Fundamentos de bases de datos Tarea 5 Dependencias y Normalización

Díaz Gómez Silvia Eugenio Aceves Narciso Isaac Quiroz Castañeda Edgar

26 de Abril del 2019

1. Preguntas de repaso

- a. ¿Qué es una dependencia funcional y cómo se define?
- b. ¿Para qué sirve el concepto de dependencia en la normalización?
- c. Sea A la llave de R(A, B, C). Indica **todas** las dependencias funcionales que implica **A**. $A \to BC$
- d. ¿Qué es una forma normal? ¿Cuál es el objetivo de normalizar un modelo de datos?
- e. ¿En qué casos es preferible lograr 3NF en vez de BCNF?
- 2. Proporciona algunos ejemplos que demuestren que las siguientes reglas no son válidas:
 - a) Si $\mathbf{A} \to \mathbf{B}$, entonces $\mathbf{B} \to \mathbf{A}$
 - b) Si $AB \rightarrow C$, entonces $A \rightarrow C$ y $B \rightarrow C$
 - c) Si $\mathbf{A} \rightarrow \mathbf{C}$, entonces $\mathbf{A} \rightarrow \mathbf{C}$
- 3. Para cada uno de los esquemas que se muestran a continuación:
 - a) R(A,B,C,D,E) con $F=\{AB \rightarrow CD, E \rightarrow C, D \rightarrow B \}$
 - b) R(A,B,C,D,E) con $F=\{AB \rightarrow C, DE \rightarrow C, B \rightarrow D \}$
 - Especifica de ser posible **dos DF no triviales** que se puedan derivar de las dependencias funcionales dadas. Usando la cerradura de atributos.
 - a) $\{AD\}+=\{ADBC\}$ y $\{AE\}+=\{AEC\}$ a partir de estas cerraduras obtenemos las siguientes dependencias: $AD \rightarrow BC$ y $AE \rightarrow C$
 - b) $\{AB\}+=\{ABCD\}$ y $\{BE\}+=\{EBDC\}$ a partir de estas cerraduras obtenemos las siguientes dependencias: $AB \to CD$ y $BE \to DC$
 - Indica una llave candidata para R

Usamos la cerradura para encontrar una llave candidata

- a) $\{AB\}+=\{ABCD\}, \{E\}+=\{EC\}, \{D\}+=\{DB\}, la cerradura de AB es la que contiene mas elementos de la relación por lo tanto una llave para R sería :$ **ABE**
- b) $\{AB\}+=\{ABCD\}, \{DE\}+=\{E\}, \{B\}+=\{BD\}, la cerradura de AB es la que contiene mas elementos de la relación por lo tanto una llave para R sería :$ **ABE**
- Especifica todas las violaciones a la BCNF

- a) Las tres dependencias son violaciones a BCNF porque no aparece del lado izquierdo de las DF la llave que es ABE.
- b) Las tres dependencias son violaciones a BCNF porque no aparece del lado izquierdo de las DF la llave que es ABE.
- Normaliza de acuerdo a BCNF, asegúrate de indicar cuáles son las relaciones resultantes con sus respectivas dependencias funcionales.
 - a) Como todas las DF son violaciones, tomamos a AB \rightarrow CD y su cerradura es {AB}+= {ABCD}. Así que definimos dos nuevas relaciones S y T,

S(A,B,C,D) con $\{AB \to CD, D \to B\}$

T(A,B,E) con ABE \rightarrow ABE y perdemos $E \rightarrow C$

En S la llave es AB por lo tanto $D \to B$ es una violación.

Ahora para S tomamos $D \to B$ y calculamos la cerradura para $\{D\} + = \{DB\}$

Definimos otras dos nuevas relaciones

 $U(D,B) \text{ con } D \to B$

V(D,A,C) con DAC \rightarrow DAC

En esta nueva partición se pierde AB \rightarrow CD.

Observamos que en U y V ya no se tienen violaciones, por lo tanto el esquema en BCNF para R es:

 $T(A,B,E) \text{ con } ABE \rightarrow ABE$

 $U(D,B) con D \rightarrow B$

V(D,A,C) con $DAC \rightarrow DAC$

b) Como todas las DF son violaciones, tomamos a $B \to D$ y su cerradura es $\{B\} += \{BD\}$. Así que definimos dos nuevas relaciones S y T,

 $S(B,D) con \{B \rightarrow D\}$

T(B,A,C,E) con $AB \rightarrow C$ y perdemos $DE \rightarrow C$

En S, B es llave por lo tanto S ya esta en BCNF.

