Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

2 T.K4018 1 U5 A68. 6/2: 767/2000

UNITED STATES DEPARTMENT OF AGRICULTURE Rural Electrification Administration Technical Standards Committee "A"

Supplement No. 1, October 1989, to REA Bulletin 43-5, List of Materials Acceptable for Use on Systems of REA Electrification Borrowers

The attached pages for the "List of Materials Acceptable for Use on Systems of REA Electrification Borrowers" are those which have been revised by action of the Technical Standards Committees during the months of July through September 1989. The following changes should be made in order to keep it up to date. Pages with a comma between are on the same sheet, both being changed.

Add New Page	Remove Page	Add New Page	Remove Page
k(3), k(3.1) 1-1 x Cond. z Cond. af-1 aj an-1.1 an-3.1 an(1.1) Cond. an(3.1), an(3.2)	k(3), k(3.1) 1-1 z Cond. af-1 aj an-1.1 an-3.1 an(1.1) Cond. an(3.1), an(3.2)	ax-1 bx Cond. fv gz-1, gz-2 U ae(1) Cond. U an-1.1 U qn-1 U gu-1.1 U he-1 U nv-1	ax-1 bx Cond. fv gz-1, gz-2 U ae(1) Cond. U an-1.1 U gn-1 U gu-1.1 U ne-1 U hv-1
at Cond., av-1	at Cond., av-1	U hv-2	U nv-2

k - Insulator, Distribution Deadend

<u>Manufacturer</u>		Meeting No. and Date		<u>Conditions</u>
Chance Distribution deadend Type E			1.	To optain experience
Model No. C654-3015 (Model No. C654-3025 (Model No. C654-3034 ((25kV)	1386 6/29/89	2.	For use as deadends on distribution lines only
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			3.	Not recommended for use in areas subject to contamination.
Joslyn Distribution deadend UDI 671-3002 Distribution deadend UDI 671-3010		1074 9/25/75 1088 4/15/76 1074 9/25/75 1088		For use as deadends on distribution lines only up to 15 kV line-to-line voltage. For use as deadends on distribution lines only up to 25 kV line-to
		4/15/76		line voltage.
Lapo Distribution deadend Catalog No. 151001, 1	15kV	1282 6/21/84	1.	To obtain experience.
Catalog No. 151002, 2			2.	For use as deadends on distribution lines only.
	ţ		3.	Recommended maximum working load is 5,000 lbs.
			4.	Not recomended for use in areas subject to sontamination.

NOTE: When insulators from this page are used, adjust construction drawing material list quantities as necessary.

Conditional List k(3.1) October 1989

k - Insulator, Distribution Deadend

<u>Manufacturer</u>	Meeting No. and Date	Conditions
Ohio Brass Type PDI-15 (15 kV) "Veri*Lite"	1347 (8/13/87)	 To obtain experience. For use as deadends on distribution lines only. Not recommended for use in areas subject to contamination.
Tranpol Distribution deadend H-15 kV-4 H-25 kV-6	1158 (3/1/79) 1208 (3/19/81)	 To obtain experience For use as deadends on distribution lines only Not recommended for use in areas subject to contamination.
Salisbury Distribution deadend 9501 Series, 15 kV 9502 Series, 25 kV	1226 (1/7/82) 1304 (8/8/85) 1291 (12/20/84)	Same as Lapp [See Cond. k(3)]
Sediver Distribution deadend ADI-4 15 kV ADI-6 25 kV ADI-8 35 kV	1286 (9/6/84)	Same as Lapp [See Cond. k(3)]

NOTE: When insulators from this page are used, adjust construction drawing material list quantities as necessary.

1 - Clamp, deadend

DISTRIBUTION

Copper 2 through 6 ACSR (Aluminum Clamps)					ips)
CWC 4A thr	ough 8A	4/0 & 3/0	2/0	1/0	2 & 4
-	ALCOA	302	302	302	302
-	American Connector Engineering	QDA-53	QDA-53	QDA-53	QDA-53
MD-52-N	Anderson/Sa.D	PG-57N	PG46C	PG-46C	°G-46C
-	Continental	AQD-63	AQD-52	AQD-52	AQD-52
-	C 3 R	CR-20-90	CR-10-90	CR-10-90	CR-10-90
-	Lapp	306120N	306118N	306118N	306118N
-	Reliable/Bethea	DA-20N	DA-15-N	DA-15-N	DA-15-N

1 - Deadend for Steel Strand (Overhead Ground Wire)

TRANSMISSION

For High Strength Steel Strand and Aluminum-Clad Steel Strand

Clamp Type

High Strength	Steel	Alum	ninum-Clad Ste	el
Manufacturer	3/8" and 7/16"	7 No. 9 AWG	7 No. 8 AWG	7 No. 7 AWG
Anderson/Sq. D	SWDE-55N			
Continental	FQD-55-3-LW	,		
Reliable/Bethea	FD-550-N (For use on	3/8" steel str	and only)	

Rod, Anchor

Applicable Specification: ANSI Cl35.2 "Standards for Galvanized Ferrous Strand Eye Anchor Rods" except rods are copper covered. Copper coating thickness is 13 mil minimum at any point and a 15 mil average. All purchases should specify that a factory certification to the thickness of the copper must accompany the shipment of the rods.

Applicable Sizes: Double Guy - 3/4 inch diameter, 8 and 9 feet long.

Manufacturer	Meeting No. <u>and date</u>	<u>Conditions</u>
Joslyn	1387 7/20/89	 To obtain experience. For transmission purposes only. For use with log anchors or copper covered plate anchors only To be used with copper soated hardware or bronze hardware underground.

-		Α	_	_	h	_		_
۷.	_	А	Ĥ	C	Π	O	۲.	2

<u>Manufacturer</u>	Meeting No. _and_Date	<u>Conditions</u>
Chance Screw anchors, power installed 24462 (6,000 and 8,000 lb.) 12332P 5/8" rod 12587 5/8" thimbleye	1252 2/3/83	To obtain experience.
24484 (10,000 and 12,000 lb. ar 12632P (3/4" rod) 6512 (thimbleye nut)	nchor helix)	
Cooper Power Systems (McGraw-Edis Screw anchors, power- installed DA11G621 (5,000 & 8,000 1b., 5/8" roa	on) 992 5/25/72	To obtain experience.
Dixie Screw anchors, power- installed D-1162-G (6,000 & 8,000 lb., 5/8" rod) D-1375-G (10,000 & 12,000 lb., 3/4" rod)	859 2/9/67	To obtain experience.
Joslyn Screw anchors, power- installed J11B-CA (6,000 & 3,000 lb., 5/8" rod) J13C-CA (10,300 & 12,000 lb., 3/4" rod)	973 3/19/71	To obtain experience.
Foresight MR-1, MR-2, MR-3, MR-4	1360 3/31/88 1387 7/20/89	 To obtain experience. Each installation must be proof tested. Maximum rating is test value achieved.

NOTES: Where galvanized anchors are listed, the same anchors ungalvanized (black asphalt coated) are also acceptable.

Catalog numbers shown are for anchors with 1-3/8" hubs. Equivalent anchors with 1-i/2" hubs are also acceptable. (A special installing wrench is required.)

aa - Nut, eye ab - Nut, thimble eye 5/8 inch

	Eye Nut Conventional	Eye Nut Eyelet	Thimble Eye Nut
	0		9
American Connector Engineering	EN-5		
Barron Bethea	OEN-2A	B-14A	EN4A
Berny's Forging Co.	OEI	-	-
Chance	6502	- ,	6510 [°]
Continental Electric	EN-5	BE-5	TN-5
Cooper Power Systems (McGraw-Edison)	DG2E3	DG6E1	DG1E1
Dixie	D6502	DD-6517	D6510
Flagg (MIF)	P125C	P127A	P128A
Hughes	EN60	-	-
Joslyn	J1092	J1126	J6510
Kortick	K4212	K4413	K3111
Power Line Hardware	OEN-58	BEL-58	
Reliable/Bethea ~	E-5	B-5	NT-5
Utilities Service	450	497	C580

ae - Surge Arrester, Substation*

Manufacturer	Meeting Noand Date	Conditions
Cooper Power Systems (McGraw-Edi Surge arrester, station class, metal oxide type, -VariSTAR 3 kV thru 312 kV Type ATZ1A	son) 1223 .11/19/81	To obtain experience
Surge arrester.inter- mediate class,metal oxide type,VARISTAR 9 kV thru 120 kV, Type AZF	1.287 9/27/84	To obtain experience
General Electric Surge arrester, station class, metal oxide type, Tranquell, 2.7 kV thru 588 kV	1164 5/24/79	To obtain experience
Surge arrester, intermediate class, metal oxide type. Tranquell, 3 kV thru 120 kV	1197 10/9/80	To obtain experience
Joslyn Surge Arrester, intermediate class, metal oxide type, Type ZI 3 thru 144 kV	1268 10/27/83	To obtain experience
Surge arrester, station class, metal oxide type, Type ZS, 3 kV thru 240 kV	1278 4/12/84	To obtain experience
Surge arrester, station Class, metal oxide type, Type ZSH, 258 thru 468 kV	1341 5/14/87	To obtain experience
Ohio Brass Surge arrester, station class, metal oxide type Dynavar, 3 kV thru 357 kV	1175 11/2/79 1239 7/29/82	To obtain experience
Surge arrester, intermediate class, metal oxide type, Dynavar, 3 kV thru 120 kV	1242 9/9/82	To obtain experience
Westinghouse Surge arrester, station class, metal oxide type, SMX-30, 3 thru 240 kV	1256 4/6/83	To obtain experience

^{*}For instructions concerning application at substations refer to REA Bulletin 65-1, "Guide for the Design of Substations' for Electric Borrowers." In the purchase of arresters, care should be taken to select the type and voltage rating in accordance with the line voltage and the type of construction (grounded or ungrounded).

af - Cutouts, Distribution, Open

Manufacturer	Type	Voltage Rating
Chance	C	15, 27 kV
Cooper Power Systems (McGraw-Edison)	S1	15, 27 kV
General Electric	- · 9F34D	15, 27 kV
Joslyn	L, 100 amp J, 200 amp	15, 27 kV
Kearney	KX	15, 27 kV
S & C Electric	XS	15, 27 kV
Southern States	Series 66 Series 70	15, 27 kÝ 15 kV
Westinghouse -	NCX LBU-11	15, 27 kV 15, 27 kV

NOTE: The buyer should specify the load rating, voltage rating, interrupting rating and required accessories.

Cutout used on underground riser poles should be loadbreak type or have hooks for portable load interrupters.

aj - Clamp, Ground Rod

Manufacturer	For 5/8" Copper- Covered Rod	For 3/4" Galv. or Stainless Steel Rod	For 5/8" Galv. or Stainless Steel Rod
Manufactor er	· · · · · · · · · · · · · · · · · · ·	2661 VOO	Jeel von
AMP	Copper AMPACT (Order by Descr	- ription)	- -
Anderson	GC-5	<u>-</u>	_
Blackburn	G 5 .	-	-
Boggs	G31	_	_
Burndy	GRC58	-	-
C & R Products	CRGC-58	-	-
Carolina Galv.	CPH58	_	CPH58
Connector Castings	G5	-	-
Dossert	GNL62H	-	_
*Erico (Cadweld)			
i ground wire	GR1-161G	GR1-131G	GR1-161G
2 ground wires	GT1-161G	GT1-181G	GT1-161G
Greaves/Mercury	G-580	-	-
I l-sco	GRC-58	-	_
Joslyn	J8392AB	J25985	J25932
Knight	C58	UCSS	UCSS
Kortick	K4647	-	
Lew Electric Fittings	GRC-5/8"	-	-
O-Z Elec. Mfg.	BG0304	-	-
Penn-Union	CEB-2	-	-
Power Line Hardware	RC-58CE	-	-
Reliable	E58	3459	3459
UTM	910-023-03	910-007-02	910-007-02
Wilcor	HGR5/8	WAU-3/4"	WAU-5/8"

^{*}Includes disposable molds.

aj - Clamp, ground rod

Manufacturer	Meeting No. _and_Date	Conditions
Burndy YGHP (for 5/8" copper- covered rods)	1234 5/13/82	To obtain experience.
Power Line Hardware RC-34 (for 5/8" and 3/4") galvanized or stainless steel ground rods	1114 5/12/77	To obtain experience.

an - Transformers, distribution, pole type Primary Voltages 7.2/12.5, 7.62/13.2 and 14.4/24.9 kV

Applicable Specifications: REA Specifications for Rural Distribution Transformers, D-10

Listing is by type rather than by catalog number because of the many possible combinations of voltage, KVA and taps and protective equipment.

