Supplementary Materials

1 Data

The 25 variables that were used in this analysis are below.

Variable	Meaning				
v1	Number of papers				
v2	Total citations				
v3	Production years				
v4	Cites per year				
v5	Cites per paper				
v6	Cites per author				
v7	PapersAuthor				
v8	Authors per paper				
v9	h-index				
v10	g-index				
v11	hc-index				
v12	hl-index				
v13	hl-norm				
v14	AWCR				
v15	AW index				
v16	AWCR per author				
v17	e-index				
v18	hm-index				
v19	CitesAuthorYear				
v20	CitesAuthorYearArticle				
v21	Annual hl				
v22	h Coverage				
v23	g Coverage				
v24	Star count				
v25	Adjusted star count				

Table 1: List of attributes in the data

2 Regression Results

2.1 Analysis on the full data

The regression experiments for v4 are shown in Table 2. The chosen results are in bold.

IVs	Adj. R^2	Significant IVs
v6	0.759	All
v6,v9	0.796	All except constant
v6,v9,v10 (no const)	0.868	All
v6,v9,v10	0.835	All
v6,v9,v10,v11 (no const)	0.874	All
v6,v9,v10,v11	0.846	All
v6,v9,v10,v11,v13 (no const)	0.893	All
v6,v9,v10,v11,v13	0.866	All except constant
v6,v9,v10,v11,v13,v14 (no const)	0.896	All
v6,v9,v10,v11,v13,v14,v15 (no const)	0.896	All except v15
v6,v9,v10,v11,v13,v14,v16 (no const)	0.893	All except v16
v6,v9,v10,v11,v13,v14,v17 (no const)	0.912	All
v6,v9,v10,v11,v13,v14,v17,v19 (no const)	0.953	All except v10
v6,v9,v11,v13,v14,v17,v19 (no const)	0.961	All
v6,v9,v11,v13,v14,v17,v19,v24 (no const)	0.961	All
v6,v9,v11,v13,v14,v17,v19,v25 (no const)	0.953	All
v6,v9,v11,v13,v14,v17,v19,v24,v25 (no const)	0.972	All

Table 2: Regression experiments for v4 The chosen regression experiment is shown in Figure 1.

OLS Regression Results

Dep. Variabl	۰.			v4	R-sa	uared:		0.97
Model:				OLS		R-squared:		0.97
Method:			Least S			atistic:		2429
Date:		-	Tue, 20 No		Prob (F-statistic):):	0.00
Time:				:16:28		Likelihood:	, .	-2143.7
No. Observat	ions:			618	AIC:			4304
Df Residuals				609	BIC:			4344
Df Model:				9				
Covariance 1	Гуре:		non	robust				
		coef	std er	r	t	P> t	[0.025	0.975
v6	-0.	0065	0.00	2 -	2.775	0.006	-0.011	-0.002
v9	2.	9218	0.21	8	9.275	0.000	1.594	2.450
v11	-0.	8051	0.21	9 -	3.669	0.000	-1.236	-0.374
v13	-3.	1005	0.28	2 -1	0.993	0.000	-3.654	-2.547
v14	0.0	0197	0.00	7	2.713	0.007	0.005	0.034
v17	0.	7742	0.08	0	9.659	0.000	0.617	0.932
v19	1.3	8746	0.06	0 3	31.088	0.000	1.756	1.993
v24	11.	5548	0.56	0 2	0.634	0.000	10.455	12.65
v25	-28.	5114	1.77	1 -1	6.095	0.000	-31.990	-25.03
Omnibus:				70.481	Durb:	in-Watson:		2.060
Prob(Omnibus	s):			0.000	Jarq	Jarque-Bera (JB):		53677.047
Skew:				-2.556		(JB):		0.00
Kurtosis:				48.370	Cond	. No.		3.20e+03

Figure 1: Regression results for v4 The regression experiments on v2 are shown in Table 3.

