UFLA – Universidade Federal de Lavras Departamento de Ciência da Computação COM167 – Teoria da Computação Prof. Rudini Sampaio Monitor: Rodrigo Pereira dos Santos

Segunda Lista de Exercícios – 2005/1

.....

Exercício 1 Prove que a linguagem $F_{TM} = \{ <M > | M.T. M é tal que L(M) é finita \} é indecidível.$

RESPOSTA =

Por contradição, assuma que existe uma M.T. R que decide F_{TM} .

Vamos construir uma M.T. S, baseada em R, que decide $A_{TM} = \{ < M, w > \mid M \text{ aceita } w \}$, que é indecidível.

Considere a M.T. M₁, cuja descrição depende de M e w.

M_1 = "Com entrada x:

- 1. Se x = 0 ou x = 1, ACEITE.
- 2. Simule M com entrada w.
- 3. Se M aceita w, REJEITE. Senão, ACEITE."

S = "Com entrada < M,w>:

- 1. Construa M₁ baseado em M e w.
- 2. Simule R com entrada $\langle M_1 \rangle$.
- 3. Se R aceita, ACEITE. Senão, REJEITE."

Logo, S decide A_{TM} . Contradição, pois A_{TM} é indecidível. Logo, R não existe e F_{TM} é indecidível.

•

Exercício 2 Usando mais de 10 linhas, explique o PCP, a prova de sua indecidibilidade (sem muitos detalhes técnicos) e porque ele não pode ser classificado em classes de complexidade de tempo, como P e NP.

RESPOSTA =

O PCP (*Post Correspondence Problem*) é um exemplo de problema indecidível relativo à manipulação de *strings*. Pode ser descrito como um tipo de quebra-cabeça, uma coleção de dominós, cada qual contendo duas *strings*, uma de cada lado. A tarefa é fazer uma lista destes dominós (repetições permitidas) tal que a *string* superior seja igual à *string* inferior. Esta lista é chamada casamento. Assim, o PCP consiste em determinar se uma coleção tem um casamento. Devido à equivalência entre problema e linguagem, pode-se definir o PCP como uma linguagem: PCP = {<P> | P é uma instância do PCP com um casamento}. A prova de que PCP é indecidível consiste em uma contradição, assumindo que uma M.T. R decide PCP e construindo uma M.T. S, baseada em R, que decide A_{TM} = {<M,w> | M aceita w}. Logo, deve-se mostrar que a partir de uma M.T. M e uma entrada w, pode-se construir uma instância P, onde um casamento seria uma computação aceita em M com w. Para simplificar, seja MPCP uma instância modificada do PCP, tal que tenha duas restrições: uma computação de M sobre w nunca tenta mover o cursor à esquerda do início da fita; um dominó específico inicia o casamento. Como S constrói uma instância do PCP P que tem um casamento se e somente se M aceita w, construiremos primeiro uma instância P' de MPCP, descrita em 7 partes que acompanham um aspecto particular da simulação de M com w. Com isso, devemos lembrar que

MPCP difere do PCP por começar o casamento com um primeiro dominó específico. Se considerarmos P' como uma instância do PCP, ao invés de MPCP, tem-se um casamento. Assim, deve-se converter P' para P, de modo a utilizar P, que é uma instância do PCP, usando regras e "peças" específicas. Em síntese, com o fim da construção, S decidiria A_{TM} , que é indecidível. Contradição. Logo, nem S, nem R existem e PCP é indecidível. Por esse motivo, ele não pode ser classificado em classes de complexidade de tempo, uma vez que estas estão associadas a linguagens decidíveis (recursivas).

Exercício 3 Com respeito a relação \leq_m , responda aos itens abaixo:

2.1.[5.4 Sipser] Se $A \leq_m B$ e B é uma linguagem regular, isso implica que é regular?

RESPOSTA =

Não. Vamos mostrar isso, através de um contra-exemplo, construindo uma função de redução de uma linguagem não-regular A para uma linguagem regular B.

Tome $A = \{0^n 1^n \mid n \ge 0\}$, que não é regular, e $B = \{0^n \mid n \ge 0\}$, que é regular (ambos provados na disciplina Linguagens Formais e Autômatos)

F = "Com entrada w:

- 1. Para cada 0 e 1 que aparecem juntos na palavra w, retire-os de w e coloque um 0 na palavra de saída. Faça isso até que $w = \varepsilon$.
- 2. Retorne a palavra de saída."

