83. Алгоритм АКS. Определение и неравенства, связывающие числа $p, r, \log_2 n$ (б/д). Определение множеств I, P. Определение группы G, неравенство $|G| > \log_2^2 n$. Утверждения о делителе h(X) многочлена $X^r - 1$ (б/д). Группа \mathcal{G} .

Замечание: Среди простых делителей числа n точно найдется число p с $\operatorname{ord}_r p>1$ (так как $\operatorname{ord}_r n>\log_2^2 n>1$).

Неравенство: $p > r > \log_2^2 n$

Определение:

$$I = \left\{ \left(\frac{n}{p}\right)^i p^j; \ i, j \ge 0 \right\}$$

$$P = \{ \prod_{a=0}^{l} (x+a)^{e_a}; e_a \ge 0 \}$$

Рассмотрим в I вычеты по модулю r. Получаем группу G. Обозначим t:=|G|.

Неравенство: $t \ge \operatorname{ord}_r n$ (так как в I есть элементы вида n^i , когда $i=j) > \log_2^2 n$ (по построению $r) \Rightarrow |G| > \log_2^2 n$

Утверждение: Пусть h(x) - неприводимый над \mathbb{Z}_p делитель x^r-1 . Тогда $\deg h(x)=\operatorname{ord}_r p>1$

Утверждение: Рассмотрим классы многочленов равные по модулю (h(x), p). Множетсво таких классов эквивалентности образует поле F, а в пересечении с P дает мультипликативную группу $\mathcal{G} \subset F^*$