Einführung in die Analysis 6. Steigung von Funktionen und Ableitungsfunktion

Joana Portmann — Fachhochschule Nordwestschweiz

Frühlingssemester 2021

Einstieg: Nutzen in der Informatik?

- Computergrafik (Games)
 - https://www.youtube.com/watch?v=ltX-qUjbkdc
 - http://physbam.stanford.edu/~fedkiw/animations/reduced_ order_deformables_arma_stairs.mp4
 - http://physbam.stanford.edu/~fedkiw/animations/pizza.mp4
 - http:
 - //physbam.stanford.edu/~fedkiw/animations/mayonnaise.mp4
 - Seam carving
- 2 Artificial Intelligence
 - https://www.youtube.com/watch?v=aircAruvnKk&list= PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=1 (Playliste)
- 3 ...

6. Steigung und Ableitungsfunktion

Inhaltsverzeichnis

- Steigung
 - Sekante
 - Durchschnittliche Steigung
 - Differenzenquotient
- Ableitung
 - Tangente
 - Differenzialquotient
 - Ableitungsfunktion
 - Differenzierbarkeit
 - Höhere Ableitung

Überblick

Differenzenquotient Differenzialquotient

Einstieg Steigung

kahoot.it Quiz

Wiederholung:

Die Steigung m einer Geraden ist für alle x gleich groß. Die allgemeine Geradengleichung lautet:

$$g(x) = m \cdot (x - x_0) + y_0$$

Ist Steigung positiv (m>0), dann steigt der Funktionswert g(x) mit steigenden x-Werten an. Von links nach rechts steigt die Gerade an, es geht nach oben.

Ist Steigung negativ (m < 0), dann sinkt der Funktionswert g(x) mit steigenden x-Werten ab. Von links nach rechts fällt die Gerade an, es geht nach unten.

Steigung - Bedeutung? (Beispiel Corona)

https://mackuba.eu/corona/

 $\Rightarrow \mathsf{Steigung} \; \widehat{=} \; \mathsf{Neuansteckungen} \; \mathsf{pro} \; \mathsf{Tag}$

Einführendes Beispiel:

Einem Patienten wird zum Zeitpunkt x=0 eine bestimmte Menge eines Medikaments verabreicht. Die Funktion

$$f(x) = \frac{1}{50}x^3 - \frac{1}{2}x^2 + 2x + 10$$
, $0 \le x \le 10$

beschreibt die Konzentration des Medikaments (mg/l) im Blut des Patienten x Stunden nach der Verabreichung.

Einführendes Beispiel (Fortsetzung):

Bei der Analyse des Funktionsgraphen stellen sich folgende Fragen:

- Zu welchem Zeitpunkt steigt bzw. sinkt die Konzentration des Medikaments im Blut am stärksten?
- Zu welchem Zeitpunkt nach der Verabreichung ist die maximale Wirkstoffkonzentration im Blut erreicht?

Wir suchen also nach einem Maß für das Änderungsverhalten einer Funktion. Dieses ist gegeben durch die Steilheit bzw. Steigung des zugehörigen Funktionsgraphen. Die Differenzialrechnung stellt uns in Form der Ableitungsfunktion eine Methode bereit, mit der wir Antworten auf diese Fragestellungen finden können.

Beispiel:

Der durchschnittliche Anstieg der Medikamentenkonzentration im Blut des Patienten in den ersten 2 Stunden nach der Verabreichung wird durch die Steigung der Sekante beschrieben, welche durch die Punkte $P_0(0|10)$ und $P_1(2|12.16)$ verläuft. Eine Berechnung des Differenzenquotienten liefert:

$$m_{an} = \frac{\Delta f_{an}}{\Delta x_{an}} = \left(\frac{12.16 - 10}{2 - 0}\right) \frac{\text{mg/l}}{\text{h}} = \frac{2.16}{2} \frac{\text{mg/l}}{\text{h}} = 1.08 \frac{\text{mg/l}}{\text{h}}$$

Beispiel:

Der durchschnittliche Abfall der Medikamentenkonzentration im Blut des Patienten zwischen der 3. und der 9. Stunde nach der Verabreichung wird durch die Steigung der Sekante beschrieben, welche durch die Punkte $P_0(3|12.04)$ und $P_1(9|2.08)$ verläuft:

$$m_{ab} = \frac{\Delta f_{ab}}{\Delta x_{ab}} = \left(\frac{2.08-12.04}{9-3}\right) \frac{\text{mg/l}}{\text{h}} = \frac{-9.96}{6} \frac{\text{mg/l}}{\text{h}} = -1.66 \frac{\text{mg/l}}{\text{h}}$$

Wir betrachten einen Ausschnitt aus einem Funktionsgraphen der Funktion f(x) zwischen den Punkten x_0 und x_1 . Durch die zugehörigen Punkte des Schaubilds $P_1(x_0|f(x_0))$ und $P_2(x_1|f(x_1))$ läuft die Gerade g(x), die sogenannte **Sekante**. Sie ist ein Maß für die *durchschnittliche* Steigung des Funktionsgraphen zwischen den x-Werten x_0 und x_1 .

Definition (Sekante — Differenzenquotient)

Eine Gerade durch zwei Punkte $P_0(x_0|f(x_0))$ und $P_1(x_1|f(x_1))$ eines Schaubildes einer Funktion f heißt **Sekante**.

Das Verhältnis der Differenzen der Funktionswerte und der x-Werte

$$m = \frac{\Delta f}{\Delta x} = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

wird Differenzenquotient genannt. Er gibt die Steigung der Sekante an.

Anmerkungen:

- Der Steigungswinkel $\tan \sigma = \frac{\Delta f}{\Delta x}$ der Sekante lässt sich mithilfe des Steigungsdreiecks ermitteln. Hierfür ist die gleiche Skala auf x- und y-Achse notwendig.
- Die Gleichung der Sekante lautet: $g(x) = m \cdot (x x_0) + f(x_0)$.
- Die Sekantensteigung liefert einen Mittelwert der Kurvensteigung im Intervall $[x_0, x_1]$, weil die dazwischen liegenden Punkte und damit der Verlauf der Kurve zwischen diesen beiden Punkten nicht berücksichtigt wird.

Übungsblatt 6

Aufgabe 1 (Sekante und Sekantensteigung)

Für die nachfolgenden Funktionen bestimmen Sie die Steigung und die Geradengleichung der Sekante durch die Punkte $P_0(x_0|f(x_0))$ und $P_1(x_1|f(x_1))$

(a)
$$f_1(x) = 2x^2 - 4x + 3$$
, $P_0(1|f_1(1))$ und $P_1(3|f_1(3))$

(b)
$$f_2(x) = \frac{2}{x}$$
, $x > 0$, $P_0(2|f_2(2))$ und $P_1(4|f_2(4))$

(c)
$$f_3(x) = 3\sqrt{x}$$
, $x \ge 0$, $P_0(0.25|f_3(0.25))$ und $P_1(9|f_3(9))$

Die in unserem Beispiel berechnete Sekantensteigung gibt die mittlere Steigung der Funktion im Intervall $[x_0,x_0+\Delta x]$ an. Möchte man einen genaueren Wert der Steigung der Funktion an der Stelle x_0 bestimmen, so muss man das Intervall kleiner machen, d.h. den Grenzwert $\Delta x \to 0$ des Differenzenquotienten an der Stelle x_0 betrachten.

Wenn die beiden Punkte auf der Sekante nahe beieinanderliegen, dann unterscheidet sich die Sekante zwischen diesen beiden Punkten kaum von der Funktion. Deshalb definiert man die Steigung einer Funktion als Grenzwert der Sekantensteigung.

