Lecture 9: Nested Quantifiers

Learning Objectives

- interpret nested Quantifiers
- negating nested statements

Nested Quantifiers

- Q: What is the difference between
- (i) $\forall s \in \mathbb{R} \exists t \in \mathbb{R} \text{ such that } t > s$
- This is true because we can always pick a number like t = s + 1 that is greater than s.
- (ii) $\exists t \in \mathbb{R}$ such that $\forall s \in \mathbb{R}$ such that t > s
 - This is false because we cannot pick a number t that is greater than all real numbers s.

Answer: (i) is true and (ii) is false

Example:

 $\forall x \in \mathbb{R} \forall x \in X, \exists y \in Y \text{ such that } \not\equiv \exists y \in Y \text{ such that } \forall x \in X, P(x, y)$

 $\forall x \in \mathbb{R} \forall x \in X, \forall y \in Y \text{ such that } \equiv \forall y \in Y \text{ such that } \forall x \in X, P(x, y)$

Example 2:

Taking the problem and breaking it into shorter single quantified statements

 $\forall x \in X[\exists y in Y \text{ such that } [\forall z \in Z \text{ such that } P(x, y, z)]]$

- Break into smaller statements
- (i) $\forall x \in X$
- (ii) $\exists y \in Y$
- (iii) $\forall z \in Z$

Example 3: Epsilon Delta Definition of a Limit

 $\forall \epsilon>0 \exists \delta>0 \text{ s.t } \forall x \in \mathbb{R} \text{ s.t } 0<|x-c|<\delta \text{ we have } |f(x)-L|<\epsilon$

- (i) Pick an arbitrary $\epsilon > 0$
- (ii) Pick a $\delta > 0$ that depends on ϵ
- (iii) Pick an arbitrary $x \in \mathbb{R}$ that satisfies $0 < |x-c| < \delta$
- (iv) Check that $|f(x) L| < \epsilon$ is true or not

Epsilon-Delta Proof

Let f(x) be a function defined on \mathbb{R} and L be the limit of f(x) as x approaches c. We want to prove that:

 $\forall \epsilon > 0, \exists \delta > 0 \text{ such that } \forall x \in \mathbb{R}, 0 < |x - c| < \delta \implies |f(x) - L| < \epsilon$

