Nalezení K-tého nejmenšího prvku

z daných N čísel $(1 \le K \le N)$

speciální případ: K = N/2 ... **medián**

1. Setřídit čísla v poli S

výsledek: S[K-1]

 $O(N \log N)$

2. Postavit z čísel v poli S haldu

z ní *K*-krát odebrat minimum celkem časová složitost

O(N) $O(K.\log N)$ $O(N + K.\log N)$

3. Postavit v poli haldu z prvních *N-K*+2 prvků

K-2 prvků nechat stranou

Pak opakujeme (*K*-2)-krát:

- odebrat minimum z haldy (není *K*-tý nejmenší, je menší!)
- zařadit místo něj jeden prvek do haldy

Nakonec z haldy odebereme dvakrát minimum = prvky v pořadí (*K*-1)-tý a *K*-tý nejmenší.

Časová a paměťová úspora – pracujeme s menší haldou (např. pro medián je halda přibližně poloviční – což ale znamená, že má jen o 1 hladinu méně)

4. QuickSelect (modifikace QuickSortu)

Základní idea:

po rozdělení seznamu podle pivota pracujeme dál jen s tou částí,
 ve které je hledaný prvek (poznáme ji podle délky)

```
def quickselect(s, k):
    """výběr k-tého nejmenšího prvku ze seznamu s"""
    if len(s) <= 1: return s[0]
    x = s[len(s) // 2]
    vlevo = [ a for a in s if a < x ]
    stred = [ a for a in s if a == x ]
    vpravo = [a for a in s if a > x]
    a = len(vlevo)
    b = len(vlevo) + len(stred)
    if k < a:
        return quickselect (vlevo, k)
    elif k < b:
        return x
    else:
        return quickselect (vpravo, k-b)
```

Jiná implementace – nevytváří se nové seznamy:

- místo nových seznamů pracujeme s úseky původního seznamu
- po přerovnání prvků podle pivota pracujeme dál jen s tou částí,
 ve které je hledaný prvek, druhou část už není třeba dotřídit
- volba té správné části: ta, v níž leží K-tý nejmenší prvek,
 tzn. kde je index K-1
- výsledek výpočtu: prvek S[K-1]
- při realizaci není třeba rekurze ani zásobník,
 jediné rekurzivní volání se snadno nahradí jednoduchým cyklem

```
def quickselect(s, k):
    """výběr k-tého nejmenšího prvku ze seznamu s"""
    zac, kon = 0, len(s)-1
    while zac < kon:
        x = s[k-1] #možná volba pivota, lze i jinak
        i, j = zac, kon
        while i <= j:
            while s[i] < x: i += 1
            while s[j] > x: j -= 1
            if i < j:
                s[i], s[j] = s[j], s[i]
                i += 1; i -= 1
            elif i == j:
                i += 1; i -= 1
        # úsek <zac, kon> rozdělen na <zac, j> a <i, kon>
        if k-1 < i: kon = j
        if k-1 > j: zac = i
    return s[k-1]
```

Časová složitost

- v nejhorším případě: provede se plný QuickSort (jeho nejhorší případ), složitost O(N²)
- v nejlepším případě (půlení):
 procházejí se po řadě úseky délky N, N/2, N/4, ..., 1,
 celkem vykonaná práce = součet jejich délek se blíží k 2N,
 tedy časová složitost algoritmu O(N)
- v průměrném případě rovněž O(N)

5. Lineární algoritmus

- obdobný postup jako v případě QuickSelectu, jenom pivota, podle něhož rozdělujeme prvky v poli, nevolíme náhodně, ale nějak chytře – aby byl natolik blízký mediánu, že nám zaručí lineární časovou složitost **O(N)** i v nejhorším případě (ale nemusí to být pokaždé přesně medián)
- jedna možná taková volba pivota X: medián z mediánů pětic (zajišťuje i v nejhorším případě zahodit alespoň 3/10 prvků z aktuálního úseku a to stačí)

Algoritmus:

- čísla rozdělit na pětice
- v každé pětici nalézt medián (triviální, konstantní složitost)
- mediány všech pětic → množina M
- určit medián množiny M → číslo X
 (rekurzivním voláním téhož algoritmu na menší množinu)
- toto X použít jako pivot v algoritmu QuickSelect

tedy:

- rozdělit čísla do množin $M_1=\{a_i; a_i < X\}, M_2=\{a_i; a_i = X\}, M_3=\{a_i; a_i > X\}$
- pokud K ≤ |M₁| → nalézt K-té nejmenší číslo v množině M₁
 (rekurzivním voláním téhož algoritmu na menší množinu)
- pokud $K > |M_1| \& K \le |M_1 \cup M_2| \rightarrow výsledkem je X$
- pokud $K > |M_1 \cup M_2| \to nalézt (K |M_1 \cup M_2|)$ -té nejmenší číslo v množině M_3

(rekurzivním voláním téhož algoritmu na menší množinu)

Časová složitost

označme

 $S_1 = \{t \check{r}i \text{ nejmen} \check{s}i \text{ prvky z pětic, jejich} \check{z} \text{ medián je men} \check{s}i \text{ než } X\}$

 $S_3 = \{tři největší prvky z pětic, jejichž medián je větší než X\}$

z tranzitivity nerovnosti plyne, že $S_1 \subseteq M_1$ a $S_3 \subseteq M_3$

$$|S_1| \approx |S_3| \approx 3/5 \text{ z } 1/2 \text{ z } N = 3/10 \text{ N}$$

proto
$$|M_1| \ge 3/10 N$$
 a $|M_3| \ge 3/10 N$

a jelikož množiny M₁ a M₁ jsou disjunktní, platí také

$$|M_1| \le 7/10 N \text{ a } |M_3| \le 7/10 N$$

t(N) – časová složitost výpočtu pro data velikosti N

Indukcí dokážeme existenci konstanty d takové, $t(N) \le d.N$ (neboli funkce t je v nejhorším případě lineární):

- 1. pro *N*=1 ... triviální
- 2. dokážeme platnost pro N, když platí pro menší $t(N) \le c.N + d.1/5.N + d.7/10.N$ (podle indukčního předpokladu) $t(N) \le N.(c + 9/10.d)$ stačí zvolit takové d, aby $c + 9/10.d \le d$, tedy $d \ge 10c$, pro něj skutečně $t(N) \le d.N$

Reprezentace aritmetického výrazu

- binární strom reprezentující aritmetický výraz

$$(2 + 5) * (13 - 4)$$

- listy stromu obsahují operandy (čísla)
- vnitřní uzly obsahují operátory (znaménka)
- závorky ve stromě nejsou,
 pořadí vyhodnocení je určeno strukturou stromu

```
class Vrchol:
    """vrchol binárního stromu"""

def __init__(self, x = None):
    self.info = x  # uložená hodnota
    self.levy = None  # levý syn
    self.pravy = None  # pravý syn
```



```
v = Vrchol('*')
v.levy = Vrchol('+')
v.levy.levy = Vrchol(2)
v.levy.pravy = Vrchol(5)
v.pravy = Vrchol('-')
v.pravy.levy = Vrchol(13)
v.pravy.pravy = Vrchol(4)
```

Vyhodnocení aritmetického výrazu reprezentovaného binárním stromem – rekurzívně (metoda Rozděl a panuj):

```
def vyraz(self):
    """vyhodnocení aritmetického výrazu reprezentovaného
       stromem s kořenem v tomto vrcholu
    77 77 77
    if self.levy == None: # list
        return self.info
    elif self.info == '+':
        return self.levy.vyraz() + self.pravy.vyraz()
    elif self.info == '-':
        return self.levy.vyraz() - self.pravy.vyraz()
    elif self.info == '*':
        return self.levy.vyraz() * self.pravy.vyraz()
    elif self.info == '/':
        return self.levy.vyraz() / self.pravy.vyraz()
```

