

Project HeartBeat Heart Disease — — — — — Prevention

By: S01 Group 5

Lum Shi Zhen U2210198H

Teo Man Ru Joleen U2111561F

Poh Lee Tin U2111981A

Sally Ngui Yu Ying U2222782A

Tenia Xu Yuan U2210808E

Table of Contents

Objectives

04

Current Measures

Data Sourcing & Exploration

Proposed Solution

Models

06

Improvements & Conclusion

Objectives

Significance of Cardiovascular Disease

18 million global deaths

1 in 3 deaths

23 lives lost daily

Barriers to CVD treatment

Individual

+

Healthcare

Perceived high check up costs

Fear of receiving a diagnosis

Lengthy waiting times for diagnostic tests

Effects on CVD outcomes

Missed opportunities to prevent CVD

Increased treatment costs

Worse health outcomes

Business Problem & Opportunity

Lack of strategies for early detection of CVD

Create comprehensive predictive model to detect CVD

By utilizing analytical tools,

successful forecasts of chronic illnesses can reach up to

Business Problem & Opportunity

Leverage on Data Analytics

Gain insights on patient demographics, risk factors that may indicate risk of CVD

Facilitate targeted preventive interventions

Enhance operational efficiency and costeffectiveness for healthcare and individuals

Project HeartBeat

Objectives

Predictive tool that relies on non-medical data

Free & easily accessible for everyone

Empowers individuals to be proactive towards their cardiovascular health

Benefits

No need to wait and queue in hospitals

Removes financial barriers

Reduce overall CVD mortality rates through early prevention

Joleen

02

Data Sourcing & Exploration

Data Sourcing

2022 Behavioural Risk Factor Surveillance System Survey Data (CDC) Categorized into

Factors related to CVD

- 1. Personal Particulars
- 2. Physical Characteristics
- 3. General Health Status
- 4. Health Habits & Behaviours
- 5. Health Issues & Illness History

Heart Disease by Personal Factors

Data Exploration

- Age is a significant risk factor that compromises on cardiovascular system
- Myriad physiological changes such as increased oxidative stress

Heart Disease by Physical Characteristics

Data Exploration

- Obesity contributes to various physiological mechanisms
- Haemoglobin deficiency is more prevalent among underweight individuals

Heart Disease by Health Habits & Behaviours

Data Exploration

 Physical inactivity can lead to other risk factors of heart disease such as diabetes, obesity etc.

Heart Disease by Heart Issues & Illness History

Data Exploration

- Strain placed on the heart due to kidney dysfunction
- More effort required to circulate blood to kidney
- Presence of high blood pressure exacerbates the strain

Average Cigarettes Per Day

Data Exploration

- Compounds present in cigarette promote the accumulation of plaque in blood vessels
- Elevate heart rate and induce inflammation

Diabetes by BMI Category

Joleen

Heart Disease by Drinking Days Per Month and Age Group

Data Exploration

- Excessive alcohol consumption can increase risk of high blood pressure
- Dependent on the frequency and amount of alcohol consumed

Lee Tin

03 MODELS

Lee Tin

Logistic Regression

call:

```
glm(formula = HEART_DISEASE ~ AGE_GROUP + EDUCATION + UNABLE_TO_AFFORD_MED +
BMI_CATEGORY + GENERAL_HEALTH + PHYSICAL_HEALTH + CIGARETTES_PER_DAY +
STROKE + SKIN_CANCER + OTHER_CANCER + LUNG_DISEASE + KIDNEY_DISEASE +
ARTHRITIS + DIABETES, family = binomial, data = trainData,
na.action = na.omit)
```

- Model built based on <u>insights derived from EDA</u>
- <u>Backward stepwise selection</u> was employed
- Checked for <u>multicollinearity</u>
- Variables with <u>high p-values removed</u>, due to <u>lack of statistically</u> <u>significant impact</u> on the target variable, resulting in the <u>optimal</u> <u>logistic regression model</u>

CART - Classification Tree

Optimal Prune

- Optimal complexity parameter determined based on <u>cross-validation</u> results
- Tree is <u>pruned</u> using this optimal CP of 0.00118497 to <u>38 terminal nodes</u>

Lee Tin

Random Forest

OOB Error against Number of Trees

Model Evaluation

- Optimal model determined by minimising and stabilising the Out-of-bag (OOB) error
- Stabilized after <u>100 to 150</u> trees
- OOB error <u>23.92%</u>

Lee Tin

Neural Network

1.350

Model Evaluation

Through grid search, optimal size of 17 nodes and weight decay of 1e-05, gives the best model accuracy and the optimal Neural Network model

Confusion Matrix Results

Logistic Regression		Predicted		
		No	Yes	
Actual No		TN 8345	FP 2837	
	Yes	FN 1319	TP 4282	

Random Forest		Predicted		
		No	Yes	
Actual	No	TN 22254	FP 3882	
	Yes	FN 5742	TP 7326	

CART		Predicted		
		No	Yes	
Actual No		TN 9524	FP 1678	
	Yes	FN 2261	TP 3340	

Neural Network		Predicted		
		No	Yes	
Actual	No	TN 10823	FP 379	
	Yes	FN 4168	TP 1433	

