

Machine Learning For Robotics Assignment 1

Maha Oaiser 22i-2348

→ Purpose

Using various audio features and metadata provided in the dataset, understand which features contribute most to a song's popularity and create a regression model that can effectively predict how popular a song will be.

→ Dataset

Domain: Music

Target variable: Popularity (in percentage)

Number of features: 15

Number of records: 1,001,373 (1 million+)

Type of problem: Regression

Link: kaggle.com/datasets/amitanshjoshi/spotify-1million-tracks

→ Features

- i. **Year**: the year the song was released.
- ii. **Genre**: category or style of the music.
- iii. Danceability: measure of how suitable the song is for dancing.
 - iv. **Energy**: measure of the intensity of the song.
 - v. **Key**: musical key the song is in.
- vi. Loudness: overall loudness in decibels.
- vii. Mode: indicates major or minor tonality of the song.
- viii. **Speechiness**: presence of spoken words.
 - ix. Acousticness: measure of whether the song is acoustic.
 - x. Instrumentalness: whether the song contains no vocals.
 - xi. Liveness: detects audience presence in the song.
- xii. Valence: measure of the song's positivity.
- xiii. **Tempo**: speed of the song in beats per minute.
- xiv. **Duration**: length of the song in milliseconds.
- xv. **Time signature**: number of beats per bar in the song's rhythm.

*Note: I did not consider these columns from the dataset: Unnamed: 0, artist_name, track_name, track_id because they do not contain useful numerical or categorical data that could improve any model's predicting performance.

→ Numerical Features

- i. Year
- ii. Danceability
- iii. Energy
 - iv. Loudness
 - v. Speechiness
- vi. Acousticness
- vii. Instrumentalness
- viii. Liveness
 - ix. Valence
 - x. Tempo
 - xi. Duration

→ Categorical Features

- i. Genre (Text)
- ii. Kev
- iii. Mode
 - iv. Time Signature

→ Exploratory Data Analysis Summary

- Removed rows where popularity was 0, as these were negatively impacting the dataset. This reduced the dataset from 1,159,764 to 1,001,373 rows.
- Created histograms for numerical features to understand their distributions. Normal distribution: Danceability and Tempo, while others were skewed.
- Created scatter plots and a correlation matrix alongside a heatmap to identify relationships between features, focusing on the correlation with the target variable Popularity.
- Created boxplots to identify outliers in the dataset, and later identified them using the interguartile range method.
- No missing values were found in the dataset,
- Important features:

- Year: Moderate positive correlation with Popularity. More recent songs tend to be more popular.
- Danceability: Weak positive correlation with Popularity.
 Danceable songs may be more engaging than others.
- Loudness: Weak positive correlation with Popularity.
 Loudness is often associated with energetic music but does not determine popularity alone.

→ Preprocessing Steps

- Data cleaning: Removed rows with popularity equal to 0.
- Dropped unnecessary columns: Unnamed: 0, artist_name, track_name, track_name
- Feature engineering:
 - Numerical features: popularity, year, danceability, energy, loudness, speechiness, acousticness, instrumentalness, liveness, valence, tempo, and duration_ms.
 - Categorical features: genre, key, mode, and time_signature
- Applied One-Hot Encoding to genre, key, and time_signature. Mode was already in binary format.
- Scaled numerical features:
 - MinMax Scaling: danceability and tempo
 - Standard Scaling: year, energy, loudness, speechiness, acousticness, instrumentalness, liveness, valence, and duration ms
- Balanced classes: Created equal-sized groups to avoid the issue of imbalanced classes, which can lead to biased model performance.
- Data splitting: split the data to 80% training and 20% testing to use for model training.

→ Stratified Sampling

- Approach:
 - To ensure proportional representation of different popularity levels, the dataset was divided using stratified sampling with bins based on popularity_cat.
 - pd.qcut() was used to bin popularity into three equal-sized categories: low, medium, and high.

 StratifiedShuffleSplit was applied to maintain the original distribution while splitting the dataset into 80% training and 20% test.

• Justification:

- In datasets with an imbalance between categories, a random split could lead to underrepresentation of certain categories in the training or test set.
- Stratified sampling ensures that the proportions of each category in the training and test sets match the original dataset, preventing bias and improving model generalization.

• Outcome:

- The category distributions in the original dataset, training set, and test set are nearly identical.
- This confirms that stratification worked correctly, ensuring a representative dataset split despite there being less data for more or 'high' popularity songs.

→ Model Selection and Training

- Stratified sampling with 80% training and 20% testing.
- Used root mean squared error and r squared score for evaluating model performance.
- Linear Regression: instant and just solves a linear system.
- Decision Tree: fast and splits the data.
- Gradient Boosting: Slow and boosts trees sequentially so it's hard to parallelise.

→ Fine-Tuning Process

- Used Grid Search to find the optimal hyperparameters for the best-performing models.
- Applied k-fold cross-validation to ensure that the model's performance was consistent across different parts of the data.

→ Tuning and Model Performance

- Lower RMSE: After hyperparameter tuning, the model achieved a lower RMSE, indicating better predictive accuracy.
- Better Generalization: The optimized model performed better on validation data, reducing overfitting compared to the previous model.

- Optimal Parameter Selection: The best hyperparameters helped balance model complexity and performance, improving efficiency.
- Trade-offs: While tuning increased training time, it significantly enhanced the model's predictive capability.

→ Model Performance

	Linear Regressor	Gradient Boosting Regressor	Decision Tree Regressor
RMSE	10.5688338011316	11.2046240736166	13.2384891169579
	3	23	2
R ² score	0.51448719282618	0.45431610849272	0.23823081794803
	49	72	447
Cross-validation RMSE score (mean)	10.718864	11.62107242	14.017569
Mean RMSE	10.5619274060588	11.2070683777768	13.2833695965321
	97	53	45
Std Dev of RMSE	0.01528590666549	0.01598281922568	0.02405992412771
	9801	2843	8714

→ Final Conclusions and Best Model

- The best model was the Linear Regressor.
- Features contributing more to popularity than others were: year, danceability, and loudness.
- This model can be used by music platforms to predict the popularity of new songs and market them accordingly.

*Final Note: Due to RAM limitations on both my laptop and Colab, I am only able to train two models instead of three at one time. So the code for the third model is commented out. I hope this will be sufficient for evaluation. Thank you! :D