Planche nº 11. Exponentielles et logarithmes. Corrigé

Exercice nº 1

Pour $n \in \mathbb{N}^*$, posons $u_n = \sqrt[n]{n}$ puis, pour x réel strictement positif, $f(x) = x^{1/x}$ de sorte que pour tout entier naturel non nul n, on a $u_n = f(n)$.

f est définie sur $]0, +\infty[$ et pour x > 0, $f(x) = e^{\frac{\ln x}{x}}$. f est dérivable sur $]0, +\infty[$ et pour x > 0,

$$f'(x) = \frac{1 - \ln x}{x^2} e^{\frac{\ln x}{x}} = \frac{1 - \ln x}{x^2} x^{\frac{1}{x}}.$$

Pour x > 0, f'(x) est du signe de $1 - \ln x$ et donc f' est strictement positive sur]0, e[et strictement négative sur $]e, +\infty[$. Par suite, f est strictement croissante sur]0, e[et strictement décroissante sur $[e, +\infty[$. En particulier, pour $n \ge 3$,

$$u_n = f(n) \le f(3) = u_3 = \sqrt[3]{3}$$
.

Comme $u_2 = \sqrt{2} > 1 = u_1$, on a donc $\operatorname{Max}\{u_n, \ n \in \mathbb{N}^*\} = \operatorname{Max}\left\{\sqrt{2}, \sqrt[3]{3}\right\}$. Enfin, $(\sqrt{2})^6 = 8 < 9 = (\sqrt[3]{3})^6$ et donc $\sqrt{2} < \sqrt[3]{3}$ (par stricte croissance de la fonction $x \mapsto x^6$ sur $[0, +\infty[)$. Finalement,

$$\max \{ \sqrt[n]{n}, \ n \in \mathbb{N}^* \} = \sqrt[3]{3} = 1,44..$$

Exercice nº 2

Pour tout entier naturel non nul n, $1 + \frac{1}{n}$ existe et est strictement positif. Donc, pour tout entier naturel non nul n, $\left(1 + \frac{1}{n}\right)^n$ existe. De plus, pour tout entier naturel non nul n,

$$\left(1+\frac{1}{n}\right)^n = e^{n\ln\left(1+\frac{1}{n}\right)} = \exp\left(\frac{\ln\left(1+\frac{1}{n}\right)}{\frac{1}{n}}\right).$$

 $\lim_{n \to +\infty} \frac{1}{n} = 0 \text{ et donc}$

$$\lim_{n\to+\infty}\frac{\ln\left(1+\frac{1}{n}\right)}{\frac{1}{n}}=\lim_{x\to0}\frac{\ln\left(1+x\right)}{x}=1,$$

 $\mathrm{puis}\, \lim_{n\to +\infty} \left(1+\frac{1}{n}\right)^n = e^1 = e.$

$$\lim_{n\to +\infty} \left(1+\frac{1}{n}\right)^n = e.$$

Exercice nº 3

1) Pour x > 0, posons $f(x) = \frac{\ln x}{x}$. f est définie et dérivable sur $]0, +\infty[$ et, pour x > 0, $f'(x) = \frac{1 - \ln x}{x^2}$. f est donc strictement croissante sur]0, e] et strictement décroissante sur $[e, +\infty[$. Le graphe de f s'en déduit facilement :

2) Soient a et b deux entiers naturels non nuls tels que a < b.

$$a^b = b^a \Leftrightarrow \ln(a^b) = \ln(b^a) \Leftrightarrow b \ln a = a \ln b \Leftrightarrow \frac{\ln a}{a} = \frac{\ln b}{b} \Leftrightarrow f(a) = f(b).$$

Si $a \ge 3$, puisque f est strictement décroissante sur $[e, +\infty[$, on a alors f(a) > f(b) et en particulier, $f(a) \ne f(b)$. a n'est alors pas solution.

 $\alpha=1$ n'est évidemment pas solution. Par exemple, $\alpha^b=b^\alpha\Rightarrow 1^b=b^1\Rightarrow b=1=\alpha$ ce qui est exclu.

Donc, nécessairement a=2 et b est un entier supérieur ou égal à 3, et donc à e, vérifiant f(b)=f(2). Comme f est strictement décroissante sur $[e,+\infty[$, l'équation f(b)=f(2) a au plus une solution dans $[e,+\infty[$. Enfin, comme $2^4=16=4^2$, on a montré que :

il existe un et un seul couple (a, b) d'entiers naturels non nuls tel que a < b et $a^b = b^a$, à savoir (2, 4).

Exercice nº 4

1) Soit $x \in \mathbb{R}$,

$$\begin{split} \ln|x+1| - \ln|2x+1| &\leqslant \ln 2 \Leftrightarrow \ln\left|\frac{x+1}{2x+1}\right| \leqslant \ln 2 \Leftrightarrow \left|\frac{x+1}{2x+1}\right| \leqslant 2 \text{ et } x \neq -1 \\ &\Leftrightarrow -2 \leqslant \frac{x+1}{2x+1} \leqslant 2 \text{ et } x \neq -1 \Leftrightarrow \frac{x+1}{2x+1} + 2 \geqslant 0 \text{ et } \frac{x+1}{2x+1} - 2 \leqslant 0 \text{ et } x \neq -1 \\ &\Leftrightarrow \frac{5x+3}{2x+1} \geqslant 0 \text{ et } \frac{-3x-1}{2x+1} \leqslant 0 \text{ et } x \neq -1 \\ &\Leftrightarrow \left(x \in \left] -\infty, -\frac{3}{5}\right] \cup \left] -\frac{1}{2}, +\infty\right[\right) \text{ et } \left(\left] -\infty, -\frac{1}{2}\right[\cup \left[-\frac{1}{3}, +\infty\right[\right) \text{ et } x \neq -1 \\ &\Leftrightarrow x \in] -\infty, -1[\cup \left] -1, -\frac{3}{5}\right] \cup \left[-\frac{1}{3}, +\infty\right[. \end{split}$$

2) Soit x > 0.

$$x^{\sqrt{x}} = \sqrt{x}^{x} \Leftrightarrow \sqrt{x} \ln x = x \ln \left(\sqrt{x}\right) \Leftrightarrow \ln x \left(\sqrt{x} - \frac{x}{2}\right) = 0$$
$$\Leftrightarrow \ln x \times \sqrt{x} \left(2 - \sqrt{x}\right) = 0 \Leftrightarrow x = 1 \text{ ou } x = 4.$$

$$\mathscr{S} = \{1, 4\}.$$

3) Pour
$$x \in]0, +\infty[\setminus \left\{\frac{1}{100}, \frac{1}{10}, 1\right\},\$$

$$\begin{split} \ln_x(10) + 2 \ln_{10x}(10) + 3 \ln_{100x}(10) &= 0 \Leftrightarrow \frac{\ln(10)}{\ln x} + 2 \frac{\ln(10)}{\ln(10x)} + 3 \frac{\ln(10)}{\ln(100x)} = 0 \\ &\Leftrightarrow \frac{(\ln x + \ln(10))(\ln x + 2\ln(10)) + 2 \ln x(\ln x + 2\ln(10)) + 3 \ln x(\ln x + \ln(10))}{\ln x(\ln x + \ln(10))(\ln x + 2\ln(10))} = 0 \\ &\Leftrightarrow 6 \ln^2 x + 10\ln(10) \ln x + 2 \ln^2(10) = 0 \\ &\Leftrightarrow \ln x \in \left\{ \frac{-5\ln(10) + \sqrt{13\ln^2(10)}}{6}, \frac{-5\ln(10) - \sqrt{13\ln^2(10)}}{6} \right\} \\ &\Leftrightarrow x \in \left\{ e^{\left((-5 - \sqrt{13})/6\right)\ln(10)}, e^{\left((-5 + \sqrt{13})/6\right)\ln(10)} \right\} \\ &\Leftrightarrow x \in \left\{ 10^{\left(-5 - \sqrt{13}\right)/6}, 10^{\left(-5 + \sqrt{13}\right)/6} \right\}. \end{split}$$

4) Soit $x \in \mathbb{R}$.

$$2^{2x} - 3^{x - \frac{1}{2}} = 3^{x + \frac{1}{2}} - 2^{2x - 1} \Leftrightarrow 2^{2x} + 2^{2x - 1} = 3^{x + \frac{1}{2}} + 3^{x - \frac{1}{2}}$$

$$\Leftrightarrow 2^{2x - 1} (2 + 1) = 3^{x - \frac{1}{2}} (3 + 1) \Leftrightarrow 3 \times 2^{2x - 1} = 4 \times 3^{x - \frac{1}{2}}$$

$$\Leftrightarrow 2^{2x - 3} = 3^{x - \frac{3}{2}} \Leftrightarrow (2x - 3) \ln 2 = \left(x - \frac{3}{2}\right) \ln 3$$

$$\Leftrightarrow x = \frac{3 \ln 2 - \frac{3}{2} \ln 3}{2 \ln 2 - \ln 3} \Leftrightarrow x = \frac{3}{2}.$$

$$\mathscr{S} = \left\{\frac{3}{2}\right\}.$$

Exercice nº 5

Pour x > 0, $(x^x)^x = e^{x \ln(x^x)} = e^{x^2 \ln x}$ et $x^{(x^x)} = e^{x^x \ln x}$. Par suite,

$$\forall x>0,\;\frac{(x^x)^x}{x^{(x^x)}}=\exp\left(\ln x\left(x^2-x^x\right)\right).$$

$$\lim_{x \to +\infty} \frac{(x^x)^x}{x^{(x^x)}} = 0.$$

Exercice nº 6

On notera \mathcal{C}_i le graphe de f_i .

1) Soit x > 0. x n'est pas nul donc $\frac{1}{x}$ existe puis $1 + \frac{1}{x} > 0$ et $f_1(x)$ existe.

Etude en 0. Pour x > 0, $x \ln \left(1 + \frac{1}{x}\right) = -x \ln x + x \ln(1 + x)$. Par suite, $x \ln \left(1 + \frac{1}{x}\right)$ tend vers 0 quand x tend vers 0 par valeurs supérieures et donc $f_1(x) = \exp \left(x \ln \left(1 + \frac{1}{x}\right)\right)$ tend vers 1. Ainsi, $\lim_{\substack{x \to 0 \\ x > 0}} f_1(x) = 1$.

Posons encore $f_1(0) = 1$ et étudions la dérivabilité de f_1 en 0. Pour x > 0,

$$\frac{f_1(x)-f_1(0)}{x-0}=\frac{1}{x}\left(\exp\left(x\ln\left(1+\frac{1}{x}\right)\right)-1\right)=\frac{\exp\left(x\ln\left(1+\frac{1}{x}\right)\right)-1}{x\ln\left(1+\frac{1}{x}\right)}\ln\left(1+\frac{1}{x}\right).$$

Or, $x \ln \left(1 + \frac{1}{x}\right)$ tend vers 0 quand x tend vers 0 (d'après plus haut) et donc

$$\lim_{\substack{x \to 0 \\ x > 0}} \frac{\exp\left(x\ln\left(1 + \frac{1}{x}\right)\right) - 1}{x\ln\left(1 + \frac{1}{x}\right)} = \lim_{y \to 0} \frac{e^y - 1}{y} = 1.$$

D'autre part, $\ln\left(1+\frac{1}{x}\right)$ tend vers $+\infty$ quand x tend vers 0 par valeurs supérieures. Finalement,

$$\lim_{\substack{x \to 0 \\ x > 0}} \frac{f_1(x) - f_1(0)}{x - 0} = +\infty.$$

Ainsi, f_1 n'est pas dérivable en 0 mais \mathcal{C}_1 admet l'axe des ordonnées pour tangente en $(0, f_1(0)) = (0, 1)$.

Etude en
$$+\infty$$
. Pour $x > 0$, $x \ln \left(1 + \frac{1}{x}\right) = \frac{\ln \left(1 + \frac{1}{x}\right)}{\frac{1}{x}}$ et donc $\lim_{x \to +\infty} x \ln \left(1 + \frac{1}{x}\right) = \lim_{y \to 0} \frac{\ln(1+y)}{y} = 1$. Par suite, $\lim_{x \to +\infty} f_1(x) = \varepsilon$.

Etude des variations de f₁. Pour x > 0, $f_1(x) > 0$ puis $\ln (f_1(x)) = x \ln \left(1 + \frac{1}{x}\right)$. Par suite, pour x > 0,

$$f_1'(x) = f_1(x) \times (\ln(f_1))'(x) = f_1(x) \left(\ln\left(1 + \frac{1}{x}\right) + \frac{x\left(-\frac{1}{x^2}\right)}{1 + \frac{1}{x}} \right) = f_1(x)g(x),$$

où $g(x) = \ln\left(1 + \frac{1}{x}\right) - \frac{1}{1+x}$. Sur $]0, +\infty[$, f'_1 est du signe de g.

Pour déterminer le signe de g, étudions d'abord les variations de g sur $]0, +\infty[$. g est dérivable sur $]0, +\infty[$ et pour x > 0,

$$g'(x) = \frac{-\frac{1}{x^2}}{1 + \frac{1}{x}} + \frac{1}{(x+1)^2} = -\frac{1}{x(x+1)} + \frac{1}{(x+1)^2} = \frac{-1}{x(x+1)^2} < 0.$$

g est donc strictement décroissante sur $]0,+\infty[$ et, puisque $\lim_{x\to+\infty}g(x)=0,$ g est strictement positive sur $]0,+\infty[$. Il en est de même de f_1' . f_1 est strictement croissante sur $]0,+\infty[$.

On en déduit \mathcal{C}_1 .

2) Domaine de définition de f_2 . Soit $x \in \mathbb{R}$.

$$\begin{split} f_2(x) \text{ existe} &\Leftrightarrow x^2 - 5x + 6 > 0 \text{ et } 1 - \log_{\frac{1}{2}}(x^2 - 5x + 6) > 0 \Leftrightarrow x^2 - 5x + 6 > 0 \text{ et } \frac{\ln(x^2 - 5x + 6)}{\ln\frac{1}{2}} < 1 \\ &\Leftrightarrow x^2 - 5x + 6 > 0 \text{ et } \ln(x^2 - 5x + 6) > \ln\frac{1}{2} \Leftrightarrow x^2 - 5x + 6 > \frac{1}{2} \\ &\Leftrightarrow x^2 - 5x + \frac{11}{2} > 0 \Leftrightarrow x \in \left] -\infty, \frac{5 - \sqrt{3}}{2} \right[\cup \left] \frac{5 + \sqrt{3}}{2}, +\infty \right[\end{split}$$

 $f_2 \text{ est d\'efinie sur } D = \left] -\infty, \frac{5-\sqrt{3}}{2} \right[\cup \left] \frac{5+\sqrt{3}}{2}, +\infty \right[.$

Variations de f_2 . La fonction $x \mapsto x^2 - 5x + 6$ est strictement décroissante sur $\left[-\infty, \frac{5}{2}\right]$ et strictement croissante sur $\left[\frac{5}{2}, +\infty\right[$. Comme $\frac{5+\sqrt{3}}{2} > \frac{5}{2}$ et que $\frac{5-\sqrt{3}}{2} < \frac{5}{2}$, la fonction $x \mapsto x^2 - 5x + 6$ est strictement décroissante sur $\left[-\infty, \frac{5-\sqrt{3}}{2}\right]$ et strictement croissante sur $\left[\frac{5+\sqrt{3}}{2}, +\infty\right[$, à valeurs dans $]0, +\infty[$, intervalle sur lequel la fonction logarithme népérien est strictement croissante. La fonction $x \mapsto 1 + \frac{\ln(x^2 - 5x + 6)}{\ln 2}$ a le même sens de variations et finalement f_1 est strictement décroissante sur $\left[-\infty, \frac{5-\sqrt{3}}{2}\right]$ et strictement croissante sur $\left[\frac{5+\sqrt{3}}{2}, +\infty\right[$.