IVs	Adj. R^2	Significant IVs
v4	0.804	All
v4 (no const)	0.818	All
v4,v6	0.924	All
v4,v6 (no const)	0.93	All
v4,v6,v9	0.924	All except constant
v4,v6,v9 (no const)	0.93	All
v4,v6,v9,v10	0.925	All
v4,v6,v9,v10 (no const)	0.931	All except v9
v4,v6,v9,v10,v14	0.933	All
v4,v6,v9,v10,v14 (no const)	0.939	All
v4,v6,v9,v10,v14,v16	0.981	All except constant
v4,v6,v9,v10,v14,v16 (no const)	0.983	All
v4,v6,v9,v10,v14,v16,v18	0.981	All except constant and v18
v4,v6,v9,v10,v14,v16,v18 (no const)	0.983	All except v18
v4,v6,v9,v10,v14,v16,v18,v19	0.992	All
v4,v6,v9,v10,v14,v16,v18,v19 (no const)	0.993	All except v9
v4,v6,v9,v10,v14,v16,v18,v19,v24	0.992	All
v4,v6,v9,v10,v14,v16,v18,v19,v24 (no const)	0.993	All except v9

Table 3: Regression experiments for v2

The	chosen	regression	experi	ment	is sh	own in	Figure	2.
		OLS Reg	ression Re	sults			_	
Model: Method: Date: Time: No. Obs Df Resi Df Mode	ervations: duals:	Least Squar Tue, 20 Nov 20 19:16:	es F-sta 18 Prob 31 Log-L 18 AIC: 11 BIC:	ared: R-squared: tistic: (F-statisti ikelihood:	ic):	0.993 0.993 1.255e+04 0.00 -3849.7 7713 7744	3 4 5 7	
	coe	f std err	t	P> t	[0.02	5 0.975]	
v4 v6 v10 v14 v16 v18 v19	17.986 2.956 -7.197 2.899 -12.955 15.005 -40.478	0.030 4 1.155 0 0.172 3 0.677 9 3.381		0.000 0.000 0.000 0.000 0.000 0.000	16.92 2.89 -9.46 2.56 -14.28 8.36 -43.17	8 3.015 6 -4.929 2 3.236 5 -11.626 6 21.646	5 9 5 5 5	
Omnibus Prob(Om Skew: Kurtosi	nnibus):	183.8 0.0 -0.2 25.5	00 Jarqu 67 Prob():	1.853 13139.347 0.00 392	7 9	

Figure 2: Regression results for v2

From v6 onward, the experiments were automated. The screenshots of the program results are shown instead. The regression experiments for $v\theta$ are shown in Figure 3.

Expt. No.	DV	IVs	Adj. R^2	Significant IVs
1	ν6	v9	0.724	All
2	v6	v9 (no const)	0.69	All
3	ν6	v9,v10	0.728	All
4	v6	v9,v10 (no const)	0.693	All
5	v6	v9,v10,v13	0.733	All
6	v6	v9,v10,v13 (no const)	0.692	v9,v10
7	ν6	v9,v10,v13,v14	0.795	All
8	ν6	v9,v10,v13,v14 (no const)	0.791	All
9	ν6	v9,v10,v13,v14,v16	0.875	constant,v9,v13,v14,v16
10	v6	v9,v10,v13,v14,v16 (no const)	0.883	v9,v13,v14,v16
11	ν6	v9,v10,v13,v14,v16,v17	0.875	constant,v9,v13,v14,v16
12	v6	v9,v10,v13,v14,v16,v17 (no const)	0.884	v9,v13,v14,v16
13	v6	v9,v10,v13,v14,v16,v17,v18	0.887	constant,v9,v13,v16,v17,v18
14	v6	v9,v10,v13,v14,v16,v17,v18 (no const)	0.893	v9,v13,v14,v16,v17,v18
15	ν6	v9,v10,v13,v14,v16,v17,v18,v19	0.907	constant,v9,v13,v16,v18,v19
16	ν6	v9,v10,v13,v14,v16,v17,v18,v19 (no const)	0.913	v10,v13,v16,v17,v18,v19
17	ν6	v9,v10,v13,v14,v16,v17,v18,v19,v25	0.907	constant,v9,v13,v16,v18,v19,v25
18	ν6	v9,v10,v13,v14,v16,v17,v18,v19,v25 (no const)	0.914	v10,v13,v16,v17,v18,v19,v25

Figure 3: Regression experiments for v6 The chosen regression results are shown in Figure 4.

.914
.913
978.
-321
03.3
019.
045.

