Fonctions polynomiales

Définition 1. Soit a un réel et soit f la fonction définie pour tout $x \in \mathbb{R}$ par

$$f(x) = a$$

On dit alors que f est la fonction constante égale à a.

Définition 2. Soit a, b deux réels et $a \neq 0$. Soit f la fonction définie pour tout $x \in \mathbb{R}$ par

$$f(x) = ax + b$$

On dit alors que f est une fonction affine. On appelle a le coefficient directeur (ou pente) de f et b son ordonnée à l'origine.

Proposition 1. Soit f(x) = ax + b une fonction affine. On a alors

- Si a > 0, $f(x) \ge 0 \iff x \ge \frac{-b}{a}$
- Si $a < 0, f(x) \ge 0 \iff x \le \frac{-b}{a}$

Définition 3. Soit a,b,c trois réels et $a \neq 0$. Soit f la fonction définie pour tout $x \in \mathbb{R}$ par

$$f(x) = ax^2 + bx + c$$

On dit alors que f est une fonction polynomiale de degré 2.

Définition 4. On appelle discriminant d'une fonction polynomiale de degré 2, $f(x) = ax^2 + bx + c$, le nombre souvent noté Δ :

$$\Delta = b^2 - 4ac$$

Définition 5. On appelle racine de f un nombre r tel que f(r) = 0

Proposition 2. Soit f une fonction polynomiale de degré 2, $f(x) = ax^2 + bx + c$. Soit Δ son discriminant. On a alors :

— Si $\Delta > 0$, f admet deux racines réelles

$$r_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 $r_2 = \frac{-b - \sqrt{\Delta}}{2a}$

— Si $\Delta = 0$, f admet une unique racine réelle

$$r = \frac{-b}{2a}$$

— Si $\Delta < 0$, f n'admet aucune racine réelle (mais des racines complexes...)