

# **Exploratory Data Analysis Part II**

**Bootcamp Data Science** 

### Kurnia Anwar Ra'if

A Highly-motivated Data Scientist

Senior Data & Al Platform @ PT. Mastersystem Infotama Data Scientist @ PT. KitaLulus International Data Scientist @ PT. Sharing Vision— BRI Consultant Software Engineering @ PT. AlLIMA Geothermal Mentor & Instructor DS/BI/AI ML @ dibimbing.id





# **Outline**



#### **Outline:**

- 1. Sampling and Randomization
- 2. Feature Engineering
- 3. Data Manipulation \*

\* Combine with visualizations



# Sampling & Randomization



## Definisi Populasi dan Sampel



Populasi adalah **seluruh kumpulan data atau objek** yang menjadi fokus dari suatu penelitian atau studi. Dalam kasus Big Data, Populasi merupakan sekumpulan data dari database pada periode tertentu.

Sampel adalah **sebagian kecil atau subset dari populasi** yang dipilih untuk mewakili populasi



# Flowchart Sampling & Randomization





Proses sampling ini bisa dilakukan **sebelum melakukan exploratory data analysis.** Hal ini bertujuan untuk menghindari *out of memory pada server.* 

# Bagaimana metode untuk mencari jumlah sample (*Sample size*)?



Dalam mengukur jumlah sampel yang ingin diambil kita bisa gunakan persamaan pada metode Slovin :

Rumus Slovin's:

$$n = \frac{N}{(1 + N * error^2)}$$

#### keterangan:

- n = Jumlah sample
- N = Jumlah population
- error = error yang masih diterima (pilih 1%, 2.5%, atau 5%)

# Random Sampling (Randomization)



random sample (randomization)

Setiap anggota dan setiap kelompok anggota memiliki kesempatan yang sama untuk dimasukkan dalam sampel dan dipilih secara acak

- Contoh Penerapan: Mengambil sampel acak dari kumpulan karyawan di sebuah perusahaan di mana setiap karyawan memiliki kesempatan yang sama untuk dipilih.

#### Validate Result



#### We can check the result with checking in numerical value by describe()



Population Statistical Summary

Sample Statistical Summary

|       | Total       | cogs       | gross income | Unit price  |
|-------|-------------|------------|--------------|-------------|
| count | 1000.000000 | 1000.00000 | 1000.000000  | 1000.000000 |
| mean  | 322.966749  | 307.58738  | 15.379369    | 55.672130   |
| std   | 245.885335  | 234.17651  | 11.708825    | 26.494628   |
| min   | 10.678500   | 10.17000   | 0.508500     | 10.080000   |
| 25%   | 124.422375  | 118.49750  | 5.924875     | 32.875000   |
| 50%   | 253.848000  | 241.76000  | 12.088000    | 55.230000   |
| 75%   | 471.350250  | 448.90500  | 22.445250    | 77.935000   |
| max   | 1042.650000 | 993.00000  | 49.650000    | 99.960000   |

|       | Total       | cogs       | gross income | Unit price |
|-------|-------------|------------|--------------|------------|
| count | 616.000000  | 616.000000 | 616.000000   | 616.00000  |
| mean  | 324.823074  | 309.355308 | 15.467765    | 55.68625   |
| std   | 246.352673  | 234.621594 | 11.731080    | 26.70841   |
| min   | 10.678500   | 10.170000  | 0.508500     | 10.13000   |
| 25%   | 125.695500  | 119.710000 | 5.985500     | 33.27500   |
| 50%   | 257.911500  | 245.630000 | 12.281500    | 54.61000   |
| 75%   | 478.584750  | 455.795000 | 22.789750    | 78.17500   |
| max   | 1042.650000 | 993.000000 | 49.650000    | 99.96000   |

# Hands on

Balik ke Collabs lagi yuks ©





# Remember Feature

# Engineering



Handling: duplicate, missing value, outlier, encoding (if needed), feature scaling (if needed), manipulation (filter etc)

# Hands on

Balik ke Collabs lagi yuks ©



# Data Manipulation + Visualization



# Remember, EDA Question Below based on course Data Manipulation

**Notes:** harap bisa mengecek kembali pada sesi hands on code Data manipulation

#### **EDA Question**:

- 1. Apa saja produk yang memiliki harga unit di atas rata-rata? (in Part Filtering)
- 2. Produk mana yang memiliki Total penjualan tertinggi ? (in Group By 1 Kolom)
- 3. Cabang mana yang memiliki total penjualan tertinggi ? (in Group By 2 Kolom)
- 4. Bagaimana jumlah maksimal, minimal, jumlah dari barang yang terjual di tiap Branch? (in Multiple aggregations)
- 5. Bagaimana total penjualan setiap kategori produk di setiap branch? (in Pivoting) \*
- 6. Metode pembayaran apa yang paling sering digunakan oleh customer? (in Crosstab) \*
- 7. Kapan waktu dengan penjualan tertinggi dalam sehari? (In working with date)

