2020 AMC 12 A Problems

MAA

June 16, 2020

1 Acknowledgement

All the following problems are copyrighted by the Mathematical Association of America's American Mathematics Competitions.

Problem 1 Carlos took 70% of a whole pie. Maria took one third of the remainder.

2 Problems

	what portion of the whole pie was left:							
	(A) 10%	(B) 15%	(C) 20%	(D) 30%	(E) 35%			
Problem 2	blem 2 The acronym AMC is shown in the rectangular grid below with grid lines spaced 1 unit apart. In units, what is the sum of the lengths of the line segments that form the acronym AMC? [asy] import olympiad; unitsize(25); for (int $i = 0$; $i < 3$; $++i$) for (int $j = 0$; $j < 9$; $++j$) pair $A = (j,i)$; for (int $i = 0$; $i < 3$; $++i$) for (int $j = 0$; $j < 9$; $++j$) if $(j!=8)$ draw($(j,i)-(j+1,i)$, dashed); if $(i!=2)$ draw($(j,i)-(j,i+1)$, dashed); draw($(0,0)-(2,2)$,linewidth(2)); draw($(2,0)-(2,2)$,linewidth(2)); draw($(1,1)-(2,1)$,linewidth(2)); draw($(3,0)-(3,2)$,linewidth(2)); draw($(4,1)-(5,2)$,linewidth(2) draw($(6,0)-(8,0)$,linewidth(2)); draw($(6,2)-(8,2)$,linewidth(2)); draw($(6,0)-(6,2)$,linewidth(2)); [/asy] (A) 17 (B) $15+2\sqrt{2}$ (C) $13+4\sqrt{2}$ (D) $11+6\sqrt{2}$ (E) 21							
Problem 3	Δ driver tr	eavels for 2 hou	ırs at 60 mi	les per hour	during which	her car		

Problem 3 A driver travels for 2 hours at 60 miles per hour, during which her car gets 30 miles per gallon of gasoline. She is paid \$0.50 per mile, and her only expense is gasoline at \$2.00 per gallon. What is her net rate of pay, in dollars per hour, after this expense?

- (A) 20 (B) 22 (C) 24 (D) 25 (E) 26
- **Problem 4** How many 4-digit positive integers (that is, integers between 1000 and 9999, inclusive) having only even digits are divisible by 5?
 - (A) 80 (B) 100 (C) 125 (D) 200 (E) 500

	gray(0.7)); f (5,0)-(5,1)-(illdraw((2 (4,1)-cyc -j) pair A if (j!= 5)	(2,1)-(2,2)-(2,3) le, gray(0.7 A = (j,i); o draw((j,i)	(3,2)-(3,1)-(3,1); for (int i = $(j+1,i)$);	w((1,3)-(1,4)-(2,4)-cycle, gray(0.7)); f i = 0; i < 5; ++i) i = 0; i < 5; ++i) for i = 0; i < 5; ++i for			
	(A) 4 (B) 5	(C) 6	(D) 7	(E) 8			
Problem 7	Seven cubes, whose volumes are 1, 8, 27, 64, 125, 216, and 343 cubic units, are stacked vertically to form a tower in which the volumes of the cubes decrease from bottom to top. Except for the bottom cube, the bottom face of each cube lies completely on top of the cube below it. What is the total surface area of the tower (including the bottom) in square units? (A) 644 (B) 658 (C) 664 (D) 720 (E) 749							
	` /	` /	` ,	` ,	` '			
Problem 8	What is the median of the following list of 4040 numbers?							
	$1, 2, 3,, 2020, 1^2, 2^2, 3^2,, 2020^2$							
	(A) 1974.5	(B) 1	975.5	(C) 1976.5	(D) 1977.5	(E) 1978.5		
Problem 9	How many solutions does the equation $\tan(2x) = \cos(\frac{x}{2})$ have on the interval $[0, 2\pi]$?							
	(A) 1 (1)	B) 2	(C) 3	(D) 4	(E) 5			
Problem 10	There is a unique positive integer n such that							
			$\log_2(\log_1$	$(n) = \log_4 n$	$(\log_4 n).$			
	What is the sum of the digits of n ?							
			_	(D) 11	(E) 13			
Problem 11	jump is par- direction of at random. with vertice the sequence	allel to or each jum. The sequences $(0,0),(0,0)$ e of jump.	ne of the cap (up, downer ence ends $0,4),(4,4)$ as ends on	oordinate aven, right, on when the fand $(4,0)$	sequence of jumps axes and has lengt or left) is chosen in rog reaches a side α . What is the prolide of the square?	h 1, and the dependently of the square		

Problem 5 The 25 integers from -10 to 14, inclusive, can be arranged to form a 5-

Problem 6 In the plane figure shown below, 3 of the unit squares have been shaded.

so that the resulting figure has two lines of symmetry?

(C) 10

(A) 2

(B) 5

by-5 square in which the sum of the numbers in each row, the sum of the numbers in each column, and the sum of the numbers along each of the main diagonals are all the same. What is the value of this common sum?