Axe de symétrie Soit $x \in \mathbb{R}$. $x \in D \Leftrightarrow \frac{5}{2} - x \in D$ et de plus, $\left(\frac{5}{2} - x\right)^2 - 5\left(\frac{5}{2} - x\right) + 6 = x^2 - 5x + 6$. Par suite, $\forall x \in D, \ f_1\left(\frac{5}{2} - x\right) = f_1(x)$.

 \mathcal{C}_1 admet donc la droite d'équation $x = \frac{5}{2}$ pour axe de symétrie.

Le calcul des limites est facile et on en déduit \mathscr{C}_2 .

Exercice nº 7

Pour tout $x \in]0,1[$, x et 1-x sont strictement positifs et donc $x^x(1-x)^{1-x}$ existe.

Par stricte croissance de la fonction ln sur $]0,+\infty[$, il est équivalent de démontrer que

$$\forall x \in]0, 1[, x \ln(x) + (1-x) \ln(1-x) \ge -\ln(2).$$

Pour $x \in]0,1[$, posons $f(x) = x \ln(x) + (1-x) \ln(1-x)$. f est dérivable sur]0,1[et pour tout x de]0,1[,

$$f'(x) = \ln(x) + x \times \frac{1}{x} - \ln(1-x) + (1-x) \times \frac{-1}{1-x} = \ln(x) - \ln(1-x).$$

Pour $x \in]0,1[$,

$$f'(x) > 0 \Leftrightarrow \ln(x) > \ln(1-x) \Leftrightarrow x > 1-x \Leftrightarrow x > \frac{1}{2}.$$

Ainsi, la fonction f' est strictement positive sur $\left]\frac{1}{2},1\right[$ et négative sur $\left]0,\frac{1}{2}\right]$. La fonction f admet donc un minimum en $\frac{1}{2}$ et ce minimum est égal à

$$\frac{1}{2}\ln\left(\frac{1}{2}\right)+\left(1-\frac{1}{2}\right)\ln\left(1-\frac{1}{2}\right)=-\ln(2).$$

Ceci montre que $\forall x \in]0,1[,\,x\ln(x)+(1-x)\ln(1-x)\geqslant -\ln(2)$ et donc que

$$\forall x \in]0,1[, x^{x}(1-x)^{1-x} \geqslant \frac{1}{2}.$$

Planche nº 12. Fonctions puissances. Corrigé

Exercice nº 1

1) La fonction $u_1: x \mapsto x^2 + 1$ est définie sur \mathbb{R} et positive sur \mathbb{R} . Donc, la fonction $f_1 = \sqrt{u_1}$ est définie sur \mathbb{R} .

La fonction $u_1: x \mapsto x^2 + 1$ est dérivable sur \mathbb{R} et strictement positive sur \mathbb{R} . Donc, la fonction $f_1 = \sqrt{u_1}$ est dérivable sur \mathbb{R} .

2) La fonction f_2 est définie sur \mathbb{R} .

La fonction $u_2: x \mapsto x^3 + 1$ est dérivable sur \mathbb{R} et ne s'annule pas sur $\mathbb{R} \setminus \{-1\}$. Donc, la fonction $f_2 = \sqrt[3]{u_2}$ est dérivable sur $\mathbb{R} \setminus \{-1\}$.

Etudions la dérivabilité de la fonction f_2 en -1. Pour $x \neq -1$,

$$\frac{f_2(x) - f_2(-1)}{x - (-1)} = \frac{\sqrt[3]{(x+1)(x^2 - x + 1)}}{x+1} = \frac{\sqrt[3]{x^2 - x + 1}}{\left(\sqrt[3]{x+1}\right)^2}.$$

Par suite, $\lim_{x\to -1} \frac{f_2(x) - f_2(-1)}{x - (-1)} = +\infty$. La fonction f_2 n'est pas dérivable en -1.

En résumé, la fonction f_2 est définie sur \mathbb{R} , dérivable sur $\mathbb{R} \setminus \{-1\}$ et pas dérivable en -1.

3) Soit $x \in \mathbb{R}$. $f_3(x)$ existe $\Leftrightarrow x^3 - x^4 \ge 0$. Or, pour tout réel x,

$$sgn(x^3 - x^4) = sgn(x^3(1-x)) = sgn(x(1-x)).$$

Donc, pour tout réel x, f(x) existe si et seulement si $x \in [0, 1]$. Le domaine de définition de la fonction f_3 est [0, 1].

La fonction $u_3: x\mapsto x^3-x^4$ est dérivable sur]0,1[et strictement positive sur]0,1[. Donc, la fonction $f_3=\sqrt{u_3}$ est dérivable sur]0,1[.

Dérivabilité en 0 (à droite). Pour $x \in]0, 1]$,

$$\begin{split} \frac{f_3(x) - f_3(0)}{x - 0} &= \frac{\sqrt{x^3(1 - x)}}{x} = \frac{\sqrt{x^3}\sqrt{1 - x}}{x} \; (\operatorname{car} \, x^3 \geqslant 0 \; \operatorname{et} \, 1 - x \geqslant 0) \\ &= \frac{x^{3/2}}{x} \sqrt{1 - x} = \sqrt{x} \sqrt{1 - x}. \end{split}$$

Donc, $\lim_{x\to 0} \frac{f_3(x) - f_3(0)}{x-0} = 0$. La fonction f_3 est dérivable en 0.

Dérivabilité en 1 (à gauche). Pour $x \in [0, 1[$,

$$\frac{f_3(x) - f_3(1)}{x - 1} = \frac{\sqrt{x^3(1 - x)}}{x - 1} = -\frac{\sqrt{x^3}\sqrt{1 - x}}{1 - x}$$
$$= -\frac{\sqrt{x^3}}{\sqrt{1 - x}}.$$

Donc, $\lim_{x\to 0} \frac{f_3(x) - f_3(1)}{x-1} = -\infty$. La fonction f_3 n'est pas dérivable en 1.

En résumé, la fonction f_3 est définie sur [0,1], dérivable sur [0,1[et pas dérivable en 1.

Exercice nº 2

1) Pour tout réel x, $f_1(x) = \sqrt{x^2 + 1}$ puis

$$f_1'(x) = \frac{2x}{2\sqrt{x^2 + 1}} = \frac{x}{\sqrt{x^2 + 1}}$$

2) Pour tout réel x, $f_2(x) = (x^3 + 1)^{1/3}$ puis, pour tout réel x différent de -1,

$$f_2'(x) = \frac{1}{3} \times (3x^2) \times (x^3 + 1)^{-2/3} = \frac{x^2}{\left(\sqrt[3]{x^3 + 1}\right)^2}.$$

3) Pour tout réel x, $f_3(x) = \left(x^2 + x + 1\right)^{-3/4}$ puis pour tout réel x

$$f_3'(x) = -\frac{3}{4} \times (2x+1) \times \left(x^2 + x + 1\right)^{-7/4} = -\frac{3(2x+1)}{4\left(\sqrt[4]{x^2 + x + 1}\right)^7}.$$

4) Pour tout réel x, $f_4(x) = x \left(x^2 + 1\right)^{-1/2}$ puis, pour tout réel x

$$\begin{split} f_4'(x) &= 1 \times \left(x^2 + 1\right)^{-1/2} + x\left(-\frac{1}{2}\right)(2x)\left(x^2 + 1\right)^{-3/2} = \frac{1}{\sqrt{x^2 + 1}} - \frac{x^2}{(x^2 + 1)\sqrt{x^2 + 1}} \\ &= \frac{(x^2 + 1) - x^2}{(x^2 + 1)\sqrt{x^2 + 1}} = \frac{1}{(x^2 + 1)\sqrt{x^2 + 1}}. \end{split}$$

 $\textbf{5)} \text{ f}_5 \text{ est d\'efinie sur }]-\infty, -1[\cup[1,+\infty[,\, \text{d\'erivable sur }]-\infty,-1[\cup]1,+\infty[\,\, \text{et pour }x\in]-\infty,-1[\cup]1,+\infty[,\, \text{d\'erivable sur }]-\infty]$

$$f_5'(x) = \frac{2}{(x+1)^2} \times \frac{1}{2\sqrt{\frac{x-1}{x+1}}} = \left\{ \begin{array}{l} \frac{1}{(x+1)^{3/2}(x-1)^{1/2}} \, \mathrm{si} \, \, x > 1 \\ \frac{1}{(-1-x)^{3/2}(1-x)^{1/2}} \, \mathrm{si} \, \, x < -1 \end{array} \right. .$$

Exercice nº 3

1) • $\lim_{x \to +\infty} \sqrt{x^2 + x + 1} = \lim_{X \to +\infty} \sqrt{X} = +\infty$ et $\lim_{x \to +\infty} x = +\infty$. En additionnant, on obtient $\lim_{x \to +\infty} \left(\sqrt{x^2 + x + 1} + x\right) = +\infty$.

• Pour tout x < 0,

$$\begin{split} \sqrt{x^2 + x + 1} + x &= \frac{\left(\sqrt{x^2 + x + 1} + x\right)\left(\sqrt{x^2 + x + 1} - x\right)}{\sqrt{x^2 + x + 1} - x} = \frac{\left(x^2 + x + 1\right) - x^2}{\sqrt{x^2 + x + 1} - x} = \frac{x + 1}{\sqrt{x^2 + x + 1} - x} \\ &= \frac{x + 1}{\sqrt{x^2}} \sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} - x} = \frac{x + 1}{-x\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} - x} \\ &= \frac{x\left(1 + \frac{1}{x}\right)}{x\left(-\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} - 1\right)} = \frac{1 + \frac{1}{x}}{-\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} - 1}. \end{split}$$

On en déduit que $\lim_{x \to -\infty} \left(\sqrt{x^2 + x + 1} + x \right) = -\frac{1}{2}$

2) Pour x > 0.

$$\sqrt[3]{x^3 + 1} - x = \frac{\left(\sqrt[3]{x^3 + 1} - x\right) \left(\left(\sqrt[3]{x^3 + 1}\right)^2 + x\sqrt[3]{x^3 + 1} + x^2\right)}{\left(\sqrt[3]{x^3 + 1}\right)^2 + x\sqrt[3]{x^3 + 1} + x^2} = \frac{\left(\sqrt[3]{x^3 + 1}\right)^3 - x^3}{\left(\sqrt[3]{x^3 + 1}\right)^2 + x\sqrt[3]{x^3 + 1} + x^2} = \frac{1}{\left(\sqrt[3]{x^3 + 1}\right)^2 + x\sqrt[3]{x^3 + 1} + x^2}.$$

Le dénominateur de cette fraction tend vers $+\infty$ quand x tend vers $+\infty$ et donc $\lim_{x \to +\infty} \left(\sqrt[3]{x^3 + 1} - x \right) = 0$.

3) • 1 ère solution. Pour $x \ge -\frac{7}{2}$ et $x \ne 1$,

$$\frac{\sqrt{2x+7}-3}{x-1} = \frac{\left(\sqrt{2x+7}-3\right)\left(\sqrt{2x+7}+3\right)}{\left(x-1\right)\left(\sqrt{2x+7}+3\right)} = \frac{2x-2}{\left(x-1\right)\left(\sqrt{2x+7}+3\right)} = \frac{2}{\sqrt{2x+7}+3}$$

et donc $\lim_{x \to 1} \frac{\sqrt{2x+7-3}}{x-1} = \frac{1}{3}$.

2 ème solution. Pour $x \ge -\frac{7}{2}$, posons $f(x) = \sqrt{2x+7}$. Pour $x \ge -\frac{7}{2}$ et $x \ne 1$,

$$\frac{\sqrt{2x+7}-3}{x-1} = \frac{f(x)-f(1)}{x-1}.$$

f est dérivable en 1 et donc $\lim_{x\to 1} \frac{\sqrt{2x+7}-3}{x-1} = f'(1) = \frac{2}{2\sqrt{2\times 1+7}} = \frac{2}{6} = \frac{1}{3}$.

• 1 ère solution. Pour $x \geqslant -\frac{5}{2}$ et $x \neq -2$,

$$\frac{\sqrt{2x+5}-1}{\sqrt{3x+15}-3} = \frac{\left(\sqrt{2x+5}-1\right)\left(\sqrt{2x+5}+1\right)\left(\sqrt{3x+15}+3\right)}{\left(\sqrt{3x+15}-3\right)\left(\sqrt{3x+15}+3\right)\left(\sqrt{2x+5}+1\right)} = \frac{(2x+4)\left(\sqrt{3x+15}+3\right)}{(3x+6)\left(\sqrt{2x+5}+1\right)} = \frac{2\left(\sqrt{3x+15}+3\right)}{3\left(\sqrt{2x+5}+1\right)}$$

et donc $\lim_{x \to -2} \frac{\sqrt{2x+5}-1}{\sqrt{3x+15}-3} = \frac{2 \times 6}{3 \times 2} = 2.$

2 ème solution. Pour $x \geqslant -\frac{5}{2}$, posons $f(x) = \sqrt{2x+5}$ et $g(x) = \sqrt{3x+15}$. Pour $x \geqslant -\frac{5}{2}$ et $x \neq -2$,

$$\frac{\sqrt{2x+5}-1}{\sqrt{3x+15}-3} = \frac{\sqrt{2x+5}-1}{x+2} \times \frac{x+2}{\sqrt{3x+15}-3} = \frac{f(x)-f(-2)}{x-(-2)} \times \frac{x-(-2)}{g(x)-g(-2)}.$$

$$\mathrm{Donc}\, \lim_{x \to -2} \frac{\sqrt{2x+5}-1}{\sqrt{3x+15}-3} = \frac{f'(-2)}{g'(-2)} = \frac{\frac{2}{2\sqrt{2\times(-2)+5}}}{\frac{3}{2\sqrt{3\times(-2)+15}}} = 2.$$

Exercice nº 4

Domaine de définition. Soit x un réel. f(x) existe si et seulement si $x \neq 1$ et $\frac{x^3}{x-1} \geqslant 0$.

Pour $x \neq 1$, $\frac{x^3}{x-1}$ a le même signe que x(x-1). Donc pour $x \neq 1$, $\frac{x^3}{x-1} \geqslant 0 \Leftrightarrow x \in]-\infty,0] \cup]1,+\infty[$.

f est définie sur
$$D =]-\infty, 0] \cup]1, +\infty[$$
.

Dérivabilité en 0 à gauche. Soit x < 0.

$$\frac{f(x) - f(0)}{x - 0} = \frac{1}{x} \sqrt{\frac{x^3}{x - 1}} = \frac{1}{x} \sqrt{\frac{x^2 \times x}{x - 1}} = \frac{\sqrt{x^2}}{x} \sqrt{\frac{x}{x - 1}} = -\sqrt{\frac{x}{x - 1}}.$$

Quand x tend vers 0 par valeurs inférieures, $-\sqrt{\frac{x}{x-1}}$ tend vers 0 et donc $\lim_{x\to 0^-} \frac{f(x)-f(0)}{x-0}=0$.

f est donc dérivable (à gauche) en 0 et f'(0) = 0.

