Integral definida. RESUMEN

Definición:

Sea y = f(x) una función continua en [a,b] Su integral definida en ese intervalo la definimos como:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=0}^{n} f(x_{i}^{*}) \Delta x \qquad \text{donde } \Delta x = \frac{b-a}{n} \text{ y el punto } x_{i}^{*} \text{ pertenece al}$$
subintervalo $[x_{i-1}, x_{i}]$.

Los puntos $P = \{x_0 = a, x_1, x_2, ..., x_n = b\}$ forman una partición del intervalo cuya "norma" es $\Delta x = \frac{b-a}{n}$. Cada punto se forma sumando al anterior Δx .

Teorema fundamental del Cálculo

Primera parte: si una función y = f(x) es continua en el intervalo [a,b], definimos la función integral como:

$$F(x) = \int_{a}^{x} f(t)dt$$

Entonces F'(x) = f(x) $\forall x \in [a,b]$ (es decir F es primitiva de f en **ese** intervalo)

<u>Segunda parte (regla de Barrow):</u> sea una función y = f(x) es continua en el intervalo [a,b], y G una primitiva de f entonces:

$$\int_{a}^{b} f(x)dx = G(b) - G(a)$$

Teorema del valor medio para el cálculo integral

Sea una función y = f(x) es continua en el intervalo [a,b], entonces existe un punto c interior al intervalo (a < c < b) en el cual se verifica:

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x)dx$$

A este valor se lo llama valor promedio o valor medio.

Aplicaciones de la integral definida

Aplicación	Casos	Gráfico	Fórmula
Área que forma una función con el eje x en el intervalo [a,b]	Función totalmente positiva en el intervalo [a,b]	$y = f(x)$ $a \qquad b \qquad x$	$A = \int_{a}^{b} f(x)dx$
	Función totalmente negativa en el intervalo $[a,b]$	2-	$A = \int_{a}^{b} -f(x)dx$
	Función que cambia de signo en el intervalo [a,b]	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Supongamos que llamamos c al punto de cambio de signo: $A = \int_{a}^{c} f(x)dx + \int_{c}^{b} -f(x)dx$
		En este caso tenemos que calcular en $[a,b]$ dos integrales (una correspondiente a la región azul y otra a la región amarilla) y luego hacer la suma.	
Área entre curvas	Un solo caso: sólo tenemos que fijarnos cuál es la función "mayor" y cuál la "menor". Puede ser que	$y = f(x)$ $y = g(x)$ $0 a b x$ FIGURA 3 $A = \int_a^b f(x) dx - \int_a^b g(x) dx$	$A = \int_{a}^{b} (f(x) - g(x))dx$

