破译矩阵换位

Breaking Rectangular Transposition 刘卓

1 条件概率

条件概率 (Conditional Probability) 是指事件 A 已经发生了,发生事件 B 的概率。

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(B \not \exists 1A)}{\mathbb{P}(A)}$$

例 1

- 已知某病菌在人群中感染率约占 5%
- 某机构研究出一种检测试剂,准确率可达到 95%
- 假设某人使用该试剂,被检测出阳性,问实际感染率有多少?

解:

假设人群有 10000 人, 也就是 500 人受到了感染; 9500 人是健康的;

- 阳性: 500 人受感染的人群中,被检测出阳性的人数为 $500 \times 0.95 = 475$ 人;被检测出阴性的人数为 $500 \times 0.05 = 25$ 人;
- 阴性 9500 健康人群中,被检测出阳性概率为 9500 × (1-0.95) = 475人;被检测出阴性的人数为 9500 × 0.95 = 9025 人;

$$\mathbb{P}(真阳性|被检测出阳性) = \frac{\mathbb{P}(病人被确诊是真阳性)}{\mathbb{P}(病人被检测出阳性)} = \frac{475}{475 + 475} = \frac{1}{2}$$

例 2

1. 给定一串密文,随机选择的字母, λ ,是字母 A的概率是多少?

$$\mathbb{P}(\lambda = A) = \mathbb{P}(A) = 0.08399$$

2. 假设我们已知 λ 左边的字母是 μ , 并且知道字母 $\lambda = A$ 。即密文形式为 *** $\mu\lambda$ ***。求 $\mu = Q$ "概率是多少。

$$\mathbb{P}(\lambda = A | \mu = Q) = \frac{\mathbb{P}(\mu \lambda = QA)}{\mathbb{P}(\mu = Q)} = \frac{\mathbb{P}(\text{所有字母组合 QA 的总和})}{\mathbb{P}(\text{所有字母 Q 的总和})}$$

3. 假设字母 μ 和字母 λ 相距很远。 $\mu = L$ 和 $\lambda = A$ 的概率是多少?

$$\mathbb{P}(\lambda = A \ \mu = Q) = \mathbb{P}(L)\mathbb{P}(A)$$

2 期望

在概率论和统计学中,一个离散性随机变量的期望值 (mean) 是试验中每次可能的结果乘以其结果概率的总和。

$$\mathbb{E}(X) = x_1 \mathbb{P}(X = x_1) + \dots + x_k \mathbb{P}(X = x_k)$$

例 3

掷出两个六面的色子, 求两个正面的值的期望值。

解:

(1,1)=2	(1,2) = 3	(1,3) = 4	(1,4) = 5	(1,5) = 6	(1,6) = 7
(2,1) = 3	(2,2) = 4	(2,3) = 5	(2,4) = 6	(2,5) = 7	(2,6) = 8
(3,1) = 4	(3,2) = 5	(3,3) = 6	(3,4) = 7	(3,5) = 8	(3,6) = 9
(4,1) = 5	(4,2) = 6	(4,3) = 7	(4,4) = 8	(4,5) = 9	(4,6) = 10
(5,1) = 6	(5,2=7)	(5,3) = 8	(5,4) = 9	(5,5) = 10	(5,6) = 11
(6,1) = 7	(6,2) = 8	(6,3) = 9	(6,4) = 10	(6,5) = 11	(6,6) = 12

两面和	2	3	4		12
概率	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	•••	$\frac{1}{36}$

3 凸函数

如果函数 y=f(x) 在区间 [a,b] 满足 $f''(x)\geq 0, a\leq x\leq b$,以及 f'(x) 在该区间是递增的。那么该函数是凸函数 (Convex Function)。

图 1: 凸函数

定理 1. 让 $x_1, x_2, \dots, x_n \in [a, b], p_1, p_2, \dots, p_n \in R$ 并满足 $p_1 + p_2 + \dots + p_n = 1$ 。如果函数 f 是 凸函数,并且:

$$f(p_1x_1 + p_2x_2 + \dots + p_nx_n) \le p_1f(x_1) + p_2f(x_2) + \dots + p_nf(x_n)$$

当且仅当 $x_1 = x_2 = \cdots = x_n$ 时成立。

该定理为琴生不等式 (Jensen's Inequality), 证明过程在这里

让 $f(x) = log(\frac{1}{x})$, 则:

$$log(\frac{1}{p_1x_1+p_2x_2+\cdots+p_nx_n}) \leq p_1log(\frac{1}{x_1})+\cdots+p_nlog(\frac{1}{x_n})$$

定理 2. 让 p_1,p_2,\cdots,p_n 是概率并满足 $p_1+p_2+\cdots+p_n=1$ 。并且对于任意集合概率 q_1,q_2,\cdots,q_n 并满足 $q_1+\cdots+q_n=1$,那么

$$\sum_{i=1}^{n} p_i log(q_i) \le \sum_{i=1}^{n} p_i log(p_i)$$

证明: 让 $x_i = \frac{q_i}{p_i}$,并使用定理 1.

