

TFG del Grado en Ingeniería Informática

UBUVoiceAssistant
Interacción por voz con la
plataforma Moodle
Documentación Técnica

Presentado por Álvaro Delgado Pascual en Universidad de Burgos — 29 de junio de 2020

Tutor: D. Raúl Marticorena Sánchez

Índice general

Indice general	Ι
Índice de figuras	III
Índice de tablas	v
Apéndice A Plan de Proyecto Software	1
A.1. Introducción	1
A.2. Planificación temporal	
A.3. Estudio de viabilidad	
Apéndice B Especificación de Requisitos	15
B.1. Introducción	15
B.2. Objetivos generales	15
B.3. Catalogo de requisitos	15
B.4. Especificación de requisitos	17
Apéndice C Especificación de diseño	21
C.1. Introducción	21
C.2. Diseño de datos	21
C.3. Diseño procedimental	24
C.4. Diseño arquitectónico	27
Apéndice D Documentación técnica de programación	29
D.1. Introducción	29
D.2. Estructura de directorios	29
D.3. Manual del programador	30

II	Índice general

pénd	ce E Documentación de usuario
E.1.	Introducción
E.2.	Requisitos de usuarios
E.3.	Instalación
E.4.	Manual del usuario

Índice de figuras

A.1. Gráfico burndown del sprint 2	. 3
A.2. Issues completadas en el sprint 2	. 3
A.3. Gráfico burndown del sprint 3	
A.4. Issues completadas en el sprint 3	
A.5. Gráfico burndown del sprint 4	
A.6. Issues completadas en el sprint 4	
A.7. Gráfico burndown del sprint 5	. 7
A.8. Issues completadas en el sprint 5	
A.9. Gráfico burndown del sprint 6	. 8
A.10. Issues completadas en el sprint 6	. 9
A.11. Gráfico $burndown$ del $sprint$ 7	. 10
A.12. Issues completadas en el sprint 7	. 10
A.13.Gráfico burndown del sprint 8	. 11
A.14. Issues completadas en el sprint 8	. 12
A.15. Gráfico $burndown$ del $sprint$ 9	. 13
A.16. Issues completadas en el sprint 9	. 13
B.1. Diagrama de casos de uso	. 20
C.1. Diagrama de clases	. 24
C.2. Diagrama de secuencia de la conexión con Moodle	. 25
C.3. Diagrama de secuencia de la interacción del usuario por voz .	. 26
C.4. Diagrama de secuencia de la interacción del usuario por texto	. 26
C.5. Diagrama de despliegue	. 27
D.1. Creación de cuenta de Mycroft	. 30
D.2. Creación de cuenta de Mycroft	
D 3 Preferencias Atom	33

E.16. Visualización de logs

IV

Índice de tablas

B.1.	Caso de uso 1: Comando de voz	17
B.2.	Caso de uso 2: Pregunta por texto	17
B.3.	Caso de uso 3: Recordar credenciales	18
B.4.	Caso de uso 4: Activar o desactivar micrófono	18
B.5.	Caso de uso 5: Activar o desactivar skill	19
B.6.	Caso de uso 6: Ver logs $skill$	19
C.1.	Diccionario de datos de User	22
C.2.	Diccionario de datos de Course	22
C.3.	Diccionario de datos de Forum	22
C.4.	Diccionario de datos de Discussion	22
C.5.	Diccionario de datos de GradeItem	23
C.6.	Diccionario de datos de Event	23

Apéndice A

Plan de Proyecto Software

A.1. Introducción

En este apartado se va a comentar la planificación temporal del proyecto así como la metodología que se ha seguido para su desarrollo y la viabilidad del proyecto en el marco económico y legal.

A.2. Planificación temporal

En el desarrollo se ha empleado SCRUM, que es un marco de trabajo para desarrollo ágil de software, pero en una versión adaptada a un equipo de 1 persona, a diferencia de los equipos normales que suelen ser de 5 a 9 personas. También se ha cambiado la frecuencia de las reuniones de seguimiento, siendo semanales en vez de diarias.

Estas reuniones se han utilizado para exponer el trabajo realizado, los problemas que se han encontrado durante su realización, mostrar el avance del proyecto y fijar nuevas tareas para continuar con el proyecto.

Como es normal utilizando metodología ágil el desarrollo ha sido iterativo organizado por *sprints*. La duración de los *sprints* ha sido de una, dos y tres semanas.

