# PHÁT TRIỂN ỨNG DỤNG TRÊN THIẾT BỊ DI ĐỘNG

Hồ Văn Tú

Bộ môn Tin học ứng dụng

Khoa CNTT và truyền thông

hvtu@ctu.edu.vn

# Chương 1

Tổng quan về lập trình trên

thiết bị di động

## **NỘI DUNG**

- Giới thiệu
- Xu hướng phát triển ứng dụng trên thiết bị di động
- Tổng quan về hệ điều hành Android
- Môi trường lập trình Android Studio

#### Giới thiệu

- 1876: Alexander Graham Bell phát minh ra điện thoại
- 1973: Martin Cooper phát minh ra điện thoại di động Motorola
- 1993: IBM Simon Personal Communicator ra mắt Smartphone đầu tiên
- 2007: Apple ra mắt iPhone với những tính năng và chất lượng vượt trội
- 2008: HTC ra mắt HTC Dream (T-Mobile G1) sử dụng hệ
   điều hành Android của Google

# Hướng phát triển ứng dụng trên TBDĐ (1)

- Úng dụng gốc (Native App)
- Úng dụng web (Web App)
- Úng dụng lai (Hybrid App)



# Hướng phát triển ứng dụng trên TBDĐ (2)



# Hướng phát triển ứng dụng trên TBDĐ (3)

- Úng dụng gốc (Native App)
  - Sử dụng IDE, SDK mà nhà sản xuất cung cấp để lập trình
    - Java và Kotlin với Android
    - Objective-C và Swift cho iOS
    - C# cho Windows Phone
  - Tận dụng được toàn bộ những tính năng của thiết bị
  - Có thể chạy offline
  - Thực thi nhanh
  - Chỉ chạy trên một hệ điều hành nhất định

# Hướng phát triển ứng dụng trên TBDĐ (4)

- Úng dụng Web (Web App)
  - Tạo trang Web riêng cho mobile
    - HTML, CSS, HTML, CSS, Javascript
    - Framework h
       ô tr
       o mobile v
       à responsive: Bootstrap, jQuery Mobile, Materialize
  - Chạy được trên mọi hệ điều hành (Cross-platform)
  - Không thể tận dụng hết các tính năng của thiết bị
  - Không thể chạy offline
  - Thực thi chậm

# Hướng phát triển ứng dụng trên TBDĐ (5)

- Úng dụng lai (Hybrid App)
  - Kết hợp những ưu điểm của Mobile Web và Native App
  - Xây dựng ứng dụng bằng HTML, CSS, Javascript
  - Dựa trên Framework: React Native, Xamarin, Cordova,
     Phonegap, Titanium, Intel XDK
  - Úng dụng được dịch thành các file cài đặt cho Android, iOS
     và Windows Phone (Cross-platform)
  - Tận dụng được những tính năng của thiết bị
  - Thực thi chậm

# Hệ điều hành Android (1)

- Hệ điều hành phát triển bởi Google dựa trên nền tảng Linux dành cho các thiết bị di động
- Được phân phối dạng mã nguồn mở với giấy phép không có nhiều ràng buộc



# Hệ điều hành Android (2)

- Các tính năng nổi bật
  - Giao diện đẹp
  - Khả năng kết nối: GSM, CDMA, Bluetooth, Wi-Fi, ...
  - Lưu trữ và chia sẻ dữ liệu: SQLite
  - Hỗ trợ âm thanh, hình ảnh, đồ họa
  - Hỗ trợ tin nhắn: SMS and MMS
  - Trình duyệt Web
  - Hỗ trợ Multi-touch

**-** ...

# Kiến trúc Android (1)



# Kiến trúc Android (2)

- Linux Kernel: với nhân Linux cung cấp chức năng quản lý các trình điều khiển (Drivers): điều khiển các phần cứng khác trên thiết bị.
- Lớp trừu tượng phần cứng (HAL: Hardware Abstraction Layer): cung cấp các giao diện chuẩn cho phép các ứng dụng giao tiếp được với phần cứng thông qua việc gọi thư viện Java APIs cấp cao hơn.
- Libraries: tập hợp các thư viện: web mã nguồn mở, thư viện C, cơ sở dữ liệu SQLite, thư viện âm thanh và video, đồ họa, bảo mật Internet, ...

# Kiến trúc Android (3)

- Android Runtime (ART): gồm máy ảo Java (Dalvik/ ART) thiết kế đặc biệt và tối ưu hóa cho Android và tập các thư viện lõi cho phép phát triển ứng dụng Android trên Java.
- Java API Framework: cung cấp nhiều dịch vụ cấp cao ở dạng các APIs được viết bằng ngôn ngữ Java cho phép phát triển ứng dụng
- Úng dụng hệ thống (System Apps): các ứng dụng bộ ứng dụng lõi như Email, tin nhắn SMS, lịch, máy ảnh, trình duyệt Internet, danh bạ

# Quản lý tiến trình (1)

- Các thành phần của một ứng dụng Android thực thi trong một luồng (Thread) và cùng thuộc một tiến trình (Process)
- Android quản lý các process theo chế độ ưu tiên, process có ưu tiên thấp sẽ bị giải phóng nhằm đảm bảo tài nguyên
- Các loại tiến trình
  - Foreground process: là process của ứng dụng hiện đang được người dùng tương tác
  - Visible process: là process của ứng dụng mà Activity đang hiển thị đối với người dùng nhưng không tương tác
  - Service process: là process của Service đang thực thi

