Aufgabe 1

Zeigen Sie konstruktiv, dass

- für jeden NFA M mit mehreren Startzuständen ein äquivalenter NFA M' mit nur einem Startzustand existiert bzw.
- für jeden NFA M mit mehreren Finalzuständen ein äquivalenter NFA M' mit nur einem Finalzustand existiert. Gilt die letzte Aussage auch für DFAs?

a)
$$M = \{Q, \Sigma, \delta, Q_0 F\}$$
 $q^* \in Q$

$$M' = (Q \cup \{q^*\}, \Sigma, \Delta', q^*, F)$$

$$\Delta'' = \{\delta\} \cup \{(q^*, \Sigma, q) | q \in Q_0\}$$
6) M analog
$$M' = \{Q \cup \{q^*\}, \Sigma, \Delta'', Q_0, q^*\}$$

$$\Delta'' = \{\delta\} \cup \{(q, \Sigma, q^*) | q \in F\}$$

miro

Aufgabe 2

Sei L eine reguläre Sprache über einem mindestens zweielementigen Alphabet Σ . Zeigen Sie, dass die folgenden Sprachen regulär sind:

- (a) $L_1 = \{x \in L : \text{es gibt kein } y \in \Sigma^+, \text{ so dass } xy \in L\}$
- (b) $L_2 = \{x \in L : \text{kein echtes Präfix von } x \text{ liegt in } L\}$

$$M' = \{Q, \xi, \delta', Q_0, F\}$$

 $\delta'(q, u) = \{L, f, u, g, \xi\}$
 $\delta'(q, u) = \{S(q, u), g, g, \xi\}$

mire

Aufgabe 3

Konstruieren Sie zu dem grafisch angegebenen ε -NFA $\mathcal{M}=(Q,\Sigma,\delta,\{q_0\},F)$ einen äquivalenten NFA \mathcal{M}' . Beschreiben Sie die Komponenten beider Automaten.

miro

miro

