

ECT 113 Information Technology

Dr. Amina Elhawary

Lecture 3

Numbering system

what is Numbering System?

- **Numbering System** is the method of writing or expressing a number and using it to perform mathematical calculations.
 - There are various types of number system in mathematics or computer system:
 - Decimal
 - Binary
 - Octal
 - Hexadecimal

- The Decimal System is composed of 10 numerals or symbols.
- These 10 symbols are 0,1,2,3,4,5,6,7,8,9: using these symbols as digits of a number, we can express any quantity.
- The decimal system, also called the base-10 system because it has 10 digits.
- the decimal system is a positional-value system in which the value of a digit depends on its position.

- For example: consider the decimal number 453.
- Digit 4 actually represents 4 hundreds, the 5 represent 5 tens, and the 3 represent 3 units.
- In essence, the 4 carries the most weight of the three digits; it is referred to as the most significant digit (MSD).
- The 3 carries the least weight and is called the least significant digit (LSD).

• For example: consider the decimal number 27.35.

• This number is actually equal to 2 tens plus 7 units plus 3 tenth plus 5 hundredth or (2*10 + 7*1 + 3*0.1 + 5*0.01).

• The decimal point is used to separate the integer and fractional parts of the number.

• Moreover, the various positions relative to the decimal point carry weights that can be expressed as powers of 10.

• Example : 2745.214

=
$$(2x 10^3)+(7x 10^2)+(4x 10^1)+(5x 10^0)+(2x 10^1)+(1x 10^2)+(4x 10^3)$$

- In general any number is simply the sum of product of each digit value and its positional value.
- Unfortunately, Decimal number system does not lend itself to convinient implementation in digital system.
- It is very difficult to design electronics equipment so that it can work with 10 different voltage levels (0-9).
- For this reason, almost every digital system uses the binary number system as the basic number to design electronics circuits that operate with only two voltage levels.

• In Binary system, there are only two symbols or possible digit values, 0 and 1.

• Even so, this base-2 system can be used to represent any quantity that can be represented in decimal or other number systems.

• The binary system is also a positional-value system, where in each binary digit has its own value or weight expressed as a power of 2.

Example:

- Here, places to the left of the binary point (counterpart of the decimal point) are positive power of 2 and places to the right are negative power of 2.
- Exercise: Find the equivalent in the decimal system for the number 1011.101,

Answer: 11.625_{10 (How?)}

2 ³ = 8	2° = 4	21 = 2	2° = 1 LSB	Decimal equivalent
О	О	О	О	0
О	О	О	1	1
О	О	1	О	2
О	О	1	1	3
0	1	О	О	4
O	1	O	1	5
O	1	1	О	5 6
О	1	1	1	7
1	О	О	О	8
1	0	О	1	9
1	0	1	0	10
1	О	1	1	11
1	1	О	О	12
1	1	О	1	13
1	1	1	О	14
1	1	1	1	15

Example:

What is the largest number that can be represented using 8 bits?

• Solution :

$$2^{N} - 1 = 2^{8} - 1$$

$$= 255_{10}$$

$$= 11111111_{2}$$

Binary to Decimal Conversion

- A Binary number can be converted to decimal by multiplying the weight of each position with the binary digit and adding together.
- Example :

Convert the Binary number 101102 to its Decimal equivalent.

Binary number 1 0 1 1 0,

$$2^{4} + 2^{3} + 2^{2} + 2^{1} + 2^{0}$$

$$(2^{4} \times 1) + (2^{3} \times 0) + (2^{2} \times 1) + (2^{1} \times 1) + (2^{0} \times 0)$$

$$= 16 + 0 + 4 + 2 + 0$$

$$= 22_{10}$$

Binary to Decimal Conversion

• Example:

Convert the Fractional Binary Number 101.102 to its Decimal equivalent.

Binary Number
$$= 1 0 1 . 1 0$$

Power of 2 position =
$$2^2 2^1 2^0 . 2^{-1} 2^{-2}$$

=
$$(2^{2} \times 1)+(2^{1} \times 0)+(2^{0} \times 1) \cdot (2^{-1} \times 1)+(2^{-2} \times 0)$$

Decimal Value
$$= 4 + 0 + 1 \cdot 0.5 + 0$$

$$= 5.5_{10}$$

Decimal to Binary Conversion

• Example:

Convert Decimal 20_{10} to its Binary equivalent. Solution:

```
2 20 remainder of 0
2 10 remainder of 0
2 5 remainder of 1
2 2 remainder of 0
2 1 remainder of 1
0
```

 $1 \ 0 \ 1 \ 0 \ 0_2$

Decimal to Binary Conversion

 Below example show the steps to convert decimal fraction 0.625 to its binary equivalent.

