COGNOME NOME MATRICOLA......

OGr. 1 Bader (A-G)

Or. 2 Cioffi (H-Z)

Risolvere gli esercizi inserendo le risposte negli **spazi predisposti** con indicazione dei **calcoli** effettuati e fornendo **spiegazioni** chiare ed essenziali. NON SI ACCETTANO RISPOSTE SU ALTRI FOGLI.

- 1. Si consideri il sistema lineare : $\begin{cases} x-y-z-t &= 0\\ 2x-2y+z-3t &= 0\\ -x+y-2z+2t &= 0 \end{cases}$
 - (i) Con il metodo di eliminazione di Gauss, calcolarne le soluzioni;
 - (ii) dire (giustificando la risposta) se l'insieme delle soluzioni di tale sistema è un sottospazio di \mathbb{R}^4 e, in caso affermativo, scriverne una base.

2. Cosa vuol dire che il sistema di vettori $S = \{v_1, v_2, \dots, v_t\}$ dello spazio vettoriale V è un sistema linearmente indipendente?

- 3. Dire (senza dimostrarlo) quale dei seguenti sottoinsiemi è sottospazio e, per quelli che lo sono, calcolarne la dimensione e scriverne una base:
 - (1) $W_1 = \{bx^2 b \mid b \in \mathbb{R}\}\ \text{in } \mathbb{R}_2[x].$
 - (2) $W_2 = L((1,2,3), (1,-1,0), (0,-1,1))$ in \mathbb{R}^3 ; (3) $W_3 = \{(1,1), (0,0), (-1,-1)\}$ in \mathbb{R}^2 .

Nello spazio vettoriale \mathbb{R}^2 , scrivere la matrice di passaggio dal riferimento $\mathcal{R}=$ ((1,0),(-1,1)) al riferimento $\mathcal{R}' = ((1,2),(1,1)).$

5. Dire per quali valori di $t \in \mathbb{R}$ la matrice $A_t = \begin{pmatrix} 1 & 1 & t \\ 1 & t & 2 \\ 1 & 2 & 1 \end{pmatrix}$ è invertibile.

- **6.** Data l'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che f(x, y, z) = (y z, y + 2x, x + z),
 - (i) determinare una base di $Ker\ f$ e una base di $Im\ f$;
 - (ii) dire se f è un automorfismo, cioe' un endomorfismo biettivo;
 - (iii) calcolare autovalori ed autospazi di f;
 - (iv) dire se f è diagonalizzabile e, in caso affermativo, scrivere una base di \mathbb{R}^3 formata da autovettori di f.

7. Verificare, senza calcolare il polinomio caratteristico, che (3,2,4) non è autovettore di

$$A = \left(\begin{array}{rrr} 1 & 1 & 3 \\ -2 & 0 & 1 \\ 1 & 6 & 3 \end{array}\right)$$

8. Fissato in un piano della geometria elementare un riferimento cartesiano monometrico ortogonale, si consideri la retta r: 4x + y + 3 = 0; rappresentare in forma parametrica ed in forma cartesiana la retta parallela a r e passante per l'origine.

9. Fissato nello spazio un riferimento cartesiano monometrico ortogonale, si rappresenti il piano passante per il punto (1,1,2) parallelo alla retta $r: \begin{cases} z=0 \\ y=1 \end{cases}$ e ortogonale al piano $\pi: 2x-y-5z=1$

10. Fissato nello spazio un riferimento cartesiano monometrico ortogonale, si rappresenti il piano tangente alla sfera di equazione $x^2 + y^2 + z^2 + 2x - 3 = 0$ nel punto A(-1, -2, 0).