# Задача А. Перестановка по номеру

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Выведите перестановку по её номеру.

#### Формат входных данных

В первой строке входного файла записано число N  $(1 \leqslant N \leqslant 12)$  — количество элементов в перестановке. Во второй строке записано число K  $(0 \leqslant K < N!)$  — номер перестановки в нумерации с нуля.

#### Формат выходных данных

В выходной файл выведите N чисел через пробел — искомую перестановку.

| стандартный ввод | стандартный вывод |
|------------------|-------------------|
| 3                | 1 2 3             |
| 0                |                   |

## Задача В. ПСП по номеру

Имя входного файла: parens.in Имя выходного файла: parens.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Определим по индукции множество  $\mathcal{R}$  *правильных скобочных последовательностей*:

- $\varepsilon \in \mathcal{R}$  (пустая строка)
- $A \in \mathcal{R} \Rightarrow (A) \in \mathcal{R}$
- $A \in \mathcal{R}, B \in \mathcal{R} \Rightarrow AB \in \mathcal{R}$

Пусть теперь  $\mathcal{R}_n$  — это множество правильных скобочных последовательностей из 2n символов — n открывающих и n закрывающих скобок.

Упорядочим элементы множества  $\mathcal{R}_n$  лексикографически с порядком символов '(' < ')'.

По данным числам n и p найдите p-ый в этом порядке элемент множества  $\mathcal{R}_n$ .

#### Формат входных данных

В первой строке входного файла заданы через пробел два целых числа n и p ( $0 \le n \le 20$ ,  $0 \le p \le 2 \cdot 10^9$ ). Скобочные последовательности нумеруются с нуля.

#### Формат выходных данных

В первой строке выходного файла выведите 2n символов без пробелов — p-ю правильную скобочную последовательность длины 2n.

Если для данного n не существует p-я правильная скобочная последовательность, выведите в первой строке "N/A".

| parens.in   | parens.out |
|-------------|------------|
| 3 0         | ((()))     |
| 4 200000000 | N/A        |
| 3 4         | ()()()     |

## Задача С. Новогодняя гирлянда

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

256 мегабайт

Дети в детском саду как-то раз решили повесить к Новому году гирлянду. Но это оказалось для них очень трудной задачей. На помощь пришёл Дед Мороз, который теперь каждый Новый год приносит с собой гирлянду и помогает её повесить.

Гирлянда представляет собой ломаную в плоскости, состоящую из n звеньев. Гирлянда начинается в точке (0,0), возле электророзетки и должна заканчиваться в точке (n,0). Число n назывется длиной гирлянды. Каждое звено может располагаться либо горизонтально, либо под углом  $45^{\circ}$  к оси OX. Длина горизонтальной проекции любого звена равна 1. При этом не должно быть вершины ломаной с отрицательной координатой y, а также двух последовательных вершин с нулевой координатой y. Поднимающимся (опускающимся) назовём звено ломаной, у которого координата у правого конца больше (соответственно, меньше) координаты у левого конца. Звено, у которого координаты у концов совпадают, назовём горизонтальным. Обозначим поднимающееся звено буквой u, опускающееся — буквой d, а горизонтальное — буквой d. Тогда гирлянда кодируется строкой из d0 символов. У Деда Мороза есть волшебная книга, в которой перечислены все гирлянды длины d1 виде строк. Хотя книга и волшебная, строки в ней располагаются в обычном лексикографическом порядке, по возрастанию. Дед Мороз отметил на полях книги галочкой гирлянду, которую повесил в прошлый раз. В этот Новый год он хочет повесить следующую в книге гирлянду. Найдите эту гирлянду без использования волшебной книги.

### Формат входных данных

В первой строке вводится целое число  $n\ (2\leqslant n\leqslant 100\,000)$ . Во второй — строчка из n букв (все буквы: u, d, либо h) — прошлогодняя гирлянда.

#### Формат выходных данных

Выведите в виде строки гирлянду, которую Дед Мороз Павлович должен прихватить с собой в этот Новый год, либо No solution, если такой гирлянды не существует.

| стандартный ввод | стандартный вывод |
|------------------|-------------------|
| 6                | uhhdud            |
| uhduhd           |                   |

# Задача D. Диофантово уравнение

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Даны натуральные числа a,b и c. Решите в целых числах уравнение ax+by=c. Среди множества решений следует выбрать такое, где x имеет наименьшее неотрицательное значение.

#### Формат входных данных

Входной файл содержит три целых числа a и b и c  $(1 \le a, b, c \le 10^4)$ .

