

## Linear Regression

Chelsea Parlett-Pelleriti

#### What

- variables (can be continuous, categorical, or both) to predict a continuous variable.
- Use a line (or a plane) to describe the relationship between these variables.



income

### Assumptions

 The relationship between your variables is linear



### Assumptions

- Homoscedasticity
  - Is the mode worse in some areas than others?



#### How



- Y = mx + b
- $\bullet$  Y = mx + nz + b
- Slope tells you how variables change together
- Intercept tells you what would happen if all your predictors were 0.



#### Simple example Predict weight by height





Simple example Predict weight by height

**PREDICT** 

CATEGORY



# Simple example Predict weight by height + diet + age



|             | coef     | std err | t      | P> t  | [0.025   | 0.975] |
|-------------|----------|---------|--------|-------|----------|--------|
| Intercept   | -57.4078 | 26.662  | -2.153 | 0.037 | -111.076 | -3.740 |
| diet[T.veg] | -8.2640  | 4.038   | -2.046 | 0.046 | -16.393  | -0.135 |
| height      | 0.8948   | 0.139   | 6.460  | 0.000 | 0.616    | 1.174  |
| age         | -0.1298  | 0.106   | -1.219 | 0.229 | -0.344   | 0.085  |

#### Who is the GOAT?













53 home-runs

#### Who is the GOAT? 🚱











#### Who is the GOAT?









#### Who is the GOAT?







#### Both Std.



# Simple example Predict weight by height + diet + age



|             | coef     | std err | t      | P> t  | [0.025   | 0.975] |
|-------------|----------|---------|--------|-------|----------|--------|
| Intercept   | -57.4078 | 26.662  | -2.153 | 0.037 | -111.076 | -3.740 |
| diet[T.veg] | -8.2640  | 4.038   | -2.046 | 0.046 | -16.393  | -0.135 |
| height      | 0.8948   | 0.139   | 6.460  | 0.000 | 0.616    | 1.174  |
| age         | -0.1298  | 0.106   | -1.219 | 0.229 | -0.344   | 0.085  |

#### Standardizing variables

For understanding and for model convergence



#### Inferential way to do LR

PREDICT

CATEGORY

OGELSZAPARLET

OGELSZAPARLET

How is it different from prediction?

How to interpret coefficients (same in both)

http://www.statsmodels.org/stable/index.html

https://towardsdatascience.com/bayesian-linear-regression-in-python-using-machine-learning-to-predict-student-grades-part-2-b72059 a8ac7e