AUDIT ENERGI UNTUK MENCAPAI PELUANG PENGHEMATAN ENERGI Selamet riadi dan Erry Trigunadi

AUDIT ENERGI UNTUK MENCAPAI PELUANG PENGHEMATAN ENERGI

Selamet riadi¹⁾, Erry Trigunadi²⁾

¹⁾Dosen Program Studi Teknik Industri, Universitas Mercu Buana ²⁾Alumni Program Studi Teknik Industri, Universitas Mercu Buana

> Jl. Meruya Selatan, Kebon Jeruk, Jakarta Barat 11650 Email : sriadi 71@yahoo.com

ABSTRACT

Energy audit is one of the first step to determine the energy use and evaluation in order to create energy conservation measures in accordance with government regulations No. 70 of 2009 on conservation of energy requires the use of conducted energy-saving and efficient, to carry out an energy audit is expected to be able to do energy conservation. In this study, energy audit performed on several stages. Through the collection of data on energy usage, calculating the amount of energy consumption in the past year, calculate the value of SEC (Specific Energy Consumption) to find out how much energy is required to produce a product and do analyze to obtain energy savings opportunities. From energy audit measures the amount of energy use at PT XYZ in the past year 3,278,043 kWh, the SEC obtained a value of 1.20 kWh / kg / month. In the air system obtained results of 4.15 Watt / m3 which is indicated in the category inefficient. Savings opportunities in HVAC systems can save energy 247,737.6kWh up to 123,868.8 kWh per year, equivalent to Rp 159,886,750.00 to Rp 287,796,151.00 per year. Energy use in lighting systems at PT XYZ is already good.

Keywords: Energy audit, Specific Energy Consumption, energy saving opportunity

ABTRAK

Audit energi merupakan langkah awal untuk mengetahui penggunaan energi dan evaluasi untuk dapat menciptakan langkah konservasi energi sesuai dengan peraturan pemerintah no 70 tahun 2009 tentang konservasi energi mewajibkan penggunaan energi dilakukan secara hemat dan efisien, dengan melaksanakan audit energi diharapkan mampu melakukan menghemat penggunaan energi. Dalam penelitian ini audit energi dilakukan dari beberapa tahap. Melalui pengumpulan data terhadap penggunaan energi, penghitungan jumlah konsumsi energi dalam satu tahun terakhir, menghitung nilai SEC (Specific Energy Consumption) untuk mengetahui berapa energi yang dibutuhkan untuk menghasilkan suatu produk, mengidentifikasi titik pemborosan dengan menghitung kuat intesitas cahaya (lux) dan daya pencahyaan maksimum (watt/m²) dan efisiensi sistem tata udara (watt/m³) dan melakukan analisa untuk mendapatkan peluang penghematan energi. Dari tindakan audit energi jumlah penggunaan energi pada PT XYZ dalam satu tahun terakhir 3.278.043 kWh, nilai SEC yang diperoleh 1,20 kWh/kg/bulan. Pada sistem tata udara diperoleh hasil 4,15 Watt/m³ yang mengindikasikan dalam kategori tidak efisien. Penggunaan energi pada sistem pencahayaan pada PT XYZ sudah baik. Peluang penghematan pada sistem tata udara dapat menghemat penggunaan energi 123.868,8 kWh sampai 247.737,6 kWh per-tahun atau setara Rp 159.886.750,00 sampai Rp 287.796.151,00 per-tahun.

Kata Kunci: Audit Energi, SEC (Specific Energy Consumption), Peluang Penghematan Energi

PENDAHULUAN

1.1 Latar Belakang

penghematan Program energi membutuhkan kesadaran masyarakat. Untuk itu diperlukan himbauan maupun kepada masyarakat penyadaran melakukan penghematan energi. Bahkan dalam beberapa kasus dibutuhkan upaya penyadaran yang lebih kuat sehingga masyarakat bertindak melakukan penghematan energi.

