

Problema

- Sea
 - G=(V,E) un grafo ponderado dirigido
 - Sin ciclos negativos

Donde exponent [GET_7Q10(y)]//compute 7Q10,

- cada vértice e=(a,b) \in E tiene un peso w_{ab}
- Queremos saber
 - para cada par i, $j \in V$ el camino mínimo entre ellos

Relación de recurrencia

En resumen

$$\begin{array}{l} \mathbf{x}(1) = \ln(\mathbf{x}(1)) \\ \mathbf{next} \quad i \quad L^{(0)}_{ij} = \begin{cases} 0 & \text{si i=j} \\ \infty & \text{T_7Q10} \\ \text{si i} \neq \mathbf{j} \end{cases} \\ \sqrt{\text{compute the init}} \\ \text{for j=1 to } 1000 & /\text{loop through } 100 \\ \mathbf{y} = \mathbf{GETL}^{(1)}_{ij} = \mathbf{W} \\ \text{theta}(\mathbf{x}) & /\text{create array y b} \\ \text{theta}(\mathbf{y}) = \text{exponent} \\ \mathbf{GET_7Q10}(\mathbf{y}) \\ \mathbf{x} = \mathbf{y} = \mathbf{y} \\ \mathbf{x} = \mathbf{y} = \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} = \mathbf{y} \\ \mathbf{y} = \mathbf{y} \\ \mathbf{y} = \mathbf{y} \\ \mathbf{y} = \mathbf{y} \\ \mathbf{y} =$$

 Si m=|V|-1 conoceremos el camino mínimo entre todos los vértices

Solución iterativa


```
ObtenerCaminosMinimos(W)
   Sea n=|V|
   Sea L[1] = WET_{-7010}(x)
                                      //compute the initial 7010, \theta_0
   Desde m=2 a n-1
                                                                    Complejidad
        Sea L[m] una nueva matriz de nxn
      L[m] = calculo_camino_minimo(L[m-1], W)
                                                                    temporal:
   Retornar L[n-1]
```

Cálculo L^(m) con L^(m-1)

FUNCTION GET_7Q10(input array: x(1...n))


```
calculo_camino_minimo(L, W)
nextSea n=|V|
                                          L_{ij}^{(m)} = min_{1 \le k \le n} (L_{ik}^{(m-1)} + W_{kj})
Sea L' una nueva matriz de nxn
    Desde i=1 a n
       Desde j=1 a nt [GET_7Q10(y)]//compute 7Q10, \theta_i
             L'[i,j]=∞
sort(theta) Desde k=1 a n
                                        //sort \theta_1. \theta_{1000} in ascending order
conf_5=theta(5[,'[i,j] = min ( L',[i,j] rel[i,k] + W[k,j]e) 5% confidence limit conf_95=theta(951)
                                           /report \theta_{057} as the 95% confidence limit
 Retornar L'
```

Similitud con multiplicación de matrices

read
$$\mathbf{x}(1..n)$$
 for $\mathbf{i}=1$ to \mathbf{n} $\mathbf{x}(\mathbf{i})=\ln(\mathbf{x}(\mathbf{i}))$ $\mathbf{L}_{ij}^{(m)}=\min_{1\leq k\leq n}(\mathbf{L}_{ik}^{(m-1)}+\mathbf{w}_{kj})$ gh all years $\mathbf{x}(\mathbf{i})=\ln(\mathbf{x}(\mathbf{i}))$ $\mathbf{x}(\mathbf{i})=\ln(\mathbf{x}(\mathbf{i}))$ $\mathbf{x}(\mathbf{i})=\ln(\mathbf{x}(\mathbf{i}))$ $\mathbf{x}(\mathbf{i})=\min_{1\leq k\leq n}(\mathbf{L}_{ik}^{(m-1)}+\mathbf{w}_{kj})$ gh all years $\mathbf{x}(\mathbf{i})=1$ \mathbf

$$L'_{ij} = min(L_{i1} + w_{1j}, L_{i2} + w_{2j}, ..., L_{i} + w_{nj})$$

conf_95=theta(951)

En búsqueda de una mejora...

