Übungsblatt 6

Felix Kleine Bösing, Juri Ernesto Humberg, Leonhard Meyer November 20, 2024

Teil (a)

Gegeben ist eine reelle Folge $(a_n)_{n \in \mathbb{N}}$ und eine Konstante $q \in \mathbb{R}$ mit 0 < q < 1. Weiterhin existiert ein $N \in \mathbb{N}$, sodass

$$|a_{n+1} - a_n| \le q|a_n - a_{n-1}|$$
 für alle $n \ge N$.

Es ist zu zeigen, dass $(a_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge ist. Außerdem soll gezeigt werden, dass diese Eigenschaft nicht notwendigerweise gilt, falls lediglich $|a_{n+1} - a_n| < |a_n - a_{n-1}|$ für alle $n \ge N$ gilt.

Beweis:

- 1. Cauchy-Folge unter der Bedingung $|a_{n+1} a_n| \le q|a_n a_{n-1}|$:
 - (a) Definieren wir die Abstände $d_n = |a_{n+1} a_n|$. Aus der Bedingung folgt, dass

$$d_{n+1} \le q \cdot d_n$$
 für alle $n \ge N$.

Durch wiederholte Anwendung erhalten wir für $k \geq 1$:

$$d_{N+k} \le q^k \cdot d_N.$$

(b) Für $m > n \ge N$ gilt die Dreiecksungleichung:

$$|a_m - a_n| \le \sum_{k=n}^{m-1} |a_{k+1} - a_k| = \sum_{k=n}^{m-1} d_k.$$

Setzen wir die Abschätzung $d_k \leq q^{k-N} \cdot d_N$ ein:

$$|a_m - a_n| \le \sum_{k=n}^{m-1} q^{k-N} \cdot d_N.$$

(c) Die Summe der q^{k-N} -Terme bildet eine geometrische Reihe:

$$\sum_{k=n}^{m-1} q^{k-N} = q^{n-N} \cdot \frac{1 - q^{m-n}}{1 - q}.$$

Für $m \to \infty$ konvergiert die geometrische Reihe, und es bleibt:

$$|a_m - a_n| \le \frac{q^{n-N}}{1-q} \cdot d_N.$$

(d) Da $q^{n-N} \to 0$ für $n \to \infty$, folgt $|a_m - a_n| \to 0$. Somit ist $(a_n)_{n \in \mathbb{N}}$ eine Cauchy-Folge.

- 2. Die schwächere Bedingung $|a_{n+1} a_n| < |a_n a_{n-1}|$:
 - (a) Die schwächere Bedingung $|a_{n+1}-a_n| < |a_n-a_{n-1}|$ bedeutet nur, dass die Abstände zwischen aufeinanderfolgenden Folgengliedern kleiner werden, garantiert aber nicht, dass die Folge summierbar ist oder konvergiert.
 - (b) Betrachten wir die Folge $a_n = \ln(n+1)$. Es gilt:

$$|a_{n+1} - a_n| = \ln(n+2) - \ln(n+1) = \ln\left(1 + \frac{1}{n+1}\right).$$

Für $n \to \infty$ konvergiert $\ln\left(1 + \frac{1}{n+1}\right) \to 0$. Dennoch divergiert a_n , da $\ln(n+1) \to \infty$.

(c) Somit zeigt dieses Gegenbeispiel, dass die schwächere Bedingung $|a_{n+1}-a_n|<|a_n-a_{n-1}|$ nicht ausreicht, um zu garantieren, dass $(a_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge ist.

Schlussfolgerung:

- 1. Die Bedingung $|a_{n+1} a_n| \le q|a_n a_{n-1}|$ mit 0 < q < 1 garantiert durch die Summierbarkeit der Abstände, dass $(a_n)_{n \in \mathbb{N}}$ eine Cauchy-Folge ist und daher konvergiert.
- 2. Die schwächere Bedingung $|a_{n+1} a_n| < |a_n a_{n-1}|$ ist hingegen nicht ausreichend, wie das Gegenbeispiel $a_n = \ln(n+1)$ zeigt.

Teil (b)

Zu zeigen ist, dass die rekursiv definierten Folgen a_n und b_n konvergieren und deren Grenzwerte zu berechnen sind.

Beweis:

1. **Teil (i):** Die Folge a_n ist definiert durch

$$a_0 = 1$$
 und $a_{n+1} = \frac{2+a_n}{1+a_n}$ für $n \ge 1$.

