ASTRA Manual extract

September 11, 2020

Contents

ASTRA Control & Output	2
NEWRUN Namelist	2
OUTPUT Namelist	5
ASTRA Output	8
Particle distribution file structure, flags	12
SOLENOID Namelist	14
Generator Control	16
Various distributions	21

6. Input namelists for *Astra*

6.1. The namelist NEWRUN

The namelist NEWRUN contains basic instructions for the tracking.

Parameter	Specification	Unit	Default Value
Head	Character*150		
	header line for pro	tocol.	
RUN	Integer		1
	the RUN number automatically incre		asion for all output files (see Table 3). It is OP is specified.
LOOP	Logical		FALSE
	see chapter 4.9.		
NLoop	Integer		
	see chapter 4.9.		
Distribution	Character*150		
	name of the initial	particle distribu	tion, see chapters 2 and 3.
ion_mass()	Real*8 Array	eV/c ²	0.0
	Particle index 5 – See also the corres	14 in the input ponding <i>general</i>	a negative value of the ion_mass parameter. distribution file refer to ion_mass(1) – (10). <i>tor</i> definitions (7). and momenta) are normalized to the charge
N_red	Integer		1
	if > 1 only every N particles is scaled a		of the distribution is used. The charge of the
Xoff	Real*8	mm	0.0
30	horizontal offset of	f the input distrib	oution. Active if Xoff $\neq 0.0$.
Yoff	Real*8	mm	0.0
	vertical offset of th	e input distribut	ion. Active if Yoff $\neq 0.0$.
xp	Real*8	rad	0.0
_	horizontal trajector	y angle, additive	e to input distribution.
уp	Real*8	rad	0.0
	vertical trajectory a	angle, additive to	o input distribution.
Zoff	Real*8	m	0.0
- 33		of the input dist	ribution. Active if Zoff $\neq 0.0$.
Toff	Real*8	ns	0.0
			on. Active if Toff $\neq 0.0$.
Xrms	Real*8	mm	-1.0
			s active if $Xrms > 0.0$.

