Алгебра и геометрия 1 семестр

Моисеева Светлана Петровна доктор физ.- мат. наук, Профессор кафедры теории вероятностей и математической статистики ФПМК

Матрицы и определители Лекция 1

§1. Понятие матрицы

Определение. *Матрицей размера (тхп) (или т,п-матрицей)* называется прямоугольная таблица чисел, имеющая *т* строк и *п* столбцов. Эти числа называются элементом матрицы.

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}.$$

Числа m и n называются nopядком матрицы, а сама матрица размера (порядка) $m \times n$.

Обозначения:
$$\mathbf{A} = \begin{bmatrix} a_{ij} \end{bmatrix}, (i=1,2,...,m,\ j=1,2,...,n), a_{ij}$$
 — элементы матрицы $\mathbf{A},\ a_{i1},a_{i2},...,a_{in}\ (i=1,2,...,m)$ — строка матрицы $\mathbf{A},\ a_{1j},a_{2j},...,a_{mj}$ — столбец матрицы \mathbf{A} .

Определение. Две матрицы **A** и **B**, имеющие одинаковое число строк и одинаковое число столбцов, называются матрицами *одинакового порядка*.

Определение. Две матрицы называются *равными*, если они имеют одинаковый размер и элементы, стоящие на одинаковых местах в этих матрицах, равны.

$$\mathbf{A} = \mathbf{B}$$
, если $a_{ij} = b_{ij} \ \forall \ i=1,2,...,m, j=1,2,...,n$

Частные виды матриц

Определение. Матрица размера $1 \times n$ называется **вектор – строкой**

$$\mathbf{a} = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix};$$

матрица размера $m \times 1$ называется вектор — столбцом

$$\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Ŋė.

Определение. Нулевой матрицей называется матрица, все элементы которой – нули.

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Определение. Матрица размера $n \times n$ называется **квадратной** матрицей порядка n

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}.$$

Определение. Квадратная матрица, все элементы которой, не стоящие на главной диагонали равны нулю, называется диагональной.

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

Определение. Диагональная матрица, в которой все элементы главной диагонали равны, называется **скалярной**.

Определение. Скалярная матрица, в которой все элементы главной диагонали единицы, называется **единичной** и обозначается

$$\mathbf{E} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$$

Ŋė.

Определение. Квадратная матрица, у которой все элементы, лежащие выше (ниже) главной диагонали равны нулю, называется нижней (верхней)

треугольной матрицей

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

Определение. Квадратная матрица, у которой для всех i,j $a_{ij} = a_{ji}$ называется **симметричной**

$$\mathbf{A} = \begin{pmatrix} 1 & 4 & 5 \\ 4 & 2 & 6 \\ 5 & 6 & 3 \end{pmatrix}$$

ķΑ

§2. Основные операции над матрицами и их свойства

Транспонирование матриц

Определение. Матрица ${\bf B} = {\bf A}^T$.называется **транспонированной** по отношению к матрице ${\bf A}$, если для всех i,j $b_{ij} = a_{ji}$.

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 4 & 5 & 6 & 7 \\ 0 & 8 & 0 & 9 \end{pmatrix}, \qquad \qquad \mathbf{A}^{\mathrm{T}} = \begin{bmatrix} 1 & 4 & 0 \\ 2 & 5 & 8 \\ 3 & 6 & 0 \\ 0 & 7 & 9 \end{bmatrix}$$

Сложение матриц

Определение. Суммой двух $(m \times n)$ — матриц **A** и **B** называется такая $(m \times n)$

– матрица **C**, что
$$c_{ij} = a_{ij} + b_{ij}$$
, $\forall i = 1, 2, ..., m, j = 1, 2, ..., n$.

Сложение матриц обладает следующими свойствами:

1. для любых $(m \times n)$ — матриц **A**, **B**, **C** выполняются равенства:

$$A+B=B+A$$
, $A+(B+C)=(A+B)+C$;

- 2. существует единственная $(m \times n)$ матрица $\mathbf{0}$ такая, что для любой $(m \times n)$ матрицы \mathbf{A} выполняется равенство $\mathbf{A} + \mathbf{0} = \mathbf{A}$.
- 3. для любой $(m \times n)$ матрицы **A** существует единственная матрица (-**A**) такая, что $\mathbf{A} + (-\mathbf{A}) = \mathbf{0}$.

Замечание. Матрица А+(-В) называется разностью матриц А и В.

Умножение матрицы на число

Определение. Произведением $(m \times n)$ — матрицы **A** на число λ называется такая $(m \times n)$ — матрица **B**, что $b_{ij} = \lambda a_{ij}$.