(a) **Grenzwert:** Falls die Folge konvergiert, muss der Grenzwert *a* die Gleichung erfüllen:

$$a = \frac{2+a}{1+a}.$$

Multiplizieren mit 1 + a ergibt:

$$a(1+a) = 2 + a \implies a^2 = 2.$$

Da $a_n > 0$ für alle n, folgt:

$$a=\sqrt{2}$$
.

- (b) **Beschränktheit der Folge:** Wir zeigen, dass die Folge a_n beschränkt ist:
 - Der Startwert ist $a_0 = 1$, und $a_1 = \frac{2+1}{1+1} = 1.5$.
 - Für $a_n > 0$ gilt aus der Definition:

$$a_{n+1} = \frac{2 + a_n}{1 + a_n}.$$

Da der Zähler $2+a_n$ und der Nenner $1+a_n$ positiv sind, folgt $a_{n+1} > 0$. Weiterhin ist $a_{n+1} < 2$, da der Bruch für $a_n > 0$ kleiner als 2 bleibt.

Damit liegt a_n im Intervall (0,2) und ist somit beschränkt.

- (c) Oszillation und Konvergenz der Folge:
 - Die Folge a_n ist nicht monoton, sondern oszilliert um den Grenzwert $\sqrt{2}$. Die ersten Werte der Folge sind:

$$a_0 = 1$$
, $a_1 = 1.5$, $a_2 \approx 1.4167$, $a_3 \approx 1.413$, $a_4 \approx 1.4142$.

• Es ist zu sehen, dass die Folge abwechselnd über und unter $\sqrt{2}$ liegt. Insbesondere gilt:

$$a_0 < \sqrt{2}, \quad a_1 > \sqrt{2}, \quad a_2 < \sqrt{2}, \quad a_3 > \sqrt{2}, \dots$$

Um die Konvergenz zu zeigen, betrachten wir die Differenzen $|a_{n+1} - a_n|$:

$$|a_{n+1} - a_n| = \left| \frac{2 + a_n}{1 + a_n} - a_n \right|.$$

Bringen wir die Terme auf einen gemeinsamen Nenner:

$$a_{n+1} - a_n = \frac{2 + a_n - a_n(1 + a_n)}{1 + a_n}.$$

Der Zähler vereinfacht sich zu:

$$2 + a_n - a_n - a_n^2 = 2 - a_n^2.$$

Damit gilt:

$$a_{n+1} - a_n = \frac{2 - a_n^2}{1 + a_n}.$$

Für $n \to \infty$ konvergiert $a_n \to \sqrt{2}$, sodass $2 - a_n^2 \to 0$. Der Nenner $1 + a_n$ bleibt positiv und beschränkt. Somit folgt:

$$|a_{n+1} - a_n| \to 0.$$

Da die Folge beschränkt ist und $|a_{n+1} - a_n| \to 0$, ist die Folge eine **Cauchy-Folge**. Da jede Cauchy-Folge im reellen Raum konvergiert, konvergiert (a_n) gegen $\sqrt{2}$.

2. **Teil (ii):** Die Folge b_n ist definiert durch

$$b_0 = 1$$
 und $b_{n+1} = 1 + \frac{1}{b_n}$ für $n \ge 1$.

(a) **Grenzwert:** Falls die Folge b_n konvergiert, existiert ein Grenzwert $b = \lim_{n \to \infty} b_n$, der die Gleichung erfüllen muss:

$$b = 1 + \frac{1}{b}$$
.

Multiplizieren mit b ergibt:

$$b^2 = b + 1 \implies b^2 - b - 1 = 0.$$

Die Lösung der quadratischen Gleichung lautet:

$$b = \frac{1 \pm \sqrt{5}}{2}.$$

Da $b_n > 0$ für alle n, folgt:

$$b = \frac{1 + \sqrt{5}}{2}.$$

- (b) **Beschränktheit der Folge:** Wir zeigen, dass die Folge b_n beschränkt ist:
 - Der Startwert ist $b_0 = 1$, und aus der Rekursion folgt:

$$b_1 = 1 + \frac{1}{b_0} = 2$$
, $b_2 = 1 + \frac{1}{b_1} = 1.5$, $b_3 = 1 + \frac{1}{b_2} \approx 1.6667$.

• Für $b_n > 0$ gilt aus der Definition:

$$b_{n+1} = 1 + \frac{1}{b_n}.$$

Da $\frac{1}{b_n} > 0$, folgt $b_{n+1} > 1$ für alle n.