Ahora en T la llave sigue siendo ABE por lo tanto AB \rightarrow C es violación, calculamos la cerradura para $\{AB\}+=\{ABC\}$

Definimos otras dos nuevas relaciones

U(A.B.C) con $AB \rightarrow C$

 $V(A,B,E) \text{ con ABE} \rightarrow ABE$

Observamos que en U y V ya no se tienen violaciones, por lo tanto el esquema en BCNF para R es:

 $S(B,D) con B \rightarrow D$

 $U(A,B,C) \text{ con } AB \rightarrow C$

 $V(A,B,E) \text{ con } ABE \rightarrow ABE$

- 4. Para cada una de las siguientes relaciones con su respectivo conjunto de dependencias funcionales:
 - a) R(A,B,C,D,E,F) con $F = \{B \rightarrow D, B \rightarrow E, D \rightarrow F, AB \rightarrow C\}$
 - b) R(A,B,C,D,E) con $F = \{A \rightarrow BC, B \rightarrow D, CD \rightarrow E, E \rightarrow A\}$
 - Indica todas las violaciones a la 3NF

Que no aparezca una llave candidata en el lazo izquierdo de las DF o que no aparezca a la derecha. Calculamos la cerradura:

- a) $\{B\}+=\{BDE\}, \{D\}+=\{DF\}, \{AB\}+=\{ABCDE\}$ una llave para R es AB Las dependencias que violan la 3NF son $B \to D$, $B \to E$, $D \to F$
- b) {A}+={ABCDE}, {B}+={B},{CD}+={CDEAB}, {E}+={EABCD} una llave para R es ${\bf A}$, ${\bf E}$ o ${\bf DC}$ B \to D viola la 3NF
- Normaliza de acuerdo a la 3NF

Para normalizar en 3NF se deben buscar superfluos por la izquierda y por la derecha.

 Superfluos por la izquierda:
 En este caso la dependencia que tiene mas de un atributo por la izquierda es la DF que contiene a la llave del lado izquierdo por lo tanto no es necesario verificarlo. • Superflos por la derecha:

Haciendo uso de la propiedad de la unión tenemos que F queda como $F=\{B \to DE, D \to F, AB \to C\}$ Tomamos la dependencia que se violacion a 3NF y tenga mas de un atributo a la derecha, $B \to DE$ y buscamos elementos superfluos:

¿D es superfluo? B \rightarrow E

obtenemos un nuevo conjunto de dependencias funcionales $F' = \{B \to E, D \to F, AB \to C\}$ y calculamos la cerradura para B

 $\{B\}+=\{BE\}$ como D no aparece por lo tanto D no es superfluo.

¿E es superfluo? B \rightarrow D

obtenemos un nuevo conjunto de dependencias funcionales $F' = \{B \to D, D \to F, AB \to C\}$ y calculamos la cerradura para B

{B}+={BDF} como E no aparece por lo tanto E no es superfluo.

Así que obtenemos que $F_{min} = \{B \to DE, D \to F, AB \to C\}$ a partir de este conjunto creamos una relación por cada DF

 $R_1(B,D,E) \text{ con } B \to DE$

 $R_2(D,F) \text{ con } D \to F$

 $R_3(A,B,C)$ con $AB \rightarrow C$

Como la llave esta contenida en la relación R₃ por lo tanto esta es la normalización para R en 3NF.

b) • Superfluos por la izquierda:

En este caso la dependencia que tiene mas de un atributo por la izquierda es $CD \to E$ y verificamos si algun atributo es superfluo.

iC es superfluo? D \rightarrow E

 $\{D\} + = \{D\}$, E no aparece en la cerradura de D, por lo tanto C no es superfluo.

¿D es superfluo? $C \to E$

 $\{C\}+=\{C\}$, E no aparece en la cerradura de C, por lo tanto D no es superfluo.

Esta parte no era necesario verificarlo porque CD es llave candidata.

• Superflos por la derecha:

Tomamos la dependencia que tenga mas de un atributo a la derecha, $A \to BC$ y buscamos elementos superfluos:

 \dot{A} B es superfluo? A \rightarrow C

obtenemos un nuevo conjunto de dependencias funcionales $F' = \{A \to C, B \to D, CD \to E, E \to A\}$ y calculamos la cerradura para A

 $\{A\} += \{AC\}$ como B no aparece por lo tanto B no es superfluo.

 ξ C es superfluo? A \to B

obtenemos un nuevo conjunto de dependencias funcionales $F' = \{A \to B, B \to D, CD \to E, E \to A\}$ y calculamos la cerradura para A

 $\{A\} += \{ABD\}$ como C no aparece por lo tanto C no es superfluo.

Así que obtenemos que $\mathbf{F}_{min} = \{ A \to BC, B \to D, CD \to E, E \to A \}$ a partir de este conjunto creamos una relación por cada DF

 $R_1(A,B,C) \text{ con } A \to BC$

 $R_2(B,D) \text{ con } B \to D$

 $R_3(C,D,E) \text{ con } CD \to E$

 $R_4(E,A) \text{ con } E \to A$

Como la llave esta contenida en la relación R₃ por lo tanto esta es la normalización para R en 3NF.

