蜗壳 365

余庆杯项目报告

姓名 (组长)	孙旭磊	学号	PB21000270
姓名(组员1)	张学涵	学号	PB21000079
姓名(组员2)	赵奕	学号	PB21000033
子项目	大雾实验工具 & 蜗壳排	课工具 & 我的科大 APP	

1 项目需求分析

1.1 大雾实验工具

大物实验在评课社区、知乎等网站上一直饱受争议,有多名同学指出实验报告撰写耗时长、专业作图软件难以使用、Word 中打数学公式麻烦等问题。鉴于此,曾经有学长在开发过一款大物实验数据处理工具,这是非常好的创意。但是,这款软件入门成本太高,故了解它的人很少。

本小组开发的大雾实验工具是一款网页应用, 无需安装任何软件,更不需要有编程基础,没有 任何学习成本。本工具的目标用户是中国科学技 术大学大一本科生,着力于解决其撰写实验报告 时最耗时的三件事情,即"绘制图像""计算不确 定度""在电脑上书写公式"。

当然,一些高级软件也能出色地完成上述的本工具的功能,如专业绘图软件 Origin,专业计算软件 Matlab 等。但我们的项目不是去取代这些强大的软件,而是将它们本地化。这些软件功能繁多,故学习成本相对较高,但我们的软件为每一个大物实验都写了专门的处理工具,封装到只需要用户上传数据表格的程度。相比动辄几个 GB 的专业软件来说,我们的工具更加友好,更加便捷,更加有针对性——更加有效。

1.2 蜗壳排课工具

每个学期的选课前夕,学生们总是细心地筹划他们的理想课程表。为了成功挑选出自己喜爱的课程,他们往往付出许多时间和力气来避免课程之间的时间冲突。在 Excel 表格中,他们反复调整,时而将某个课程替换为另一个课程。

本小组开发的蜗壳排课工具也是一款网页应 用,致力于解决同学们的这一难题。

1.3 我的科大 APP

科大的网络资源虽然丰富,但由于网站分布 散乱。我们在各种 QQ 群中常常看到有人寻找各 种网站的链接。而我的科大将常用的科大网站汇 聚一处,点击即可直接访问。

另外,科大大部分的网站并未针对小屏幕设备进行优化,导致在手机上阅读时经常需要进行缩放才能清晰看见文字。在某些浏览器上,元素重叠的问题甚至导致无法点击功能键。为了解决这个问题,我们的软件进行了深度改造以适应手机浏览,从而使得包括课程表、考试信息等页面在手机上的浏览体验大幅度提升。更为便利的是,这些页面可以直接查看,无需登录教务系统,快速方便。学生们还可以创建桌面快捷方式,实现从系统桌面直接访问。

2 项目功能设计

2.1 大雾实验工具

2.1.1 总体功能说明

本工具通过腾讯云服务器搭建于网页平台, 支持任何设备自由访问。传入实验数据后,本工 具立刻完成绘制图像、计算不确定度、生成计算 公式等一系列操作,并将最终结果整理成一份 Word 文档,下载后即可直接使用。本实验工具 支持一级大物的 25 个实验,如图 1 所示,这大大 提升了学生们撰写实验报告的效率。由于本工具 只是将传入的实验数据进行自动分析,故其不会 造成抄袭、造假等学术不端问题。

2.1.2 具体功能点说明

使用本工具时,用户只需输入他们做实验时测量到的原始数据,而无需任何额外的计算处理,用户所要做的只有按照规定的格式上传 Excel 文档。本工具支持 xlsx, csv 等各种格式的数据表格。具体而言,每个实验都会有一张示例数据表供用户参考,如图 2 的界面所示。用户也可以直接下载示例数据,并直接在它的基础上进行修改。因此,本工具没有任何学习成本,是一款即点即用、免安装的简单轻应用。

