Algebra

May 27, 2017

0.1 Artinian rings and DVR (week 13)

0.1.1 Artinian rings

Def 1. R is called an Artinian ring if one of the followings holds:

- any non-empty set of ideals has a minimal element.
- any descending chain of ideals is stationary (DCC).

Goal:

- 1. $R = \cong R_1 \times \cdots \times R_l$ where R_i is an Artinain local rings.
- 2. Artinian \iff Noetherian $+ \dim = 0$.

Prop 0.1.1.

$$\bullet \quad \sqrt{\mathfrak{m}_i^{n_i} + \mathfrak{m}_j^{n_j}} = \sqrt{\sqrt{\mathfrak{m}_i^{n_i}} + \sqrt{\mathfrak{m}_j^{n_j}}}$$

Proof.

" \subseteq " $\forall a \in LHS$, that is, $a^n = b + c$ with $b \in m_i^{n_i} \subseteq \sqrt{m_i^{n_i}}$ and $c \in m_j^{n_j} \subseteq m_j^{n_j}$ then $a \in RHS$.

• If m is prime, $\sqrt{m^n} = m$

Proof.

"
$$\subseteq$$
 " $a \in LHS \Rightarrow a^k \in m^n$ and m is prime. $\Rightarrow a \in m$.
" \subseteq " $a \in RHSa \in m \Rightarrow a^n \in LHS$.

• If $m, m_i, i = 1, \dots, n$ are prime and $m \supseteq m_1 \cap \dots \cap m_n$, then $m \supseteq m_i$ for some i.

Proof.

Suppose not, then we pick $a_i \in m_i$ m. $b = a_1 \cdots a_n \in m_i \forall i. \leadsto b \in m_1 \cap \cdots \cap m_n \subseteq m$. But, m is prime, exist $a_i \in m$, a contradiction.

Prop 0.1.2. Let R be an Artinian ring

- (1) $I \subseteq R \leadsto R/I$ is also Artinian.
- (2) If R is an integral domain, then R is a field.

Proof.
$$\forall a \in R, \langle a \rangle \supseteq \langle a^2 \rangle \supseteq \cdots$$
 is a descending chain of ideals $\implies \langle a^l \rangle = \langle a^{l+1} \rangle = \cdots$ for some $l \in \mathbb{N} \implies a^l = ba^{l+1} \implies a^l(1-ab) = 0 \implies ab = 1$ since $a^l \neq 0$.

(3) Spec $R = \operatorname{Max} R$. ($\Longrightarrow \dim R = 0$)

Proof. $\forall p \in \operatorname{Spec} R, R/p$ is an integral domain $\rightsquigarrow R/p$ is a field $\rightsquigarrow p \in \operatorname{Max} R$.

(4) $|\operatorname{Max} R| < \infty$.

Proof. Consider the set $\left\{\bigcap_{\text{finite}} \mathfrak{m} \mid \mathfrak{m} \in \operatorname{Max} R\right\} \neq \emptyset$. So there exists a minimal element in this set (R is Artinian), say $\mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_k$. Now, for $\mathfrak{m} \in \operatorname{Max} R$, we have $\mathfrak{m} \cap \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_k = \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_k$ since the latter is minimal $\implies \mathfrak{m} \supseteq \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_k \rightsquigarrow \mathfrak{m} \supseteq \mathfrak{m}_i$ for some i, by Prop 0.1.1. $\rightsquigarrow m = m_i$, since m_i is max. So $\operatorname{Max} R = \{\mathfrak{m}_1, \ldots, \mathfrak{m}_k\}$.

(5) $\exists n_1, \dots, n_k \in \mathbb{N} \text{ s.t. } \langle 0 \rangle = \mathfrak{m}_1^{n_1} \mathfrak{m}_2^{n_2} \cdots \mathfrak{m}_k^{n_k} = \mathfrak{m}_1^{n_1} \cap \mathfrak{m}_2^{n_2} \cap \cdots \cap \mathfrak{m}_k^{n_k}.$

Proof.

