

Image Segmentation

Segment

X

Object

ผลลัพธ์การแบ่งส่วนภาพที่ได้วัตถุที่ต้องการสมบูรณ์

Segment

Regions

บ่อยครั้งที่ผลลัพธ์การแบ่งส่วนภาพ ได้เพียงชิ้นส่วนของวัตถุ (region) ไม่ได้วัตถุเต็มสมบูรณ์

How many Ways to Segment an Object?

Edge-based segmentation

Region-based segmentation

Segmentation Techniques

Region-based Technique

- Detecting Similarity
 - Finding similarity of pixels or groups of pixels in a image
 - Group pixels or regions having similar properties

Edge-based Technique

- Detecting Discontinuity
 - Edge Detection & Edge Linking
 - To detect the boundary of objects in an image

Contour

REGION-BASED SEGMENTATION

Region-based segmentation

- □ ใช้หลักการ รวมกลุ่มพิกเซลที่มีคุณลักษณะคล้ายกัน เข้าเป็น region หรือ object เดียวกัน
- 🗆 คุณลักษณะที่สามารถนำมาพิจารณา เช่น
 - Color / Grayscale Intensity / Gradient / etc.
- □ เทคนิคการจัดกลุ่มของพิกเซล
 - Thresholding (การจัดกลุ่มตามค่าอ้างอิง (Threshold value))
 - Region growing (การจัดกลุ่มด้วยการขยายพื้นที่จากจุดเริ่มต้น (seed))
 - 🗖 Region Splitting and Merging (การแยกและการรวมกลับพื้นที่)
 - □ Clustering (การจัดกลุ่มโดยอ้างอิงจากจุดศูนย์กลางกลุ่ม)

THRESHOLDING TECHNIQUE

การจัดกลุ่มพิกเซลตามค่าอ้างอิง (THRESHOLD)

What would be the best "threshold value"?

Thresholding

Image f(x,y)

Thresholding T = ???

Output

Effects of the values of thresholds

What would happen if we select wrong threshold value?

Finding Optimum Threshold

Thresholding on Wind Speed for Storm tracking

Color Image Segmentation using Global threshold

$$g(x,y) = \begin{cases} 1 & f_R(x,y) \ge T_R, f_G(x,y) \ge T_G, f_B(x,y) \ge T_B \\ 0 & \text{otherwise} \end{cases}$$

$$T_R = T_G = T_B = 200$$

Color Image Segmentation using Global threshold

$$[T_{R1}, T_{R2}] = [50,100]$$

 $[T_{G1}, T_{G2}] = [100,150]$
 $[T_{R1}, T_{R2}] = [150,200]$

Color Image Segmentation using Global threshold

$$d(x,y) = \sqrt{(f_R(x,y) - T_R)^2 + (f_G(x,y) - T_G)^2 + (f_B(x,y) - T_B)^2}$$

$$(T_R, T_G, T_B) = (80,100,50) \qquad d_{MAX} = 50$$

Problems of using Global threshold

Global threshold: ค่าอ้างอิง ชุดเดียว ใช้กับทั้งภาพ Problem ????

Image Segmentation using Local threshold (1)

Global Threshold

Local Threshold

Image Segmentation using Local threshold (2)

REGION GROWING

What would be the best "Rules (Criteria)"?

Region Growing

ถ้ามีการเปลี่ยนเงื่อนไขการขยายพื้นที่ (Criteria) จะได้ผลลัพธ์เหมือนเดิมหรือไม่

Region Growing (Flow chart)

REGION SPLITTING & MERGING

What would be the best "Rules (Criteria)"?

Region Splitting and Merging (Quadtree)

สามารถใช้รูปแบบการ Splitting and Merging ด้วยโครงสร้างอื่นได้หรือไม่?

Region Splitting and Merging (Quadtree)

Segmentation Practice

- ให้นศ.ทดลองแบ่งส่วนภาพ (segment) เพื่อ แยกได้วัตถุ 2 ชิ้น (สีเขียวและสีฟ้า) และ พื้นหลัง (สีม่วงเป็น noise) โดยใช้เทคนิค
 - Thresholding
 - เลือก 1 ในเทคนิคต่อไปนี้
 - Region growing / Splitting and Merging
 - โดยผลลัพธ์แทนค่าดังนี้
 - พื้นหลัง (0), วัตถุสีเขียว (1), วัตถุสีฟ้า (2)

0	0	0	0	1	2	3	2
0	4	3	1	1	1	2	2
0	5	4	1	1	2	2	1
0	6	5	1	2	7	7	1
1	7	6	2	7	7	7	7
1	7	7	2	1	7	7	0
1	2	2	1	1	0	0	0
2	2	1	1	0	0	0	0

ภาพอินพุช

____ ผลลัพธ์จากเทคนิค Thresholding

ผลลัพธ์จากเทคนิคที่ 2

REGION CLUSTERING

What would be the best "# Iteration"?

