PSYC 2300

Introduction to Statistics

Lecture 08: Midterm Review

Outline for today

- Mini-Report Assignment
- Midterm Review
 - Review of key computations
 - Review of key concepts
- Q & A
 - Any questions about the midterm

Mini-Report Assignment

Reading

The psychology-related article must be from a non-scientific source and must present statistics (descriptive or inferential)

- Psychology Today
- Time
- People

Writing

- 2-pages, double-spaced, 12-point font,
 1" margins
- *Summarize* the article and the statistics it reports
- Describe how well the author reports these statistics and the methods used to generate them
- Evaluate whether a reader who is not scientifically trained would be able to walk away with a clear understanding of the information being presented

Key Computations for the Midterm

- Standard deviation (for samples and population)
- Variance (for samples, populations)
- Cronbach's Alpha
- Correlation
- Z-test statistic
- z-scores

Measures of Variability

Measures of Variability

Measures of variability: describe how scores in a given dataset differ from one another (e.g., the spread or clustering of points)

Range

Standard Deviation

Variance

Measures of Variability

Range: The difference between the lowest and highest values in a dataset

Standard Deviation: The standard (or typical) amount that scores deviate from the mean Variance: The averaged squared deviation from the mean

Variance: The averaged squared deviation from the mean

Sum of Squares

x_i	$x_i - \mu$
1	-1.6
2	-0.6
1	-1.6
4	1.4
3	0.4
3	0.4
6	3.4
1	-1.6
2	-0.6
3	0.4

Step 1: calculate the mean. $\mu=2.6$

Step 2: subtract each x_i from the mean

Sum of Squares

x	$x_i - \mu$	$(x_i-\mu)^2$
1	-1.6	2.56
2	-0.6	0.36
1	-1.6	2.56
4	1.4	1.96
3	0.4	0.16
3	0.4	0.16
6	3.4	11.56
1	-1.6	2.56
2	-0.6	0.36
3	0.4	0.16

Step 1: calculate the mean. $\mu=2.6$

Step 2: subtract each x_i from the mean

Step 3: Square the deviations

Step 4: Sum the squared deviations, $\sum (x_i - \mu)^2 = 22.4$

Standard Deviation and Variance

Population Parameter

Sample Statistic

Standard Deviation

$$\sigma = \sqrt{rac{\sum (X_i - \mu)^2}{N}}$$

Standard Deviation

$$s=\sqrt{rac{\sum (x_i-\overline{x})^2}{(n-1)}}$$

Variance

$$\sigma^2 = rac{\sum (X_i - \mu)^2}{N}$$

Variance

$$s^2=rac{\sum (x_i-\overline{x})^2}{(n-1)}$$

Cronbach's Alpha

$$lpha=(rac{k}{k-1})(rac{s_y^2-\sum s_i^2}{s_y^2})$$

k the number of items

 s_y^2 the variance associated with the observed score "total column"

 $\sum s_i^2$ the sum of all the variances for each individual item

Item_1	Item_2	Item_3
6	6	8
5	5	6
9	8	6
3	2	4
2	3	2
1	1	2
5	4	6

- 1. I often have worrying thoughts
- 2. I often feel nervous
- 3. My heart often beats fast as fears enter in

Item_1	Item_2	Item_3	Total
6	6	8	20
5	5	6	16
9	8	6	23
3	2	4	9
2	3	2	7
1	1	2	4
5	4	6	15

Step 1: Sum the values of Item 1, Item 2, and Item 3 *row-wise* to create a "Total" column

Item_1	Item_2	Item_3	Total
6	6	8	20
5	5	6	16
9	8	6	23
3	2	4	9
2	3	2	7
1	1	2	4
5	4	6	15

Step 1: Sum the values of Item 1, Item 2, and Item 3 *row-wise* to create a "Total" column

Step 2: Calculate the *sample variance* for each item and 'total'

$$s_i^2 = rac{\sum (x_i - \overline{x})^2}{(n-1)}$$

$$s_y^2 = rac{\sum (x_i - \overline{x})^2}{(n-1)}$$

Create a table for item 1

Item_1	deviation	squared_deviation
6	1.57	2.47
5	0.57	0.33
9	4.57	20.90
3	-1.43	2.04
2	-2.43	5.90
1	-3.43	11.76
5	0.57	0.33

