Functional analysis

Sudip Sinha

March 26, 2020

i

Contents

Part 1 Preliminaries	1
1.1 Relationships between structures	2
1.2 Strong, weak and weak* convergence	4
Part 2 Hilbert spaces	6
2.1 Basics	7
Part 3 Operator theory	8
3.1 Elementary ideas	9
3.1.1 Intuition	9
3.1.2 Projection operators	10
3.2 Optimization	11
3.2.1 Duality in optimization is the same as duality in functional analysis	11
Bibliography	12

Part 1

PRELIMINARIES

1.1 Relationships between structures

Let *X* be a set.

Definition 1.1

- 1. A basis of a topology is is a collection $\mathcal B$ of subsets of X satisfying the following properties:
 - *i.* (cover) The base elements cover X.
 - ii. (intersection) For every $B_1, B_2 \in \mathcal{B}$, if $x \in B_1 \cap B_2$, then there is a $B_x \in \mathcal{B}$ such that $x \in B_x \subseteq B_1 \cap B_2$.
- 2. A metric is a function $d(\cdot, \cdot): X \times X \to [0, \infty)$ such that for all vectors $x, y, z \in X$, we have
 - *i.* (identity of indiscernibles) d(x, y) = 0 iff x = y.
 - ii. (symmetry) d(x,y) = d(y,x).
 - iii. (triangle inequality) $d(x,z) \le d(x,y) + d(y,z)$.
- 3. A norm is a function $\|\cdot\|: X \to [0, \infty)$ such that for all vectors $x, y \in X$ and scalar $\alpha \in \mathbb{C}$, we have
 - *i.* (identity of indiscernibles) ||x|| = 0 iff x = 0.
 - ii. (scaling) $\|\alpha x\| = |\alpha| \|x\|$.
 - iii. (triangle inequality) $||x + y|| \le ||x|| + ||y||$.
- 4. An inner product is a function $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{C}$ such that for all vectors $x, y, z \in X$ and scalar $\alpha \in \mathbb{C}$, and we have
 - *i.* (positive-definiteness) $\langle x, x \rangle \ge 0$ and $\langle x, x \rangle = 0$ iff x = 0.
 - ii. (conjugate symmetry a.k.a. Hermitian) $\langle x, y \rangle = \overline{\langle y, x \rangle}$.
 - *iii.* (sesquilinearity) $\langle \alpha x + y, z \rangle = \alpha \langle x, z \rangle + \langle y, z \rangle$.

Proposition 1.2 *Inner product* \Longrightarrow *norm* \Longrightarrow *metric* \Longrightarrow *topology.*

Proof.

- A. *inner product* \Longrightarrow *norm*. Define the norm as $\|\cdot\| = \sqrt{\langle \cdot, \cdot \rangle}$.
 - i. $||x|| = 0 \iff ||x||^2 = 0 \iff \langle x, x \rangle = 0 \iff x = 0 \text{ using 4.i.}$
 - ii. $\|\alpha x\|^2 = \langle \alpha x, \alpha x \rangle = \langle \overline{\alpha} \alpha x, x \rangle = \overline{\alpha} \alpha \langle x, x \rangle = |\alpha|^2 \|x\|^2$ using 4.ii and 4.iii.
 - iii.

$$||x + y||^{2} = \langle x + y, x + y \rangle$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle \qquad [4.iii]$$

$$= ||x||^{2} + \langle x, y \rangle + \overline{\langle x, y \rangle} + ||y||^{2} \qquad [4.ii]$$

$$= ||x||^{2} + 2\Re \langle x, y \rangle + ||y||^{2}$$

$$\leq ||x||^{2} + 2|\langle x, y \rangle| + ||y||^{2}$$

$$\leq ||x||^{2} + 2||x|| ||y|| + ||y||^{2} \qquad [1.2]$$

$$= (||x|| + ||y||)^{2}.$$

- B. *norm* \Longrightarrow *metric*. Define the metric as d(x,y) = ||x-y||.
 - i. $d(x, y) = 0 \iff ||x y|| = 0 \iff x y = 0 \iff x = y \text{ using 3.i.}$
 - ii. d(x,y) = ||x y|| = ||-(y x)|| = |-1| ||y x|| = d(y,x) using 3.ii.
 - iii. $d(x,z) = ||x-z|| = ||(x-y) + (y-z)|| \le ||x-y|| + ||y-z|| = d(x,y) + d(y,z)$ using 3.iii.
- C. $metric \implies topology$. Define the basis of the topology as open balls of the form

$$D_r(x_0) = \{x \in X \mid d(x, x_0) < r\}, \quad x_0 \in X, r > 0.$$

That is, $\mathcal{T} = \tau(\mathcal{B})$, where $\mathcal{B} = \{D_r(x_0) \mid x_0 \in X, r > 0\}$.

