3.20 a)
$$V(t) = \frac{dc}{dt} = 1.2t$$

(b) $13 \text{ m/s} = 1 \text{ m/s} + 2 \text{ m/s}^2 t$
 $12 \text{ m/s} = 2 \text{ m/s}^2 t$
 $12 \text{ m/s} = 2 \text{ m/s}^2 t$
 $2 \text{ m/s}^2 = 4 t$

(c) $a(t) = \frac{dv}{dt} = 2 \text{ m/s}^2$

3.21 a) $C = k \cdot t^2 \Rightarrow V = \frac{dc}{dt} = 3k \cdot t^2 \Rightarrow a = \frac{dv}{dt} = 6k \cdot t$,

 $2 \text{ accelerationen in proportional mot tiden.}$

On $k > 0$ si ökar accelerationen

(b) $k \text{ rattresubtanen in proportional mot accelerationen on advanced också mot tiden.}$

3.22 a) $a = k \cdot t \quad k = 0.20 \text{ m/s}^3$
 $V(t) = \frac{kt^2}{2} = 0.10 \text{ m/s}^3 \cdot t^2$
 $V(0s) = 0.10 \text{ m/s}^3 \cdot (10s)^2 = 10 \text{ m/s}$

(c) $8(t) = \frac{kt^3}{6} = \frac{3.20 \text{ m/s}^3}{6} \cdot (10s)^2 = 3.3 \text{ m}$

3.23 $X = Vox t \quad y + Voy t - \frac{2t^2}{2t}$
 $V_0 = \frac{dx}{dt} = Vox \quad v_0 = \frac{dv}{dt} = v_0 - gt$

