

Sujet Bacc Physique série D avec corrigé - Session 2020

1. Chimie organique

- 1- Donner la formule d'un monoalcool saturé A de densité par rapport à l'air d = 2,55
- 2- a) Donner les formules semi-développées, les noms et les classes des différents alcools isomères possibles de A.
- b) On procède à l'oxydation ménagée de l'alcool A. Le composé B obtenu donne un précipité jaune avec la 2,4-DNPH et ne réagit pas avec la liqueur de Fehling. De quelle classe d'alcool s'agit-il ? Justifier.
- 3- L'un des isomères de A est une molécule chirale. Donner la représentation en perspective des deux énantiomères de cette molécule.

On donne : $M(C) = 12 \text{gmol}^{-1}$; $M(H) = 1 \text{gmol}^{-1}$; $M(O) = 16 \text{gmol}^{-1}$

1-
$$d = \frac{M}{29}$$
 \rightarrow M = 29 d or M = 14n + 18 = 29d = 29. 2,55 \rightarrow n = 4 FB de A C₄H₁₀O

2- a) FSD - noms - classes

$$H_3C$$
— CH_2 - CH_2 - CH_2 - OH

butan-1 ol (I)

 H_3C — CH — CH_2 - OH
 $H_3\overset{1}{C}$

2-méthyl propan-1 ol (II)

OH
$$H_{3}C - HC - CH_{2} - CH_{3}$$

$$butan-2 ol (II)$$

$$OH - CH_{3}$$

$$CH_{3}$$

2-methyl propan-2 ol (III)

b) A
$$\rightarrow$$
 oxydation B \rightarrow DNPH + \rightarrow LF - alcool A alcool secondaire et B cétone

3- Représentation en perspective des deux énantiomères

2. Chimie minérale

On dissout m = 0,068g d'ammoniac dans l'eau pour avoir une solution aqueuse (S) d'ammoniac de volume $V_B = 400 \text{cm}^3$ et de concentration molaire C_B . Le pH de la solution (S) à 25°C est égal à 10,6.

- 1. Calculer C_B
- 2. a) Montrer que l'ammoniac est une base faible
- b) Écrire l'équation de la réaction de l'ammoniac avec l'eau et calculer les concentrations des espèces chimiques présentes dans la solution autre que l'eau.
- c) En déduire le pk_A du couple NH₄⁺/ NH₃
- 3. Quel volume V_A d'une solution d'acide chlorhydrique de concentration molaire $C_A = 0,1 \text{mol}L^{-1}$ faut-il ajouter à 100cm^3 de (S) pour atteindre l'équivalence ?

On donne: $M(N) = 14gmol^{-1} M(H) = 1gmol^{-1}$

- 1. Calcul de C_B : $C_B = \frac{n}{V_B} = \frac{m}{MV_B} = 10^{-2} \, mol L^{-1}$
- 2. a) $14 + \log C_B = 12 \neq pH$ cqfd ou $[H_3O^+] = 10^{-10,6} = 2,5.10^{-11} \text{molL}^{-1}$ donc $[OH^-] = \frac{10^{-14}}{[H_2O^+]} = 4.10^{-4} \text{mol.L}^{-1}$ < C_B cqfd
 - b) Réaction de l'ammoniac avec l'eau

$$NH_3 + H_2O \leftrightarrow NH_4^+ + OH^-$$

Concentrations des différentes espèces chimiques :

$$[H_3O^+]=2,5.10^{-11} mol.L^{-1}$$
 $[OH^-]=4.10^{-4} mol.L^{-1}$

équation d'électro-neutralité : $[NH_4^+]+[H_3O^+]=[OH^-]$ or $[H_3O^+]\ll[OH^-]$

$$[NH_4^+] = [OH^-] = 4.10^{-4} \, mol.L^{-1}$$

conservation de la matière : $[NH_3] = C_B - [NH_4^+] = 10^{-2} - 4.10^{-4} = 96.10^{-4} \text{ mol. } L^{-1}$

c) pK_A du couple :
$$pK_A = pH - \log \frac{[NH_3]}{[NH_4^+]} \rightarrow pK_A = 9,2$$

3. Volume de l'acide V_A : $V_A = \frac{C_B V_B}{C_A} = 10 \text{ cm}^3$

3. Physique nucléaire

Le noyau de Molybdène $^{99}_{42}Mo$ est radioactif. Il se désintègre et se transforme en Technétium $^{99}_{43}Tc$.La constante radioactive du Molybdène est $\lambda = 1,05.10^{-2}$ heure⁻¹.

