Vectors

Derek, Vignesh

2020

VECTORS [150 Marks]

- 1 Solve the following:
 - **a**) $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$, where O is the origin. Given that lines OA and OB are parallel, $|\mathbf{a}| = 2$ and $\mathbf{a} \cdot \mathbf{b} = -2$, express \mathbf{b} in terms of \mathbf{a} .

Let
$$\mathbf{b} = k\mathbf{a}$$
 for some $k \in \mathbb{R}$
 $\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \cdot (k\mathbf{a}) = k|\mathbf{a}|^2$
 $-2 = k(2)^2 \Rightarrow k = -\frac{1}{2}$
 $\therefore \mathbf{b} = -\frac{1}{2}\mathbf{a}$

b) A vector **a** is such that $\mathbf{a} = (\sqrt{2}\cos\alpha)\mathbf{i} - (\cos\alpha)\mathbf{j} + (\sqrt{2}\sin\alpha)\mathbf{k}$, where $0 \le \alpha \le 2\pi$ and $|\mathbf{a}| = \sqrt{2}$. Find the value(s) of α .

$$|\mathbf{a}| = \sqrt{2\cos^2\alpha + \cos^2\alpha + 2\sin^2\alpha}$$

$$\sqrt{2} = \sqrt{2 - \cos^2\alpha}$$

$$2 = 2 - \cos^2\alpha$$

$$\cos\alpha = 0$$

$$\alpha = \frac{\pi}{2} \text{ or } \frac{3\pi}{2}$$

c) The points A, B and C with respect to the origin are represented by the vectors **a**, **b** and **c** respectively. It is given that $|\mathbf{b}| = 2$, $\mathbf{a} \cdot \mathbf{b} = k$ and $\mathbf{b} \cdot \mathbf{c} = 2$. Given further

that point C divides the line AB such that AC : CB = 2 : 1, find k.

$$\mathbf{c} = \frac{\mathbf{a} + 2\mathbf{b}}{3}$$

$$\mathbf{b} \cdot \mathbf{c} = \mathbf{b} \cdot \left(\frac{\mathbf{a} + 2\mathbf{b}}{3}\right)$$

$$2 = \frac{1}{3}(\mathbf{b} \cdot \mathbf{a} + 2|\mathbf{b}|^2)$$

$$2 = \frac{1}{3}(k+8)$$

$$\therefore k = -2$$

[3]

d) Four vectors \mathbf{a} , \mathbf{b} , \mathbf{c} and \mathbf{d} exist such that $\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d} = \mathbf{0}$. Show that $\mathbf{b} \times (\mathbf{a} + \mathbf{c}) = \mathbf{d} \times \mathbf{b}$.

$$\mathbf{b} \times (\mathbf{a} + \mathbf{c}) = \mathbf{b} \times (-\mathbf{b} - \mathbf{d})$$
$$= \mathbf{b} \times (-\mathbf{b}) - \mathbf{b} \times \mathbf{d}$$
$$= \mathbf{d} \times \mathbf{b}$$

e) Point A referred from the origin has vector $\mathbf{a} = \mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$. The line OA makes an angle of α with the y-axis and β with the z-axis, where $\alpha, \beta < \pi$. Show that

 $\alpha + \beta = \pi.$

$$\cos \alpha = \frac{\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}}{(1)\sqrt{1^2 + 2^2 + 2^2}} = \frac{2}{3}$$

$$\frac{\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}}{(1)(3)} = -\frac{2}{3}$$
Since $\cos \alpha = -\cos \beta$, and $\alpha, \beta < \pi$,
$$\cos \alpha = \cos(\pi - \beta)$$

$$\alpha = \pi - \beta$$

$$\alpha + \beta = \pi$$

- **2** Referred to the origin O, points A and B have position vectors given by **a** and **b** respectively. C_0 is the foot of perpendicular from A to OB with position vector \mathbf{c}_0 . The angle between lines OA and OB is α , where $0 < \alpha < \frac{\pi}{2}$.
 - **a**) By considering $\cos \alpha$, show that $|\mathbf{c}_0| = \mathbf{a} \cdot \hat{\mathbf{b}}$.

$$\cos \alpha = \frac{|\mathbf{c}_0|}{|\mathbf{a}|}$$
Also,
$$\cos \alpha = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}$$
Hence,
$$\frac{|\mathbf{c}_0|}{|\mathbf{a}|} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}$$

$$|\mathbf{c}_0| = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|} = \mathbf{a} \cdot \hat{\mathbf{b}}$$

[2]

b) The foot of perpendicular from C_0 to OA is C_1 . Show that $|\mathbf{c_1}| = \mathbf{a} \cdot \hat{\mathbf{b}}(\cos \alpha)$. [1]

$$\cos \alpha = \frac{|\mathbf{c}_1|}{|\mathbf{c}_0|}$$
$$|\mathbf{c}_1| = |\mathbf{c}_0| \cos \alpha$$
$$= \mathbf{a} \cdot \hat{\mathbf{b}} \cos \alpha$$

c) C_n is the *n*th foot of perpendicular. State $|\mathbf{c}_n|$ in terms of a, b, n and α . [1]

$$|\mathbf{c}_n| = \mathbf{a} \cdot \hat{\mathbf{b}} \cos^n \alpha$$

d) State the sum to infinity of scalar projections $|\mathbf{c}_0| + |\mathbf{c}_1| + \dots + |\mathbf{c}_n| + \dots$ [1]

Sum to infinity =
$$\mathbf{a} \cdot \hat{\mathbf{b}} + \mathbf{a} \cdot \hat{\mathbf{b}} \cos \alpha + \dots + \mathbf{a} \cdot \hat{\mathbf{b}} \cos^n \alpha + \dots$$

= $\frac{\mathbf{a} \cdot \hat{\mathbf{b}}}{1 - \cos \alpha}$

3 Referred to the origin O, points A and B have position vectors given by: $\mathbf{a} = \mathbf{i} - p^2 \mathbf{k}$ and $\mathbf{b} = \frac{2}{p} \mathbf{i} - \mathbf{j} + \mathbf{k}$ respectively, where p is to be found. Given that $|\mathbf{a} \times \mathbf{b}|^2 = 4p^2 + 2$, find

the value(s) that p can take.

$$|\mathbf{a} \times \mathbf{b}|^{2} = \begin{vmatrix} 1 \\ 0 \\ -p^{2} \end{vmatrix} \times \begin{pmatrix} 2p^{-1} \\ -1 \\ 1 \end{vmatrix} \begin{vmatrix} 2p^{-1} \\ -1 \\ 1 \end{vmatrix} = \begin{vmatrix} -p^{2} \\ -1 - 2p \\ -1 \end{vmatrix} \begin{vmatrix} 2p^{-1} \\ 1 \end{vmatrix} = (p^{2})^{2} + (1 + 2p)^{2} + 1$$

$$= p^{4} + 4p^{2} + 4p + 2$$

$$= 4p^{2} + 2$$

$$p^{4} + 4p = 0$$

$$p(p^{3} + 4) = 0$$

$$p = -\sqrt[3]{4} \text{ since } p \neq 0$$

4 The vector equation of l is given by $l : \mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$, $\lambda \in \mathbb{R}$. Point F is the foot of perpendicular from origin O to the line l. If $|\mathbf{b}| = 1$ and $\mathbf{a} \cdot \mathbf{b} = 1$, express the position vector \overrightarrow{OF} in terms of \mathbf{a} and \mathbf{b} .

