```
import pandas as pd
 In [8]:
           import numpy as np
           from sklearn import linear_model
           import matplotlib.pyplot as plt
           from word2number import w2n
In [86]:
           df = pd.read_csv("https://raw.githubusercontent.com/codebasics/py/master/ML/1_linear_reg/Exercise/c
           df.head()
Out[86]:
             year
                  per capita income (US$)
          0 1970
                             3399.299037
          1 1971
                             3768.297935
          2 1972
                             4251.175484
            1973
                             4804.463248
            1974
                             5576.514583
           df.rename({'per capita income (US$)':'income'},axis=1,inplace=True)
In [48]:
           df.head(1)
Out[48]:
                      income
             year
          0 1970 3399.299037
In [49]:
          %matplotlib inline
           plt.xlabel('year')
plt.ylabel('income')
           plt.scatter(df.year,df.income ,color='red',marker='+')
Out[49]: <matplotlib.collections.PathCollection at 0x15c3a83e190>
            40000
            35000
            30000
            25000
            20000
            15000
            10000
             5000
                  1970
                            1980
                                      1990
                                                 2000
                                                          2010
                                          year
          %matplotlib inline
In [82]:
           plt.xlabel('year',fontsize = 20)
           plt.ylabel('income', fontsize = 20)
           plt.scatter(df.year,df.income ,color='red',marker='+')
           plt.plot(df.year,reg.predict(df[['year']]),color='blue')
```

Out[82]: [<matplotlib.lines.Line2D at 0x15c3a9e47c0>]

```
40000 - 30000 - 20000 - 10000 - 1970 1980 1990 2000 2010 year
```

from sklearn import linear_model
from word2number import w2n

test_score(out of 10)

8.0

8.0

experience

NaN

NaN

In [22]:

Out[22]:

0

```
new_df = df.drop('income',axis='columns')
In [72]:
          new_df.head()
Out[72]:
            year
         0 1970
         1 1971
         2 1972
            1973
           1974
In [71]:
          income = df.income
          income.head()
              3399.299037
Out[71]:
              3768.297935
              4251.175484
         3
              4804.463248
              5576.514583
         Name: income, dtype: float64
          # Create Linear regression object
In [73]:
          reg = linear_model.LinearRegression()
          reg.fit(new_df,income)
Out[73]: LinearRegression()
          reg.predict([[2020]])
In [74]:
Out[74]: array([41288.69409442])
         2nd question
In [21]:
          import pandas as pd
          import numpy as np
```

df = pd.read_csv("https://raw.githubusercontent.com/codebasics/py/master/ML/2_linear_reg_multivaria

9

salary(\$)

50000

45000

interview_score(out of 10)

```
3
                                          10.0
                                                                     10
                                                                            65000
                     two
           4
                                           9.0
                                                                       6
                                                                            70000
                   seven
           5
                                                                            62000
                                           7.0
                                                                      10
                    three
           6
                                                                       7
                                                                            72000
                     ten
                                         NaN
           7
                   eleven
                                           7.0
                                                                       8
                                                                            80000
            df.experience = df.experience.fillna("zero")
In [23]:
Out[23]:
              experience test_score(out of 10) interview_score(out of 10)
                                                                         salary($)
           0
                    zero
                                           8.0
                                                                       9
                                                                            50000
           1
                                           8.0
                                                                       6
                                                                            45000
                    zero
           2
                                           6.0
                                                                       7
                                                                            60000
                     five
           3
                                          10.0
                                                                      10
                                                                            65000
                     two
           4
                                           9.0
                                                                      6
                                                                            70000
                   seven
           5
                    three
                                           7.0
                                                                      10
                                                                            62000
           6
                     ten
                                         NaN
                                                                            72000
                                           7.0
                                                                       8
                                                                            80000
           7
                   eleven
            df.experience = df.experience.apply(w2n.word to num)
In [24]:
            df
Out[24]:
              experience test_score(out of 10) interview_score(out of 10)
                                                                         salary($)
           0
                       0
                                           8.0
                                                                       9
                                                                            50000
                       0
                                                                       6
                                                                            45000
           1
                                           8.0
           2
                       5
                                           6.0
                                                                       7
                                                                            60000
           3
                       2
                                          10.0
                                                                            65000
           4
                       7
                                           9.0
                                                                            70000
                                                                      6
           5
                       3
                                           7.0
                                                                      10
                                                                            62000
                                                                      7
           6
                      10
                                         NaN
                                                                            72000
           7
                                           7.0
                                                                            80000
                      11
                                                                       8
            import math
In [25]:
            median_test_score = math.floor(df['test_score(out of 10)'].mean())
            median_test_score
Out[25]: 7
            df['test_score(out of 10)'] = df['test_score(out of 10)'].fillna(median_test_score)
In [26]:
            df
Out[26]:
              experience test_score(out of 10)
                                               interview_score(out of 10)
                                                                         salary($)
           0
                       0
                                                                       9
                                                                            50000
                                           8.0
```

