ВВЕДЕНИЕ В КОМПЬЮТЕРНОЕ ЗРЕНИЕ Лекция 0.

Преподаватель: Сибирцева Елена elsibirtseva@gmail.com

Пара слов о себе

Сибирцева Елена

но лучше – Алёна и на «ты»

email: <u>elsibirtseva@gmail.com</u>

Закончила НИУ ВШЭ Программную Инженерию в 2013 г.

Диплом: «Управление компьютером с помощью глаз»

Сейчас – на 2-ом курсе магистратуры

TAAHBIHA BYAYULEE

Компьютерное зрение – это?..

КОМПЬЮТЕРНОЕ ЗРЕНИЕ – ЭТО КРУТО.

Задача компьютерного зрения

понять, что запечатлено на изображении

мы видим

компьютер видит

66 To see means to know 99 what is where by looking

Задача компьютерного зрения

«Тест Тьюринга» - компьютер должен ответить на любой вопрос об изображении, на который может ответить человек

Что это в действительности обозначает?

- Зрение источник семантической информации о мире
- Зрение источник метрической информации о трехмерном мире

Семантическая информация

Классификация изображения

Выделение объектов

Выделение границ объектов

Признаки объектов

КОМПЬЮТЕРНОЕ ЗРЕНИЕ – ЭТО СЛОЖНО.

Ракурс

Освещение

Деформация

Xu, Beihong 1943

Перекрытие

Magritte, 1957

Маскировка

Движение

Внутриклассовая изменчивость

Контекст

НО ЕСТЬ И СВЕТЛАЯ СТОРОНА

Цвет

Тени и освещение

Отбрасываемые тени

Текстура

Перспектива

Упорядочивание по глубине

Контекст

Вывод

Зрение изначально нечеткая задача

- Разные 3D сцены дают одно и то же 2D изображение
- Необходимы априорные знания о структуре и свойствах мира
- Нам нужно сопоставлять наблюдения и априорные знания
- Это можно делать с помощью машинного обучения

ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ КОМПЬЮТЕРНОГО ЗРЕНИЯ

Практическое применение

- Автоматизация обработки текстовых данных привела к революционным изменениям в организации бизнеса и жизни
- Изображения дают 90+% информации, но пока обрабатываются вручную
- В перспективе, компьютерное зрение один из главных компонентов робототехники

Области применения

- Распознавание и обработка документов
- Обработка фотографий улучшение качества, ретушь, изменение размера и формы, композиция
- Интернет поиск, аннотация, поиск дубликатов, распознавание объектов
- Системы безопасности видеонаблюдение, отслеживание, распознавание объектов, распознавание жестов и событий
- О Дистанционное зондирование и ГИС карты, анализ спутниковых данных
- Неразрушающий контроль диагностика, контроль качества
- Медицинские системы анализ томограмм
- Спецэффекты в кино композиция, монтаж фонов, захват движения

Распознавание текста

Видеонаблюдение

Обнаружение лица и улыбки

The Smile Shutter flow

Imagine a camera smart enough to catch every smile! In Smile Shutter Mode, your Cyber-shot® camera can automatically trip the shutter at just the right instant to catch the perfect expression.

Биометрия

Кто она?

Биометрия

"Как девушку из Афганистана идентифицировали по радужке глаза" Читайте историю

Биометрия

Biolink, Россия http://www.biolink.ru

Распознавание лиц

Умные машины

- Mobileye
 - Топ-модели от BMW, GM, Volvo
 - К 2010: 70% производителей машин

3D модели и захват движения

L.A. Noire, Team Bondi/Rockstar, 2011

Ваши пожелания?

Темы курса, модуль 2

Введение в компьютерное зрение

Восприятие света глазом человека. Камеры и оптика

Оцифровка изображений. Пиксели, гистограммы и цветовые пространства

Линейная фильтрация. Матрица свертки

Частотное представление изображений

Морфология, выделение контуров и сегментация

Темы курса, модуль 3

Реконструкция и преобразования изображений

Выявление характеристических точек, метод Харриса для выявление углов

Сопоставление характеристических точек. SIFT, SURF и HoG

Базовые понятия машинного обучения. Кластеризация. Классификация

Введение в распознавание образов. Алгоритмы распознавания лиц. Eigenfaces, Viola Jones

Темы курса, модуль 4

Optical character recognition

Камеры и проекции

Эпиполярная геометрия и 3D реконструкция

Метод Structure from Motion

Цифровая фотография

Современные достижения в компьютерном зрении.

Ограничения и перспективы.

Maybe GIT?

Литература

Sonka M. Image Processing, Analysis, and Machine Vision. / M. Sonka, V. Hlavac, R. Boyler – Stamford: Cengage Learning, 2014

Szeliski R. Computer Vision Algorithms and Applications / R. Szeliski. – London: Springer-Verlag, 2011

http://szeliski.org/Book/

В следующих сериях...

