Command	Explanation	Notes
cor()	calculates sample correlation	
cor.test()	performs correlation tests	
$ lm(y \sim x) $	regresses y on x	
stargazer()	shows nicely formatted output	requires "stargazer"
confint()	calculates confidence intervals	
plot()	creates scatterplot	
abline()	adds straight line through current plot	
summary()	shows notable statistics	
predict()	calculates a fitted value	

Example Code. I plot some data and its regression line; test $H_0: \rho_{xy} \le 0$ against $\rho_{xy} > 0$; show regression results, fitted values, residuals, and the 99 percent confidence intervals for β_1 and β_2 ; and calculate fitted value when x = 5.

```
library("stargazer")
1
2
3
   ## Some random data
4
   x = c(0,3,3,4,6)
5
   y = c(2,3,4,5,7)
   ## Scatter plot of the data
8
   plot(x,y)
10
   ## Show correlation, test if it's greater than zero.
11
   cor(x,y)
12
   cor.test(x, y, alternative="greater")
13
14
   ## Regress y on x
15
   regyx = lm(y \sim x)
16
17
   ## Plot the regression line through the scatter plot
18 | abline(regyx)
19
20 | ## Show regression results
21 | stargazer(regyx, type="text")
22
23
   ## Show fitted values and residuals
24
   regyx$fitted.values
25
26
   regyx$residuals
27
   ## Show 99 percent confidence interval
28
   confint(regyx, level=0.99)
29
30
   ## Show more detailed info about regression coefficients
31
   summary(regyx)$coefficients
32
33
   ## calculated the fitted value when when x = 5
   predict(regyx, data.frame(x=5))
```

The *p*-value for the correlation test is 0.007222, so we reject the null and conclude $\rho_{xy} > 0$ at 1 percent significance. The regression line has intercept coefficient $b_1 = 1.511$, which is significant at 10 percent; and slope efficient $b_2 = 0.840$, which is significant at 5 percent.