \forall_{a \in F} a 1 = 1a = a)$ oraz
- $\langle F \setminus \{0\}, \odot, 1 \rangle$ jest grupą abelową.

Innymi słowy jest to pierścień z elementem neutralnym mnożenia, w którym dla każdego niezerowego elementu istnieje element odwrotny. Przykładem ciał są zbiory reszt z dzielenia przez liczbę pierwszą z operacjami dodawania i mnożenia modulo. Jeśli rozważymy natomiast wcześniej przywołane przykłady pierścieni, możemy zauważyć, że zarówno zbiór liczb całkowitych jak i zbiór wielomianów o całkowitych współczynnikach nie jest ciałem. W obu przykładach zbiory te nie spełniają warunku na istnienie elementów odwrotnych.

Definicja 4. Charakterystyką ciała F będziemy nazywać najmniejszą taką liczbę naturalną char(F) = n, że suma n jedynek równa się zeru w F.

Definicja 5. Niepusty zbiór $I \subseteq R$ nazywamy ideałem pierścienia $\langle R, \oplus, \odot \rangle$, jeśli

- $\langle I, \oplus \rangle$ jest podgrupą $\langle R, \oplus \rangle$ oraz
- $\forall_{i \in I, r \in R} ir \in I \land ri \in I$.

Możemy zauważyć, że ideał w teorii pierścieni odpowiada podgrupie normalnej w teorii grup. Co więcej, analogia ta aplikuje się także do konstrukcji pierścienia ilorazowego. Ideał pełni bowiem w konstrukcji pierścienia ilorazowego taką rolę, jaką w konstrukcji grupy ilorazowej pełni podgrupą normalna.

Twierdzenie 1. Jeśli $\langle R, \oplus, \odot \rangle$ jest pierścieniem przemiennym oraz $1 \in R$, to dla $a \in R$ zbiór $\langle a \rangle = \{ar \mid r \in R\}$ jest jego ideałem. Taki ideal nazywamy **ideałem** głównym generowanym przez element a.

Dowód. Aby pokazać, że $I=\langle a\rangle\ (a\in R)$ jest ideałem $\langle R,\oplus,\odot\rangle$, należy pokazać, że $(1)\ \langle I,\oplus\rangle$ jest podgrupą $\langle R,\oplus\rangle$ oraz $(2)\ \forall_{i\in I,r\in R}\ i\odot r\in I\wedge r\odot i\in I.$

Aby udowodnić (1), wystarczy pokazać, że (1.1) istnieje element neutralny $e \in I$, (1.2) I jest zamknięte na \oplus oraz (1.3) dla każdego elementu istnieje w I element odwrotny.

(1.1) Wiemy, $\dot{z}e\ 0 \in R$, wiec $a0 = 0 \in I$.

- (1.2) Weźmy dowolne $i_1, i_2 \in I$. Istnieją takie $r_1, r_2 \in R$, że $i_1 = ar_1$ oraz $i_2 = ar_2$. Stąd $i_1 \oplus i_2 = (ar_1) \oplus (ar_2)$. Z własności pierścienia $\langle R, \oplus, \odot \rangle$ mamy $(ar_1) \oplus (ar_2) = a(r_1 \oplus r_2)$, więc $i_1 \oplus i_2 \in I$, czyli I jest zamknięty na \oplus .
- (1.3) Weźmy dowolne $i = ar \in I, r \in R$. Istnieje $-r \in R$, więc $a(-r) \in I$. Wiemy, że $i \oplus a(-r) = ar \oplus a(-r) = a(r \oplus -r) = a0 = 0$, więc $a(-r) \in I$ jest elementem odwrotnym i.
- (2) Weźmy dowolne $i = ar_1 \in I$, $r \in R$. $ir = ar_1r = a(r_1r)$, więc $ir \in I$. Z przemienności pierścienia $\langle R, \oplus, \odot \rangle$ mamy ri = ir, więc $ri \in I$.

Definicja 6. Ideał M w pierścieniu R nazywamy *ideałem maksymalnym*, jeśli dla każdego ideału I nad R zachodzi $M \subseteq I \Rightarrow I = R$.

Przypomnienie. Podgrupę $\langle N, \circ \rangle$ grupy $\langle G, \circ \rangle$ nazywamy **podgrupą normalną**, jeśli $\forall_{g \in G} gN = Ng$, gdzie $gN = \{gn \mid n \in N\}$ oraz $Ng = \{ng \mid n \in N\}$.

Możemy też uzasadnić analogię między ideałem a podgrupą formalną w sposób formalny.

Lemat 1. *Ideal I pierścienia* $\langle R, \oplus, \odot \rangle$ *jest podgrupą normalną grupy* $\langle R, \oplus \rangle$.

Dowód. Z definicji ideału wiemy, że $\langle I, \oplus \rangle$ jest podgrupą $\langle R, \oplus \rangle$. Należy pokazać, że dla dowolnego $r \in R$ zachodzi $r \oplus I = I \oplus r$. Wiemy, że \oplus jest przemienna, więc mamy $\{r \oplus i \mid i \in I, r \in R\} = \{i \oplus r \mid i \in I, r \in R\}$, czyli $r \oplus I = I \oplus r$. □

Kolejnym krokiem, prowadzącym do zdefiniowania pojęcia pierścienia ilorazowego jest zdefiniowanie pojęcia analogicznego w teorii grup - grupy ilorazowej.

Twierdzenie 2. Jeśli $\langle G, \circ \rangle$ jest grupą, a $\langle N, \circ \rangle$ jej podgrupą normalną, to zbiór warstw grupy G względem N z działaniem \otimes zdefiniowanym jako (aN)(bN) = abN tworzy grupę G/N nazywaną **grupą ilorazową**.

Dowód. Należy udowodnić, że

- (1) działanie jest dobrze zdefiniowane, czyli $\forall_{a,b,c,d \in G/N} a = b \land c = d \Rightarrow ac = bd;$
- (2) G/N z wyżej zdefiniowanym działaniem jest grupą.
- (1) Weźmy $aN = bN \in G/N$ oraz $cN = dN \in G/N$. Chcemy pokazać, że (aN)(cN) = (bN)(dN). Wiemy, że, skoro $\langle N, \circ \rangle$ jest grupą, istnieje element neutralny $e \in N$. Stąd wiemy, że $a = ae \in aN$ oraz $b = be \in bN$. Z aN = bN mamy $b \in aN$. Istnieje więc $n_1 \in N$ takie, że $an_1 = b$. Analogicznie, istnieje $n_2 \in N$ takie, że $cn_2 = d$.

Można zauważyć, że dla dowolnego $n \in N$ nN = N. Własność ta wynika bezpośrednio z faktu, że N jest zamknięty na \circ .

Korzystając z powyższej obserwacji oraz faktu, że N jest podgrupą normalną mamy $(bN)(dN) = bdN = an_1cn_2N = an_1cN = an_1Nc = aNc = acN$.

- (2) Aby pokazać, że G/N jest grupą należy pokazać (2.1) zamkniętość na \otimes , (2.2) łączność \otimes , (2.3) istnienie elementu neutralnego oraz (2.4) istnienie elementów odwrotnych.
- (2.1) G/N jest zamknięty na \otimes . Weźmy dowolne aN, $bN \in G/N$. Mamy (aN)(bN) = abN. $ab \in G$, więc $abN \in G/N$.
- $(2.2) \otimes$ jest łączne. Weźmy dowolne aN, bN, $cN \in G/N$. Korzystając z łączności \odot i faktu, że N jest normalna (cN = Nc), mamy

$$aN((bN)(cN)) = aN(bcN) = a(bc)N = (ab)cN$$
(2.1)

$$= (ab)Nc = (abN)cN = ((aN)(bN))cN.$$
 (2.2)

- (2.3) Istnieje w G/N element neutralny. Weźmy eN, gdzie e jest elementem neutralnym w G. Dla dowolnego $aN \in G/N$ mamy (aN)(eN) = aeN = aN.
- (2.4) Dla każdego elementu istnieje element odwrotny. Weźmy dowolne $aN \in G/N$. Niech -a będzie elementem odwrotnym a. Wiemy, że $-a \in G$. Mamy

$$(aN)(-aN) = a(-a)N = eN,$$

czyli element odwrotny w G/N.

Znając już definicję grupy ilorazowej, możemy ją wykorzystać do zdefiniowania pierścienia ilorazowego. Jest on analogicznie zbiorem warstw względem ideału z odpowiednio zdefiniowanymi działaniami.

Twierdzenie 3. Niech I będzie idealem pierścienia przemiennego $\langle R, \oplus, \odot \rangle$. Jeśli zdefiniujemy operacje + $i \times jako$:

- $(r \oplus I) \times (s \oplus I) = r \odot s \oplus I \text{ oraz}$
- $(r \oplus I) + (s \oplus I) = r \oplus s \oplus I$,

to $\langle R/I, +, \times \rangle$ jest pierścieniem przemiennym, nazywanym **pierścieniem ilorazo**wym.

Dowód. (1) $\langle I, \oplus \rangle$ jest podgrupą normalną $\langle R, \oplus \rangle$, więc z twierdzenia ?? $\langle R/I, + \rangle$ z jest grupą ilorazową.

Należy więc pokazać, że:

- (2) × jest dobrze zdefiniowana, tzn. dla $a,b,c,d \in R/I$ jeśli a=b oraz c=d, to $a \times c = b \times d$;
- (3) $\langle R/I, +, \times \rangle$ jest pierścieniem przemiennym.
- (2) Weźmy dowolne $a,b,c,d\in R$ takie, że $a\oplus I=b\oplus I$ oraz $c\oplus I=d\oplus I$. Wiemy, że $\langle I,\oplus\rangle$ jest grupą, więc zawiera element neutralny e. Stąd $a\oplus e=a\in a\oplus I=b\oplus I$.

Istnieje więc $i_1 \in I$ taki, że $a = b \oplus i_1$. Analogicznie istnieje $i_2 \in I$ takie, że $c = d \oplus i_2$. $\langle I, \oplus \rangle$ jest grupą, więc dla dowolnego $i \in I$ $i \oplus I = I$.

