

Method	Buffer size	Average Acc (†)	Forgetting (†)
LRCIL [42]		76.39*	-4.39*
iCaRL [40]	100/class	79.76*	-8.73*
LUCIR [20]		82.53*	-5.34*
LRCIL [42]		74.01*	-8.62*
iCaRL [40]		73.98*	-14.50*
LUCIR [20]	50/class	80.77*	-7.85*
DyTox [14]		86.21	-1.55
EWC [29]		50.59	-42.62
LwF [35]		60.94	-13.53
DyTox [14]	0/class	51.27	-45.85
L2P [55]	U/Class	61.28	-9.23
S-iPrompts (ours)		74.51	<u>-1.30</u>
S-liPrompts (ours)		88.65	-0.69
Upper-bound (S-iPrompts)	-	85.50	1=
Upper-bound (S-liPrompts)	_	91.91	-

Method	Buffer size	Average Acc (†)
ER [8]		$80.10 \pm 0.56 *$
GDumb [44]		$74.92 \pm 0.25 *$
BiC [56]		$79.28 \pm 0.30 *$
DER++ [4]	50/class	$79.70 \pm 0.44 *$
Co^2L [6]		$79.75 \pm 0.84 *$
DyTox [14]		79.21 ± 0.10
L2P [55]		$81.07 \pm 0.13*$
EWC [29]		74.82±0.60*
LwF [35]		$75.45 \pm 0.40 *$
L2P [55]	0/class	$78.33 \pm 0.06 *$
S-iPrompts (ours)		83.13 ± 0.51
S-liPrompts (ours)		89.06 ±0.86
Upper-bound (S-iPrompts)	-	84.01±0.53
Upper-bound (S-liPrompts)	-	93.19 ± 0.21

Method	Buffer size	Average Acc (†)
DyTox [14]	50/class [†]	62.94
EWC [29]		47.62
LwF [35]		49.19
SimCLR [10]-CaSSLe [17]		44.2*
BYOL [18]-CaSSLe [17]		49.7*
Barlow Twins [59]-CaSSLe [17]	0/-1	48.9*
Supervised Contrastive [27]-CaSSLe [17]	0/class	50.9*
L2P [55]		40.15
S-iPrompts (ours)		50.62
S-liPrompts (ours)		67.78
Upper-bound (S-iPrompts)	-	63.22
Upper-bound (S-liPrompts)	-	64.08

CDDB continual deepfake detection 5 domains GauGAN, BigGAN, WildDeepfake, WhichFaceReal, and SAN respectively 27000 images

CORe50 continual object recognition It has 50 categories from 11 distinct domains. The continual learning setting uses 8 domains 120000

Domain Net

. Images from Domain Net is split into 6 domains 345 categories and roughly 600,000 images

[1904.07734] Three scenarios for continual learning (arxiv.org)

Task IL

- 1.Each task has its own task-ID number.
- 2.The model can identify which task the current input data is from, making it the simplest scenario of continual learning.

Split MNIST 包含 5 个 task, task-ID 及 task 分别为 ID=1 $\{0,1\}$, ID=2 $\{2,3\}$, ID=3 $\{4,5\}$, ID=4 $\{6,7\}$, ID=5 $\{8,9\}$ 。给出 0 ~ 9 中的任意一个样本 x,首先需要给出 task-ID 向模型指明现在的预测任务是什么(比如给出 task-ID=3),那么模型会从 ID=3 $\{4,5\}$ 这个任务中对样本 x 进行预测。针对 Task-IL 场景的连续学习模型能够为每个任务都训练一个专门的预测模块,典型架构就是 multi-headed 输出层。在 multi-headed 输出层每个任务都有专属自己的 output head,而网络较浅层(一般是特征提取层)通常是任务间共享的。

Domain IL

- 1.In Domain-IL, the model is not provided with a task-ID. Instead, it directly makes predictions on the incoming samples
- 2. In Domain-IL scenarios, tasks typically have the same structure but different input distributions (i.e., the task objectives remain constant, but the distribution of input data varies)

MNIST 和 Permuted MNIST 包含 $0 \sim 9$ 所有数字。使用 MNIST 作为第一个任务,预测目标为 $0 \sim 9$; 对 MNIST 进行 permutation,得到 Permuted MNIST 作为第二个任务,预测目标仍为 $0 \sim 9$; 第三、第四 ··· 任务均基于 MNIST 进行不同的 permutation,这些任务的输入分布不同,但学习目标都是对样本 x 进行 $0 \sim 9$ 的预测。

Scenario	Difference between D_{i-1} and D_i $P(X_{i-1}) \neq P(X_t)$ $P(Y_{i-1}) \neq P(Y_i)$ $\{Y_{i-1}\} \neq \{Y_i\}$		Task-ID	Online	
Task Incremental Class Incremental	/	✓ ✓	✓	Train & Test No	No Optional
Domain Incremental	/			No	Optional

Class IL

- 1.Class-IL requires the model to infer which task the to-be-predicted sample x belongs to, and make predictions on x accordingly.
- 2. Class-IL models typically use a single-headed structure, meaning that predictions for all tasks utilize the same output layer.

Split MNIST 将数字 0~9 划分为 5 个任务,分别为 {0,1}, {2,3}, {4,5}, {6,7}, {8,9}。给出 0~9 中的任意一个样本 x, 模型需要预测出这是"数字几"。预测"数字几"这个目标其实包含了两部分,模型要预测出现在是哪个任务(推断 task-ID)并在该任务中做出样本的正确分类。