

Adaptive RAG Agents with Knowledge Graphs Building Reinforcement-Learning-Driven AI Applications

David vonThenen
Senior Al/ML Engineer

Compared to the control of the control of

David vonThenen

- Are you Human or an Al?
- I want 5 Kubernetes
- Virtual Machines are Real
- Cloudy, cloudy,...
- There is storage for that!

Agenda

- RAG Agents: Vector DB vs Graph DB
 - Token Prediction vs Data Relationships
 - LLM-Generated vs Fixed Cypher Path
 - Reinforcement Learning
- Hands-On Workshop
 - Options: Laptop or Google Colab
- Q&A

Vector DB vs Graph DB

What to Use When? Weigh the Pros and Cons

Vector, Graph, NoSQL... Oh My!

Vector

Graph

(No)SQL And Friends

nstaclustr

Vector-based RAG: Pros

- Semantic Search Over Unstructured Text
- Associating Conceptually Relevant Info
 - Semantic Similarity (via Abstract Concepts)
- Semantic Search: Highly Scalable, Low Latency
- Diverse Data Types (Img, Audio)

Vector-based RAG: Cons

- No Data Relationships, Exist as Isolated Vectors
 - All Knowledge is Flat
- Difficult to Reason Over Multiple Hops
 - No Holistic View
 - No Chain of Thought
- Miss Complex Entity Connections
 - Top K Limits
 - Top P Limits

Graph-based RAG: Pros

- Excellent Presenting Relationships
 - Great for Structured Knowledge
 - Associations Between Data
- Retrieve Network of Facts vs Snippets
 - Gather Connected Info (All Hops!)
- Reduced Hallucinations!!
- Higher Retrieval Accuracy for RAG
 - Better Response/Answer!

Graph-based RAG: Cons

- Data Modeling & Structure
 - Manage Ontologies/Relationships
- Complexities of Maintenance
- Frequent Data Changes = Challenging
 - Data Consistency with Updates
- Performance Impacts vs Embeddings
 - More Relevant = More Time
 - In-Memory Cache/Optimization

Vector vs Graph

Image Credit:

<u>Avi Chawla</u>

<u>LinkedIn Post - Vector vs Graph</u>

Tokens vs Relationships

Token Prediction vs Data Relationships

Prediction and Top-K

The Problem Is...

Better: Graph Retrieval

LLM vs Fixed Cypher Path

How to Handle Information Lookup

LLMs Are All The Rage, Man!

- LLM Generates the Cypher Paths (aka "Lookup")
 - User Question -> LLM digest -> Cypher Path
 - LangChain <u>GraphCypherQAChain</u>
- Pros:
 - VERY Easy to Get Started
 - Demo Ready, Great for POC
- Cons:
 - Hides Cypher Gen. Details
 - LLM = Decent-ish GPU?
 - Brittle AF

LangChain

Crafting Your Own Cyphers

- "Manual" Process Based on Graph Schema
 - Don't Necessarily Need an LLM
 - Don't Need a GPU
- Pros:
 - Predictable Data Lookup
 - Predictable Performance
 - Easier Maintenance
- Cons:
 - Human Builds Data Associations
 - Must Be Conscious of Graph Schema

Reinforcement Learning

Short-Term / Long-Term Memory

Reinforcement Learning Differences

- Vector: Facts are Fixed-length Embeddings
- Graph: Facts/Entities Labeled Nodes/Edges

Expiration & Remembering

- Vector: Track IDs MUST Rebuild Index to "Forget"
- Graph: Expiration as Simple as Removing a Timestamp

Control & Granularity

- Vector: Blunt operations (delete entire vectors).
- Graph: Fine-grained TTL per Relationship; Promote or Expire Individual Facts on Demand.

Ability to Audit

- Vector: No Native History (Risk of Silent Data Loss)
- Graph: Full Provenance (Only Node/Edge Metadata Changes)

Graph Example: Short vs Long

erm Data Model

- :Document nodes for each fact
- Entity nodes via spaCy NER
- (:Document)-[m:MENTIONS]->(:Entity) Relationships
 Has An Expiration Property

Short-Term Memory

- On de : add data, then set m.expiration = now + 24h
- Query Edges expiration > now ⇒ default ephemerality

Promoting to Long-Term

- Remove expiration Field on Edge ⇒ Long-Term
- Document Stays Forever

Force-Expire

Backdate m.expiration to past (e.g. now - 2 days) ⇒
 Hide From Future Queries

Resources

Resources

All Materials/Code: github.com/davidvonthenen/2025-odsc-east-workshop

AlPod Mini (Cost Effective Al System): https://ntap.com/3F91Lb0
Let's Chat on Discord: discord.qq/NetApp

Graph Database Options:

- Neo4j github.com/neo4j/neo4j
- NebulaGraph <u>github.com/vesoft-inc/nebula</u>

Document Store Options:

OpenSearch - github.com/opensearch-project/OpenSearch

Vector Database:

Milvus - <u>github.com/milvus-io/milvus</u>

Dataset (British Broadcasting Corporation) in Demo: bit.ly/4hBKNjp

Hands-On Workshop

Demo: Building a Graph RAG

https://youtu.be/WLEGg5zVwCQ

Demo: Explainable AI - Visualization

https://youtu.be/DDajZ5nS7aU

Demo: AI + Traditional Apps

https://youtu.be/FcEDJl1hDk4

Demo: Reinforcement Learning

https://youtu.be/B-M0swBtmgk

Demo: Agent2Agent Protocol

https://youtu.be/_XB2gmy9Gq0

To The GitHub Repo...

David vonThenen

Senior Al/ML Engineer

Compared to a continuo de la continuo de

Hands-On Instructions:

github.com/davidvonthenen/2025-odsc-east-workshop

Two Options:

- Easy But SUPER Slow = Google Colab
- Your Configuration Skills = Your Laptop

Worst Case Scenario:

- I AM HERE TO HELP!
- Bad Internet -> 20 USB Drives
 With Most Software

Thank You!

David vonThenen Senior AI/ML Engineer

in C was My @davidvonthenen

