Notes of Probability and Stochastics

Xie Zejian

Zhang Songxin

2021-02-12

Contents

	0.1	Notati	ions					
1	Mea	Measure and integrations						
	1.1		rable space					
		1.1.1	σ algebra					
		1.1.2	π, λ, m systems					
		1.1.3	Graphical illustration of different classes					
		1.1.4	Measurable spaces					
	1.2	Measu	urable function					
		1.2.1	Mappings					
		1.2.2	Measurable functions					
		1.2.3	Random Variable					
		1.2.4	Construction of random variables					
		1.2.5	Limiting opts					
		1.2.6	Approximations of r.v. by simple r.v.'s					
		1.2.7	Monotone classes of function					
	1.3	Measu	re					
		1.3.1	Properties of measure					
		1.3.2	Specification of measures					
		1.3.3	Atomic and diffuse measure					
	1.4	Integr						
		1.4.1	Monotone Convergence Theorem					
		1.4.2	Criteria for zero a.e					
		1.4.3	Characterization of the integral					
	1.5	Transf	forms and Indefinite integral					
		1.5.1	Images of the Lebesgue measure					
		1.5.2	Indefinite integrals					
		1.5.3	Radon-Nikodym theorem					
	1.6	Kerne	ls and Product spaces					
		1.6.1	Measure-kernel-function					
		1.6.2	Products of kernels					
		1.6.3	Markov kernel					
		1.6.4	finite and bounded kernels					
		1.6.5	Functions on product spaces					
		166	Mossures on the product space 26					

4 CONTENTS

		1.6.7	Product measures and Fubini					
		1.6.8	Finite products					
		1.6.9	Infinite products					
2	Probability Spaces 29							
	2.1	Proba	bility Spaces and Random Variables					
		2.1.1	Measure-theoretic and probabilistic languages 29					
		2.1.2	Distribution of a r.v					
		2.1.3	Joint distributions					
		2.1.4	Independence					
		2.1.5	Stochastic process and probability laws					
	2.2		tation					
		2.2.1	Properties of expectation					
		2.2.2	Expectations and integrals					
		2.2.3	Means, variances, Laplace and Fourier transforms 33					
		2.2.4	Moment inequalities					
	2.3		aces and uniform integrability					
	2.0	2.3.1	Uniform integrability					
	2.4		nation and determinability					
		2.4.1	σ algebra generated by r.v					
		2.4.2	Filtrations					
	2.5		endence					
	2.0	2.5.1	Independence of σ -algebras					
		2.5.1 $2.5.2$	Independence of collection					
		2.5.2 $2.5.3$	Independence of r.v.'s					
		2.5.4	Sum of independent r.v.'s					
		2.5.4 $2.5.5$	Kolmogorov's 0-1 law					
		2.5.6	Hewitt-Savage 0-1 law					
		2.0.0	110 with Savage of Law					
3		onvergence 43						
	3.1		rgence of Real Sequences					
		3.1.1	Cauchy criterion					
		3.1.2	Subsequence					
		3.1.3	Diagonal method					
		3.1.4	Helly's Theorem					
		3.1.5	Kronecker's Lemma					
	3.2		t Sure Convergence					
		3.2.1	Borel-Cantelli lemmas					
		3.2.2	Convergence a.s. theorem					
		3.2.3	Cauchy criterion for convergence a.s 48					
	3.3		rgence in Probability					
		3.3.1	Convergence and continuous					
		3.3.2	Metric for convergence in probability					
		3.3.3	Cauchy criterion for convergence in probability 50					
		3.3.4	Convergence in L^p					
		3.3.5	Convergence, Cauchy, uniform integrability 51					

0.1. NOTATIONS

5

0.1 Notations

\mathbb{R}	$(-\infty,\infty)$
$\overline{\mathbb{R}}$	$[-\infty,\infty]$
$\frac{\mathbb{R}_{+}}{A}$	$[0,\infty)$
\overline{A}	Closure of set A
A°	Interior of set A
$(x_n) \subset A$	A sequence taking value in A
2^{A}	The power set of A
$\mathcal A$	A collection of subsets in A, i.e., $\mathcal{A} \subset 2^A$
$\ker \mathcal{A}$	$\bigcap_{A\in\mathcal{A}}A$
$x_n \nearrow x$	(x_n) is increasing and converges to x .
$\sigma(\mathcal{A})$	σ -algebra generated by \mathcal{A} .
\mathcal{A}_{+}	Nonnegative function in \mathcal{A}
$\mu \ll \nu$	μ is absolutely continuous w.r.t. ν .
$\mu f = \int f d\mu = \int f(x)\mu(dx)$	integral
$f:X\to Y$	x is a function from X to Y .
$f = x \mapsto 5x$	f(x) = 5x
$f:X\hookrightarrow Y$	f is an embedding from X to Y .
$f(x) = O(g(x)) \iff g(x) = \Omega(f(x))$	f is bounded above by g asymptotically
	$\limsup_{x\to\infty} \frac{f(x)}{g(x)} < \infty.$
$f(x) = \Theta(g(x))$	f is bounded by g
	asymptotically both above and below.
$f(x) = o(g(x)) \iff g(x) = \omega(f(x))$	f is dominated by g asymptotically, i.e.,
	$\lim_{x \to \infty} \frac{ f(x) }{g(x)} = 0.$
$f(x) \sim g(x)$	f is equal to g asymptotically i.e.
J (***) J (***)	$\lim_{x\to\infty} \frac{f(x)}{g(x)} = 1.$
i	3()
i_{ϵ} s.t.	$oldsymbol{1}_{(\epsilon,\infty)}$ such that
w.r.t.	with respect to
r.v.	random variable
1. v.	random variable

6 CONTENTS

Chapter 1

Measure and integrations

1.1 Measurable space

1.1.1 σ algebra

Definition 1.1. A nonempty system of subset of Ω is an algebra on Ω if it's

- 1. Closed under complement: $A^c \in \mathcal{A} \iff A \in \mathcal{A}$
- 2. Closed under finite union: $\bigcup_i A_i \in \mathcal{A} \iff \forall i, A_i \in \mathcal{A}$

It's an σ algebra on Ω if it's also closed under countable union.

Remark. \mathcal{A} is an algebra auto implies $\emptyset \in \mathcal{A}$ and $\Omega \in \mathcal{A}$. So $\{\emptyset, \Omega\}$ is the minimum algebra on Ω and thus minimum σ algebra while the discrete algebra 2^{Ω} is maximum.

Let $\{A_{\gamma} : \gamma \in \Gamma\}$ is a collection of σ algebra, then we have $A = \bigcap_{\gamma \in \Gamma} A_{\gamma}$ is also a σ algebra. Hence

Definition 1.2. The smallest σ algebra as intersection of all σ algebras contains \mathcal{A} , that called the σ algebra **generated** by \mathcal{A} and denoted by $\sigma(\mathcal{A})$.

The smallest σ -algebra generated by the system of all open sets in a topological space (Ω, τ) is called **Borel** σ **algebra** on Ω and denoted by $\mathcal{B}(\Omega)$, its elements are called **Borel sets**.

1.1.2 π, λ, m systems

Definition 1.3. A collection of subsets \mathcal{A} is called.

- m-system if closed under monotone series, that is if $(A_n) \subset \mathcal{A}$ and $A_n \nearrow A$, then $A \in \mathcal{A}$.
- π -system is closed under finite intersection
- λ system if

- 1. $\Omega \in \mathcal{A}$
- 2. closed under proper difference:

$$A - B \in \mathcal{A} \iff B \subset A \text{ and } B, A \in \mathcal{A}$$

3. is an m-system.

Theorem 1.1. Let \mathcal{A} be a collection of subsets of Ω iff it's both a π system and λ system.

Proof. For \Rightarrow , check:

- 1. $\Omega \in \mathcal{A}$
- $2. \ A-B=A\cap B^c\in \mathcal{A}$
- 3. is an m-system

For the converse:

- 1. $A^c = \Omega A \in \mathcal{A}$
- 2. $A \cup B = (A^c \cap B^c)^c \in \mathcal{A}$
- 3. hence \mathcal{A} is an algebra and \mathcal{A} is a m-system.

Similarly, for m, π, λ -system, they also has a minimum system generated by some collection $\mathcal{C}.$

Lemma 1.1. Let \mathcal{A} be an algebra, then

- 1. $m(\mathcal{A}) = \sigma(\mathcal{A})$
- 2. if \mathcal{B} is an m class and $\mathcal{A} \subset \mathcal{B}$, then $\sigma(\mathcal{A}) = m(\mathcal{A}) \subset \mathcal{B}$

Similarly, let \mathcal{A} be a π class, then $\lambda(\mathcal{A}) = \sigma(\mathcal{A})$

Then we have Monotone class theorem:

Theorem 1.2. $\forall \mathcal{A} \subset \mathcal{B} \subset \mathcal{P}(\Omega), s.t.$:

- 1. If \mathcal{A} is a π -class, \mathcal{B} is a λ -class, then $\sigma(\mathcal{A}) \subset \mathcal{B}$
- 2. If \mathcal{A} is an algebra, \mathcal{B} is a m-class, then $\sigma(\mathcal{A}) \subset \mathcal{B}$

1.1.3 Graphical illustration of different classes

1.1.4 Measurable spaces

Definition 1.4 (Measurable Space). Pair (Ω, \mathcal{A}) where \mathcal{A} is a σ -Algebra on Ω .

Definition 1.5 (Products of measurable spaces). Let $(E,\mathcal{E}),(F,\mathcal{F})$ be two measurable spaces. For $A\subset E, B\subset F,\ A\times B$ is the set of all pairs $(x,y):x\in A,y\in B$. Note that $\mathcal{E}\times\mathcal{F}$ is also a σ -Algebra with all $A\times B$ where $A\in\mathcal{E},B\in\mathcal{F}$ which is called the product σ -Algebra.

1.2 Measurable function

1.2.1 Mappings

Let $f:\Omega_1\to\Omega_2$ be a mapping, $\forall B\subset\Omega_2$ and $\mathcal{G}\subset\mathcal{P}(\Omega_2)$, the **inverse image** of

•
$$B \text{ is } f^{-1}(B) = \{\omega : \omega \in \Omega_1, f(\omega) \in B\} := \{f \in B\}$$

•
$$\mathcal{G}$$
 is $f^{-1}(\mathcal{G}) = \{f^{-1}(B) : B \in \mathcal{G}\}$

There is some properties:

$$1.\ f^{-1}\left(\Omega_{2}\right)=\Omega_{1}, f^{-1}(\varnothing)=\varnothing$$

2.
$$f^{-1}(B^c) = [f^{-1}(B)]^c$$

3.

$$\begin{array}{l} f^{-1}\left(\cup_{\gamma\in\Gamma}B_{\gamma}\right)=\cup_{\gamma\in\Gamma}f^{-1}\left(B_{\gamma}\right) \text{ for } B_{\gamma}\subset\Omega_{2}, \gamma\in\Gamma\\ f^{-1}\left(\cap_{\gamma\in\Gamma}B_{\gamma}\right)=\cap_{\gamma\in\Gamma}f^{-1}\left(B_{\gamma}\right) \text{ for } B_{\gamma}\subset\Omega_{2}, \gamma\in\Gamma \end{array}$$

where Γ may not countable.

$$4. \ \, f^{-1}\left(B_{1}-B_{2}\right)=f^{-1}\left(B_{1}\right)-f^{-1}\left(B_{2}\right) \forall B_{1},B_{2}\subset\Omega_{2}$$

5.
$$B_1 \subset B_2 \subset \Omega_2 \implies f^{-1}(B_1) \subset f^{-1}(B_2)$$

- 6. If \mathcal{B} is a σ -algebra, $f^{-1}(\mathcal{B})$ is also a σ -algebra. It's easy to check $f^{-1}(\mathcal{B})$ is closed under complement and countable union. (From properties 2 and 3)
- 7. If \mathcal{C} is nonempty, $f^{-1}(\sigma(\mathcal{C})) = \sigma(f^{-1}(\mathcal{C}))$

Remarks f^{-1} preserves all the set operations on Ω .

1.2.2 Measurable functions

Definition 1.6. For two measurable spaces (Ω_1, \mathcal{A}) , (Ω_1, \mathcal{B}) , $f : \Omega_1 \to \Omega_2$ is a measurable mapping if $f^{-1}(\mathcal{B}) \subset \mathcal{A}$, where

$$f^{-1}(\mathcal{B})=\{f^{-1}(B):B\in\mathcal{B}\}$$

It is a measurable function if $(\Omega_2, \mathcal{B}) = (\mathcal{R}^n, \mathcal{B}(\mathcal{R}^n))$, moreover, a Borel function if $(\Omega_1, \mathcal{A}) = (\mathcal{R}^m, \mathcal{B}(\mathcal{R}^m))$

Remark. If $\mathcal{B} = \sigma(\mathcal{C})$, the definition can be reduced to $f^{-1}(\mathcal{C}) \subset \mathcal{A}$ since

$$f^{-1}(\mathcal{B}) = f^{-1}(\sigma(\mathcal{C})) = \sigma\left(f^{-1}(\mathcal{C})\right) \subset \sigma(\mathcal{A}) = \mathcal{A}$$

Lemma 1.2. Suppose $f: \mathcal{E} \to \mathcal{F}$ and $g: \mathcal{F} \to \mathcal{G}$ are measurable, then so is $f \circ g$.

Proof. The same as how we proved composition of continuous function is continuous.

1.2.3 Random Variable

A r.v. X is a measurable function from (Ω_1, \mathcal{A}) to $(\mathbb{R}, \mathcal{B})$. It denoted by X is \mathcal{A} -measurable or $X \in \mathcal{A}$

(Another definition): A r.v. X is a measurable mapping from (Ω, \mathcal{A}, P) to $(\mathcal{R}, \mathcal{B})$ such that

$$P(|X| = \infty) = P(\{\omega : |X(\omega)| = \infty\}) = 0$$

Lemma 1.3. *X* is a r.v. from (Ω, \mathcal{A}) to $(\mathbb{R}, \mathcal{B})$

$$\iff X \leq x = X^{-1}([-\infty], x) \in \mathcal{A} \quad \forall x \in \mathbb{R} \\ \iff X \leq x = X^{-1}([-\infty], x) \in \mathcal{A} \quad \forall x \in D$$

where D is a dense subset of \mathbb{R} , e.g. \mathbb{Q} . $\{X \leq x\}$ above can be replaced by

$$\{X \le x\}, \{X \ge x\}, \{X < x\}, \{X > x\}, \{x < X < y\}$$

1.2.4 Construction of random variables

Lemma 1.4. $\mathbf{X} = (X_1, \cdots, X_n)$ is a random vectors if X_k is a r.v. $\forall k$ iff \mathbf{X} is a measurable function from (Ω, \mathcal{A}) to $(\mathcal{R}^n, \mathcal{B}(\mathcal{R}^n))$.

