Fisica 3 Corso del prof. Sozzi Marco

Francesco Sorce

Università di Pisa Dipartimento di Matematica A.A. 2023/24

Indice

Ι	Te	rmodinamica	3
1	Prin 1.1 1.2	Prime definizioni Principio 0, Equilibrio e Temperatura empirica 1.2.1 Tipi di equilibrio 1.2.2 Processi quasistatici 1.2.3 Temperatura empirica 1.2.4 Definizione di temperatura tramite gas	4 4 5 5 6 6 7
2	Prin 2.1 2.2 2.3	mo e Secondo principio Primo principio e Definizione di calore Secondo principio e cicli 2.2.1 Enunciati del secondo principio 2.2.2 Processo ciclico 2.2.3 Ciclo di Carnot 2.2.4 Temperatura assoluta Entropia	8 9 9 9 11 11 12
3	Tras 3.1 3.2	Modalità di trasferimento di calore 3.1.1 Conduzione 3.1.2 Convezione 3.1.3 Irraggiamento Capacità termica	16 16 16 17 17
4	Eser 4.1 4.2 4.3	mpi principali di processi quasistatici per gas Coefficiente di espansione volumetrica e compressibilità isoterma Lavoro per gas Processi politropici	19 19 20 21
5	Gas 5.1 5.2 5.3 5.4	Definizioni e legge dei gas perfetti	22 23 23 25 26 26 26 27 28

\mathbf{A}	Richiami matematici			
	A.1	Derivate parziali e Jacobiane	2)(
	A.2	Differenziali esatti	:	3(

$\begin{array}{c} \text{Parte I} \\ \\ \text{Termodinamica} \end{array}$

Capitolo 1

Principi della termodinamica

La termodinamica è lo studio di sistemi dal punto di vista macroscopico. Le massime fondamentali della termodinamica sono

- L'energia dell'universo è costante
- L'entropia dell'universo tende ad aumentare.

1.1 Prime definizioni

Definizione 1.1 (Sistema termodinamico).

Un sistema termodinamico è un sistema omogeneo composto da "molti" elementi. Lo stato di un sistema termodinamico è univocamente determinato da un numero contenuto di parametri¹ detti funzioni di stato.

Il numero di funzioni di stato necessarie per specificare lo stato è detto **numero di** gradi di libertà.

Osservazione 1.2.

Le funzioni di stato di un sistema non dipendono da come esso è venuto ad esistere; se due procedimenti portano da un particolare stato ad un altro, le differenze nelle funzioni di stato dipendono univocamente dallo stato iniziale e quello finale.

Osservazione 1.3 (Sistema ambiente).

Spesso torna comodo considerare una coppia di sistemi, uno detto semplicemente sistema e l'altro **ambiente**.

Definizione 1.4 (Variabili estensive e intensive).

Dato un sistema termodinamico, delle variabili ad esso inerenti si dicono **estensive** se sono proporzionali alla quantità di materia contenuta nel sistema e **intensive** altrimenti.

Esempio 1.5.

Il volume e l'energia sono grandezze estensive mentre la pressione e la temperatura sono intensive.

Osservazione 1.6.

Il lavoro meccanico è dato da $W=\int \vec{F}\cdot \vec{d\ell}$. È un fatto generale che il lavoro ha la forma

 \int (intensiva)d(estensiva).

¹Per esempio temperatura, pressione o volume.

Definizione 1.7 (Sistemi isolati, chiusi e aperti).

Un sistema termodinamico si dice

- isolato se non ammette scambio con l'ambiente,
- chiuso se non ammette scambio di materia con l'ambiente,
- aperto se ammette scambi con l'ambiente.

Per considerare più sistemi termodinamici dobbiamo considerarli come separati da una parete.

Definizione 1.8 (Tipi di parete).

Una parete tra due sistemi è

- adiabatica se non permette scambi,
- diatermica se non ammette scambi di materia,
- semipermeabile se fa passare alcuni tipi di materia.
- permeabile² se permette ogni tipo di scambio.

1.2 Principio 0, Equilibrio e Temperatura empirica

1.2.1 Tipi di equilibrio

Definizione 1.9 (Equilibrio).

Un sistema è in **equilibrio** se le sue funzioni di stato restano "costanti" (per molto tempo rispetto alla scala temporale rilevante).

Un sistema è in **equilibrio termico** se non ci sono differenze di temperatura³.

Un sistema è in **equilibrio termodinamico** se è in equilibrio meccanico, termico e chimico.

Osservazione 1.10.

I sistemi tendono spontaneamente ed irreversibilmente all'equilibrio termodinamico.

Fatto 1.11 (0-esimo principio della termodinamica).

Due sistemi in equilibrio termico con un terzo sono in equilibrio tra loro.

Definizione 1.12 (Equazione di stato).

Se quando un sistema è in equilibrio vale una equazione tra le funzioni di stato, queste si dicono **equazioni di stato**.

Osservazione 1.13 (Segno degli scambi di energia).

NOTA BENE: Affermiamo per convenzione che uno scambio di energia ha segno positivo se il sistema acquista energia dall'ambiente.

²una parete permeabile è come se non ci fosse

³definiremo la temperatura in seguito.

1.2.2 Processi quasistatici

Definizione 1.14 (Processi quasistatici).

Un sistema è **quasi in equilibrio** se è così vicino all'equilibrio che le equazioni di stato si possono considerare valide.

Un **processo quasistatico** è un processo tale per cui il sistema è quasi in equilibrio in ogni istante.

Se non sono presenti "attriti", un processo quasistatico è detto reversibile.

Un processo è detto **totalmente reversibile** se è reversibile e la sua interazione con l'ambiente è reversibile.

Osservazione 1.15.

Un processo quasi statico va pensato come un processo molto lento; così lento da poter pensare al sistema come "sempre in equilibrio".

Definizione 1.16 (Principali processi quasistatici per gas).

Un processo si dice⁴

- **isotermo** se T resta costante,
- **isobaro** se p resta costante,
- \bullet isocore se V resta costante o
- adiabatico se non avviene scambio di calore.

1.2.3 Temperatura empirica

Proposizione 1.17 (Temperatura empirica).

Ogni sistema termodinamico ammette una funzione che è costante in stato di equilibrio. La costante è detta **temperatura empirica**.

Dimostrazione.

Consideriamo tre sistemi, con funzioni di stato (x_1, y_1) , (x_2, y_2) e (x_3, y_3) in equilibrio tra loro. Esistono dunque equazioni di stato della forma

$$\begin{cases} x_3 = f(x_1, y_1, y_3) \\ x_3 = g(x_2, y_2, y_3) \end{cases}$$

poiché i sistemi 1 e 2 sono in equilibrio, se eguagliamo le due equazioni sappiamo che ciò che otteniamo non dipende da y_3 , quindi

$$\begin{cases} f(x_1, y_1, y_3) = \phi_1(x_1, y_1)\zeta(y_3) + \eta(y_3) \\ g(x_2, y_2, y_3) = \phi_2(x_2, y_2)\zeta(y_3) + \eta(y_3) \end{cases}$$

dunque se 1 e 2 sono in equilibrio si ha che

$$\phi_1(x_1, y_1) = \phi_2(x_2, y_2),$$

ma i due membri dipendono da insiemi di variabili disgiunti, quindi esiste θ_0 tale che entrambe queste espressioni eguagliano θ_0 se sono in equilibrio. Il valore θ_0 è detto la temperatura empirica dei sistemi, i quali sono in equilibrio solo se hanno la stessa temperatura empirica.

Definizione 1.18 (Isoterme).

