Problem 1

(a) Derive the Hugoniot Eqution.

Assumptions:

1-D, steady flow. Inviscid. Calorically perfect gas (constant specific heats). Uniform pressure distribution around the CV. No heat addition (adiabatic). No work done on or by the CV.

Solution:

Beginning with the 1-D continuity equation and expressing both velocities in terms of the densities and the other velocity:

$$\rho_1 u_1 = \rho_2 u_2$$

$$u_1 = u_2 \left(\frac{\rho_2}{\rho_1}\right)$$

$$u_2 = u_1 \left(\frac{\rho_1}{\rho_2}\right)$$

The 1-D momentum equation:

$$p_1 + \rho_1 u_1^2 = p_2 + \rho_2 u_2^2$$

Plugging in velocities in terms of 1-D continuity and rearranging:

$$p_1 + \rho_1 u_1^2 = p_2 + \rho_2 \left[u_1 \left(\frac{\rho_1}{\rho_2} \right) \right]^2$$

$$(p_1 - p_2) = u_1^2 \left[\rho_2 \left(\frac{\rho_1}{\rho_2} \right)^2 - \rho_1 \right]$$

$$(p_1 - p_2) = u_1^2 \left[\left(\frac{\rho_1^2}{\rho_2} \right) - \rho_1 \right]$$

$$(p_1 - p_2) = u_1^2 \left(\frac{\rho_1}{\rho_2}\right) (\rho_1 - \rho_2)$$

We now have relationships for u_1 and u_2 in terms of pressures and densities.

$$u_1^2 = \left(\frac{p_1 - p_2}{\rho_1 - \rho_2}\right) \left(\frac{\rho_2}{\rho_1}\right)$$

$$u_2^2 = \left(\frac{p_2 - p_1}{\rho_2 - \rho_1}\right) \left(\frac{\rho_1}{\rho_2}\right)$$

Next, the 1-D energy equation (adiabatic, no work):

$$h_1 + \frac{u_1^2}{2} = h_2 + \frac{u_2^2}{2}$$

The definition of enthalpy, h.

$$h = e + \frac{p}{\rho}$$

Recasting the 1-D energy equation with the definition of enthalpy and rearranging:

$$e_{1} + \frac{p_{1}}{\rho_{1}} + \frac{u_{1}^{2}}{2} = e_{2} + \frac{p_{2}}{\rho_{2}} + \frac{u_{2}^{2}}{2}$$

$$e_{1} + \frac{p_{1}}{\rho_{1}} + \frac{1}{2} \left[\left(\frac{p_{1} - p_{2}}{\rho_{1} - \rho_{2}} \right) \left(\frac{\rho_{2}}{\rho_{1}} \right) \right] = e_{2} + \frac{p_{2}}{\rho_{2}} + \frac{1}{2} \left[\left(\frac{p_{2} - p_{1}}{\rho_{2} - \rho_{1}} \right) \left(\frac{\rho_{1}}{\rho_{2}} \right) \right]$$

$$0 = (e_{2} - e_{1}) + \left(\frac{p_{2}}{\rho_{2}} - \frac{p_{1}}{\rho_{1}} \right) + \frac{1}{2} \left[\left(\frac{p_{2} - p_{1}}{\rho_{2} - \rho_{1}} \right) \left(\frac{\rho_{1}}{\rho_{2}} - \frac{\rho_{2}}{\rho_{1}} \right) \right]$$

$$0 = (e_{2} - e_{1}) + \left(\frac{p_{2}\rho_{1} - p_{1}\rho_{2}}{\rho_{1}\rho_{2}} \right) + \frac{1}{2} \left[\left(\frac{p_{2} - p_{1}}{\rho_{2} - \rho_{1}} \right) \left(\frac{\rho_{1}^{2} - \rho_{2}^{2}}{\rho_{1}\rho_{2}} \right) \right]$$

$$0 = (e_{2} - e_{1}) + \left(\frac{1}{\rho_{1}\rho_{2}} \right) \left[(p_{2}\rho_{1} - p_{1}\rho_{2}) + \frac{1}{2} \left(\frac{p_{1} - p_{2}}{\rho_{2} - \rho_{1}} \right) \left(\rho_{1} - \rho_{2} \right) \left(\rho_{1} + \rho_{2} \right) \right]$$