Berdasar pada peraturan pemerintahan republik Indonesia nomor 70 tahun 2009 tentang konservasi energi pasal 2 dimana pengguna energi yang menggunakan sumber energi dan/ atau energi lebih besar setara dengan 6000 setara ton minyak per tahun (69780 Mwh) wajib melakukan konservasi energi (penghematan energi). Mengingat PT XYZ belum pernah dilakukan audit energi maka penggunaan energi di PT XYZ belum diketahui dan tidak dapat dikatakan efisien maupun tidak efisien, oleh karena itu penulis merasa perlu untuk dilakukan kegiatan energi di PT XYZ dengan tujuan untuk menganalisa bagaimana pemanfaatan energi dan peluang penghematan energi di PT XYZ. Khusunya penggunaan energi listrik untuk sistem pencahayan dan tata udara untuk dijadikan dasar penerapan sistem audit energi agar terciptannya peluang penghematan energi yang maksimal. Dengan mengetahui penggunaan energi, dan tingkat efisiensi di PT XYZ apakah masuk dalam batas untuk melakukan konservasi energi.

II. TINJAUAN PUSTAKA

2.1 Audit Energi

Menurut Barney L. Capehart and Mark B. Spiller, dalam buku energy management

handbook edisi ke 6 bagian 3 tentang audit energi, menyatakan bahwa audit energi merupakan langkah awal yang harus dilakukan dalam pencapaian efektifitas energi dan suatu upaya pengamatan suatu proses energi secara sistematik yang pendataan dilakukan nantinya mendapatkan peluang penghematan energi.

2.2 Konservasi Energi

Konservasi energi merujuk pada pengurangan pemakaian energi berbagai tujuan dan kegiatan industri. Tujuan utama dari konservasi energi adalah untuk menghemat energi. Penghematan energi juga berarti menghemat uang serta mengurangi ketergantungan kita pada bahan bakar fosil karena mereka masih merupakan bahan bakar yang dominan.

2.3 Konservasi Energi

Konservasi energi merujuk pengurangan pemakaian energi untuk berbagai tujuan dan kegiatan industri. Tujuan utama dari konservasi energi adalah untuk menghemat energi. Penghematan energi juga berarti menghemat uang serta mengurangi ketergantungan kita pada bahan bakar fosil karena mereka masih merupakan bahan bakar yang dominan.

2.4 Intensitas Penggunaan Energi

Intensitas Penggunaan Energi atau Energy Use Intensity (EUI) atau dalam dunia industri lebih dikenal dengan sebutan consumption Specific energy merupakan pembagian antara konsumsi energi dengan satuan luas bangunan gedung untuk bangunan gedung komersil dan merupakan pembagian antara konsumsi energi dengan jumlah produksi.

Tabel 1.	Intensitas	Energi
----------	------------	--------

Sector	Sub Sector	Unit	Data	
Industrial	Iron and Steel, Cement, Textile, Chemical, etc	0.1	AvailableBased on Result of energy audit	

AUDIT ENERGI UNTUK MENCAPAI PELUANG PENGHEMATAN ENERGI Selamet riadi dan Erry Trigunadi

Commercial	Hotel, Shopping Center, Private Office, Hospital, Goverment Office, etc	Energy/floor area (kWh/m2)	- In 2003-2010, energy audit services implemented in 452 industries and buildings
Residential	High Income, medium income, low income, etc	Energy/number of household (BOE/household)	Not Available
Transportation	Passanger Vehicles, non- passanger vehicles	Energy/distance (liter/km)	Not Available

2.5 Standarisasi Sistem Pencahayaan

Dalam pemasangan instalasi sistem pencahayaan terdapat suatu acuan standar dalam pemasangannya. Untuk di Indonesia hal tersebut telah tercantum dalam SNI 03-6197-2000. Standar ini memuat ketentuan pedoman pencahayaan pada bangunan gedung untuk memperoleh sistem pencahayaan dengan pengoperasian yang optimal sehingga penggunaan energi dapat efisien tanpa harus mengurangi dan atau mengubah fungsi bangunan, kenyamanan dan produktivitas kerja penghuni serta mempertimbangkan aspek biaya.

