Graphs: MSTs and Shortest Paths

What is the shortest path from a to d?

BFS

What is the shortest path from a to d?

We can still use BFS

We can still use BFS

We can still use BFS

• What is the problem?

Running time is dependent on the weights

 Nothing will change as we expand the frontier until we've gone out 100 levels


```
Dijkstra(G, s)
     for all v \in V
               dist[v] \leftarrow \infty
                prev[v] \leftarrow null
 4 dist[s] \leftarrow 0
 5 Q \leftarrow \text{MakeHeap}(V)
     while !Empty(Q)
                 u \leftarrow \text{ExtractMin}(Q)
                 for all edges (u, v) \in E
                            if dist[v] > dist[u] + w(u, v)
 9
                                      dist[v] \leftarrow dist[u] + w(u, v)
10
                                       DecreaseKey(Q, v, dist[v])
11
                                      prev[v] \leftarrow u
12
```



```
Dijkstra(G, s)
                                                                          BFS(G, s)
     for all v \in V
                                                                               for each v \in V
                dist[v] \leftarrow \infty
                                                                                           dist[v] = \infty
                prev[v] \leftarrow null
                                                                               dist[s] = 0
     dist[s] \leftarrow 0
                                                                                Engueue(Q, s)
     Q \leftarrow \text{MakeHeap}(V)
                                                                                while !Empty(Q)
     while !Empty(Q)
                                                                                           u \leftarrow \text{Dequeue}(Q)
                u \leftarrow \text{ExtractMin}(Q)
                                                                                           Visit(u)
                for all edges (u, v) \in E
                                                                                           for each edge (u, v) \in E
                           if dist[v] > dist[u] + w(u,v)
 9
                                                                            9
                                                                                                      if dist[v] = \infty
                                     dist[v] \leftarrow dist[u] + w(u, v)
10
                                                                          10
                                                                                                                \text{Enqueue}(Q, v)
                                     DecreaseKey(Q, v, dist[v])
11
                                                                                                                dist[v] \leftarrow dist[u] + 1
12
                                     prev[v] \leftarrow u
```


prev keeps track of the shortest path

```
Dijkstra(G, s)
                                                                           BFS(G, s)
     for all v \in V
                                                                                for each v \in V
                                                                                            dist[v] = \infty
                 prev[v] \leftrightarrow null
                                                                                dist[s] = 0
     dist[s] \leftarrow 0
                                                                                Engueue(Q, s)
     Q \leftarrow \text{MakeHeap}(V)
                                                                                while !Empty(Q)
     while !Empty(Q)
 6
                                                                                            u \leftarrow \text{Dequeue}(Q)
                 u \leftarrow \text{ExtractMin}(Q)
                                                                                            Visit(u)
                 for all edges (u, v) \in E
                                                                                            for each edge (u, v) \in E
                           if dist[v] > dist[u] + w(u,v)
 9
                                                                                                      if dist[v] = \infty
                                      dist[v] \leftarrow dist[u] + w(u, v)
10
                                                                           10
                                                                                                                 \text{Enqueue}(Q, v)
11
                                      DecreaseKey(Q, v, dist[v])
                                                                           11
                                                                                                                 dist[v] \leftarrow dist[u] + 1
12
                                      prev[v] \leftrightarrow u
```



```
Dijkstra(G, s)
                                                                          BFS(G, s)
     for all v \in V
                                                                                for each v \in V
                dist[v] \leftarrow \infty
                                                                                           dist[v] = \infty
                prev[v] \leftarrow null
                                                                                dist[s] = 0
     dist[s] \leftarrow 0
                                                                                Engueue(Q, s)
     Q \leftarrow \text{MakeHeap}(V)
                                                                                while !Empty(Q)
     while !Empty(Q)
 6
                                                                                           u \leftarrow \text{Dequeue}(Q)
                u \leftarrow \text{ExtractMin}(Q)
                                                                                           Visit(u)
                for all edges (u, v) \in E
                                                                                           for each edge (u, v) \in E
                           if dist[v] > dist[u] + w(u,v)
 9
                                                                            9
                                                                                                      if dist[v] = \infty
                                     dist[v] \leftarrow dist[u] + w(u, v)
10
                                                                          10
                                                                                                                \text{Enqueue}(Q, v)
                                     DecreaseKey(Q, v, dist[v])
11
                                                                          11
                                                                                                                dist[v] \leftarrow dist[u] + 1
12
                                     prev[v] \leftarrow u
```



```
Dijkstra(G, s)
                                                                          BFS(G, s)
     for all v \in V
                                                                                for each v \in V
                dist[v] \leftarrow \infty
                                                                                           dist[v] = \infty
                prev[v] \leftarrow null
                                                                                dist[s] = 0
     dist[s] \leftarrow 0
                                                                                Engueue(Q, s)
     Q \leftarrow \text{MakeHeap}(V)
                                                                                while !Empty(Q)
     while !Empty(Q)
                                                                                           u \leftarrow \text{Dequeue}(Q)
                u \leftarrow \text{ExtractMin}(Q)
                                                                                           Visit(u)
 8
                for all edges (u, v) \in E
                                                                                           for each edge (u, v) \in E
 9
                           if dist[v] > dist[u] + w(u, v)
                                                                           9
                                                                                                      if dist[v] = \infty
                                     dist[v] \leftarrow dist[u] + w(u, v)
10
                                                                          10
                                                                                                                \text{Enqueue}(Q, v)
11
                                      DecreaseKey(Q, v, dist[v])
                                                                                                                dist[v] \leftarrow dist[u] + 1
12
                                     prev[v] \leftarrow u
```



```
Dijkstra(G, s)
     for all v \in V
                 dist[v] \leftarrow \infty
                 prev[v] \leftarrow null
     dist[s] \leftarrow 0
     Q \leftarrow \text{MakeHeap}(V)
     while !Empty(Q)
                 u \leftarrow \text{ExtractMin}(Q)
 8
                 for all edges (u, v) \in E
                            if dist[v] > dist[u] + w(u, v)
10
                                       dist[v] \leftarrow dist[u] + w(u, v)
11
                                       DecreaseKey(Q, v, dist[v])
12
                                       prev[v] \leftarrow u
```

```
\begin{aligned} &\operatorname{BFS}(G,s) \\ &1 \quad \operatorname{for \ each} \ v \in V \\ &2 \qquad \qquad dist[v] = \infty \\ &3 \quad dist[s] = 0 \\ &4 \quad \operatorname{ENQUEUE}(Q,s) \\ &5 \quad \operatorname{while} \ ! \operatorname{EMPTY}(Q) \\ &6 \qquad \qquad u \leftarrow \operatorname{DEQUEUE}(Q) \\ &7 \qquad \qquad V\operatorname{ISIT}(U) \\ &8 \qquad \qquad \operatorname{for \ each \ edge} \ (u,v) \in E \\ &9 \qquad \qquad \operatorname{if} \ dist[v] = \infty \\ &10 \qquad \qquad \operatorname{ENQUEUE}(Q,v) \\ &11 \qquad \qquad dist[v] \leftarrow \operatorname{dist}[u] + 1 \end{aligned}
```


