Le traitement du langage naturel par transformers illustré par un exemple pour la classification de texte

Cerisara Nathan, MPI SCEI: 10953

Plan de la présentation

- 1. Architecture Transformer
 - 1.1 Vectorisation du texte
 - 1.2 La partie Encodeur de l'architecture
 - 1.3 Les matrices d'Attention
 - 1.4 Le réseau Feed Forward
- 2. Application personnelle
 - 2.1 Objectif
 - 2.2 Le modèle BERT
 - 2.3 La structure du réseau de neurone utilisée
 - 2.4 Les données et l'apprentissage
 - 2.5 Les résultats

1. L'architecture Transformer

Schéma de l'architecture dans le cas de la génération :

1.1 Vectorisation du texte : Analyse Lexicale

Analyseur lexical (bert-base-uncased)

```
Ex1:
PHRASE: "Neural Networks are so cool!"
TOKFNS .
[101, 15756, 6125, 2024, 2061, 4658, 999, 102, 0, \dots, 0]
[CLS] "neural" "networks" "are" "so" "cool" "!" [SEP]
Ex2:
PHRASE: "Bonjour le monde!"
TOKFNS .
[101, 14753, 23099, 2099, 3393, 23117, 999, 102, 0, \dots, 0]
```

[CLS] "bon" "##jou" "##r" "le" "monde" "!" [SEP]

1.1 Vectorisation du texte : Représentation Vectoriel & Encodage Positionnel

$$E = \begin{bmatrix} e_{1,1} & \dots & e_{1,d_E} \\ \dots & & \\ e_{N,1} & \dots & e_{N,d_E} \end{bmatrix}$$
Tokens
$$Token Embedding$$

$$T = \begin{bmatrix} t_1 \\ \vdots \\ t_N \end{bmatrix}$$

$$Encodage Positionnel$$

$$P = \begin{bmatrix} p_{1,1} & \dots & p_{1,d_E} \\ \dots & & \\ p_{N,1} & \dots & p_{N,d_E} \end{bmatrix}$$

1.2 La partie Encodeur

1.3 Matrice d'attention

1.4 Le réseau Feed Forward

2.1 Application Personnelle : Objectifs

Objectif:

- Classification de texte
- Sentiment : Négatif ←→ Positif
- Analyser les sentiments des habitants sur différents sujets
- Peut aider les mairies à prioritiser certains efforts

2.2 BERT (Bidirectional Encoder Representations from Transformers)

- Architecture Transformer Particulière (Encodeur seulement)
- ullet BERT base : 12 imes blocks encoder ightarrow 112M paramètres
- BooksCorpus (800M words) et English Wikipedia (2,500M words)
- Publié vers fin 2018 par des chercheurs de Google

2.3 La structure du réseau de neurone utilisée

2.4 Les données et l'apprentissage

- Données: Twitter Sentiment140 (1.6 millions Tweets)
- Entraînement : 50000, Test : 25000
- Temps d'entraînement : $\approx 5h$
- Algorithme d'apprentissage : Optimiseur Adam (extension de la descente de gradient stochastique)
- Fonction de Loss : CrossEntropy

2.5 Les résultats

	Mon classifieur BERT			bertweet-base-sentiment-analysis		
	Positif	Neutre	Négatif	Positif	Neutre	Négatif
City (5784)	1940	<u>2006</u>	1838	1110	<u> 2834</u>	1840
Cars (13104)	3272	4708	<u>5124</u>	1621	5466	<u>6017</u>
House (4681)	1501	<u> 1675</u>	1505	720	2297	1664
Plants (1012)	197	371	<u>444</u>	81	430	<u>501</u>
Store (2087)	605	693	<u>789</u>	273	771	<u>1043</u>
Police (5834)	1496	<u>2323</u>	2015	482	<u>2797</u>	2555
Hospitals (4928)	1315	1634	<u>1979</u>	917	1765	<u>2246</u>

Twitter news dataset (https://www.kaggle.com)

Conclusion

- L'architecture Transformer permet de construire des représentations pertinentes du langage naturel
- Plusieurs de tâches sont possibles : Classification, Génération, Traduction, ...
- Classifieur de texte : analyser les satisfactions des habitants
- Améliorations possibles : Meilleurs données d'entraînement, modèle plus large, ...

