### 第四次作业——决策树

#### 2.1 决策树如何进行"剪枝"处理?

- ①剪枝 (pruning) 的目的是为了避免决策树模型的过拟合。
- ②决策树算法在学习的过程中为了尽可能的正确的分类训练样本,不停地对结点进行划分,因此这会导致整棵树的分支过多,也就导致了过拟合。
- ③决策树的剪枝策略最基本的有两种: 预剪枝 (pre-pruning) 和后剪枝 (post-pruning):
- **预剪枝** (pre-pruning): 预剪枝就是在构造决策树的过程中,先对每个结点在划分前进行估计,若果当前结点的划分**不能带来决策树模型泛华性能的提**升,则不对当前结点进行划分并且将当前结点标记为叶结点。
- **后剪枝**(post-pruning): 后剪枝就是先把整颗决策树构造完毕, 然后**自底向** 上的对非叶结点进行考察, 若将该结点对应的子树换为叶结点**能够带来泛华** 性能的提升, 则把该子树替换为叶结点。

#### 2.2 试析使用"最小训练误差"作为决策树划分选择的缺陷。

若以最小训练误差作为决策树划分的依据,由于训练集和真是情况总是会存在一定偏差,这使得这样得到的决策树会存在过拟合的情况,对于未知的数据的泛化能力较差。因此最小训练误差不适合用来作为决策树划分的依据

## 2.3 对表 2-1 的训练数据集,根据信息增益准则选择最优特征,列出计算步骤; 建立决策树,画出该决策树。

|    | 0 0 0 | VVIH | 41173179C47F17FC |      |                   |
|----|-------|------|------------------|------|-------------------|
| ID | 年龄    | 有工作  | 有自己的房子           | 信贷情况 | 类别                |
| 1  | 青年    | 否    | 否                | 一般   | 否                 |
| 2  | 青年    | 否    | 否                | . 好  | 否                 |
| 3  | 青年    | 是    | 否                | 好    | 是                 |
| 4  | 青年    | 是    | 是                | 一般   | 是                 |
| 5  | 青年    | 否    | 否                | 一般   | 否                 |
| 6  | 中年    | 否    | 否                | 一般   | 否                 |
| 7  | 中年    | 杏    | 否                | 好    | 否                 |
| 8  | 中年    | 是    | 是                | 好    | 是                 |
| 9  | 中年    | 否    | 是                | 非常好  | 是                 |
| 10 | 中年    | 否    | 是                | 非常好  | 是                 |
| 11 | 老年    | 否    | 是                | 非常好  | 是                 |
| 12 | 老年    | 否    | 是                | 好    | 是                 |
| 13 | 老年    | 是    | 否                | 好    | 是                 |
| 14 | 老年    | 是    | 否                | 非常好  | 是                 |
| 15 | 老年    | 否    | 否                | 一般   | 西<br>not/Wr/hang7 |

表格 2-1: 训练数据集

解: 已知信息熵的定义为:

$$Ent(D) = -\sum_{k=1}^{|y|} p_k \log_2 p_k$$
 (1.1)

信息增益的定义为:

$$Gain(D,a) = Ent(D) - \sum_{v=1}^{V} \frac{|D^{v}|}{|D|} Ent(D^{v})$$
 (1.2)

具体计算过程如下:

#### ① 计算整个训练集合的根节点信息熵:

共有15条数据,类别中是有9条,否有6条

$$Ent(D) = -\sum_{k=1}^{|y|} p_k \log_2 p_k = -\left(\frac{9}{15}\log_2 \frac{9}{15} + \frac{6}{15}\log_2 \frac{6}{15}\right) = 0.971$$

# ② 计算属性集合 {年龄,有工作,有自己的房子,信贷情况},下简称为 {年龄,工作,房子,信贷}中每个属性的信息增益

以年龄为例,训练集D可划分为3个子集,分别为

- $D^1$ (年龄 = 青年),包含编号 $\{1,2,3,4,5\}$ ,其中类别是否分别的概率为  $p_{\mathbb{B}}=\frac{2}{5}=0.4$ , $p_{\mathbb{B}}=\frac{3}{5}=0.6$
- $D^2$ (年龄 = 中年),包含编号 $\{6,7,8,9,10\}$ ,其中类别是否分别的概率为  $p_{\mathbb{A}}=\frac{1}{5}=0.2$ , $p_{\mathbb{B}}=\frac{4}{5}=0.8$
- $D^3$ (年龄 = 老年),包含编号 $\{11,12,13,14,15\}$ ,其中类别是否分别概率为  $p_{\mathbb{A}}=rac{2}{5}=0.4$ , $p_{\mathbb{B}}=rac{3}{5}=0.6$

