Massachusetts Institute of Technology

Instructors: Zachary Abel, Erik Demaine, Jason Ku

Lecture 16: Dynamic Programming I

November 6, 2018

Lecture 16: Dynamic Programming I

How to Solve an Algorithms Problem (Review)

• Reduce to a problem you already know (use data structure or algorithm)

Search Data Structures	Sort Algorithms	Shortest Path Algorithms
Array	Insertion Sort	Breadth First Search
Sorted Array	Selection Sort	DAG Relaxation (DFS $+$ Topo)
Linked List	Merge Sort	Dijkstra
Dynamic Array	Heap Sort	Bellman-Ford
Binary Heap	AVL Sort	Johnson
Binary Search Tree / AVL	Counting Sort	
Direct-Access Array	Radix Sort	
Hash Table		

- Design your own **recursive** algorithm
 - Recursive so constant-sized program can solve large input, analysis by induction
 - Recursive function calls are nodes in a graph, directed edge from $A \to B$ if A calls B
 - Dependency graph of recursive calls must be acyclic, classify based on shape

Class	Graph
Brute Force	Star
Decrease & Conquer	Chain
Divide & Conquer	Tree
Dynamic Programming	DAG

- Hard part is thinking inductively to construct recurrence on subproblems
- How to solve a problem recursively (**SR. BST**)
 - 1. Define **Subproblems**
 - 2. Relate Subproblems
 - 3. Identify **Base** Cases
 - 4. Compute **Solution** from Subproblems
 - 5. Analyze Running **Time**

Fibonacci

• Subproblems: the *i*th Fibonacci number F(i)

• Relate: F(i) = F(i-1) + F(i-2)

• Base cases: F(0) = F(1) = 1

• Solution: F(n)

- Divide and conquer implies a tree of **recursive calls** (draw tree)
- $T(n) = T(n-1) + T(n-2) + O(1) > 2T(n-2), T(n) = \Omega(2^{n/2})$ exponential...:
- Subproblem F(k) computed more than once! (F(n-k) times)
- Draw subproblem dependencies as a DAG
- To solve, either:
 - Top down: record subproblem solutions in a memo and reuse
 - Bottom up: solve subproblems in topological sort order
- For Fibonacci, n subproblems (vertices) and 2(n-1) dependencies (edges)
- Then time to compute is then O(n)

```
# recursive solution (top down)
2 F = \{ \}
                                          # memo
 def fib(n):
     if n < 2: return 1</pre>
                                          # base case
      if n not in F:
                                          # check memo
         F[n] = fib(n-1) + fib(n-2) # recurrence
      return F[n]
# iterative solution (bottom up)
2 F = \{ \}
                                          # memo
3 def fib(n):
    F[0], F[1] = 1, 1
                                         # base case
     for i in range(2, n + 1):
                                         # topological sort order
         F[i] = F[i - 1] + F[i - 2]
     return F[n]
```

Dynamic Programming

- Weird name coined by Richard Bellman
 - Wanted government funding, needed cool name to disguise doing mathematics!
 - Updating (dynamic) a plan or schedule (program)
- Existence of recursive solution implies that subproblems are decomposable¹
- Recursive algorithm implies a graph of computation
- Dynamic programming if subproblems dependencies **overlap** (form a DAG)
- "Recurse but reuse" (Top down: record and lookup subproblem solutions)
- "Careful brute force" (Bottom up: do each subproblem in order)

Dynamic Programming Steps (SR. BST)

- 1. Define **Subproblems** subproblem $x \in X$
 - Describe the meaning of a subproblem in words, in terms of parameters
 - Often subsets of input: prefixes, suffixes, contiguous subsequences
 - Often record partial state: add subproblems by incrementing some auxiliary variables
- 2. **Relate** Subproblems x(i) = f(x(j),...) for one or more j < i
 - State topological order to argue relations are acyclic and form a DAG
- 3. Identify Base Cases
 - State solutions for all reachable independent subproblems
- 4. Compute **Solution** from Subproblems
 - Compute subproblems via top-down memoized recursion or bottom-up
 - State how to compute solution from subproblems (possibly via parent pointers)
- 5. Analyze Running **Time**
 - $\sum_{x \in X} \operatorname{work}(x)$, or if $\operatorname{work}(x) = W$ for all $x \in X$, then $|X| \times W$

¹This property often called **optimal substructure**. It is a property of recursion, not just dynamic programming

Single Source Shortest Paths Revisited

- Find shortest path weight from s to v for all $v \in V$
- Observation: Subsets of shortest paths are shortest paths
- Try to find a recursive solution in terms of subproblems!
- Attempt 1:

1. Subproblems

- Try $x(v) = \delta(s, v)$, shortest path weight from s to v

2. Relate

- $x(v) = \min\{x(u) + w(u, v) \mid (u, v) \in E\}$
- Dependency graph is the same as the original graph!
- If graph had cycles, subproblem dependencies can have cycles...:(
- For now, assume graph is acyclic
- Then we can compute subproblems in a topological sort order!

3. Base

- $-x(s) = \delta(s,s) = 0$
- $x(v) = \infty$ for any other $v \neq s$ without incoming edges

4. Solution

- Compute subproblems via top-down memoized recursion or bottom-up
- Solution is subproblem x(v), for each $v \in V$
- Can keep track of parent pointers to subproblem that minimized recurrence

5. Time

- # subproblems: |V|
- Work for subproblem x(v): $O(deg_{in}(v))$

$$\sum_{v \in V} O(deg_{in}(v)) = O(|V| + |E|)$$

• This is just DAG Relaxation! What if graph contains cycles? Next time!