Nonparametric Density Estimation

Sections 17.1-17.8 of Hansen (2022)

Yasuyuki Matsumura (Kyoto University)

Last Updated: April 21, 2025

https://yasu0704xx.github.io

This slide is available on

https://github.com/yasu0704xx/Econometrics2025.

Introduction

- As a general rule, density functions can take any shape. They
 are inherently nonparametric and cannot be described by a
 finite set of parameters.
- That is, functional and/or distributional specifications relied on when estimating density functions may be incorrect.
- If we assume that such specifications are "true," we might obtain incorrect empirical conclusions.
- Thus, it would be disirable if we develop estimation procedures without requiring functional and/or distributional specifications.
- Nonparametric kernel methods achieve such a goal.

Setup

- Here we review Sections 17.1-17.8 of Hansen (2022) [1].
- We proceed with a discussion of how to estimate the probability density function f(x) of a real-valued random variable X for which we have n IID observations $X_1, \dots X_n$.
- We assume that f(x) is continuous.
- The goal is to estimate f(x) either at a single point x or a set of points in the interior of the support of X.

References

- Excellent textbooks on nonparametric density estimation include Silverman (1986) [7] and Scott (1992) [6].
- The following textbooks are often refered:
 - Silverman (1986) [7],
 - Scott (1992) [6],
 - van der Vaart (1998, Chapter 24) [8],
 - Pagan and Ullah (1999, Chapter 2) [3], and
 - Li and Racine (2007, Chapter 1) [2].
- 日本語の文献:
 - 西山・人見 (2023, 第1章) [11]
 - 末石 (2015, 第9章) [10]
 - 清水 (2023, 第5章) [9]

Contents

Idea behind Kernel Density Estimation

Kernel Density Estimator

Bias, Variance

Integrated Mean Squared Error (IMSE)

Optimal Kernel

Refernces

Idea behind Kernel Density Estimation

Histogram

- A simple and familiar estimator of f(x) is a histogram.
- Devide the range of f(x) into B bins of width w.
- Counting the number of observations n_j in each bin j, we obtain the histogram estimator of f(x) for x in the j-th bin:

$$\hat{f}(x) = \frac{n_j}{nw}. (1)$$

 The histogram is the plot of these heights, displayed as rectangles.

Figure 17.1: Histogram Estimate of Wage Density for Asian Women

Empirical Distribution Function

- Let us generalize the concept of histogram estimator.
- The empirical distribution function is defined as

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n 1(X_i \le x).$$

- Let $F(x) = \int_{-\infty}^{x} f(x) dx$ denote the (cumulative) distribution function.
- By L.L.N. and C.L.T., we obtain

$$F_n(x) \xrightarrow{p} F(x),$$

$$\sqrt{n}(F_n(x) - F(x)) \xrightarrow{d} \mathsf{Normal}(0, F(x)(1 - F(x))).$$

¹We discuss these convergences in Chapter 18 of Hansen (2022) [1].

Naive Estimator

- Since $F_n(x)$ is discrete, the empirical distribution function is not differentiable.
- Instead, let us consider approximate the "derivative" of $F_n(x)$.
- Note that, for $h \to 0$, it holds that

$$f(x) \approx \frac{F(x+h) - F(x-h)}{2h}.$$

• Replacing f and F with f_n and F_n , respectively, we obtain the naive estimator (the Rosenblatt estimator²) of f(x):

$$f_n(x) = \frac{F_n(x+h) - F_n(x-h)}{2h}.$$

• Under certain conditions, it can be shown that $f_n(x) \xrightarrow{p} f(x)$.

²Rosenblatt (1956) [5]

• The naive estimator of $\phi(x)$ using IID observations $X_1, \dots X_{100} \sim \text{Normal}(0, 1)$: ³

図 1: ナイーブ推定量 (h = 0.3)

³Cited from the lecture note 01 by N. Sueishi.

