Ana Übung Blatt 11 Aufgabe 4

Michael Kopp

21. Januar 2009

Integral $\int x$ Es ist das Integral $\int_0^1 x dx$ mit der Riemann'schen Definition zu berechnen. Dazu wählen wir eine Zerteilung $\delta_n = \{\frac{1}{n} \cdot i | i=0,1,...,n\}$ und innerhalb jedes Intervalls eine Stützstelle $\xi_i = \frac{1}{n} \cdot i$. Damit berechnen wir nun die Riemann'sche Summe und lassen $n \to \infty$ laufen - dann haben wir dermaßen kleine Abstände zwischen den einzelnen $x_i \in \delta$, dass es keinen Unterschied macht, was für eine Verteilung man wählt.

$$I = \lim_{n \to \infty} \sum_{i=0}^{n} \underbrace{\frac{1}{n}}_{\Delta x} \cdot \underbrace{\left(\frac{1}{n} \cdot i\right)}_{f(\xi_i)} = \lim \frac{1}{n^2} \sum_{i=0}^{n} i = \lim \frac{1}{n^2} \cdot \frac{n(n+1)}{2} = \lim \frac{1+\frac{1}{n}}{2} = \frac{1}{2}$$

Integral $\int x^2$ Es ist das Integral $\int_0^1 x^2 dx$ zu berechnen. Wir gehen vor wie oben beschrieben.

$$I = \lim_{n \to \infty} \sum_{i=0}^{n} \underbrace{\frac{1}{n}}_{\Delta x} \cdot \underbrace{\left(\frac{1}{n} \cdot i\right)^{2}}_{f(\xi_{i})} = \tag{1}$$

$$\lim \frac{1}{n^3} \sum_{i=0}^n i^2 = \tag{2}$$

$$\lim \frac{1}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} = \tag{3}$$

$$\lim \frac{2 + \frac{3}{n} + \frac{1}{n^2}}{6} \tag{4}$$

$$=\frac{2}{6}=\frac{1}{3}$$
 (5)