OLS Regression Results

coef	std err	t	P> t	[0.025	0.975]
18.4844	2.768	6.677	0.000	13.048	23.921
-74.8686	7.615	-9.832	0.000	-89.823	-59.915
5.4741	0.490	11.176	0.000	4.512	6.436
-11.7171	3.150	-3.720	0.000	-17.903	-5.532
58.0314	7.318	7.930	0.000	43.659	72.404
13.1330	1.058	12.413	0.000	11.055	15.211
	18.4844 -74.8686 5.4741 -11.7171 58.0314	18.4844 2.768 -74.8686 7.615 5.4741 0.490 -11.7171 3.150 58.0314 7.318	18.4844 2.768 6.677 -74.8686 7.615 -9.832 5.4741 0.490 11.176 -11.7171 3.150 -3.720 58.0314 7.318 7.930	18.4844 2.768 6.677 0.000 -74.8686 7.615 -9.832 0.000 5.4741 0.490 11.176 0.000 -11.7171 3.150 -3.720 0.000 58.0314 7.318 7.930 0.000	18.4844 2.768 6.677 0.000 13.048 -74.8686 7.615 -9.832 0.000 -89.823 5.4741 0.490 11.176 0.000 4.512 -11.7171 3.150 -3.720 0.000 -17.903 58.0314 7.318 7.930 0.000 43.659

Omnibus:		613.817	Durbin-Watson:		1.640
Prob(Omnibu	s):	0.000	Jarque-Bera (JB):	84	084.932
Skew:		3.994	Prob(JB):		0.00
Kurtosis:		59.583	Cond. No.		86.2
========					

Figure 4: Regression results for v6

Figure 5 shows the regression experiments for v9.

Significant IVs	Adj. R^2	IVs	DV	Expt. No.
All	0.94	v10	v9	1
All	0.966	v10 (no const)	v9	2
v10,v11	0.945	v10,v11	ν9	3
All	0.969	v10,v11 (no const)	v9	4
All	0.954	v10,v11,v12	v9	5
All	0.974	v10,v11,v12 (no const)	v9	6
constant,v10,v11,v13	0.956	v10,v11,v12,v13	ν9	7
v10,v11,v13	0.975	v10,v11,v12,v13 (no const)	v9	8
constant,v10,v11,v13	0.957	v10,v11,v12,v13,v14	ν9	9
v10,v11,v13,v14	0.976	v10,v11,v12,v13,v14 (no const)	ν9	10
v10,v11,v13,v14,v15	0.961	v10,v11,v12,v13,v14,v15	ν9	11
v10,v11,v13,v14,v15	0.978	v10,v11,v12,v13,v14,v15 (no const)	v9	12
v10,v11,v12,v13,v14,v15,v16	0.963	v10,v11,v12,v13,v14,v15,v16	v9	13
All	0.98	v10,v11,v12,v13,v14,v15,v16 (no const)	ν9	14
v10,v11,v13,v14,v15,v17	0.974	v10,v11,v12,v13,v14,v15,v16,v17	ν9	15
v10,v11,v13,v14,v15,v17	0.985	v10,v11,v12,v13,v14,v15,v16,v17 (no const)	v9	16
v10,v11,v12,v14,v15,v16,v17,v18	0.98	v10,v11,v12,v13,v14,v15,v16,v17,v18	ν9	17
v10,v11,v12,v14,v15,v16,v17,v18	0.988	v10,v11,v12,v13,v14,v15,v16,v17,v18 (no const)	ν9	18

Figure 5: Regression experiments for v9 Figure 6 shows the chosen regression results.

OLS Regression Results

Dep. Variable Model: Method: Date: Time: No. Observat: Df Residuals	ions:	Least Squ Tue, 20 Nov 19:1	2018 6:32 618 612	Adj. F-sta Prob	ared: R-squared: tistic: (F-statistic ikelihood:):	0.986 0.986 7123. 0.06 -1040.4 2093. 2119.
Df Model: Covariance Ty	vpe:	nonro	6 bust				
	coef	std err	=====	t	P> t	[0.025	0.975]
v10 v11 v13	0.5551 0.3324 0.4785	0.022 0.045 0.036	7	5.250 7.383 3.131	0.000 0.000 0.000	0.512 0.244 0.407	0.598 0.421 0.550
v14 v15 v17	0.0038 -0.1440 -0.3342	0.001 0.056 0.019	- 2	3.461 2.557 7.388	0.001 0.011 0.000	0.002 -0.255 -0.372	0.006 -0.033 -0.296
Omnibus: Prob(Omnibus Skew: Kurtosis:):	0 0	.690 .000 .078 .759				1.990 1976.264 0.00 169.

