Smart Bridge Internship Generative AI With IBM Cloud

Project Title:

Citizen AI – Intelligent Health Assistant using Generative AI

1. Team Members:

Singarapu Harsha Vardhan

Tadiboyina Poorna Santhosh Kumar

Seera Krishna Sai

Shaik Sajid Ali

Phase 1: Brainstorming & Ideation

Objective:

Citizen AI is a Generative AI-powered platform aimed at assisting users with health-related queries through two core features: Symptoms Identifier and Home Remedies Generator. It leverages powerful NLP models hosted on Hugging Face and is deployed using Gradio UI in Google Colab, allowing real-time health interaction and support.

Key Points:

1. Problem Statement:

- Many citizens lack immediate access to reliable health suggestions.
- Minor symptoms are often ignored or misdiagnosed.
- Trusted natural remedies are not easily available in one place.

2. Proposed Solution:

- o A Gradio-based app that:
 - Predicts diseases based on symptoms entered by users.
 - Suggests natural, home-based remedies for commonly reported illnesses.
- Uses the Hugging Face FLAN-T5 or IBM Granite AI model (if available).

3. Target Users:

General public (for instant health support)

- Rural users needing awareness of common symptoms
- Health educators and student projects

4. Expected Outcome:

- Improve health awareness and preventive care.
- Provide accessible AI-based support without needing installations.
- Demonstrate Generative Al's use in citizen-centric applications.

Phase 2: Requirement Analysis

Objective:

To define technical and functional needs to build an AI-powered health assistant with conversational capabilities and health guidance based on symptoms.

Key Points:

1. Technical Requirements:

- Hugging Face FLAN-T5 model via transformers
- Gradio for building the UI
- Python (Google Colab environment)
- GPU support (for faster inference if needed)

2. Functional Requirements:

- A textbox to enter symptoms or disease
- Two tabs in the UI: one for symptom input, another for disease remedy

- Clean, user-friendly interface
- Accurate, context-aware Al output

3. Constraints & Challenges:

- Model loading issues on low-memory systems
- Prompt design required precision for correct output
- Handling generalization of symptoms in limited-token responses

Phase 3: Project Design

Objective:

To design a simple yet powerful interface with effective backend processing for delivering health predictions and remedy suggestions.

Key Points:

1. System Architecture:

 User Input (Symptoms / Disease) → Prompt → AI Model Response → Gradio Output

2. User Flow:

- User selects the functionality tab (Symptoms Identifier or Remedies)
- Enters the input (text)
- Presses a button (Predict / Suggest)
- 。 Receives output instantly from the AI model

3. UI Design:

Gradio Tabs for two functions

- Output displayed in formatted text box
- Clear labels and button actions for interaction.

Phase 4: Project Planning (Agile Methodology)

Objective:

To divide the development into manageable steps using sprints.

0

Key Points:

1. Sprint 1:

- Design Gradio UI layout
- Integrate basic AI prompt logic

2. Sprint 2:

- Optimize prompts for clarity
- Add two-tab structure with outputs

3. **Sprint 3:**

- Test responses with real inputs
- Handle exception cases and errors

Phase 5: Project Development

Objective:

To build and integrate the working model and user interface using Python, Hugging Face Transformers, and Gradio.

Key Points:

1. Technology Stack:

- Python (core logic)
- Hugging Face Transformers (FLAN-T5)
- Gradio (UI)
- Google Colab (development environment)

2. Implementation Details:

- identify_disease() function for predicting based on symptoms
- suggest_home_remedy() function for natural remedy generation
- Two Gradio tabs connected to these functions

3. Challenges & Fixes:

- o Model download issues → switched to FLAN-T5
- Slow loading → optimized prompt length and used Colab GPU
- $_{\circ}$ Prompt misinterpretation \rightarrow improved phrasing

Phase 6: Functional & Performance Testing

Objective:

To validate whether the AI assistant gives correct, relevant, and fast responses in both functionalities.

Test Cases Executed:

 Symptoms input: "fever, cough, headache" → Output: "Common Cold or Flu"

- Disease input: "Acidity" → Output: "Drink cold milk, eat bananas, avoid spicy food"
- Invalid input: "xyzxyz" → Output: Handled gracefully

Output Screens:

- Gradio Tab 1: Symptoms → Disease
- Gradio Tab 2: Disease → Remedy

Result:

- All test cases passed
- Outputs are accurate, grammatically correct, and well-aligned with the inputs

2.Execution Process:

• Starting interface of the Website

Predict Disease

Enter your symptoms (comma-separated):

🖔 Citizen AI – Intelligent Health Assistant

Citizen AI – Intelligent Health Assistant

Symptoms Identifier	₩ Home Remedies
Enter the disease name:	
cough	
Suggest Remedy	
Suggested Remedy: well.	Please avoid medication. Try drinking warm fluids like honey-lemon tea and rest •