Proof. Note that

$$\{\mathbf{X}\in\prod I_n\}=\bigcap\{X_n\in I_n\}\in\mathcal{A}$$

where $I_k=(a_k,b_k], -\infty \leq a_k \leq b_k \leq \infty$ and follows from $\sigma(\{\prod I_n\})=\mathcal{B}(\mathcal{R}^n)$. For the other direction, note

$$\{X_k \leq t\} = \{\mathbf{X} \in \prod_{i < k} \mathbb{R} \times \{-\infty, t\} \times \prod_{i > k} \mathbb{R}\} \in \mathcal{A}$$

Recall lemma 1.2 we have:

Theorem 1.3. \forall random n vectors $X = (X_{1:n})$ and Borel function f from $\mathcal{R}^n \to \mathcal{R}^m$, then f(X) is a random m vectors.

Remark. Note that continuous function are borel measurable since continuity leads to inverse image of an open set is still open. So if $X_{1:n}$ are r.v.'s, so are $\sum X_n$, $\sin(x)$, e^X , $\operatorname{Poly}(X)$, That implies:

$$\forall X, Y \in \mathcal{A}$$
, so are $aX + bY, X \vee Y = \max\{X, Y\}, X \wedge Y = \min\{X, Y\}, X^2, XY, X/Y, X^+ = \max(x, 0), X^- = -\min(x, 0), |X| = X^+ + X^-$

1.2.5 Limiting opts

Let (X_n) are r.v. on (Ω, \mathcal{A}) , then $\sup_{n \to \infty} X_n$, $\inf_{n \to \infty} X_n$, $\lim\sup_{n \to \infty} X_n$, $\liminf_{n \to \infty} X_n$ are r.v.'s. Moreover, if it exists, $\lim_{n \to \infty} X_n$ is r.v..

Proof. First two follows from, $\forall t \in \mathbb{R}$:

$$\{\sup_{n\to\infty}X_n\leq t\}=\bigcap_{n=1}^\infty\{X_n\leq t\}\in\mathcal{A}$$

$$\{\inf_{n\to\infty}X_n\geq t\}=\bigcap_{n=1}^\infty\{X_n\geq t\}\in\mathcal{A}$$

and the last two follows from $\limsup_{n\to\inf}=\inf_{k\to\infty}\sup_{m\geq k}X_m$ and $\liminf_{n\to\inf}=\sup_{k\to\infty}\inf_{m\geq k}X_m$. \qed

That implies

Lemma 1.5. If $S = \sum_{1}^{\infty} X_n$ exists everywhere, then S is a r.v.

Proof. Note
$$\sum_1^\infty X = \lim_{n \to \infty} \sum_n X_n$$
 is a r.v.

If $X=\lim_{n\to\infty}X_n$ holds **almost** everywhere, i.e., define Ω_0 is the set of all ω , such that $\lim_n X_n(\omega)$ exists, then $P(\Omega_0)=1$, we say that X_n converges a.s. and write:

$$X_n \to X$$
 a.s.

For a measurable function f, we may modify it at a null set into f' and it remain measurable since for any open set G, $f'^{-1}(G)$ differ $f^{-1}(G)$ a at most null set, by the completion of Lebesgue measure space, f'-1(G) is measurable and thus f^{-1} measurable. Hence, for $f_n \to f$ a.s., we may ignore a null set and then $f_n \to f$ everywhere and thus f measurable.

Approximations of r.v. by simple r.v.'s

Definition 1.7. If $A \in \mathcal{A}$, the indicator function $\mathbf{1}_A$ is a r.v. If $\Omega = \sum_{i=1}^n A_i$, where $A_i \in \mathcal{A}$, then $X = \sum_{1}^{n} a_i \mathbf{1}_{A_i}$ is a r.v. and called **simple r.v.**

Any r.v. can be approximated by simple ones:

Theorem 1.4. $\forall X \in \mathcal{A}, \exists 0 \leq X_1 \leq X_2 \cdots X_n \text{ s.t. } X_n(\omega) \nearrow X(\omega) \text{ everywhere.}$

Proof. Suppose

$$X_n(\omega) = \sup\{\frac{j}{2^n}: j \in \mathbb{Z}, \frac{j}{2^n} \leq \min(X(\omega), 2^n)\}$$

One can check X_n is simple r.v. and $X_n(\omega) \nearrow X(\omega)$ for all $\omega \in \Omega$.

Monotone classes of function 1.2.7

Definition 1.8 (monotone class). \mathcal{M} is called a monotone class if:

- $f,g \in \mathcal{M}_b$ and $a,b \in \mathbb{R} \implies af + bg \in \mathcal{M}$ $(f_n) \subset M_+, f_n \uparrow f \implies f \in \mathcal{M}$

where \mathcal{M}_+ is a subcollection consisting of positive functions in $\mathcal{M},$ and \mathcal{M}_b is the bounded function in \mathcal{M} .

Theorem 1.5 (Monotone class theorem for functions). Let \mathcal{M} be a monotone class of functions on (Ω, \mathcal{A}) . Suppose for some π -system \mathcal{C} generating \mathcal{A} and $\mathbf{1}_A \in \mathcal{M} \text{ for every } A \in \mathcal{C}. \text{ Then } \mathcal{A}_+, \mathcal{A}_b \subset \mathcal{M}$

Proof. First we need to show that $1_A \in \mathcal{M}$ for every $A \in \mathcal{A}$. Let $\mathcal{D} = \{A \in \mathcal{A} : A \in$ $1_A \in \mathcal{M}$. Now we check that \mathcal{D} is a λ -system:

- $1_{\Omega} = 1$, so $\Omega \in \mathcal{D}$.
- $\overrightarrow{B} \subset A$, $A, B \in \mathcal{D}$. $1_{A-B} = 1_A 1_B \in \mathcal{D}$ $(A_n) \subset \mathcal{D}$ and $A_n \uparrow A$, then $1_{A_n} \uparrow 1_A$, so $1_A \in \mathcal{M}$, then $A \in \mathcal{D}$

By assumption, $\mathcal{C} \subset \mathcal{D}$, and $\sigma(\mathcal{C})$ is the smallest d-system by the theorem above, so $\mathcal{E} \subset \mathcal{D}$, so $1_A \in \mathcal{M}$ for every $A \in \mathcal{E}$.

As $1_A \in \mathcal{M}$ for every $A \in \mathcal{E}$, we can easily prove that all of the positive simple function is generated by the linear combination of 1_A s. And all positive \mathcal{E} -measurable functions is generated by a sequence of positive simple functions. Then for general bounded \mathcal{E} -measurable function f, using $f = f^+ - f^-$ where $f^+, f^- \in \mathcal{M}$.

Remark. If \mathcal{M} 's monotonicity condition only holds when f is bounded, then we can only conclude $\mathcal{A}_b \subset \mathcal{M}$ but not \mathcal{A}_+

1.3. MEASURE 13

Definition 1.9. Let $(E, \mathcal{E}), (F, \mathcal{F})$ be two measurable spaces and f is a bijection $E \to F$. Then f is said to be a isomorphism of (E, \mathcal{E}) and (F, \mathcal{F}) if f is \mathcal{E} measurable and f^{-1} is \mathcal{F} -measurable. These two spaces are called isomorphic if there exists an isomorphisms between them.

Definition 1.10. A measurable space (Ω, \mathcal{A}) is said to be *standard* if there exist an embedding $f:(\Omega,\mathcal{A})\hookrightarrow(\mathbb{R},\mathcal{B})$.

Remark. Clearly, ([0,1], $\mathcal{B}([0,1])$), ($\mathbb{N} \leq n, 2^{N \leq n}$) and ($\mathbb{N}, 2^{\mathbb{N}}$) are all standard. In fact, every standard measurable space is isomorphic to one of them.

1.3 Measure

Let Ω be a space and \mathcal{A} a class, then function $\mu: \mathcal{A} \to R = [-\infty, \infty]$ is a set function.

It's

- 1. **finite** if $\forall A \in \mathcal{A}$, $|\mu(A)| < \infty$
 - 2. σ -finite if $\exists A_n \subset \mathcal{A}$, s.t. $\bigcup_{i=1}^{\infty} A_i = \Omega \quad \forall n \quad |\mu(A_n)| < \infty$ 3. s finite if there exist countable finite (μ_n) s.t. $\mu = \sum_n \mu_n$.
- 1. additive $\iff \mu\left(\sum_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} \mu\left(A_i\right)$ 2. σ -additive $\iff \mu\left(\sum_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu\left(A_i\right)$

Remark. Finite implies σ finite and σ finite implies Σ finite.

 μ is a **measure** on \mathcal{A} if

- 1. $\forall A \in \mathcal{A} : \mu(A) \geq 0$
- 2. It's σ additive.

the triplet $(\Omega, \mathcal{A}, \mu)$ is a **measure space** when μ is a measure and (Ω, \mathcal{A}) is a measurable space. Whose sets are called **measurable sets** or \mathcal{A} -measurable.A measure space is a **probability space** if $P(\Omega) = 1$.

Assume that $A_{1:n} \in \mathcal{A}$ and $A \in \mathcal{A}$ and μ is a measure.

- 1. μ is continues from above, if $A_n \searrow A \implies \mu(A_n) \rightarrow \mu(A)$
- 2. μ is continues from below, if $A_n \nearrow A \implies \mu(A_n) \rightarrow \mu(A)$
- 3. μ is continues at A, if $A_n \to A \implies \mu(A_n) \to \mu(A)$

 \forall Measure μ is continues from below and may not continues from above. It will be continues from above if $\exists m < \infty, \mu(A_m) < \infty$. So finite measure μ are always continues.

Properties of measure 1.3.1

1.3.1.1 Semialgebras

Let μ be a nonnegative additive set function on a semialgebra \mathcal{A} . $\forall A, B \in \mathcal{A}$ and $\{A_n, B_n, n \geq 1\} \in \mathcal{A}$

- 1. (Monotonicity): $A \subset B \implies \mu(A) \leq \mu(B)$
- 2. $(\sigma$ -subadditivity):
 - $\begin{array}{ll} 1. \; \sum_{1}^{\infty}A_{n}\subset A, & \Longrightarrow \; \sum_{1}^{\infty}\mu\left(A_{n}\right)\leq\mu(A) \\ 2. \; \text{Moreover, if} \; \mu \; \text{is a measure, then} \end{array}$

$$B \subset \sum_{n=1}^{\infty} B_n \implies \mu(B) \leq \sum_{n=1}^{\infty} \mu\left(B_n\right)$$

We can assert a nonnegative set function μ is a measure by:

- 1. μ is additive
- 2. μ is σ subadditive on \mathcal{S}

1.3.1.2 Algebras

Algebras enjoy all the properties of semialgebra, also, we have

Theorem 1.6 (σ subadditivity). Let μ be a measure on an algebra \mathcal{A}

$$A\subset \cup_1^\infty A_n \implies \mu(A) \leq \sum_1^\infty \mu\left(A_n\right)$$

Proof. Note $A = A \cap (\cup A_n) = \cup (A \cap A_n)$, hence we can write A as union in \mathcal{A} by take $B_n = A \cap A_n \in \mathcal{A}$.

$$A = \bigcup_{1}^{\infty} B_n$$

and then we can take $C_n = B_n - \cup_1^{n-1} B_i \in \mathcal{A}$ to write A as disjoint union:

$$A=\sum C_n$$

Then

$$\mu(\mathcal{A})=\mu(\sum C_n)=\sum \mu(C_n)\leq \sum \mu(B_n)\leq \sum \mu(A_n)$$
 as $C_n\subset B_n\subset A_n.$

1.3. MEASURE 15

1.3.1.3 σ algebras

Let μ be a measure on an σ algebra \mathcal{A}

- 1. Monotonicity
- 2. Boole's inequality(Countable Sub-Additivity)

$$\mu\left(\cup_{i=1}^{\infty}A_{i}\right)\leq\sum_{i=1}^{\infty}\mu\left(A_{i}\right)$$

- 3. Continuity from below
- 4. Continuity from above if μ is finite in A_i .

The sense of 4 follows from suppose $A_i \searrow A$, then $A_1 - A_i \nearrow A_1 - A$, then

$$\mu(A_1) - \mu(A) = \mu(A_1 - A) = \lim \mu(A_1 - A_i) = \mu(A_1) - \lim(A_i)$$

where $\mu(A_1)$ cannot be cancelled if $\mu(A_i) = \infty$.

Definition 1.11. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space, and $N \subset \Omega$

- 1. N is a μ null set iff $\exists B \in \mathcal{A}$ s.t. $\mu(B) = 0$, $N \subset B$
- 2. This measure space is a **complete measure** space if \forall μ null space N, $N \in \mathcal{A}$

Theorem 1.7. Given any measure space $(\Omega, \mathcal{A}, \mu)$, there exist a complete measure space $(\Omega, \bar{\mathcal{A}}, \bar{\mu})$, such that $\mathcal{A} \subset \bar{\mathcal{A}}$ and $\bar{\mu}$ is an extension of μ . This space is called completion of $(\Omega, \mathcal{A}, \mu)$.

Proof. Take

$$\bar{\mathcal{A}} = \{A \cup N : A \in \mathcal{A}\}\$$

 $\bar{\mathcal{B}} = \{A\Delta N : A \in \mathcal{A}\}\$

 $\bar{\mathcal{A}}=\bar{\mathcal{B}}$ since $A\cup N=(A-B)\Delta(B\cap(A\cup N))$ and $A\Delta N=(A-B)\cup(B\cap(A\Delta N)).$

Then we can show that $\bar{\mathcal{A}}$ is a σ algebra. Let $\Omega_i = A_i \cup N_i \in \bar{\mathcal{A}}$, then

$$\bigcup_1^\infty \Omega_i = \bigcup_1^\infty A_i \cup \bigcup_1^\infty N_i$$

and note $\bigcup_1^{\infty} A_i \in \mathcal{A}$ and $\mu(\bigcup_1^{\infty} N_i) \leq \mu(\bigcup_1^{\infty} B_i) \leq \bigcup_1^{\infty} \mu(B_i) = 0$. Thus $\bar{\mathcal{A}}$ is closed by countable union. As for complements, note $\Omega^c = A^c \cap N^c = (A^c \cap N^c \cap B^c) \cup (A^c \cap N^c \cap B) = (A^c \cap B^c) \cup (A^c \cap N^c \cap B) \in \bar{\mathcal{A}}$.

