Matemática Discreta

Funções Geradoras 1

Universidade de Aveiro 2018/2019

http://elearning.ua.pt

Matemática Discreta

Funções Geradoras

Séries formais de potências

Funções geradoras ordinária e exponencial

Exemplos

Referências bibliográficas

Contagem com recurso a produtos formais

Exemplo

A determinação do número de escolhas de 4 letras de um conjunto que contém três letras A, duas letras B, uma letra C e quatro letras D, pode ser feita recorrendo ao produto $(1 + A + A^2 + A^3)(1 + B + B^2)(1 + C)(1 + D + D^2 + D^3 + D^4)$.

- Com efeito, o número de escolhas a considerar é dado pelo número de termos (da expansão do produto anterior) da forma $(A^i B^j C^k D^l)$, onde $i, j, k, l \in \mathbb{N}_0$ são tais que i + j + k + l = 4 e
- $i \leq 3 \longrightarrow n^{o}$ de letras A escolhidas,
- $j \le 2 \longrightarrow n^{o}$ de letras **B** escolhidas,
- $k \leq 1 \longrightarrow n^{o}$ de letras C escolhidas,
- $I \leq 4 \longrightarrow n^{\underline{o}}$ de letras D escolhidas.

Matemática Discreta

Funções Geradoras

Contagem com recurso a produtos formais (cont.)

- Por exemplo, AB^2D corresponde a escolher uma letra A, duas letras B e uma letra D.
- Substituindo A, B, C e D por x obtém-se o desenvolvimento

$$(1+x+x^2+x^3)(1+x+x^2)(1+x)(1+x+x^2+x^3+x^4)$$
= 1+4x+9x^2+15x^3+20x^4+22x^5+20x^6+15x^7
+9x^8+4x^9+x^{10} = \sum_{k=0}^{10} c_k x^k,

onde o coeficiente c_k ($0 \le k \le 10$) corresponde ao número de escolhas possíveis de k letras.

• Note-se que o coeficiente de x^2 é 9 o que significa que existem 9 possibilidades de escolha de duas letras (de um conjunto com 3 letras A, 2 letras B, 1 letra C e 4 letras D), ou seja, $\{A,A\}$, $\{A,B\}$ $\{A,C\}$ $\{A,D\}$, $\{B,B\}$, $\{B,C\}$, $\{B,D\}$, $\{C,D\}$ e $\{D,D\}$. O número de possibilidade de escolha de 4 letras é dado pelo coeficiente de x^4 .

Séries formais de potências

Definição (de séria formal de potências)

Seja $a_0, a_1, a_2, ...$ uma sucessão de números e x uma variável formal. Então

$$A(x) = a_0 + a_1 x + a_2 x^2 + \cdots = \sum_{n=0}^{\infty} a_n x^n$$

designa-se por série formal de potências de x com coeficientes $a_0, a_1, a_2, ...$

Matemática Discreta

Séries formais de potências

Exemplos

Seguem-se algumas das séries (formais) de potências de entre as mais conhecidas:

1.
$$1 + x + x^2 + \dots = \sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$
;

2.
$$1 + nx + \frac{n(n+1)}{2}x^2 + \dots = \sum_{k=0}^{\infty} {n+k-1 \choose k}x^k = \frac{1}{(1-x)^n};$$

3.
$$1 + \alpha x + \frac{(\alpha)_2}{2} x^2 + \dots = \sum_{k=0}^{\infty} \frac{(\alpha)_k}{k!} x^k = (1+x)^{\alpha}$$
, onde o coeficiente factorial $(\alpha)_k$ corresponde à sua forma mais geral com $\alpha \in \mathbb{R}$;

4.
$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x$$
.

Raio de convergência

- Dada uma série formal de potências $\mathcal{A}(x)$, se o seu raio de convergência $r_{\mathcal{A}}$ é positivo então $\mathcal{A}(x)$ converge para todo o x tal que $|x| < r_{\mathcal{A}}$.
- Consequentemente, para tais valores de x (que garantem convergência), $\mathcal{A}(x)$ pode ser considerada como uma função de variável real (ou complexa) e todas as operações sobre séries de potências e sobre funções são válidas para $\mathcal{A}(x)$.

