Peak Oil Production

John Tian, Arnan Bawa, Andrew Chu, Ashley Song

To create a model to predict the peak oil production rate for oil wells given various

Goal:

features

Structure of the Data

- Huge amounts of missing values, including a considerable amount for the target feature
- Range of values in each column vary wildly -> standardization crucial

Visualization

- Consider physical structure of wells

More Visualization

- High amount of collinearity -> consider nonlinear models later

Cleaning the Data

- KNN Imputation on every numeric feature apart from the target feature
- MICE Imputation on the target feature using KNN Imputed values
- MICE Imputation on label-encoded categorical features
- One-hot encoding to properly handle categorical features

Modelling

- Feature engineering
 - distance from surface to bottom.
 - length of heel to toe of well
 - fluid intensity
 - etc...

- AutoML Methods (AutoGluon) to efficiently compare optimized models
 - WeightedEnsemble L2 ranked most effective

Analysis

- Ran model on ~400 features, many of which deemed trivial by AutoGluon's feature_importance method
 - PCA or t-SNE for dimensionality reduction in the future?
- Ensembling/boosting methods outperformed deep learning models
 - Deep learning overkill for tabular data?
- Feature engineering substantially improved performance (30% reduction in RMSE)
 - Importance of "augmenting" existing data