BCSE303P	Operating Systems Lab		L	Т	Р	С
			0	0	2	1
Pre-requisite	Nil	Sy	Syllabus version			
			1.0			

Course Objectives

- 1. To introduce the operating system concepts, designs and provide skills required to implement the services.
- 2. To describe the trade-offs between conflicting objectives in large scale system design.
- 3. To develop the knowledge for application of the various design issues and services.

Course Outcome

On completion of this course, student should be able to:

- 1. Interpret the evolution of OS functionality, structures, layers and apply various types of system calls of various process states.
- 2. Design scheduling algorithms to compute and compare various scheduling criteria.
- 3. Apply and analyze communication between inter process and synchronization techniques.
- 4. Implement page replacement algorithms, memory management problems and segmentation.
 - Differentiate the file systems for applying different allocation, access technique, representing virtualization and providing protection and security to OS.

Indicative Experiments					
1.	Study of Basic Linux Commands				
2.	Implement your own bootloader program that helps a computer to boot an OS.				
3.	Shell Programming (I/O, Decision making, Looping, Multi-level branching)				
4.	Creating child process using fork () system call, Orphan and Zombie process creation				
5.	Simulation of CPU scheduling algorithms (FCFS, SJF, Priority and Round Robin)				
6.	Implement process synchronization using semaphores / monitors.				
7.	Simulation of Banker's algorithm to check whether the given system is in safe state or				
	not. Also check whether addition resource requested can be granted immediately				
8.	Parallel Thread management using Pthreads library. Implement a data parallelism				
	using multi-threading				
9.	Dynamic memory allocation algorithms - First-fit, Best-fit, Worst-fit algorithms				
10.					
11.	<u>'</u>				
12.	12. Virtualization Setup: Type-1, Type-2 Hypervisor (Detailed Study Report)				
Total Laboratory Hours 30 hours					
Text Book					
1.	Fox, Richard, "Linux with Operating System Concepts", 2022, 2 nd Edition, Chapman				
	and Hall/CRC, UK.				
Reference Books					
1.	Love, Robert, "Linux System Programming: talking directly to the kernel and C library",				
_	2013, 2 nd Edition, O'Reilly Media, Inc, United States.				
2.	Abraham Silberschatz, Peter B. Galvin, Greg Gagne, "Operating System Concepts",				
	2018, 10 th Edition, Wiley, United States.				
	Mode of Assessment: Continuous Assessments, FAT				
	commended by Board of Studies 04-03-2022				
App	proved by Academic Council No. 65 Date 17-03-2022				