INEQUALITIES: THE TOOL KIT

-Tarik Adnan Moon, Bangladesh.

Here are the basic inequalities which are very useful to solve any inequality. The inequalities are stated with some special cases.

1. Triangle Inequality: For all, $x_i \in \mathbb{R}$,

$$a + b \le |a + b| \le |a| + |b|$$

$$\left| \sum_{i=1}^{n} x_{i} \le \left| \sum_{i=1}^{n} x_{i} \right| \le \sum_{i=1}^{n} |x_{i}|$$

Equality: Iff all x_i have the same sign.

2. $\underline{max \ge QM \ge AM \ge GM \ge HM \ge min \text{ inequality:}}$ For all, $x_1 \in \mathbb{R}^+$,

$$\max(x_i) \ge \sqrt{\frac{\sum_{i=1}^n x_i^2}{n}} \ge \frac{\sum_{i=1}^n x_i}{n} \ge \sqrt[n]{\prod_{i=1}^n x_i} \ge \frac{n}{\sum_{i=1}^n \frac{1}{x_i}} \ge \min(x_i)$$

$$\max(a, b, c) \ge \sqrt{\frac{a^2 + b^2 + c^2}{3}} \ge \frac{a + b + c}{3} \ge \sqrt[3]{abc} \ge \frac{3}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \ge \min(a, b, c)$$

Equality: Iff all x_i are equal.

Weighted $AM \geq GM$ Inequality:

If
$$x_i \ge 0$$
, $\omega_i > 0$ and $\omega_1 + \omega_2 + \cdots + \omega_n = 1$, then,

$$\omega_1 x_1 + \omega_2 x_2 + \dots + \omega_n x_n \ge x_1^{\omega_1} \cdot x_2^{\omega_2} \dots x_n^{\omega_n}$$

Equality: Iff all x_i are equal.

3. Rearrangement Inequality:

If we consider two sequence of real numbers $(a_i, b_i \in \mathbb{R})$,

$$a_1 \le a_2 \le \dots \le a_n$$
 and $b_1 \le b_2 \le \dots \le b_n$

For any permutation $(a_1', a_2', ..., a_n')$ of $a_1, a_2, ..., a_n$ we have that,

$$a_1b_1 + a_2b_2 + \dots + a_nb_n \geq a_1'b_1 + a_2'b_2 + \dots + a_n'b_n$$

Maximum and Minimum of Rearrangement inequality:

$$Max = a_1b_1 + a_2b_2 + \dots + a_nb_n$$
 and $Min = a_1b_n + a_2b_{n-1} + \dots + a_nb_1$
So, $Max \ge a_1'b_1 + a_2'b_2 + \dots + a_n'b_n \ge Min$

Equality: Iff $a_i' = a_i$ (But the maximum minimum inequality always holds)

Chebyshev's Inequality:

$$Max \ge \frac{(a_1 + \dots + a_n)(b_1 + \dots + b_n)}{n} \ge Min$$

Another form,

$$\frac{a_1b_1 + a_2b_2 + \dots + a_nb_n}{n} \ge \frac{(a_1 + \dots + a_n)}{n} \cdot \frac{(b_1 + \dots + b_n)}{n}$$

Equality: Iff there exists some $\lambda \in \mathbb{R}$ with $a_i = \lambda b_i$

4. Cauchy-Schwarz Inequality:

$$\left(\sum_{i=1}^{n} x_i^2\right) \cdot \left(\sum_{i=1}^{n} y_i^2\right) \ge \left(\sum_{i=1}^{n} x_i y_i\right)^2$$

$$(a^2 + b^2 + c^2)(x^2 + y^2 + z^2) \ge (ax + by + cz)^2$$

Equality: Iff there exists some $\lambda \in \mathbb{R}$ with $x_i = \lambda y_i$

5. Helpful Inequality (Angel's form):

If $a_i \in \mathbb{R}$ and $x_i \in \mathbb{R}^+$, then,

$$\frac{a_1^2}{x_1} + \frac{a_2^2}{x_2} + \dots + \frac{a_n^2}{x_n} \ge \frac{(a_1 + a_2 + \dots + a_n)^2}{x_1 + x_2 + \dots + x_n}$$
$$\frac{a^2}{x} + \frac{b^2}{y} + \frac{c^2}{z} \ge \frac{(a + b + c)^2}{x + y + z}$$

