Translating Natural Language to SPARQL

Xiaoyu Yin

International Center for Computational Logic Technische Universität Dresden

8th January 2019

Outline

Introduction

Methodology

Experiments

Results & Discussion

Summary & Outlook

Outline

Introduction

Motivation Background

Methodology

Models

Datasets

Metrics

Experiments

Experimental Setups

Results & Discussion

 $\mathsf{Summary}\ \&\ \mathsf{Outlook}$

Transformation of the Web

Motivation

Web

- Linked web pages
- Made for human to browse

- ▶ Built on the existing Web
- Linked knowledge graphs

Motivation

Transformation of the Web

Web

- Linked web pages
- Made for human to browse

Semantic Web

- Built on the existing Web
- Linked knowledge graphs and data
- For human and machines to lookup

Semantic Web Technologies

Figure: Semantic Web technology stack

Linked Data

- a notion in Semantic Web.
- based on RDF
- currently only in commercial applications but has great potentials

Example

Google Knowledge Graph DBpedia

knowledge from the Wikipedia articles in RDF files so that machines can process easily, open to everyone

SPARQL

- like SQL but for the Semantic Web and Linked Data
- structured query language
- the meaning of a SPARQL query can be usually expressed in Natural Language
- Why not Natural Language to SPARQL?

Application

- Broaden the accessibility of the Semantic Web resources
- Chatbots, service agents

Natural Language to SPARQL

- proved possible by Neural SPARQL Machine (NSpM) [SMM⁺18]
- no large number of tests have been done before

Our goal

Conduct a large number of tests on the possibility of translating human language to SPARQL (machine language)

ackground

Machine Translation

Background

- Rule-based Machine Translation
- Statistical Machine Translation
- Example-based Machine Translation
- Neural Machine Translation
- Hybrid Machine Translation

Neural Machine Translation

Given large number of training samples, use deep neural networks to perform end-to-end translation between source and target languages.

Neural Machine Translation Background

Why NMT?

- So far the best performing methods in translating between natural languages (e.g. English to German)
- Abundant choices of neural networks
- Off-the-shelf frameworks to use

Challenges

SPARQL is not like any Natural Language

ackground

Idea

Idea

{ dbo:TU_Dresden dbo/location ?x .}

Outline

Introduction

Motivation

Background

Methodology

Models

Datasets

Metrics

Experiments

Experimental Setups

Results & Discussion

Summary & Outlook

Methodology •00000

2013 Recurrent Neural Networks (RNN) started

- - great enhancements to RNN
 - - bi-directional RNN, residual connection, etc.
- - right now state-of-the-art

- 2013 Recurrent Neural Networks (RNN) started
- 2014-15 Attention mechanisms
 - great enhancements to RNN
 - - bi-directional RNN, residual connection, etc.
- - right now state-of-the-art

- 2013 Recurrent Neural Networks (RNN) started
- 2014-15 Attention mechanisms
 - great enhancements to RNN
 - 2016 Google Translate System (GNMT)
 - bi-directional RNN, residual connection, etc.
- - right now state-of-the-art

- 2013 Recurrent Neural Networks (RNN) started
- 2014-15 Attention mechanisms
 - great enhancements to RNN
 - 2016 Google Translate System (GNMT)
 - bi-directional RNN, residual connection, etc.
- 2017-now Convolutional Neural Networks (CNN), Self-attention models joined
 - right now state-of-the-art

Neural Machine Translation Models

► Three categories

Recurrent Neural Network (RNN)	Convolutional Neural Network	Self-Attention models
models	(CNN) models	
Erosof FRN Decode FRN Signature (Sp. 1994)		MANDAU COMPANIAN
GNMT	ConvS2S	Transformer

Methodology 000000

Google's Neural Machine Translation System (GNMT)

RNN-based

Figure: The model architecture of GNMT [WSC+16].

Convolutional Sequence-to-Sequence (ConvS2S) CNN-based

Figure: The demonstration of training the Convolutional Sequence-to-Sequence model [GAG⁺17]

The Transformer

Self-attention Models

Figure: The architecture of the Transformer model [VSP+17]

Models Summary

Methodology 000000

Out of these three categories, we constructed 8 models...