45000

60000

experience test_score(out of 10) interview_score(out of 10) salary(\$)

6.0

8.0

2

five

	experience	test_score(out of 10)	interview_score(out of 10)	salary(\$)
2	5	6.0	7	60000
3	2	10.0	10	65000
4	7	9.0	6	70000
5	3	7.0	10	62000
6	10	7.0	7	72000
7	11	7.0	8	80000

```
In [27]:    reg = linear_model.LinearRegression()
    reg.fit(df[['experience','test_score(out of 10)','interview_score(out of 10)']],df['salary($)'])

Out[27]:    LinearRegression()

In [28]:    reg.predict([[2,9,6]])

Out[28]:    array([53713.86677124])

In [29]:    reg.predict([[12,10,10]])

Out[29]:    array([93747.79628651])
```

cost function

```
In [30]: import pandas as pd
In [31]: df = pd.read_csv("https://raw.githubusercontent.com/codebasics/py/master/ML/3_gradient_descent/Exer
df
```

```
Out[31]:
                     math cs
              name
                        92 98
              david
               laura
                        56 68
                        88 81
              sanjay
          3
                        70 80
                wei
                        80 83
                jeff
                        49
                           52
              aamir
             venkat
                        65 66
                        35 30
               virat
                        66 68
              arthur
                        67 73
                paul
```

```
import numpy as np

def gradient_descent(x,y):
    m_curr = b_curr = 0
    iterations = 10
    n = len(x)
    learning_rate = 0.00001

for i in range(iterations):
    y_predicted = m_curr * x + b_curr
    cost = (1/n) * sum([val**2 for val in (y-y_predicted)])
    md = -(2/n)*sum(x*(y-y_predicted))
```

```
bd = -(2/n)*sum(y-y\_predicted)
        m_curr = m_curr - learning_rate * md
         b_curr = b_curr - learning_rate * bd
         print ("m {}, b {}, cost {} iteration {}".format(m_curr,b_curr,cost, i))
 x = np.array(df.cs)
 y = np.array(df.math)
 gradient descent(x,y)
m 0.09891800000000002, b 0.001336, cost 4734.0 iteration 0
m 0.18754844079600005, b 0.0025336859159999997, cost 3806.234916447875 iteration 1
m 0.2669612367322398, b 0.0036074425220488718, cost 3061.411585493742 iteration 2
m 0.33811503020970224, b 0.00457015856424676, cost 2463.456559699491 iteration 3
m 0.4018687640567642, b 0.005433382348842311, cost 1983.409549731108 iteration 4
m 0.4589920503640901, b 0.006207461149043979, cost 1598.02081324698 iteration 5
m 0.5101744609524449, b 0.006901666113412, cost 1288.6251182559167 iteration 6
m 0.5560338516244612, b 0.007524304183678214, cost 1040.2377444902274 iteration 7
m 0.5971238206875977, b 0.008082818373023545, cost 840.8287401332442 iteration 8
m 0.6339403917847745, b 0.008583877615334823, cost 680.7402845432684 iteration 9
```

one hot coding by pandas

```
In [75]: import pandas as pd
In [76]: df = pd.read_csv("https://raw.githubusercontent.com/codebasics/py/master/ML/5_one_hot_encoding/Exer
df
```

