Математическая логика

Ипатов Марк

13 апреля 2022 г.

Содержание

1. MH	ожества, мощность множеств	Τ
1.1	Равномощные множества	1

1. Множества, мощность множеств

1.1. Равномощные множества

...тут я ещё не начинал записывать

Определение 1.1. Множества A и B равномощны, если \exists биекция между A и B

Замечание. Равномощность является отношением эквивалентности. Очев.

Возможная, но не совсем корректная трактовка — равномощные множества — содержащие равное количество элементов. Для конечных это действительно верно.

Определение **1.2.** Множество называется счётным, если оно равномощно множеству натуральных чисел.

Пояснение: мы считаем натуральными числами множество $\{1,2,3,\cdots\}$, но никакой разницы с $\{0,1,2,3,\cdots\}$ нет, т.к. существует биекция из одного в другое $-i \rightarrow i-1$.

Пример. Чётные числа — счётное множество. Биекция — $i \to 2 \times i$

Лемма. A, B — счётны $\Rightarrow A \cup B$ — счётно при $A \cap B = \emptyset$.

Доказательство. $\exists f: N \to A \Rightarrow A: \{a_1, a_2, a_3, \dots\}$

Аналогично $B: \{b_1, b_2, b_3, \cdots\}$

Тогда запишем:

$$C: \{a_1, b_1, a_2, b_2, \dots\}, c_{2i-1} = a_i, c_{2i} = b_i$$

Cледcтвие. \mathbb{Z} — счётно.

Доказательство. $\mathbb{Z} = \{0, 1, 2, \cdots\} \cup \{-1, -2, -3, \cdots\}$, первое равномощно \mathbb{N} , как и второе, а значит \mathbb{Z} — счётно по предыдущей лемме.

Лемма. B — счётное, $A \subset B$, тогда A — конечное или счётное.

Доказательство. B — счётно, тогда можно записать B : $\{b_1, b_2, \cdots\}$

Раз A подмножество, то просто часть элементов отсутствует. Тогда мы пойдём сопоставлять числа оставшимся элементам. Первое оставшееся — 1, второе — 2, и т.д. Тогда или в какой-то момент у нас закончатся оставшиеся числа, т.е. найдётся то, после которого нет оставшихся, и тогда A — конечно, или мы построим биекцию между A и натуральными числами. Это биекция, поскольку это инъекция и сюръекция (мы каждому натуральному поставили число, и всем элементам A что-то одно сопоставили)

Теорема 1.1 (Лемма). Любое бесконечное множество содержит счётное подмножество.

Определение 1.3. Множество X бесконечно, если $\forall i \in \mathbb{N}$ можно найти i различных элементов из X.

Доказательство. Возьмём элемент из X. Назовём его a_1 . Если в X не осталось элементов, значит в нём был всего один элемент. Иначе возьмём из X какой-то другой элемент, назовём его a_2 . Если снова не осталось, то было всего два элемента. И так далее, построили $Y = \{a_1, a_2, a_3, \cdots\}$, и $Y \subset X, f : \mathbb{N} \Leftrightarrow Y$.

Пример. Счётное множество, для которого мы таким процессом не докажем счётность: $X = \{1, 2, 3, \cdots\}, Y = \{2, 4, 6, \cdots\}$. Иными словами, мы все элементы из X далеко не обязательно вытащим.

Пример. Множество (0,1) не является счётным.

Следствие. $A_1, A_2, A_3, \cdots, A_k$ — счётны $A_1 \cup A_2 \cup \cdots A_k$ — счётно

Доказательство. Для дизъюнкных всё хорошо понятно. Для недизъюнктных:

Посмотрим на A_1 и A_2

 A_1 . Оба счётны, а тогда $A_1 \cup A_2 = A_1 \sqcup (A_2$

 A_1)

Теперь воспользуемся индукцией по k: База: A_1, A_2 счётны по условию, тогда $A_1 \cup A_2$ тоже счётно. Тогда $(A_1 \cup A_2 \cup A_3 \cdots A_k) = ((\cdots ((A_1 \cup A_2) \cup A_3) \cup \cdots) \cup A_k)$

Лемма. A_1, A_2, \dots счётное число счётных множеств, т.е. для любого $i \exists A_i$.

Тогда $A_1 \cup A_2 \cup \cdots$ тоже счётно.

Доказательство. A_1 счётно, тогда $A_1:\{a_{11},a_{12},a_{13},\cdots\}$. Аналогично $A_2:\{a_{21},a_{22},a_{23},\cdots\}$ И так далее ещё счётное число строк.

Теперь нам нужно эту таблицу представить в виде последовательности. Будем ходить по диагоналям: $a_{11}, a_{12}, a_{21}, a_{13}, a_{22}, a_{31}, \cdots$

Утверждение — любой элемент будет выписан. Рассмотрим элемент множества i номер j, тогда оно будет на i+j-ой диагонали, а значит его номер точно не будет превышать $(i+j)^2$. Тогда получаем, что любой элемент будет выписан.

