Simulation Result For Two-Level Slope Model With High Prevalence

The mean prevalence for this simulation is 27 %

Shafayet Khan Shafee

 $03 \ {\rm September} \ 2023$

Histograms for $log(\widehat{MOR})$ when First Quartile of X is used

Histograms for $log(\widehat{MOR})$ when Mean of X is used

Histograms for $log(\widehat{MOR})$ when Third Quartile of X is used

Simulation Result Table

Number of Cluster	Cluster Size	$\widehat{eta_0}$	$\widehat{eta_1}$	$\widehat{eta_2}$	$\widehat{\sigma_{u_1}^2}$	$\widehat{\sigma_{u_2}^2}$	$\widehat{\sigma_{u_{12}}^2}$	Model Convergence (%)
	5	-1.90	1.88	0.65	1.26	2.37	0.10	60.10
10	10	-1.97	1.90	0.68	1.18	2.36	0.04	91.66
10	30	-1.89	1.79	0.68	0.98	1.95	0.04	99.60
	50	-1.85	1.75	0.68	0.93	1.88	0.01	99.80
	5	-1.95	1.83	0.71	1.23	2.40	0.04	97.09
20	10	-1.86	1.78	0.65	1.02	2.19	0.05	100.00
30	30	-1.85	1.75	0.67	0.97	1.98	0.00	100.00
	50	-1.85	1.74	0.66	0.97	1.94	0.01	100.00
	5	-1.91	1.83	0.68	1.15	2.34	0.06	99.80
F O	10	-1.86	1.75	0.67	1.00	2.10	0.03	100.00
50	30	-1.85	1.74	0.67	0.98	1.98	0.02	100.00
	50	-1.84	1.74	0.66	0.98	1.95	0.01	100.00
	5	-1.85	1.74	0.66	1.06	2.08	0.05	99.90
100	10	-1.86	1.75	0.67	1.01	2.04	0.01	100.00
100	30	-1.85	1.75	0.67	1.00	1.99	0.01	100.00
	50	-1.86	1.74	0.67	1.00	1.97	0.01	100.00

 $^{^*}$ The mean prevalence for this simulation is 27%

[†] True $\sigma_{u_1}^2=1,\,\sigma_{u_2}^2=2,\,\sigma_{u_{12}}^2=0$ † True Values of $\beta_0=-1.85,\,\beta_1=1.75,\,\beta_2=0.67$

Simulation Result Table When First Quartile of X is used

Number of Cluster	Cluster Size	MOR	\widehat{MOR}	$Bias^1$	\widehat{SE}_{MOR}	\widehat{SE}_{MOR}^{2}	$Ratio^3$	CI Coverage (95%)	
	5	3.76	4.66	23.87	6.94	2.18	3.18	0.99	
10	10	3.75	4.52	20.44	3.64	2.03	1.79	0.99	
10	30	3.73	3.74	0.33	1.99	1.69	1.18	0.96	
	50	3.74	3.64	-2.50	1.65	1.57	1.05	0.95	
	5	3.74	4.56	21.81	2.81	1.96	1.43	0.97	
30	10	3.73	3.88	3.99	1.69	1.61	1.05	0.97	
90	30	3.73	3.72	-0.47	1.31	1.35	0.97	0.93	
	50	3.74	3.67	-1.76	1.26	1.28	0.99	0.93	
	5	3.73	4.25	13.77	2.01	1.77	1.14	0.96	
50	10	3.74	3.83	2.22	1.42	1.48	0.96	0.95	
90	30	3.74	3.70	-1.06	1.23	1.26	0.97	0.92	
	50	3.74	3.69	-1.32	1.19	1.21	0.99	0.94	
	5	3.74	3.86	3.24	1.49	1.50	0.99	0.96	
100	10	3.73	3.78	1.17	1.25	1.29	0.97	0.94	
100	30	3.73	3.72	-0.28	1.15	1.17	0.98	0.91	
	50	3.74	3.70	-0.87	1.13	1.15	0.99	0.93	

$$^{3} \text{ Ratio} = \frac{\widehat{SE}_{MOR}}{Simulation \ \widehat{SE}_{MOR}}$$
 * The mean prevalence for this simulation is 27%

 $^{^1}$ It is Relative Bias = $\frac{\hat{\theta}-\theta}{\theta}\times 100$ 2 Simulation Standard Error of MOR