Mamy więc $(a \oplus I) \times (c \oplus I) = a \odot c \oplus I = (b \oplus i_1) \odot (d \oplus i_2) \oplus I$. Jako że $b, d, i_1, i_2 \in R$ oraz $\langle R, \oplus, \odot \rangle$ jest pierścieniem mamy $(b \oplus i_1) \odot (d \oplus i_2) \oplus I = b \odot d \oplus b \odot i_2 \oplus i_2 \odot d \oplus i_1 \odot i_2 \oplus I$. I jest ideałem, więc $b \odot i_2, i_1 \odot d, i_1 \odot i_2 \in I$. Stąd $b \odot d \oplus b \odot i_2 \oplus i_2 \odot d \oplus i_1 \odot i_2 \oplus I = b \odot d \oplus I = (b \oplus I) \times (d \oplus I)$.

- (3) Wystarczy pokazać, że:
- (3.1) + jest przemienna. Weźmy dowolne $a \oplus I, b \oplus I \in R/I$. Z przemienności \oplus w pierścieniu $\langle R, \oplus, \odot \rangle$ mamy $(a \oplus I) + (b \oplus I) = a \oplus b \oplus I = b \oplus a \oplus I = (a \oplus I) + (b \oplus I)$.
- $(3.2) + \text{jest lączna. Weźmy dowolne } a \oplus I, b \oplus I, c \oplus I \in R/I. \text{ Z lączności} \oplus \text{ w } \langle R, \oplus, \odot \rangle \\ \text{mamy } ((a \oplus I) + (b \oplus I)) + (c \oplus I) = (a \oplus b \oplus I) + (c \oplus I) = (a \oplus b) \oplus c \oplus I = a \oplus (b \oplus c) \oplus I = (a \oplus I) + (b \oplus c \oplus I) = (a \oplus I) + (b \oplus I) + (c \oplus I).$
- (3.3) Istnieje element zerowy. Niech $e=e'\oplus I$, gdzie e' jest elementem zerowym pierścienia $\langle R, \oplus \rangle$. Weźmy dowolne $a \oplus I \in R/I$. Wtedy $(a \oplus I) + e = a \oplus e' \oplus I = e' \oplus I = e + (a \oplus I)$.
- (3.4) Dla każdego elementu istnieje element odwrotny. Weźmy dowolne $a \oplus I \in R/I$. Istnieje $-a \in R$, będące elementem odwrotnym a. $(a \oplus I) + (-a \oplus I) = a \oplus -a \oplus I = e' \oplus I = e = -a \oplus a \oplus I = (-a \oplus I) + (a \oplus I)$.
- (3.5) × jest łączna. Weźmy dowolne $a \oplus I, b \oplus I, c \oplus I \in R/I$. Z łączności \odot w pierścieniu $\langle R, \oplus, \odot \rangle$ mamy $((a \oplus I) \times (b \oplus I)) \times (c \oplus I) = (a \odot b \oplus I) \times (c \oplus I) = (a \odot b) \odot c \oplus I = a \odot (b \odot c) \oplus I = (a \oplus I) \times (b \odot c \oplus I) = (a \oplus I) \times ((b \oplus I) \times (c \oplus I))$. (3.6) + jest rozdzielna względem ×. Weźmy dowolne $a \oplus I, b \oplus I, c \oplus I \in R/I$. Z rozdzielności \oplus względem \odot w pierścieniu $\langle R, \oplus, \odot \rangle$ mamy $(a \oplus I) \times ((b \oplus I) + (c \oplus I)) = a \odot (b \oplus c) \oplus I = a \odot b \oplus a \odot c \oplus I = ((a \oplus I) \times (b \oplus I)) + ((a \oplus I) \times (c \oplus I))$
- oraz $((a \oplus I) + (b \oplus I)) \times (c \oplus I) = (a \oplus b) \odot c \oplus I = a \odot c \oplus b \odot c \oplus I = ((a \oplus I) \times (c \oplus I)) + ((b \oplus I) \times (c \oplus I)).$ (3.7) × jest przemienna. Weźmy dowolne $a \oplus I$ $b \oplus I \in R/I$. Z przemienności \odot w
- $(3.7) \times$ jest przemienna. Weźmy dowolne $a \oplus I, b \oplus I \in R/I$. Z przemienności \odot w pierścieniu $\langle R, \oplus, \odot \rangle$ mamy $(a \oplus I) \times (b \oplus I) = a \odot b \oplus I = b \odot a \oplus I = (b \oplus I) \times (a \oplus I)$. \square

Twierdzenie 4. Jeśli $\langle R, \oplus, \odot \rangle$ jest pierścieniem przemiennym z 1, a I idealem maksymalnym nad R, to R/I z działaniami zdefiniowanymi jak w powyższych twierdzeniach jest ciałem.

Dowód. Wiemy, że R/M jest pierścieniem przemiennym. Wystarczy pokazać, że (1) istnieje element neutralny mnożenia oraz (2) dla każdego niezerowego elementu istnieje element odwrotny.

- (1) Istnieje 1 w R, więc dla dowolnego $a \oplus M \in R/M$ mamy $(a \oplus M) \times (1 \oplus M) = a \odot 1 \oplus M = a \oplus M = 1 \odot a \oplus M = (1 \oplus M) \times (a \oplus M)$.
- (2) Weźmy dowolne $a \in R$ takie, że $a \oplus M$ jest niezerowe, czyli $a \notin M$. Weźmy zbiór $J = \{ra \oplus m \mid r \in R, m \in M\}$. Pokażemy, że J jest ideałem nad R. W tym celu wystarczt pokazać, że (2.1) $\langle J, \oplus \rangle$ jest podgrupą $\langle R, \oplus \rangle$ oraz (2.2) $\forall_{j \in J, r \in R} jr \in J \land rj \in J$.
- (2.1.1) $J \subseteq R$. Wiemy, że R jest zamknięty na \oplus i \odot , więc $\forall_{r,a',m\in R} ra' \oplus m \in R$.

- (2.1.2) J zawiera element zerowy. M jest ideałem, czyli jest grupą, więc $0 \in M$. Stąd $0a \oplus 0 = 0 \in J$.
- (2.1.3) Dla każdego elementu J istnieje element odwrotny. Weźmy dowolne $j=ra\oplus m\in J$. Wiemy, że $-r\in R$ oraz $-m\in M$. Stąd $-j=-ra\oplus -m\in J$. Wtedy $j\oplus -j=ra\oplus m\oplus -ra\oplus -m=ra\oplus -ra=0$ a = 0.
- (2.1.4) J jest zamknięte na \oplus . Wexmy dowolne $j_1 = r_1 a \oplus m_1, j_2 = r_2 a \oplus m_2 \in J$. Wtedy $j_1 \oplus j_2 = r_1 a \oplus m_1 \oplus r_2 a \oplus m_2 = (r_1 \oplus r_2) a \oplus (m_1 \oplus m_2)$. Wiemy, że $r_1 \oplus r_2 \in R$ oraz $m_1 \oplus m_2 \in M$, więc $j_1 \oplus j_2 \in J$.
- $(2.1.5) \oplus \text{jest łączne.}$ Własność wynika ta bezpośrednio z łączności \oplus w R.
- (2.2) Weźmy dowolne $ra \oplus m \in J, r' \in R$. Wtedy $jr' = (ra \oplus m) \odot r' = rar' \oplus mr'$. Z przemienności R $jr' = rr'a \oplus mr'$. $rr' \in R$ oraz, ponieważ M jest ideałem $mr' \in M$, więc $jr' \in J$. Analogicznie $r'j \in J$.

Wiemy, że J jest ideałem nad R. Możemy też pokazać, że $M \subset J$. $\forall_{m \in M} m = 0 a \oplus m \in J$ oraz skoro $1 \in R, 0 \in M$, to $a \in J$. Wiemy, że $a \notin M$, więc $M \subset J$. Mamy więc ideał J nad R, który zawiera M. Z założenia, że M jest maksymalny, mamy J = R, więc $1 \in J$, czyli $\exists_{m \in M, r \in R} r a \oplus m = 1$. Wtedy $(r \oplus M) \times (a \oplus M) = r a \oplus M = r a \oplus m \oplus M = 1 \oplus M$, czyli $(a \oplus M)^{-1} = r \oplus M$.

2.2. Pierścień wielomianów

Twierdzenie 5. $\langle \mathbb{Z}_p, +_p, \times_p \rangle$, gdzie $p \in \mathbb{N}$ i $p \geq 2$, $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$ oraz operacje są odpowiadającymi działaniami arytmetycznymi modulo p, jest ciałem, jeśli p jest pierwsze.

Dowód. (1) $\langle \mathbb{Z}_p, +_p, \times_p \rangle$ z 1 jest pierścieniem. Dowód jest trywialny i korzysta z własności działań $+_p$ i \times_p .

(2) $\langle \mathbb{Z}_p \setminus \{0\}, \times_p \rangle$ jest grupą abelową. Przemienność i łączność wynikają z własności \times_p . Elementem neutralnym jest 1. Jedyną nietrywialną własnością jest istnienie elementu przeciwnego, tzn. należy udowodnić, że $\forall_{a \in \mathbb{Z}_p \setminus \{0\}} \exists_{a^{-1} \in \mathbb{Z}_p \setminus \{0\}} a \times_p a^{-1} = 1$. Weźmy dowolne $a \in \mathbb{Z}_p \setminus \{0\}$. Załóżmy nie wprost, że nie istnieje $a^{-1} \in \mathbb{Z}_p \setminus \{0\}$ takie, że $a \times_p a - 1 = 1$. To znaczy $\forall_{b \in \mathbb{Z}_p \setminus \{0\}} a \times_p b \neq 1$. Ponieważ p jest pierwsze i wszystkie elementy $\mathbb{Z}_p \setminus \{0\}$ są mniejsze od p, wiemy, że $\forall_{b \in \mathbb{Z}_p \setminus \{0\}} a \times_p b \neq 0$. Mamy więc p-1 czynników i p-2 możliwych wyników. Z zasady szufladkowej mamy $\exists b_1, b_2 \in \mathbb{Z}_p \setminus \{0\}, b_1 \neq b_2 a \times_p b_1 = a \times_p b_2$. Wiemy, że istnieje w \mathbb{Z}_p niezerowy element $-b_2$, więc $-b_2 \in \mathbb{Z}_p \setminus \{0\}$. Korzystając z własności pierścienia $\langle \mathbb{Z}_p, +_p, \times_p \rangle$ możemy przekształcić powyższe równanie do $a \times_p (b_1 +_p -b_2) = 0$. Z $b_1 \neq b_2$ mamy $b_1 +_p -b_2 \in \mathbb{Z}_p \setminus \{0\}$, czyli doszliśmy do sprzeczności.

