

학습자가 강의 저작물을 다운로드·캡쳐 받아 <mark>외부로 유출하는 행위</mark>는 저작권자의 이용허락 없이 저작물을 복제·공중송신 또는 배포 하는 것으로 <mark>저작권 침해 행위</mark>에 해당함.

C 프로그래밍

(001/002)

제 6 강

신 한 대 학 교 소프트웨어융합학과 교수 송 진 희

제 6 강

- 함 수(Function)
 - 함수의 개념
 - 함수의 선언과 호출
 - 매개변수와 실인수

학습 목표

- ○함수의 개념과 사용 이유를 설명할 수 있다.
- 함수 처리를 위한 헤더와 바디(Body)를 선언할 수 있다.
- 함수 실행에 필요한 매개변수 선언과 실 인수와의 연계 관계를 설명할 수 있다.
- 선언된 함수를 호출해서 사용할 수 있다.

5강 - 정리 요약

- ○반복 실행문
 - > for(초기값; 최종값; 증감식)
 - > while(조건식) : 조건식이 참일 경우에만 반복 실행
 - > do~while() : 1회는 반복 수행한 후, 조건을 체크해서 참이면 다시 반복 실행
- ○반복 구조에서 제어 빠져나가기
 - **≻**break문
 - **≻**continue문
- ○난수 발생 함수의 사용
 - rand() : 프로그램 실행할 때마다 동일한 난수 발생
 - > srand() : seed 값에 따라 발생되는 난수가 상이함

예제 #2:대소문자 변환 처리

```
// 소문자를 대문자로 변경한다.
#include (stdio.h)
int main (void)
   char letter;
   while(1)
       printf("소문자를 입력하시오:");
       scanf(" %c", & letter);
       if( letter == 'Q')
           break;
       if( letter \( 'a' \) letter \( 'z' \)
           continue; //소문자가 아니면
       letter -= 32;
       printf("변환된 대문자는 %c입니다.₩n", letter);
   return 0;
```

소문자를 입력하시오: a 변환된 대문자는 A입니다. 소문자를 입력하시오: b 변환된 대문자는 B입니다. 소문자를 입력하시오: c 변환된 대문자는 C입니다. 소문자를 입력하시오: Q

함수(Function)

○ 프로그램에서 반복 처리되는 기능을 독립시켜 이름(함수명)을 부여해서 사용

> 반복 처리를 위한 코드를 한 번만 기술한 후, 함수명으로 호출해서 사용 가능

- ▶ 소스 코드의 중복 기술을 방지하고, 한 번 작성된 함수를 필요할 때 마 다 재사용 가능
- ○함수 처리에 필요한 입력 자료를 전달받아 처리 가능○함수의 처리 결과를 호출한 소스 프로그램으로 반환 가능

실인수와 매개변수

○인수(argument)는 호출 프로그램에 의하여 함수에 실 제로 전달되는 값

○매개 변수(parameter)는 호출한 프로그램에서 전달한 값을 전달받는 변수

```
매개 변수
             인수
                                         int max(int x, int y)
value = \max(10, 20);
                                              if(x > y)
                                                    return x;
                                              else
                                                    return y;
```

실인수와 매개 변수

○매개 변수가 없는 경우 :

- >print_char(void)
- >print_char()
- 실인수와 매개 변수의 개수는 정확히 일치

```
max(10); // max() 함수를 호출할 때는 인수가 두개이어야 한다.
max( ); // max() 함수를 호출할 때는 인수가 두개이어야 한다.
```

○ 함수의 종류

- 1) 사용자 정의 함수 : 프로그래머가 직접 만들어서 사용하는 함수
- 2) 라이브러리 함수 : 시스템에서 기본적으로 제공(printf(), scanf(), ...)

함수의 반환값(Return Value)

○반환값(return value)은

- > 함수를 호출한 곳으로 함수 처리의 결과를 반환하는 값
- ○return 명령문
 - > return 문 다음에 수식 또는 값을 기술해서 함수명으로 반환

매개 변수와 반환값

○두 개의 숫자를 전달받아 큰 수를 반환하는 max() 함수를 선언하고, 사용자가 입력한 값 중에서 더 큰 값을 출력하는 프로그램을 작성하시오.

```
#define _CRT_SECURE_NO_WARNINGS
#include (stdio.h)
int max(int x, int y)
    if (x \rangle y)
       return x;
    else
       return y;
int main (void)
            int x, y, larger;
             printf("정수 2개를 입력하시오: ");
             scanf("%d %d", &x, &y);
             larger = max(x, y);
             printf("더 큰 값은 %d입니다. ₩n", larger);
             return 0;
```

정수 2개를 입력하시오: 10 20 더 큰 값은 20입니다.