- All of the shortest path algorithms we'll look at today are call "single source shortest paths" algorithms
- Why?

```
\text{Dijkstra}(G, s)
     for all v \in V
                 dist[v] \leftarrow \infty
                 prev[v] \leftarrow null
    dist[s] \leftarrow 0
     Q \leftarrow \text{MakeHeap}(V)
      while !Empty(Q)
                  u \leftarrow \text{ExtractMin}(Q)
                  for all edges (u, v) \in E
 8
                             \mathbf{if}\ dist[v] > dist[u] + w(u,v)
 9
10
                                        dist[v] \leftarrow dist[u] + w(u, v)
                                        DecreaseKey(Q, v, dist[v])
11
```

 $prev[v] \leftarrow u$

12

Dijkstra(G, s)

```
for all v \in V
                 dist[v] \leftarrow \infty
                 prev[v] \leftarrow null
     dist[s] \leftarrow 0
     Q \leftarrow \text{MakeHeap}(V)
     while !Empty(Q)
                 u \leftarrow \text{ExtractMin}(Q)
                 for all edges (u, v) \in E
 8
                            if dist[v] > dist[u] + w(u, v)
 9
10
                                       dist[v] \leftarrow dist[u] + w(u, v)
                                       DecreaseKey(Q, v, dist[v])
11
12
                                       prev[v] \leftarrow u
```



```
Dijkstra(G, s)

1 for all v \in V

2 dist[v] \leftarrow \infty

3 prev[v] \leftarrow null

4 dist[s] \leftarrow 0

5 Q \leftarrow \text{MakeHeap}(V)

6 while !Empty(Q)

7 u \leftarrow \text{ExtractMin}(Q)

8 for all edges (u, v) \in E

9 if dist[v] > dist[u] + w(u, v)
```

 $dist[v] \leftarrow dist[u] + w(u, v)$

 $prev[v] \leftarrow u$

DecreaseKey(Q, v, dist[v])

10

11

12

Heap

A 0

 $B \propto$

 $\mathbf{C} \propto$

 $D \infty$

Dijkstra(G, s)

```
\begin{array}{ccc} 1 & \textbf{for all } v \in V \\ 2 & dist[v] \leftarrow \infty \\ 3 & prev[v] \leftarrow null \\ 4 & dist[s] \leftarrow 0 \\ 5 & Q \leftarrow \text{MakeHeap}(V) \end{array}
```

6 while !Empty(Q)

	(-0)
7	$u \leftarrow \text{ExtractMin}(Q)$
8	for all edges $(u, v) \in E$
9	if $dist[v] > dist[u] + w(u, v)$
10	$dist[v] \leftarrow dist[u] + w(u, v)$
11	DecreaseKey $(Q, v, dist[v])$
12	$prev[v] \leftarrow u$

Heap

 $B \propto$

 $C \infty$

 $D \propto$

```
Dijkstra(G, s)

1 for all v \in V

2 dist[v] \leftarrow \infty

3 prev[v] \leftarrow null

4 dist[s] \leftarrow 0

5 Q \leftarrow \text{MakeHeap}(V)

6 while !Empty(Q)

7 u \leftarrow \text{ExtractMin}(Q)

8 for all edges (u, v) \in E

9 if dist[v] > dist[u] + w(u, v)

10 dist[v] \leftarrow dist[u] + w(u, v)
```

DecreaseKey(Q, v, dist[v])

 $prev[v] \leftarrow u$

11

12

Heap

B ∞

 $C \infty$

 $D \propto$

```
\begin{array}{ll} \operatorname{Dijkstra}(G,s) \\ 1 & \text{ for all } v \in V \\ 2 & dist[v] \leftarrow \infty \\ 3 & prev[v] \leftarrow null \\ 4 & dist[s] \leftarrow 0 \\ 5 & Q \leftarrow \operatorname{MakeHeap}(V) \\ 6 & \text{ while } ! \operatorname{Empty}(Q) \\ 7 & u \leftarrow \operatorname{ExtractMin}(Q) \\ 8 & \text{ for all edges } (u,v) \in E \\ 9 & \text{ if } dist[v] > dist[u] + w(u,v) \\ 10 & dist[v] \leftarrow dist[u] + w(u,v) \\ 11 & \operatorname{DecreaseKey}(Q,v,dist[v]) \end{array}
```

 $prev[v] \leftarrow u$

12

Heap

C 1

 $B \propto$

 $D \propto$

```
\text{Dijkstra}(G, s)
```

```
 \begin{array}{ccc} 1 & \textbf{for all } v \in V \\ 2 & dist[v] \leftarrow \infty \\ 3 & prev[v] \leftarrow null \\ 4 & dist[s] \leftarrow 0 \\ 5 & Q \leftarrow \text{MakeHeap}(V) \\ \end{array}
```

6 while !Empty(Q)

7 $u \leftarrow \text{ExtractMin}(Q)$ 8 **for** all edges $(u, v) \in E$

_	101 all cages (a, c) C D
9	if $dist[v] > dist[u] + w(u, v)$
10	$dist[v] \leftarrow dist[u] + w(u, v)$
11	DecreaseKey $(Q, v, dist[v])$
12	$prev[v] \leftarrow u$

