Осенний семестр 2021/2022. Лабораторный практикум по курсу «Математическая статистика»

Лабораторная работа № 4 «Корреляционный анализ»

студента <u>Когановского Григория</u> группы <u>Б22-534</u>. Дата сдачи: <u>10.12.2024</u> Ведущий преподаватель: <u>Новиков М.А.</u> оценка: _____ подпись:

Вариант №7

Цель работы: изучение функций Statistics and Machine Learning Toolbox™ MATLAB / Python SciPy.stats для проведения корреляционного анализа данных.

1. Исходные данные

Характеристики наблюдаемых случайных величин:

СВ	Распределение	Параметры	Математическое ожидание, m_i	Дисперсия, σ_i^2	Объем выборки, <i>n_i</i>
X	N(-1,2)	$m_1 = -1, \sigma_1 = 2$	$m_1 = -1$	$\sigma_1^2 = 4$	
Y	R(-2,0)	$a_2 = -2, b_2 = 0$	$m_2 = \frac{a_2 + b_2}{2} = -1$	$\sigma_2^2 = \frac{(b_2 - a_2)^2}{12} = \frac{1}{3}$	100

Примечание: для генерации случайных чисел использовать функции rand, randn, chi2rnd (scipy.stats: uniform.rvs, norm.rvs, chi2.rvs)

Выборочные характеристики:

СВ	Среднее, $\overline{x_i}$	Оценка дисперсии, s_i^2	КК по Пирсону, r_{XY}	КК по Спирмену, ρ_{XY}	КК по Кендаллу, $ au_{XY}$
X	-1.15	3.54	0.03	0.00	0.01
Y	-0.97	0.32			

Проверка значимости коэффициентов корреляции:

Статистическая гипотеза, H_0	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
$H_0: r_{XY} = 0$ $H_1: r_{XY} \neq 0$	0.73	H_0 принимается	Нет
$H_0: \ \rho_{XY} = 0$ $H_1: \ \rho_{XY} \neq 0$	0.97	H_0 принимается	Нет
$H_0: \ \tau_{XY} = 0$ $H_1: \ \tau_{XY} \neq 0$	0.94	H_0 принимается	Нет

Примечание: для проверки гипотез использовать функцию corr (scipy.stats.pearsonr)

2. Визуальное представление двумерной выборки

Примечание: для построения диаграммы использовать функции plot, scatter (matplotlib.pyplot.scatter)

3. Проверка независимости методом таблиц сопряженности

Статистическая гипотеза:

 $H_0:\ F_y(y\mid X\in\Delta_1)=F_y(y\mid X\in\Delta_2)=\cdots=F_y(y\mid X\in\Delta_k)=F_y(y)$

 $H': \ \exists i,j: F_Y(y \mid X \in \Delta_i) \neq F_Y(y \mid X \in \Delta_j)$

Эмпирическая таблица сопряженности:

Y X	[-1.95; -1.56)	[-1.56; -1.17)	[-1.17; -0.78)	[-0.78; -0.39)	[-0.39; 0.00]
$\Delta_1 = [-5.37; -3.61)$	2	2	2	3	0
$\Delta_2 = [-3.61; -1.84)$	4	6	2	2	10
$\Delta_3 = [-1.84; -0.07]$	6	12	7	14	5
$\Delta_4 = [-0.07; 1.69]$	5	2	0	5	1
$\Delta_5 = [1.69; 3.46]$	2	2	1	2	3

Примечание: для группировки использовать функцию hist3 (matplotlib.pyplot.hist2d)

Теоретическая таблица сопряженности:

Y X	[-1.95; -1.56)	[-1.56; -1.17)	[-1.17; -0.78)	[-0.78; -0.39)	[-0.39; 0.00]
$\Delta_1 = [-5.37; -3.61)$	1.71	2.16	1.08	2.34	1.71
$\Delta_2 = [-3.61; -1.84)$	4.56	5.76	2.88	6.24	4.56
$\Delta_3 = [-1.84; -0.07]$	8.36	10.56	5.28	11.44	8.36
$\Delta_4 = [-0.07; 1.69]$	2.47	3.12	1.56	3.38	2.47
$\Delta_5 = [1.69; 3.46]$	1.90	2.40	1.20	2.60	1.90

Осенний семестр 2021/2022. Лабораторный практикум по курсу «Математическая статистика»

	Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения	
,	22.89	0.12	H_0 принимается	Нет	

Примечание: для проверки гипотезы использовать функцию **crosstab** (scipy.stats.chi2_contingency)

4. Исследование корреляционной связи

Случайная величина $U = \lambda X + (1 - \lambda)Y$, $\lambda \in [0; 1]$ Случайная величина $V = \lambda X^3 + (1 - \lambda)Y^3$ $\lambda \in [0; 1]$

Прафики зависимостей коэффициента корреляции $r_{XU}(\lambda)$, рангового коэффициента корреляции по Спирмену $\rho_{XU}(\lambda)$ и по Кендаллу $\tau_{XU}(\lambda)$ 0.8 $\frac{\partial V}{\partial X} = \frac{\partial V$

Выводы:

По первому графику: при $\lambda \to 0$ все коэффициенты корреляции стремятся к 0, что свидетельствует об отсутствии линейной и монотонной корреляционной связи между случайными величинами X и U. При $\lambda \to 1$ все коэффициенты корреляции стремятся к 1, что свидетельствует о наличии линейной функциональной зависимости между случайными величинами X и U.

По второму графику: r_{XV} никогда не принимает значений 1, что свидетельствует об отсутствии линейной функциональной зависимости между случайными величинами X и Y. Однако при $\lambda \to 1$ коэффициенты корреляции $\rho_{XV}, \tau_{XV} \to 1$, что свидетельствует о наличии монотонной функциональной зависимости между случайными величинами X и V. При $\lambda \to 0$ коэффициенты корреляции $r_{XV}, \rho_{XV}, \tau_{XV}$ близки к 0, что

Осенний семестр 2021/2022. Лабораторный практикум по курсу «Математическая статистика» свидетельствует об отсутствии линейной и даже монотонной корреляционной связи между случайными величинами X и V.

Примечание: для расчёта рангов использовать функцию tiedrank (scipy.stats.rankdata)

Выводы:

Если X и V независимы, то и их ранги R и S также будут независимыми.

Если $V = \varphi(X)$, φ - монотонная функция, то переход к рангам "выпрямляет" монотонную зависимость исходных признаков.