03_Naïve_Bayes

3.0 Why Naïve Bayes?

- Uncertainty
 - Lack of exact knowledge that could enable us to reach a perfectly reliable conclusion.
 - But classical logic only allow exact reasoning. It assumes that the law of the excluded middle can always be applied:
 - IF A is true THEN A is not false, and
 - IF A is false THEN A is not true
- Weak Implications
 - Hard to establish concrete correlations between IF and THEN.
 - Handle vague associations.
- Imprecise Language
 - Natural language is ambiguous.
 - We describe facts with: sometimes, often, frequently, hardly, ...
 - Difficult to establish IF-THEN rules based on NL.

3.1 Basic Probability Theory

3.1.1 Probability 概率

- 1 The probability of an event
 - Scientific Measure of Chance.
 - = the proportion of cases in which the event occurs.
 - Expression: From 0 (absolute impossible) \rightarrow Unity (Absolute certain).
 - Mostly strictly between 0 and 1. Each event has *at least two* outcomes: success or failure. It's stated that:
 - $P(\text{success}) = p = \frac{s}{s+f}$, and
 - $P(\text{failure}) = q = \frac{f}{s+f}$, where
 - p + q = 1.

3.1.2 Conditional Probability 条件概率

- Let: A, B be an Event.
 - Supposed that A and B are not mutual exclusive.
 - That is, A and B can occur at the same time.

- **1** Conditional Probability of A over B is:
 - The probability that: If *B* occur, then *A* occur.

•
$$P(A|B) = \frac{\#. (A \text{ and } B \text{ occur})}{\#. (B \text{ occur})}$$

- Bayesian Rule:
 - We know that:

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)} \implies P(A|B) \cdot P(B) = P(A \cap B),$$

• $P(B|A) = \frac{P(A \cap B)}{P(A)} \implies P(B|A) \cdot P(A) = P(A \cap B).$

• Therefore, we can conclude that:

$$\star P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$
,

which yields the Bayesian Rule.

3.2 Bayesian Reasoning

3.2.1 Bayesian Rule

From Rules

Suppose that all rules in the knowledge base are represented in this form:

```
IF E is true
THEN H is true, with probability p
```

For instance,

```
IF weather is sunny
THEN play_tennis = true, p=0.9
```

Problem Specification

Given

- A hypothesis *H*.
 - e.g., play tennis = true
- An evidence *E*.
 - which supports this hypothesis.
 - e.g., weather is sunny

Get the prob that event H (Hypothesis) will occur, as P.

$$p(H|E) = rac{p(E|H) \cdot p(H)}{p(E)} = rac{p(E|H) \cdot p(H)}{\left\lceil p(E|H) \cdot p(H)
ight
ceil + \left\lceil p(E|
eg H) \cdot p(
eg H)
ight
ceil}$$

where,

- p(H) is the prior probability of hypothesis H being true.
 - e.g., the portion of days among all that played tennis.
- p(E|H) is the posterior probability of evidence E being true under hypothesis H.
 - e.g., the portion of days with a sunny weather among all the days that *played* tennis.
- $p(\neg H)$ is the prior probability of hypothesis H being false.
 - e.g., the portion of days among all that didn't play tennis.
- $p(E|\neg H)$ is the posterior probability of evidence E being true under hypothesis $\neg H$.
 - e.g., the portion of days with a sunny weather among all the days that didn't play tennis.

3.2.2 Variances

Single Evidence, Multiple Hypothesis:

$$P(H_i|E) = rac{P(E|H_i) \cdot P(H_i)}{\sum_{k=1}^m \Bigl[P(E|H_k) \cdot P(H_k)\Bigr]}$$

Multiple Evidence, Multiple Hypothesis:

$$P(H_i|E_1,E_2,\ldots,E_n) = rac{P(E_1,E_2,\ldots,E_n|H_i)\cdot P(H_i)}{\sum_{k=1}^m \Big[P(E_1,E_2,\ldots,E_n|H_k)\cdot P(H_k)\Big]}$$

$$ullet pprox rac{\left[P(E_1|H_i)\cdot P(E_2|H_i)\cdot\ldots\cdot P(E_n|H_i)
ight] imes P(H_i)}{\sum_{k=1}^m \left[P(E_1|H_k)\cdot P(E_2|H_k)\cdot\ldots\cdot P(E_n|H_k) imes P(H_k)
ight]}$$

if conditional independence holds.

$$ullet = rac{P(H_i) \cdot \left[\prod_{a=1}^n P(E_a|H_i)
ight]}{\sum_{k=1}^m \left[P(H_k) \cdot \prod_{b=1}^n P(E_b|H_k)
ight]}$$

Example

Given the prior an conditional probs as follows:

	H_1	H_2	H_3
$P(H_i)$	0.40	0.35	0.25
$P(E_1 H_i)$	0.3	0.8	0.5
$P(E_2 H_i)$	0.9	0.0	0.7
$P(E_3 H_i)$	0.6	0.7	0.9

• Want
$$P(H_3|E_3)$$
.

$$ullet P(H_3|E_3) = rac{P(E_3|H_3)P(H_3)}{P(E_3)}$$
 , where

•
$$P(E_3|H_3) \cdot P(H_3) = 0.9 \times 0.25 = 0.36$$

$$\bullet \quad P(E_3) = \Big[P(E_3|H_1) \cdot P(H_1)\Big] \times \Big[P(E_3|H_2) \cdot P(H_2)\Big] \times \Big[P(E_3|H_3) \cdot P(H_3)\Big]$$

$$ullet$$
 = $0.6 imes 0.4 + 0.7 imes 0.35 + 0.9 imes 0.25 = 0.2838$

•
$$\implies P(H_3|E_3) = \frac{0.36 \times 0.25}{0.2838} = 0.3171$$

3.3 Naïve Bayes Classifiers

3.3.1 Maximum A Posteriori

In Naïve Bayes Classifiers, we denote "Classes" as Hypothesis, and "Features" as Evidence. To find the best class, we find the hypothesis that gives the best p(h|E).

$$h_{ ext{conclusion}} = ext{argmax}_{h \in H} P(h|E)$$

$$ullet = \operatorname{argmax}_{h \in H} rac{P(E|h) \cdot P(h)}{P(E)}$$

$$\bullet \ = \mathrm{argmax}_{h \in H} \Big[P(E|h) \cdot P(h) \Big]$$

Omit the P(E) since it's constant, which is independent from the hypothesis.

• Here, $P(E|h) \cdot P(h)$ is the Maximum A Posteriori 最大后验.

3.3.2 Naïve Bayes Estimation

- Given:
 - A conjunctive test sample: x_1, x_2, \ldots, x_n

$$egin{align*} & c_{MAP} = \mathrm{argmax}_{c_j \in C} \Big[P(c_j | x_1, x_2, \dots x_n) \Big] \\ & \bullet = \mathrm{argmax}_{c_j \in C} \Big[\frac{P(x_1, x_2, \dots, x_n | c_j) \cdot P(c_j)}{P(x_1, x_2, \dots, x_n)} \Big] \\ & \bullet = \mathrm{argmax}_{c_j \in C} \Big[P(x_1, x_2, \dots, x_n | c_j) \cdot P(c_j) \Big] \\ & \bullet = \mathrm{argmax}_{c_j \in C} \Big[P(x_1 | c_j) \times P(x_2 | c_j) \times \dots \times P(x_n | c_j) \times P(c_j) \Big]$$

- assumed the conditional independency holds.
- $igstar{igstar} = \mathrm{argmax}_{c_j \in C} \Big[P(c_j) imes \prod_{k=1}^n P(x_k | c_j) \Big]$

Naïve Bayes Classifier: An Example.

