Diszkrét matematika 1

Gráfok

Mérai László merai@inf.elte.hu

Komputeralgebra Tanszék

2025 tavasz

Gráfok

Fák

Definíció

Egy G = (V, E) gráfot fának hívunk, ha

- összefüggő;
- körmentes.

Példa

Fák

Tétel

Egy G gráfra a következők ekvivalensek

- 1. *G* fa
- 2. G összefüggő, de bármely él elhagyásával kapott részgráf már nem
- 3. ha v és v' a G különböző csúcsai, akkor v-ből v'-be pontosan egy út vezet
- 4. G-nek nincs köre, de bármely él hozzáadásával kapott gráfban már van.

Azaz a fa élszám tekintetében optimális:

- él elhagyásával több komponensre esik
- él hozzáadásával kör keletkezik

Bizonyítás.

Bizonyítás menete: 1. \implies 2. \implies 3. \implies 4. \implies 1

Fák, bizonyítás 1/4

1. állítás $(1. \implies 2.)$

G fa $\implies G$ összefüggő, de bármely él elhagyásával kapott részgráf már nem.

Bizonyítás.

- G összefüggősége következik a fa definíciójából.
- bármely él elhagyásával kapott részgráf már nem összefüggő:

- Biz. indirekt.
- Tfh az e él (v és v' között) elhagyásával a gráf összefüggő marad.
- Ekkor az összefüggőség miatt van a részgráfban egy v, e₁, v₁, ..., e_k, v' út.
- Ez kiegészítve az e éllel egy kört kapunk.

Fák, bizonyítás 2/4

2. állítás $(2. \implies 3.)$

G összefüggő, de bármely él elhagyásával kapott részgráf már nem \implies ha ν és ν' a G különböző csúcsai, akkor ν -ből ν' -be pontosan egy út vezet

Bizonyítás.

- ullet G összefüggő \Longrightarrow v és v' között létezik séta
- körök elhagyásával létezik út
- út egyértelműsége: Biz. indirekt.
 - Tfh v és v' között több út is van: $v, e_1, v_1, e_2, \dots, v_k, e_k, v'$ ill., $v, f_1, u_1, f_2, \dots, u_\ell, f_\ell, v'$
 - A két út különbözik, legyen $r = \min\{i : v_i \neq u_i\}$ és
 - $s = \min\{i > r : v_i = u_j \text{ valamely } j > r\}$
 - Ekkor a v_{r-1} és v_s közötti két út segítségével kört kapunk.
 - A körön bármely él elhagyásával a gráf összefüggő marad.

Fák, bizonyítás 3/4

3. állítás (3. \Longrightarrow 4.)

Ha ν és ν' a G különböző csúcsai, akkor ν -ből ν' -be pontosan egy út vezet \Longrightarrow G-nek nincs köre, de bármely él hozzáadásával kapott gráfban már van

Bizonyítás.

- Biz.: indirekt (Logikai emlékeztető: $A \Rightarrow (B \land C) \Leftrightarrow (\neg B \lor \neg C) \Rightarrow \neg A$)
- 1. rész: tfh van kör ⇒ a körön két irányban haladva két különböző út ½.
- 2. rész: tfh $\{v,v'\}$ él hozzáadásával sem keletkezik kör $\Rightarrow v,v'$ között nem volt út \not

Fák, bizonyítás 4/4

4. állítás (4. ⇒ 1.)

 ${\it G}$ -nek nincs köre, de bármely él hozzáadásával kapott gráfban már van $\implies {\it G}$ fa

Bizonyítás.

- G körmentes közvetlenül következik
- G összefüggősége: Biz: indirekt

- Tfh nem összefüggő, pl. $v, v' \in V$ között nincs séta. Spec. $\{v, v'\} \not\in E$
- Ekkor az $e = \{v, v'\}$ él behúzásával a gráfban már van kör.
- Legyen ez $v, e, v', e_1, v_1, \dots, e_k, v$.
- Ekkor a $v', e_1, v_1, \dots, e_k, v$ egy út v' között $\mnoth{\cancel{\xi}}$

Ezzel bebizonyítottuk az **eredeti tételt** is: 1. \implies 2. \implies 3. \implies 4. \implies 1.