# ВЕЖБЕ ИЗ ОСНОВА РАЧУНАРСКЕ ТЕХНИКЕ 1

Верзија 2013 1.0

## Садржај

| Садржај                          | 2  |
|----------------------------------|----|
| Операционе и управљачке јединице | 3  |
| Задатак 1                        |    |
| Задатак 2                        |    |
| Задатак 3                        |    |
| Задатак 4                        |    |
| Задатак 5                        |    |
| Задатак 6                        | 12 |
| Задатак 7                        | 14 |
| Задатак 8                        |    |

### Операционе и управљачке јединице

#### Задатак 1.

На слици је приказан део операционе јединице процесора. У регистрима R1, R2 и R3 се налазе ненегативни цели бројеви.

а) Нацртати дијаграм тока фазе извршења наредбе ADDINC која израчунава израз:

$$R4 = R1 + R2 + R3 + 1$$
.

Садржај регистара R1, R2, и R3 мора остати неизмењен, а резултат се смешта у регистар R4. Претпоставити да резултат може да стане у регистар R4.

- б) Нацртати дијаграм тока управљачких сигнала ове наредбе.
- в) Нацртати структурну шему управљачке јединице реализоване помоћу елемената за кашњење (D флип-флопова).

| $S_0$ | $S_1$ | $F_0$              |
|-------|-------|--------------------|
| 0     | 0     | A - C <sub>0</sub> |
| 0     | 1     | $A+B+C_0$          |
| 1     | 0     | $B + C_0$          |
| 1     | 1     | A - B              |



Решење:



**B**)



#### Задатак 2.

На слици је приказан део операционе јединице процесора.

- а) Нацртати дијаграм тока фазе извршења наредбе MULINT X, M која врши множење ненегативних целих бројева смештених у регистрима X и M, а резултат се смешта у регистар X. Претпоставити да резултат може да стане у регистар X.
  - б) Нацртати дијаграм тока управљачких сигнала ове наредбе.
- в) Нацртати структурну шему управљачке јединице реализоване помоћу елемената за кашњење (D флип-флопова).
- г) Нацртати структурну шему управљачке јединице реализовану као стандардна секвенцијална прекидачка мрежа коришћењем D флип-флопова.

| $S_0$ | $S_1$ | $F_0$              |
|-------|-------|--------------------|
| 0     | 0     | A + B              |
| 0     | 1     | $A + C_0$          |
| 1     | 0     | A - C <sub>0</sub> |
| 1     | 1     | A - B              |



Решење:





Вежбе на табли Страна 4 од 17

в)



#### г) Сигнали логичких услова MULINT=x1 и X0=x2

Управљачки сигнали clA=z1, S2=z2, S0=z3, C0=z4, ldX=z5 и ldA=z6.



Граф стања редукованих димензија

| S | Z                    | S(t+1) | X                           |
|---|----------------------|--------|-----------------------------|
| A | /                    | A      | $\overline{\mathbf{x}}_{1}$ |
|   | ,                    | В      | x <sub>1</sub>              |
| В | $z_1$                | С      | $\overline{\mathbf{x}}_{2}$ |
|   | 21                   | Е      | x <sub>2</sub>              |
| С | $Z_2, Z_3, Z_4, Z_5$ | D      | 1                           |
|   |                      | C      | $\overline{\mathbf{x}}_{2}$ |
| D | $z_6$                | Е      | x <sub>2</sub>              |
| Е | $z_2, z_5$           | A      | 1                           |

Таблица стања и прелаза/излаза редукованих димензија

A=000, B=001, C=101, D=100 и E=110

F=111, G=011 и H=010.

| $Q_2Q_1$ $Q_0$ | 00 | 01 | 11 | 10 |
|----------------|----|----|----|----|
| 0              | A  | Н  | E  | D  |
| 1              | В  | G  | F  | С  |