- ○함수명: get_integer()
- ○함수 처리 내용 :
 - 정수 입력 안내 메시지를 출력
 - 사용자가 입력한 정수를 한 개 입력 받기
 - 사용자가 입력한 정수를 반환

```
// 사용자로부터 정수를 받는 함수
#include (stdio.h)

int get_integer(void)
{
   int value;

   printf("정수를 입력하시오: ");
   scanf("%d", &value);

   return value;
}
```


○앞의 예에서 작성한 get_integer()까지 사용하여서 사용자로부터 받은 두 정수의 합을 계산하여 출력하는

함수 add() 작성하기.

```
#include (stdio.h)
int get_integer()
   int value;
                                 int main(void)
   printf("정수를 입력하시오: ");
                                     int sum;
   scanf("%d", &value);
   return value;
                                     int x = get_integer();
                                     int y = get_integer();
                                     sum = add(x, y);
int add(int x, int y)
                                     printf("두수의 합은 %d입니다. ₩n", sum);
   return x + y;
                                     return 0;
```

정수를 입력하시오: 10 정수를 입력하시오: 20 두수의 합은 30입니다.

실습 #1

○정수 n을 받아서 1에서 n까지의 정수들의 곱을 구하는 팩토리얼 함수를 작성하여 보자.

```
#include (stdio.h)
int factorial(int n)
   int result = 1;
   for (int i = 1; i \langle = n; i++)
        result *= i;
                       // result = result * i
   return result;
int main (void)
    int n;
   printf("알고 싶은 팩토리얼의 값은? ");
   scanf("%d", &n);
   printf("%d!의 값은 %d입니다. ₩n", n, factorial(n));
   return 0;
```

$$n! = n^*(n-1)^*(n-2)^* \dots *1$$

알고 싶은 팩토리얼의 값은? 12 12!의 값은 479001600입니다.

- 1) While() 문을 이용해서 반복 실행
- 2) 0이 입력되면 프로그램 실행이 종료 되도록 수정 하시오.

실습 #1

○while()문으로 변경하기

```
n! = n^*(n-1)^*(n-2)^* \dots *1
```

```
#include (stdio.h)
int factorial(int n)
   int result = 1;
   int i = 1;
   while (i \langle = n \rangle
                       // result = result * i
        result *= i;
        i++;
   return result;
int main (void)
    int n;
   printf("알고 싶은 팩토리얼의 값은? ");
   scanf("%d", &n);
   if(n == 0) exit(); //프로그램 종료 함수
   printf("%d!의 값은 %d입니다. ₩n", n, factorial(n));
   return 0;
```

```
    ☑ Microsoft Visual Studio 디버그 × + ∨
    알고 싶은 팩토리얼의 값은? 0
    E:\신한_강의록(24년도)\자료구조_소스코드(24년다)다(코드: 72개).
    이 창을 닫으려면 아무 키나 누르세요...
```


- 1) While() 문을 이용해서 반복 실행
- 2) 0이 입력되면 프로그램 실행이 종료 되도록 수정 하시오.

실습#2:온도 변환기

○섭씨 온도를 화씨 온도로, 또 그 반대로 변환하는 프로 그램을 작성하여보자.


```
#include (stdio.h)
void printMenu()
   printf("========<del>\\</del>n");
   printf(" 'c' 섭씨온도에서 화씨온도로 변환₩n");
   printf(" 'f' 화씨온도에서 섭씨온도로 변환₩n");
   printf(" 'q' 종료₩n");
   printf("=========₩n");
double C2F(double c_temp)
   return 9.0 / 5.0 * c_temp + 32;
double F2C(double f_temp)
   return (f_temp - 32.0) * 5.0 / 9.0;
```

```
int main(void)
   char choice;
   double temp;
   while (1) {
       printMenu(); //함수 호출
       printf("메뉴에서 선택하세요: ");
       choice = getchar();
       if (choice == 'q')
          break:
       else if (choice == 'c') {
          printf("섭씨온도:");
          scanf("%lf", &temp);
          printf("화씨온도: %lf ₩n₩n", C2F(temp)); //함수 호출
       else if (choice == 'f') {
          printf("화씨온도:");
          scanf("%lf", &temp);
          printf("섭씨온도: %lf ₩n₩n", F2C(temp));
       getchar(); // 엔터키 문자를 삭제하기 위하여 필요!
   return 0;
```

