1. Banachalgebren

DIE GELFANDTRANSFORMATION

LUKAS NIEBEL

ZUSAMMENFASSUNG. Ziel dieser Ausarbeitung ist es zu zeigen, dass Die Gelfandtransformation auf $L^1(\mathbb{R})$ mit der Fouriertransformation übereinstimmt. Dazu werden alle benötigten Begriffe eingeführt.

Definition 1.1 (Algebra). Sei A ein Vektorraum über $\mathbb{K} = \mathbb{R}, \mathbb{C}$. Wir nennen eine bilineare Abbildung

$$A \times A \to A$$
, $(a,b) \mapsto ab$

Multiplikation, falls

$$a(bc) = (ab)c \quad \forall a, b, c \in A$$

gilt. A zusammen mit einer solchen Multiplikation heißt dann Algebra. Eine Norm $\|\cdot\|$ auf A heißt submultiplikativ, falls:

$$||ab|| \le ||a|| ||b|| \quad \forall a, b \in A$$

Das Paar $(A, \|\cdot\|)$, mit $\|\cdot\|$ submultiplikativ, nennen wir normierte Algebra. Falls A eine Einheit 1 bezüglich der Multiplikation besitzt, das heißt $a1 = 1a = a \quad \forall a \in A$ und $\|1\| = 1$, so sagen wir A ist eine unitale normierte Algebra.

Bemerkung 1.2.

- (i) Ein Untervektorraum $B \subset A$ heißt Unteralgebra von A, falls für $b,b' \in B$ stets $bb' \in B$ gilt.
- (ii) In jeder normierten Algebra $(A, \|\cdot\|)$ ist die Multiplikation $(a,b)\mapsto ab$ stetig.
- (iii) Eine Algebra A heißt abelsch, falls ab = ba für alle $a, b \in A$ gilt.

Definition 1.3 (Banachalgebra). Eine vollständige (unitale) normierte Algebra heißt (unitale) Banachalgebra.

Beispiel 1.4. Sei X ein Vektorraum, dann ist B(X) zusammen mit der Verknüpfung als Multiplikation und der Operatornorm eine unitale normierte Algebra. Falls X Banachraum, dann ist B(X) eine unitale Banachalgebra. Diese Algebra ist im Allgemeinen nicht abelsch.

Bemerkung 1.5. Sei A eine unitale normierte Algebra mit Einheit 1, dann kann man den Begriff der Invertierbarkeit einführen. $a \in A$ heißt invertierbar, falls ein $a^{-1} \in A$ existiert, sodass $a^{-1}a = aa^{-1} = 1$. Ausgehend von dieser Definition kann man analog zum Spektrum von Operatoren das Spektrum für Elemente $a \in A$ einer unitalen Algebra definieren:

$$\sigma(a) = \{\lambda \in \mathbb{C} | \lambda 1 - a \text{ ist nicht invertierbar} \}$$

Man kann zeigen, dass:

Date: Juni 30, 2017.

- (i) Für alle Elemente einer unitalen komplexen Banachalgebra ist das Spektrum nicht leer. [Theorem von Gelfand]
- (ii) Ist in einer unitalen Banachalgebra über dem Körper \mathbb{C} jedes Element invertierbar, dann ist $A \cong \mathbb{C}$. [Theorem von Gelfand-Mazur]

Wiederholung 1.6 (Faltung). Sei $f \in L^1(\mathbb{R}^n)$ und $g \in L^p(\mathbb{R}^n)$ mit $1 \leq p \leq \infty$. Dann wird durch

$$(f * g)(x) := \int_{\mathbb{R}^n} f(x - y)g(y)dy, \ x \in \mathbb{R}^n$$

eine Funktion $f * g \in L^p(\mathbb{R}^n)$ definiert, die Faltung von f und g. Es gilt

$$||f * g||_p \le ||f||_1 ||g||_p$$

die Youngsche Ungleichung für die Faltung.

Beispiel 1.7 $(L^1(\mathbb{R}))$. Wir betrachten $(L^1(\mathbb{R}), \|\cdot\|_{L^1})$. Dann ist $L^1(\mathbb{R})$ zusammen mit der Faltung f * g als Multiplikation eine abelsche Banachalgebra.

Beweis. Die Faltung ist assoziativ, das heißt f*(g*h)=(f*g)*h für alle $f,g,h\in L^1(\mathbb{R})$. Also ist $L^1(\mathbb{R})$ mit der Faltung eine Algebra. $(L^1(\mathbb{R}),\|\cdot\|_{L^1})$ ist ein Banachraum. Bleibt zu zeigen,dass die Norm submultiplikativ ist. Dies folgt aus der Youngschen Ungleichung für die Faltung mit p=1. Ferner gilt f*g=g*f für alle $f,g\in L^1(\mathbb{R})$ und damit ist die Faltung kommutativ, also $L^1(\mathbb{R})$ abelsch.

 $L^1(\mathbb{R})$ ist nicht unital. Es existiert aber eine approximative Einheit, in folgendem Sinne. Für alle $f \in L^1(\mathbb{R})$ gilt $\varrho_n * f = f * \varrho_n$ und $\|\varrho_n * f - f\|_{L^1} \to 0$ für $n \to \infty$. Hier bezeichnen wir mit ϱ_n den wohlbekannten Glättungskern.

2. DIE GELFANDTRANSFORMATION

Definition 2.1 (Homomorphismus). Ein (Algebren-) Homomorphismus ist eine lineare Abbildung $\varphi \colon A \to B$ zwischen zwei Algebren A und B, welche

$$\varphi(ab) = \varphi(a)\varphi(b) \quad \forall a, b \in A$$

erfüllt. φ heißt unital, falls die Algebren A und B dies sind und $\varphi(1_A)=1_B$ gilt.

Bemerkung 2.2. Diese Art von Homomorphismus ist kein Gruppenhomomorphismus im klassischen Sinne. Seien (G,\cdot) und (H,*) zwei (Halb-) Gruppen, dann heißt eine Abbildung $\gamma\colon (G,\cdot)\to (H,*)$ Gruppenhomomorphismus, falls für alle $a,b\in G$ gilt $\gamma(a\cdot b)=\gamma(a)*\gamma(b)$. Hier wird nicht vorausgesetzt, dass die Abbildung linear ist.

Definition 2.3 (Charakter). Ein Charakter einer abelschen Algebra ist ein nicht trivialer Homomorphismus $\varphi \colon A \to \mathbb{C}$. Wir bezeichnen mit

$$\Omega(A) := \{ \varphi \colon A \to \mathbb{C} \mid \varphi \text{ Charakter} \}$$

die Menge aller Charaktere auf A. $\Omega(A)$ versehen mit der $\sigma(A^*, A)$ -Topologie wird Gelfandraum oder maximaler Idealraum genannt.

Bemerkung 2.4.

(i) $\Omega(A)$ aus Definition 2.3 ist wohldefiniert, da hier für B aus 2.1 gilt $B=(\mathbb{C},\cdot)$ und dabei handelt es sich um eine Algebra.

(ii) $\Omega(A)$ kann leer sein. Zum Beispiel ist dies für die triviale Algebra der Fall. Hier ist die Multiplikation definiert als ab=0 für alle $a,b\in A$. Sei nun $\varphi\colon A\to\mathbb{C}$ ein Homomorphismus, dann folgt aus $\varphi(a)^2=\varphi(aa)=\varphi(0)=0$ schon $\varphi(a)=0$ für alle $a\in A$ und damit $\Omega(A)=\emptyset$.