#### Формат выходных данных

В выходной файл выведите искомые x и y через пробел. Если решения не существует, выведите одну строку «Impossible».

| стандартный ввод | стандартный вывод |
|------------------|-------------------|
| 1 2 3            | 1 1               |

# Задача Е. Система линейных сравнений

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 4 секунды Ограничение по памяти: 256 мегабайт

256 мегабайт

Дана система из двух линейных сравнений:

$$\begin{cases} x \equiv a \pmod{n}, \\ x \equiv b \pmod{m}; \end{cases}$$

где числа n и m не обязательно взаимно простые. Решите эту систему или определите, что она не имеет решений.

### Формат входных данных

В первой строке входного файла записано единственное число  $1 \le t \le 100\,000$ . В следующих t строках содержатся по четыре целых числа a, b, n, m, задающих одну систему сравнений. Все числа не превосходят по модулю  $10^4, n > 1, m > 1$ .

#### Формат выходных данных

Программа должна вывести t строк, по одной на каждую систему.

В случае, если система не имеет решений, выведите строку "NO".

В случае, если решение есть, то необходимо вывести слово "YES" и два таких числа  $x_0$  и p,  $0 \le x < p$ , такие, что множество чисел  $x = x_0 + kp$ , где k — произвольное целое число является решением данной системы.

| стандартный ввод | стандартный вывод |
|------------------|-------------------|
| 3                | YES 38 45         |
| 3 2 5 9          | YES 1 45          |
| 1 1 5 9          | NO                |
| 7 13 20 24       |                   |

# Задача F. Засекреченная переписка

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

На каждой из трех осей установлено по одному вращающемуся диску и неподвижному указателю (стрелке). Диски соединены последовательно. На первом диске n зубцов, на втором — m, на третьем — k. На каждом диске первого, второго и третьего диска по часовой стрелке написаны в порядке возрастания числа от 1 до n, от 1 до m и от 1 до k, соответственно. Неподвижные указатели зафиксировали таким образом, что когда указатель первой оси указывает на число, указатели двух других осей также указывают на числа. Вася записывает три числа ( $a_1, a_2, a_3$ ), на которые показывают указатели. После этого он поворачивает первое колесо на угол  $\frac{360^\circ}{n}$  против часовой стрелки, чтобы напротив указателя на первой оси оказался следующий (по часовой стрелке) зубец. При этом второе колесо поворачивается на угол  $\frac{360^\circ}{m}$  по часовой стрелке (размеры зубцов у вращающихся колесиков одинаковые, поэтому размеры самих колесиков разные, чтобы на границе колесиков равномерно уложилось разное число одинаковых по размеру зубцов), а третье колесо поворачивается на угол  $\frac{360^\circ}{k}$  против часовой стрелки. Вася снова записывает три числа, на которые указывают указатели.

Поступая и далее таким образом, Вася заметил, что после некоторого количества таких действий указатели показывают на три первоначальных числа.

Чтобы понять, как рассекречивать переписку, основанную на считывании данных с колесиков, Васе необходимо понять, как по двум данным тройкам чисел определить, принадлежат ли они к одной последовательности. Иначе говоря, можно ли целым количеством поворотов перейти от первой тройки ко второй. Вы, конечно, хотели бы помочь Васе и готовы написать программу, которая поможет ему получить ответ.



#### Формат входных данных

В первой строке содержится число T  $(1\leqslant T\leqslant 10)$  — количество пар троек, которые хочет проверить Вася.

Во второй строке содержатся три числа n, m и k  $(1 \leqslant n, m, k \leqslant 10^{18})$  — количества зубцов, соответственно, на первом, втором и третьем колесе.

В следующих  $2 \cdot T$  строках записаны по три натуральных числа  $a_1, a_2, a_3$  (первая тройка на одной строке),  $b_1, b_2, b_3$  (вторая тройка на другой строке).

Гарантируется, что  $1 \le a_1, b_1 \le n, 1 \le a_2, b_2 \le m, 1 \le a_3, b_3 \le k$ .

#### Формат выходных данных

Для каждой пары троек выведите YES, если обе тройки принадлежат одной последовательности, и NO иначе.

#### Т-Поколение 2024-2025. В. Математика - 0 Т-Банк, 23.11.2024

Каждое слово должно быть в отдельной строке, в порядке, соответствующем входным данным.

### Примеры

| стандартный ввод | стандартный вывод |
|------------------|-------------------|
| 3                | YES               |
| 11 13 15         | YES               |
| 5 5 5            | YES               |
| 6 4 6            |                   |
| 11 13 15         |                   |
| 1 12 1           |                   |
| 2 13 2           |                   |
| 1 1 1            |                   |
| 2                | NO                |
| 2 2 2            | YES               |
| 1 1 1            |                   |
| 1 1 2            |                   |
| 1 1 1            |                   |
| 2 2 2            |                   |
| 1                | YES               |
| 7 5 3            |                   |
| 1 1 1            |                   |
| 2 1 1            |                   |

#### Замечание

В первом примере в 1-й и 2-й парах вторая тройка получается из первой за один поворот первого колеса против часовой стрелки. В третьем случае из второй тройки можно получить первую одним поворотом первого колеса против часовой стрелки. Отсюда следует, что тогда из первой можно каким-то образом получить вторую.

Во втором примере в первой паре тройки нельзя перевести друг в друга. Во второй тройки переходят друг в друга при одном повороте.

# Задача G. Sigma-функция на отрезке

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Нужно научиться считать  $\sum\limits_{i=L}^{R}\sigma(i)$ . Где  $\sigma(n)$  — сумма натуральных делителей числа n.

#### Формат входных данных

Последовательность из не более чем  $10^5$  запросов. Каждый запрос записан на отдельной строке. Формат запроса прост: числа  $L, R \ (1 \le L \le R \le 5 \cdot 10^6)$ .

#### Формат выходных данных

Для каждого запроса нужно вывести одно число —  $\sum\limits_{i=L}^{R}\sigma(i).$ 

| стандартный вывод |
|-------------------|
| 83                |
| 4                 |
| 18                |
|                   |

# Задача Н. Функция Эйлера

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3 секунды Ограничение по памяти: 1024 мегабайта

Красить забор — не очень. Вернёмся к математике.

#### Формат входных данных

Дано число  $n \ (1 \le n \le 10^8)$ .

#### Формат выходных данных

Для каждого числа от 1 до n требуется посчитать функцию Эйлера от него. Так как чисел очень много, сначала выведите сумму функций Эйлера для первых 100 чисел, потом для вторых 100 чисел, потом для третьих 100 чисел и так далее. Если n не делится на 100, последнее из выведенных вами чисел будет состоять из суммы меньше, чем 100 слагаемых.

#### Примеры

| стандартный ввод | стандартный вывод |
|------------------|-------------------|
| 10               | 32                |
| 200              | 3044 9188         |

#### Замечание

Для чисел от 1 до 10 функция Эйлера будет равна соответственно 1,1,2,2,4,2,6,4,6,4, что в сумме даёт 32.

## Задача І. Хорошие массивы

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 1024 мегабайта

Совсем недавно Вася узнал, что числа можно делить друг на друга нацело. Невероятно воодушевленный этим знанием, он стал изучать массивы, в которых одни числа делятся на другие. Вася называет массив из n целых положительных чисел  $a_1, a_2, a_3, \ldots, a_n$  хорошим, если для любого iот 1 до n-1 число  $a_i$  делится нацело на число  $a_{i+1}$ . Вася очень любит изучать хорошие массивы, а поэтому ему интересно, сколько всего существует хороших массивов размера n, все числа в которых не превосходят c.

#### Формат входных данных

В единственной строке даны два целых числа n и c  $(1 \le n, c \le 5 \cdot 10^7)$  — количество чисел в массиве и максимальное значение чисел в массиве.

#### Формат выходных данных

Выведите единственное число — количество хороших массивов из n целых положительных чисел, не превосходящих c. Так как искомое количество массивов может быть слишком большим, выведите его по модулю  $998\,244\,353$ .

### Примеры

| стандартный ввод | стандартный вывод |
|------------------|-------------------|
| 3 3              | 7                 |
| 2 6              | 14                |

#### Замечание

В первом примере подходят следующие массивы: (1,1,1), (2,1,1), (3,1,1), (2,2,1), (3,3,1), (2,2,2), (3,3,3).

Во втором примере удовлетворят условиям 14 массивов: (1,1), (2,1), (3,1), (4,1), (5,1), (6,1), (2,2), (4,2), (6,2), (3,3), (6,3), (4,4), (5,5), (6,6).

## Задача Ј. Глина или не глина?

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Вам дано положительное целое число k. Найдите количество троек положительных целых чисел (n, p, m), таких что  $n^2 - k \cdot p^m = 1$ , где p — простое число, либо сообщите, что существует бесконечное количество таких троек чисел.

#### Формат входных данных

В первой строке записано число  $t\ (1\leqslant t\leqslant 100)$  — количество наборов входных данных.