All we have to do is show that \mathcal{B} is a basis. The cover is obvious. Note that for any $B_1, B_2 \in \mathcal{B}$, we can write $B_1 = D_{r_1}(x_1), B_2 = D_{r_2}(x_2)$. Suppose $x \in B_1 \cap B_2$. Then $x \in D_r(x) \subseteq D_{r_1}(x_1) \cap D_{r_2}(x_2)$ if $r \le \min\{r_1 - d(x, x_1), r_2 - d(x, x_2)\}$, and we are done.

The topology induced by the metric is called the *metric topology*.

1.2 Strong, weak and weak* convergence

Disclaimer: This section is shamelessly copied from Christopher Heil's notes.

Definition 2.1 Let X be a normed vector space, and $x_n, x \in X$. We define the following convergences as $n \to \infty$.

$$(strong) x_n \to x \Longleftrightarrow ||x_n - x|| \to 0$$

$$(weak) x_n \overset{w}{\to} x \Longleftrightarrow \forall \phi \in X^*, (x_n - x, \phi) \to 0$$

Definition 2.2 Let X be a normed vector space, and $\phi_n, \phi \in X^*$. We define the following convergences as $n \to \infty$.

$$\begin{array}{lll} (strong) & \phi_n \to \phi & \iff & \|\phi_n - \phi\| \to 0 \\ \\ (weak) & \phi_n \overset{w}{\to} \phi & \iff & \forall \xi \in X^{**}, \quad (\phi_n - \phi, \xi) \to 0 \\ \\ (weak^*) & \phi_n \overset{w^*}{\to} \phi & \iff & \forall x \in X, \quad (x, \phi_n - \phi) \to 0 \end{array}$$

Remark 2.3 *Weak* convergence is simply* pointwise convergence *for the functionals* ϕ_n .

Proposition 2.4 (strong \Rightarrow weak* for convergence) Suppose ϕ_n , $\phi \in X^*$.

Then
$$\phi_n \to \phi \Longrightarrow \phi_n \stackrel{w}{\to} \phi \Longrightarrow \phi_n \stackrel{w^*}{\to} \phi$$
.

The second implication reverses if X is reflexive.

Proof. strong
$$\Longrightarrow$$
 weak: $(x_n - x, \phi) \le ||x_n - x|| ||\phi|| \to 0.$ weak \Longrightarrow weak*: $(x, \phi_n - \phi) = (\phi_n - \phi, x^{**}) \to 0.$

The claim about the reverse implication is now obvious.

Counterexample for converse of the first implication: Suppose $X = \ell^2(\mathbb{N})$. Then $e_n \stackrel{w}{\to} 0$, but $||e_n - 0|| = 1 \to 0$.

Proposition 2.5 In Hilbert spaces, weak convergence plus convergence of norms $(\|x_n\| \to \|x\|)$ is equivalent to strong convergence.

Proof.
$$||x_n - x||^2 = \langle x_n - x, x_n - x \rangle = \langle x_n - x, x_n \rangle - \langle x_n - x, x \rangle \to 0.$$

Proposition 2.6 Let H and K be Hilbert spaces, and let $T \in B(H, K)$ be a compact operator.

Show that
$$x_n \stackrel{w}{\to} x \Longrightarrow Tx_n \to Tx$$
.

Thus, a compact operator maps weakly convergent sequences to strongly convergent sequences.

Proof. Disclaimer: Stolen from MSx1142451.

 $Tx_n \stackrel{w}{\to} Tx$ by continuity. Thus if any subsequence has a strong limit, it certainly is Tx. But compactness guarantees every subsequence has a subsequence that converges to something: that something is Tx by uniqueness, and so by our above equivalence with convergence, we have $Tx_n \to Tx$.

