ОХРАНА ТРУДА И ЭКОЛОГИЯ

Назначение двигателя

Двигатель предназначен для использования в качестве привода нагнетателя на линейных компрессорных станциях природного газа.

Двигатель выполнен трехвальным со свободной турбиной.

Мощность – 16 МВт.

Основные части: компрессор низкого давления (КНД), компрессор высокого давления (КВД), камера сгорания (КС), турбина высокого давления (КВД), турбина низкого давления (КНД), силовая турбина (ТС), выходное устройство.

Частоты вращения валов: высокого давления – 12000 об/мин, среднего давления – 9500, низкого давления – 7800 об/мин.

Топливо – природный газ.

Температура газа за камерой сгорания – 1450 К.

Анализ вредных и опасных производственных факторов на этапе эксплуатации

При эксплуатации двигателя к вредным и опасным факторам относятся:

- Повышенный уровень шума на рабочем месте, вызванный всасыванием ем воздуха, колебанием газа в элементах проточной части, колебанием элементов конструкции из-за вращения ротора, истечения реактивной струи из выходного устройства.
- Загрязнение воздуха в области, прилегающей к компрессорной станции,

продуктам сгорания топлива, содержащими оксиды азота, углерода, сажу; парами масла из системы смазки (Таблица 5.1).

- Повышенный уровень вибраций из-за дисбаланса вращающихся масс (Таблица 5.1).
- Повышенный уровень температуры в рабочей зоне вследствие нагрева корпуса двигателя (Таблица 5.1).
- Повышенный уровень температур поверхностей оборудования и поверхностей проточной части: в компрессоре за счет сжатия воздуха, в турбине за счет температуры горячего газа (Таблица 5.1).

Анализ перечисленных факторов представлен в таблице 5.1 с указанием нормативного документа и нормативных значений рассмотренных производственных факторов.

Вредные и	Источник	Нормативное зна-	Нормативный
опасные про-	производ-	чение	документ
изводственные	ственного		
факторы ГОСТ	фактора		
12.2.003-74,			
P2.2.2006-05			
Повышенный уро-	Вентилятор,	Таблица 2, строка 4 –	СН
вень шума на ра-	Компрессор,	для рабочих мест за	2.2.4/2.1.8.562-
бочем месте	Турбина,	пультами регулирова-	96
	Выходное	ния параметров уста-	
	устройство	новки	

Вредные и	Источник	Нормативное зна-	Нормативный
опасные про-	производ-	чение	документ
изводственные	ственного		
факторы ГОСТ	фактора		
12.2.003-74,			
P2.2.2006-05			
Повышенный	Камера сго-	Максимальные	ГН2.2.5.3532-18
уровень продук-	рания	разовые ПДК:	(таблица 1) "Ги-
тов сгорания в		CO_2 (2 $M\Gamma/M^3$),	гиенические нор-
воздухе рабочей		CO (5 Mr/ M^3),	мативы. Предель-
среды		NO_2 (10 Mr/m ³),	но допустимые
		$NO~(20~{ m MT/M}^3),$	концентрации
			(ПДК) вредных
			веществ в воздухе
			рабочей зоны"
Повышенный уро-	Ротор низко-	Указано в таблице 3	СН
вень вибрации	го давления;	(для технологических	2.2.4/2.1.8.566-
	Ротор сред-	вибраций, воздейству-	96(таблица 6)
	него давле-	ющих на человека на	"Производствен-
	ния; Ротор	рабочих местах стаци-	ная вибрация.
	высокого	онарных машин или	Вибрации в жи-
	давления	передающих на рабо-	лых и обществен-
		чие места, не имеющие	ных зданиях"
		источников вибрации)	

Вредные и опасные про- изводственные факторы ГОСТ 12.2.003-74, P2.2.2006-05	Источник производ- ственного фактора	Нормативное значение	Нормативный документ
Микроклимат	Камера сгорания	Производственное помещение Категория работ- Па (175-232Вт) Температура воздуха 20-22 °C, Температура поверхностей 19-23 °C, Относительная влажность 60-40 %, Скорость движения воздуха 0,2 м/с	СП 60.13330.2016 "Отопление, вентиляция и кондиционирование"
Повышенная температура поверхностей оборудования, материалов	Корпус тур- бин; Корпусы камеры сгорания; Корпус вы- ходного устройства	51 °C (1 мин)	СанПиН 2.2.3.548- 96 Гигиенические требования к микроклимату производственных помещений

Таблица 1: Анализ вредных и опасных производственных факторов

Анализ уровня шума на станции

Расчет производился в программном комплексе APM «Акустика».