Sprint 1

El primer *sprint* duró tres semanas (del 17 de febrero al 2 de marzo). La primera reunión de seguimiento se centró en explicar detalladamente los objetivos del trabajo. Gran parte del trabajo realizado en este *sprint*

se centró en investigar y aprender cómo funcionan los asistentes de voz, en concreto Alexa, así como centrarme en leer trabajos relacionados con lo que se pretendía en el proyecto para analizar qué cosas están bien hechas, qué se puede cambiar y la viabilidad de algunas otras cosas.

También aprendí cómo funciona Moodle, qué son los web services y cómo utilizarlos. Finalmente, intentando hacer el prototipado de una primera versión de Skill de Alexa, se decidió cambiar el asistente con el que se iba a desarrollar el trabajo.

Sprint 2

Este *sprint* tuvo una duración de tres semanas (del 2 de marzo al 12 de marzo). En este *sprint* me dediqué a plantear si seguir con este proyecto, cambiar totalmente o hacer alguna modificación. Finalmente me decanté por continuar con el asistente de voz pero necesitaba encontrar un asistente de voz que no me fuera a dar problemas. Se contempló el uso de Google Assistant pero no estaba seguro de que no me fuera a dar problemas similares que los que tuve con Alexa.

Continuando la búsqueda de un asistente me encontré con Mycroft, que era de código abierto y no tenía ningún tipo de limitación, además de estar bastante extendido para ser un asistente de este tipo. Así que decidí usar Mycroft para continuar el proyecto. Tras comentarle la decisión al tutor, empleé el resto del *sprint* para prototipar una primera version de la *Skill* y contemplar nuevas opciones que se habían abierto al usar Mycroft en vez de Alexa, como un cliente gráfico.

Figura A.1: Gráfico burndown del $sprint\ 2$

Figura A.2: *Issues* completadas en el *sprint* 2

El tercer *sprint* duró una semana (del 18 al 25 de marzo) y se desarrolló una versión inicial de la interfaz gráfica. También se implementó el acceso al calendario mediante los *web services* de Moodle. Finalmente estuve haciendo tests e investigando si podía haber algún tipo de problema en cuanto al número de accesos, y descubrí un problema de comunicación entre la aplicación y Mycroft.

Figura A.3: Gráfico burndown del sprint 3

Figura A.4: Issues completadas en el sprint 3

En las dos semanas (del 2 al 16 de abril) que duró este *sprint* seguí pensando sobre qué funcionalidad podía implementar en la *skill* y se integró la opción de preguntar por los eventos de un día concreto, así como la posibilidad de realizar las preguntas vía texto en la aplicación. En este *sprint* también se solucionó el problema de comunicación entre el proceso de la aplicación y los procesos de Mycroft mediante comunicación por *sockets*.

Figura A.5: Gráfico burndown del sprint 4

Figura A.6: Issues completadas en el sprint 4

El quinto *sprint* fue de una semana (del 23 al 30 de abril) y se centró en aumentar las interacciones con la *skill*, implementando las posibilidades de preguntar por actividad reciente dentro de un curso, eventos de un curso, notas finales del usuario y notas de un curso, que en esta primera implementación se utilizó *web scraping* a falta de un *web service*. Por último se mejoró la GUI permitiendo mostrar las respuestas también mediante texto y no solo audio.

Figura A.7: Gráfico burndown del sprint 5

Figura A.8: Issues completadas en el sprint 5

Este *sprint* tuvo una duración de dos semanas (del 30 de abril al 14 de mayo) y se centró en mejoras para la interacción del usuario con la aplicación. Entre estas mejoras están la recolección y muestra de *logs*, tanto de Mycroft como de la app, comprobar si el micrófono está activo, y se decidió separar

la skill en tres para poder deshabilitar módulos. También se aumentaron las interacciones de la skill permitiendo leer los foros de un curso.

Figura A.9: Gráfico burndown del sprint 6

Figura A.10: Issues completadas en el sprint 6

El séptimo *sprint* también duró dos semanas (del 14 al 28 de mayo) y se dedicó para mejorar la interfaz gráfica y crear el manual de instalación para que el tutor pudiera probarlo.

Figura A.11: Gráfico burndown del sprint 7

Figura A.12: Issues completadas en el sprint 7

En las dos semanas que duró este *sprint* (del 28 de mayo al 11 de junio) se realizaron cambios para mejorar la experiencia del usuario, como avisar si el idioma de la plataforma de Moodle a la que se intenta conectar es distinto al de la aplicación, internacionalizar la aplicación y una serie de mejoras visuales. Se cambió la interfaz gráfica implementando el uso de *layouts* y se implementó la gestión de *logs*. Por último se avanzó mucho en la memoria y anexos y se creó la primera *release*.