Let
$$\overrightarrow{OF} = \mathbf{a} + k\mathbf{b}$$
 for some $k \in \mathbb{R}$
Since $OF \perp l$, $(\mathbf{a} + k\mathbf{b}) \cdot \mathbf{b} = 0$
 $\mathbf{a} \cdot \mathbf{b} + k|\mathbf{b}|^2 = 0$
 $1 + k(1)^2 = 0$
 $k = -1$
 $\therefore \overrightarrow{OF} = \mathbf{a} - \mathbf{b}$

5 The equations of l and m are given by $l : \mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$, $\lambda \in \mathbb{R}$ and $m : \mathbf{r} = \mathbf{b} + \mu \mathbf{a}$, $\mu \in \mathbb{R}$, where \mathbf{a} and \mathbf{b} are co-planar vectors. State the conditions such that lines l and m are skew lines.

Equating l and m and since skew lines are parallel and do not intersect,

$${\bf a}+\lambda{\bf b}=\mu{\bf a}+{\bf b}$$

$$\lambda\neq 1, \mu\neq 1 \text{ and } {\bf a}\neq k{\bf b} \text{ for all } k\in\mathbb{R}$$

6 Points A and B have position vectors \mathbf{a} and \mathbf{b} with respect to the origin O. It is given that $(\mathbf{a} - 3\mathbf{b}) \times (5\mathbf{a} + 7\mathbf{b}) = 11$. Find the perpendicular distance from point A to line OB if $|\mathbf{b}| = 11$.

$$(\mathbf{a} - \mathbf{3b}) \times (\mathbf{5a} + \mathbf{7b}) = \mathbf{a} \times \mathbf{a} + 7\mathbf{a} \times \mathbf{b} - 15\mathbf{b} \times \mathbf{a} - 21\mathbf{b} \times \mathbf{b}$$

$$11 = 22\mathbf{a} \times \mathbf{b}$$

$$\mathbf{a} \times \mathbf{b} = \frac{1}{2}$$
Perpendicular distance from A to OB =
$$\frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{b}|}$$

$$= \frac{\left(\frac{1}{2}\right)}{11}$$

$$= \frac{1}{22} \text{units}$$

- 7 Points A and B have position vectors **a** and **b** with respect to the origin O. It is given that $|\mathbf{a}| = 3$, $|\mathbf{b}| = 1$ and $\mathbf{a} \cdot \mathbf{b} = 2$.
 - a) State the vector equation of line AB. [1]

$$l_{AB}: \mathbf{r} = \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a}), \ \lambda \in \mathbb{R}$$

$$\mathbf{b}) \text{ Find } |\mathbf{b} - \mathbf{a}|.$$

$$|\mathbf{b} - \mathbf{a}| = \sqrt{(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{b} - \mathbf{a})}$$
$$= \sqrt{|\mathbf{b}|^2 - 2\mathbf{b} \cdot \mathbf{a} + |\mathbf{a}|^2}$$
$$= \sqrt{1 - 2(2) + 3^2}$$
$$= \sqrt{6}$$

c) Find the position vector of F, the foot of perpendicular from O to AB, in terms of
a and b.

Let
$$\overrightarrow{OF} = \mathbf{a} + k(\mathbf{b} - \mathbf{a})$$
 for some $k \in \mathbb{R}$
Since $OF \perp AB$, $(\mathbf{a} + k(\mathbf{b} - \mathbf{a})) \cdot (\mathbf{b} - \mathbf{a}) = 0$
 $\mathbf{a} \cdot \mathbf{b} - |\mathbf{a}|^2 + k|\mathbf{b} - \mathbf{a}|^2 = 0$
 $2 - 3^2 + k(\sqrt{6})^2 = 0$
 $\therefore k = \frac{7}{6}$
Substituting $k = \frac{7}{6}$ back into \overrightarrow{OF} ,
 $\overrightarrow{OF} = \mathbf{a} + \frac{7}{6}(\mathbf{b} - \mathbf{a})$
 $\overrightarrow{OF} = \frac{1}{6}(7\mathbf{b} - \mathbf{a})$

d) Find $|7\mathbf{b} - \mathbf{a}|$. Hence, find the exact area of triangle OAB.

$$|7\mathbf{b} - \mathbf{a}| = \sqrt{(7\mathbf{b} - \mathbf{a}) \cdot (7\mathbf{b} - \mathbf{a})}$$

$$= \sqrt{49|\mathbf{b}|^2 - 14\mathbf{a} \cdot \mathbf{b} + |\mathbf{a}|^2}$$

$$= \sqrt{49 - 14(2) + 3^2}$$

$$= \sqrt{30}$$
Area of triangle OAB = $\frac{1}{2} \times |\overrightarrow{AB}| \times |\overrightarrow{OF}|$

$$= \frac{1}{2}|\mathbf{b} - \mathbf{a}| \left| \frac{1}{6}(7\mathbf{b} - \mathbf{a}) \right|$$

$$= \frac{1}{2} \left(\sqrt{6} \right) \left(\frac{1}{6} \right) (\sqrt{30})$$

$$= \frac{\sqrt{5}}{2} \text{units}^2$$

[3]

8 Referred to the origin O, points A and B have the position vectors $\overrightarrow{OA} = \mathbf{i} - 2\mathbf{k}$ and $\overrightarrow{OB} = -\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ respectively.

a) Verify that P(3, -2, -6) lies on line AB.