Yrms Real*8 mm 1.0 XYrms Real*8 mm 1.0 horizontal and vertical rms beam size. The parameter XYrms has priorit the parameters Xrms and Yrms. Zrms Real*8 mm -1.0 rms bunch length. Scaling is active if Zrms > 0.0. Trms Real*8 ns -1.0 emission time of the bunch. Scaling is active if Trms > 0.0. Real*8 ns 0.0 exponential delay time of the emission. Active if Tau ≠ 0.0. Note that the time is random and might interfere with the quasi random nature of an distribution. Active if Tau ≠ 0.0. Note that the time is random and might interfere with the quasi random nature of an distribution. cor_px Real*8 mrad 0.0 correlated divergence of the bunch. Scaling is active if cor_px ≠ 0.0. Cor_py Real*8 mC 0.0 Dunch Real*8 nC 0.0 0.0 SRT_Q.Schottky Real*8 nC 0.0 SRT_Q.Schottky Real*8 nC·m/MV) 1.0 0.0 G.Schottky Real*8 nC·m/MV 0.0 G.Schottky Real*8 nC·m/MV				
XYrms Real*8 mm -1.0 horizontal and vertical rms beam size. The parameter XYrms has priorit the parameters Xrms and Yrms. The parameter XYrms has priorit the parameter XYrms has priorit the parameters Xrms and Yrms. Zrms Real*8 mm -1.0 rms bunch length. Scaling is active if Zrms > 0.0. Trms Real*8 ns -1.0 emission time of the bunch. Scaling is active if Trms > 0.0. exponential delay time of the emission. Active if Tau ≠ 0.0. Note that the time is random and might interfere with the quasi random nature of an distribution. cor_px Real*8 mrad 0.0 correlated divergence of the bunch. Scaling is active if cor_px ≠ 0.0. 0.0 cor_py Real*8 mrad 0.0 correlated divergence of the bunch. Scaling is active if cor_py ≠ 0.0. 0.0 Obunch Real*8 nC 0.0 bunch charge. Scaling is active if Qbunch ≠ 0.0. 0.0 SRT_Q_Schottky Real*8 nC·m/MV) ^{1/2} 0.0 variation of the bunch charge with the square root of the field on the cascaling is active if QSchottky ≠ 0.0. 0.0 O_Schottky Real*8 nC·m/MV 0.0 Innear variation of the bunch charge with the field on the cathode. Scantive if QSchottky ≠ 0.0.	⁷ rms	Real*8	mm	-1.0
horizontal and vertical rms beam size. The parameter XYrms has priorit the parameters Xrms and Yrms. Zrms		vertical rms beam size.	. Scaling is active	e if Yrms > 0.0.
Zrms Real*8 mm -1.0 rms bunch length. Scaling is active if Zrms > 0.0. ns -1.0 emission time of the bunch. Scaling is active if Trms > 0.0. emission time of the bunch. Scaling is active if Trms > 0.0. Tau Real*8 ns 0.0 exponential delay time of the emission. Active if Tau ≠ 0.0. Note that the time is random and might interfere with the quasi random nature of an distribution. cor_px Real*8 mrad 0.0 cor_px Real*8 mrad 0.0 0.0 cor_py Real*8 mrad 0.0 0.0 correlated divergence of the bunch. Scaling is active if cor_py ≠ 0.0. 0.0 0.0 Dbunch Real*8 nC 0.0 bunch charge. Scaling is active if Qbunch ≠ 0.0. 0.0 0.0 SRT_Q_Schottky Real*8 nC·(m/MV) ^{1/2} 0.0 0.0 variation of the bunch charge with the square root of the field on the carbodian cative if SRT_Q_Schottky ≠ 0.0. 0.0 Q_Schottky Real*8 nC·m/MV 0.0 linear variation of the bunch charge with the field on the cathode. Scalactive if Q_Schottky ≠ 0.0. 0.0 debunch Real*8 nC·m/MV 0.0	Yrms	Real*8	mm	-1.0
rms bunch length. Scaling is active if Zrms > 0.0. Trms				The parameter XYrms has priority over
Trms Real*8 ns -1.0 emission time of the bunch. Scaling is active if Trms > 0.0. Trms > 0.0 Tau Real*8 ns 0.0 exponential delay time of the emission. Active if Tau ≠ 0.0. Note that the time is random and might interfere with the quasi random nature of an distribution. cor_px Real*8 mrad 0.0 correlated divergence of the bunch. Scaling is active if cor_px ≠ 0.0. cor_py Real*8 mrad 0.0 correlated divergence of the bunch. Scaling is active if cor_py ≠ 0.0. 0.0 Dunch Real*8 nC 0.0 bunch charge. Scaling is active if Qbunch ≠ 0.0. 0.0 SRT_Q_Schottky Real*8 nC·(m/MV) ^{1/2} 0.0 variation of the bunch charge with the square root of the field on the carries of the status of the square root of the field on the carries of the square root of the field on the carries of the square root of the field on the carries of the square root of the field on the carries of the square root of the field on the carries of the square root of the field on the carries of the square root of the field on the carries of the square root of the field on the carries of the square root of the field on the carries of the square root of the field on the carries of the square root of the field on the carries of the square root of the field on the carries of the square root of the field on the carries of the square root of the field on the carries of the squ	Zrms .	Real*8	mm	-1.0
emission time of the bunch. Scaling is active if Trms > 0.0. Tau Real*8 ns 0.0 exponential delay time of the emission. Active if Tau \neq 0.0. Note that the time is random and might interfere with the quasi random nature of an distribution. cor_px Real*8 mrad 0.0 correlated divergence of the bunch. Scaling is active if cor_px \neq 0.0. cor_py Real*8 mrad 0.0 correlated divergence of the bunch. Scaling is active if cor_py \neq 0.0. Qbunch Real*8 nC 0.0 bunch charge. Scaling is active if Qbunch \neq 0.0. SRT_Q_Schottky Real*8 nC·(m/MV) ^{1/2} 0.0 variation of the bunch charge with the square root of the field on the cast Scaling is active if SRT_Q_Schottky \neq 0.0. Q_Schottky Real*8 nC·m/MV 0.0 linear variation of the bunch charge with the field on the cathode. Scalactive if Q_Schottky \neq 0.0. debunch Real*8 nC·m/MV 0.0 linear variation of the bunch charge with the field on the cathode. Scalactive if Q_Schottky \neq 0.0. debunch Real*8 0.0 Tack_All Logical TRUE if false, only the reference particle will be tracked. The ref file contains the axis results in this case. Track_On_Axis Logical FALSE if true, the reference particle will be tracked only on axis. The ref file contains the cast of the cast of the particle will be tracked only on axis. The ref file contains the cast of the c		rms bunch length. Scal	ling is active if Z	rms > 0.0.
Tau Real*8 ns 0.0 exponential delay time of the emission. Active if Tau $\neq 0.0$. Note that the time is random and might interfere with the quasi random nature of an distribution. cor_px Real*8 mrad 0.0 correlated divergence of the bunch. Scaling is active if cor_px $\neq 0.0$. cor_py Real*8 mrad 0.0 cor_py Real*8 nC 0.0 0.0 bunch Real*8 nC 0.0 bunch charge. Scaling is active if Qbunch $\neq 0.0$. SRT_Q_Schottky Real*8 nC'(m/MV)^{1/2} 0.0 Scaling is active if SRT_Q_Schottky $\neq 0.0$. Q_Schottky Po.0 No No <th>rms</th> <th>Real*8</th> <th>ns</th> <th>-1.0</th>	rms	Real*8	ns	-1.0
exponential delay time of the emission. Active if $Tau \neq 0.0$. Note that the time is random and might interfere with the quasi random nature of an distribution. cor_px Real*8 mrad 0.0 correlated divergence of the bunch. Scaling is active if $cor_px \neq 0.0$. cor_py Real*8 mrad 0.0 correlated divergence of the bunch. Scaling is active if $cor_px \neq 0.0$. Qbunch Real*8 nC 0.0 bunch charge. Scaling is active if Qbunch $\neq 0.0$. SRT_Q_Schottky Real*8 nC(m/MV)^{1/2} 0.0 variation of the bunch charge with the square root of the field on the cast Scaling is active if SRT_Q_Schottky $\neq 0.0$. Q_Schottky Real*8 nC-m/MV 0.0 linear variation of the bunch charge with the field on the cathode. Scalactive if Q_Schottky $\neq 0.0$. debunch Real*8 nC-m/MV 0.0 linear variation of the bunch charge with the field on the cathode. Scalactive if Q_Schottky $\neq 0.0$. debunch Real*8 0.0 'debunched' particles, i.e. particles with a distance to the bunch exceeding debunch- σ_z are passivated, i.e. their status will be set to 0.0 Debunch is defined relative to the rms bunch length, hence it should used close to the cathode where σ_z can be zero. The procedure is active debunch is $\neq 0.0$ Track_All Logical TRUE if false, only the reference particle will be tracked. The ref file contains the axis results in this case. Track_On_Axis Logical FALSE if true, the reference particle will be tracked only on axis. The ref file contains the file of the cash		emission time of the bu	unch. Scaling is a	active if Trms > 0.0.
time is random and might interfere with the quasi random nature of an distribution. cor_px Real*8 mrad 0.0 cor_py Real*8 mrad 0.0 correlated divergence of the bunch. Scaling is active if cor_px \neq 0.0. Qbunch Real*8 nC 0.0 bunch charge. Scaling is active if Qbunch \neq 0.0. SRT_Q_Schottky Real*8 nC (m/MV)^{1/2} 0.0 SRT_Q_Schottky Real*8 nC·m/MV 0.0 Q_Schottky Real*8 nC·m/MV 0.0 linear variation of the bunch charge with the field on the cathode. Scaling is active if Q_Schottky \neq 0.0. Q_Schottky Real*8 nC·m/MV 0.0 debunch Real*8 0.0 'debunched' particles, i.e. particles with a distance to the bunch exceeding debunch σ_z are passivated, i.e. their status will be set to 0.0 debunch Real*8 0.0 Track_All Logical TRUE if false, only the reference particle will be tracked. The ref file contains taxis results in this case. TRUE Track_On_Axis Logical FALSE if true, the reference particle will be tracked only on axis. The ref file contains taxis results in this case. FALSE	au			
correlated divergence of the bunch. Scaling is active if $cor_px \neq 0.0$. cor_py Real*8 mrad 0.0 correlated divergence of the bunch. Scaling is active if $cor_px \neq 0.0$. Qbunch Real*8 nC 0.0 bunch charge. Scaling is active if Qbunch $\neq 0.0$. SRT_Q_Schottky Real*8 nC·(m/MV)^1/2 0.0 variation of the bunch charge with the square root of the field on the cast Scaling is active if SRT_Q_Schottky $\neq 0.0$. Q_Schottky Real*8 nC·m/MV 0.0 linear variation of the bunch charge with the field on the cathode. Scalactive if Q_Schottky $\neq 0.0$. debunch Real*8 0.0 'debunchd' particles, i.e. particles with a distance to the bunch exceeding debunch σ_z are passivated, i.e. their status will be set to 0 Debunch is defined relative to the rms bunch length, hence it should used close to the cathode where σ_z can be zero. The procedure is active debunch is $\neq 0.0$ Track_All Logical TRUE if false, only the reference particle will be tracked. The ref file contains the axis results in this case. Track_On_Axis Logical FALSE if true, the reference particle will be tracked only on axis. The ref file contains the		time is random and m		•
cor_py Real*8 mrad 0.0 correlated divergence of the bunch. Scaling is active if cor_py \neq 0.0. Qbunch Real*8 nC 0.0 bunch charge. Scaling is active if Qbunch \neq 0.0. SRT_Q_Schottky Real*8 nC·(m/MV)^{1/2} 0.0 variation of the bunch charge with the square root of the field on the cast Scaling is active if SRT_Q_Schottky \neq 0.0. 0.0 Q_Schottky Real*8 nC·m/MV 0.0 debunch Real*8 0.0 'debunched' particles, i.e. particles with a distance to the bunch exceeding debunch σ_z are passivated, i.e. their status will be set to 0.0 0.0 Debunch is defined relative to the rms bunch length, hence it should used close to the cathode where σ_z can be zero. The procedure is active debunch is \neq 0.0 Track_All Logical TRUE If false, only the reference particle will be tracked. The ref file contains the axis results in this case. FALSE Track_On_Axis Logical FALSE if true, the reference particle will be tracked only on axis. The ref file contains the contains t	or_px	Real*8	mrad	0.0
correlated divergence of the bunch. Scaling is active if cor_py $\neq 0.0$. Qbunch Real*8 nC 0.0 bunch charge. Scaling is active if Qbunch $\neq 0.0$. SRT_Q_Schottky Real*8 nC·(m/MV) ^{1/2} 0.0 variation of the bunch charge with the square root of the field on the cast Scaling is active if SRT_Q_Schottky $\neq 0.0$. Q_Schottky Real*8 nC·m/MV 0.0 linear variation of the bunch charge with the field on the cathode. Scalactive if Q_Schottky $\neq 0.0$. debunch Real*8 0.0 'debunchd' particles, i.e. particles with a distance to the bunch exceeding debunch· σ_z are passivated, i.e. their status will be set to 0 Debunch is defined relative to the rms bunch length, hence it should used close to the cathode where σ_z can be zero. The procedure is active debunch is $\neq 0.0$ Track_All Logical TRUE if false, only the reference particle will be tracked. The ref file contains the axis results in this case. Track_On_Axis Logical FALSE if true, the reference particle will be tracked only on axis. The ref file contains the cast of the cathode only on axis. The ref file contains the cast of the cathode only on axis. The ref file contains the cast of the cathode only on axis. The ref file contains the cast only the reference particle will be tracked only on axis. The ref file contains the cast of the cathode only on axis. The ref file contains the cast of the cathode only on axis. The ref file contains the cast of the cathode only on axis. The ref file contains the cast of the cathode only on axis. The ref file contains the cast of the cathode only on axis. The ref file contains the cast of the cathode only on axis. The ref file contains the cast of the cathode only on axis. The ref file contains the cast of the cathode only on axis. The ref file contains the cast of the cathode only on axis. The ref file contains the cast of the cathode only on axis.		correlated divergence of	of the bunch. Sca	lling is active if $cor_px \neq 0.0$.
Qbunch Real*8 nC 0.0 bunch charge. Scaling is active if Qbunch $\neq 0.0$. SRT_Q_Schottky Real*8 nC·(m/MV)^{1/2} 0.0 variation of the bunch charge with the square root of the field on the cascaling is active if SRT_Q_Schottky $\neq 0.0$. Q_Schottky Real*8 nC·m/MV 0.0 linear variation of the bunch charge with the field on the cathode. Scalactive if Q_Schottky $\neq 0.0$. debunch Real*8 0.0 'debunched' particles, i.e. particles with a distance to the bunch exceeding debunch σ_z are passivated, i.e. their status will be set to 0.0 Debunch is defined relative to the rms bunch length, hence it should used close to the cathode where σ_z can be zero. The procedure is active debunch is $\neq 0.0$ Track_All Logical TRUE if false, only the reference particle will be tracked. The ref file contains the axis results in this case. Track_On_Axis Logical FALSE if true, the reference particle will be tracked only on axis. The ref file contains the contain	or_py			
bunch charge. Scaling is active if Qbunch $\neq 0.0$. SRT_Q_Schottky Real*8 $nC \cdot (m/MV)^{1/2}$ 0.0 variation of the bunch charge with the square root of the field on the cast Scaling is active if SRT_Q_Schottky $\neq 0.0$. Q_Schottky Real*8 $nC \cdot m/MV$ 0.0 linear variation of the bunch charge with the field on the cathode. Scalactive if Q_Schottky $\neq 0.0$. debunch Real*8 0.0 'debunched' particles, i.e. particles with a distance to the bunch exceeding debunch σ_z are passivated, i.e. their status will be set to 0.0 Debunch is defined relative to the rms bunch length, hence it should used close to the cathode where σ_z can be zero. The procedure is active debunch is $\neq 0.0$ Track_All Logical TRUE if false, only the reference particle will be tracked. The ref file contains the axis results in this case. Track_On_Axis Logical FALSE if true, the reference particle will be tracked only on axis. The ref file contains the cast of the cast only on axis. The ref file contains the cast of the cast only on axis. The ref file contains the cast of the cast only on axis. The ref file contains the cast of the cast only on axis. The ref file contains the cast only on axis. The ref file contains the cast of the cast only on axis. The ref file contains the cast only on axis. The ref file contains the cast of the		correlated divergence of	of the bunch. Sca	aling is active if $cor_py \neq 0.0$.
SRT_Q_Schottky Real*8 $nC \cdot (m/MV)^{1/2}$ 0.0 variation of the bunch charge with the square root of the field on the cast Scaling is active if SRT_Q_Schottky $\neq 0.0$. 0.0 Q_Schottky Real*8 $nC \cdot m/MV$ 0.0 linear variation of the bunch charge with the field on the cathode. Scalactive if Q_Schottky $\neq 0.0$. 0.0 debunch Real*8 0.0 'debunched' particles, i.e. particles with a distance to the bunch exceeding debunch σ_z are passivated, i.e. their status will be set to 0.0 Debunch is defined relative to the rms bunch length, hence it should used close to the cathode where σ_z can be zero. The procedure is active debunch is $\neq 0.0$ Track_All Logical TRUE if false, only the reference particle will be tracked. The ref file contains the axis results in this case. FALSE Track_On_Axis Logical FALSE if true, the reference particle will be tracked only on axis. The ref file contains the cast of the contains the cast of the contains the cast of the	Sbunch	Real*8	nC	0.0
variation of the bunch charge with the square root of the field on the cast Scaling is active if SRT_Q_Schottky \neq 0.0. Q_Schottky Real*8 nC·m/MV 0.0 linear variation of the bunch charge with the field on the cathode. Scalactive if Q_Schottky \neq 0.0. debunch Real*8 0.0 'debunched' particles, i.e. particles with a distance to the bunch exceeding debunch σ_z are passivated, i.e. their status will be set to 0.0 Debunch is defined relative to the rms bunch length, hence it should used close to the cathode where σ_z can be zero. The procedure is active debunch is \neq 0.0 Track_All Logical TRUE if false, only the reference particle will be tracked. The ref file contains the axis results in this case. Track_On_Axis Logical FALSE if true, the reference particle will be tracked only on axis. The ref file contains the conta		bunch charge. Scaling		
Scaling is active if SRT_Q_Schottky $\neq 0.0$. Q_Schottky	RT_Q_Schottky		, ,	
linear variation of the bunch charge with the field on the cathode. Sca active if Q_Schottky $\neq 0.0$. Real*8			-	•
debunch Real*8 0.0 'debunched' particles, i.e. particles with a distance to the bunch exceeding debunch· σ_z are passivated, i.e. their status will be set to 0 Debunch is defined relative to the rms bunch length, hence it should used close to the cathode where σ_z can be zero. The procedure is active debunch is $\neq 0.0$ Track_All Logical TRUE if false, only the reference particle will be tracked. The ref file contains to axis results in this case. FALSE if true, the reference particle will be tracked only on axis. The ref file contains to the reference particle will be tracked only on axis. The ref file contains to the reference particle will be tracked only on axis. The ref file contains to the reference particle will be tracked only on axis. The ref file contains to the reference particle will be tracked only on axis. The ref file contains to the reference particle will be tracked only on axis. The ref file contains to the reference particle will be tracked only on axis. The ref file contains to the reference particle will be tracked only on axis.	_Schottky	Real*8	nC·m/MV	0.0
'debunched' particles, i.e. particles with a distance to the bunch exceeding debunch σ_z are passivated, i.e. their status will be set to 0 Debunch is defined relative to the rms bunch length, hence it should used close to the cathode where σ_z can be zero. The procedure is active debunch is $\neq 0.0$ Track_All Logical TRUE if false, only the reference particle will be tracked. The ref file contains to axis results in this case. Track_On_Axis Logical FALSE if true, the reference particle will be tracked only on axis. The ref file contains to the procedure is active to the rms bunch length, hence it should used close to the cathode where σ_z can be zero. The procedure is active to the rms bunch length, hence it should used close to the cathode where σ_z can be zero. The procedure is active to the rms bunch length, hence it should used close to the cathode where σ_z can be zero. The procedure is active to the rms bunch length, hence it should used close to the cathode where σ_z can be zero. The procedure is active to the rms bunch length, hence it should used close to the rms bunch length, hence it should used close to the rms bunch length, hence it should used close to the rms bunch length, hence it should used close to the rms bunch length, hence it should used close to the rms bunch length, hence it should used close to the rms bunch length, hence it should used close to the rms bunch length, hence it should used close to the rms bunch length, hence it should used close to the rms bunch length, hence it should used close to the rms bunch length, i.e. their status will be set to the rms bunch length, hence it should used close to the rms bunch length, hence it should used close to the rms bunch length, hence it should used close to the rms bunch length, hence it should used close to the rms bunch length, hence it should used close to the rms bunch length, hence it should used close to the rms bunch length, hence it should used close to the rms bunch length, hence it should used close to the r			_	with the field on the cathode. Scaling is
exceeding debunch σ_z are passivated, i.e. their status will be set to 0 Debunch is defined relative to the rms bunch length, hence it should used close to the cathode where σ_z can be zero. The procedure is active debunch is $\neq 0.0$ Track_All Logical TRUE if false, only the reference particle will be tracked. The ref file contains to axis results in this case. Track_On_Axis Logical FALSE if true, the reference particle will be tracked only on axis. The ref file contains the contains to the reference particle will be tracked only on axis.	ebunch	Real*8		0.0
Debunch is defined relative to the rms bunch length, hence it should used close to the cathode where σ_z can be zero. The procedure is active debunch is $\neq 0.0$ Track_All Logical TRUE if false, only the reference particle will be tracked. The ref file contains t axis results in this case. Track_On_Axis Logical FALSE if true, the reference particle will be tracked only on axis. The ref file contains the reference particle will be tracked only on axis.				
if false, only the reference particle will be tracked. The ref file contains t axis results in this case. Track_On_Axis Logical FALSE if true, the reference particle will be tracked only on axis. The ref file co		used close to the catho		
if false, only the reference particle will be tracked. The ref file contains t axis results in this case. Track_On_Axis Logical FALSE if true, the reference particle will be tracked only on axis. The ref file co	'rack_All	Logical		TRUE
if true, the reference particle will be tracked only on axis. The ref file co		if false, only the refere		be tracked. The ref file contains the off-
if true, the reference particle will be tracked only on axis. The ref file co	rack_On_Axis	Logical		FALSE
		if true, the reference p		
Auto_Phase Logical TRUE	Auto Phase	Logical		TRUE
if true, the RF phases will be set relative to the phase with maximum gain.		if true, the RF phases	will be set relat	