Matemática Discreta

Séries formais de potências

Exemplo

• Sejam \mathcal{A} , \mathcal{B} e \mathcal{C} as séries formais de potências associadas às sucessões

 $(a_n)_{n\in\mathbb{N}_0},\,(b_n)_{n\in\mathbb{N}_0}$ e $(c_n)_{n\in\mathbb{N}_0}$ dadas, respectivamente, por $a_n=n!,\,b_n=2^n$ e $c_n=\frac{1}{n!}$.

- $r_A = 0 \Rightarrow A(x) = \sum_{k=0}^{\infty} a_k x^k = \sum_{k=0}^{\infty} k! x^k$ tem significado apenas para x = 0.
- $r_{\mathcal{B}} = \frac{1}{2} \Rightarrow \mathcal{B}(x) = \sum_{k=0}^{\infty} b_k x^k = \sum_{k=0}^{\infty} (2x)^k = \frac{1}{1-2x}$ é uma função para $|x| < \frac{1}{2}$.
- $r_{\mathcal{C}} = \infty \Rightarrow \mathcal{C}(x) = \sum_{k=0}^{\infty} c_k x^k = \sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x$ é uma função para todo o $x \in \mathbb{R}$ (ou $x \in \mathbb{C}$).

Operações sobre séries formais de potências

• Sejam $\mathcal{A}(x) = \sum_{k=0}^{\infty} a_k x^k$ e $\mathcal{B}(x) = \sum_{k=0}^{\infty} b_k x^k$ duas séries formais de potências.

Soma:
$$A(x) + B(x) = \sum_{k=0}^{\infty} (a_k + b_k) x^k$$
.

Produto:
$$A(x) \cdot B(x) = \sum_{k=0}^{\infty} c_k x^k$$
, com $c_k = \sum_{n=0}^{k} a_n b_{k-n}$.

Matemática Discreta

Séries formais de potências

Exemplo

- Produto de um escalar por uma série formal de potências:
- Sendo $c \in \mathbb{R}$ (ou $c \in \mathbb{C}$) e $A(x) = \sum_{k=0}^{\infty} a_k x^k$, vamos determinar a série cA(x).

Considerando a série
$$\mathcal{D}(x) = \sum_{k=0}^{\infty} d_k x^k$$
, com $d_0 = c$ e $d_k = 0$,

para
$$k \in \mathbb{N}$$
, vem $c \mathcal{A}(x) = \mathcal{D}(x)\mathcal{A}(x) = \sum_{k=0}^{\infty} c_k x^k$, com

$$c_k = \sum_{n=0}^k a_n d_{k-n} = a_0 \ 0 + a_1 \ 0 + \cdots + a_{k-1} \ 0 + a_k \ c = c \ a_k.$$

Consequentemente,
$$c A(x) = \sum_{k=0}^{\infty} (c a_k) x^k$$
.

Derivada e integral de uma série formal de potências

Dada a série formal de potências $\mathcal{A}(x) = \sum_{k=0}^{\infty} a_k x^k$, denotamos a sua derivada por $\mathcal{A}'(x)$ e o integral por $\int \mathcal{A}(x)$.

Definição (de derivada de uma série formal de potências)

$$A'(x) = a_1 + 2a_2x + 3a_3x^2 + \cdots = \sum_{k=0}^{\infty} (k+1)a_{k+1}x^k$$

Definição (de integral de uma série formal de potências)

$$\int A(x) = a_0 x + \frac{a_1}{2} x^2 + \frac{a_2}{3} x^3 + \dots = \sum_{k=1}^{\infty} \frac{a_{k-1}}{k} x^k.$$

Observação:

- **1.** Se $\mathcal{A}(x)$ é convergente então $\int \mathcal{A}(x) = \int_{0}^{x} \mathcal{A}(t) dt$.
- 2. As operações de derivação e integração são operações inversas uma da outra. Logo, $(\int A(x))' = A(x)$.