Line AB //
$$\begin{pmatrix} -1\\2\\2 \end{pmatrix}$$
 - $\begin{pmatrix} 1\\0\\-2 \end{pmatrix}$ = $\begin{pmatrix} -2\\2\\4 \end{pmatrix}$
Equation of line AB is $\mathbf{r} = \begin{pmatrix} 1\\0\\+\lambda\begin{pmatrix} -1\\1\\2 \end{pmatrix}$, $\lambda \in \mathbb{R}$

[2]

Substitute
$$\mathbf{r} = \begin{pmatrix} 3 \\ -2 \\ -6 \end{pmatrix}$$
:
$$\begin{pmatrix} 3 \\ -2 \\ -6 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} \text{ for some } \lambda \in \mathbb{R}.$$

There is a solution $\lambda = -2$

Hence, P lies on AB.

b) Find the position vector of F, the foot of perpendicular from P to AB. [3]

Let
$$\overrightarrow{OF} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} + k \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$$
, for some $k \in \mathbb{R}$

$$\overrightarrow{PF} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} + k \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 3 \\ 2 \\ -6 \end{pmatrix}$$
$$= \begin{pmatrix} -2 - k \\ -2 + k \\ 4 + 2k \end{pmatrix}$$

c) Hence, find the equation of line PF.

[3]

Since $PF \perp AB$,

$$\begin{pmatrix} -2-k \\ -2+k \\ 4+2k \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} = 0$$
$$\therefore k = -\frac{4}{3}$$

Substituting $k = -\frac{4}{3}$ back into \overrightarrow{PF} ,

$$\overrightarrow{PF} = \begin{pmatrix} -2 + \frac{8}{3} \\ -2 - \frac{4}{3} \\ 4 - \frac{8}{3} \end{pmatrix} = \frac{2}{3} \begin{pmatrix} 1 \\ -5 \\ 2 \end{pmatrix}$$

Equation of line
$$PF: \mathbf{r} = \begin{pmatrix} 3 \\ -2 \\ -6 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -5 \\ 2 \end{pmatrix}, \ \mu \in \mathbb{R}$$

9 The equations of lines l_1 and l_2 are given by:

$$l_1: \mathbf{r} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}, \ \lambda \in \mathbb{R} \text{ and } l_2: \frac{x+1}{9} = \frac{y}{7} = \frac{4-z}{3} \text{ respectively.}$$

Point A has coordinates (2, -1, 1) while the foot of perpendicular from A to l_2 is F.

a) Find the position vector of P, the point of intersection between l_1 and l_2 .

Vector equation of line
$$l_2: \mathbf{r} = \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix} + \mu \begin{pmatrix} 9 \\ 7 \\ -3 \end{pmatrix}, \mu \in \mathbb{R}$$

Equating both lines,
$$\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix} + \mu \begin{pmatrix} 9 \\ 7 \\ -3 \end{pmatrix}$$

Using G.C., we obtain
$$\lambda = \frac{3}{2}$$
, $\mu = \frac{1}{2}$.

$$\overrightarrow{OP} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \frac{3}{2} \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 7 \\ 7 \\ 5 \end{pmatrix}$$

b) Find vector \overrightarrow{AF} .

[2]

Let
$$\overrightarrow{OF} = \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix} + k \begin{pmatrix} 9 \\ 7 \\ -3 \end{pmatrix}$$
, for some $k \in \mathbb{R}$

$$\overrightarrow{AF} = \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix} + k \begin{pmatrix} 9 \\ 7 \\ -3 \end{pmatrix} - \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} -3+9k\\ 1+7k\\ 3-3k \end{pmatrix}$$

Since
$$AF \perp l_2$$
, $\begin{pmatrix} -3+9k \\ 1+7k \\ 3-3k \end{pmatrix} \cdot \begin{pmatrix} 9 \\ 7 \\ -3 \end{pmatrix} = 0$

$$\therefore k = \frac{29}{139}$$

Substituting
$$k = \frac{29}{139}$$
 back into \overrightarrow{AF} , $\overrightarrow{AF} = \begin{pmatrix} -3 + 9\left(\frac{29}{139}\right) \\ 1 + 7\left(\frac{29}{139}\right) \\ 3 - 3\left(\frac{29}{139}\right) \end{pmatrix} = \frac{2}{139} \begin{pmatrix} -78 \\ 171 \\ 165 \end{pmatrix}$

c) Hence, find the vector equation of l_3 , the reflection of l_1 in l_2 . [3]

Let A' on l_3 be the reflection of A in l_2 .

$$\overrightarrow{AF} = \overrightarrow{FA'}$$

$$= \overrightarrow{OA'} - \overrightarrow{OF}$$

$$\overrightarrow{OA'} = \overrightarrow{AF} + \overrightarrow{OF}$$

$$= \frac{2}{139} \begin{pmatrix} -78 \\ 171 \\ 165 \end{pmatrix} + \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix} + \frac{29}{139} \begin{pmatrix} 9 \\ 7 \\ -3 \end{pmatrix}$$

$$= \frac{1}{139} \begin{pmatrix} -34 \\ 545 \\ 973 \end{pmatrix}$$

$$l_{3}//\frac{1}{139} \begin{pmatrix} -34\\545\\973 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 7\\7\\5 \end{pmatrix} = \begin{pmatrix} -\frac{1041}{278}\\\frac{117}{278}\\\frac{9}{2} \end{pmatrix}$$
$$\therefore l_{3}: \mathbf{r} = \frac{1}{2} \begin{pmatrix} 7\\7\\5 \end{pmatrix} + \alpha \begin{pmatrix} -1041\\117\\1251 \end{pmatrix}, \ \alpha \in \mathbb{R}$$

- 10 Points A and B with position vectors $-\mathbf{i} + 2\mathbf{j} \mathbf{k}$ and $3\mathbf{i} + \mathbf{k}$ respectively both lie on l_1 . The line l_2 has Cartesian equation $l_2 : x = 7, y - 3 = z$.
 - a) Show that l_1 and l_2 are skew lines.

[2]

$$l_{1}//\begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \\ 2 \end{pmatrix}$$
$$l_{1}: \mathbf{r} = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \ \lambda \in \mathbb{R}$$
$$l_{2}: \mathbf{r} = \begin{pmatrix} 7 \\ 3 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \ \mu \in \mathbb{R}$$

Equating both lines,
$$\begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ 3 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

We have the following equations
$$\left\{ \begin{array}{l} 2\lambda=4\\ -\lambda-\mu=3\\ \lambda-\mu=-1 \end{array} \right.$$

Using a G.C., there is no solution found.

Hence, l_1 and l_2 are skew lines.

b) Find a vector that is perpendicular to both l_1 and l_2 .

