Прикладные протоколы ТСР/IР

Прикладные протоколы ТСР/ІР

- Удаленные терминалы
- Электронная почта
- Передача файлов
- Передача новостей
- Обмен мгновенными сообщениями
- Передача объектов
- ▶ И Т.П.

1. Протоколы удаленных терминалов

- Протокол Rlogin (RFC 1282)
 - Протокол ТСР, порт 513
- Протокол TELNET (RFC 854)
 - Протокол ТСР, порт 23
 - Универсальный ТСР-клиент
- Протокол ssh
 - Протокол ТСР, порт 22
 - Обеспечивает безопасную передачу
- X-протокол (RFC 1013)
 - Графическая распределенная среда
 - Протокол UDP, порт 6000+N

2. Электронная почта

- Механизм работы почты
- Хранение почтовых сообщений
- Доставка сообщения между серверами
- Доставка сообщения клиенту

Электронная почта

- Формат почтового адреса: name@host.domain
- name:
 - Имя пользователя
 - Название почтового ящика
 - Название списка рассылки
- ▶ Формат сообщения RFC 822
- Расширенные сообщения МІМЕ

Протокол SMTP

- Simple Mail Transfer Protocol
- Протокол передачи электронной почты
- Первый протокол передачи почты МТР (RFC 772), 1980 г.
- ▶ Первый стандарт SMTP RFC 821, 1982 г.
- ▶ Расширение (ESMTP) RFC 1651, 1994 г.
- ▶ Действующий стандарт RFC 2821, 2001 г.
- Аутентификация RFC 2554, 1999 г.

Протокол SMTP

- Клиент <-> МТА
- MTA <-> MTA
- Использует ТСР, порт 25
- Не поддерживает шифрования
- Базовая версия не поддерживает аутентификацию

Протокол SMTP. Команды

- Соединение
 - 220
 - 554
- ▶ HELO <домен>
 - 250
 - 504, 550
- MAIL FROM: <адрес>
 - 250
 - 552, 451, 452, 550, 553, 503
- RCPT TO: <aдрес>
 - 250, 251
 - 550, 551, 552, 553, 450, 451, 452, 503, 550

Протокол SMTP. Команды

DATA

```
354<Текст письма>
```

•

- · 250
- · 552, 554, 451, 452
- 451, 554, 503
- NOOP
 - 250
- QUIT
 - 221

Протокол SMTP. Команды

Расширение протокола - RFC 1651 (ESMTP)

- EHLO
 - 250
 - 504, 550
- VRFY <mailbox>
 - 250, 251, 252
 - 550, 551, 553, 502, 504
- EXPN <maillist>
 - 250, 252
 - 550, 500, 502, 504
- RSET прерывает текущую процедуру посылки почтового сообщения.
 - 250

Протокол SMTP. Аутентификация

Спецификация - RFC 2554

- Реализуется как расширение SMTP
 - Ответ на EHLO список поддерживаемых механизмов:
 - S: 220 smtp.example.com ESMTP server ready
 - C: EHLO jgm.example.com
 - S: 250-smtp.example.com
 - S: 250 AUTH CRAM-MD5 DIGEST-MD5
- Механизмы аутентификации описаны в RFC2222 (SASL Simple Authentication & Security Layer)
 - KERBEROS_4
 - GSSAPI
 - S/KEY

Протокол SMTP. Аутентификация

- ▶ Команда AUTH <механизм> [<строка>]
 - 334
 - 504, 503
- Секция команды MAIL FROM:
 - MAIL FROM: <адрес> AUTH=строка
 - MAIL FROM: <aдрес> AUTH=<>
 - Используется для передачи идентификационной строки сообщения в «доверительных» сообществах
- POP3 before SMPT

SMTP. Маршрутизация

Цель - оптимизация почтового трафика

- RCPT TO: <@first.com, @second.ru, ivan@gmail.com>
- MAIL FROM: <@first.ru, <u>peter@mail.ru</u>>
- Адреса серверов перемещаются из одного списка в другой

Стандарт MIME

Multipurpose Internet Mail Extensions Спецификация RFC 1521 Цель – передача нетекстовой информации Кодирование:

- BASE64
- Quoted-printable

Стандарт МІМЕ. Загловки

- Представление заголовков сообщений. Описано RFC 1522
- Формат:
 - -? Charset ? Encoding ? Encoded-text ?=
 - Charset набор символов
 - Encoding кодировка
 - B BASE64
 - Q Quoted–Printable
 - Encoded-text текст заголовка
 - Пример:
 - Subject: Re: =?koi8-r?b?y8zVwg==?=

