

2. Decision Tree

3. ML process

2. Decision Tree

3. ML process

Data

_		id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
Perso	n	9046	Male	67.0	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	1
	1	51676	Female	61.0	0	0	Yes	Self-employed	Rural	202.21	NaN	never smoked	1
	2	31112	Male	80.0	0	1	Yes	Private	Rural	105.92	32.5	never smoked	1
	3	60182	Female	49.0	0	0	Yes	Private	Urban	171.23	34.4	smokes	1
	4	1665	Female	79.0	1	0	Yes	Self-employed	Rural	174.12	24.0	never smoked	1
	5	56669	Male	81.0	0	0	Yes	Private	Urban	186.21	29.0	formerly smoked	1
	6	53882	Male	74.0	1	1	Yes	Private	Rural	70.09	27.4	never smoked	1

Data

Features Or Attributes

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
0	9046	Male	67.0	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	1
1	51676	Female	61.0	0	0	Yes	Self-employed	Rural	202.21	NaN	never smoked	1
2	31112	Male	80.0	0	1	Yes	Private	Rural	105.92	32.5	never smoked	1
3	60182	Female	49.0	0	0	Yes	Private	Urban	171.23	34.4	smokes	1
4	1665	Female	79.0	1	0	Yes	Self-employed	Rural	174.12	24.0	never smoked	1
5	56669	Male	81.0	0	0	Yes	Private	Urban	186.21	29.0	formerly smoked	1
6	53882	Male	74.0	1	1	Yes	Private	Rural	70.09	27.4	never smoked	1

Data

Features Or Attributes

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
0	9046	Male	67.0	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	1
1	51676	Female	61.0	0	0	Yes	Self-employed	Rural	202.21	NaN	never smoked	1
2	31112	Male	80.0	0	1	Yes	Private	Rural	105.92	32.5	never smoked	1
3	60182	Female	49.0	0	0	Yes	Private	Urban	171.23	34.4	smokes	1
4	1665	Female	79.0	1	0	Yes	Self-employed	Rural	174.12	24.0	never smoked	1
5	56669	Male	81.0	0	0	Yes	Private	Urban	186.21	29.0	formerly smoked	1
6	53882	Male	74.0	1	1	Yes	Private	Rural	70.09	27.4	never smoked	1

Data

Analyzing

This command will describe the dataset and gives us some basic information about the dataset
data.describe().T

		count	mean	std	min	25%	50%	75%	max
	id	5110.0	36517.829354	21161.721625	67.00	17741.250	36932.000	54682.00	72940.00
	age	5110.0	43.226614	22.612647	0.08	25.000	45.000	61.00	82.00
	hypertension	5110.0	0.097456	0.296607	0.00	0.000	0.000	0.00	1.00
	heart_disease	5110.0	0.054012	0.226063	0.00	0.000	0.000	0.00	1.00
a	vg_glucose_level	5110.0	106.147677	45.283560	55.12	77.245	91.885	114.09	271.74
	bmi	4909.0	28.893237	7.854067	10.30	23.500	28.100	33.10	97.60
	stroke	5110.0	0.048728	0.215320	0.00	0.000	0.000	0.00	1.00

Data

Analyzing

This command will describe the dataset and gives us some basic information about the dataset
data.describe().T

	count	mean	std	min	25%	50%	75%	max
id	5110.0	36517.829354	21161.721625	67.00	17741.250	36932.000	54682.00	72940.00
age	5110.0	43.226614	22.612647	0.08	Minin	num Ag	e is 8 !!!	2.00
hypertension	5110.0	0.097456	0.296607	0.00	0.000	0.000	0.00	1.00
heart_disease	5110.0	0.054012	0.226063	0.00	0.000	0.000	0.00	1.00
avg_glucose_level	5110.0	106.147677	45.283560	55.12	77.245	91.885	114.09	271.74
bmi	4909.0	28.893237	7.854067	10.30	Minin	num BM	l is 10.3	30!! 7.60
stroke	5110.0	0.048728	0.215320	0.00	0.000	0.000	0.00	1.00

We have missing data!

