

Project môn học Lập trình nâng cao trong khoa học dữ liệu

Nhóm thực hiện

Tạ Văn Nhân Nguyễn Hoàng Nam Phạm Trung Hiếu Nguyễn Quang Huy

Đề tài

Ứng dụng python trong tự động mô hình hóa thống kê

Repository

https://github.com/namnhGru/auto-modelling-ds-vnu.git

Table of Contents

I.	Mở đầu	3
II.	Nội dung dự án	4
	. Thiết kế	
	a. Chức năng từng class	5
2	. Hoạt động	9
III.	Kết quả thực hiện	10
IV.	Đánh giá ưu nhược điểm	12
	Những mục chưa làm được	
1/1	Lời cảm ơn	12

I. Mở đầu

Thưa ban đọc,

Trong thời gian học tập tại HUS, chuyên ngành khoa học dữ liệu, nhóm nghiên cứu nhận thấy rằng việc mô hình hóa thống kê không chỉ đơn thuần giải quyết về mặt toán học, mà còn là những thao tác dữ liệu trên phần mềm với hiệu năng cao, đem lại nhiều lợi ích trong tính toán.

Đặc biệt, nhóm nhận thấy ngôn ngữ Python hay các ngôn ngữ lập trình nói chung có khả năng xây dựng nên các kịch bản cũng như tạo ra các sản phẩm mang tính nhất quán, giúp giảm thiểu nhiều thao tác lặp lại khi tính toán trên số liệu, cụ thể là những kiểm định, ước lượng thống kê hay các thao tác đọc ghi dự đoán dữ liệu thông thường. Nhờ có Python, các thao tác trên dữ liệu của nhóm đã nhất quán hơn cũng như tránh bị lặp lại ở thời điểm tương lai

Dự án này là một nỗ lực trong việc tổng hợp các thao tác trên dữ liệu lặp như vừa nêu, cũng như là tiền đề để nghiên cứu những ứng dụng và công nghệ cao hơn trong việc tự động hóa mô hình cũng như học máy, giảm các tải phải bỏ ra của các nhà khoa học dữ liệu để đem lại sản phẩm một cách nhanh và chính xác nhất. Dự án cũng hướng đến như một "hộp đen" xử lý dữ liệu, giúp cho những người sắp bước vào con đường dữ liệu có một công cụ mô tả được quá trình xử lý đơn giản nhất, có được cái nhìn tổng quan nhất khi theo đuổi ngành khoa học dữ liệu.

Hà Nội, 04/6/2019,

Nhóm dự án ứng dụng Python trong tự động mô hình hóa

II. Nội dung dự án

1. Thiết kế

Dự án được thiết kế với các mục tiêu sau:

- Tối thiểu nhân lực cho việc triển khai coding
- Code có khả năng sử dụng lại khi cần thiết
- Code có khả năng mở rộng khi cần thiết
- Code có khả năng bảo trì dễ dàng khi cần thiết

Với mục tiêu đó, dự án được thiết kế như sau:

Hình 1: Thiết kế class trong dự án

a. Chức năng từng class

#	Class	Mục đích		Trường		Phương thức
1	InputService	 Tiếp nhận Input từ người dùng. Khối này không hoặc có ít nhất có thể tính năng xử lý các đầu vào người dùng nhập 	3.4.5.	OriginalData: nhận đường dẫn dữ liệu linearFeatureBegin/EndPoi nt: nhận khoảng dữ liệu với dạng đặc trưng là tuyến tính	1. 2.	CheckPoint: nhận input String khoảng dữ liệu, trả về cận của khoảng dữ liệu SetLevelForEachF eature: nhận input string category phân cấp, trả về thứ tự phân cấp
2	GenData	Xử lý các input và trả về bảng dữ liệu đã được quy định trường và thuộc tính	3.4.5.6.	InputService: nhận object InputService để lấy dữ liệu originalData: dữ liệu gốc đã được xử lý linearFeatureData: dữ liệu tuyến tính đã được xử lý factorFeatureData: dữ liệu category đều đã được xử lý levelFeatureData: dữ liệu category phân cấp đã được xử lý modelTargetData: dữ liệu response đã được xử lý newData: bảng dữ liệu mới đã được xử lý		Các phương thức get/ set xử lý dữ liệu cho trường
3	AfterCorData	 Lấy các dữ liệu đã xử lý corTest, ANOVATest, trả về bảng dữ liệu thu 	1.	genData: nhận object GenData để lấy dữ liệu cần xử lý linearFeatureData: dữ liệu tuyến tính đã được xử lý corTest		Các phương thức get/ set xử lý dữ liệu cho trường