Dato un sistema termodinamico e un valore θ_0 di temperatura empirica, chiamiamo isoterma a livello θ_0 l'insieme degli stati del sistema la cui temperatura è θ_0 .

⁴Per le definizioni di temperatura o calore finite di leggere questo capitolo.

1.2.4 Definizione di temperatura tramite gas

Fatto 1.19 (Punto triplo).

Considerando come sistema termodinamico dell'acqua esiste una precisa combinazione di temperatura e pressione tale per cui essa risulta in trasizione tra gli stati solido liquido e gassoso simultaneamente.

Questo stato si chiama **punto triplo** e i valori in questione sono una temperatura di 0.01°C e una pressione di 0.006 atm.

A bassa pressione i gas si comportano tutti allo stesso modo⁵.

Se fissiamo il volume e la quantità di materia del gas possiamo definire θ in modo tale che $p = p_0(1 + \alpha\theta)$, cioè poniamo

$$\theta = \frac{1}{\alpha} \frac{p - p_0}{p_0}.$$

Se imponiamo che l'acqua congeli per $\theta=0$ e bollisca per $\theta=100$ allora si ricaviamo $1/\alpha=273.15$. Notiamo inoltre⁶

$$\frac{p_2}{p_1} = \frac{\alpha^{-1} + \theta_2}{\alpha^{-1} + \theta_1} = \frac{\theta_2'}{\theta_1'}.$$

Possiamo dunque definire la temperatura (in Kelvin) come

$$T = \lim_{p^{(PT)} \to 0} 273.16 \frac{p}{p^{(PT)}}$$

dove $p^{(PT)}$ è la pressione del gas nel termometro quando questo sistema è in equilibrio con il sistema di punto triplo con l'acqua. Il limite corrisponde a prendere gas sempre più rarefatti, cioè a lavorare nel limite dei gas perfetti dove vale la proporzionalità sopra.

Sfruttando questa definizione possiamo costruire un termometro a gas come in figura [FIGURA TERMOMETRO A GAS]

Quando il gas è alla temperatura che vogliamo misurare, misuriamo la differenza di altezza tra il livello a contatto con il gas e il livello di controllo posto a pressione atmosferica. Questa differenza è proporzionale alla differenza di pressione e questo ci permette di ricavare la temperatura se la fissiamo per quando è nel punto critico.

 $^{^{5}}$ rispettano l'equazione di stato $pV=f(\theta)$

⁶l'addizione di α^{-1} corrisponde alla traslazione che trasforma gradi Celsius in gradi Kelvin.

Capitolo 2

Primo e Secondo principio

2.1 Primo principio e Definizione di calore

Fatto 2.1 (Primo principio della termodinamica).

L'energia interna di un sistema di conserva.

Definizione 2.2 (Calore).

Il **calore** è la differenza tra la variazione di energia interna e il lavoro compiuto su un sistema termodinamico, esplicitamente

$$\Delta U = Q + W$$

Osservazione 2.3.

Il calore e il lavoro non sono funzioni di stato, ma la loro somma sì.

Osservazione 2.4 (Primo principio in forma differenziale).

Scrivendo il primo principio in termini di infinitesimi troviamo

$$dU = \delta Q + \delta W,$$

in particolare per i gas ideali vale

$$dU = \delta Q - pdV.$$

Definizione 2.5 (Caloria).

Una **caloria** è la quantità di calore necessaria per far variare la temperatura di un grammo di acqua da 14.5° C a 15.5° C.

In Joule si ha che

$$1 \text{ cal} = 4.186 \text{ J}$$

Osservazione 2.6.

In una trasformazione adiabatica, il lavoro è dato dalla differenza di energia interna.

Esempio 2.7 (Coppia di sistemi dentro un contenitore adiabatico).

Consideriamo due sistemi A e B dentro un contenitore adiabatico. Per il primo principio

$$0 = \Delta U = \Delta U_A + \Delta U_B = Q_A + Q_B + \underbrace{W_A + W_B}_{=W}.$$

I trasferimenti di calore possono avvenire solo tra A e B, quindi $Q_A + Q_B = 0$ e W = 0. Quanto scritto è una "legge di conservazione del calore" in questo tipo di sistema.

2.2 Secondo principio e cicli

2.2.1 Enunciati del secondo principio

Fatto 2.8 (Secondo principio della termodinamica, formulazione di Kelvin). Non esiste un processo che traformi interamente calore in lavoro.

Fatto 2.9 (Secondo principio della termodinamica, formulazione di Clausius). Non esiste un processo il cui <u>unico risulato</u> sia trasferire calore da una sorgente più fredda ad una più calda.

Proposizione 2.10.

Le due formulazioni del secondo principio sono equivalenti.

Dimostrazione.

Mostrimo che le loro negazioni sono equivalenti:

[DIAGRAMMA]

Notiamo che $|Q'| + |W| > \max\{|Q'|, |W|\} = \max\{|Q'|, |Q|\}$. Considerando ora il sistema di due macchine come un insieme troviamo una macchina che trasferisce un calore |Q'| dala sorgente fredda alla sorgente calda, negando Clausius.

 $\neg C \implies \neg K$ Procediamo analogamente a prima

[DIAGRAMMA]

e leggendo questo diagramma come un insieme la macchina avrebbe preso del calore |Q|-|Q'| dalla sorgente T_L e lo ha trasformato interamente in lavoro, negando Kelvin.

2.2.2 Processo ciclico

Definizione 2.11 (Processo ciclico).

Un processo è **ciclico** se lo stato iniziale e finale sono lo stesso. Se qualcosa realizza un processo ciclico è detto **motore**.

Osservazione 2.12 (Diagramma di una macchina a due sorgenti).

Spesso torna comodo fare diagrammi come in figura

[DIAGRAMMA]

 $Osservazione\ 2.13.$

Per un processo ciclico, $\Delta U = 0$, dunque Q = -W.

$$-W = Q = Q_H + Q_L$$

dove Q_H è il calore che il sistema acquista da una sorgente calda e Q_L è il calore che acquista da una sorgente fredda¹. Notiamo che

$$|W| = |Q_H| - |Q_L|.$$

 $^{{}^{1}}Q_{L}$ è negativo

Definizione 2.14 (Efficienza).

L'efficienza di un processo ciclico è data da²

$$\eta = \frac{|W|}{|Q_H|} = 1 - \frac{|Q_L|}{|Q_H|}.$$

Definizione 2.15 (Frigorifero e coefficiente di prestazione).

Un **frigorifero** è un motore che trasferisce calore da una sorgente fredda ad una calda. Il suo **coefficiente di prestazione** è dato da

$$COP = \frac{|Q_L|}{|W|} = \frac{1 - \eta}{\eta}.$$

Definizione 2.16 (Pompa di calore).

Una **pompa di calore** è una macchina volta a trasformare lavoro in calore verso la sorgente calda. La sua efficienza è quindi l'inversa di quella di un motore standard:

$$\frac{|Q_H|}{|W|} = \frac{1}{\eta}.$$

Teorema 2.17 (di Carnot).

Un ciclo reversibile è il più efficiente che lavori tra due sorgenti θ_H e θ_L .

Dimostrazione.

Consideriamo due cicli S ed S' di cui S reversibile. Per il primo principio $-W = |Q_H| - |Q_L|$ e $-W' = |Q'_H| - |Q'_L|$.

