MATH 223 Linear Algebra

Oct 4,2016

Vector Spaces & Subspaces

Pol (K): set of all polynomials with wefficients in a field K

$$\left\{ \begin{array}{ll} P(t) = a_o + a_i t + \dots + a_n t^n, \\ \\ \text{where } a_i, \dots, a_n \in K, n \text{ arbitrary} \end{array} \right\}$$

deg (P(t)) = largest n s.t.
$$a_n \neq 0$$

ex. deg (I + t + $0 \cdot t^2 + t^3 + o \cdot t^4$)=3
deg (0) = DNE or $-\infty \leftarrow not$ important

addition
$$\begin{cases} (2-t+t^2)+(2t-t^3)=2+t & \text{Pol}(K) \\ \text{multiplication} & \text{vector space} \\ 3(1+t)=3+3+3t^2 & \text{over } K \end{cases}$$

Have to check axioms

Fun (X, K): set of all functions from } vector space a (non-empty) set X to a field K) over K

Have to check axioms

when X finite, it is like tuples X infinite, things get nice Recull:

Theorem: let V vector space over a field K

Then a subset W C V is a subspace IFF

- (i) 0 ∈ W
- (ii) $u, v \in W \Rightarrow u + v \in W$
- (iii) keK, ueW => kueW

 $\underline{\varepsilon}x$. Pol_n (K): set of all polynomials of degree $\leq n$

Claim: Subspace of Pol(K) { P(t) = a0+a,t+...+anth:

- ○ ← Pol_n (K)
- 3 $k \in K$, $P \in Pol_n(K)$ $\leq n$ $\Rightarrow deg(kP) = deg(P)(k \neq 0)$

Ex. subspaces of Fun ([a,b], R)

- continuous functions [a,b] R
- differentiable functions [a,b] → R

V: vector space over K
What are the subspaces?
ex. {0} & V

ex.
$$\{0\}$$
 & V

ex. $u \in V$ vector

 $\{u \} = \{ku : k \in K\}$

Subspace

 $0 = 0 \cdot u$
 $\{ku, lu = ku + lu = (k+l)u\}$
 $\{k(lu) = (kl)u\}$

Ex. W_1 , W_2 subspaces \Rightarrow $W_1 \cap W_2$ subspace

① $O \in W_1 \cap W_2 \vee \sin \alpha$ $O \in W_1$, $O \in W_2$ ② $u, v \in W_1 \cap W_2 \vee u, v \in W_1 \Rightarrow u + v \in W_1$ $u, v \in W_2 \Rightarrow u + v \in W_2$ $\therefore u + v \in W_1 \cap W_2$

③ k ∈ K , u ∈ W, ∩ W₂
 ⇒ ku ∈ W, , ku ∈ W₂
 ⇒ ku ∈ W, ∩ W₂

True/False: W_1 , W_2 subspaces $\Rightarrow W_1 \cup W_2$ Subspace? $V = \mathbb{R}^2$ (vector space over \mathbb{R}) $W_1 = \{ (x,0) : x \in \mathbb{R} \}$ $W_2 = \{ (0,y) : y \in \mathbb{R} \}$ $W_1 \cap W_2 = \{ (0,0) \}$

$$W_1 \cap W_2 = \{(0,0)\}$$
 $W_1 \cup W_2 = ?$

- (0,0) (W, U Wz
- (2) $u_1 v \in W_1 \cup W_2 \neq u_1 v \in W_1 \cup W_2$ counter: $(1,0) \in W_1$, $(0,1) \in W_2$ but $(1,1) \notin W_1 \cup W_2 \notin$
- 3 k ∈ R, u ∈ W, U W₂

 ⇒ ku ∈ W, U W₂
- :. W, U Wz not a subspace

Theorem: W., We subspaces. Then TFAE:

(the following are equivalent)

- (i) $W_1 \cup W_2$ subspace (ii) either $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$ } $i \Leftrightarrow ii$
 - Proof: [i > ii by contradiction
- Say $W_1 \subseteq W_2$. Then $W_1 \cup W_2 = W_2$ and W_2 is a subspace (by hypothesis) $: W_1 \cup W_2$ is a subspace.
- Assume ii does not hold, i.e. $W_1 \neq W_2$ $\underline{AND} \quad W_2 \neq W_1$

$$Vick \quad \omega_1 \in W_1 , \ \omega_1 \notin W_2$$

$$\omega_2 \in W_2 , \ \omega_2 \notin W_1$$

Say
$$w_1 + w_2 \in W_1$$
 $\Rightarrow w_2 \in W_1 \nsubseteq$ but $w_1 \in W_1$ \Rightarrow controdiction

Define
$$W_1 + W_2 = \{ w_1 + w_2 : w_1 \in W_1 \\ w_2 \in W_2 \}$$

Theorem:

- (i) W1 + W2 subspace
- (ii) W, + Wz Contains W, and Wz
- (iii) W, + W smallest subspace containing W, and W2

Proof:

(2)
$$\omega_1 + \omega_2 \in W_1 + W_2$$
 \Rightarrow $(\omega_1 + \omega_2) + (\omega_1' + \omega_2')$ $\omega_1' + \omega_2' \in W_1 + W_2$ $= (\omega_1 + \omega_1') + (\omega_2 + \omega_2')$ $\in W_1$

3 Scalar multiplication: Exercise

Given arbitrary
$$\omega_1 \in W_1$$
 $\omega_1 = \omega_1 + 0 \in W_1 + W_2$
 $\in W_2$