Beispiel 2.5. Sei $\gamma\colon (\mathbb{R},+)\to (\mathbb{T},\cdot)$ ein stetiger (Gruppen-) Homomorphismus, definiere $\hat{f}(\gamma)$ durch

$$\hat{f}(\gamma) = \int_{\mathbb{R}} f(x)\gamma(-x) dx$$

für alle f in $L^1(\mathbb{R})$. Dann ist die Abbildung $L^1(\mathbb{R}) \to \mathbb{C}$, $f \mapsto \hat{f}(\gamma)$ ein nichttrivialer (Algebren-) Homomorphismus auf $L^1(\mathbb{R})$. $[\mathbb{T} = \partial B_1(0) \subset \mathbb{C}]$

Beweis. Es ist $\gamma \colon (\mathbb{R}, +) \to (\mathbb{T}, \cdot)$ ein Homomorphismus also gilt $\gamma(x+y) = \gamma(x)\gamma(y)$ und $\gamma(x^{-1}) = \gamma(-x) = \gamma(x)^{-1} = \overline{\gamma(x)}$. Seien nun $f, g \in L^1(\mathbb{R})$, dann gilt:

$$\widehat{(f * g)}(\gamma) = \int_{\mathbb{R}} (f * g)(x)\gamma(-x) dx$$

$$= \int_{\mathbb{R}} \gamma(-x) \int_{\mathbb{R}} f(x - y)g(y) dy dx$$

$$= \int_{\mathbb{R}} g(y)\gamma(-y) \left[\int_{\mathbb{R}} f(x - y)\gamma(-(x - y)) dx \right] dy$$

$$= \int_{\mathbb{R}} g(y)\gamma(-y) \left[\int_{\mathbb{R}} f(x)\gamma(-x) dx \right] dy$$

$$= \int_{\mathbb{R}} g(y)\gamma(-y) dx \int_{\mathbb{R}} f(x)\gamma(-x) dy = \widehat{f}(\gamma)\widehat{g}(\gamma)$$

Aus $\gamma \in L^{\infty}(\mathbb{R})$ und $\|\gamma\|_{\infty} = 1$ folgt

$$|\hat{f}(\gamma)| \le \int_{\mathbb{R}} |f(x)\gamma(-x)| \mathrm{d}x \le ||\gamma||_{\infty} ||f||_{L^1}$$

und somit die Stetigkeit der Abbildung. Ferner ist $L^1(\mathbb{R}) \to \mathbb{C}$, $f \mapsto \hat{f}(\gamma)$ linear und folglich ein stetiger (Algebren-) Homomorphismus. Dieser ist nicht identisch null, denn: γ ist ein stetiger Homomorphismus und $\gamma(0) = 1$. Betrachte wir die Funktion $f(x) = \mathbbm{1}_{B_1(0)}(x)\gamma(x)$, dann ist $f \in L^1(\mathbb{R})$ und es gilt:

$$\hat{f}(y) = \int_{\mathbb{R}} f(x)\gamma(-x)dx = \int_{-1}^{1} \gamma(x)\gamma(-x)dx = 2\gamma(0) = 2 \neq 0$$

Also ist die Abbildung $L^1(\mathbb{R}) \to \mathbb{C}, \ f \mapsto \hat{f}(\gamma)$ ein Charakter von $L^1(\mathbb{R})$.

Lemma 2.6. Sei A eine Banachalgebra und $\varphi \colon A \to \mathbb{C}$ ein Homomorphismus. Dann gilt $\|\varphi\| \le 1$ also ist φ stetig und $\Omega(A) \subset \overline{B_1(0)} \subset A^*$.

Beweis. Nehmen wir an es gelte $1<\|\varphi\|\le\infty$, dann gibt es ein $x\in A$ mit $\|x\|<1$ und $\varphi(x)=1$. Denn: $1<\|\varphi\|=\inf\{C>0:|\varphi(z)|\le C\|z\|\ \forall z\in A\}\le\infty$, also existiert für alle C>1 ein $z\in A$, sodass $|\varphi(z)|>C\|z\|>\|z\|$. Wähle ein solches $z\in A$ und definiere $x=\operatorname{sgn}\phi(z)\frac{z}{|\varphi(z)|}$, für dieses x gilt dann $\varphi(x)=1$ und $\|x\|<1$. Betrachte nun $y=\sum_{n=1}^\infty x^n$, es gilt $y\in A$ da $\|x\|<1$ und weiter folgt y=x+xy. Dann wäre aber:

$$\varphi(y) = \varphi(x+xy) \stackrel{\text{Lin.}}{=} \varphi(x) + \varphi(xy) \stackrel{\text{Hom.}}{=} 1 + \varphi(x)\varphi(y) = 1 + \varphi(y) \quad \forall x \in \mathbb{R}$$

Definition 2.7 (Gelfandtransformation). Sei A eine abelsche Banachalgebra, für die $\Omega(A) \neq \emptyset$ gilt. Für $a \in A$ definieren wir:

$$\hat{a} : \Omega(A) \to \mathbb{C}, \quad \varphi \mapsto \varphi(a)$$

die Gelfandtransformation \hat{a} von a.

Lemma 2.8. Sei A eine abelsche Banachalgebra mit $\Omega(A) \neq \emptyset$. Es gelten die folgenden Eigenschaften der Gelfand-Transformation:

(i) Für alle $a \in A$ ist die Abbildung

$$\hat{a}: \Omega(A) \to \mathbb{C}, \ \varphi \mapsto \varphi(a)$$

stetig (bezüglich der $\sigma(A^*, A)$ -Topologie).

(ii) Es gilt sogar $\hat{a} \in C_0(\Omega(A))$. Wobei

$$C_0(\Omega(A)) := \{ f \in C(\Omega(A)) : \forall \varepsilon > 0 \text{ ist } \{ \varphi \in \Omega(A) : |\varphi(a)| \ge \varepsilon \} \text{ kompakt} \}$$

man sagt für $f \in C_0$ auch, f verschwindet im unendlichen.

(iii) Die Abbildung $A \to C_0(\Omega(A))$, $a \mapsto \hat{a}$ ist wohldefiniert und ein kontraktiver Homomorphismus.

Beweis.

