

Operation Analytics and Investigating Metric Spike

TRAINITY PROJECT-3

Project Description

- Operational analysis is the process of examining and understanding a company's day-to-day operations with the goal of identifying areas for improvement and optimization. It involves using data, insights, and analytical techniques to assess various aspects of a company's operations.
- One of the key aspects of Operational Analytics is investigating metric spikes. This involves understanding and explaining sudden changes in key metrics, such as a dip in daily user engagement or a drop in sales. In this project, 2 cases are given "CASE STUDY 1" and "CASE STUDY 2" respectively. The goal of this project is to use your advanced SQL skills to analyze the data and provide valuable insights that can help improve the company's operations and understand sudden changes in key metrics.

<u>APPROACH</u>

I imported the dataset given by the team and extracted csv file and cleaned the data in excel sheet to improve data quality and analyze accurately. After importing dataset in MYSQL Workbench I carefully examined the values placed in each column of each table. Done some modification in tables in order to achieve accurate results.

Finally, run the appropriate MYSQL queries according to the given problem statement provided by team to find desirable output tables which will help the different departments of the organization/company.

TECH-STACK USED

MY SQL WOREKBENCH 8.0 CE:

open-source tool. It provides a userfriendly interface for visually designing and editing database schemas, writing and executing SQL queries, importing and exporting data, managing multiple servers, and analyzing query performance.

MICOSOFT POWER POINT:

MICROSOFT EXCEL:

 Microsoft Excel is a ubiquitous spreadsheet application that empowers users to organize, analyze, and visualize data .Its versatility and widespread adoption make it an indispensable tool for individuals and businesses across various industries.

Microsoft PowerPoint is a presentation software that allows you to create visually engaging slideshows.

INSIGHTS

I completed this project by using advance SQL learned from TRAINITY platform and gained knowledge about various advance SQL queries which are used in real-world problems. This project helped me to understand how the role of a Lead Data Analyst at a company like Microsoft works and uses his/her data analyst skills to contribute to the company's growth. Furthermore, I understood how to work with various datasets and tables and find out meaningful insights from that. Overall, the project contributes to the deeper understanding of key performance indicators and facilitates data-driven decision-making within the company/organization.

Case study-1

Job Data Analysis

A) JOBS REVIEWED OVER TIME

Task: Write an SQL query to calculate the number of jobs reviewed per hour for each day in November 2020.

```
#A) jobs reviewed over time

select ds as date,
count(job_id) as job_review_counts,
round(count(job_id)/(sum(time_spent)/(60*60)),2) as job_review_per_hour_each_day
from jobdata
where ds between '01-11-2020' and '30-11-2020'
group by ds
order by ds;
```

The most number of jobs are reviewed on 28th and 30th November, however the time taken by both is varied.

Result Grid						
	date	job_review_counts	job_review_per_hour_each_o			
١	11/25/2020	1	80.00			
	11/26/2020	1	64.29			
	11/27/2020	1	34.62			
	11/28/2020	2	218.18			
	11/29/2020	1	180.00			
	11/30/2020	2	180.00			

B) THROUGHPUT ANALYSIS

Task: Write an SQL query to calculate the 7-day rolling average of throughput. (number of events per second).

```
#B) Throughput analysis
 38
 39 • ⊖ WITH total_events AS ( SELECT date(ds)
       AS event date, COUNT(job id) AS
 40
       total jobs, SUM(time spent) AS
 41
       total time spent
 42
       FROM jobdata
 43
       GROUP BY DATE(ds))
       SELECT total_jobs / (total_time_spent / 3600
 45
     (total_time_spent / 3600)) OVER ( ORDER
 47
       BY event date ROWS BETWEEN 6
 48
       PRECEDING AND CURRENT ROW ) AS
       rolling_average
 50
       FROM total_events;
                           Export: Wrap Cell Content: TA
Result Grid Filter Rows:
  throughput rolling_average
 96.6443
              96.64430000
```

C) LANGUAGE SHARE ANALYSIS

Task: Write an SQL query to calculate the percentage share of each language over the last 30 days.

```
#C) language analysi
SELECT
    language,
    (COUNT(language) / (SELECT
            COUNT(language)
        FROM
            jobdata)) * 100 AS percentage
FROM
    jobdata
GROUP BY language;
```

sult Grid 📗 (🙌	Filter Rows:
language	percentage
English	12.5000
Arabic	12.5000
Persian	37.5000
Hindi	12.5000
French	12.5000
Italian	12.5000

D) <u>DUPLICATE ROWS DETECTION</u>

Task: Write an SQL query to display duplicate rows from the jobdata table.

```
#D) duplicate row detetction

SELECT
    job_id, COUNT(*) AS duplicate
FROM
    jobdata
GROUP BY job_id
HAVING COUNT(*) > 1;
```


There are 3 duplicates whose job_id is 23.

