Assignment7 : Set Cover

- Zitong Huang, 12432670, Computer Science and Engineering
- Scene Reconstruction
- Prof. Feng Zheng

Task 8-1

For case shown in upper graph, Greedy algorithm will choose first S_2 , then S_4 , and finally S_1 . The total cost is $w_{S_1} + w_{S_2} + w_{S_4} = 62$.

However, the best solution is

$$w(C) = \sum_{i \in \{1,3,4\}} w_{S_i} = 53$$

As for lower graph, greedy algorithm will choose $\{S_1, S_2, S_3, S_5\}$, with w(C) = 8.4 However, the OPT solution is $\{S_5\}$, with $w(C^*) = 4.1$

$$\frac{w(C)}{w(C^*)} = \frac{8.4}{4.1} \approx 2.05$$

Task 8-2 (Example 1)

Consider right example. For the first, and each step, greedy algorithm will choose S_1 (First step), S_2 (Second Step), S_3 (Third Step) or S by an averge weight.

Final weight will be

$$w(C^*) = 4$$

When algorithm choose S_5 in first step

And

$$w(C) = \sum \{1, \frac{4}{3}, 2, 4\} = 8.33$$

When algorithm choose S_5 at last

Equals to
$$w(C^*)H(d^*) = 4 * H(4^*)$$

Middle Solution

When S_5 is choosen neight first nor last, a middle solution $w(C) \models W(C^*) \le w(C) \le w(C^*)H(d^*)$ occurs.

Task 8-2 (Example 2)

Consider upper example. This example directly explain how $w(C)_{worst} = H(d)$ comes.

Best weight will be directly choose S_5 , the result will be

$$w(C^*) = 1$$

Similar with example before, for each step algorithm will choose S_1 (First step), S_2 (Second Step), S_3 (Third Step) or S by an averge weight.

when S_5 is choosen as the last one, algorithm will comes for its worst case, and result will be

$$w(C) = \sum S_1, S_2, S_3, S_4$$

= $\sum \{\frac{1}{4}, \frac{1}{3}, \frac{1}{2}, 1\} = H(4*)$