Tutorial 4

The *norm* of a vector $\mathbf{u} = (u_1, u_2, \dots, u_n)$ is

$$||\mathbf{u}|| = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}$$

and the distance between two vectors \mathbf{u} and \mathbf{v} , $d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}||$.

The dot product of $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ is

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n.$$

The angle θ between two vectors **u** and **v** is given by the formula:

$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \, ||\mathbf{v}|| \cos \theta, \qquad 0 \le \theta \le \pi.$$

The projection of \mathbf{v} onto \mathbf{u} is

$$\mathrm{proj}_{\mathbf{u}}\mathbf{v} = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}||^2}\mathbf{u}.$$

The vector \overrightarrow{AB} is the vector $\mathbf{B} - \mathbf{A}$ thought of as starting at \mathbf{A} and finishing at \mathbf{B} .

- **Q1.** Let $\mathbf{a} = (3, 1, -2)$, $\mathbf{b} = 2\mathbf{i} + \mathbf{k}$, $\mathbf{c} = \mathbf{j} 3\mathbf{k}$ and $\mathbf{d} = (\frac{1}{\sqrt{2}}, 0, -\frac{2}{\sqrt{2}})$. Find (i). $\mathbf{a} + 2\mathbf{c}$ (ii). $\mathbf{b} \mathbf{c}$ (ii). $\mathbf{b} \mathbf{c}$ (ii). $\mathbf{d}(\mathbf{b}, \mathbf{c})$ (v). $||\mathbf{a}|| + ||\mathbf{b}||$ (v

(iii). $\sqrt{2}\mathbf{d}$

- (vi). $\mathbf{b} \cdot \mathbf{d}$
- **Q2**. In the (unit) octagon, with vertices A, B, \ldots, H , and centre O, we know that $\overrightarrow{OA} = (1,0)$ and $\overrightarrow{OB} = \frac{1}{\sqrt{2}}(1,1)$. Using vector methods, find the following quantities:
- (ii) \overrightarrow{OD}

- (iii) $\overrightarrow{OE} \cdot \overrightarrow{OB}$
- (iv) The angle between \overrightarrow{OE} and \overrightarrow{OB}
- (v) The projection of \overrightarrow{OC} onto \overrightarrow{OB}

(vi) $\overrightarrow{OG} \cdot \overrightarrow{OA}$

The cross product is equal to

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = ||\mathbf{u}|| \, ||\mathbf{v}|| \sin \theta \,\,\hat{\mathbf{n}}$$

where $\hat{\mathbf{n}}$ is the (right-handed) unit vector perpendicular to both \mathbf{u} and \mathbf{v} .

Geometrically, $||\mathbf{u} \times \mathbf{v}||$ is the area of the parallelogram with edges \mathbf{u} and \mathbf{v} .

- **Q3**. Let $\mathbf{a} = (3, 4, -2)$, $\mathbf{b} = (0, -2, 2)$, $\mathbf{c} = (-6, -8, 4)$ and $\mathbf{d} = (0, 0, 1)$. Then find
 - $\mathbf{a} \times \mathbf{b}$ (i).

- (ii). $\mathbf{c} \times \mathbf{a}$
- (iii). fined by a and d
- The area of the parallelogram de- (iv). The area of the triangle with sides

The scalar triple product

$$\mathbf{a} \cdot \mathbf{b} \times \mathbf{c} = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \left| egin{array}{ccc} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{array}
ight|,$$

and geometrically $|\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}|$ is the *volume* of the parallelepiped with sides \mathbf{a} , \mathbf{b} and \mathbf{c} .

- Q4. Let a, b, c and d be defined as in Question 3. Where possible, calculate
 - (i). $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$

(ii). $(\mathbf{a} \cdot \mathbf{c}) \times \mathbf{b}$

(iii). $\mathbf{a} \cdot \mathbf{b} \times \mathbf{d}$

- (iv). $\mathbf{d} \times (\mathbf{a} \times \mathbf{b})$
- (v). The volume of the parallelepiped with sides **a**, **b** and **d**.

Let $a, b, c, x_0, y_0, z_0 \in \mathbb{R}$. A line in \mathbb{R}^3 passing through (x_0, y_0, z_0) and in the direction of (a, b, c) is defined in either vector form

$$\mathbf{r} = (x, y, z) = (x_0, y_0, z_0) + t(a, b, c), \qquad t \in \mathbb{R}$$

parametric form

$$x = x_0 + ta$$

$$y = y_0 + tb$$

$$z = z_0 + tc$$

or cartesian form

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}, \qquad a, b, c \neq 0.$$

The equivalence of the forms is seen by setting each fraction in the cartesian form to equal t.

Q5. Consider the straight line with cartesian equation

$$\frac{x+1}{3} = y+2 = \frac{z-1}{4} \, .$$

- (i). Write down a vector in the direction of the line.
- (ii). Does the point P(-1, -2, 1) lie on the line?
- (iii). Write down a vector equation for the line.
- Q6. Write the following lines in vector, parametric and cartesian form.
 - (i). The line through the point (1,0,0) and parallel to the vector (2,-1,-3).
 - (ii). The line which passes through (0,0,-1) and (1,0,-2).