• $\mathfrak{m}_1^{n_1}\mathfrak{m}_2^{n_2}\cdots\mathfrak{m}_k^{n_k}=\mathfrak{m}_1^{n_1}\cap\mathfrak{m}_2^{n_2}\cap\cdots\cap\mathfrak{m}_k^{n_k}$. Recall I_i,I_j are coprime for $i\neq j\leadsto\prod_{i=1}^nI_i=\bigcap_{i=1}^nI_i$. And, by Prop 0.1.1

$$\sqrt{\mathfrak{m}_i^{n_i}+\mathfrak{m}_j^{n_j}}=\sqrt{\sqrt{\mathfrak{m}_i^{n_i}}+\sqrt{\mathfrak{m}_j^{n_j}}}=\sqrt{\mathfrak{m}_i+\mathfrak{m}_j}=\sqrt{R}=R \leadsto \mathfrak{m}_i^{n_i}+\mathfrak{m}_i^{n_j}=R.$$

• $\langle 0 \rangle = \mathfrak{m}_1^{n_1} \mathfrak{m}_2^{n_2} \cdots \mathfrak{m}_k^{n_k}$ for suitable $\{n_i\}$ that $\mathfrak{m}_i^{n_i} = \mathfrak{m}_i^{n_i+1}$ Let $S = J \subseteq R \mid J\mathfrak{m}_1^{n_1} \mathfrak{m}_2^{n_2} \cdots \mathfrak{m}_k^{n_k} \neq 0$. If $\langle 0 \rangle \neq \mathfrak{m}_1^{n_1} \mathfrak{m}_2^{n_2} \cdots \mathfrak{m}_k^{n_k}$, then $\mathfrak{m}_i \in S$. $\leadsto S \neq \emptyset$. Since R is artinian, exist minimal element $J_0 \in S$. By definition of S, $\exists x \in J_0$, $x\mathfrak{m}_1^{n_1}\mathfrak{m}_2^{n_2} \cdots \mathfrak{m}_k^{n_k} \neq 0 \leadsto \langle x \rangle \in S$ and $\langle x \rangle \subseteq J_0 \Rightarrow \langle x \rangle = J_0$. Also, $x\mathfrak{m}_1^{n_1+1}\mathfrak{m}_2^{n_2+1} \cdots \mathfrak{m}_k^{n_k+1} = x\mathfrak{m}_1^{n_1}\mathfrak{m}_2^{n_2} \cdots \mathfrak{m}_k^{n_k} \neq 0 \leadsto I = x\mathfrak{m}_1 \dots \mathfrak{m}_k \in S$ and $I \subseteq J_0 = xR \leadsto I = xR$.

$$(\mathfrak{m}_1\mathfrak{m}_2\cdots\mathfrak{m}_k)xR = xR \leadsto (\mathfrak{m}_1\cap\mathfrak{m}_2\cap\cdots\cap\mathfrak{m}_k)xR = xR \leadsto (\operatorname{Jac} R)xR = xR$$

By Nakayama's lemma, $xR = 0 \implies x = 0$, which is a contradiction.

(6) The nilradical \mathfrak{n}_R of R is nilpotent.

Proof. By (3), $\mathfrak{n}_R = \operatorname{Jac} R$. Let $n = \max\{n_1, \dots, n_k\}$ in (5), then $\mathfrak{n}_R^n = (\mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_k)^n = 0$.

Goal 1: $R \cong R_1 \times R_k$ where R_i is Artinian local ring.