另外,本工具贴心地提供了不确定度表格与 通用的计算工具,并且每个实验都附有可在线浏 览的实验指导。

• 绘制图像

本工具根据输入的数据以及实验原理,自动 生成美观的实验图像,支持平滑去噪、数据拟合、 双 y 图等多种图像生成需求,如图 3 所示。

• 计算不确定度与生成计算公式

大雾实验工具

绘制图像&计算不确定度&生成计算公式

链接: 物理实验教学中心 物理实验预约选课 > 去B站观看宣传片 <

加入QQ交流群: 658804871 实验讲义与指导 不确定度概观及常用表格 标准差和不确定度计算 最小二乘法线性回归 重力加速度的测量 表面张力 落球法测定液体的粘度 质量和密度的测量 拉伸法测量钢丝杨氏模量 切变模量 固体比热 匀加速运动与碰撞 声速的测量 磁力摆 半导体温度计 示波器的使用 整流滤波电路及应用 直流电源特性 硅光电池特性研究 RGB配色 数字体温计 分光计的调节与使用 干涉法测微小量 透镜参数测量 显微镜的使用 衍射实验 光电效应 密立根油滴实验 生活中的物理实验

图 1: 大雾实验工具网站主界面

本工具在生成的 Word 文档中渲染了各种公式,如图 4 所示。用户可以直观看到不确定度每一步的计算过程,并在自己的报告中直接使用这些算式与结果。

在 Word 文档中除了有已经渲染好的公式外,我们还提供了它们的 L^AT_EX 源码,如图 5 所示。这极大方便了用 L^AT_EX, Markdown 等排版实验报告的用户,使他们无需手动敲入每一个算式。

2.1.3 功能点设计细节

本工具后端使用 Python 编写,使用的包与模块如表 1 所示。前端由 HTML 编写,并使用了Flask Web 应用框架。以下将详细介绍各功能的实现,分为图像绘制、数据处理和文档生成三部分。

表 1: 本工具使用的全部 Python 包与模块

Python 包或模块	用途		
chardet	检测用户上传的数据表格的编码		
collections	通过 namedtuple 使代码更清晰		
Flask	Web 应用框架		
latex2mathml	IPTEX 代码转换为 MathML 代码		
lxml	MathML 代码转 Office MathML		
math, numpy	不确定度数字运算		
Matplotlib	绘制物理图像		
$\mathtt{os},\mathtt{random},\mathtt{shutil}$	后台文件操作与管理		
pandas	数据表格处理		
python-docx	生成 Word 文档		
SciPy	数据拟合		
SymPy	不确定度符号运算		
time, threading	定时删除生成的 Word 文档		
traceback	打印运行错误以便调试		

图 2: "拉伸法测钢丝杨氏模量"的工具界面

图 3: 平滑连接的光电效应伏安特性曲线

图 4: 不确定度计算的详细过程

0.293)^2+(0.295-0.293)^2}(5-1)}\\mathrm{mm}\\
&=0.0015811\\mathrm{mm}\\
end(aligned)

钢丝直径 d 的 B 类不确定度

\$\$

\Delta_(B,d)=\sqrt(\Delta_\text{(汶)^2+\Delta_\text{估}}\^2)=\sqrt(0.004^2+0.005^2)\\mathrm{mm}=0.0064031\\mathrm{mm}

钢丝直径 d 的展伸不确定度:

\$\$

\begin{aligned}

 $U_{(d,P)} = \sqrt{\left(\frac{P}{frac}\right)^2 + \left(\frac{k_P}{frac}\right)}$ B.d) | (C) \(C) \(C)

8;=\cart(\laft(2.79\times

 $\&= \sqrt{5} \right. $$ e^{0.0015811} \left. \frac{5}\right. ^2 + \left. \frac{0.0015811}{3}\right. $$ e^{0.0064031} \left. \frac{3}\right. ^2 \right. $$ e^{0.0064031} \left. \frac{3}\right. $$ e^{0.0064031} \left. \frac{3}{3}\right. $$$

&=4.6222 \times 10^{-3}\\mathrm{mm},P=0.95

图 5: 不确定度算式的 LATEX 源码

2.1.4 图像绘制

图像由 Matplotlib 绘制。我们的规范如下:

- 面向绘图对象作图: fig, ax = matplotlib
 .pyplot.subplots()
- 设置副刻度为主刻度的一半,主刻度为默认: ax.xaxis.set_minor_locator(matplotlib .ticker.AutoMinorLocator(2))
- 刻度朝内: matplotlib.rcParams["xtick .direction"] = matplotlib.rcParams
 ["ytick.direction"] = "in"
- 若一张图有且只有一组点线,则点使用红色(color="r"),线使用蓝色(color="b"), 且线覆盖在点的上面;若一张图有多组点线, 则同一组点线的颜色应当相同,并依次使 用蓝(b)、红(r)、绿(g)、紫(m)、橙(orange)、 青(c)。
- 点的类型使用实心圆("o"),若一张图有多组点线,则依次使用实心圆(o)、正方形(s)、上三角(^)、菱形(D)、下三角(v)、星号(*)。

- 线条粗细使用 linewidth=1.5, 点的大小使用 markersize=3, 可视数据量、数据组数适当调 整, 但应保持统一性。
- 绘制双 y 轴图使用 matplotlib.axes.Axes 对象的 twinx() 方法。
- 只有一组点线的图,一般不显示图例。
- 图像字体: SourceHanSansSC-Regular.otf
- 轴标签和标题中的物理量名称与单位应使用 IAT_FX。

2.1.5 数据处理

无论使绘制图像时的线性拟合,还是计算不确定度的大小,都绕不开数据处理。我们利用pandas, SciPy, SymPy 等包自主编写了 calc.py 应用程序接口,它提供以下函数:

科学计数法输出 numlatex: (num: float,

prec: int = 5) -> str

|返回一个数的科学计数法形式的 LATEX 代码

num: 要转成科学计数法的数字

prec: 有效数字位数 (默认值: 5)

unit: 数据的单位(默认值: "")
confidence_C: 置信系数 C (默认值: 3)
confidence_P: 置信概率 P (默认值: 0.95)
AnalyseData: 数据计算结果的集合

最小二乘法线性回归 analyse_lsm: (data_X: pandas.DataFrame, data_Y: pandas
.DataFrame, symbol_X: str = "X", symbol_Y: str = "Y", unit_m: str = "", unit_b: str = "") -> AnalyseLsmData
将一组数据用最小二乘法拟合成一条直线
data_X: x轴数据(自变量数据)
data_Y: y轴数据(因变量数据)
symbol_X: 自变量物理符号(默认值: "X")
symbol_Y: 因变量物理符号(默认值: "Y")
unit_m: 斜率的单位(默认值: "")
AnalyseLsmData: 直线拟合结果的集合

不确定度合成 analyse_com: (exp: str, varr: tuple = (), constt: tuple = (), unit: str = "", confidence_P: float = 0.95)

-> AnalyseComData

根据表达式计算物理量的值和不确定度 exp: 物理量计算表达式(字符串),为一个物理量——些物理量(或常量)之积与之商的形式,如 E=4*pi**2*1/T**2 代表 $E=\frac{4\pi^2l}{T^2}$ varr: 物理量(元组),元组的每个元素均为元组,该子元组的第 1 个元素为物理量名,第 2 个元素为物理量值,第 3 个元素为其不确定度(默认值: ())

constt: 常量(元组),元组的每个元素均为元组,该子元组的第1个元素为常量名,第2个元素为常量值(默认值:())

unit: 要计算的物理量的单位(默认值: "")

confidence_P: 置信概率 P (默认值: 0.95) AnalyseComData: 不确定度合成结果的集合

2.1.6 文档生成

Word 文档由 python-docx 生成。我们的规范如下:

- 字体使用微软雅黑: document.styles ['Normal'].font.name = "微软雅黑"
- 文档第一行是实验名称:
 document.add_paragraph(name())
 随后注明:
 "【Latex 代码在下面,请向下翻阅】"
- 内容跨度较大的段落之间应当用一个空行。
- 文档中插入的数据一般保留 4 或 5 位有效数字: "%.5g"%x, 线性拟合的相关系数 r 保留 8 位有效数字。
- 若某张图片正好在第2页开头,而第1页尾部有很多空白区域,为避免误解,应在第1页的最后一个段落之后注明"【本文档不只有一页,请向下翻阅】"。
- 插入表格使用 docx.document.Document 对 象的 add_table() 方法。