Figure 6: Regression results for v9

The regression experiments for v10 are shown in Figure 7.

Significant IVs	Adj. R^2	IVs	DV	Expt. No.
All	0.852	v11	v10	1
All	0.911	v11 (no const)	v10	2
All	0.88	v11,v12	v10	3
All	0.926	v11,v12 (no const)	v10	4
All	0.943	v11,v12,v13	v10	5
All	0.965	v11,v12,v13 (no const)	v10	6
v11,v12,v13,v14	0.958	v11,v12,v13,v14	v10	7
All	0.976	v11,v12,v13,v14 (no const)	v10	8
constant,v12,v13,v14,v15	0.96	v11,v12,v13,v14,v15	v10	9
v12,v13,v14,v15	0.977	v11,v12,v13,v14,v15 (no const)	v10	10
constant,v12,v13,v14,v15,v16	0.961	v11,v12,v13,v14,v15,v16	v10	11
v12,v13,v14,v15,v16	0.977	v11,v12,v13,v14,v15,v16 (no const)	v10	12
constant,v11,v13,v14,v15,v16,v17	0.98	v11,v12,v13,v14,v15,v16,v17	v10	13
v11,v13,v14,v15,v16,v17	0.988	v11,v12,v13,v14,v15,v16,v17 (no const)	v10	14
All	0.987	v11,v12,v13,v14,v15,v16,v17,v18	v10	15
All	0.992	v11,v12,v13,v14,v15,v16,v17,v18 (no const)	v10	16
constant,v11,v12,v14,v15,v16,v17,v18,v19	0.987	v11,v12,v13,v14,v15,v16,v17,v18,v19	v10	17
v11,v12,v14,v15,v16,v17,v18,v19	0.992	v11,v12,v13,v14,v15,v16,v17,v18,v19 (no const)	v10	18

Figure 7: Regression experiments for v10 Finally, the results of the regression for v10 are shown in Figure 8.

Dep. Variable Model: Method: Date: Time: No. Observati Df Residuals: Df Model: Covariance Ty	ons:	T	Least ue, 20 r		2018 5:33 618 610 8	Adj. F-sta Prob	wared: R-squared: atistic: (F-statistic): ikelihood:		0.993 0.992 1.020e+04 0.00 -1225.3 2467. 2502.
=========		===== coef	std	err		t	P> t	[0.025	0.975]
v11 v12 v13 v14 v15 v16 v17 v18	-0. 0. -0. -0.	6603 5729 2161 0354 7408 0852 7858 3468	0. 0. 0. 0.	061 110 106 002 079 007 022 075	-5. 2. 15. -9. -12. 35.	896 207 030 377 420 879 053 896	0.000 0.000 0.043 0.000 0.000 0.000 0.000	0.541 -0.789 0.007 0.031 -0.895 -0.098 0.742 1.199	0.779 -0.357 0.425 0.040 -0.586 -0.072 0.830 1.495
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:			0 -1	. 493 . 000 . 769 . 857		, ,		1.861 3942.532 0.00 258.

Figure 8: Regression results for v10

2.2 Analysis on subset of data

We now present the regression experiments and results on the chosen subset of the data. Please note that we renamed the variables for convenience, so v1 through v13 here are really v9 through v21, and v14 here is really v24. The regression experiments for v9 (shown as v1) are shown in Figure 9.

Expt. No.	D۷	IVs	Adj. R^2	Significant IVs
1	v1	v2	0.94	All
2	v1	v2 (no const)	0.966	All
3	v1	v2,v3	0.945	v2,v3
4	v1	v2,v3 (no const)	0.969	All
5	v1	v2,v3,v4	0.954	All
6	v1	v2,v3,v4 (no const)	0.974	All
7	v1	v2,v3,v4,v5	0.956	constant,v2,v3,v5
8	v1	v2,v3,v4,v5 (no const)	0.975	v2,v3,v5
9	v1	v2,v3,v4,v5,v6	0.957	constant,v2,v3,v5
10	v1	v2,v3,v4,v5,v6 (no const)	0.976	v2,v3,v5,v6
11	v1	v2,v3,v4,v5,v6,v7	0.961	v2,v3,v5,v6,v7
12	v1	v2,v3,v4,v5,v6,v7 (no const)	0.978	v2,v3,v5,v6,v7
13	v1	v2,v3,v4,v5,v6,v7,v8	0.963	v2,v3,v4,v5,v6,v7,v8
14	v1	v2,v3,v4,v5,v6,v7,v8 (no const)	0.98	All
15	v1	v2,v3,v4,v5,v6,v7,v8,v9	0.974	v2,v3,v5,v6,v7,v9
16	v1	v2,v3,v4,v5,v6,v7,v8,v9 (no const)	0.985	v2,v3,v5,v6,v7,v9
17	v1	v2,v3,v4,v5,v6,v7,v8,v9,v10	0.98	v2,v3,v4,v6,v7,v8,v9,v10
18	v1	v2,v3,v4,v5,v6,v7,v8,v9,v10 (no const)	0.988	v2,v3,v4,v6,v7,v8,v9,v10

