Battery INterFace Ontology (BattINFO) Reference Documentation

Version 0.1

Battery Interface Genome - Materials Acceleration Platform (BIG-MAP)

February 27, 2021

Abstract

This is a reference documentation for the Battery Interface Ontology (BattINFO).

BattINFO is an ontology of batteries and their interfaces based on the top-level European Materials and Modelling Ontology (EMMO). BattINFO aims to formalize the current state of knowledge on battery interfaces to support the development of computational tools and the deployment of interoperable data in the BIG-MAP project and beyond. The definitions included in BattINFO are based as far as possible on accepted standards defined by the International Union of Pure and Applied Chemistry (IUPAC) or other preeminent textbooks on the subject. BattINFO objects and their relations to each other are designed with three goals in mind: (i) to be scientifically rigorous and accurate, (ii) to reflect current battery orthodoxy and dominant jargon, and (iii) to be flexible to describe a range of battery chemistries, not only Li-ion.

The development of BattINFO is a mammoth undertaking and will continue throughout the project. However, it is important to establish an initial version to support the activities in other BIG-MAP work packages and provide a preliminary platform for collaboration. The objective of this deliverable is to establish the initial version of BattINFO. This report outlines the conceptual foundation for the definitions in the ontology and serves as a guide to help interpret the implementation of BattINFO in the ontology web language (OWL).

Keywords: Battery, EMMO, materials science, modelling, characterisation, materials, ontology

Authors:

Simon Clark, SINTEF, Norway

Jesper Friis, SINTEF, Norway

Francesca Lønstad Bleken, SINTEF, Norway

Casper Welzel Andersen, EPFL, Switzerland

Eibar Flores, DTU, Denmark

Martin Uhrin, DTU, Denmark

Simon Stier, Fraunhofer, Germany

Marek Marcinek, Warsaw University of Technology, Poland

Anna Szczesna, Warsaw University of Technology, Poland

Miran Gaberscek, National Institute of Chemistry, Slovenia

Deyana Stoytcheva, ICMAB, Spain

Rosa Palacin, ICMAB, Spain

Ingeborg-Helene Svenum, SINTEF, Norway

Inga Gudem Ringdalen, SINTEF, Norway

Emanuele Farhi, SOLEIL synchrotron, France

Contents

1	Introduction	2
	Availability and license	2
	References	
2	Generic concepts	4
	Process subclasses	4
	Participant subclasses	
	Physicalistic subclasses	
	Physical quantities	
	Physical dimensions	
	1 hysical annousions	
3	Electrochemical and battery-specific concepts	9
	Active Participant branch	Ĝ
	Electrochemical System branch	
	Electrochemical Cell branch	10
	Electrochemical Component branch	11
	Electrochemical Subcomponent branch	
	Electrochemical Material branch	15
	Electrochemical Quantity branch	
	Electrochemical Transport Quantity branch	
	Electrochemical Kinetic Quantity branch	
	Electrochemical Thermodynamic Quantity branch	
	Electrochemical Constant branch	28
	Additional physical quantities	
	Material Relation branch	
	Chemical Species branch	
	Real world objects	
		38
1	Appondix	30

Chapter 1

Introduction

Battery development is one of the most important and intensely pursued technical research topics in the world today. From personal electronics to electric mobility to renewable energy storage, batteries are essential to progress. The search for better batteries is supported by a host of databases, methods, models, publications, and presentations. How can we distil this deluge of data into knowledge and translate that knowledge into action?

The answer must rely in some part on artificial intelligence (AI). The breadth of fields necessary to completely describe of battery performance, characterization, and simulation combined with the depth of research being generated in those fields is simply too great for any single person (or even group of people) to manage. However, the challenge is that the wealth of battery data that exists is formatted to be read, understood, and learned by humans, not machines. The field needs a tool to formalize the current state of knowledge about battery interfaces that is both human- and machine-readable.

The Battery Interface Ontology (BattINFO) is a domain ontology for batteries and their interfaces. It is developed with the goal of creating a formalized description of battery cells to support the interoperability of battery data and support applications of artificial intelligence in battery research.

BattINFO builds upon long-standing and widely accepted principles of electrochemistry as described in preeminent texts such as Electrochemical Systems by John Newman and Karen E. Thomas-Alyea [1], Electrochemical Methods: Fundamentals and Applications by Allen J. Bard and Larry R. Faulkner [2], and Handbook of Batteries by David Linden and Thomas B. Reddy [3], among other seminal sources [4], [5]. The terminology adheres as far as possible to the recommendations and definitions contained in the Compendium of Chemical Terminology (also known as the "Gold Book") from the International Union of Pure and Applied Chemistry (IUPAC) [6] together with IUPAC supplements on electrochemical terminology [7] and recommendations from the Electrochemical Society (ECS) on nomenclature and standards. Places where conflicts exist between sources are noted for further discussion and resolution within the electrochemical community.

BattINFO employs the European Materials and Modelling Ontology (EMMO) as a top-level ontology. EMMO aims at the development of a standard representational ontology framework based on current materials modelling and characterization of knowledge. EMMO starts from the very basic scientific fundamentals and grows to encompass a complex and wide field of knowledge, however it is still functional and clear. This makes it ideal to support the development of BattINFO as an EMMO domain ontology.

The purpose of this report is to lay the groundwork for the development of BattINFO in the BIG-MAP project.

Availability and license

The Battery Interface Domain Ontology is available from the github repository https://github.com/BIG-MAP/BattINFO.

It is released under the Creative Commons Attribution 4.0 International license (CC BY 4.0).

References

- 1. J. Newman and K. E. Thmoas-Alyea, Electrochemical Systems, 3rd ed. Hoboken, New Jersey: John Wiley & Sons, 2004.
- 2. A. J. Bard and L. R. Faulkner, ELECTROCHEMICAL METHODS: Fundamentals and applications. 2001.
- 3. D. Linden and T. Reddy, Handbook of Batteries. 2002.
- 4. P. Atkins and J. De Paula, Atkins' Physical Chemistry, 8th Ed. New York: W.H. Freeman and Company, 2006.
- 5. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Second. Houston, Texas: National Association of Corrosion Engineers, 1974.
- 6. IUPAC, Compendium of Chemical Terminology, 2nd (the ". Oxford: Blackwell Scientific Publications, 2014.
- 7. J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure Appl. Chem., vol. 92, no. 4, pp. 641-694, 2020.

Chapter 2

Generic concepts

These classes are intended to be merged back into EMMO.

Process subclasses

FunctionalProcess

IRI: http://emmo:info/emmo#EMMO_f7dbce66_2822_4855_9f42_1da71aa9e923

elucidation: The process that makes a product work as intended when in use.

example: - The light-emitting process of a diode. - The car crash process for a crash box in a car. - The discharging process of a battery.

prefLabel: FunctionalProcess

Relations:

• is_a Process

ChemicalPhenomenon

 $\textbf{IRI:} \ \text{http://emmo:info/emmo\#EMMO_50e36d79_b2dd_422d_81eb_a665028a1ead}$

elucidation: A 'process' that is recognized by chemical sciences and is catogrized accordingly.

prefLabel: ChemicalPhenomenon

Relations:

• is_a Process

ChemicalReaction

IRI: http://emmo:info/emmo#EMMO_ecb0395f_ee1e_4e9a_bf5c_d8e56eee2d18

elucidation: A process that results in the interconversion of chemical species. Chemical reactions may be elementary reactions or stepwise reactions. (It should be noted that this definition includes experimentally observable interconversions of conformers.) Detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities (i.e. 'microscopic chemical events').

