CCF全国信息学奥林匹克联赛(NOIP2019)复赛

提高组 day2

(模拟试题)

一. 题目概况

题目名称	小象和老鼠	网络服务	秘密武器
程序文件名	lemouse	serves	weapon
输入文件名	lemouse.in	serves.in	weapon.in
输出文件名	lemouse.out	serves.out	weapon.out
每个测试点时限	1秒	2秒	2秒
内存限制	128 MB	128 MB	128 MB
测试点数目	10	20	20
每个测试点分值	10	5	5
是否有部分分	无	无	无
试题类型	传统	传统	传统

二. 提交源程序文件名

对于 Pascal 语言	lemouse.pas	serves.pas	weapon.pas
对于 C 语言	lemouse.c	serves.c	weapon.c
对于 C++ 语言	lemouse.cpp	serves.cpp	weapon.cpp

小象和老鼠 (lemouse.pas/c/cpp)

题目描述

S国的动物园是一个 N*M 的网格图, 左上角的坐标是(1,1), 右下角的坐标是(N,M)。

小象在动物园的左上角,它想回到右下角的家里去睡觉,但是动物园中有一些老鼠,而小象又很害怕老鼠。动物园里的老鼠是彼此互不相同的。小象的害怕值定义为他回家的路径上可以看见的不同的老鼠的数量。若小象当前的位置为(x1,y1),小象可以看见老鼠,当且仅当老鼠的位置(x2,y2)满足|x1-x2|+|y1-y2|<=1。由于小象很困了,所以小象只会走一条最近的路回家,即小象只会向下或者向右走。现在你需要帮小象确定一条回家的路线,使得小象的害怕值最小。

输入格式

第一行包含两个用空格隔开的整数,N和M。

接下来一个 N*M 的矩阵表示动物园的地图。其中 Aij 表示第 i 行第 j 列上老鼠的数量。若 Aij=0 则表示当前位置上没有老鼠(小象的家里也可能存在老鼠)。

输出格式

输出一个整数,表示路线最小的害怕值是多少。

样例输入

3 9

0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 1 0 0 1 0 0 1 0 0

样例输出

9

数据范围与约定

对于 10%的数据, 1<=N,M<=5。

对于 100%的数据,1<=N,M<=1000,0<=Aij<=100。

网络服务 (serves.pas/c/cpp)

题目描述

S国的网络系统由N个城市服务点和M条双向传输光缆构成。每个城市有一个评级Ri。每条光缆有一个传输时间 Ti。我们规定 d(i,j)为城市 i 到城市 j 的最短传输时间 (我们认为 d(i,i)=0)。现在城市之间有一种单向合作意愿。我们说城市 B 愿意与城市 A 建立合作关系,当且仅当对于所有满足 d(A,C)<=d(A,B)的城市 C,都有 R(C)<=R(B)。一个城市的受欢迎程度 Bi 定义为愿意与其建立合作关系的城市数量。现在 S 国政府想知道所有城市的受欢迎程度之和 Sum 是多少。由于 S 国的网络系统规模有限,可以向你保证每个城市连接的光缆数目不超过 10 条,所有城市的受欢迎程度之和不超过 30N。

输入格式

第一行包含两个用空格隔开的整数,N和M。

接下来 N 行表示每个城市的评级 Ri。

接下来 M 行,每行三个整数,Xi、Yi、Ti 表示城市 Xi 和城市 Yi 之间有一条双向传输 光缆,传输时间为 Ti。

输出格式

输出一个整数,表示所有城市的受欢迎程度之和 Sum。

样例输入

4 3

2

3

1

1

1 4 30

2 3 20

3 4 20

样例输出

9

数据范围与约定

对于 10%的数据,满足 N<=100。

对于 40%的数据,满足 N<=1000。

对于 100%的数据,满足 N<=30000,1<=M<=5N,1<=Ri<=10,1<=Ti<=1000,Sum<=30N。

秘密武器

(weapon.pas/c/cpp)

题目描述

S国新研制了一种秘密武器,由排成一列的 N 个发射器构成,每个发射器有一个 power 值 Pi, 武器系统有一个阀值 F。武器发动攻击时,首先需要规定一对正整数参数(a,len)(a+len*2+F-1<=N),表示位于区间[a,a+len-1]和区间[a+len+F,a+len*2+F-1]内的发射器同时工作。然而,当前后两段发射器的 power 值完全相同,即 P[a+i]=P[a+len+F+i](0<=i<len)时,发射器会发生共振损坏武器系统。S 国当然不希望自己的秘密武器报废,于是他们想知道有多少对参数(a,len)会导致武器损坏。

输入格式

第一行两个正整数,N和F。

第二行 N 个正整数,表示发射器的 power 值 Pi。

输出格式

一个整数,表示会损坏武器系统的参数对数。

样例输入

11 4

1 1 1 4 1 -8 1 1 1 4 1

样例输出

6

数据范围与约定

对于 30%的数据, 1<=N<=100。

对于 60%的数据, 1<=N<=1000。

对于 100%的数据, 1<=N<=100000, 1<=F<=N, -10^9<=Pi<=10^9。