Twierdzenie 6. Jeśli $\langle R, \oplus, \odot \rangle$ jest pieścieniem przemiennym z 1, to $\langle R[X], \oplus^*, \odot^* \rangle$, gdzie R[X] jest zbiorem wielomianów o współczynnikach w R, $a \oplus^* i \odot^*$ są naturalnie zdefiniowanym dodawaniem i mnożeniem wielomianów z użyciem \oplus $i \odot$ w

operacjach na współczynnikach, jest pierścieniem przemiennym z 1.

Uwaga. Dowód twierdzenia przebiega poprzez pokazanie kolejnych własności pierścienia. Elementem zerowym jest wielomian zerowy, a elementem neutralnym mnożenia jest 1.

Twierdzenie 7. Jeśli $\langle F, \oplus, \odot, 0, 1 \rangle$ jest ciałem, to wszystkie idealy nad F[X] są idealami głównymi.

Dowód. Weźmy dowolny ideał I nad F[X]. Jeśli $I = \{0\}$, to $I = \langle 0 \rangle$. Załóżmy więc, że I jest niezerowe i weźmy $p(x) \in I$ takie, że $p(x) \neq 0$ oraz p(x) jest wielomianem najmniejszego stopnia w I. Weźmy dowolny wielomian $f(x) \in I$. Wiemy, że $\exists_{q(x),r(x)\in I} f(x) = q(x)p(x) \oplus r(x) \wedge deg(r(x)) < deg(p(x))$. Z założenia o minimalnym stopniu p(x) mamy r(x) = 0. Oznacza to, że dowolny wielomian z I da się przedstawić w postaci q(x)p(x), więc $I = \langle p(x) \rangle$.

Twierdzenie 8. Jeśli $\langle F, \oplus, \odot, 0, 1 \rangle$, to $\langle g(x) \rangle$ jest ciałem i wielomian g(x) jest nierozkładalny w F[X], to $\langle g(x) \rangle$ jest idealem maksymalnym.

Dowód. Weźmy dowolny ideał I nad F[X]. Wiemy, że jest to ideał główny, więc istnieje $f(x) \in F[X]$ takie, że $I = \langle f(x) \rangle$. Załóżmy, że $\langle g(x) \rangle \subset I$. Znaczy to, że istnieje $h(x) \in F[X]$ takie, że g(x) = f(x)h(x). g(x) jest nierozkładalny, więc f(x) lub h(x) jest wielomianem stopnia 0. Jeśli f(x) jest stopnia 0, to $\langle f(x) \rangle = F$. Jeśli h(x) jest stopnia 0, to $\langle g(x) \rangle = \langle h(x) \rangle$, co jest sprzeczne z założeniem.

Twierdzenie 9. Jeśli p jest pierwsze i h(x) jest nierozkładalnym w $\mathbb{Z}_p[X]$ wielomianem stopnia d to pierścień ilorazowy $\langle \mathbb{Z}_p[X]/\langle h(x)\rangle, \oplus, \odot \rangle$ jest ciałem rzędu p^d .

 $Dow \acute{o}d$. (1) $\langle \mathbb{Z}_p, +_p, \times_p, 0, 1 \rangle$ jest ciałem, a h(x) jest nierozkładalny w pierścieniu $\langle \mathbb{Z}_p[X], +^*, \times^* \rangle$, więc $\mathbb{Z}_p[X]/\langle h(x) \rangle$ jest ciałem.

(2) Niech $M = \langle h(x) \rangle$ Pokażemy, że jeśli wielomiany $f(x) = h(x)q_1(x) + {}^*r_1(x), g(x) = h(x)q_2(x) + {}^*r_2(x) \in \mathbb{Z}_p[X]$, gdzie $r_1(x) = r_2(x)$, to $f(x) + {}^*M = g(x) + {}^*M$. Mamy $f(x) + {}^*M = h(x)q_1(x) + {}^*r_1(x) + {}^*M = r_1(x) + {}^*h(x)q_1(x) + {}^*M = r_1(x) + {}^*M = r_2(x) + {}^*M = r_2(x) + {}^*h(x)q_2(x) + M = g(x) + M$. Ponadto, wiemy, że, ponieważ M jest ideałem głównym, dowolna para wielomianów $f(x), g(x) \in r(x) + {}^*M$ ma taką samą resztę z dzielenia przez h(x). Mamy więc wniosek, że para wielomianów należy do tego samego elementu zbioru $\mathbb{Z}_p[X]/\langle h(x) \rangle$ wtw mają taką samą resztę z dzielenia przez h(x).

Mamy więc tyle elementów zbioru $\mathbb{Z}_p[X]/\langle h(x)\rangle$, ile jest różnych reszt dzielenia wielomianu przez h(x), czyli też tyle, ile jest wielomianów stopnia d-1 w $\mathbb{Z}_p[X]$. Stąd $ord(\mathbb{Z}_p[X]/\langle h(x)\rangle)=p^d$.

Definicja 7. Podciałem ciała F nazywamy takie G, że $G \subseteq F$ z działaniami z F ograniczonymi do elementów G jest ciałem.

Definicja 8. Rozszerzeniem ciała F nazywamy takie ciało G, F jest podciałem G.

Uwaga. Jako $F(a_1, \ldots, a_n)$ będziemy oznaczać najmniejsze rozszerzenie ciała F zawierające a_1, \ldots, a_n .

Definicja 9. Ciałem rozkładu wielomianu $f(X) \in F[X]$ nad F nazywamy G, będące rozszerzeniem F takie, że f(X) można rozłożyć na czynniki liniowe w pierścieniu G[X].

Lemat 2. Dla każdego ciała F i wielomianu $f(X) \in F[X], deg(f) \geq 2$ istnieje rozszerzenie G ciała F, w którym f(X) ma pierwiastek.

Dowód. Niech $h(X) = a_0 + a_1 x + \cdots + a_n x^n$ będzie nierozkładalnym w F[X] czynnikiem f(X). Z wiemy, że $F[X]/\langle h(X)\rangle$ jest ciałem. Zauważmy, że F jest izomorficzny z $\{a + \langle h(X)\rangle \mid a \in F\} \subseteq F[X]/\langle h(X)\rangle$. Więc $F[X]/\langle h(X)\rangle$ jest rozszerzeniem F. Ponieważ $deg(f) \geq 2$, $\alpha = X + \langle h(X)\rangle \in F[X]/\langle h(X)\rangle$. Wtedy $h(\alpha) = a_0 + a_1(X + \langle h(X)\rangle) + \cdots + a_n(X + \langle h(X)\rangle)^n = h(X) + \langle h(X)\rangle = 0$ w $F[X]/\langle h(X)\rangle$. Czyli α jest pierwiastkiem f(X).

Twierdzenie 10. Dla każdego ciała F i wielomianu $f(X) \in F[X], deg(f) \geq 1$ istnieje ciało rozkładu f(X) nad F.

Dowód. Dowód przebiegać będzie przez indukcję względem n = deg(f). Przypadek dla n = 1 jest trywialny, ponieważ F spełnia warunki. Załóżmy więc $deg(f) \geq 2$ oraz, że dla wszystkich wielomianów niższego stopnia teza zachodzi. Z ?? wiemy, że istnieje ciało G będące rozszerzeniem F takie, że istnieje $\alpha \in G$, $f(\alpha) = 0$. Mamy więc w G[X] $f(X) = (X - \alpha)g(X)$. Z założenia indukcyjnego wiemy, że dla g(X) istnieje ciało rozkładu H nad G więc H jest też ciałem rozkładu f(X) nad F. \square

2.3. Pierwiastki z jedynki, wielomiany cyklotomiczne

Definicja 10. Niech F będzie ciałem, a $n \ge 1, n \in \mathbb{N}$. Ciało rozkładu $F^{(n)}$ dla X^n-1 nad F będziemy nazywać n-tym ciałem cyklotomicznym, a zbiór pierwiastków X^n-1 w $F^{(n)}$ pierwiastkami n-tego stopnia z jedności i oznaczać $E^{(n)}$.

Twierdzenie 11. Niech F będzie ciałem, a $f(X) \in F[X]$. Jeśli $a \in F$ jest wielokrotnym pierwiastkiem f(X), to jest też pierwiastkiem f'(X).

Dowód. Zauważmy, że, ponieważ f(X) jest wielomianem, $f(X) \in F[X]$ implikuje $f'(X) \in F[X]$. Skoro f(X) ma co najmniej podwójny pierwiastek w a, to istnieje $h(X) \in F[X]$ takie, że f(X) = (X - a)(X - a)h(X). Wtedy f'(X) = (X - a)((X - a)h'(X) + 2h(X)), czyli f'(X) ma pierwiastek w a.

Lemat 3. Jeśli ciało G jest rozszerzeniem ciała F, to char(G) = char(F).

 $Dow \acute{o}d$. Ponieważ F i G są ciałami dla tych samych operacji $0_F = 0_G$ i $1_F = 1_G$, z definicji charakterystyki mamy char(F) = char(G).

Twierdzenie 12. Dla każdego ciała F, p = char(F) zbiór pierwiastków n-tego stopnia z jedności $E^{(n)}$, gdzie $n \in \mathbb{N}$ oraz $p \nmid n$ z operacją mnożenia w $K^{(n)}$ jest grupą cykliczną rozmiaru n.

Dowód. (1) Pokażemy, że $|E^{(n)}| = n$. Przypadek dla n = 1 jest trywialny, ponieważ zbiór $E^{(n)}$ jest wtedy zbiorem zawierającym tylko 1. Załóżmy więc, że $n \geq 2$. Z ?? wiemy, że jeśli $f(X) = X^n - 1$ i $f'(X) = nX^{n-1}$ nie mają wspólnych pierwiastków w F, to nie istnieją w F wielokrotne pierwiastki wielomianu f(X). Z ?? mamy $char(K^{(n)}) = p$, więc istnieje n^{-1} w $K^{(n)}$. Możemy więc zauważyć, że jedynym pierwiastkiem f'(X) w F jest 0. Dodatkowo 0 nie jest pierwiastkiem f(X), więc f(X) ma n różnych pierwiastków w F, skąd $|E^{(n)}| = n$.