- (i) Die Behauptung folgt sofort aus der Definition der $\sigma(X^*, X)$ -Topologie, denn: Sei φ_i ein Netz mit $\varphi_i \stackrel{*}{\longrightarrow} \varphi$, das heißt es gilt $\varphi_i(x) \to \varphi(x)$ für alle $x \in A$ und damit auch für x = a. Es folgt $\hat{a}(\varphi_i) = \varphi_i(a) \to \varphi(a) = \hat{a}(\varphi)$ und somit die Stetigkeit von \hat{a} .
- (ii) Der Satz von Banach-Alaoglu zeigt, dass $\overline{B}_1(0) \subset A^*$ schwach-* kompakt ist. Ferner ist die Menge $\Omega(A) \cup \{0\} \subset \overline{B}_1(0)$ schwach-* abgeschlossen und damit auch schwach-* kompakt. Betrachte nun für $\varepsilon > 0$ die Mengen $\{\varphi \in \Omega(A) \colon |\varphi(a)| \geq \varepsilon\}$. Auch diese Mengen sind wieder schwach-* abgeschlossen und somit schwach-* kompakt. Es folgt $\hat{a} \in C_0(\Omega(A))$.
- (iii) Mit (i) und (ii) ist die Wohldefiniertheit klar. Seien $a, b \in A$ und $\alpha, \beta \in \mathbb{C}$, dann gilt $\varphi(ab) = \varphi(a)\varphi(b)$ und $\varphi(\alpha a + \beta b) = \alpha\varphi(a) + \beta\varphi(b)$ für alle $\varphi \in \Omega(A)$. Es folgt $\widehat{ab} = \widehat{ab}$ und $\alpha a + \beta b = \alpha \widehat{a} + \beta \widehat{b}$. Die Abbildung ist somit ein Homomorphismus. Aus 2.6 und $|\varphi(a)| \leq ||\varphi|| ||a|| \leq ||a||$ für alle $\varphi \in \Omega(A)$ folgt

$$\|\hat{a}\|_{\infty} = \sup_{\varphi \in \Omega(A)} |\varphi(a)| \le \|a\|$$

und folglich die Stetigkeit als auch Kontraktivität.

Theorem 2.9. Sei A eine abelsche Banachalgebra mit $\Omega(A) \neq \emptyset$. Dann ist

$$A \to C_0(\Omega(A)), \ a \mapsto \hat{a}$$

ein kontraktiver Homomorphismus. Insbesondere gilt $\hat{a} \in C_0(\Omega(A))$ für alle $a \in A$.

Beweis. Folgt aus Lemma 2.8.

3. Die Gelfandtransformation für L^1

3.1. Wie sieht die Gelfandtransformation für $L^1(\mathbb{R})$ aus?

Wiederholung 3.1. Für $1 \leq p < \infty$ ist die Translation in $L^p(\mathbb{R}^n)$ stetig, d.h. es gilt

$$\lim_{h \to 0} ||f(\cdot + h) - f(\cdot)||_p = 0$$

Wiederholung 3.2 (Dualraum von L^1). Die Abbildung

$$L^{\infty}(\mathbb{R}) \to (L^{1}(\mathbb{R}))^{*}, \ (Tg)(f) = \int_{\mathbb{R}} fg dx$$

definiert einen isometrischen Isomorphismus.

Es gilt auch die Umkehrung von Lemma 2.5:

Lemma 3.3. Sei $\varphi \colon L^1(\mathbb{R}) \to \mathbb{C}$ ein nichttrivialer Homomorphismus, dann existiert genau ein stetiger (Gruppen-) Homomorphismus $\gamma \colon \mathbb{R} \to \mathbb{T}$, welcher $\varphi(f) = \hat{f}(\gamma)$ für alle $f \in L^1(\mathbb{R})$ erfüllt.

Beweis. Sei $\varphi \colon L^1(\mathbb{R}) \to \mathbb{C}$ ein nicht trivialer Homomorphismus. Nach Lemma 2.6 gilt $\varphi \in (L^1(\mathbb{R}))^*$, also existiert genau ein $\gamma \in L^\infty(\mathbb{R})$, sodass $\varphi(f) = \int_{\mathbb{R}} f(x)\gamma(x) dx$ für alle $f \in L^1(\mathbb{R})$ und $\|\gamma\|_{\infty} = \|\varphi\| \le 1$ gilt. Für $f, g \in L^1(\mathbb{R})$ gilt dann:

$$\varphi(f * g) = \int_{\mathbb{R}} (f * g)(x)\gamma(x)dx = \int_{\mathbb{R}} g(y) \left[\int_{\mathbb{R}} f(x - y)\gamma(x)dx \right] dy = \int_{\mathbb{R}} g(y)\varphi(f_y)dy$$

als auch:

$$\varphi(f * g) = \varphi(f)\varphi(g) = \int_{\mathbb{R}} g(y)\varphi(f)\gamma(y)dy$$

Zusammen folgt

$$\int_{\mathbb{R}} g(y) \left[\varphi(f_y) - \varphi(f) \gamma(y) \right] dy = 0$$

für alle $q \in L^1(\mathbb{R})$. Es gilt

$$|\varphi(f_y) - \varphi(f)\gamma(y)| \le ||f_y||_{L^1} + ||f||_{L^1}||\gamma||_{\infty} < \infty$$

folglich ist Abbildung $y\mapsto \varphi(f_y)-\varphi(f)\gamma(y)$ ein Element von $L^\infty(\mathbb{R})$. Aus der Isomorphie der Abbildung in 3.2 folgt

$$\varphi(f_y) = \varphi(f)\gamma(y)$$

für alle $f \in L^1(\mathbb{R})$ fast überall in \mathbb{R} . Wähle nun $f \in L^1(\mathbb{R})$, sodass $\varphi(f) \neq 0$. Dann gilt $\gamma(y) = \varphi(f_y)/\varphi(f)$ fast überall. Es gilt $|\varphi(f_y)-\varphi(f)| = |\varphi(f_y-f)| \leq \|f_y-f\|_{L^1}$, aus diesem Grund ist $\varphi(f_y)/\varphi(f)$ stetig. Dann muss auch γ stetig sein und es folgt die Gültigkeit von

(3.1)
$$\varphi(f_y) = \varphi(f)\gamma(y)$$

auf ganz \mathbb{R} . Ersetzen wir in Gleichung (3.1) y durch x+y erhalten wir

$$\varphi(f)\gamma(x+y) = \varphi(f_{xy}) = \varphi((f_x)_y)$$

Ersetzt man f durch f_x , so folgt $\varphi(f_x)\gamma(y) = \varphi(f_{xy})$. Zusammen gilt

$$\varphi(f)\gamma(x+y) = \varphi(f_x)\gamma(y) = \varphi(f)\gamma(x)\gamma(y) \quad \forall x, y \in \mathbb{R}$$

Für $\varphi(f) \neq 0$ folgt $\gamma(x+y) = \gamma(x)\gamma(y)$. Nun ist $\gamma \colon (\mathbb{R},+) \to (\mathbb{C},\cdot)$ ein Homomorphismus und es gilt $|\gamma(x)| \leq 1$ für alle $x \in \mathbb{R}$. Auf der anderen Seite gilt

$$1 = \gamma(0) = \gamma(x - x) = \gamma(x)\gamma(x)^{-1}$$

und mit $|\gamma(x)|, |\gamma(x)^{-1}| \leq 1$ folgt $|\gamma(x)| = 1$ für alle $x \in \mathbb{R}$. Wähle $\gamma(x) = \gamma(-x)$, dann ist $\gamma \colon (\mathbb{R}, +) \to (\mathbb{T}, \cdot)$ ein stetiger Homomorphismus und $\varphi(f) = \hat{f}(y)$ für alle $f \in L^1(\mathbb{R})$.

Bemerkung 3.4.

- (i) Die Menge aller stetigen (Gruppen-) Homomorphismen $\gamma \colon (\mathbb{R}, +) \to (\mathbb{T}, \cdot)$ bezeichnen wir mit $\hat{\mathbb{R}}$, dies wird auch duale Gruppe von \mathbb{R} genannt.
- (ii) Allgemeiner definieren wir für eine lokalkompakte abelsche Gruppe (G, *), dann bezeichnen wir mit

$$\hat{G} = \{ \gamma \colon (G, *) \to (\mathbb{T}, \cdot) \mid \gamma \text{ stetiger (Gruppen-) Homomorphismus} \}$$

die duale Gruppe von G. Dabei ist \hat{G} ausgestattet mit der kompakt offen Topologie. Die Elemente von \hat{G} nennt man die Charaktere von G.

