J Physiol 597.17 (2019) pp 4533-4564 4533

A computational model of induced pluripotent stem-cell derived cardiomyocytes incorporating experimental variability from multiple data sources

Divya C. Kernik¹, Stefano Morotti², HaoDi Wu³, Priyanka Garg³, Henry J. Duff⁷, Junko Kurokawa⁶, José Jalife^{4,5}, Joseph C. Wu³, Eleonora Grandi² and Colleen E. Clancy¹

Department of Physiology and Membrane Biology, Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, USA

²Department of Pharmacology, School of Medicine, University of California, Davis, CA, USA

³Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA

⁴Department of Internal Medicine, Center for Arrhythmia Research, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, USA

⁵Centro Nacional de Investigaciones Cardiovasculares (CNIC), and CIBERV, Madrid, Spain

⁶Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan

Libin Cardiovascular Institute of Alberta, Faculty of Medicine, University of Calgary, Calgary, AB, Canada

iPSC-CMs have vast variability

Strengths	Limitations
 Recapitulate cellular electrical properties of normal and diseased phenotypes Preserve patient-specific genotype Demonstrate expected pharmacological responses of adult cardiomyocytes 	 immature phenotype immature calcium handling Vast diversity of phenotypes

Main Goal:

Use in vitro kinetic data to implement the experimentally informed variation of IPSC-CMs into a computation model to capture the wide range of "normal" iPSC-CM behaviors observed experimentally.

Kernik-Clancy computational iPSC-CM model

Example: Sodium Current

For gate x, where x=m, h, or j in I_{Na}

$$C = O$$

$$\beta_x = x_1 e^{V_{m/x_2}} \beta_x = x_3 e^{V_{m/x_4}}$$

$$x_{\infty} = \frac{\alpha_{x}}{\alpha_{x} + \beta_{x}}$$
 $\tau_{x} = \frac{1}{\alpha_{x} + \beta_{x}} + x_{5}$

$$\frac{dx}{dt} = \frac{x_{\infty} - x}{\tau_{\chi}}$$

$$I_{Na} = g_{Na}m^3hj(V_m - E_{Na})$$

C: Closed State, O: Open State

V_m: Membrane Voltage

g_{Na}: Maximal I_{Na} Conductance

x₁₋₅: Parameters Optimized

Example: Sodium Current

For gate x, where x=m, h, or j in I_{Na}

$$C = C$$

$$\alpha_x = x_1 e^{V_{m/x_2}} \qquad \beta_x = x_3 e^{V_{m/x}}$$

$$x_{\infty} = \frac{\alpha_x}{\alpha_x + \beta_x} \qquad \tau_x = \frac{1}{\alpha_x + \beta_x} + x_5$$

$$\frac{dx}{dt} = \frac{x_{\infty} - x}{\tau_x}$$

Figure 3. Sodium current (INa) model optimization

For gate x, where x=m, h, or j in I_{Na} $C \xrightarrow{\alpha_x} O$ $\alpha_x = x_1 e^{V_m/x_2} \qquad \beta_x = x_3 e^{V_m/x_4}$ $x_{\infty} = \frac{\alpha_x}{\alpha_x + \beta_x} \qquad \tau_x = \frac{1}{\alpha_x + \beta_x} + x_5$ $\frac{dx}{dt} = \frac{x_{\infty} - x}{\tau_x}$ $I_{Na} = g_{Na} m^3 h j (V_m - E_{Na})$ C: Closed State, O: Open State $V_m: Membrane Voltage$

g_{Na}: Maximal I_{Na} Conductance **x**₁₋₅: Parameters Optimized

Figures 4 - 9

Figure 10. Optimization of calcium handling in the iPSC-CM baseline model

Ca ²⁺ Transient	Wu Lab Experimental Data	Baseline Model
Time to Peak (ms)	245.0 ± 81.3	202.4
Tau Decay (ms)	295.0 ± 108.4	263.6
Diastolic [Ca ²⁺] (nM)	71.8 ± 39.4	68.4
Peak [Ca ²⁺] (nM)	525.2 ± 148.9	528.5

Figure 11. Characterization of the baseline model AP

Figure 12. Kinetic variability generated by varying individual current model parameters

Example: Sodium Current

For gate x, where x=m, h, or j in I_{Na}

$$C \stackrel{\alpha_x}{\rightleftharpoons} O$$

$$x = x_1 e^{V_{m/x_2}} \beta_x = x_3 e^{V_{m/x_4}}$$

$$x_{\infty} = \frac{\alpha_X}{\alpha_X + \beta_X}$$
 $\tau_X = \frac{1}{\alpha_X + \beta_X} + x_5$

$$\frac{dx}{dt} = \frac{x_{\infty} - x}{\tau_x}$$

$$I_{Na} = g_{Na}m^3hj(V_m - E_{Na})$$

C: Closed State, O: Open State

V_m: Membrane Voltage

g_{Na}: Maximal I_{Na} Conductance

x₁₋₅: Parameters Optimized

-100

Figure 13. Variation of action potential morphology in model iPSC-CM naniations

Figure 14. Sample APs showing the effect of ion channel blockers within the model population

Figure 15. Comparison of immature and mature cellular models

Figure 16. Comparison of mature and immature iPSC-CM model subpopulations

Mature Cells:

- hyperpolarized diastolic potentials
- high upstroke velocity