FÍSICA 1 RELATÓRIO PRÁTICA 3 EXPERIMENTO: PLANO INCLINADO

UERJ – UNIVERSIDADE ESTADUAL DO RIO DE JANEIRO

Professor: Daniel Barci.

Data:

Alunos: Alexandre Maia Martins Filho.

Kaylan Rocha Freitas Rosa.

Luiz Vitor Gomes Fortunato.

Sumário

Objetivo:	3
* Material:	
Introdução Teórica:	
Experimento - Queda Livre Manual:	
Procedimento Experimental:	4
Dados:	
Histograma:	6
Cálculos:	6
Conclusão:	7

Objetivo:

Nesse experimento nós usamos um carrinho de metal em um trilho de ar inclinado para determinar a aceleração da gravidade, medindo o tempo de interrupção de um feixe de luz em diversas posições do trilho.

Material:

- Carrinho de metal.
- Um cronômetro eletrônico do tipo barreira.
- Um trilho de ar.
- Uma placa retangular de plástico.
- Cilindros de metal para desnível do trilho.
- Régua, trena ou fita métrica para medidas.
- Caderno e caneta para anotações.

Introdução Teórica:

Um corpo em movimento retilíneo uniformemente acelerado, com velocidade inicial V_0 , terá uma velocidade final V, depois de se deslocar por uma distância S, dada pela equação:

$$V^2 = V_0^2 + 2aS$$

Onde a é a aceleração (constante). Se o corpo partir do repouso ($V_0=0$), temos:

$$V^2 = 2aS$$

Assim a aceleração de um corpo em MRUA, partindo do repouso, pode ser calculado como:

$$a = \frac{V^2}{2S}$$

Neste experimento, usamos um trilho de ar inclinado a um ângulo θ com relação à horizontal para produzir uma aceleração constante $a=g \ sen \theta$, paralela ao trilho. Ao medir a aceleração a e o ângulo de inclinação θ , podemos determinar experimentalmente a aceleração local da gravidade g. Com um conjunto de valores para a, podemos estimar a incerteza em a e, por propagação de erros a incerteza de g.

Como toda medição do tem uma determinada incerteza, tanto dos instrumentos (tipo B), quanto da quantidade de medições (tipo A). Em cada uma das medidas; Alturas h_1 e h_2 , os tempos medidos t_1 e t_2 .

Como medimos 60 valores, foi necessário realizar uma média para utilizarmos nos cálculos uma medida de tempo aproximada padrão, que é descrita da seguinte maneira:

$$\langle x \rangle = \frac{\sum_{i=1}^{n} x_i}{n}$$

Onde substituímos x, pelos tempos medidos t_1 e t_2 respectivamente e $\,n$ = 60. Obtivemos:

Pelas incertezas demonstradas acima, temos h_{1Exp} , h_{2Exp} , t_{1Exp} e t_{2Exp} . Em seguida calculamos os desvios que são a diferença de uma medida e a média das mesmas, descrita da seguinte maneira:

$$\delta_i = x_i - \langle x \rangle$$

Com todos os desvios das medidas, calculamos o desvio médio, que nada mais é a média dos valores absolutos dos desvios de cada medida.

$$<\delta> = \frac{\sum_{i=1}^{n} |\delta_i|}{n}$$

Como o nosso objetivo é calcular a aceleração da gravidade em ambos os cenários, e levando em conta que possuímos a altura e o tempo de queda. utilizaremos a fórmula:

$$S = S_0 + v * t$$

A partir disso utilizaremos essa fórmula para determinar a velocidade:

$$v = \frac{S - S_0}{t}$$

Com a velocidade será possível obter a aceleração da gravidade através da manipulação da seguinte fórmula:

$$V = V_0 + a * t$$

$$a = \frac{V - V_0}{t}$$

E então obtido o valor da aceleração da gravidade em ambos os cenários, iremos checar através de uma comparação entre a média dos tempos:

Se o valor obtido estiver abaixo de $2\delta t_{n1}$ então os dados foram compatíveis.

