Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Отчет

Дисциплина «Телекоммуникационные системы» Учебно-исследовательская работа №1 «Кодирование данных в телекоммуникационных системах»

Автор: Рахматов Неъматджон

Факультет: ПИиКТ

Группа: Р3333

Поток: 1.1

Преподаватель: Алиев Тауфик Измайлович

Этап 1. Формирование сообщения

Исходное сообщение: РаНН.

Закодируем исходное сообщение с помощью таблицы кодировки (см. [1], Таблица 2):

Кодировка в HEX: D0 E0 CD CD.

Кодировка в BIN: 1101 0000 1110 0000 1100 1101 1100 1101.

Длина сообщение: 32 бита (4 байта).

Пропускная способность канала связи: C = 10 Мбит/c.

Этап 2. Физическое кодирование исходного сообщения 2.1 Манчестерский код

Рисунок 2.1 – Временная диаграмма сообщения, кодированного манчестерским кодом

Верхняя граница частоты: $f_{\rm B} = \mathcal{C} = 10 \ {\rm M}\Gamma$ ц.

Нижняя граница частоты: $f_{\rm H} = C/2 = 5 \, {\rm M}\Gamma$ ц.

Ширина спектра сообщения: $S = f_{\rm B} - f_{\rm H} = 0.5C = 5~{\rm M}$ Гц.

Для передачи сообщения по каналу связи требуется 4 гармоники, занимающие полосу: $S=7f_{\rm B}-f_{\rm H}=65~{\rm M}\Gamma$ ц.

Средняя частота сообщения: $f_{\rm cp}=(36f_0+14\frac{f_0}{2})/50=$ 8,6 МГц.

Середина спектра сообщения: $f_{1/2} = (10+5)/2 = 7.5 \text{ M}$ Гц $\Rightarrow f_{cp} > f_{1/2}$.

Из требования F > S полоса пропускания канала связи должна быть не менее F = 66 МГц.

2.2 Потенциальный код без возврата к нулю (NRZ)

Рисунок 2.2 – Временная диаграмма сообщения, кодированного кодом NRZ

Верхняя граница частоты: $f_{\rm B} = C/2 = 5~{\rm M}\Gamma$ ц.

Так как $T_{\rm H}/2=5t=5/{\it C}$, то нижняя граница частоты рассматриваемого сообщения: $f_{\rm H}=1/T_{\rm H}={\it C}/10=1~{\rm M}$ Гц.

Ширина спектра сообщения: $S = f_{\rm B} - f_{\rm H} = (0.5 - 0.1)C = 4$ МГц.

Для передачи сообщения по каналу связи требуется 4 гармоники, занимающие полосу: $S=7f_{\rm B}-f_{\rm H}=35-4=31~{\rm M}\Gamma{\rm g}$.

Средняя частота сообщения:

$$f_{\rm cp} = \left(5f_0 + 6\frac{f_0}{2} + 2\frac{f_0}{3} + 1\frac{f_0}{4} + 1\frac{f_0}{5}\right)/15 =$$

$$= \frac{(5+3+0.67+0.25+0.2)f_0}{15} \approx 6.1 \,\mathrm{M}\Gamma\mathrm{ц}.$$

Середина спектра сообщения: $f_{1/2} = (5+1)/2 = 3 \text{ M}$ Гц $\Rightarrow f_{\rm cp} > f_{1/2}$.

Из требования F>S следует, что полоса пропускания канала связи должна быть не менее $F=32~{
m M}\Gamma_{
m LL}$.

2.3 Биполярный код с альтернативной инверсией (АМІ)

Рисунок 2.3 – Временная диаграмма сообщения, кодированного кодом АМІ

Верхняя граница частоты: $f_{\rm B} = C/2 = 5 \, {\rm M}\Gamma$ ц.

Так как $T_{\rm H}/2=5t=5/C$, то нижняя граница частоты рассматриваемого сообщения: $f_{\rm H}=1/T_{\rm H}=C/10=1~{\rm M}\Gamma$ ц.

Ширина спектра сообщения: $S = f_{\rm B} - f_{\rm H} = 5 - 1 = 4$ МГц.

Для передачи сообщения по каналу связи требуется 4 гармоники, занимающие полосу: $S=7f_{\rm B}-f_{\rm H}=35-1=34~{\rm M}\Gamma$ ц.

Средняя частота сообщения:

$$f_{\rm cp} = \left(16f_0 + 2\frac{f_0}{2} + 3\frac{f_0}{3} + \frac{f_0}{4} + \frac{f_0}{5}\right)/23 = \frac{18,45}{23}f_0 \approx 4,01 \,\mathrm{M}$$
Гц.

Середина спектра сообщения: $f_{1/2} = (5+1)/2 \approx 3 \text{ M}$ Гц $\Rightarrow f_{cp} > f_{1/2}$.

