

Maximum Likelihood Estimation (MLE)

MLE

MLE adalah salah satu metode yang digunakan untuk menentukan nilai dari suatu parameter model.

Nilai dari parameter model didapatkan jika fungsi likelihood dimaksimalkan

Langkah-Langkah MLE

- 1. Menyusun fungsi likelihood dari join pdf
- 2. Menyusun fungsi log likelihood
- Memaksimalkan fungsi log likelihood dengan cara diturunkan terhadap parameter yang ditaksir kemudian disamadengankan nol

Distribusi Poisson

Jika y_i adalah variabel random dikrit yang berdistribusi Poisson dari suatu kejadian pada interval waktu tertentu, maka y_i memiliki densitas peluang sebagai berikut (Cameron & Trivedi, 2013):

$$P(y_i | \mu_i) = \frac{e^{-\mu_i} \mu^{y_i}}{y_i!}; y_i = 0, 1, \dots; 0 \le \mu < \infty$$

Distribusi Poisson memiliki *mean* yang sama dengan *variance*, yaitu $E(y_i)=V(y_i)=\mu_i$, kondisi ini disebut sebagai *equidispersion*. Pada praktiknya kondisi *equidispersion* tidak selalui terpenuhi, seringkali nilai *variance* lebih kecil dari *mean* (*underdispersion*) atau nilai *variance* lebih besar dari *mean* (*overdispersion*).

$$L(\mu_i) = \prod_{i=1}^n P(y_i | \mu_i)$$

$$= \prod_{i=1}^n \frac{e^{-\mu_i} \mu^{y_i}}{y_i!}$$

$$= \frac{e^{-n\mu} \mu^{\sum_{i=1}^n y_i}}{\prod_{i=1}^n y_i!}$$

2. Menyusun fungsi log likelihood

$$\log L(\mu_i) = \log \left(\frac{e^{-n\mu}\mu^{\sum_{i=1}^n y_i}}{\prod_{i=1}^n y_i!}\right)$$

$$= \log(e^{-n\mu}) + \log \left(\mu^{\sum_{i=1}^n y_i}\right) - \log \left(\prod_{i=1}^n y_i!\right)$$

$$= -n\mu + \sum_{i=1}^n y_i \log \mu - \log \left(\prod_{i=1}^n y_i!\right)$$

$$\frac{\partial \left(\log L(\mu)\right)}{\partial \mu} = \frac{\partial \left(-n\mu + \sum_{i=1}^{n} y_{i} \log \mu - \log \left(\prod_{i=1}^{n} y_{i}!\right)\right)}{\partial \mu}$$

$$0 = -n + \sum_{i=1}^{n} y_i \frac{1}{\mu}$$

$$n = \sum_{i=1}^{n} y_i \frac{1}{\mu}$$

$$\mu = \frac{1}{n} \sum_{i=1}^{n} y_i$$

Pendekatan Analitik dengan R

Install package "stats4" dan "MASS"

library(stats4)

library(MASS)

xpoisson=rpois(n=300, mu=2)

mle {stats4}

Maximum Likelihood Estimation

Description

Estimate parameters by the method of maximum likelihood.

Usage

```
mle minuslogl start,
    optim = stats::optim,
    method = if(!useLim) "BFGS" else "L-BFGS-B"
    fixed = list(), nobs, lower, upper, ...)
```

Arguments

minuslogl	Function to calculate negative log-likelihood.
start	Named list of vectors or single vector. Initial values for optimizer. By default taken from the defaul arguments of minuslog1
optim	Optimizer function. (Experimental)
method	Optimization method to use. See optim.
fixed	Named list of vectors or single vector. Parameter values to keep fixed during optimization.
nobs	optional integer: the number of observations, to be used for e.g. computing BIC.
lower, upper	Named lists of vectors or single vectors. Bounds for optim, if relevant.
	Further arguments to pass to optim.

Pendekatan Analitik dengan R

Formulasikan fungsi likelihood ke dalam syntax

```
Ipoisson=function(mu)
 n=length(xpoisson)
 x=xpoisson
 for (i in 1:n){
 Inlikeli=(n*mu-sum(x)*log(mu)+sum(log(factorial(x))))
 return(Inlikeli)
estpoisson=mle(minuslogl=lpoisson, start=list(mu=2))
summary(estpoisson)
```

$$\ln L(\mu_i) = -n\mu + \sum_{i=1}^{n} y_i \ln \mu - \ln \left(\prod_{i=1}^{n} y_i! \right)$$

Regresi Poisson

Regresi Poisson merupakan salah satu pendekatan yang dapat digunakan untuk melakukan analisis data jumlahan (count), dimana model yang terbentuk merupakan model non linier (Cameron & Trivedi, 2013).

Model regresi Poisson merupakan *Generalized Linear Model* (GLM). *Generalized Linear Model* terdiri dari tiga komponen yaitu komponen random komponen sistematik, dan *link function* (McCullagh & Nelder, 1989).