Con precisione arbitraria, siano N ed N' interi positivi tali che

$$\frac{|Q_H|}{|Q_H'|} \approx \frac{N'}{N}.$$

Facendo fare N' cicli a S' ed N cicli reversibili al contrario³ a S troviamo

$$-W_{tot} = N'(-W') - N(-W) = N'(|Q'_H| - |Q'_L|) - N(|Q_H| - |Q_L|)$$

$$Q_{H,tot} = N'|Q'_H| - N|Q_H|$$

$$-Q_{L,tot} = N'|Q'_L| - N|Q_L|.$$

Per il primo principio, facendo lavorare in parallelo le due macchine

$$-W_{tot} = Q_{H,tot} + Q_{L,tot}.$$

Scegliendo N ed N' arbitrariamente grandi possiamo approssimare $Q_{H,tot} \approx 0$, e quindi

$$-W_{tot} \approx Q_{L,tot}$$
.

Per la formulazione di Kelvin del secondo principio si ha che $-W_{tot} \leq 0^4$, quindi $Q_{L,tot} \leq 0$, cioè

$$N'|Q'_L| - N|Q_L| \ge 0 \Longleftrightarrow \frac{N'}{N} \ge \frac{|Q_L|}{|Q'_I|}.$$

²Intuitivamente l'efficienza è una misura di quanto lavoro riesco a realizzare in proporzione a quanto calore abbiamo dovuto inserire nel sistema. L'altra forma ci dice che l'efficienza è una coversione perfetta eccetto per il calore che viene disperso senza diventare lavoro (Q_L) .

³quì usiamo la reversibilità. Se prima il sistema trasformava calore in lavoro con qualche perdita di calore ora il sistema riceve lavoro e un po' di calore per fornire calore alla sorgente calda

⁴se così non fosse la macchina composta starebbe convertendo il calore $|Q_{L,tot}|$ in lavoro sull'esterno $|W_{tot}|$, contraddicendo il secondo principio.

Passando al limite negli N e N' si ha che

$$\frac{|Q_L|}{|Q_H|} \leq \frac{|Q_L'|}{|Q_H'|} \implies \eta = 1 - \frac{|Q_L|}{|Q_H|} \geq 1 - \frac{|Q_L'|}{|Q_H'|} = \eta'.$$

Corollario 2.18 (I cicli reversibili hanno la stessa efficienza).

Tutti i cicli reversibili hanno la stessa efficienza.

Dimostrazione.

Applicando il teorema abbiamo le due disuguaglianze scambiando i ruoli tra i due cicli. $\hfill\Box$

2.2.3 Ciclo di Carnot

Definiamo esplicitamente un ciclo reversibile:

Definizione 2.19 (Ciclo di Carnot).

Il ciclo di Carnot è composto dalle seguenti trasformazioni quasistatiche reversibili:

- 1. isoterma a temperatura T_H ,
- 2. adiabatica da T_H a T_L ,
- 3. isoterma a temperatura T_L ,
- 4. adiabatica da T_L a T_H .

[DIAGRAMMA PV]

Osservazione 2.20.

Gli unici scambi di calore avvengono lungo l'isoterma, che ha senso solo a regime quasistatico (dato che il calore è uno scambio derivante da una differenza di energia).

Fatto 2.21.

Il ciclo di Carnot è l'unico ciclo che effettua scambi in modo reversibile tra due sorgenti.

2.2.4 Temperatura assoluta

Il teorema di Carnot (2.17) ci suggerisce un modo per ridefinire la temperatura in termini della temperatura empirica senza bisogno di ricorrere ai gas:

Per il teorema di Carnot esiste f tale che dopo un ciclo reversibile

$$\frac{|Q_H|}{|Q_L|} = f(\theta_L, \theta_H).$$

Collegando due tali processi facendo sì che il calore rilasciato dal primo sia quello assorbito dal secondo ricaviamo le equazioni

$$\frac{|Q_3|}{|Q_2|} = f(\theta_2, \theta_3), \quad \frac{|Q_2|}{|Q_1|} = f(\theta_1, \theta_2), \quad \frac{|Q_3|}{|Q_1|} = f(\theta_1, \theta_3),$$

dove $\theta_1 \leq \theta_2 \leq \theta_3$.

Segue dunque l'identità

$$f(\theta_1, \theta_2) = \frac{f(\theta_1, \theta_3)}{f(\theta_2, \theta_3)}.$$

Derivando rispetto a θ_3 ricaviamo

$$\begin{split} 0 &= \frac{1}{f(\theta_2,\theta_3)} \frac{\partial f}{\partial \theta_3}(\theta_1,\theta_3) - \frac{f(\theta_1,\theta_3)}{(f(\theta_2,\theta_3))^2} \frac{\partial f}{\partial \theta_3}(\theta_2,\theta_3) \\ &\frac{1}{f(\theta_1,\theta_3)} \frac{\partial f}{\partial \theta_3}(\theta_1,\theta_3) = \frac{1}{f(\theta_2,\theta_3)} \frac{\partial f}{\partial \theta_3}(\theta_2,\theta_3). \end{split}$$

Abbiamo dunque mostrato che $\frac{1}{f(\theta_1,\theta_3)}\frac{\partial f}{\partial \theta_3}(\theta_1,\theta_3)$ non dipende da θ_1 , cioè

$$\frac{\partial}{\partial \theta_3} (\log(f(\theta_1, \theta_3))) = A(\theta_3)$$
$$\log(f(\theta_1, \theta_3)) = B(\theta_3) + C(\theta_1),$$

dove $B(\theta_3)$ è una primitiva di $A(\theta_3)$.

Notiamo ora che $f(\theta,\theta)=1$ in quanto tanto calore viene rilasciato quanto viene assorbito se le sorgenti sono alla stessa temperatura.

Segue che $\log(f(\theta, \theta)) = 0$, cioè $B(\theta) = -C(\theta)$.

$$\log(f(\theta_1, \theta_3)) = B(\theta_3) - B(\theta_1) \implies f(\theta_1, \theta_3) \stackrel{g(\theta) = e^{B(\theta)}}{=} \frac{g(\theta_3)}{g(\theta_1)}$$

Possiamo dunque definire la temperatura assoluta come

$$T = g(\theta)$$
.

Tutto ciò che abbiamo detto fin'ora in termini della temperatura definita tramite gas continua ad essere valido per la temperatura assoluta.

2.3 Entropia

Lemma 2.22 (Isoterme fibrano).

Due isoterme non si incrociano

Dimostrazione.

È un altro modo di esprimere lo 0-esimo principio.

Lemma 2.23 (Adiabatiche fibrano).

Due curve adiabatiche non si incrociano.

Dimostrazione.

Per assurdo supponiamo che due adiabatiche si incrocino. Trasformandole in un ciclo tramite una isoterma avremmo costruito una macchina che trasforma calore in lavoro senza effetti secondari, contraddicendo il secondo principio.

Osservazione 2.24 (Clausius per cicli di Carnot).

In un ciclo di Carnot si ha che

$$\oint \frac{\delta Q}{T} = 0.$$

Dimostrazione.

Dal teorema di Carnot (2.17) sappiamo che

$$\frac{|Q_H|}{T_H} = \frac{|Q_L|}{T_L},$$

cioè

$$0 = \frac{Q_H}{T_H} + \frac{Q_L}{T_L} = \int_A^B \frac{\delta Q}{T} + \int_C^D \frac{\delta Q}{T} \stackrel{BC \text{ e } DA}{=} \stackrel{\text{adiabatiche}}{=} \oint \frac{\delta Q}{T}.$$

Teorema 2.25 (Teorema di Clausius).

Per un qualsiasi ciclo reversibile si ha che

$$\oint \frac{\delta Q}{T} = 0.$$

Dimostrazione.