(2) $E^{(n)}$ jest grupą operacją mnożenia w $K^{(n)}$. Weźmy dowolne $\zeta_1, \zeta_2 \in E^{(n)}$. Niech $\zeta = \zeta_1 \zeta_2$. Wtedy $\zeta^n = (\zeta_1 \zeta_2) = \zeta_1^n \zeta_2^n = 1$, czyli $\zeta_1 \zeta_2 \in E^{(n)}$. Dla dowolnego $\zeta \in E^{(n)}$ istnieje element odwortny $\zeta^{n-1} \in E^{(n)}$. Element neutralny stanowi $1_{K^{(n)}}$.

(3) $E^{(n)}$ jest cykliczna.

Niech n będzie liczbą pierwszą. Weźmy dowolne $\zeta \in E^{(n)}$. Załóżmy nie wprost, że istnieje $q < n, q \in \mathbb{N}$ takie, że $\zeta^q = 1$. Wtedy $q \mid n$, co jest sprzeczne z założeniem o pierwszości n. Skoro takie q nie istnieje, to ζ generuje $E^{(n)}$, ponieważ dla każdego $i, j < n, i, j \in \mathbb{N}$ $\zeta^i \neq \zeta^j$.

Niech $n=p_1^{e_1}\cdot\dots\cdot p_r^{e_r}$ będzie rozkładem n na czynniki pierwsze. Dla każdego $1\geq i\geq r$ istnieje nie więcej niż $\frac{n}{p_i}$ pierwiastków wielomianu $x^{\frac{r}{p_i}}-1$. n jest złożona,

więc $\frac{n}{p_1} < n$ i istnieje ζ_i nie będąca pierwiastkiem $x^{\frac{r}{p_i}} - 1$. Niech $\alpha_i = \zeta_i^{\frac{n}{p_i^{e_i}}}$. Wiemy, że $o_n(\alpha_i) \mid p_i^{e_i}$, a ponieważ p_i jest pierwsza, $o_n(\alpha_i) = p_i^s$, gdzie $s \leq e_i$. Zauważmy, że jeśli dla $k < r_i \ \alpha_i^{p_i^k} = 1$, to także $(\alpha_i^{p_i^k})^p = \alpha_i^{p_i^{k+1}} = 1$ i poprzez indukcję względem k = 1. Wybraliśmy α takie, że $\alpha_i^{p_i^{e_i-1}} = \zeta^{\frac{n}{p_i}} \neq 1$, więc $o_n(\alpha_i) = p_i^{e_i}$.

Weźmy $\alpha = \alpha_1 \cdot \dots \cdot \alpha_r$. Pokażemy, że $o_n(\alpha) = n$. Wiemy, że $o_n(\alpha) \mid n$. Załóżmy nie wprost, że $o_n(\alpha) \neq n$. Wynika stąd, że istnieje takie p_i , że $o_n(\alpha) \mid \frac{n}{p_i}$. Wtedy $\alpha^{\frac{n}{p_i}} = 1 = \alpha_1^{\frac{n}{p_i}} \cdot \dots \cdot \alpha_r^{\frac{n}{p_r}}$. Dla każdego $j \neq i, 1 \leq j \leq r$ $p_j^{e_j} \mid \frac{n}{p_i}$, a ponieważ $o_n(\alpha_j) = p_i^{e_j}$, mamy $\alpha_j^{\frac{n}{p_i}} = 1$. Mamy więc $\alpha_i^{\frac{n}{p_i}} = 1$, czyli $o_n(\alpha_i) \mid \frac{n}{p_i}$. Mamy jednak $o_n(\alpha_i) = p_i^{e_i}$, które nie dzieli $\frac{n}{p_i}$, więc otrzymaliśmy sprzeczność. Pokazalśmy więc, że $o_n(\alpha) = n$. Na mocy argumentu jak w przypadku pierwszego n znaleźliśmy α będące generatorem $E^{(n)}$.

Definicja 11. Funkcją Eulera nazywamy taką funkcję ϕ , że dla $n \in \mathbb{N}$, $n \geq 2$ $\phi(n)$ jest równa liczbie liczb naturalnych q < n takich, że NWD(n,q) = 1.

Definicja 12. Pierwiastek n-tego stopnia z jedności nad ciałem F nazywamy **pierwotnym**, jeśli jest generatorem grupy $E^{(n)}$.

Obserwacja 2. Dla każdego ciała F i $n \in \mathbb{N}$, $n \nmid char(F)$ istnieje co najmniej jeden pierwotny pierwiastek z jedności n-tego stopnia nad F.

Lemat 4. Jeśli ζ jest pierwotnym pierwiastkiem n-tego stopnia nad ciałem F, char $(F) \nmid n$, to dowolne ζ^s , gdzie $s \in \mathbb{N}$, NWD(s,n) = 1 także jest pierwotnym pierwiastkiem n-tego stopnia nad F.

Dowód. Weźmy s takie, że NWD(s,n)=1. Niech $k=o_n(\zeta^s)$. Mamy więc $k \mid n$. Ponieważ $\zeta^n=1$ mamy $(\zeta^s)^k=\zeta^n$. $(\zeta^s)^k\in E^{(n)}$, więc, jako że $E^{(n)}$ jest grupą, $(\zeta^s)^-k\in E^{(n)}$. Otrzymujemy $\zeta^s=\zeta^{fracnk}$. Z NWD(s,n)=1 mamy n=k i ostatecznie $o_n(\zeta^s)=n$, czyli ζ^s jest generatorem grupy.

Definicja 13. Niech F będzie ciałem, $n \in \mathbb{N}$, $n \nmid char(F)$ oraz ζ będzie pierwotnym pierwiastkiem z jedności n-tego stopnia nad F. Wtedy wielomian

$$Q_n(X) = \prod_{s=1, NWD(s,n)=1}^{n} (X - \zeta^s)$$

nazywamy n-tym wielomianem cyklotomicznym nad F.

Lemat 5. Jeśli $Q_n(X)$ jest wielomianem cyklotomicznym n-tego stopnia nad ciałem F, gdzie $n \in \mathbb{N}$, to $Q_n(X) \mid X^n - 1$ w F.

Dowód. Własność ta jest oczywista i wynika z zawierania się zbioru pierwiastków $Q_n(X)$ w zbiorze pierwiastków $X^n - 1$.

Obserwacja 3. $Q_n(X)$ nie zależy od wyboru ζ oraz jest stopnia $\phi(n)$. Dodatkowo z definicji $K^{(n)}$ wiemy, że współczynniki $Q_n(X)$ należą do $K^{(n)}$.

Definicja 14. Jeśli G jest rozszerzeniem ciała F, to wielomianem minimalnym dla $g \in G$ nazywamy nierozkładalny moniczny wielomian $m(X) \in F[X]$ taki, że m(g) = 0.

Twierdzenie 13. Jeśli G jest rozszerzeniem ciała F oraz istnieje, to dla każdego $g \in G$, jeśli istnieje niezerowy $f(X) \in F[X]$, f(g) = 0, to istnieje niezerowy wielomian minimalny w F[X].

Dowód. Niech $I=f\,|\,f\in F, f(g)=0$. Zauważmy, że I jest ideałem nad F[X]. Co więcej ponieważ F jest ciałem, to I jest ideałem głównym. Istnieje wiec $m(X)\in F[X]$ takie, że $I=\langle m(X)\rangle$ oraz m(X) ma minimalny stopień w I. Dodatkowo ponieważ z założenia I nie jest ideałem zerowym, m(X) nie jest wielomianem zerowym. Jeśli m(X) jest moniczny, to jest wielomianem minimalnym, w przeciwnym przypadku współczynnik a przy najwyższej potędze X nie jest jedynką. Ponieważ każdy element niezerowy ma odwrotność w F, to istnieje też moniczny wielomian będący wielomianem minimalnym.

Lemat 6. Jeśli G jest rozszerzeniem ciała F oraz $m(X) \in F[X]$ wielomianem minimalnym dla $g \in G$, to dla każdego $f(X) \in F[X]$ $f(g) = 0 \Rightarrow m(X) \mid f(X)$.

Dowód. Własność ta wynika z poprzedniego dowodu. Jeśli m(X) jest wielomianem minimalnym dla g nad F i $f(X) \in F[X], f(g) = 0$, to f należy do ideału głównego generowanego przez m(X), czyli istnieje $h(X) \in F[X]$ takie, że f(X) = h(X)m(X).

Twierdzenie 14. Dla $n, q \in \mathbb{N}, NWD(n,q) = 1$ wielomian cyklotomiczny $Q_n(X)$ nad \mathbb{F}_q jest rozkładalny na nierozkładalne czynniki stopnia $o_n(q)$ w $\mathbb{F}_q[X]$.

Dowód. Niech ζ będzie pierwotnym pierwiastkiem n-tego stopnia nad \mathbb{F}_q . Dowód przebiegał będzie w dwóch krokach: (1) pokażemy, że dla dowolnego k > 1 $\zeta^{q^k} = \zeta$ wtw, gdy $\zeta \in \mathbb{F}_{q^k}$ oraz, że (2) jeśli $\zeta \in \mathbb{F}_{q^d}$ jest pierwiastkiem wielomianu $f(X) \in \mathbb{F}_q$, to istnieje $h(X) \in \mathbb{F}_q$ takie, że $h(X) \mid f(X)$ oraz deg(h(X)) = d.

(1) Zauważmy, że jeśli dowolne $a \in \mathbb{F}_{q^k}$, to z twierdzenia Lagrange'a mamy $a^{q^k-1}=1$, stąd $a^{q^k}=a$. Zauważmy, że równanie $a^{q^k}=a$ ma niewięcej niż q^k pierwiastków, a skoro wszystkie elementy \mathbb{F}_{q^k} są jego pierwiastkami, to wszystkie pierwiastki są elementami \mathbb{F}_{q^k} .

