Lösungen zu Aufgabe 3, Zettel 2

Jendrik Stelzner

19. November 2016

i)

Für alle $f,g\in R[\![T]\!]$ gilt

$$d_q(f,q) = 0 \iff q^{-\nu(f-g)} = 0 \iff \nu(f-g) = \infty \iff f-g = 0 \iff f = q.$$

Für jedes $h \in R[T]$ und $i \ge 0$ ist genau dann $h_i \ne 0$ wenn $-h_i \ne 0$, we halb $\nu(h) = \nu(-h)$. Für alle $f, g \in R[T]$ gilt deshalb

$$d_q(f,g) = q^{-\nu(f-g)} = q^{-\nu(g-f)} = d_q(g,f).$$

Zum Beweis der Dreiecksungleichung fixieren wir $f,g,h\in R[\![T]\!]$. Es gilt zu zeigen, dass

$$q^{-\nu(f-h)} \le q^{-\nu(f-g)} + q^{-\nu(g-h)}. (1)$$

Hierfür zeigen wir, dass bereits

$$q^{-\nu(f-h)} \leq \max\{q^{-\nu(f-g)}, q^{-\nu(g-h)}\}.$$

(Wir zeigen also, dass in (1) bereits einer der beiden Summanden ausreicht. Um welchen es sich dabei handelt hängt allerdings von f, g und h ab.) Da

$$\max\{q^{-\nu(f-g)},q^{-\nu(g-h)}\} = q^{\max\{-\nu(f-g),-\nu(g-h)\}} = q^{-\min\{\nu(f-g),\nu(g-h)\}}$$

gilt

$$q^{-\nu(f-h)} \leq \max\{q^{-\nu(f-g)}, q^{-\nu(g-h)}\} \iff \nu(f-h) \geq \min\{\nu(f-g), \nu(g-h)\}.$$

Diese letzte Ungleichung gilt, denn für alle $0 \le i < \min\{\nu(f-g), \nu(g-h)\}$ gilt $f_i = g_i$ und $g_i = h_i$, und somit auch $f_i = h_i$.

Wir merken noch an, dass die Metrik d_q translations
invariant ist, d.h. es gilt

$$d_q(f+h,g+h) = d_q(f,g)$$
 für alle $f,g,h \in R[T]$.

ii)

Für $f \in R[T]$ und eine Folge $(f^{(i)})_i$ von Elementen $f^{(i)} \in R[T]$ gilt

$$f^{(i)} \to f \text{ für } i \to \infty \text{ bezüglich } d_q$$

$$\iff d_q(f^{(i)}, f) \to 0 \text{ für } i \to \infty$$

$$\iff q^{-\nu(f^{(i)}-f)} \to 0 \text{ für } i \to \infty$$

$$\iff -\nu(f^{(i)}-f) \to -\infty \text{ für } i \to \infty$$

$$\iff \nu(f^{(i)}-f) \to \infty \text{ für } i \to \infty$$

$$\iff \text{für jedes } n \geq 0 \text{ gibt es ein } j \geq 0 \text{ mit } \nu(f^{(i)}-f) \geq n \text{ für alle } i \geq j$$

$$\iff \text{für jedes } n \geq 0 \text{ gibt es ein } j \geq 0 \text{ mit } f_m^{(i)} = f_m \text{ für alle } m \leq n, i \geq j$$

$$\iff \text{für jedes } n \geq 0 \text{ gibt es ein } j \geq 0 \text{ mit } f_n^{(i)} = f_n \text{ für alle } i \geq j.$$

Es gilt also $f^{(i)} \to f$ genau dann wenn für jedes $n \ge 0$ gilt, dass $f_n^{(i)} = f_n$ für i groß genug. (Man beachte, dass es von n abhängt, wann $f_n^{(i)}$ konstant wird. Insbesondere wird die Folge $f^{(i)}$ selbst nicht notwendigerweise konstant.) Das zeigt insbesondere, dass die Folge $(f^{(i)})_i$ genau dann konvergiert, wenn für jedes $n \ge 0$ die Folge der Koeffizienten $(f_n^{(i)})_i$ konstant wird.

