| Project Name | A Novel Method For Handwritten Recognition System |
|--------------|---------------------------------------------------|
| Name         | VINATH.M                                          |
| Roll no      | 963519104047                                      |
| Team ID      | PNT2022TMID52260                                  |

## Importing Package

from google.colab import drive
drive.mount('/content/drive')

import pandas as pd import seaborn as snsimport numpy as np from matplotlib import pyplot as ply %matplotlib inline

## 1.Loading dataset

df =pd.read\_csv("/content/Churn\_Modelling.csv")

df

|   | Row number              | Customer id | Surname   | Credit score | Geography | Gender | Age |
|---|-------------------------|-------------|-----------|--------------|-----------|--------|-----|
| 0 | 1                       | 0.275616    | Hargrave  | 619          | France    | Female | 42  |
| 1 | 2                       | 0.326454    | Hill      | 608          | Spain     | Female | 41  |
| 2 | 3                       | 0.214421    | Onio      | 502          | France    | Female | 42  |
| 3 | 4                       | 0.542636    | Boni      | 699          | France    | Female | 39  |
| 4 | 5                       | 0.688778    | Mitchell  | 8 <i>50</i>  | Spain     | Female | 43  |
|   |                         |             |           |              |           | •••    |     |
|   | <b>9995</b><br>999<br>6 | 0.162119    | Obijiaku  | 771          | France    | Male   | 39  |
|   | <b>9996</b><br>999<br>7 | 0.016765    | Johnstone | 516          | France    | Male   | 35  |
|   | 9997                    | 0.075327    | Liu       | 709          | France    | Female | 36  |

10000 rows × 14 columns

## Visualization

a) Univariate analysis

### sns.displot (df.Gender)



# df.plot.line()

# <matplotlib.axes.\_subplots.AxesSubplot at 0x7fa21262e890>



### c) Multi Variate

sns.lmplot("Tenure","NumOfProducts",df,hue="NumOfProducts", fit\_reg=False);

 $/usr/local/lib/python 3.7/dist-packages/seaborn/\_decorators.py: 43: Future Warning Future Warning$ 

4.0

## Perform descriptive statistics on the dataset

#### df.describe()

| R     | ow number              | Customer id               | Credit score | Age        | Tenure     | Balance                  |
|-------|------------------------|---------------------------|--------------|------------|------------|--------------------------|
| count | 10000.00               | 10000.0000                | 10000.0000   | 10000.0000 | 10000.0000 | 10000.0000               |
|       | 000                    | 00                        | 00           | 00         | 00         | 0                        |
| mean  | 5000.500<br>00         | 0.500980                  | 650.528800   | 36.533900  | 5.012800   | 7648 <i>5</i> .8892<br>8 |
| std   | 2886.89 <i>5</i><br>68 | <i>0</i> .2877 <i>5</i> 7 | 96.653299    | 6.473843   | 2.892174   | 62397.4052<br>0          |
| min   | 1.00000                | 0.000000                  | 350.000000   | 20.000000  | 0.000000   | 0.00000                  |
| 25%   | 2500.750<br>00         | 0.251320                  | 584.000000   | 32.000000  | 3.000000   | 0.00000                  |
| 50%   | 5000.500<br>00         | 0.500170                  | 652.000000   | 37.000000  | 5.000000   | 97198.5400<br>0          |
| 75%   | 7500.250               | 0.750164                  | 718.000000   | 40.000000  | 7.000000   | 127644.240               |
|       | 00                     |                           |              |            |            | 00                       |
| max   | 10000.00               | 1.000000                  | 850.000000   | 50.000000  | 10.000000  | 250898.090<br>00         |

## Handle the missing values

```
data = pd.read_csv("/content/Churn_Modelling.csv")
pd.isnull(data["Gender"])
```

0 False
1 False
2 False
3 False
4 False

sns.boxplot(df['Age'])

/usr/local/lib/python3.7/dist-packages/seaborn/\_decorators.py:43: FutureWarning FutureWarning

9995 False 9996 False 9997 False 9998 False 9999 False

Name: Gender, Length: 10000, dtype: bool

## Find the outliers and replace the outliers

#### sns.boxplot(df['Age'])

/usr/local/lib/python3.7/dist-packages/seaborn/\_decorators.py:43: FutureWarning FutureWarning

<matplotlib.axes.\_subplots.AxesSubplot at 0x7fa21390b290>



df['Age']=np.where(df['Age']>50,40,df['Age']) df['Age']

Name: Age, Length: 10000, dtype: int64

#### sns.boxplot(df['Age'])

/usr/local/lib/python3.7/dist-packages/seaborn/\_decorators.py:43: FutureWarning FutureWarning