• IUPAC Gold Book

prefLabel: ChemicalReaction

Relations:

• is_a ChemicalPhenomenon

Participant subclasses

ActiveParticipant

IRI: http://emmo:info/emmo#EMMO_038e37a3_1684_4980_b5e4_67ab34cd5bdb

elucidation: A 'physical' that stands for a real world object that takes active part of a functional process.

prefLabel: ActiveParticipant

Relations:

• is_a Participant

• Inverse(hasProperParticipant) some FunctionalProcess

Functional Material

IRI: http://emmo:info/emmo#EMMO_d95e6e0d-e8eb-411a-b407-0d1a517e8767

elucidation: Materials that have one or more properties that can be significantly changed in a controlled fashion by external stimuli (temperature, electric/magnetic field, etc.) and are therefore applied in a broad range of technological devices as for example in memories, displays and telecommunication. - NTNU FY3114 - Functional Materials

prefLabel: FunctionalMaterial

Relations:

• is a Material

• is_a ActiveParticipant

Physicalistic subclasses

Pore

IRI: http://emmo:info/emmo#EMMO_69b9aead-bb43-4bd5-9168-728cea2116b1

elucidation: A space within a solid host domain that is filled by a liquid, gas, or vacuum. The characteristic length of the pore is much less than the characteristic length of the host domain. An exception is possible for 1 dimension (e.g. long pores).

prefLabel: Pore

Relations:

• is_a Physicalistic

• is a Gas or Vacuum or Liquid

• hasContactWith some Solid

Physical quantities

${\bf Volumetric Thermal Expansion Coefficient}$

IRI: http://emmo:info/emmo#EMMO_1c1ec02e_4def_4979_aff9_572c06a95391

physical Dimension: T0 L0 M0 I0 Θ -1 N0 J0

prefLabel: VolumetricThermalExpansionCoefficient

Relations:

• is_a ThermalExpansionCoefficient

SingleComponentDiffusivity

IRI: http://emmo:info/emmo#EMMO_498d80ae_9339_49c7_8c74_44aa704e0395

elucidation: Transport of particles belonging to one component of a material due to a concentration gradient.

physical Dimension: T-1 L+2 M0 I0 Θ 0 N-1 J0

 ${\bf prefLabel:} \ {\bf Single Component Diffusivity}$

Relations:

- is a PhysicoChemical
- is_a ISQDerivedQuantity

SingleComponentDiffusivity

 $\textbf{IRI:} \ http://emmo: info/emmo\#EMMO_498d80ae_9339_49c7_8c74_44aa704e0395$

elucidation: Transport of particles belonging to one component of a material due to a concentration gradient.

physical Dimension: T-1 L+2 M0 I0 $\Theta 0$ N-1 J0

prefLabel: SingleComponentDiffusivity

Relations:

- is_a PhysicoChemical
- is_a ISQDerivedQuantity

${\bf Single Component Maximal Diffusivity}$

 $\textbf{IRI:} \ \text{http://emmo:info/emmo\#EMMO_3bd39834_7eb9_4c97_bb25_db88c3df6bab}$

etymology: Pre-factor in the Arrhenius expression for diffusion.

physicalDimension: T-1 L+2 M0 I0 Θ0 N-1 J0prefLabel: SingleComponentMaximalDiffusivity

Relations:

- is a ISQDerivedQuantity
- is_a PhysicoChemical

SingleComponentActivationEnergyOfDiffusion

IRI: http://emmo:info/emmo#EMMO_2f761aff_88d1_4e79_a85e_09d6f400de56

elucidation: The energy barrier for diffusion of a given component.

physical Dimension: T-2 L+2 M+1 I0 $\Theta 0$ N0 J0

prefLabel: SingleComponentActivationEnergyOfDiffusion

Relations:

- is_a Energy
- is_a PhysicoChemical

MolarHeatCapacity

 $\textbf{IRI:} \ \, \text{http://emmo:info/emmo\#EMMO_50c5d440_683c_400f_909e_b03c0327de9c} \\ \ \, \text{Constant} \ \, \text{IRI:} \ \, \text{http://emmo:info/emmo\#EMMO_50c5d440_683c_400f_909e_b03c0327de9c} \\ \ \, \text{Constant} \ \,$

elucidation: The molar heat capacity of a substance is the heat capacity of one mole of material.

physical Dimension: T-2 L+2 M+1 I0 Θ -1 N-1 J0

prefLabel: MolarHeatCapacity

Relations:

- is a PhysicoChemical
- is_a ISQDerivedQuantity

Energy Density

IRI: http://emmo:info/emmo#EMMO 686308bd 8ed6 49d0 a204 6487dbe56511

elucidation: Energy per unit volume.

physicalDimension: T-2 L+2 M+1 I0 Θ0 N0 J0

prefLabel: EnergyDensity

Relations:

• is_a ISQDerivedQuantity

ThermalExpansionCoefficient

IRI: http://emmo:info/emmo#EMMO_7684ddff_d99b_405d_aad2_90e830b8403c

elucidation: The coefficient of thermal expansion describes how the fractional change in size of an object

changes with a change in temperature.

physical Dimension: T0 L0 M0 I0 $\Theta\text{-}1$ N0 J0

prefLabel: ThermalExpansionCoefficient

Relations:

 \bullet is_a PhysicoChemical

• is_a ISQDerivedQuantity

HeatCapacity

IRI: http://emmo:info/emmo#EMMO_802c167d_b792_4cb8_a315_35797345c0e3

elucidation: The amount of heat to be applied to a given mass of material to produce a unit change in its

temperature.

physical Dimension: T-2 L+2 M+1 I0 Θ -1 N0 J0

prefLabel: HeatCapacity

Relations:

• is_a ISQDerivedQuantity

• is_a PhysicoChemical

ThermalConductivity

IRI: http://emmo:info/emmo#EMMO 8dd40ec6 2c5a 43f3 bf64 cadcd447a1c1

elucidation: The ability of a material to conduct heat.

physical Dimension: T-3 L+1 M+1 I
0 Θ -1 N0 J0

prefLabel: ThermalConductivity

Relations:

• is_a PhysicoChemical

• is_a ISQDerivedQuantity

SpecificHeatCapacity

 $\textbf{IRI:} \ \text{http://emmo:info/emmo\#EMMO_b4f4ed28_d24c_4a00_9583_62ab839abeca}$

elucidation: The specific heat capacity (symbol cp) of a substance is the heat capacity of a sample of the substance divided by the mass of the sample.

physical Dimension: T-2 L+2 M0 I0 $\Theta\text{-}1$ N0 J0

prefLabel: SpecificHeatCapacity

Relations:

is_a ISQDerivedQuantity is_a PhysicoChemical

Physical dimensions

PerTemperatureDimension

 $\textbf{IRI:} \ \text{http://emmo:info/emmo\#EMMO_6e9aef15_272b_4eea_aaa9_2f38b8ae951f}$

prefLabel: PerTemperatureDimension

Relations:

• is_a PhysicalDimension

 • equivalent_to has Symbol
Data value "T0 L0 M0 I0 Θ -1 N0 J0"

Chapter 3

Electrochemical and battery-specific concepts

All classes under here are defined with the http://emmo.info/BattINFO# namespace.

Active Participant branch

Figure 3.1: Active Participant branch.

ActiveParticipant

 $\textbf{IRI:} \ \text{http://emmo:info/emmo\#EMMO_038e37a3_1684_4980_b5e4_67ab34cd5bdb}$

elucidation: A 'physical' that stands for a real world object that takes active part of a functional process.

prefLabel: ActiveParticipant

Relations:

• is_a Participant

• Inverse(hasProperParticipant) some FunctionalProcess

Functional Material

IRI: http://emmo:info/emmo#EMMO_d95e6e0d-e8eb-411a-b407-0d1a517e8767

elucidation: Materials that have one or more properties that can be significantly changed in a controlled fashion by external stimuli (temperature, electric/magnetic field, etc.) and are therefore applied in a broad range of technological devices as for example in memories, displays and telecommunication. - NTNU FY3114 - Functional Materials

prefLabel: FunctionalMaterial

Relations:

- is_a Material
- is_a ActiveParticipant

Electrochemical System branch

Figure 3.2: Electrochemical System branch.

ElectrochemicalSystem

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_4e4d7f4b-680b-469e-bdd4-728dd3e465bf}$

elucidation: A system comprising at least one electrochemical cell and the components necessary to support it.

prefLabel: ElectrochemicalSystem

Relations:

- is a ActiveParticipant
- hasPart some ElectrochemicalCell

Electrochemical Cell branch

Figure 3.3: Electrochemical Cell branch.

GalvanicCell

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_e248373f_294f_4ca4_9edf_0ad6653bb64f}$

elucidation: An electrochemical cell that spontaneously produces work.

– J. Newman, Electrochemical Systems (p. 6)

prefLabel: GalvanicCell

Relations:

 \bullet is_a ElectrochemicalCell

ElectrolyticCell

IRI: http://emmo:info/BattINFO#EMMO_e931087f_7681_4096_b200_5223bcc47eb4

elucidation: An electrochemical cell that requires input of work to drive the reaction.

