Programación Funcional en Haskell

Paradigmas de Lenguajes de Programación

Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

21 de agosto de 2018

Ejercicio: definir las siguientes funciones

- pares :: [(Int, Int)], una lista (infinita) que contenga todos los pares de números naturales (sin repetir).
- triplas :: [(Int, Int, Int)], una lista (infinita) que contenga todas las triplas de números naturales (sin repetir).

Un poco más difícil

```
listasQueSuman :: Int -> [[Int]]
```

que, dado un número natural n, devuelve todas las listas de enteros mayores o iguales que 1 cuya suma sea n

```
listasPositivas :: [[Int]]
```

que contenga todas las listas finitas de enteros mayores o iguales que 1.

Generación infinita

Para resolver en el aire

Definir las siguientes funciones sin usar recursión explícita:

- negar :: [[Char]] -> [[Char]], que, dada una lista de palabras, le agrega "in" adelante a todas. Por ejemplo negar [''util'', ''creible''] ->> [''inutil'', ''increible'']
- sinVacías :: [[a]] -> [[a]], que, dada una lista de listas, devuelve las que no son vacías (en el mismo orden).

Ahora sí

Definir las siguientes funciones:

- all :: (a -> Bool) -> [a] -> Bool, que decide si todos los elementos de una lista cumplen una cierta propiedad.
- concat :: [[a]] -> [a], que dada una lista de listas, devuelve la lista que resulta de concatenarlas en orden

¿Qué esquema de recursión podemos usar en estos casos?

FoldR

Generación infinita

```
foldr ::(a -> b -> b) -> b -> [a] -> b

foldr f z [] = z

foldr f z (x:xs) = f x (foldr f z xs)
```

La función foldr nos permite realizar recursión estructural sobre una lista.

O, dicho de otra forma, la función foldr

- Toma una función que representa el paso recursivo y un valor que representa el caso base.
- Y nos devuelve una función que sabe como reducir listas de a a un valor b.

Esquemas de recursión sobre listas: FoldR

FoldR

Generación infinita

```
foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f z [] = z

foldr f z (x:xs) = f x (foldr f z xs)
```

¿Cómo funciona?

```
suma xs = foldr (+) 0 xs
> suma [1,2,3]
---> foldr (+) 0 [1,2,3]
---> 1 + (foldr (+) 0 [2,3])
---> 1 + (2 + (foldr (+) 0 [3]))
---> 1 + (2 + (3 + (foldr (+) 0 [])))
---> 1 + (2 + (3 + 0))
---> 1 + (2 + 3)
---> 1 + 5
---> 6
```

Notar que el primer (+) que se puede resolver es entre el último elemento de la lista y el caso base del foldr. Por esta razón decimos que el foldr acumula el resultado desde la derecha.

Esquemas de recursión sobre listas: FoldR

FoldR

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
```

Definir utilizando foldr

- longitud :: [a] -> Int
- producto :: [Int] -> Int
- concat :: [[a]] -> [a]
- all :: (a -> Bool) -> [a] -> Bool
- map :: (a -> b) -> [a] -> [b]
- filter :: (a -> Bool) ->[a] -> [a]

Esquemas de recursión sobre listas: FoldL

La función **fold**1 es muy similar a **fold**r pero *acumula* desde la **izquierda**. Se define de la siguiente forma:

```
FoldL

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f z [] = z

foldl f z (x : xs) = foldl f (f z x) xs
```

¿Cómo funciona?

Generación infinita

```
suma xs = foldl (+) 0 xs
> suma [1,2,3]
---> foldl (+) 0 [1,2,3]
---> foldl (+) (0 + 1) [2,3]
---> foldl (+) ((0 + 1) + 2) [3]
---> foldl (+) (((0 + 1) + 2) + 3) []
---> (((0 + 1) + 2) + 3)
---> ((1 + 2) + 3)
---> 6
```

Notar que el primer (+) que se puede resolver es entre el primer elemento de la lista y el caso base del foldl.

Esquemas de recursión sobre listas: FoldL

FoldL

```
foldl :: (b -> a -> b) -> b -> [a] -> b
foldl f z [] = z
foldl f z (x : xs) = foldl f (f z x) xs
```

Definir utilizando foldl

- producto :: [Int] -> Int
- reverso :: [a] -> [a]

Esquemas de recursión sobre listas: FoldR, FoldL y las listas infinitas

¿Qué sucede con las listas infinitas al usar foldr o foldl?

Usando foldr

```
suma [1..]
---> foldr (+) 0 [1..]
---> 1 + (foldr (+) 0 [2..])
---> 1 + (2 + (foldr (+) 0 [3..]))
---> 1 + (2 + (3 + (foldr (+) 0 [4..])))
```

Usando foldl

```
suma [1..]
---> foldl (+) 0 [1..]
---> foldl (+) (0 + 1) [2..]
---> foldl (+) ((0 + 1) + 2) [3..]
---> foldl (+) (((0 + 1) + 2) + 3) [4..]
```

Esquemas de recursión sobre listas: FoldR, FoldL y las listas infinitas

¿Qué sucede con las listas infinitas al usar foldr o foldl?

Usando foldr

```
all even [0..]
---> foldr (\x r -> even x && r) True [0..]
---> even 0 && (foldr (\x r -> even x && r) True [1..])
---> True && (foldr (\x r -> even x && r) True [1..])
---> foldr (\x r -> even x && r) True [1..]
---> even 1 && (foldr (\x r -> even p x && r) True [2..])
---> False && (foldr (\x r -> even x && r) True [2..])
```

Usando foldl

```
all even [0..]
---> foldl (\a x -> even x && a) True [0..]
-->* foldl (\a x -> even x && a) (even 0 && True) [1..]
-->* foldl (\a x -> even x && a) (even 1 && (even 0 && True)) [2..]
-->* foldl (...) (even 2 && (even 1 && (even 0 && True))) [3..]
-->* foldl (...) (even 3 && (even 2 && (...))) [4..]
*: No es exactamente el orden en el que reduciría Haskell (; por qué?) pero el ejemplo vale igual.
```

Esquemas de recursión estructural sobre listas

Para situaciones en las cuales no hay un caso base claro (ej: no existe el neutro), tenemos las funciones: foldr1 y foldl1. Permiten hacer recursión estructural sobre listas sin definir un caso base:

- foldr1 toma como caso base el último elemento de la lista.
- foldl1 toma como caso base el primer elemento de la lista.

Para ambas, la lista no debe ser vacía.

Definir las siguientes funciones

```
■ last :: [a] -> a
```

■ maximum :: Ord a => [a] -> a

¿Qué computan estas funciones?

Generación infinita

```
f1 :: [Bool] -> Bool
f1 = foldr (&&) True

f2 :: [a] -> [a]
f2 = foldr (:) []

f3 :: [a] -> [a] -> [a]
f3 xs ys = foldr (:) ys xs

f4 :: [a] -> [a]
f4 = foldl (flip (:)) []
```

¿Se puede escribir la función insertarOrdenado :: Ord a => a -> [a] -> [a] usando foldr?

Recursión primitiva

FoldR

Generación infinita

```
recr ::(a -> [a] -> b -> b) -> b -> [a] -> b
recr _ z [] = z
recr f z (x:xs) = f x xs (recr f z xs)
```

¿Cómo se puede escribir la función

insertarOrdenado :: Ord a => a -> [a] -> [a] usando recr?

¡Las difíciles!

Generación infinita

Sin usar recursión explícita:

```
pertenece :: Eq a => a -> [a] -> Bool
pertenece e = foldr ...
```

Definir la función take, ¿cuál es la diferencia?

```
take :: Int -> [a] -> [a] take n = foldr ...
```

Tipos algebraicos y su definición en Haskell

Tipos algebraicos

- definidos como combinación de otros tipos
- están formados por uno o más constructores
- cada constructor puede o no tener argumentos
- los argumentos de los constructores pueden ser recursivos
- se inspeccionan usando pattern matching
- se definen mediante la cláusula data

Algunos ejemplos

```
Sea el siguiente tipo:

data AEB a = Hoja a | Bin (AEB a) a (AEB a)

Ejemplo: miÁrbol = Bin (Hoja 3) 5 (Bin (Hoja 7) 8 (Hoja 1))
```

Definir el esquema de recursión estructural (fold) para árboles binarios, y dar su tipo.

El esquema debe permitir definir las funciones altura, ramas, #nodos, #hojas, espejo, etc.

¿Cómo hacemos?

Recordemos el tipo de foldr, el esquema de recursión estructural para listas.

 $foldr :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b$

¿Por qué tiene ese tipo?

(Pista: pensar en cuáles son los constructores del tipo [a]).

Un esquema de recursión estructural espera recibir un argumento por cada constructor (para saber qué devolver en cada caso), y además la estructura que va a recorrer.

El tipo de cada argumento va a depender de lo que reciba el constructor correspondiente. (¡Y todos van a devolver lo mismo!)

Si el constructor es recursivo, el argumento correspondiente del fold va a recibir el resultado de cada llamada recursiva.

Miremos bien la estructura del tipo.

Estamos ante un tipo inductivo con un constructor no recursivo y un constructor recursivo.

¿Cuál va a ser el tipo de nuestro fold?

¿Y la implementación?