Możemy zauważyć, że powyższą równoważność można zaaplikować do ζ otrzumując $\zeta \in \mathbb{F}_{q^k}$ wtw, gdy $\zeta^{q^k} = \zeta$ a więc i $q^k = 1 \ (mod \ n)$.

Weźmy $d = o_n(q)$. Wtedy \mathbb{F}_{q^d} będzie najmniejszym ciałem, zawierającym wszystkie pierwiastki n-tego stopnia nad \mathbb{F}_{\parallel} .

(2) Niech $m(X) \in \mathbb{F}_q$ będzie minimalnym wielomianem dla ζ . Wiemy, że taki istnieje i jest niezerowy, ponieważ istnieje $f(X) = X^n - 1 \in \mathbb{F}_q[X]$ i $f(\zeta) = 0$. Ponieważ $\mathbb{F}_q/\langle m(X) \rangle$ jest izomorficzne z \mathbb{F}_{p^d} , to deg(m) = d. Z własności wielomianu minimalnego mamy $m(X)|Q_n(X)$ oraz m(X) jest nierozkładalny w \mathbb{F}_q .

Ponieważ m(X) dzieli dowolny wielomian, którego pierwiastkiem jest ζ oraz wszystkie pierwiastki $Q_n(X)$ są pierwiastkami pierwotnymi z jedynki n-tego stopnia, możemy wywnioskować, że $Q_n(X)$ można rozłożyć na nierozkładalne wielomiany stopnia $o_n(q)$ w \mathbb{F}_q .

Rozdział 3.

Algorytm

3.1. Schemat algorytmu

```
noend 1 Algorytm ASK
Dane wejściowe: liczba całkowita n > 1
Wynik: PIERWSZA - jeśli n jest pierwsza; ZŁOŻONA - jeśli n jest złożona
 1: if istnieje takie a \in \mathbb{N}, b > 1, że a^b = n then
                                                                                       ▶ Krok 1.
        return ZŁOŻONA
 3: r \leftarrow \text{najmniejsze takie } q, \text{ że } o_q(n) > log^2 n
                                                                                       \triangleright Krok 2.
 4: if istnieje a \le r takie, że 1 < NWD(a, n) < n then
                                                                                       \triangleright Krok 3.
        return ZŁOŻONA
 6: if n \leq r then
                                                                                       \triangleright Krok 4.
        return PIERWSZA
 8: for a \leftarrow 1 to \lfloor \sqrt{\phi(r)} \log n \rfloor do
                                                                                       \triangleright Krok 5.
        if (X+a)^n \neq X^n + a \pmod{X^r-1}, n) then
                                                                                       ▶ Krok 6.
            return ZŁOŻONA
10:
11: return PIERWSZA
                                                                                       \triangleright Krok 7.
```

3.2. Dowód poprawności

Lemat 7. Dla $n \in \mathbb{N}$, $n \ge 2$ zachodzi $\binom{2n+1}{n} \ge 2^{n+1}$.

 $Dow \acute{o}d.$ Dow \acute{o}d przebiegał będzie przez indukcję. Przypadek dla n=2jest trywialny. Mamy ${5 \choose 2}=10>2^3=8.$

Przyjmijmy założenie indukcyjne $\binom{2n+1}{n}>2^{n+1}.$ Pokażemy, że $\binom{2n+3}{n+1}>2^{n+2}.$ Mamy

$$\binom{2n+3}{n+1} = \binom{2n+2}{n} + \binom{2n+2}{n+1}$$

$$= \binom{2n+2}{n} + \binom{2n+1}{n+1} + \binom{2n+1}{n}$$

$$= \binom{2n+2}{n} + 2\binom{2n+1}{n}$$

$$= \binom{2n+2}{n} + 2\binom{2n+1}{n}$$

$$> 2^{n+2}.$$
(Z założenia $\binom{2n+1}{n} > 2^{n+1}$)
$$> 2^{n+2}.$$

skad teza. \Box

Lemat 8. Jeśli $a, n \in \mathbb{N}, n \geq 2$ i NWD(a, n) = 1, to n jest pierwsza wtw, gdy $(X + a)^n = X^n + a \pmod{n}$.

Dowód. Rozpatrzmy współczynniki przy x^i w wielomianie $p(x) = (X+a)^n - (X^n+a)$. Wystarczy pokazać, że $p(x) = 0 \pmod{n}$ wtw, gdy n jest pierwsza.

- (1) Załóżmy, że n jest pierwsza. Wtedy współczynnik przy x^i $(1 \le i \le n)$ w wielomianie p(x) jest równy $\binom{n}{i}a^{n-i} = \frac{n!}{i!(n-i)!} \cdot a^{n-1}$. Z $\binom{n}{i} \in \mathbb{Z}$ oraz pierwszości n wiemy, że nie istnieje q takie, że $q \mid i! \cdot (n-i)! \wedge q \nmid (n-1)!$, więc $\frac{(n-1)!}{i! \cdot (n-i)!} \in \mathbb{Z}$ oraz $\binom{n}{i}$ jest podzielne przez n. Stąd $n \mid p(x)$.
- (2) Załóżmy, że n jest złożona. Niech q będzie pewnym dzielnikiem pierwszym n oraz $q^k \parallel n$. Współczynnik przy x^q jest równy $\binom{n}{q}a^{n-q}$. Można zauważyć, że q^k nie dzieli $\binom{n}{q}$, ponieważ $\binom{n}{q} = \frac{n!}{q!(n-q)!} = \frac{n \cdot (n-1) \cdot \cdots \cdot (n-q+1)}{q!}$. Wiemy, że skoro q jest pierwsze i $q \mid n$, to $q \nmid (n-1) \cdot \cdots \cdot (n-q+1)$, czyli $q^k \parallel n \cdot (n-1) \cdot \cdots \cdot (n-q+1)$. Mamy więc $q^k \nmid \binom{n}{q}$. Ponieważ a jest względnie pierwsze z n, to $q \nmid a^{n-q}$, więc $q^k \nmid \binom{n}{q}a^{n-q}$. Stąd mamy $p(x) \neq 0 \pmod{n}$.

Lemat 9. Niech $a, n, r \in \mathbb{N}, n \geq 2, r \geq 1$ i NWD(a, n) = 1, wtedy jeśli n jest pierwsza, to $(X + a)^n = X^n + a \pmod{X^r - 1}$, n).

Dowód. Dowód wynika bezpośrednio z lematu ??. Wiemy, że $(X+a)^n - (X^n+a) = 0 \pmod{n}$, więc także $(X+a)^n - (X^n+a) = 0 \pmod{X^r-1}$, n).

Lemat 10. Jeśli p jest liczbą pierwszą, to dla dowolnych $f(X), g(X) \in \mathbb{F}_p[X]$ zachodzi w $\mathbb{F}_p[X]$

$$(f(X) + g(X))^p = (f(X))^p + (g(X))^p.$$

Dowód. Mamy

$$(f(X) + g(X))^p = (f(X))^p + (g(X))^p + \sum_{i=1}^{i < p} \binom{p}{i} (f(X))^i \cdot (g(X))^{p-i}.$$

Na mocy argumentu użytego w dowodzie lematu ?? otrzymujemy wniosek, że dla $1 \le i \le p-1$ zachodzi $p \mid \binom{p}{i}$, skąd wynika teza.

Lemat 11. Niech $\ell_n = NWW(1, ..., n)$. Wtedy dla $n \ge 9$ zachodzi $\ell_n \ge 2^n$.

Dowód. Pokażemy, że (1) dla dowolnego $m \leq n, m \in \mathbb{N}$ zachodzi $m \cdot \binom{n}{m} \mid \ell_n$, a następnie (2) wywnioskujemy tezę.

(1) Weźmy dowolne $m \leq n, m \in \mathbb{N}$. Niech q będzie dowolną liczbą pierwszą taką, że $q \mid \ell_n$. Z własności ℓ_n i monotoniczności funkcji $\log_q x$ możemy wywnioskować, że $q^{\lfloor \log_q n \rfloor} \parallel \ell_n$. Niech $q^l \parallel m$. Zauważmy, że $q^{\sum_{i=1}^{i \leq \lfloor \log_q n \rfloor} \lfloor \frac{n}{q^i} \rfloor} \parallel n!$. Analogicznie $q^{\sum_{i=1}^{i \leq \lfloor \log_q n \rfloor} \lfloor \frac{m}{q^i} \rfloor} \parallel m!$ i $q^{\sum_{i=1}^{i \leq \lfloor \log_q (n-m) \rfloor} \lfloor \frac{n-m}{q^i} \rfloor} \parallel (n-m)!$. Ponieważ $m, n-m \leq n$ zachodzi $q^{\sum_{i=1}^{i \leq \lfloor \log_q n \rfloor} \lfloor \frac{m}{q^i} \rfloor} \parallel m!$ i $q^{\sum_{i=1}^{i \leq \lfloor \log_q n \rfloor} \lfloor \frac{n-m}{q^i} \rfloor} \parallel (n-m)!$. Otrzymujemy

$$q^{\sum_{i=1}^{i\leq \lfloor \log_q n\rfloor} \lfloor \frac{n}{q^i}\rfloor - (\lfloor \frac{m}{q^i}\rfloor + \lfloor \frac{n-m}{q^i}\rfloor)} \parallel \binom{n}{m}.$$

Zauważmy, że jeśli $q^i \mid m$, to $\lfloor \frac{n}{q^i} \rfloor - (\lfloor \frac{m}{q^i} \rfloor + \lfloor \frac{n-m}{q^i} \rfloor) = 0$, a w przeciwnym wypadku $\lfloor \frac{n}{q^i} \rfloor - (\lfloor \frac{m}{q^i} \rfloor + \lfloor \frac{n-m}{q^i} \rfloor) \le 1$. Stąd mamy

$$\sum_{i=1}^{i \le \lfloor log_q n \rfloor} \lfloor \frac{n}{q^i} \rfloor - (\lfloor \frac{m}{q^i} \rfloor + \lfloor \frac{n-m}{q^i} \rfloor) \le \lfloor log_q n \rfloor - l,$$

a ponieważ $q^l \parallel m$, otrzymujemy wniosek, że jeśli $q^i \mid m \cdot \binom{n}{m}$, to $i \leq \lfloor log_q n \rfloor$. Ponieważ nierówność ta zachodzi dla każdego pierwszego dzielnika, możemy wywnioskować, że $m \cdot \binom{n}{m} \mid \ell_n$.