根据式(1.1)可以算出根据年龄划分后的三个子集的信息熵为

$$Ent(D^1) = -\sum_{k=1}^{|y|} p_k \log_2 p_k = -\left(rac{2}{5}\log_2rac{2}{5} + rac{3}{5}\log_2rac{3}{5}
ight) = 0.971$$

$$Ent(D^2) = -\sum_{k=1}^{|y|} p_k \log_2 p_k = -\left(rac{1}{5}\log_2rac{1}{5} + rac{4}{5}\log_2rac{4}{5}
ight) = 0.722$$

$$Ent(D^3) = -\sum_{k=1}^{|y|} p_k \log_2 p_k = -\left(\frac{2}{5}\log_2\frac{2}{5} + \frac{3}{5}\log_2\frac{3}{5}\right) = 0.971$$

从而计算出信息增益为:

$$Gain(D,$$
年龄 $) = Ent(D) - \sum_{v=1}^{V} \frac{|D^v|}{|D|} Ent(D^v) = 0.971 - \frac{1}{3}(0.971*2 + 0.722) = 0.083$ 

同理可以算出工作,房子,信贷情况的信息增益为:

Gain(D, 有工作) = 0.324

Gain(D, 有自己的房子) = 0.420

Gain(D, 信贷情况) = 0.363

显然,属性"有自己的房子"信息增益最大,故选他为划分属性,划分结果



# ③ 然后对每一个分支节点进行划分,可用属性为{年龄,有工作,信贷情况}

 $D^1$ 数据集其类别标签都是是,故不再继续划分; 下对 $D^2$ 数据集进行划分:

其
$$p_{\mathbb{B}} = rac{3}{9} = 0.34$$
, $p_{\mathbb{B}} = rac{6}{9} = 0.67$ , $Ent(D) = -\sum_{k=1}^{|y|} p_k \log_2 p_k = 0.918$ 

计算各属性信息增益如下:

$$Gain(D^2,$$
年龄 $)=Ent(D)-\sum_{v=1}^{V}rac{|D^v|}{|D|}Ent(D^v)=0.252$ 

$$Gain(D^2,$$
有工作 $) = Ent(D) - \sum_{v=1}^{V} \frac{|D^v|}{|D|} Ent(D^v) = 0.918$ 

$$Gain(D^2,$$
信贷情况 $)=Ent(D)-\sum_{v=1}^{V}rac{|D^v|}{|D|}Ent(D^v)=0.474$ 

显然对于 $D^2$ 数据集,属性"有工作"的信息增益最大,选其为划分属性,划分结果如下:



对于 $D^3$ 数据集,其标签类别都是"是",故不需要再次划分对于 $D^4$ 数据集,其标签类别都是"否",故也不需要再次划分

### ④ 综上,决策树构建完成,绘制出决策树如下:



### 2.4 考虑表 2-2 中二元分类问题的训练样本。

- (a) 计算整个训练样本集的 Gini 指标值。
- (b) 计算属性顾客 ID 的 Gini 指标值。
- (c)计算属性性别的 Gini 指标值。
- (d) 计算使用多路划分属性车型的 Gini 指标值。
- (e) 计算使用多路划分属性衬衣尺码的 Gini 指标值。
- (f)下面哪个属性更好,性别、车型还是衬衣尺码?
- (g)解释为什么属性顾客 ID 的 Gini 值最低,但是不能作为属性测试条件。 表格 2-2

| 顾客 ID | 性别 | 车型 | 村农尺码  | 类  |
|-------|----|----|-------|----|
| 1     | 男  | 家用 | 小     | CO |
| 2     | 男  | 运动 | 中     | CO |
| 3     | 男  | 运动 | p     | CO |
| 4     | 男  | 运动 | 大     | CO |
| 5     | 男  | 运动 | 加大    | CO |
| 6     | 93 | 运动 | 加大    | CO |
| 7     | 女  | 运动 | 小     | CO |
| 8     | 女  | 运动 | 1 1   | CO |
| 9     | 女  | 运动 | rp    | CO |
| 10    | 女  | 豪华 | 【 大 】 | CO |
| 11    | 男  | 家用 | 大     | CI |
| 12    | 男  | 家用 | 加大    | CI |
| 13    | 男  | 家用 | 4     | CI |
| 14    | 男  | 豪华 | 加大    | CI |
| 15    | 女  | 豪华 | 1     | CI |
| 16    | 女  | 豪华 | 小小    | CI |
| 17    | 女  | 豪华 | 中     | CI |
| 18    | 女  | 豪华 | 中     | CI |
| 19    | 女  | 豪华 | 中     | CI |
| 20    | 女  | 豪华 | 大     | CI |

