A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 9ED

Bookmark

Show all steps: ON

Problem

Prove the following for an integers *a*, *b*, *c* and all positive integers *m* and *n*:

If $a \equiv 1 \pmod{m}$, then a and m are relatively prime.

Step-by-step solution

Step 1 of 3

Consider the congruence relation $a \equiv 1 \pmod{m}$. Objective is to prove that a and m are relatively prime.

By using the definition of congruence, if $a \equiv b \pmod{n}$ then $n \mid (a-b)$. So, if $a \equiv 1 \pmod{m}$ then

 $m \mid (a-1)$

Comment

Step 2 of 3

Case 1: m = 1. Since the greatest common divisor of 1 with any positive integer is 1. Therefore,

There may arise following two cases:

Comment