MODEL PREDICTIVE CONTROL

DATA-DRIVEN MPC

Alberto Bemporad

imt.lu/ab

COURSE STRUCTURE

- ✓ Basic concepts of model predictive control (MPC) and linear MPC
- ✓ Linear time-varying and nonlinear MPC
- ✓ MPC computations: quadratic programming (QP), explicit MPC
- ✓ Hybrid MPC
- ✓ Stochastic MPC
 - Data-driven MPC

Course page:

http://cse.lab.imtlucca.it/~bemporad/mpc_course.html

MPC DESIGN FROM DATA

- Use system identification/machine learning to learn a prediction model from data
- 2. Use reinforcement learning to learn the MPC law from data
 - Q-learning: learn Q-function defining the MPC law from data (Gros, Zanon, 2019) (Zanon, Gros, Bemporad, 2019)
 - Policy gradient methods: learn optimal policy coefficients directly from data using stochastic gradient descent (Ferrarotti, Bemporad, 2019)
 - Global optimization methods: learn MPC parameters (weights, models, horizon, solver tolerances, ...) by optimizing observed closed-loop performance

(Piga, Forgione, Formentin, Bemporad, 2019) (Forgione, Piga, Bemporad, 2020) (Zhu, Bemporad, Piga, 2021)

MACHINE LEARNING AND CONTROL ENGINEERING

MPC and ML = main trends in control R&D in industry!

MACHINE LEARNING (ML)

- Massive set of techniques to extract mathematical models from data for regression, classification, decision-making
- Good mathematical foundations from artificial intelligence, statistics, optimization
- Works very well in practice (despite training is most often a nonconvex optimization problem ...)

- Used in myriads of very diverse application domains
- Availability of excellent open-source software tools also explains success scikit-learn, TensorFlow/Keras, PyTorch, ... (python)

NONLINEAR PREDICTION MODELS

• Physics-based nonlinear models (=white-box models)

$$\begin{split} \dot{p}_1 &= k_1 \big(W_c + W_{eff} - k_e p_1 \big) + \frac{\dot{T}_1}{T_1} p_1 \\ \dot{p}_2 &= k_2 \big(k_e p_1 - W_{eff} - W_t + W_f \big) + \frac{\dot{T}_2}{T_2} p_2 \\ \dot{p}_1 &= k \big(P_c - m_c P_c \big) \end{split}$$

Black-box nonlinear models (NL SYS-ID/machine learning)

• A mix of the above (gray-box models) is often the best

• Jacobians of prediction models are required

 Computation complexity depends on chosen model, need to trade off descriptiveness vs simplicity of the model

NONLINEAR SYS-ID BASED ON NEURAL NETWORKS

- Neural networks proposed for nonlinear system identification since the '90s (Hunt et al., 1992) (Suykens, Vandewalle, De Moor, 1996)
- NNARX models: use a feedforward neural network to approximate the nonlinear difference equation $y_t \approx \mathcal{N}(y_{t-1}, \dots, y_{t-n_a}, u_{t-1}, \dots, u_{t-n_b})$
- Neural state-space models:
 - **w/ state data**: fit a neural network model $x_{t+1} \approx \mathcal{N}_x(x_t, u_t), \;\; y_t = \mathcal{N}_y(x_t)$
 - I/O data only: set x_t = value of an inner layer of the network (Prasad, Bequette, 2003)
- Recurrent neural networks are more appropriate for accurate open-loop predictions, but more difficult to train (although not impossible ...)
- Alternative for MPC: learn entire prediction (Masti, Smarra, D'Innocenzo, Bemporad, 2020)

$$y_{t+k} = h_k(x_t, \frac{u_t}{u_t}, \dots, \frac{u_{t+k-1}}{u_{t+k-1}}), k = 1, \dots, N$$

NLMPC BASED ON NEURAL NETWORKS

• Approach: use a (feedforward deep) neural network model for prediction

MPC design workflow:

NONLINEAR MPC

Nonlinear MPC: solve a sequence of LTV-MPC problems at each sample step

- Sequential QP solves the full nonlinear MPC problem, by using well assessed linear MPC/QP technologies
- One QP iteration is often sufficient (= linear time-varying MPC)
- The current state can be estimated, e.g., by extended Kalman filtering