Approssimiamo il ciclo con tanti cicli di Carnot: per i lemma (2.22) e (2.23) evitiamo problemi di double counting, per costruire l'approssimazione basta scegliere due punti sul ciclo e sostituire il tratto del ciclo che li collega con la giunzione di una adiabatica, una isoterma e poi nuovamente una adiabatica, dove le adiabatiche sono determinate dagli stati in esame e l'isoterma è scelta in modo che il lavoro compiuto non cambi⁵.

[DISEGNO]

Corollario 2.26. La quantità $\int_A^B \frac{\delta Q}{T}\Big|_{rev}$ è una funzione di stato.

Dimostrazione.

Siano α e β sono due processi reversibili da A a B. In quanto reversibili, è ben definito $\gamma = \overline{\beta}$ processo inverso di β . Per il teorema di Clausius (2.25) si ha che

$$0 = \int_{\alpha} \frac{\delta Q}{T} + \int_{\gamma} \frac{\delta Q}{T} = \int_{\alpha} \frac{\delta Q}{T} - \int_{\beta} \frac{\delta Q}{T},$$

come volevasi dimostrare.

In luce di questo corollario è ben posta la seguente definizione:

Definizione 2.27 (Entropia).

Definiamo la **differenza di entropia** tra due stati $A \in B \text{ come}^6$

$$\left. \int_{A}^{B} \frac{\delta Q}{T} \right|_{Tev} = S_B - S_A.$$

In forma differenziale

$$dS = \frac{\delta Q}{T}_{rev}$$

Osservazione 2.28.

Se γ è un processo che porta il sistema dallo stato A allo stato B in modo non reversibile allora è possibile che

$$\int_{A}^{B} \frac{\delta Q}{T} \neq S_{B} - S_{A}.$$

La differenza di entropia tra i due stati è comunque ben definita, basta scegliere un secondo cammino reversibile da A a B e calcolare l'integrale lungo quel cammino.

 $^{^{5}}$ poiché l'energia interna è una funzione di stato, garantire lo stesso lavoro automaticamente

⁶la notazione significa che per calcolare l'integrale scegliamo un qualsiasi processo reversibile che porta A in B.

Osservazione 2.29.

Se A e B sono stati sulla stessa adiabatica

$$\int_{A}^{B} \frac{\delta Q}{T} = 0.$$

Se l'adiabatica in questione è reversibile allora $S_A = S_B$. Se l'adiabatica non è reversibile l'entropia potrebbe cambiare.

Osservazione 2.30.

Per un qualsiasi ciclo (anche irreversibile), $\Delta S = 0$, in quanto è una funzione di stato.

Proposizione 2.31 (Per un ciclo irreversibile l'entropia aumenta globalmente). Sia Σ un ciclo che acquista una quantità di calore δQ da una sorgente a temperatura T_s e che produce una quantità di lavoro W, allora

$$\oint \frac{\delta Q}{T} \le 0,$$

dove T è la temperatura a cui lavora Σ .

Dimostrazione.

Studiamo gli effetti secondari di Σ ⁷. Consideriamo il sistema composto da Σ e una macchina di Carnot Σ' definito come segue:

 Σ' assorbe un calore δQ_s dalla sorgente T_s , produce del lavoro W' e rilascia ad una temperatura T il calore δQ che riceve Σ .

[DIAGRAMMA]

Calcolando la variazione di entropia per Σ' ricaviamo che

$$0 = \Delta S = \oint \frac{\delta Q_s}{T_s} + \oint -\frac{\delta Q}{T} \Longleftrightarrow \frac{1}{T_s} \oint \delta Q_s = \oint \frac{\delta Q}{T}.$$

Consideriamo ora le due macchine insieme e calcoliamo l'energia:

$$Q_s = \oint \delta Q_s = -(W + W').$$

Per il secondo principio si ha che la quantità sopra non è positiva⁸, dunque, sfruttando il fatto che $T_s > 0$, si ha che

$$0 \ge \frac{1}{T_s} \oint \delta Q_s = \oint \frac{\delta Q}{T}.$$

Teorema 2.32 (Variazione di entropia supera integrale sul percorso).

 $Sia \ \gamma \ un \ processo \ che \ porta \ lo \ stato \ A \ nello \ stato \ B, \ potenzialmente in \ modo \ irreversibile, \ allora$

$$\Delta S \ge \int_{A}^{B} \frac{\delta Q}{T}.$$

⁷che necessariamente ci sono per il secondo principio.

⁸non possiamo convertire calore in lavoro senza altri effetti, ma possiamo convertire lavoro in calore senza problemi.

Dimostrazione.

Sia α un processo reversibile che porta da A a B e sia β il suo processo inverso. Per la proposizione (2.31) si ha che

$$\underbrace{\int_{\beta} \frac{\delta Q}{T}}_{=-\Delta S} + \int_{\gamma} \frac{\delta Q}{T} \leq 0 \implies \Delta S \geq \int_{A}^{B} \frac{\delta Q}{T}.$$

Proposizione 2.33 (Secondo principio con entropia).

L'affermazione " $\Delta S \geq 0$ per sistemi isolati" è equivalente al secondo principio della termodinamica.

Dimostrazione.

Abbiamo già visto che il secondo principio implica $\Delta S \geq 0$.

Consideriamo allora per assurdo un processo che trasforma calore in lavoro senza altri effetti. La variazione di entropia del sistema sarebbe 9

$$\Delta S = \oint \frac{\delta Q}{T} = -\frac{|Q|}{T} < 0,$$

assurdo per ipotesi.

Osservazione 2.34 (L'Entropia dell'universo non diminuisce). Se un sistema è isolato, $\delta Q=0,$ quindi

$$\Delta S \ge \int \frac{\delta Q}{T} = 0.$$

Osservazione 2.35 (Differenziale dell'entropia).

Poiché U è una funzione di stato

$$dU = \delta Q + \delta W = \delta Q_{rev} + \delta W_{rev},$$

dunque

$$\boxed{dS = \left. \frac{\delta Q}{T} \right|_{rev} = \frac{\delta Q}{T} + \frac{\delta W - \delta W_{rev}}{T}}$$

Per il teorema (2.32) si ha che $dS \ge \delta Q/T$, quindi per la forma sopra

$$\delta W \geq \delta W_{rev}$$
,

che è una riformulazione del teorema di Carnot (2.17) se stiamo attenti ai segni.

⁹il sistema perde calore per trasformarlo in lavoro, quindi il segno è negativo

Capitolo 3

Trasferimento di calore

3.1 Modalità di trasferimento di calore

Il trasperimento di calore, cioè di energia derivante da una differenza di temperatura, avviene in tre modi: conduzione, covezione ed irraggiamento.

3.1.1 Conduzione

Parliamo di **conduzione** quando il tresferimento di calore avviene per contatto ma senza scambio di materia (attraverso una parete diatermica).

Empiricamente riscontriamo

Fatto 3.1 (Legge di Fourier).

 $Vale\ la\ relazione$

$$\frac{1}{A}\frac{\delta Q}{\Delta t} = -\kappa \frac{\Delta T}{\Delta X},$$

dove T è la temperatura, X è la distanza tra i punti tra cui stiamo calcolando la differenza di temperatura, A è l'area ortogonale alla direzione lungo la quale si propaga il calore e κ è una costante detta **conducibilità termica**.

L'unità di misura della conducibilità termica è

$$[\kappa] = \frac{W}{mK} \approx \begin{cases} 10^2 & \text{metalli} \\ 0.1 & \text{gas} \end{cases}.$$

Possiamo precisare la legge di Fourier introducendo la corrente di calore \vec{J}_Q . La legge assume la forma

$$\vec{J}_Q = -k\vec{\nabla}T.$$

Concentrandosi su uno dei sistemi possiamo scrivere

$$\delta Q = cm\delta T$$

dove m è la massa e c è il calore specifico.

