PMT Additional Exercises (Week 5)

Nicholas Sim

November 2nd, 2017

1 Discrete Structures: Functions

We have seen in the lectures that if R is an equivalence relation on a set A, it will partition A into its quotient set A/R. Prop. 2.17 shows that $A/R = \{[a] : a \in A\}$.

Suppose that every equivalence class [a] has a (unique, distinguished) representative \bar{a} .

- 1. Let A, B be finite sets, and define $f: A \to B$ to be surjective. Show that there is an equivalence relation R on A, where $(a_1, a_2) \in R$ if and only if $f(a_1) = f(a_2)$.
- 2. Let $g: B \to A$ be a function where $g(b) = \bar{a}$, the unique representative of [a] where f(a) = b. Show that g is injective.²
- 3. Define $g': B \to A/R$ similarly to g, except mapping to the equivalence class [a] instead of \bar{a} . Show that g' is a bijection.

The following questions test your understanding of the definitions.

- 4. (*) Suppose $A \neq \emptyset$, and $f: A \to B$. Show that there is a function $g: B \to A$ such that $(g \circ f)(a) = a$ for any $a \in A$. [thanks to A. Corti]
- 5. Let A, B be finite sets of m, n elements respectively.
 - (a) (*) How many injections $A \to B$ are there?
 - (b) Let n = 2 How many surjections?
 - (c) (**) Now n > 2. How many surjections?
 - (d) How many bijections?

[Hint: consider cases m larger than n, etc.]

2 Logic: Natural Deduction

Prove the following using Natural Deduction:

- 1. $A \rightarrow B, A \rightarrow \neg B \vdash \neg A$
- 2. $\neg B \rightarrow \neg A \vdash A \rightarrow B$ (the contrapositive)
- $3. \vdash A \rightarrow A$
- 4. $\vdash A \lor \neg A$ (obviously, you're not allowed to use EM for this one)
- 5. $(A \rightarrow (B \rightarrow C)) \vdash ((A \rightarrow B) \rightarrow (A \rightarrow C))$
- 6. [Q1a of the 2015 exam] $B, \neg C \rightarrow \neg A \lor \neg B \vdash A \rightarrow C$
- 7. $A \to (B \to C) \vdash B \to (A \to C)$

 $^{^{1}}$ surjective here means every element in B is mapped by at least 1 element in A.

² injective maps preserve distinctness: if $g(b_1) = g(b_2)$, then we can conclude $b_1 = b_2$. Say: "No two bs map to the same a"

3 Solutions to Functions

- 1. This is a routine verification of R, S, T, which I will omit.
- 2. Since f is surjective, g is injective. (another proof) We defined R such that $f(a_1) = f(a_2) = b$ if and only if a_1, a_2 belong to the same equivalence class. So f maps all the members of [a] to the same value of b. Now suppose $g(b_1) = g(b_2) = \bar{a} \in A$. Then $b_1 = f(\bar{a}) = b_2$.
- 3. It suffices to show that g' is surjective (argue injective via surjectivity of f, alternatively, proof similar to injectivity of g). Suppose for a contradiction that g' is not surjective. Then $\exists a \in A$ such that $f(a) \notin B$. But f is a function (hence maps all the elements in its domain).
- 4. We need $A \neq \emptyset$, because to be a function, g must map any value in B to some value. Define g as follows. Fix $b \in B$. If $b \notin \text{image}(f)$, then let $g(b) = a_0$ (choose any $a_0 \in A$). If b is in the image of f, then $\exists a_b \in A \text{ s.t. } f(a_b) = b$. Let $g(b) = a_b$.

(proof) Pick $a \in A$ arbitrarily and verify $(g \circ f)(a) = a$. Let f(a) = b and clearly $a = a_b$ by construction. Then $g(f(a_b)) = g(b) = a_b = a$ as required.

- 5. |A| = m, |B| = n.
 - (a) Suppose m > n. There can be no injections. For $m \le n$, we need to choose m distinct elements to map to, from n possible values, where order (permutation) matters. So $\frac{n!}{(m-n)!}$.
 - (b) Try inclusion-exclusion. There are n^m possible functions $A \to B$ (n choices for m inputs). But n = 2, so just 2^m . There are only two possible non-surjective functions (send all elements in A to the first value, or the second value). So $2^m 2$.
 - (c) (Why can't we just count? Think about this) Consider n = 3. Write 1, 2, 3 for the elements of B. We need to subtract the non-surjective

functions from 3^m . There are 2^m functions each including only (1, 2), (1, 3), or (2, 3). But the Principle of Inclusion-Exclusion tells us that we have subtracted 3 functions twice. So $3^m - 3(2^m) + 3$.

Construction: we want $n^m - (n)(n-1)^m + {n \choose 2}(n-2)^m - \dots$

Claim: This formula works

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} (n-k)^m$$

Satisfy yourself that this is correct.

(d) This is just the number of injections when m = n, i.e. m!.

4 Solutions to Natural Deduction

Full proofs are not included, but you can ask me for clarifications.

- 1. Suppose A. Then from the givens, we can use $\to E$ to get both $B, \neg B$. Contradiction. So we get $\neg A$ by $\neg I$.
- 2. Suppose A. We want to get B, so suppose $\neg B$. Get $\neg A$ by $\rightarrow E$, then B by PC. Conclude $A \rightarrow B$ using $\rightarrow I$.
- 3. This one can't be that hard! Do it yourself.
- 4. Note: if we could use equivalences, this is exactly the same as the last. This appears in the notes, and the overall form is a proof by contradiction.
- 5. This is slightly messy, but we'll just try: Suppose $A \to B$. We want to get $A \to C$. So suppose $A \to B$ follows using $\to E$. $B \to C$ from using $\to E$ on the given. Then we get C, thus $A \to C$. Finally we have $((A \to B) \to (A \to C))$.

2

- 6. Suppose A. We want to get C. Suppose $\neg C$. Then we get $\neg A \lor \neg B$. Perform $\lor E$ to get $\neg B$: but this contradicts the given B. So after some $\bot I$, we get C via PC. And that's all we need to conclude $A \to C$.
- 7. Suppose B. We will show $A \to C$. Suppose A. Then we have $B \to C$, but we have B, so we have C.