(D) 25

What is the least number of additional unit squares that must be shaded

(E) 50

Problem 15 In the complex plane, let A be the set of solutions to $z^3 - 8 = 0$ and let B be the set of solutions to $z^3 - 8z^2 - 8z + 64 = 0$. What is the greatest distance between a point of A and a point of B ?							
	(A) $2\sqrt{3}$	(B) 6	(C) 9 ((D) $2\sqrt{21}$	(E) $9 + \sqrt{3}$		
Problem 16	A point is chosen at random within the square in the coordinate plane whose vertices are $(0,0), (2020,0), (2020,2020)$, and $(0,2020)$. The probability that the point is within d units of a lattice point is $\frac{1}{2}$. (A point (x,y) is a lattice point if x and y are both integers.) What is d to the nearest tenth?						
	(A) 0.3	(B) 0.4	(C) 0.5	(D) 0.6	(E) 0.7		
Problem 17	coordinates of the quadrilate	of these vert teral is $\ln \frac{91}{90}$	ices are con . What is th	secutive posi-	of $y = \ln x$, and the x- tive integers. The area of te of the leftmost vertex?		
Problem 18	8 Quadrilateral $ABCD$ satisfies $\angle ABC = \angle ACD = 90^{\circ}, AC = 20$, and $CD = 30$. Diagonals \overline{AC} and \overline{BD} intersect at point E , and $AE = 5$. What is the area of quadrilateral $ABCD$?						
	(A) 330	(B) 340	(C) 350	(D) 360	(E) 370		
Problem 19 There exists a unique strictly increasing sequence of nonnegative integers $a_1 < a_2 < \ldots < a_k$ such that							
$\frac{2^{289}+1}{2^{17}+1} = 2^{a_1} + 2^{a_2} + \dots + 2^{a_k}.$							
	What is k ?						
	(A) 117	(B) 136	(C) 137	(D) 273	(E) 306		
3							

Problem 12 Line *l* in the coordinate plane has equation 3x - 5y + 40 = 0. This line

What is the x-coordinate of the x-intercept of line k?

(C) 20

Problem 13 There are integers a, b, and c, each greater than 1, such that

(A) 10

(B) 15

for all N > 1. What is b? (A) 2 (B) 3 (C) 4

lateral ACEG. What is $\frac{m}{n}$?

is rotated 45° counterclockwise about the point (20, 20) to obtain line k.

 $\sqrt[a]{N\sqrt[b]{N\sqrt[c]{N}}} = \sqrt[36]{N^{25}}$

(D) 5

Problem 14 Regular octagon ABCDEFGH has area n. Let m be the area of quadri-

(A) $\frac{\sqrt{2}}{4}$ (B) $\frac{\sqrt{2}}{2}$ (C) $\frac{3}{4}$ (D) $\frac{3\sqrt{2}}{5}$ (E) $\frac{2\sqrt{2}}{3}$

(D) 25

(E) 30

(E) 6

Problem 20	Let T be t	he triangle	in the coor	dinate plan	e with vertice	es $(0,0),(4,0),$	
	and $(0,3)$. Consider the following five isometries (rigid transformations)						
	of the plane: rotations of 90°, 180°, and 270° counterclockwise around						
	the origin, reflection across the x -axis, and reflection across the y -axis.						
	How many of the 125 sequences of three of these transformations (not						
	necessarily distinct) will return T to its original position? (For example,						
	a 180° rotation, followed by a reflection across the x-axis, followed by a						
	reflection across the y-axis will return T to its original position, but a 90°						
	rotation, followed by a reflection across the x -axis, followed by another						
	reflection across the x -axis will not return T to its original position.)						
	(A) 12	(B) 15	(C) 17	(D) 20	(E) 25		
Problem 21	How many positive integers n are there such that n is a multiple of 5, and the least common multiple of 5! and n equals 5 times the greatest common						
	divisor of 10! and n ?						
	(A) 12	(B) 24	(C) 36	(D) 48	(E) 72		

Problem 22 Let (a_n) and (b_n) be the sequences of real numbers such that

$$(2+i)^n = a_n + b_n i$$

for all integers $n \geq 0$, where $i = \sqrt{-1}$. What is

$$\sum_{n=0}^{\infty} \frac{a_n b_n}{7^n} ?$$

(A)
$$\frac{3}{8}$$
 (B) $\frac{7}{16}$ (C) $\frac{1}{2}$ (D) $\frac{9}{16}$ (E) $\frac{4}{7}$

Problem 23 Jason rolls three fair standard six-sided dice. Then he looks at the rolls and chooses a subset of the dice (possibly empty, possibly all three dice) to reroll. After rerolling, he wins if and only if the sum of the numbers face up on the three dice is exactly 7. Jason always plays to optimize his chances of winning. What is the probability that he chooses to reroll exactly two of the dice?

(A)
$$\frac{7}{36}$$
 (B) $\frac{5}{24}$ (C) $\frac{2}{9}$ (D) $\frac{17}{72}$ (E) $\frac{1}{4}$

Problem 24 Suppose that $\triangle ABC$ is an equilateral triangle of side length s, with the property that there is a unique point P inside the triangle such that AP = 1, $BP = \sqrt{3}$, and CP = 2. What is s?

(A)
$$1 + \sqrt{2}$$
 (B) $\sqrt{7}$ **(C)** $\frac{8}{3}$ **(D)** $\sqrt{5 + \sqrt{5}}$ **(E)** $2\sqrt{2}$

Problem 25 The number $a = \frac{p}{q}$, where p and q are relatively prime positive integers, has the property that the sum of all real numbers x satisfying

$$\lfloor x \rfloor \cdot \{x\} = a \cdot x^2$$

is 420, where $\lfloor x \rfloor$ denotes the greatest integer less than or equal to x and $\{x\} = x - \lfloor x \rfloor$ denotes the fractional part of x. What is p + q?