Из требования F>S следует, что полоса пропускания канала связи должна быть не менее $F=35~{\rm M}\Gamma{\rm L}$.

2.4 Биполярный импульсный код (с возвратом к нулю – RZ)

Рисунок 2.4 — Временная диаграмма сообщения, кодированного кодом RZ

Верхняя граница частоты: $f_{\rm B} = \mathcal{C} = 10 \ {\rm M}\Gamma$ ц.

Нижняя граница частоты: $f_{\rm H} = C/4 = 2,5 \ {\rm M} \Gamma$ ц.

Ширина спектра сообщения: $S = f_{\rm B} - f_{\rm H} = 10 - 2,5 = 7,5$ МГц.

Для передачи сообщения по каналу связи требуется 4 гармоники, занимающие полосу: $S=7f_{\rm B}-f_{\rm H}=67,5~{\rm M}\Gamma$ ц.

Средняя частота сообщения: $f_{\rm cp}=(20f_0+6\frac{f_0}{2.5})/26=\frac{22,4f_0}{26}=8,6$ МГц.

Середина спектра сообщения: $f_{1/2}=(10+2.5)/2=6.25~{
m M}$ Гц $\Rightarrow f_{
m cp}>f_{1/2}.$

Из требования F>S следует, что полоса пропускания канала связи должна быть не менее $F=68~{
m M}\Gamma{
m L}$.

Сравнение методов физического кодирования

Таблица 1 – Частотные параметры

Код	$f_{ m B}$, М Γ ц	$f_{ m H}$, М Γ ц	$f_{ m cp}$, М Γ ц	<i>F</i> , МГц
Манчестерский	10	5	8,6	66
NRZ	5	1	6,1	32
AMI	5	1	4,1	35
RZ	10	2,5	8,6	68

Таблица 2 – Качественные показатели

Показатель	Метод кодирования							
Показатель	Манчестерский	NRZ	AMI	RZ				
Узкая полоса пропускания канала связи	Нет	Да	Да	Нет				
Отсутствие постоянной составляющей	Да	Нет	Нет	Да				
Возможность обнаружения ошибок	Нет	Нет	Да	Да				
Способность самосинхронизации	Да	Нет	Нет	Да				
Малое количество уровней сигнала (экономичность реализации)	Да	Да	Нет	Нет				

Из приведенных данных следует, что по частотным параметрам определенные преимущества имеют методы кодирования NRZ и AMI из-за относительно узкой полосы пропускания канала связи, необходимой для передачи сообщений. Однако вследствие увеличенного числа уровней сигнала в AMI требуется повышенная мощность и сложность оборудования и, следовательно, его большая стоимость.

К недостаткам метода NRZ можно отнести отсутствие самосинхронизации, приводящей к потере синхронизации между передатчиком и приемником при передаче длинных последовательностей одинаковых символов, а также невозможность использования в электрических каналах связи при наличии гальванических развязок между приёмником и передатчиком.

Преимуществами манчестерского метода и метода RZ является отсутствие постоянной составляющей и способность самосинхронизации. Простота реализации и экономичность манчестерского метода обеспечивается наличием только двух уровней потенциала. В то же время по частотным параметрам эти методы требуют более широкополосных каналов передачи.

Несмотря на некоторые недостатки по совокупности положительных показателей мной выбираются методы кодирования манчестерский и RZ.

Этап 3. Логическое кодирование исходного сообщения

Применим метод логического кодирования 4B/5B к сообщению, кодированному манчестерским кодом. Перекодируем исходное сообщение с помощью таблицы перекодировки (см. [1], Таблица 1). В результате получим сообщение:

BIN: 1101 1111 1011 1001 1110 1101 0110 1111 0101 1011.

HEX: DF B9 ED 6F 5B

Длина: 40 бит (5 байт)

Избыточность: ((40/32) - 1) * 100 = 25%

Рисунок 3.1 — Временная диаграмма сообщения, кодированного манчестерским кодом, после применения логического кодирования 4B/5B

Верхняя граница частоты: $f_{\rm B} = C = 10 \ {\rm M} \Gamma$ ц.

Нижняя граница частоты: $f_{\rm H} = C/2 = 5 \, {\rm M}\Gamma$ ц.

Ширина спектра сообщения: $S = f_{\rm B} - f_{\rm H} = 0,5C = 5~{\rm M}$ Гц.

Для передачи сообщения по каналу связи требуется 4 гармоники, занимающие полосу: $S=7f_{\rm B}-f_{\rm H}=65~{\rm M}\Gamma$ ц.

Средняя частота сообщения: $f_{\rm cp} = (40f_0 + 20\frac{f_0}{2})/60 = 8$,3 МГц.

Середина спектра сообщения: $f_{1/2} = (10+5)/2 = 7.5 \text{ M}$ Гц $\Rightarrow f_{\text{cp}} > f_{1/2}$.

Из требования F > S полоса пропускания канала связи должна быть не менее $F = 66 \,\mathrm{M}$ Гц.

