Aman Kumar Pandey RA1911003010685 Artificial Intelligence Lab Lab-5

dim-Developing Best First search and A* algorithm
for real world problems.

(1) Leveloping Best First Dearch Algorithm for real world problem

Broblem Formulation

brunen a graph, starting node and h(n), use the evaluation function to decide which is the most promising node for reaching to the destination and explore it till reaches the destination.

Display the path and cost junction

3	2	Mode	h(n)
		A	12
(A)	3	B	4
6	3/1	C	7
()	(E) (F) ,	D	3
5/	2/3	E	B
(A)	T T	F	2
A 21° A	2	· 61	0
Initial State	final State	H	Ч
open:[s]	Open: [1, E, A]	I	9
Closed; []	Open: [1, E, A] Closed: [s, B, F, G]	S	13
	,		

	The second secon
	Path: $S \rightarrow B \rightarrow F \rightarrow G$
	(ost:2+1+3+0
	- 6
(Qualifica dalluina
	roblem solving
·	M
>	(ben: [5]
	Priority Onene (h(n)): [13] (losed: []
-	closed! [] J(S)= h(S)=13.
•	Open:[B,A]
	Priority Queue (h(n)): 14,12]
	closed:[5] (B) = h(B) = 4
	·
•	Open: [f, E, A] Priority Queu (h(n)):[2,8,12] Closed: [s,B]
	Priority Queue (h(n)):[2,8,12]
	closed: [s,B]
	•
٠	Oben; [G, E, I, A]
	Philarity Quelle (h(n)); [0,8,9,12]
1	Open: [G, E, I, A] Priority Queue (h(n)): [0,6,9,12] Closed: [S, B, F] J(F)=h(F)=2
0	Open: [E, I, A]
	Priority Quell (h(n)):[8,9,127
	Priority Queue (h(n)): [8,9,12] Closed: [s, B, F, 6r] $f(G) = h(G) = 0$
	The state of the s
	Goal state reached
	VIIII DIUN JUUCIUN

ii) Developing A* Algorithm for real world Publem Formulation briven a graph with the numbers written on edges representing the distance between the nodes written on nodes representing heuristic values find the most cost-effective path to reach from stort A to final state is using A* Algorithm. Initial State final State Open:[A] Open:[] Closed:[A,E,D,G]

Path: A→E→D→G7 Cost: 3+6+1+0 = 10

bushlem solving · open:[A] Closed:[] 9 (A)=0 (A)=11 · A has two nodes B and E f(B) = 2+6=8 f(E) = 3+7=10 f(B) (f(E), AO B is selected· Open:[B,E] Clased: [A] · Bhas two nodes Cand G 1(6)=2+1+99=102 1(6)=2+9+0=11 But f (G) > f (E) · · · · · · · · · · · · · · · · · · path from E · Open:[E] lldsed:[A7 · E has only one node D J(D)=3+6+1=10 Open:[D] Closed:[A,E]

Dhas only one node Gr

J(G)=3+8+1+0

= 10

Open: [G] — Sênce goal state îs reached.

Closed: [A, E, D] — Open: []

Closed: [A, E, D, G]

AMAN KUMAR PANDEY RA1911003010685 ARTIFICIAL INTELLIGENCE LAB EXPERIMENT NO: 5

<u>DEVELOPING BEST FIRST SEARCH AND A*</u> ALGORITHM FOR REAL WORLD PROBLEMS

(i) Developing Best first search for real world problems

Algorithm:

Step-1: Start

Step-2: Create 2 empty lists: OPEN and CLOSED

Step-3: Start from the initial node (say N) and put it in the 'ordered' OPEN list

Step-4: Repeat the next steps until GOAL node is reached

- a. If OPEN list is empty, then EXIT the loop returning 'False'
- b. Select the first/top node (say N) in the OPEN list and move it to the CLOSED list. Also capture the information of the parent node
- c. If N is a GOAL node, then move the node to the Closed list and exit the loop returning 'True'. The solution can be found by backtracking the path
- d. If N is not the GOAL node, expand node N to generate the 'immediate' next nodes linked to node N and add all those to the OPEN list
- e. Reorder the nodes in the OPEN list in ascending order according to an evaluation function f(n)