– J. Newman, Electrochemical Systems (p. 6)

prefLabel: ElectrolyticCell

Relations:

• is a ElectrochemicalCell

ElectrochemicalCell

IRI: http://emmo:info/BattINFO#EMMO_6f2c88c9_5c04_4953_a298_032cc3ab9b77

elucidation: A system capable of either generating electrical energy from chemical reactions or using electrical energy to cause chemical reactions. The key feature of an electrochemical cell is that it contains two (or more) electrodes that allow transport of electrons, separated by a salt bridge that allows the movement of ions but blocks movement of electrons.

- Adapted from J. Newman, Electrochemical Systems (p. 3) and other sources

prefLabel: ElectrochemicalCell

Relations:

- is_a ActiveParticipant
- is a Matter
- is_a Object
- hasConventionalQuantity some Volume
- hasConventionalQuantity some SpecificHeatCapacity
- hasConventionalQuantity some OpenCircuitVoltage
- $\bullet \ \ has Conventional Quantity \ \mathbf{some} \ Thermodynamic Temperature$
- hasConventionalQuantity some EnergyDensity
- hasConventionalQuantity some ThermalExpansionCoefficient
- hasConventionalQuantity some SpecificEnergy
- hasConventionalQuantity some ElectricImpedance
- hasConventionalQuantity some InternalConductance
- hasConventionalQuantity some InternalResistance
- hasConventionalQuantity some StoredEnergy
- hasConventionalQuantity some HeatCapacity
- $\bullet \ \ {\rm hasConventionalQuantity} \ \ {\bf some} \ \ {\rm ElectricPotential}$
- hasConventionalQuantity some ChargeCapacity
- hasConventionalQuantity some Density
- hasSpatialPart some ElectrochemicalComponent
- hasConventionalQuantity some ThermalConductivity
- hasConventionalQuantity some SpecificChargeCapacity
- hasConventionalQuantity some Mass

Electrochemical Component branch

SimpleElectrode

IRI: http://emmo:info/BattINFO#EMMO 029f0b45-70a7-481f-8154-bf982a77e08c

elucidation: An electrode consisting of a single ElectrochemicalSubComponent

example: Metal foil.

prefLabel: SimpleElectrode

Relations:

Figure 3.4: Electrochemical Component branch.

• is a Electrode

Electrode

IRI: http://emmo:info/BattINFO#EMMO 0f007072-a8dd-4798-b865-1bf9363be627

elucidation: Electron conductor in an electrochemical cell connected to the external circuit. - Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019)

prefLabel: Electrode

Relations:

• is_a ElectrochemicalComponent

• is_a Object

• hasConventionalQuantity some ChargeCapacity

• hasContactWith some Electrolyte

SimpleSaltBridge

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_} \\ 6e4f4681-f327-4300-96e4-5905fcea36e3$

elucidation: A salt bridge consisting of exactly 1 subcomponent that is an IonicSubcomponent.

prefLabel: SimpleSaltBridge

Relations:

• is_a SaltBridge

• is_a State

• hasSpatialDirectPart exactly 1 IonicSubcomponent

CompositeSaltBridge

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_6cae5943-737a-4f88-9903-9de4cffebd11}$

elucidation: A salt bridge consisting of at least two subcomponents, one of which is an IonicSubcomponent.

prefLabel: CompositeSaltBridge

Relations:

• is_a State

 \bullet is_a SaltBridge

- hasSpatialDirectPart some IonicSubcomponent
- hasSpatialDirectPart min 2 ElectrochemicalSubcomponent

CompositeElectrode

IRI: http://emmo:info/BattINFO#EMMO_7aa79b12-6b34-4724-9728-f31b5f7ed83d

elucidation: An electrode consisting of multiple ElectrochemicalSubComponent

prefLabel: CompositeElectrode

Relations:

• is a Electrode

PorousElectrode

IRI: http://emmo:info/BattINFO#EMMO 3663991d-9319-4f7a-922b-f0e428b58801

elucidation: Porous electrodes consist of porous matrices of a single reactive electronic conductor or a mixture of solids that include essentially non-conducting, reactive materials in addition to electronic conductors. An electrolytic solution fills the void spaces of the porous matrix. At a given time, there may be a large range of reaction rates within the pores. The distribution of these rates will depend on physical structure, conductivity of the matrix and of the electrolyte, and on parameters characterizing the electrode processes themselves. - Newman and Thomas-Alyea, Electrochemical Systems.

prefLabel: PorousElectrode

Relations:

• is a Electrode

• hasSpatialPart some ElectrodePore

Separator

IRI: http://emmo:info/BattINFO#EMMO_331e6cca_f260_4bf8_af55_35304fe1bbe0

definition: "A permeable membrane placed between the positive and negative electrodes to keep them physically separated and prevent an internal short circuit."

prefLabel: Separator

Relations:

• is a ElectrochemicalComponent

SaltBridge

IRI: http://emmo:info/BattINFO#EMMO_637c576e_a50e_47ae_8c74_2024ce4c6d0f

elucidation: "Means of making electrolytic connection between two half cells without introducing a significant liquid junction potential. Note: A typical construction is a tube of an inert material (e.g. agar agar) filled with a solution con- taining an electrolyte with approximately equal ion mobilities of the cation and the anion (e.g., KNO3, KCl), with the ends of the tube immersed in the electrolyte solution of the half cells." Pingarron et al., Terminology of electrochemical methods of analysis

prefLabel: SaltBridge

Relations:

• is_a ElectrochemicalComponent

ElectrochemicalComponent

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO}_3597a1e0_09ef_48ad_b913_b3e71ea21c94$

elucidation: A component that is essential to the function of an electrochemical cell.

prefLabel: ElectrochemicalComponent

Relations:

- is_a ActiveParticipant
- hasPart some ElectrochemicalSubcomponent

Electrochemical Subcomponent branch

Figure 3.5: Electrochemical Subcomponent branch.

${\bf Electrochemical Subcomponent}$

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_f89bb8bc-ef9b-43d5-b5df-14e12b0d93b8}$

elucidation: A subcomponent of an ElectrochemicalComponent.

prefLabel: ElectrochemicalSubcomponent

Relations:

• is a ActiveParticipant

• hasPart some ElectrochemicalMaterial

IonicSubcomponent

IRI: http://emmo:info/BattINFO#EMMO_23b866e8-27c6-4fd8-a1d2-6b58ad4445af

prefLabel: IonicSubcomponent

Relations:

• is a ElectrochemicalSubcomponent

StructuralSubcomponent

IRI: http://emmo:info/BattINFO#EMMO_dd15b4b0-11e7-4900-b379-9702a8caa6bb

prefLabel: StructuralSubcomponent

Relations:

• is_a ElectrochemicalSubcomponent

ElectronicSubcomponent

IRI: http://emmo:info/BattINFO#EMMO_9c4e61c6-4a7b-41c2-9133-e780e144ddcd

elucidation: An ElectrochemicalSubcomponent whose primary role is electronic

example: Current Collector Conducting Additive

prefLabel: ElectronicSubcomponent

Relations:

• is a ElectrochemicalSubcomponent

ReactiveSubcomponent

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_6ab1ca1a-3809-4e9a-aaf7-374915288f73}$

elucidation: An ElectrochemicalSubcomponent whose primary role is to participate in a reaction.

prefLabel: ReactiveSubcomponent

Relations:

• is a ElectrochemicalSubcomponent

Electrochemical Material branch

Figure 3.6: Electrochemical Material branch.

