Que peut-on dire quand une fonction f tend vers ℓ quand x tend vers $+\infty$?

Que la droite d'équation $\,x=\ell\,$ est asymptote à la courbe de $\,f\,$ au voisinage de $\,+\infty\,$.

Que la droite d'équation $y=\ell$ est asymptote à la courbe de f au voisinage de $+\infty$.

Que la droite d'équation $\,x=\ell\,$ est asymptote à la courbe de $\,f\,$ au voisinage de $\,\ell\,$.

Que la droite d'équation $\,y=\ell\,$ est asymptote à la courbe de $\,f\,$ au voisinage de $\,\ell\,$.

Comment définit-on une fonction qui tend vers $+\infty$ quand x tend vers $+\infty$?

Si, pour tout réel A , il existe un réel a tel que si $x \geq a$, alors f(x) > A .

Si, pour tout réel A et pour tout réel a , on a x tel que si $x \geq a$, alors f(x) > A .

S'il existe un réel $\,a\,$ tel que pour tout réel $\,A\,$ on a si $\,x\geq a$, alors $\,f(x)>A$.

S'il existe un réel $\,A$, il existe un réel $\,a\,$ tel que si $\,x\geq a$, alors $\,f(x)>A$.

Parmi les propositions suivantes sur les limites d'une fonction en un point, laquelle est fausse?

La limite « à gauche » et « à droite » d'un point est parfois différente.

Lorsqu'une fonction f tend vers $-\infty$ lorsque x tend vers a , alors la droite d'équation x=a est asymptote à la courbe de f .

Lorsqu'une fonction f tend vers $-\infty$ lorsque x tend vers a , alors la droite d'équation y=a est asymptote à la courbe de f .

Lorsqu'une fonction f tend vers $-\infty$ lorsque x tend vers a , on écrit $\lim_{x o a}f(x)=-\infty$.

Parmi les propositions suivantes, laquelle ne permet pas de calculer des limites?

Le calcul classique

Le théorème de comparaison

Le théorème des gendarmes

Le théorème de Boule

Que vaut la limite en $-\infty$ du quotient de deux fonctions, celle au nu	mérateur tendant vers L , L	un réel positif et celle au
dénominateur vers $+\infty$?		

Les limites de fonctions

$+\infty$	
0-	
0^+	
C'est une forme indéterminée.	

Quelle est la limite en $+\infty$ d'une fonction polynôme du second degré, dont le coefficient de x^2 est a , a>0 ?

Quelle est la limite de la fonction inverse en $\,0^+\,$?

Que peut-on dire quand une fonction f tend vers ℓ quand x tend vers $+\infty$?

Que la droite d'équation $x=\ell$ est asymptote à la courbe de f au voisinage de $+\infty$.

Que la droite d'équation $\,y=\ell\,$ est asymptote à la courbe de $\,f\,$ au voisinage de $\,+\infty\,$.

Que la droite d'équation $\,x=\ell\,$ est asymptote à la courbe de $\,f\,$ au voisinage de $\,\ell\,$.

Que la droite d'équation $y=\ell$ est asymptote à la courbe de f au voisinage de ℓ .

Lorsqu'une fonction f tend vers ℓ quand x tend vers $+\infty$, alors la droite d'équation $y=\ell$ est asymptote à la courbe de f au voisinage de $+\infty$.

Comment définit-on une fonction qui tend vers $+\infty$ quand x tend vers $+\infty$?

Si, pour tout réel $\,A$, il existe un réel $\,a\,$ tel que si $\,x\geq a$, alors $\,f(x)>A$.

Si, pour tout réel $\,A\,$ et pour tout réel $\,a$, on a $\,x\,$ tel que si $\,x\geq a$, alors $\,f(x)>A$.

S'il existe un réel $\,a\,$ tel que pour tout réel $\,A\,$ on a si $\,x\geq a$, alors $\,f(x)>A$.

S'il existe un réel $\,A$, il existe un réel $\,a\,$ tel que si $\,x\geq a$, alors $\,f(x)>A$.

On dit qu'une fonction qui tend vers $+\infty$ quand x tend vers $+\infty$ si, pour tout réel A , il existe un réel a tel que si $x\geq a$, alors f(x)>A .

Parmi les propositions suivantes sur les limites d'une fonction en un point, laquelle est fausse?

La limite « à gauche » et « à droite » d'un point est parfois différente.

Lorsqu'une fonction f tend vers $-\infty$ lorsque x tend vers a , alors la droite d'équation x=a est asymptote à la courbe de f .

Lorsqu'une fonction f tend vers $-\infty$ lorsque x tend vers a , alors la droite d'équation y=a est asymptote à la courbe de f .

Lorsqu'une fonction f tend vers $-\infty$ lorsque x tend vers a , on écrit $\lim_{x o a} f(x) = -\infty$.

On a bien lorsqu'une fonction f tend vers $-\infty$ lorsque x tend vers a, alors la droite d'équation x=a est asymptote à la courbe de f .

Kartable.fr Chapitre 6 : Les limites de fonctions

Parmi les propositions suivantes, laquelle ne permet pas de calculer des limites?

Le calcul classique	
Le théorème de comparaison	
Le théorème des gendarmes	
Le théorème de Boule	

On peut calculer les limites, ou les trouver par comparaison avec d'autres fonctions avec le théorème de comparaison et le théorème des gendarmes.

Que vaut la limite en $-\infty$ du quotient de deux fonctions, celle au numérateur tendant vers L , L un réel positif et celle au dénominateur vers $+\infty$?

La limite de ce produit est $\,0^+\,$.

Quelle est la limite en $+\infty$ d'une fonction polynôme du second degré, dont le coefficient de x^2 est a , a>0 ?

Une telle fonction tend vers $+\infty$ en $+\infty$.

Quelle est la limite de la fonction inverse en $\,0^+\,$?

0			
$+\infty$			
$-\infty$			
C'est une forme indétern	ninée.		

La limite de la fonction inverse en $\,0^+\,$ est $\,\lim_{x o 0^+}rac{1}{x}=+\infty$.