Outline Introduction Model Evaluation Related Work Reference

Named Entity Recognition Based on Bidirectional Recursive Neural Networks

20 Minutes Presentation

Peng-Hsuan Lee

October 12, 2016

Introduction

Named Entity Recognition (NER) Recursive Neural Network (RNN)

Model

Parse

Embedding Layer

Hidden Layer

Output Layer

Evaluation

OntoNotes 5.0

Trials

Results

Related Work

Reference

Introduction to Named Entity Recognition (NER)

Names and Numbers

Names:

Person, location, organization... etc.

Numbers:

Cardinal, ordinal, data... etc.

Extracting Names

Unstructured texts:

... the defense secretary Donald Rumsfeld ...

Sequential labeling:

 $... the(X) defense(ORG_start) secretary(X) \\ Donald(PERSON_start) Rumsfeld(PERSON_continue) ... \\ \\$

Introduction to Recursive Neural Network (RNN)

A Vanilla Network

A Recurrent Network

A Recurrent Network - Expanded View

A Recurrent Network - Simplified View

A Recurrent Network - Tree-ed View

A Recursive Network

Outline Introduction Model Evaluation Related Work

Parse Embedding Layer Hidden Layer Output Layer

Model

A Constituency Parse

Transformed Parse

An Example Character-level CNN

Bottom-up Hidden Layer Applied to Node #8

The Output Layer Applied to Node #8

OntoNotes 5.0 Trials Results

Experiment

OntoNotes 5.0

```
18 types of named entities
```

 \sim 70,000 sentences

 \sim 100,000 name entities

Data sources:

BC (broadcast conversation)

BN (broadcast news)

MZ (magazine)

NW (newswire)

TC (telephone conversation)

WB (blogs and newsgroups)

Trials

CoNLL-2012 train/validation/test split

10 successful trials per main model 2 successful trials per other model

Results - Whole Dataset

		Validat	ion	Test			
	Precision	Recall	F1	Precision	Recall	F1	
BRNN	84.63	85.47	85.05 (0.13)	86.17	86.92	86.54 (0.36)	
BRNN-CNN	84.62	85.77	85.19 (0.17)	86.24	87.09	86.67 (0.13)	
BRNN-gold ¹	85.61	87.88	86.72 (0.16)	87.80	89.31	88.54 (0.17)	
RNN	84.05	84.70	84.40 (0.04)	85.75	86.10	85.91 (0.13)	
BRNN-updown	84.75	85.45	85.12 (0.28)	86.20	86.80	86.49 (0.15)	
BRNN-concat	84.35	85.45	84.89 (0.13)	86.10	86.90	86.50 (0.41)	
rNN	83.10	83.70	83.38 (0.58)	84.45	84.40	84.40 (0.41)	
[Durrett and Klein, 2014]	-	-	-	85.22	82.89	84.04	
[Chiu and Nichols, 2016] ²	-	-	-	85.99	86.36	86.17 (0.22)	
[Chiu and Nichols, 2016]	-	-	-	-	-	86.41 (0.22)	

Results - Different Sources

Model	BC	BN	MZ	NW	TC	WB
Test set size (# tokens)	32576	23557	18260	51667	11015	19348
Test set size (# entities)	1697	2184	1163	4696	380	1137
[Finkel and Manning, 2009]	78.66	87.29	82.45	85.50	67.27	72.56
[Durrett and Klein, 2014]	78.88	87.39	82.46	87.60	72.68	76.17
[Chiu and Nichols, 2016]	85.23	89.93	84.45	88.39	72.39	78.38
BRNN	85.17	90.37	83.84	88.85	74.34	81.32
BRNN-CNN	85.45	90.19	84.39	88.48	75.03	80.93

Outline Introduction Model Evaluation Related Work Reference

Related Work

NER

[Collobert et al., 2011] NLP from scratch

[Passos et al., 2014] 1st OntoNotes NER

[Durrett and Klein, 2014] CRF + joint training for NER

[dos Santos and Guimaraes, 2015] CNN for Portuguese/Spanish NER

[Chiu and Nichols, 2016] LSTM-CNN for NER

RNN

[Socher et al., 2010] RNN for parsing

[Socher et al., 2013] RNN for sentiment analysis

[Tai et al., 2015] Tree-LSTM for sentiment analysis

[Irsoy and Cardie, 2013] Token-level bidirectional RNN for Opinion expression identification

Reference I

Chiu, J. P. and Nichols, E. (2016). Named entity recognition with bidirectional lstm-cnns.

Transactions of the Association for Computational Linguistics, 4:357–370.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. (2011).

Natural language processing (almost) from scratch.

Journal of Machine Learning Research, 12(Aug):2493-2537.

dos Santos, C. and Guimaraes, V. (2015).

Boosting named entity recognition with neural character embeddings.

In Proceedings of the Fifth Named Entity Workshop, joint with 53rd ACL and the 7th IJCNLP, pages 25–33.

Durrett, G. and Klein, D. (2014).

A joint model for entity analysis: Coreference, typing, and linking.

Transactions of the Association for Computational Linguistics, 2:477–490.

Finkel, J. R. and Manning, C. D. (2009).

Joint parsing and named entity recognition.

In Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pages 326–334. Association for Computational Linguistics.

Reference II

Irsoy, O. and Cardie, C. (2013).

Bidirectional recursive neural networks for token-level labeling with structure. In NIPS Deep Learning Workshop.

Passos, A., Kumar, V., and McCallum, A. (2014).

Lexicon infused phrase embeddings for named entity resolution.

In Proceedings of the Eighteenth Conference on Computational Language Learning, pages 78–86.

Socher, R., Manning, C. D., and Ng, A. Y. (2010).

Learning continuous phrase representations and syntactic parsing with recursive neural networks. In Proceedings of the NIPS-2010 Deep Learning and Unsupervised Feature Learning Workshop.

Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning, C. D., Ng, A. Y., and Potts, C. (2013).

Recursive deep models for semantic compositionality over a sentiment treebank.

In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 1631–1642.

Tai, K. S., Socher, R., and Manning, C. D. (2015).

Improved semantic representations from tree-structured long short-term memory networks.

In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processingg, pages 1556–1566.