3 – Private Key Encryption

Eklavya Sharma

Contents

1	Computational Security	1
	1.1 Definition of relaxations	1
	1.2 [Draft] Necessity of the relaxations	2
2	Defining Computationally Secure Encryption	2
3	Pseudorandom Generators	3
4	Stronger notions of security	3
	4.1 Multiple messages	3
5	Chosen-Plaintext Attack	4
6	Pseudorandom Functions	5
7	CTR mode of operation	6

1 Computational Security

1.1 Definition of relaxations

Unlike perfect security, we make 2 additional assumptions to make secure encryption practical:

- Adversaries are **efficient** and only run for a feasible amount of time.
- Adversaries have a **negligible** probability of success.

All encryption schemes are parametrized by a security parameter n. n is usually the key length. The terms 'efficient' and 'negligible' are defined in terms of n.

Definition 1. An efficient adversary is a probabilistic polynomial-time (PPT) algorithm, where the input is at least as large as the security parameter.

Definition 2. Denote the set of all negligible functions of n as negl(n), where

$$\operatorname{negl}(n) = \bigcap_{k \in \mathbb{N}} o(n^{-k})$$

Theorem 1.

$$f \in \text{negl}(n) \iff \forall p(x) \in \mathbb{R}[x], \exists N \in \mathbb{N}, \forall n \ge N, f(n) < \frac{1}{p(n)}$$

Theorem 2.

$$f \in \text{negl}(n) \implies (\forall p(x) \in \mathbb{R}[x], p(n)f(n) \in \text{negl}(n))$$

1.2 [Draft] Necessity of the relaxations

(TODO: Needs rigor)

- Powerful adversary can brute force the set of keys to break scheme with very high probability.
- Normal adversary can guess key and break scheme with slightly higher probability than pure guess.

2 Defining Computationally Secure Encryption

- The key-generation algorithm Gen takes input 1^n and returns key k. We assume (why?) that $|k| \ge n$.
- The encryption algorithm Enc takes the key and message as input and outputs a ciphertext.
- The decryption algorithm Dec takes the key and ciphertext as input and outputs a message.

Definition 3. The adversarial indistinguishability experiment $PrivK_{A,\Pi}^{eav}(n)$:

- 1. A is given input 1^n . It outputs 2 messages m_0 and m_1 with $|m_0| = |m_1|$.
- 2. $k \in \mathcal{K}$ is generated by running $Gen(1^n)$. b is chosen uniformly randomly from $\{0,1\}$. $c = e_k(m)$, called the challenge ciphertext, is computed and given to A.
- 3. A outputs a bit b'.

4.
$$\operatorname{PrivK}_{A,\Pi}^{eav}(n) = \begin{cases} 1 & \text{if } b' = b \\ 0 & \text{if } b' \neq b \end{cases}$$

Messages output by adversary are required to be of the same length otherwise adversary can use ciphertext length to determine which message was encrypted.

Definition 4. Scheme Π is EAV-secure iff for every PPT adversary A,

$$\Pr\left[\mathrm{PrivK}_{A,\Pi}^{\mathit{eav}}(n) = 1\right] - \frac{1}{2} \in \mathrm{negl}(n)$$

Definition 5. Let $\operatorname{PrivK}_{A,\Pi}^{eav}(n,b)$ be the experiment where the message chosen by the challenger is fixed to be m_b (instead of choosing uniformly randomly from $\{m_0, m_1\}$), but the adversary doesn't know this. Let $\operatorname{PrivKOut}_{A,\Pi}^{eav}(n,b)$ be the output b' of the adversary.

Theorem 3. Π is secure iff for all PPT adversaries A,

$$\left| \Pr \left[\operatorname{PrivKOut}_{A,\Pi}^{eav}(n,1) = 1 \right] - \Pr \left[\operatorname{PrivKOut}_{A,\Pi}^{eav}(n,0) = 1 \right] \right| \in \operatorname{negl}(n)$$

3 Pseudorandom Generators

Definition 6. Let l(n) be a polynomially-bounded function. Let $G : \{0,1\}^n \mapsto \{0,1\}^{l(n)}$ be a deterministic polynomial-time algorithm. G is a pseudorandom generator (aka PRG) iff both these conditions hold:

- Expansion: $\forall n > 1, l(n) > n$.
- Pseudorandomness: For any PPT algorithm D,

$$\left| \Pr_{s \in_R\{0,1\}^n} [D(G(s)) = 1] - \Pr_{r \in_R\{0,1\}^{l(n)}} [D(r) = 1] \right| \in \text{negl}(n)$$

A pseudorandom generator G can be used to construct an encryption scheme Π_G :

- Gen: $k \in_R \mathcal{K}$.
- $e_k(m) = m \oplus G(k)$.
- $d_k(c) = c \oplus G(k)$.