Figura A.13: Gráfico burndown del sprint 8

Figura A.14: Issues completadas en el sprint 8

13

Sprint 9

En el noveno y último sprint (del 11 al 25 de junio), se documentó y mejoró el código usando SonarCloud y se completó la memoria y anexos.

Figura A.15: Gráfico burndown del sprint 9

Figura A.16: Issues completadas en el sprint 9

A.3. Estudio de viabilidad

Viabilidad económica

El proyecto ha sido desarrollado por una persona, teniendo en cuenta que un programador junior cobra de media $18.695 \in [5]$ de sueldo bruto anual y descontamos las cuotas del IRPF (2079,4 \in) y de la Seguridad Social (1.187,1 \in), nos queda que el sueldo neto anual son $15.428,5\in$ Así que, por los 4 meses de duración, el coste total del proyecto sería de $6.231,67\in$ y el programador cobraría $3.857,12\in$

Aunque el proyecto sea de código libre y abierto y la intención sea distribuirlo de forma gratuita, si se vendiera una copia a 1250 usuarios por $5 \in$ la copia, se cubriría el coste total de desarrollo.

Viabilidad legal

El proyecto está licenciado bajo la licencia GPL-3.0. Esta licencia es muy permisiva, permitiendo usar, copiar, modificar, integrar con otro Software, publicar, sublicenciar o vender copias del Software a todo el que disponga de una copia y siempre y cuando todo el código fuente sea accesible y se utilice la misma licencia.

Las distintas herramientas que se han utilizado para el proyecto son:

- Mycroft, que tiene una licencia Apache-2.0[2]
- Bibliotecas de Python3:
 - requests[3], licencia Apache-2.0
 - PyQt5[4], licencia GPL

Los iconos utilizados en la aplicación se han sacado de fontawesome, que tienen licencia Creative Commons 4.0[1]

Apéndice B

Especificación de Requisitos

B.1. Introducción

Este apartado va a explicar los objetivos del proyecto y los requisitos necesarios para cumplirlos.

B.2. Objetivos generales

Los objetivos del proyecto son la recogida de datos de una plataforma de Moodle a través de sus web services y enviárselos al asistente de voz para que la interacción con la aplicación sea más interactiva. Todo esto a través de una interfaz gráfica que le permite al usuario configurar el asistente virtual en ejecución.

B.3. Catalogo de requisitos

Requisitos funcionales

- RF-1 Guardar los credenciales de inicio de sesión: la aplicación debe permitir al usuario recordar el usuario y host para ejecuciones posteriores.
- RF-2 Obtener los datos de Moodle: la aplicación debe obtener distintos datos de Moodle.

- RF-2.1 Obtener calificaciones del usuario: la aplicación debe ser capaz de obtener las notas finales del usuario, así como de un curso concreto.
- RF-2.2 Obtener eventos del calendario: la aplicación debe ser capaz de obtener los eventos próximos, de un día concreto y de un curso concreto.
- RF-2.3 Obtener los foros de un curso: la aplicación debe ser capaz de obtener los foros, así como sus discusiones, de un curso concreto.
- RF-3 Interacción por voz: la aplicación debe permitir al usuario interactuar con ella mediante comandos de voz
- RF-4 Interacción por texto: la aplicación debe permitir al usuario interactuar con ella mediante texto
- RF-5 Logs de ejecución: la aplicación debe guardar y visualizar mensajes describiendo la ejecución.
 - RF-5.1 Guardar logs: la aplicación debe guardar logs de la ejecución.
 - RF-5.1 Visualizar logs: la aplicación debe mostrar logs de la ejecución.
- RF-6 Activar/desactivar *skills*: la aplicación debe permitir al usuario activar o desactivar *skills* en ejecución.
- RF-7 Control del micrófono: la aplicación debe permitir al usuario silenciar o activar el micrófono para utilizar los comandos de voz.

Requisitos no funcionales

- RNF-1 Usabilidad: el usuario debe ser capaz de utilizar la aplicación sin mucho esfuerzo.
- RNF-2 Internacionalización: la aplicación debe permitir introducir nuevos idiomas y elegir entre estos.