<sup>\*</sup> Additional Pivoting vs Melt

- 1. Buat pertanyaan analisis (EDA Questions)
- 2. Jawablah pertanyaan EDA dengan pendekatan Filter, Group By, Pivot, dsb (disesuaikan)
- 3. Lakukan reset index dari step 2 diatas, supaya outputnya menjadi dataframe
- 4. Gunakan plot visualisasi yang tepat (biasanya barplot atau lineplot, atau disesuaikan saja)
- 5. Tambahkan text angka (opsional) pada tiap barplot atau titik pada lineplot untuk mempermudah Analisa
- 6. Buatlah insight observasi dari output yang didapat.

- 1. Pertanyaan: Produk mana yang memiliki Total penjualan tertinggi?
- 2. Jawab dengan data manipulation ? (Group By)

```
penjualan produk = data.groupby('Product line')['Total'].sum()
penjualan produk
Product line
Electronic accessories
                          54337.5315
Fashion accessories
                          54305.8950
Food and beverages
                          56144.8440
Health and beauty
                          49193.7390
Home and lifestyle
                          53861.9130
Sports and travel
                          55122.8265
Name: Total, dtype: float64
```

#### 3. Lakukan reset\_index() supaya menjadi dataframe

```
penjualan_produk = data.groupby('Product line')['Total'].sum().sort_values(ascending=False).reset_index()
penjualan_produk
```

|   | Product line           | Total      |
|---|------------------------|------------|
| 0 | Food and beverages     | 56144.8440 |
| 1 | Sports and travel      | 55122.8265 |
| 2 | Electronic accessories | 54337.5315 |
| 3 | Fashion accessories    | 54305.8950 |
| 4 | Home and lifestyle     | 53861.9130 |
| 5 | Health and beauty      | 49193.7390 |

#### 4. Gunakan plot visualisasi yang tepat:

#### **4A. Tips Barplot:**

- Value vs Categorical (Value in each Categorical)



#### 4B. Lineplot:

- Datetime vs Value
- Datetime can be: day, month, week, year, time (hours, minutes, etc)



# 5. Tambahkan text angka (opsional) pada tiap barplot atau titik pada lineplot untuk mempermudah Analisa

|   | Product line           | Total      |
|---|------------------------|------------|
| 0 | Food and beverages     | 56144.8440 |
| 1 | Sports and travel      | 55122.8265 |
| 2 | Electronic accessories | 54337.5315 |
| 3 | Fashion accessories    | 54305.8950 |
| 4 | Home and lifestyle     | 53861.9130 |
| 5 | Health and beauty      | 49193.7390 |

**Notes:** Jika barplot terlalu banyak maka tidak perlu ada nilai teks yang ditampilkan.

# Hands on

Balik ke Collabs lagi yuks ©



# Additional: Pivoting VS Melt



#### **Pivot Table**



Konsep Pivot table mirip dengan group by, tetapi pivot table memerlukan **index, colom, value dan fungsi aggregate**Jika kita memiliki table berikut:

```
# Membuat pivot table
tabel_pivot = pd.pivot_table(df, values='Total', index='Product line', columns='Branch', aggfunc='sum')
tabel_pivot
```

| Branch                 | Α          | В          | С          |
|------------------------|------------|------------|------------|
| Product line           |            |            |            |
| Electronic accessories | 18317.1135 | 17051.4435 | 18968.9745 |
| Fashion accessories    | 16332.5085 | 16413.3165 | 21560.0700 |
| Food and beverages     | 17163.1005 | 15214.8885 | 23766.8550 |
| Health and beauty      | 12597.7530 | 19980.6600 | 16615.3260 |
| Home and lifestyle     | 22417.1955 | 17549.1645 | 13895.5530 |
| Sports and travel      | 19372.6995 | 19988.1990 | 15761.9280 |

**index**: Kolom yang akan dijadikan indeks dalam pivot table.

**columns**: Kolom yang akan dijadikan kolom dalam pivot table.

values: Kolom yang akan dihitung (dalam contoh ini, 'Nilai').

aggfunc: Fungsi agregasi yang akan digunakan. Dalam kasus ini, rata-rata (mean) digunakan, tetapi Anda juga bisa menggunakan fungsi lain seperti 'sum', 'count', 'max', 'min', dll.