Phase_Scan	Logical		FALSE				
T nasc_Scan		of the cavities wi	ll be scanned between 0 and 360 degree.				
	Results are saved in the PScan file. The tracking between cavities will be done with the user-defined phases.						
	_						
check_ref_part	Logical		TRUE				
	if true, the run will be and off-axis reference		e reference particle is lost during the on-				
L_rm_back	Logical		FALSE				
	If false, backward tra lower boundary Z_mi	veling particles in. Note, that in	ded when they start to travel backwards. are only discarded when they pass the some cases (phases) the particles can times, before hitting a boundary.				
Z_min	Real*8	m					
		y the program a	s. If Z_min is not specified by the user it assuming that particles are supposed to				
Z_Cathode	Real*8	m					
	not specified by the us	ser it is automati	on of the mirror charge. If Z_Cathode is cally set by the program to the minimal emitted from a cathode.				
H_max	Real*8	ns	0.001				
	maximum time step fo	r the Runge-Kutt	a integration.				
H_min	Real*8	ns	0.0				
	minimum time step for the Runge-Kutta integration and min. time step for the space charge calculation. During the emission process from a cathode the time step is forced to H_min. If zero H_min is set automatically based on the parameter N_min (namelist CHARGE) in accordance to Eq. (4.1).						
Max_step	Integer		100 000				
	safety termination: after	er Max_step Run	ge_Kutta steps the run is terminated.				
Lmonitor	Logical		FALSE				
	if true, the particle nur step. For diagnostics o		e position will be reported on every time the calculation.				
Lprompt	Logical		TRUE				
	only for Windows PC		a pause statement is included at the end dow in case of an error.				

6.2. The namelist OUTPUT

In the namelist OUTPUT specifications for the generation of output are defined.

