Data Reshaping

Faculty of Information Technology, Monash University, Australia

FIT5196 week 11

Outline

- Data Transformation
 - Data Normalisation/Scaling
 - Transformation by generating new features
 - Nominal to Numeric Transformation
- Data Discretisation
- Feature Engineering & Data Sampling
- Summary

Data Wrangling Process

Outline

- Data Transformation
 - Data Normalisation/Scaling
 - Transformation by generating new features
 - Nominal to Numeric Transformation
- Data Discretisation
- Feature Engineering & Data Sampling
- Summary

- Why: Raw attributes are usually not good enough to obtain accurate predictive model.
 - k-nearest neighbours (KNN) with an Euclidean distance measure if want all features to contribute equally

$$d(\mathbf{p},\mathbf{q}) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \dots + (p_n - q_n)^2} = \sqrt{\sum_i (p_i - q_i)^2}$$

 logistic regression, SVMs, perceptrons, neural networks etc. if you are using gradient descent/ascent-based optimisation, otherwise some weights will update much faster than others

$$\Delta w_j = -\eta \frac{\partial J}{\partial w_j} = \eta \sum_i (t^{(i)} - o^{(i)}) x_j^{(i)}$$

so that $w_i := w_i + \Delta w_i$

▶ linear discriminant analysis, principal component analysis, kernel principal component analysis since you want to find directions of maximising the variance (under the constraints that those directions/eigenvectors/principal components are orthogonal); you want to have features on the same scale since you'd emphasise variables on "larger measurement scales" more.

- Data transformation
 - A series of manipulation steps to transform the original attributes or to generate new attributes with better properties that will help the predictive power of the model.
 - To achieve properties that enhance the modelling and analysis (linearity, statistical or visual interpretability).
 - Methods
 - Normalisation/Scaling methods
 - Transformation by generating new features (i.e., variables or attributes)

Outline

- Data Transformation
 - Data Normalisation/Scaling
 - Transformation by generating new features
 - Nominal to Numeric Transformation
- Data Discretisation
- Feature Engineering & Data Sampling
- 4 Summary

Data Transformation — Normalisation

There are two types of data normalisation:

- Standardisation (z-score normalisation): where the focus is on shifting the distribution of data to have mean of 0 and standard deviation of 1.
- Scaling: where the focus is on rescaling data value range to a specific interval.
 - Min-Max normalisation
 - Decimal scaling

Data Normalisation — Standardisation

Z-score Normalisation

 Rescale the features (or variables) so that they will have the properties of a standard normal distribution with

$$\mu = 0 \& \sigma = 1.0$$

How?

$$x' = \frac{x - \mu}{\sigma}$$

where

$$\mu = \frac{1}{n} \sum_{i} x_{i}$$

$$\sigma = \sqrt{\frac{1}{n} \sum_{i} (x_{i} - \mu)^{2}}$$

Data Normalisation — Standardisation

Z-score Normalisation

Data Normalisation — Standardisation

Z-score Normalisation

(Monash) FIT5196 9 / 43

Data Normalisation — Min-Max Scaling

Min-Max Scaling

- Rescale the features (or variables) that their values are in a specific range $[X'_{min}, X'_{max}].$
- How?

$$X_{scaled} = \frac{X - X_{min}}{X_{max} - X_{min}} \left(X'_{max} - X'_{min} \right) + X'_{min}$$

If the fixed range is [0,1]

$$X_{scaled} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

(Monash) 10 / 43 FIT5196

Data Normalisation — Min-Max Scaling

Min-Max Scaling

We will end up with smaller standard deviations, which can suppress the effect of outliers

Data Normalisation — Min-Max Scaling

Min-Max Scaling

(Monash) FIT5196 10 / 43

MONASH University

Data Normalisation — Standardisation vs Min-Max

"Standardisation or Min-Max scaling?": depends on the application

- PCA: standardisation
- Image processing: pixel intensities have to be normalised to fit within a certain range (i.e., 0 to 255 for the RGB colour range)
- ANN: data that on a 0-1 scale

MONASH University

Data Normalisation — Standardisation vs Min-Max

Transformed standardized training dataset after PCA

Data Normalisation — Standardisation vs Min-Max

Transformed NON-standardized training dataset after PCA Transformed min max scaled training dataset after PCA

MONASH University

Data Normalisation — Decimal Scaling

- Shift the decimal place of a numeric value such that the maximum absolute value will be always less than 1
- How:

$$x' = \frac{x}{10^c}$$

where c is the smallest integer such that max(|x'|) < 1.

