

Exercise Sheet ____

Exercise 1.1:

Write these four facts about Queues and Stacks.

Queues

Order Added:

Order Removed:

Stacks

Order Added:

Order Removed:

Exercise 1.2:

Write the order these five words will be popped for a Queue and a Stack:

Front: **Apples, Oranges, Strawberries, Pears, Bananas** :Back

Queues	Stacks
1 st	1 st
2 nd	2 nd
3 rd	3 rd
4 th	4 th
5 th	5 th

Exercise 2.1:

What does a node represent in a Graph/Tree?

A piece of data

A connection between data

The order in which data is found

Exercise 2.2:

Fill in the adjacency matrix for this Graph.

	A	В	C	D
A				
В				
С				
D				

Exercise 2.3:

Is this Binary Tree weighted correctly?

Yes

No

Exercise 2.4:

Identify one parent node and one leaf node in this Tree

Parent:

Leaf:

Exercise 2.5:

For this Tree, which traversal algorithm would result in this order of nodes being visited: 2, 7, 2, 6, 5, 11, 5, 9, 4

Depth First Search:

Breadth First Search:

Exercise 3.1:

Compare Graphs and Trees.

Mention any properties/components they both share, and what they have different.

Exercise 3.2:

Compare Queues and Stacks.

Mention any properties/components they both share, and what they have different.