Notace aritmetického výrazu

- průchod binárním stromem reprezentujícím aritmetický výraz
- v navštívených uzlech vypisujeme uloženou hodnotu

$$(2 + 5) * (13 - 4)$$

průchod preorder → PREFIX průchod inorder → INFIX (bez závorek!) průchod postorder → POSTFIX

```
class Vrchol:
    """vrchol binárního stromu"""
   def init (self, x = None):
       self.info = x
                                 # uložená hodnota
        self.levy = None
                           # levý syn
                                 # pravý syn
        self.pravy = None
   def preorder (self):
        """průchod stromem s kořenem v tomto vrcholu
          metodou preorder, vypisuje hodnoty všech
          vrcholů
        11 11 11
       print(self.info)
       if self.levy != None:
            self.levy.preorder()
        if self.pravy != None:
            self.pravy.preorder()
```

```
def inorder(self):
    """průchod stromem s kořenem v tomto vrcholu
       metodou inorder, vypisuje hodnoty všech
       vrcholů"""
    if self.levy != None:
        self.levy.inorder()
    print(self.info)
    if self.pravy != None:
        self.pravy.inorder()
def postorder(self):
    """průchod stromem s kořenem v tomto vrcholu
       metodou postorder, vypisuje hodnoty všech
       vrcholů"""
    if self.levy != None:
        self.levy.postorder()
    if self.pravy != None:
        self.pravy.postorder()
    print(self.info)
```

- vždy stejné pořadí operandů listy stromu procházíme ve všech případech zleva doprava (2 5 13 4)
- v prefixovém zápisu operátor bezprostředně předchází své dva argumenty (tzn. čísla nebo podvýrazy), v postfixovém je následuje
- v prefixovém a postfixovém zápisu výrazu nejsou závorky, pořadí vyhodnocování je plně určenou strukturou výrazu
- inorder průchod stromem vytvořil chybný infixový zápis bez závorek, z něhož není zřejmé správné pořadí vyhodnocování výrazu

Terminologická poznámka:

prefix = polská notace (Polish notation) – Łukasiewicz postfix = reverzní polská notace (reverse Polish notataion, RPN)

Získání správného infixového zápisu výrazu:

```
def infix(self):
    """průchod stromem s kořenem v tomto vrcholu
       metodou inorder, vypisuje hodnoty všech
       vrcholů
    ** ** **
    if self.levy == None: # je to list
        print(self.info, end='')
    else:
                               # není to list
        print('(', end='')
        self.levy.infix()
        print(self.info, end='')
        self.pravy.infix()
        print(')', end='')
```

Vyhodnocení výrazu v postfixové notaci

- snadné, využití např. dříve u kalkulaček, v překladačích
- jeden průchod zápisem výrazu zleva doprava
- používá zásobník na ukládání číselných hodnot

Postup zpracování postfixového zápisu:

číslo → vložit do zásobníku

znaménko → vyzvednout ze zásobníku horní dvě čísla

provést s nimi operaci určenou znaménkem

výsledek operace vložit do zásobníku

konec → na zásobníku je jediné číslo = hodnota výrazu

- pozor na pořadí operandů u nekomutativních operátorů (na vrcholu zásobníku je pravý operand, pod ním levý)
- časová složitost O(N), kde N je délka výrazu

```
class Stack:
    def init (self):
    def push(self, value):
    def pop(self):
    def count(self):
OPERATORS = {
    "+": (lambda a, b: a + b),
    "-": (lambda a, b: a - b),
    "*": (lambda a, b: a * b),
    "/": (lambda a, b: a // b)
```

```
def evaluate postfix (expression):
    ** ** **
    vyhodnocení aritemetického výrazu v postfixu
    ve výrazu vše odděleno mezerami
    ** ** **
    parts = expression.split()
    stack = Stack()
    for part in parts:
        if part in OPERATORS.keys():
            arg1 = stack.pop()
            arg2 = stack.pop()
             result = OPERATORS[part](arg2, arg1)
             stack.push(result)
        else:
             stack.push(int(part))
    result = stack.pop()
    assert stack.count() == 0
    return result
```

