Grupos e Corpos

Prof. Lucas Calixto

Aula 1 - Primeiras Definições

Estrutura do curso

Aulas as Quintas das 17:00 as 18:00 - Tirar dúvidas de conteúdo, exercicios, discutir a materia

Usaremos o Microsoft Teams para encontros

Tentarei sempre postar vídeos nas Segundas e teremos lista de exercicios toda semana

Avaliações - 3 Provas via Moodle

Bibliografia:

- Thomas W. Judson. Abstract algebra. 2012 annual edition, 2012. Link para download http://abstract.ups.edu/download/aata-20200730.pdf
- Israel Herstein Topics in algebra (versão em português: Tópicos de Álgebra)
- Arnaldo Garcia e Yves Lequain Elementos de Álgebra

Introdução

Grupos - Busca de simetrias de objetos matemáticos (geométricos, algébricos)

Teoria moderna (Évariste Galois): determinar as raízes de polis em termos dos seus coeficientes

Hoje tem papel importante - teoria de códigos, criptografía, física, quimica, etc.

Exemplos de grupos que já somos familiares:

- $\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$: números inteiros
- $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$: números inteiros módulo n
- $GL_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) \mid \det A \neq 0\}$: matrizes reais $n \times n$ invertives

Em $(\mathbb{Z},+)$ sabemos que:

- $\forall a, b \in \mathbb{Z}, a + b \in \mathbb{Z}$
- ullet $\exists \ 0 \in \mathbb{Z} \ \mathsf{tal} \ \mathsf{que} \ 0 + a = a, \forall a \in \mathbb{Z}$
- ullet $\forall a \in \mathbb{Z}$, $\exists b \in \mathbb{Z}$ tal que a+b=0 (chamamos b=-a)

Pergunta: Temos essas propriedades em (\mathbb{Z},\cdot) ?

$$\mathbb{Z}_n$$

Lembrem:
$$\mathbb{Z}_n = \{0 \pmod{n}, \dots, n-1 \pmod{n}\}$$
, ou $\mathbb{Z}_n = \{0, \dots, n-1\}$

Soma:
$$a + b = (a + b) \pmod{n} = \text{resto da divisão de } a + b \text{ por } n$$

Produto: $ab = ab \pmod{n} = \text{resto da divisão de } ab \text{ por } n$

Em $(\mathbb{Z}_n, +)$ sabemos que:

- $\forall a, b \in \mathbb{Z}_n$, $a + b \in \mathbb{Z}_n$ (por definição)
- $\exists \ 0 \in \mathbb{Z}_n \ \mathsf{tal} \ \mathsf{que} \ 0 + a = a, \forall a \in \mathbb{Z}_n$
- ullet $\forall a \in \mathbb{Z}_n, \ \exists b \in \mathbb{Z}_n \ \mathsf{tal} \ \mathsf{que} \ a+b=0 \ \mathsf{(de fato, tome} \ b=n-a\mathsf{)}$

A última propriedade não vale em geral para (\mathbb{Z}_n,\cdot)

Exemplo

Em $\mathbb{Z}_8 = \{0, \dots, 7\}$, temos:

$$7+4=1$$
, $3+5=0$, $3+4=7$, $7\cdot 3=5$

Tabela de Multiplicação em \mathbb{Z}_8

Qual propriedade vale para $(\mathbb{Z}_8,+)$ mas falha para (\mathbb{Z}_8,\cdot) ?

Prof. Lucas Calixto

Proposição: $\forall a, b, c \in \mathbb{Z}_n$ temos:

- **1** a+b=b+a, ab=ba (comutatividade de $+e\cdot$)
- (a + b) + c = a + (b + c), (ab)c = (ab)c (associatividade de + e ·)
- 3 a + 0 = a, 1a = a (existencia do elemento neutro para $+ e \cdot$)
- **③** $\forall a \in \mathbb{Z}_n$, $\exists b \in \mathbb{Z}_n$ tal que a + b = 0 (existencia de inverso aditivo)
- **1** $a \in \mathbb{Z}_n$ possui inverso multiplicatiovo se e só se mdc(a, n) = 1, ou seja,

$$\exists b \in \mathbb{Z}_n$$
 tal que $ab = 1$ se e só se $mdc(a, n) = 1$

Prova de (6): (\Rightarrow)

$$ab = 1 \Leftrightarrow n|ab - 1 \Leftrightarrow ab - nk = 1$$
 para algum $k \in \mathbb{Z}$

