

Fonctions réelles d'une variable réelle dérivables (exclu études de fo<mark>nction</mark>s)

Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice 1 ***

Soit $f \in C^1([a,b],\mathbb{R})$ telle que $\frac{f(b)-f(a)}{b-a} = \sup\{f'(x), x \in [a,b]\}$. Montrer que f est affine.

Correction ▼ [005407]

Exercice 2 *** Formule de TAYLOR-LAGRANGE

Soient a et b deux réels tels que a < b et n un entier naturel. Soit f une fonction élément de $C^n([a,b],\mathbb{R}) \cap D^{n+1}([a,b[,\mathbb{R})])$. Montrer qu'il existe $c \in [a,b[$ tel que

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} + \frac{(b-a)^{n+1} f^{(n+1)}(c)}{(n+1)!}.$$

Indication. Appliquer le théorème de ROLLE à la fonction $g(x) = f(b) - \sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} (b-x)^k - A \frac{(b-x)^{n+1}}{(n+1)!}$ où A est intelligemment choisi.

Correction ▼ [005408

Exercice 3 *** Formule des trapèzes

Soit $f \in C^2([a,b],\mathbb{R}) \cap D^3([a,b],\mathbb{R})$. Montrer qu'il existe $c \in [a,b[$ tel que

$$f(b) = f(a) + \frac{b-a}{2}(f'(a) + f'(b)) - f^{(3)}(c).$$

Indication. Appliquer le théorème de ROLLE à g' puis g où $g(x) = f(x) - f(a) - \frac{x-a}{2}(f'(x) + f'(a)) - A(x-a)^3$ où A est intelligemment choisi.

Que devient cette formule si on remplace f par F une primitive d'une fonction f de classe C^1 sur [a,b] et deux fois dérivable sur [a,b]? Interprétez géométriquement.

Correction ▼ [005409]

Exercice 4 **

Soit f une fonction convexe sur un intervalle ouvert I de \mathbb{R} . Montrer que f est continue sur I et même dérivable à droite et à gauche en tout point de I.

Correction ▼ [005410]

Exercice 5 *** Inégalités de convexité

- 1. Soient $x_1, x_2, ..., x_n, n$ réels positifs ou nuls et $\alpha_1, ..., \alpha_n, n$ réels strictement positifs tels que $\alpha_1 + ... + \alpha_n = 1$. Montrer que $x_1^{\alpha_1} ... x_n^{\alpha_n} \leqslant \alpha_1 x_1 + ... + \alpha_n x_n$. En déduire que $\sqrt[n]{x_1 ... x_n} \leqslant \frac{x_1 + ... + x_n}{n}$.
- 2. Soient p et q deux réels strictement positifs tels que $\frac{1}{p} + \frac{1}{q} = 1$.
 - (a) Montrer que, pour tous réels a et b positifs ou nuls, $ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}$ avec égalité si et seulement si $a^p = b^q$.

(b) Soient $a_1,...,a_n$ et $b_1,...,b_n$, 2n nombres complexes. Montrer que :

$$\left|\sum_{k=1}^n a_k b_k\right| \leqslant \sum_{k=1}^n |a_k b_k| \leqslant \left(\sum_{k=1}^n |a_k|^p\right)^{1/p} \left(\sum_{k=1}^n |b_k|^q\right)^{1/q} \text{ (Inégalité de HÖLDER)}.$$

- (c) Montrer que la fonction $x \mapsto x^p$ est convexe et retrouver ainsi l'inégalité de HÖLDER.
- (d) Trouver une démonstration directe et simple dans le cas p = q = 2 (inégalité de CAUCHY-SCHWARZ).

Correction ▼ [005411

Exercice 6 ***I Polynômes de LEGENDRE

Pour *n* entier naturel non nul donné, on pose $L_n = ((X^2 - 1)^n)^{(n)}$.

- 1. Déterminer le degré et le coefficient dominant de L_n .
- 2. En étudiant le polynôme $A_n = (X^2 1)^n$, montrer que L_n admet n racines réelles simples et toutes dans]-1;1[.

Correction ▼ [005412]

Exercice 7 **

Déterminer dans chacun des cas suivants la dérivée *n*-ème de la fonction proposée :

1)
$$x \mapsto x^{n-1} \ln(1+x)$$
 2) $x \mapsto \cos^3 x \sin(2x)$ 3) $x \mapsto \frac{x^2+1}{(x-1)^3}$ 4) $x \mapsto (x^3+2x-7)e^x$.

Correction ▼ [005413]

Exercice 8 ***I

Montrer que la fonction définie sur \mathbb{R} par $f(x) = e^{-1/x^2}$ si $x \neq 0$ et 0 si x = 0 est de classe C^{∞} sur \mathbb{R} .

Correction ▼ [005414]

Exercice 9 **

Montrer que pour tout réel strictement positif x, on a : $\left(1 + \frac{1}{x}\right)^x < e < \left(1 + \frac{1}{x}\right)^{x+1}$.

Correction ▼ [005415]

Exercice 10 **

Soit f une fonction dérivable sur \mathbb{R} à valeurs dans \mathbb{R} vérifiant f(0) = f(a) = f'(0) = 0 pour un certain a non nul. Montrer qu'il existe un point distinct de O de la courbe représentative de f en lequel la tangente passe par l'origine.

Correction ▼ [005416]

Exercice 11 **** Toute fonction dérivée vérifie le théorème des valeurs intermédiaires

Soit f une fonction dérivable sur un intervalle ouvert I à valeurs dans \mathbb{R} . Soient a et b deux points distincts de I vérifiant f'(a) < f'(b) et soit enfin un réel m tel que f'(a) < m < f'(b).

- 1. Montrer qu'il existe h > 0 tel que $\frac{f(a+h) f(a)}{h} < m < \frac{f(b+h) f(b)}{h}$.
- 2. Montrer qu'il existe y dans [a,b] tel que $m = \frac{f(y+h)-f(y)}{h}$ puis qu'il existe x tel que f'(x) = m.

Correction ▼ [005417]

Exercice 12 ****

Soit f une fonction de classe C^3 sur \mathbb{R} vérifiant : $\forall (x,y) \in \mathbb{R}^2$, $f(x+y)f(x-y) \leqslant (f(x))^2$. Montrer que $\forall x \in \mathbb{R}$, $f(x)f''(x) \leqslant (f'(x))^2$ (Indication. Appliquer la formule de TAYLOR-LAPLACE entre x et x+y puis entre x et x-y).

Correction ▼ [005418]

Exercice 13 *IT

Etudier la dérivabilité à droite en 0 de la fonction $f: x \mapsto \cos \sqrt{x}$.

Correction ▼ [005419]

Exercice 14 **

Soit *P* un polynôme réel de degré supèrieur ou égal à 2.

- 1. Montrer que si P n'a que des racines simples et réelles, il en est de même de P'.
- 2. Montrer que si P est scindé sur \mathbb{R} , il en est de même de P'.

Correction ▼ [005420]

Exercice 15 ** Généralisation du théorème des accroissements finis

Soient f et g deux fonctions continues sur [a,b] et dérivables sur [a,b].

Soit
$$\Delta$$
: $[a,b] \rightarrow \mathbb{R}$

$$x \mapsto \begin{vmatrix} f(a) & f(b) & f(x) \\ g(a) & g(b) & g(x) \\ 1 & 1 & 1 \end{vmatrix}$$

- 1. Montrer que Δ est continue sur [a,b], dérivable sur [a,b] et calculer sa dérivée.
- 2. En déduire qu'il existe c dans a, b tel que (g(b) g(a))f'(c) = (f(b) f(a))g'(c).

Correction ▼ [005421]

Exercice 16 **

Soit f de classe C^1 sur \mathbb{R}_+^* telle que $\lim_{x\to +\infty} xf'(x) = 1$. Montrer que $\lim_{x\to +\infty} f(x) = +\infty$.

Correction ▼ [005422]

Exercice 17 ***

Soit f de classe C^1 sur \mathbb{R} vérifiant pour tout x réel, $f \circ f(x) = \frac{x}{2} + 3$. En remarquant que $f(\frac{x}{2} + 3) = \frac{f(x)}{2} + 3$, montrer que f' est constante puis déterminer f.

Correction ▼ [005423]

Exercice 18 ***I

Soit f de classe C^1 sur \mathbb{R} vérifiant $\lim_{x\to +\infty} (f(x)+f'(x))=0$. Montrer que $\lim_{x\to +\infty} f(x)=\lim_{x\to +\infty} f'(x)=0$. (Indication. Considérer $g(x)=e^x f(x)$).

