3.2 The Growth of Functions

Big-O Notation

Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that f(x) is O(g(x)) if there are constants C and k such that.

$$|f(x)| \le C|g(x)|$$

whenever x > k. [This is read as "f (x) is big-oh of g(x)."]

To show that
$$f(x)$$
 is $O(x)$ Uc need to find only one pair of Constants C and K. The Witness such that $|f(x)| < |g(x)|$ Whenever $x > K$

Exemple 1

Show that $f(x) = x^2 + 2x + 1$ is $O(x^2)$.

We can take
$$\frac{(-4)}{4}$$
 and $\frac{(-4)}{4}$ as vitaever to show that $f(x)$ is $O(x^2)$

$$f(x) = x^2 + 2x + 1 < \frac{4}{3}x^2 \qquad \text{When } x > 1$$

- Could use other values of Witnesses to prove

Exemple 2: Show that 7x2 is O(x3)

When
$$x > 7$$
, $7x^2 < x^3$

We can take Call and $x = 7$ as witnesser

 $7x^2 < x^3$ for $x > 7$

Example 3

Show that no is not O(n)

- We must show that no poirs of vitnesses C and K exist Such that $N^2 \leq C n$ Whenever n > K.

Big-O Estimetes for Some Important Functions

Thereon 1:

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$, when a_0, a_1, a_{n-1}, a_n are real numbers. Then f(x) is $O(x^n)$.