B.4. Especificación de requisitos

CU-1: Comando	de voz	
Descripción	La aplicación deberá responder al usuario tras el comando de voz.	
Precondiciones	El usuario se ha logueado en Moodle y el micrófono está activo.	
Secuencia	Paso Acción 1 El usuario hace la pregunta por voz. 2 Mycroft convierte la pregunta a texto (STT). 3 Mycroft ejecuta el código correspondiente a la pregunta. 4 Mycroft convierte la respuesta a voz (TTS). 5 El usuario obtiene la respuesta.	
Postcondiciones		

Tabla B.1: Caso de uso 1: Comando de voz

CU-2: Pregunta	por texto	
Descripción	La aplicación deberá responder al usuario tras la pregunta por texto.	
Precondiciones	El usuario se ha logueado en Moodle.	
Secuencia	Paso Acción 1 El usuario introduce la pregunta. 2 La aplicación envía la pregunta a Mycroft. 3 Mycroft ejecuta el código correspondiente a la pregunta. 4 Mycroft convierte la respuesta a voz (TTS). 5 El usuario obtiene la respuesta.	
Postcondiciones		

Tabla B.2: Caso de uso 2: Pregunta por texto

CU-3: Recordar of	redenc.	raies
Descripción	La aplicación deberá recordar los credenciales de inicio de sesión.	
Precondiciones		
	Paso	Acción
Secuencia	1	El usuario introduce sus credenciales.
	2	El usuario marca las casillas de recordar.
	3	El usuario hace click en el botón acceder.
	4	La aplicación intenta loguear al usuario.
	5	Si los credenciales son correctos la aplicación guarda
		los credenciales.

Tabla B.3: Caso de uso 3: Recordar credenciales

CU-4: Activar o	desactivar micrófono	
Descripción	La aplicación deberá cambiar el estado del micrófono.	
Precondiciones		
	Paso Acción	
Secuencia	1 El usuario hace click en el botón del micrófono.	
	2 La aplicación cambia el estado del micrófono.	
Postcondiciones		

Tabla B.4: Caso de uso 4: Activar o desactivar micrófono

CU-5: Activar o	desactiv	var skill	
Descripción	La ap	La aplicación deberá cambiar el estado de las skills.	
Precondiciones			
	Paso	Acción	
Secuencia	1	El usuario hace click en el botón de administrar	
		skills.	
	2	El usuario marca las casillas de las <i>skills</i> que quiere	
		que estén activas.	
	3	El usuario hace click en el botón guardar.	
	4	La aplicación guarda el estado de las skills.	
Postcondiciones			

Tabla B.5: Caso de uso 5: Activar o desactivar skill

CU-6: Ver logs skill			
Descripción	La aplicación deberá mostrar los logs.		
Precondiciones	El usuario se ha logueado en Moodle.		
	Paso Acción		
Secuencia	1 El usuario hace click en el botón de logs.		
	2 La aplicación limpia los logs si es necesario.		
	3 La aplicación muestra los logs.		
	4 El usuario lee los logs.		
Postcondiciones			

Tabla B.6: Caso de uso 6: Ver logs skill

Figura B.1: Diagrama de casos de uso

Apéndice C

Especificación de diseño

C.1. Introducción

En este apartado se va a explicar como está diseñado el proyecto.

C.2. Diseño de datos

Los datos están correlacionados con el formato con el que se guardan en Moodle, aunque solo están modelados aquellos datos que me son útiles. En el paquete /src/model/ están las clases que modelan estos datos y son:

- User para guardar datos relativos al usuario.
- Course para guardar los datos de los cursos.
- Forum para los foros de un curso.
- Discussion para las discusiones de un foro.
- GradeItem para las notas.
- Event para los eventos del calendario.

Atributo	Tipo de dato	Descripción	
user_id courses	int dict	Identificador del usuario Diccionario que contiene los cursos del usuario La clave es la id del curso y el valor es el objeto Course asociado	

Tabla C.1: Diccionario de datos de User

Atributo	Tipo de dato	Descripción	
course_id	String	Identificador del curso	
name	String	Nombre del curso	
grades	Array	Vector que contiene las calificaciones	
		del usuario de ese curso	
events	Array	Vector que contiene los eventos del curso	
forums	Array	Vector que contiene los foros de ese curso	

Tabla C.2: Diccionario de datos de Course

Atributo	Tipo de dato	Descripción
id	int	Identificador del foro
name	String	Nombre del foro
discussions	Array	Vector que contiene las discusiones del curso

Tabla C.3: Diccionario de datos de Forum

Atributo	Tipo de dato	Descripción
discussion_id	int	Identificador del foro
name	String	Nombre de la discusión

Tabla C.4: Diccionario de datos de Discussion

23

Atributo	Tipo de dato	Descripción
value	int	Valor de la calificación
name	String	Nombre del <i>item</i>
type	String	Tipo del <i>item</i>

Tabla C.5: Diccionario de datos de GradeItem

Atributo Tipo de dato		Descripción	
name	String	Nombre del evento	
date	String	Fecha de finalización del evento	

Tabla C.6: Diccionario de datos de Event

Figura C.1: Diagrama de clases

C.3. Diseño procedimental

A continuación se van a detallar las conexiones realizadas por la aplicación para realizar la conexión con Moodle y conseguir el token del usuario y de los servicios de Mycroft.