Finally we define a measure $\bar{\mu}$ on \mathcal{A} by

$$\bar{\mu}(A \cup N) = \mu(A)$$

We should prove it's well defined. Suppose $A_1 \cup N_1 = A_2 \cup N_2 \in \bar{\mathcal{A}}$, note $A\Delta B\Delta C = A\Delta (B\Delta C)$ and $A\Delta B = B\Delta A$.

$$\begin{split} (A_1 \Delta A_2) \Delta (N_1 \Delta N_2) &= (A_1 \Delta A_2 \Delta N_1) \Delta N_2 \\ &= (A_1 \Delta N_1) \Delta (A_2 \Delta N_2) \\ &= \varnothing \end{split}$$

Hence $A_1\Delta A_2=N_1\Delta N_2$, note $N_1\Delta N_2\subset N_1\cup N_2\subset B_1\cup B_2$, hence $\mu(A_1\Delta A_2)=0$ and thus $\mu(A_1-A_2)=\mu(A_2-A_1)=0$. Therefore

$$\begin{split} \mu(A_1) &= \mu(A_1 - A_2) + \mu(A_1 \cap A_2) = \mu(A_1 \cap A_2) \\ \mu(A_2) &= \mu(A_2 - A_1) + \mu(A_1 \cap A_2) = \mu(A_1 \cap A_2) \end{split}$$

 $\bar{\mu}$ is do well defined. μ^* is auto σ additive since so is μ and is easy to check that all μ^* null set is μ null set.

1.3.2 Specification of measures

Theorem 1.8. Let (Ω, \mathcal{A}) be a measurable space and μ, ν be finite measures. If μ, ν agree on a π system generating \mathcal{A} , then μ, ν are identical.

If μ, ν are just σ finite, then the π system must include the partition $(A_n) \subset \mathcal{A}$.

Proof. Let \mathcal{C} be the π system generating \mathcal{A} and $\mu(A) = \nu(A)$ for every $A \in \mathcal{C}$. Consider $\mathcal{D} = \{A \in \mathcal{A} : \mu(A) = \nu(A)\}$ which satisfies $\mathcal{C} \subset \mathcal{D} \subset \Omega$. Then we need to prove that \mathcal{D} is a λ system:

- $\Omega \in \mathcal{D}$ by the assumption.
- Let $A, B \in \mathcal{D}$ and $B \subset A$. Then $\mu(A-B) = \mu(A) \mu(B) = \nu(A) \nu(B) = \nu(A-B)$, so $A-B \in \mathcal{D}$
- Let $(A_n) \uparrow A$ and $(A_n) \subset \mathcal{D}$, then $\mu(A_n) \uparrow \mu(A)$, $\nu(A_n) \uparrow \nu(A)$, since $\mu(A_n) = \nu(A_n)$ for every n, so $\mu(A) = \nu(A)$.

So \mathcal{D} is a d-system. It follows that $\sigma(\mathcal{C}) = \mathcal{A} \subset \mathcal{D}$.

As consequence, we have

Corollary 1.1. Suppose μ and ν are probability measures on space on $(\overline{\mathbb{R}}, \mathcal{B})$ then $\mu = \nu$ iff $\mu[-\infty, r] = \nu[-\infty, r], \forall r \in \mathbb{R}$.

Proof. Note $\{[-\infty, r] : r \in \mathbb{R}\}$ is a π system and generates \mathcal{B} .

1.3.3 Atomic and diffuse measure

Definition 1.12. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space where \mathcal{A} contains all the singletons: $\{x\} \in \mathcal{A}$ for every $x \in \Omega$ (it's true for all the standard measure).

A point x is said to be an **atom** if $\mu(\{x\}) > 0$, the measure is said to be **diffuse** if it has no atoms. It is said to be **purely atomic** if the set D of its atoms is countable and $\mu(\Omega - D) = 0$.

Lemma 1.6. A s-finite measure has at most countable many atoms.

Proof. It suffices to show that when μ is finite. Suppose $A_n = \{x : \mu\{x\} > \frac{1}{n}\}$ and A consists all atoms, then the claim follows from $A_n \nearrow A$ and $|A_n| \le n\mu(\Omega)$ as $A = \bigcup_n A_n$.

Theorem 1.9. Let μ be a s-finite measure on (Ω, \mathcal{A}) . Then $\mu = \nu + \lambda$ where λ is a diffuse measure and ν is purely atomic.

Proof. Let D be set of all atoms and define

$$\lambda(A) = \mu(A - D)$$

$$\nu(A) = \mu(A \cap D)$$

for all $A \in \mathcal{A}$. Clearly, $\lambda + \nu = \mu$. Then

- λ is diffuse as $\lambda\{x\} = 0$ for all $x \in D$ and if $\lambda\{x\} > 0$, it must be $x \in D$.
- ν is purely atomic as $D_{\nu} = D$ clearly and $\nu(\Omega D) = \mu(\varnothing) = 0$.

sdf

1.4 Integration

let f be Borel measurable on $(\Omega, \mathcal{A}, \mu)$. The **integral** of f w.r.t μ is denoted by

$$\int f(\omega)\mu(d\omega) = \int f d\mu = \int f$$

1. If $f = \sum_{1}^{n} a_i \mathbf{1}_{A_i}$ with $a_i \ge 0$,

$$\int f d\mu = \sum_{1}^{n} a_{i} \mu \left(A_{i} \right)$$

2. If $f \geq 0$, define

$$\int f d\mu = \lim_{n} \int f_n d\mu$$

where f_n are simple functions and $f_n \nearrow f$.

3. For any f, we have $f = f^+ - f^-$, define

$$\int f d\mu := \int f^+ d\mu - \int f^- d\mu$$

4. f is said to be integrable w.r.t. μ if $\int |f| d\mu < \infty$. We denote all integrable functions by L^1 .

Proposition 1.1. (Integral over sets)

$$\int_A f d\mu = \int f \mathbf{1}_A d\mu = \int f(\omega) \mathbf{1}_A(\omega) \mu(d\omega)$$

(Absolute integrability). $\int f$ is finite iff $\int |f|$ is finite. (Linearity) If $f, g, a, b \ge 0$ or $f, g \in L^1$

$$\int (af + bg) = a \int f + b \int g$$

(σ additivity over sets) If $A = \sum_{i=1}^{\infty} A_i$, then

$$\int_A f = \sum_{i=1}^{\infty} \int_{A_i} f$$

(Positivity) If $f \ge 0$ a.s., then $\int f \ge 0$ (Monotonicity) If $f_1 \le f \le f_2$ a.s., then $\int f_1 \le \int f \le \int f_2$ (Mean value theorem) If $a \le f \le b$ a.s., then

$$a\mu(A) \le \int_A f \le b\mu(A)$$

(Modulus inequality): $| \int f | \leq \int |f|$

1.4.1 Monotone Convergence Theorem

Theorem 1.10 (Monotone Convergence Theorem). Suppose nonnegative $f_n \nearrow f$ a.e., then $\int f_n d\mu \nearrow \int f d\mu$.

Theorem 1.11. We may ignore a null set then $f_n \nearrow f$ and their integration still equal. Note $\int f_n d\mu \leq \int f d\mu$, $\int f_n d\mu$ must converges to some $L \leq \int f$. Then we show $L \geq \int f$.

Let $s=\sum a_i\chi_{E_i}$ be simple function and $s\leq f$. Let $A_n=\{x:f_n(x)\geq cs(x)\}$ where $c\in (0,1)$, then $A_n\nearrow X$. For each n

$$\int f_n \ge \int_{A_n} f_n \ge c \int_{A_n} s$$

$$= c \int_{A_n} \sum a_i \chi_{E_i}$$

$$= c \sum a_i \mu(E_i \cap A_n)$$

$$\nearrow c \int s$$

hence $L \ge c \int s \implies L \ge \int s \implies L = \lim L \ge \lim \int s_n = \int f$.

Lemma 1.7 (Fatou's Lemma). If $f_n \ge 0$ a.e. then

$$\int \left(\liminf_{n} f_{n} \right) \leq \liminf_{n} \int f_{n}$$

Proof. Suppose $g_n = \inf_{i \geq n} f_i$ and recall that $\lim g_n = \liminf f_n$. Clearly $g_n \leq f_i \forall i \geq n$ hence

$$\int g_n \le \inf_{i \ge n} \int f_i$$

Take limit both side and note g_n is increasing:

$$\lim \int g_n = \int \lim g_n = \int \liminf f_n \le \lim \inf \int f_n$$

Theorem 1.12 (Dominated Convergence Theorem). Suppose $f_n(x) \to f(x) \forall x$, and there exists a nonnegative integrable g s.t. $|f_n(x)| \leq g(x)$ (then we get $f_n \in L^1$ immediately), then

$$\lim \int f_n d\mu = \int f d\mu$$

Proof. Since $f_n + g \ge 0$

$$\int f + \int g = \int f + g \le \liminf \int f_n + g = \liminf \int f_n + \int g$$

thus $\int f \leq \liminf_{n\to\infty} \int f_n$. Similarly, we can get $\int f \leq \liminf_{n\to\infty} \int f_n$ from $g-f_n\geq 0$.

Theorem 1.13 (Tonelli's Throrem). If $\sum_{1}^{\infty} \int |f_n| < \infty$, then

$$\int \left(\sum_{i=1}^{\infty} f_n\right) = \sum_{i=1}^{\infty} \int f_n$$

Proof. Let $g_k = \sum_1^k |f_n|, g = \sum_1^\infty |f_n|, h_k = \sum_1^k f_n, h = \sum_1^\infty f_n$. Then $g_k \nearrow g$, by MCT, we have

$$\int g = \lim \int g_k = \lim \sum_1^k \int |f_n| = \sum_1^\infty \int |f_n| < \infty$$

Hence we may let g dominate h_k and get

$$\int h = \lim \int h_k = \sum_1^\infty \int f_n$$

1.4.2 Criteria for zero a.e.

Lemma 1.8 (Markov inequality). Let $A = \{x \in \Omega : f(x) \ge M\}$, then

$$\mu(A) \le \frac{\int f}{M}$$

Proof.

$$\mu(A) = \int \chi_A = \int_A \chi_A \le \int_A \frac{f}{M} \le \int_X \frac{f}{M} = \frac{\int f}{M}$$

Lemma 1.9. Suppose f is measurable and non-negative and $\int f d\mu = 0$. Then f = 0 a.e.

Proof. By lemma 1.8 and define $A_M = \{x \in \Omega : f(x) \ge M\}$. Consequently, $\mu(A_M) = 0$ for all M > 0, note $A_{\frac{1}{n}} \nearrow A_0$:

$$A_0 = \bigcup_{1}^{\infty} A_{\frac{1}{n}} \implies \mu(A_0) = \sum 0 = 0$$

Hence f = 0 a.e.

Lemma 1.10. Suppose f is integrable and $\int_A f = 0$ for all measurable A. Then f = 0 a.e.

Proof. Suppose $A_n = \{x \in \Omega : f(x) \ge \frac{1}{n}\}$, then

$$0 = \int_{A_n} f \ge \frac{\mu(A_n)}{n} \Rightarrow \mu(A_n) = 0$$

thus $\mu\{x\in\Omega:f(x)>0\}=0.$ Similarly, $\mu\{x\in\Omega:f(x)<0\}=0$ and the claim follows.

Theorem 1.14. Suppose $f: \mathbb{R} \to \mathbb{R}$ is integrable and $\int_a^x f = 0$ for all x, then f = 0 a.e.

Proof. For any interval I = [c, d],

$$\int_{a} f = \int_{a}^{d} f - \int_{a}^{c} f = 0$$

Then the integral is 0 for finite disjoint union of intervals from additivity. Note open sets G can be written as countable union of disjoint open intervals $G = \sum_{1}^{\infty} I_{i} = \lim \sum I_{n} \implies$

$$\int_G f = \int f \chi_G = \int f \sum_1^\infty \chi_{I_i} = \int \lim f \sum \chi_{I_i} = \lim \int f \sum \chi_{I_i} = 0$$

□ hen

П

If $G_n \searrow H$, then

$$\int_{H}f=\int f\chi_{H}=\int \lim f\chi_{G_{n}}=\lim \int f\chi_{G_{n}}=\lim \int_{G_{-}}f=0$$

where we apply DMT twice and take dominated function g = |f|.

Finally, for any borel measurable set E, there is $G_{\delta} \supset E$ and $m(G_{\delta} - E) = 0$, then

$$\int_{E} f = \int f \chi_{E} = \int f \chi_{G_{\delta}} = \int_{G_{\delta}} f = 0$$

Characterization of the integral

Theorem 1.15. Let (Ω, \mathcal{A}) be a measurable space and $L : \mathcal{A} \to \overline{\mathbb{R}}_+$, then there is a unique measure μ on (Ω, \mathcal{A}) s.t. $L(f) = \int f$ for every $f \in \mathcal{A}_+$ iff:

- $f = 0 \implies L(f) = 0$
- $\begin{array}{c} \bullet \ \ f,g \in \mathcal{A}_+ \ \ and \ a,b \in \mathbb{R}_+ \\ \bullet \ \ (f_n) \subset \mathcal{A}_+ \ \ and \ f_n \nearrow f \\ \Longrightarrow \ L(f_n) \nearrow L(f) \\ \end{array}$

Proof. \Rightarrow follows from the definition and properties of integral. For \Leftarrow , let there is a function L satisfies above conditions and give a μ and let $\mu(A) = L(1_A)$, then use those conditions we can prove that μ is a measure a (Ω, \mathcal{A}) .

1.5 Transforms and Indefinite integral

Definition 1.13 (Image measure). Let (F, \mathcal{F}) and (E, \mathcal{E}) be measurable spaces. Let ν be a measure on (F,\mathcal{F}) and let $h:F\to E$ be measurable relative to \mathcal{F} and \mathcal{E} , then define a mapping $\nu \circ h^{-1}(B) = \nu(h^{-1}B)$, $B \in \mathcal{E}$. Then $\nu \circ h^{-1}$ is a measure on (E, \mathcal{E}) , which is called the **image** of ν under h.

Remark. Image inherit finite and s-finite, but not σ -finite.

Theorem 1.16. For every $f \in \mathcal{E}$, we have $(\nu \circ h^{-1})f = \nu(f \circ h)$.

Proof. We only need to show that \mathcal{E}_+ case and then the general case follows

Let $L: \mathcal{E}_+ \to \overline{\mathbb{R}}_+$ by letting $L(f) = \nu(f \circ h)$. Then as the property of $\nu(f \circ h)$, f satisfies the properties of integral characterization theorem. Then, $L(f) = \mu f$ for some unique measure μ on (E,\mathcal{E}) . And note $\mu = \nu \circ h$

$$\mu(B) = L(\mathbf{1}_B) = \nu(\mathbf{1}_B \circ h) = \nu(h^{-1}B)$$

1.5.1 Images of the Lebesgue measure

By theorem 1.16, we have a convenient tool for creating new measure from old and, we may integral a measure using Lebesgue measure:

Theorem 1.17. Let $(\Omega, \mathcal{A}, \mu)$ be a standard measure space where μ is s-finite and $b = \mu(\Omega)$. Then there exists a measurable mapping $h : ([0,b), \mathcal{B}_{[0,b]}) \to (\Omega, \mathcal{A})$ s.t. $\mu = \lambda \circ h^{-1}$, where λ is the Lebesgue measure on [0,b).