Correction ▼ [005424]

Exercice 19 ***I

Etudier la suite (u_n) dans chacun des cas suivants :

- 1) $u_0 \ge -1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \sqrt{1 + u_n}$, 2) $u_0 > -1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \ln(1 + u_n)$
- 3) $u_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \sin u_n$, 4) $u_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \cos(u_n)$,
- 5) $u_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \sin(2u_n)$, 6) $u_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}$, $u_{n+1} = u_n^2 2u_n + 2$.

Correction ▼ [005425]

Correction de l'exercice 1 A

f' est continue sur le segment [a,b] et donc est bornée sur ce segment. Soit $M = \sup\{f'(x), x \in [a,b]\}$, et soit g la fonction affine qui prend les mêmes valeurs que f en a et b (c'est-à-dire $\forall x \in [a,b], \ g(x) = \frac{f(b)-f(a)}{b-a}(x-b)$ a)+f(a)=0 puis h=f-g. On va montrer que h=0 sous l'hypothèse $M=\frac{f(b)-f(a)}{b-a}$.

h est dérivable sur [a,b] et, pour $x \in [a,b]$, $h'(x) = f'(x) - \frac{f(b) - f(a)}{b - a} = f'(x) - M \leqslant 0$. h est donc décroissante sur [a,b]. Par suite, $\forall x \in [a,b]$, $0 = h(b) \leqslant h(x) \leqslant h(a) = 0$. Ainsi, $\forall x \in [a,b]$, h(x) = 0, ou encore f = g. f est donc affine sur [a,b].

Correction de l'exercice 2

On a déjà g(b) = f(b) - f(b) = 0. Puisque $a \neq b$, on peut choisir A tel que g(a) = 0 (à savoir $A = \frac{(n+1)!}{(b-a)^{n+1}} (f(b) - b)$). $\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^k).$ Avec les hypothèses faites sur f, g est d'autre part continue sur [a,b] et dérivable sur]a,b[. Le théorème de

ROLLE permet alors d'affirmer qu'il existe $c \in]a,b[$ tel que g'(c) = 0.

Pour $x \in]a,b[$, on a

$$\begin{split} g'(x) &= -\sum_{k=0}^n \frac{f^{(k+1)}(x)}{k!} (b-x)^k + \sum_{k=1}^n \frac{f^{(k)}(x)}{(k-1)!} (b-x)^{k-1} + A \frac{(b-x)^n}{n!} \\ &= -\sum_{k=0}^n \frac{f^{(k+1)}(x)}{k!} (b-x)^k + \sum_{k=0}^{n-1} \frac{f^{(k+1)}(x)}{k!} (b-x)^k + A \frac{(b-x)^n}{n!} = -\sum_{k=0}^n \frac{f^{(n+1)}(x)}{n!} (b-x)^n + A \frac{(b-x)^n}{n!} \\ &= \frac{(b-x)^n}{n!} (A-f^{(n+1)}(x)). \end{split}$$

Ainsi, il existe $c \in]a,b[$ tel que $\frac{(b-c)^n}{n!}(A-f^{(n+1)}(c))=0,$ et donc, puisque $c \neq b,$ tel que $A=f^{(n+1)}(c).$ L'égalité g(a) = 0 s'éxrit alors

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} + \frac{(b-a)^{n+1} f^{(n+1)}(c)}{(n+1)!},$$

pour un certain réel c de a,b.

Pour $x \in [a,b]$, posons $g(x) = f(x) - f(a) - \frac{x-a}{2}(f'(x) + f'(a)) - A(x-a)^3$ où A est choisi de sorte que g(b) = g(a) = 0 (c'est-à-dire $A = \frac{1}{(b-a)^3}(f(b) - f(a) - \frac{b-a}{2}(f'(b) + f'(a)))$. $f \in C^2([a,b],\mathbb{R}) \cap D^3(]a,b[,\mathbb{R})$ et donc $g \in C^1([a,b],\mathbb{R}) \cap D^2(]a,b[,\mathbb{R})$. Pour $x \in [a,b]$, on a :

$$g'(x) = f'(x) - \frac{1}{2}(f'(x) + f'(a)) - \frac{x - a}{2}f''(x) - 3A(x - a)^{2},$$

puis

$$g''(x) = \frac{1}{2}f''(x) - \frac{1}{2}f''(x) - \frac{x-a}{2}f^{(3)}(x) - 6A(x-a) = \frac{x-a}{2}(-12A - f^{(3)}(x)).$$

g est continue sur [a,b], dérivable sur [a,b] et vérifie de plus g(a)=g(b). Donc, d'après le théorème de ROLLE, il existe $d \in]a,b[$ tel que g'(d)=0. De même, g' est continue sur $[a,d]\subset [a,b]$, dérivable sur $[a,d](\neq \emptyset)$ et vérifie de plus g'(a) = g'(d) (= 0). D'après le théorème de ROLLE, il existe $c \in]a,d[\subset]a,b[$ tel que g''(c) = 0ou encore tel que $A = -\frac{1}{12}f^{(3)}(c)$ (puisque $c \neq a$).

En écrivant explicitement l'égalité g(b) = 0, on a montré que :

$$\exists c \in]a,b[/f(b) = f(a) + \frac{b-a}{2}(f'(b) + f'(a)) - \frac{1}{12}f^{(3)}(c)(b-a)^3.$$

Si $f \in C^1([a,b],\mathbb{R}) \cap D^2([a,b[,\mathbb{R})]$ et si F est une primitive de f sur [a,b], la formule précédente s'écrit :

$$\int_{a}^{b} f(t) dt = F(b) - F(a) = \frac{b - a}{2} (F'(b) + F'(a)) - \frac{1}{12} F^{(3)}(c) (b - a)^{3} = \frac{b - a}{2} (f(b) + f(a)) - \frac{1}{12} f''(c) (b - a)^{3}.$$

Donc, si $f \in C^1([a,b],\mathbb{R}) \cap D^2(]a,b[,\mathbb{R})$,

$$\exists c \in]a,b[/\int_a^b f(t) \, dt = \frac{b-a}{2} (f(b) + f(a)) - \frac{1}{12} f''(c) (b-a)^3.$$

Interprétation géométrique.

Si f est positive, $A_1 = \int_a^b f(t) \, dt$ est l'aire du domaine $D = \{M(x,y) \in \mathbb{R}^2 / a \leqslant x \leqslant b \text{ et } 0 \leqslant y \leqslant f(x)\}$ et $A_2 = \frac{b-a}{2}(f(b)+f(a))$ est l'aire du trapèze $\begin{pmatrix} a \\ 0 \end{pmatrix} \begin{pmatrix} b \\ 0 \end{pmatrix} \begin{pmatrix} b \\ f(b) \end{pmatrix} \begin{pmatrix} a \\ f(a) \end{pmatrix}$. Si $M_2 = \sup\{|f''(x)|, x \in [a,b]\}$ existe dans \mathbb{R} , on a :

$$|A_1 - A_2| \leqslant M_2 \frac{(b-a)^3}{12}.$$

Correction de l'exercice 4 A

Supposons que f est convexe sur un intervalle ouvert I =]a,b[(a et b réels ou infinis).

Soit $x_0 \in I$. On sait que la fonction pente en x_0 est croissante.

Pour $x \neq x_0$, posons $g(x) = \frac{f(x) - f(x_0)}{x - x_0}$. Soit x' un élément de $]x_0, b[$. $\forall x \in]a, x_0[$, on a g(x) < g(x'), ce qui montre que g est majorée au voisinage de x_0 à gauche. Etant croissante, g admet une limite réelle quand g tend vers g0 par valeurs inférieures ou encore, $\lim_{x \to x_0, x < x_0} \frac{f(x) - f(x_0)}{x - x_0}$ existe dans \mathbb{R} . g0 est donc dérivable à gauche en g0. On montre de même que g1 est dérivable à droite en g2.

Finalement, f est dérivable à droite et à gauche en tout point de]a,b[. En particulier, f est continue à droite et à gauche en tout point de]a,b[et donc continue sur]a,b[.

