Bài 2. Hai đường thẳng vuông góc

A. Lý thuyết.

I. Tích vô hướng của hai vecto trong không gian.

- 1. Góc giữa hai vecto trong không gian.
- **Định nghĩa.** Trong không gian, cho \vec{u} ; \vec{v} là hai vecto khác vecto- không. Lấy một điểm A bất kì, gọi B và C là hai điểm sao cho $\overrightarrow{AB} = \vec{u}$; $\overrightarrow{AC} = \vec{v}$. Khi đó, ta gọi góc BAC ($0^0 \le BAC \le 180^0$) là góc giữa hai vecto \vec{u} ; \vec{v} trong không gian.

Kí hiệu là $(\vec{u}; \vec{v})$.

- 2. Tích vô hướng của hai vecto trong không gian.
- Định nghĩa:

Trong không gian có hai vecto \vec{u} ; \vec{v} đều khác vecto- không . Tích vô hướng của hai vecto \vec{u} ; \vec{v} là một số, kí hiệu là \vec{u} . \vec{v} , được xác định bởi công thức:

$$\vec{u}.\vec{v} = |\vec{u}|.|\vec{v}|.cos(\vec{u};\vec{v})$$

Trường hợp $\vec{u} = \vec{0}$ hoặc $\vec{v} = \vec{0}$ ta quy ước: $\vec{u} \cdot \vec{v} = 0$.

Ví dụ 1. Cho hình chóp S.ABC có SA= SB= SC và ASB = BSC = CSA . Hãy xác định góc giữa cặp vector \overrightarrow{SC} và \overrightarrow{AB} ?

Lời giải:

Ta có
$$\overrightarrow{SC}.\overrightarrow{AB} = \overrightarrow{SC}.$$
 $\overrightarrow{SB} - \overrightarrow{SA} = \overrightarrow{SC}.\overrightarrow{SB} - \overrightarrow{SC}.\overrightarrow{SA}$

$$= |\overrightarrow{SC}|.|\overrightarrow{SB}|.\cos \overrightarrow{SC}.\overrightarrow{SB} - |\overrightarrow{SC}|.|\overrightarrow{SA}|.\cos \overrightarrow{SC}.\overrightarrow{SA}$$

$$= SC.SB.\cos BSC - SC.SA.\cos ASC$$

$$Vi SA = SB = SC và ASB = BSC = CSA$$

$$\Rightarrow \overrightarrow{SC}.\overrightarrow{AB} = 0$$

Ta lại có:
$$\overrightarrow{SC}.\overrightarrow{SA} = |\overrightarrow{SC}|.|\overrightarrow{SA}|.\cos \overrightarrow{SC}, \overrightarrow{SA}$$

 $\Rightarrow \cos \overrightarrow{SC}, \overrightarrow{SA} = 0$

Do đó
$$\overrightarrow{SC}$$
; $\overrightarrow{AB} = 90^{\circ}$.

II. Vecto chỉ phương của đường thẳng.

1. Định nghĩa.

Nếu a khác vecto - không được gọi là vecto chỉ phương của đường thẳng d nếu giá của vecto a song song hoặc trùng với đường thẳng d.

2. Nhận xét.

- a) Nếu \vec{a} là vecto chỉ phương của đường thẳng d thì vecto \vec{ka} ($\vec{k} \neq 0$) cũng là vecto chỉ phương của d.
- b) Một đường thẳng d trong không gian hoàn toàn được xác định nếu biết một điểm A thuộc đường thẳng d và một vecto chỉ phương của nó.
- c) Hai đường thẳng song song với nhau khi và chỉ khi chúng là hai đường thẳng phân biệt và có hai vecto chỉ phương cùng phương.

III. Góc giữa hai đường thẳng trong không gian.

1. Định nghĩa:

Góc giữa hai đường thẳng a và b trong không gian là góc giữa hai đường thẳng a' và b' cùng đi qua một điểm và lần lượt song song với a và b.

2. Nhận xét.

- a) Để xác định góc giữa hai đường thẳng a và b ta có thể lấy điểm O thuộc một trong hai đường thẳng đó rồi vẽ một đường thẳng qua O và song song với đường thẳng còn lại.
- b) Nếu ủ là vecto chỉ phương của đường thẳng a và \vec{v} là vecto chỉ phương của đường thẳng b và $(\vec{u}; \vec{v}) = \alpha$ thì góc giữa hai đường thẳng a và b bằng α nếu $0^0 \le \alpha \le 90^0$ và bằng $180^0 \alpha$ nếu $90^0 < \alpha \le 180^0$.

Nếu a và b song song hoặc trùng nhau thì góc giữa chúng bằng 0° .

Ví dụ 2. Cho hình lập phương ABCD.A'B'C'D'. Tính góc giữa AC và DA' Lời giải:

Gọi a là độ dài cạnh hình lập phương.

Khi đó, tam giác AB'C đều (AB' = B'C= CA = $a\sqrt{2}$)

Do đó B'CA = 60° .

Lại có, DA' song song CB' nên

 $(AC; DA') = (AC; CB') = B'CA = 60^{\circ}.$

IV. Hai đường thẳng vuông góc.

1. Định nghĩa.

Hai đường thẳng được gọi là vuông góc nếu góc giữa chúng bằng 90°.

