Gestore della Memoria

- Virtual memory manager (VMM)
 - Componente Executive responsabile della gestione della memoria
- · Meccanismi di ottimizzazione:
 - Copy-on write
 - Allocazione lazy (pigra)
 - Evita l'allocazione di memoria (pagine e righe della tabella delle pagine) fino a quando non è necessario
- Prefetching
 - Quando VMM fa una operazione di I/O, sposta le pagine dal disco alla memoria principale prima che siano necessarie
- Pagefile
 - Memorizza le pagine che non entrano nella memoria principale
 - Windows XP supporta fino a 16 file di pagefiles

S. Balsamo - Università Ca' Foscari Venezia - SO.7.54

Organizzazione della Memoria

- · mappa della memoria su due livelli
- Memorizza la posizione delle pagine in memoria e su disco
 - Tabella di Directory di Pagina (PDE)
 - Le righe di PDE indicano tabella delle pagine
 - Una tabella di directory di pagine per processo
 - · Indicata nella posizione nel registro di directory di pagina
 - Tabella delle pagine (PTE)
 - Le righe della tabella pagine puntano ai page frame o locazione su disco
 - Page frame
 - · Contiene una pagina di dati
- TLB (Translation Look-aside Buffer) accelera la conversione degli indirizzi

S. Balsamo – Università Ca' Foscari Venezia – SO.7.56

Organizzazione della Memoria

- · Spazio di indirizzamento virtuale a 32 bit
 - Windows a 64-Bit Edition dispone di spazi per indirizzi a 64 bit
 - 4 GB indirizzo spazio virtuale per processo
- · spazio utente vs spazio di sistema
 - Un processo può accedere solo allo spazio utente
 - VMM memorizza le tabelle delle pagine e altri dati nello spazio di sistema
 - 2 GB di spazio utente, 2 GB di spazio di sistema (per componenti in modalità nucleo)
- pagine a dimensione fissa 4KB (in alcuni casi anche 2MB)

Organizzazione della Memoria

- PTE può puntare a dati in memoria principale o in un pagefile
 - 4 bit determinano quale dei 16 pagefile
 - 20 bit offset nel pagefile o frame in memoria
 - Indirizzano fino a 1.048.576 pagine virtuali
- PTE 5 bit di protezione
 - Read
 - Write
 - Execute
 - Copy-on-write
 - Raise exception on access
- · PTE 4 bit di pagefile
 - Solo per pagine su disco
- PTE 3 bit di stato
 - Solo per pagine in memoria
 - Valida/Modificata/Transizione

S. Balsamo – Università Ca' Foscari Venezia – SO.7.58

Organizzazione della Memoria

- · Pagine grandi (larghe)
 - VMM tratta molte pagine come una pagina
 - Insieme di pagine contigue
 - Utile quando si usa lo stesso insieme ripetutamente
 - Un sola riga in TLB
- Restrizioni
 - Le pagine devono essere consecutive si nella memoria virtuale e sia in memoria fisica
 - Le pagine grandi consentono sempre l'accesso in lettura e scrittura
- Dimensione minima di solito 2MB
- Dimensioni deve essere multiplo di un minimo (dipende dalla specifica piattaforma)

S. Balsamo – Università Ca' Foscari Venezia – SO.7.60

Organizzazione della Memoria

- · Stati della pagina degli indirizzi virtuali
 - Non valida

non è mappata in alcun oggetto di sezione di memoria, se riferita si ha errore

- Riservata

indirizzi che non saranno mai allocati dal gestore per altro

- Committed

è mappata su una pagina virtuale

S. Balsamo – Università Ca' Foscari Venezia – SO.7.59

Organizzazione della Memoria

- Pagine Copy-on-write
 - I processi condividono i page frame in modo trasparente
 - Allocazione pigra
- · Tabelle delle pagina prototipo
 - Abilita pagine copy-on-write
 - La PTE (tabella delle pagine) per una pagina copy-on-write punta alla tabelle di pagina prototipo (PPTE)
 - Le righe della PPTE puntano ai page frame che contengono pagine copy-on-write
 - Risparmio di memoria
 - Un livello in più di indirizzamento