Step 2a: Calculate the *sample variance* for each item

$$\overline{x} = 4.43$$
 $s_1^2 = rac{\sum (x_i - \overline{x})^2}{(n-1)}$ $s_1^2 = rac{43.71}{(7-1)} = 7.29$

Create a table for item 2

Item_2	deviation	squared_deviation
6	1.86	3.45
5	0.86	0.73
8	3.86	14.88
2	-2.14	4.59
3	-1.14	1.31
1	-3.14	9.88
4	-0.14	0.02

Step 2b: Calculate the *sample variance* for each item

$$\overline{x} = 4.14$$
 $s_2^2 = rac{\sum (x_i - \overline{x})^2}{(n-1)}$ $s_2^2 = rac{34.86}{(7-1)} = 5.81$

Create a table for item 3

Item_3	deviation	squared_deviation
8	3.14	9.88
6	1.14	1.31
6	1.14	1.31
4	-0.86	0.73
2	-2.86	8.16
2	-2.86	8.16
6	1.14	1.31

Step 2c: Calculate the *sample variance* for each item

$$\overline{x} = 4.86$$
 $s_3^2 = rac{\sum (x_i - \overline{x})^2}{(n-1)}$ $s_3^2 = rac{30.86}{(7-1)} = 5.14$

Create a table for the total column

Total	deviation	squared_deviation
20	6.57	43.18
16	2.57	6.61
23	9.57	91.61
9	-4.43	19.61
7	-6.43	41.33
4	-9.43	88.90
15	1.57	2.47

Step 2c: Calculate the *sample variance* for each item

$$egin{aligned} \overline{x} &= 13.43 \ s_y^2 &= rac{\sum (x_i - \overline{x})^2}{(n-1)} \ s_y^2 &= rac{293.71}{(7-1)} = 48.95 \end{aligned}$$

Item_1	Item_2	Item_3	Total
6	6	8	20
5	5	6	16
9	8	6	23
3	2	4	9
2	3	2	7
1	1	2	4
5	4	6	15

Step 3: Prep all of the variance values we just calculated

Item_1	Item_2	Item_3	Total
7.286	5.81	5.143	48.952

k=3 items in our scale

Cronbach's Alpha

$$lpha = (rac{k}{k-1})(rac{s_y^2 - \sum s_i^2}{s_y^2})$$

$$\alpha = (\frac{3}{3-1})(\frac{48.95 - 18.24}{48.95})$$

$$\alpha = .941$$

$$k = 3$$

$$\sum s_i^2 = s_1^2 + s_2^2 + s_3^2 = 7.29 + 5.81 + 5.14 = 18.24$$

$$s_y^2 = 48.95$$

Pearson's Correlation

Pearson's r

$$r_{xy} = rac{n\sum XY - \sum X\sum Y}{\sqrt{[n\sum X^2 - (\sum X)^2][n\sum Y^2 - (\sum Y)^2]}}$$

We just need six values:

$$egin{array}{cccc} \Sigma X & & \sum X \\ \Sigma Y & & \sum Y \\ \Sigma XY & & n \end{array}$$

Set up our table with the x and y values

x	y	x^2	y^2	xy
5	6			
9	11			
10	6			
3	4			
5	6			
7	9			

Square our x values

Square our y values

x	y	x^2	y^2	xy
5	6	25	36	
9	11	81	121	
10	6	100	36	
3	4	9	16	
5	6	25	36	
7	9	49	81	

Multiply x and y together row-wise

x	y	x^2	y^2	xy
5	6	25	36	30
9	11	81	121	99
10	6	100	36	60
3	4	9	16	12
5	6	25	36	30
7	9	49	81	63

x	y	x^2	y^2	xy
5	6	25	36	30
9	11	81	121	99
10	6	100	36	60
3	4	9	16	12
5	6	25	36	30
7	9	49	81	63

Sum each of the columns

$$\frac{\sum x}{39} \frac{\sum y}{42} \frac{\sum x^2}{289} \frac{\sum y^2}{326} \frac{\sum xy}{294}$$