Se d = mdc(a, n), então $d|ab \in d|nk$. Logo, d = 1

(\Leftarrow) Se mdc(a,n)=1, então existem $\alpha,\beta\in\mathbb{Z}$ tais que $\alpha a+\beta n=1$ (lema de Bézout). Assim, $\alpha a=1$ ($mod\ n$). Logo, tomando $b\in\mathbb{Z}_n$ tal que $b=\alpha$ ($mod\ n$), temos que

$$ab \ (mod \ n) = a\alpha \ (mod \ n) = 1 \ (mod \ n)$$

Simetrias

Uma simetria de um objeto geométrico é um movimento rígido sobre o objeto, ou seja, um movimento que não o deforma e que preserva seu estado inicial (quando não levamos em consideração os rótulos do objeto). Tais movimentos são combinações (composições) de rotações e reflexões que preservam o objeto

Uma forma de analisar as simetrias de um objeto é olhar para todas as permutações entre os vértices do objeto, já que toda simetria preserva vertíces (dentre outras coisas)

Exemplo: Num triangulo equilátero de vértices A,B,C temos 3! = 6 permutações entre seus vértices (pq?). Logo, podemos ter no máximo 6 simetrias nesse triângulo

Uma permutação ρ_1 tal que $A \mapsto B$, $B \mapsto C$ e $C \mapsto A$ será denotada por

$$\rho_1 = \begin{pmatrix} A & B & C \\ B & C & A \end{pmatrix}$$

Note $ho_1=$ rotação de 120°

Fato: Nesse caso, toda permutação corresponde a uma simetria

Pergunta: O mesmo vale se o triangulo não é equilátero?

Óbvio: composição de simetrias é simetria

0	id	$ ho_1$	ρ_2	μ_1	μ_2	μ_3
id	id	ρ_1	ρ_2	μ_1	μ_2	μ_3
$ ho_1$	ρ_1	$ ho_2$	id	μ_3	μ_1	μ_2
$ ho_2$	ρ_2	id	$ ho_1$	μ_2	μ_3	μ_1
μ_1	μ_1	μ_2	μ_3	id	$ ho_1$	ρ_2
μ_2	μ_2	μ_3	μ_1	ρ_2	id	ρ_1
μ_3	μ_3	μ_1	μ_2	μ_1 μ_3 μ_2 id ρ_2 ρ_1	$ ho_2$	id

Note: $\rho_1 \mu_1 \neq \mu_1 \rho_1$

Além disso para toda simetria α existe uma simetria β tal que $\alpha\beta=id$

Grupos

Definição: Um grupo G é um conjunto munido de uma função (chamada operação binária, ou multiplicação, ou produto de G) $G \times G \to G$, $(a,b) \mapsto ab$ tal que, para quaisquer $a,b,c \in G$ temos:

- Associatividade: (ab)c = a(bc)
- Existencia do elemento identidade: $\exists e \in G$ tal que ea = ae = a
- Existencia do elemento inverso: $\exists a^{-1} \in G$ tal que $aa^{-1} = a^{-1}a = e$

Se ab = ba para todos $a, b \in G$ dizemos que G é grupo abeliano. Nesse caso, usualmente denotamos ab por a + b, e por 0, a^{-1} por -a

A tabela de Cayley é a tabela de multiplicação de G

Cardinalidade de G = |G| = ordem de G. Assim, G tem ordem finita se $|G| < \infty$

Exemplos

- $(\mathbb{Z},+)$ é grupo abeliano. Como $|\mathbb{Z}|=\infty$, \mathbb{Z} tem ordem infinita
- $(\mathbb{Z}_n,+)$ é grupo abeliano. Como $|\mathbb{Z}_n|=n$, \mathbb{Z}_n tem ordem finita igual a n
- **Note:** $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, $(a,b) \mapsto ab$ (produto em \mathbb{Z}) é operação binária (associativa), mas (\mathbb{Z},\cdot) não é grupo (se $a \neq \pm 1$, então $a^{-1} \notin \mathbb{Z}$)
- (\mathbb{Z}_5,\cdot) é grupo abeliano. Prove e escreva a tabela de Cayley de (\mathbb{Z}_5,\cdot)
- (\mathbb{Z}_4,\cdot) não é grupo. Escreva a tabela de Cayley de (\mathbb{Z}_4,\cdot) e veja quais elementos tem inversos e quais não tem
- $U(n) = \{a \in \mathbb{Z}_n \mid mdc(a,n) = 1\}$ junto com a multiplicação é grupo abeliano
- Se $D_3 = \{$ simetrias de um triangulo equilátero $\}$, então (D_3, \circ) é grupo não abeliano

