

Applied Deep Learning

Dr. Philippe Blaettchen Bayes Business School (formerly Cass)

Learning objectives of today

Goals: Creating neural networks with Keras and TensorFlow

- Understanding the role that frameworks such as TensorFlow play in enabling the design, training, and use of arbitrarily complex neural networks
- Getting started on applying TensorFlow to create different types of feed-forward networks

How will we do this?

- We start with a quick recap of the functioning of neural networks
- We then introduce TensorFlow and Keras as programming frameworks for neural networks
- We create a number of neural networks, using TensorFlow's Sequential API

Components

Source: Liang

Hidden layers

"
$$x$$
" = $a^{[l-1]}$ $z = a^{[l-1]}w + b$ $f(z)$

- *f* is what we call an "activation function"
- There are many activation functions, and new ones are invented all the time
- Many of these functions do just fine, or slightly better than existing ones

Typical activation functions: Rectified Linear Unit

CITY, UNIVERSITY OF LONDON

Binary classification

- Input: $a^{[L-1](i)}$
- As usual, we make a linear transformation: $z^{[L](i)} = a^{[L-1](i)} w^{[L]} + b^{[L]}$
- We then use the logistic sigmoid function $\hat{y}^{(i)} = f(z^{[L](i)}) = \sigma(z^{[L](i)}) = \frac{1}{1 + e^{-z^{[L](i)}}}$
- We can interpret the output as the probability of $y^{(i)} = 1$

Generalizing our gradient descent algorithm

- 1. Decide a "learning rate" α
- 2. Start with some parameters θ
- 3. For a certain number of iterations
 - Compute $J(\theta)$
 - Compute $\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$
 - Let $\theta := \theta \alpha \nabla_{\theta} J(\theta)$

(initialization)

(forward propagation) (back-propagation) (parameter update)

Step 1: Forward propagation through the computational graph

Step 2: Back-propagation through the computational graph

Deep learning programming frameworks

Why to use programming frameworks for deep learning?

- Build complex neural networks based on simple modules
- Automatically compute gradients
- Make efficient use of hardware (parallel processing, usage of GPUs and TPUs)
- Create models that are exportable to other runtimes, browsers, or even mobile devices
- Load a large range of pre-trained models

Deep learning in Python: the two main rivals

TensorFlow

- Developed by Google
- Python API based on C engine
- Largest community
- Parallelization of models and data
- Visualization (TensorBoard)
- Relatively intuitive when familiar with numpy
- Runs on most systems (e.g., TensorFlow Lite)
- Broader framework (e.g., reinforcement learning)
- Easy to use Colab-GPU

PyTorch

- Developed by Facebook
- Python API based on LUA engine (Torch)
- Many pre-trained models, especially transformers
- Highly modular
- Easy to run on GPUs
- Runs on most systems (e.g., PyTorch Mobile)

Wasn't there also this thing called Keras?

- High-level deep learning API to build, train, evaluate, execute neural networks
 - Documentation: https://keras.io
- Requires computation backend:
 - TensorFlow (at this point, that's the standard)
 - Microsoft Cognitive Toolkit
 - Theano (original backend on which Keras was built)
 - Apache MXNEt
 - Core ML (Apple)
 - JavaScript & TypeScrit (for web browsers)
 - PlaidML
 - •
- TensorFlow comes with its own Keras implementation tf.keras (with some added features)
 - E.g., use Data API from TF

Keras in general and Keras using TensorFlow

Some statistics

ML tools used by top-5 teams in Kaggle competitions 2017-2019

ML tools used by professional data scientists surveyed by Kaggle

Source: Kaggle

CITY, UNIVERSITY OF LONDON

TensorFlow in practice

Multi-class classification

- We again make a linear transformation with a matrix of weights: $\mathbf{z}^{[L](i)} = \mathbf{a}^{[L-1](i)} \mathbf{W}^{[L]} + \mathbf{b}^{[L]}$
- Note that $\mathbf{z}^{[L](i)} = \begin{pmatrix} z_1^{[L](i)} & z_2^{[L](i)} & \cdots & z_K^{[L](i)} \end{pmatrix}$
- We then use the softmax function on each of the outputs:

$$\hat{y}_k^{(i)} = f(\mathbf{z}^{[L](i)}) = \frac{e^{-z_k^{[L](i)}}}{\sum_{k=1}^K e^{-z_k^{[L](i)}}}$$

- This implies that $\hat{y}_k^{(i)} \in (0,1)$ and $\sum_{k=1}^K \hat{y}_k^{(i)} = 1$
- Hence, we can interpret $\hat{y}_k^{(i)}$ as the probability that $y^{(i)} = k$ ("belongs to class k")

Softmax output

• E.g., when performing object recognition, we might represent our prediction $\widehat{m{y}}^{(i)}$ as

Softmax in practice

Sources

- Chollet, 2021, Deep Learning with Python (2nd edition)
- DeepLearning.AI, n.d.: <u>deeplearning.ai</u>
- Geron, 2019, Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow
- Goodfellow, Bengio, Courville, 2016, The Deep Learning Book: http://www.deeplearningbook.org
- Kaggle, 2019, Kaggle competitions: Why choose Keras as framework?: https://www.kaggle.com/getting-started/151903
- Kaggle, 2022, State of Data Science and Machine Learning 2022: https://www.kaggle.com/kaggle-survey-2022
- Liang, 2016, Introduction to Deep Learning: https://www.cs.princeton.edu/courses/archive/spring16/cos495/