5. Sea el esquema:

$$R(A,B,C,D,E,F) \text{ con } F=\{BD \rightarrow E, CD \rightarrow A, E \rightarrow C, B \rightarrow D\}$$

■ ¿Qué puedes decir de **A**+ y **F**+?

 $\mathbf{A} += \{A\} \text{ y } \mathbf{F} += \{F\} \text{ No alcanzan ningun otro attributo.}$

- Calcula B+, ¿qué puedes decir de esta cerradura?
 {B}+={BDECA} Casí contiene todos los atributos de la relación por lo tanto podemos agregarle el atributo
 F y sería una llave para la relación R.
- Obtén todas las llaves candidatas.

$$\{BD\}+=\{BDECA\},\{CD\}+=\{CDA\},\ \{E\}+=\{EC\},\ \{B\}+=\{BDECA\}$$
 Las llaves candidatas son: BF , BDF

■ ;R cumple con BCNF? ;Cumple con 3NF? (en caso contrario normaliza)

R no cumple BCNF ni con 3NF.

La llave candidata es BF.

• Normalización con BCNF

Todas las dependencias son violaciones a BCNF, tomamos BD \rightarrow E, así tenemos la partición como:

S(B,D,E) con $BD \to E$, (ya no tiene ninguna violación)

T(B,D,A,C,F) con $\{B \rightarrow D, CD \rightarrow A\}$

y E \rightarrow C se pierde, en T las DF son violaciones por lo tanto hacemos una nueva partición,

U(B,D) con $B \to D$, (ya no tiene ninguna violación)

V(B,A,C,F) con BACF \rightarrow BACF

y perdemos CD \rightarrow A.

Nuestro esquema normalizado con BCNF queda de la siguiente manera:

 $S(B,D,E) \text{ con } BD \to E,$

 $U(B,D) \text{ con } B \to D,$

V(B,A,C,F) con BACF \rightarrow BACF

• Normalización con 3NF

Todas las dependecias son violaciones a 3NF

o Superfluos por la izquierda

Tomamos a BD \rightarrow E,

 $B? D \rightarrow E$

 $\{D\}+=\{D\}$, E no aparece en la cerradura de D, por lo tanto B no es superfluo. ¿D? B \rightarrow E,

{B}+={BDECA}, E aparece en la cerradura de B, por lo tanto D es superfluo.

Entonces $\mathbf{F}_{min} = \{ B \to E, CD \to A, E \to C, B \to D \}$ y por la propiedad de la unión $\mathbf{F}_{min} = \{ B \to DE, CD \to A, E \to C \}$

o Superfluos por la derecha:

Tomamos la dependencia que tenga mas de un atributo a la derecha, en este caso es $B \to DE$ y buscamos elementos superfluos:

¿D es superfluo? B \rightarrow E

obtenemos un nuevo conjunto de dependencias funcionales $F'=\{B\to E,\, CD\to A,\, E\to C\}$ y calculamos la cerradura para B

{B}+={BEC} como D no aparece por lo tanto D no es superfluo.

E es superfluo? B \rightarrow D

obtenemos un nuevo conjunto de dependencias funcionales $F' = \{B \to D, CD \to A, E \to C\}$ y calculamos la cerradura para B

 $\{B\}+=\{BD\}$ como E no aparece por lo tanto E no es superfluo.

Así que obtenemos que $\mathbf{F}_{min} = \{ B \to DE, CD \to A, E \to C \}$ a partir de este conjunto creamos una relación por cada DF

 $R_1(B,D,E) \text{ con } B \to DE$

 $R_2(C,D,A) \text{ con } CD \to A$

 $R_3(E,C) \text{ con } E \to C$

Y como la llave no esta en ninguna relación creamos una nueva relación que la contenga $R_4(B,F)$ con $BF \to BF$.

Por lo tanto R₁, R₂, R₃ y R₄ es la normalización en 3NF.

- Se ha decidido dividir \mathbf{R} en las siguientes relaciones $\mathbf{S}(\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D},\mathbf{F})$ y $\mathbf{T}(\mathbf{C},\mathbf{E})$, ¿se puede recuperar la información de \mathbf{R} ? No podemos recuperar toda la información de \mathbf{R} porque se pierde la dependencia $\mathbf{B}\mathbf{D} \to \mathbf{E}$.
- 6. Para cada uno de los esquemas, con su respectivo conjunto de dependencias multivaluadas, resuelve los siguientes puntos:
 - a) R(A,B,C,D) con $DMV = AB \rightarrow C, B \rightarrow D$
 - b) R(A,B,C,D,E) con $DMV = A \rightarrow B$, $AB \rightarrow C$, $A \rightarrow D$, $AB \rightarrow E$
 - Encuentra todas las violaciones a la 4NF
 - a) R(A,B,C,D) con $DMV = AB \rightarrow C$, $B \rightarrow D$ Consideremos las posibles llaves calculando las cerraduras.

$$\{B\} + = \{BD\}$$

Por lo que una llave puede ser ABC.