(2) W szczególności mamy $n \cdot \binom{2n}{n} \mid \ell_{2n}$ oraz $(n+1)\binom{2n+1}{n+1} = (2n+1)\binom{2n}{n} \mid \ell_{2n+1}$. Wiemy, że NWD(n, 2n+1) = 1 oraz $\ell_{2n} \mid \ell_{2n+1}$, więc $n(2n+1)\binom{2n}{n} \mid \ell_{2n+1}$. Możemy stąd przejść do nierówności

$$\ell_{2n+1} \ge n(2n+1) \binom{2n}{n} \ge n \sum_{i=0}^{i \le 2n} \binom{2n}{n} \ge n \sum_{i=0}^{i \le 2n} \binom{2n}{i} = n(1+1)^{2n} = n 4^n.$$

Mamy więc dla $n \ge 4$ nierówność $\ell_{2n+2} \ge \ell_{2n+1} \ge 2^{2n+2}$, skąd bezpośrednio możemy wywnioskować $\ell_n \ge 2^n$ dla $n \ge 9$.

Lemat 12. Niech $n \in \mathbb{N}$, $n \geq 2$, wtedy istnieje takie $r \leq \max\{3, \lceil \log^5 n \rceil\}$, $r \in \mathbb{N}$, $\dot{z}e \ o_r(n) > log^2 n$.

Dowód. (1) Przypadek, gdy n=2 jest trywialny, ponieważ teza zachodzi dla r=3. Podobnie dla n=3, warunki spełnia r=4.

(2) Załóżmy więc, że $n \ge 4$. Niech $B = \lceil log^5 n \rceil$. Wtedy B > 10. Spójrzmy na najmniejsze takie r, że

$$r \nmid n^{\lfloor log B \rfloor} \prod_{i=1}^{i \leq \lfloor log^2 n \rfloor} (n^i - 1).$$

Niech $P = n^{\lfloor log B \rfloor} \prod_{i=1}^{i \leq \lfloor log^2 n \rfloor} (n^i - 1)$. Istnieje więc pewne q takie, że $q \mid r$ i $q \nmid P$. $\lfloor log B \rfloor \geq 1$, więc możemy wywnioskować, że $q \nmid n$. Wynika stąd, że $q \nmid NWD(r, n)$, więc $\frac{r}{NWD(r,n)} \nmid P$. Znaleźliśmy więc liczbę $\frac{r}{NWD(r,n)} \leq r$, która nie dzieli P. Z założenia, że r jest najmniejsze takie, że $r \nmid P$ mamy NWD(r, n) = 1.

Dodatkowo wiemy, że $\forall_{1 \leq i \leq \lfloor \log^2 n \rfloor} r \nmid (n^i - 1)$, więc nie istnieje takie $1 \leq i \leq \lfloor \log^2 n \rfloor$, że $n^i = 1 \pmod{r}$. Oznacza to, że $o_r(n) > \log^2 n$. Możemy też ograniczyć P z góry:

$$n^{\lfloor log B \rfloor} \prod_{i=1}^{i \leq \lfloor log^2 n \rfloor} (n^i - 1) < n^{\lfloor log B \rfloor} \prod_{i=1}^{i \leq \lfloor log^2 n \rfloor} n^i < n^{\lfloor log B \rfloor} n^{\frac{\log^2 n (\log^2 n + 1)}{2}} \leq n^{\lfloor log B \rfloor + \frac{\log^4 n + \log^2 n}{2}}.$$

Dla $n \ge 4$ mamy

$$n^{\lfloor logB\rfloor + \frac{\log^4 n + \log^2 n}{2}} \le n^{\log^4 n} \le 2^{\log^5 n} \le 2^B.$$

Wiemy, że B > 10, więc z lematu ?? mamy $\ell_B \ge 2^B > P$. Oznacza to, że istnieje $l \in \{1, ..., B\}$ takie, że $l \nmid P$. Z założenia o r mamy, że $r \le l \le B$.

Definicja 15. Dla ustalonych $r, p \in \mathbb{N}$, gdzie p jest pierwsza, liczbę $m \in \mathbb{N}$ nazywamy *introspektywną* modulo $X^r - 1$, p dla wielomianu f(X), jeśli zachodzi

$$(f(X))^m = f(X^m) \pmod{X^r - 1}, p.$$

Lemat 13. Niech $r, p \in \mathbb{N}$ oraz p jest pierwsza. Jeśli m i m' są introspektywne modulo $X^r - 1$, p dla f(X), to mm' także jest introspektywna modulo $X^r - 1$, p dla f(X).

Dowód. Z introspektywności m mamy $(f(X))^{mm'} = (f(X^m))^{m'} \pmod{X^r - 1}$, p). Z introspektywności m' wiemy, że istnieje $g(X) \in \mathbb{F}_p[X]$ takie, że

$$f(X^{m'}) - f(X)^{m'} = g(X)(X^r - 1)$$

$$f(X^{mm'}) - f(X^m)^{m'} = g(X)(X^{mr} - 1).$$

Mamy więc $(f(X^m))^{m'} = f(X^{mm'}) \pmod{(X^m)^r - 1}$, p), a ponieważ $X^r - 1$ dzieli $X^{mr} - 1$ także $(f(X^m))^{m'} = f(X^{mm'}) \pmod{X^r - 1}$, p). Otrzymujemy więc $(f(X))^{mm'} = f(X^{mm'}) \pmod{X^r - 1}$, p).

Lemat 14. Niech $r, p \in \mathbb{N}$ oraz p jest pierwsza. Jeśli m jest introspektywna modulo $X^r - 1$, p dla f(X) i g(X), to jest także introspektywna modulo $X^r - 1$, p dla f(X)g(X).

Dowód. Mamy $(f(X))^m = f(X^m) \pmod{X^r-1}$, p) oraz $(g(X))^m = g(X^m) \pmod{X^r-1}$, p). Mnożąc stronami otrzymujemy $(f(X)g(X))^m = f(X^m)g(X^m) \pmod{X^r-1}$, p).

Lemat 15. Jeśli $a, r \in N$, NWD(a, r) = 1, to istnieje a^{-1} takie, że $aa^{-1} = 1 \pmod{r}$.

Dowód. Spójrzmy na ciąg a, a^2, \ldots, a^{r+1} . Istnieją w nim $1 \le i < j \le r+1$ takie, że $a^i = a^j \pmod{r}$, Ponieważ NWD(a,r) = 1, to także $NWD(a^i,r) = NWD(a^j,r) = 1$. Mamy $a^i a^{j-i} = a^j \pmod{r}$, a ponieważ a^i i a^j są niezerowe, to $a^{j-i} = 1 \pmod{r}$ i ostatecznie $a \cdot a^{j-i-1} = 1 \pmod{r}$, więc znaleźliśmy a^{-1} .

Definicja 16. Na potrzeby kolejnych lematów ustalmy $n, r, p \in \mathbb{N}, n \geq 2, r < \lceil \log^5 n \rceil$ oraz $\ell = \lfloor \sqrt{\phi(r)} \log n \rfloor$ takie, że p jest pierwszym dzielnikiem $n, o_r(n) > \log^2 n, NWD(r, n) = 1$, więc i NWD(r, p) = 1. Ponadto dla każdego $0 \leq a \leq \ell$ zachodzi

$$(X + a)^n = X^n + a \pmod{X^r - 1, n}.$$

Możemy teraz zdefiniować, $I = \{n^i \cdot p^j \mid i, j \geq 0\}$, $P = \{\prod_{a=0}^{\ell} (X+a)^{e_a} \mid e_a \geq 0\}$ oraz G będące zbiorem reszt z dzielenia elementów I przez r. Niech $Q_r(X)$ będzie r-tym wielomianem cyklotomicznym nad \mathbb{F}_p $(r \nmid p = char(\mathbb{F}_p))$. Weźmy $h(X) \in \mathbb{F}_p[X]$. Z twierdzenia ?? wiemy, że taki wielomian istnieje, jest nierozkładalny w $\mathbb{F}_p[X]$ oraz $deg(h) = o_r(p)$. Zdefiniujmy $F = \mathbb{F}_p/\langle h(X) \rangle$ oraz \mathcal{G} będący zbiorem elementów P w F.

Lemat 16. Dowolny element $i \in I$ jest introspektywny modulo $X^r - 1$, p dla dowolnego wielomianu $p(X) \in P$.

 $Dow \acute{o}d$. Pokażemy, że (1) dla dowolnego $0 \le a \le \ell$ n oraz p są introspektywne dla X+a, a następnie (2) wywnioskujemy tezę.

(1) Niech $0 \le a \le \ell$. p jest pierwsze, więc z lematu ?? otrzymujemy

$$(X + a)^p = X^p + a \pmod{X^r - 1}, p,$$

więc p jest introspektywne dla (X + a). Z założenia mamy też

$$(X + a)^n = X^n + a \pmod{X^r - 1, n}.$$

Weźmy $f_1(X)=(X+a)^{\frac{n}{p}},\,f_2(X)=X^{\frac{n}{p}}+a\in\mathbb{F}_p[X].$ Zauważmy, że

$$(f_1(X))^p = X^n + a = (f_2(X))^p (mod X^r - 1, p)$$

 $(f_1(X))^p - (f_2(X))^p = 0 (mod X^r - 1, p).$

Z lematu?? mamy

$$(f_1(X) - f_2(X))^p = 0 \, (mod \, X^r - 1, \, p)$$
$$f_1(X) = f_2(X) \, (mod \, X^r - 1, \, p).$$

Więc $\frac{n}{n}$ także jest introspektywne modulo X^r-1, p dla $X+a, 0 \le a \le \ell$.

(2) Ponieważ elementy zbioru I są iloczynami liczb n i p, a elementy zbioru P są iloczynami wielomianów $X+a,\ 0\leq a\leq \ell,$ z lematów ?? i ?? możemy wywnioskować tezę.

Lemat 17. $\langle G, \cdot \rangle$ jest podgrupą \mathbb{Z}_r^* oraz $|G| > log^2 n$.