Parameter	Specification	Unit	Default Value					
ZSTART	Real*8	m	0.0					
	minimal z postion for the generation of output, tracking may start at $z \neq ZSTART$ according to the definition of the initial particle distribution.							
ZSTOP	Real*8	m	0.3					
	tracking will stop when	n the bunch cente	er passes ZSTOP.					
Zemit	Integer		100					
	the interval ZSTOP-Zs each subinterval outpu		d into Zemit subintervals. At the end of enerated.					
Zphase	Integer		1					
		nplete particle dis	d into Zphase subintervals. At the end of stribution is saved. It is recommended to					
Screen()	Real*8 array	m						
	additional position for	the generation of	f output.					
Scr_xrot()	Real*8 array	rad	0.0					
	only in combination w	with Local_emit.	plane. Active if Scr_xrot() \neq 0.0 and The angles are measured relative to the ponds to Scr_xrot() = $\pi/2$.					
Scr_yrot()	Real*8 array	rad	0.0					
	only in combination w	with Local_emit.	plane. Active if Scr_yrot() \neq 0.0 and The angles are measured relative to the ponds to Scr_yrot() = $\pi/2$.					
Step_width	Integer		0					
_	output generation bas generated every Step_v		os rather than on positions. Output is					
Step_max	Integer		0					
	terminates output bas Step_max.	sed on Step_wid	th. Run may continue if Max_step >					
Lproject_emit	Logical		FALSE					
		ongitudinal bunc	s of all particles will be projected into a h center position prior to the calculation ion 4.13.3.					
Local_emit	Logical		FALSE					
	passing the output possize etc. The longitud based on times and vesaved with this option tracking! The distance	ition plane prior inal particle coo elocities and are n should not be be between subse	s of all particles will be recorded when to the calculation of the emittance, spot rdinates in output files are recalculated only approximate. Hence distributions used as input distributions for further quent output positions has to be larger kipped. See section 4.13.3.					

Lmagnetized	Logical FALSE					
		neglected in the calculation of the beam emittance.				
	See section 4.13.1.					
Lsub_rot	Logical	FALSE				
LSub_10t		set true and the angular momentum of the bunch is				
		ce calculation based on the actual x-py and y-px				
		ther than by the canonical momentum. See section				
	4.13.1.					
Lsub Larmor	Logical	FALSE				
LSub_Lai iioi		sverse coordinate system induced by a solenoid will				
	be taken into account. See s					
Lsub_coup	Logical	FALSE				
		ne transverse beam spot will be corrected before the				
	emittance is calculated. See	section 4.13.2.				
Rot_ang	Real*8	rad 0.0				
1100_u.ug		e calculation in connection with Lsub_coup. If no				
		an optimized rotation angle will be taken. See				
	section 4.13.2.					
I aub aau	Logical	FALSE				
Lsub_cor	Logical if true the reduced emittance	e is calculated in addition to the standard emittance.				
	See section 4.13.6.	e is calculated in addition to the standard emittance.				
	200 200000					
RefS	Logical	FALSE				
	if true, output files according	g to Table 3 and				
	Table 4 are generated.					
EmitS	Logical	FALSE				
Elints	if true, output files according					
	Table 4 are generated. See					
C_EmitS	Logical	FALSE				
	if true, output files according to Table 3 and					
	Table 4 are generated. See s	section 4.13.5.				
C99_EmitS	Logical	FALSE				
_	if true, output files according	g to Table 3 and				
	Table 4 are generated. See s	section 4.13.5.				
Tr_EmitS	Logical	FALSE				
	if true, output files according					
	Table 4 are generated. See s	section 4.13.4.				
Sub_EmitS	Logical	FALSE				
	if true, output files according					
	Table 4 are generated. See s	section 4.13.8.				
Cross_start	Real	0.0				
	_	oss over particles (Sub_EmitS = False). See section				
	4.13.7.					

Cross_end	Real	0.0
		g cross over particles (Sub_EmitS = False). See section
	4.13.7.	
PhaseS	Logical	FALSE
	if true, output files acc	ording to Table 3 and
	Table 4 are generated.	
T_PhaseS	Logical	FALSE
	if true, output files acc	ording to Table 3 and
	Table 4 are generated.	
High_res	Logical	FALSE
	<u> </u>	tions are saved with increased accuracy. See
	Table 4.	
Binary	Logical	FALSE
	if true, the particle dist	ributions is saved in binary format.
TrackS	Logical	FALSE
	if true, output files acc	ording to Table 3 and
	Table 4 are generated.	
TcheckS	Logical	FALSE
	if true, output files acc	ording to Table 3 and
	Table 4 are generated.	
SigmaS	Logical	FALSE
	if true, output files acc	ording to Table 3 and
	Table 4 are generated.	
CathodeS	Logical	FALSE
	if true, output files acc	ording to Table 3 and
	Table 4 are generated.	
LandFS	Logical	FALSE
	if true, output files acc	ording to Table 3 and
	Table 4 are generated.	
LarmorS	Logical	FALSE
	if true, output files acc	ording to Table 3 and
	Table 4 are generated.	

4.12. Data output and organization of output files

Output of the beam emittance and other statistical beam parameters is generated if 'EmitS = True'. For the calculation of statistical bunch parameters the distance ZStop-ZStart is divided into Zemit intervals. Note that the Runge-Kutta time step is adjusted, i.e. reduced if necessary, in order to interrupt the tracking close to the specified locations. (The beam position refers to the average longitudinal beam position.) This might lead to a reduction of each time step, i.e. to an increased accuracy of the calculation, if the intervals are shorter than the bunch motion in one time step. A warning is given in this case because the result of the calculation might depend on a parameter for the output generation if H_max is too big.

The complete particle distribution is saved at Zphase different locations if 'PhaseS = True'. The distance ZStop-ZStart is divided into Zphase intervals and the nearest location defined by means of Zemit is chosen. It is recommended to set Zemit = $n \cdot Z$ phase, $n \in \mathbb{N}$. Additional output positions can be specified by specifying screen locations (see chapter 6.2). The approximate longitudinal position of a saved particle distribution is indicated in the file name as a four digit number, which corresponds in general to the rounded beam position in cm. If necessary the units for the file name definition is changed (if the distance of the output positions is too small, or if the last output position is too big). If required the naming convention is changed to a relative position (i.e. output position minus start position) which is indicated by a warning message.

In some cases it is desirable to generate output based on time steps rather than on locations. For this purpose the switch T_PhaseS can be set true. A complete particle distribution is saved in time intervals defined by Step_width·H, where Step_width is a user defined integer number and H is the Runge-Kutta time step which is automatically adjusted (between H_min and H_max). In order to limit the generation of output with this option the parameter Step_max can be set to n·Step_width, where n is the number of particle distributions to be saved. The T_PhaseS option can be combined with the PhaseS option.

A log file is generated for each run. In the first section of the log file all namelists of the input deck containing user specified or default values of all possible parameters are stored. The output is generated in a system dependent format; hence this file can in general not be transformed to a different system without problems. While this section is somewhat difficult to read, the way the output is generated allows printout also in cases of serious errors. In the second part of the log file a listing of the names and z-locations or times of saved phase space distributions is stored which is required by the graphic program *postrpo*. The third column of the listing contains the solenoid field value at the location of the saved phase space distribution.

Astra produces output on different length scales, time scales or scales for the variation of a parameter, respectively. Table 3 lists generic file names, logical switches and the scale on which data are stored.

Table 4 lists the output file data structure, i.e. the parameters that can be found in the different files, their units and the format of the files. Note, that the generation of output increases the computation time, especially when it is created on short time scales like tcheck and track files. Hence no superfluous output should be generated when computation time is an issue.

generic name	logical switch	approx. scale
project.ref.run	RefS	Runge-Kutta time step H _{max}
project.track.run	TrackS	Runge-Kutta time step H
project.Cathode.run	CathodeS	Runge-Kutta time step H
project.Fields.run	automatic ¹	Runge-Kutta time step H
project.tcheck.run	TcheckS	Runge-Kutta time step H
project.Xemit.run	101100112	Trunge 12000 time step 11
project. Yemit.run	EmitS	(ZStop-ZStart)/Zemit ²
project.Zemt.run		` '
project.Xemit2.run	Lsub_cor	(ZStop-ZStart)/Zemit ²
project.Yemit2.run		· ·
project.TRemit.run	TR_emitS	(ZStop-ZStart)/Zemit ²
project.Cr_emit.run	Cross_start ≠	(ZStop-ZStart)/Zemit ²
	Cross_end	
project.Sub_emit.run	Sub_EmitS	(ZStop-ZStart)/Zemit ²
project.Cemit.run	C_EmitS	(ZStop-ZStart)/Zemit ²
project.C99emit.run	C99_EmitS	(ZStop-ZStart)/Zemit ²
project.Larmor.run	LarmorS	(ZStop-ZStart)/Zemit ²
project.Sigma.run	SigmaS	(ZStop-ZStart)/Zemit ²
project.Density.run	DensityS	(ZStop-ZStart)/Zemit ²
project.zpos.run	PhaseS	(ZStop-ZStart)/Zphase, Screen & Wake
		positions
project.tstep.run	T_PhaseS	Step_width·Runge-Kutta time step
project.Lost_Part.run	LClean_Stack	Runge-Kutta time step H
project.Log.run	PhaseS	Start of the run and
		(ZStop-ZStart)/Zphase and Screen positions
		or Step_width·Runge-Kutta time step
project_E.Log.run	Log_Error	Start of the run
project.LandF.run	LandFS	(ZStop-ZStart)/Zphase and Screen positions
project.PScan.run	Phase_scan	1 degree of the RF phase of each cavity
project.Scan.run	LScan	(S_max-S_min)/S_numb
project.lab.run	LScan	
project.Error.run	ErrorS	run end

run = run number, zpos = z-position, tstep = time step

Table 3: Generic file names, logical switches and scales for the data output with *Astra*.