MPC OF ETHYLENE OXIDATION PLANT

 Chemical process = oxidation of ethylene to ethylene oxide in a nonisothermal continuously stirred tank reactor (CSTR)

$$\begin{split} &C_2H_4 + \frac{1}{2}O_2 \to C_2H_4O \\ &C_2H_4 + 3O_2 \to 2CO_2 + 2H_2O \\ &C_2H_4O + \frac{5}{2}O_2 \to 2CO_2 + 2H_2O \end{split}$$

Nonlinear model (dimensionless variables): (Durand, Ellis, Christofides, 2016)

$$\begin{cases} \dot{x}_1 &=& u_1(1-x_1x_4) \\ \dot{x}_2 &=& u_1(u_2-x_2x_4)-A_1e^{\frac{\gamma_1}{x_4}}(x_2x_4)^{\frac{1}{2}}-A_2e^{\frac{\gamma_2}{x_4}}(x_2x_4)^{\frac{1}{4}} \\ \dot{x}_3 &=& -u_1x_3x_4+A_1e^{\frac{\gamma_1}{x_4}}(x_2x_4)^{\frac{1}{2}}-A_3e^{\frac{\gamma_4}{x_4}}(x_3x_4)^{\frac{1}{2}} \\ \dot{x}_4 &=& \frac{u_1(1-x_4)+B_1e^{\frac{\gamma_4}{x_4}}(x_2x_4)^{\frac{1}{2}}+B_2e^{\frac{\gamma_4}{x_4}}(x_2x_4)^{\frac{1}{4}}}{x_1} \\ &+& \frac{B_3e^{\frac{\gamma_4}{x_4}}(x_3x_4)^{\frac{1}{2}}-B_3(x_4-T_C)}{x_1} \\ &+& \frac{B_3e^{\frac{\gamma_4}{x_4}}(x_3x_4)^{\frac{1}{2}}-B_3(x_4-T_C)}{x_1} \\ &+& u_2 = \text{ethylene concentration in feed} \end{cases}$$

ullet u_1 = manipulated variables, x_3 = controlled output, u_2 = measured disturbance

NEURAL NETWORK MODEL OF ETHYLENE OXIDATION PLANT

• Train state-space neural-network model

$$x_{k+1} = \mathcal{N}(x_k, u_k)$$

1,000 training samples $\{u_k, x_k\}$ 2 layers (6 neurons, 6 neurons) 6 inputs, 4 outputs sigmoidal activation function

 x_{k+1}

\rightarrow 112 coefficients

- NN model trained by ODYS Deep Learning toolset (model fitting + Jacobians → neural model in C)
- Model validated on 200 samples. $x_{3,k+1} \ {\rm reproduced \ from} \ x_k, u_k \ {\rm with \ max} \ 0.4\% \ {\rm error}$

MPC OF ETHYLENE OXIDATION PLANT

MPC settings:

sampling time $T_s=5~{
m s}$ measured disturbance @t=200 prediction horizon N=10 control horizon $N_u=3$ constraints $0.0704 < u_1 < 0.7042$

cost function $\sum_{k=0}^{N-1} (y_{k+1} - r_{k+1})^2 + \frac{1}{100} (u_{1,k} - u_{1,k-1})^2$

- We compare 3 different configurations:
 - NLMPC based on physical model
 - Switched linear MPC based on 3 linear models obtained by linearizing the nonlinear model at $C_2H_4O=\{0.03,\ 0.04,\ 0.05\}$
 - NLMPC based on black-box neural network model

MPC OF ETHYLENE OXIDATION PLANT - CLOSED-LOOP RESULTS

- Neural and model-based NLMPC have similar closed-loop performance
- Neural NLMPC requires no physical model

LEARNING NONLINEAR STATE-SPACE MODELS FOR MPC

(Masti, Bemporad, 2018)

Idea: use autoencoders and artificial neural networks to learn a nonlinear state-space model of desired order from input/output data

ANN with hourglass structure (Hinton, Salakhutdinov, 2006)

$$O_k = [y'_k \dots y'_{k-m}]'$$

 $I_k = [y'_k \dots y'_{k-n_a+1} u'_k \dots u'_{k-n_b+1}]'$

LEARNING NONLINEAR STATE-SPACE MODELS FOR MPC

• Training problem: choose n_a, n_b, n_x and solve

$$\min_{f,d,e} \sum_{k=k_0}^{N-1} \alpha \left(\ell_1(\hat{O}_k, O_k) + \ell_1(\hat{O}_{k+1}, O_{k+1}) \right) \\ + \beta \ell_2(x_{k+1}^{\star}, x_{k+1}) + \gamma \ell_3(O_{k+1}, O_{k+1}^{\star})$$
s.t.
$$x_k = e(I_{k-1}), \ k = k_0, \dots, N \\ x_{k+1}^{\star} = f(x_k, u_k), \ k = k_0, \dots, N-1 \\ \hat{O}_k = d(x_k), \ O_k^{\star} = d(x_k^{\star}), \ k = k_0, \dots, N$$

