CHEM II ORGANIC

Dr Kennedy Ngwira C407

Dr Amanda Rousseau C503

19 Lectures:

17 Survey Lectures2 Afternoon Tutorials1 Blackboard Tutorial

Class Record:

Class test Labs Tutorial questions

Section 2: Isomers

(Student Manual, Pages 13–17)

L.G 2.1 Isomers

Isomers are compounds with:

BUT: different

L.G 2.2 Two Classes of Isomers:

1) Structural isomers

eg: $C_4H_{10}O$

2) Stereoisomers

L.G 2.3 Three Types of Stereoisomers:

i) Conformational Isomers:

- Arise from free rotation about C-C single bonds
- Interconvert rapidly

ii) Geometric Isomers:

iii) Enantiomers:

Geometric Isomers

Have a RIGID unit about which rotation is NOT possible.

e.g. π bond

e.g. Ring

L.G 2.4 What about systems like:

$$CI$$
 CH_3 $C=C$ CH_2OH

cis / trans meaningless! Need a new classification

- Substituents are assigned priorities by rules: Cahn-Ingold-Prelog rules (C.I.P rules)
- If groups of higher priority are on same side of C=C, isomer is called

- If groups of higher priority are on opposite sides, isomer is called

Cahn-Ingold-Prelog Sequence Rules

 The higher the atomic number, the higher the priority e.g.

2) If the bonded atoms have the SAME atomic number, look at the next atom alonge.g.

Cahn-Ingold-Prelog Sequence Rules cont.

3) For multiple bonds in substituents: replace by equivalent number of single bonds and then apply rules 1 and 2.

L.G 2.5 Enantiomers

- Molecules whose mirror images are not superimposable

Requirements: sp³ carbon with four different substituents

e.g. Alanine:

$$H_2N-C-CO_2H$$
 CH_3

Enantiomers are:

- almost indistinguishable
- very hard to separate

Can distinguish by interaction with polarised light

Plane of light is rotated either to the right or to the left

Enantiomers cause EQUAL but OPPOSITE rotations Enantiomers are also called:

Racemic Mixtures

- An equal mixture (1:1) of (+) and (-) enantiomers of a compound
- Net rotation of polarised light is ZERO

e.g. (±) - Alanine = 50% (+) - Alanine and 50% (-) - Alanine

L.G 2.6 Naming Enantiomers

1) Assign C.I.P priorities to the four substituents on the stereogenic carbon:

- 2) With the substituent of lowest priority (4) pointing AWAY from you, look at the priority of the remaining 3 substituents:
 - If they are arranged CLOCKWISE, enantiomer is R

- If they are arranged ANTICLOCKWISE, enantiomer is S

i.e. the configuration at the stereogenic centre is R or S

R/S?

N.B. R/S bears NO relation to (+) / (-); this is determined experimentally

e.g (+) Lactic acid

Diastereomers

- More than one stereogenic centre gives rise to DIASTEREOMERS
- These are stereoisomers that are NOT mirror images of each other

Diastereomers

- For n stereogenic centres:

- Half of these are enantiomers of the other half

- All other relationships are DIASTEREOMERIC

Section 3: Aspects of Reactivity –I

(Student Manual, Pages 18–22)

Effects of bond polarity

a) Bond Breaking (L.G 3.3)

Non-polar vs

eg. CI—CI

H— CI

Polar

b) Inductive Effects (L.G 3.6)

i) Electronic effects transmitted through σ -bond framework of molecules

eg. C— CI C— Li

Effect falls off after about 3 bonds

ii) Alkyl groups are electron donating

How will this influence cation and anion stability?

Section 3: Aspects of Reactivity –II

1. Inductive Effect

- through σ-bond

$$H_3C$$
 — CI

2. Mesomeric / Resonance Effect

- through π -bond

Delocalisation of charge gives rise to resonance structures

e.g. Conjugated systems:

NB: The greater the number of possible resonance forms, the greater the stability of the molecule

eg. Benzylic cation:

What influence does this have on reactivity?