- RNN-based models: NSpM, NSpM+Att1, NSpM+Att2, LSTM_Luong, GNMT-4, GNMT-8
- CNN-based model: ConvS2S
- Self-attention model: Transformer
- NSpM: Basic 2-layer RNN
- ► NSpM+Att: NSpM with attention module
- LSTM_Luong: a deep 4-layer RNN

Datasets

The Monument dataset

- Largescale Complex Question Answering Dataset (LC-QUAD)
- DBpedia Neural Question Answering (**DBNQA**)

	Monument	LC-QUAD	DBNQA
Instance	14,788	5,000	894,499
English vocab	2,500	7,000	131,000
SPARQL vocab	2,200	5,000	244,900

Datasets

The Monument dataset

Methodology

- Largescale Complex Question Answering Dataset (LC-QUAD)
- DBpedia Neural Question Answering (**DBNQA**)

	Monument	LC-QUAD	DBNQA
Instance	14,788	5,000	894,499
English vocab	2,500	7,000	131,000
SPARQL vocab	2,200	5,000	244,900

Table: Sizes of three used English-SPARQL datasets

Evaluation Metrics

- Perplexity for training phase
- ▶ **BLEU** for testing phase

Methodology

Perplexity

- $ightharpoonup 1 \leadsto +\infty$
- reflects how well the model is trained (1 is best)

Evaluation Metrics

- Perplexity for training phase
- ▶ **BLEU** for testing phase

Methodology

BLEU

- ▶ 0 ~→ 100
- reflects the quality of the generated translations compared to the reference (100 is best)
- widely used in Machine Translation tasks

Evaluation Metrics

- Perplexity for training phase
- BLEU for testing phase

Methodology

Example (BLEU)

Translation the cat sat on the mat

Reference 1 there is a cat on the mat

Reference 2 the cat is on the mat

BLEU Score: 42

Outline

Introduction

Motivation

Background

Methodology

Models

Datasets

Metrics

Experiments

Experimental Setups

Results & Discussion

Summary & Outlook

Experiment Overview

Dataset Preprocessing

Dataset Splitting

- ► Split the Monument, LC-QUAD, and DBNQA into 80%/10%/10% training/validation/testing set
- ► Split the Monument dataset further into 50%/10%/40% and 14588/100/100 (in NSpM paper)
- Leads to 5 different splits: MonumentNSpM, Monument50, Monument80, LC-QUAD, DBNQA

Dataset Preprocessing

SPARQL Encoding

Hardware

	GPU Small	GPU Medium	GPU Large
CPU	Intel [®]	Intel [®] Xeon [®] CPU	POWER9
	Xeon®	E5-2680 @ 2.50GHz	
	CPU E5-2450		
	@ 2.10GHz		
RAM	24 GB	16 GB	192 GB
Cores	8	6	32
GPU	NVIDIA®	NVIDIA® Tesla®	NVIDIA®
	Tesla [®]	K80	Tesla [®]
	K20Xm		V100-SXM2
GPU RAM	6 GB	12 GB	32 GB

Table: Three hardware configurations on High Performance Computing (HPC) server used in this thesis

Software (1/2)

Python Frameworks

- nmt¹ based on TensorFlow
 - Implements: NSpM, NSpM+Att1, NSpM+Att2, GNMT-4. GNMT-8
- fairseg² based on PyTorch
 - Implements: LSTM_Luong, ConvS2S, Transformer

Takes care of training, validation, and testing the models on given dataset and outputs the results and statistics

¹https://github.com/tensorflow/nmt

²https://github.com/pytorch/fairseq

Software (2/2)

Operating Systems

- ► Linux from HPC with Python 3.6.4, TensorFlow 1.8.0, and PyTorch 0.4.1
 - Ran the training and testing jobs and saved the results
- ► macOS High Sierra 10.13.6 from my computer with Python 3.6.5, TensorFlow 1.8.0, PyTorch 0.4.1, and matplotlib 3.0.2
 - Preprocessed the datasets
 - Uploaded and downloaded jobs between HPC
 - Analyzed the outputs

Source code is all available on GitHub³.

