

Diseño asistido por computadora

Trabajo Práctico N°9

Profesor: Ing. Mauro Minnucci Esperón

Jefa TPs: Ing. Noelia Macchi

Año 2024	Curso: 3-12	
Especialidad:	Electrónica	
Información estudiante:	Nombre: Gomez, Pablo Sebastian	
	Email: pablosgomez50@gmail.com	
	Legajo: 112071	
Fecha de entrega:	03/11/2024	
Calificación:		

Ejercicio 1

A partir de los valores de cada capacitor se calculó la frecuencia mínima con Ra de ajuste máxima (150k) y frecuencia máxima con Ra de ajuste en 0.

$$f = \frac{1}{0.693(R_A + 2R_B)C}$$
 (1)

	f_min	f_max	t_min	t_max
C1				
1.000000e-09	8062.361	49793.010	0.000020	0.000124
1.000000e-08	806.236	4979.301	0.000201	0.001240
1.000000e-07	80.624	497.930	0.002008	0.012403
1.000000e-06	8.062	49.793	0.020083	0.124039
1.000000e-05	0.806	4.979	0.200844	1.240695
1.000000e-04	0.081	0.498	2.008032	12.345679

Ejercicio 2

Capacitor de 1nF

Se tiene periodo maximo de 124uS y minimo de 20uS.

Capacitor de 10nF

Se tiene periodo maximo de 1.24mS y minimo de 201uS.

Capacitor de 100nF

Se tiene periodo maximo de 12.4mS y minimo de 2mS.

Capacitor de 1uF

Se tiene periodo maximo de 124mS y minimo de 20mS.

Capacitor de 10uF

Se tiene periodo maximo de 1.24 seg y minimo de 200 mseg.

Capacitor de 100uF

Se tiene periodo maximo de 12.4 seg y minimo de 2 seg.

Ejercicio 3

Para el cálculo de los ciclos de actividad máximos y mínimos se necesita calcular el tiempo de nivel activo (t1) y utilizar el periodo calculado a partir de la frecuencia.

$$T = \frac{1}{f}$$

$$t1 = \frac{1}{0.693 R_A C}$$

$$DC = \frac{t1}{T}$$

Para analizar un DCmax se debe obtener el t1 maximo de cada frecuencia minima del astable, se busca la frecuencia minima ya que necesitamos. Los capacitores se deben utilizar en tandem al mismo valor de capacitancia, ya que el rango de ciclo de actividad seria acotado y estaria limitado desde el punto inferior o superior a causa del periodo del astable.

Ejercicio 4

Capacitor de 1nF

Se tiene periodo maximo de 130 useg. Se puede observar el 92.6% con 120.4 useg y 8.8% con 11.45 useg

Capacitor de 10nF

Se tiene periodo maximo de 1.288 mseg. Se puede observar el 92.2% con 1.188 mseg y 8.7% con 0.112 mseg

Capacitor de 100nF

Se tiene periodo maximo de 12.86 mseg. Se puede observar el 92.4% con 11.88 mseg y 8.9% con 1.15 mseg

Capacitor de 1uF

Se tiene periodo maximo de 128.7 mseg. Se puede observar el 92.1% con 118.6 mseg y 8.9% con 11.5 mseg

Capacitor de 10uF

Se tiene periodo maximo de 1.286 seg. Se puede observar el 92.1% con 1.184 seg y 8.7% con 111.9 mseg

Capacitor de 100uF

Se tiene periodo maximo de 12.86 seg. Se puede observar el 92.1% con 11.85 seg y 8.9% con 1.139 seg

