⑲ 日本国特許庁(JP)

⑪特許出願公開

四公開特許公報(A)

昭61-25849

@int_Cl_4

識別記号

庁内整理番号

每公開 昭和61年(1986)2月4日

B 41 J 3/04

1 0 3 1 0 4 7513-2C 7513-2C

審査請求 未請求 発明の数 1 (全3頁)

2発明の名称 イン

インクジェツト記録装置

②特 願 昭59-146900

②出 願 昭59(1984)7月17日

②発 明 者 京 極 浩 ②出 願 人 キャノン株式会社 東京都大田区下丸子3丁目30番2号 キャノン株式会社内

東京都大田区下丸子3丁目30番2号

20代理人 弁理士加藤 卓

明 細 書

1. 発明の名称

インクジエツト記録装置

2. 特許請求の範囲

(1)旅路内にインクを供給し駆動案子により前記 飛路内に圧力波を発生させ、流路先端のオリフイ スからインク液滴を噴射させて記録を行なりイン クジェット記録装置において、前記流路の駆動手 設よりもインク供給側に近い位置に第2の駆動手 設を設け、駆動時に第1と第2の駆動手段をある 時間差を介して駆動するとともにこの時間差を可 変としたことを特徴とするインクジェット記録装 置。

(2)前配第1と第2の駆動手段の駆動時間差を一 定値に固定し、第1の駆動手段の駆動力を可変と したととを特徴とする特許請求の範囲第1項に記 載のインクジェット記録装置。

3. 発明の詳細な説明

[技術分野]

本発明はインクジェット記録装置、特にインク

を供給した噴射管内に駆動手段によつて圧力波を 発生させインクを噴射させるインクジェット記録 装置に関する。

〔従来技術〕

従来コンピュータシステム、或いはフアクシミリなどの記録出力手段としてインクジェント記録 装置が知られている。近年、この種の装置では特 化必要な時のみ噴射管からインクを吐出して記録 を行なり、いわゆるオンデマント型の装置が普及 しつつある。

第1図()〜の)に従来のオンデマンド型インタジェット記録へッドの構造を示す。第1図において符号1で示されているものはインタ噴射管で硬質のガラス細管などから構成される。噴射管1の周囲には円筒状の圧電楽子4を巻き付けて固定してある。また噴射管1の先端部はテーパ状に絞られており、その先端部には微細な(直径100μm以下)オリフィス2が設けられている。

以上の構成において、噴射管1内にインク3を 供給し駆動手段としての圧電数子4に対して70

--279--

(2)

特開昭61-25849(2)

~80Vのパルス程圧を印加すると圧電素子は第1 図側に示すように収縮変形し、噴射管内のインク 3に圧力波が与えられる。この結果オリフイス2 からインク液滴5が吐出され、紙などの配母媒体 製面に付着され記録ドントが形成される。駆動パ ルスが消勢すると圧電架子4は第1図(C)に示すよ うにもとの形状に復帰する。

この時噴射管内のインク3は液滴5を吐出した 分だけ減少するので、図示するようにオリフイス 近傍にインクがない部分が生じる。しかし一定時 間の経過後、インク3がインク供給手段から表面 張力によつて供給され、第1図例に示すようにオ リフイス2の先端部までインクが供給された噴射 可能状態に戻る。

ところで、第1 図似の吸射時の圧力は図中右側のオリフイス方向のみでなく、左側の供給手段側へも同等に働く。この方向への力は吸射そのものには損失であり、インクを逆流させ第1 図(()~(i)に示したインクのリフイル動作を妨げ記録応答速度の向上の妨げとなつている。

(3)

の画像記録が可能なインクジェット記録装置を提供することを目的とする。

〔寒 施 例〕

以下、図面に示す实施例に基づき本発明を詳細に説明する。

第2図に本発明によるインクジェット記録へットの構造を示す。第2図にみるように、本発明においては圧電素子4の後方、すなわちオリフイス2とは反対側にインク供給側に第2の駆動手段として圧電素子7を設けてある。第2の圧電素子7は第1の圧電素子4と同等かより小さな駆動成され、第1の圧電素子と同等または小さな駆動力を持つものとしてある。

