1

1 第二章

和答案对不上的有第 3、19、21、23 题 没做出来的有第 16 题

1.

$$\begin{split} \bar{A}_{45:\overline{20}|} &= \bar{A}_{45:\overline{20}|}^{1} + A_{45:\overline{20}|} \\ &= \int_{0}^{20} e^{-\delta t} \ _{t} p_{45} \ \mu_{45+t} \ dt + e^{-20t} \ _{20} p_{45} \\ &= 0.39814 \end{split}$$

其中 $_tp_{45}$ $\mu_{45+t}=-\frac{d}{dt}\frac{l_{45+t}}{l_{45}}=\frac{1}{58}$, $_{20}p_{45}=\frac{l_{65}}{l_{45}}=0.655172.$

2.
$$\bar{A}_{40:\overline{10}}^{1} = \int_{0}^{10} e^{-\delta t} \,_{t} p_{40} \,\, \mu_{40+t} \,\, dt = 0.125330$$
 其中 $_{t} p_{40} \,\, \mu_{40+t} = 1/60$

3.
$$E[Z] = \int_0^{50} v^t \ b_t \ _t p_{50} \ \mu_{50+t} \ dt = \frac{1}{50} \int_0^{50} 1.01^{-t} (1000 - 0.1t^2) \ dt = 730.18$$
 其中 $_t p_{50} \ \mu_{50+t} = 1/50$

4.
$$E[Z]=\int_0^{75}e^{-\delta t}\ g(t)\ dt=(1-e^{-75\delta})/75\delta=0.260395$$
 同理 $E[Z^2]=(1-e^{-150\delta})/150\delta=0.133260$,那么 $Var[Z]=E[Z^2]-(E[Z])^2=0.065454$

5.

\overline{k}	v^{k+1}	b_{k+1}	$_kp_x$	q_{x+k}	$v^{k+1} b_{k+1} {}_k p_x q_{x+k}$
0	0.943396	300000	1.0000	0.02	5660.3774
1	0.889996	350000	0.9800	0.04	12210.7512
2	0.839619	400000	0.9408	0.06	18957.9317

$$E[Z] = \sum_{k=0}^{2} v^{k+1} b_{k+1} p_x q_{x+k} = 36829.06$$

6.

\overline{k}	v^{k+1}	b_{k+1}	$_kp_x$	q_{x+k}	$v^{k+1} b_{k+1} k p_x q_{x+k}$
0	0.943396	1	1.0000	0.1500	0.141509
1	0.881679	1	0.8500	0.2353	0.176336
2	0.816369	1	0.6500	0.3846	0.204092

$$E[Z] = \sum_{k=0}^{2} v^{k+1} b_{k+1} {}_{k} p_{x} q_{x+k} = 0.521937$$

7.

\overline{k}	v^{k+1}	b_{k+1}	$_kp_x$	q_{x+k}	$v^{k+1} b_{k+1})^2 {}_k p_x q_{x+k}$	$(v^{k+1} b_{k+1} p_x q_{x+k})$
0	0.952381	1	1	0.021546	0.020520	0.019543
1	0.907029	1	0.978454	0.027202	0.024141	0.021897

$$E[Z] = \sum_{k=0}^{1} v^{k+1} b_{k+1} {}_{k}p_{x} q_{x+k} = 0.044662$$

$$E[Z^{2}] = \sum_{k=0}^{1} (v^{k+1} b_{k+1})^{2} {}_{k}p_{x} q_{x+k} = 0.041440$$

$$Var[Z] = E[Z^{2}] - (E[Z])^{2} = 0.039445$$

8. (例 2-7)
$$A_x^{(4)} \approx \frac{i}{i^{(4)}} A_x = 0.251771$$
 其中 $1+i = (1+i^{(4)}/4)^4 \implies i^{(4)} = 0.058695$, $A_x = \sum_{k=0}^{\infty} v^{k+1} {}_k p_x \ q_{x+k} = 0.246295$

9. i.
$$z = 0$$

$$F_Z(z) = P\{Z = 0\} = P\{T \le 10\} = {}_{10}q_{35} = 1 - \exp(-\int_0^{10} \mu \ dt) = 0.451188$$

ii.
$$0 < z \le v^{10}$$

iii.
$$v^{10} < z$$

$$F_Z(z) = 1$$

综上

$$F_Z(z) = \begin{cases} 0.451188, & z = 0\\ e^{-0.06t} + 0.451188, & 0 < z \le v^{10}\\ 1, & v^{10} < z \end{cases}$$

$$F_z^{-1}(0.9) = 0.263092 \ (t = 13.352520)$$

10.

$$(\bar{I}\bar{A})_x = \int_0^\infty t v^t \, _t p_x \, \mu_{x+t} \, dt = \int_0^\infty t e^{-\delta t} \, \mu e^{-\mu t} \, dt = \frac{\mu}{(\delta + \mu)^2}$$

$${}^2\bar{A}_x = \int_0^\infty (v^t)^2 \, _t p_x \, \mu_{x+t} \, dt = \int_0^\infty e^{-2\delta t} \, \mu e^{-\mu t} \, dt = \frac{\mu}{2\delta + \mu}$$
 因为 ${}^2\bar{A}_x = 0.25$,解得 $\mu = 0.04$,所以 $(\bar{I}\bar{A})_x = 4$.