Heap

C 1

 $B \propto$

 $D \propto$

```
\begin{array}{ll} \operatorname{Dijkstra}(G,s) \\ 1 & \text{ for all } v \in V \\ 2 & dist[v] \leftarrow \infty \\ 3 & prev[v] \leftarrow null \\ 4 & dist[s] \leftarrow 0 \\ 5 & Q \leftarrow \operatorname{MakeHeap}(V) \\ 6 & \text{ while } ! \operatorname{Empty}(Q) \\ 7 & u \leftarrow \operatorname{ExtractMin}(Q) \\ 8 & \text{ for all edges } (u,v) \in E \\ 9 & \text{ if } dist[v] > dist[u] + w(u,v) \\ 10 & dist[v] \leftarrow dist[u] + w(u,v) \\ 11 & \operatorname{DecreaseKey}(Q,v,dist[v]) \end{array}
```

 $prev[v] \leftarrow u$

12

Heap

C 1

B 3

 $D \propto$

$\mathrm{Dijkstra}(G,s)$

```
\begin{array}{ccc} 1 & \textbf{for all } v \in V \\ 2 & dist[v] \leftarrow \infty \\ 3 & prev[v] \leftarrow null \\ 4 & dist[s] \leftarrow 0 \\ 5 & Q \leftarrow \text{MakeHeap}(V) \end{array}
```

6 while !Empty(Q)

	(-0)
7	$u \leftarrow \text{ExtractMin}(Q)$
8	for all edges $(u, v) \in E$
9	if $dist[v] > dist[u] + w(u, v)$
10	$dist[v] \leftarrow dist[u] + w(u, v)$
11	DecreaseKey $(Q, v, dist[v])$
12	$prev[v] \leftarrow u$

Heap

C 1

B 3

 $D \propto$

Dijkstra(G, s)

```
\begin{array}{ccc} 1 & \textbf{for all} \ v \in V \\ 2 & dist[v] \leftarrow \infty \\ 3 & prev[v] \leftarrow null \end{array}
```

- $4 \quad dist[s] \leftarrow 0$
- $5 \quad Q \leftarrow \mathsf{MakeHeap}(V)$
- 6 while !Empty(Q)

7	$u \leftarrow \text{ExtractMin}(Q)$
8	for all edges $(u,v) \in E$
9	if $dist[v] > dist[u] + w(u, v)$
10	$dist[v] \leftarrow dist[u] + w(u, v)$
11	DecreaseKey $(Q, v, dist[v])$
12	$prev[v] \leftarrow u$

Heap

B 3

 $D \infty$

```
Dijkstra(G, s)

1 for all v \in V

2 dist[v] \leftarrow \infty

3 prev[v] \leftarrow null

4 dist[s] \leftarrow 0

5 Q \leftarrow \text{MakeHeap}(V)

6 while !Empty(Q)

7 u \leftarrow \text{ExtractMin}(Q)

8 for all edges (u, v) \in E

9 if dist[v] > dist[u] + w(u, v)

10 dist[v] \leftarrow dist[u] + w(u, v)
```

DecreaseKey(Q, v, dist[v])

 $prev[v] \leftarrow u$

11

12

Heap

B 3

 $D \propto$

```
Dijkstra(G,s)
```

```
\begin{array}{ll} 1 & \textbf{for all } v \in V \\ 2 & dist[v] \leftarrow \infty \\ 3 & prev[v] \leftarrow null \\ 4 & dist[s] \leftarrow 0 \\ 5 & Q \leftarrow \text{MakeHeap}(V) \\ 6 & \textbf{while } ! \text{Empty}(Q) \end{array}
```

7	$u \leftarrow \text{ExtractMin}(Q)$
8	for all edges $(u,v) \in E$

- 0	101 an edges $(a, b) \in D$
9	if $dist[v] > dist[u] + w(u, v)$
10	$dist[v] \leftarrow dist[u] + w(u, v)$
11	Decrease $Key(Q, v, dist[v])$
12	$prev[v] \leftarrow u$

Heap

B 3

 $D \propto$

 $prev[v] \leftarrow u$

12

Heap

B 2

 $D \infty$

 $prev[v] \leftarrow u$

12

Heap

B 2

 $D \propto$

```
\text{Dijkstra}(G, s)
      for all v \in V
                 dist[v] \leftarrow \infty
                 prev[v] \leftarrow null
    dist[s] \leftarrow 0
      Q \leftarrow \text{MakeHeap}(V)
      while !Empty(Q)
                  u \leftarrow \text{ExtractMin}(Q)
                  for all edges (u, v) \in E
 8
                             if dist[v] > dist[u] + w(u, v)
10
                                        dist[v] \leftarrow dist[u] + w(u, v)
                                        \mathsf{DecreaseKey}(Q, v, dist[v])
11
12
                                        prev[v] \leftarrow u
```


Heap

B 2

E 5

 $D \propto$

```
\text{Dijkstra}(G, s)
     for all v \in V
                dist[v] \leftarrow \infty
                prev[v] \leftarrow null
    dist[s] \leftarrow 0
     Q \leftarrow \text{MakeHeap}(V)
     while !Empty(Q)
                 u \leftarrow \text{ExtractMin}(Q)
                 for all edges (u, v) \in E
 8
 9
                           if dist[v] > dist[u] + w(u, v)
                                                                                                   Heap
10
                                      dist[v] \leftarrow dist[u] + w(u, v)
                                      DecreaseKey(Q, v, dist[v])
11
                                                                                                   B 2
12
                                      prev[v] \leftarrow u
                                                                                                  E 5
                    2
                                          \infty
                                                                                                        \infty
                                3
```


Frontier?

Heap B 2

E 5

D ∞

All nodes reachable from starting node within a given distance

```
\text{Dijkstra}(G, s)
     for all v \in V
                 dist[v] \leftarrow \infty
                 prev[v] \leftarrow null
    dist[s] \leftarrow 0
     Q \leftarrow \text{MakeHeap}(V)
     while !Empty(Q)
                 u \leftarrow \text{ExtractMin}(Q)
                 for all edges (u, v) \in E
 8
 9
                            if dist[v] > dist[u] + w(u, v)
10
                                       dist[v] \leftarrow dist[u] + w(u, v)
                                       DecreaseKey(Q, v, dist[v])
11
12
                                       prev[v] \leftarrow u
```


Heap

E 3 D 5


```
\text{Dijkstra}(G, s)
     for all v \in V
                 dist[v] \leftarrow \infty
                 prev[v] \leftarrow null
     dist[s] \leftarrow 0
     Q \leftarrow \text{MakeHeap}(V)
      while !Empty(Q)
                  u \leftarrow \text{ExtractMin}(Q)
                  for all edges (u, v) \in E
 8
                             \mathbf{if}\ dist[v] > dist[u] + w(u,v)
 9
10
                                        dist[v] \leftarrow dist[u] + w(u, v)
                                        DecreaseKey(Q, v, dist[v])
11
12
                                        prev[v] \leftarrow u
```