Расчет был произведен для машинного отделения и двух прилегающих комнат — комнаты управления и электротехнического отсека. Схема расчетной области представлена на рис. 5.1.

Рис. 1: Схема расчетной области (КНД – компрессор низкого давления, TC – силовая турбина)

Соответствующая модель, построенная в программном комплексе APM «Акустика» приведен на рис. 5.2.

Рис. 2: Расчетная модель, построенная в программном комплексе АРМ "Акустика"

Для расчета уровней шума использованы шумовые характеристики вентилятора и выходного устройства двигателя НК38-СТ, идентичные разрабатываемому двигателю. Уровни звукового давления, дБ в октавных полосах со среднегеометрическими частотами, Гц представлены в таблице 5.2.

Частота, Гц							
Источник	31,5	63	125	250	500	1000	2000
Вентилятор	104	102	103	97	97	94	95

Выходное устройство	119	117	121	116	114	110	115
---------------------	-----	-----	-----	-----	-----	-----	-----

Таблица 2: Уровни звукового давления, дБ в октавных полосах со среднегеометрическим частотами Гц

Изолинии звукового давления, полученные в результате расчета показаны на рис. 5.3.

Рис. 3: Изолинии звукового давления

Сравнение уровней звукового давления в расчетной точке, находящейся в комнате управления с нормативным (согласно CH 2.2.4/2.1.8.562- 96 таблица 2, строка 4) представлено в таблице 5.3.

Частота, Гц							
Источник	31,5	63	125	250	500	1000	2000
Норматив	103	91	83	77	73	70	68
Расчетная точка	83	81,5	77,3	70,1	63,8	56,4	62,5

Таблица 3: Сравнение полученных уровней звукового давления с нормативным

Из полученных данных следует, что уровень шума на рабочем месте, не превышает нормативного ни в одном из частотных диапазонов.

Оценка размера зоны распространения облака горючих газов и паров при аварии

Оценка размера зоны распространения облака горючих газов заключается в определении зоны с концентрацией горючего вещества выше нижнего концентрационного предела воспламенения (НКПВ). Для природного газа эта величина равна 29 мг/л. Исходные данные для проведения расчета приведены в таблице 5.4.

Величина	Обозначение	Размерность	Значение
Температура ки-	$T_{ extsf{K}}$	K	113
пения природного			
газа			
Теплоемкость	$ig C_{p_{\Gamma}}$	Дж/(кг · К)	3074
природного газа			
Теплоемкость воз-	$C_{p\Gamma}$	Дж/(кг · К)	1006
духа			

Величина	Обозначение	Размерность	Значение
Газовая постоян-	$R_{\scriptscriptstyle m B}$	Дж/(кг · К)	287
ная воздуха			
Газовая постоян-	$R_{\scriptscriptstyle m B}$	Дж/(кг · К)	519,6
ная природного			
газа			
Атмосферное дав-	$p_{ m a}$	Па	$1,013\cdot 10^5$
ление			
Атмосферная	$T_{ m a}$	K	288
температура			
Теплота паро-	$oxedsymbol{L_{\Gamma}}$	Дж/кг	$510 \cdot 10^3$
образования			
природного газа			
Теплота паро-	$L_{\scriptscriptstyle m B}$	Дж/кг	$2256 \cdot 10^3$
образования			
водяных паров			
Температура	$T_{\text{пов}}$	K	300
подстилающей			
поверхности			
Относительная	$\mid \psi \mid$	%	50
влажность			
Массовая доля во-	X	-	$9,35 \cdot 10^{-3}$
дяных паров			
Температура газа	$\mid T_{\scriptscriptstyle \Gamma} \mid$	K	275
в трубопроводе			