Region Clustering Process

- \square (1) Initial number of groups or regions = k
- (2) Initial feature center of each group
- □ (3) For all (x,y)
 - Compare feature of each pixel (x,y) to center of each group
 - \square Assign pixel (x,y) to group i which is most similar to that pixel
- End
- (4) Update feature center of each group
- (5) repeat (3) and (4) until feature center of each group changes less than a defined threshold

Feature could be intensity, color, texture

Comparison between features

- Feature difference
 - Euclidean distance

Image feature

$$F(x, y) = \left[z_0, z_1, \dots, z_p\right]$$

Feature center of each group (i)

$$F_{C_i} = \left[w_0, w_1, \dots, w_p \right]$$

$$D_i(x, y) = ||F(x, y) - F_{C_i}|| = \sqrt{(z_0 - w_0)^2 + (z_1 - w_1)^2 + \dots + (z_p - w_p)^2}$$

หลักการจับกลุ่มของ K-mean clustering

- 🗆 กำหนดจำนวนกลุ่มที่ต้องการแบ่ง
- 🗆 เลือกตัวแทนกลุ่ม
 - Random ตัวแทนจากข้อมูล
 - 🗖 เลือกข้อมูลจากชุดที่ถูกกำหนดไว้ เช่น ข้อมูลชุดที่ 1 เป็นตัวแทนของกลุ่ม G1
- 🗆 ข้อมูลแต่ละชุดจะถูกทดสอบว่ามีค่าใกล้เคียงกับตัวแทนกลุ่มใด
 - 🗖 จะถูกรวมเข้ากับตัวแทนกลุ่มนั้น
 - Ex. ข้อมูลชุดที่ 1 มีความต่างจากตัวแทน G1 -> 5

มีความต่างจากตัวแทน G2 -> 3

ข้อมูลชุดที่ 1 จะถูกจับให้อยู่ในกลุ่ม G2

เทคนิคการ update ตัวแทนกลุ่ม

Option#1:

- □ Update ตัวแทนกลุ่มทุกครั้งที่มีการ เพิ่มสมาชิกเข้ากลุ่ม
 - G1={A}, G2={B} -> Initial
 - G1={A,C}, G2={B} -> คำนวนค่าตัวแทนกลุ่ม
 G1 ใหม่ และใช้ในการทดสอบการเป็นสมาชิก
 ในรอบต่อไป
 - G1={A,C}, G2={B,D} -> คำนวนค่าตัวแทน กลุ่ม G2 ใหม่ และใช้ในการทดสอบการเป็น สมาชิกในรอบต่อไป
 - □ G1={A,C,E}, G2={B,D} -> คำนวนค่าตัวแทน กลุ่ม G1 ใหม่ และใช้ในการทดสอบการเป็น สมาชิกในรอบต่อไป

Option #2

- Update ตัวแทนกลุ่มหลังการจับ กลุ่มเสร็จสิ้นแล้ว
 - G1={A}, G2={B}
 - ☐ G1={A,C}, G2={B}
 - □ G1={A,C}, G2={B,D}
 - □ G1={A,C,E}, G2={B,D}
 - จับกลุ่มเสร็จแล้ว คำนวนค่าตัวแทน กลุ่ม G1 และ G2

K-Mean Clustering Example

Subject	А	В
1	1	1
2	1.5	2
3	3	4
4	5	7
5	3.5	5
6	4.5	5
7	3.5	4.5

- 2) จัดสมาชิกเข้ากลุ่ม
 - closest distance to class centriod
- 3) Iterate 1) & 2)
- 4) Stop
 - การจัดสมาชิกไม่มีการเปลี่ยนแปลง หรือ
 - class centroid เปลี่ยนแปลงน้อยกว่า th
 - max # iteration

1) สร้างตัวแทนกลุ่ม

- initial class centroid -> $C_A=(1,1)$, $C_B=(5,7)$
- update class centriod

K-Mean Clustering Example

Data

Samples	Α	В
1	1	1
2	1.5	2
3	3	4
4	5	7
5	3.5	5
6	4.5	5
7	3.5	4.5

Initial centroid

		Mean	
	ndividual	Vector	
		(centroid)	
Group 1	1	(1.0, 1.0)	
Group 2	4	(5.0, 7.0)	