- 1. Écrire l'équation de cette désintégration. De quel type de désintégration s'agit-il?
- 2. Calculer la période radioactive du Molybdène.
- 3. Au bout de combien de temps 75 % de ce noyau sera -t-il désintégré ?
- 1. Équation de désintégration ${}^{99}_{42}Mo \rightarrow {}^{99}_{43}Tc + {}_{-}{}^{0}_{1}e$

Type de désintégration : radioactivité β

2. Période radioactive :
$$T = \frac{\ln 2}{\lambda} = 66 \text{ heures}$$

3. Instantanée 75 % du noyau désintégré ,
$$N$$
 = 0,25 N_0 = $N_0e^{-\lambda t}$ \rightarrow

4. Optique géométrique

On considère une lentille convergente L_1 , de distance focale f $'_1$ = 10cm. Un objet AB de hauteur 1cm est placé à 15cm devant la lentille L_1 .

- 1. Déterminer, par calcul, les caractéristiques de l'image A₁B₁ de AB à travers la lentille L₁.
- 2. A la lentille L_1 , on accole une deuxième lentille L_2 de distance focale f $'_2$ = -20cm. Les deux axes optiques se coïncident.
 - a) Calculer la distance focale du système accolé de deux lentilles { L₁,L₂}
- b} On garde AB à sa position initiale. L'image de l'objet AB par rapport au système accolé {L 1,L2} est A'B'. Déterminer graphiquement l'image A'B' de l'objet AB.

Échelles : En vraie grandeur pour l'objet ; Sur l'axe optique : $\frac{1}{10}$

1. Caractéristiques de l'image A₁B₁ à travers L₁

Nature et position : $\frac{1}{\overline{O_1 A_1}} - \frac{1}{\overline{O_1 A}} = \frac{1}{f'_1} \longrightarrow \overline{O_1 A_1} = \frac{f'_1.\overline{O_1 A}}{f'_1 + \overline{O_1 A}} \longrightarrow \overline{O_1 A_1} = 30 \, cm > 0$

l'image est réelle situé à 30cm à droite du centre optique.

Sens et grandeur :

$$\gamma = \frac{\overline{O_1 A_1}}{\overline{O_1 A}} = -2$$
 - l'image est renversée et deux fois plus grande que l'objet $\overline{A_1 B_1} = 2.\overline{AB} = 2 cm$

2. a) Distance focale:

$$\frac{1}{f'} = \frac{1}{f'_1} + \frac{1}{f'_2} \longrightarrow f' = \frac{f'_1 \cdot f'_2}{f'_1 + f'_2} \longrightarrow f' = 20cm$$

b) Image A'B' de AB par le système accolé

5. Électromagnétisme

5.1 Partie A

Deux rails horizontaux, en cuivre CC' et DD', sont reliés à un générateur qui débite un courant continu d'intensité I, comme l'indique la figure ci-dessous. Sur ces deux rails est posée perpendiculairement une tige MN en cuivre de résistance négligeable. Les deux rails, distants de d=10cm, sont plongés dans un champs magnétique vertical uniforme \vec{B} . La tige MN se déplace sans frottement de C vers C' et reste toujours perpendiculaire aux deux rails.

- 1. Reproduire le schéma et préciser le sens du vecteur champ magnétique \vec{B} .
- 2. Déterminer les caractéristiques du vecteur force de Laplace \vec{F} appliquée à la tige MN.

On donne: I = 2A; $B = 2.10^{-2}$ T.

1.

$$\vec{F} = I \cdot \overrightarrow{MN} \wedge \vec{B}$$

F

- 2. Caractéristique du vecteur force de Laplace
 - point d'application ; milieu de la tige MN

direction : parallèle à (CC')

• sens : de C vers C'

intensité : F = I.d.B = 4.10⁻³N

5.2 Partie B

Entre deux points A et B , on relie en série, un conducteur ohmique de résistance R = 200Ω , une bobine de résistance négligeable et d'inductance L = 20mH et un condensateur de capacité C= $30\mu\text{F}$. On néglige la résistance des fils de jonction. On applique entre les bornes A et B une tension sinusoïdale de valeur efficace U = 110V et de fréquence N = 50Hz.

- 1. Vérifier que l'impédance du circuit entre A et B soit $Z = 223,55\Omega$.
- Calculer la valeur de l'intensité efficace I du courant à travers le circuit.
- 3. Calculer le déphasage φ entre la tension u et l'intensité i.

