ΣΥΣΤΗΜΑΤΑ ANAMONΗΣ (Queuing Systems)

Εισαγωγή

Καθηγητής Συμεών Παπαβασιλείου

Εθνικό Μετσόβιο Πολυτεχνείο Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής

(E-mail: papavass@mail.ntua.gr Τηλ: 210 772-2550 Γραφείο: Β.3.15 Νέο Κτίριο Ηλεκτρολόγων)

27 Φεβρουαρίου, 2020

Γενικά στοιχεία του μαθήματος

Προγραμματισμός Διαλέξεων & Εργαστηρίων

Διαλέξεις: κάθε Πέμπτη, 08:45-10:30, Αμφιθέατρο 5 (Νέο Κτ. Ηλεκτρολόγων)

Έναρξη: Πέμπτη, 27 Φεβρουαρίου 2020

Εργαστήριο: Μετά τις 2 πρώτες εβδομάδες μαθήματος, κάθε Δευτέρα, 10:45-12:30 (PC Lab Σχολής)

Μέθοδοι αξιολόγησης:

Ο βαθμός μαθήματος θα προκύψει από το βαθμό του εργαστηρίου (30%) και το βαθμό της εξέτασης στο «θεωρητικό» μέρος του μαθήματος (70%).

Βιβλιογραφία

[1] Α.-Γ. Σταφυλοπάτης και Γ. Σιόλας, "Ανάλυση Επίδοσης Υπολογιστικών Συστημάτων: Αναλυτικά Μοντέλα, Προσομοίωση, Μετρήσεις", Kallipos Ελληνικά Ακαδημαϊκά Ηλεκτρονικά Συγγράμματα & Βοηθήματα, 2015

https://repository.kallipos.gr/bitstream/11419/6055/4/master-%CE%9A%CE%9F%CE%A5.pdf

[2] Thomas G. Robertazzi, "Computer Networks and Systems: Queuing Theory and Performance Evaluation", Springer-Verlag, 2012.

http://mycourses.ntua.gr/course_description/index.php?cidReq=ECE1045

ΘΕΜΑΤΟΛΟΓΙΑ-ΠΕΡΙΕΧΟΜΕΝΑ (1/2)

1. Εισαγωγή

- Περιεχόμενα
- Γενική Περιγραφή Συστημάτων Αναμονής
- Τεχνικές Μελέτης & Αξιολόγησης Επίδοσης Συστημάτων Αναμονής
- Μοντέλα Τηλεπικοινωνιακών & Υπολογιστικών Συστημάτων

2. Εισαγωγή στη Θεωρία Ουρών.

- Χαρακτηριστικά & Παράμετροι Συστημάτων Αναμονής
- Μήκος Ουράς, Χρόνος Καθυστέρησης
- Nόμος Little

3. Γνώσεις από Θεωρία Πιθανοτήτων

- Εκθετική Κατανομή
- Κατανομή Poisson
- Ιδιότητα Απώλειας Μνήμης (Markov)
- Στοχαστικές Ανελίξεις

4. Μοντέλο Γεννήσεων - Θανάτων (Birth - Death Processes)

5. Συστήματα Markov και Εξισώσεις Ισορροπίας

Ανάλυση απλών ουρών Μ/Μ/1

ΘΕΜΑΤΟΛΟΓΙΑ-ΠΕΡΙΕΧΟΜΕΝΑ (2/2)

6. Άλλες ουρές Markov

- Μεταβάσεις Εξαρτώμενες από την Κατάσταση
- Ουρές με Απώλειες (Μ/Μ/1/Ν)
- Ουρές με Πολλαπλούς Εξυπηρετητές: M/M/m, M/M/m/K, M/M/m/m (Erlang – B)
- 7. Προσομοίωση Απλών Συστημάτων Αναμονής
- 8. Ανοικτά και Κλειστά Δίκτυα Ουρών
- 9. Ουρές με μη Εκθετική Εξυπηρέτηση M/G/1