		gọn/ bổ sung sau	3. factorFeatureData : dữ liệu	
		khi loại bỏ các	category đều đã được xử lý	
		trường không liên	ANOVA Test	
		quan và sinh các	4. levelFeatureData : dữ liệu	
		trường mới tới	category phân cấp đã được xử lý	
		response	ANOVA Test	
			5. modelTargetData: dữ liệu	
			response đã được xử lý 6. corBetweenData : dữ liệu	
			interact giữa các đặc trưng	
			7. newData : bảng dữ liệu mới đã	
			được xử lý	
4		• Xử lý CorTest,	Không có	1. numbericToNumber
	vice	ANOVA Test cho		ic: xử lý cor giữa các
		dữ liệu		biến dạng tuyến tính
				<pre>2. numbericToFactor</pre>
				:
				xử lý cor giữa các biến dạng category
				và dạng tuyến tính
				3. factorToFactor:
				xử lý cor giữa các
				biến dạng category
				4. corForNumbericVa
				riable : xử lý cor
				giữa các feature
				tuyến tính
				5. corLinearFeature
				WithModelTarget: xử lý cor giữa các
				feature tuyến tính và
				response
				6. corFactorFeature
				WithModelTarget:
				xử lý cor giữa các
				feature category và
				response
5	DistributionSe rvice	Tìm phân phối cho	1. genData : nhận object GenData	Các phương thức
	I ATCE	response thông	để lấy dữ liệu response	get/ set xử lý dữ liệu
		qua các kiểm định		cho trường

				selectedDistribution: phân phối của response passedDistribution: các	
				phân phối sau kiểm định thỏa mãn	
			4.	failedDistribution : các phân phối sau kiểm định không	
				thỏa mãn	
			5.	Distribution"X"Score: điểm	
				kiểm định quyết định tính thỏa mãn của các phân phối	
6	ModelPropertie s	Xử lý việc lên	1.	inputService: nhận object	Các phương thức
	3	model cho dữ liệu		InputService để lấy dữ liệu chọn mô hình	get/ set để xử lý dữ liệu cho trường
			2	afterCorData: nhận object	liệu cho trường
				AfterCorData để lấy dữ liệu đã	
				điều chỉnh sau kiểm định tương	
				quan	
			3.	<pre>distributionService: nhận object DistributionService</pre>	
				để lấy dữ liệu phân phối của	
				response	
			4.	familyDistribution: xác	
				định link function nếu mô hình	
			5	được chọn là glm stringModel: biểu thức của	
				mô hình	
			6.	resModel: mô hình được sinh ra	
7	AICService	• Lựa chọn mô hình	1.	afterCorData: nhận object	Các phương thức
		tốt nhất từ mô hình đã sinh	2	afterCorData để xử lý distributionService: nhận	get/ set để xử lý trường
		ua siriir	۷.	object distributionService	truong
				để xử lý	
			3.	currentModelProperties:	
				nhận object ModelProperties từ mô hình đã tính	
			4	nextModelProperties: nhận	
			''	object ModelProperties sinh	
				ra sau mỗi lần so sánh AIC	