4 破译过程

- 1. 猜测解密排列长度, 比如密钥长度 k。
- 2. 将密文排列为 k 列, N 行的矩形。
- 3. 对于 $1 \le i \ne j \le k$, 提取 i 列和 j 列并计算字母对 $\alpha\beta$ 的出现次数,并将其称为 $n_{\alpha,\beta}^{ij}$

4. 对于字母对 $\alpha\beta$, 让 $\mathbb{P}_{\alpha,\beta}$ 为在英文或者其他语种出现的概率, 计算

$$C_{i,j} = \sum_{lphaeta} \mathbb{P}_{lpha,eta} log(n^{ij}_{lpha,eta})$$

例 4

$$k = 10, N = 23, i = 3, j = 7$$

密文排列为: 23 行, 10 列;

E	C	T	I	H	N	O	H	G	I
O	K	R	O	B	C	A	O	H	F
E	I	N	S	G	N	N	S	A	A
E	T	C	N	I	I	E	C	N	H
O	A	S	R	E	E	H	C	T	L
H	S	A	A	T	E	I	B	N	E
S	F	N	E	U	C	N	O	E	R
R	E	T	I	U	S	S	S	A	A
R	E	O	C	U	W	S	O	I	F
M	N	D	A	O	D	I	D	V	A
T	E	C	H	E	X	O	T	T	E
H	O	F	E	T	C	E	R	L	A
I	I	A	T	S	O	E	S	M	S
M	S	T	E	I	O	N	K	W	N
N	I	C	S	O	S	F	S	O	T
X	Y	S	T	I	U	H	F	R	O
A	R	E	G	X	S	A	A	E	M
S	M	C	Y	H	L	Z	B	I	O
B	A	E	Y	D	R	I	P	T	A
L	R	C	A	U	R	N	A	A	R
M	N	G	E	E	F	I	T	S	O
T	A	X	R	S	H	A	I	T	G
B	O	N	R	D	N	I	K	L	E

解:

将 i=3 列, j=7 列提出来, 变成两列

```
E
   C
               H
                  N
                      0
                          H
                              G
                                  I
                                             T
                                                 0
0
   K
       R
           O
               B
                  C
                       \boldsymbol{A}
                          O
                              H
                                  F
                                             R
                                                 A
E
       N
               G
                  N
                      N S
                              A
                                             N N
E
                      E C
                                             C
                                                 E
0
   A
       S
           R E
                  E
                      H C
                              T
                                             S
                                                 H
H
              T
                  E
                                                 I
S
                  C
       N \quad E \quad U
                     N O E
                                             N N
               U
R
   E
                                                 S
       O C U W S O I
R
   E
                                             O S
   N \quad D \quad A \quad O \quad D \quad I
                          D V A
M
                                             D I
T
   E
       C
           H E
                 X \quad {\color{red} O} \quad T \quad T
                                             C O
   O
H
           E
              T
                      E R L
                                             F E
           T
                          S
M
                      N \quad K \quad W \quad N
                                             T
N
                  S
                          S
                                             C
                                                 F
       S T I
X
                  U \quad H \quad F
                                             S H
A
   R
      E G X S
                                             E
S
   M \quad C \quad Y \quad H \quad L
               D R I
L
                  R N A A R
                                             C N
   R
             E
                                             G I
       G E
M
T
                                             X \quad A
   \boldsymbol{A}
       X R
             S
                  H
                      A I
                                 G
B
       N R
               D \quad N
                      I
                          K L
                                E
   O
```

统计 $TO, RA, NN, CE, \dots, NI$ 出现的次数,所以 $n_{TO}^{3,7} = 1, n_{RA}^{3,7} = 1, n_{NN}^{3,7} = 2, \dots, n_{NI}^{3,7} = 1$

$$C_{3,7} = \mathbb{P}_{TO}log(n_{TO}^{3,7}) + \mathbb{P}_{RA}log(n_{RA}^{3,7}) + \dots + \mathbb{P}_{NI}log(n_{NI}^{3,7})$$

$$= \mathbb{P}_{TO} \cdot log(1) + \mathbb{P}_{RA} \cdot log(1) + \mathbb{P}_{NN} \cdot log(2) + \dots + \mathbb{P}_{NI} \cdot log(1)$$

$$= \mathbb{P}_{TO} \cdot 0 + \mathbb{P}_{RA} \cdot 0 + \mathbb{P}_{NN} \cdot log(2) + \dots + \mathbb{P}_{NI} \cdot 0$$

