

Course > Week 6... > Compr... > Quiz 6

Quiz 6

Problem 1

1/1 point (graded)

You are given a binary 4-dimensional linear decision boundary with coefficient vector $\mathbf{w} = [2, 1, 4, 3]$ and b = -12. How would you classify the point (2, 1, 1, 2)?

O -1			

o 1				
------------	--	--	--	--

Submit

Problem 2

1/1 point (graded)

In which of the following situations has our linear classifier correctly labeled a data point? Select all that apply.

$$\mathbf{v} \cdot \mathbf{w} \cdot \mathbf{x} + b > 0$$
 and $y > 0$

$$\bigvee y(\mathbf{w} \cdot \mathbf{x} + b) > 0$$

1/2019	Quiz 6 Comprehension Quiz 6 DSE220x Courseware edX
	$\mathbf{v} \cdot \mathbf{x} + b < 0$ and $y < 0$
	$ y > \mathbf{w} \cdot \mathbf{x} + b $
	✓
	Submit
P	Problem 3
fu	/1 point (graded) et's say that we have a linear classifier given by $\mathbf{w} = [1, 1, -3, 0]$ and $b = -2$. Our loss unction measures the amount by which our prediction is incorrect: $\mathbf{loss} = -y (\mathbf{w} \cdot \mathbf{x} + b)$ If our prediction is correct, there is no loss. What is the loss on the data point (\mathbf{x}, y) where $\mathbf{x} = (3, 1, 1, 4)$ and $y = 1$?
	O 0
	0 1
	O 2
	O 3
	✓
	Submit

1/1 point (graded)

If the Perceptron algorithm does 9 updates before converging on a solution, what value of Generating Speech Output

\bigcirc	b	=	9

$$\bigcirc b = -9$$

$$b \in [-9, 9]$$

$$\bigcirc$$
 $b \in [0, 9]$

Submit

Problem 5

1/1 point (graded)
What is a support vector?

- A data point from the test set that is used to test the classifier
- A vector that we are trying to minimize
- \bigcirc A data point which is correctly classified by the optimal solution for w
- \odot A data point from the training set that contributes to the optimal solution for w

Submit

Problem 6

1/1 point (graded)

Generating Speech Output between the perceptron algorithm and the support vector machine?

\circ	he perceptron uses gradient descent while the SVM uses stochastic gradi	ent
	escent	

- The perceptron finds a linear separator that separates most of the data points in the training set, while a SVM finds a linear separator that separates all of the data in the training set
- The perceptron finds any solution that perfectly separates the training set, while the SVM finds the solution that perfectly separates the training set with the greatest margin of separation
- The perceptron algorithm may not find a solution while the SVM is guaranteed to find a solution

Submit

Problem 7

1/1 point (graded)

The optimal solution for a SVM is given by the coefficient vector \mathbf{w} and the constant b. The width of the margin is given by γ . What is the value of γ ?

$$\bigcirc \ \gamma = \frac{1}{||\mathbf{w}||}$$

$$\bigcirc \gamma = ||\mathbf{w}||$$

$$\bigcirc \gamma = b - \frac{1}{||\mathbf{w}||}$$

1/1 point (graded) True or false: A soft-margin SVM has fewer support vectors than a hard-margin SVM.
O True
• False
Submit
Problem 9
1/1 point (graded) Decreasing the value of ${\cal C}$ in the soft-margin SVM results in which of the following:
fewer number of support vectors
☑ wider margin
more data points being correctly classified
☑ lower penalty for incorrectly classified data points
✓

1/1 point (graded)

True or false: All support vectors are contained between, or on, the margins of the two classes.

O True			
• False			
~			
Submit			

Problem 11

1/1 point (graded)

What does the slack variable represent?

- oldsymbol It is a vector containing the amount of error each point $(x^{(i)},\,y^{(i)})$ contributes to the optimization problem
- O It is a coefficient that we must determine to optimize the problem
- \bigcirc It is a vector containing the number of times each w_i is updated
- it is a value that determines how much error the optimization problem is allowed to have

Submit

1/1 point (graded)

Using the dual form of the perceptron algorithm, which of the following values are updated during each pass over the training set?

□ W	
$leve{}$ $lpha$	
☑ b	
\square y	
✓	
Submit	

Problem 13

1/1 point (graded)

When optimizing the dual form of the hard-margin SVM, when are the values α_i non-zero?

- \bigcirc When the data point $(x^{(i)},\,y^{(i)})$ is on the linear separator between the two classes
- loop When the data point $(x^{(i)}, y^{(i)})$ is right on the margin for its class
- \bigcirc When the data point $(x^{(i)}, y^{(i)})$ is in the interior of the region for its class
- igcup When the data point $(x^{(i)},\,y^{(i)})$ is on the wrong side of the linear separator

Submit

1/1 point (graded)

When using multiclass logistic regression on data with labels, $Y = \{1, 2, ..., k\}$, and a linear classifier specified by $\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_k \in \mathbb{R}^d$ and $b_1, b_2, ..., b_k \in \mathbb{R}$, and given a point (\mathbf{x}, y) , what is the probability that y = j, where $0 < j \le k$?

- $\bigcap Pr(y=j|\mathbf{x})=e^{\mathbf{w}_j\cdot\mathbf{x}+b_j}$
- $\bigcirc Pr(y = j|\mathbf{x}) = \frac{e^{\mathbf{w}_j \cdot \mathbf{x} + b_j}}{e^{\mathbf{w}_k \cdot \mathbf{x} + b_k}}$
- $Pr(y = j | \mathbf{x}) = \frac{e^{\mathbf{w}_j \cdot \mathbf{x} + b_j}}{e^{\mathbf{w}_1 \cdot \mathbf{x} + b_1} + e^{\mathbf{w}_2 \cdot \mathbf{x} + b_2} + \dots + e^{\mathbf{w}_k \cdot \mathbf{x} + b_k}}$
- $\bigcirc Pr(y = j | \mathbf{x}) = \frac{e^{\mathbf{w}_j \cdot \mathbf{x} + b_j}}{1 + e^{\mathbf{w}_j \cdot \mathbf{x} + b_j}}$

Submit

Problem 15

1/1 point (graded)

What does ξ_i represent in the soft-margin SVM?

- \bigcirc It is the number of times the i'th point was updated
- \bigcirc It is the amount of slack the i'th point has
- \bigcirc It represents the i'th support vector
- It represents the width of the margin

© All Rights Reserved