Wiederholung

Sei M Menge.

Wenn M endlich: $\#M = Anzahl \ Elemente \in M$

Wenn M unendlich: $\#M = \infty$

Für $n \in \mathbb{N} := \{1, 2, 3, \ldots\}$

$$n! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot \dots \cdot n \qquad 0! = 1$$

Binomialkoeffizient: Für $0 \le k \le n$

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} \qquad \qquad \binom{n}{0} = \frac{n!}{0! \cdot (n-0)!} = \binom{n}{n} = \frac{n!}{n! \cdot (n-n)!} = 1$$

0.0.1 Lemma

Für 0 < k < n gilt:

$$\binom{n}{k} = \binom{n-1}{1} + \binom{n-1}{k}$$

Beweis:

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \frac{(n-1)!}{(k-1)! \cdot (n-k)!} + \frac{(n-1)!}{(k-1)! \cdot (n-1-k)!} = \frac{k(n-1)! + (n-k) \cdot (n-1)!}{k! \cdot (n-k)!} = \frac{n(n-1)!}{k! \cdot ($$

0.1 Geometrische Anordnung (Pascalsches Dreieck)

$$\begin{pmatrix} \binom{0}{0} \\ \binom{1}{0} \binom{1}{1} \\ \binom{2}{0} \binom{2}{1} \binom{2}{2} \\ \binom{3}{0} \binom{3}{1} \binom{3}{2} \binom{3}{3} \end{pmatrix}$$

Folge $\binom{n}{k} \in \mathbb{N}$ für alle $0 \le k \le n$

0.2 Satz:

Sei A endliche Menge. #A = n

Sei $k \in \mathbb{Z}$ mit $0 \le k \le n$

 $P_k(A) := \{U \subseteq A | \#U = k\}$ (Menge aller k-elementigen Teilmengen von A)

Dann gilt $\#P_k(A) = \binom{n}{k}$

Beispiel:

$$A = \{1, 2, 3, 4\}$$
 $n = 4$ $k = 2$

2-elementige Teilmengen von A:
$$\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\to 6$$
 $\binom{4}{2}=6$

Beweis:

Vorüberlegung: Sei $k = 0 \lor k = n$

$$P_0(A) = 1 = \binom{n}{0} \# P_n(A) = 1 = \binom{n}{n}$$

Jetzt: Induktionsbeweis nach n

IA:
$$n = 0$$
 Dann $k = 0$

 $n \to n + 1$ Sei $\#A = n + 1 \Rightarrow 0 \le k \le (n + 1)$ Falls $k = 0 \lor k = n + 1$

Sei also: o < k < n + 1

Wähle $a \in A$

Sei $B = A \setminus \{a\}$

 $Dann A = B \cup \{a\}, \#B = n$

Man kann die Wahl einer k-elementigen Teilmenge von A so strukturieren

1. Entscheiden, ob $a \in U \vee a \not\in U$

2. a) Wenn $a \notin U$: Wähle k Elemente aus B

b) Wenn $a \in U$: Wähle k-1 Elemente aus B

$$\Rightarrow \#P_k(A) = \#P_k(B) + \#P_{k-1}(B) \stackrel{IV}{=} \binom{n}{k} + \binom{e}{-1} \stackrel{1.11}{=} \binom{n+1}{k}$$

0.3 Satz (Binomische Formel)

Seien a, b Zahlen, $n \in \mathbb{N}$

Dann
$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + b^n$$

Beispiel:

$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$
$$(a+b)^2 = a^2 + 2ab + b^2$$

Beweis:

Schreibe
$$(a+b)^n = \underbrace{(a+b)(a+b)(a+b)(a+b)\dots(a+b)}_{n-Faktoren}$$

Ausmultiplizieren

Halte Terme der Form $a^{n-k}b^k$ mit $0 \le k \le n$

Häufigkeit von $a^{n-k}b^k=$ Anzahl der Möglichkeiten aus n-Faktoren k mal b zu wählen.

