Departamento de Matemática da Universidade de Coimbra

Análise Matemática II

Ano Lectivo 2010/2011

Folha 2 - Soluções

3 Sucessões e Séries

3.1 Sucessões de números reais

1.

- 2. (a) Sucessão monótona decrescente;
 - (b) Sucessão monótona crescente;
 - (c) Sucessão monótona crescente.
- 3. (a) Convergente, 1;
 - (b) Convergente, 0;
 - (c) Convergente, 0;
 - (d) Divergente, $+\infty$;
 - (e) Convergente, 0;
 - (f) Divergente, $+\infty$;
 - (g) Convergente, 1;
 - (h) Convergente, $\frac{1}{4}$;

- (i) Convergente, e^{-2}
- (j) Convergente, e^4
- (k) Divergente, $-\infty$;
- (l) Convergente, 1;
- (m) Convergente, 0;
- (n) Convergente; 1;
- (o) Convergente, 1.

- 4. (a)
 - (b) $\lim v_n = 0$.
- 5. (a) A sucessão é divergente;
 - (b) A sucessão é convergente (e tem limite igual a 0).
- 6. (a)
 - (b) A sucessão (u_n) não tem limite.
 - 7. $u_n = n^2$, $v_n = \frac{1}{n}$; (b) $u_n = n^2$, $v_n = -\frac{1}{n}$; (c) $u_n = n$, $v_n = \frac{1}{n^2}$; (d) $u_n = \pi n$, $v_n = \frac{1}{n}$.

3.2 Séries numéricas

- 9. (a) $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, $S_4 = 0$, $S_5 = -1$.
 - (b) $S_1 = 1$, $S_2 = \frac{5}{4}$, $S_3 = \frac{49}{36}$, $S_4 = \frac{205}{144}$, $S_5 = \frac{5269}{3600}$;
 - (c) $S_0 = -1$, $S_1 = -3$, $S_2 = -7$, $S_3 = -15$, $S_4 = -31$;

(d)
$$S_1 = 4$$
, $S_2 = 6$, $S_3 = 7$, $S_4 = \frac{15}{2}$, $S_5 = \frac{31}{4}$.

- 10. Seja $\{S_n\}$ a sucessão das somas parciais da série. Então $a_4 = \frac{1}{15}$ e $S_4 = \frac{5}{3}$. A série é convergente e a sua soma é 2.
- 11. (a) Sucessão $\{s_n\}$ com $s_n = 1 + \frac{2}{10} + \frac{2}{10^2} + \dots + \frac{2}{10^n} = 1, \underbrace{22\dots 2}_{\text{Exerce}}$

(b)
$$1 + \sum_{n=1}^{\infty} \frac{2}{10^n}$$
.

12. (a) Série divergente;

- (c) Série divergente;
- (b) Série convergente com soma 3;
- (d) Série divergente.
- (a) Série convergente com soma $\sqrt[3]{5} + \sqrt[6]{5} + \sqrt[9]{5} 3$;
 - (b) $u_n = \ln(1 \frac{1}{n^2}) = \ln(\frac{n+1}{n}) \ln(\frac{n}{n-1}), \ n \ge 2$: Série convergente com soma $-\ln 2$;
 - (c) Série convergente com soma $1 + \frac{1}{2} + \frac{1}{3}$;
 - (d) $u_n = \frac{1}{n(n+4)} = \frac{1}{4}(\frac{1}{n} \frac{1}{n+4}), \ n \ge 1$: Série convergente com soma $\frac{1}{4} + \frac{1}{8} + \frac{1}{12} + \frac{1}{16}$.

14.

- 15. (a) Série convergente com soma 5;
 - (b) Série divergente;
 - (c) Série convergente com soma $\frac{7}{2}$;
 - (d) Série convergente com soma $-\frac{21}{8}$;
 - (e) Série divergente;
 - (f) Série convergente com soma $\sum_{i=1}^{10} (1 + e^{-n}) + 3^{1-10^6}$;
 - (g) Série divergente;
 - (h) Série divergente;
 - (i) Série divergente.

