WO 96/31625 PCT/US96/04454

728), intracellular proteins (Daniels and Lane, 1994, J. Mol. Biol. 243:639-652; Dedman et al., 1993, J. Bi l. Chem. 268:23025-23030; Sparks et al., 1994, J. Biol. Chem. 269:23853-23856), DNA (Krook et al., 1994, Biochem. Biophys. 5 Res. Comm. 204:849-854), and many other targets (Winter, 1994,

Most vital cellular processes are regulated by the transmission of signals throughout the cell in the form of complex interactions between proteins. As the study of signal

Drug Dev. Res. 33:71-89).

- 10 transduction, or the flow of information throughout the cell, has broadened and matured, it has become apparent that these protein-protein interactions are often mediated by modular domains within signalling proteins. Src, both the first proto-oncogene product and the first tyrosine kinase
- 15 discovered (Taylor and Shalloway, 1993, Current Opinion in Genetics and Development 3:26-34), is the prototypic modular domain-containing protein.

Src is a protein tyrosine kinase of 60 kilodaltons and is located at the plasma membrane of cells. It was first

- 20 discovered in the 1970's to be the oncogenic element of Rous sarcoma virus, and in the 1980's, it was appreciated to be a component of the signal transduction system in animal cells. However, since the identification of viral and cellular forms of Src (i.e., v-Src and c-Src), their respective roles in
- 25 oncogenesis, normal cell growth, and differentiation have not been completely understood.

In addition to its tyrosine kinase region (sometimes called a Src Homology 1 domain), Src contains two regions that have been found to have functionally and structurally

- 30 homologous counterparts in a large number of proteins. These regions have been designated the Src Homology 2 (SH2) and Src Homology 3 (SH3) domains. SH2 and SH3 domains are modular in that they fold independently of the protein that contains them, their secondary structure places N-and C-termini close
- 35 to one another in space, and they appear at variable locations (anywhere from N-t C-terminal) from one protein to the next (C hen et al., 1995, Cell 80:237-248). SH2 domains have been

WO 96/31625 PCT/US96/04454

well-studied and ar kn wn to be involved in binding to phosphorylat d tyrosine residues (Pawson and Gish, 1992, Cell 71:359-362).

The Src-homology region 3 (SH3) of Src is a domain 5 that is 60-70 amino acids in length and is present in many cellular proteins (Cohen et al., 1995, Cell 80:237-248; Pawson, 1995, Nature 373:573-580). Within Src, the SH3 domain is considered to be a negative inhibitory domain, because c-Src can be activated (i.e., transforming) through mutations in this domain (Jackson et al., 1993, Oncogene 8:1943-1956; Seidel-Dugan et al., 1992, Mol Cell Biol 12:1835-1845).

To deduce the binding specificity of the Abl SH3 domain, a group led by David Baltimore screened cDNA libraries with radiolabeled GST-Abl SH3 fusion protein and identified

15 two binding cDNA clones (Cicchetti et al., 1992, Science 257:803-806). Both clones encoded proteins with proline rich regions that were later shown to be SH3 binding domains.

Subsequently, others have screened combinatorial peptide libraries and identified peptides that bound to the 20 Src SH3 domain (Yu et al., 1994, Cell 76:933-945; Cheadle et al., 1994, J. Biol. Chem. 269:24034-24039). Using the SH3 domain of Src, Sparks et al., 1994, J. Biol. Chem. 269:23853-23856 screened phage-display random peptide libraries and identified a consensus peptide sequence that binds with specificity and high affinity to the Src SH3 domain.

The consensus from these various studies is that the optimal Src SH3 peptide ligand is RPLPPLP (SEQ ID NO:45).

Recently, the structures of the peptide-SH3 domain complexes have been deduced by NMR and the peptides have been shown to bind in two possible orientations with respect to the SH3 domain (Feng et al., 1994, Science 266:1241-1247; Lim et al., 1994, Nature 372:375-379).

Since SH3 domains have been found to have such important roles in the function of crucial signalling and 35 structural elements in the cell, a method of identifying proteins containing SH3 regions is of great interest. In this regard, it is important to note that such a method is