			6. 7. 8.	sortedPValues: nhận danh sách thứ tự các pvalue của các đặc trưng nextDrop: tên đặc trưng sẽ loại bỏ tiếp theo trong mô hình currentAIC: AIC của mô hình hiện tại nextAIC: AIC của mô hình tiếp theo minAIC: AIC của mô hình tốt nhất	
8	PredictService	Xử lý dự đoán dữ liệu train và test	3. 4. 5.	inputService: nhận object InputService để lấy thông tin dữ liệu đầu vào modelProperties: nhận object ModelProperties để lấy thông tin mô hình tốt nhất testData: dữ liệu kiểm định trainResult: dữ liệu train sau khi dự đoán testResult: dữ liệu test sau khi dự đoán trainScore: điểm dự đoán dữ liệu train testScore: điểm dự đoán dữ liệu test	Các phương thức xử lý get/ set cho trường
9	Banner	Đề mục, chỉ mục cho hiển thị trên console	2.	headerBanner: Đề mục đầu trang inputBanner: chỉ mục nhập dữ liệu resultBanner: chỉ mục hiển thị kết quả predictBanner: chỉ mục hiển thị dự báo	toShow: hiển thị banner tùy ý

2. Hoạt động

Hình 2: Dòng chảy hoạt động của project

Hoạt động của sản phẩm được mô tả kỹ càng như trên hình vẽ, với các flow cùng màu là cùng một quá trình vào ra của dữ liệu cũng như xử lý. Bạn đọc có thể bắt đầu từ điểm Begin ở trên cùng bên trái Service Layer, lần theo dấu mũi tên màu đến điểm End ở dưới cùng bên phải ConsoleView Layer để kết thúc flow của sản phẩm

III. Kết quả thực hiện

```
x1
           x2
                   x3
                       х4
                             x5
                                  хб
                                          x8
   200
        24420
                           47.0
                                   1
                29600
                       28
                                       0
                                           1
                                               71400
                           28.0
   228
        19993
               32582
                       29
                                   1
                                       0
                                              65200
2
   392
        4300
                4300
                       22
                           0.0
                                   0
                                       0
                                           0
                                               7100
   90
       11140 11140
                       29
                           10.0
                                   1
                                       0
                                           0
                                               31000
                                   1
                                       1
   126
       33060
               33060
                       28
                           60.0
                                           0
                                              87000
Column to use as Linear Feature (a->b, leave if none): x1->x5
Column to use as Factor Feature (a->b, leave if none): x6->x8
Column is used as Model Target: v
```

Hình 3: InputService thực thi

```
# Drop feature x5 base on cor.test because p-value is 0.1456940187940498

# Drop feature x6 base on ANOVA test because p-value is 0.5096295136836193

# Drop feature x7 base on ANOVA test because p-value is 0.3029878500868377

# Drop feature x8 base on ANOVA test because p-value is 0.14588500655254666

# Generate feature x1 * x4 base on cor.test between features because p-value is 0.0007499068152671159

# Generate feature x2 * x3 base on cor.test between features because p-value is 1.795880941446326e-05
```

Hình 4: CorrelationService thực thi

```
# Distribution of Model Target is dict_keys(['Normal']) because of p-value is dict_values([0.9917640998036465]) when do selecting between 3 passed distributions (name: p-value): {'Normal': 0.9917640998036465, 'Exp': 0.3628463833702418, 'Gamma': 0.9881975132437476}
# 2 false distribution are (name: p-value): {'Poisson': 6.801867518768656e-05, 'Binomial': 0.0}
```

