CLAIMS

What Is Claimed Is:

DORRERA

1	1. A method for positioning a tunneling tip at a spacing of one nanometer from a
2	conducting surface comprising the steps of:
3	depositing a quantity of fullerene C_{60} on the conducting surface;
4	removing all but a monolayer film of fullerene C_{60} on the conducting
5	surface;
6	applying an electrical bias to the tunneling tip;
7	moving the tunneling tip toward the conducting surface with the
8	fullerene C_{60} film between the tunneling tip and the conducting surface;
9	monitoring for conductance between the tunneling tip and the fullerene
10	C ₆₀ film; and
11	fixing the position of the tunneling tip with respect to the conducting
12	surface when a said monitoring indicates that the tunneling tip is in contact
13	with the fullerene C_{60} film.

1	2. A removable packaging method for establishing a one nanometer spacing
2	between electrically conducting components comprising the steps of:
3	depositing a monolayer of C_{60} fullerene on a first fixed conductive
4	surface;
5	moving a second conductive surface with an electrical bias adjacent to
6	the first conductive surface at a location where current is transferred to the
7	monolayer of C ₆₀ fullerene;
8	breaking down the fullerene C_{60} into carbonaceous byproducts;
9	introducing a gas selected to react with the carbonaceous byproducts to
10	form a stable molecular gas; and
11	providing a sacrificial surface to selectively adsorb the stable
12	molecular gas.
1	3. A method for inhibiting contact between a tunneling tip and a conducting
2	substrate comprising the steps of:
3	depositing a monolayer of fullerene C_{60} on the conducting substrate;
4	providing the tunneling tip with an electrical bias;
5	moving the tunneling tip to a position adjacent the conducting substrate
6	and fixing the tunneling tip position with respect to the conducting substrate
7	when an electrical current is detected in the fullerene C_{60} monolayer due to the
8	presence of the tunneling tip;
9	energizing the monolayer of fullerene C ₆₀ to breakup the monolayer

10

10	into carbonous byproducts; and
1	removing the carbonous byproducts, leaving the tunneling tip fixed at
12	said fixed position.

A method for separating an electron-donating tunneling surface from an
electron-receiving surface at a distance of on nanometer comprising the steps of:

sestablishing a monolayer of fullerene on the electron-receiving surface,
where said fullerene has a monolayer thickness of one nanometer;

providing an electrical bias on the electron-donating tunneling surface;
bringing the electron-donating tunneling surface into contact with the
monolayer of fullerene on the electron-receiving surface; and
establishing an electrical current between the electron-donating
tunneling surface and the electron-receiving surface, said electrical current

- 5. A method for manufacturing a MEMS device with a protective coating
 comprising the steps of:
- depositing via sublimation a fullerene layer onto a gold surface of a
 conducting substrate;

communicating across the monolayer of fullerene.

- 5 providing an electrical bias on a gold-plated tunneling tip;
- 6 moving the tunneling tip towards the conducting substrate, and monitoring the

- 7 conductivity in the fullerene layer;
- 8 fixing the position of the tunneling tip when the monitoring of the conductivity
- 9 in the fullerene layer indicates that the tunneling tip is in contact with the fullerene
- 10 layer;
- applying thermal energy to the fullerene layer after the tunneling tip position
- 12 has been fixed to break up the fullerene layer into carbon byproducts;
- 13 introducing a gas to react with the carbon byproducts to form a carbon based
- 14 gas; and
- adsorbing the carbon based gas onto a prefabricated sacrificial surface leaving
- 16 a region adjacent the tunneling tip free of fullerene and fullerene byproducts.
 - 1 6. A carbon based protective padding for a MEMS device, the carbon based
 - 2 protective padding further adapted to accurately and reliably establish a one
 - 3 nanometer spacing between a conducting surface on the MEMS device and a
 - 4 tunneling tip, the carbon based protective padding comprising a film of fullerene C_{60}
 - 5 having a thickness of one molecule, said film located at the conducting surface
 - 6 between the tunneling tip and the conducting surface.