PHẦN 1: THÔNG TIN TÓM TẮT (17521130)

Tên đề tài (IN HOA)	PHÂN LOẠI CHÓ VÀ MÈO				
Họ và tên (IN HOA)	TÔ THANH TIẾN				
Lớp - MSSV	CS114.K21 - 17521130				
Ånh					
Link Github chứa repos CS114.K21	- https://github.com/thanhtien11300/CS114.K21				
Điểm đánh giá giữa	- D				
kỳ (A B C D)					
Thành tích để tính	Không có				
điểm bonus					
Tóm tắt Bài tập quá	- Số lần nộp bài tập Quá trình trên Classroom: 36/36				
trình	- Số lần nộp bài Thực hành trên Classroom:6/7				
	- Tự đánh giá (95/100):				
Tóm tắt Đồ án Cuối	- Input đầu vào của bài toán là một bức ảnh có chứa				

kỳ (không quá 500	con chó hoặc con mèo, output là dự đoán bức ảnh là		
từ)	chó hay mèo. Đối với thuật toán CNN sử dụng mô		
	hình VGG 16 thì ra kết quả 98% còn thuật toán		
	Logistic Regression thì ra kết quả 55.78%		
	- Tự đánh giá (85/100):		
Link khác	- Link đến báo cáo chi tiết :		
	https://github.com/thanhtien11300/CS114.K21		
	/blob/master/FinalReport.pdf		
	- Link đến báo cáo slides (pdf):		
	https://github.com/thanhtien11300/CS114.K21		
	/blob/master/Slide.pdf		
	- Link đến báo cáo video (YouTube):		

PHẦN 2: BÁO CÁO TÓM TẮT ĐỒ ÁN CUỐI KỲ

I.MÔ TẢ BÀI TOÁN

1. Đặt vấn đề

Hiện nay, bài toán phân loại là một bài toán khá phổ biến và được áp dụng trong nhiều vấn đề.

Bài toán phân lớp chó mèo là một bài toán cơ sở cũng như tiền đề để áp dụng và cải tiến lên nhiều vấn đề mới và hữu dụng hơn.

2. Input/output

Input: ảnh chó hoặc mèo

Output: phân loại chó hay mèo

II. MÔ HÌNH PHÂN LOẠI

Mô hình này mục đích là để đưa ra kết quả dự đoán xem trong hình ảnh là chó hay là mèo.

1. Các bước xây dựng

- 1. Thu thập dữ liệu
- 2. Xử lý dữ liệu
- 3. Phân chia dữ liệu Training và Testing
- 4. Chọn model và training
- 5. Đánh giá mô hình và nhận xét

2. Thu thập dữ liệu

Bộ dữ liệu được lấy ở trang kaggle: https://www.kaggle.com/tongpython/cat-and-dog bộ dữ liệu này là của SchubertSlySchubert.

Bộ dữ liệu này được tác giả đưa lên và sử dụng để phân loại hình ảnh bằng CNN- Deep Learning trong python.

Bộ dữ liệu gồm bộ train và bộ test:

Bộ train:

- 4001 ånh mèo
- 4006 ảnh chó

Bộ test:

- 1012 ånh mèo
- 1013 ånh chó

III. TIỀN XỬ LÝ DỮ LIỆU VÀ RÚT TRÍCH ĐẶT TRƯNG

- Tiền xử lý dữ liệu là một bước quan trọng trong bất kỳ dự án máy học nào.
- Resize bức ảnh về chung một kích thước duy nhất 64x64(logistic regression), 224x224(CNN)
- Trích xuất đặc trưng cho bức ảnh

IV. MÔ HÌNH MÁY HỌC

Trong Classifications, có nhiều thuật toán phân loại khác nhau như SVM, Decision Tree, ...Trong đồ án, em chọn thuật toán Logistic Regression và CNN.

Trong thuật toán CNN em sử dụng mô hình VGG16

VGG16 là mạng convolutional neural network được đề xuất bởi K. Simonyan and A. Zisserman, University of Oxford. Model sau khi train bởi mạng VGG16 đạt độ chính xác 92.7% top-5 test trong dữ liệu <u>ImageNet g</u>ồm 14 triệu hình ảnh thuộc 1000 lớp khác nhau. Giờ áp dụng kiến thức ở trên để phân tích mạng VGG 16

Architect của VGG16 bao gồm 16 layer :13 layer Conv (2 layer conv-conv,3 layer conv-conv) đều có kernel 3x3, sau mỗi layer conv là maxpooling downsize xuống 0.5, và 3 layer fully connection.

ConvNet Configuration								
A	A-LRN	В	С	D	Е			
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight			
layers	layers	layers	layers	layers	layers			
	input (224 × 224 RGB image)							
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64			
	LRN	conv3-64	conv3-64	conv3-64	conv3-64			
			pool					
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128			
		conv3-128	conv3-128	conv3-128	conv3-128			
			pool					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
			conv1-256	conv3-256	conv3-256			
					conv3-256			
			pool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
					conv3-512			
			pool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
					conv3-512			
			pool					
FC-4096								
FC-4096								
FC-1000								
soft-max								

V. KÉT QUẢ VÀ ĐÁNH GIÃ MODEL

1. CNN

	precision	recall	f1-score	support
cm_plot_labels	0.99	0.98	0.98	1011
cm_plot_labels	0.98	0.99	0.98	1012
accuracy			0.98	2023
macro avg	0.98	0.98	0.98	2023
weighted avg	0.98	0.98	0.98	2023

2. Logistic regression

Logistic Regression không dùng sklearn

train accuracy: % 59.15 test accuracy: % 55.78

Logistic Regression với sklearn

train accuracy: 0.7364746945898778 test accuracy: 0.5314057826520439

VI. KẾT LUẬN

Bộ dữ liệu cân bằng giữa lớp chó và mèo ở cả bộ train và test Đối với bài toán phân lớp chó mèo thì mô hình CNN-DL-VGG16 cho ra kết quả rất tốt với tỉ lệ chính xác ở bộ test lên đến 98%, đối với mô hình Logisstic Regression thì kết quả không tốt bằng chỉ ra 55.78%

VII. HƯỚNG PHÁT TRIỂN

- Xử lý dữ liệu trong tình tặng thiếu dữ liệu.
- Xử lý dữ liệu trong tình tặng mất cân bằng lớn giữa các lớp.
- Phân loại với bộ dữ liệu nhiều lớp.