Midterm Result

Yiying Wu (yw3996)

Exploratory analysis and data visualization

In this section, use appropriate visualization techniques to explore the dataset and identify any patterns or relationships in the data.

Summary statistics

Table 1: Summary of Dataset

Characteristic	$N=3,\!000^{1}$
age	60.0 (57.0, 63.0)
${f gender}$	
male	1,544 (51%)
female	1,456 (49%)
race	
White	1,967~(66%)
Asian	$158 \ (5.3\%)$
Black	604 (20%)
Hispanic	271 (9.0%)
$\mathbf{smoking}$	
Never smoked	1,822 (61%)
Former smoker	859 (29%)
Current smoker	319 (11%)
height	169.9 (166.0, 173.9)
weight	80 (75, 85)
bmi	$27.65\ (25.80,\ 29.50)$
hypertension	1,492 (50%)
diabetes	463 (15%)
SBP	$130\ (125,\ 136)$
LDL	110 (97, 124)
vaccine	
Not vaccinated	1,212 (40%)
Vaccinated	$1,788 \ (60\%)$
severity	
Not severe	2,679 (89%)
Severe	$321 \ (11\%)$
study	
\mathbf{A}	2,000~(67%)
В	1,000 (33%)
${\bf recovery_time}$	39 (31, 49)

 $^{^{1}\}mathrm{Median}$ (IQR); n (%)

Histogram of age

Histogram of height

bmi

Histogram of recovery_time

correlation plot

Model training

In this section, describe the models you used to predict the time to recovery from COVID-19. Briefly state the assumptions made by using the models. Provide a detailed description of the model training procedure and how you obtained the final model.

Outcome: recovery_time

Partition the dataset into two parts: training data (80%) and test data (20%).

```
set.seed(666)
data_split <- initial_split(dat, prop = 0.8)

# Extract the training and test data
training_data <- training(data_split)%>% select(-id,-gender)
x_train <- training_data %>% select(-recovery_time)
y_train <- training_data$recovery_time

testing_data <- testing(data_split)%>% select(-id,-gender)
x_test <- testing_data %>% select(-recovery_time)
y_test <- testing_data$recovery_time

# ctrl
ctrl <- trainControl(method = "cv", number = 10)</pre>
```

Multivariate Adaptive Regression Spline (MARS) Model


```
# both number of terms and product degree are upper bounds
# best tune
model.mars$bestTune
```

```
## nprune degree
## 23 5 2
```

coef(model.mars\$finalModel)

(Intercept) h(31-bmi)

Estimated degrees of freedom:

GCV score: 384.8296

1.00 1.75 1.00 8.56 7.24 2.81 total = 34.36

```
-3.1983530
                                                 6.3999877
##
##
           h(bmi-31) * studyB
                                               h(bmi-25.2)
##
                   25.6820131
                                                 7.9260754
## h(weight-86.4) * h(bmi-31)
                   -0.6277843
test error
mars.pred <- predict(model.mars, newdata = x_test)</pre>
test_error_mars <- mean((mars.pred - y_test)^2)</pre>
test_error_mars
## [1] 279.0367
RMSE_mars <- sqrt(test_error_mars)</pre>
RMSE mars
## [1] 16.70439
The MSE of MARS model is 279.037.
Generalized Additive Model (GAM)
set.seed(666)
model.gam <- train(x = x_train,</pre>
                   y = y_train,
                    method = "gam",
                    trControl = ctrl)
model.gam$bestTune
     select method
##
## 1 FALSE GCV.Cp
model.gam$finalModel
##
## Family: gaussian
## Link function: identity
##
## Formula:
## .outcome ~ hypertension + diabetes + vaccine + severity + study +
       male + smoking + race + s(age) + s(SBP) + s(LDL) + s(bmi) +
##
       s(height) + s(weight)
##
```

degree of freedom=1 means linear # Plotting plot(model.gam\$finalModel)


```
# compute and report the test error
predictions <- predict(model.gam, x_test)
test_error <- mean((predictions - y_test)^2) # Mean Squared Error (MSE)
test_error # Reporting the test error</pre>
```

[1] 272.0012

The MSE of GAM model is 272.001

lasso model

Here's the selected tuning parameter when the minimal MSE rule is applied

lasso.fit\$bestTune

```
## alpha lambda
## 68 1 0.00912288
```

The best tuning parameter is 0.009

And the test error is

```
lasso.pred <- predict(lasso.fit, newdata = testing_data)
# test error
mean((lasso.pred - testing_data$recovery_time)^2)</pre>
```

```
## [1] 298.3018
```

The MSE of lasso model is 298.302

Elastic net model

Here's the selected tuning parameter

enet.fit\$bestTune

```
## alpha lambda
## 365 0.15 0.00367552
```

The best tuning parameter is 0.004

And the test error is

```
enet.pred <- predict(enet.fit, newdata = testing_data)
# test error
mean((enet.pred - testing_data$recovery_time)^2)</pre>
```

[1] 297.1645

The MSE of elastic net model is 297.164

Principal components regression (PCR)


```
# test MSE
mean((y_test - predy.pcr)^2)
## [1] 326.7915
```

Model Comparison

The MSE of pcr model is 326.792

compare the RMSE

```
##
## Call:
## summary.resamples(object = resamp)
##
## Models: mars, gam, lasso, enet, pcr
## Number of resamples: 10
##
## MAE
##
             Min. 1st Qu.
                             Median
                                        Mean 3rd Qu.
       11.10656 12.33992 12.52758 12.48434 12.95145 13.22857
         11.95625 12.48434 12.90413 13.04720 13.67832 14.43838
                                                                  0
## lasso 12.43438 13.34989 13.55761 13.60118 13.83628 14.80448
## enet 12.39331 13.33858 13.50760 13.56655 13.79648 14.79201
                                                                  0
         12.72240 13.31222 13.55369 13.74933 14.24483 15.34219
## pcr
                                                                  0
##
## RMSE
##
             Min. 1st Qu.
                             Median
                                        Mean 3rd Qu.
                                                          Max. NA's
        16.19940 17.79482 18.99934 18.90878 20.37825 21.13959
## mars
         16.42592 18.51665 20.36608 20.61337 23.26164 25.31540
                                                                  0
## lasso 16.52183 19.01349 19.42117 20.76489 22.92277 25.80218
## enet 16.49849 18.99457 19.38126 20.76102 22.93865 25.84811
                                                                  0
         17.82883 19.58486 20.79741 22.24532 24.69032 29.35286
## pcr
##
## Rsquared
##
               Min.
                       1st Qu.
                                  Median
                                              Mean
                                                     3rd Qu.
## mars 0.12610733 0.18362545 0.2804839 0.3515976 0.5442009 0.6258534
         0.11451833 0.18716669 0.2610268 0.2888378 0.3891996 0.4926768
## lasso 0.12468177 0.17202246 0.2314607 0.2404962 0.2896867 0.3926191
                                                                          0
## enet 0.12572956 0.17252601 0.2295363 0.2401820 0.2906342 0.3898855
                                                                          0
        0.05353634 0.09951385 0.1073118 0.1279829 0.1298992 0.2421886
## pcr
```

```
bwplot(resamp, metric = "RMSE")
```


The MARS model is preferred since it has a lower mean value of RMSE compared to other models.