EDA On Titanic Dataset

Double-click (or enter) to edit

Start coding or generate with AI.

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns
%matplotlib inline

df= pd.read_csv('train.csv')

df.head()

$\overline{\Rightarrow}_{}^{*}$		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	ıl.
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С	
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	
	1		1	3	Bradley (Florence Briggs Th					STON/O2.				

Futrelle. Mrs. Jacques . . .

Generate code with df

View recommended plots

New interactive sheet

df.info()

Next steps:

<<re><class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column		-Null Count	Dtype				
0	PassengerId	891	non-null	int64				
1	Survived	891	non-null	int64				
2	Pclass	891	non-null	int64				
3	Name	891	non-null	object				
4	Sex	891	non-null	object				
5	Age	714	non-null	float64				
6	SibSp	891	non-null	int64				
7	Parch	891	non-null	int64				
8	Ticket	891	non-null	object				
9	Fare	891	non-null	float64				
10	Cabin	204	non-null	object				
11	Embarked	889	non-null	object				
<pre>dtypes: float64(2), int64(5), object(5)</pre>								
memory usage: 83.7+ KB								

df.describe()

(df.isnull().sum()/df.shape[0])*100

dtype: float64

df.drop('Cabin',axis=1,inplace=True)

(df.isnull().sum()/df.shape[0])*100

dtype: float64

df.head()

df['Ticket'].unique()

₹

```
"SUIUN/UZ 310128/, 2083, 310090, C.A. 504/, 349215, '347060', 'PC 17592', '392091', '113055', '2629', '350026', '28134', '17466', '233866', '236852', 'SC/PARIS 2149', 'PC 17590', '345777', '349248', '695', '345765', '2667', '349212', '349217', '349257', '7552', 'C.A./SOTON 34068', 'SOTON/OQ 392076', '211536', '112053', '111369', '370376'], dtype=object)
df['Ticket'].value_counts()
₹
                   count
         Ticket
        347082
       CA. 2343
         1601
                        7
       3101295
                        6
       CA 2144
                        6
           ...
         9234
         19988
         2693
       PC 17612
        370376
      681 rows x 1 columns
      dtype: int64
df.drop('Ticket',axis=1,inplace=True)
df.head()
₹
          Survived Pclass
                                                                                                                                                 \blacksquare
                                                                              Name
                                                                                         Sex Age SibSp Parch
                                                                                                                          Fare Embarked
       0
                    0
                                                           Braund, Mr. Owen Harris
                                                                                               22.0
                                                                                                                         7.2500
                                                                                                                                           S
                                                                                        male
                                                                                                                    0
       1
                                 Cumings, Mrs. John Bradley (Florence Briggs Th... female
                                                                                               38.0
                                                                                                                    0
                                                                                                                       71.2833
                                                                                                                                           С
       2
                              3
                                                                                                                                           S
                    1
                                                             Heikkinen, Miss, Laina female 26.0
                                                                                                           0
                                                                                                                    0
                                                                                                                         7 9250
       3
                              1
                                        Futrelle, Mrs. Jacques Heath (Lily May Peel) female
                                                                                              35.0
                                                                                                                       53.1000
                                                                                                                                           S
       4
                    Λ
                              3
                                                            Allen, Mr. William Henry
                                                                                        male 35.0
                                                                                                           0
                                                                                                                    Λ
                                                                                                                         8 0500
                                                                                                                                           S
 Next steps:
                Generate code with df
                                              View recommended plots
                                                                                   New interactive sheet
numeric_feature = [f for f in df.columns if df[f].dtype!='0']
categorical_feature = [f for f in df.columns if df[f].dtype=='0']
print(numeric_feature)
print(categorical_feature)
      ['Survived', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare']
      ['Name', 'Sex', 'Embarked']
plt.figure(figsize=(15,15))
plt.suptitle('Univeriate Analysis of Numberic Features')
for i in range (0, len(numeric_feature)):
  plt.subplot(5,3,i+1)
  sns.kdeplot(x=df[numeric_feature[i]],shade=True,color='r')
  plt.xlabel(numeric_feature[i])
  plt.tight_layout()
```

```
\Rightarrow <ipython-input-88-dc9797babe90>:5: FutureWarning:
```

```
`shade` is now deprecated in favor of `fill`; setting `fill=True`.
This will become an error in seaborn v0.14.0; please update your code.
  sns.kdeplot(x=df[numeric_feature[i]],shade=True,color='r')
<ipython-input-88-dc9797babe90>:5: FutureWarning:
`shade` is now deprecated in favor of `fill`; setting `fill=True`.
This will become an error in seaborn v0.14.0; please update your code.
  sns.kdeplot(x=df[numeric_feature[i]],shade=True,color='r')
<ipython-input-88-dc9797babe90>:5: FutureWarning:
`shade` is now deprecated in favor of `fill`; setting `fill=True`.
This will become an error in seaborn v0.14.0; please update your code.
  sns.kdeplot(x=df[numeric_feature[i]],shade=True,color='r')
<ipython-input-88-dc9797babe90>:5: FutureWarning:
`shade` is now deprecated in favor of `fill`; setting `fill=True`.
This will become an error in seaborn v0.14.0; please update your code.
  sns.kdeplot(x=df[numeric_feature[i]],shade=True,color='r')
<ipython-input-88-dc9797babe90>:5: FutureWarning:
`shade` is now deprecated in favor of `fill`; setting `fill=True`.
This will become an error in seaborn v0.14.0; please update your code.
  sns.kdeplot(x=df[numeric_feature[i]],shade=True,color='r')
<ipython-input-88-dc9797babe90>:5: FutureWarning:
`shade` is now deprecated in favor of `fill`; setting `fill=True`.
This will become an error in seaborn v0.14.0; please update your code.
```

