

Engenharia de Controle e Automação

Cálculo Numérico

Aula 2 - Introdução ao Octave/Matlab

Prof. Hilário Tomaz Alves de Oliveira hilario.oliveira@ifes.edu.br

Agenda

- Introdução
 - Matlab
 - Octave
- Octave
 - Instalação
 - Comandos Básicos
 - Scripts
 - Funções
 - Programação Estruturada

Lista de Exercícios

- Lista de Implementação 1 Introdução ao Octave.
 - Disponível no Ambiente Virtual.
- Data Entrega: 22/03/2020 até as 23:55.

Matlab

 O MATLAB® é uma plataforma de programação projetada especificamente para engenheiros e cientistas.

 O MATLAB possui recursos de programação (semelhante a linguagem C), porém voltada para processamento numérico intensivo.

Matlab

- O Matlab pode ser adquirido diretamente do site da MathWorks.
 - Site: https://www.mathworks.com/products/matlab.html
- Preços:
 - Student Suite → USD 55.00
 - Home → USD 95
 - Standard → USD 940 (Anual)
- Possui uma versão de avaliação de 30 dias.

Matlab – Tela Principal

Matlab – Tela Principal

Octave

- Octave é um "Matlab de código aberto".
 - Site: https://www.gnu.org/software/octave/
- O GNU Octave é uma linguagem de alto nível, destinada principalmente a cálculos numéricos.
 - Ele fornece uma interface gráfica ou via linha de comando conveniente para realizar processamento numérico.
 - A linguagem é em grande parte compatível com o MatLab.

Octave – Linha de Comando

Octave – Interface Gráfica

Octave – Versão Online

Octave e Matlab

- O Octave e o Matlab são ambos linguagens de alto nível e ambientes de programação matemática para:
 - Visualização;
 - Programação em geral;
 - Computação numérica: álgebra linear, otimização, controle, estatísticas, processamento de sinal e imagem, etc.

Octave e Matlab

- Comparação Matlab e Octave:
 - Matlab é mais flexível/avançado/poderoso/dispendioso.
 - Octave é gratuito (licença GPL).
 - Existem pequenas diferenças na sintaxe.
 - OBS: O Octave/Matlab podem ser lentos.

Octave - Instalação

Octave – Passo 1 Instalação

Octave – Passo 2 Instalação

Octave – Passo 3 Instalação

Octave – Passo 4 Instalação

Octave – Instalação

- Após ter completado o download do instalador:
 - 1. Execute o instalador;
 - 2. Next > Next >;
 - 3. Escolha a pasta em que queres instalar o Octave;
 - 4. Next;
 - 5. Aguarda um pouco a instalação;
 - 6. Finalmente "Finish".
- Se tudo correu bem deverá ter aparecido um ícone na Área de Trabalho.

Octave – Instalação

Octave – Comandos Básicos

- Operações Básicas:
 - Soma (+) → 3+5
 - Subtração () → 8 2
 - Multiplicação (*) → 7 * 4
 - Divisão (/) → 10 / 5
 - Exponenciação (^) → 6 ^ 2

 Implicitamente o Octave atribui o resultado da operação a uma variável chamada de "ans".

24

Exercício 1

1. Na Janela de Comandos faça um exemplo usando as quatro operações básicas mais a exponenciação para cada um dos números a seguir:

- a) 4 e 2
- b) 21 e 7
- c) 25 e 5

 Podemos escrever uma expressão complexa a partir dos operadores básicos:

$$>>$$
 ans = 8

• OBS: É importante observar a ordem de precedência dos operadores.

Exercício 2

2. Na Janela de Comandos verifique qual o resultado das seguintes operações:

a)
$$4 + 2 * 3$$

c)
$$2^2/4 - (16/2)^2$$

• É possível atribuir valores a variáveis através da Janela de Comandos.

 Para definir uma variável basta digitar o nome que deseja para a variável seguido do operador "=" e então o valor que se deseja armazenar.

- O nome de uma variável deve respeitar as seguintes condições:
 - Não pode começar com um número.
 - Exemplo: 1idade.
 - Não pode ser uma palavra reservada* do Octave.
 - Não pode conter espaço e nem caracteres especiais.
 - Exemplo: quatro lados, lado*2, lado&diagonal.