- Model complexity reduction: add group-LASSO penalties on subsets of weights
- Quasi-LPV structure for MPC: set $f(x_k,u_k) = A(x_k,u_k) {x_k \brack 1} + B(x_k,u_k) u_k$ $(A_{ij},B_{ij},C_{ij}$ = feedforward NNs) $y_k = C(x_k,u_k) {x_k \brack 1}$
- Different options for the state-observer:
 - use encoder ${\it e}$ to map past I/O into x_k (deadbeat observer)
 - design extended Kalman filter based on obtained model f, d
 - simultaneously fit state observer $\hat{x}_{k+1} = s(x_k, u_k, y_k)$ with loss $\ell_4(\hat{x}_{k+1}, x_{k+1})$

LEARNING NONLINEAR NEURAL STATE-SPACE MODELS FOR MPC

• Example: nonlinear two-tank benchmark problem

$$\begin{cases} x_1(t+1) = x_1(t) - k_1 \sqrt{x_1(t)} + k_2 u(t) \\ x_2(t+1) = x_2(t) + k_3 \sqrt{x_1(t)} - k_4 \sqrt{x_2(t)} \\ y(t) = x_2(t) + u(t) \end{cases}$$

Model is totally unknown to learning algorithm

- Artificial neural network (ANN): 3 hidden layers 60 exponential linear unit (ELU) neurons
- For given number of model parameters, autoencoder approach is superior to NNARX
- Jacobians directly obtained from ANN structure for Kalman filtering & MPC problem construction

LTV-MPC results

LEARNING AFFINE NEURAL PREDICTORS FOR MPC

(Masti, Smarra, D'Innocenzo, Bemporad, 2020)

• Alternative: learn the entire prediction

$$y_k = h_k(x_0, \mathbf{u_0}, \dots, \mathbf{u_{k-1}}), \ k = 1, \dots, N$$

• LTV-MPC formulation: linearize h_k around nominal inputs \bar{u}_j

$$y_k = h_k(x_0, \bar{u}_0, \dots, \bar{u}_{k-1}) + \sum_{j=0}^{k-1} \frac{\partial h_k}{\partial u_j} (x_0, \bar{u}_0, \dots, \bar{u}_{k-1}) (\mathbf{u}_j - \bar{u}_j)$$

Example: \bar{u}_k = MPC sequence optimized @k-1

ullet Avoid computing Jacobians by fitting h_k in the affine form

$$y_k = f_k(x_0, \bar{u}_0, \dots, \bar{u}_{k-1}) + g_k(x_0, \bar{u}_0, \dots, \bar{u}_{k-1}) \begin{bmatrix} u_0 - \bar{u}_0 \\ \vdots \\ u_{k-1} - \bar{u}_{k-1} \end{bmatrix}$$

cf. (Liu, Kadirkamanathan, 1998)

LEARNING AFFINE NEURAL PREDICTORS FOR MPC

 Example: apply affine neural predictor to nonlinear two-tank benchmark problem

10000 training samples, ANN with 2 layers of 20 ReLU neurons

$$e_{\text{FIT}} = \max \left\{ 0, 1 - \frac{\|\hat{y} - y\|_2}{\|y - \bar{y}\|_2} \right\}$$

Prediction step	e_{FIT}
1	0.959
2	0.958
4	0.948
7	0.915
10	0.858

- Closed-loop LTV-MPC results:
- Model complexity reduction: add group-LASSO term with penalty λ

λ	$e_{ m FIT}$ (average on all prediction steps)	# nonzero weights
.01	0.853	328
0.005	0.868	363
0.001	0.901	556
0.0005	0.911	888
0	0.917	9000

ON THE USE OF NEURAL NETWORKS FOR MPC

- Neural prediction models can speed up the MPC design a lot
- Experimental data need to well cover the operating range (as in linear system identification)

- Physical modeling can help driving the choice of the nonlinear model structure to use (gray-box models)
- NN model can be updated on-line for adaptive nonlinear MPC

ON THE USE OF NEURAL NETWORKS FOR MPC

- MPC + ML together can have a tremendous impact in the design and implementation of advanced process control systems:
 - MPC and on-line (quadratic or nonlinear) optimization is an extremely powerful advanced process control methodology

ML extremely useful to get control-oriented nonlinear models directly from data

 Neural nonlinear MPC requires very advanced technical software to run efficiently and reliably (model learning, problem construction, optimization)

DIRECT DATA-DRIVEN MPC

 Can we design an MPC controller without first identifying a model of the open-loop process?