Correction de l'exercice 5 ▲

1. La fonction $f: x \mapsto \ln x$ est deux fois dérivable sur $]0, +\infty[$ et, pour x > 0, $f''(x) = -\frac{1}{x^2} < 0$. Par suite, f est concave sur $]0, +\infty[$. On en déduit que :

$$\forall n \in \mathbb{N}, \ \forall (x_1,...,x_n) \in (]0,+\infty[)^n, \ \forall (\alpha_1,...,\alpha_n) \in (]0,1[)^n, \ (\sum_{k=1}^n \alpha_k = 1 \Rightarrow \ln(\sum_{k=1}^n \alpha_k x_k) \geqslant \sum_{k=1}^n \alpha_k \ln(x_k),$$

et donc par croissance de f sur $]0, +\infty[$,

$$\prod_{k=1}^n x_k^{\alpha_k} \leqslant \sum_{k=1}^n \alpha_k x_k.$$

Si l'un des x_k est nul, l'inégalité précédente est immédiate.

En choisissant en particulier $\alpha_1 = ... = \alpha_n = \frac{1}{n}$, de sorte que $(\alpha_1, ..., \alpha_n) \in (]0,1[)^n$ et que $\sum_{k=1}^n \alpha_k = 1$, on obtient

$$\forall n \in \mathbb{N}^*, \ \forall (x_1, ..., x_n) \in ([0, +\infty[)^n, \sqrt[n]{x_1 ... x_n}) \leqslant \frac{1}{n}(x_1 + ... + x_n).$$

2. (a) Soient p et q deux réels strictement positifs vérifiant $\frac{1}{p} + \frac{1}{q} = 1$ (de sorte que l'on a même $\frac{1}{p} < \frac{1}{p} + \frac{1}{q} = 1$ et donc p > 1 et aussi q > 1).

Si a = 0 ou b = 0, l'inégalité proposée est immédiate.

Soit alors a un réel strictement positif puis, pour $x \ge 0$, $f(x) = \frac{a^p}{p} + \frac{x^q}{q} - ax$.

f est dérivable sur $[0,+\infty[$ (car q>1) et pour $x\geqslant 0$, $f'(x)=x^{q-1}-a$. q étant un réel strictement plus grand que 1,q-1 est strictement positif et donc, la fonction $x\mapsto x^{q-1}$ est strictement croissante sur $[0,+\infty[$. Par suite,

$$f'(x) > 0 \Leftrightarrow x^{q-1} > a \Leftrightarrow x > a^{1/(q-1)}$$
.

f est donc strictement décroissante sur $[0, a^{1/(q-1)}]$ et strictement croissante sur $[a^{1/(q-1)}, +\infty[$. Ainsi,

$$\forall x \ge 0, \ f(x) \ge f(a^{1/(q-1)}) = \frac{1}{p} a^p + \frac{1}{q} a^{q/(q-1)} - a.a^{1/(q-1)}.$$

Maintenant, $\frac{1}{p} + \frac{1}{q} = 1$ fournit $q = \frac{p}{p-1}$ puis $q-1 = \frac{1}{p-1}$. Par suite, $\frac{q}{q-1} = p$. Il en résulte que

$$\frac{1}{p}a^p + \frac{1}{q}a^{q/(q-1)} - a \cdot a^{1/(q-1)} = (\frac{1}{p} + \frac{1}{q} - 1)a^p = 0.$$

f est donc positive sur $[0, +\infty[$, ce qui fournit $f(b) \ge 0$. De plus,

$$f(b) = 0 \Leftrightarrow b = a^{1/(q-1)} \Leftrightarrow b^q = a^{q/(q-1)} \Leftrightarrow b^q = a^p$$

(b) Soient $A = \sum_{k=1}^{n} |a_k|^p$ et $B = \sum_{k=1}^{n} |b_k|^q$. Si A = 0, alors $\forall k \in \{1,...,n\}$, $a_k = 0$ et l'inégalité est immédiate. De même, si B = 0. Si A > 0 et B > 0, montrons que $\sum_{k=1}^{n} \frac{|a_k|}{A^{1/p}} \frac{|b_k|}{B^{1/q}} \le 1$. D'après a),

$$\sum_{k=1}^{n} \frac{|a_k|}{A^{1/p}} \frac{|b_k|}{B^{1/q}} \leq \sum_{k=1}^{n} \left(\frac{1}{p} \frac{|a_k|^p}{A} + \frac{1}{q} \frac{|b_k|^q}{B} \right) = \frac{1}{pA} \cdot A + \frac{1}{qB} \cdot B = 1,$$

ce qu'il fallait démontrer.

(c) Pour p > 1, la fonction $x \mapsto x^p$ est deux fois dérivable sur $]0, +\infty[$ et $(x^p)'' = p(p-1)x^{p-2} > 0$. Donc, la fonction $x \mapsto x^p$ est strictement convexe sur $]0, +\infty[$ et donc sur $[0, +\infty[$ par continuité en 0. Donc,

$$\forall (x_1,...,x_n) \in (]0,+\infty[)^n, \ \forall (\lambda_1,...,\lambda_n) \in ([0,+\infty[)^n \setminus \{(0,...,0)\}, \ \left(\frac{\sum_{k=1}^n \lambda_k x_k}{\sum_{k=1}^n \lambda_k}\right)^p \leqslant \frac{\sum_{k=1}^n \lambda_k x_k^p}{\sum_{k=1}^n \lambda_k},$$

et donc

$$\sum_{k=1}^n \lambda_k x_k \leqslant \left(\sum_{k=1}^n \lambda_k\right)^{1-\frac{1}{p}} \left(\sum_{k=1}^n \lambda_k x_k^p\right)^{\frac{1}{p}}.$$

On applique alors ce qui précède à $\lambda_k = |b_k|^q$ puis $x_k = \lambda_k^{-1/p} |a_k|$ (de sorte que $\lambda_k x_k = |a_k b_k|$) et on obtient l'inégalité désirée.

(d) Pour p = q = 2, c'est l'inégalité de CAUCHY-SCHWARZ démontrée dans une planche précédente.

Correction de l'exercice 6 ▲

- 1. $(X^2-1)^n$ est de degré 2n et donc, L_n est de degré 2n-n=n. Puis, $dom(L_n)=dom((X^{2n})^{(n)})=\frac{(2n)!}{n!}$.
- 2. 1 et -1 sont racines d'ordre n de A_n et donc racines d'ordre n-k de $A_n^{(k)}$, pour tout k élément de $\{0,...,n\}$.

Montrons par récurrence sur k que $\forall k \in \{0,...,n\}$, $A_n^{(k)}$ s'annule en au moins k valeurs deux à deux distinctes de l'intervalle]-1,1[.

Pour k = 1, A_n est continu sur [-1,1] et dérivable sur]-1,1[. De plus, $A_n(0) = A_n(1) = 0$ et d'après le théorème de ROLLE, A'_n s'annule au moins une fois dans l'intervalle]-1,1[.

Soit k élément de $\{1,...,n-1\}$. Supposons que $A_n^{(k)}$ s'annule en au moins k valeurs de]-1,1[. $A_n^{(k)}$ s'annule de plus en 1 et -1 car $k \le n-1$ et donc s'annule en k+2 valeurs au moins de l'intervalle [-1,1]. D'après le théorème de ROLLE, $A_n^{(k+1)}$ s'annule en au moins k+1 points de]-1,1[(au moins une fois par intervalle ouvert).

On a montré que $\forall k \in \{0,...,n\}$, $A_n^{(k)}$ s'annule en au moins k valeurs de]-1,1[. En particulier, $A_n^{(n)} = L_n$ s'annule en au moins n réels deux à deux distincts de]-1,1[. Puisque L_n est de degré n, on a trouvé toutes les racines de L_n , toutes réelles, simples et dans]-1,1[.