Proof. See 5.15 and 5.16 on page 34 in Probability and Stochastic.

1.5.2 Indefinite integrals

Definition 1.14. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space and $p \in \mathcal{A}_+$. Define:

$$\nu(A) = \mu(p\mathbf{1}_A) = \int_A pd\mu$$

then ν is a measure on (Ω, \mathcal{A}) and called **indefinite integral** of p w.r.t. μ .

Remark. ν is a measure follows from MCT.

Theorem 1.18. For any $f \in \mathcal{A}_+$, $\nu f = \mu(pf)$.

Proof. Let $L(f) = \mu(pf)$. Check L:

- $f = 0 \implies L(f) = 0$
- Give $f,g\in\mathcal{E}_+$ and $a,b\in\mathbb{R}_+$ \Longrightarrow $L(af+bg)=\mu(p(af+bg))$ and based on the arithmetic rules on \mathbb{R} and the linearity of μ , L(af+bg)=aL(f)+bL(g)
- Give $(f_n) \subset \mathcal{E}_+$ and $f_n \nearrow f$, $L(f_n) = \mu(pf_n)$ and as $f_n \nearrow f$, $pf_n \nearrow pf$ so $\lim L(f_n) = \lim \mu(pf_n)$. According to the monotone converging theorem, $\lim \mu(pf_n) = \mu(pf) = L(f)$

So there exists $\hat{\mu}$ s.t. $\mu(pf) = \hat{\mu}f$ and that force $\hat{\mu} = \nu$ as

$$\hat{\mu}(A) = L(\mathbf{1}_A) = \mu(p\mathbf{1}_A) = \nu(A)$$

Remark. Writing above result in an explicit notation:

$$\int_{E} f d\nu = \int_{E} p f d\mu$$

that is:

$$d\nu = pd\mu$$

and it's precisely Fundamental theorem of calculus. Thus we can say:

- ν is the indefinite integral of p w.r.t. μ or
- p is the density of ν w.r.t. μ .

1.5.3 Radon-Nikodym theorem

Definition 1.15 (Absolutely continuous). Let ν and μ be measures on a measurable space (Ω, \mathcal{A}) . Then ν is said to be **absolutely continuous** w.r.t. μ if for any set $A \in \mathcal{E}$, $\mu(A) = 0 \implies \nu(A) = 0$ and denoted by $\nu \ll \mu$.

Clearly, if ν is the indefinite integral of some $p \in \mathcal{A}_+$ w.r.t. μ , then it's absolutely continuous w.r.t. μ . And the follows shows that the converse is true.

Theorem 1.19 (Radon-Nikodym Theorem). Suppose that μ is σ -finite and ν is absolutely continuous w.r.t. μ . Then there exists unique(up to a.e.) $p \in \mathcal{A}_+$ s.t. for every $f \in \mathcal{A}_+$:

$$\int_{\Omega} f d\nu = \int_{\Omega} f p d\mu$$

1.6 Kernels and Product spaces

Definition 1.16 (transition kernel). Let (E,\mathcal{E}) and (F,\mathcal{F}) be measurable spaces. Let $K: E \times \mathcal{F} \to \overline{\mathbb{R}}_+$. Then, K is called a transition kernel from (E,\mathcal{E}) into (F,\mathcal{F}) if:

- the mapping $x \mapsto K(x, B)$ is \mathcal{E} -measurable for every set $B \in \mathcal{F}$
- the mapping $B \mapsto K(x,B)$ is a measure on (F,\mathcal{F}) for every $x \in E$

Example 1.1. If ν is a finite measure on (F, \mathcal{F}) , and k is a positive function on $E \times F$ that is $\mathcal{E} \times \mathcal{F}$ -measurable, then

$$K(x,B) = \int_{B} k(x,y)d\nu$$

when fix $x \in E$, $K(x, B) = \nu(k(x, y)\mathbf{1}_B) = \mu(B)$ for some μ which is the measure on (F, \mathcal{F}) ;

when fix $B \in \mathcal{F}$, f(x) = K(x, B) is measurable follows from theorem 1.4.

1.6.1 Measure-kernel-function

Theorem 1.20. Let K be a transition kernel from (E, \mathcal{E}) into (F, \mathcal{F}) . Then

$$Kf(x) = \int_{\Gamma} K(x, dy) f(y)$$

defines a function $Kf \in \mathcal{E}_+$ for every $f \in \mathcal{F}_+$;

$$\mu K(B) = \int_{F} \mu(dx) K(x, B)$$

defines a measure μK on (F, \mathcal{F}) for each measure μ on (E, \mathcal{E}) ; and

$$(\mu K)f = \mu(Kf) = \int_E \mu(dx) \int_F K(x,dy) f(y)$$

for every measure μ on (E,\mathcal{E}) and function f in \mathcal{F}_+ .

Proof. Kf is well-defined and measurable follows form theorem 1.4. Define $L: \mathcal{F}_+ \to \overline{\mathbb{R}}_+ = f \mapsto \mu(Kf)$. Check

- $f(0) \Rightarrow L(f) = 0$
- If $f, g \in \mathcal{F}_+$ and $a, b \in \overline{\mathbb{R}}_+$, then:

$$\begin{split} L(af+bg) &= \mu(K(af+bg)) \\ &\stackrel{Linearity}{=\!=\!=\!=\!=} \mu(aKf+bKg) \\ &\stackrel{linearity}{=\!=\!=\!=\!=} a\mu(Kf) + b\mu(Kg) \\ &= aL(f) + bL(g) \end{split}$$

• Suppose $(f_n) \subset \mathcal{F}_+$ and $f_n \nearrow f$, then

$$L(f_n) = \mu(Kf_n) \nearrow \mu(Kf) = L(f)$$

as MCT.

Hence, there exists a measure ν s.t. $L(f) = \mu(Kf) = \nu f$ as theorem 1.15. Then it suffices to show $\nu = \mu K$. Taking $f = \mathbf{1}_B$, we have $\nu(B) = \nu(\mathbf{1}_B) = \mu(K\mathbf{1}_B)$, it follows that

$$\mu(K\mathbf{1}_B) = \int_E \mu(dx) \int_E K(x,dy) \mathbf{1}_B(y) = \int_E \mu(dx) K(x,B) = \mu K(B)$$

Corollary 1.2. A mapping $f \mapsto Kf : \mathcal{F}_+ \to \mathcal{E}_+$ specifies a transition kernel K iff

- K0 = 0
- $K(af + bg) = aKf + bKg \text{ for } f, g \in \mathcal{F}_+ \text{ and } a, b \in \overline{\mathbb{R}}_+$
- $Kf_n \nearrow Kf$ for every $(f_n) \nearrow f \subset \mathcal{F}_+$.

1.6.2 Products of kernels

Definition 1.17. Let K be a transition kernel from (E, \mathcal{E}) into (F, \mathcal{F}) and let L be a transition kernel from (F, \mathcal{F}) into (G, \mathcal{G}) . Then their **product** is the transition kernel KL from (E, \mathcal{E}) into (G, \mathcal{G}) defined by

$$(KL)f = K(Lf)$$

Remark. We can check KL is a transition kernel indeed by corollary 1.2. Obviously

$$KL(x,B) = \int_{E} K(x,dy)L(y,B)$$

1.6.3 Markov kernel

Definition 1.18. Let K be a transition kernel from (Ω, \mathcal{A}) into (Ω', \mathcal{A}') , it's called simply a transition kernel on (Ω, \mathcal{A}) if $\mathcal{A}' = \mathcal{A}$, moreover, it's called a **Markov kernel** if $K(x,\Omega) = 1, \forall x \in \Omega$ and a **sub-Markov kernel** if $K(x,\Omega) \leq 1, \forall x \in \Omega$.

If K is a transition kernel on (Ω, \mathcal{A}) , similarly with product kernel, we can define its **power** by $K^n = KK^{n-1}$ and $K^0 = I$ where I is the identity kernel on (Ω, \mathcal{A}) : $I(x, A) = \mathbf{1}_A(x)$. To see why it's called "identity", check

$$\begin{split} If(x) &= \int_{\Omega} I(x,dx) f(x) = \int_{\{x\}} f(x) = f(x) \\ \mu I(A) &= \int_{\Omega} \mu(dx) I(x,A) = \int_{A} \mu(dx) = \mu(A) \end{split}$$

and thus IK = KI = K. It follows that if K is Markov, so is K^n :

$$\begin{split} KK(x,\Omega) &= \int_{\Omega} K(x,dy)K(y,\Omega) \\ &= \int_{\Omega} K(x,dy) \\ &= K(x,\Omega) = 1 \end{split}$$

1.6.4 finite and bounded kernels

Definition 1.19. Let K be a transition kernel from (E,\mathcal{E}) into (F,\mathcal{F}) . In analogy with measures, it's called σ finite and finite if $B \mapsto K(x,B)$ is so for each $x \in E$

It's called bounded if $x \mapsto K(x, F)$ is bounded and σ bounded if there exists a partition $(F_n) \subset \mathcal{F}$ s.t. $x \mapsto K(x, F_n)$ is bounded for each n.

It's said to be s-finite if there exists countable finite (K_n) s.t. $K = \sum K_i$ and s-bounded if those (K_n) can be bounded.

If $K(x, \mathcal{F}) = 1$ for all x, the kernel is said to be a **transition probability** kernel.

Remark.

bounded
$$\Rightarrow$$
 σ -bounded \Rightarrow s -bounded \downarrow \downarrow \downarrow finite \Rightarrow σ -finite \Rightarrow s -finite

1.6.5 Functions on product spaces

Sections of a measurable function are measurable:

Proposition 1.2. Let $f \in \mathcal{X} \times \mathcal{Y}$, then it's selection, $x \mapsto f(x,y)$ and $y \mapsto f(x,y)$ are measurable for each x and y.

Then we can generalize theorem 1.20 to functions on product spaces:

Lemma 1.11. Let K be a s-finite kernel from (X, \mathcal{X}) into (X, \mathcal{Y}) , then, $\forall f \in (\mathcal{X} \times \mathcal{Y})_{\perp}$, define

$$Tf(x) = \int_{F} f(x,y) K(x,dy) \in \mathcal{X}_{+}$$

moreover, $T:(\mathcal{X}\times\mathcal{Y})\to\mathcal{X}_+$ is linear and continuous from below:

- T(af + bg) = aTf + bTg for $f, g \in (\mathcal{X} \times \mathcal{Y})_+$ and $a, b \in \mathbb{R}_+$
- If $(f_n) \subset \mathcal{X} \times \mathcal{Y} \nearrow f$, then $Tf_n \nearrow Tf$.

Proof. By proposition 1.2, $f_x:y\mapsto f(x,y)$ is measurable in \mathcal{F}_+ and thus $Tf(x)=Kf_x(x)$, hence

• Linearity:

$$\begin{split} T(af+bg)(x) &= K(af_x+bg_x)(x) \\ &= aKf_x(x) + bKg_x(x) \\ &= aTf(x) + bTg(x) \\ &= (aTf+bTg)(x) \end{split}$$

• Continuity from below

$$f_n \nearrow f \implies Kf_{n_x}(x) \nearrow Kf_x(x) \implies Tf_n(x) \nearrow Tf(x)$$

Then it's remain to show $Tf \in \mathcal{X}_+$, assume K is bounded, suppose

$$\mathcal{M} = \{f \in \left(\mathcal{X} \times \mathcal{Y}\right)_+ \cup \left(\mathcal{X} \times \mathcal{Y}\right)_b : Tf \in \mathcal{X}\}$$

it's easy to check it's a monotone class and include all indicator of measurable rectangle $A\times B$. By theorem 1.5, we have $\mathcal{M}=\left(\mathcal{X}\times\mathcal{Y}\right)_{+}\cup\left(\mathcal{X}\times\mathcal{Y}\right)_{b}$.

1.6.6 Measures on the product space

Theorem 1.21. Let μ be a measure on (X, \mathcal{X}) and K be a s-finite kernel from (X, \mathcal{X}) to (Y, \mathcal{Y}) , then for any $f \in (\mathcal{X} \times \mathcal{Y})_+$

$$\pi f = \int_X \int_Y f(x,y) K(x,dy) d\mu$$

define a measure π on the product space. Moreover, if μ if σ -finite and K is σ bounded, then π is σ finite and unique that satisfying:

$$\pi(A \times B) = \int_A K(x, B) d\mu$$

Proof. To see πf define a measure, check theorem 1.15, which follows from $\pi f = \mu(Tf)$ and similar properties enjoyed by T from lemma 1.11.

And the unique follows from theorem 1.8 by noting that all measurable rectangles is a π -system.

1.6.7 Product measures and Fubini

Definition 1.20. If $K(x,B) = \nu(B)$, i.e., independent to x, for some s-finite measure ν on (Y,\mathcal{Y}) , then such π is called **product** of μ and ν .

Theorem 1.22 (Fubini's theorem). Let μ and ν be s-finite measures on (X, \mathcal{X}) and (F, \mathcal{F}) , respectively.

• There exists a unique s-finite measure π on $(X \times Y, \mathcal{X} \times \mathcal{Y})$ s.t. $\forall f \in (X \times Y)_{\perp}$:

$$\pi f = \int_X \int_Y f(x,y) d\nu d\mu = \int_Y \int_X f(x,y) d\mu d\nu$$

• If $f \in \mathcal{X} \times \mathcal{Y}$ and $\pi f < \infty$, then $y \mapsto f(x,y)$ is ν integrable μ a.e. for every $y, x \mapsto f(x,y)$ is μ integrable ν a.e. for every x.

Remark. For $A \in \mathcal{X}$ and $B \in \mathcal{Y}$, we have

$$\begin{split} \pi(A\times B) &= \pi \mathbf{1}_{A\times B} \\ &= \int_X \int_Y \mathbf{1}_{A\times B}(x,y) d\nu d\mu \\ &= \int_X \int_Y \mathbf{1}_A(x) \mathbf{1}_B(y) d\nu d\mu \\ &= \mu(A) \nu(B) \end{split}$$

and this is the reason we call π the product and write $\pi = \mu \times \nu$.

Remark. By theorem 1.21, only if both μ and ν are σ -finite the π is the unique product

1.6.8 Finite products

Now we can extend previous results to finitely many spaces' product. Similarly to product topology, $\prod_{i \in I} A_i$ is generated by all measurable rectangles $\prod_{i \in I} A_i$ where I is finite.

