Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion

Shi Qiu, Saeed Anwar, Nick Barnes

{shi.qiu, saeed.anwar, nick.barnes} @anu.edu.au

Motivation

Issues in SOTA methods:

- ambiguity in close points
- redundant features
- inadequate global representations

Network Overview

• Geometric Context: $\mathcal{P} \in \mathbb{R}^{N \times 3}$

• Semantic Context: $\mathcal{F} \in \mathbb{R}^{N \times C}$

DS: Down Sampling

FC: Fully Connected Layers

Bilateral Context Block

Bilateral Augmentation:

learning 3-DoF offsets from semantic features to enhance local geometric context:

$$\tilde{p_j} = \mathcal{M}(\mathcal{G}_{\psi}(f_i)) + p_j, \quad \tilde{p_j} \in \mathbb{R}^3.$$

$$\tilde{\mathcal{G}_{\psi}}(p_i) = [p_i; p_j - p_i; \tilde{p_j}];$$

learning d-DoF offsets from geometric features to enhance local semantic context:

$$\tilde{f}_j = \mathcal{M}(\tilde{\mathcal{G}_{\psi}}(p_i)) + f_j, \quad \tilde{f}_j \in \mathbb{R}^d;$$

$$\tilde{\mathcal{G}_{\psi}}(f_i) = [f_i; f_j - f_i; \tilde{f}_j]$$

Bilateral Context Block

Augmentation Loss:

For a point p_i and its k shifted neighbors p_i :

$$\mathcal{L}(p_i) = \left\| \frac{1}{k} \sum_{j=1}^k \tilde{p_j} - p_i \right\|_2. \qquad \mathcal{L}_m = \sum_{i=1}^{N_m} \mathcal{L}(p_i).$$

For the network:

$$\mathcal{L}_{all} = \mathcal{L}_{CE} + \sum_{m=1}^{M} \omega_m \cdot \mathcal{L}_m$$

Bilateral Context Block

Mixed Local Aggregation:

Augmented Local Context:

$$\mathcal{G}_i = \operatorname{concat}\left(\mathcal{M}\left(\tilde{\mathcal{G}_{\psi}}(p_i)\right), \mathcal{M}\left(\tilde{\mathcal{G}_{\psi}}(f_i)\right)\right) \in \mathbb{R}^{k \times d'}.$$

Output point feature:

$$s_i = \operatorname{concat}\left(\max_k(\mathcal{G}_i), \max_{k,\Theta_i}(\mathcal{G}_i)\right), \quad s_i \in \mathbb{R}^{2d'}$$

Adaptive Fusion

Algorithm 1: Adaptive Fusion Module Pipeline

input: M multi-resolution feature maps $\{S_1, S_2, ..., S_M\}$.

output: S_{out} for semantic segmentation.

- 1 for $\mathcal{S}_m \in \{\mathcal{S}_1, \mathcal{S}_2, ..., \mathcal{S}_M\}$ do
- upsample: $\tilde{\mathcal{S}_m} \leftarrow \mathcal{S}_m$;
- summarize: $\phi_m \leftarrow \tilde{\mathcal{S}_m}$;
- 4 end for
- 5 **obtain:** $\forall \tilde{\mathcal{S}_m} \in {\{\tilde{\mathcal{S}_1}, \tilde{\mathcal{S}_2}, ..., \tilde{\mathcal{S}_M}\}}, \tilde{\mathcal{S}_m} \in \mathbb{R}^{N \times c};$ and $\forall \phi_m \in {\{\phi_1, \phi_2, ..., \phi_M\}}, \phi_m \in \mathbb{R}^N.$
- 6 regress: $\{\Phi_1, \Phi_2, ..., \Phi_M\} \leftarrow \{\phi_1, \phi_2, ..., \phi_M\}$, where $\Phi_m \in \mathbb{R}^N$.
- 7 return:

$$S_{out} = \sum_{m=1}^{M} \Phi_m \times \tilde{S_m}.$$

Adaptive Fusion

S3DIS

Table 1: Semantic segmentation (6-fold cross-validation) results (%) on the S3DIS dataset [2]. (mAcc: average class accuracy, OA: overall accuracy, mIoU: mean Intersection-over-Union. "-" indicates unknown result.)

year	Method	mAcc	OA	mIoU
2017	PointNet [37]	66.2	78.6	47.6
2017	PointNet++ [38]	67.1	81.0	54.5
	A-SCN [50]	-	81.6	52.7
2018	PointCNN [30]	75.6	88.1	65.4
	SPG [26]	73.0	85.5	62.1
2019	DGCNN [46]	-	84.1	56.1
	KP-Conv [44]	79.1	-	70.6
	ShellNet [54]	-	87.1	66.8
	PointWeb [55]	76.2	87.3	66.7
	SSP+SPG [25]	78.3	87.9	68.4
	Seg-GCN [28]	77.1	87.8	68.5
2020	PointASNL [51]	79.0	88.8	68.7
	RandLA-Net [19]	82.0	88.0	70.0
	MPNet [17]	-	86.8	61.3
	InsSem-SP [32]	74.3	88.5	64.1
	Ours	83.1	88.9	72.2

Semantic3D and SemanticKITTI

Table 2: Semantic segmentation (semantic-8) results (%) on the *Semantic3D* dataset [14].