Pearson's r

$$r_{xy} = rac{n\sum XY - \sum X\sum Y}{\sqrt{[n\sum X^2 - (\sum X)^2][n\sum Y^2 - (\sum Y)^2]}}$$

$$\sum x \sum y \sum x^2 \sum y^2 \sum xy$$
39 42 289 326 294

$$r_{xy} = rac{(6)(294) - (39)(42)}{\sqrt{[(6)(289) - (39)^2][(6)(326) - (42)^2]}}$$

$$egin{aligned} r_{xy} &= rac{n \sum XY - \sum X \sum Y}{\sqrt{[n \sum X^2 - (\sum X)^2][n \sum Y^2 - (\sum Y)^2]}} \ r_{xy} &= rac{(6)(294) - (39)(42)}{\sqrt{[(6)(289) - (39)^2][(6)(326) - (42)^2]}} \ r_{xy} &= rac{126}{\sqrt{(213)(192)}} = 0.62306 = 0.62 \end{aligned}$$

z-test statistic

z-test Statistic

The sample mean we collected

Population mean assuming H₀ is true

z-test statistic

$$z_{\overline{x}} = rac{\overline{x} - \mu_{\overline{x}}}{\sigma_{\overline{x}}}$$

Standard error

z-test Statistic

z-test statistic

$$z_{\overline{x}} = rac{\overline{x} - \mu_{\overline{x}}}{\sigma_{\overline{x}}}$$

Standard Error

$$\sigma_{\overline{x}} = rac{\sigma}{\sqrt{n}}$$

 $\overline{x}=$ sample mean $\mu_{\overline{x}}=$ population mean when H_0 is true $\sigma_{\overline{x}}=$ standard error

 $\sigma=$ population standard deviation n= sample size

In the population

$$\mu$$
 = 100

$$\sigma$$
 = 15

$$n = 15$$

$$\overline{X}_{IQ} = 105.9$$

$$s_{IQ}=15.10$$

$$101, 122, 132$$

 $94, 129, 89$
 $109, 92, 100$
 $125, 103, 91$
 $94, 116, 92$

In the population

$$\mu$$
 = 100

$$\sigma$$
 = 15

$$n = 15$$

$$\overline{X}_{IQ}=105.9$$

$$s_{IQ}=15.10$$

$$z_{\overline{x}}=rac{\overline{x}-\mu_{ar{x}}}{\sigma_{ar{x}}}$$

$$z_{\overline{x}}=rac{105.9-100}{\sigma_{ar{x}}}$$

In the population

$$\mu$$
 = 100

$$\sigma$$
 = 15

$$n = 15$$

$$\overline{X}_{IQ}=105.9$$

$$s_{IQ}=15.10$$

$$z_{\overline{x}}=rac{105.9-100}{\sigma_{ar{x}}}$$

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$$

$$\sigma_{\overline{x}} = \frac{15}{\sqrt{15}}$$

$$\sigma_{\overline{x}}=3.87$$

In the population

$$\mu$$
 = 100

$$\sigma$$
 = 15

$$n = 15$$

$$\overline{X}_{IQ}=105.9$$

$$s_{IQ}=15.10$$

$$z_{\overline{x}} = \frac{105.9 - 100}{3.87}$$

$$z_{\overline{x}} = \frac{5.90}{3.87}$$

$$z_{\overline{x}} = 1.53$$

z-scores

Standardizing Scores

Developing z-scores

Z-score

$$z_i = rac{x_i - \mu}{\sigma}$$

$$z_i = rac{deviation_i}{\sigma}$$

The number of standard deviations a particular score deviates from its corresponding mean

z-scoring is useful because a *z*-score of 1 *means the same thing in any distribution*

z-scores

A report in 2010 indicates that Americans between the ages of 8 and 18 spend an average of $\mu=7.5$ hours per day using some sort of electronic device such as smart phones, computers, or tablets. Assume that the distribution of times is normal with a standard deviation of $\sigma=2.5$ hours. Aidan checked the 'screen time' info on his phone over the last month, and found that in the last four weeks, he spent x=6.3 hours on the phone per day.

$$\mu=7.5$$
 $\sigma=2.5$ $x=6.3$ $z_i=rac{6.3-7.5}{2.5}=-0.48$

Key concepts for the Midterm

- Mean, median, and mode and their relationship to skewed distributions
- Scales of measurement
- Reliability
- Alpha, *p*-value, critical region
- Type I and Type II errors
- Factors that influence statistical power

Next time

Midterm Exam

- Wednesday 02/02/2022 08:00am MT Sturm Hall 187
 - Bring calculator and pencil
 - Scantron, Formula Sheet, and scratch paper will be provided with the exam

Mini-Report

- Due Wednesday 02/02/2022 11:59pm MT via Canvas
 - Submit .pdf or .docx file