실습 #3 : 소수 찾기

- ○주어진 숫자가 소수(prime)인지를 결정하는 프로그램 이다.
- ○양의 정수 n이 소수가 되는 조건
 - > 1과 자기 자신만을 약수로 가져야 한다
- ○암호학에서 많이 사용

OH-	7	21	고
	Ľ	_	

- 1. 사용자로부터 정수를 입력받아서 변수 n에 저장한다.
- 2. for(i=2; i<n; i++)
- 3. n을 i로 나누어서 나머지가 0인지 본다.
- 4. 나머지가 0이면 약수가 있는 것이므로 소수가 아니다.
- 5. 반복이 정상적으로 종료되고 약수가 없다면 소수이다.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

정수를 입력하시오: 12229 12229은 소수가 아닙니다.

실습 #4

○1부터 사용자가 입력한 숫자 n 사이의 모든 소수를 찾도록 위의 프로그램을 변경하여 보자. [사이버캠퍼스에 제출]

함수 원형

○아래의 코드를 컴파일하면 오류가 발생한다.

```
#include (stdio.h)

int main(void)
{
    printf("섭씨 %lf도는 화씨 %lf입니다. \\mathbb{W}n", 36.0, c_to_f(36.0));
    return 0;
}
double c_to_f(double c_temp)
{
    return 9.0 / 5.0 * c_temp + 32;
}
```

전체 솔루션	▼ 🖸 1 오류 🛕 2 경고 🚺 0 메시지 🌴 벨드 + IntelliSense 🔻			검색 오류 목록		ρ.
키 코드	설명	프로젝트	파일		줄	Suppres
⚠ C4013	C4013 'c_to_f'이(가) 정의되지 않았습니다. extern은 int형을 반환하는 것으로 간주합니다.		test.c		5	
▲ C4477	'printf' : 서식 문자열 '%lf'에 'double' 형식의 인수가 필요하지만 variadic 인수 2의 형식이 'int'입니다.	ConsoleApplication3	test.c		5	
	'c_to_f': 재정의. 기본 형식이 다릅니다.	ConsoleApplication3	test.c		9	

함수 원형

○ **함수 원형(function prototyping**): 컴파일러에게 함수 에 대하여 미리 알리는 것

```
#include <stdio.h>
double c_to_f(double c_temp); // 함수 원형
int main(void)
     printf("섭씨 %lf도는 화씨 %lf입니다. \n", 36.0, c_to_f(36.0));
     return 0;
double c_to_f(double c_temp)
     return 9.0 / 5.0 * c_temp + 32;
```

함수 원형과 실행 오류

- ○함수 원형은 함수의 이름, 매개변수, 반환형을 함수가 정의되기 전에 미리 알려주는 것
- ○함수 원형은 함수 헤더에 세미콜론(;)만을 추가한 것과 동일
 - > 함수 원형에서는 매개 변수의 자료형만 적으면 된다.

함수 원형과 실행 오류

```
오류예방법(2)
int compute_sum(int n)
        int i;
                                             함수 정의가 함수 호출보다 먼저 오
        int result = 0;
                                             면 함수 원형을 정의하지 않아도 된
        for(i = 1; i <= n; i++)
                                              그러나 일반적인 방법은 아니다.
                 result += i;
        return result;
int main(void)
        int sum;
        sum = compute_sum(100);
                                  printf("sum=%d \n", sum);
```

라이브러리 함수

○ 라이브러리 함수(library function): 컴파일러에서 제공 하는 함수

- ▶표준 입출력
- >수학 연산
- >문자열 처리
- ▶시간 처리
- ▶오류 처리
- >데이터 검색과 정렬

표준 라이브러리 함수(수학 함수)

○수학 관련 함수

- >math.h
- >라이브러리 함수를 사용하면 복잡한 산술 연산을 할 수 있다.
- ▶수학 함수는 일반적으로 double형의 매개 변수와 반환값을 가진다.

