FACTORS FOR UNIT CONVERSIONS

Quantity	Equivalent Values	
Mass	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Length	$ \begin{array}{lll} 1 \text{ m} &= 100 \text{ cm} &= 1000 \text{ mm} &= 10^6 \text{ microns } (\mu \text{m}) &= 10^{10} \text{ angstroms } (\text{Å}) \\ &= 39.37 \text{ in} &= 3.2808 \text{ ft} &= 1.0936 \text{ yd} &= 0.0006214 \text{ mile} \\ 1 \text{ ft} &= 12 \text{ in} &= 1/3 \text{ yd} &= 0.3048 \text{ m} &= 30.48 \text{ cm} \\ 1 \text{ m}^3 &= 10001 &= 10^6 \text{ cm}^3 &= 10^6 \text{ mi.} &= 35.3145 \text{ ft}^3 \end{array} $ $S_{\text{m}}(h_{\text{m}}) = \frac{p_i}{P - p_i} = \frac{\text{moles of vapor }}{\text{moles of vapor-free (dry) } g}$	
Volume	$1 \text{ m}^3 = 1000 \text{ L} = 10^6 \text{ cm}^3 = 10^6 \text{ mL} = 35.3145 \text{ ft}^3$ $= 219.97 \text{ imperial gallons} = 264.17 \text{ gal} = 1056.68 \text{ qt}$ $1 \text{ ft}^3 = 1728 \text{ in}^3 = 7.4805 \text{ gal} = 29.922 \text{ qt} = 0.028317 \text{ m}^3 = 28.317 \text{ L}$	as
Density	$1 \text{ g/cm}^3 = 1000 \text{ kg/m}^3 = 62.43 \text{ lb}_m/\text{ft}^3$ = density of liquid water at 4°C (reference for specific gravities)	
Force	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	or yas
Pressure	$\begin{array}{l} 1 \text{ atm} = 1.01325 \times 10^5 \text{ N/m}^2 \text{ (Pa)} = 101.325 \text{ kPa} = 1.01325 \text{ bar} \\ = 1.01325 \times 10^6 \text{ dynes/cm}^2 = 14.696 \text{ lb}_f/\text{in}^2 \text{ (psi)} \\ = 760 \text{ mm Hg at 0°C (torr)} = 10.333 \text{ m H}_2\text{O(l) at 4°C} \\ = 29.921 \text{ inches Hg at 0°C} = 406.8 \text{ inches H}_2\text{O(l) at 4°C} \end{array} \qquad s_p(h_p) = \frac{s_m}{s_m^*} \times 100\% = \frac{p_i/(P-p_i)}{p_i^*/(P-p_i^*)} \times 100\% = \frac{p_i/(P-p_i)}{p_i^*/(P-p_i^*)} \times 100\% = \frac{s_m}{p_i^*/(P-p_i^*)} \times 100\% = \frac{s_m}{p_i^*/(P-$	
Energy	$1 J = 1 \text{ N} \cdot \text{m} = 10^7 \text{ ergs} = 10^7 \text{ dyne} \cdot \text{cm} = 1 \text{ kg} \cdot \text{m}^2/\text{s}^2$ $= 2.778 \times 10^{-7} \text{ kW} \cdot \text{h} = 0.23901 \text{ cal} = 0.23901 \times 10^{-3} \text{ kcal (food calorie)}$ $= 0.7376 \text{ ft} \cdot \text{lb}_f = 9.486 \times 10^{-4} \text{ Btu}$	
Power	$1 W = 1 J/s = 1 N \cdot m/s = 0.23901 \text{ cal/s} = 0.7376 \text{ ft} \cdot lb_f/s$ = $9.486 \times 10^{-4} \text{ Btu/s} = 1.341 \times 10^{-3} \text{ hp}$	
	$(2.20462 lb_m) (1 lb_m)$	

Example: The factor to convert grams to lb_m is $\left(\frac{2.20462 \ lb_m}{1000 \ g}\right)$ or $\left(\frac{l \ lb_m}{453.593 \ g}\right)$.