Кодирање стања помоћу Карноове карте

Вежбе на табли Страна 5 од 17

| Q       | Z                                                                | Q(t+1) | X                           | $D_2$ | $D_1$ | $D_0$ |
|---------|------------------------------------------------------------------|--------|-----------------------------|-------|-------|-------|
| A(000)  | /                                                                | A(000) | $\overline{\mathbf{x}}_{1}$ | 0     | 0     | 0     |
| (3.2.2) | ·                                                                | B(001) | <b>x</b> <sub>1</sub>       | 0     | 0     | 1     |
| B(001)  | $z_1$                                                            | C(101) | $\overline{\mathbf{x}}_{2}$ | 1     | 0     | 1     |
| _((())  | -1                                                               | E(110) | x <sub>2</sub>              | 1     | 1     | 0     |
| C(101)  | Z <sub>2</sub> , Z <sub>3</sub> , Z <sub>4</sub> ,Z <sub>5</sub> | D(100) | 1                           | 1     | 0     | 0     |
| D (100) |                                                                  | C(101) | $\overline{\mathbf{x}}_{2}$ | 1     | 0     | 1     |
| D(100)  | $\mathbf{Z}_{6}$                                                 | E(110) | x <sub>2</sub>              | 1     | 1     | 0     |
| E(110)  | $z_2, z_5$                                                       | A(000) | 1                           | 0     | 0     | 0     |
| F(111)  | /                                                                | b(bbb) | b                           | b     | b     | b     |
| G(011)  | /                                                                | b(bbb) | b                           | b     | b     | b     |
| H(010)  | /                                                                | b(bbb) | b                           | b     | b     | b     |

Таблица стања, прелаза/излаза и функција побуде флип-флопова редукованих димензија

Из таблице стања се добијају следећи изрази за сигнале побуда флип-флопова:

$$D_2 = B + C + D$$

$$D_1 = B \cdot x_2 + D \cdot x_2$$

$$D_0 = A \cdot x_1 + B \cdot \overline{X}_2 + D \cdot \overline{X}_2$$

Из таблице стања се добијају следећи изрази:

$$z_1 = B$$

$$z_2 = C + E$$

$$z_3 = C$$

$$z_4 = C$$

$$z_5 = C + E$$

$$z_6 = D$$

С обзиром на то да су уведене следеће краће ознаке за управљачке сигнале  $clA=z_1$ ,  $S_2=z_2$ ,  $S_0=z_3$ ,  $C_0=z_4$ ,  $ldX=z_5$  и  $ldA=z_6$ , коначно се за управљачке сигнале операционе јединице добијају изрази:

$$clA = B$$

$$S_2 = C + E$$

$$S_0 = C$$

$$C_0 = C$$

$$ldX = C + E$$

$$ldA = D$$
.

Такође се, с обзиром на то да су уведене следеће краће ознаке за сигнале логичких услова  $MULINT=x_1$  и  $X0=x_2$ , коначно добијају следећи изрази за сигнале побуда флип-флопова:

$$D_2 = B + C + D$$

$$D_1 = B \cdot X0 + D \cdot X0$$

$$D_0 = A \cdot MULINT + B \cdot \overline{X0} + D \cdot \overline{X0}$$

Вежбе на табли



Структурна шема управљачке јединице

#### Дискусија:

| Q       | Z                                                                | Q(t+1) | X                           | $S_2$ | $R_2$ | $S_1$ | $R_1$ | $S_0$ | $R_0$ |
|---------|------------------------------------------------------------------|--------|-----------------------------|-------|-------|-------|-------|-------|-------|
| A(000)  | /                                                                | A(000) | $\overline{\mathbf{x}}_{1}$ | 0     | b     | 0     | b     | 0     | b     |
| (000)   | ,                                                                | B(001) | <b>x</b> <sub>1</sub>       | 0     | b     | 0     | b     | 1     | 0     |
| B(001)  | $z_1$                                                            | C(101) | $\overline{\mathbf{x}}_{2}$ | 1     | 0     | 0     | b     | b     | 0     |
| 2(001)  | 21                                                               | E(110) | x <sub>2</sub>              | 1     | 0     | 1     | 0     | 0     | 1     |
| C(101)  | Z <sub>2</sub> , Z <sub>3</sub> , Z <sub>4</sub> ,Z <sub>5</sub> | D(100) | 1                           | b     | 0     | 0     | b     | 0     | 1     |
| D (100) |                                                                  | C(101) | $\overline{\mathbf{x}}_{2}$ | b     | 0     | 0     | b     | 1     | 0     |
| D(100)  | $\mathbf{Z}_{6}$                                                 | E(110) | x <sub>2</sub>              | b     | 0     | 1     | 0     | 0     | b     |
| E(110)  | $z_2, z_5$                                                       | A(000) | 1                           | 0     | 1     | 0     | 1     | 0     | b     |
| F(111)  | /                                                                | b(bbb) | b                           | b     | b     | b     | b     | b     | b     |
| G(011)  | /                                                                | b(bbb) | b                           | b     | b     | b     | b     | b     | b     |
| H(010)  | /                                                                | b(bbb) | b                           | b     | b     | b     | b     | b     | b     |

