Artificial Intelligence CE-417, Group 1 Computer Eng. Department Sharif University of Technology

Spring 2023

By Mohammad Hossein Rohban, Ph.D.

Courtesy: Most slides are adopted from CSE-573 (Washington U.), original slides for the textbook, and CS-188 (UC. Berkeley).

Regression

Polynomial Curve Fitting

Hypothesis Space

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Sum-of-Squares Error Function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

1st Order Polynomial

3rd Order Polynomial M = 3

9th Order Polynomial M=9 \boldsymbol{x}

Over-fitting

Root-Mean-Square (RMS) Error: $E_{\rm RMS} = \sqrt{2E(\mathbf{w}^\star)/N}$

Data Set Size: 9th Order Polynomial

Data Set Size: 9th Order Polynomial

Polynomial Coefficients

	M=0	M = 1	M = 3	M = 9
$\overline{w_0^\star}$	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^\star				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^\star				1042400.18
w_8^\star				-557682.99
w_9^\star				125201.43

Regularization

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Penalize large coefficient values

Regularization: $\ln \lambda = -18$

In
$$\lambda = -18$$

Regularization: In $\lambda = 0$

Regularization : E_{RMS} vs. In λ

16

Polynomial Coefficients

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^\star	0.35	0.35	0.13
w_1^\star	232.37	4.74	-0.05
w_2^\star	-5321.83	-0.77	-0.06
w_3^\star	48568.31	-31.97	-0.05
w_4^\star	-231639.30	-3.89	-0.03
w_5^\star	640042.26	55.28	-0.02
w_{6}^{\star}	-1061800.52	41.32	-0.01
w_7^\star	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

Logistic Regression

$$P(Y = 1|X = \langle X_1, ...X_n \rangle) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

implies

$$\ln \frac{P(Y=0|X)}{P(Y=1|X)} = w_0 + \sum_i w_i X_i$$

linear classification rule!

Gradient Ascent

$$w_0 = 40$$
 $w_1 = -10$ $w_2 = 5$

Maximize $I(\mathbf{w}) = \text{In } P(D_Y \mid D_x, H_w)$

Update rule:

$$\Delta \mathbf{w} = \eta \nabla_{\mathbf{w}} l(\mathbf{w})$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \frac{\partial l(\mathbf{w})}{\partial w_i}$$

Logistic w/ Initial Weights

$$w_0 = 20$$
 $w_1 = -5$ $w_2 = 10$

Loss(H_w) = Error(H_w , data) Minimize Error \rightarrow Maximize $I(\mathbf{w})$ = In $P(D_Y \mid D_x, H_w)$

Update rule:

$$\Delta \mathbf{w} = \eta \nabla_{\mathbf{w}} l(\mathbf{w})$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \frac{\partial l(\mathbf{w})}{\partial w_i}$$
Step size