Possiamo calcolare il calore totale che entra dentro una superficie per unità di tempo come

$$\int_V c \frac{\partial T}{\partial t} \rho dV = \frac{1}{\Delta t} \int_{\partial V} \delta Q = - \int_{\partial V} \vec{J}_Q \cdot \vec{d\Sigma} = - \int_V \nabla \cdot \vec{J}_Q dV = \int_V k \nabla^2 T dV.$$

Ricaviamo dunque

$$\frac{\partial T}{\partial t} = \frac{\kappa}{\rho c} \nabla^2 T$$

Questa è la famosa equazione del calore.

3.1.2 Convezione

Parliamo di **convezione** quando il trasferimento di calore avviene tramite lo spostamento di materia.

La formula rilevante in questo caso è

$$\frac{1}{A}\frac{\delta Q}{\Delta t} = h\Delta T,$$

dove h è il **coefficiente convettivo**.

3.1.3 Irraggiamento

Parliamo di **irraggiamento** quando un corpo semplicemente emette energia come radiazione.

La formula rilevante in questo caso è

$$\frac{1}{A}\frac{\delta Q}{\Delta t} = \varepsilon \sigma (T^4 - T_0^4),$$

dove T_0 è la temperatura dell'ambiente, σ è una costante uguale per tutti i materiali e ε dipende dai materiali.

3.2 Capacità termica

Definizione 3.2 (Capacità termica). Definiamo la **capacità termica** come¹

$$C = \lim_{\delta T \to 0} \frac{\delta Q}{\delta T}.$$

L'unità di misura è [C] = J/K.

La capacità termica molare è data da c = C/n.

Il calore specifico è dato da C/m.

Definizione 3.3 (Termometro e Termostato).

Un **termostato** è un oggetto ideale con capacità termica infinita².

Un **termometro** è un oggetto ideale con capacità termica nulla³.

 $Osservazione \ 3.4.$

Possiamo scrivere la capacità termica in termini di $U,\ V,\ p$ e T come segue:

$$C = \frac{\delta Q}{\delta T} = \left. \frac{\partial U}{\partial T} \right|_V + \left(\left. \frac{\partial U}{\partial V} \right|_T + p \right) \frac{dV}{dT}$$

 $^{^1\}mathrm{Nota}$ che NON è una derivata in quanto Qnon è una funzione di stato, quindi in particolare non è una funzione di T

²intuitivamente è un sistema grande a sufficienza in modo che anche se viene aggiunto calore, la temperatura non cambia.

 $^{^3}$ intuitivamente è un sistema piccolo a sufficienza in modo da poter trascurare gli scambi di calore.

Dimostrazione.

Sviluppando dU troviamo

$$dU = \frac{\partial U}{\partial T} \bigg|_{V} dT + \frac{\partial U}{\partial V} \bigg|_{T} dV,$$

da cui

$$\delta Q = dU + p dV = \left. \frac{\partial U}{\partial T} \right|_V dT + \left(\left. \frac{\partial U}{\partial V} \right|_T + p \right) dV.$$

Ora possiamo "dividere" per dT e trovare la tesi.

Definizione 3.5 (Capacità termica a volume/pressione costante).

Definiamo la **capacità termica a volume** (risp. **pressione**) **costante** come le due seguenti quantità

$$C_{V} = \frac{\delta Q}{\delta T}\Big|_{V} = \frac{\partial U}{\partial T}\Big|_{V}$$

$$C_{p} = \frac{\delta Q}{\delta T}\Big|_{p} = \frac{\partial U}{\partial T}\Big|_{V} + \left(\frac{\partial U}{\partial V}\Big|_{T} + p\right) \frac{\partial V}{\partial T}\Big|_{p} = \frac{\partial U}{\partial T}\Big|_{V} + \left(\frac{\partial U}{\partial V}\Big|_{T} + p\right) V\alpha$$

Osservazione 3.6 (Disuguaglianza tra capacità termiche). Vale sempre $C_p > C_V$.

 $Osservazione\ 3.7.$

In un gas generale

$$\left[\left. \frac{\partial U}{\partial V} \right|_T = \frac{C_p - C_V}{V\alpha} - p \right]$$

Capitolo 4

Esempi principali di processi quasistatici per gas

4.1 Coefficiente di espansione volumetrica e compressibilità isoterma

Definizione 4.1 (Coefficiente di espansione volumetrica). Definiamo il **coefficiente di espansione volumetrica** come

$$\alpha = \frac{1}{V} \left. \frac{\partial V}{\partial T} \right|_p = -\frac{m}{V} \frac{1}{\rho^2} \left. \frac{\partial \rho}{\partial T} \right|_p = -\frac{1}{\rho} \left. \frac{\partial \rho}{\partial T} \right|_p.$$

L'unità di misura è $[\alpha] = K^{-1}$.

Definizione 4.2 (Compressibilità isoterma).

Definiamo la compressibilità isoterma come

$$\beta_T = -\frac{1}{V} \left. \frac{\partial V}{\partial p} \right|_T.$$

L'unità di misura è $[\beta_T] = Pa^{-1}$.

L'inversa $k_T = 1/\beta_T$ è detta modulo di compressibilità isoterma.

Riportiamo alcuni valori di α e β_T per dare una intuizione sui valori tipici¹

Materiale	$\alpha [\mathrm{K}^{-1}]$	$\beta_T [\mathrm{Pa}^{-1}]$
Acqua	$0.2 \cdot 10^{-3}$	$4.6 \cdot 10^{-10}$
Diamante	$3 \cdot 10^{-6}$?
Sitall	$\leq 10^{-7}$?
Sabbia	?	$\sim 10^{-8}$
Mercurio	$1.8 \cdot 10^{-4}$	$4 \cdot 10^{-11}$
Rame	?	$7.2 \cdot 10^{-12}$

Osservazione 4.3.

Non è necessario battezzare $\frac{\partial p}{\partial T}\Big|_{V}$ in quanto per la proprietà ciclica (A.1)

$$\left.\frac{\partial p}{\partial T}\right|_{V} = -\left.\frac{\partial p}{\partial V}\right|_{T} \left.\frac{\partial V}{\partial T}\right|_{p} = \frac{\alpha}{\beta_{T}}.$$

 $^{^1}$ il Sitall è materiale fatto apposta per avere coefficiente di espansione volumetrica piccolo

Osservazione 4.4 (Relazione differenziale tra α e β_T). Per il teorema di Schwarz si ha che

$$\frac{\partial^2 V}{\partial p \partial T} = \left. \frac{\partial \alpha}{\partial p} \right|_T = - \left. \frac{\partial \beta_T}{\partial T} \right|_p.$$

Proposizione 4.5 (Differenziale della pressione).

 $Si\ ha\ che$

$$dp = \frac{\alpha}{\beta_T} dT - \frac{1}{\beta_T V} dV.$$

Dimostrazione.

Osserviamo che

$$\left.\frac{\partial p}{\partial T}\right|_{V}\stackrel{\text{(A.1)}}{=}-\frac{\partial p}{\partial V}\left|_{T}\frac{\partial V}{\partial T}\right|_{p}=\frac{\alpha}{\beta_{T}},$$

dunque ricaviamo

$$dp = \left. \frac{\partial p}{\partial T} \right|_{V} dT + \left. \frac{\partial p}{\partial V} \right|_{T} = \frac{\alpha}{\beta_{T}} dT - \frac{1}{\beta_{T} V} dV.$$

Corollario 4.6.