2.6 Standarisasi Sistem Tata Udara

Di Indonesia terdapat standar nasional yang dapat dijadikan suatu rujukan dalam sistem tata udara yang tertera dalam SNI 03-6390-2000. Standar ini memuat: perhitungan teknis, pemilihan, pengukuran dan pengujian, konservasi energi dan rekomendasi sistem tata udara pada bangunan gedung yang optimal, sehingga penggunaan energi dapat effisien tanpa harus mengurangi dan atau mengubah bangunan, kenyamanan fungsi dan penghuni, produktivitas kerja serta mempertimbangkan aspek biaya.

Adapun standar ataupun panduan karakteristik untuk sistem tata udara

menggunakan Fan, rancangan sistem fan harus memenuhi ketentuan sebagai berikut :

- 1. untuk sistem fan dengan volume tetap, daya yang dibutuhkan motor pada sistem fan gabungan tidak melebihi $1,36 \text{ W/ (m}^3/\text{jam}).$
- 2. untuk sistem fan dengan volume aliran berubah, daya yang dibutuhkan motor untuk sistem fan gabungan tidak melebihi 2,12 W/(m³/jam).
- 3. setiap fan pada sistem volume aliran berubah atau VAV (Variable Air Volume) dengan motor 60 kW atau lebih, harus memiliki kontrol dan peralatan yang diperlukan agar fan tidak membutuhkan daya lebih dari 50% daya rancangan pada 50% volume rancangan berdasarkan data uji;
- ketentuan butir 1, 2 dan 3 tidak berlaku untuk fan dengan daya lebih kecil dari 7,5 kW pada aliran rancangan.

III. METODE PENELITIAN

3.1 Tempat Penelitian

Penelitian dilaksanakan di PT XYZ yang terletak di Kawasan Industri JATAKE Tangerang.

3.2 Diagram Alir Penelitian

garis besar, alur penelitian Secara dapat dilihat pada bagan berikut :

Gambar 3.1. Diagram Alur Penelitian

IV. HASIL DAN PEMBAHASAN

4.1 Data Penggunaan Energi Listrik

Penggunaan energi listrik bulanan selama satu tahun periode dari oktober 2015 sampai september 2016 yang merupakan data historis ada pada tabel 2.

4.2 Data Penggunaan Natural Gas

Penggunaan natural gas selama satu tahun periode dari oktober 2015 sampai september 2016 adalah dapat dilihat pada tabel 3.

Bulan	Tahun	WBP (kW)	LWBP (kW)	Jumlah kWh	Jumlah Pembayaran (Rp)
Oktober	2015	21.824	118.800	140.624	Rp174.039.080
November	2015	22.080	123.800	145.880	Rp178.384.453
Desember	2015	19.488	107.728	127.216	Rp158.264.033
Januari	2016	20.944	108.752	129.696	Rp159.499.229
Februari	2016	18.144	97.344	115.488	Rp129.220.122
Maret	2016	19.392	102.880	122.272	Rp135.249.327
April	2016	22.576	122.512	145.088	Rp155.975.932
Mei	2016	20.576	113.600	134.176	Rp142.828.196
Juni	2016	21.408	119.488	140.896	Rp151.052.645
Juli	2016	20.656	121.644	142.300	Rp153.379.795
Agustus	2016	12.080	66.784	78.864	Rp88.301.024
September	2016	20.000	111.664	131.664	Rp147.062.426
	Tota	.1		1.554.164	Rp1.773.256.262

Tabel 2. Penggunaan Energi Listrik

Tabel 3. Data Penggunaan Natural Gas

					Konversi
О	Bulan	Tahun	Pemakaian (m ³)	Nilai Tagihan	kWh
1	Oktober	2015	17.049,00	Rp62.228.850	205.099
2	November	2015	17.516,00	Rp63.933.400	210.717
3	Desember	2015	13.614,00	Rp49.691.100	163.776
4	Januari	2016	16.059,67	Rp58.617.783	193.198
5	Februari	2016	9.892,01	Rp36.105.818	119.001
6	Maret	2016	9.815,62	Rp35.826.995	118.082
7	April	2016	8.860,78	Rp32.341.847	106.595
8	Mei	2016	11.228,79	Rp40.985.084	135.082
9	Juni	2016	11.005,46	Rp40.169.929	132.396
10	Juli	2016	6.328,70	Rp23.099.755	76.134
11	Agustus	2016	10.218,30	Rp37.296.795	122.926
12	September	2016	11.710,00	Rp42.741.500	140.871
	Total		143.298,32	Rp523.038.856	1.723.879