Allocazione di memoria

- 3 stadi di allocazione di memoria
- · Per usare solo lo spazio necessario
 - Reserve
 - Un processo riserva lo spazio nel proprio spazio di indirizzamento virtuale
 - Commi
 - Un processo pronto a scrivere esegue una commit, VMM crea la tabella delle pagine e verifica la fattibilità nella memoria o pagefile
 - Access
 - Processo è pronto ed accedere alla memoria, VMM scrive i dati in una pagina azzerata e aggiorna la tabella delle pagine

S. Balsamo – Università Ca' Foscari Venezia – SO.7.62

Allocazione di memoria

- Ottimizzazioni
 - Vietate le richieste must-succeed (richieste imperative che venivano possibilmente soddisfatte, in versioni precedenti)
 - Regolazione dell'I/O (throttling)
 - Se scarseggiano i page frame il sistema gestisce una pagina alla volta → il sistema rallenta e più tollerante ai guasti
- Page frame database
 - Traccia lo stato della memoria
 - Liste delle pagine, informazione di stato di ogni page frame
 - Otto stati, una lista per ogni stato (libere, azzerate,...)

	Reserved page	Virtual memory
		Physical memory
		Thysical memory
	Disk	
First, a process re	serves memory. The VMM allocates sp irtual address space.	pace for the requested memory
	irtual address space.	
b) Commit	Reserved page	Virtual memory
-	Reserved page	Virtual memory
PTE		Physical memory
1		
	Disk	
	Disk	
Next, the process (PTE) and ensure	Disk commits the reserved memory. The v s that it can allocate space in a pagefi	'MM allocates a page table ent le on disk.
(PTE) and ensure	s commits the reserved memory. The V	/MM allocates a page table ent le on disk.
(PTE) and ensure	s commits the reserved memory. The V	YMM allocates a page table ent le on disk. Virtual memory
(PTE) and ensure	s commits the reserved memory. The v s that it can allocate space in a pagefi	le on disk. Virtual memory
(PTE) and ensure	s commits the reserved memory. The v s that it can allocate space in a pagefi	le on disk.
(PTE) and ensure	s commits the reserved memory. The v s that it can allocate space in a pagefi	le on disk. Virtual memory
(PTE) and ensure	s commits the reserved memory. The v s that it can allocate space in a pageful Reserved page	le on disk. Virtual memory
(PTE) and ensure	s commits the reserved memory. The v s that it can allocate space in a pagefi	le on disk. Virtual memory
(PTE) and ensure	s commits the reserved memory. The v s that it can allocate space in a pageful Reserved page	le on disk. Virtual memory

Frame State	Pefinition	
Valid	Page belongs to a process's working set and its PTE is set to valid.	
Transition	Page is in the process of being transferred to or from disk.	Stati dei
Standby	Page has just been removed from a process's working set; its PTE is set to invalid and in transition.	page frai
Modified	Page has just been removed from a process's working set; it is not consistent with the on-disk version. The VMM must write this page to disk before freeing this page. The PTE of this page is set to invalid and in transition.	
Modified No-Write	Page has just been removed from a process's working set; it is not consistent with the on-disk version. The VMM must write an entry to the log file before freeing this page. The PTE of this page is set to invalid and in transition.	
Free	Page frame does not contain a valid page; however it might contain an invalid page that has no PTE and is not part of any working set.	
Zeroed	Page frame is not part of any working set and all of its bits have been set to zero. For security reasons, only zeroed page frames are allocated to processes.	
Bad	Page frame has generated a hardware error and should not be used.	

Allocazione di memoria

- · Lista delle pagine
 - Una lista pagina per ogni possibile stato di pagina in frame
 - Linked list
 - accesso rapido
- Descrittore di indirizzi virtuali (VAD, Virtual Address Descriptor)
 - Ogni VAD descrive l'intervallo di memoria virtuale allocata
 - Gestione dello spazio di indirizzamento dei processi
- Cluster
 - Spazio disco diviso in gruppi di pagine chiamate cluster, parti dello stesso file
 - Al massimo un file per cluster
 - Uso della località per allocare le pagine di un cluster
- · Paginazione Cluster a richiesta
 - Windows XP precarica interi cluster quando il processo chiede una pagina

S. Balsamo – Università Ca' Foscari Venezia – SO.7.66

Sostituzione di Pagina

- · Working se
 - Insieme di pagine di un processo attualmente nella memoria principale
 - Le altre pagine del processo sono in un pagefile
- Balance set manager
 - Responsabile per la scelta del working set
 - Se necessario sposta pagine del working set nel pagefile per vari processi
- Least Recently Used Localizzata
 - Simile a LRU
 - Localizzato sul singolo processo
 - VMM assegna un intervallo [min,max] del working set ad ogni processo

S. Balsamo – Università Ca' Foscari Venezia – SO.7.68

Allocazione di memoria

- Prefetching
 - Obbiettivo: ridurre il tempo per caricare le applicazioni
 - Prefetcher Logico
 - · Responsabile del prefetching
 - Registra tutti gli accessi di memoria durante
 - · l'avvio di Windows
 - · start up di applicazioni
 - prefetch delle prossime pagine richieste
 - di solito durante l'inizializzazione del dispositivo
 - Start up più veloce

S. Balsamo – Università Ca' Foscari Venezia – SO.7.67

Sostituzione di Pagina

- LRU Localizzata
 - Sposta tutte le pagine sopra il massimo working set
 - Page trimming ridimensionamento delle pagine
 - Mette le pagine eliminate in
 - · Lista di Pagine Standby (in attesa)
 - · Lista di Pagine modificate
 - · Lista di Pagine modificate e No-Write (da non scrivere)
 - Se il processo chiede la pagina la considera nella lista delle pagine valide
 - Altrimenti la sposta nella lista delle pagine libere
 - Imposta il bit di stato a 'non valido' nella tabella delle pagine libere
 - Sposta le pagine nella lista di pagine azzerate
 - Alloca la pagina azzerata al processo che richiede nuova pagina

Sostituzione di Pagina

- · Due segmenti of memoria principale
 - Paged pool
 - VMM può spostare queste pagine nel pagefile
 - Nonpaged pool
 - · VMM non sposta mai le pagine nel pagefile
 - Spazio limitato
 - · Usato per
 - Codice di driver di dispositivi
 - Codice VMM
 - Codice di gestione di Interrupt
 - Codice in nonpaged pool non può accedere a codice o dati del paged pool

S. Balsamo – Università Ca' Foscari Venezia – SO.7.71

File System

- · Tre livelli di driver
 - Volume drivers
 - · Livello di drivers più basso
 - · Interagisce con i dispositivi hardware di archiviazione dati, es. disco
 - File system drivers
 - NTFS (New Technology File System)
 - FAT16 e FAT32 (File Allocation Table)
 - CDFS (Compact Disk File System) e UDF (Universal Disk Format)
 - File system filter drivers
 - Eseguono funzioni di alto livello
 - · Scansione dei Virus
 - Crittografia
 - Compressione

S. Balsamo – Università Ca' Foscari Venezia – SO.7.72

File System Drivers

- · Implementazione di un file system
 - Driver del file system locale
 - · Interagisce con i dispositivi hardware collegati al computer
 - · Disco rigido
 - DVD
 - Driver di sistema di file remoto
 - · Interagisce con driver del file system sul computer remoto
 - · Utilizza protocolli di rete

File System Drivers

- Tipico flusso per una richiesta di Disk I/O
 - Thread utente invia una richiesta tramite API dei sottosistemi
 - Object manager passa il puntatore del file al driver del file system
 - Il driver di file system passa richiesta al driver del dispositivo
 - La richiesta alla fine raggiunge disco
 - che esegue la richiesta di I/O

S. Balsamo – Università Ca' Foscari Venezia – SO.7.74

NTFS

- Master File Table (MFT)
 - Ogni file ha una riga MFT
 - La riga MFT è formata da uno o più record
 - Tutte le informazioni dei file memorizzati come attributi
- · Attributo residente
 - Memorizzato interamente dentro una riga MFT
- · Attributo non residente
 - Intestazione memorizzata all'interno di una riga MFT
 - I dati memorizzati altrove sul disco
 - MFT registra la posizione degli attributi con tre numeri: VCN, LCN, Run

S. Balsamo – Università Ca' Foscari Venezia – SO.7.76

NTFS

- File system nativo di Windows
- Più sicuro di FAT
- Scala bene a dischi di grandi dimensioni
 - dimensione dei cluster dipende dalla dimensione del disco
 - · puntatori a file a 64 bit
 - Può indirizzare fino a 16 esabyte (miliardi di GB) di disco
- Flussi di dati multipli
- Compressione e crittografia
- Facile navigazione