Таблица стања, прелаза/излаза и функција побуде флип-флопова редукованих димензија за RS флип-флоп

$$S_2 = B, R_2 = E,$$

$$S_1 = B \cdot x_2 + D \cdot x_2, R_1 = E,$$

$$S_0 = A \cdot x_1 + D \cdot \overline{X}_2 \quad \text{и} \ R_0 = B \cdot x_2 + C.$$

Из таблице се за сигнале  $z_1$  до  $z_6$ , а тиме и за сигнале clA до ldA, добијају исти изрази као и у решењу задатка.

С обзиром на то да су уведене следеће краће ознаке за сигнале логичких услова MULINT= $x_1$  и  $X0=x_2$ , коначно се добијају следећи изрази за сигнале побуда флип-флопова:

$$S_2 = B, R_2 = E,$$

$$S_1 = B \cdot X0 + D \cdot X0, R_1 = E,$$

$$S_0 = A \cdot MULINT + D \cdot \overline{X0}$$
 и  $R_0 = B \cdot X0 + C$ .

На основу израза са сигнале побуда флип-флопова долази се до структурне шеме управљачке јединице.

Вежбе на табли Страна 7 од 17



Структурна шема управљачке јединице

#### Задатак 3.

На слици је приказан део операционе јединице процесора.

- а) Нацртати дијаграм тока фазе извршења наредбе MUL која множи садржај регистра R1 са садржајем регистра R2 и резултат смешта у регистар RES (RES = R1\*R2). Предпоставља се да резултат може да стане у RES. Садржај регистара R1 и R2 треба да остане непромењен. Наредба треба да се извршава у што мањем броју циклуса.
  - б) Нацртати дијаграм тока управљачких сигнала ове наредбе.
- в) Нацртати структурну шему управљачке јединице реализоване помоћу елемената за кашњење (D флип-флопова).

| $S_0$ | $S_1$ | F              |
|-------|-------|----------------|
| 0     | 0     | A + C0         |
| 0     | 1     | B + C0         |
| 1     | 0     | $A_{14}A_{0}0$ |
| 1     | 1     | A + B          |



Решење:

Вежбе на табли Страна 8 од 17



B)



#### Задатак 4.

На слици је приказан део операционе јединице процесора. У регистрима R1, R2 и R3 се налазе ненегативни цели бројеви.

а) Нацртати дијаграм тока фазе извршења наредбе MULADD која израчунава израз:

$$SC*(R1 + R2 + R3).$$

Садржај регистара R1, R2, и R3 мора остати неизмењен, а резултат се смешта у регистар А. Претпоставити да резултат може да стане у регистар А.

- б) Нацртати дијаграм тока управљачких сигнала ове наредбе.
- в) Нацртати структурну шему управљачке јединице реализоване помоћу елемената за кашњење (D флип-флопова).

| $S_0$ | $S_1$ | $F_0$              |
|-------|-------|--------------------|
| 0     | 0     | A - B              |
| 0     | 1     | B - C <sub>0</sub> |
| 1     | 0     | $B + C_0$          |
| 1     | 1     | A + B              |
|       |       |                    |

Вежбе на табли



Решење:

a)



в)

Вежбе на табли Страна 10 од 17



#### Задатак 5.

На слици је приказан део операционе јединице процесора.