Figure 9: Regression experiments for v9

The chosen regression model results are shown in Figure 10.

OI S	Regression	Paculte
ULD	Redression	RESULIS

Dep. Variable: Model: Method: Date: Time: No. Observations Df Residuals: Df Model: Covariance Type:		Leas Tue, 20	Nov	2018 1:29 618 612 6	Adj. F-st Prob	uared: R-squared: atistic: (F-statistic) Likelihood:	:	0.986 0.986 7123. 0.00 -1040.4 2093. 2119.
v3 6 v5 6 v6 6 v7 -6	coef .3324 .4785 .0038 .1446	L 0 4 0 5 0 8 0	err .022 .045 .036 .001 .056	7 13 3 -2	t .250 .383 .131 .461 .557	P> t 0.000 0.000 0.000 0.000 0.001 0.011 0.000	[0.025 0.512 0.244 0.407 0.002 -0.255 -0.372	0.975] 0.598 0.421 0.550 0.006 -0.033 -0.296
Omnibus: Prob(Omnibus): Skew: Kurtosis:			9 9	.690 .000 .078 .759	Jarq Prob	in-Watson: ue-Bera (JB): (JB): . No.		1.990 1976.264 0.00 169.

Figure 10: Regression results for v9

The regression experiments for v10 are shown in Figure 11.

Expt. No.	DV	IVs	Adj. R^2	Significant IVs
1	v2	v3	0.852	All
2	v2	v3 (no const)	0.911	All
3	v2	v3,v4	0.88	All
4	v2	v3,v4 (no const)	0.926	All
5	v2	v3,v4,v5	0.943	All
6	v2	v3,v4,v5 (no const)	0.965	All
7	v2	v3,v4,v5,v6	0.958	v3,v4,v5,v6
8	v2	v3,v4,v5,v6 (no const)	0.976	All
9	v2	v3,v4,v5,v6,v7	0.96	constant,v4,v5,v6,v7
10	v2	v3,v4,v5,v6,v7 (no const)	0.977	v4,v5,v6,v7
11	v2	v3,v4,v5,v6,v7,v8	0.961	constant,v4,v5,v6,v7,v8
12	v2	v3,v4,v5,v6,v7,v8 (no const)	0.977	v4,v5,v6,v7,v8
13	v2	v3,v4,v5,v6,v7,v8,v9	0.98	constant,v3,v5,v6,v7,v8,v9
14	v2	v3,v4,v5,v6,v7,v8,v9 (no const)	0.988	v3,v5,v6,v7,v8,v9
15	v2	v3,v4,v5,v6,v7,v8,v9,v10	0.987	All
16	v2	v3,v4,v5,v6,v7,v8,v9,v10 (no const)	0.992	All
17	v2	v3,v4,v5,v6,v7,v8,v9,v10,v11	0.987	constant,v3,v4,v6,v7,v8,v9,v10,v11
18	v2	v3,v4,v5,v6,v7,v8,v9,v10,v11 (no const)	0.992	v3,v4,v6,v7,v8,v9,v10,v11

Figure 11: Regression experiments for v10

The chosen model for v10 is shown in Figure 12.

