Lesson 17

Foundations of College Algebra

Graph Inequalities on the Number Line

Review

The inequality symbols are:

- < means "less than"
- > means "greater than"

- ≤ means "less than or equal to"
- ≥ means "greater than or equal to"

How To: Graphing Inequalities

To graph an inequality in one variable, e.g. x < a, on a number line:

- 1. Put a filled-in circle for "or equal to" over *a* or an open circle over *a* otherwise.
- 2. Shade to the left of the circle for "less than" or to the right for "greater than".

Examples

Graph on the number line.

1.
$$x \le 1, x < 5, x > -1$$

You Try It

Graph on the number line.

1.
$$x > 2, x < -3, x \ge -1$$

Use the Properties of Inequality

Addition Property of Inequality

For any numbers a, b, and c, if a < b then a + c < b + c.

- Subtraction is covered by this rule too.
- This works for all inequality symbols.

Example

Solve the inequality. Graph the solution set. Write the answer in set notation.

$$n - \frac{1}{2} \le \frac{5}{8}$$

You Try It

Solve the inequality. Graph the solution set. Write the answer in set notation.

$$u + 25 > 21$$

Multiplication Property of Inequality

For any real numbers *a*, *b*, *c*:

- if a < b and c > 0, then $\frac{a}{c} < \frac{b}{c}$ and ac < bc.
- If a < b and c < 0, then $\frac{a}{c} > \frac{b}{c}$ and ac > bc.

When we divide or multiply an inequality by a:

- **positive** number, the inequality **stays the same**.
- **negative** number, the inequality **reverses**.

Example

Solve the inequality. Graph the solution set. Write the answer in set notation.

$$-8q < 32$$

You Try It

Solve the inequality. Graph the solution set. Write the answer in set notation.

$$-7r \le -35$$

Solve Inequalities That Require Simplification

Examples

Solve the inequality. Write each answer using set notation.

1.
$$4m \le 9m + 17$$

2.
$$8p + 3(p - 12) > 7p - 28$$

You Try It

Solve the inequality. Write each answer using set notation.

1.
$$3q \ge 7q - 23$$

2.
$$6u + 8(u - 1) > 10u + 32$$

Use Interval Notation

Definition – Interval Notation

- An **interval** is a set of numbers between two numbers (possibly ∞ or $-\infty$) called **endpoints**.
- Brackets denote that an endpoint is included in the interval.
- Parentheses indicate that an endpoint is not included in the interval.

Interval Notation Rosetta Stone

Set	Interval
$\{x x < a\}$	(−∞, a)
$\{x x>a\}$	(a,∞)
$\{x x\leq a\}$	$(-\infty,a]$
$\{x x\geq a\}$	[<i>a</i> ,∞)
$\{x a < x < b\}$	(a, b)
$\{x a \le x \le b\}$	[<i>a</i> , <i>b</i>]
$\{x a < x \le b\}$	(a,b]
$\{x a \le x < b\}$	[<i>a</i> , <i>b</i>)

Examples

Graph the solution set of each inequality on a number line and then write it in interval notation.

1. $\{x | x \le -4\}$

2. $\{x \mid x < -\frac{2}{3}\}$

3. $\{x \mid -3 < x \le 4\}$

You Try it

Graph the solution set of each inequality on a number line and then write it in interval notation.

1. $\{x | x > 2\}$

2. $\{x | 2 \le x < 5\}$

