Erster Regler

Regelkreise

Zweck von Regelungen

- Festwertregelung Kompensation von Störungen z.B.
 - Anfangswerte
 - Umwelteinwirkungen
 - Modellunsicherheiten
- Folgereglung Streckenausgänge folgen Führungsgrößen (Sollwerten)
- Änderung der Streckendynamik
 - Stabilisierung der Regelstrecke
 - Steigerung der Streckenperformance

Regelsysteme erfüllen meist mehrere Zwecke.

Regelkreise

Bestandteile von Regelungen

Regelstrecke:

Erzeugt aus den Stellgrößen die Regelgrößen.

Abgleich der Regelgrößen mit den Führungsgrößen

Berechnet aus den Führungsgrößen und den Regelgrößen die Regelabweichungen.

Regeleinrichtung

Berechnet aus den Regelabweichungen die Stellgrößen.

Blockschaltbild einschleifiger Regelkreis

Beispiel Dusche

Blockschaltbild

Beispiel 1: Duschen

→ Nenne weitere Störungen bzw. Umwelteinwirkungen!

Beispiel 2: pH-Wert Regelkreis

Geschwindigkeitsregelung 1/

Aufgabe: Fahrzeuggeschwindigkeit y(t) soll einer zeitvariablen Führungsgröße w(t) folgen.

• Wechsel der Symbole:

Regelabweichung: e(t) = w(t) - y(t)

Regeleinrichtung: $u(t) = K \cdot e(t)$

Verstärkung K legt fest wie intensiv auf Regelabweichungen reagiert wird.

Geschwindigkeitsregelung 2/

Regler in Strecke einsetzen:

$$rac{d}{d\,t}y(t) = -rac{b}{m}\,y(t) + rac{K}{m}(w(t)-y(t))$$

$$rac{d}{d\,t}y(t) = -rac{b+K}{m}\,y(t) + rac{K}{m}\,w(t)$$

Lösung für y(0) = 5 und w(t) = 8:

$$y(t) = w \cdot rac{K}{b+K} + \mathrm{e}^{-rac{(b+K)t}{m}}igg(y_{ heta} - w \cdot rac{K}{b+K}igg)$$

K = 500	K = 1000	K=2000
$y(t) = 7.27 - 2.27 \mathrm{e}^{-0.550t}$	$y(t) = 7.62 - 2.62 e^{-1.05 t}$	$y(t) = 7.80 - 2.80\mathrm{e}^{-2.05t}$

Geschwindigkeitsregelung 3/

K = 500	K = 1000	K=2000
$y(t) = 7.27 - 2.27 \mathrm{e}^{-0.550 t}$	$y(t) = 7.62 - 2.62 e^{-1.05 t}$	$y(t) = 7.80 - 2.80 \mathrm{e}^{-2.05 t}$

- · Verstärkung wirkt auf Dynamik und Statik
- Es bleibt aber immer eine bleibende Regelabweichung Das ist charakteristisch für proportinale Regler an proportionalen Regelstrecken

Aufgabe: Berechne und zeichne die Stellgrößen für die drei Verstärkungen.

Geschwindigkeitsregelung 4/

Ergänzung eines Integrators in der Regeleinrichtung:

$$u(t) = K_P \cdot e(t) + K_I \cdot \int e(t) \, dt$$

- Jetzt wird die Stellgröße angepasst, bis die Regelabweichung verschwindet.
- Der Integrator ist ein weiterer (System)-Zustand.

- · Blockschaltbild:
- PI-Regler werden auch gern in der Form: $u(t) = K_P \cdot e(t) + \frac{1}{T_N} \cdot \int e(t) \, dt$ mit $T_N = 1/K_I$ angegeben.

Geschwindigkeitsregelung 5/

Aufstellen der Differentialgleichung 2. Ordnung:

1. Neuen Zustand einführen:

$$rac{\mathrm{d}}{\mathrm{d}t}x_1(t) = e(t) \ u(t) = K_P \cdot e(t) + K_I \cdot x_1(t)$$

2. Alle Gleichungen aufschreiben (Systemordnung steigt von n = 1 auf n = 2):

$$egin{aligned} rac{\mathrm{d}}{\mathrm{d}t}y(t) &= -rac{by(t)}{m} + rac{u(t)}{m} \ rac{\mathrm{d}}{\mathrm{d}t}xI(t) &= e(t) \ u(t) &= K_I\,xI(t) + K_P\,e(t) \ e(t) &= w(t) - y(t) \end{aligned}$$

3. Erste Gleichung ableiten, die übrigen einsetzen, umstellen, → fertig ⊜

$$rac{\mathrm{d}^2}{\mathrm{d}t^2}y(t)\,m+rac{\mathrm{d}}{\mathrm{d}t}y(t)\left(K_P+b
ight)+y(t)\,K_I=K_P\,rac{\mathrm{d}}{\mathrm{d}t}w(t)+K_I\,w(t)$$

Geschwindigkeitsregelung 6/

$$rac{\mathrm{d}^2}{\mathrm{d}t^2}y(t)\,m+rac{\mathrm{d}}{\mathrm{d}t}y(t)\left(K_P+b
ight)+y(t)\,K_I=K_P\,rac{\mathrm{d}}{\mathrm{d}t}w(t)+K_I\,w(t)$$

Lösung für b=50, $m=1000\ y(0)=5$, y'(0)=0 ,

$$w(t) = egin{cases} 5 & t < 0 \ undefined & t = 0 \ 8 & 0 < t \end{cases}$$

$$K_P=500$$
 , $K_I=200$

$$u(t) = 400.0 + 620.0 \,\mathrm{e}^{-0.28\,t} \sin{(0.35\,t)} + 1400.0 \,\mathrm{e}^{-0.28\,t} \cos{(0.35\,t)}$$

Geschwindigkeitsregelung 7/

$$rac{\mathrm{d}^2}{\mathrm{d}t^2}y(t)\,m + rac{\mathrm{d}}{\mathrm{d}t}y(t)\left(K_P+b
ight) + y(t)\,K_I = K_P\,rac{\mathrm{d}}{\mathrm{d}t}w(t) + K_I\,w(t)$$

Lösung für b=50, $m=1000\ y(0)=5$, y'(0)=0 ,

$$w(t) = egin{cases} 5 & t < 0 \ undefined & t = 0 \ 8 & 0 < t \end{cases}$$

$$K_P=500$$
 , $K_I=100$

$$u(t) = 400.0 - 500.0 e^{-0.28 t} \sin(0.16 t) + 1400.0 e^{-0.28 t} \cos(0.16 t)$$

20

Geschwindigkeitsregelung 8/

Gleiches Ein-/Ausgangsverhalten kann durch andere Strukturen erreicht werden

Vorsteuerung:

Ohne Herleitung sei hier angemerkt: Die DGL:

$$rac{\mathrm{d}^2}{\mathrm{d}t^2}u(t)\,m+rac{\mathrm{d}}{\mathrm{d}t}u(t)\left(K_P+b
ight)+u(t)\,K_I=rac{\mathrm{d}^2}{\mathrm{d}t^2}w(t)\,K_P\,m+rac{\mathrm{d}}{\mathrm{d}t}w(t)\left(K_I\,m+K_P\,b
ight)+w(t)\,K_I\,b$$

erzeugt aus der Führungsgröße

$$w(t) = egin{cases} 5 & t < 0 \ undefined & t = 0 \ 8 & 0 < t \end{cases}$$

und passenden Anfangsbedingungen die gleichen Stellgrößen u(t) wie der Regelkreis.