Умножение матрицы на число обладает следующими свойствами:

- 1. для любой $(m \times n)$ матрицы **A** имеет место равенство $1 \cdot \mathbf{A} = \mathbf{A}$;
- 2. для любой матрицы ${\bf A}$ и любых чисел ${\bf \lambda}$ и ${\bf \mu}$ имеет место равенство ${\bf \lambda}({\bf \mu}{\bf A})\!=\!({\bf \lambda}{\bf \mu})\!\cdot\!{\bf A};$
- 3.для любой матрицы **A** и любых чисел λ и μ имеет место равенство $(\lambda + \mu) \cdot \mathbf{A} = \lambda \mathbf{A} + \mu \mathbf{A}$;
- 4. для любых матриц **A** и **B** и любого числа λ выполняется равенство $\lambda(A+B) = \lambda A + \lambda B$.

Произведение матриц

Определение. Произведением матрицы **A** размера $(m \times n)$ на матрицу **B** размера $(n \times k)$ называется матрица C=AB размера $(m \times k)$, элемент которой, стоящий на пересечении і-й строки и j-го столбца, равен скалярному произведению i-й строки матрицы **A** на j-й столбец матрицы **B**

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj} = \sum_{s=1}^{n} a_{is}b_{sj}.$$

Пример. Пусть
$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 0 \\ 3 & 0 & 5 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 5 & 1 & 7 & 0 \\ 2 & 0 & 1 & 3 \\ 3 & 4 & 2 & 2 \end{pmatrix}$

$$\mathbf{A} \cdot \mathbf{B} = \begin{pmatrix} 2 \cdot 5 + 1 \cdot 2 + 0 \cdot 3 & 2 \cdot 1 + 1 \cdot 0 + 0 \cdot 4 & 2 \cdot 7 + 1 \cdot 1 + 0 \cdot 2 & 2 \cdot 0 + 1 \cdot 3 + 0 \cdot 2 \\ 3 \cdot 5 + 0 \cdot 2 + 5 \cdot 3 & 3 \cdot 1 + 0 \cdot 0 + 5 \cdot 4 & 3 \cdot 7 + 0 \cdot 1 + 5 \cdot 2 & 3 \cdot 0 + 0 \cdot 3 + 5 \cdot 2 \end{pmatrix} =$$

$$= \begin{pmatrix} 12 & 2 & 15 & 3 \\ 30 & 23 & 31 & 10 \end{pmatrix}.$$

Свойства произведения матриц

1.
$$\lambda(\mathbf{A} \cdot \mathbf{B}) = (\lambda \mathbf{A}) \cdot \mathbf{B};$$

2.
$$\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A}\cdot\mathbf{B}+\mathbf{A}\cdot\mathbf{C};$$

3.
$$\mathbf{A}(\mathbf{B} \cdot \mathbf{C}) = (\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C};$$

$$4.(\mathbf{A} \cdot \mathbf{E}) = \mathbf{E} \cdot \mathbf{A};$$

$$5. (\mathbf{A} \cdot \mathbf{B})^T = \mathbf{B}^T \cdot \mathbf{A}^T.$$

Замечание 1. Произведение матрицы **A** на матрицу **B** существует лишь при условии, что число столбцов матрицы **A** равно числу строк матрицы **B**. Это произведение не коммутативно, т.е., $(\mathbf{A} \cdot \mathbf{B}) \neq (\mathbf{B} \cdot \mathbf{A})$.

Возможен случай, когда $\mathbf{A}\mathbf{B}$ существует, а $\mathbf{B}\mathbf{A}$ не существует вследствии несовпадения числа строк матрицы \mathbf{A} с числом столбцов матрицы \mathbf{B} .

Если обе матрицы квадратные одного размера, то \mathbf{AB} и \mathbf{BA} — матрицы того же размера, но и тогда они, вообще говоря, различны, например:

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 3 & 7 \\ 2 & 1 \end{pmatrix}, \quad \mathbf{A} \cdot \mathbf{B} = \begin{pmatrix} 7 & 9 \\ 19 & 26 \end{pmatrix}, \quad \mathbf{B} \cdot \mathbf{A} = \begin{pmatrix} 24 & 41 \\ 5 & 9 \end{pmatrix}.$$

Исключение составляет случай, когда ${\bf A}$ и ${\bf B}$ квадратные матрицы одинакового порядка n и при этом матрица ${\bf B}$ является скалярной.

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \quad \mathbf{A} \cdot \mathbf{B} = \begin{pmatrix} 1 \cdot 2 + 2 \cdot 0 & 1 \cdot 0 + 2 \cdot 2 \\ 3 \cdot 2 + 2 \cdot 0 & 3 \cdot 0 + 5 \cdot 2 \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ 6 & 10 \end{pmatrix},$$

$$\mathbf{B} \cdot \mathbf{A} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} 2 \cdot 1 + 0 \cdot 3 & 2 \cdot 2 + 0 \cdot 5 \\ 0 \cdot 1 + 2 \cdot 3 & 0 \cdot 2 + 2 \cdot 5 \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ 6 & 10 \end{pmatrix}$$

Замечание 2. Для чисел a и b из равенства $a \cdot b = 0$ следует, что хотя бы одно из этих чисел равно нулю. Для матриц это утверждение неверно, т.е. произведение ненулевых матриц может быть равно нуль — матрице, например:

$$A = \begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 6 \\ -1 & -2 \end{pmatrix}, \quad A \cdot B = \begin{pmatrix} 3 - 3 & 6 - 6 \\ 6 - 6 & 12 - 12 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0.$$