Concluímos que existe uma função de redução de A para B e $A \leq_m B$. Então, se B é regular, isso não implica que A é regular.

2.2.[5.5 Sipser] Mostre que A_{TM} não é redutível ao E_{TM} .

RESPOSTA =

Por contradição, suponha que $A_{TM} \leq_m E_{TM}$. Isso implica que $\neg A_{TM} \leq_m \neg E_{TM}$, por definição ($\neg A_{TM}$ e $\neg E_{TM}$ são complemento ou negação de A_{TM} e E_{TM} , respectivamente).

Vamos provar que $\neg E_{TM}$ é recursivamente enumerável. Para isso, vamos construir uma M.T. N que reconhece $\neg E_{TM}$.

Primeiramente, seja M uma M.T. tal que M aceita uma palavra w $\in \sum^* e \sum^* \neq \emptyset$.

N = "Ignore a entrada:

- 1. Para i = 1, 2, 3, ...
- 1.1 Simule M com entrada s_i , onde $s_1, s_2, ...$ é cada um dos elementos de \sum^* em ordem lexicográfica.
- 1.2 Se M aceita, ACEITE."

Logo, $\neg E_{TM}$ é recursivamente enumerável.

Como $A_{TM} \leq_m E_{TM}$ é recursivamente enumerável, então A_{TM} é recursivamente enumerável, por teorema. Contradição, pois $\neg A_{TM}$ não é recursivamente enumerável (Corolário 4.17). Dessa forma, A_{TM} não é redutível polinomialmente a E_{TM} .

2.3.[5.6 Sipser] Mostre que \leq_m é uma relação transitiva.

RESPOSTA =

Sejam A, B e C três linguagens, tal que $A \leq_m B$ e $B \leq_m C$.

Sejam f e g funções de redução de A para B e de B para C, respectivamente.

Então, $w \in A \leftrightarrow f(w) \in B e y \in B \leftrightarrow g(y) \in C$.

Logo, $w \in A \leftrightarrow f(w) \in B$. Se $f(w) \in B$, $f(w) \in B \leftrightarrow g(f(w)) \in C$.

Dessa forma, conclui-se que existe uma função de redução de A para C, que é g(f(w)) ou $g \circ f$. Logo, \leq_m é uma relação transitiva.

2.4.[5.7 Sipser] Mostre que se $A \leq_m \bar{A}$ e A é recursivamente enumerável, então A é recursiva.

RESPOSTA =

Como $A \leq_m \bar{A}$, por definição, $\bar{A} \leq_m A$.

Como A é recursivamente enumerável, pelo Teorema 5.22, temos que Ā é recursivamente enumerável. Pelo teorema 4.16, uma linguagem é recursiva se e somente se ela e seu complemento são recursivamente enumeráveis. Logo, A é recursiva.

2.5.[5.9 Sipser] Mostre que todas linguagens recursivamente enumeráveis são redutíveis ao A_{TM} .

RESPOSTA =

Seja L uma linguagem recursivamente enumerável qualquer. Logo existe uma M.T. M que a reconhece.

Vamos provar que para todo L, L $\leq_m A_{TM}$. Vamos construir uma função de redução f: L $\rightarrow A_{TM}$ tal que $w \in L \leftrightarrow f(w) \in A_{TM}$.

Seja a função $f(w) = \langle M, w \rangle$, tal que M aceita w.

Como a função é computável e $w \in L \leftrightarrow f(w) \in A_{TM}$, temos que todas as linguagens recursivamente enumeráveis são redutíveis ao A_{TM} .

2.6.[5.11 Sipser] Mostre um exemplo de uma linguagem indecidível A tal que $A \leq_m \bar{A}$.

RESPOSTA =

Considere as linguagens EQ_{TM} e $\neg EQ_{TM}$, que não são recursivamente enumeráveis, pelo teorema 5.24 ($\neg EQ_{TM}$ é complemento ou negação de EQ_{TM}). Como EQ_{TM} e $\neg EQ_{TM}$ não são recursivamente enumeráveis, também não são recursivas (decididas). Logo, são indecidíveis.

Vamos provar que $EQ_{TM} \leq_m \neg EQ_{TM}$.

Vamos construir uma função de redução f: $EQ_{TM} \leq_m \neg EQ_{TM}$, tal que $w \in EQ_{TM} \leftrightarrow f(w) \in \neg EQ_{TM}$.

