

Práctica 8: Circuitos

Compilado: 6 de junio de 2025

- 1. Un lenguaje \mathcal{L} es esparso si existe un polinomio p tal que $|\mathcal{L} \cap \{0, 1^n\}| \leq p(n)$ para todo $n \in \mathbb{N}$. Probar que todo lenguaje esparso está en P/poly.
- 2. Probar que existen lenguajes fuera de P/poly.
- 3. Definimos la clase P_{advice} como la clase de lenguajes que se pueden resolver en tiempo polinomial asumiendo que se cuenta con un consejo a para cada tamaño n de tamaño polinomial en n. Es decir, $\Pi \in \mathsf{P}_{advice}$ si y solamente si existe una función $adv : \mathbb{N} \to \{0,1\}^*$ y una máquina polinomial M tal que

$$x \in \Pi \iff M(x, adv(|x|)) = 1$$

donde aparte existe un polinomio p con $|adv(n)| \le p(n)$ (es decir, el consejo es chico).

Probar que $P_{advice} = P/poly$.

- 4. Definimos $\mathsf{P}/f(n)$ como la clase de problemas que se resuelven con un consejo de tamaño f(n) (y entonces $\mathsf{P}/\mathsf{poly} = \bigcup_{k \in \mathbb{N}} \mathsf{P}/n^k$). Probar que $\mathsf{P} \neq \mathsf{P}/1 \cap \mathsf{R}$.
- 5. Probar que NP = P si y solamente si $NP \subseteq P/\log(n)$.
- 6. Probar que si $NP \nsubseteq P/poly$ entonces $NP \ne P$.
- 7. Probar que si $\mathsf{EXP} \subseteq \mathsf{P/poly}$ entonces $\Sigma_2^p = \mathsf{EXP}.$

Ayuda: Probar que si $\Pi \in \mathsf{EXP}$ y M es una máquina exponencial con Q estados que lo resuelve en $c2^{n^k}$ pasos entonces el lenguaje $\Pi_M = \{\langle x, i, t, p, q \rangle : i, t, p \leq c2^{|x|^k}, q \leq Q, \text{ y en el timestep } t$ el i-esimo bit de la memoria de M es 1, el puntero está en la posición p y la máquina está en el estado q} está en EXP . Usar el \exists para adivinar el circuito que resuelve Π_M , y luego el \forall para verificar que es el correcto.

- 8. Probar que si PSPACE \subseteq P/poly entonces PSPACE $= \Sigma_2^p \cap \Pi_2^p$.
- 9. Probar que los lenguajes
 - AND = $\{x_1 \dots x_n : \forall 1 \le i \le n, x_i = 1\}$
 - OR = $\{x_1 \dots x_n : \exists 1 \le i \le n, x_i = 1\}$

están en NC^1 . Usar esto para probar que que $AC^d \subseteq NC^{d+1}$ para todo $d \ge 0$.

- 10. Probar que $NC^1 \subseteq L$.
- 11. Decidir si las clases AC^k y NC^k están cerradas por unión, intersección y complemento.

12. Dadas dos matrices $A, B \in \{0, 1\}^{n \times n}$ definimos el producto booleano como

$$(A \cdot B)_{ij} = \bigvee_{k=1}^{n} (A_{ik} \wedge B_{kj})$$

Considerar el lenguaje

• PBM =
$$\{ \langle A, B, n, i, j \rangle : A, B \in n \times n, 0 \le i, j < n, (A \cdot B)_{i,j} = 1 \}$$

Probar que:

- a) $PBM \in AC^0$.
- b) El lenguaje
 - EBM = $\{\langle A, n, k, i, j \rangle : A \in \{0, 1\}^{n \times n}, k \leq \log n, (A^{\cdot 2^k})_{ij} = 1\}$ está en AC^1 .
- c) Concluir que $NL \subseteq AC^1$.
- 13. En este ejercicio se demuestra que el lenguaje
 - MAJORITY = $\{x : x \text{ tiene mas 1s que 0s}\}$

está en NC¹.

- a) Diseñar un circuito NC^0 que haga lo siguiente: dados 3 números de n bits x, y, z devuelve dos números u, v tales que x + y + z = u + v. Ayuda: Tomar $v_{i+1}u_i = x_i + y_i + z_i$.
- b) Probar que el lenguaje $\mathcal{L}=\{\langle s_1,s_2,\ldots,s_k,r\rangle:s_i,r\subseteq\{0,1\}^*,s_1+s_2+\ldots+s_k=r\}$ está en NC^1 .
- c) Probar Majority $\in \mathbb{NC}^1$.
- 14. Considerar HORN-SAT como la versión de SAT en la que cada cláusula tiene a lo sumo una variable no negada. Probar que HORN-SAT es P-completo. **Ayuda**: Para la pertenencia, recordar el algoritmo de resolución. Para la hardness, repasar la demostración del Teorema de Cook-Levin ¿Qué forma tiene la fórmula si la máquina es determinística?
- 15. Probar que $NC \subsetneq PSPACE$. **Ayuda**: probar que $NC^k \subseteq SPACE(\log^k n)$.
- 16. Sea REG el conjunto de lenguajes regulares. Probar que:
 - a) REG $\not\subseteq$ AC₀.
 - b) $AC_0 \nsubseteq REG$.
 - c) REG \subseteq NC₁.