4.3 Total Penggunaan Energi

Perbandingan penggunaan kWh Listrik dan Natural gas dimana penggunaan energi listrik terbesar pada bulan november 2015 sebesar 145.880 kWh dan terkecil bulan agustus 2016 sebesar 78.864 kWh. Penggunaan energi natural gas terbesar terjadi pada bulan November 2015 sebesar 210.171 kWh dan terkecil pada bulan Juli 2016 sebesar 76.134 kWh. **Total** penggunaan selama setahun kWh natural gas lebih besar dibandingkan kWh energi listrik dengan persentase secara berurutan 53% dan 47%.

Gambar 2. Penggunaan kWh Listrik dan Natural gas

Gambar 3. Perbandingan Total Penggunaan Energi

4.4 Nilai Specific Consumption Energy

Tabel 4. Nilai Specific Consumption Energy

			kWh			
		kWh	Natural	kWh	Produksi	SEC
Bulan	Tahun	Listrik	Gas	Energi	(kg)	(kWh/kg)
Oktober	2015	140.624	205.099	345.723	291.234	1,19
November	2015	145.880	210.717	356.597	241.903	1,47
Desember	2015	127.216	163.776	290.992	258.885	1,12
Januari	2016	129.696	193.198	322.894	209.399	1,54
Februari	2016	115.488	119.001	234.489	236.878	0,99
Maret	2016	122.272	118.082	240.354	268.391	0,90

AUDIT ENERGI UNTUK MENCAPAI PELUANG PENGHEMATAN ENERGI Selamet riadi dan Erry Trigunadi

April	2016	145.088	106.595	251.683	285.705	0,88
Mei	2016	134.176	135.082	269.258	226.728	1,19
Juni	2016	140.896	132.396	273.292	260.373	1,05
Juli	2016	142.300	76.134	218.434	101.528	2,15
Agustus	2016	78.864	122.926	201.790	214.906	0,94
September	2016	131.664	140.871	272.535	272.740	1,00
Total				3.278.043	2.868.670	14,42
	Rata-ı	rata		273.170	239.056	1,20

Dari data yang telah diolah didapatkan nilai konsumsi energi spesifik (KES) atau dikenal juga dengan sebutan Specific energy consumption (SEC). Dimana nilai SEC terbesar terjadi pada bulan Juli 2016

sebesar 2,15 kWh/kg dan terkecil pada bulan April 2016 sebesar 0,88 kWh/kg dengan rata-rata SEC sebesar kWh/kg/bulan.

Gambar 4. Specific energy consumption

Berdasarkan data yang telah diperoleh dari bab sebelumnya dapat dijelaskan bahwa nilai total penggunaan energi selama setahun terakhir pada PT XYZ sebesar 3.278.043 kWh/tahun, nilai tersebut masih sangat dibawah dari jumlah yang ditetapkan pemerintah republik peraturan Indonesia nomor 70 tahun 2009 tentang sebesar 69.780 konservasi energi Mwh/tahun untuk waiib melakukan konservasi energi (penghematan energi). Meskipun demikian bukan berarti tidak boleh melakukan upaya untuk melakukan penghematan energi.

Berdasarkan perhitungan nilai Specific energy consumption (SEC) didapat nilai rata-rata Specific energy consumption XYZ sebesar 1,02 (SEC) pada PT

kWh/kg/bulan setelah kita mengetahui nilai rata-rata Specific energy consumption (SEC) dibandingkan dengan penelitian yang dilakukan oleh ICF International dalam jurnal Study on energy efficiency and energy saving potential in industry and on possible policy mechanisms pada tahun 2015, besar intensitas energi berada di angka 0,75GJ/ton atau sama dengan 0,2 kWh/kg, dari hasil tersebut menunjukan nilai SEC pada PT XYZ masih lebih boros, maka perlu mencari peluang penghematan energi agar terciptannya energi yang lebih efisien atau kurang dari nilai rata-rata di atas.