Hình 5: DistributionService thực thi

```
# Model Summary
                Generalized Linear Model Regression Results
                                       No. Observations:
Dep. Variable:
                                                                           18
Model:
                                 GLM
                                       Df Residuals:
                                                                           11
Model Family:
                            Gaussian Df Model:
Link Function:
                            identity Scale:
                                                                   5.1319e+07
Method:
                                IRLS Log-Likelihood:
                                                                      -180.89
                    Sat, 06 Apr 2019 Deviance:
Date:
                                                                   5.6451e+08
Time:
                            11:18:11 Pearson chi2:
                                                                     5.65e+08
No. Iterations:
                                       Covariance Type:
                                                                    nonrobust
                                 coef
                                         std err
                                                                 P> | z |
                                                                            [0.025
                                                                                        0.9751
Intercept
                                                                 0.869
                                                                         -6.74e+04
                                                                                      7.98e + 04
                            6174.3802
                                        3.76e+04
                                                     0.164
                                                                        -469.972
newData['x1']
                            -224.0420 125.477
                                                     -1.786
                                                                 0.074
                                                                                        21.888
newData['x2']
                              -3.6563
                                                                                        -1.670
                                          1.013
                                                     -3.608
                                                                 0.000
                                                                           -5.642
newData['x3']
                              -0.6394
                                           0.543
                                                     -1.177
                                                                 0.239
                                                                            -1.704
                                                                                         0.425
newData['x4']
                            2182.1975
                                        1175.853
                                                     1.856
                                                                 0.063
                                                                                      4486.826
                                                                          -122.431
                                                                 0.141
newData['x1']:newData['x4']
                               6.4807
                                           4.404
                                                      1.472
                                                                            -2.150
                                                                                        15.112
newData['x2']:newData['x3']
                               0.0002
                                        3.13e-05
                                                      4.987
                                                                 0.000
                                                                          9.48e-05
                                                                                         0.000
```

Hình 6: ModelProperties thực thi

```
*** Current Model & AIC: {"y ~ newData['x1'] + newData['x2'] + newData['x3'] + newData['x4'] + newData['x1']:newData['x4'] + newData['x2']:newData['x3']": 375
.7815457501895}

*** Next Model & AIC: {"y~newData['x1'] + newData['x2'] + newData['x3'] + newData['x4'] + newData['x1']:newData['x4'] + newData['x2']:newData['x3']": 375.7815457501895}

*** Min Model & AIC: {"y~newData['x1'] + newData['x2'] + newData['x3'] + newData['x4'] + newData['x1']:newData['x4'] + newData['x2']:newData['x3']": 375.7815457501895}
```

Hình 7: AIC Service thực thi

IV. Đánh giá ưu nhược điểm

Ưu điểm	Nhược điểm
Loại bỏ các thao tác lặp thông thường của nhà phân	Phụ thuộc vào 1 kịch bản chung
tích dữ liệu như đọc dữ liệu, kiểm định thống kê	
Phù hợp để làm quy trình sản xuất phần mềm	Logic code phức tạp
Kết quả mô hình được tính toán trong thời gian ngắn	Bảo trì khó khăn vì phải phiên dịch từ thuật toán toán
	học sang ngôn ngữ phần mềm phụ thuộc vào thiết kế
	Kịch bản kiểm định còn hạn chế

V. Những mục chưa làm được

- 1. Xử lý trường category phân cấp chưa được ổn định nên chưa đưa vào flow
- 2. Chưa thử nghiệm đủ nhiều mô hình để đánh giá hiệu năng
- 3. CorrelationService đang có vấn đề, tuy nhiên là một module quan trọng nên hiện vẫn để trong flow
- 4. Chưa có giao diện đơn giản cho việc nhập liệu để tránh lặp lại

VI. Lời cảm ơn

Trong quá trình xây dựng sản phẩm, nhóm đã gặp không ít khó khăn về công nghệ, tuy nhiên nhờ sự chỉ bảo tận tình của thầy Vũ Tiến Dũng và giảng viên Nguyễn Tiến Hưởng mà đã có thể tương đối hoàn thành sản phẩm. Xin cảm ơn thầy và bạn rất nhiều.

Ngoài ra, những khó khăn về kiến thức thống kê khi làm sản phẩm cũng được các thành viên trong lớp giải đáp nhiệt tình, xin được cám ơn các bạn.

Lời cuối, cám ơn các thành viên trong nhóm dự án đã không kể thời gian, công việc cá nhân cố gắng hoàn thành dự án đúng hạn bảo vệ.

Xin cảm ơn!

Hà Nội, 04/6/2019,

Nhóm dự án ứng dụng Python trong tự động mô hình hóa