Assignment 3: Computational Methods of Optimization E0-230

SRNumber

November 20, 2024

Contents

1	\mathbf{Sys}	tems of Linear Equati	ons	(1	. 5	po	int	ts)											
	1.1	Problem 1.1 (2 points)																	
	1.2	Problem 1.2 (2 points)																	
	1.3	Problem 1.3 (3 points)																	
	1.4	Problem 1.4 (3 points)																	
	1.5	Problem 1.5 (5 points)																	
2	Support Vector Machines (15 points)																		
	2.1	Problem 2.1 (2 points)																	
	2.2	Problem 2.2 (3 points)																	
	2.3	Problem 2.3 (3 points)																	
	2.4	Problem 2.4 (3 points)																	
	2.5	Problem 2.5 (2 points)																	
	2.6	Problem 2.6 (2 points)																	

Instructions

- This is an individual assignment; all work must be your own.
- Code must be written in Python with appropriate comments.
- Submit two files: SRNumber.pdf and SRNumber.py.

1 Systems of Linear Equations (15 points)

We're given the following matrix and vector and we'd like to calculate the least norm solution that satisfies this linear constraint.

$$A = \begin{bmatrix} 2 & -4 & 2 & -14 \\ -1 & 2 & -2 & 11 \\ -1 & 2 & -1 & 7 \end{bmatrix}$$
 and $b = \begin{bmatrix} 10 \\ -6 \\ -5 \end{bmatrix}$

1.1 Problem 1.1 (2 points)

Show that the given system of equations has an infinite number of solutions.

Solution

Given the system of linear equation, Ax = b, the augmented matrix [A|b] would be.

$$[A|b] = \begin{bmatrix} 2 & -4 & 2 & -14 & 10 \\ -1 & 2 & -2 & 11 & -6 \\ -1 & 2 & -1 & 7 & -5 \end{bmatrix}$$

We know that if the rank(A) = rank([A—b] \leq Number of variables then we'd have ∞ solutions. Using gaussian elimination the Gaussian elimination, we've:

$$A = \begin{bmatrix} 1 & -2 & 0 & -3 \\ 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 and
$$A = \begin{bmatrix} 1 & -2 & 0 & -3 & 4 \\ 0 & 0 & 1 & -4 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus we can see that the rank of both the matrices are 2 that is less than the number of variables, thus there are ∞ many solutions

1.2 Problem 1.2 (2 points)

Express the problem of finding the least-norm solution as an optimization problem (ConvProb) with convex constraints and a strongly convex objective function.

Solution

The above problem could be expressed in the form of

$$\arg \min_{x \in R^4} f(x) = \frac{1}{2} ||x||^2$$

$$Ax = b$$

Now to show that the constraints are convex, Let's suppose we have $S = x : A^T x = b$ and let $x_1, x_2 \in S$. So we need to prove that $\theta x_1 + (1 - \theta)x_2 \in S$, $\forall \theta \in (0, 1)$. So $A^T x_1 = b$ and $A^T x_2 = b$. Let $y = \theta x_1 + (1 - \theta)x_2$. Hence

$$A^{T}y = A^{T}[\theta x_{1} + (1-\theta)x_{2}] = A^{T}\theta x_{1} + A^{T}(1-\theta)x_{2} = \theta A^{T}x_{1} + (1-\theta)A^{T}x_{2} = \theta b + (1-\theta)b = b$$

So, we can conclude the set S is convex. Now we'd like to prove that function is strongly convex. Consider function, $x = [x_1, x_2, x_3, x_4]^T$

$$f(\mathbf{x}) = \frac{1}{2} [x_1^2 + x_2^2 + x_3^2 + x_4^2]$$

$$\nabla f = \frac{1}{2} \begin{bmatrix} 2x_1 \\ 2x_2 \\ 2x_3 \\ 2x_4 \end{bmatrix}$$

$$H_f(\mathbf{x}) = \mathbf{I}$$

So the hessian of the objective function is identity which is P.D., hence the objective function is strongly convex.

1.3 Problem 1.3 (3 points)

Use the KKT conditions to solve ConvProb, and derive an expression for x^* .