IonicLiquidElectrolyte

IRI: http://emmo:info/BattINFO#EMMO_c3f4b34a_0e2c_46f3_baab_4ebd2682d26f

definition: "An ionic liquid is an electrolyte composed of a salt that is liquid below 100 °C. Ionic liquids have found uses in electrochemical analysis, because their unconventional properties include a negligible vapor pressure, a high thermal and electrochemical stability, and exceptional dissolution properties for both organic and inorganic chemical species." Pingarron et al., Terminology of electrochemical methods of analysis

prefLabel: IonicLiquidElectrolyte

Relations:

• is_a LiquidElectrolyte

LiquidElectrolyte

IRI: http://emmo:info/BattINFO#EMMO 609b340f 3450 4a10 95c2 c457e3eb8a89

definition: "An electrolyte in the liquid phase"

prefLabel: LiquidElectrolyte

Relations:

• is_a Electrolyte

ElectrolyticSolution

IRI: http://emmo:info/BattINFO#EMMO_fa22874b_76a9_4043_8b8f_6086c88746de

definition: "A liquid electrolyte that consists of solutes dissolved in a solvent."

prefLabel: ElectrolyticSolution

Relations:

• is_a LiquidElectrolyte

SupportingElectrolyte

IRI: http://emmo:info/BattINFO#EMMO_1fc5642c_b7b2_43bf_ad20_f96001db8800

definition: "Electrolyte solution, the ions of which are electroinactive in the range of applied potential being studied, and whose ionic strength (and, therefore, contribution to the overall conductivity) is usually much greater than the concentration of an electroactive substance to be dissolved in it." Pingarron et al., Terminology of electrochemical methods of analysis

prefLabel: SupportingElectrolyte

Relations:

• is_a LiquidElectrolyte

ElectroactiveSubstance

IRI: http://emmo:info/BattINFO#EMMO_92ba4a12-146e-4b1f-86f3-bcc66ac52763

prefLabel: ElectroactiveSubstance

Relations:

• is a ElectrochemicalMaterial

Electrolyte

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_fb0d9eef_92af_4628_8814_e065ca255d59}$

definition: 1. Conducting medium in which the flow of electric current is accompanied by the movement of ions. Pingarron et al., Terminology of electrochemical methods of analysis

prefLabel: Electrolyte

Relations:

 \bullet is_a ElectrochemicalMaterial

ElectrochemicalMaterial

IRI: http://emmo:info/BattINFO#EMMO_ebdb68e9_c4b5_4d57_a042_c0f51d446755

elucidation: A material that participates in a functional process in an electrochemical assembly.

prefLabel: ElectrochemicalMaterial

Relations:

• is_a FunctionalMaterial

SolidElectrolyte

IRI: http://emmo:info/BattINFO#EMMO_0508a114_544a_4f54_a7de_9b947fb4b618

definition: "A solid electrolyte is a solid material where the predominant charge carriers are ions. For example: NASICON (Na Super Ionic Conductor), which has the general formula Na1+xZr2P3-xSix O12 , 0 < x < 3." Pingarron et al., Terminology of electrochemical methods of analysis

prefLabel: SolidElectrolyte

Relations:

• is_a Electrolyte

ActiveElectrochemicalMaterial

IRI: http://emmo:info/BattINFO#EMMO_79d1b273-58cd-4be6-a250-434817f7c261

prefLabel: ActiveElectrochemicalMaterial

Relations:

• is a ElectrochemicalMaterial

• hasPart some ElectroactiveSubstance

Electrochemical Quantity branch

Figure 3.7: Electrochemical Quantity branch.

TheoreticalChargeCapacity

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_2b09f961_3374_42e4_8836_bffc6bf522fa}$

elucidation: Theoretical amount of charge a cell can store. Minimum of the theoretical capacity of the positive

electrode and negative electrode. $\,$

physical Dimension: T+1 L0 M0 I+1 $\Theta 0$ N0 J0

prefLabel: TheoreticalChargeCapacity

Relations:

• is a ChargeCapacity

SpecificChargeCapacity

IRI: http://emmo:info/BattINFO#EMMO_1e3dc60d_dd6b_47d6_8161_70004fc5ee30

elucidation: Electric charge per unit mass.

physical Dimension: T+1 L0 M-1 I+1 Θ 0 N0 J0

prefLabel: SpecificChargeCapacity

Relations:

• is_a ElectrochemicalQuantity

 \bullet is_a ISQDerivedQuantity

TheoteticalSpecificEnergy

IRI: http://emmo:info/BattINFO#EMMO_1c13c786_35ae_4768_88fe_795813d465cd

 ${\bf elucidation:}$ Theoretical Energy per unit mass of the cell.

physical Dimension: T-2 L+2 M0 I0 Θ 0 N0 J0

prefLabel: TheoteticalSpecificEnergy

Relations:

• is a SpecificEnergy

ChargeCapacity

IRI: http://emmo:info/BattINFO#EMMO_791c1915_a791_4450_acd8_7f94764743b5

elucidation: Amount of electric charge that can be stored.

physicalDimension: T+1 L0 M0 I+1 Θ 0 N0 J0

prefLabel: ChargeCapacity

Relations:

• is_a ElectrochemicalQuantity

• is_a ElectricCharge

StoredEnergy

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_4f1ed4ee_06ba_44a4_8ece_1ee56bf12afe}$

elucidation: Amount of energy stored in a physical object.

physical Dimension: T-2 L+2 M+1 I
0 $\Theta0$ N0 J0

prefLabel: StoredEnergy

Relations:

• is_a ElectrochemicalQuantity

• is_a InternalEnergy

${\bf Electrochemically Active Surface Area}$

IRI: http://emmo:info/BattINFO#EMMO_bad1b6f4_1b26_40e2_b552_6d53873e3973

elucidation: The area of the electrode material that is accessible to the electrolyte that is used for charge

transfer and/or storage.

physical Dimension: T0 L+2 M0 I0 Θ 0 N0 J0 pref Label: Electrochemically Active Surface Area

Relations:

• is_a ElectrochemicalQuantity

BatteryQuantity

IRI: http://emmo:info/BattINFO#EMMO_230809da_bc18_42ec_ac94_4ca6a86292d1

elucidation: Physical quantities defined within the domain of batteries.

prefLabel: BatteryQuantity

Relations:

• is_a ElectrochemicalQuantity

ElectrochemicalQuantity

IRI: http://emmo:info/BattINFO#EMMO aecc6094 c6a5 4a36 a825 8a497a2ae112

elucidation: Physical quantities defined within the domain of electrochemistry.

prefLabel: ElectrochemicalQuantity

Relations:

• is_a PhysicoChemical

SpecificEnergy

IRI: http://emmo:info/BattINFO#EMMO_ea0c7651_b58b_4caf_ae02_fb6a4dfe6a5d

elucidation: Energy per unit mass.

physicalDimension: T-2 L+2 M0 I0 Θ0 N0 J0

prefLabel: SpecificEnergy

Relations:

is_a ElectrochemicalQuantityis_a ISQDerivedQuantity

TheoreticalStoredEnergy

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_9ea6a862_131f_4154_be47_e7417f2fb924} \\$

elucidation: Theoretical amount of energy that can be stored in a battery cell. Minimum of the theoretical energy of the positive electrode and negative electrode. Product of the Theoretical Capacity and the Theoretical Open-Circuit Voltage.

physical Dimension: T-2 L+2 M+1 I
0 $\Theta0~\mathrm{N}0~\mathrm{J}0$

prefLabel: TheoreticalStoredEnergy

Relations:

• is_a StoredEnergy

TheoreticalSpecificCapacity

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO}_8632 \\ \text{dee1}_0 \\ \text{adf}_4 \\ \text{a47}_8400_820 \\ \text{b48b86732}$

elucidation: Theoretical Capacity divided by the mass of the cell.

physical Dimension: T+1 L0 M-1 I+1 $\Theta0$ N
0 J0

prefLabel: TheoreticalSpecificCapacity

Relations:

• is_a SpecificChargeCapacity

ActiveElectrochemicalMaterialLoading

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_c955c089_6ee1_41a2_95fc_d534c5cfd3d5}$

elucidation: Weight of active material in an electrode per unit electrode area.

physical Dimension: T0 L-2 M+1 I0 Θ 0 N0 J0 pref Label: Active Electrochemical Material Loading

Relations:

• is_a ElectrochemicalQuantity

Electrochemical Transport Quantity branch

IonicConductivity

IRI: http://emmo:info/BattINFO#EMMO_64e6ed6a_8d17_40ba_937f_f385a54a86c3

physical Dimension: T+3 L-3 M-1 I+2 $\Theta 0$ N0 J0

Figure 3.8: Electrochemical Transport Quantity branch.

prefLabel: IonicConductivity

Relations:

- is_a ElectricConductivity
- is a ElectrochemicalTransportQuantity

Electronic Resistivity

IRI: http://emmo:info/BattINFO#EMMO_bbcafb37_ceec_436b_bb45_080a2bc656aa

elucidation: Inverse of ElectronicConductivity physicalDimension: T-3 L+3 M+1 I-2 Θ0 N0 J0

prefLabel: ElectronicResistivity

Relations:

- is a ElectricResistivity
- is_a ElectrochemicalTransportQuantity

IonicResistivity

IRI: http://emmo:info/BattINFO#EMMO c90a4ca0 493f 4880 a838 3a2c4b808a03

elucidation: Inverse of IonicConductivity

physicalDimension: T-3 L+3 M+1 I-2 Θ 0 N0 J0

prefLabel: IonicResistivity

Relations:

- is a ElectricResistivity
- is a ElectrochemicalTransportQuantity

InternalConductance

IRI: http://emmo:info/BattINFO#EMMO_0c9655c6_6b0b_4819_a219_f286ad196fa9

physicalDimension: T+3 L-2 M-1 I+2 $\Theta0$ N0 J0

 ${\bf prefLabel:}\ {\bf Internal Conductance}$

Relations:

- $\bullet \ \ is_a \ Electrochemical Transport Quantity$
- is_a ElectricConductance

TransportNumber

IRI: http://emmo:info/BattINFO#EMMO_5c0ad135_89ea_44da_8df7_f108f8ee1d75

elucidation: Of ions B, the current density due to ions B divided by the sum of current densities of all the ions in the electrolyte.

iupacEntry: https://goldbook:iupac:org/terms/view/T06489

physical Dimension: T0 L0 M0 I0 Θ 0 N0 J0

prefLabel: TransportNumber

Relations:

• is_a ElectrochemicalTransportQuantity

ElectronicConductivity

IRI: http://emmo:info/BattINFO#EMMO 6a28741c ef47 4a11 ba3d 166aef581e86

physical Dimension: T+3 L-3 M-1 I+2 $\Theta 0$ N0 J0

prefLabel: ElectronicConductivity

Relations:

• is_a ElectrochemicalTransportQuantity

• is_a ElectricConductivity

ElectrochemicalTransportQuantity

IRI: http://emmo:info/BattINFO#EMMO_4a450a27_b84a_4c70_a3a9_15ec30e2f30b

elucidation: An ElectrochemicalQuantity related to the transport of mass and/or charge.

prefLabel: ElectrochemicalTransportQuantity

Relations:

• is_a ElectrochemicalQuantity

Electrochemical Kinetic Quantity branch

Figure 3.9: Electrochemical Kinetic Quantity branch.

ReactionOrder

IRI: http://emmo:info/BattINFO#EMMO 29a57599 aa0d 458f b23e 666a2da55883

elucidation: If the macroscopic (observed, empirical or phenomenological) rate of reaction (v) for any reaction can be expressed by an empirical differential rate equation (or rate law) which contains a factor of the form k $[A]\alpha$ $[B]\beta$... (expressing in full the dependence of the rate of reaction on the concentrations [A], [B] ...) where α , β are constant exponents (independent of concentration and time) and k is independent of [A] and [B] etc. (rate constant, rate coefficient), then the reaction is said to be of order α with respect to A, of order β with respect to B, ..., and of (total or overall) order $n=\alpha+\beta+...$ The exponents α , β , ... can be positive or negative integral or rational nonintegral numbers.

iupacEntry: https://goldbook:iupac:org/terms/view/O04322

physicalDimension: T0 L0 M0 I0 Θ 0 N0 J0

prefLabel: ReactionOrder

Relations:

• is_a ElectrochemicalKineticQuantity

ExchangeCurrent

IRI: http://emmo:info/BattINFO#EMMO_ccde24bb_790a_40ca_a06e_cea156a61031

elucidation: The common value (i0) of the anodic and cathodic partial currents when the reaction is at equilibrium:

i0 = ia = -ic

For an electrode at equilibrium at which only one reaction is significant i = 0. When more than one reaction is significant at a given electrode, subscripts to i0 may be used to distinguish exchange currents. i is not usually zero when only one of these reactions is at equilibrium.

iupacEntry: https://goldbook:iupac:org/terms/view/E02238

physicalDimension: T0 L0 M0 I+1 Θ 0 N0 J0

prefLabel: ExchangeCurrent

Relations:

• is_a ElectrochemicalKineticQuantity

${\bf Charge Transfer Coefficient}$

IRI: http://emmo:info/BattINFO#EMMO a4dfa5c1 55a9 4285 b71d 90cf6613ca31

elucidation: The fraction of the electrostatic potential energy affecting the reduction rate in an electrode reaction, with the remaining fraction affecting the corresponding oxidation rate.

• Guidelli et al.: Transfer coefficient: An assessment, DOI: 10.1515/pac-2014-5026

physicalDimension: T0 L0 M0 I0 Θ0 N0 J0

 ${\bf prefLabel:}\ {\bf ChargeTransferCoefficient}$

wikipediaEntry: https://en:wikipedia:org/wiki/Charge_transfer_coefficient

Relations:

• is_a ElectrochemicalKineticQuantity

ExchangeCurrentDensity

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_e9fd9ef9_adfe_46cb_b2f9_4558468a25e7}$

elucidation: Defined by j0 = i0/A, where i0 is the exchange current of the electrode reaction and A is usually taken as the geometric area of the electrode.

iupacEntry: https://goldbook:iupac:org/terms/view/M03777

physicalDimension: T0 L-2 M0 I+1 Θ0 N0 J0

prefLabel: ExchangeCurrentDensity

wikipediaEntry: https://en:wikipedia:org/wiki/Exchange_current_density

Relations:

• is_a ElectrochemicalKineticQuantity

ReactionRate

IRI: http://emmo:info/BattINFO#EMMO_47b7d606_7030_4674_9828_cf83fb4a2995

elucidation: For the general chemical reaction:

 $aA+bB\rightarrow pP+qQ+...$

occurring under constant-volume conditions, without an appreciable build-up of reaction intermediates, the rate of reaction ν is defined as:

 $\nu = -1/a \ d[A]/dt = -1/b \ d[B]/dt = 1/p * d[P]/dt = 1/q * d[Q]/dt$

where symbols placed inside square brackets denote amount (or amount of substance) concentrations (conventionally expressed in units of mol dm-3). The symbols R and r are also commonly used in place of ν .

iupacEntry: https://goldbook:iupac:org/terms/view/R05156

physicalDimension: T-1 L0 M0 I0 Θ 0 N+1 J0

prefLabel: ReactionRate

wikipediaEntry: https://en:wikipedia:org/wiki/Reaction_rate

Relations:

• is_a ElectrochemicalKineticQuantity

ElectrochemicalKineticQuantity

IRI: http://emmo:info/BattINFO#EMMO 21745019 2830 4395 bca7 15ddfd266673

elucidation: An Electrochemical Quantity that relates to the kinetics of a reaction.

prefLabel: ElectrochemicalKineticQuantity

Relations:

• is_a ElectrochemicalQuantity

ReactionRateConstant

IRI: http://emmo:info/BattINFO#EMMO_dbd808a7_8a8f_43be_9870_02cc35bd1646

iupacEntry: https://goldbook:iupac:org/terms/view/O04322

 ${\bf prefLabel:} \ {\bf ReactionRateConstant}$

Relations:

• is_a ElectrochemicalKineticQuantity

ChargeNumber

IRI: http://emmo:info/BattINFO#EMMO_abfadc99_6e43_4d37_9b04_7fc5b0f327ae

elucidation: Number of electrons transferred in a charge transfer reaction between an electrode and a single entity (ion, radical-ion, or molecule) of an electroactive substance, whose identity must be specified.

-Pingarrón et al.: Terminology of electrochemical methods of analysis, DOI: 10.1515/pac-2018-0109

iupacEntry: https://goldbook:iupac:org/terms/view/C00995

physicalDimension: T0 L0 M0 I0 Θ0 N0 J0

prefLabel: ChargeNumber

Relations:

• is a ElectrochemicalKineticQuantity

Electrochemical Thermodynamic Quantity branch

Figure 3.10: Electrochemical Thermodynamic Quantity branch.

ElectrochemicalThermodynamicQuantity

IRI: http://emmo:info/BattINFO#EMMO_2d896559_eee3_447c_9759_87c854a4266a

elucidation: A thermodynamically derived ElectrochemicalQuantity.