A vector that is perpendicular to both
$$l_1$$
 and l_2 // $\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ -2 \\ 2 \end{pmatrix}$

[1]

[3]

Let the vector be
$$\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
.

c) Hence, find the shortest distance between l_1 and l_2 .

Let point C on l_2 be C(7,3,0).

Shortest distance = Projection of
$$\overrightarrow{BC}$$
 onto $\begin{pmatrix} 1\\1\\-1 \end{pmatrix}$.

$$= \frac{\begin{pmatrix} \begin{pmatrix} 7\\3\\0 \end{pmatrix} - \begin{pmatrix} 3\\0\\1 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 1\\1\\-1 \end{pmatrix}}{\begin{vmatrix} \begin{pmatrix} 1\\1\\-1 \end{pmatrix} - 1}$$

$$= \frac{\begin{pmatrix} 4\\3\\-1 \end{pmatrix} \cdot \begin{pmatrix} 1\\1\\-1 \end{pmatrix}}{\begin{vmatrix} \begin{pmatrix} 1\\1\\1\\-1 \end{pmatrix}}$$

$$= \frac{8}{\sqrt{3}}$$

$$= \frac{8\sqrt{3}}{3}$$
 units

11 Referred to an origin O, points A and B have coordinates (-1,2,2) and (0,1,2) respectively. The point P on OA is such that $OP : PA = \lambda : 1$ and the point Q on OB is such that $OQ : QB = \lambda : 1 - \lambda$, where λ is a real constant to be determined.

a) Find the area of
$$\triangle OAB$$
. [2]

Area of
$$\triangle OAB = \frac{1}{2} |\mathbf{a} \times \mathbf{b}|$$

$$= \frac{1}{2} \begin{vmatrix} -1 \\ 2 \\ 2 \end{vmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 2 \end{vmatrix} \begin{vmatrix} 2 \\ 2 \end{vmatrix}$$

$$= \frac{1}{2} \begin{vmatrix} 2 \\ 2 \\ -1 \end{vmatrix}$$

$$= \frac{1}{2} \sqrt{4 + 4 + 1}$$

$$= \frac{3}{2} \text{units}^2$$

b) Express the ratio $\frac{\text{Area of }\Delta OAB}{\text{Area of }\Delta OPQ}$ in terms of λ .

Area of
$$\triangle OPQ = \frac{1}{2} \left| \overrightarrow{OP} \times \overrightarrow{OQ} \right|$$

$$= \frac{1}{2} \left| \left(\frac{\lambda}{\lambda + 1} \right) \mathbf{a} \times \left(\frac{\lambda}{\lambda + 1 - \lambda} \right) \mathbf{b} \right|$$

$$= \frac{1}{2} \left| \frac{\lambda^2}{\lambda + 1} \mathbf{a} \times \mathbf{b} \right|$$

$$= \left(\frac{\lambda^2}{\lambda + 1} \right) \left(\frac{1}{2} \left| \mathbf{a} \times \mathbf{b} \right| \right) , \text{ since } 0 < \lambda < 1 \text{ so } \frac{1}{\lambda + 1} > 0$$

$$= \left(\frac{\lambda^2}{\lambda + 1} \right) (\text{Area of } \triangle OAB)$$

$$\therefore \frac{\text{Area of } \triangle OAB}{\text{Area of } \triangle OPQ} = \frac{\lambda + 1}{\lambda^2}$$

[3]

[3]

c) Deduce if PQ is ever parallel to AB for some value of λ .

$$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP}$$
$$= \lambda \mathbf{b} - \left(\frac{\lambda}{\lambda + 1}\right) \mathbf{a}$$

Assuming PQ // AB,

$$\lambda \mathbf{b} - \left(\frac{\lambda}{\lambda+1}\right) \mathbf{a} = k(\mathbf{b} - \mathbf{a}) \text{ for some } k \in \mathbb{R}$$

Equating scalar multiples of **b** and **a**,

$$\lambda = k$$
 and $\frac{\lambda}{\lambda + 1} = k$

$$\lambda = \frac{\lambda}{\lambda + 1}$$

$$\lambda^2 = 0$$

However, clearly $0 < \lambda < 1$, so no value of $k \in \mathbb{R}$ exists for PQ //AB.

12 Line l has the equation $-x = \frac{y-3}{2} = \frac{z+4}{2}$. Line m, which is parallel to $\begin{pmatrix} c \\ 0 \\ 1 \end{pmatrix}$ where c is some real constant, is obtained by rotating line l 45° about the point A(0,3,-4). Find the possible vector equations of line m.

Equation of line
$$l: \mathbf{r} = \begin{pmatrix} 0 \\ 3 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}, \lambda \in \mathbb{R}$$

Equation of line
$$m: \mathbf{r} = \begin{pmatrix} 0 \\ 3 \\ -4 \end{pmatrix} + \mu \begin{pmatrix} c \\ 0 \\ 1 \end{pmatrix}, \mu \in \mathbb{R}$$

$$\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} = \frac{\begin{pmatrix} -1\\2\\2\end{pmatrix} \cdot \begin{pmatrix} c\\0\\1\end{pmatrix}}{\begin{pmatrix} -1\\2\\2\end{pmatrix} \mid \begin{pmatrix} c\\0\\1\end{pmatrix}} = \frac{2-c}{3\sqrt{c^2+1}}$$

$$\frac{1}{2} = \frac{(2-c)^2}{9(c^2+1)}$$
$$9c^2 + 9 = 2c^2 - 8c + 8$$
$$7c^2 + 8c + 1 = 0$$
$$c = -\frac{1}{7} \text{ or } -1$$

The two equations of line m are:

$$\mathbf{r} = \begin{pmatrix} 0 \\ 3 \\ -4 \end{pmatrix} + \mu \begin{pmatrix} -1 \\ 0 \\ 7 \end{pmatrix}, \mu \in \mathbb{R} \text{ and } \mathbf{r} = \begin{pmatrix} 0 \\ 3 \\ -4 \end{pmatrix} + \mu \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \mu \in \mathbb{R}$$

13 Three points A, B and C referred from the origin O have position vectors given by:

$$\mathbf{a} = 2\mathbf{i} + 4\mathbf{j} - \mathbf{k}, \ \mathbf{b} = -2\mathbf{i} + 5\mathbf{j} + 2\mathbf{k} \text{ and } \mathbf{c} = \frac{3}{2}\mathbf{i} + \frac{5}{2}\mathbf{j} - 3\mathbf{k}.$$

a) Find the vector equations of lines AB and AC. [2]

$$\overrightarrow{AB} = \begin{pmatrix} 2\\4\\-1 \end{pmatrix} - \begin{pmatrix} -2\\5\\2 \end{pmatrix} = \begin{pmatrix} 4\\-1\\-3 \end{pmatrix}$$

$$\overrightarrow{AC} = \begin{pmatrix} 2\\4\\-1 \end{pmatrix} - \begin{pmatrix} 1.5\\2.5\\-3 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1\\3\\4 \end{pmatrix}$$

Equations of lines AB and AC are:

$$\mathbf{r} = \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -1 \\ -3 \end{pmatrix}, \ \lambda \in \mathbb{R} \ \text{ and } \ \mathbf{r} = \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}, \ \mu \in \mathbb{R} \ \text{respectively}.$$

b) Find two vector equations of l, where l is the line representing the all the midpoints

of lines AB and AC. [4]

Unit vector of
$$AB$$
, $\mathbf{u}_1 = \frac{1}{\sqrt{4^2 + 1 + 3^2}} \begin{pmatrix} 4 \\ -1 \\ -3 \end{pmatrix} = \frac{1}{\sqrt{26}} \begin{pmatrix} 4 \\ -1 \\ -3 \end{pmatrix}$
Unit vector of AC , $\mathbf{u}_2 = \frac{1}{\sqrt{1 + 3^2 + 4^2}} \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix} = \frac{1}{\sqrt{26}} \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$

Two possible midpoints have position vectors $\frac{1}{2}(\mathbf{u}_1 + \mathbf{u}_2)$ and $\frac{1}{2}(\mathbf{u}_1 - \mathbf{u}_2)$.

$$\frac{1}{2}(\mathbf{u}_1 + \mathbf{u}_2) = \frac{1}{2} \begin{pmatrix} \frac{1}{\sqrt{26}} \begin{pmatrix} 4 \\ -1 \\ -3 \end{pmatrix} + \frac{1}{\sqrt{26}} \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix} = \frac{1}{2\sqrt{26}} \begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix}$$

$$\frac{1}{2}(\mathbf{u}_1 - \mathbf{u}_2) = \frac{1}{2} \begin{pmatrix} \frac{1}{\sqrt{26}} \begin{pmatrix} 4 \\ -1 \\ -3 \end{pmatrix} - \frac{1}{\sqrt{26}} \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix} = \frac{1}{2\sqrt{26}} \begin{pmatrix} 3 \\ -4 \\ -7 \end{pmatrix}$$

Hence, two possible equations of l are:

$$l_1: \mathbf{r} = \begin{pmatrix} 2\\4\\-1 \end{pmatrix} + s \begin{pmatrix} 5\\2\\1 \end{pmatrix}, s \in \mathbb{R} \text{ and}$$

$$l_2: \mathbf{r} = \begin{pmatrix} 2\\4\\-1 \end{pmatrix} + t \begin{pmatrix} -3\\4\\7 \end{pmatrix}, t \in \mathbb{R}$$

14 Point A with position vector \mathbf{a} lies on plane π with normal parallel to vector \mathbf{n} . Given that $|\mathbf{a} - \mathbf{n}|^2 = 3$ and $|\mathbf{n}|^2 = 4 - |\mathbf{a}|^2$, find the value of d if the equation of plane π is $\mathbf{r} \cdot \mathbf{n} = d$.

The equation of plane π is $\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$.

To find $\mathbf{a} \cdot \mathbf{n}$,

$$|\mathbf{a} - \mathbf{n}|^2 = 3$$
$$(\mathbf{a} - \mathbf{n}) \cdot (\mathbf{a} - \mathbf{n}) = 3$$
$$|\mathbf{a}|^2 + |\mathbf{n}|^2 - 2\mathbf{a} \cdot \mathbf{n} = 3$$
$$4 - 2\mathbf{a} \cdot \mathbf{n} = 3$$
$$\mathbf{a} \cdot \mathbf{n} = \frac{1}{2}$$

- ... The equation of π is $\mathbf{r} \cdot \mathbf{n} = \frac{1}{2}$.
- 15 The equations of parallel planes p and q are given by $p: \mathbf{r} \cdot \mathbf{n} = d$ and $q: \mathbf{r} \cdot \mathbf{n} = kd$. Line l given by equation $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$, $\lambda \in \mathbb{R}$ intersects planes p and q at points A and B respectively.

a) Show that
$$\overrightarrow{AB} = \mathbf{b} \left(\frac{d(k-1)}{\mathbf{b} \cdot \mathbf{n}} \right)$$
.

Substitute equation of l into p and q to get \overrightarrow{OA} and \overrightarrow{OB} respectively.

For
$$A$$
, $(\mathbf{a} + \lambda \mathbf{b}) \cdot \mathbf{n} = d$

$$\lambda = \frac{d - \mathbf{a} \cdot \mathbf{n}}{\mathbf{b} \cdot \mathbf{n}}$$

$$\overrightarrow{OA} = \mathbf{a} + \left(\frac{d - \mathbf{a} \cdot \mathbf{n}}{\mathbf{b} \cdot \mathbf{n}}\right) \mathbf{b}$$
For B , $(\mathbf{a} + \lambda \mathbf{b}) \cdot \mathbf{n} = kd$

$$\lambda = \frac{kd - \mathbf{a} \cdot \mathbf{n}}{\mathbf{b} \cdot \mathbf{n}}$$

$$\overrightarrow{OB} = \mathbf{a} + \left(\frac{kd - \mathbf{a} \cdot \mathbf{n}}{\mathbf{b} \cdot \mathbf{n}}\right) \mathbf{b}$$

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

$$= \mathbf{a} + \left(\frac{kd - \mathbf{a} \cdot \mathbf{n}}{\mathbf{b} \cdot \mathbf{n}}\right) \mathbf{b} - \left(\mathbf{a} + \left(\frac{d - \mathbf{a} \cdot \mathbf{n}}{\mathbf{b} \cdot \mathbf{n}}\right) \mathbf{b}\right)$$

$$= \left(\frac{kd - \mathbf{a} \cdot \mathbf{n} - d + \mathbf{a} \cdot \mathbf{n}}{\mathbf{b} \cdot \mathbf{n}}\right) \mathbf{b}$$

$$= \mathbf{b} \left(\frac{d(k - 1)}{\mathbf{b} \cdot \mathbf{n}}\right)$$

b) Hence, or otherwise, show that the perpendicular distance between planes p and q is equal to $\frac{d(k-1)}{|\mathbf{n}|}$ units. [2]