Out[76]: Car Model Mileage Sell Price(\$) Age(yrs) 0 BMW X5 69000 18000 6 BMW X5 35000 34000 3 2 5 BMW X5 57000 26100 3 BMW X5 2 22500 40000 4 BMW X5 46000 31500 4 5 Audi A5 59000 29400 6 Audi A5 52000 32000 5 7 Audi A5 72000 19300 6 8 Audi A5 91000 8 12000 Mercedez Benz C class 67000 22000 Mercedez Benz C class 83000 20000 7 Mercedez Benz C class 79000 21000 7 **12** Mercedez Benz C class 33000 5 59000

```
In [91]: dummies=pd.get_dummies(df['Car Model'])
    dummies
```

[91]:		Audi A5	BMW X5	Mercedez Benz C class
	0	0	1	0
	1	0	1	0
	2	0	1	0
	3	0	1	0
	4	0	1	0
	5	1	0	0

	Audi A5	BMW X5	Mercedez Benz C class
6	1	0	0
7	1	0	0
8	1	0	0
9	0	0	1
10	0	0	1
11	0	0	1
12	0	0	1

In [98]:

merge = pd.concat([df,dummies],axis = 'columns') merge

Out[98]:

	Car Model	Mileage	Sell Price(\$)	Age(yrs)	Audi A5	BMW X5	Mercedez Benz C class
0	BMW X5	69000	18000	6	0	1	0
1	BMW X5	35000	34000	3	0	1	0
2	BMW X5	57000	26100	5	0	1	0
3	BMW X5	22500	40000	2	0	1	0
4	BMW X5	46000	31500	4	0	1	0
5	Audi A5	59000	29400	5	1	0	0
6	Audi A5	52000	32000	5	1	0	0
7	Audi A5	72000	19300	6	1	0	0
8	Audi A5	91000	12000	8	1	0	0
9	Mercedez Benz C class	67000	22000	6	0	0	1
10	Mercedez Benz C class	83000	20000	7	0	0	1
11	Mercedez Benz C class	79000	21000	7	0	0	1
12	Mercedez Benz C class	59000	33000	5	0	0	1

In [102...

final = merge.drop(['Car Model','Mercedez Benz C class'],axis = 'columns') final

Out[102...

