Chapter 18 – Asymmetric Encryption and Key Exchange

University of Illinois ECE 422/CS 461

Recall Symmetric Encryption

- Allows two parties to exchange messages in private (an eavesdropper cannot read)
- Alice and Bob must share a secret key

Motivation for Today

- But how do Alice and Bob share a key?
 - Example scenario: visit a website for the first time?

- Two methods to the rescue!
 - Asymmetric encryption (public-key encryption)
 - Key exchange

Goals

- By the end of this chapter you should
 - Know the interfaces and security definitions of asymmetric encryption and key exchange
 - Demonstrate RSA encryption and Diffie-Hellman key exchange on toy examples
 - Understand how they establish symmetric keys
 - Understand man-in-the-middle attacks

Asymmetric Encryption (Public-Key Encryption)

Asymmetric Encryption

- Allows anyone to send messages to Alice in private (an eavesdropper cannot read)
 - Alice has a private key sk

knows sk

Everyone knows her corresponding public key pk

Asymmetric Encryption

- Allows anyone to send messages to Alice in private (an eavesdropper cannot read)
 - Alice has a private key sk

Everyone knows her corresponding public key pk

Alice knows sk m: message or plaintext

c: ciphertext

Bob

Hybrid Encryption

- Bob sends a symmetric key k to Alice under asymmetric encryption (Eve cannot read k)
- Alice & Bob can now use symmetric encryption with key k to talk in private in both directions

c: ciphertext

knows sk

Hybrid Encryption

- Bob sends a symmetric key k to Alice under asymmetric encryption (Eve cannot read k)
- Alice & Bob can now use symmetric encryption with key k to talk in private in both directions

Asymmetric Encryption Interface

- KeyGen() \rightarrow (pk, sk)
 - Publish public key pk and keep private key sk private
 - sk needs to have enough entropy

- Enc(pk, m) \rightarrow c
 - Everyone can encrypt
- Dec(sk, c) \rightarrow m
 - Only the key owner can decrypt

Security: IND-CPA

- We invoke KeyGen() \rightarrow (pk, sk)
- Eve can ask for encryptions of any messages
- Eve picks two messages m₀ and m₁ of equal length
- We flip a coin b \leftarrow {0, 1} and give Eve Enc(pk, m_b)
- Eve can ask for encryptions of any messages
- Eve guesses b. Insecure iff Eve wins with $0.5 + \epsilon$ probability

RSA [Rivest-Shamir-Adleman, 1978]

- Most widely used asymmetric encryption
 - Previously invented by Clifford Cocks of British intelligence in 1973; remained classified until 1997

How (Plain) RSA Works

- Key generation
 - Pick two large (1024-bit) random primes p and q
 - Compute modulus N = pq
 - Pick integers e and d such that ed $\equiv 1 \mod (p-1)(q-1)$
 - Public key pk = (e, N). Private key sk = (d, N).

- Example: N = 3*11=33, (p-1)(q-1) = 20, e = 3, d = 7

How (Plain) RSA Works

Key generation

```
-N = pq, ed \equiv 1 \mod (p-1)(q-1), pk = (e, N), sk = (d, N)
```

- Encryption: c = m^e mod N
- Decryption: $m = c^d \mod N$
- Correctness: (m^e)^d mod N → m
 - Can be proved using number theory

Security of RSA

- We believe RSA encryption is a pseudorandom permutation (PRP)
 - Why do we believe so?
 - Because no one can break it after >40 years

Security of RSA

- We believe RSA encryption is a pseudorandom permutation (PRP)
 - Why do we believe so?
 - Because no one can break it after >40 years

- Current best attack on RSA is to factor N = pq
 - Integer factorization has been a hard problem for mathematicians for centuries
 - But no known reduction from RSA to factoring

RSA

 Still the most used asymmetric encryption today and still believed to be secure

However, no longer a top recommendation

RSA No Longer Recommended

- Plain RSA is deterministic, not IND-CPA secure
 - There are ways to make RSA randomized and IND-CPA, but they are complicated and error-prone

- Numerous common pitfalls
 - p, q must be kept private, besides d
 - p, q must be random, insecure to use pq₁ and pq₂
 - But e need not be random, $e = 2^{16}+1 = 65537$ is good

RSA No Longer Recommended

- Plain RSA is deterministic, not IND-CPA secure
- Numerous common pitfalls
- Very slow
- Need long keys: > 2048-bit modulus N
 - Most other crypto schemes use 128 or 256 bit keys

What Are Recommended?

- For asymmetric encryption, use elliptic curve encryption
 - Randomized by default
 - Much faster than RSA
 - Shorter key (160 to 256 bits)

 For establishing a symmetric key, use a key exchange protocol (also based on elliptic curves)

Key Exchange

Some Basic Number/Group Theory

- Pick a large prime p. {1, 2, 3, ..., p-1} form a group G under modular multiplication
 - Multiplication x•y is defined as x•y mod p
 - (Closure) If x, y are in G, so is x•y
 - (Associativity): $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
 - (Identity): there exists e s.t. $e \cdot x = x \cdot e = x$
 - e=1 here
 - (Inverse): For each x, there exists x^{-1} s.t. $x \cdot x^{-1} = e$

Some Basic Number/Group Theory

- Pick a large prime p. {1, 2, 3, ..., p-1} form a group G under modular multiplication
- Can define exponentiation (again, modulo p)
 - $-g^a = g \cdot g \cdot g \cdot \dots \cdot g$ (repeated a times, modulo p)
 - Note that $(g^a)^b = (g^b)^a$
- There are many other groups, e.g., elliptic curve

- We will use a cyclic group G and a generator g
 - You don't need to understand these for CS461

Important Assumptions

- The discrete-log assumption: given g and g^a for a random a, infeasible to find a
 - Easy for real numbers (continuous case)

- The Diffie-Hellman assumption: given g, g^a and g^b, infeasible to find g^{ab}
 - Stronger assumption than the discrete-log

Key Exchange [Diffie-Hellman, 1976]

- "New Directions in Cryptography"
 - Previously invented by Malcolm Williamson of British intelligence in 1969; remained classified until 1997

Diffie-Hellman Key Exchange

- Alice generates a random private key a and the computes her corresponding public key g^a
- Bob similarly generates b and g^b

Diffie-Hellman Key Exchange

- Alice and Bob exchange their public keys
- Alice computes (g^b)^a and Bob computes (g^a)^b
- Now Alice and Bob share a secret key gab

Advantages over RSA

- RSA is slow and needs long (2048-bit) keys
- Diffie-Hellman with elliptic curve group is much faster and has 256-bit keys
 - The version we presented relies on number theory and hence is slow and needs long (2048-bit) keys

- Can provide forward secrecy: if secret keys are stolen, prior communication remains secure
 - May discuss this further in network security

Man-in-the-Middle (MitM) Attacks

- Asymmetric encryption and key exchange give two ways to establish a symmetric key
- However, both are susceptible to MitM

Man-in-the-Middle (MitM) Attacks

- Asymmetric encryption and key exchange give two ways to establish a symmetric key
- However, both are susceptible to MitM

Man-in-the-Middle (MitM) Attacks

- Asymmetric encryption and key exchange give two ways to establish a symmetric key
- However, both are susceptible to MitM

- For them to work against MitM, at least one party's public key needs to be certified
 - Next lecture and in network security

Applications of Encryption

- Confidential communication over Internet
 - e.g., HTTPS, end-to-end encryption
- Confidentiality of external storage
 - Disk encryption, phone encryption
 - Business store user information encrypted "at rest"
- Key question: how is the key stored/protected?
 - If derived from password, strength of encryption ← entropy of key ← entropy of password (enough?)
 - If established using Diffie-Hellman, MitM?

Summary

- Two ways to establish symmetric keys
- Asymmetric encryption:
 - -c = Enc(pk, m), m = Dec(sk, c)
 - Security defn is still IND-CPA, randomized
 - Use elliptic curve encryption (RSA OK)
- Diffie-Hellman key exchange:
 - Exchange g^a, g^b; get shared g^{ab}
- Always think about the key question when using encryption (and cryptography in general)