Theoretical & computational Neuroscience:

Programming the Brain

(BM 6140)

2-credit

Parallel conductance model

$$I_{inj} = i_c + i_{Na} + i_K$$

 $I_{inj} = C_m \frac{dV}{dt} + (V - E_K)g_K + (V - E_{Na})g_{Na}$

Current injection

Constant current I_{inj} injected for time t' and then turned off

Assume only a single leak conductance

Calculate V(t) ? $V = V_{in} - V_{out}$

Johnston & Wu, Foundations of Cellular Neurophysiology

Applying Kirchoff....

$$I_{inj} = i_c + i_R$$

$$I_{inj} = C_m \frac{dV}{dt} + \frac{(V - E)}{R}$$

Membrane charging and discharging

Typical values of model parameters

Specific membrane Capacitance = 1uF/cm^2

Specific membrane resistance due to pure lipid bilayer = 10^8 ohm.cm^2

Specific Membrane $R = 10^3 - 10^5$ ohm.cm² (due to leak ion channels)

Typical time constant?

Our models

Real neurons

Where is the similarity between the two graphs ?? What is the difference ??

Why is our model unable to spike? Should we increase current injected?

Beyond passive properties

We have till now hardly encountered the power of neurons!! Why???

! Non-linearity! Conductance varies with time, voltage and temperature

Why is non-linearity important for a neuron?

Non-linear neurons

- •Due to these non-linearities, small synaptic potentials sum up to cause a large action potential!
- Regenerate signal(AP) during propagation
- When I-V relation is non-linear membrane is said to be rectified. When conduction is better inwards, membrane is inward rectified. Similarly outward rectification may be defined

Modeling non linearity

$$I_{inj} = i_c + i_{Na} + i_K$$

 $I_{inj} = C_m \frac{dV}{dt} + (V - E_K)g_K + (V - E_{Na})g_{Na}$

Now g_K and g_{Na} are functions of voltage, time and temperature !!

Quantitative analysis of AP: Hodgkin-Huxley

- Hodgin, Huxley 1952, series of papers
- ■Nobel prize (1963) in physiology or medicine

