STAT 111

Recitation 2

Mo Huang

Email: mohuang@wharton.upenn.edu

Office Hours: Wednesdays 3:00 - 4:00 pm, JMHH F96

Slides: github.com/mohuangx/STAT111-Spring2019

February 1, 2019

The Binomial Distribution: Questions

Q1: Let X be the number of heads if I toss an unbiased coin 3 times $(n=3, \theta=0.5)$. Find the probability distribution of X in "tableau" form.

The Binomial Distribution: Questions

Q1: Let X be the number of heads if I toss an unbiased coin 3 times $(n=3,\theta=0.5)$. Find the probability distribution of X in "tableau" form.

A1:

$$P(X = 0) = {3 \choose 0} (0.5)^{0} (0.5)^{3} \qquad P(X = 2) = {3 \choose 2} (0.5)^{2} (0.5)^{1}$$

$$= 0.125 \qquad = 0.375$$

$$P(X = 1) = {3 \choose 1} (0.5)^{1} (0.5)^{2} \qquad P(X = 3) = {3 \choose 3} (0.5)^{3} (0.5)^{0}$$

$$= 0.375 \qquad = 0.125$$

The Binomial Distribution: Questions

Q1: Let X be the number of heads if I toss an unbiased coin 3 times $(n=3, \theta=0.5)$. Find the probability distribution of X in "tableau" form.

A1:

$$P(X = 0) = {3 \choose 0} (0.5)^{0} (0.5)^{3} \qquad P(X = 2) = {3 \choose 2} (0.5)^{2} (0.5)^{1}$$

$$= 0.125 \qquad = 0.375$$

$$P(X = 1) = {3 \choose 1} (0.5)^{1} (0.5)^{2} \qquad P(X = 3) = {3 \choose 3} (0.5)^{3} (0.5)^{0}$$

$$= 0.375 \qquad = 0.125$$

X	<i>x</i> 0		2	3
P(X = x)	0.125	0.375	0.375	0.125

Table: Probability distribution of *X* using the tableau method.

Q2: $X \sim \mathcal{B}(18, 0.15)$. Find P(X = 4).

Q2: $X \sim \mathcal{B}(18, 0.15)$. Find P(X = 4).

A2: P(X = 4) = 0.1592

						θ
n	i	0.05	0.10	0.15	0.20	0.25
18	0	0.3972	0.1501	0.0536	0.0180	0.0056
	1	0.3763	0.3002	0.1704	0.0811	0.0338
	2	0.1683	0.2835	0.2556	0.1723	0.0958
	3			0.2406		
	4	0.0093	0.0700	0.1592	0.2153	0.2130
					•	

Q2: $X \sim \mathcal{B}(18, 0.15)$. Find P(X = 4).

A2: P(X = 4) = 0.1592

						0
n	i	0.05	0.10	0.15	0.20	0.25
18	0	0.3972	0.1501	0.0536	0.0180	0.0056
	1	0.3763	0.3002	0.1704	0.0811	0.0338
	2	0.1683	0.2835	0.2556	0.1723	0.0958
				0.2406		
	4	0.0093	0.0700	0.1592	0.2153	0.2130

Q3: Find $P(X \le 4)$.

Q2:
$$X \sim \mathcal{B}(18, 0.15)$$
. Find $P(X = 4)$.

A2:
$$P(X = 4) = 0.1592$$

						θ
n	i	0.05	0.10	0.15	0.20	0.25
18	1	0.3763	0.3002	0.0536 0.1704 0.2556	0.0811	
	3	0.0473	0.1680	0.2406	0.2297	0.1704

Q3: Find
$$P(X \le 4)$$
.

A3:

$$P(X \le 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)$$

$$= 0.0536 + 0.1704 + 0.2556 + 0.2406 + 0.1592$$

$$= 0.8794$$

Q2: $X \sim \mathcal{B}(12, 0.8)$. Find P(X = 3).

Q2: $X \sim \mathcal{B}(12, 0.8)$. Find P(X = 3).

A2: Finding 3 successes with $\theta = 0.8$ is the same as finding 9 failures with θ of failure 0.2. Hence, P(X = 3) = 0.0001.

6

							The Santo professor	The second second
n	i	0.05	0.10	0.15	0.20	0.25	0.30	0.35
12	0	0.5404	0.2824	0.1422	0.0687	0.0317	0.0138	0.0057
	1	0.3413	0.3766	0.3012	0.2062	0.1267	0.0712	0.0368
	2	0.0988	0.2301	0.2924	0.2835	0.2323	0.1678	0.1088
	3	0.0173	0.0852	0.1720	0.2362	0.2581	0.2397	0.1954
	4	0.0021	0.0213	0.0683	0.1329	0.1936	0.2311	0.2367
	5	0.0002	0.0038	0.0193	0.0532	0.1032	0.1585	0.2039
	6	0.0000	0.0005	0.0040	0.0155	0.0401	0.0792	0.1281
	7	0.0000	0.0000	0.0006	0.0033	0.0115	0.0291	0.0591
	8	0.0000	0.0000	0.0001	0.0005	0.0024	0.0078	0.0199
	9	0.0000	0.0000	0.0000	0.0001	0.0004	0.0015	0.0048
	10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002	8000.0
	11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001
	12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Q2: Let X be the outcome of one roll of a biased dice where the probability of the number j turning up is j/21. Find the mean of X.

Q2: Let X be the outcome of one roll of a biased dice where the probability of the number j turning up is j/21. Find the mean of X.

A2:

$$\mu = 1 \times 1/21 + 2 \times 2/21 + 3 \times 3/21 + 4 \times 4/21 + 5 \times 5/21 + 6 \times 6/21$$

= 91/21

Q2: Let X be the outcome of one roll of a biased dice where the probability of the number j turning up is j/21. Find the mean of X.

A2:

$$\mu = 1 \times 1/21 + 2 \times 2/21 + 3 \times 3/21 + 4 \times 4/21 + 5 \times 5/21 + 6 \times 6/21$$

= 91/21

Q3: Let X be a binomial random variable with n=2 and $\theta=0.8$. Find the mean of X using the binomial table.

Q2: Let X be the outcome of one roll of a biased dice where the probability of the number j turning up is j/21. Find the mean of X.

A2:

$$\mu = 1 \times 1/21 + 2 \times 2/21 + 3 \times 3/21 + 4 \times 4/21 + 5 \times 5/21 + 6 \times 6/21$$

= 91/21

Q3: Let X be a binomial random variable with n=2 and $\theta=0.8$. Find the mean of X using the binomial table.

A3:

$$\mu = 0 \times 0.04 + 1 \times 0.32 + 2 \times 0.64$$

= 1.6