

A B₁-Insensitive qMT Protocol

Mathieu Boudreau¹, Nikola Stikov¹, G. Bruce Pike²

¹McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, ²Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta

Introduction

- Quantitative magnetization transfer (qMT) imaging requires B_0 and B_1 measurements to correct for instrumental biases, and a T_1 measurement to constrain parameters in the fitting model.
- If using Variable Flip Angle (VFA) T₁ mapping¹, B₁ is used twice before fitting the qMT parameters: to correct the flip angles for T₁ mapping, and to scale the nominal MT saturation powers.
- Inaccuracies in B_I would propagate to the fitting of the qMT parameters through two pathways – through errors induced in T_I, and errors in MT saturation powers.
- This work demonstrates that for the Sled and Pike qMT model², certain qMT parameters are insensitive to a large range of B₁ inaccuracies when using VFA for T₁ mapping.

Methods

- Siemens 3T Tim Trio MRI system, 32-channel head coil
- 3 healthy adult volunteers
- Single slice, AC-PC orientation, slightly above the corpus callosum (2x2x5 mm³)

Pulse Sequences

- $B_0 \rightarrow Two$ -point GRE phase-difference method
- $B_1 \rightarrow Double angle method (DAM) (<math>\alpha = 60^{\circ}/120^{\circ})$
- $T_1 \rightarrow Variable Flip Angle^3$ (TR = 15 ms, $\alpha = 3^{\circ}/20^{\circ}$) $\rightarrow Inversion recovery^{4,5}$ (TI = 30, 530, 1030, 1530 ms)
- qMT → Spoiled GRE optimal 10-point protocol⁶,
 Gaussian-Hanning MT pulses, Sled and Pike qMT model⁵

Simulated B₁ Errors

• $B_1 \rightarrow Flat B_1 maps = 0.5, 0.75, 0.9, 1, 1.1, 1.25, 1.5, 2 n.u.$

Figure 1. Quantitative MRI protocol processing hierarchy.

Results – Measured B, vs. Nominal FA

Figure 2. Comparison of VFA T_1 and qMT F maps using measured (DA) and nominal (B_1 flat = I) B_1 maps.

Results - VFA vs. IR

Figure 3 shows the pooled whole brain Pearson correlation coefficients (a) and linear regression slopes (b) for qMT F values between the measured DA B_1 maps and simulated flat B_1 maps, for VFA (blue) and IR (red) T_1 maps.

High correlation (a) and linear regression slope values near I (b) for qMT F values are observed using VFA T_1 maps for a large range of flat B_1 maps (0.75 - 2 n.u.). qMT F maps fitted using IR T_1 are sensitive B_1 errors, as expected.

Figure 3. Linear regression analysis of the voxelwise qMT F parameter, comparing measured DA B_1 and a range of flat B_1 (VFA T_1 , blue; IR T_1 , red).

Results – qMT Parameters

Table 1. Voxelwise linear regression analysis of all fitted qMT parameters, using each T_1 method (VFA - left, IR-right), and a comparison of the measured (DA) and nominal FA (B_1 flat = 1) maps.

qMT	Pearson ρ	Slope	Pearson ρ	Slope
F	0.99	0.98	0.81	0.81
$\mathbf{k_f}$	0.32	0.31	0.52	0.57
R_{1f}	0.81	0.98	0.78	0.71
T_{2f}	0.99	0.95	0.93	1.02
T_{2r}	0.92	0.90	0.87	0.91

Discussion

- VFA-based T₁ maps renders qMT F and T_{2,f} insensitive to B₁ errors.
- Processing qMT F maps using VFA T₁ and a flat B₁ map (nominal flip angle assumption, large B₁ inaccuracies) results in nearly identical qMT F maps using DA B₁ maps, (Fig. 2), except where CSF partial volume effects are suspected.
- Severe overestimation of B_I is better tolerated than severe underestimation for the qMT parameter F (Fig. 3).
- The exact origin of the erroneous B_1 and VFA T_1 nearly cancelling out in qMT F maps remains to be clarified.
- A possible explanation might be that errors in B1 propagate to F via counterbalancing effects on T1 estimation and MT saturation power

Summary

- This work demonstrated that qMT F maps fitted using VFA T₁ can be insensitive to B₁ inaccuracies.
- A strong correlation (0.99) between qMT F values fitted using measured and nominal B_I maps was observed when using VFA T_I
- More work in simulating the effects of B₁ and VFA T₁ inaccuracies on qMT parameter estimation is needed to have a clearer understanding of the limitations of this observation.

References: [1] Deoni S. et al, MRM 49:515-526 (2003) [2] Sled J. and Pike G. B., MRM 46:923-931 (2001) [3] Yarnykh V., MRM 63:1610-26 (2010) [4] Barral J. et al, MRM 64:1057-1067 (2010) [5] http://www-mrsrl.stanford.edu/~jbarral/t1map.html (Accessed: October 2012) [6] Levesque I. et al, MRM 66:635-643 (2011) [7] Schmierer K. et al, JMRI 26:41-51 (2007) [8] Yarnykh V., MRM 68:166-178 (2012)

Acknowledgments: This work was funded by the Natural Sciences and Engineering Research Council's Doctoral Alexander Graham Bell Canada Graduate Scholarship (M.B.), and grant funding was provided by the Canadian Institutes of Health Research.

Contact: mathieu.boudreau2@mail.mcgill.ca