Vyhodnocení výrazu v prefixové notaci

1. možnost:

- průchod výrazem odzadu, postup jako u postfixu
- pouze se změní pořadí operandů při zpracování znaménka:
 při vyzvednutí ze zásobníku je na vrcholu zásobníku levý operand, pod ním je pravý
- časová složitost O(N), kde N je délka výrazu

2. možnost:

- jeden průchod zápisem výrazu zleva doprava
- zásobník na ukládání znamének a číselných hodnot

Postup zpracování prefixového zápisu odpředu:

- znaménko nebo číslo → vložit do zásobníku
- když se tím na vrcholu zásobníku sejdou dvě čísla → vyzvednout je ze zásobníku, dále vyzvednout znaménko uložené pod nimi, provést s čísly operaci určenou znaménkem a výsledek operace vložit do zásobníku (což může opětovně vyvolat tentýž proces vyhodnocení)
- konec → na zásobníku je jediné číslo = hodnota výrazu
- pozor na pořadí operandů u nekomutativních operátorů (na vrcholu zásobníku je pravý operand, pod ním levý)
- časová složitost O(N), kde N je délka výrazu

3. možnost: rekurze

- rekurzivní funkce na vyčíslení prefixového zápisu od zadaného indexu
- globálně udržujeme pozici indexu
- když je prvním znakem výrazu číslice, výrazem je jen jedno číslo
 - → funkce vrátí jeho hodnotu (a posune index za něj)
- když je prvním znakem znaménko Z, funkce posune index za něj, potom provede dvě rekurzivní volání sebe sama a s výsledky těchto volání vykoná operaci určenou znaménkem Z
- celkem se provede jeden průchod zápisem výrazu zleva doprava
- časová složitost O(N), kde N je délka výrazu

Převod infix → postfix

máme zadán aritmetický výraz v běžné infixové notaci, chceme ho převést do postfixové notace

- provede se jeden průchod zápisem výrazu zleva doprava, tedy časová složitost O(N)
- používá zásobník na ukládání znamének
- v postfixovém zápisu jsou čísla ve stejném pořadí jako v infixovém, znaménka je proto třeba pozdržet na zásobníku, aby se dostala na správné místo až za svoje argumenty

Postup zpracování infixového zápisu:

číslo → zapsat přímo na výstup

levá závorka → vložit do zásobníku

pravá závorka → tuto závorku zrušit,

ze zásobníku postupně přenést na výstup všechna

znaménka až k nejbližší uložené levé závorce,

pak tuto levou závorku ze zásobníku zrušit

znaménko → vložit do zásobníku,

předtím ale ze zásobníku postupně přenést na

výstup všechna znaménka vyšší nebo stejné

priority, nejvýše však k první uložené levé závorce

konec → ze zásobníku přenést na výstup všechna uložená znaménka

Vyhodnocení výrazu v infixové notaci

spojení dvou předchozích algoritmů:

- převod výrazu z infixu do postfixu v čase O(N)
- vyhodnocení postfixové notace v čase O(N)
- → celková časová i paměťová složitost O(N)

obě fáze výpočtu se mohu provádět

- buď postupně (s uložením vytvořené postfixové notace výrazu)
- nebo souběžně (tzn. vznikající postfixová notace se neukládá, ale rovnou se průběžně vyhodnocuje)
 - → algoritmus používá dva zásobníky jeden na znaménka a druhý na čísla

Postavení aritmetického binárního stromu ze zápisu výrazu

postfixová nebo prefixová notace

algoritmus podobný jako při vyhodnocování výrazu,
 do zásobníku se vždy ukládá odkaz na nově vytvořený uzel,
 místo provádění operací se uzly s operandy zapojují pod uzel
 s operátorem jako jeho synové

infixová notace

- nejprve výraz převedeme do postfixové notace,
- z té pak postavíme aritmetický strom