102-97

問題文

- 1. 1.6
- 2. 2.0
- 3. 8.3
- 4. 16
- 5. 20

解答

4

解説

 $K_{a1} = [HCO_3^-][H^+]/[H_2CO_3]$ という式について、両辺の log_{10} をとると

 $\log_{10} K_{a1} = \log_{10} ([HCO_3^-][H^+]/[H_2CO_3])$

ここで、pH や pKa の接頭語「p」は「-log $_{10}$ 」の略であることから、左辺を -pK $_{a1}$ と表します。さらに、右辺は対数の公式から、掛け算を足し算にできるので

-pK $_{a1}$ = \log_{10} [HCO $_{3}$ $^{-}$]/[H $_{2}$ CO $_{3}$] + \log_{10} [H $^{+}$] と変形します。こうすることで、求めたい HCO $_{3}$ $^{-}$ /H $_{2}$ CO $_{3}$ が右辺の第一項に出てきます。ここで更に pH = $-\log_{10}$ [H $^{+}$] なので、 \log_{10} [H $^{+}$]を、-pH と表せば

-pK $_{a1}$ = log $_{10}$ [HCO $_{3}$]/[H $_{2}$ CO $_{3}$] -pH です。問題文の数値を代入すると

-6.1 = $\log_{10} [HCO_3^-]/[H_2CO_3]$ -7.3 $\therefore \log_{10} [HCO_3^-]/[H_2CO_3]$ = 1.2

 $\log_a b = c$ の場合、 $a^C = b$ だから、求めたい[HCO $_3^-$]/[H $_2$ CO $_3$] は、 $10^{-1.2}$ とわかります。 $10^{-1.2}$ = 10^{-1} × $10^{-0.2}$ です。問題文に与えられた $\log_{10} 1.6 = 0.2$ ということから、 $10^{-0.2} = 1.6$ です。従って、 $10^{-1.2} = 10^{-1}$ × 1.6 = 16となります。

以上より、正解は4です。