Seja $f(\langle M_1, M_2 \rangle) = \langle M_1, M_3 \rangle$ tal que $L(M_1) = L(M_2)$ e $L(M_1) \neq L(M_3)$.

 $F = \text{``Com entrada} < M_1, M_2 > :$

- 1. Constua a M.T. M_3 tal que M_3 aceita quando M_2 rejeita, e M_3 rejeita quando M_2 aceita, ou seja, $L(M_3) = -L(M_2)$.
- 2. Devolva $\langle M_1, M_3 \rangle$."

Logo, como F é computável e $<M_1,M_2>$ \in $EQ_{TM} \leftrightarrow L(M_1)=L(M_2) \neq L(M_3) \leftrightarrow < M_1,M_3>$ \in $\neg EQ_{TM}$. Logo, $EQ_{TM} \leq_m \neg EQ_{TM}$.

Exercício 4 [7.6 Sipser] Mostre que a classe de linguagens *P* é fechada sob as operações de:

RESPOSTA =

Sejam L_1 e L_2 linguagens, tais que existem M.T.'s determinísticas M_1 e M_2 que decidem L_1 e L_2 , respectivamente, em tempo polinomial. Então, $L_1,L_2 \in P$. Sejam f(n) e g(n) funções de complexidade de tempo para as M.T.'s M_1 e M_2 , respectivamente.

a. União

Vamos construir uma M.T. determinística M_3 que decide a linguagem $L_3 = L_1 \cup L_2$.

 M_3 = "Com entrada w:

- 1. Simule M₁ com entrada w.
- 2. Simule M₂ com entrada w.
- 3. Se M₁ ou M₂ aceitam, ACEITE. Senão, REJEITE."

A complexidade de tempo de M_3 é f(n) + g(n), que é polinomial. Então, M_3 decide L_3 em tempo polinomial. Logo, L_3 \in P e a classe de linguagens P é fechada sob a operação de união.

b. Intersecção

Vamos construir uma M.T. determinística M_4 que decide a linguagem $L_4 = L_1 \cap L_2$.

 M_4 = "Com entrada w:

- 1. Simule M_1 com entrada w.
- 2. Simule M₂ com entrada w.
- 3. Se M₁ e M₂ aceitam, ACEITE. Senão, REJEITE."

A complexidade de tempo de M_4 é f(n)+g(n), que é polinomial. Então, M_4 decide L_4 em tempo polinomial. Logo, L_4 \in P e a classe de linguagens P é fechada sob a operação de interseção.

c. Concatenação

Vamos construir uma M.T. determinística M_5 que decide a linguagem $L_5 = L_1 \cdot L_2$.

 M_5 = "Com entrada w = $w_1w_2w_3...w_n$, onde w_i é cada um dos caracteres de w:

- 1. Para i de 0 até n, faça:
- 1.1 Simule M_1 com entrada $w_1w_2...w_i$.
- 1.2 Simule M_2 com entrada $w_{i+1}...w_n$.
- 1.3 Se M₁ e M₂ aceitam, ACEITE. Senão, REJEITE."

A complexidade de tempo de M_5 é $(n+1)^*[f(n)+g(n)]$, que é polinomial. Então, M_5 decide L_5 em tempo polinomial. Logo, L_5 \in P e a classe de linguagens P é fechada sob a operação de concatenação.

d. Estrela

Vamos construir uma M.T. determinística M_6 que decide a linguagem $L_6 = L_1^*$.

 M_6 = "Com entrada w = $w_1 w_2 w_3 ... w_n$, onde w_i é cada um dos caracteres de w:

•

- 1. Se w = ε , ACEITE.
- 2. Senão, para i de 0 até n faça:
- 2.1 Simule M₁ com entrada w₁w₂...w_i.
- 2.2 Simule M_6 com entrada $w_{i+1}...w_n$.
- 2.3 Se M₁ e M₆ aceitam, ACEITE.
- 3. REJEITE."

A complexidade de tempo de M_6 é n*f(n), que é polinomial. Então, M_6 decide L_6 em tempo polinomial. Logo, L₆ C P e a classe de linguagens P é fechada sob a operação estrela.

e. Complementação

Vamos construir uma M.T. determinística M_7 que decide a linguagem $L_7 = \neg L_1$ (complemento ou negação de L₁).

