Algorytm SHADE

Dawid Płudowski

Wydział Matematyki i Nauk Informatycznych

18-03-2023

Differential Evolution (DE)

Pomysł: Wylosujmy punkty w przestrzeni (populacja). Pozwólmy im, zgodnie z ustaloną strategią, losowo łączyć się ze sobą (mutacja) z każdą kolejną iteracją (generacja). Każda mutacja to dodanie do oryginalnego punktu przeskalowanego kierunku wyznaczonego poprzez inne punkty. To, czy mutacja zajdzie, jest wyznaczane losowo.

Notacja

- N liczność populacji
- U zbiór strategii mutacji
- F skala mutacji
- CR Crossover rate, częstość mutacji
- G numer generacji mutacji

Przykładowe strategie

Częścią wspólną każdej strategii jest losowanie permutacji populacji (r_1, \ldots, r_N) . Zmutowane punkty oznaczamy (ν_1, \ldots, ν_N) i wyznaczamy za pomocą strategii:

Strategie

- rand/1: $\nu_{i,G} = x_{r_1,G} + F(x_{r_2,G} x_{r_3,G})$
- **best/1**: $\nu_{i,G} = x_{best,G} + F(x_{r_1,G} x_{r_2,G})$
- current-to-best/1: $v_{i,G} = x_{i,G} + F(x_{best,G} x_{i,G}) + F(x_{r_1,G} x_{r_2,G})$

Crossover rate

Po dokonaniu mutacji decydujemy się, które z nich uwzględnimy w kolejnej generacji. **Uwaga**: decyzja dotyczy elementu wektora, nie całego punktu!

$$u_{j,i,G} = \begin{cases} \nu_{j,i,G}, & CR > unif(0,1) \\ x_{j,i,G}, & w.p.p \end{cases}$$
 (1)

Jeżeli mutacja była dla nas pomyślna to ją zachowujemy, w przeciwnym wypadku powracamy do oryginalnego punktu:

$$x_{i,G+1} = \begin{cases} u_{i,G}, & f(u_{i,G}) < f(x_{i,G}) \\ x_{i,G}, & w.p.p \end{cases}$$
 (2)

Problemy DE

Dla całego procesu wybieramy liczność (N), strategię (U_i), skalę mutacji (F) i częstość mutacji (CR). Parametry globalne mogą być w pewnych miejscach przestrzeni nieadekwatne, niektóre mogą charakteryzować się złym dobraniem do konkretnego problemu optymalizacyjnego.

JADE

JADE to prekursor algorytmu **SHADE**. Rozwiązuje problem globalnych parametrów przydzielając dla każdego osobnika z osobna dynamicznie parametry mutacji.

Nowa strategia

current-to-
$$p$$
best/1: $\nu_{i,G} = x_{i,G} + F(x_{pbest,G} - x_{i,G}) + F(x_{n,G} - x_{n,G})$

 x_{pbest} oznacza losowo wybrany punkt z p najlepszych.

Dynamiczna zmiana parametrów

Dla każdego osobnika z populacji stosowany jest algorytm:

- w pierwszej iteracji zainicjalizuj $F_i = 0.5$ i $CR_i = 0.5$
- wyznacz średnią wartość $mean_L(F)$ i $mean_A(CR)$ dla tych osobników, których mutacja zakończyła się sukcesem (nie została odrzucona w ostatnim kroku)
- wyznacz średnią wartość $\mu_{F_G} = c\mu_{F_{G-1}} + (1-c) mean_L(F)$ i analogicznie μ_{CR} [n tzw. learning_rate, parametr algorytmu]
- wylosuj nowe F_i i CR_i z rozkładów $Cauchy(\mu_F, 0.1)$ i $N(\mu_{CV}, 0.1)$ odpowiednio
- powtarzaj kroki 2-4 w kolejnych iteracjach
 mean_A oznacza średnią arytmentyczną, a mean_L średnią Lehmera.

Opcjonalne archiwum

W tradycyjnym alogrytmie podczas każdej generacji "usuwamy" poprzednią populację. Jeżeli korzystamy z archiwum (P), osobnik, który nie ptrzetrwał (znaleźliśmy lepszy punkt na jego podstawie), trafia do archiwum. Punkt $x_{r_2,G}$ z poprzedniego slajdu losowany jest z sumy zbioru X i P. Co daje nam taka strategia:

- zachowujemy punkty, które mogłyby być potencjalnie obiecujące, ale źle zmutowały
- zwiększamy wielkość zbioru, z którego losujemy mutacje (większa różnorodność)

Problemy JADE

W algorytmie JADE dobieramy dynamicznie parametry na podstawie podpopulacji, której udało się ewoluować z sukcesem. Probabilistycznie możliwe jest, że taka podpopulacja miała bardzo złe parametry i jej "sukces" był przypadkowy. Potrzebujemy algorytmu, który będzie odporny na pojedyncze "szczęśliwe" generacje, które bazują na złych parametrach.