第1と第2の圧電索子4.7の駆動タイミング を第3図(4)~例に示す。

第3図(A)〜(図付5種類の駆動タイミングを示しており、図中破積で示したパルスが第2の圧電素子7に対する駆動パルス、実績が第1の圧電素子4に対する駆動パルスである。第3図(A)〜(G)の各駆動パルスは第1と第2の圧電素子に対する駆動

一方、ドットによる記録画像に関してドットのサイズを変化させて濃淡を表現し中間調画像を記録する技術が知られている。またドットの大きさを変化させるのが困難な記録方式では単位面積当りのドット数を変化させて同様の効果を得る手法も知られている。

インクジェット記録方式ではドットの大きさを 変化させるのがインクの性質や制御回路が複雑化 する問題もあり、後者の方式が多用される。しか しドット密度を変化させる手法としては主に数ド ットのブロックで一画素を表現する方式が多く用 いられており、記録密度が高い場合にのみ有効な 方法である。したがつて低解像度のブリンタでは とのような方式では一画素の面積が大きくなつて しまうので中間間の表現が困難である。

(目的)

本発明は以上の従来の欠点に鑑みてなされたもので、駆動力の損失が少くスムーズなインクのリフイル動作により素子の応答速度を向上させるとともに簡単安価にドット面積の変化による中間調

(4)

実際のインク吐出タイミングけ実線で示した第1の圧電素子の駆動タイミングであるが、これに 先だつて第2の圧電素子7を異つた時間差で駆動 すると、吐出時の圧電素子4によるインク供給倒への不要を圧力波を阻止することができる。従つてインク3の逆流が防止されインクのリフィル動作がスムーズに行われるので応答速度を上昇させて配合速度を向上できる。以上の逆流阻止け物理的な圧力阻止でけないので不要かつ複雑な反射波を発生させることがない。

また第1と第2の圧電素子4,7の駅動時間登しを変化させるととにより2つの圧電素子によつて発生する圧力波のぶつかり合う作用点の位置を調節して吐出されるインク液滴の直径を変化させることができる。これによつて記録媒体に記録されるドットの面積を調節することができ、ドット面積の変化による濃微の表現が可能となる。従来方式では圧電素子の駆動電圧を変化させてドット

(5)

—280—

(6)

時間昭61-25849(3)

係を変化させるため、主としてデジタル回路から 構成された制御回路の出力をアナログ量に変換す る手段を必要とし、同路が複雑高価になるのに対 して、上記の方式によれば駆動時間差のみにより ドット面積を調整できるため創御回路の構成がよ り簡単安価になる利点がある。

第4図W~個け本発明の他の実施例を示すもので、第3図W~個と同様に第1と第2の圧電架子4,7の駆動パルスを示している。各図け実験で示した第1の圧電架子4の駆動電圧を変化させた例を示している。とこでけ第1と第2の圧電業子の駆動時間差け一定値に固定されている。

とのような駆動方法によつてもインクの逆流を 防止するとともに記録ドットの大きさを変化させ て譲載を表現することができる。

以上ではオンデマンド型のインクジェット記録 装置を実施例として説明したが、他の方式のイン クジェット記録装置にも本発明が実施できるのは もちろんである。

〔効 集〕

(7)

以上の説明から明らかなように、本発明によれば主たる第1の駆動手段に加えて噴射管のインク供給側に第2の駆動手段を設けた構成を採用しているので有答なインク噴射管内の逆流を防止し、スムーズなインクのリフイル動作を可能とするとともに駆動ダイナミックレンジを広げ、簡単安価な制御回路によつてドットサイズの調節による中間調の画像記録を行える優れたインクジェット記録装置を提供することができる。

4. 図面の簡単方説明

第1図(A)~(D)は従来のインクジェット配録へッドの構成及び動作を示す説明図、第2図は本発明のインクジェット記録へッドの構成を示す説明図、第3図(A)~(B)及び第4図(A)~(B) はそれぞれ異つた2つの圧電素子の駆動タイミングを示したタイミング図である。

1 … 噴射管 2

2…オリフイス

3 …インク

4 . 7 … 圧電素子

(8)

			*	•
	·			
•				