<matplotlib.axes.\_subplots.AxesSubplot at 0x7fa213879fd0>



9995 39 9996 35 9997 36 9998 42

28

9999

Name: Age, Length: 10000, dtype: int64

### Check for categorical Columns and perform encoding

pd.get\_dummies(df,columns=["Gender","Age"],prefix=["Age","Gender"]).head()

|   | Row numbe | r customer i | d surname | Credit score | Geography | Tenure | Balance          |  |
|---|-----------|--------------|-----------|--------------|-----------|--------|------------------|--|
| 0 | 1         | 0.275616     | Hargrave  | 619          | France    | 2      | 0.00             |  |
| 1 | 2         | 0.326454     | Hill      | 608          | Spain     | 1      | 838 <i>0</i> 7.8 |  |
| 2 | 3         | 0.214421     | Onio      | 502          | France    | 8      | 159660.<br>80    |  |
| 3 | 4         | 0.542636     | Boni      | 699          | France    | 1      | 0.00             |  |
| 4 | 5         | 0.688778     | Mitchell  | 8 <i>50</i>  | Spain     | 2      | 125510.          |  |

5 rows × 45 columns

### Split the data into dependent and independent Variables

#### a) Split the data into independent Variables

```
X = df.iloc[:, :-1].values
print(X)

[[1 0.2756161271095934 'Hargrave' ... 1 1 101348.88]
        [2 0.32645436399201344 'Hill' ... 0 1 112542.58]
        [3 0.21442143454311946 'Onio' ... 1 0 113931.57]
```

[9998 0.07532731440183227 'Liu' ... 0 1 42085.58] [9999 0.4666365320074064 'Sabbatini' ... 1 0 92888.52] [10000 0.25048302125293276 'Walker' ... 1 0 38190.78]] Y = df.iloc[:, -1].valuesprint (Y)

[1 0 1 ... 1 1 0]

## Scale the independent Variables

import pandas as pd
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df[["CustomerId"]]= scaler.fit\_transform(df[["CustomerId"]])
print(df)

|      | RowNumber | CustomerId | Surname     | CreditScore | Geography   | Gender | Age | ١ |
|------|-----------|------------|-------------|-------------|-------------|--------|-----|---|
| 0    | 1         | 0.275616   | Hargrave    | 619         | France      | Female | 42  |   |
| 1    | 2         | 0.326454   | Hill        | 608         | Spain       | Female | 41  |   |
| 2    | 3         | 0.214421   | Onio        | 502         | France      | Female | 42  |   |
| 3    | 4         | 0.542636   | Boni        | 699         | France      | Female | 39  |   |
| 4    | 5         | 0.688778   | Mitchell    | 850         | Spain       | Female | 43  |   |
|      |           |            |             |             |             |        |     |   |
| 9995 | 9996      | 0.162119   | Obijiaku    | 771         | France      | Male   | 39  |   |
| 9996 | 9997      | 0.016765   | Johnstone   | 516         | France      | Male   | 35  |   |
| 9997 | 9998      | 0.075327   | Liu         | 709         | France      | Female | 36  |   |
| 9998 | 9999      | 0.466637   | Sabbatini   | 772         | Germany     | Male   | 42  |   |
| 9999 | 10000     | 0.250483   | Walker      | 792         | France      | Female | 28  |   |
|      | Tenure    | Balance Nu | mOfProducts | HasCrCard I | sActiveMeml | ber \  |     |   |
| 0    | 2         | 0.00       | 1           | 1           |             | 1      |     |   |

|      | Tenure | Balance   | NumOfProducts | HasCrCard | IsActiveMember | ١ |
|------|--------|-----------|---------------|-----------|----------------|---|
| 0    | 2      | 0.00      | 1             | 1         | 1              |   |
| 1    | 1      | 83807.86  | 1             | 0         | 1              |   |
| 2    | 8      | 159660.80 | 3             | 1         | 0              |   |
| 3    | 1      | 0.00      | 2             | 0         | 0              |   |
| 4    | 2      | 125510.82 | 1             | 1         | 1              |   |
|      |        | •••       |               |           |                |   |
| 9995 | 5      | 0.00      | 2             | 1         | 0              |   |
| 9996 | 10     | 57369.61  | 1             | 1         | 1              |   |
| 9997 | 7      | 0.00      | 1             | 0         | 1              |   |
| 9998 | 3      | 75075.31  | 2             | 1         | 0              |   |
| 9999 | 4      | 130142.79 | 1             | 1         | 0              |   |

|      | EstimatedSalary | Exited |
|------|-----------------|--------|
| 0    | 101348.88       | 1      |
| 1    | 112542.58       | 0      |
| 2    | 113931.57       | 1      |
| 3    | 93826.63        | 0      |
| 4    | 79084.10        | 0      |
| •••  |                 |        |
| 9995 | 96270.64        | 0      |
| 9996 | 101699.77       | 0      |
| 9997 | 42085.58        | 1      |
| 9998 | 92888.52        | 1      |
| 9999 | 38190.78        | 0      |

[10000 rows x 14 columns]

## Split the data into training and testing

```
from sklearn.model_selection import train_test_splittrain_size=0.8

X = df.drop(columns = ['Tenure']).copy()y

= df['Tenure']

X_train, X_rem, y_train, y_rem = train_test_split(X,y, train_size=0.8)test_size=0.5

X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem,test_size=0.5)print(X_train.shape),
print(y_train.shape)
print(X_valid.shape), print(y_valid.shape)
print(X_test.shape), print(y_test.shape)

(8000, 13)
(8000,)
(1000, 13)
(1000,)
(1000, 13)
(1000,)
(None, None)
```