Homework 1

1 Show that the vectors $\{\mathbf{a}_1, \mathbf{a}_2 \dots, \mathbf{a}_m\}$ in vector space V are linearly dependent if at least one of these vectors is equal to zero.

- **2** Show that any three vectors $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ in \mathbf{R}^2 are linearly dependent.
- **3** Let 3 vectors $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ in vector space V belong to the span of 2 vectors $\{\mathbf{a}, \mathbf{b}\}$ of this vector space, i.e. vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ are expressible as linear combinations of vectors \mathbf{a} and \mathbf{b} . Prove that vectors $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ are linearly dependent.
 - 4 Let $\{a, b\}$ be two vectors in the vector space V such that
 - i) these vectors are linearly independent
 - ii) for an arbitrary vector $\mathbf{x} \in V$ vectors $\{\mathbf{a}, \mathbf{b}, \mathbf{x}\}$ are linearly dependent.

What is a dimension of the vector space V?

Is an ordered set $\{a, b\}$ a basis in the vector space V?

- **5** Let $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be a basis in 3-dimensional vector space V. Show that
- a) all vectors $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ are not equal to zero.
- b) an arbitrary vector $\mathbf{a} \in V$ can be expressed as a linearly combination of the basis vectors $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ in a unique way, i.e. $\mathbf{a} = a^1\mathbf{e}_1 + a^2\mathbf{e}_2 + a^3\mathbf{e}_3$ and if

$$\mathbf{a} = a^1 \mathbf{e}_1 + a^2 \mathbf{e}_2 + a^3 \mathbf{e}_3 = a^{1'} \mathbf{e}_1 + a^{2'} \mathbf{e}_2 + a^{3'} \mathbf{e}_3$$
 then $a^1 = a^{1'}, a^2 = a^{2'}, a^3 = a^{3'}$.

Remark The following statement is very useful: Let $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ be an ordered set of vectors in the vector space V such that an arbitrary vector $\mathbf{x} \in V$ can be expressed as a linear combination of the vectors $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ in a unique way. Then one can show that V is an n-dimensional vector space and an ordered set $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ is a basis in V.

 $\mathbf{6}^{\dagger}$ Show that the ordered set $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4, \dots, \mathbf{e}_n\}$ of vectors is a basis in \mathbf{R}^n in the case if

$$\mathbf{e}_{1} = (1, 2, 3, 4, \dots, n)$$

$$\mathbf{e}_{2} = (0, 1, 2, 3, \dots, n-1)$$

$$\mathbf{e}_{3} = (0, 0, 1, 2, \dots, n-2)$$

$$\dots$$

$$\mathbf{e}_{n} = (0, 0, 0, 0, \dots, 1)$$

7 Let $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be a basis of 3-dimensional vector space V. Is a set of vectors $\{\mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3\}$ a basis of V in the case if

- a) $\mathbf{e}_1' = \mathbf{e}_2, \, \mathbf{e}_2' = \mathbf{e}_1, \, \mathbf{e}_3' = \mathbf{e}_3;$
- b) $\mathbf{e}'_1 = \mathbf{e}_1, \, \mathbf{e}'_2 = \mathbf{e}_1 + 3\mathbf{e}_3, \, \mathbf{e}'_3 = \mathbf{e}_3;$
- c) $\mathbf{e}'_1 = \mathbf{e}_1 \mathbf{e}_2, \ \mathbf{e}'_2 = 3\mathbf{e}_1 3\mathbf{e}_2, \ \mathbf{e}'_3 = \mathbf{e}_3;$
- d) $\mathbf{e}'_1 = \mathbf{e}_2$, $\mathbf{e}'_2 = \mathbf{e}_1$, $\mathbf{e}'_3 = \mathbf{e}_1 + \mathbf{e}_2 + \lambda \mathbf{e}_3$ (where λ is an arbitrary coefficient)?