#### Universidad Nacional de Río Negro Física III B - 2018

Unidad 04

Clase U04C03 - 22

Fecha 20 Jun 2018

Cont Transferencia de calor

Cátedra Asorey

Web github.com/asoreyh/unrn-f3b

YouTube https://goo.gl/nNhGCZ



#### Contenidos: Termodinámica, alias F3B, alias F4A

Unidad 2 Unidad 1 Unidad 4 Unidad 3 **El Calor** Primer principio Segundo Principio **Aplicaciones** Es lo que hay Hace calor Todo se transforma Nada es gratis

## Bloque 2 - Unidad 4: Aplicaciones

Transferencia de calor: radiación, conducción y convección. Ley de Newton. Conductores y aislantes del calor. Ley de Fourier. Aplicaciones hogareñas. Energía y humanidad. Calentamiento global.

#### De la U01: Principio Cero de la Termodinámica

- Principio → es una regla que cuyo cumplimiento se verifica experimentalmente y que aún no ha podido refutarse, pero tampoco probarse
- Principio cero:

Si dos objetos están en equilibrio térmico con un tercer objeto, entonces los tres están en equilibrio térmico entre sí.

Esta definición → escala de temperaturas

## De la U03: Segundo principio

- Enunciado de Clausius
   No es posible un proceso que tenga como único
   resultado la transferencia de calor de un cuerpo hacia
   otro más caliente.
- Expresa un hecho empírico, y va por la negativa: nos dice lo que no es posible hacer



• Establece un sentido para el flujo espontáneo de calor de los focos calientes a los focos fríos y no al reves

#### Observaciones empíricas



 El cuerpo caliente (emisor) entrega calor y se enfría. El cuerpo frío (receptor), recibe calor y se calienta

$$T_c \equiv T_c(t), \frac{dT_c}{dt} < O$$
  $T_f \equiv T_f(t), \frac{dT_f}{dt} > O$ 

 Mientras exista diferencia de temperatura entre objetos vecinos, la transferencia de calor no puede detenerse.

Sí 
$$\Delta T(t) \stackrel{\text{def}}{=} T_c(t) - T_f(t) > O \rightarrow dQ > O$$

 La velocidad de transferencia tiende a cero a medida que las temperaturas de ambos cuerpos se igualan:

$$\lim_{\Delta T(t) \to 0} \frac{dQ}{dt} = C$$

## Ley de enfriamiento



- Imaginemos una región caliente y una fría
- ¿Qué variables determinan el flujo de calor? dQ
  - ¿Área de contacto? dt
  - ¿Diferencia de temperatura?
  - ¿Materiales?

## Ley de enfriamiento



$$\frac{dQ}{dt} \propto A \left( T_c - T_f \right)$$

$$\frac{dQ}{dt} = -hA(T_c - T_f)$$

- Imaginemos una región caliente y una fría
- ¿Qué variables determinan el flujo de calor?
  - ¿Área de contacto? A dt
  - ¿Diferencia de temperatura?
  - ¿Materiales?
  - h es el coeficiente de transferencia de calor: [h] = W / (m² K)

El signo - aparece porque miramos el enfriamiento!

# Ley de enfriamiento

El flyjo de color de la functe colinere a la Rosa.

$$\frac{dQ}{dt} = -\ln A \left( \tau_{c} - \tau_{f} \right)$$

Ese color en ma la funte coliente:

$$\frac{dQ}{dt} = mC_V dT \longrightarrow \frac{dQ}{dt} = mC_V \frac{dT}{dt}$$

Luego la tosa de en freniente serón:

$$M C \frac{dT}{dt} = -h A (T_C - T_f) = 0 \frac{dT}{dt} = -\left(\frac{h A}{M C}\right) (T_C - T_f)$$

$$T_c = ct = T_{ab}$$
 $T_c = T_c(t) = T_c(t) = T_c(t)$ 
 $T_c = T_c(t) = T_c(t)$ 
 $T_c = T_c(t) = T_c(t)$ 