16. (a)
$$0, \overline{2} = \frac{2}{9};$$

(b)
$$3, \overline{471} = 3 + \frac{371}{999};$$
 (c) $1, \overline{12} = 1 + \frac{12}{99}.$

(c)
$$1, \overline{12} = 1 + \frac{12}{99}$$
.

17.

- 18. Serão emitidas 20000 unidades Roetgen.
- 19.
- 20.

21.	(a) Série convergente;	(b) Série convergente;	(c) Série convergente.
22.	(a) Série convergente;(b) Série convergente;	(d) Série divergente;(e) Série divergente;	(g) Série convergente;
	(c) Série convergente;	(f) Série convergente;	(h) Série convergente.
23.	(a) Série convergente;	(e) Série convergente;	(i) Série convergente;
	(b) Série convergente;	(f) Série convergente;	(j) Série convergente.

(c) Série convergente;
(d) Série convergente;
(e) Inconclusivo;
(f) Série convergente;

24. A série diverge.

27. (a)
$$u_2 = \frac{3}{4}$$
, $u_3 = \frac{15}{36} = \frac{5}{12}$, $u_4 = \frac{35}{192}$.

- (b) A afirmação é verdadeira. A sucessão é monótona decrescente.
- (c) A série é convergente.
- 28. Basta mostrar que a série $\sum_{n=1}^{\infty} e^{-n^2}$ é convergente (usar o Critério da Raiz).

29.

- 30. (a) Série convergente;
 - (b) O limite é igual a 0, pela condição necessária de convergência.
- 31. (a) Série convergente.

(b)
$$\lim_{n \to +\infty} \frac{\cos(n+1)}{n} \frac{1}{5^n \sqrt[5]{n+2}} = 0.$$

32. (a) $\frac{1}{13!}$; (b) $6^{-\frac{3}{4}}$; (c) $\frac{3}{32}$; (d) $\frac{1}{16}$.

33. (a) k = 200; (b) k = 3; (c) k = 1.

3.3 Séries de Potências

- 33. Chamo conjunto de convergência ao conjunto dos pontos onde a série converge.
 - (a) Raio de convergência: 1, Intervalo de convergência:] 1, 1[, Conjunto de convergência: [-1, 1[;

- (b) Raio de convergência: $\frac{1}{3}$, Intervalo de convergência: $]-\frac{1}{3},\frac{1}{3}[$, Conjunto de convergência: $]-\frac{1}{3},\frac{1}{3}[$;
- (c) Raio de convergência: infinito, Intervalo de convergência: \mathbb{R} , Conjunto de convergência: \mathbb{R} ;
- (d) Raio de convergência: 1, Intervalo de convergência:]-1,1[, Conjunto de convergência: [-1,1];
- (e) Raio de convergência: $\frac{1}{5}$, Intervalo de convergência: $]-\frac{1}{5},\frac{1}{5}[$, Conjunto de convergência: $[-\frac{1}{5},\frac{1}{5}];$
- (f) Raio de convergência: 1, Intervalo de convergência:]-1,1[, Conjunto de convergência: [-1,1[;
- (g) Raio de convergência: $\frac{1}{2}$, Intervalo de convergência: $]-\frac{1}{2},\frac{1}{2}[$, Conjunto de convergência: $]-\frac{1}{2},\frac{1}{2}[$;
- (h) Raio de convergência: 1, Intervalo de convergência: 2, 4[, Conjunto de convergência: 2, 4[,
- (i) Raio de convergência: infinito, Intervalo de convergência: \mathbb{R} , Conjunto de convergência: \mathbb{R} ;
- (j) Raio de convergência: 0, Conjunto de convergência: {0};
- (k) Raio de convergência: 2, Intervalo de convergência:]1,5[, Conjunto de convergência:]1,5[,
- (l) Raio de convergência: 3, Intervalo de convergência:] -3,3[, Conjunto de convergência:]-3,3[;
- (m) Raio de convergência: 1, Intervalo de convergência:] -1,1[, Conjunto de convergência:] -1,1[;
- (n) Raio de convergência: $\frac{4}{3}$, Intervalo de convergência: $]-\frac{19}{3},-\frac{11}{3}[$, Conjunto de convergência: $]-\frac{19}{3},-\frac{11}{3}[$;
- (o) Raio de convergência: 8, Intervalo de convergência: $]-\frac{13}{2},\frac{19}{2}[$, Conjunto de convergência: $]-\frac{13}{2},\frac{19}{2}[$.
- 34. Raio de convergência: $\sqrt{2}$.
- 35. Intervalo de convergência:]a b, a + b[.
- 36.
- 37. (a) Erro menor que $\frac{1}{6000}$; (b) Erro menor que 0,0002; (c) Erro menor que $\frac{1}{729}$.
- 38. (a) $\sum_{n=0}^{\infty} (x-1)^n$, Raio de convergência: 1; (c) $\sum_{n=1}^{\infty} \frac{2x^{2n-1}}{2n-1}$, Raio de convergência: 1.
 - (b) $\sum_{n=0}^{\infty} \frac{(x+1)^n}{en!}$, Raio de converg.: infinito;