Perpendicular distance between planes p and q = Projection of \overrightarrow{AB} onto \mathbf{n}

$$= \frac{\left(\mathbf{b} \left(\frac{d(k-1)}{\mathbf{b} \cdot \mathbf{n}}\right)\right) \cdot \mathbf{n}}{|\mathbf{n}|}$$

$$= \frac{\left(\frac{d(k-1)}{\mathbf{b} \cdot \mathbf{n}}\right) (\mathbf{b} \cdot \mathbf{n})}{|\mathbf{n}|}$$

$$= \frac{d(k-1)}{|\mathbf{n}|}$$

16 The equations of plane π and l are given by:

$$\pi: \mathbf{r} \cdot \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = -1 \text{ and } l: \mathbf{r} = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 2 \\ k \end{pmatrix}, \ \lambda, k \in \mathbb{R} \text{ respectively.}$$

$$\mathbf{a} \text{ Show that, for } \pi \text{ and } l \text{ to intersect, } k \neq -\frac{7}{2}.$$

If π and l do not intersect, l is perpendicular to the normal of π .

i.e.
$$\begin{pmatrix} 3 \\ 2 \\ k \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = 2k + 7 = 0$$

$$k = -\frac{7}{2}$$

Hence, for intersection, $k \neq -\frac{7}{2}$.

For the rest of the question, assume k = 1.

b) Find the coordinates of point P, the point of intersection of π and l. [2] Equating line and plane,

$$\left(\begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} + s \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \right) \cdot \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = -1$$
$$9s + 3 = -1$$
$$s = -\frac{4}{9}$$

[3]

$$\overrightarrow{OP} = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} - \frac{4}{9} \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = -\frac{1}{9} \begin{pmatrix} 21 \\ 8 \\ -14 \end{pmatrix}$$

c) Find the shortest distance from A(-1,0,2) to π .

$$\overrightarrow{AP} = -\frac{1}{9} \begin{pmatrix} 21 \\ 8 \\ -14 \end{pmatrix} - \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} = -\frac{4}{9} \begin{pmatrix} 3 \\ 2 \\ 8 \end{pmatrix}$$

Shortest distance = Projection of \overrightarrow{AP} onto normal of π

$$= \frac{\begin{vmatrix} -\frac{4}{9} & 3 \\ 2 \\ 8 \end{vmatrix} \cdot \begin{vmatrix} 1 \\ 2 \\ 2 \end{vmatrix} \end{vmatrix}}{\begin{vmatrix} 1 \\ 2 \\ 2 \end{vmatrix}}$$
$$= \frac{4}{9} \left(\frac{23}{3}\right)$$
$$= \frac{92}{27} \text{units}$$

[2]

d) Find the acute angle between π and l.

Let acute angle be α .

$$\sin \alpha = \frac{\left(\frac{92}{27}\right)}{\left|\overrightarrow{AP}\right|} = \frac{\left(\frac{92}{27}\right)}{\left|\begin{pmatrix}3\\2\\8\end{pmatrix}\right|} = \frac{\left(\frac{92}{27}\right)}{\frac{4}{9}\sqrt{77}}$$

 $\therefore \alpha = 60.9^{\circ} \text{ (1 d.p.)}$

17 Plane π has a normal parallel to $\begin{pmatrix} -1\\1\\3 \end{pmatrix}$ and has the equation:

$$\pi: \mathbf{r} = \begin{pmatrix} 7 \\ 4 \\ 3 \end{pmatrix} + t \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} + s \begin{pmatrix} a \\ 2 \\ 1 \end{pmatrix}, \ t, s \in \mathbb{R},$$

where a is some real constant to be determined.

a) Find the value of a.

$$\begin{pmatrix} -1\\1\\3 \end{pmatrix} / / \begin{pmatrix} 3\\0\\1 \end{pmatrix} \times \begin{pmatrix} a\\2\\1 \end{pmatrix} = \begin{pmatrix} -2\\a-3\\6 \end{pmatrix}$$

$$\begin{pmatrix} -2\\a-3\\6 \end{pmatrix} = 2\begin{pmatrix} -1\\1\\3 \end{pmatrix}$$

$$\therefore a = 5$$

b) Find the scalar product equation of plane π .

Equation is
$$\mathbf{r} \cdot \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 7 \\ 4 \\ 3 \end{pmatrix} = 6$$

c) Line l passes through π , the origin O and A(3,2,5). Find the position vector of P, the point of intersection between line l and plane π .

Equation of
$$l$$
 is $\mathbf{r} = \lambda \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix}$, $\lambda \in \mathbb{R}$.

Substituting into equation of
$$\pi$$
, $k \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix} = 6$ for some $k \in \mathbb{R}$

$$14k = 6$$

$$k = \frac{3}{7}$$

$$\therefore \overrightarrow{OP} = \frac{3}{7} \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix}$$

d) Find $|\overrightarrow{PF}|$, where F is the foot of perpendicular from A to plane π . [3] The easiest method is to use vector product projection of \overrightarrow{PA} onto the normal of π . We can find \overrightarrow{PA} using the fact that O, P and A are collinear and OP : PA = 3 : 4.

$$\left| \overrightarrow{PF} \right| = \frac{\left| \overrightarrow{PA} \times \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix} \right|}{\left| \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix} \right|}$$

$$= \frac{\left| \frac{4}{7} \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix} \times \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix} \right|}{\sqrt{11}}$$

$$= \frac{4}{7} \left| \begin{pmatrix} 1 \\ -14 \\ 5 \end{pmatrix} \right|$$

$$= \frac{4}{7} \frac{\sqrt{11}}{\sqrt{11}}$$

$$= \frac{4}{7} \sqrt{\frac{222}{11}} \text{ units}$$

e) Hence find $|\overrightarrow{PG}|$, where G is the foot of perpendicular from O to plane π . [2]

$$\frac{\left|\overrightarrow{PG}\right|}{\left|\overrightarrow{PF}\right|} = \frac{\left|\overrightarrow{OP}\right|}{\left|\overrightarrow{PA}\right|} = \frac{4}{3} \text{ by similar triangles, so we have:}$$

$$\left| \overrightarrow{PG} \right| = \frac{4}{3} \left| \overrightarrow{PF} \right|$$

$$= \frac{4}{3} \left(\frac{3}{7} \sqrt{\frac{222}{11}} \right)$$

$$= \frac{4}{7} \sqrt{\frac{222}{11}} \text{ units}^2$$

18 The equations of planes π_1 , π_2 and π_3 are such that:

$$\pi_1: 2x + 3y + 4z = -1, \quad \pi_2: -2x + y - z = 5 \quad \text{and} \quad \pi_3: \mathbf{r} \cdot \begin{pmatrix} a \\ -5 \\ -a \end{pmatrix} = k.$$

a) Find the vector equation of l, the line of intersection between π_1 and π_2 . [3]

We have the two equations,
$$\begin{cases} 2x + 3y + 4z = -1 \\ -2x + y - z = 5 \end{cases}$$
 Using a G.C., we obtain $x = -2 - \frac{7}{8}z$, $y = 1 - \frac{3}{4}z$, $z \in \mathbb{R}$. Equation of l is $\mathbf{r} = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 7 \\ 6 \\ -8 \end{pmatrix}$, $\lambda \in \mathbb{R}$.

b) Given that a=2, find the value of k such that π_3 contains l.