Wir haben auch gezeigt, dass sich der Grenzwert $\lim_{i \to \infty} f^{(i)}$ dann koeffizientenweise bestimmen lässt.

Eine Reihe $\sum_{i=0}^{\infty} f^{(i)}$ konvergiert per Definition genau dann, wenn die Folge $(g^{(j)})_j$ der Partialsummen $g^{(j)} \coloneqq \sum_{i=0}^j f^{(i)}$ konvergiert. Wie bereits gezeigt ist dies äquivalent dazu, dass für jedes $n \ge 0$ die Koeffizientenfolge $(g_n^{(j)})_j$ konstant wird. Dies bedeutet gerade, dass es für jedes $n \ge 0$ ein $k \ge 0$ gibt, so dass $g_n^{(j_1)} = g_n^{(j_2)}$ für alle $j_1 \ge j_2 \ge k$; wegen $g_n^{(j_1)} - g_n^{(j_2)} = \sum_{i=j_2+1}^{j_1} f_n^{(i)}$ ist dies äquivalent dazu, dass $f_n^{(i)} = 0$ für alle i > k.

Außerdem zeigt die obige Argumentation, dass sich der Grenzwert der Reihe $\sum_{i=0}^{\infty} f^{(i)}$ dann koeffizientenweise berechnen lässt, d.h. für alle $n \geq 0$ gilt $(\sum_{i=0}^{\infty} f^{(i)})_n = \sum_{i=0}^{\infty} f_n^{(i)}$.

Wir wollen den Leser an dieser Stelle darauf aufmerksam machen, dass sich Konvergenzverhalten einer Folge, bzw. Reihe in $R[\![T]\!]$ nicht von dem gewählten Parameter q>1 abhängt.

Bemerkung 1. Versieht man den Ring R mit der diskreten Topologie, bzw. der diskreten Metrik, so entspricht der topologische Raum R[T] zusammen mit den stetigen Projektionen $\pi_i \colon R[T] \to R$, $f \mapsto f_i$ dem abzählbaren topologischen Produkt $\prod_{i>0} R$.

iii)

Für alle $n, i \geq 0$ gilt $(T^i)_n = \delta_{in}$; für fixiertes $n \geq 0$ ist deshalb $(T^i)_n = 0$ für alle n > i. Wie im Aufgabenteil ii) gesehen, ist deshalb $T^i \to 0$ for $i \to \infty$ bezüglich d_q .

Für $f \in R[T]$ konvergiert die Reihe $\sum_{i=0}^{\infty} f_i T^i$, denn für jedes $n \geq 0$ gilt $(f_i T^i)_n = f_i \delta_{in}$, und für i > n verschwindet dieser Term. Durch koeffizientenweises Berechnen des Grenzwertes ergibt sich, dass

$$\left(\sum_{i=0}^{\infty} f_i T^i\right)_n = \sum_{i=0}^{\infty} (f_i T^i)_n = \sum_{i=0}^{\infty} f_i \delta_{in} = f_n \quad \text{für alle } n \ge 0,$$

und somit $\sum_{i=0}^{\infty} f_i T^i = f$.

iv)

Unabhängigkeit der Topologie vom Parameter q

Es seien $q_1,q_2>0$. Es gilt zu zeigen, dass eine Teilmenge $U\subseteq R[\![T]\!]$ genau dann offen bezüglich d_{q_1} ist, wenn sie offen bezüglich d_{q_2} ist. Dies ist äquivalent dazu, dass eine Teilmenge $C\subseteq R[\![T]\!]$ genau dann abgeschlossen bezüglich d_{q_1} ist, wenn sie abgeschlossen bezüglich d_{q_2} ist. Hierfür genügt es zu zeigen, dass eine Teilmenge $C\subseteq R[\![T]\!]$ genau dann folgenabgeschlossen bezüglich d_{q_1} ist, wenn sie folgenabgeschlossen bezüglich d_{q_2} ist.

