Segmentation:

Thresholding

Dr. Tushar Sandhan

Introduction

Segmentation

- o aim: partition an image into set of pixels sharing common theme
 - coherent objects
 - flat structures
 - shapes

Introduction

Segmentation

- o aim: partition an image into set of pixels sharing common theme
 - coherent objects
 - flat structures
 - shapes

Introduction

Segmentation

- o aim: partition an image into set of pixels sharing common theme
 - coherent objects
 - flat structures
 - shapes

Gestalt

- config of things when integrated as to constitute a functional unit, with properties not derived by sum of its parts
- o whole is greater than sum of parts
- o relationship among parts are also imp. & can yield new properties
- o gestalt factors: human psychology for groupism
- o intuitive but difficult for algorithm

Gestalt

 config of things when integrated as to constitute a functional unit, with properties not derived by sum of its parts

Gestalt

 config of things when integrated as to constitute a functional unit, with properties not derived by sum of its parts

Gestalt

 config of things when integrated as to constitute a functional unit, with properties not derived by sum of its parts

Pixels

o points in high-dim space

o gray: 1D

o colors: 3D

location + colors: 5D

o group pixels into segments or chunks

Pixels

o points in high-dim space

o gray: 1D

o colors: 3D

location + colors: 5D

o group pixels into segments or chunks

- Grouping or similarity criterion
 - intensity
 - texture
 - features
 - histogram
 - o color

- Pixels
 - o points in high-dim space
 - o gray: 1D
 - o colors: 3D
 - location + colors: 5D
 - o group pixels into segments or chunks

- Grouping or similarity criterion
 - intensity
 - texture
 - features
 - histogram
 - o color

- Pixels
 - o points in high-dim space
 - o gray: 1D
 - o colors: 3D
 - o location + colors: 5D
 - o group pixels into segments or chunks

- Grouping or similarity criterion
 - intensity
 - texture
 - features
 - histogram
 - o color

Shape based methods

Thresholding

- Region based
 - o region-growing

Shape based methods

Thresholding

- Region based
 - o region-growing

- Machine learning based
 - Unsupervised
 - K-means clustering
 - · mean shift clustering
 - Supervised
 - · feature detection and learning

Graph & energy minimization

- Shape based methods
 - shape detection
 - Hough transform

- Shape based methods
 - shape detection
 - Hough transform

- Shape based methods
 - shape detection
 - Hough transform

- Shape based methods
 - shape detection
 - Hough transform

- Binarization or thresholding
 - o quick and simple
 - o partitions f(x,y) into 2 sets: foreground & background using threshold T
 - o can extend to multilevel T
 - o assumptions:
 - intensities are different in different regions
 - intensities are similar within a segment
 - o e.g. online poker

- Binarization or thresholding
 - quick and simple
 - o partitions f(x,y) into 2 sets: foreground & background using threshold T
 - o can extend to multilevel T
 - o assumptions:
 - intensities are different in different regions
 - intensities are similar within a segment
 - o e.g. online poker

- Binarization or thresholding
 - quick and simple
 - o partitions f(x,y) into 2 sets: foreground & background using threshold T
 - o can extend to multilevel T
 - o assumptions:
 - intensities are different in different regions
 - · intensities are similar within a segment
 - o e.g. online poker

- Binarization or thresholding
 - quick and simple
 - o partitions f(x,y) into 2 sets: foreground & background using threshold T
 - o can extend to multilevel T
 - o assumptions:
 - intensities are different in different regions
 - intensities are similar within a segment
 - o e.g. online poker

- Binarization or thresholding
 - quick and simple
 - o partitions f(x,y) into 2 sets: foreground & background using threshold T
 - o can extend to multilevel T
 - o assumptions:
 - intensities are different in different regions
 - intensities are similar within a segment
 - o e.g. online poker

- Binarization or thresholding
 - quick and simple
 - o partitions f(x,y) into 2 sets: foreground & background using threshold T
 - o can extend to multilevel T
 - o assumptions:
 - intensities are different in different regions
 - intensities are similar within a segment
 - o e.g. online poker

- Global: single T for entire image
- Local: blocking or tiling over the image & use different *T* for each block
- Adaptive: adjust or select T based on image content

- Global: single T for entire image
- Local: blocking or tiling over the image & use different T for each block
- Adaptive: adjust or select T based on image content

global

- Global: single T for entire image
- Local: blocking or tiling over the image & use different T for each block
- Adaptive: adjust or select T based on image content

local

Global: iterative adapting threshold

- Initialize threshold *T*
- Loop until converged
 - Partition image using T
 - Compute background mean μ_b as the average intensity of all pixels below $extbf{ extit{T}}$
 - Compute foreground mean μ_f as the average intensity of all pixels above T
 - Update *T*

$$T = \frac{1}{2}(\mu_f + \mu_b)$$

Global: iterative adapting threshold

Global: iterative adapting threshold

Global: iterative adapting threshold

Noise

Noise

Illumination& reflectance

Illumination& reflectance

Thresholding on handholding, hand folding!

Conclusion

- Segmentation
- Binarization or thresholding

Thresholding on handholding, hand folding!

Conclusion

- Segmentation
- Binarization or thresholding

Thresholding on handholding, hand folding!

Conclusion

- Segmentation
- Binarization or thresholding

