# Crittografia a chiave pubblica: uno sguardo alle vulnerabilità di RSA e Diffie-Hellman



#### Leonardo Alfreducci

Relatori Dott. Gaspare Ferraro Prof.ssa Anna Bernasconi

> Università di Pisa Dipartimento di Informatica



#### Indice

Introduzione

2 RSA

3 Diffie-Hellman



# Parte 1

#### Introduzione





#### Introduzione

- Una grandissima quantità di informazioni viaggia attraverso la rete: è dunque di fondamentale importanza proteggere i dati che vengono scambiati.
- Si passeranno in rassegna i due protocolli più usati per lo scambio di chiave: RSA e Diffie-Hellman, quest'ultimo analizzato su campo primo e su curve ellittiche.
- Lo scopo della tesi è quello di andare al di là di una trattazione teorica di questi due protocolli, concentrandosi piuttosto sull'aspetto pratico.



# Parte 2 RSA



## RSA: la teoria dietro al protocollo

- È un cifrario asimmetrico. Sono dunque presenti due coppie di chiavi:
  - (e, n) utilizzata per cifrare (chiave pubblica);
  - (d, n) utilizzata per decifrare (*chiave privata*).
- Si scelgono due numeri primi *p* e *q*.
- Si calcola  $n = p \cdot q \in \phi(n) = (p-1) \cdot (q-1)$ .
- Si sceglie  $e < \phi(n)$  tale che gcd(e, n) = 1.
- Si calcola  $d = e^{-1} \mod \phi(n)$ .
- Tutti i passi descritti possono essere svolti in tempo polinomiale.



#### RSA: cifratura e decifrazione

• Per cifrare un messaggio m è sufficiente calcolare il crittogramma c come:

$$c = m^e \mod n$$
.

• Per ottenere il messaggio m dato c è sufficiente calcolarlo come:

$$m = c^d \mod n$$
.



#### RSA: uno sguardo alla sicurezza

- La sicurezza di RSA è garantita grazie al problema della fattorizzazione di un numero n come prodotto di due fattori  $p \cdot q$ .
- Per questo è importante scegliere due fattori primi molto grandi, tale che il modulo sia almeno 2048 bit, meglio ancora se 3072 bit.
- Nel 1999 è stato fattorizzato RSA-512 in circa 7 mesi utilizzando centinaia di calcolatori e impiegando l'equivalente di 8400 anni di CPU.
  - Nel 2009 lo stesso attacco poteva essere effettuato in 83 giorni da un solo calcolatore.
- Nel 2020 il numero più grande fattorizzato ha 829 bit, impiegando l'equivalente di 2700 anni di CPU.

## RSA: un'analisi sperimentale sulla sicurezza

- Sono stati implementati tre algoritmi per la fattorizzazione:
  - Wheel factorization: fondamentalmente un brute force sul numero, cercando i divisori;
  - Pollard's rho factorization: di natura probabilistica, è quello più efficiente;
  - Fermat factorization: è più veloce se i due numeri primi sono vicini tra loro.
- Sono stati fattorizzati moduli da 120 bit utilizzando l'algoritmo Pollard's rho in poco meno di un'ora su un moderno calcolatore.



#### RSA: l'esponente pubblico e

- L'esponente pubblico non dovrebbe essere troppo grande per velocizzare la cifratura.
- Con l'algoritmo delle quadrature successive, l'operazione può essere svolta in tempo  $O(\log_2 e + hm(e))$ , dove hm(e) rappresenta il peso di Hamming.
  - Il peso di Hamming rappresenta il numero di simboli diversi dal simbolo 0 dell'alfabeto utilizzato.
- L'esponente pubblico, dato che non contiene alcuna informazione, viene generalmente riutilizzato per molteplici operazioni.



# RSA: valori più utilizzati di e con i rispettivi pesi di Hamming

| X.509 |       |         | PGP           |       |         | Combinati |       |         |
|-------|-------|---------|---------------|-------|---------|-----------|-------|---------|
| e     | hm(e) | %       | е             | hm(e) | %       | е         | hm(e) | %       |
| 65537 | 2     | 98.4921 | 65537         | 2     | 48.8501 | 65537     | 2     | 95.4933 |
| 17    | 2     | 0.7633  | 17            | 2     | 39.5027 | 17        | 2     | 3.1035  |
| 3     | 2     | 0.3772  | 41            | 3     | 7.5727  | 41        | 3     | 0.4574  |
| 35    | 3     | 0.1410  | 19            | 3     | 2.4774  | 3         | 2     | 0.3578  |
| 5     | 2     | 0.1176  | 257           | 2     | 0.3872  | 19        | 3     | 0.1506  |
| 7     | 3     | 0.0631  | 23            | 4     | 0.2212  | 35        | 3     | 0.1339  |
| 11    | 3     | 0.0220  | 11            | 3     | 0.1755  | 5         | 2     | 0.1111  |
| 47    | 5     | 0.0101  | 3             | 2     | 0.0565  | 7         | 3     | 0.0596  |
| 13    | 3     | 0.0042  | 21            | 3     | 0.0512  | 11        | 3     | 0.0313  |
| 65535 | 16    | 0.0011  | $2^{127} + 3$ | 3     | 0.0248  | 257       | 2     | 0.0241  |
| altri | -     | 0.0083  | altri         | -     | 0.6807  | altri     | _     | 0.0774  |

# RSA: gli schemi di padding

- Prima di essere cifrato mediante RSA, ogni messaggio viene modificato con gli schemi di padding.
- Gli schemi di padding sono importanti in crittografia:
  - aggiungono una componente di casualità;
  - non rendono possibile un recupero anche parziale del messaggio, fissandone univocamente la lunghezza.
- Due degli schemi più utilizzati sono PKCS1 v1.5 ed OAEP.



## RSA: malleabilità senza il padding

- Il padding aiuta ad evitare che RSA sia malleabile.
  - Ad esempio, se un attaccante conosce  $c=m^e \mod n$ , che non utilizza il padding, può sostituire  $c'=c\cdot 2^e \mod n$ .
  - Quando c' verrà decifrato, si otterrà 2m invece che l'originario m.
- Con il padding questa modifica molto semplice non è più possibile.



## RSA: generazione errata della chiave

- L'esponente e deve essere scelto coprimo con  $\phi(n)$ .
- In una pre-release di Windows 10, non veniva effettuato il controllo che  $gcd(e, \phi(n)) = 1$  nel momento in cui veniva scelto l'esponente pubblico.
- Il corretto funzionamento di RSA è compromesso e la decifrazione non è più possibile.



## RSA: la probabilità di scegliere l'esponente pubblico errato

- Ma quanto spesso questo problema si verifica nella pratica?
- Per e=65537, la probabilità P che e|(p-1) oppure e|(q-1) è data da

$$P<\frac{1}{32000}$$

- Il caso  $e^i \mid (p-1) \cdot (q-1)$  con i>2 non verrà trattato.
- Windows 10 è utilizzato da oltre un miliardo di dispositivi.
  - Più di 30000 utenti coinvolti.





## RSA: il recupero dei messaggi erroneamente cifrati

- Se la chiave viene generata in modo errato ad ogni crittogramma potrebbero corrispondere e messaggi che lo generino.
- E se i messaggi perduti sono importanti?
- Il recupero dei messaggi è esponenziale nella dimensione di e.
  - Per fortuna, e viene generalmente scelto basso.
  - Per e = 65537 il recupero dei messaggi con un moderno calcolatore avviene in circa 30 secondi.



## RSA: scartare i messaggi durante il recupero

- Come si possono scartare i messaggi automaticamente?
- Analizzando il contesto.
- Analizzando i messaggi che rispettano le caratteristiche degli schemi di padding:
  - con *OAEP*, ci si aspetta solo un risultato (il messaggio originario);
  - con *PKCS1 v1.5* ci si aspetta almeno un falso positivo.





#### RSA: esponente pubblico corto

- Un bug imponeva e = 1.
- Si deve prestare attenzione che intervenga la riduzione in modulo.
- In generale moduli corti possono facilitare gli attacchi basati sui reticoli.



#### RSA: moduli ripetuti

- È comune che uno stesso modulo *n* sia condiviso tra più host.
  - Il 4% dei moduli usati in HTTPS risulta condiviso tra più host.
  - Il 60% delle chiavi SSH e il 65% di quelle usate per IPv4 risultano condivise.
  - Non è una vulnerabilità se gli host non sono correlati.
- Molti router e dispositivi della stessa linea di un produttore condividono lo stesso modulo: si possono decifrare i testi a vicenda.
- A causa di problemi con il PRNG e con i seed iniziali molte chiavi sono risultate uguali.



#### RSA: un fattore in comune

- Se un primo è condiviso tra due moduli  $n_1$  e  $n_2$  è possibile trovare facilmente l'altro primo come  $gcd(n_1, n_2)$ .
- Esistono dataset pubblici contenenti moduli RSA, per verificare se uno dei due primi è condiviso.



#### RSA: vulnerabilità DROWN

- Nella sua prima versione sfruttava il semplice schema di padding PKCS1 v1.5.
- Si può effettuare se il server manda un errore se il padding è errato.
- Per questo attacco sono necessarie milioni di query.
  - Sfruttando il messaggio di errore un attaccante può restringere i possibili valori assunti da m.
- Si stima che nel 2016 il 33% dei siti HTTPS fossero vulnerabili a guesto attacco.



#### RSA: conclusioni

- Al giorno d'oggi esistono alternative migliori per lo scambio della chiave.
- RSA non è sicuro per utilizzi post-quantistici.
  - L'algoritmo di Shor sui computer quantistici permette di calcolare la fattorizzazione in tempo polinomiale probabilistico.
- Ridurre l'utilizzo di RSA è difficile per ragioni di retrocompatibilità.
  - Di TLS v1.3 è stata ritardata l'uscita perché al suo interno ha eliminato lo scambio di chiavi basato su RSA.



#### Parte 3

#### Diffie-Hellman



# Diffie-Hellman: la teoria dietro al protocollo