Etude en $+\infty$. Pour x > 1,

$$f(x) = \sqrt{\frac{x^3}{x\left(1 - \frac{1}{x}\right)}} = \frac{x}{\sqrt{1 - \frac{1}{x}}}.$$

 $\lim_{x\to +\infty} \sqrt{1-\frac{1}{x}} = 1 \text{ et donc } \lim_{x\to +\infty} f(x) = +\infty. \text{ Ensuite, pour } x>1,$

$$f(x) - x = \frac{x}{\sqrt{1 - \frac{1}{x}}} - x = x \left(\frac{1}{\sqrt{1 - \frac{1}{x}}} - 1\right) = x \frac{\left(\frac{1}{\sqrt{1 - \frac{1}{x}}} - 1\right) \left(\frac{1}{\sqrt{1 - \frac{1}{x}}} + 1\right)}{\frac{1}{\sqrt{1 - \frac{1}{x}}}} + 1$$
$$= x \frac{\frac{1}{1 - \frac{1}{x}} - 1}{\frac{1}{\sqrt{1 - \frac{1}{x}}}} = x \frac{\frac{1/x}{1 - \frac{1}{x}}}{\frac{1}{\sqrt{1 - \frac{1}{x}}}} = \frac{1}{1 - \frac{1}{x}} \times \frac{1}{\frac{1}{\sqrt{1 - \frac{1}{x}}}} + 1.$$

L'expression précédente tend vers $\frac{1}{2}$ quand x tend vers $+\infty$ et donc $f(x)-\left(x+\frac{1}{2}\right)$ tend vers 0 quand x tend vers $+\infty$. On en déduit que la droite d'équation $y=x+\frac{1}{2}$ est asymptote au graphe de f en $+\infty$.

Etude en $-\infty$. Pour x < 0,

$$f(x) = \sqrt{\frac{x^3}{x\left(1 - \frac{1}{x}\right)}} = \frac{\sqrt{x^2}}{\sqrt{1 - \frac{1}{x}}} = -\frac{x}{\sqrt{1 - \frac{1}{x}}}.$$

Donc $\lim_{x \to -\infty} f(x) = +\infty$. Ensuite, pour x < 0,

$$f(x) + x = -\frac{x}{\sqrt{1 - \frac{1}{x}}} + x = -\frac{1}{1 - \frac{1}{x}} \frac{1}{\sqrt{1 - \frac{1}{x}}} + 1.$$

L'expression précédente tend vers $-\frac{1}{2}$ quand x tend vers $+\infty$ et donc $f(x)-\left(-x-\frac{1}{2}\right)$ tend vers 0 quand x tend vers $-\infty$. On en déduit que la droite d'équation $y=-x-\frac{1}{2}$ est asymptote au graphe de f en $-\infty$.

Dérivée et variations. Pour $x \in]-\infty, 0[\cup]1, +\infty[$

$$\ln(f(x)) = \frac{1}{2} \ln \left(\frac{x^3}{x-1} \right) = \frac{1}{2} \ln \left(\frac{|x|^3}{|x-1|} \right) = \frac{1}{2} \left(3 \ln(|x|) - \ln(|x-1|) \right)$$

puis

$$\frac{f'(x)}{f(x)} = \frac{1}{2} \left(\frac{3}{x} - \frac{1}{x - 1} \right) = \frac{2x - 3}{2x(x - 1)}.$$

Pour $x \in D$, f(x) > 0 et x(x-1) > 0, donc pour tout x de D, f(x) est du signe de 2x - 3. On en déduit le tableau de variations de f.

χ	$-\infty$	0	1		$\frac{3}{2}$	$+\infty$
f'(x)	_	0		_	0	+
f	+∞			+∞	$\frac{3\sqrt{3}}{2}$	+∞

Graphe.

Exercice nº 6 Soit $x \in \mathbb{R}$.

$$\begin{aligned} 2^{4\cos^2x+1} + 16.2^{4\sin^2x-3} &= 20 \Leftrightarrow 2^{4\cos^2x+1} + 16 \times 2^{1-4\cos^2x} = 20 \Leftrightarrow 2^{4\cos^2x} - 10 + 16 \times 2^{-4\cos^2x} = 0 \\ &\Leftrightarrow 2^{4\cos^2x} - 10 + \frac{16}{2^4\cos^2x} = 0 \Leftrightarrow (2^{4\cos^2x})^2 - 10 \times 2^{4\cos^2x} + 16 = 0 \\ &\Leftrightarrow 2^{4\cos^2x} = 2 \text{ ou } 2^{4\cos^2x} = 8 \Leftrightarrow 4\cos^2x = 1 \text{ ou } 4\cos^2x = 3 \\ &\Leftrightarrow \cos x = \frac{1}{2} \text{ ou } \cos x = -\frac{1}{2} \text{ ou } \cos x = \frac{\sqrt{3}}{2} \text{ ou } \cos x = -\frac{\sqrt{3}}{2} \\ &\Leftrightarrow x \in \left(\frac{\pi}{6} + \frac{\pi}{2}\mathbb{Z}\right) \cup \left(\frac{\pi}{3} + \frac{\pi}{2}\mathbb{Z}\right). \end{aligned}$$

Planche nº 13. Fonctions trigonométriques. Corrigé

Exercice nº 1

1) La fonction f_1 est définie sur \mathbb{R} , 2π -périodique et paire. On l'étudie et on construit son graphe sur $[0,\pi]$. On obtient ensuite son graphe complet par réflexion d'axe (Oy), ce qui fournit son graphe sur $[-\pi,\pi]$, puis par translations de vecteur $(2k\pi,0)$, $k\in\mathbb{Z}$.

La fonction f_1 est dérivable sur $[0,\pi]$ et pour tout x de $[0,\pi]$

$$f_1'(x) = -2\sin(x) - 2\sin(2x) = -2\sin(x) - 4\sin(x)\cos(x) = -2\sin(x)(1 + 2\cos(x)).$$

La fonction sinus s'annule en 0 et π et est strictement positive sur $]0,\pi[$. Donc la fonction f_1' est du signe de $-1-2\cos(x)$ sur $]0,\pi[$. Ensuite, pour $x\in]0,\pi[$,

$$-1 - 2\cos(x) = 0 \Leftrightarrow \cos(x) = -\frac{1}{2} \Leftrightarrow x = \frac{2\pi}{3}$$

et

$$-1-2\cos(x)>0 \Leftrightarrow \cos(x)<-\frac{1}{2} \Leftrightarrow x>\frac{2\pi}{3} \text{ (par stricte décroissance de la fonction } \cos \, \sup \, [0,\pi].)$$

Ainsi, la fonction f_1' est strictement négative sur $\left]0,\frac{2\pi}{3}\right[$, strictement positive sur $\left]\frac{2\pi}{3},\pi\right[$ et s'annule en $0,\frac{2\pi}{3}$ et π . On en déduit le tableau de variations de la fonction f_1 sur $[0,\pi]$:

х	0		$\frac{2\pi}{3}$		π
$f_1'(x)$	0	_	0	+	0
f ₁	3_		$\frac{3}{2}$		₋₁

Graphe de f₁.

2) Pour tout réel x, $2-\cos(x) \neq 0$ et donc, la fonction f_2 est définie sur \mathbb{R} , 2π -périodique et impaire. On l'étudie sur $[0,\pi]$. La fonction f_2 est dérivable sur $[0,\pi]$ et pour tout x de $[0,\pi]$

$$f_2'(x) = \frac{\cos(x)(2-\cos(x)) - \sin(x)(\sin(x))}{(2-\cos(x))^2} = \frac{2\cos(x) - 1}{(2-\cos(x))^2}.$$

La fonction f_2' est du signe de $2\cos(x)-1$ sur $[0,\pi]$. Ensuite, pour $x\in[0,\pi]$,

$$2\cos(x) - 1 = 0 \Leftrightarrow \cos(x) = \frac{1}{2} \Leftrightarrow x = \frac{\pi}{3}$$

$$2\cos(x)-1>0 \Leftrightarrow \cos(x)>\frac{1}{2} \Leftrightarrow x<\frac{\pi}{3} \text{ (par stricte décroissance de la fonction } \cos \text{ sur } [0,\pi].)$$

Ainsi, la fonction f_2' est strictement positive sur $\left[0, \frac{\pi}{3}\right[$, strictement négative sur $\left[\frac{\pi}{3}, \pi\right]$ et s'annule en $\frac{\pi}{3}$. On note que

$$f_2\left(\frac{\pi}{3}\right) = \frac{\frac{\sqrt{3}}{2}}{2 - \left(\frac{1}{2}\right)} = \frac{\sqrt{3}}{3} = 0,57...$$

On en déduit le tableau de variations de la fonction f_2 :

х	$0 \qquad \frac{2\pi}{3} \qquad \pi$	
$f_1'(x)$	+ 0 -	
f ₁	$\frac{\sqrt{3}}{3}$	•

Graphe de f2.

3) f_3 est définie sur $D = \mathbb{R} \setminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right)$, paire et 2π -périodique. f_3 est continue sur D en tant que somme de fonctions continues sur D. On étudie f_3 sur $\left[0, \frac{\pi}{2}\right] \left[0, \frac{\pi}{2}\right] \left[0, \frac{\pi}{2}\right]$. Si $x \in \left[0, \frac{\pi}{2}\right]$, $f_3(x) = \tan x + \cos x$ et si $x \in \left[\frac{\pi}{2}, \pi\right]$, $f_3(x) = -\tan x + \cos x$.

Etude en $\frac{\pi}{2}$. $\lim_{x \to \pi/2} |\tan x| = +\infty$ et $\lim_{x \to \pi/2} \cos x = 0$. Donc, $\lim_{x \to \pi/2} f(x) = +\infty$. La courbe représentative de la fonction f_3 admet la droite d'équation $x = \frac{\pi}{2}$ pour droite asymptote.

Dérivabilité et dérivée. f_3 est dérivable sur $\left[0,\frac{\pi}{2}\right[\cup\left]\frac{\pi}{2},\pi\right]$ en vertu de théorèmes généraux et pour $x\in\left[0,\frac{\pi}{2}\right[,f_3'(x)=\frac{1}{\cos^2x}-\sin x$ et pour $x\in\left[\frac{\pi}{2},\pi\right]$, $f_3'(x)=-\frac{1}{\cos^2x}-\sin x$.

De même, f_2 est dérivable à gauche et à droite en π avec $(f_3)_g'(\pi) = -1$ et $(f_3)_d'(\pi) = 1$, et n'est donc pas dérivable en π .

Variations. f_3 est strictement décroissante sur $\left[\frac{\pi}{2},\pi\right]$ en tant que somme de deux fonctions strictement décroissantes sur $\left|\frac{\pi}{2},\pi\right|$. Puis, pour x élément de $\left|0,\frac{\pi}{2}\right|$,

$$f_3'(x) = \frac{1}{\cos^2 x} - \sin x > 1 - 1 = 0.$$

La fonction f_3' est strictement positive sur $\left]0,\frac{\pi}{2}\right[$ et donc la fonction f_3 est strictement croissante sur $\left[0,\frac{\pi}{2}\right[$.

Graphe de f₃.

4) La fonction f_4 est 2π -périodique. On l'étudie sur $[-\pi, \pi]$. Pour $x \in [-\pi, \pi]$,

$$2\cos(x)+1=0 \Leftrightarrow \cos(x)=-\frac{1}{2} \Leftrightarrow x=-\frac{2\pi}{3} \text{ ou } x=\frac{2\pi}{3}.$$

Pour $x \in [-\pi, \pi]$, $f_4(x)$ existe si et seulement si $x \neq -\frac{2\pi}{3}$ et $x \neq \frac{2\pi}{3}$. On étudie la fonction f_4 sur $D = \left[-\pi, -\frac{2\pi}{3}\right] \cup \left[-\frac{2\pi}{3}, \frac{2\pi}{3}\right] \cup \left[-\frac{2\pi}{3}, \frac{2\pi}{3}\right]$.

Etude en $\frac{2\pi}{3}$. Quand x tend vers $\frac{2\pi}{3}$ par valeurs inférieures, $2\cos(x) + 1$ tend vers 0 par valeurs supérieures et quand x tend vers $\frac{2\pi}{3}$ par valeurs supérieures, $2\cos(x) + 1$ tend vers 0 par valeurs inférieures. D'autre part, quand x tend vers $\frac{2\pi}{3}$, $2\sin(x) + 1$ tend vers $\sqrt{3} + 1$ qui est strictement positif. On en déduit que

$$\lim_{x\to\frac{2\pi}{4}^-}f_4(x)=+\infty \ \mathrm{et} \ \lim_{x\to\frac{2\pi}{4}^+}f_4(x)=-\infty.$$

Etude en $-\frac{2\pi}{3}$. Quand x tend vers $-\frac{2\pi}{3}$ par valeurs inférieures, $2\cos(x) + 1$ tend vers 0 par valeurs inférieures et quand x tend vers $\frac{2\pi}{3}$ par valeurs supérieures, $2\cos(x) + 1$ tend vers 0 par valeurs supérieures. D'autre part, quand x tend vers $-\frac{2\pi}{3}$, $2\sin(x) + 1$ tend vers $-\sqrt{3} + 1$ qui est strictement négatif. On en déduit que

$$\lim_{x\to -\frac{2\pi}{3}^-}f_4(x)=+\infty \ \mathrm{et} \ \lim_{x\to -\frac{2\pi}{3}^+}f_4(x)=-\infty.$$

Dérivée. La fonction f₄ est dérivable sur D et pour tout x de D,

$$\begin{split} f_4'(x) &= \frac{(2\cos(x))(2\cos(x)+1)-(2\sin(x)+1)(-2\sin(x))}{(2\cos(x)+1)^2} = \frac{4+2\cos(x)+2\sin(x)}{(2\cos(x)+1)^2} \\ &= \frac{4+2\sqrt{2}\left(\frac{1}{\sqrt{2}}\cos(x)+\frac{1}{\sqrt{2}}\sin(x)\right)}{(2\cos(x)+1)^2} = \frac{4+2\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)}{(2\cos(x)+1)^2}. \end{split}$$

Pour tout x de D, $4+2\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)\geqslant 4-2\sqrt{2}>0$ et donc la fonction f_4' est strictement positive sur D. La fonction f_4 est donc strictement croissante sur $\left[-\pi,-\frac{2\pi}{3}\right[$ et sur $\left]-\frac{2\pi}{3},\frac{2\pi}{3}\right[$ et sur $\left]\frac{2\pi}{3},\pi\right]$ (mais pas sur $\left[-\pi,-\frac{2\pi}{3}\right[\cup\left]-\frac{2\pi}{3},\frac{2\pi}{3}\right[\cup\left]-\frac{2\pi}{3},\frac{2\pi}{3}\right[\cup\left]-\frac{2\pi}{3},\frac{2\pi}{3}\right]$).

