Modelling the extremes of spatial aggregates of precipitation using conditional methods

Jordan Richards¹, Jonathan A. Tawn¹, Simon Brown²
¹STOR-i, Lancaster University, ²UK Met Office

June 28, 2021

- River flooding caused by high intensity rainfall over spatial catchment area
- ► For spatial process $\{Y(s): s \in \mathcal{S}\}$ observed at sampling locations $\mathbf{s} = (s_1, \dots, s_d)$
- ▶ Interested in behaviour of aggregate $R_{\mathcal{A}} = \frac{1}{|\mathcal{A}|} \int_{\mathcal{A}} Y(s) ds$ or $\int_{\mathcal{A}} Y(s) ds$ for $\mathcal{A} \subseteq \mathcal{S}$ (or equivalent sum)
- ► Particularly interested in extremal behaviour (return levels) largest events most likely to cause flooding

- River flooding caused by high intensity rainfall over spatial catchment area
- ► For spatial process $\{Y(s): s \in \mathcal{S}\}$ observed at sampling locations $\mathbf{s} = (s_1, \dots, s_d)$
- ▶ Interested in behaviour of aggregate $R_A = \frac{1}{|A|} \int_A Y(s) ds$ or $\int_A Y(s) ds$ for $A \subseteq S$ (or equivalent sum)
- ► Particularly interested in extremal behaviour (return levels) largest events most likely to cause flooding

- River flooding caused by high intensity rainfall over spatial catchment area
- ► For spatial process $\{Y(s): s \in \mathcal{S}\}$ observed at sampling locations $\mathbf{s} = (s_1, \dots, s_d)$
- ▶ Interested in behaviour of aggregate $R_{\mathcal{A}} = \frac{1}{|\mathcal{A}|} \int_{\mathcal{A}} Y(s) ds$ or $\int_{\mathcal{A}} Y(s) ds$ for $\mathcal{A} \subseteq \mathcal{S}$ (or equivalent sum)
- ► Particularly interested in extremal behaviour (return levels) largest events most likely to cause flooding

- River flooding caused by high intensity rainfall over spatial catchment area
- ► For spatial process $\{Y(s): s \in \mathcal{S}\}$ observed at sampling locations $\mathbf{s} = (s_1, \dots, s_d)$
- ▶ Interested in behaviour of aggregate $R_{\mathcal{A}} = \frac{1}{|\mathcal{A}|} \int_{\mathcal{A}} Y(s) ds$ or $\int_{\mathcal{A}} Y(s) ds$ for $\mathcal{A} \subseteq \mathcal{S}$ (or equivalent sum)
- ► Particularly interested in extremal behaviour (return levels) largest events most likely to cause flooding

- lacktriangle Can just take sample aggregate $R_{\mathcal{A}}$ use univariate methods
- Wasteful Less data for modelling
- ► Loses information from the underlying marginal process or dependence structure → Could potentially lead to inconsistent inference, i.e., no natural ordering of estimated return levels where physically appropriate
- ▶ Idea model entire process $\{Y(s): s \in \mathcal{S}\}$, simulate, aggregate, use realisations for inference

- ightharpoonup Can just take sample aggregate $R_{\mathcal{A}}$ use univariate methods
- ► Wasteful Less data for modelling
- ► Loses information from the underlying marginal process or dependence structure → Could potentially lead to inconsistent inference, i.e., no natural ordering of estimated return levels where physically appropriate
- ▶ Idea model entire process $\{Y(s): s \in \mathcal{S}\}$, simulate, aggregate, use realisations for inference

- ightharpoonup Can just take sample aggregate R_A use univariate methods
- Wasteful Less data for modelling
- ► Loses information from the underlying marginal process or dependence structure → Could potentially lead to inconsistent inference, i.e., no natural ordering of estimated return levels where physically appropriate
- ▶ Idea model entire process $\{Y(s) : s \in \mathcal{S}\}$, simulate, aggregate, use realisations for inference

- lacktriangle Can just take sample aggregate $R_{\mathcal{A}}$ use univariate methods
- ► Wasteful Less data for modelling
- ► Loses information from the underlying marginal process or dependence structure → Could potentially lead to inconsistent inference, i.e., no natural ordering of estimated return levels where physically appropriate
- ▶ Idea model entire process $\{Y(s) : s \in \mathcal{S}\}$, simulate, aggregate, use realisations for inference