$$0 = (e_{2} - e_{1}) + \left(\frac{1}{\rho_{1}\rho_{2}} \right) \left[(p_{2}\rho_{1} - p_{1}\rho_{2}) + \frac{1}{2} \left(p_{1} - p_{2} \right) \left(\rho_{1} - p_{2} \right) \left(\rho_{1} + \rho_{2} \right) \right]$$

$$0 = (e_{2} - e_{1}) + \left(\frac{1}{\rho_{1}\rho_{2}} \right) \left[(p_{2}\rho_{1} - p_{1}\rho_{2}) + \frac{1}{2} \left(p_{1}\rho_{1} + p_{1}\rho_{2} - p_{2}\rho_{1} - p_{2}\rho_{2} \right) \right]$$

$$0 = (e_{2} - e_{1}) + \left(\frac{1}{\rho_{1}\rho_{2}} \right) \left[(p_{2}\rho_{1} - p_{1}\rho_{2}) + \frac{1}{2} \left(p_{1}\rho_{1} + p_{1}\rho_{2} - p_{2}\rho_{1} - p_{2}\rho_{2} \right) \right]$$

$$0 = (e_{2} - e_{1}) + \left(\frac{1}{\rho_{1}\rho_{2}} \right) \left[(p_{2}\rho_{1} - p_{1}\rho_{2}) + \frac{1}{2} \left(p_{1}\rho_{1} + p_{1}\rho_{2} - p_{2}\rho_{1} - p_{2}\rho_{2} \right) \right]$$

$$0 = (e_{2} - e_{1}) + \left(\frac{1}{\rho_{1}\rho_{2}} \right) \left[(p_{2}\rho_{1} - p_{1}\rho_{2}) + \frac{1}{2} \left(p_{1}\rho_{1} + p_{1}\rho_{2} - p_{2}\rho_{1} - p_{2}\rho_{2} \right) \right]$$

$$0 = (e_{2} - e_{1}) + \left(\frac{1}{\rho_{1}\rho_{2}} \right) \left[(p_{2}\rho_{1} - p_{1}\rho_{2}) + \frac{1}{2} \left(p_{1}\rho_{1} - p_{2}\rho_{2} - \frac{p_{2}\rho_{1}}{\rho_{1}} \right) \right]$$

$$0 = (e_{2} - e_{1}) + \left(\frac{1}{\rho_{1}\rho_{2}} \right) \left[(p_{2}\rho_{1} - p_{1}\rho_{2}) + \frac{1}{2} \left(p_{1}\rho_{1} - p_{2}\rho_{2} - \frac{p_{2}\rho_{1}}{\rho_{1}} \right) \right]$$

$$(e_2 - e_1) = \left(\frac{p_1 + p_2}{2}\right) \left(\frac{1}{\rho_1} - \frac{1}{\rho_2}\right)$$

We now have one of the common forms of the Hugoniot Equation:

$$(e_2 - e_1) = \left(\frac{p_1 + p_2}{2}\right)(\nu_1 - \nu_2)$$

For a CPG, internal energy, e:

$$e = c_{\nu}T$$

Substituting the above relationship into our initial Hugoniot Equation:

$$c_{\nu} (T_2 - T_1) = \left(\frac{p_1 + p_2}{2}\right) (\nu_1 - \nu_2)$$

For a CPG, c_{ν} :

$$c_{\nu} = \frac{R}{\gamma - 1}$$

Substituting and rearranging:

$$\frac{R}{\gamma - 1} (T_2 - T_1) = \left(\frac{p_1 + p_2}{2}\right) (\nu_1 - \nu_2)$$