Let (μ_n) be s-finite measures, their product measure is defined by analogy with theorem 1.22, $\forall f \in \prod_{i \in I} \mathcal{A}_i$,

$$\pi f = \int \!\! \dots \int \!\! f d\mu_n \dots d\mu_1$$

1.6.9 Infinite products

Similar again with product topology, $\prod_{i \in I} \mathcal{A}_i$ is generated by all measurable rectangles $\prod_{i \in I} A_i$ where $A_i = \Omega_i$ with finite exception. In analogy with topology product, we have:

Proposition 1.3. Suppose there is $f_i:(X,\mathcal{F})\to(\Omega_i,\mathcal{A}_i)$ for $i\in I$ and define $f(x)=(f_i(x))_{i\in I}$, then f is measurable iff each f_i is measurable.

Chapter 2

Probability Spaces

2.1 Probability Spaces and Random Variables

Definition 2.1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. The set Ω is called the **sample space** and whose elements are called **outcomes**. \mathcal{F} is called **history** and whose elements are called **events**.

Note here $\mathbb P$ is finite measure, so it's continuous. We collect it's properties below :

Proposition 2.1. For probability measure, which has following properties:

- 1. $\forall A \in \mathcal{A}, \quad 0 \leq \mathbb{P}(A) \leq 1$
- 2. $\mathbb{P}(\Omega) = 1$
- 3. $\mathbb{P}\left(\sum_{1}^{\infty}A_{n}\right)=\sum_{1}^{\infty}\mathbb{P}\left(A_{n}\right)$
- 4. $\mathbb{P}(A) \leq \mathbb{P}(B) \iff A \subset B$
- 5. \mathbb{P} is continuous, as well as continuous from above and below.
- 6. Boole's inequality

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty}A_{i}\right)\leq\sum_{i=1}^{\infty}\mathbb{P}\left(A_{i}\right)$$

2.1.1 Measure-theoretic and probabilistic languages

Probability
Expectation
Event
Random Variable
a.s.

2.1.2 Distribution of a r.v.

Let X be a r.v. taking values in some measurable space (Y, \mathcal{Y}) , then let μ be the image of \mathbb{P} under X, i.e.:

$$\mu(A) = \mathbb{P}(X^{-1}A) = \mathbb{P}\{X \in A\}$$

then μ is a probability measure on (Y, \mathcal{Y}) , it's called the **distribution** of X. In view of theorem 1.8, it suffices to specify $\mu(A)$ for all A belongs to a π -system which generates \mathcal{Y} . In particular, if $(Y, \mathcal{Y}) = (\overline{\mathbb{R}}, \mathcal{B})$, it's enough to specify

$$c(x) = \mu[-\infty, x] = \mathbb{P}\{X \le x\}$$

and such $c: \mathbb{R} \to [0,1]$ is called **distribution function(d.f.)**

Remark. Distribution function is nondecreasing and right continuous.

2.1.3 Joint distributions

Let X and Y taking values in (E, \mathcal{E}) and (F, \mathcal{F}) respectively then pair Z = (X, Y) is measurable from \mathcal{F} to $\mathcal{E} \times \mathcal{F}$.

Recall the product spaces, to specifies distribution π of Z is suffices to:

$$\pi(A \times B) = \mathbb{P}\{X \in A, Y \in B\}$$

thus we have

$$\mu(A) = \mathbb{P}\{x \in A\} = \pi(A \times F)$$

 μ and ν are called marginal distributions

2.1.4 Independence

Let X and Y taking values in (E,\mathcal{E}) and (F,\mathcal{F}) with marginal μ and ν , then they are said **independent** if their joint distribution is the product formed by their marginals:

$$\mathbb{P}\{X \in A, Y \in B\} = \mathbb{P}\{X \in A\} \, \mathbb{P}\{Y \in B\}$$

A finite collection $\{X_i\}_i^n$ is said to be **independency** if their product distribution has form $\prod_{i=1}^n \mu_i$. An arbitrary collection of r.v. is an independency if every finite subcollection is so.

2.1.5 Stochastic process and probability laws

Definition 2.2. Suppose $\{X_t: t \in T\}$ is a collection of r.v. taking values in (E,\mathcal{E}) . If T can be seen as time, then $(X_t)_{t\in T}$ is called a **stochastic process** with **state space** (E,\mathcal{E}) and **parameter set** T.

Now we can treat $X(\omega)$ as function $T \to E : t \mapsto X_t(\omega)$, thus $X : \mathcal{F} \to E^T$ is measurable as proposition 1.3 and it's a r.v. live in the same spaces as X_i and taking values in (E^T, \mathcal{E}^T) . It's distribution, $P \circ X^{-1}$ is called **probability** law of stochastic process $\{X_t : t \in T\}$.

Recall the product σ algebra construction, the probability law is determined by:

$$\mathbb{P}\{\bigcap_{i\in I}X_i\in A_i\}$$

where $I \subset T$ is finite and $A_i \subset E$

2.2 Expectation

Suppose X taking values in $\overline{\mathbb{R}}$, then we can talk about it's expectation:

$$\mathbb{E} X = \int_{\Omega} X d\, \mathbb{P} = \mathbb{P} X$$

the integral of X over an event $H \in \mathcal{F}$ is $\mathbb{E} X \mathbf{1}_H$

2.2.1 Properties of expectation

Suppose X, Y taking values in $\overline{\mathbb{R}}$ and a, b > 0. The following holds:

(Absolute integrability). $\mathbb{E} X$ is finite iff $\mathbb{E} |X|$ is finite.

(Positivity) If X > 0 a.s., then $\mathbb{E} X > 0$

(Monotonicity) If $X \geq Y$ or either $\mathbb{E} X$ and $\mathbb{E} Y$ is finite then both $\mathbb{E} X$ and $\mathbb{E} Y$ exist and $\mathbb{E} X \geq \mathbb{E} Y$.

(Linearity)

$$\mathbb{E}(aX + bY) = a \, \mathbb{E} \, X + b \, \mathbb{E} \, Y$$

(σ additivity over sets) If $A = \sum_{i=1}^{\infty} A_i$, then

$$\underset{A}{\mathbb{E}} X = \sum_{i=1}^{\infty} \underset{A_i}{\mathbb{E}} X$$

(Mean value theorem) If $a \le X \le b$ a.s., then

$$a\,\mathbb{P}(A) \leq \mathop{\mathbb{E}}_A X \leq b\,\mathbb{P}(A)$$

(Modulus inequality): $|\mathbb{E} X| \leq \mathbb{E} |X|$ (Fatou's) inequality If $X_n \geq 0$ a.s., then

$$\mathbb{E}\left(\liminf_n X_n\right) \leq \liminf_n \mathbb{E}\, X_n$$

(Dominated Convergence Theorem) If $X_n \to X$ a.s., $|X_n| \le Y$ a.s. for all n and $\mathbb{E} Y < \infty$, then

$$\lim_n \mathbb{E}\, X_n = \mathbb{E}\, X = \mathbb{E}\lim_n X_n$$

(Monotone Convergence Theorem) If $0 \le X_n \nearrow X$, then

$$\lim_n \mathbb{E} X_n = \mathbb{E} X = \mathbb{E} \lim_n X_n$$

(Integration term by term) If $\sum_{i=1}^{\infty} \mathbb{E}|X_n| < \infty$, then

$$\sum_{i=1}^{\infty} |X_n| < \infty, \ a.s.$$

and

$$\mathbb{E}\left(\sum_{i=1}^{\infty}X_{n}\right)=\sum_{i=1}^{\infty}\mathbb{E}\,X_{n}$$

Remark. 1. If $\mathbb{P}(A) = 1$, then $\mathbb{E} X = \mathbb{E}_A X$.

- 2. If $\mathbb{E}|X| < \infty$, then $|X| < \infty$ a.s., but not vise versa.
- 3. If X = Y a.s. and either $\mathbb{E} X$ or $\mathbb{E} Y$ exists, then so is the other and they are equal.
- 4. $\forall H \in \mathcal{F}, \mathbb{E} X \mathbf{1}_H \geq \mathbb{E} Y \mathbf{1}_H \implies X \geq Y$ a.s. To see this, if there exist a subset $A \subset H$ s.t. X < Y and $\mu(A) > 0$ then there is a contradiction with monotonicity in A.

2.2.2 Expectations and integrals

The following relates expectation and integrals w.r.t. distribution.

Theorem 2.1. If $X \ge 0$, then

$$\mathbb{E}X = \int_0^\infty \mathbb{P}\{X > x\} dx$$

Proof. Note

$$X(\omega) = \int_0^{X(\omega)} dx = \int_0^{\infty} \mathbf{1}_{X>x}(\omega) dx$$

then

$$\begin{split} \mathbb{E}\, X &= \int_{\Omega} X(\omega)\, \mathbb{P}(d\omega) \\ &= \int_{\Omega} \int_{0}^{\infty} \mathbf{1}_{X>x}(\omega) dx\, \mathbb{P}(d\omega) \\ &= \int_{0}^{\infty} \int_{\Omega} \mathbf{1}_{X>x}(\omega)\, \mathbb{P}(d\omega) dx \\ &= \int_{0}^{\infty} \mathbb{P}\{X>x\} dx \end{split}$$

Theorem 2.2. Let X be a r.v. taking value in (E, \mathcal{E}) then

$$\int f \circ X d \, \mathbb{P} = \mathbb{E} \, f \circ X = \mu f = \int f d\mu$$

holds for all $f \in \mathcal{E}$ iff μ is the distribution of X.

Proof. Note $\mu = \mathbb{P} \circ X^{-1}$, then \Leftarrow follows from theorem 1.16. For \Longrightarrow , taking $f = 1_A$:

$$\mu(A) = \mu \mathbf{1}_A = \mathbb{E}\, \mathbf{1}_A \circ X = \int \mathbf{1}_A \circ X d\, \mathbb{P}$$

that implies $\mu = \mathbb{P} \circ X^{-1}$ and claim follows.

Remark. By intuition, for a measure μ to be distribution of X it suffices to test all $f = \mathbf{1}_A$ for $A \in \mathcal{E}$ or even $A \in \mathcal{C}$ where \mathcal{C} is a π system and generating \mathcal{E} .

Means, variances, Laplace and Fourier transforms.

Definition 2.3. Let X be a r.v. taking values in $\overline{\mathbb{R}}$ with distribution μ , define

- 1. rth Moment: $\mathbb{E} X^r$
- 2. rth Absolute Moment: $\mathbb{E}|X|^r$
- 3. rth Central Moment: $\mathbb{E}(X \mathbb{E}X)^r$
- 4. rth Absolute Central Moment: $\mathbb{E}|X \mathbb{E}X|^r$
- 5. L^r space: $\{X : \mathbb{E} |X|^r < \infty\}$

Definition 2.4. Suppose $X \in \mathcal{F}_+$, for $r \in \mathbb{R}_+$, then $e^{-rX} \in [0,1]$ and its expectation $\hat{\mu}_r = \mathbb{E} e^{-rX}$ also in [0,1]. The resulting function $r \mapsto \hat{\mu}_r : \mathbb{R}_+ \to \mathbb{R}_+$ [0, 1] is called **Laplace transform** of the distribution μ , or Laplace transform of X for short.

1. $r \mapsto \hat{\mu}_r$ is continues and decreasing on $(0, \infty)$ and note $e^{-rX} =$ Remark. $e^{-rX}\mathbf{1}_{X<\infty}\nearrow\mathbf{1}_{X<\infty}$ as $r\searrow 0$, then $\lim_{r\to 0^+}\hat{\mu}_r=\mathbb{P}\{X<\infty\}$ 2. $\hat{\mu}_r$ is also called **Moment generating function** as

$$\lim_{r\to 0^+}\frac{d^n}{dr^n}\hat{\mu}_r=(-1)^n\,\mathbb{E}\,X^n$$

if $\mathbb{E} X^n < \infty$

Proposition 2.2. Let $X, Y \in \mathcal{F}_+$, TFAE:

- 1. X and Y have the same distribution
- 2. $\forall r \in \mathbb{R}_+, \mathbb{E} e^{-rX} = \mathbb{E} e^{-rY}$
- 3. $\mathbb{E} f \circ X = \mathbb{E} f \circ Y \text{ for every } f \in \mathbb{R}^{\mathbb{R}}_{c} \cap \mathbb{R}^{\mathbb{R}}_{b}$

Suppose that X is real-valued, for $r \in \mathbb{R}$, define:

$$\hat{\mu}_r = \mathbb{E} \, e^{irX} = \int (\cos rx + i \sin rx) d\mu$$

the resulting function $r\mapsto \hat{\mu}_r:\mathbb{R}\to\mathbb{C}$ is called the **Fourier transform** of μ or characteristic function of X

Remark. Similarly, we have

$$\lim_{r \to 0^+} \frac{d^n}{dr^n} \hat{\mu}_r = i^n \, \mathbb{E} \, X^n$$

if $\mathbb{E} X^n < \infty$

Proposition 2.3. Let X, Y taking values in \mathbb{R} , TFAE:

- 1. X and Y have the same distribution
- 2. $\forall r \in \mathbb{R}_+, \mathbb{E} e^{irX} = \mathbb{E} e^{irY}$
- 3. $\mathbb{E} f \circ X = \mathbb{E} f \circ Y \text{ for every } f \in \mathbb{R}_c^{\mathbb{R}} \cap \mathbb{R}_b^{\mathbb{R}}$

In particular, if $X \in \overline{\mathbb{N}}$, then for $z \in [0,1]$, $\mathbb{E} z^X$ is called **generating function** and also determined distribution of X.