- (iii) Betrachten wir nun die Menge $\Omega(L^1(\mathbb{R}))$ aller Charaktere auf $L^1(\mathbb{R})$. Der vorherige Satz zeigt, dass wir diese mit der Menge $\hat{\mathbb{R}}$ identifizieren können.
- (iv) Insbesondere ist nach 3.2 die Abbildung mit welcher wir diese die beiden Mengen miteinander identifizieren ein isometrischer Isomorphismus.
- (v) In Satz 3.5 charakterisieren wir nun die duale Gruppe $\hat{\mathbb{R}}$ von \mathbb{R} .

Lemma 3.5. Sei $y \in \mathbb{R}$, dann definiert $\gamma_y(x) = e^{ixy}$ einen Charakter auf \mathbb{R} und jeder Charakter auf \mathbb{R} ist schon von dieser Form. Die Abbildung $y \mapsto \gamma_y$ ist ein Isomorphismus als auch ein Homöomorphismus von \mathbb{R} nach $\hat{\mathbb{R}}$.

Beweis. Sei $y \in \mathbb{R}$, dann ist $|(\gamma_y(x))| = 1$ für alle $x \in \mathbb{R}$ und $\gamma_y(x_1 + x_2) = \gamma_y(x_1)\gamma_y(x_2)$. Also ist $\gamma_y \in \hat{\mathbb{R}}$. Weiter erfüllt γ_y auch $\gamma_{y_1+y_2}(x) = \gamma_{y_1}(x)\gamma_{y_2}(x)$ für alle $y_1, y_2, x \in \mathbb{R}$. Die Abbildung $y \mapsto \gamma_y$ ist somit ein Homomorphismus von \mathbb{R} nach $\hat{\mathbb{R}}$.

Sei nun $\gamma \in \hat{\mathbb{R}}$. Für einen Homomorphismus dieser Art gilt $\gamma(0) = 1$, es existiert ein $\delta > 0$ mit $\int_0^{\delta} \gamma(x) dx = a \neq 0$. Und damit folgt

$$a\gamma(x) = \gamma(x) \int_0^{\delta} \gamma(t) dt = \int_0^{\delta} \gamma(x+t) dt = \int_x^{x+\delta} \gamma(t) dt$$

Wir erhalten folgende Darstellung für γ :

$$\gamma(x) = a^{-1} \int_{x}^{x+\delta} \gamma(t) dt$$

Aus dem Hauptsatz und dieser Darstellung folgt die Differenzierbarkeit von γ . Betrachte nun den (wohldefinierten) Differenzenquotient

$$\gamma'(x) \leftarrow \frac{\gamma(x+h) - \gamma(x)}{h} = \gamma(x) \left[\frac{\gamma(h) - 1}{h} \right] \rightarrow \gamma'(0)\gamma(x)$$

Die linke/rechte Seite konvergiert für h gegen 0, da γ differenzierbar ist. Dies führt auf folgende Differenzialgleichung:

$$\begin{cases} \gamma'(x) &= \gamma'(0)\gamma(x) \\ \gamma(0) &= 1 \end{cases}$$

mit der Bedingung $|\gamma(x)|=1$ für alle $x\in\mathbb{R}$. Die Lösung obiger Gleichung lautet: $\gamma(x)=\exp(x\gamma'(0))$. Soll nun $|\exp(x\gamma'(0))|=1$ für alle $x\in\mathbb{R}$ erfüllt sein, dann muss schon $\gamma(x)=\exp(ixy)$ für ein $y\in\mathbb{R}$ gelten. Also ist die Abbildung $\gamma\mapsto\gamma_y$ ein Isomorphismus (bijektiv und Homomorphismus) von \mathbb{R} nach $\hat{\mathbb{R}}$. Dabei folgt die Bijektivität aus der Existenz und Eindeutigkeit der Lösung obiger Differenzialgleichung. Zur Stetigkeit der Abbildung. Sei $(y_n)\subset\mathbb{R}$ eine Folge mit $y_n\to y$, zu $K\subset\mathbb{R}$ kompakt betrachte

$$\lim_{n\to\infty}\sup_{x\in K}|\gamma_{y_n}(x)-\gamma_y(x)|\leq \lim_{n\to\infty}\sup_{x\in K}|ix|\int_y^{y_n}|\exp(ixt)|\mathrm{d}t\leq \lim_{n\to\infty}M|y_n-y|$$

für $M=\sup_{x\in K}|x|$. Also konvergiert $\gamma_{y_n}\to\gamma_y$ gleichmäßig auf jeder kompakten Teilmenge. Insgesamt folgt nach Satz A.16 die Stetigkeit. Es bleibt zu zeigen, dass die Abbildung auch homöomorph ist. Sei also $\gamma_i\subset \hat{\mathbb{R}}$ ein konvergentes Netz mit $\gamma_{y_i}\to\gamma=\gamma_y$ in $\hat{\mathbb{R}}$. Dann existiert ein reelles Netz $(y_i)\subset\mathbb{R}$ mit $\gamma_i(x)=\gamma_{y_i}(i)$ für alle $i\in I$. Wir müssen zeigen, dass dieses in \mathbb{R} gegen y konvergiert. Nach Appendix xy ist die Konvergenz in $\hat{\mathbb{R}}$ durch die gleichmäßige Konvergenz auf kompakten Teilmengen charakterisiert. Wir wählen als kompakte menge zunächst K=[-1,1], dann gilt

$$\lim_{i \in I} \sup_{x \in K} |\gamma_{y_i}(x) - \gamma_y(x)| = 0$$

insbesondere existiert zu $1 > \varepsilon > 0$ ein Index i_0 , sodass

$$|e^{ixy_i} - e^{ixy}| = |e^{ixy}||e^{ix(y_i - y)} - 1| = |e^{ix(y_i - y)} - 1| < \varepsilon$$

für alle $i \ge i_0$ nd $x \in [-1, 1]$ gilt.

Dann folgt $|y_i-y|<\frac{\pi}{2}$ also ist das Netz y_i beschränkt. Sei nun y_{i_k} ein beliebiges Teilnetz von y_i , dann besitzt dieses, auf Grund der Beschränktheit und der resultierenden Kompaktheit, ein weiteres konvergentes Teilnetz $y_{i_{k_l}}$ mit dem Grenzwert y'. Aus der Stetigkeit der Abbildung folgt zum einen $\gamma_{y_{i_{k_l}}}$ konvergiert gleichmäßig auf kompakten Teilmengen gegen $\gamma_{y'}$ aber nach Voraussetzung auch gegen γ_y also gilt schon y=y' auf Grund der Injektivität. Aus Satz A.9 folgt die Konvergenz des Netzes y_i gegen y. Wir schließen die Homöomorphie.