In una trasformazione isocora $\Delta p = \frac{\alpha}{\beta_T} \Delta T$.

Osservazione 4.7 (Differenziale logaritmico nel volume).

Spesso tornerà comodo ricordare il seguente sviluppo differenziale

$$d\log V = \frac{1}{V}dV = \alpha dT - \beta_T dp$$

Dimostrazione.

Segue calcolando:

$$\frac{1}{V}dV = \frac{1}{V} \left(\frac{\partial V}{\partial T} \Big|_{p} dT + \left. \frac{\partial V}{\partial p} \right|_{T} dp \right) = \alpha dT - \beta_{T} dp$$

4.2 Lavoro per gas

Immagino di comprimere un sistema come in figura

[FIGURA]

Se spingiamo molto lentamente possiamo con buona approssimazione supporre che il processo sia quasistatico, dunque F = pS. Segue che

$$\delta W = Fdx = pSdx$$

Se il sistema in questione è un gas ideale allora

$$\delta W = p(-dV) = -pdV$$

Il lavoro totale per passare da uno stato A ad uno stato B diventa

$$W = -\int_{A}^{B} p(V, T)dV,$$

ma p come cambia al variare di V? Dipende dal tipo di processo.

[QUALCHE GRAFICO]

Questo mostra in particolare che il lavoro non è una funzione di stato.

4.3 Processi politropici

Possiamo generalizzare i quattro tipi di processi citati nella seguente classe:

Definizione 4.8 (Processo politropico).

Un processo è **politropico** se la capacità termica è costante.

Proposizione 4.9 (Curve per processi politropici).

Considerando un processo politropicorelativo ad un gas ideale e definiamo

$$\delta = \frac{C_p - C}{C_V - C},$$

allora seguendo questo processo si ha che p $V^{\delta}=\cos t...$

Dimostrazione.

Poiché $\delta Q = CdT = C_V dT + pdV = C_p dT - V dp$ ricaviamo che

$$-\frac{V}{C-C_p}dp = dT = \frac{p}{C-C_V}dV,$$

da cui

$$-\frac{V}{p}\frac{dp}{dV} = \frac{C_p - C}{C_V - C} = \delta.$$

Questa espressione restituisce una equazione differenziale

$$-\frac{dp}{p} = \delta \frac{dV}{V},$$

la cui soluzioni hanno la forma voluta.

Possiamo interpretare processi isocori, isobari, isotermi e adiabatici come processi politropici:

Processo	Isocoro	Isobaro	Isotermo	Adiabatico
δ	∞	0	1	$\gamma = \frac{c_p}{c_V}$

Capitolo 5

Gas Ideali

5.1 Definizioni e legge dei gas perfetti

Definizione 5.1 (Mole).

Una mole di una sostanza corrisponde a $6.02 \cdot 10^{23}$ particelle di quella sostanza. La costante è detta numero di Avogadro e la indichiamo con N_a .

Definizione 5.2 (Densità).

Definiamo la **denstità** come

$$\rho = \frac{m}{V}.$$

Osservazione 5.3.

Il differenziale della densità è

$$d\rho = -\frac{m}{V^2}dV.$$

Definizione 5.4 (Condizioni standard).

Un gas è in **condizioni standard** (STP) se è alla temperatura di 0° C e alla pressione di 1 atm = 101.3245 kPa.

Per i gas ideali valgono le seguenti leggi:

Fatto 5.5 (Legge di Boyle).

 $Se\ T\ \grave{e}\ costante$

$$V \propto \frac{1}{p}$$

Fatto 5.6 (Legge di Charles).

Se p è costante

$$V \propto (1 + \alpha T)$$

Fatto 5.7 (Legge di Gay-Lussac).

Se V è costante

$$p \propto T$$

Fatto 5.8 (Legge di Avogadro).

Se p e T sono fissate, tutti i gas occupano lo stesso volume se consistono della stessa quantità di materia, in particolare

$$V \propto n$$
.

Una mole di gas in condizioni standard occupa un volume di 22.4ℓ (litri).

Combinando le leggi appena citate arriviamo alla legge dei Gas perfetti

$$pV = nRT$$

dove p è la pressione, V è il volume, n è il numero di moli, T è la temperatura e R è la **costante fondamentale dei gas** e vale $8.314 \frac{\text{J}}{\text{K mol}}$.

Definizione 5.9 (Costante di Boltzmann).

Definiamo la **costante di Boltzmann** k_b in modo tale che

$$R = N_a k_b$$
.

5.2 Coefficiente di espansione volumetrica e compressibilità isoterma

Proposizione 5.10 (α e β_T per gas ideali).

Se il sistema in esame è un gas ideale valgono le seguenti identità:

$$\alpha = \frac{1}{T}, \qquad \beta_T = \frac{1}{p}.$$

Dimostrazione.

Segue calcolando:

$$\begin{split} \alpha = & \frac{1}{V} \left. \frac{\partial (nRT/p)}{\partial T} \right|_p = \frac{nR}{pV} = \frac{1}{T}, \\ \beta_T = & -\frac{1}{V} \left. \frac{\partial (nRT/p)}{\partial p} \right|_T = \frac{1}{V} nRT \frac{1}{p^2} = \frac{1}{p}. \end{split}$$

5.3 Capacità termica

Definizione 5.11 (Coefficiente di Joule). Definiamo il **coefficiente di Joule** come

$$\mu_J = \left. \frac{\partial T}{\partial V} \right|_U$$

Fatto 5.12 (In gas ideale l'energia interna dipende solo dalla temperatura). In un gas ideale U dipende solo da T.

Esperimento: Espansione libera adiabatica di Joule.

Consideriamo un contenitore adiabatico separato internamente da una parete adiabatia. In uno dei due volumi si trova un gas ideale, il secondo è vuoto.

[DISEGNO]

Improvvisamente eliminiamo la parete interna e lasciamo che il gas si espanda¹.

Chiaramente Q = W = 0 in quanto il vuoto non subisce/effettua lavoro e non scambia calore, dunque $\Delta U = 0$.

¹notiamo che questo NON è una processo quasistatico.

Segue che $\mu_J=\left.\frac{\partial T}{\partial V}\right|_U=\frac{dT}{dV}$ e Joule ha misurato che in queste circostanze la seconda è nulla, dunque

$$0 = \left. \frac{\partial T}{\partial V} \right|_{U} \stackrel{\text{(A.1)}}{=} - \left(\left. \frac{\partial V}{\partial U} \right|_{T} \right)^{-1} \left(\left. \frac{\partial U}{\partial T} \right|_{V} \right)^{-1} = - \left. \frac{\partial U}{\partial V} \right|_{T} \frac{1}{C_{V}},$$

in particolare $\left. \frac{\partial U}{\partial V} \right|_T = 0.$

Poiché in un gas ideale p è determinata da V e T, U = U(V,T). Per quanto appena detto U non dipende da V, quindi dipende solo da T.

Corollario 5.13.

In un gas ideale, a prescindere dal tipo di processo,

$$dU = C_V dT$$

Dimostrazione.

Ricordiamo che

$$C_V = \left. \frac{\partial U}{\partial T} \right|_V,$$

ma poiché U non dipende da V possiamo scrivere

$$C_V = \frac{dU}{dT},$$

che è la tesi. \Box

Proposizione 5.14 (Relazione di Mayer).

Per gas ideali si ha che $c_p - c_V = R$, o equivalentemente $C_p - C_V = nR$.

Dimostrazione.