Определение. Следом квадратной матрицы **A** порядка n называется сумма диагональных элементов матрицы $Sp\mathbf{A} = \sum_{i=1}^{n} a_{ii} \,.$

$$Sp(\mathbf{A} \cdot \mathbf{B}) = \sum_{i=1}^{n} (\mathbf{A} \cdot \mathbf{B})_{ii} = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} b_{ki} = \sum_{k=1}^{n} \sum_{i=1}^{n} b_{ki} a_{ik} = \sum_{k=1}^{n} (\mathbf{B} \cdot \mathbf{A})_{kk} = Sp(\mathbf{B} \cdot \mathbf{A}).$$

§ 4. Арифметическое пространство.

Определение 1. Множество всех упорядоченных наборов из n чисел $(a_1,a_2,...a_n)$, для которых определены операции сложения и умножения на число по правилам:

$$1^{0} (a_{1}, a_{2}, ..., a_{n}) + (b_{1}, b_{2}, ..., b_{n}) = (a_{1} + b_{1}, a_{2} + b_{2}, ..., a_{n} + b_{n});$$

$$2^{0} \lambda(a_{1}, a_{2}, ..., a_{n}) = (\lambda a_{1}, \lambda a_{2}, ..., \lambda a_{n}),$$

называется арифметическим пространством.

Если числа, о которых идет речь, вещественные, то пространство обозначается символом R^n , а если комплексные — то символом C^n . Сами элементы арифметического пространства условимся обозначать $\mathbf{a} = (a_1, a_2, ..., a_n)$ и называть их для краткости строками, хотя, конечно, записывать их можно и в виде столбцов.

Строки складываются и умножаются на число по тем же правилам, что и $(1 \times n)$ — матрицы. Поэтому можно сформулировать следующее определение.

Определение 2. Сумма вида $\lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + \ldots + \lambda_k \mathbf{a}_k$ называется линейной комбинацией строк \mathbf{a}_i с коэффициентами λ_i .

Если все коэффициенты равны 0, то линейная комбинация называется тривиальной, в противном случае (т.е. если хотя бы один коэффициент отличен от нуля) – нетривиальной.

Среди всевозможных строк особую роль играют строки

$$\mathbf{e}_1 = (1, 0, ..., 0), \quad \mathbf{e}_2 = (0, 1, ..., 0), ..., \quad \mathbf{e}_n = (0, 0, ..., 1)$$

поскольку любая строка может а быть представлена, и при том единственным образом, в виде их линейной комбинации:

$$\mathbf{a} = (a_1, a_2, ..., a_n) = a_1 \mathbf{e}_1 + a_2 \mathbf{e}_2 + ... + a_n \mathbf{e}_n.$$

Определение 3. Строки называются линейно зависимыми, если существует их нетривиальная линейная комбинация, равная нулевой строке $\mathbf{0} = (0, 0, ..., 0)$; в противном случае они называются линейно независимыми.

Теоремы о линейной зависимости строк.

Теорема 1. Если среди строк есть нулевая, то эти строки линейно зависимы.

Доказательство. Пусть, например, $\mathbf{a}_1 = (0,0,...,0)$ Имеем:

$$1 \cdot \mathbf{a}_1 + 0 \cdot \mathbf{a}_2 + \ldots + 0 \cdot \mathbf{a}_m = (0, 0, \ldots, 0),$$

а значит, строки $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_m$ линейно зависимы.

Теорема доказана.

Теорема 2. Если какие — нибудь k из m строк линейно зависимы, то и все строки линейно зависимы.

Доказательство. Пусть, например, строки $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_k$ линейно зависимы, т.е. существуют такие числа $\lambda_1, \lambda_2, ..., \lambda_k$, что $\lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + ... + \lambda_k \mathbf{a}_k = (0, 0, ..., 0)$ причем не все λ_i равны нулю.

Имеем:

$$\lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + \ldots + \lambda_k \mathbf{a}_k + \lambda_{k+1} \mathbf{a}_{k+1} + \ldots + \lambda_m \mathbf{a}_m = (0, 0, \ldots, 0).$$

Но это и означает, что строки $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_m$ линейно зависимы.

Теорема доказана.

Ŋė.

Теорема 3. Если строки линейно зависимы, то одна из них равна линейной комбинации остальных.

Доказательство. Если строки $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_m$ линейно зависимы, то существуют такие числа $\lambda_1, \lambda_2, ..., \lambda_m$, что

$$\lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + \ldots + \lambda_m \mathbf{a}_m = (0, 0, \ldots, 0),$$

причем не все λ_1 равны нулю. Пусть, например, $\lambda_1 \neq 0$, тогда

$$\mathbf{a}_1 = -\frac{\lambda_2}{\lambda_1} \mathbf{a}_2 - \ldots - \frac{\lambda_m}{\lambda_1} \mathbf{a}_m,$$

что и требовалось доказать.

