【A/B 测试】支付宝营销策略效果分析

Programmer: Dan.Q Date: 2020.06.25

A/B 测试常用于比较不同设计、运营方案的优劣,以辅助决策。本分析以支付宝营销活动为例,通过广告点击率指标比较两组营销策略的广告投放效果。

1. 数据来源

本文所用数据集来自阿里云天池:

阿里云天池 - Audience Expansion Dataset

该数据集包含三张表,分别记录了支付宝两组营销策略的活动情况:

• emb_tb_2.csv: 用户特征数据集

• effect_tb.csv: 广告点击情况数据集

• seed_cand_tb.csv: 用户类型数据集

本分析报告主要使用广告点击情况数据,涉及字段如下:

- dmp_id: 营销策略编号(源数据文档未作说明,这里根据数据情况设定为 1: 对 照组, 2: 营销策略一, 3: 营销策略二)
- user id: 支付宝用户 ID
- label: 用户当天是否点击活动广告(0: 未点击, 1: 点击)

2. 数据处理

2.1 数据导入和清洗

1. 整合表

In [1]:

import libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

%matplotlib inline

In [32]:

```
# load data
```

```
data = pd. read_csv('data/effect_tb.csv', header = None)
data. columns = ["dt", "user_id", "label", "dmp_id"]
```

日志天数属性用不上,删除该列 data = data.drop(columns = "dt") data.head(3) Out[32]:

	user_id	label	dmp_id
0	1	0	1
1	1000004	0	1
2	1000004	0	2

In [26]:

table summary
data.describe()

Out[26]:

	user_id	label	dmp_id
count	2.645958e+06	2.645958e+06	2.645958e+06
mean	3.112995e+06	1.456297e-02	1.395761e+00
std	1.828262e+06	1.197952e-01	6.920480e-01
min	1.000000e+00	0.000000e+00	1.000000e+00
25%	1.526772e+06	0.000000e+00	1.000000e+00
50%	3.062184e+06	0.000000e+00	1.000000e+00
75%	4.721132e+06	0.000000e+00	2.000000e+00
max	6.265402e+06	1.000000e+00	3.000000e+00

2. 重复值处理

In [27]:

shape of df data. shape

Out[27]:

(2645958, 3)

In [28]:

distinct count of columns
data.nunique()

Out[28]:

 $\begin{array}{ccc} user_id & 2410683 \\ 1abel & 2 \\ dmp_id & 3 \end{array}$

dtype: int64

数据行数与独立用户数不统一,检查是否存在重复行:

In [33]:

data[data.duplicated(keep = False)].sort_values(by = ["user_id"])

Out[33]:

	user_id	label	dmp_id
8529	1027	0	1
1485546	1027	0	1
1579415	1471	0	1
127827	1471	0	1
404862	2468	0	1
1382121	6264633	0	1
1382245	6264940	0	1
2575140	6264940	0	1
1382306	6265082	0	3
2575171	6265082	0	3

25966 rows × 3 columns

In [34]:

drop duplicate

data = data.drop_duplicates()

check if any duplicates left

data[data.duplicated(keep = False)]

Out[34]:

user_id	label	dmp_id

3. 空值处理

In [35]:

check null values

data.info(null counts = True)

<class 'pandas.core.frame.DataFrame'>

Int64Index: 2632975 entries, 0 to 2645957

Data columns (total 3 columns):

dtypes: int64(3)

memory usage: 80.4 MB

数据集无空值, 无需进行处理。

4. 异常值检查

通过透视表检查各属性字段是否存在不合理取值:

In [36]:

data.pivot_table(index = "dmp_id", columns = "label", values = "user_
id",

aggfunc = "count", margins = True)

Out[36]:

label	0	1	All
dmp_id			
1	1881745	23918	1905663
2	404811	6296	411107
3	307923	8282	316205
All	2594479	38496	2632975

属性字段未发现异常取值, 无需进行处理。

5. 数据类型

In [37]:

data. dtypes

Out[37]:

user_id int64
label int64
dmp_id int64
dtype: object

数据类型正常, 无需处理。

2.2 样本容量检验

在进行 A/B 测试前,需检查样本容量是否满足试验所需最小值。 这里借助 Evan Miller 的样本量计算工具:

Sample Size Calculator

首先需要设定点击率基准线以及最小提升比例,我们将对照组的点击率设为基准线. In [38]:

```
# click rate of control group
data[data["dmp_id"] == 1]["label"].mean()
Out[38]:
```

0.012551012429794775

对照组点击率为 1.26%,假定我们希望新的营销策略能让广告点击率至少提升 1 个百分点,则算得所需最小样本量为: 2167。

Sample size:

2,167

per variation

In [39]:

sample size of campaigns
data["dmp_id"].value_counts()
Out[39]:

1 1905663 2 411107

3 316205

Name: dmp_id, dtype: int64

两组营销活动的样本量分别为41.11万和31.62万,满足最小样本量需求。

In [40]:

保存清洗好的数据备用 # save it to file data. to csv("data/output.csv", index = False)

reload data

data = pd. read_csv("data/output.csv")

3. 假设检验

先观察几组试验的点击率情况。

In [41]:

click rate of groups

```
print("对 照 组: ",data[data["dmp_id"] == 1]["label"].mean())
print("营销策略一: ",data[data["dmp_id"] == 2]["label"].mean())
print("营销策略二: ",data[data["dmp_id"] == 3]["label"].mean())
```

对 照 组: 0.012551012429794775 营销策略一: 0.015314747742072015 营销策略二: 0.026191869198779274

可以看到策略一和策略二相较对照组在点击率上都有不同程度提升。

其中策略一提升 0.2 个百分点,策略二提升 1.3 个百分点,只有策略二满足了前面我们对点击率提升最小值的要求。

接下来需要进行假设检验,看策略二点击率的提升是否显著。

a. 零假设和备择假设

记对照组点击率为 p1, 策略二点击率为 p2, 则:

零假设 H0: p1≥p2 备择假设 H1: p1 < p2

b. 分布类型、检验类型和显著性水平

样本服从二点分布,独立双样本,样本大小 n>30,总体均值和标准差未知,所以采用 Z 检验。显著性水平 α 取 0.05。

3.1 方法一: 公式计算

In [42]:

用户数

```
n_old = len(data[data.dmp_id == 1]) # 对照组
n_new = len(data[data.dmp_id == 3]) # 策略二
```

点击数

```
c_old = len(data[data.dmp_id ==1][data.label == 1])
c_new = len(data[data.dmp_id ==3][data.label == 1])
```

计算点击率

```
r old = c old / n old
r_{new} = c_{new} / n_{new}
# 总和点击率
r = (c \text{ old} + c \text{ new}) / (n \text{ old} + n \text{ new})
print("总和点击率: ", r)
<ipython-input-42-dfc782d19ecb>:6: UserWarning: Boolean Series key wi
11 be reindexed to match DataFrame index.
 c old = len(data[data.dmp id ==1][data.label == 1])
总和点击率: 0.014492310074225832
<ipython-input-42-dfc782d19ecb>:7: UserWarning: Boolean Series key wi
11 be reindexed to match DataFrame index.
c new = len(data[data.dmp id ==3][data.label == 1])
In [43]:
# 计算检验统计量 Z
z = (r \text{ old } - r \text{ new}) / \text{ np. sqrt}(r * (1 - r)*(1/n \text{ old } + 1/n \text{ new}))
print("检验统计量 z: ", z)
检验统计量 z: -59.44168632985996
In [44]:
# 查 α =0.05 对应的 z 分位数
from scipy. stats import norm
z_alpha = norm.ppf(0.05)
z alpha
Out[44]:
-1.6448536269514729
z alpha = -1.64, 检验统计量 z = -59.44,该检验为左侧单尾检验,拒绝域为{z < z alpha}。
所以我们可以得出结论:原假设不成立,策略二点击率的提升在统计上是显著的。
3.2 方法二: Python 函数计算
直接用 python statsmodels 包计算 z 值和 p 值。
In [45]:
import statsmodels. stats. proportion as sp
z_score, p = sp.proportions_ztest([c_old, c_new], [n_old, n_new], alte
rnative = "smaller")
print("检验统计量 z: ", z_score, ", p 值: ", p)
```

检验统计量 z: -59. 44168632985996 , p 值: 0.0 p 值约等于 0, p $< \alpha$, 与方法一结论相同,拒绝原假设。

作为补充,我们再检验下策略一的点击率提升是否显著。

In [46]:

策略一检验

z_score, p = sp.proportions_ztest([c_old, len(data[data.dmp_id ==2][d
ata.label == 1])], [n_old, len(data[data.dmp_id == 2])], alternative =
 "smaller")

print("检验统计量 z: ", z_score, ", p 值: ", p)

检验统计量 z: -14.165873564308429 , p 值: 7.450121742737582e-46 <ipython-input-46-866f7bee4cd0>:2: UserWarning: Boolean Series key wi 11 be reindexed to match DataFrame index.

z_score, p = sp.proportions_ztest([c_old, len(data[data.dmp_id ==2]
[data.label == 1])], [n_old, len(data[data.dmp_id == 2])], alternative
= "smaller")

p值约等于7.45, p > α,无法拒绝原假设,策略一对广告点击率的提升效果不显著。

4. 结论

综上所述,两种营销策略中,只有策略二对广告点击率有显著提升效果,相较于对照组点击率提升了近一倍,因而在两组营销策略中应选择第二组进行推广。

本案例来源和鲸社区

原文链接: https://www.kesci.com/home/project/5efee4a563975d002c98adba/code