```
In [1]: import pandas as pd
import warnings
warnings.filterwarnings("ignore")
```

In [2]: data=pd.read_csv("/home/placement/Downloads/fiat500.csv")

In [3]: data.describe()

Out[3]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	11.563428	8576.003901
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	2.328190	1939.958641
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	7.245400	2500.000000
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	9.505090	7122.500000
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	11.869260	9000.000000
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	12.769040	10000.000000
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	18.365520	11100.000000

```
In [4]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1538 entries, 0 to 1537
        Data columns (total 9 columns):
             Column
                              Non-Null Count Dtype
             _ _ _ _ _
                              1538 non-null
                                              int64
             TD
         1
             model
                              1538 non-null
                                              obiect
             engine power
                              1538 non-null
                                              int64
                              1538 non-null
                                              int64
         3
             age in days
                              1538 non-null
                                              int64
             km
             previous_owners 1538 non-null
         5
                                              int64
                              1538 non-null
             lat
                                             float64
         7
             lon
                              1538 non-null
                                              float64
             price
                              1538 non-null
                                              int64
        dtypes: float64(2), int64(6), object(1)
        memory usage: 108.3+ KB
In [5]: data1=data.drop(['ID','lat','lon'],axis=1)
```

In [6]: data1

Out[6]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
1	pop	51	1186	32500	1	8800
2	sport	74	4658	142228	1	4200
3	lounge	51	2739	160000	1	6000
4	pop	73	3074	106880	1	5700
1533	sport	51	3712	115280	1	5200
1534	lounge	74	3835	112000	1	4600
1535	pop	51	2223	60457	1	7500
1536	lounge	51	2557	80750	1	5990
1537	pop	51	1766	54276	1	7900

1538 rows × 6 columns

In [7]: data=pd.get_dummies(data)

In [8]: data

Out[8]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price	model_lounge	model_pop	model_sport
0	1	51	882	25000	1	44.907242	8.611560	8900	1	0	0
1	2	51	1186	32500	1	45.666359	12.241890	8800	0	1	0
2	3	74	4658	142228	1	45.503300	11.417840	4200	0	0	1
3	4	51	2739	160000	1	40.633171	17.634609	6000	1	0	0
4	5	73	3074	106880	1	41.903221	12.495650	5700	0	1	0
				•••							
1533	1534	51	3712	115280	1	45.069679	7.704920	5200	0	0	1
1534	1535	74	3835	112000	1	45.845692	8.666870	4600	1	0	0
1535	1536	51	2223	60457	1	45.481541	9.413480	7500	0	1	0
1536	1537	51	2557	80750	1	45.000702	7.682270	5990	1	0	0
1537	1538	51	1766	54276	1	40.323410	17.568270	7900	0	1	0

1538 rows × 11 columns

```
In [9]: data.shape
Out[9]: (1538, 11)
In [10]: y=data['price']
x=data.drop('price',axis=1)
```

```
In [11]: y
Out[11]: 0
                 8900
                 8800
         2
                 4200
         3
                 6000
                 5700
         4
                 ...
5200
         1533
         1534
                 4600
         1535
                 7500
         1536
                 5990
         1537
                 7900
         Name: price, Length: 1538, dtype: int64
```

In [12]: x

Out[12]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	model_lounge	model_pop	model_sport
0	1	51	882	25000	1	44.907242	8.611560	1	0	0
1	2	51	1186	32500	1	45.666359	12.241890	0	1	0
2	3	74	4658	142228	1	45.503300	11.417840	0	0	1
3	4	51	2739	160000	1	40.633171	17.634609	1	0	0
4	5	73	3074	106880	1	41.903221	12.495650	0	1	0
1533	1534	51	3712	115280	1	45.069679	7.704920	0	0	1
1534	1535	74	3835	112000	1	45.845692	8.666870	1	0	0
1535	1536	51	2223	60457	1	45.481541	9.413480	0	1	0
1536	1537	51	2557	80750	1	45.000702	7.682270	1	0	0
1537	1538	51	1766	54276	1	40.323410	17.568270	0	1	0

