Συστήματα Αναμονής (Queuing Systems)

3ο Εργαστήριο Θοδωρής Παπαρρηγόπουλος (el18040)

Ερώτηση 1)

Γ ια $\lambda = 1$					$\Gamma \iota \alpha \lambda = 5$							Γιο λ = 10				
	trans	state	num_ar		dep	trans	state	num	ar ar	r dep	trans	state	num_ar	arr	dep	
	1	0	0	1	0	1	0	0	1	0	1	0	0	1	0	
	2	1	0	0	1	2	1	0	1	0	2	1	0	1	0	
	3	0	1	1	0	3	2	0	0	1	3	2	0	0	1	
	4	1	0	1	0	4	1	1	1	0	4	1	1	1	0	
	5	2	0	0	1	5	2	0	0	1	5	2	0	0	1	
	6	1	1	0	1	6	1	2	0	1	6	1	2	1	0	
	7	0	2	1	0	7	0	1	1	0	7	2	0	1	0	
	8	1	1	1	0	8	1	2	1	0	8	3	0	1	0	
	9	2	0	0	1	9	2	0	0	1	9	4	0	0	1	
	10	1	2	1	0	10	1	3	1	0	10	3	1	1	0	
	11	2	0	0	1	11	2	0	0	1	11	4	0	1	0	
	12	1	3	0	1	12	1	4	1	0	12	5	0	1	0	
	13	0	3	1	0	13	2	0	0	1	13	6	0	1	0	
	14	1	3	0	1	14	1	5	0	1	14	7	0	1	0	
	15	0	4	1	0	15	0	2	1	0	15	8	0	0	1	
	16	1	3	0	1	16	1	5	1	0	16	7	1	0	1	
	17	0	5	1	0	17	2	0	0	1	17	6	1	0	1	
	18	1	3	0	1	18	1	6	1	0	18	5	1	1	0	
	19	0	6	1	0	19	2	0	0	1	19	6	1	1	0	
	20	1	3	0	1	20	1	7	1	0	20	7	1	1	0	
	21	0	7	1	0	21	2	0	0	1	21	8	0	1	0	
	22	1	3	1	0	22	1	8	1	0	22	9	0	0	1	
	23	2	0	0	1	23	2	0	0	1	23	8	1	1	0	
	24	1	4	0	1	24	1	9	1	0	24	9	0	1	0	
	25	0	8	1	0	25	2	0	0	1	25	10	0	1	0	
	26	1	4	0	1	26	1	10	0	1	26	10	1	0	1	
	27	0	9	1	0	27	0	3	1	0	27	9	1	1	0	
	28	1	4	0	1	28	1	10	1	0	28	10	1	1	0	
	29	0	10	1	0	29	2	0	1	0	29	10	2	1	0	
	30	1	4	1	0	30	3	0	1	0	30	10	3	1	0	

Ερώτηση 2)

Average number of clients in the M/M/1/10 queue: Convergence for Lambda = $^{\circ}$

Average number of clients in the M/M/1/10 queue: Convergence for Lambda = 5

Average number of clients in the M/M/1/10 queue: Convergence for Lambda = 10

Ερώτηση 3)

Παρατηρούμε πως για $0 \le |\lambda - \mu| \le \varepsilon$ όσο το ε αυξάνει, τότε αυξάνεται και η σύγκλιση. Ο αριθμός το transitions που μπορούμε να αγνοήσουμε εξαρτάτε στο λ που εξαρτάτε στο ε. Έτσι όσο μεγαλύτερο ε τόσο μικρότερο αριθμό μπορούμε να αγνοήσουμε. Έτσι για τα 3 λ μπορούμε να αγνοήσουμε τουλάχιστον $20\kappa - 50\kappa$ transitions.

