A Transductive Few-Shot Learning Approach

for Classification of Digital Histopathological Slides from Liver Cancer.

Abdelbaki GUIR, Kaiyuan XU

M2 ATSI Paris-Saclay University

Supervisors : Pr.Emilie Chouzenoux, Dr.Quentin VANDERBECQ.

- Preliminary
- Proposed Method
- 3 Experiments
- Questions/Answers

- Preliminary
- 2 Proposed Method
- 3 Experiments
- 4 Questions/Answers

1.1 Whole Slide Images (WSIs)

- → Digitize histology slides into high resolution images
- Analyze using Al assistance systems, like conventional neural networks (CNNs), which depends on the availability of extensive annotated training data
- \leadsto Histopathology (v.s.natural images) : the labeling process, i.e. accurate annotations of gigapixel-sized images \to time-consuming \to datasets are limited in size \Rightarrow data scarcity
- → Histopathology : non-uniform class distribution may produce biased results and compromise the model performance ⇒ class imbalance

1.2 Classify local tissues into five classes (i.e. $\mathsf{K}=5$)

Class	NT	RE	AM	VE	AN
Percentage	26%	14%	8%	12%	40%

Table: Data distribution per class.

 $Non-Tumor\ Liver\ (NT),\ Hemorragic\ tissue\ (RE),\ Tumor\ tissue\ with\ macro-trabecular\ architecture\ (AM),\ Tumor\ tissue\ with$

Vessels Encapsulating Tumor Clusters architecture (VE), Conventional trabecular architecture (AN)

1.3 Few-shot learning (FSL)

Few-shot learning (FSL) focuses on training models to generalize from a **small** set of **labeled** examples.

- **Support set:** Few labeled examples for training. ($\mathbb{S} \subset \{1, \dots, N\}$)
- Query set: Unlabeled examples to classify. $(\mathbb{Q} \subset \{1, ..., N\} \setminus \mathbb{S})$
- Inductive FSL: Predicts each query sample independently of others.
 ⇒ treats each data sample independently
- Transductive FSL: Uses the statistics of all unlabeled query samples collectively for improved accuracy.
 - ⇒ makes predictions on a set of samples collectively.
 - \Rightarrow dealing with localized regions in medical imaging \checkmark (leverage homogeneity + spatial coherence across multiple patches)

1.4 Main contributions

Introduce a novel transductive few-shot learning approach for histopathological image classification :

- apply a sliding window technique to WSIs ⇒ transductive few-shot learning
- 2 an optimization-based method (Minimization problem)

$$\begin{split} \min_{U,W} \quad & f(U,W) + g(U) + \lambda h(U), \\ \text{subject to} \quad & (\forall n \in \mathbb{Q}) \quad u_n \in \Delta_K, \\ & (\forall n \in \mathbb{S}) \quad u_n = y_n, \end{split}$$

tests on the most frequent liver cancer
 √

- Preliminary
- Proposed Method
- 3 Experiments
- 4 Questions/Answers

2.1 Problem formulation 1/3

 \rightsquigarrow The pre-trained network encoder Φ (feature extraction) :

Figure: Encoder Φ : WSIs (of organs : liver, kidney, ...) \rightarrow tensor .¹

¹https://developer.nvidia.com/blog/accelerate-medical-imaging-ai-operations-with-databricks-pixels-2-0-and-monai/

2.1 Problem formulation 2/3

2:?

```
(x_n)_{n \in \mathbb{S}}: the feature samples (x_n)
(y_n)_{n \in \mathbb{S}}: one-hot-encoded labels
```

 $(x_n)_{n\in\mathbb{Q}}$: unlabeled samples

?: put $(z_n = \Phi(x_n))_{1 \le n \le N}$ into the few-shot classifier

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ◆○○○

2.1 Problem formulation 3/3

Figure: Scanning of the slide with a sliding window. cf. p.3 2

$$ightharpoonup \mathbf{U} = (u_n)_{1 \leq n \leq |\mathbb{Q}|} \in (\Delta_K)^{|\mathbb{Q}|}$$
 : one-hot-encoded assignments

$$\leadsto$$
 $\mathbf{W} = (w_k)_{1 \le k \le K} \in (\mathbb{R}^d)^K$: the class centroids

²https://arxiv.org/abs/2311.17740

2.2 Minimization problem

Problem formulation

$$\min_{U,W} \quad f(U,W) + g(U) + \lambda h(U),$$
 subject to $(\forall n \in \mathbb{Q}) \quad u_n \in \Delta_K,$
$$(\forall n \in \mathbb{S}) \quad u_n = y_n,$$
 (1)

Terms:

• Data-fidelity term (f(U, W)): Assumption that the data follows a multivariate Gaussian distribution and integrating supervision from the support set.

$$f(U,W) = \frac{1}{2} \sum_{k=1}^{K} \sum_{n=1}^{N} u_{n,k} (w_k - z_n)^{\top} \hat{S}_k (w_k - z_n) - \frac{1}{2} \sum_{k=1}^{K} \sum_{n=1}^{N} u_{n,k} \ln \det(\hat{S}_k)$$

