Отчет по лабораторной работе №5

Дисциплина: архитектура компьютера

Адмиральская Александра Андреевна

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	8
5	Выводы	22
Список литературы		23

Список иллюстраций

4.1	Создание каталога lab06	8
4.2	Создание файла	8
4.3	Копирование файла	8
4.4	Программа в файле	9
4.5	Создание и запуск исполняемого файла	9
4.6	Изменение текста программы	10
4.7	Создание и запуск исполняемого файла	11
4.8	Создание файла	11
4.9	Ввод текста программы в файл lab6-2.asm	12
4.10	Создание и запуск исполняемого файла	12
4.11	Изменение текста программы	13
4.12	Запуск исполняемого файла	13
4.13	Изменение текста программы	14
4.14	Запуск измененного файла	14
4.15	Создание файла lab6-3.asm	15
4.16	Ввод текста программы в файл lab6-3.asm	15
4.17	Создание и запуск исполняемого файла	16
	Изменение текста программы	16
4.19	Запуск исполняемого файла	17
	Создание файла variant.asm	17
4.21	Ввод текста программы в файл variant.asm	18
4.22	Запуск исполняемого файла	19
	Работа программы	19
4.24	Создание файла lab6-4.asm	20
	Ввод текста программы в файл lab6-4.asm	20
4.26	Создание и запуск файла. Проверка его работы	21

Список таблиц

3.1 Описание некоторых каталогов файловой системы GNU Linux . . . 7

1 Цель работы

Освоение арифметических инструкций языка ассемблера NASM.

2 Задание

1.Символьные и численные данные в NASM 2.Выполнение арифметических операций в NASM 3.Выполнение заданий для самостоятельной работы

3 Теоретическое введение

Здесь описываются теоретические аспекты, связанные с выполнением работы.

Например, в табл. 3.1 приведено краткое описание стандартных каталогов Unix.

Таблица 3.1: Описание некоторых каталогов файловой системы GNU Linux

Имя ка-		
талога	Описание каталога	
/	Корневая директория, содержащая всю файловую	
/bin	Основные системные утилиты, необходимые как в	
	однопользовательском режиме, так и при обычной работе всем	
	пользователям	
/etc	Общесистемные конфигурационные файлы и файлы конфигурации	
	установленных программ	
/home	Содержит домашние директории пользователей, которые, в свою	
	очередь, содержат персональные настройки и данные пользователя	
/media	Точки монтирования для сменных носителей	
/root	Домашняя директория пользователя root	
/tmp	Временные файлы	
/usr	Вторичная иерархия для данных пользователя	

Более подробно про Unix см. в [1-4].

4 Выполнение лабораторной работы

Для начала создаем каталог для программам лабораторной работы № 6 и переходим в него (рис. 4.1).

```
aaadmiraljskaya@dk3n55 ~ $ mkdir ~/work/arch-pc/lab06
aaadmiraljskaya@dk3n55 ~ $ cd ~/work/arch-pc/lab06
aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ []
```

Рис. 4.1: Создание каталога lab06

Перейдя в каталог, создаем файл lab6-1.asm (рис. 4.2).

Рис. 4.2: Создание файла

Затем копируем в текущий каталог файл in_out.asm с помощью утилиты ср, т.к. он будет использоваться в других программах (рис. 4.3).

```
aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ cp ~/3агруэки/in_out.asm in_out.asm aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ ls in_out.asm lab6-1.asm aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $
```

Рис. 4.3: Копирование файла

Открываем созданный файл lab6-1.asm, вставляем в него программу вывода значения регистра eax (рис. 4.4).

```
lab6-1.asm
%include 'in_out.asm'
SECTION .bss
buf1: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax,'6'
mov ebx,'4'
add eax,ebx
mov [buf1],eax
mov eax,buf1
call sprintLF
call quit
```

Рис. 4.4: Программа в файле

Создаем исполняемый файл и запускаем его. Программа выводит символ ј (рис. 4.5).

```
aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ nasm -f elf lab6-1.asm
aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-1 lab6-1.o
aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ ./lab6-1
j
```

