Assume that at t=0, the capacitor voltage is equal to 0V

Assume that at t=0, the capacitor voltage is equal to 0V

$$v(t) = V_{S} \left(1 - e^{\frac{-t}{RC}} \right) = V_{\infty} \left(1 - e^{\frac{-t}{\tau}} \right)$$

• Assume that at t=0, the capacitor voltage is equal to V_o

• Assume that at t=0, the capacitor voltage is equal to V_{\circ}

$$V_c(t) = V_s + (V_0 - V_s)e^{-t/\tau}$$

$$= V_{\infty} + (V_0 - V_{\infty})e^{\frac{-t}{RC}}$$

Example 1 - Step-Response in RC Circuits

Determine v(t)

Example 1 - Step-Response in RC Circuits

$$V_c(t) = V_{\infty} + \left(V_0 + V_{\infty}\right) e^{\frac{-t}{\tau}} \qquad \qquad \tau = 2s$$

$$V_{\infty} = 30V$$

Example 2- Step-Response in RC Circuits

Determine v(t)

Unit Step Function

$$u(\tau) = \begin{cases} 1 & \text{if } \tau \ge 0 \\ 0 & \text{if } \tau < 0 \end{cases}$$

Draw
$$u(t)$$
, $u(t-5)$, $u(-t)$

$$V_0 = 20V$$

$$\tau = 2/3 s$$

$$V_c(t) = V_{\infty} + \left(V_0 + V_{\infty}\right) e^{\frac{-t}{\tau}}$$

$$V_{\infty} = 10V$$