2.2.4 Moment inequalities

Theorem 2.3 (Young's inequality). Let f be a continues and strictly increasing function with f(0) = 0, then we have

$$ab \leq \int_0^a f(x) dx + \int_0^b f^{-1}(x) dx$$

As consequence:

Theorem 2.4 (Holder's inequality). Suppose that p, q > 1 satisfy $\frac{1}{p} + \frac{1}{q} = 1$, then

$$\mathbb{E}\left|XY\right| \le \left[\mathbb{E}\left|X\right|^{p}\right]^{1/p} \left[\mathbb{E}\left|Y\right|^{q}\right]^{1/q}$$

Suppose r > 1,

$$\|XY\|_r = \left(\mathbb{E}\,|X^rY^r|\right)^{\frac{1}{r}} \leq \left(\mathbb{E}\,|X^r|^p\right)^{\frac{1}{pr}} (\mathbb{E}\,|X^r|^q)^{\frac{1}{qr}} = \|X\|_{rp} \|Y\|_{rq}$$

That implies:

Corollary 2.1. Suppose p, q, r > 1 with $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$:

$$||XY||_r \le ||X||_p ||Y||_q$$

Theorem 2.5 (Cauchy-Schwarz inequality).

$$\mathbb{E}\left|XY\right| \leq \sqrt{\left[\mathbb{E}\left|X\right|^{2}\right]\left[\mathbb{E}\left|Y\right|^{2}\right]}$$

And:

Theorem 2.6 (Lyapunov's inequality). 1. $\forall p \geq 1, \mathbb{E}|X| \leq \mathbb{E}(|X|^p)^{\frac{1}{p}}$ 2. $\forall 0 < r \leq s < \infty, [\mathbb{E}|Z|^r]^{1/r} \leq [\mathbb{E}|Z|^s]^{1/s}$

Theorem 2.7 (Minkowski's inequality). $\forall p \geq 1$,

$$(\mathbb{E}\,|\, \sum X_i|^p)^{\frac{1}{p}} \leq \sum (\mathbb{E}\,|X_i|^p)^{\frac{1}{p}}$$

Theorem 2.8 (Jensen's inequality). Let ψ be convex, that is, $\forall \lambda \in (0,1), x, y \in \mathbb{R}$:

$$\lambda \psi(x) + (1-\lambda)\psi(y) \ge \psi(\lambda x + (1-\lambda)y)$$

Then

$$\psi(\mathbb{E} X) \le \mathbb{E}[\psi(X)]$$

Theorem 2.9 (Chebyshev(Markov) inequality). If g is strictly increasing and positive on \mathbb{R}_+ , g(x) = g(-x), and X is a r.v. s.t. $\mathbb{E}(g(X)) < \infty$, then $\forall a > 0$

$$\mathbb{P}(|X| \ge a) \le \frac{\mathbb{E}\,g(X)}{g(a)}$$

2.3 L^p -spaces and uniform integrability

Definition 2.5. Let X be a r.v. taking values in \mathbb{R} with distribution μ . For p in $[1, \infty)$, define

$$||X||_p = (\mathbb{E} |X|^p)^{\frac{1}{p}}$$

and for $p = \infty$, let

$$||X||_{\infty} = \inf\{b \in R_+, |X| \le b \text{ a.s.}\}$$

Clearly $\|\cdot\|_p$ is a norm for $p\in[1,\infty]$ and

$$0 \le ||X||_p \le ||X||_q \le \infty$$

provided $1 \le p \le q \le \infty$ as corollary 2.1.

2.3.1 Uniform integrability

Lemma 2.1. Let X taking values in \mathbb{R} , then it's integrable iff

$$\lim_{b\to\infty}\mathbb{E}\,|X|\mathbf{1}_{|X|>b}=0$$

Proof. \Longrightarrow is follows from theorem 1.12 as $|X|\mathbf{1}_{|X|>b} \searrow 0$. Conversely, taking $b=c\gg 1$ s.t. $\mathbb{E}\,|X|\mathbf{1}_{|X|>c}\le 1$ and then

$$\mathbb{E}\left|X\right| \leq \mathbb{E}(c + |X|\mathbf{1}_{|X|>c}) \leq c + 1 < \infty$$

Definition 2.6. A collection of r.v. taking values in \mathbb{R} , \mathcal{K} , is said to **uniformly** integrable if

$$k(b) = \sup_{X \in \mathcal{K}} \mathbb{E} \, |X| \mathbf{1}_{|X| > b} \to 0$$

as $b \to \infty$.

Remark. 1. If \mathcal{K} is finite and each of \mathcal{K} is integrable then \mathcal{K} is uniformly integrable.

- 2. If \mathcal{K} is dominated by an integrable Y then it's uniformly integrable.
- 3. Uniform integrability implies L^1 -boundedness: $\mathcal{K} \subset L^1$ and $\sup_{\mathcal{K}} \mathbb{E}|X| < \infty$. That follows from

$$\begin{split} \mathbb{E}\left|X\right| &\leq \mathbb{E}\left(b + \mathbb{E}X\mathbf{1}_{|X| > b}\right) \\ &= b + \mathbb{E}X\mathbf{1}_{|X| > b} \\ &\leq b + k(b) \end{split}$$

holds for each $X \in \mathcal{K}$.

 L^1 boundedness is not sufficient for uniform integrability. In fact, we need:

Theorem 2.10. A collection of r.v. taking values in \mathbb{R} , \mathcal{K} , is uniformly integrable iff it's L^1 -bounded and $\forall \epsilon > 0, \exists \delta > 0$ s.t. $\forall F \in \mathcal{F}$:

$$\mathbb{P}(F) \leq \delta \implies \sup_{X \in \mathcal{K}} \mathbb{E} \, |X| \mathbf{1}_F \leq \epsilon$$

Proof. We may assume $X \ge 0$ by obvious reason. Note $X\mathbf{1}_F \le b\mathbf{1}_F + X\mathbf{1}_{X>b}$ for each F and b, take expectation:

$$\sup_{X \in \mathcal{K}} \mathbb{E} \, X \mathbf{1}_F \leq b \, \mathbb{P}(F) + k(b)$$

then \implies is immediately as k(b) can be arbitrary small.

Conversely, by Markov's inequality 2.9:

$$\sup_{X \in \mathcal{K}} \mathbb{P}\{X > b\} \leq \frac{1}{b} \sup_{X \in \mathcal{K}} \mathbb{E} \, X = \frac{k(0)}{b}$$

that suggests we may choose b s.t. $\mathbb{P}\{X>b\}$ arbitrary small, and thus $\sup \mathbb{E}_F X$ arbitrary small, taking $H=\{X>b\}$, then we have definition of uniformly integrability exactly.

However, L^p boundedness when p > 1 implies uniform integrability.

Lemma 2.2. Suppose there is a borel $f : \mathbb{R}_+ : \overline{\mathbb{R}}_+$ s.t. $f(x) = \omega(x)$ and

$$\sup_{X\in\mathcal{K}}\mathbb{E}\,f\circ |X|<\infty$$

then K is uniformly integrable.

Proof. Again we may assume $X \geq 0$ and it's sufficient to assume $f \geq 1$, let $g(x) = \frac{x}{f(x)}$ and note

$$X\mathbf{1}_{X>b} = f \circ Xg \circ X\mathbf{1}_{X>b} \leq f \circ X \sup_{x>b} g(x)$$

let $c = \sup_{X \in \mathcal{K}} f \circ X \leq \infty$, we have

$$k(b) \le c \sup_{x > b} g(x)$$

it follows $\lim_{b\to\infty} k(b) = 0$ as $\lim_{x\to\infty} g(x) = 0$

And the converse is also true:

Theorem 2.11. Using notations above, TFAE:

- 1. K is uniformly integrable.
- 2. $h(b) = \sup_{\mathcal{K}} \int_b^{\infty} \mathbb{P}\{|X| > y\} \to 0 \text{ as } b \to \infty.$ 3. $\sup_{\mathcal{K}} \mathbb{E} f \circ |X| < \infty \text{ for some increasing convex } f \text{ on } \mathbb{R}_+ \text{ s.t. } f(X) = \omega(x).$

Proof. Assume X is positive and it suffices to show $1 \implies 2 \implies 3$. $1 \implies 2. \ \forall X \in \mathcal{K},$

$$\begin{split} \mathbb{E} \, X \mathbf{1}_{X>b} &= \int_0^\infty \mathbb{P} \{ X \mathbf{1}_{X>b} > y \} dy \\ &= \int_0^\infty \mathbb{P} \{ X > b \vee y \} dy \\ &\geq \int_b^\infty \mathbb{P} \{ X > y \} dy \end{split}$$

thus $k(b) \ge h(b)$ and claim follows.

 $2 \implies 3$ follows from construction and omitted.

Information and determinability

σ algebra generated by r.v.

Let $\{X_{\lambda}, \lambda \in \Lambda\}$ is r.v.s on (Ω, \mathcal{A}) . Define

$$\sigma\left\{X_{\lambda},\lambda\in\Lambda\right\}:=\sigma\left(X_{\lambda}\in B,B\in\mathcal{B},\lambda\in\Lambda\right)=\sigma\left(X_{\lambda}^{-1}(\mathcal{B}),\lambda\in\Lambda\right)=\sigma\left(\cup_{\lambda\in\Lambda}X_{\lambda}^{-1}(\mathcal{B})\right)$$

which is called σ algebra generated by $\{X_{\lambda}, \lambda \in \Lambda\}$, where Λ is a index set which can be uncountable.

For $\Lambda = \mathbb{N}^+$:

1.
$$\sigma\left(X_{i}\right)=\sigma\left(X_{i}^{-1}(\mathcal{B})\right)=X_{i}^{-1}(\mathcal{B})=\left\{X_{i}\in\mathcal{B}\right\}$$

$$\sigma\left(X_{1},\ldots,X_{n}\right)=\sigma\left(\cup_{i=1}^{n}X_{i}^{-1}(\mathcal{B})\right)=\sigma\left(\cup_{i=1}^{n}\sigma\left(X_{i}\right)\right)$$

2.
$$\begin{split} \sigma\left(X_{1}\right) \subset \sigma\left(X_{1}, X_{2}\right) \subset \ldots \ldots \subset \sigma\left(X_{1}, \ldots, X_{n}\right) \\ \sigma\left(X_{1}, X_{2}, \ldots \ldots\right) \supset \sigma\left(X_{2}, X_{3}, \ldots \ldots\right) \supset \ldots \ldots \supset \sigma\left(X_{n}, X_{n+1}, \ldots \ldots\right) \end{split}$$

3. $\bigcap_1^\infty \sigma(X_n,X_{n+1},\cdots)$ is the tail σ algebra of X_1

In view of 1.3:

Proposition 2.4. If $X = (X_t)_{t \in T}$, then $\sigma X = \sigma \{X_t : t \in T\}$

Theorem 2.12. Let X be a r.v. taking values in space (E, \mathcal{E}) . A mapping $V: \Omega \to \overline{\mathbb{R}}$ belongs to σX iff V = f(X) for some $f \in \mathcal{E}$.

 $\textit{Proof.} \Leftarrow$ is immediately as measurable functions of measurable functions are measurable.

 \implies . Let $\mathcal{M} = \{V : V = f(X)\}$, then it's a monotone class and claim follows from theorem 1.5.

Putting $X = (X_1, X_2, \dots)$ lead to

Corollary 2.2. Suppose $(X_n)_{n\in\mathbb{N}^*}$ are all r.v., then $V:\Omega\to\overline{\mathbb{R}}$ belongs to $\sigma\{X_n:n\in\mathbb{N}^*\}$ iff $V=f(X_1,X_2,\dots)$ for some $f\in\prod_{i\in\mathbb{N}^*}\mathcal{E}_i$.

This can be generalized to uncountable case:

Proposition 2.5. Suppose $(X_t)_{t\in T}$ is family of r.v. then $V:\Omega\to\overline{\mathbb{R}}$ belongs to $\sigma\{X_t:t\in T\}$ iff there exist countable $(t_n)\subset T$ and a function $f\in\prod_{(t_n)}\mathcal{E}_{t_n}$ s.t. $V=f(X_{t_1},X_{t_2},\dots)$.

Definition 2.7. Suppose X and Y are r.v., then we say X determines Y if $Y = f \circ X$ for some measurable f. σX is called **information** as it contains all determined variables w.r.t. X.

2.4.2 Filtrations

Definition 2.8. A filtration is a filter with a total inclusion order where elements are all σ -algebra and denoted as $\mathcal{F} = \{\mathcal{F}_t : t \in T\}$ where $\mathcal{F}_t \subset \mathcal{F}_t$ provided s < t.

Our aim is to approximate eternal variables by known r.v.:

Theorem 2.13. Let $\mathcal{F} = \{\mathcal{F}_n : n \in \mathbb{N}\}$ be a filtration and $\mathcal{F}_{\infty} = \sigma(\bigcup_{t \in T} \mathcal{F}_t) = \bigcup_{t \in T} \mathcal{F}_t$. For bounded $V \in \mathcal{F}_{\infty}$ there are sequence of bounded $V_n \in \mathcal{F}_n, n \in \mathbb{N}$, s.t.:

$$\lim_{n\to\infty}\mathbb{E}\left|V_n-V\right|=\lim_{n\to\infty}\mathbb{E}\leftV_n-\mathbb{E}\leftV=0\right$$

Proof. Let $\mathcal{M}_b \subset \mathcal{F}_{\infty}$ be collection of bounded variables can be approximated. It follows that \mathcal{M}_b is a monotone class and claim follows from theorem 1.5.

2.5 Independence

Suppose $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and let $(\mathcal{F}_i)_{i \in I}$ be a finite family sub- σ -algebra of \mathcal{A} , then $\{\mathcal{F}_i : i \in I\}$ is called **independency** if

$$\mathbb{E} \prod_{i \in I} V_n = \prod_{i \in I} \mathbb{E} \, V_i$$

for all positive $V_i \in \mathcal{F}_i$ respectively.

If I is arbitrary, then $\{\mathcal{F}_t:t\in I\}$ is independency if every finite subset of it is so.

2.5.1 Independence of σ -algebras

Lemma 2.3. Suppose $(\mathcal{F})_{i \in S}$ be a finite family of sub- σ -algebras, let \mathcal{C}_i be a π -system that generates \mathcal{F}_i respectively, then $\{\mathcal{F}_i : i \in I\}$ are independent iff:

$$\mathbb{P}(\bigcap_{i \in I} A_i) = \prod_{i \in I} \mathbb{P}(A_i)$$

for any $A_i \in \mathcal{C}_i \cup \{\Omega\}$ respectively.

Proof. \Longrightarrow is immediately by taking $V_i = \mathbf{1}_{A_i}$. For \Longleftarrow , clearly the equality holds for all $A_i \in \mathcal{F}_i$ respectively in view of theorem 1.8. It follows that indicator r.v. are independent and we can extend to general V_i by theorem 1.4 and theorem 1.10.

2.5.2 Independence of collection

Proposition 2.6. Every partition of independency is an independency: let $\{\mathcal{F}_t : t \in T\}$ be an independency and $(T_i)_1^{\infty}$ be a partition of T then $\{\mathcal{F}_{T_i}\}_i^{\infty}$ is an independency.

Proof. Let \mathcal{C}_i be all events having the form $\bigcap_S A_s$ where $A_s \in \bigcup_{t \in T_i} \mathcal{F}_t$, then they are π -systems contains Ω and generates \mathcal{F}_{T_i} . Then $\{\mathcal{F}_{T_i}: 1 \leq i\}$ is an independency follows from lemma 2.3 and $\{\mathcal{F}_t: t \in T\}$ is an independency.

A collection of objects are said to be pairwise independent if every pair of them is an independency. Though it's weaker than mutually independent, we can check independency by respected checking pairwise independency.

Lemma 2.4. Countable collection of sub- σ -algebras $\{\mathcal{F}_i\}_1^{\infty}$ are independent iff $\mathcal{F}_{\{1 \leq i \leq n\}}$ and \mathcal{F}_{n+1} are independent for all $n \geq 1$.

Proof. \Longrightarrow is immediate from 2.6. For \longleftarrow , let $\mathcal{G}_n = \sigma(\bigcup_i^n \mathcal{F}_i)$ and $A_i \in \mathcal{F}_i$ respectively for $1 \leq i \leq m$ note:

$$\bigcap_{1}^{m-1} A_i \in \mathcal{G}_{m-1}$$

thus we can repeat apply lemma 2.3 and finally get what we need for apply lemma 2.3.

2.5.3 Independence of r.v.'s

Lemma 2.5. The r.v.'s X_1, \dots, X_n are independent iff

$$\mathbb{E}\prod_{i=1}^{\infty}f_{i}\circ X_{i}=\prod_{i=1}^{\infty}\mathbb{E}\,f_{i}\circ X_{i}$$

for all $f_i \in \mathcal{E}_i$ respectively.

Proof. Clearly from $f \circ X \in \sigma X$

Let π be joint distribution of X_1,\dots,X_n and let μ_1,\dots,μ_n be corresponding marginals. Then the equality becomes

$$\int_{\prod_{i=1}^{n} E_{i}} \prod_{i=1}^{n} f_{i}(x_{i}) d\pi = \prod_{i=1}^{n} \int_{E_{i}} f_{i}(x_{i}) d\mu_{i}$$

and that suggests $\pi = \prod_{i=1}^{n} \mu_i$.

Proposition 2.7. The random variables $X_1, ..., X_n$ are independent iff their joint distribution is the product of their marginal distributions.

In view of determined variables are in σX , we have

Proposition 2.8. Measurable functions of independent r.v.'s are independent.

2.5.4 Sum of independent r.v.'s

Let real valued r.v.'s X and Y with distribution μ and ν are independent. The distribution of X+Y denoted as $\mu*\nu$ and given by

$$(\mu*\nu)f = \mathbb{E}\,f(X+Y) = \iint f(x+y)d\nu d\mu$$

This distribution $\mu * \nu$ is called **convolution** and can be extend to any number of distributions easily.

2.5.5 Kolmogorov's 0-1 law

Definition 2.9. Let (\mathcal{G}_n) be a sequence of sub- σ -algebras. We may treat \mathcal{G}_n as the information revealed by the nth trial of an experiment. Then $\mathcal{J}_n = \sigma(\bigcup_{m>n} \mathcal{G}_m)$ is information after n and $\mathcal{J} = \bigcap_n \mathcal{J}_n$ is that about **remote future** and called **tail-\sigma-algebra**.

The sets of which are called **tail events**, and functions on which are **tail** functions.

Theorem 2.14 (Kolmogorov's 0-1 law). Tail events of independent $(\mathcal{G}_i)_1^{\infty}$ have probability 0 or 1.

Proof. By proposition 2.6, $\{\mathcal{G}_i\}_1^n \cup \{\mathcal{J}_n\}$ is independency for each n which implies so is $\{\mathcal{G}_i\}_1^n \cup \{\mathcal{J}\}$ as $\mathcal{J} \subset \mathcal{J}_n$ and thus so is $\{\mathcal{G}_i\}_1^\infty \cup \{\mathcal{J}\}$ by definition, that implies $\{\mathcal{J}, \mathcal{J}_0\}$ is an independency by proposition 2.6 again and so is $\{\mathcal{J}, \mathcal{J}\}$ by noting $\mathcal{J} \subset \mathcal{J}_0$. Finally, for any event $A \in \mathcal{J}$, we have:

$$\mathbb{P}(A \cap A) = \mathbb{P}(A)^2 \implies \mathbb{P}(A) = 0 \text{ or } 1$$

as lemma 2.3.

Corollary 2.3. Tail function of independent r.v.'s are degenerate a.s.

Proof. Note that $Y \leq c$ is tail events.

By above corollary, we can see that $\limsup_n X_n$ and $\liminf_n X_n$ are degenerate a.s.

2.5.6 Hewitt-Savage 0-1 law

Definition 2.10. A finite permutation of \mathbb{N} is a map $\pi : \mathbb{N} \to \mathbb{N}$ s.t. $\pi(n) = n$ for all but finite exception. For such permutation π , we write

$$X\circ\pi=\{X_{\pi(i)}:i\in\mathbb{N}\}$$

for countable $X=(X_1,X_2,\dots)$. Variable is said to be permutation invariant if $V\circ\pi=V$ for any π and event is said to be so if its indicator is such.

The collection of all permutation invariant events is a σ -algebra which contains the tail- σ -algebra of X.

The following theorem generalized kolmogorov 0-1 law 2.14 in i.i.d. cases.

Theorem 2.15 (Hewitt-Savage 0-1 law). Suppose $(X_i)_{i\in\mathbb{N}}$ are i.i.d., then every permutation invariant event has probability 0 or 1 and every permutation invariant r.v. is degenerate a.s..

Proof. It's sufficient to show that if $V:\Omega\to [0,1]$ is permutation invariant in \mathcal{F}_{∞} , then $\mathrm{Var}\,[V]=\mathbb{E}\,V^2-(\mathbb{E}\,V)^2=0$. For such V, there exist $\{V_n:n\in\mathbb{N}\}$ and also bounded in [0,1] by theorem 2.13 s.t.:

$$\lim_{n\to\infty} \mathbb{E} \left| V - V_n \right| = \lim_{n\to\infty} \mathbb{E} \left| V_n - \mathbb{E} \left| V \right| = 0$$

As $(X_i)_{i\in\mathbb{N}}$ are i.i.d., V and $V\circ\pi$ share the same distribution and thus same expectation:

$$\begin{split} \mathbb{E}\left|V-V_{n}\right| &= \mathbb{E}\left|\left(V-V_{n}\right) \circ \pi\right| \\ &= \mathbb{E}\left|V \circ \pi - V_{n} \circ \pi\right| \\ &= \mathbb{E}\left|V-V_{n} \circ \pi\right| \end{split}$$

Note we can taking π s.t. V and $V_n \circ \pi$ are independent when n is fixed, then

$$\mathbb{E}\, V_n \cdot V_n \circ \pi = (\mathbb{E}\, V_n)^2$$

which in turn show that

$$\begin{split} |\operatorname{\mathbb{E}} V^2 - (\operatorname{\mathbb{E}} V_n)^2| &= |\operatorname{\mathbb{E}} (V^2 - V_n \cdot V_n \circ \pi)| \\ &\leq \operatorname{\mathbb{E}} |V^2 - V_n \cdot V_n \circ \pi| \\ &\leq 2\operatorname{\mathbb{E}} |V - V_n| \to 0 \end{split}$$

where the final step followed by noting:

$$|V^2-V_n\cdot V_n\circ\pi|=|(V-V_n)V+(V-V_n\circ\pi)V_n|\leq |V-V_n|+|V-V_n\circ\pi|$$

Chapter 3

Convergence

3.1 Convergence of Real Sequences

Suppose $(x_i)_{i\in\mathbb{N}^*}\subset\mathbb{R}$, then $(x_i)\to x$ iff $|x_i-x|\to 0$ and the classical statement for convergence is the same as

$$\sum_{i=1}^{\infty} i_{\epsilon}(|x_i-x|) < \infty \iff \limsup_{n \to \infty} i_{\epsilon}(|x_i-x|) = 0 \iff i_{\epsilon}(|x_i-x|) \to 0$$

holds for all $\epsilon > 0$.

3.1.1 Cauchy criterion

Following are useful for determining convergence.

Proposition 3.1 (Cauchy criterion). Sequence (x_n) converges iff

$$\lim_{m,n\to\infty} |x_m - x_n| = 0$$

Proposition 3.2. If there exists a positive sequence (ϵ_n) s.t.

$$\sum_n \epsilon_n < \infty, \sum_n i_{\epsilon_n} (|x_{n+1} - x_n|) < \infty$$

then (x_n) is convergent.

3.1.2 Subsequence

Definition 3.1. Let $(x_i)_{i\in\mathbb{N}^*}$ be a sequence. Then $(x_{k_i})_{i\in\mathbb{N}^*}$ is a subsequence of $(x_i)_{i\in\mathbb{N}^*}$ if $(k_i)_{i\in\mathbb{N}^*}\subset\mathbb{N}$ if it's increasing with $\lim_{i\to\infty}k_i=\infty$. Regarding \mathbb{N} as a sequence then $(k_i)_{i\in\mathbb{N}^*}$ is a subsequence of \mathbb{N} . Denoted $(k_i)_{i\in\mathbb{N}^*}$ as N, we can write $(x_i)_{i\in\mathbb{N}}$ for $(x_{k_i})_{i\in\mathbb{N}^*}$ and we say $(x_i)_{i\in\mathbb{N}^*}$ converges along N to x if $\lim_{i\to\infty}x_{k_i}=x$.

Proposition 3.3. Subsequence converges to $\limsup_{n\to\infty} x_n$ as a maximum and $\liminf_{n\to\infty} x_n$ as a minimum, the sequence converges iff they meet, i.e., every subsequence converges to the same point.

Following is useful for future studies.

Lemma 3.1. Let $(x_i)_{i\in\mathbb{N}^*}\subset\overline{\mathbb{R}}_+$ and put $\overline{x}_n=\frac{\sum_{i=1}^n x_i}{n}$. Let $N=(n_k)$ is a subsequence of \mathbb{N} with $\lim_{k\to\infty}\frac{n_{k+1}}{n_k}=r>1$. If the sequence (x_i) converges along N to x, then

$$\frac{x}{r} \leq \liminf_{n \to \infty} \overline{x}_n \leq \limsup_{n \to \infty} \overline{x}_n \leq rx$$

Proof. For $n_k \leq n < n_{k+1}$, note that

$$\frac{n_k}{n_{k+1}}\overline{x}_{n_k} = \frac{\sum_{n_k} x_i}{n_{k+1}} \leq \overline{x}_n \leq \frac{\sum_{n_{k+1}} x_i}{n_k} = \frac{n_{k+1}}{n_k}\overline{x}_{n_{k+1}}$$

Take limit each side we have result desired.

3.1.3 Diagonal method

Lemma 3.2. Suppose there is a countable family of bounded sequence $\{S_i : i \in \mathbb{N}\}$, then there exists a subsequence N of \mathbb{N} s.t. each of them converges along N.

Proof. As each S_i is bounded, we can pick N_1 s.t. S_1 converges along N_1 , then consider S_2 along N_1 as a new sequence there exists $N_2 \subset N_1$ s.t. which converges along N_2 . Thus for each $m < \infty$, we have S_i converges along N_m for $i \leq m$.

Now let n_m be the mth entry of N_m and define $N=(n_1,n_2,\dots),$ one can check it's tail is a subsequence of each N_i and thus S_i converges along N for each i.

Remark. If the sequence $(N_i)_{i\in\mathbb{N}^*}$ is written as

$$\begin{bmatrix} N_1 \\ N_2 \\ \vdots \end{bmatrix}$$

then N is precisely the diagonal of above matrix, and that's why it called diagonal method.

Following is an application of some importance.

3.1.4 Helly's Theorem

Theorem 3.1 (Helly's theorem). Suppose $(c_i)_{i\in\mathbb{N}^*}$ is a sequence of d.f.'s, then there exists a subsequence $(b_i)_{i\in\mathbb{N}^*}$ and a d.f. c s.t. $\lim_{i\to\infty}b_i(t)=c(t)$ at which t is continuous.

Proof. Treat $(c_i(r))_{i\in\mathbb{N}^*}$ as a sequence and r is taken as an enumeration of \mathbb{Q} . Consider the subsequence $N\subset\mathbb{N}$ from lemma 3.2, we claim that $(c_i)_{i\in\mathbb{N}}$ is exactly $(b_i)_{i\in\mathbb{N}^*}$, recall that $b(r)=\lim_{n\to\infty}b_n(r)$ exists for each $r\in\mathbb{Q}$.

For each $t \in \mathbb{R}$, define

$$c(t) = \inf\{b(r) : r \in \mathbb{Q} \text{ and } r > t\}$$

One can check c is a d.f. Then suppose c is continuous at t, for any $\epsilon > 0$ there is a s < t s.t. $c(s) > c(t) - \epsilon$ and there is a rational r > t s.t. $b(r) < c(t) + \epsilon$ by definition. Pick rational q s.t. s < q < t < r, we have

$$c(t) - \epsilon < c(s) \leq b(q) \leq b(r) < c(t) + \epsilon$$

note:

$$\liminf_{n\to\infty}b_n(t)\geq \liminf_{n\to\infty}b_n(q)=b(q)$$

$$\limsup_{n\to\infty}b_n(t)\leq \limsup_{n\to\infty}b_n(r)=b(r)$$

thus they are sandwiched by $c(t)-\epsilon$ and $c(T)+\epsilon$ and thus agree at c(t) and it follows that $\lim_{n\to\infty}b_n(t)=c(t)$.

3.1.5 Kronecker's Lemma

Following relates convergence of averages and convergence.

Lemma 3.3. Suppose $(x_i)_{i\in\mathbb{N}^*}\subset\mathbb{R}$ and $(a_i)_{i\in\mathbb{N}^*}\nearrow\infty$ be strictly positive. Put $y_n=\sum_{i=1}^n\frac{x_i}{a_i}.$ If $(y_i)_{i\in\mathbb{N}^*}$ converges, then

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{n} x_i}{a_n} = 0$$

Proof. Put $a_0 = y_0 = 0$. Note $x_i = (y_i - y_{i-1})a_i$ and

$$\sum_{i=1}^n x_i = \sum_{i=0}^{n-1} (a_{i+1} - a_i)(y_n - y_i)$$

By Cauchy criterion 3.1, there exists k for any ϵ s.t. $|y_n - y_m| \leq \epsilon$ for all

 $n, m \ge k$ and thus

$$\begin{split} \left| \sum_{i=1}^n x_i \right| &= \left| \sum_{i=0}^{n-1} (a_{i+1} - a_i) (y_n - y_i) \right| \\ &\leq \left| \sum_{i=k}^{n-1} (a_{i+1} - a_i) |y_n - y_i| \right| + \left| \sum_{i=0}^{k-1} (a_{i+1} - a_i) |y_n - y_i| \right| \\ &\leq (a_n - a_k) \epsilon + \left| \sum_{i=0}^{k-1} (a_{i+1} - a_i) |y_n - y_i| \right| \\ &\leq a_n \epsilon + \left| \sum_{i=0}^{k-1} (a_{i+1} - a_i) |y_n - y_i| \right| \end{split}$$

where the second term is finite and thus dominated by a_n , that implies $\lim_{n\to\infty} \frac{\left|\sum_{i=1}^n x_i\right|}{a_n} \to 0$ and then claim follows.

3.2 Almost Sure Convergence

Throughout, $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and $(X_i)_{i \in \mathbb{N}^*}$ is a subsequence of real-valued r.v.'s.

