Biologically plausible deep learning

But how far can we go with shallow networks?

Bernd Illing, Wulfram Gerstner, Johanni Brea

Presentation by Mohammad Amin Banayeean Zade

Introduction

 $\frac{https://www.researchgate.net/figure/A-general-model-of-a-deep-neural-network-lt-consists-of-an-input-layer-some-here-two_fig1_308414212$

https://www.guru99.com/backpropogation-neural-network.html

https://www.kurzweilai.net/ibm-scientistsemulate-neurons-with-phase-change-technology

Supervised Learning


```
0123456789
0123456789
0123456789
0123456789
0123456789
```

https://github.com/cazala/mnist

https://towardsdatascience.com/ml-for-ts-3-extreme-learning-machines-3fcf5991e390

Alternatives to Supervised Training

- 1. fix weights in the first layer(s) at random values, as proposed by general approximation theory
- 2. The other alternative is unsupervised training in the first layer(s)

In both cases, only the weights of a readout layer are learned with supervised training

https://towardsdatascience.com/ml-for-ts-3-extreme-learning-machines-3fcf5991e390

Random Projections

$$\mathbf{W}_1 \sim \mathcal{N}(0, \sigma^2) \ \sigma^2 = \frac{1}{100 \ n_0}$$

 $\mathbf{b}_1 \sim \mathcal{U}([0, 0.1])$

Random Weights
RP
RG

https://towardsdatascience.com/ml-for-ts-3-extreme-learning-machines-3fcf5991e390

Random Gabor Filters

 $\underline{https://www.semanticscholar.org/paper/Local-binary-pattern\%3A-An-improved-LBP-to-extract-to-Kumar-Kumar/f05b226b35f6871d9b3cda9691dba67d238d683d$

Random Weights

RP

RG

Random Gabor Filters

http://compneurosci.com/wiki/images/4/42/Intro_to_PCA_and_ICA.pdf

Random Weights

RP

RG

Unsupervised
ICA
PCA
SC

Sparse Coding

$$\mathbf{W}^{opt}, \mathbf{a}_1^{opt} = \operatorname{argmin} \mathcal{L}(\mathbf{W}, \mathbf{a}_1)$$
$$\mathcal{L}(\mathbf{W}, \mathbf{a}_1) = \frac{1}{2} \|\mathbf{a}_0 - \mathbf{W}^{\mathsf{T}} \mathbf{a}_1\|_2^2 + \lambda \|\mathbf{a}_1\|_1.$$

https://www.youtube.com/watch?v=XLKoTqGao7U

localized receptive fields

Model	Neural coding	Learning type	Comments	Test accuracy (%
Conv. SNN (Wu, Deng, Li, Zhu, & Shi, 2018)	Spikes	Supervised	5 conv. layers, Spatio-Temporal BP	99.3
Conv. SNN (Diehl, et al., 2015)	Rate	Supervised	Conversion: rate \rightarrow spike	99.1
Conv. Spiking AE (Panda & Roy, 2016)	Spikes	Un/Supervised	Stacked conv. AE with BP + sym. weights	99.1
l-RG (this paper)	Rate	Un/Supervised	Only output layer learned	98.9
I-BP (this paper)	Rate	Supervised	BP-benchmark of this paper	98.8
I-ICA (this paper)	Rate	Un/Supervised	ICs as features for SGD	98.8
I-FA (Bartunov et al., 2018) (& this paper)	Rate	Supervised	FA with localized rec. fields	98.7
SNN (Lee, Delbruck, & Pfeiffer, 2016)	Spikes	Supervised	BP approx., weight symmetry	98.7
spiking LIF I-RG (this paper)	Spikes	Supervised	STDP (only output layer learned)	98.6
(Stoch.) Diff. Target Prop. (Lee, Zhang, Fischer, & Bengio,	Rate	Supervised	Layer-wise AE, Target Prop.	98.5
2015)				
Nonlin. Hebb + SGD (Krotov, Hopfield, & Lee, 2019)	Rate	Un/Supervised	nonlin. Hebb + SGD (similar to this paper)	98.5
I-RP (this paper)	Rate	Supervised	Only output layer learned	98.4
I-SC (this paper)	Rate	Un/Supervised	SC for 1. layer, SGD for 2. layer	98.4
Conv. SNN (Kheradpisheh et al., 2018)	Spikes	Unsupervised	3 Conv. layers, STDP, ext. SVM	98.4
SNN (O'Connor, Gavves, & Welling, 2017)	Pseudo-spike	Supervised	Sparse, discrete activities, STDP	98.3
Direct FA (Nøkland, 2016)	Rate	Supervised	Many hidden layers	98.3
Spiking FA (Lillicrap et al., 2016)	Spikes	Supervised	3 hidden layers	98.2
spiking LIF l-RP (this paper)	Spikes	Supervised	STDP (only output layer learned)	98.2
I-PCA (this paper)	Rate	Un/Supervised	PCs as features for SGD	98.2
Q-AGREL (RL-like) (Pozzi, Bohté, & Roelfsema, 2018)	Rate	RL-like	RL-like BP-approx.	98.2
Forward propagation (FP) (Kohan, Rietman, &	Rate	Supervised	FP: BP approximation	98.1
Siegelmann, 2018)		-		
Spiking FA (Neftci, Augustine, Paul, & Detorakis, 2017)	Spikes	Supervised	Direct FA	98

Spiking localized random projections

$$\tau_{m} \frac{du_{i}(t)}{dt} = -u_{i}(t) + RI_{i}(t)$$
with $I_{i}(t) = I_{i}^{ff}(t) + I_{i}^{ext}(t)$

$$= \sum_{j,f} w_{ij} \epsilon \left(t - t_{j}^{f}\right) + I_{i}^{ext}(t)$$

$$\tau_{tr} \frac{dtr_{i}(t)}{dt} = -tr_{i}(t) + \sum_{f} \delta \left(t - t_{i}^{f}\right)$$

$$\Delta w_{2,ij} = \alpha \cdot \left(tgt_{i}^{post}(t) - tr_{i}^{post}(t)\right) \delta \left(t - t_{j}^{f}\right)$$

https://pubs.rsc.org/image/article/2019/fd/c8fd00097b/c8fd00097b-f8_hi-res.gif

		SP	<i>I</i> -PCA	<i>l</i> -ICA	I-SC	l-RP	<i>l</i> -RG	l-BP
Rate	CIFAR10 MNIST	41.1 ± 0.1 91.9 ± 0.1	50.8 ± 0.3 98.2 ± 0.02	53.9 ± 0.3 98.8 ± 0.03	50.2 ± 0.2 98.4 ± 0.07	52.0 ± 0.4 98.4 ± 0.1	55.6 ± 0.2 98.9 ± 0.05	$\begin{array}{c} 58.3\pm0.2 \\ 98.8\pm0.1 \end{array}$
Spiking	MNIST	-				98.2 ± 0.05	98.6 ± 0.1	-

