# Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

## Учебно-исследовательская работа

по дисциплине «Компьютерные сети»

Выполнил:

Студент группы Р3313

Султанов А.

Проверил:

Авксентьева Е.

г. Санкт-Петербург 2025г.

#### Решение

#### Этап 1

ФИО: Султанов Артур Радикович -> САР

Исходное сообщение: САР

В шестнадцатеричном коде: D1 C0 D0

В двоичном коде: 11010001 11000000 11010000

Длина сообщения: 3 байта (24 бит)

Этап 2

### Манчестерское кодирование



| С          | fв      | fн     | S      | fep               | f 1/2         | F      |
|------------|---------|--------|--------|-------------------|---------------|--------|
| С          | С       | C/2    | C/2    | (30C + 9(C/2))/39 | (C+C/2)/<br>2 | C/2    |
| 100 Мбит/с | 100 МГц | 50 МГц | 50 МГц | 88.4615 МГц       | 75 МГц        | 50 МГц |

Манчестерское кодирование в данном случае демонстрирует себя хорошо, так как в переданных данных есть идущие подряд нули и единицы, которые могли бы привести к постоянной составляющей при использовании других кодировок. Вдобавок - имеется самосинхронизация

Дифференциальное манчестерское кодирование



| С          | fв      | fн     | S      | fcp               | f 1/2     | F      |
|------------|---------|--------|--------|-------------------|-----------|--------|
| С          | С       | C/2    | C/2    | (32C + 8(C/2))/40 | (C+C/2)/2 | C/2    |
| 100 Мбит/с | 100 МГц | 50 МГц | 50 МГц | 90 МГц            | 75 МГц    | 50 МГц |

Дифференциальное манчестерское кодирование во многом схоже с манчестерским кодированием, при том дополнительным плюсом является то, что оно будет работать при инвертированном сигнале.

Потенциальный код без возврата к нулю (NRZ)



| С          | fв     | fн        | S          | fcp                                              | f 1/2          | F          |
|------------|--------|-----------|------------|--------------------------------------------------|----------------|------------|
| С          | C/2    | C/12      | C/2 - C/12 | (4(C/2) + 2(C/4) + 2(C/6) + 1(C/8) + 1(C/12))/10 | (C/2 + C/12)/2 | C/2 - C/12 |
| 100 Мбит/с | 50 МГц | 8.333 МГц | 41.667 МГц | 30.417 МГц                                       | 29.1665 МГц    | 41.667 МГц |

Главный плюс этого метода - простота и очевидность. Минусов немало: наличие постоянных составляющих, отсутствие самосинхронизации.

Биполярный импульсный код (RZ)



| С          | fв      | fн    | S     | fcp                        | f 1/2      | F     |
|------------|---------|-------|-------|----------------------------|------------|-------|
| С          | С       | C/3   | 2C/3  | (34C + 5(C/2) + 2(C/3))/41 | (C+C/3)/2  | 2C/3  |
|            |         | 33.33 | 66.67 |                            |            | 66.67 |
| 100 Мбит/с | 100 МГц | МГц   | МΓц   | 90.65 МГц                  | 66.665 МГц | МГц   |

Этот метод также схож с манчестерским, но в его реализации используются 3 уровня сигнала. Также, в сравнении можно заметить, что спектр в данном случае гораздо больше.

По итогу, в сравнительном анализе лидирует дифференциальное манчестерское кодирование - оно поддерживает самосинхронизацию, не страдает от постоянных составляющих, а также устойчиво к инверсии сигнала.

Этап 3

Исходное сообщение: 1101 0001 1100 0000 1101 0000 Логическое кодирование (4B/5B): 11011 01001 11010 11110 11011 11110

Возьмем NRZ





| С          | fв     | fн        | S          | fep                                           | f 1/2             | F          |
|------------|--------|-----------|------------|-----------------------------------------------|-------------------|------------|
| С          | C/2    | C/12      | C/2 - C/12 | (9(C/2) + 3(C/4) + (C/6) + (C/8) + (C/12))/15 | (C/2 +<br>C/12)/2 | C/2 - C/12 |
| 100 Мбит/с | 50 МГц | 8.333 МГц | 41.667 МГц | 37.5 МГц                                      | 29.1665<br>МГц    | 41.667 МГц |

Этап 4

Исходное сообщение: 1101 0001 1100 0000 1101 0000

Скремблированное сообщение: 1101 0110 1101 1011 1011 1010

Полином:  $B_{i} = A_{i} \oplus B_{i-5} \oplus B_{i-7}$  (выбран, т.к. в сравнении результат

содержит меньше подряд идущих нулей/единиц)



| С          | fв     | fн    | S     | fcp                            | f 1/2       | F         |
|------------|--------|-------|-------|--------------------------------|-------------|-----------|
| С          | C/2    | C/6   | C/3   | (10(C/2) + 4(C/4) + 2(C/6))/16 | (C/2+C/6)/2 | C/3       |
|            |        | 16.67 | 33.33 |                                |             |           |
| 100 Мбит/с | 50 МГц | МΓц   | МΓц   | 39.583 МГц                     | 33.34 МГц   | 33.33 МГц |

## Этап 5

|                  |            |          | fн     | S      |             | f 1/2  | F     |      |     |       |      |
|------------------|------------|----------|--------|--------|-------------|--------|-------|------|-----|-------|------|
| Код              | С [МГц]    | fв [МГц] | [МГц]  | [МГц]  | fcp [МГц]   | [МГц]  | [МГц] | sync | lvl | const | corr |
| Манчестерское    |            |          |        |        |             |        | 50    |      |     |       |      |
| кодирование      | 100 Мбит/с | 100 МГц  | 50 МГц | 50 МГц | 88.4615 МГц | 75 МГц | МΓц   | да   | 2   | нет   | нет  |
| Дифференциальное |            |          |        |        |             |        |       |      |     |       |      |
| манчестерское    |            |          |        |        |             |        | 50    |      |     |       |      |
| кодирование      | 100 Мбит/с | 100 МГц  | 50 МГц | 50 МГц | 90 МГц      | 75 МГц | МΓц   | да   | 2   | нет   | да   |

| Потенциальный код   |            |         |       |        |            |         |        |     |   |     |     |
|---------------------|------------|---------|-------|--------|------------|---------|--------|-----|---|-----|-----|
| без возврата к нулю |            |         | 8.333 | 41.667 |            | 29.1665 | 41.667 |     |   |     |     |
| (NRZ)               | 100 Мбит/с | 50 МГц  | МΓц   | МΓц    | 30.417 МГц | МΓц     | МГц    | нет | 2 | да  | нет |
| Биполярный          |            |         |       |        |            |         |        |     |   |     |     |
| импульсный код      |            |         | 33.33 | 66.67  |            | 66.665  | 66.67  |     |   |     |     |
| (RZ)                | 100 Мбит/с | 100 МГц | МΓц   | МΓц    | 90.65 МГц  | МΓц     | МΓц    | да  | 3 | нет | да  |
|                     |            |         | 8.333 | 41.667 |            | 29.1665 | 41.667 |     |   |     |     |
| 4B/5B -> NRZ        | 100 Мбит/с | 50 МГц  | МΓц   | МΓц    | 37.5 МГц   | МΓц     | МГц    | нет | 2 | да  | нет |
| Скремблирование ->  |            |         | 16.67 | 33.33  |            | 33.34   | 33.33  |     |   |     |     |
| NRZ                 | 100 Мбит/с | 50 МГц  | МΓц   | МΓц    | 39.583 МГц | МΓц     | МГц    | нет | 2 | да  | нет |

sync - Самосинхронизация

lvl - Кол-во уровней

const - Постоянная составляющая

согт - Обнаружение ошибок

## Заключение

В результате работы и сравнения различных способов кодировки (в этапах 4-5), можно заключить, что лучшим вариантом является дифференциальный манчестерский код - он обладает самокоррекцией и самосинхронизацией, для реализации требуется всего 2 уровня - все эти положительные свойства также позволяют не прибегать к дополнительным операциям (скремблирование, логическая кодировка), а значит, потенциально сэкономить время и ресурсы.