Proof. By Chinese Remainder theorem,

$$R \cong R/\langle 0 \rangle = R/\mathfrak{m}_1^{n_1}\mathfrak{m}_2^{n_2}\cdots\mathfrak{m}_h^{n_k} \cong R/\mathfrak{m}_1^{n_1}\times R/\mathfrak{m}_2^{n_2}\times\cdots\times R/\mathfrak{m}_h^{n_k}$$

Let $R_i = R/\mathfrak{m}_i^{n_i}$, then $\bar{\mathfrak{m}} \in \operatorname{Max} R_i$ if $\mathfrak{m} \in \operatorname{Max} R$ and $\mathfrak{m} \supset \mathfrak{m}_i^{n_i} \leadsto \mathfrak{m} = \mathfrak{m}_i$. So $\operatorname{Max} R_i = \{\bar{\mathfrak{m}}_i\} \Longrightarrow R_i$ is a local ring.

Lemma 1. Let V be a K-vector space, TFAE

- (1) $\dim_k V < \infty$
- (2) V has DCC on subspaces.
- (3) V has ACC on subspaces.

Proof.

<u>Fact</u>: If $V_1 \subseteq V_2$ is finite dim vector space over K, then $V_1 = V_2$ iff $\dim_k V_1 = \dim_k V_2$. Otherwise, $\dim_k V_1 \subseteq \dim_k V_2$

$$(1) \Leftrightarrow (3)$$

" \Rightarrow " Suppose exists a chain in vector space V with strictly increasing and infinite length,

$$V_1 \subset V_2 \subset \cdots \subseteq V \Rightarrow \dim_k V_1 \leq \dim_k V_2 \leq \cdots \leq \dim_k V$$

Then, $\dim_k V$ must be infinite.

" \Leftarrow " If $\dim_k V$ is ininite, let $S = \{b_1, b_2, \dots\}$ be basis of V.

$$\langle b_1 \rangle_K \subset \langle b_1, b_2 \rangle_K \subset \cdots$$

is a infinite accending chain.

Similarly, $(1) \Leftrightarrow (2)$.

Observation: If R is Northerian and dim R = 0, then $\langle 0 \rangle = \bigcap_{i=1}^k q_i$ (primary decomposition) and $\sqrt{q_i} = \mathfrak{m}_i \in \operatorname{Spec} R = \operatorname{Max} R$. Also, $\exists n_i \ \mathfrak{m}_1^{n_1} \mathfrak{m}_2^{n_2} \cdots \mathfrak{m}_k^{n_k} = \langle 0 \rangle$

Since \mathfrak{m}_i is finitely generated, $\exists n_i$ s.t. $\mathfrak{m}_i^{n_i} \subseteq q_i$. Hence

$$\mathfrak{m}_1^{n_1}\mathfrak{m}_2^{n_2}\cdots\mathfrak{m}_k^{n_k}=\mathfrak{m}_1^{n_1}\cap\mathfrak{m}_2^{n_2}\cap\cdots\cap\mathfrak{m}_k^{n_k}\subseteq q_1\cap q_2\cap\cdots\cap q_k=\langle 0\rangle$$

$$\implies \mathfrak{m}_1^{n_1}\mathfrak{m}_2^{n_2}\cdots\mathfrak{m}_k^{n_k} = \langle 0 \rangle$$

Goal 2: In a ring R, let $\mathfrak{m}_1, \ldots, \mathfrak{m}_n$ be, not necessarily different, maximal ideals in R s.t. $\mathfrak{m}_1\mathfrak{m}_2\cdots\mathfrak{m}_n=0$. Then R is Artinian $\iff R$ is Noetherian.

Proof. We have a chain of ideals in R: $\mathfrak{m}_0 = R \supset \mathfrak{m}_1 \supset \mathfrak{m}_1 \mathfrak{m}_2 \supset \cdots \supset \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_n = 0$.

Let $M_i = \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_{i-1}/\mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_i$ as R-module. Notice that $\mathfrak{m}_i M_i = 0$, we can treat M_i as R/\mathfrak{m}_i -module. But R/\mathfrak{m}_i is a field, so M_i can be regarded as a vector space. Hence, by lemma 1

$$M_i$$
 is Artinian \iff M_i is Noetherian.