•	7.2/12.5 & <u>7.62/13.2</u>	14.4/24.9	Dual <u>Voltage</u>
Arkansas Electric Cooperative Conventional, single bushing	ASE		
Central Moloney Conventional, single bushing Conventional, two bushing Self-protected, single bushing	AOD AOD DVP	AOD AOD DVP	AOD AOD DVP
The single bushing transformer may also be obtained with bushing mounted cutout and lightning arrest and with internal fuse and double of			
Cooper Power Systems (RTE) Conventional, single bushing Self-protected, single bushing Conventional, two bushing	REA-Conv REA-CSP REA-Conv	REA-Conv REA-CSP REA-Conv	REA-Conv REA-CSP REA-Conv
Conventional single bushing type may also be purchased with external overload proteciton and double gap and with bushing mounted cutout and lightning arrester.			
devi-Duty/Dowzer Conventional, single bushing Self-protected, single bushing Conventional, two bushing	CR CSP-R CD	CR CSP-R CD	CR CSP-R CD

an - Transformers, distribution, pole type Primary Voltages 7.2/12.5, 7.62/13.2 and 14.4/24.9 kV

	7.2/12.5 & 7.62/13.2	14.4/24.9	Dual <u>Voltage</u>
ERMCO Conventional, single bushing Conventional, two bushing Self-protected, single bushing	CONV	CONV	CONV
	CONV	CONV	CONV
	CSP	CSP	CSP

The single bushing transformer may also be obtained with double gap and internal fuse (Type DG) or lighning arrester and external cutout (Type COLA).

Dead-front for use in enclosure: Add "R" (Radial) or "LF" (Loop feed) to designation.

General	Electric

Conventional, single bushing	HS	HS	HS
Self-protected, single bushing	HSBA	HSBA	HSBA
Conventional, two bushing	HS	HS	HS

Type HS may also be obtained with internal fuse, with internal fuse and double gap, with bushing mounted cutout and double gap, and with bushing mounted cutout arrester (Type HSCA).

Howard Industries

Conventional, single bushing Conventional, two bushing Self-protected, single bushing	REC-C Conv-2B REC-P	REC-C Conv-2B REC-P	REC-C Conv-2B REC-P
Kuhlman		•	
Conventional, single bushing	1	I	<u>I</u>
Conventional, two bushing	8	В	В
Self-protected, single bushing	Н	Н	Н

Type I may also be purchased with internal fuse, with internal fuse and double gap (Type G), and with bushing mounted cutout and lightning arrester (Type J).

an - Transformers, Power Three-Phase, Step-Down For Distribution Substation Use

,							
	25 30				×	×	×
	25				×		×
	20				×	×	
A	15		×		×	×	
⋛	12		×		×	×	×
	10		×	×	×	×	×
	7.5		×		×	×	×
	12		×		×	×	×
	3750				×		
	2500				×		
	2000						
KVA	1500						
	750 1000						
	750						
Primary	Voltage-kV	ABB	34.4	43.8	67.0	115	138

Transformers 5 MVA also accepted as load tap changing transformers using ASEA Flectric Type U20 load tap changers.

			×						×	×	×
							×		×		×
			×	×			×	×	×	×	×
×	×	×	×				×	×	×	×	×
×	×	×			Jer		×	×	×	×	×
×	×	×			too) Go		×	×	×	×	
×	×	×			oisu s.		×	×	×	×	×
					tap changing transformers using Cooper						
×	×	×			nanging tu		×	×	×		
×	×	×					×	×	×		
×	×	×			accepted as load changers.		×	×	×		
McGraw-Edison) X	×	×			lso tap		×	×	×		
Systems					5 MVA and 10B, and 1	ric	×	×	×		
Cooper Power Systems (McGraw-Ed 34.4	43.8	67.0	115	138	Iransformers 5 MVA and larger a Types 550, 550B, and 550C load	General Electric	34.4	43.8	67.0	115	138

Transformers 5 MVA and larger also accepted as load tap changing transformers using General Electric Types LR72, LR65 and LKT-200 load tap changers.

××

an - Transformers, Power Three-Phase, Step-Down for Distribution Substation Use

	8					
	25		×			×
i de la companya de l	<u>50</u>		×	×	×	
	15	×	×	×	×	
MVA	겜	×	×	×	×	×
	10	×	< ×	×	×	×
1	2.5	×	<×	×	×	~
	K2	×	<×	×	×	
	3750	>	× ×	×	×	
	2500	*	<	×		
	2000					
4VA	1500	×	<	×		
	1000	>	<	×		
	750					
Primary	Voltage-kV	Hevi-Duty	43.8	67.0	115	138

Transformers 5 MVA and larger also accepted as load tap changing transformers using Westinghouse Types UTS-A and UTT-B and Siemens Allis Type ItS load tap changers.

	×	×	×	×	×
	×		×	×	×
	×	×	×	×	> :
	×	×	×	×	×
	×	×	×	×	×
	×	×	×		
	×	×	×		
Kuhlman	34.4	43.8	67.0	115	138

 $\times \times \times \times$

Transformers 5 MVA and larger also accepted as load tap changing transformers using Siemans-Allis Types TLS and TLH-21 load tap changers.

××

Transformers 5 MVA and larger also accepted as load tap changing transformers using North American type IC-525 load tap changers.

	×
××××	×
××××	

××× '	

×××	
Ų	
Westinghouse 34.4 43.8 67.0	138

××

fransformers 5 MVA and larger also accepted as load tap changing transformers using Westinghouse Types UTS-A, UTI-B and UVW load tap changers.

an - Transformers, Distribution, Pole Type

Manufacturer	Meeting Noand_Date	Conditions
Cooper Power Systems (RTE) 7.2/12.5, 7.62/13.2, 14.4/24.9 kV and Dual Voltage		
Single-phase, single bushing, self-protected, with Magnex Interrupter	1358 3/3/88	To obtain experience.
Ermco 7.2/12.5 and 7.62/13.2 and 14.4/24.9 kV Single-phase, single bushing with internal Tranquell Under-oil Arrester	1359 3/17/88 1362 5/12/88	To obtain Experience.
General Electric 7.2/12.5, 7.62/13.2, 14.4/24.9 kV and Dual Voltage		
Single-phase, single bushing, and two bushing with internal Tranquell Under-oil Arrester	1316 3/6/86	To obtain experience.
Single-phase, single bushing and two bushing, 25 and 50 kVA pole type distribution transform with amorphous metal cores	1320 5/8/86 ers	To obtain experience.
Single-phase, single bushing and two bushing pole type distribution transformers with G.E. high voltage switch	1370 9/22/88	To obtain experience.
Kuhlman 7.2/12.5 kV and 7.62/13.2 kV Toroform design 10, 15, & 25 kVA	1370 9/22/88	To obtain experience.

Conditional List an(1.2) July 1989

an - Transformers, Distribution, Pole Type

Manfuacturer	Meeting Noand Date	<u>Conditions</u>
VanTran 14.4/24.9 kV and Dual Voltage	1075 10/16/75	To obtain experience.
Conventional, single bushing Type CR Conventional, two bushing Type CD Self-protected, single bushing Type CSP-R	1095 8/11/76	•
Westinghouse 7.2/12.5, 7.62/13.2 Single-phase, single bushing, 25 and 50 kVA pole type distribution transformers with amorphous metal cores.	1333 12/18/86	To obtain experience.
14.4/24.9 kV & Dual Voltage Single-phase, single bushing, 25 kVA pole type distribution transformers with amorphous metal cores.	1354 12/31/87	To obtain experience.

an - Fransformers, Power Three-Phase, Step-Down for Distribution Substation Use

Condition of Acceptance: To obtain experience.

Primary Voltage=NV	750	0001	15 <u>00</u>	2000	2500 3750	3750	5	5 7.5 10	12 15			. 52	30
<u>ABB</u> 115 138										s	S	s.	

Transformers 5 MVA and larger also accepted as load tap changing transformers using ASEA Electric Type UZD load tap changers

		J1	5)	3)
		S	S	٠.
		S	S)	s
		'n	'n	s
		ה		
	lison)	S	s	s
	oraw-Edison			
:	HLU			
	Cooper Power Systems (Hu	2	Ω	٦
	OWER S			
•	pper P	34.4	43.8	0.73
	Ö			

555

Transformers 5 MVA and lurgar also accepted as load tap changing transformers using Cooper Types 550, 550b and 550f load tap changers

		Л	Л	
S				S
л				
×				
۶				
^				
S				
ackard >	ectric			
<u>Ferrant i-Packaro</u> 34.4	General Electric 34.4	413.8	311	_3æ
	,			

Transformers 5 MVA and lurger also accepted as load tap changing transformers using General Electric Types LR72, ER65 and ER1-200 load top changers.

л				s
				Л
				S
	S			
л	νı			
	^			
	<u>بر</u>			
~	5			
Hevi-fluty 34.4	3.8	7.0	51	£35
Hev i	₹	9		_

Transformers 5 MVA and Enger also accepted as load tap changing transformers using Westinghouse Types UTS-A and OTF-B and Sceners Allis Type ItS load tap changers.

an - Transformers, Power Three-Phase, Step-Down Tor Distribution Substation Use

experience.
obtain
10
Acceptance:
0 f
Condition

	30	×
	25	S
	20	s)
س	15	×× ×
HVA	12	×××
	01	ગય× પ્રાપ
	7.5	××××
	2	\times \times \times \times \circ
	3750	×××
	2500	on on ×
4	2000	να
KV	1500	^ ~ ×
	1000	(1) s
	750	5 S S S
	Voltage-kV	H. N. Porter (Delta Star) 34.4 43.8 67.0 5115

Transformers 5 MVA and larger also accepted as load tap changing transformers using Seimens-Allis Types TLS and HTH-21 load tap changers.

	S	S	S
	s	S	×
	S	S	×
	×	×	S
	S	×	s
МБМ	34.4	43.8	67.0

Transformers 5 MVA and larger also accepted as load tap changing transformers using Westinghouse Types UTS-A and UTT-B load tap changers.

v	, v			
<u>restinghouse</u>	43.8	67.0	115	138
	lest ingliquese	<u>lestinghouse</u> 34.4 43.8 s	<u>48.8</u> s s 43.8 s 67.0	<u>lestinghouse</u> 34.4 34.8 43.8 s 67.0

SSSSS

s s

Transformers 5 MVA and larger also accepted as load tap changing transformers using Westinghouse Types UIS-A, UIF-B and UVW load tap changers.

at - Reflective Guy Marker, 8-foot length

Plastic or Fiberglass

Manufacturer	Meeting No. _and_Date	Conditions
*Nordic HG-815 yellow .	1061 3/20/75	To obtain experience.

