Projet Pi2

Laure Bignand Paul Montassier Guillaume Marani

Introduction

Urines/selles : sources de données inexploitées

"Smart-toilet" existent déjà mais

- technologie: urine dipstick + Image analysis (selle)
- Prototype/marginale

Parties prenantes au projet

David Perlmutter : réunion hebdomadaire

Arnaud Buch : expertise en Laser IR + nous a fourni éléments chimiques

Pascale Gemeiner : Laser Raman

Un double objectif:

- Évaluer l'utilisation de la technologie du laser Raman pour faire de l'analyse d'urine
- Trouver un cas d'usage justifiant prix/usage de toilette intelligente

objectif reformuler

- recherche dans la littérature
- expérience en labo
- recherches de cas d'usage viable

Plan

I. Architecture de la Solution

II. Analyse d'urine : état de l'art

III. La technologie du laser Raman

IV. La crédibilité de la piste Raman

L'architecture de la solution

Procédure

Analyse d'urine: état de l'art

Les Bandelettes Urinaires

Les Bandelettes Urinaires

- Faux résultats
- Consommables
- Intervention humaine
- Discontinue

PARAMETRE	PRINCIPE DE LA METHODE	VALEUR SEUIL	PATHOLOGIE
Leucocytes	Mise en évidence de l'activité des estérases dans les leucocytes granulaires	10 leucocytes / µL	Infections
Nitrites	Mise en évidence des nitrites obtenus par l'activité des nitrate-réductases de certains germes	0,3 mg/L (7 μmol/L)	Infections à Entérobactéries
рН	Mise en évidence du pH par la présence de plusieurs indicateurs chromogènes	5,0	Calculs rénaux
Protéines	Mise en évidence de l'albumine grâce au virage de couleur d'un indicateur de pH	60 mg/L (albumine)	Dysfonctionnement rénal
Glucose	Mise en évidence du glucose par la méthode glucose-oxydase / peroxydase	0,4 g/L (2,2 mmol/L)	Diabète
Corps cétoniques	Mise en évidence des corps cétoniques (acide acétylacétique et acétone) par le principe de la réaction colorimétrique de Légal	0,05 g/L (0,5 mmol/L)	Diabète
Urobilinogène	Mise en évidence de l'urobilinogène grâce à un sel de diazonium qui forme un dérivé azoïque rouge	4 mg/L (7 μmol/L)	Maladies du foie et des voies biliaires
Bilirubine	Mise en évidence de la bilirubine grâce à un sel de diazonium qui forme un dérivé azolque coloré	84 mg/L (14 µmol/L)	Maladies du foie et des voies biliaires
Sang (2 échelles : 1 pour érythrocytes, 1 pour hémoglobine)	Mise en évidence de l'hémoglobine et de la myoglobine par l'activité de la peroxydase et le virage d'un indicateur	érythrocytes > 5 Ery/µL	
		hémoglobine, > 10 Ery/µL érythrocytes lysés, myoglobine	Calculs rénaux, tumeurs
Poids spécifique	Mesure de la densité par détection de la concentration des ions de l'urine	1,000 kg/L	Dysfonctionnement rénal

La technologie du laser Raman

La diffusion Raman

Niveau d'énergie des photons dans la lumière diffusée

Pourquoi la technologie Raman?

•pas de préparation d'échantillon nécessaires

•des mesures à distance

Encore très cher

non destructrice

Contraintes dues à la fluorescence

rapide

Pas forcément adaptée à de faibles concentrations

La technologie Raman exaltée de surface

Technologie SERS (surface enhanced Raman scattering)

La crédibilité de la piste Raman

Le laser utilisé

Laser Raman simple

longueur d'onde 630 HZ

Les espèces à détecter

Elément	Concentration dans l'urine	Concentration expérience	Rapport
urine	1	/	/
glucose	1,26g/L	Solide ou 2g/L	/
urée	10g/L	Solide ou 10g/L	/
albumine	40mg/L	Solide ou 1g/L	*100
acétone	0,5mmol/L	Solide ou 0,13mol/L	*1000
nitrite	0,3mg/L	Solide	

Résultats

Littérature scientifique

Raman simple en infrarouge

Raman SERS infrarouge

Cassiano Junior Saatkamp, Maurício Liberal de Almeida, Jeyse Aliana Martins Bispo, Antonio Luiz Barbosa Pinheiro, Adriana Barrinha Fernandes, and Landulfo Silveira Jr. "Quantifying creatinine and urea in human urine through Raman spectroscopy aiming at diagnosis of kidney disease," Journal of Biomedical Optics 21(3), 037001 (1 March 2016). https://doi.org/10.1117/1.JBO.21.3.037001

conclusion suites aux expériences

• Temps d'analyse variable (1 seconde minimum pour nos expériences)

Pas de phénomène de fluorescence dans l'urine

Appareil volumineux

• technologie Raman simple insuffisante (expérience + littérature)

Conclusions intermédiaires et suite du projet

Conclusions intermédaires :

- Évaluer l'utilisation de la technologie du laser Raman pour faire de l'analyse d'urine
 - Piste Raman simple rejeté

- Trouver un cas d'usage justifiant prix/usage de toilette intelligente :
 - rejet de greffe?

Huang, Z., Feng, S., Guan, Q. et al. Correlation of surface-enhanced Raman spectroscopic fingerprints of kidney transplant recipient urine with kidney function parameters. sci Rep 11, 2463 (2021). https://doi.org/10.1038/s41598-021-82113-7

Suite du projet

3 Pistes possibles pour la suite :

- Utiliser un Laser Raman SERS
- Changer la technologie
- Changer le cas d'usage

Si on conserve le cas d'usage : rencontre médecin pour évaluer la piste rejet de greffe