Vickrey auctions

Colin Rowat* Manfred Kerber[†] Christoph Lange[‡]
August 21, 2013

We tend to follow Maskin 2004, §3, defining restricted versions of the more general objects in Milgrom 2004. In particular, we consider sealed-bid auctions with independently and identically distributed private values – according to a commonly known distribution – for a single indivisible good.¹

Definition 1. $N = \{1, ..., n\}$ is a set of participants (also referred to as bidders), often indexed by i.²

Definition 2. An allocation is a vector $x \in \{0,1\}^n$ such that $x_i = 1$ denotes participant i's award of the indivisible good to be auctioned, and $x_i = 0$ otherwise.

Definition 3. An outcome, (x, p), specifies both an allocation and a vector of payments, $p \in \mathbb{R}^n$, made by each participant i.

Definition 4. Participant i's payoff is $u_i \equiv v_i \cdot x_i - p_i$, where $v_i \in \mathbb{R}_+$ is participant i's valuation of the good.

Definition 5. Let it be common knowledge that each v_i is an independent realization of a random variable, \tilde{v} , whose distribution is described by density function f. Then a strategy for bidder i is a mapping g_i such that $b_i = g_i(v_i, f) \ge 0$, where b_i is called i's bid. A strategy profile is the full vector of bids, $\mathbf{b} \in \mathbb{R}^n$

Definition 6. Given some n-vector $y = (y_1, ..., y_n) \in \mathbb{R}^n$, let

$$\begin{split} \overline{y} &\equiv \max_{j \in N} y_j; \\ \overline{y}_{-i} &\equiv \max_{j \in N \setminus \{i\}} y_j. \end{split}$$

^{*}Department of Economics, University of Birmingham; c.rowat@bham.ac.uk

[†]School of Computer Science, University of Birmingham; m.kerber@cs.bham.ac.uk

^{*}School of Computer Science, University of Birmingham; c.lange@cs.bham.ac.uk

¹Definition 5 may be more general than is needed here but helps to understand the term "strategy profile".

²We start indexing at 1, as the seller may be added as i = 0 when it is useful to do so. For Vickrey's theorem it is not.

Definition 7. Let $M = \{i \in N : b_i = \overline{b}\}$. Then a second-price auction (or Vickrey auction) is an outcome, (x, p) satisfying:

- 1. $\forall j \in N \backslash M, x_j = p_j = 0$; and
- 2. for one $i \in M$, selected according to any randomization device, $x_i = 1$ and $p_i = \overline{b}_{-i}$, while, $\forall j \in M \setminus \{i\}, x_i = p_i = 0$.

Definition 8. In the single good case, an auction is efficient if $x_1 = 1 \Rightarrow v_i = \overline{v}$.

Definition 9. Given some auction, a strategy profile b supports an equilibrium in weakly dominant strategies if, for each $i \in N$ and any $\hat{b} \in \mathbb{R}^n$ such that $\hat{b}_i \neq b_i$,

$$u_i(\hat{b}_1, \dots, \hat{b}_{i-1}, b_i, \hat{b}_{i+1}, \dots, \hat{b}_n) \ge u_i(\hat{b}).$$
 (1)

That is, whatever others do, i will not be better off by deviating from the original bid b_i .

Remark 1. The notation $u_i(b)$ is standard within economics, but misleading for formal systems. A more careful notation is $u_i(x_i, v_i, p_i)$, where x_i and p_i depend on b and the auction type.

Theorem 1 (Vickrey 1961; Milgrom 2.1). In a second-price auction, the strategy profile b = v supports an equilibrium in weakly dominant strategies. Furthermore, the auction is efficient.

Proof. Suppose that participant i bids $b_i = v_i$, whatever bids \hat{b}_j the others may submit. We abbreviate the overall bid vector $(\hat{b}_1, \dots, \hat{b}_{i-1}, v_i, \hat{b}_{i+1}, \dots, \hat{b}_n)$ as $\hat{b}^{i \leftarrow v}$. There are two cases:

- 1. Participant i wins. From this follows $b_i = v_i = \overline{\hat{b}^{i\leftarrow v}}$, $p_i = \overline{\hat{b}^{i\leftarrow v}}_{-i}$, and $u_i(\hat{b}^{i\leftarrow v}) = v_i p_i = \hat{b}^{i\leftarrow v}_i \overline{\hat{b}^{i\leftarrow v}}_{-i} \ge 0$. Now consider i submitting an arbitrary bid $\hat{b}_i \ne b_i$, i.e. assume an overall bid vector \hat{b} . This has two sub-cases:
 - a) *i* wins with the new bid, that is, $u_i(\hat{b}) = u_i(\hat{b}^{i\leftarrow v})$, since the second highest bid has not changed.
 - b) *i* loses with the new bid, that is, $u_i(\hat{b}) = 0 \le u_i(\hat{b}^{i\leftarrow v})$.
- 2. Participant *i* loses. From this follows $p_i = 0$, $u_i(\hat{b}^{i\leftarrow v}) = 0$, and $b_i \leq \overline{\hat{b}^{i\leftarrow v}}_{-i}$; otherwise *i* would have won. This yields again two cases:
 - a) i wins with the new bid, that is, $u_i(\hat{b}) = v_i \overline{\hat{b}}_{-i} = b_i \overline{\hat{b}}^{i\leftarrow v}_{-i} \le 0 = u_i(\hat{b}^{i\leftarrow v})$
 - b) *i* loses with the new bid, that is, $u_i(\hat{b}) = 0 = u_i(\hat{b}^{i\leftarrow v})$.

Applying this reasoning to all bidders establishes that b = v supports an equilibrium in weakly dominant strategies.

Efficiency is immediate: when b = v, the highest bid belongs to the bidder with the highest valuation.

References

Maskin, Eric (2004). "The unity of auction theory: Milgrom's master class". In: *Journal of Economic Literature* 42.4, pp. 1102–1115. URL: http://scholar.harvard.edu/files/maskin/files/unity_of_auction_theory.pdf.

Milgrom, Paul (2004). *Putting auction theory to work*. Churchill lectures in economics. Cambridge University Press.