USP - Universidade de São Paulo Escola Politécnica Engenharia de Computação - 1º Módulo acadêmico MAP3122 - Métodos Numéricos e Aplicações

Implementação do Método de Euler Implícito para solução numérica de EDOs

Alunos: Arthur Milani Giovanini - arthurusp@usp.br Henrique de Andrade Assme - heniassme@usp.br

Professor: Alexandre Roma - roma@ime.usp.br

Sumário

$\mathbf{S}_{\mathbf{I}}$	umário	1
Li	ista de Figuras	2
Li	ista de Tabelas	3
1	Introdução	5
2	Modelagem Matemática	5
3	Metodologia Numérica 3.1 Análise de convergência para solução manufaturada	5 6
4	Resultados4.1 Verificação por solução manufaturada	
5	Conclusão	11
A	pêndice	12
A	pêndice A Teorema do Ponto fixo	12
\mathbf{R}	eferência Bibliográficas	13

Lista de Figuras

1	Gráfico da população das Presa e dos Predadores para a maior precisão calculada	 8
2	Gráfico da população das Presas com 3 valores de n	 8
3	Gráfico da população dos Predadores com 3 valores de n	 9
4	Gráfico da população das Presa e dos Predadores para a maior precisão calculada	 10
5	Gráfico da população das Presas com 3 valores de n	 10
6	Gráfico da população dos Predadores com 3 valores de n	 11

Lista de Tabelas

1	Tabela de convergência do problema com solução manufaturada	6
2	Tabela de convergência do problema presa-predador para o intervalo $I=[0,10]$	7
3	Tabela de convergência do problema presa-predador para o intervalo $I = [0, 20]$	Ç

Resumo

Utilizamos o método de Euler Implícito para aproximar solções numéricas de equações diferenciais ordinárias (EDOs). O código foi feito em python e testado com uma EDO de solução exata conhecida para verificar se estava correto. Depois disso, utilizamos o problema de presa-predador (Lotka-Volterra), problema esse que não possui solução exata, para estimar sua solução numérica. Os resultados obtidos foram satisfatórios e compatíveis com o esperado, visto que o erro das aproximações tendeu a zero e a ordem "p"convergiu para um, a qual é a ordem esperada para o método.

1 Introdução

O tópico de equações diferenciais é muito abrangente e muito presente em diversas áreas da engenharia, física, matemática, biologia e em muitas outras. O objetivo desse trabalho foi utilizar o método de aproximação numérica para EDOs chamado Euler Implícito. Esse método utiliza o Teorema do Ponto Fixo para estimar qual o valor do ponto em um determinado instante de tempo. Fazendo esse processo algumas vezes, podemos fazer um gráfico estimado de uma solução, além de analisar os erros cometidos e a ordem do método.

2 Modelagem Matemática

Utilizamos a modelagem baseada no Problema de Cauchy para utilizar o método numérico Euler Implícito. A forma do Problema de Cauchy possui o seguinte formato:

$$y(t) = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, \begin{cases} \frac{dy_1}{dt} = f(y_1, y_2, t) \\ \frac{dy_2}{dt} = f(y_1, y_2, t) \\ y_1(t_0) = y_{1,0} \\ y_2(t_0) = y_{2,0} \end{cases}$$

Utilizamos para testar o funcionamento do código o seguinte sistema de EDOs, suas respectivas condições iniciais e as soluções exatas:

$$\begin{cases} \frac{dy_1}{dt} = -y_2, & y_1(t) = \cos t \\ \frac{dy_2}{dt} = y_1, & y_2(t) = \sin t \\ y_1(0) = 1 \\ y_2(0) = 0 \end{cases}$$