Ricordiamo (5.10) che per gas ideali $\alpha = T^{-1}$. Poiché U dipende solo da T si ha che

$$0 = \left. \frac{\partial U}{\partial V} \right|_T \stackrel{\text{(3.7)}}{=} \frac{C_p - C_V}{V\alpha} - p,$$

da cui

$$C_p - C_V = pV\alpha = \frac{nRT}{T} = nR.$$

Notazione 5.15.

Denotiamo il rapporto $\frac{C_V}{C_p} = \frac{c_V}{c_p}$ con γ .

Fatto 5.16 (Calore specifico a volume costante in funzione dei gradi di libertà). In un gas ideale

$$C_V = \frac{\nu}{2} nR$$

dove ν è il numero di gradi di libertà.

Osservazione 5.17.

Per un gas ideale monoatomico $\nu=3,$ mentre per un gas biatomico $\nu=5.$ Segue che

$$c_V^{mono} = \frac{3}{2}R \approx 12.47 \frac{\mathrm{J}}{\mathrm{K~mol}}, \qquad c_V^{bi} = \frac{5}{2}R \approx 20.74 \frac{\mathrm{J}}{\mathrm{K~mol}}.$$

Da queste scritture segue anche che

$$c_p^{mono} = \frac{5}{2}R, \quad \gamma^{mono} = \frac{5}{3}, \qquad \quad c_p^{bi} = \frac{7}{2}R, \quad \gamma^{bi} = \frac{7}{5}.$$

Osservazione 5.18 (L'aria è un gas ideale biatomico).

L'aria è composta principalmente da particelle biatomiche $(O_2$ e $N_2)$.

Proposizione 5.19 (Calore infinitesimale con capacità).

Per gas ideali valgono le seguenti equazioni

1.
$$\delta Q = C_V dT + p dV$$

2.
$$\delta Q = C_p dT - V dp$$
.

Dimostrazione.

Mostriamo i due punti:

1 Ricordiamo la relazione

$$\delta Q = \underbrace{\frac{\partial U}{\partial T}\Big|_{V}}_{\equiv C_{V}} dT + \left(\left. \frac{\partial U}{\partial V} \right|_{T} + p \right) dV,$$

da cui, usando il fatto che $\left.\frac{\partial V}{\partial U}\right|_T=0,$ troviamo che $\delta Q=C_VdT+pdV.$

 $\boxed{2}$ Osserviamo che il differenziale di pV=nRT è

$$nRdT = pdV + Vdp$$

da cui sfruttando la relazione precedente

$$\delta Q = C_V dT + p dV = (C_V + nR)dT - V dp \stackrel{\text{(5.14)}}{=} C_p dT - V dp.$$

Osservazione~5.20.

Osservando la prima equazione ricaviamo nuovamente che δQ non è un differenziale, infatti se lo fosse avremmo il seguente assurdo:

$$0 = \left. \frac{\partial C_V}{\partial V} \right|_T = \left. \frac{\partial p}{\partial T} \right|_V = \frac{nR}{V} \neq 0.$$

5.4 Energia interna, lavoro e calore

In questa sezione calcoliamo lavoro, calore e variazione di energia interna per i tipi principali di processi quasistatici.

Notiamo che $\Delta U = nc_V \Delta T$ in ogni circostanza in quanto U non dipende da V.

5.4.1 Isobara

Proposizione 5.21 (Energie per isobara).

Per una trasformazione isobara valgono le seguenti identità:

$$W = -nR\Delta T$$
, $Q = nc_p\Delta T$, $\Delta U = nc_V\Delta T$.

Dimostrazione.

Calcoliamo:

$$W = -\int_{V_i}^{V_f} p dV \stackrel{\text{isobara}}{=} -p\Delta V \stackrel{\text{gas ideale}}{=} -nR\Delta T$$

$$Q \stackrel{\text{isobara}}{=} \int_{T_i}^{T_f} nc_p dT = nc_p\Delta T$$

$$\Delta U = Q + W = n(c_p - R)\Delta T = nc_V\Delta T.$$

5.4.2 Isocora

Proposizione 5.22 (Energie per isocora).

Per una trasformazione isocora valgono le seguenti identità:

$$W = 0$$
, $Q = nc_v \Delta T$, $\Delta U = nc_V \Delta T$.

Dimostrazione.

Calcoliamo:

$$W = -\int_{V_i}^{V_f} p dV \stackrel{V_i = V_f}{=} 0$$

$$Q \stackrel{\text{isocora}}{=} \int_{T_i}^{T_f} n c_V dT = n c_V \Delta T$$

$$\Delta U = Q + W = n c_V \Delta T.$$

5.4.3 Isoterma

Proposizione 5.23 (Energie per isoterma).

Per una trasformazione isoterma valgono le seguenti identità:

$$W = -nRT\log\left(\frac{V_f}{V_i}\right), \quad Q = nRT\log\left(\frac{V_f}{V_i}\right), \quad \Delta U = 0.$$

Dimostrazione.

Poiché stiamo considerando un gas ideale

$$\Delta U = nc_V \Delta T \stackrel{\text{isoterma}}{=} 0.$$

Per il primo principio si ha Q=-W, quindi per concludere basta calcolare il lavoro.

$$W = -\int_{V_i}^{V_f} p dV \stackrel{\text{gas ideale}}{=} -nRT \int_{V_i}^{V_f} \frac{1}{V} dV = -nRT \log \left(\frac{V_f}{V_i}\right).$$

5.4.4 Adiabatica

Proposizione 5.24 (Equazione di stato per adiabatica).

Poniamo $\gamma = c_p/c_V$. Si ha che pV^{γ} è costante seguendo un processo adiabatico.

Dimostrazione.

Poiché il sistema in esame è un gas ideale valgono le seguenti uguaglianze

$$0 \stackrel{\text{adiabatica}}{=} \delta Q = dU - \delta W \stackrel{\text{gas ideale}}{=} nc_V dT + pdV = \frac{nc_V}{nR} d(pV) + pdV.$$

Segue che

$$-\frac{c_V V}{\cancel{K}} dp = \left(\frac{pc_V + pR}{\cancel{K}}\right) dV \stackrel{\text{(5.14)}}{=} \frac{pc_p}{\cancel{K}} dV,$$

da cui

$$-\frac{dp}{p} = \gamma \frac{dV}{V}.$$

Integrando troviamo

$$-\log p + Const. = \gamma \log V \iff \log pV^{\gamma} = Const. \iff pV^{\gamma} = e^{Const.}$$

 \Box

che è quello che volevamo mostrare.

Osservazione 5.25.

Si ha che

$$c_v = \frac{R}{\gamma - 1}.$$

Dimostrazione.

Per definizione di γ

$$c_v = \frac{c_p}{\gamma} \stackrel{\text{(5.14)}}{=} \frac{R + c_v}{\gamma},$$

dunque

$$\gamma c_v = c_v + R$$

e la tesi segue.

Proposizione 5.26 (Energie per adiabatica).

Per una trasformazione adiabatica valgono le seguenti identità:

$$W = \frac{p_f V_f - p_i V_i}{\gamma - 1}, \quad Q = 0, \quad \Delta U = \frac{p_f V_f - p_i V_i}{\gamma - 1}.$$

Dimostrazione.

Poiché il processo è adiabatico, Q=0. Segue per il primo principio che $\Delta Q=W$. Dato che stiamo considerando un gas ideale

$$\Delta U = nc_V \Delta T = n \frac{R}{\gamma - 1} \Delta T = \frac{1}{\gamma - 1} \Delta (pV) = \frac{p_f V_f - p_i V_i}{\gamma - 1}.$$

 $Osservazione\ 5.27.$

Potevamo ricavare energia e lavoro anche sfruttando la relazione

$$pV^{\gamma} = p_i V_i^{\gamma} = p_f V_f^{\gamma},$$

ma avendola ricavata come sopra sappiamo che l'espressione è valida anche per processi adiabatici NON quasistatici.