^{*}For use with formed or automatic type deadends for guy strand; will not fit over bolt type guy clamps.

av - Conductor, ACSR

Applicable Specification: ASTM Specification B 232

Preferred Sizes: (Larger sizes may be used where the engineer's study shows they are required.)	Distribution 4 - 5/1 4 - 7/1 2 - 6/1 2 - 7/1 1/0 - 6/1 2/0 - 6/1 3/0 - 6/1	Transmission 1/0 - 6/1 2/0 - 6/1 3/0 - 6/1 4/0 - 6/1 256.8 kcmil - 26/7 336.4 kcmil - 26/7
	3/0 - 6/1 4/0 - 6/1	477 kcmil - 26/7 556.5 kcmil - 26/7
	266.8 kcmil 18/1	795 kcmil - 26/7
	336.4 kcmil 18/1 477 kcmil 18/1	954 kcmil - 54/7

The following manufacturers have shown compliance with the applicable specifications:

Alcan Cable

ALCOA-ACPC

Cablec

Kaiser

Nehring

Noranda

Pirelli Cable

Reynolds-CPI

Southwire

NOTES

- 1. Conductors with 18/1 stranding have different sag characteristics than conductors with 6/1 or 26/7 stranding. This difference in sag characteristics must be taken into consideration in the line design.
- 2. 266.3 kcmil 26/7, 336.4 kcmil 26/7, and 477 kcmil 26/7 may be used for distribution underbuild on transmission lines.

av - Conductor, Aluminum Alloy

Applicable Specification: ASTM Specification B399

Preferred Sizes:

DISTRIBUTION			TRANSMISSION	,
6201	ACSR Equiv.	<u>6201</u>		ACSR Equiv.
48,690 cmil - 7 str.*	4	123,300	cmil - 7 str.**	1/0
77,470 cmil - 7 str.*	2	155,400	cmil - 7 str.**	2/0
123,300 cmil - 7 str.	1/0	195,700	<pre>cmil = 7 str.**</pre>	3/0
155,400 cmil - 7 str.	2/0	246,900	cmil - 7 str.	4/0
195,700 cmil - 7 str.	3/0	312,800	cmil - 19 str.	255,800 cmil
246,900 cmil - 7 str.	4/0	394,500	cmil - 19 str.	337,400 cmil
		559,500	cmil - 19 str.	477,000 cmil
		652,400	cmil - 19 str.	556,500 cmi/
		927,200	smil - 37 str.	795.000 cmi

^{*}Not recommended for multiphase lines with span lengths exceeding 300 ft.

The following manufacturers have shown compliance with the applicable specifications:

Manufacturer	<u>Type</u>
Alcan	5201
ALCOA-ACPC	6201
Kaiser	6201
Reynolds-CPI ·	5201
Southwire	6201

^{**}Not recommended for suspension type construction.

Conditional List av July 1989

av - conductor

<u>Manufacturer</u>	Meeting Noand Date	Conditions
Copperweld Southern Alumoweld-aluminum 6/1 ACSR/AW, #2, #1/0, #2/0, #4/0 4/3 AWAC, #4, #2, #1/0	863 (4/13/67) 984 (2/3/72) 1376 (1/12/89)	To obtain experience. To obtain experience To obtain experience.
Reynolds Metals 5005 Aluminum Alloy #4-7 strand through 4/0-7 strand; 281,460 cmil-19 strand (266,300-18/1 ACSR equiv.) through 312,760 cmil-19 strand (266,800-26/7 ACSR equiv.)	803 (10/22/64)	Where suspension insulator type of construction is employed on transmission lines, the minimum size of this conductor to be used is 4/0.
Southwire 5005 Aluminum Alloy #4-7 strand through 4/0-7 strand; 557,500 cmil-19 strand (477,000-26/7 ACSR equiv.)	999 (8/31/72)	Where suspension insulator type of construction is employed on transmission lines, the minimum size of this conductor to be used is 4/0.
Alcoa 795 kcmil 26/7 ACSR/AW	1247 (11/18/82)	To obtain experience.

aw - Washer, Spring

1/4 x 1-3/4' x 3-1/2"

		Size	
Manufacturer	5/8"	3/4"	7/8"
Chance	3540	3541	
Cooper Power Systems (McGraw-Edison)	DF17W3	DF17W4	DF17W5
Joslyn	J3540	J3541	J3542
Kortick	K2909		
Fastex (ITW) "Ramp Lok"	1-760-21	1-760-31	1-760-41
Power Line Hardware	SCW-58	SCW-34	SCW-78

ax - Cutout and Arrester, Combination

714.4 kV 27 kV 30 8 20 k	30 Sect. 10 Sect.	100		C71C-211PB Series	AFS301D 8 Series	9F80	425703-180 39267-0278	KE780109E-110
18 kV 27 30 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	10 Irans.	× 05		,	AFS800M018	9F78A	39267-Q6 39268-1Q	294074
. 6 kV V 30 Rank	30 Sect. 10 Sect.	100		C71A-112PB Series	AFS301C Series	9f80	415402-090 39237-02/B/R	KE4AB i 10E-110
For 13.2Y/7.6 kV 15 kV	10 Trans.	≥00 ×	Catalog Numbers		AFS800M010	9F78A	J9237-Q6 J9238-1Q	294073
15 kV	30 Bank 30 Sect.		Catalog	C71A-112PB Series	AFS301C Series	9F80	415402-090 39237-027B/R	KE3AB110E-110
For 12.5Y/7.2 kV 7.8 kV	10 Sect.	100		C71A-112PB Series	AFS301B Series	9f80	415402-090 39237-027B	
	10 Trans.	20 *			AFS800M010	9F78A	39237-Q6 39238-1Q	294072
. Voltage Iltage Rating			Mounting	Crossarm Transformer	Crossarm (L) Transformer	Crossarm (L) Transformer	Crossarm Crossarm (1) Transformer	Crossarm Transformer
Nominal System Voltage	Application '	Cutout Current Rating	Manufacturer	Chance	Cooper Crossarm (L (McGraw-Edison)Transformer	General Electric	Joslyn(valve) (valve) (valve)	Kearney

Either normal duty or heavy duty distribution class arresters listed on page ae-l are acceptable for use with these combination units.

*These cutouts have open links and must not be used where fault currents are high or fir sectionalizing.

(L) Indicates loadbreak type is available.

bx - Splice, automatic

<u>Manufacturer</u>	Meeting No. <u>and Date</u>	<u>Conditions</u>
	DISTRIBUTION	
Fargo AWAC 4 - 4/3 .GLA-105 AWAC 2 - 4/3 GLA-110 AWAC 1/0 - 4/3	1087 (4/1/76)	1. To obtain experience 2. For use on distribution systems only.
GLA-115 266.8 kcmil ACSR 18/1 GL-1315A 336.4 kcmil ACSR 18/1 GL-1315A 477 kcmil ACSR 18/1 GL-1325A	855 (2/12/86)	Same as above.

DISTRIBUTION AND TRANSMISSION

Fargo		
266.8 kcmil ACSR 26/7	1384 (5/18/89)	To obtain experience
336.4 kcmil ACSR 26/7		·
477 kcmil ACSR 26/7		

by - Deadend, Automatic and Formed Type

Conductor Size

<u>Cu</u>	CMC	<u>Fargo</u>	Reliable
_	4A	GD-515	27-SDS
-	6A	GD-513	47-SDS
-	3A	GD-512	-
2 x 3	-	GD-515	271
4	-	GD-512	41LD
5	-	GD-511	61LD

<u>ACSR</u>

*Fargo	GD-400 Series		
*Preformed	OG-9360 thru 9366 #OHDE-9534 thru 9540, 4577		
*Reliable	7650 Series		

#may only be used with a spool insulator (Item cm) and appropriate clevis for neutral and secondary applications.

Aluminum Alloy (6201 and 5005)

Fargo	GD-A Series			
Preformed	OG-9360 thru 9366			
Reliable	AL Series			

^{*}For use on distribution conductors 4/0 and smaller only.

fv - Guying Attachments Transmission

Pole Eye Plates 25,000 pounds

<u>Manufacturer</u>	3/4" Bolts	7/8" Bolts
Continental	EPR-66S-12	
Flagg (MIF)	PX370	PX42
Relianle/Berhea	PF6-77A	

Conditional List fv(1) July 1989

> fv - Guy Attachments Pole Bands with Through Bolts for Transmission Lines

Strength Ratings: 25,000 lbs. ultimate loading (45° guy angle)*

Manufacturer	Pole Band With Through Bolts and Associated Hardware**	Meeting No. _and_Date	<u>Conditions</u>
Hughes	3108 C.x	1172 9/20/79	To obtain experience.
		1292 1/10/85	
Joslyn	J26043.xGL (includes fettor drive lag screws and thru bolt)	1292 1/10/85	To obtain experience.

^{*}For a 30° guy angle, capacity of pole bands should be derated.
**Appropriate connecting links (Item du(1)) should be ordered with the pole band.

Applicable Specification: REA Specification T-5

Applicable Drawings: REA Drawings TSZ-1

3-5/8' < 5-5/8" wood prossarm assembly complete with brace and attaching hardware, fittings, and bolts

The following manufacturers have shown compliance with the applicable specifications for this assembly:

Manufacturer

Catalog Nos. or Drawing Nos.

American Crossarm & Conduit Co.

501TSZ and 502TSZ

Brooks

64Z1

Hughes Brothers

C-3162-A and C-3162.10

gz-2 October 1989

Applicable Specification: REA Specification T-5

Applicable Drawings: REA Drawing TSZ-2

3-5/8" x 5-5/8" wood crossarm assembly complete with brace and attaching hardware, fittings and bolts

The following manfacturers have shown compliance with the applicable spcifications for this accembly:

<u>Manufacturer</u>	Catalog Nos. or Drawing Nos.
American Crossarm & Conduit Co.	602TSZ
Brooks (2)	64Z2
Hughes Brothers	C-3162-B and C-3162.10

(2) Adjustable spacers are available.

U ae - Arresters, Surge

(Shielded for Underground System Pad-Mounted Equipment)

<u>Manufacturer</u>	Meeting No. _and Date	Conditions
Cooper Power Systems (RTE) Metal Oxide Elbow Arrester M.O.V.E9kV (15kV interface) M.O.V.E18kV (25 kV interface)	1185 (4/24/81) 1386 (6/29/89) 1387 (7/20/89)	To obtain experience.
Elastimold (ESNA) Metal Oxide Elbow Arrester 10 kV 167ESA - 10 (15 kV interface) 18 kV 273ESA - 18 (25 kV interface)	1356 1/28/88	To obtain experience.
Joslyn Metal Oxide, Elbow Arrester Type ZE, 10, 18kV	1297 4/11/85	To obtain experience

U ae - Arresters, Surge

(For Underground System Pole Risers)

Cooper (McGraw-Edison) Metal Oxide AZR Intermediate class 9, 10, 18, 27 kV	1287 9/27/84 1386 6/29/89	To obtain experience.
General Electric Metal Oxide, Tranquell** U.D. II 9, 10, 18 kV	1292 1/10/85	To obtain experience.
Metal Oxide, Tranquell Intermediate Class 9, 10, 18, 27 kV	1386 06/29/89	To obtain experience.
Joslyn Metal Oxide, Type ZJ U.D. 9, 10, 18 kV	1266 9/22/83	To obtain experience.
Metal Oxide, Type ZR Intermediate Class* 9, 10, 18 kV	1266 9/22/83	To obtain experience.
Ohio Brass Metal oxide type DynaVar 9, 10, 18kV Porcelain, VR Polymer, PVR	1236 6/10/82 1378 2/9/89	To obtain experience
Metal Oxide, DynaVar Intermediate Class 9, 10, 18 kV	1236 6/10/82	To obtain experience.
Westinghouse Metal Oxide, HMX HEAVY DUTY: 9, 10, 18 kV	1320 5/8/86	To obtain experience.
Metal Oxide, RMX Intermediate Class* 9, 10, 18 kV	1320 5/8/86	To obtain experience.

^{*}Has intermediate class arrester characteristics but does not have

intermediate class venting capability.

**A non fragmenting U.D. II Arrester is available for 9 & 10 kV designs at higher cost when specified.

U an - Transformers, distribution pad-mounted, dead-front

(For underground application)

Applicable Specifications: "RE Specifications for Pad-Mounted Transformers," U-5.