Ερώτηση 4)

Εάν είχαμε $\mu_i = \mu \cdot (i+1)$ με $\mu = 1 \frac{\pi \epsilon \lambda \acute{\alpha} \tau \eta \varsigma}{sec}$ (i=1,2,3...,10) τότε θα έπρεπε σε κάθε μετάβαση να αλλάζουμε το threshold με βάση το state στο οποίο είμαστε, δηλαδή θα έπρεπε (έστω πως είμαστε στην κατάσταση $threshold_i = \frac{\lambda}{\lambda + current_state + 1}$.

Κώδικας

```
% M/M/1 simulation. We will find the probabilities of the first states.
% Note: Due to ergodicity, every state has a probability >0.
clc;
clear all;
close all:
figure_counter = 0;
rand('seed',12163);
for lambda = [1,5,10]
 arrivals = [0,0,0,0,0,0,0,0,0,0,0]
 mu = 5:
 total arrivals = 0; % to measure the total number of arrivals
 current_state = 0; % holds the current state of the system
 previous mean clients = 0; % will help in the convergence test
 index = 0;
 threshold = lambda/(lambda + mu); % the threshold used to calculate probabilities
 transitions = 0; % holds the transitions of the simulation in transitions steps
 tracem i = 0;
 tracem = [];
 to plot = [];
 while transitions \geq = 0
  transitions = transitions + 1; % one more transitions step
  tracem_i = tracem_i + 1;
  if tracem i > 0 && tracem i < 31 %&& current state > 0
   tracem(tracem_i,1) = tracem_i;
   tracem(tracem_i,2) = current_state;
   tracem(tracem_i,3) = arrivals(current_state+1);
  endif
  if mod(transitions, 1000) == 0 % check for convergence every 1000 transitions steps
   index = index + 1;
   for i=1:1:length(arrivals)
      P(i) = arrivals(i)/total_arrivals; % calculate the probability of every state in the system
   endfor
   mean_clients = 0; % calculate the mean number of clients in the system
   for i=1:1:length(arrivals)
     mean_clients = mean_clients + (i-1).*P(i);
   endfor
   to_plot(index) = mean_clients;
   if abs(mean_clients - previous_mean_clients) < 0.00001 || transitions > 1000000 % convergence
test
     break;
   endif
```

```
previous mean clients = mean clients;
  endif
  random number = rand(1); % generate a random number (Uniform distribution)
    if current_state == 0 || random_number < threshold % arrival
       %{
       if 0 < tracem_i < 31
         tracem(tracem_i,4) = 1
         %disp("arrival"), disp(current_state);
       endif
       %}
       total arrivals = total arrivals + 1;
       % to catch the exception if variable arrivals(i) is undefined. Required only for systems with
finite capacity.
       x = arrivals(current_state + 1) + 1;
       arrivals(current\_state + 1) = x; % increase the number of arrivals in the current state
       if (current state != 10)
         current_state = current_state + 1;
       endif
       else % departure
       %{
       if 0 < \text{tracem } i < 31
         tracem(tracem_i,5) = 1
       endif
       if current state != 0 % no departure from an empty system
       current_state = current_state - 1;
       endif
    endif
 endwhile
 for i=1:1:length(arrivals)
  display(P(i));
 endfor
 figure_counter += 1;
 figure(figure_counter);
 plot(to_plot,"b","linewidth",2);
 title(strjoin({"Average number of clients in the M/M/1/10 queue: Convergence for Lambda =
",num2str((lambda))},""));
 xlabel("Transitions in thousands");
 ylabel("Average number of clients");
 grid on;
 saveas (figure_counter, strjoin({"figure_",num2str(1),"_lambda_",num2str((lambda)),".png"}))
 figure_counter += 1;
 figure(figure counter);
 bar(0:1:(length(arrivals)-1),P,'b',0.4);
```

```
title(strjoin({"Probabilities for Lambda = ",num2str((lambda))}));
grid on;
saveas (figure_counter, strjoin({"figure_",num2str(2),"_lambda_",num2str((lambda)),".png"}))
disp("trans state num_ar arr dep");
disp(tracem);
```