8 ▼ TP1

O propósito deste trabalho é a análise de problemas de alocação usando técnicas de SAT, em lógica proposicional, e IP em lógica linear inteira.

Exercício 1.1

Pretende-se construir um horário semanal para o plano de reuniões de projeto de uma "StartUp" de acordo com as seguintes condições:

- a. Cada reunião ocupa uma sala (enumeradas 1...S) durante um "slot" 1..T $(\mathrm{hora},\mathrm{dia})$.
- b. Cada reunião tem associado um projeto (enumerados 1..P) e um conjunto de participantes. Os diferentes colaboradores são enumerados 1..C.
- c. Cada projeto tem associado um conjunto de colaboradores, dos quais um é o líder. Cada projeto realiza um dado número de reuniões semanais.
- d. O líder do projeto participa em todas as reuniões do seu projeto; os restantes colaboradores podem ou não participar consoante a sua disponibilidade, num mínimo ("quorum") de 50% do total de colaboradores do projeto.

São "inputs" do problema:

- i. Os parâmetros $S\,,\,T\,,\,P\,,\,C$
 - ii. O conjunto de colaboradores de cada projeto, o seu líder e o número <u>mínimo</u> de reuniões semanais.
 - iii. A disponibilidade de cada participante, incluindo o lider. Essa disponibilidade é um conjunto de "slots" representada numa matriz booleana de acessibilidade com uma linha por cada participante 1..C e uma coluna por "slot" 1..T

São critérios de optimização:

- i. Maximizar o número de reuniões efetivamente realizadas
- ii. Minimizar o número médio de reuniões por participante.

Exercício 1.2

Na criptografia pós-quântica os reticulados inteiros ("hard lattices") e os problemas a eles associados são uma componente essencial. Um reticulado inteiro pode ser definido por uma matriz $\mathsf{L} \in \mathbb{Z}^{m imes n}$ (com m > n) de inteiros e por um inteiro primo $q \geq 3$.

O chamado problema do vetor curto (SVP) consiste no cálculo de um vetor de inteiros $e \in \{-1, 0, 1\}^m$

não nulo que verifique a seguinte relação matricial orall i < n . $\sum_{i < m} e_i imes \mathsf{L}_{i,i} \equiv 0 \mod q$

a. Pretende-se resolver o SVP por programação inteira dentro das seguintes condições i. Os valores |m|, n, q| são escolhidos com n>30 , |m|>1+|n| e |q|>|m| .

ii. Os elementos $\mathsf{L}_{i,i}$ são gerados aleatória e uniformemente no intervalo inteiro $\{-d\cdots d\}$ sendo $d\equiv (q-1)/2$. b. Pretende-se determinar em, em primeiro lugar, se existe um vetor e não nulo (pelo menos

um dos e_i é diferente de zero). Se existir e_i pretende-se calcular o vetor que minimiza o número de componentes não nulas.

Notas

- \circ Se $\,x\geq 0$, representa-se por $\,|x|\,$ o tamanho de $\,x\,$ em bits: o menor $\,\ell\,$ tal que $\,x<2^\ell$.
- \circ Um inteiro x verifica $x \equiv 0 \mod q$ sse $x \notin um$ múltiplo de q. $x \equiv 0 \mod q$ see $\exists k \in \mathbb{Z}$. $x = q \times k$.

Por isso, escrito de forma matricial, as relações que determinam o vetor $e \neq 0$ são

Por isso, escrito de forma matricial, as relações que $\,$ determinam o vetor $\,e
eq 0\,$ são

 $\left\{egin{array}{ll} \exists\,e\in\{-1,0,1\}^m$, $\exists\,k\in\mathbb{Z}^n$, $e imes\mathsf{L}=q\,k$ $\exists\,i< n$, $e_i
eq 0$