1. The full-wave rectifier circuit shown in Fig.1 has an input signal whose frequency is 60 Hz. The RMS value of v_S =8.5 V. Assume each diode cut-in voltage is V_γ =0.7 V. (a) What is the maximum value of V_O ? (b) If R=10 Ω , determine the value of C such that the ripple voltage is no larger than 0.25 V. (c) What must be the PIV rating of each diode?

Fig.1

2. The circuit in Fig.2 is a complementary output rectifier. If v_S = 26 sin $[2\pi(60)t]$ V, sketch the output waveform v_o^+ and v_o^- versus time, assuming V_γ = 0.6 V for each diode.

Fig.2

3. (a) Sketch v_o versus time for the circuit in Fig.3. The input is a sine wave given by v_i = 10 sin ωt V. Assume V_{γ} = 0. (b) Determine the RMS value of the output voltage.

Fig.3

- 4. A voltage regulator is to have a nominal output voltage of 10 V. The specified Zener diode has a rating of 1W, has a 10 V drop at I_Z = 25 mA, and has a Zener resistance of r_Z = 5 Ω . The input power supply has a nominal value of V_{PS} = 20 V and can vary by ±25 percent. The output load current is to vary between I_L = 0 and 20 mA. (a) If the minimum Zener current is to be I_Z = 5 mA, determine the required R_i . (b) Determine the maximum variation in output voltage. (c) Determine the percent regulation.
- 5. Consider the circuit in Fig.5. Let $V_{\gamma}=0$. The secondary voltage is given by $v_{S}=V_{S}\sin\omega t$, where $V_{S}=24$ V. The Zener diode has parameters $V_{Z}=16$ V at $I_{Z}=40$ mA and $r_{Z}=2\Omega$. Determine R_{i} such that the load current can vary over the range $40\leq I_{L}\leq 400$ mA with $I_{Z(min)}=40$ mA and find C such that the ripple voltage is no larger than 1 V.

Fig.5

6. The diode in the circuit of Fig.6a has piecewise linear parameter V_{γ} = 0.7 V and r_f = 10 Ω . (a) Plot v_O versus v_I for $-30 \le v_I \le 30$ V. (b) If the triangular wave, shown in Fig.6b, is applied, plot the output versus time.

Fig.6a

7. The diodes in the circuit in Fig.7 have the same piecewise linear parameters as described in problem 2.37. Determine the output voltage V_0 and the currents I_{D1} , I_{D2} , I_{D3} and I for the following input conditions: (a) V_1 = V_2 =0;(b) V_1 = V_2 =5V; (c) V_1 =5 V, V_2 =0; and (d) V_1 =5 V, V_2 =2 V.

Fig.7

8. (a) For the circuit in Fig.8, each diode has V_{γ} = 0.6 V. Plot v_{O} versus v_{I} over the range $0 \le v_{I} \le 10 \ V$. (b) Compare the result of the part (a) with a computer simulation analysis.

Fig.8

9. Assume V_{γ} = 0.7 V for each diode in the circuit in Fig.9. Plot v_{O} versus v_{I} for $-10 \le v_{I} \le +10$ V.

Fig.9