Das ist $\binom{n}{k}$ (Satz 1.13)

Folgerung

Setze
$$a = b = 1$$
 $a^{n-k}b^k = 1$ $(a+b)^n = 2^n = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n}$

Beispiel:

$$1+4+6+4+1=16=2^4$$

0.4 Definition

Sei A endliche Menge

Eine Anordnung von A ist ein n-Tupel

 $(a_1, a_2, a_3, a_4, \dots, a_n)$ mit $a \in A$ für alle i und $a_i \neq a_j$ wenn $i \neq j$

Beispiel:

Anordnung von
$$\{1, 2, 3\} = (1, 2, 3)(1, 3, 2)(2, 1, 3)(2, 3, 1)(3, 1, 2)(3, 2, 1) \rightarrow 6$$

0.5 Satz

Sei A endliche Menge, $\#A = n \ge 1$

Dann ist die Anzahl der Anordnungen von A gleich n!

Beweis:

Induktion nach n IA:

IS:
$$n \to n + 1$$
Sei $\#A = n + 1$

Wahl einer Anordnung von A kann man so unterteilen:

1. Wähle 1 Element $a_1 \in A$ (n+1 Möglichkeiten)

Vorlesung Nr. 2

11.10.2012

2. Wähle Anordnungen von $A \setminus \{a_1\}$ $\#(A \setminus \{a_1\}) = n \Rightarrow n!$ Möglichkeiten bei 2 Insgesamt $(n+1) \cdot n! = (n+1)!$

Bemerkung:

(Zusammenhang zwischen Anordnung und Teilmengen) Sei A endliche Menge, $\#A=n,\ 0\leq k\leq n$ Sei (a_1,\ldots,a_n) Anordnung von A \leadsto Teilmenge $U:=\{a_1,\ldots,a_n\}$ Dann $U\subseteq A,\ \#U=k$ $U\in P_k(A)$ Jedes $U\in P_k(A)$ entsteht so, aber mehrfach:

$$k! \qquad \cdot \qquad (n-k)! \qquad -mal \\ {}^{Anordnungen\ von\ U} \stackrel{\uparrow}{}^{Anordnungen\ von\ A\backslash U}$$

Anordnungen von $A=n!=\#P_k(A)\cdot k!\,(n-k)!\,\Rightarrow\#P_k(A)=\frac{n!}{k!\cdot (n-k)!)}=\binom{n}{k}$

1 Die reellen Zahlen

Was sind die reellen Zahlen?

Präzise Konstruktion ist umfangreich, daher Axiomatischer Zugang Beschreibung der reellen Zahlen durch ihre Eigenschaften (Axiome):

- 1. Grundrechenarten \rightarrow Körper
- 2. Ungleichungen \rightarrow angeordneter Körper
- 3. Lückenlosigkeit \rightarrow Vollständigkeit

Körper

1.1 Definition:

Ein Körper ist eine Menge K mit 2 Rechenoperationen: Addition (+) und Multiplikation (\cdot) , so dass folgende 9 Eigenschaften erfüllt sind:

Addition

- 1. (a+b)+c=a+(b+c) für alle $a,b,c\in K$ (Assotiativgesetz)
- 2. a+b=b+a für alle $a,b\in K$ (Kommutativgesetz)
- 3. Es gibt ein $0 \in K$ so dass 0 + a = a
- 4. Für jedes $a \in K$ gibt es ein $b \in K$ mit a + b = 0

Bemerkung:

 $0 \in K$ ist eindeutig

Beweis:

Wenn $0' \in K$ mit 0' + a = a, dann 0 = 0' + 0 = 0 + 0' = 0'

Bemerkung:

Das b in 4. ist auch eindeutig. Notation: b = -a (Negatives von a)

Beweis:

Angenommen
$$b' + a = 0$$

 $b = b + 0 = b + (a + b') = (b + a) + b' = 0 + b' = b'$

Multiplikation

- 5. $a(b \cdot c) = (a \cdot b)c \quad \forall a, b, c \in K$
- 6. $a \cdot b = b \cdot a \quad \forall a, b \in K$
- 7. Es gibt ein $1 \in K$ mit $1 \neq 0$, so dass $1 \cdot a = a$ $\forall a \in K$
- 8. Für alle $a \in K$, $a \neq 0$, gibt es ein $b \in K$ mit $a \cdot b = 1$

Bemerkung:

 $1 \in K$ ist eindeutig, b in 8. ist eindeutig Beziehung $b = a^{-1}$

Beweis:

Wie eben

9.
$$a(a+c) = a \cdot b + a \cdot c$$
 $\forall a,b,c \in K$ (Distributivg
esetz)

Weitere Bezeichnungen:
$$a-b:=a+(-b),\ \tfrac{a}{b}=a\cdot b^{-1},\ \text{wenn}\ b\neq 0$$