Newton-Cooling Tests

CSIRO

August 9, 2016

Contents

1 Newton cooling from a bar

3

1 Newton cooling from a bar

These tests demonstrate that MOOSE behaves correctly when a simulation contains a sink. The sink is a piecewise linear function of pressure.

Darcy's equation for (single-phase) flow through a fully saturated medium without gravity and without sources is

$$\frac{\partial}{\partial t}\phi\rho = \nabla_i \left(\frac{\rho\kappa_{ij}}{\mu}\nabla_j P\right) , \qquad (1.1)$$

with the following notation:

- ϕ is the medium's porosity;
- ρ is the fluid density;
- κ_{ij} is the permeability tensor;
- μ is the fluid viscosity;
- $\partial/\partial t$ and ∇_i denote the time and spatial derivatives, respectively.

Using $\rho \propto \exp(P/B)$, where B is the fluid bulk modulus, Darcy's equation becomes

$$\frac{\partial}{\partial t}\rho = \nabla_i \alpha_{ij} \nabla_j \rho , \qquad (1.2)$$

with

$$\alpha_{ij} = \frac{\kappa_{ij}B}{\mu\phi} \ . \tag{1.3}$$

Here the porosity and bulk modulus are assumed to be constant in space and time.

Consider the one-dimensional case where a bar sits between x=0 and x=L with initial pressure distribution so $\rho(x,t=0)=\rho_0(x)$. Maintain the end x=0 at constant pressure, so that $\rho(x=0,t)=\rho_0(0)$. At the end x=L, prescribe a sink flux

$$\left. \frac{\partial \rho}{\partial x} \right|_{x=L} = -C \left(\rho - \rho_e \right)_{x=L} , \qquad (1.4)$$

where ρ_e is a fixed quantity ("e" stands for "external"), and C is a constant conductance. This corresponds to the flux

$$\left. \frac{\partial P}{\partial x} \right|_{x=L} = -CB \left(1 - e^{(P_e - P)/B} \right)_{x=L} , \qquad (1.5)$$

which can easily be coded into a MOOSE input file: the flux is $\rho \kappa \nabla P/\mu = -CB\kappa (e^{P/B} - e^{P_e/B})/\mu$, and this may be represented by a piecewise linear function of pressure.

The solution of this problem is well known and is

$$\rho(x,t) = \rho_0(0) - \frac{\rho_0(0) - \rho_e}{1 + LC}Cx + \sum_{n=1}^{\infty} a_n \sin\frac{k_n x}{L} e^{-k_n^2 \alpha t/L^2} , \qquad (1.6)$$

where k_n is the n^{th} positive root of the equation $LC \tan k + k = 0$ (k_n is a little bigger than $(2n-1)\pi/2$), and a_n is determined from

$$a_n \int_0^L \sin^2 \frac{k_n x}{L} dx = \int_0^L \left(\rho_0(x) - \rho_0(0) + \frac{\rho_0(0) - \rho_e}{1 + LC} Cx \right) \sin \frac{k_n x}{L} dx , \qquad (1.7)$$

which may be solved numerically (Mathematica is used to generate the solution in Figure 1.1).

The problem is solved in MOOSE using the following parameters:

Bar length	$100\mathrm{m}$
Bar porosity	0.1
Bar permeability	$10^{-15}{\rm m}^2$
Gravity	0
Water density	$1000 \mathrm{kg.m^{-3}}$
Water viscosity	$0.001\mathrm{Pa.s}$
Water bulk modulus	$1 \mathrm{MPa}$
Initial porepressure P_0	2 MPa
Environmental pressure P_e	0
Conductance C	$0.05389\mathrm{m}^{-1}$

This conductance is chosen so at steadystate $\rho(x=L) = 2000 \,\mathrm{kg.m^{-3}}$.

The problem is solved using 1000 elements along the x direction ($L=100\,\mathrm{m}$), and using 100 time-steps of size $10^6\,\mathrm{s}$. Using fewer elements or fewer timesteps means the agreement with the theory is marginally poorer. Two tests are performed: one with transient flow, and one using the steadystate solver. In this case the initial condition is $P=2-x/L\,\mathrm{MPa}$, since the uniform $P=2\,\mathrm{MPa}$ does not converge. The results are shown in Figure 1.1.

Figure 1.1: The porepressure in the bar at $t=10^8\,\mathrm{s}$, and at steady state. The pressure at x=0 is held fixed, while the sink is applied at $x=100\,\mathrm{m}$. MOOSE agrees well with theory demonstrating that piecewise-linear sinks/sources and single-phase Darcy fluid flow are correctly implemented in MOOSE.