Probability

Dr. Md. Israt Rayhan
Professor
Institute of Statistical Research and Training
(ISRT)
University of Dhaka

Email: israt@isrt.ac.bd

- Random Experiment a process leading to an uncertain outcome
- Basic Outcome a possible outcome of a random experiment
- Sample Space the collection of all possible outcomes of a random experiment
- Event any subset of basic outcomes from the sample space

(continued)

Intersection of Events – If A and B are two events in a sample space S, then the intersection, A ∩ B, is the set of all outcomes in S that belong to both A and B

(continued)

- A and B are Mutually Exclusive Events if they have no basic outcomes in common
 - i.e., the set A ∩ B is empty

(continued)

 Union of Events – If A and B are two events in a sample space S, then the union, A U B, is the set of all outcomes in S that belong to either A or B

(continued)

- Events E₁, E₂, ... E_k are Collectively Exhaustive events if E₁ U E₂ U . . . U E_k = S
 - i.e., the events completely cover the sample space
- The Complement of an event A is the set of all basic outcomes in the sample space that do not belong to A. The complement is denoted A

Examples

Let the Sample Space be the collection of all possible outcomes of rolling one die:

$$S = [1, 2, 3, 4, 5, 6]$$

Let A be the event "Number rolled is even"

Let B be the event "Number rolled is at least 4"

Then

$$A = [2, 4, 6]$$
 and $B = [4, 5, 6]$

Examples

(continued)

$$S = [1, 2, 3, 4, 5, 6] \mid A = [2, 4, 6] \mid B = [4, 5, 6]$$

$$A = [2, 4, 6]$$

$$B = [4, 5, 6]$$

Complements:

$$\overline{A} = [1, 3, 5]$$

$$\overline{B} = [1, 2, 3]$$

Intersections:

$$A \cap B = [4, 6]$$

$$\overline{A} \cap B = [5]$$

Unions:

$$A \cup B = [2, 4, 5, 6]$$

$$A \cup \overline{A} = [1, 2, 3, 4, 5, 6] = S$$

Examples

(continued)

$$S = [1, 2, 3, 4, 5, 6] \mid A = [2, 4, 6] \mid B = [4, 5, 6]$$

$$A = [2, 4, 6]$$

$$B = [4, 5, 6]$$

- Mutually exclusive:
 - A and B are not mutually exclusive
 - The outcomes 4 and 6 are common to both
- Collectively exhaustive:
 - A and B are not collectively exhaustive
 - A U B does not contain 1 or 3

Probability

 Probability – the chance that an uncertain event will occur (always between 0 and 1)

 $0 \le P(A) \le 1$ For any event A

Assessing Probability

Classical probability

probability of event
$$A = \frac{N_A}{N} = \frac{\text{number of outcomes that satisfy the event}}{\text{total number of outcomes in the sample space}}$$

 Assumes all outcomes in the sample space are equally likely to occur

Probability Rules

The Complement rule:

$$P(\overline{A}) = 1 - P(A)$$
 i.e., $P(A) + P(\overline{A}) = 1$

- The Addition rule:
 - The probability of the union of two events is

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Addition Rule Example

Consider a standard deck of 52 cards, with four suits:

Let event A = card is an Ace

Let event B = card is from a red suit

Addition Rule Example

(continued)

 $P(Red \cup Ace) = P(Red) + P(Ace) - P(Red \cap Ace)$

= **26/52** + **4/52** - **2/52** = **28/52**

	Color		
Type	Red	Black	Total
Ace	2	2	4
Non-Ace	24	24	48
Total	26	26	52

Don't count the two red aces twice!

Conditional Probability

A conditional probability is the probability of one event, given that another event has occurred:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
The conditional probability of A given that B has occurred

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$
The conditional probability of B given that A has occurred

Conditional Probability Example

- Of the cars on a used car lot, 70% have air conditioning (AC) and 40% have a CD player (CD). 20% of the cars have both.
- What is the probability that a car has a CD player, given that it has AC?

i.e., we want to find $P(CD \mid AC)$

Conditional Probability Example

(continued)

Of the cars on a used car lot, **70%** have air conditioning (AC) and **40%** have a CD player (CD). **20%** of the cars have both.

	CD	No CD	Total
AC	.2	.5	.7
No AC	.2	.1	.3
Total	.4	.6	1.0

$$P(CD|AC) = \frac{P(CD \cap AC)}{P(AC)} = \frac{.2}{.7} = .2857$$

Statistical Independence

Two events are statistically independent if and only if:

$$P(A \cap B) = P(A)P(B)$$

- Events A and B are independent when the probability of one event is not affected by the other event
- If A and B are independent, then

$$P(A \mid B) = P(A)$$
 if P(B)>0
$$P(B \mid A) = P(B)$$
 if P(A)>0

Statistical Independence Example

Of the cars on a used car lot, 70% have air conditioning (AC) and 40% have a CD player (CD).

20% of the cars have both.

	CD	No CD	Total
AC	.2	.5	.7
No AC	.2	.1	.3
Total	.4	.6	1.0

Are the events AC and CD statistically independent?

Statistical Independence Example

(continued)

	CD	No CD	Total
AC	.2	.5	.7
No AC	.2	.1	.3
Total	.4	.6	1.0

$$P(AC \cap CD) = 0.2$$

$$P(AC) = 0.7$$

 $P(CD) = 0.4$ $P(AC)P(CD) = (0.7)(0.4) = 0.28$

$$P(AC \cap CD) = 0.2 \neq P(AC)P(CD) = 0.28$$

So the two events are not statistically independent

Odds

- The odds in favor of a particular event are given by the ratio of the probability of the event divided by the probability of its complement
- The odds in favor of A are

odds =
$$\frac{P(A)}{1-P(A)} = \frac{P(A)}{P(\overline{A})}$$

Odds: Example

Calculate the probability of winning if the odds of winning are 3 to 1:

$$odds = \frac{3}{1} = \frac{P(A)}{1 - P(A)}$$

■ Now multiply both sides by 1 – P(A) and solve for P(A):

$$3 \times (1-P(A)) = P(A)$$

$$3 - 3P(A) = P(A)$$

$$3 = 4P(A)$$

$$P(A) = 0.75$$

Thank you