Supplemental Material for Genomic Evidence for Formate Metabolism by Chloroflexi as the Key to Unlocking Deep Carbon in Lost City Microbial Ecosystems

Julia M. McGonigle, Susan Q. Lang, William J. Brazelton

Figure S1: Coverage of assembled contigs from Lost City chimney sample near Marker 5, grouped by taxonomic assignments. PhyloPhythiaS+ taxonomic consensus for each contig is reported at the level of order. Exceptions are *Sulfurovum* and contigs with unassigned order, where the lowest possible assignment is reported.

Figure S2: Phylogeny of the three *muoM* sequences (boxed in red) found in the *Chloroflexi* MAG. The tree was built using RaxML from a subset of reference proteins published in Chadwick *et al.* (1) obtained from JGI's IMG database, accessed January 2020. Clade distinctions (Clade1_M1, Clade1_M2, Clade2_M2, Clade3_M1, Clade3_M2) are identical to those identified by Chadwick *et al.* ID numbers are the IMG Gene ID.

Figure S3: Phylogenetic trees of Lost City *Methanosarcinales* (LCMS) MAG genes in methanogenic pathways. **a.** formylmethanofuran-tetrahydromethanopterin formyltransferase (ftr), **b.** N⁵N¹⁰-methenyl-tetrahydromethanopterin cyclohydrolase (mch), **c.** F₄₂₀-dependent N⁵N¹⁰-methylene-tetrahydromethanopterin dehydrogenase (mtd), **d.** and F₄₂₀-dependent N⁵N¹⁰-methylene-tetrahydromethanopterin reductase (mer). Accession numbers for reference proteins can be found in Table S5.

Bin Id	CheckM Marker Lineage	PhyloPhythiaS+ Taxonomic Consensus	BLAST for Ribosomal S15 Protein	% ID	% Completeness	% Contamination	% of Assembly Coverage
20	k_Bacteria (UID2565)	Planctomycetes; Phycisphaera mikurensis	Phycisphaerae bacterium (MAO22150.1)	67.42%	84.09	1.14	0.37
26	k_Bacteria (UID203)	Epsilonproteobacteria; Sulfurovum/Sulfurospirillum	NA	NA	27.93	1.72	0.14
28	k_Bacteria (UID203)	Proteobacteria	Candidatus Gracilibacteria bacterium (QFR39383.1)	76.40%	54.31	0.86	0.10
33	k_Bacteria (UID203)	Proteobacteria	candidate division WOR-3 bacterium (OYD15091.1)	68.97%	91.38	6.11	0.84
30	k_Bacteria (UID203)	No consensus	Candidatus Acetothermia bacterium (HCP32314.1)	80%	63.71	9.48	0.62
32	k_Bacteria (UID203)	No consensus	Nitrospiraceae bacterium (HCZ11968.1)	71.55%	18.79	0	0.05
36	k_Bacteria (UID203)	Gammaproteobacteria	Candidatus Gracilibacteria bacterium (QFR39383.1)	77.53%	46.11	1.57	0.06

Table S1: Taxonomic assignment of MAGs greater than 18% complete and under 10% contamination as determined by CheckM for Lost City chimney sample from Marker 5. PhyloPhythiaS+ taxonomic consensus for contigs is reported at the deepest observed level if one third or more of the contigs in the MAG were assigned the same taxonomic grouping. The BLAST search was done using the NCBI nr database; hit with highest percent identities is reported.

	Chloroflexi	Sulfurovum	LCMS
	MAG	MAG	MAG
% Completion	70	95.9	84.87
% Contamination	4.73	2.19	5.26
# contigs (>= 0 bp)	300	82	385
# contigs (>= 1000 bp)	9	82	379
# contigs (>= 5000 bp)	265	72	191
# contigs (>= 10000 bp)	172	62	43
# contigs (>= 25000 bp)	48	30	4
# contigs (>= 50000 bp)	2	9	0
Total length (>= 0 bp)	4327445	1944029	2369335
Total length (>= 1000 bp)	4327445	1944029	2366329
Total length (>= 5000 bp)	4178990	1908505	1661266
Total length (>= 10000 bp)	3489585	1835568	645388
Total length (>= 25000 bp)	1558923	1334736	106887
Total length (>= 50000 bp)	133530	563213	0
Largest contig	67383	108728	29121
N50	18477	37169	6717
total protein-encoding genes	3936	2036	2324
# KEGG annotated genes	3316	1838	1796
# genes no annotation	620	198	528
# complete KEGG modules	33	53	33
# incomplete KEGG modules	39	24	28
% of Assembly Coverage	0.62	0.41	4.41

Table S2: Assembly quality statistics for each MAG.

nifH Clone ID	contigID	% ID	Alignment Length (bp)
1537.15	c_000000344721	97.15	386
L74	c_000000344721	95.87	387
1537.102	c_000000344721	98.19	387
1537.52	c_000000344721	95.87	387
L7	c_000000344721	96.38	387

Table S3: BLAST results for previously sequenced *nifH* genes.

mcrA Clone ID	contigID	% ID	Alignment Length (bp)
LCM1443-49	c_000000702168	98.90	726
LCM1228-3	c_000000702168	99.18	728
LCM1404-22	c_000000702168	96.80	719

Table S4: BLAST results for previously sequenced *mcrA* genes.