解: 已知
$$GINI(t) = 1 - \sum [p(j|t)]^2$$

(a) 由上表可得整个训练样本可表示为

| CO | C1 |
|----|----|
| 10 | 10 |

故
$$p(C0) = 10/20 = 0.5$$
  $p(C1) = 10/20 = 0.5$ 

$$p(C1) = 10/20 = 0.5$$

训练样本集
$$GINI = 1 - p(C0)^2 - p(C1)^2 = 1 - 0.25 - 0.25 = 0.5$$

(b) 由表格内容可知, 共有 20 名顾客, 且每个顾客的 ID 都不一样

因此
$$p(j|t)=1$$
 故 $GINI=1-\sum [p(j|t)]^2=0$ ,

也即属性顾客ID的GINI指标值都是0

(c)由表格内容可得

|   | 男                         | 女       |   |                   |
|---|---------------------------|---------|---|-------------------|
|   | 10                        | 10      |   |                   |
| Ī | 故 $p(\mathbb{B}) = 10/20$ | 0 = 0.5 | p | (女) = 10/20 = 0.5 |

故
$$p(9) = 10/20 = 0.5$$

$$\overline{p}(z) = 10/20 = 0.5$$

因此属性性别
$$GINI = 1 - p(\mathbb{H})^2 - p(\mathbb{H})^2 = 1 - 0.25 - 0.25 = 0.5$$

(d) 由表格内容可得

| E \$4 B 4 B 4 B 4 B 4 B 4 B 4 B 4 B 4 B 4 B |    |    |    |    |  |
|---------------------------------------------|----|----|----|----|--|
|                                             | 类  | 车型 |    |    |  |
|                                             | 矢  | 家用 | 运动 | 豪华 |  |
|                                             | CO | 1  | 8  | 1  |  |
|                                             | C1 | 3  | 0  | 7  |  |

① 家用车型的*GINI* 指标计算如下:

$$p(C0) = 1/4 = 0.25$$
  $p(C1) = 3/4 = 0.75$   $GINI_{\text{RH}} = 1 - p(C0)^2 - p(C1)^2 = 1 - 0.25^2 - 0.75^2 = 0.375$ 

- ② 运动车型的GINI指标计算如下: 运动车型的 C1 类数量为 O,显然可得 $GINI_{EXI}=0$
- ③ 豪华车型的GINI 指标计算如下:

$$\begin{split} p(C0) = & 1/8 = 0.125 & p(C1) = 7/8 = 0.875 \\ GINI_{\text{RF}} = & 1 - p(C0)^2 - p(C1)^2 = 1 - 0.125^2 - 0.875^2 = 0.21875 \end{split}$$

因此车型属性的总GINI 计算如下;

$$GINI = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i) = 4/20*0.375 + 8/20*0.21875 = 0.1625$$

(e)由表格内容可得:

| 类        | 衬衣尺码 |   |   |    |  |
|----------|------|---|---|----|--|
| <b>大</b> | 小    | 中 | 大 | 加大 |  |
| CO       | 3    | 3 | 2 | 2  |  |
| C1       | 2    | 4 | 2 | 2  |  |

① 小尺码的GINI指标计算如下:

$$p(C0) = 1/8 = 0.125$$
  $p(C1) = 7/8 = 0.875$   
 $GINI_{d_1} = 1 - p(C0)^2 - p(C1)^2 = 1 - 0.6^2 - 0.4^2 = 0.48$ 

② 中尺码的GINI指标计算如下:

$$p(C0) = 3/7 = 0.428571$$
  $p(C1) = 4/7 = 0.571429$   $GINI_{++} = 1 - p(C0)^2 - p(C1)^2 = 1 - 0.429^2 - 0.571^2 = 0.4898$ 

③ 大尺码的GINI指标计算如下:

$$p(C0) = 2/4 = 0.5$$
  $p(C1) = 2/4 = 0.5$   $GINI_{\pm} = 1 - p(C0)^2 - p(C1)^2 = 1 - 0.5^2 - 0.5^2 = 0.5$ 

④ 加大尺码的GINI指标计算如下:

$$p(C0) = 2/4 = 0.5$$
  $p(C1) = 2/4 = 0.5$   $GINI_{\text{MLX}} = 1 - p(C0)^2 - p(C1)^2 = 1 - 0.5^2 - 0.5^2 = 0.5$ 

因此属性衬衣尺码的总GINI指标计算如下:

$$GINI = \sum_{i=1}^{\kappa} \frac{n_i}{n} GINI(i) = 5/20*0.48 + 7/20*0.4898 + 4/20*0.5*2 = 0.49143$$

(f)有上述几个小问的解答可得

| 属性   | 性别  | 车型      | 衬衣尺码   |
|------|-----|---------|--------|
| GINI | 0.5 | 0. 1625 | 0.4914 |

由上表内容,显而易见可以得出**车型属性更好**,车型的*GINI*指标值最低,其子节点不纯度更高,产生了更纯的派生节点

(g)属性顾客 *ID* 只是一个自己设定的标记,用于区分不同的顾客,没有预测性,因为**与每个划分相关联的记录很少,故不足以做出可靠的预测**。因此虽然属性顾客 *ID* 的 *GINI* 指标值最低,但不能作为属性测试条件