Data Mining: Concepts and Techniques

(3rd ed.)

Classification & Clustering: Other Topics

Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign & Simon Fraser University

©2011 Han, Kamber & Pei. All rights reserved.

Classification & Clustering: Other Topics

Additional Topics Regarding Classification

- Clustering Categorical Data
- Summary

Multiclass Classification

- Classification involving more than two classes (i.e., > 2 Classes)
- Method 1. One-vs.-all (OVA): Learn a classifier one at a time
 - Given m classes, train m classifiers: one for each class
 - Classifier j: treat tuples in class j as positive & all others as negative
 - To classify a tuple X, the set of classifiers vote as an ensemble
- Method 2. All-vs.-all (AVA): Learn a classifier for each pair of classes
 - Given m classes, construct m(m-1)/2 binary classifiers
 - A classifier is trained using tuples of the two classes
 - To classify a tuple X, each classifier votes. X is assigned to the class with maximal vote
- Comparison
 - All-vs.-all tends to be superior to one-vs.-all
 - Problem: Binary classifier is sensitive to errors, and errors affect vote count

Semi-Supervised Classification

- Semi-supervised: Uses labeled and unlabeled data to build a classifier
- Self-training:
 - Build a classifier using the labeled data
 - Use it to label the unlabeled data, and those with the most confident label prediction are added to the set of labeled data
 - Repeat the above process
 - Adv: easy to understand; disadv: may reinforce errors
- Co-training: Use two or more classifiers to teach each other
 - Each learner uses a mutually independent set of features of each tuple to train a good classifier, say f₁
 - Then f₁ and f₂ are used to predict the class label for unlabeled data

 X
 - Teach each other: The tuple having the most confident prediction from f_1 is added to the set of labeled data for f_2 , & vice versa
- Other methods, e.g., joint probability distribution of features and labels

Active Learning

- Class labels are expensive to obtain
- Active learner: query human (oracle) for labels
- Pool-based approach: Uses a pool of unlabeled data
 - L: a small subset of D is labeled, U: a pool of unlabeled data in D

learn a model

training set

machine learning

oracle (e.g., human annotator)

unlabeled pool

- Use a query function to carefully select one or more tuples from U and request labels from an oracle (a human annotator)
- The newly labeled samples are added to L, and learn a model
- Goal: Achieve high accuracy using as few labeled data as possible
- Evaluated using learning curves: Accuracy as a function of the number of instances queried (# of tuples to be queried should be small)
- Research issue: How to choose the data tuples to be queried?
 - Uncertainty sampling: choose the least certain ones
 - Reduce version space, the subset of hypotheses consistent w. the training data
 - Reduce expected entropy over U: Find the greatest reduction in the total number of incorrect predictions

Transfer Learning: Conceptual Framework

- Transfer learning: Extract knowledge from one or more source tasks and apply the knowledge to a target task
- Traditional learning: Build a new classifier for each new task
- Transfer learning: Build new classifier by applying existing knowledge learned from source tasks

Transfer Learning: Methods and Applications

- Applications: Especially useful when data is outdated or distribution changes, e.g., Web document classification, e-mail spam filtering
- Instance-based transfer learning: Reweight some of the data from source tasks and use it to learn the target task
- TrAdaBoost (Transfer AdaBoost)
 - Assume source and target data each described by the same set of attributes (features) & class labels, but rather diff. distributions
 - Require only labeling a small amount of target data
 - Use source data in training: When a source tuple is misclassified, reduce the weight of such tupels so that they will have less effect on the subsequent classifier
- Research issues
 - Negative transfer: When it performs worse than no transfer at all
 - Heterogeneous transfer learning: Transfer knowledge from different feature space or multiple source domains
 - Large-scale transfer learning

Classification & Clustering: Other Topics

- Additional Topics Regarding Classification
- Clustering Categorical Data

Summary

ROCK: Clustering Categorical Data

- ROCK: RObust Clustering using links
 - S. Guha, R. Rastogi & K. Shim, ICDE'99
- Major ideas
 - Use links to measure similarity/proximity
 - Not distance-based
- Algorithm: sampling-based clustering
 - Draw random sample
 - Cluster with links
 - Label data in disk
- Experiments
 - Congressional voting, mushroom data

