# RÓBNY EGZAMIN MATURALNY Z INFORMATYKI

### POZIOM ROZSZERZONY ARKUSZ I

#### Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 7 stron (zadania 1 3). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz obok zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: listy kroków, schematu blokowego lub języka programowania, który wybrałeś/aś na egzamin.
- 8. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

### STYCZEŃ 2013

| WYBRANE:           |  |  |  |  |  |
|--------------------|--|--|--|--|--|
| (środowisko)       |  |  |  |  |  |
| (kompilator)       |  |  |  |  |  |
| (program użytkowy) |  |  |  |  |  |

Czas pracy: 90 minut Liczba punktów do uzyskania: 20

#### PESEL









# Zadanie 1. Test (5 pkt)

W podpunktach a) – d) zaznacz znakiem X w odpowiedniej kolumnie Prawda lub Fałsz, która odpowiedź jest prawdziwa, a która fałszywa. Uwaga! W poszczególnych zadaniach może być więcej niż jedna odpowiedź prawdziwa i więcej niż jedna odpowiedź fałszywa.

a) Która z osób o polskich korzeniach nie wniosła znaczącego wkładu do światowej informatyki?

|                   | Prawda | Fałsz |
|-------------------|--------|-------|
| Jan Łukasiewicz   |        |       |
| Benoit Mandelbrot |        |       |
| Leopold Infeld    |        |       |
| Paul Baran        |        |       |

b) Dla danej liczby naturalnej n, który problem może być rozwiązany za pomocą około  $\log_2 n$  operacji?

|                                                        | Prawda | Fałsz |
|--------------------------------------------------------|--------|-------|
| uporządkować najszybciej n dowolnych liczb naturalnych |        |       |
| znaleźć binarną reprezentację liczby naturalnej n      |        |       |
| sprawdzić, czy liczba naturalna n jest liczbą pierwszą |        |       |
| obliczyć wartość wielomianu stopnia n                  |        |       |

c) Do kompresji informacji służy

|                 | Prawda | Fałsz |
|-----------------|--------|-------|
| Alfabet Morse'a |        |       |
| Steganografia   |        |       |
| Program RAR     |        |       |
| Algorytm RSA    |        |       |

d) Z utworem na licencji

|                                                               | Prawda | Fałsz |
|---------------------------------------------------------------|--------|-------|
| Rozpowszechniać go, jednak z zachowaniem informacji o autorze |        |       |
| Tworzyć nowe utwory przez wprowadzanie w nim zmian            |        |       |
| Korzystać z niego tylko w celach niekomercyjnych              |        |       |
| Sprzedawać go                                                 |        |       |









e) Zapisz w wybranym języku programowania instrukcje odpowiadające poniższemu fragmentowi schematu blokowego.  $W_1$  i  $W_2$  to warunki logiczne, a  $I_1$  i  $I_2$  to instrukcje.





## Punktacja:

|                         | Podpunkt:                  | a) | b) | c) | d) | e) | Razem |
|-------------------------|----------------------------|----|----|----|----|----|-------|
| Wypełnia<br>egzaminator | Maksymalna liczba punktów: | 1  | 1  | 1  | 1  | 1  | 5     |
|                         | Uzyskana liczba punktów:   |    |    |    |    |    |       |









## Zadanie 2. Liczba wzniesień w ciągu (8 pkt)

W ciągu liczb, **wzniesieniem** nazywamy element lub podciąg stojących obok siebie równych elementów, jeśli pierwszy element stojący na lewo od tego podciągu jest mniejszy i pierwszy element stojący na prawo od tego podciągu jest mniejszy od elementów tego podciągu.

Na przykład ciąg: 2, 1, 2, 3, 4, 1, 2, 2, 3, 2, 4, 4, 4, 1 zawiera 3 wzniesienia, oto one (zostały pogrubione):

- 3, 4, 1
- 2, 3, 2
- 2, 4, 4, 4, 1
- a) Dla ciągu: 1, 2, 2, 3, 4, 3, 3, 5, 3, 2, 1, 1, 2, 5, 5, 5, 6, 6, 6, 2, 6, 2, 3, 3, 1 wypisz poniżej wszystkie jego wzniesienia wraz z elementem mniejszym na lewo i na prawo.



b) W wybranej przez siebie notacji (w postaci schematu blokowego, listy kroków lub w języku programowania) zapisz algorytm dla następującej specyfikacji:

Dane: n - liczba naturalna,

n liczb naturalnych

Wynik: wypisz kolejne wzniesienia w ciągu danych, każde wraz z elementem mniejszym na

lewo i na prawo i każde w osobnym wierszu.













c) Określ w zależności od *n*, ile porównań między elementami ciągu danych wykonuje Twój program z podpunktu b).



# Punktacja:

|                         | Podpunkt:                  | a) | b) | c) | Razem |
|-------------------------|----------------------------|----|----|----|-------|
| Wypełnia<br>egzaminator | Maksymalna liczba punktów: | 1  | 5  | 2  | 8     |
|                         | Uzyskana liczba punktów:   |    |    |    |       |









#### Zadanie 3. Sieci i podsieci (7 pkt)

Protokół IP v 4 (IP w wersji czwartej) korzysta ze schematu adresowania, w którym przyjęto, że adres IP to liczba 32-bitowa. Adresy IP w praktyce występują w klasowym lub bezklasowym schemacie adresowania.

Maska sieciowa służy do wyodrębniania z danego adresu IP, adresu sieci. Maska sieciowa umożliwia jednocześnie określenie dopuszczalności występowania określenego adresu IP w danej sieci.

Przykładowo, operacja użycia adresu klasy B IP: 135.100.1.10 oraz klasowej maski szesnastobitowej 255.255.0.0 oznacza, że wynikowym (obliczonym przez urządzenie sieciowe) adresem sieci będzie adres: 135.100.0.0. W konsekwencji adres rozgłoszeniowy do tej sieci to: 135.100.255.255.

a) Na czym dokładniej polega wyżej opisana operacja? Co się dzieje z pakietem IP zawierającym inny adres sieci niż adres urządzenia, do którego dociera taki pakiet?



b) Jakie są możliwe konsekwencje użycia maski sieciowej wydłużonej o 3 bity w stosunku do poprzedniej maski dla danego IP 135.100.1.10, czyli maski 255.255.224.0?











c) Podaj przynajmniej cztery adresy IP związane z nowym schematem adresowania, określonym przez maskę 255.255.224.0. Każdy z podanych adresów powinien znajdować się w innych podsieciach niż pozostałe. Podaj również adresy tych podsieci.



d) Co to są adresy rozgłoszeniowe (ang. *broadcast*)? Podaj przykład takiego adresu rozgłoszeniowego dla IP 135.100.193.1 z maską sieciową 255.255.224.0.



# Punktacja:

|                         | Podpunkt:                  | a) | b) | c) | d) | Razem |
|-------------------------|----------------------------|----|----|----|----|-------|
| Wypełnia<br>egzaminator | Maksymalna liczba punktów: | 1  | 2  | 2  | 2  | 7     |
|                         | Uzyskana liczba punktów:   |    |    |    |    |       |