In Aufgabenteil ii) haben wir gesehen, dass das Konvergenzverhalten einer Folge $(f^{(i)})_i$ von Elementen $f^{(i)} \in R[\![T]\!]$ bezüglich den Metriken d_{q_1} und d_{q_2} nicht von den Parametern q_1 und q_2 abhängt, d.h. für jedes $f \in R[\![T]\!]$ gilt genau dann $f^{(i)} \to f$ bezüglich d_{q_1} wenn $f^{(i)} \to f$ bezüglich d_{q_2} . Deshalb ist $C \subseteq R[\![T]\!]$ genau dann folgenabgeschlossen bezüglich d_{q_1} , wenn es folgenabgeschlossen bezüglich d_{q_2} ist.

Also ist die von d_q erzeugte Topologie unabhängig von q.

Stetigkeit der Ringoperationen

Es gilt zu zeigen, dass für je zwei konvergente Folgen $(f^{(i)})_i$ und $(g^{(i)})_i$ von Elementen $f^{(i)},g^{(i)}\in R[\![T]\!]$ auch die Folgen $(f^{(i)}+g^{(i)})_i$ und $(f^{(i)}\cdot g^{(i)})_i$ konvergieren, und dass

$$\lim_{i \to \infty} \left(f^{(i)} + g^{(i)} \right) = \left(\lim_{i \to \infty} f^{(i)} \right) + \left(\lim_{i \to \infty} g^{(i)} \right)$$

und

$$\lim_{i \to \infty} \left(f^{(i)} \cdot g^{(i)} \right) = \left(\lim_{i \to \infty} f^{(i)} \right) \cdot \left(\lim_{i \to \infty} g^{(i)} \right)$$

Hierfür fixieren wir zwei solche konvergenten Folgen und schreiben $f\coloneqq \lim_{i\to\infty} f^{(i)}$ und $g\coloneqq \lim_{i\to\infty} g^{(i)}$.

Es sei $n \geq 0$. Aus $f^{(i)} \to f$ und $g^{(i)} \to g$ ergibt sich nach Aufgabenteil ii), dass es ein $j \geq 0$ gibt, so dass $f_n^{(i)} = f_n$ und $g_n^{(i)} = g_n$ für alle $i \geq j$. Es sei $j \geq j_f, j_g$. Für alle $i \geq j$ ist

$$(f^{(i)} + g^{(i)})_n = f_n^{(i)} + g_n^{(i)} = f_n + g_n = (f + g)_n.$$

Aus der Beliebigkeit von $n \ge 0$ folgt nach Aufgabenteil ii), dass $f^{(i)} + g^{(i)} \to f + g$.

Für das Produkt gehen wir analog vor: Es sei $n \geq 0$. Da $f^{(i)} \to f$ und $g^{(i)} \to g$ ergibt sich nach Aufgabenteil ii), dass es ein $j \geq 0$ gibt, so dass $f_k^{(i)} = g_k^{(i)}$ für alle $k = 0, \ldots, n$ und $i \geq j$. Für alle $i \geq j$ ist damit auch

$$(f^{(i)} \cdot g^{(i)})_n = \sum_{k=0}^n f_k^{(i)} g_{n-k}^{(i)} = \sum_{k=0}^n f_k g_{n-k} = (f \cdot g)_n.$$

Wegen der Beliebigkeit von n zeigt dies nach Aufgabenteil ii), dass $f^{(i)} \cdot g^{(i)} \to f \cdot g$.

Die Stetigkeit der Inversion ergibt sich ähnlich: Es sei $(f^{(i)})_i$ eine Folge von Einheiten $f^{(i)} \in R[\![T]\!]^{\times}$ und $f \in R[\![T]\!]^{\times}$ mit $f^{(i)} \to f$ für $i \to \infty$. Es sei $g \coloneqq f^{-1}$ und für alle $i \ge 0$ sei $g^{(i)} \coloneqq (f^{(i)})^{-1}$. Es gilt zu zeigen, dass auch $g^{(i)} \to g$ für $i \to \infty$.