Lo primero que se hace es enviar una petición usando como parámetros en la URL el usuario y la contraseña y como respuesta se obtiene el token del usuario, necesario para realizar el resto de peticiones de los web services

Después se obtiene información relevante para la aplicación a través del web service core_webservice_get_site_info. La respuesta de esta

petición devuelve el idioma de la plataforma de Moodle y la id del usuario de Moodle, que será necesaria para utilizar otros web services

Por último se obtienen los cursos en los que está inscrito el usuario mediante el web service core enrol get users courses

Figura C.2: Diagrama de secuencia de la conexión con Moodle

Si el usuario interactúa con la aplicación mediante voz el MessageBus manda el archivo mp3 con el comando al componente Voice. Después éste utiliza el motor de STT para convertir el archivo mp3 a una cadena de texto con la pregunta, la utterance. La utterance vuelve al MessageBus, quien la envía al componente Skills. El componente Skills utilizará el controlador de intents correspondiente para obtener el resultado. El resultado va de vuelta al MessageBus hacia el componente Voice de nuevo, que mediante el motor de TTS lo convertirá a un archivo mp3 y lo enviará al MessageBus, donde se reproducirá.

Si el usuario interactúa con la aplicación vía texto el proceso es el mismo pero omitiendo el paso del motor de STT.

Figura C.3: Diagrama de secuencia de la interacción del usuario por voz

Figura C.4: Diagrama de secuencia de la interacción del usuario por texto

C.4. Diseño arquitectónico

El proyecto realmente consiste en dos aplicaciones, una la aplicación con la interfaz gráfica y la otra Mycroft. Ambas aplicaciones utilizan una arquitectura cliente-servidor, que es una arquitectura en la que el cliente realiza peticiones a través de un medio y el servidor envía una respuesta en función de la petición a través del mismo medio. La aplicación gráfica actúa como cliente y el servidor es la API REST de la plataforma de Moodle, es decir, los web services. Mycroft tiene como cliente sus skills que se comunican con dos servidores, uno para las funciones de STT y otro para TTS. Y entre las dos aplicaciones también existe una arquitectura cliente-servidor, siendo la aplicación gráfica el servidor y los clientes las diferentes skills.

Figura C.5: Diagrama de despliegue

Apéndice D

Documentación técnica de programación

D.1. Introducción

A continuación se va a detallar la estructura del proyecto, como montar el entorno de desarrollo, como ejecutar la aplicación y como realizar pruebas.

D.2. Estructura de directorios

El proyecto está dividido de esta forma:

- /latex/: contiene los ficheros que se necesitan para generar le PDF con la memoria y los anexos, así como las imágenes utilizadas y la bibliografía.
- /src/: contiene los ficheros fuentes del proyecto...
- /src/GUI/: ficheros encargados del cliente gráfico
- /src/model/: ficheros para representar los datos de Moodle.
- /src/prototipo/: ficheros del prototipo para Alexa
- /src/webservice/: contiene los ficheros encargados de hacer las peticiones al servidor de Moodle para recuperar los datos.
- /src/util/: utilidades para los distintos módulos de la aplicación.
- /src/skills/: contiene las 3 Skills del proyecto.

D.3. Manual del programador

Para el entorno de desarrollo se necesita Python3 con sus dependencias, Mycroft y un editor de código fuente.

Python 3

Python 3 viene instalado por defecto en Ubuntu, pero necesitamos instalar las dependencias para la aplicación. Estas dependencias son PyQt5 y MycroftMessageBus y se instalan mediante los comandos:

- sudo apt-get install python3-pyqt5
- pip3 install mycroft-messagebus-client

Mycroft

Antes de nada, necesitamos tener git instalado, se instala mediante el comando **sudo apt install git**, y necesitamos una cuenta de Mycroft, para ello ir a **su página** y crearla.

Figura D.1: Creación de cuenta de Mycroft

Figura D.2: Creación de cuenta de Mycroft

Para instalar Mycroft hay que seguir los pasos en la sección **Getting Started** de la guía que hay en **su repositorio**, que son:

- 1. **cd** ~
- 2. git clone https://github.com/MycroftAI/mycroft-core.git
- 3. cd mycroft-core
- 4. bash dev_setup.sh

Tras introducir el comando **bash dev_setup.sh** se nos abrirá el proceso de instalación interactiva. Le vamos a dar a todo a *Yes* (escribir la letra Y en la consola)

Una vez instalado, continuar a la sección Running Mycroft de su repositorio para ejecutarlo, que se hace mediante el los comandos:

- 1. cd ~/mycroft-core
- 2. ./start-mycroft.sh debug

Tras iniciar Mycroft tenemos que decir por voz cualquier cosa para que se inicie el proceso de enlazamiento. La aplicación nos dirá un código (si se ha iniciado con la opción de *debug* también aparecerá en pantalla). Este código hay que ponerlo al añadir un nuevo dispositivo. En la página de Mycroft en la esquina superior derecha, en la sección de **Devices**, **Add Device** en el apartado de **Pairing code**. Al añadir el nuevo dispositivo es importante que en el apartado **Voice** se seleccione **Google Voice**.

Para parar Mycroft si se ha iniciado con la opción de debug se puede presionar la combinación de teclas $\mathbf{ctrl} + \mathbf{c}$ o escribir en la interfaz : \mathbf{exit}

Editor

Se puede utilizar el editor de código fuente con el que más cómodo se sienta cada uno, en esta sección voy a explicar como configurar el editor Atom que es el que he estado usando y el que más cómodo me parece, aunque hay alternativas como VisualStudio Code que son muy similares.

Para instalar Atom nos vamos a su página, lo descargamos y lo ejecutamos. Una vez instalado vamos a instalar dos paquetes para que sea mucho más cómodo programar con Python. En la pestaña **Edit** hacemos click en **Preferences**.

Figura D.3: Preferencias Atom

En esta nueva ventana que se nos ha abierto hacemos click en **Install** y en el buscador escribimos **atom-ide-ui** e instalamos el paquete. Hacemos lo mismo buscando **ide-python**.

Figura D.4: Instalar atom-ide

Figura D.5: Instalar ide-python

Para que funcione el paquete **ide-python** tenemos que instalar **pythonlanguage-server** escribiendo en la consola el comando:

python3 -m pip install python-language-server[all]

Figura D.6: Instalar Python Language Server

Ahora vamos a configurar el paquete, para ello hacemos click en la pestaña **Packages**, después en **Settings** de **ide-python**. En la nueva ventana que se nos ha abierto se puede configurar el comportamiento de todos los componentes de **python-language-server**, pero para que funcione de momento solo nos interesa cambiar la primera línea en la que pone python y poner **python3**

Figura D.7: Configuración del paquete ide-python

Figura D.8: Configuración del paquete ide-python

D.4. Compilación, instalación y ejecución del proyecto

Clonamos el repositorio en nuestra carpeta personal mediante los comandos:

- 1. **cd** ~
- 2. git clone https://github.com/adp1002/UBUVoiceAssistant

Antes de nada hay que cambiar los ficheros ___init___.py de las 3 skills (ubu-course, ubu-grades y ubu-course en la carpeta /src/skills/). En la línea 4, sys.path.append(expanduser(' ') + '/UBUVoiceAssistant-1.X/src'), hay que cambiar /UBUVoiceAssistant-1.X/src a /UBUVoiceAssistant/src

Cuando Lo hayamos cambiado, mover el contenido de la carpeta $\sim/\text{src/skills/}$ a /opt/mycroft/skills/, ejecutando el comando: sudo $\text{mv} \sim/\text{UBUVoiceAssistant-1.X/src/skills/*}$ /opt/mycroft/skills/)

Para iniciar la aplicación vamos al directorio /src/ y ejecutamos mediante los comandos:

- 1. cd ~/UBUVoiceAssistant/src/
- 2. python3 -m GUI.main >>logs.log

D.5. Pruebas del sistema

Para probar nueva funcionalidad introducida se puede utilizar la plataforma de pruebas de Moodle Mount Orage School o la plataforma con la que se vaya a utilizar la aplicación, que en mi caso es UBUVirtual y es con lo que he realizado pruebas principalmente.

Apéndice ${\cal E}$

Documentación de usuario

E.1. Introducción

En este apartado se explica como puede un usuario prepara el entorno para ejecutar la aplicación y cómo utilizar la aplicación.

