Unit 058 Eigenspaces

Slide 01: In this unit, we introduce the concept of eigenspaces of a matrix. The eigenspace of a matrix is closely related to eigenvalues and eigenvectors, both of which were discussed in earlier units.

Slide 02: Let A be a square matrix of order n and λ be an eigenvalue of A. (#)

Recall that the matrix $(\lambda I - A)$, whose determinant is the characteristic polynomial of A. Now, use this matrix as the coefficient matrix to form a homogeneous linear system as shown.

(#)

Before we proceed, note that since λ is an eigenvalue of \boldsymbol{A} , it would make the matrix $(\lambda \boldsymbol{I} - \boldsymbol{A})$ singular. This implies that the homogeneous linear system would have infinitely many solutions.

(#)

Consider the solution space of the homogeneous linear system $(\lambda \mathbf{I} - \mathbf{A})\mathbf{x} = \mathbf{0}$. This solution space is called the eigenspace of \mathbf{A} associated with the eigenvalue λ . We will denote this solution space as E_{λ} .

Slide 03: Let us look at the definition of the eigenspace of A again. Remember that it is the solution space of a homoegenous linear system whose coefficient matrix is $(\lambda I - A)$.

(#)

Thus, a non zero vector v belongs to E_{λ} if and only if v is a solution of the homogeneous linear system. In other words, $(\lambda I - A)v = 0$.

(#)

This is equivalent to $\lambda Iv - Av = 0$

(#)

which can be rearranged to give $Av = \lambda v$.

(#)

Thus, the eigenspace E_{λ} contains all the eigenvectors of \boldsymbol{A} that are associated with the eigenvalue λ .

(#)

Recall the definition of the nullspace of a matrix. It should be clear now that E_{λ} is also the nullspace of the matrix $(\lambda I - A)$.

Slide 04: Let us revisit some of the matrices we have seen in previous units. First the 2×2 matrix \boldsymbol{A} from the population movement example. We have found that \boldsymbol{A} has two eigenvalues 1 and 0.95. For $\lambda = 1$, let us investigate the eigenspace E_1 .

(#)

We need to evaluate the coefficient matrix 1I - A,

(#)

as shown

(#)

and then solve the homogeneous linear system by Gaussian elimination. The reduced row-echelon form of the augmented matrix is shown.

(#)

The first row of the matrix tells us that the two variables are related by the equation $x_1 - \frac{1}{4}x_2 = 0$.

(#)

Thus a vector \boldsymbol{x} belonging to the eigenspace E_1 is of the form $(\frac{t}{4}, t)$, where t is an arbitrary real number.

(#)

In conclusion, we know that E_1 is the linear span of the vector $(\frac{1}{4}, 1)$.

(#)

Note that this is a one dimensional subspace of \mathbb{R}^2 .

Slide 05: We move on to the second eigenvalue 0.95 and investigate the eigenspace $E_{0.95}$.

(#)

First computing the coefficient matrix $(0.95\mathbf{I} - \mathbf{A})$

(#)

we have the following

(#)

and then we solve the homogeneous linear system as we did previously, we obtain the reduced row-echelon form as shown.

(#)

The first row of the matrix tells us that the two variables are related by the equation $x_1 + x_2 = 0$.

(#)

Thus a vector \boldsymbol{x} that belongs to the eigenspace $E_{0.95}$ is of the form (-t,t), where t is an arbitrary real number.

(#)

In conclusion, we know that $E_{0.95}$ is the linear span of the vector (-1,1).

(#)

Note that this eigenspace is also a one dimensional subspace of \mathbb{R}^2 .

Slide 06: Next we consider the 3×3 matrix \boldsymbol{B} which we have also found to have 2 eigenvalues, namely 3 and 0. We start by investigating the eigenspace E_3 .

(#)

The coefficient matrix is 3I - B

(#)

and when we solve the homogeneous linear system, we arrive at the following reduced row-echelon form. Notice that it has two non zero rows and one non pivot column on the left hand side.

