Linguagem de Programação Linguagem Lógica Parte 2: Prova de Teoremas

Prof. Arnaldo Candido Junior

UNESP – IBILCE

São José do Rio Preto, SP

Lógica

- Lógicas que estudaremos:
 - Lógica Proposicional; de predicados (1ª ordem); fuzzy (ou difusa)
- Outras lógicas:
 - Lógica Modal (pode, precisa, não deveria, ...)
 - Lógica Temporal (sempre, as vezes, eventualmente)
 - Parassindética, quântica

Lógica (2)

Representação

operador

```
conjunção (and)
dijunção (or)
negação (not)
implicação
equivalência
```

símbolos

Lógica Proposicional

- Baseada em proposições, isto é declarações (afirmações, negações)
- Exemplo:p = hoje está chovendo
- Provar p equivale a provar que hoje está chovendo

Revisão

Conjunção

A	В	C=AVB
0	0	0
0	1	0
1	0	0
1	1	1

Disjunção

A	В	C=AVB
0	0	0
0	1	1
1	0	1
1	1	1

Negação

Α	$B=\neg A$
0	1
1	0

Disjunção Exclusiva

A	В	$C=A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	\cap

Implicação

A	В	C=A→B
0	0	1
0	1	1
1	0	0
1	1	1

Equivalência

A	В	C=A↔B
0	0	0
0	1	1
1	0	1
1	1	0

Equivalências

Propriedade

- 1. Idempotência
- 2. Comutativa
- 3. Distributiva
- 4. Associativa
- 5. Absorção
- 6. De Morgan

Equivalência

```
A \rightarrow B \equiv \sim AVB  (importante)
A \wedge A \equiv .F. (paradoxo)
AV \sim A \equiv .V. (tautologia)
A \wedge B \equiv B \wedge A
AVB \equiv BVA
A \wedge (BVC) \equiv (A \wedge B) \vee (A \wedge C)
AV(BAC) \equiv (AVB) \Lambda (AVC)
A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C
AV(BVC) \equiv (AVB)VC
AV(AAB) \equiv A
A \wedge (A \vee B) \equiv A
\sim (AAB) \equiv \sim AV \sim B
\sim (AVB) \equiv \sim A\Lambda \sim B
```

Análise Formal

- Sintaxe: tabelas verdade e regras para manipular os símbolos
 - Ex.: p ∧ ~p ≡ .F.
- Semântica: significado dos símbolos
 - Ex.: p = hoje está chovendo

Língua Natural

- A implicação na lógica não é idêntica ao "if" da língua natural, o que pode ser contra-intuitivo. Considere:
 - p = a semana começa na terça → Brasília é a capital da Argentina
 - p é verdadeira! (.F. implica .F.)
 - Esse erro de raciocínio é conhecido como falácia da implicação material, afirmação do consequente ou confusão entre suficiência e necessidade

Implicação (2)

- Para um provador de teoremas, a implicação é a operação mais importante
- A seguir, veremos operações importantes para o raciocínio dedutivo
 - Modus Ponens
 - Modus Tolens
 - Transitividade da implicação

Modus Ponens

- Se p é verdadeiro
 e (p → q) também é verdadeiro
 então q é verdadeiro
- Exemplo:
 - p: ivo está nadando
 - p → q: quem está nadando está molhado
 - q: o que podemos concluir sobre ivo?

Modus Ponens (2)

Modus Tollens

- Se q é falso
 e (p → q) é verdadeiro
 então p é falso
- Exemplo:
 - p: o que podemos concluir sobre ivo?
 - p → q: quem está nadando está molhado
 - q: ivo não está molhado

Modus Tollens (2)

Equivalência da Implicação

Considere a equivalência:

$$p \rightarrow q \equiv \sim p \vee q$$

- Exemplo:
 - Q: quem esta nadando está molhado
 - R: alguém não está nada ou estará molhado

Transitividade da implicação

- Quando p → q e q → r são válida, podemos concluir que p → r também é válida
- Demonstração a seguir

Transitividade da implicação (2)

Limitações

- A lógica proposicional possui algumas limitações para uso em provadores de teoremas
- Exemplo: dificuldade de expressar quantificadores
 - Todo aquele que nada está molhado
 - Todos os humanos são mortais
 - Alguém está nadando

Lógica de Predicados

- Baseada no trabalho de Gottfried Frege
- Subdiviões
 - Primeira ordem (foco)
 - Segunda ordem
 - Outros casos