IMPORTING LARGE DATA-SETS

```
QL File 3° × SQL File 4°
     76 • ⊖ create table users(
      user id int,
      created at varchar(100),
      company id int,
      language varchar(50),
      activated at varchar(100),
      state varchar(50));
      Show variables like "secure file priv";
        DAD DATA INFILE "C:/users (1).csv
      into table users
      fields terminated by "."
      ALTER TABLE users ADD COLUMN temp created at DATETIME;
      ALTER TABLE users RENAME COLUMN temp_created_at TO temp_created_at_old;
      SELECT created at FROM users
       WHERE STR TO DATE(created at, '%d-%m-%Y %H:%i:%s') IS NULL;
      UPDATE users SET temp created at old = STR TO DATE(created at, '%d-%m-%Y %H:%i:%s')
       !HERE STR_TO_DATE(created_at, '%d-%m-%Y %H:%i:%s') IS NOT NULL;
      alter table users drop column created at;
      alter table users change column temp created at old created at datetime;
```

```
#creating table-2 events
4 • ⊖ create table events(
     user id INT,
     occurred at varchar(100),
     event_type varchar(50),
     event name varchar(100),
     location varchar(50),
     device varchar(50),
     user_type int );
 B • LOAD DATA INFILE "C:/events.csv"
     INTO TABLE events
     FIELDS TERMINATED BY ",
     ENCLOSED BY '"'
     LINES TERMINATED BY "\n"
     IGNORE 1 ROWS;
9 • select*from events;
10 • ALTER TABLE events ADD COLUMN temp_occured_at DATETIME;
1 • SET SQL_SAFE_UPDATES = 0;
     SET temp_occured_at = STR_TO_DATE(occurred_at, '%d-%m-%Y %H:%i:%s')
     WHERE STR TO DATE(occurred at, '%d-%m-%Y %H:%i:%s') IS NOT NULL;
15 • alter table events drop column occurred_at;
6 • alter table events change column temp occured at occurred at datetime;
```

```
174 # table-3 emailEvents
175 • ⊖ create table emailEvents(
     user_id int,
     occurred at varchar(100),
      action varchar(100).
      user_type int
     LOAD DATA INFILE "C:/email_events.csv"
      INTO TABLE emailevents
      FIELDS TERMINATED BY ","
      ENCLOSED BY '"'
      LINES TERMINATED BY "\n"
      ignore 1 rows;
     select*from emailevents;
     ALTER TABLE emailevents ADD COLUMN temp occured at DATETIME;
     UPDATE emailevents
      SET temp_occured_at = STR_TO_DATE(occurred_at, '%d-%m-%Y %H:%i:%s')
      WHERE STR TO DATE(occurred at, '%d-%m-%Y %H:%i:%s') IS NOT NULL;
     alter table emailevents drop column occurred at:
195 • alter table emailevents change column temp occured at occurred at datetime;
```

CASE-STUDY 2

INVESTIGATING METRIC SPIKE

A) Weekly User Engagement

Task: Write an SQL query to calculate the weekly user engagement.

```
#1) weekly user engagemenet

• SELECT extract(week from occurred_at) as week_number,
    count(distinct user_id) as num_users
    from events
    where event_type = 'engagement'
    group by week_number
    order by week_number;
```

	week_number	num_users					
•	17	663					
	18	1068					
	19	1113					
	20	1154					
	21	1121					
	22	1186					
	23	1232					
	24	1275					
	25	1264					
	26	1302					
	27	1372					
	28	1365					
	29	1376					
	30	1467					
	31	1299					
	32	1225					
Kes	Result 1 ×						

B) User Growth Analysis

Task: Write an SQL query to calculate the user growth for the product.

```
user grouth analysis
WEEK(created at) AS week,
  COUNT(*) AS users 2 FROM users
   GROUP BY WEEK(created at))

⇒ SELECT week, users_2, ((users_2-
  LAG(users_2) OVER (ORDER BY
  week)) / LAG(users_2) OVER (ORDER
   BY week))*100 AS percentage_growth
   FROM
   totalUsers;
```