Manufacturer	Single Phase	Three-Phase
Central Moloney (2, 4)	"REA-LP" 25-167 kVA	
Cooper (2, 4) "REA Sh	rubline/Series 20 REA" 15-167 kVA	"REA Terma=Tran" 45-2500 kVA
ERMCO (2, 4)	"Low-Profile" 10-167 kVA	
General Electric (2, 4)	"Mini-Pad III - REA" 10-167 kVA	"Compad IV - REA" TS-2500 KVA
Hevi-Duty/Dowzer (3, 4)	"METRI-PAD" 25-157	"PM3W-R" 75-500 KVA
Howard (2, 4)	"Hi Pad REA" 10-167 kVA	"Hi Pad 3 REA" 45-2500 kVA
Kuhlman (2, 4)	"Lo-Pak ELR" 25-167 kVA	"K-PAK-3 REA" 750-2500 KVA
NECO/Hammond (2)	HMM-R, 10-50 KVA SP-R, 75-167 KVA	TP-R, 45-1000 kVA
Pauwels-Chance(2,4)	"Turf-Hugger-R" 10-100 KVA	"Turf-hugger-R" 45-500 KYA
H. K. Porter (2, 4) (Delta-Star)	"Low Profile U 5-R" 25-157 kVA	"Porter U5-R3" 225-2500 KVA
United (Ky, AEC)(2, 4)	"Pad-Mount" 15-75 kVA	
 (1) 7.2/12.5 and 7.6/13.2 kV (2) 7.2/12.5, 7.6/13.2 and 14.4/24.3 kV (3) 7.2/12.5 and 7.6/13.2 kV /conditional listing for 14.4/24.9 kV) (4) Dual Voltage - Same as for 14.4/24.3 kV, single phase (5) Three-phase listing applies to 1.2/12.5 and 7.6/13.2 kV only 		

(6) 14.4/24.9 KV

U an - Transformers, Distribution, Pad-Mounted, Dead-Front

(For Underground Application)

Applicable Specifications: REA Specifications for Pad-Mounted

Transformers - U5

<u>Manufacturer</u>	<u>Single Phase</u>	Three-Phase
VanTran (3, 4)	"Mini-Pad U5" 5-167 kVA	"VanTran III-U5" 30-2500 kVA
Westinghouse 2, 4)	"Mini-Pak U-5" 25-167 kVA	75-1500 kVA "Plazapad-U5"

(1) 7.2/12.5 and 7.6/13.2 kV

(2) 7.2/12.5, 7.6/13.2 and 14.4/24.9 kV

(3)7.2/12.5 and 7.6/13.2 kV (conditional listing for 14.4/24.9 kV

(4) Dual voltage - same as for 14.4/24.9 kV, single phase

(5) Three-phase listing applies to 7.2/12.5 and 7.6/13.2 kV only

U gk - Terminations, Outdoor (With Mounting Hardware)*

(When ordering, specify conductor size, type, whether copper or aluminum, insulation diameter, and type of mounting desired.)

<u>Manufacturer</u> .	Catalog Number
Cooper Power Systems (RTE)	Fasterm Series (15 & 25 kV)
<u>G & W</u>	"Eliminator" 15 kV, E 25 kV, E 35 kV, E
Plymouth/Bishop	SWO Kit (15, 25 and 35 kV)
Raychem	Thermofit HVT (1-5, 25 and 35 kV) CST (15 kV)
Sigmaform	Q-Cap Series STK (15 & 25 kV)

^{*}Mounting Hardware is used to attach termination to mounting bracket (U hd or U hj).

U gn - Enclosures, equipment

Applicable Specifications: "REA Specifications for Equipment Enclosures,"

U - 4

Manufacturer	Cata	

<u>Durham</u>
AT-42 Series (dead-front)
AT-54 Series (dead-front)

Electrical Equipment THI-DF Series (dead-front)

Elliott EPM-PTS (dead-front)

K & M Engineering KM Series

(Dead-front with penta-head boit)

Malton Electric
1-Phase Single Unit (dead-front)

Maysteel E/L100 (dead-front)

Northern Plastics Garrison NPG Series (dead-front)

Western Power Products FG-DF1 (dead-front) FG-DF3 (dead-front)

NOTE: The above enclosures are available with various multipoint terminations. The owner should specify termination points to be provided.

U gu - Pedestal, Power

Refer to Construction Drawings UK5 and UM5-5

Applicable Specifications: "REA Specifications for Secondary Power Pedestals," U-6

<u>Manufacturer</u>	Inside Dimensions Inches	Height <u>Inches</u>	Catalog No.
Reliable	8 x 8 8 x 3 10-1/2 x 10-1/2 16-1/2 x 10-1/2 10-1/2 x 10-1/2	38 46 26 36 42	UP 8HLP UP. 8HP UP 10HLP UP 1016HLP UP 10HP
Shallbetter	7.5 x 10.25	39	SUTP Series
Utility Fiberglas	ss 27 x 16	40	PPFP-2700
Vertex	8 x 14	30	SP 814
Western Power	8 x 8	· 30	*SP-8, DF-3 (dead- front)
	9 x 9 9 x 9	30 30	*SPMC-9-DF3 SPM-90, DF-3 (stakeless)
	9 x 14 9 x 14	30 30	*SPMC-14-DF3 SPM-140, DF-3 (stakeless)

^{*}Furnished with stake.

^{**}Pole mounted

U gu - Power Pedestal Refer to Drawings UK6 and UM5-5

Applicable Specifications: "REA Specifications for Secondary Power

Pedestals," U-6

Manufacturer Catalog No.

Armorcast Polymer concrete frame and cover with

fiberglass reinforced polyester

skirting 6001 Series.

Associated Plastics Molded polyethylene with

galvanized steel or plastic cover Catalog Nos. 1730-1, 3; 1324-1, 3

<u>Blackburn</u> Molded polyethylene with

glavanized steel cover and

ground lug.

Catalog No. SDR-2PG

Burndy Molded polyethylene with

galvanized steel cover. Catalog No. URD20G23

Carson Molded polyethylene with plastic cover

Catalog No. 1324-12B and 1730-12B

<u>CDR Systems (Homac)</u> Fiber reinforced polymer concrete

PA Series with penta-head bolts

U he - Enclosures, Sectionalizing Equipment

12.5/7.2 kV

Manufacturer

Catalog Number

Electrical Equipment

FTDF-P Series, single and three-phase one and two fused taps, pad-mounted *GGCL-P Series, single and three-phase, pad-mounted

Elliott

Type EPMR, single and three-phase, pad-mounted

Powercon

Type PMF, single-phase, pad-mounted Type PMF-8.3, three-phase, oad-mounted

NOTE 1: Enclosures on this page must comply with the dead-front requirements of REA Spec. U-4.

NOTE 2: Single-pole switching of three-phase underground circuits may cause ferroresonance. Refer to REA Bulletin 61-3.

^{*}Furnished with current limiting fuses.

U he - Enclosures, Sectionalizing Equipment

12.5/7.2 kV

<u>Manufacturer</u>	Catalog Number
Cooper Power Systems (McGraw-Edison)	EH3A Series, single-phase, pad-mounted
G & W	PLDR, PFLDR (submersible and pad-mounted) single-phase and three-phase, fused or unfused switchgear. (Choice of deep well or deadbreak bushings), (Must specify pentahead security bolt when ordering)
<u>Malton</u>	MEF21
S_&_C	Mark III, Models PMS (with option G-7) 200 ampere three-pole switching and 200 ampere single-pole switching
<u>Shallbetter</u>	SPMD Series, single and three-phase, pad-mounted SPMC Series, 200 ampere single-pole switching
<u>Westinghouse</u>	UTE, PAD-PAK pad-mounted switching device, single and three-phase, 300 amp
NOTE 1: Englocures on this pa	was must comply with the deadfront requirements

NOTE 1: Enclosures on this page must comply with the deadfront requirements of REA Spec. U-4.

NOTE 2: Single-pole switching of three-phase underground circuits may cause ferroresonance. Refer to REA Bulletin 61-3.

U hr - Secondary tap or splice cover, submersible

Manufacturer

Type or Catalog No.

Blackburn

Type WDBS (#2 through #4/0)

Type DBS (250 KCMIL through 1000 KCMIL)

Connector Mfg. Co.

Utilug Sure Seal

Elastimold (ESNA)

Style 36 ·

Electrical Spec. Prod.

TSC Series

Homac

FSS Series

Kearney

Aqua-Seal Kit

Plymouth/Bishop

Splice-Wrap

3M

PST Series 8420

Heat Shrink Tubing (with sealant throughout)

Manufacturer

Type or Catalog No.

AMP

Black heat-shrink tubing

Electrical Spec. Prod.

HSH

Panduit

Heat shrink insulating cover

Raychem

WCSM cable sleeves

Sigmaform Corporation

Sigmaform heat-shrinkable products

3M

ITCSN tubular cable sleeve
ICRS wraparound cable sleeve

U hv - Cable, Underground 15 kV Cable

Applicable Specification:

Conductor:

Insulation:

REA Specification U-1

Coprer or Aluminum - #2 AWG through 1000 Kcmil

Crosslinked Polyethylene (XLP)

Crosslinked Polyethylene with Tree-retardant

additives (XLP-TR)

(1) indicates Union Carbide 4202 XLP-TR

(2)indicates BP H4201 XLP-TR or Ethylene Propylene Rubber (EPR)

Neutral: Copper Concentric Neutral

Jacket: High Molecular Weight Polyethylene

<u>Manufacturer</u>	Insulation(s)	Flat Strap Neutral <u>Available</u>
Cablec	XLP, EPR, XLP-TR	Yes
CPI	XLP, XLP-TR (1)	Yes
Hendrix	XLP, XLP-TR (1,2), EPR	No
Kerite Kerite	EPR	Yes
Okonite	XLP, XLP-TR (1), EPR	Yes
Pirelli	XLP, XLP-TR (1), EPR	Yes
Reynolds	XLP, XLP-TR (1), EPR	Yes
Southwire Furakawa	XLP, XLP-TR	No

^{*}For grounding purposes insulated jacketed cables must be treated like overhead lines, i.e., at least four ground rods must be installed per mile in accordance with the NESC. (This does not include service grounds, etc., but does include equipment grounds.) Additional grounding may be necessary in soils with higher resistivity. In splices or tap connections, a good seal should be achieved to exclude moisture. It is recommended that any place that the jacketing is cut (including the connections to ground rods), it be done above ground in a pedestal.

U hv - Cable, Underground 25 kV Cable

Apolicable Specification:

REA

REA Specification U-1

- Conductor: Insulation: Copper or Aluminum - #1 AWG through 1000 kcmil

Crosslinked Polyethylene (XLP)

Crosslinked Polyethylene with Tree-retardant

additives (XLP-TR)

(1) indicates Union Carbide 4202 XLP-TR

(2)indicates BP H4201 XLP-TR or Ethylene Propylene Rubber (EPR)

Neutral:

Jacket:

Copper Concentric Neutral High Molecular Weight Polyethylene

Manufacturer	Insulation(s)	Flat Strap Neutral Available
Cablec	XLP, EPR, XLP-TR	√es
CPI	XLP, XLP-TR (1)	Yes
Hendrix	XLP, XLP-TR (1,2), EPR	No
Kerite	EPR	Yes
Okonite	XLP, XLP-TR (1), EPR	Yes
Pirelli	XLP, XLP-TR (1), EPR	Yes
Reynoids	XLP, XLP-TR (1), EPR	Yes
Southwire Furakawa	XLP, XLP-TR	No

^{*}For grounding purposes insulated jacketed cables must be installed per mile in accordance with the NESC. (This does not include service grounds, etc., out does include equipment grounds.) Additional grounding may be necessary in soils with higher resistivity. In splices or tap connections, a good seal should be achieved to exclude moisture. It is recommended that any place that the jacketing is cut (including the connections to ground rods), it see some above ground in a pedestal.

U hv - Cable, Underground

600 Volt Cable

Applicable Specification: REA Specification U-2

Conductor : Copper, #4 AWG and larger

Aluminum, #2 AWG and larger

Insulation : Cross-Linked polyethylene (XLPE)

Manufacturer . Type Conductor

Alcan Copper or Aluminum

Cablec Copper or Aluminum

Collyer Copper or Aluminum

Conductor Products Aluminum

Essex Copper or Aluminum

General Electric Copper or Aluminum

Kaiser Aluminum

Okonite Copper or Aluminum

Phelps Dodge Copper or Aluminum

Phillips Cables, Inc. Copper or Aluminum

(Marked "Phillips W")

Pirelli Copper or Aluminum

Reynolds Copper or Aluminum

Rome Cable Copper or Aluminum

Southwire Copper or Aluminum

NOTE: The manufacturers shown above have indicated that their 600 volt cable

is suitable for use on 480 volt corner grounded delta circuits.

The above cable may be supplied with UL label for Type USE.

UNITED STATES DEPARTMENT OF AGRICULTURE Rural Electrification Administration Technical Standards Committee "A"

Supplement No. 1, October 1989, to REA Bulletin 43-5, List of Materials Acceptable for Use on Systems of REA Electrification Borrowers

The attached pages for the "List of Materials Acceptable for Use on Systems of REA Electrification Borrowers" are those which have been revised by action of the Technical Standards Committees during the months of July through September 1989. The following changes should be made in order to keep it up to date. Pages with a comma between are on the same sheet, both being changed.