Exercice nº 2

1) Pour x réel, on a :

$$\begin{split} \cos^4 x \sin^6 x &= \left(\frac{1}{2} \left(e^{ix} + e^{-ix}\right)\right)^4 \left(\frac{1}{2i} \left(e^{ix} - e^{-ix}\right)\right)^6 \\ &= -\frac{1}{2^{10}} (e^{4ix} + 4e^{2ix} + 6 + 4e^{-2ix} + e^{-4ix}) (e^{6ix} - 6e^{4ix} + 15e^{2ix} - 20 + 15e^{-2ix} - 6e^{-4ix} + e^{-6ix}) \\ &= -\frac{1}{2^{10}} (e^{10ix} - 2e^{8ix} - 3e^{6ix} + 8e^{4ix} + 2e^{2ix} - 12 + 2e^{-2ix} + 8e^{-4ix} - 3e^{-6ix} - 2e^{-8ix} + e^{-10ix}) \\ &= -\frac{1}{2^9} (\cos 10x - 2\cos 8x - 3\cos 6x + 8\cos 4x + 2\cos 2x - 6) \\ &= -\frac{1}{512} (\cos 10x - 2\cos 8x - 3\cos 6x + 8\cos 4x + 2\cos 2x - 6). \end{split}$$

(Remarque. La fonction proposée était paire et l'absence de sinus était donc obligatoire. Cette remarque guidait aussi les calculs intermédiaires : les coefficients de e^{-2ix} , e^{-4ix} ,... étaient les mêmes que ceux de e^{2ix} , e^{4ix} ,...) Par suite,

$$I = -\frac{1}{512} \left(\left[\frac{\sin 10x}{10} - \frac{\sin 8x}{4} - \frac{\sin 6x}{2} + 2\sin 4x + \sin 2x \right]_{\pi/6}^{\pi/3} - 6\left(\frac{\pi}{3} - \frac{\pi}{6} \right) \right)$$
$$= -\frac{1}{512} \left(-\frac{1}{4} \times \sqrt{3} + 2\left(-\sqrt{3} \right) - \pi \right) = \frac{9\sqrt{3} + 4\pi}{2048}.$$

2) Pour x réel, on a

$$\begin{split} \cos^4 x \sin^7 x &= \cos^4 x \sin^6 x \times \sin x = \cos^4 x (1 - \cos^2 x)^3 \sin x \\ &= \cos^4 x \sin x - 3 \cos^6 x \sin x + 3 \cos^8 x \sin x - \cos^{10} x \sin x. \end{split}$$

Par suite,

$$\begin{split} J &= \left[-\frac{\cos^5 x}{5} + \frac{3\cos^7 x}{7} - \frac{\cos^9 x}{3} + \frac{\cos^{11} x}{11} \right]_{\pi/6}^{\pi/3} \\ &= -\frac{1}{5} \times \frac{1}{32} (1 - 9\sqrt{3}) + \frac{3}{7} \times \frac{1}{128} (1 - 27\sqrt{3}) - \frac{1}{3} \times \frac{1}{512} (1 - 81\sqrt{3}) + \frac{1}{11} \times \frac{1}{2048} (1 - 243\sqrt{3}) \\ &= \frac{1}{2^{11} \times 3 \times 5 \times 7 \times 11} (-14784 (1 - 9\sqrt{3}) + 7920 (1 - 27\sqrt{3}) - 1540 (1 - 81\sqrt{3}) + 105 (1 - 243\sqrt{3})) \\ &= \frac{1}{236540} (-8299 + 18441\sqrt{3}). \end{split}$$

Exercice nº 3

La fonction f est deux fois dérivable sur \mathbb{R} n et pour tout réel x,

$$f''(x) - 2f'(x) + 2f(x) = \left((1+i)^2 - 2(1+i) + 2\right)e^{(1+i)x} = (1+2i-1-2-2i+2)e^{(1+i)x} = 0.$$

Planche nº 14. Fonctions trigonométriques réciproques. Corrigé

Exercice nº 1

- 1) Arcsin x existe si et seulement si x est dans [-1,1]. Donc, $\sin(\operatorname{Arcsin} x)$ existe si et seulement si x est dans [-1,1] et pour tout x de [-1, 1], $\sin(Arcsin x) = x$.
- 2) Arcsin(sin x) existe pour tout réel x mais ne vaut x que si x est dans $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

 S'il existe un entier relatif k tel que $-\frac{\pi}{2} + 2k\pi \leqslant x < \frac{\pi}{2} + 2k\pi$, alors $-\frac{\pi}{2} \leqslant x 2k\pi < \frac{\pi}{2}$ et donc

$$Arcsin(sin x) = Arcsin(sin(x - 2k\pi)) = x - 2k\pi.$$

De plus, on a $k \le \frac{x}{2\pi} + \frac{1}{4} < k + \frac{1}{2}$ et donc $k = \left\lfloor \frac{x}{2\pi} + \frac{1}{4} \right\rfloor$ puis

$$Arcsin(\sin x) = x - 2\pi \left| \frac{x}{2\pi} + \frac{1}{4} \right|.$$

• S'il existe un entier relatif k tel que $\frac{\pi}{2} + 2k\pi \le x < \frac{3\pi}{2} + 2k\pi$, alors $-\frac{\pi}{2} < \pi - x + 2k\pi \le \frac{\pi}{2}$ et donc

$$Arcsin(\sin x) = Arcsin(\sin(\pi - x + 2k\pi)) = \pi - x + 2k\pi.$$

De plus, $k \le \frac{x}{2\pi} - \frac{1}{4} < k + \frac{1}{2}$ et donc $k = \left\lfloor \frac{x}{2\pi} - \frac{1}{4} \right\rfloor$ puis

$$Arcsin(\sin x) = \pi - x + 2\pi \left[\frac{x}{2\pi} - \frac{1}{4} \right].$$

- 3) Arccos x existe si et seulement si x est dans [-1, 1]. Donc, $\cos(\operatorname{Arccos} x)$ existe si et seulement si x est dans [-1, 1] et pour tout x dans [-1, 1], $\cos(\operatorname{Arccos} x) = x$.
- 4) Arccos $(\cos x)$ existe pour tout réel x mais ne vaut x que si x est dans $[0, \pi]$.
- S'il existe un entier relatif k tel que $2k\pi \leqslant x < \pi + 2k\pi$, alors $\operatorname{Arccos}(\cos x) = x 2k\pi$ avec $k = \left\lfloor \frac{x}{2\pi} \right\rfloor$.
- $\bullet \text{ S'il existe un entier relatif } k \text{ tel que } -\pi + 2k\pi \leqslant x < 2k\pi \text{ alors } \operatorname{Arccos}(\cos x) = \operatorname{Arccos}(\cos(2k\pi x)) = 2k\pi x \text{ avec}(\cos(2k\pi x)) =$ $k = \left| \frac{x + \pi}{2\pi} \right|.$
- 5) Pour tout réel x, tan(Arctan x) = x.
- 6) Arctan(tan x) existe si et seulement si x n'est pas dans $\frac{\pi}{2} + \pi \mathbb{Z}$ et pour ces x, il existe un unique entier relatif k tel que $-\frac{\pi}{2} + k\pi < x < \frac{\pi}{2} + k\pi. \text{ Dans ce cas, } \operatorname{Arctan}(\tan x) = \operatorname{Arctan}(\tan(x - k\pi)) = x - k\pi \text{ avec } k = \left\lfloor \frac{x}{\pi} + \frac{1}{2} \right\rfloor.$

1) 1ère solution. Posons f(x) = Arccos x + Arcsin x pour x dans [-1, 1].

f est définie et continue sur [-1,1], dérivable sur]-1,1[. De plus, pour x dans]-1,1[,

$$f'(x) = \frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-x^2}} = 0.$$

Donc f est constante sur] -1, 1[puis sur [-1,1] par continuité de f en -1 et en 1. Pour tout x de [-1,1], $f(x)=f(0)=\frac{\pi}{2}$

$$\forall x \in [-1, 1], \ \operatorname{Arccos} x + \operatorname{Arcsin} x = \frac{\pi}{2}.$$

2ème solution. Il existe un unique réel θ dans $[0,\pi]$ tel que $x=\cos\theta$, à savoir $\theta=\operatorname{Arccos} x$. Puisque $0\leqslant\theta\leqslant\pi$, on a encore $-\frac{\pi}{2}\leqslant\frac{\pi}{2}-\theta\leqslant\frac{\pi}{2}$ puis $\operatorname{Arcsin}(\cos\theta)=\operatorname{Arcsin}\left(\sin\left(\frac{\pi}{2}-\theta\right)\right)=\frac{\pi}{2}-\theta$ et donc

$$\operatorname{Arccos} x + \operatorname{Arcsin} x = \operatorname{Arccos}(\cos \theta) + \operatorname{Arcsin} \left(\sin \left(\frac{\pi}{2} - \theta \right) \right) = \theta + \frac{\pi}{2} - \theta = \frac{\pi}{2}$$

2) **1ère solution**. Pour x réel non nul, posons $f(x) = \arctan x + \arctan \frac{1}{x}$. Notons que f est impaire.

f est dérivable sur \mathbb{R}^* et pour x non nul, $f'(x) = \frac{1}{1+x^2} - \frac{1}{x^2} \frac{1}{1+\frac{1}{x^2}} = 0$. f est donc constante sur $]-\infty,0[$ et sur $]0,+\infty[$

(mais pas nécessairement sur \mathbb{R}^*). Donc, pour x > 0, $f(x) = f(1) = 2 \arctan 1 = \frac{\pi}{2}$, et puisque f est impaire, pour x < 0, $f(x) = -f(-x) = -\frac{\pi}{2}$ (on peut aussi écrire que f est constante sur $]-\infty,0[$ et donc que pour x < 0, $f(x) = f(-1) = -\frac{\pi}{2}$). Donc,

$$\forall x \in \mathbb{R}^*, \ \operatorname{Arctan} x + \operatorname{Arctan} \frac{1}{x} = \left\{ \begin{array}{l} \frac{\pi}{2} \operatorname{si} x > 0 \\ -\frac{\pi}{2} \operatorname{si} x < 0 \end{array} \right. = \frac{\pi}{2} \operatorname{sgn}(x).$$

On doit noter que la dérivée de f est nulle sur \mathbb{R}^* mais que f n'est pas constante sur \mathbb{R}^* .

2ème solution Pour x réel strictement positif donné, il existe un unique réel θ dans $\left]0, \frac{\pi}{2}\right[$ tel que $x = \tan \theta$ à savoir $\theta = \arctan x$. Mais alors,

$$\begin{split} \operatorname{Arctan} x + \operatorname{Arctan} \frac{1}{x} &= \operatorname{Arctan} (\tan \theta) + \operatorname{Arctan} (\cot \theta) = \operatorname{Arctan} (\tan \theta) + \operatorname{Arctan} \left(\tan \left(\frac{\pi}{2} - \theta \right) \right) \\ &= \theta + \frac{\pi}{2} - \theta = \frac{\pi}{2}. \end{split}$$

(car θ et $\frac{\pi}{2} - \theta$ sont éléments de $\left]0, \frac{\pi}{2}\right[.)$

3) $\cos^2(\operatorname{Arctan} \alpha) = \frac{1}{1 + \tan^2(\operatorname{Arctan} \alpha)} = \frac{1}{1 + \alpha^2}$. De plus, $\operatorname{Arctan} \alpha$ est dans $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ et donc $\cos(\operatorname{Arctan} \alpha) > 0$. On en déduit que pour tout réel α , $\cos(\operatorname{Arctan} \alpha) = \frac{1}{\sqrt{1 + \alpha^2}}$. Ensuite,

$$\sin(\operatorname{Arctan}\alpha) = \cos(\operatorname{Arctan}\alpha)\tan(\operatorname{Arctan}\alpha) = \frac{\alpha}{\sqrt{1+\alpha^2}}.$$

$$\forall \alpha \in \mathbb{R}, \ \cos(\operatorname{Arctan}\alpha) = \frac{1}{\sqrt{1+\alpha^2}} \ \mathrm{et} \ \sin(\operatorname{Arctan}\alpha) = \frac{\alpha}{\sqrt{1+\alpha^2}}.$$

4) D'après 3),

$$\cos(\operatorname{Arctan} a + \operatorname{Arctan} b) = \cos(\operatorname{Arctan} a)\cos(\operatorname{Arctan} b) - \sin(\operatorname{Arctan} a)\sin(\operatorname{Arctan} b) = \frac{1 - ab}{\sqrt{1 + a^2}\sqrt{1 + b^2}},$$

ce qui montre déjà , puisque $ab \neq 1$, que $\cos(\arctan a + \arctan b) \neq 0$ et donc que $\tan(\arctan a + \arctan b)$ a un sens. Immédiatement,

$$\tan (\operatorname{Arctan} a + \operatorname{Arctan} b) = \frac{a+b}{1-ab}.$$

 $\mathrm{Maintenant},\,\mathrm{Arctan}\,\mathfrak{a}+\mathrm{Arctan}\,\mathfrak{b}\,\,\mathrm{est}\,\,\mathrm{dans}\,\,\Big]-\pi,-\frac{\pi}{2}\Big[\,\cup\,\,\Big]-\frac{\pi}{2},\frac{\pi}{2}\Big[\,\cup\,\,\Big]\frac{\pi}{2},\pi\Big[.$

 $\begin{array}{l} \textbf{1er cas. Si } \ ab < 1 \ alors \ \cos(\arctan\alpha + \operatorname{Arctan} b) > 0 \ et \ donc \ \operatorname{Arctan} \alpha + \operatorname{Arctan} b \ est \ dans \ \Big] - \frac{\pi}{2}, \frac{\pi}{2} \Big[. \ Dans \ ce \ cas, \\ \operatorname{Arctan} \alpha + \operatorname{Arctan} b = \operatorname{Arctan} \Big(\frac{\alpha + b}{1 - \alpha b}\Big). \end{array}$

2ème cas. Si ab > 1 alors $\cos(\operatorname{Arctan} a + \operatorname{Arctan} b) < 0$ et donc $\operatorname{Arctan} a + \operatorname{Arctan} b$ est dans $\left] -\pi, -\frac{\pi}{2} \right[\cup \left] \frac{\pi}{2}, \pi \right[$. Si de plus a > 0, $\operatorname{Arctan} a + \operatorname{Arctan} b > -\frac{\pi}{2}$ et donc $\operatorname{Arctan} a + \operatorname{Arctan} b$ est dans $\left[\frac{\pi}{2}, \pi \right[$. Dans ce cas, $\operatorname{Arctan} a + \operatorname{Arctan} b - \pi$ est dans $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right[$ et a même tangente que $\operatorname{Arctan} \frac{a+b}{1-ab}$. Donc, $\operatorname{Arctan} a + \operatorname{Arctan} b - \pi = \operatorname{Arctan} \frac{a+b}{1-ab}$ ou encore $\operatorname{Arctan} a + \operatorname{Arctan} b = \operatorname{Arctan} \frac{a+b}{1-ab} + \pi$. Si a < 0, on trouve de même $\operatorname{Arctan} a + \operatorname{Arctan} b = \operatorname{Arctan} \frac{a+b}{1-ab} - \pi$. En résumé,

$$\operatorname{Arctan} a + \operatorname{Arctan} b = \left\{ \begin{array}{l} \operatorname{Arctan} \frac{a+b}{1-ab} \ \operatorname{si} \ ab < 1 \\ \operatorname{Arctan} \frac{a+b}{1-ab} + \pi \ \operatorname{si} \ ab > 1 \ \operatorname{et} \ a > 0 \\ \operatorname{Arctan} \frac{a+b}{1-ab} - \pi \ \operatorname{si} \ ab > 1 \ \operatorname{et} \ a < 0 \end{array} \right. .$$

Exercice nº 3

Pour x réel, on pose $f(x) = \int_0^{\sin^2 x} Arcsin \sqrt{t} \ dt + \int_0^{\cos^2 x} Arccos \sqrt{t} \ dt.$

La fonction $t \mapsto \operatorname{Arcsin} \sqrt{t}$ est continue sur [0,1]. Donc, la fonction $y \mapsto \int_0^y \operatorname{Arcsin} \sqrt{t} \ dt$ est définie et dérivable sur [0,1].