4.5 Profil Penggunaan Energi

Tabel 5. Total Daya Terpasang

No	Nama	Total Daya (kW)
1	Utility	138,9
2	Mesin	472,5
3	Pencahayaan	30,4
4	AC Ruangan, dll	69,3
5	HVAC Produksi	117,3
	Total	828,4

Gambar 5. Presentase Total Daya Terpasang

Tabel 6. Data Konsumsi Energi Bulan September 2016

No	Nama	Konsumsi Energi (kWh)
1	Utility	20.404
2	Mesin	20.831
3	Pencahayaan	16.781
4	AC Ruangan, dll	9.923
5	HVAC produksi	63.726
	Total	131.664

Gambar 6. Presentase Konsumsi Energi

4.6 Analisa Sistem Tata Udara

Sistem tata udara untuk produksi merupakan penyumbang konsumsi terbesar dengan persentase sebesar 48% maka perlu

dilakukannya evaluasi pada sistem tata udara yang terpasang saat ini untuk dapat menciptakan peluang penghematan energi.

Nama Daya (kW)		Total Daya	Volume	Daya Maksimum (W/(m3/h))		
rvania	Daya (KW)	(kW)	Bangunan (m3)	Terukur	SNI 03-6390- 2000	
EAF 1-1	11	11000	2520	4,37		
EAF 1-2	6,6	10600	1908,8	5,55		
FAF 1-2	4	10000	1900,0	3,33		
EAF 1-3	17				1,3	
FAF 1-3A	7,5				1,3	
FAF 1-3B	35,7	95700	37632	2,54		
FAF 1-3C	19,2					
FAF 1-3D	16,3					

Tabel 7. Nilai Daya Maksimum HVAC

Dari perhitungan yang dilakukan terlihat dimana nilai daya maksimum yang terukur semuanya berada di atas 1,3 W/(m3/h) yang merupakan standar SNI 03-6390-2000. Dengan hal ini menunjukan bahwa sistem tata udara yang terpasang saat

itu tidak termasuk efisien dan tidak hemat energi.

4.7 Analisa Sistem Pencahayaan

Kuat cahaya penerangan pada ruangan dapat dilihat pada tabel 8.

AUDIT ENERGI UNTUK MENCAPAI PELUANG PENGHEMATAN ENERGI

Selamet riadi dan Erry Trigunadi

Tabel 8. Kuat Penerangan Ruangan

Lalvasi Duan aan		LUX	
Lokasi Ruangan	Terukur	SNI 03-6197-2000	Keterangan
Area Utility	80	100	RuangBoiler, kompressor
Ruang Pengemasan	550	200-500	Pekerjaan Menengah
Gudang Bahan Baku	225	100	Gudang
Ruang Unboxing	225	200-500	Pekerjaan Menengah
Ruang QC Karantina	225	200-500	Pekerjaan Menengah
Ruang Staging Produk Ruahan	550	100	Gudang
Ruang Mixing 1	550	200-500	Pekerjaan Menengah
Ruang Mixing 2	550	200-500	Pekerjaan Menengah
Ruang Mixing 3	320	200-500	Pekerjaan Menengah
Ruang Mixing 4	320	200-500	Pekerjaan Menengah
Ruang Mixing 5	320	200-500	Pekerjaan Menengah
Ruang Staging Formulasi	225	100	Gudang
Ruang Alat Bersih olah	225	100	Gudang
Ruang Cuci Olah	320	100-200	Pekerjaan Kasar
Ruang CIP	120	100-200	Pekerjaan Kasar
Ruang Pengemasan Cairan Kental	1250	200-500	Pekerjaan Menengah
Ruang Alat Bersih Pengemasan	120	100	Gudang
Ruang Cuci Pengemasan	550	100-200	Pekerjaan Kasar
Ruang Timbang	550	200-500	Pekerjaan Menengah
Ruang Staging Bahan Baku	320	100	Gudang
Ruang Printing	800	500-1000	Pekerjaan Halus
Ruang Labelling	800	500-1000	Pekerjaan Halus
Ruang Antara	120	100	Koridor
Gudang Bahan Pengemas	320	100	Gudang
Ruang Lab RND	1250	500-1000	Pekerjaan Halus
Ruang Lab QC	800	500-1000	Pekerjaan Halus
Gudang Alkohol	225	100	Gudang
Ruang Maintenance	80	300	Ruang Kerja

Sebagian besar ruangan yang ada pada PT XYZ tingkat kuat peneranganya berada pada standar bahkan diatas standar. Hanya area utility dan ruang maintenance yang berada di bawah standar yang ditetapkan

SNI 03-6197-2000. di dalam Bila persentasikan dari total 28 ruangan, 26 ruangan masuk dalam kategori efisien maka tinkat efisiensinya sebesar 92,8%.

