Ответ рецензенту

В соответствии с Вашими замечаниями статья доработана. Ниже проведен подробный разбор изменений. Благодарю Вас за внимательное прочтение статьи и ценные замечания, позволившие улучшить ее текст.

С уважением, Пьяных А.И.

Замечание 1

Замечу, что одна из этих работ, опубликованная автором в 2014 году в журнале МТИиП не упоминается ни в тексте, ни в списке литературы, как впрочем нет упоминания работы De Meyer, Saley (2002).

Ответ на замечение 1

Обзор результатов, полученных в вышеобозначенных работах, добавлен во введение.

Отметим, что результаты De Meyer, Saley (2002) не имеют отношения к рассматриваемой в рецензируемой работе дискретной модели, потому и не были изначально упомянуты в ее тексте.

Замечание 2

При этом автор определяет ту же стратегию неосведомленного игрока, что и в работе [1], которая оказывается оптимальной. Оптимальная стратегия инсайдера, естественно, зависит от параметра β .

Ответ на замечение 2

Отметим, что формально стратегия неосведомленного игрока также зависит от β . Соответствующее замечание добавлено в текст статьи.

Замечание 3

В заглавии статьи стоит С ЭЛЕМЕНТАМИ ПЕРЕГОВОРОВ. В тексте работы не встречается ни слово ПЕРЕГОВОРЫ, ни его производные.

Ответ на замечение 3

Действительно, свое первоначальное название статья получила по той причине, что механизм транзакции основан на модели двухстороннего аукциона Чаттерджи и Самуэльсона (1982), которая является одним из механизмов организации переговоров при заключении сделок. Однако, как справедливо было замечено, работа имеет мало отношения к математической теории переговоров.

Название статьи было изменено на "Модифицированная многошаговая модель биржевой игры со счетным множеством состояний".

Замечание 4

В конце основной части работы на странице 8 автор пишет, что полученная им оптимальная стратегия инсайдера при $\beta \to 1$ "не сводится" (полагаю, что имеется ввиду "не сходится") к оптимальной стратегии инсайдера для модели [1]. Напомню, что модель [1] — частный случай модели автора при $\beta = 1$. Этот факт меня чрезвычайно удивил.

Ответ на замечение 4

Стратегия инсайдера, определенная в статье для $\beta \in (0,1)$, не определена при $\beta \in \{0,1\}$. В случае $\beta \in \{0,1\}$ следует использовать вариант стратегии из работы Доманский, Крепс (2011). Этот вопрос более подробно освещен в переработанной версии статьи.

Кроме того, в статью было добавлено описании второй оптимальной стратегии инсайдера, которая при $\beta \to 1$ сходится к оптимальной стратегии инсайдера для модели из работы Доманский, Крепс (2011).

Замечание 5

Хотелось бы также отдельного разбора случая при $\beta=0$. В этом случае, игрок, назвавший бо́льшую ставку, покупает акцию у своего оппонента по цене, названной оппонентом, то есть по меньше из двух названных цен.

Ответ на замечение 5

За счет симметрии функции выигрыша, оптимальная стратегия инсайдера для случая $\beta=0$ может быть получена из оптимальной стратегии при $\beta=1$. Более подробное рассмотрение случая $\beta=0$ добавлено в статью.

Замечание 6

В первом абзаце введения, начинающемся словами "В данной работе рассматривается", идет описание модели, изученной в работах [7] и [1]. Из последующих двух абзацев читатель может об этом догадаться. На мой взгляд лучше об этом сказать явно.

Ответ на замечение 6

Соответствующая фраза была добавлена в начало введения.

Замечание 7

Вслед за работой De Meyer, Saley (2002), пафос работ [7] и [1] состоит в подтверждении гипотезы о том, что случайные флуктуации цен на фондовых рынках могут являться следствием маскировочных действий инсайдера в условиях асимметричной информированности агентов. Поэтому обсуждение ключевого вопроса о случайном блуждании цен сделок, порожденном оптимальной стратегией инсайдера, следует из Замечания на странице 8 перенести во введение и провести это обсуждение более обстоятельно.

Ответ на замечение 7

В соответствии с Вашим замечанием, обсуждение вопросов, связанных со случайным блужданием цен сделок, проведено более подробно, причем как для первой, так и для второй оптимальной стратегии инсайдера.

Замечание 8

В описании модели пропущены два существенных момента, без которых все дальнейшие рассуждения бессмысленны. А именно, автор не упоминает, что

- 1. После каждого шага оба игрока узнают выбор хода противником.
- 2. Игрок 2 знает об осведомленности Игрока 1.

"Игрок, назвавший большую ставку, покупает одну акцию у противника." Это обстоятельство упоминается только в аннотации работы. Его во всяком случае следует упомянуть для прояснения фразы на странице 2 "Выплаты игроку 1" и последующей за ней формулы одношаговых выигрышей инсайдера.

Ответ на замечение 8

Действительно. Описание модели было соответствующим образом дополнено.

Замечание 9

На протяжении работы, следуя обозначениям работ [1] и [7], вероятностное распределение обозначается буквой p, а ставки игроков i_1 и i_2 соответственно. Однако при описании механизма сделки на странице 1 для ставок автор использует обозначение $p_1(p_2)$.

Ответ на замечение 9

Обозначения были соответствующим образом исправлены.

Замечание 10

У читателя, не являющего специалистом по теории повторяющихся игр с неполной информацией, должен возникнуть вопрос, почему оба игрока могут пренебречь историей ходов неосведомленного игрока. Автору следует пояснить это обстоятельство.

Ответ на замечение 10

Действительно, возможность пренебречь историей ходов неосведомленного игрока связана с тем, что информация, получаемая им относительно состояния s, может передаваться лишь посредством действий первого игрока.

Соответствующее замечание было добавлено в раздел с постановкой задачи.

Замечание 11

"Следуя [1], рассмотрим чистую стратегию игрока 2:"

Признаюсь, что полная путаница в следующей далее формуле, которую автору следовало просто переписать из работы [1], остановила меня от дальнейшего изучения работы. У меня создалось впечатление, что работа не была вычитана.

Ответ на замечение 11

Данная досадная ошибка набора была устранена.