PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS

Segundo semestre de 2017

MAT 1620 – Cálculo II

Solución Examen

1. Demostrar que la sucesión $a_n = \int_3^4 (\ln(x))^n dx$ diverge.

Solución. Como la función ln(x) es creciente, entonces

$$0 \leqslant 1 \cdot (\ln(3))^n \leqslant \int_3^4 (\ln(x))^n dx$$

para todo $n \in \mathbb{N}$. Como $\lim_{n \to \infty} (\ln(3))^n = \infty$ ya que $\ln(3) > 1$ concluimos, por comparación, que $\{a_n\}$ es divergente.

Puntaje Pregunta 1.

- 1 punto por utilizar que la función ln(x) es creciente.
- 1 punto por obtener la desigualdad $0 \leq (\ln(3))^n \leq (\ln(x))^n$ para todo $x \in [3, 4]$.
- 1 punto por integrar y conlcuir que $0 \leq (\ln(3))^n \leq a_n$.
- 1 punto por verificar que $\lim_{n\to\infty} (\ln(3))^n = \infty$.
- 2 puntos por usar comparación y concluir que la serie a_n diverge.

2. Si k es un entero positivo, encuentre el radio de convergencia de la serie $\sum_{n=0}^{\infty} \frac{(n!)^k}{(kn)!} x^n$.

Solución. Si
$$a_n = \frac{(n!)^k}{(kn)!}x^n$$
, entonces

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{[(n+1)!]^k (kn)!}{(n!)^k [k(n+1)]!} |x| = \lim_{n \to \infty} \frac{(n+k)^k}{(kn+k)(kn+k-1)\cdots(kn+2)(kn+1)} |x|$$

$$= \lim_{n \to \infty} \left[\frac{(n+1)}{(kn+1)} \frac{(n+1)}{(kn+2)} \cdots \frac{(n+1)}{(kn+k)} \right] |x|$$

$$= \lim_{n \to \infty} \left[\frac{(n+1)}{(kn+1)} \right] \lim_{n \to \infty} \left[\frac{(n+1)}{(kn+2)} \right] \cdots \lim_{n \to \infty} \left[\frac{(n+1)}{(kn+k)} \right] |x|$$

$$= \left(\frac{1}{k} \right)^k |x| < 1$$

Se sigue que si $|x| < k^k$ entonces la serie es absolutamente convergente, y el radio de convergencia es $R = k^k$.

Puntaje Pregunta 2.

- 4 puntos por calcular correctamente lím $|a_{n+1}/a_n|$.
- 2 puntos por usar el criterio de la razón y obtener el radio de convergencia.

3. Calcule el volumen de la caja rectangular más grande en el primer octante con tres caras en los planos coordenados y un vértice en el plano x + 2y + 3z = 6.

Solución. Sean f(x, y, z) = xyz, g(x, y, z) = x + 2y + 3z.

Usando multiplicadores de Lagrange, queremos maximizar f sujeto a la restricción g(x, y, z) = 6. Basta resolver el sistema $\nabla f = \lambda \nabla g$ lo que equivale a $(yz, xz, xy) = (\lambda, 2\lambda, 3\lambda)$.

Entonces,
$$\lambda = yz = \frac{1}{2}xz = \frac{1}{3}xy$$
 implica que $x = 2y$, $z = \frac{2}{3}y$. Sustituyendo estos valores en la restricción se obtiene que

$$2y + 2y + 2y = 6 \Longrightarrow y = 1$$
, $x = 2$, $z = \frac{2}{3}$.

y el volumen máximo es $V = \frac{4}{3}$.

Puntaje Pregunta 3.

- \bullet 2 puntos por plantear el sistema $\nabla f = \lambda \nabla g.$
- 3 puntos por resolver el sistema.
- 1 puntos por mostrar el valor máximo.

4. Calcular $\iint_D \frac{\sin(x)}{x} dA$ donde D es el triángulo en el plano XY acotado por el eje X, la recta y = x y la recta x = 1.

Solución. Notemos que la región está dada por

$$D = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1, \ 0 \le y \le x\}.$$

Entonces,

$$\iint_{D} \frac{\sin(x)}{x} dA = \int_{0}^{1} \int_{0}^{x} \frac{\sin(x)}{x} dy dx = \int_{0}^{1} \sin(x) dx = 1 - \cos(1).$$

Puntaje Pregunta 4.

- 3 puntos por describir el dominio.
- 3 puntos por calcular la integral.

5. La figura muestra la región de integración para la integral

$$\int_0^1 \int_{\sqrt{x}}^1 \int_0^{1-y} f(x, y, z) \, dz dy dx \, .$$

Reescriba está integral como una integral iterada equivalente en los órdenes dxdydz.

Solución. Tenemos que

$$\int_{0}^{1} \int_{\sqrt{x}}^{1} \int_{0}^{1-y} f(x, y, z) \, dz dy dx = \iiint_{E} f(x, y, z) \, dV \,,$$

donde $E=\{(x,y,z)\in\mathbb{R}^3\mid 0\leqslant x\leqslant 1\;,\;\sqrt{x}\leqslant y\leqslant 1\;,\;0\leqslant z\leqslant 1-y\}.$ La proyección de E sobre el plano YZ es

Se sigue que $E=\{(x,y,z)\in\mathbb{R}^3\mid 0\leqslant z\leqslant 1\,,\ 0\leqslant y\leqslant 1-z\,,\ 0\leqslant x\leqslant y^2\}$ y por lo tanto

$$\int_0^1 \int_{\sqrt{x}}^1 \int_0^{1-y} f(x, y, z) \, dz dy dx = \int_0^1 \int_0^{1-z} \int_0^{y^2} f(x, y, z) \, dx dy dz.$$

Puntaje Pregunta 5.

