Regression Discontinuity

労働経済学

川田恵介

Table of contents

1		Quick introduction	2
	1.1	Example: Idea	2
	1.2	Example: Idea	2
	1.3	Example: Idea	3
	1.4	Example. Standard Working Hours	3
	1.5	Example. Standard Working Hours	3
	1.6	Example. Standard Working Hours	3
2		Identfication	4
•	2.1	Identification	4
	2.2	Treatment effect on cutoff	4
	2.3	解釈	4
	2.4	注意: Multiple treatment	4
	2.5	注意: Manupulation	ō
	2.6	Example: Shigeoka (2015)	5
	2.7	注意: Local effect	5
3		Estimation	5
;	3.1	Visualization	5
;	3.2	Scatter plot	6
;	3.3	Aggregation: Global polynomial	6
;	3.4	Aggregation: Binplot	7
;	3.5	Example. 市長選挙	7
;	3.6	Example. 市長選挙	8
;	3.7	Example. 市長選挙	8
;	3.8	Example. 市長選挙	9
;	3.9	定式化依存	9

	3.10	Local regression	10
	3.11	Kernel weight	10
	3.12	Example. Local regression	10
	3.13	Epanechnikov/Triangular weight	11
	3.14	Bandwidth selection	11
	3.15	Example. 市長選挙	12
	3.16	Example. 市長選挙	12
	3.17	実戦への推奨	13
4		Diagnostic	13
	4.1	Placebo test	14
	4.2	Example. 市長選挙	14
	4.3	Density test	15
	4.4	Density test	16
	4.5	まとめ	17
	Refer	ence	18

1 Quick introduction

- 局所的な実験的状況を活用する代表的手法
 - "制度的な制約" による D の局所的な変化を、自然実験として活用する

1.1 Example: Idea

• Research question = 就業 (= D) が睡眠時間 (= Y) に与える影響

1.2 Example: Idea

• Regression discontinuity design: 雇用への年齢規制を活用

- "児童が満15歳に達した日以後の最初の3月31日が終了するまで、これを使用してはいけない"

1.3 Example: Idea

- 局所的な変動: 3月 31 日までは D=0、31 日以降は $D\neq 0$
 - 1日ぐらいであれば、ほとんど同じでは無いか?
 - 自然実験として活用
- Estimand: 就業が可能になることの局所的因果効果

E[Y|X = (15歳の3月31日)直後] - E[Y|X = 直前]

1.4 Example. Standard Working Hours

- Kawaguchi, Naito, and Yokoyama (2017)
- 労働時間規制は労働政策の大きな論点
 - 労働時間の短縮は、一見 (労働者にとって) 望ましいが、副作用はないか?
- Y = 実際の労働時間、賃金、ボーナス、従業員数

1.5 Example. Standard Working Hours

1.6 Example. Standard Working Hours

- 2017年時点で、労働時間は、週40時間、一日8時間に規制
 - 超過するには、従業員代表との合意と残業代が必要

- 1988 年以前は週 48 時間であったものが、徐々に短縮
 - * 1994 年から 1997 年まで、従業員数が 300 以上の製造業の事業所では 40 時間、以下では 44 時間
- Estimand

$$=E[Y|X=300]-E[Y|X=少し少ない]$$

2 Identfication

2.1 Identification

- 実数 X (running variable とも呼ばれる) について、
 - D の分布はジャンプする

$$\lim_{\epsilon \to 0} \Pr[D = 1 | \bar{X} + \epsilon] \neq \lim_{\epsilon \to 0} \Pr[D = 1 | \bar{X} - \epsilon]$$

- Post-treatment variables **以外**の観察できる/できない変数 Z の分布はジャンプしない

$$\lim_{\epsilon \to 0} f(Z|\bar{X} + \epsilon) = \lim_{\epsilon \to 0} f(Z|\bar{X} - \epsilon)$$

2.2 Treatment effect on cutoff

• $X = \bar{X}$ を満たす集団内での因果効果 =

$$\lim_{\epsilon \to 0} E[Y|\bar{X} + \epsilon] - E[Y|\bar{X} - \epsilon]$$

2.3 解釈

- \bar{X} 上で局所的な実験が行われている
 - X は局所的にランダムに決まっている (Local randomization)
 - X が少し異なったとしても、結果変数は直接的な影響を受けない