Part 2

HILBERT SPACES

2.1 Basics

In what follows, $(H, \langle \cdot, \cdot \rangle)$ is a Hilbert space, and we write $x \perp y$ iff $\langle x, y \rangle = 0$.

Theorem 1.1 (Pythagorean) If $x, y \in H$ and $x \perp y$, then $||x + y||^2 = ||x||^2 + ||y||^2$.

Proof.

$$||x + y||^2 = \langle x + y, x + y \rangle$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

$$= ||x||^2 + ||y||^2.$$

Theorem 1.2 (Cauchy–Schwarz inequality) If $x, y \in H$, then $|\langle x, y \rangle| \le ||x|| ||y||$.

Proof. (norm expansion) Note that $0 \le \|x - \lambda y\|^2 = \|x\|^2 - 2\Re\left(\overline{\lambda}\langle x, y\rangle\right) + |\lambda|^2 \|y\|^2$, so if we take $\lambda = \frac{\langle x, y\rangle}{\|y\|^2}$, we get $0 \le \|x\|^2 - \frac{|\langle x, y\rangle|^2}{\|y\|^2}$, which gives us the required result. \square

Proof. (*projection*) Note that we can write $x = x_{\parallel} + x_{\perp}$, where x_{\parallel} is the component of x in the direction of y and x_{\perp} is the component of x in the direction perpendicular to y. Explicitly, $x_{\parallel} = \langle x, \hat{y} \rangle \hat{y} = \langle x, y \rangle \frac{y}{\|y\|^2}$. Using the Pythagorean theorem (1.1), we get

$$||x||^2 = ||x_{\parallel}||^2 + ||x_{\perp}||^2 \ge ||x_{\parallel}||^2 = \frac{|\langle x, y \rangle|^2}{||y||^2}.$$

Theorem 1.3 (Riesz–Fischer) $L^p(X, \mu)$ *is complete for* $p \in [0, \infty]$.

Proof. Let (f_n) be a Cauchy sequence in L^p . We have to show that there exists $f \in L^p$ such that $f_n \to f$ in L^p .

Since (f_n) is Cauchy, for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for every n, m > N, we have $\|f_n - f_m\|_p < \varepsilon$. Therefore, there exists a subsequence (f_{n_k}) such that $\|f_{n_{k+1}} - f_{n_k}\|_p < 2^{-(k+1)}$ for every $k \in \mathbb{N}_0$, where we adopt the convention that $f_{n_0} \equiv 0$.

Note that $f_{n_k} = \sum_{i=0}^{k-1} (f_{n_{i+1}} - f_{n_i})$ for each $k \in \mathbb{N}$.

Define $f = \sum_{j=0}^{\infty} \left(f_{n_{j+1}} - f_{n_j} \right)$. Clearly, $f_{n_k} \to f$ pointwise. Moreover, if $g = \sum_{j=0}^{\infty} \left| f_{n_{j+1}} - f_{n_j} \right|$, then $\left| f_{n_k} \right| \le g$ and $\left\| g \right\|_p \le \sum_{j=0}^{\infty} \left\| f_{n_{j+1}} - f_{n_j} \right\|_p \le 1$ using the triangle inequality. Therefore, by Lebesgue's dominated convergence theorem, $f_{n_k} \to f$ in L^p . Similar to g, we get $\left\| f \right\|_p \le 1$, showing $f \in L^p$. All that is left to show is that $f_n \to f$ in L^p . Using the fact that the sequence is Cauchy, we get

$$||f_n - f||_p \le ||f_n - f_{n_k}||_p + ||f_{n_k} - f||_p \to 0 \text{ as } n \to \infty.$$

Part 3

OPERATOR THEORY

3.1 Elementary ideas

A great source is Trace class operators and Hilbert-Schmidt operators by Jordan Bell.

