SISTEMAS E SINAIS - EXERCÍCIO V

SÉRGIO CORDEIRO

1. Usar o MATLAB para obter filtros discretos de terceira ordem, passa altas e baixas, tipos Butterworth, Chebyshev e elíptico, com $f_c=1000\ Hz$ e $f_s=10k\ Hz$. Obter gráficos de resposta em frequência e mapa de polos e zeros.

Os filtros de terceira ordem terão todos a função de transferência na forma:

$$F(z) = \frac{a_0 + a_1 z + a_2 z^2 + a_3 z^3}{b_0 + b_1 z + b_2 z^2 + z^3}$$

variando apenas o valor dos coeficientes. Para os filtros de Chebyshev e elíptico, é preciso escolher um valor para o *ripple* permitido; o valor escolhido foi 10%.

Filtro passa-baixas Butterworth: $a_0 = a_3 = 0.0985312$, $a_1 = a_2 = 0.2955935z$, $b_0 = -0.0562972$, $b_1 = 0.4217870$, $b_2 = -0.5772405$.

Filtro passa-altas Butterworth: $a_0 = -0.2569156$, $a_1 = 0.7707468$, $a_2 = -0.7707468b_0$, $a_3 = 0.2569156$, $b_1 = 0.4217870$, $b_2 = -0.5772405$.

Filtro passa-baixas Chebyshev tipo 1: $a_0 = a_3 = 0.0758127$, $a_1 = a_2 = 0.2274381$, $b_0 = -0.2800204$, $b_1 = 0.8350895$, $b_2 = -0.9485676$. Filtro passa-altas Chebyshev tipo 1: $a_0 = -0.2184734$, $a_1 = 0.6554203$, $a_2 = -0.6554203$, $a_3 = 0.2184734$, $b_0 = 0.1066800$, $b_1 = 0.5231798$, $b_2 = -0.3312878$. Filtro passa-baixas Chebyshev tipo 2: $a_0 = a_3 = 0.1396569$, $a_1 = a_2 = 0.0911027$, $b_0 = -0.1205026$, $b_1 = 0.727458$, $b_2 = 1.1454362$.

Filtro passa-altas Chebyshev tipo 2: $a_0 = -0.2537110$, $a_1 = 0.4733077$, $a_2 = -0.4733077$, $a_3 = 0.2537110$, $b_0 = -0.0343049$, $b_1 = 0.4205823$, $b_2 = 0.0008498$.

Filtro passa-baixas elíptico: $a_0 = a_3 = 0.1888360$, $a_1 = a_2 = 0.2103067$, $b_0 = -0.2551121$, $b_1 = 0.9029815$, $b_2 = -0.8495838$.

Filtro passa-altas elíptico: $a_0 = -0.3424305$, $a_1 = 0.7545202$, $a_2 = -0.7545202$, $a_3 = 0.3424305$, $b_0 = 0.0339332$, $b_1 = 0.7048425$, $b_2 = -0.5229920$.

Os gráficos de resposta em frequência são os seguintes:

Filtro passa-baixas Butterworth

Filtro passa-altas Butterworth

Filtro passa-baixas Chebyshev tipo 1

Filtro passa-altas Chebyshev tipo 1

Filtro passa-baixas Chebyshev tipo 2

Filtro passa-altas Chebyshev tipo

Filtro passa-baixas elíptico

Filtro passa-altas elíptico

Os diagramas de polos e zeros são os seguintes:

Filtro passa-baixas Butterworth

Filtro passa-altas Butterworth

Filtro passa-baixas Chebyshev tipo 1

Filtro passa-altas Chebyshev tipo 1

Filtro passa-baixas Chebyshev tipo 2

Filtro passa-altas Chebyshev tipo

Filtro passa-baixas elíptico

Filtro passa-altas elíptico

2. Mostrar que funções exponenciais contínuas são ortogonais.

$$\langle e^{at}, e^{bt} \rangle = \int_{-\infty}^{\infty} e^{at} \left(e^{bt} \right)^* dt$$

$$= \int_{-\infty}^{\infty} e^{(a+b^*)t} dt$$

$$= \int_{-\infty}^{\infty} e^{ct} dt$$

$$= \frac{e^{ct}}{c} \Big|_{-\infty}^{\infty}$$

$$= \frac{e^{ct}}{c} \Big|_{-\infty}^{\infty}$$

A integral só converge de $\Re\{c\} < 0$; assim, $\Re\{a+b\} \le 0$. Para $\Re\{a+b\} < 0$, o produto interno será nulo. Resta tratar a situação em que $\Re\{a+b\} = 0$; neste caso c é puramente imaginário, e pode-se escrever $c = \jmath d$. Para $d \ne 0$, a função $e^{\jmath dt}$ é periódica com período $T = \frac{2\pi}{d}$ e podemos redefinir o produto interno como:

$$\langle e^{at}, e^{bt} \rangle = \frac{1}{T} \int_0^T e^{\jmath dt} dt$$

$$= \frac{1}{T} \frac{1}{\jmath d} e^{\jmath dt} \Big|_0^T$$

$$= \frac{1}{T} \frac{1}{\jmath d} (e^{\jmath dT} - 1)$$

$$= \frac{1}{T} \frac{1}{\jmath d} (e^{\jmath 2\pi} - 1)$$

$$= \frac{1}{T} \frac{1}{\jmath d} (1 - 1)$$

Finalmente, para d = 0, teremos:

$$\langle e^{at}, e^{bt} \rangle = \frac{1}{T} \int_0^T dt$$
$$= \frac{1}{T} t \Big|_0^T$$
$$= \frac{1}{T} T$$
$$= 1$$

Esse caso especial acontece quando $\Im a=\Im b$. Como já tínhamos $\Re\{a\}=\Re\{b\}$, segue-se que $d=0\implies a=b$. Sumarizando:

segue-se que
$$d=0 \implies a=b$$
. Sumarizando:
$$\langle e^{at}, e^{bt} \rangle = \begin{cases} 0 & \left[\left(\Re\{a\} = \Re\{b\} \wedge \Im\{a\} \neq \Im\{a\} \right) \vee \Re\{a\} \neq \Re\{b\} \right] \wedge \Re\{a+b\} < 0 \\ 1 & a=b \wedge \Re\{a\} < 0 \\ \text{Indefinido} & \Re\{a+b\} > 0 \end{cases}$$

Portanto, as funções são ortogonais.

Simulação realizada com **Scilab** 5.5.2:

https://www.scilab.org

Texto formatado com **pdflatex** em ambiente **MiKTeX** 2.9:

http://miktex.org/download/