

DIGITAL COMMUNICATION

Bharathi V Kalghatgi.

Department of Electronics and Communication Engineering

POWER SPECTRUM OF A DISCRETE PAM SIGNAL

Polar NRZ Spectrum

Bharathi V Kalghatgi.

Department of Electronics and Communication Engineering

Finding S_A(f): Polar NRZ

i NRZ Polar

Let b_k indicate the k^{th} bit. We assume that 0 and 1 occur with equal probability. (Same as in Unipolar).

To nd $R_A(0)$:

$$b_k A_k P_r$$

0 -a 1/2
1 a 1/2

$$\therefore R_A(0) = E[A_k^2] = a^2 \cdot \frac{1}{2} + a^2 \cdot \frac{1}{2} = a^2$$

Finding $S_A(f)$: Polar NRZ

PES UNIVERSITY ONLINE

To find $R_A(1)$:

$$\therefore R_A(1) = E[A_k.A_{k-1}] = a^2.\frac{1}{4} + (-a^2).\frac{1}{4} + (-a^2).\frac{1}{4} + a^2.\frac{1}{4} = 0$$

We can see that $R_A(n) = 0$ for any $n \neq 0$ as it behaves identical to how it does for n = 1.

$$\therefore R_A(n) = a^2 \delta(n) \tag{1}$$

Finding $S_A(f)$: Polar NRZ

Substituting $R_A(n)$

$$S_X(f) = \frac{T_b^2 sinc^2(fT_b)}{T_b} \sum_{n=-\infty}^{\infty} a^2 \delta(n) e^{-j2\pi f n T_b}$$

$$= T_b sinc^2(fT_b) \sum_{n=-\infty}^{\infty} a^2 \delta(n) e^{-j2\pi f n T_b}$$

$$\therefore S_X(f) = a^2 T_b sinc^2(fT_b)$$
(2)

- (2) is the expression for power spectral density for NRZ polar scheme. It's plot is as shown in Figure (1)
 - Like, Unipolar, Polar also has a bandwidth of R_b Hz.
- ➤ As there is no impulse in the PSD, it has no DC Content.

Finding S_A(f): Polar NRZ

Figure: Power Spectral Density for Polar NRZ function

Polar NRZ Vs Unipolar NRZ

- Average power in polar NRZ, $P = \frac{E_b}{T_b} = a^2$
- To achieve the same error performance (that is, same gap between represented values for bits 0 and 1), we need the following signals for unipolar NRZ

Average power in unipolar NRZ

$$P = \frac{1}{2} \times \frac{4a^2T_b}{T_b} + \frac{1}{2} \times \frac{0}{T_b} = \frac{2a^2}{2}$$

• Unipolar NRZ needs twice the power. The reason is the presence of DC component

THANK YOU

Bharathi V Kalghatgi

Department of Electronics and Communication Engineering

BharathiV.Kalghatgi@pes.edu