DATA-DRIVEN DIRECT CONTROLLER SYNTHESIS

(Campi, Lecchini, Savaresi, 2002) (Formentin et al., 2015)

- Collect a set of data $\{u(t), y(t), p(t)\}, t = 1, \dots, N$
- Specify a desired closed-loop linear model ${\mathcal M}$ from r to y
- Compute $r_v(t) = \mathcal{M}^\# y(t)$ from pseudo-inverse model $\mathcal{M}^\#$ of \mathcal{M}
- Identify linear (LPV) model K_p from $e_v = r_v y$ (virtual tracking error) to u

DIRECT DATA-DRIVEN MPC

ullet Design a linear MPC (reference governor) to generate the reference r

(Bemporad, Mosca, 1994) (Gilbert, Kolmanovsky, Tan, 1994)

• MPC designed to handle input/output constraints and improve performance

(Piga, Formentin, Bemporad, 2017)

DIRECT DATA-DRIVEN MPC - AN EXAMPLE

 \bullet Experimental results: MPC handles soft constraints on $u,\Delta u$ and y (motor equipment by courtesy of TU Delft)

desired tracking performance achieved

constraints on input increments satisfied

No open-loop process model is identified to design the MPC controller!

OPTIMAL DIRECT DATA-DRIVEN MPC

• **Question**: How to choose the reference model \mathcal{M} ?

• Can we choose ${\mathcal M}$ from data so that K_p is an optimal controller?

• Idea: parameterize desired closed-loop model $\mathcal{M}(\theta)$ and optimize

$$\min_{\theta} J(\theta) = \frac{1}{N} \sum_{t=0}^{N-1} \underbrace{W_y(r(t) - y_p(\theta, t))^2 + W_{\Delta u} \Delta u_p^2(\theta, t)}_{\text{performance index}} + \underbrace{W_{\text{fit}}(u(t) - u_v(\theta, t))^2}_{\text{identification error}}$$

 \bullet Evaluating $J(\theta)$ requires synthesizing $K_p(\theta)$ from data and simulating the nominal model and control law

$$y_p(\theta, t) = \mathcal{M}(\theta)r(t) \qquad u_p(\theta, t) = K_p(\theta)(r(t) - y_p(\theta, t))$$
$$\Delta u_p(\theta, t) = u_p(\theta, t) - u_p(\theta, t - 1)$$

 Optimal θ obtained by solving a (non-convex) nonlinear programming problem

(Selvi, Piga, Bemporad, 2018)

• Results: linear process

$$G(z) = \frac{z - 0.4}{z^2 + 0.15z - 0.325}$$

Data-driven controller **only 1.3% worse** than model-based LQR (=SYS-ID on same data + LQR design)

Results: nonlinear (Wiener) process

$$y_L(t) = G(z)u(t)$$

 $y(t) = |y_L(t)| \arctan(y_L(t))$

The data-driven controller is 24% better than LQR based on identified open-loop model!

Plant + environment dynamics (unknown):

$$s_{t+1} = h(s_t, p_t, u_t, d_t)$$
 $-s_t$ states of plant & environment
 $-p_t$ exogenous signal (e.g., reference)
 $-u_t$ control input
 $-d_t$ unmeasured disturbances

• Control policy: $\pi: \mathbb{R}^{n_s+n_p} \longrightarrow \mathbb{R}^{n_u}$ deterministic control policy

$$u_t = \pi(s_t, p_t)$$

Closed-loop performance of an execution is defined as

$$\mathcal{J}_{\infty}(\pi, s_0, \{p_{\ell}, d_{\ell}\}_{\ell=0}^{\infty}) = \sum_{\ell=0}^{\infty} \rho(s_{\ell}, p_{\ell}, \pi(s_{\ell}, p_{\ell}))$$

$$\rho(s_{\ell}, p_{\ell}, \pi(s_{\ell}, p_{\ell})) = \text{stage cost}$$

OPTIMAL POLICY SEARCH PROBLEM

Optimal policy:

$$\pi^* = \arg\min_{\pi} \mathcal{J}(\pi)$$

$$\mathcal{J}(\pi) = \mathbb{E}_{s_0, \{p_\ell, d_\ell\}} \left[\mathcal{J}_{\infty}(\pi, s_0, \{p_\ell, d_\ell\}) \right]$$
 expected performance