Step 1: 0.625 will be multiply by 2 (0.625 x 2 = 1.25)

Step 2: The integer part will be the MSB in the binary result

$$= 0.625_{10} = .101_2$$

Binary Addition

- Adding of two binary numbers follows same as addition of two decimal numbers.
- Some times binary addition is very much easier then Decimal or any other number system addition, because in binary you deal with only 2 numbers.
- There are mainly 4 rules should be followed in the process of addition in binary numbers:

Option less			- 5		sum	carryout
Rule 1:	0	+	0	=	О	О
Rule 2:	0	+	1	=	1	O
Rule 3:	1	+	0	=	1	О
Rule 4:	1	+	1	=	О	1

Binary Addition

Example:

Perform Binary Addition for 101₂ + 010₂ Solution:

Exercise:

Perform Binary Addition for 1011₂ + 0111₂

Answer: 10 01 0₂

Signed Binary Numbers

= -13

= +13

Representing Signed Number

Signed Binary Numbers

Example:

 Express the Decimal number -46 in 8 bit Signed magnitude system

Change the sign bit to 1 and remain unchanged magnitude nits

$$= 10101110 = -46$$

Octal Numbering System

- Octal number has eight possible symbols: 0,1,2,3,4,5,6,7 and used to express binary numbers, which is called as base of 8 number system or Radix of 8.
 - Figure: illustrated how it decrease with negative power of 8:

$$8^5 \ 8^4 \ 8^3 \ 8^2 \ 8^1 \ 8^0 \ . \ 8^{-1} \ 8^{-2} \ 8^{-3} \ 8^{-4} \ 8^{-5}$$
Decrease with negative power of 8

Octal to Binary Conversion

 Any octal number can be represent by 3 bit binary number, such as 000₂ to represent 0₈ and 111₂ to represent 7₈

Example:

Convert 435₈ to its Binary equivalent.

Octal to Binary Conversion

Exercise:

Convert 54.78 to its Binary equivalent.

Binary to Octal Conversion

- SAXONY EGYPT UNIVERSITY
 FOR APPLIED SCIENCE AND TECHNOLOGY
- This is the reverse form of the octal to binary conversion.
- First, the Binary number should be divided into group of three from LSB.
- Then each three-bit binary number is converted to an Octal form.

Example:

Convert 1001010112 to its equivalent Octal number.

Binary to Octal Conversion

Example:

Convert 11010110_2 to its equivalent Octal number.

Solution:

NOTE that a o was placed to the left of the MSB to produce even groups of 3 Bits.

Octal to Decimal Conversion

- Octal number can be converted to decimal by multiplying the weight of each position with the octal number and adding together.
- Example:

Convert the Octal number 2578 to its decimal equivalent

$$257_8 = (2 \times 8^2) + (5 \times 8^1) + (7 \times 8^0)$$
$$= (2 \times 64) + (5 \times 8) + (7 \times 1)$$
$$= 175_{10}$$

Decimal to Octal Conversion

 Here we can apply the same method done in decimal to binary conversion. Dividing the decimal number by 8 can do conversion to octal.

Example:

Convert 97₁₀ to its Octal equivalent.

Hexadecimal Numbering System

- Hexadecimal number system is called as base 16 number system.
- It uses 10 decimal numbers and 6 alphabetic characters to represent all 16 possible symbols.
- Table below, shows Hexadecimal numbers with its equivalent in decimal and Binary.

Hexadecimal Numbering System

Hexadecimal Number	Binary Number	Decimal Nmber
0	0000	О
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
A	1010	10
В	1011	11
C	1100	12
D	1101	13
E	1110	14
F	1111	15

Hexadecimal to Binary Conversion

 Hexadecimal number can be represent in Binary form by using 4 bits for each hexadecimal number.

 O_{16} can be written in binary = 0000 7_{16} in binary can be written = 0111 A_{16} in binary can be written = 1010

Example:

Convert the Hexadecimal A5₁₆ to its Binary equivalent.

Hexadecimal to Binary Conversion

Exercise:

Convert the Hexadecimal 9F2₁₆ to its Binary equivalent.

Binary to Hexadecimal Conversion

Example:

Convert the Binary 1011011011111010₂ to its equivalent Hexadecimal number.

Hexadecimal to Decimal Conversion

 Hexadecimal number can be converted to decimal by multiplying the weight of each position of the hexadecimal number (power of 16) and adding togather.

Example:

Convert the Hexadecimal number 327₁₆ to its Decimal Equivalent.

$$327_{16} = (3 \times 16^{2}) + (2 \times 16^{1}) + (7 \times 16^{0})$$
$$= (3 \times 256) + (2 \times 16) + (7 \times 1)$$
$$= 807_{10}$$

Decimal to Hexadecimal Conversion

- Here we can apply the same method done in Decimal to Binary conversion.
- Since we need to convert to Hexadecimal, so we have to divide the Decimal number by 16.

• Example :

Convert the Decimal 382₁₀ to its Hexadecimal equivalent.

```
Solution: 16382 + \text{remainder of} 14
1623 + \text{remainder of} 7
O

7

E_{16}
```


THANK YOU

