

Image Processing

Morphological Image Processing (Part II)

Pattern Recognition and Image Processing Laboratory (Since 2012)

Gray-Scale Morphology

Dilation and Erosion

Definition: Dilation

$$(f \oplus b)(x, y) = \max\{f(x - x', y - y') + b(x', y') | (x', y') \in D_b\}$$

In practice, it is simplified.

$$(f \oplus b)(x, y) = \max\{f(x-x', y-y') | (x', y') \in D_b\}$$

Note: D_b denotes domain of b.

Gray-Scale Morphology

Dilation: MATLAB sample (1D Case)

```
>> w = 0:2*pi/20:2*pi;

>> y = 5*sin(w);

>> se = [1 1 1 1 1];

>> yd = imdilate(y, se); % zero padding

>> plot(y);

>> hold on;

>> plot(yd, '-r');
```


Dilation: 2D Case

Structuring element

91 99 99 68 60 64 81 81 67 59 82 66 79 80 70 79 93 72 68 56 65 77 72 64 86 83 68 57 54 40 86 68 61 81 92 65 46 40 37 45 73 75 85 99 91 57 46 41 39 40 84 84 98 96 72 56 55 52 40 46 78 73 97 86 68 60 52 50 44 57 54 68 91 80 69 66 53 49 52 70 42 60 77 73 67 75 80 61 46 74 45 47 74 81 65 77 91 63 41 73

99 99 80 99 93 93 93 81 99 99 99 99 86 93 93 93 81 86 86 93 93 86 86 99 92 83 68 86 98 99 99 99 92 65 55 84 98 99 99 91 60 55 57 84 98 98 98 96 72 66 55 70 78 97 97 97 86 80 80 80 74 68 91 91 91 81 91 91 91 74 74 91 81 91 91

Original image

Dilated image

Gray-Scale Morphology

Dilation and Erosion

Definition: Erosion

$$(f \ominus b)(x, y) = \min\{f(x + x', y + y') - b(x', y') | (x', y') \in D_b\}$$

In practice, it is simplified.

$$(f \ominus b)(x, y) = \min\{f(x+x', y+y') | (x', y') \in D_b\}$$

Note: D_b denotes domain of b.

Gray-Scale Morphology

Erosion: MATLAB sample (1D Case)

```
>> w = 0:2*pi/20:2*pi;

>> y = 5*sin(w);

>> se = [1 1 1 1 1];

>> ye = imerode(y, se); % zero padding

>> plot(y);

>> hold on;

>> plot(ye, '-r');
```


Erosion: 2D Case

Structuring element

91 99 99 68 60 64 81 81 67 59 82 66 79 80 70 79 93 72 68 56 65 77 72 64 86 83 68 57 54 40 86 68 61 81 92 65 46 40 37 45 73 75 85 99 91 57 46 41 39 40 84 84 98 96 72 56 55 52 40 46 78 73 97 86 68 60 52 50 44 57 54 68 91 80 69 66 53 49 52 70 42 60 77 73 67 75 80 61 46 74 45 47 74 81 65 77 91 63 41 73

Original image

66 66 66 60 60 60 64 67 56 56 65 65 65 64 60 60 60 57 54 40 40 65 61 61 61 64 46 40 37 37 37 68 61 61 61 56 46 40 37 37 37 37 37 37 37 37 37 38 55 54 68 68 56 52 49 40 40 40 42 42 60 67 60 52 49 44 44 44 42 42 47 65 65 65 65 61 41 41 41

Eroded image

Gray-Scale Morphology

Combination of Dilation and Erosion

• Definition: Morphological Gradient

$$\nabla_{mg} = (f \oplus b)(x, y) - (f \ominus b)(x, y)$$
Dilation Erosion

Opening and Closing

• Function: Openings are used to remove small

bright details while leaving the overall gray levels and larger bright features relatively

undisturbed.

Definition: Opening

$$f \circ b = (f \ominus b) \oplus b$$

Gray-Scale Morphology

Opening and Closing

Function: Closings are used often in combination for

image smoothing and noise removal.

They suppress dark details smaller than

the structuring elements.

Definition: Closing

$$f \bullet b = (f \oplus b) \ominus b$$

Application: Smoothing using openings and closings

```
>> f = imread('dowels.tif');
>> se = strel('disk', 5);
>> fo = imopen(f, se);
>> foc = imclose(fo, se);
>> figure, imshow(f);
>> figure, imshow(fo);
>> figure, imshow(foc);
```

smooth_op_cl.m

Gray-Scale Morphology

Application: Smoothing using openings and closings

```
>> f = imread('dowels.tif');
>> fasf = f;
>> for k = 2:5
    se = strel('disk', k);
    fasf = imclose(imopen(fasf, se), se);
    end
>> figure, imshow(fasf);
```

smooth_op_cl.m

Application: To resolve nonuniform background

Gray-Scale Morphology

• Application: To resolve non-uniform background

Original image

Threshed image

Application: To resolve non-uniform background

Opened image

Top-hat image

Subtracting an opened image from the original is called "top-hat transformation."

Gray-Scale Morphology

• Application: To resolve non-uniform background

Original image

Top-hat image

ex_tophat.m

Gray-Scale Morphology

Reconstruction: Opening-by-reconstruction

Original image

Opening-by-reconstruction

Reconstruction: Opening-by-reconstruction

Original image

Opening-by-reconstruction followed by closing-by-reconstruction

gray_recon_op.m

Image Processing

Workshop on Morphological Image Processing (Part II)

Pattern Recognition and Image Processing Laboratory (Since 2012)

Gray-Scale Morphology

Application: To isolate the text out of the image of calculator keys

Original Image

Application: To isolate the text out of the image of calculator keys

Opening-by-reconstruction Image

1. Suppress the horizontal reflection along the top of each key.

```
>> f = imread('calculator.tif');
>> f_obr = imreconstruct(...
>> imerode(f, ones(1, 71)), f);
```


Gray-Scale Morphology

Application: To isolate the text out of the image of calculator keys

Tophat-by-reconstruction image

2. Perform tophat transformation.

>> f_thr = imtophat(f, f_obr);

Application: To isolate the text out of the image of calculator keys

Opening-by-reconstruction of Tophat-by-reconstruction image

- 3. Suppress the vertical reflections on the right edges of the keys.
- >> g_obr = imreconstruct(imerode ...
- >> (f_thr, ones(1, 11), f_thr);

Gray-Scale Morphology

Application: To isolate the text out of the image of calculator keys

Final reconstruction image

4. Perform a dilation and follow by a final reconstruction.

- >> g_obrd = imdilate(g_obr, ...
- >> ones(1, 21));
- >> f2 = imreconstruction(...
- >> min(g_obrd, f_thr), f_thr);

gray_isolate_text.m