De plus, $x \mapsto \sin^2 x$ est définie et dérivable sur $\mathbb R$ à valeurs dans [0,1]. Finalement, la fonction $x \mapsto \int_0^{\sin^2 x} \operatorname{Arcsin} \sqrt{t} \ dt$ est définie et dérivable sur $\mathbb R$.

De même, la fonction $t\mapsto \operatorname{Arccos} \sqrt{t}$ est continue sur [0,1]. Donc, la fonction $y\mapsto \int_0^y \operatorname{Arccos} \sqrt{t}$ dt est définie et dérivable sur [0,1]. De plus, la fonction $x\mapsto \cos^2 x$ est définie et dérivable sur \mathbb{R} , à valeurs dans [0,1]. Finalement, la fonction $x\mapsto \int_0^{\cos^2 x} \operatorname{Arccos} \sqrt{t}$ dt est définie et dérivable sur \mathbb{R} .

Donc, f est définie et dérivable sur \mathbb{R} et, pour tout réel x,

$$\begin{split} f'(x) &= 2\sin x\cos x \operatorname{Arcsin}(\sqrt{\sin^2 x}) - 2\sin x\cos x \operatorname{Arccos}(\sqrt{\cos^2 x}) \\ &= 2\sin x\cos x \left(\operatorname{Arcsin}(|\sin x|) - \operatorname{Arccos}(|\cos x|)\right). \end{split}$$

On note alors que f est π -périodique et paire. Pour x élément de $\left[0,\frac{\pi}{2}\right]$, $f'(x)=2\sin x\cos x(x-x)=0$. f est donc constante sur $\left[0,\frac{\pi}{2}\right]$ et pour x élément de $\left[0,\frac{\pi}{2}\right]$, $f(x)=f\left(\frac{\pi}{4}\right)=\int_0^{1/2} \operatorname{Arcsin}\sqrt{t} \ dt + \int_0^{1/2} \operatorname{Arccos}\sqrt{t} dt = \int_0^{1/2} \frac{\pi}{2} \ dt = \frac{\pi}{4}$. Mais alors, par parité et π -périodicité,

$$\forall x \in \mathbb{R}, \ \int_0^{\sin^2 x} \operatorname{Arcsin} \sqrt{t} \ dt + \int_0^{\cos^2 x} \operatorname{Arccos} \sqrt{t} \ dt = \frac{\pi}{4}.$$

Exercice nº 4

1) 1ère solution. Pour tout réel x, $\sqrt{x^2+1} > \sqrt{x^2} = |x|$ et donc $-1 < \frac{x}{\sqrt{x^2+1}} < 1$. Ainsi f_1 est définie et dérivable sur \mathbb{R} , impaire, et pour tout réel x,

$$f_1'(x) = \frac{\sqrt{x^2 + 1} - x \frac{2x}{2\sqrt{x^2 + 1}}}{x^2 + 1} \times \frac{1}{\sqrt{1 - \frac{x^2}{1 + x^2}}} = \frac{1}{(1 + x^2)\sqrt{x^2 + 1}} \times \sqrt{x^2 + 1}$$
$$= \frac{1}{1 + x^2} = \operatorname{Arctan}'(x).$$

Donc il existe une constante réelle C telle que pour tout réel x, $f_1(x) = \operatorname{Arctan} x + C$. x = 0 fournit C = 0 et donc,

$$\forall x \in \mathbb{R}, \ \operatorname{Arcsin}\left(\frac{x}{\sqrt{x^2+1}}\right) = \operatorname{Arctan} x.$$

2ème solution. Pour x réel donné, posons $\theta = \arctan x$. θ est dans $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ et $x = \tan \theta$.

$$\frac{x}{\sqrt{x^2 + 1}} = \frac{\tan \theta}{\sqrt{1 + \tan^2 \theta}} = \sqrt{\cos^2 \theta} \tan \theta = \cos \theta \tan \theta \text{ (car } \cos \theta > 0)$$
$$= \sin \theta,$$

et donc

$$\begin{split} f_1(x) &= \operatorname{Arcsin}(\sin \theta) = \theta \ (\operatorname{car} \ \theta \ \operatorname{est} \ \operatorname{dans} \ \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[) \\ &= \operatorname{Arctan} x. \end{split}$$

2) 1ère solution. Pour tout réel x, $-1 < -1 + \frac{2}{1+x^2} = \frac{1-x^2}{1+x^2} \le -1 + 2 = 1$ avec égalité si et seulement si x = 0. f_2 est donc définie et continue sur \mathbb{R} , dérivable sur \mathbb{R}^* . De plus, f_2 est paire. Pour tout réel x non nul,

$$f_2'(x) = \frac{-2x(1+x^2) - 2x(1-x^2)}{(1+x^2)^2} \times \frac{-1}{\sqrt{1 - \left(\frac{1-x^2}{1+x^2}\right)^2}} = \frac{4x}{1+x^2} \frac{1}{\sqrt{4x^2}} = \frac{2\epsilon}{1+x^2}$$

où ε est le signe de x. Donc il existe une constante réelle C telle que pour tout réel positif x, $f_2(x) = 2 \operatorname{Arctan} x + C$ (y compris x = 0 puisque f est continue en 0).

x=0 fournit C=0 et donc, pour tout réel positif $x,\ f_2(x)=2\operatorname{Arctan} x.$ Par parité,

$$\forall x \in \mathbb{R}, \ \operatorname{Arccos}\left(\frac{1-x^2}{1+x^2}\right) = 2 \operatorname{Arctan}|x|.$$

2ème solution. Soit $\theta = \operatorname{Arctan} x$ pour x réel donné. θ est dans $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ et $x = \tan \theta$.

$$\frac{1 - x^2}{1 + x^2} = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \cos^2 \theta (1 - \tan^2 \theta) = \cos^2 \theta - \sin^2 \theta = \cos(2\theta).$$

Donc

$$f_{2}(x) = \operatorname{Arccos}(\cos(2\theta)) = \begin{cases} 2\theta & \text{si } \theta \in \left[0, \frac{\pi}{2}\right[\\ -2\theta & \text{si } \theta \in \left] - \frac{\pi}{2}, 0 \right] \end{cases} = \begin{cases} 2 \operatorname{Arctan} x & \text{si } x \geqslant 0\\ -2 \operatorname{Arctan} x & \text{si } x \leqslant 0 \end{cases} = \begin{cases} 2 \operatorname{Arctan} x & \text{si } x \geqslant 0\\ 2 \operatorname{Arctan}(-x) & \text{si } x \leqslant 0 \end{cases}$$
$$= 2 \operatorname{Arctan} |x|.$$

3) La fonction $x\mapsto \operatorname{Arcsin}\sqrt{1-x^2}$ est définie et continue sur [-1,1], dérivable sur $[-1,1]\setminus\{0\}$ car pour x élément de [-1,1], $1-x^2$ est élément de [0,1] et vaut 1 si et seulement si x vaut 0). $\frac{1-x}{1+x}$ est défini et positif si et seulement si x est dans]-1,1], et nul si et seulement si x=1. f_3 est donc définie et continue sur]-1,1], dérivable sur $]-1,0[\cup]0,1[$. Pour x dans $]-1,0[\cup]0,1[$, on note ϵ le signe de x et on a :

$$f_3'(x) = -\frac{x}{\sqrt{1-x^2}} \times \frac{1}{\sqrt{1-(1-x^2)}} - \frac{-(1+x)-(1-x)}{(1+x)^2} \frac{1}{2\sqrt{\frac{1-x}{1+x}}} \frac{1}{1+\frac{1-x}{1+x}} = -\frac{\epsilon}{\sqrt{1-x^2}} + \frac{1}{2} \frac{1}{\sqrt{1-x^2}}.$$

Si x est dans]0,1[, $f_3'(x) = -\frac{1}{2}\frac{1}{\sqrt{1-x^2}} = \left(-\frac{1}{2}\operatorname{Arcsin}\right)'(x)$. Donc, il existe un réel C tel que, pour tout x de [0,1] (par continuité en 0 et en 1) $f_3(x) = -\frac{1}{2}\operatorname{Arcsin} x + C$. x = 1 fournit $C = \frac{\pi}{4}$. Donc, pour tout x de [0,1]

$$f_3(x) = \frac{\pi}{4} - \frac{1}{2} \operatorname{Arcsin} x = \frac{1}{2} \left(\frac{\pi}{2} - \operatorname{Arcsin} x \right) = \frac{1}{2} \operatorname{Arccos} x.$$

$$\forall x \in [0,1], f_3(x) = \frac{1}{2} \operatorname{Arccos} x.$$

Si x est dans] -1,0[, $f_3'(x) = \frac{3}{2} \frac{1}{\sqrt{1-x^2}} = \left(\frac{3}{2} \operatorname{Arcsin}\right)'(x)$. Donc il existe un réel C' tel que, pour tout x de] -1,0] (par continuité) $f_3(x) = \frac{3}{2} \operatorname{Arcsin} x + C'$. x = 0 fournit $\frac{\pi}{2} - \frac{\pi}{4} = C'$. Donc,

$$\forall x \in]-1,0], f_3(x) = \frac{3}{2} Arcsin x + \frac{\pi}{4}.$$

4) f_4 est dérivable sur $\mathcal{D} = \mathbb{R} \setminus \{-1; 0\}$ et pour x élément de \mathcal{D} , on a :

$$\begin{split} f_4'(x) &= -\frac{1}{x^3} \frac{1}{1 + \frac{1}{4x^4}} - \frac{(x+1) - x}{(x+1)^2} \frac{1}{1 + \frac{x^2}{(x+1)^2}} + \frac{x - (x-1)}{x^2} \frac{1}{1 + \frac{(x-1)^2}{x^2}} \\ &= -\frac{4x}{4x^4 + 1} - \frac{1}{2x^2 + 1 + 2x} + \frac{1}{2x^2 + 1 - 2x} = -\frac{4x}{4x^4 + 1} + \frac{4x}{(2x^2 + 1)^2 - 4x^2} = 0. \end{split}$$

 $f_4 \text{ est donc constante sur chacun des trois intervalles }] - \infty, -1[,] -1, 0[\text{ et }]0, +\infty[. \text{ Pour } x > 0, \ f(x) = f(1) = 0. \text{ Pour } -1 < x < 0, \ f(x) = \lim_{\substack{t \to -1 \\ t > -1}} f(t) = \arctan\frac{1}{2} - \left(-\frac{\pi}{2}\right) + \arctan2 = \frac{\pi}{2} + \frac{\pi}{2} = \pi.$

$$\mathrm{Pour}\ x<-1,\ f(x)=\lim_{t\to-\infty}f(t)=-\frac{\pi}{4}+\frac{\pi}{4}=0.$$

$$\forall x \in \mathbb{R} \setminus \{-1;0\}, \ f_4(x) = \left\{ \begin{array}{l} 0 \ \mathrm{si} \ x \in]-\infty, -1[\cup]0, +\infty[\\ \pi \ \mathrm{si} \ x \in]-1, 0[\end{array} \right.$$

Exercice nº 5

 $0 \leqslant \operatorname{Arctan} \frac{1}{2} + \operatorname{Arctan} \frac{1}{5} < \operatorname{Arctan} 1 + \operatorname{Arctan} 1 = \frac{\pi}{2} \text{ et}$

$$\tan\left(\operatorname{Arctan}\frac{1}{2} + \operatorname{Arctan}\frac{1}{5}\right) = \frac{\frac{1}{2} + \frac{1}{5}}{1 - \frac{1}{2}\frac{1}{5}} = \frac{7}{9}.$$

 $\text{Comme Arctan } \frac{1}{2} + \text{Arctan } \frac{1}{5} \in \left[0, \frac{\pi}{2}\right[, \text{ on a donc Arctan } \frac{1}{2} + \text{Arctan } \frac{1}{5} = \text{Arctan } \frac{7}{9}. \text{ De même, Arctan } \frac{7}{9} + \text{Arctan } \frac{1}{8} \in \left[0, \frac{\pi}{2}\right]$

$$\tan\left(\arctan\frac{7}{9} + \arctan\frac{1}{8}\right) = \frac{\frac{7}{9} + \frac{1}{8}}{1 - \frac{7}{9} \times \frac{1}{8}} = \frac{65}{65} = 1,$$

et donc $\arctan \frac{7}{9} + \arctan \frac{1}{8} = \arctan 1 = \frac{\pi}{4}$. Finalement,

$$\arctan \frac{1}{2} + \arctan \frac{1}{5} + \arctan \frac{1}{8} = \frac{\pi}{4}.$$

Exercice nº 6

(On va retrouver le résultat de l'exercice n° 2 dans un cas particulier) Soient $\mathfrak a$ et $\mathfrak b$ deux réels positifs. Alors, $\operatorname{Arctan}\mathfrak a\in\left]0,\frac{\pi}{2}\right[$, $\operatorname{Arctan}\mathfrak b\in\left]0,\frac{\pi}{2}\right[$ et donc, $\operatorname{Arctan}\mathfrak a-\operatorname{Arctan}\mathfrak b\in\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$. De plus,

$$\tan(\operatorname{Arctan} \mathfrak{a} - \operatorname{Arctan} \mathfrak{b}) = \frac{\tan(\operatorname{Arctan} \mathfrak{a}) - \tan(\operatorname{Arctan} \mathfrak{b})}{1 + \tan(\operatorname{Arctan} \mathfrak{a}) \tan(\operatorname{Arctan} \mathfrak{b})} = \frac{\mathfrak{a} - \mathfrak{b}}{1 + \mathfrak{a}\mathfrak{b}},$$

et donc, puisque Arctan \mathfrak{a} – Arctan $\mathfrak{b} \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$,

$$\forall a \geqslant 0, \ \forall b \geqslant 0, \ \operatorname{Arctan} a - \operatorname{Arctan} b = \operatorname{Arctan} \left(\frac{a - b}{1 + ab}\right).$$

Soit alors k un entier naturel non nul. $\operatorname{Arctan} \frac{2}{k^2} = \operatorname{Arctan} \frac{(k+1)-(k-1)}{1+(k-1)(k+1)} = \operatorname{Arctan}(k+1) - \operatorname{Arctan}(k-1)$ (puisque k-1 et k+1 sont positifs). Par suite, si n est un entier naturel non nul donné,

$$\begin{split} u_n &= \sum_{k=1}^n \operatorname{Arctan} \frac{2}{k^2} = \sum_{k=1}^n (\operatorname{Arctan}(k+1) - \operatorname{Arctan}(k-1)) = \sum_{k=2}^{n+1} \operatorname{Arctan} k - \sum_{k=0}^{n-1} \operatorname{Arctan} k \\ &= \operatorname{Arctan}(n+1) + \operatorname{Arctan} n - \frac{\pi}{4}. \end{split}$$

La limite de u_n vaut donc $\frac{\pi}{2} + \frac{\pi}{2} - \frac{\pi}{4} = \frac{3\pi}{4}$.