Correction de l'exercice 7

1. Pour $n \ge 1$, on a d'après la formule de LEIBNIZ :

$$(x^{n-1}\ln(1+x))^{(n)} = \sum_{k=0}^{n} \binom{n}{k} (x^{n-1})^{(k)} (\ln(1+x))^{(n-k)}$$

$$= \sum_{k=0}^{n-1} \binom{n}{k} (x^{n-1})^{(k)} (\ln(1+x))^{(n-k)} (\operatorname{car}(x^{n-1})^{(n)}) = 0)$$

$$= \sum_{k=0}^{n-1} \binom{n}{k} \frac{(n-1)!}{(n-1-k)!} x^{n-1-k} (-1)^{n-1-k} \frac{(n-1-k)!}{(x+1)^{n-k}}$$

$$(\operatorname{car}(\ln(1+x))^{(n-k)} = (\frac{1}{1+x})^{(n-k-1)}).$$

Puis, pour x = 0, $(x^{n-1}\ln(1+x))^{(n)}(0) = n \cdot (n-1)! = n!$, et pour $x \neq 0$,

$$(x^{n-1}\ln(1+x))^{(n)}(x) = -\frac{(n-1)!}{x} \sum_{k=0}^{n-1} \binom{n}{k} (-\frac{x}{x+1})^{n-k} = -\frac{(n-1)!}{x} ((1-\frac{x}{x+1})^n - 1)$$
$$= \frac{(n-1)!}{x} \frac{(x+1)^n - 1}{(x+1)^n}.$$

2. On sait dériver facilement des sommes ou plus généralement des combinaisons linéaires. Donc, on linéarise :

$$\cos^{3}x\sin(2x) = \frac{1}{8}(e^{ix} + e^{-ix})^{3}(-\frac{1}{4})(e^{2ix} - e^{-2ix}) = -\frac{1}{32}(e^{3ix} + 3e^{ix} + 3e^{-ix} + e^{-3ix})(e^{2ix} - 2 + e^{-2ix})$$
$$= -\frac{1}{32}(e^{5ix} + e^{3ix} - 2e^{ix} - 2e^{-ix} + e^{-3ix} + e^{-5ix}) = -\frac{1}{16}(\cos(5x) + \cos(3x) - 2\cos(x))$$

Puis, pour *n* naturel donné :

$$(\cos^3 x \sin 2x)^{(n)} = -\frac{1}{16} \left(5^n \cos(5x + n\frac{\pi}{2}) + 3^n \cos(3x + n\frac{\pi}{2}) - 2\cos(x + n\frac{\pi}{2}) \right),$$

expression que l'on peut détailler suivant la congruence de n modulo 4.

3. On sait dériver des objets simples et donc on décompose en éléments simples :

$$\frac{X^2+1}{(X-1)^3} = \frac{X^2-2X+1+2X-2+2}{(X-1)^3} = \frac{1}{X-1} + \frac{2}{(X-1)^2} + \frac{2}{(X-1)^3}.$$

Puis, pour *n* entier naturel donné,

$$\left(\frac{X^2+1}{(X-1)^3}\right)^{(n)} = \frac{(-1)^n n!}{(X-1)^{n+1}} + 2\frac{(-1)^n (n+1)!}{(X-1)^{n+2}} + \frac{(-1)^n (n+2)!}{(X-1)^{n+3}}$$

$$= \frac{(-1)^n n!}{(X-1)^{n+3}} ((X-1)^2 + 2(n+1)(X-1) + (n+2)(n+1))$$

$$= \frac{(-1)^n n! (X^2 + 2nX + n^2 + n + 1)}{(X-1)^{n+3}}.$$

4. La fonction proposée est de classe C^{∞} sur \mathbb{R} en vertu de théorèmes généraux. La formule de LEIBNIZ fournit pour $n \geqslant 3$:

$$((x^{3} + 2x - 7)e^{x})^{(n)} = \sum_{k=0}^{n} \binom{n}{k} (x^{3} + 2x - 7)^{(k)} (e^{x})^{(n-k)} = \sum_{k=0}^{3} \binom{n}{k} (x^{3} + 2x - 7)^{(k)} (e^{x})^{(n-k)}$$
$$= ((x^{3} + 2x - 7) + n(3x^{2} + 2) + \frac{n(n-1)}{2} (6x) + \frac{n(n-1)(n-2)}{6} .6)e^{x}$$
$$= (x^{3} + 3nx^{2} + (3n^{2} - 3n + 2)x + n^{3} - 3n^{2} + 4n - 7)e^{x}.$$

Correction de l'exercice 8 ▲

f est de classe $^{\infty}$ sur \mathbb{R}^* en vertu de théorèmes généraux.

Montrons par récurrence que $\forall n \in \mathbb{N}, \ \exists P_n \in \mathbb{R}[X]/\ \forall x \in \mathbb{R}^*, \ f^{(n)}(x) = \frac{P_n(x)}{x^{3n}}e^{-1/x^2}$.

C'est vrai pour n = 0 avec $P_0 = 1$.

Soit $n \geqslant 0$. Supposons que $\exists P_n \in \mathbb{R}[X]/ \ \forall x \in \mathbb{R}^*, \ f^{(n)}(x) = \frac{P_n(x)}{x^{3n}} e^{-1/x^2}$. Alors, pour $x \in \mathbb{R}^*$,

$$f^{(n+1)}(x) = \left(\frac{2}{r^3} \frac{P_n(x)}{r^{3n}} + \left(P'_n(x) \frac{1}{r^{3n}} - 3nP_n(x) \frac{1}{r^{3n+1}}\right)e^{-1/x^2} = \frac{P_{n+1}(x)}{3^{3(n+1)}}e^{-1/x^2},$$

où $P_n + 1 = 2P_n + X^3 P_n' - 3nX^2 P_n$ est un polynôme. On a montré que

$$\forall n \in \mathbb{N}, \exists P_n \in \mathbb{R}[X]/ \forall x \in \mathbb{R}^*, f^{(n)}(x) = \frac{P_n(x)}{x^{3n}} e^{-1/x^2}.$$

Montrons alors par récurrence que pour tout entier naturel n, f est de classe C^n sur \mathbb{R} et que $f^{(n)}(0) = 0$.

Pour n = 0, f est continue sur \mathbb{R}^* et de plus, $\lim_{x \to 0, x \neq 0} f(x) = 0 = f(0)$. Donc, f est continue sur \mathbb{R} .

Soit $n \ge 0$. Supposons que f est de classe C^n sur \mathbb{R} et que $f^{(n)}(0) = 0$. Alors, d'une part f est de classe C^n sur \mathbb{R} et C^{n+1} sur \mathbb{R}^* et de plus, d'après les théorèmes de croissances comparées, $f^{(n+1)}(x) = \frac{P_{n+1}(x)}{x^{3n+3}}e^{-1/x^2}$ tend vers 0 quand x tend vers 0, $x \ne 0$. D'après un théorème classique d'analyse, f est de classe $f^{(n+1)}(x) = 0$ et en particulier, $f^{(n+1)}(0) = \lim_{x \to 0, x \ne 0} f^{(n+1)}(x) = 0$.

On a montré par récurrence que $\forall n \in \mathbb{N}$, f est de classe C^n sur \mathbb{R} et que $f^{(n)}(0) = 0$. f est donc de classe C^{∞} sur \mathbb{R} .

Correction de l'exercice 9 ▲

Montrons que $(\forall x > 0, (1 + \frac{1}{x})^x < e < (1 + \frac{1}{x})^{x+1}$. Soit x > 0.

$$\left(1+\frac{1}{x}\right)^x < e < \left(1+\frac{1}{x}\right)^{x+1} \Leftrightarrow x\ln(1+\frac{1}{x}) < 1 < (x+1)\ln(1+\frac{1}{x})$$
$$\Leftrightarrow x(\ln(x+1)-\ln x) < 1 < (x+1)(\ln(x+1)-\ln x) \Leftrightarrow \frac{1}{x+1} < \ln(x+1)-\ln x < \frac{1}{x}.$$

Soit x un réel strictement positif fixé. Pour $t \in [x, x+1]$, posons $f(t) = \ln t$. f est continue sur [x, x+1] et dérivable sur [x, x+1]. Donc, d'après le théorème des accroissements finis, il existe un réel c dans [x, x+1] tel que f(x+1) - f(x) = (x+1-x)f'(c) ou encore

$$\exists c \in]x, x+1[/\ln(x+1) - \ln x = \frac{1}{c},$$

ce qui montre que $\forall x > 0$, $\frac{1}{x+1} < \ln(x+1) - \ln x < \frac{1}{x}$, et donc que

$$\forall x > 0, \ \left(1 + \frac{1}{x}\right)^x < e < \left(1 + \frac{1}{x}\right)^{x+1}.$$

Correction de l'exercice 10 ▲

Soit x_0 un réel non nul. Une équation de la tangente (T_{x_0}) à la courbe représentative de f au point d'abscisse x_0 est $y = f'(x_0)(x - x_0) + f(x_0)$. (T_{x_0}) passe par l'origine si et seulement si

$$x_0 f'(x_0) - f(x_0) = 0.$$

Pour x réel, on pose $g(x) = \begin{cases} \frac{f(x)}{x} \sin x \neq 0 \\ 0 \sin x = 0 \end{cases}$ (g est « la fonction pente à l'origine »).

Puisque f est continue et dérivable sur \mathbb{R} , g est déjà continue et dérivable sur \mathbb{R}^* .

Puisque f est dérivable en 0 et que f(0) = f'(0) = 0, g est de plus continue en 0.

