Brain Tumor Detection

Evan Bosia, Igor Solomatin

Background

84,000 people are diagnosed with brain tumors ~ of which 18600 are lethal

MRI is the best technique for detecting brain tumors

MRI allows doctors to view a slice of the brain

Could benefit from automated solution

Classify MRI images as tumor or no tumor

Convolution Neural Network

MRI scans are images

CNNs are great on image data

Layers:

- ★ Convolution + ReLU
- ★ Pooling with down-sampling
- ★ Fully Connected dense layer

https://miro.medium.com/max/4000/0*-1Pad7loK_dFOUvS.png

Dataset

3000 Images 50/50 split

10% of each class separated for test set

Random sizes (see distribution →)

Need fixed size images for NN

Data Preprocessing

Need to standardize image sizes

Crop brain out of images

- Gaussian blur remove noise
- Global threshold isolate the brain
- Find contours segment the brain
- Crop on extreme points
- Resize crop to 224x224

Overall Model Architecture

Followed same architecture in each experiment

Red are optional depending on experiments

Rescale	Data Augmentation	N x Convolutional	Dropout	Flatten	2 x Dense
Normalize images	Transform images	Number of filters 3x3 Kernel ReLU Activation Max Pooling 2x2	20%	Image to vector	Layer Dense: 128 Layer Dense: 2

One convolutional layer

• 16 filters

Max validation accuracy = 93.7%

Two convolutional layers

- 16 filter layer
- 32 filter layer

Add dropout 0.2

Max validation accuracy = 91.1%

Three convolutional layers

- 16 filter layer
- 32 filter layer
- 64 filter layer

Still overfitting a lot!

Max validation accuracy = 91.0%

Image Augmentation

Add synthetic images with transformations

Flip / rotate / rescaling / random crop

We used flip, rotate, zoom

 No crop → do not want to remove tumor

Same model as experiment #3

Added data augmentation

Much less overfitting

Convergence is slower

Validation Accuracy: 95.6% ~ nice!

Transfer Learning

Use pretrained model as base

Add new layers on top

Freeze the base model for initial training:

- Only train the classification layers on top
- Learns off of the output of the pretrained network

Can fine tune some number of layers afterwards for improved performance

Base model: MobileNetV2

Caps at 94.1% validation accuracy

Maybe fine tuning can help?

Model: "functional 1"

Layer (type)	Output Shape	Param #
input_2 (InputLayer)	[(None, 224, 224, 3)]	0
rescaling (Rescaling)	(None, 224, 224, 3)	0
sequential (Sequential)	(None, 224, 224, 3)	0
mobilenetv2_1.00_224 (Functi	(None, 7, 7, 1280)	2257984
global_average_pooling2d (Gl	(None, 1280)	0
dropout (Dropout)	(None, 1280)	0
dense (Dense)	(None, 2)	2562

Total params: 2,260,546
Trainable params: 2,562
Non-trainable params: 2,257,984

Experiment #5 cont.

Fine tuning

Opens base model to training

Allow training on last 50 layers

Low learning rate

Starts overfitting at the end

Best validation score: 97.4%

Regularization

L1 regularization can help with overfitting

Tried on experiments 4 (top) and 5 (bottom)

Experiment 4 had minor improvement

- Original model was not overfit
 Experiment 5 had significant improvement
 - 99.1% validation accuracy!

Results Comparison

experiment 002

experiment 003

experiment 004

experiment 004r

experiment 005a

experiment 005b

experiment 005ra

experiment 005rb

177253

483616

494670

4024888

4165246

4035345

4180621

0.946667

0.950000

0.976667

0.956667

0.986667

0.936667

0.996667

All models are roughly the same on the test set (except last)

143

145

145

144

149

141

149

141

140

148

143

147

140

150

Best model is transfer learning fine-tuned with regularization ~ 99.7% accurate

	size	layers	accuracy	true_pos	true_neg	false_pos	false_neg	pos_recall	neg_recall	pos_precision	neg_precision	pos_f1- score	neg_f1- score
name													
experiment_001	137029	8	0.946667	138	146	4	12	0.920000	0.973333	0.971831	0.924051	0.945205	0.948052
experiment 002	148884	9	0.946667	140	144	6	10	0.933333	0.960000	0.958904	0.935065	0.945946	0.947368

9

10

2

7

3

10

0

0.953333

0.966667

0.966667

0.960000

0.993333

0.940000

0.993333

0.940000

0.933333

0.986667

0.953333

0.980000

0.933333

1.000000

0.940789

0.935484

0.986395

0.953642

0.980263

0.933775

1.000000

0.946309

0.949153

0.976898

0.956522

0.986577

0.936455

0.996678

0.952703 0.947020

0.967320 0.976431

0.965517

0.959732

0.993243

0.939597

0.950820

0.956811

0.986755

0.936877

Discussion

Did not consider weighting positives and negatives

A false negative is much worse than a false positive

Need model interpretability

Doctors should know the reasons behind classification

The best model would be one with high negative precision and interpretability

Conclusion

Adding layers does not always help

Data augmentation helps with overfitting

Transfer learning is effective with small datasets

Regularization helps with overfitting

Questions?