Para o problema com solução exata desconhecida utilizamos o problema de presa-predador. Seja a população das presas $y_1(t)$ e a população dos predadores $y_2(t)$. Na ausência de predadores, a população de presas possui aumento proporcional a quantidade de presas presentes $(a \cdot y_1(t))$. Na ausência de presas, a população de predadores diminui proporcionalmente a quantidade de predadores existente, $(-c \cdot y_2(t))$ devido a falta de alimento (presas). Chamaremos o evento de encontro de presas e predadores como $y_1(t) \cdot y_2(t)$. Esses encontros são favoráveis para o crescimento dos predadores $(d \cdot y_1(t) \cdot y_2(t))$ e desfavoráveis para o crescimento das presas $(-b \cdot y_1(t) \cdot y_2(t))$. $a, b, c, d \in R$. O modelo que descreve a taxa de crescimento dessas populações resultou nesse sistema de EDOs:

$$\begin{cases} \frac{dy_1}{dt} = a \cdot y_1 - b \cdot y_1 \cdot y_2\\ \frac{dy_2}{dt} = -c \cdot y_2 + d \cdot y_1 \cdot y_2\\ y_1(t_0) = y_{1,0}\\ y_2(t_0) = y_{2,0} \end{cases}$$

Os parâmetros usados no caso desse relatório foram: a=1;b=0,02;c=0,25;d=0,02; $y_{1,0}=20;y_{2,0}=20.$

3 Metodologia Numérica

O método Euler Implícito se baseia no Euler Explícito, que possui a seguinte equação característica:

$$y_{k+1} = y_k + \Delta t \cdot f(y_k, t_k)$$

Utilizamos o ponto anterior para calcular o próximo ponto. No Euler Implícito utilizamos a própria variável y_{k+1} para estimá-la:

$$y_{k+1} = y_k + \Delta t \cdot f(y_{k+1}, t_{k+1})$$

Para conseguir encontrar o valor de y_{k+1} através dessa aproximação, precisamos mudar o foco do problema. Vamos encontrar o ponto fixo de uma função φ , utilizando como base teórica o Teorema do Ponto Fixo. Nesse caso, a φ utilizada é o lado direito da equação do Euler ímplicito, pois os parâmetros y_k e Δt são fornecidos e t_{k+1} pode ser calculado, tornando o lado direito da equação dependente apenas de y_{k+1} :

$$y_{k+1} = \varphi(y_{k+1}), \text{ tal que } \varphi(y_{k+1}) = y_k + \Delta t \cdot f(y_{k+1}, t_{k+1})$$

 $y_{k+1} = x \Rightarrow \varphi(x) = x$

Nosso problema agora se tornou encontrar o valor x para cada instante de tempo. Para saber se a função φ escolhida converge, precisamos verificar se a seguinte condição do teorema do ponto fixo é satisfeita:

$$|\varphi'(x)| \le k$$
, para $k < 1$

Para que essa condição seja satisfeita, basta que a derivada de $\varphi(x)$ no intervalo I=[a,b] escolhido tenha valor menor do que 1. A análise e escolha do intervalo foi feita para o caso manufaturado.

3.1 Análise de convergência para solução manufaturada

Para a solução manufaturada temos o seguinte sistema de EDOs:

$$\begin{cases} \frac{dy_1}{dt} = -y_2, & y_1(t) = \cos t \\ \frac{dy_2}{dt} = y_1, & y_2(t) = \sin t \\ y_1(0) = 1 \\ y_2(0) = 0 \end{cases}$$

E as respectivas φ_s de cada uma:

$$\begin{cases} \varphi_1 = y 1_k - \Delta t \cdot \sin t \\ \varphi_2 = y 2_k + \Delta t \cdot \cos t \end{cases}$$

Calculando as derivadas já com o módulo temos:

$$\begin{cases} |\varphi_1'| = \Delta t \cdot |\cos t| \\ |\varphi_2'| = \Delta t \cdot |\sin t| \end{cases}$$

Como o módulo de $\cos t$ e de $\sin t$ é sempre menor ou igual a 1 e $0 < \Delta t < 1$, temos que ambas as derivadas satisfazem a condição do ponto fixo e convergem independente do intervalo escolhido.

4 Resultados

4.1 Verificação por solução manufaturada

Para a solução manufaturada utilizamos as funções $y_1(t) = \cos t$ e $y_2(t) = \sin t$ para verificar a implementação do método de Euler Implicito.

