Progettazione di un MPC per il controllo di un servomeccanismo

Il controllo di posizione di un servomeccanismo è un problema di controllo classico. Normalmente questo tipo di problema viene risolto con dei controllori semplici (PID), tuttavia l'esistenza di vincoli sugli attuatori utilizzati e la presenza di non-linearità dovute all'attrito fanno sì che anche il controllo di un sistema di questo tipo possa trarre beneficio dall'utilizzo di un controllore MPC.

1 Descrizione del problema

Si controlli la posizione di un carico mosso per mezzo di un servomeccanismo composto da un motore elettrico e da una trasmissione elastica. Uno schema del sistema da controllare è riportato in figura 1.

Figure 1: Schema del sistema motore-trasmissione-carico.

La dinamica del servomeccanismo è definita dalle equazioni

$$\tau_m(t) - \tau_f(t) - \tau_{lm}(t) = J_m \ddot{q}_m(t)$$
$$J_l \ddot{q}_l(t) = n\tau_{lm}(t) - \tau_l$$

dove:

- q_m [rad] è la posizione angolare del motore;
- q_l [rad] è la posizione angolare del carico;
- τ_m [Nm] è la coppia fornita dal motore elettrico;
- τ_f [Nm] è la coppia d'attrito;
- τ_{lm} [Nm] è la coppia trasmessa riportata al lato motore;
- τ_l [Nm] è la coppia esterna;

- n è il rapporto di riduzione della trasmissione;
- $J_m [kg \cdot m^2]$ è il momento d'inerzia del motore;
- J_l [kg·m²] è il momento d'inerzia del carico.

La coppia trasmessa e riportata al lato motore è data da

$$\tau_{lm}(t) = K_{el}(q_m(t) - nq_l(t)) + D_{el}(\dot{q}_m(t) - n\dot{q}_l(t)),$$

dove:

- K_{el} [Nm/rad] è la costante elastica della trasmissione;
- D_{el} [Nms/rad] è la costante viscosa della trasmissione.

La coppia d'attrito dipende in modo non-lineare dalla velocità angolare del motore e segue la legge

$$\tau_f(t) = \overline{\tau}_f \tanh(\dot{q}_m(t)).$$

I valori dei parametri presenti nelle precedenti equazioni sono riportati nella seguente tabella:

Parametro	Valore	Unità
$ au_l$	5	Nm
n	250	/
J_m	0.001	$ ext{kg} \cdot ext{m}^2$
J_l	9	$ ext{kg} \cdot ext{m}^2$
K_{el}	0.7	Nm/rad
D_{el}	0.03	Nms/rad
$\overline{ au}_f$	0.2	Nm

La coppia fornita dal motore elettrico è tale per cui $|\tau_m| \le 0.25 \text{Nm}$. La posizione angolare del carico deve sempre essere compresa tra -0.07 rad e 1.85 rad.

L'ingresso controllato del sistema è la coppia motrice τ_m .

2 Obiettivi

L'obiettivo del lavoro è progettare un controllore MPC in grado di portare il sistema dalla condizione iniziale $(q_m, q_l, \dot{q}_m, \dot{q}_l) = (0, 0, 0, 0)$ all'equilibrio (425.0286, 1.7, 0, 0), rispettando sempre i vincoli, e simulare il funzionamento del sistema in anello chiuso.

Si confrontino le prestazioni del controllore progettato al variare di:

- ingredienti terminali (vincolo terminale di uguaglianza vs costo terminale e vincolo terminale di disuguaglianza);
- Q ed R del costo quadratico;
- orizzonte di predizione;
- tempo di campionamento $t_s \ge 0.1$ s.