

CLAIMS

- 1 1. A computer assisted method of auditing a superset of training data, the
2 superset comprising examples of documents having one or more category
3 assignments, the method including:
 - 4 partitioning the superset into at least two disjoint sets, including a test set and a
5 training set, wherein the test set includes one or more test documents and the
6 training set includes examples of documents belonging to at least two
7 categories;
 - 8 categorizing the test documents using the training set;
 - 9 calculating a metric of confidence based on results of the categorizing step and
10 the category assignments for the test documents; and
 - 11 reporting the test documents and category assignments that are suspicious and
12 that appear to be missing, based on the metric of confidence.
- 1 2. The method of claim 1, further including repeating the partitioning,
2 categorizing and calculating steps until at least one-half of the documents in the
3 superset have been assigned to the test set.
- 1 3. The method of claim 2, wherein the test set created in the partition step has a
2 single test document.
- 1 4. The method of claim 2, wherein the test set created in the partition step has a
2 plurality of test documents.
- 1 5. The method of claim 1, further including repeating the partitioning,
2 categorizing and calculating steps until substantially all of the documents in the
3 superset have been assigned to the test set.
- 1 6. The method of claim 1, wherein the partitioning, categorizing and calculating
2 steps are carried out substantially without user intervention.
- 1 7. The method of claim 5, wherein the partitioning, categorizing and calculating
2 steps are carried out substantially without user intervention.
- 1 8. The method of claim 1, wherein the partitioning, categorizing, calculating and
2 reporting steps are carried out substantially without user intervention.

1 9. The method of claim 5, wherein the partitioning, categorizing, calculating and
2 reporting steps are carried out substantially without user intervention.

1 10. The method of claim 1, wherein the categorizing step includes determining k
2 nearest neighbors of the test documents and the calculating step is based on a k
3 nearest neighbors categorization logic.

1 11. The method of claim 10, wherein the metric of confidence is an unweighted
2 measure of distance between the test document and the examples of documents
3 belonging to various categories.

1 12. The method of claim 11, where the unweighted measure includes application
2 of a relationship $\Omega_0(d_t, T_m) = \sum_{d \in \{K(d_t) \cap T_m\}} s(d_t, d)$, wherein

3 Ω_0 is a function of the test document represented by the a feature vector d_t and of
4 various categories T_m ; and

5 s is a metric of distance between the test document feature vector d_t and certain
6 sample documents represented by feature vectors d , the certain sample
7 documents being among a set of k nearest neighbors of the test document having
8 category assignments to the various categories T_m .

1 13. The method of claim 10, wherein the metric of confidence is a weighted
2 measure of distance between the test document and the examples of documents
3 belonging to various categories, the weighted measure taking into account the density
4 of a neighborhood of the test document.

1 14. The method of claim 13 where the weighted measure includes application of

2 a relationship $\Omega_1(d_t, T_m) = \frac{\sum_{d_1 \in \{K(d_t) \cap T_m\}} s(d_t, d_1)}{\sum_{d_2 \in K(d_t)} s(d_t, d_2)}$, wherein

3 Ω_1 is a function of the test document represented by the a feature vector d_t and of
4 various categories T_m ; and

5 s is a metric of distance between the test document feature vector d_t and certain
6 sample documents represented by feature vectors d_1 and d_2 , the certain sample
7 documents d_1 being among a set of k nearest neighbors of the test document

8 having category assignments to the various categories T_m and the certain sample
9 documents d_2 being among a set of k nearest neighbors of the test document.

1 15. The method of claim 1, wherein the identifying step further includes filtering
2 the test documents based on the metric of confidence.

1 16. The method of claim 15, wherein the filtering step further includes color
2 coding the identified test documents based on the metric of confidence.

1 17. The method of claim 15, wherein the filtering step further includes selecting
2 for display the identified test documents based on the metric of confidence.

1 18. The method of claim 1, wherein the user interface is a printed report.

1 19. The method of claim 1, wherein the user interface is a file conforming to
2 XML syntax.

1 20. The method of claim 1, wherein the user interface is a sorted display
2 identifying at least a portion of the test documents.

1 21. The method of claim 1, further including calculating a precision score for the
2 identified test documents.

1 22. A computer assisted method of auditing a superset of training data, the
2 superset comprising examples of documents having one or more category
3 assignments, the method including:

4 determining k nearest neighbors of the documents in the superset;
5 categorizing the documents based on the k nearest neighbors into a plurality of
6 categories;
7 calculating a metric of confidence based on results of the categorizing step and
8 the category assignments for the documents; and
9 reporting the documents and category assignments that are suspicious and that
10 appear to be missing, based on the metric of confidence.

1 23. The method of claim 22, wherein the metric of confidence is an unweighted
2 measure of distance between the test document and the examples of documents
3 belonging to various categories.

1 24. The method of claim 23, where the unweighted measure includes application
 2 of a relationship $\Omega_0(\mathbf{d}_t, T_m) = \sum_{\mathbf{d} \in \{K(\mathbf{d}_t) \cap T_m\}} s(\mathbf{d}_t, \mathbf{d})$, wherein

3 Ω_0 is a function of the test document represented by the a feature vector \mathbf{d}_t and of
 4 various categories T_m ; and

5 s is a metric of distance between the test document feature vector \mathbf{d}_t and certain
 6 sample documents represented by feature vectors \mathbf{d} , the certain sample
 7 documents being among a set of k nearest neighbors of the test document having
 8 category assignments to the various categories T_m .

1 25. The method of claim 22, wherein the metric of confidence is a weighted
 2 measure of distance between the test document and the examples of documents
 3 belonging to various categories, the weighted measure taking into account the density
 4 of a neighborhood of the test document.

1 26. The method of claim 25, wherein the weighted measure includes application

2 of a relationship $\Omega_1(\mathbf{d}_t, T_m) = \frac{\sum_{\mathbf{d}_1 \in \{K(\mathbf{d}_t) \cap T_m\}} s(\mathbf{d}_t, \mathbf{d}_1)}{\sum_{\mathbf{d}_2 \in K(\mathbf{d}_t)} s(\mathbf{d}_t, \mathbf{d}_2)}$, wherein

3 Ω_1 is a function of the test document represented by the a feature vector \mathbf{d}_t and of
 4 various categories T_m ; and

5 s is a metric of distance between the test document feature vector \mathbf{d}_t and certain
 6 sample documents represented by feature vectors \mathbf{d}_1 and \mathbf{d}_2 , the certain sample
 7 documents \mathbf{d}_1 being among a set of k nearest neighbors of the test document
 8 having category assignments to the various categories T_m and the certain sample
 9 documents \mathbf{d}_2 being among a set of k nearest neighbors of the test document.

1 27. The method of claim 22, wherein the determining, categorizing and
 2 calculating steps are carried out substantially without user intervention.

1 28. The method of claim 22, wherein the identifying step further includes
 2 filtering the documents based on the metric of confidence.

1 29. The method of claim 28, wherein the filtering step further includes color
 2 coding the identified documents based on the metric of confidence.

- 1 30. The method of claim 28, wherein the filtering step further includes selecting
2 for display the identified documents based on the metric of confidence.
- 1 31. The method of claim 22, wherein the user interface is a printed report.
- 1 32. The method of claim 22, wherein the user interface is a file conforming to
2 XML syntax.
- 1 33. The method of claim 22, wherein the user interface is a sorted display
2 identifying at least a portion of the documents.
- 1 34. The method of claim 22, further including calculating a precision score for
2 the identified documents.