Octave — Palavras reservadas

- Um ponto importante é que o Octave é *case sensitive*, ou seja, ele diferencia letras maiúsculas de minúsculas.
 - Por exemplo:
 - idade é diferente de IDADE
 - Idade é diferente de IDADE

Exercício 3

3. Declare duas variáveis contendo dois números e realize as quatro operações básicas mais a exponenciação com essas duas variáveis, armazenando o resultado também em uma variável.

Octave – Tipos e Variáveis

- Matrizes (reais e complexas).
- Vetores → é uma matriz com uma linha e n colunas.
- Strings → um vetor de n caracteres.
- Estruturas → tipos compostos.
- Escalares → é uma matriz de dimensão 1x1.
 - Inteiros → é um double.
 - Booleano → é um inteiro (1 = verdadeiro e 0 = falso).

Octave – Tipos e Variáveis

- Exemplos:
 - Escalar:
 - String:
 - Boolean:
 - Vetor:

$$>>$$
 vetor = [1 2 3 4 5 6]

Octave – Formato das Variáveis

- É possível alterar a forma com que o Octave apresenta os valores da variáveis na Janela de Comandos.
 - format short
 formato de ponto fixo com 5 dígitos.
 - format long

 formato de ponto fixo com 15 dígitos.
 - format short e → formato de ponto flutuante com 5 dígitos.
 - format long e → formato de ponto flutuante com 15 dígitos.
 - format bank -> formato com duas casas decimais.
- · Veja mais formatos usando comando help format.

Octave – Formato das Variáveis

Octave – Comandos Básicos

Comandos	Descrição	
clear	Apaga todas as variáveis da Área de Trabalho	
clear nomeVariavel	Apaga a variável ' <i>nomeVariavel</i> ' da Área de Trabalho	
clc	Apaga o que está impresso na Janela de Comandos.	
help nomefunção	Mostra como utilizar a função ou comando 'nomefunção', bem como o que ele faz.	

Octave – Funções Básicas

Função	Descrição
round()	Arredonda os números para baixo se a parte fracionário for menor 5, e arredonda para cima se a parte fracionária for maior ou igual a 5
ceil()	Arredonda todos os números para cima, independentemente da sua parte fracionária.
floor()	Arredonda todos os números para baixo, independentemente da sua parte fracionária.
sqrt()	Calcula raiz quadrada.
abs()	calcula o valor absoluto de um número (real ou imaginário).

Octave – Funções Básicas

Função	Descrição	
sin(), cos(), tan ()	Calcula o seno, cosseno e tangente de um número.	
asin(), acos(), atan()	Calcula o arco seno, arco cosseno e arco tangente de um número.	
log()	Calcula o log natural de um número.	
log2()	Calcula o logaritmo na base 2 de um número.	
log10()	Calcula o logaritmo na base 10 de um número.	

Exercício 4

4. Qual o resultado das seguintes operações:

- a) round(4.6)
- b) round(3.4)
- c) sqrt(16)
- d) sqrt(-49)
- e) abs(-99)
- f) sin(45)
- g) log2(64)
- h) mod(45, 2) → O que essa função faz?

Octave – Vetores

Criação de um vetor

```
Janela de Comandos
>> vetor = [1 2 3 4 5]
vetor =
  1.00 2.00 3.00 4.00 5.00
>> vetor 2 = [1, 2, 3, 4, 5]
vetor 2 =
  1.00 2.00 3.00 4.00 5.00
```

Octave – Vetores

- Acessar um elemento do vetor
 - Sintaxe: nome_vetor(indice)
 - OBS: o índice começa pelo número 1.

```
>> vetor = [1 2 3 4 5]
vetor =
  1.00 2.00 3.00 4.00
                             5.00
>> vetor 2 = [1, 2, 3, 4, 5]
vetor 2 =
  1.00 2.00 3.00 4.00 5.00
>> vetor(1)
ans = 1.00
>> vetor(3)
ans = 3.00
>> vetor 2(5)
ans = 5.00
>> vetor(6)
error: vetor(6): out of bound 5
```

Octave – Funções Básicas

Função	Descrição	
sum()	Efetua a soma de todos os elementos do vetor.	
min()	Retorna o menor número do vetor.	
max()	Retorna o maior número do vetor.	
mean()	Retorna o valor médio dos elementos do vetor.	
prod()	Retorna o produto dos elementos do vetor.	
sort()	Retorna o vetor ordenado do menor elemento para o maior.	