OLS Regression Results							
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:				F-sta Prob	ared: R-squared: tistic: (F-statistic) ikelihood:	:	0.989 0.989 8902. 0.00 -1355.9 2724. 2750.
	coef	std err		t	P> t	[0.025	0.975]
v5 1. v6 0. v7 -0. v8 -0.	5665 3477 0438 6372 0772 6080	0.072 0.056 0.002 0.094 0.007 0.023	2 1 - -1	7.841 3.986 8.660 6.785 1.541 6.854	0.000 0.000 0.000 0.000 0.000 0.000	0.425 1.237 0.039 -0.822 -0.090 0.564	0.708 1.458 0.048 -0.453 -0.064 0.652
Omnibus: Prob(Omnibus): Skew: Kurtosis:		-	4.178 0.000 1.563 3.553		,		1.991 3118.984 0.00 171.

Figure 12: Regression results for v10

Next, we show Figure 13 and 14, which show the experiments and results for v11.

Expt. No.	D۷	IVs	Adj. R^2	Significant IVs
1	v3	v5	0.809	All
2	v3	v5 (no const)	0.902	All
3	v3	v5,v6	0.832	All
4	v3	v5,v6 (no const)	0.905	All
5	v3	v5,v6,v7	0.936	All
6	v3	v5,v6,v7 (no const)	0.97	All
7	v3	v5,v6,v7,v8	0.936	constant,v5,v6,v7
8	ν3	v5,v6,v7,v8 (no const)	0.97	v5,v6,v7
9	v3	v5,v6,v7,v8,v9	0.938	constant,v5,v6,v7,v9
10	v3	v5,v6,v7,v8,v9 (no const)	0.971	v5,v6,v7,v9
11	v3	v5,v6,v7,v8,v9,v10	0.939	constant,v5,v6,v7,v9,v10
12	v3	v5,v6,v7,v8,v9,v10 (no const)	0.972	v5,v6,v7,v9,v10

Figure 13: Regression experiments for v11

OLS Regression Results

Dep. Variable	2:		v3	R-squ	ared:		0.971
Model:			0LS	Adj. I	R-squared:		0.971
Method:		Least Squa	res	F-sta	tistic:		6898.
Date:	T	ue, 20 Nov 2	2018		(F-statistic)	:	0.00
Time:		19:58	3:18	Log-L	ikelihood:		-1004.4
No. Observati			618	AIC:			2015.
Df Residuals:			615	BIC:			2028.
Df Model:			3				
Covariance Ty	/pe:	nonrob	oust				
	coef	std err		t	P> t	[0.025	0.975]
v5	0.1793	0.023	7	.717	0.000	0.134	0.225
v6	-0.0105	0.001	-13	.216	0.000	-0.012	-0.009
v7	0.9759	0.026	37	. 264	0.000	0.924	1.027
Omnibus:		 138.	972	Durbi	========= n-Watson:		2.081
Prob(Omnibus)	:	0.	000	Jarque	e-Bera (JB):		2506.981
Skew:		-0.	458	Prob(JB):		0.00
Kurtosis:		12.	824	Cond.	No.		85.5

Figure 14: Regression results for v11

Finally(!), we show the same set of figures for v13.

Expt. No.	D۷	IVs	Adj. R^2	Significant IVs
1	v5	v7	0.809	v7
2	v5	v7 (no const)	0.901	All
3	v5	v7,v8	0.842	All
4	v5	v7,v8 (no const)	0.912	All
5	v5	v7,v8,v9	0.865	All
6	v5	v7,v8,v9 (no const)	0.923	All
7	v5	v7,v8,v9,v10	0.971	constant,v8,v9,v10
8	ν5	v7,v8,v9,v10 (no const)	0.984	All
9	v5	v7,v8,v9,v10,v11	0.971	constant,v8,v9,v10
10	v5	v7,v8,v9,v10,v11 (no const)	0.984	v8,v9,v10

Figure 15: Regression experiments for v13

	OLS Regression Results							
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals:		v5 OLS Least Squares Thu, 22 Nov 2018 23:51:33 618 614		R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:		:	0.985 0.985 1.005e+04 0.00 -769.75 1547. 1565.	
Df Model: Covariance Typ	e:	nonro	4 bust					
	coef	std err		t	P> t	[0.025	0.975]	
v7 v8 v9 v10	0.0419 -0.0153 0.1492 0.7589	0.002 0.008	-8 18	2.136 3.471 3.628 9.960	0.033 0.000 0.000 0.000	0.003 -0.019 0.133 0.729	0.080 -0.012 0.165 0.789	
Omnibus: Prob(Omnibus): Skew: Kurtosis:		0 -0	.818 .000 .839 .828	Jarq Prob	in-Watson: ue-Bera (JB): (JB): . No.		2.106 4996.027 0.00 29.5	

Figure 16: Regression results for v13

3 Cluster Analysis

We now present the full description of where each point is in each clustering algorithm. The explanation in the paper supplements this well enough to clearly understand the segregation of points by both algorithms.