Стандарт МІМЕ. Пример

```
Subject: =?KOI8-R?Q?=CB=CF=CE=F=CE=C6=C5=D2=C5=CE=C3?= =?KOI8-R?Q?=C9=C9?=
Content-Type: multipart/mixed; boundary="-----030300060608090404060101"
X-Spam-Flag: NO
This is a multi-part message in MIME format.
----030300060608090404060101
Content-Type: text/plain; charset=KOI8-R; format=flowed
Content-Transfer-Encoding: 8bit
Уважаемые коллеги!
*****
----030300060608090404060101
Content-Type: application/msword;
name*0*=KOI8-R''\EB\CF\CE\CB\D5\D2\D3\D9\20\37\2E\30\32\2E\30\37\2E\64\6F;
name*1*=%63
Content-Transfer-Encoding: base64
Content-Disposition: inline;
filename*0*=KOI8-R''%EB%CF%CE%CB%D5%D2%D3%D9%20%37%2E%30%32%2E%30%37%2E%64;
filename*1*=%6F%63
----030300060608090404060101--
```


Борьба со спамом

- ▶ SPF (Sender Policy Framework) 2003г.
- Caller ID for E-mail от Microsoft, 2004г.
- ▶ Sender ID объединение технологий:
 - RFC 4405, 4406, 4407,4408, 2006 г.
- Основная цель не борьба со спамом, а борьба с mail spoofing

Texнoлогия Sender ID

Идея:

- Владелец домена публикует в открытом доступе список адресов, с которых можно отправлять почту от имени данного домена
- Получатель почты проверяет сообщение, руководствуясь заголовками письма и записями о разрешенных именах домена
- Purported Responsible Address (PRA)—
 предполагаемый адрес отправителя
- Задача извлечение из письма PRA и последующая проверка его

Texнoлогия Sender ID

- Информация о разрешенных адресах домена хранится в DNS
- Поиск PRA осуществляется по цепочкам заголовков письма
- Если PRA найден:
 - На основе PRA определяется PRD (Purported Responsible Domain)
 - Осуществляется запрос к DNS-серверу, отвечающему за домен PRD
 - Принимается решение о дальнейших действиях
- ▶ Если PRA не найден:
 - Письмо посылается на доп. проверку

Протокол РОР-3

- Post Office Protocol, версия 3
- Протокол доступа к почтовому ящику
- Первый стандарт RFC 1081, 1988 г.
- ▶ Действующий стандарт RFC 1939, 1996 г.
- Заменил протокол РОР-2

Протокол РОР-3

- Доступ к удаленному почтовому ящику
- Аутентификация пользователя
- Просмотр списка писем
- Копирование писем в локальный ящик
- Удаление писем с сервера
- Ящик представляется одной почтовой папкой (Inbox)
- Используется протокол ТСР, порт 110

- **▶ USER** <имя>
 - -ERR если не поддерживается plaintext authentication
 - +OK в остальных случаях
- PASS < пароль>
 - +ОК в случае успешной аутентификации
 - -ERR в случае неуспешной аутентификации
- STAT
 - +OK <N> <M> N писем общей длиной М
- LIST
 - +OK
 - 1 <длина 1>
 - N <длина N>


```
▶ LIST <N>
  • +OK
   <N> <длина>
  • -ERR - сообщение отсутствует
RETR < number >
  • +OK
    <текст сообщения>

    –ERR – сообщение отсутствует

▶ DELE <N>
  • +OK

    –ERR – сообщение отсутствует
```


- RSET
 - +OK
- QUIT
 - +OK
- **▶ TOP** <**N**> <**M**>
 - +OK
 - <заголовок сообщения N>
 - <пустая строка>
 - <М строк сообщения>
 - –ERR сообщение отсутствует

- ▶ UIDL <N>
 - +OK <N> <UID>
 - -ERR сообщение отсутствует
- UIDL
 - +OK
 - 1 < UID 1>
 - 2 < UID 2 >

Протокол РОР-3. Аутентификация

- ▶ APOP <имя> <дайджест>
 - +OK
 - –ERR ошибочная аутентификация

Дайджест вычисляется по алгоритму MD5 (RFC1231)

- В вычислении используется строка сервера <pid.clock@hostname>
- AUTH <тип_аутентификации> (RFC 1734)
 - -ERR неизвестный метод аутентификации
 - + ответы сервера
 - +OK

Формат RFC 1731 "IMAP4 Authentication Mechanisms"

