Задание 3 "Графы 3"

Дедлайн 29 апреля 2019 г.

Ссылка на контест:

https://contest.yandex.ru/contest/12476/enter/

Ведомость:

https://docs.google.com/spreadsheets/d/1Y0w6mLCwHihoDzg90t7SahquiY 1dx3Y4BkEpynn6z2s/edit#gid=2087997050

Задача 1. «Минимальное остовное дерево» (4 баллов)

Задача А в контесте.

Дан неориентированный связный граф. Требуется найти вес минимального остовного дерева в этом графе.

Вариант 1. С помощью алгоритма Прима.

Вариант 2. С помощью алгоритма Крускала.

Вариант 3. С помощью алгоритма Борувки.

Ваш номер варианта прописан в ведомости.

Формат входного файла.

Первая строка содержит два натуральных числа n и m — количество вершин и ребер графа соответственно (1 $\leq n \leq$ 20000, 0 $\leq m \leq$ 100000).

Следующие m строк содержат описание ребер по одному на строке.

Ребро номер i описывается тремя натуральными числами b_i , e_i и w_i — номера концов ребра и его вес соответственно (1 $\leq b_i$, $e_i \leq n$, 0 $\leq w_i \leq$ 100000).

Формат выходного файла.

Выведите единственное целое число - вес минимального остовного дерева.

in	out
4 4 1 2 1 2 3 2 3 4 5 4 1 4	7
1 2 1	
2 3 2	
3 4 5	
4 1 4	

Задача 2а). Приближенное решение метрической неориентированной задачи коммивояжера. (4 балла)

Задачи в контесте нет.

Найдите приближенное решение метрической неориентированной задачи коммивояжера в полном графе (на плоскости) с помощью минимального остовного дерева, построенного в первой задаче.

Оцените качество приближения на случайном наборе точек, нормально распределенном на плоскости с дисперсией 1. Нормально распределенный набор точек получайте с помощью std::normal_distribution.

При фиксированном N, количестве вершин графа, несколько раз запустите оценку качества приближения. Вычислите среднее значение и среднеквадратичное отклонение качества приближения для данного N.

Запустите данный эксперимент для всех N в некотором диапазоне, например, [2, 10]. Автоматизируйте запуск экспериментов.

В решении требуется разумно разделить код на файлы. Каждому классу - свой заголовочный файл и файл с реализацией.

Задача 2б). Приближенное решение задачи коммивояжера. (3 балла)

Задачи в контесте нет.

То же, что и задача 2а), но сделать приближение не хуже, чем в 1,5 раза от идеального. Предлагается использовать лучшее паросочетание на подграфе из нечетных вершин минимального остовного дерева.

http://chekuri.cs.illinois.edu/teaching/fall2006/lect2.pdf

Задача 3. Максимальный поток в ориентированном графе. (4 балла)

Задача в контесте - В.

Задан ориентированный граф, каждое ребро которого обладает целочисленной пропускной способностью. Найдите максимальный поток из вершины с номером 1 в вершину с номером n.

Вариант 1. С помощью алгоритма Эдмондса-Карпа.

Вариант 2. С помощью алгоритма Диница.

Формат входного файла.

Первая строка входного файла содержит n и m — количество вершин и количество ребер графа ($2 \le n \le 100$, $1 \le m \le 1000$). Следующие m строк содержат по три числа: номера вершин, которые соединяет соответствующее ребро графа и его пропускную способность. Пропускные способности не превосходят 10^5 .

Формат выходного файла.

В выходной файл выведите одно число — величину максимального потока из вершины с номером 1 в вершину с номером n.

in	out
4 5	3
4 5 1 2 1	
1 3 2	
3 2 1	
2 4 2	
3 4 1	

Задача 4. Чай. (5 балла)

Задача в контесте - С.

В одном из отделов крупной организации работает **n** человек. Как практически все сотрудники этой организации, они любят пить чай в перерывах между работой. При этом они достаточно дисциплинированы и делают в день ровно один перерыв, во время которого пьют чай. Для того, чтобы этот перерыв был максимально приятным, каждый из сотрудников этого отдела обязательно пьет чай одного из своих любимых сортов. В разные дни сотрудник может пить чай разных сортов. Для удобства пронумеруем сорта чая числами от **1** до **m**.

Недавно сотрудники отдела купили себе большой набор чайных пакетиков, который содержит \mathbf{a}_1 пакетиков чая сорта номер $\mathbf{1}$, \mathbf{a}_2 пакетиков чая сорта номер $\mathbf{2}$, ..., \mathbf{a}_m пакетиков чая сорта номер \mathbf{m} . Теперь они хотят знать, на какое максимальное число дней им может хватить купленного набора так, чтобы в каждый из дней каждому из сотрудников доставался пакетик чая одного из его любимых сортов.

Каждый сотрудник отдела пьет в день ровно одну чашку чая, которую заваривает из одного пакетика. При этом пакетики чая не завариваются повторно.

Входные данные

Первая строка содержит два целых числа \mathbf{n} и \mathbf{m} (1 \leq \mathbf{n} , \mathbf{m} \leq $\mathbf{50}$). Вторая строка содержит \mathbf{m} целых чисел \mathbf{a}_1 , ..., \mathbf{a}_m (1 \leq \mathbf{a}_i \leq $\mathbf{10}^6$ для всех \mathbf{i} от 1 до \mathbf{m}).

Далее следуют \mathbf{n} строк — \mathbf{i} -я из этих строк описывает любимые сорта \mathbf{i} -го сотрудника отдела и имеет следующий формат: сначала следует положительное число \mathbf{k}_i — количество любимых сортов чая этого сотрудника, а затем идут \mathbf{k}_i различных чисел от $\mathbf{1}$ до \mathbf{m} — номера этих сортов.

Выходные данные

Выведите одно целое число — искомое максимальное количество дней.

in	out
2 3	3
3 2 1	
2 1 2	
2 1 3	
3 3	4
274	
2 1 2	
1 2	
2 2 3	