# Quản lý tiến trình (2)

- Các loại tiến trình
  - Background process: là process của ứng dụng mà các
     Activity của nó không hiển thị với người dùng
  - Empty process: process không có bất cứ 1 thành phần nào thực hiện (active)
- Theo chế độ ưu tiên thì khi cần tài nguyên, Android sẽ tự động kill process, trước tiên là các Empty process

# Luồng (Thread) trong Android

- Một ứng dụng khởi chạy, hệ thống sẽ tạo một luồng chính thực thi (luồng UI) và có thể có nhiều luồng hỗ trợ
- Khi luồng thực hiện những công việc cần thời gian dài
  - → chặn toàn bộ UI → có vẻ như đang bị treo
  - → hiệu năng kém khi sử dụng luồng đơn nhất
  - → Nên sử dụng đa luồng (Multi Threading)

# Thiết lập môi trường lập trình ứng dụng (1)

#### **IDE: Android Studio**

https://developer.android.com/studio

- IntelliJ IDE + Android Studio plugin
- Android SDK Tools (công cụ và thư viện)
- Android Platform-tools
- Android Emulator (máy ảo)

# Thiết lập môi trường lập trình ứng dụng (2)



# Thiết lập môi trường lập trình ứng dụng (3)

Tạo và sử dụng máy ảo



# Thiết lập môi trường lập trình ứng dụng (4)

Quản lý và cập nhật Android SDK



## Thiết lập môi trường lập trình ứng dụng (5)

Sử dụng Logcat



# Quy trình phát triển ứng dụng (1)



# Quy trình phát triển ứng dụng (2)



#### Tạo và thực thi ứng dụng (1)

• File → New → New Project



#### Tạo và thực thi ứng dụng (2)

Chọn phiên bản API sử dụng



#### Tạo và thực thi ứng dụng (3)

Chọn mẫu Activity



#### Tạo và thực thi ứng dụng (4)

Tạo Activity với tên MainActivity, Layout activity\_main



#### Tạo và thực thi ứng dụng (5)

Mã lệnh cho MainActivity

```
package thud.helloworld;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.util.Log;
public class MainActivity extends AppCompatActivity {
    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity main);
        Log. i ("Vòng đời Activity", "onCreate thực thi");
```

#### Tạo và thực thi ứng dụng (6)

#### Tập tin AndroidManifest.xml

```
10<manifest xmlns:android="http://schemas.android.com/apk/res/android"
       package="thud.helloworld"
       android:versionCode="1"
       android:versionName="1.0" >
       <uses-sdk
           android:minSdkVersion="14"
           android:targetSdkVersion="19" />
       <application
           android:allowBackup="true"
           android:icon="@drawable/ic launcher"
10
11
           android:label="@string/app name"
12
           android:theme="@style/AppTheme" >
139
           <activity
14
               android:name=".MainActivity"
15
               android:label="@string/app name" >
               <intent-filter>
16€
                   <action android:name="android.intent.action.MAIN" />
                   <category android:name="android.intent.category.LAUNCHER" />
19
               </intent-filter>
           </activity>
20
       </application>
22 </manifest>
```

### Tạo và thực thi ứng dụng (7)

Thực thi



#### Log

- Thuộc lớp android.util.Log, kế thừa java.lang.Object
- Dùng để gởi và ghi lại vết/ thông tin về quá trình thực thi
- Sử dụng Logcat để xem lại nội dung

```
Log._(tag, message)
_: loại Log (i, d, v, w, ...)
```

Ví dụ

```
Log.i("Vòng đời Activity", "onCreate thực thi");
```

#### **Toast**

- Thuộc lớp android.widget.Toast, kế thừa java.lang.Object
- Dùng để hiển thị thông tin/ thông báo đơn giản trong một khoảng thời gian ngắn

Toast.makeText(context, text, duration).show()

Ví dụ

```
Toast.makeText(this, "onCreate thực thi",

Toast.LENGTH_SHORT).show();

Toast.makeText(MainActivity.this, "Thành

công", Toast.LENGTH_SHORT).show();
```

# Xuất bản ứng dụng có xác nhận (1)

Build → Generate Signed APK



# Xuất bản ứng dụng có xác nhận (2)

Build → Generate Signed APK: đăng ký keystore



# Xuất bản ứng dụng có xác nhận (3)

Build → Generate Signed APK: luu keystore



# Xuất bản ứng dụng có xác nhận (4)

Build → Generate Signed APK: đường dẫn lưu tập tin
 .APK và hình thức biên dịch



#### Đưa ứng dụng lên Google Play

- Xây dựng và kiểm thử ứng dụng
- Xuất bản ứng dụng dạng .apk có xác nhận (Signed APK)
   Build → Generate Signed APK
- Đăng ký tài khoản Google Play Console https://play.google.com/apps/publish
- Đăng nhập Developer Console, điền thông tin và chọn file apk cần publish

#### Cài đặt ứng dụng ngoài Google Play

- Xuất bản ứng dụng dạng .apk có xác nhận (Signed APK)
   Build → Generate Signed APK
- Bật tính năng cài đặt ứng dụng không rõ nguồn gốc (Unknown Sources)
- Có thể sử dụng APK Editor để điều chỉnh cho tương thích phiên bản