¹ cavity fields are saved when beam loading or time depending field options are used.

² output is generated in addition at Screen positions and Step_width·Runge-Kutta time step.

Name	1	2	3	4	5	6	7	8	9	Format
ref	Z	t	pz	dE/	Larmor angle	X _{off}	$y_{\rm off}$	px	ру	1P,9E12.4
	m	ns	MeV/c	dz	rad	mm	mm	eV/c	eV/c	1P,9E20.12
				MeV/m						
track	seq.	stat. flag	Z	X	У	Ez	Er, or Ex	0.0, or Ey		2I5,1P,6E12.4
	numb		m	mm	mm	V/m	V/m	V/m		
Cathode	Z	t	long. sp. ch.	acc. field on	charge	min. grid	max grid	emission flag		1P,7E12.4,L3
	m	ns	field on	cathode	nC	position	position			
T: 11			cathode V/m	V/m		m	m			10 11 510 4
Fields	Z	t		•	Cavity gradient (er of cavities N _C)		1P,N _C E12.4
tcheck	m	ns				MV/m		1:	ı	1D 7E12 4 I10
teneck	Z	t ns	$\frac{\sigma_{r0}}{\sigma_r}^{nr(r)}$	$\frac{\sigma_{z0}^{nr(z)}}{\sigma_z}$	$\frac{\gamma}{\gamma_0}^{nr(\gamma)}$	$\frac{\sigma_{r0}^{nz(r)}}{\sigma_r}$	$\sigma_{z0} \gamma_0^{nz(\gamma z)}$	scaling counter		1P,7E12.4,I10
	m	IIS	σ	σ	<u> </u>	$\frac{1}{\sigma}$	σ_{γ}	Counter		
			0 _r	σ_z	70	0,	σ_z			
Xemit	z	t	Xavr	X _{rms}	x'rms	ε _{x,norm}	x·x'avr			1P,7E12.4
	m	ns	mm	mm	mrad	π mrad mm	mrad			
Yemit	Z	t	y _{avr}	y_{rms}	y' _{rms}	ε _{y,norm}	y·y'avr			1P,7E12.4
	m	ns	mm	mm	mrad	π mrad mm	mrad			
Zemit	Z	t	E_{kin}	Z _{rms}	ΔE_{rms}	ε _{z,norm}	z·E'avr			1P,7E12.4
	m	ns	Mev	mm	kev	π keV mm	keV			
Xemit2	z	$K_{2,Z}^x$	$K_{3,Z}^x$	$\mathcal{E}_{x,rms}^{reduced\ z}$	$K_{2,E}^{x}$	$K_{3,E}^x$	$\mathcal{E}_{x,rms}^{reduced\ z\&E}$			1P,7E12.4
	m	π rad m	π rad m	π mrad mm	π rad m	π rad m	π mrad mm			
Yemit2	Z	$K_{2,Z}^y$	$K_{3,Z}^y$	$\mathcal{E}_{y,rms}^{reduced\ z}$	$K_{2,E}^y$	K_{3E}^y	$\mathcal{E}_{y,rms}^{reduced\ z\&E}$			1P,7E12.4
	m	π rad m	π rad m	π mrad mm	π rad m	π rad m	π mrad mm			
TRemit	Z	t	$\mathcal{E}_{x,rms}^{trace\ space}$	$\mathcal{E}_{y,rms}^{trace\ space}$	$\mathcal{E}_{z,ms}^{trace\ space}$	wrad iii	7 Hillad Hilli			1P,5E12.4
11101111	m	ns	· ·							11,0212
			π mrad mm	π mrad mm	πμm					
Cr_emit	Z	t	X_{rms}	y_{rms}	$\mathcal{E}_{x,rms}$	$\mathcal{E}_{y,rms}$	rest charge	cross over		1P,8E12.4
	m	ns	mm	mm	π mrad mm	π mrad mm	nC	charge		
Sub_emit	z	t	v				charge of	nC active rest		1P,8E12.4
Sub_ennt	m z	ns	x _{rms} mm	y _{rms} mm	$\mathcal{E}_{x,rms}$	$\mathcal{E}_{y,rms}$	sub-	charge		1F,0E12.4
	111	118	111111	111111	π mrad mm	π mrad mm	ensemble	nC		
							nC	II.C		
		1	1		1		0			

Cemit	z	ε _{x,norm·} , C	x_95, Cx_90, 0	Cx_80	ε _{x,norm} ., Cy_95,	Cy_90, Cy_80	ε _{x,nor}	m-, Cz_95, Cz_9	90, Cz_80	1P,13E12.4
	m		π mrad mm π keV mm				n			
C99emit	Z	ε _{x,norm} ., C	x_99.99, Cx_99	9.9, Cx_99 ε	x,norm-, Cy_99.99	, Cy_99.9, Cy_	.99 ε _{x,norm}	. Cz_99.99, Cz	_99.9, Cz_99	1P,13E12.4
	m		π mrad mm		π 1	nrad mm		π keV mr	n	
Larmor	Z	t	avr. Larmor	rms Larmor						1P,4E12.4
	m	ns	angle rad	angle rad						
Sigma	z m	E _{kin} Mev			sig	$i_{i,j}$ (i = 16, j = i.	6)			1P,23E14.6
Density	z m	t ns		N	umber of particl	es (i), Particle de	ensity (i) (i = 1	5)		1P,12E12.4
zpos ¹										1P,8E12.4,2I4
tstep										1P,8E20.12,2I4 binary
Lost_Part ¹										·
Log	file name	z m	Bz T							A50,2D12.4
LandF	z m	Npart ²	Q nC	number of lost particles ³	deposited energy ³	tot. energy exchange with fields ³				1P,6E12.4
PScan	phase deg	E _{kin} MeV	compression factor	β / β_0						1P,4E12.4
Scan	Scan_ para	z m	FOM(1) - FOM(10)						1P,12E17.8	
lab	Label for scan and error plots: X-axis, Y-axis, title							A80		
Error	Run #	z m			FC	OM(1) – FOM(1	0)			1P,12E17.8

¹ zpos = z-position, tstep = time step; zpos, tstep and Lost_Part files have the same structure as input distribution files, the format depends on user settings.

3 within the previous z-interval.

Table 4: Data structure of output files.

² Npart = number of active particles.

2. Definition of the initial particle distribution

Rather than generating the initial particle distribution internally, the tracking program *Astra* reads the initial particle coordinates from a file. This file may be generated by the program *generator* or by a user written program. However, also any output distribution of the *Astra* code, which has not been generated with the Local_emit = T option, can be used as input distribution, thus supporting the piecewise tracking of a long beam line. In order to be compatible with the graphic program *postpro* the input distribution file name should end with the extension '.ini' or with '.zpos.run', where zpos is a four digit number specifying the longitudinal beam position and run is a three digit number specifying the run number (see chapter 5.6). Table 1 lists the structure of particle distribution files. The Fortran format depends on user settings and is: 1P,8E12.4, 2I4 (default) or 1P,8E20.12,2I4 if High_res = T or binary if binary = T. The same settings are valid for *generator* and *Astra*.

	1	2	3	4	5	6	7	8	9	10
Parameter	X	У	Z	px	ру	pz	clock	macro	particle	status
								charge	index	flag
Unit	m	m	m	eV/c	eV/c	eV/c	ns	nC		

Table 1: Structure of particle distribution files.

The first line of the file defines the coordinates of the reference particle in absolute coordinates. It is recommended to refer it to the bunch center. **Longitudinal particle coordinates, i.e. z, pz and t are given relative to the reference particle.** (If the reference particle is lost the average position of the particle position will be saved with status flag = -99. Coordinates are relative to the average position in this case.) If the particles shall be emitted from a cathode they have to be generated with the same longitudinal position, e.g. z = 0.0 and with an appropriate spread in time, i.e. clock values in nanoseconds. In addition the status flag has to be set accordingly (see Table 2).

The macro charge of the particle is given in nano Coulomb. It is possible to specify each particle with a different charge; the emittance calculation will be done with the appropriate weighting.

The particle index specifies the kind of particle to be tracked:

Index 1 refers to electrons,

- 2 to positrons,
- 3 to protons and
- 4 to hydrogen ions.

Index 5-14 refer to particles with user defined ratio of mass to charge state. The sign of the charge specified in the column 8 is not relevant. It is possible to mix different kinds of particles as an initial particle distribution.

