

# Plants' Bioelectrical Activity Communication in Green Infrastructures & Lab Experience

Students: Bahram Hedayati and Mahsa Delaram

**Matricola**: 10870276 - 10847175

School of Industrial and Information Engineering

Master of Telecommunication

# Work outline

- 1. Introduction to Plant Bioelectrical Activity
- 2. Environmental Adaptation to Light Stimuli
- 3. Action Potentials in Plants
- 4. Literature Review
- 5. Data Analysis and Feature Analysis
- 6. Results and Conclusions

#### **PLANTS'ADAPTABILITY**

Plants are **sessile** organisms and so rely on their ability to **adapt** to the

environment to survive.





- Electrical signals
- · Chemical signals
- Etc.

### PLANTS' BIOELECTRICAL ACTIVITY

- Action Potential (APs)
- Variation Potential (VPs)
- Systemic Potential (SPs)





### **LIGHT-INDUCED APs**



- 1. Resting State
- Rising phase (Depolarization)
- 3. Falling phase (Repolarization)
- 4. Undershoot

#### SYSTEM MODEL

It's the experimental design as in «Detecting Severe Plant Water Stress with Machine Learning in IoT-Enabled Chamber».



Fig. 3: Experimental set-up design scheme.

Fig. 4: Acquisition system.

# RAW DATA – 256Hz



### **DOWN SAMPLE DATA – 1Hz**



#### FEATURE EXTRACTION

#### These indicators are computed over raw data and sampled set of AP values:

- Minimum: The smallest value
- Maximum: The largest value

• Mean: The average value 
$$Mean = \frac{\sum_{i=1}^n x_i}{n}$$
  
• Variance: Difference from the mean.  $(\sigma^2) = \frac{\sum_{i=1}^N (x_i - \mu)^2}{N}$   
• Standard Deviation: Amount of variation or spread.  $(\sigma) = \sqrt{\frac{\sum_{i=1}^N (x_i - \mu)^2}{N}}$ 

$$\sigma(\sigma^2) = rac{\sum_{i=1}^N (x_i - \mu)^2}{N}$$

$$(\sigma) = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$$

**Variation Index**: Relative variability.

$$VI = \frac{Standard\ Deviation}{Mean}$$



### RAW DATA VS. SAMPLED DATA









# **DATA NORMALIZATION**





# ... AND IF THE LIGHT WAS NATURAL?





# **FEATURE ANALYSIS**

|   | Day | Minimum | Maximum | Mean    | Standard Deviation | VI      | Variance | Label |
|---|-----|---------|---------|---------|--------------------|---------|----------|-------|
| 0 | 1   | -4.8107 | 10.2809 | 0.7491  | 4.6155             | 0.1623  | 21.3027  | 0     |
| 1 | 2   | -4.5143 | 9.2124  | 1.3407  | 4.1809             | 0.3207  | 17.4800  | 0     |
| 2 | 3   | -5.585  | 9.8577  | -0.0035 | 5.0685             | -0.0007 | 25.6902  | 0     |
| 0 | 8   | -0.114  | 8.1573  | 2.5501  | 2.0318             | 1.2551  | 4.1283   | 1     |
| 1 | 10  | -0.6936 | 8.8906  | 2.1187  | 2.308              | 0.918   | 5.3268   | 1     |
| 2 | 12  | -1.3997 | 7.9071  | 1.2737  | 2.3353             | 0.5454  | 5.4536   | 1     |
| 3 | 14  | -1.8759 | 7.3167  | 0.8559  | 2.4278             | 0.3526  | 5.8940   | 1     |
|   |     |         |         |         |                    |         |          |       |

# **SPLITTER FEATURES**



# **SOME EXPERIMENTS WE DID!**

#### **MACHINE LEARNING MODELS**

- Achieve real-time response detection to stimuli in plants
- Novel insights into the plant monitoring methodologies
- ML is a field of AI that enables algorithms to learn from data and make decisions.



# **MACHINE LEARNING MODELS**

- Support Vector Machine
- K-Nearest Neighbors
- Logistic Regression
- Decision Trees









#### **OUR FICTITIOUS RESULTS**

| ML Model            | Accuracy |
|---------------------|----------|
| Logistic Regression | 100%     |
| KNN                 | 100%     |
| SVM                 | 100%     |
| Decision Trees      | 85.71%   |

|   | Day | Minimum | Maximum | Mean    | Standard Deviation | VI      | Variance | Label |
|---|-----|---------|---------|---------|--------------------|---------|----------|-------|
| 0 | 1   | -4.8107 | 10.2809 | 0.7491  | 4.6155             | 0.1623  | 21.3027  | 0     |
| 1 | 2   | -4.5143 | 9.2124  | 1.3407  | 4.1809             | 0.3207  | 17.4800  | 0     |
| 2 | 3   | -5.585  | 9.8577  | -0.0035 | 5.0685             | -0.0007 | 25.6902  | 0     |
| 0 | 8   | -0.114  | 8.1573  | 2.5501  | 2.0318             | 1.2551  | 4.1283   | 1     |
| 1 | 10  | -0.6936 | 8.8906  | 2.1187  | 2.308              | 0.918   | 5.3268   | 1     |
| 2 | 12  | -1.3997 | 7.9071  | 1.2737  | 2.3353             | 0.5454  | 5.4536   | 1     |
| 3 | 14  | -1.8759 | 7.3167  | 0.8559  | 2.4278             | 0.3526  | 5.8940   | 1     |

#### **Important Considerations:**

- 1. There are only 7 samples and 6 features.
- 2. The features are highly based on each other.
- 3. The samples are significantly recognizable.
- The models are trained and tested using Leave-One-Out Cross-Validation (LOOCV)

#### CONCLUSION

- The ML models were effective in distinguishing between the classes under study.
- Visual analysis of the signals revealed clear differences between artificial and natural light classes.
- The approach must be validated under true field conditions where unregulated factors could impact results.
- The obtained accuracy is not valid until we have more samples.



#### References

- [1] Bekkari, I., Lombardo, S., Coviello, A., Magarini, M., and Wallbridge, N., Detecting Severe Plant Water Stress with Machine Learning in IoT-Enabled Chamber.
- [2] Awan, H., Adve, R., Wallbridge, N., Plummer, C., and Eckford, A., Communication and information theory of single action potential signals in plants, IEEE Transactions on non-bioscience, Vol. 18, No. 1, 2019.
- [3] Tran, D., Dutoit, F., Najdenovska, E. et al. Electrophysiological assessment of plant status outside a Faraday cage using supervised machine learning. Sci Rep 9, 17073 (2019).
- [4] E. Lopez Barrera and T. Hertel, Global food waste across the income spectrum: Implications for food prices, production and resource use, Food Policy, 2020. doi: 10.1016/j.foodpol.2020.101874.
- [5] Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). Stanford, CA: Stanford University.
- [6] Koselski, Mateusz & Trębacz, Kazimierz & Dziubinska, Halina & Krol, Elzbieta. (2008). Light- and dark-induced action potentials in Physcomitrella patens. Plant signaling & behavior. 3. 13-8. 10.4161/psb.3.1.4884.
- [7] Slide Sets and Recordings of Professor Maurizio Magarini provided for Communication in Green Infrastructures course in Politecnico di Milano, 2023.
- [8] Slide Sets and Recordings of Professor Gabriele Candiani provided for Communication in Green Infrastructures course in Politecnico di Milano, 2023.
- [9] https://byjus.com/biology/