Como ninguna de las dependencias tiene a esta llave en su parte izquierda, entonces toda **DMV** son violaciones a la cuarta forma normal.

b) R(A,B,C,D,E) con $DMV = A \rightarrow B$, $AB \rightarrow C$, $A \rightarrow D$, $AB \rightarrow E$ Consideremos las posibles llaves calculando las cerraduras.

$${AB} + = {ABCDE}$$
$${A} + = {AD}$$

Por lo que una llave es AB.

Por lo que las violaciones son $\mathbf{A} \rightarrow \mathbf{B} \ \mathbf{y} \ \mathbf{A} \rightarrow \mathbf{D}$

- Normaliza de acuerdo a la 4NF
 - a) R(A,B,C,D) con $DMV = AB \rightarrow C, B \rightarrow D$

Para intentar preservar las dependencias multivaluadas, primero empezemos seleccionando una violación que sea dependencia funcional, que es este caso sólo puede ser $\mathbf{B} \to \mathbf{D}$. Entonces, \mathbf{R} se parte en dos nuevas tablas $R_1(B,D)$ y $R_2(A,B,C)$.

En R_1 se preserva únicamente la dependencia funcional ${\bf B} \to {\bf D}$, que como incluye a todos los atributos de la relación es trivial, por lo que R_1 ya está en 4NF. En R_2 , sólo se preserva una dependencia multivaluada, pero esta incluye a todos los elementos de R_2 , por lo que no es una violación a la 4NF. Por lo que R_2 también ya está normalizada.

Ahora, hay que revisar si la llave está contenida en alguna de las relaciones. Efectivamente, la llave está en R_2 , por lo que no es necesario agregar ninguna relación.

Entonces R_1 y R_2 son la normalización en **4NF** de **R**.

b) R(A,B,C,D,E) con $DMV = A \rightarrow B$, $AB \rightarrow C$, $A \rightarrow D$, $AB \rightarrow E$

Para intentar preservar las dependencias multivaluadas, primero empezamos seleccionando una violación que sea dependencia funcional, que es este caso sólo puede ser $A \to D$.

Entonces, **R** se parte en dos nuevas tablas $R_1(A, D)$ y $R_2(A, B, C, E)$.

En R_1 se preserva únicamente la dependencia funcional $\mathbf{A} \to \mathbf{D}$, que como incluye a todos los atributos de la relación es trivial, por lo que R_1 ya está en 4NF.

Mientras que en R_2 se siguen manteniendo todas las demás dependencias multivaluadas.

Por esto, se sigue teniendo que AB sigue siendo llave y por lo tanto $A \rightarrow B$ sigue siendo violación de 4NF, y de hecho la única.

Entonces, tomándola como violación, R_2 se parte en dos nuevas tablas $R_3(A,B)$ y $R_4(A,C,E)$.

En R_3 se preserva únicamente A \rightarrow B, que como tiene a todos los atributos de la relación. no es violación de la **4NF**, por lo que R_3 ya está normalizada.

En R_4 no se preserva ninguna dependencia, por lo que las únicas presentes son las triviales, por lo que R_4 también ya está en 4NF.

Notemos que en este último paso se perdieron las dependencias funcionales $\mathbf{AB} \to \mathbf{E}$ y $\mathbf{AB} \to \mathbf{C}$. Por último, como la llave original está contenida en R_3 , no es necesario agregar ninguna relación.

Por lo que R_1 , R_3 y R_4 son la normalización en **4NF** de R.

7. Se tiene la siguiente relación:

R(idEnfermo, idCirujano, fechaCirugía, nombreEnfermo, direcciónEnfermo, nombreCirujano,n nombreCirugía, medicinaSuministrada, efectosSecundarios)

- Expresa las siguientes restricciones en forma de dependencias funcionales:
 A un enfermo sólo se le da una medicina después de la operación. Si existen efectos secundarios estos dependen sólo de la medicina suministrada. Sólo puede existir un efecto secundario por medicamento.
- Especifica otras **dependencias funcionales** o **multivaluadas** que deban satisfacerse en la relación R. Por cada una que definas, deberá aparecer un enunciado en español como en el inciso anterior.
- Normaliza utilizando el conjunto de dependencias establecido en los puntos anteriores.