D 5


```
\text{Dijkstra}(G, s)
     for all v \in V
                 dist[v] \leftarrow \infty
                 prev[v] \leftarrow null
     dist[s] \leftarrow 0
     Q \leftarrow \text{MakeHeap}(V)
      while !Empty(Q)
                  u \leftarrow \text{ExtractMin}(Q)
                  for all edges (u, v) \in E
 8
                             \mathbf{if}\ dist[v] > dist[u] + w(u,v)
 9
10
                                        dist[v] \leftarrow dist[u] + w(u, v)
                                        DecreaseKey(Q, v, dist[v])
11
12
                                        prev[v] \leftarrow u
```


Heap


```
\text{Dijkstra}(G, s)
      for all v \in V
                  dist[v] \leftarrow \infty
                 prev[v] \leftarrow null
     dist[s] \leftarrow 0
      Q \leftarrow \text{MakeHeap}(V)
      while !Empty(Q)
 7
                  u \leftarrow \text{ExtractMin}(Q)
                  for all edges (u, v) \in E
 8
                             \mathbf{if}\ dist[v] > dist[u] + w(u,v)
 9
10
                                        dist[v] \leftarrow dist[u] + w(u, v)
                                        DecreaseKey(Q, v, dist[v])
11
12
                                        prev[v] \leftarrow u
```


Heap

Example Problem

Example Problem

• Invariant:

```
Dijkstra(G, s)
     for all v \in V
                 dist[v] \leftarrow \infty
                 prev[v] \leftarrow null
 4 \quad dist[s] \leftarrow 0
     Q \leftarrow \text{MakeHeap}(V)
     while !Empty(Q)
                 u \leftarrow \text{ExtractMin}(Q)
                 for all edges (u, v) \in E
                            if dist[v] > dist[u] + w(u, v)
                                       dist[v] \leftarrow dist[u] + w(u, v)
10
                                       DecreaseKey(Q, v, dist[v])
11
12
                                       prev[v] \leftarrow u
```


 Invariant: For every vertex removed from the heap, dist[v] is the actual shortest distance from s to v

```
Dijkstra(G, s)
     for all v \in V
                 dist[v] \leftarrow \infty
                 prev[v] \leftarrow null
 4 \quad dist[s] \leftarrow 0
     Q \leftarrow \text{MakeHeap}(V)
     while !Empty(Q)
                 u \leftarrow \text{ExtractMin}(Q)
                 for all edges (u, v) \in E
 9
                            if dist[v] > dist[u] + w(u,v)
                                       dist[v] \leftarrow dist[u] + w(u, v)
10
                                       DecreaseKey(Q, v, dist[v])
11
12
                                       prev[v] \leftarrow u
```

Is Dijkstra's algorithm correct?

- Invariant: For every vertex removed from the heap, dist[v] is the actual shortest distance from s to v
 - The only time a vertex gets visited is when the distance from s to that vertex is smaller than the distance to any remaining vertex
 - Therefore, there cannot be any other path that hasn't been visited already that would result in a shorter path

Running time?

```
Dijkstra(G, s)
     for all v \in V
                dist[v] \leftarrow \infty
     prev[v] \leftarrow null
    dist[s] \leftarrow 0
    Q \leftarrow \text{MakeHeap}(V)
     while !Empty(Q)
                u \leftarrow \text{ExtractMin}(Q)
 8
                for all edges (u, v) \in E
                          if dist[v] > dist[u] + w(u, v)
 9
                                     dist[v] \leftarrow dist[u] + w(u,v)
10
                                     DecreaseKey(Q, v, dist[v])
11
                                     prev[v] \leftarrow u
12
```



```
Dijkstra(G, s)
     for all v \in V
                dist[v] \leftarrow \infty
 3
                prev[v] \leftarrow null
    dist[s] \leftarrow 0
     Q \leftarrow \text{MakeHeap}(V)
                                                                              1 call to MakeHeap
     while !Empty(Q)
                u \leftarrow \text{ExtractMin}(Q)
 8
                for all edges (u, v) \in E
                           if dist[v] > dist[u] + w(u, v)
 9
10
                                     dist[v] \leftarrow dist[u] + w(u, v)
                                     DecreaseKey(Q, v, dist[v])
11
                                     prev[v] \leftarrow u
12
```



```
Dijkstra(G, s)
     for all v \in V
                dist[v] \leftarrow \infty
                prev[v] \leftarrow null
     dist[s] \leftarrow 0
     Q \leftarrow \text{MakeHeap}(V)
    while !Empty(Q)
                                                                                 |V| iterations
 6
                 u \leftarrow \text{ExtractMin}(Q)
                 for all edges (u, v) \in E
 8
                           if dist[v] > dist[u] + w(u, v)
 9
10
                                      dist[v] \leftarrow dist[u] + w(u, v)
                                      DecreaseKey(Q, v, dist[v])
11
                                      prev[v] \leftarrow u
12
```

Running time?


```
Dijkstra(G, s)
     for all v \in V
                dist[v] \leftarrow \infty
                prev[v] \leftarrow null
    dist[s] \leftarrow 0
    Q \leftarrow \text{MakeHeap}(V)
     while !Empty(Q)
                                                                                  |V| calls
                 u \leftarrow \text{ExtractMin}(Q)
                 for all edges (u, v) \in E
 9
                           if dist[v] > dist[u] + w(u, v)
                                      dist[v] \leftarrow dist[u] + w(u, v)
10
                                      DecreaseKey(Q, v, dist[v])
11
                                      prev[v] \leftarrow u
12
```



```
Dijkstra(G, s)
     for all v \in V
                dist[v] \leftarrow \infty
                prev[v] \leftarrow null
    dist[s] \leftarrow 0
     Q \leftarrow \text{MakeHeap}(V)
     while !Empty(Q)
                 u \leftarrow \text{ExtractMin}(Q)
 8
                 for all edges (u, v) \in E
 9
                           if dist[v] > dist[u] + w(u, v)
                                       dist[v] \leftarrow dist[u] + w(u, v)
10
                                      DecreaseKey(Q, v, dist[v])
11
                                       prev[v] \leftarrow u
12
```

O(|E|) calls

Depends on the heap implementation

	1 MakeHeap	V ExtractMin	E DecreaseKey	Total
Array	O(V)	O(V ²)	O(E)	O(V ²)
Bin heap	O(V)	O(V log V)	O(E log V)	O((V + E) log V) O(E log V)

Depends on the heap implementation

	1 MakeHeap	V ExtractMin	E DecreaseKey	Total
Array	O(V)	$O(V ^2)$	O(E)	$O(V ^2)$
Bin heap	O(V)	O(V log V)	O(E log V)	O((V + E) log V) O(E log V)

Is this an improvement?