Definition (Tangente — Differenzialquotient)

Eine **Tangente** einer Funktion f im Punkt x_0 ist eine Gerade durch einen Punkt $P(x_0|f(x_0))$ des Schaubildes von f. Der Grenzwert des Differenzenquotienten wird als **Differenzialkoeffizient**

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

bezeichnet und beschreibt die Steigung der Tangente

$$g(x) = f(x_0) + f'(x_0) \cdot (x - x_0)$$

Für den Grenzwert $(\Delta x \to 0)$ des Differenzenquotienten sind verschiedene Schreibweisen gebräuchlich:

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \frac{df}{dx} \Big|_{x_0} = \mathsf{D} f|_{x_0}$$

Definition (Differenzierbarkeit an der Stelle x_0 — Ableitung)

Existiert der Grenzwert des Differenzenquotienten

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h},$$

dann nennt man die Funktion f differenzierbar an der Stelle x_0 . Der Grenzwert wird als **Ableitung** der Funktion f an der Stelle x_0 bezeichnet.

Übungsblatt 6

 ${\bf Aufgabe~2.} \\ {\bf Wo~sind~die~skizzierten~Funktionen~differenzierbar?~Skizzieren~Sie~die~Ableitungsfunktionen.}$

Beispiel:

Bestimme die Ableitung der Funktion $f(x) = \frac{1}{x}$ an der Stelle $x_0 = 2$, sowie die Gleichung der Tangente durch den Punkt (2|f(2)).

Um die Ableitung zu bestimmen, werten wir den Grenzwert des Differenzenquotienten an der Stelle $x_0=2$ aus:

$$f'(2) = \lim_{h \to 0} \frac{\frac{1}{2+h} - \frac{1}{2}}{h} = \lim_{h \to 0} \frac{\frac{2}{(2+h)\cdot 2} - \frac{2+h}{2\cdot (2+h)}}{h}$$
$$= \lim_{h \to 0} \frac{-h}{(2+h)\cdot 2\cdot h} = -\frac{1}{4}$$

Für die Gleichung der Tangente im Punkt $x_0 = 2$ gilt:

$$g(x) = -\frac{1}{4}(x-2) + \frac{1}{2} = -\frac{1}{4}x + \frac{1}{2} + \frac{1}{2} = -\frac{1}{4}x + 1$$

Beispiel (Fortsetzung):

Die Funktion $f(x) = \frac{1}{x}$ besitzt im Punkt $x_0 = 2$ die Steigung $m = -\frac{1}{4}$. Die Tangente g(x) berührt den Graphen der Funktion im Punkt $x_0 = 2$.

Anmerkung:

Die Tangente $g(x) = f(x_0) + f'(x_0) \cdot (x - x_0)$ an die Funktion f(x) im Punkt x_0 und die Funktion selbst unterscheiden sich in einer kleinen Umgebung von x_0 nur sehr wenig. Man kann also den Verlauf der Funktion f in einer kleinen Umgebung von x_0 durch die Tangente annähern.

- Durch die Steigung der Tangente m kann somit das angenäherte Änderungsverhalten der Funktion in einer Umgebung um die Stelle x_0 zum Ausdruck gebracht werden:

$$m = \frac{\Delta g}{\Delta x} \approx \frac{\Delta f}{\Delta x} = \frac{\ddot{\rm A} {\rm nderung~in~y-Richtung}}{\ddot{\rm A} {\rm nderung~in~x-Richtung}}$$

Um bei einer gegebenen Funktion f(x) nicht an jeder Stelle x_0 erneut den Grenzwert bestimmen zu müssen, ermitteln wir die Ableitung, ohne den Wert für x_0 im Voraus zahlenmäßig festzulegen. Wir berechnen also den Grenzwert des Differenzenquotienten

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$

Definition (Ableitungsfunktion)

Die Funktion

$$f': x \mapsto f'(x),$$

die jeder Stelle $x \in \mathbb{D}$ im Definitionsbereich, an der f(x) differenzierbar ist, die Ableitung f'(x) an dieser Stelle zuordnet, heißt **Ableitungsfunktion von** f(x) (oder kurz: **Ableitung von** f(x)).

Bemerkung:

Die Ableitungsfunktion ordnet jedem Wert x die Steigung der Tangente an der Stelle x zu.