AUDIT ENERGI UNTUK MENCAPAI PELUANG PENGHEMATAN ENERGI

Selamet riadi dan Erry Trigunadi

Tabel 9. Kuat Penerangan Ruangan

Lokasi Ruangan	Jumlah Watt	Luas Ruangan (m2)		mcahayaan m (W/m2) SNI 03- 6197-	Keterangan
		(1112)	TCTUKUI	2000	
					RuangBoiler,
Area Utility	57	80	0,71	10	kompressor
Ruang Pengemasan	11096	4884	2,27	10	Pekerjaan Menengah
Gudang Bahan Baku	1207	624	1,93	5	Gudang
Ruang Unboxing	1064	252	4,22	20	Pekerjaan Menengah
Ruang QC Karantina	1064	252	4,22	20	Pekerjaan Menengah
Ruang Staging Produk Ruahan	1482	360	4,12	5	Gudang
Ruang Mixing 1	456	90,4	5,04	20	Pekerjaan Menengah
Ruang Mixing 2	304	45,2	6,73	20	Pekerjaan Menengah
Ruang Mixing 3	2888	790,47	3,65	20	Pekerjaan Menengah
Ruang Mixing 4	228	45,2	5,04	20	Pekerjaan Menengah
Ruang Mixing 5	228	45,2	5,04	20	Pekerjaan Menengah
Ruang Staging			•		
Formulasi	570	148,2	3,85	5	Gudang
Ruang Alat Bersih	220	60	2.00	~	
olah	228	60	3,80	5	Gudang
Ruang Cuci Olah	152	22,6	6,73	20	Pekerjaan Kasar
Ruang CIP	152	22,6	6,73	20	Pekerjaan Kasar
Ruang Pengemasan Cairan Kental	304	60	5,07	20	Pekerjaan Menengah
Ruang Alat Bersih	304	00	3,07	20	1 ekerjaan wienengan
Pengemasan	190	24	7,92	5	Gudang
Ruang Cuci					
Pengemasan	190	24	7,92	20	Pekerjaan Kasar
Ruang Timbang	1596	315	5,07	20	Pekerjaan Menengah
Ruang Staging Bahan	410	00	1.61	5	Cudana
Baku Baku	418	90	4,64		Gudang
Ruang Printing	456	90	5,07	20	Pekerjaan Halus
Ruang Labelling	456	72	6,33	20	Pekerjaan Halus
Ruang Antara	342	39	8,77	10	Koridor
Gudang Bahan Pengemas	608	3953	0,15	5	Gudang
Ruang Lab RND	912	384	2,38	20	Pekerjaan Halus
Ruang Lab QC	912	384	2,38	20	Pekerjaan Halus
Gudang Alkohol	285	156	1,83	5	Gudang
Ruang Maintenance	247	150	1,65	15	Ruang Kerja
Ruang Mannenance	247	130	1,03	13	Kuang Kerja

Sebagian besar ruangan yang ada pada PT XYZ tingkat kuat peneranganya berasebagian besar ruangan yang ada pada PT XYZ tingkat daya pencahayaan maximal sudah baik karena berada dibawah standar. Hanya ruang alat bersih

pengemasan memiliki nilai melebihi standar yang ditetapkan dalam SNI 03-6197-2000.