Se o valor obtido estiver entre de $2\delta t_{p1}$ e $3\delta t_{p1}$ então os dados foram inconclusivos.

Se o valor obtido estiver acima de $3\delta t_{p1}$ então os dados foram incompatíveis.

Experimento - Queda Livre Manual:

Procedimento Experimental:

Primeiro nivelamos cuidadosamente o trilho de ar, em seguida colocamos os cilindros para dar a inclinação do trilho, posicionamos o cronômetro do tipo barreira em diversas posições do trilho e medimos o tempo de interrupção do feixe de luz do sensor ao soltamos o carrinho. As posições do sensor foram: 38cm, 48cm, 58cm, 68cm, 78cm, 88cm, 98cm, 108cm, 118cm, 128cm, 138cm e 158cm. Realizamos 5 medições para cada posição, totalizando 60 medições.

Sabendo que com o trilho nivelado a distância entre seus pés de apoio são de 1m, e que os cilindros medem 0,025m ou 25cm, formamos um triângulo retângulo de altura 2,5cm e base 100cm, podemos calcular o ângulo de inclinação θ através da tangente:

$$\tan \theta = \frac{catOp}{catAd}$$

E então através do valor x encontrado, determinar o ângulo θ :

$$\arctan x = \theta$$

Agora que sabemos o ângulo de inclinação θ , posicionamos o carrinho no início do trilho, onde o mesmo ocupou de 1,6cm a 14,5cm, sendo a nossa posição inicial $S_0=8,05cm$ pois este é o seu centro de massa calculado da seguinte maneira:

$$S_0 = \frac{S_{carro} - S_{0 \ carro}}{2} + S_{0 \ carro} = \frac{14,5 - 1,6}{2} + 1,6 = \frac{12,9}{2} + 1,6 = 6,45 + 1,6 = 8,05$$
cm

Medimos a placa retangular sobre o carrinho:

$$S_{placa} = 10cm$$

Agora estamos prontos para iniciar a etapa de medição. Posicionamos o sensor (38cm, 48cm, 58cm, 68cm, 78cm, 88cm, 98cm, 108cm, 118cm, 128cm, 138cm e 158cm) e ao soltarmos o carrinho anotamos o tempo dado pelo cronômetro do sensor. Após as medições iremos partir para os cálculos.

Sabendo que a placa de comprimento 10cm levou t segundos interrompendo o sensor, temos que o carrinho percorreu 10cm em tempo t, assim podemos determinar a velocidade do mesmo através da equação:

$$V = \frac{S}{t}$$

com a velocidade podemos determinar agora a aceleração, da seguinte forma:

$$a = \frac{V}{t}$$

Agora através das diversas medições podemos determinar as incertezas.

Dados:

Experimento 3 - Plano Inclinado						
Desiese Conser	Towns (s)				Towns (a)	
Posição Sensor	Tempo (s)	Posição Sensor	Tempo (s)	Posição Sensor	Tempo (s)	
38cm	0.2518	78cm			0.1319	
	0.2513		0.1643	118cm	0.1322	
	0.2441		0.1647		0.1320	
	0.2501		0.1650		0.1321	
	0.2499		0.1649		0.1322	
48cm	0.2169		0.1545		0.1265	
	0.2181	88cm	0.1541	128cm	0.1264	
	0.2186		0.1544		0.1262	
	0.2184		0.1540		0.1264	
	0.2183		0.1540		0.1266	
58cm	0.1940	98cm	0.1461	138cm	0.1216	
	0.1938		0.1458		0.1214	
	0.1937		0.1460		0.1214	
	0.1938		0.1459		0.1215	
	0.1936		0.1458		0.1215	
68cm	0.1781	108cm	0.1383		0.1129	
	0.1780		0.1358		0.1131	
	0.1781		0.1383	158cm	0.1130	
	0.1782		0.1383		0.1130	
	0.1781		0.1383		0.1131	

UERJ WERJ

Histograma:

Cálculos:

Como toda medição do tem uma determinada incerteza, tanto dos instrumentos (tipo B), quanto da quantidade de medições (tipo A). Em cada uma das medidas; Alturas h_1 e h_2 , os tempos medidos t_1 e t_2 :

$$h_1 = 1.5m$$
 $\delta h_1 = 0.005m$
 $h_2 = 0.9m$ $\delta h_2 = 0.005m$

Utilizando uma média dos 60 valores, calculamos uma medida de tempo aproximada média e obtivemos os seguintes resultados abaixo:

$$< t_1> = 0.476 \cong 0.480s \qquad \delta t_1 = 0.010s < t_2> = 0.37165 \cong 0.372s \qquad \delta t_2 = 0.001s$$

Pelas incertezas demonstradas acima, temos:

$$h_{1Exp} = (1.5 \pm 0.005)m$$

 $h_{2Exp} = (0.9 \pm 0.005)m$
 $t_{1Exp} = (0.476 \pm 0.010)s$
 $t_{2Exp} = (0.372 \pm 0.001)s$

Em seguida calculamos os desvios:

$$<\delta_{t1}> = 0.044s$$

 $<\delta_{t2}> = 0.002s$

Calculamos a velocidade e em seguida a aceleração da gravidade e comparamos os resultados obtidos.

Como o nosso objetivo é calcular a aceleração da gravidade em ambos os cenários, e levando em conta que possuímos a altura e o tempo de queda. utilizaremos a fórmula descrita anteriormente no documento:

$$v_{1} = 3,125m/s$$

$$v_{2} = 2,419m/s$$

$$\delta_{Vx} = v \sqrt{(\frac{\delta_{hx}}{h_{x}})^{2} + (\frac{\delta_{tx}}{t_{x}})^{2}}$$

$$\delta_{V1} = 0,066m/s$$

$$\delta_{V2} = 0,014m/s$$

$$v_{1Exp} = v_{1} \pm \delta_{V1}$$

$$v_{2Exp} = v_{2} \pm \delta_{V2}$$

$$v_{1Exp} = (3,125 \pm 0,066)m/s$$

$$v_{2Exp} = (2,419 \pm 0,014)m/s$$

Com a velocidade será possível obter a aceleração da gravidade através da manipulação da fórmula da aceleração:

$$\delta a_x = v \sqrt{(\frac{\delta_{hx}}{h_x})^2 + (\frac{\delta_{tx}}{t_x})^2}$$

$$a_1 = 6,510m/s^2$$

$$a_2 = 6,502m/s^2$$

$$\delta_{a1} = 0,193m/s^2$$

$$\delta_{a2} = 0,041m/s^2$$

$$a_{1Exp} = a_1 \pm \delta_{a1}$$

$$a_{2Exp} = a_2 \pm \delta_{a2}$$

$$a_{1Exp} = (6,510 \pm 0,193) \, m/s^2$$

$$a_{2Exp} = (6,502 \pm 0,041) \, m/s^2$$

E então obtidos os valores, partimos para a comparação dos tempos:

$$\left| < t >_{p1} - < t >_{p2} \right| = 0,104$$

 $2\delta t p 1 = 0,02$
 $3\delta t p 1 = 0,03$

Conclusão:

Ao fim do experimento encontramos uma aceleração de aproximadamente 6,5m/s² em ambos os experimentos, mesmo com medidas totalmente diferentes, obtivemos uma aceleração constante e praticamente a mesma em ambas as etapas do experimento. Assim chegamos à conclusão que nossos dados foram incompatíveis.

Acreditamos que o erro dos dispositivos usado para mensurar e o tempo de reação humana nas medidas analógicas foram os principais fatores, porém não podemos descartar variações causadas pelos arredondamentos nos cálculos.

Apesar de tudo, os dois experimentos tiveram sua precisão e não podemos ignorar que o segundo experimento foi mais preciso que o primeiro pois a variação de seus dados foi significativamente mais consistente e menor.