2.4 注意: Multiple treatment

- 他の"Treatment" の分布も変化しないことを仮定していることに注意
- 例: $D = アルコール消費、<math>\bar{X} = 20$ 歳、Y = 健康状態
 - 他の Treatment も変化する

2.5 注意: Manupulation

- 背景属性 X も cutoff 前後で jump するのであれば、Unobservable confounders となり、因果効果が識別できない
- Running variable を cutoff の前後に manupulate することで、treatment を操作しているのであれば、操作するかどうかに影響を与える背景属性 X の分布がジャンプする
- 例: 労働時間規制を避けるために、一部の企業が従業員数を 300 名を超えないようにする
 - "greedy" な企業が、X = 299 に固まってしまう

2.6 Example: Shigeoka (2015)

- 「"早生まれはどの程度有利か?"」研究において、学年が切り替わる日(日本の場合は、4月2日) が cutoff として使われてきた
 - 4月2日よりも少し早く生まれた VS 4月2日に生まれた
- manupulation は無いのか?
 - 4月2日生まれが、その近傍に比べて、突出して多い

2.7 注意: Local effect

- 効果の異質性がある場合、 $X = \bar{X}$ 内での因果効果のみが識別できていることに注意
 - 局所的な効果であり、他のグループでは効果が大きく異なっても不思議ではない
- 例: 15 歳の 3 月 31 日を cutoff にするのであれば、15 歳に対する労働の因果効果がわかる
 - 65 歳への効果とは異なることが予想される

3 Estimation

- \bullet X が $ar{X}$ よりも少し低い/大きい集団内での Yの平均値を推定する必要がある
 - $-\bar{X}$ 内で D=1/0 を比較することは不可能であり、困難な Task
- $Y \sim X$ を柔軟な方法で推定し、 $E[Y|\bar{X}]$ を補完する

3.1 Visualization

• まずは可視化

- 例: Meyersson (2014)
 - トルコにおいて、宗教的保守派の市長が誕生することが、女性の就学に与える影響を推定
 - * 政治的リーダーシップが社会に与える影響
- Y = 地域内の高等教育を受けている女性割合 (15-20)
- X = 宗教的保守派の得票率
 - cutoff = 50 %

3.2 Scatter plot

3.3 Aggregation: Global polynomial

- (他の手法と同様に) 何らかの集計が必要
- Cutoff の前後にサンプルを分割する $Data_- = \{X \leq \bar{X}\}, Data_+ = \{X > \bar{X}\}$
- Global polynomial:
 - $Data_-, Data_+$ それぞれについて、 $Y \sim poly(X,p)$ を回帰する
 - -p=次元数
 - * p=3 であれば、 X,X^2,X^3 までをモデルに投入

3.4 Aggregation: Binplot

- $Data_-, Data_+$ それぞれについて、X についてさらにサブグループを作成
 - サブグループ内の Yの平均値を推定
- rdrobust package
 - サブグループの数を理論的基準に基づいて自動決定
 - * 例えば「母平均を上手く近似する」ように決定
 - * Default では、 $\bar{X}=0$ と基準化

3.5 Example. 市長選挙

RD Plot

3.6 Example. 市長選挙

RD Plot

3.7 Example. 市長選挙

```
lm(Y ~ X,
Data,
subset = X >= 0) # 得票率が50%以上
```

```
Call:
```

 $lm(formula = Y \sim X, data = Data, subset = X >= 0)$

Coefficients:

(Intercept) X 15.6453 -0.1565

```
lm(Y ~ X,
Data,
subset = X < 0)</pre>
```

Call:

lm(formula = Y ~ X, data = Data, subset = X < 0)</pre>

Coefficients:

(Intercept) X 16.19922 -0.01245

3.8 Example. 市長選挙

```
lm(Y ~ X + I(X<sup>2</sup>),
Data,
subset = X >= 0) # 得票率が50%以上
```

Call:

 $lm(formula = Y \sim X + I(X^2), data = Data, subset = X >= 0)$

Coefficients:

(Intercept) X I(X^2) 16.110678 -0.230997 0.001361

lm(Y ~ X + I(X^2),
 Data,
 subset = X < 0)</pre>

Call:

 $lm(formula = Y \sim X + I(X^2), data = Data, subset = X < 0)$

Coefficients:

(Intercept) X I(X^2) 12.992676 -0.280431 -0.004025

3.9 定式化依存

- 一般に、推定結果は定式化に依存:
 - p が少なければ、モデルが単純すぎ
- 識別戦略上、Treatment/Control 間で X は overlap していないので、コントロール変数の定式化と比べてもより深刻
- X は1変数であることを活かした別推定戦略が有益

