PyTorch and Graph Neural Networks (GNNs)

Natalí de Santi

PhD candidate at IF-USP

December 1st, 2023

What are GNNs being used for?

Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images

Exploring the Potential of
Large Language Models
(LLMs) in Learning on Graphs

What are GNNs being used for?

Equivariant Graph Neural Networks for Toxicity Prediction

Rediscovering orbital mechanics with machine learning

GNNs to to compute the power spectrum from galaxies

GNNs to predict the matter content of the universe using halos

GNNs to predict the matter content of the universe using galaxies

How some of these GNNs work?

Edge Model

$$\mathbf{e}_{ij}^{(\ell+1)} = \mathcal{E}^{(\ell+1)}\left(\left[\mathbf{n}_i^{(\ell)}, \mathbf{n}_j^{(\ell)}, \mathbf{e}_{ij}^{(\ell)}\right]\right)$$

Node Model

$$\mathbf{n}_i^{(\ell+1)} = \mathcal{N}^{(\ell+1)}\left(\left[\mathbf{n}_i^{(\ell)}, igoplus_{j \in \mathfrak{N}_i} \mathbf{e}_{ij}^{(\ell+1)}, \mathbf{g}
ight]
ight)$$

Multi Pooling Operation

$$\bigoplus_{j \in \mathfrak{N}_i} \mathbf{e}_{ij}^{(\ell+1)} = \left[\max_{j \in \mathfrak{N}_i} \mathbf{e}_{ij}^{(\ell+1)}, \sum_{j \in \mathfrak{N}_i} \mathbf{e}_{ij}^{(\ell+1)}, \frac{\sum_{j \in \mathfrak{N}_i} \mathbf{e}_{ij}^{(\ell+1)}}{\sum_{j \in \mathfrak{N}_i}} \right]$$

How some of these GNNs work?

Hands-on activity

STEP 1: go to github and download the repo using:

\$ git clone https://github.com/natalidesanti/pytorch and GNNs

STEP 2: open the **GNNs** notebook in your preferred machine (your own or in Google Colab)