630

22

2810

775

671

1. Review

Data

Analyzing

gender Female 2994 Male 2115 Other 1

Govt_job
Never_worked
Private
Self-employed
children

work type

smoking_status
Unknown 1483
formerly smoked 836
never smoked 1852
smokes 737

stroke
0 4699
1 209
Name: stroke, dtype: int64

Are they truly useful?

Data

Analyzing

Preprocessing

Ignore people that we don't have all the information about them

```
# drop persons that have NaN in any of their attributes
data = data.dropna()
```

Delete the one person with "Other" gender

```
# Since there is only one person, we cannot learn so much from that
data = data[data.gender != "Other"]
```

Deleting the columns (features) that are not helpful

```
# We have to choose which features are important and teach the computers
# usig those features. So, let's delete the features (columns) that might not
# be very helpful (at least to the best of our knowledge)
data = data.drop(["id", "work_type", "smoking_status"], axis = 1)
```


Data

Analyzing

Preprocessing

Computers understand numbers better than words, So let's use numbers instead of words!

```
# Computers knows numbers better than words. So, Let's change the words into numbers
# we can code words to numbers as below
data["gender"].replace({"Male": 0, "Female": 1}, inplace = True)
data["Residence_type"].replace({"Urban": 0, "Rural": 1}, inplace = True)
data["ever_married"].replace({"No": 0, "Yes": 1}, inplace = True)
```


Data Science

Data

Analyzing

Preprocessing

Data Science

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
0	9046	Male	67.0	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	1
1	51676	Female	61.0	0	0	Yes	Self-employed	Rural	202.21	NaN	never smoked	1
2	31112	Male	80.0	0	1	Yes	Private	Rural	105.92	32.5	never smoked	1
3	60182	Female	49.0	0	0	Yes	Private	Urban	171.23	34.4	smokes	1
4	1665	Female	79.0	1	0	Yes	Self-employed	Rural	174.12	24.0	never smoked	1
5	56669	Male	81.0	0	0	Yes	Private	Urban	186.21	29.0	formerly smoked	1
6	53882	Male	74.0	1	1	Yes	Private	Rural	70.09	27.4	never smoked	1

Data

Analyzing

Preprocessing

Data Science

	gender	age	hypertension	heart_disease	ever_married	Residence_type	avg_glucose_level	bmi	stroke
0	0	67.0	0	1	1	0	228.69	36.6	1
2	0	80.0	0	1	1	1	105.92	32.5	1
3	1	49.0	0	0	1	0	171.23	34.4	1
4	1	79.0	1	0	1	1	174.12	24.0	1
5	0	81.0	0	0	1	0	186.21	29.0	1

Data

Analyzing

Preprocessing

Select ML algorithm

2. Decision Tree

3. ML process

2. Decision Tree

3. ML process

2. Decision Tree

3. ML process

2. Decision Tree

2. Decision Tree

How can it know what to ask First?

Hypertension?

The label is not stroke!

The label is stroke

2. Decision Tree

How can it know what to ask First?

Hypertension?

The label is stroke

The label is not stroke!

Which questions can eliminate more options?

Which questions can divide our options in two equal groups?

Data

Analyzing

Preprocessing

Select ML algorithm

2. Decision Tree

3. ML process

2. Decision Tree

3. ML process

2. Decision Tree

3. ML process

Data

Analyzing

Preprocessing

Select ML algorithm

Data

Analyzing

Preprocessing

Select ML algorithm

Training the AI (model)

Data

Analyzing

Preprocessing

Select ML algorithm

Training the AI (model)

We want to train the AI, and after it learns, we want to take an exam to make sure it has learned!

By having the information about the features of each person, what would be the label (stroke or no stroke)

4908 persons

80% for training

	gender	age	hypertension	heart_disease	ever_married	Residence_type	avg_glucose_level	bmi	stroke
0	0	67.0	0	1	1	0	228.69	36.6	1
2	0	80.0	0	1	1	1	105.92	32.5	1
3	1	49.0	0	0	1	0	171.23	34.4	1
4	1	79.0	1	0	1	1	174.12	24.0	1
5	0	81.0	0	0	1	0	186.21	29.0	1
6	0	74.0	1	1	1	1	70.09	27.4	1
7	1	69.0	0	0	0	0	94.39	22.8	1
9	1	78.0	0	0	1	0	58.57	24.2	1
10	1	81.0	1	0	1	1	80.43	29.7	1
11	1	61.0	0	1	1	1	120.46	36.8	1