- ► Model for marginal extremes and extremal dependence
- ► Focus on modelling extremes of process largest values of underlying process produce largest values of aggregate
- lacktriangle Marginal model at each site $s \in \mathcal{S}$
- ► Transform observed process to $\{X(s) : s \in S\}$ with standardised margins

- ► Model for marginal extremes and extremal dependence
- ► Focus on modelling extremes of process largest values of underlying process produce largest values of aggregate
- ▶ Marginal model at each site $s \in S$
- ► Transform observed process to $\{X(s) : s \in \mathcal{S}\}$ with standardised margins

- ► Model for marginal extremes and extremal dependence
- ► Focus on modelling extremes of process largest values of underlying process produce largest values of aggregate
- ▶ Marginal model at each site $s \in S$
- ► Transform observed process to $\{X(s) : s \in \mathcal{S}\}$ with standardised margins

- ► Model for marginal extremes and extremal dependence
- ► Focus on modelling extremes of process largest values of underlying process produce largest values of aggregate
- ▶ Marginal model at each site $s \in S$
- ▶ Transform observed process to $\{X(s) : s \in S\}$ with standardised margins

General outline for spatial conditional extremes [Wadsworth and Tawn, 2019]

- ► Spatial extension of [Heffernan and Tawn, 2004]
- ▶ Spatial process $\{X(s): s \in S\}$ with standard exponential upper-tailed margins (standard Laplace)
- ► Condition on high value of process at conditioning site $s_0 \in S$, i.e., $X(s_O) > u$
- ► Model (normalised) process

General outline for spatial conditional extremes [Wadsworth and Tawn, 2019]

- ► Spatial extension of [Heffernan and Tawn, 2004]
- ▶ Spatial process $\{X(s): s \in \mathcal{S}\}$ with standard exponential upper-tailed margins (standard Laplace)
- \triangleright Condition on high value of process at conditioning site $s_0 \in \mathcal{S}$,
- ► Model (normalised) process

General outline for spatial conditional extremes [Wadsworth and Tawn, 2019]

- ► Spatial extension of [Heffernan and Tawn, 2004]
- ▶ Spatial process $\{X(s): s \in S\}$ with standard exponential upper-tailed margins (standard Laplace)
- ► Condition on high value of process at conditioning site $s_0 \in S$, i.e., $X(s_O) > u$
- ► Model (normalised) process

General outline for spatial conditional extremes [Wadsworth and Tawn, 2019]

- ► Spatial extension of [Heffernan and Tawn, 2004]
- ▶ Spatial process $\{X(s): s \in S\}$ with standard exponential upper-tailed margins (standard Laplace)
- ► Condition on high value of process at conditioning site $s_0 \in S$, i.e., $X(s_O) > u$
- ▶ Model (normalised) process

Dependence model

Assume there exists normalising functions $\{a_{s-s_0}: \mathbb{R} \to \mathbb{R}, s \in \mathcal{S}\}$, with $a_0(x) = x$, and $\{b_{s-s_0}: \mathbb{R} \to (0, \infty), s \in \mathcal{S}\}$, such that

$$\left(\left\{\frac{X(s_i) - a_{s_i - s_0}\{X(s_0)\}}{b_{s_i - s_0}\{X(s_0)\}}\right\}_{i=1,\dots,d}, X(s_0) - u\right) | X(s_0) > u$$

$$\xrightarrow{d} \left(\left\{Z^0(s_i)\right\}_{i=1,\dots,d}, E\right), \text{ as } u \to \infty,$$

- ► $E \sim \text{Exp}(1)$
- ▶ (Residual) process $\{Z^0(s): s \in S\}$ independent of E, satisfies $Z^0(s_0) = 0$ almost surely
- ightharpoonup Stationarity assumption; same relationships for any s_0

Modelling choices - Normalising functions

Assume limit holds for $X(s_0) > u$. We have

$$\{X(s): s \in \mathcal{S}\} = a_{s-s_0}\{X(s_0)\} + b_{s-s_0}\{X(s_0)\}\{Z^0(s): s \in \mathcal{S}\}.$$

Modelling choices for normalising functions:

- ▶ Let $a_{s-s_0}(x) = x\alpha(\|s-s_0\|)$ for $\alpha: \mathbb{R}_+ \to [0,1]$ and let $b_{s-s_0}(x) = x^{\beta(\|s-s_0\|)}$ for $\beta : \mathbb{R}_+ \to [0,1]$.
- As $a_0(x) = x$, require $\alpha(0) = 1$.
- \triangleright Extremal dependence between X(s) and $X(s_0)$ decreases with

Modelling choices - Normalising functions

Assume limit holds for $X(s_0) > u$. We have

$$\{X(s): s \in \mathcal{S}\} = a_{s-s_0}\{X(s_0)\} + b_{s-s_0}\{X(s_0)\}\{Z^0(s): s \in \mathcal{S}\}.$$

Modelling choices for normalising functions:

- ► Let $a_{s-s_0}(x) = x\alpha(\|s-s_0\|)$ for $\alpha : \mathbb{R}_+ \to [0,1]$ and let $b_{s-s_0}(x) = x^{\beta(\|s-s_0\|)}$ for $\beta : \mathbb{R}_+ \to [0,1]$.
- As $a_0(x) = x$, require $\alpha(0) = 1$.
- Extremal dependence between X(s) and $X(s_0)$ decreases with $\alpha(\|s-s_0\|)$ and $\beta(\|s-s_0\|)$ for $s \in \mathcal{S}$.

Modelling choices - Normalising functions

Assume limit holds for $X(s_0) > u$. We have

$$\{X(s): s \in \mathcal{S}\} = a_{s-s_0}\{X(s_0)\} + b_{s-s_0}\{X(s_0)\}\{Z^0(s): s \in \mathcal{S}\}.$$

Modelling choices for normalising functions:

- ► Let $a_{s-s_0}(x) = x\alpha(\|s-s_0\|)$ for $\alpha : \mathbb{R}_+ \to [0,1]$ and let $b_{s-s_0}(x) = x^{\beta(\|s-s_0\|)}$ for $\beta : \mathbb{R}_+ \to [0,1]$.
- As $a_0(x) = x$, require $\alpha(0) = 1$.
- ▶ Extremal dependence between X(s) and $X(s_0)$ decreases with $\alpha(\|s s_0\|)$ and $\beta(\|s s_0\|)$ for $s \in \mathcal{S}$.

Residual process - Dependence

Reminder that we have

$$\{X(s): s \in \mathcal{S}\} = \alpha(\|s-s_0\|)X(s_0) + X(s_0)^{\beta(\|s-s_0\|)}\{Z^0(s): s \in \mathcal{S}\}.$$

Modelling choice for dependence in $\{Z^0(s)\}$:

- ▶ Start with a standard GP $\{W(s) : s \in \mathcal{S}\}$ with stationary correlation structure
- ► Set $\{Z^0(s): s \in \mathcal{S}\} = \{W(s)|W(s_0) = 0: s \in \mathcal{S}\}$

Residual process - Margins

Reminder that we have

$$\{X(s): s \in \mathcal{S}\} = \alpha(\|s-s_0\|)X(s_0) + X(s_0)^{\beta(\|s-s_0\|)}\{Z^0(s): s \in \mathcal{S}\}.$$

Modelling choice for margins of $\{Z^0(s) : s \in S\}$:

▶ Set margins of $\{Z^0(s): s \in S\}$ to delta-Laplace

$$f(z) = \frac{\delta}{2k\sigma\Gamma\left(\frac{1}{\delta}\right)}\exp\left\{-\left|\frac{z-\mu}{k\sigma}\right|^{\delta}\right\},\,$$

with $\Gamma(\cdot)$ as the standard gamma function and $\mu \in \mathbb{R}, \sigma > 0, \delta > 0$ and $k^2 = \Gamma(1/\delta)\Gamma(3/\delta)$.

▶ More flexible than Laplace $(\delta = 1)$ or Gaussian $(\delta = 2)$

Residual process - Margins cont.

Reminder that we have

$$\{X(s): s \in \mathcal{S}\} = \alpha(\|s-s_0\|)X(s_0) + X(s_0)^{\beta(\|s-s_0\|)}\{Z^0(s): s \in \mathcal{S}\}.$$

Modelling choice for margins of $\{Z^0(s) : s \in \mathcal{S}\}$:

- ▶ Parametrise μ , σ and δ as functions of $\|s s_0\|$.
- For $Z^0(s_0) = 0$ almost surely, require $\mu(0) = \sigma(0) = 0$.

Residual process - Margins cont.