Annexes

Ce que l'on a vu :

- Architecture Transformer
 - Le block d'encodeur
 - Les matrices d'attention
 - Les réseaux Feed Forward
- Application Personnelle

Annexes / Ouvertures :

- Optimiseur Adam
- La fonction de *loss*
- La Normalisation par couche (LayerNorm)
- Fonctions Softmax et GeLU
- La partie décodeur
- Comparaison avec le modèle GPT
- Bibliographie
- Le code python

Annexes: Adam Optimizer

Descente de gradient stochastique

Différences avec Descente de Gradient :

- Batch de données vs Dataset entier
- Plus efficace en terme de calculs
- Ne se bloque pas forcément dans un minimum local
- Plus flexible pour le taux d'apprentissage

Adam : Adaptive Moment Estimation

- pour chaque itération : Moyennes pondérées du gradient sur l'historique récent
- Taux d'apprentissage adaptatif (individuellement pour chaque paramètre)
- Correction de biais
- Mise à jour des paramètres

Annexes: Fonction de loss

Fonction Cross Entropy

Soit C_1, \ldots, C_N N classes . Soit $x = (x_1, \ldots, x_N)$ la sortie du modèle. Soit v l'indice de la vraie classe.

pour chaque $i \in [1, n]$,

$$E_i = -\log\left(\frac{e^{x_v}}{\sum_{k=1}^N e^{x_k}}\right)$$

Donc au final $CE(x, v) = \frac{1}{N} \sum_{i=1}^{N} E_i$

Annexes: LayerNormalization

Entrée : Tensor *X* de dimensions : (batch_size, sequence_length, embedding_size)

Opérations :

- La moyenne E(X) et la Variance V(X) (sur la dimension de l'embedding de l'entrée)
- Normalisation :

$$N_X = \frac{X - E(X)}{\sqrt{V(X)}}$$

• Mise à l'échelle et décalage :

$$N_{x} \cdot \alpha + \beta$$

$$LayerNorm(X) = \frac{X - E(X)}{\sqrt{V(X)} + \varepsilon} \cdot \alpha + \beta$$

Annexes: Fonction Softmax et GeLU

Fonction Softmax:

Pour
$$z = (z_1, \ldots, z_N)$$

$$\mathsf{Softmax}(z) = \left(\frac{e^{z_i}}{\sum_{k=1}^N e^{z_k}}\right)_i$$

Pour $i \in \llbracket 1, N \rrbracket$

ReLU et GeLU:

Figure 1: Fonctions ReLU et GeLU

Annexes : Partie décodeur de l'architecture transformer

Annexes : Comparaison avec le modèle GPT

GPT : Generative Pre-trained Transformer

BERT: Bidirectional Encoder Representation from Transformers

Architecture:

- BERT : Encodeur seulement
- GPT : Decodeur seulement

Contexte:

- BERT : Bidirectionnel
- GPT : A gauche seulement

Utilisation:

- BERT : Classification, Traduction
- GPT : Génération de texte

Annexes : Bibliographie

- Pytorch documentation
- "Attention is all you need", Google Research, 2017
- "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", Google Al Language, 2018
- "Improving Language Understanding by Generative Pre-Training" OpenAI, 2018
- "The Illustrated GPT-2 (Visualizing Transformer Language Models)" (https://jalammar.github.io/illustrated-gpt2/)

Annexes : Code python - Classe Réseau de Neurone

Structure très simplifiée d'une classe réseau de neurone en pyton avec pytorch :

```
import torch.nn as nn
class Net(nn.Module):
    def init (self, dim in, dim out):
        super(). init ()
        self.layer = nn.Linear(dim in, dim out)
    def forward(self, x):
        return self. layer(x)
```

Annexes: Code python - Boucle d'entraînement

```
def train model(self, epochs):
  dataloader = Dataloader (self.train dataset,...)
  self.model.train()
  for epoch in range(epochs):
    for batch, data in dataloader:
      label = data['target']
      self.optimizer.zero grad()
      output = self.model(
        ids= data['ids'],
        mask=data['mask'],
        token type ids=data['token type ids'])
      label = label.type as(output)
      loss = self.loss fn(output, label)
      loss.backward()
      self.optimizer.step()
```