Теорема доказана.

Ŋ.

Определители

Введем понятие определителя сначала для квадратных матриц первого, второго и третьего порядка, а затем распространим на квадратные матрицы любого порядка.

 ${\bf O}$ бозначение: $|{\bf A}|$ или $\det {\bf A}$.

Определение. Если $\mathbf{A} = [a_{ij}]$ — квадратная матрица первого порядка, то ее определителем (определителем первого порядка) называется число $|\mathbf{A}| = a_{11}$.

Пример. Рассмотрим систему двух линейных уравнений с двумя неизвестными x_1 и x_2 .

$$a_{11}x_1 + a_{12}x_2 = b_1 a_{21}x_1 + a_{22}x_2 = b_2$$
.

Умножим первое уравнение на a_{22} , второе – на $(-a_{12})$ и сложим их. В результате получим:

$$(a_{11}a_{22}-a_{12}a_{21})x_1=b_1a_{22}-b_2a_{12},$$

откуда,
$$x_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12} a_{21}},$$
 $x_2 = \frac{b_2 a_{11} - b_1 a_{21}}{a_{11} a_{22} - a_{12} a_{21}}.$

Обозначим
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}, \qquad \begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix} = b_1a_{22} - b_2a_{21}, \qquad \begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix} = a_{11}b_2 - b_1a_{21}$$
 Тогда
$$x_1 = \begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \\ a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}. \qquad x_2 = \begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \\ \hline a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}.$$

Определение. Выражение $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$ называется определителем второго

порядка матрицы $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$.

Определение. Выражение

$$\det \mathbf{A} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_1 \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

называется определителем третьего порядка матрицы А.

Определение. Определителем n-го порядка $(n \ x \ n)-$ матрицы A при n>1 называется число

$$\det \mathbf{A} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \sum_{s=1}^{n} (-1)^{s+1} a_{1s} \Delta_{1s}, \quad \text{где} \quad \Delta_{1s} \quad \text{определитель} \quad (n-1) \quad \text{го порядка}$$

матрицы, полученной из $\bf A$ вычеркиванием первой строки и s — го столбца.

Определение. Определитель Δ_{ij} , получаемый из detA вычеркиванием $i-\bar{u}$ строки и $j-\bar{c}$ столбца, называется минором, дополнительным к элементу a_{ij} .

Теорема. Справедлива следующая формула, называемая формулой разложения определителя по i – й строке:

$$\det A = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \Delta_{ij},$$
(1)

где Δ_{ij} – минор, дополнительный к элементу a_{ij} .

Основные свойства определителя

- 1. Если две строки поменять местами, то знак определителя изменится на противоположный.
- 2. Если все элементы какой нибудь строки умножить на одно и то же число, то весь определитель умножится на это число.

Доказательство: Если разложить определитель по указанной строке, то в формуле (1) перед каждым слагаемым появится общий множитель. После вынесения его за скобки в скобках останется исходный определитель, что и требовалось доказать.

3. Если к строке определителя прибавить какую-нибудь строку $b=(b_1, b_2, ..., b_n)$, то его можно будет представить в виде суммы двух: исходного определителя и определителя, в котором указанная строка заменена на прибавленную:

$$\Delta(a_1 + b, a_2, ..., a_n) = \Delta(a_1, a_2, ..., a_n) + \Delta(b, a_2, ..., a_n),$$

$$\Delta(a_1, a_2 + b, ..., a_n) = \Delta(a_n, a_2, ..., a_n) + \Delta(a_1, b, ..., a_n),$$

$$...$$

$$\Delta(a_1, a_2, ..., a_n + b) = \Delta(a_1, a_2, ..., a_n) + \Delta(a_1, a_2, ..., b).$$

Доказательство: В самом деле,

$$\Delta(a_1, ..., a_i + b, ..., a_n) = \sum_{j=1}^n (-1)^{i+j} (a_{ij} + b_j) \Delta_{ij} = \sum_{i=1}^n (-1)^{i+j} a_{ij} \Delta_{ij} + \sum_{i=1}^n (-1)^{i+j} b_j \Delta_{ij} = \Delta(a_1, ..., a_i, ..., a_n) + \Delta(a_1, ..., b, ..., a_n),$$

что и требовалось доказать.

4. Если в определителе две строки одинаковые, то он равен нулю.

Доказательство: Действительно, если указанные строки поменять местами, то определитель, с одной стороны, не изменится, а с другой — у него изменится знак. Это возможно лишь в том случае, когда он равен нулю.

случае, когда он равен нулю. 5. Определитель единичной матрицы равен 1. То есть, $\det \mathbf{E} = \begin{vmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{vmatrix} = 1.$

Доказательство: С помощью метода математической индукции.

Следствие 1. Если в определителе две строки пропорциональны (т.е. $a_i = \lambda a_j$ и $i \neq j$), в частности одна из строк состоит из нулей (случай $\lambda = 0$), то он равен нулю.

Если, пользуясь свойством 1, вынести общий множитель, то получится, что две строки в определителе совпадают и, следовательно, он равен нулю.