Solution

Given that the objective function is strongly convex and the constraints are linear, a KKT point is also the global optimiser of the objective function. So, the Lagrange function is defined by

$$\mathcal{L}(\mathbf{x}^*, \gamma) = \frac{1}{2} x^{*T} x^* + \gamma (Ax^* - b)$$

. Let x^* be a KKT point, then

$$\nabla \mathcal{L}(x^*, \gamma) = 0 \implies x^* + A^T \gamma = 0 - (1)$$
$$Ax^* - b = 0 - (2)$$

Now, we multiply A^T in eq(1)

$$A^Tx^* + AA^T\gamma = 0 \implies b + AA^T\gamma = 0 \implies \gamma = -(AA^T)^{-1}b$$

So, from equation (1), $\mathbf{x}^* = -A^T \gamma = A^T (AA^T)^{-1} b$

1.4 Problem 1.4 (3 points)

Derive a projection operator for the constraint set of ConvProb.

Solution

So, we'd like to derive the projection operator. For $x \in R^4$, $P_c(x)$ be the projection operator of the x in the constraint, C. So, the problem of find the projection operator could be stated as

$$\arg\min_{x \in R^4} P_c(z) = \frac{1}{2} ||z - x||^2 \text{ and } g(x) = Ax - b = 0$$

Expanding the $P_c(x)$, we've:

$$P_c(z) = \frac{1}{2}(x^T x - 2z^T x + z^T z)$$
$$\nabla P_c(z) = \frac{1}{2}(2x - 2z)$$
$$H_{P_c}(z) = \mathbf{I}$$

So, the optimization problem is convex and as the constraints are linear, we can again try to find the KKT point which also be a global optimum. We define the Lagrange's as follows:

$$\mathcal{L}(x,\gamma) = \frac{1}{2}(x^{T}x - 2z^{T}x + z^{T}z) - \gamma(Ax^{*} - b)$$

Based on the KKT conditions, we've:

$$\nabla \mathcal{L}(x^*, \gamma) = x^* - z + A^T \gamma = 0 - (1) \text{ and } Ax^* - b = 0 - (2)$$

Now multiplying the equation 1 with A, then we have

$$Ax^* - Az - AA^T\gamma = 0 \implies b - Az + AA^T\gamma = 0 \implies \gamma = (AA^T)^{-1}(Az - b)$$

Now putting the value of γ back to equation 1, we've

$$x^* = z + A^T \gamma \implies z + A^T (AA^T)^{-1} (Az - b)$$

So the final expression of projection operator, $P_c(z)$ is

$$P_c(z) = [I - A^T (AA^T)^{-1} A]z + A^T (AA^T)^{-1} b$$

1.5 Problem 1.5 (5 points)

Implement projected gradient descent to solve ConvProb and plot $||x(t) - x^*||$ for each iteration.

Solution

Below is the plot for $||x(t) - x^*||$ for each iteration and different values of α

2 Support Vector Machines (15 points)

2.1 Problem 2.1 (2 points)

Solve the primal using CVXPY for the given data.

Solution

After solving through the CVXPY, we find that the optimal objective value is 2.66 and it is attained at $\mathbf{w}^* = [1.1547, -2]^T$ and $\mathbf{b}^* = 1$

2.2 Problem 2.2 (3 points)

Show that the dual function has the given form.

Solution

We start with the given primal optimization problem:

$$\min_{w,b} \quad \frac{1}{2} \|w\|^2$$

subject to:

$$y_i(w^{\top}x_i + b) \ge 1, \quad i = 1, \dots, N.$$

Here, $w \in \mathbb{R}^d$, $b \in \mathbb{R}$, and $y_i \in \{-1, 1\}$ are the labels of the data points $x_i \in \mathbb{R}^d$. The Lagrangian for this problem is:

$$L(w, b, \Lambda) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{N} \lambda_i \left(y_i(w^{\top} x_i + b) - 1 \right),$$

where $\Lambda = [\lambda_1, \dots, \lambda_N]^{\top}$ are the Lagrange multipliers (dual variables) with $\lambda_i \geq 0$. The dual function $g(\Lambda)$ is defined as:

$$g(\Lambda) = \inf_{w,b} L(w,b,\Lambda).$$

Minimization with respect to w

The Lagrangian can be rewritten as:

$$L(w, b, \Lambda) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{N} \lambda_i y_i w^{\top} x_i - b \sum_{i=1}^{N} y_i \lambda_i + \sum_{i=1}^{N} \lambda_i.$$