Examples:

L.G 3.7 Steric Effects

- Due to:
- Increasing bulk often leads to:

eg.
$${}^{\cdot}CH_3 + {}^{\cdot}CH_3 \longrightarrow H_3C \longrightarrow CH_3$$

But: $2 \times {}^{\cdot}C \longrightarrow {}^{\cdot}$

L.G 3.5 "Curly arrows"

NB lab exercise

- Represent:
- Arrow direction:

For paired electrons:

For unpaired electrons:

eg.

 $HO^- \qquad H^+ \qquad \longrightarrow \qquad H_2O$

L.G 3.10 Descriptions of double bonds

i) Isolated

ii) Conjugated

iii) Cross-conjugated

iv) Cumulated

Section 5: Unsaturated hydrocarbons

(Student Manual, Page 30)

Addition reactions of alkenes

- Alkenes are electron rich;
- i) Addition of H-X

What about non-symmetrical alkenes?

$$H_3C$$
 H H_3C H H_3C H H_3C H H_3C H

Mechanism?

Anti-Markovnikov addition

Radical reaction

Initiation

Propagation

ii) Addition of Br₂

- Two bromine atoms add on **OPPOSITE** faces;

Eg:

iii) Addition of H₂

- Catalyst needed: Pd or Pt (usually 1%- 5%)
- H-H bond strong:

iv) O₃ Addition

- Ozonolysis

$$R'' \rightarrow R$$
 O_3 $R'' \rightarrow R''$ H $R'' \rightarrow H$ $R'' \rightarrow H$ $R'' \rightarrow H$ H_2O

Examples:

$$\begin{array}{c|c}
 & 2 \times O_3 \\
\hline
& Zn, CH_3CO_2H
\end{array}$$

Note:

v) Reaction with Osmium tetroxide (OsO₄)

vi) Addition Polymerisation

- Radical
$$h\nu$$
, or Δ Initiation RO-OR

Propagation

RO
$$\xrightarrow{\text{H}_2\text{C}=\text{CH}_2}$$
 $\xrightarrow{\text{H}_2\text{C}=\text{CH}_2}$ RO-CH₂CH₂CH₂CH₂

$$RO - (CH_2CH_2)_n CH_2CH_2$$

Termination

vii) Pericyclic Reactions

- Diels-Alder cycloaddition reaction

6-membered ring with alkene

Examples:

Section 6: Saturated Heteroatom Compounds

(Student Manual, Pages 34-44)

Bonds are *polarised*. Two classes:

Most important functional groups:

a. R—Hal (F, Cl, Br, I)

b. (H—O—H) R—O—H R—O—R'

c. (H—S—H) R—S—H R—S—R'

d. $\begin{pmatrix} H \\ H-N-H \end{pmatrix}$ $\begin{pmatrix} H \\ R-N-H \end{pmatrix}$ $\begin{pmatrix} R' \\ R-N-H \end{pmatrix}$ $\begin{pmatrix} R' \\ R-N-R'' \end{pmatrix}$

Also note:

Reminders from First Year:

Reactivity of the C—X bond is due to:

1. Bond Polarisation

$$-c-x$$
 $-c-M$

Reacts with:

- 2. Lone Pairs On X (or empty orbitals on M)
 Leads to acid—base behaviour
- 3. Bond Strengths

C—X is weaker than C—H

C—CI C—O

C-N

Acid-Base Properties: 1. Behaviour as Acids:

$$H^{O}H$$
 + B: \longrightarrow HO^{-} + BH^{+}

$$NH_3 + B: \longrightarrow NH_2^- + BH^+$$

$$HO-H + Na \longrightarrow H_2 + Na^+OH^-$$

$$CH_3O-H + Na \longrightarrow$$

2. Behaviour as Bases:

$$H^{\bullet, O} H + H^{+} X^{-} \longrightarrow H^{\bullet, O^{+}} H$$

$$CH_{3}^{\bullet, O} H + H^{+} X^{-} \longrightarrow$$

$$CH_{3}^{\bullet, O} CH_{3} + H^{+} X^{-} \longrightarrow$$

$$H^{\bullet, N} H + H^{+} X^{-} \longrightarrow NH_{4}^{+} X^{-}$$

$$H_{3}^{\bullet, O} CH_{3} + H^{+} X^{-} \longrightarrow$$

$$CH_{2}^{\bullet, O} CH_{3} + H^{+} X^{-} \longrightarrow$$

Typical Reactions of Compounds with C—X Bonds

Substitution:

Elimination:

N.B.: substitution and elimination always compete with each other!