Reminder that we have

$$\{X(s): s \in \mathcal{S}\} = \alpha(\|s-s_0\|)X(s_0) + X(s_0)^{\beta(\|s-s_0\|)}\{Z^0(s): s \in \mathcal{S}\}.$$

Modelling choice for margins of $\{Z^0(s) : s \in \mathcal{S}\}$:

- ▶ Parametrise μ , σ and δ as functions of $\|s s_0\|$.
- For $Z^0(s_0) = 0$ almost surely, require $\mu(0) = \sigma(0) = 0$.

Long-range independence

Reminder that we have

$$\{X(s): s \in \mathcal{S}\} = \alpha(\|s - s_0\|)X(s_0) + X(s_0)^{\beta(\|s - s_0\|)}\{Z^0(s): s \in \mathcal{S}\}.$$

To achieve independence between X(s) and $X(s_0)$ as $||s - s_0|| \to \infty$:

- $ightharpoonup lpha(\|s-s_0\|)
 ightarrow 0$ and $eta(\|s-s_0\|)
 ightarrow 0$
- For standard Laplace margins at large enough distances need $\mu(\|s-s_0\|) \to 0, \sigma(\|s-s_0\|) \to \sqrt{2}$ and $\delta(\|s-s_0\|) \to 1$ as $\|s-s_0\| \to \infty$.

Long-range independence

Reminder that we have

$$\{X(s): s \in \mathcal{S}\} = \alpha(\|s-s_0\|)X(s_0) + X(s_0)^{\beta(\|s-s_0\|)}\{Z^0(s): s \in \mathcal{S}\}.$$

To achieve independence between X(s) and $X(s_0)$ as $||s - s_0|| \to \infty$:

- $ightharpoonup lpha(\|s-s_0\|)
 ightarrow 0$ and $eta(\|s-s_0\|)
 ightarrow 0$
- For standard Laplace margins at large enough distances need $\mu(\|s-s_0\|) \to 0, \sigma(\|s-s_0\|) \to \sqrt{2}$ and $\delta(\|s-s_0\|) \to 1$ as $\|s-s_0\| \to \infty$.

Inference/Simulation

- ► Use triple-wise pseudo-likelihood for inference
- Censoring in inference and simulation to account for zeroes (no rain)
- ► Have to be careful of edge effects when simulating events

Full details in paper

Inference/Simulation

- ► Use triple-wise pseudo-likelihood for inference
- Censoring in inference and simulation to account for zeroes (no rain)
- ► Have to be careful of edge effects when simulating events

Full details in paper

Inference/Simulation

- ► Use triple-wise pseudo-likelihood for inference
- Censoring in inference and simulation to account for zeroes (no rain)
- ► Have to be careful of edge effects when simulating events

Full details in paper

Application

- ▶ From UKCP18 climate projections values assigned to 934 spatial grid-boxes rather than point locations Require sum for R_A , rather than integral
- ► Hourly precipitation rate (*mm*/hour), Summer (JJA), 1980-2000
- ▶ CPM Spatial resolution $5km \times 5km$ in East-Anglia

Dependence Model - Parametric function choice

To get an idea of the functional forms of the dependence parameters, we fit a simple dependence model

- ▶ No dependence in residual process $\{Z^0(s): s \in \mathcal{S}\}$
- ▶ Individual parameter estimates, rather than fitted functions
- ▶ Done for several conditioning sites spread out over domain

Dependence Model - Parametric function choice

To get an idea of the functional forms of the dependence parameters, we fit a simple dependence model

- ▶ No dependence in residual process $\{Z^0(s) : s \in S\}$
- ▶ Individual parameter estimates, rather than fitted functions i.e., sequence of α_{s_i} for i = 1, ..., d, not $\alpha(\|s s_0\|)$
- ▶ Done for several conditioning sites spread out over domain

Dependence Model - Parametric function choice

To get an idea of the functional forms of the dependence parameters, we fit a simple dependence model

- ▶ No dependence in residual process $\{Z^0(s) : s \in S\}$
- ▶ Individual parameter estimates, rather than fitted functions i.e., sequence of α_{s_i} for $i=1,\ldots,d$, not $\alpha(\|s-s_0\|)$
- ▶ Done for several conditioning sites spread out over domain

$\mathsf{Alpha}/\mathsf{Beta}$

$\mathsf{Mu/Sigma/Delta}$

- ▶ How well do replications from $\{Y(s) : s \in S\}$ capture tail behaviour of R_A ?
- Simulate over entire domain, roughly 200 years of events
- Aggregate over increasingly large regions (coloured points and interior) $(125 5425) km^2$
- Compare model quantiles against data