Focusing on the w-dependent terms:

$$\frac{1}{2}w^{\top}w - w^{\top} \left(\sum_{i=1}^{N} \lambda_i y_i x_i \right).$$

Minimizing this with respect to w involves taking the gradient and setting it to zero:

$$\nabla_w L = w - \sum_{i=1}^N \lambda_i y_i x_i = 0 \quad \Longrightarrow \quad w = \sum_{i=1}^N \lambda_i y_i x_i.$$

Substituting w back

Substituting $w = \sum_{i=1}^{N} \lambda_i y_i x_i$ into $L(w, b, \Lambda)$, the term $\frac{1}{2} ||w||^2 - w^\top \left(\sum_{i=1}^{N} \lambda_i y_i x_i\right)$ becomes:

$$\frac{1}{2}w^{\top}w - w^{\top}w = -\frac{1}{2}w^{\top}w = -\frac{1}{2}\left(\sum_{i=1}^{N} \lambda_{i}y_{i}x_{i}\right)^{\top}\left(\sum_{j=1}^{N} \lambda_{j}y_{j}x_{j}\right).$$

This simplifies to:

$$\frac{1}{2}\Lambda^{\top}A\Lambda,$$

where $A_{ij} = -y_i y_j x_i^{\top} x_j$.

The remaining terms in the Lagrangian become:

$$-b\sum_{i=1}^{N}y_{i}\lambda_{i}+\sum_{i=1}^{N}\lambda_{i}.$$

Minimization with respect to b

The b-dependent term is:

$$-b\sum_{i=1}^{N}y_{i}\lambda_{i}$$

Taking the derivative of the b-dependent term w.r.t b, we have

$$\sum_{i=1}^{N} y_i \lambda_i = 0$$

This term is linear in b, and since there are no constraints on b, it simply contributes $\Lambda^{\top}b$ to the dual function.

Combining all terms, the dual function is:

$$g(\Lambda) = \Lambda^{\top} \mathbf{b} + \frac{1}{2} \Lambda^{\top} A \Lambda,$$

where **b** is a vector of ones and $A_{ij} = y_i y_j x_i^{\top} x_j$. Value of K is N

2.3 Problem 2.3 (3 points)

Prove that $\sum_{i:y_i=1} \lambda_i = \sum_{i:y_i=-1} \lambda_i = \gamma$.

Solution

We know from above that

$$\sum_{i=1}^{N} y_i \lambda_i = 0$$

and the $\lambda_i \geq 0, \forall I = 1...N$, So this means

$$\sum_{i=1}^{N} y_i \lambda_i = 0 \implies \sum_{i=1,y=1}^{N} \lambda_i - \sum_{i=1,y=-1}^{N} \lambda_i = 0$$

$$\sum_{i=1,y=1}^{N} \lambda_i = \sum_{i=1,y=-1}^{N} \lambda_i = \gamma, \text{for some } \gamma$$

It's been observed that the value of $\gamma = 2.666$

2.4 Problem 2.4 (3 points)

Write a program to solve the dual problem and report the optimal value.

Solution

2.5 Problem 2.5 (2 points)

Identify the active primal constraints.

Solution

In the initial convex optimization question, the primal constraints are given by

$$q_i(x) = y_i(w \top x_i + b) - 1 > 0$$

For a constraint to be active, $g_i(x) = 0$ for that i. Hence, for the optimal x^* , $\lambda_i * g_i(x^*) = 0$, $\forall i$. Hence if the $\lambda_i > 0$, then we can conclude that the $g_i(x) = 0$, i.e. the ith constraint is active for x^* . For the above dual problem, the constraints are g_1, g_2, g_7, g_10

2.6 Problem 2.6 (2 points)

Plot the classifier, data points, and active constraint points.

Solution

References