Ta kí hiệu hai đường thẳng a và b vuông góc với nhau là a \perp b.

2. Nhận xét

- a) Nếu \vec{u} ; \vec{v} lần lượt là các vecto chỉ phương của hai đường thẳng a và b thì a \perp b $\Leftrightarrow \vec{u}.\vec{v}=0$.
- b) Cho hai đường thẳng song song. Nếu một đường thẳng vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng kia.
- c) Hai đường thẳng vuông góc với nhau có thể cắt nhau hoặc chéo nhau.

Ví dụ 3. Cho tứ diện ABCD có AB= AC= AD và

BAC = BAD = 60°; CAD = 90°. Gọi I và J lần lượt là trung điểm của AB và CD. Chứng minh hai đường thẳng AB và IJ vuông góc với nhau.

Lời giải:

Xét tam giác ICD có J là trung điểm đoạn CD $\Rightarrow \overrightarrow{IJ} = \frac{1}{2} \overrightarrow{IC} + \overrightarrow{ID}$.

Tam giác ABC có AB = AC và BAC= 60° nên tam giác ABC đều \Rightarrow CI \perp AB. (1)

Tương tự, ta có tam giác ABD đều nên DI \perp AB. (2)

Từ (1) và (2) ta có:

$$\overrightarrow{IJ}.\overrightarrow{AB} = \frac{1}{2} \overrightarrow{IC} + \overrightarrow{ID} .\overrightarrow{AB} = \frac{1}{2} \overrightarrow{IC}.\overrightarrow{AB} + \frac{1}{2} \overrightarrow{ID}.\overrightarrow{AB} = 0$$
$$\Rightarrow \overrightarrow{IJ} \perp \overrightarrow{AB} \Rightarrow \overrightarrow{IJ} \perp AB.$$

B. Bài tập tự luyện

Bài 1. Cho tứ diện ABCD có AB = CD = a, IJ = $\frac{a\sqrt{3}}{2}$ (I; J lần lượt là trung điểm của BC và AD). Tính số đo góc giữa hai đường thẳng AB và CD:

Lời giải:

Gọi M; N lần lượt là trung điểm AC; BD. Ta có:

$$\begin{cases} MI = NI = \frac{1}{2}AB = \frac{1}{2}CD = \frac{a}{2} \Rightarrow MINJ \text{ là hình thoi.} \\ MI // AB // CD // NI \end{cases}$$

Gọi O là giao điểm của MN và IJ.

Ta có: MIN = 2MIO.

Xét tam giác MIO vuông tại O, ta có:

$$\cos \text{MIO} = \frac{\overline{\text{IO}}}{\overline{\text{MI}}} = \frac{\frac{a\sqrt{3}}{4}}{\frac{a}{2}} = \frac{\sqrt{3}}{2} \Rightarrow \overline{\text{MIO}} = 30^{\circ} \Rightarrow \overline{\text{MIN}} = 60^{\circ}.$$

Mà: $(AB,CD) = (IM,IN) = MIN = 60^{\circ}$.

Bài 2. Cho tứ diên ABCD có BA = CD. Goi I; J; E; F lần lượt là trung điểm của AC; BC; BD; AD. Tính góc (IE; JF) Lời giải:

Ta có IF là đường trung bình của tam giác ACD
$$\Rightarrow$$

$$\begin{cases} IF /\!\!/ CD \\ IF = \frac{1}{2}CD \end{cases} (1)$$
 Lại có JE là đường trung bình của tam giác BCD \Rightarrow
$$\begin{cases} JE /\!\!/ CD \\ JE = \frac{1}{2}CD \end{cases} (2)$$

Lại có JE là đường trung bình của tam giác BCD
$$\Rightarrow$$

$$\begin{cases}
JE //CD \\
JE = \frac{1}{2}CD
\end{cases} (2)$$

Từ (1) và (2) suy ra : IF = JE và IF// JE. Suy ra, tứ giác IJEF là hình bình hành.

Mặt khác:
$$\begin{cases} IJ = \frac{1}{2}AB \\ JE = \frac{1}{2}CD \end{cases}$$
. Mà $AB = CD$ nên $IJ = JE$.

Do đó IJEF là hình thoi.

Suy ra (IE; JF) = 90° .

Bài 3. Cho tứ diện đều ABCD. Số đo góc giữa hai đường thẳng AB và CD bằng:

Lời giải:

Gọi M là trung điểm của CD.

Tam giác ACD và tam giác BCD là tam giác đều (vì ABCD là tứ diện đều) có AM; BM là hai đường trung tuyến ứng với cạnh CD nên đồng thời là đường cao.

 $\Rightarrow \overrightarrow{CD}.\overrightarrow{AM} = 0; \overrightarrow{CD}.\overrightarrow{MB} = 0;$

Do đó $\overrightarrow{CD}.\overrightarrow{AB} = \overrightarrow{CD}.\overrightarrow{AM} + \overrightarrow{MB} = \overrightarrow{CD}.\overrightarrow{AM} + \overrightarrow{CD}.\overrightarrow{MB} = 0.$

Suy ra $\overrightarrow{AB} \perp \overrightarrow{CD}$ nên số đo góc giữa hai đường thẳng AB và CD bằng 90°