

EE4305 Fuzzy/Neural Systems for Intelligent Robotics

PROBLEM SOLVING 2

- 1. Consider a function approximation problem with a single input variable, x, and a single output variable, y. Suppose the training data of (x, y) pairs are: (0, 1.5), (1, 2.5), (2, 3.6) and (3, 4.2), and we wish to use a single-layer perceptron for this problem, i.e., $y = w \cdot x b$. Assume that the error function is given as, $E = \sum_{j=1}^{4} [d(j) y(j)]^2$, where d is the desired output. Determine the optimal values for the weight, w, and bias, b.
- 2. Consider the cost function

$$E(\mathbf{w}) = \frac{1}{2}\sigma^2 - \mathbf{r}_{xd}^T \mathbf{w} + \frac{1}{2}\mathbf{w}^T \mathbf{R}_x \mathbf{w}$$

where σ^2 are some constants, and

$$\mathbf{r}_{xd} = \begin{bmatrix} 0.8182 \\ 0.354 \end{bmatrix}$$

$$\mathbf{R}_{x} = \begin{bmatrix} 1 & 0.8182 \\ 0.8182 & 1 \end{bmatrix}$$

- (a) Find the optimum value \mathbf{w}^* for which $E(\mathbf{w})$ reaches its minimum value.
- (b) Use the method of steepest descent to compute \mathbf{w}^* for the following two values of learning-rate parameter:
 - (i) $\eta = 0.3$;
 - (ii) $\eta = 1.0$

For each case, plot the trajectory traced by the evolution of the weight vector $\mathbf{w}(n)$ in the W-plane. Start from $\mathbf{w}(0) = [0\ 0]^{\mathrm{T}}$.