Method	OA	mIoU	man-made	natural	high	low	buildings	hard	scanning	cars	
			terrain	terrain	vegetation	vegetation	buildings	scape	artefacts		
TMLC-MS [15]	85.0	49.4	91.1	69.5	32.8	21.6	87.6	25.9	11.3	55.3	
EdgeConv-PN [9]	89.4	61.0	91.2	69.8	51.4	58.5	90.6	33.0	24.9	68.6	
PointNet++ [38]	85.7	63.1	81.9	78.1	64.3	51.7	75.9	36.4	43.7	72.6	
SnapNet [6]	91.0	67.4	89.6	79.5	74.8	56.1	90.9	36.5	34.3	77.2	
PointConv [48]	91.8	69.2	92.2	79.2	73.1	62.7	92.0	28.7	43.1	82.3	
PointGCR [36]	92.1	69.5	93.8	80.0	64.4	66.4	93.2	39.2	34.3	85.3	
PointConv-CE [31]	92.3	71.0	92.4	79.6	72.7	62.0	93.7	40.6	44.6	82.5	
RandLA-Net [19]	94.2	71.8	96.0	88.6	65.3	62.0	95.9	49.8	27.8	89.3	
SPG [26]	92.9	76.2	91.5	75.6	78.3	71.7	94.4	56.8	52.9	88.4	
Ours	94.9	75.4	97.9	95.0	70.6	63.1	94.2	41.6	50.2	90.3	

Table 3: Semantic segmentation (single-scan) results (%) on the SemanticKITTI dataset [4].

Method	mIoU	road	sidewalk	parking	other-ground	building	car	truck	bicycle	motorcycle	other-vehicle	vegetation	trunk	terrain	person	bicyclist	motorcyclist	fence	pole	traffic-sign
PointNet [37]	14.6	61.6	35.7	15.8	1.4	41.4	46.3	0.1	1.3	0.3	0.8	31.0	4.6	17.6	0.2	0.2	0.0	12.9	2.4	3.7
PointNet++ [38]	20.1	72.0	41.8	18.7	5.6	62.3	53.7	0.9	1.9	0.2	0.2	46.5	13.8	30.0	0.9	1.0	0.0	16.9	6.0	8.9
SquSegV2 [47]	39.7	88.6	67.6	45.8	17.7	73.7	81.8	13.4	18.5	17.9	14.0	71.8	35.8	60.2	20.1	25.1	3.9	41.1	20.2	36.3
TangentConv [43]	40.9	83.9	63.9	33.4	15.4	83.4	90.8	15.2	2.7	16.5	12.1	79.5	49.3	58.1	23.0	28.4	8.1	49.0	35.8	28.5
PointASNL [51]	46.8	87.4	74.3	24.3	1.8	83.1	87.9	39.0	0.0	25.1	29.2	84.1	52.2	70.6	34.2	57.6	0.0	43.9	57.8	36.9
RandLA-Net [19]	53.9	90.7	73.7	60.3	20.4	86.9	94.2	40.1	26.0	25.8	38.9	81.4	61.3	66.8	49.2	48.2	7.2	56.3	49.2	47.7
PolarNet [53]	54.3	90.8	74.4	61.7	21.7	90.0	93.8	22.9	40.3	30.1	28.5	84.0	65.5	67.8	43.2	40.2	5.6	67.8	51.8	57.5
MinkNet42 [8]	54.3	91.1	69.7	63.8	29.3	92.7	94.3	26.1	23.1	26.2	36.7	83.7	68.4	64.7	43.1	36.4	7.9	57.1	57.3	60.1
FusionNet [52]	61.3	91.8	77.1	68.8	30.8	92.5	95.3	41.8	47.5	37.7	34.5	84.5	69.8	68.5	59.5	56.8	11.9	69.4	60.4	66.5
Ours	59.9	90.9	74.4	62.2	23.6	89.8	95.4	48.7	31.8	35.5	46.7	82.7	63.4	67.9	49.5	55.7	53.0	60.8	53.7	52.0

Semantic3D and SemanticKITTI

Prediction

Input

Conclusions

- Augmenting the local context bilaterally.
- Fusing multi-resolution features for each point adaptively.
- Evaluating the network on various point cloud benchmarks.
- Expecting different frameworks and downstream tasks in the future.

Contact the authors

Visit the project page

