Év	aluation : une inte	rface de puissa	nce, le trans	istor
Nom :		Prénom :		Classe
Note	Observations :			

Cours

1. Je décris le principe de fonctionnement d'un transistor bipolaire. (1 point) Un courant dans la base du transistor permet le passage d'un courant plus fort de Collecteur à l'Émetteur.

Dans les montages simples, le transistor fonctionne comme un interrupteur.

2. J'écris les deux types de transistors bipolaires. (1 point)

NPN et PNP_____

3. J'écris en quoi les deux types de transistors bipolaires diffèrent. (1 point) Dans les transistors NPN, la base et le collecteur sont reliés au positif et dans les PNP, la base et le collecteur sont reliés au négatif.

C'est donc la polarité de la base et du collecteur qui varie entre les deux types de transistors.

4. Après avoir calculé I_c dans les montages, je choisis un transistor adapté aux montages dans la liste page suivante. (2 points)

A noter : nous considérons que la tension V_{CE} est négligeable dans ce calcul.

Évaluation : une interface de puissance, le transistor

Liste de transistors

Référence	Polarité	V _{CE(sat)} (V)	I _c (A)	V _{CE0} (V)	H _{FE}
12A02CH	PNP	0,24	1	12	300/700
NSS12201L	NPN	0,05	2	12	200
15C01SS	NPN	0,3	0,6	15	300/800
СРН3114	PNP	0,18	1,5	15	200/560

Exercices

- 1. J'identifie la Base, le Collecteur et l'Émetteur sur le transistor. (1,5 point)
- 2. Je place les valeurs suivantes sur le schéma : I_B (intensité dans la base), I_C (intensité dans le collecteur), V_{CE} , V_{BE} , V_{OH} (tension de la carte Arduino), V_{BAT1} , V_{Moteur} . (3,5 point)

3. Je prends connaissance des caractéristiques du transistor ZTX300.

Référence	Polarité	V _{CE(sat)} (V)	I _c (mA)	V _{CE0} (V)	H _{FE}
2N3393	NPN	0,37	500	25	90/180

Évaluation : une interface de puissance, le transistor

- 4. Je prends connaissance des caractéristiques du moteur : 12V, 4W.
- 5. J'en déduis l_c. (1 point)

```
P=UI \\ I_c=P/U \ d'où \ I_c=4/(12\text{-}0,37)=0,344 \ A Compte tenu qu'il est possible de négliger V_{CE}, le calcul est alors : I_c=P/U \ d'où \ I_c=4/12=0,333 \ A
```

6. Je calcule la résistance théorique R5. (Si possible je tiens compte de la tension V_{BE} qui est de 0,65V). (2 points)

```
U = RI donc R = U/I d'où R5 = (V_{OH}^-V_{BE})/I_B

Je calcule I_B:
I_C = I_B \times H_{FE} \text{ d'où } I_B = I_C/H_{FE} = 0.343 / 90 = 3.8 \text{ mA}
Je calcule R:
R5 = (5 - 0.65)/3.8 \cdot 10^{-3} = 1 \cdot 138 \cdot \Omega
```

7. Je justifie le choix du transistor. (1 point)

La tension maximale du transistor est supérieure à la tension du générateur. Et l'intensité du circuit (344 mA) est inférieure à l'intensité supportée par le transistor (500 mA).

8. Je Justifie le choix d'une résistance standardisée de 470 Ohm. (1 point) Pour être sûr de saturer le transistor, on choisit une résistance deux à trois plus faible que le calcul théorique. 470 est bien compris entre 569 Ω (1138/2) et 379 Ω (1138/3). Cette résistance est donc adaptée au circuit.

	Évaluation	: loi de bases de l'él	ectricité
Nom :		Prénom :	Classe
Note	Observations:		
-	la loi d'Ohm		
$U = RI_{}$			
	la loi des mai		
∑U = 0)		
	la loi des nœ		
$\sum I_{\text{entrante}}$	$_{\rm es} = \sum_{\rm I_{sortantes}}$		
J'écris	la formule de	la puissance	
P = UI_			
		gain dans un trar	
$I_{c} = I_{p}$	× H _{εε}		