Wir fixieren ein $n \geq 0$. Da $f^{(i)} \to f$ gibt es ein $j \geq 0$ mit $f_k^{(i)} = f_k$ für alle $i \geq j$ und $0 \leq k \leq n$. Wir zeigen dass $g_k^{(i)} = g_k$ für alle $i \geq j$ und $0 \leq k \leq n$, per Induktion über k: Für alle $i \geq j$ ist $g_0 = f_0^{-1} = (f_0^{(i)})^{-1} = g_0^{(i)}$. Gilt $g_k^{(i)} = g_k$ für alle $0 \leq k < n$ und $i \geq j$, so ergibt sich, dass

$$g_{k+1} = -g_0 \sum_{\ell=0}^{k} g_{\ell} f_{k+1-\ell} = -g_0^{(i)} \sum_{\ell=0}^{k} g_{\ell}^{(i)} f_{k+1-\ell}^{(i)} = g_{k+1}^{(i)}.$$

Ingesamt zeigt dies, dass es für jedes $n \ge 0$ ein $j \ge 0$, so dass $g_k^{(i)} = g_k$ für alle $0 \le k \le n$ und $i \ge j$; insbesondere ist $g_n^{(i)} = g_n$ für alle $i \ge j$. Das zeigt, dass $g^{(i)} \to g$ für $i \to \infty$.

Bemerkung 2. Die Menge der Einheiten $R[T]^{\times}$ ist als Teilmenge von R[T] sowohl offen als auch abgeschlossen:

Es sei $(f^{(i)})_i$ eine Folge in $R\llbracket T \rrbracket^{\times}$ die gegen ein $f \in R\llbracket T \rrbracket$ konvergiert. Für alle $i \geq 0$ ist $f_0^{(i)} \in R^{\times}$, da $f^{(i)}$ invertierbar ist. Es gibt ein $j \geq 0$ mit $f_0 = f_0^{(i)}$ für alle $i \geq j$. Also ist auch $f_0 \in R^{\times}$, und somit $f \in R\llbracket T \rrbracket^{\times}$. Das zeigt, dass $R\llbracket T \rrbracket^{\times}$ folgenabgeschlossen in $R\llbracket T \rrbracket$ ist, und somit abgeschlossen in $R\llbracket T \rrbracket$.

Analog ergibt sich, dass auch $R[\![T]\!] \setminus R[\![T]\!]^{\times}$ abgeschlossen ist, und $R[\![T]\!]^{\times}$ somit offen. Die Aussage lässt sich auch abstrakter einsehen: Versieht man R mit der diskreten Topologie, bzw. der diskreten Metrik, so ist die Projektion auf den konstanten Koeffizienten $\pi_0\colon R[\![T]\!] \to R$, $f\mapsto f_0$ stetig. Für jede Menge von Koeffizienten $C\subseteq R$ sind dann die Urbilder $\pi_0(C)$ und $\pi_0(R\setminus C)=R[\![T]\!] \setminus \pi_0(C)$ offen in $R[\![T]\!]$. Wählt man $C=R^{\times}$, so ergibt sich die Aussage.

v)

Es genügt zu zeigen, dass $R[\![T]\!]$ bezüglich d_q vollständig ist. Die Menge der Cauchyfolgen stimmt dann mit der Menge der konvergenten Folgen überein, und diese ist unabhängig von q, da die Topologie unabhängig von q ist.

Ist $(f^{(i)})_i$ eine Cauchyfolge in R[T] bezüglich d_q , so ist inbesondere $d_q(f^{(i+1)}, f^{(i)}) \to 0$ für $i \to \infty$. Wegen der Translationsinvarianz von d_q ist $d_q(f^{(i+1)} - f^{(i)}, 0) \to 0$, also $f^{(i+1)} - f^{(i)} \to 0$. Nach Aufgabenteil ii) gibt es deshalb für jedes $n \ge 0$ ein $j \ge 0$ mit

 $f_n^{(i+1)}-f_n^{(i)}=0$ für alle $i\geq j$, also $f_n^{(i+1)}=f_n^{(i)}$ für alle $i\geq j$, weshalb die Folge $(f_n^{(i)})_i$ für $i\geq j$ konstant ist. Nach Aufgabenteil ii) konvergiert die Folge $(f^{(i)})_i$ deshalb.

vi)

Nachweis der Kontraktion

Behauptung. Für alle $f, g \in R[T]$ gilt

$$\nu(fg) \geq \nu(g) \quad \text{und} \quad \nu(Tg) = \nu(g) + 1.$$

Ist $f \in T \cdot R[T]$, so gilt $\nu(fg) \ge \nu(g) + 1$.