The status flag contains information of the particle status as listed in Table 2. Particles with a negative status flag are either lost by some mechanism or not yet started. (The output files list the coordinates of all particles even of those that have been lost. The order of the particles does not change; hence it is easily possible to follow the development of individual particles.) Passive particles are tracked as normal particles but they are not taken into account in the calculation of the beam emittance etc. and they are not taken into account when the space charge field is calculated. They will, however, be tracked taken the action of the space charge field onto them into account. They are typically used to cut off beam tails or halo particles. The trajectories of 'probe particles' and the space charge fields acting onto these particles will be found in an output file for later analysis.

Status	Comment	Status
flag		
-99 ¹	average position of distribution	will not be tracked
-95	ref. particle only; $Z_0 > ZStop$	lost
-94	ref. particle only; more than Max_Step steps	lost
-92^{2}	probe rejected by space charge at the cathode	lost
-91 ²	rejected by space charge at the cathode	lost
-90	probe particle before Z _{min}	lost
-89	particle before Z _{min}	lost
-86 ³	probe particle traveling backwards	lost
-85 ³	particle traveling backwards	lost
-31	particle discarded by user	lost
-30	particle preliminary discarded by user	lost
-22	probe secondary electron, lost on aperture	lost
-21	secondary electron, lost on aperture	lost
-20	passive probe particle, lost on aperture	lost
-19	passive particle, lost on aperture	lost
-17	trajectory probe particle, lost on aperture	lost
-15	standard particle, lost on aperture	lost
-6	passive probe particle, at the cathode	not yet started
-5	passive particle, at the cathode	not yet started
-4	secondary particle	not yet started
-3	trajectory probe particle at the cathode	not yet started
-1	standard particle, at the cathode	not yet started
0	passive probe particle	tracking ⁴
1	passive particle	tracking ⁴
		_
3	trajectory probe particle	tracking
4	cross over particle ⁵	tracking
5	standard particle	tracking
6, 933	probe secondary electrons of generation 1,	tracking
	210 or higher	
8, 1135	secondary electrons of generation 1, 210	tracking
	or higher	

- 1 if the reference particle is lost the average position of the distribution will be saved with index -99
- 2 only if Schottky parametrs are specified.
- 3 only active, if L_rm_back = T is set.
- 4 passive particles are not taken into account for the set-up of the space charge grid, the calculation of space charge fields and for the calculation of internal beam parameters. If the 2D space charge routine is active the particles are still tracked under the influence of space charge fields, while in case of the 3D routines the space charge field is zero for these particles.
- 5 only if cross_start \neq cross_end. See section 4.13.7.

Table 2: Definition of important status flags.

6.10. The namelist SOLENOID

The namelist SOLENOID allows to include arbitrary solenoid fields by means of tables, which may be generated by analytical calculations, measurements or numerical codes. The table has to contain the z-position (column1 in m) and the corresponding longitudinal on-axis magnetic field amplitude (column 2 arb. units) in a free format. The transverse field components are calculated from the derivatives of the on-axis field; see Appendix (chapter 8). The polynomial expansion extends to 1^{st} order or, with S_higher_order = True, to 3^{rd} order. A smoothing procedure can be applied to suppress numerical noise by setting S_smooth() = n, $n \in \mathbb{N}$.

Parameter	Specification	Unit	Default Value
LOOP	Logical		FALSE
	see chapter 4.9.		
LBfield	Logical		FALSE
	if false, all solenoid fie	elds are turned of	f.
File_Bfield()	Character*150 array		
	user specified file nam	e.	
S_noscale()	Logical		FALSE
	if true, the solenoid field values in T.	eld will not be so	aled, but the file values will be taken as
S_smooth()	Integer array		0
	the field table and c recommended. Use fi	an be noisy if eldplot to check	components are based on derivatives of the table is not precise, smoothing is that the longitudinal field component he transverse components get smooth.
S_higher_order()	Logical array		TRUE
	if true, the field expa extends only to 1 st or required.	nsion extends to rder. If true stro	o 3 rd order, if false the field expansion onger smoothing of the field might be
MaxB()	Real*8 array	T	0.0
	maximum field value o	of the solenoid fi	eld. The field is scaled to this value.
S_pos()	Real*8 array	m	0.0
	shifts the longitudinal in File_Bfield().	solenoid position	n. S_pos is added to the position defined
S_xoff()	Real*8 array	m	0.0
	horizontal offset of the	solenoid.	,
S_yoff()	Real*8 array	m	0.0
	vertical offset of the so	olenoid.	,

S_xrot()	Real*8 array	rad	0.0	
	rotation angle of the solenoid in the x-z plane, i.e. around the y-axis.			
S_yrot()	Real*8 array	rad	0.0	
rotation angle of the solenoid in the y-z plane, i.e. around the x-axis.				

7. Input namelist for *generator*

7.1. The namelist INPUT

Parameter	Specification	Unit	Default Value
FNAME	Character*150		rfgun.ini
	file name for initial .zpos.run, respective	•	ibution; recommended extensions are .ini or
Add	Logical		FALSE
	if true the input lis distributions will be		specified N_add times and N_add different
N_add	Integer		0
	number of distribution	ons to be adde	d.
Ipart	Integer		100
	number of particles t	o be generate	d.
Species	Character*80		Electrons
	hydrogen. The key word ion all charge state. In addit be specified, e.g. 's specification. The pagain in the namelist	ows to generation to the key ion 1'. The arameter ion_ NEWRUN of hics_program	n postpro additional specifications in the
ion_mass()	Real*8 Array	eV/c ²	0.0
	number corresponds the Species definitio	to the numbe n. Negatively ss parameter.	state of user defined particles. The index r specified together with the keyword ions in charged particles are defined by a negative Ion_mass(1) – (10) is mapped onto particle distribution file.
Probe	Logical		TRUE
	if true, 6 probe partic	les are genera	nted at locations:
	$(0.5\sigma x, 0.5\sigma z), (1.0$		
	$(0.5\sigma y, -0.5\sigma z), (1.0)$	θσy, -1.0σz),	$(1.5\sigma y, -1.5\sigma z).$
Passive	Logical		FALSE
1 assive	if true only passive p	articles will b	
	, L L		- 6
Noise_reduc	Logical		TRUE
	if true, particle co Hammersley sequence		re generated quasi-randomly following a
Cathode	Logical		TRUE
	spread in the longitude	udinal position	rated with a time spread rather than with a in, i.e. sig_z, Lz and rz are set to zero and ecified. See chapter 7.2 to chapter 7.4. Status
R_Cathode	Real*8	m	0.0
	radius in case of a c zero. See section 7.5		n planar cathode. Active if R_cathode is not

High_res	Logical	FALSE
0 -		s saved with increased accuracy. See
Binary	Logical	FALSE
	if true, the particle distributions	is saved in binary format.
Q_total	Real*8 nC	C 1.0
		e total charge is equally distributed on the Npart lso particles with varying macro charge in one
Type	Character*80	standard
	defines the type of the distributi	on. Valid are standard and ring .
Rad	Real*8 mr	m 0.0
	radius of ring type distributions.	
Tau	Real*8	0.0
	to any distribution in time, i.e.	mission. Active if $Tau \neq 0.0$. The delay is added to any distribution starting at the cathode. Note and might interfere with the quasi random nature
Ref_zpos	Real*8	0.0
	z position of the reference partic	ele, i.e the longitudinal bunch position.
Ref_clock	Real*8	0.0
	initial clock value of the referen	ce particle, can in general be set to zero.
Ref_Ekin	Real*8 Me	V 0.0
	initial kinetic energy of the refer	rence particle.
Dist_z	Character*80	uniform
	specifies the longitudinal partic parameters see chapter 7.2 to ch	ele distribution. For valid keywords and related apter 7.4.
sig_z	Real*8 mr	n 0.0
	rms value of the bunch length.	
C_sig_z	Real*8	0.0
	cuts off a Gaussian longitudinal if $\neq 0.0$.	al distribution at C_sig_z times sig_z. Active
Lz	Real*8 mr	n 0.0
	length of the bunch.	
rz	Real*8 mr	
	rising of the bunch distribution;	only for plateau distribution.
sig_clock	Real*8	s 1.0D-3
	rms value of the emission tin cathode.	ne, i.e. the bunch length if generated from a
<u> </u>		

