Proofs of Theorems about Trace of Matrix

Shuai Li

December 10, 2013

${\bf Contents}$

1	Definitions	2
2	Theorems Summary	2
3	Theorems and its Proof	2

1 Definitions

Definition The uppercase letters below all denote matrices and all are all $N \times N$, and the trace of X is denoted trX.

Definition Let f(A), where A is a matrix, be a function $\in \mathbb{R}^{m \times n} \to \mathbb{R}$, where

$$\nabla_A f(A) = \begin{pmatrix} \frac{\partial f}{\partial a_{11}} & \cdots & \frac{\partial f}{\partial a_{1n}} \\ \vdots & & \vdots \\ \frac{\partial f}{\partial a_{m1}} & \cdots & \frac{\partial f}{\partial a_{mn}} \end{pmatrix}$$

2 Theorems Summary

1. Commutative Law:

$$trAB = trBA$$

$$trABC = trCAB = trBCA$$

- 2. Suppose f(A) = trAB, then $\nabla_A trAB = B^T$.
- 3. If $a \in R$, tra = a.
- 4. $\nabla_A tr A B A^T C = C A B + C^T A B^T$

3 Theorems and its Proof

Theorem 3.1 trAB = trBA

Corollary 3.2 trABC = trCAB = trBCA

Proof First write the expressions of two sides of the equations:

$$trAB = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ji}$$
 (1)

$$trBA = \sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij} a_{ji}$$
 (2)

Switch the role of i and j of eq. (2), we get:

$$trBA = \sum_{j=1}^{n} \sum_{i=1}^{n} b_{ji} a_{ij}$$

Change the summation sequence and exchange the position of a and b, we have:

$$trBA = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ji}$$

This is exactly the same with eq. (1).

Proof is done.

Theorem 3.3 Suppose f(A) = trAB, then $\nabla_A trAB = B^T$

Proof From eq. (1), we have:

$$\nabla_{A} tr AB = \begin{pmatrix} \frac{\partial \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} a_{ij} b_{ji}}{\partial a_{11}} & \cdots & \frac{\partial \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} a_{ij} b_{ji}}{\partial a_{1n}} \\ \vdots & & \vdots \\ \frac{\partial \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} a_{ij} b_{ji}}{\partial a_{n1}} & \cdots & \frac{\partial \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} a_{ij} b_{ji}}{\partial a_{nn}} \end{pmatrix}$$
(3)

Note, m is changed to n, since A and B are square matrix.

For $(\nabla_A tr AB)_{pq} = \frac{\partial \sum\limits_{i=1}^n \sum\limits_{j=1}^n a_{ij}b_{ji}}{\partial a_{pq}}$, there is only one term contains a_{pq} , thus $(\nabla_A tr AB)_{pq} = b_{qp}$.

Now, it is easy to see $\nabla_A tr AB = B^T$

Theorem 3.4 If $a \in R$, tra = a

Proof This one is obvious.

Theorem 3.5 $\nabla_A tr A B A^T C = C A B + C^T A B^T$

Proof At first, this one seems to be an application of theorem 3.3. However, since A^T is contained in BA^TC , this is not true.

But the good news is, we can do similar steps to prove this theorem.

We denote d_{ij} as the element at i row and j column of BA^TC .

Then, for $trABA^TC$, we have

$$trABA^{T}C = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}d_{ji}$$

Then, for $\nabla_A tr ABA^T C$, we have

$$\nabla_A tr A B A^T C = \nabla_A \sum_{i=1}^n \sum_{j=1}^n a_{ij} d_{ji}$$

$$(\nabla_A tr A B A^T C)_{pq} = d_{qp} + \sum_{i=1}^n \sum_{j=1}^n a_{ij} (\nabla_A d_{ji})_{pq}$$

The first term is actually $(BA^TC)_{qp} = (C^TAB^T)_{pq}$

The second term is harder to see.

Let's first what d_{ji} is.

$$d_{ji} = (BA^TC)_{ji}$$
$$= \sum_{n=1}^{k=1} b_{jk} (\sum_{l=1}^{n} a_{lk} c_{li})$$

Since only terms contain \boldsymbol{a}_{pq} matter, the second term become this:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} (\nabla_{A} d_{ji})_{pq} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{jq} c_{pi}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} c_{pi} a_{ij} b_{jq}$$

$$= (CAB)_{pq}$$

Combine first and second term, we have:

$$\nabla_A tr A B A^T C = C A B + C^T A B^T$$