- Example:
 - ► $-500 \le x \le 45 \Rightarrow -0.500 \le x \le 0.045$
 - ► How to convert?

MONASH University

13 / 43

Data Normalisation — Decimal Scaling

- Shift the decimal place of a numeric value such that the maximum absolute value will be always less than 1
- How:

$$x' = \frac{x}{10^c}$$

where c is the smallest integer such that max(|x'|) < 1.

- Example:
 - ► $-500 \le x \le 45 \Rightarrow -0.500 \le x \le 0.045$
 - ► How to convert?
 - $-x_{max} = max(abs(x)) = 500$
 - $-c = ceil(log_{10}(x_{max})) = 3.0$
 - $-x/=10.0^{3.0}=x/1000.0$

Outline

- Data Transformation
 - Data Normalisation/Scaling
 - Transformation by generating new features
 - Nominal to Numeric Transformation
- Data Discretisation
- Feature Engineering & Data Sampling
- Summary

Data Transformation is a process of re-expressing data in a form that is more suitable for analysis.

- Reasons for data transformation
 - Fix skewness in data
 - Enhance data visualisation
 - Better interpretability
 - Improve the compatibility of data with assumptions underlying a modelling process
- Methods: different mathematical formulas from statistical analysis
 - linear transformation
 - log transformation
 - Power transformation
 - Box-Cox Transformation
 - others: Quadratic transformation, (non-)polynomial approximation of transformation, rank transformation

MONASH University

Data Transformation

Linear Transformation

- Linear transformation preserves the linear relationship between the features.
- Aggregate the information contained in various features
- Linear transformation function: Given a subset of the complete set of attributes, X_1, X_2, \ldots, X_m ,

$$X_{agg} = w_0 + \sum_{i=1}^{m} w_i X_i$$

- Examples:
 - Celsius to Fahrenheit
 - Miles to Kilometers
 - Inches to Centimeters

Log transformation makes highly skewed distributions less skewed

Log transformation makes highly skewed distributions less skewed

Power Transformation

 Tukey and Mosteller's Bulging Rule: The idea is that it might be interesting to transform X and Y at the same time, using some power functions.

$$Y_i^q = \beta_0 + \beta_1 X_i^p + \eta_i$$

(Monash) 19 / 43 FIT5196

Power Transformation

$$Y_i^q = \beta_0 + \beta_1 X_i^p + \eta_i$$

More information can be found https://www.r-bloggers.com/tukey-and-mostellers-bulging-rule-and-ladder-of-powers/

Power Transformation

Power Transformation

Power Transformation

• Seek optimal transformations: learnt p and q with L-BFGS

MONASH University

Data Transformation

(Monash)

The Box-Cox Transformation: transforms a continuous variable into an almost normal distribution.

$$y = \begin{cases} \frac{x^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0\\ \log(x) & \text{if } \lambda = 0 \end{cases}$$

Figure: Examples of the Box-Cox transformation x'_{λ} versus x for $\lambda = -1, 0, 1$. In the second row, x'_{λ} is plotted against log(x). The red point is at (1,0).

The Box-Cox Transformation: transforms a continuous variable into an almost normal distribution.

$$y = \begin{cases} \frac{x^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0\\ \log(x) & \text{if } \lambda = 0 \end{cases}$$

(Monash) FIT5196 22 / 43

The Box-Cox Transformation: transforms a continuous variable into an almost normal distribution.

$$y = \begin{cases} \frac{x^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0\\ \log(x) & \text{if } \lambda = 0 \end{cases}$$

(Monash) FIT5196 22 / 43

The Box-Cox Transformation: transforms a continuous variable into an almost normal distribution.

$$y = \begin{cases} \frac{x^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0\\ \log(x) & \text{if } \lambda = 0 \end{cases}$$

The Box-Cox Transformation: transforms a continuous variable into an almost normal distribution.

$$y = \begin{cases} \frac{x^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0\\ \log(x) & \text{if } \lambda = 0 \end{cases}$$

MONASH University

Data Transformation

The Box-Cox Transformation: transforms a continuous variable into an almost normal distribution.

With negative values in the attributes

$$y = \begin{cases} \frac{(x+c)^{\lambda-1}}{g\lambda} & \text{if } \lambda \neq 0\\ \frac{\log(x+c)}{g} & \text{if } \lambda = 0 \end{cases}$$

where

- ▶ A parameter c: offset the negative values
- g: scale the resulting values, often considered as the geometric mean of the data.
- $ightharpoonup \lambda$: greedily search λ so that the resulting attribute is as close as possible to the normal distribution.

