

CS 329P: Practical Machine Learning (2021 Fall)

Lecture 14 - Fairness

Qingqing Huang, Mu Li, Alex Smola

https://c.d2l.ai/stanford-cs329p

Outline

- Examples
- Law
- Algorithmic Fairness
 - Evaluating estimators
 - Fairness criteria
 - Impossibility results
- In Practice
 - Human evaluation
 - Poison needle in the haystack
 - Decisions, risk and estimates

Simson's Paradox

UC Berkeley Student Admission Rates (1973)

	All		Men		Women	
	Applicants	Admitted	Applicants	Admitted	Applicants	Admitted
Total	12,763	41%	8,442	44%	4,321	35%

Per Department

Department	All		Men		Women	
	Applicants	Admitted	Applicants	Admitted	Applicants	Admitted
Α	933	64%	825	62%	108	82%
В	585	63%	560	63%	25	68%
С	918	35%	325	37%	593	34%
D	792	34%	417	33%	375	35%
E	584	25%	191	28%	393	24%
F	714	6%	373	6%	341	7%
Total	4526	39%	2691	45%	1835	30%

Bernard Parker, left, was rated high risk; Dylan Fugett was rated low risk. (Josh Ritchie for ProPublica

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica May 23, 2016

COMPAS Study (Pro Publica, 2016)

Prediction Fails Differently for Black Defendants					
	WHITE	AFRICAN AMERICAN			
Labeled Higher Risk, But Didn't Re-Offend	23.5%	44.9%			
Labeled Lower Risk, Yet Did Re-Offend	47.7%	28.0%			

Overall, Northpointe's assessment tool correctly predicts recidivism 61 percent of the time. But blacks are almost twice as likely as whites to be labeled a higher risk but not actually re-offend. It makes the opposite mistake among whites: They are much more likely than blacks to be labeled lower risk but go on to commit other crimes. (Source: ProPublica analysis of data from Broward County, Fla.)

Bias in Online Advertising?

Lambrecht & Tucker (ftc.gov)

Key idea - show ad and check for male/female bias

STEM Careers

Information about STEM Careers

Table: Raw Data Reported as an Average per Country

Age Group	Male Impr.	Female Impr.	Male Clicks	Female Clicks
Age18-24	3909	3401	6	6
Age25-34	3471	2597	5	4
Age35-44	2159	1485	3	3
Age45-54	1611	1177	2	2
Age55-64	1097	924	2	2
Age 65+	1007	808	2	2

Really?!?

Really, this paper doesn't need any complex analysis

Bias in Lending?

Martinez & Kirchner, 2021

Applicants of color denied at higher rates

To illustrate the odds of denial that our analysis revealed, we calculated how many people of each race/ethnic group would likely be denied if 100 similarly qualified

Debt ratio was the most common reason for denial

Percent of loan denials by race/ethnicity and reason

https://themarkup.org/denied/2021/08/25/the-secret-bias-hidden-in-mortgage-approval-algorithms

Redlining

Location based credit approval in the 1930s

Discrimination against minorities

Redlining effects 90 years later

Location based credit approval in the 1930s

Discrimination against minorities

Lead Poisoning and Black or African American Population for Community Statistical Area in 2017 (Baltimore City Health Department)

Bias and lack of fairness can harm people for a century!

We owe it to everyone to be mindful!

Reading Material

- Corbett Davis & Goel ICML 2019 tutorial https://policylab.stanford.edu/projects/defining-and-designing-fairalgorithms.html
- Hutchinson & Mitchell, 2018 (50 years fairness review) https://arxiv.org/abs/1811.10104
- Fazelpour & Lipton, 2020 (Non-ideal perspective) https://arxiv.org/abs/2001.09773
- Wachter, Mittelstadt & Russell, 2020 (Why fairness cannot be automated)

https://arxiv.org/abs/2005.05906