1538 rows × 10 columns

In [13]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)

In [14]: x_test.head(5)

Out[14]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	model_lounge	model_pop	model_sport
481	482	51	3197	120000	2	40.174702	18.167629	0	1	0
76	77	62	2101	103000	1	45.797859	8.644440	0	1	0
1502	1503	51	670	32473	1	41.107880	14.208810	1	0	0
669	670	51	913	29000	1	45.778591	8.946250	1	0	0
1409	1410	51	762	18800	1	45.538689	9.928310	1	0	0

In [15]: y_test.head(5)

Out[15]: 481 7900 76 7900 1502 9400 669 8500 1409 9700

Name: price, dtype: int64

In [16]: x_train.head()

Out[16]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	model_lounge	model_pop	model_sport
527	528	51	425	13111	1	45.022388	7.58602	1	0	0
129	130	51	1127	21400	1	44.332531	7.54592	1	0	0
602	603	51	2039	57039	1	40.748241	14.52835	0	1	0
331	332	51	1155	40700	1	42.143860	12.54016	1	0	0
323	324	51	425	16783	1	41.903221	12.49565	1	0	0

```
In [17]: y train.head()
Out[17]: 527
                9990
         129
                9500
         602
                7590
         331
                8750
         323
                9100
         Name: price, dtype: int64
In [18]: from sklearn.linear_model import LinearRegression
         reg=LinearRegression() #creating object of LinearRegression
         reg.fit(x_train,y_train) #training are fitting LR object using training data
Out[18]:
          ▼ LinearRegression
          LinearRegression()
In [19]: ypred=reg.predict(x test)
```

```
In [20]: | ypred
Out[20]: array([ 5819.19308764,
                                  7248.82914161,
                                                   9741.8936974 ,
                                                                    9798.98033074.
                 10055.00624601,
                                  9551.4955679 ,
                                                   9758.01743879, 10122.9778365,
                                                                   7807.3005255 ,
                  9654.9661814 ,
                                  9251.1403257 , 10478.09512253,
                  7705.15873781,
                                  6295.63244894,
                                                   9545.40486313, 10422.92177704,
                  9616.90811615,
                                  7756.9171161 ,
                                                   4893.88454414, 10581.46142719,
                 10465.24078346, 10443.29318231,
                                                   7518.43696046, 10028.21911459,
                  6990.73118896,
                                  8989.86900819,
                                                   4823.51364349,
                                                                    6989.03118684,
                  7822.83203734,
                                  9683.17944083,
                                                   7344.21343132,
                                                                    5341.43860798,
                                  5092.38401339,
                  5420.78405336,
                                                   8971.44357515,
                                                                    5702.81242412,
                                                                    8389.23958511,
                  9920.16285466,
                                  8334.58448277,
                                                   6220.93323723,
                                                   9101.22635456, 10063.22592995,
                                  6859.59630725,
                  9695.84208061,
                  8621.83915759, 10175.06753933,
                                                   9063.21918346,
                                                                    8867.24865352,
                  7094.44228184,
                                  9058.37693565,
                                                   9474.82390731, 10406.09102832,
                 10112.65006224,
                                                                    9382.18149429,
                                  6820.90463865,
                                                   9700.36507783,
                  9632.57617775, 10553.81356008,
                                                   9847.21129432,
                                                                    7247.16814789,
                  9990.23331336,
                                  7084.23300123,
                                                   9977.34233656,
                                                                    7245.01115798,
                  6490.89305576,
                                  9737.86785115,
                                                   9853.54349825,
                                                                    8568.7125607 ,
                                                                    6870.28308427,
                  8506.81438703,
                                  6484.69051659,
                                                   7883.1895563 ,
                  8263.36833348.
                                 10551.03496347,
                                                   7434.71134313.
                                                                    8637.85174602,
                                 10010 4700077
                                                    7224 60000000
```