20% for Testing

Training Data

	gender	age	hypertension	heart_disease	ever_married	Residence_type	avg_glucose_level	bmi	stroke
0	0	67.0	0	1	1	0	228.69	36.6	1
2	0	80.0	0	1	1	1	105.92	32.5	1
3	1	49.0	0	0	1	0	171.23	34.4	1
4	1	79.0	1	0	1	1	174.12	24.0	1
5	0	81.0	0	0	1	0	186.21	29.0	1
6	0	74.0	1	1	1	1	70.09	27.4	1
7	1	69.0	0	0	0	0	94.39	22.8	1
9	1	78.0	0	0	1	0	58.57	24.2	1

X _train

Y_train

Training Data

	gender	age	hypertension	heart_disease	ever_married	Residence_type	avg_glucose_level	bmi	stroke
0	0	67.0	0	1	1	0	228.69	36.6	1
2	0	80.0	0	1	1	1	105.92	32.5	1
3	1	49.0	0	0	1	0	171.23	34.4	1
4	1	79.0	1	0	1	1	174.12	24.0	1
5	0	81.0	0	0	1	0	186.21	29.0	1
6	0	74.0	1	1	1	1	70.09	27.4	1
7	1	69.0	0	0	0	0	94.39	22.8	1
9	1	78.0	0	0	1	0	58.57	24.2	1

X _train

Y_train

Training Data

	gender	age	hypertension	heart_disease	ever_married	Residence_type	avg_glucose_level	bmi	stroke
0	0	67.0	0	1	1	0	228.69	36.6	1
2	0	80.0	0	1	1	1	105.92	32.5	1
3	1	49.0	0	0	1	0	171.23	34.4	1
4	1	79.0	1	0	1	1	174.12	24.0	1
5	0	81.0	0	0	1	0	186.21	29.0	1
6	0	74.0	1	1	1	1	70.09	27.4	1
7	1	69.0	0	0	0	0	94.39	22.8	1
9	1	78.0	0	0	1	0	58.57	24.2	1

X _train

Y_train

Same thing for test data

X _test

Y_test

10	1 81.0	1	0	1	1	80.43 29.7	1
11	1 61.0	0	1	1	1	120.46 36.8	1

20% for Testing

X : All the features (Gender, Age, etc)

Y: Label that we want to predict (Stroke or no stroke)

Data

Analyzing

Preprocessing

Select ML algorithm

Training the AI (model)

Testing the model (taking the exam!)

Data

Analyzing

Preprocessing

Select ML algorithm

Training the AI (model)

Testing the model (taking the exam!)

We will use Test Data X_test and Y_test

Testing the model (taking the exam!)

Predicting the label (stroke or no stroke)

How can we know it predict good or bad

We can compare it to the **ACTUAL** Label

Y_test

X : All the features (Gender, Age, etc)

Data

Analyzing

Preprocessing

Select ML algorithm

Training the AI (model)

Testing the model (taking the exam!)

Data

Analyzing

Preprocessing

Select ML algorithm

Training the AI (model)

Testing the model (taking the exam!)

Analyzing the results

2. Decision Tree

3. ML process

2. Decision Tree

3. ML process

2. Decision Tree

3. ML process

4. Results

We were unable to specify the rules, it was too complicated, and we didn't know!!

Do we have the rules now?

Let's visualize it!

2. Decision Tree

3. ML process

2. Decision Tree

3. ML process

Summary

- Data: for training an AI we need data
- Analyzing: give us a good insight about the data and help us to prepare the data for training purposes in preprocess stage.
- Preprocessing: preparing the data for training the model:
 - Ignoring unnecessary data
 - Ignoring unnecessary features
 - Convert to numbers
 - Other changes based on what we found in the previous stage
- Select ML algorithm: Decision tree (20 Questions)
- Training AI: spiliting the data into test data and train data. We use train data to train our AL
- Testing the model: using test data to take the exam and see if out AI works well
- Analyzing the result and extracting valuable information

Homework

- Complete the project.
- Why can we predict no stroke with high accuracy, but we cannot predict a stroke with the same accuracy?
- What can we do to improve our AI?