 ${\bf prefLabel:} \ {\bf Electrochemical Thermodynamic Quantity}$

Relations:

• is a Electrochemical Quantity

${\bf Gibbs Free Energy Of Reaction}$

IRI: http://emmo:info/BattINFO#EMMO_d62ff300_26ac_4b00_bfcd_04a68aff5dc3

elucidation: Change in the Gibbs free energy between the products and reactants in a reaction.

physical Dimension: T-2 L+2 M+1 I
0 $\Theta0$ N0 J0

prefLabel: GibbsFreeEnergyOfReaction

Relations:

 \bullet is_a ElectrochemicalThermodynamicQuantity

ElectrochemicalStabilityLimit

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_8f4b90ef_fea4_47c9_99f5_a9b3290a505d}$

elucidation: Electric potential at which a material undergoes an oxidation or reduction decomposition.

example: For water, the electrochemical stability limits are: Reduction: 0 V Oxidation: 1.23 V

physicalDimension: T-3 L+2 M+1 I-1 Θ 0 N0 J0

 ${\bf prefLabel:} \ {\bf Electrochemical Stability Limit}$

Relations:

• is_a ElectrochemicalThermodynamicQuantity

Theoretical Open Circuit Voltage

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO}_34e440e0_b720_4585_a915_fbe5abb8615d$

physical Dimension: T-3 L+2 M+1 I-1 Θ 0 N0 J0

prefLabel: TheoreticalOpenCircuitVoltage

Relations:

• is_a OpenCircuitVoltage

ChemicalPotential

IRI: http://emmo:info/BattINFO#EMMO_17e305af_52a9_4255_a70f_700ba1088f13

elucidation: Energy that can be absorbed or released due to a change of the particle number of the given

species

iupacEntry: https://goldbook:iupac:org/terms/view/C01032

physical Dimension: T-2 L+2 M+1 I0 $\Theta 0$ N0 J0

prefLabel: ChemicalPotential

wikipediaEntry: https://en:wikipedia:org/wiki/Chemical_potential

Relations:

• is a ElectrochemicalThermodynamicQuantity

ConcentrationOverpotential

IRI: http://emmo:info/BattINFO#EMMO 9ed7210c c4fa 467b 822d ba12f885bdf4

elucidation: The concentration overpotential of an electrode reaction at a given electrode current density (c.d.) is basically the difference in equilibrium potentials across the diffusion layer. More precisely, it is the potential of a reference electrode (of the same electrode reaction as the working electrode) with the interfacial concentrations which establish themselves at c.d., relative to the potential of a similar reference electrode with the concentrations of the bulk solution. From such a measured potential difference, with c.d. flowing, one needs to subtract the ohmic potential drop prevailing between the two electrodes.

iupacEntry: https://goldbook:iupac:org/terms/view/C01230

physicalDimension: T-3 L+2 M+1 I-1 Θ 0 N0 J0

prefLabel: ConcentrationOverpotential

Relations:

• is_a Overpotential

Overpotential

IRI: http://emmo:info/BattINFO#EMMO_1cd1d777_e67b_47eb_81f1_edac35d9f2c6

elucidation: Deviation of the potential of an electrode from its equilibrium value required to cause a given current to flow through the electrode.

iupacEntry: https://goldbook:iupac:org/terms/view/O04358

physicalDimension: T-3 L+2 M+1 I-1 Θ 0 N0 J0

prefLabel: Overpotential

Relations:

• is_a ElectrochemicalThermodynamicQuantity

MolarChemicalPotential

IRI: http://emmo:info/BattINFO#EMMO_68dc1bf8_9813_43c8_b428_6bd614c3161d

elucidation: ChemicalPotential per mole.

physical Dimension: T-2 L+2 M+1 I0 Θ 0 N-1 J0

prefLabel: MolarChemicalPotential

Relations:

• is a ChemicalPotential

SurfaceOverpotential

IRI: http://emmo:info/BattINFO#EMMO_60741c58_a10d_4aa6_bb68_0066a6ff8e30

elucidation: The potential of a working electrode relative to a reference electrode of the same kinds placed in

the solution adjacent to the surface of the working electrode (just outside the double layer).

physical Dimension: T-3 L+2 M+1 I-1 Θ 0 N0 J0

prefLabel: SurfaceOverpotential

Relations:

• is_a Overpotential

MolarElectrochemicalPotential

IRI: http://emmo:info/BattINFO#EMMO_7fe804b8_6126_4132_be8f_b4985d61b1f6

elucidation: ElectrochemicalPotential per mole.

iupacEntry: https://goldbook:iupac:org/terms/view/E01945

physicalDimension: T-2 L+2 M+1 I0 Θ 0 N-1 J0

prefLabel: MolarElectrochemicalPotential

Relations:

• is_a ElectrochemicalPotential

ReactionQuotient

IRI: http://emmo:info/BattINFO#EMMO_740d5817_3fa7_464a_90c3_55552e51a3df

physicalDimension: T0 L0 M0 I0 Θ0 N0 J0

prefLabel: ReactionQuotient

wikipediaEntry: https://en:wikipedia:org/wiki/Reaction quotient

Relations:

• is a ElectrochemicalThermodynamicQuantity

StandardPotential

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_7fc10197_41d9_4c1e_a107_928f03eb2d36 } \\ \textbf{IRI:} \ \text{IRI:} \ \text$

elucidation: Theoretical equilibrium potential under standard conditions.

physicalDimension: T-3 L+2 M+1 I-1 Θ 0 N0 J0

prefLabel: StandardPotential

Relations:

• is_a TheoreticalOpenCircuitPotential

ElectrochemicalPotential

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO}_1422cde1_929e_46b6_b0dc_1010eebc5dfd$

iupacEntry: https://goldbook:iupac:org/terms/view/E01945

physicalDimension: T-2 L+2 M+1 I0 Θ 0 N0 J0

prefLabel: ElectrochemicalPotential

Relations:

• is_a ElectrochemicalThermodynamicQuantity

Theoretical Open Circuit Potential

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_d91940f0_c8b6_4505_9b68_6bf6cfc5c5444} \\$

elucidation: Theoretical electrode potential considering a given electrochemical charge-transfer reaction.

physical Dimension: T-3 L+2 M+1 I-1 $\Theta 0$ N0 J0 pref Label: Theoretical OpenCircuitPotential

Relations:

• is_a OpenCircuitPotential

TheoreticalOpenCircuitVoltage

IRI: http://emmo:info/BattINFO#EMMO_367a4916_d03a_483c_9f2c_6588370fc9d9

elucidation: Difference between the theoretical electric potentials of the positive electrode and negeative

electrode under no current flow.

physical Dimension: T-3 L+2 M+1 I-1 Θ 0 N0 J0

 ${f prefLabel:}\ {f Theoretical Open Circuit Voltage}$

Relations:

• is_a OpenCircuitVoltage

OpenCircuitPotential

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_9c657fdc_b9d3_4964_907c_f9a6e8c5f52b}$

elucidation: Measured electric potential of an electrode without external current flow.

physicalDimension: T-3 L+2 M+1 I-1 Θ 0 N0 J0

prefLabel: OpenCircuitPotential

Relations:

• is_a ElectrochemicalThermodynamicQuantity

• is a ElectricPotential

OpenCircuitVoltage

IRI: http://emmo:info/BattINFO#EMMO 0c0c623c 43b8 426d a536 168108e2353a

elucidation: Measured difference between two electrodes without external current flow.

physicalDimension: T-3 L+2 M+1 I-1 Θ 0 N0 J0

prefLabel: OpenCircuitVoltage

Relations:

• is a ElectricPotential

• is_a ElectrochemicalThermodynamicQuantity

Figure 3.11: Electrochemical Constant branch.

Electrochemical Constant branch

FaradayConstant

IRI: http://emmo:info/BattINFO#EMMO 499a652b 5be6 4931 be7b 15d42e544b0b

definition: Product of ElectronCharge and AvagadroConstant

elucidation: Fundamental physical constant representing molar elementary charge: F=9.648 533 99(24)×10⁴

C mol-1.

iupacEntry: https://goldbook:iupac:org/terms/view/F02325

physical Dimension: T+1 L0 M0 I+1 Θ 0 N-1 J0

prefLabel: FaradayConstant

Relations:

• is_a ElectrochemicalConstant

ElectrochemicalConstant

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_cdaf1d61_b5df_43a9_91a4_a5b7f719e2b4} \\$

prefLabel: ElectrochemicalConstant

Relations:

• is_a PhysicalConstant

Additional physical quantities

ChargeCapacity

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_791c1915_a791_4450_acd8_7f94764743b5}$

elucidation: Amount of electric charge that can be stored.

physicalDimension: T+1 L0 M0 I+1 Θ 0 N0 J0

 $\mathbf{prefLabel:}$ ChargeCapacity

Relations:

• is_a ElectrochemicalQuantity

• is_a ElectricCharge

Figure 3.12: Additional physical quantities defined in BattINFO. Parent classes belonging to EMMO are shown in gray.

