```
In [1]: include("/home/nicole/Jupyter/SSBRJ/src/SSBR.jl")
         using SSBR
 In [2]: function getPos(ped,IDs)
             posAi = Array(Int64, size(IDs, 1))
             for (i,id) = enumerate(IDs[:,1])
                 posAi[i] = ped.idMap[id].seqID
             end
             return posAi
         end
Out[2]: getPos (generic function with 1 method)
 In [3]: | ; cd Data/0.5/G/7
         /home/nicole/Jupyter/JG3/Data/0.5/G/7
 In [4]:
         ;ls
         GenNF.txt
         PedAll.txt
         Phe.txt
         PheAll.txt
In [5]: ;awk '{print $1}' PedAll.txt | sort -b > all.ID
In [6]: ;awk '{print $1}' GenNF.txt | sort -b > genotype.ID
In [7]:
         ; join -v1 all.ID genotype.ID > noGenotype.ID
In [8]:
         ;awk '{print $1,$2}' Phe.txt > sim.phenotype
         ;awk '{print $1,$3}' PheAll.txt > sim.bv
In [9]:
In [10]: | ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
         ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
In [11]:
         ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
In [12]:
         ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
In [13]:
In [14]: ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
In [15]: ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
In [16]:
         ; join G0.ID genotype.ID > G0.Genotype.ID
```

```
;join G1.ID genotype.ID > G1.Genotype.ID
In [17]:
         ;join G2.ID genotype.ID > G2.Genotype.ID
In [18]:
In [19]:
         ; join G3.ID genotype.ID > G3.Genotype.ID
         ; join G4.ID genotype.ID > G4.Genotype.ID
In [20]:
In [21]:
         ; join G5.ID genotype.ID > G5.Genotype.ID
         ;join -v1 G0.ID genotype.ID > G0.noGenotype.ID
In [22]:
         ; join -v1 G1.ID genotype.ID > G1.noGenotype.ID
In [23]:
In [24]:
         ; join -v1 G2.ID genotype.ID > G2.noGenotype.ID
         ;join -v1 G3.ID genotype.ID > G3.noGenotype.ID
In [25]:
In [26]:
         ;join -v1 G4.ID genotype.ID > G4.noGenotype.ID
In [27]:
         ; join -v1 G5.ID genotype.ID > G5.noGenotype.ID
         ;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc (
In [28]:
               200 1200 GO.Genotype.ID
          200 200 1200 G1.Genotype.ID
          200 200 1200 G2.Genotype.ID
          200 200 1200 G3.Genotype.ID
          200 200 1200 G4.Genotype.ID
          8000 8000 48000 G5.Genotype.ID
In [29]: ;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype
          7800
                7800 46800 GO.noGenotype.ID
          7800
                7800 46800 Gl.noGenotype.ID
          7800
                7800 46800 G2.noGenotype.ID
          7800
                7800 46800 G3.noGenotype.ID
          7800 7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
In [30]:
         ped,A Mats,numSSBayes = calc Ai("PedAll.txt", "genotype.ID", calculateInbreedia
         nothing
                = read genotypes("GenNF.txt", numSSBayes)
         M Mats = make MMats(df,A Mats,ped,center=true);
                                                                                  # wit
         y_Vecs = make_yVecs("sim.phenotype",ped,numSSBayes)
         J Vecs = make JVecs(numSSBayes, A Mats)
         Z_Mats = make_ZMats(ped,y_Vecs,numSSBayes)
         X Mats, W Mats = make XWMats(J Vecs, Z Mats, M Mats, numSSBayes)
                                                                                  # wit
         nothing
```

```
In [31]:
         vRes
                = 0.711
                = 0.711
         vG
         nIter = 50000
         @time aHat1,alphaHat,betaHat,epsiHat =
         ssGibbs(M_Mats,y_Vecs,J_Vecs,Z_Mats,X_Mats,W_Mats,A_Mats, numSSBayes,vRes,vG
         nothing
         This is iteration 5000
         This is iteration 10000
         This is iteration 15000
         This is iteration 20000
         This is iteration 25000
         This is iteration 30000
         This is iteration 35000
         This is iteration 40000
         This is iteration 45000
         This is iteration 50000
         5167.100924 seconds (23.05 G allocations: 723.936 GB, 6.23% gc time)
In [32]: betaHat
Out[32]: 2-element Array{Float64,1}:
          13.99
           4.67149
In [33]: using DataFrames
In [34]: df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',head
         a = Array(Float64, numSSBayes.num ped)
         for (i,ID) in enumerate(df[:,1])
             j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
In [35]: IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg1 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with (
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n",
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.916
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 0.976
Out[35]: 0.915664225698805
In [36]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[36]: -2.7630672098664957
```

```
In [37]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header:
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi],aHat1[posAi])[1,1]
         reg2 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # |
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3:
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.978
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 1.076
Out[37]: 0.9777048685572935
In [38]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[38]: -1.547057770204538
In [39]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat1[posAi])[1,1]
         reg3 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 );
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.877
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 0.962
Out[39]: 0.8770431514076494
In [40]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[40]: -3.043684772865409
In [41]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with ep
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation = 0.712
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 0.885
Out[41]: 0.7124005770020589
In [42]: GEBV = aHat1[posAi]
         GOGEBV=mean(GEBV)
Out[42]: -4.1687361010146695
```

```
In [43]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with ei
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation = 0.779
         SSBRJC from Gibbs - G1.ID: regression of TBV on GEBV = 0.996
Out[43]: 0.7792806740405422
In [44]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[44]: -3.5265138186218974
In [45]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat1[posAi])[1,1]
         reg5 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with e;
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.781
         SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = 1.022
Out[45]: 0.7805060942314663
In [46]: GEBV = aHat1[posAi]
         G2GEBV=mean(GEBV)
Out[46]: -2.994584511950136
In [47]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ', header=false
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat1[posAi])[1,1]
