The Hong Kong Polytechnic University Department of Applied Mathematics AMA1120 Tutorial Set #05

Area under Graph

Given a Riemann integrable function f(x) on [a, b]. For a small change from x to $x + \Delta x$ within [a, b], we can approximate **the change of area under graph** by

$$\Delta A = f(x) \Delta x$$

Thus by means of integration,

total area under graph =
$$\int dA = \int_{a}^{b} f(x) dx$$

Question 1. (Standard Level)

Find the area of the region enclosed by the given curves.

(a)
$$y = e^x$$
, $y = x^2 - 1$, $x = -1$, $x = 1$

(b)
$$y = (x-2)^2$$
, $y = x$

(c)
$$y = \frac{1}{x}$$
, $y = \frac{1}{x^2}$, $x = 2$

(d)
$$y = \sqrt{x}, y = \frac{x}{2}, x = 9$$

(e)
$$y = x$$
, $x = 2$, $y = \frac{1}{x}$, $y = 0$

(f)
$$y = 2\sqrt{x}$$
, $y = 12 - 2x$, $x = 1$

Question 2. (Intermediate Level)

Find the number b such that the line y = b divides the region bounded by the curves $y = x^2$ and y = 4 into two regions with equal area.

Question 3. (Intermediate Level)

Find the values of c such that the area of the region bounded by the parabolas $y = x^2 - c^2$ and $y = c^2 - x^2$ is 576.

Volume of the Revolution

Disk Method

Let f(x) be a Riemann integrable function on [a, b]. The small change of the volume of revolution bounded by y = f(x) and the x-axis $^{\#}$ about x-axis $^{\dag}$ can be approximated by

$$\Delta V = \pi \left[f(x) \right]^2 \Delta x$$

the volume of the solid = $\pi \int_{a}^{b} [f(x)]^{2} dx$

Shell Method

Let $f(x) \ge 0$ be a Riemann integrable function on [a, b]. The small change of the volume of revolution bounded by y = f(x) and the x-axis # about y-axis † can be approximated by

$$\Delta V = 2\pi x f(x) \Delta x$$

the volume of the solid = $2\pi \int_{a}^{b} x f(x) dx$

Question 4. (Intermediate Level)

- (a) Find the volume of the solid generated by revolving the region bounded by the curve of $y = x^2 x$, x-axis and the lines of x = 1, x = 2 about the x-axis.
- (b) Find the volume of the solid generated by rotating the region bounded by the curve $y = e^{-x}$, x-axis and the lines of x = 0, x = 1 about the y-axis.
- (c) Find the volume of the solid generated by revolving the region bounded by the given curves about the *x*-axis.

(i)
$$y = \frac{1}{2}x^2 + 3$$
, $y = 12 - \frac{1}{2}x^2$

(ii)
$$y = \sec x$$
, $y = \tan x$, $x = 0$, $x = 1$

Question 5. (Intermediate Level)

Set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region bounded by the given curves about the specified line:

(a)
$$y = \tan^3 x$$
, $y = 1$, $x = 0$ about $y = 1$

(b)
$$y = 0$$
, $y = \sin x$ for $0 \le x \le \pi$ about $y = 1$

Question 6. (Intermediate Level)

- (a) Find $\int \ln y \, dy$
- (b) Find the volume of the solid of revolution generated by revolving the region bounded by the curve $y = 2^{x^2}$ and the straight line y = 2 about the y-axis.

Arc Length

Let x(t) and y(t) be functions such that x'(t) and y'(t) Riemann integrable functions on t. The small change of arc-length can be approximated by

$$\Delta L = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{\left(\frac{\Delta x}{\Delta t}\right)^2 + \left(\frac{\Delta y}{\Delta t}\right)^2} \Delta t$$

provided that $\Delta t > 0$, a < t < b

the total arc-length =
$$\int_{a}^{b} \sqrt{(x'(t))^2 + (y'(t))^2} dt$$

Question 7. (Intermediate Level)

Set up, but do not evaluate, an integral for the length of the curve

(a)
$$y = \cos x$$
 for $0 \le x \le 2\pi$

(b)
$$x = y + y^3$$
 for $1 \le y \le 4$

Question 8. (Standard Level)

Find the arc length of the curve.

(a)
$$y = x^{3/2}, 0 \le x \le 1$$

(b)
$$y = \ln \cos x , 0 \le x \le \frac{\pi}{4}$$

(c)
$$x = \frac{1}{4}y^2 - \frac{1}{2}\ln y$$
, $1 \le y \le e$

(d)
$$y = \int_{1}^{x} \sqrt{t^3 - 1} dt$$
, $1 \le x \le 4$

Surface Area of Revolution

The lateral surface area of a frustum is equal to

$$S = \pi (r_1 + r_2) \Delta L .$$

Given a continuous function $f(x) \ge 0$ on [a, b], the lateral surface area element of revolution is

$$\Delta S = \pi \left[f(x) + f(x + \Delta x) \right] \sqrt{(\Delta x)^2 + (\Delta y)^2}$$

the surface area of revolution = $\int_{a}^{b} 2\pi f(x) \sqrt{1 + (f'(x))^{2}} dx$

Question 9. (Intermediate Level)

- (a) Evaluate
 - (i) $\int x \ln x \, dx$

- (ii) $\int \frac{\ln x}{x} dx$
- (b) Consider the curve $y = \frac{x^2}{2} \frac{\ln x}{4}$ where $1 \le x \le e$.

Find the area of the surface generated by rotating the curve about the *x*-axis.

Question 10. (Standard Level)

Find the area of the surface of revolution generated by revolving $y = \sqrt{2x}$, $0 \le x \le \frac{9}{4}$ about the *x*-axis.

Question 11. (*Revision*)

For n = 0, 1, 2, ..., it is known that $\lim_{k \to \infty} \int_{0}^{k} \frac{dx}{(x^2 + 1)^{n+1}}$ exists.

Denote this limit by I_n .

For $n \ge 1$, express I_n in terms of I_{n-1} and hence show that

$$I_n = \frac{(2n-1)(2n-3)\cdots 1}{(2n)(2n-2)\cdots 2} \frac{\pi}{2}$$