$$\rho_{\text{H}_2\text{O(l)}}(4^{\circ}\text{C}) = 1.000 \text{ g/cm}^3$$
= 1000. kg/m³
= 62.43 lb_m/ft³

Table 5.2-1 Standard Conditions for Gases

Sys	tem	T_{s}	$P_{\mathtt{s}}$	V_{s}	$n_{\rm S}$
SI		273 K	1 atm	$0.022415 \ m^3$	1 mol
CG	s	273 K	1 atm	22.415 L	1 mol
U.S	customary	492°R	1 atm	$359.05 \mathrm{ft}^3$	1 lb-mole

$$\%XS = \frac{n_i - n_{stoich}}{n_{stoich}}$$

$$\frac{1}{\bar{\rho}} = \sum (x_i/\rho_i)$$

$$\bar{\rho} = \sum x_i \rho_i$$

$$\Delta T_b = T_{bs} - T_{b0} = \frac{RT_{b0}^2}{\Delta \widehat{H_v}} x$$

$$\Delta T_m = T_{m0} - T_{ms} = \frac{RT_{m0}^2}{\Delta \widehat{H_m}} x$$

Table 5.3-1 Pitzer Acentric Factors
(Values with * were in the 4th edition of the reference in Footnote 1.)

Compound	Acentric Factor, ω		
Ammonia	0.257		
Argon	-0.002		
Carbon dioxide	0.225		
Carbon monoxide	0.045		
Chlorine*	0.073		
Ethane	0.099		
Ethylene	0.087		
Hydrogen sulfide	0.090		
Methane	0.011		
Methanol	0.565		
Nitrogen	0.037		
Oxygen*	0.021		
Propane	0.152		
Sulfur dioxide*	0.251		
Water	0.344		

ATOMIC WEIGHTS AND NUMBERS

Atomic weights apply to naturally occurring isotopic compositions and are based on an atomic mass of $^{12}\mathrm{C} = 12$

Element	Symbol	Atomic Number	Atomic Weight	Element	Symbol	Atomic Number	Atomic Weight
Actinium	Ac	89	_	Iridium	Ir	77	192.2
Aluminum	Al	13	26.9815	Iron	Fe	26	55.847
Americium	Am	95	_	Krypton	Kr	36	83.80
Antimony	Sb	51	121.75	Lanthanum	La	57	138.91
Argon	Ar	18	39.948	Lawrencium	Lr	103	
Arsenic	As	33	74.9216	Lead	Pb	82	207.19
Astatine	Αt	85		Lithium	Li	3	6.939
Barium	Ba	56	137.34	Lutetium	Lu	71	174.97
Berkelium	Bk	97	_	Magnesium	Mg	12	24.312
Beryllium	Be	4	9.0122	Manganese	Mn	25	54.9380
Bismuth	Bi	83	208.980	Mendelevium	Md	101	~
Boron	В	5	10.811	Mercury	Hg	80	200.59
Bromine	Br	35	79.904	Molybdenum	Mo	42	95.94
Cadmium	Cd	48	112.40	Neodymium	Nd	60	144.24
Calcium	Ca	20	40.08	Neon	Ne	10	20.183
Californium	Cf	98	_	Neptunium	Np	93	
Carbon	C	6	12.01115	Nickel	Ni	28	58.71
Cerium	Ce	58	140.12	Niobium	Nb	41	92.906
Cesium	Cs	55	132.905	Nitrogen	N	7	14.0067
Chlorine	Cl	17	35.453	Nobelium	No	102	_
Chromium	Cr	24	51.996	Osmium	Os	75	190.2
Cobalt	Co	27	58.9332	Oxygen	O	8	15.9994
Copper	Cu	29	63.546	Palladium	Pd	46	106.4
Curium	Cm	96	_	Phosphorus	P	15	30.9738
Dysprosium	Dy	66	162.50	Platinum	Pt	78	195.09
Einsteinium	Es	99	_	Plutonium	Pu	94	_
Erbium	Er	68	167.26	Polonium	Po	84	_
Europium	Eu	63	151.96	Potassium	K	19	39.102
Fermium	Fm	100	_	Praseodymium	Pr	59	140.907
Fluorine	F	9	18.9984	Promethium	Pm	61	_
Francium	Fr	87	_	Protactinium	Pa	91	_
Gadolinium	Gd	64	157.25	Radium	Ra	88	_
Gallium	Ga	31	69.72	Radon	Rn	86	1060
Germanium	Ge	32	72.59	Rhenium	Re	75	186.2
Gold	Au	79	196.967	Rhodium	Rh	45	102.905
Hafnium	Hf	72	178.49	Rubidium	Rb	37	84.57
Helium	He	2	4.0026	Ruthenium	Ru	44	101.07
Holmium	Ho	67	164.930	Samarium	Sm	62	150.35 44,956
Hydrogen	Н	ī	1.00797	Scandium	Sc	21	78.96
Indium	In	49	114.82	Selenium	Se	34	28.086
Iodine	I	53	126.9044	Silicon	Si	14	20.000