³https://github.com/xiaoyuin/tntspa

Hyperparameters

Tricky part of neural network training

- 1. Adopted recommended hyperparameters from each framework
- 2. Adjusted for the **MonumentNSpM** dataset split
- 3. Applied on the other splits

Models

Metrics

Results & Discussion

Results

For each dataset split and model, we report...

- Perplexity graphs on the training and validation set
- BEST BLEU on the test set

In total, 5 (dataset splits) * 8 (models) = 40 perplexity graphs and 40 BLEU scores

Results

Example

Models	Test BLEU	Step / Epoch
NSpM	65.92	Step 50k
NSpM+Att1	89.87	Step 50k
NSpM+Att2	91.50	Step 50k
GNMT-4	69.61	Step 30k
GNMT-8	68.41	Step 30k
LSTM_Luong	77.67	Epoch 55
ConvS2S	96.07	Epoch 54
Transformer	68.82	Epoch 53

- ► The **Monument** dataset is relatively simple
- - ► The LC-QUAD dataset is too small in size
 - ► The **DBNQA** is so far the most suitable for this task

Three different splits of the monument dataset did not show very big differences in results

Results & Discussion

► The **Monument** dataset is relatively simple

- ► The LC-QUAD dataset is too small in size
- ► The **DBNQA** is so far the most suitable for this task

Three different splits of the monument dataset did not show very big differences in results

Results & Discussion

- ► The **Monument** dataset is relatively simple Serious overfit in LC-QUAD dataset experiments
 - The LC-QUAD dataset is too small in size
 - ► The **DBNQA** is so far the most suitable for this task

Three different splits of the monument dataset did not show very big differences in results

Results & Discussion

- ► The **Monument** dataset is relatively simple
- Serious overfit in LC-QUAD dataset experiments
 - The LC-QUAD dataset is too small in size
 - ► The DBNQA is so far the most suitable for this task

Three different splits of the monument dataset did not show very big differences in results

- ► The **Monument** dataset is relatively simple
- Serious overfit in LC-QUAD dataset experiments
 - The LC-QUAD dataset is too small in size
 - ► The DBNQA is so far the most suitable for this task

But they are all relatively simpler compared to Natural Language datasets

- ConvS2S model outperformed other models in converging speed (Perplexity curves) and translation quality (BLEU scores)
- ► Attention mechanisms contributed to the translation quality
- ► The Transformer model is relatively harder to train

- ConvS2S model outperformed other models in converging
- ▶ Attention mechanisms contributed to the translation quality
- ► The Transformer model is relatively harder to train

- ConvS2S model outperformed other models in converging
- ► Attention mechanisms contributed to the translation quality
- GNMT (deeper-layer model) performs relatively worse than shallower-layer models
- ► The Transformer model is relatively harder to train

- ConvS2S model outperformed other models in converging
- ► Attention mechanisms contributed to the translation quality
- ▶ The Transformer model is relatively harder to train

Perplexity vs. BLEU

Figure: The perplexity-BLEU graph on the validation set in the DBNQA experiments

Limitations

Training

- Training hyperparameters are not tuned specifically for each model and each dataset.
- Framework differences

Testing

BLEU is not a perfect metric for SPARQL

Outline

Models

Metrics

Summary & Outlook

Summary & Outlook

- Semantic Web and SPARQL
- Neural Machine Translation Models
- Experiments
- Results and Discussion

Future Work

- a better NL-SPARQL dataset
- better metric instead of BLEU
- more hyperparameter tuning

Summary & Outlook

- Semantic Web and SPARQL
- Neural Machine Translation Models
- Experiments
- Results and Discussion

Future Work

- a better NL-SPARQL dataset
- better metric instead of BLEU
- more hyperparameter tuning

Reference

- Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin, Convolutional Sequence to Sequence Learning, Proc. of ICML, 2017.
- Tommaso Soru, Edgard Marx, Diego Moussallem, Gustavo Publio, André Valdestilhas, Diego Esteves, and Ciro Baron Neto, SPARQL as a foreign language, CEUR Workshop Proceedings, vol. 2044, aug 2018.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need.
- Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao Qin Gao Klaus Macherev leff Klingner Antirva