Theorem 4. G is a PRG $\implies \Pi_G$ is EAV-secure.

4 Stronger notions of security

4.1 Multiple messages

The multiple-message eavesdropping experiment $\operatorname{PrivK}_{A,\Pi}^{\operatorname{mult}}(n)$:

- 1. The adversary A is given input 1^n and outputs $M_0 = [m_{0,i}]_{i=1}^t$ and $M_1 = [m_{1,i}]_{i=1}^t$ where $\forall i, |m_{0,i}| = |m_{1,i}|$.
- $2. \ k = \mathsf{Gen}(1^n), \ b \in_R \{0, 1\}.$
- 3. $\forall i, c_i = e_k(m_{b,i}). \ C = [c_i]_{i=1}^n.$

4. A is given C and it outputs a bit b'.

5.
$$\operatorname{PrivK}_{A,\Pi}^{\operatorname{mult}}(n) = \begin{cases} 1 & \text{if } b' = b \\ 0 & \text{if } b' \neq b \end{cases}$$

Definition 7. Π has indistinguishable multiple encryptions iff

$$\Pr\left[\operatorname{PrivK}_{A,\Pi}^{mult}(n) = 1\right] - \frac{1}{2} \in \operatorname{negl}(n)$$

Theorem 5. Any stateless and deterministic encryption scheme has distinguishable multiple encryptions.

Proof. The adversary chooses message lists $M_0 = (m, m)$ and $M_1 = (m, m')$. Then given $C = (c_1, c_2)$, it outputs $b' = (c_1 \neq c_2)$. The adversary succeeds with probability 1.

5 Chosen-Plaintext Attack

The chosen-plaintext attack experiment $\operatorname{PrivK}_{A,\Pi}^{\operatorname{cpa}}(n)$:

- 1. $k = \text{Gen}(1^n)$.
- 2. A is given input 1^n and oracle access to e_k and outputs (m_0, m_1) where $|m_0| = |m_1|$.
- 3. $b \in_R \{0,1\}$. $c = e_k(m_b)$ is given to A.
- 4. A, which continues to have oracle access to e_k , outputs a bit b'.

5.
$$\operatorname{PrivK}_{A,\Pi}^{\operatorname{cpa}}(n) = \begin{cases} 1 & \text{if } b' = b \\ 0 & \text{if } b' \neq b \end{cases}$$

Definition 8. Π is indistinguishable under chosen-plaintext attack iff

$$\Pr\left[\operatorname{PrivK}_{A,\Pi}^{cpa}(n)\right] - \frac{1}{2} \in \operatorname{negl}(n)$$

Definition 9. The LR-oracle $LR_{k,b}$ is a function where $LR_{k,b}(m_0, m_1) = e_k(m_b)$.

The LR-oracle experiment $\operatorname{PrivK}_{A,\Pi}^{\operatorname{lr-cpa}}(n)$:

- 1. $k = \text{Gen}(1^n)$. $b \in_R \{0, 1\}$.
- 2. A is given input 1^n and oracle access to $LR_{k,b}$
- 3. A outputs a bit b'.

4.
$$\operatorname{PrivK}_{A,\Pi}^{\operatorname{lr-cpa}}(n) = \begin{cases} 1 & \text{if } b' = b \\ 0 & \text{if } b' \neq b \end{cases}$$

Definition 10. Π has indistinguishable multiple encryptions under chosen-plaintext attack if

$$\Pr\left[\operatorname{PrivK}_{A,\Pi}^{\mathit{lr-cpa}}(n)\right] - \frac{1}{2} \in \operatorname{negl}(n)$$

Theorem 6. Π is CPA-secure iff it is multi-CPA-secure.