O intervalo I utilizado foi I = [0,3] e as condições iniciais foram $y_1(0) = 1$ e $y_2(0) = 0$. O valor inicial escolhido para n foi 16 e é multiplicado por 2 a cada nova iteração. O erro foi calculado utilizando a norma euclidiana:

$$e = \sqrt{e_1^2 + e_2^2}$$

A tabela 1 se refere à tabela de convergência do problema manufaturado.

n	$h_n = \frac{(T - t_0)}{n}$	$ e_{T,h_n} $	ordem p
n	ΔT	e	р
16	1.875e-01	0.000e+00	0.000e+00
32	9.375 e-02	9.353 e-02	1.002e+00
64	4.688e-02	4.676e-02	1.001e+00
128	2.344e-02	2.338e-02	1.000e+00
256	1.172e-02	1.169e-02	1.000e+00

Tabela 1: Tabela de convergência do problema com solução manufaturada

4.2 Utilização do método para o problema presa-predador sem solução conhecida

Para o caso do problema presa-predador utilizamos o seguinte sistema de equações no algoritmo criado:

$$\begin{cases} \frac{dy_1}{dt} = 1 \cdot y_1 - 0,02 \cdot y_1 \cdot y_2 \\ \frac{dy_2}{dt} = -0,25 \cdot y_2 + 0,02 \cdot y_1 \cdot y_2 \\ y_1(0) = 20 \\ y_2(0) = 20 \end{cases}$$

O intervalo I escolhido foi I = [0, 10], pois é quando temos o primeiro pico das soluções e seus decaimentos. Depois utilizamos o intervalo I = [0, 20] para analisar o que acontecia com a solução numérica depois do primeiro pico. As condições iniciais para ambas as populações foram de $y_1(0) = 20$ e $y_2(0) = 20$. O valor inicial escolhido para n foi 256 e é multiplicado por 2 a cada nova iteração. O erro foi calculado utilizando também a norma euclidiana:

$$e = \sqrt{e_1^2 + e_2^2}$$

Para calcularmos o erro é necessário possuir a estimativa do valor de y obtido pelo método de Euler Implícito, mas também precisamos do valor exato de y. Entretanto, não sabemos a solução exata do problema de Presa-Predador e, por isso, estimaremos o erro de uma outra forma, utilizando as seguintes fórmulas:

$$e(t, \frac{h}{2}) \approx \frac{\eta(t, h) - \eta(t, \frac{t}{2})}{2^p - 1}$$
 (1)

$$e(t, \frac{h}{8}) \approx \frac{\eta(t, h) - \eta(t, \frac{t}{8})}{8^p - 1}$$
 (2)

A fórmula (1) se refere ao caso de intervalo [0, 10], enquanto a fórmula (2) se refere ao caso de intervalo [0, 20]. Tais diferenças ocorrem pelo fato de os passos de integração serem divididos por 2, no primeiro caso, ao passo que são divididos por 8, no segundo caso.

A tabela 2 se refere à tabela de convergência do problema presa-predador para o intervalo I = [0, 10].

n	$h_n = \frac{(T - t_0)}{n}$	$ e_{T,h_n} $	ordem p
n	ΔT	e	p
256	3.906e-02	0.000e+00	0.000e+00
512	1.953 e-02	2.151e-01	0.000e+00
1024	9.766e-03	1.037e-01	1.053e+00
2048	4.883e-03	5.084 e-02	1.028e+00
4096	2.441e-03	2.517e-02	1.015e+00
8192	1.221e-03	1.252 e-02	1.007e+00
16384	6.104 e-04	6.243 e-03	1.004e+00
32768	3.052 e- 04	3.117e-03	1.002e+00
65536	1.526e-04	1.558e-03	1.001e+00
131072	7.629 e-05	7.786e-04	1.000e+00

Tabela 2: Tabela de convergência do problema presa-predador para o intervalo I = [0, 10]

Foram feitos 3 gráficos diferentes. No primeiro utilizamos a maior precisão para a presa e para o predador no mesmo gráfico. O segundo possui apenas o gráfico das presas para $n \in \{256, 2048, 131072\}$ e o terceiro possui apenas o gráfico dos predadores para $n \in \{256, 2048, 131072\}$.

Figura 1: Gráfico da população das Presa e dos Predadores para a maior precisão calculada

Figura 2: Gráfico da população das Presas com 3 valores de n

Figura 3: Gráfico da população dos Predadores com 3 valores de n

Para o intervalo I = [0, 20] modificamos o valor inicial de n
 para 512 e utilizamos um fator multiplicativo de 8 para cada novo n
, só assim obtivémos uma tabela de convergência que consideramos adequada.