Step-5: Stop

Source code:

```
class Graph:
  # Initialize the class
                          def __init__(self,
graph_dict=None, directed=True):
self.graph_dict = graph_dict or {}
                                         self.directed =
directed
              if not directed:
        self.make undirected()
  # Create an undirected graph by adding symmetric edges
                                  for a in
def make undirected(self):
list(self.graph_dict.keys()):
                                     for (b, dist) in
self.graph_dict[a].items():
self.graph_dict.setdefault(b, { })[a] = dist
  # Add a link from A and B of given distance, and also add the inverse link if
the graph is undirected
                           def connect(self, A, B, distance=1):
self.graph_dict.setdefault(A, { })[B] = distance
                                                      if not self.directed:
        self.graph\_dict.setdefault(B, {})[A] = distance
  # Get neighbors or a neighbor
                                     def
get(self, a, b=None):
                           links =
self.graph_dict.setdefault(a, {})
                                       if b is
None:
               return links
                                 else:
       return links.get(b)
  # Return a list of nodes in the graph
def nodes(self):
     s1 = set([k \text{ for } k \text{ in self.graph } dict.keys()])
                                                        s2 = set([k2 for v in
self.graph_dict.values() for k2, v2 in v.items()])
                                                        nodes =
s1.union(s2)
                  return list(nodes)
# This class represent a node class
Node:
  # Initialize the class
                           def
<u>init</u> (self, name:str, parent:str):
self.name = name
                        self.parent =
            self.g = 0 \# Distance to start
parent
node
           self.h = 0 # Distance to goal
node
           self.f = 0 \# Total cost
  # Compare nodes
                        def
__eq__(self, other):
                          return
self.name == other.name
```

```
# Sort nodes
                  def
 lt (self, other):
return self.f < other.f
  # Print node
                 def __repr__(self):
                                          return
('({0},{1})'.format(self.position, self.f))
# Best-first search def best first search(graph,
heuristics, start, end):
  # Create lists for open nodes and closed nodes
open = []
            closed = []
  # Create a start node and an goal node
start_node = Node(start, None)
goal node = Node(end, None)
                                 # Add
the start node
  open.append(start_node)
  # Loop until the open list is empty
while len(open) > 0:
    # Sort the open list to get the node with the lowest cost first
open.sort()
    # Get the node with the lowest cost
current\_node = open.pop(0)
    # Add the current node to the closed list
closed.append(current_node)
    # Check if we have reached the goal, return the path
if current_node == goal_node:
                                      path = []
while current node != start node:
         path.append(current_node.name + ': ' + str(current_node.g))
current_node = current_node.parent
       path.append(start_node.name + ': ' + str(start_node.g))
       # Return reversed path
return path[::-1]
                        # Get
neighbours
    neighbors = graph.get(current_node.name)
    # Loop neighbors
                            for key,
value in neighbors.items():
Create a neighbor node
       neighbor = Node(key, current_node)
# Check if the neighbor is in the closed list
if(neighbor in closed):
                                 continue
```

```
# Calculate cost to goal
       neighbor.g = current_node.g + graph.get(current_node.name,
neighbor.name)
       neighbor.h = heuristics.get(neighbor.name)
neighbor.f = neighbor.h
       # Check if neighbor is in open list and if it has a lower f value
if(add_to_open(open, neighbor) == True):
                                                    # Everything is
green, add neighbor to open list
                                          open.append(neighbor)
# Return None, no path is found
                                  return None
# Check if a neighbor should be added to open list
def add_to_open(open, neighbor):
                                    for node in
           if (neighbor == node and neighbor.f >=
open:
node.f):
       return False
return True
# The main entry point for this module
             # Create a graph
def main():
graph = Graph()
  # Create graph connections (Actual distance)
graph.connect('Frankfurt', 'Wurzburg', 111)
graph.connect('Frankfurt', 'Mannheim', 85)
graph.connect('Wurzburg', 'Nurnberg', 104)
graph.connect('Wurzburg', 'Stuttgart', 140)
graph.connect('Wurzburg', 'Ulm', 183)
graph.connect('Mannheim', 'Nurnberg', 230)
graph.connect('Mannheim', 'Karlsruhe', 67)
graph.connect('Karlsruhe', 'Basel', 191)
graph.connect('Karlsruhe', 'Stuttgart', 64)
graph.connect('Nurnberg', 'Ulm', 171)
graph.connect('Nurnberg', 'Munchen', 170)
graph.connect('Nurnberg', 'Passau', 220)
graph.connect('Stuttgart', 'Ulm', 107)
graph.connect('Basel', 'Bern', 91)
                                   graph.connect('Basel',
'Zurich', 85)
               graph.connect('Bern', 'Zurich', 120)
graph.connect('Zurich', 'Memmingen', 184)
graph.connect('Memmingen', 'Ulm', 55)
graph.connect('Memmingen', 'Munchen', 115)
graph.connect('Munchen', 'Ulm', 123)
graph.connect('Munchen', 'Passau', 189)
graph.connect('Munchen', 'Rosenheim', 59)
graph.connect('Rosenheim', 'Salzburg', 81)
```

```
graph.connect('Passau', 'Linz', 102)
graph.connect('Salzburg', 'Linz', 126)
  # Make graph undirected, create symmetric connections
graph.make_undirected()
  # Create heuristics (straight-line distance, air-travel distance)
                  heuristics['Basel'] = 204
                                             heuristics['Bern']
heuristics = {}
= 247
         heuristics['Frankfurt'] = 215
                                        heuristics['Karlsruhe']
= 137
         heuristics['Linz'] = 318
                                   heuristics['Mannheim'] =
164
       heuristics['Munchen'] = 120
                                      heuristics['Memmingen']
= 47
       heuristics['Nurnberg'] = 132
                                       heuristics['Passau'] =
257
       heuristics['Rosenheim'] = 168
                                        heuristics['Stuttgart'] =
75
     heuristics['Salzburg'] = 236
                                    heuristics['Wurzburg'] =
153
       heuristics['Zurich'] = 157
                                   heuristics['Ulm'] = 0
                       path = best_first_search(graph,
Run search algorithm
heuristics, 'Frankfurt', 'Ulm')
                                print(path)
  print()
# Tell python to run main method if
__name__ == "__main__": main()
```