Proof. (Proof will appear in a later chapter)

6 Pseudorandom Functions

Definition 11. Let $|\mathcal{M}|, |\mathcal{K}|, |\mathcal{C}| \in \operatorname{poly}(n)$. Let $\operatorname{\mathsf{Func}}_{\mathcal{M},\mathcal{C}}$ be the family of all functions from \mathcal{M} to \mathcal{C} . Let $F = \{F_k : k \in \mathcal{K}\} \subseteq \operatorname{\mathsf{Func}}_{\mathcal{M},\mathcal{C}}$ be a function family. F is pseudorandom iff for every PPT distinguisher D,

$$\left| \Pr_{k \in_R \mathcal{K}} \left[D^{F_k}(1^n) = 1 \right] - \Pr_{f \in_R \mathsf{Func}_{\mathcal{M}, \mathcal{C}}} \left[D^f(1^n) = 1 \right] \right| \in \mathsf{negl}(n)$$

Example 1. $F_k(x) = x \oplus k$ is not pseudorandom.

Definition 12. A function family F is efficient iff $\forall f \in F$, f can be computed in polynomial time.

Definition 13. Let $|\mathcal{M}|, |\mathcal{K}| \in \text{poly}(n)$. Let $\text{Perm}_{\mathcal{M}}$ be the family of all permutations of \mathcal{M} . Let $F = \{F_k : k \in \mathcal{K}\} \subseteq \text{Perm}_{\mathcal{M}}$ be a permutation family. F is pseudorandom iff for every PPT distinguisher D,

$$\left| \Pr_{k \in_R \mathcal{K}} \left[D^{F_k}(1^n) = 1 \right] - \Pr_{f \in_R \mathsf{Perm}_{\mathcal{M}}} \left[D^f(1^n) = 1 \right] \right| \in \mathsf{negl}(n)$$

F is strongly pseudorandom iff for every PPT distinguisher D,

$$\left|\Pr_{k \in_R \mathcal{K}} \left[D^{F_k, F_k^{-1}}(1^n) = 1 \right] - \Pr_{f \in_R \mathsf{Perm}_{\mathcal{M}}} \left[D^{f, f^{-1}}(1^n) = 1 \right] \right| \in \mathsf{negl}(n)$$

A pseudorandom permutation is also called a block cipher.

Definition 14. A permutation family F is efficient iff $\forall f \in F$, f and f^{-1} can be computed in polynomial time.

Theorem 7. If $F = \{F_k : k \in \mathcal{K}\} \subseteq \mathsf{Perm}_{\mathcal{M}} \text{ is a pseudorandom permutation and } |\mathcal{M}| \geq |\mathcal{K}|, \text{ then } F \text{ is also a pseudorandom function.}$

Proof. (TODO: Add proof)
$$\Box$$

Theorem 8. Let F be a pseudorandom function. Let $G(s) = \operatorname{concat}_{i=1}^{l} F_s(i)$. Then G is a pseudorandom generator.

Theorem 9. A pseudorandom generator with expansion l(n) can be used to construct a pseudorandom function with input and output size $O(\log n)$.

Theorem 10. Let F be a pseudorandom function family. Let $\Pi(n)$ be this scheme:

- Gen : $k \in_R \{0,1\}^n$.
- $e_k(m) = (r, F_k(r) \oplus m)$, where $r \in_R \{0, 1\}^n$.
- $d_k((r,c)) = F_k(r) \oplus c$.

Then $\Pi(n)$ is LR-CPA-secure.

7 CTR mode of operation

'Mode of operation' is a way of encrypting messages of variable lengths using a fixed-length block cipher.

Specification of CTR mode of operation, which uses a pseudorandom function family F:

- Gen: $k \in_R \{0,1\}^n$.
- $e_k([m_i]_{i=1}^l) = [IV] + [F_k(c+i) \oplus m_i]_{i=1}^l$, where $IV \in_R \{0,1\}^n$ is called the initialization vector.
- $d_k([IV] + [m_i]_{i=1}^l) = [F_k(c+i) \oplus c_i]_{i=1}^l$

Theorem 11. The CTR mode of operation is LR-CPA-secure.