Add New Page	Remove Page	Add New Page	Remove Page
Hen Tage	- uge	iten rage	, <u>uge</u>
k(3), k(3.1)	k(3), k(3.1)	ax-1	ax-1
1-1	1-1	bx Cond.	bx Cond.
x Cond.		fv	fv
z Cond.	z Co nd.	gz-1, gz-2	gz-1, gz-2
af-l	af-l	U ae(1) Cond.	U ae(1) Cond.
aj	aj	U an-1.1	U an-1.1
an-1.1	an-1.1	U gn-1	U gn-1
an-3.1	an-3.1	U qu-1.1	U gu-1.1
an(1.1) Cond.	an(1.1) Cond.	U ne-1	U he-1
an(3.1), an(3.2)	an(3.1), an(3.2)	U hv-1	U hv-1
at Cond., av-1	at Cond., av-1	U hv-2	U hv-2
av-6	av -6		

k - Insulator, Distribution Deadend

<u>Manufacturer</u>	Meeting No. and Date	<u>Conditions</u>
Chance Distribution deadend Type E		1. To obtain experience
Model No. C654-3015 (15kV) Model No. C654-3025 (25kV) Model No. C654-3034 (35kV)	1386 6/29/89	2. For use as deadends on distribution lines only
HOUCT NO. 6333634 (33KV)		 Not recommended for use in areas subject to contamination.
Joslyn Distribution deadend UDI 671-3002 Distribution deadend	1074 9/25/75 1088 4/15/76	For use as deadends on distribution lines only up to 15 kV line-to-line voltage.
UDI 671-3010	1074 9/25/75	For use as deadends on distribution lines only
	1088 4/15/76	up to 25 kV line-to line voltage.
Lapp Distribution deadend Catalog No. 151001, 15kV	1282 6/21/84	1. To obtain experience.
Catalog No. 151002, 25kV	0721704	For use as deadends on distribution lines only.
		3. Recommended maximum working load is 5.000 ibs.
		4. Not recomended for use in areas subject to contamination.

NOTE: When insulators from this page are used, adjust construction drawing material list quantities as necessary.

Conditional List k(3.1) October 1989

k - Insulator, Distribution Deadend

Manufacturer	Meeting No. _and Date	Conditions
Chio Brass Type PDI-15 (15 kV) "Veri*Lite"	1347 (8/13/87)	 To obtain experience. For use as deadends on distribution lines only. Not recommended for use in areas subject to contamination.
Tranpol Distribution deadend H-15 kV-4 H-25 kV-6	1158 (3/1/79) 1208 (3/19/81)	 To obtain experience For use as deadends on distribution lines only Not recommended for use in areas subject to contamination.
Salisbury Distribution deadend 9501 Series, 15 kV 9502 Series, 25 kV Sediver	1226 (1/7/82) 1304 (8/8/85) 1291 (12/20/84)	Same as Lapp [See Cond. k(3)]
Distribution deadend ADI-4 15 kV ADI-6 25 kV ADI-8 35 kV	1286 (9/6/84)	Same as Lapp [See Cond. k(3)]

NOTE: When insulators from this page are used, adjust construction drawing material list quantities as necessary.

1 - Clamp, deadend

DISTRIBUTION

Copper 2 1	through 6		ACSR (A)	uminum Clam	(2 gr
CWC 4A thr	rough 8A	4/0 & 3/0	2/0	1/0	2 & 4
-	ALCOA	302	302	302	.302
-	American Connector Engineering	QDA-63	QDA-53	QDA-53	QDA-53
MD-52-N	Anderson/Sq.D	PG-57N	PG46C	PG-46C	PG-46C
-	Continental	AQD-63	AQD-52	AQD-52	AQD-52
-	С & R	CR-20-90	CR-10-90	CR-10-90	CR-10-90
-	Lapp	306120N	306118N	306118N	306118N
-	Reliable/Bethea	DA-20N	0A-15-N	DA-15-N	DA-15-N

1 - Deadend for Steel Strand (Overhead Ground Wire)

TRANSMISSION

For High Strength Steel Strand and Aluminum-Clad Steel Strand

Clamp Type

High Strength	Steel	Aluminum-Clad Steel	
Manufacturer	3/8" and 7/16"	7 No. 9 AWG 7 No. 8 AWG 7 No. 7 AW	G
Anderson/Sq. 0	SWDE-55N		
Continental	FQD-55-3-LW		
Reliable/Bethea	FD-550-N (For use on	3/8" steel strand only)	

Rod, Anchor

Applicable Specification: ANSI Cl35.2 "Standards for Galvanized Ferrous Strand Eye Anchor Rods" except rods are copper covered. Copper coating thickness is 13 mil minimum at any point and a 15 mil average. All purchases should specify that a factory certification to the thickness of the copper must accompany the shipment of the rods.

Applicable Sizes: Double Guy - 3/4 inch diameter, 8 and 9 feet long.

Manufacturer	Meeting No. <u>and date</u>	<u>Conditions</u>
Joslyn	1387 7/20/89	 To obtain experience. For transmission purposes only. For use with log anchors or copper covered plate anchors only. To be used with copper coated hardware or bronze hardware underground.

z - Anchors

<u>Manufacturer</u>	Meeting No. _and Date	<u>Conditions</u>
Chance Screw anchors, power installed 24462 (6,000 and 3,000 lb.) 12332P 5/8" rod 12587 5/8" thimpleye	1252 2/3/83	To obtain experience.
24484 (10,000 and 12,000 kb. a 12632P (3/4" rod) 6512 (thimbleye nut)	nchor helik)	
Cooper Power Systems (McGraw-Edi Screw anchors, power- installed DAIIG621 (6.300 & 3.000 lb., 5/8" rod	son) 992 5/25/72	To obtain experience.
Dixie Screw anchors, power- installed D-1162-G (6,000 & 8,000 lb., 5/8" rod) D-1375-G (10,000 & 12,000 lb., 3/4" rod)	859 2/9/67 -	To obtain experience.
Joslyn Screw anchors, power- installed J11B-CA (6.000 & 8.000 lb., 5/8" rod) J13C-OA (10,000 & 12.000 lb., 3/4" rod)	973 8/19/71	To obtain experience.
Foresight MR-1, MR-2, MR-3. MR-4		 To obtain experience. Each installation must be proof tested. Maximum rating is test value achieved.

NOTES: Where galvanized ancrors are listed, the same anchors ungalvanized (black asphalt coated) are also acceptable.

Catalog numbers shown are for anchors with 1-3/8" hubs. Equivalent anchors with 1-3/2" hubs are also acceptable. (A special installing wrench is required.)

aa - Nut, eye ab - Nut, thimble eye 5/8 inch

	Eye Nut Conventional	Eye Nut Eyelet	Thimble Eye Nut
	0		9
American Connector Engineering	EN-5		
Barron Bethea	OEN-2A	B-14A	EN4A
Berny's Forging Co.	OE1.	<u>-</u>	-
Chance	6502	-	6510
Continental Electric	EN-5	8E-5	TN-5
Cooper Power Systems (McGraw-Edison)	DG2E3	DG6E1	OGIEI
Dixie	Q6502	DD-6517	D6510
Flagg (MIF)	P125C	P127A	P128A
Hughes	EN60	-	-
Joslyn	J1092	J1126	J6510
Kortick	K4212	K4413	K3111
Power Line Hardware	OEN-58	8EL-58	-
Reliable/Bethea	E-5	8-5	NT-5
Utilities Service	450	497	C580

ae - Surge Arrester, Substation*

Manufacturer	Meeting Noand Date	Conditions
Cooper Power Systems (McGraw-Edi Surge arrester, station class, metal oxide type, VariSTAR 3 kV thru 312 kV Type ATZ1A	son) .1223 .11/19/81	To obtain exp <mark>erie</mark> nce
Surge arrester.inter- mediate class,metal oxide type,VARISTAR 9 kV thru 120 kV, Type AZF	1287 9/27/84	To obtain experience
General Electric Surge arrester, station class, metal oxide type, Tranquell, 2.7 kV thru 588 kV	1164 5/24/79	To obtain experience
Surge arrester, intermediate class, metal oxide type, Tranquell, 3 kV thru 120 kV	1197 10/9/80	To obtain experience
Joslyn Surge Arrester, intermediate class, metal oxide type, Type ZI 3 thru 144 kV	1268 10/27/83	To obtain experience
Surge arrester, station class, metal oxide type, Type ZS, 3 kV thru 240 kV	1278 4/12/84	To obtain experience
Surge arrester, station Class, metal oxide type, Type ZSH, 258 thru 468 kV	1341 5/14/87	To obtain experience
Ohio Brass Surge arrester, station class, metal oxide type Dynavar, 3 kV thru 357 kV	1175 11/2/79 1239 7/29/82	To obtain experience
Surge arrester, intermediate class, metal oxide type, Dynavar, 3 kV thru 120 kV	1242 9/9/82	To obtain experience
Westinghouse Surge arrester, station class, metal oxide type, SMX-30, 3 thru 240 kV	1256 4/6/83	To obtain experience

^{*}For instructions concerning application at substations refer to REA Bulletin 65-1, "Guide for the Design of Substations for Electric Borrowers." In the purchase of arresters, care should be taken to select the type and voltage rating in accordance with the line voltage and the type of construction (grounded or ungrounded).

af - Cutouts, Distribution, Open

Manufacturer	Туре	Voltage Rating
Chance	C	15, 27 kV
Cooper Power Systems (McGraw-Edison)	\$1	15, 27 kV
General Electric	9F34D	15, 27 kV
Joslyn .	L, 100 amp J, 200 amp	15, 27 kV
Kearney	KX	15, 27 kV
S & C Electric -	XS	15, 27 kŸ
Southern States	Series 66 Series 70	15, 27 kV 15 kV
Westinghouse	NCX LBU-11	15, 27 kV 15, 27 kV

NOTE: The buyer should specify the load rating, voltage rating, interrupting rating and required accessories.

Cutout used on underground riser poles should be loadbreak type or have hooks for portable load interrupters.

aj - Clamp, Ground Rod

Magufaghusas	For 5/8" Copper-	For 3/4" Galv. or Stainless	For 5/8" Galv. or Stainless
<u>Manufacturer</u>	Covered Roa	Steel Rod	Steel Rod
AMP	Copper AMPACT (Order by Descr	- ription)	-
Anderson	GC-5	_	-
Blackburn	G5	-	
Boggs	G31	_	-
Burndy	GRC58	-	-
C & R Products	CRGC-58	_	-
Carolina Galv.	CPH58	-	CPH58
Connector Castings	G5		-
Dossert	GNL62H	-	-
*Erico (Cadweld)			
l ground wire	GR1-161G	GR1-181G	GR1-161G
2 ground wires	GT1-161G	GT1-181G	GT1-151G
Greaves/Mercury	G-580	-	-
Ilsco	GRC-58	-	_
Joslyn	J8392AB	J25985	J25932
Knight	C58 .	UCSS	UCSS
Kortick	K4647	-	-
Lew Electric Fittings	GRC-5/8"	-	-
O-Z Elec. Mfg.	BG0304	<u></u>	-
Penn-Union	CEB-2	-	_
Power Line Hardware	RC-58CE	-	-
Reliable	E58	3459	3459
UTM	910-023-03	910-007-02	910-007-02
Wilcor	HGR5/8	WAU-3/4"	WAU-5/8"

^{*}Includes disposable molds.

aj - Clamp, ground rod

<u>Manufacturer</u>	Meeting Noand Date	Conditions
Burndy YGHP (for 5/8" copper- covered rods)	1234 5/13/82	To obtain experience.
Power Line Hardware RC-34 (for 5/8" and 3/4") galvanized or stainless steel ground rods	1114 5/12/77	To obtain experience.

an - Transformers, distribution, pole type Primary Voltages 7.2/12.5, 7.62/13.2 and 14.4/24.9 kV

Applicable Specifications: REA Specifications for Rural Distribution Transformers, D-10

Listing is by type rather than by catalog number because of the many possible combinations of voltage, kVA and taps and protective equipment.