Exercício 5

- 5. Dados os vetores v1 = [5, 8, 9, 4] e v2 = [12, 15, 19, 22], responda as seguintes questões:
 - a) Qual o resultado da operação v1 + v2?
 - b) Qual o resultado da operação v1 * 4?
 - c) Qual o resultado da operação prod(v1)?
 - d) Qual o valor máximo e mínimo do vetor v1?
 - e) Qual a média aritmética dos valores do v2?

Octave – Matrizes

Criação de uma Matriz

```
>> matriz 1 = [1 2 3; 4 5 6; 7 8 9]
matriz 1 =
  1.00 2.00 3.00
  4.00 5.00 6.00
  7.00 8.00 9.00
>> matriz_2 = [1, 2, 3; 4, 5, 6; 7, 8, 9]
matriz 2 =
  1.00 2.00 3.00
  4.00 5.00 6.00
  7.00 8.00 9.00
```

Octave – Matrizes

- Acessar um elemento de uma matriz.
 - Sintaxe: nome_matriz(linha, coluna)
 - OBS: o índice começa pelo número 1.

```
>> matriz 1(2,3)
ans = 6.\overline{00}
>> matriz_1(1,1)
ans = 1.00
>> matriz_2(1,:)
ans =
   1.00 2.00 3.00
>> matriz 2(:,2)
ans =
   2.00
   5.00
   8.00
>> matriz_1(1,1:2)
ans =
   1.00
          2.00
```

Octave – Vetores e Matrizes

• As funções zeros() e ones() ajudam na criação de matrizes ou vetores de zeros ou uns, respectivamente.

```
>>  vetor 0 = zeros(1,8)
vetor 0 =
                0.00 0.00 0.00
        0.00
                                     0.00 0.00 0.00
>> vetor 1 = ones(1, 3)
vetor 1 =
  1.00
        1.00
               1.00
>> matriz 0 = zeros(3,4)
matriz 0 =
   0.00
         0.00
                0.00
                       0.00
  0.00
         0.00
                0.00
                       0.00
  0.00
         0.00
                0.00
                       0.00
>> matriz_1 = ones(2,2)
matriz_1 =
   1.00
         1.00
   1.00
         1.00
```

Octave – Vetores e Matrizes

Outras formas de criação de vetores e matrizes:

```
>> vetor = 1:15
vetor =
Columns 1 through 13:
   1.00
           2.00
                   3.00
                                   5.00
                                           6.00
                                                   7.00
                                                           8.00
                           4.00
                                                                   9.00
                                                                          10.00
                                                                                 11.00
                                                                                         12.00
 Columns 14 and 15:
  14.00 15.00
>> vetor 2 = 1:0.2:3
vetor 2 =
                1.40 1.60 1.80
                                     2.00
                                           2.20
                                                   2.40 2.60
>> vetor 3 = 10:-1:0
vetor 3 =
  10.00
           9.00
                   8.00
                           7.00 6.00
                                           5.00
                                                   4.00
                                                           3.00
                                                                   2.00
                                                                           1.00
                                                                                   0.00
>> matriz = [vetor 2; vetor 3]
matriz =
   1.00
           1.20
                    1.40
                           1.60
                                   1.80
                                           2.00
                                                   2.20
                                                           2.40
                                                                   2.60
                                                                           2.80
                                                                                   3.00
   10.00
           9.00
                   8.00
                           7.00
                                   6.00
                                           5.00
                                                   4.00
                                                           3.00
                                                                   2.00
                                                                                   0.00
                                                                           1.00
```

Octave – Operações com Vetores

```
>> vetor 1 = [1 2 3 4]
vetor 1 =
  1 2 3 4
>> vetor 2 = [4 5 6 7]
vetor 2 =
>> vetor 2 * 2
ans =
   8 10 12
>> vetor 2 + 3
ans =
        8
>> vetor 2 - 4
ans =
>> vetor 2 / 2
ans =
  2.0000 2.5000 3.0000 3.5000
```

```
>> vetor_1 + vetor_2
ans =

5     7     9     11
>> vetor_2 - vetor_1
ans =

3     3     3     3
```