O grupo geral linear $GL_n(\mathbb{R})$

 $(GL_n(\mathbb{R}),\cdot)$ é grupo não ebeliano

- $G \times G \to G$, $(A, B) \mapsto AB$ é bem definida pois $\det AB = \det A \det B$
- Associatividade segue da associatividade do produto de matrizes
- ullet Elemento identidade é a matriz identidade $I_n = egin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$
- $\bullet \ A \in \mathit{GL}_n(\mathbb{R}) \Leftrightarrow \det A \neq 0 \Leftrightarrow \det A^{-1} = 1/\det A \neq 0 \Leftrightarrow A^{-1} \in \mathit{GL}_n(\mathbb{R})$

O grupo quaternion

Seja
$$Q_8=\{\pm 1,\pm I,\pm J,\pm K\}\subseteq \mathit{GL}_2(\mathbb{C})$$
, onde

$$1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad I = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad J = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \quad K = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

$$(Q_8, \cdot)$$
 é grupo, pois $I^2 = J^2 = K^2 = -1$, $IJ = K$, $JK = I$, $KI = -K$, $KI = -I$ e $IK = -I$

 (Q_8, \cdot) é o grupo dos quaternions

Propriedades básicas de grupos

Proposição: Seja (G, \cdot) um grupo e $a, b \in G$ quaisquer

- **1** O elemento identidade $e \in G$ é único
- ② O inverso a^{-1} é único
- $(ab)^{-1} = b^{-1}a^{-1}$
- $(a^{-1})^{-1} = a$ (exercicio)

Prova (1): Se e, e' são duas identidades em G, então

$$ee' = e, \quad ee' = e' \Rightarrow e = ee' = e'$$

(2): se b e c são inversos de a, então

$$ab = bc = e$$
, $ac = ca = e \Rightarrow b = eb = (ca)b = c(ab) = ce = c$

(3):
$$ab(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = aea^{-1} = aa^{-1} = e$$
. Segue análogo que $(b^{-1}a^{-1})ab = e$

Prof. Lucas Calixto Grupos e Corpos - Aula 1

Equações em *G*

Proposição: Seja (G,\cdot) um grupo, $a,b,c\in G$ quaisquer e x uma incógnita

- **1** As equações ax = b e xa = b possuem única solução em G
- ② $ba = ca \Rightarrow b = c$ e $ab = ac \Rightarrow b = c$ (\Rightarrow regras de cancelação valem em G)

Prova (1): $a(a^{-1}b) = b \Rightarrow$ tal solução existe. Se x, y são tais que ax = b e ay = b, então

$$ax = ay \Rightarrow a^{-1}(ax) = a^{-1}(ay) \Rightarrow x = y$$

Prove a segunda parte

(2):
$$ba = ca \Rightarrow (ba)a^{-1} = (ca)a^{-1} \Rightarrow b = c$$
. Prove a segunda parte

Exponenciação em G

Para $g \in G$, defina

$$g^n = \underbrace{gg \cdots g}_{n \text{ vezes}}, \quad g^{-n} = \underbrace{g^{-1}g^{-1} \cdots g^{-1}}_{n \text{ vezes}}$$

Proposição: Para $m, n \in Z$ e $g, h \in G$ o seguinte vale

- $(g^m)^n = g^{mn}$
- $(gh)^n = (h^{-1}g^{-1})^{-n}$
- **9** Se G for abeliano, então $(gh)^n = g^n h^n$

Prova (3):

$$(h^{-1}g^{-1})^{-n} = \underbrace{(h^{-1}g^{-1})^{-1}(h^{-1}g^{-1})^{-1} \cdots (h^{-1}g^{-1})^{-1}}_{n \text{ vezes}}$$
$$= \underbrace{(gh)(gh)\cdots (gh)}_{n \text{ vezes}} = (gh)^{n}$$

Prof. Lucas Calixto Grupos e Corpos - Aula 1

Se G é abeliano, temos

$$g^n = \underbrace{g + g + \dots + g}_{n \text{ vezes}}, \quad g^{-n} = \underbrace{(-g) + (-g) + \dots + (-g)}_{n \text{ vezes}}$$

e fica mais natural escrevermos ng ao vez de g^n para todo $n\in\mathbb{Z}$

Nesse caso, as propriedades da proposição anterior se escrevem como:

- o(mg) = (mn)g

Subgrupos

Um subgrupo de um grupo (G,\cdot) é um subconjunto $H\subset G$ tal que (H,\cdot) é um grupo (Importante: H é grupo com a mesma operação binária de G). Denotamos

$$H \leq G$$

Um subgrupo $H \leq G$ é próprio se $H \neq G$.

