

Data Analytics Full-Time Bootcamp

GOODNESS OF FIT

PREVIOUSLY, IN DATA ANALYTICS FULL TIME...

HYPOTHESIS TESTING

For a given observed sample X, we check how unlikely it is to produce X in a world where our null hypothesis is true (p-value). If our observation is overwhelmingly unlikely (p< α), we prefer to reject the notion that we are living in a world where the null is true.

On the other hand, if our observation X is not that unlikely in a world where the null holds, we do not reject the null.

AND NOW, RESUMING OUR PREVIOUSLY SCHEDULED PROGRAM

Suppose that a sample is taken from a population and the members can be uniquely classified according to a pair of discrete characteristics A and B. The hypothesis to be tested is of no association in the population between possession of characteristic A and possession of characteristic B. For example, a travel agency may want to know if there is any relationship between a client's gender and the method used to make an airline reservation.

Essentially we will posit as null hypothesis that the presence of an aspect of characteristic A (say gender being male) does not influence the distribution of characteristic B (method of reservation), or vice versa.

Let's take an example of market differentiation. Makers of products want their products to be distinctly perceived from the competition so let's say 3 car makers want to understand how their brand is perceived and if they are sufficiently differentiated. A survey of 513 car owners where they are asked to identify 3 brands with the notions of "Sportive" or

"Safe"	returns	the	following	results
--------	---------	-----	-----------	---------

Brand	Sportive	Safe	Total
BMW	256	74	330
Mercedes	41	42	83
Lexus	66	34	100
Total	363	150	513

We start with the answer

import scipy.stats as st
st.chi2 contingency(table)

Yay! (?)

To the colab!

Brand	Sportive	Safe	Total
BMW	256	74	330
Mercedes	41	42	83
Lexus	66	34	100
Total	363	150	513

What is this doing?

The null hypothesis would be that the brand does not influence perception. To compute the expected observations for each box, we first ignore the actual granular values and find the marginal proportions

Brand	Sportive	Safe	Total
BMW			330
Mercedes			83
Lexus			100
Total	363	150	513

330/513 =64.3%	Brand	Sportive	Safe	Total
01.070	BMW			64.3%
	Mercedes			16.2%
	Lexus			19.4%
	Total	70.7%	29.2%	100%

Important fact of life:

If A and B are independent, the probability of A and B occurring simultaneously is P(A)*P(B)

Now we find the individual proportions for each pair under the null hypothesis. This assumes each car is rated on each characteristic independently, so the proportions do not change when you compare car brand or characteristic descriptive

Brand	Sportive	Safe	Total
BMW	70.7%*64.3%	4	64.3%
Mercedes			16.2%
Lexus			19.4%
Total	70.7%	29.2%	100%

Brand	Sportive	Safe	Total
BMW	45.5%	18.8%	64.3%
Mercedes	11.5%	4.7%	16.2%
Lexus	13.7%	5.7%	19.4%
Total	70.7%	29.2%	100%

We now get back to our expected values by remembering that we had 513 cars

513*45.5%

Brand	Sportive	Safe	Total
BMW	45.5%	18.8%	64.3%
Mercedes	11.5%	4.7%	16.2%
Lexus	13.7%	5.7%	19.4%
Total	70.7%	29.2%	100%

Brand	Sportive	Safe	Total
BMW	233.4	96.4	330
Mercedes	59.0	24.1	83
Lexus	70.3	29.2	100
Total	363	150	513

Now we have our Observed table and our Expected table under H₀

Observed Table

Brand	Sportive	Safe	Total
BMW	256	74	330
Mercedes	41	42	83
Lexus	66	34	100
Total	363	150	513

Expected Table (under H₀)

Brand	Sportive	Safe	Total
BMW	233.4	96.4	330
Mercedes	59.0	24.1	83
Lexus	70.3	29.2	100
Total	363	150	513

GOODNESS OF FIT - FIT TO DISTRIBUTION

This formula measures how much Observed reality differs from Expectation under H₀

$$\sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i}$$

Where O_i is the number of actual observations in category i and E_i is the expected number of observations in that category.

 $(256-233.4)^2/233.4$

Brand	Sport	Safe
BMW	256	74
Merc	41	42
Lexus	66	34

Brand	Sport	Safe
BMW	233.4	96.4
Merc	59.0	24.1
Lexus	70.3	29.2

Brand	Sport	Safe
BMW	2.19	5.20
Merc	0.15	13.30
Lexus	0.26	0.79

GOODNESS OF FIT - FIT TO DISTRIBUTION

Brand	Sport	Safe
BMW	256	74
Merc	41	42
Lexus	66	34

Brand	Sport	Safe
BMW	233.4	96.4
Merc	59.0	24.1
Lexus	70.3	29.2

Brand	Sport	Safe
вмw	2.19	5.20
Merc	0.15	13.30
Lexus	0.26	0.79

$$\sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i} = 2.19 + 5.20 + 0.15 + 13.30 + 0.26 + 0.79 = 21.89$$

This measures "how much observed reality differs from the H_0 ". Is this deviation "enough" for us to discard the hypothesis? That's where the p-value comes in.