10. Παραδείγματα & Εφαρμογές

- Ανάλυση Υπολογιστικών Συστημάτων
- Ανάλυση & Σχεδίαση Τηλεφωνικών Κέντρων
- Ανάλυση Δικτύων Internet & Ανάλυση Συστημάτων Πολυμέσων

Δομή συστήματος παροχής υπηρεσιών πολυμέσων

Μεταγωγή αυτοδύναμων πακέτων

Μεταγωγέας πακέτου

Μεταγωγέας πακέτου

- Μεταφέρει πακέτα από τις ζεύξεις εισόδου στις ζεύξεις εξόδου.
- Υπάρχουν καθυστερήσεις αναμονής.

Μεταγωγή πακέτου – στατιστική πολυπλεξία

- Όταν εισέρχονται πολλές ροές στην ίδια ζεύξη, ο κόμβος μεταγωγής κρίνει ποια είσοδος θα εξυπηρετηθεί.
- Κάθε πακέτο οδεύει ανεξάρτητα στη ζεύξη.
- Δεν δεσμεύονται πόροι στη ζεύξη εκ των προτέρων. Η μεταγωγή πακέτου εκμεταλλεύεται τη στατιστική πολυπλεξία.

Στατιστική πολυπλεξία (1/3)

- Όταν η κίνηση είναι εκρηκτική,
 ο ρυθμός αλλάζει συχνά.
- Τα μέγιστα από διαφορετικές ροές εμφανίζονται γενικά ετεροχρονισμένα.
- Αποτέλεσμα: οι πολλές ροές έχουν ομαλότερη κίνηση.

Στατιστική πολυπλεξία (2/3)

- > Επειδή το buffer απορροφά τις εκρήξεις, η ζεύξη εξόδου δεν χρειάζεται να λειτουργεί με ρυθμό *N*×*R*.
- Αλλά το buffer έχει πεπερασμένο μήκος B, οπότε θα υπάρχουν απώλειες.

Στατιστική πολυπλεξία (3/3)

Ποιότητα Υπηρεσίας (Quality of Service - QoS)

ΠΟΙΟΤΗΤΑ ΥΠΗΡΕΣΙΑΣ

(End-to-End User QoS Requirements for Real-time Services)

Medium	Application	Degree of symme try	Key performance parameters and values			
			One-way Delay	Delay variation	Information loss	
Audio	Conversation al voice	Two- way	<150 msec preferred <400 msec limit	< 1 msec	< 3% PLR †	
Audio	Voice messaging	Primaril y one-	< 1 sec for playback < 2 sec for record	< 1 msec‡	< 3% PLR	
Audio	High quality streaming audio	Primaril y one- way	< 10 sec	< 1 msec‡	< 1% PLR	
Video	Videophone	Two- way	< 150 msec preferred <400 msec		< 1% PLR	
Video	One-way	One- way	< 10 sec		< 1% PLR	
Data	Telemetry - two-way control	Two- way	< 250 msec	N.A	Zero	

Typical QoS parameters

- ✓ Bandwidth: the data rate
- ✓ Delay: the latency of transmission
- ✓ Delay jitter: the variation in delay
- ✓ Loss ratio

ΠΟΙΟΤΗΤΑ ΥΠΗΡΕΣΙΑΣ

(End-to-End User QoS Requirements for Non Real-time Services)

Medium	Application	Degree of symmetr y	Custome r Demand *	Key Performance parameters		
				One- way delay	Delay variation	Information loss
Data	Fax (real-time)	Primarily one-way	Med	< 30 sec /page	N.A	<10-6 BER
Data	Fax (store & forward)	Primarily one-way	Med	Can be several minutes	N.A.	<10-6 BER
Data	Email (server to server transfer)	One-way	High	Can be several minutes	N.A	Zero
Data	Transaction services – lower priority	Primarily one-way? Two-way?	Med	< 30sec	N.A	Zero

Typical QoS parameters

- ✓ Bandwidth: the data rate
- ✓ Delay: the latency of transmission
- ✓ Delay jitter: the variation in delay
- ✓ Loss ratio