Theorem 3.6 (Gelfandtransformation auf $L^1(\mathbb{R})$). Betrachte $L^1(\mathbb{R})$, dann gilt

$$\Omega(L^{1}(\mathbb{R})) = \left\{ \hat{f}(y) \colon L^{1}(\mathbb{R}) \to \mathbb{C}, \ \hat{f}(y) = \int_{\mathbb{R}} f(x)e^{-ixy} dx \mid y \in \mathbb{R} \right\}$$

insbesondere ist damit die Gelfandtransformation für $f \in L^1(\mathbb{R})$ gegeben durch:

$$\hat{f} \colon \mathbb{R} \to \mathbb{C}, \ \hat{f}(y) = \int_{\mathbb{R}} f(x)e^{-ixy} dx$$

Dies stimmt mit der Fouriertransformation auf $L^1(\mathbb{R})$ überein.

Beweis. Die Arbeit wurde in den vorherigen Lemmata erledigt.

$$\Omega(L^1(\mathbb{R})) \stackrel{3.4}{\longleftrightarrow} \hat{\mathbb{R}} \stackrel{3.5}{\longleftrightarrow} \mathbb{R}$$

Sei $\varphi \in \Omega(L^1(\mathbb{R}))$, wobei $\varphi \colon L^1(\mathbb{R}) \to \mathbb{C}$, dann existiert genau ein $\gamma \in \hat{\mathbb{R}}$, sodass

$$\varphi(f) = \int_{\mathbb{D}} f(x)\gamma(-x)dx, \quad \forall f \in L^1(G)$$

Nach Lemma 3.5 existiert dann genau ein $y \in \mathbb{R}$ mit $\gamma(x) = e^{ixy}$ für alle $x \in \mathbb{R}$. Damit gilt obige Darstellung von $\Omega(L^1(\mathbb{R}))$.

Lemma 3.7 (von Riemann-Lebesgue). Sei $f \in L^1(\mathbb{R})$, dann verschwindet die Fourier Transformation von f im Unendlichen. Genauer gilt $\hat{f} \in C_0(\mathbb{R})$ und folglich

$$\lim_{y \to \pm \infty} \hat{f}(y) = \lim_{y \to \pm \infty} \int_{\mathbb{R}} f(x)e^{-ixy} dx = 0$$

Beweis. Es gilt nach Lemma 2.8 $\hat{f} \in C_0(\Omega(L^1(\mathbb{R})))$. Man muss sich also noch klar machen, dass die Identifikation von $\Omega(L^1(\mathbb{R}))$ mit \mathbb{R} die Stetigkeit nicht stört. Es wurde in 3.4 und 3.5 gezeigt, dass die jeweiligen Abbildungen homöomorph sind, also insbesondere die Stetigkeit erhalten.

3.2. Wie sieht die Gelfandtransformation für $L^1(\mathbb{R}_+)$ aus?

Beispiel 3.8. $L^1(\mathbb{R}_+)$ zusammen mit der Faltung ist eine abelsche Banachalgebra. Hier bezeichnet $\mathbb{R}_+ = [0, \infty)$.

Beweis. Wir fassen zunächst $L^1(\mathbb{R}_+)$ als Unterraum von $L^1(\mathbb{R})$ auf:

$$L^{1}(\mathbb{R}_{+}) = \{ f \in L^{1}(\mathbb{R}) : f(x) = 0 \text{ f.ü. in } (-\infty, 0) \}$$

Dann ist $L^1(\mathbb{R}_+)$ eine Unteralgebra von $L^1(\mathbb{R}_+)$. Die Bildungsvorschrift der Faltung für $f, g \in L^1(\mathbb{R}_+)$ ist gegeben durch:

$$(f * g)(x) := \int_0^x f(x - y)g(y)dy, \ \forall x \in \mathbb{R}$$

da f(x-y)=0, falls $0 \ge x-y$. Weiter ist $L^1(\mathbb{R}_+)$ ein abgeschlossene Unterraum von $L^1(\mathbb{R}_+)$, somit vollständig und insbesondere eine Banachalgebra.

Bemerkung 3.9.

- (i) Man kann in den obigen Beweisen $(\mathbb{R}, +)$ durch eine beliebige lokalkompakte abelsche Gruppe ersetzen. Dann muss man anstelle des Lebesgue-Maß das passende Haar-Maß verwenden.
- (ii) $(\mathbb{R}_+,+)$ ist keine Gruppe, da kein Element ein Inverses Element in \mathbb{R}_+ besitzt, sondern nur eine Halbgruppe. Dennoch kann man die Gelfandtransformation auf $L^1(\mathbb{R}_+)$ ähnlich wie für $L^1(\mathbb{R})$ charakterisieren.

Lemma 3.10. Sei $\gamma: (\mathbb{R}_+, +) \to (\mathbb{C}^\times, \cdot)$ ein stetiger (Gruppen-) Homomorphismus mit $\|\gamma\|_{\infty} \leq 1$, definiere $\mathcal{L}\{f\}(\gamma)$ durch

$$\mathcal{L}{f}(\gamma) = \int_0^\infty f(x)\gamma(x)dx$$

für alle f in $L^1(\mathbb{R}_+)$. Dann ist die Abbildung $L^1(\mathbb{R}_+) \to \mathbb{C}$, $f \mapsto \mathcal{L}\{f\}(\gamma)$ ein nichttrivialer Homomorphismus auf $L^1(\mathbb{R}_+)$.

Beweis. Es ist $\gamma \colon (\mathbb{R}, +) \to (\mathbb{C}^{\times}, \cdot)$ ein Homomorphismus also gilt $\gamma(x + y) = \gamma(x)\gamma(y)$. Seien nun $f, g \in L^1(\mathbb{R})$, dann gilt:

$$\int_{0}^{\infty} (f * g)(x)\gamma(x) dx = \int_{0}^{\infty} \gamma(x) \int_{0}^{x} f(x - y)g(y) dy dx$$

$$= \int_{0}^{\infty} \gamma(y) \int_{0}^{x} f(x - y)g(y)\gamma(x - y) dy dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} f(x - y)g(y)\gamma(x - y)\gamma(y) \mathbb{1}_{[0,x]}(y) dy dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} f(x - y)g(y)\gamma(x - y)\gamma(y) \mathbb{1}_{[0,x]}(y) dx dy$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} f(x - y)g(y)\gamma(x - y)\gamma(y) \mathbb{1}_{[0,\infty)}(x - y) dx dy$$

$$= \int_{0}^{\infty} g(y)\gamma(y) \int_{0}^{\infty} f(x - y)\gamma(x - y) \mathbb{1}_{[0,\infty)}(x - y) dx dy$$

$$= \int_{0}^{\infty} g(y)\gamma(y) \left[\int_{0}^{\infty} f(x - y)\gamma(x - y) dx \right] dy$$

$$= \int_{0}^{\infty} g(y)\gamma(y) dx \int_{0}^{\infty} f(x)\gamma(x) dy$$

Ferner ist die Abbildung $L^1(\mathbb{R}) \to \mathbb{C}$, $f \mapsto \mathcal{L}\{f\}(\gamma)$ linear und stetig und damit ein (Algebren-) Homomorphismus. Dieser ist nicht identisch null, denn: γ ist stetig und $\gamma(\mathbb{R}) \subset \overline{\mathbb{D}} \setminus \{0\}$. Also existiert ein $x_0 \in (0, \infty)$ mit $\gamma(x_0) \neq 0$ und zu $\varepsilon = \frac{|\gamma(x)|}{2}$ ein zugehöriges $\delta > 0$, sodass $|\gamma(x) - \gamma(x_0)| \leq \varepsilon$ für alle $x \in (x_0 - \delta, x_0 + \delta)$. Weiter gilt $|\gamma(x)| \geq ||\gamma(x_0)| - |\gamma(x) - \gamma(x_0)|| \geq \varepsilon$ für alle $x \in (x_0 - \delta, x_0 + \delta)$. Betrachte dann die Funktion $f(x) = \mathbbm{1}_{B_{\delta}(x_0)}(x)\overline{\gamma(x)}$, es ist $f \in L^1(\mathbb{R}_+)$ und es gilt:

$$\mathcal{L}\{f\}(y) = \int_{\mathbb{R}_+} f(x)\gamma(x)d\mathbf{x} = \int_{B_{\delta}(x_0)} \gamma(x)\overline{\gamma(x)}d\mathbf{x} = \int_{B_{\delta}(x_0)} |\gamma(x)|d\mathbf{x} \ge 2\delta\epsilon > 0$$

Also ist $L^1(\mathbb{R}_+) \to \mathbb{C}$, $f \mapsto \mathcal{L}\{f\}(\gamma)$ ein Charakter von $L^1(\mathbb{R}_+)$.

Es gilt auch die Umkehrung von Lemma 3.10:

Lemma 3.11. Sei $\varphi \colon L^1(\mathbb{R}_+) \to \mathbb{C}$ ein nichttrivialer (Algebren-) Homomorphismus, dann existiert genau ein stetiger (Gruppen-) Homomorphismus $\gamma \colon \mathbb{R}_+ \to \overline{\mathbb{D}}$, welcher $\varphi(f) = \mathcal{L}\{f\}(\gamma)$ erfüllt.

Beweis. Sei $\varphi \colon L^1(\mathbb{R}_+) \to \mathbb{C}$ ein nicht trivialer Homomorphismus. Nach Lemma 2.6 gilt $\varphi \in (L^1(\mathbb{R}_+))^*$, also existiert genau ein $\gamma \in L^{\infty}(\mathbb{R}_+)$, sodass $\varphi(f) =$

 $\int_0^\infty f(x)\gamma(x)\mathrm{d}x$ und $\|\gamma\|_\infty=\|\varphi\|\leq 1.$ Für $f,g\in L^1(\mathbb{R}_+)$ gilt dann:

$$\varphi(f * g) = \int_0^\infty (f * g)(x)\gamma(x)dx = \int_0^\infty g(y) \left[\int_0^y f(y - x)\gamma(x)dx \right] dy$$
$$= \int_0^\infty g(y)\varphi(f_y)dy$$

als auch:

$$\varphi(f * g) = \varphi(f)\varphi(g) = \int_0^\infty g(y)\varphi(f)\gamma(y)\mathrm{d}y$$

Zusammen folgt

$$\int_0^\infty g(y) \left[\varphi(f_y) - \varphi(f) \gamma(y) \right] \mathrm{d}y$$

für alle $g \in L^1(\mathbb{R}_+)$. Die Abbildung $y \mapsto \varphi(f_y) - \varphi(f)\gamma(y)$ ist Element von $L^{\infty}(\mathbb{R}_+)$ also folgt

$$\varphi(f_y) = \varphi(f)\gamma(y)$$

für alle $f \in L^1(\mathbb{R}_+)$ und fast überall in \mathbb{R}_+ . Wähle nun $f \in L^1(\mathbb{R}_+)$, sodass $\varphi(f) \neq 0$. Dann gilt $\gamma(y) = \varphi(f_y)/\varphi(f)$ fast überall in \mathbb{R}_+ . Die rechte Seite ist nach 3.1 stetig also ist auch γ stetig und es folgt die Gültigkeit von

(3.2)
$$\varphi(f_y) = \varphi(f)\gamma(y)$$

auf ganz \mathbb{R}_+ . Ersetzen wir in Gleichung (3.2) y durch x+y erhalten wir

$$\varphi(f)\gamma(x+y) = \varphi(f_{xy}) = \varphi((f_x)_y)$$

Ersetzt man f durch f_x , so folgt $\varphi(f_x)\gamma(y)=\varphi(f_{xy})$. Zusammen gilt

$$\varphi(f)\gamma(xy) = \varphi(f_x)\gamma(y) = \varphi(f)\gamma(x)\gamma(y)$$

Für $\varphi(f) \neq 0$ folgt $\gamma(x+y) = \gamma(x)\gamma(y)$ für alle $x, y \in \mathbb{R}$. Daher ist $\gamma \colon (\mathbb{R}_+, +) \to (\mathbb{C}, \cdot)$ ein Homomorphismus und es gilt $|\gamma(x)| \leq 1$ für alle $x \in \mathbb{R}_+$. Insgesamt wurde gezeigt, dass $\gamma \colon (\mathbb{R}_+, +) \to (\overline{\mathbb{D}}, \cdot)$ ein stetiger Homomorphismus ist und $\varphi(f) = \mathcal{L}\{f\}(y)$ für alle $f \in L^1(\mathbb{R}_+)$ gilt.

- Bemerkung 3.12. (i) Ähnlich zur Betrachtung von $L^1(\mathbb{R})$ können wir hier die Menge $\Omega(L^1(\mathbb{R}_+))$ mit der Menge aller Homomorphismen von $\mathbb{R}_+ \to \overline{\mathbb{D}}$ charakterisieren. Es stellt sich die Frage ob analog zu Lemma 3.5 wieder eine genaue Charakterisierung dieser Menge existiert.
 - (ii) Sei (H,+) eine Halbgruppe. Ein Charakter ist eine stetige Abbildung $\gamma \colon (S,+) \to (\overline{\mathbb{D}},\cdot)$ mit $\gamma(t+s) = \gamma(t)\gamma(s)$ für alle $s,t \in S$. Bezeichne mit Γ_S die Menge aller Charaktere auf S.

Lemma 3.13. Sei $s \in \mathbb{C}$ mit $\operatorname{Re}(s) \geq 0$, dann definiert $\gamma_s(x) = e^{-sx}$ einen stetigen Homomorphismus $\gamma_s \colon (\mathbb{R}_+, +) \to (\overline{\mathbb{D}}, \cdot)$ und jeder stetige Homomorphismus von $(\mathbb{R}_+, +)$ nach $(\overline{\mathbb{D}}, \cdot)$ ist schon von dieser Form.

Beweis 1 von Lemma 3.13: Sei $s \in \mathbb{C}$ mit $\text{Re}(s) \geq 0$, dann ist $|\gamma_s(x)| \leq 1$ für alle $x \in \mathbb{R}_+$ und $\gamma_s(x_1 + x_2) = \gamma_s(x_1)\gamma_s(x_2)$ für alle $x_1, x_2 \in \mathbb{R}$. Also ist γ_s ein stetiger Homomorphismus.

Sei nun $\gamma : (\mathbb{R}_+, +) \to (\overline{\mathbb{D}}, \cdot)$ ein stetiger Homomorphismus. Dann gilt $\gamma(0) = \gamma(0)^2$ und deswegen entweder $\gamma(0) = 1$ oder $\gamma(0) = 0$. Im zweiten Fall wäre γ identisch null ist $\gamma(0) = 1$. Wähle nun $\delta > 0$, sodass $|\gamma(t) - 1| < 1$ für alle $t \in [0, \delta]$. Setze dann $\tau = -\ln(\gamma(\delta))/\delta$ wobei der Argument von $\ln(\gamma(\delta))$ im Intervall $[-\frac{\pi}{2}, \frac{\pi}{2}]$ gewählt wird.

Dann gilt $\gamma(\delta)=e^{-\tau\delta}$ und $\mathrm{Re}(\tau)\geq 0$. Auf Grund der Homomorphie gilt $\gamma(\delta/2)\in\{e^{-\tau\delta/2},-e^{-\tau\delta/2}\}$. Wegen $\delta/2\in[0,\delta]$ gilt $|\gamma(\delta/2)-1|<1$ somit muss $\gamma(\delta/2)=e^{-\tau\delta/2}$ gelten. Analog folgt $\gamma(\delta/2^k)=e^{-\tau\delta/2^k}$ für alle $k\in\mathbb{N}$. Wir schließen $\gamma(\delta m/2^k)=e^{-\tau\delta m/2^k}$ für alle $k,m\in\mathbb{N}$. Für jede positive Zahl t existiert eine binäre Darstellung, also insbesondere eine Folge der Form $t_n=\sum_{k=0}^n\frac{m_k}{2^k}$ mit $t_n\to t$ für $n\to\infty$. Dann gilt jedoch

$$\gamma(\delta t) = \gamma(\lim_{n \to \infty} \delta t_n) = \lim_{n \to \infty} \gamma(\delta t_n) = \lim_{n \to \infty} \gamma(\delta \sum_{k=0}^n \frac{m_k}{2^k}) = \lim_{n \to \infty} \prod_{k=1}^n \gamma(\delta m_k / 2^k)$$
$$= \lim_{n \to \infty} \prod_{k=1}^n e^{-\tau \delta m_k / 2^k} = \lim_{n \to \infty} e^{-\tau \delta t_n} = e^{-\tau \delta \lim_{n \to \infty} t_n} = e^{-\tau \delta t}$$

und auch $\gamma(t) = e^{-\tau t}$ für alle $t \in \mathbb{R}_+$.

Beweis 2 von Lemma 3.13: Analog zum Beweis von Lemma 3.5 sieht man ein, dass γ auf $(0,\infty)$ differenzierbar ist. Ferner ist γ auch in 0 rechtsseitig differenzierbar. Dies führt auf folgende Differenzialgleichung: Ferner folgt auch dir rechtsseitige Differenzierbarkeit von γ in 0. Also gilt folgende Differenzialgleichung:

$$\begin{cases} D_{+}\gamma(x) &= D_{+}\gamma(0)\gamma(x) \quad \forall x \in [0, \infty) \\ \gamma(0) &= 1 \end{cases}$$

Die Funktion $\psi(x) = e^{D+\gamma(0)x}$ erfüllt obige Differentialgleichung. Es stellt sich die Frage ob diese auch die einzige Lösung ist. Betrachten dazu $\psi(-x)\gamma(x)$, dann gilt:

$$D_{+}(\psi(-x)\gamma(x)) = \gamma(x)D_{+}\psi(-x) + \psi(-x)D_{+}\gamma(x)$$

= $-D_{+}\gamma(0)\gamma(x)\psi(-x) + D_{+}\gamma(0)\gamma(x)\psi(-x) = 0$

Also ist $\psi(-x)\gamma(x)$ konstant und auf Grund der Anfangswertbedingung also $\gamma(x)=\psi(x)=e^{D_+\gamma(0)x}$. Aus $|\gamma(x)|\leq 1$ folgt $\mathrm{Re}(D_+\gamma(0))\leq 0$ und damit die Behauptung.

Theorem 3.14 (Gelfandtransformation auf $L^1(\mathbb{R}_+)$). Betrachte die Banachalgebra $L^1(\mathbb{R}_+)$ zusammen mit der Faltung als Multiplikation, dann gilt

$$\Omega(L^1(\mathbb{R}_+)) = \left\{ \mathcal{L}\{f\}(s) \colon L^1(\mathbb{R}_+) \to \mathbb{C}, \ \mathcal{L}\{f\}(s) = \int_0^\infty f(x) e^{-sx} \mathrm{d}x \, | \, s \in \mathbb{C} \ \mathit{mit} \ \mathrm{Re}(s) \ge 0 \right\}$$

insbesondere ist damit die Gelfandtransformation für $f \in L^1(\mathbb{R}_+)$ gegeben durch:

$$\mathcal{L}{f}: \{s \in \mathbb{C} | \operatorname{Re}(s) \ge 0\} \to \mathbb{C}, \ \mathcal{L}{f}(s) = \int_0^\infty f(x)e^{-sx} dx$$

Dies stimmt mit der Laplacetransformation auf $L^1(\mathbb{R}_+)$ überein.

Beweis. Aus den Lemmata in Abschnitt 3.2 erschließt sich die folgende Identifizierung:

$$\Omega(L^1(\mathbb{R}_+)) \stackrel{3.12}{\longleftrightarrow} \Gamma_{\mathbb{R}_+} \stackrel{3.13}{\longleftrightarrow} \{s \in \mathbb{C} | \operatorname{Re}(s) \geq 0\}$$

Sei $\varphi \in \Omega(L^1(\mathbb{R}_+))$, wobei $\varphi \colon L^1(\mathbb{R}_+) \to \mathbb{C}$, dann existiert genau ein $\gamma \in \Gamma_{\mathbb{R}_+}$, sodass

$$\varphi(f) = \int_0^\infty f(x)\gamma(x)dx, \quad \forall f \in L^1(\mathbb{R}_+)$$

nach Lemma 3.13 ist γ schon von der Form $\gamma(x)=e^{-sx}$. Damit gilt obige Darstellung von $\Omega(L^1(\mathbb{R}_+))$.

Anhang A. Topologische Grundbegriffe

Definition A.1 (Topologie). Sei X eine nichtleere Menge. Eine Teilmenge $\tau \subset \mathcal{P}(X)$ heißt Topologie auf X, falls gilt:

- (T1) $\emptyset, X \in \tau$
- (T2) Falls $X_{\lambda} \in \tau$ für alle $\lambda \in \Lambda$ gilt, dann gilt auch:

$$\bigcup_{\lambda\in\Lambda}X_\lambda\in\tau$$

(T3) Für $X_1, \ldots, X_n \in \tau$ gilt schon

$$\bigcap_{i=1}^{n} X_i \in \tau$$

Wir nennen das Paar (X, τ) topologischen Raum und die Elemente von τ offene Teilmengen von T.

Definition A.2. Ein Topologischer Raum heißt T_1 -Raum falls jeder Punkt eine abgeschlossene Menge bezüglich der gegeben Topologie ist.

Definition A.3. Ein Topologischer Raum (X, τ) heißt Hausdorff (oder T_2), falls für alle $x, y \in X$ mit $x \neq y$ offene Umgebungen U_x, U_y existieren mit $U_x \cap U_y = \emptyset$.

Bemerkung A.4. Sei (X, τ) ein topologischer Raum.

- (i) Eine Teilmenge $A \subset X$ heißt abgeschlossen, falls $X \setminus A$ offen ist.
- (ii) Eine Umgebung eines Punkts $x \in X$ ist eine Menge U, sodass es ein $O \in \tau$ gibt mit $x \in O \subset U$. Wir bezeichnen mit \mathcal{U}_x die Menge aller Umgebungen des Punktes x.
- (iii) Eine Folge $(x_n) \subset X$ heißt konvergent gegen x, falls $\forall U \in \mathcal{U}_x \colon \exists N \in \mathbb{N} \colon \forall n \geq N \colon x_n \in U$.
- (iv) Im Allgemeinen muss der so Grenzwert einer Folge hier nicht eindeutig sein. Betrachte zum Beispiel die triviale Topologie $\tau = \{\emptyset, X\}$. Hier Konvergiert jede Folge gegen jeden Punkt in X.
- (v) Ferner ist die Charakterisierung des Abschlusses einer Menge mittels Folgen nicht mehr allgemein gültig.

In Topologischen Räumen benötigt man einen allgemeineren Konvergenzbegriff, dazu definieren wir:

Definition A.5 (gerichtete Menge). Sei I eine nichtleere Menge. I versehen mit einer Relation \leq heißt gerichtet, falls gilt:

- (G1) Für alle $i \in I$ gilt $i \leq i$.
- (G2) Für alle $i, j, k \in I$ mit $i \leq j$ und $j \leq k$ folgt $i \leq k$.
- (G3) Für alle $i_1, i_2 \in I$ existiert ein $j \in J$, sodass $i_1 \leq j$ und $i_2 \leq j$ gilt.

Definition A.6. Unter einem Netz einer Menge X versteht man eine Abbildung von einer gerichteten Menge I nach X. Schreibe $(x_i)_{i \in I}$. Ein Netz $(x_i)_{i \in I}$ in einem topologischen Raum heißt konvergent gegen x, falls

$$\forall U \in \mathcal{U}_x \colon \exists j \in I \colon \forall i \geq j \colon x_i \in U$$

Bemerkung A.7. Die Menge der natürlichen Zahlen ist mit der üblichen Ordnung gerichtet. Also ist jede Folge ein Netz.

Definition A.8 (Teilnetz). Seien (J, \leq) und (I, \leq) gerichtete Mengen mit nicht notwendigerweise gleicher Ordnung. Eine Abbildung $\varphi \colon I \to J$ heißt kofinal, falls für alle $j_o \in J$ ein $i_0 \in I$ existiert, sodass $\varphi(i) \geq j_0$ für alle $i \geq i_0$ gilt. Ein Netz $(y_i)_{i \in I}$ heißt Teilnetz eines Netzes $(x_j)_{j \in J}$, falls es eine kofinale Abbildung $\varphi \colon I \to J$ gibt mit $x_{\varphi}(i) = y_i$ für alle $i \in I$.

Satz A.9. Ein Netz $(x_i)_{i \in I}$ in X konvergiert genau dann gegen $x \in X$, wenn jedes Teilnetz von (x_i) ein Teilnetz besitzt, dass gegen x konvergiert.

Definition A.10 (Kompakt). Sei (X, τ) ein topologischer Raum und $K \subset X$. K heißt kompakt, falls gilt: Für jede offene Überdeckung, d.h. ein System offener Teilmengen $\{O_i : i \in I\}$ mit

$$K \subset \bigcup_{i \in I} O_i$$

existiert eine endliche Teilüberdeckung O_{i_1}, \dots, O_{i_n} mit

$$K \subset \bigcup_{k=1}^{n} O_{i_k}$$

Satz A.11. Sei (X, τ) ein topologischer Raum. Sei $K \subset X$ eine kompakte Teilmenge dann ist auch jede abgeschlossene Teilmenge $A \subset K$ kompakt.

Satz A.12 (Netzcharakterisierung der Kompaktheit). Sei (X, τ) ein topologischer Raum, dann ist für $K \subset X$ äquivalent:

- (i) K ist kompakt.
- (ii) Jedes Netz in K hat ein in der eingeschränkten Topologie (K, τ_K) konvergentes Teilnetz.

Definition A.13 (kompakt offen Topologie). Seien X, Y topologische Räume. Für eine kompakte Teilmenge $K \subset X$ und eine offene Teilmenge $U \subset Y$ definiere:

$$S_{C,U} = \{ f \in C(X,Y) \colon f(C) \subset U \}$$

Die Mengen $S_{C,U}$ bilden eine Subbasis für eine Topologie auf C(X,Y). Diese wird die kompakt offen Topologie genannt.

Definition A.14 (Topologie der kompakten Konvergenz). Sei (Y, d) ein metrischer Raum und X ein topologischer Raum. Sei $f: X \to Y, K \subset X$ kompakt und $\varepsilon > 0$. Die Mengen

$$B_c(f,\varepsilon) = \{g \colon X \to Y \colon \sup\{d(f(x),g(x) \colon x \in C\} < \varepsilon\}$$

bilden eine Basis für eine Topologie auf der Menge aller Funktionen $f: X \to Y$.

Satz A.15. Ist in Definition A.13 Y ein metrischer Raum, dann stimmt die Topologie der kompakten Konvergenz mit der kompakt offen Topologie überein.

Satz A.16. Eine Folge $f_n: X \to Y$ konvergiert gegen eine Funktion $f: X \to Y$ in der Topologie der kompakten Konvergenz genau dann wenn sie auf jeder kompakten Teilmenge $K \subset X$ gleichmäßig gegen f konvergiert.

Anhang B. Der Satz von Banach-Alaoglu

Wiederholung B.1. Es ist bereits bekannt, dass in einem seperablen Banachraum X jede in X^* beschränkte Folge eine schwach-*konvergente Teilfolge besitzt. Ferner ist die Voraussetzung der Seperabilität essentiell für dieses Resultat. Der Satz von Banach-Alaoglu verallgemeinert dieses Resultat für beliebige Banachräume, jedoch lediglich im Sinne von Konvergenz von Netzen.

Definition B.2 (schwach-* Topologie). Sei X ein normierter Vektorraum mit Dualraum X^* . Für ein Netz $(f_i)_{i\in I}\subset X^*$ sagen wir (f_i) konvergiert gegen $f\in x^*$ genau dann wenn

$$\lim_{i \in I} f_i(x) = f(x) \quad \forall x \in X$$

Dies induziert eine Topologie auf X^* , die sogenannte schwach-* Topologie.

Satz B.3 (von Banach-Alaoglu). Sei X ein normierter Raum, dann ist die abgeschlossene Einheitskugel in X^* schwach-* kompakt.

LITERATUR

- [1] Adam Bobrowski, Functional analysis for probability and stochastic processes: an introduction, Cambridge University Press, Cambridge, UK; New York, 2005, OCLC: ocm57751668.
- [2] John B. Conway, A course in functional analysis, 2nd ed ed., Graduate texts in mathematics, no. 96, Springer, New York, 1997.
- [3] Eberhard Kaniuth, A course in commutative Banach algebras, Graduate texts in mathematics, no. 246, Springer, New York, NY, 2009, OCLC: ocn178312763.
- [4] V. G. Kurbatov, Functional differential operators and equations, Mathematics and its applications, no. v. 473, Kluwer, Dordrecht; Boston, 1999.
- [5] Gerard J. Murphy, C*-algebras and operator theory, Academic Press, Boston, 1990.
- [6] D Werner, Funktionalanalysis, Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2007 (German), OCLC: 401496663.