#### Ley de enfriamiento de Newton



$$\frac{dT(t)}{dt} = -r(T(t) - T_{amb}) = -r\Delta T(t)$$

$$r = \left(\frac{hA}{mC_{V}}\right) > 0 \quad \tau \stackrel{\text{def}}{=} r^{-1} = \left(\frac{mC_{V}}{hA}\right)$$

$$[r] = s^{-1} \quad [\tau] = s$$

$$\tau \text{ es un tiempo caracteristico}$$

$$(\text{depende del sistema})$$

$$\frac{dT(t)}{dt} = -r\Delta T(t)$$

$$\Delta T(t) = \Delta T(0)e^{-\frac{t}{\tau}}$$

$$T(t) = T_{amb} + (T(0) - T_{amb})e^{-\frac{t}{\tau}}$$

#### Conducción, convección y radiación



#### Conducción

#### **Aislante**



#### **Conductor**





Conducción de calor

- La distancia entre las moléculas o átomos es mayor que en otros medios →
  - menor tasa de colisiones → menor conducción.
- Aumenta con la temperatura.
- Aumenta con la presión, hasta un punto crítico:
  - Cuando la densidad del gas es muy alta las moléculas están inhibidas de transferir calor.
  - Más allá de ese punto la conductividad aumenta sólo ligeramente al aumentar la presión y la densidad.

#### Conductividad térmica



- Imaginemos una región caliente y una fría, separadas por una región de transición
- ¿Qué variables determinan el flujo de calor?
  - ¿Área de contacto? A
  - ¿Diferencia de temperatura? (T<sub>c</sub> T<sub>f</sub>)
  - ¿Materiales? (k)
  - ¿Espesor de la transición? (d)

#### Conductividad térmica



$$\frac{dQ}{dt} \propto \frac{A}{d} (T_c - T_f)$$

$$\frac{dQ}{dt} = \kappa \frac{A}{d} (T_c - T_f)$$

 Imaginemos una región caliente y una fría...

...separadas por una región de transición

- ¿Qué variables determinan el flujo de calor?
  - ¿Área de contacto? A
  - ¿Diferencia de temperatura? (T<sub>c</sub> T<sub>f</sub>)
  - ¿Materiales? (κ)
  - ¿Espesor de la región de transición? (d)

# Ley de Fourier

 El flujo de calor por conducción entre una región caliente (T<sub>c</sub>) y una fría (T<sub>f</sub>) está dado por:

$$I_{Q} \stackrel{\text{def}}{=} \frac{dQ}{dt} = \kappa \frac{A}{d} (T_{c} - T_{f}) \rightarrow I_{Q} = \kappa \frac{A}{d} (T_{c} - T_{f})$$

κ es el coeficiente de conductividad térmica

$$[\kappa] = \frac{Jm}{m^2 s K} = \frac{W}{mK}$$

 cantidad de calor transferida por unidad de área, unidad de tiempo por un material de espesor unitario cuando la diferencia de temperatura entre sus caras es de 1 K.

#### κ → sólo depende del material

### $k>10 \rightarrow conductores, k<1 \rightarrow aislantes$

| Material | k       | Material             | k         | Material | k           |
|----------|---------|----------------------|-----------|----------|-------------|
| Acero    | 47-58   | Corcho               | 0,03-0,04 | Mercurio | 83,7        |
| Agua     | 0,58    | Estaño               | 64,0      | Mica     | 0,35        |
| Aire     | 0,02    | Lana de vidrio       | 0,03-0,07 | Níquel   | 52,3        |
| Alcohol  | 0,16    | Glicerina            | 0,29      | Oro      | 308,2       |
| Alpaca   | 29,1    | Hierro               | 80,2      | Parafina | 0,21        |
| Aluminio | 209,3   | Ladrillo             | 0,80      | Plata    | 406,1-418,7 |
| Amianto  | 0,04    | Ladrillo refractario | 0,47-1,05 | Plomo    | 35,0        |
| Bronce   | 116-186 | Latón                | 81-116    | Vidrio   | 0,6-1,0     |
| Zinc     | 106-140 | Litio                | 301,2     | Cobre    | 372,1-385,2 |
| Madera   | 0,13    | Tierra húmeda        | 0,8       | Diamante | 2300        |

