EXERCICE N°1 (Le corrigé)

1) Dire si les propositions suivantes sont vraies au fausses.

1.a) $5 \in [-\infty; 4]$

Faux

 $]-\infty$; 4] est l'ensemble des nombres inférieurs ou égaux à 4.

Or : 5 est strictement supérieur à 4.

1.c) $10^{-15} \in]0; 1[$

Vrai $0 < 10^{-15} < 1$

1.e) $3,72 \in]3,719 ; 3,721[$

Vrai 3,719 < 3,720 < 3,721

1.b) $-2.5 \in [-2; 5]$

Faux

 $\begin{bmatrix} -2 \\ 5 \end{bmatrix}$ est l'ensemble des nombres compris entre -2 et 5 inclus.

Or: -2,5 est strictement inférieur à -2.

1.d) $10^{-15} \in [0 ; +\infty[$

Vrai

 $0 < 10^{-15}$

1.f) $3,4 \in [3,3;3,4]$

Vrai

 $3,3 < 3,4 \le 3,4$

2) Représenter les intervalles suivants sur une droite graduée.

2.a)]-3;4]

2.b) $]-\infty$; 2[

 $2.c) \qquad \left[-\frac{1}{2} ; +\infty \right]$

2

EXERCICE N°2 (Le corrigé)

Recopier en complétant les pointillés par le symbole ∈ ou ∉ .

1)
$$-\pi$$
 ... $[-5; -2[$

2) 0,33 ...
$$\left[\frac{1}{3}; 8\right[$$

$$-\pi \in [-5 ; -2[$$

$$0.33 \notin \left[\frac{1}{3}; 8\right]$$

4)
$$0 \dots [-1; 0]$$

$$0 \in [-1 ; 0]$$

EXERCICE N°3

(Le corrigé)

Représenter sur une droite graduée les intervalles suivants :

1)]-4;3]

2)]5; 8,5[

3) $]-\infty;-3]$

4) $[-1; +\infty[$

EXERCICE N°4 (Le corrigé)

Parmi les intervalles suivants, lequel a la plus grande amplitude?

1)
$$I_1 =]-1;1]$$

2)
$$I_2 = \left] \frac{3}{4} ; \frac{5}{2} \right[$$

$$I_1$$
 a pour amplitude : $1-(-1)=2$

 I_2 a pour amplitude : 2,5-0,75=1,75

3)
$$I_3 = \left[\frac{1}{2}; 10\right]$$

4)
$$I_4 = [-1,54 ; 0,54]$$

$$I_3$$
 a pour amplitude : $10-0.5=9.5$

$$I_4$$
 a pour amplitude : $0.54 - (-1.54) = 2.08$

On en déduit que I_3 a la plus grande amplitude

EXERCICE N°5 (Le corrigé)

On donne l'intervalle I =]-1; 7].

Citer tous les nombres entiers relatifs qui appartiennent à l'intervalle $\ I \ .$

EXERCICE N°6 (Le corrigé)

Compléter par le symbole ⊂ ou ⊄ (se lit « est inclus dans » ou « n'est pas inclus dans »).

$$]1;2[\subset [1;2]$$

$$]4;5,3] \not\subset [3,9;5,4]$$

4)
$$[-10; 10] \dots \mathbb{R}$$

$$[-5; 4] \subset [-5,1; 4]$$

$$[-10 ; 10] \subset \mathbb{R}$$

$$[3,4;5,7] \not\subset \mathbb{D}$$

Car, par exemple $3.5 \in [2; 10]$ mais 3.5 n'est pas un nombre entier.

Car, par exemple $4 + \frac{1}{3} = \frac{13}{3} \in [2; 10]$ mais $\frac{13}{3}$ n'est pas un nombre décimal.

On retient que l'intervalle fermé 2 ; 10 contient tous les nombres réels compris entre 2 et 10 inclus.

En effet, il possède une infinité de chiffres (tous des « 3 ») après la virgule.