Series 9

1. This exercise is taken from Section 6.2.2 at pages 224 - 226 of the ISL book (G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning - with Applications in R, 2017).

We want to compare the lasso and ridge solutions on the specific case where the number of observations n is equal to the number of variables p (n = p) and the covariate matrix \mathbf{X} is the identity matrix.

- a) Derive the OLS estimator for the regression parameter β .
- b) Derive the ridge estimator for the regression parameter β with penality parameter λ .
- c) Derive the lasso estimator for the regression parameter β with penality parameter λ .
- d) Compare the lasso and ridge estimators obtained from the last two points and discuss their respective shrinkage properties.
- 2. Consider the two hypotheses

 H_0 : $y = \beta_0 + \epsilon$, H_1 : $y = \beta_0 + \beta_1 x_1 + \ldots + \beta_{10} x_{10} + \epsilon$.

where the x_i are considered fixed and $\epsilon \sim \mathcal{N}(0, \sigma^2)$ for some $\sigma > 0$.

- a) Let p_1 denote the p-value of the t-test associated to the variable x_1 in the full model. Prove that p_1 has a uniform distribution on [0,1] under H_0 .
- b) Generate 1000 datasets with n = 200 observations under H_0 with $\beta_0 = 2$ and $\sigma = 1$ as well as the response y, in the following way:
 - 1. For each variable x_i draw n i.i.d. realizations from $\mathcal{N}(0,1)$ and keep these fixed for all datasets.
 - 2. Draw n iid realizations of the noise ϵ from $\mathcal{N}(0,1)$ and construct corresponding realizations of y_1, \ldots, y_n . Repeat this 1000 times.
 - 3. Record the realization of the p-value p_1 for each dataset and draw an histogram. Comment on your results.
 - 4. For the same 1000 datasets, first perform best-subset model selection using the Mallow's Cp criterion to choose a sub-model. If the variable x_1 is included in this sub-model, record the p-value associated to its t-test. Draw an histogram and comment your results, what is different from the last point?
 - 5. Peform again the same procedure but with sample splitting this time, i.e., split each dataset in two parts, select a best sub-model on one half of the data points (again with best-subset selection and Mallow's Cp criterion) and record the p-value associated to x_1 (if x_1 is included in the model) from the fit on the other half of the points. Draw a histogram and comment on your results.
- **3.** Do the conceptual exercise 1 at page 297 of the ISL book (G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning with Applications in R, 2017).
- **4.** Do the practical exercise 9 at pages 299 300 of the ISL book (G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning with Applications in R, 2017).

Preliminary discussion: Friday, May 10.

Deadline: Friday, May 17.