• Simplifications:

- Finite parameterization: $\pi=\pi_K(s_t,p_t)$ with K = parameters to optimize
- $\text{ Finite horizon: } \mathcal{J}_L(\pi,s_0,\{p_\ell,d_\ell\}_{\ell=0}^{L-1}) = \sum_{\ell=0}^{L-1} \rho(s_\ell,p_\ell,\pi(s_\ell,p_\ell))$
- Optimal policy search: use stochastic gradient descent (SGD)

$$K_t \leftarrow K_{t-1} - \alpha_t \mathcal{D}(K_{t-1})$$

with $\mathcal{D}(K_{t-1})$ = descent direction

DESCENT DIRECTION

- The descent direction $\mathcal{D}(K_{t-1})$ is computed by generating:
 - N_s perturbations $s_0^{(i)}$ around the current state s_t
 - N_r random reference signals $r_\ell^{(j)}$ of length L,
 - N_d random disturbance signals $d_\ell^{(h)}$ of length L,

$$\mathcal{D}(K_{t-1}) = \sum_{i=1}^{N_s} \sum_{j=1}^{N_p} \sum_{k=1}^{N_q} \nabla_K \mathcal{J}_L(\pi_{K_{t-1}}, s_0^{(i)}, \{r_\ell^{(j)}, d_\ell^{(k)}\})$$

SGD step = mini-batch of size $M=N_s\cdot N_r\cdot N_d$

- Computing $\nabla_K \mathcal{J}_L$ requires predicting the effect of π over L future steps
- We use a local linear model just for computing $\nabla_K \mathcal{J}_L$, obtained by running recursive linear system identification

OPTIMAL POLICY SEARCH ALGORITHM

- At each step *t*:
 - 1. Acquire current s_t
 - 2. Recursively update the local linear model
 - 3. Estimate the direction of descent $\mathcal{D}(K_{t-1})$
 - 4. Update policy: $K_t \leftarrow K_{t-1} \alpha_t \mathcal{D}(K_{t-1})$
- If policy is **learned online** and needs to be applied to the process:
 - Compute the nearest policy K_t^{\star} to K_t that stabilizes the local model

$$K_t^\star = \underset{K}{\arg\min} \|K - K_t^s\|_2^2$$
 s.t. K stabilizes local linear model Linear matrix inequality

• When policy is learned online, exploration is guaranteed by the reference r_t

SPECIAL CASE: OUTPUT TRACKING

- $x_t = [y_t, y_{t-1}, \dots, y_{t-n_o}, u_{t-1}, u_{t-2}, \dots, u_{t-n_i}]$ $\Delta u_t = u_t - u_{t-1}$ control input increment
- \bullet Stage cost: $\parallel y_{t+1} r_t \parallel_{Qy}^2 + \parallel \Delta u_t \parallel_{R}^2 + \parallel q_{t+1} \parallel_{Q_q}^2$
- Integral action dynamics $q_{t+1} = q_t + (y_{t+1} r_t)$

$$s_t = \begin{bmatrix} x_t \\ q_t \end{bmatrix}, \quad p_t = r_t.$$

• Linear policy parametrization:

$$\pi_K(s_t, r_t) = -K^s \cdot s_t - K^r \cdot r_t, \qquad K = \begin{bmatrix} K^s \\ K^r \end{bmatrix}$$

EXAMPLE: RETRIEVE LQR FROM DATA

$$\left\{ \begin{array}{ll} x_{t+1} & = & \left[\begin{smallmatrix} -0.669 & 0.378 & 0.233 \\ -0.288 & -0.147 & -0.638 \\ -0.337 & 0.589 & 0.043 \end{smallmatrix} \right] x_t + \left[\begin{smallmatrix} -0.295 \\ -0.325 \\ -0.258 \end{smallmatrix} \right] u_t \\ y_t & = & \left[\begin{smallmatrix} -1.139 & 0.319 & -0.571 \end{smallmatrix} \right] x_t \end{array} \right. \quad \text{model is unknown}$$

