

D. Rogers & M. Hahn, ACS publication, JCIM (if=3.97), 2010.

Overview

- Extended connectivity Fingerprints (ECFP) 의 개요
- ECFP의 구현방법
 - Relation to Morgan Algorithm
 - ECFP Generation Process
 - Initial assignment of atom identifier
 - Iterative updating of identifier
 - Duplicate structure removal
 - Duplicate identifier removal
 - Choice of hash function
 - Circular Fingerprints
 - Application
 - Conclusion

ECFP의 개요

- 역사적으로 topological FP는 분자의 하부구조의 파악과 유사성 조사를 위해서 개발되었다.
- ECFP는 계산이 빠르고 무한에 가까운 다양한 분자의 특징을 표현할 수 있는 방법이다.
- ECFP는 분자의 활동과 관련한 분자의 특징을 알 수 있게 도와준다.
- ECFP는 유사성 조사, 군집화 (clustering), virtual screening 주제에서 좋은 성능을 보인다.
- ECFP는 neural graph fingerprint 이전의 state-of-the-art 성능을 가지고 있는 fingerprint 이다.

Relation to Morgan Algorithm

- ECFP는 Morgan algorithm [Morgan, 1965]의 변형을 이용하여 개발됨
- Morgan algorithm은 동형이성 (isomorphism) 문제를 해결하기 위해 제안됨
- Morgan algorithm의 구현을 위해서는 iterative process가 요구됨
- Iteration은 different connectivity value (n)가 최대에 도달할 때까지 반복

Relation to Morgan Algorithm

- 중간 결과는 모두 삭제되고 사용되지 않음
- Morgan algorithm에 대비되는 ECFP의 개선점
 - ECFP는 중간결과를 삭제하지 않고 fingerprint의 일부로써 사용한다.
 - 완벽하게 정확한 disambiguation이 요구되지 않기 때문에 알고리즘적인 조정이 가능하다.

- 하나의 atom 당 하나의 integer type의 identifier를 할당한다.
- 각각의 atom identifier는 이웃한 atom의 identifier를 반영하여 업데이트를 한다.
 - 업데이트를 할 때 구조적인 중복 (structural duplicate) 이 존재하는지를 고려한다.
- Iteration 중에 같은 identifier가 나타날 경우 삭제한다.
- ECFP Generation Process
 - Initial assignment of atom identifier
 - Iterative updating of identifier
 - Duplicate structure removal
 - Duplicate identifier removal

- 이전 iteration의 중복 하부구조 삭제 🚫

- identifier는 원래 2³² bit 의 크기로 할당
- hash function은 합리적이라면 어떤 것이든 사용가능
 - python, R에 관련 library 多
- 같은 group이 있을 경우, 동일한 identifier 생성가능
 - 삭제 or 표시 후 보관
- ECFP로 직접 바꿔주는 package 및 library 多

> <ecfp_0></ecfp_0>	> <ecfp_2></ecfp_2>	> <ecfp_4></ecfp_4>	> <ecfp_6></ecfp_6>
734603939	734603939	734603939	734603939
1559650422	1559650422	1559650422	1559650422
-1100000244	-1100000244	-1100000244	-1100000244
1572579716	1572579716	1572579716	1572579716
-1074141656	-1074141656	-1074141656	-1074141656
	863188371	863188371	863188371
	-1793471910	-1793471910	-1793471910
	-1789102870	-1789102870	-1789102870
	-1708545601	-1708545601	-1708545601
	-932108170	-932108170	-932108170
	2099970318	2099970318	2099970318
		-87618679	-87618679
		1112638790	1112638790
		-627599602	-627599602

{실제로 구현된 ECFP 알고리즘}

Circular Fingerprints

	, ,,	
Algorithm 1 Circular fingerprints	734603939	
1: Input: molecule, radius R , fingerprint	1559650422	
length S	-1100000244	
2: Initialize: fingerprint vector $f \leftarrow 0_S$	1572579716	
3: for each atom a in molecule	-1074141656	
4: $\mathbf{r}_a \leftarrow g(a)$ \triangleright lookup atom features	863188371	
5: for $L = 1$ to R \triangleright for each layer 6: for each atom a in molecule	-1793471910	$mod(identifier, 2^{10})$
7: $\mathbf{r}_1 \dots \mathbf{r}_N = \text{neighbors}(a)$	-1789102870	, ,
8: $\mathbf{v} \leftarrow [\mathbf{r}_a, \mathbf{r}_1, \dots, \mathbf{r}_N] \triangleright \text{concatenate}$	-1708545601	
9: $\mathbf{r}_a \leftarrow hash(\mathbf{v}) \qquad \triangleright hash \text{ function}$	-932108170	
10: $i \leftarrow \operatorname{mod}(r_a, S) \Rightarrow \operatorname{convert} \operatorname{to} \operatorname{index}$	2099970318	
11: $f_i \leftarrow 1$ \triangleright Write 1 at index	-87618679	
12: Return: binary vector f	1112638790	

-627599602

> <ECFP 6>

<idx>

Circular Fingerprints

Fig. 2. ECFP generation process

Fig. 3. Generation of the fixed-length bit string ("folding")

Follow-up study

Algorithm 1 Circular fingerprints			Algorithm 2 Neural graph fingerprints			
1:	Input: molecule, radi	ius R , fingerprint	1:	1: Input: molecule, radius R, hidden weights		
	length S		$H_1^1 \dots H_R^5$, output weights $W_1 \dots W_R$			
2:	2: Initialize: fingerprint vector $f \leftarrow 0_S$		2: Initialize: fingerprint vector $f \leftarrow 0_S$			
3:	3: for each atom a in molecule		3:	 for each atom a in molecule 		
4:	$\mathbf{r}_a \leftarrow g(a) \qquad \qquad \triangleright \mathbf{lo}$	okup atom features	4:	$\mathbf{r}_a \leftarrow g(a) \qquad \triangleright \mathbf{lo}$	okup atom features	
5:	for $L=1$ to R	⊳ for each layer	5:	for $L=1$ to R		
6:	6: for each atom a in molecule		6:	for each atom a in molecule		
7:	1					
8:	$v \leftarrow [\mathbf{r}_a, \mathbf{r}_1, \dots, \mathbf{r}_N] \triangleright \text{ concatenate}$		8:	$\mathbf{v} \leftarrow \mathbf{r}_a + \sum_{i=1}^N \mathbf{r}_i$	$i $ \triangleright sum	
9:		bash function				
10:	$i \leftarrow \operatorname{mod}(r_a, S)$			$\mathbf{i} \leftarrow \operatorname{softmax}(\mathbf{r}_a W)$	\triangleright sparsify	
11:	$\mathbf{f}_i \leftarrow 1$		11:		▶ add to fingerprint	
12: Return: binary vector f		12:	12: Return: real-valued vector f			