Zadanie: JOI Flaga JOI

Warsztaty ILO 2017-2018, grupa olimpijska, dzień 20. Dostępna pamięć: 128 MB.

12.05.2018

Flage JOI k-tego stopnia definiujemy w następujący sposób:

- Flaga 0-owego stopnia jest macierzą 1 na 1 zawierającą jedną z trzech liter: 'J', 'O' lub 'I'.
- Dla m > 0 Flagą JOI m-tego stopnia jest macierz 2^m na 2^m , która może być podzielona na cztery macierze wielkości 2^{m-1} na 2^{m-1} :

```
macierz 2^{m-1} na 2^{m-1} będącą flagą JOI m-1 stopnia, macierz 2^{m-1} na 2^{m-1} zawierającą jedynie litery 'J', macierz 2^{m-1} na 2^{m-1} zawierająca jedynie litery 'O' oraz macierz 2^{m-1} na 2^{m-1} zawierającą jedynie litery 'I'.
```

Zwróć uwagę, że te macierze mogą dzielić sie na Flagi JOI jeszcze mniejszego stopnia.

Na przykład tak pewna wygląda Flaga JOI poziomu drugiego:

OIJJ JJJJ OOII OOII

Tak może wyglądać Flaga JOI poziomu trzeciego:

JJJJ0000 JJJJ0000 JJJJ0000 JJJJ0000 JJJJ0000

Masz daną macierz 2^k na 2^k . n komórek tej macierzy zawiera już litery c_i (jedną z 'J', 'O', 'I'). Wszystkie pozostałe komórki są puste. Możesz w puste miejsca wstawić jedną z trzech liter. Twoim zadaniem jest obliczenie, ile minimalnie liter z wejścia trzeba zmienić tak, aby macierz mogła zostać dopełniona do poprawnej flagi JOI.

Wejście

W pierwszej lini wejścia znajdują się dwie liczby całkowite k, n oddzielone znakiem spacji ($1 \le k \le 30, 1 \le n \le 1000$). Pierwsza liczba oznacza wielkość macierzy, druga liczbę wpisanych liter do macierzy.

Kolejne n wierszy opisuje stan początkowej macierzy.

Każdy wiersz zawiera dwie liczby całkowite x_i, y_i i litere c_i $(1 \le x_i, y_i \le 2^k)$, gdzie x_i oznacza kolumne, a y_i wiersz w które została wpisana litera c_i . W jedno pole zostanie wpisana maksymalnie jedna litera.

Wyjście

Na wyjściu ma się znaleźć jedna liczba całkowita oznaczająca liczbę pól podanych na wejściu które trzeba zmienić, tak aby dało się dopełnić puste pola żeby tworzyły flagę JOI.

Przykład

Ocenianie

Podzadanie	Ograniczenia	Punkty
1	$k \le 10$	42
2	brak dodatkowych założeń	58

