Kendall τ

Our initial plan

- for every pair of edges $a,b \in E$ choose random orientations
- indicator variables $X_{a,b}^{\rm con}$ and $X_{a,b}^{\rm dis}$ that the resulting points are concordant and discordant, respectively
- \bullet count the pairs: $X^{\rm con} = \sum X_{a,b}^{\rm con}$ and $X^{\rm dis} = \sum X_{a,b}^{\rm dis}$
- $\tau = \frac{\mathbb{E}[X^{\text{con}}] \mathbb{E}[X^{\text{dis}}]}{\mathbb{E}[X^{\text{con}}] + \mathbb{E}[X^{\text{dis}}]}$

Kandell τ_b for both directions

- for every edge, create two points (one for both directions)
- for these points, count then umber of concordant, discordant and tied pairs (tied in only one direction; pairs of equal points are skipped): #con, #dis, #tie
- $\tau_b = \frac{\text{\#con-\#dis}}{\text{\#con+\#dis+\#tie/2}}$

Comments

- ullet we probably want to include the tied pairs in the denominator as in au_b
- we probably don't want to count the pairs comparing an edge to itself
- modulo these two points, the two variants are the same (see comparison below)

Possible configurations of a pair of edges

			random direction Pr[con] Pr[dis] Pr[tie] Pr[tietie]				both directions #dis #tie #tietie		
	1 2 3 4	1	0	0	0	4	0 + 2	0	0
	1 2 3 4	$\frac{1}{2}$	$\frac{1}{2}$	0	0	2	2 + 2	0	0
0 0 0 0 1 2 3 4	1 2 3 4	0	1	0	0	0	4+2	0	0
0 0 0 0 1 2 3	3 2 1 1 2 3	$\frac{1}{2}$	0	$\frac{1}{2}$	0	2	0+2	2	2
0 0 1 2 3	3 2 1 1 1 2 3	0	$\frac{1}{2}$	$\frac{1}{2}$	0	2	0+2	2	2
0 0 0 1 2 3	3 2 1 1 2 3	1	0	0	0	4	0+1	0	1
0 0 0 1 2 3	1 2 3	0	1	0	0	0	4+1	0	1
	2 - 1 - 1	0	$\frac{1}{2}$	0	$\frac{1}{2}$	0	2 + 2	0	2
$\left\{\begin{array}{cc} 0 & 0 \\ 1 & 2 \end{array}\right.$	1 2	1	0	0	0	4	0 + 0	0	2
	1 2	0	0	1	0	0	0+1	4	1
	1 2	0	0	0	1	0	0+0	0	6