Update #1 centroid

Update #2

centroid

		Mean	
	Individual	Vector	
		(centroid)	
Cluster 1	1, 2, 3	(1.8, 2.3)	
Cluster 2	4, 5, 6, 7	(4.1, 5.4)	

Mean

Individual Vector (centroid)

Cluster 1 1, 2 (1.3, 1.5)

Cluster 2 3, 4, 5, 6, 7 (3.9, 5.1)

Iteration #1

	Cluster 1		Cluster 2	
		Mean		Mean
Step	Individual	Vector	Individual	Vector
		(centroid)		(centroid)
1	1	(1.0, 1.0)	4	(5.0, 7.0)
2	1, 2	(1.2, 1.5)	4	(5.0, 7.0)
3	1, 2, 3	(1.8, 2.3)	4	(5.0, 7.0)
4	1, 2, 3	(1.8, 2.3)	4, 5	(4.2, 6.0)
5	1, 2, 3	(1.8, 2.3)	4, 5, 6	(4.3, 5.7)
6	1, 2, 3	(1.8, 2.3)	4, 5, 6, 7	(4.1, 5.4)

Iteration #2

Individual	Distance to mean (centroid) of Cluster 1	Distance to mean (centroid) of Cluster 2	Cluster results
1	1.5	5.4	1
2	0.4	4.3	1
3	2.1	1.8	2
4	5.7	1.8	2
5	3.2	0.7	2
6	3.8	0.6	2
7	2.8	1.1	2

K-Mean Clustering Example

Q1: Initial Centroid เปลี่ยนไป จะเกิดผลอย่างไรขึ้น?

Data

Samples	Α	В
1	1	1
2	1.5	2
3	3	4
4	5	7
5	3.5	5
6	4.5	5
7	3.5	4.5

New Initial centroid

			Mean
		ndividual	Vector
			(centroid)
ıI	Group 1		
	Group 2		

Update #1 centroid

			Mean
		Individual	Vector
ı			(centroid)
	Cluster 1		
	Cluster 2		

Update #2 centroid

		Mean	
	Individual	Vector	
		(centroid)	
Cluster 1			
Cluster 2			

Iteration #1

	Cluster 1		Cluster 2	
		Mean		Mean
Step	Individual	Vector	Individual	Vector
		(centroid)		(centroid)
1				
2				
3				
4				
5				
6				

Iteration #2

Individual	Distance to mean (centroid) of Cluster 1	Distance to mean (centroid) of Cluster 2	Cluster results
1			
2			
3			
4			
5			
6			
7			

Q2: Option #1: update ทุกครั้งที่สมาชิกเปลี่ยน ให้ผลแตกต่างจาก

Option #2: จัดกลุ่มทุก sample

EDGE-BASED SEGMENTATION

Edge-based segmentation

- □ ใช้หลักการสร้าง Contour ล้อมรอบ object
- □ การสร้าง Contour
 - อาศัยการหาจุดภาพ (พิกเซล) ที่เป็น เส้นขอบในภาพ (Edge detection)
 - จากนั้นเชื่อมต่อจุดภาพ (Edge Linking: Contour Tracking) ที่เป็นจุดภาพของ
 เส้นขอบให้ได้ contour รอบวัตถุ

Contour

HOG: HISTOGRAM OF ORIENTED GRADIENT

What would be the best "# rotation"?

HOG

1) Edge Detection

Convolution & Thresholding

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

2) Search over Overlapped Sliding Windows

- 3) Sub-window Partition
- 4) Histogram of orientation

Edge detection output from convolution

Magnitude of change (ขนาดของการเปลี่ยนแปลง)

(ความเข้มของเส้นขอบ)

$$|\nabla F| = mag(\nabla F) = \sqrt{F_x^2 + F_y^2} = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Thresholding: to select Magnitude of strong edge

3) Sub-window Partition

4) Histogram of orientation

Angle of change (ทิศของเส้นขอบ)

$$\theta = \tan^{-1} \left(\frac{F_y}{F_x} \right)$$

Quantized θ

6) Clustering / Classification

Examples: HoG

Examples: HoG

- $\Theta(x,y) = [3.75, 0.16, -1.84, -2.92, 176.1, 169.8, -178.51, -167.73, 92.14, -88.67]$ $= -180 < \Theta(x,y) < 180$
- **Quantize** θ -> 8 direction levels [180 135 90 45 0 -45 -90 -135]

Quantized θ

■ HoG[180 135 90 45 0 -45 -90 -135]: