Diagonalization

• We want to change a given square matrix $A \in \mathbb{R}^{n \times n}$ into a diagonal matrix via the following form:

$$D = V^{-1}AV$$

where $P \in \mathbb{R}^{n \times n}$ is an invertible matrix and $D \in \mathbb{R}^{n \times n}$ is a diagonal matrix. This is called a diagonalization of A.

• It is not always possible to diagonalize A. For A to be diagonalizable, an invertible V should exist such that $V^{-1}AV$ becomes a diagonal matrix.

Finding V and D

- How can we find an invertible P and the resulting diagonal matrix $D = V^{-1}AV$?
- $D = V^{-1}AV \Longrightarrow VD = AV$
- Let us represent the following:
- $V = [\mathbf{v}_1 \quad \mathbf{v}_2 \quad \cdots \quad \mathbf{v}_n]$ where \mathbf{v}_i 's are column vectors of V

$$\bullet D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{bmatrix}$$

Finding V and D

•
$$AV = A[\mathbf{v}_1 \quad \mathbf{v}_2 \quad \cdots \quad \mathbf{v}_n] = [A\mathbf{v}_1 \quad A\mathbf{v}_2 \quad \cdots \quad A\mathbf{v}_n]$$

• $VD = [\mathbf{v}_1 \quad \mathbf{v}_2 \quad \cdots \quad \mathbf{v}_n] \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{bmatrix}$
= $[\lambda_1\mathbf{v}_1 \quad \lambda_2\mathbf{v}_2 \quad \cdots \quad \lambda_n\mathbf{v}_n]$
• $VD = AV \iff [A\mathbf{v}_1 \quad A\mathbf{v}_2 \quad \cdots \quad A\mathbf{v}_n] = [\lambda_1\mathbf{v}_1 \quad \lambda_2\mathbf{v}_2 \quad \cdots \quad \lambda_n\mathbf{v}_n]$

Finding V and D

Equating columns, we obtain

$$A\mathbf{v}_1 = \lambda_1 \mathbf{v}_1$$
, $A\mathbf{v}_2 = \lambda_2 \mathbf{v}_2$,..., $A\mathbf{v}_n = \lambda_n \mathbf{v}_n$

- Thus, \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_n should be eigenvectors and λ_1 , λ_2 , ..., λ_n should be eigenvalues.
- Then, for $VD = AV \Longrightarrow D = V^{-1}AV$ to be true, V should invertible.
- In this case, the resulting diagonal matrix D has eigenvalues as diagonal entries.

Diagonalizable Matrix

- For V to be invertible, V should be a square matrix in $\mathbb{R}^{n \times n}$, and V should have n linearly independent columns.
- Recall columns of V are eigenvectors. Hence, A should have n linearly independent eigenvectors.
- It is not always the case, but if it is, A is diagonalizable.