Finalement, g est continue sur [0,a], dérivable sur]0,a[et vérifie g(0)=g(a)(=0). D'après le théorème de ROLLE, il existe un réel x_0 dans]0,a[tel que $g'(x_0)=0$. Puisque x_0 n'est pas nul, on a $g'(x_0)=\frac{x_0f'(x_0)-f(x_0)}{x_0^2}$. L'égalité $g'(x_0)=0$ s'écrit $x_0f'(x_0)-f(x_0)=0$ et, d'après le début de l'exercice, la tangente à la courbe représentative de f au point d'abscisse x_0 passe par l'origine.

Correction de l'exercice 11 ▲

1. Soit m un élément de]f'(a),f'(b)[. Puisque $\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}=f'(a)$ et que $\lim_{h\to 0}\frac{f(b+h)-f(b)}{h}=f'(b)$, on a (en prenant par exemple $\varepsilon=\min\{m-f'(a),f'(b)-m\}>0$)

$$\exists h_1 > 0 / \forall h \in]0, h_1[, (a+h \in I \Rightarrow \frac{f(a+h)-f(a)}{h} < m \text{ et } \\ \exists h_2 > 0 / \forall h \in]0, h_2[(b+h \in I \Rightarrow \frac{f(b+h)-f(b)}{h} > m.$$

L'ensemble $E = \{h \in]0, \min\{h_1, h_2\}[/a + h \text{ et } b + h \text{ sont dans } I\}$ n'est pas vide (car I est ouvert) et pour tous les h de E, on a : $\frac{f(a+h)-f(a)}{h} < m < \frac{f(b+h)-f(b)}{h}$.

h > 0 est ainsi dorénavant fixé.

2. La fonction f est continue sur I et donc, la fonction $g: x \mapsto \frac{f(x+h)-f(x)}{h}$ est continue sur [a,b]. D'après le théorème des valeurs intermédiaires, comme g(a) < m < g(b), $\exists y \in [a,b]/g(y) = m$ ou encore $\exists y \in [a,b]/\frac{f(y+h)-f(y)}{h} = m$.

Maintenant, d'après le théorème des accroissements finis, $\exists x \in]y, y+h[\subset I/m = \frac{f(y+h)-f(y)}{h} = f'(x)$. Donc une fonction dérivée n'est pas nécessairement continue mais vérifie tout de même le théorème des valeurs intermédiaires (Théorème de DARBOUX).

Correction de l'exercice 12 ▲

Soit $(x,y) \in \mathbb{R} \times \mathbb{R}$. Puisque f est de classe C^3 sur \mathbb{R} , la formule de TAYLOR-LAPLACE à l'ordre 2 permet d'écrire

$$f(x+y) = f(x) + yf'(x) + \frac{y^2}{2}f''(x) + \int_x^{x+y} \frac{(x+y-t)^2}{2}f^{(3)}(t) dt \text{ et}$$

$$f(x-y) = f(x) - yf'(x) + \frac{y^2}{2}f''(x) \int_x^{x-y} \frac{(x-y-t)^2}{2}f^{(3)}(t) dt.$$

Donc,

$$(f(x)^{2}) \ge f(x+y)f(x-y)$$

$$= (f(x)+yf'(x)+\frac{y^{2}}{2}f''(x)+\int_{x}^{x+y}\frac{(x+y-t)^{2}}{2}f^{(3)}(t)\,dt) \times$$

$$(f(x)-yf'(x)+\frac{y^{2}}{2}f''(x)+\int_{x}^{x-y}\frac{(x-y-t)^{2}}{2}f^{(3)}(t)\,dt)$$

$$= (f(x))^{2}+y^{2}(f(x)f''(x)-(f'(x))^{2})$$

$$+(f(x)-yf'(x)+\frac{y^{2}}{2}f''(x))\int_{x}^{x+y}\frac{(x+y-t)^{2}}{2}f^{(3)}(t)\,dt$$

$$+(f(x)+yf'(x)+\frac{y^{2}}{2}f''(x))\int_{x}^{x-y}\frac{(x-y-t)^{2}}{2}f^{(3)}(t)\,dt \ (*)$$

Maintenant, pour $y \in [-1,1]$, $(f^{(3)}$ étant continue sur \mathbb{R} et donc continue sur le segment [-1,1]),

$$\left| \int_{x}^{x+y} \frac{(x+y-t)^{2}}{2} f^{(3)}(t) dt \right| \leq |y| \cdot \frac{y^{2}}{2} \operatorname{Max}\{|f^{(3)}(t)|, t \in [x-1, x+1]\},$$

et donc,

$$\frac{1}{y^2} \left| \int_x^{x+y} \frac{(x+y-t)^2}{2} f^{(3)}(t) dt \right| \le |y| \operatorname{Max}\{|f^{(3)}(t)|, t \in [x-1, x+1]\}.$$

Cette dernière expression tend vers 0 quand y tend vers 0. On en déduit que $\frac{1}{y^2}\left|\int_x^{x+y}\frac{(x+y-t)^2}{2}f^{(3)}(t)\,dt\right|$ tend vers 0 quand y tend vers 0. De même, $\frac{1}{y^2}\left|\int_x^{x-y}\frac{(x-y-t)^2}{2}f^{(3)}(t)\,dt\right|$ tend vers 0 quand y tend vers 0. On simplifie alors $(f(x)^2)$ dans les deux membres de (*). On divise les deux nouveaux membres par y^2 pour $y\neq 0$ puis on fait tendre y vers 0 à x fixé. On obtient $0\geqslant f(x)f''(x)-(f'(x))^2$, qui est l'inégalité demandée.

Correction de l'exercice 13 ▲

Quand x tend vers 0 par valeurs supérieures,

$$\frac{\cos(\sqrt{x}) - 1}{x} = \frac{1}{2} \frac{\cos(\sqrt{x}) - 1}{(\sqrt{x})^2 / 2} \to -\frac{1}{2}.$$

f est donc dérivable à droite en 0 et $f'_d(0) = -\frac{1}{2}$.

Autre solution. f est continue sur \mathbb{R} et de classe C^1 sur \mathbb{R}^* en vertu de théorèmes généraux. Pour $x \neq 0$, $f'(x) = -\frac{1}{2\sqrt{x}}\sin(\sqrt{x})$. Quand x tend vers 0, f' tend vers $-\frac{1}{2}$. En résumé, f est continue sur \mathbb{R} , de classe C^1 sur \mathbb{R}^* et f' a une limite réelle quand x tend vers 0 à savoir 0. On en déduit que f est de classe C^1 sur \mathbb{R} et en particulier, f est dérivable en 0 et $f'(0) = -\frac{1}{2}$.

Correction de l'exercice 14 ▲

Soit $n \ge 2$ le degré de P.

- 1. Si P admet n racines réelles simples, le théorème de ROLLE fournit au moins n-1 racines réelles deux à deux distinctes pour P'. Mais, puisque P' est de degré n-1, ce sont toutes les racines de P', nécessairement toutes réelles et simples.
 - (Le résultat tombe en défaut si les racines de P ne sont pas toutes réelles. Par exemple, $P = X^3 1$ est à racines simples dans \mathbb{C} mais $P' = 3X^2$ admet une racine double)
- 2. Séparons les racines simples et les racines multiples de P. Posons $P = (X a_1)...(X a_k)(X b_1)^{\alpha_1}...(X b_l)^{\alpha_l}$ où les a_i et les b_j sont k+l nombres réels deux à deux distincts et les α_j des entiers supérieurs ou égaux à 2 (éventuellement k=0 ou l=0 et dans ce cas le produit vide vaut conventionnellement 1). P s'annule déjà en k+l nombres réels deux à deux distincts et le théorème de ROLLE fournit k+l-1 racines réelles deux à deux distinctes des a_i et des b_j . D'autre part, les b_j sont racines

d'ordre α_j de P et donc d'ordre α_j-1 de P'. On a donc trouvé un nombre de racines (comptées en nombre de fois égal à leur ordre de multiplicité) égal à $k+l-1+\sum_{j=1}^l(\alpha_j-1)=k+\sum_{j=1}^l\alpha_j-1=n-1$ racines réelles et c'est fini.

Correction de l'exercice 15 ▲

En pensant à l'expression développée de Δ , on voit que Δ est continue sur [a,b], dérivable sur]a,b[et vérifie $\Delta(a) = \Delta(b)(=0)$ (un déterminant ayant deux colonnes identiques est nul).

