Listas de Variedades

henrique

August 26, 2025

Contents

0	Introdução e Notação	1
1	Lista 1 (18/08/2025)	1

0 Introdução e Notação

Ao decorrer do curso, vou escrever minhas resoluções dos exercícios nesse arquivo. Tem alguns motivos para isso:

- 1. Posso reutilizar resultados passados.
- 2. Está tudo organizado se um futuro henrique quiser rever.
- 3. Há uma certo senso de completude no final do curso.

Por isso, peço desculpa ao monitor e ao professor se não gostarem desse formato, me avisem que eu posso separar os arquivos. O código fonte pode ser encontrado em https://github.com/hnrq104/variedades/tree/main/listas.

1 Lista 1 (18/08/2025)

Problemas feitos:

- 1. Exercício 1.1 : ✓
- 2. Exercício 1.2 : ✓
- 3. Exercício 1.3 : ✓
- 4. Exercício 1.4 : ②

Problem 1.1.

Proof. Defina (S^1, \mathcal{F}) a parametrização do círculo pelas projeções esfereográficas. Isto é,

$$\mathcal{F} = \langle (S^1 - \{(0,1)\}, \pi_N), (S^1 - \{(0,-1)\}, \pi_S) \rangle$$

Onde $\pi_N: S^1 - \{(0,1)\} \to \mathbb{R}$ e $\pi_S: S^1 - \{(0,-1)\} \to \mathbb{R}$ são as projeções do polo norte e sul respectivamente. Vimos em aula que, com essas coordenadas, (S^1, \mathcal{F}) é uma variedade C^{∞} . Defina \mathcal{G} elevando \mathcal{F} ao cubo,

$$\mathcal{G} = \langle (S^1 - \{(0,1)\}, (\pi_N)^3), (S^1 - \{(0,-1)\}, (\pi_S)^3) \rangle$$

Afirmo que \mathcal{G} é uma estrutura diferenciável de S^1 . Isso segue do fato que π_N^3 e π_S^3 continuam sendo homeomorfismos e a composição de cartas dão a mesma coisa que em \mathcal{F} . Para verificar isso, escreva $s(t) = t^3$, então, no intervalo de definição \mathbb{R}^* ,

$$[(\pi_N)^3] \circ [(\pi_S)^3]^{-1}(t) = (s \circ \pi_N) \circ (s \circ \pi_S)^{-1}(t)$$

$$= s \circ \pi_N \circ \pi_S^{-1} \circ s^{-1}(t)$$

$$= s \circ \pi_N \circ \pi_S^{-1}(t^{1/3})$$

$$= s \left(\frac{1}{t^{1/3}}\right) = \frac{1}{t} \in C^{\infty}$$

Onde na quarta igualdade usamos que $\pi_N \circ \pi_S^{-1}(x) : \mathbb{R}^* \to \mathbb{R}^* = 1/x$. A mesma conta serve para a outra composição $[s \circ \pi_S] \circ [s \circ \pi_N]^{-1}$.

Vamos provar que $\mathcal{F} \neq \mathcal{G}$. Suponha que fossem iguais, então a composição $\pi_N \circ [s \circ \pi_N]^{-1}(t) = s^{-1}(t) = t^{1/3}$ seria C^{∞} que sabemos que é falso.

Para provar que são diffeomorfas, considere:

$$F: (S^1, \mathcal{F}) \to (S^1, \mathcal{G})$$

$$p \neq (0, 1) \mapsto (\pi_N^{-1}) \circ s^{-1} \circ \pi_N(p)$$

$$p \neq (0, -1) \mapsto (\pi_S^{-1}) \circ s^{-1} \circ \pi_S(p)$$

Do jeito que está, F pode não parecer bem definida. Seja $p \neq (0,1), (0,-1)$. Queremos mostrar que:

$$(\pi_N^{-1}) \circ s^{-1} \circ \pi_N(p) = (\pi_S^{-1}) \circ s^{-1} \circ \pi_S(p) \tag{1}$$

Mas temos que todas as funções são homeomorfismos e, principalmente, $\pi_N \circ \pi_S^{-1} = 1/x$. Seja $\pi_N(p) = t$, então $t = [\pi_N \circ \pi_S^{-1}] \circ \pi_S(p) = 1/(\pi_S(p))$, ou seja $\pi_S(p) = 1/t$. Substituindo em (1)

$$(\pi_N^{-1}) \circ s^{-1}(t) = (\pi_S^{-1}) \circ s^{-1}(1/t)$$
$$s^{-1}(t) = (\pi_N \circ \pi_S^{-1}) \circ s^{-1}(1/t)$$
$$t^{1/3} = \frac{1}{s^{-1}(1/t)} = t^{1/3}$$

Onde na segunda igualdade aplicamos π_N dos dois lados e na terceira usamos a composição usual. Como tudo pode ser feito de trás para frente, provamos que F está bem definida.

Agora basta provar que os seguintes mapas são diffeos C^{∞} em seus dominios (interseções das cartas):

- 1. $[s \circ \pi_N] \circ F \circ \pi_N^{-1}$
- $2. \ [s \circ \pi_N] \circ F \circ \pi_S^{-1}$
- 3. $[s \circ \pi_S] \circ F \circ \pi_N^{-1}$
- 4. $[s \circ \pi_S] \circ F \circ \pi_S^{-1}$

E para isso é só expandi-los, farei (1) e (2) pois os outros dois são análogos.