Day	Outlook	Temp	Humitity	Wind	Play Tennis
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

 ${\color{red}{\sf Known:}}\ {\color{blue}{\sf Outlook}} = {\color{blue}{\sf Sunny}}, {\color{blue}{\sf Temp}} = {\color{blue}{\sf Cool}}, {\color{blue}{\sf Humidity}} = {\color{blue}{\sf High}}, {\color{blue}{\sf Wind}} = {\color{blue}{\sf Strong}}.$

Want: Play tennis or not?

Do:

- MAP(Yes|sunny, cool, high, strong)
 - ullet = $P(\text{sunny}, \text{cool}, \text{high}, \text{strong}|\text{Yes}) \times P(\text{Yes})$
 - $\bullet \ = P(\text{sunny}|\text{Yes}) \times P(\text{cool}|\text{Yes}) \times P(\text{high}|\text{Yes}) \times P(\text{strong}|\text{Yes}) \times P(\text{Yes})$
 - $\bullet = \left[\frac{2}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9}\right] \times \frac{9}{14}$

- $\bullet = 0.005291005291$
- *MAP*(NO|sunny, cool, high, strong)

```
- $=P(sunny, cool, high, strong|No)\times P(No)$
```

- \$=P(sunny|No)\times P(cool|No)\times P(high|No)\times P(strong|No)\times P(No)\$
- $=[\frac{3}{5}\times \frac{1}{5}\times \frac{3}{5}]\times \frac{3}{5}}$
- \$=0.02057142857\$

Output:

- $ullet c_{MAP} = argmax_{c \in \{ ext{Yes,No} \}} MAP(c | ext{sunny, cool, high, strong}) = ext{No.}$
- That is, don't play tennis.

3.4 Enhancement of NB Classifiers

3.4.1 Add-1 Smoothing

Initially, we have:

$$c_{ ext{target}} = ext{argmax}_{c_j \in C} \Big[P(c_j) \prod_{i=1}^n P(x_i | c_j) \Big]$$

where:

$$P(x_i|c_j) = rac{\#.\left(x \in c_j \wedge x = x_i
ight)}{\#.\left(x \in c_j
ight)} = rac{n_c}{n}$$

where the number of x that's in class c_j could be 0, yielding $P(x_i|c_j)$ to be 0. In this case, even if $P(x_i|c_{j_2})$ is very large for j_2 , the entire $MAP = P(c_j) \prod_{i=1}^n P(x_i|c_j)$ would be still cast to 0.

Resolution: Add-1 smoothing, with:

- $\bullet \ \ \mathsf{Prior} \text{: } P(c_j) = \frac{(\#.\, c \in C \land c = c_j) + m_{\mathrm{prior}} \times p_{\mathrm{prior}}}{(\#.\, c \in C) + m_{\mathrm{prior}}} \text{, where } m_{\mathrm{prior}} \in \mathbb{R}^+ \text{ and } p_{\mathrm{prior}} \in [0,1]$
- Evidence: $P(x_i|c_j) = \dfrac{(\#.\,x_i \in c_j) + m_{ ext{evid}} imes p_{ ext{evid}}}{(\#.\,c_j) + m_{ ext{evid}}}$, where $m_{ ext{evid}} \in \mathbb{R}^+$ and $p_{ ext{evid}} \in [0,1]$

The intuition is that:

• We create m imaginary prior examples, where a portion of p is the one to be examined.