Intuition 3.1.1

On a separable Hilbert space, we have

- $ightharpoonup T \in \mathcal{B}^{\infty} \Longleftrightarrow \lambda \in \ell^{\infty} \text{ (bounded)}$ Example $I: \ell^2 \to \ell^2: e_n \mapsto e_n$.
- $ightharpoonup T \in \mathcal{B}_0 \Longleftrightarrow \lambda \in c_0 \text{ (compact)}$
- Example $T: \ell^2 \to \ell^2: e_n \mapsto \frac{1}{\sqrt{n}} e_n$.
- $ightharpoonup T \in \mathbb{B}^2 \Longleftrightarrow \lambda \in \ell^2 \text{ (Hilbert-Schmidt)}$ Example $T: \ell^2 \to \ell^2: e_n \mapsto \frac{1}{n}e_n$.
- $ightharpoonup T \in \mathcal{B}^1 \Longleftrightarrow \lambda \in \ell^1 \text{ (trace-class)}$ Example $T: \ell^2 \to \ell^2: e_n \mapsto \frac{1}{n^2}e_n$.
- $\begin{array}{c} \vdash T \in \mathcal{B}_{00} \Longleftrightarrow \lambda \in c_{00} \text{ (degenerate or finite rank)} \\ \text{Example } T: \ell^2 \to \ell^2: e_n \mapsto \alpha_n e_n \mathbb{1}_{[N]}(n) \text{ for } \alpha_n \in \mathbb{C} \text{ and } N \in \mathbb{N}. \end{array}$

Since the dual of c_0 is ℓ^1 and the dual of ℓ^1 is ℓ^{∞} , we have $\mathcal{B}_0^* = \mathcal{B}^1$ and $(\mathcal{B}^1)^* = \mathcal{B}^{\infty}$. Similarly, $(\mathcal{B}^2)^* = \mathcal{B}^2$.

Theorem 1.2 (Operator inclusions) $\mathcal{B}_{00} \subset \mathcal{B}^1 \subset \mathcal{B}^2 \subset \mathcal{B}_0 \subset \mathcal{B}^{\infty}$

Proof.

- Trivial

- ((<BMC2009>), Proposition 4.6) If *T* is unbounded, we can find a sequence of unit vectors (e_n) such that $||Te_n|| \nearrow \infty$. So Te_n cannot have a convergent subsequence, for if $Te_n \to x$, then $||Te_n|| \to ||x||$.

Proposition 1.3 For $T \in \mathcal{B}^{\infty}$, $||T||_{\infty} = \sup\{|\langle Tx, y \rangle|\} : ||x|| = 1$, ||y|| = 1.

Proof.

(
$$\leq$$
) Since $||Tx|| = \frac{||Tx||^2}{||Tx||} = \frac{\langle Tx, Tx \rangle}{||Tx||} = \langle Tx, \frac{Tx}{||Tx||} \rangle$, we have $||T||_{\infty} = \sup \{||Tx|| : ||x|| = 1\} \le \sup \{|\langle Tx, y \rangle| : ||x|| = 1, ||y|| = 1\}$.

(
$$\geq$$
) Since $\langle Tx, y \rangle \leq ||Tx|| ||y|| \leq ||T||_{\infty} ||x|| ||y||$, we have
$$\sup \{|\langle Tx, y \rangle| : ||x|| = 1, ||y|| = 1\} \leq ||T||_{\infty}.$$

3.1.2 Projection operators

Proposition 1.4 $||P||_{\infty} \leq 1$.

Proof. Since
$$||Px||^2 = \langle Px, Px \rangle = \langle P^*Px, x \rangle = \langle PPx, x \rangle = \langle Px, x \rangle \leq ||Px|| \, ||x||$$
, we have $||P||_{\infty} \leq 1$.

Proposition 1.5 A projection operator is compact iff its image is finite dimensional.

Proof.

- (⇒) Let $P: H \to H$ be a projection operator, so that $P^2 = P$, or P(P I) = 0.
- (\Leftarrow) Since the image is finite dimensional, fix an orthonormal basis $e_1, ..., e_n$ of im T.

3.2 Optimization

3.2.1 Duality in optimization is the same as duality in functional analysis

For an various intuitions of duality in optimization, see MSx223235.

Let X and Y be Banach spaces, and X^* and Y^* be their (algebraic?) duals. Consider the two problems, with ϕ_0, y_0 fixed. Here (\cdot, \cdot) denotes the canonical duality pairing.

See the following diagram for more details.

$$x \longmapsto \begin{array}{c} x \longmapsto T \\ x \in X & \xrightarrow{T} & y_0 \\ \downarrow & \downarrow \\ \phi_0, T^* \psi \in X^* & \xrightarrow{T^*} & y_0^* \\ & & \uparrow \\ T^* \psi & \xrightarrow{T^*} & \psi \end{array} \Rightarrow \psi$$

BIBLIOGRAPHY