UFRGS / Instituto de Informática / Departamento de Informática Aplicada INF 01 107 - INTRODUÇÃO À ARQUITETURA DE COMPUTADORES

Segunda Verificação de Aproveitamento - 16/05/2007 - Turma A

Nome:		Número.:
	PROVA SEM CONSULTA	
Dianilha da Avaliação		

Planilha de Avaliação

Item	1	2	3	4	5	6	7	8	9	10	Total
%	5	15	10	10	10	10	10	10	10	10	100
Nota											

Questão 1:

Comparando-se as arquiteturas de 4, 3, 2 e 1 endereços, verifica-se que algumas necessitam de registradores especiais. A partir de quais arquiteturas são utilizados o Program Counter (PC) e o Acumulador (AC)?

- a) PC em 2 (ou menos) endereços, e AC em 3 (ou menos) endereços.
- b) PC em 2 (ou menos) endereços, e AC em 1 (ou menos) endereço.
- c) PC em 3 (ou menos) endereços, e AC em 1 (ou menos) endereço.
- d) PC em 1 (ou menos) endereço, e AC em 2 (ou menos) endereços.
- e) PC em 3 (ou menos) endereços, e AC em 2 (ou menos) endereços.

Questão 2:

Para o trecho de programa Neander mostrado a seguir, indique o conteúdo do acumulador (**em decimal**) após a execução de cada uma das instruções. Considere para isto a seguinte ocupação de memória:

Endereço	Dado (decimal)	Dado (binário)
128	0	00000000
129	+1	00000001
130	-1	11111111
131	10	00001010
132	7	00000111

Instrução	AC
LDA 131	
ADD 130	
ADD 132	
ADD 128	
ADD 129	
STA 133	
LDA 128	
NOT	
ADD 129	
STA 134	
LDA 131	
AND 132	
OR 129	
AND 130	
STA 135	

Para as duas questões a seguir sobre o computador Neander, considere a seguinte ocupação de memória:

Endereço	Dado	Endereço	Dado
128	+1	129	-1 (255 em decimal)
130	+2	131	-2 (254 em decimal)
132	+4	133	+11
134	X (valor qualquer)	135	Y (valor qualquer)

Ouestão 3:

Qual dos trechos de programa abaixo pode ser utilizado para implementar a equação Y := 4*X (assinale com "V" todas as alternativas corretas e com "F" todas as alternativas incorretas)

()	()	()	()	()
(a)	(b)	(c)	(d)	(e)
LDA 134				
ADD 134	ADD 134	ADD 132	ADD 134	ADD 134
ADD 134	STA 135	STA 135	STA 135	ADD 134
ADD 134	ADD 134		ADD 135	ADD 134
ADD 134	STA 135		STA 135	STA 135
STA 135				

Questão 4:

Escreva um programa para o Neander que corresponda ao laço:

Este programa deve iniciar no endereço zero de memória. Considere que a memória tem a ocupação fornecida acima, e observe que X e Y correspondem às posições de memória 134 e 135, respectivamente. Caso necessite de mais valores na memória, utilize as posições 136 e posteriores.

Endereço	Instrução	Endereço	Operando
0		128	+1
		129	1
		130	+2
		131	-2
		132	+5
		133	+11
		134	X
		135	Y
		136	
	· · · · · · · · · · · · · · · · · · ·	137	
		138	

Questão 5:

Após uma operação de soma no computador AHMES, quais códigos de condição indicam estouro de representação quando os operandos são representados, respectivamente, em **complemento de dois** e em **inteiros sem sinal**? (Assinale a alternativa que satisfaz a questão):

- a) C para complemento de dois e também C para inteiros sem sinal (x)
- b) V para complemento de dois e N para inteiros sem sinal (x)
- c) V para complemento de dois e C para inteiros sem sinal
- d) V para complemento de dois e também V para inteiros sem sinal
- e) C para complemento de dois e N para inteiros sem sinal (x)

Ouestão 6:

Dois operandos, A e B, são comparados no computador AHMES através da operação de subtração SUB $(A \leftarrow A - B)$. Qual das condições indica que garantidamente A < B, quando os operandos são representados, respectivamente, em **complemento de dois** e em **inteiros sem sinal**? (Assinale a alternativa que satisfaz a questão):

- a) N=1 para complemento de dois e também N=1 para inteiros sem sinal (x)
- b) N=1 e V=1 para complemento de dois e B=0 para inteiros sem sinal (x)
- c) N=1 e V=0 para complemento de dois e B=1 para inteiros sem sinal
- d) N=1 para complemento de dois e B=1 para inteiros sem sinal
- e) B=1 para complemento de dois e também B=1 para inteiros sem sinal

Ouestão 7:

Dois operandos representados em complemento de dois são comparados através de uma operação de subtração SUB (A \leftarrow A - B). Depois desta subtração, verificou-se que Z=1, N=1, V=0 e B=1. Qual a relação que garantidamente existe entre os dois operandos? (Assinale a alternativa que satisfaz a questão)

- a) A é maior que B
- b) A é menor que B
- c) A é igual a B
- d) A é diferente de B
- e) Impossível ocorrer esta combinação de códigos de condição

Questão 8:

Deseja-se contar a quantidade de bits em '1' de um valor armazenado na posição 128 da memória do AHMES, armazenando o resultado da posição 129 de memória. Supondo que o endereço 129 contenha zero (0), o endereço 130 contenha 1 e o endereço 131 contenha 8, qual (ou quais) das seqüências de instruções abaixo pode ser usada? (assinale com 'V' as seqüências corretas e com 'F' as seqüências incorretas)

a) ()	d) ()	b) ()	c) ()	e) ()
inicio:	LDA 128	inicio	:LDA 128						
	SHL		ROR		ROL		SHL		JZ fim
	STA 128		STA 128		STA 128		STA 128		SHR
	JNC zero		JNC zero		JNC zero		JNC zero		STA 128
	LDA 129		LDA 129		LDA 129		LDA 129		JNC inicio
	ADD 130		ADD 130		ADD 130		ADD 130		LDA 129
	STA 129		STA 129		STA 129		STA 129		ADD 130
zero:	LDA 128	zero:	LDA 128	zero:	LDA 131	zero:	LDA 131		STA 129
	JNZ inicio		JNZ inicio		SUB 130		SUB 130		JMP inicio
					STA 131		STA 131	fim:	••••
					JNZ inicio		JNZ inicio		

Questão 9:

Na	multipli	cação d	e dois	números	de 8	bits,	representados	em	complemento	de dois,	obteve-se	e os
resu	ltados d	e 16 bits	s abaixo	. Indique	em q	uais o	corre estouro n	a rej	presentação qua	ando da re	edução pa	ra 8
bits	e quais p	podem s	er reduz	zidos para	8 bit	s sem	que ocorra esto	ouro	e, neste caso, c	jual o valo	or reduzid	o:

a)	1111 1111 1110 1010	[] Estouro ou [] Pode ser reduzido para	
b)	1000 0000 1000 1110	[] Estouro ou [] Pode ser reduzido para	
c)	0000 0000 0111 1011	[] Estouro ou [] Pode ser reduzido para	
d)	1111 1111 0001 0001	[] Estouro ou [] Pode ser reduzido para	
e)	1111 1111 0001 1100	[] Estouro ou [] Pode ser reduzido para	

Questão 10:

Deseja-se realizara a divisão de valores representados em 8 bits, na notação de inteiros sem sinal (inteiros positivos). Para tanto, os valores de dividendo representados abaixo devem ser expandidos para 16 bits. Realize esta expansão, indicando os valores resultantes:

a)	0110 1110	Valor expandido:	
b)	1000 1010	Valor expandido:	
c)	0001 1100	Valor expandido:	
d)	1111 1111	Valor expandido:	
e)	1000 0001	Valor expandido:	

Conjunto de instruções do computador NEANDER.

Instrução	Significado	Códigos alterados
NOP	Nenhuma operação	_
STA endereço	MEM(endereço) <- AC	_
LDA endereço	AC <- MEM(endereço)	N,Z
ADD endereço	AC <- AC + MEM(endereço)	N,Z
OR endereço	AC <- AC or MEM(endereço)	N,Z
AND endereço	AC <- AC and MEM(endereço)	N,Z
NOT	$AC \leftarrow NOT(AC)$	N,Z
JMP endereço	PC < endereço	_
JN endereço	se N=1 então PC < endereço	_
JZ endereço	se Z=1 então PC <- endereço	_
HLT	Parar	_

Conjunto de instruções do computador AHMES

Instru	ção	Execução	Códigos afetados
NOP		nenhuma operação	nenhum
STA	end	$MEM(end) \leftarrow AC$	nenhum
LDA	end	AC← MEM(end)	N, Z
ADD	end	$AC \leftarrow AC + MEM(end)$	N, Z, V, C
OR	end	$AC \leftarrow AC \text{ or MEM(end)}$	N, Z
AND	end	AC← AC and MEM(end)	N, Z
NOT		AC← NOT AC	N, Z
SUB	end	$AC \leftarrow AC - MEM(end)$	N, Z, V, B
JMP	end	PC← end	nenhum
JN	end	IF N=1 THEN PC ← end	nenhum
JP	end	IF N=0 THEN PC ← end	nenhum
JV	end	IF V=1 THEN PC ← end	nenhum
JNV	end	IF V=0 THEN PC ← end	nenhum
JZ	end	IF $Z=1$ THEN PC \leftarrow end	nenhum
JNZ	end	IF Z=0 THEN PC ← end	nenhum
JC	end	IF C=1 THEN PC ← end	nenhum
JNC	end	IF C=0 THEN PC ← end	nenhum
JB	end	IF B=1 THEN PC ← end	nenhum
JNB	end	IF B=0 THEN PC ← end	nenhum
SHR		$C \leftarrow AC(0); AC(i-1) \leftarrow AC(i); AC(7) \leftarrow 0$	N, Z, C
SHL		$C \leftarrow AC(7); AC(i) \leftarrow AC(i-1); AC(0) \leftarrow 0$	N, Z, C
ROR		$C \leftarrow AC(0); AC(i-1) \leftarrow AC(i); AC(7) \leftarrow C$	N, Z, C
ROL		$C \leftarrow AC(7); AC(i) \leftarrow AC(i-1); AC(0) \leftarrow C$	N, Z, C
HLT		Interrompe o processamento	nenhum