If
$$|E| < |V|^2 / \log |V|$$

Running time?

Depends on the heap implementation

	1 MakeHeap	V ExtractMin	E DecreaseKey	Total
Array	O(V)	$O(V ^2)$	O(E)	$O(V ^2)$
Bin heap	O(V)	O(V log V)	O(E log V)	O((V + E) log V) O(E log V)
Fib heap	O(V)	O(V log V)	O(E)	O(V log V + E)

What about Dijkstra's on...?

What about Dijkstra's on...?

Dijkstra's algorithm only works for positive edge weights

Bounding the distance

- Another invariant: For each vertex v, dist[v] is an upper bound on the actual shortest distance
 - start of at ∞
 - only update the value if we find a shorter distance
- An update procedure

$$dist[v] = min\{dist[v], dist[u] + w(u, v)\}$$

$$dist[v] = \min\{dist[v], dist[u] + w(u, v)\}$$

- Can we ever go wrong applying this update rule?
 - We can apply this rule as many times as we want and will never underestimate dist[v]
- When will dist[v] be right?
 - If u is along the shortest path to v and dist[u] is correct

$$dist[v] = \min\{dist[v], dist[u] + w(u, v)\}$$

- dist[v] will be right if u is along the shortest path to v and dist[u] is correct
- Consider the shortest path from s to v

$$dist[v] = \min\{dist[v], dist[u] + w(u, v)\}$$

- dist[v] will be right if u is along the shortest path to v and dist[u] is correct
- What happens if we update all of the vertices with the above update?

$$dist[v] = \min\{dist[v], dist[u] + w(u, v)\}$$

- dist[v] will be right if u is along the shortest path to v and dist[u] is correct
- What happens if we update all of the vertices with the above update?

correct

$$dist[v] = \min\{dist[v], dist[u] + w(u, v)\}$$

- dist[v] will be right if u is along the shortest path to v and dist[u] is correct
- What happens if we update all of the vertices with the above update?

correct correct

$$dist[v] = \min\{dist[v], dist[u] + w(u, v)\}$$

- dist[v] will be right if u is along the shortest path to v and dist[u] is correct
- Does the order that we update the vertices matter?

correct correct

$$dist[v] = \min\{dist[v], dist[u] + w(u, v)\}$$

- dist[v] will be right if u is along the shortest path to v and dist[u] is correct
- How many times do we have to do this for vertex p_i to have the correct shortest path from s?
 - i times

$$dist[v] = \min\{dist[v], dist[u] + w(u, v)\}$$

- dist[v] will be right if u is along the shortest path to v and dist[u] is correct
- How many times do we have to do this for vertex p_i to have the correct shortest path from s?
 - i times

correct correct

$$dist[v] = \min\{dist[v], dist[u] + w(u, v)\}$$

- dist[v] will be right if u is along the shortest path to v and dist[u] is correct
- How many times do we have to do this for vertex p_i to have the correct shortest path from s?
 - i times

$$dist[v] = \min\{dist[v], dist[u] + w(u, v)\}$$

- dist[v] will be right if u is along the shortest path to v and dist[u] is correct
- How many times do we have to do this for vertex p_i to have the correct shortest path from s?
 - i times

$$dist[v] = \min\{dist[v], dist[u] + w(u, v)\}$$

- dist[v] will be right if u is along the shortest path to v and dist[u] is correct
- How many times do we have to do this for vertex p_i to have the correct shortest path from s?
 - i times

$$dist[v] = \min\{dist[v], dist[u] + w(u, v)\}$$

- dist[v] will be right if u is along the shortest path to v and dist[u] is correct
- What is the longest (vetex-wise) the path from s to any node v can be?
 - |V| 1 edges/vertices

Bellman-Ford algorithm


```
Bellman-Ford(G, s)
     for all v \in V
                 dist[v] \leftarrow \infty
                prev[v] \leftarrow null
    dist[s] \leftarrow 0
     for i \leftarrow 1 to |V| - 1
                 for all edges (u, v) \in E
 6
                           if dist[v] > dist[u] + w(u, v)
 8
                                      dist[v] \leftarrow dist[u] + w(u, v)
 9
                                      prev[v] \leftarrow u
     for all edges (u, v) \in E
10
                 if dist[v] > dist[u] + w(u, v)
11
12
                           return false
```

Bellman-Ford algorithm


```
Bellman-Ford(G, s)
```

11

12

```
\begin{array}{ll} \mathbf{1} & \mathbf{for} \ \mathrm{all} \ v \in V \\ 2 & dist[v] \leftarrow \infty \\ 3 & prev[v] \leftarrow null \\ 4 & dist[s] \leftarrow 0 \\ \hline 5 & \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ |V| - 1 \\ 6 & \mathbf{for} \ \mathrm{all} \ \mathrm{edges} \ (u,v) \in E \\ 7 & \mathbf{if} \ dist[v] > dist[u] + w(u,v) \\ 8 & dist[v] \leftarrow dist[u] + w(u,v) \\ 9 & prev[v] \leftarrow u \\ \hline 10 & \mathbf{for} \ \mathrm{all} \ \mathrm{edges} \ (u,v) \in E \end{array}
```

if dist[v] > dist[u] + w(u, v)

return false

Initialize all the distances


```
Bellman-Ford(G, s)
     for all v \in V
                 dist[v] \leftarrow \infty
                 prev[v] \leftarrow null
     dist[s] \leftarrow 0
     for i \leftarrow 1 to |V| - 1
                 for all edges (u, v) \in E
 6
                            if dist[v] > dist[u] + w(u, v)
                                      dist[v] \leftarrow dist[u] + w(u, v)
 9
                                      prev[v] \leftarrow u
10
     for all edges (u, v) \in E
                 if dist[v] > dist[u] + w(u, v)
11
12
                           return false
```

