

Python dictionaries

Justin Kiggins
Product Manager

What is a dictionary?

- Similar to a MATLAB structure array
- Collection of key:value pairs
- Ordering is not guaranteed

Retrieving data from a dictionary

```
type(definitions)

dict

print(definitions['aardvark'])

A nocturnal burrowing mammal with long ears, a tubular snout, and a long extensible tongue, feeding on ants and termites. Aardvarks are native to Africa and have no close relatives.
```


Creating dictionaries

```
# Create a dictionary
dog = {'name': 'Toby', 'breed': 'Basset Hound'}
```


Adding data to a dictionary

```
# Add more key:value pairs
dog['weight (lbs)'] = 552.3
dog['birthdate'] = "2016-06-26"
print(dog)

{'name': 'Toby',
  'breed': 'Basset Hound',
  'weight (lbs)': 552.3,
  'birthdate': '2016-06-26'}
```


Updating dictionaries

```
# Update weight value
dog['weight (lbs)'] = 52.3

print(dog)

{'name': 'Toby',
  'breed': 'Basset Hound',
  'weight (lbs)': 52.3,
  'birthdate': '2016-06-26'}
```


Removing data from a dictionary

```
dog.pop('birthdate')
print(dog)

{'name': 'Toby',
  'breed': 'Basset Hound',
  'weight (lbs)': 52.3}
```


Let's practice!

Introduction to DataFrames

Justin Kiggins
Product Manager

DataFrames

- pandas package
- Tabular data
- pandas DataFrame = MATLAB table
- Store data where each observation has mixed types:
 - floats
 - integers
 - Booleans
 - strings

DataFrames

	rank	num_households	frac_dog_owners	frac_cat_owners
state				
Alabama	17	1828000	0.441	0.274
Arizona	18	2515000	0.401	0.296
Arkansas	6	1148000	0.479	0.306
California	40	12974000	0.328	0.283
Colorado	13	1986000	0.425	0.323
Connecticut	33	1337000	0.283	0.319
Delaware	25	334000	0.337	0.337
District of Columbia	48	287000	0.131	0.116
Florida	32	7609000	0.357	0.273
Georgia	31	3798000	0.401	0.273

.head() method

rank num_households frac_dog_owners frac_cat_owner
state
Alabama 17 1828000 0.441 0.27
Arizona 18 2515000 0.401 0.29
Arkansas 6 1148000 0.479 0.30
California 40 12974000 0.328 0.28
Colorado 13 1986000 0.425 0.32

.columns attribute

.index attribute

Getting one column out

```
pets['rank']
state
Alabama
Arizona
                         18
Arkansas
California
                         40
Colorado
                         13
                         33
Connecticut
Delaware
District of Columbia
                         48
                         16
Tennessee
                         20
Texas
Utah
                         44
Vermont
Virginia
Washington
West Virginia
Wisconsin
Wyoming
Name: rank, dtype: int64
```

NumPy & Matplotlib compatible

```
plt.scatter(pets['frac_dog_owners'], pets['frac_cat_owners'])
```


Let's practice!

Accessing pandas DataFrames

Justin Kiggins
Product Manager

Selecting multiple dataframe columns

```
pets[['frac dog_owners','rank']]
                       frac dog owners rank
state
Alabama
                                 0.441
                                           17
                                 0.401
Arizona
                                          18
                                 0.479
                                          6
Arkansas
                                 0.328
California
                                           40
Colorado
                                 0.425
                                          13
Connecticut
                                 0.283
                                           33
                                 0.337
Delaware
District of Columbia
                                 0.131
                                           48
. . .
                                          16
                                 0.441
Tennessee
                                 0.440
                                           20
Texas
Utah
                                 0.294
                                           44
                                 0.377
Vermont
                                            0
Virginia
                                 0.354
                                           37
                                 0.363
Washington
West Virginia
                                 0.458
Wisconsin
                                 0.339
Wyoming
                                 0.388
                                            9
```


Selecting rows

- 1. pandas indexing with .loc
- 2. Python indexing with .iloc

Selecting rows using pandas indexing

Selecting rows using Python indexing

Let's practice!

Creating pandas DataFrames

Justin Kiggins
Product Manager

From a CSV file

```
Date, AveragePrice, Total Volume, 4046, 4225, 4770
2015-12-27, 1.33, 64236.62, 1036.74, 54454.85, 48.16
2015-12-20, 1.35, 54876.98, 674.28, 44638.81, 58.33
2015-12-13, 0.93, 118220.22, 794.70, 109149.67,130.50
2015-12-06, 1.08, 78992.15, 1132.00, 71976.41, 72.58
2015-11-29, 1.28, 51039.60, 941.48, 43838.39, 75.78
import pandas as pd
avocados = pd.read csv('avocados.csv')
avocados.head()
        Date AveragePrice Total Volume
                                      4046 4225
                                                        4770
0 2015-12-27
               1.33
                         64236.62 1036.74
                                               54454.85 48.16
1 2015-12-20 1.35 54876.98 674.28
                                              44638.81 58.33
             0.93 118220.22 794.70 109149.67 130.50
 2015-12-13
                   1.08 78992.15 1132.00 71976.41 72.58
3 2015-12-06
4 2015-11-29
                   1.28
                                               43838.39 75.78
                             51039.60 941.48
avocados = pd.read csv('avocados.csv', index col=0)
```


From a dictionary of lists

```
import pandas as pd
pd.DataFrame()

forecast_raw = {
    'weekday': ['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun'],
    'rain': [True, False, False, True, True, False],
    'temp': [68, 72, 73, 75, 67, 68, 68]
}
```

```
forecast = pd.DataFrame(forecast raw)
print(forecast)
   rain temp weekday
   True
                 Mon
  False
                Tues
  False
              Wed
  False
              Thurs
   True
               Fri
         68
                  Sat
   True
6 False
           68
                  Sun
```


From a list of dictionaries

```
forecast raw = [
    { 'rain': True, 'temp': 68, 'weekday': 'Mon'},
    { 'rain': False, 'temp': 72, 'weekday': 'Tues'},
    {'rain': False, 'temp': 73, 'weekday': 'Wed'},
    {'rain': False, 'temp': 75, 'weekday': 'Thurs'},
    { 'rain': True, 'temp': 67, 'weekday': 'Fri'},
    { 'rain': True, 'temp': 68, 'weekday': 'Sat'},
    {'rain': False, 'temp': 68, 'weekday': 'Sun'},
import pandas as pd
forecast = pd.DataFrame(forecast raw)
print(forecast)
         temp weekday
    rain
   True
                   Mon
 False
                  Tues
  False
                   Wed
  False
                Thurs
    True
            67
                   Fri
            68
                   Sat
   True
6 False
            68
                   Sun
```


Let's practice