Atomic weights apply to naturally occurring isotopic compositions and are based on an atomic mass of $^{12}C = 12$

Element	Symbol	Atomic Number	Atomic Weight	Element	Symbol	Atomic Number	Atomic Weight
Silver	Ag	47	107.868	Tin	Sn	50	118.69
Sodium	Na	11	22.9898	Titanium	Ti	22	47.90
Strontium	Sr	38	87.62	Tungsten	W	74	183.85
Sulfur	S	16	32.064	Uranium	U	92	238.03
Tantalum	Ta	73	180.948	Vanadium	V	23	50.942
Technetium	Tc	43		Xenon	Xe	54	131.30
Tellurium	Te	52	127.60	Ytterbium	Yb	70	173.04
Terbium	Tb	65	158.924	Yttrium	Y	39	88.905
Thallium	TI	81	204.37	Zinc	Zn	30	65.37
Thorium	Th	90	232.038	Zirconium	Zr	40	91.22
Thulium	Tm	69	168.934				

THE GAS CONSTANT (R)

0.08314 L·bar/(mol·K)

0.08206 L·atm/(mol·K)

62.36 L·mm Hg/(mol·K)

0.7302 ft3·atm/(lb-mole·°R)

10.73 ft³·psia/(lb-mole·°R)

8.314 J/(mol·K)

1.987 cal/(mol·K)

1.987 Btu/(Ib-mole.°R)

$$|\varepsilon| < 1\%$$
 if $\widehat{V}_{ideal} = \frac{RT}{P} > 5$ L/mol (80 ft³/lb-mole) (diatomic gases)

 $> 20 \text{ L/mol} (320 \text{ ft}^3/\text{lb-mole}) \text{ (other gases)}$

$$\begin{split} W &= mg \\ \overline{M} &= \sum y_i M_i \\ \frac{1}{\overline{M}} &= \sum \left(\frac{x_i}{M_i}\right) \\ P &= P_0 + \rho g h \\ P_{abs} &= P_g + P_{atm} \\ P_1 + \rho_1 g d_1 &= P_2 + \rho_2 g d_2 + \rho_f g h \\ T(K) &= T(°C) + 273.15 \\ T(°R) &= T(°F) + 459.67 \\ T(°R) &= 1.8T(K) \\ T(°F) &= 1.8T(°C) + 32 \\ \frac{P \widehat{V}}{RT} &= 1 + \frac{B}{\widehat{V}} \\ B_0 &= 0.083 - \frac{0.422}{T_r^{1.6}} \ B_1 &= 0.139 - \frac{0.172}{T_r^{4.2}} \ B &= \frac{RT_c}{P_c} (B_0 + \omega B_1) \\ T_c' &= \sum y_i T_{ci} \ P_c' &= \sum y_i P_{ci} \end{split}$$