(#)

You should be able to write down a general solution very quickly. A vector \boldsymbol{x} belongs to this eigenspace if \boldsymbol{x} is of the form (t,t,t) where t is any real number.

(#)

Thus E_3 is the linear span of the vector (1,1,1)

(#)

and it is a one dimensional subspace of \mathbb{R}^3 .

Slide 07: Moving on to E_0 .

(#)

The coefficient matrix is $0\mathbf{I} - \mathbf{B}$

(#)

and when we solve the homogeneous linear system, we arrive at the following reduced row-echelon form. Notice that it has one non zero row and two non pivot columns on the left hand side. So how many arbitrary parameters are there in a general solution for the linear system?

Slide 08: From the reduced row-echelon form, we have the equation $x_1 + x_2 + x_3 = 0$. (#)

A general solution to the linear system is as shown, where $x_1 = -s - t$, $x_2 = s$, $x_3 = t$, s and t are arbitrary parameters.

(#)

Thus a vector \boldsymbol{x} belongs to E_0 if and only if \boldsymbol{x} is a linear combination of (-1,1,0) and (-1,0,1).

(#)

The eigenspace E_0 is the linear span of (-1, 1, 0) and (-1, 0, 1)

(#)

and the dimension of E_0 is 2.

Slide 09: Without showing the details, we see here the other 3×3 matrix C, which has 3 distinct eigenvalues 1, $\sqrt{2}$ and $-\sqrt{2}$. The eigenspace E_1 , $E_{\sqrt{2}}$ and $E_{-\sqrt{2}}$ are all one dimensional subspaces of \mathbb{R}^3 .

Slide 10: Consider this 2×2 matrix M. Since it is a lower triangular matrix, we can immediately conclude that M has only one eigenvalue 2.

(#)

To investigate the eigenspace E_2 , we solve the homogeneous linear system

(#)

with coefficient matrix $(2\mathbf{I} - \mathbf{M})$.

(#)

We see that a vector \boldsymbol{x} belongs to the eigenspace E_2 if and only if \boldsymbol{x} is of the form (0, s) where s is any real number.

(#)

So E_2 is the linear span of (0,1) and it is a one dimensional subspace of \mathbb{R}^2 .

Slide 11: Before we end this unit, recall that leading up to this unit, we were concerned with the question of whether for a given square matrix A, we could find an invertible matrix P such that A can be written as PDP^{-1} where D is a diagonal matrix. Recall that if this can be done, it would help us to compute powers of A efficiently.

(#) $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$ can equivalently be written as $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D}$. (#)

While we will not answer this question in this unit, the examples we have seen so far are in fact illustrative enough to give you a hint as to when it is or not possible for A to be written as PDP^{-1} .

Slide 12: The matrix \boldsymbol{A} is a 2×2 matrix. It has two eigenvalues and each of the two eigenspaces are one dimensional.

(#

The matrix \mathbf{B} is a 3×3 matrix. It has two eigenvalues 3 and 0.

(#)

The dimension of E_3 is 1 while the dimension of E_0 is 2.

(#)

The matrix C is a 3×3 matrix. It has three eigenvalues, $1, \sqrt{2}$ and $-\sqrt{2}$.

(#)

The dimension of each of the three eigenspaces is 1. We will discover, in a later unit that all the three matrices here can be written as PDP^{-1} . Perhaps you would like to pause for a while and see what do the three matrices have in common. As a hint, you may wish to look at the highlighted dimensions of the various eigenspaces.

Slide 13: Contrastingly, this matrix M which we have seen in this unit is one that cannot be written as PDP^{-1} . Do you know why? Once again, the hint lies in the dimension of the eigenspace highlighted. We will answer these questions in the subsequent units.

Slide 14: In this unit,

(#)

We defined what is an eigenspace of a matrix associated with a particular eigenvalue λ .