2 Entropic barrier on the assignments (g(U)): Facilitating closed-form updates in the forthcoming algorithm.

$$g(U) = \sum_{k=1}^K \sum_{n \in \mathbb{O}} u_{n,k} \ln u_{n,k}.$$

9 Penalty function (h(U)**):** Encouraging a minimal number of classes to be predicted within the window.

$$h(U) = -\sum_{k=1}^K \pi_k \ln(\pi_k)$$

2.3 Algorithm

Algorithm 1: PADDLE-Cov

Initialize $W^{(0)}$ as the means computed on the support set and for all $k \in \{1, \dots, K\}$, $\pi_k^{(0)} = \frac{1}{|\mathbb{Q}|} \sum_{n \in \mathbb{Q}} u_{n,k}^{(0)}.$ for $\ell = 1, 2, ..., do$ $\boldsymbol{u}_n^{(\ell)} = \operatorname{softmax} \left(\left(-\frac{1}{2} (\boldsymbol{w}_k - \boldsymbol{z}_n)^{\top} \hat{\boldsymbol{S}}_{\boldsymbol{k}} (\boldsymbol{w}_k - \boldsymbol{z}_n) \right) \right)$ $+\frac{1}{2}\ln\det(\hat{\boldsymbol{S}}_k) + \frac{\lambda}{|\Omega|}\ln\pi_k^{(\ell)}$, $\forall n \in \mathbb{Q}$, $\mathbf{w}_{k}^{(\ell+1)} = \frac{\sum_{n=1}^{N} u_{n,k}^{(\ell+1)} \mathbf{z}_{n}}{\sum_{n=1}^{N} u_{n,k}^{(\ell+1)}}, \forall k \in \{1, \dots, K\},$ $\pi_{k}^{(\ell+1)} = \frac{1}{|\mathbb{Q}|} \sum_{n=1}^{N} u_{n,k}^{(\ell+1)}, \quad \forall k \in \{1, \dots, K\}.$

Figure: PADDLE-Cov. cf. p.3 ³

³https://arxiv.org/abs/2412.16739v1

- Preliminary
- 2 Proposed Method
- 3 Experiments
- 4 Questions/Answers

3.1 Experimental setting

•
$$S = 5184$$
, $s = 1728 \rightarrow 512 \Rightarrow |\mathbb{Q}| = 25$

$$\bullet \Rightarrow |\mathbb{S}| = 28$$

•
$$\lambda = 1250$$

3.2 Results

Method	Accuracy (%)	F1-score (%)
SimpleShot	48.9	46.4
Baseline	74.4	72.0
lpha-TIM	56.0	56.9
PADDLE	51.0	48.9
PADDLE-Cov $(\lambda = 0)$	77.3	73.8
PADDLE-Cov	79.3	75.5

Table: Evaluation of our approach against other few-shot methods for histopathological patch classification regarding accuracy and F1-score. cf. p.4 4

⁴https://arxiv.org/abs/2412.16739v1

Figure: (left) The 3-class fully supervised model predictions. (right) The few-shot 5-class model predictions. cf. p.4 5

401491411111111111

⁵https://arxiv.org/abs/2412.16739v1

- Preliminary
- 2 Proposed Method
- 3 Experiments
- Questions/Answers

Questions/Answers

Algorithm 1: PADDLE-Cov

Initialize $W^{(0)}$ as the means computed on the support set and for all $k \in \{1, \dots, K\}$, $\pi_k^{(0)} = \frac{1}{|\mathbb{Q}|} \sum_{n \in \mathbb{Q}} u_{n,k}^{(0)}.$ for $\ell = 1, 2, ..., do$ $oldsymbol{u}_n^{(\ell)} = \operatorname{softmax} \left(\left(-\frac{1}{2} (oldsymbol{w}_k - oldsymbol{z}_n)^{ op} \hat{oldsymbol{S}}_{oldsymbol{k}} (oldsymbol{w}_k - oldsymbol{z}_n)
ight)$ $+\frac{1}{2}\ln\det(\hat{\boldsymbol{S}}_k) + \frac{\lambda}{|\Omega|}\ln\pi_k^{(\ell)}$, $\forall n \in \mathbb{Q}$, $\mathbf{w}_{k}^{(\ell+1)} = \frac{\sum_{n=1}^{N} u_{n,k}^{(\ell+1)} \mathbf{z}_{n}}{\sum_{n=1}^{N} u_{n,k}^{(\ell+1)}}, \forall k \in \{1, \dots, K\},$ $\pi_{k}^{(\ell+1)} = \frac{1}{|\mathbb{Q}|} \sum_{n=1}^{N} u_{n,k}^{(\ell+1)}, \quad \forall k \in \{1, \dots, K\}.$

 \hat{S}_k is a symmetric positive matrix corresponding to a sparse approximation of inverse of the empirical covariance matrix of class k, computed from the support set with a Graphical Lasso approach 6 .

$$\omega_k^{(\ell+1)} = rac{\sum_{n=1}^N u_{n,k}^{(\ell+1)} \mathbf{z}_n}{\sum_{n=1}^N u_{n,k}^{(\ell+1)}}$$

$$\Sigma_{k}^{(\ell+1)} \stackrel{?}{=} \frac{\sum_{n=1}^{N} u_{n,k}^{(\ell+1)} (\mathbf{z}_{n} - \omega_{k}^{(\ell+1)}) (\mathbf{z}_{n} - \omega_{k}^{(\ell+1)})^{T}}{\sum_{n=1}^{N} u_{n,k}^{(\ell+1)}}$$

 $u_{n,k}$: Soft-Assignment vectors (Probability that the n-th sample belongs to k-th class)

$$\mathbf{U}=(u_n)_{1\leq n\leq |\mathbb{Q}|}\in (\Delta_K)^{|\mathbb{Q}|}$$
 : one-hot-encoded assignments

19 Mar. 2025

⁶Jerome Friedman, Trevor Hastie, and Robert Tibshirani, "Sparse inverse covariance estimation with the graphical lasso," Biostatistics, vol. 9, no. 3, pp. 432–441, 2008.

Thanks for your attention.