# Métodos No Lineales



Arboles de Decisión

### Árboles de Decisión



- Muy utilizado y popular
- Aproxima funciones que toman valores discretos.
- La función aprendida se representa como un árbol
- Robusto ante datos con ruido
- Aprende expresiones disyuntivas: los árboles aprendidos se pueden también representar como reglas if-then (intuitivas)
- Numerosas aplicaciones: diagnósticos médicos, causas de fallo en equipos, evaluación de riesgos de créditos en la concesión de préstamos...
- Árbol de clasificación

# Representación como árboles



- Cada nodo (no terminal) especifica un test de algún atributo de la instancia
- Cada rama corresponde a un posible valor del atributo
- Cada nodo terminal indica la clase en la que se clasifica
- Instancias no vistas se clasifican recorriendo el árbol: pasándoles el test en cada nodo, por orden desde el nodo raíz hasta algún nodo hoja, que da su clasificación

# Ejemplo: ¿Vamos a jugar al tenis?



Tarea: decidir si se va a jugar al tenis.

- Criterio: se va a jugar al tenis ...
  - si va a llover, sólo si no hay mucho viento.
  - si va a estar soleado pero no muy húmedo.
  - si va a estar nublado.
  - no en cualquier otro caso.

# Ejemplo: JugarTennis



 Clasificar las mañanas de sábado en si son o no adecuadas para jugar al tenis – supongamos que hemos creado (¿?) el siguiente árbol de decisión:



- Instancia: EstadoDelTiempo=SOLEADO, Temperatura=CALUROSO, Humedad=ALTA, Viento=FUERTE
- Entra por el camino izquierdo y se predice JugarTennis=No

# Ejemplo: JugarTennis



- El árbol representa una disyunción de conjunciones de restricciones sobre los valores de los atributos de las instancias
- Un camino = una conjunción de tests de atributos
- Todo el árbol = disyunción de estas conjunciones
- Este árbol es:

```
(EstadoDelTiempo=SOLEADO ^ Humedad=Normal)
v (EstadoDelTiempo=CUBIERTO)
v (EstadoDelTiempo=LLUVIOSO ^ Viento=SUAVE)
```

### ¿Vamos a jugar al tenis?



```
SI (EstadoDelTiempo== SOLEADO){
      SI (Humedad == ALTA)
            DEVOLVER NO;
      SINO, SI (Humedad == NORMAL)
             DEVOLVER SI;
} SINO SI(EstadoDelTiempo == CUBIERTO){
       DEVOLVER SI;
} SINO SI (EstadoDelTiempo == LLUVIOSO){
      SI (Viento == FUERTE)
             DEVOLVER NO;
      SINO SI (Viento == SUAVE)
             DEVOLVER SI;
```

# Tipos de árboles



- Arboles de clasificación: valores de salida discretos
  - CLS, ID3, C4.5, ID4, ID5, C4.8, C5.0

- Arboles de regresión: valores de salida continuos
  - CART, M5, M5'



# AD para Clasificación, modelo básico: ID3 "Iterative dicotomiser" [Quinlan, 1986]



- Basado en el algoritmo CLS (Concept Learning Systems)
   [Hunt et al., 1966], que usaba sólo atributos binarios
- Búsqueda ávida
- Construir el árbol de arriba a abajo, preguntando: ¿Qué atributo seleccionar como nodo raíz?
- Se evalúa cada atributo para determinar cuán bien clasifica los ejemplos por sí mismo
- Se selecciona el *mejor* como nodo
- Repetir usando los ejemplos asociados con el nodo
- Parar cuando el árbol clasifica correctamente todos los ejemplos o cuando se han usado todos los atributos
- Etiquetar el nodo hoja con la clase de los ejemplos

# Árboles de decisión - CART



- CART: Classification And Regression Tree
- El modelo de predicción se representa mediante un árbol binario (predictores continuos o discretos)

Ejemplo: predicción del salario de un bateador Predictores: Años de jugador y hits de la temporada anterior (salario transformado mediante logaritmo, en miles)



# Árboles de decisión para regresión



 Segmentación producida en el espacio de predictores:



