1

ASSIGNMENT-1

R.YAMINI

1 QUESTION NO-2.27

Construct $\triangle ABC$ such that $AC = 3, \angle A = 70^{\circ}$ and $\angle B$ $= 50^{\circ}$.

2 Solution

To find angle C:

$$\angle A + \angle B + \angle C = 180^{\circ} \tag{2.0.1}$$

$$\angle C = 180^{\circ} - 120^{\circ} \tag{2.0.2}$$

$$=60^{\circ}$$
 (2.0.3)

Now we shall find the sides by using the formula

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} \tag{2.0.4}$$

To find side a

$$a = b \frac{\sin A}{\sin B}$$
 (2.0.5)
= $3 \frac{\sin 70^{\circ}}{\sin 50^{\circ}}$ (2.0.6)

$$= 3 \frac{\sin 70^{\circ}}{\sin 50^{\circ}}$$
 (2.0.6)

$$= 3.68$$
 (2.0.7)

To find side c

$$c = b \frac{\sin C}{\sin B}$$
 (2.0.8)
= 3 $\frac{\sin 60^{\circ}}{\sin 50^{\circ}}$ (2.0.9)

$$= 3 \frac{\sin 60^{\circ}}{\sin 50^{\circ}}$$
 (2.0.9)

$$= 3.3915$$
 (2.0.10)

Now to find the coordinates of B(p,q)To find *p*

$$p = c \cos 70^{\circ} \tag{2.0.11}$$

$$= 3.3915 \cos 70^{\circ}$$
 (2.0.12)

$$= 1.159$$
 (2.0.13)

To find *q*

$$q = c \sin 70^{\circ} \tag{2.0.14}$$

$$= 3.3915 \sin 70^{\circ} \qquad (2.0.15)$$

$$= 3.187$$
 (2.0.16)

The vertices of $\triangle ABC$ are

$$\mathbf{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1.159 \\ 3.187 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$
 (2.0.17)

Lines AB,BC,CA are then generated and plotted using these coordinates to construct $\triangle ABC$ Plot of the $\triangle ABC$

Fig. 2.1: Plot of $\triangle ABC$