

Storage Management - 11

Nitin V Pujari Faculty, Computer Science Dean - IQAC, PES University

Storage Management - 11:

Case Study: Network File System - NFS

Nitin V Pujari Faculty, Computer Science Dean - IQAC, PES University

Course Syllabus - Unit 4

PES UNIVERSITY ONLINE

Unit 4: Storage Management

Mass-Storage Structur - Mass-Storage overview, Disk Scheduling, Swap-Space Management, RAID structure. File System Interface - file organization/structure and access methods, directories, sharing File System Implementation/Internals: File control Block (inode), partitions & mounting, Allocation methods.

Case Study: Linux/Windows File Systems

Course Outline

Topic Outline

Network File System NFS

Network File System

Network File System

- Interconnected workstations viewed as a set of independent machines with independent file systems, which allows sharing among these file systems in a transparent manner
 - A remote directory is mounted over a local file system directory
 - The mounted directory looks like an integral subtree of the local file system, replacing the subtree descending from the local directory
 - Specification of the remote directory for the mount operation is non-transparent; the host name of the remote directory has to be provided
 - Files in the remote directory can then be accessed in a transparent manner
- Subject to access-rights accreditation, potentially any file system (or directory within a file system), can be mounted remotely on top of any local directory

Network File System

- NFS is designed to operate in a heterogeneous environment of different machines, operating systems, and network architectures; the NFS specifications independent of these media
- This independence is achieved through the use of RPC primitives built on top of an External Data Representation (XDR) protocol used between two implementation independent interfaces
- The NFS specification distinguishes between the services provided by a mount mechanism and the actual remote-file-access services

Three Independent File Systems

Mounting in NFS

Network File System Protocol

- Establishes initial logical connection between server and client
- Mount operation includes name of remote directory to be mounted and name of server machine storing it
 - Mount request is mapped to corresponding RPC and forwarded to mount server running on server machine
 - Export list specifies local file systems that server exports for mounting, along with names of machines that are permitted to mount them

Network File System Protocol

 The mount operation changes only the user's view and does not affect the server side

Network File System protocol

- Provides a set of remote procedure calls for remote file operations. The procedures support the following operations:
 - searching for a file within a directory
 - reading a set of directory entries
 - manipulating links and directories
 - accessing file attributes
 - reading and writing files

stateful)

Network File System protocol

 Modified data must be committed to the server's disk before results are returned to the client (lose advantages of caching)

just coming available – very different,

 The NFS protocol does not provide concurrency-control mechanisms

Three Major Layers of Network File System Architecture

- UNIX file-system interface (based on the open, read, write, and close calls, and file descriptors)
- Virtual File System (VFS) layer distinguishes local files from remote ones, and local files are further distinguished according to their file-system types
 - The VFS activates file-system-specific operations to handle local requests according to their file-system types
 - Calls the NFS protocol procedures for remote requests
- NFS service layer bottom layer of the architecture
 - Implements the NFS protocol

Schematic View of Network File System Architecture

Schematic View of Network File System Architecture

Typical Network File System Dashboard

Network File System Path Name Translation

 Performed by breaking the path into component names and performing a separate NFS lookup call for every pair of component name and directory vnode

 To make lookup faster, a directory name lookup cache on the client's side holds the vnodes for remote directory

Network File System Remote

Prearing one-to-one correspondence between regular UNIX system calls and the NFS protocol RPCs (except opening and closing files)

 NFS adheres to the remote-service paradigm, but employs buffering and caching techniques for the sake of performance

Network File System Remote

Perations- when a file is opened, the kernel checks with the remote server whether to fetch or revalidate the cached attributes

- Cached file blocks are used only if the corresponding cached attributes are up to date
- File-attribute cache the attribute cache is updated whenever new attributes arrive from the server

 Clients do not free delayed-write blocks until the server confirms that the data have been written to disk

Topic Uncovered

Network File System NFS

THANK YOU

Nitin V Pujari Faculty, Computer Science Dean - IQAC, PES University

nitin.pujari@pes.edu

For Course Deliverables by the Anchor Faculty click on www.pesuacademy.com