 M_7 = "Com entrada w:

- 1. Simule M₁ com entrada w.
- 2. Se M₁ aceita, REJEITE. Senão, ACEITE."

A complexidade de tempo de M_7 é f(n), que é polinomial. Então, M_7 decide L_7 em tempo polinomial. Logo, $L_7 \in P$ e a classe de linguagens P é fechada sob a operação complemento.

Exercício 5 [7.7 Sipser] Mostre que a classe de linguagens NP é fechada sob as operações de:

RESPOSTA =

Sejam L₁ e L₂ linguagens, tais que existem M.T.'s não-determinísticas M₁ e M₂ que decidem L1 e L2, respectivamente, em tempo polinomial. Então, $L_1, L_2 \in NP$. Sejam f(n) e g(n) funções de complexidade de tempo para as M.T.'s M₁ e M₂, respectivamente.

a. União

Vamos construir uma M.T. não-determinística M_3 que decide a linguagem $L_3 = L_1 \cup L_2$.

 M_3 = "Com entrada w:

- 1. Simule M_1 com entrada w.
- 2. Simule M₂ com entrada w.
- 3. Se M₁ ou M₂ aceitam, ACEITE. Senão, REJEITE."

A complexidade de tempo de M₃ é f(n) + g(n), que é polinomial. Então, M₃ decide L₃ em tempo polinomial. Logo, L₃ € NP e a classe de linguagens NP é fechada sob a operação de união.

b. Intersecção

Vamos construir uma M.T. não-determinística M_4 que decide a linguagem $L_4 = L_1 \cap L_2$.

M_4 = "Com entrada w:

1. Simule M_1 com entrada w.

- 2. Simule M₂ com entrada w.
- 3. Se M₁ e M₂ aceitam, ACEITE. Senão, REJEITE."

A complexidade de tempo de M_4 é f(n) + g(n), que é polinomial. Então, M_4 decide L_4 em tempo polinomial. Logo, $L_4 \in NP$ e a classe de linguagens NP é fechada sob a operação de interseção.

c. Concatenação

Vamos construir uma M.T. não-determinística M_5 que decide a linguagem $L_5 = L_1 \cdot L_2$.

 M_5 = "Com entrada $w = w_1 w_2 w_3 ... w_n$, onde w_i é cada um dos caracteres de w:

- 1. Para i de 0 até n, faça:
- 1.1 Simule M₁ com entrada w₁w₂...w_i.
- 1.2 Simule M_2 com entrada $w_{i+1}...w_n$.
- 1.3 Se M₁ e M₂ aceitam, ACEITE. Senão, REJEITE."

A complexidade de tempo de M_5 é (n+1)*[f(n)+g(n)], que é polinomial. Então, M_5 decide L_5 em tempo polinomial. Logo, L_5 \in NP e a classe de linguagens NP é fechada sob a operação de concatenação.

d. Estrela

Vamos construir uma M.T. não-determinística M_6 que decide a linguagem $L_6 = L_1^*$.

 M_6 = "Com entrada w = $w_1w_2w_3...w_n$, onde w_i é cada um dos caracteres de w:

- 1. Se w = ε , ACEITE.
- 2. Senão, para i de 0 até n faça:
- 2.1 Simule M_1 com entrada $w_1w_2...w_i$.
- 2.2 Simule M_6 com entrada $w_{i+1}...w_n$.
- 2.3 Se M₁ e M₆ aceitam, ACEITE.
- 3. REJEITE."

A complexidade de tempo de M_6 é n*f(n), que é polinomial. Então, M_6 decide L_6 em tempo polinomial. Logo, L_6 \in NP e a classe de linguagens NP é fechada sob a operação estrela.

Exercício 6 Prove que as linguagens abaixo estão em NP:

RESPOSTA =

Pela definição da classe de problemas NP, um problema é NP se existe algum verificador polinomial para a linguagem. Vamos construir verificadores polinomiais para as linguagens abaixo:

a. 3SAT = { $\langle \Phi \rangle \mid \Phi$ uma fórmula 3CNF satisfatível }

Verificador polinomial da linguagem 3SAT:

 M_1 = "Com entrada $<\Phi$,C>, onde Φ é uma fórmula qualquer. Através de propriedades de operações lógicas, pode ser transformada para a 3CNF. C é um conjunto de valores a serem atribuídos a cada uma das variáveis de Φ .

