Практика №11. Шифрование и дешифровка сообщения шифром RSA (реализация алгоритма для маленьких простых чисел).

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ.

В 1978 г. появилась работа [2], в которой Рон Райвест (Ron Rivest), Ади Шамир (Adi Shamir) и Лен Адлеман (Len Adleman) предложили алгоритм с открытым ключом. Схема Райвеста—Шамира—Адлемана (RSA) получила широкое распространение.

Опишем процесс шифрования. Исходный текст должен быть переведен в числовую форму, этот метод считается известным. В результате этого текст представляется в виде одного большого числа. Затем полученное число разбивается на части (блоки) так, чтобы каждая из них была числом в промежутке

[0, N-1] (о выборе N — см. ниже). Процесс шифрования одинаков для каждого блока. Поэтому мы можем считать, что блок исходного текста представлен числом x, $0 \le x \le N-1$.

Каждый абонент вырабатывает свою пару ключей. Для этого он генерирует два больших простых числа p и q, вычисляет произведение $N=p\cdot q$. Затем он вырабатывает случайное число e, взаимно простое со значением функции Эйлера от числа N, $\phi(N)=(p-1)\cdot (q-1)$ и находит число d из условия

 $e \cdot d = 1 \pmod{\phi(N)}$. Так как $(e, \phi(N)) = 1$, то такое число d существует и оно единственно. Пару (N, e) он объявляет открытым ключом и помещает в открытый доступ. Пара (N, d) является секретным ключом. Для расшифрования достаточно знать секретный ключ. Числа $p, q, \phi(N)$ в дальнейшем не нужны, поэтому их можно уничтожить.

Пользователь A, отправляющий сообщение x абоненту B, выбирает из открытого каталога пару (N,e) абонента B и вычисляет шифрованное сообщение $y=x^e \pmod{N}$.

Чтобы получить исходный текст, абонент В вычисляет $y^d \pmod{N}$. Так как $e \cdot d \equiv 1 \pmod{\varphi(N)}$, т. е. $e \cdot d = \varphi(N) \cdot k + 1$, где k – целое, то применяя теорему Эйлера, получим: следующее соотношение:

$$y^d \equiv (x^e)^d \equiv x^{ed} \equiv x^{\varphi(N) \cdot k + 1} \equiv (x^{\varphi(N)})^k \cdot x \equiv x \pmod{N}$$
.

Пример 1. Пусть p=7, q=17. Тогда $N=7\cdot17=119$, $\varphi(N)=96$. Выбираем значение e: e<96, (e,96)=1. Пусть в нашем случае e=5. Находим d: $d=1/e\pmod{96}$. Получаем d=77, так как $77\cdot5=4\cdot96+1$. Открытый ключ (119,5), личный ключ (119,77). Пусть x=19. Для зашифрования число 19 возводим в 5-ю степень по модулю 119, тогда имеем $19^5=2$ 476 099 и остаток от деления 2 476 099 на 119 равен 66. Итак, $y=19^5$ mod 119=66, а расшифрование $x=66^7$ mod 119=19.

Подготовка текста к шифрованию

Сначала нужно каким-либо способом представить текст сообщения в виде упорядоченного набора чисел по модулю N. Это еще не процесс шифрования, а только подготовка к нему.

Пример 2. Для простоты предположим, что текст сообщения содержит слова, записанные только заглавными буквами. Первый шаг состоит в замене каждой буквы сообщения числом. Пусть наша таблица замен имеет вид:

Α	Б	В	Γ	Д	Е	Ж	3	И	Й	К	Л	M	Н	О	П	P	С
10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
			1					ı	ı	1	1		_				
T	У	Φ	X	Ц	Ч	Ш	Щ	Ъ	Ы	Ь	Э	Ю	Я				
28	29	30	31	32	33	34	35	36	37	38	39	40	41				

Пробел между словами будем заменять числом 99.

Например, пусть открытый текст – это девиз «ПОЗНАЙ СЕБЯ». Тогда его цифровое представление имеет вид: 2524172310199927151141.

Пусть в нашем примере p=149, q=157, тогда N=23393. Поэтому цифровое представление открытого текста нужно разбить на блоки, меньшие, чем 23393. Одно из таких разбиений выглядит следующим образом:

$$2524 - 1723 - 10199 - 9271 - 511 - 41$$
.

Конечно, выбор блоков неоднозначен, но и не совсем произволен. Например, во избежание двусмысленностей, на стадии расшифровки не следует выделять блоки, начинающиеся с нуля.

При расшифровке сообщения получаем последовательность блоков, затем их соединяем вместе и получаем число. После этого числа заменяют буквами в соответствии с таблицей, приведенной выше.

Обратим внимание на то, что в этом примере каждую букву кодируем двузначным числом. Это сделано для предотвращения неоднозначности. Если бы мы пронумеровали буквы не по порядку, начиная с 1, т. е. А соответствует 1, Б соответствует 2 и т. д., то было бы непонятно, что обозначает блок 12: пару букв АБ или букву Л, двенадцатую букву алфавита. Конечно, для кодирования можно использовать любые однозначные соответствия между буквами и числами, например ASCII-кодировку, что чаще всего это и делается.

Продолжим пример: выбираем p=149, q=157, вычисляем $\varphi(N)=23~088$. Теперь нужно выбрать число e, взаимно простое с $\varphi(N)$. Наименьшее простое, не делящее $\varphi(N)$, равно 5. Положим e=5. Зашифруем первый блок сообщения: вычисляем $2524^5~\text{mod}$ 23393=22752; далее $1723^5~\text{mod}$ 23393=6198.

```
10199<sup>5</sup> mod 23393 = 14204,
9271<sup>5</sup> mod 23393 = 23191,
511<sup>5</sup> mod 23393 = 10723,
41<sup>5</sup> mod 23393 = 14065.
```

Теперь шифрованный текст имеет вид

22752619814204231911072314065

В нашем примере N=23393, e=5. Применив алгоритм Эвклида к числам $\phi(N)=23088$ и e=5, найдем $d=e^{-1} \mod 23088=13853$. Значит для расшифровки блоков шифртекста мы должны возвести этот блок в степень 13583 по модулю 23393. В примере первый блок шифртекста — число 22752, тогда получим 22752¹³⁸⁵³ mod 23393 = 2524.

Разбиение числа на блоки можно произвести различными способами. При этом *промежуточные* результаты зависят от способа разбиения, однако *конечный* результат – не зависит.

ЗАДАНИЕ

Сгенерировать два простых числа. Получить открытый и закрытый ключи алгоритма RSA.

Подготовить открытый текст для шифрования и разбить его на блоки.

Провести шифрование текста

Расшифровать текст