Enzyme	Accession	Organism
	number	
Ftr	Mhar_2214	Methanosaeta harundinacea 6Ac
Ftr	YP_004383947	Methanosaeta concilii GP6
Ftr	YP_844050	Methanosaeta thermophila PT
Ftr	NP_614984	Methanosarcina acetivorans C2A
Ftr	YP_304532	Methanosarcina barkeri Fusaro
Ftr	NP_633345	Methanosarcina mazei Go1
Ftr	YP_566370	Methanococcoides burtonii DSM 6242
Ftr	YP_003727460	Methanohalobium evestigatum Z-7303
Ftr	YP_003543165	Methanohalophilus mahii DSM 5219
Ftr	YP_004617074	Methanosalsum zhilinae DSM 4017
Ftr	YP_004521004	Methanobacterium sp. SWAN-1
Ftr	YP_003356088	Methanocella paludicola SANAE
Ftr	YP_004575931	Methanothermococcus okinawensis IH1
Mch	Mhar_2174	Methanosaeta harundinacea 6Ac
Mch	YP_004383804	Methanosaeta concilii GP6
Mch	YP_842689	Methanosaeta thermophila PT
Mch	NP_616637	Methanosarcina acetivorans C2A
Mch	YP_305738	Methanosarcina barkeri Fusaro
Mch	NP_634677	Methanosarcina mazei Go1
Mch	YP_565374	Methanococcoides burtonii DSM 6242
Mch	YP_003727251	Methanohalobium evestigatum Z-7303
Mch	YP_003542289	Methanohalophilus mahii DSM 5219
Mch	YP_004616412	Methanosalsum zhilinae DSM 4017
Mch	YP_004519292	Methanobacterium sp. SWAN-1
Mch	YP_003247696	Methanocaldococcus vulcanius M7
Mch	YP_003356187	Methanocella paludicola SANAE
Mch	YP_001029842	Methanocorpusculum labreanum Z
Mch	YP_003893284	Methanoplanus petrolearius DSM 11571
Mch	YP_448258	Methanosphaera stadtmanae DSM 3091
Mch	YP_501925	Methanospirillum hungatei JF-1
Mch	YP_004577331	Methanothermococcus okinawensis IH1
Mch	YP_004003819	Methanothermus fervidus DSM 2088
Mer	Mhar_0856	Methanosaeta harundinacea 6Ac
Mer	YP_004384673	Methanosaeta concilii GP6
Mer	YP_842643	Methanosaeta thermophila PT
Mer	NP_618605	Methanosarcina acetivorans C2A
Mer	YP_303818	Methanosarcina barkeri Fusaro

Mer	NP_632652	Methanosarcina mazei Go1
Mer	YP_566974	Methanococcoides burtonii DSM 6242
Mer	YP_003727762	Methanohalobium evestigatum Z-7303
Mer	YP_003542654	Methanohalophilus mahii DSM 5219
Mer	YP_004615267	Methanosalsum zhilinae DSM 4017
Mer	YP_004520699	Methanobacterium sp. SWAN-1
Mer	YP_003357736	Methanocella paludicola SANAE
Mer	YP_004575971	Methanothermococcus okinawensis IH1
Mtd	Mhar_1470	Methanosaeta harundinacea 6Ac
Mtd	YP_004383615	Methanosaeta concilii GP6
Mtd	YP_843238	Methanosaeta thermophila PT
Mtd	NP_619291	Methanosarcina acetivorans C2A
Mtd	YP_304643	Methanosarcina barkeri Fusaro
Mtd	NP_619291	Methanosarcina mazei Go1
Mtd	YP_565622	Methanococcoides burtonii DSM 6242
Mtd	YP_003727361	Methanohalobium evestigatum Z-7303
Mtd	YP_003541849	Methanohalophilus mahii DSM 5219
Mtd	YP_004615335	Methanosalsum zhilinae DSM 4017
Mtd	YP_004518857	Methanobacterium sp. SWAN-1
Mtd	YP_003356368	Methanocella paludicola SANAE
Mtd	YP_004576424	Methanothermococcus okinawensis IH1

Table S5: Accession numbers for reference proteins used in Figure S2.

Dataset S1: DatasetS1.xlsx - Complete and incomplete KEGG modules for the *Methanosarcinales*, *Sulfurovum*, *Chloroflexi* MAGs.