Result Grid	Filter Rows:	Export: Wrap Ce
week	users_2	percentage_growth
15	828	5.0761
16	900	8.6957
17	876	-2.6667
18	828	-5.4795
19	968	16.9082
20	860	-11.1570
21	928	7.9070
22	1000	7.7586
23	984	-1.6000
24	1096	11.3821
25	1056	-3.6496
26	1028	-2.6515
27	1096	6.6148
28	1148	4.7445
29	1152	0.3484
Result 4 ×		

C) Weekly Retention Analysis

Task: Write an SQL query to calculate the weekly retention of users based on their sign-up cohort

```
SELECT users.user_id, Date(activated_at) as Date, week(activated_at) as week, COUNT(distinct users.user_id) as num_users

FROM users JOIN events ON events.user_id=users.user_id

WHERE event_type='signup_flow'

GROUP BY users.user_id,activated_at,week;
```

Re	Result Grid				
	user_id	Date		users	
•	11768	NULL	NULL	1	
	11770	NULL	NULL	1	
	11775	NULL	NULL	1	
	11778	NULL	NULL	1	
	11779	NULL	NULL	1	
	11780	NULL	NULL	1	
	11785	NULL	NULL	1	
	11787	NULL	NULL	1	
	11791	HULL	NULL	1	
Res	ult 3 ×	RUUL	NULL		

D) Weekly Engagement Per Device

Task: Write an SQL query to calculate the weekly engagement per device.

Re	Result Grid Filter Rows:		Export: Wrap Cell Content: 🖽		
	total_users	engagements	week_no	device	
•	9	67	17	acer aspire desktop	
	20	206	17	acer aspire notebook	
	4	83	17	amazon fire phone	
	21	251	17	asus chromebook	
	18	187	17	dell inspiron desktop	
	46	503	17	dell inspiron notebook	
	14	132	17	hp pavilion desktop	
00	16	190	17	htc one	
	27	330	17	ipad air	
	19	205	17	ipad mini	
	21	217	17	iphone 4s	
	65	706	17	iphone 5	
	42	473	17	iphone 5s	
	6	57	17	kindle fire	
	86	793	17	lenovo thinkpad	
Pa	6 sult 1 ×	59	17	mac mini	
Ke	Suit 1 X				

E) Email Engagement Analysis

Task: Write an SQL query to calculate the email engagement metrics.

```
#E) email engagement analysis
  SELECT week(occurred at) as week no,
  count(distinct user_id) as userID,

⊖ SUM(case when action="email_open" then 1

  else 0 end) as total emails opened,

⊖ SUM(case when action="email_clickthrough"

 then 1 else 0 end) as total_emails_clicked,
SUM(case when action="sent_weekly digest"
  then 1 else 0 end) as
  total emails sent, user type
  FROM emailevents
  GROUP BY week no, user type;
```

Re	Result Grid 11						
	week_no	userID	total_emails_opened	total_emails_clicked	total_emails_sent	user_type	
•	17	329	115	57	309	1	
	17	266	81	46	243	2	
	17	386	114	63	356	3	
	18	935	323	148	906	1	
	18	720	247	119	687	2	
	18	1059	342	163	1009	3	
	19	956	331	161	913	1	
	19	741	279	130	708	2	
	19	1090	362	186	1044	3	
	20	960	331	164	928	1	
	20	764	265	128	728	2	
	20	1150	408	215	1077	3	
	21	982	341	146	951	1	
	21	781	287	130	752	2	
	1						

RESULT

In this project, I learned advance SQL queries on real-life like datasets. This project yielded valuable insights into operational metrics, including job review activity, throughput trends, language preferences, and data quality issues. Moreover, the important task was 'importing the large data sets' into MYSQL workbench using both 'Table import wizard' and 'Load and Infile' command helped me to understand how to import large datasets within seconds into database. Additionally, we identified and addressed duplicate rows in the dataset.

By analyzing user engagement on a weekly basis, understanding user growth trends, and examining retention rates over time, I've identified patterns and opportunities for improvement in product usage and user retention strategies.

Additionally, analyzing engagement per device and email engagement metrics has provided insights into device preferences, communication effectiveness, and opportunities for optimizing engagement strategies. Overall, I realized the complexity of real-world problems and how data analysis is applied to solve complicated problems.

Thank You

PROJECT MADE BY: GITANJALI PEKAMWAR