The ideal gas equation of state:

$$T = \frac{p\nu}{R}$$

Substituting and rearranging to solve for p_2/p_1 :

$$\frac{R}{\gamma - 1} \left(\frac{p_2 \nu_2}{R} - \frac{p_1 \nu_1}{R} \right) = \left(\frac{p_1 + p_2}{2} \right) (\nu_1 - \nu_2)$$

$$\frac{2}{\gamma - 1} (p_2 \nu_2 - p_1 \nu_1) = (p_1 + p_2) (\nu_1 - \nu_2)$$

$$\frac{2}{\gamma - 1} (p_2 \nu_2 - p_1 \nu_1) = p_1 \nu_1 - p_1 \nu_2 + p_2 \nu_1 - p_2 \nu_2$$

$$\left(\frac{2}{\gamma - 1} + 1 \right) (p_2 \nu_2 - p_1 \nu_1) = (p_2 \nu_1 - p_1 \nu_2)$$

$$\left(\frac{\gamma+1}{\gamma-1}\right) = \frac{(p_2\nu_1 - p_1\nu_2)}{(p_2\nu_2 - p_1\nu_1)}$$

$$\left(\frac{\gamma+1}{\gamma-1}\right) = \frac{\left(\frac{p_2}{p_1}\nu_1 - \nu_2\right)}{\left(\frac{p_2}{p_1}\nu_2 - \nu_1\right)}$$

$$\left(\frac{\gamma+1}{\gamma-1}\right) \left(\frac{p_2}{p_1}\nu_2 - \nu_1\right) = \left(\frac{p_2}{p_1}\nu_1 - \nu_2\right)$$

$$\left(\frac{\gamma+1}{\gamma-1}\right) \left(\frac{p_2}{p_1}\nu_2 - \nu_1\right) = \left(\frac{p_2}{p_1}\nu_1 - \nu_2\right)$$

$$\frac{p_2}{p_1} \left[\left(\frac{\gamma+1}{\gamma-1}\right)\nu_2 - \nu_1\right] = \left(\frac{\gamma+1}{\gamma-1}\right)\nu_1 - \nu_2$$

$$\frac{p_2}{p_1} = \left[\frac{\left(\frac{\gamma+1}{\gamma-1}\right)\nu_1 - \nu_2}{\left(\frac{\gamma+1}{\gamma-1}\right)\nu_2 - \nu_1}\right]$$

$$\frac{p_2}{p_1} = \left[\frac{\left(\frac{\gamma+1}{\gamma-1}\right)\nu_1 - \nu_2}{\left(\frac{\gamma+1}{\gamma-1}\right)\nu_2 - \nu_1}\right]$$

The relation between density, ρ , and specific volume, ν :

$$\rho = \frac{1}{\nu}$$

Substituting the above relation yields the final form of the Hugoniot Equation:

$$\frac{p_2}{p_1} = \left[\frac{\left(\frac{\gamma+1}{\gamma-1}\right)\frac{\rho_2}{\rho_1} - 1}{\left(\frac{\gamma+1}{\gamma-1}\right) - \frac{\rho_2}{\rho_1}} \right]$$

Discussion:

(b) Solution:

$$\frac{p_2}{p_1} = \left[\frac{\left(\frac{\gamma+1}{\gamma-1}\right)\frac{\rho_2}{\rho_1} - 1}{\left(\frac{\gamma+1}{\gamma-1}\right) - \frac{\rho_2}{\rho_1}} \right]$$

$$\frac{p_2}{p_1} = \left(\frac{\rho_2}{\rho_1}\right)^{\gamma}$$

Figure 1: Compression vs. density ratio – normal shock and isentropic compression

(c) <u>Discussion</u>:

(d) Solution:

Isentropic should be equal to 0.

$$s_2 - s_1 = cp \ln \left(\frac{T_2}{T_1}\right) - R \ln \left(\frac{p_2}{p_1}\right)$$
$$\frac{T_2}{T_1} = \left(\frac{\rho_2}{\rho_1}\right)^{\gamma - 1}$$

Figure 2: Compression vs. Mach number across normal shock

Across a normal shock:

$$s_2 - s_1 = -R \ln \frac{p_{t,2}}{p_{t,1}}$$

$$\frac{p_2}{p_1} = 1 + \frac{2\gamma}{\gamma + 1} \left(M_1^2 - 1 \right)$$

$$M_1 = \sqrt{\left(\frac{p_2}{p_1} - 1 \right) \left(\frac{\gamma + 1}{2\gamma} \right) + 1}$$

$$\frac{p_{t,2}}{p_{t,1}} = biggrossequation$$