Величина	Обозначение	Размерность	Значение
Диаметр трубо-	D	M	1,2
провода			
Длина участка	$oxed{L}$	M	6
трубопровода			
между отсечными			
клапанами			
Давление газа в	$p_{\scriptscriptstyle \Gamma}$	Па	$5,6\cdot 10^6$
трубопроводе			

Таблица 4: Исходные данные для проведения оценки зоны распространения облака горючих газов и паров при аварии

Определим массу газа между отсечными клапанами $m_{\scriptscriptstyle \Gamma}$, кг:

$$m_{\scriptscriptstyle \Gamma} = \frac{p_{\scriptscriptstyle \Gamma}}{R_{\scriptscriptstyle \Gamma} T_{\scriptscriptstyle \Gamma}} \cdot \frac{\pi}{4} \cdot D^2 L = \frac{5, 4 \cdot 10^6}{519, 6 \cdot 275} \cdot \frac{3, 14}{4} \cdot 1, 2^2 \cdot 6 = 265, 8$$
kg.

Определим массу воздуха, мгновенно вовлекающуюся в облако углеводородов , кг:

$$m_{\rm B} = \frac{(1-\delta) \cdot m_{\scriptscriptstyle \Gamma} \cdot L_{\scriptscriptstyle \Gamma}}{C_{\scriptscriptstyle {\it pB}} \cdot (T_{\scriptscriptstyle {\it B}} - T_{\scriptscriptstyle {\it \Gamma}}) + XL_{\scriptscriptstyle {\it B}}},$$

где

$$\delta = 1 - exp\left(-\frac{C_{pr}(T_{\rm B} - T_{\rm K})}{L_{\rm r}}\right) = 1 - exp\left(-\frac{1006 \cdot (288 - 133)}{510 \cdot 10^3}\right) = 0,65,$$

таким образом,

$$m_{\rm b} = \frac{(1-0,65)\cdot 265, 8\cdot 510\cdot 10^3}{1006\cdot (288-133) + 9,35\cdot 10^{-3}\cdot 2256\cdot 10^3~{\rm kg}},$$

Принимается, что образовавшееся облако дрейфует по ветру со скоростью $w_{\rm o}=0,6w,$ где w — скорость ветра, и имеет в начальный момент форму

цилиндра, высота которого равна его радиусу. С течением времени высота облака уменьшается, а радиус растет.

Скорость ветра зависит от класса устойчивость по Паскуиллу. В данном расчете принимается класс по Паскуиллу В, что соответствует наиболее опасному случаю – наибольшему распространению углеводородного облака. Соответствующая этому классу устойчивости скорость ветра $w=2\,\mathrm{m/c}$. Изменение во времени радиуса, высоты облака и концентрации газа в нем в начальной фазе (фаза падения) определяется путем решения систем обыкновенных дифференциальных уравнений:

$$\begin{cases} \frac{dm_{\rm B}}{dt} = \rho_{\rm B}\pi r^2 a_2 a_3 w R i^{-1} + 2\rho_{\rm B} a_1 \frac{dr}{dt} \pi r h \\ \frac{dT}{dt} = \frac{\frac{dm_{\rm B}}{dt} C_{\rm PB} (T_{\rm B} - T) + \pi r^2 \cdot (T_{\rm HOB} - T)^{1,333}}{m_{\rm B} C_{\rm PB} + m_{\rm F} C_{\rm PF}} \\ \frac{dr}{dt} = a_4 \left(\frac{dh \cdot (\rho_{\rm F.B.} - \rho_{\rm B})}{\rho_{\rm F.B.}} \right)^{0,5} \end{cases}$$