Übungsblatt 6

 ${\bf Aufgabe~2.} \\ {\bf Wo~sind~die~skizzierten~Funktionen~differenzierbar?~Skizzieren~Sie~die~Ableitungsfunktionen.}$

Beispiel:

Die Funktion $f(x) = x^2 + 2$ besitzt für jedes $x \in \mathbb{R}$ die Ableitung

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^2 + 2 - (x^2 + 2)}{h}$$

$$= \lim_{h \to 0} \frac{(x^2 + 2xh + h^2) + 2 - (x^2 + 2)}{h}$$

$$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 + 2 - x^2 - 2}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^2}{h} = \lim_{h \to 0} 2x + h = 2x.$$

Beispiel (Fortsetzung):

Der Grenzwert des Differenzenquotienten exisitiert für alle $x \in \mathbb{R}$, d.h. die Funktion f(x) ist auf ganz \mathbb{R} differenzierbar und besitzt die Ableitungsfunktion f'(x) = 2x.

- Für x < 0 sind die Tangentensteigungen alle negativ und es gilt: f'(x) < 0
- Für x > 0 sind die Tangentensteigungen alle positiv und es gilt: f'(x) > 0

Übungsblatt 6

Aufgabe 3.

Bestimmen Sie die Ableitungen f'(x) der folgenden Funktionen.

(a)
$$f(x) = 5x + 7$$

(c)
$$f(x) = 4$$

(b)
$$f(x) = mx + q$$

(d)
$$f(x) = c$$
 für eine Konstante $c \in \mathbb{R}$

Anmerkung:

Die Differenzierbarkeit einer Funktion f an einer bestimmten Stelle x_0 hängt also von der Existenz des Grenzwertes an der Stelle x_0 ab. Nun kann es aber vorkommen, dass bei einer Funktion an gewissen Stellen der Grenzwert des Differenzenquotienten gar nicht existiert, dann sagt man, die Funktion f sei an der Stelle x_0 nicht differenzierbar.

Definition (Differenzierbare Funktion)

Ist die Funktion f an jeder einzelnen Stelle eines Intervalls I differenzierbar, so heißt die Funktion f differenzierbar auf dem gesamten Intervall I.

Beispiel:

Gegeben ist die Funktion:

$$f(x) = |x| = \left\{ \begin{array}{cc} x, & \text{für } x \geq 0 \\ \\ -x, & \text{für } x < 0 \end{array} \right.$$

Die Funktion ist für alle $x\in\mathbb{R}$ stetig. An der Stelle x_0 besitzt die Funktionsgraph einen Knick. Wir wollen die Differenzierbarkeit der Funktion f an der Stelle $x_0=0$ prüfen.

Beispiel (Fortsetzung):

Der linksseitige Grenzwert des Differenzenquotienten an der Stelle $x_0=0$ beträgt:

$$\lim_{h \to 0 \atop (h < 0)} \frac{f(0+h) - f(0)}{h} = -1$$

Der rechtsseitige Grenzwert des Differenzenquotienten an der Stelle $x_0 = 0$ beträgt:

$$\lim_{\substack{h \to 0 \\ (h>0)}} \frac{f(0+h) - f(0)}{h} = 1$$

Der links- und der rechtsseitige Grenzwert stimmen nicht überein, d.h. der Grenzwert des Differenzenquotienten und somit die Ableitung an der Knickstelle x_0 existiert nicht.

An den Knick kann man keine Tangente mit einer eindeutigen Steigung legen!

Beispiel:

Für die Wurzelfunktion $f(x) = \sqrt{x}$ berechnen wir die Ableitung an der Stelle $x_0 = 0$:

Für den rechtsseitigen Grenzwert des Differenzenquotienten an der Stelle $x_0=0$ gilt:

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{\sqrt{0+h} - \sqrt{0}}{h}$$
$$= \lim_{h \to 0} \frac{1}{2\sqrt{h}} = \infty$$

Der Grenzwert und somit die Ableitung an der Stelle $x_0=0$ existiert nicht. Der Funktionsgraph hat an dieser Stelle eine senkrechte Tangente.

