Self grades are due at 11 PM on September 13, 2023.

1. Diagonalization and Singular Value Decomposition

Let matrix $A = \begin{bmatrix} 0 & 1 \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix}$.

(a) Compute the eigenvalues and associated eigenvectors of A.

Solution: Eigenvalues can be computed by first calculating A's characteristic polynomial:

$$\det(sI - A) = \det\left(\begin{bmatrix} s & -1\\ -\frac{1}{2} & s - \frac{1}{2} \end{bmatrix}\right) \tag{1}$$

$$= s\left(s - \frac{1}{2}\right) - (-1)\left(-\frac{1}{2}\right) \tag{2}$$

$$= s^2 - \frac{1}{2}s - \frac{1}{2} \tag{3}$$

$$= \left(s - \frac{1}{4}\right)^2 - \frac{1}{16} - \frac{1}{2} \tag{4}$$

$$= \left(s - \frac{1}{4}\right)^2 - \frac{9}{16} \tag{5}$$

$$= \left(s - \frac{1}{4} - \frac{3}{4}\right) \left(s - \frac{1}{4} + \frac{3}{4}\right) \qquad a^2 - b^2 = (a - b)(a + b) \tag{6}$$

$$= (s-1)\left(s+\frac{1}{2}\right). \tag{7}$$

The eigenvalues of A are thus $\lambda_1=1$ and $\lambda_2=-\frac{1}{2}$, the values of s at which $\det(sI-A)=0$.

The eigenvectors associated with each eigenvalue λ can be calculated as values of $\vec{x} = \begin{bmatrix} x_a \\ x_b \end{bmatrix}$ for which $A\vec{x} = \lambda \vec{x}$, namely:

$$A\vec{x} = \begin{bmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} x_a \\ x_b \end{bmatrix} = \begin{bmatrix} x_b \\ \frac{x_a + x_b}{2} \end{bmatrix}$$
 (8)

$$A\vec{x}_1 = \vec{x}_1 \iff x_b = x_a \iff \vec{x}_1 = \alpha_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ \alpha_1 \neq 0 \in \mathbb{R}.$$
 (9)

$$A\vec{x}_2 = -\frac{1}{2}\vec{x}_2 \iff x_b = -\frac{1}{2}x_a \iff \vec{x}_2 = \alpha_2 \begin{bmatrix} 1\\ -\frac{1}{2} \end{bmatrix}, \ \alpha_2 \neq 0 \in \mathbb{R}.$$
 (10)

Note that the expressions above are valid eigenvectors for any nonzero values of α_1 and α_2 .

(b) Express A as $P\Lambda P^{-1}$, where Λ is a diagonal matrix and $PP^{-1}=I$. State P,Λ , and P^{-1} explicitly. **Solution:** Combining the calculations in part (a), we have that

$$A\begin{bmatrix} \vec{x}_1 & \vec{x}_2 \end{bmatrix} = \begin{bmatrix} \lambda_1 \vec{x}_1 & \lambda_2 \vec{x}_2 \end{bmatrix} = \begin{bmatrix} \vec{x}_1 & \vec{x}_2 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}. \tag{11}$$

For our calculations, we will use the eigenvalues and eigenvectors from part (a) with $\alpha_1 = \alpha_2 = 1$. (Your calculations may differ here; any nonzero values for α_1 and α_2 are permissible, and will result in scaled values of P and P^{-1} .) Filling in eigenvalue and eigenvector values, we have:

$$A \begin{bmatrix} 1 & 1 \\ 1 & -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -\frac{1}{2} \end{bmatrix}, \tag{12}$$

and rearranging,

$$A = \begin{bmatrix} 1 & 1 \\ 1 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -\frac{1}{2} \end{bmatrix}^{-1}.$$
 (13)

Calculating the latter inverse explicitly, we have

$$\begin{bmatrix} 1 & 1 \\ 1 & -\frac{1}{2} \end{bmatrix}^{-1} = -\frac{2}{3} \begin{bmatrix} -\frac{1}{2} & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} \end{bmatrix} \text{ because } \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
(14)

so finally,

$$A = P\Lambda P^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} \end{bmatrix}.$$
 (15)

This is known as the *eigenvalue decomposition*, or *eigendecomposition*, of matrix A; for a more extensive description of this decomposition, see Calafiore & El Ghaoui section 3.5.

