1.	A curve C has parametric equations
	$x = 2t - 1$, $y = 4t - 7 + \frac{3}{t}$, $t \neq 0$
	Show that the Cartesian equation of the curve C can be written in the form
	$y = \frac{2x^2 + ax + b}{x+1}, \qquad x \neq -1$
	where a and b are integers to be found. (3)

2	A curve	Chas	parametric	equations
∠•	A curve	Chas	parametric	cquations

$$x = 4t + 3$$
, $y = 4t + 8 + \frac{5}{2t}$, $t \neq 0$

(a) Find the value of $\frac{dy}{dx}$ at the point on C where t = 2, giving your answer as a fraction in its simplest form.

(3)

(b) Show that the cartesian equation of the curve C can be written in the form

$$y = \frac{x^2 + ax + b}{x - 3}, \quad x \neq 3$$

where a and b are integers to be determined.

(3)

3. A curve C has parametric equations				
	$x = \frac{t^2 + 5}{t^2 + 1}$	$y = \frac{4t}{t^2 + 1}$	$t \in \mathbb{R}$	
Show that all points on C	satisfy			
		$(x-3)^2 + y^2 = 4$		
				(3)

Figure 3

Figure 3 shows a sketch of the curve C with parametric equations

$$x = 4\cos\left(t + \frac{\pi}{6}\right), \quad y = 2\sin t, \quad 0 \leqslant t < 2\pi$$

(a) Show that

$$x + y = 2\sqrt{3} \cos t \tag{3}$$

(b) Show that a cartesian equation of C is

$$(x+y)^2 + ay^2 = b$$

where a and b are integers to be determined.

(2)

5	The ourse	Chag	parametric	aquations
J.	THE CUIVE	C mas	parametric	cquations

$$x = 3t - 4$$
, $y = 5 - \frac{6}{t}$, $t > 0$

(a) Find $\frac{dy}{dx}$ in terms of t

(2)

The point *P* lies on *C* where $t = \frac{1}{2}$

(b) Find the equation of the tangent to C at the point P. Give your answer in the form y = px + q, where p and q are integers to be determined.

(3)

(c) Show that the cartesian equation for C can be written in the form

$$y = \frac{ax+b}{x+4}, \quad x > -4$$

where a and b are integers to be determined.

(3)

Figure 2

The curve C_1 with parametric equations

$$x = 10\cos t, \quad y = 4\sqrt{2}\sin t, \quad 0 \leqslant t < 2\pi$$

meets the circle C_2 with equation

$$x^2 + y^2 = 66$$

at four distinct points as shown in Figure 2.

Given that one of these points, S, lies in the 4th quadrant, find the Cartesian coordinates of S.

(6)

Figure 2

Figure 2 shows a sketch of the curve C with parametric equations

$$x = 4 \tan t$$
, $y = 5\sqrt{3} \sin 2t$, $0 \leqslant t < \frac{\pi}{2}$

The point *P* lies on *C* and has coordinates $\left(4\sqrt{3}, \frac{15}{2}\right)$.

(a) Find the exact value of $\frac{dy}{dx}$ at the point P.

Give your answer as a simplified surd.

(4)

The point Q lies on the curve C, where $\frac{dy}{dx} = 0$

(b) Find the exact coordinates of the point Q.

(2)

8.	The curve C has parametric equations	
	$x = t^2 + 6t - 16$ $y = 6\ln(t+3)$ $t > -3$	
	(a) Show that a Cartesian equation for <i>C</i> is	
	$y = A \ln (x + B) \qquad x > -B$	
	where A and B are integers to be found.	(2)
	The curve C cuts the y-axis at the point P	(3)
	(b) Show that the equation of the tangent to C at P can be written in the form	
	$ax + by = c \ln 5$	
	where a , b and c are integers to be found.	
		(4)

(4)
(3)
(2)

Figure 2

Figure 2 shows a sketch of the curve C with parametric equations

$$x = \mathbf{K}\sqrt{3}\sin \dot{\mathbf{w}}t$$
, $y = 4\cos^2 t$, $0 \le t \le \pi$

- (a) Show that $\frac{dy}{dx} = k(\sqrt{3})\tan \dot{w}t$, where k is a constant to be determined. (5)
- (b) Find an equation of the tangent to C at the point where $t = \frac{\pi}{3}$. Give your answer in the form y = ax + b, where a and b are constants.
- (c) Find a cartesian equation of C.