Sequence of r.v.'s (X_i) is said to be converges if $(X_i(\omega))$ is so for all $\omega \in \Omega$. As $\liminf_{n\to\infty} X_n$ and $\limsup_{n\to\infty} X_n$ are r.v.'s, the set

$$\Omega_0 = \{ \omega : \liminf_{n \to \infty} X_n = \limsup_{n \to \infty} X_n \}$$

is an event. Then $(X_i)_{i\in\mathbb{N}^*}$ is converges a.s. iff $\mathbb{P}(\Omega_0)=1.$

3.2.1Borel-Cantelli lemmas

Definition 3.2. Suppose $(A_i)_{i\in\mathbb{N}^*}$ is sequence of events, then **infinite of**ten(i.o.) and ultimately(ult.) are defined by:

$$\begin{split} \{A_n,\ i.o.\} &= \limsup_n A_n = \bigcap_{n=1}^\infty \bigcup_{m=n}^\infty A_m = \lim_{n\to\infty} \sup\{A_{n:\infty}\} = \lim_{n\to\infty} \bigcup_{m=n}^\infty A_m \\ \{A_n,\ ult.\} &= \liminf_n A_n = \bigcup_{n=1}^\infty \bigcap_{m=n}^\infty A_m = \lim_{n\to\infty} \inf\{A_{n:\infty}\} = \lim_{n\to\infty} \bigcap_{m=n}^\infty A_m \end{split}$$

Remark. By intuition, we have:

1.
$$\{A_n \text{ ult.}\}^c = \{A_n^c \text{ i.o.}\}$$

2.
$$\mathbf{1}_{\{A \text{ i.o.}\}} = \{\mathbf{1}_A \text{ i.o.}\}, \mathbf{1}_{\{A \text{ ult.}\}} = \{\mathbf{1}_A \text{ ult.}\}$$

1.
$$\{A_n \text{ int.}\} = \{A_n \text{ i.o.}\}\$$
2. $\mathbf{1}_{\{A_n \text{ i.o.}\}} = \{\mathbf{1}_{A_n} \text{ i.o.}\}, \ \mathbf{1}_{\{A_n \text{ ult.}\}} = \{\mathbf{1}_{A_n} \text{ ult.}\}\$
3. $\{A_n \text{ i.o.}\} = \{\omega : \sum_{n=1}^{\infty} \mathbf{1}_{A_n} = \infty\}, \ \{A_n \text{ ult.}\} = \{\omega : \sum_{n=1}^{\infty} \mathbf{1}_{A_n^c} < \infty\}\$
4. $\{A_n \text{ i.o.}\} \subset \{A_n \text{ ult.}\}\$

$$5. \ \ \mathbb{P}(\liminf_{n \to \infty} A_n) \leq \liminf_{n \to \infty} \mathbb{P}(A_n) \leq \limsup_{n \to \infty} (A_n) \leq \mathbb{P}(\limsup_{n \to \infty} A_n)$$

Borel-Cantelli lemma implies some sufficient conditions for a.s. convergence.

Lemma 3.4 (Borel-Cantelli lemma). Let $(A_i)_{i\in\mathbb{N}^*}$ be a sequence of events. Then

$$\sum_{i=1}^{\infty} \mathbb{P}(A_i) < \infty \implies \sum_{i=1}^{\infty} \mathbf{1}_{A_i} < \infty \ a.s. \iff \mathbb{P}\{A_n \ i.o.\} = 0$$

If (A_i) are independent, then

$$\sum_{i=1}^{\infty} \mathbb{P}(A_i) = \infty \implies \sum_{1=1}^{\infty} \mathbf{1}_{A_i} = \infty \ a.s. \iff \mathbb{P}\{A_n \ i.o.\} = 1$$

Proof. By the MCT 1.10,

$$\mathbb{E}\sum_{i=1}^{\infty}\mathbf{1}_{A_i}=\sum_{i=1}^{\infty}\mathbb{E}\,\mathbf{1}_{A_i}=\sum_{i=1}^{\infty}\mathbb{P}(A_i)<\infty$$

and the claim follows as remark 2 in **Properties of expectation**.

If (A_i) are independent, noting $1-x \le e^{-x}$ for all $x \in \mathbb{R}$, it's sufficient to show that $0 \le 1 - \mathbb{P}\{A_n \text{ i.o.}\} \le 0$:

$$\begin{split} &0 \leq 1 - \mathbb{P}\{A_n \text{ i.o.}\} = \mathbb{P}\{A_n^c \text{ ult.}\} \\ &= \mathbb{P}(\liminf_{n \to \infty} A_n^c) = \lim_{n \to \infty} \mathbb{P}(\inf_{m \geq n} A_m^c) \\ &= \lim_{n \to \infty} \mathbb{P}(\bigcap_{m = n}^{\infty} A_m^c) = \lim_{n \to \infty} \lim_{r \to \infty} \mathbb{P}(\bigcap_{m = n}^r A_m^c) \\ &= \lim_{n \to \infty} \lim_{r \to \infty} \prod_{m = n}^r [1 - \mathbb{P}(A_m)] \text{ (by independence)} \\ &\leq \lim_{n \to \infty} \lim_{r \to \infty} \prod_{m = n}^r [e^{-\mathbb{P}(A_i)}] = \lim_{n \to \infty} \lim_{r \to \infty} [e^{-\sum_{m = n}^r \mathbb{P}(A_m)}] \\ &= \lim_{n \to \infty} e^{-\sum_{m = n}^{\infty} \mathbb{P}(A_m)} = \lim_{n \to \infty} 0 = 0 \end{split}$$

3.2.2 Convergence a.s. theorem

Theorem 3.2. Suppose $(X_i)_{i\in\mathbb{N}^*}$ is sequence of r.v.'s, TFAE:

- 1. $X_n \to X$ a.s.
- 2. For every $\epsilon > 0$,

$$\sum_{i=1}^{\infty} i_{\epsilon} \circ |X_n - X| < \infty \ a.s. \iff i_{\epsilon} \circ |X_n - X| \to 0 \ a.s.$$

3. For every $\epsilon > 0$,

$$\mathbb{P}(|X_n - X| \geq \epsilon \ \textit{i.o.}) = 0$$

Proof. $1 \iff 2$ follows from the equivalent statement of convergence stated at the beginning.

 $2 \iff 3$ follows from remark 1 and 3 in definition 3.2.

3.2.3 Cauchy criterion for convergence a.s.

Theorem 3.3. Suppose $(X_i)_{i\in\mathbb{N}^*}$ is sequence of r.v.'s, let

$$Y_{n}=\sup_{i,j\geq n}\left|X_{i}-X_{j}\right|,Z_{n}=\sup_{k}\left|X_{n+k}-X_{n}\right|$$

TFAE:

- 1. X_n converges a.s.
- $\label{eq:lim_mn} \mathcal{Q}. \ \lim_{m,n\to\infty} |X_n X_m| = 0 \ a.s.$
- 3. $Y_n \to 0$ a.s.
- 4. $Z_n \rightarrow 0$ a.s.

Proposition 3.4. The follows are sufficient for convergence a.s.:

1. For every $\epsilon > 0$

$$\sum_{n\to\infty}\mathbb{P}\{|X_n-X|>\epsilon\}<\infty$$

2. There exist a sequence $(\epsilon_i)_{i\in\mathbb{N}^*} \searrow 0$ s.t.

$$\sum_{n\to\infty} \mathbb{P}\{|X_n-X|>\epsilon\}<\infty$$

3. There exist a sequence $(\epsilon_i)_{i\in\mathbb{N}^*} > 0$ s.t.

$$\sum_{n \to \infty} \epsilon_n < \infty, \sum_{n \to \infty} \mathbb{P}\{|X_{n+1} - X_n| > \epsilon_n\} < \infty$$

4. For every $\epsilon > 0$

$$\liminf_{n\to\infty} \lim_{m\to\infty} \mathbb{P}\{\sup_{k\le m} |X_{n+k} - X_n| > \epsilon\} = 0$$

Proof. 1. By Borel-Cantelli lemma 3.4, that implies statement 2 in theorem 3.2 and thus implies $X_n \to X$ a.s..

- 2. As $\epsilon_n \to 0$, the equality also holds for all ϵ as one can always find a less ϵ from $(\epsilon_i)_{i \in \mathbb{N}^*}$ and thus $2 \implies 1$.
- 3. By Borel-Cantelli lemma and proposition 3.2.
- 4. Write Z_n for $\sup_{k>1} |X_{n+k} X_n|$, by remark 5 in definition 3.2:

$$0 = \liminf_{n \to \infty} \mathbb{P}\{Z_n > \epsilon\} \geq \mathbb{P}(\liminf_{n \to \infty} \{Z_n > \epsilon\}) = 0$$

thus $\{Z_n > \epsilon \text{ ult.}\}$ has probability 0 and thus $\{Z_n > \epsilon \text{ i.o.}\}$ is so, then (Z_n) is converges and so is (X_n) as theorem 3.2.3 and theorem 3.3.

3.3 Convergence in Probability

Throughout, $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and $(X_i)_{i \in \mathbb{N}^*}$ is a subsequence of real-valued r.v.'s.

Definition 3.3. Sequence (X_i) is said to be converge to X in **probability** if, for every $\epsilon > 0$,

$$\lim_{n\to\infty}\mathbb{P}\{|X_n-X|>\epsilon\}=0$$

and denoted as $X_n \xrightarrow{p} X$.

The following relates a.s. convergence and convergence in probability:

Theorem 3.4. 1. $X_n \to X$ a.s. $\Longrightarrow X_n \stackrel{p}{\to} X$

- 2. If $X_n \xrightarrow{p} X$, then there exists a subsequence that converges to X a.s.
- 3. If every subsequence has further subsequence that converges to X a.s., then $X_n \stackrel{p}{\to} X$.

Proof. 1. By theorem 3.2.2, $i_{\epsilon} \circ |X_n - X| \to 0$ a.s., then $\mathbb{E} i_{\epsilon} \circ |X_n - X| \to 0$ by DCT 1.12 and thus $\mathbb{P}\{|X_n - X| > \epsilon\} \to 0$.

2. As $\lim_{n\to\infty}\mathbb{P}\{|X_n-X|>\epsilon\}=0,$ we can select a subsequence s.t.

$$\sum_{i\in\mathbb{N}^*}\mathbb{P}\{\left|X_{n_i}-X\right|>\epsilon\}<\infty$$

then claim follows as proposition 3.4.1.

3. Suppose $p_n = \mathbb{P}\{|X_n - X| > \epsilon\}$ as a sequence and $N \subset \mathbb{N}^*$ is subsequence along which the sequence converges to, say, p. By assumption, there is a further subsequence $N' \subset N$ s.t. $(p_i)_{i \in N'} \to 0$ and that implies p = 0. By proposition 3.3, $p_n \to 0 \iff X_n \overset{p}{\to} X$.

3.3.1 Convergence and continuous

As an application of above theorem, we have

Proposition 3.5. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous. Then $f(X_n) \stackrel{p}{\to} f(X)$ provided $X_n \stackrel{p}{\to} X$.

Proof. For every subsequence $N \subset \mathbb{N}^*$, $X_n \stackrel{p}{\to} X$ along which and theorem 3.4.2 implies $N' \subset N$ exists s.t. $X_n \to X$ a.s. along and thus $f(X_n) \to X$ a.s. along N'. It follows that $f(X_n) \stackrel{p}{\to} f(X)$ by theorem 3.4.3.

That implies convergence in probability is preserved under arithmetical operations, i.e., if $X_n \stackrel{p}{\to} X$ and $Y_n \stackrel{p}{\to} Y$, we have

$$\begin{split} X_n + Y_n &\xrightarrow{p} X + Y, X_n - Y_n \xrightarrow{p} X - Y \\ X_n Y_n &\xrightarrow{p} XY, \frac{X_n}{Y_n} \xrightarrow{p} \frac{X}{Y} \end{split}$$

where the last equality holds when Y and Y_n are non-zero a.s.

3.3.2 Metric for convergence in probability

For real-valued r.v.'s X and Y, define

$$d(X,Y) = \mathbb{E}(|X-Y| \wedge 1)$$

one can check d is a metric (except we treat X and Y are the same when X=Y a.s.).

The following shows that d can induced convergence in probability.

Proposition 3.6.

$$\lim_{n\to\infty}d(X_n,X)=0\iff X_n\stackrel{p}{\to} X$$

Proof. Note for $\epsilon \in (0,1)$ and $x \geq 0$:

$$\epsilon i_{\epsilon}(x) \leq x \wedge 1 \leq \epsilon + i_{\epsilon}(x)$$

replace x with $|X_n - X|$ and take expectations:

$$\epsilon \operatorname{\mathbb{E}} i_{\epsilon} \circ |X_n - X| \leq d(X_n, X) \leq \epsilon + \operatorname{\mathbb{E}} i_{\epsilon} \circ |X_n - X|$$

thus $\mathbb{E}\,i_\epsilon\circ|X_n-X|=\mathbb{P}\{|X_n-X|>\epsilon\}\to 0 \text{ iff }d(X_n,X)\to 0 \text{ as }\epsilon \text{ can be taken arbitrary small.}$

3.3.3 Cauchy criterion for convergence in probability

Theorem 3.5. Sequence $(X_i)_{i\in\mathbb{N}^*}$ converges in probability iff for every $\epsilon>0$,

$$\lim_{m,n\to\infty}\mathbb{P}\{|X_m-X_n|>\epsilon\}=0$$

3.3.4 Convergence in L^p

Definition 3.4. A sequence $(X_i)_{i\in\mathbb{N}^*}$ is said to converges to X in L^p iff $(X_i)\subset L^p$ and $X\in L^p$ and $\|X_n-X\|_p\to 0$.

Converges in L^p also implies convergence in probability by Markov's inequality 2.9 and taking g corresponding to the power:

$$\mathbb{P}\{|X_n-X|>\epsilon\}\leq (\frac{1}{\epsilon})^p \, \mathbb{E} \left|X_n-X\right|^p \to 0$$

Convergence, Cauchy, uniform integrability

Theorem 3.6. Suppose $(X_i)_{i\in\mathbb{N}^*}$ taking values in \mathbb{R} and $p\geq 1$, TFAE:

- 1. It converges in L^p .
- 2. It's cauchy in L^p , i.e.:

$$\lim_{m,n\to\infty} \mathbb{E} \left| X_m - X_n \right|^p = 0$$

3. It converges in probability and (X_n^p) is uniformly integrable.

Proof. $a \implies b$. By the triangle inequality:

$$\|X_m - X_n\|_P \leq \|X_m - X\|_p + \|X - X_n\|_p \to 0$$

and thus $\|X_m-X_n\|_p\to 0$. $b\implies c$ By Markov-inequality again and theorem 3.5, it converges in probability. By theorem 2.10, it's sufficient to show that $\forall \epsilon > 0, \exists \delta > 0 \ni \forall A \in$ \mathcal{F} ,

$$\mathbb{P}(A) \leq \delta \implies \sup_n \mathbb{E} \left| X_n^p \right| \mathbf{1}_A \leq \epsilon$$

 $c \implies a$