3.1 Agglomerative Clustering

The scree plot for the variables is shown in Figure 17.

Figure 17: Scree Plot

The factor loadings after performing a PCA with OBLIMIN rotation are shown in Table 4.

Variable	F1	F2	F3
Papers	0.898	-0.444	-0.020
Citations	0.919	0.023	-0.157
Cites per Year	0.834	0.287	-0.076
Cites per Paper	0.397	0.671	0.170
Cites per Author	0.923	0.100	-0.157
Papers per Author	0.887	-0.450	-0.023
h-index	0.964	-0.079	0.111
g-index	0.936	0.016	0.120
hc-index	0.859	0.019	0.215
hI-index	0.850	0.002	0.126
hI-norm	0.924	0.001	0.148
AWCR	0.903	0.062	-0.090
AW-index	0.885	0.067	0.169
AWCRpA	0.921	0.145	-0.094
e-index	0.837	0.208	0.142
hm-index	0.960	-0.108	0.069
CitesAuthorYear	0.785	0.397	-0.089
CitesAuthorArticle	0.331	0.734s	0.105
CitesAuthorYearArticle	-0.032	0.832	0.169
hI-annual	0.455	0.322	0.362
h-coverage	-0.051	0.075	0.943
g-coverage	0.029	-0.003	0.964
Star count	0.781	0.286	-0.140
Adjusted star count	0.722	0.425	-0.146

Table 4: Factor loadings after PCA. The factors that the variables are loaded on to are shown in bold for each variable.

3.2 PCA

We performed a PCA before using DBSCAN. In all cases, we used the same method discussed in the paper to compute the value of eps. We did this analysis for one through twelve dimensions. For number of dimensions greater than six, the performance stagnates at 0.571. We argue however, that the new dimensions obtained by PCA are less interpretable than simply using the original features, and the maximum difference between the performance of DBSCAN using our hand-picked features (0.571) and using PCA (0.644, n=2) was only 0.073. Figure 18 shows the results of using PCA to various numbers of dimensions.

Figure 18: Results of using PCA and then clustering with DBSCAN

3.3 Analysis on S_1

Figure 19 shows the analysis for S_1 . The Silhouette score for DBSCAN here was 0.635.

We make the following observations. The largest clusters for both the algorithms are very similar (row 9). The two points in the MS cluster that were not in DBSCAN's largest cluster were in its second largest cluster (row 2). All the clusters of the mean-shift algorithm that were of size 4 or less were marked as individual clusters by DBSCAN (rows 5-8 and row 1). More surprisingly, the cluster of 19 points identified by mean-shift was marked as 19 individual clusters by DBSCAN (row 4). Finally, a considerable part of mean-shift's second-largest cluster was also identified as individual points by DBSCAN (row 3).

Index	DBSCAN cluster#	MS cluster#	DBSCAN cluster count	MS cluster count	Common
1	-1	-1	60	5	5
2	-1	0	60	509	2
3	-1	1	60	72	21
4	-1	2	60	19	19
5	-1	3	60	4	4
6	-1	4	60	4	4
7	-1	5	60	3	3
8	-1	6	60	2	2
9	0	0	532	509	507
10	0	1	532	72	25
11	1	1	20	72	20
12	2	1	6	72	6

Figure 19: Clustering by DBSCAN and Mean-Shift algorithms on S_1

3.4 Analysis on S_2

Figure 20 shows the analysis for S_2 . As noted in the paper, the Silhouette score for DBSCAN for this subset was 0.571.

Index	DBSCAN cluster#	MS cluster#	DBSCAN cluster count	MS cluster count	Common
1	-1	-1	60	8	8
2	-1	1	60	82	28
3	-1	2	60	15	15
4	-1	3	60	3	3
5	-1	4	60	2	2
6	-1	5	60	2	2
7	-1	6	60	2	2
8	0	0	541	504	504
9	0	1	541	82	37
10	1	1	3	82	3
11	2	1	14	82	14

Figure 20: Clustering by DBSCAN and Mean-Shift algorithms on S_2