Lógica de Predicados (2)

- Contém predicados (functores) e constantes (argumentos dos predicados)
 - Predicados tem a ver com relações
 - Argumentos tem a ver com objetos
- Predicado não é uma caixa preta como uma proposição na lógica proposicional

Lógica de Predicados (3)

- Traz o conceito de variáveis (como visto em Prolog)
- Traz o conceito de quantificadores: universal (∀ qualquer) e existencial (∃ - existe)

Exemplos

- Predicados e constantes: vizinho(joao, maria)
 - João é vizinho de Maria
- Variáveis: vizinho(joao, X)
 - João é vizinho de X
- Funções: pai(joão) = antônio
 - O pai de João é Antônio

Exemplos (2)

- Quantificador universal:
 ∀_C [criança(C) → gosta(C, sorvete)]
- Qualquer que seja C tal que se C é uma criança então C gosta de sorvete
- Ou ainda: todas as crianças gostam de sorvete

Exemplos (2)

- Quantificador existencial:
 ∃_O[oceano(O) → banha(O, Brasil)]
- Existe O tal que se O é um oceano então O banha o Brasil
- Ou ainda: há um oceano que banha o Brasil

Negação dos Quantificadores

- A lógica de predicados nem sempre é intuitiva na língua natural
- Convém observar que a negação dos quantificadores funciona da seguinte forma:
 - A negação de ∀_x [p(x)] é ∃_x[~p(x)]
 - A negação de ∃_x[p(x)] é ∀_x [~p(x)]

Inferência

- Dedução (foco): esses feijões são daquele pacote e todos os grãos daquele pacote são brancos
 - Logo, esses feijões são brancos
- Indução: Esses feijões são brancos e são daquele pacote
 - Logo, todos os grãos daquele pacote são brancos
- Abdução: Esses feijões são brancos e todos os grãos daquele pacote são brancos.
 - Logo: esses grãos são daquele pacote

Provador de Teoremas

- A seguir, veremos como construir um provador de teoremas simples, que manipula apenas valores booleanos
 - Usando uma estratégia chamada princípio da resolução
 - Começaremos com lógica proposicional e estenderemos o raciocínio para lógica de predicados (1ª ordem)

Princípio da Resolução

- Princípio da resolução é uma estratégia de inferência com a qual se tenta provar que a negação do objetivo
- É uma prova por contradição
- Se o objetivo é provar a proposição O, vamos assumir que ~O é verdadeiro

Princípio da Resolução (2)

- E verificar se isso leva a algum paradoxo na base de fatos
- Vamos assumir que a base de fatos é correta (sound)
 - Isto é, não contém inconsistência / paradoxos
- Com uma base correta, o algoritmo também será correto
 - Isto, deriva conhecimento válido

Princípio da Resolução (3)

- Para aplicar o algoritmo, precisamos converter a base na forma clausal (versão simplificada).
 Seguiremos o roteiro a seguir:
- Remover da base tautologias e paradoxos
- Aplicar distributiva da conjunção sempre que possível
- Continua ...

Princípio da Resolução (4)

- Quebrar proposições com conjunção em cláusula menores
- Trocar implicação pela expressão disjunção equivalente
- Resultado final: apenas disjunções e negações em cada cláusula
- Vamos usar as regras a seguir...

Forma Clausal simplificada

- 1. Trocar **p** ∧ ¬**p** por .**F**.
- 2. Trocar **p** ∨ ¬**p** por .**V**.
- 3. Trocar $\mathbf{p} \vee (\mathbf{q} \wedge \mathbf{r})$ por $(\mathbf{p} \vee \mathbf{q}) \wedge (\mathbf{q} \vee \mathbf{r})$
- 4. Quebrar p \(\) q em duas cláusulas menores p e
 q
- 5. Trocar p → q por ~p ∨ q
- 6. Repetir até não houver mais regras a se aplicar

Exemplo: forma clausal simplificada

- Original:
 - 1. (p v q) \(\times \q v r \) \(\times s \)
- Ajustado:
 - 2. p v q
 - 3. ~q v r
 - 4.~s

Exemplo: forma clausal simplificada (2)

- Original:
 - 1. $p \vee (\neg q \wedge r \wedge s \rightarrow t)$
- Ajustado:
 - 2. p v ~q
 - 3. p v r
 - 4. $p \lor \sim s \lor t$ (vem de $p \lor (s \rightarrow t)$)