By definition,

$$0 \to \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_i \to \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_{i-1} \to M_i \to 0$$

By Ex1,

$$\begin{split} \mathfrak{m}_0 &= R \text{ Artinian } \iff \mathfrak{m}_1, M_1 \text{ Artinian} \\ &\iff \mathfrak{m}_1 \mathfrak{m}_2, M_1, M_2 \text{ Artinian} \\ &\vdots \\ &\iff \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_n, M_1, \cdots, M_n \text{ Artinian} \\ &\iff \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_n, M_1, \cdots, M_n \text{ Neotherian} \\ &\vdots \\ &\iff \mathfrak{m}_1 \mathfrak{m}_2, M_1, M_2 \text{ Neotherian} \\ &\iff \mathfrak{m}_1, M_1 \text{ Neotherian } \iff \mathfrak{m}_0 = R \text{ Neotherian} \end{split}$$

Note: Goal 2 is accomplish by recongnizing that,

- R is Artinian $\implies \mathfrak{m}_1^{n_1} \cdots \mathfrak{m}_k^{n_k} = \langle 0 \rangle$ by prop 0.1.2 (4).
- R is Neother + dim 0 $\implies \mathfrak{m}_1^{n_1 \cdots \mathfrak{m}_k^{n_k} = \langle 0 \rangle}$ by Observation.

0.1.2 DVR (Discrete Valuation Ring)

Def 2.

- (1) Let K be a field. A discrete valuation of K is $\nu: K^{\times} \to \mathbb{Z}$ ($\nu(0) = \infty$) s.t.
 - $\nu(xy) = \nu(x) + \nu(y)$.
 - $\nu(x \pm y) = \min{\{\nu(x), \nu(y)\}}.$
- (2) The valuation ring of ν is $R = \{ x \in K \mid \nu(x) \ge 0 \}$, called a DVR.
 - Fact $\nu(1) = 0 : \nu(1) = \nu(1) + \nu(1) \implies \nu(1) = 0$ $\nu(x) = -\nu(x^{-1}) : 0 = \nu(xx^{-1}) = \nu(x) + \nu(x^{-1})$
 - $\mathfrak{m} = \{ x \in R \mid \nu(x) > 0 \}$ is the unique maximal ideal in R since $\nu(x) = 0 \iff x$ is a unit.

Proof.

"
$$\Rightarrow$$
 " $\nu(x) = 0 \leadsto \nu(x^{-1}) = 0 \leadsto x^{-1} \in R$
" \Leftarrow " $\nu(x^{-1}), \nu(x) \ge 0$. And, $\nu(x) = -\nu(x) \le 0 \leadsto \nu(x) = 0$

- Let $t \in R$ with $\nu(t) = 1$, then $\mathfrak{m} = \langle t \rangle$. $\forall x \in \mathfrak{m}, \nu(x) = k > 0$. $\rightsquigarrow \nu(x(t^k)^-1) = \nu(x) - k\nu(t) = 0 \rightsquigarrow x = t^k u$, u is unit in R.
- Let $I \subseteq \mathfrak{m}$ and define $m = \min\{l \in \mathbb{N} \mid x = t^l u \mid \forall x \in I\}$. Then $I = \langle t^m \rangle$.

Prop 0.1.3. R is a DVR \iff R is 1-dimensional normal, Noetherian local domain.

