Table des matières

1	Mic	roscop	pies optiques	2
	I	Le pri	incipe du microscope	3
		I.1	Présentation du dispositif	3
		I.2	Grossissement commercial	
		I.3	Eclairage de Köhler	4
	II	Limita	ations (trouver mieux pour le nom)	5
		II.1	Résolution latérale : critère de Rayleigh	5
		II.2	Profondeur de champ	5
		II.3	Aberrations (partie qui peut sauter)	5
	III	Micro	scopie à contraste de phase	5
		III.1	Principe	5

Leçon 1

Microscopies optiques

	Bibliographie de la leçon :		
Titre	Auteurs	Editeur (année)	ISBN
Les instruments d'optique	Luc Detwiller	Ellipses (1997)	
http://ressources.	M. Dahan	Vraiment bien	
agreg.phys.ens.fr/			
media/ressources/			
RessourceFichiers/			
11-Maxime_Dahan			
Microscopie_pour_la_			
biologie.pdf			
https://www.	Nikon		
nikonsmallworld.com/			
Les nouvelles microscopies	L. Aigouy	Belin	
Optique	Sylvain Houard	de Boeck	
Optique	Eugène Hecht	Pearson	
OPtique Physique	R. Taillet	de Boeck (2006)	

Commentaires des années précédentes :

- 2017: L'intérêt des notions introduites doit être souligné,
- **2016**: Une technique récente de microscopie optique à haute résolution doit être présentée,
- **2010** : La propagation guidée ne concerne pas les seules ondes électromagnétiques ou optiques. Il faut insister sur les conditions aux limites introduites par le dispositif de guidage.

Plan détaillé

Niveau choisi pour la leçon:

Prérequis:

- Optique géométrique : lentilles, construction images par une lentille
- Diffraction par un cercle

Déroulé détaillé de la leçon :

Introduction

L'homme a voulu voler, voir loin dans l'Univers mais aussi voir l'infiniment petit. On appelle microscopie l'ensemble des techniques permettant de rendre discernables et visuels des objets indiscernables à l'œil nu (environ 1 minute d'arc = 0.017° pour une vision 10/10 soit environ 100km de la surface de la Lune).

I Le principe du microscope

I.1 Présentation du dispositif

Faire le schéma du microscope.

L'objectif : lentille convergente de courte focale qui fait une image intermédiaire A_1B_1 de l'objet AB à aggrandir. L'oculaire : lentille convergente faisant une image à l'infini de A_1B_1 pour que l'œil qui s'y accole n'accomode pas. On doit donc avoir $O_2A_1 = -f_2'$.

I.2 Grossissement commercial

Grossissement oculaire : $G_{c,oc}$, rapport entre l'angle sous lequel est vu l'objet (A_1B_1) à travers l'oculaire et l'angle sous lequel est vu le même objet à travers $G_{c,oc} = \frac{\alpha'}{\alpha_1} = \frac{A_1B_1/f_2'}{A_1B_1/PP} = \frac{PP}{f_2'}$.

Grandissement objectif : ' $\gamma_{obj} = \frac{A_1 B_1}{AB} = -\frac{\Delta}{f_1'}$ par le théorème de Thalès+formule de conjugaison de Descartes.

Grandissement commercial:
$$G_c = \frac{\alpha'}{\alpha} = \frac{A_1 B_1 / f_2'}{AB/PP} = |\gamma_{obj}| G_{c,oc} = \frac{PP\Delta}{f_1' f_2'}$$

Le grossissement commercial d'un microscope est donné par :

$$G_{com} = |\gamma_{ob}|G_{oc} = \frac{\alpha'}{\alpha} \tag{1.1}$$

Expérience quantitative : Faire l'image d'une mire micrométrique par un microscope optique. Pour cela :

- utiliser une lampe quartz-iode/LED,
- 1 condenseur de 8 ou 12 cm pour focaliser l'umière sur la mire
- un microscope avec une mire micrométrique (pas 0.1mm),
- une lentille de focale 1m ou 150cm,
- fixer l'écran à la distance focale de la lentille,
- ajuster le microscope pour avoir une image nette sur l'écran

On mesure $\alpha' = \frac{Taille-objet-sur-l'ecran}{distance-objet-ecran}$ ainsi que les incertitudes associées.

On doit faire des traits bien droits pour la mesure de la distance à l'écran. Pour cela, prendre une feuille et la coller à l'écran, reproduire les traits sur la feuille. Faire la mesure à la règle proprement sur la feuille en traçant des angles droits.

En préparation, j'ai trouvé $G_{com} = 40.5(3)$ à comparer à 40. Bon ordre de grandeur, la valeur peut-être différente de 40, le microscope ne coûte pas cher et pas d'incertitudes sur la valeur du constructeur.

Slide :Montrer le nouveau microscope par rapport à celui de 1930 sur slide.

I.3 Eclairage de Köhler

Voir Wastiaux p130. En parler rapidement sur slide, montrer qu'on fait l'image du filament de la source à l'infini pour ne pas être gêné par celui-ci. Parler du diaphragme de champ et d'ouverture.

Transition: Est-ce que si je prends des focales f' ou infinement petites, je peux observer des choses infinement petites? On va voir que non car il y a des limitations.

II Limitations (trouver mieux pour le nom)

II.1 Résolution latérale : critère de Rayleigh

p136 Aigouy et Taillet p.227. Présenter l'ouverture numérique. Plus on augmente en Δk plus on est résolu en Δx . Faire des applications numériques voir Detwiller p110. Parler des objectifs à immersion en faisant un dessin.

II.2 Profondeur de champ

Faire le dessin avec trois points sources. Il faut diaphragmer pour améliorer la profondeur de champ.

II.3 Aberrations (partie qui peut sauter)

Sur slide? Parler des lentilles achromatiques, apochromatique.

Transition: Comment rendre visible des choses que ne le sont pas?

III Microscopie à contraste de phase

Voir TD Diffraction (2) Clément Sayrin.

Cette technique s'intéresse en particulier à des échantillons transparents dont les épaisseurs sont faibles Slide photos avec ou sans contraste de phase + photos microscopies Nikon. Elle a valu le prix Nobel à Frederik Zernike en 1953.

III.1 Principe

Voir Hecht p635. On envoie de la lumière sur un objet dit de phase qui va modifier localement la phase de la lumière incidente :

$$E_i = E_0 e^{i\phi} = E_0 + E_0 \times (e^{i\phi} - 1) \sim \tag{1.2}$$

On fait passer la lumière à travers une lentille qui va donner la figure de diffraction dans fait l'image de cette

Ouverture

Microscopie électronique par effet tunnel