Hashing-2

I fiven coordinates of N points on a 20-plane.

Count no. of eight-angle throughes using the given set of points such that two small sides of should be pacallel to x-axis & y-axis.

If I have I ports of the triagle, com you find out the 3rd port of

(1₁3) (4₁3)

T·C: O(n2)
S·C: O(n)

Q yiven N points in a 20-plane.

Find count of rectangles we can form s-t- sides are parallel to 2-axis and y-axis

$$\Rightarrow O(n^2)$$

given a string s & an integer k.

Find if s can be rearranged to form a string which is concatenation of k equal strings.

S = "abbbbabba" \(\)

\(k = 3 \)

\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba} \)
\(\frac{abb}{bba

Ful of T & pnemt in S as

a substig

a substig

Bof: nxk

12345 =>

palder in a fext Room karp