Этап 4. Скремблирование исходного сообщения

Применим скремблирование к исходному сообщению

BIN: 1101 0000 1110 0000 1100 1101 1100 1101,

используя алгоритм преобразования

$$B_i = A_i \oplus B_{i-3} \oplus B_{i-5}, (i = 1, 2, ...),$$

где A_i, B_i — значения i-го разряда соответственно исходного и результирующего кода, \oplus — операция «ИСКЛЮЧАЮЩЕЕ ИЛИ». Выбор данного алгоритма обусловлен простотой его реализации. Результат преобразования приведен в таблице 3.

T () D	_	_
120 JULIA 3 — PES	ультат скремблирования и	схолного сообщения
Tuoningu 5 TC5	yribiai enpemoriripobaliriri ri	слодиого сообщении

Номер разряда <i>i</i>	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
A_i	1	1	0	1	0	0	0	0	1	1	1	0	0	0	0	0
B_i	1	1	0	0	1	1	1	1	0	1	1	1	0	1	0	1
Номер разряда <i>i</i>	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
A_i	1	1	0	0	1	1	0	1	1	1	0	0	1	1	0	1
B_i	1	1	0	1	1	0	0	0	0	0	0	0	1	1	0	0

Цветом выделены ячейки, образующие некий «трафарет» для вычисления результирующего разряда B_i (зеленый цвет) по аргументам

 A_i , B_{i-3} и B_{i-5} (желтый цвет). Запишем результирующее сообщение в двоичной и шестнадцатеричном представлениях:

BIN: 1100 1111 0111 0101 1101 1000 0000 1100;

HEX: CF 75 D8 0C.

Рисунок 4.1 — Временная диаграмма сообщения, кодированного манчестерским кодом, после применения скремблирования

Верхняя граница частоты: $f_{\rm B} = {\cal C} = 10~{\rm M}\Gamma$ ц.

Нижняя граница частоты: $f_{\rm H} = C/2 = 5 \, {\rm M}\Gamma$ ц.

Ширина спектра сообщения: $S = f_{\rm B} - f_{\rm H} = 0.5 C = 5 \ {\rm M} \Gamma {\rm L}$.

Для передачи сообщения по каналу связи требуется 4 гармоники, занимающие полосу: $S = 7f_{\rm B} - f_{\rm H} = 65~{\rm M}\Gamma$ ц.

Средняя частота сообщения: $f_{\rm cp} = (38f_0 + 13\frac{f_0}{2})/51 = 8,7$ МГц.

Середина спектра сообщения: $f_{1/2} = (10+5)/2 = 7.5 \; \mathrm{M}\Gamma\mathrm{_{II}} \; \Rightarrow f_\mathrm{cp} > f_\mathrm{1/2}.$

Из требования F>S следует, что полоса пропускания канала связи должна быть не менее $F=66~{
m M}\Gamma{
m L}$.

Этап 5. Сравнительный анализ методов логического кодирования

Таблица 4 – Анализ результатов логического кодирования

Метод кодирования	$f_{ m cp}$, М Γ ц	Преимущества	Недостатки
4B/5B	8,3	Простая реализация.	Снижение полезной
		Возможность	пропускной
		обнаружения ошибок.	способности канала
		Сужение спектра	связи из-за
		сигнала в связи с	избыточного
		отсутствием	кодирования.
		постоянной	Дополнительные
		составляющей	временные затраты в
			узлах сети на
			реализацию
			логического
			кодирования
Скремблирование	8,7	Сохранение полезной	Дополнительные
		пропускной	затраты на
		способности канала	реализацию
		СВЯЗИ	алгоритма.
			Отсутствие
			гарантированного
			исключения длинных
			последовательностей
			одинаковых символов

Так как в качестве физического метода кодирования был выбран манчестерский код, то частотные параметры (исключая среднюю частоту в сообщении) для обоих методов логического кодирования одинаковы и не включены в таблицу сравнения.

Поскольку возможность сохранения и возникновения новых длинных последовательностей нулей и единиц в результирующем коде является существенным недостатком метода (что имело место для рассматриваемого сообщения), то выбор следует сделать в пользу метода кодирования 4В/5В.

Выводы

В работе рассмотрены 4 метода физического (потенциального) кодирования и 2 метода логического кодирования. Каждый из методов имеет свои преимущества и недостатки. Это приводит к необходимости комплексной оценки эффективности методов кодирования исходя из специфики передаваемых сообщений, технических характеристик оборудования и физических свойств каналов связи.

Рассмотрение результатов применения указанных выше методов кодирования к конкретному сообщению дает представление об алгоритмах кодирования и об основных параметрах методов, однако не может быть полностью распространено на оценку их свойств для произвольных сообщений. В частности, описанный в [1] метод расчета средней частоты в спектре сообщения носит, скорее, качественный характер и допускает неоднозначную интерпретацию.