Out[21]: ► GridSearchCV ► estimator: Ridge ► Ridge

```
In [22]: ridge_regressor.best_params_
Out[22]: {'alpha': 30}
In [23]: ridge=Ridge(alpha=30)
    ridge.fit(x_train,y_train)
    y_pred_ridge=ridge.predict(x_test)
```

```
In [24]:
         ypred=ridge regressor.predict(x test)
         ypred
Out[24]: array([ 5819.29853963,
                                  7264.57491791,
                                                   9738.88270579,
                                                                    9794.47839507,
                 10050.35072397,
                                  9548.82126342.
                                                   9750.20283681. 10118.76944676.
                  9656.2363147 ,
                                  9247.20526971, 10474.46954
                                                                    7800.22901654,
                  7695.77817109,
                                  6317.72759712,
                                                   9542.31591964, 10420.56401819,
                  9641.41151189,
                                  7746.00639631,
                                                   4909.8836403 , 10575.9590411 ,
                 10447.28811339, 10440.93292264,
                                                   7492.38838409, 10023.77691534,
                  6993.68728961,
                                  9012.08291864,
                                                   4822.19326199,
                                                                    6980.28023648,
                                                                    5328.48898357,
                  7816.98010837,
                                  9677.40953383,
                                                   7336.83285116,
                                  5073.55505956,
                                                                    5693.27871402,
                  5430.56724837,
                                                   8936.61797371,
                  9939.05168141,
                                  8309.31737942,
                                                   6213.4861627 ,
                                                                    8409.23567191,
                  9693.0168448 ,
                                  6873.88260945,
                                                   9125.50501592, 10086.14831587,
                  8615.86224143, 10176.53613302,
                                                                    8863.55539547,
                                                   9084.51866352,
                                                   9472.31391242, 10401.71056408,
                  7082.99237491,
                                  9054.89062122,
                 10110.24411314,
                                  6837.93965878,
                                                   9697.35103307,
                                                                    9405.38998926,
                  9653.58056603, 10549.50117936,
                                                   9840.96037592,
                                                                    7263.00085407,
                  9985.59074909,
                                  7075.08499779,
                                                   9973.28948478,
                                                                    7235.14597592,
                  6479.76739925,
                                  9738.88533685,
                                                   9849.24462578,
                                                                    8587.72121603,
                                                                    6871.81868177,
                  8500.85578807,
                                  6473.43468594,
                                                   7872.26497993,
                  8258.28361541, 10545.55397382,
                                                   7426.43055818,
                                                                    8629.44613409,
```

```
In [25]: from sklearn.model selection import GridSearchCV
         from sklearn.linear model import ElasticNet
         elastic = ElasticNet()
         parameters = {'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20]}
         elastic regressor = GridSearchCV(elastic, parameters)
         elastic regressor.fit(x train, y train)
Out[25]:
                GridSearchCV
          ▶ estimator: ElasticNet
                ▶ ElasticNet
In [26]: elastic regressor.best params
Out[26]: {'alpha': 0.01}
In [27]: elastic=ElasticNet(alpha=30)
         elastic.fit(x train,y train)
         y pred elastic=elastic.predict(x test)
In [28]: from sklearn.metrics import mean squared error
         mean squared error(ypred,y test)
Out[28]: 574728.5696156605
In [29]: | from sklearn.metrics import mean_squared_error
         Ridge Error=mean squared error(y pred ridge,y test)
         Ridge Error
Out[29]: 574728.5696156605
```

```
In [30]: from sklearn.metrics import mean_squared_error
         elastic_Error=mean_squared_error(y pred elastic,y test)
         elastic Error
Out[30]: 581638.2119710302
In [31]: from sklearn.metrics import r2 score
         r2_score(y_test,ypred)
Out[31]: 0.8435021284061197
In [32]: from sklearn.metrics import r2 score
         r2_score(y_test,y_pred_ridge)
Out[32]: 0.8435021284061197
In [33]: from sklearn.metrics import r2_score
         r2_score(y_test,y_pred_elastic)
Out[33]: 0.8416206414238153
In [ ]:
```