Octave – Operações com Matrizes

```
>> matriz a = [1 3 5; 2 7 6; 9 3 8]
matriz a =
>> matriz b = [7 1 4; 5 0 3; 3 6 7]
matriz b =
>> matriz a^2
ans =
    52
                63
    70
          73
               100
               127
>> matriz a*2
ans =
             10
        14
            12
             16
```

```
>> matriz a+matriz b
ans =
            15
>> matriz a-matriz b
ans =
>> matriz a*matriz b
ans =
    37
          31
                48
                71
   102
               101
>> matriz a/matriz b
ans =
                             7.8125e-01
  -1.6875e+00
                2.0937e+00
  1.1875e+00
               -1.8438e+00
                             9.6875e-01
   6.3441e-16
               1.5000e+00
                             5.0000e-01
```

Exercício 6

- 6. Dadas as duas matrizes ao lado, responda as seguintes questões:
 - a) Qual a matriz resultante da operação A + B?
 - b) Qual a matriz resultante da operação B A?
 - c) Qual a matriz resultante da operação A * B?
 - d) Qual a matriz resultante da operação A / B?

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} e B = \begin{bmatrix} -1 & 3 \\ 4 & 2 \end{bmatrix}$$

Octave – Scripts e Funções

Octave – Scripts

- Um script trata-se de uma série de comandos que são salvos em um arquivo (com extensão .m) e podem ser executados posteriormente.
 - Ao executar um script, o Octave executa linha a linha do que está programado no script.

Octave – Scripts

Octave – Scripts

Octave – Funções

- Uma função é um conjunto de instruções que realiza uma tarefa específica.
 - Funções são criadas para serem reutilizadas em outros programas.
 - A função é chamada por um outro programa através de um nome atribuído a ela.
- Funções podem receber parâmetros e retornar resultados.
 - As variáveis criadas e manipuladas dentro de uma função só são visíveis dentro dessa função (Escopo da função).

Octave – Funções

Octave – Funções

• Sintaxe (Função):

```
function [saida(s)] = nomeFuncao(parametron(s)_entrada)
% comentários para ajudar
comandos a serem executados
[saida(s)] = valor(es)
end
```

- OBS: Funções não são executadas como Scripts.
 - Precisam ser chamadas na Janela de Comandos.

Funções – Exemplo 1

Funções – Exemplo 2

Octave – Funções Anônimas

- Funções mais simples podem ser declaradas de forma compacta.
- Sintaxe:
 - nome_da_função = @(lista_arg) expressão
- Exemplo

```
f = @(x, y) x^2 + y - 2; # Declaração
resultado = f(2, 4); # Utilização
printf("Resultado = %d", resultado);
```

Octave – Programação Estruturada

Octave – Comando de Saída

- O comando disp pode ser usado para exibir o valor de uma variável ou uma mensagem.
- Exemplo:
 - disp("Hello World");

• x = 45; disp(x);

Octave – Comando de Saída Formatada

- O outro comando utilizado para saída de dados é o printf.
 - Esse comando permite imprimir informações de uma maneira mais completa e informativa.
 - printf("Texto desejado %tipo_variavel", variaveis);

Código de Formato	Descrição	
%d	Será impresso o valor de uma variável inteira	
%f	Será impresso o valor de uma variável de ponto flutante	
Código de Controle	Descrição	
\n	Indica que deve iniciar uma nova linha (enter)	
\t	Indica que deve realizar uma tabulação horizontal	

Octave – Comando de Saída Formatada

Exemplos:

printf("Hello World!");

```
• x = 25;

y = 4.6;

printf("\n x = %d e y = %f", x, y);
```

Octave – Comandos de Entrada de dados

 A forma mais simples de ler dados do usuário, é através da instruções input.

Exemplos:

- numero = input ("Digite um número entre 1 e 100: ");
- vetor = input("Introduza as temperaturas desta semana: ");
 - Os valores devem ser digitados entre [].
- nome = input("Digite seu nome: ", "s");

Octave – Comandos de Entrada de dados

O Octave permite de uma forma muito simples apresentar um menu.