4.8 Rekomendasi Penghematan Energi

Diketahui bahwa jam operasional untuk sistem HVAC (*Heating*, *Ventilation*, *Air Conditioning*) produksi selama 24 jam

AUDIT ENERGI UNTUK MENCAPAI PELUANG PENGHEMATAN ENERGI

Selamet riadi dan Erry Trigunadi

dalam sehari untuk hari kerja yaitu senin sampai jumat. Pada saat jam istirahat dan pergantian shift ada jeda waktu dimana sistem HVAC produksi terus menyala tetapi tidak terpakai. Melihat hal ini perlu dilakukannya perubahan jam operasional sistem HVAC industri. Bila waktu operasional sistem HVAC selama 24 jam dalam satu hari dan 528 jam dalam satu bulan dengan asumsi jumlah hari kerja

normal dalam satu bulan adalah 22 hari. Dari data tersebut di atas didapatkan waktu penghematan operasional sistem HVAC produksi sebesar 5 sampai 8 jam perhari atau 88 jam sampai dengan 176 jam perbulan. Sehingga waktu operasional sistem HVAC produksi bisa berkurang menjadi 440 jam sampai 352 jam.

Tabel 10. Penghematan Energi dan Biaya Waktu Kerja Normal

Nama	Daya (KW)	Penghematan kWh			Penghematan Biaya (Rp)		
		LWBP	WBP	Total	LWBP	WBP	Total
EAF 1-1	11	1452	484	1936	Rp 1.499.364	Rp 749.682	Rp 2.249.046
EAF 1-2	6,6	871,2	290,4	1161,6	Rp 899.619	Rp 449.809	Rp 1.349.428
EAF 1-3	17	2244	748	2992	Rp 2.317.199	Rp 1.158.600	Rp 3.475.799
FAF 1-2	4	528	176	704	Rp 545.223	Rp 272.612	Rp 817.835
FAF 1-3A	7,5	990	330	1320	Rp 1.022.294	Rp 511.147	Rp 1.533.441
FAF 1-3B	35,7	4712,4	1570,8	6283,2	Rp 4.866.118	Rp 2.433.059	Rp 7.299.178
FAF 1-3C	19,2	2534,4	844,8	3379,2	Rp 2.617.072	Rp 1.308.536	Rp 3.925.608
FAF 1-3D	16,3	2151,6	717,2	2868,8	Rp 2.221.785	Rp 1.110.893	Rp 3.332.678
Jumlah (kWh)			20644,8	Jumlah (Rp)		Rp 23.983.013	
Penghematan kWh per tahun			247737,6	Penghematan Biaya per tahun		Rp 287.796.151	

Tabel 11. Penghematan Energi dan Biaya Waktu Kerja Lembur

Nama	Davie (KW)	Penghematan kWh			Penghematan Biaya (Rp)		
Nama	Daya (KW)	LWBP	WBP	Total	LWBP	WBP Total	
EAF 1-1	11	484	484	968	Rp 499.788	Rp 749.682	Rp 1.249.470
EAF 1-2	6,6	290,4	290,4	580,8	Rp 299.873	Rp 449.809	Rp 749.682
EAF 1-3	17	748	748	1496	Rp 772.400	Rp 1.158.600	Rp 1.930.999
FAF 1-2	4	176	176	352	Rp 181.741	Rp 272.612	Rp 454.353
FAF 1-3A	7,5	330	330	660	Rp 340.765	Rp 511.147	Rp 851.912
FAF 1-3B	35,7	1570,8	1570,8	3141,6	Rp 1.622.039	Rp 2.433.059	Rp 4.055.099
FAF 1-3C	19,2	844,8	844,8	1689,6	Rp 872.357	Rp 1.308.536	Rp 2.180.893
FAF 1-3D	16,3	717,2	717,2	1434,4	Rp 740.595	Rp 1.110.893	Rp 1.851.488
Jumlah (kWh)				10322,4	Jumlah (Rp)		Rp 13.323.896
Penghematan kWh per tahun				123868,8	Penghematan Biaya per tahun		Rp 159.886.750

Dari hasil perhitungan diatas tersebut dicapai penghematan energi berkisar 10.322,4 kWh sampai 20.644,8 kWh perbulan menghemat atau Rp

13.323.896,00 sampai Rp23.983.013,00 dan dalam periode Satu tahun dapat menghemat Rp159.886.750

sampai Rp 287.796.151.