#### Aplicación: resistencia térmica

 Barra de longitud L, sección A y de conductividad k, aislada en su superficie salvo en los extremos



El flujo de calor está dado por la Ley de Fourier

$$I_{Q} \stackrel{\text{def}}{=} \frac{dQ}{dt} = \underbrace{\left(\kappa \frac{A}{L}\right)}_{\text{def}} \Delta T \rightarrow I_{Q} = \Delta T \frac{1}{R}$$

$$\Delta T = I_Q R$$
H. Asorey - F3B+F4A 2O18

Ley de Ohm V=iR

## Aplicación: aislación en paredes

Pared de área A compuesta por dos placas de espesores
 L<sub>1</sub> y L<sub>2</sub> y materiales k<sub>1</sub> y k<sub>2</sub>., a temperaturas T<sub>c</sub> y T<sub>f</sub>.



- Las T<sub>c</sub> y T<sub>f</sub> se mantienen constantes (fuentes de calor)
- ¿Cuál es la temperatura T en la región de transición una vez se alcanzó el estado estacionario?

#### Resistencia en serie

### Aplicación: aislación en paredes

• Pared de área A compuesta por dos placas de espesores  $L_1$  y  $L_2$  y materiales  $k_1$  y  $k_2$ ., a temperaturas  $T_c$  y  $T_f$ .



$$R_{i} = \frac{L_{i}}{\kappa_{i} A} \rightarrow T = \frac{T_{c} R_{1} + T_{f} R_{2}}{R_{1} + R_{2}}$$

$$\Delta T$$

$$I_{Q} = \frac{\Delta T}{R_{1} + R_{2}} \rightarrow \Delta T = I_{Q} R_{eq}$$

Resistencias térmicas en serie

$$R_{eq} = \sum_{i=1}^{N} R$$

Jun 20, 2018

### Aplicación: conductos de calor

 Conector térmico entre T<sub>c</sub> y T<sub>f</sub> compuesto por dos barras de longitud L, áreas A<sub>1</sub> y A<sub>2</sub> y materiales k<sub>1</sub> y k<sub>2</sub>



$$R_i = \frac{L_i}{\kappa_i A}$$
,  $I_{Qi} = \frac{\Delta T}{R_i}$ ,  $I_{Q} = \sum_{i=1}^{N} I_{Qi}$ 

Resistencias térmicas en paralelo

$$\frac{1}{R_{eq}} = \sum_{i=1}^{N} \frac{1}{R_i}$$

#### Convección

Transferencia de calor mediante el movimiento de un fluido en contacto con zonas a diferentes temperaturas calor → cambio de densidad → empuje → flotación



### Celdas convectivas









Jun 20, 2018 H. Asorey - F3B+F4A 2018 24/32

# Flujo laminar y turbulento









Jun 20, 2018

# Transición a flujo turbulento



### Aplicación: radiadores de calefacción







¿Cuánto radian? Acordarse de T<sup>4</sup>.



## Convección



# Transferencia por convección: ¿de qué depende?

- Tasa de transferencia:  $\frac{dQ}{dt}$
- ¿Qué pasa si aumento el área de contacto?
- ¿Qué pasa si aumento la diferencia de temperatura?
- ¿de qué más dependerá? Ignorancia → Lew de Newton

$$\frac{dQ}{dt} = hA(T_c - T_b)$$

 h depende del fluído, de las superficies de contacto, de las diferencias de temperura, del flujo...



### Aplicación -> Termopaneles



### Termopaneles

- Es una armadura de vidrios dobles usada en los climas fríos.
- El calor se transfiere de un ambiente hacia el exterior por:
  - Conducción en el vidrio interior
  - Conducción y convección en el aire intermedio
  - Conducción en el vidrio exterior

# Triple vidrio



Double Glazed Aluminum Spacer



Triple Glazed Aluminum Spacer



Double Glazed warm edged spacer (Silicone Foam)



Triple Glazed warm edged spacer (Silicone Foam)