3.4.2 Continuous x

Observations may be continuous. Use Gaussian Distribution instead.

$$P(x_i|c_k) = rac{1}{\sigma_{ij}\sqrt{2\pi}}e^{\displaystylerac{-(x_i-\mu_{ik})^2}{2\sigma_{ik}^2}} = \mathcal{N}(x_i,\mu_{ik},\sigma_{ik})$$

That is, for a specific class c_j , extract all the values $x_i \in c_j$ and form a normal distribution. This determines two variables:

• μ , the mean/expectation

$$ullet \ \mu_{ik} = rac{1}{n_k} \sum_{j=1}^{n_k} x_{ikj}$$

• σ , the standard deviation

–
$$\sigma_{ik} = \sqrt{rac{1}{n_k}\sum_{j=1}^{n_k}(x_{ikj}-\mu_{ik})^2}$$

Note that:

- *i* the *i*-th feature,
- k the target class,
- j within a class k, the j-th data. After the two variables are set, the probability $P(x_i|c_j)$ can be thus calculated.
- $P(x_i|c_j)$ means that:
 - Under the given class c_j , there's a lot of continuous numeric input under the *i*-th feature.
 - We are given a test value x_i
 - $P(x_i|c_j)$ gives us the probability that x_i is here according to all the numeric inputs mentioned above, with respect to a gaussian/normal distribution.

Example

There is a set of data, having two classes:

- Play = Yes
- Play = No

Each data sample is composed of 5 features, listed with class-wise distribution below:

Day	Outlook	Temp	Humitity	Wind	Play Tennis
1	Sunny	85	85	Weak	No
2	Sunny	80	90	Strong	No
3	Overcast	83	86	Weak	Yes
4	Rain	70	96	Weak	Yes
5	Rain	68	80	Weak	Yes
6	Rain	65	70	Strong	No
7	Overcast	64	65	Strong	Yes

Day	Outlook	Temp	Humitity	Wind	Play Tennis
8	Sunny	72	95	Weak	No
9	Sunny	69	70	Weak	Yes
10	Rain	75	80	Weak	Yes
11	Sunny	75	70	Strong	Yes
12	Overcast	72	90	Strong	Yes
13	Overcast	81	75	Weak	Yes
14	Rain	71	91	Strong	No

Classify for a test sample:

• Outlook = Sunny, Temp = 66, Humidity = 90, Wind = Strong

Calculate Prior probabilities.

•
$$P(Yes) = \frac{9}{14}$$

•
$$P(No) = \frac{5}{14}$$

Calculate Posterior probabilities.

Outlook

Yes

•
$$P(\text{Sunny}|\text{Yes}) = \frac{2}{9}$$

No

•
$$P(\text{Sunny}|\text{Yes}) = \frac{3}{5}$$

Temperature

• Yes

•
$$\mu_{\text{temp,Yes}} = \frac{1}{9} \Big[83 + 70 + 68 + 64 + 69 + 75 + 75 + 72 + 81 \Big] = 73$$

$$ullet$$
 $\sigma_{ ext{temp,Yes}} = \sqrt{rac{1}{9}\sum_{j=1}^{n_{ ext{Yes}}}(x_{ ext{temp,Yes},j}-73)^2} = rac{4\sqrt{19}}{3}$

•
$$\implies P(66|\text{Yes}) = \frac{1}{\frac{4\sqrt{19}}{3} \cdot \sqrt{2\pi}} e^{\frac{-(66-73)^2}{2 \cdot \frac{304}{9}}} = 0.0332$$

• No

•
$$\mu_{\mathrm{temp,No}} = rac{1}{5} \Big[85 + 80 + 65 + 71 + 71 \Big] = 74.6$$

$$m{\sigma}_{ ext{temp,No}} = \sqrt{rac{1}{5}\sum_{j=1}^{n_{No}}(x_{ ext{temp,No,j}} - 74.6)^2} = \sqrt{49.84} = 7.0597$$

$$ullet P(66| ext{No}) = rac{1}{7.0597 imes \sqrt{2\pi}} e^{rac{-(66-74.6)^2}{2 imes 49.84}} = 0.0269$$

Humidity

• Yes

•
$$\mu_{ ext{humid,Yes}} = rac{1}{9} \Big[86 + 96 + 80 + 65 + 70 + 80 + 70 + 90 + 75 \Big] = rac{712}{9}$$

$$m{\sigma}_{ ext{humid,Yes}} = \sqrt{rac{1}{9} \sum_{j=1}^{n_{Yes}} (x_{ ext{humid,Yes},j} - rac{712}{9})^2} = \sqrt{92.7654} = 9.6315$$

