Wstęp do bioinformatyki

Laboratorium 2

Dopasowanie globalne par sekwencji

Magdalena Trędak

236712

1. Schemat blokowy algorytmu dopasowania lokalnego

Schematy blokowe algorytmów tworzenia macierzy punktowej oraz optymalnej ścieżki dopasowania ze względów dużych rozmiarów i umożliwienia poprawy ich czytelności zamieszczono w repozytorium jako pliki graficzne o nazwach: SchematBlokowyGenerowaniaMacierzyPunktów.jpg, SchematBlokowyGenerowaniaŚcieżkiDopasowania.jpg.

Do wygenerowania schematów użyto programu online znajdującego się na stronie: http://www.algorytm.org/narzedzia/edytor-schematow-blokowych.html (data dostępu 24.04.19)

2. Analiza złożoności obliczeniowej czasowej i pamięciowej

Analiza złożoności obliczeniowej czasowej i pamięciowej

Oszacowanie złożoności czasowej dla poszczególnych funkcji f

scorringMatrix = m*n tracBackMatrix = m*n createInfo = m*n + m isSegenceCorrect = m + n

 $\Sigma f = 3*m*n + 2*m + n \le 3*m*n$

O(mn)-złożoność czasowa co najwyżej rzędu mn

• Oszacowanie złożoności pamięciowej dla poszczególnych funkcji f

scorringMatrix = 2*m*n + m + ntracBackMatrix = 4+(m*n)*6createInfo = m*n + m + n + m + n + m*n + 5*(m+n) + mmakeFastaContent = 5*(m+n)readFasta = m + n

 $\Sigma f = 19*m*n+15*(m+n)+m+4 \le 6*m*n$

O(mn)-złożoność pamięciowa co najwyżej rzędu mn

3. Porównanie przykładowych par sekwencji

Porównanie cytochromu c konia (Equus caballus) - NM_001164014.1 i szympansa zwyczajnego (Pan troglodytes) - NM_001071821.1 – porównanie nr 1

Porównanie cytochromu c orangutana (Pongo abelii) – NM_001131167 i konia (Equus caballus) - NM_001164014.1 – porównanie nr 2

Porównanie cytochromu c szczura wędrownego (Rattus norvegicus) – K00750.1 i pszczoły miodnej (Apis mellifera) - NM_001177490.1 – porównanie nr 3

Porównanie cytochromu c muszki owocowej (Drosophila melanogaster) variant B - NM_001273580.1 i pszczoły miodnej (Apis mellifera) - NM_001177490.1 – porównanie nr 4


```
Command Window
 >> Tester
 #Sequence1: NM 001177490.1
 #Sequence2: NM_001273580.1
 #Match: 1
 #Mismatch: -1
#Gap -2
#Mode: similarity
#Score: -402
 #Gaps: 337/1095 (30.7763 %)
 #Identity: 199/1095 (18.1735 %)
 1 1 11
         111
             11 1 1
                  - 11
                                              11 1 1
```

Wnioski:

Porównano ten sam gen dla organizmów powiązanych i niepowiązanych ewolucyjnie. Wszystkie wyniki otrzymano poprzez wykorzystanie algorytmu dopasowania lokalnego podobieństwa o parametrach: gap = -2 oraz parametrach zawartych w macierzy substytucji dołączonej jako plik sMatrix.txt

Tabela 1. Porównanie otrzymanych wyników dopasowań globalnych dla różnych par organizmów

Powiązanie				
ewolucyjne	Nr porównania	Score [-]	Gap [%]	Identity [%]
organizmów				
Tak	1	267	0	90,88
Nie	2	-1617	76,02	6,94
Nie	3	-2075	57,67	11,07
Tak	4	-402	30,77	18,17

Na podstawie wyników zawartych w Tabeli [1] można zauważyć następujące zależności:

Dla wszystkich organizmów score jest wprost proporcjonalny do podobieństwa procentowego (Identity).

- Dla organizmów silnie powiązanych ewolucyjnie score jest dodatni (największy wśród wyników). W sekwencjach nie ma przerw, co oznacza, że na drodze ewolucji występowały delecje i insercje pojedynczych nukleotydów lub ich krótkich fragmentów. Podobieństwo sekwencji jest wysokie (ponad 90 %), co potwierdza powiązanie ewolucyjne badanych organizmów.
- Dla organizmów niepowiązanych ewolucyjnie. Procent przerw (gap) jest związany z podobieństwem zależnością odwrotnie proporcjonalną. W analizowanych przypadkach podobieństwo jest maksymalnie rzędu 10 %, z czego można wnioskować o braku wspólnego drogi ewolucji.