(c) Compute $\lim_{k\to\infty} A^k$.

Solution: Using the diagonalization of A from part (b), we have:

$$A = P\Lambda P^{-1} \tag{16}$$

$$A^k = (P\Lambda P^{-1})^k \tag{17}$$

$$= (P\Lambda P^{-1})(P\Lambda P^{-1})\dots(P\Lambda P^{-1}) \qquad (k \text{ times})$$
(18)

$$= P\Lambda \underbrace{P^{-1}P}_{I}\Lambda P^{-1}\dots P\Lambda P^{-1} \tag{19}$$

$$= P\Lambda^k P^{-1} \tag{20}$$

$$= \begin{bmatrix} 1 & 1 \\ 1 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -\frac{1}{2} \end{bmatrix}^k \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} \end{bmatrix}$$
 (21)

$$= \begin{bmatrix} 1 & 1 \\ 1 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1^k & 0 \\ 0 & \left(-\frac{1}{2}\right)^k \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} \end{bmatrix}. \tag{22}$$

Finally, because $\lim_{k\to\infty} \left(-\frac{1}{2}\right)^k = 0$, we have

$$\lim_{k \to \infty} A^k = \begin{bmatrix} 1 & 1 \\ 1 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}. \tag{23}$$

(d) Give the singular values σ_1 and σ_2 of A.

Solution: Each singular value σ_i of A can be calculated as $\sigma_i = \sqrt{\lambda_i (AA^\top)} = \sqrt{\lambda_i (A^\top A)}$. (This is because A's singular value decomposition, canonically written $A = U\Sigma V^\top$, can be multiplied by a transposed version to give $AA^\top = U\Sigma^2 U^\top$, where Σ^2 is a diagonal matrix containing the squared singular values of A and $UU^\top = I$. For a thorough treatment of SVD, see Calafiore & El Ghaoui chapter 5.)

To find A's singular values, we thus perform the same calculation used in part (a) to find each $\lambda_i(AA^\top) = \sigma_i^2$:

$$AA^{\top} = \begin{bmatrix} 0 & 1\\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 & \frac{1}{2}\\ 1 & \frac{1}{2} \end{bmatrix}$$
 (24)

$$=\frac{1}{2}\begin{bmatrix}2&1\\1&1\end{bmatrix}. (25)$$

$$\det\left((sI - AA^{\top})\right) = \det\left(\begin{bmatrix} s - 1 & -\frac{1}{2} \\ -\frac{1}{2} & s - \frac{1}{2} \end{bmatrix}\right) \tag{26}$$

$$= (s-1)\left(s-\frac{1}{2}\right) - \left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right) \tag{27}$$

$$= s^2 - s - \frac{1}{2}s + \frac{1}{2} - \frac{1}{4} \tag{28}$$

$$= s^2 - \frac{3}{2}s + \frac{1}{4} \tag{29}$$

$$= \left(s - \frac{3}{4}\right)^2 - \frac{9}{16} + \frac{1}{4} \tag{30}$$

$$= \left(s - \frac{3}{4}\right)^2 - \frac{5}{16} \tag{31}$$

$$= \left(s - \frac{3}{4} - \frac{\sqrt{5}}{4}\right) \left(s - \frac{3}{4} + \frac{\sqrt{5}}{4}\right) \qquad a^2 - b^2 = (a - b)(a + b) \tag{32}$$

$$= \left(s - \frac{3 + \sqrt{5}}{4}\right) \left(s - \frac{3 - \sqrt{5}}{4}\right) \tag{33}$$

$$= (s - \sigma_1^2)(s - \sigma_2^2). \tag{34}$$

Thus, the singular values of A are $\sigma_1=\frac{\sqrt{3+\sqrt{5}}}{2}$ and $\sigma_2=\frac{\sqrt{3-\sqrt{5}}}{2}$.

2. Least Squares

(a) Let $A \in \mathbb{R}^{m \times n}$ and $\vec{y} \in \mathbb{R}^m$ be given. Suppose A has full column rank. Show that the minimizer \vec{x}^* of the least-squares problem:

$$\min_{\vec{x} \in \mathbb{R}^n} ||A\vec{x} - \vec{y}||_2^2$$

is given by $\vec{x}^* = (A^\top A)^{-1} A^\top \vec{y}$.