A tabela 3 se refere à tabela de convergência do problema presa-predador para o intervalo I = [0, 20].

n	$h_n = \frac{(T - t_0)}{n}$	$ e_{T,h_n} $	ordem p
n	ΔT	e	p
512	3.906e-02	0.000e+00	0.000e+00
4096	4.883e-03	7.681e-01	0.000e+00
32768	6.104 e-04	1.078e-01	9.444e-01
262144	7.629 e-05	1.367e-02	9.929 e-01
2097152	9.537e-06	1.712e-03	9.991e-01
16777216	1.192e-06	2.141e-04	9.999e-01

Tabela 3: Tabela de convergência do problema presa-predador para o intervalo I = [0, 20]

Também foram feitos 3 gráficos diferentes. No primeiro utilizamos a maior precisão para a presa e para o predador no mesmo gráfico. O segundo possui apenas o gráfico das presas para $n \in \{512, 32768, 16777216\}$ e o terceiro possui apenas o gráfico dos predadores para $n \in \{512, 32768, 16777216\}$.

Aproximação numérica para o problema presa-predador

Figura 4: Gráfico da população das Presa e dos Predadores para a maior precisão calculada

Figura 5: Gráfico da população das Presas com 3 valores de n

Figura 6: Gráfico da população dos Predadores com 3 valores de n

5 Conclusão

Através da tabela de convergência da solução manufaturada é possível perceber se o método foi bem implementado ou não. Particularmente, o código foi bem implementado, uma vez que o erro, "e", se aproxima de 0 conforme aumentamos os passos de integração e a ordem do método, "p", se aproxima de 1 que é a ordem do método de Euler Implícito. O erro aproximar de zero significa que ao aumentarmos os passos de integração, a solução numérica se aproxima cada vez mais da solução exata.

Para o problema presa-predador analisado, dado que o código funciona por conta do teste realizado com a solução manufaturada, tivemos resultados satisfatórios nas tabelas de convergência para ambos os intervalos estudados.

Na tabela 2 é perceptível que a ordem do problema converge para 1 e que o erro se aproxima cada vez mais de 0, diminuindo, aproximadamento, pela metade para cada novo valor de Δt , uma vez que o Δt cai pela metade para cada novo passo de integação e o erro do método é proporcional ao Δt .

Na tabela 3 também é possível perceber essas duas características, a ordem do problema se aproximando de 1 e o erro se tornando cada vez menor. Nessa tabela o erro é aproximadamente dividido por 8 para cada novo valor de Δt , uma vez que o valor de n é multiplicado por 8, o valor de Δt é dividido por 8 para cada novo passo de integração e, novamente, o erro do método é proporcional ao Δt .

A diferença entre usar o fator multiplicativo de 2 ou de 8 foi justamente pela quantidade de pontos utilizados em cada análise. Como o intervalo I=[0,20] possui o dobro de pontos que o intervalo I=[0,10], tivemos que aumentar o fator de 2 para 8 para cada novo passo de integração e ainda modificar o n inicial para o segundo intervalo, de 256 para 512. Somente com essas modificações conseguimos atingir uma tabela de convergência que consideramos satisfatória para provar que o método implementado está correto.

Uma observação é que tentamos modificar os valores para que a ordem p da tabela 3 chegasse no valor 1,0000. Porém, nenhum dos computadores da dupla suportou a quantidade de contas que o programa estava fazendo e decidimos deixar com o valor máximo que conseguimos atingir (0,9999).

Apêndice

A Teorema do Ponto fixo

Um número é um ponto fixo de uma função g(t) se

$$g(p) = p$$
.

Seja $g(t) \in C^1[a,b]$ tal que $g(t) \in [a,b] \forall t \in [a,b]$. Suponha ainda que g'(t) exista em (a,b) com

$$|g'(t)| \le k \forall t \in (a, b),$$

onde k < 1 é uma constante positiva. Então, para um número qualquer $p_0 \in [a,b]$, a sequencia definida por

$$p_{n+1} = g(p_n), n \ge 0$$

converge para o único ponto fixo $p \in [a, b]$.

Referência Bibliográficas

- 1 TNEDO.pdf
- 2 Material do kitTarefa03 disponibilizado pelo professor Alexandre Roma 3 MODELAGEM MATEMÁTICA E ESTABILIDADE DE SISTEMAS PREDADOR-PRESA