Далее следует описание наборов входных данных.

Единственная строка описания набора входных данных содержит целое число  $k \ (1 \leqslant k \leqslant 10^9)$ .

#### Формат выходных данных

Для каждого набора входных данных выведите количество троек положительных чисел (n, p, m), таких что  $n^2 - k \cdot p^m = 1$  и p — простое число, либо -1, если существует бесконечное количество таких троек чисел.

#### Пример

| стандартный ввод | стандартный вывод |
|------------------|-------------------|
| 2                | 3                 |
| 5                | 0                 |
| 22               |                   |

#### Замечание

В первом наборе для k=5 существуют три подходящие тройки чисел: (4,3,1), (6,7,1) и (9,2,4). Во втором наборе для k=22 не существует ни одной подходящей тройки чисел.

## Задача К. Очередная задача про теорию чисел

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Даны n простых чисед  $1 < p_1 < p_2 < \ldots < p_n < 10^{18}$ , где  $p_1 \leqslant 100$ . Назовем число x хорошим, если x делится хотя бы на одно  $p_i$ .

Рассмотрим все *хорошие* числа  $a_1, a_2, \ldots, a_m$  в промежутке  $[0, p_1 \cdot p_2 \cdot \ldots \cdot p_n]$  и отсортируем их по возрастанию  $(a_1 < a_2 < \ldots < a_m)$ . Ваша задача — вычислить следующую величину:  $\sum\limits_{i=1}^{m-1} (a_{i+1} - a_i)^2$ . Так как ответ может быть достаточно большим, выведите остаток от деления ответа на число 998 244 353.

#### Формат входных данных

Первая строка содержит целое число  $n \ (1 \le n \le 10^5)$ .

Вторая строка содержит n целых чисел  $p_1, p_2, \ldots, p_n$  ( $1 < p_1 < p_2 < \ldots < p_n < 10^{18}$ ). Гарантируется, что  $2 \leqslant p_1 \leqslant 100$  и все  $p_i$  являются простыми.

#### Формат выходных данных

Выведите одно целое число — остаток от деления ответа на число 998 244 353.

| стандартный ввод | стандартный вывод |
|------------------|-------------------|
| 2                | 18                |
| 2 5              |                   |
| 3                | 31275             |
| 5 7 233          |                   |

# Задача L. Маткульт-привет!

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Маткульт-привет!

Алексей Савватеев

Сегодня на очередном занятии в математическом кружке, посвященном теории чисел, Сережа узнал много новых для него интересных функций. В частности, ему очень понравилась функция  $\varphi(n)$ , которая определяется следующим образом:  $\varphi(n)$  равно количеству натуральных чисел, не превосходящих n, взаимно-простых с n. Эта функция показалась Сереже очень красивой, так как на занятии он узнал несколько ее замечательных свойств. Например, для любых взаимно-простых чисел a и b верно, что  $\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$ .

Напомним, что натуральные числа a и b называются a взаимно-простыми, если их наибольший общий делитель равен единице. Например, числа b и b являются взаимно-простыми, а числа b и b — нет (их наибольший общий делитель равен b 3).

Приведем некоторые примеры значений функции  $\varphi(n)$ :

- $\varphi(5) = 4$  (натуральные числа, не превосходящие 5, взаимно-простые с 5: 1, 2, 3, 4),
- $\varphi(1) = 1$  (существует всего одно натуральное число, не превосходящее 1 само число 1),
- $\varphi(6) = 2$  (натуральные числа, не превосходящие 6, взаимно-простые с 6: 1, 5).

Сережа очень любит натуральные числа из промежутка [l,r], то есть числа  $l,l+1,\ldots,r$ . Начинающему математику тут же захотелось исследовать поведение функции  $\varphi(n)$  на промежутке [l,r].

Сережа хочет найти такое натуральное число x, что  $l \le x \le r$ , а также  $\varphi(x) \ge \varphi(y)$  для любого натурального числа  $l \le y \le r$ . Так как Сережа является начинающим математиком, он не справился с этой задачей, поэтому решить ее придется вам.

#### Формат входных данных

Единственная строка содержит два натуральных числа l и r ( $1 \le l \le r \le 10^{12}$ ).

#### Формат выходных данных

Выведите одно натуральное число x, для которого верно, что  $l \leqslant x \leqslant r$ , а также  $\varphi(x) \geqslant \varphi(y)$  для любого натурального числа  $l \leqslant y \leqslant r$ .

Если существует несколько подходящих чисел x, выведите любое из них.