5.5 Ciclo di Carnot per Gas ideali

Proposizione 5.28 (Efficienza del ciclo di Carnot).

L'efficienza di un ciclo di Carnot per gas ideali tra le temperature T_H e T_L è data da

$$\eta = 1 - \frac{T_L}{T_H}.$$

Dimostrazione.

Calcoliamo che quantità coinvolte:

$$\begin{split} |Q_H| &= Q_{AB} \overset{\text{isoterma.}}{=} -W_{AB} = \int_A^B p dV = nRT_H \log \left(\frac{V_B}{V_A}\right) > 0 \\ |Q_L| &= -Q_{CD} \overset{\text{isoterma.}}{=} W_{CD} = -\int_C^D p dV = nRT_L \log \left(\frac{V_C}{V_D}\right), \\ \eta &= 1 - \frac{|Q_L|}{|Q_H|} = 1 - \frac{T_L \log(V_C/V_D)}{T_H \log(V_B/V_A)} = 1 - \frac{T_L}{T_H}, \end{split}$$

dove nell'ultimo conto abbiamo usato le equazioni per le adiabatiche:

$$\left(\frac{V_B}{V_C}\right)^{\gamma-1} = \frac{T_L}{T_H}, \quad \left(\frac{V_D}{V_A}\right)^{\gamma-1} = \frac{T_H}{T_L} \implies \frac{V_B}{V_A} = \frac{V_C}{V_D}.$$

Osservazione 5.29 (Efficienza massima per gas ideale).

Poiché il ciclo di Carnot è reversibile, per il teorema di Carnot (2.17) il valore

$$1 - \frac{T_L}{T_H}$$

è la massima efficienza possibile per un qualsiasi ciclo realizzato da un gas ideale.

Osservazione 5.30 (Coefficiente di prestazione massimo per gas ideale). Per quanto detto il coefficente di prestazione massimo è

$$\frac{1 - \eta_{Carnot}}{\eta_{Carnot}} = \frac{T_L}{T_H - T_L}.$$

Se $T_L=4$ °C e $T_H=20$ °C (caso tipico del frigorifero casalingo) allora $COP_{max}\approx 17.3$. Tipicamente $COP\approx 4$.

 $Osservazione \ 5.31$ (Massima efficienza di una pompa di calore realizzata con gas ideale).

Per una pompa di calore, la massima efficienza è data da

$$\frac{T_H}{T_H - T_L}.$$

Appendice A

Richiami matematici

A.1 Derivate parziali e Jacobiane

Da una relazione f(x,y,z)=0 possiamo ricavare x=x(y,z) e y=y(x,z). Possiamo dunque sviluppare i differenziali

$$dx = \frac{\partial x}{\partial y} \Big|_{z} dy + \frac{\partial x}{\partial z} \Big|_{y} dz$$
$$dy = \frac{\partial y}{\partial x} \Big|_{z} dx + \frac{\partial y}{\partial z} \Big|_{x} dz.$$

Proposizione A.1 (Proprietà delle derivate parziali).

Valgono le seguenti proprietà, dette dell'inversa e ciclicità rispettivamente:

$$\left. \frac{\partial x}{\partial y} \right|_z = \left(\frac{\partial y}{\partial x} \right|_z \right)^{-1}, \qquad \left. \frac{\partial x}{\partial y} \right|_z \left. \frac{\partial y}{\partial z} \right|_x \left. \frac{\partial z}{\partial x} \right|_y = -1.$$

Dimostrazione.

Considerando le espressioni date sopra e sostituiendo dy dentro lo sviluppo di dx ricaviamo l'equazione

$$\left(1-\left.\frac{\partial x}{\partial y}\right|_z\frac{\partial y}{\partial x}\right|_z\right)dx=\left(\left.\frac{\partial x}{\partial y}\right|_z\frac{\partial y}{\partial z}\right|_x+\left.\frac{\partial x}{\partial z}\right|_y\right)dz.$$

Se fissiamo z il membro di sinistra non cambia, mentre quello di destra risulta nullo (dz = 0). Poiché questo è vero anche per $dx \neq 0$ necessariamente ricaviamo

$$1 = \left. \frac{\partial x}{\partial y} \right|_{z} \left. \frac{\partial y}{\partial x} \right|_{z}$$

che è la proprietà dell'inversa.

Avendo mostrato questo ricaviamo che il membro di sinistra è sempre nullo, anche per $dz \neq 0$, quindi segue l'equazione

$$\frac{\partial x}{\partial y}\Big|_{z}\frac{\partial y}{\partial z}\Big|_{x} + \frac{\partial x}{\partial z}\Big|_{y} = 0,$$

la quale corrisponde alla proprietà di ciclicità.

Consideriamo le seguenti relazioni

$$\begin{cases} x = x(u, v) \\ y = y(u, v) \end{cases}$$

Poniamo

$$\frac{\partial(x,y)}{\partial(u,v)} = \det \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}.$$

Osservazione A.2 (Jacobiane notevoli).

Si ha che

$$\frac{\partial(x,y)}{\partial(x,y)} = 1, \quad \frac{\partial(x,x)}{\partial(u,v)} = 0, \quad \frac{\partial(x,y)}{\partial(u,v)} = -\frac{\partial(y,x)}{\partial(u,v)} = \frac{\partial(-x,y)}{\partial(u,v)}.$$

Inoltre

$$\frac{\partial(x,y)}{\partial(u,y)} = \left. \frac{\partial x}{\partial u} \right|_{y}, \quad \frac{\partial(x,u)}{\partial(u,v)} = \frac{\partial(x,u)}{\partial(r,s)} \frac{\partial(r,s)}{\partial(u,v)}, \quad \frac{\partial(x,y)}{\partial(u,v)} = \left(\frac{\partial(u,v)}{\partial(x,y)} \right)^{-1}.$$

A.2 Differenziali esatti

Ricordiamo che una forma $\sum A_i dx_i$ è chiusa quando per ogni coppia i,j

$$\frac{\partial A_j}{\partial x_i} = \frac{\partial A_i}{\partial x_j}.$$

Se il dominio è semplicemente connesso allora questa condizione caratterizza anche le forme esatte.

Proposizione A.3 (Esattezza tramite Pfaff).

 $Sia \sum_{i} A_{i} dx_{i}$ una forma. Se l'equazione Pfaff

$$\sum_{i} A_i dx_i = 0$$

è integrabile (cioè i punti che la verificano sono descrivibili tramite una equazione $F(x_1, \dots, x_n) = cost.$) allora la forma è chiusa ed esiste $u(x_1, \dots, x_n)$ tale che $\sum uA_i dx_i$ è esatta.

Dimostrazione.

Sia $\{F=0\}$ l'equazione del luogo dove vale l'equazione Pfaff. Segue che

$$dF = \sum_{i} \frac{\partial F}{\partial x_i} dx_i = 0 = \sum_{i} A_i dx_i,$$

dunque possiamo definire u in modo tale che

$$\frac{\partial F}{\partial x_i} = u(x_1, \cdots, x_n) A_i.$$

Osserviamo inoltre che

$$\frac{\partial}{\partial x_i}(uA_j) = \frac{\partial^2 F}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_j}(uA_i),$$

cioè $\sum_{i} u A_{i} dx_{i}$ è chiusa.