Please show and explain your work where necessary. Good luck!!

1. (3 points)

(i) Is the function e^x a solution to the differential equation y' - y = 0? (Circle your answer.)

Yes No

(ii) Circle the following that is most likely to be a trivial solution to a DE.

 $y = e^x y = c y = 0 y = Ce^x$

(iii) Circle the following that is most likely to be a particular solution to a DE. $(C, c_1, c_2, k$ are arbitrary constants.)

 $y = e^x y = c y = c_1 x + c_2 x e^x y = C e^x$

(iv) Circle the following that is most likely to be a 2-parameter family of solutions to a DE. $(C, c_1, c_2, k$ are arbitrary constants.)

 $y = e^x y = c y = c_1 x + c_2 x e^x y = C e^x$

(v) Circle the following that is most likely to be a general solution to a DE. (C, c_1, c_2, k) are arbitrary constants.)

 $y = e^x$ y = 0 $y = c_1 x + c_2 x e^x$ $y = \cos(x)$

(vi) Suppose $y = \ln(x - 3)$ is a solution to a DE. Circle the following which would best represent its interval of validity (or domain of the solution).

 $(-\infty, \infty) \qquad (-\infty, 3] \qquad (-\infty, 3) \qquad (3, \infty)$

2. (2 points) Suppose $y = \frac{1}{x-3}$ is a solution to a differential equation. Is $(-\infty,3) \cup (3,\infty)$ the interval of validity for the solution (or the domain of the solution)? If so, explain why. If not, provide a possible domain.

3. (5 points) Consider the function $f = c_1 \cos(3t) + c_2 \sin(3t)$, where c_1 and c_2 are arbitrary constants. We are given that $f = c_1 \cos(3t) + c_2 \sin(3t)$ is a 2-parameter family of solutions to the differential equation f'' + f = 0. Find a solution to the IVP consisting of this differential equation and the following initial conditions:

$$f\left(\frac{\pi}{3}\right) = \sqrt{2}, \qquad f'\left(\frac{\pi}{3}\right) = \sqrt{3}.$$