	7.2/12.5 & 7.62/13.2	14.4/24.9	Dual <u>Voltage</u>
Arkansas Electric Cooperative Conventional, single bushing	ASE		
Central Moloney Conventional, single bushing Conventional, two bushing Self-protected, single bushing	AOD AOD DVP	AOD AOD DVP	AOD AOD DVP
The single bushing transformer may also be obtained with bushing mounted cutout and lightning arrest and with internal fuse and double of			
Cooper Power Systems (RTE) Conventional, single bushing Self-protected, single bushing Conventional, two bushing	REA-Conv REA-CSP REA-Conv	REA-Conv REA-CSP REA-Conv	REA-Conv REA-CSP REA-Conv
Conventional single bushing type may also be purchased with external overload proteciton and double gap and with bushing mounted cutout and lightning arrester.			
Hevi-Duty/Dowzer Conventional, single cushing Self-protected, single bushing Conventional, two bushing	CR CSP-R CD	CR CSP-R CD	CR CSP-R CD

an - Transformers, distribution, pole type Primary Voltages 7.2/12.5, 7.62/13.2 and 14.4/24.9 kV

	7.2/12.5 & <u>7.62/13.2</u>	14.4/24.9	Duai <u>Voltage</u>
ERMCO Conventional, single bushing Conventional, two bushing Self-protected, single bushing	CONV CONV CSP	CONV CONV CSP	CONV CONV CSP
The single bushing transformer may also be obtained with double gap a internal fuse (Type DG) or lighnin arrester and external cutout (Type	and ig		
Dead-front for use in enclosure: Ad	ld "R" (Radial)	or "LF" (Loo	p feed)

to designation.

General Electric			
Conventional, single bushing	HS	HS	HS
Self-protected, single bushing	· HSBA	HSBA	HSBA
Conventional, two bushing	HS	HS	HS

Type HS may also be obtained with internal fuse, with internal fuse and double gap, with bushing mounted cutout and double gap, and with bushing mounted cutout arrester (Type HSCA).

Howard Industries Conventional, single bushing Conventional, two bushing Self-protected, single bushing	REC-C	REC-C	REC-C
	Conv-2B	Conv-2B	Conv-2B
	REC-P	REC-2	REC-P
Kuhlman Conventional, single bushing Conventional, two bushing	I	I	Í
	B	B	B
Self-protected, single bushing	Н	Н	Н

Type I may also be purchased with internal fuse, with internal fuse and double gap (Type G), and with bushing mounted cutout and lightning arrester (Type J).

an - Transformers, Power Three-Phase, Step-Down For Distribution Substation Use

	30				×	×	×
	25				×		×
	<u>20</u>				×	×	
	15		×		×	×	
MV	12		×		×	×	×
	21		×	×	×	×	×
	7.5		×		×	×	×
	51		×		×	×	×
	3750				×		
	2500				×		
	2000						
	1500						
	1000						
	750						
Primary	Voltage-kV	ABB	34.4	43.8	0.70	115	138

Transformers 5 MVA also accepted as load tap changing transformers using ASEA Electric Type UZO load tap changers.

			×		
			×	×	
×	×	×	×		
×	×	×			Jer.
×	×	×			loo Cool
×	×	×			rs usi
					also accepted as load tap changing transformers using Cooper 1 tap changers.
×	×	×			ng tra
					changi
×	×	×			ad tap
×	×	×			das lo s.
					iccepte :hanger
Edison)					also a d tap c
IcGraw-I	×	×			larger OC load
tems (r					VA and and 55
Cooper Power Systems (McGraw-Ed 34.4					Transformers 5 MVA and larger Types 550, 550B, and 550C load
98r Pon	43.8	0.70	115	138	nsforme es 550,
7007					Tra

	×		×		×
	×	×	×	×	×
	×	×	×	×	×
	×	×	×	×	×
	×	×	×	×	
	×	×	×	×	×
	×	×	×		
	×	×	×		
	×	×	×		
	×	×	×		
tric	×	×	×		
General Electric	34.4	43.8	0.79	115	138

 $\times \times \times$

Transformers 5 MVA and larger also accepted as loud tap changing transformers using General Electric Types 1872, LR65 and Eki-200 load tap changers.

an - Transformers, Power Three-Phase, Step-Bown For Distribution Substation Use

-	30							
The second secon	25			×			×	
The state of the s	<u>20</u>			×	×	×		
	15	>	<	×	×	×		
HVA	77	>	<	×	×	×	×	3
Viginities for particular	10	>	<	×	×	>	*	o de o
	7.5	>	<	×	×	×	~	11261
	121	>	<	×	×	×		
-	3750	>	<	×	×	×		1000 4 000
	2500	>	<		~			social or a
	2000							1.00
kVA	1500	>	×		×			000000000000000000000000000000000000000
	1000	>	~		×			, [
	750							ANTA CONTRACTOR
Primarv	Voltage-kV	Hevi-Duty	34.4	43.8	67.0	115	138	The state of the s

Iranstormers 5 MVA and larger also accepted as load tap changing transformers using Westinghouse Types UTS-A and UTT-B and Siemens Allis Type FLS load tap changers.

	× ×	×	× ×		× × ×
	× ~		×	× ×	×
	~ ×			×	
	×	×	×		
	×	×	×		
٠					
Kuhlman	34.4	43.8	67.0	115	138

Transformers 5 MVA and larger also accepted as load tap changing transformers using Stemans-Allis Types TLS and TLH-21 load tap changers.

	^			
	×	×	×	
	×	×	×	
	×			
ormer				
Transf				
American				
lorth Ame	67.0	115	138	
Nor				

 $\times \times \times$

Transformers 5 MVA and larger also accepted as load tap changing transformers using North American type TC-525 load tap changers.

	×	× ×		×
×	×	×	×	
×	×	×	×	
×	×	×		
×	×	×		
×	×	× ,-		
×	×	×		
×	×	×		
×	×	×		
		×		
Westinghouse 34.4	43.8	67.0	115	138

×

××

fransformers 5 MVA and larger also accepted as load tap changing transformers using Westinghouse Types UTS-A, UTI-B and UVW load tap changers.

an - Transformers, Distribution, Pole Type

<u>Manufacturer</u>	Meeting Noand_Date	<u>Conditions</u>
Cooper Power Systems (RTE) 7.2/12.5, 7.62/13.2, 14.4/24.9 kV and Dual Voltage		
Single-phase, single bushing, self-protected, with Magnex Interrupter	1358 3/3/88	To obtain experience.
Ermco 7.2/12.5 and 7.62/13.2 and 14.4/24.9 kV Single-phase, single bushing with internal Tranquell Under-oil Arrester	1359 3/17/88 1362 5/12/88	To obtain Experience.
General Electric 7.2/12.5, 7.62/13.2, 14.4/24.9 kV and Dual Voltage		
Single-phase, single bushing, and two bushing with internal Tranquell Under-oil Arrester	1316 3/6/86	To obtain experience.
Single-phase, single bushing and two bushing, 25 and 50 kVA pole type distribution transform with amorphous metal cores	1320 5/8/86 mers	To obtain experience.
Single-phase, single bushing and two bushing pole type distribution transformers with G.E. high voltage switch	1370 9/22/88	To obtain experience.
Kunlman 7.2/12.5 kV and 7.62/13.2 kV Toroform design 10, 15, & 25 kV/	1370 A 9/22/88	To obtain experience.

an - Transformers, Distribution, Pole Type

Manfuacturer	Meeting Noand Date	Conditions
VanTran 14.4/24.9 kV and Dual Voltage	1075 10/16/75	To obtain experience.
Conventional, single bushing Type CR Conventional, two bushing Type CD Self-protected, single bushing Type CSP-R	1095 8/11/76	
Westinghouse 7.2/12.5, 7.62/13.2 Single-phase, single bushing, 25 and 50 kVA pole type distribution transformers with amorphous metal cores.	1333 12/18/86	To obtain experience.
14.4/24.9 kV & Dual Voltage Single-phase, single bushing, 25 kVA pole type distribution transformers with amorphous metal cores.	1354 12/31/87	To obtain experience.

Transformers 5 NVA and larger also accepted as load tap changing transformers using Westinghouse Types UTS-A and UTI-B and Signers Allis Type TES load tap changers.

an - Transformers, Power Three-Phase, Step-Down for Distribution Substation Use

Condition of Acceptance: To obtain experience.

Primary		-	¥	KVA						MVA					
Ay-abetlov	750	0001	1500	2000	2500	3250	LOI	7.5	01	12	15	20	25	30	
ABB 115 138											s	S	~		
Transformers 5 MVA and larger allype UZD load tap changers.	MVA and up chang	lárger Frs.		so accepted us load tap changing transformers using ASEA Electric	load tap	changing	transfi	ormers	using /	ASEA ET	lectria	Ü			
Cooper Power Systems (McGraw-Ldi 34.4 s 43.8 s 67.0 s	Stems (P	ในนักสพา	tdison) s s s	л							sa sa sa	a on on	on on on	ννν	
Fransformers 5 MVA and larger also accepted Types 550, 550b and 550C load tap changers.	MVA and and 550	larger (load	also ac tap cha	so accepted as load tap changing transformers using Cooper P changers.	load tap	changing	transf	ormers	osing (Cooper					
<u>Ferranti-Packard</u> 34.4	л П	л	n	s	×	S	s								
<u>General Electric</u> 34.4 13.8 115 138	- Ci						S					лл	s s	v s v	
Transformers 5 MVA and larger also accepted as load tap changing transformers using General Electric Types LR72, LR65 and LR1-200 load tap changers.	1VA and some sound the	Jarger I-200	also ac load tap	cepted as changers.	load tap	changing	transfo	ormers	osing 6	eneral	Elect	د ر ا			
Hevi-Duly 34.4 43.8 67.0 115		v.	,	ол эл	ω		c				*	л.	s ss	20 20 20 20 E	

an - Transtormers, Power Three-Phase, Step-Down (or Distribution Substation Use

Condition of Acceptance: To obtain experienc .

	30						×
MVA	25						S
	20						'n
	15				×	×	s
	27			×	×	×	s
	01		S	S	×	s	S
	7.5		×	×	×	×	s
	2		×	×	×	×	s
	3750		×	×	· ×		
KVA	2500		S	'S	×		
	2000			S	S		
	1500		S	S	×		
	1000	1.1	S		'n		
	750	Jella Ste	S				
Primary	Voltagé-kV	H. K. Porter (Della Star)	34.4	43.8	67.0	115	138

Transformers 5 MVA and larger also accepted as load tap changing transformers using Seimens-Allis Types TLS and TLH-21 load tap changers.

	S	s	ဟ	
	S	S	×	
	s	s	×	
	×	×	'n	
	S	×	s	
MGM	34.4	43.8	0.79	

Transformers 5 MVA and larger also accepted as load tap changing transformers using Westinghouse Types UIS-A and UII-B load tap changers.

			\$				
			S				
							S
							S
×	×					S	S
×							
S	S						
ν	s						
s	S						
s	S						
s	S		s	S			
<u>Uptegralf</u> ,34.4	43.8	Westinghouse	34.4	43.8	67.0	115	138

5 5 5 5 5

S S

s s

Transformers 5 MVA and larger also accepted as load tap changing transformers using Westinghouse Types UIS-A, UII-B and UVW load tap changers. I

at - Reflective Guy Marker, 8-foot length

Plastic or Fiberglass

<u>Manufacturer</u>	Meeting No. <u>and Date</u>	Conditions
*Nordic HG-815 yellow	1061 3/20/75	To obtain experienc <u>e</u> .