Dowód. (1) Pokażemy, że $\langle G, \cdot \rangle$ jest podgrupą \mathbb{Z}_r^* . Oczywistym jest, że $G \subseteq \mathbb{Z}_r$. Wiemy, że NWD(n, r) = 1 oraz $p \mid n$, więc NWD(p, r) = 1. Wynika stąd, że nie istnieje w I element podzielny przez r, więc $0 \notin G$. Mamy więc $G \subseteq \mathbb{Z}_r^*$. Mamy też $(\frac{n}{p})^0 \cdot p^0 = 1 \in G$, czyli istnienie elementu neutralnego w G. Mnożenie spełnia własności działania w grupie, więc wystarczy jeszcze tylko pokazać, że G jest (1.1) zamknięta na · i (1.2) dla każdego elementu istnieje element odwrotny.

- (1.1) Weźmy dowolne $g_1 = (\frac{n}{p})^{i_1} \cdot p^{j_1} \pmod{r}, \ g_2 = (\frac{n}{p})^{i_2} \cdot p^{j_2} \pmod{r} \in G, \ i_1, \ i_2, \ j_1, \ j_2 \ge 0.$ Wtedy $g_1g_2 = (\frac{n}{p})^{i_1+i_2} \cdot p^{j_1+j_2} \pmod{r}. \ (\frac{n}{p})^{i_1+i_2} \cdot p^{j_1+j_2} \in I, \ \text{wiec} \ g_1g_2 \in G.$
- (1.2) Weźmy dowolne $g \in G$. Wiemy, że istnieją $1 \le i < j \le |G| + 1$ takie, że $g^i = g^j$. Ponieważ $g \ne 0$ mamy $g^{j-i} = 1$, więc mamy $g^{j-i-1} \in G$, będące odwrotnością g.
- (2) Pokażemy, że $|G| > log^2n$. Załóżmy nie wprost, że $|G| \leq log^2n$. Spójrzmy na ciąg $1, n, \ldots, n^{|G|}$ modulo r. Jest to ciąg |G| + 1 liczb, należących do G. Wynika stąd, że istnieją $k, l \in \mathbb{N}, 0 \leq k < l \leq |G|$ takie, że $n^k = n^l \pmod{r}$. Mamy więc $n^{l-k} = 1 \pmod{r}$. $l-k \leq |G| \leq log^2n$, co jest sprzeczne z założeniem, że $o_r(n) > log^2n$.

Lemat 18. $|G| \ge \phi(r)$.

Dowód. Weźmy zbiór A różnych a_i takich, że $a_i < r$ oraz $NWD(a_i,r) = 1$ dla $1 \le i \le k$. Z definicji funkcji Eulera mamy $|A| = \phi(r)$. Niech zbiór $B = \{b \mid b = p \cdot a_i \pmod{r}, \ b < r, \ a_i \in A\}$. Zauważmy, że dla wszystkich $b \in B$ zachodzi NWD(b,r) = 1, więc $B \subseteq A$. Pokażemy, że A = B. Załóżmy nie wprost $p \cdot a_i = p \cdot a_j \pmod{r}, 1 \le i < j \le \phi(r)$. Z lematu ?? wiemy, że istnieje $p^{-1} \in \mathbb{F}_p$. Więc mnożąc stronami przez p^{-1} otrzymujemy sprzeczność.

Mamy A = B, możemy więc wywnioskować równanie

$$p^{\phi(r)} \cdot a_1 \cdot \dots \cdot a_{\phi(r)} = a_1 \cdot \dots \cdot a_{\phi(r)} \pmod{r}$$
$$p^{\phi(r)} = 1 \pmod{r} \qquad \text{(Dla każdego } a_i \text{ istnieje } a_i^{-1}.\text{)}$$

Z twierdzenia Lagrange'a mamy wniosek, że $\phi(r)$ dzieli moc grupy, generowanej przez p modulo r, czyli zawartej w G, skąd wynika teza.

Lemat 19. \mathcal{G} jest grupą z mnożeniem, generowaną przez zbiór $\mathcal{G}_{gen} = \{X, X + 1, \dots, X + \ell\}$ w ciele F.

Obserwacja 4. $\mathcal{G} \subset F$.

Dowód. (1) \mathcal{G} jest grupą. Łatwo można zauważyć, że \mathcal{G} zawiera element neutralny i jest zamknięty na mnożenie. Wystarczy więc pokazać, że dla każdego $g \in \mathcal{G}$ istnieje element odwrotny. Wykorzystamy argument z dowodu lematu ??, tzn. ponieważ \mathcal{G} jest skończonego rozmiaru, dla dowolnego $g \in \mathcal{G}$ także $g^2, \ldots, g^{|\mathcal{G}|+1} \in \mathcal{G}$. Istnieje $g^i \in \mathcal{G}$, $0 \le i$, będące odwrotnością g.

(2) Zbiór \mathcal{G}_{gen} generuje \mathcal{G} . Dla $g \in \mathcal{G}$, $g \neq 1$ oczywistym jest, że g można przedstawić jako iloczyn elementów \mathcal{G}_{gen} . Wiemy, że h(X) dzieli $Q_r(X)$, czyli też, na mocy

lematu ??, $X^r - 1$. Mamy więc $X^r = 1$ w \mathcal{G} , czyli 1 także jest generowana przez \mathcal{G}_{gen} . Odwrotny wniosek, że każdy element generowany przez \mathcal{G}_{gen} należy do \mathcal{G} jest oczywisty.

Lemat 20. X jest pierwotnym pierwiastkiem r-tego stopnia z jedności w F.

Dowód. Z lematu ?? oraz ponieważ $h(X) |Q_r(X)$, mamy $h(X) | X^r - 1$, więc $X^r = 1$ w F, czyli X jest pierwiastkiem r-tego stopnia z jedności w F. Załóżmy nie wprost, że X nie jest pierwotnym pierwiastkiem. Oznacza to, że istnieje k < r takie, że $X^k = 1$ w F. Implikuje to, że $h(X)|X^k - 1$ w $\mathbb{F}_p[X]$. Rozważmy h(X) i $X^k - 1$ w r-tym ciele cyklotomicznym nad \mathbb{F}_p . Istnieje w nim pierwiastek pierwotny r-tego stopnia ζ , który jest pierwiastkiem h(X). Ponieważ $h(X)|X^k - 1$ także w rozszerzeniu ciała \mathbb{F}_p , to $\zeta^k - 1 = 0$ w $\mathbb{F}_p^{(r)}$. Otrzymaliśmy sprzeczność z założeniem, że ζ jest pierwiastkiem pierwotnym, ponieważ k < r.

Lemat 21. Jeśli w grupie G istnieje co najmniej k+1 różnych wielomianów $f_1(X), \ldots, f_{k+1}(X)$ pierwszego stopnia, to istnieje co najmniej $\binom{k+d}{k+1}$ różnych wielomianów stopnia mniejszego niż d.

Dowód. Uzasadnimy, że jesteśmy w stanie skonstruować bijekcję między $\binom{k+d}{d-1}$ elementami a różnymi wielomianami stopnia mniejszego niż d w F. Spójrzmy na ciąg k+d elementów z k+1 elementami wyróżnionymi. Jeśli spojrzymy na liczbę elementów między elementami wyróżnionymi otrzymamy ciąg a_1, \ldots, a_{k+2} taki, że $\sum_{i=1}^{k+2} a_i = d-1$. Powiemy, że takiemu ciągowi odpowiada wielomian $f(X) \in G$, jeśli $f(X) = \prod_{i=1}^{k+1} (f_i(X))^{a_i}$. Łatwo zauważyć, że jednemu takiemu wyróżnieniu elementów ciągu odpowiada dokładnie jeden wielomian oraz dla różnych wyróżnień elementów, odpowiadające wielomiany są różne. Stąd otrzymujemy tezę, że różnych wielomianów stopnia mniejszego niż d w F jest co najmniej $\binom{k+d}{k+1}$.

Lemat 22. $|\mathcal{G}| \ge {t+\ell \choose t-1}$.

Dowód. Pokażemy, że (1) dowolne dwa różne wielomiany stopnia mniejszego niż t w P są różne także w \mathcal{G} oraz, że w (2) P jest co najmniej $\binom{t+\ell}{t-1}$ różnych wielomianów stopnia mniejszego niż t.

(1) Niech $f(X) \neq g(X) \in P$, deg(f), deg(g) < t. Załóżmy nie wprost, że f(X) = g(X) w F. Niech Q(Y) = f(Y) - g(Y). Wiemy, że $f(X) \neq g(X)$, więc Q(Y) nie jest wielomianem zerowym. Weźmy dowolne $i \in I$. Z lematu ?? wiemy, że i jest introspektywne dla dowolnego wielomianu z P, więc też dla dowolnego wielomianu w \mathcal{G} . Mamy więc $(f(X))^i = (g(X))^i$ i $f(X^i) = g(X^i)$ w F. Oznacza to, że dla każdego $i \in I$ X^i jest pierwiastkiem Q(Y) w F, czyli też dla każdego $i' \in G$ $X^{i'}$ jest pierwiastkiem Q(Y) w F. Załóżmy nie wprost, że istnieją $i < i' \in G$ takie, że $X^i = X^{i'}$ w F. Mamy więc $h(X)|X^i$ w \mathbb{F}_p lub $X^{i-i'} = 1$. Pierwszy argument tej dysjunkcji jest w oczywisty sposób nieprawdziwy, a drugi jest sprzeczny z lematem

- ??. Znaleźliśmy więc |G| = t pierwiastków Q(Y) w F więc Q(Y) jest wielomianem zerowym w F lub deg(Q) > t, zatem doszliśmy do sprzeczności z założeniem.
- (2) Z założeń mamy $\ell = \lfloor \sqrt{\phi(r)} \log n \rfloor < \sqrt{r} \log n$ oraz $o_r(n) > \log^2 n$. Ponieważ $r > o_r(n)$, otrzymujemy

$$\ell < \sqrt{r} \log n < r < p$$
.

W połączeniu z deg(h) > 1 mamy wniosek że dla dowolnych $0 \le i < j \le \ell \ X + i \ne X + j$ w F oraz X + i i X + j są niezerowe.