Online tracking performance (no disturbance, $d_t = 0$):

$$Q_y = 1$$

$$R = 0.1$$

$$Q_q = 1$$

n_o	L
3	20
N_T	N_q
1	10
	3

EXAMPLE: RETRIEVE LQR FROM DATA

Evolution of the error $||K_t - K_{opt}||_2$:

$$K_{\text{SGD}} = [-1.255, 0.218, 0.652, 0.895, 0.050, 1.115, -2.186]$$

$$K_{\text{opt}} = [-1.257, 0.219, 0.653, 0.898, 0.050, 1.141, -2.196]$$

NONLINEAR EXAMPLE

model is unknown

Feed:

- concentration: 10kg mol/m³

- temperature: 298.15K

Continuously Stirred Tank Reactor (CSTR)

apmonitor.com

$$T = \hat{T} + \eta_T$$
, $C_A = \hat{C}_A + \eta_C$, η_T , $\eta_C \sim \mathcal{N}(0, \sigma^2)$, $\sigma = 0.01$

$$Q_y = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad R = 0.1 \qquad Q_q = \begin{bmatrix} 0.01 & 0 \\ 0 & 0 \end{bmatrix}$$

NONLINEAR EXAMPLE

5000

Time t

10000

Continuously Stirred Tank Reactor (CSTR) (courtesy: apmonitor.com)

SGD beats SYS-ID + LQR

 Extended to switching-linear and nonlinear policy, and to collaborative learning

(Ferrarotti, Bemporad, 2020a) (Ferrarotti, Bemporad, 2020b) (Ferrarotti, Breschi, Bemporad, 2021)

MPC CALIBRATION PROBLEM

- The design depends on a vector x of MPC parameters
- Parameters can be many things:
 - MPC weights, prediction model coefficients, horizons
 - Covariance matrices used in Kalman filters
 - Tolerances used in numerical solvers

- ...

Define a performance index f over a closed-loop simulation or real experiment.
 For example:

$$f(x) = \sum_{t=0}^{T} \|y(t) - r(t)\|^2$$
(tracking quality)

 Auto-tuning = find the best combination of parameters by solving the global optimization problem

$$\min_{x} f(x)$$

GLOBAL OPTIMIZATION ALGORITHMS FOR AUTO-TUNING

What is a good optimization algorithm to solve $\min f(x)$?

• The algorithm should not require the gradient $\nabla f(x)$ of f(x), in particular if experiments are involved (derivative-free or black-box optimization)

The algorithm should not get stuck on local minima (global optimization)

The algorithm should make the fewest evaluations of the cost function f
(which is expensive to evaluate)

AUTO-TUNING - GLOBAL OPTIMIZATION ALGORITHMS

- Several derivative-free global optimization algorithms exist: (Rios, Sahidinis, 2013)
 - Lipschitzian-based partitioning techniques:
 - DIRECT (DIvide in RECTangles) (Jones, 2001)
 - Multilevel Coordinate Search (MCS) (Huyer, Neumaier, 1999)
 - Response surface methods
 - Kriging (Matheron, 1967), DACE (Sacks et al., 1989)
 - Efficient global optimization (EGO) (Jones, Schonlau, Welch, 1998)
 - Bayesian optimization (Brochu, Cora, De Freitas, 2010)
 - Genetic algorithms (GA) (Holland, 1975)
 - Particle swarm optimization (PSO) (Kennedy, 2010)
 - ...
- New method: radial basis function surrogates + inverse distance weighting

(GLIS) (Bemporad, 2020)

cse.lab.imtlucca.it/~bemporad/glis

AUTO-TUNING - GLIS

• Goal: solve the global optimization problem

$$\min_{x} f(x)
\text{s.t.} \ell \leq x \leq u
 g(x) \leq 0$$

• Step #0: Get random initial samples $x_1, \ldots, x_{N_{\text{init}}}$ (Latin Hypercube Sampling)

• Step #1: given N samples of f at x_1, \ldots, x_N , build the surrogate function

$$\hat{f}(x) = \sum_{i=1}^{N} \beta_i \phi(\epsilon ||x - x_i||_2)$$

 $\phi = {\sf radial} \ {\sf basis} \ {\sf function}$

Example:
$$\phi(\epsilon d) = \frac{1}{1+(\epsilon d)^2}$$
 (inverse quadratic)

Vector β solves $\hat{f}(x_i) = f(x_i)$ for all $i = 1, \dots, N$ (=linear system)

• CAVEAT: build and minimize $\hat{f}(x_i)$ iteratively may easily miss global optimum!