Solution: There are many possible ways to solve this problem; we present a solution below based on geometric intuition, which is detailed in Section 1.2 of the course reader. Intuitively speaking, we are searching over the set of all vectors of the form $\{A\vec{x}:\vec{x}\in\mathbb{R}^n\}$ in search for the one closest to \vec{y} , i.e., the vector in R(A) that is closest to \vec{y} . To this end, we claim the following: Let $\vec{z}=A\vec{x}^*\in R(A)$ be the unique nonzero vector in R(A) such that $\vec{y}-\vec{z}$ is perpendicular to R(A), i.e., $A^{\top}(\vec{y}-\vec{z})=\vec{0}$. Then \vec{z} is the closest vector to \vec{y} in R(A), and we will aim to find a vector \vec{x}^* such that $A\vec{x}^*=\vec{z}$.

Let $\vec{u} \in R(A)$. Then:

$$\begin{aligned} \|\vec{y} - \vec{u}\|_2^2 &= \|(\vec{y} - \vec{z}) + (\vec{z} - \vec{u})\|_2^2 \\ &= \|\vec{y} - \vec{z}\|_2^2 + \|\vec{z} - \vec{u}\|_2^2 \\ &\geq \|\vec{y} - \vec{z}\|_2^2, \end{aligned}$$

with equality if and only if $\vec{z} = \vec{u}$. This proves the claim.

Now, let us study the equation:

$$A^{\top}(\vec{y} - A\vec{x}^{\star}) = A^{\top}(\vec{y} - \vec{z}) = \vec{0}.$$

Distributing A^{\top} and rearranging terms, we obtain:

$$A^{\top} A \vec{x}^{\star} = A^{\top} \vec{y}^{\star}.$$

To obtain the final expression, it remains to recall that $A^{\top}A$ is invertible, given that A has full column rank (see Discussion 1, Problem 3). We can then apply $A^{\top}A$ to both sides of the above equation to obtain the desired expression, $\vec{x}^{\star} = (A^{\top}A)^{-1}A^{\top}\vec{y}$.

(b) The Michaelis-Menten model for enzyme kinetics relates the rate y of an enzymatic reaction to the concentration x of a substrate, as follows:

$$y = \frac{\beta_1 x}{\beta_2 + x},\tag{35}$$

for constants $\beta_1, \beta_2 > 0$. This model will be used throughout the remaining sub-parts of this problem. Show that the model can be expressed as a linear relation between the values $1/y = y^{-1}$ and $1/x = x^{-1}$. Specifically, give an equation of the form $y^{-1} = w_1 + w_2 x^{-1}$, specifying the values of w_1 and w_2 in terms of β_1 and β_2 .

Solution: Inverting each side of the equation, we have

$$y^{-1} = \left(\frac{\beta_1 x}{\beta_2 + x}\right)^{-1} \tag{36}$$

$$=\frac{\beta_2+x}{\beta_1 x} \tag{37}$$

(41)

$$=\frac{\beta_2}{\beta_1 x} + \frac{x}{\beta_1 x} \tag{38}$$

$$=\frac{\beta_2}{\beta_1}x^{-1} + \frac{1}{\beta_1} \tag{39}$$

$$=\frac{1}{\beta_1} + \frac{\beta_2}{\beta_1} x^{-1}. (40)$$

The above equation has exactly the desired form $y^{-1}=w_1+w_2x^{-1}$ for $w_1=\frac{1}{\beta_1}$ and $w_2=\frac{\beta_2}{\beta_1}$.

(c) In general, reaction parameters β_1 and β_2 (and, thus, w_1 and w_2) are not known a priori and must be fitted from data — for example, using least squares. Suppose you collect m measurements (x_i, y_i) , $i = 1, \ldots, m$ over the course of a reaction. Formulate the least squares problem

$$\vec{w}^* = \underset{\vec{w}}{\operatorname{argmin}} \|X\vec{w} - \vec{y}\|_2^2,$$
 (42)

where $\vec{w}^* = \begin{bmatrix} w_1^* & w_2^* \end{bmatrix}^\top$, and you must specify $X \in \mathbb{R}^{m \times 2}$ and $\vec{y} \in \mathbb{R}^m$. Specifically, your solution should include explicit expressions for X and \vec{y} as a function of (x_i, y_i) values and a final expression for \vec{w}^* in terms of X and \vec{y} , which should contain only matrix multiplications, transposes, and inverses.