Это всё для непересекающихся множеств, а для пересекающихся — давайте просто не выписывать элементы, которые уже выписали. \Box

Упражнение. $\mathbb{N}, \mathbb{Z}-$ счётны. [0,1)- несчётно (просто знаем), знаем $\mathbb{R}-$ несчётно. $\mathbb{Q}-$ счётно или нет?

Доказательство. \mathbb{Q}_+ счётно. Давайте представим его в виде $A_1 \cup A_2 \cup \cdots$, где $A_i = \{\frac{m}{i} | m \in \mathbb{N}\}$. Т.к. любое из \mathbb{Q}_+ так представляется, то в такое объединение попадёт всё \mathbb{Q}_+ .

Лемма. A, B — счётны, тогда $A \times B$ — счётно.

Доказательство. A,B — счётны, тогда $A:\{a_1,a_2,\cdots\},\ B:\{b_1,b_2,\cdots\}$ Элементы из $A\times B$ выглядят так: (a_i,b_j) , тогда давайте запишем следующее:

 $A_1 = a_1 \times B = \{(a_1, b_1), (a_1, b_2), (a_1, b_3), \cdots\}, A_2$ аналогично, и так далее. Тогда каждое A_i счётно, и их счётное число, значит их объединение, которое и есть $A \times B$ счётно, по доказанной лемме.

Двигаемся к несчётным множествам.

Лемма. Пусть A бесконечно, а B — конечно. Тогда $A \cup B$ равномощно A.

Доказательство. B заменим на B' = B/A. B' или станет пустым, или останется конечным.

Очевидно, что $A \cup B = A \sqcup B'$

У A есть счётное подмножество $A' = \{a_1, a_2, \cdots\}$, тогда $A = (A A') \cup A'$.

Хотим построить биекцию между $A = A' \cup (A$

A') и $A' \cup B' \cup (A A')$

Между частями $(A \setminus A')$ построим тождественную биекцию. А a_i будем отображать в b_i , если $i \leq k$, а в a_{i-k} если i > k. Понятно, что это биекция. Все элементы возьмём как из B, так и из a_i .

Замечание. Доказательство можно модифицировать для случая, когда B счётно. Тогда давайте на последнем шаге чётные отображать в a_i , а нечётные — в b_i .

Теорема 1.2. Множество X последовательностей (бесконечных) из нулей и единиц не счётно. (Бинарные строки бесконечной длины)

Доказательство. От противного: пусть счётен, тогда есть биекция $f: \mathbb{N} \to X$. Тогда выпишем последовательности $f(1), f(2), f(3), \cdots$. А теперь воспользуемся диагональным (методом Кантора): Посмотрим на элемент a_{11} , возьмём элемент $1-a_{11}$. Затем на элемент a_{22} , возьмём $1-a_{22}$. И так далее, строим последовательность $1-a_{ii}$. Получили бесконечную последовательность нулей и единиц, значит она элемент X. Но при этом она не может быть любой i-ой последовательностью, поскольку её i-ый элемент не совпадает с i-ым элементом строки i по тому, как мы строили нашу последовательность. Противоречие. Значит мы не можем вот так вот выписать наши элементы X, значит биекции f не существует.

Следствие. Множество чисел из отрезка [0, 1] несчётно.

Доказательство. Покажем равномощность множеству X из теоремы. Из бесконечной последовательности число получить легко — припишем слева «0,», а все элементы последовательности запишем слитно. Могло показаться, что получили биекцию, но нет. У нас разные последовательности могут соответствовать одному числу — 0, $100000000 \cdots$ и $0,011111111 \cdots$ — разные последовательности, но являются одним числом. Возьмём две последовательности — $0, a_{11}a_{12}a_{13} \cdots$, $0, a_{21}a_{22}a_{23} \cdots$. Утверждение — они задают одно число тогда и только тогда, когда они имеют один префиксы, а затем у одного числа идёт единица и после только нули, а у второго ноль и затем только единицы. Идём слева направо и найдём первый момент, когда они отличаются. В одном ноль, во втором единица. Далее всё идёт сколько0то, как мы предсказали, затем, что-то разойдётся и там можно оценить, что числа у нас уже отличаются на что-то, что не сможем покрыть дальнейшим. Спасибо Близнецу за успешно закрытую собой доску... Но там в любом случае очев = D А все числа такого вида это просто \mathbb{Q} (или что-то такого рода)((На самом деле оно даже не \mathbb{Q} , там только дроби вида сумма какого-то конечного числа отрицательных степеней двойки, что есть подмножество \mathbb{Q})). Тогда $X \equiv [0,1] \sqcup (\mathbb{Q} \cap [0,1])$. Результат пересечения счётен, а значит объединение равномощно бесконечной левой части, т.е. $X \equiv [0,1]$

Теперь знаем, что натуральные счётны, чётные счётны, целые счётны, рациональные положительные счётны, просто рациональные счётны. А вот действительные уже несчётны, т.к. содержат [0,1].

Пример. Множество точек границ треугольника и вписанного круга равномощны, т.к. можно построить биекцию из центра.