UNIVERSIDADE PAULISTA - UNIP

733Z Sistemas Operacionais Prof.: Renê de Souza Pinto

Lista de Exercícios para a Prova 2

Questão 1: Explique como funciona o mecanismo de DMA (Direct Memory Access).

Questão 2: Considere um sistema de arquivo baseado em *i-nodes*, que utiliza blocos de dados de 1KB e 32 bits para o endereçamento de cada bloco. A figura 1 mostra a estrutura de cada *i-node*, que possui 12 campos que apontam para blocos, sendo 10 apontamentos diretos, um indireto simples e um indireto duplo. Qual é o máximo tamanho de arquivo permitido neste sistema?

Figura 1: Estrutura do *i-node* do sistema de arquivo descrito.

- Questão 3: Considere um sistema de arquivos baseado em i-node. Qual a diferenca entre links simbólicos e hard links?
- **Questão 4**: Explique como funciona Mapa de Bits, utilizado por diversos sistemas de arquivos para o controle de blocos livres e ocupados.
- **Questão 5**: Cite e explique pelo menos dois tipos de inconsistência que um desligamento abrupto do sistema pode ocasionar ao sistema de arquivo.
 - Questão 6: Explique o funcionamento do cache de blocos de disco.
 - Questão 7: Explique como funciona o algoritmo de agendamento do braço de disco do elevador.
 - Questão 8: Explique como funciona o algoritmo de agendamento do braço de disco FCFS (First-Come, Fisrt-Served).
- **Questão 9**: Quais as vantagens do cache de blocos de disco mantido pelo kernel? Qual(is) problema(s) o uso deste cache pode ocasionar?
 - Questão 10: O que é deadlock?

- Questão 11: Cite e explique um mecanismo que pode ser utilizado para sincronismo de processos.
- Questão 12: Explique o mecanismo de IPC por passagem de mensagens.
- Questão 13: Explique o que é e qual a função da MMU.
- Questão 14: Explique o que é TLB (Translation Lookaside Buffer).
- Questão 15: Explique o que são Tabelas de Páginas Invertidas e qual é a vantagem de sua utilização.
- **Questão 16**: Considere um sistema com memória física de 32KB, tabelas de páginas com 16 entradas e endereçamento virtual que utiliza 12 bits de deslocamento (offset). Responda:
- a) Qual o tamanho total do endereço virtual (em bits)?
- b) Qual o tamanho de cada página?
- c) Determine quais entradas da tabela de páginas correspondem ao endereços lógicos: 3780, 11264, 61439 e 36875.
- d) Considere a tabela de páginas representada pela Tabela 1. Forneça o endereço físico dos seguintes endereços lógicos: 2000, 16484 e 12588.
- e) Considere que as páginas físicas foram alocadas na tabela de páginas na seguinte ordem: 3, 5, 4, 7, 6, 1, 0 e 2. Utilizando o algoritmo de substituição de páginas FIFO (*First In, First Out*), forneça a tabela de páginas após a requisição das seguintes páginas virtuais: 12, 13, 10 e 5.

Entrada	Página Física
0	3
1	_
2	5
3	0
2 3 4 5 6 7 8	1
5	_
6	6
7	_
8	_
9	_
10	_
11	7
12	_
13	4 2
14	2
15	_

Tabela 1: Tabela de Páginas (- indicam as entradas sem páginas físicas presentes)

Questão 17: Qual a importância do gerenciamento de memória por parte do SO?

Questão 18: Um programador C desatento cometeu um erro no código de seu programa, fazendo com que em determinada condição, o programa acessasse um endereço de memória inválido, ou seja, fora do segmento de dados e/ou pilha. Descreva as ações efetuadas pelo processador e SO (kernel) desde o momento em que a instrução com o endereço inválido é executada até o momento em que o programa é finalizado, onde a mensagem **Segmentation Fault** (Falha de Segmentação) é exibida ao usuário.

Questão 19: Cite e explique pelo menos dois algoritmos de troca de páginas de memória.

Questão 20: Considere a Tabela 2, que representa a Tabela de Alocação de Arquivo de um determinado sistema de arquivos que utiliza blocos de dados de 4KB.

0	_
1	4
2	_
3	5
2 3 4 5	2
5	8
6	11
7	6
8 9	9
9	10
10	13
11	12
12	14
13	_
14	_
15	13

Tabela 2: Tabela de Alocação de Arquivo

Sabendo que o arquivo **Foto001.jpg** começa no bloco 3 (índice 3 na tabela), responda:

- a) Como funciona a Tabela de Alocação de Arquivo?
- b) Quais blocos pertencem ao arquivo?
- c) Qual o tamanho total do arquivo?