•
$$\implies P(90|{
m Yes}) = rac{1}{9.6315 imes \sqrt{2\pi}} e^{rac{-(90 - rac{712}{9})^2}{2 imes 92.7654}} = 0.0219$$

• No

•
$$\mu_{\mathrm{humid,No}} = \frac{1}{5} \Big[95 + 90 + 70 + 95 + 91 \Big] = \frac{441}{5}$$

$$m{\sigma}_{
m humid,No} = \sqrt{rac{1}{5} \sum_{j=1}^{n_{No}} (x_{{
m temp,No},j} - rac{441}{9})^2} = \sqrt{75.76} = 8.7040$$

•
$$\implies P(90|\text{No}) = \frac{1}{8.7040 \times \sqrt{2\pi}} e^{\frac{-\left(90 - \frac{441}{5}\right)^2}{2 \times 75.76}} = 0.0449$$

Wind

• Yes

•
$$P(\text{Strong}|\text{Yes}) = \frac{3}{9}$$

• No

•
$$P(\text{Strong}|\text{No}) = \frac{3}{5}$$

Therefore, to sum up:

$$\bullet \ \ MAP(\text{Yes}|\text{Summy}, 66, 90, \text{Strong}) = \left(\frac{2}{9} \times 0.0332 \times 0.0219 \times \frac{3}{9}\right) \times \frac{9}{14} = 3.4623 \times 10^{-5}$$

•
$$MAP(\text{No}|\text{Summy}, 66, 90, \text{Strong}) = \left(\frac{3}{5} \times 0.0269 \times 0.0449 \times \frac{3}{5}\right) \times \frac{5}{14} = 1.5529 \times 10^{-4}$$

Therefore, the classification result is No.

3.5 Certainty Factors Theory & Evidential Reasoning

3.5.1 Certainty Factor

- A Certainty Factor is:
 - A number to measure the expert's belief.
 - Ranges from: -1.0 (*Definitely False*) $\sim +1.0$ (*Definitely True*)

3.5.2 Certainty Factors Theory

1 The certainty factor theory is an alternative to Bayesian reasoning.

Similarly to Bayesian reasoning, the knowledge base consists of a set of rules that have the following syntax:

IF evidence
THEN hypothesis {cf}

- That is, a certainty factor is assigned to the THEN part, just like assigning a probability to the THEN part in Bayesian Reasoning.
- The assigned certainty factor (cf) denotes the level of belief in:
 - the hypothesis H being true,
 - given the evidence *E*.

Measure of Belief and Disbelief

- The certainty factors theory is based on two functions:
 - Measure of belief: MB(H, E), and
 - Measure of disbelief: MD(H, E)
- which are defined as:

$$MB(H,E) = egin{cases} 1, & ext{if } p(H) = 1 \ rac{max \Big[p(H|E), p(H) \Big] - p(H)}{max(1,0) - p(H)}, & ext{otherwise} \end{cases}$$

$$MD(H,E) = egin{cases} 1, & ext{if } p(H) = 0 \ \dfrac{min\Big[p(H|E),p(H)\Big] - p(H)}{min(1,0) - p(H)}, & ext{otherwise} \end{cases}$$

where,

- p(H) is the prior probability that hypothesis H is true;
- p(H|E) is the posterior probability that hypothesis H is true under evidence E.

Certainty Factor

By analysis,

- $\bullet \quad MB(H,E), MD(H,E) \in [0,1].$
- Some facts may increase the strength of belief, and vise versa.
- The total strength of belief/disbelief in a hypothesis:

$$cf = rac{MB(H,E) - MD(H,E)}{1 - minigg[MB(H,E), MD(H,E)igg]}$$

yielding the certainty factor.