Equality: Iff $\frac{a_1}{x_1} = \frac{a_2}{x_2} = \cdots = \frac{a_n}{x_n}$

6. Schur's Inequality:

$$a^{r}(a-b)(a-c) + b^{r}(b-c)(b-a) + c^{r}(c-a)(c-b) \ge 0$$

Equality: Iff a = b = c or two of a, b, c are equal and other is 0

7. Power Mean Inequality:

If x_i , $\omega_i \in \mathbb{R}^+$; $\omega_1 + \omega_2 + \cdots + \omega_n = 1$, and s,t non-zero reals with s>t, then,

$$\left(\frac{\omega_1 x_1^s + \omega_2 x_2^s + \dots + \omega_n x_n^s}{n}\right)^{\frac{1}{s}} \ge \left(\frac{\omega_1 x_1^t + \omega_2 x_2^t + \dots + \omega_n x_n^t}{n}\right)^{\frac{1}{t}}$$

REMARK: With, $\omega_i = \frac{1}{n}$, here $M_{\infty} \ge M_2 \ge M_1 \ge M_0 \ge M_{(-1)} \ge M_{(-\infty)}$ are nothing but the calssical inequalities, $\max \ge QM \ge AM \ge GM \ge HM \ge \min$

8. Weighted Power Mean Inequality:

If x_i , ω_i are non-negative reals and $\sum \omega_i > 0$, then,

$$f(s) = \left(\frac{\omega_1 x_1^s + \omega_2 x_2^s + \dots + \omega_n x_n^s}{\omega_1 + \omega_2 + \dots + \omega_n}\right)^{\frac{1}{s}}$$

is in general, a non-decreasing function of s.

REMARK: It can also produce the classical inequalities, $max \ge QM \ge AM \ge GM \ge HM \ge min$

9. Holder's Inequality:

If $x_i, y_i \in \mathbb{R}^+$ and a, b > 0 such that, $\frac{1}{a} + \frac{1}{b} = 1$, then

$$\left(\sum_{i=1}^{n} x_{i}^{a}\right)^{1/a} \left(\sum_{i=1}^{n} y_{i}^{b}\right)^{1/b} \geq \sum_{i=1}^{n} x_{i} y_{i}$$

REMARK: With a = b = 2 we get the famous Cauchy-Schwarz Inequality.

10. Minkowski's Inequality:

If $x_i, y_i \in \mathbb{R}^+$ and p > then,

$$\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1/p} + \left(\sum_{i=1}^{n} y_{i}^{p}\right)^{1/p} \ge \left(\sum_{i=1}^{n} (x_{i} + y_{i})^{p}\right)^{1/p}$$

11. Nesbit's Inequality: For $a, b, c \in \mathbb{R}^+$,

$$\sum_{c \lor c} \frac{a}{b+c} \ge \frac{3}{2} \stackrel{i.e.}{\Rightarrow} \frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \ge \frac{3}{2}$$

Equality: Iff a = b = c

12. Bernouli's Inequality: For all $r \ge 1$ and $x \ge -1$,

$$(1+x)^r \ge 1 + xr$$

13. Jesen's Inequality:

If f is convex in [a,b], then for any $\omega_i \in [0,1]$ with $\sum_{i=1}^n \omega_i$ and $x_i \in [a,b]$, we have,

$$\omega_1 f(x_1) + \dots + \omega_n f(x_n) \geq f(\omega_1 x_1 + \dots + \omega_n x_n)$$

Convexity Test: Let f be twice differentiable function on [a, b]. Then,

- f is convex on [a, b] if $f''(x) \ge 0$ for every $x \in [a, b]$.
- f is **strictly convex** on [a, b] if f''(x) > 0 for every x in the interior of [a, b].

14. Some Important trivial Inequalities:

1.
$$x^2 + y^2 + z^2 \ge xy + yz + zx$$

2.
$$a^2 + b^2 + c^2 + d^2 + e^2 \ge a(b + c + d + e)$$

$$3. \ (ab+bc+ca) \geq 3abc(a+b+c)$$

4.
$$a^2b^2 + b^2c^2 + c^2a^2 \ge abc(a+b+c)$$

5.
$$a^4 + b^4 + c^4 + \ge abc(a + b + c)$$

6.
$$2(a^3 + b^3 + c^3) > ab(a+b) + bc(b+c) + ca(c+a)$$

7.
$$a^3b + b^3c + c^3a \ge abc(a + b + c)$$

8.
$$(a+b+c)^2 \ge 3(ab+bc+ca)$$

Equality: Iff all variables are equal.