Z lematu ?? otrzymujemy wniosek, że w P, a co za tym idzie także w \mathcal{G} , jest co najmniej $\binom{t+\ell}{\ell+1} = \binom{t+\ell}{t-1}$ różnych wielomianów stopnia mniejszego niż t. Stąd $|\mathcal{G}| \geq \binom{t+\ell}{t-1}$.

Lemat 23. Jeśli $n \neq p^e$, $e \in \mathbb{N}$, to $|\mathcal{G}| \leq n^{\sqrt{t}}$.

Dowód. Weźmy $I' = \{(\frac{n}{p})^i \cdot p^j \mid 0 \leq i, j \leq \lfloor \sqrt{t} \rfloor \} \subset I$. Ponieważ n nie jest potęgą $p, i \neq i', j \neq j' \Rightarrow (\frac{n}{p})^i \cdot p^j \neq (\frac{n}{p})^{i'} \cdot p^{j'}$. Mamy więc $|I'| = (\lfloor \sqrt{t} \rfloor + 1)^2 > t$. Ponieważ |G| = t, istnieją takie $i_1 < i_2 \in I'$, że $i_1 = i_2 \pmod{r}$. W połączeniu z $X^r = 1 \pmod{X^r - 1}$ otrzymujemy $X^{i_1} = X^{i_2} \pmod{X^r - 1}$, a więc i $X^{i_1} = X^{i_2} \pmod{X^r - 1}$, p). Weźmy dowolny wielomian $f(X) \in P$. Z lematu ?? mamy $(f(X))^{i_1} = f(X^{i_1}) = f(X^{i_2}) = f(X)^{i_2} \pmod{X^r - 1}$, p). Czyli dowolny $f(X) \in \mathcal{G}$ jest pierwiastkiem wielomianu $Q(X) = Y^{i_1} - Y^{i_2}$ w F. Skoro $\mathcal{G} \subset F$, to Q(X) ma co najmniej $|\mathcal{G}|$ różnych pierwiastków w F oraz $deg(Q) = i_2 \leq (\frac{n}{p} \cdot p)^{\lfloor \sqrt{t} \rfloor} \leq n^{\sqrt{t}}$. Otrzymujemy więc $|\mathcal{G}| \leq n^{\sqrt{t}}$.

Twierdzenie 15. Niech $n \in \mathbb{N}$, $n \geq 2$ będzie liczbą podaną na wejściu algorytmu. Jeśli n jest liczbą pierwszą algorytm zwróci PIERWSZA.

Dowód. Ponieważ n jest liczbą pierwszą, algorytm nie zwróci ZLOŻONA w kroku I i III. Z lematu ?? wiemy, że dla każdego $1 \le a < n$ zachodzi $(X+a)^n = X^n + a \pmod{X^r-1}$, n), więc algorytm się nie zakończy w kroku V. Ostatecznie algorytm zwróci PIERWSZA w kroku IV lub VII.

Twierdzenie 16. Niech $n \in \mathbb{N}$, $n \geq 2$ będzie liczbą podaną na wejściu algorytmu. Jeśli algorytm zwróci PIERWSZA, to n jest pierwsza.

Dowód. Algorytm może zwrócić PIERWSZA tylko w kroku IV i VII.

(1) Jeśli algorytm zakończył wykonanie w kroku IV, to $r \geq n$, oraz

$$\forall_{2 \leq a \leq r} NWD(a, n) = n \vee NWD(a, n) = 1.$$

Oznacza to, że nie istnieje $2 \le a < n$ będące właściwym dzielnikiem n, więc n jest pierwsze.

(2) Załóżmy nie wprost, że algorytm zakończył wykonanie w kroku VII, zwracając PIERWSZA i n jest złożona. Ponieważ algorytm nie zakończył się w kroku I, wiemy, że n nie jest potęgą żadnej liczby naturalnej, w szczególności nie istnieją takie p <

 $n,k\in\mathbb{N},$ gdzie p jest pierwsze, że $n=p^k$. W kroku II zostaje wybrane najmniejsze takie r, że $o_r(n)>log^2n$. Ponadto z niespełnionego warunku w kroku III wiemy, że dla $1\leq a\leq r$ zachodzi NWD(a,n)=1, w szczególności NWD(r,n)=1. Z warunku w kroku IV i V mamy n>r oraz $\forall_{1\leq a\leq \lfloor \sqrt{\phi(r)}\log n\rfloor}\,(X+a)^n=X^n+a\ (mod\ X^r-1,n).$ Z założenia, że n jest liczbą złożoną wiemy, że istnieje p, będące pierwszym dzielnikiem n. Mamy więc $n,r,p\in\mathbb{N},$ spełniające założenia w definicji ??. Weźmy zdefiniowany w niej zbiór $\mathcal{G}.$ Na mocy lematu ?? mamy nierówność $|\mathcal{G}|\geq {t+\ell\choose t-1}$ oraz z lematu ?? oraz definicji ?? zachodzi $t>log^2n,\ \ell=\lfloor\sqrt{\phi(r)}log\ n\rfloor$. Możemy więc wywnioskować nierówność

$$\begin{split} &|\mathcal{G}| \geq \binom{t+\ell}{t-1} \\ &\geq \binom{\lfloor \sqrt{t} \log n \rfloor + 1 + \ell}{\ell+1} \quad \text{Z } t > \log^2 n \text{ mamy } t \geq \lfloor \sqrt{t} \log n \rfloor + 1. \\ &= \binom{\lfloor \sqrt{t} \log n \rfloor + 1 + \ell}{\lfloor \sqrt{t} \log n \rfloor} \\ &\geq \binom{2\lfloor \sqrt{t} \log n \rfloor + 1}{\lfloor \sqrt{t} \log n \rfloor} \quad \text{Z } \ell = \lfloor \sqrt{\phi(r)} \log n \rfloor \text{ oraz lematu } ?? \text{ otrzymujemy } \ell \geq \lfloor \sqrt{t} \log n \rfloor. \\ &> 2^{\lfloor \sqrt{t} \log n \rfloor + 1} \quad \text{Z lematu } ??. \\ &\geq 2^{\sqrt{t} \log n} \\ &= n^{\sqrt{t}}. \end{split}$$

Mamy więc $|\mathcal{G}| > n^{\sqrt{t}}$ oraz, ponieważ n nie jest potęgą liczby pierwszej, z lematu $?? |\mathcal{G}| \leq n^{\sqrt{t}}$. Otrzymaliśmy sprzeczność, więc n nie jest liczbą złożoną.

Twierdzenie 17. Algorytm zwróci PIERWSZA wtw, gdy n jest liczbą pierwszą.

 $Dow \acute{o}d$. W twierdzeniach $\ref{eq:condition}$ i $\ref{eq:condition}$ udowodniliśmy implikacje w dwie strony, skąd wynika teza. \Box

3.3. Złożoność obliczeniowa

Twierdzenie 18. Zlożoność obliczeniową algorytmu można ograniczyć asymptotycznie poprzez $O(\log^{\frac{21}{2}} n \cdot \log \log n)$.

Dowód. Przeanalizujmy kolejne kroki algorytmu pod kątem złożoności obliczeniowej.

(krok 1.) W kroku 1. algorytm sprawdzi dla wszystkich możliwych wartości b, których jest nie więcej niż $\log n$, czy dla pewnego a zachodzi $a^b = n$. Do znalezienia możliwego wykładnika a użyć można wyszukiwania binarnego dla wartości od 2 do n. Sprawdzenie możliwego a wykonane w wyszukiwaniu binarnym będzie wymagało $\log b$ operacji na liczbach długości nie większej niż $\log n$. Mamy więc ograniczenie złożoności kroku pierwszego $O(\log n \cdot (\log n \cdot (\log b \cdot \log n))) = O(\log^n \cdot \log \log n)$.

(krok 2.) Z lematu ?? wiemy, że istnieje $r \leq max\{3, \lceil log^5n \rceil\}$. Dla potencjalnych $O(log^5n)$ wartości r, algorytm sprawdzi $O(log^2n)$ kolejnych potęg n i przyrówna je do 1 modulo r. Dla kroku 2. otrzymujemy więc ograniczenie złożoności $O(log^5n \cdot (log^2n \cdot log r)) = O(log^7n \cdot log log n)$.

(krok 3.) Dla możliwych O(r) wartości a wystarczy obliczyć NWD(a,n). Algorytm Euklidesa pozwala znaleźć NWD(a,n) w czasie $O(\log n + \log^2 r)$, gdzie pierwszy składnik sumy odpowiada pierwszej operacji policzenia a modulo n, po czym algorytm będzie wykonywał się na liczbach nie większych niż r. Mamy więc złożoność kroku 3. ograniczoną przez $O(r \cdot (\log n + \log^2 r)) = O(\log^2 n + \log n \cdot \log^2 \log n)$).

(krok 4.) W kroku 4. zostaje wykonane tylko jedno porównanie na liczbach długości nie większej niż n, więc ogólnym ograniczeniem złożoności kroku jest $O(\log n)$.

(krok 6.) Dla danego a algorytm obliczy wartość $(X+a)^n-X^n+a$ modulo X^r-1, p . Obliczenie $(X+a)^n$ modulo X^r-1, p wykonane być może za pomocą wykorzystania szybkiej transformaty Fouriera w czasie $O(r \cdot \log n \cdot \log n)$, gdzie ostatni czynnik $\log n$ odpowiada za złożoność wykonania operacji na współczynnikach długości $\log n$. Mamy więc ograniczenie kroku 6. jako $O(\log^7 n)$ (krok 5.) W kroku 5. wykonany zostanie krok 6. $\lfloor \sqrt{\phi(n)} \log n \rfloor$. Mamy więc złożoność obliczeniową kroku 5. $O(\sqrt{\phi(r)} \log n \cdot \log^7 n) \subseteq O(\sqrt{r} \log n \cdot \log^7 n) \subseteq O(\log^{\frac{5}{2}} n \cdot \log^8 n) \subseteq O(\log^{\frac{21}{2}} n)$.

Suma złożoności wszystkich kroków jest zdominowana przez złożoność kroku 5., więc złożoność całego algorytmu można ograniczyć przez $O(\log^{\frac{21}{2}}n)$.

Rozdział 4.

Implementacja