Следствие 2. Если одна из строк равна линейной комбинации остальных, то определитель равен нулю.

Согласно свойству 2, такой определитель можно представить в виде суммы определителей, в каждом из которых две строки пропорциональны.

Следствие 3. Если к какой-нибудь строке определителя прибавить линейную комбинацию остальных строк, то определитель не изменится.

Согласно свойству 2 он может быть представлен в виде суммы двух определителей: исходного и определителя, в котором одна из строк равна линейной комбинации остальных.

Алгебраическое дополнение

Рассмотрим формулу (1), выражающую определитель матрицы **A** через ее элементы. Сгруппируем в ней все те слагаемые, которые содержат в качестве сомножителя элемент a_{ij} , и вынесем общий множитель a_{ij} за скобки. Та сумма, которая останется после этого в скобках, называется **алгебраическим дополнением** A_{ij} элемента a_{ij} . Иными словами, A_{ij} - это то, во что превращается правая часть выражения (1) при замене элемента a_{ij} на единицу, а всех остальных элементов i - й строки — на нули.

Теорема. Алгебраическое дополнение элемента a_{ij} равно минору, дополнительному к a_{ij} , взятому со знаком « + », если число (i+j) четно, и « - » - если нечетно:

$$A_{ij} = (-1)^{i+j} \Delta_{ij}.$$

Доказательство. Из определения следует, что алгебраическое дополнение A_{ij} представляет собой определитель, полученный из $\det \mathbf{A}$ заменой элемента a_{ij} на единицу, а всех остальных элементов i - й строки — на нули. С другой стороны, если такой определитель разложить по i - й строке, то окажется, что он равен $(-1)^{i+j}\Delta_{ij}$. Теорема доказана.

Замечание 1. Доказанная теорема позволяет по — новому записывать формулу разложения определителя по i - й строке:

$$\det A = \sum_{s=1}^{n} a_{is} A_{is}. \tag{2}$$

Теорема 1. Справедлива следующая формула, называемая формулой разложения определителя по j – му столбцу:

Теорема 2. Для любой $(n \times n)$ - матрицы **A** имеет место равенство $\det A^T = \det A$.

Доказательство. Воспользуемся методом математической индукции.

При n=1 утверждение теоремы очевидно — в этом случае транспонированная матрица совпадает с исходной. Допустим, что теорема доказана для n=k. Тогда разложение определителя (k+1)-го порядка матрицы A^T по первой строке совпадает с разложением определителя матрицы A по первому столбцу. Теорема доказана.

Следствие. Все утверждения о строках определителя справедливы и для его столбцов. Иными словами, строки и столбцы в определителе равноправны.

Определитель произведения квадратных матриц. $\det(\mathbf{A} \cdot \mathbf{B}) = \det \mathbf{A} \det \mathbf{B}$

Ŋė.

Обратная матрица

Определение. Квадратная матрица $\mathbf{B} = [b_{ij}]$ называется обратной по отношению к матрице \mathbf{A} ,

если
$$\mathbf{A} \times \mathbf{B} = \mathbf{B} \times \mathbf{A} = \mathbf{E}$$
. (3)

Обратная матрица обозначается символом ${\bf A}^{-1}$.

Таким образом, $\mathbf{A} \times \mathbf{A}^{-1} = \mathbf{A}^{-1} \times \mathbf{A} = \mathbf{E}$.

Из определения вытекает, что порядок матрицы \mathbf{A}^{-1} равен n.

Теорема 1. Квадратная матрица A имеет обратную тогда и только тогда, когда она не вырождена ($\det \mathbf{A} \neq 0$).

Доказательство.

1. **Необходимость.** Предположим, что для матрицы \mathbf{A} существует обратная матрица $\mathbf{A}^{\text{-1}}$.

Тогда выполняется (3).

При этом
$$\det(\mathbf{A} \times \mathbf{A}^{-1}) = \det \mathbf{A} \times \det \mathbf{A}^{-1} = \det \mathbf{E} = 1.$$

Следовательно, $\det \mathbf{A} \neq 0$.

ye.

2. Достаточность. Пусть det $A \neq 0$.

Введем матрицу $C = [c_{ij}]$, элементы которой $c_{ij} = A_{ji}$, где A_{ji} – алгебраические дополнения элементов a_{ji} .

Матрица С называется присоединенной (союзной) по отношению к матрице А.

Рассмотрим произведение матриц АС. Элемент произведения

$$(AC)_{ij} = \sum_{k=1}^{n} a_{ik} c_{kj} = \sum_{k=1}^{n} a_{ik} A_{jk} = \begin{cases} \det \mathbf{A}, & i = j, \\ 0, & i \neq j. \end{cases}$$

Отсюда, $\mathbf{A} \cdot \mathbf{C} = \det \mathbf{A} \cdot \mathbf{E}$.

Аналогично, $\mathbf{C} \cdot \mathbf{A} = \det \mathbf{A} \cdot \mathbf{E}$.