Outline

- Data Transformation
 - Data Normalisation/Scaling
 - Transformation by generating new features
 - Nominal to Numeric Transformation
- Data Discretisation
- Feature Engineering & Data Sampling
- Summary

Why?

 Many machine learning algorithms only accept numeric value, while in many applications we have nominal attributes.

How?

- Integer substitution: map each nominal value in the domain to numeric value
- Example: assume we have a color attribute with Red, Green, Blue and Yellow value
 - Red \Rightarrow 1
 - Green \Rightarrow 2

Nominal to Numeric Transformation

- Blue ⇒ 3
- Yellow $\Rightarrow 4$
- What's the problem?
 - Implies a sort of ranking that doesn?t actually exists in the original data.
 - The outcome of the mining algorithms would be sensitive to the numeric values we choose to use.

Nominal to Numeric Transformation

- Why?
 - ► Many machine learning algorithms only accept numeric value, while in many applications we have nominal attributes.
- How?
 - ▶ Integer substitution: map each nominal value in the domain to numeric value
 - Example: assume we have a color attribute with Red, Green, Blue and Yellow value
 - One-hot encoding

Colour	Red	Green	Blue	Yellow
Yellow	0	0	0	1
Blue	0	0	1	0
Red	1	0	0	0
Yellow	0	0	0	1
Green	0	1	0	0
Red	1	0	0	0

Outline

- Data Transformation
- Data Discretisation
- Feature Engineering & Data Sampling
- Summary

Data Discretisation

- The process of converting or partitioning continuous variables to discretised or nominal variables.
 - Find concise data representations as categories which are adequate for the learning task retaining as much information in the original continuous attribute as possible
 - Effects of discretisation
 - Smooth data
 - Reduce noisy
 - Reduce data size
 - Enable specific methods using nominal data

- Methods
 - Binning
 - Entropy discretisation
 - ► Concept hierarchy

- An unsupervised algorithm (doesn't care about the dependent variable) that splits ordered data into predefined number of bins.
- Two approaches
 - Equal-width binning
 - Given a range of values, $[x_{min}, x_{max}]$, we divide the value range into intervals with approximately same width, w

$$w = \frac{x_{max} - x_{min}}{n}$$

where n is the number of bins. Or you can specify the value of w

- Equal-depth binning
 - Divides the range into n intervals, each containing approximately same number of samples.
- Binning with
 - mean value
 - median values
 - bin boundaries

- Task: discretise {34, 64, 88, 55, 94, 59, 10, 25, 44, 48, 69, 15}
 - sort the values in ascending order

$$\{10, 15, 25, 34, 44, 48, 55, 59, 64, 69, 88, 94\}$$

• Equal-width binning with n = 4

$$\{10, 15, 25\}, \{34, 44, 48\}, \{55, 59, 64, 69\}, \{88, 94\}$$

- mean value

$$\{16.6, 16.6, 16.6\}, \ \{42, 42, 42\}, \ \{61.75, 61.75, 61.75, 61.75\}, \ \{91, 91\}$$

- median value

$$\{15, 15, 15\}, \{44, 44, 44\}, \{61.5, 61.5, 61.5, 61.5\}, \{91, 91\}$$

boundaries

$$\{10, 10, 25\}, \{34, 48, 48\}, \{55, 55, 69, 69\}, \{88, 94\}$$

- Task: discretise {34, 64, 88, 55, 94, 59, 10, 25, 44, 48, 69, 15}
 - sort the values in ascending order

$$\{10, 15, 25, 34, 44, 48, 55, 59, 64, 69, 88, 94\}$$

• Equal-depth binning with n = 4

$$\{10, 15, 25\}, \{34, 44, 48\}, \{55, 59, 64\}, \{69, 88, 94\}$$

mean value

$$\{16.6, 16.6, 16.6\}, \{42, 42, 42\}, \{59.3, 59.3, 59.3\}, \{83.6, 83.6, 83.6\}$$

- median value

boundaries

$$\{10, 10, 25\}, \{34, 48, 48\}, \{55, 55, 64\}, \{69, 94, 94\}$$

Advantage/disadvantage of each method:

- Equal-width binning
 - Is simple but sensitive to outliers
 - ▶ Not well handles skewed data
- Equal-depth binning
 - Scales well by keeping the distribution of the data

Entropy

$$H(X) = -\sum_{i=1}^{n} p(x_i) \log_b(p(x_i))$$

• Coin toss: p(head) = p(tail) = 1/2

$$H(X) = -p(head)\log_2(p(head)) - p(tail)\log_2(p(tail)) = -2 \times \frac{1}{2}\log_2(1/2) = 1$$

• Coin toss: p(head) = 0.7 and p(tail) = 0.3

$$H(X) = -0.7 \log_2(0.7) - 0.3 \log_2(0.3) = 0.881 < 1$$

 Entropy discretisation: a method takes into account the class labels in discretisation.