Matemática Discreta

Séries formais de potências

Exemplo

Vamos determinar as séries formais de potências para as sucessões $(a_k)_{k\in\mathbb{N}}$ e $(b_k)_{k\in\mathbb{N}}$ tais que $a_k=k$ e $b_k=\frac{1}{k}$, para $k\in\mathbb{N}$.

$$\mathcal{A}(x) = \sum_{k=1}^{\infty} a_k x^k = \sum_{k=1}^{\infty} k x^k = x \sum_{k=1}^{\infty} k x^{k-1} = x \left(\sum_{k=1}^{\infty} x^k\right)^{\prime}$$
$$= x \left(\frac{1}{1-x} - 1\right)^{\prime} = x \left(\frac{x}{1-x}\right)^{\prime} = \frac{x}{(1-x)^2}$$

$$\mathcal{B}(x) = \sum_{k=1}^{\infty} b_k x^k = \sum_{k=1}^{\infty} \frac{x^k}{k} = \int \left(\sum_{k=1}^{\infty} x^{k-1}\right) = \left(\int \sum_{k=0}^{\infty} x^k\right)$$
$$= \int \frac{1}{1-x} = \int \frac{1}{1-t} dt = -\ln(1-x).$$

Função geradora ordinária e função geradora exponencial

Definição (de função geradora ordinária)

Designa-se por função geradora ordinária (ou função geradora) da sucessão $(a_k)_{k\in\mathbb{N}_0}$ a função $f(x)=\sum\limits_{k=0}^\infty a_k x^k$.

Definição (de função geradora exponencial

Designa-se por função geradora exponencial da sucessão $(a_k)_{k\in\mathbb{N}_0}$ a função $g(x)=\sum_{k=0}^\infty a_k \frac{x^k}{k!}$.

 Quando, a partir de certa ordem, os termos da sucessão são todos iguais a zero, a função geradora ordinária (função geradora exponencial) associada designa-se por polinómio gerador ordinário (polinómio gerador exponencial).

Matemática Discreta

Exemplos

Exemplo

1) Vamos determinar a função geradora ordinária da sucessão de Fibonacci $f_n = f_{n-1} + f_{n-2}, \ n \ge 3$, com $f_1 = f_2 = 1$.

$$\mathcal{F}(x) = \sum_{n=1}^{\infty} f_n x^n = x + x^2 + \sum_{n=3}^{\infty} f_n x^n$$

$$= x + x^2 + \sum_{n=3}^{\infty} f_{n-1} x^n + \sum_{n=3}^{\infty} f_{n-2} x^n =$$

$$= x + x^2 + x \sum_{n=2}^{\infty} f_n x^n + x^2 \sum_{n=1}^{\infty} f_n x^n$$

$$= x + x^2 + x (\mathcal{F}(x) - x) + x^2 \mathcal{F}(x)$$

$$= \frac{x}{1 - x - x^2}.$$

Outros exemplos

- 2) Dado $n \in \mathbb{N}$, vamos considerar a sucessão $(n^k)_{k \in \mathbb{N}_0}$, onde cada termo n^k determina o número de arranjos com repetição de n objectos k a k. Então a função geradora exponencial vem dada por $f(x) = \sum_{k=0}^{\infty} n^k \frac{x^k}{k!} = e^{nx}$.
- 3) Dado $n \in \mathbb{N}$, vamos considerar a sucessão $(a_k)_{k \in \mathbb{N}_0}$, onde $a_k = \binom{n}{k}$, para $k = 0, 1, \dots, n$ e $a_k = 0$, para k > n. Então o polinómio gerador ordinário vem dado por

$$f(x) = \sum_{k=0}^{n} {n \choose k} x^k = (1+x)^n.$$

4) Uma vez que $f(x) = \sum_{k=0}^{n} A_{n,k} \frac{x^k}{k!}$ concluimos que f(x) é um polinómio gerador exponencial da sucessão $(A_{n,k})_{k \in \mathbb{N}_0}$ cujos termos são iguais a zero para k > n.

Matemática Discreta

Referências bibliográficas

Referências bibliográficas I

- D. M. Cardoso, J. Szymanski e M. Rostami, *Matemática Discreta: combinatória, teoria dos grafos e algoritmos*, Escolar Editora, 2008.
- J. S. Pinto, *Tópicos de Matemática Discreta*, Universidade de Aveiro 1999 (disponível na página da disciplina).