Имеем,
$$\mathbf{C} \cdot \mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{C} = \det \mathbf{A} \cdot \mathbf{E} \cdot \mathbf{A}^{-1}$$
,

Поэтому $A^{-1} = \frac{C}{\det A}$ удовлетворяет определению обратной матрицы.

$\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{bmatrix}^{T}.$

Теорема 2. Если матрица А имеет обратную матрицу, то она единственная.

Доказательство (от противного).

Предположим, что для некоторой матрицы ${\bf A}$ существуют две обратные матрицы ${\bf A}_1$ и ${\bf A}_2$. Тогда

$$\mathbf{A} \cdot \mathbf{A}_1 = \mathbf{A}_1 \cdot \mathbf{A} = \mathbf{E},$$

$$\mathbf{A} \cdot \mathbf{A}_2 = \mathbf{A}_2 \cdot \mathbf{A} = \mathbf{E}.$$

Умножим первое соотношение на матрицу A_2 слева. Получим

$$\mathbf{A}_2 = \mathbf{A}_2 \cdot \mathbf{E} = \mathbf{A}_2 (\mathbf{A} \cdot \mathbf{A}_1) = (\mathbf{A}_2 \mathbf{A}) \cdot \mathbf{A}_1 = \mathbf{E} \cdot \mathbf{A}_1 = \mathbf{A}_1.$$

Основные свойства обратной матрицы:

1.
$$\det(\mathbf{A}^{-1}) = \frac{1}{\det \mathbf{A}}.$$

$$(\mathbf{A}^{-1})^{-1} = \mathbf{A}.$$

$$\mathbf{E}^{-1}=\mathbf{E}.$$

4.
$$(\lambda \mathbf{A})^{-1} = \frac{1}{\lambda} \mathbf{A}^{-1}.$$

5.
$$(\mathbf{AB})^{-1} = \mathbf{B}^{-1} \mathbf{A}^{-1}$$
.

6.
$$\left(\mathbf{A}^{T}\right)^{-1} = \left(\mathbf{A}^{-1}\right)^{T}.$$

Ŋė.

Пример. Найти обратную матрицу для матрицы
$$\mathbf{A} = \begin{pmatrix} 1 & 3 & -5 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
.

1. Вычислим определитель матрицы А разложением по первому столбцу:

$$\Delta = 1 \cdot \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = 1 \neq 0.$$

Следовательно, обратная матрица для матрицы А существует.

2. Найдем алгебраические дополнения а элементам матрицы А:

$$A_{ij} = (-1)^{i+j} \Delta_{ij},$$

где Δ_{ij} , - минор, получаемый из определителя матрицы **A** вычеркиванием i – й строки и j – го столбца.

$$A_{11} = (-1)^{1+1} \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = 1 \quad A_{21} = (-1)^{2+1} \begin{vmatrix} 3 & -5 \\ 0 & 1 \end{vmatrix} = -3, \quad A_{31} = (-1)^{3+1} \begin{vmatrix} 3 & -5 \\ 1 & 2 \end{vmatrix} = 11$$

$$A_{12} = (-1)^{1+2} \begin{vmatrix} 0 & 2 \\ 0 & 1 \end{vmatrix} = 0, \quad A_{22} = (-1)^{2+2} \begin{vmatrix} 1 & -5 \\ 0 & 1 \end{vmatrix} = 1, \quad A_{32} = (-1)^{3+2} \begin{vmatrix} 1 & -5 \\ 0 & 2 \end{vmatrix} = -2$$

$$A_{13} = (-1)^{1+3} \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} = 0, \quad A_{23} = (-1)^{2+3} \begin{vmatrix} 1 & 3 \\ 0 & 0 \end{vmatrix} = 0, \quad A_{33} = (-1)^{3+3} \begin{vmatrix} 1 & 3 \\ 0 & 1 \end{vmatrix} = 1$$

3. Значит,
$$\mathbf{A}^{-1} = \frac{1}{\Delta} \cdot \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix}^T$$

$$\mathbf{A}^{-1} = \frac{1}{1} \cdot \begin{pmatrix} 1 & -3 & 11 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -3 & 11 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}.$$

Нахождение обратной матрицы через элементарные преобразования

$$\mathbf{A} = \begin{pmatrix} 1 & 3 & -5 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

Составим расширенную блочную матрицу A|E и приведем ее к виду $E|A^{-1}$

$$\mathbf{A} = \begin{pmatrix} 1 & 3 & -5 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \overset{(1)-3(2)}{\sim} \begin{pmatrix} 1 & 0 & -11 & 1 & -3 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \sim$$

Ранг матрицы

Рассмотрим прямоугольную матрицу \mathbf{A} размера $m \times n$:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} ,$$

Если в этой матрице выделить произвольно k строк и k столбцов, то элементы, стоящие на пересечении выделенных строк и столбцов, образуют квадратную матрицу k -го порядка.

Определитель этой матрицы M_k будет называть **минором** k -го порядка матрицы \mathbf{A} . Очевидно, что матрица \mathbf{A} обладает минорами любого порядка от 1 до наименьшего из чисел m и n .