(!) Solo si ◊ es

- Para el cálculo de cada L[m] usamos calculo camino minimo(L[m-1], W)
 - L[1]=W
 - L[2]=calculo camino minimo(W, W)=W◊W
- Generalizando

L[1] =	W	W"1"	
L[2] =	W≎W	W"2"	(!) Solo si
L[3] =	W◊W◊W	W"3"	asociativa
L[4] =	$W \lozenge W \lozenge W = W^{"2"} \lozenge W^{"2"}$	W"4"	
L[r=a+b] =	$(W^{"a"}) \Diamond (\widehat{W}^{"b"})$	W"r"	

Asociatividad

- Sean
- next X,Y,Z matrices de nxn
- $\int_{-1}^{7010} X \circ Y = (X,Y)_{ij} = \min_{k} (x_{ik} + y_{kj}) \text{ para todo i,j}$
- Queremos ver que 10 (v) 1//compute 7010, 6
- $-(X \Diamond Y) \Diamond Z = X \Diamond (Y \Diamond Z)$

Asociatividad: Demostración

Asociatividad: Demostración (cont.)

read
$$\times(1,n)$$
 for $i=(X,(Y,Z))_{ij}=min_k$, $(X_{ik}+min_k(Y_{k'k}+Z_{kj}))$ rough all years $\times(i)=ln(\times(i))$ for $i=ln(\times(i))$ for $i=ln(\times(i))$

Asociatividad: Demostración (cont.)

• Si partimos de

$$((X,Y),Z)_{ij} = \min_{k'} (\min_{k} (X_{ik} + Y_{kK'}) + Z_{k'j})$$

Podemos ver que Z_{k'i} no depende de k

$$((X,Y),Z)_{ij} = min_{k'}(min_k(X_{ik} + Y_{kK'} + Z_{k'j}))$$

• Renombramos $k' \rightarrow a y k \rightarrow b$

sort (theta) // sort
$$\theta_1$$
, θ_2 , θ_3 in ascending order conf_5=thet $((X,Y),Z)_{ij}=min_a(min_b(X_{ib}+Y_{ba}+Z_{aj}))$ as the 5% confidence limit conf_95=theta(951)

Invertimos el calculo de los mínimos

$$GET_{(X,Y),Z)_{ij}} = min_b(min_a(X_{ib} + Y_{ba} + Z_{aj}))$$

Asociatividad: Demostración (cont.)

• Si partimos de

$$(X, (Y, Z))_{ij} = min_{k'}(X_{ik'} + min_{k}(Y_{k'k} + Z_{kj}))$$

Podemos ver que X_{ik}, no depende de k

$$Y = \text{GET}_{R}(X, (Y, Z))_{ij} = \min_{k'}(\min_{k}(X_{ik'} + Y_{k'k} + Z_{kj})) \text{ by resumpling array } X_{ik'} + X_{ik'} + X_{k'} + X_{k'} + X_{k'})$$

• Renombramos k' \rightarrow b y k \rightarrow a

sort (theta) for the ending order conf_5=thet
$$(X,(Y,Z))_{ij}=min_b(min_a(X_{ib}+Y_{ba}+Z_{aj}))$$
 as the 5% confidence limit conf_95=theta(951)

La operación es asociativa

Como:

$$(X,(Y,Z))_{ij} = \min_b (\min_a (X_{ib} + Y_{ba} + Z_{aj}))$$

$$((X,Y),Z)_{ij} = \min_b (\min_a (X_{ib} + Y_{ba} + Z_{aj}))$$

Entonces

$$t(theta)_{ij}(X,(Y,Z))_{ij}=((X,Y),Z)_{ij}$$
//sort θ_1 . θ_{1000} in ascending order

• Y la operación es asociativa (c.q.d)

Regresando a la mejora

Utilizando las potencias de 2

las potencias de 2					
L[1] =	W	W"1"			
L[2] =	W◊W	W"2"			
L[4] =	W"2" ♦ W"2"	W"4"			
L[8] =	W"4" ♦ W"4"	W "8"			
L[2 ^x] =	$W^{2^{x-1}} \diamond W^{2^{x-1}}$	W"r"			

- Recordamos que para todo m≥n-1, L[m]=L[n-1]
- Por lo tanto alcanza que $2^x \ge n-1$ para hallar el resultado final
 - Usaremos $x = \lceil \log_2 n 1 \rceil$

Solución iterativa (mejorada)


```
ObtenerCaminosMinimos(W)
   Sea n=|V|
   Sea L[1] = W = T_{0}/(200)
                                   //compute the initial 7010, \theta_0
   Sea_m=1
                                               Θ(logn)
   Desde m < n-1
       Sea L[2m] una nueva matriz de nxn
       L[2m] = calculo_camino_minimo(L[m], L[m])
                                           	heta_1...	heta_{1000} in ascending order
       m = 2m
                                                   the 5% confidence limit
   Retornar L[m]
                                                              Θ(n³logn)
```