Simulation Result Table When Second Quartile of X is used

Number of Cluster	Cluster Size	MOR	\widehat{MOR}	$Bias^1$	\widehat{SE}_{MOR}	\widehat{SE}_{MOR}^{2}	$Ratio^3$	CI Coverage (95%)	
	5	2.64	3.06	15.73	3.00	1.87	1.61	0.99	
10	10	2.62	2.87	9.46	1.95	1.67	1.17	0.96	
10	30	2.60	2.57	-1.24	1.42	1.44	0.99	0.90	
	50	2.60	2.51	-3.39	1.34	1.35	0.99	0.89	
	5	2.61	2.93	12.39	1.75	1.63	1.07	0.98	
30	10	2.60	2.62	0.84	1.39	1.37	1.01	0.97	
90	30	2.60	2.56	-1.41	1.21	1.23	0.99	0.92	
	50	2.60	2.56	-1.55	1.18	1.18	1.00	0.93	
	5	2.61	2.81	7.72	1.51	1.46	1.04	0.97	
50	10	2.60	2.60	-0.01	1.28	1.29	0.99	0.96	
90	30	2.60	2.58	-0.82	1.16	1.16	1.00	0.94	
	50	2.60	2.57	-0.86	1.14	1.14	1.00	0.93	
	5	2.60	2.68	2.95	1.33	1.33	1.00	0.97	
100	10	2.60	2.61	0.45	1.18	1.19	1.00	0.96	
100	30	2.60	2.60	0.00	1.11	1.12	0.99	0.92	
	50	2.60	2.59	-0.14	1.10	1.10	1.00	0.94	

$$^{3} \text{ Ratio} = \frac{\widehat{SE}_{MOR}}{Simulation \ \widehat{SE}_{MOR}}$$
 * The mean prevalence for this simulation is 27%

 $^{^1}$ It is Relative Bias = $\frac{\hat{\theta}-\theta}{\theta}\times 100$ 2 Simulation Standard Error of MOR

Simulation Result Table When Third Quartile of X is used

Number of Cluster	Cluster Size	MOR	\widehat{MOR}	$Bias^1$	\widehat{SE}_{MOR}	\widehat{SE}_{MOR}^{2}	$Ratio^3$	CI Coverage (95%)
	5	3.74	5.04	34.39	6.10	1.87	3.26	1.00
10	10	3.74	4.71	24.79	3.43	1.67	2.05	0.98
10	30	3.75	3.88	3.44	1.72	1.44	1.20	0.96
	50	3.74	3.67	-1.84	1.58	1.35	1.17	0.96
	5	3.75	4.67	24.52	2.66	1.63	1.63	0.98
30	10	3.75	4.08	8.50	1.56	1.37	1.14	0.97
3 0	30	3.75	3.73	-0.36	1.30	1.23	1.06	0.97
	50	3.75	3.71	-1.06	1.26	1.18	1.07	0.96
	5	3.75	4.45	18.80	1.79	1.46	1.22	0.96
70	10	3.74	3.91	4.34	1.38	1.29	1.07	0.97
50	30	3.75	3.76	0.27	1.22	1.16	1.05	0.97
	50	3.74	3.72	-0.50	1.19	1.14	1.05	0.96
	5	3.74	4.02	7.47	1.42	1.33	1.07	0.96
100	10	3.75	3.83	2.14	1.25	1.19	1.05	0.96
100	30	3.74	3.76	0.45	1.15	1.12	1.03	0.95
	50	3.74	3.75	0.29	1.13	1.10	1.03	0.96

$$^{3} \text{ Ratio} = \frac{\widehat{SE}_{MOR}}{Simulation \ \widehat{SE}_{MOR}}$$
 * The mean prevalence for this simulation is 27%

 $^{^1}$ It is Relative Bias = $\frac{\hat{\theta}-\theta}{\theta}\times 100$ 2 Simulation Standard Error of MOR

Simulation Result Table (All Together)