- 1. Atribua cada um dos valores pertencentes a C à respectiva variável pertencente a Φ .
- 2. Se essa atribuição de C faz com que Φ seja verdadeiro (ou seja, "1"), ACEITE.
- 3. Senão, REJEITE."

Como a atribuição de valores às variáveis e o cálculo do resultado são operações realizadas em tempo polinomial, o verificador é polinomial. Logo, 3SATE NP.

b. VERT-COLOR = $\{ \langle G, k \rangle \mid G \text{ tem uma coloração própria nos vértices com k cores} \}$

Verificador polinomial da linguagem VERTCOLOR:

 M_2 = "Com entrada <G,K,C>, onde G é um grafo, V(G) é seu conjunto de vértices e E(G) é seu conjunto de arestas. C é um conjunto de duplas (a,b), onde a \in V e b é uma cor, e C deve ser verificado.

- 1. Para todo u \in V(G), para todo v \in V(G) e u \neq v, faça:
- 1.1 Se $(u,v) \in E(G)$ e a cor de u e a cor de v são iguais, REJEITE.
- 2. Se o número de cores diferentes for menor ou igual a k, REJEITE.
- 3. REJEITE."

Como a realização de testes e do loop (1) são operações realizadas em tempo polinomial, o verificador é polinomial. Logo, VERT-COVER \in NP.

c. HAM-CYCLE = { <G> | G possui um ciclo hamiltoniano }

Verificador polinomial da linguagem HAM-CYCLE:

 M_3 = "Com entrada <G,C>, onde G é um grafo, V(G) é seu conjunto de vértices e E(G) é seu conjunto de arestas. C é uma permutação na qual seus elementos são vértices pertencentes ao grafo G; esse candidato a certificado deve ser testado.

- 1. Se a aresta (C_n,C_1) não pertence a E(G), REJEITE.
- 2. Senão, para i de 1 até (n-1), faça:
- 2.1 Verifique se a aresta (C_i, C_{i+1}) está presente em E(G).
- 2.2 Se a aresta não está presente, REJEITE.
- 3. Se todas as arestas estão presentes em G, ACEITE."

Como a realização de testes e do loop (2) são operações realizadas em tempo polinomial, o verificador é polinomial. Logo, HAM-CYCLE \in NP.

Exercício 7 Mostre que se P = NP, então existe um algoritmo polinomial que, dado um grafo G, encontra em G um clique de tamanho máximo.

RESPOSTA =

Vamos provar que CLIQUE \in NP. Para isso, vamos construir um verificador polinomial para a linguagem CLIQUE.

V = "Com entrada $\langle G,K,C \rangle$, onde G é um grafo, V(G) é seu conjunto de vértices e E(G) é seu conjunto de arestas. C é o conjunto de vértices a ser verificado e K é o tamanho do clique.

- 1. Para todo v € C, verifique se v possui arestas aos demais v értices de C.
- 2. Se verdadeiro, então:
- 2.1 Se $|C| \le K$, ACEITE.
- 2.2 Senão, REJEITE.
- 3. REJEITE."

Como a realização de comparações e testes corresponde a operações em tempo polinomial, o verificador é polinomial. Logo, CLIQUE \in NP.

Se P = NP e CLIQUE \in NP, temos que CLIQUE \in P. Então, existe uma M.T. determinística M que decide CLIQUE em tempo polinomial, onde M recebe como entrada um grafo G e um número K, ou seja, (<G,K>).

Vamos construir uma M.T. N que encontra em G um clique de tamanho máximo:

N = "Com entrada <G>:

- 1. K = 0.
- 2. Para i de 1 até n, onde n é o número de vértices de G, faça:
- 2.1 Simule M com entrada <G,i>.
- 2.2 Se M aceita, K = i.
- 2.3 Se M rejeita, abandone este *loop* "para".
- 3. Para i de 1 até n, onde n é o número de vértices de G, faça:
- 3.1 "Arranque" o vértice i de G.
- 3.2 Simule M com entrada < G,K>.
- 3.3 Se M rejeita, "devolva" o vértice i ao grafo G.
- 4. Retorne < G.K >."

Obs1: Uma coloração própria de um grafo G é uma atribuição de cores aos vértices tal que nenhuma aresta possui as extremidades com a mesma cor. Ciclo hamiltoniano é um ciclo que passa por todos os vértices do grafo.