МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Отчёт о выполнении лабораторной работы 1.2.4

Определение главных моментов инерции твердых тел с помощью крутильных колебаний

Автор: Чикин Андрей Павлович Б05-304

Цель работы:

- 1. Измерить периоды крутильных колебаний рамки при различных положениях закрепленного в ней тела
- 2. Проверить теоретическую зависимость между периодами крутильных колебаний тела относительно различных осей
- 3. Определить моменты инерции относительно нескольких осей для каждого тела
- 4. По ним найти главные моменты инерции тел и построить эллипсоид инерции

Приборы:

- 1. Установка для получения крутильных колебаний (жесткая рамка, имеющая винты для закрепления в ней твердых тел, подвешенная на натянутой вертикально проволоке)
- 2. Набор исследуемых твердых тел
- 3. Секундомер

1 Краткая Теория.

 $I_x,\,I_y,\,I_z$ - главные оси тела.

$$I_x x^2 + I_y y^2 + I_z z^2 = 1. (1)$$

Рис. 1: Эллипсоиды инерции параллелепипеда, диска и куба

$$I = \frac{1}{r^2}. (2)$$

$$(I+I_p)\frac{d^2\varphi}{dt^2} = -f\varphi. (3)$$

, где I - момент инерции тела, I_p - момент инерции установки, φ - угол отклонения рамки, f - модуль кручения проволоки.

$$T = 2\pi \sqrt{\frac{I + I_p}{f}}. (4)$$

Рис. 2: Схема установки

Рис. 3: Оси вращения прямоугольного параллелепипеда

$$I_d = I_x \frac{a^2}{d^2} + I_y \frac{b^2}{d^2} + I_z \frac{c^2}{d^2}.$$
 (5)

(5)
$$\implies I_d(a^2 + b^2 + c^2) = I_x a^2 + I_y b^2 + I_z c^2.$$
 (6)

$$(4) \implies T_d(a^2 + b^2 + c^2) = T_x a^2 + T_y b^2 + T_z c^2. \tag{7}$$

$$(b^2 + c^2)T_E^2 = b^2T_y^2 + c^2T_z^2. (8)$$

$$(a^2 + c^2)T_P^2 = a^2T_x^2 + c^2T_z^2. (9)$$

$$(a^2 + b^2)T_M^2 = a^2T_x^2 + b^2T_y^2. (10)$$

2 Выполнение.

- 1. Ознакомимся с установкой для получения крутильных колебаний. Проверим: 1) хорошо ли натянута проволока, 2) жестко ли закреплена на ней рамка, 3) нормально ли работает устройство для возбуждения крутильных колебаний, 4) не возникают ли, кроме крутильных колебаний рамки, еще и колебания в вертикальной плоскости (их не должно быть).
- 2. Научимся закреплять тела в рамке. На телах имеются специальные углубления, в которые должны входить винты, имеющиеся на рамке. Отвернув гайки 5, поднимим вверх подвижную планку 4 на рамке, вставим тело в рамку, попав углублением, имеющимся на теле, на выступ нижней стороны рамки. Опуская планку, необходимо выступающим из планки на 5-7 мм

винтом 6 попасть в отверстие на теле. Закрепив планку гайками 5, немного подожмем тело винтом 6. Если в дальнейшем обнаружится, что тело поворачивается в рамке, надо его еще поджать винтом 6.

- 3. Перед каждой серией измерений необходимо выбрать амплитуду крутильных колебаний.
- 4. Для рамки со всеми телами при различных их положениях определим периоды колебаний по времени 10-15 колебаний, повторяя каждое измерение не менее 3 раз. (см т. 1)

		измерения, Т, с			
тело	ось	1	2	<t>, c</t>	I
установка		2.581	2.572	2.58	
куб	z	3.097	3.088	3.09	7.81E-04
	ху	3.085	3.082	3.08	7.81E-04
	xyz	3.097	3.085	3.09	7.81E-04
параллелипипед	X	3.825	3.828	3.83	4.35E-03
	у	4.122	4.199	4.16	5.65E-03
	z	3.285	3.272	3.28	2.19E-03
	MM'	3.885	3.884	3.88	4.64E-03
	PP'	3.475	3.469	3.47	3.02E-03
	EE'	3.381	3.372	3.38	2.74E-03
	DD'	3.512	3.512	3.51	3.29E-03
цилиндр 1	z	3.496	3.491	3.49	3.04 E-03
	X	3.087	3.091	3.09	1.56E-03
цилиндр 2	z	3.268	3.256	3.26	1.43E-03
	X	3.072	3.081	3.08	1.17E-03
		•			

Таблица 1: Измерения

- 5. Штангенциркулем измерим геометрические размеры параллелепипеда (a, b и c). Вычислим главные моменты инерции. По полученным ранее данным проверим справедливость формул (7) (10).
 - (7): ошибка 0,03%
 - (8): ошибка 0,1%
 - (9): ошибка 0,9%
 - (10): ошибка 0,6%
- 6. Нарисуем сечения эллипсоида инерции главными плоскостями. Для этого выберите измеренные периоды колебаний для осей в главной плоскости и для каждой оси вычислите величину $\frac{1}{\sqrt{T^2-T_p^2}}$, которая пропорциональна расстоянию от центра масс тела до точки пересечения эллипсоида с этой осью. Эти величины надо отложить вдоль направлений соответствующих осей (должно получиться 8 точек) и через их концы провести эллипс. Это и будет сечение эллипсоида главной плоскостью (в произвольном масштабе). 7
- 7. Проведем аналогичные измерения для куба и построим для него соответствующие сечения эллипсоида инерции. Убедимся в равенстве всех центральных моментов инерции. 4

Рис. 4: Эллипсоид инерции параллелепипеда

Рис. 5: Эллипсоид инерции куба

8. Построим график зависимости T^2 от I и убедимся в его линейности. 8

Рис. 6: График зависимости $T^2(I)$

3 Вывод

В ходе данной лабораторной работы мы измерили периоды крутильных колебаний рамки при различных положениях закрепленного в ней тела, проверили теоретическую зависимость между периодами колебаний параллелепипеда относительно различных осей, определили моменты инерции тел относительно нескольких осей и построили эллипсоиды инерции.