IonicResistivity

IRI: http://emmo:info/BattINFO#EMMO_c90a4ca0_493f_4880_a838_3a2c4b808a03

elucidation: Inverse of IonicConductivity

physical Dimension: T-3 L+3 M+1 I-2 $\Theta0~\mathrm{N0~J0}$

prefLabel: IonicResistivity

Relations:

• is a ElectricResistivity

• is_a ElectrochemicalTransportQuantity

TheoreticalOpenCircuitVoltage

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO}_34e440e0_b720_4585_a915_fbe5abb8615d$

physical Dimension: T-3 L+2 M+1 I-1 Θ 0 N0 J0

 ${\bf prefLabel:}\ {\bf Theoretical Open Circuit Voltage}$

Relations:

• is_a OpenCircuitVoltage

Theoretical Stored Energy

IRI: http://emmo:info/BattINFO#EMMO_9ea6a862_131f_4154_be47_e7417f2fb924

elucidation: Theoretical amount of energy that can be stored in a battery cell. Minimum of the theoretical energy of the positive electrode and negative electrode. Product of the Theoretical Capacity and the Theoretical Open-Circuit Voltage.

physicalDimension: T-2 L+2 M+1 I0 Θ0 N0 J0

prefLabel: TheoreticalStoredEnergy

Relations:

• is_a StoredEnergy

TheoteticalSpecificEnergy

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_1c13c786_35ae_4768_88fe_795813d465cd} \\$

elucidation: TheoreticalEnergy per unit mass of the cell.

physicalDimension: T-2 L+2 M0 I0 Θ0 N0 J0

prefLabel: TheoteticalSpecificEnergy

Relations:

• is_a SpecificEnergy

ElectronicConductivity

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_} 6a28741c_ef47_4a11_ba3d_166aef581e86$

physical Dimension: T+3 L-3 M-1 I+2 $\Theta 0$ N0 J0

prefLabel: ElectronicConductivity

Relations:

• is_a ElectrochemicalTransportQuantity

• is a ElectricConductivity

StandardPotential

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_7fc10197_41d9_4c1e_a107_928f03eb2d36}$

elucidation: Theoretical equilibrium potential under standard conditions.

physical Dimension: T-3 L+2 M+1 I-1 Θ 0 N0 J0

prefLabel: StandardPotential

Relations:

• is a TheoreticalOpenCircuitPotential

SpecificEnergy

IRI: http://emmo:info/BattINFO#EMMO_ea0c7651_b58b_4caf_ae02_fb6a4dfe6a5d

elucidation: Energy per unit mass.

physicalDimension: T-2 L+2 M0 I0 Θ 0 N0 J0

prefLabel: SpecificEnergy

Relations:

• is_a ElectrochemicalQuantity

• is_a ISQDerivedQuantity

InternalConductance

IRI: http://emmo:info/BattINFO#EMMO 0c9655c6 6b0b 4819 a219 f286ad196fa9

physical Dimension: T+3 L-2 M-1 I+2 Θ 0 N0 J0

prefLabel: InternalConductance

Relations:

• is a ElectrochemicalTransportQuantity

• is_a ElectricConductance

TheoreticalOpenCircuitVoltage

IRI: http://emmo:info/BattINFO#EMMO_367a4916_d03a_483c_9f2c_6588370fc9d9

elucidation: Difference between the theoretical electric potentials of the positive electrode and negeative

electrode under no current flow.

physicalDimension: T-3 L+2 M+1 I-1 Θ0 N0 J0

prefLabel: TheoreticalOpenCircuitVoltage

Relations:

• is_a OpenCircuitVoltage

IonicCurrentDensity

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_} 683e4991_38f3_42e1_84de_5ee25942d2e8$

elucidation: Current density in which the charge carriers are ions.

physicalDimension: T0 L-2 M0 I+1 Θ0 N0 J0

prefLabel: IonicCurrentDensity

Relations:

• is a CurrentDensity

OpenCircuitPotential

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_9c657fdc_b9d3_4964_907c_f9a6e8c5f52b}$

elucidation: Measured electric potential of an electrode without external current flow.

physical Dimension: T-3 L+2 M+1 I-1 Θ 0 N0 J0

prefLabel: OpenCircuitPotential

Relations:

• is a ElectrochemicalThermodynamicQuantity

• is_a ElectricPotential

Theoretical Specific Capacity

IRI: http://emmo:info/BattINFO#EMMO_8632dee1_0adf_4a47_8400_820b48b86732

elucidation: TheoreticalCapacity divided by the mass of the cell.

physicalDimension: T+1 L0 M-1 I+1 Θ 0 N0 J0

prefLabel: TheoreticalSpecificCapacity

Relations:

• is a SpecificChargeCapacity

Theoretical Charge Capacity

IRI: http://emmo:info/BattINFO#EMMO_2b09f961_3374_42e4_8836_bffc6bf522fa

elucidation: Theoretical amount of charge a cell can store. Minimum of the theoretical capacity of the positive

electrode and negative electrode. $\,$

physical Dimension: T+1 L0 M0 I+1 Θ 0 N0 J0

prefLabel: TheoreticalChargeCapacity

Relations:

• is_a ChargeCapacity

SpecificChargeCapacity

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_1e3dc60d_dd6b_47d6_8161_70004fc5ee30}$

elucidation: Electric charge per unit mass.

physicalDimension: T+1 L0 M-1 I+1 Θ 0 N0 J0

prefLabel: SpecificChargeCapacity

Relations:

 $\bullet \ \ is_a \ Electrochemical Quantity$

• is_a ISQDerivedQuantity

IonicCurrent

IRI: http://emmo:info/BattINFO#EMMO_569a62a5_3b7e_4099_8a4c_f76e229a0347

elucidation: A flow of electric charge, in which ions are the charge carrier.

physicalDimension: T0 L0 M0 I+1 Θ 0 N0 J0

prefLabel: IonicCurrent

Relations:

• is a ElectricCurrent

StoredEnergy

IRI: http://emmo:info/BattINFO#EMMO_4f1ed4ee_06ba_44a4_8ece_1ee56bf12afe

elucidation: Amount of energy stored in a physical object.

physical Dimension: T-2 L+2 M+1 I
0 $\Theta0~\mathrm{N0}~\mathrm{J0}$

 $\mathbf{prefLabel:}\ \mathrm{StoredEnergy}$

Relations:

• is_a ElectrochemicalQuantity

• is_a InternalEnergy

IonicConductivity

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_64e6ed6a_8d17_40ba_937f_f385a54a86c3}$

physicalDimension: T+3 L-3 M-1 I+2 Θ 0 N0 J0

 ${f prefLabel:}$ IonicConductivity

Relations:

 $\bullet \ \ is_a \ ElectricConductivity$

• is_a ElectrochemicalTransportQuantity

ElectronicCurrentDensity

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_bfc8c075_246e_4633_ba8e_906a9f5f2e3a} \\ \textbf{IRI:} \ \textbf{IRI:} \$

elucidation: Current density in which the charge carriers are electrons.

physicalDimension: T0 L-2 M0 I+1 Θ 0 N0 J0

prefLabel: ElectronicCurrentDensity

Relations:

• is a CurrentDensity

ElectronicCurrent

IRI: http://emmo:info/BattINFO#EMMO e73063fe 30a4 4ed5 b9f6 11979f807a42

elucidation: A flow of electric charge, in which electrons are the charge carrier

physicalDimension: T0 L0 M0 I+1 Θ 0 N0 J0

prefLabel: ElectronicCurrent

Relations:

• is a ElectricCurrent

Tortuosity

IRI: http://emmo:info/BattINFO#EMMO_caa0969a_1e27_4950_8af6_5b72fd20e504

elucidation: A measure of deviation from a straight line. It is the ratio of the actual distance traveled divided by the straight line distance.