1.
$$s \circ \pi_N \circ F \circ \pi_N^{-1} = s \circ \pi_N \circ (\pi_N^{-1}) \circ s^{-1} \circ \pi_N \circ \pi_N^{-1} = id$$

2.
$$s \circ \pi_N \circ F \circ \pi_S^{-1} = s \circ \pi_N \circ (\pi_N^{-1}) \circ s^{-1} \circ \pi_N \circ \pi_S^{-1} = 1/x$$

Para não perder nenhum detalhe, vou enunciar aqui a principal ferramenta desta lista.

Theorem 1.1. Seja M uma variedade diferenciável e $\{U_{\alpha} : \alpha \in A\}$ uma cobertura aberta de M. Então existe uma partição contável da unidade $\{\varphi_i : i \in \mathbb{N}\}$ subordinada a cobertura $\{U_{\alpha}\}$ com supp φ_i compacto para cada i. Se não for preciso suportes compactos, então existe uma partição da unidade $\{\varphi_{\alpha}\}$ subordinada à $\{U_{\alpha}\}$ (supp $\varphi_{\alpha} \subset U_{\alpha}$) com no máximo contáveis φ_{α} não identicamente nulos.

Problem 1.2.

Proof. Pelo Teorema da Partição da Unidade 1.1, dada uma cobertura $\{U_{\alpha}\}$, existe uma partição φ_{α} subordinada. Tome $V_{\alpha} = \varphi_{\alpha}^{-1}[(0,2)]$ abertos. Temos $\overline{V_{\alpha}} = \operatorname{supp} \varphi_{\alpha} \subset U_{\alpha}$ e, para todo $p \in M$, como $\sum_{\alpha} \varphi_{\alpha}(p) = 1$, existe α tal que $\varphi_{\alpha}(p) > 0$, logo $p \in V_{\alpha}$. Portanto $M \subset \{V_{\alpha}\}$ e temos um refinamento de $\{U_{\alpha}\}$.

Problem 1.3.

Proof. Sejam A e B fechados disjuntos de M, então $\{A^c, B^c\}$ formam uma cobertura de M. Pelo Teorema da Partição da Unidade 1.1, existem $\varphi_{A^c} \ge 0$ e $\varphi_{B^c} \ge 0$ em $C^{\infty}(M)$, com supp $\varphi_{A^c} \subseteq A^c$ e supp $\varphi_{B^c} \subseteq B^c$. Como para todo $p \in M$, $\varphi_{A^c}(p) + \varphi_{B^c}(p) = 1$ e $\varphi_{B^c} = 0$ em B, então temos

$$\varphi_{A^c}(A) = \{0\}$$

$$\varphi_{A^c}(B) = \{1\}$$

E achamos a segunda parte da questão, uma função contínua que vale 0 em A e 1 em B. Tome então os abertos disjuntos $W_A = \varphi_{A^c}^{-1}[(-\infty, 1/2)]$ e $W_B = \varphi_{A^c}^{-1}[(1/2, \infty)]$. Claramente $A \subset W_A$ e $B \subset W_B$.

Problem 1.4.

Conversando na aula de segunda (25/08), perguntamos para o Prof. Heluani se deveríamos provar esse resultado (estender o acima para funções não limitadas). Ele nos disse que o interesse maior nesse problema era mostrar que esse resultado (Teorema da Extensão de Tietze) é válido para Variédades vistas como espaços topológicos. Isso é consequência de elas serem espaços normais (visto no problema anterior). Segue o enunciado do Teorema

Theorem 1.2. (Extensão de Tietze) Seja X um espaço topológico normal, $A \subseteq X$ um subconjunto fechado e $f: A \to \mathbb{R}$ uma função contínua. Então existe uma função contínua $\tilde{f}: X \to \mathbb{R}$ tal que a $\tilde{f}|_A = f$.

Sobre a extensão ser C^{∞} , devemos dar uma definição para o que isso significaria - uma função ser suave em um fechado. Aqui segui a ideia do Davi na monitoria, de que existe um abertinho maior em que ela está definida. Depois devemos verificar se é possível estender funções assim para toda a variedade. A resposta dessa afirmação é positiva, mas requer também um pouco mais de teoria do que vimos. A seguir temos uma tentativa.

Lemma 1.3. Seja M uma variedade, $A \subseteq M$ um conjunto fechado e $U \supseteq A$ um aberto onde está definida uma função suave $f: U \to \mathbb{R}$. Existe uma função $\tilde{f}: M \to \mathbb{R}$ suave tal que as restrições $\tilde{f}_A = f_A$ são idênticas.

Proof. Para cada ponto $p \in A$, escolha uma vizinhança e uma função suave (V_p, \tilde{f}_p) tal que $\tilde{f}_p : V_p \to \mathbb{R}$ é idêntica a f em $V_p \cap A$. Isso é possível usando funções bump e aproveitando o fato que M é localmente compacta - o que não foi provado. Tomamos uma partição da unidade $\{\varphi_p : p \in A\} \cup \{\varphi_{A^c}\}$ subordinada a cobertura $\{V_p : p \in A\} \cup \{A^c\}$. Para cada $p \in A$, o produto $\varphi_p \tilde{f}_p$ é C^∞ em V_p e tem uma extensão natural 0 fora do suporte de φ_p . Definimos então $\tilde{f} = \sum_{p \in A} \varphi_p \tilde{f}_p$.