분류	함수	설명	지수함수 기타함수	double exp(double x)	e^{x}
삼각함수	double sin(double x)	사인값 계산		double log(double x)	$\log_e x$
	double cos(double x)	코사인값 계산		double log10(double x)	$\log_{10}x$
	double tan(double x)	탄젠트값 계산		double ceil(double x)	x보다 작지 않은 가장 작은 정수
역삼각함수	double acos(double x)	역코사인값 계산 결과값 범위 $[0,\pi]$			
	double asin(double x)	역사인값 계산 결과값 범위 $[-\pi/2,\pi]$		double floor(double x)	x보다 크지 않은 가장 큰 정수
	double atan(double x)	역탄젠트값 계산 결과값 범위 $[-\pi/2,\pi]$		double fabs(double x)	실수 x의 절대값
쌍곡선함수	double cosh(double x)	쌍곡선 코사인		int abs(int x)	정수 x의 절대값
	double sinh(double x)	쌍곡선 사인		double pow(double x, double y)	x"
	double tanh(double x)	쌍곡선 탄젠트		double sqrt(double x)	\sqrt{x}

floor() / ceil() 함수


```
double result, value = 1.6;

result = floor(value);  // result는 1.0이다.

printf("%lf", result);

result = ceil(value);  // result는 2.0이다.

printf("%lf", result);
```


fabs()

○fabs(): 실수를 입력 받아서 절대값을 반환

```
printf("12.0의 절대값은 %f₩n", fabs(12.0));
printf("-12.0의 절대값은 %f₩n", fabs(-12.0));
```

Opow() / sqrt()

```
printf("10의 3승은 %.0f. ₩n", pow(10.0, 3.0)); printf("16의 제곱근은 %.0f. ₩n", sqrt(64));
```

```
//수학 함수 활용하기
printf("%lf", floor(2.31));
printf("\mn%lf", ceil(2.31));
printf("\mn%lf", fabs(12.31));
printf("\mn%lf", fabs(-12.31));
printf("\mn%.Of", pow(10.0, 3.0));
printf("\mn%.Of", sqrt(64));
```



```
10의 3승은 1000.
16의 제곱근은 4.
```

cos(double x)/sin(double x), /tan(double x)

```
// <u>삼각 함수 라이브러리</u>
                           여러 수학 함수들을 포함하는 표준 라이브러리
#include (math.h)
#include (stdio.h)
int main (void)
    double pi = 3.1415926535;
    double x, y;
   x = pi / 2;
   y = \sin(x);
    printf("sin(%f) = %f\foralln", x, y);
   y = cos(x);
    printf("cos(%f) = %f\foralln", x, y);
                                           sin( 1.570796 ) = 1.000000
                                           cos( 1.570796 ) = 0.000000
```

기타 함수

함수	설명
exit()	exit()를 호출하면, 실행 중인 프로그램을 종료시킨다.
system("")	system()은 운영 체제의 명령 프롬프트에게 명령어를 전달하여서 실행시키는 함수이다. 예를 들어서 DOS 명령어인 DIR이나 COPY, TYPE, CLS, DEL, MKDIR와 같은 명령어들을 실행시킬 수 있다.
time(NULL)	현재 시각을 반환한다. 1970년 1월 1일부터 흘러온 초를 반환한다.

예제: 시간 맞추기 게임

○사용자에게 정확한 시간을 예측하게 하는 게임을 만들어보자.

- > 사용자에게 10초가 지나면 엔터키를 누르라고 메시지 출력
- > 사용자가 입력한 시간과 실제 경과 시간의 차이를 출력

```
#include (stdio.h)
                        C 라이브러리 함수 time()은 1900년 1월 1
#include (time.h)
                          일 이후의 시간을 초 단위로 반환합니다.
int main (void)
         time_t start, end; / time_t는 unsigned long과 동일하다.
          start = time(NULL);
          printf("10초가 되면 아무 키나 누르세요₩n");
          while (1)
                   if (getchar())
                   break:
          printf("종료되었습니다.₩n");
          end = time(NULL);
          printf("경과된 시간은 %ld 초입니다. ₩n", end - start);
          return 0;
```

10초가 되면 엔터키를 누르세요 종료되었습니다. 경과된 시간은 6 초입니다.

예제: 나무 높이 측정

○각도기와 삼각 함수를 이용한 나무 높이를 측정하는 프로그램을 작성하자.