Proof. " \Rightarrow "

$$DVR \implies PID \implies UFD \implies normal$$

 $\implies Neotherian$

 $\forall \ P \neq 0 \in \operatorname{Spec} R, \ P = < t^k > = m^k \text{ for some } k \in \mathbb{N} \leadsto P = \sqrt{P} = \sqrt{m^k} = m \leadsto P = m \leadsto \langle 0 \rangle \subset m \leadsto \dim R = 1$ " \Leftarrow "

- $\mathfrak{m} \neq \mathfrak{m}^2$: If $\mathfrak{m} = \mathfrak{m}^2$ and $\mathfrak{m} = JacR$, then $m = \langle 0 \rangle$ by Nakayama lemma, a contradiction to dim R = 1.
- Let $t \in \mathfrak{m} \mathfrak{m}^2$ and $\mathfrak{m} = \langle t \rangle$

Consider $M = \mathfrak{m}/\langle t \rangle$ and assume $M \neq 0$

<u>Fact</u> $I = ann(\bar{x})$ $\bar{x} \in M \implies I \in \text{Spec } R$ Since $ab \in I$, $a, b \notin I$, then $\bar{a}\bar{b}\bar{x} = 0$, and $\bar{b}\bar{x} \neq 0$. Suppose I is max, $ann(\bar{b}\bar{x}) \supseteq ann(\bar{x}) \leadsto ann(\bar{b}\bar{x}) = ann(\bar{x})$ Then, $a \in ann(\bar{b}\bar{x}) = ann(\bar{x})$, a contradiction.

By Fact, $\exists \, \bar{x} \neq 0 \in M \text{ s.t. } ann(\bar{x}) = \mathfrak{m} \leadsto x\mathfrak{m} = \langle t \rangle = tR \leadsto \frac{x}{t}\mathfrak{m} \subseteq R.$

- (1) If $\frac{x}{t} = R \leadsto \frac{xy}{t} = 1$ for some $y \in \mathfrak{m} \leadsto t = xy \in \mathfrak{m}$, a contratiction.
- (2) If $\frac{x}{t} \subset \mathfrak{m}$, let $\mathfrak{m} = \langle y_1, \cdots, y_n \rangle_R$ Write $\frac{x}{t}y_i = \sum_{j=1}^l a_{ij}y_j \forall i = 1, \cdots, l$ By using determinat

trick, we have $\frac{x}{t}$ is integral over R, but R is normal $\rightsquigarrow \frac{x}{t} \in R \rightsquigarrow x \in \langle t \rangle \rightsquigarrow \bar{x} = \bar{0}$, a contradiction.

Therefore, $\mathfrak{m} = \langle t \rangle$.

• By Ex3, $\bigcap_{n=0}^{\infty} m^n = 0$. Thus, $\forall x \in R, \exists ! k \text{ s.t. } x \in m^k \text{ and } x \notin m^k + 1. \rightsquigarrow x = t^k u$, u is units.

- Define $\nu(x) = k$ and $\forall \frac{x}{y} \in \operatorname{Frac} R\nu(\frac{x}{y}) = \nu(x) \nu y$.

 - $(1) \frac{x}{y} = \frac{x'}{y'} \rightsquigarrow xy' = x'y \rightsquigarrow \nu(xy') = \nu(x'y).$ $(2) \nu(\frac{a}{b}\frac{c}{a}) = \nu(ac) \nu(bd) = \left[\nu(a) \nu(b)\right] \left[\nu(c) \nu(d)\right] = \nu(\frac{a}{b}) \nu(\frac{c}{d})$ $(3) \nu(\frac{a}{b} + \frac{c}{d}), \nu(a) = v_a, \nu(b) = v_b, \nu(c) = v_c, \nu(d) = v_d. \quad \nu(\frac{a}{b}) + \frac{c}{d} = \min\{\nu(\frac{a}{b}), \nu(\frac{c}{d})\} = \min\{\nu(\frac{ad+bd}{bd}).$

П

Therefore, R is DVR.

0.1.3 Dedekind domains

Def 3. A Dedekind domain is a Noetherian normal domain of dim 1.

Def 4. Let R be an integral domain and $K = \operatorname{Frac}(R)$. A nonzero R-submodule I of K is called a fractional ideal of R if $\exists 0 \neq a \in R$ s.t. $aI \subset R$.