#### Melt



- Melt is the reverse of pivot table
  - I.e. you have "wide" formatted dataframe and want to make it "long"
- This is sometimes useful to prepare data for visualization
  - Which requires "long" formatted data, e.g. seaborn package
- General syntax format

#### Melt



Dari table pivot sebelumnya, kita akan mengubah bentuknya kedalam format melt berikut :

#### **Pivot Table**

tabel\_pivot.reset\_index()

| Branch                 | Α          | В          | С          |
|------------------------|------------|------------|------------|
| Product line           |            |            |            |
| Electronic accessories | 18317.1135 | 17051.4435 | 18968.9745 |
| Fashion accessories    | 16332.5085 | 16413.3165 | 21560.0700 |
| Food and beverages     | 17163.1005 | 15214.8885 | 23766.8550 |
| Health and beauty      | 12597.7530 | 19980.6600 | 16615.3260 |
| Home and lifestyle     | 22417.1955 | 17549.1645 | 13895.5530 |
| Sports and travel      | 19372.6995 | 19988.1990 | 15761.9280 |



| Branch | Product line           | Α          | В          | С          |
|--------|------------------------|------------|------------|------------|
| 0      | Electronic accessories | 18317.1135 | 17051.4435 | 18968.9745 |
| 1      | Fashion accessories    | 16332.5085 | 16413.3165 | 21560.0700 |
| 2      | Food and beverages     | 17163.1005 | 15214.8885 | 23766.8550 |
| 3      | Health and beauty      | 12597.7530 | 19980.6600 | 16615.3260 |
| 4      | Home and lifestyle     | 22417.1955 | 17549.1645 | 13895.5530 |
| 5      | Sports and travel      | 19372.6995 | 19988.1990 | 15761.9280 |



| # Mengubah pivot table menjadi format long untuk visualisasi                                               |
|------------------------------------------------------------------------------------------------------------|
| tabel_long = tabel_pivot.reset_index().melt(id_vars='Product line', var_name='Branch', value_name='Total') |
| tabel_long                                                                                                 |

|    | Product line           | Branch | Total      |
|----|------------------------|--------|------------|
| 0  | Electronic accessories | Α      | 18317.1135 |
| 1  | Fashion accessories    | Α      | 16332.5085 |
| 2  | Food and beverages     | Α      | 17163.1005 |
| 3  | Health and beauty      | Α      | 12597.7530 |
| 4  | Home and lifestyle     | Α      | 22417.1955 |
| 5  | Sports and travel      | Α      | 19372.6995 |
| 6  | Electronic accessories | В      | 17051.4435 |
| 7  | Fashion accessories    | В      | 16413.3165 |
| 8  | Food and beverages     | В      | 15214.8885 |
| 9  | Health and beauty      | В      | 19980.6600 |
| 10 | Home and lifestyle     | В      | 17549.1645 |
| 11 | Sports and travel      | В      | 19988.1990 |
| 12 | Electronic accessories | С      | 18968.9745 |
| 13 | Fashion accessories    | С      | 21560.0700 |
| 14 | Food and beverages     | С      | 23766.8550 |
| 15 | Health and beauty      | С      | 16615.3260 |
| 16 | Home and lifestyle     | С      | 13895.5530 |
| 17 | Sports and travel      | С      | 15761.9280 |

#### **Melt Table**

# Hands on

Balik ke Collabs lagi yuks ©



# Additional: Crosstab VS Melt



## **Crosstab (Cross Tabulation)**



Crosstabulation, atau crosstab, adalah sebuah metode statistik yang digunakan untuk menganalisis hubungan antara dua atau lebih variabel kategorikal. Value didalamnya bermakna frekuensi.

Jika kita memiliki table berikut:

crosstab = pd.crosstab(df['Branch'], df['Payment'])
crosstab

# Payment Cash Credit card Ewallet Branch

| Α | 110 | 104 | 126 |
|---|-----|-----|-----|
| В | 110 | 109 | 113 |
| С | 124 | 98  | 106 |

**Cross tab** 



crosstab.reset\_index()

| Payment | Branch | Cash | Credit card | Ewallet |
|---------|--------|------|-------------|---------|
| 0       | Α      | 110  | 104         | 126     |
| 1       | В      | 110  | 109         | 113     |
| 2       | С      | 124  | 98          | 106     |



crosstab\_long = crosstab.reset\_index().melt(id\_vars='Branch', var\_name='Payment', value\_name='Jumlah Pembayaran')
crosstab\_long

|   | Branch | Payment     | Jumlah Pembayaran |
|---|--------|-------------|-------------------|
| 0 | Α      | Cash        | 110               |
| 1 | В      | Cash        | 110               |
| 2 | С      | Cash        | 124               |
| 3 | Α      | Credit card | 104               |
| 4 | В      | Credit card | 109               |
| 5 | С      | Credit card | 98                |
| 6 | Α      | Ewallet     | 126               |
| 7 | В      | Ewallet     | 113               |
| 8 | С      | Ewallet     | 106               |
|   |        |             |                   |

#### Melt

# Hands on

Balik ke Collabs lagi yuks ©







# Thank you

https://www.linkedin.com/in/anwaraif/

kurniafreelancer@gmail.com