OMARA WALDEA

STEPS TAKEN IN THE ANALYSIS

- 1. Read the CSV files containing the Chicago traffic crash data. Identify the column common to both files and merge them together on that column. Then display the total number of reported crashes.
- 2. Change the 'CRASH_DATE' column to a date format. Drop observations that did not occur in 2017, 2018 or 2019 (other years have incomplete data).
- 3. Display a plot showing the number of crashes that occur for each hour of the day.
- 4. Name the make of vehicle that was involved in the most daylight crashes in August 2018. Remember that a crash can involve multiple vehicles.
- 5. Determine which weather condition was most prevalent for each type of crash.
- 6. Plot the primary contributing cause of reported crashes, from highest to lowest.
- 7. Display the 10 state license plates involved in the most crashes. Remember that a crash can involve multiple vehicles.
- 8. Display the proportion of crashes in each month of 2019 where alcohol was determined to be the primary contributing cause.
- 9. Determine whether snowmobiles or recreational off-highway vehicles were involved in more crashes.
- 10. Display a cluster map showing the locations of crashes involving a hit and run.

Step 1: Open the CSV files that contain the Chicago traffic crash data. Identify the column that both files have in common and merge them on that column. Then show the overall number of reported crashes. Throughout this project, we will need to use both the merged and crashed DataFrames.

```
In [ ]: import pandas as pd

# Import the source data and merge.
    df_crashes = pd.read_csv('Traffic_Crashes_-_Crashes_20240830.csv', low_memory=False)
    df_vehicles = pd.read_csv('Traffic_Crashes_-_Vehicles_20240830.csv', low_memory=False)
    df = pd.merge(df_crashes, df_vehicles, on='CRASH_RECORD_ID').reset_index()

# Display the total number of crashes.
    print('Total Number of Reported Crashes:', df['CRASH_RECORD_ID'].nunique())

Total Number of Reported Crashes: 30244

In []: df.head()
```

Out[]:	index		CRASH_RECORD_ID	CRASH_DATE_EST_I	CRASH_DATE	POS1
	58	58	01fbc58e11f4eba98b3aabefcc26c9a8247ee52844059a	Υ	2020-12-17 16:00:00	
	59	59	01fbc58e11f4eba98b3aabefcc26c9a8247ee52844059a	Y	2020-12-17 16:00:00	
	69	69	02b7a24181603c177ec38cd0e1439fe9e80f23200d91da	NaN	2020-12-11 00:29:00	
	70	70	02b7a24181603c177ec38cd0e1439fe9e80f23200d91da	NaN	2020-12-11 00:29:00	
	84	84	044802edff78b91b87c91d999b59af59986534a5ec71f5	NaN	2020-12-27 18:16:00	
	г	11	10 1			

5 rows × 119 columns

Drop duplicates to eliminate and avoid skewed results

Out[]:		index	${\sf CRASH_RECORD_ID}$	CRASH_DATE_EST_I	CRASH_DATE	POSTED_SPEED_LIMIT	TRAFFIC_C
	58	False	False	False	False	False	
	59	False	False	False	False	False	
	69	False	False	True	False	False	
	70	False	False	True	False	False	
	84	False	False	True	False	False	
	•••						
	61483	False	False	True	False	False	
	61529	False	False	True	False	False	
	61530	False	False	True	False	False	
	61541	False	False	True	False	False	
	61542	False	False	True	False	False	

4486 rows × 119 columns

df = df.dropna(axis = 0, how = "any", subset = None)

In []: # drop null values

df.info()

```
<class 'pandas.core.frame.DataFrame'>
        Index: 0 entries
        Columns: 105 entries, index to Hour
        dtypes: datetime64[ns](1), float64(24), int32(1), int64(1), object(78)
        memory usage: 0.0+ bytes
        Step 2: Set the 'CRASH_DATE' column to a date format. Drop observations that did not occur in
        2017, 2018, or 2019 (earlier years' data is lacking). Do this for both merged and crashed
        DataFrames.
In [ ]: # Change the CRASH_DATE column to date data type.
        df['CRASH_DATE'] = pd.to_datetime(df['CRASH_DATE'])
        df_crashes['CRASH_DATE'] = pd.to_datetime(df_crashes['CRASH_DATE'])
        # Subset DataFrame to include only crashes from 2018, 2019 and 2020, because other yea
        df = df[(df['CRASH_DATE'] >= '2018-01-01') & (df['CRASH_DATE'] <= '2020-12-31')]
        df crashes = df_crashes[(df_crashes['CRASH_DATE'] >= '2018-01-01') & (df_crashes['CRASTICLE']
        C:\Users\Administrator\AppData\Local\Temp\ipykernel_22932\4139120760.py:2: UserWarnin
        g: Could not infer format, so each element will be parsed individually, falling back
        to `dateutil`. To ensure parsing is consistent and as-expected, please specify a form
          df['CRASH_DATE'] = pd.to_datetime(df['CRASH_DATE'])
        C:\Users\Administrator\AppData\Local\Temp\ipykernel_22932\4139120760.py:3: UserWarnin
        g: Could not infer format, so each element will be parsed individually, falling back
        to `dateutil`. To ensure parsing is consistent and as-expected, please specify a form
```

