SHORT SYLLABUS

BMAT102L Differential Equations and Transforms

4 Credits (3-1-0)

Prerequisites: Calculus Second order non-homogenous differential equations with constant coefficients-Method of undetermined coefficients-Method of Variation of parameters-Solving Damped forced oscillations and LCR circuit theory problems. Formation of partial differential equations – Solutions of standard types of first order partial differential equations – Lagrange's linear equation-Method of separation of variables. Properties of Laplace transform-Laplace transform of standard functions and periodic functions. Inverse Laplace transform- Applications. Solution of ODE's - Solution to First order. Fourier series - Dirichlet's conditions - Half range series – Parseval's identity- Simple applications to solve PDE. Z-transform of standard functions - Inverse Z-transform- Difference equation - First and second order difference equations with constant coefficients - Solution of simple difference equations using Z-transform.

BMAT102L	Differential Equations and Transforms		L	Т	Р	С
			3	1	0	4
Pre-requisite	BMAT101L, BMAT101P	Syllabus version				
				1.0)	

Course Objectives

- 1. To impart the knowledge of Laplace transform, an important transform techniques for Engineers which requires knowledge of integration.
- 2. Presenting the elementary notions of Fourier series, this is vital in practical harmonic analysis.
- 3. Enriching the skills in solving initial and boundary value problems.
- 4. Impart the knowledge and application of difference equations and the Z-transform in discrete systems that are inherent in natural and physical processes.

Course Outcomes

At the end of the course the student should be able to:

- 1. Find solution for second and higher order differential equations, formation and solving partial differential equations.
- 2. Understand basic concepts of Laplace Transforms and solve problems with periodic functions, step functions, impulse functions and convolution.
- 3. Employ the tools of Fourier series and Fourier transforms.
- 4. Know the techniques of solving differential equations and partial differential equations.
- 5. Know the Z-transform and its application in population dynamics and digital signal processing.

Module:1 Ordinary Differential Equations (ODE)

6 hours

Second order non- homogenous differential equations with constant coefficients- Differential equations with variable coefficients- method of undetermined coefficients-method of Variation of parameters-Solving Damped forced oscillations and LCR circuit theory problems.

Module: 2 | Partial Differential Equations (PDE)

5 hours

Formation of partial differential equations – Singular integrals — Solutions of standard types of first order partial differential equations – Lagrange's linear equation-Method of separation of variables

Module:3 | Laplace Transform

7 hours

Definition- Properties of Laplace transform-Laplace transform of standard functions - Laplace transform of periodic functions-Unit step function-Impulse function. Inverse Laplace transform-Partial fractions method and by Convolution theorem..

Module:4 | Solution to ODE and PDE by Laplace transform

7 hours

Solution of ODE's – Non-homogeneous terms involving Heaviside function, Impulse function - Solving Non-homogeneous system using Laplace transform - solution to First order PDE by Laplace transform.

Module:5 | Fourier Series

6 hours

Fourier series - Euler's formulae- Dirichlet's conditions - Change of interval - Half range series - RMS value - Parseval's identity.

Module:6 | Fourier Transform

6 hours

Complex Fourier transform - properties - Relation between Fourier and Laplace Transforms-Fourier sine and cosine transforms - Parseval's identity- Convolution Theorem and simple applications to solve PDE.

Module:7 Z-Transform

6 hours

Definition of Z-transform and Inverse Z-transform - Standard functions - Partial fractions and

convolution method. Difference equation - first and second order difference equations with constant coefficients - solution of simple difference equations using Z-transform.							
Module:8 Contemporary Issues	2 hours						
	45 hours						
	Total Tuto	rial hours :	15 hours				
Text Book(s)							
Erwin Kreyszig, Advanced Engineering Mathematics, 2015, 10th Edition, John Wiley India.							
B.S. Grewal, Higher Engineering Publishers.	g Mathematics,	2020, 44th	Edition, Khanna				
Reference Books							
 Michael D. Greenberg, Advanced Engineering Mathematics, 2006, 2nd Edition, Pearson Education, Indian edition. 							
 A First Course in Differential Equations with Modelling Applications, Dennis Zill, 2018, 11th Edition, Cengage Publishers. 							
Mode of Evaluation: CAT, written assignment, Quiz, FAT							
Recommended by Board of Studies	24-06-2021						
Approved by Academic Council	No. 64 Date	16-12-20	21				