Algoritmo

- No slide 31, 6 regras foram criadas para colocar a base na forma
- Agora usaremos três regras adicionais para fazer o processo de inferência
 - 7. Aplicar modus ponens
 - 8. Aplicar modus tollens
 - 9. Aplicar transitividade da implicação

Algoritmo (2)

- Regra 7: modus ponens
 - Na base:
 - 1. p
 - 2. $\sim p \vee q$ (equivalente de p $\rightarrow q$)
 - Inferido:
 - 3. q

Algoritmo (3)

- Regra 8: modus tollens
 - Na base:
 - 1. $\sim p \vee q$ (equivalente de p $\rightarrow q$)
 - 2. ~q
 - Inferido:
 - 3. ~p

Algoritmo (4)

- Regra 9: transitividade da implicação
 - Na base:
 - 1. ~p ∨ q (equivalente de p → q)
 - 2. \sim q \vee r (equivalente de q \rightarrow r)
 - Inferido:
 - 3. $\sim p \vee r$ (equivalente de p $\rightarrow r$)

Algoritmo (5)

- Regra informal: p e ~p se anulam sempre que estão em regras diferentes
 - Versão intuitiva das regras 7 a 9
 - Regras são simplificadas e outros casos mais complexos são contemplados também

Exemplo: aspirina

- Fatos:
 - 1. p: temperatura do paciente > 38.2
 - 2. p → q: quem está com temperatura > 38.2, tem febre
 - 3. q → r: quem tem febre precisa de aspirina
- Desejamos provar r (o paciente precisa de aspirina). Inserir ~r na base

Exemplo: aspirina (2)

- Passo 0: passar para forma clausal simplificada
 - 1. p
 - 2. ~p v q
 - 3. ~q v r

Exemplo: aspirina (3)

- Passo 1: inserir ~r na base (prova por contradição)
 - 1. p
 - 2. ~p v q
 - 3. ~q v r
 - 4. ~r

Exemplo: aspirina (4)

- Passo 2: combinar 3 e 4 usando a regra informal
 - 1. p
 - 2. ~p v q
 - 3. ~q∨r
 - 4. ~r
 - 5. ~q

Exemplo: aspirina (5)

- Passo 3: combinar 2 e 5
 - 1. p
 - 2. ~p ∨ q
 - 3. ~q v r
 - 4. ~r
 - 5. ~q
 - 6. ~p

Exemplo: aspirina (6)

- Passo 4: combinar 1 e 6
 - 1. p
 - (...)
 - 6. ~p
 - 7. Absurdo: fatos 1 e 6 não podem ser verdadeiros ao mesmo tempo

Exemplo: aspirina (7)

- Paradoxo ou contradição detectados!
- O paradoxo se dá porque existe uma informação incorreta na base
- Assumimos que ~r era verdade (não receitar aspirina)
- A única explicação possível é que ~r é falso.
 Assim, r é verdade (receitar aspirina)

Ordem de resolução

- A vantagem da prova por contradição é que existem vários caminhos a se buscar:
 - Exemplo visto: começou combinando 3 e 4 e seguiu daí.
 - Outro exemplo: começar combinando 1 e 2 e usar os fatos inferidos a partir daí
 - Múltiplos caminhos até a solução otimiza o desempenho do algoritmo estudado

Resolução: segundo exemplo

- Exercício 1: passar para a forma clausal simplificada
 - 1. p
 - 2. $(p \land q) \rightarrow r$
 - 3. $(s \lor t) \rightarrow q$
 - 4. t

Resolução: segundo exemplo (2)

- Solução:
 - 1. p
 - 2. ~p v ~q v r (antigo 2)
 - 3. ~s v q (antigo 3)
 - 4. ~t v q (antigo 3)
 - 5. t (antigo 4)
- Exercício 2: provar que r é verdadeiro (fato 6 = ???)

