Co-processador da Transformada para o Codificador de Vídeo AV1

Apresentação Final

Miguel Inocêncio Mestrado Integrado em Engenharia Eletrónica e de Telecomunicações 18/12/2019

Universidade de Aveiro Instituto de Telecomunicações

Conteúdos

Introdução

Sistemas de Codificação de Vídeo

Transformadas em Codificação de Vídeo

Arquiteturas Desenvolvidas

Software

Hardware

Conclusões e Trabalho Futuro

Introdução

Consumo de Vídeo

Figura 1: Previsões da Cisco para evolução de tráfico IP

Figura 2: Exemplo de dados em vídeo HD

Remoção de informação de sequência de imagens, mantendo a capacidade de reprodução

Evolução da Codificação de Vídeo

Figura 3: Exemplo de interlaced scaning e logo do AV1

Sistemas de Codificação de Vídeo

Redundâncias

Figura 4: Espaciais

Figura 5: Psico-Visuais

Figura 6: Temporais

Figura 7: Código

Modelo Básico do Codificador

Figura 8: Modelo Básico de codificador

Figura 9: Poupanças de Bitrate relativas ao H.264

Tabela 1: Tempos de Codificação

Codec	Tempo de Codificação (s) 2018 2019		
AV1	226 080	736	
H.265		289	
VP9		226	
H.264		18	

Transformadas em Codificação de Vídeo

Interpretação com Imagens Base

Figura 10: Exemplo de decomposição de bloco em imagens base

Transformadas em Codificação de Vídeo

Figura 11: Separabilidade de transformadas 2D

Discrete Cosine Transform (DCT)

Identity (IDTX)

Asymmetric Discrete Sine Transform (ADST)

Flip - Asymmetric Discrete Sine Transform (Flip-ADST)

Transformada no AV1

Figura 12: Sequência de operações da Transformada no libaom

Transformadas Inteiras

Figura 13: DCT no libaom

Figura 14: ADST no libaom

Figura 15: Opções de Codificação

Figura 16: Kernel Utilizado

Figura 17: Tamanho de Vetor

Figura 18: Kernel Simétrico

Figura 19: Número de Bits Utilizados nas Aproximações do Cosseno

Nº de bits dos Cossenos vs Distorção - Teste

Figura 20: Testes de codificação com diferentes bits nas aproximações de cosseno

Nº de bits dos Cossenos vs Distorção - Resultados

Figura 21: Comparação Distorção com Número de Bits usados no Cosseno

Arquiteturas Desenvolvidas

Software

Redução do Número de Bits

Figura 22: Operação implementada nas transformadas inteiras

$$\Delta_{10} = \frac{1-0}{2^{10}} \approx 0.98 \cdot 10^{-3}$$
 $M_{original} = 728 \, B$
 $\Delta_{8} = \frac{1-0}{2^{8}} \approx 3.9 \cdot 10^{-3}$
 $\downarrow \downarrow$
 $MSE_{8} = 16 \cdot MSE_{10}$

Otimização do libaom

Figura 23: Comparação da distorção

Otimização do libaom

Figura 24: Tempo de Codificação

Arquiteturas Desenvolvidas

Hardware

Figura 25: Estágios da DCT inteira

Princípios de desenvolvimento

Figura 26: Deconstrução de operação em software

Figura 27: Inclusão de DCT4 na DCT8

Figura 28: Implementação em hardware da DCT4

Figura 29: Implementação em hardware da DCT8

Primeira arquitetura - Resultados

Tabela 2: Resultados de utilização lógica da primeira arquitetura em família Artix 7

DCT Size	Utilization		
DCT Size	Slice LUTs	Slice Registers	
4	1125	636	
8	2428	2087	
16	7103	5702	
32	19148	14257	
64	64 45996 341		
Wrapper	75805	58370	

Primeira arquitetura - Resultados

Tabela 3: Frequência de operação necessária para codificação em tempo real a 30 imagens por segundo

Resolution	Frequency (MHz)	
$\textbf{1280} \times \textbf{720}$	83	
$\textbf{1920} \times \textbf{1080}$	187	
$\textbf{3840} \times \textbf{2160}$	746	
$\textbf{7680} \times \textbf{4320}$	2986	

Figura 31: Deconstrução de blocos da DCT

Figura 32: Segunda arquitetura para o kernel da DCT

Segunda arquitetura - Resultados

Tabela 4: Resultados de utilização lógica da segunda arquitetura em família Artix 7

Block	Utilization		
Біоск	Slice LUTs	Slice Registers	
DCT4	1077	507	
DCT8_P1	709	257	
DCT8_P2	1064	717	
DCT16_P1	1285	513	
DCT16_P2	3860	2150	
DCT32_P1	3064	1025	
DCT32_P2	9090	5624	
DCT64_P1	6123	2049	
DCT64_P2	22344	14000	
Wrapper	50039	32352	

Figura 33: Kit *Nexys 4* da *Digilent*

Figura 34: Diagrama de blocos implementado

Implementação Nexys 4 - Resultados

$$f_{Max} = 101.9 MHz$$
$$P = 50 mW$$

Tabela 5: Frame rate máximo obtido na implementação com Nexys 4

Block Size	Resolution				
	$\textbf{1280} \times \textbf{720}$	$\textbf{1920} \times \textbf{1080}$	$\textbf{3840} \times \textbf{2160}$	$\textbf{7680} \times \textbf{4320}$	
4 × 4	37	16	4	1	
8×8	44	20	5	1	
$\textbf{16}\times\textbf{16}$	63	28	7	2	
$\textbf{32} \times \textbf{32}$	98	44	11	3	
64 × 64	161	71	18	4	

Conclusões e Trabalho Futuro

Conclusões e Trabalho Futuro

- ✓ Otimização do Software de referência
- ✓ Construção de arquiteturas em hardware para o kernel da DCT

- → Integração dos restantes kernels
- → Teste com *libaom* em FPGA
- → Síntese para ASIC

Obrigado!

Discussão

Co-processador da Transformada para o Codificador de Vídeo AV1

Miguel Oliveira Inocêncio

Armando Pinho
Presidente de Mesa

Pedro Assunção
Arguente Principal

António Navarro
Orientador