ALGORYTMY I STRUKTURY DANYCH SEMESTR ZIMOWY 2016/2017

LABORATORIUM NR 2

SORTOWANIE PRZEZ KOPCOWANIE

Zadanie ALL.2.1

Sprawdź, czy ciąg (23, 17, 14, 6, 13, 10, 1, 5, 7, 12) spełnia własność kopca typu max?

Zadanie ALL.2.2

Zademonstruj kolejne kroki działania procedury budującej kopiec z elementów tablicy A = [28, 6, 11, 12, 17, 8, 7, 18, 12, 14, 23]. Następnie zilustruj kilka obrotów pętli sortującej przy sortowaniu kopcowym Heapsort. Aby wskazywać, które wezły kopca są ze sobą zamieniane, użyj drzewiastej reprezentacji kopca.

Zadanie ALL.2.3

Oszacuj czasy działania algorytmu sortowania przez kopcowanie dla tablicy A o długości n, w której (a) wszystkie elementy są takie same, (b) są posortowane malejąco, (c) są posortowane rosnąco. Następnie, w oparciu o rozwiązanie zadania ALL.2.4 (ALL.2.5), dokonaj eksperymentalnego pomiaru czasu dla zaproponowanych oszacowań.

Zadanie ALL.2.4 (5+1* pkt.)

- a) Zaimplementuj omawiany na wykładzie algorytm sortowania przez kopcowanie. (5 pkt)
- b) Zmodyfikuj procedurę Heapify tak, aby używała iteracji zamiast rekursji. (1 pkt)

Specyfikacja wejścia/wyjścia.

Wejście. Liczby (całkowite) zapisane w kolejnych wierszach pliku tekstowego.

Wyjście. Posortowane liczby z pliku wejściowego zapisane w kolejnych wierszach pliku wyjściowego.

Zadanie ALL.2.5 (5+1* pkt.)

Zaimplementuj algorytm sortowania przez kopcowanie, który sortuje tylko wskazany zakres ciągu n liczb całkowitych.

Specyfikacja wejścia/wyjścia.

Wejście. n+2 liczb zapisanych w kolejnych wierszach pliku tekstowego, z czego dwie pierwsze x i y spełniają zależność $1 \le x \le y \le n$, a kolejne są elementami tablicy A.

Wyjście. Posortowany ciąg liczb A[x-1], A[x], ..., A[y-1] zapisany w kolejnych wierszach pliku wyjściowego.