Confidence intervals

Recap: Pivotal quantities

Example

Suppose $X_1,\ldots,X_n\stackrel{iid}{\sim}Uniform[0,\theta].$ We want to construct a $1-\alpha$ confidence set for θ using a pivot.

Example

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} Exponential(\theta)$, with density $f(x|\theta) = \theta e^{-\theta x}$.

Find a pivotal quantity $Q(X_1,\ldots,X_n, heta)$ and construct a 1-lphaconfidence interval for θ using the pivotal quantity.

Hints:

Begin with the maximum likelihood estimate of θ , which is $\hat{\theta} = \frac{n}{n}$

$$\hat{ heta} = rac{n}{\sum\limits_{i=1}^{n} X_i}$$

- If $X\sim Exponential(heta)$, then $cX\sim Exponential\left(rac{ heta}{c}
 ight)$ $Exponential\left(rac{1}{2}
 ight)=\chi_2^2$

Wald CI

Let $X_1,\ldots,X_n \overset{iid}{\sim} Exponential(heta)$, with density $f(x| heta) = heta e^{- heta x}$.

Delta method

Suppose $\hat{ heta}$ is an estimate of $heta \in \mathbb{R}$, such that

$$\sqrt{n}(\hat{ heta}- heta)\stackrel{d}{
ightarrow} N(0,\sigma^2)$$

for some σ^2 , and g is a continuously differentiable function with $g'(\theta) \neq 0$. Then

$$\sqrt{n}(g(\hat{\theta}-g(\theta))\overset{d}{
ightarrow}N(0,\sigma^2[g'(\theta)]^2)$$

Proof sketch:

- lacktriangle First-order Taylor expansion of $g(\hat{ heta})$ around heta
- Slutsky's theorem

Variance stabilizing transformations