```
foldAEB :: (a \rightarrow b) \rightarrow (b \rightarrow a \rightarrow b \rightarrow b) \rightarrow Ab a \rightarrow b
foldAEB fHoja fBin t = case t of
          Hoja n -> fHoja n
Bin t1 n t2 -> fBin (rec t1)
                                       n (rec t2)
                                         where rec = foldAEB fHoja fBin
```

Ejercicio para ustedes: definir las funciones altura, ramas, #nodos, #hojas y espejo usando foldAB.

Si quieren podemos hacer alguna en el pizarrón.

Folds sobre estructuras nuevas

Definir el esquema de recursión estructural para el siguiente tipo:

Ejercicio

Usando el esquema definido, escribir la función evaluar :: Num a => a -> Polinomio a -> a.

```
foldPoli::Num a=>b->(a->b)->(b->b->b)->(b->b->b)->Polinomio a->b
foldPoli casoX casoCte casoSuma casoProd pol = case pol of
    X -> casoX
    Cte n -> casoCte n
    Suma p q -> casoSuma (rec p) (rec q)
    Prod p q -> casoProd (rec p) (rec q)
    where rec = foldPoli casoX casoCte casoSuma casoProd
evaluar::Num a=>a->Polinomio a->a
evaluar n = foldPoli n id (+) (*)
```

Generación infinita

Sea el tipo de datos RoseTree de árboles no vacíos, donde cada nodo tiene una cantidad indeterminada de hijos.

data RoseTree a = Rose a [RoseTree a]

- 1 Escribir el esquema de recursión estructural para RoseTree. Es importante escribir primero su tipo.
- Usando el esquema definido, escribir las siguientes funciones:
 - 11 hojas, que dado un RoseTree, devuelve una lista con sus hojas ordenadas de izquierda a derecha, según su aparición en el RoseTree.
 - 2 distancias, que dado un RoseTree, devuelve las distancias de su raíz a cada una de sus hojas.
 - 3 altura, que devuelve la altura de un RoseTree (la cantidad de nodos de la rama más larga). Si el RoseTree es una hoja, se considera que su altura es 1.

Tipo RoseTree

```
data RoseTree a = Rose a [RoseTree a]
¿Cómo hacemos el fold?
¿Hay caso/s base?
¿Cuántos llamados recursivos hay que hacer?
```

Empecemos por el tipo

Generación infinita

Recordar: un fold siempre toma un argumento por cada constructor del tipo, y además la estructura que va a recorrer.

Los argumentos que corresponden a los constructores devuelven siempre algo del tipo que queremos devolver, y reciben tantos argumentos comos sus respectivos constructores.

Si el constructor es recursivo, el argumento correspondiente del fold va a recibir el resultado de cada llamada recursiva.

data RoseTree a = Rose a [RoseTree a]

En el caso del RoseTree, eso no cambia. Si nuestro constructor toma una lista de RoseTrees, tendremos una lista de resultados de las recursiones.

Entonces el tipo del fold es...

foldRT::(a->[b]->b)->RoseTree a->b

```
foldRT::(a->[b]->b)->RoseTree a->b
foldRT f (Rose x hs) = f x (map (foldRT f) hs)
```

- Definir el tipo de datos RoseTree de árboles no vacíos, donde cada nodo tiene una cantidad indeterminada de hijos. 🗸
- Escribir el esquema de recursión estructural para RoseTree. Es importante escribir primero su tipo. <
- 3 Usando el esquema definido, escribir las siguientes funciones:
 - II hoias, que dado un RoseTree, devuelve una lista con sus hoias ordenadas de izquierda a derecha, según su aparición en el RoseTree.
 - 2 distancias, que dado un RoseTree, devuelve las distancias de su raíz a cada una de sus hoias.
 - 3 altura, que devuelve la altura de un RoseTree (la cantidad de nodos de la rama más larga). Si el RoseTree es una hoja, se considera que su altura es 1.

Ejercicio

Se cuenta con la siguiente representación de conjuntos, caracterizados por su función de pertenencia:

```
type Conj a = (a->Bool)
```

De este modo, si conj1 es un conjunto y e un elemento, la expresión conj1 e devuelve True si e pertenece a conj1, y False en caso contrario.

Operaciones sobre conjuntos

- Definir y dar el tipo de las siguientes funciones:
 - vacío

- intersección
- unión co
 - complemento

singleton

- ¿Puede definirse un map para esta estructura? Para utilizar, por ejemplo, de esta manera: (mapC (+1) conj1) e
- ¿Puede definirse la función esVacío :: Conj a → Bool? ¿Y esVacío :: Conj Bool → Bool?
- Si A ⊆ N es computable, entonces existe una enumeración computable estrictamente creciente de los elementos de A.ª
 Demostrar esta afirmación programando la susodicha enumeración.

^aExiste una $f: \mathbb{N} \to \mathbb{N}$ computable y estrictamente creciente tal que $A = \{f(0), f(1), f(2), \dots\}$

Fin (por ahora)