ΠΟΙΟΤΗΤΑ ΥΠΗΡΕΣΙΑΣ

ΣΧΕΔΙΑΣΗ & ΑΞΙΟΛΟΓΗΣΗ ΕΠΙΔΟΣΗΣ

Φάσεις:

- 1^η: Φύση εφαρμογών που θα εξυπηρετηθούν από το σύστημα και φόρτος εργασίας (κυκλοφοριακή κίνηση)
- 2^η: Αρχική αρχιτεκτονική του συστήματος (στοιχεία συστήματος υλικό & λογισμικό)
- > 3^η: Ποσοτικός προσδιορισμός των τμημάτων/στοιχείων του συστήματος
- 4^η: Μελέτη και μοντελοποίηση αλληλεπίδρασης τμημάτων του συστήματος
- Αξιολόγηση επίδοσης και επανεκτίμηση σχεδίασης Ανάλυση ποιοτικών και ποσοτικών επιλογών

ΜΟΝΤΕΛΟ ΣΥΣΤΗΜΑΤΟΣ – ΔΙΚΤΥΟ ΑΝΑΜΟΝΗΣ

Περιγραφή συστήματος

- Παράμετροι συστήματος και πόρων
- Παράμετροι φορτίου
 απαιτήσεις
 εξυπηρέτησης
 ένταση φορτίου

MONTEAO

Δείκτες επίδοσης

- Χρόνος απόκρισης
- Ρυθμός απόδοσης
- Βαθμός χρησιμοποίησης
- Μήκος ουρών

Είσοδος

Έξοδος

ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΠΙΔΟΣΗΣ & ΜΟΝΤΕΛΟΠΟΙΗΣΗ

Τεχνικές:

- 1η: Μετρήσεις με πραγματικές τιμές και ανάλυση αποτελεσμάτων
 - Προέκταση σε μεγαλύτερης κλίμακας συστήματα: συνήθως η συμεπτριφορά δεν είναι αναμενόμενη (π.χ. Γραμμική) σε αλλαγή φόρτου εργασίας
- Ση: Χρήση μοντέλων μοντελοποίηση Γενικευμένη αναπαράσταση του συστήματος (αφαιρετική): περιλαμβάνει τα κύρια χαρακτηριστικά και αφαιρεί λεπτομέρειες που εκτιμάται ότι δεν επηρεάζουν σημαντικά την απόδοση του συστήματος (υποθέσεις). Κυκλοφορία (απαιτήσεις) χρηστών είναι στοχαστική (τυχαιότητα).
 - Αναλυτικά μοντέλα: χρήση μαθηματικής περιγραφής του συστήματος (βασισμένα κυρίως σε θεωρία αναμονής queueing theory) και αλγορίθμων.
 - Προσομοίωση: Ανάπτυξη προγράμματος που ακολουθεί και αναπαριστά τη δυναμική εξέλιξη του συστήματος στο χρόνο.

ΚΡΙΤΗΡΙΑ ΕΠΙΛΟΓΗΣ ΤΕΧΝΙΚΗΣ ΑΝΑΛΥΣΗΣ

Κριτήριο	Αναλυτικό Μοντέλο	Προσομοίωση	Μετρήσεις	
1. Στάδιο κύκλου ζωής	Οποιοδήποτε	Οποιοδήποτε	Υπάρχον σύστημα	
2. Απαιτούμενος χρόνος	Μιχρός	Μέτριος	Ποιχίλλει	
3. Απαιτούμενα εργαλεία	Θεωρία	Γλώσσες	Οργανα μέτρησης	
	αναμονής	προγραμματισμού		
4. Αχρίβεια	Χαμηλή	Μέτρια	Ποιχίλλει	
5. Αποτίμηση	Εύκολη	Μέτρια	Δύσκολη	
εναλλαχτιχών λύσεων	-		·	
6. Κόστος	Χαμηλό	Μέτριο	Υψηλό	
7. Απήχηση	Χαμηλή	Μέτρια	Υψηλή	