physical Dimension: T0 L0 M0 I0 Θ 0 N0 J0

prefLabel: Tortuosity

Relations:

• is a RatioQuantity

Porosity

IRI: http://emmo:info/BattINFO#EMMO 3a38e30d 4c97 49d4 b0f4 661c9779e039

elucidation: Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%.

physical Dimension: T0 L0 M0 I0 Θ 0 N0 J0

prefLabel: Porosity

Relations:

• is_a RatioQuantity

Theoretical Open Circuit Potential

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_d91940f0_c8b6_4505_9b68_6bf6cfc5c5444} \\$

elucidation: Theoretical electrode potential considering a given electrochemical charge-transfer reaction.

physicalDimension: T-3 L+2 M+1 I-1 Θ 0 N0 J0

prefLabel: TheoreticalOpenCircuitPotential

Relations:

• is_a OpenCircuitPotential

ElectronicResistivity

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_bbcafb37_ceec_436b_bb45_080a2bc656aa}$

elucidation: Inverse of ElectronicConductivity physicalDimension: T-3 L+3 M+1 I-2 Θ0 N0 J0

prefLabel: ElectronicResistivity

Relations:

• is a ElectricResistivity

• is_a ElectrochemicalTransportQuantity

OpenCircuitVoltage

IRI: http://emmo:info/BattINFO#EMMO_0c0c623c_43b8_426d_a536_168108e2353a

elucidation: Measured difference between two electrodes without external current flow.

physical Dimension: T-3 L+2 M+1 I-1 $\Theta0$ N0 J0

prefLabel: OpenCircuitVoltage

Relations:

• is a ElectricPotential

• is_a ElectrochemicalThermodynamicQuantity

InternalResistance

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_9bf40017_3f58_4030_ada7_cb37a3dfda2d}$

 ${\bf elucidation:}$ Impetance associated with a power source.

physicalDimension: T-3 L+2 M+1 I-2 Θ0 N0 J0

prefLabel: InternalResistance

Relations:

• is_a ElectricResistance

Material Relation branch

NernstEquation

IRI: http://emmo:info/BattINFO#EMMO fe3a6c9a 85b8 4da6 aa4f 71c8de74939e

elucidation: An equation that describes the equilibrium potential of an electrode at which a given electrochemical charge-transfer reaction occurs, considering the activity of the reacting species and the temperature of the system.

prefLabel: NernstEquation

wikipediaEntry: https://en:wikipedia:org/wiki/Nernst_equation

Relations:

• is_a ElectrochemicalRelation

 $\bullet \ \ has Spatial Direct Part \ some \ Reaction Quotient$

• hasSpatialDirectPart some FaradayConstant

Figure 3.13: Material Relation branch.

- hasSpatialDirectPart some TheoreticalOpenCircuitPotential
- hasSpatialDirectPart some ChargeNumber
- hasSpatialDirectPart some ThermodynamicTemperature
- hasSpatialDirectPart some MolarGasConstant
- hasSpatialDirectPart some StandardPotential

MaterialRelation

IRI: http://emmo:info/emmo#EMMO_e5438930_04e7_4d42_ade5_3700d4a52ab7

elucidation: An 'equation' that stands for a physical assumption specific to a material, and provides an expression for a 'physics_quantity' (the dependent variable) as function of other variables, physics_quantity or data (independent variables).

example: The Lennard-Jones potential.

A force field.

An Hamiltonian.

prefLabel: MaterialRelation

Relations:

- is_a Equation
- hasSpatialDirectPart some PhysicalQuantity

ButlerVolmerEquation

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_d48ea516_5cac_4f86_bc88_21b6276c0938}$

elucidation: The standard phenomenological model for electrode kinetics, describing the relation between the electrode current from an electrochemical charge-transfer reaction and the surface overpotential of the electrode.

prefLabel: ButlerVolmerEquation

Relations:

- is_a ElectrochemicalRelation
- $\bullet \ \ has Spatial Direct Part \ some \ Thermodynamic Temperature$
- hasSpatialDirectPart some MolarGasConstant
- hasSpatialDirectPart some ElectricCurrent
- hasSpatialDirectPart some FaradayConstant
- hasSpatialDirectPart some ChargeNumber
- hasSpatialDirectPart some SurfaceOverpotential
- hasSpatialDirectPart some ExchangeCurrent

ElectrochemicalRelation

IRI: http://emmo:info/BattINFO#EMMO_3d805c2a_4801_440e_9e4d_0fa5585c76ae

elucidation: A material relation in electrochemistry.

prefLabel: ElectrochemicalRelation

Relations:

• is a Material Relation

Chemical Species branch

Figure 3.14: Chemical Species branch.

StrongAcid

IRI: http://emmo:info/BattINFO#EMMO_c9e0fb9b_c11e_48ab_9245_04b45e15dcfb

 ${\bf definition:}$ An acid that completely dissociates in water.

prefLabel: StrongAcid

Relations:

• is_a Acid

StrongBase

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_a1bbb273_bc05_4e80_8817_82479178bb41}$

definition: "A base that completely dissociates in water."

 $\mathbf{prefLabel:}\ \mathbf{StrongBase}$

Relations:

• is_a Base

Salt

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_b6a52fdb_ba40_4caf_a8d9_523a467eb799}$

definition: "A chemical compound consisting of an assembly of cations and anions." IUPAC Gold Book

iupacEntry: https://goldbook:iupac:org/terms/view/S05447

prefLabel: Salt

Relations:

• is_a ChemicalSpecies

Acid

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_c230694a_04ce_4719_88a4_ecfa85167c30}$

definition: "A molecular entity or chemical species capable of donating a hydron (proton) (see Brønsted acid)

or capable of forming a covalent bond with an electron pair (see Lewis acid)." - IUPAC Gold Book

iupacEntry: https://goldbook:iupac:org/terms/view/A00071

prefLabel: Acid

Relations:

• is_a ChemicalSpecies

WeakAcid

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_e3ec1307_09d7_4b61_97e3_a69ec87fb408 }$

definition: "An acid that partially dissociates in water."

prefLabel: WeakAcid

Relations:

• is_a Acid

WeakBase

IRI: http://emmo:info/BattINFO#EMMO_ce548161_c987_4beb_9091_adcf80027310

definition: "A base that partially dissociates in water."

prefLabel: WeakBase

Relations:

• is_a Base

Base

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_af499b32_68a7_4b8c_972e_4ebdba8b314e}$

definition: "A chemical species or molecular entity having an available pair of electrons capable of forming a covalent bond with a hydron (proton) (see Brønsted base) or with the vacant orbital of some other species (see Lewis base)." - IUPAC Gold Book

iupacEntry: https://goldbook:iupac:org/terms/view/B00601

 $\mathbf{prefLabel:}\ \mathrm{Base}$

Relations:

• is_a ChemicalSpecies

Real world objects

ElectrodePore

IRI: http://emmo:info/BattINFO#EMMO_4f3a2ba3-7abc-4150-ba98-3973d865690f

elucidation: A pore that exists within an electrode host domain.

prefLabel: ElectrodePore

Relations:

• is_a Pore

• hasContactWith some PorousElectrode

ElectrochemicalDevice

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_0acd0fc2_1048_4604_8e90_bf4e84bd87df}$

elucidation: A device whose primary function is facilitating the conversion between chemical and electrical

energy.

prefLabel: ElectrochemicalDevice

Relations:

• is_a Device

 $\bullet \ \ has Part \ some \ Electrochemical Component$

Physical dimensions

ChargePerMassDimension

 $\textbf{IRI:} \ \text{http://emmo:info/BattINFO\#EMMO_7bfcbe2d_eac6_4953_86d6_6f075334cf29}$

 ${\bf prefLabel:}\ {\bf ChargePerMassDimension}$

Relations:

 \bullet is_a PhysicalDimension

• equivalent_to hasSymbolData value "T+1 L0 M-1 I+1 Θ0 N0 J0"

Chapter 4

Appendix

Figure 4.1: All classes defined with the BattINFO namespace, except physical quantities. In addition parent classes belonging to EMMO are shown in gray.

Figure 4.2: All physical quantities defined with the BattINFO namespace. In addition parent classes belonging to EMMO are shown in gray.