나무와의 길이(단위는 미터): 4.2 측정자의 키(단위는 미터): 1.8

각도(단위는 도): 62

나무의 높이(단위는 미터): 9.699047


```
#define _CRT_SECURE_NO_WARNINGS
#include (math.h)
#include (stdio.h)
int main(void)
   double height, distance, tree_height, degrees, radians;
   printf("나무와의 거리(단위는 미터):");
                                                        printf("각도(단위는 도): ");
   scanf("%lf", &distance);
                                                        scanf("%lf", &degrees);
   printf("측정자의 키(단위는 미터):");
                                                        radians = degrees * (3.141592 / 180.0);
   scanf("%lf", &height);
                                                        tree_height = tan(radians) * distance + height;
                                                        printf("나무의 높이(단위는 미터): %lf ₩n", tree_height);
                                                        return 0;
```

예제: 공학용계산기 만들기

○싸인값이나 코싸인값을 계산할 수 있는 공학용 계산기 를 만들어보자.

```
#include (stdio.h)
#include (math.h)
int menu (void)
   int n;
   printf("1.팩토리얼₩n");
   printf("2.싸인\n");
   printf("3.로그(base 10)₩n");
   printf("4.제곱근₩n");
   printf("5.순열(nPr)₩n");
   printf("6.조합(nCr)₩n");
   printf("7.종료₩n");
   printf("선택해주세요: ");
   scanf("%d", &n);
   return n;
```

```
1.팩토리얼
2.싸인
3.로그(base 10)
4.제곱근
5.순열(nPr)
6.조합(nCr)
7.종료
선택해주세요: 1
정수를 입력하시오: 10
결과 = 3628800
```


예제: 공학용계산기 만들기

```
void factorial()
    long long n, result=1, i;
    printf("정수를 입력하시오: ");
    scanf("%lld", &n);
    for (i = 1; i \langle = n; i++)
        result = result * i;
    printf("결과 = %lld₩n₩n", result);
void sine()
    double a, result;
    printf("각도를 입력하시오: ");
    scanf("%|f", &a);
    result = sin(a);
    printf("결과 = %lf₩n₩n", result);
```

```
void logBase10()
{
    double a, result;

    printf("실수값을 입력하시오: ");
    scanf("%lf", &a);

    if (a <= 0.0)
        printf("오류\n");
    else {
        result = log10(a);
        printf("결과 = %lf\n"\n", result);
    }
}
```

```
int main(void)
   while (1)
       switch (menu()) {
       case 1:
           factorial();
           break:
       case 2:
           sine();
           break;
       case 3:
           logBase10();
           break;
       case 7:
           printf("종료합니다. ₩n");
           return 0;
       default:
           printf("잘못된 선택입니다. ₩n");
           break;
```

[문제1]: 동전 던지기 게임

○동전을 100번 던져서 앞면이 나오는 횟수와 뒷면이 나오는 횟수를 출력한다.

```
➤coin_toss() 함수를 이용 : 동전 앞면, 뒷면 나오는
경우를 처리
```

int coin_toss(void)

동전의 앞면: 53 동전의 뒷면: 47

소스 코드

```
//srand() 함수 사용
#include <stdlib.h>
#include <stdio.h>
                   // time()함수 사용
#include <time.h>
int coin_toss(void);
int main(void)
    int toss;
    int heads = 0; //동전 앞면 횟수 누적 변수 초기화
    int tails = 0;  //동전 뒷면 횟수 누적 변수 초기화
    srand((unsigned)time(NULL));
    for (toss = 0; toss < 100; toss++) {
         if (coin_toss() == 1)
              heads++;
         else
              tails++;
```

소스 코드

```
printf("동전의 앞면: %d \n", heads);
printf("동전의 뒷면: %d \n", tails);
return 0;

int coin_toss( void )
{
  int head = rand() % 2;
  return head;
}
```

6강 - 정리 요약

○함수 처리에 필요한 입력 자료를 전달받아 처리 가능

- ▶실 인수 : 함수에 전달되는 실제 데이터
- >매개 변수 : 함수를 호출한 프로그램에서 전달한 데이터를 수신할 변수
- > 실인수와 매개 변수의 개수는 정확히 일치

6강 - 정리 요약

- ○함수 반환값(return value)은
 - > 함수를 호출한 곳으로 함수 처리의 결과를 반환하는 값
- ○return 명령문
 - > return 문 다음에 수식 또는 값을 기술해서 함수명으로 반환

○ 함수 원형(function prototyping): 컴파일러에게 함수에 대하여 미리 알리는 것