1. Impédance Z :
$$Z = \sqrt{R^2 + (L\omega - \frac{1}{C\omega})^2}$$
 avec $Z_R = 200\Omega$

$$Z_L = L\omega = L2\pi N = 6,28N$$
; $Z_C = \frac{1}{C\omega} = \frac{1}{C2\pi N} = 106,10\Omega$ soit $Z = 223,55\Omega$ cqfd

2. Intensité efficace :

$$I = \frac{U}{Z} = 0,49 A$$

3. Déphasage entre u(t) et i(t) :

$$\tan \varphi = \frac{Z_L - Z_C}{R} = -0.49$$
 ou $\cos \varphi = \frac{R}{Z}$

d'où $\varphi = \pm 0.46 \text{ rad}$

6. Mécanique

6.1 Partie A

On prend g=10m.s⁻² et tous les frottements sont négligeables.

Un solide métallique (S)de faible dimension et de masse négligeable et de longueur I = 25cm. L'autre extrémité du fil est fixé en un point O d'un axe vertical (Δ). Lorsque cet axe tourne à une vitesse angulaire ω suffisante, le fil s'incline d'un angle θ = 45° par rapport à la verticale et le centre d'inertie G du solide prend un mouvement circulaire uniforme de centre I et de rayon r.

- 1. Établir une relation entre g, I, θ et ω
- 2. Calculer la vitesse angulaire ω
- 3. En déduire l'intensité de la tension du fil
- 1. Relation entre g, I, θ , ω

TCI:
$$\vec{T} + \vec{P} = m\vec{a}$$

MCU

sur n'n Tsinθ = $mω^2$ r (1) avec r = Isinθ Projection: sur t't $T\cos\theta = mg$ (2)

$$\frac{(1)}{(2)} = \frac{\sin \theta}{\cos \theta} = \frac{m\omega^2 l \sin \theta}{mg} \rightarrow \omega^2 = \frac{g}{l \cos \theta}$$

2. calcul de la vitesse angulaire ω

$$\omega = \sqrt{\frac{g}{l\cos\theta}} = 7,52 \, rad/s$$

3. Intensité de la tension du fil :

Tcosθ = mg et
$$cosθ = \frac{g}{lω^2}$$
 \rightarrow T = $mω^2l = 2,82N$

6.2 Partie B

Soit une tige OB, de masse négligeable et de longueur 2L. Deux petites billes, assimilables à des points matériels sont fixées sur la tige. L'une A de masse $m_1 = m$ est placé au milieu de la tige et l'autre B de masse $m_2 = 2m$ est fixée à l'extrémité inférieure . Le système {tige+masse $m_1 + masse m_2$ } est mobile autour d'un axe vertical (Δ) passant par l'extrémité O et le mouvement s'effectue dans le plan vertical.

1. Vérifier que :

a) La distance du centre d'inertie G du système par rapport au point O de l'axe (Δ) est

$$OG = \frac{5}{3}.L$$

b) Le moment d'inertie du système par rapport à l'axe (Δ) est J_{Δ} =9mL 2

Faire l'application numérique.

- 2. On écarte le système {tige+masse m_1 +masse m_2 } d'un angle petit θ_0 = 0,1rad par rapport à la verticale et on l'abandonne sans vitesse initiale à l'instant t = 0s.
 - a) Établir l'équation différentielle régissant le mouvement du système
 - b) Écrire l'équation horaire de mouvement du système {tige+masse m1+masse m2}

On donne: L = 10cm; m = 10g; OB = 2L = 2OA

1. a) $3m\overline{OG} = m\overline{OA} + 2m\overline{OB} \rightarrow 3\overline{OG} = \overline{OA} + 2\overline{OB}$

sur l'axe verticale : 3OG = L + 2(2L) d'où 3OG = 5L cqfd

- b) Moment d'inertie du système : $J_{\Delta} = J_{m1} + J_{m2} + J_{T} = mL^{2} + 2m(2L)^{2} \rightarrow J_{\Delta} = 9mL^{2} = 9.10^{-4} \text{kgms}^{-2}$
- 2. a) Équation différentielle : TAA : $\mu_{\Lambda}(\vec{R}) + \mu_{\Lambda}(\vec{P}) = J_{\Lambda}\ddot{\Theta} \rightarrow 0 3mg \text{ OG sin}\Theta = J_{\Delta}\ddot{\Theta}$

$$\ddot{\theta} + \frac{3 \, mgOG}{J_{\Delta}} = 0 \qquad \rightarrow \qquad \ddot{\theta} + \frac{5 \, g}{9 \, L} \theta = 0$$

b) Équation horaire

$$\theta = \theta_0 \sin(\omega t + \phi)$$
 avec $\theta_0 = 0.1 \text{ rad}$ et $\omega = \sqrt{\frac{5g}{3L}} = 7.45 \text{ rad/s}$ et $\phi = \frac{\pi}{2}$

d'où l'équation :
$$\theta = 0.1 \sin \left(7.45t + \frac{\pi}{2} \right)$$
 ou $\theta = 0.1 \cos \left(7.45t \right)$