

Universidade Federal de Uberlândia FEELT – Faculdade de Engenharia Elétrica

SISTEMAS E CONTROLE

Roteiro 05a - Sistemas Eletromecânicos

Professor: Dr. Éder Alves de Moura

Gabriel Cardoso Mendes de Ataide

11811ECP008

SUMÁRIO

Introdução	2
Atividade 01	•
Atividade 02	4
Resolução	4
Atividade 03	•
Resolução	:

Introdução

Esta semana utilizamos a Transformada de Laplace para modelar sistemas eletrodinâmicos, como motores CC. Esse método facilita a modelagem no domínio complexo e permite obter funções de transferência diretamente na variável s.

Atividade 01

Veja os seguintes vídeos:

- Sistemas de Controle Aniel (vídeo 4) https://www.youtube.com/watch?v=H6kpPqpTClo&list=PLjhzxDly7tNQp2CkUHvAK PciOsnuYk_f_&index=4
- 2. Modelagem do Motor DC em Laplace https://www.youtube.com/watch?v=45zy7ynXykg
- 3. Modelagem de um Motor DC com Matlab/Simulink https://www.youtube.com/watch?v=d1xfirFBd4Q

Atividade 02

Faça a leitura do Capítulo 2 do Nise, sobre a modelagem de sistemas eletromecânicos, e explique o que é o significado físico da curva Torque-velocidade e como ela deve ser usada para o projeto de sistemas que usem motor CC.

Figura 2.38 - Torque-speed curves with an armature voltage, \boldsymbol{e}_{a} , as a parameter.

Resolução

São 3 fatores primordiais, Velocidade, Torque e Tensão

A Tensão V aplicado ao motor faz o eixo rodar a uma velocidade w e possui esta relação w = j*v, onde j é uma constante de proporcionalidade. A rotação do eixo gera um Torque T, que é proporcional à corrente da armadura e tem a relação T = K*I, onde K é a constante de torque. Um valor alto de K limita a corrente a um valor baixo. Como o torque é proporcional à velocidade, podemos traçar um gráfico de torque x velocidade, conforme o gráfico apresentado. Dessa forma utilizamos o gráfico para saber das propriedades do motor e conseguir controlar sua velocidade de rotação e/ou seu torque.

Atividade 03

Da lista de problemas do livro, disponibilizado no arquivo 'Nise - cap2 - Lista de Exercícios', resolva as seguintes sequências:

- a) Faça os exercícios de 36 até o 41, modelando os sistemas com engrenagens.
- b) Faça os exercícios de 42 e 44, com sistemas mistos.
- c) Faça os exercícios de 45 até o 49, modelando os sistemas mecânicos eletromecânicos.

Resolução

Figura 1 - Resolução 36.

Figura 2 - Resolução 37.

Figura 3 - Resolução 38.

Figura 4 - Resolução 39.

Figura 5 - Resolução 40.