Тайная жизнь митохондрий

Всем привет!

Сегодня мы заглянем внутрь клеток и узнаем, чем тайно занимаются митохондрии и как мы можем это использовать.

Эвелина Никельшпарг

Митохондрии - энергетические станции клетки

Митохондрии производят энергию в виде молекулы АТФ — универсальной энергетической валюты всего живого. Это происходит на особых структурах внутренней мембраны митохондрии — электрон-транспортной цепи (ЭТЦ), которая использует продукты окисления углеводов, жиров и белков в присутствии кислорода. Нарушение этой важной функции приводит к огромном количеству заболеваний. В первую очередь, к патологиям мозга, сердца и почек.

Внешняя мембрана

Межмембранное пространство

Пространство

Окисление

ЖК

Окисление

Углеводов и

белков

Как попасть в митохондрию?

Митохондрии с низким потенциалом производят меньше АТФ, и попасть в них сложнее.

ЭТЦ митохондрий формирует мембранный потенциал (ДЧ): в матриксе митохондрий накапливается отрицательный заряд. Это позволяет многим веществам из цитоплазмы клетки проникать внутрь митохондрии. Жирорастворимые положительно заряженные молекулы (липофильные катионы) особенно легко могут проникнуть в митохондрию, поэтому лекарства на их основе можно адресно доставлять в митохондрии. Примеры таких соединений - SkQ и MitoQ.

Чего боится митохондрия?

Уровень производства АТФ и величина мембранного потенциала митохондрий тонко регулируется. Если мембранный потенциал слишком высок, а синтез АТФ (который использует этот потенциал) тормозится, возникает опасность окислительного стресса. Особенно часто окислительный стресс развивается при восстановлении кровотока после тромбоза. Это увеличивает зону поражения при

инфаркте и инсульте. Бороться с увеличением мембранного потенциала и окислительным стрессом можно с помощью: белков-разобщителей, мягких химических разобщителей, антиоксидантов, увеличения пула НАД+. Но лучше всего не бороться, а предотвратить, просто занимаясь спортом.

Как митохондрии управляют судьбой клетки?

Митохондрии при определенных стрессовых условиях могут вызвать клеточную гибель— апоптоз. Это важный процесс в жизни наших клеток. Он избавляет нас от старых или поврежденных клеток.

Как митохондрии размножаются?

Митохондрии могут делиться независимо от деления клетки. Этот процесс называется биогенез. В нём принимают участие эндоплазматический ретикулум (ЭПР) и белки МFF и Drp1. Вещества, стимулирующие биогенез, испытываются как миметики упражнений и лекарства от митохондриальных заболеваний.

Митохондрии умеют отщеплять от себя поврежденные участки по тому же принципу, что и деление пополам. Это улучшает качество митохондрий. Таким же способом могут отщепляться митохондриальные сигнальные везикулы MDV.

«Плохие» митохондрии с низким потенциалом активизируются белком PINK1. Он, в свою очередь, активирует белок Parkin, который навешивает на такую митохондрию метку смерти — убиквитин. Митохондрия с меткой получает от ЭПР особую структуру — фагофор, который разрастается, образуя автофагосому, и поглощает ненужную митохондрию. Таким образом, «плохая» митохондрия съедается клеткой. Этот процесс называется митофагия.

Баланс деления и слияния митохондрий

Баланс деления-слияния митохондрий очень важен. Большие митохондрии более эффективны, чем маленькие, но гиперслияние нарушает их регуляцию и увеличивает выбросы АФК. При нарушении деления снижается качество митохондрий. А при отсутствии своевременной утилизации «плохих» митохондрий и их везикул возникает риск заболеваний (в первую очередь неврологических).

Все ли митохондрии одинаковы?

Хотя все митохондрии достаются нам от матери, все же генетически они могут быть очень разными. Это явление называется гетероплазмия. Это очень затрудняет диагностику и лечение митохондриальных заболеваний. Редактировать митохондриальный геном гораздо сложнее, чем ядерный. Зато набирает популярность донорство митохондрий.

На каком языке говорят митохондрии?

Митохондрии – полуавтономные органеллы, но при этом клеточным ядром у них очень тесная связь. Для общения с клетками они используют особый «язык»: концентрацию ионов, АФК, соотношения энергетических молекул и другие сигналы. Это позволяет митохондриями сообщать о своем состоянии клеткам, чтобы получить нужное количество субстратов строительных белков. И при этом самим тонко подстраиваться под нужды клеток в энергии метаболитах.

Могут ли митохондрии передвигаться?

Митохондрии не сидят в клетках неподвижно. Они могут перемещаться внутри одной клетки по тубулиновым микротрубочкам в разные стороны за счет белков кинезина и динеина.

А еще митохондрии могут путешествовать между клетками по нанотрубкам, через межклеточные контакты или в экстраклеточных везикулах. Эти свойства пытаются использовать при лечении тканей и органов с нарушенной работой митохондрий.

Как улучшить свои митохондрии?

Отказ от вредных привычек Интервальное голодание

Следить за источником жиров

Переключение субстратов (углевод-жир) умеренные физические нагрузки

Высокожировая диета

Нарушение сна

Пусть ваши митохондрии будут здоровы и счастливы!