39. (a)
$$\sum_{n=0}^{\infty} x^n$$
, Raio de convergência: 1;

(b)
$$\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$
, Raio de converg.: infinito;

(c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n (\ln 3)^n x^n}{n!}$$
, Raio de converg.: infinito;

(d)
$$\sum_{n=1}^{\infty} -\frac{x^n}{n}$$
, Raio de convergência: 1;

(e)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$
, Raio de converg.: infinito;

(f)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$$
, Raio de convergência: 1.

40. (a)
$$-\ln(1-x), x \in]-1,1[;$$
 (c) $-\arctan x, x \in]-1,1[.$

(b)
$$\ln \sqrt{\frac{1+x}{1-x}}, x \in]-1,1[;$$

41. (a)
$$\frac{1}{(1-x)^2}$$
, $x \in]-1,1[$; (b) $\frac{2}{(1-x)^3}$, $x \in]-1,1[$.

42. (a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} 3^n x^n}{n}$$
, $x \in]-1,1[ef^{(k)}(0) = (-1)^{k-1} (k-1)! 3^k, com k \ge 1.$

(b)
$$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$
, $x \in \mathbb{R} \text{ e } f^{(2k+1)}(0) = 1$, $f^{(2k)}(0) = 0$.

43.

44. (a)
$$e^x - 1 + \frac{e^x}{1 - e^x}$$
, $x \in]-\infty, 0[;$ (c) $\sin(x+1)$, $x \in \mathbb{R}$;

(b)
$$e^{(\sin x)^2}$$
, $x \in \mathbb{R}$; (d) $\arctan(x+1)$, $x \in]-2,0[$.

45. A soma da série é
$$\arctan \frac{1}{\sqrt{3}} = \frac{\pi}{6}$$
.

46. Um valor aproximado de
$$\int_0^1 \cos(x^2) dx$$
: $\frac{9}{10}$, uma estimativa para o erro da aproximação: $\frac{1}{216}$.

47. (a)
$$\frac{1}{3} - \frac{1}{42} + \frac{1}{1320}$$
; (b) $1 - \frac{1}{18}$; (c) $\sum_{n=0}^{8} \frac{(-1)^n}{n!(3n+1)}$.

3.4 Séries de Fourier

48.
$$a_0 = 1, a_n = 1, b_n = \begin{cases} 0, & \text{se } n \text{ \'e par} \\ \frac{2}{\pi n}, & \text{se } n \text{ \'e impar} \end{cases}$$

$$f(x) \sim \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{(2n-1)\pi} \sin((2n-1)x).$$

49. Se $s:\mathbb{R}\to\mathbb{R}$ é a soma da série de Fourier, então s é periódica de período 2π e

$$s(x) = \begin{cases} f(x) & \text{se } -\pi < x < \pi, x \neq 0 \\ \frac{1}{2} & \text{se } x = -\pi, 0 \end{cases}$$

Assim, $s(\frac{\pi}{2}) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{(2n-1)\pi} \sin(\frac{\pi}{2}(2n-1))$, ou seja, $1 = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2(-1)^{n-1}}{(2n-1)\pi}$. Daí resulta a igualdade pretendida.