Eg 0.1.1. If $I = \langle f_1, \ldots, f_n \rangle_R$ with $f_i = \frac{a_i}{b_i} \in K$, then $a = b_1 b_2 \cdots b_n$ and $aI \subset R \implies I$ is fractional.

In general, if R is a Noetherian, then every fractional ideal I of R is finitely generated.

Def 5. A fractional ideal I of R is invertible if $\exists J$: a fractional ideal of R s.t. IJ = R.

Prop 0.1.4.

1. If I is invertible, then $J = I^{-1}$ is unique and equals $J = (R : I) \triangleq \{ a \in K \mid aI \subset R \}$.

Proof.

$$J \subseteq (R:I) \subseteq (R:I)R \subseteq (R:I)IJ \subseteq RJ = J \leadsto J = (R:I)$$

2. If I is invertible, then I is a finitely generated R-module.

Proof.

$$I(R:I) = R \leadsto 1 = \sum_{i=0}^{k} x_i y_i, \ x_i \in I \text{ and } y_i \in (R:I). \text{ Then, } \forall x \in I, \ x = \sum_{i=0}^{k} \underbrace{(xy_i)}_{\in R} x_i \leadsto I = \langle x_0, \cdots, x_k \rangle_R$$

3. Let R be a local domain but not a field, $K = \operatorname{Frac}(R)$. Then R is a DVR \iff every nonzero fractional ideal I of R is invertible.

Proof. $"\Rightarrow"$

Let I be fractional ideal of R, then $\exists a \in R \leadsto aI \subseteq R$. And, $\mathfrak{m} = \langle t \rangle$, since R is not a field $t \neq 0. \iff a = t^k u, u \text{ is unit } \in R.$

If aI = R, then $J = \langle a \rangle_R$. $\leadsto IJ = R$. If not, $aI \subsetneq R \leadsto aI \subseteq \mathfrak{m} \leadsto aI = \langle t^l \rangle \leadsto I = \langle t^{l-k} \rangle_R$. Let $J = \langle t^{k-l} \rangle_R$, then IJ = R.

• R is Neother: $\forall I \subseteq R \text{ and } Iisinvertible \leadsto I \text{ is f.g. } R \text{ module.}$

- $\mathfrak{m} \neq \mathfrak{m}^2$ \mathfrak{m} is unique max in R: $\mathfrak{m} = \mathfrak{m}^2$ and $\mathfrak{m} = JacR \leadsto \mathfrak{m} = 0 \leadsto R$ is a field, a contradiction.
- $\mathfrak{m} = \langle t \rangle_R$: Pick $t \in \mathfrak{m} - \mathfrak{m}^2$ and let $\mathfrak{m}\mathfrak{m}^{-1} = R \leadsto t\mathfrak{m}^{-1} \subseteq R$. If $t\mathfrak{m} \subseteq$, then $t\mathfrak{m}\mathfrak{m}^{-1} = tR \subseteq \mathfrak{m}^2$, a contradiction. Therefore, $\mathfrak{m} \subset t\mathfrak{m} \leadsto t\mathfrak{m} = R \leadsto t\mathfrak{m}^{-1} = tR = \mathfrak{m} \leadsto \mathfrak{m} = \langle t \rangle_R$.

• Using the same construction ν in prop 0.1.3 we have the R is DVR.

Theorem 1. Let R be an integral domain and K = Frac(R). TFAE

- (a) R is a Dedekind domain.
- (b) R is Noetherian and R_P is a DVR for all $P \in \operatorname{Spec} R$.
- (c) Every nonzero fractional ideal of R is invertible.
- (d) Every nonzero proper ideal of R can be written (uniquely) as a product of powers of prime ideals.

Proof.