鉴于不确定度的计算方法是固定的、算法化的,我们利用 1xml 等包自主编写了 insert.py 应用程序接口,这样只需调用几个函数,就可以在Word 文档中完成数学算式的渲染与添加。具体可见公式插入 API 的说明文档,这里不再赘述。

蜗壳排课工具 2.2

该工具是一个网页应用,使用方便快捷。在 主页面,已添加的课程列表会被清晰地展示出来, 用户可以通过点击"添加课程"、"编辑课程"或 "开始排课",进入相应的界面,如图 6 所示。

	课程编号	课程名称	授课教师	操作
~	011044	计算机导论	3% = ···	编辑 期除
	011144	计算机网络	4 = /张 = V田=	编辑 删除
	011704	计算机系统概论(H)	安	编辑 删除
~	0WR002	计算机领域前沿研究	石	编辑 删除
~	210060	计算机网络	卢 /李 供	编辑 删除
~	210710	计算机视觉	this en	编辑 删除
~	ATMS4001	计算机语言和科学建模	赵	编辑 删除
~	CS1001A	计算机程序设计A	秦一一/第二/郑二/赵一	编辑 删除
	CS1001B	计算机程序设计B	時 / / / / / / / / / / / / / / / / / / /	编辑 翹除

图 6: 蜗壳排课工具主页

图 7 展示了本工具的"添加课程"页面。在 此页面,用户可以通过各种信息,如课程编号、课 程名称、教师名称等进行课程搜索, 我们的网站 已经收录了超过 2500 个课程,并会定期从教务系 统自动更新。此外,我们还引入了评课社区的课 程评级,供用户参考。在添加课程时,用户可以 为每个课程设定一个喜好程度, 然后工具会根据 这个喜好程度和课程时间自动进行课程安排。

我们的工具提供的课程排列方案, 既包括明 确的列表形式,也包括直观的课程表形式。虽然 课程表的样式与教务系统的基本一致,但我们对 其样式做了优化, 让它看起来更为清楚易懂, 同 时对小屏幕设备的兼容性也做了提升。

我的科大 APP 2.3

		添加语 当前课程数据: 20:			
课堂/课程编号		数学分析(B1)	授课教师	搜索	
课堂编号	课程名称	授课教师	时间地点	评分⑦	傾向度⑦
MATH1006.01	数学分析(B1)	租。	5204:1(3,4);5204:3(3,4);	9.9	3
MATH1006.02	数学分析(B1)	原业业	2321:1(3,4);2321:3(3,4);	9.5	3
MATH1006.03	数学分析(B1)	200	2421:1(3,4);2421:3(3,4);	9.7	3
MATH1006.04	数学分析(B1)	回順日	5201:1(3,4);5201:3(1,2);	9.9	3
MATH1006.05	数学分析(B1)	移画画	5404:1(3,4);5404:3(3,4);	9.6	3
MATH1006.06	数学分析(B1)	36	5203:1(3,4);5203:3(1,2);	9.7	3
MATH1006.07	数学分析(B1)	集一	2121:1(3,4);2121:3(3,4);	8.7	3
MATH1006.08	数学分析(B1)	李鵬	5403:1(3,4);5403:3(3,4);	9.9	3
MATH1006.09	数学分析(B1)	0.000	3C301:1(3.4):3C301:3(3	9.6	3

图 7: 蜗壳排课工具"添加课程"页面

清单、资料分享等 7 项我们自主研发的功能,如 图 8 所示。然而,软件安装包仅有 2.5 MB,安装 后体积也仅 5 MB, 可以说是小巧却功能全面。

本项目主要使用 Android Studio 开发工具, 结合了 Kotlin 和 HTML, JavaScript, CSS 等多种 语言进行开发,可以在 Android 系统上运行。为 了实现统一身份认证和科大邮箱的自动登录,我 的科大 APP 将密码进行加密并保存在本地。这样 即使手机中有病毒软件,也难以窃取信息,这就 像是一个坚不可摧的防线, 万众难以突破。除了 为了统计用户量、启动次数、版本分布等收集的 去敏化的设备信息,我们并未将任何用户信息上 传至服务器。尽管如此,我们还是制定了 APP 的 隐私政策,并将严格按照该政策保护用户的信息。 软件已完成了工信部的 ICP 备案并显示备案号。