Assume without loss of generality that $x_1 \neq x_2$.

Solution: To formulate the least squares problem as stated, X and \vec{y} values should be set to

$$X = \begin{bmatrix} 1 & \dots & 1 \\ x_1^{-1} & \dots & x_m^{-1} \end{bmatrix}^{\top}, \quad \vec{y} = \begin{bmatrix} y_1^{-1} & \dots & y_m^{-1} \end{bmatrix}^{\top}.$$
 (43)

To solve this least squares problem, we note that the optimal residual vector $X\vec{w}^* - \vec{y}$ must be orthogonal to $\mathcal{R}(X)$ by the orthogonality principle, and we have

$$X^{\top}(X\vec{w}^{\star} - \vec{y}) = 0. \tag{44}$$

Rearranging we get,

$$\vec{w}^* = (X^\top X)^{-1} X^\top \vec{y}. \tag{45}$$

(d) Assume that we have used the above procedure to calculate values for w_1^\star and w_2^\star , and we now want to estimate $\widehat{\vec{\beta}} = \begin{bmatrix} \widehat{\beta}_1 & \widehat{\beta}_2 \end{bmatrix}^\top$. Write an expression for $\widehat{\vec{\beta}}$ in terms of w_1^\star and w_2^\star .

Solution: To calculate $\vec{\beta}$, we can simply reverse the calculations from part (b):

$$w_1 = \frac{1}{\beta_1} \implies \beta_1 = \frac{1}{w_1},\tag{46}$$

$$w_2 = \frac{\beta_2}{\beta_1} \implies \beta_2 = \beta_1 w_2 = \frac{w_2}{w_1}.$$
 (47)

Thus,
$$\widehat{\vec{\beta}} = \begin{bmatrix} \frac{1}{w_1^\star} & \frac{w_2^\star}{w_1^\star} \end{bmatrix}^\top$$
.

NOTE: This problem was taken (with some edits) from the textbook *Optimization Models* by Calafiore and El Ghaoui.

3. Vector Spaces and Rank

The rank of a $m \times n$ matrix A, rank(A), is the dimension of its range, also called span, and denoted $\mathcal{R}(A) := \{A\vec{x} : \vec{x} \in \mathbb{R}^n\}$.

(a) Assume that $A \in \mathbb{R}^{m \times n}$ takes the form $A = \vec{u}\vec{v}^{\top}$, with $\vec{u} \in \mathbb{R}^m$, $\vec{v} \in \mathbb{R}^n$, and $\vec{u}, \vec{v} \neq \vec{0}$. (Note that a matrix of this form is known as a *dyad*.) Find the rank of A.

HINT: Consider the quantity $A\vec{x}$ for arbitrary \vec{x} , i.e., what happens when you multiply any vector by matrix A.

Solution: For any $\vec{x} \in \mathbb{R}^n$, we have that $A\vec{x} = \vec{u}\vec{v}^\top \vec{x} = \vec{u}(\vec{v}^\top \vec{x}) = (\vec{v}^\top \vec{x})\vec{u}$. Note that $\vec{v}^\top \vec{x}$ is a scalar that can take on any value depending on choice of \vec{x} . Since the range of A is the subspace reachable through any choice of \vec{x} , $\mathcal{R}(A)$ is simply the 1-dimensional subspace spanned by \vec{u} (i.e., the line pointing along \vec{u}). Since a single vector (namely, \vec{u}) spans $\mathcal{R}(A)$, the rank of A is 1.

(b) Show that for arbitrary $A, B \in \mathbb{R}^{m \times n}$,

$$rank(A+B) \le rank(A) + rank(B), \tag{48}$$

i.e., the rank of the sum of two matrices is less than or equal to the sum of their ranks.

HINT: First, show that $\mathcal{R}(A+B)\subseteq\mathcal{R}(A)+\mathcal{R}(B)$, meaning that any vector in the range of A+B can be expressed as the sum of two vectors, each in the range of A and B, respectively. Remember that for any matrix A, $\mathcal{R}(A)$ is a subspace, and for any two subspaces S_1 and S_2 , $\dim(S_1+S_2)\leq \dim(S_1)+\dim(S_2)$. (Note that the sum of vector spaces S_1+S_2 is not equivalent to $S_1\cup S_2$, but is defined as $S_1+S_2:=\{\vec{s_1}+\vec{s_2}|\vec{s_1}\in S_1, \vec{s_2}\in S_2\}$.)

Solution: Given any vector $\vec{v} \in \mathcal{R}(A+B)$, there must by definition exist $\vec{x} \in \mathbb{R}^n$ such that $\vec{v} = (A+B)\vec{x}$. Thus, $\vec{v} = (A+B)\vec{x} = \underbrace{A\vec{x}}_{\in \mathcal{R}(A)} + \underbrace{B\vec{x}}_{\in \mathcal{R}(B)}$, so $\mathcal{R}(A+B) \subseteq \mathcal{R}(A) + \mathcal{R}(B)$, as hinted.

Computing the dimension of each side of the subset relationship, it follows that

$$\dim(\mathcal{R}(A+B)) \le \dim(\mathcal{R}(A) + \mathcal{R}(B)). \tag{49}$$

Using the second part of the hint, we have that

$$\dim(\mathcal{R}(A) + \mathcal{R}(B)) \le \dim(\mathcal{R}(A)) + \dim(\mathcal{R}(B)). \tag{50}$$

Combining the previous two equations,

$$\dim(\mathcal{R}(A+B)) \le \dim(\mathcal{R}(A)) + \dim(\mathcal{R}(B)),\tag{51}$$

i.e., by definition,

$$rank(A+B) \le rank(A) + rank(B) \tag{52}$$

as desired.

(c) Consider an $m \times n$ matrix A that takes the form $A = UV^{\top}$, with $U \in \mathbb{R}^{m \times k}$, $V \in \mathbb{R}^{n \times k}$. Show that the rank of A is less or equal than k. HINT: Use parts (a) and (b), and remember that this decomposition can

¹This fact can be proved by taking a basis of S_1 and extending it to a basis of S_2 (during which we can only add *at most* dim (S_2) basis vectors). This extended basis must now also be a basis of $S_1 + S_2$. Thus, dim $(S_1 + S_2) \le \dim(S_1) + \dim(S_2)$.

also be written as the dyadic expansion

$$A = UV^{\top} = \begin{bmatrix} \vec{u}_1 & \dots & \vec{u}_k \end{bmatrix} \begin{bmatrix} \vec{v}_1^{\top} \\ \vdots \\ \vec{v}_k^{\top} \end{bmatrix} = \sum_{i=1}^k \vec{u}_i \vec{v}_i^{\top},$$
 (53)

for
$$U = \begin{bmatrix} \vec{u}_1 & \dots & \vec{u}_k \end{bmatrix}$$
 and $V = \begin{bmatrix} \vec{v}_1 & \dots & \vec{v}_k \end{bmatrix}$.

Solution: Starting with the dyadic expansion above, iteratively pulling out terms from this summation, and using the result from (a) that the rank of a dyadic matrix is 1 (or 0, if any $\vec{v}_i = \vec{0}$), we know by the rank relation from (b) that

$$\operatorname{rank}(A) = \operatorname{rank}\left(\sum_{i=1}^{k} \vec{u}_{i} \vec{v}_{i}^{\top}\right) \leq \operatorname{rank}\left(\sum_{i=1}^{k-1} \vec{u}_{i} \vec{v}_{i}^{\top}\right) + \underbrace{\operatorname{rank}\left(\vec{u}_{k} \vec{v}_{k}^{\top}\right)}_{0 \text{ or } 1} \leq \ldots \leq k, \tag{54}$$

as desired.

4. Gram Schmidt

Any set of n linearly independent vectors in \mathbb{R}^n could be used as a basis for \mathbb{R}^n . However, certain bases could be more suitable for certain operations than others. For example, an orthonormal basis could facilitate solving linear equations.

(a) Given a matrix $A \in \mathbb{R}^{n \times n}$, it could be represented as a multiplication of two matrices

$$A = QR$$

where Q is an orthonormal in \mathbb{R}^n and R is an upper-triangular matrix. For the matrix A, describe how Gram-Schmidt process could be used to find the Q and R matrices, and apply this to

$$A = \begin{bmatrix} 3 & -3 & 1 \\ 4 & -4 & -7 \\ 0 & 3 & 3 \end{bmatrix}$$

to find an orthogonal matrix Q and an upper-triangular matrix R.

Solution: Let a_i and q_i denote the columns of A and Q, respectively. Using Gram-Schmidt, we obtain an orthogonal basis q_i for the column space of A.

$$p_1 = a_1, q_1 = \frac{p_1}{\|p_1\|_2} \tag{55}$$

$$p_2 = a_2 - (a_2^{\top} q_1) q_1, \quad q_2 = \frac{p_2}{\|p_2\|_2}$$
 (56)

$$p_{2} = a_{2} - (a_{2}^{\top} q_{1}) q_{1}, \quad q_{2} = \frac{p_{2}}{\|p_{2}\|_{2}}$$

$$p_{3} = a_{3} - (a_{3}^{\top} q_{1}) q_{1} - (a_{3}^{\top} q_{2}) q_{2}, q_{3} = \frac{p_{3}}{\|p_{3}\|_{2}}$$
(56)

Rearranging terms, we have

$$a_1 = r_{11}q_1 (59a)$$

$$a_i = r_{i1}q_1 + \dots + r_{ii}q_i, \quad i = 2, \dots, n,$$
 (59b)

where each q_i has unit norm, and $r_{ij}q_j$ denotes the projection of a_i onto the vector q_j for $j \neq i$. Stacking a_i horizontally into A and rewriting (59a-b) in matrix notation, we obtain A = QR. For the given

matrix, we have

$$A = \begin{bmatrix} 0.6 & 0 & 0.8 \\ 0.8 & 0 & -0.6 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 5 & -5 & -5 \\ 0 & 3 & 3 \\ 0 & 0 & 5 \end{bmatrix}.$$

Note that an equivalent factorization is A = (-Q)(-R).

(b) Given an invertible matrix $A \in \mathbb{R}^{n \times n}$ and an observation vector $b \in \mathbb{R}^n$, the solution to the equality

$$Ax = b$$

is given as $x = A^{-1}b$. For the matrix A = QR from part (a), assume that we want to solve

$$Ax = \begin{bmatrix} 8 \\ -6 \\ 3 \end{bmatrix}.$$

By using the fact that Q is an orthonormal matrix, find v such that

$$Rx = v$$
.

Then, given the upper-triangular matrix R in part (a) and v, find the elements of x sequentially.

Solution: We note that $Q^{-1} = Q^T$.

$$Ax = b$$

$$QRx = b$$

$$Q^{\top}QRx = Rx = Q^{\top}b.$$

Thus

$$v = Q^{\top}b = \begin{bmatrix} 0\\3\\10 \end{bmatrix}.$$

Given R and v, we can find x by back-substitution:

$$\begin{bmatrix} 5 & -5 & -5 \\ 0 & 3 & 3 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 10 \end{bmatrix} \implies x_3 = 2 \implies x_2 = -1 \implies x_1 = 1 \implies x = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}.$$

(c) Given an invertible matrix $B \in \mathbb{R}^{n \times n}$ and an observation vector $c \in \mathbb{R}^n$, find the computational cost of finding the solution z to the equation Bz = c by using the QR decomposition of B. Assume that Q and R matrices are available, and adding, multiplying, and dividing scalars take one unit of "computation".

As an example, computing the inner product $a^{\top}b$ is said to be $\mathcal{O}(n)$, since we have n scalar multiplication for each a_ib_i . Similarly, matrix vector multiplication is $\mathcal{O}(n^2)$, since matrix vector multiplication can be viewed as computing n inner products. The computational cost for inverting a matrix in \mathbb{R}^n is $\mathcal{O}(n^3)$, and consequently, the cost grows rapidly as the set of equations grows in size. This is why the expression $A^{-1}b$ is usually not computed by directly inverting the matrix A. Instead, the QR decomposition of A is exploited to decrease the computational cost.

Solution: We count the number of operations in back substitution. Solving the initial equation

$$r_{nn}x_n = \bar{b}_n$$

takes 1 multiplication. Solving each subsequent equation takes one more multiplication and one more addition than the previous. In total, we have $1+3+5+\cdots$ of operations, which is on the order of $\mathcal{O}(n^2)$. Thus, matrix multiplication and back substitution are both $O(n^2)$. Given the QR decomposition of A, we can solve Ax = b in $O(n^2)$ times.

5. Homework Process

With whom did you work on this homework? List the names and SIDs of your group members.

NOTE: If you didn't work with anyone, you can put "none" as your answer.