sns.kdeplot(x=df[numeric_feature[i]],shade=True,color='r')


```
plt.figure(figsize=(15,10))
plt.suptitle('Univeriate Analysis of Categorical Features',fontsize=20,fontweight='bold',alpha=0.8,y=1.)
cat=['Sex', 'Embarked']
for i in range (0, len(cat)):
   plt.subplot(2,2,i+1)
   sns.countplot(x=df[cat[i]],palette="Set2")
   plt.xlabel(cat[i])
   plt.xticks(rotation=45)
   plt.tight_layout()
```

<ipython-input-89-36ba5c4b38d7>:6: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` sns.countplot(x=df[cat[i]],palette="Set2") <ipython-input-89-36ba5c4b38d7>:6: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` sns.countplot(x=df[cat[i]],palette="Set2")

Univeriate Analysis of Categorical Features


```
plt.figure(figsize=(15,10))
plt.suptitle('Pie Chart of Categorical Features',fontsize=20,fontweight='bold',alpha=0.8,y=1.)
cat=['Sex', 'Embarked']
for i in range (0, len(cat)):
   plt.subplot(2,2,i+1)
   counts = df[cat[i]].value_counts()
   plt.pie(counts, labels=counts.index, autopct='%1.1f%', colors=sns.color_palette("Set2", len(counts)))
   plt.xlabel(cat[i])
   plt.xticks(rotation=45)
   plt.tight_layout()
```

_

Pie Chart of Categorical Features


```
df['New_Age_Mean']=df['Age'].fillna(df['Age'].mean())
df['New_Age_Median']=df['Age'].fillna(df['Age'].median())
df['New_Age_Mode']=df['Age'].fillna(df['Age'].mode()[0])
plt.figure(figsize=(10,5))
plt.suptitle('Univeriate Analysis of Age v/s New Age')
plt.subplot(2,2,1)
sns.kdeplot(x=df['Age'],shade=True,color='r')
plt.xlabel("Age")
plt.tight_layout()
plt.subplot(2,2,2)
sns.kdeplot(x=df['New_Age_Mean'],shade=True,color='r')
plt.xlabel("New Age Mean")
plt.tight_layout()
plt.subplot(2,2,3)
sns.kdeplot(x=df['New_Age_Median'],shade=True,color='r')
plt.xlabel("New_Age_Median")
plt.tight_layout()
plt.subplot(2,2,4)
sns.kdeplot(x=df['New_Age_Mode'],shade=True,color='r')
plt.xlabel("New_Age_Mode")
plt.tight_layout()
```

<ipython-input-92-29b6aba7c4fc>:5: FutureWarning:

```
`shade` is now deprecated in favor of `fill`; setting `fill=True`.
This will become an error in seaborn v0.14.0; please update your code.

sns.kdeplot(x=df['Age'],shade=True,color='r')
<ipython-input-92-29b6aba7c4fc>:10: FutureWarning:

`shade` is now deprecated in favor of `fill`; setting `fill=True`.
This will become an error in seaborn v0.14.0; please update your code.

sns.kdeplot(x=df['New_Age_Mean'],shade=True,color='r')
<ipython-input-92-29b6aba7c4fc>:15: FutureWarning:

`shade` is now deprecated in favor of `fill`; setting `fill=True`.
This will become an error in seaborn v0.14.0; please update your code.

sns.kdeplot(x=df['New_Age_Median'],shade=True,color='r')
<ipython-input-92-29b6aba7c4fc>:20: FutureWarning:

`shade` is now deprecated in favor of `fill`; setting `fill=True`.
This will become an error in seaborn v0.14.0; please update your code.

sns.kdeplot(x=df['New_Age_Mode'],shade=True,color='r')
```