Протокол РОР-3. Резюме

Недостатки

- отсутствие шифрования
- аутентификация
- блокировка ящика
- отсутствие папок
- отсутствие атрибутов сообщений

Достоинства

- простота реализации
- большая распространенность

Протокол ІМАР-4

- Internet Mail Access Protocol, версия 4
- Первый стандарт RFC 1730, 1994 г.
- ▶ Действующий стандарт RFC 2060 1996 г.
- Создан как альтернатива РОР-3

ІМАР-4. Особенности

- Позволяет хранить удаленную структуру папок сообщений
- Обеспечивает асинхронный обмен командами
- Уникальный номер команды и ответа
- Флаги сообщений
- Уникальные идентификаторы сообщений
- Механизмы копирования и перемещения сообщений
- Средства поиска сообщений
- Варианты аутентификации (login и authenticate)
- Использует протокол ТСР, порт №143

ІМАР-4. Флаги сообщений

- Системные флаги
 - \Seen
 - \Answered
 - \Deleted
 - \Draft
 - \Recent
- Пользовательские флаги

- На всех стадиях
 - CAPABILITY запрос списка возможностей
 - NOOP
 - LOGOUT
- Стадия «Неаутентифицирован»
 - LOGIN <username> <password>
 - AUTHENTICATE < method >

- На стадия «Аутентифицирован»
 - SELECT <имя_ящика> выбор ящика
 - EXAMINE <имя_ящика> выбор ящика (RO)
 - CREATE <имя_ящика> создание ящика
 - DELETE <имя_ящика> удаление ящика
 - **RENAME** <старое_имя> <новое_имя> переименование ящика
 - SUBSCRIBE <имя_ящика> подписка на ящик
 - UNSUBSCRIBE <имя_ящика> отмена подписки на ящик

- На стадия «Аутентифицирован»
 - LIST <база> <имя_ящика> выдача списка ящиков
 - LSUB <база> <имя_ящика> выдача списка подписанных ящиков
 - STATUS <имя_ящика> [<имена_элтов_состояния>] - выдача состояния ящика
 - **APPEND** <имя_ящика> [(флаги)] [...] добавить сообщение в ящик

- На стадия «Выбран»
 - СНЕСК проверка ящика
 - CLOSE удаление помеченных сообщений и закрытие ящика
 - EXPUNGE удаление помеченных сообщений
 - SEARCH [CHARSET] <критерии> поиск сообщения
 - **FETCH** < набор_сообщений > < эл-ты данных >
 - **STORE** <набор_сообщений> <значение> изменение флагов сообщений
 - COPY < набор_сообщений > < имя_ящика > копирование сообщений в ящик
 - UID <команда> выдача идентификаторов сообщений

ІМАР-4. Отклики

- SEARCH
- FLAGS
- EXISTS
- RECENT
- EXPUNGE
- FETCH

- ► OK
- BAD
- PREAUTH
- BYE
- CAPABLITY
- LIST
- **LSUB**
- STATUS

3. Протоколы передачи файлов

- Протокол sftp (RFC 913)
 - Протокол ТСР, порт 115
- Протокол tftp (RFC 1350)
 - Протокол UDP, порт 69
- Протокол ftp (RFC 959)
 - Протокол ТСР, порты 21 и 20*

Протокол FTP

- File Transfer Protocol
- Первый стандарт **RFC 114**, 1971 г.
- ▶ Действующий стандарт **RFC 959**, 1985 г.
- Один из базовых протоколов TCP/IP
- Использует транспорт ТСР
- Поддерживает два режима передачи

Протокол FTP

Двухканальная схема передачи:

- Управляющий канал
 - Предназначен для передачи команд
 - Существует все время обмена
 - Используется ТСР-порт №21
- Канал данных
 - Предназначен для передачи файлов и каталогов
 - Организуется на время передачи
 - Используется ТСР-порт №20 или непривилегированный порт

FTP. Активный режим

- Режим «по умолчанию»
- Сервер инициирует соединение данных
- Клиент открывает слушающий порт
- Номер ТСР-порта сервера 20
- Невозможно использовать с технологиями типа NAT, Proxy
- Обычно запрещён в межсетевых экранах

FTP. Активный режим

FTP. Пассивный режим

- Клиент инициирует соединение данных
- Сервер информирует о параметрах канала данных
- Сервер открывает слушающий порт
- Поддерживается не всеми реализациями