где $m_{\rm B}$, кг — масса воздуха в облаке, $\rho_{\rm B}$, кг/м³ — плотность воздуха, r, м — радиус облака, a_1,a_2,a_3,a_4 — коэффициенты ($a_1=0,7,\ a_2=0,5,\ a_3=1,07,\ a_4=0,3$), g, м/с — ускорение свободного падения;

Ri – число Ричардсона, определяемое из соотношения:

$$Ri = \frac{\left(\frac{5,88h^{0,48}g}{a_3^2w^2}\right)^{0,5} (\rho_{\text{\tiny \Gamma.B.}} - \rho_{\text{\tiny B}})}{\rho_{\text{\tiny B}}};$$

h, м — высота облака, T, к — температура облака, $\rho_{\text{г.в.}}$, кг/м³ — плотность паровоздушного воздуха. Для решения системы уравнений необходимо дополнительное соотношение:

$$ho_{\scriptscriptstyle \Gamma.B.} = rac{m_{\scriptscriptstyle
m B} + m_{\scriptscriptstyle \Gamma}}{\left(m_{\scriptscriptstyle
m B} + m_{\scriptscriptstyle \Gamma}
ight)\left(rac{T_{\scriptscriptstyle
m B}}{T}
ight)}.$$

В качестве критерия окончания фазы падения принимается выполнение условие

$$\frac{\rho_{\text{\tiny \Gamma.B.}} - \rho_{\text{\tiny B}}}{\rho_{\text{\tiny \Gamma.B.}}} < 10^{-3}.$$

Зависимость h=h(t) определяется из соотношения:

$$h(t) = (m_{\scriptscriptstyle \rm B} + m_{\scriptscriptstyle \rm T}) \left(\frac{T_{\scriptscriptstyle \rm B}}{T}\right) \frac{1}{\pi r(t)^2}$$

Концентрация газа в точке с координатами определяется по формуле:

$$C(x,y,z) = \frac{2m_{\Gamma}}{(2\pi)^{1,5} \cdot \sigma_y^2 \cdot \sigma_z^2} \cdot exp\left(-\frac{(x-x_0)^2 + y^2}{2\sigma_y^2}\right) \cdot exp\left(-\frac{z^2}{2\sigma_z^2}\right)$$

где σ_y , σ_z — среднеквадратичные отклонения, зависящие от величины x_c-x_0 ; x_c , м — координата центра облака в направлении ветра; x_0 , м — координата точки окончания фазы падения.

При
$$x_c=x_0$$
 принимается $\sigma_{y0}=r/2,14,\,\sigma_{z0}=h/2,14;$ при $x_c\neq x_0\,\,\sigma_y^2=\sigma_{y0}^2+\sigma_y(x_c-x_0),\,\sigma_z^2=\sigma_{z0}^2+\sigma_z(x_c-x_0).$

Результатом расчета является пространственное распределение концентраций углеводородного облака. Срез такого распределения на уровне земли (z=0) представлен на рис. 5.4.

Рис. 4: Срез распределения концентраций на момент окончания фазы падения

Из полученного решения видно, что зона воспламенения по мере движения облака распространяется вплоть до расстояния 130 м по направлению ветра. Следовательно, открытый огонь недопустим в радиусе 130 м от станции.

Список литературы

- 1. Голубовский Е.Р., Светлов И.Л., Хвацкий К.К. Длительная прочность никелевых сплавов для монокристаллических лопаток газотурбинных установок // Журнал «Конверсия в машиностроении». 2005. №3.
- 2. Теплообменные аппараты и системы охлаждения газотурбинных и комбинированных установок: учебник для вузов / Иванов В. Л., Леонтьев А. И., Манушин Э. А., Осипов М. И.; ред. Леонтьев А. И. 2-е изд., стер. М.: Изд-во МГТУ им. Н. Э. Баумана, 2004. 591 с.: ил. Библиогр.: с. 576-577. ISBN 5-7038-2138-X.
- 3. Теория и проектирование газотурбинных и комбинированных установок: учебник для вузов / Манушин Э.А., Михальцев В.Е., Чернобровкин А.П. М.: Изд-во МГТУ им. Н.Э. Баумана, 1997.