AUTO-TUNING - GLIS

Step #2: construct the IDW exploration function

$$\begin{array}{rcl} z(x) & = & \frac{2}{\pi} \Delta F \tan^{-1} \left(\frac{1}{\sum_{i=1}^N w_i(x)} \right) \\ & \text{ or 0 if } x \in \{x_1, \dots, x_N\} \end{array}$$

where
$$w_i(x) = \frac{e^{-\|x - x_i\|^2}}{\|x - x_i\|^2}$$

 ΔF = observed range of $f(x_i)$

Step #3: optimize the acquisition function

$$x_{N+1} = \underset{\text{arg min}}{\operatorname{arg min}} \quad \hat{f}(x) - \delta z(x)$$

s.t. $\ell \le x \le u, \ g(x) \le 0$

to get new sample x_{N+1}

• Iterate the procedure to get new samples $x_{N+2},\dots,x_{N_{ ext{max}}}$

 δ = exploitation vs exploration tradeoff

GLIS VS BAYESIAN OPTIMIZATION

problem	n	BO[s]	IDW [s]
ackley	2	26.42	3.24
adjiman	2	3.39	0.66
branin	2	9.58	1.27
camelsixhumps	2	4.49	0.62
hartman3	3	23.19	3.58
hartman6	6	52.73	10.08
himmelblau	2	7.15	0.92
rosenbrock8	8	58.31	11.45
stepfunction2	4	10.52	1.72
styblinski-tang5	5	33.30	5.80

Results computed on 20 runs per test

BO = MATLAB's **bayesopt** fcn

AUTO-TUNING: MPC EXAMPLE

• We want to auto-tune the linear MPC controller

min
$$\sum_{k=0}^{50-1} (y_{k+1} - r(t))^2 + (W^{\Delta u}(u_k - u_{k-1}))^2$$
s.t.
$$x_{k+1} = Ax_k + Bu_k$$

$$y_c = Cx_k$$

$$-1.5 \le u_k \le 1.5$$

$$u_k \equiv u_{N_u}, \forall k = N_u, \dots, N-1$$

- ullet Calibration parameters: $x = [\log_{10} W^{\Delta u}, N_u]$
- Range: $-5 \le x_1 \le 3$ and $1 \le x_2 \le 50$
- Closed-loop performance objective:

$$f(x) = \sum_{t=0}^{T} \underbrace{(y(t) - r(t))^2}_{\text{track well}} + \underbrace{\frac{1}{2}(u(t) - u(t-1))^2}_{\text{smooth control action}} + \underbrace{2N_u}_{\text{small } \underline{0}}$$

AUTO-TUNING: EXAMPLE

output

• Result: $x^* = [-0.2341, 2.3007]$

$$W^{\Delta u} = 0.5833, N_u = 2$$

MPC AUTOTUNING EXAMPLE

(Forgione, Piga, Bemporad, 2020)

• Linear MPC applied to cart-pole system: 14 parameters to tune

- sample time
- weights on outputs and input increments
- prediction and control horizons
- covariance matrices of Kalman filter
- absolute and relative tolerances of QP solver

 Closed-loop performance score:

$$J = \int_0^T |p(t) - p_{\rm ref}(t)| + 30 |\phi(t)| dt$$

- MPC parameters tuned using 500 iterations of GLIS
- Performance tested with simulated cart on two hardware platforms (PC, Raspberry PI)

MPC AUTOTUNING EXAMPLE

- Auto-calibration can squeeze max performance out of the available hardware
- Bayesian Optimization gives similar results, but with larger computation effort

AUTO-TUNING: PROS AND CONS

- Pros:
 - \bullet Selection of calibration parameters x to test is fully automatic
 - Applicable to any calibration parameter (weights, horizons, solver tolerances, ...)
 - \blacksquare Rather arbitrary performance index f(x) (tracking performance, response time, worst-case number of flops, ...)
- Cons:
 - \P Need to quantify an objective function f(x)
 - No room for qualitative assessments of closed-loop performance
 - Often have multiple objectives, not clear how to blend them in a single one

ACTIVE PREFERENCE LEARNING

(Bemporad, Piga, Machine Learning, 2021)

- Objective function f(x) is not available (latent function)
- We can only express a **preference** between two choices:

$$\pi(x_1, x_2) = \begin{cases} -1 & \text{if } x_1 \text{ "better" than } x_2 & [f(x_1) < f(x_2)] \\ 0 & \text{if } x_1 \text{ "as good as" } x_2 & [f(x_1) = f(x_2)] \\ 1 & \text{if } x_2 \text{ "better" than } x_1 & [f(x_1) \ge f(x_2)] \end{cases}$$

• We want to find a global optimum x^* (="better" than any other x)

find
$$x^*$$
 such that $\pi(x^*, x) \leq 0, \ \forall x \in \mathcal{X}, \ \ell \leq x \leq u$

- Active preference learning: iteratively propose a new sample to compare
- Key idea: learn a surrogate of the (latent) objective function from preferences

PREFERENCE-LEARNING EXAMPLE

(Brochu, de Freitas, Ghosh, 2007)

- Realistic image synthesis of material appearance are based on models with many parameters x_1, \ldots, x_n
- $\bullet \;$ Defining an objective function f(x) is hard, while a human can easily assess whether an image resembles the target one or not
- Preference gallery tool: at each iteration, the user compares two images generated with two different parameter instances

ACTIVE PREFERENCE LEARNING ALGORITHM

(Bemporad, Piga, Machine Learning, 2021)

- Fit a surrogate $\hat{f}(x)$ that respects the preferences expressed by the decision maker at sampled points (by solving a QP)
- Minimize an acquisition function $\hat{f}(x) \delta z(x)$ to get a new sample x_{N+1}
- Compare x_{N+1} to the current "best" point and iterate

SEMI-AUTOMATIC CALIBRATION BY PREFERENCE-BASED LEARNING

- Use preference-based optimization (GLISp) algorithm for semi-automatic tuning of MPC (Zhu, Bemporad, Piga, 2021)
- Latent function = calibrator's (unconscious) score of closed-loop MPC performance
- GLISp proposes a new combination x_{N+1} of MPC parameters to test
- By observing test results, the calibrator expresses a **preference**, telling if x_{N+1} is "**better**", "**similar**", or "**worse**" than current best combination
- Preference learning algorithm: update the surrogate $\hat{f}(x)$ of the latent function, optimize the acquisition function, ask preference, and iterate

PREFERENCE-BASED TUNING: MPC EXAMPLE

 • Semi-automatic tuning of $x = [\log_{10} W^{\Delta u}, N_u] \text{ in linear MPC}$

$$\min \sum_{k=0}^{50-1} (y_{k+1} - r(t))^2 + (W^{\Delta u}(u_k - u_{k-1}))^2$$
s.t.
$$x_{k+1} = Ax_k + Bu_k$$

$$y_c = Cx_k$$

$$-1.5 \le u_k \le 1.5$$

 $u_k \equiv u_{N_u}, \forall k = N_u, \dots, N-1$

- Same performance index to assess closed-loop quality, but unknown: only preferences are available
- Result: $W^{\Delta u} = 0.6888$, $N_u = 2$

PREFERENCE-BASED TUNING: MPC EXAMPLE

tested combinations of MPC params

(latent) performance index

(Zhu, Bemporad, Piga, 2021)

• Example: calibration of a simple MPC for lane-keeping (2 inputs, 3 outputs)

$$\left\{ \begin{array}{lcl} \dot{x} & = & v\cos(\theta+\delta) \\ \dot{y} & = & v\sin(\theta+\delta) \\ \dot{\theta} & = & \frac{1}{L}v\sin(\delta) \end{array} \right.$$

- Multiple control objectives:
 - "optimal obstacle avoidance", "pleasant drive", "CPU time small enough", ...
 - not easy to quantify in a single function
- 5 MPC parameters to tune:
 - sampling time
 - prediction and control horizons
 - weights on input increments Δv , $\Delta \delta$

PREFERENCE-BASED TUNING: MPC EXAMPLE

• Preference query window:

PREFERENCE-BASED TUNING: MPC EXAMPLE

• Convergence after 50 GLISp iterations (=49 queries):

Optimal MPC parameters:

- sample time = 85 ms (CPU time = 80.8 ms)
- prediction horizon = 16
- control horizon = 5
- weight on Δv = 1.82
- weight on $\Delta\delta$ = 8.28

Note: no need to define a closed-loop performance index explicitly!

LEARNING MPC FROM DATA - LESSON LEARNED SO FAR

- Model/policy structure includes real plant/optimal policy:
 - Sys-id + model-based synthesis = model-free reinforcement learning
 - Reinforcement learning may require more data (model-based can instead "extrapolate" optimal actions)

- Model/policy structure does not include real plant/optimal policy:
 - optimal policy learned from data may be better than model-based optimal policy
 - when open-loop model is used as a tuning parameter, learned model can be quite different from best open-loop model that can be identified from the same data