а) Нацртати дијаграм тока фазе извршења наредбе SABS која израчунава збир апсолутних вредности елемената низа који се налазе у меморији М капацитета 16 речи

$$(S = \sum_{i=0}^{i=CN} |Ai|, 0 \le CN < 16).$$

- б) Нацртати дијаграм тока управљачких сигнала ове наредбе.
- в) Нацртати структурну шему управљачке јединице реализоване помоћу елемената за кашњење (D флип-флопова).

| $S_0$ | $S_1$ | $F_0$              |
|-------|-------|--------------------|
| 0     | 0     | A + B              |
| 0     | 1     | A - B              |
| 1     | 0     | -B                 |
| 1     | 1     | A - C <sub>0</sub> |



Решење:

Вежбе на табли Страна 11 од 17



в)



#### Задатак 6.

На слици је приказан део операционе јединице процесора.

- а) Нацртати дијаграм тока фазе извршења наредбе AND која израчунава R1=R1 and R2. Садржај регистра R2 треба да остане непромењен.
  - б) Нацртати дијаграм тока управљачких сигнала ове наредбе.
- в) Нацртати структурну шему управљачке јединице реализоване помоћу елемената за кашњење (D флип-флопова).

| $S_0$ | $S_1$ | $F_0$                           |
|-------|-------|---------------------------------|
| 0     | 0     | $A + C_0$                       |
| 0     | 1     | $B + C_0$                       |
| 1     | 0     | A <sub>0</sub> A <sub>151</sub> |
| 1     | 1     | A + B                           |

Вежбе на табли Страна 12 од 17



#### Решење:

a)





в)

Вежбе на табли Страна 13 од 17



#### Задатак 7.

На слици је приказан део операционе јединице процесора. У регистрима R0, R1, R2 и R3 се налазе ненегативни цели бројеви.

- а) Нацртати дијаграм тока фазе извршења наредбе MIN4 која налази минимум: A=MIN(R0,R1,R2,R3).
- б) Нацртати дијаграм тока управљачких сигнала ове наредбе.
- в) Нацртати структурну шему управљачке јединице реализоване помоћу елемената за кашњење (D флип-флопова).



Решење:

Вежбе на табли Страна 14 од 17



в)



#### Задатак 8.

На слици је приказана структурна шема дела операционе јединице процесора. У регистру N дужине 16 разреда налази се бинарна вредност коју треба интерпретирати као целобројну величину без знака n (n≥0).

- а) Нацртати дијаграме тока микрооперација фазе извршавања наредбе NFAK која израчунава факторијел целобројне вредности из регистра N и резултат смешта у регистар S. Фаза извршавања наредбе започиње уколико је сигнал NFAK активан. Претпоставити да се у регистру N налази вредност која омогућава да се извршавање наредбе реализује коректно и да се добије вредност која може да се смести у регистар S.
  - б) Нацртати дијаграм тока управљачких сигнала ове наредбе.
- в) Нацртати структурну шему управљачке јединице реализоване помоћу елемената за кашњење (D флип-флопова).

Вежбе на табли Страна 15 од 17



Решење:

a)

б) NFAK NFAK A<=0, SC<=N, S<=N clA, ldSC, ldS, rdN SC0 SC0 A<=A+1 ldA, C<sub>0</sub>, rdA  $\overline{K_4}$ S<=A ldS, rdA  $\overline{K}_{\underline{5}}$ 1 √ SC<=SC-1 decSC  $\overline{K_6}$ SC0 SC0 0 Ψ N<=SC ldN, rdSC L1<=S, A<=0 ldL1, rdS, clA A<=A+L1, SC<=SC-1 ldA, S<sub>0</sub>, rdA, decSC  $K_{10}$ SC0 SC0ldS, rdA  $S \le A$ ldSC, rdN

в)

Вежбе на табли Страна 16 од 17



Вежбе на табли Страна 17 од 17