Idea behind Kernel Density Estimation

The naive estimator can be rewritten as

$$f_n(x) = \frac{1}{2nh} \sum_{i=1}^n 1(x - h \le X_i \le x + h)$$
$$= \frac{1}{nh} \sum_{i=1}^n k_0 \left(\frac{X_i - x}{h}\right),$$

where $k_0(\cdot)$ is given by

$$k_0(u) = \frac{1}{2} \cdot 1(-1 \le u \le 1).$$

• Replacing $k_0(\cdot)$ with some smooth function, we can obtain a differentiable, smooth estimator of f(x) ...?

Kernel Density Estimator

Kernel Density Estimator

• The kernel density estimator⁴ of f(x) is given by

$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{X_i - x}{h}\right). \tag{2}$$

- K(u) is a weighting function known as a kernel function. The kernel K(u) weights observations based on the distance between X_i and x.
- h > 0 is a scalar known as a bandwidth. The bandwidth h
 determines what is meant by "close."
- The kernel density estimator (2) critically depends on the bandwidth rather than the kernel function.

⁴The Parzen-Rosenblatt estimator (Parzen, 1962) [4]

Kernel Function

Definition 17.1

• A kernel function K(u) satisfies

$$1. \quad 0 \le K(u) \le \bar{K} < \infty, \tag{3}$$

2.
$$K(u) = K(-u),$$
 (4)

3.
$$\int_{-\infty}^{\infty} K(u) = 1, \text{ and}$$
 (5)

4.
$$\int_{-\infty}^{\infty} |u|^r K(u) du < \infty \text{ for all positive integers } r.$$

(6)

- Essentially, a kernel function is a bounded PDF which is symmetric about zero.
- Assumption (6) is not essential for most results but is a convenient simplification and does not exclude any kernel functions used in standard empirical practice.

Definition 17.2

ullet A normalized kernel function K(u) satisfies

$$\int_{-\infty}^{\infty} u^2 K(u) du = 1.$$

• The *j*-th moment of a kernel is defined as

$$\kappa_j(K) = \int_{-\infty}^{\infty} u^j K(u) du.$$

• The order of a kernel ν is defined as the order of the first non-zero moment.

- Rectangular kernel: $K(u) = \frac{1}{2\sqrt{3}} 1(|u| \le \sqrt{3})$
- Gaussian kernel: $K(u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right)$
- Epanechnikov kernel: $K(u) = \frac{3}{4\sqrt{5}} \left(1 \frac{u^2}{5}\right) 1(|u| \le \sqrt{5})$
- Triangular kernel: $K(u) = \frac{1}{\sqrt{6}} \left(1 \frac{|u|}{\sqrt{6}} \right) 1(|u| \le \sqrt{6})$
- Quartic (Biweight) kernel: $K(u) = \frac{15}{16}(1-u^2)^2 1(|u| \le 1)$
- Triweight kernel: $K(u) = \frac{35}{32}(1-u^2)^31(|u| \le 1)$

Bandwidth

Bias, Variance

Integrated Mean Squared Error (IMSE)

Optimal Kernel

Refernces

References i

- Hansen, B. E. (2022). *Probability and Statistics for Economists*. Princeton.
- Li, Q. and J. S. Racine (2007). *Nonparametric Econometrics:* Theory and Practice. Princeton.
- Pagan, A. and A. Ullah (1999). *Nonparametric Econometrics*. Cambridge.
- Parzen, E. (1962). "On the Estimation of a Probability Density Function and Mode," *Annals of Mathematical Statistics, 33,* 1065-1076.

References ii

- Rosenblatt, M. (1956). "Remarks on Some Nonparametric Estimates of a Density Function," *Annals of Mathematical Statistics*, *27*, 832-837.
- Scott, D. W. (1992). Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley.
- Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chapman and Hall.
- avan der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge.
- 🔋 清水泰隆 (2023)『統計学への漸近論,その先は』内田老鶴圃.

References iii

- 末石直也 (2015) 『計量経済学:ミクロデータ分析へのいざない』日本評論社.
- 西山慶彦, 人見光太郎 (2023) 『ノン・セミパラメトリック統計解析』共立出版.