- Entropy discretisation: a method takes into account the class labels in discretisation.
 - Ideas
 - Data should be split into intervals that maximise the information, measured by Entropy,
 - Partitioning should not be too fine-grained, to avoid over-fitting.
 - Algorithm
 - 1. Calculate Entropy for your data.
 - 2. For each potential split in your data...
 - Calculate Entropy in each potential bin
 - Find the net entropy for your split
 - o Calculate entropy gain
 - 3. Select the split with the highest entropy gain
 - Recursively (or iteratively in some cases) perform the partition on each split until a termination criteria is met
 - Terminate once you reach a specified number of bins
 - o Terminate once entropy gain falls below a certain threshold.

Figure is adapted from http://kevinmeurer.com/a-simple-guide-to-entropy-based-discretization/

Hours Studied	A on Test
4	N
5	Υ
8	N
12	Υ
15	Υ

Figure is adapted from http://kevinmeurer.com/a-simple-guide-to-entropy-based-discretization/

• Entropy of the data:

$$H(X) = -\frac{3}{5}\log_2(\frac{3}{5}) - \frac{2}{5}\log_2(\frac{2}{5}) = 0.529 + 0.442 = 0.971$$

Hours Studied	A on Test
4	N
5	Υ
8	N
12	Υ
15	Υ

Figure is adapted from http://kevinmeurer.com/a-simple-guide-to-entropy-based-discretization/

• Split at 4.5

$$H(X \le 4.5) = -\frac{1}{1}\log_2(1) - \frac{0}{1}\log_2(0) = 0 + 0 = 0$$

$$H(X > 4.5) = -\frac{3}{4}\log_2(\frac{3}{4}) - \frac{1}{4}\log_2(\frac{1}{4}) = 0.311 + 0.5 = 0.811$$

$$H(X_{new}) = H(X \le 4.5) + H(X > 4.5) = \frac{1}{5}0 + \frac{4}{5}0.811 = 0.6488$$

$$G(X_{new}) = 0.971 - 0.6488 = 0.322$$

Hours Studied	A on Test
4	N
5	Υ
8	N
12	Υ
15	Υ

Figure is adapted from http://kevinmeurer.com/a-simple-guide-to-entropy-based-discretization/

• Split at 6.5

$$H(X \le 6.5) = -\frac{1}{2}\log_2(\frac{1}{2}) - \frac{1}{2}\log_2(\frac{1}{2}) = 1$$

$$H(X > 6.5) = -\frac{2}{3}\log_2(\frac{2}{3}) - \frac{1}{3}\log_2(\frac{1}{3}) = 0.918$$

$$H(X_{new}) = H(X \le 6.5) + H(X > 6.5) = \frac{2}{5}1 + \frac{3}{5}0.917 = 0.951$$

$$G(X_{new}) = 0.971 - 0.951 = 0.02$$

Hours Studied	A on Test
4	N
5	Υ
8	N
12	Υ
15	Υ

Figure is adapted from http://kevinmeurer.com/a-simple-guide-to-entropy-based-discretization/

Split at 10

$$H(X \le 10) = -\frac{1}{3}\log_2(\frac{1}{3}) - \frac{2}{3}\log_2(\frac{2}{3}) = 0.918$$

$$H(X > 10) = -\frac{2}{2}\log_2(\frac{2}{2}) - \frac{0}{2}\log_2(\frac{0}{2}) = 0$$

$$H(X_{new}) = H(X \le 10) + H(X > 10) = \frac{3}{5}0.917 + \frac{2}{5}0 = 0.551$$

$$G(X_{new}) = 0.971 - 0.551 = 0.42$$

Hours Studied	A on Test
4	N
5	Υ
8	N
12	Υ
15	Υ

Figure is adapted from http://kevinmeurer.com/a-simple-guide-to-entropy-based-discretization/