# Arboles de Clasificación



# Algoritmo básico: ID3 "Iterative dicotomiser "[Quinlan, 1986]



- Basado en el algoritmo CLS (Concept Learning Systems)
   [Hunt et al., 1966], que usaba sólo atributos binarios
- Búsqueda ávida
- Construir el árbol de arriba a abajo, preguntando: ¿Qué atributo seleccionar como nodo raíz?
- Se evalúa cada atributo para determinar cuán bien clasifica los ejemplos por sí mismo
- Se selecciona el *mejor* como nodo
- Repetir usando los ejemplos asociados con el nodo
- Parar cuando el árbol clasifica correctamente todos los ejemplos o cuando se han usado todos los atributos
- Etiquetar el nodo hoja con la clase de los ejemplos

### Algoritmo básico

Funcion APRENDER\_ARBOL\_DECISION (ejemplos, atributos, valor\_defecto): ARBOL DECISION



```
COM
si ejemplos está vacío entonces devolver valor defecto
 si no
   si todos los elementos de ejemplos tienen la misma clasificación entonces
    devolver la clasificación
   si no si atributos esta vacío entonces devolver VALOR MAYORIA (ejemplos)
    si no
     mejor = ELEGIR ATRIBUTO (atributos, ejemplos)
     arbol <- un nuevo árbol de decisión, cuya raíz es mejor
     m <- VALOR MAYORIA(ejemplos)
     para cada valor v<sub>i</sub> de mejor hacer
      ejemplos(i) <- {elementos de ejemplos con mejor = v<sub>i</sub>}
      subarbol = APRENDER ARBOL DECISION(ejemplos(i), atributos – mejor, m)
      añadir una rama a arbol con la etiqueta v, y el subárbol subarbol
     devolver arbol
```

### FIN

### ID3



- Paso clave: ¿cómo seleccionar el atributo?
- Nos gustaría el más útil para clasificar ejemplos; el que los separa bien
- ID3 escoge la variable más efectiva usando la ganancia de información (maximizarla)
- Mide cuán bien un atributo separa los ejemplos de entrenamiento de acuerdo a su clasificación objetivo, y selecciona el mejor.
- Reducción esperada en entropía (incertidumbre), causada al particionar los ejemplos de acuerdo a este atributo

# Entropía o cantidad esperada de información



- Medida de la homogeneidad de un conjunto de muestras.
- En teoría de la información: medida de la incertidumbre sobre una fuente de mensajes.
- Sea una fuente S que puede producir n mensajes diferentes {m<sub>1</sub>, m<sub>2</sub>,..., m<sub>n</sub>}. Los mensajes son independientes, y la probabilidad de producir el mensaje m<sub>i</sub> es p<sub>i</sub>.
- Para tal fuente S con distribución de probabilidades de los mensajes P= (p<sub>1</sub>,p<sub>2</sub>,...p<sub>n</sub>), la entropía E(P) es:

$$E(P) = -\sum_{i=1}^{n} p_i * \log_2(p_i)$$

# Entropía



 Si un conjunto *T* de registros de una base de datos se particiona en *k* clases {C<sub>1</sub>, C<sub>2</sub>, ..., C<sub>k</sub>} sobre la base de un cierto atributo, entonces la cantidad media de información necesaria para identificar la clase de un registro es E(P<sub>T</sub>), donde P<sub>T</sub> es la distribución de probabilidades de las clases:

$$P_T = \left(\frac{|C_1|}{|T|}, \frac{|C_2|}{|T|}, \dots, \frac{|C_k|}{|T|}\right)$$

# Entropía



 Dado un conjunto S con ejemplos positivos y negativos de un concepto objetivo, (problema de 2 clases) la entropía del conjunto S con respecto a esta clasificación binaria es

$$E(S) = -p(P)\log_2 p(P) - p(N)\log_2 p(N)$$

 La clase C<sub>1</sub> corresponde a P – positivos- y la clase C<sub>2</sub> corresponde a N – negativos - .