Real*8		0.0
cuts off a Gaussia Active if $\neq 0.0$.	an longitudinal dis	stribution at C_sig_clock times sig_clock.
Real*8	ns	0.0
length of the bunch	h; only for plateau	distribution.
Real*8	ns	0.0
rise time of the bu	nch; only for plate	au distribution.
Character*80		uniform
		I momentum distribution, respectively. For rs see chapter 7.2 to chapter 7.4.
Real*8	keV	0.0
rms value of the en	nergy spread.	
Real*8		100.0
		mentum distribution at C_sig_Ekin times
Real*8	keV	0.0
width of the energ	y distribution.	
Real*8	keV	0.0
rising of the energ	y distribution, only	y for plateau distribution.
Real*8	π keV mm	0.0
		be specified instead of the energy spread. is specified the energy spread has priority.
Real*8	keV	0.0
correlated energy	spread.	
Real*8	eV	0.0
photon energy for	Fermi-Dirac distri	bution.
Real*8	eV	0.0
effective work fun	ction for Fermi-Di	rac distribution.
Character*80		Gaussian
specifies the trans		
specifies the trans		Gaussian stribution in the horizontal direction. For
specifies the transvalid keywords an	d related paramete	Gaussian stribution in the horizontal direction. For rs see chapter 7.2 to chapter 7.4.
specifies the transvalid keywords an Real*8	d related paramete	Gaussian stribution in the horizontal direction. For rs see chapter 7.2 to chapter 7.4.
specifies the transvalid keywords an Real*8 rms bunch size in Dist_x = radial.	d related paramete mm n the horizontal of	Gaussian stribution in the horizontal direction. For rs see chapter 7.2 to chapter 7.4. 1.0 direction. Also the vertical bunch size if
specifies the transvalid keywords an Real*8 rms bunch size in Dist_x = radial. Real*8 cuts off a Gaussi	d related paramete mm n the horizontal of	Gaussian stribution in the horizontal direction. For rs see chapter 7.2 to chapter 7.4. 1.0 direction. Also the vertical bunch size if
specifies the transvalid keywords an Real*8 rms bunch size in Dist_x = radial. Real*8 cuts off a Gaussi if \(\neq 0.0. \)	mm n the horizontal dis	Gaussian stribution in the horizontal direction. For rs see chapter 7.2 to chapter 7.4. 1.0 direction. Also the vertical bunch size if 0.0 tribution at C_sig_x times sig_x. Active
specifies the transvalid keywords an Real*8 rms bunch size in Dist_x = radial. Real*8 cuts off a Gaussi if \neq 0.0.	mm n the horizontal dis	Gaussian stribution in the horizontal direction. For rs see chapter 7.2 to chapter 7.4. 1.0 direction. Also the vertical bunch size if 0.0 tribution at C_sig_x times sig_x. Active
	cuts off a Gaussia Active if ≠ 0.0. Real*8 length of the bunct Real*8 rise time of the bunct Character*80 specifies the longing valid keywords and Real*8 rms value of the end Real*8 cuts off a Gaussia sig_Ekin. Active in Real*8 width of the energ Real*8 rising of the energ Real*8 longitudinal particular an energy spread Real*8 correlated energy: Real*8 Real*8 Real*8 Real*8 Real*8 Real*8 Real*8	cuts off a Gaussian longitudinal dis Active if ≠ 0.0. Real*8

x off	Real*8	mm	0.0
	horizontal offset of the		
D.	D 140	T	
Disp_x	Real*8	m horizontal offse	t is added to all particles according to:
	$x = x + Disp_x \frac{\Delta r}{P} ;$	increases the cal	culated bunch emittance.
Dist_px	Character*80		Gaussian
			tribution in the horizontal direction. For see chapter 7.2 to chapter 7.4.
Nemit_x	Real*8	π mrad mm	0.0
	instead of a transvers	se momentum s the emittance ha	e horizontal direction. Can be specified pread. If a momentum spread and an as priority. Also the normalized vertical
sig_px	Real*8	eV/c	0.0
	rms value of the horizon	ontal momentum	distribution.
C_sig_px	Real*8		100.0
C_sig_pii		momentum distr	ibution at C_sig_px times sig_px.
-			
Lpx	Real*8	eV/c	0.0
	width of the norizontal	momentum dist	ribution; only for plateau distribution.
rpx	Real*8	eV/c	0.0
	rising of the horizontal	l momentum dist	ribution; only for plateau distribution.
cor_px	Real*8	mrad	0.0
	correlated beam diverg	gence in the horiz	contail direction = $-\frac{\alpha}{\beta[m]} x_{rms} [mm]$.
	_	-	rrelated beam divergence cannot be set increased by <i>generator</i> . A warning will
Dist_y	Character*80		Gaussian
			ution in the vertical direction. For valid hapter 7.2 to chapter 7.4.
sig_y	Real*8	mm	1.0
	rms bunch size in the v	vertical direction.	Not significant if Dist_x = radial.
C_sig_y	Real*8		0.0
8_1		vertical distribu	tion at C_sig_y times sig_py. Active
	if \neq 0.0.		
Ly	Real*8	mm	0.0
V	width of the vertical pa		
	Dag1*0		0.0
ry	Real*8	mm	n; only for plateau distribution.
	rising of the vertical pa	articie distributio	n, omy for plateau distribution.

y_off	Real*8	mm	0.0	
	the vertical offset of th	e particle distribi	ution.	
	,	<u> </u>		
Disp_y	Real*8	m	0.0	
			dded to all particles according to:	
	$y = y + Disp_y \frac{\Delta P}{P} ;$	increases the cal	culated bunch emittance.	
Dist_py	Character*80		Gaussian	
			stribution in the vertical direction. For see chapter 7.2 to chapter 7.4.	
Nemit_y	Real*8	π mrad mm	0.0	
	instead of a transvers	se momentum s	ne vertical direction. Can be specified pread. If a momentum spread and an as priority. Not significant if Dist_px =	
sig_py	Real*8	eV/c	0.0	
	rms value of the horizon	ontal momentum	distribution.	
C_sig_py	Real*8		0.0	
	cuts off a Gaussian vertical momentum distribution at C_sig_py times sig_py. Active if $\neq 0.0$.			
Lpy	Real*8	eV/c	0.0	
	width of the vertical momentum distribution; only for plateau distribution.			
rpy	Real*8	eV/c	0.0	
	rising of the vertical m	rising of the vertical momentum distribution; only for plateau distribution.		
cor_py	Real*8	mrad	0.0	
	correlated beam divergence in the vertical direction $= -\frac{\alpha}{\beta[m]} y_{ms}[mm]$.			
			rrelated beam divergence cannot be set increased by <i>generator</i> . A warning will	

7.2. 1D distributions

7.2.1 uniform distribution Definition and basic relations

$$f(x) = \frac{1}{FWHM} \qquad \text{for } |x| \le \frac{FWHM}{2}$$

$$0 \qquad \text{elsewhere}$$

rms value
$$\sigma = \frac{FWHM}{2\sqrt{3}}$$

Generator specifications

Dimension	Key word	Parameter	unit
		<i>FWHM</i> or σ	
temporal ¹	$Dist_z = \mathbf{u}niform'$	Lt or sig_clock	ns
longitudinal ² z	$Dist_z = \mathbf{u}niform'$	Lz or sig_z	mm
longitudinal E _{kin}	Dist_pz = ' u niform'	LE or sig_Ekin or	keV or keVmm
		emit_z	
transverse x	$Dist_x = \mathbf{u}niform'$	Lx or sig_x	mm
transverse y	Dist_y = ' u niform'	Ly or sig_y	mm
transverse p _x	Dist_px = ' u niform'	Lpx or sig_px or	eV/c or mrad mm
		Nemit_x	
transverse p _y	Dist_py = ' u niform'	Lpy or sig_py or	eV/c or mrad mm
		Nemit_y	

active if Cathode = TRUE, ² active if Cathode = FALSE

7.2.2 plateau distribution

Definition and basic relations

$$f(x) = \frac{1}{L} \frac{1}{1 + \exp\left(\frac{2}{rt}(2|x| - L)\right)} \qquad rt \le \frac{L}{2}$$

Definition of rt:

rt is defined by a straight line with a slope A given by:

$$A = \frac{d}{dx} f(x) \Big|_{\pm \frac{L}{2}}$$

Within rt the straight line inclines form 0 to the plateau value of the distribution.

FWHM value FWHM = L
rms value
$$\frac{L}{2\sqrt{3}} \le \sigma \le \frac{L}{2.8}$$
 $rt \le \frac{L}{2}$

Example: Plateau distribution with L = 1 and rt = 0.2. Straight lines according to the definition of rt.

