TRANSPORT NETWORKS

(传输网)

ZHANG YANMEI

ymzhang@bupt.edu.cn

COLLEGE OF COMPUTER SCIENCE & TECHNOLOGY

BEIJING UNIVERSITY OF POSTS & TELECOMMUNICATIONS

Content

- Application of digraph
- Concept
 - Capacity (容量)
 - Transport network (传输网)
 - Flow (流量)
 - Virtual flow (虚流量)
 - Maximal flow (最大流量)
- Labeling algorithm (标记算法)

Directed graph (Digraph)

- An important use of labeled digraphs is to model what are commonly called transport networks.
- The label on an edge represents the maximum flow that can be passed through that edge and is called the *capacity* (容量) of the edge. Many situations can be modeled in this way.

Example

Figure below might as easily represent an oil pipeline, a highway system, a communications network, or an electric power grid.

The vertices of a network are usually called nodes and may denote pumping stations, shipping depots, relay stations, or highway interchanges.

- More formally, a transport network, or a network, is a connected digraph N with the following properties:
 - There is a unique node, the *source* (源端), that has in-degree 0. We generally label the source node 1.
 - There is a unique node, the sink (宿端), that has outdegree 0. If N has n nodes, we generally label the sink as node n.
 - The graph N is labeled. The label, C_{ij} , on edge (i, j) is a nonnegative number called the *capacity* of the edge.

Flows

- Mathematically, a *flow* (\widetilde{m}) in a network N is a function that assigns to each edge (i, j) of N a nonnegative number F_{ij} that does not exceed C_{ij} .
 - Conservation of flow (流量守恒)
 - Value of the flow

Flows

- We can represent a flow F by labeling each edge (i, j) with the pair (C_{ij}, F_{ij})
- Example 1

• Here value(F) = 5

Maximum Flows(最大流

- For any network an important problem is to determine the maximum value of a flow through the network and to describe a flow that has the maximum value.
- For obvious reasons this is commonly referred to the *maximum flow problem*.

Example 2

Even for a small network, we need a systematic procedure for solving the maximum flow problem.

(a)

(b)

augment path included virtual flow

An augmenting path is a path (u_1, u_2, \ldots, u_k) in the residual network, where $u_1 = s$, $u_k = t$, and $c_f(u_i, u_{i+1}) > 0$. A network is at maximum flow if and only if there is no augmenting path in the residual network.

Algorithm Ford -Fulkerson

- ♪ Inputs Graph G with flow capacity c, a source node s, and a sink node t
- ightharpoonup Output A flow f from s to t which is a maximum
- ↑ 1. $f(u,v) \leftarrow 0$ for all edges (u,v)
- ♪ 2. While there is a path p from s to t in G_f , such that $c_f(u,v) > 0$ for all edges $(u,v) \in p$:
 - **1**. Find $c_f(p) = \min\{c_f(u, v) | (u, v) \in p\}$
 - ♣ 2. For each edge $(u, v) \in p$
 - 1. $f(u,v) \leftarrow f(u,v) + c_f(p)$ (Send flow along the path)
 - 2. $f(v, u) \leftarrow f(v, u) c_f(p)$ (The flow might be "returned" later)

A Maximum Flow Algorithm

- The algorithm we present is due to <u>Ford</u> and <u>Fulkerson</u> and is often called the *labeling* algorithm (标记算法).
- The labeling referred to is an additional labeling of nodes.
- We have used integer capacities for simplicity, but Ford and Fulkerson show that this algorithm will stop in a finite number of steps if the capacities are rational numbers.

- Let *N* be a network and let <u>*G* be the symmetric</u> closure of *N*.
 - Choose a path in G and let an edge (i,j) in this path.
 - If $(i,j) \in N$ and $e_{ij} = C_{ij} F_{ij} > 0$, then we say this edge has positive excess capacity (剩余容量).
 - If (i,j) is not an edge of N then we are traveling this edge in the wrong direction. In this case $e_{ij}=F_{ji}$ if $F_{ji}>0$. Increasing flow through edge(i,j) will have the effect of reducing F_{ji} .

- Begin with all flows set to 0.
- but all edges labeled as residual capacity (剩余容量).
 - If $(i,j) \in N$, then $e_{ij} = C_{ij} F_{ij} = C_{ij} 0 = C_{ij}$.
 - If (i,j) is not an edge of N, then $e_{ij}=F_{ji}=0$.