# Pregunta: ¿cuál es la entropía del conjunto completo de Jugar Tenis?



| ESTADO DEL<br>TIEMPO | TEMPERATUR<br>A | HUMEDAD | VIENTO | ¿JUGAR? |
|----------------------|-----------------|---------|--------|---------|
| Cubierto             | Caluroso        | Alta    | suave  | SI      |
| Cubierto             | Caluroso        | Normal  | suave  | SI      |
| Soleado              | Caluroso        | Alta    | suave  | No      |
| Soleado              | Caluroso        | Alta    | fuerte | No      |
| Cubierto             | Frio            | Normal  | fuerte | SI      |
| Lluvioso             | Frio            | Normal  | suave  | SI      |
| Lluvioso             | Frio            | Normal  | fuerte | No      |
| Soleado              | Frio            | Normal  | suave  | SI      |
| Cubierto             | Templado        | Alta    | fuerte | SI      |
| Lluvioso             | Templado        | Alta    | suave  | SI      |
| Lluvioso             | Templado        | Normal  | suave  | SI      |
| Lluvioso             | Templado        | Alta    | fuerte | No      |
| Soleado              | Templado        | Alta    | suave  | No      |
| Soleado              | Templado        | Normal  | fuerte | SI      |

a)0.991 b)0.940 c)0.494 d)0.302

# Ejemplo



 Para los datos de "Jugar Tenis", donde jugar es el atributo de salida, tenemos para el conjunto de datos completo:

$$P_T = \left(\frac{9}{14}, \frac{5}{14}\right)$$

Usando la ecuación de la entropía tenemos:

$$E(T) = E(P_T) = -\left(\frac{9}{14}\log\left(\frac{9}{14}\right) + \frac{5}{14}\log\left(\frac{5}{14}\right)\right) = 0.94$$

# Entropía



- La entropía es 0 si la salida es ya conocida o el mensaje es invariante.
- La entropía es máxima si no tenemos conocimiento alguno sobre el sistema (o si cualquier resultado es igualmente posible)



Entropía de un sistema de clase 2

### Ganancia de Información

 La ganancia de información mide la reducción esperada de la entropía, o incertidumbre.

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

- Values(A) es el conjunto de todos los posibles valores del atributo
   A, y S<sub>v</sub> el subconjunto de S para el cual el atributo A tiene valor v
   S<sub>v</sub> = {s in S | A(s) = v}.
- El primer término es entonces solamente la entropía del conjunto S original.
- El segundo término es el valor esperado de la entropía luego de particionar S utilizando el atributo A
- Elegimos entonces el atributo que mayor ganancia de información brinda

# Ejemplo:

- Calcular la ganancia de información debida a particionar el conjunto de acuerdo al atributo Temperatura
- Temperatura tiene tres valores
  - Frio
  - Templado
  - Caluroso
  - $|T_{Frio}| = 4$ ,  $|T_{Templado}| = 6$ ,  $|T_{Caluroso}| = 4$

E(temperatura,T) = 
$$\frac{4}{14}E(T_{Frio}) + \frac{6}{14}E(T_{Templado}) + \frac{4}{14}E(T_{Caluroso})$$

Ganancia (temperatura, T) = 0.940 - 0.911

# Criterios de "impureza" usados para el split



Cada split trata de hacer el nodo hijo más puro

### Gini

Ganancia de información (Entropía)

Error de clasificación



# Pre-Pruning – criterios para detener el algoritmo



En datasets reales, no es muy probable que obtengamos nodos terminales 100% homogéneos. Necesitamos indicar al algoritmo cuándo parar:

- Ningún atributo satisface un umbral de ganancia de información mínimo
- Se ha alcanzado una profundidad máxima
- Hay menos ejemplos que un cierto mínimo en el subárbol actual

# Pruning - poda



- Permitir al árbol crecer hasta el máximo, y después podar las ramas que no cambien efectivamente el error de clasificación – postpruning
- A veces puede ser una mejor opción
- Requiere cómputos adicionales

# **Arboles CART**



# Árboles de decisión - CART



- CART: Classification And Regression Tree
- El modelo de predicción se representa mediante un árbol binario (predictores continuos o discretos)

Ejemplo: predicción del salario de un bateador Predictores: Años de jugador y hits de la temporada anterior (salario transformado mediante logaritmo, en miles)



# Árboles de decisión para regresión



 Segmentación producida en el espacio de predictores:



# Árboles de decisión para regresión



- En regresión, el valor definido para cada región es el promedio de todos los elementos del entrenamiento que caen en la hoja.
- Ventajas:
  - son sencillos de interpretar
  - provee información intrínseca de cuáles son los predictores más informativos
- Desventajas
  - rendimiento inferior a otros clasificadores
  - muy dependiente de los datos que se usan en el entrenamiento

# CART - Árbol de regresión-Construcción



- ¿Cómo determinar las variables y los valores de decisión para los nodos internos?
- Dado el conjunto de datos S, para <u>cada</u>
   predictor considerar todos los valores de
   decisión que divida a los datos en S1 y S2 y
   que minimiza:

$$SSE = \sum_{i \in S_1} (y_i - \bar{y}_1)^2 + \sum_{i \in S_2} (y_i - \bar{y}_2)^2$$

valor medio de los elementos que caen en S1 y S2 respectivamente

se busca que los valores en S1 y S2 sean lo más homogéneos posible

# CART - Árbol de regresión Construcción



- El mismo procedimiento es aplicado recursivamente con S1 y S2 hasta que cada subconjunto tenga un tamaño definido (ej: 20 elementos o menos). Este procedimiento es tedioso de aplicar en forma exhaustiva.
- Enfoque tradicional:
  - top-down (comienza por el tope del árbol-todos los elementos pertenecen a la misma región)
  - greedy: el mejor particionamiento se realiza en cada paso (en lugar de ver hacia adelante y elegir un split que mejore el modelo pero en una instancia futura)

# CART - Árbol de regresión Poda



- El procedimiento puede producir árboles que sobreajustan a los datos de entrenamiento
- Solución: dejar crecer el árbol (lo denominamos T₀) y "podarlo", obteniendo el mejor subárbol posible
  - se puede evaluar cada subárbol candidato mediante cross-validation
  - sin embargo encontrar el subárbol indicado puede ser computacionalmente costoso
  - propuesta: cost–complexity prunning

# CART - Árbol de regresión Cost-complexity prunning



 Se define un parámetro α al cual corresponde un subárbol T⊂To tal que:

promedio de los valores
de la variable dependient



de la variable dependiente que caen en el nodo terminal asociado a la región Rm

• |T|: cantidad de nodos terminales de T

# CART - Árbol de regresión Cost-complexity prunning - Algoritmo

- 1. Desarrollar en forma completa un árbol (To)
- 2. Generar los diferentes subárboles resultantes de podar  $T_0$  a partir de distintos valores de  $\alpha$
- 3. Para determinar  $\alpha$  óptimo usar CV. Para cada k-fold k=1..K:
  - a. calcular el cost-complexity prunning sobre el entrenamiento de los k-1 folds
  - b. calcular el MSE sobre el k-fold Elegir el  $\alpha$  asociado al MSE más bajo
- 4. Retornar el subárbol correspondiente al  $\alpha$  óptimo

# CART - Árbol de regresión Ejemplo de Poda



 Ejemplo: árbol de bateadores desarrollado en forma completa (9 atributos en dataset original)



# CART - Árbol de regresión Ejemplo de Poda



 el error mínimo en CV se da podando hasta tener 3 nodos terminales



# CART - Árbol de regresión



- Un árbol de decisión indica como valor de predicción de una hoja a la media de los valores que caen en ella.
- Cómo mejorarlo?
  - Modelo M5p (prime): en cada hoja realiza una regresión lineal ajustando los coeficientes con las tuplas que corresponden a la misma.



# Árboles de decisión - Comparación





Ejemplo: modelos que se ajustan mejor a un problema particular.

# CART - Árbol de regresión Poda



- El parámetro  $\alpha$  puede ser elegido mediante cross-validation (CV)
  - elegir el  $\alpha_i$  que minimiza  $CV(\alpha_i)$  (para diferentes valores de  $\alpha_i$ )
- opción: one standard error rule (1SE Rule)
  - elige el subárbol tal que el error en CV está a una distancia de un error standard del árbol óptimo
  - http://www.stat.cmu.edu/~ryantibs/datamining
     /lectures/19-val2.pdf
  - mejora la generalización