Beweis. Für alle $0 \le i < \nu(g)$ gilt $g_i = 0$ und somit auch

$$(fg)_i = \sum_{j=0}^{i} f_j \underbrace{g_{i-j}}_{=0} = 0.$$

Deshalb ist $\nu(fg) \geq \nu(g)$. (Tatsächlich ergibt sich mit der obigen Argumentation, dass $\nu(fg) \ge \nu(f) + \nu(g)$. Ist R ein Integritätsbereich, so handelt es sich hierbei um eine Gleich-

Aus $(Tg)_0 = 0$ und $(Tg)_i = (Tg)_{i-1}$ für alle $i \geq 1$ ergibt sich direkt, dass $\nu(Tg) = 1$ $\nu(g)+1$. Ist $f\in T\cdot R\llbracket T\rrbracket$ so gibt es ein $f'\in R\llbracket T\rrbracket$ mit f=Tf'. Deshalb gilt dann

$$\nu(fg) = \nu(Tf'g) = \nu(f'g) + 1 \ge \nu(g) + 1.$$

Für alle $f \in T \cdot R[T]$ und $g \in R[T]$ bezeichnen wir die gegebene Abbildung mit

$$\phi_{f,g} \colon R\llbracket T \rrbracket \to R\llbracket T \rrbracket, \quad x \mapsto g - fx.$$

Aus der obigen Behauptung erhalten wir für alle $x_1, x_2 \in R[T]$, dass

$$\begin{split} d_q(\phi_{f,g}(x_1),\phi_{f,g}(x_2)) &= d_q(g-fx_1,g-fx_2) = q^{-\nu((g-fx_1)-(g-fx_2))} \\ &= q^{-\nu(f(x_2-x_1))} \leq q^{-(\nu(x_2-x_1)+1)} = q^{-1}q^{-\nu(x_2-x_1)} \\ &= q^{-1}d_q(x_2,x_1) = q^{-1}d_q(x_1,x_2). \end{split}$$

 Da q>1 ist $0< q^{-1}<1$. Damit haben wir gezeigt, dass $\phi_{f,g}$ bezüglich d_q eine Kontraktion ist (mit möglicher Kontraktionskonstante q^{-1}).

Bestimmung der Einheiten

Ist $f \in R[\![T]\!]$ eine Einheit, so gibt es ein $g \in R[\![T]\!]$ mit fg = 1. Dann muss $1 = (fg)_0 = f_0g_0$ $\begin{array}{l} \text{und somit } f_0 \in R^\times \text{ (mit } f_0^{-1} = g_0\text{)}. \\ \text{Es sei nun andererseits } f \in R[\![T]\!] \text{ mit } f_0 \in R^\times. \end{array}$

Im Fall $f_0=1$ betrachten wir die abgeänderte Potenzreihe

$$f' := f - 1 = f - f_0 = \sum_{i=1}^{\infty} f_i T^i \in T \cdot R[T].$$

Ist allgemeiner $f_0 \in R^{\times}$, so lässt sich f als $f = f_0(f_0^{-1}f)$ schreiben. Nach der obigen Argumentation ist $f_0^{-1}f$ eine Einheit in $R[\![T]\!]$. Da auch $f_0 \in R^{\times} \subseteq R[\![T]\!]^{\times}$ ist f das Produkt zweier Einheiten, und damit ebenfalls eine Einheit.

vii)

Für $f \in R[\![T]\!]$ und die Folge $(f^{(i)})_i$ von Polynomen $f^{(i)} \coloneqq \sum_{j=0}^i f_j T^j \in R[T]$ gilt nach Aufgabenteil ii), dass $f^{(i)} \to f$ für $i \to \infty$. Also ist R[T] dicht in $R[\![T]\!]$.