Neural Network Metrics for Viterbi Decoding in Molecular Communication Channels

Peter Hartig

December 16, 2019

Outline

Background

Initial Results

Background

Viterbi Setup

Maximum Likelihood sequence decoding can be formalized as

Viterbi Setup Continued

Each state change is decided by the metric $Pr(y_i|\mathbf{x})$. In a linear channel with length I impulse response , this metric becomes $Pr(y_i|\mathbf{x}_{i-1}^i)$.

Example with channel impulse response length 2 and constellation size 2

Example with channel impulse response length 2 and constellation size 2.

Incorporating Neural Net into Viterbi Decoding

Problem 1

Viterbi algorithm requires distribution $Pr(y_i|\mathbf{x}_{i-1}^i)$ (or its parameters).

Solution

Have Neural Network learn $Pr(y_i|\mathbf{x}_{i-1}^i)$

Problem 2

Generating training data $Pr(y_i|\mathbf{x}_{i-1}^i)$ requires knowledge of the channel and its (current) parameters.

► Solution

Decompose $Pr(y_i|\mathbf{x}_{i-1}^i)$ into

$$Pr(y_{i}|\mathbf{x}_{i-1}^{i}) = \frac{Pr(\mathbf{x}_{i-1}^{i}|y_{i})Pr(y_{i})}{Pr(\mathbf{x}_{i-1}^{i})}$$
(6)

Metrics for $Pr(x_{i-1}^i|y_i)$

Metrics for $Pr(y_i)$

Gaussian Mixture Model using Expectation-Maximization algorithm

Background 8

Outline

Background

Initial Results

Initial Results 9

Detection Performance

Initial Results 10

Next Step

- ▶ Apply to a sampled molecular communications channel.
 - Estimate matched filter
- ► Generate training data for molecular communications channel and test "transfer learning" to real data.

Initial Results 11