SWE1010	Digital Image Processing	L	Т	P	J	С
		3	0	0	4	4
Pre-requisite	MAT1011		Syllabus version			
					٧	. 1.0
Course Objectives:						

Course Objectives:

- 1. Introduce the concept of digital image and the fundamental steps in digital image processing
- 2. Learn applying basic image processing techniques for developing specific image processing systems.
- **3.** Comprehend the steps of experimental design for a particular problem domain and demonstrate the system of image processing.

Expected Course Outcome:

- 1. Understand the concepts of image acquisition and digitization.
- 2. Classify image enhancement techniques and apply these techniques in both spatial and frequency domain.
- 3. Recognize the types of noise present in images and apply appropriate image restoration technique.
- 4. Categorize image segmentation techniques and apply these techniques
- 5. Study the importance of image compression and apply basic compression techniques to images.
- 6. Analyse various image representation techniques & descriptors and understand its importance to computer vision.
- 7. Implement basic morphological image processing techniques on images and understand color models for images
- **8.** Learn digital image processing stepts and apply appropriate techniques to a specific problem domain.

Student Lear	rning Outcomes (SLO)	1,2,5,6,14,17	
Module:1	DIGITAL IMAGE FUNDAMEN	ENTALS 6 hours	
Introduction, Digital Image Fundamentals, image acquisition and display using digital devices - Human			

visual perception, properties -Image sampling and quantization-Basic relationship between pixels.

Module:2 IMAGE ENHANCEMENT 8 hours

Image enhancement in the spatial domain: basic grey level transformation, Histogram Processing-Enhancement using arithmetic/Logic operations-Spatial filtering: smoothing and sharpening. Image enhancement in the frequency domain:Introduction to two-dimensional transforms- Discrete Fourier Transform, Discrete Cosine Transform, Discrete Wavelet Transform - smoothing frequency domain filtering-sharpening frequency domain filtering

Module:3	IMAGE RESTORATION	5 hours			
	Noise Models-Restoration in the presence of Noise only-spatial filtering-periodic noise reduction by frequency domain filtering.				
Module:4	IMAGE SEGMENTATION	8 hours			

Detection of discontinuities, Edge Linking and Boundary Detection, Thresholding Methods, Region Oriented Methods.

Module:5 IMAGE COMPRESSION

5 hours

Lossless Image Compression- The Concept of entropy and Huffman coding; Run-length coding for grey images, Lossy Image Compression – Predictive coding, transform coding – JPEG compression standard, Wavelet-based image compression JPEG2000.

Module:6 REPRESENTATION AND DESCRIPTION:

5 hours

Chain codes, Polygonal approximation, Signature Boundary Segments, Skeltons, Boundary Descriptors, Regional Descriptors, Relational Descriptors, Principal components for Description, Relational Descriptors.

Module:7 MORPHOLOGICAL AND COLOR IMAGE PROCESSING

6 hours

Dilation and Erosion-Opening and Closing-Hit or Miss Transformation-Basic morphological algorithms. Color Image processing: Light and color, color formation, Colour models, Histogram of a color Image, Color image filtering, Gamma correction and segmentation of color image.

Module:8	Contemporary issues: Applications of Image Processing in industry	2 hours	
	Total Lecture hours:	45 hours	

Text Book(s)

1. R.C. Gonzalez & R.E. Woods, "Digital Image Processing", Pearson Education, Edition, 2013

Third

Reference Books

- 1. S. Jayaraman, S. Esakirajan & T.Veerakumar "Digital Image Processing", Tata Mcgraw-Hill First Edition 2009.
- 2. A. K. Jain, "Fundamentals of Digital Image Processing," Pearson Education (Asia) Pte. Ltd./Prentice Hall of India, 2004.
- 3. Jhon C Ross, "The Image Processing Hand Book", CRC Press 5th Edition, 2006
- 4. B. Chanda and D. Dutta Majumdar "Digital Image Processing and Analysis", PHI, 2011.

Recommended by Board of Studies	12.06.2015		
Approved by Academic Council	No. 37	Date	16.06.2015