[Python] Numpy에 있는 다양한 함수 사용법 - 2(전치행렬,zeors,ones, iterator,etc..) — 나무늘보의 개발 블로그

노트북: 첫 번째 노트북

만든 날짜: 2020-10-28 오후 11:50

URL: https://continuous-development.tistory.com/118?category=736681

Python

[Python] Numpy에 있는 다양한 함수 사용법 - 2(전치행렬,zeors,ones, iterator,etc..)

2020. 10. 9. 17:50 수정 삭제 공개

배열 변형(타입 형태에 따른 연산)

```
In [159]: x = np.array([1,2,3],dtype='f')
arvinfo(x)

type: <class 'numpy.ndarray'>
shape: (3,)
dimension: 1
dtype: float32
Array Data:
[1, 2, 3,]

In [160]: x[0] + x[1]

Out[150]: 3,0
```

여기서는 float 형태여서 사칙연산으로 되었지만.

여기서는 string 으로 돼서 글자가 합쳐져 12로 된다.

```
In [164]: | np.array([0, 1, -1, 0]/np.array([1, 0, 0, 0]))

C:#Users#hwang in beom#Anaconda3#lib#site-packages#ipykernel_launcher.py:1: RuntimeWarning: divide by zero encountered in true_divide
    ""Entry point for launching an IPython kernel.

C:#Users#hwang in beom#Anaconda3#lib#site-packages#ipykernel_launcher.py:1: RuntimeWarning: invalid value encountered in true_divide
    ""Entry point for launching an IPython kernel.

Out [164]: array([ 0, , inf, -inf, nan])
```

함수를 통한 배열 생성(zeros,ones,zeros_like,ones_ like....)

```
- zeors, ones # 0으로 배열을 셋팅 / 1로 배열을 셋팅
- zeros_like, ones_like # shape를 참조 해서 0 으로 만든다. / shape를 참조 해서 1 으로 만든다.
- empty
- arrang
- linspace, logspace

• zeors: 크기가 정해져 있고 모든 값이 0인 배열을 생성

In [167]: Z = np.zeros(5)
aryinfo(z)

type : <class 'numpy.ndarray'>
shape : (5,)
dimension : l
dtype: float64
Array Data :
[0. 0, 0, 0, 0, 0, 0]
```

np.zeors - 0으로 배열을 세팅한다.

이렇게 np.zeors라는 명령어로 0 이 다섯 개가 들어간 하나의 numpy 가생긴다.

np.ones - 1으로 배열을 세팅한다.

여기서는 np.ones을 통해 2,3,4 형태의 1의 값이 들어간 numpy가 생긴다.

```
In [173]: o_like = np.ones_like(o, dtype='f') # 기존 배열의 형태를 참조한다.
    type : <class 'numpy.ndarray'>
    shape: (2, 3, 4)
    dimension: 3
    dtype: float32
    Array Data:
    [[[1, 1, 1, 1,]
    [1, 1, 1, 1,]]
    [[1, 1, 1, 1,]]
    [[1, 1, 1, 1,]]
    [[1, 1, 1, 1,]]
```

ones_like 같은 경우에는 o의 형태를 가지고와 0의 값을 넣어준다. 다른 배열의 형태를 가지고와 ones / zeros를 사용한다.

np.empty는 비어있는 배열의 형태를 만들어준다. 여기서 값이 들어가 있는 것은 numpy 구조상 비어있는 배열을 만든다는

것은 데이터가 초기화되지 않는다라는 뜻이다.

여기 나오는 값은 주소 값이다.

arrange로 numpy 생성하기

arrange를 통해 해당 범위까지의 배열을 만든다.

전치 행렬

- 전치 행렬(transpose matirx)이란? 행렬의 행은 열로, 열은 행으로 바꾼 행렬을 의미한다.
- (). T
- transpose opertion

위에는 기본적인 np값이 있다.

이것을

. T라는 명령어로 행렬의 행과 열을 바꿔준다. 이렇게 행렬을 전치해준다.

배열의 원소를 순차적으로 접근(for , iterator)

- 배열의 원소를 순차적으로 access 하고자 한다면? 2가지 방법이 있다.
- **for** (Vector, Matrix)
- **iterator**(internext(), finished 속성을 이용해서 ndarray 모든 요소를 순 차적으로 접근할 수 있다. 이 방법이 속도가 더 빠르다.)

```
In [187]: arr = np.array([1,2,3,4,5])

In [188]: for tmp in arr:
    print(tmp, end=" ")

1 2 3 4 5

In [190]: for idx in range(len(arr)):
    print(arr[idx],end=" ")

1 2 3 4 5
```

1차원 배열들은 for 문을 통해 접근할 수 있다.

```
ite = np.nditer(arr, flags=['c_index'])
while not ite.finished:# 会数 世帯 会さのは.
print(arr[ite.index], end = " ")
ite.iternext()

1 2 3 4 5
```

이 문법은 일반적인 for 문보다 연산속도가 더 빠르다.

2차원 배열들에 접근해보자.

for 문을 쓴다면 위와 같이 쓰인다.

python 전치행렬

```
In [209]: ite = np.nditer(arr, flags=['multi_index'])
while not ite.finished:# 순을 반복 속성이다.
print(arr[ite.multi_index], end = " ")
ite.iternext()

1 2 3 4 5 6
```

이걸 iterator를 쓰게 된다면 아래와 같은 형태를 가지게 된다.

```
'Python' 카테고리의 다른 글□

[Python] Numpy 배열 합치기(concatenate)□

[Python] Numpy의 reshape 통한 차원 변경(재배열)□

[Python] Numpy에 있는 다양한 함수 사용법 - 2(전치행렬,zeors,ones, iterat...

[Python] Numpy를 통한 배열 indexing(Boolen indexing, fancy indexing)□

[Python] Numpy에 대한 기초 정리와 사용법 정리□

[Python] python 에서 Seleium을 통한 동적 크롤링 - 4□
```


나무늘보스 혼자 끄적끄적하는 블로그 입니다.