 $(a)\Leftrightarrow(b)$:

- R is normal $\iff R_P$ is normal for all $P \in \operatorname{Spec} R$.
- $\dim R_P = 1 \quad \forall P \in \operatorname{Spec} R \iff h(P) = 1 \quad \forall 0 \neq P \in \operatorname{Spec} R \iff \dim R = 1.$

 $(b)\Leftrightarrow(c)$:

- (b) and (c) \implies Risneotherian
- $I_P(R:I)_P = I_P(R_P:I_P)$ (Hint I is f.g.)
- R_P is DVR $\forall P \in \operatorname{Spec} R \iff$ Every nonzero fractional ideal of R is invertable

$$\forall P \in \operatorname{Spec} R \ R_P = I_P(R_P : I_P) = I_P(R : I)_P = I(R : I)_P \iff R = I(R : I)$$

 $(a)(b)(c) \Rightarrow (d)$:

Existense:

- $I = q_1 \cap \cdots \cap q_n$ and $\sqrt{q_i} = P_i \in R$ by primary decompositioni thm.
- $q_1 \cap \cdots \cap q_n = q_1 \cdots q_n$ Since dim R = 1, $P_i \in MaxR$. And, R is Neoth, $\exists n_i \in \mathbb{N} m_i^{n_1} \subseteq q_i$. Then, $m_i^{n_i} + m_j^{n_j} = R \forall i \neq j \rightsquigarrow q_i + q_j = R \rightsquigarrow q_1 \cap \cdots \cap q_n = q_1 \cdots q_n$
- $I = m_i^{r_i} \cdots m_n^{r_n}$ Since R_{m_i} is DVR $\leadsto (q_i)_{m_i} = (m_i^{r_i})_{m_i} \leadsto q_i = m_i^{r_i}$ by prime is 1-1 correspondence in localization. Therefore, $I = m_i^{r_i} \cdots m_n^{r_n}$.

Uniqueness:

- $P_1 \cdots P_k = Q_1 \cdots Q_r$ P_i, Q_i is prime. Then, $P_1 \cdots P_k \subseteq Q_1 \rightsquigarrow P_i \subseteq Q_1$, say i = 1 by prop 0.1.1. Since Q_1 is invertible, then $P_2 \cdots P_k = Q_2 \cdots Q_r$. By induction by hypothersis, we have the uniqueness result.
- (d) \Rightarrow (c): Every invertible prime is maximal: If not, let $p + aR = P_1 \cdots P_k$ and $p + a^2R = Q_1 \cdots Q_r$. $\leadsto p \subseteq P_i$ and Q_j $\underline{\text{Claim }} (p + aR)^2 = (p + a^2R):$ $\underline{\text{In }} R/p, \langle \bar{a} \rangle = (P_1/p) \cdots (P_k/p) \text{ and } \langle \bar{a}^2 \rangle = (Q_1/p) (Q_r/p). \text{ And, } \langle \bar{a} \rangle = (P_1/p)^2 \cdots (P_k/p)^2 = (Q_1/p) \cdots (Q_r/p)$

• $P = P^2 + aP$

$$P \subseteq P + a^2 R = (P + aR)^2 \subseteq P^2 + aR$$

Then,

$$\forall \, x \in P, \underbrace{x}_{\in P} = \underbrace{y}_{\in P^2} + a \underbrace{z}_{\in R} \leadsto z \in P$$

Therefore, $P \subseteq P^2 + aP \rightsquigarrow P = P^2 + aP$. By invertibility of P, we have R = P + aR, a contradiction.

- Every nonzero prime is invertible Let $a \neq 0$ in P, and $P \supseteq \langle a \rangle is invertible$. $\langle a \rangle = P_1 \cdots P_n$ and P_i is invertible. And, $P \subseteq P_i \leadsto P = P_i$ since P_i is max.
- \forall ideal $I \neq 0 \subseteq R, I = P_1 \cdots P_m \leadsto I$ is invertible.
- If I is fractional ideal of R, say $aI \subseteq R \leadsto \exists J$ ideal in $R \leadsto aIJ = R \leadsto I(aJ) = R$. I is invertible.