S. Balsamo – Università Ca' Foscari Venezia – SO.7.75

S. Balsamo – Università Ca' Foscari Venezia – SO.7.77

NTFS Riga del Master File Table (MFT) per un file esempio MFT record MFT record Directory File 1 Header Attribute 1 data File 2 File 3 Attribute 1 header Attribute 2 header Attribute 2 data Attribute 3 header Attribute 3 data Attribute list Attribute 4 header Attribute 4 data Location 1 Location 2

NTFS

- VCN (Virtual cluster number)
 - numero di cluster virtuale
 - File diviso in cluster
 - VCN indica il numero di cluster nel file
- LCN (Logical cluster number)
 - numero di cluster logico
 - Disk diviso in cluster
 - LCN indica su quale cluster del disco è posizionato l'attributo
- Run
 - Indica su quanti cluster il file si espande

S. Balsamo – Università Ca' Foscari Venezia – SO.7.78

NTFS I contenuti delle directory sono memorizzati in B-trees MFT record MFT record Other attributes Index buffer b.txt c.txt d.txt e.txt Index: header ftxt g.txt Index: data h.txt a.txt i.txt j.txt Index buffer q.txt k.txt Index buffers l.txt Index buffer location m.txt Index buffer location n.txt o.txt p.txt S. Balsamo – Università Ca' Foscari Venezia – SO.7.80

NTFS

- Directories
 - Files su disk
 - Contiene un elenco alfabetico di file
 - Memorizzato come B-alberi
 - Ogni file in punti di directory per il suo record MFT

S. Balsamo – Università Ca' Foscari Venezia – SO.7.79

NTFS

- · Più righe della directory possono puntare al stesso file
- Hard links
 - Puntano al file corretto anche se quello originale è cancellato o spostato
 - NTFS tratta gli hardlinks come un pathname originale
- file_name
 - Attributo del file MFT
 - Uno per ogni pathname di file
- hard_link
 - Attributo del file MFT
 - Numero degli attributi del file_name
 - File cancellato solo quando sono stati cancellati tutti gli hard_link

NTFS

- · Data stream
 - Il contenuto del file è memorizzato in uno o più data stream
 - Attributo di un file
- Default data stream
 - flusso di dati senza nome
 - contenuti primari di file
 - · Testo del documento di word
 - · Immagine di bitmap
- Alternate data stream
 - flusso di dati con nome
 - Utilizzato per memorizzare i metadati
 - · Autore, sommario, copyright
 - · Versioni di Back up

S. Balsamo – Università Ca' Foscari Venezia – SO.7.82

NTFS

- · Unità di Compressione
 - 16 cluster
 - NTFS comprime ogni unità di compressione individualmente
 - Se la versione compressa richiede ancora 16 cluster, l'unità di compressione è memorizzato non compresso
 - Abilita random I/O su file
 - NTFS cache unità di compressione a cui vi è stato accesso recente
 - · Probabilità di accedere nuovamente
 - thread di scrittura pigro a bassa priorità comprime in unità cache e scrive su disco

S. Balsamo – Università Ca' Foscari Venezia – SO.7.84

NTFS

- · Compressione di File
 - Trasforma i file per ridurre lo spazio su disco
 - Algoritmo di compressione Lempel-Ziv
 - Trasparente
 - · Le applicazioni accedono ai file usando API standard
 - · Il sistema comprime e decomprime i file
 - · Le applicazioni ignorano se il file è compresso

S. Balsamo – Università Ca' Foscari Venezia – SO.7.83

NTFS

- Crittografia
 - Protegge i file da accessi illeciti
 - La crittografia eseguita in unità di compressione
 - _ chiavi
 - · Crittografia con coppia di chiavi pubblica/privata
 - · chiave di recupero data all'amministratore di sistema
 - Nel caso in cui l'utente dimentica la password
 - · versioni crittografate di chiavi memorizzate su disco
 - · chiavi di decifrazione memorizzate nel non-paged pool
 - · operazioni di crittografia trasparenti all'utente

NTFS

- File sparsi
 - Esempi
 - Bitmap con grandi aree bianche
 - Matrici sparse
 - Memorizzare grandi serie di bit zero in liste di blocchi zero
 - · Consente di risparmiare spazio
 - · Minor overhead di compressione
 - Gli utenti possono specificare quali blocchi sono azzerati
 - NTFS rileva automaticamente unità di compressione azzerate
 - · Crea elementi nella lista dei blocchi zero