STRATÉGIE MULTI-ÉCHELLES DE MODÉLISATION PROBABILISTE DE LA FISSURATION DES STRUCTURES EN BÉTON

Présentation des travaux de thèse

De

Christian Nader

Encadrement: Pierre Rossi

Jean-Iouis Tailhan

Christian Nader

Objectif

- Calculer intégralement une structure réelle du génie civil
 + obtenir de l'information sur la fissuration
 - Enceinte de confinement

11

Précontrainte de l'ensemble du BR : vue sur nervure 2

Partie BETON

Partie FERRAILLAGE

08/07/2014

Christian Nader

PLAN

1. Introduction

2. Aspects numériques

3. Étude de faisabilité

4. Perspectives à court/moyen terme

1. Introduction

Stratégies multi-échelles de modélisation

 Une boite à outils de modèles de fissuration à différentes échelles

 Une stratégie multi-échelles d'utilisation de ces modèles pour faire du calcul de structures

1.1 Modélisation multi-échelle de la fissuration

Échelle du matériau

Micro et macrofissuration

Échelle de l'élément de structure

Macrofissuration à l'échelle de l'élément de structure

Christian Nader

1.1 Modélisation multi-échelle de la fissuration

Échelle de la structure

Description de la fissuration à l'échelle de la structure

30/05/2013 Christian Nader www.ifsttar.fr

1.2 Modélisation probabiliste de la fissuration

- Hétérogénéité du matériau béton :
 - · La fissuration est aléatoire
 - Il y a des effets d'échelle

 Importance de pouvoir faire de la fiabilité sur le comportement des structures

2. Aspects numériques

- Approches numériques multi-échelles
- Parallélisation/Sous-structuration

2.1 Approches numériques multi-échelles

« Couplage » fort:

Décomposition en sous-domaines

Sous-structuration élément par élément

2.1 Approches numériques multi-échelles

« Couplage » faible:

2.2 Parallélisation/sous-structuration

 Diminution des coûts de calcul: parallélisation

• Être capable d'enrichir localement la description du problème: sous-structuration

- FIDES déjà parallélisé:
 - À reprendre et à adapter au problème posé

3. Etude de faisabilité

- La stratégie multi-échelles
- Modèle macro
- Validation

3.1 Stratégie multi-échelles

 Gamme de taille d'éléments permettant de représenté convenablement la cinématique élastique

 Choix du maillage qui reproduit le plus d'éléments similaires

3.1 Stratégie multi-échelles

 Étude pour déterminer la loi de comportement du macro élément

08/07/2014

Christian Nader

3.2 Modèle macro

 Définir une loi de comportement du macro élément (en cours)

08/07/2014

Christian Nader

3.3 Validation

 Validation par rapport à des études numériques et expérimentales précédentes (ex th. TS Phan)

4. Perspectives à court/moyen terme

- Généralisation au cas 3D:
 - Elaboration du support numérique du modèle 3D
 - Mise en œuvre d'une stratégie d'identification des modèles macro par analyse inverse
 - Mise en œuvre d'un calcul de structure complète béton armé à l'aide d'une librairie de modèles macros développés
- Parallélisation du code de calcul

Merci pour votre attention