iterate over all edges/vertices and apply update rule

```
Bellman-Ford(G, s)
     for all v \in V
                 dist[v] \leftarrow \infty
                 prev[v] \leftarrow null
     dist[s] \leftarrow 0
     for i \leftarrow 1 to |V| - 1
                 for all edges (u, v) \in E
 6
                           if dist[v] > dist[u] + w(u, v)
 8
                                      dist[v] \leftarrow dist[u] + w(u, v)
 9
                                      prev[v] \leftarrow u
     for all edges (u, v) \in E
10
                 if dist[v] > dist[u] + w(u, v)
11
12
                           return false
```



```
Bellman-Ford(G, s)
     for all v \in V
                 dist[v] \leftarrow \infty
                 prev[v] \leftarrow null
     dist[s] \leftarrow 0
     for i \leftarrow 1 to |V| - 1
                 for all edges (u, v) \in E
 6
                            if dist[v] > dist[u] + w(u, v)
 8
                                      dist[v] \leftarrow dist[u] + w(u, v)
 9
                                      prev[v] \leftarrow u
10
     for all edges (u, v) \in E
                 if dist[v] > dist[u] + w(u, v)
11
12
                           return false
```

check for negative cycles

What is the shortest path from a to e?


```
Bellman-Ford(G, s)
     for all v \in V
                 dist[v] \leftarrow \infty
                 prev[v] \leftarrow null
     dist[s] \leftarrow 0
     for i \leftarrow 1 to |V| - 1
                 for all edges (u, v) \in E
 6
                            if dist[v] > dist[u] + w(u, v)
 8
                                      dist[v] \leftarrow dist[u] + w(u, v)
 9
                                      prev[v] \leftarrow u
10
     for all edges (u, v) \in E
                 if dist[v] > dist[u] + w(u, v)
11
12
                           return false
```


How many edges is the shortest path from s to:

A:

How many edges is the shortest path from s to:

A: 3

How many edges is the shortest path from s to:

A: 3

B:

How many edges is the shortest path from s to:

A: 3

B: 5

How many edges is the shortest path from s to:

A: 3

B: 5

D:

How many edges is the shortest path from s to:

A: 3

B: 5

D: 7

Iteration: 3

A has the correct distance and path

Iteration: 5

B has the correct distance and path

Iteration: 7

D (and all other nodes) have the correct distance and path

Loop invariant:

```
Bellman-Ford(G, s)
     for all v \in V
                dist[v] \leftarrow \infty
                prev[v] \leftarrow null
   dist[s] \leftarrow 0
     for i \leftarrow 1 to |V| - 1
 6
                 for all edges (u, v) \in E
                           if dist[v] > dist[u] + w(u, v)
                                      dist[v] \leftarrow dist[u] + w(u, v)
 8
 9
                                      prev[v] \leftarrow u
10
     for all edges (u, v) \in E
                 if dist[v] > dist[u] + w(u, v)
11
                           return false
12
```


 Loop invariant: After iteration i, all vertices with shortest paths from s of length i edges or less have correct distances

```
Bellman-Ford(G, s)
     for all v \in V
                 dist[v] \leftarrow \infty
                 prev[v] \leftarrow null
   dist[s] \leftarrow 0
     for i \leftarrow 1 to |V| - 1
                 for all edges (u, v) \in E
 6
                            if dist[v] > dist[u] + w(u, v)
 8
                                      dist[v] \leftarrow dist[u] + w(u, v)
 9
                                      prev[v] \leftarrow u
10
     for all edges (u, v) \in E
                 if dist[v] > dist[u] + w(u, v)
11
                           return false
12
```



```
Bellman-Ford(G, s)
     for all v \in V
                dist[v] \leftarrow \infty
                 prev[v] \leftarrow null
    dist[s] \leftarrow 0
    for i \leftarrow 1 to |V| - 1
                 for all edges (u, v) \in E
 6
                           if dist[v] > dist[u] + w(u, v)
                                      dist[v] \leftarrow dist[u] + w(u,v)
 9
                                      prev[v] \leftarrow u
     for all edges (u, v) \in E
                 if dist[v] > dist[u] + w(u, v)
11
12
                           return false
```

Runtime of Bellman-Ford


```
Bellman-Ford(G, s)
     for all v \in V
                dist[v] \leftarrow \infty
                prev[v] \leftarrow null
    dist[s] \leftarrow 0
    for i \leftarrow 1 to |V| - 1
                 for all edges (u, v) \in E
 6
                           if dist[v] > dist[u] + w(u, v)
                                      dist[v] \leftarrow dist[u] + w(u,v)
 9
                                      prev[v] \leftarrow u
     for all edges (u, v) \in E
                 if dist[v] > dist[u] + w(u, v)
11
12
                           return false
```

Can you modify the algorithm to run faster (in some circumstances)?

All pairs shortest paths

- Simple approach
 - Call Bellman-Ford |V| times
 - O(|V|² |E|)
- Floyd-Warshall Θ(|V|³)
- Johnson's algorithm O(|V|² log |V| + |V| |E|)

- What is the lowest weight set of edges that connects all vertices of an undirected graph with positive weights
- Input: An undirected, positive weight graph, G=(V,E)
- Output: A tree T=(V,E') where E' ⊆ E that minimizes

$$weight(T) = \sum_{e \in E'} w_e$$

MST example

MSTs

Can an MST have a cycle?

MSTs

Can an MST have a cycle?

Applications?

- Connectivity
 - Networks (e.g. communications)
 - Circuit desing/wiring
- hub/spoke models (e.g. flights, transportation)
- Traveling salesman problem?

Cuts

- A cut is a partitioning of the vertices into two sets S and V-S
- An edges "crosses" the cut if it connects a vertex u∈V and v∈V-S

Minimum cut property

 Given a partion S, let edge e be the minimum cost edge that crosses the partition. Every minimum spanning tree contains edge e.

Consider an MST with edge e' that is not the minimum edge

Minimum cut property

 Given a partion S, let edge e be the minimum cost edge that crosses the partition. Every minimum spanning tree contains edge e.

