18.01, September 25, 2003 Curve Sketching

1. Increasing/decreasing: If
$$f'(x_o)$$
 $\begin{cases} >0 \\ <0 \text{ then } f \end{cases}$ increasing decreasing

on an interval that contains x_0 .

- 2.Lock max/min where f goes from being increasing to decreasing/decreasing to increasing. If f' defined on (α,b) and $x_0 \in (a,b)$, local max/min then $f'(x_0) = 0$, i.e., x_0 critical point.
- 3. When looking for max's/min's find critical points and <u>check</u> endpts, pts where f not cts and where f' not defined.
- 4. Concave up: serant line lies above graph, concave down: serant line lies below graph.
- 5. If f''>0 on (α,b) then concave up (etc.). But also $f(x)=x^4$ is concave up even though $f''(\theta)=0$.
- 6. 2^{nd} derivative rule: $f'(x_0) = 0$ and f concave up $\Rightarrow x_0$ a local min. $f'(x_0) = 0$ and f concave down $\Rightarrow x_0$ a local max.
- 7. Inflection points: Where f changes from concave up to concave down (etc.). If f'' defined on (α,b) and x_0 an infl. pt., then $f''(x_0) = 0$.
- 8. Assymptotes and limiting behavior at ∞ .
- 9. Algorithm for curve sketching (just do the above methodically).

10. Sketched
$$y = \frac{x^2}{x-1}$$