Resolução: segundo exemplo (3)

Resolução: segundo exemplo (4)

- Note que existem becos sem saída na resolução
 - Caso encontre um, recomeçar análise
- Prolog reduz chances de becos sem saída começando a inferência pela contradição
 - Isto é, o último fato adicionado a base
 - Esse processo é conhecido como busca com encadeamento para trás

Resolução: segundo exemplo (2)

- Obs 2: o exemplo dado pode ser representado por uma árvore
 - Em situações reais, trata-se de uma floresta
 - Para simplificar os exemplos, vamos usar árvores

Princípio da resolução: lógica de predicados

- Na lógica proposicional é mais simples fazer uma prova por contradição
 - p e ~p são contraditórios
- Na lógica de predicados, o equivalente seria:
 - brasileiro(joao) e ~brasileiro(joao)
- Note que brasileiro(joao) e ~brasileiro(jose) não são contraditórios

Unificação

- Variáveis: fator complicador para aplicar o princípio da resolução em lógica de 1ª ordem
- Estratégia: unificação
 - Atribuir um valor a uma variável que leve a um paradoxo de interesse
- Exemplo: brasileiro(X) ∧ ~brasileiro(jose)
 - Se instanciarmos X=jose, então temos o paradoxo

Unificação (2)

- Veremos a unificação em um exemplo completo
 - Modelando fatos do mundo real
 - Convertendo para lógica de 1ª ordem
 - Convertendo para fora clausal
 - Derivando fatos e unificando variáveis

Exemplo completo

- Parte 1: converta os seguintes fatos para lógica de 1ª ordem
 - Os gatos são mamíferos
 - Todo o mamífero tem um progenitor
 - O filho de um gato é um gato
 - Teco é um gato
 - Teco é progenitor do Navalha

Exemplo completo (2)

- Os gatos são mamíferos: ∀_G[gato(G) → mamifero(G)]
- Todo o mamífero tem um progenitor:
 ∀_G∃_P[mamifero(G) → progenitor(P,G)]
- O filho de um gato é um gato:
 ∀_{G,F}[gato(G) ∧ progenitor(G, F) → gato(F)]
- Teco é um gato: gato(teco)
- Teco é progenitor do Navalha: progenitor(teco, navalha)

Exemplo completo (3)

- Importante: existem formas diferentes de se "traduzir" conhecimento do mundo real para o formalismo lógico
 - De acordo com a modelagem, pode ser mais fácil ou mais difícil resolver um problema
 - Uma boa modelagem depende da experiência e intuição do projetista

Exemplo completo (4)

- Parte 2: remova os operadores existencial e universal para formatar a base
- Parte 3: passe a base para a forma clausal
- Parte 4: prove que Navalha é um gato

Exemplo completo (5)

- Parte 2: sem quantificadores
 - 1. gato(G) → mamifero(G)
 - 2. mamifero(G) → progenitor(P, G)
 - 3. (gato(G) ∧ progenitor(G, F)) → gato(F)
 - 4. gato(teco)
 - 5. progenitor(teco, navalha)

Exemplo completo (6)

- Parte 3: forma clausal simplificada
 - 1. ¬gato(G) ∨ mamifero(G)
 - 2. ¬mamifero(G) ∨ progenitor(P, G)
 - 3. ¬gato(g) v¬ progenitor(G, F) ∨ gato(F)
 - 4. gato(teco)
 - 5. progenitor(teco, navalha)
 - 6. ¬gato(navalha)

Exemplo completo (7)

Modelagem

- Considere o texto
 - "Os gatos gostam de peixe. Os gatos comem tudo do que gostam. Teco é um gato"
- Passar para lógica de 1^a ordem
 - Note que existem várias formas de se representar
 - Exploraremos uma específica

Modelagem (2)

- Os gatos gostam de peixe
 ∀_G[gato(G) → gosta(G, peixe)]
- Os gatos comem tudo do que gostam
 ∀G[gosta(G, C) → come (G, C)]
- Teco é um gato gato(teco)
- Provar que teco como peixe

Exercícios (2)

- Parte 1: represente as afirmações seguintes usando lógica de predicados de 1ª ordem
 - Um animal pesado come muito
 - Os elefantes são animais grandes
 - Todos os elefantes têm um alimento preferido
 - Dumbo é um elefante
 - Todos os animais grandes são pesados
 - O amendoim é um alimento

Exercícios (3)

- ∀_A [animal(A, pesado) → come(A,muito)]
- ∀_A [elefante(A) → animal(A, grande)]
- ∀_A∃_C [elefante(A) → alimento(C, preferido)]
- elefante(dumbo)
- ∀A [animal(A, grande) → animal(A, pesado)]

Exercícios (4)

- Parte 2: remova os operadores existencial e universal para formatar a base
- Parte 3: passe a base para a forma clausal simplifcada
- Parte 4: prove que Dumbo come muito

Créditos

- Parcialmente adaptado dos slides do professor:
 - Carlos Fernando da Silva Ramos (IPP)