Competition between S_N And E

1) Effect of Nu:

The more *basic* the Nu, the more chance of elimination (*i.e.*, attack at H⁺ rather than at $C^{\delta+}$)

OH⁻ versus H₂O H₂O versus NH₃

2) Size Effects:

S_N: attack is at C

E: attack is at H ∴ Any steric hindrance favours E

- Bulky Nu
- Crowded C^{δ+} site
- 3) Higher Temperature favours E: from $\Delta G = \Delta H T\Delta S$

Further Aspects of Nucleophilic Substitution

$$R_3C$$
—L + :Nu R_3C —Nu + :L

In principle, this process is reversible.

To favour the forward S_N reaction:

- A good Nu should be a poor LG; and
- A good LG should be a poor Nu.

What makes a nucleophile "good"?

A good nucleophile tends to be a good base.

e.g. OH⁻ H₂O CH₃O⁻ CH₃OH

e.g. $(CH_3)_2$ -NH CH_3NH_2 NH_3

Less clear cases, e.g. CH₃O⁻ vs CH₃CO₂⁻

Look at their conjugate acids: stronger acid implies weaker conjugate base.

What makes a nucleophile "good"?

Going down a group in the periodic table gives better nucleophiles (lower electronegativity; atoms can "donate" electrons more readily).

 $HS^ HO^ H_2S$ H_2O

 R_3P : R_3N : $I^ Br^ CI^-$

e.g. For the reaction: CH₃–Br + Nu[−] → CH₃–Nu + Br[−]

Nu	H ₂ O	NH ₃	CI ⁻	OH ⁻	CH ₃ O ⁻	 -	SH ⁻
Relative	1	700	1000	16000	25000	100000	125000
reactivity							

Taken from McMurry, 6th edition, page 353

What makes a leaving group "good"?

- As above: poor Nu usually means good L; but
- The weaker the C—L bond, the better the leaving group.

Note the oddity: I⁻ is one of the best nucleophiles, but also one of the best leaving groups!

• For anions, the weakest bases (*i.e.*, derived from the strongest acids) are the best leaving groups.

$$R = OSO_2R' + OH^- R = OH + OSO_2R'$$

What makes a leaving group "good"?

Stabilised anions are better leaving groups than unstabilised anions.

For the reaction:
$$CH_3-L + Nu^- \rightarrow CH_3-Nu + L^-$$

L-	OH ⁻	CI ⁻	Br ⁻	I -	R'SO ₂ O ⁻
Relative	<<1	200	10000	30000	60000
reactivity					

Taken from McMurry, 6th edition, page 354

Poor L can be changed into better L by modifying them:

Activate the leaving group with H⁺:

Nucleophilic Substitution (S_N) Reactions: Mechanisms

Reaction mechanisms are detailed descriptions of:

The events that occur during chemical reactions including

- The order in which bonds are broken and formed;
- The relative rates of different steps in the reaction;
- Stereochemical features

Two main mechanisms for S_N reactions:

 $S_N 1$ $S_N 2$

S_N1	S_N2
S _N 1 L leaves before Nu attacks	S _N 2 Nu attacks, L leaves <i>simultaneously</i>

S _N 1	S _N 2		
Kinetics and Rate Law			
Unimolecular	Bimolecular		

S _N 1			S _N 2		
Energy			profile		
Energy	reaction		Energy	reaction	
	Teaction	1		Teaction	

S _N 1	S _N 2		
Stereochemistry			

S _N 1	S _N 2		
Effect of Structure			
Importance of C+:	Direction of Nu: Approach is NB		

S _N 2			
Effect of Nu Strength			
Effect of Leaving Group			
Effect of Solvent			

Further Aspects of Base- Induced Elimination

In S_N reactions, Nu attacks carbon In eliminations, Nu attacks hydrogen

$$Nu^ H$$
— CH_2 — CH_2 — Br

Depending on reactant's structure, different products are possible:

Preferences?

Can modify poor leaving groups to facilitate reaction (same as with S_N).

e.g.
$$OH$$
 base $-H_2O$

Mechanisms of E reactions

Two main mechanisms:

E1

E2

The E1 Mechanism:

Leaving group leaves *before* the base attacks (similar to S_N1)

Similar arguments to S_N1 for:

Kinetics

Solvent effects

• Structural effects: more chance of E1 mechanism with

The E2 Mechanism:

Base attacks H, L leaves *simultaneously*, i.e. *concerted* (similar to S_N2)

But note stereochemical condition: H and L must be aligned

Orbitals must overlap to make the π bond:

Kinetics:

An Example of E1 *versus* E2

$$\begin{array}{c|c} \bullet & \bullet \\ \bullet & \bullet$$

If E1 operates:

If E2 operates:

$$Br$$
 H_3C^{m}

Alternative Eliminations

$$\begin{array}{c} O \longrightarrow H \\ H_3 C \longrightarrow C \longrightarrow H \\ H \end{array}$$

O
$$\longrightarrow$$
H $_3$ C \longrightarrow C \longrightarrow H $_3$

Organometallics

Preparation: by exchange with halides

Reactivity:

Section 7: Unsaturated Heteroatom Compounds

(Student Manual, Pages 45-50)

$$c = 0$$
 $c = c$

1. Inductive effect through σ -bond

- <u>___o</u>
- 2. Resonance (mesomeric) effect

Examples:

Aldehydes

Ketones

Typical reactions of compounds with C=O bonds: Nucleophilic addition

◆ Timing?

Good Nu: attack first!

Example

Strategies to make

Good Nu: "H-"

Sources: Na⁺BH₄⁻, Li⁺AlH₄⁻ (Complex hydrides)

Poorer Nu: H₂O, ROH, RSH

N.B.: Catalyse the reaction with H⁺

$$R^1$$
 $C = O + H^+$
 R^2

Improved chance of attack by Nu

Example: Formation of Acetals

Extension: Addition Followed By Elimination

$$R^1$$
 $C = NR^2 + H_2O$

$$R^2 = H \text{ or } C$$

$$R^2 = OH$$

$$R^2 = -NH_2$$

Tautomerism

$$R-C \equiv C-R + H_2O/H^+ \longrightarrow R C \Longrightarrow C$$

α-Substitution Reactions

Enolate Anion:

Reactions of Enolates

Example: Aldol Reactions

$$H_3C$$
 H

Base-catalyzed dimerization

Section 8: Composite Functional Groups

(Student Manual, pages 51–56)

$$-c$$
 X

 $X = OH, OR, NH_2, CI$

"Substitution" Occurs

$$CH_3O^-Na^+$$
 H_3C CI H_3C OCH_3

Example: Grignard Addition

 CH_3MgBr

Example: Ester Formation

CH₃OH
$$R \rightarrow OCH_3$$
 OCH_3 OCH_3 OCH_3 OCH_3 OCH_3

Overall: Substitution

How?

Ester Formation: Mechanism

Phase 1:

$$H^+$$
 (cat) H^+ (cat) H^+

$$+ H^{+}$$
 OH \longrightarrow OCH₃

Phase 2:

$$R$$
 O
 CH_3
 CH_3
 CH_3

You must know:

1) Ester Hydrolysis (acid)

2) Ester Hydrolysis (base)

3) Amide Hydrolysis

Enolate Chemistry:

$$H \rightarrow OEt$$
 $H \rightarrow OEt$
 $H \rightarrow$

Example:

Carbonyl Electrophilicity

$$H_3C$$
 OR

$$H_3C$$
 CH_3

$$H_3C$$
H

NB: – Don't overlook acid-base properties

Better to use esters: