Major Project Diary

On

"Self-Driving Car Simulation Using AI"

Submitted to

Amity University Uttar Pradesh

In partial fulfilment of the requirements for the award of the degree of Bachelor of Technology

In

Computer Science and Engineering By

Akshay Kumar Raghav (A2305218445) Mohit(A2305218459) Kuldeep Dwivedi(A2305218477)

Under the guidance of Ms. Seema Sharma

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING AMITY SCHOOL OF ENGINEERING AND TECHNOLOGY AMITY UNIVERSITY, NOIDA UTTAR PRADESH

AMITY SCHOOL OF ENGINEERING & TECHNOLOGY

B. Tech (CSE)

Project Title: Self Driving Car Simulation Using AI

Academic Session: 2021-2022

Project Guide: Ms. Seema Sharma

Project Team:

S.No	Name	Enrollment Number	Signature
1.)	Akshay Kumar Raghav	A2305218445	
2.)	Mohit	A2305218459	
3.)	Kuldeep Dwivedi	A2305218477	

Project summary:

AI research is highly technical and it is deeply divided into subfields that often fail to communicate with each other. Some of the division is due to social and cultural factors: subfields have grown up around particular institutions and the work of individual researchers. AI research is also divided by several technical issues. Some subfields focus on the solution of specific problems. Others focus on one of several possible approaches or on the use of a particular tool or towards the accomplishment of particular applications.

The dynamic path finding tool is quite beneficial because it provides real-time navigation instructions based on the car's current location. When compared to Dijkstra and BFS, the A* approach, which is used to implement paths based on current and final locations, is extremely fast. We use a PID controller to discover the smoothest approach to the objective because A* only delivers square paths.

Self-driving car is very sophisticated technology allows the onboard computer to do hundreds of calculations per second. These include the path from objects, your current

speed, the conduct of other drivers, and your geographic location. Because the only accidents so far have occurred while human drivers were in control, these ultra-accurate measurements have almost eliminated driving errors for test cars on the road.

Self-driving cars have huge capability for reducing traffic congestion because they are rarely involved in accidents. Not only that, but because self-driving cars can interact with one another, traffic lights would be obsolete. Better traffic coordination might result in less congestion if people drove slower but made fewer stops.

Methodology to be adopted:-

The main purpose here is to create and optimize a software implementation required for the detection of location i.e. localization, dynamic path finding from a fixed source to fixed destination in a real time scenario and also the necessary controller for the efficient control of an autonomous or the self-driving car.

And this can be achieved by using several artificial intelligence techniques for localization such as Kalman Filters, Histogram Filters and the heuristic approach algorithm A* for dynamic path finding.

Resource requirement (Hardware & software etc):-

- The UI that we will utilize is Visual Studio which is a Python IDE used to compose and investigate Python code.
- We have picked Windows as our Operating System for improvement for its best help and ease of use.
- Hardware: Minimum of 4GB RAM, Minimum of Intel i5 range processor, Minimum of 2GB GPU
- Software: Python 3, Visual Studio, Pen Studio etc.

Justification of the project:-

"The technology is ahead of the level of governance in many areas," according to the report, which states that "all presume to have a human running the vehicle." "The technology is currently advancing so quickly that it is in danger of outstripping existing standards," according to the report. Such huge concerns have put the research on hold for a long time. With encouraging trials and continued improvement, the driverless automobile, also known as an autonomous car, has become a hotbed of study and expertise.

The goal of this project is to create and optimize a software implementation required for the detection of location i.e. localization, dynamic path finding from a fixed source to fixed destination in a real time scenario and also the necessary controller for the efficient control of an autonomous or the self driving car.

To achieve this goal we will be using several artificial intelligence technique for localization such as Kalman Filters, Histogram Filters and the heuristic approach algorithm A* for dynamic path finding.

Project Weekly Progress Table:-

Week	We	ekly Progress Review Report	Duration	Faculty Remarks
1.)	2.	Target of the week: 1.) Configured visual studio by installing necessary libraries and understanding their working. Achievements: 1.) Installed all necessary modules and Visual Studio Code. Future Work Plans: (1.) Implementation of Localization Algorithm.	03/01/2022 to 09/01/2022	Satisfactory Satisfactory
2.)	2.	Target of the week 1.) Implemented Algorithm Replace in Localization. Achievements 1.) Successfully implemented and tested algorithm Replace. Future Work Plans 1.) Completion of Localization and Implementation of Particle Filter Algorithm	10/01/2022 to 16/01/2022	Satisfactory Satisfactory
3.)	2.	Target of the week 1.) Completion of Localization and Implementation of Particle Filter Algorithm Achievements 1.) Working on the software implementation of Particle Filter Algorithm. Future Work Plans 1.) Complete the coding part of Particle Filter Algorithm	17/01/2022 to 23/01/2022	Satisfactory Satisfactory
4.)		Target of the week 1.) Implementing the coding part of Particle Filter Algorithm. Achievements 1.) Successfully completed the	24/01/2022 to 30/01/2022	Satisfactory Satisfactory

		4. 2	1	
		coding part of Particle Filter		
	_	Algorithm.		
	3.	Future Work Plans		
		1.) Implementation of Kalman		
		Filter Algorithm		
	1.	Target of the week		
		Implementing the graphical		
		representation of Kalman		
		Filters		
	2.	Achievements	24/04/2022	~
5.)		1.) Successful completion of	31/01/2022 to	Satisfactory
		implementation of the	06/02/2022	Satisfactory
		graphical representation of		
		Kalman Filters		
	3.	Future Work Plans		
		Software Implementation of		
	-	Kalman Filter Algorithm		
	I.	Target of the week		
		Software implementation of		
		Kalman Filter Prediction		
()	2.	Achievements	07/02/2022 to	Satisfactory
6.)		Successfully implemented the	13/02/2022	Satisfactory
	,	Kalman Filter Prediction		•
	3.	Future Work Plans		
		Implementation of sense and		
	1	move part of Kalman Filter		
	1.	Target of the week		
		Implementation of Kalman		
		Filter Design such as sense and move.		
	2	Achievements	14/02/2022 to	Satisfactory
7.)			20/02/2022 to	Satisfactory
		Successfully Implemented the	20/02/2022	Saustactory
	3.	Kalman Filter Design. Future Work Plans		
	J.	UI implementation of Particle		
		Filter Algorithm.		
	1	Target of the week		
	1.	UI Implementation of Particle		
	,	Filter Algorithm.		
		Achievements		
		Successfully implemented the		
8.)		UI of Particle Filter	21/02/2022 to	Satisfactory
0.,		Algorithm.	27/02/2022	Satisfactory
	3	Future Work Plans		
	5.	Implementation of A*		
		algorithm for motion		
		planning.		
	1.	Target of the week	20/02/5355	~
9.)	1.	Implementation of A*	28/02/2022 to	Satisfactory
,		algorithm for motion	06/03/2022	Satisfactory
l	1	00111111111111111111111111111111111	l	

			<u> </u>	
	_	planning.		
	2.	Achievements		
		Successful implementation of		
		A* algorithm for motion		
		planning		
	3.	Future Work Plans		
		Implementation of various		
		heuristic methods in A*		
		Algorithm.		
	1.	Target of the week		
		Implementation of various		
		heuristic methods in A*		
		Algorithm.		
	2.	Achievements		
10.)		Successfully implemented the	07/03/2022 to	Satisfactory
10.)		various heuristic methods in	13/03/2022	Satisfactory
		A* algorithm.		
	3.	Future Work Plans		
		UI implementation of A*		
		algorithm with various		
		heuristic approaches.		
	1.	Target of the week		
		UI implementation of A*		
		algorithm with various		
		heuristic approaches		
	2.	Achievements		
11.)		Successfully implemented the	14/03/2022 to	Satisfactory
11.		UI of A* algorithm with	20/03/2022	Satisfactory
		various heuristic approaches.		
	3.	Future Work Plans		
		Implementation of Breadth		
		First Search algorithm in		
		motion planning.		
	1.	Target of the week		
		Implementation of Breadth		
		First Search algorithm in		
	_	motion planning.		
	2.	Achievements	21/02/2055	
12.)		Successfully implemented the	21/03/2022 to	Satisfactory
12.,		Breadth First Search	27/03/2022	Satisfactory
		Algorithm.		
	3.	Future Work Plans		
		UI Implementation of Breadth		
		First Search Algorithm in		
		motion planning.		
	1.	Target of the week		
10.		UI Implementation of Breadth	28/03/2022 to	Satisfactory
13.)		First Search Algorithm in	03/04/2022	Satisfactory
	_	motion planning.		
	2.	Achievements		

	Successfully implemented the UI of Breadth First Search Algorithm. 3. Future Work Plans Implementation of Dijkstra Algorithm in Motion Planning.		
14.)	 Target of the week Implementation of Dijkstra Algorithm in Motion Planning. Achievements Successfully implemented the Dijkstra algorithm in motion planning. Future Work Plans UI implementation of Dijkstra Algorithm in Motion Planning. 	04/04/2022 to 10/04/2022	Satisfactory Satisfactory
15.)	 Target of the week UI implementation of Dijkstra Algorithm in Motion Planning. Achievements Successfully implemented the UI of Dijkstra algorithm in motion planning. Future Work Plans Integration of all algorithms in motion planning. 	11/04/2022 to 17/04/2022	Satisfactory Satisfactory
16.)	 Target of the week Integration of all algorithms in motion planning. Achievements Successfully integrated of all algorithms in motion planning. Future Work Plans To write the first draft of the report. 	18/04/2022 to 24/04/2022	Satisfactory Satisfactory