

Curso: Estadistica 3

Profesor: Jose Daniel Ramirez Soto

Tarea #: 3

Tema: Clasificación de datos utilizando imágenes **Fecha entrega**: 11:59 pm Noviembre 6 de 2024

Objetivo: Utilizar modelos de redes convolucionales para clasificación .

Entrega: Crear una rama utilizando el mismo repositorio de la tarea 1 y 2, crear otra carpeta llamada tarea 3, solucionar el problema y crear un pull request sobre la master donde me debe poner como reviewer (entregas diferentes tienen una reducción de 0.5 puntos)..

1. Abrir el link de kaggle y adicionar el siguiente concurso

https://www.kaggle.com/t/1e71f488339344789f8818e9c1dad5ac

2. Join competition

3 el objetivo es utilizar las imágenes de training para entrenar una red convolucional como la que vimos en clase.

Se deben crear 2 modelos, uno es una regression logistica y el otro una red convolucional. Se deben hacer 2 envios en kaggle uno con los resultados de la regresion y los otros con la convolucion.

Ver notebook Convolutional Neural NETS

https://github.com/jdramirez/UCO_ML_Al/blob/master/src/notebook_class/supervisado/supervisado_neural_nets.ipynb

Para leer las imágenes pueden descargar los datos local y utilizar glob para iterar sobre las carpetas.

https://github.com/jdramirez/UCO_ML_Al/blob/4668e5ed6385bbe7ce2f4723b21c2be7f27858c7/src/notebook/PCA.ipynb#L311

Curso: Estadistica 3

Profesor: Jose Daniel Ramirez Soto

Otros ejemplos utilizando mas imagenes:

https://www.tensorflow.org/tutorials/load_data/images

4 después de entrenar el modelo, se utiliza el dataset de testing para clasificar las imágenes, y producir un archivo csv donde la primera columna es el nombre de la imagen y la segunda la categoría como se muestra en la siguiente imagen.

file	species
1b490196c.png	Sugar beet
85431c075.png	Sugar beet
506347cfe.png	Sugar beet
7f46a71db.png	Sugar beet
668c1007c.png	Sugar beet
71f5323c5.png	Sugar beet
1f3f44563.png	Sugar beet
beebe5f4e.png	Sugar beet
780defa2e.png	Sugar beet
df521c0c0.png	Sugar beet
466bb6d3b.png	Sugar beet
98d819587.png	Sugar beet
223e4af09.png	Sugar beet
abc331628.png	Sugar beet
eef131644.png	Sugar beet
b7a7f6390.png	Sugar beet
7d3045fc3.png	Sugar beet
1926e82fd nng	Sugar heet

5 por último realice el envío y recibirá el score del accuracy. Entre más alto mejor es el modelo y aparecerás en la primera posición en el tablero.

6 Compare el accuracy de los 2 modelos y realice una matriz de confusion.

Curso: Estadistica 3

Profesor: Jose Daniel Ramirez Soto

Nota: La persona con el mayor puntaje tiene +0.3 puntos (Para ser utilizado en cualquier nota), Si el accuracy es mayor a 0.88 la nota es de 4.5, si es mayor a 0.92 la nota final es 5. Siempre y cuando este el codigo de la regresion logistica.