Mileage	Sell Price(\$)	Age(yrs)	Audi A5	BMW X5
69000	18000	6	0	1
35000	34000	3	0	1
57000	26100	5	0	1
22500	40000	2	0	1
46000	31500	4	0	1
59000	29400	5	1	0
52000	32000	5	1	0
72000	19300	6	1	0
91000	12000	8	1	0
67000	22000	6	0	0
83000	20000	7	0	0
79000	21000	7	0	0
	69000 35000 57000 22500 46000 59000 52000 72000 91000 67000 83000	69000 18000 35000 34000 57000 26100 22500 40000 46000 31500 59000 29400 52000 32000 72000 19300 91000 12000 67000 22000 83000 20000	69000 18000 6 35000 34000 3 57000 26100 5 22500 40000 2 46000 31500 4 59000 29400 5 52000 32000 5 72000 19300 6 91000 12000 8 67000 22000 6 83000 20000 7	35000 34000 3 0 57000 26100 5 0 22500 40000 2 0 46000 31500 4 0 59000 29400 5 1 52000 32000 5 1 72000 19300 6 1 91000 12000 8 1 67000 22000 6 0 83000 20000 7 0

```
12
                59000
                             33000
                                          5
                                                   0
                                                             0
           x = final.drop(['Sell Price($)'],axis= 'columns')
In [104...
           Χ
Out[104...
              Mileage Age(yrs) Audi A5 BMW X5
           0
                69000
                                       0
                                                 1
                              6
            1
                35000
                              3
                                       0
                                                 1
           2
                              5
                                       0
                                                 1
                57000
           3
                22500
                                       0
                                                 1
            4
                46000
                              4
                                       0
                                                 1
                59000
                              5
                                                0
           5
                                       1
           6
                52000
                              5
                                       1
                                                0
           7
                72000
                              6
                                                0
                              8
                                       1
           8
                91000
                                                0
           9
                 67000
                                                 0
          10
                83000
                              7
                                       0
                                                0
          11
                79000
                                       0
                                                0
          12
                              5
                                       0
                                                0
                59000
           y = final['Sell Price($)']
In [111...
           У
                 18000
          0
Out[111...
                 34000
          1
          2
                 26100
          3
                 40000
          4
                 31500
          5
                 29400
          6
                 32000
          7
                 19300
          8
                 12000
                 22000
          10
                 20000
          11
                 21000
          12
                 33000
          Name: Sell Price($), dtype: int64
           from sklearn.linear_model import LinearRegression
In [112...
           model = LinearRegression()
           model.fit(x,y)
In [115...
          LinearRegression()
Out[115...
In [116...
           model.score(x,y)
          0.9417050937281083
Out[116...
           model.predict([[45000,4,0,0]])
In [118...
Out[118...
          array([36991.31721061])
           model.predict([[86000,7,0,1]])
In [117...
```

Mileage Sell Price(\$) Age(yrs) Audi A5 BMW X5

one hot coding by sklearn In [147... Out[147... Car Model Mileage Sell Price(\$) Age(yrs) from sklearn.preprocessing import LabelEncoder In [148... le = LabelEncoder() In [149... dfle['Car Model'] = le.fit_transform(dfle['Car Model']) Out[149...

	Car Model	Mileage	Sell Price(\$)	Age(yrs)
0	1	69000	18000	6
1	1	35000	34000	3
2	1	57000	26100	5
3	1	22500	40000	2
4	1	46000	31500	4
5	0	59000	29400	5
6	0	52000	32000	5
7	0	72000	19300	6
8	0	91000	12000	8
9	2	67000	22000	6
10	2	83000	20000	7
11	2	79000	21000	7
12	2	59000	33000	5

```
In [150... x = dfle[['Mileage','Age(yrs)']].values
x
```

```
Out[150... array([[69000,
                             6],
                 [35000,
                              3],
                 [57000,
                             5],
                 [22500,
                              2],
                             4],
                 [46000,
                 [59000,
                             5],
                             5],
                 [52000,
                 [72000,
                             6],
                             8],
                 [91000,
                             6],
                 [67000,
                             7],
                 [83000,
                             7],
                 [79000,
                             5]], dtype=int64)
                 [59000,
          y = dfle['Sell Price($)'].values
In [151...
          У
Out[151... array([18000, 34000, 26100, 40000, 31500, 29400, 32000, 19300, 12000,
                 22000, 20000, 21000, 33000], dtype=int64)
In [152...
          from sklearn.preprocessing import OneHotEncoder
          from sklearn.compose import ColumnTransformer
           ct = ColumnTransformer([('Car Model', OneHotEncoder(), [0])], remainder = 'passthrough')
          x = ct.fit_transform(x)
In [153...
Out[153... <13x13 sparse matrix of type '<class 'numpy.float64'>'
                  with 26 stored elements in Compressed Sparse Row format>
In [154...
          x = x[:,1:]
Out[154... <13x12 sparse matrix of type '<class 'numpy.float64'>'
                  with 25 stored elements in Compressed Sparse Row format>
In [155...
          model.fit(x,y)
Out[155... LinearRegression()
```

In []: