Is out of hours ICU care in sepsis dangerous?

Ngā Rourou Raraunga

"Nau te rourou, naku te rourou, ka ora te manuhiri"

(With your food basket and my food basket, the visitors will be fed)

Reproducibility

• Github repo (Jupyter notebooks and Rmarkdown):

https://github.com/nga-rourou-raraunga/sepsis-icu-time-of-day-analysis

HTML from Rmarkdown ->

The Problem

Hospitals have less staff on site 'out of hours' for cost and morale reasons

Care may be worse. This has never been quantified.

Method: Reinforcement Learning

Method: Data Exploration

Using sepsis subset of MIMIC III;

- Outcome of interest:
 - SOFA >=9
 - Delta SOFA
 - Time of death

Sequential [Sepsis-Related] Organ Failure Assessment (SOFA) Score

System	0		2	3	LĻ
Respiration PaO2/FiO2, mmHg (kPa)	≥400 (53.3)	<400 (53.3)	<300 (40)	<200 (26.7) with respiratory support	<l00 (l3.3)="" li="" respiratory="" support<="" with=""></l00>
Coagulation Platelets, x10³/uL	≥l50	<i50< td=""><td><100</td><td><50</td><td><20</td></i50<>	<100	<50	<20
Liver Bilirubin, mg/dL (umol/L)	<1.2 (20)	l.2 - l.9 (20 - 32)	2.0 - 5.9 (33 - 101)	6.0 - II.9 (102 - 204)	>12.0 (204)
Cardiovascular	MAP ≥70mmHg	MAP <70mmHg	Dopamine <5 or Dobutamine (any dose)	Dopamine 5.1 - 15 or Epinephrine ≤0.1 or Norepinephrine ≤0.1	Dopamine >15 or Epinephrine >0.1 or Norepinephrine >0.1
CNS GCS Score	I 5	13 - 14	10 -12	6 - 	< 6
Renal Creatinine, mg/dL (umol/L) Urine Output, mL/d	<1.2 (110)	1.2 - 1.9 (110 - 170)	2.0 - 3.4 (171 - 299)	3.5 - 4.9 (300 - 440) <500	>5.0 (440) <200
*Catecholamine Doses = ua/ka/min for at least lhr					

*Catecholamine Doses = ug/kg/min for at least lhr

Data Exploration with clinicians

Data Exploration with clinicians

Next Steps

Reinforcement learning:

- Matlab → Python (easier reproducibility)
- Broader actions than just Sedation
- Reward: delta-SOFA (current model just terminal reward on 90-day mortality)

Data interpolation of SOFA

Multiple SOFA scores for one patient in a hour

Thank you

Ngā mihi