E.2. Requisitos de usuarios

- 1. Sistema operativo GNU/Linux
- 2. Python 3.6 o superior
- 3. Conexión a Internet

E.3. Instalación

Ubuntu

Si ya tienes Ubuntu u otra distribución Linux vete al siguiente apartado.

Para utilizar Ubuntu se va a necesitar algún software de virtualización. En esta guía se va a utilizar VirtualBox, que se puede descargar desde su página.

Here you will find links to VirtualBox binaries and its source code.

VirtualBox binaries

By downloading, you agree to the terms and conditions of the responsition of the latest VirtualBox 6.0 packages, see VirtualI If you're looking for the latest VirtualBox 5.2 packages, see VirtualI

VirtualBox 6.1.8 platform packages

- By Windows hosts
- · Linux distributions
- ⇒Solaris hosts

The binaries are released under the terms of the GPL version 2.

Figura E.1: Descarga de VirtualBox

Desde su página elegimos la opción de Windows hosts (u otra en función del sistema operativo que se esté utilizando). Esperamos a que se inicie la descarga y ejecutamos el archivo .exe que hemos descargado. Se nos abrirá el instalador y le damos a Next, Next, Yes, Install.

Una vez instalado VirtualBox vamos a descargar Ubuntu. Vamos a su página y hacemos click en el enlace que pone 64-bit PC (AMD64) desktop image. Una vez haya finalizado la descarga abrimos VirtualBox. En la ventana de VirtualBox, hacemos click en Nueva y la configuramos para Ubuntu (64-bit). A continuación elegimos la cantidad de memoria y creamos un disco virtual de, al menos, 30 GB.

Figura E.2: Nueva máquina virtual

Figura E.3: Tipo de sistema operativo

Después hacemos click en el apartado de configuración en la ventana inicial de VirtualBox. En la pestaña **Almacenamiento** hacemos click en **Añadir una unidad óptica**, que es el botón a la derecha de **Controlador: IDE**. En la nueva ventana hacemos click en **Añadir** y seleccionamos el

archivo .iso de Ubuntu. En la ventana de configuración también se puede ajustar el número de procesadores y la cantidad de memoria gráfica desde las pestañas **Sistema** y **Pantalla** respectivamente. Recomiendo utilizar, como mínimo, 2048MB de memoria RAM, 2 núcleos de procesador y 128MB de memoria de vídeo.

Figura E.4: Configuración de máquina virtual

Figura E.5: Parámetros de configuración

Una vez terminada la configuración, iniciamos Ubuntu desde la ventana principal de VirtualBox con el botón Iniciar. En la primera pantalla de Ubuntu seleccionamos el idioma (español) y le damos a instalar Ubuntu. Después seleccionamos el idioma del teclado y la instalación de Ubuntu, en nuestro caso es suficiente con la instalación mínima. A continuación borramos el disco virtual, seleccionamos la franja horaria y completamos los campos que nos pide. Una vez termine de instalar nos pedirá reiniciar y después darle al Enter. Cuando se haya iniciado Ubuntu solo queda instalar las guest additions, que es totalmente opcional pero aumenta el rendimiento. Para instalarlas hacer click en la pestaña Dispositivos y Insertar imagen de CD de las «Guest Additions»... y reiniciar el sistema operativo.

Figura E.6: Instalación de Ubuntu

Figura E.7: Instalación de Ubuntu

Python3 y sus dependencias

Python3 viene instalado por defecto en Ubuntu 18.04. Para instalar las dependencias necesitamos pip3, que se instala con el comando **sudo apt install python3-pip**. Ahora las dependencias que necesitamos se instalan mediante los comandos **sudo apt-get install python3-pyqt5** y **pip3 install mycroft-messagebus-client**

E.3. Instalación 45

Mycroft

Antes de nada, necesitamos tener git instalado, se instala mediante el comando **sudo apt install git**, y necesitamos una cuenta de Mycroft, para ello ir a **su página** y crearla.