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \operatorname{Arctan} \frac{2}{k^2} = \frac{3\pi}{4}.$$

Exercice nº 7

- 1) f est définie et dérivable sur $\mathcal{D} = \mathbb{R} \setminus \left\{ \frac{1}{2} \right\}$.
- 2) Pour x élément de \mathcal{D} ,

$$f'(x) = 2x \arctan \frac{1}{2x-1} + (x^2-1)\frac{-2}{(2x-1)^2} \times \frac{1}{1 + \frac{1}{(2x-1)^2}} = 2x \arctan \frac{1}{2x-1} - \frac{x^2-1}{2x^2-2x+1}.$$

De plus, pour x non nul : f'(x) = 2xg(x) où $g(x) = Arctan \frac{1}{2x-1} - \frac{1}{2x} \frac{x^2-1}{2x^2-2x+1}$

3) Pour x élément de $\mathcal{D} \setminus \{0\}$,

$$\begin{split} g'(x) &= -\frac{1}{2x^2 - 2x + 1} - \frac{1}{2} \frac{2x(2x^3 - 2x^2 + x) - (x^2 - 1)(6x^2 - 4x + 1)}{x^2(2x^2 - 2x + 1)^2} \\ &= \frac{-2x^2(2x^2 - 2x + 1) + 2x^4 - 7x^2 + 4x - 1}{2x^2(2x^2 - 2x + 1)^2} = -\frac{2x^4 - 4x^3 + 9x^2 - 4x + 1}{2x^2(2x^2 - 2x + 1)^2}. \end{split}$$

Maintenant,

$$2x^4 - 4x^3 + 9x^2 - 4x + 1 = 2x^2(x - 1)^2 + 7x^2 - 4x + 1 = 2x^2(x - 1)^2 + 7\left(x - \frac{2}{7}\right)^2 + \frac{3}{7} > 0.$$

Donc, g est strictement décroissante sur $]-\infty,0[$, sur $]0,\frac{1}{2}[$ et sur $]\frac{1}{2},+\infty[$. En $+\infty,$ g(x) tend vers 0. Donc g est strictement positive sur $]\frac{1}{2},+\infty[$. Quand x tend vers $\frac{1}{2}$ par valeurs inférieures, g tend vers $-\frac{\pi}{2}+\frac{3}{2}<0$ et quand x tend vers 0 par valeurs supérieures, g(x) tend vers $+\infty$. Donc g s'annule une et une seule fois sur l'intervalle $]0,\frac{1}{2}[$ en un certain réel x_0 de $]0,\frac{1}{2}[$. g est de plus strictement négative sur $]x_0,\frac{1}{2}[$ et strictement positive sur $]0,x_0[$. Quand x tend vers $-\infty,$ g(x) tend vers 0. Donc g est strictement négative sur $]-\infty,0[$.

4) Enfin, puisque f'(x) = 2xg(x) pour $x \neq 0$, on a les résultats suivants :

$$\begin{aligned} & \sup]-\infty, 0[, \ f'>0, \ \sup]0, x_0[, \ f'>0, \ \sup \bigg] x_0, \frac{1}{2} \bigg[, \ f'<0, \ \sup]\frac{1}{2}, +\infty[, \ f'>0. \ \text{Comme } f'(0)=1>0, \ \text{on a donc}: \ \sup]-\infty, x_0[, \ f'>0, \ \sup \bigg] x_0, \frac{1}{2} \bigg[, \ f'<0 \ \text{et sur} \ \bigg]\frac{1}{2}, +\infty \bigg[, \ f'>0. \ f \ \text{est strictement croissante sur} \]-\infty, x_0] \ \text{et sur} \ \bigg]\frac{1}{2}, +\infty \bigg[\ \text{et est strictement décroissante sur} \ \bigg[x_0, \frac{1}{2} \bigg[. \end{aligned}$$

Exercice nº 8

1) Pour tout réel x de [-1,1], $\sin(2 \operatorname{Arcsin} x) = 2 \sin(\operatorname{Arcsin} x) \cos(\operatorname{Arcsin} x) = 2x\sqrt{1-x^2}$.

2) Pour tout réel x de $[-1,1],\,\cos(2\operatorname{Arccos} x)=2\cos^2(\operatorname{Arccos} x)-1=2x^2-1.$

3) Pour tout réel x de
$$[-1,1]$$
, $\sin^2\left(\frac{\operatorname{Arccos} x}{2}\right) = \frac{1}{2}(1-\cos(\operatorname{Arccos} x)) = \frac{1-x}{2}$.

Exercice nº 9

1) Soit $x \in \mathbb{R}$.

$$\cos x = \frac{1}{3} \Leftrightarrow \exists k \in \mathbb{Z} / \ x = \operatorname{Arccos}\left(\frac{1}{3}\right) + 2k\pi \text{ ou } \exists k \in \mathbb{Z} / \ x = -\operatorname{Arccos}\left(\frac{1}{3}\right) + 2k\pi.$$

$$\mathscr{S} = \left(\operatorname{Arccos}\left(\frac{1}{3}\right) + 2\pi\mathbb{Z}\right) \cup \left(-\operatorname{Arccos}\left(\frac{1}{3}\right) + 2\pi\mathbb{Z}\right).$$

2) Soit $x \in \mathbb{R}$.

$$\sin(2x) = -\frac{1}{4} \Leftrightarrow \exists k \in \mathbb{Z}/2x = -\operatorname{Arcsin}\left(\frac{1}{4}\right) + 2k\pi \text{ ou } \exists k \in \mathbb{Z}/2x = \pi + \operatorname{Arcsin}\left(\frac{1}{4}\right) + 2k\pi$$
$$\Leftrightarrow \exists k \in \mathbb{Z}/x = -\frac{1}{2}\operatorname{Arcsin}\left(\frac{1}{4}\right) + k\pi \text{ ou } \exists k \in \mathbb{Z}/x = \frac{\pi}{2} + \frac{1}{2}\operatorname{Arcsin}\left(\frac{1}{4}\right) + k\pi.$$

3) Soit $x \in \mathbb{R}$.

$$\tan(x) = 3 \Leftrightarrow \exists k \in \mathbb{Z}/x = Arctan(3) + k\pi.$$

4) Une solution est nécessairement dans [-1,1] et même dans [0,1]. La fonction $x\mapsto \operatorname{Arcsin}(x)+\operatorname{Arcsin}\left(\frac{x}{2}\right)$ est continue et strictement croissante sur [0,1] en tant que somme de deux fonctions continues et strictement croissantes sur [0,1]. La fonction $x\mapsto \operatorname{Arcsin}(x)+\operatorname{Arcsin}\left(\frac{x}{2}\right)$ réalise donc une bijection de [0,1] sur $\left[0,\frac{2\pi}{3}\right]$. Comme $\frac{\pi}{4}\in\left[0,\frac{2\pi}{3}\right]$, l'équation proposée a une solution et une seule et cette solution est dans [0,1]. Si $\operatorname{Arcsin}(x)+\operatorname{Arcsin}\left(\frac{x}{2}\right)=\frac{\pi}{4}$ alors $\operatorname{sin}\left(\operatorname{Arcsin}(x)+\operatorname{Arcsin}\left(\frac{x}{2}\right)\right)=\frac{1}{\sqrt{2}}$. Réciproquement, puisque $x\in[0,1]$, $0\leqslant\operatorname{Arcsin}(x)+\operatorname{Arcsin}\left(\frac{x}{2}\right)\leqslant\operatorname{Arcsin}(1)+\operatorname{Arcsin}\left(\frac{1}{2}\right)=\frac{2\pi}{3}$. Dans l'intervalle $\left[0,\frac{2\pi}{3}\right]$, il y a un nombre et un seul dont le sinus vaut $\frac{1}{\sqrt{2}}$ à savoir $\frac{\pi}{4}$. Donc, pour x dans [0,1],

$$\begin{split} \operatorname{Arcsin}(\mathbf{x}) + \operatorname{Arcsin}\left(\frac{\mathbf{x}}{2}\right) &= \frac{\pi}{4} \Leftrightarrow \sin\left(\operatorname{Arcsin}(\mathbf{x}) + \operatorname{Arcsin}\left(\frac{\mathbf{x}}{2}\right)\right) = \frac{1}{\sqrt{2}} \Leftrightarrow \mathbf{x}\sqrt{1 - \frac{\mathbf{x}^2}{4}} + \frac{\mathbf{x}}{2}\sqrt{1 - \mathbf{x}^2} = \frac{1}{\sqrt{2}} \\ &\Leftrightarrow \mathbf{x}^2 \left(1 - \frac{\mathbf{x}^2}{4}\right) + \frac{\mathbf{x}^2}{4}(1 - \mathbf{x}^2) + \mathbf{x}^2\sqrt{\left(1 - \frac{\mathbf{x}^2}{4}\right)\left(1 - \mathbf{x}^2\right)} = \frac{1}{2} \\ &(\text{car le premier membre de l'équation initiale est positif}) \\ &\Leftrightarrow \mathbf{x}^2\sqrt{\left(1 - \frac{\mathbf{x}^2}{4}\right)\left(1 - \mathbf{x}^2\right)} = \frac{1}{2} - \frac{5\mathbf{x}^2}{4} + \frac{\mathbf{x}^4}{2} \\ &\Leftrightarrow 16\mathbf{x}^4\left(1 - \frac{\mathbf{x}^2}{4}\right)\left(1 - \mathbf{x}^2\right) = \left(2\mathbf{x}^4 - 5\mathbf{x}^2 + 2\right)^2 \text{ et } 2\mathbf{x}^4 - 5\mathbf{x}^2 + 2 \geqslant 0 \\ &\Leftrightarrow 4\mathbf{x}^8 - 20\mathbf{x}^6 + 16\mathbf{x}^4 = 4\mathbf{x}^8 - 20\mathbf{x}^6 + 33\mathbf{x}^4 - 20\mathbf{x}^2 + 4 \text{ et } \mathbf{x}^2 \not\in \left\{\frac{1}{2}, 2\right[\\ &\Leftrightarrow 17\mathbf{x}^4 - 20\mathbf{x}^2 + 4 = 0 \text{ et } \mathbf{x}^2 \not\in \left\{\frac{1}{2}, 2\right[\Leftrightarrow \mathbf{x}^2 \in \left\{\frac{10 - \sqrt{32}}{17}, \frac{10 + \sqrt{32}}{17}\right\} \text{ et } \mathbf{x}^2 \not\in \left\{\frac{1}{2}, 2\right[\\ &\Leftrightarrow \mathbf{x}^2 = \frac{10 - \sqrt{32}}{17} \\ &\Leftrightarrow \mathbf{x} = \sqrt{\frac{10 - 4\sqrt{2}}{17}} \text{ (car } \mathbf{x} \geqslant 0). \end{split}$$

$$\mathscr{S} = \left\{ \sqrt{\frac{10 - 4\sqrt{2}}{17}} \right\}.$$

5) Une solution est nécessairement dans $\left[-\frac{1}{2},\frac{1}{2}\right]$. Soit donc x un réel de $\left[-\frac{1}{2},\frac{1}{2}\right]$.

$$\begin{aligned} \operatorname{Arcsin}(2x) &= \operatorname{Arcsin} x + \operatorname{Arcsin} \left(x \sqrt{2} \right) \Rightarrow \sin(\operatorname{Arcsin}(2x)) = \sin \left(\operatorname{Arcsin} x + \operatorname{Arcsin} \left(x \sqrt{2} \right) \right) \\ &\Leftrightarrow 2x = x \sqrt{1 - \left(x \sqrt{2} \right)^2} + x \sqrt{2} \sqrt{1 - x^2} \\ &\Leftrightarrow x = 0 \text{ ou } \sqrt{1 - 2x^2} + \sqrt{2 - 2x^2} = 2 \\ &\Leftrightarrow x = 0 \text{ ou } 1 - 2x^2 + 2 - 2x^2 + 2 \sqrt{(1 - 2x^2)(2 - 2x^2)} = 4 \\ &\Leftrightarrow x = 0 \text{ ou } 2 \sqrt{(1 - 2x^2)(2 - 2x^2)} = 1 + 4x^2 \\ &\Leftrightarrow x = 0 \text{ ou } 4(4x^4 - 6x^2 + 2) = (4x^2 + 1)^2 \\ &\Leftrightarrow x = 0 \text{ ou } 32x^2 = 7 \Leftrightarrow x = 0 \text{ ou } x = \sqrt{\frac{7}{32}} \text{ ou } x = -\sqrt{\frac{7}{32}} \end{aligned}$$

Réciproquement, pour chacun des ces trois nombres x, la seule implication écrite est une équivalence si x est dans $\left[-\frac{1}{2},\frac{1}{2}\right]$ (ce qui est le cas puisque $\left(\pm\sqrt{\frac{7}{32}}\right)^2 = \frac{14}{64} \leqslant \frac{16}{64} = \left(\frac{1}{2}\right)^2$) et de plus $\operatorname{Arcsin} x + \operatorname{Arcsin}(x\sqrt{2})$ est dans $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$. Or,

$$0\leqslant \arcsin\sqrt{\frac{7}{32}} + \arcsin\left(\sqrt{\frac{7}{32}}\times\sqrt{2}\right) = \arcsin\sqrt{\frac{7}{32}} + \arcsin\sqrt{\frac{7}{16}} \leqslant 2\arcsin\sqrt{\frac{8}{16}} = 2\arcsin\frac{1}{\sqrt{2}} = \frac{\pi}{2}$$

et donc Arcsin $\sqrt{\frac{7}{32}}$ + Arcsin $\left(\sqrt{\frac{7}{32}} \times \sqrt{2}\right) \in \left[0, \frac{\pi}{2}\right]$. De même, par parité, Arcsin $\left(-\sqrt{\frac{7}{32}}\right)$ + Arcsin $\left(-\sqrt{\frac{7}{32}} \times \sqrt{2}\right) \in \left[-\frac{\pi}{2}, 0\right]$ ce qui achève la résolution.

$$\mathscr{S} = \left\{0, -\frac{\sqrt{14}}{8}, \frac{\sqrt{14}}{8}\right\}.$$

6) Soit $x \in \mathbb{R}$. Arcsin x exists si et seulement si $x \in [-1, 1]$. Ensuite,

$$\begin{split} \operatorname{Arcsin}(2x\sqrt{1-x^2}) \text{ existe} &\Leftrightarrow x \in [-1,1] \text{ et } 2x\sqrt{1-x^2} \in [-1,1] \\ &\Leftrightarrow x \in [-1,1] \text{ et } 4x^2(1-x^2) \in [0,1] \Leftrightarrow x \in [-1,1] \text{ et } 4x^2(1-x^2) \leqslant 1 \\ &\Leftrightarrow x \in [-1,1] \text{ et } 4x^4-4x^2+1 \geqslant 0 \Leftrightarrow x \in [-1,1] \text{ et } (2x^2-1)^2 \geqslant 0 \\ &\Leftrightarrow x \in [-1,1] \end{split}$$

 $\begin{aligned} &\operatorname{Pour}\,x\in[-1,1],\,\sin(2\operatorname{Arcsin}(x))=2\sin(\operatorname{Arcsin}x)\cos(\operatorname{Arcsin}x)=2x\sqrt{1-x^2}=\sin(\operatorname{Arcsin}(2x\sqrt{1-x^2})),\,\operatorname{et}\,\operatorname{de}\,\operatorname{plus},\\ &\operatorname{Arcsin}(2x\sqrt{1-x^2})\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right].\,\operatorname{Par}\,\operatorname{suite}, \end{aligned}$

$$\begin{split} x \ \mathrm{solution} &\Leftrightarrow x \in [-1,1] \ \mathrm{et} \ 2 \ \mathrm{Arcsin}(x) \in \left[-\frac{\pi}{2},\frac{\pi}{2}\right] \\ &\Leftrightarrow x \in [-1,1] \ \mathrm{et} \ \ \mathrm{Arcsin}(x) \in \left[-\frac{\pi}{4},\frac{\pi}{4}\right] \Leftrightarrow x \in \left[-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right]. \end{split}$$

$$\mathscr{S} = \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right].$$

7) Par croissance de la fonction arctangente sur \mathbb{R} , si $x \leq 0$, $\operatorname{Arctan}(x-1) + \operatorname{Arctan}(x) + \operatorname{Arctan}(x+1) \leq \operatorname{Arctan}(-1) + \operatorname{Arctan}(0) + \operatorname{Arctan}(1) = 0$. En particulier, $\operatorname{Arctan}(x-1) + \operatorname{Arctan}(x) + \operatorname{Arctan}(x+1) \neq \frac{\pi}{2}$. Une solution est donc nécessairement strictement positive.

Soit donc x un réel strictement positif.

$$\operatorname{Arctan}(\mathsf{x}-1) + \operatorname{Arctan}(\mathsf{x}) + \operatorname{Arctan}(\mathsf{x}+1) = \frac{\pi}{2} \Leftrightarrow \operatorname{Arctan}(\mathsf{x}-1) + \operatorname{Arctan}(\mathsf{x}+1) = \frac{\pi}{2} - \operatorname{Arctan}(\mathsf{x})$$

$$\Leftrightarrow \operatorname{Arctan}(\mathsf{x}-1) + \operatorname{Arctan}(\mathsf{x}+1) = \operatorname{Arctan}\left(\frac{1}{\mathsf{x}}\right)$$

$$\Leftrightarrow \operatorname{Arctan}(\mathsf{x}-1) + \operatorname{Arctan}(\mathsf{x}+1) \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \left[\text{ et } \tan\left(\operatorname{Arctan}(\mathsf{x}-1) + \operatorname{Arctan}(\mathsf{x}+1)\right) = \frac{1}{\mathsf{x}} \right]$$

$$\Leftrightarrow \operatorname{Arctan}(\mathsf{x}-1) + \operatorname{Arctan}(\mathsf{x}+1) \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \left[\text{ et } \frac{(\mathsf{x}-1) + (\mathsf{x}+1)}{1 - (\mathsf{x}-1)(\mathsf{x}+1)} = \frac{1}{\mathsf{x}} \right]$$

$$\Leftrightarrow \frac{2\mathsf{x}}{2 - \mathsf{x}^2} = \frac{1}{\mathsf{x}} \text{ et } \operatorname{Arctan}(\mathsf{x}-1) + \operatorname{Arctan}(\mathsf{x}+1) \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \left[\text{ et } \mathsf{x} \notin \left\{ 0, \sqrt{2} \right\} \right]$$

$$\Leftrightarrow \mathsf{x} = \sqrt{\frac{2}{3}} \text{ et } \operatorname{Arctan}(\mathsf{x}-1) + \operatorname{Arctan}(\mathsf{x}+1) \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \left[\text{ et } \mathsf{x} \notin \left\{ 0, \sqrt{2} \right\} \right]$$

$$\Leftrightarrow \mathsf{x} = \sqrt{\frac{2}{3}} \text{ (car } \operatorname{Arctan}\left(\sqrt{\frac{2}{3}} - 1\right) + \left(\sqrt{\frac{2}{3}} + 1\right) = 0, 8 \dots \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \left[\right] .$$

$$\mathscr{S} = \left\{ \sqrt{\frac{2}{3}} \right\}.$$

Planche nº 15. Trigonométrie hyperbolique. Corrigé

Exercice nº 1

$$\begin{aligned} \operatorname{ch}(\mathfrak{a}+\mathfrak{b}) &= \operatorname{ch}\mathfrak{a}\operatorname{ch}\mathfrak{b} + \operatorname{sh}\mathfrak{a}\operatorname{sh}\mathfrak{b} & \text{et} & \operatorname{ch}(\mathfrak{a}-\mathfrak{b}) &= \operatorname{ch}\mathfrak{a}\operatorname{ch}\mathfrak{b} - \operatorname{sh}\mathfrak{a}\operatorname{sh}\mathfrak{b}, \\ \operatorname{sh}(\mathfrak{a}+\mathfrak{b}) &= \operatorname{sh}\mathfrak{a}\operatorname{ch}\mathfrak{b} + \operatorname{ch}\mathfrak{a}\operatorname{sh}\mathfrak{b} & \text{et} & \operatorname{sh}(\mathfrak{a}-\mathfrak{b}) &= \operatorname{sh}\mathfrak{a}\operatorname{ch}\mathfrak{b} - \operatorname{sh}\mathfrak{b}\operatorname{ch}\mathfrak{a} \\ \operatorname{th}(\mathfrak{a}+\mathfrak{b}) &= \frac{\operatorname{th}\mathfrak{a} + \operatorname{th}\mathfrak{b}}{1 + \operatorname{th}\mathfrak{a}\operatorname{th}\mathfrak{b}} & \text{et} & \operatorname{th}(\mathfrak{a}-\mathfrak{b}) &= \frac{\operatorname{th}\mathfrak{a} - \operatorname{th}\mathfrak{b}}{1 - \operatorname{th}\mathfrak{a}\operatorname{th}\mathfrak{b}}. \end{aligned}$$

Deux démonstrations :

$$\begin{split} \operatorname{ch} a \operatorname{ch} b + \operatorname{sh} a \operatorname{sh} b &= \frac{1}{4} ((e^a + e^{-a})(e^b + e^{-b}) + (e^a - e^{-a})(e^b - e^{-b})) = \frac{1}{2} (e^{a+b} + e^{-a-b}) = \operatorname{ch}(a+b). \\ \operatorname{th}(a+b) &= \frac{\operatorname{sh}(a+b)}{\operatorname{ch}(a+b)} = \frac{\operatorname{sh} a \operatorname{ch} b + \operatorname{sh} b \operatorname{ch} a}{\operatorname{ch} a \operatorname{ch} b + \operatorname{sh} a \operatorname{sh} b} = \frac{\operatorname{th} a + \operatorname{th} b}{1 + \operatorname{th} a \operatorname{th} b} \end{split}$$

après division du numérateur et du dénominateur par le nombre non nul chachb.

En appliquant à a = b = x, on obtient :

$$\forall x \in \mathbb{R}, \ \operatorname{ch}(2x) = \operatorname{ch}^2 x + s h^2 x = 2 \operatorname{ch}^2 x - 1 = 2 \operatorname{sh}^2 x + 1, \ \operatorname{sh}(2x) = 2 \operatorname{sh} x \operatorname{ch} x \operatorname{et} \ \operatorname{th}(2x) = \frac{2 \operatorname{th} x}{1 + \operatorname{th}^2 x}.$$

En additionnant entre elles les formules d'addition, on obtient les formules de linéarisation :

$$\operatorname{ch} a \operatorname{ch} b = \frac{1}{2}(\operatorname{ch}(a+b) + \operatorname{ch}(a-b)), \text{ sh } a \operatorname{sh} b = \frac{1}{2}(\operatorname{ch}(a+b) - \operatorname{ch}(a-b)) \text{ et sh } a \operatorname{ch} b = \frac{1}{2}(\operatorname{sh}(a+b) + \operatorname{sh}(a-b)),$$

et en particulier

$$\operatorname{ch}^2 x = \frac{\operatorname{ch}(2x) + 1}{2} \text{ et } \operatorname{sh}^2 x = \frac{\operatorname{ch}(2x) - 1}{2}.$$

Exercice nº 2

Dérivée et variations. Pour tout réel x, ch x > 0. Donc f est définie, continue et dérivable sur \mathbb{R} . Pour tout réel x,

$$f'(x) = \frac{\sinh x}{\cosh x} - 1 = \tanh x - 1 < 0.$$

f est donc strictement décroissante sur \mathbb{R} .

Etude en $-\infty$. $\lim_{x \to -\infty} \operatorname{ch} x = +\infty$ et donc $\lim_{x \to -\infty} \ln (\operatorname{ch} x) = \lim_{X \to +\infty} \ln (X) = +\infty$ puis $\lim_{x \to -\infty} f(x) = +\infty$. De plus, pour tout réel x,

$$f(x) = \ln \frac{e^x + e^{-x}}{2} - x = \ln(e^x + e^{-x}) - \ln 2 - x = \ln(e^{-x}) - x - \ln 2 + \ln(1 + e^{2x}) = -2x - \ln 2 + \ln(1 + e^{2x}).$$

Donc, pour tout réel x, $f(x) - (-2x - \ln 2) = \ln(1 + e^{2x})$. D'une part $\lim_{x \to -\infty} \ln(1 + e^{2x}) = \ln 1 = 0$ et donc la droite $\mathscr D$ d'équation $y = -2x - \ln 2$ est asymptote à la courbe représentative de f en $-\infty$ et d'autre part, pour tout réel x, $\ln(1 + e^{2x}) > 0$ et la courbe représentative de f est strictement au dessus de $\mathscr D$ sur $\mathbb R$.

Etude en $+\infty$. Pour tout réel x,

$$f(x) = \ln \frac{e^x + e^{-x}}{2} - x = \ln(e^x + e^{-x}) - \ln 2 - x = \ln(e^x) - x - \ln 2 + \ln(1 + e^{-2x}) = -\ln 2 + \ln(1 + e^{-2x})$$

et f tend vers $-\ln 2$ quand x tend vers $+\infty$. On en déduit que la droite d'équation $y=-\ln 2$ est asymptote au graphe de f en $+\infty$.

Graphe.

Exercice nº 3

Soit x un réel.

$$S = \sum_{k=1}^{100} \operatorname{sh}(2+kx) = \frac{1}{2} \left(e^2 \sum_{k=1}^{100} e^{kx} - e^{-2} \sum_{k=1}^{100} e^{-kx} \right).$$

Si x=0 alors directement $S=100 \, \mathrm{sh} \, 2 \neq 0$. Si $x\neq 0$ alors $e^x \neq 1$ et $e^{-x} \neq 1$. Dans ce cas,

$$S = \frac{1}{2} \left(e^2 e^x \frac{1 - e^{100x}}{1 - e^x} - e^{-2} e^{-x} \frac{1 - e^{-100x}}{1 - e^{-x}} \right) = \frac{1}{2} \left(e^2 e^x \frac{1 - e^{100x}}{1 - e^x} + e^{-2} \frac{1 - e^{-100x}}{1 - e^x} \right).$$

après multiplication du numérateur et du dénominateur de la deuxième fraction par le réel non nul e^x . Pour $x \neq 0$, on a donc :

$$\begin{split} S &= 0 \Leftrightarrow e^{x+2} \left(1 - e^{100x} \right) + e^{-2} \left(1 - e^{-100x} \right) = 0 \Leftrightarrow e^{x+2} \left(1 - e^{100x} \right) + e^{-2-100x} \left(e^{100x} - 1 \right) = 0 \\ &\Leftrightarrow \left(1 - e^{100x} \right) \left(e^{x+2} - e^{-100x-2} \right) = 0 \Leftrightarrow e^{x+2} = e^{-100x-2} \left(\operatorname{car} x \neq 0 \text{ et donc } 1 - e^{100x} \neq 0 \right) \\ &\Leftrightarrow x + 2 = -100x - 2 \Leftrightarrow x = -\frac{4}{101}. \end{split}$$

$$\mathscr{S} = \left\{ -\frac{4}{101} \right\}.$$

Exercice nº 4

1) On a vu dans l'exercice n° 1 que pour tout réel x, $th(2x) = \frac{2 th x}{1 + th^2 x}$ ce qui s'écrit pour x non nul : $\frac{1 + th^2 x}{th x} = \frac{2}{th(2x)}$ ou encore $th x + \frac{1}{th x} = \frac{2}{th(2x)}$ ou finalement

$$\forall x \in \mathbb{R}^*, \text{ th } x = \frac{2}{\operatorname{th}(2x)} - \frac{1}{\operatorname{th} x}.$$

 ${\bf 2}$) Soient ${\bf n}$ un entier naturel et ${\bf x}$ un réel non nul. D'après ce qui précède,

$$u_n = \sum_{k=0}^n 2^k \operatorname{th}(2^k x) = \sum_{k=0}^n \left(\frac{2^{k+1}}{\operatorname{th}(2^{k+1} x)} - \frac{2^k}{\operatorname{th}(2^k x)} \right) = \frac{2^{n+1}}{\operatorname{th}(2^{n+1} x)} - \frac{1}{\operatorname{th} x} \text{ (somme t\'elescopique)}.$$

Ensuite, pour x > 0, th $(2^{n+1}x)$ tend vers 1 quand n tend vers l'infini. Donc u_n tend vers $+\infty$ quand n tend vers $+\infty$ si x > 0 et vers $-\infty$ quand n tend vers $+\infty$ si x < 0.

Exercice nº 5

1) a) La fonction sh est continue et strictement croissante sur \mathbb{R} . La fonction sh réalise donc une bijection de $]-\infty,+\infty[$ sur $\lim_{x\to-\infty} \operatorname{sh} x, \lim_{x\to+\infty} \operatorname{sh} x =]-\infty,+\infty[$. sh est donc une bijection de \mathbb{R} sur \mathbb{R} .

b) Graphe de argsh.

c) Soient x et y deux réels.

$$\begin{split} y &= \operatorname{argsh} x \Leftrightarrow x = \operatorname{sh} y \Leftrightarrow x = \frac{1}{2} \left(e^y - e^{-y} \right) \Leftrightarrow e^y - 2x - e^{-y} = 0 \\ &\Leftrightarrow \left(e^y \right)^2 - 2x e^y - 1 = 0 \text{ (après multiplication des deux membres par le réel non nul } e^y \text{)} \\ &\Leftrightarrow e^y \text{ est solution de l'équation } X^2 - 2x X - 1 = 0. \end{split}$$

Le discriminant réduit de l'équation $X^2-2xX-1=0$ est $\Delta'=x^2+1$. Ce discriminant est toujours strictement positif et donc l'équation $X^2-2xX-1=0$ admet deux solutions réelles distinctes à savoir $X_1=x+\sqrt{x^2+1}$ et $X_2=x-\sqrt{x^2+1}$. Le produit de ces deux nombres est égal à -1. Donc, l'un de ces deux nombres est strictement positif et l'autre est strictement négatif. Le positif est le plus grand de ces deux nombres à savoir $X_1=x+\sqrt{x^2+1}$. Donc

$$\begin{split} y = \operatorname{argsh} x &\Leftrightarrow e^y = x + \sqrt{x^2 + 1} \text{ ou } e^y = x - \sqrt{x^2 + 1} \Leftrightarrow e^y = x + \sqrt{x^2 + 1} \\ &\Leftrightarrow y = \ln\left(x + \sqrt{x^2 + 1}\right). \\ & \forall x \in \mathbb{R}, \ \operatorname{argsh}(x) = \ln\left(x + \sqrt{x^2 + 1}\right). \end{split}$$

d) Pour tout réel x, $x + \sqrt{x^2 + 1} > 0$ (d'après ce qui précède ou à partir de $\sqrt{x^2 + 1} > \sqrt{x^2} = |x| \ge -x$). Donc, argsh est dérivable sur \mathbb{R} . De plus, pour tout réel x,

$$\operatorname{argsh}'(x) = \left(1 + \frac{x}{\sqrt{x^2 + 1}}\right) \frac{1}{x + \sqrt{x^2 + 1}} = \frac{x + \sqrt{x^2 + 1}}{\sqrt{x^2 + 1}} \times \frac{1}{x + \sqrt{x^2 + 1}} = \frac{1}{\sqrt{x^2 + 1}}.$$

$$\forall x \in \mathbb{R}, \operatorname{argsh}'(x) = \frac{1}{\sqrt{x^2 + 1}}.$$

On peut aussi dériver argsh comme une réciproque, sh est dérivable sur \mathbb{R} et sa dérivée à savoir sh' = ch ne s'annule pas sur \mathbb{R} . On sait alors que argsh est dérivable sur sh(\mathbb{R}) = \mathbb{R} . De plus, pour tout réel x,

$$(\operatorname{argsh})'(x) = \frac{1}{\operatorname{sh}'(\operatorname{argsh} x)} = \frac{1}{\operatorname{ch}(\operatorname{argsh} x)} = \frac{1}{\sqrt{x^2 + 1}}$$

 $\operatorname{car} \operatorname{ch}^2(\operatorname{argsh} x) = \operatorname{sh}^2(\operatorname{argsh} x) + 1 = x^2 + 1$ et de plus $\operatorname{ch}(\operatorname{argsh} x) > 0$.

2) a) La fonction che st continue et strictement croissante sur \mathbb{R}^+ . La fonction cheréalise donc une bijection de $[0, +\infty[$ sur $[0, +\infty[$

b) Graphe de argch.

c) Soient $x \ge 1$ et $y \in \mathbb{R}$.

$$\begin{split} y &= \operatorname{argch} x \Leftrightarrow x = \operatorname{ch} y \Leftrightarrow x = \frac{1}{2} \left(e^y + e^{-y} \right) \Leftrightarrow e^y - 2x + e^{-y} = 0 \\ &\Leftrightarrow \left(e^y \right)^2 - 2x e^y + 1 = 0 \text{ (après multiplication des deux membres par le réel non nul } e^y \text{)} \\ &\Leftrightarrow e^y \text{ est solution de l'équation } X^2 - 2x X + 1 = 0. \end{split}$$

Le discriminant réduit de l'équation $X^2-2xX-1=0$ est $\Delta'=x^2-1\geqslant 0$ (car $x\geqslant 1$). Ce discriminant est toujours positif et donc l'équation $X^2-2xX+1=0$ admet deux solutions réelles (éventuellement confondues si x=1) à savoir $X_1=x+\sqrt{x^2-1}$ et $X_2=x-\sqrt{x^2-1}$. Le produit de ces deux deux nombres est égal à 1 et leur somme est égale à $2x\geqslant 0$. Donc, ces deux nombres sont strictement positifs. Par suite,

$$\begin{split} y &= \operatorname{argch} x \Leftrightarrow e^y = x + \sqrt{x^2 - 1} \text{ ou } e^y = x - \sqrt{x^2 - 1} \\ &\Leftrightarrow y = \ln \left(x + \sqrt{x^2 - 1} \right) \text{ ou } y = \ln \left(x - \sqrt{x^2 - 1} \right). \end{split}$$

Comme le produit X_1X_2 est égal à 1 et que X_1 et X_2 sont strictement positifs, l'un des deux nombres, à savoir X_1 est plus grand que 1 et l'autre, à savoir X_2 , est dans]0,1]. Mais alors, $\ln\left(x+\sqrt{x^2-1}\right)\geqslant 0$ et $\ln\left(x-\sqrt{x^2-1}\right)\leqslant 0$ (avec égalité à 0 si et seulement si x=1 et dans ce cas, $X_1=X_2=0$).

Comme on ne veut retenir que la solution positive, il ne reste que $y = \ln \left(x + \sqrt{x^2 - 1} \right)$.

$$\forall x \geqslant 1, \operatorname{argch}(x) = \ln\left(x + \sqrt{x^2 - 1}\right).$$

d) argch est dérivable sur]1, $+\infty$ [(et pas en 1 à droite) et pour tout réel x > 1,

$$\mathrm{argch}'(x) = \left(1 + \frac{x}{\sqrt{x^2 - 1}}\right) \frac{1}{x + \sqrt{x^2 - 1}} = \frac{x + \sqrt{x^2 - 1}}{\sqrt{x^2 - 1}} \times \frac{1}{x + \sqrt{x^2 - 1}} = \frac{1}{\sqrt{x^2 - 1}}.$$

$$\forall x>1, \ \mathrm{argch}'(x)=\frac{1}{\sqrt{x^2-1}}.$$

- 3) a) La fonction th est continue et strictement croissante sur \mathbb{R} . La fonction th réalise donc une bijection de $]-\infty,+\infty[$ sur $\lim_{x\to-\infty} \operatorname{th} x, \lim_{x\to+\infty} \operatorname{th} x =]-1,1[$. th réalise donc une bijection de \mathbb{R} sur]-1,1[.
- b) Graphe de argth.

c) Soient $x \in]-1,1[$ et $y \in \mathbb{R}$.

$$\begin{split} y &= \operatorname{argth} x \Leftrightarrow x = \operatorname{th} y \Leftrightarrow \frac{\left(e^y - e^{-y}\right)/2}{\left(e^y + e^{-y}\right)/2} = x \Leftrightarrow e^y - e^{-y} = xe^y + xe^{-y} \\ &\Leftrightarrow e^{2y} - 1 = xe^{2y} + x \text{ (après multiplication des deux membres par le réel non nul } e^y) \\ &\Leftrightarrow (1-x)e^{2y} = 1 + x \Leftrightarrow e^{2y} = \frac{1+x}{1-x} \\ &\Leftrightarrow y = \frac{1}{2}\ln\left(\frac{1+x}{1-x}\right). \end{split}$$

$$\forall x \in \mathbb{R}, \, \operatorname{argth}(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right).$$

d) argth est dérivable sur]-1,1[et pour tout réel x de]-1,1[,

$${\rm argth}'(x) = \frac{1}{2} \left(\frac{1}{1+x} - \frac{1}{1-x} \right) = \frac{1}{1-x^2}.$$

$$\forall x \in]-1,1[, \operatorname{argth}'(x) = \frac{1}{1-x^2}.$$

Exercice nº 6

1) Soit $x \in \mathbb{R}$. $x^2 + 1 \ge 0$ et donc $\sqrt{x^2 + 1}$ existe puis

$$\sqrt{x^2+1} > \sqrt{x^2} = |x| = \text{Max}\{x, -x\}.$$

Donc, $\sqrt{x^2+1}+x>0$ et $\sqrt{x^2+1}-x>0$. L'expression proposée existe pour tout réel x. De plus,

$$\ln \left(\sqrt{x^2 + 1} + x \right) + \ln \left(\sqrt{x^2 + 1} - x \right) = \ln \left(\left(\sqrt{x^2 + 1} + x \right) \left(\sqrt{x^2 + 1} - x \right) \right) = \ln \left(x^2 + 1 - x^2 \right) = \ln 1 = 0.$$

2) Pour x > 0,

$$\frac{\operatorname{ch}(\ln x) + \operatorname{sh}(\ln x)}{x} = \frac{1}{2x} \left(x + \frac{1}{x} + x - \frac{1}{x} \right) = 1.$$

3) Soit x et y deux réels.

$$sh^{2} x cos^{2} y + ch^{2} x sin^{2} y = sh^{2} x cos^{2} y + (1 + sh^{2} x) sin^{2} y = sh^{2} x + sin^{2} y.$$

Exercice nº 7

1) Soit $x \in \mathbb{R}$.

$$\begin{split} \operatorname{ch} x &= 2 \Leftrightarrow \frac{1}{2} \left(e^x + e^{-x} \right) = 2 \Leftrightarrow e^x - 4 + e^{-x} = 0 \\ &\Leftrightarrow \left(e^x \right)^2 - 4 e^x + 1 = 0 \text{ (après multiplication par le réel non nul } e^x \text{)} \\ &\Leftrightarrow e^x \text{ est solution de l'équation } X^2 - 4X + 1 = 0. \end{split}$$

Le discriminant réduit de cette équation est $\Delta' = (-2)^2 - 1 = 3$. L'équation $X^2 - 4X + 1 = 0$ admet donc deux solutions réelles distinctes à savoir $2 + \sqrt{3}$ et $2 - \sqrt{3}$. Ces deux nombres sont strictement positifs et donc

$$\operatorname{ch} x = 2 \Leftrightarrow e^x = 2 + \sqrt{3} \ \operatorname{ou} \ e^x = 2 - \sqrt{3} \Leftrightarrow x = \ln \left(2 + \sqrt{3} \right) \ \operatorname{ou} \ x = \ln \left(2 - \sqrt{3} \right).$$

Remarque. La fonction chest paire et donc les deux nombres obtenus sont nécessairement opposés l'un de l'autre. C'est effectivement le cas car $\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=4-3=1$ et donc

$$\ln\left(2-\sqrt{3}\right) = \ln\left(\frac{1}{2+\sqrt{3}}\right) = -\ln\left(2+\sqrt{3}\right).$$

2) Pour tout réel x, ch $x \ge 1$. En particulier, pour tout réel x, ch $x \ne \frac{1}{2}$. L'équation proposée n'a pas de solution dans \mathbb{R} .

Exercice nº 8

Soient a et b deux réels et n un entier naturel.

$$\sum_{k=0}^{n} \operatorname{ch}(ak + b) = \frac{1}{2} \left(\sum_{k=0}^{n} e^{ak+b} + \sum_{k=0}^{n} e^{-ak-b} \right) = \frac{1}{2} \left(e^{b} \sum_{k=0}^{n} (e^{a})^{k} + e^{-b} \sum_{k=0}^{n} (e^{-a})^{k} \right)$$

1er cas. Si a = 0, $\sum_{k=0}^{n} \operatorname{ch}(ak + b) = \sum_{k=0}^{n} \operatorname{ch}(b) = (n+1)\operatorname{ch}(b)$.

2ème cas. Si $a \neq 0$, alors $e^{a} \neq 1$ et $e^{-a} \neq 1$ puis

$$\begin{split} \sum_{k=0}^{n} \operatorname{ch}(ak+b) &= \frac{1}{2} \left(e^{b} \frac{e^{(n+1)\alpha} - 1}{e^{\alpha} - 1} + e^{-b} \frac{1 - e^{-(n+1)\alpha}}{1 - e^{-\alpha}} \right) \\ &= \frac{1}{2} \left(e^{b + \frac{(n+1)\alpha}{2} - \frac{\alpha}{2}} \frac{e^{(n+1)\alpha/2} - e^{-(n+1)\alpha/2}}{e^{\alpha/2} - e^{-\alpha/2}} + e^{-b - \frac{(n+1)\alpha}{2} + \frac{\alpha}{2}} \frac{e^{(n+1)\alpha/2} - e^{-(n+1)\alpha/2}}{e^{\alpha/2} - e^{-\alpha/2}} \right) \\ &= \frac{1}{2} \left(e^{b + \frac{n\alpha}{2}} + e^{-b - \frac{n\alpha}{2}} \right) \frac{\operatorname{sh}\left(\frac{(n+1)\alpha}{2}\right)}{\operatorname{sh}\left(\frac{\alpha}{2}\right)} = \frac{\operatorname{sh}\left(\frac{(n+1)\alpha}{2}\right) \operatorname{ch}\left(\frac{n\alpha}{2} + b\right)}{\operatorname{sh}\left(\frac{\alpha}{2}\right)}. \end{split}$$

Exercice nº 9

Soient a, b et c trois réels. Soit x un réel.

$$\begin{split} a\operatorname{ch} x + b\operatorname{sh} x &= c \Leftrightarrow a\left(e^x + e^{-x}\right) + b\left(e^x - e^{-x}\right) = 2c \Leftrightarrow (a+b)e^x - 2c + (a-b)e^{-x} = 0 \\ &\Leftrightarrow (a+b)\left(e^x\right)^2 - 2ce^x + (a-b) = 0 \text{ (après multiplication des deux membres par le réel non nul } e^x \\ &\Leftrightarrow e^x \text{ solution de l'équation } (a+b)X^2 - 2cX + (a-b) = 0. \end{split}$$

1er cas. Si b = -a, l'équation s'écrit $-2ce^x + 2a = 0$ ou encore $ce^x = a$.

- Si c = a = 0 (= b), tout réel est solution.
- Si c=0 et $\mathfrak{a}=-\mathfrak{b}\neq \mathfrak{0},$ l'équation n'a pas de solution.
- Si $c \neq 0$ et $\frac{a}{c} \leq 0$, l'équation n'a pas de solution.
- Si $c \neq 0$ et $\frac{\ddot{a}}{c} > 0$, l'équation a une solution et une seule à savoir $\ln\left(\frac{c}{a}\right)$.

2ème cas. Si $b \neq -a$, l'équation $(a+b)X^2 - 2cX + (a-b) = 0$ est du second degré. Son discriminant réduit est

$$\Delta' = c^2 - (a + b)(a - b) = c^2 + b^2 - a^2$$
.

- Si $c^2+b^2-a^2<0$, l'équation $(a+b)X^2-2cX+(a-b)=0$ n'a pas de solution dans $\mathbb R$ et donc l'équation $a \operatorname{ch} x + b \operatorname{sh} x = c$ n'a pas de solution dans \mathbb{R} .
- Si $c^2 + b^2 a^2 = 0$, l'équation $(a + b)X^2 2cX + (a b) = 0$ admet une solution double à savoir $\frac{c}{a + b}$.
 - Si $\frac{c}{a+b} \le 0$, l'équation $a \operatorname{ch} x + b \operatorname{sh} x = c$ n'a pas de solution dans \mathbb{R} .
 - Si $\frac{c}{a+b} > 0$, l'équation $a \operatorname{ch} x + b \operatorname{sh} x = c$ a une solution et une seule dans $\mathbb R$ à savoir $\operatorname{ln}\left(\frac{c}{a+b}\right)$.
- Si $c^2 + b^2 a^2 > 0$, l'équation $(a + b)X^2 2cX + (a b) = 0$ admet deux solutions réelles distinctes dont le produit est égal à $\frac{a b}{a + b}$ et la somme est égale à $\frac{2c}{a + b}$.

 Si $a^2 b^2 < 0$, l'équation $(a + b)X^2 2cX + (a b) = 0$ a une solution strictement négative et une solution
 - strictement positive. Dans ce cas, l'équation $a \operatorname{ch} x + b \operatorname{sh} x = c$ a une solution et une seule.
 - Si $a^2 b^2 > 0$, l'équation $(a + b)X^2 2cX + (a b) = 0$ a deux solutions non nulles distinctes et de même signe. \star Si c(a+b) < 0, l'équation $(a+b)X^2 - 2cX + (a-b) = 0$ a deux solutions strictement négatives et dans ce cas l'équation $a \operatorname{ch} x + b \operatorname{sh} x = c$ n'a pas de solution.
 - * Si c(a+b) > 0, l'équation $(a+b)X^2 2cX + (a-b) = 0$ a deux solutions strictement positives et dans ce cas l'équation $a \operatorname{ch} x + b \operatorname{sh} x = c$ a deux solutions distinctes.
 - Enfin $a^2 b^2 = 0$ est impossible car $b \neq -a$.