#### Примеры

| стандартный ввод | стандартный вывод |
|------------------|-------------------|
| 1 6              | 5                 |
| 10 10            | 10                |
| 14 16            | 16                |

#### Замечание

В первом примере значения функции  $\varphi(n)$  для всех натуральных чисел из промежутка [1,6] равны:  $\varphi(1) = 1, \varphi(2) = 1, \varphi(3) = 2, \varphi(4) = 2, \varphi(5) = 4, \varphi(6) = 2.$ 

Во втором примере 10 — единственное натуральное число из промежутка [10, 10].

В третьем примере можно вывести в качестве ответа числа 15 или 16, так как  $\varphi(14)=6$ , а  $\varphi(15)=\varphi(16)=8$ .

## Задача М. Полифемовы тройки

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Циклоп Полифем, некогда ослепленный хитроумным Одиссеем, ныне бросил овцеводство и занимается математикой. За прошедшее время обида на коварного грека несколько улеглась, Полифем проанализировал ситуацию и всецело поглощен работой над ошибками. Корни своего поражения слепой Полифем видит в незнании квадратных корней; им и только им посвящены его изыскания.

В настоящий момент циклопа занимают тройки целых неотрицательных чисел, обладающие следующим свойством: сумма корней из первых двух элементов равна корню из третьего (из уважения к ученому мы будем называть такие тройки  $nonu \phi e mo s u mu$ ). Так, например,  $\sqrt{7857} + \sqrt{24832} = \sqrt{60625}$  — полифемова тройка.

В наибольшей степени циклопа заинтересовал тот факт, что некоторые числа могут принадлежать более, чем одной полифемовой тройке. Для всякого числа C Полифем обозначил z(C) количество пар целых неотрицательных чисел  $A \leq B$ , для которых  $\sqrt{A} + \sqrt{B} = \sqrt{C}$ . Циклоп нашел поистине превосходный алгоритм вычисления z(C) с помощью циркуля и линейки, но увы: использовать его на практике Полифему мешает собственная слепота! Помогите циклопу найти значение функции z(C).

#### Формат входных данных

В единственной строке находится одно целое число  $C, 0 \le C \le 10^{18}$ .

#### Формат выходных данных

Выведите ровно одно целое число — z(C).

| стандартный ввод | стандартный вывод |
|------------------|-------------------|
| 9                | 2                 |
| 3                | 1                 |

# Задача N. Чиселки

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.5 секунд Ограничение по памяти: 256 мегабайт

Даны два числа n и k.

Определим  $q_i$ . Изначально есть число i. Вы можете изменять его двумя способами:

- 1. Умножить текущее число на какое-то простое  $p \leq n$ .
- 2. Разделить текущее число на какое-то простое  $p \leqslant n$  (если делится).

 $q_i$  — количество различных чисел, которые можно получить, если вы можете выполнить эти операции в сумме не более k раз.

Найдите  $\sum\limits_{i=1}^{n}i\cdot q_{i}$  по модулю  $10^{9}+7.$ 

### Формат входных данных

Первая строка содержит два целых числа  $n, k \ (1 \leqslant n, k \leqslant 10^6).$ 

#### Формат выходных данных

Выведите одно число — ответ на задачу.

| стандартный ввод | стандартный вывод |
|------------------|-------------------|
| 3 1              | 23                |
| 4 2              | 82                |

# Задача О. Гиперпрефиксные суммы

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3 секунды Ограничение по памяти: 256 мегабайт

Дан массив  $s_0$ , состоящий из n элементов. После этого по массиву  $s_0$  строится массив  $s_1$  следующим образом:

$$s_1[i] = \sum_{j=1}^{i} s_0[j] \pmod{998244353}$$

Затем по аналогичной формуле по массиву  $s_1$  строится массив  $s_2$ , и так далее. От вас требуется вывести элементы массива  $s_k$ .

### Формат входных данных

В первой строке через пробел записаны два числа n и k ( $1 \le n \le 2000, 0 \le k \le 10^9$ ).

Во второй строке через пробел записаны n целых чисел — элементы массива  $s_0$   $(0 \leqslant s_0[i] < 998244353)$ .

### Формат выходных данных

Выведите через пробел n целых чисел — элементы массива  $s_k$ .

| стандартный ввод | стандартный вывод |
|------------------|-------------------|
| 4 1              | 3 23 26 30        |
| 3 20 3 4         |                   |
| 1 1              | 3                 |
| 3                |                   |
| 5 0              | 3 14 19 92 6      |
| 3 14 19 92 6     |                   |