df_crashes['CRASH_DATE'] = pd.to_datetime(df_crashes['CRASH_DATE'])

For conversion of the CRASH_DATE columns to a date type we use the pandas function to_datetime(), passing the columns to change as a parameter.

Step 3: Plot showing the number of crashes that occur every hour of each day

```
In [ ]:
        import numpy as np
        import matplotlib.pyplot as plt
        import folium
        import seaborn as sns
        sns.set_theme(style='darkgrid')
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.linear_model import LogisticRegression
        from sklearn.ensemble import RandomForestClassifier, BaggingClassifier
        from sklearn.neighbors import KNeighborsClassifier
        # Add column containing hour of day that crash occured.
        df['Hour'] = df['CRASH_DATE'].dt.hour
        # Plot number of crashes by hour of day.
        plt.figure(figsize=(15,8))
        s = sns.barplot(data=df.groupby('Hour')['CRASH_RECORD_ID'].nunique().reset_index(), x=
        s.set_title('Hourly Number of Reported Crashes in Chicago (2018 - 2020)', y=1.02, font
        s.set_xlabel('Hour of Day', fontsize=13, labelpad=15)
        s.set_ylabel('Number of Crashes', fontsize=13, labelpad=15)
        plt.show()
```

200 175 150 25 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Hour of Day

Hourly Number of Reported Crashes in Chicago (2018 - 2020)

The contents of the matplotlib and seaborn libraries available to our program. matplotlib and seaborn work together for creating visualizations in Python. This makes plotting easier and appealing.

Specify the plot size as 15×8 , and then run seaborn's barplot() method. We pass it five parameters, which we shall use in turn. The first argument is the data we want to plot: we group the records by our new Hour column and count the number of unique CRASH_RECORD_IDs in

each group using the nunique() method. The second and third parameters are the plot's x and y, which are the hour and crash count, respectively. The fourth argument determines the color palette, and the fifth specifies no line around the bars, which is a stylistic preference.

Step 4: Identify the make of car involved in the most daytime crashes in August 2018. Remember that a collision can include many automobiles.

```
In []: # Subset the DataFrame for crashes that occurred during daylight.
    df_daylight = df[df['LIGHTING_CONDITION'] == 'DAYLIGHT']

# Determine the make of vehicle involved in the most crashes.
    df_daylight['MAKE'].value_counts().nlargest(1)
Out[]: MAKE
CHEVROLET 232
```

Step 5: Determine the weather condition prevalent for each crash

Name: count, dtype: int64

In []: df_crashes.groupby('FIRST_CRASH_TYPE')['WEATHER_CONDITION'].apply(lambda x: x.value_cc

Out[]:		FIRST_CRASH_TYPE	ANGLE	COUNT
	0	ANGLE	CLEAR	7488
	1	ANIMAL	CLEAR	62
	2	FIXED OBJECT	CLEAR	3287
	3	HEAD ON	CLEAR	538
	4	OTHER NONCOLLISION	CLEAR	243
	5	OTHER OBJECT	CLEAR	676
	6	OVERTURNED	CLEAR	45
	7	PARKED MOTOR VEHICLE	CLEAR	15411
	8	PEDALCYCLIST	CLEAR	1131
	9	PEDESTRIAN	CLEAR	1739
	10	REAR END	CLEAR	15751
	11	REAR TO FRONT	CLEAR	581
	12	REAR TO REAR	CLEAR	133
	13	REAR TO SIDE	CLEAR	348
	14	SIDESWIPE OPPOSITE DIRECTION	CLEAR	975
	15	SIDESWIPE SAME DIRECTION	CLEAR	10739
	16	TRAIN	CLEAR	3
	17	TURNING	CLEAR	10106

```
In [ ]: weather_conditions = df['WEATHER_CONDITION'].unique()
    sns.barplot(x='WEATHER_CONDITION', y='INJURIES_TOTAL', data=df)
```

```
plt.xlabel('Weather Condition')
plt.ylabel('Total Injuries')
plt.title('Bar Plot of INJURIES_TOTAL vs WEATHER_CONDITION')
plt.xticks(range(len(weather_conditions)), weather_conditions, rotation=90)
plt.show()
```