SHADE

SHADE (*Success History DE*) rozwija algroytm JADE o zachowywanie informacji o poprzednich sukcesach.

- jeżeli parametry sprawdziły się w pewnej generacji, kolejne (nawet odległe) generacje mogą z nich ponownie skorzystać
- "szczęsliwe" parametry, które w rzeczywistości nie są odpowiednie do zadania nie determinują kolejnych generacji
- zwiększenie entropii algrytmu mniejsza szansa na zatrzymanie się na niekorzystnych parametrach

Pamięć poprzednich generacji

Zamiast:

$$\mu_F$$
, μ_{CR}

Zdefiniujmy:

$$M_F = (M_{F,1}, \dots, M_{F,H}), M_{CR} = (M_{CR,1}, \dots, M_{CR,H})$$

Podczas tworzenia nowej generacji wybierzmy parametry μ_F , μ_{CR} ze zbiorów M_F , M_{CR} . Wyznaczmy, tak samo jak w JADE, nowe parametry F i CR i nadpiszmy nim $M_{F,k}$, $M_{CR,k}$, gdzie k = mod(G, H).

Wyznaczanie średniej średniej

Zamiast wyznaczać zwykłą średnią, możemy nadać jej odpowiednie wagi, które będą faworyzowały szczególnie "wybitne" osobniki, tzn. te, które w trakcie trwania generacji najbardziej zmniejszyły wartość f(x).

Średnia ważona

$$\begin{split} \textit{mean}_{W\!A}(S_{CR}) &= \Sigma_{k=1}^{|S_{CR}|} \omega_k * S_{CR,k} \\ \textit{mean}_{W\!L}(S_F) &= \frac{\Sigma_{k=1}^{|S_{CR}|} \omega_k * S_{F,k}^2}{\Sigma_{k=1}^{|S_{CR}|} \omega_k * S_{F,k}} \\ \omega_k &= \frac{\Delta f_k}{\Sigma_{i=1}^{|S_{CR}|} \Delta f_i} \end{split}$$

Dynamiczna zmiana current-to-pbest

Z jednej strony zmiana w kierunku najlepszego punktu jest intuicyjnie uzasadniona; z drugiej strony ryzykujemy, że najlepszy punkt utknął w minimum lokalnym i cała reszta populacji również tam trafi. Kompromisem pomiędzy tymi podejściami jest losowanie p dla każdego punktu z pewnego rozkładu $rand[p_{min}, 0.2]$.