- ullet 2 puntos por describir el intervalo de la variable x
- 2 puntos por describir el intervalo de la variable y
- 2 puntos por describir el intervalo de la variable z

6. Calcular

$$\iiint\limits_E \sqrt{x^2 + z^2} \, dV$$

donde E es la región acotada por el cilindro $x^2+z^2=1$ y los planos $y+z=2,\,y=0.$

Solución. Geométricamente el sólido es

La figura del lado derecho corresponde a la proyección R del sólido E en el plano XZ entonces

$$I = \iiint_E \sqrt{x^2 + y^2} \, dV = \iint_R \left[\int_0^{2-z} \sqrt{x^2 + z^2} \, dy \right] \, dA = \iint_R \sqrt{x^2 + z^2} (2-z) \, dA$$

Usando coordenadas polares $y=r\cos\theta$ y $z=r\sin\theta$ se obtiene que

$$I = \int_0^{2\pi} \int_0^1 r(2 - r \sin \theta) \cdot r \, dr d\theta = \int_0^{2\pi} \int_0^1 (2r^2 - r^3 \sin \theta) \, dr d\theta$$
$$= \int_0^{2\pi} \left[\frac{2}{3} r^3 - \frac{r^4}{4} \sin \theta \right]_{r=0}^{r=1} \, d\theta = \int_0^{2\pi} \left[\frac{2}{3} - \frac{1}{4} \sin \theta \right] \, d\theta = \frac{4\pi}{3} \, .$$

Puntaje Pregunta 6.

- lacksquare 2 puntos por describir la región la región E
- 1 punto por calcular $\int_0^{2-z} \sqrt{x^2 + z^2} \, dy$
- 1 puntos por usar coordenadas polares.
- 2 puntos por calcular la integral doble sobre R.

7. Considere el sólido encerrado entre los paraboloides $z=x^2+y^2,\,z=\frac{1}{4}(x^2+y^2)$ y que está debajo del cono $z=\sqrt{x^2+y^2}$. Calcule el volumen del sólido.

Solución. La proyección del sólido sobre el plano YZ es la región

Usando coordenadas cilíndricas las ecuaciones de las superficies quedan

$$z = x^2 + y^2 = r^2$$
, $z = \frac{1}{4}(x^2 + y^2) = \frac{1}{4}r^2$ y $z = \sqrt{x^2 + y^2} = r$.

Entonces, el sólido queda descrito como la unión de dos sólidos $E=E_1\cup E_2$ donde

$$E_1 = \{(r, \theta, z) \mid 0 \leqslant \theta \leqslant 2\pi, \ 0 \leqslant r \leqslant 1, \ r^2/4 \leqslant z \leqslant r^2\}$$

$$E_2 = \{(r, \theta, z) \mid 0 \leqslant \theta \leqslant 2\pi, \ 1 \leqslant r \leqslant 4, \ r^2/4 \leqslant z \leqslant r\}.$$

Por lo tanto, el volumen del sólido es

$$V(E) = \int_0^{2\pi} \int_0^1 \int_{r^2/4}^{r^2} r \, dz dr d\theta + \int_0^{2\pi} \int_1^4 \int_{r^2/4}^r r \, dz dr d\theta = \frac{3}{8}\pi + \frac{81}{8}\pi = \frac{21}{2}\pi.$$

Puntaje Pregunta 7.

- 3 puntos por el solido E como la uníon de dos sólidos E_1 y E_2 .
- 3 puntos por calcular las dos integrales triples.

8. Calcule
$$\iint_E \frac{ye^y}{(x+y)^2} dxdy$$
, donde $E = \{(x,y) \in \mathbb{R}^2 \mid x \geqslant 0, x \leqslant y \leqslant 1, y \geqslant 1/2 - x\}$.

[Sugerencia: Considere x + y = u, y = uv]

Solución. Considere x + y = u, y = uv, despejando obtenemos que x = u - y = u - uv. Utilizando el teorema de cambio de variable con T(u,v) = (u - uv, uv) se obtiene que el Jacobiano de T es

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} x_u & x_v \\ y_u & y_v \end{vmatrix} = \begin{vmatrix} 1-v & -u \\ v & u \end{vmatrix} = (1-v)u + uv = u.$$

Entonces, el teorema afirma que

$$\iint\limits_E f(x,y) \, dxdy = \iint\limits_{E^*} f(T(u,v))|u| \, dudv$$

donde E^* es la región del plano uv determinada por $T^{-1}(E) = E^*$.

Como u > 0 en la región E^* se tiene

$$\iint_{E} \frac{ye^{y}}{(x+y)^{2}} dxdy = \iint_{E^{*}} f(T(u,v))|u| dudv = \int_{1/2}^{1} \int_{1/2}^{1/u} ve^{uv} dudv$$
$$= \int_{1/2}^{1} (e - e^{v/2}) dv = \frac{1}{2}e - e^{1/2} + 2e^{1/4}.$$

Puntaje Pregunta 8

- 1,5 puntos por dar el cambio de variables y calcular el jacobiano de la transformación.
- 1,5 puntos establecer la regiones E y E^* y sus gráficos.
- 1 punto por utilizar correctamente el teorema de cambio de variables.
- 2 puntos por calcular correctamente la integral doble.