Homework 9

ALECK ZHAO

November 16, 2016

Section 3.1: Examples and Basic Properties

- 1. In each case explain why R is not a ring.
 - (a) $R = \{0, 1, 2, 3, \dots\}$, operations of \mathbb{Z} .

Answer. R does not contain the additive inverses.

(b) $R = 2\mathbb{Z}$.

Answer. R does not contain a multiplicative identity.

(c) R =the set of all mappings $f : \mathbb{R} \to \mathbb{R}$; addition is point-wise but using composition as the multiplication.

Answer. If $f, g, h \in R$, the condition f(g+h) = fg + fh does not hold. For example, if $f(x) = \sqrt{x}$ and g(x) = h(x) = x, we have $f(g+h) = \sqrt{2x}$ but $fg + gh = 2\sqrt{x}$, and the two are not equal.

3. (c) Show that $S = \left\{ \begin{bmatrix} a & 0 & b \\ 0 & c & d \\ 0 & 0 & a \end{bmatrix} \middle| a, b, c, d \in \mathbb{R} \right\}$ is a subring of $R = M_3(\mathbb{R})$.

Proof. We have

$$0_R = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \in S$$

and

$$1_R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \in S$$

Now, let

$$S = \begin{bmatrix} a & 0 & b \\ 0 & c & d \\ 0 & 0 & a \end{bmatrix}, \quad T = \begin{bmatrix} w & 0 & x \\ 0 & y & z \\ 0 & 0 & w \end{bmatrix}$$

so then

$$S - T = \begin{bmatrix} a - w & 0 & b - x \\ 0 & c - y & d - z \\ 0 & 0 & a - w \end{bmatrix} \in S$$

$$ST = \begin{bmatrix} aw & 0 & ax + bw \\ 0 & cy & cz + dw \\ 0 & 0 & aw \end{bmatrix} \in S$$

Thus, S is a subring of R, as desired.

Homework 9

Section 3.2: Integral Domains and Fields

- 1. Find all the roots of $x^2 + 3x 4$ in
 - (a) \mathbb{Z}

Solution. This quadratic factors as

$$x^2 + 3x - 4 = (x+4)(x-1)$$

Advanced Algebra I

so the roots are $1, -4 \in \mathbb{Z}$.

(b) \mathbb{Z}_6

Solution. Similarly to part (a), this quadratic factors as

$$x^2 + 3x - 4 = (x+4)(x-1)$$

Thus $x + 4 = \overline{0}$ so $x = \overline{2}$ and x - 1 = 0 so $x = \overline{1}$ are solutions.

(c) \mathbb{Z}_4

Solution. Similarly to part (a), this quadratic factors as

$$x^{2} + 3x - 4 = (x+4)(x-1)$$

Thus $x + 4 = \overline{0}$ so $x = \overline{0}$ and x - 1 = 0 so $x = \overline{1}$ are solutions.

5. Show that $M_n(R)$ is never a domain if $n \geq 2$.

Proof. Consider the element $A = \begin{bmatrix} 0 & \cdots & r \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} \in M_n(R)$ where $0 \neq r \in R$. Then A^2 is a matrix of all 0's, but A itself is not a matrix of all 0's. Thus, $M_n(R)$ is never a domain if $n \geq 2$.

10. If $F = \{0, 1, a, b\}$ is a field, fill in the addition and multiplication tables for F.

Solution. Since F is a field, it must contain the multiplicative inverses of a and b. Thus, $a^{-1} = b$ and vice versa. Similarly, it must contain the additive inverses of a and b, which are again each other. \Box

;++;

Section 3.3: Ideals and Factor Rings

1. (a) Decide whether \mathbb{Z} is an ideal of \mathbb{C} . Support your answer.

Solution. \mathbb{Z} is not an ideal of \mathbb{C} . Consider $z=1+i\in\mathbb{C}$. Then if $a=2\in\mathbb{Z}$ we have $az=2+i\notin\mathbb{Z}$. \square

- 4. (a) If m is an integer, show that $mR = \{ mr \mid r \in R \}$ and $A_m = \{ r \in R \mid mr = 0 \}$ are ideals of R.
- 6. If A is an ideal of R, show that $M_2(A)$ is an ideal of $M_2(R)$.

Homework 9 Advanced Algebra I

Section 3.4: Homomorphisms

- 1. In each case determine whether the map θ is a ring homomorphism. Support your answer.
 - (a) $\theta: \mathbb{Z}_3 \to \mathbb{Z}_{12}$, where $\theta(r) = 4r$.
 - (b) $\theta: \mathbb{Z}_4 \to \mathbb{Z}_{12}$, where $\theta(r) = 3r$.
 - (c) $\theta: R \times R \to R$, where $\theta(r, s) = r + s$.
 - (d) $\theta: R \times R \to R$, where $\theta(r, s) = rs$.
 - (e) $\theta: F(\mathbb{R}, \mathbb{R}) \to \mathbb{R}$, where $\theta(f) = f(1)$.
- 15. If $\sigma: R \to S$ is a ring isomorphism, show that the same is true of the inverse map $\sigma^{-1}: S \to R$.