Benchamark

F	SHADE	CoDE	EPSDE	JADE Maria (Cal Dans)	dynNP-jDE
	Mean (Std Dev)	Mean (Std Dev)	Mean (Std Dev)	Mean (Std Dev)	Mean (Std Dev)
F_1	0.00e+00 (0.00e+00)	0.00e+00 (0.00e+00)≈	0.00e+00 (0.00e+00)≈	0.00e+00 (0.00e+00)≈	0.00e+00 (0.00e+00)≈
F_2	9.00e+03 (7.47e+03)	9.78e+04 (4.81e+04)-	1.37e+06 (5.23e+06)-	7.67e+03 (5.66e+03)≈	9.52e+04 (4.09e+04)-
F_3	4.02e+01 (2.13e+02)	1.08e+06 (3.03e+06)-	1.75e+08 (5.39e+08)-	4.71e+05 (2.35e+06)-	1.71e+06 (2.54e+06)-
F_4	1.92e-04 (3.01e-04)	8.18e-02 (1.09e-01)-	8.08e+03 (2.56e+04)-	6.09e+03 (1.33e+04)-	4.76e+01 (4.75e+01)-
F_5	0.00e+00 (0.00e+00)	$0.00e+00 (0.00e+00) \approx$	$0.00e+00 (0.00e+00) \approx$	$0.00e+00 (0.00e+00) \approx$	0.00e+00 (0.00e+00)≈
F_6	5.96e-01 (3.73e+00)	4.16e+00 (9.00e+00)-	9.27e+00 (1.33e+00)-	2.07e+00 (7.17e+00)≈	1.19e+01 (1.66e+00)-
F_7	4.60e+00 (5.39e+00)	9.32e+00 (6.34e+00)-	5.88e+01 (4.29e+01)-	3.16e+00 (4.13e+00)≈	2.62e+00 (1.59e+00)≈
F_8	2.07e+01 (1.76e-01)	2.08e+01 (1.18e-01)≈	2.09e+01 (5.32e-02)-	2.09e+01 (4.93e-02)-	2.10e+01 (3.98e-02)-
F_9	2.75e+01 (1.77e+00)	1.45e+01 (2.90e+00)+	3.50e+01 (4.21e+00)-	2.65e+01 (1.96e+00)+	2.20e+01 (5.12e+00)+
F_{10}	7.69e-02 (3.58e-02)	2.71e-02 (1.50e-02)+	1.02e-01 (5.65e-02)-	4.04e-02 (2.37e-02)+	3.63e-02 (2.34e-02)+
F_{11}	0.00e+00 (0.00e+00)	0.00e+00 (0.00e+00)≈	1.95e-02 (1.39e-01)≈	0.00e+00 (0.00e+00)≈	0.00e+00 (0.00e+00)≈
F_{12}	2.30e+01 (3.73e+00)	3.98e+01 (1.21e+01)-	4.94e+01 (9.28e+00)-	2.29e+01 (5.45e+00)≈	4.07e+01 (8.81e+00)-
F_{13}	5.03e+01 (1.34e+01)	8.04e+01 (2.74e+01)-	7.68e+01 (1.72e+01)-	4.67e+01 (1.37e+01)≈	7.10e+01 (1.72e+01)-
F_{14}	3.18e-02 (2.33e-02)	3.60e+00 (4.09e+00)-	3.99e-01 (6.00e-01)-	2.86e-02 (2.53e-02)≈	9.39e-03 (1.40e-02)+
F_{15}	3.22e+03 (2.64e+02)	3.36e+03 (5.31e+02)-	6.75e+03 (7.60e+02)-	3.24e+03 (3.17e+02)≈	4.39e+03 (4.72e+02)-
F_{16}	9.13e-01 (1.85e-01)	3.38e-01 (2.03e-01)+	2.48e+00 (2.88e-01)-	1.84e+00 (6.27e-01)-	2.32e+00 (2.83e-01)-
F_{17}	3.04e+01 (3.83e-14)	3.04e+01 (1.17e-02)-	3.04e+01 (2.51e-02)-	3.04e+01 (1.95e-14)-	3.04e+01 (1.78e-03)≈
F_{18}	7.25e+01 (5.58e+00)	6.69e+01 (9.23e+00)+	1.37e+02 (1.12e+01)-	7.76e+01 (5.91e+00)-	1.35e+02 (1.24e+01)-
F_{19}	1.36e+00 (1.20e-01)	1.61e+00 (3.58e-01)-	1.84e+00 (2.00e-01)-	1.44e+00 (8.71e-02)-	1.27e+00 (1.09e-01)+
F_{20}	1.05e+01 (6.04e-01)	1.06e+01 (6.69e-01)≈	1.30e+01 (6.33e-01)-	1.04e+01 (5.82e-01)≈	1.13e+01 (4.14e-01)-
F_{21}	3.09e+02 (5.65e+01)	3.02e+02 (9.02e+01)≈	3.05e+02 (8.06e+01)≈	3.04e+02 (6.68e+01)≈	2.94e+02 (8.29e+01)≈
F_{22}	9.81e+01 (2.52e+01)	1.17e+02 (9.96e+00)-	3.09e+02 (1.12e+02)-	9.39e+01 (3.08e+01)≈	1.03e+02 (2.57e+01)-
F_{23}	3.51e+03 (4.11e+02)	3.56e+03 (6.12e+02)≈	6.74e+03 (8.20e+02)-	3.36e+03 (4.01e+02)≈	4.36e+03 (4.61e+02)-
F_{24}	2.05e+02 (5.29e+00)	2.21e+02 (9.28e+00)-	2.91e+02 (7.08e+00)-	2.17e+02 (1.57e+01)-	2.04e+02 (4.22e+00)=
F_{25}	2.59e+02 (1.96e+01)	2.57e+02 (6.55e+00)≈	2.99e+02 (3.29e+00)-	2.74e+02 (1.06e+01)-	2.55e+02 (7.91e+00) ≈
F_{26}	2.02e+02 (1.48e+01)	2.18e+02 (4.48e+01)-	3.56e+02 (6.49e+01)-	2.15e+02 (4.11e+01)≈	2.00e+02 (3.06e-03)+
F_{27}	3.88e+02 (1.09e+02)	6.20e+02 (1.01e+02)-	1.21e+03 (7.42e+01)-	6.70e+02 (2.40e+02)-	3.90e+02 (9.12e+01)≈
F_{28}	3.00e+02 (0.00e+00)	3.00e+02 (0.00e+00)≈	3.00e+02 (0.00e+00)≈	3.00e+02 (0.00e+00)≈	3.00e+02 (0.00e+00)≈
	+	4	0	2	5
		15	23	10	13
	≈	9	5	16	10

Rysunek: Benchmark algorytmów.

Bibliografia

 Success-History Based Parameter Adaptation for Differential Evolution, Ryoji Tanabe, Alex Fukunaga, http://metahack.org/CEC2013-SHADE.pdf