- ▶ How well do replications from $\{Y(s) : s \in S\}$ capture tail behaviour of R_A ?
- ► Simulate over entire domain, roughly 200 years of events
- Aggregate over increasingly large regions (coloured points and interior) $(125 5425) km^2$
- Compare model quantiles against data

- ▶ How well do replications from $\{Y(s) : s \in S\}$ capture tail behaviour of R_A ?
- ► Simulate over entire domain, roughly 200 years of events
- ► Aggregate over increasingly large regions (coloured points and interior) $(125 5425) km^2$
- Compare model quantiles against data

- ▶ How well do replications from $\{Y(s) : s \in S\}$ capture tail behaviour of R_A ?
- ► Simulate over entire domain, roughly 200 years of events
- ► Aggregate over increasingly large regions (coloured points and interior) $(125 5425) km^2$
- ► Compare model quantiles against data

Model diagnostics

Q-Q plots (blue 95% confidence bands) for high quantiles:

- ► Regions increase in size with label (i.e., 1 smallest 6 biggest)
- ► Largest quantile corresponds to a 20 year return level

Results

- ► GPD modelling for return levels of total volume of rainfall
- Guaranteed consistent estimates, i.e., no overlap

Results

- ► GPD modelling for return levels of total volume of rainfall
- ► Guaranteed consistent estimates, i.e., no overlap

- ▶ Model high-res. precipitation process $\{Y(s) : s \in S\}$
 - ▶ Extremal dependence in $\{X(s): s \in \mathcal{S}\}$ Extensions of SCE model
- ► Zeroes handled through censoring
- ► Can simulate from model for $\{Y(s): s \in S\}$ to produce inference on spatial aggregates R_A
- ► Self-consistent inference as all aggregates from same model

- ▶ Model high-res. precipitation process $\{Y(s) : s \in S\}$
 - ▶ Extremal dependence in $\{X(s): s \in \mathcal{S}\}$ Extensions of SCE model
- ► Zeroes handled through censoring
- ► Can simulate from model for $\{Y(s): s \in S\}$ to produce inference on spatial aggregates R_A
- ► Self-consistent inference as all aggregates from same model

- ▶ Model high-res. precipitation process $\{Y(s) : s \in S\}$
 - ▶ Extremal dependence in $\{X(s): s \in \mathcal{S}\}$ Extensions of SCE model
- ► Zeroes handled through censoring
- ► Can simulate from model for $\{Y(s): s \in S\}$ to produce inference on spatial aggregates R_A
- ► Self-consistent inference as all aggregates from same model

- ▶ Model high-res. precipitation process $\{Y(s): s \in S\}$
 - ▶ Extremal dependence in $\{X(s): s \in \mathcal{S}\}$ Extensions of SCE model
- Zeroes handled through censoring
- ▶ Can simulate from model for $\{Y(s): s \in S\}$ to produce inference on spatial aggregates R_A
- ► Self-consistent inference as all aggregates from same model

- ▶ Model high-res. precipitation process $\{Y(s): s \in S\}$
 - ▶ Extremal dependence in $\{X(s): s \in \mathcal{S}\}$ Extensions of SCE model
- Zeroes handled through censoring
- ▶ Can simulate from model for $\{Y(s): s \in S\}$ to produce inference on spatial aggregates R_A
- Self-consistent inference as all aggregates from same model

References

Heffernan, J. E. and Tawn, J. A. (2004).

A conditional approach for multivariate extreme values (with discussion). Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66(3):497–546.

Richards, J., Tawn, J. A., and Brown, S. (2021). Modelling extremes of spatial aggregates of precipitation using conditional methods.

arXiv preprint arXiv:2102.10906.

Wadsworth, J. L. and Tawn, J. A. (2019). Higher-dimensional spatial extremes via single-site conditioning. arXiv preprint arXiv:1912.06560.

Thanks for listening.

Extensions/Current work

Overview

- Mixture modelling Split data into convective and non-convective events
- Identification algorithm developed at Hadley Centre, UK Met Office - Deterministic, looks at gradients of surface of an observed field
- ► Fit separate model to each process Simulate from both models and combine for aggregate
- ▶ Also consider higher spatial resolution, $(2.2)km^2$, and much larger spatial domain

Example observations

Top: Convective. Bottom: Non-convective

Comparison of fitted dependence models

- ► Green: Convective. Red: Non-convective.
- Observe much faster decay of extremal dependence for convective events.

Simulated fields

Top: Convective. Bottom: Non-convective