Figura E.8: Creación de cuenta de Mycroft

Figura E.9: Creación de cuenta de Mycroft

Para instalar Mycroft hay que seguir los pasos en la sección **Getting Started** de la guía que hay en su repositorio, que son:

E.3. Instalación 47

- 1. cd ~
- 2. git clone https://github.com/MycroftAI/mycroft-core.git
- 3. cd mycroft-core
- 4. bash dev_setup.sh

Tras introducir el comando **bash dev_setup.sh** se nos abrirá el proceso de instalación interactiva. Le vamos a dar a todo a *Yes* (escribir la letra Y en la consola)

Una vez instalado, continuar a la sección Running Mycroft de su repositorio para ejecutarlo, mediante el los comandos:

- 1. cd ~/mycroft-core
- 2. ./start-mycroft.sh debug

Tras iniciar Mycroft tenemos que decir por voz cualquier cosa para que se inicie el proceso de enlazamiento. La aplicación nos dirá un código (si se ha iniciado con la opción de *debug* también aparecerá en pantalla). Este código hay que ponerlo al añadir un nuevo dispositivo. En la página de Mycroft en la esquina superior derecha, en la sección de **Devices**, **Add Device** en el apartado de **Pairing code**. Al añadir el nuevo dispositivo es importante que en el apartado **Voice** se seleccione **Google Voice**.

Para parar Mycroft si se ha iniciado con la opción de debug se puede presionar la combinación de teclas $\mathbf{ctrl} + \mathbf{c}$ o escribir en la interfaz : \mathbf{exit}

Figura E.10: Crear dispositivo en Mycroft

E.4. Manual del usuario

IMPORTANTE: En varios comandos van a aparecer expresiones como 1.X La X indica la versión de la aplicación y hay que cambiarla por el número correspondiente.

En Ubuntu, para ejecutar la aplicación hay que descargar el proyecto de GitHub (el archivo Source code (tar.gz)) y descomprimirlo en la carpeta personal.

Figura E.11: Descarga de la release del proyecto

Cuando tengamos el proyecto descargado, mover el contenido de la carpeta ~/src/skills/ a /opt/mycroft/skills/, ejecutando el comando: sudo mv ~/UBUVoiceAssistant-1.X/src/skills/* /opt/mycroft/skills/)

Nos vamos a la carpeta /src/ del proyecto y ejecutamos la aplicación mediante los comandos:

- 1. cd ~/UBUVoiceAssistant-1.X/src
- 2. python3 -m GUI.main >>logs.log

Se nos abrirá la ventana de inicio de sesión. En esta ventana se introducirán los credenciales del usuario para la plataforma de Moodle a la que se quiera conectar, así como la URL de esta plataforma. Es importante que en el campo **host** se introduzca la URL exactamente con el formato que viene indicado. Por ejemplo, para conectarse a UBUVirtual la URL que habrá que introducir es, literalmente, **https://ubuvirtual.ubu.es**. También se puede cambiar el idioma de la aplicación en la esquina superior derecha y recordar el usuario y host para futuras ejecuciones.

Figura E.12: Ventana de inicio de sesión

En la parte superior de la ventana principal de la aplicación se muestra la estructura de todos los *intents*. El botón del micrófono sirve para alternar entre activar y desactivarlo, cuando el botón está verde está activo y cuando está rojo está inactivo. Para usar la aplicación mediante voz, hay que decir la wake word (por defecto es "Hey Mycroft") y se escuchará un sonido si ha detectado la wake word. Después de escuchar el sonido se puede preguntar lo que queramos con la frase correspondiente. Para utilizar la conversación mediante texto hay que escribir la pregunta, sin la wake word, y darle a enviar. Toda la conversación, ya sea mediante texto o voz, será transcrita en la ventana.

Figura E.13: Ventana principal

51

Figura E.14: Ejemplo de salida de la aplicación

Se pueden tener activas las skills que queramos, haciendo click en el botón de **Administrar Skills**. Las skills que están marcadas son las activas. Para activar o desactivar una skill, marcar o desmarcar las skills que queramos y pulsar el botón **Guardar**

Figura E.15: Ventana de administración de las Skills

Con el botón de **Abrir Logs** podemos ver los distintos mensajes de información que se van guardando durante la ejecución de la aplicación. Los títulos de las pestañas hacen referencia al fichero de log que se muestra en esa pestaña.

Figura E.16: Visualización de logs

Bibliografía

- [1] Font Awesome Free License. URL: https://fontawesome.com/license/free (visitado 15-06-2020).
- [2] Steve Penrod. Having the Right license is just as important as having a License. Junio de 2017. URL: https://mycroft.ai/blog/right-license/ (visitado 15-06-2020).
- [3] Requests (software). Mayo de 2020. URL: https://en.wikipedia.org/w/index.php?title=Requests_(software)&oldid=956930517 (visitado 15-06-2020).
- [4] Riverbank Computing | License FAQ. URL: https://riverbankcomputing.com/commercial/license-faq (visitado 15-06-2020).
- [5] Salarios para empleos de Programador/a junior en España | Indeed.com. URL: https://es.indeed.com/salaries/programador-junior-Salaries (visitado 16-06-2020).