FTP. Пассивный режим

- ▶ USER <имя>
- **▶ PASS** <пароль>
- ▶ REIN реинициализация
- ABOR прервать обмены
- QUIT

Команды, оперирующие с файловой системой

- ▶ DELE <имя>- удалить файла
- ▶ RNFR <имя> переименовать из
- ▶ RNTO <имя> переименовать в
- CWD <путь> сменить каталог
- ▶ CDUP перейти в родительский каталог
- RMD <имя> удалить каталог
- MKD <имя> создать каталог
- ▶ PWD показать текущий каталог

- PORT a1, a2, a3, a4, p1, p2 перевод сервера в активный режим
 Address = 'a1.a2.a3.a4'
 Port = p1*256+p2
- PASV перевод сервера в пассивный режим
 - 227 a1, a2, a3, a4, p1, p2
- ▶ ТҮРЕ {A|E|I} представление информации
 - A ASCII
 - E EDCDIC
 - I Image
- ▶ MODE {S|B|C} режим передачи данных
 - S Stream
 - B Block
 - C Compressed

Команды, использующие канал данных

- **RETR** <имя> получить файл
- STOR <имя> записать файл
- ► LIST [<путь>] получить список файлов с атрибутами
- ▶ NLST [<путь>] получить список имен файлов

Использование FTP

Протокол FTP. Резюме

Недостатки

- Не поддерживает шифрования
- Не поддерживает безопасной аутентификации
- Не поддерживает современных средств адресации
- Сложность работы с защищенными сетями

Достоинства

- Эффективность
- Гибкость

Протокол НТТР

- Протокол передачи файлов
- Протокол передачи объектов
- HTTP/1.0 RFC 1945, 1996 г.
- HTTP/1.1 RFC 2068, 1997 г.
- Действующий стандарт HTTP/1.1 RFC 2616, 1999г.

Формат НТТР-запроса

- <Request-line> строка запроса
- <General-header> общий заголовок
- <Request-header> заголовок запроса
- <Entity-header> заголовок сообщения
- <Body> тело

Протокол НТТР. Строка запроса

Формат: <METHOD> <URL> <HTTP-VERSION> Методы:

- GET
- POST
- HEAD
- PUT
- DELETE
- OPTIONS
- ▶ и т.п.

Bepcuя: HTTP/1.0 или HTTP/1.1

Общий заголовок (General-header) Присутствует, когда есть тело сообщения

- Connection:
- Data:
- Pragma:
- Transfer-encoding:
- Upgrade:
- no-cache:
- ▶ И т.д.

Заголовок запроса (Request-header)

- Ассерт: принимаемый контент
- Accept-Charset: принимаемый набор символов
- Accept-Encoding: compress, zip
- Accept-Language: da, ru
- Authorization: basic xxx=******
- From:
- Host:
- If-modified-since:...
- Referer:
- User-agent:
- ▶ И т.д.

Заголовок сообщения (Entity-header)

- Allow: GET, POST, HEAD
- Content-Encoding: x-zip
- Content-Language:
- Content-Length: 1245
- Content-Type: ...text/html; charset=win-1251
- Expires:
- Last-Modified:

Протокол НТТР. Формат ответа

- <Status-line> Строка статуса
- <General-header> общий заголовок
- <Response-header> заголовок ответа
- <Entity-header> Заголовок сообщения
- <Body> тело

Протокол НТТР. Строка статуса

Формат: <HTTP-VERSION> <Code> <Phrase> Code:

- 1хх информационные
- ▶ 2xx OK
- 3xx Переадресация (redirection)
- 4хх Ошибка клиента
- 5хх Ошибка сервера

Заголовок ответа (Response-header)

- Location: переадресация
- Server: спецификация сервера
- WWW-Authenticate: basic realm='localzone'
- Age: Возраст ресурса

Развитие протокола НТТР

- Протокол SPDY
 - Разработан в 2009 году компанией Google
 - Цель эффективная замена HTTP
 - Обеспечивается сжатие, мультиплексированная передача и т.п.
 - с 2015 года не поддерживается
- Протокол HTTP/2
 - Создан на основе SPDY в 2015 году
 - Стандарт RFC 7540 (середина 2015 года)
 - Основные возможности
 - Сжатие данных и заголовков
 - Мультиплексирование запросов в одном ТСР-соединении
 - Посылка ответов без запросов (в т.ч., опережающая посылка)
 - Push-уведомления
 - Приоритезация запросов
 - Безопасность
 - Поддерживается всеми браузерами и веб-серверами
 - Около 12% сайтов поддерживают HTTP/2