3.10 Local regression

- $E[Y|\bar{X}]$ のみ、正確に推定できれば良い
 - $-\bar{X}$ "付近" の事例のみを使えばいいのではないか?
- Local regression

$$\min\sum \omega_i \times \bigg(Y - \beta_0 - \beta_1 X - \beta_2 X^2 - \ldots\bigg)^2$$

• $\omega_i = (\text{kernel})$ weight $(\bar{X}$ 付近の事例について、大きな加重をつける

3.11 Kernel weight

- いくつか選択肢がある
- 最もシンプルなものとして、Uniform weight:

$$-=1$$
 if $X \in [\bar{X}-h, \bar{X}+h]$

$$-=0$$
 if $X \notin [\bar{X}-h, \bar{X}+h]$

- -h = bindwidth (何らかのやり方で選ぶ必要がある)
- Triangular/Epanechnikov weight をより推奨

3.12 Example. Local regression

```
lm(Y ~ X,
    Data,
    subset = X >= 0 & X <= 5) # 得票率が50%以上</pre>
```

Call:

lm(formula = Y ~ X, data = Data, subset = X >= 0 & X <= 5)</pre>

Coefficients:

(Intercept) X 15.6259 -0.1137

Call:

 $lm(formula = Y \sim X, data = Data, subset = X < 0 & X >= -5)$

Coefficients:

(Intercept) X 13.2466 -0.2175

3.13 Epanechnikov/Triangular weight

3.14 Bandwidth selection

- bandwidth をデータ主導で選ぶ方法については、多くの研究蓄積が存在
 - Local average treatment effect の推定精度を最大化するように決定 (したい)

$$\min E[(\underbrace{\bar{\tau}}_{\text{推定値}} - \underbrace{\tau}_{\text{真の値}})^2]$$

- rdrobust package が提供 (詳細は、package の HP 参照)
 - 信頼区間の修正も提供

3.15 Example. 市長選挙

```
Fit = rdrobust(
    Data$Y,
    Data$X,
    p = 1) # Defaultでは、Triangular kernelを使用

summary(Fit)
```

Sharp RD estimates using local polynomial regression.

Number of Obs.	2629	
BW type	mserd	
Kernel	Triangular	
VCE method	NN	
Number of Obs.	2314	315
Eff. Number of Obs.	529	266
Order est. (p)	1	1
Order bias (q)	2	2
BW est. (h)	17.240	17.240
BW bias (b)	28.576	28.576
rho (h/b)	0.603	0.603
Unique Obs.	2311	315

Conventional 3.020 1.427 2.116 0.034 [0.223 , 5.816]	Method	Coef. St	td. Err.	z	P> z	[95% C.I.]
Robust 1.776 0.076 [-0.309, 6.276]	Conventional Robust		1.427 -	2.116 1.776	0.034 0.076	[0.223 , 5.816] [-0.309 , 6.276]

3.16 Example. 市長選挙

```
Fit = rdrobust(
Data$Y,
Data$X,
p = 2) # Defaultでは、Triangular kernelを使用
```

summary(Fit)

Sharp RD estimates using local polynomial regression.

Number of Obs.	2629	
BW type	mserd	
Kernel	Triangular	
VCE method	NN	
Number of Obs.	2314	315
Eff. Number of Obs.	702	291
Order est. (p)	2	2
Order bias (q)	3	3
BW est. (h)	23.121	23.121
BW bias (b)	35.191	35.191
rho (h/b)	0.657	0.657
Unique Obs.	2311	315

Method	Coef. St	====== d. Err.	z	P> z	[95% C.I.]
Conventional	2.772	1.808	1.533		[-0.772 , 6.315]
Robust	-	-	1.325		[-1.276 , 6.600]

3.17 実戦への推奨

- Local regression を使用
 - Triangular kernel の使用
 - データ主導で Bandwidth を選択 (+ 値を変えた robustness check)
 - 推定結果を安定させるために、小さめの p(=0,1) を使用 (Gelman and Imbens 2019)

4 Diagnostic

• Regression Disconiniuty の仮定の一部は、データから診断できる

4.1 Placebo test

- Manupulation の存在が大きな課題
 - 背景変数 (Treatment の影響を受けない変数) を Placebo として Y変数に使用し、RD を適用
 - 顕著な" 因果効果" が見られたら、Manupulation の存在を示唆
- 他にも cutoff の水準を変える (placebo cutoff) なども有益

4.2 Example. 市長選挙

```
Fit = rdrobust(
    Data$lpop1994, # 選挙前の人口
    Data$X,
    p = 1) # Defaultでは、Triangular kernelを使用
summary(Fit)
```

Sharp RD estimates using local polynomial regression.