Übungsblatt 6

Aufgabe 5.

Untersuchen Sie, wo die Ableitung von f(x) = |x-3| definiert ist und berechnen Sie die Ableitung in diesen Punkten.

Satz (Differenzierbarkeit und Stetigkeit)

- Jede differenzierbare Funktion ist auch stetig und hat an allen Stellen eine eindeutige Steigung.
- Ist eine Funktion f an der Stelle x_0 nicht stetig, dann ist sie dort auch nicht differenzierbar.

Satz (Differenzierbarkeit und Stetigkeit)

- Jede differenzierbare Funktion ist auch stetig und hat an allen Stellen eine eindeutige Steigung.
- Ist eine Funktion f an der Stelle x_0 nicht stetig, dann ist sie dort auch nicht differenzierbar.

Beweis:

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \underbrace{\frac{f(x) - f(x_0)}{x - x_0}}_{\to f'(x_0)} \underbrace{(x - x_0)}_{\to 0} + f(x_0) = f(x_0),$$

d.h. wenn $f'(x_0)$ existiert, dann gilt $\lim_{x\to x_0} f(x) = f(x_0)$ und die Funktion f ist somit stetig an der Stelle x_0 .

Anmerkung:

- Stetige Funktionen haben keine Sprünge
- Differenzierbare Funktion sind noch etwas glatter, da sie keine "Knicke" besitzen, an die man keine eindeutige Tangente legen kann. Der Funktionsgraph einer differenzierbaren Funktion hat weder Sprünge, Knicke noch senkrechte Tangenten.

Anmerkung: Es gibt überall stetige, aber nirgends differenzierbare Funktionen:

Definition (Höhere Ableitung)

Exisitiert zu einer Funktion $f: \mathbb{D} \mapsto \mathbb{R}$ die Ableitung $f': \mathbb{D} \mapsto \mathbb{R}$ und ist f'(x) wieder differenzierbar, so bezeichnet man deren Ableitung als **zweite** Ableitung f''(x) von f.

- f''(x) ist die Ableitung der Funktion f'(x), d.h es gilt f'' = (f')'
- Durch wiederholtes Differenzieren gelangt man schließlich zu den Ableitungen höherer Ordnung
- Zur besseren Lesbarkeit schreibt man für die n-**te Ableitung** für $n>3:f^{(n)}$
- Eine Funktion f(x) heißt n-mal differenzierbar, wenn die Ableitungen

$$f'(x), f''(x), f'''(x), \dots, f^{(n-1)}(x), f^{(n)}(x)$$

existieren.

Beispiel:

Die Funktion $f(x) = x^2 + 2$ ist für alle reellen Zahlen differenzierbar:

- Die erste Ableitung ist f'(x) = 2x.
- Für die zweite Ableitung berechnen wir den Grenzwert des Differenzenquotienten von f'(x):

$$f''(x) = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h} = \lim_{h \to 0} \frac{2(x+h) - 2x}{h} = \lim_{h \to 0} \frac{2h}{h} = 2.$$

■ Für die dritte Ableitung berechnen wir den Grenzwert des Differenzenquotienten von f''(x):

$$f'''(x) = \lim_{h \to 0} \frac{f''(x+h) - f''(x)}{h} = \lim_{h \to 0} \frac{2-2}{h} = 0.$$

■ Für alle höheren Ableitungen gilt: $f^{(n)} = 0$, für $n \ge 4$.

Übungsblatt 6

Aufgabe 5 (Tangente)

- (a) Gegeben sei die Funktion $f(x) = x^2 2x$:
 - (i) Bestimmen Sie die erste Ableitung f'(x) und die zweite Ableitung f''(x).
 - (ii) Bestimmen Sie die Gleichung der Tangente an f(x) durch den Punkt $(3|\dots)$ an die Funktion f

Kahoot

kahoot

Quiz