	Q_{1X}							Q_{2X}							Q_{3X}						
M, N^1	MOR	\widehat{MOR}	$Bias^2$	\widehat{SE}_{MOR}	\widehat{SE}_{MOR}^{3}	$Ratio^3$	Coverage (95%)	MOR	\widehat{MOR}	$Bias^2$	\widehat{SE}_{MOR}	Sim. \widehat{SE}_{MOR}^3	$Ratio^3$	Coverage (95%)	MOR	\widehat{MOR}	$Bias^2$	\widehat{SE}_{MOR}	\widehat{SE}_{MOR}^{3}	Ratio ³	Coverage (95%)
10, 5	3.76	4.66	23.87	6.94	2.18	3.18	0.99	2.64	3.06	15.73	3.00	1.87	1.61	0.99	3.74	5.04	34.39	6.10	1.87	3.26	1.00
10, 10	3.75	4.52	20.44	3.64	2.03	1.79	0.99	2.62	2.87	9.46	1.95	1.67	1.17	0.96	3.74	4.71	24.79	3.43	1.67	2.05	0.98
10, 30	3.73	3.74	0.33	1.99	1.69	1.18	0.96	2.60	2.57	-1.24	1.42	1.44	0.99	0.90	3.75	3.88	3.44	1.72	1.44	1.20	0.96
10, 50	3.74	3.64	-2.50	1.65	1.57	1.05	0.95	2.60	2.51	-3.39	1.34	1.35	0.99	0.89	3.74	3.67	-1.84	1.58	1.35	1.17	0.96
30, 5	3.74	4.56	21.81	2.81	1.96	1.43	0.97	2.61	2.93	12.39	1.75	1.63	1.07	0.98	3.75	4.67	24.52	2.66	1.63	1.63	0.98
30, 10	3.73	3.88	3.99	1.69	1.61	1.05	0.97	2.60	2.62	0.84	1.39	1.37	1.01	0.97	3.75	4.08	8.50	1.56	1.37	1.14	0.97
30, 30	3.73	3.72	-0.47	1.31	1.35	0.97	0.93	2.60	2.56	-1.41	1.21	1.23	0.99	0.92	3.75	3.73	-0.36	1.30	1.23	1.06	0.97
30, 50	3.74	3.67	-1.76	1.26	1.28	0.99	0.93	2.60	2.56	-1.55	1.18	1.18	1.00	0.93	3.75	3.71	-1.06	1.26	1.18	1.07	0.96
50, 5	3.73	4.25	13.77	2.01	1.77	1.14	0.96	2.61	2.81	7.72	1.51	1.46	1.04	0.97	3.75	4.45	18.80	1.79	1.46	1.22	0.96
50, 10	3.74	3.83	2.22	1.42	1.48	0.96	0.95	2.60	2.60	-0.01	1.28	1.29	0.99	0.96	3.74	3.91	4.34	1.38	1.29	1.07	0.97
50, 30	3.74	3.70	-1.06	1.23	1.26	0.97	0.92	2.60	2.58	-0.82	1.16	1.16	1.00	0.94	3.75	3.76	0.27	1.22	1.16	1.05	0.97
50, 50	3.74	3.69	-1.32	1.19	1.21	0.99	0.94	2.60	2.57	-0.86	1.14	1.14	1.00	0.93	3.74	3.72	-0.50	1.19	1.14	1.05	0.96
100, 5	3.74	3.86	3.24	1.49	1.50	0.99	0.96	2.60	2.68	2.95	1.33	1.33	1.00	0.97	3.74	4.02	7.47	1.42	1.33	1.07	0.96
100, 10	3.73	3.78	1.17	1.25	1.29	0.97	0.94	2.60	2.61	0.45	1.18	1.19	1.00	0.96	3.75	3.83	2.14	1.25	1.19	1.05	0.96
100, 30	3.73	3.72	-0.28	1.15	1.17	0.98	0.91	2.60	2.60	0.00	1.11	1.12	0.99	0.92	3.74	3.76	0.45	1.15	1.12	1.03	0.95
100, 50	3.74	3.70	-0.87	1.13	1.15	0.99	0.93	2.60	2.59	-0.14	1.10	1.10	1.00	0.94	3.74	3.75	0.29	1.13	1.10	1.03	0.96

 $^{^1}$ M is Number of Cluster and N is Cluster size 2 It is Relative Bias = $\frac{\hat{\theta}-\theta}{\theta}\times 100$ 3 Simulation Standard Error of MOR

 $^{^{4} \ \}text{Ratio} = \frac{\widehat{SE}_{MOR}}{Simulation \ \widehat{SE}_{MOR}}$ * The mean prevalence for this simulation is 27%