Image analysis software

 $\verb|https://github.com/albagranados/cellviewer/tree/master/imageanalysis|$

Alba Granados

Jérôme Solon's laboratory Center for Genomic Regulation, Barcelona, Spain

October 10, 2018

Outline

1 Image pre-processing

2 Image processing

3 Image analysis

Workflow 0: read dataset

file_dirs contains one or more paths to the experiments is_dataset is 0 if we only want to analyze 1 cell/window file_name, fill if is_dataset=0,

is_storm is 1 if the file contains all output columns from typical STORM output. It is 0 if the .txt file is two-columns with x-corrected and y-corrected (e.g., crop window from entire STORM image)

Workflow 0: bin2txt and crop

Input parameters:

ispp is 1 if input is a point pattern, like STORM output, and not a regular image. **compute_ROI** is 1 if we want to compute a smaller area. Then, if **crop** is 1, we can select the **crop_range** as $[x_0, x_1, y_0, y_1]$. **pixelate** is 1 if the image is generated by regular pixellation, or **tessellate** is 1 if we do that via Voronoï tessellation. **original_pixel_size** is STORM pixel size (nm)

out_channel matters if is_storm=1. Values: 'all', [1,2], [0],....

4

Outline

1 Image pre-processing

2 Image processing

3 Image analysis

Workflow 1: Point pattern to image

Input parameters:

analysis_pixel_size is the pixel size (regular grid) of the analysis density-based image (point(STORM) to image).

interpolate_method is the method of density interpolation from irregular grid (Voronoï) to regular grid.

The Voronoï-based density map (image) is transformed for the feature detection algorithm (detect_densitytranform) and the feature descriptor algorithm (descr_densitytransform); go to slide 8

Workflow 2: Cluster detection

Input parameters:

 ${f t}$ is a single scale, but typically we'll use a range (see below) thresholding can be activated. threshold_percent corresponds to the % of the largest values of the Laplacian.

num_features is the maximum number of features to be detected. Can be 'all' scale_ini and **scale_end** defines the limits of the scale range search. If 'odd' is **scale_spacing**, then t_1, \ldots, t_n s.t. $3\sigma = 3\sqrt{t_i} = d_i$ for $d_i = 2n+1$ diameters (odd number of pixels), and **nscales** is neglected.

Filter for local maxima has dimensions max_filter_width (space) and max_filter_depth (scale)

Workflow 2: Cluster detection

detect_densitytranform

Figure: Detection with a logarithmic (left) and linear (right) density map. Logarithmic is shown in both cases for clarity reasons.

threshold_percent needed?

Noise is discernible from circular clusters in terms of the Laplacian.

Workflow 3: Cluster description

SIFT input parameters:

n_bins_ori is the number of bins of the histogram of gradients arguments to define the main orientations

peak_ratio is the portion of the largest bin (largest orientation) above which all maxima are considered main orientations.

smooth_cycles is the number of cycles to smooth the histogram.

sigma_ori_times and **window_ori_radtimes** define the window of the local patch to compute the gradients. Recall $\sigma = \sqrt{t}$ (scale).

sigma_descr_times and **window_descr_radtimes** is the size of the local patch to compute the n-dimensional SIFT descriptor, where $n = n_h \text{ist} \cdot n_b \text{ins_descr}$. With **threshold_sat** we reduce the influence of large gradient magnitudes by thresholding the values in the unit feature vector to each be no larger than 0.2, and then renormalizing to unit length.

Outline

1 Image pre-processing

2 Image processing

3 Image analysis

Workflow 4: Cluster-based classification

```
print '\n_____IMAGE_ANALYSIS_____'; ini_time = time.time()
init = 'k-means++'
k0 = 2; kn = 5; sserror = []  # build bag of words
for k in range(k0, kn+1):
        [...]
```

k0 and kn define the range of number of clusters/words we want to analyze