N 1 6 61	0.000	
Number of Obs.	2629	
BW type	mserd	
Kernel	Triangular	
VCE method	NN	
Number of Obs.	2314	315
Eff. Number of Obs.	400	233
Order est. (p)	1	1
Order bias (q)	2	2
BW est. (h)	13.320	13.320
BW bias (b)	21.368	21.368
rho (h/b)	0.623	0.623
Unique Obs.	2311	315

Method	Coef. St	d. Err.	z	P> z	[95% C.I.]	
Conventional	0.012	0.278	0.045	0.964	[-0.532 , 0.557]	
Robust	_	_	0.001	0.999	[-0.644 , 0.645]	

4.3 Density test

• Cutoff の前後で、Density が jump していれば、manupulation の証拠

```
Fit = rddensity(Data$X) # Use rddensity package
```

summary(Fit)

Manipulation testing using local polynomial density estimation.

Number of obs = 2629
Model = unrestricted

Kernel = triangular
BW method = estimated

VCE method = jackknife

c = 0 Left of c Right of c

 Number of obs
 2314
 315

 Eff. Number of obs
 965
 301

 Order est. (p)
 2
 2

 Order bias (q)
 3
 3

BW est. (h) 30.539 28.287

Method T P > |T|Robust -1.3937 0.1634

P-values of binomial tests (H0: p=0.5).

Window Length / 2	<c< th=""><th>>=c</th><th>P> T </th></c<>	>=c	P> T
0.874	20	26	0.4614
1.748	42	49	0.5296
2.622	70	63	0.6030
3.496	95	81	0.3271
4.370	131	98	0.0342
5.245	155	112	0.0100
6.119	183	131	0.0039

6.993	209	148	0.0015
7.867	229	160	0.0005
8.741	257	173	0.0001

4.4 Density test

rdplotdensity(Fit,Data\$X) # Use rddensity package

\$Estl

Call: lpdensity

Sample size		2314
Polynomial order for point estimation	(p=)	2
Order of derivative estimated	(v=)	1
Polynomial order for confidence interval	(q=)	3
Kernel function		triangular
Scaling factor		0.88013698630137
Bandwidth method		user provided

Use summary(...) to show estimates.

\$Estr

Call: lpdensity

Sample size		315
Polynomial order for point estimation	(p=)	2
Order of derivative estimated	(v=)	1
Polynomial order for confidence interval	(q=)	3
Kernel function		triangular
Scaling factor		0.119482496194825
Bandwidth method		user provided

Use summary(...) to show estimates.

\$Estplot

4.5 まとめ

- 優れた紹介文献
 - $-\ https://titiunik.scholar.princeton.edu/publications 2$
 - * cutoff が複数あるケース/control 変数の導入、などへの拡張されている
- 大量の Runding variable と Cutoff がある状況への拡張 (Abdulkadiroğlu et al. 2022)
 - 推薦アルゴリズムを利用している業務から得られるデータへの分析に有益

* 例: "トップガン" に 3 以上、"チェンソーマン" に 4 以下の評価をつけた人には、ある作品を 推薦する

Reference

- Abdulkadiroğlu, Atila, Joshua D Angrist, Yusuke Narita, and Parag Pathak. 2022. "Breaking Ties: Regression Discontinuity Design Meets Market Design." *Econometrica* 90 (1): 117–51.
- Gelman, Andrew, and Guido Imbens. 2019. "Why High-Order Polynomials Should Not Be Used in Regression Discontinuity Designs." *Journal of Business & Economic Statistics* 37 (3): 447–56.
- Kawaguchi, Daiji, Hisahiro Naito, and Izumi Yokoyama. 2017. "Assessing the Effects of Reducing Standard Hours: Regression Discontinuity Evidence from Japan." *Journal of the Japanese and International Economies* 43: 59–76.
- Meyersson, Erik. 2014. "Islamic Rule and the Empowerment of the Poor and Pious." *Econometrica* 82 (1): 229–69.
- Shigeoka, Hitoshi. 2015. "School Entry Cutoff Date and the Timing of Births." National Bureau of Economic Research.