Similarity Measure in ROCK

- Traditional measures for categorical data may not work well, e.g.,
 Jaccard coefficient
- Example: Two groups (clusters) of transactions
 - C₁. <a, b, c, d, e>: {a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}, {a, d, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}
 - C₂. <a, b, f, g>: {a, b, f}, {a, b, g}, {a, f, g}, {b, f, g}
- Jaccard co-efficient may lead to wrong clustering result
 - C₁: 0.2 ({a, b, c}, {b, d, e}} to 0.5 ({a, b, c}, {a, b, d})
 - $C_1 \& C_2$: could be as high as 0.5 ({a, b, c}, {a, b, f})
- Jaccard co-efficient-based similarity function: $Sim(T_1, T_2) = \frac{|T_1 \cap T_2|}{|T_1 \cup T_2|}$
 - Ex. Let $T_1 = \{a, b, c\}, T_2 = \{c, d, e\}$ $Sim (T_1, T_2) = \frac{|\{c\}|}{|\{a, b, c, d, e\}|} = \frac{1}{5} = 0.2$

Link Measure in ROCK

Clusters

- C₁:<a, b, c, d, e>: {a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}, {a, d, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}
- C₂: <a, b, f, g>: {a, b, f}, {a, b, g}, {a, f, g}, {b, f, g}

Neighbors

- Two transactions are neighbors if $sim(T_1,T_2) > threshold$ (here is to 0.5)
- Let $T_1 = \{a, b, c\}, T_2 = \{c, d, e\}, T_3 = \{a, b, f\}$
 - T₁ connected to: {a,b,d}, {a,b,e}, {a,c,d}, {a,c,e}, {b,c,d}, {b,c,e}, {a,b,f}, {a,b,g}
 - T₂ connected to: {a,c,d}, {a,c,e}, {a,d,e}, {b,c,e}, {b,d,e}, {b,c,d}
 - T₃ connected to: {a,b,c}, {a,b,d}, {a,b,e}, {a,b,g}, {a,f,g}, {b,f,g}

Link Similarity

- Link similarity between two transactions is the # of common neighbors
- $link(T_1, T_2) = 4$, since they have 4 common neighbors
 - {a, c, d}, {a, c, e}, {b, c, d}, {b, c, e}
- $link(T_1, T_3) = 3$, since they have 3 common neighbors
 - {a, b, d}, {a, b, e}, {a, b, g}

Mushroom Data Set

- http://archive.ics.uci.edu/ml/datasets/Mushroom
- Number of Instances: 8124
- Number of Attributes: 22 (all nominally valued) including cap shape, cap color, odor, etc.
- Missing Attribute Values: 2480 of them (denoted by "?")
- Class Distribution:
 - edible: 4208 (51.8%)
 - poisonous: 3916 (48.2%)
 - total: 8124 instances

Clustering result for mushroom data

		Traditional Hiera	rchical Algorit	hm	
Cluster No	No of Edible	No of Poisonous	Cluster No	No of Edible	No of Poisonous
1	666	478	11	120	144
2	283	318	12	128	140
3	201	188	13	144	163
4	164	227	14	198	163
5	194	125	15	131	211
6	207	150	16	201	156
7	233	238	17	151	140
8	181	139	18	190	122
9	135	78	19	175	150
10	172	217	20	168	206
		RO	CK		
Cluster No	No of Edible	No of Poisonous	Cluster No	No of Edible	No of Poisonous
1	96	0	12	48	0
2	0	256	13	0	288
3	704	0	14	192	0
4	96	0	15	32	72
5	768	0	16	0	1728
6	0	192	17	288	0
7	1728	0	18	0	8
8	0	32	19	192	0

ROCK threshold is 0.8

Classification & Clustering: Other Topics

- Additional Topics Regarding Classification
- Clustering Categorical Data
- Summary

Summary

- Other Classification methods
 - Multiclass classification
 - Semi-supervised classification
 - Active learning
 - Transfer learning
- Clustering Categorical Data