THÉORIE DES LANGAGES

DEVAN SOHIER

Exercice 1

Parmi les langages suivants, lesquels sont réguliers (vous justifierez chacune de vos réponses)?

- $(1) \ \{a^n b^n / n \in \mathbb{N}\} ;$
- $(2) \{a^{n+1}b^n/n \in \mathbb{N}\} ;$
- (3) $\{a^{n!}/n < 2^{159}\}$;
- (4) le langage des bons parenthésages ;
- (5) $\{a^{n^2}/n \in \mathbb{N}\}$;
- (6) les entiers divisibles par 3 en base 10.

Exercice 2

Soient L_1 et L_2 deux langages réguliers, A_1 un automate qui reconnaît L_1 , et A_2 un automate qui reconnaît L_2 .

Montrez que les langages suivants sont réguliers, et construisez des automates à partir de A_1 et A_2 qui reconnaissent ces langages :

- $\overline{L_1}$; $L_1 \cap L_2$.

Exercice 3

Construisez des grammaires pour les langages suivants :

- (1) $\{a^nb^n/n \in \mathbb{N}^*\}$;
- (2) $\{a^nbc^n/n \in \mathbb{N}\}$; (3) $\{a^{n+1}b^n/n \in \mathbb{N}\}$;
- $(4) \{a^n b^m a^m b^n / n, m \in \mathbb{N}\};$
- (5) le langage des bons parenthésages.

Exercice 4

Donner des grammaires engendrant les langages reconnus par les automates suivants :

Exercice 5 : Arbres de dérivation et grammaires ambiguës

Etant donné une grammaire G et un mot ω qu'elle engendre, on appelle arbre de dérivation de ω par G l'arbre tel que :

- la racine est étiquetée par l'axiome ;
- les nœuds internes sont étiquetés par des non-terminaux ;
- les feuilles sont étiquetées par des terminaux ;
- si un nœud intérieur est étiqueté par $A \in V \setminus \Sigma$ et ses fils (de gauche à droite) sont étiquetés par $\alpha_1, \alpha_2, \dots, \alpha_n$, alors $A \to \alpha_1 \alpha_2 \dots \alpha_n$ est une règle de la grammaire ;
- la concaténation des étiquettes des feuilles de gauche à droite est ω .

Une grammaire est dite ambiguë si pour un même mot, elle admet plusieurs arbres de dérivation. En considérant id+id*id, montrez que la grammaire $E \to E+E|E*E|(E)|id$ est ambiguë. Quel langage cette grammaire engendre-t-elle? Comment interpréter l'ambiguïté de cette grammaire? Construire une grammaire non-ambiguë engendrant ce langage.

Ecrire une grammaire pour le Si...Alors et le Si...Alors...Sinon. Montrer qu'elle est ambiguë, interpréter cette ambiguïté et lever la.

Exercice 6

Quel est le langage défini par la grammaire : $T \to TTb|TbT|bTT|a$?

Vous démontrerez le résultat.