然后计算所有的 $C_{i,j}, i \neq j$

定义 $f_{\alpha,\beta}^{(i,h)} = \frac{n_{\alpha,\beta}^{(i,h)}}{N}$. 当 i 和 j 在明文中不是连续的, 则:

$$C_{ij} = \sum_{\alpha,\beta} p_{\alpha\beta} \log \left(N \cdot f_{\alpha\beta}^{(ij)} \right)$$
$$= \log(N) + \sum_{\alpha,\beta} p_{\alpha\beta} \log \left(f_{\alpha\beta}^{(ij)} \right)$$

$$\leq \sum_{\alpha,\beta} p_{\alpha\beta} \log (p_{\alpha\beta}) \tag{1}$$

当明文中两列 i 和 j 连续时 C_{ij} 非常得小。因此,如果我们猜测 k 是正确的,则矩阵 C_{ij} , $1 \le i \ne j \le k$ 除了第一行外,每一行的数量都大得多。

- 如果 C_{ij} 是第 i 行上的较大数字,则 j 在 i 后面跟随 i 解密排列。
- 如果第 k 行是唯一没有实质性条目的唯一行,则 k 是解密排列中的第一个条目。

密钥空间有 26! ≈ 288

5 破译单字母替代

例 5

假设抛 1000 次色子, 并记录每面朝上的值。能否确定是正确的?

结果	1	2	3	4	5	6
频数	171	186	174	170	192	107

使用卡方检验。

卡方检验 (Chi-Squared Test) 是一种统计量的分布在零假设成立时近似服从卡方分布的假设检验。 在没有其他的限定条件或说明时,卡方检验一般指代的是皮尔森卡方检验。

$$X^2 = \sum_{i=1}^k \frac{(n_i - n_i)^2}{n \cdot p_i}$$

其中:

- k 是指将会出现多少种结果
- n_i 是被每个结果的频数
- p_i 是每个结果的概率
- n 是操作次数

在例 5 中, k=6, n_i 是频数, $p_i = \frac{1}{6}$, n = 1000;

$$X^{2} = \sum_{i=1}^{6} \frac{\left(n_{i} - n \cdot p_{i}\right)^{2}}{n \cdot p_{i}} = \frac{\left(171 - 1000 \times \frac{1}{6}\right)^{2}}{1000 \times \frac{1}{6}} + \frac{\left(186 - 1000 \times \frac{1}{6}\right)^{2}}{1000 \times \frac{1}{6}} + \dots = 27.95$$

对照表格, $X^2 \ge 27.95$ 是小于 0.001% 的,即表示拒绝原假设,有 99.999% 的把握说明这件事不可能 发生!即这个表格可能是造假的。

例 6

已知是单字母替代算法,使用明文攻击。给定特定密文的字母频率如下:

密文	1	h	a	w	d	q	О	n	f	s	z
频数	80	61	55	46	44	40	39	35	33	26	22

k	p	i	t	v	у	r	X	u	m	\mathbf{c}	g	j	b	е	
26	22	18	17	12	11	9	9	8	7	5	3	1	0	0	

并且已经知道单词 WHERE 是明文,在密文中,找到两组字符串分别是 HDFKF和 PDLHL与 WHERE 的结构一样。如何确定哪个字符串是与 WHERE 匹配?

解:

第一步, 计算每个字母出现的概率;

Letter	Relative frequency (%)	Letter	Relative frequency (%)
A	8.399	N	6.778
B	1.442	0	7.493
C	2.527	P	1.991
D	4.800	Q	0.077
E	12.150	R	6.063
F	2.132	S	6.319
G	2.323	T	8.999
H	6.025	U	2.783
I	6.485	V	0.996
J	0.102	W	2.464
K	0.689	X	0.204
L	4.008	Y	2.157
M	2.566	Z	0.025

$$\mathbb{P}_W = \mathbb{P}(W|W \vec{\boxtimes} H \vec{\boxtimes} E \vec{\boxtimes} R) = \frac{0.02464}{0.02464 + 0.06025 + 0.1215 + 0.06063} = 0.0923$$

$$\mathbb{P}_H = 0.226$$

$$\mathbb{P}_E = 0.455$$

$$\mathbb{P}_{R} = 0.227$$

下一步计算 HDFKF的卡方检验结果。

	W = H	H = D	E = F	R = K
P_i	0.0923	0.226	0.455	0.227
n_i	61	44	33	26

 $\mathbf{n}=164,\mathbf{k}=4,n_i$ 是频数, p_i 是每个字母出现的概率 代入公式

$$X^2 = \frac{(61 - 169 \cdot 0.0923)^2}{169.0.0923} + \frac{(44 - 169 \cdot 0.226)^2}{169 \cdot 0.226} + \frac{(33 - 169.0.955)^2}{169.0.455} + \frac{(26 - 169 - 0.227)}{169.0.227} \approx 181.88$$

同理, 计算 PDLHL:

$$X^2 \approx 6.59$$

对照表格,取 X^2 值小的字符串作为假设正确。P值稍大,不拒绝原假设。即PDLHL正确。