Output:

(ii) Developing A* Algorithm for real world problems

Algorithm:

Step-1: Start.

Step-2: Firstly, add the beginning node to the open list

Step-3: Then repeat the following step

- In the open list, find the square with the lowest F cost and this denotes the current square.
- Now we move to the closed square.
- Consider 8 squares adjacent to the current square and
 - Ignore it if it is on the closed list, or if it is not workable. Do the following if it is workable
 - Check if it is on the open list; if not, add it. You need to make the current square as this square's a parent. You will now record the different costs of the square like the F, G and H costs.
 - If it is on the open list, use G cost to measure the better path. Lower the G cost, the better the path. If this path is better, make the current square as the parent square. Now you need to recalculate the other scores the G and F scores of this square. You'll stop:
 - If you find the path, you need to check the closed list and add the target square to it.
 - There is no path if the open list is empty and you could not find the target square.

Step-4: Now you can save the path and work backwards starting from the target square, going to the parent square from each square you go, till it takes you to the starting square. You've found your path now. **Step-5** Stop.

Source code:

g[start node] = 0

def aStarAlgo(start_node, stop_node):

```
open_set = set(start_node)
closed_set = set()
    g = {} #store distance from starting node
    parents = {}# parents contains an adjacency map of all nodes
#ditance of starting node from itself is zero
```

```
#start_node is root node i.e it has no parent nodes
    #so start_node is set to its own parent node
parents[start_node] = start_node
     while len(open_set) > 0:
       n = None
       #node with lowest f() is found
                                              for v in open_set:
if n == None \text{ or } g[v] + heuristic(v) < g[n] + heuristic(n):
n = v
       if n == stop_node or Graph_nodes[n] == None:
            else:
                            for (m, weight) in
pass
get_neighbors(n):
            #nodes 'm' not in first and last set are added to first
            #n is set its parent
                                            if m not in
open_set and m not in closed_set:
               open_set.add(m)
parents[m] = n
                              g[m]
= g[n] + weight
            #for each node m,compare its distance from start i.e g(m) to the
            #from start through n node
else:
               if g[m] > g[n] + weight:
                 #update g(m)
g[m] = g[n] + weight
#change parent of m to n
parents[m] = n
                 #if m in closed set,remove and add to open
                                       closed_set.remove(m)
if m in closed_set:
open_set.add(m)
       if n == None:
print('Path does not exist!')
return None
```

```
# if the current node is the stop_node
       # then we begin reconstructin the path from it to the start_node
if n == stop_node:
          path = []
          while parents[n] != n:
             path.append(n)
            n = parents[n]
          path.append(start_node)
          path.reverse()
          print('Path found: { }'.format(path))
          return path
       # remove n from the open_list, and add it to closed_list
# because all of his neighbors were inspected
open_set.remove(n)
       closed_set.add(n)
     print('Path does not exist!')
return None
#define fuction to return neighbor and its distance
#from the passed node
def get_neighbors(v):
if v in Graph_nodes:
     return Graph_nodes[v]
else:
     return None
#for simplicity we ll consider heuristic distances given
#and this function returns heuristic distance for all nodes
def heuristic(n):
                      H_dist = {
       'A': 11,
        'B': 6,
        'C': 99,
        'D': 1,
        'E': 7,
        'G': 0,
```

```
return H_dist[n]

#Describe your graph here

Graph_nodes = {
    'A': [('B', 2), ('E', 3)],
    'B': [('C', 1), ('G', 9)],
    'C': None,
    'E': [('D', 6)],
    'D': [('G', 1)],

}

aStarAlgo('A', 'G')
```

OUTPUT

Result:

Hence, the Development of Best first search and A* Algorithm for real world problems is done successfully.