Рис. 4.5: Создание и запуск исполняемого файла

Изменяем в тексте программы символы "6" и "4" на цифры 6 и 4 (рис. 4.6).

```
lab6-1.asm
                    [-M--]
%include 'in_out.asm'
SECTION .bss
buf1: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax,6
mov ebx,4
add eax,ebx
mov [buf1],eax
mov eax,buf1
call sprintLF
call quit
```

Рис. 4.6: Изменение текста программы

Создаем новый исполняемый файл программы и запускаем его. Теперь программа выводит символ с кодом 10, это символ перевода строки, этот символ не отображается при выводе на экран (рис. 4.7).

```
aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ nasm -f elf lab6-1.asm
aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-1 lab6-1.o
aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ ./lab6-1
aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $
```

Рис. 4.7: Создание и запуск исполняемого файла

Затем создаем файл lab6-2.asm в каталоге ~/work/arch-pc/lab06 (рис. 4.8).

Рис. 4.8: Создание файла

Открываем созданный файл и вводим в него текст для вывода значения регистра eax (рис. 4.9).

```
lab6-2.asm [-M-
%include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax,'6'
mov ebx,'4'
add eax,ebx
call iprintLF
call quit
```

Рис. 4.9: Ввод текста программы в файл lab6-2.asm

Создаем и запускаем исполняемый файл lab6-2. Программа выводит число 106 (рис. 4.10).

```
aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ nasm -f elf lab6-2.asm aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-2 lab6-2.o aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ /lab6-2 bash: /lab6-2: Нет такого файла или каталога aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ ./lab6-2 lo6 aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $
```

Рис. 4.10: Создание и запуск исполняемого файла

Так же, как и в lab6-1.asm, заменяем в тексте программы в файле lab6-2.asm символы "6" и "4" на числа 6 и 4 (рис. 4.11).

```
lab6-2.asm [-N

%include 'in_out.asm'

SECTION .text

GLOBAL _start

_start:

mov eax,6

mov ebx,4

add eax,ebx

call iprintLF

call quit
```

Рис. 4.11: Изменение текста программы

Создаем новый исполняемый файл программы и запускаем его. Теперь программа складывает не соответствующие символам коды в системе ASCII, а сами числа, поэтому вывод 10 (рис. 4.12).

```
aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ nasm -f elf lab6-2.asm
aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-2 lab6-2.o
aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ ./lab6-2
10
aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ \[
\end{align*}
```

Рис. 4.12: Запуск исполняемого файла

Далее открываем файл lab6-2.asm и меняем функцию iprintLF на iprint (рис. 4.13).

```
lab6-2.asm [-N
%include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax,6
mov ebx,4
add eax,ebx
call iprint
call quit
```

Рис. 4.13: Изменение текста программы

Создаем и запускаем исполняемый файл. Вывод не изменился, потому что символ переноса строки не отображался, когда программа исполнялась с функцией iprintLF, а iprint не добавляет к выводу символ переноса строки, в отличие от iprintLF (рис. 4.14).

Рис. 4.14: Запуск измененного файла

Следующим шагом создаем файл lab6-3.asm в каталоге ~/work/arch-pc/lab06 (рис. 4.15).

```
\label{label} aaadmiraljskaya@dk3n55 $$ \sim \work/arch-pc/lab06 $ touch $$ \sim \work/arch-pc/lab06/lab6-3.asm $$ aaadmiraljskaya@dk3n55 $$ \sim \work/arch-pc/lab06 $ ls $$ in_out.asm $lab6-1$ lab6-1.asm $lab6-1.o$ lab6-2 lab6-2.asm $lab6-2.o$ lab6-3.asm $$ aaadmiraljskaya@dk3n55 $$ \sim \work/arch-pc/lab06 $$$ $$ $$
```

Рис. 4.15: Создание файла lab6-3.asm

Открываем созданный файл и вводим текст программы для вычисления значения выражения f(x) = (5 * 2 + 3)/3 (рис. 4.16).

```
lab6-3.asm
                   [-M--] 41 L:[
                                  1+28 29/ 29] *(1365/13
%include 'in_out.asm' ; подключение внешнего файла
SECTION .data
div: DB 'Результат: ',0
rem: DB 'Остаток от деления: ',0
SECTION .text
GLOBAL _start
_start:
mov eax,5 ; EAX=5
mov ebx,2 ; EBX=2
mul ebx ; EAX=EAX*EBX
add eax,3 ; EAX=EAX+3
xor edx,edx ; обнуляем EDX для корректной работы div
mov ebx,3 ; EBX=3
div ebx ; EAX=EAX/3, EDX=остаток от деления
mov edi,eax ; запись результата вычисления в 'edi'
mov eax,div ; вызов подпрограммы печати
call sprint ; сообщения 'Результат: '
mov eax,edi ; вызов подпрограммы печати значения
call iprintLF ; из 'edi' в виде символов
mov eax,rem ; вызов подпрограммы печати
call sprint ; сообщения 'Остаток от деления: '
mov eax,edx ; вызов подпрограммы печати значения
call iprintLF ; из 'edx' (остаток) в виде символов
```

Рис. 4.16: Ввод текста программы в файл lab6-3.asm

Создаем исполняемый файл и запускаем его (рис. 4.17).

```
aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ nasm -f elf lab6-3.asm aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-3 lab6-3.o aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ ./lab6-3
Результат: 4
Остаток от деления: 1
aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $
```

Рис. 4.17: Создание и запуск исполняемого файла

Затем в этом же файле изменяем текст программы для вычисления выражения $\square(\square) = (4 \square 6 + 2)/5$ (рис. 4.18).

```
lab6-3.asm
                   [BM--]
                                   1+11
                                       12/ 29] *(383
%include 'in_out.asm' ; подключение внешнего файла
SECTION .data
div: DB 'Результат: ',0
rem: DB 'Остаток от деления: ',0
SECTION .text
GLOBAL _start
_start:
mov eax,4 ; EAX=4
mov ebx,6 ; EBX=6
mul ebx ; EAX=EAX*EBX
add eax,2 ; EAX=EAX+2
xor edx,edx ; обнуляем EDX для корректной работы div
mov ebx,5 ; EBX=5
div ebx ; EAX=EAX/5, EDX=остаток от деления
mov edi,eax ; запись результата вычисления в 'edi'
mov eax,div ; вызов подпрограммы печати
call sprint ; сообщения 'Результат:
mov eax,edi ; вызов подпрограммы печати значения
call iprintLF ; из 'edi' в виде символов
mov eax,rem ; вызов подпрограммы печати
call sprint ; сообщения 'Остаток от деления:
mov eax,edx ; вызов подпрограммы печати значения
call iprintLF ; из 'edx' (остаток) в виде символов
call quit ; вызов подпрограммы завершения
```

Рис. 4.18: Изменение текста программы

Создаем и запускаем исполняемый файл (рис. 4.19).

```
aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ nasm -f elf lab6-3.asm aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-3 lab6-3.o aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ ./lab6-3 Результат: 5
```

Рис. 4.19: Запуск исполняемого файла

Далее создаем файл variant.asm в каталоге ~/work/arch-pc/lab06 (рис. 4.20).

Рис. 4.20: Создание файла variant.asm

Вводим в этот файл текст программы для вычисления варианта задания по номеру студенческого билета (рис. 4.21).

```
variant.asm
                   [-M--] 9 L:[
                                   1+27 28/ 28]
%include 'in_out.asm'
SECTION .data
msg: DB 'Введите № студенческого билета: ',0
rem: DB 'Ваш вариант: ',0
SECTION .bss
x: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax, msg
call sprintLF
mov ecx, x
mov edx, 80
call sread
mov eax,x ; вызов подпрограммы преобразования
call atoi ; ASCII кода в число, 'eax=x'
xor edx,edx
mov ebx,20
div ebx
inc edx
mov eax,rem
call sprint
mov eax,edx
call iprintLF
call quit
```

Рис. 4.21: Ввод текста программы в файл variant.asm

Создаем и запускаем исполняемый файл. Программа просит ввести номер студенческого билета (рис. 4.22).

```
aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ nasm -f elf variant.asm aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o variant variant.o aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ ./variant Введите № студенческого билета:
```

Рис. 4.22: Запуск исполняемого файла

Вводим номер своего студенческого билета с клавиатуры, программа вывела, что мой вариант - 7 (рис. 4.23).

```
aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ nasm -f elf variant.asm
aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o variant variant.o
aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ ./variant
Введите № студенческого билета:
1132246806
Ваш вариант: 7
```

Рис. 4.23: Работа программы

Ответы на вопросы:

1)За вывод сообщения "Ваш вариант" отвечают строки кода: mov eax,rem call sprint

2)Инструкция mov ecx, х используется, чтобы положить адрес вводимой строки х в регистр ecx mov edx, 80 - запись в регистр edx длины вводимой строки, call sread - вызов подпрограммы из внешнего файла, обеспечивающей ввод сообщения с клавиатуры

3)Call atoi используется для вызова подпрограммы из внешнего файла, которая преобразует ascii-код символа в целое число и записывает результат в регистр eax

4)За вычисления варианта отвечают строки:

xor edx, edx; обнуление edx для корректной работы div mov ebx, 20; ebx = 20 div ebx; eax = eax/20, edx - остаток от деления inc edx; edx = edx + 1

5)При выполнении инструкции div ebx остаток от деления записывается в регистр edx

6)Инструкция inc edx увеличивает значение регистра edx на 1

7)За вывод на экран результатов вычислений отвечают строки: mov eax,edx call iprintLF

Приступим к выполнению заданий для самостоятельной работы. Создаем файл lab6-4.asm с помощью утилиты touch (рис. 4.24).

Рис. 4.24: Создание файла lab6-4.asm

Открываем созданный файл клавишей F4. Вводим в него текст программы для вычисления значения выражения $5(\Box - 1)^2$. Оно было под вариантом 7 (рис. 4.25).

```
[----] 41 L:[ 1+30 31/31] *(1281/1281b) <EOF>
%include 'in_out.asm' ; подключение внешнего файла
SECTION .data
msg: DB 'Введите значение переменной х: ',0
rem: DB 'Результат ',0
SECTION .bss
х: RESB 80 ; Переменная, значение к-рой будем вводить с клавиатуры
SECTION .text
GLOBAL _start
_start:
mov eax, msg
call sprint
mov ecx, x
mov edx, 80
call sread
mov eax,x ; вызов подпрограммы преобразования
call atoi ; ASCII кода в число, 'eax=x'
add eax,-1; eax = eax-1 = x-1
mul eax; EAX=EAX*EAX = (x-1)*(x-1)
mov ebx,5
mul ebx; EAX=EAX*EBX = 5*(x-1)*(x-1)
mov edi,eax ; запись результата вычисления в 'edi'
mov eax,rem ; вызов подпрограммы печати
call sprint ; сообщения 'Результат:
mov eax,edi ; вызов подпрограммы печати значения
call quit ; вызов подпрограммы завершения
```

Рис. 4.25: Ввод текста программы в файл lab6-4.asm

Создаем и запускаем исполняемый файл. Проверяем его работу для значения

3 - на выводе 20 и для значения 5 - на выводе 80. Все верно (рис. 4.26).

```
aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ nasm -f elf lab6-4.asm
aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-4 lab6-4.o
aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ ./lab6-4
Введите значение переменной х: 3
Результат 20
aaadmiraljskaya@dk3n55 ~/work/arch-pc/lab06 $ ./lab6-4
Введите значение переменной х: 5
Результат 80
```

Рис. 4.26: Создание и запуск файла. Проверка его работы

Текст программы для вычисления значения выражения $5(\square - 1)^2$:

5 Выводы

При выполнении данной лабораторной работы я освоила арифметические инструкции языка ассемблера NASM.

Список литературы

- 1. Таненбаум Э., Бос X. Современные операционные системы. 4-е изд. СПб.: Питер, 2015. 1120 с.
- 2. Robbins A. Bash Pocket Reference. O'Reilly Media, 2016. 156 c.
- 3. Zarrelli G. Mastering Bash. Packt Publishing, 2017. 502 c.
- 4. Newham C. Learning the bash Shell: Unix Shell Programming. O'Reilly Media, 2005. 354 c.