Univeriate Analysis of Age v/s New Age


```
df['Embarked'].unique()
```

[⇒] array(['S', 'C', 'Q', nan], dtype=object)

```
df['Embarked'].value_counts()
\overline{\mathbf{T}}
                count
     Embarked
         s
                  644
         С
                  168
         Q
                   77
    dtype: int64
Start coding or generate with AI.
df['Embarked']=df['Embarked'].fillna(df['Embarked'].mode()[0])
df['Embarked'].unique()
→ array(['S', 'C', 'Q'], dtype=object)
df.drop('Age',axis=1,inplace=True)
df.isnull().sum()
₹
                      0
         Survived
                      0
          Pclass
                      0
          Name
                      0
           Sex
                      0
          SibSp
                      0
                      0
          Parch
           Fare
                      0
         Embarked
                      0
      New_Age_Mean
                      0
     New_Age_Median 0
      New_Age_Mode 0
    dtype: int64
df.drop('Name',axis=1,inplace=True)
df.head()
₹
        Survived Pclass
                             Sex SibSp Parch
                                                  Fare Embarked New_Age_Mean New_Age_Median New_Age_Mode
                                                                                                                   \blacksquare
     0
                0
                                                                S
                                             0 7 2500
                                                                            22 0
                                                                                             22 0
                        3
                           male
                                      1
                                                                                                            22.0
                                                                                                                   11.
                                                                С
     1
                        1 female
                                             0 71.2833
                                                                            38.0
                                                                                             38.0
                                                                                                            38.0
     2
                                             0
                                                7.9250
                                                                S
                                                                            26.0
                                                                                             26.0
                                                                                                            26.0
                1
                        3 female
                                      0
                                                                S
     3
                        1 female
                                              0 53.1000
                                                                            35.0
                                                                                             35.0
                                                                                                            35.0
                                                8.0500
                                                                S
                                                                            35.0
                                                                                             35.0
                                                                                                            35.0
 Next steps: Generate code with df
                                    View recommended plots
                                                                  New interactive sheet
df['family_Size']=df['SibSp']+df['Parch']
df.drop(['SibSp','Parch'],axis=1,inplace =True)
df['family_Size']=df['family_Size'].astype(int)
df.head()
```



```
plt.figure(figsize=(15,13))
plt.suptitle('Box Plot of Features',fontsize=20,fontweight='bold',alpha=0.8,y=1.)
cat=['Fare','family_Size','New_Age_Median']
for i in range (0, len(cat)):
  plt.subplot(2,2,i+1)
  sns.boxplot(x='Survived',y=cat[i],data=new_df)
  plt.xlabel(cat[i])
  plt.xticks(rotation=45)
  plt.tight_layout()
```


Box Plot of Features

∓

corr=new df[new df.columnsl.corr()
corr

·		Sex_female	Sex_male	Embarked_C	Embarked_Q	Embarked_S	Survived	Pclass	Fare	New_Age_Median	fam:
	Sex_female	1.000000	-1.000000	0.082853	0.074115	-0.119224	0.543351	-0.131900	0.182333	-0.081163	
	Sex_male	-1.000000	1.000000	-0.082853	-0.074115	0.119224	-0.543351	0.131900	-0.182333	0.081163	
	Embarked_C	0.082853	-0.082853	1.000000	-0.148258	-0.782742	0.168240	-0.243292	0.269335	0.030248	
	Embarked_Q	0.074115	-0.074115	-0.148258	1.000000	-0.499421	0.003650	0.221009	-0.117216	-0.031415	
	Embarked_S	-0.119224	0.119224	-0.782742	-0.499421	1.000000	-0.149683	0.074053	-0.162184	-0.006729	
	Survived	0.543351	-0.543351	0.168240	0.003650	-0.149683	1.000000	-0.338481	0.257307	-0.064910	
	Pclass	-0.131900	0.131900	-0.243292	0.221009	0.074053	-0.338481	1.000000	-0.549500	-0.339898	
	Fare	0.182333	-0.182333	0.269335	-0.117216	-0.162184	0.257307	-0.549500	1.000000	0.096688	
Ne	w_Age_Median	-0.081163	0.081163	0.030248	-0.031415	-0.006729	-0.064910	-0.339898	0.096688	1.000000	
	family_Size	0.200988	-0.200988	-0.046215	-0.058592	0.077359	0.016639	0.065997	0.217138	-0.245619	

Next steps:

Generate code with corr

View recommended plots

New interactive sheet

plt.figure(figsize=(15,10))
sns.heatmap(corr,annot=True,cmap='coolwarm')

