PAPER

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

On the way to school today, Naot accidentally found a piece of paper on the road containing two integer arrays a and b of length n. On the back of the paper, there was a puzzle written as follows:

Let the *i*-th integer $(0 \le i < n)$ of array a and array b be a_i and b_i , respectively. Define the function f as follows:

```
float f(float x, int a[], int b[], int n) {
    float res = 0;
    for(int i = 0; i < n; i++) {
        for(int j = 0; j < n; j++) {
            if(i != j) {
                int da = a[i] - a[j];
                int db = b[i] - b[j];
                res = max(res, da * cos(x) + db * sin(x));
            }
        }
    }
    return res;
}</pre>
```

Find the minimum value of the function f with two given arrays of numbers. The result should be accepted with an error tolerance of 10^{-6} .

Input

The first line contains a positive integer $n \ (2 \le n \le 10^6)$.

The next line contains n integers $a_0, a_1, \ldots, a_{n-1}$ ($|a_i| \le 10^5$).

The following line contains n integers $b_0, b_1, \ldots, b_{n-1}$ ($|b_i| \le 10^5$).

Output

Minimum value of the function f.

Examples

standard input	standard output
5	0.000000000
3 2 9 3 2	
5 5 5 5 5	
4	1.4142135624
1 0 1 2	
0 -1 -2 -1	
5	1.6712580436
3 1 5 3 4	
7 2 9 3 5	

Note

In the first example, the value of x that minimizes the function f is $x = \pi/2$.

In the second example, the value of x that minimizes the function f is $x = \pi/4$.