11.

$$F_Z(z) = P\{Z \le z\} = P\{v^T \le z\} = P\{T \ge \ln z/(-\delta)\}$$

= $_t p_x = (50 - t)/50$

其中 $t = \ln z/(-\delta)$. $F_Z^{-1}(0.6) = 0.449329$ (t = 20)

12. 从下图可以看到 $(IA)_x - A_{x:1}^1$ 和 $(IA)_{x+1} + A_{x+1}$ 对应的现金流相同,只不过前者折现到 x,后者折现到 x+1. 那么 $(IA)_x - A_{x:1}^1 = A_{x:1}^1 [(IA)_{x+1} + A_{x+1}]$,所以 $[(IA)_x - A_{x:1}^1]/[(IA)_{x+1} + A_{x+1}] = A_{x:1}^1$.

$$(IA)_{x+1} \qquad \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \qquad 8 \qquad \cdots$$

$$A_{x+1} \qquad \qquad 1 \qquad \cdots$$

$$A_{x:\overline{1}|}^1 \qquad \qquad 1$$

$$(IA)_x \qquad \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \qquad 8 \qquad 9 \qquad \cdots$$

$$(x) \qquad \qquad 0 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \qquad 8 \qquad 9 \qquad 10$$

- 13. $(DA)_{x:\overline{5}|}^1 = 6A_{x:\overline{5}|}^1 (IA)_{x:\overline{5}|}^1 = 0.022081$ 其中 $(IA)_{x:\overline{5}|}^1 = (IA)_x - {}_5E_x \left[5A_{x+5} + (IA)_{x+5} \right] = 0.024809$, $A_{x:\overline{5}|} = A_{x:\overline{5}|}^1 + A_{x:\overline{5}|} \implies A_{x:\overline{5}|}^1 = 0.007815$ 其中 ${}_5E_x = A_{x:\overline{5}|} = v^5 {}_5p_x = 0.752185$
- 14. $(IA)_{40:\overline{10}|}^1 = (IA)_{40} [20_{20|}A_{40} + _{20|}(IA)_{40}]$ $(DA)_{x:\overline{5}|}^1 = 21A_{40:\overline{20}|}^1 - (IA)_{40:\overline{20}|}^1 = 0.64531$ 其中 $A_{40:\overline{20}|}^1 = A_{40} - _{20|}A_{40} = 0.10441.$ 又 $a \times (IA)_{40:\overline{20}|}^1 = 100 \implies a = 64.63, \ b \times (DA)_{40:\overline{20}|}^1 = 100 \implies b = 154.96.$ 所以 $64.63x < 154.96(20 - x) \implies x < 14.1136$,即 14 年.
- 15. 因为 $Z_3 = Z_1 + Z_2$,所以 $E[Z_3] = E[Z_1] + E[Z_2]$, $Var[Z_3] = Var[Z_1] + Var[Z_2] + 2Cov[Z_1, Z_2]$. 已知 $E[Z_2]$ 和 $Var[Z_2]$,需要求 $E[Z_1]$ 、 $Var[Z_1]$

和 $Cov[Z_1, Z_2]$.

$$E[Z_1] = \int_0^{10} v^t \,_t p_x \,\, \mu_{x+t} \,\, dt = \int_0^{10} e^{-0.05t} \,\, 0.01 e^{-0.01t} \,\, dt = 0.078694$$

$$Var[Z_1] = \int_0^{10} (v^t)^2 \,_t p_x \,\, \mu_{x+t} \,\, dt = \int_0^{10} e^{-0.1t} \,\, 0.01 e^{-0.01t} \,\, dt = 0.078694$$

$$Cov[Z_1, Z_2] = E[Z_1 Z_2] - E[Z_1] E[Z_2] = -0.027543$$

其中 $E[Z_1Z_2] = 0$. 那么 $E[Z_3]0.428694$, $Var[Z_3] = 0.234658$.