• Split at 13.5

$$H(X \le 13.5) = -\frac{2}{4}\log_2(\frac{2}{4}) - \frac{2}{4}\log_2(\frac{2}{4}) = 1.0$$

$$H(X > 13.5) = -\frac{1}{1}\log_2(\frac{1}{1}) - \frac{0}{1}\log_2(\frac{0}{1}) = 0$$

$$H(X_{new}) = H(X \le 13.5) + H(X > 13.5) = \frac{4}{5}1.0 + \frac{1}{5}0 = 0.8$$

$$G(X_{new}) = 0.971 - 0.8 = 0.171$$

Hours Studied	A on Test
4	N
5	Υ
8	N
12	Υ
15	Υ

Figure is adapted from http://kevinmeurer.com/a-simple-quide-to-entropy-based-discretization/

- Split at 4.5: $G(X_{new}) = 0.322$
- Split at 6.5: $G(X_{new}) = 0.02$
- Split at 10: $G(X_{new}) = 0.42$
- Split at 13.5: $G(X_{new}) = 0.171$

Hours Studied	A on Test
4	N
5	Υ
8	N
12	Υ
15	Υ

Figure is adapted from http://kevinmeurer.com/a-simple-guide-to-entropy-based-discretization/

- When to stop the algorithm
 - Terminate when a specified number of bins has been reached
 - ► Terminate when information gain falls below a certain threshold.

A simple 3-4-5 rule can be used to segment numeric data (attribute values) into relatively uniform, "natural" intervals.

- If an interval covers 3, 6, 7 or 9 distinct values at the most significant digit, partition the range into 3 equi-width.
- If it covers 2, 4, or 8 distinct values at the most significant digit, partition the range into 4 intervals intervals
- If it covers 1, 5, or 10 distinct values at the most significant digit, partition the range into 5 intervals

MONASH University

Segmentation by natural partitioning

£1 000 0001

FIT5196

TOON ONGS

- Data Transformation
- Data Discretisation
- Feature Engineering & Data Sampling
- Summary

Feature Engineering

- Feature extraction (or generation)
 - Generate new features from raw data or other features
 - Goals
 - Produce more meaningful/descriptive/discriminant features

- Feature selection
 - Select a subset of available features based on some criteria
 - Goals
 - Remove irrelevant data
 - Increase predictive accuracy of learned models
 - Improve learning efficiency
 - Reduce the model complexity and increase its interpretability

Feature Subset Selection

Feature subset selection reduces the data set size by removing irrelevant or redundant features.

- Goal: find a minimum set of attributes such that the resulting probability distribution of the data classes is as close as possible to the original distribution obtained using all attributes
- Methods
 - Stepwise forward selection
 - Stepwise backward elimination.
 - Combination of forward selection and backward elimination
 - Decision tree induction.

Feature Subset Selection

Forward selection	Backward elimination	Decision tree induction
Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$	Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$	Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$
Initial reduced set: $\{\}$ \Rightarrow $\{A_1\}$ \Rightarrow $\{A_1, A_4\}$ \Rightarrow Reduced attribute set: $\{A_1, A_4, A_6\}$	=> $\{A_1, A_3, A_4, A_5, A_6\}$ => $\{A_1, A_4, A_5, A_6\}$ => Reduced attribute set: $\{A_1, A_4, A_6\}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Figure is from "Data mining: know it all"

Data Sampling Methods

- Sampling methods are used to choose a representative subset of the data
- Why?
 - Reduce the volume of data
 - ► Fix imbalance distribution
 - Creating training, validation, testing sets.

Data Sampling Methods

- Methods: Suppose that a large dataset, D, contains N tuples, the ways we can used to do data reduction:
 - ► Simple random sample without replacement (**SRSWOR**) of size *s*:
 - Draw s of the N tuples from D (s < N), where the probability of drawing any tuple in D is 1/N
 - ► Simple random sample with replacement (**SRSWR**) of size *s*.
 - Similar to SRWOR, except that after a tuple is drawn, it is placed back in D so that it may be drawn again.

Figure is from "Data mining: know it all"

Data Sampling Methods

- Methods: Suppose that a large dataset, D, contains N tuples, the ways we can used to do data reduction:
 - Stratified sample:
 - If D is divided into mutually disjoint parts called strata, a stratified sample of D is generated by obtaining an SRS at each stratum

T38	youth
T256	youth
T307	youth
T391	youth
T96	middle_aged
T117	middle_aged
T138	middle_aged
T263	middle_aged
T290	middle_aged
T308	middle_aged
T326	middle_aged
T387	middle_aged
T69	senior
T284	senior

T38	youth
T391	youth
T117	middle_aged
T138	middle_aged
T290	middle_aged
T326	middle_aged
T69	senior

Figure is from "Data mining: know it all"

Summary

- Data transformation:
 - Normalisation/Scaling
 - Data transformation generating new features
 - Nominal to numerical transformation
- Data Discretization
- Feature selection and data sampling