Example 4

The initial flow in all edges is zero. That mean all edges is labeled 0 or C_{ii} .

- Let N_1 be the <u>set of all nodes connected to</u> the source by an edge with positive excess capacity.
- Label each j in N_1 with $[E_j, 1]$, where E_j is the excess capacity e_{1j} of edge (1, j).
- The l in the label indicates that *j* is connected to the source, node l.

STEP 2

- Let node j in N_1 be the node with smallest node number and let $N_2(j)$ be the set of all unlabeled nodes, other than the source, that are joined to node j and have positive excess capacity.
- Suppose that node k is in $N_2(j)$ and (j, k) is the edge with positive excess capacity. Label node k with $[E_k, j]$, where E_k is the minimum of E_j and the excess capacity e_{jk} of edge (j, k).
- When all the nodes in $N_2(j)$ are labeled in this way, repeat this process for the other nodes in N_1 . Let $N_2 = \bigcup_{j \in N_1} N_2(j)$

Step 1,2,3

 $N_1 = \{2,5\}, N_2 = \{3,4\}, N_3 = \{6\}$

- Repeat Step 2, labeling all previously unlabeled nodes N_3 that can be reached from a node in N_2 by an edge having positive excess capacity.
- Continue this process forming sets N_4 , N_5 until after a finite number of steps either
 - (i) the sink has not been labeled and no other nodes can be labeled. It can happen that no nodes have been labeled; remember that the source is not labeled. or
 - (ii) the sink has been labeled.

- In case (i), the algorithm terminates and the total flow then is a maximum flow.
 - (i) the sink has not been labeled and no other nodes can be labeled.

- In case (ii) the sink, node n, has been labeled with $[E_n, m]$ where E_n is the amount of extra flow that can be made to reach the sink through a path π .
 - (ii) the sink has been labeled.

Path $\pi = \{1,2,3,6\}$, $E_n = 3$, all edges in $\pi e_{ij} - E_n$, and the symmetric edges $e_{ji} + E_n$.

STEP 5

- We examine π in reverse order.
 - decrease the excess capacity e_{ij} by E_n .
 - Simultaneously, we increase the excess capacity of the edge (j, i) by E_n .
 - We now have a new flow that is E_n units greater than before and we return to Step 1.

Repeat Step 1,2,3

 $N_1 = \{2,5\}, N_2 = N_2(2) \cup N_2(5) = \{4,3\}, N_3 = \{6\}$

 $\pi = \{1,5,3,6\}, E_n = 3, \text{ all edges in } \pi e_{ij} - E_n,$ and the symmetric edges $e_{ji} + E_n$.

Repeat Step 1,2,3

 $N_1 = \{2,5\}, N_2 = N_2(2) \cup N_2(5) = \{4,3\}, N_3 = \{6\}$

 $\pi = \{1,2,4,6\}, E_n = 2, \text{ all edges in } \pi e_{ij} - E_n,$ and the symmetric edges $e_{ji} + E_n$.

Repeat Step 1,2,3...

 $N_1 = \{5\}, N_2 = \{3\}, N_3 = \{2\}, N_4 = \{4\}, N_5 = \{6\}$

 π ={1,5,3,2,4,6}, E_n =2, all edges in π e_{ij} - E_n , and the symmetric edges e_{ji} + E_n .

Go further?

• Step 1,2,3 $N_1 = \{5\}, N_2 = \{3\}, N_3 = \{2\}, N_4 = \Phi$

■ Terminated with the final overall flow 10. All virtual edges $e_{ii} = F_{ij}$.

Cut (割集)

• A *cut* in a network *N* is a set *K* of edges having the property that every path from the source to the sink contains at least one edge from *K*.

Capacity of a cut K

- The *capacity* of a cut K, c(K), is the sum of the capacities of all edges in K.
- If F is any flow and K is any cut, then
 - $ext{value}(F) \leq c(K).$

The Max Flow Min Cut Theorem

■ A maximum flow *F* in a network has value equal to the capacity of a minimum cut of the network.

Find the maximal flow for the network N given in Figure 1.

Figure 1

homework

10,14@305