16.
$$F_Z(z) = P\{Z \le z\} = P\{(40 - K)v^T \le z\} =$$

17.
$$Z=Tv^T=Te^{-0.05T}$$
, $Z'=e^{-0.05T}-0.05Te^{-0.05}=0 \implies T=20$, Z 的最大值为 7.35758.

$$Z'' = -0.05e^{-0.05T} - 0.05(e^{-0.05T} - 0.05Te^{-0.05}) = -0.1e^{-0.05T} + 0.025Te^{-0.05} = 0 \implies T = 4$$
,证明 Z 确实在 $T = 20$ 时取最大值.

19.

$$Z_1 = Tv^T$$
 $Z_2 = (K+1)v^{K+1}$
 $v^{1/2}Z_1 = Tv^{T+1/2}$ $Z_2 \approx (T+1/2)v^{T+1/2}$

那么
$$v^T=2/v^{1/2}(Z_2-v^{1/2}Z_1)$$
,则 $E[v^T]=2/v^{1/2}(E[Z_2]-v^{1/2}E[Z_1])$,即 $\bar{A}_x=2/v^{1/2}[(IA)_x-v^{1/2}(\bar{I}\bar{A})_x]=0.350730$

20.

$$\begin{split} A^{\,1}_{45:\overline{10}|} &= \sum_{k=0}^{9} v^{k+1}_{\quad k|} q_{45} = v q_{45} + \sum_{k=1}^{9} v^{k+1}_{\quad k} p_{45} \ q_{45+k} = v q_{45} + \sum_{k=1}^{9} v^{k+1}_{\quad 45} p_{\quad k-1} p_{46} \ q_{x+k} \\ A^{'1}_{45:\overline{10}|} &= \sum_{k=0}^{9} v^{k+1}_{\quad k|} q^{'}_{45} = v q^{'}_{45} + \sum_{k=1}^{9} v^{k+1}_{\quad k} p^{'}_{45} \ q_{45+k} = v q_{45} + \sum_{k=1}^{9} v^{k+1}_{\quad 45} p^{'}_{45} \ k_{-1} p_{46} \ q_{x+k} \\ \text{MLV} \ A^{'1}_{45:\overline{10}|} &= 0.95 \times 0.02 + 0.98 / 0.99 \times 0.1405 = 0.158081 \end{split}$$

21.

$$P\{Z > 0.25\} = P\{e^{-\delta T} > 0.25\} = P\{T < 34.66\}$$

$$= \int_0^{34.66} t p_x \ \mu_{x+t} \ dt = \int_0^{10} 0.01 e^{-0.01t} \ dt + \int_{10}^{34.66} 0.02 e^{-0.02t + 0.1} \ dt = 0.447444$$

22.
$$_{2|2}A_{[60]} = {}_{2}E_{[60]}A_{[60]+2:\overline{2}|}^{1} = 0.190258$$

$$\sharp \oplus {}_{2}E_{[60]} = v^{2} {}_{2}p_{[60]} = 0.763408$$

$$A_{[60]+2:\overline{2}|}^{1} = v \ q_{[60]+2} + v^{2} \ p_{[60]+2} \ q_{63} = 0.249222$$

23.

$$\begin{split} E[Z_1] &= 1000(v \ q_{49} + v^2 \ p_{49} \ q_{50}) = 27.055892 \\ E[Z_2] &= 1000(v \ q_{49}' + v^2 \ p_{49}' \ q_{50}') = 45.033820 \\ E[Z_1^2] &= 1000^2(v^2 \ q_{49} + v^4 \ p_{49} \ q_{50}) = 24583.41893 \\ E[Z_2^2] &= 1000^2(v^2 \ q_{49}' + v^4 \ p_{49}' \ q_{50}') = 41087.4825 \\ Var[Z_1] &= E[Z_1^2] - (E[Z_1])^2 = 23851.39764 \\ Var[Z_2] &= E[Z_2^2] - (E[Z_2])^2 = 39059.43756 \\ E[Z] &= E(E[Z_i \mid I]) = 30.651478 \\ Var[Z] &= E(Var[Z_i \mid I]) + Var(E[Z_i \mid I]) = 26944.71857 \end{split}$$

其中
$$I = \begin{pmatrix} 1 & 2 \\ 0.8 & 0.2 \end{pmatrix}$$
.

初始金额 = $1.649 \times \sqrt{100 \times 26944.71857} + 100 \times 30.651478 = 5771.955988$

24.
$$Var[Z] = {}^{2}A_{51} - (A_{51})^{2} = 0.054849$$

 $\sharp + A_{51} - A_{50} = A_{51} - (v \ q_{50} + v \ p_{50} \ A_{51}) = 0.004 \implies A_{51} = 0.601999$
 ${}^{2}A_{51} - {}^{2}A_{50} = {}^{2}A_{51} - (v^{2} \ q_{50} + v^{2} \ p_{50} \ {}^{2}A_{51}) = 0.004 \implies {}^{2}A_{51} = 0.417252$