Gruppe 14
Datenstrukturen und Algorithmen

Phil Pützstück, 377247 Benedikt Gerlach, 376944 Sebastian Hackenberg, 377550

Hausaufgabe 4

Aufgabe 1

Aufgabe 2

Aufgabe 3

a)

Wir nehmen an, dass \succeq eine Halbordnung ist. (vll noch beweisen?)

Sei $M \subseteq \mathbb{T}$. Da die reellen Zahlen totalgeordent sind, existiert ein $m \in M$ und ein $n \in \mathbb{N}$ sodass

$$\forall m' \in M : \forall n' \in \mathbb{N} : m'(n') \le m(n)$$

Es folgt, dass $\forall m' \in M : m \succeq m' \Longrightarrow m' \succeq m$. Damit ist m eine obere Schranke von M. Sei nun $m' \in \mathbb{T}$. Sei ferner eine weitere obere Schranke $m' \in \mathbb{T}$ von M gegeben. Es muss also gelten, dass

$$\forall n' \in \mathbb{N} : m(n) \le m'(n') \tag{1}$$

denn sonst wäre m' keine obere Schranke von M im Sinne von \succeq , da $m \in M$. Daraus folgt aber eben genau $m \succeq m'$, also ist m' im Sinne von \succeq keine kleinere obere Schranke von M als m. Da $m' \in \mathbb{T}$ eine beliebige obere Schranke war, folgt daraus, dass m die kleinste obere Schranke von M ist.

Wir gehen analog für die größte unter Schranke von M vor:

Durch die Totalordnung der reellen Zahlen ist die Existenz eine $m \in M$ und $n \in \mathbb{N}$ gegeben, sodass

$$\forall m' \in M : \forall n' \in \mathbb{N} : m(n) \le m'(n')$$

Es folgt, dass $\forall m' \in M : m' \succeq m \implies m \succeq m'$. Damit ist m schonmal eine untere Schranke von M.

Sei nun $m' \in \mathbb{T}$ Sei ferner eine weitere untere Schranke $m' \in \mathbb{T}$ von M gegeben. Es muss also gelten, dass

$$\forall n' \in \mathbb{N} : m'(n') < m(n)$$

denn sonst wäre m' keine untere Schranke von M im Sinne von \succeq , da $m \in M$. Daraus folgt aber eben genau $m' \succeq m$, also ist m' im Sinne von \succeq keine größere Schranke von M als m. Da $m' \in \mathbb{T}$ eine beliebige untere Schranke war, folgt daraus, dass m die größte obere Schranke von M ist.

Insgesamt existieren für jede beliebige Teilmenge $M \subseteq \mathbb{T}$ eine kleinste obere und größte untere Schranke im Sinne von \succeq . Folglich ist (\mathbb{T},\succeq) ein vollständiger Verband.

b)

Seien $t, t' \in \mathbb{T}$ mit $t \succeq t'$ gegeben. Es folgt für n = 0

$$(\Phi(t))(0) = 1 \le 1 = (\Phi(t'))(0)$$

sowie für $n \in \mathbb{N}$

$$\forall n \in \mathbb{N} : (\Phi(t))(n) = 2t \left(\left\lfloor \frac{n}{2} \right\rfloor \right) + n \stackrel{t \succeq t'}{\leq} 2t' \left(\left\lfloor \frac{n}{2} \right\rfloor \right) + n = (\Phi(t'))(n)$$

Also gilt

$$\forall n \in \mathbb{N}_0 : (\Phi(t))(n) < (\Phi(t'))(n)$$

Es folgt $\Phi(t) \succeq \Phi(t')$. Damit ist Φ nach Definition monoton bzgl. \succeq .

c)

Aufgabe 4