

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Dimethylammonium dichloridotriphenylstannate(IV)

Yaya Sow, Libasse Diop, Gabriele Kociok-Kohn and Kieran C. Molloy *

^aLaboratoire de Chimie Minerale et Analytique (LACHIMIA), Departement de Chimie, Faculte des Sciences et Techniques, Universite Cheikh Anta Diop Dakar, Senegal, and ^bDepartment of Chemistry, University of Bath, Bath BA2 7AY, England Correspondence e-mail: yayasow81@yahoo.fr

Received 21 May 2012; accepted 25 June 2012

Key indicators: single-crystal X-ray study; T = 150 K; mean $\sigma(C-C) = 0.004 \text{ Å}$; R factor = 0.021; wR factor = 0.045; data-to-parameter ratio = 20.1.

The title salt, $[(CH_3)_2NH_2][Sn(C_6H_5)_3Cl_2]$, was obtained as a by-product of the reaction between bis(dimethylammonium) oxalate and triphenyltin chloride. In the stannate anion, the trigonal–bipyramidal coordination environment of the Sn^{IV} atom is defined by the phenyl groups in equatorial and the Cl atoms in axial positions. The cations are connected to adjacent anions through $N-H\cdots Cl$ and $C-H\cdots Cl$ hydrogen-bonding interactions, leading to a chain motif parallel to [100].

Related literature

For background to organotin(IV) chemistry, see: Chee *et al.* (2003); Evans & Karpel (1985); Gielen *et al.* (1995); Ng & Kumar Das (1997); Zhang *et al.* (2006). For compounds containing the $[Sn(C_6H_5)_3Cl_2]^-$ ion, see: Harrison *et al.* (1978); Ng (1995, 1999).

$$\begin{bmatrix} Me \\ Me \\ H \end{bmatrix} \begin{bmatrix} Ph \\ CI \\ Ph \\ Ph \end{bmatrix}$$

Experimental

Crystal data

 $(C_2H_8N)[Sn(C_6H_5)_3Cl_2]$ V = 2014.53 (6) Å³ Z = 4 Monoclinic, Cc Mo Kα radiation a = 7.9865 (1) Å $\mu = 1.54 \text{ mm}^{-1}$ b = 17.5031 (3) Å T = 150 K c = 14.9484 (3) Å $\theta = 105.406$ (1)°

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{\min} = 0.656, T_{\max} = 0.749$ 16595 measured reflections 4569 independent reflections 4469 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.037$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.045$ S = 1.074569 reflections 227 parameters 2 restraints

H atoms treated by a mixture of independent and constrained refinement

 $\Delta \rho_{\text{max}} = 0.41 \text{ e Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.89 \text{ e Å}^{-3}$

Absolute structure: Flack (1983), 2256 Friedel pairs
Flack parameter: -0.030 (12)

Table 1 Selected bond lengths (Å).

Sn-C7	2.152 (2)	Sn-Cl2	2.6098 (6)
Sn-C13	2.152 (2)	Sn-Cl1	2.6153 (6)
Sn-C1	2.160(2)		

Table 2 Hydrogen-bond geometry (Å, °).

D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
0.89 (3)	2.33 (3)	3.203 (2)	167 (3)
0.82(3)	2.34 (3)	3.143 (2)	164 (3)
0.95	2.67	3.309 (3)	125
0.95	2.76	3.376 (2)	123
0.95	2.70	3.344 (2)	126
0.95	2.69	3.340 (2)	126
	0.89 (3) 0.82 (3) 0.95 0.95 0.95	0.89 (3) 2.33 (3) 0.82 (3) 2.34 (3) 0.95 2.67 0.95 2.76 0.95 2.70	0.89 (3) 2.33 (3) 3.203 (2) 0.82 (3) 2.34 (3) 3.143 (2) 0.95 2.67 3.309 (3) 0.95 2.76 3.376 (2) 0.95 2.70 3.344 (2)

Symmetry code: (i) x - 1, y, z.

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2636).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

Chee, C. F., Lo, K. M. & Ng, S. W. (2003). Acta Cryst. E59, m36-m37.

Evans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology. J. Organomet. Chem. Library, Vol. 16, Amsterdam: Elsevier. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Gielen, M., Bouhdid, A., Kayser, S., Biesemans, M., De Vos, D., Mahieu, B. & Willem, R. (1995). Appl. Organomet. Chem. 9, 251–257.

Harrison, P. G., Molloy, K. C., Phillips, R. C., Smith, P. J. & Crowe, A. J. (1978).
J. Organomet. Chem. 160, 421–434.

Ng, S. W. (1995). Acta Cryst. C51, 1124–1125.

Ng, S. W. (1999). Acta Cryst. C55, IUC9900098.

Ng, S. W. & Kumar Das, V. G. (1997). Acta Cryst. C53, 1034-1036.

metal-organic compounds

Nonius (1999). *COLLECT*. Nonius BV, Delft, The Netherlands. Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Sheldrick, G. M. (2008). *Acta Cryst.* **A64**, 112–122. Westrip, S. P. (2010). *J. Appl. Cryst.* **43**, 920–925. Zhang, W.-L., Ma, J.-F. & Jiang, H. (2006). *Acta Cryst.* E**62**, m460–m461.

Acta Cryst. (2012). E68, m1015-m1016 [doi:10.1107/S1600536812028905]

Dimethylammonium dichloridotriphenylstannate(IV)

Yaya Sow, Libasse Diop, Gabriele Kociok-Kohn and Kieran C. Molloy

Comment

Three $[Sn(C_6H_5)_3Cl_2]$ stannate(IV) anion-containing compounds with 2,2'-iminodipyridinium (Ng, 1999), triphenyl-(benzoylmethyl)arsonium (Harrison *et al.*, 1978) and tetramethylammonium (Ng, 1995), have previously been reported. In our research of new organotin(IV) compounds, driven by the various applications found within this family (Chee *et al.*, 2003; Evans & Karpel 1985; Gielen *et al.*, 1995; Ng *et al.*,1997; Zhang *et al.*, 2006), we have initiated here the study of the interactions between bis(dimethylammonium)oxalate and triphenyltin chloride which has yielded the title ionic product, $[(CH_3)_2NH_2][Sn(C_6H_5)_3Cl_2]$, (I).

The [Sn(C₆H₅)₃Cl₂] anion has a trigonal-bipyramidal shape with the Sn(IV) atom in a *trans*-Cl₂C₃ environment (Fig. 1). The equatorial plane is defined by the three phenyl groups [Sn—C 2.152 (2), 2.152 (2) and 2.160 (2) Å] while the Sn—Cl distances are 2.6098 (6) and 2.6153 (6) Å. The latter distances are very close to those reported by Ng (1995, 1999), [2.598 (1) Å] but somehow longer and shorter than those reported by Harrison *et al.* (1978) [2.573 (7), 2.689 (6) Å] for the same kind of anion. The sum of the equatorial angles (360°) indicates a planar SnPh₃ residue, although the Cl—Sn—Cl angle deviates from linearity [174.94 (2)°].

The [SnPh₃Cl₂] anions are connected by the ammonium cations through a pair of similar N—H···Cl hydrogen bonds leading to an infinite chain structure parallel to [100] (Fig. 2), which is probably the origin of the Sn—Cl bond lengthening in comparison with [(CH₃)₄N][Sn(C₆H₅)₃Cl₂]. In the crystal packing C—H···Cl interactions are also observed (Table 1).

Experimental

All chemicals were purchased from Aldrich (Germany) and used without any further purification. When $((CH_3)_2NH_2)_2C_2O_4nH_2O$ (obtained as a powder on submitting a 2/1 ratio mixture of $[(CH_3)_2NH_2][OH]$ and oxalic acid in water to evaporate at 333 K) is allowed to react while stirring with an excess of $Sn(C_6H_5)_3Cl$, both as ethanolic solutions, over 2 h, a precipitate is obtained. After filtering the precipitate, slow solvent evaporation from the filtrate afforded colourless crystals of the title complex suitable for X-ray work.

Refinement

Hydrogen atoms bonded to the N atom have been located in difference Fourier maps and have been freely refined. All other hydrogen atoms have been placed onto calculated position and refined using a riding model, with C—H distances of 0.95 Å for sp^2 carbon atoms, or 0.98 Å for sp^3 carbon atoms, and with $U_{iso}(H) = 1.2 U_{eq}(C)$ for the sp^2 carbon atoms and $U_{iso}(H) = 1.5 U_{eq}(C)$ for the sp^3 carbon atoms.

Computing details

Data collection: *COLLECT* (Nonius, 1999); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR97*

(Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1Molecular structure of the complex showing the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2 The packing of the structure showing N—H····Cl hydrogen bonding interactions as dashed lines.

Dimethylammonium dichloridotriphenylstannate(IV)

Crystal data

F(000) = 936 $(C_2H_8N)[Sn(C_6H_5)_3Cl_2]$ $M_r = 466.98$ $D_x = 1.540 \text{ Mg m}^{-3}$ Monoclinic, Cc Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Hall symbol: C -2yc Cell parameters from 12072 reflections a = 7.9865 (1) Å θ = 2.9–27.5° b = 17.5031 (3) Å $\mu = 1.54 \text{ mm}^{-1}$ c = 14.9484 (3) Å T = 150 K $\beta = 105.406 (1)^{\circ}$ Block, colourless $V = 2014.53 (6) \text{ Å}^3$ $0.30\times0.20\times0.20~mm$

Data collection Nonius KappaCCD Absorption correction: multi-scan diffractometer (SORTAV; Blessing, 1995) Radiation source: fine-focus sealed tube $T_{\min} = 0.656, T_{\max} = 0.749$ Graphite monochromator 16595 measured reflections 298 2.0 degree images with φ and ω scans 4569 independent reflections 4469 reflections with $I > 2\sigma(I)$

$$R_{\text{int}} = 0.037$$
 $k = -22 \rightarrow 22$ $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.5^{\circ}$ $l = -19 \rightarrow 19$

Refinement Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.021$ H atoms treated by a mixture of independent $wR(F^2) = 0.045$ and constrained refinement S = 1.07 $w = 1/[\sigma^2(F_0^2) + (0.0204P)^2]$ 4569 reflections where $P = (F_0^2 + 2F_c^2)/3$ 227 parameters $(\Delta/\sigma)_{\text{max}} = 0.001$ 2 restraints $\Delta \rho_{\rm max} = 0.41 \text{ e Å}^{-3}$ $\Delta \rho_{\min} = -0.89 \text{ e Å}^{-3}$ Primary atom site location: structure-invariant Absolute structure: Flack (1983), 2256 Friedel direct methods Secondary atom site location: difference Fourier pairs Flack parameter: -0.030(12)map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
Sn	0.547277 (14)	0.045301 (7)	0.791813 (12)	0.01712 (5)
C11	0.25286 (7)	0.11982(3)	0.75104 (4)	0.02502 (13)
C12	0.84601 (8)	-0.02426(3)	0.84731 (4)	0.02268 (12)
C1	0.4134(3)	-0.06314 (13)	0.77445 (16)	0.0196 (5)
C2	0.4971 (3)	-0.12794(14)	0.75338 (18)	0.0251 (5)
H2	0.6146	-0.1243	0.7510	0.030*
C3	0.4122 (3)	-0.19752 (14)	0.73581 (18)	0.0293 (6)
Н3	0.4699	-0.2405	0.7191	0.035*
C4	0.2430(3)	-0.20458(14)	0.74251 (19)	0.0278 (6)
H4	0.1850	-0.2524	0.7314	0.033*
C5	0.1592 (3)	-0.14099(14)	0.76558 (18)	0.0269 (5)
H5	0.0438	-0.1454	0.7711	0.032*
C6	0.2438 (3)	-0.07124(14)	0.78062 (17)	0.0229 (5)
H6	0.1845	-0.0280	0.7955	0.028*
C7	0.6122 (3)	0.08981 (12)	0.67105 (15)	0.0189 (4)
C8	0.4818 (3)	0.11348 (13)	0.59360 (16)	0.0229 (5)
Н8	0.3639	0.1126	0.5957	0.028*
C9	0.5229 (3)	0.13846 (14)	0.51318 (17)	0.0269 (5)
Н9	0.4331	0.1537	0.4607	0.032*
C10	0.6947 (3)	0.14098 (13)	0.51011 (17)	0.0262 (5)
H10	0.7225	0.1573	0.4552	0.031*

C11 0.8259 (3) 0.11967 (13) 0.58705 (18) 0.0259 (5) H11 0.9440 0.1228 0.5856 0.031* C12 0.7843 (3) 0.09383 (13) 0.66590 (16) 0.0222 (5) H12 0.8750 0.0784 0.7179 0.027* C13 0.6162 (3) 0.10926 (12) 0.91933 (16) 0.0209 (5)
C12 0.7843 (3) 0.09383 (13) 0.66590 (16) 0.0222 (5) H12 0.8750 0.0784 0.7179 0.027* C13 0.6162 (3) 0.10926 (12) 0.91933 (16) 0.0209 (5)
H12 0.8750 0.0784 0.7179 0.027* C13 0.6162 (3) 0.10926 (12) 0.91933 (16) 0.0209 (5)
C13 0.6162 (3) 0.10926 (12) 0.91933 (16) 0.0209 (5)
C14 0.6982 (3) 0.07444 (14) 1.00306 (17) 0.0246 (5)
H14 0.7210 0.0211 1.0046 0.029*
C15 0.7473 (3) 0.11681 (15) 1.08452 (18) 0.0315 (6)
H15 0.8030 0.0922 1.1413 0.038*
C16 0.7159 (4) 0.19439 (15) 1.0836 (2) 0.0340 (6)
H16 0.7496 0.2231 1.1395 0.041*
C17 0.6349 (3) 0.23011 (15) 1.0009 (2) 0.0318 (6)
H17 0.6148 0.2836 0.9998 0.038*
C18 0.5825 (3) 0.18794 (13) 0.91879 (18) 0.0257 (5)
H18 0.5240 0.2126 0.8626 0.031*
N 0.1313 (3) 0.09715 (12) 0.93699 (16) 0.0265 (5)
H1A 0.172 (4) 0.0954 (16) 0.887 (2) 0.034 (8)*
H1B 0.043 (4) 0.0718 (19) 0.916 (2) 0.032 (8)*
C30 0.0840 (5) 0.17409 (17) 0.9603 (3) 0.0535 (9)
H30A 0.0163 0.1706 1.0061 0.080*
H30B 0.0144 0.1993 0.9042 0.080*
H30C 0.1897 0.2038 0.9863 0.080*
C20 0.2435 (5) 0.0556 (2) 1.0161 (3) 0.0560 (10)
H20A 0.3495 0.0852 1.0420 0.084*
H20B 0.2743 0.0058 0.9952 0.084*
H20C 0.1815 0.0482 1.0639 0.084*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn	0.01594 (7)	0.01814 (7)	0.01734 (7)	-0.00084 (7)	0.00453 (5)	-0.00073 (8)
C11	0.0184(3)	0.0280(3)	0.0286(3)	0.0049(2)	0.0062(2)	0.0038(3)
C12	0.0170(3)	0.0253(3)	0.0250(3)	0.0014(2)	0.0043(2)	0.0007(3)
C1	0.0209 (11)	0.0241 (11)	0.0128 (11)	-0.0049(10)	0.0027 (9)	-0.0002(9)
C2	0.0238 (13)	0.0236 (12)	0.0317 (14)	-0.0029(10)	0.0142 (11)	-0.0051 (10)
C3	0.0320 (13)	0.0230 (12)	0.0346 (15)	0.0016 (10)	0.0117 (12)	-0.0050(11)
C4	0.0284 (13)	0.0219 (12)	0.0314 (14)	-0.0096 (11)	0.0052 (11)	-0.0040 (11)
C5	0.0205 (11)	0.0284 (12)	0.0314 (14)	-0.0053(10)	0.0059 (10)	-0.0008(11)
C6	0.0231 (12)	0.0239 (12)	0.0228 (13)	0.0021 (10)	0.0077 (10)	0.0005 (11)
C7	0.0223 (11)	0.0157 (10)	0.0180(11)	-0.0031(9)	0.0042 (9)	-0.0025 (9)
C8	0.0220 (12)	0.0231 (12)	0.0227 (13)	-0.0005(9)	0.0043 (10)	-0.0002 (10)
C9	0.0339 (14)	0.0250 (12)	0.0200 (12)	0.0022 (10)	0.0036 (11)	-0.0004 (10)
C10	0.0422 (15)	0.0213 (12)	0.0185 (12)	0.0026 (10)	0.0136 (11)	0.0019 (10)
C11	0.0252 (13)	0.0252 (12)	0.0300 (14)	-0.0044(10)	0.0122 (11)	-0.0017 (10)
C12	0.0230 (12)	0.0222 (11)	0.0202 (13)	-0.0020(9)	0.0039 (10)	0.0003 (10)
C13	0.0193 (11)	0.0233 (11)	0.0207 (12)	-0.0027(9)	0.0063 (10)	-0.0023 (10)
C14	0.0282 (13)	0.0231 (12)	0.0228 (13)	-0.0026 (10)	0.0075 (11)	-0.0014 (10)
C15	0.0358 (15)	0.0377 (15)	0.0213 (13)	-0.0058 (11)	0.0080 (12)	-0.0039(11)
C16	0.0386 (15)	0.0391 (15)	0.0264 (15)	-0.0107 (12)	0.0127 (12)	-0.0134 (12)
C17	0.0346 (14)	0.0244 (12)	0.0406 (17)	-0.0057(11)	0.0173 (13)	-0.0134 (12)

C18 N C30 C20	0.0269 (13) 0.0232 (11) 0.059 (2) 0.045 (2)	0.0223 (12) 0.0300 (11) 0.0319 (16) 0.078 (3)	0.0296 (14) 0.0258 (12) 0.081 (3) 0.041 (2)	0.0001 (10) -0.0030 (9) 0.0027 (14) 0.0102 (16)	0.0105 (11) 0.0058 (10) 0.039 (2) 0.0024 (17)	0.0002 (10) -0.0033 (10) -0.0061 (16) 0.0204 (17)	
Geometric parameters (Å, °)							
Sn—C7		2.152 (2	2)	C11—C12		1.383 (3)	
Sn—C13	i	2.152 (2	2)	C11—H11		0.9500	
Sn—C1		2.160 (2	2)	C12—H12		0.9500	
Sn—Cl2		2.6098	(6)	C13—C14		1.390 (3)	
Sn—C11		2.6153	(6)	C13—C18		1.403 (3)	
C1—C6		1.389 (3	3)	C14—C15		1.390 (4)	
C1—C2		1.395 (3	3)	C14—H14		0.9500	
C2—C3		1.385 (3	3)	C15—C16		1.380 (4)	
C2—H2		0.9500		C15—H15		0.9500	
C3—C4		1.387 (3	3)	C16—C17		1.384 (4)	
C3—H3		0.9500		C16—H16		0.9500	
C4—C5		1.389 (3	3)	C17—C18		1.397 (4)	
C4—H4		0.9500		C17—H17		0.9500	
C5—C6		1.385 (3	3)	C18—H18		0.9500	
C5—H5		0.9500		N—C30		1.466 (4)	
C6—H6		0.9500		NC20		1.473 (4)	
C7—C8		1.399 (3	3)	N—H1A		0.89(3)	
C7—C12	2	1.399 (3	3)	N—H1B		0.82(3)	
C8—C9		1.398 (3	3)	C30—H30A		0.9800	
C8—H8		0.9500		C30—H30B		0.9800	
C9—C10)	1.386 (4	l)	C30—H30C		0.9800	
С9—Н9		0.9500		C20—H20A		0.9800	
C10—C1	1	1.386 (4	l)	C20—H20B		0.9800	
C10—H1	10	0.9500		C20—H20C 0.9800		0.9800	
C7—Sn-	-C13	119.52	(8)	C12—C11—H11		120.1	
C7—Sn-	-C1	116.05	(8)	C10—C11—H11		120.1	
C13—Sn	—С1	124.43	(9)	C11—C12—C7		121.7 (2)	
C7—Sn-	-C12	91.83 (6	5)	C11—C12—H12		119.2	
C13—Sn	C12	87.94 (6	5)	C7—C12—H12		119.2	
C1—Sn-		90.57 (7	['])	C14—C13—C18		118.7 (2)	
C7—Sn-	–C11	91.49 (6	5)	C14—C13—Sn		121.19 (16)	
C13—Sn	C11	87.10 (6	5)	C18—C13—Sn		120.14 (17)	
C1—Sn-	-C11	91.40 (7	['])	C13—C14—C15		120.7 (2)	
Cl2—Sn-	—C11	174.94	(2)	C13—C14—H14		119.6	
C6—C1-	—C2	117.8 (2	2)	C15—C14—H14		119.6	
C6—C1-	—Sn	122.82	(18)	C16—C15—C14		120.5 (3)	
C2—C1-		119.33	(16)	C16—C15—H15		119.7	
C3—C2-	C1	121.2 (2	2)	C14—C15—H15		119.7	
C3—C2-	—H2	119.4		C15—C16—C17		119.6 (3)	
C1—C2-	—H2	119.4		C15—C16—H16		120.2	
C2—C3-		120.2 (2	2)	C17—C16—H16		120.2	
C2—C3-	—Н3	119.9		C16—C17—C18		120.4 (2)	

C4—C3—H3	119.9	C16—C17—H17	119.8
C3—C4—C5	119.3 (2)	C18—C17—H17	119.8
C3—C4—H4	120.3	C17—C18—C13	120.1 (2)
C5—C4—H4	120.3	C17—C18—H18	120.0
C6—C5—C4	120.0 (2)	C13—C18—H18	120.0
C6—C5—H5	120.0	C30—N—C20	113.8 (3)
C4—C5—H5	120.0	C30—N—H1A	113.9 (18)
C5—C6—C1	121.4 (2)	C20—N—H1A	112.2 (19)
C5—C6—H6	119.3	C30—N—H1B	110 (2)
C1—C6—H6	119.3	C20—N—H1B	109 (2)
C8—C7—C12	117.8 (2)	H1A—N—H1B	97 (3)
C8—C7—Sn	120.62 (17)	N—C30—H30A	109.5
C12—C7—Sn	121.57 (17)	N—C30—H30B	109.5
C9—C8—C7	120.8 (2)	H30A—C30—H30B	109.5
C9—C8—H8	119.6	N—C30—H30C	109.5
C7—C8—H8	119.6	H30A—C30—H30C	109.5
C10—C9—C8	120.0 (2)	H30B—C30—H30C	109.5
C10—C9—H9	120.0	N—C20—H20A	109.5
C8—C9—H9	120.0	N—C20—H20B	109.5
C11—C10—C9	120.1 (2)	H20A—C20—H20B	109.5
C11—C10—H10	120.0	N—C20—H20C	109.5
C9—C10—H10	120.0	H20A—C20—H20C	109.5
C12—C11—C10	119.7 (2)	H20B—C20—H20C	109.5

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	$H\cdots A$	D··· A	D— H ··· A
N—H1A···Cl1	0.89(3)	2.33 (3)	3.203 (2)	167 (3)
N—H1 <i>B</i> ····C12 ⁱ	0.82(3)	2.34(3)	3.143 (2)	164 (3)
C2—H2···Cl2	0.95	2.67	3.309(3)	125
C6—H6···Cl1	0.95	2.76	3.376 (2)	123
C8—H8···Cl1	0.95	2.70	3.344 (2)	126
C12—H12···Cl2	0.95	2.69	3.340(2)	126

Symmetry code: (i) x-1, y, z.