Donc, d'après le théorème de ROLLE, $\exists c \in]a,b[/\Delta'(c)=0.$

Mais, pour $x \in]a,b[$, $\Delta'(x) = f'(x)(g(a) - g(b)) - g'(x)(f(a) - f(b))$ (dérivée d'un déterminant). L'égalité $\Delta'(c) = 0$ s'écrit : f'(c)(g(b) - g(a)) = g'(c)(f(b) - f(a)) ce qu'il fallait démontrer.

(Remarque. Ce résultat généralise le théorème des accroissements finis ($g = Id \ll est$ » le théorème des accroissements finis.))

Correction de l'exercice 16 ▲

Puisque $\lim_{x\to +\infty} xf'(x)=1$, $\exists A>0/\ \forall x>0$, $(x\geqslant \overline{A\Rightarrow xf'(x)\geqslant \frac{1}{2}})$.

Soit x un réel fixé supérieur ou égal à A. $\forall t \in [A,x], f'(t) \ge \frac{1}{2x}$ et donc, par croissance de l'intégrale, $\int_A^x f'(t) dt \ge \int_A^x \frac{1}{2t} dt$ ce qui fournit :

$$\forall x \geqslant A, \ f(x) \geqslant f(A) + \frac{1}{2}(\ln x - \ln A),$$

et montre que $\lim_{x\to +\infty} f(x) = +\infty$.

Correction de l'exercice 17 ▲

$$\forall x \in \mathbb{R}f(\frac{x}{2}+3) = f(f \circ f(x)) = f \circ f(f(x)) = \frac{f(x)}{2}+3.$$

Puisque f est dérivable sur \mathbb{R} , on obtient en dérivant $\forall x \in \mathbb{R}, \frac{1}{2}f'(\frac{x}{2}+3) = \frac{1}{2}f'(x)$, et donc

$$\forall x \in \mathbb{R}, \ f'(\frac{x}{2}+3) = f'(x).$$

Soit alors x un réel donné et u la suite définie par $u_0 = x$ et $\forall n \in \mathbb{N}, \ u_{n+1} = \frac{1}{2}u_n + 3$.

D'après ce qui précède, $\forall n \in \mathbb{N}, f'(x) = f'(u_n)$. Maintenant, u est une suite arithmético-géométrique et on sait que

$$\forall n \in \mathbb{N}, \ u_n - 6 = \frac{1}{2^n}(u_0 - 6)$$

ce qui montre que la suite u converge vers 6. La suite $(f'(u_n))_{n\geqslant 0}$ est constante, de valeur f'(x). f' étant continue sur \mathbb{R} , on en déduit que

$$\forall x \in \mathbb{R}, \ f'(x) = \lim_{n \to +\infty} f'(u_n) = f'(\lim_{n \to +\infty} u_n) = f'(6),$$

ce qui montre que la fonction f' est constante sur $\mathbb R$ et donc que f est affine.

Réciproquement, pour x réel, posons f(x) = ax + b.

$$f \text{ solution} \Leftrightarrow \forall x \in \mathbb{R}, \ a(ax+b) + b = \frac{x}{2} + 3 \Leftrightarrow \forall x \in \mathbb{R}, \ (a^2 - \frac{1}{2})x + ab + b - 3 = 0$$
$$\Leftrightarrow a^2 = \frac{1}{2} \text{ et } (a+1)b = 3 \Leftrightarrow (a = \frac{1}{\sqrt{2}} \text{ et } b = 3(2-\sqrt{2})) \text{ ou } (a = -\frac{1}{\sqrt{2}} \text{ et } b = 3(2+\sqrt{2})).$$

On trouve deux fonctions solutions, les fonctions f_1 et f_2 définies par :

$$\forall x \in \mathbb{R}, \ f_1(x) = \frac{1}{\sqrt{2}}x + 3(2 - \sqrt{2}) \text{ et } f_2(x) = -\frac{1}{\sqrt{2}}x + 3(2 + \sqrt{2}).$$

Correction de l'exercice 18 ▲

Montrons que $\lim_{x\to +\infty} f(x) = 0$.

Pour x réel, posons $g(x) = e^x f(x)$. g est dérivable sur R et $\forall x \in \mathbb{R}$, $g'(x) = e^x (f(x) + f'(x))$. Il s'agit donc maintenant de montrer que si $\lim_{x \to +\infty} e^{-x} g'(x) = 0$ alors $\lim_{x \to +\infty} e^{-x} g(x) = 0$. Soit ε un réel strictement positif.

$$\exists A > 0 / \ \forall x \in \mathbb{R}, \ (x \geqslant A \Rightarrow -\frac{\varepsilon}{2} < e^{-x} g'(x) < \frac{\varepsilon}{2} \Rightarrow -\frac{\varepsilon}{2} e^x \leqslant g'(x) \leqslant \frac{\varepsilon}{2} e^x).$$

Pour x réel donné supérieur ou égal à A, on obtient en intégrant sur [A,x]:

$$-\frac{\varepsilon}{2}(e^x - e^A) = \int_A^x -\frac{\varepsilon}{2}e^t dt \leqslant \int_A^x g'(t) dt = g(x) - g(A) \leqslant \frac{\varepsilon}{2}(e^x - e^A),$$

et donc

$$\forall x \ge A, \ g(A)e^{-x} - \frac{\varepsilon}{2}(1 - e^{A-x}) \le e^{-x}g(x) \le g(A)e^{-x} + \frac{\varepsilon}{2}(1 - e^{A-x}).$$

Maintenant, $g(A)e^{-x} - \frac{\varepsilon}{2}(1 - e^{A-x})$ et $g(A)e^{-x} + \frac{\varepsilon}{2}(1 - e^{A-x})$ tendent respectivement vers $-\frac{\varepsilon}{2}$ et $\frac{\varepsilon}{2}$ quand x tend vers $+\infty$. Donc,

$$\exists B \geqslant A/ \ \forall x \in \mathbb{R}, \ (x \geqslant B \Rightarrow g(A)e^{-x} - \frac{\varepsilon}{2}(1 - e^{A - x}) > -\varepsilon \text{ et } < g(A)e^{-x} - \frac{\varepsilon}{2}(1 - e^{A - x}) < \varepsilon.$$

Pour $x \ge B$, on a donc $-\varepsilon < e^{-x}g(x) < \varepsilon$.

On a montré que $\forall \varepsilon > 0$, $\exists B > 0 / \forall x \in \mathbb{R}$, $(x \geqslant B \Rightarrow |e - xg(x)| < \varepsilon)$ et donc $\lim_{x \to +\infty} e^{-x}g(x) = 0$ ce qu'il fallait démontrer.

Correction de l'exercice 19 ▲

1. Pour $x \ge -1$, posons $f(x) = \sqrt{1+x}$ et g(x) = f(x) - x.

Soit $u_0 \in I = [-1, +\infty[$. f est définie sur I et de plus $f(I) = [0, +\infty[\subset [-1, +\infty[$. On en déduit, par une démonstration par récurrence, que la suite u est définie.

Si la suite u converge, puisque $\forall n \in \mathbb{N}, u_n \geqslant -1$, sa limite ℓ vérifie $\ell \geqslant -1$. Puisque f est continue sur $[-1, +\infty[$ et donc en ℓ ,

$$\ell = \lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} f(u_n) = f(\lim_{n \to +\infty} u_n) = f(ell).$$

et ℓ est un point fixe de f. Or, pour $x \ge -1$,

$$\sqrt{1+x} = x \Leftrightarrow 1+x = x^2 \text{ et } x \geqslant 0 \Leftrightarrow (x = \frac{1-\sqrt{5}}{2} \text{ ou } x = \frac{1+\sqrt{5}}{2}) \text{ et } x \geqslant 0$$
$$\Leftrightarrow x = \frac{\sqrt{5}+1}{2}.$$

Ainsi, si la suite (u_n) converge, c'est vers le nombre $\alpha = \frac{\sqrt{5}+1}{2}$. Pour $x \ge -1$,

$$\begin{split} \operatorname{sgn}(f(x) - \alpha) &= \operatorname{sgn}(\sqrt{1 + x} - \sqrt{1 + \alpha}) = \operatorname{sgn}((1 + x) - (1 + \alpha)) \quad \text{(par croissance de } x \mapsto x^2 \operatorname{sur}\left[0, +\infty\right]) \\ &= \operatorname{sgn}(x - \alpha). \end{split}$$

Ainsi, les intervalles $[-1, \alpha[$ et $]\alpha, +\infty[$ sont stables par f. Donc, si $-1 \le u_0 < \alpha$, alors par récurrence $\forall n \in \mathbb{N}, -1 \le u_n < \alpha$ et si $u_0 > \alpha$, alors par récurrence, $\forall n \in \mathbb{N}, u_n > \alpha$.