Model Employed

Models	TPR (%)	FNR (%)	FPR (%)	TNR (%)	Accuracy (%)
Logistic Regression	76.5	23.5	25.3	74.7	75.3
CART	59.6	40.4	15.0	85.0	76.6
Random Forest	56.1	43.9	14.9	85.1	75.5
Neural Network	25.6	74.4	3.4	96.6	72.9

Final Decision

- <u>Logistic regression model</u>
 has been selected as the
 <u>most optimal</u> model
- All 4 models have <u>similar</u> <u>accuracy</u>
- Logistic regression has the <u>highest TPR of 76.5%</u>

Lee Tin

Business Insights from Models

VARIABLE IMPORTANCE

Variable	Importance
AGE_GROUP [above 65]	18.815
GENERAL HEALTH [fair & poor]	26.030 25.663
STROKE	18.665

Insights

- These variables appear to have notable impacts on the likelihood of developing CVD
- Understanding the importance of these variables can <u>enable</u> <u>more targeted</u> and <u>effective</u> <u>preventive strategies</u>

Lee Tin

Business Insights from Models

ODDS RATIO FOR LOGISTIC REGRESSION

Variable	Odds Ratio
AGE_GROUP [above 65]	14.729
GENERAL HEALTH [poor]	7.600
STROKE	2.453

Insights

Higher odds ratio:

- 1) in AGE_GROUP for individual aged above 65
- 2) poor GENERAL_HEALTH
- 3) for individual with stroke signifies a <u>heightened risk of CVD</u>

Prioritize interventions aimed at improving these variables can help with resource allocation and reduce the risk of CVD, ultimately improve patient outcomes and cost efficiency

Sally

NHCS' Current Measures

Current Reactive Measures

Cardiac Tests

Supplemented with

Al Tool

- Echocardiogram (ECG),
- Cardiac Computed Tomography (CT) Scan,
- Exercise Stress Test (Treadmill Exercise) and more

- Gabor-Convolutional Neural Network (Gabor-CNN) algorithm
- Recognise ECG patterns to diagnose CVD
- 98.5% Accuracy

Limitations

Limited Improvement in Efficiency and Cost

Al tool still requires ECG to be conducted

Costly and time-consuming

Lack of Early Prevention
Measures

- Current focus on **reactive measures**
- Potential delayed diagnosis for those at risk only when they show CVD symptoms

Limited Predictive Variables

- Al tool only analyses ECG signals
- Non-medical factors also play a part in determining risk

Sally

05

Proposed Solution

Proposed Solution

Current Measures

Supplemented with

Our Solution

Cardiac Health Monitoring and Prediction (CHAMP)

Overview of CHAMP App: 3Ps

Predictive Analytics Models Personalised Preventive Measures

Public Education

Sally

Predictive Feature 1: Retrieval of Input Factors

Biometric Login

Automatic Retrieval of Details & Form History

Predictive Feature 2: Risk Assessment Sally Form

Categorical Variables

Select category from dropdown

Continuous Variables

Fill in numerical value

Sally

Predictive Feature 3: Utilisation of Logistic Regression Model

Preventive Features: At risk for CVD

1. Personalised Health Advice

2. Scheduled Check-up Notifications

Preventive Features: Not at risk

- Educational information about CVD
- Raise awareness even if they are not at risk

Preventive Features: For everyone

Quarterly reminders to update Risk
Assessment Form

- Continuous monitoring to track improvements
- Dynamic adjustments in health advice

Review of CHAMP App

Personalised Preventive Measures

Public Education

Value Proposition

User-Friendly Interface

Simplified Registration

Freely Available

Preventive Approach

Risk Prediction

Lifestyle Integration

Feasibility

Initial Investment

Software Development and Singpass integration

users

Free Accessibility

Financial Empowerment

Enabling proactive preventive measures without cost burdens.

Facilitates early detection of CVD

Early Detection

Long-Term Cost Saving

Long-term benefits outweigh short-term costs

Feasibility

Indicates effectiveness in reducing Cardiovascular Disease (CVD) mortality

Cost of Treatment

Assess the app's effectiveness in reducing healthcare expenses for users

Waiting Time

Evaluate improvements in healthcare accessibility facilitated by CHAMP

06

Improvements & Conclusion

Limitations & Improvements

	Limitation	Improvement
Inaccurate Information	Accuracy reliant on completeness of user-provided data.	Integrate wearable devices for real-time health data and schedule periodic checkups for validation.
Subjectivity of Self- Assessment	User input introduces variability in predictions.	Provide structured prompts for classification, reducing subjectivity and improving accuracy.
Limited Comprehensiveness of Risk Factors	Current dataset lacks crucial factors like dietary habits.	Access local datasets with broader factors and utilize user data for enhanced predictive ability.

Conclusion

Enhance Clinical Capabilities

Optimal Patient Care

Cost-Efficiency and Sustainability

Reputable Leader in Cardiovascular Care

PowerBl Demonstration

Thank You!

Do you have any questions?