我们深知,细节决定成败。我的科大 APP 在 图标、文本布局、气泡提示、按钮位置等方面, 都遵循了人体工程学的设计原则。我们在用户初 次登录邮箱时,为了方便用户,我们预先在邮箱 地址中添加了"@mail.ustc.edu.cn",以防止用户 我的科大 APP 提供了包括教室查询、学校周 ——尤其是新生——遗漏或忘记输入"mail."。当 边、校园导航等在内的34项链接功能,还有任务然,在之后的每次登录中,账号和密码都会自动

图 8: 我的科大 APP 主页

填写。这些细微的改进,都为用户带来了极致的 体验。

我们始终倾听用户的声音。一方面,APP中设有反馈选项,用户可以通过填写问卷向我们反馈;另一方面,我们还通过用户交流群发布群投票,以不断优化我们的产品。我们采纳了用户的许多有益建议,例如实现了网页内文件下载功能,添加了"科大影院"功能,课程表添加了自定义课程的功能。我们始终将用户体验作为我们的首

要任务,不断创新,不断前进。

3 测试、运行情况

3.1 大雾实验工具

本程序的每一个实验模块由组员完成后,组长会进行代码审核与测试,如果发现问题则要求继续修改,直到所有问题被解决后该实验模块才会发布。我们还建立了用户 QQ 群,并即时反馈用户提出的任何问题。

另一方面,各种 API 的编写与模块化编程也 让我们的程序在编写过程中更不容易出错,同时 规范、统一的码风也让调试变得轻松。

工具网站的访问统计如图 9 所示,可以看出 我们的工具有 1000 名稳定用户。同时,本工具在 GitHub 上开源,同学们可以进一步完善其功能。

图 9: 大雾实验工具网站的统计数据

3.2 蜗壳排课工具

我们深切理解用户隐私的重要性。因此,排课算法完全在本地通过 JavaScript 运行,任何信息都不会被上传到服务器。用户可以借助 Microsoft Edge 浏览器将本站点作为应用安装,一旦安装完成,即使断网也可以正常使用。

尽管蜗壳排课工具的推广刚刚开始,但在本

学期选课周的日浏览量峰值已经接近 2000, 这让 我们看到了无限的可能性和光明的前景。

3.3 我的科大 APP

我们的产品以其出色的鲁棒性赢得了用户的 认可。无论用户进行任何随意的输入,或者尝试 进行任何非常规操作,我们的应用都能稳定运行, 不会发生崩溃。

尽管 APP 的推广之路充满了挑战,但至今,我的科大 APP 已经拥有超过 5000 名用户,仅在八月份就新增了超过 1000 名用户。我们每日活跃用户达到 2000 人,每日启动次数约为 2 万次。这些数据充分反映了我们的产品受到了用户的热烈欢迎。

4 总结与收获

本次实践不仅能帮助其他同学更轻松地完成大物实验报告,我们自己也受益良多。

分工与合作 我们分工明确,每个人的任务都有截止时间,这使我们小组的进度有序推进。以往的经历中,代码与相关工作往往都是独立完成,代码规范与项目进程完全由自己安排。但是在这种大工程中,相关代码需要符合规范,需要与队友交接,工作进度也要与队友进度相符。在这种分工体系下,每个人都要完成自己的任务,并顾及与他人的交互。

代码规范性 我们建立了统一的码风,并制定了自 主编写的 API 的使用说明。这样做一方面可 以使得产品最终具有一致性——不同人写的代 码能够基本一致;另一方面也使得最终的检 验与调整能够更加方便——规范的代码提高了 代码的可读性,降低了代码的审核成本。

软件开发技巧 在本次实践中,我们使用 git 进行 协作,代码注释清楚,帮助文档详细。这大大 提高了我们的开发效率。