- Exemplos:
 - unidade = menu("Indique a unidade para ângulos", "Graus", "Radianos");

dia = menu("Indique o dia da semana", "Domingo", "Segunda-feira",
 "Terça-feira", "Quarta-feira", "Quinta-feira", "Sexta-feira", "Sábado");

Exercício 7

7. Leia um número e um vetor, e multiplique o número pelo vetor.

Octave – Estrutura de Decisão (If)

- Permite tomar decisões baseadas em condições.
- As decisões são baseadas nos resultados de operações lógicas e relacionais.
- Sintaxe básica:
 - OBS: elseif e else são opcionais.

```
if (condicao1)
      Operações
elseif (condicao2)
      Operações
else
      Operações
end
```

Octave – Estrutura de Decisão (If)

Operadores Relacionais

Exemplo	Operador	Relação
x == 0	==	Igual
x != y x ~= y	~=	Diferente
a < 0	<	Menor que
a > b	>	Maior que
a <= b	<=	Menor ou igual que
val >= despesas	>=	Maior ou igual que

Octave – Estrutura de Decisão (If)

- Representação
 - true = 1
 - false = 0
- Operadores Lógicos
 - ~x (not) ou !x (not):
 - x & y (and):
 - x && y (and)
 - x | y (or)

•	Χ	V	(or)
	<i>,</i> ,	J	()

Α	В	!A	A & B	A B
True	True	False	True	True
True	False	False	False	True
False	True	True	False	True
False	False	True	False	False

Estrutura de Decisão (If) - Exemplo

```
numero = 3;
minimo = 5;
maximo = 20;
if( numero >= minimo && numero <= maximo )</pre>
  printf("\nO número %d está no intervalo", numero);
elseif( numero > maximo )
  printf("\nO número %d está com um valor muito alto!", numero);
else
  printf("\nO número %d está com um valor muito baixo!", numero);
end
```

- 8. Faça um Script para ler um número inteiro e determine se ele é par ou ímpar.
 - Dica: utilize a função mod (resto da divisão).

Octave – Comando de Seleção(switch-case)

- A estrutura switch-case testa diferentes valores de uma mesma variável.
 - Dependendo do valor da variável testada, diferentes ações podem ser tomadas.

```
switch variavel
     case valor1
           Operações 1
     case valor2
           Operações 2
     otherwise
           Operações
```

end 76

Comando de Seleção(switch-case) - Exemplo

• Exemplo:

```
numero = 10;
switch numero
 case 1
  x = 1 + 2;
  disp("1");
 case 2
  disp("2");
 otherwise
  disp("Outro");
```

9. Faça um Script para ler dois números inteiros e depois exiba um Menu para o usuário escolher dentre as quatros operações básicas (+, -, *, /) e exiba o resultado da operação selecionada.

Octave – Comandos de Repetição

- São usados para repetir a execução de um ou mais comandos.
- Comandos:
 - for
 - Usado quando você sabe a quantidade de vezes que as operações serão executadas.
 - while
 - Executam um bloco de comando até que uma condição seja verdadeira.

Octave – Comandos de Repetição (for)

A sintaxe básica do comando for é:

```
for contador = valor_minimo:valor_maximo

Operações
```

end

Exemplo:

```
for i = 1:20
   printf("%d ", i);
endfor
```

Octave – Comandos de Repetição (while)

A sintaxe básica do comando while é:

```
while condicao satisfeita
  Operações
end
             i = 1;
Exemplo:
             while( i <= 20 )
               printf("%d ", i);
               i+=1;
             endwhile
```

10. Faça um Script para exibir todos os números ímpares de 1 a 100.

Octave – Comandos de Repetição (do-until)

 Existe uma outra estrutura de repetição que é do-until que executa um ou mais comando até que uma condição seja VERDADEIRA.

A sintaxe básica do comando do-until é:

Comandos de Repetição (do-until) - Exemplo

```
contador = 1;
do
  printf("%d ", contador);
  contador++;
until (contador > 10)
```

do-until VS while

- 11. Faça um Script para ler um número do usuário e determine se ele é primo ou não.
 - OBS: O Script deve repetir o processo acima lendo números do usuário e verificando se o número digitado é primo até que o mesmo digite o número -1 para sair.

Dúvidas

Referências

- Matlab para Cálculo Numérico. Prof. Alan Afif Helal.
- Curso Online Grátis (em inglês)
 - https://www.udemy.com/learn-matlab-using-octave-online/

Próxima aula ...

Aula 3 - Noções Básicas sobre Erro.