Exemplos:

- $(2\mathbb{Z} = \{\ldots, -4, -2, 0, 2, 4, \ldots\}, +)$ é um subgrupo de $(\mathbb{Z}, +)$
- ullet ($\{e\},\cdot$), (G,\cdot) são subgrupos de G. O subgrupo $\{e\}$ é chamado subgrupo trivial
- \bullet ($\mathbb{Q}^*=\mathbb{Q}\setminus\{0\},\cdot)$ é subgrupo de ($\mathbb{R}^*=\mathbb{R}\setminus\{0\},\cdot)$
 - $(p/q)(r/s) = pr/qs \Rightarrow$ função binária bem definida
 - ullet Associatividade de \cdot em \mathbb{Q}^* vem da associatividade de \cdot em \mathbb{R}^*
 - $1 = 1/1 \in \mathbb{Q}^*$
 - $(p/q)^{-1} = q/p \in \mathbb{Q}^*$

Prof. Lucas Calixto Grupos e Corpos - Aula 1 21/25

• $SL_n(\mathbb{R}) = \{g \in GL_n(\mathbb{R}) \mid \det g = 1\}$ é subgrupo de $GL_n(\mathbb{R})$ (lembre que $\det gh = \det g \det h$). Tal grupo é chamado de grupo especial linear

Note: Um subconjunto de um grupo G pode ser um grupo sem ser um subgrupo de G.

- $(M_n(\mathbb{R}), +)$ é um grupo (cheque!), $GL_n(\mathbb{R}) \subset M_n(\mathbb{R})$ mas $GL_n(\mathbb{R})$ não é um subgrupo de $M_n(\mathbb{R})$: Se $g \in GL_n(\mathbb{R})$, então $-g \in GL_n(\mathbb{R})$, mas $g + (-g) = 0 \notin GL_n(\mathbb{R}) \Rightarrow$ a operação binária de $M_n(\mathbb{R})$ não define uma operação binária em $GL_n(\mathbb{R})$
- Considere $\mathbb{Z}_2 \times \mathbb{Z}_2$ com a operação

$$(a,b)+(c,d)=(a+c,b+d)$$

Esse grupo tem 4 elementos: (0,0),(1,0),(0,1),(1,1) e portanto de ordem 4

Note: $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ também é um grupo de ordem 4

Pergunta: seria possível esses dois grupos serem simplesmete duas formas diferentes de representarmos um mesmo grupo? (lembrem: já vimos esse tipo de coisa acontecer no caso de simetrias de um triangulo equilátero e permutações de seus vértices)

Fato: Se dois grupos são iguais, então a estrutura de subgrupos desses dois grupos deve coincidir

Observe: \mathbb{Z}_4 só possui um subgrupo próprio não trivial: $H = \{0, 2\}$

Por outro lado $\mathbb{Z}_2 \times \mathbb{Z}_2$ possui tres subgrupos próprios não triviais:

$$H_1 = \{(0,0),(0,1)\}, \quad H_2 = \{(0,0),(1,0)\}, \quad H_3 = \{(0,0),(1,1)\}$$

Propriedades básicas de subgrupos

Proposição: Um subconjunto H é um subgrupo de G se e somente se as condições abaixo valem:

- lacktriangle a identidade e de G pertence a H
- ② Se $h_1, h_2 \in H$, então $h_1h_2 \in H$
- **③** Se h ∈ H, então $h^{-1} ∈ H$

Prova (\Rightarrow) (1): Seja $e_H \in H$ a identidade de H. Afirmação: $e_H = e$

$$e_H e_H = e_H$$
, $ee_H = e_H \Rightarrow e_H e_H = ee_H \Rightarrow e_H = e$

- (2): Óbvio
- (3): Se $h' \in H$ é tal que hh' = e, então segue da unicidade do elemento inverso em G que $h' = h^{-1}$
- (⇐) Óbvio

Proposição: Um subconjunto H é um subgrupo de G se e somente se $H \neq \emptyset$ e $\forall g, h \in H$ temos que $gh^{-1} \in H$

Prova $(\Leftarrow) \exists g \in H$ e portanto $gg^{-1} = e \in H$. Se $h \in H$, então $eh^{-1} = h^{-1} \in H$. Por fim, se $g, h \in H$, então $g, h^{-1} \in H$ e assim $g(h^{-1})^{-1} = gh \in H$

(⇒) Óbvio