Using e instead of e', still connects the graph, but produces a tree with smaller weights

 Given a partion S, let edge e be the minimum cost edge that crosses the partition. Every minimum spanning tree contains edge e.

```
 \begin{aligned} & \text{Kruskal}(G) \\ & 1 \quad \text{for all } v \in V \\ & 2 \qquad & \text{MakeSet}(v) \\ & 3 \quad T \leftarrow \{\} \\ & 4 \quad \text{sort the edges of } E \text{ by weight} \\ & 5 \quad \text{for all edges } (u,v) \in E \text{ in increasing order of weight} \\ & 6 \quad & \text{if } \text{Find-Set}(u) \neq \text{Find-Set}(v) \\ & 7 \quad & \text{add edge to } T \\ & 8 \quad & \text{Union}(\text{Find-Set}(u),\text{Find-Set}(v)) \end{aligned}
```

Kruskal's algorithm

Add smallest edge that connects two sets not already connected

Kruskal's algorithm

Add smallest edge that connects two sets not already connected

Kruskal's algorithm

Add smallest edge that connects two sets not already connected

Kruskal's algorithm

Add smallest edge that connects two sets not already connected

Kruskal's algorithm

Add smallest edge that connects two sets not already connected

Kruskal's algorithm

Add smallest edge that connects two sets not already connected

- Never adds an edge that connects already connected vertices
- Always adds lowest cost edge to connect two sets.
 By min cut property, that edge must be part of the MST

```
 \begin{array}{lll} & \textbf{for all } v \in V \\ 2 & & \text{MakeSet}(v) \\ 3 & T \leftarrow \{\} \\ 4 & \text{sort the edges of } E \text{ by weight} \\ 5 & \textbf{for all edges } (u,v) \in E \text{ in increasing order of weight} \\ 6 & & \textbf{if } \text{Find-Set}(u) \neq \text{Find-Set}(v) \\ 7 & & \text{add edge to } T \\ 8 & & & \text{Union}(\text{Find-Set}(u),\text{Find-Set}(v)) \\ \end{array}
```


Kruskal(G)

```
1 for all v \in V

2 MakeSet(v)

3 T \leftarrow \{\}

4 sort the edges of E by weight

5 for all edges (u, v) \in E in increasing order of weight

6 if Find-Set(u) \neq Find-Set(v)

7 add edge to T

8 Union(Find-Set(u),Find-Set(v))
```

|V| calls to MakeSet


```
 \begin{array}{lll} \operatorname{Kruskal}(G) \\ 1 & \operatorname{for \ all} \ v \in V \\ 2 & \operatorname{MakeSet}(v) \\ 3 & T \leftarrow \{\} \\ 4 & \operatorname{sort \ the \ edges \ of} \ E \ \operatorname{by \ weight} \\ 5 & \operatorname{for \ all \ edges} \ (u,v) \in E \ \operatorname{in \ increasing \ order \ of \ weight} \\ 6 & \operatorname{if \ Find-Set}(u) \neq \operatorname{Find-Set}(v) \\ 7 & \operatorname{add \ edge \ to} \ T \\ 8 & \operatorname{Union}(\operatorname{Find-Set}(u),\operatorname{Find-Set}(v)) \end{array}
```



```
\begin{array}{lll} \operatorname{Kruskal}(G) \\ 1 & \operatorname{for \ all} \ v \in V \\ 2 & \operatorname{MakeSet}(v) \\ 3 & T \leftarrow \{\} \\ 4 & \operatorname{sort \ the \ edges \ of} \ E \ \operatorname{by \ weight} \\ 5 & \operatorname{for \ all \ edges} \ (u,v) \in E \ \operatorname{in \ increasing \ order \ of \ weight} \\ 6 & \operatorname{if \ Find-Set}(u) \neq \operatorname{Find-Set}(v) \\ 7 & \operatorname{add \ edge \ to} \ T \\ 8 & \operatorname{Union}(\operatorname{Find-Set}(u),\operatorname{Find-Set}(v)) \end{array} \qquad 2 \ | \operatorname{E} \ | \operatorname{calls \ to \ FindSet} \\ \end{array}
```



```
Kruskal(G)

1 for all v \in V

2 MakeSet(v)

3 T \leftarrow \{\}

4 sort the edges of E by weight

5 for all edges (u, v) \in E in increasing order of weight

6 if Find-Set(u) \neq Find-Set(v)

7 add edge to T

8 Union(Find-Set(u),Find-Set(v))
```

|V| calls to Union

Disjoint set data structure

$$O(|E| \log |E|) +$$

	•					
	MakeSet	FindSet E calls	Union V calls	Total		
Linked lists	V	O(V E)	V	O(V E + E log E) O(V E)		
Linked lists + heuristics	V	O(E log V)	V	O(E log V + E log E) O(E log E)		

Prim's algorithm


```
PRIM(G,r)
     for all v \in V
                key[v] \leftarrow \infty
                 prev[v] \leftarrow null
     key[r] \leftarrow 0
     H \leftarrow \text{MakeHeap}(key)
     while !Empty(H)
                 u \leftarrow \text{Extract-Min}(H)
                 visited[u] \leftarrow true
 8
                 for each edge (u, v) \in E
 9
10
                            if |visited[v]| and w(u,v) < key(v)
                                      Decrease-Key(v, w(u, v))
11
                                      prev[v] \leftarrow u
12
```

Prim's algorithm

```
PRIM(G,r)
                                                                                 Dijkstra(G, s)
     for all v \in V
                                                                                      for all v \in V
                 key[v] \leftarrow \infty
                                                                                                  dist[v] \leftarrow \infty
                 prev[v] \leftarrow null
                                                                                                  prev[v] \leftarrow null
      key[r] \leftarrow 0
                                                                                      dist[s] \leftarrow 0
      H \leftarrow \text{MakeHeap}(key)
                                                                                      Q \leftarrow \text{MakeHeap}(V)
     while !Empty(H)
                                                                                      while !Empty(Q)
                 u \leftarrow \text{Extract-Min}(H)
                                                                                                  u \leftarrow \text{ExtractMin}(Q)
 8
                 visited[u] \leftarrow true
                                                                                                  for all edges (u, v) \in E
                                                                                  8
                 for each edge (u, v) \in E
 9
                                                                                                             if dist[v] > dist[u] + w(u, v)
                                                                                  9
                            if |visited[v]| and w(u,v) < key(v)
10
                                                                                                                        dist[v] \leftarrow dist[u] + w(u,v)
                                                                                 10
                                       Decrease-Key(v, w(u, v))
11
                                                                                                                        \mathsf{DecreaseKey}(Q, v, dist[v])
                                                                                 11
12
                                       prev[v] \leftarrow u
                                                                                 12
                                                                                                                        prev[v] \leftarrow u
```