• Weiterhin zeigt die Rekursion, dass $b_{n+1} \leq 2$, da:

$$b_{n+1} = 1 + \frac{1}{b_n} \le 1 + 1 = 2.$$

Somit liegt die Folge b_n im Intervall (1,2] und ist beschränkt.

- (c) **Monotonie der Folge:** Wir zeigen, dass die Folge b_n monoton fallend ist:
 - Aus der Rekursion $b_{n+1} = 1 + \frac{1}{b_n}$ folgt, dass:

$$b_{n+1} - b_n = 1 + \frac{1}{b_n} - b_n = \frac{1 - (b_n - 1)b_n}{b_n}.$$

• Da $b_n > 1$, ist $b_n - 1 > 0$. Weiterhin gilt:

$$1 - (b_n - 1)b_n < 0 \quad \text{für alle } b_n > 1.$$

Somit folgt $b_{n+1} - b_n < 0$, also ist die Folge monoton fallend.

(d) **Konvergenz der Folge:** Da die Folge b_n beschränkt und monoton ist, konvergiert sie nach dem Monotonie-Kriterium. Der Grenzwert ist:

$$b = \frac{1 + \sqrt{5}}{2}.$$

Aufgabe 4

Gegeben seien zwei konvergente Reihen

$$\sum_{n=1}^{\infty} a_n \quad \text{und} \quad \sum_{n=1}^{\infty} b_n$$

sowie eine Konstante $c \in \mathbb{R}$. Es ist zu zeigen, dass auch die Reihen

$$\sum_{n=1}^{\infty} (a_n + b_n) \quad \text{und} \quad \sum_{n=1}^{\infty} (c \cdot a_n)$$

konvergieren und es gelten:

(a)
$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n,$$

(b)
$$\sum_{n=1}^{\infty} (c \cdot a_n) = c \cdot \sum_{n=1}^{\infty} a_n.$$

Beweis

- 1. **Linearität der Addition:** Wir beweisen zunächst, dass die Summe der Reihe $\sum_{n=1}^{\infty} (a_n + b_n)$ der Summe der Reihen $\sum_{n=1}^{\infty} a_n$ und $\sum_{n=1}^{\infty} b_n$ entspricht:
 - (a) Da $\sum_{n=1}^{\infty} a_n$ und $\sum_{n=1}^{\infty} b_n$ konvergieren, existieren ihre jeweiligen Grenzwerte:

$$S_a = \sum_{n=1}^{\infty} a_n, \quad S_b = \sum_{n=1}^{\infty} b_n.$$

(b) Die partielle Summe der Reihe $\sum_{n=1}^{\infty} (a_n + b_n)$ ist definiert als:

$$S_N = \sum_{n=1}^{N} (a_n + b_n) = \sum_{n=1}^{N} a_n + \sum_{n=1}^{N} b_n.$$

(c) Da die Grenzwerte existieren, folgt für $N \to \infty$:

$$\lim_{N \to \infty} S_N = \lim_{N \to \infty} \sum_{n=1}^N a_n + \lim_{N \to \infty} \sum_{n=1}^N b_n.$$

Somit gilt:

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n.$$

- 2. Skalarmultiplikation: Wir beweisen, dass die Multiplikation der Reihe $\sum_{n=1}^{\infty} (c \cdot a_n)$ mit einer Konstanten c dem Produkt von c mit der Summe der Reihe $\sum_{n=1}^{\infty} a_n$ entspricht:
 - (a) Da $\sum_{n=1}^{\infty} a_n$ konvergiert, existiert der Grenzwert:

$$S_a = \sum_{n=1}^{\infty} a_n.$$

(b) Die partielle Summe der Reihe $\sum_{n=1}^{\infty} (c \cdot a_n)$ ist definiert als:

$$S_N = \sum_{n=1}^{N} (c \cdot a_n) = c \cdot \sum_{n=1}^{N} a_n.$$

(c) Für $N \to \infty$ folgt:

$$\lim_{N \to \infty} S_N = c \cdot \lim_{N \to \infty} \sum_{n=1}^N a_n.$$

Da $\sum_{n=1}^{\infty} a_n$ konvergiert, gilt:

$$\sum_{n=1}^{\infty} (c \cdot a_n) = c \cdot \sum_{n=1}^{\infty} a_n.$$

Schlussfolgerung

Die Reihen $\sum_{n=1}^{\infty} (a_n + b_n)$ und $\sum_{n=1}^{\infty} (c \cdot a_n)$ sind konvergent, wenn $\sum_{n=1}^{\infty} a_n$ und $\sum_{n=1}^{\infty} b_n$ konvergieren. Die Grenzwerte ergeben sich durch die Linearität der Addition und die Skalierung:

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n,$$

$$\sum_{n=1}^{\infty} (c \cdot a_n) = c \cdot \sum_{n=1}^{\infty} a_n.$$

Aufgabe 4

Gegeben seien zwei konvergente Reihen

$$\sum_{n=1}^{\infty} a_n \quad \text{und} \quad \sum_{n=1}^{\infty} b_n$$

sowie eine Konstante $c \in \mathbb{R}$. Es ist zu zeigen, dass auch die Reihen

$$\sum_{n=1}^{\infty} (a_n + b_n) \quad \text{und} \quad \sum_{n=1}^{\infty} (c \cdot a_n)$$

konvergieren und es gelten:

(a)
$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n,$$

(b)
$$\sum_{n=1}^{\infty} (c \cdot a_n) = c \cdot \sum_{n=1}^{\infty} a_n.$$

Beweis

- 1. **Linearität der Addition:** Wir beweisen zunächst, dass die Summe der Reihe $\sum_{n=1}^{\infty} (a_n + b_n)$ der Summe der Reihen $\sum_{n=1}^{\infty} a_n$ und $\sum_{n=1}^{\infty} b_n$ entspricht:
 - (a) Da $\sum_{n=1}^{\infty} a_n$ und $\sum_{n=1}^{\infty} b_n$ konvergieren, existieren ihre jeweiligen Grenzwerte:

$$S_a = \sum_{n=1}^{\infty} a_n, \quad S_b = \sum_{n=1}^{\infty} b_n.$$

Weiterhin ist bekannt, dass die Summe von zwei konvergenten Reihen ebenfalls konvergiert.

(b) Die partielle Summe der Reihe $\sum_{n=1}^{\infty} (a_n + b_n)$ ist definiert als:

$$S_N = \sum_{n=1}^N (a_n + b_n) = \sum_{n=1}^N a_n + \sum_{n=1}^N b_n.$$

(c) Da die Grenzwerte existieren und die Grenzwertbildung linear ist, folgt für $N \to \infty$:

$$\lim_{N \to \infty} S_N = \lim_{N \to \infty} \sum_{n=1}^N a_n + \lim_{N \to \infty} \sum_{n=1}^N b_n.$$

Somit gilt:

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n.$$

Hierbei wurde die Stetigkeit der Addition verwendet.

2. Skalarmultiplikation: Wir beweisen, dass die Multiplikation der Reihe $\sum_{n=1}^{\infty} (c \cdot a_n)$ mit einer Konstanten c dem Produkt von c mit der Summe der Reihe $\sum_{n=1}^{\infty} a_n$ entspricht:

(a) Da $\sum_{n=1}^{\infty}a_{n}$ konvergiert, existiert der Grenzwert:

$$S_a = \sum_{n=1}^{\infty} a_n.$$

Weiterhin bleibt die Multiplikation einer konvergenten Reihe mit einer Konstanten c ebenfalls konvergent, da die Multiplikation mit c keine Divergenz verursachen kann.

(b) Die partielle Summe der Reihe $\sum_{n=1}^{\infty} (c \cdot a_n)$ ist definiert als:

$$S_N = \sum_{n=1}^{N} (c \cdot a_n) = c \cdot \sum_{n=1}^{N} a_n.$$

(c) Für $N \to \infty$ folgt:

$$\lim_{N \to \infty} S_N = c \cdot \lim_{N \to \infty} \sum_{n=1}^{N} a_n.$$

Da $\sum_{n=1}^{\infty} a_n$ konvergiert, gilt:

$$\sum_{n=1}^{\infty} (c \cdot a_n) = c \cdot \sum_{n=1}^{\infty} a_n.$$

Hierbei wurde die Stetigkeit der Multiplikation verwendet.

Schlussfolgerung

Die Reihen $\sum_{n=1}^{\infty} (a_n + b_n)$ und $\sum_{n=1}^{\infty} (c \cdot a_n)$ sind konvergent, wenn $\sum_{n=1}^{\infty} a_n$ und $\sum_{n=1}^{\infty} b_n$ konvergieren. Die Grenzwerte ergeben sich durch die Linearität der Addition und die Skalierung:

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n,$$

$$\sum_{n=1}^{\infty} (c \cdot a_n) = c \cdot \sum_{n=1}^{\infty} a_n.$$

Hierbei wurden die Stetigkeit der Grenzwertoperationen und die Linearität der Addition und Multiplikation zentral verwendet.