

Please write clearly ir	ı block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	
	I declare this is my own work.

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS

(9665/FM05) Unit FM2 Mechanics

Monday 19 June 2023

07:00 GMT

Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the Oxford International AQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- The **final** answer to questions requiring the use of calculators should be given to two significant figures, unless stated otherwise.
- Unless stated otherwise, the acceleration due to gravity, g, should be taken as 9.8 m s⁻²

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

FM05

	Answer all questions in the spaces provided.
	A particle of mass 0.7 kg moves with simple harmonic motion on a straight line between the two points A and B
	The distance between A and B is 0.4 metres.
	The maximum speed of the particle during the motion is 10 m s ⁻¹
	Find the period of the motion, giving your answer in terms of π [2 marks]
	Answer
)	Find the speed of the particle when it is 0.15 metres from <i>A</i> [3 marks]
	Answer
)	Find the range of values of the resultant force acting on the particle during the motion. [3 marks]

_		Two particles A and B are moving on a smooth nonzontal surface and conide.
		The mass of A is 2 kg and before the collision it has velocity $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$ m s ⁻¹
		The mass of B is 3 kg and before the collision it has velocity $\begin{bmatrix} 1 \\ -3 \end{bmatrix}$ m s ⁻¹
		The impulse on A during the collision is $\begin{bmatrix} -3.6 \\ -6 \end{bmatrix}$ N s
2	(a)	Find the velocity of A after the collision. [3 marks]
		Answer
2	(b)	State the impulse on <i>B</i> during the collision. [1 mark]
		Answer
2	(c)	Show that A and B have the same velocity after the collision. [3 marks]

3		An elastic string has natural length 2.5 metres and modulus of elasticity 14 newtons.
		A sphere of mass 0.5 kg is attached to one end of the string.
		The other end of the string is attached to a fixed point O
3	(a)	Find the length of the string when the sphere hangs in equilibrium below O [3 marks]
		Answer
3	(b)	The sphere is projected vertically $\mathbf{upwards}$ from its equilibrium position with a speed of $1.2~\mathrm{m~s^{-1}}$
3	3 (b) (i) Use an energy method to find the height of the sphere above the equilibrium when it first comes to rest.	
		[5 marks]
		Answer

3	(b) (ii)	At time t seconds after the sphere has been set in motion, its displacement above the equilibrium position is x metres.
		Show that the sphere moves with simple harmonic motion. [4 marks]
3	(b) (iii)	Hence find x in terms of t
		[2 marks]
		Answer
3	(b) (iv)	Find the time when the sphere is 0.2 metres below its equilibrium position for the first time.
		[3 marks]
		Answer

17

4		A particle moves in a straight line on a smooth horizontal surface.
		The displacement of the particle from its initial position is x metres.
		A horizontal force F newtons $$ acts on the particle where
		$F = 3 - x^2$
		and no other horizontal forces act on the particle.
		The particle is initially at rest.
4	(a)	Show that the work done by the force as the particle moves from its initial position to the point where $x=a$ is given by
		$3a-\frac{a^3}{3}$
		3 [2 marks]
		• •
4	(b)	A student claims that the particle will come to rest for an instant at the point where $x=3$
		Explain why the student is correct.
		[3 marks]

4	(c)	The student claims that the particle will also come to rest at the point where $x = -3$
4	(c) (i)	With reference to the work done by the force, explain why the student thinks that this is the case. [1 mark]
4	(c) (ii)	Explain why the student is incorrect. [2 marks]
4	(d)	State the range of values of x during the motion. [1 mark]
		Answer

5	A smooth sphere A is moving on a horizontal surface when it collides with a stationary smooth sphere B
	The spheres have equal radii.
	Sphere A has mass 4 kg and sphere B has mass 5 kg
	When the two spheres collide, A is moving at 4 m s ⁻¹ at an angle of 60° to the line of centres, as shown in the diagram below.
	Line of centres 4 m s ⁻¹
	After the collision the velocity of A is perpendicular to the line of centres.
	The coefficient of restitution between the two spheres is $\ e$
5 (a)	Find the speed of B after the collision. [2 marks]
	Answer

5	(b)	Find the value of $\ e$	[2 marks]
		Answer	
5	(c)	Find the speed of A after the collision, giving your answer in exact form.	[1 mark]
		Answer	
		Turn over for the next question	

5	A sphere of mass m kg is released from rest in a fluid and allowed to fall vertically.
	At time t seconds the speed of the sphere is $v \text{ m s}^{-1}$
	A resistance force of magnitude kv newtons, where k is a constant, acts on the sphere as it falls.
	At time t seconds the displacement of the particle from its initial position is x metres.
	Show that
	$x = \frac{mg}{k} \left(t + \frac{m}{k} e^{\frac{-kt}{m}} - \frac{m}{k} \right)$ [7 marks]

-
-

7 A disc is sliding on a smooth horizontal surface.

There are two smooth fixed vertical walls A and B on the surface.

The obtuse angle between the walls A and B is 105°

When the disc collides with Wall A it has velocity $u \text{ m s}^{-1}$ at an angle of 60° to Wall A

When the disc leaves Wall A it has velocity $v \text{ m s}^{-1}$ at an angle of α degrees to Wall A

When the disc collides with Wall B it has velocity $\,v\,$ m s⁻¹ at an angle of $\,\beta\,$ degrees to Wall B

When the disc leaves Wall B it has velocity $w \, \text{m s}^{-1}$ at an angle of 15° to Wall B

The walls and velocities are shown in the diagram below.

The coefficient of restitution between the disc and both walls is e

7 (a)	Show tha	at
-------	----------	----

$$v^2 = \frac{u^2}{4} \Big(1 + 3e^2 \Big)$$

[4 marks]

7	(b)	In this question you may use the following	
		$\tan(\alpha+\beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta}$	
		$\tan 75^{\circ} = 2 + \sqrt{3}$ and $\tan 15^{\circ} = 2 - \sqrt{3}$	
		Find the two possible values of $\it e$ [8 mar	ks]
		Question 7 continues on the next page	

Turn over for next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Turn over ▶

8 A plane is inclined at an angle of 30° to the horizontal.

A smooth hemisphere of radius 2 metres and centre O is fixed to the plane.

The point *A* is located on the hemisphere so that it is 2 metres from the plane.

A particle is released from rest at the point A and moves on the hemisphere.

The particle leaves the hemisphere at the point B and hits the plane at the point C

The acute angle between *OB* and the **vertical** is θ degrees.

The hemisphere and the plane are shown in the diagram below.

(a)	Show that $\theta = 54.7^{\circ}$ correct to one decimal place.	[6 mark

8	(b)	Show that the speed of the particle when it leaves the hemisphere is $3.4~{\rm m~s^{-1}}$ to two significant figures.	correct [1 mark]
8	(c)	Find the shortest distance between the hemisphere and <i>C</i>	[7 marks]
		Answer	

END OF QUESTIONS

14

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