Prim's algorithm


```
Prim(G, r)
     for all v \in V
      key[v] \leftarrow \infty
                prev[v] \leftarrow null
    key[r] \leftarrow 0
    H \leftarrow \text{MakeHeap}(key)
     while !Empty(H)
                u \leftarrow \text{Extract-Min}(H)
                visited[u] \leftarrow true
                for each edge (u, v) \in E
                           if !visited[v] and w(u, v) < key(v)
10
                                     Decrease-Key(v, w(u, v))
11
12
                                     prev[v] \leftarrow u
```


 Start at some root node and build out the MST by adding the lowest weighted edge at the frontier

```
Prim(G, r)
     for all v \in V
               key[v] \leftarrow \infty
                prev[v] \leftarrow null
 4 \quad key[r] \leftarrow 0
 5 H \leftarrow \text{MakeHeap}(key)
     while !Empty(H)
                 u \leftarrow \text{Extract-Min}(H)
                 visited[u] \leftarrow true
 8
                 for each edge (u, v) \in E
                            if |visited[v]| and w(u,v) < key(v)
10
11
                                       Decrease-Key(v, w(u, v))
12
                                       prev[v] \leftarrow u
```

 $\begin{array}{ll} 6 & \textbf{while} \; !Empty(H) \\ 7 & u \leftarrow \text{Extract-Min}(H) \\ 8 & visited[u] \leftarrow true \\ 9 & \textbf{for} \; \text{each} \; \text{edge} \; (u,v) \in E \\ 10 & \textbf{if} \; !visited[v] \; \text{and} \; w(u,v) < key(v) \\ 11 & \text{Decrease-Key}(v,w(u,v)) \\ 12 & prev[v] \leftarrow u \\ \end{array}$

MST

E

(B)

D

F

 $6 \quad \textbf{while } ! Empty(H) \\ 7 \quad u \leftarrow \text{Extract-Min}(H) \\ 8 \quad visited[u] \leftarrow true \\ 9 \quad \textbf{for } \text{each } \text{edge } (u,v) \in E \\ 10 \quad \textbf{if } ! visited[v] \text{ and } w(u,v) < key(v) \\ 11 \quad \text{Decrease-Key}(v,w(u,v)) \\ 12 \quad prev[v] \leftarrow u$

6 while !Empty(H)7 $u \leftarrow \text{Extract-Min}(H)$ 8 $visited[u] \leftarrow true$ 9 for each edge $(u, v) \in E$ 10 if !visited[v] and w(u, v) < key(v)11 Decrease-Key(v, w(u, v))12 $prev[v] \leftarrow u$

while !Empty(H)

while !Empty(H)

while !Empty(H)

while !Empty(H)

 $6 \quad \textbf{while } ! Empty(H) \\ 7 \quad u \leftarrow \text{Extract-Min}(H) \\ 8 \quad visited[u] \leftarrow true \\ 9 \quad \textbf{for } \text{ each } \text{ edge } (u,v) \in E \\ 10 \quad \quad \textbf{if } ! visited[v] \text{ and } w(u,v) < key(v) \\ 11 \quad \qquad \text{Decrease-Key}(v,w(u,v)) \\ 12 \quad \qquad prev[v] \leftarrow u \\$

while !Empty(H)

Correctness of Prim's?

- Can we use the min-cut property?
 - Given a partion S, let edge e be the minimum cost edge that crosses the partition. Every minimum spanning tree contains edge e.
- Let S be the set of vertices visited so far
- The only time we add a new edge is if it's the lowest weight edge from S to V-S

Running time of Prim's

 $\Theta(|V|)$

```
Prim(G, r)
     for all v \in V
                 key[v] \leftarrow \infty
 ^{3}
                 prev[v] \leftarrow null
    key[r] \leftarrow 0
     H \leftarrow \text{MakeHeap}(key)
     while !Empty(H)
 7
                 u \leftarrow \text{Extract-Min}(H)
 8
                 visited[u] \leftarrow true
                 for each edge (u, v) \in E
 9
                            if !visited[v] and w(u, v) < key(v)
10
                                       Decrease-Key(v, w(u, v))
11
                                       prev[v] \leftarrow u
12
```



```
Prim(G, r)
     for all v \in V
                 key[v] \leftarrow \infty
 3
                 prev[v] \leftarrow null
     key[r] \leftarrow 0
                                                                                  \Theta(|V|)
     H \leftarrow \text{MakeHeap}(key)
     while !Empty(H)
 6
                 u \leftarrow \text{Extract-Min}(H)
 8
                 visited[u] \leftarrow true
                 for each edge (u, v) \in E
 9
                            if !visited[v] and w(u, v) < key(v)
10
                                       Decrease-Key(v, w(u, v))
11
                                      prev[v] \leftarrow u
12
```



```
Prim(G, r)
     for all v \in V
                 key[v] \leftarrow \infty
 3
                 prev[v] \leftarrow null
     key[r] \leftarrow 0
     H \leftarrow \text{MakeHeap}(key)
     while !Empty(H)
                 u \leftarrow \text{Extract-Min}(H)
 7
                 visited[u] \leftarrow true
 8
 9
                 for each edge (u, v) \in E
                            if !visited[v] and w(u, v) < key(v)
10
                                      Decrease-Key(v, w(u, v))
11
                                      prev[v] \leftarrow u
12
```

|V| calls to Extract-Min


```
Prim(G, r)
     for all v \in V
                key[v] \leftarrow \infty
                prev[v] \leftarrow null
   key[r] \leftarrow 0
     H \leftarrow \text{MakeHeap}(key)
     while !Empty(H)
                u \leftarrow \text{Extract-Min}(H)
 8
                visited[u] \leftarrow true
                for each edge (u, v) \in E
 9
                          if |visited[v]| and w(u,v) < key(v)
10
                                                                           |E| calls to Decrease-Key
11
                                     Decrease-Key(v, w(u, v))
12
                                     prev[v] \leftarrow u
```


Same as Dijksta's algorithm

	1 MakeHeap	V ExtractMin	E DecreaseKey	Total
Array	O(V)	$O(V ^2)$	O(E)	$O(V ^2)$
Bin heap	O(V)	O(V log V)	O(E log V)	O((V + E) log V) O(E log V)
Fib heap	O(V)	O(V log V)	O(E)	O(V log V + E)

Kruskal's: O(|E| log |E|)