         reg6 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with ep
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation = 0.775
         SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = 1.017
Out[47]: 0.775399014599305
In [48]: GEBV = aHat1[posAi]
         G3GEBV=mean(GEBV)
Out[48]: -2.4271582142022505
```

```
In [49]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ', header=false
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat1[posAi])[1,1]
         reg7 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with ei
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation = 0.783
         SSBRJC from Gibbs - G4.ID: regression of TBV on GEBV = 1.017
Out[49]: 0.7831303735603942
In [50]: GEBV = aHat1[posAi]
         G4GEBV=mean(GEBV)
Out[50]: -1.9623119903976671
In [51]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat1[posAi])[1,1]
         reg8 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with e;
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.975
         SSBRJC from Gibbs - G5.ID: regression of TBV on GEBV = 1.074
Out[51]: 0.9749207173600163
In [52]: GEBV = aHat1[posAi]
         G5GEBV=mean(GEBV)
Out[52]: -1.4990986230123504
In [53]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',heac
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation = 0.974
         SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = 1.060
Out[53]: 0.9743625948907203
In [54]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[54]: -2.8359561884558118
```

```
In [55]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ',heac
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation = 0.975
         SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = 1.080
Out[55]: 0.9748585721571006
In [56]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[56]: -2.429903907167214
In [57]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ', head
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat1[posAi])[1,1]
         reg10 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation = 0.975
         SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = 1.076
Out[57]: 0.9751778853243681
In [58]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[58]: -1.8285934390229281
In [59]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         corl1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg11 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", corll
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor11
         SSBRJC from Gibbs - G3.Genotype.ID : correlation = 0.968
         SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = 1.062
Out[59]: 0.9678877937686048
In [60]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[60]: -1.4899572457793873
```

```
In [61]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ',heac
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat1[posAi])[1,1]
         reg12 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation = 0.954
         SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = 1.090
Out[61]: 0.9540122752789227
In [62]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[62]: -1.0692439582848587
In [63]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ', head
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat1[posAi])[1,1]
         reg13 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation = 0.975
         SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = 1.074
Out[63]: 0.9749207173600163
In [64]: | writedlm("Correlation.G5.G.JC.txt",cor13)
In [65]: writedlm("Regression.G5.G.JC.txt",reg13)
         TBVG5Gall = a[posAi]
In [66]:
         TBVG5G=mean(TBVG5Gall)
Out[66]: 12.462021125
In [67]: GEBVG5Gall = aHat1[posAi]
         GEBVG5G=mean(GEBVG5Gall)
Out[67]: -1.4990986230123504
```

```
In [68]: IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.692
         SSBRJC from Gibbs - G0.noGenotype.ID: regression of TBV on GEBV = 0.889
Out[68]: 0.6916341191079611
In [69]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[69]: -4.202909944926434
In [70]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.765
         SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = 1.001
Out[70]: 0.7651887145388565
In [71]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[71]: -3.55463202147971
In [72]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat1[posAi])[1,1]
         reg15 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor1!
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.762
         SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = 1.025
Out[72]: 0.7622305433391583
In [73]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[73]: -3.0244817189482704
```

```
In [74]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat1[posAi])[1,1]
         reg16 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor1
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID : correlation = 0.761
         SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = 1.017
Out[74]: 0.7614377416368033
In [75]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[75]: -2.4511890082643752
In [76]: IDs = readtable("G4.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor17 = cor(a[posAi],aHat1[posAi])[1,1]
         reg17 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor17
         SSBRJC from Gibbs - G4.noGenotype.ID : correlation = 0.770
         SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = 1.014
Out[76]: 0.770209927420175
In [77]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[77]: -1.985211170708252
In [78]: numSSBayes
Out[78]: SSBR.NumSSBayes(54917,45917,9000,40000,39000,1000,200)
```

```
J1 = sortrows(J_Vecs.J1)
In [79]:
Out[79]: 45917x1 Array{Float64,2}:
          -0.986868
          -0.985718
          -0.985549
          -0.985507
          -0.985337
          -0.98531
          -0.98449
          -0.983869
          -0.983768
          -0.983758
          -0.983587
          -0.983232
          -0.982671
           7.40483e-17
           7.42043e-17
           7.42098e-17
           7.4361e-17
           8.51031e-17
           8.51031e-17
           8.61278e-17
            8.89559e-17
            1.02969e-16
            1.11022e-16
            1.11095e-16
            1.11274e-16
```

```
In [80]: J1[J1 .< 0.0,:]
Out[80]: 43998x1 Array{Float64,2}:
          -0.986868
          -0.985718
          -0.985549
          -0.985507
          -0.985337
           -0.98531
          -0.98449
          -0.983869
          -0.983768
          -0.983758
          -0.983587
          -0.983232
           -0.982671
           -7.34107e-36
           -7.23782e-36
          -7.2166e-36
          -7.2166e-36
          -7.21449e-36
          -7.00015e-66
          -3.56334e-67
          -3.55597e-67
          -1.78167e-67
          -1.77903e-67
           -1.77799e-67
           -8.89515e-68
```