THERMOCHEMISTRY

1. Enthalpy of Chemical Reaction

$$H = E + PV$$

The change in Enthalpy:

$$\Delta H = \Delta E + \Delta (PV)$$

If the pressure is held constant:

$$\Delta H = \Delta E + P\Delta V$$

Enthalpy of Reaction

- Because most reactions are constant-pressure process, we can equate the heat change in these cases to the change in enthalpy.

reaction
$$\longrightarrow$$
 products

 \rightarrow The change in enthalpy, called the **Enthalpy of Reaction**, ΔH .

$$\Delta H = H(products) - H(reactants)$$

- $\Delta H > 0$, the reaction is an endothermic process.
- $\Delta H < 0$, the reaction is an exorthermic process.

Thermochemical Equations

 $H_2O(s) \longrightarrow H_2O(l)$

$$\Delta$$
 H = 6.01 kJ/mol.

A comparison of ΔH and ΔE :

2. The change of internal energy:

$$\Delta E = \Delta H - P\Delta V \tag{1}$$

$$\Delta E = \Delta H - \Delta (PV) \tag{2}$$

$$= \Delta H - \Delta (nRT) \tag{3}$$

$$= \Delta H - RT\Delta n \tag{4}$$

3. Enthalpy of Formation (ΔH°)

$$aA + bB \longrightarrow cC + dD$$

Hess's law

- When reaction are converted to products, the change in enthalpy is the **same** wheither the reaction takes place in one step or in the series of steps. ΔH depends only on the initial and final state.
- We have a reaction:

$$CO(g) + \frac{1}{2}O_2(g) \longrightarrow CO_2(g)$$
 (5)

$$\Delta H = -283.0kJ/mol \tag{6}$$

Then we inverse the equation:
$$(7)$$

$$CO_2(g) \longrightarrow CO(g) + \frac{1}{2}O_2(g)$$
 (8)
 $\Delta H = +283.0kJ/mol.$ (9)

$$\Delta H = +283.0kJ/mol. \tag{9}$$