Soit $x \ge -1$. Si $x \in [-1,0]$, $\sqrt{1+x} - x \ge 0$ et si $x \ge 0$,

$$\begin{split} \operatorname{sgn}(g(x)) &= \operatorname{sgn}(\sqrt{1+x}-x) \\ &= \operatorname{sgn}((1+x)-x^2) \quad (\operatorname{par croissance de} x \mapsto x^2 \operatorname{sur} [0,+\infty[) \\ &= \operatorname{sgn}(x+\frac{\sqrt{5}-1}{2})(-x+\frac{1+\sqrt{5}}{2}-x) = \operatorname{sgn}(\alpha-x) \ (\operatorname{car ici} x \geqslant 0). \end{split}$$

On en déduit que, si $x \in [-1, \alpha[$, f(x) > x, et si $x \in]\alpha, +\infty[$, f(x) < x. Mais alors, si $-1 \le u_0 < \alpha$, puisque $\forall n \in \mathbb{N}, -1 \le u_n < \alpha$, pour n entier naturel donné, on a

$$u_{n+1} = f(u_n) > u_n.$$

La suite u est donc strictement croissante, majorée par α et donc convergente. On sait de plus que sa limite est nécessairement α .

Si $u_0 > \alpha$, puisque $\forall n \in \mathbb{N}$, $u_n > \alpha$, pour n entier naturel donné, on a

$$u_{n+1} = f(u_n) < u_n.$$

La suite u est donc strictement décroissante, minorée par α et donc convergente. On sait de plus que sa limite est nécessairement α . Enfin, si $u_0 = \alpha$, la suite u est constante.

En résumé,

si $u_0 \in [-1, \frac{\sqrt{5}+1}{2}[$, la suite u est strictement croissante, convergente de limite $\frac{\sqrt{5}+1}{2}[$, si $u_0 \in]\frac{\sqrt{5}+1}{2}, +\infty[$, la suite u est strictement décroissante, convergente de limite $\frac{\sqrt{5}+1}{2}[$, si $u_0 = \frac{\sqrt{5}+1}{2}[$, la suite u est constante et en particulier convergente de limite $\frac{\sqrt{5}+1}{2}[$.

Ainsi, dans tous les cas, la suite u est convergente et $\lim_{n\to+\infty} u_n = \frac{1+\sqrt{5}}{2}$.

2. Si $u_0 > 0$, alors puisque f est définie sur l'intervalle $I =]0, +\infty[$ et que I est stable par f ($\forall x > 0$, $\ln(1 + x) > \ln 1 = 0$), la suite u est définie et est strictement positive. Si la suite u converge, sa limite ℓ est un réel positif **ou nul**. Par continuité de f sur $[0, +\infty[$ et donc en ℓ ,

$$\ell = \lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} f(u_n) = f(\lim_{n \to +\infty} u_n) = f(\ell).$$

Pour x > -1, posons $g(x) = \ln(1+x) - x$. g est définie et dérivable sur $]-1, +\infty[$ et pour x > -1,

$$g'(x) = \frac{1}{1+x} - 1 = -\frac{x}{1+x}.$$

g' est strictement positive sur]-1,0[et strictement négative sur $]0,+\infty[$. g est donc strictement croissante sur]-1,0[et strictement décroissante sur $[0,+\infty[$. Par suite, si $x\in]-1,0[\cup]0,+\infty[$, g(x)<0. En particulier, pour $x\in]-1,0[\cup]0,+\infty[$, $f(x)\neq x$. Puisque f(0)=0, f admet dans $]-1,+\infty[$ un et un seul point fixe à savoir 0.

En résumé, si $u_0 > 0$, la suite u est définie, strictement positive, et de plus, si la suite u converge, alors $\lim_{n \to +\infty} u_n = 0$.

Mais, pour n entier naturel donné,

$$u_{n+1} - u_n = \ln(1 + u_n) - u_n < 0.$$

Par suite, la suite *u* est strictement décroissante, minorée par 0 et donc, d'après ce qui précède, converge vers 0.

Si $u_0 = 0$, la suite u est constante. Il reste donc à étudier le cas où $u_0 \in]-1,0[$. Montrons par l'absurde qu'il existe un rang n_0 tel que $u_{n_0} \le -1$. Dans le cas contraire, $\forall n \in \mathbb{N}, u_n > -1$. Comme précédemment, par récurrence, la suite u est à valeurs dans]-1,0[et strictement décroissante. Etant minorée par -1, la suite u converge vers un certain réel ℓ .

Puisque $\forall n \in \mathbb{N}, -1 < u_n \le u_0 < 0$, on a $-1 \le \ell \le u_0 < 0$. Donc, ou bien $\ell = -1$, ou bien f est continue en ℓ et ℓ est un point fixe de f élément de [-1,0[.

On a vu que f n'admet pas de point fixe dans]-1,0[et donc ce dernier cas est exclu. Ensuite, si $\ell=-1$, il existe un rang N tel que $u_N \leqslant -0.9$. Mais alors, $u_{N+1}=\leqslant \ln(-0,9+1)=-2,3...<-1$ ce qui constitue de nouveau une contradiction.

Donc, il existe un rang n_0 tel que $u_{n_0} \le -1$ et la suite u n'est pas définie à partir d'un certain rang. En résumé,

si $u_0 \in]0, +\infty[$, la suite u est strictement décroissante, convergente et $\lim_{n \to +\infty} u_n = 0$,

si $u_0 = 0$, la suite u est constante,

et si $u_0 \in]-1,0[$, la suite u n'est pas définie à partir d'un certain rang.

3. Pour tout choix de u_0 , $u_1 \in [-1,1]$. On supposera dorénavant que $u_0 \in [-1,1]$. Si $u_0 = 0$, la suite u est constante. Si $u_0 \in [-1,0[$, considérons la suite u' définie par $u'_0 = -u_0$ et $\forall n \in \mathbb{N}$, $u'_{n+1} = \sin(u'_n)$. La fonction $x \mapsto \sin x$, il est clair par récurrence que $\forall n \in \mathbb{N}$, $u'_n = -u_n$. On supposera dorénavant que $u_0 \in [0,1]$.

Puisque $]0,1] \subset]0,\frac{\pi}{2}]$, on a sin $]0,1] \subset]0,1]$ et l'intervalle I=]0,1] est stable par f. Ainsi, si $u_0 \in]0,1]$, alors, $\forall n \in \mathbb{N}, \ u_n \in [0,1]$.

Pour $x \in [0,1]$, posons $g(x) = \sin x - x$. g est dérivable sur [0,1] et pour $x \in [0,1]$, $g'(x) = \cos x - 1$. g' est strictement négative sur [0,1] et donc strictement décroissante sur [0,1]. On en déduit que pour $x \in]0,1]$, g(x) < g(0) = 0.

Mais alors, pour n entier naturel donné, $u_{n+1} = \sin(u_n) < u_n$. La suite u est ainsi strictement décroissante, minorée par 0 et donc converge vers $\ell \in [0,1]$. La fonction $x \mapsto \sin x$ est continue sur [0,1] et donc, ℓ est un point fixe de f. L'étude de g montre que f a un et un seul point fixe dans [0,1] à savoir 0. La suite u est donc convergente et $\lim_{n \to +\infty} u_n = 0$.

L'étude préliminaire montre la suite u converge vers 0 pour tout choix de u_0 .

4. Si u_0 est un réel quelconque, $u_1 \in [-1,1] \subset [-\frac{\pi}{2},\frac{\pi}{2}]$ puis $u_2 \in [0,1]$. On supposera dorénavant que $u_0 \in [0,1]$.

On a $\cos([0,1]) = [\cos 1, \cos 0] = [0,504...,1] \subset [0,1]$. Donc, la fonction $x \mapsto \cos x$ laisse stable l'intervalle I = [0,1]. On en déduit que $\forall n \in \mathbb{N}, u_n \in [0,1]$.

Pour $x \in [0,1]$, on pose $g(x) = \cos x - x$. g est somme de deux focntions strictement décroissantes sur [0,1] et est donc strictement décroissante sur [0,1]. De plus, g est continue sur [0,1] et vérifie $g(0) = \cos 0 > 0$ et $g(1) = \cos 1 - 1 < 0$. g s'annule donc une et une seule fois sur [0,1] en un certain réel α . Ainsi, f admet sur [0,1] un unique point fixe, à savoir α . Puisque f est continue sur le segment [0,1], on sait que si la suite g converge, c'est vers g.

La fonction $f: x \mapsto \cos x$ est dérivable sur [0,1] et pour $x \in [0,1]$,

$$|f'(x)| = |-\sin x| \leqslant \sin 1 < 1.$$

L'inégalité des accroissements finis montre alors que $\forall (x,y) \in [0,1]^2$, $|\cos x - \cos y| \le \sin 1|x-y|$. Pour n entier naturel donné, on a alors

$$|u_{n+1} - \alpha| = |f(u_n) - f(\alpha)| \leqslant \sin 1|u_n - \alpha|,$$

et donc, pour tout entier naturel n,

$$|u_n - \alpha| \leq (\sin 1)^n |u_0 - \alpha| \leq (\sin 1)^n$$
.

Comme $0 \le \sin 1 < 1$, la suite $(\sin 1)^n$ converge vers 0, et donc la suite $(u_n)_{n \in \mathbb{N}}$ converge vers α . On peut noter que puisque la fonction $x \mapsto \cos x$ est strictement décroissante sur [0,1], les deux suites $(u_{2n})_{n \in \mathbb{N}}$ et $(u_{2n+1})_{n \in \mathbb{N}}$ sont strictement monotones, de sens de variations contraires (dans le cas où $u_0 \in [0,1]$. On peut noter également que si $n > \frac{\ln(10^{-2})}{\ln(\sin 1)} = 26,6...$, alors $(\sin 1)^n < 10^{-2}$. Par suite, u_{27} est une valeur approchée de α à 10^{-2} près. La machine fournit $\alpha = 0,73...$ (et même $\alpha = 0,739087042....$).

5. Si u_0 est un réel quelconque, alors $\forall n \in \mathbb{N}^*$, $u_n \in [-1,1]$. On supposera sans perte de généralité que $u_0 \in [-1,1]$. Si $u_0 = 0$, la suite u est constante et d'autre part, l'étude du cas $u_0 \in [-1,0[$ se ramème, comme en 3), à l'étude du cas $u_0 \in [0,1]$. On supposera dorénavant que $u_0 \in [0,1]$.

Si $x \in]0,1]$, alors $2x \in]0,2] \subset]0,\pi[$ et donc $\sin(2x) \in]0,1]$. L'intervalle I=]0,1] est donc stable par la fonction $f: x \mapsto \sin(2x)$. On en déduit que $\forall n \in \mathbb{N}, u_n \in]0,1]$.

Pour $x \in [0,1]$, posons $g(x) = \sin(2x) - x$. g est dérivable sur [0,1] et pour $x \in [0,1]$, $g'(x) = 2\cos(2x) - 1$. g est donc strictement croissante sur $[0,\frac{\pi}{4}]$ et strictement décroissante sur $[\frac{\pi}{4},1]$. On en déduit que si $x \in]0,\frac{\pi}{4}]$, g(x) > g(0) = 0. D'autre part, g est continue et strictement décroissante sur $[\frac{\pi}{4},1]$ et vérifie $g(\frac{\pi}{4}) = 1 - \frac{\pi}{4} > 0$ et $g(1) = \sin 2 - 1 < 0$. g s'annule donc une et une seule fois en un certain réel $\alpha \in]\frac{\pi}{4},1[$.

En résumé, g s'annule une et une seule fois sur]0,1] en un certain réel $\alpha \in]\frac{\pi}{4},1[$, g est strictement positive sur $]0,\alpha[$ et strictement négative sur $]\alpha,1]$.

Supposons que $u_0 \in]0, \frac{\pi}{4}[$ et montrons par l'absurde que $\exists n_0 \in \mathbb{N}/\ u_{n_0} \in [\frac{\pi}{4}, 1]$. Dans le cas contraire, tous les u_n sont dans $]0, \frac{\pi}{4}[$. Mais alors, pour tout entier naturel n,

$$u_{n+1} - u_n = f(u_n) - u_n = g(u_n) > 0.$$

La suite u est donc strictement croissante. Etant majorée par $\frac{\pi}{4}$, la suite u converge. Comme g est continue sur $[u_0, \frac{\pi}{4}]$ et que $\forall n \in \mathbb{N}$, $u_n \in [u_0, \frac{\pi}{4}]$, on sait que la limite de u est un point fixe de f élément de $[u_0, \frac{\pi}{4}]$. Mais l'étude de g a montré que f n'admet pas de point fixe dans cet intervalle (u_0 étant strictement positif). On aboutit à une contradiction.

Donc, ou bien $u_0 \in [\frac{\pi}{4}, 1]$, ou bien $u_0 \in]0, \frac{\pi}{4}[$ et dans ce cas, $\exists n_0 \in \mathbb{N}/u_{n_0} \in [\frac{\pi}{4}, 1]$. Dans tous les cas, $\exists n_0 \in \mathbb{N}/u_{n_0} \in [\frac{\pi}{4}, 1]$. Mais alors, puisque $f([\frac{\pi}{4}, 1]) = [\sin 2, \sin \frac{\pi}{2}] \subset [\frac{\pi}{4}, 1]$ (car $\sin 2 = 0,909... > 0,785... = \frac{\pi}{4}$), pour tout entier $n \ge n_0, u_n \in [\frac{\pi}{4}, 1]$.

Pour $x \in [\frac{\pi}{4}, 1]$, $|g'(x)| = |2\cos(2x)| \le |2\cos 2|$. L'inégalité des accroissements finis montre alors que $\forall n \ge n_0$, $|u_{n+1} - \alpha| \le |2\cos 2|$. $|u_n - \alpha|$, puis que

$$\forall n \geqslant n_0, |u_n - \alpha| \leqslant |2\cos 2|^{n - n_0} |u_{n_0} - \alpha|.$$

Comme $|2\cos 2| = 0.83... < 1$, on en déduit que la suite u converge vers α . La machine donne par ailleurs $\alpha = 0.947...$

6. Pour $x \in \mathbb{R}$,

$$x^2 - 2x + 2 = x \Leftrightarrow x^2 - 3x + 2 = 0 \Leftrightarrow (x - 1)(x - 2) = 0 \Leftrightarrow x = 1 \text{ ou } x = 2.$$

Donc, si la suite *u* converge, ce ne peut être que vers 1 ou 2.

Pour $n \in \mathbb{N}$,

$$u_{n+1} - u_n = (u_n^2 - 2u_n + 2) - u_n = (u_n - 1)(u_n - 2) (I)$$

$$u_{n+1} - 1 = u_n^2 - 2u_n + 1 = (u_n - 1)^2 (II)$$

$$u_{n+1} - 2 = u_n^2 - 2u_n = u_n(u_n - 2) (III).$$

1er cas. Si $u_0 = 1$ ou $u_0 = 2$, la suite u est constante.

2ème cas. Si $u_0 \in]1,2[$, (II) et (III) permettent de montrer par récurrence que $\forall n \in \mathbb{N}, u_n \in]1,2[$. (I) montre alors que la suite u est strictement décroissante. Etant minorée par 1, elle converge vers un réel $\ell \in [1,u_0] \subset [1,2[$. Dans ce cas, la suite (u_n) converge vers 1.

3ème cas. Si $u_0 \in]2, +\infty[$, (*III*) permet de montrer par récurrence que $\forall n \in \mathbb{N}$, $u_n > 2$. Mais alors, (*I*) montre que la suite u est strictement croissante. Si u converge, c'est vers un réel $\ell \in [u_0, +\infty[\subset]2, +\infty[$. f n'ayant pas de point fixe dans cet intervalle, la suite u diverge et, u étant strictement croissante, on a $\lim_{n \to +\infty} u_n = +\infty$.

4ème cas. Si $u_0 \in]0,1[$, alors $u_1 = (u_0 - 1)^2 + 1 \in]1,2[$ ce qui ramène au deuxième cas. La suite u converge vers 1.

5ème cas. Si $u_0 = 0$, alors $u_1 = 2$ et la suite u est constante à partir du rang 1. Dans ce cas, la suite u converge vers 2.

6ème cas. Si $u_0 < 0$, alors $u_1 = u_n^2 - 2u_n + 2 > 2$, ce qui ramène au troisième cas. La suite u tend vers $+\infty$.

En résumé, si $u_0 \in]0,2[$, la suite u converge vers 1, si $u_0 \in \{0,2\}$, la suite u converge vers 2 et si $u_0 \in]-\infty,0[\cup]2,+\infty[$, la suite u tend vers $+\infty$.