Assuming that π_3 contains l, substituting equation of l into equation of π ,

[2]

$$\begin{pmatrix} \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 7 \\ 6 \\ -8 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -5 \\ -2 \end{pmatrix} = k \text{ for all } \lambda \in \mathbb{R}$$
$$-4 + 14\lambda - 5 - 30\lambda + 16\lambda = k$$
$$k = -9$$

c) Given that $a=1,\ k=3,$ find the point of intersection of $\pi_1,\ \pi_2$ and $\pi_3.$

We have the three equations,
$$\begin{cases} 2x+3y+4z=-1\\ -2x+y-z=5\\ x-5y-z=3 \end{cases}$$
 Using a G.C., we obtain $x=-\frac{20}{3},\ y=-3$ and $z=\frac{16}{3}.$

[2]

19 An incident beam of light was reflected perfectly $(\theta_1 = \theta_2)$ on a round mirror.

Figure 1: Mirror

A student modelled the scenario such that the incident beam is l_1 , the reflected beam is l_2 and the mirror is π , where π contains the vectors $\mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{i} - \mathbf{j}$ and $2\mathbf{i} + \mathbf{j} - \mathbf{k}$.

a) Find the equation of the plane π in the form $\mathbf{r} \cdot \mathbf{n} = d$.

Normal of plane
$$\pi$$
 // $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \end{pmatrix} \times \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \end{pmatrix}$

$$= \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$

$$= \begin{pmatrix} -4 \\ 1 \\ -2 \end{pmatrix}$$

$$d = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix} = 5$$

$$\therefore \text{ Equation of } \pi \text{ is } \mathbf{r} \cdot \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix} = 5$$

[3]

b) Show that P(1,3,2), the point of intersection between l_1 and l_2 lies on π . [1]

Substituting
$$\mathbf{r} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$$
 into equation of π ,
$$LHS = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix} = 5$$
$$= RHS$$

c) State the vector equation of l_3 , the axis of reflection between l_1 and l_2 . [1]

$$l_3: \mathbf{r} = \begin{pmatrix} 1\\3\\2 \end{pmatrix} + \lambda \begin{pmatrix} 4\\-1\\2 \end{pmatrix}, \ \lambda \in \mathbb{R}$$

d) Given that A(t, 1, 1) lies on l_1 , where t > 0, find t such that $\theta_1 = \theta_2 = \frac{\pi}{4}$. [4]

$$\overrightarrow{PA} = \begin{pmatrix} t \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} t-1 \\ -2 \\ -1 \end{pmatrix}$$

Let α be the angle between l_1 and l_3 .

$$\cos \alpha = \frac{\begin{pmatrix} t-1 \\ -2 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix}}{\begin{vmatrix} t-1 \\ -2 \\ -1 \end{vmatrix} \cdot \begin{vmatrix} 4 \\ -1 \\ 2 \end{vmatrix}}$$
$$= \frac{4t-4}{\sqrt{t^2-2t+6}\sqrt{21}}$$

Since $\theta_1 = \frac{\pi}{4}$, $\alpha = \frac{3\pi}{4}$ or $\frac{\pi}{4}$.

Regardless, $\cos^2 \alpha = \frac{1}{2}$.

Squaring both sides,
$$\frac{1}{2} = \frac{16t^2 - 32t + 16}{21t^2 - 42t + 126}$$

 $11t^2 - 22t - 94 = 0$

Using G.C., t = 2.50 or -3.41 (3s.f.)

Since t > 0, t = 2.50

For the rest of the question, take t = 4.

e) Find the shortest distance from A to π .

[2]

Shortest distance
$$= \frac{\begin{vmatrix} \overrightarrow{AP} \times \begin{pmatrix} 4 \\ -1 \\ 2 \end{vmatrix} \end{vmatrix}}{\begin{vmatrix} \begin{pmatrix} 4 \\ -1 \\ 2 \end{vmatrix} \end{vmatrix}}$$
$$= \frac{\begin{vmatrix} \begin{pmatrix} -3 \\ 2 \\ 1 \end{pmatrix} \times \begin{pmatrix} 4 \\ -1 \\ 2 \end{vmatrix} \end{vmatrix}}{\begin{vmatrix} \begin{pmatrix} 5 \\ 10 \\ -5 \end{pmatrix} \end{vmatrix}}$$
$$= \frac{5}{\sqrt{21}} \sqrt{1 + 2^2 + 1}$$
$$= \frac{5\sqrt{14}}{7} \text{units}$$

f) Find the coordinates of F, the foot of perpendicular from A to l_3 . Hence, or otherwise, find the equation of l_2 . [6]

Let
$$\overrightarrow{OF} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} + k \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix}$$
, for some $k \in \mathbb{R}$

$$\overrightarrow{AF} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} + k \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix} - \begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -3+4k \\ 2-k \\ 1+2k \end{pmatrix}$$

Since $\overrightarrow{AF} \perp l_3$,

$$\begin{pmatrix} -3+4k \\ 2-k \\ 1+2k \end{pmatrix} \cdot \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix} = 0$$

$$-12 + 21k = 0$$

$$k = \frac{4}{7}$$

$$\overrightarrow{OF} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} + \frac{4}{7} \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix} = \frac{1}{7} \begin{pmatrix} 23 \\ 17 \\ 22 \end{pmatrix}$$
$$\therefore F\left(\frac{23}{7}, \frac{17}{7}, \frac{22}{7}\right)$$

Let A' be the reflection of point A in l_3 .

$$\overrightarrow{OA'} = \overrightarrow{OA} + 2\overrightarrow{AF}$$

$$= \begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} \frac{1}{7} \begin{pmatrix} 23 \\ 17 \\ 22 \end{pmatrix} - \begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix}$$

$$= \frac{1}{7} \begin{pmatrix} 18 \\ 27 \\ 37 \end{pmatrix}$$

$$\overrightarrow{A'P} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} - \frac{1}{7} \begin{pmatrix} 18 \\ 27 \\ 37 \end{pmatrix}$$

$$= \frac{1}{7} \begin{pmatrix} -11 \\ -6 \\ -23 \end{pmatrix}$$

Since l_2 is parallel to $\overrightarrow{A'P}$ and contains P, equation of l_2 is

$$\mathbf{r} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 11 \\ 6 \\ 23 \end{pmatrix}, \ \mu \in \mathbb{R}.$$

20 A professional card stacker stacks two cards P and Q as follows:

Figure 2: Card Stack

Mr Poh models the scenario such that the two cards are planes P and Q, where the equation of plane P is $P: \mathbf{r} \cdot \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} = 1$, where line l_1 is a normal to plane P that contains A(-3,3,2). Line l_2 , a normal to plane Q, also contains point A and is parallel to the vector $\begin{pmatrix} 3 \\ -1 \\ a \end{pmatrix}$ where a < 0. l_3 is the line of intersection between planes P and Q.

a) Find the coordinates of B, the point of intersection between l_1 and plane P. [2]

Equation of
$$l_1$$
 is $\mathbf{r} = \begin{pmatrix} -3 \\ 3 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}, \ \lambda \in \mathbb{R}$

Substitute equation of l_1 into equation of P:

$$\left(\begin{pmatrix} -3 \\ 3 \\ 2 \end{pmatrix} + k \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} \right) \cdot \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} = 1 \text{ for some } k \in \mathbb{R}$$

$$k = 1$$

-10 + 11k = 1

$$\overrightarrow{OB} = \begin{pmatrix} -3 \\ 3 \\ 2 \end{pmatrix} + \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$$

b) Given that l_2 is obtaining by rotating $l_1 \cos^{-1} \frac{9}{11}$ about point A, find a; Hence, find the vector equation of l_2 . [4]

$$\pm \cos\left(\cos^{-1}\frac{9}{11}\right) = \frac{\begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \\ a \end{pmatrix}}{\begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \\ a \end{pmatrix}}$$

$$\pm \frac{9}{11} = \frac{10+a}{\sqrt{11}\sqrt{10+a^2}}$$

$$\frac{81}{121} = \frac{100 + a^2 + 20a}{110 + 11a^2}$$

$$8910 + 891a^2 = 12100 + 121a^2 + 2420a$$

$$770a^2 - 2420a - 3190 = 0$$

Using a G.C., we obtain a = -1 or $\frac{29}{7}$. Since a < 0, a = -1.

$$\therefore l_2 : \mathbf{r} = \begin{pmatrix} -3 \\ 3 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}, \mu \in \mathbb{R}$$

c) The point of intersection between l_2 and plane Q is point B'. Given that $|\overrightarrow{AB}| = |\overrightarrow{AB'}|$, find the position vector of B' given that the x-coordinate of B' < 0. [3]

$$\left| \overrightarrow{AB'} \right| = \left| \overrightarrow{AB} \right|$$

$$= \left| \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} \right|$$

$$= \sqrt{11}$$

Unit vector along
$$AB' = \frac{\begin{pmatrix} 3 \\ -1 \\ -1 \end{pmatrix}}{\begin{vmatrix} 3 \\ -1 \\ -1 \end{vmatrix}} = \frac{1}{\sqrt{11}} \begin{pmatrix} 3 \\ -1 \\ -1 \end{pmatrix}$$

$$\overrightarrow{OB'} = \overrightarrow{OA} \pm \frac{|\overrightarrow{AB'}|}{\sqrt{11}} \begin{pmatrix} 3 \\ -1 \\ -1 \end{pmatrix}$$

$$= \begin{pmatrix} -3 \\ 3 \\ 2 \end{pmatrix} \pm \begin{pmatrix} 3 \\ -1 \\ -1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \text{ or } \begin{pmatrix} -6 \\ 4 \\ 3 \end{pmatrix}$$
Since the x - coordinate of $B' < 0$, $\overrightarrow{OB'} = \begin{pmatrix} -6 \\ 4 \\ 3 \end{pmatrix}$

d) Find the equation of the plane Q in the form $\mathbf{r} \cdot \mathbf{n} = d$. [2] Since plane Q contains B', equation of plane Q is

$$\mathbf{r} \cdot \begin{pmatrix} 3 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} -6 \\ 4 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -1 \\ -1 \end{pmatrix} = 25$$

e) Find the vector equation of l_3 . [2]

We have the two equations,
$$\begin{cases} 3x - y + z = 1 \\ 3x - y - z = -25 \end{cases}$$

Using a G.C., we obtain $x = -4 + \frac{1}{3}y$, $y \in \mathbb{R}$, z = 13.

Equation of
$$l_3$$
 is $\mathbf{r} = \begin{pmatrix} -4 \\ 0 \\ 13 \end{pmatrix} + \tau \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}, \ \tau \in \mathbb{R}.$

The equation of plane R is such that it reflects the image of plane P to form plane

Q.

f) Find the vector \overrightarrow{AF} , where F is the foot of perpendicular from A to l_3 . Hence, find the equation of plane R in the form $\mathbf{r} \cdot \mathbf{n} = d$.

[5]

Let $\overrightarrow{OF} = \begin{pmatrix} -4 \\ 0 \\ 13 \end{pmatrix} + k \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ for some $k \in \mathbb{R}$

$$\overrightarrow{AF} = \begin{pmatrix} -4 \\ 0 \\ 13 \end{pmatrix} + k \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} - \begin{pmatrix} -3 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} -1+k \\ -3+3k \\ 11 \end{pmatrix}$$

Since $\overrightarrow{AF} \perp l_3$,

$$\begin{pmatrix} -1+k \\ -3+3k \\ 11 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} = 0$$

-10 + 10k = 0

k = 1

$$\therefore \overrightarrow{AF} = \begin{pmatrix} -1+1\\ -3+3\\ 11 \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 11 \end{pmatrix}$$

Since plane R is parallel to both \overrightarrow{AF} and l_3 ,

Normal to plane
$$R / / \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} = \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix}$$

Equation of plane
$$R$$
 is $\mathbf{r} \cdot \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -3 \\ 3 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix} = 12$