	1 0					
	Penghematan Per Bulan (kWh)	Rata-rata kWh perbulan	rata-rata produksi per bulan (kg)	SEC (kWh/kg)		
Level						
Atas	20.644,80	273.170,23	239.055,87	1,06		
Level						
Bawah	10.322,40	273.170,23	239.055,87	1,10		

Tabel 12. SEC setelah penghematan

Terjadi penurunan angka SEC yang pada bab sebelumnya besar SEC 1,20 kWh/kg/bulan. Menjadi 1,10 kWh/kg/bulan sampai 1,06 kWh/kg/bulan

V. KESIMPULAN

Jumlah penggunaan energi pada PT XYZ selama satu tahun terakhir sebesar 3.278.043 kWh. PT XYZ masuk dalam kategori tidak wajib melakukan kegiatan iumlah energi konservasi karena penggunaan energi selama satu tahun berada dibawah angka yang ditetapkan oleh peraturan pemerintah republik Indonesia nomor 70 tahun 2009 tentang konservasi energi. Nilai intensitas energi PT XYZ yang telah di hitung menggunakan Specific energy consumption (SEC) berada pada angka 14,42 kWh/kg/tahun dengan nilai rata-rata perbulan 1,20 kWh/kg/bulan. Sistem tata udara merupakan penyumbang konsumsi terbesar dengan persentase 48%. Sistem tata udara berada pada kategori tidak efisien dengan nilai daya maksimum di atas W/m^3 . Presentase tingkat penerangan ruangan dan daya pencahayaan maksimum secara berturut sebesar 92,8% dan 96.4 % sesusai standar SNI 03-3197-2000 yang mengindikasikan pencahayaan pada PT XYZ sudah baik. Rekomendasi peluang penghematan energi sistem tata udara berpotensi menghemat pemakaian energi sebesar 10.322.4 kWh sampai 20.644.8 kWh per-bulan; 123.868,8 kWh sampai 247.737,6 kWh per-tahun atau menghemat Rp 13.323.896 sampai Rp 23.983.013, perbulan ; Rp 159.886.750 sampai Rp 287.796.151 per-tahun.

DAFTAR PUSTAKA

Badan Standarisasi Nasional Indonesia. 2000. SNI 03-6197- 2000 tentang Konservasi energi pada sistem pencahayaan. Jakarta: BSN

Badan Standarisasi Nasional Indonesia. 2000. SNI 03-6390- 2000 tentang Konservasi energi sistem tata udara pada bangunan gedung. Jakarta: **BSN**

Barney L. Capehart And Mark B. Spiller. Energy 2006. Management Handbook Sixth Edition. Lilburn: The Fairmont Press. Inc.

ICF International. 2015. Study On Energy Efficiency And Energy Saving Potential In Industry And On Mechanisms. Possible Policy No. ENER/C3/2012-Contract 439/S12.666002.

Internasional Gas Union. 2012. Natural Gas Conversion Pocketbook.

Indoenergi. 2012. "Pengertian Konservasi Energi". http://www.indoenergi.com/2012/0 4/pengertian-konservasienergi.html. (diakses tanggal 25 September 2016)

Penyesuaian Tenaga Tarif Listrikhttp://www.pln.co.id/wpcontent/uploads/2016/10/10 TA.pn g. (diunduh pada 13 oktober 2016)

Peraturan Pemerintah Republik Indonesia. 2009 Nomor 70 tentang Konservasi Energi. Jakarta: Presiden Republik Indonesia.

Pratama, Armiko. "Pencahayaan Ruangan". http://armikopratama.blogspot.co.id /2012/10/pencahayaanruangan.html. (diakses tanggal 25 September 2016)

Unit Juggler Convert Everything With Ease. https://www.unitjuggler.com/conve from-toert-energytokWh.html?val=6000. (diakses tanggal 12 Desember 2016)

Wasistri. "Jenis Jenis Lampu". https://wasistri.wordpress.com/2015 /07/13/jenis-jenis-lampu. (diakses tanggal 25 September 2016)

AUDIT ENERGI UNTUK MENCAPAI PELUANG PENGHEMATAN ENERGI Selamet riadi dan Erry Trigunadi					