Lineær vækst og lineære funktioner

For to tal a og b kaldes en sammenhæng mellem en uafhængig variabel x og en afhængig variabel y på formen y = ax + b for en lineær sammenhæng. Dette leder os til definitionen af en lineær funktion

Definition 1.1. En lineær funktion f defineres som en funktion med forskrift

$$f(x) = ax + b,$$

hvor a og b er vilkårlige reelle tal.

Eksempel 1.2. Vi har en lineær sammenhæng y = 3x - 4. Her er a = 3 og b = -4.

Eksempel 1.3. Funktionen f givet ved

$$f(x) = -10x + 7$$

er en lineær funktion med a = -10 og b = 7.

Af Fig. 1 og Fig. 2 kan det ses, hvordan lineær vækst udvikler sig.

$$\frac{x + 1}{f(x)f(x) + a}$$

Figur 1: Udvikling af lineær vækst.

Figur 2: Udvikling af lineær vækst

1.v

Det er ikke svært at overbevise sig selv, om at dette er tilfældet. Øges x med 1 får vi

$$f(x+1) = a(x+1) + b = ax + b + a = f(x) + a,$$

hvoraf det ses, at en øgning af x med 1 tilsvarer en øgning af f(x) med a.

Det er muligt at bestemme en entydig lineær funktion, der skærer gennem to punkter (x_1, y_1) og (x_2, y_2) . Formlen til at bestemme denne lineære funktion kalder vi for topunktsformlen for lineære funktioner. Den er givet af følgende sætning.

Sætning 1.4 (Topunktsformlen for lineære funktioner). Har vi to punkter (x_1, y_1) og (x_2, y_2) , så kan vi finde en entydig lineær funktion f givet ved

$$f(x) = ax + b,$$

hvis graf skærer gennem disse punkter. Koefficienterne a og b er givet ved henholdsvist

$$a = \frac{y_2 - y_1}{x_2 - x_1}$$

og

$$b = y_1 - ax_1 = y_2 - ax_2.$$

Bevis. Vi antager, at en lineær funktion f givet ved

$$f(x) = ax + b$$

skærer gennem punkterne (x_1, y_1) og (x_2, y_2) . Der må da gælde, at

$$y_1 = ax_1 + b$$

og

$$y_2 = ax_2 + b.$$

Vi trækker nu disse udtryk fra hinanden.

$$y_{2} - y_{1} = \underbrace{ax_{2} + b}_{=y_{2}} - \underbrace{(ax_{1} + b)}_{=y_{1}}$$

$$= ax_{2} + b - ax_{1} - b$$

$$= a(x_{2} - x_{1})$$

Vi isolerer nu a i dette udtryk og får

$$\frac{y_2 - y_1}{x_2 - x_1} = a$$

Vi mangler nu kun at vise, hvordan vi bestemmer b. Vi ved, at $y_1 = ax_1 + b$. Isoleres b i dette udtryk fås

$$b = y_1 - ax_1.$$