$X = \text{vettore d-dimensionale in input } (x_1, ..., x_d)^T$ (file X.csv)

 Σ = matrice positiva di covarianza di X (dimensione dxd, d numero di colonne) (file Sigma.csv)

U = autovettori (file U.csv, U^T in file U^T .csv) $\Lambda^{-1/2}$ = matrice diagonale degli autovalori della matrice di covarianza (dimensione dxd) (file Λ^{-1} %2.csv)

Whitening = Wx, della stessa dimensione d (matrice risultate "sbiancata" con PCA in PCA_result.csv, con ZCA in ZCA_result.csv, con Cholesky in Cholesky result.csv)

Wè la whitening matrix, covarianza(Wx) = I (covarianza $W_{PCA} X$ in file $cov_PCA.csv$, $W_{ZCA} X$ in file $cov_ZCA.csv$)

 $W_{PCA} = \Lambda^{-1/2} U^{T}$ (file W.csv, W^T in file W^T.csv)

 $W_{ZCA} = U \Lambda^{-1/2} U^T = \Sigma^{-1/2}$ (file Sigma^-1%2.csv)

 $W_{Chol} = L^T$, dove L è la matrice triangolare inferiore unica con valori diagonali positivi. (file L^T .csv)

W Σ W^T = I (W = W_{PCA} in file W Sigma W^T.csv W = W_{ZCA} in file Sigma^-1%2 Sigma Sigma^-1%2^T.csv W = W_{Chol} in file L^T Sigma L.csv)

W (Σ W^T W) = W (W = W_{PCA} in file W Sig Wt W PCA.csv W = W_{ZCA} in file W Sig Wt W ZCA.csv)

 $W^T W = \Sigma^{-1}$ ($W^T W \text{ con } W = W_{PCA} \text{ in file } WtW.csv$ $W^T W \text{ con } W = W_{ZCA} \text{ in file Sigma.csv}$ $\Sigma^{-1} \text{ in file } Sigma^-1.csv$)

Inoltre $W_{ZCA} = (\Sigma^{1/2} L) L^T$