Amplifier Transistors NPN Silicon

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	V _{CBO}	75	Vdc
Emitter-Base Voltage	VEBO	6.0	Vdc
Collector Current — Continuous	IC	600	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

P2N2222A

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{ heta JA}$	200	°C/W
Thermal Resistance, Junction to Case	$R_{ heta JC}$	83.3	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage $(I_C = 10 \text{ mAdc}, I_B = 0)$	V(BR)CEO	40	_	Vdc	
Collector-Base Breakdown Voltage (IC = 10 μAdc, IE = 0)	V(BR)CBO	75	_	Vdc	
Emitter-Base Breakdown Voltage (IE = 10 μAdc, IC = 0)	V(BR)EBO	6.0	_	Vdc	
Collector Cutoff Current (VCE = 60 Vdc, VEB(off) = 3.0 Vdc)	ICEX	_	10	nAdc	
Collector Cutoff Current $(V_{CB} = 60 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 60 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$	ІСВО	_ _	0.01 10	μAdc	
Emitter Cutoff Current (VEB = 3.0 Vdc, IC = 0)	IEBO	_	10	nAdc	
Collector Cutoff Current (VCE = 10 V)	ICEO	_	10	nAdc	
Base Cutoff Current (VCE = 60 Vdc, VEB(off) = 3.0 Vdc)	IBEX	_	20	nAdc	

P2N2222A

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (Continued)

	Symbol	Min	Max	Unit	
ON CHARACTERISTICS					
DC Current Gain (IC = 0.1 mAdc, V (IC = 1.0 mAdc, V (IC = 10 mAdc, V (IC = 150 mAdc, V (IC = 150 mAdc, V (IC = 500 mAdc, V	hFE	35 50 75 35 100 50 40		_	
Collector-Emitter S (I _C = 150 mAdc, I (I _C = 500 mAdc, I	B = 15 mAdc)	VCE(sat)		0.3 1.0	Vdc
Base-Emitter Satur (I _C = 150 mAdc, I (I _C = 500 mAdc, I	B = 15 mAdc)	VBE(sat)	0.6 —	1.2 2.0	Vdc
SMALL-SIGNAL	CHARACTERISTICS				
Current-Gain — Ba (I _C = 20 mAdc, V ₀	andwidth Product(2) CE = 20 Vdc, f = 100 MHz)	fΤ	300	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E	= 0, f = 1.0 MHz)	C _{obo}	_	8.0	pF
Input Capacitance (VEB = 0.5 Vdc, I	C = 0, f = 1.0 MHz)	C _{ibo}	_	25	pF
	CE = 10 Vdc, f = 1.0 kHz) CE = 10 Vdc, f = 1.0 kHz)	h _{ie}	2.0 0.25	8.0 1.25	kΩ
Voltage Feedback Ratio (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz) (IC = 10 mAdc, VCE = 10 Vdc, f = 1.0 kHz)		h _{re}		8.0 4.0	X 10 ⁻⁴
	nt Gain /CE = 10 Vdc, f = 1.0 kHz) CE = 10 Vdc, f = 1.0 kHz)	h _{fe}	50 75	300 375	_
Output Admittance (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz) (IC = 10 mAdc, VCE = 10 Vdc, f = 1.0 kHz)		h _{oe}	5.0 25	35 200	μmhos
Collector Base Time (I _E = 20 mAdc, V ₀	rb′C _C	_	150	ps	
Noise Figure (I _C = 100 μAdc, V	NF	_	4.0	dB	
SWITCHING CHA	RACTERISTICS	•		•	•
Delay Time	(V _{CC} = 30 Vdc, V _{BE(off)} = -2.0 Vdc,	t _d	_	10	ns
Rise Time	I _C = 150 mAdc, I _{B1} = 15 mAdc) (Figure 1)	t _r	_	25	ns
Storage Time	(V _{CC} = 30 Vdc, I _C = 150 mAdc,	t _S	_	225	ns
Fall Time	I _{B1} = I _{B2} = 15 mAdc) (Figure 2)	tf	_	60	ns

^{1.} Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2.0%.

^{2.} f_T is defined as the frequency at which $|h_{fe}|$ extrapolates to unity.

SWITCHING TIME EQUIVALENT TEST CIRCUITS

Figure 1. Turn-On Time

Figure 2. Turn-Off Time

Figure 3. DC Current Gain

Figure 4. Collector Saturation Region

P2N2222A

Figure 5. Turn-On Time

300

VCC = 30 V

500

 $I_C/I_B = 10$

Figure 7. Frequency Effects

Figure 8. Source Resistance Effects

Figure 9. Capacitances

Figure 10. Current-Gain Bandwidth Product

Figure 11. "On" Voltages

Figure 12. Temperature Coefficients

PACKAGE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
- DIMENSION F APPLIES BETWEEN P AND L. DIMENSION F APPLIES BETWEEN F AND L.
 DIMENSION D AND J APPLY BETWEEN L AND K
 MINIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIM	MILLIMETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.175	0.205	4.45	5.20	
В	0.170	0.210	4.32	5.33	
С	0.125	0.165	3.18	4.19	
D	0.016	0.022	0.41	0.55	
F	0.016	0.019	0.41	0.48	
G	0.045	0.055	1.15	1.39	
Н	0.095	0.105	2.42	2.66	
J	0.015	0.020	0.39	0.50	
K	0.500		12.70		
L	0.250		6.35		
N	0.080	0.105	2.04	2.66	
Р		0.100		2.54	
R	0.115		2.93		
٧	0.135	_	3.43		

STYLE 17: PIN 1. COLLECTOR 2. BASE 3. EMITTER

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical parameters, including or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.