

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY		9701/23
CENTRE NUMBER	CANDIDATE NUMBER	
CANDIDATE NAME		

Paper 2 Structured Questions AS Core

9701/25 May/June 2015

1 hour 15 minutes

Candidates answer on the Question Paper.

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A Data Booklet is provided.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

Answer **all** the questions in the spaces provided.

1

1s²				
(i) Explain	n what is mean	t by the term first io	nisation energy.	
(ii) Explain	why the first in		neon is greater than that of fluoring	
(II) Explain	i wily the mach	ornsation energy or	ricor is greater than that of huorii	ic.
Neon has t	hree stable iso	topes.		
	isotope	mass number	percentage abundance	
	1		9.25	
	2	20	90.48	
	3	21	0.27	
(i) Define	the term relativ	ve atomic mass.		
(ii) Use th	e relative atom	ic mass of neon, 20	0.2, to calculate the mass number	of isotop
				•

at a temperature of 25 °C and a pressure of 100 kPa. Under these conditions the mixture found to occupy a volume of 200 cm ³ .			
	(i)	Calculate the average $M_{\rm r}$ of the mixture.	
		average $M_{r} =$ [2]	
	(ii)	Use your answer to (i) to calculate the percentage of neon in the mixture. Give your answer to three significant figures.	
		percentage of neon = % [1]	
(e)		on and argon can both be obtained by fractional distillation of liquid air as they have different ing points.	
	Nec	on has a boiling point of 27.3 K. The boiling point of argon is 87.4 K.	
	(i)	Name the force that has to be overcome in order to boil neon or argon and explain what causes it.	
		[3]	
	(ii)	Explain why argon has a higher boiling point than neon.	
		[2]	
		[Total: 18]	

The elements in Group II, and their compounds, show a variety of trends in their properties.				
(a) Magnesium, calcium and barium all react with cold water to form hydroxides.				
	(i)	Describe and explain the trend in reactivity of these three elements with cold water.		
		[3]		
	(ii)	Give the equation for the reaction of magnesium with cold water.		
		[1]		
((iii)	Suggest why the water eventually turns cloudy during the reaction of magnesium with cold water.		
		[1]		
((iv)	Suggest the equation for the reaction of hot magnesium with steam.		
		[1]		
(1-)	T l			
(D)		e oxides of magnesium, calcium and barium all react with dilute nitric acid to form nitrates.		
	(i)	Give the equation for the reaction of magnesium oxide with nitric acid.		
		[1]		
	(ii)	State the trend in thermal stability of the nitrates of Group II.		
		[1]		
((iii)	Give the equation for the thermal decomposition of magnesium nitrate.		
		[1]		

	(iv)	Apart from lithium nitrate, the nitrates of the Group I elements decompose in a different way to those of the Group II elements.
		The equation for the thermal decomposition of potassium nitrate is
		$2KNO_3 \rightarrow 2KNO_2 + O_2$
		By identifying any changes in oxidation number, explain which element is reduced and which is oxidised in this decomposition.
		[3]
(c)		efractory material is one that does not decompose or melt at very high temperatures. Over 6 of magnesium oxide production is for use as a refractory material.
	Exp	plain why magnesium oxide has a very high melting point.
		[2]
(d)		e word 'lime' is usually used to refer to a range of calcium-containing compounds that have ange of uses.
	(i)	Write equations to show how calcium carbonate can be converted into calcium hydroxide by a two-step process.
		[2]
	its p	arden pond, with a total volume of 8000dm^3 , has been contaminated in such a way that bH has fallen to 4. This means that the concentration of hydrogen ions, H ⁺ , in the water is $10^{-4}\text{mol}\text{dm}^{-3}$.
	(ii)	Write an ionic equation for the neutralisation reaction that occurs between hydrogen ions and carbonate ions, ${\rm CO_3}^{2-}$.
		[1]
	(iii)	Use your equation to calculate the mass of powdered calcium carbonate that would need to be added to the pond to neutralise the acidity.
		mass = g [2]

© UCLES 2015 9701/23/M/J/15 **[Turn over**

[Total: 19]

- **3 A**, **B**, **C**, **D**, **E** and **F** are all structural isomers with the molecular formula C₄H₈O.
 - (a) A, B and C all give an orange precipitate when treated with 2,4-DNPH but only A and B give a brick-red precipitate when warmed with Fehling's solution.
 - (i) Draw the **skeletal** formulae of **A**, **B** and **C**.

	Α	В	С	
				[3]
(ii)	Name the type of st	ructural isomerism shown by A and	В.	
				[1]
(iii)	State what you wou	ld see when a sample of A is warme	ed with Tollens' reagent.	

(b)	D , E and F all decolourise bromine and effervesce slowly with sodium metal.						
	E shows geometrical isomerism. Only D has a branched chain.						
	None of these isomers contains an oxygen atom bonded to a carbon atom involved in π bonding.						
	Noi	ne of these isomers contains a chiral ce	entre.				
	(i)	Give the structures of D , E and F . stereoisomerism shown.	Show the two stereoisomers of E and lab	el the			
		D					
			_				
		E	E				
		F					
				[5]			
	(ii)	Identify the gas produced during the re	eaction of each of these isomers with sodium				
	()						
(c)	And	other compound, G , C ₃ H ₆ O, contains th	e same functional group as A .				
		h each of acidified potassium dichromate(V_{i} O) or [H] as appropriate.	I) and				
	(i) reaction with acidified potassium dichromate(VI)						
		C_3H_6O + \rightarrow		[1]			
	(ii)	reaction with NaBH ₄					
		C_3H_6O + \rightarrow		[1]			

[Total: 13]

4 The structure of **H** is shown.

$$CH_3$$
 CH_2OH
 $C=C$
 CH_3 CH_3

- (a) H reacts with both cold, dilute, acidified potassium manganate(VII) and with hot, concentrated, acidified potassium manganate(VII).
 - (i) Give the structure of the organic product of the reaction of **H** with cold, dilute, acidified potassium manganate(VII).

[1]

(ii) Give the structures of the organic products of the reaction of **H** with hot, concentrated, acidified potassium manganate(VII).

[2]

(b) (i) Complete the reaction scheme to show the mechanism of the reaction of **H** with bromine to form **J**.

Include all necessary curly arrows, lone pairs and charges.

[3]

(11)	Explain the origin of the dipole on the bromine molecule.	
J is	formed as an equimolar mixture of isomers.	
(iii)	State the type of isomerism shown by J .	
		[1]
(iv)	Draw the structures of the two isomers of J .	

[2]

[Total: 10]

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.