Step 6: Plot the primary contributing cause of reported crashes, from highest to lowest.

```
In [ ]: # Display a plot showing the primary contributing cause of reported crashes.
plt.figure(figsize=(15, 15))
sns.countplot(data=df_crashes, y='PRIM_CONTRIBUTORY_CAUSE', order = df_crashes['PRIM_plt.title('Primary Contributing Cause of Reported Crashes in Chicago (2018 - 2020) ',
plt.xlabel('Number of Crashes', fontsize=13, labelpad=15)
plt.ylabel('Primary Contributing Cause', fontsize=13, labelpad=15)
plt.show();
```

Chicago_Car_Crashes

Step 7. Display the 10 state license plates involved in the most crashes. Remember that a crash can involve multiple vehicles.

In []:	df.groupby('LIC_P	LATE_STA	ATE')['VEHICLE_ID'].count().nlargest(10).reset_index(name='COL
Out[]:	LIC_PLATE_STATE	COUNT	
	0 IL	3643	
	1 IN	91	
	2 XX	43	
	3 WI	26	
	4 FL	23	
	5 MI	17	
	6 TX	13	
	7 OH	12	
	8 AZ	11	
	9 IA	11	

Step 8. Display the proportion of crashes in each month of 2019 where alcohol was determined to be the primary contributing cause.

```
In [ ]: # Subset to crashes reported in 2019 and count number of crashes per month.
    df_alcohol = df_crashes[(df_crashes['CRASH_DATE'] >= '2019-01-01') & (df_crashes['CRASH_DATE'].dt.strftime('%m'))['CRASH_RECORD
```

```
# Subset to crashes with alcohol as the primary contributing cause and count number pe
df_alcohol = df_crashes[df_crashes['PRIM_CONTRIBUTORY_CAUSE'].str.contains('ALCOHOL|DF
df_alcohol = df_alcohol.groupby(df_alcohol['CRASH_DATE'].dt.strftime('%m'))['CRASH_REC

# Calculate the porportions and display a well formatted result.
df_proportion = df_alcohol / df_total * 100
df_proportion.reset_index().rename(columns={'CRASH_DATE': 'MONTH', 'CRASH_RECORD_ID':
```

Out[]:		MONTH	PROPORTION
	0	01	1.633466
	1	02	1.812555
	2	03	1.673152
	3	04	2.231793
	4	05	1.646091
	5	06	1.596668
	6	07	1.968232
	7	08	1.923802
	8	09	2.679568
	9	10	2.473908
	10	11	2.074529
	11	12	2.455997

Step 9. Determine whether snowmobiles or recreational off-highway vehicles were involved in more crashes.

```
In [ ]: print('Number of snowmobiles:', str(len(df[df['VEHICLE_TYPE'] == 'SNOWMOBILE'])))
        Number of snowmobiles: 0
In []: print('Number of recreational off-highway vehicles:', str(len(df[df['VEHICLE_TYPE']
        Number of recreational off-highway vehicles: 0
        Step 10. Display a cluster map showing the locations of crashes involving a hit and run.
       # Subset to crashes involving a hit and run and drop records without location coordina
In [ ]:
        df hitrun = df crashes[df crashes['HIT AND RUN I'] == 'Y']
        df_hitrun = df_hitrun[df_hitrun['LONGITUDE'].notna()]
In [ ]: import folium
        from folium import plugins
        from IPython.display import display
        # Create a map centered on Chicago
        m = folium.Map(location=[41.8781, -87.6298], zoom_start=12)
        # Instantiate a marker cluster object for hit-and-run crashes
        hitrun = plugins.MarkerCluster().add_to(m)
```

```
# Display only crashes where hit and run was reported
for lat, lng in zip(df_hitrun['LATITUDE'], df_hitrun['LONGITUDE']):
    folium.Marker(
        location=[lat, lng],
        icon=None,
      ).add_to(hitrun)

# Display the map inline
display(m)
```


To display the locations of crashes involving hit and runs, we first subset df_crashes to obtain the data we want to plot, and then store the result as df_hitrun. Some records in the DataFrame lack coordinates, therefore we eliminate them using the notna() method.

To display our map, we'll be using Folium and a related marker cluster plugin. We begin by making the contents of the Folium module available to our software and importing the plugins. Folium is a sophisticated tool that requires little code to generate an interactive map with amazing detail.

Create a Folium map by passing the GPS coordinates of Chicago and a zoom level of 12.