Если не все элементы матрицы равны нулю, то всегда можно указать целое число r, такое, что у матрицы A имеется минор M_r r -го порядка, отличный от нуля.

Определение. Натуральное число г называется рангом матрицы А, если:

- 1) существует минор M_r матрицы A порядка r, отличный от нуля;
- 2) все имеющиеся миноры порядка r+1 и выше, если это возможно, равны нулю.

Ранг матрицы обозначается одним из следующих символов:

$$r = rang(A) = Rang(A) = Rank(A) = r(A)$$
.

Очевидно, что Rang(0) = 0.

Если $\mathbf{A} \neq \mathbf{0}$, т $0 < \text{Rang}(\mathbf{A}) < \min(m,n)$.

Пример. Вычислить ранг матрицы $\mathbf{A} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$.

Так как существует
$$M_2 = \begin{vmatrix} 1 & 4 \\ 2 & 5 \end{vmatrix} = -3 \neq 0$$
, а единственный $M_3 = \begin{vmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{vmatrix} = 0$, то

$$Rang(A)=2.$$

Свойства ранга матрицы.

- 1. Ранг матрицы не изменится при умножении всех элементов столбца или строки на отличное от нуля число.
- 2. Ранг матрицы не изменится при перестановке её строк или столбцов.
- 3. При транспонировании матрицы её ранг не меняется.
- 4. Ранг матрицы не изменится, если к одному из её столбцов (строке) прибавить другой столбец (строку), умноженный на некоторое число.
- 6. Ранг матрицы не изменится, если удалить из неё столбец (строку), который является линейной комбинацией других столбцов (строк).

Элементарные преобразования матрицы.

Вычисление ранга матрицы

Для матриц большой размерности вычисление всех миноров затруднительно, в этом случае матрицу преобразуют к так называемому **треугольному** виду (когда элементы, стоящие ниже a_{ii} , равны 0), воспользовавшись операциями, не изменяющими ранг матрицы (эквивалентными преобразованиями).

Определение. Элементарными преобразованиями называются следующие преобразования матриц:

- 1. Перестановка двух любых столбцов (строк) матрицы.
- 2. Умножение столбца (строки) на отличное от нуля число.
- 3. Прибавление к одному столбцу (строке) линейной комбинации других столбцов (строк).

Из свойств ранга матрицы вытекает, что элементарные преобразования матрицы не меняют её ранг.

Определение. Две матрицы A и B называются **эквивалентными**, если одна из них получается из другой с помощью элементарных преобразований.

Эквивалентность матриц обозначается с помощью символов $A \sim B$.

Из определения вытекает, что эквивалентные матрицы не являются равными, но имеют одинаковый ранг.

Определение. Матрица вида
$$\begin{bmatrix} 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \end{bmatrix}$$
 называется канонической. $\begin{bmatrix} 1 & 0 & \cdots & 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \end{bmatrix}$

Ранг канонической матрицы равен, очевидно, числу единиц ${\bf r}$, стоящих на её диагонали.

Пример. Определить ранг матрицы

$$A = \begin{pmatrix} -2 & 3 & 1 & 1 & 1 & 0 \\ 1 & 0 & 2 & -1 & 3 & 4 \\ -1 & 3 & 3 & 0 & 4 & 4 \\ -3 & 3 & -1 & 2 & -2 & -4 \end{pmatrix}.$$

У матрицы **A** существуют миноры до 4-го порядка включительно, поэтому $r(\mathbf{A}) \leq 4$

1) Поменяем местами 1-ю и 2-ю строки, чтобы элемент a_{11} стал равным 1:

$$\mathbf{A} \sim \begin{pmatrix} 1 & 0 & 2 & -1 & 3 & 4 \\ -2 & 3 & 1 & 1 & 1 & 0 \\ -1 & 3 & 3 & 0 & 4 & 4 \\ -3 & 3 & -1 & 2 & -2 & -4 \end{pmatrix}.$$

2. Прибавим к третьей строке первую, ко второй — удвоенную первую, к четвертой — первую, умноженную на 3. Тогда все элементы 1-го столбца, кроме a_{11} , окажутся равными нулю:

Вычтем вторую строку полученной матрицы из третьей и четвертой строк:

и вычеркнем нулевые строки:

$$\mathbf{A} \sim \begin{pmatrix} 1 & 0 & 2 & -1 & 3 & 4 \\ 0 & 3 & 5 & -1 & 7 & 8 \end{pmatrix}.$$

Итак, ранг матрицы **A** равен рангу полученной матрицы размера 2×6 , т.е. $r(A) \le 2$. Минор

$$\begin{vmatrix} 1 & 0 \\ 0 & 3 \end{vmatrix} = 3 \neq 0,$$

следовательно, r(A) = 2.

Определение. Всякий минор матрицы A порядка r, отличный от нуля, называется базисным минором. Столбцы и строки матрицы, пересечением которых образован базисный минор, называются базисными столбцами и базисными строками.

В общем случае у матрицы может быть несколько базисных миноров.

Метод окаймляющих миноров

Теорема. Если в матрице какой-нибудь минор порядка \mathbf{r} не равен нулю, а все миноры порядка $\mathbf{r+1}$, его содержащие, равны нулю, то ранг матрицы равен \mathbf{r}

Пример. Найти ранг матрицы
$$\begin{pmatrix} 2 & -1 & 3 & -2 & 4 \\ 4 & -2 & 5 & 1 & 7 \\ 2 & -1 & 1 & 8 & 2 \end{pmatrix}$$

Решение:

Фиксируем минор отличный от нуля второго порядка

$$M_2 = \begin{vmatrix} -1 & 3 \\ -2 & 5 \end{vmatrix} = -5 + 6 = 1$$

Рассмотрим окаймляющие

миноры третьего порядка:

$$\begin{vmatrix} 2 & -1 & 3 \\ 4 & -2 & 5 \\ 2 & -1 & 1 \end{vmatrix} = -4 - 12 - 10 + 12 + 10 + 4 = 0 , \qquad \begin{vmatrix} -1 & 3 & -2 \\ -2 & 5 & 1 \\ -1 & 1 & 8 \end{vmatrix} = -40 + 4 - 3 - 10 + 1 + 48 = 0$$

$$\begin{vmatrix} -1 & 3 & 4 \\ -2 & 5 & 7 \\ -1 & 1 & 2 \end{vmatrix} = -10 - 8 - 21 + 20 + 7 + 12 = 0$$

Следовательно, ранг матрицы равен 2.

$$\begin{vmatrix} -1 & 3 & -2 \\ -2 & 5 & 1 \\ -1 & 1 & 8 \end{vmatrix} = -40 + 4 - 3 - 10 + 1 + 48 = 0$$

Вопросы к коллоквиуму.

- 1. Матрицы. Основные определения. Действия над матрицами.
- 2. Теоремы о линейной зависимости строк (столбцов) матрицы.
- 3. Определители. Основные свойства определителя
- 4. Обратная матрица. Свойства. Вычисление обратной матрицы
- 5. Ранг матрицы. Методы вычисления

Примеры задач

1. Найти ранг матрицы (методом элементарных преобразований или методом окаймляющих миноров):

$$\begin{pmatrix} 1 & 3 & -1 & 6 \\ 7 & 1 & -3 & 10 \\ 17 & 1 & -7 & 22 \\ 3 & 4 & -2 & 10 \end{pmatrix}. \qquad \begin{pmatrix} 2 & 7 & 3 & 1 \\ 1 & 3 & 5 & -2 \\ 1 & 5 & -9 & 8 \\ 5 & 18 & 4 & 5 \end{pmatrix}. \begin{pmatrix} 1 & 3 & -1 & 6 \\ 7 & 1 & -3 & 10 \\ 17 & 1 & -7 & 22 \\ 3 & 4 & -2 & 10 \end{pmatrix}$$

2. Вычислить определитель разложением по столбцу или приведением к треугольному виду

$$\begin{vmatrix} 3 & -1 & 4 & 2 \\ 5 & 2 & 0 & 1 \\ 0 & 2 & 1 & -3 \\ 6 & -2 & 9 & 8 \end{vmatrix} \qquad \begin{vmatrix} 8 & 1 & 9 & 0 \\ 6 & -1 & 4 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & -1 & 2 & -2 \end{vmatrix} \qquad \begin{vmatrix} 3 & -1 & 4 & 2 \\ 5 & 2 & 0 & 1 \\ 0 & 2 & 1 & -3 \\ 6 & -2 & 9 & 8 \end{vmatrix}$$

3. Вычислить обратную матрицу для матрицы (двумя способами)

$$\begin{pmatrix}
3 & 4 & 27 \\
4 & -1 & 35 \\
5 & -2 & 43
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 \\
3 & -5 & 1 \\
4 & -7 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
3 & 4 & 27 \\
4 & -1 & 35 \\
5 & -2 & 43
\end{pmatrix}$$

$$\mathbf{a} \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix};$$

$$6)\begin{pmatrix}1\\2\\3\end{pmatrix}\begin{pmatrix}2\\-1\\4\end{pmatrix}\begin{pmatrix}0\\0\\0\end{pmatrix};$$

a)
$$\begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix};$$
 6) $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix};$ B) $\begin{pmatrix} 1 \\ -1 \\ 2 \\ \sqrt{2} \end{pmatrix} \begin{pmatrix} 3 \\ -3 \\ 6 \\ 0 \end{pmatrix}$

2. Докажите, что система векторов линейно независима.

$$e_1 = (1,2,-1,-2,0);$$
 $e_2 = (2,3,0,-2,1);$ $e_3 = (1,2,1,4,2);$ $e_3 = (1,3,-1,0,-1).$

$$e_2 = (2,3,0,-2,1)$$

$$e_3 = (1,2,1,4,2);$$

$$e_3 = (1,3,-1,0,-1).$$

Спасибо за внимание