*For use with formed or automatic type deadends for gu; strand; will not fit over bolt type guy clamps.

av - Conductor, ACSR

Applicable Specification: ASTM Specification B 232

Preferred Sizes: (Larger sizes may be used where the engineer's study shows they are required.)	Distribution 4 - 6/1 4 - 7/1 2 - 6/1 2 - 7/1 1/0 - 6/1 2/0 - 6/1 3/0 - 6/1 4/0 - 6/1 266.8 kcmil 18/1	Transmission 1/0 - 6/1 2/0 - 6/1 3/0 - 6/1 4/0 - 6/1 266.8 kcmil - 26/7 336.4 kcmil - 26/7 477 kcmil - 26/7 556.5 kcmil - 26/7 795 kcmil - 26/7

The following manufacturers have shown compliance with the applicable specifications:

Alcan Cable

ALCOA-ACPC

Cablec

Kaiser

Nehring

Noranda

Pirelli Cable

Reynolds-CPI

Southwire

NOTES

- 1. Conductors with 18/1 stranding have different sag characteristics than conductors with 6/1 or 26/7 stranding. This difference in sag characteristics must be taken into consideration in the line design.
- 2. 266.3 kcmil 26/7, 336.4 kcmil 26/7, and 477 kcmil 26/7 may be used for distribution underbuild on transmission lines.

av - Conductor, Aluminum Alloy

Applicable Specification: ASTM Specification B399

Preferred Sizes:

DISTRIBUTION			TRANSMISSION	
6201	ACSR Equiv.	<u>6201</u>		ACSR Equiv.
48,690 cmil - 7 str.*	4	,	cmil - 7 str.**	1/0
77,470 cmil - 7 str.*	2	155,400	cmil - 7 str.**	2/0
123,300 cmil - 7 str.	1/0	195,700	cmil - 7 str.**	3/0
155,400 cmil - 7 str.	2/0	246,900	cmil - 7 str.	4/0
195,700 cmil - 7 str.	3/0	312,800	cmil - 19 str.	256.800 cmil
246,900 cmil - 7 str.	4/0	394,500	cmil - 19 str.	334,400 cmil
		559,500	cmil - 19 str.	477,000 cmil
•		652,400	cmil - 19 str.	556,500 cmil
		927,200	cmil - 37 str	795,000 cmil

^{*}Not recommended for multiphase lines with span lengths exceeding 300 ft.

The following manufacturers have shown compliance with the applicable specifications:

<u>Manufacturer</u>	<u>Type</u>
Alcan .	6201
ALCOA-ACPC	6201
Kaiser	6201
Reynolds-CPI	6201
Southwire	6201

^{**}Not recommended for suspension type construction.

av - conductor

<u>Manufacturer</u>	Meeting Noand Date	<u>Conditions</u>
Copperweld Southern Alumoweld-aluminum 6/1 ACSR/AW, #2, #1/0, #2/0, #4/0 4/3 AWAC, #4, #2, #1/0	863 (4/13/67) 984 (2/3/72) 1376 (1/12/89)	To obtain experience. To obtain experience To obtain experience.
Reynolds Metals 5005 Aluminum Alloy #4-7 strand through 4/0-7 strand; 281,460 cmil-19 strand (266,800-18/1 ACSR equiv.) through 312,760 cmil-19 strand (266,300-26/7 ACSR equiv.)	303 (10/22/64)	Where suspension insulator type of construction is employed on transmission lines, the minimum size of this conductor to be used is 4/0.
Southwire 5005 Aluminum Alloy #4-7 strand through 4/0-7 strand; 557,500 cmil-19 strand (477,000-26/7 ACSR equiv.)	999 (8/31/72)	Where suspension insulator type of construction is employed on transmission lines, the minimum size of this conductor to be used is 4/0.
Alcoa 795 kcmil 26/7 ACSR/AW	1247 (11/18/82)	To obtain experience.

aw - Washer, Spring

1/4 x 1-3/4' x 3-1/2"

	Bol	t-Size	
Manufacturer	5/8"	3/4"	7/8"
Chance	3540	3541	
Cooper Power Systems (McGraw-Edison)	DF17W3	DF17W4	DF17W5
Joslyn -	J3540	J3541	J3542
Kortick	K2909 .		
Fastex (ITW) "Ramp Lok"	1-760-21	1-760-31	1-760-41
Power Line Hardware	SCW-58	SCW-34	SCW-78

ax - Cutout and Arrester, Combination

. 4 kV 27 kV 30 Bank	30 Sect.	100		C71C-211PB Series	AFS301D Series	9F80	425703-180 39267-0278	KE7BD109E-110
For 24. 97/14.4 kV 18 kV 27 30 B	10 Trans	50×			AF S800M018	9F78A	39267-Q6 39268-1Q	KE 294074
6 kV 30 Bank				C71A-112PB Series	AFS301C Series)f80	41 ^E 402~090 J92 37~027B/R	KE4AB110E-110
For 13.2Y/7.6 kV 15 kV 30	10 leans	50*	Catalog Numbers		AFS800M010	9F78A	39237-Q6 39238-1Q	294073
15 kV	30 Bank		Catalo	C71A-112PB Series	AFS301C Series	91.80	415402-090 J9237-Q27B/R	KE3AB110E-110
or 12.5Y/7.2 kV	10 Sact	100		C71A-112PB Series	AFS301B Series	9f80	415402-090 39237-Q2/B	
For 12.	10 Trans	50%			AFS800M010	9F78A	J9237-Q6 J9238-1Q	, 294072
n Voltage oltage Rating			Mounting	Crossarm Transformer	Crossarm (L))Transformer	Crossarm (L) Transformer	Crossarm Crossarm (L) Transformer	Crossarm Transformer
Nominal System Voltage Cutout Max. Voltage Rating	Application	Cutout Current Rating	Manufacturer	Chance	Cooper Crossarm (L (McGraw-Edison)Transformer	General Electric	Joslyn(valve) (valve) (valve)	Kearney

Either normal duty or heavy duty distribution class arresters listed on page ae-l are acceptable for use with these combination units.

*These cutouts have open links and must not be used where fault currents are high or for sectionalizing.

(L) Indicates loadbreak type is available.

bx - Splice, automatic

Manufacturer	Meeting No. <u>and Date</u>	Conditions
	DISTRIBUTION	
Fargo AWAC 4 - 4/3 GLA-105 AWAC 2 - 4/3 GLA-110	1087 (4/1/76)	 To obtain experience For use on distribution systems only.
AWAC 1/0 - 4/3 GLA-115 266.8 kcmil ACSR 18/1 GL-1315A 336.4 kcmil ACSR 18/1 GL-1315A	B55 (2/12/86)	Same as above.
477 Kcmil ACSR 18/1 GL-1325A		

DISTRIBUTION AND TRANSMISSION

Fargo				
266.8 kcmil	ACSR 26/7	1384	(5/18/89)	To obtain experience
336.4 kcmil	ACSR 26/7			
477 kcmil	ACSR 26/7			

by - Deadend, Automatic and Formed Type

Conductor Size

<u>Cu</u>	CMC	<u>Fargo</u>	Reliable
	4A ·	GD-515	27-SDS
-	6A	GD-513	47-SDS
-	8A	GD-512	_
2 x 3	-	GD-515	271
4	-	GD-512	41LD
6	-	GD-511	61LD

ACSR

*Fargo	GD-400 Series
*Preformed	OG-9360 thru 9366 #OHDE-9534 thru 9540, 4577

*Reliable 7650 Series

#may only be used with a spool insulator (Item cm) and appropriate clevis for neutral and secondary applications.

Aluminum Alloy (6201 and 5005)

Fargo	GD-A Series
Preformed	OG-9360 thru 9366
Reliable	AL Series

^{*}For use on distribution conductors 4/0 and smaller only.

fv - Guying Attachments Transmission

Pole Eve Plates 25,000 pounds

Manufacturer	Single Eye <u>3/4" Bolts</u>	Double Eye 7/8" Bolts
Continental	EPR-66S-12	
Flagg (MIF)	PX37D	2X42
Reliable/Bethea	P£6-77A	

Conditional List fv(1) July 1989

fv - Guy Attachments Pole Bands with Through Boits for Transmission Lines

Strength Ratings: 25,000 lbs. ultimate loading (45° guy angle)*

Manufacturer	Pole Band With Through Bolts and Associated Hardware**	Meeting No. and Date	Conditions
Hughes	3108 C.x	1172 9/20/79	To obtain experience.
		1292 · 1/10/85	
Joslyn	J26043.xGL (includes fetter drive lag screws and thru boit)	1292 1/10/85	To obtain experience.

^{*}For a 30° guy angle, capacity of pole bands should be derated.
**Appropriate connecting links (Item du(1)) should be ordered with the pole band.

Applicable Specification: REA Specification T-5

Applicable Drawings: REA Drawings TSZ-1

3-5/8' v 5-5/8" wood crossarm assembly complete with brace and attaching hardware, fittings, and boits

The following manufacturers have shown compliance with the applicable specifications for this assembly:

Manufacturer

Catalog Nos. or Drawing Nos.

American Crossarm & Conduit Co.

601TSZ and 602TSZ

Brooks

64Z1 -

Hughes Brothers

C-3162-A and C-3162.10

gz-2 October 1989

Applicable Specification: REA Specification T-5

Applicable Drawings: REA Drawing TSZ-2

3-5/8" x 5-5/8" wood crossarm assembly complete with brace and attaching hardware, fittings and bolts

The following manfacturers have shown compliance with the applicable spcifications for this accembly:

<u>Manuracturer</u>	<u>Catalog Nos. or Drawing Nos.</u>
American Crossarm & Conduit Co.	602TSZ
Brooks (2)	6472.
Hughes Brothers	C-3162-B and C-3162 10

(2) Adjustable spacers are available.

U ae - Arresters, Surge

(Shielded for Underground System Pad-Mounted Equipment)

Manufacturer •	Meeting No. _and Date	<u>Conditions</u>
Cooper Power Systems (RTE) Metal Oxide Elbow Arrester M.O.V.E9kV (15kV interface) M.O.V.E18kV (25 kV interface)	1185 (4/24/81) 1386 (6/29/89) 1387 (7/20/89)	To obtain experience.
Elastimold (ESNA) Metal Oxide Elbow Arrester 10 kV 167ESA = 10 (15 kV interface) 18 kV 273ESA = 18 (25 kV interface)	1356 1/23/88	To obtain experience.
Joslyn Metal Oxide, Elbow Arrester Type ZE, 10, 18kV	1297 4/11/85	To obtain experience

U ae - Arresters, Surge

(For Underground System Pole Risers)

Cooper (McGraw-Edison) Metal Oxide AZR Intermediate class 9, 10, 18, 27 kV	1287 9/27/84 1386 6/29/89	To obtain experience.
General Electric Metal Oxide, Tranquell** U.D. II 9, 10, 18 kV	i292 1/10/85	To obtain experience.
Metal Oxide, Tranquell Intermediate Class 9, 10, 18, 27 kV	1386 06/29/89	To obtain experience.
Joslyn Metal Oxide, Type ZJ U.D. 9, 10, 18 kV	1266 9/22/83	To obtain experience.
Metal Oxide, Type ZR Intermediate Class* 9, 10, 18 kV	1266 9/22/83	To obtain experience.
Ohio Brass Metal oxide type DynaVar 9, 10, 18kV Porcelain, VR Polymer, PVR	1236 6/10/82 1378 2/9/89	To obtain experience
Metal Oxide, DynaVar Intermediate Class 9, 10, 18 kV	1236 6/10/82	To obțain experience.
Westinghouse Metal Oxide, HMX HEAVY DUTY: 9, 10, 18 kV	1320 5/8/86	To obtain experience.
Metal Oxide, RMX Intermediate Class* 9, 10, 18 kV	1320 5/8/86	To obtain experience.

^{*}Has intermediate class arrester characteristics but does not have intermediate class venting capability.

^{**}A non fragmenting U.D. II Arrester is available for 9 & 10 kV designs at higher cost when specified.

U an - Transformers, distribution pad-mounted, dead-front

(For underground application)

Applicable Specifications: "RE Specifications for Pad-Mounted Transformers," U-5.