(3)

11. The curve C has parametric equations				
$x = \sin 2\theta \qquad y = \csc^3 \theta \qquad 0 < \theta < \frac{\pi}{2}$				
(a) Find an expression for $\frac{dy}{dx}$ in terms of θ				
(b) Hence find the exact value of the gradient of the tangent to C at the point where $y = 8$ (3)				

12. The curve C has parametric equations	
$x = 2\cos t, y = \sqrt{3}\cos 2t, 0 \leqslant t \leqslant \pi$	
(a) Find an expression for $\frac{dy}{dx}$ in terms of t.	(2)
The point <i>P</i> lies on <i>C</i> where $t = \frac{2\pi}{3}$	
The line l is the normal to C at P .	
(b) Show that an equation for l is	
$2x - 2\sqrt{3}y - 1 = 0$	(5)
The line l intersects the curve C again at the point Q .	
(c) Find the exact coordinates of Q .	
You must show clearly how you obtained your answers.	(6)

Figure 6

Figure 6 shows a sketch of the curve C with parametric equations

$$x = 2\tan t + 1 \qquad \qquad y = 2\sec^2 t + 3 \qquad \qquad -\frac{\pi}{4} \leqslant t \leqslant \frac{\pi}{3}$$

The line *l* is the normal to *C* at the point *P* where $t = \frac{\pi}{4}$

(a) Using parametric differentiation, show that an equation for l is

$$y = -\frac{1}{2}x + \frac{17}{2} \tag{5}$$

(b) Show that all points on C satisfy the equation

$$y = \frac{1}{2} (x - 1)^2 + 5$$
 (2)

The straight line with equation

$$y = -\frac{1}{2}x + k$$
 where k is a constant

intersects C at two distinct points.

(c) Find the range of possible values for k.

(5)

Figure 4 shows a sketch of part of the curve C with parametric equations

$$x = 3\tan\theta$$
, $y = 4\cos^2\theta$, $0 \leqslant \theta < \frac{\pi}{2}$

The point P lies on C and has coordinates (3, 2).

The line l is the normal to C at P. The normal cuts the x-axis at the point Q.

(a) Find the x coordinate of the point Q.

(6)

The finite region S, shown shaded in Figure 4, is bounded by the curve C, the x-axis, the y-axis and the line l.

(b) Using algebraic integration, find the exact area of S.	(5)

The region R, as shown shaded in Figure 2, is bounded by the curve C, the line x = -1 and the x-axis.

(d) Use integration to find the exact area of R. (6)

Diagram not drawn to scale

Figure 4

Figure 4 shows a sketch of part of the curve C with parametric equations

$$x = 3\theta \sin \theta$$
, $y = \sec^3 \theta$, $0 \leqslant \theta < \frac{\pi}{2}$

The point P(k, 8) lies on C, where k is a constant.

(a) Find the exact value of k.

(2)

The finite region R, shown shaded in Figure 4, is bounded by the curve C, the y-axis, the x-axis and the line with equation x = k.

(b) Show that the area of R can be expressed in the form

$$\lambda \int_{a}^{\beta} \left(\theta \sec^{2} \theta + \tan \theta \sec^{2} \theta\right) d\theta$$

where λ , α and β are constants to be determined.

(4)

(c) Hence use integration to find the exact value of the area of R.

- (6	١
(U	J

Figure 3

The curve shown in Figure 3 has parametric equations

$$x = 6\sin t$$
 $y = 5\sin 2t$ $0 \le t \le \frac{\pi}{2}$

The region R, shown shaded in Figure 3, is bounded by the curve and the x-axis.

(a) (i) Show that the area of R is given by $\int_0^{\frac{\pi}{2}} 60 \sin t \cos^2 t \, dt$

(3)

(ii) Hence show, by algebraic integration, that the area of R is exactly 20

(3)

Figure 4

Part of the curve is used to model the profile of a small dam, shown shaded in Figure 4. Using the model and given that

- x and y are in metres
- the vertical wall of the dam is 4.2 metres high
- there is a horizontal walkway of width MN along the top of the dam
- (b) calculate the width of the walkway.

(5)

Figure 6

Figure 6 shows a sketch of the curve C with parametric equations

$$x = 8\sin^2 t \qquad y = 2\sin 2t + 3\sin t \qquad 0 \leqslant t \leqslant \frac{\pi}{2}$$

The region R, shown shaded in Figure 6, is bounded by C, the x-axis and the line with equation x = 4

(a) Show that the area of R is given by

$$\int_0^a \left(8 - 8\cos 4t + 48\sin^2 t\cos t\right) \mathrm{d}t$$

where a is a constant to be found.

(5)

(b) Hence, using algebraic integration, find the exact area of R.

(4)