Regresi Poisson

Generalized Linear Model terdiri dari tiga komponen yaitu (McCullagh & Nelder, 1989):

- komponen random → variabel respon
- komponen sistematik → kovariat
- *link function* \rightarrow merupakan komponen yang menghubungkan komponen random dengan komponen sistematik

Cara mendapatkan link function untuk model regresi Poisson adalah:

- Melogaritmakan kedua ruas persamaan densitas peluang Distribusi Poisson
- Mengeksponensialkan kedua ruas persamaan yang didapatkan pada tahap sebelumnya
- Menyatakan kembali persamaan yang didapatkan pada tahap sebelumnya dalam bentuk umum keluarga distribusi eksponensial.

Regresi Poisson

a) Logaritmakan kedua ruas persamaan densitas peluang Distribusi Poisson

$$\log \left[\Pr(Y = y | \mu) \right] = \log \left(\frac{e^{-\mu} \mu^{y}}{y!} \right)$$
$$= -\mu + y \log \mu - \log y!$$

b) Eksponensialkan kedua ruas persamaan yang didapatkan pada tahap (a)

$$\exp\left\{\log\left[\Pr(Y=y|\mu)\right]\right\} = \exp\left\{-\mu + y\log\mu - \log y!\right\}$$
$$\Pr(Y=y|\mu) = \exp\left\{-\mu + y\log\mu - \log y!\right\}$$

 Lakukan manipulasi matematika sehingga diperoleh bentuk yang identik dengan bentuk umum keluarga distribusi eksponensial

$$\Pr(Y = y | \mu) = \exp\{-\mu + y \log \mu - \log y!\}$$
$$= \exp\{y \log \mu - \mu - \log y!\}$$

dimana,

$$y = y$$

$$\theta = \log(\mu), \mu = e^{\theta}$$

$$b(\theta) = \mu = e^{\theta}$$

$$\phi = 1$$

$$a(\phi) = \phi$$

$$c(v, \phi) = -\log(v!)$$

Jadi link function untuk model regresi Poisson adalah

$$\log(\mu)$$

Sehingga

$$\log(\mu) = X\beta$$
$$\mu = \exp(X\beta)$$

dengan

$$\mathbf{X} = \begin{pmatrix} 1 & x_{11} & \cdots & x_{p1} \\ 1 & x_{12} & \cdots & x_{p2} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{1n} & \cdots & x_{pn} \end{pmatrix}_{n \times (p+1)} \qquad \boldsymbol{\beta} = \begin{pmatrix} \boldsymbol{\beta}_0 \\ \boldsymbol{\beta}_1 \\ \vdots \\ \boldsymbol{\beta}_p \end{pmatrix}_{(p+1) \times 1}$$

Estimasi Parameter Regresi Poisson

Salah satu metode yang dapat digunakan untuk menaksir parameter regresi Poisson adalah *Maximum Likelihood Estimation* (MLE). Adapun langkah – langkah dari penaksiran parameter regresi Poisson adalah sebagai berikut:

Menyusun fungsi <u>likelihood</u> untuk regresi <u>Poisson</u>.

$$L(\mu_{i}) = \prod_{i=1}^{n} P(y_{i} | \mu_{i})$$

$$= \prod_{i=1}^{n} \left(\frac{\mu_{i}^{y_{i}} \exp(-\mu_{i})}{y_{i}!} \right) = \frac{\left(\prod_{i=1}^{n} \mu_{i}^{y_{i}} \exp(-\mu_{i}) \right)}{\prod_{i=1}^{n} y_{i}!}$$

Menyusun fungsi In likelihood.

$$\ln L(\mu_i) = \sum_{i=1}^n y_i \ln(\mu_i) - \sum_{i=1}^n \mu_i - \sum_{i=1}^n \ln(y_i!)$$

Jika $\mu_i = \exp(\mathbf{x}_i^T \mathbf{\beta})$, maka fungsi $\ln likelihood$ yang terbentuk:

$$\ln L(\boldsymbol{\beta}) = \sum_{i=1}^{n} y_{i} \ln \left[\exp \left(\mathbf{x}_{i}^{T} \boldsymbol{\beta} \right) \right] - \sum_{i=1}^{n} \exp \left(\mathbf{x}_{i}^{T} \boldsymbol{\beta} \right) - \sum_{i=1}^{n} \ln \left(y_{i} ! \right)$$
$$= \sum_{i=1}^{n} \left[y_{i} \left(\mathbf{x}_{i}^{T} \boldsymbol{\beta} \right) - \exp \left(\mathbf{x}_{i}^{T} \boldsymbol{\beta} \right) - \ln \left(y_{i} ! \right) \right]$$

$$\frac{\partial \left(\ln L(\boldsymbol{\beta})\right)}{\partial \boldsymbol{\beta}} = \frac{\partial \left(\sum_{i=1}^{n} \left[y_{i}\left(\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right) - \exp\left(\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right) - \ln\left(y_{i}!\right)\right]\right)}{\partial \boldsymbol{\beta}}$$
$$0 = \sum_{i=1}^{n} \mathbf{x}_{i}^{T} y_{i} - \sum_{i=1}^{n} \mathbf{x}_{i} \exp\left(\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right)$$

Hasil tersebut tidak *closed form*, sehingga dibutuhkan iterasi numerik untuk mendapatkan $\hat{\beta}$. Salah satu prosedur iterasi numerik yang dapat digunakan adalah iterasi Berndt-Hall-Hall-Hausman (BHHH).

Algoritma BHHH

Langkah 1: Menentukan nilai awal semua parameter model regresi Poisson, β .

Langkah 2: Membentuk vektor gradien

$$g\left(\boldsymbol{\beta}^{(m)}\right) = \left[\left(\frac{\partial \ln L\left(\bullet\right)}{\partial \boldsymbol{\beta}}\right)^{T}\right]$$

Langkah 3: Membentuk matriks hessian

$$H^*\left(\boldsymbol{\beta}^{(m)}\right) = -\sum_{i=1}^n g_i\left(\boldsymbol{\beta}^{(m)}\right) g_i\left(\boldsymbol{\beta}^{(m)}\right)^T$$

dimana $g_i(\mathbf{\beta}^{(m)})$ adalah vektor gradien dari observasi ke-i

Langkah 4: Memulai iterasi pada m = 0 dengan menggunakan persamaan berikut

$$\hat{\boldsymbol{\beta}}^{(m+1)} = \hat{\boldsymbol{\beta}}^{(m)} - \boldsymbol{H}^{*-1} \left(\hat{\boldsymbol{\beta}}^{(m)} \right) \boldsymbol{g} \left(\hat{\boldsymbol{\beta}}^{(m)} \right)$$

Iterasi berhenti jika $\|\hat{\boldsymbol{\beta}}^{(m+1)} - \hat{\boldsymbol{\beta}}^{(m)}\| \le \varepsilon$ dimana ε merupakan bilangan positif sangat kecil mendekati nilai 0.

Langkah 5: Ulangi iterasi pada langkah 2 dan seterusnya dengan m = m + 1.

Algoritma Newton Raphson

Langkah 1. Menentukan nilai awal $\hat{\beta}_{(0)}$

Langkah 2. Membentuk vektor gradien dimana p adalah banyaknya variabel prediktor.

Vektor gradien sebagai berikut:

$$\mathbf{g}^{T}\left(\mathbf{\beta}_{(c)}\right) = \begin{bmatrix} \frac{\partial \ln L(\mathbf{\beta})}{\partial \beta_{0}} & \frac{\partial \ln L(\mathbf{\beta})}{\partial \beta_{1}} & \cdots & \frac{\partial \ln L(\mathbf{\beta})}{\partial \beta_{p}} \end{bmatrix}$$

Langkah 3. Membentuk matriks Hessian

$$D(\mathbf{\beta}_{(\epsilon)}) = \begin{bmatrix} \frac{\partial^{2} \ln L(\mathbf{\beta})}{\partial \beta_{0}^{2}} & \frac{\partial^{2} \ln L(\mathbf{\beta})}{\partial \beta_{0} \partial \beta_{1}} & \cdots & \frac{\partial^{2} \ln L(\mathbf{\beta})}{\partial \beta_{0} \partial \beta_{p}} \\ \frac{\partial^{2} \ln L(\mathbf{\beta})}{\partial \beta_{1}^{2}} & \cdots & \frac{\partial^{2} \ln L(\mathbf{\beta})}{\partial \beta_{1} \partial \beta_{p}} \\ \vdots & \vdots & \vdots \\ simetris & \frac{\partial^{2} \ln L(\mathbf{\beta})}{\partial \beta_{p}^{2}} \end{bmatrix}$$

Algoritma Newton Raphson

Langkah 4. Memasukkan nilai $\hat{\beta}_{(0)}$ ke dalam elemen-elemen vektor gradien dan matriks Hessian.

Langkah 5. Menghitung

$$\hat{\boldsymbol{\beta}}_{(c)} = \hat{\boldsymbol{\beta}}_{(c-1)} - \mathbf{D} \Big(\hat{\boldsymbol{\beta}}_{(c-1)} \Big) \mathbf{g} \Big(\hat{\boldsymbol{\beta}}_{(c-1)} \Big)$$

Langkah 6. Jika $\|\hat{\boldsymbol{\beta}}_{(c)} - \hat{\boldsymbol{\beta}}_{(c-1)}\| \le \varepsilon_{NR}$ maka iterasi berhenti dengan nilai ε_{NR} merupakan nilai toleransi yang ditentukan oleh peneliti dan $c = 1, 2, \dots, C$ dengan C merupakan banyaknya iterasi.

Metode Optimasi Lainnya

- Nelder-Mead
- BFGS
- BFGSR
- dll.