50. Em cada caso, seja $s: \mathbb{R} \to \mathbb{R}$ a soma da série de Fourier. Note-se que s é periódica de período 2π .

(1)
$$f(x) \sim \sum_{n=1}^{\infty} \frac{-4}{2n-1} \sin((2n-1)x) e s(x) = \begin{cases} f(x), & \text{se } -\pi < x < \pi, x \neq 0 \\ 0, & \text{se } x = -\pi, 0 \end{cases}$$
.

(2)
$$f(x) \sim \sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n} \sin(nx) e s(x) = \begin{cases} f(x), & \text{se } -\pi < x < \pi \\ 0, & \text{se } x = -\pi \end{cases}$$

(3)
$$f(x) \sim \frac{1}{2}\cos x + \sum_{n=1}^{\infty} \frac{4n}{\pi(4n^2 - 1)}\sin(2nx) \ e \ s(x) = \begin{cases} f(x), & \text{se } -\pi < x < \pi \\ \frac{1}{2}, & \text{se } x = 0 \\ -\frac{1}{2}, & \text{se } x = -\pi \end{cases}$$

(4)
$$f(x) \sim \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^n}{n^2} \cos(nx) e s(x) = f(x), -\pi \le x < \pi.$$

51. (a) $f(x) \sim \frac{1}{2} + \sum_{n=1}^{\infty} \frac{-4}{(2n-1)^2 \pi^2} \cos((2n-1)\pi x)$. A soma da série de Fourier é a função f.

(b) Temos
$$f(1) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{-4}{(2n-1)^2 \pi^2} \cos((2n-1)\pi)$$
, ou seja,

$$1 = \frac{1}{2} + \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}.$$

Daí resulta a igualdade pretendida.

52.

53. (a) Igual ao exercício 50 (2).

(b) Igual ao exercício 50 (2).

(c) Basta notar que, se $s : \mathbb{R} \to \mathbb{R}$ é a soma da série de Fourier, então $s(\frac{\pi}{2}) = 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(\frac{\pi}{2}n)$, ou seja,

$$\frac{\pi}{2} = 2\sum_{k=1}^{\infty} \frac{(-1)^{(2k-1)+1}}{2k-1} (-1)^{k-1} = 2\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2k-1}.$$

Daí resulta a igualdade pretendida.

- 54. (a)
 - (b) A série de Fourier de f é a série $\frac{\pi^2}{3} + \sum_{n=1}^{\infty} \left(\frac{4(-1)^n}{n^2} \cos(nx) + \frac{2\pi(-1)^n}{n} \sin(nx) \right).$
 - (c) A soma da série de Fourier é a função $g: \mathbb{R} \to \mathbb{R}$, periódica de período 2π , definida por

$$g(x) = \begin{cases} x^2 - \pi x, & \text{se } -\pi < x < \pi \\ \pi^2, & \text{se } x = -\pi \end{cases}$$

(d) Basta notar que $g(\pi) = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^n}{n^2} \cos(n\pi) + \frac{2\pi(-1)^n}{n} \sin(n\pi)$, ou seja,

$$\pi^2 - \frac{\pi^2}{3} = \sum_{n=1}^{\infty} \frac{4(-1)^n (-1)^n}{n^2}$$

donde
$$\frac{2\pi^2}{3} = \sum_{n=1}^{\infty} \frac{4}{n^2}$$
, ou ainda, $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

- 55. (a) A série de Fourier de $f \in \frac{\pi^2}{3} + \sum_{n=1}^{+\infty} \frac{4}{n^2} \cos(nx)$.
 - (b) A soma da série de Fourier é f(x).