Manufacturer	Single Phase	Three-Phase	
Central Moloney (2, 4)	"REA-LP" 25-167 kVA		
Cooper (2, 4) "REA Sh	rubline/Series 20 REA" 15-167 kVA	"REA Terra-Tran" 45-2500 kVA	
ERMCO (2, 4)	"Low-Profile" 10-167 kVA		
General Electric (2, 4)	"Mini-Pad III - REA" 10-167 kVA	"Compad IV - REA" 75-2500 kVA	
Hevi-Duty/Dowzer (3, 4)	"METRI-PAD" 25-167	"PM3W-R" 75-500 KVA	
Howard (2, 4)	"Hi Pad REA" 10-167 kVA	"Hi Pad 3 REA" 45-2500 kVA	
Kuhlman (2, 4)	"Lo-Pak ELR" 25-167 kVA	"K-PAK-3 REA" 750-2500 KVA	
NECO/Hammond (2)	HMM-R, 10-50 kVA SP-R, 75-167 kVA	TP-R, 45-1000 kVA	
Pauwels-Chance(2,4)	"Turf-Hugger-R" 10-100 KVA	"Turf-hugger-R" 45-500 KVA	
H. K. Porter (2, 4) (Delta-Star)	"Low Profile U 5-R" 25-167 kVA	"Porter U5-R3" 225-2500 kVA	
United (Ky, AEC)(2, 4)	"Pad-Mount" 15-75 kVA		
 (1) 7.2/12.5 and 7.6/13.2 kV (2) 7.2/12.5, 7.6/13.2 and 14.4/24.3 kV (3) 7.2/12.5 and 7.6/13.2 kV (conditional listing for 14.4/24.9 kV) (4) Dual Voltage - Same as for 14.4/24.3 kV, single phase (5) Three-phase 'isting applies to 7.2/12.5 and 7.6/13.2 kV only 			

(6) 14.4/24.3 KV

U an - Transformers, Distribution, Pad-Mounted, Dead-Front

(For Underground Application)

Applicable Specifications: REA Specifications for Pad-Mounted

Transformers - U5

<u>Manufacturer</u>	<u>Single Phase</u>	Three-Phase
VanTran (3, 4)	"Mini-Pad U5" 5-167 kVA	"VanTran III-U5" 30-2500 kVA
Westinghouse 2, 4)	"Mini-Pak U-5" 25-167 kVA	Type MTR 75-1500 kVA "Plazapad-U5" 2000-2500 kVA

(1) 7.2/12.5 and 7.6/13.2 kV

(2) 7.2/12.5, 7.6/13.2 and 14.4/24.9 kV

(3)7.2/12.5 and 7.6/13.2 kV (conditional listing for 14.4/24.9 kV

(4) Dual voltage - same as for 14.4/24.9 kV, single phase

(5) Three-phase listing applies to 7.2/12.5 and 7.6/13.2 kV only

U gk - Terminations, Outdoor (With Mounting Hardware)*

(When ordering, specify conductor size, type, whether copper or aluminum, insulation diameter, and type of mounting desired.)

Manufacturer	<u>Catalog Number</u>
Cooper Power Systems (RTE)	Fasterm Series (15 & 25 kV)
G & W -	"Eliminator" 15 kV, E 25 kV, E 35 kV, E
Plymouth/Bishop	SWO Kit (15, 25 and 35 kV)
Raychem	Thermofit HVT (15, 25 and 35 kV) CST (15 kV)
Sigmaform	Q-Cap Series STK (15 & 25 kV)

^{*}Mounting Hardware is used to attach termination to mounting bracket (U hd or U hj).

U gn - Enclosures, equipment

Applicable Specifications: "REA Specifications for Equipment Enclosures,"

U-4

Manufacturer .Catalog No.

Durham AT-42 Series (dead-front) AT-54 Series (dead-front)

Electrical Equipment TH1-DF Series (dead-front)

Elliott EPM-PTS (dead-front)

K & M Engineering KM Series

(Dead-front with penta-head bolt)

Maltum Electric

1-Phase Single Unit (dead-front)

Maysteel E/L100 (dead-front)

Northern Plastics Garrison NPG Series (dead-front)

Western Power Products FG-DF1 (dead-front) FG-DF3 (dead-front)

NOTE: The above enclosures are available with various multipoint

terminations. The owner should specify termination points to be

provided.

U gu - Pedestal, Power

Refer to Construction Drawings UK5 and UM5-5

Applicable Specifications: "REA Specifications for Secondary Power Pedestals," U-6

<u>Manufacturer</u>	Inside Dimensions Inches	Height <u>Inches</u>	<u>Catalog No.</u>
Reliable	8 x 8 8 x 8 10-1/2 x 10-1/2 16-1/2 x 10-1/2 10-1/2 x 10-1/2	38 46 26 36 42	UP 8HLP UP 8HP UP 10HLP UP 1016HLP UP 10HP
Shallbetter	7.5 x 10.25	39	SUTP Series
Utility Fibergla	ss 27 × 16	40	PPFP-2700
Vertex	8 x 14	30	SP 814
Western Power	8 x 8	- 30	*SP-8, DF-3 (dead-
	9 x 9 9 x 9	30 30	front) *SPMC-9-DF3 SPM-90, DF-3 (stakeless)
	9 x 14 9 x 14	30 30	*SPMC-14-DF3 SPM-140, DF-3 (stakeless)

^{*}Furnished with stake.

^{**}Pole mounted

U gu - Power Pedestal Refer to Drawings UK6 and UM5-5

Applicable Specifications: "REA Specifications for Secondary Power

Pedestals," U-6

Manufacturer Catalog No.

Armorcast Polymer concrete frame and cover with

fiberglass reinforced polyester

skirting 6001 Series.

Associated Plastics · Molded polyethylene with

galvanized steel or plastic cover Catalog Nos. 1730-1, 3; 1324-1, 3

<u>Blackburn</u> Molded polyethylene with

glavanized steel cover and

ground lug.

Catalog No. SDR-2PG

Burndy Molded polyethylene with

galvanized steel cover. Catalog No. URD20G23

<u>Carson</u> Molded polyethylene with plastic cover

Catalog No. 1324-12B and 1730-12B

CDR Systems (Homac) Fiber reinforced polymer concrete

PA Series with penta-head bolts

U he - Enclosures, Sectionalizing Equipment

12.5/7.2 kV

Manufacturer	Catalog	Number
indirat acture:	Catalog	

Electrical Equipment FTDF-P Series, single and three-phase

one and two fused taps, pad-mounted *GGCL-P Series, single and three-phase,

pad-mounted

Type EPMR, single and three-phase, Elliott

pad-mounted

Type PMF, single-phase, pad-mounted Powercon

Type PMF-8.3, three-phase, pad-mounted

NOTE 1: Enclosures on this page must comply with the dead-front requirements of REA Spec. U-4.

Single-pole switching of three-phase underground circuits may cause ferroresonance. Refer to REA Bulletin 61-3.

^{*}Furnished with current limiting fuses.

U he - Enclosures, Sectionalizing Equipment

12.5/7.2 kV

•	•
Manufacturer	Catalog Number
Cooper Power Systems (McGraw-Edison)	EH3A Series, single-phase, pad-mounted
G & W	PLDR, PFLDR (submersible and pad-mounted) single-phase and three-phase, fused or unfused switchgear. (Choice of deep well or deadbreak bushings), (Must specify pentahead security bolt when ordering)
<u>Malton</u>	MEF21
<u>S & C</u>	Mark III, Models PMS (with option G-7) 200 ampere three-pole switching and 200 ampere single-pole switching
<u>Shallbetter</u>	SPMD Series, single and three-phase, pad-mounted SPMC Series, 200 ampere single-pole switchin
<u>Westinghouse</u>	UTE, PAD-PAK pad-mounted switching device, single and three-phase, 300 amp

- NOTE 1: Enclosures on this page must comply with the deadfront requirements of REA Spec. U-4.
- NOTE 2: Single-pole switching of three-phase underground circuits may cause ferroresonance. Refer to REA Bulletin 61-3.

U hr - Secondary tap or splice cover, submersible

Manufacturer

Type or Catalog No.

Blackburn

Type WDBS (#2 through #4/0)

Type DBS (250 KCMIL through 1000 KCMIL)

Connector Mfg. Co.

Utilug Sure Seal

Elastimold (ESNA)

Style 86

Electrical Spec. Prod.

TSC Series

Homac

FSS Series

Kearney

Agua-Seal Kit

Plymouth/Bishop

Splice-Wrap

3M

PST Series 8420

Heat Shrink Tubing (with sealant throughout)

Manufacturer

Type or Catalog No.

AMP -

Black heat-shrink tubing

Electrical Spec. Prod.

HSH

Panduit

Heat shrink insulating cover

Raychem

WCSM cable sleeves

Sigmaform Corporation

Sigmaform heat-shrinkable products

3M

ITCSN tubular cable sleeve ICRS wraparound cable sleeve

U hv - Cable, Underground 15 kV Cable

Applicable Specification:

Conductor:

Insulation:

REA Specification U-1

Copper or Aluminum - #2 AWG through 1000 kcmil

Crosslinked Polyethylene (XLP)

Crosslinked Polyethylene with Tree-retardant

additives (XLP-TR)

(1) indicates Union Carbide 4202 XLP-TR

(2)indicates BP H4201 XLP-TR or Ethylene Propylene Rubber (EPR)

Neutral:

Jacket:

Copper Concentric Neutral

High Molecular Weight Polyethylene

<u>Manufacturer</u>	Insulation(s)	Flat Strap Neutral Available
Cablec	XLP, EPR, XLP-TR	Yes
CPI	XLP, XLP-TR (1)	Yes
Hendrix	XLP, XLP-TR (1,2), EPR	No
Kerite	EPR	Yes
Okonite	XLP, XLP-TR (1), EPR	Yes .
Pirelli	XLP, XLP-TR (1), EPR	Yes
Reynolds	XLP, XLP-TR (1), EPR	Yes
Southwire Furakawa	XLP, XLP-TR	No

^{*}For grounding purposes insulated jacketed cables must be treated like overhead lines, i.e., at least four ground rods must be installed per mile in accordance with the NESC. (This does not include service grounds, etc., but does include equipment grounds.) Additional grounding may be necessary in soils with higher resistivity. In splices or tap connections, a good seal should be achieved to exclude moisture. It is recommended that any place that the jacketing is cut (including the connections to ground mods), it be done above ground in a pedestal.

U hv - Cable, Underground 25 kV Cable

Applicable Specification:

Conductor:

Insulation:

REA Specification U-1

Copper or Aluminum - #1 AWG through 1000 ksmil

Crosslinked Polyethylene (XLP)

Crosslinked Polvethylene with Tree-retardant

additives (XLP-TR)

(1) indicates Union Carbide 4202 XLP-TR

(2) indicates BP H4201 XLP-TR or Ethylene Propylene Rubber (EPR)

Copper Concentric Neutral High Molecular Weight Polyethylene

Neutral: Jacket:

Manufacturer	<pre>Insulation(s)</pre>	Flat Strap Neutral Available
Cablec	XLP, EPR, XLP-TR	Yes
CPI	XLP, XLP-TR (1)	Yes
Hendrix	XLP, XLP-TR (1,2),EPR	No
Kerite	EPR	Yes
Okonite	XLP, XLP-TR (1), EPR	Yes
Pirelli	XLP, XLP-TR (1), EPR	Yes
Reynolds	XLP, XLP-TR (1), EPR	Yes
Southwire Furakawa	XLP, XLP-TR	No

^{*}For grounding ourposes insulated jacketed cables must be treated like overhead lines, i.e., at least four ground rods must be installed per mile in accordance with the NESC. (This does not include service grounds, etc., but does include equipment grounds.) Additional grounding may be necessary in soils with higher resistivity. In splices or tap connections, a good seal should be achieved to exclude moisture. It is recommended that any place that the jacketing is cut (including the connections to ground tods), it se some above ground in a pedestal.

U hv - Cable, Underground

600 Voit Cable

Applicable Specification: REA Specification U-2 Conductor : Copper, #4 AWG and larger

Aluminum, #2 AWG and larger

Insulation : Cross-Linked polyethylene (XLPE)

Manufacturer Type Conductor

Alcan Copper or Aluminum

Cablec Copper or Aluminum

Collyer Copper or Aluminum

Conductor Products Aluminum

Essex Copper or Aluminum

General Electric Copper or Aluminum

Kaiser Aluminum

Okonite Copper or Aluminum

Phelps Dodge Copper or Aluminum

Phillips Cables, Inc. Copper or Aluminum

(Marked "Phillips W")

Pirelli Copper or Aluminum

Reynolds Copper or Aluminum

Rome Cable Copper or Aluminum

Southwire Copper or Aluminum

NOTE: The manufacturers shown above have indicated that their 600 volt cable

is suitable for use on 480 volt corner grounded delta circuits.

The above cable may be supplied with UL label for Type USE.