Dimension	Key word	Parameter L, rt	unit
temporal ¹	Dist_z = ' p lateau'	Lt, rt	ns
longitudinal ² z	$Dist_z = 'plateau'$	Lz, rz	mm
longitudinal E _{kin}	Dist_pz = ' p lateau'	LE, rE	keV
transverse x	$Dist_x = \mathbf{p}lateau'$	Lx, rx	mm
transverse y	Dist_y = ' p lateau'	Ly, ry	mm
transverse p _x	Dist_px = ' p lateau'	Lpx, rpx	eV/c
transverse p _y	Dist_py = 'plateau'	Lpy, rpy	eV/c

¹ active if Cathode = TRUE, ² active if Cathode = FALSE

7.2.3 inverted parabola (longitudinal)

Definition and basic relations

The inverted parabola distribution produces linear longitudinal space charge fields. It corresponds to the projection of a uniformly filled ellipsoid onto the z-axis.

$$f(z) = \frac{3}{4z_{\text{max}}} \left(1 - \frac{z^2}{z_{\text{max}}^2} \right) \quad |z| \le z_{\text{max}}$$

FWHM value
$$FWHM = \sqrt{2}z_{\text{max}}$$

$$\sigma_z = \frac{z_{\text{max}}}{\sqrt{5}}$$

Generator specifications:

Dimension	Key word	Parameter σ	unit
temporal ¹	Dist_z = 'inverted'	sig_clock	ns
longitudinal ² z	Dist_z =' inverted '	sig_z	mm

7.2.4 Gaussian distribution

Definition and basic relations

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2}\frac{x^2}{\sigma^2}\right)$$

$$FWHM = 2\sqrt{-2\ln(0.5)} = 2.35\sigma$$

Dimension	Key word	Parameter σ	unit
temporal ¹	Dist_z = 'gauss'	sig_clock	ns
longitudinal ² z	Dist_z ='gauss'	sig_z	mm
longitudinal E _{kin}	Dist_pz = 'gauss'	sig_Ekin or emit_z	keV or keVmm
transverse x	Dist_x = 'gauss'	sig_x	mm
transverse y	Dist_y = 'gauss'	sig_y	mm
transverse p _x	Dist_px = 'gauss'	sig_px or Nemit_x	eV/c or mrad mm
transverse p _y	Dist_py = 'gauss	sig_py or Nemit_y	eV/c or mrad mm

¹ active if Cathode = TRUE, ² active if Cathode = FALSE

7.2.5 truncated Gaussian distribution

Definition and basic relations

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma_{inp}} \exp\left(-\frac{1}{2}\frac{x^2}{\sigma_{inp}^2}\right) \qquad \text{for } |x| \le C_{Cut}\sigma_{inp}$$

relation between σ_{inp} and rms value of the truncated distribution σ_{out}

$$\frac{C_{Cut}\sigma_{inp}}{\sqrt{3}} \leq \sigma_{out} \leq \sigma_{inp}$$

Note that the cut produces a rectangular structure. Compare with the 2D-Gaussian distribution 7.3.2.

Dimension	Key word	Parameter σ_{inp} , C_{Cut}	unit
temporal ¹	$Dist_z = 'gauss'$	sig_clock, C_sig_clock	ns, dim. less
longitudinal ² z	$Dist_z = 'gauss'$	sig_z, C_sig_z	mm, dim. less
longitudinal E _{kin}	Dist_pz = 'gauss'	sig_Ekin or emit_z,	keV or keVmm,
		C_sig_Ekin	dim. less
transverse x	$Dist_x = 'gauss'$	sig_x, C_sig_x	mm, dim. less
transverse y	Dist_y = 'gauss'	sig_y, C_sig_y	mm, dim. less
transverse p _x	Dist_px = 'gauss'	sig_px or Nemit_x,	eV/c or mrad mm,
		C_sig_px	dim. less
transverse p _y	Dist_py = 'gauss'	sig_py or Nemit_y,	eV/c or mrad mm,
		C_sig_py	dim. less

¹ active if Cathode = TRUE, ² active if Cathode = FALSE

7.3. 2D distributions

7.3.1 radial uniform distribution

Definition and basic relations

$$f(x, y) = \frac{1}{\pi r^2}$$
 for $x^2 + y^2 \le r^2$
0 elsewhere

The projection onto the x-axis (eqv. y-axis) is a half ellipse

$$f(x) = 2 \int_{0}^{y_{m}} f(x, y) dy = \frac{2\sqrt{r^{2} - x^{2}}}{\pi r^{2}} \qquad |x| \le r$$

with the following properties:

FWHM value FWHM =
$$\sqrt{3} r$$

rms value $\sigma = \frac{r}{2}$

Generator specifications

Dimension	Key word	Parameter r or σ	unit
transverse x, y	Dist_x = ' r adial	Lx or sig_x	mm
	uniform'		
transverse p_x , p_y	Dist_px = 'radial	Lpx or sig_px or	eV/c or mrad mm
	uniform'	Nemit_x	

7.3.2 (truncated) 2D-Gaussian distribution

Equivalent to distributions 7.2.4 and 7.2.5 but with f(y) = f(x). The cut will produce a circular structure.

Dimension	Key word	Parameter σ_{inp} , C_{Cut}	unit
transverse x, y	$Dist_x = '2D-$	sig_x, C_sig_x	mm, dim. less
	Gaussian'		
transverse p _x , p _y	$Dist_px = '2D-$	sig_px or Nemit_x,	eV/c or mrad mm,
	Gaussian'	C_sig_px	dim. less

7.4. 3D distributions

7.4.1 isotropic momentum distribution

Definition and basic relations

A distribution with isotropic emission angles into a half sphere. The following relations hold:

$$p_x^2 + p_y^2 + p_z^2 = P^2 = E_{kin}^2 + 2E_{kin}$$

rms value
$$\sigma p_x = \sigma p_y = \frac{P}{\sqrt{3}}$$

$$\sigma p_z = \frac{P}{2\sqrt{3}}$$

mean value

$$p_{z,mean} = \frac{P}{2}$$

normalized transverse emittances[1]:

$$\varepsilon_{x,y} = \sigma_{x,y} \frac{1}{\sqrt{3}} \sqrt{\frac{2E_{kin}}{m_0 c^2}}$$

Dimension	Key word	Parameter E_{kin}	unit
p_x, p_y, p_z	Dist_pz = ' i sotropic'	LE	keV

7.4.2 photo emission from a Fermi-Dirac distribution

Definition and basic relations

A distribution describing the photo emission from a metallic cathode at room temperature according to ref. [2]. The random generator works only as true random generator, the noise reduction option is hence switched off, if selected in the input deck. As input parameters the effective work function Φ_{eff} , i.e. including a possible reduction due to the Schottky effect, and the photon energy E_{phot} need to be given. The following relations hold:

rms value
$$\sigma p_x = \sigma p_y = \sqrt{\frac{E_{phot} - \phi_{eff}}{3m_0c^2}}$$
mean Energy
$$\bar{E}_{kin} = \frac{2}{3} \left(E_{phot} - \phi_{eff} \right)$$
Energy spread
$$\sigma_{Ekin} = \frac{1}{3\sqrt{2}} \left(E_{phot} - \phi_{eff} \right)$$

normalized transverse emittances:

$$\varepsilon_{x,y} = \sigma_{x,y} \sqrt{\frac{E_{phot} - \phi_{eff}}{3m_0 c^2}}$$

Dimension	Key word	Parameter	units
		$\Phi_{\it eff}$, E_{phot}	
p_x, p_y, p_z	$Dist_pz = 'FD_300'$	phi_eff, E_photon	eV

7.4.3 uniformly filled ellipsoid

Definition and basic relations

$$f(x, y, z) = \frac{3}{4\pi Lx \, Ly \, Lz} \qquad \text{for } \frac{x^2}{Lx^2} + \frac{y^2}{Ly^2} + \frac{z^2}{Lz^2} \le 1$$

$$0 \qquad \text{elsewhere}$$

the projection onto the z-axis (eqiv. x- and y-axis) is an inverted parabola:

$$f(z) = 4 \int_{0}^{L_x} \int_{0}^{L_y} f(x, y, z) \, dx \, dy = \frac{3}{4Lz} \left[1 - \frac{z^2}{Lz^2} \right] \qquad |z| \le Lz$$

with the following properties:

FWHM value $FWHM_z = \sqrt{2} Lz$ $rms value \qquad \sigma_z = \frac{Lz}{\sqrt{5}}$

Generator specifications

Dimension	Key word	Parameter $L_{x, y, z}$	unit
		or $\sigma_{x, y, z}$	
temporal ¹	Dist_z = ' u niform ellipsoid'	Lt or sig_clock	ns
longitudinal ² z	Dist_z = 'uniform ellipsoid'	Lz or sig_z	mm
transverse x	Dist_z = 'uniform ellipsoid'	Lx or sig_x	mm
transverse y	Dist_z = 'uniform ellipsoid'	Ly or sig_y	mm

¹ active if Cathode = TRUE, ² active if Cathode = FALSE

7.5. Miscellaneous options

7.5.1 ring type distributions

If Type = 'Ring' is specified any standard transverse distribution is offset by a radius specified with parameter Rad and uniformly distributed on a circle. Thus a circular charge distribution is generated. The cross section of the ring can vary from x to y depending on the setting of transverse parameters.

7.5.2 emission from a curved cathode

In order to start a distribution from a curved cathode the radius of the cathode can be specified with the parameter R_cathode. For this option photo emission is assumed, hence the longitudinal starting position and the starting time are modified according to the cathode radius. All other parameters remain unchanged.

References

- [1] K. Floettmann 'Note on the thermal emittance of electrons emitted by Cesium Telluride photo cathodes' TESLA-FEL Report 1997-01.

 http://flash.desy.de/sites/site_vuvfel/content/e403/e1642/e839/e829/infoboxContent830/fel1997-01.pdf
- [2] D. Dowell, J. Schmerge 'Quantum efficiency and thermal emittance of metal cathodes' PRST-AB 12,074201, 2009. http://prst-ab.aps.org/pdf/PRSTAB/v12/i7/e074201