Результаты моделирования реальных динамических сетей

- Описание задачи
- Статистка по сетям
- Результаты по каждой сети
 - Facebook wall
 - Yahoo messages
 - Enron mail
 - HepPh citations
 - Stack Overflow user marks post
 - AskUbuntu
 - SuperUser
 - Amazon

Описание задачи

- Выбирается реальная динамическая сеть.
- Выбираются диапазоны узлов, внутри которых будут вычисляться средние значения средней степени соседей и стандартные отклонения.
- Моделируется динамическая сеть. На каждой итерации добавляется ребро и узлы: узел добавляется в сеть, если он принадлежит ребру, и узла с данным номером еще нет в сети.
- Когда количество узлов достигает определенного значения, вычисляется среднее значение средних степеней соседей и стандартное отклонение.

Входные данные динамических сетей взяты из онлайн-репозиториев.

Статистка по сетям

Название	Суть	Ссылка	Узлы	Рёбра	std
Facebook wall	Пользователь А оставил комментарий у пользователя Б	Ссылка	42.4K	877K	Возрастает

Название	Суть	Ссылка	Узлы	Рёбра	std
Yahoo messages	Нет описания и источника сети	Ссылка	100K	3.2M	Возрастает
Enron mail	Сеть писем компании Enron	Ссылка	87K	1.1M	Возрастает
HepPh citations	Сеть цитирований HepPh	Ссылка	28.1K	4.6M	Возрастает
Stack Overflow user marks posts	Двудольный граф. Сайт StackOverflow. Пользователь А добавил запись Б в желаемое.	Ссылка	545.2K	1.3M	Возрастает
AskUbuntu	Сайт AskUbuntu. Пользователь А ответил, прокомментировал запись/комментарий пользователя Б.	Ссылка	159K	964K	Возрастает
SuperUser	Сайт SuperUser. Пользователь А ответил, прокомментировал запись/комментарий пользователя Б.	Ссылка	194K	1.4M	Возрастает
Amazon	Двудольный граф. Пользователь рекомендует товар	Ссылка	2.1M	5.8M	Возрастает

Результаты по каждой сети

Далее приведены подробные результаты для каждой реальной сети. Стоит заметить, что как и в случайных сетях t= количество узлов в сети, но между двумя добавлениями узлов может быть добавлено разное количество рёбер. С

ростом сети количество добавляемых рёбер на каждый узел значительно повышается.

Первый ряд:

- Левый график усредненная средняя степень соседей, аналог мат.
 ожидания средней степени для случайных сетей. Вычислялось для группы из 30 узлов на разных итерациях.
- Центральный график стандартное отклонение средней степени соседей.
- Правый график коэффициент вариации (отношение стандартного отклонения к среднему)

Второй ряд:

- Левый график распределение коэффициента ANND по степеням узлов (log-log)
- Центральный график распределение дисперсии средних степеней по степеням узлов (log-log)
- Правый график распределение коэффициента вариации по степеням узлов (линейная шкала)

Facebook wall

Yahoo messages

Enron mail

HepPh citations

Stack Overflow user marks post

AskUbuntu

SuperUser

Amazon

