LYCÉE DE TABARKA Prof : MERSANI IMED

A.S: 2021-2022

Sujet de révision N ° 11

Épreuve : Mathématiques

Section : Mathématiques

Durée: 4 Heures

Date: 2021-2022

Exercice 1

(3.5 points)

Pour préparer lexamen du permis de conduire, on distingue deux types de formation :

La formation avec conduite accompagnée et la formation traditionnelle.

On considère un groupe de 300 personnes venant de réussir lexamen du permis de conduire.

Dans ce groupe:

- 75 personnes ont suivi une formation avec conduite accompagnée; parmi elles, 50 ont réussi lexamen à leur première présentation et les autres ont réussi à leur deuxième présentation.
- 225 personnes se sont présentées à lexamen suite à une formation traditionnelle; parmi elles,
 100 ont réussi lexamen à leur première présentation, 75 à la deuxième et 50 à la troisième présentation.

On interroge au hasard une personne du groupe considéré.

On considère les évènements suivants :

A: "la personne a suivi une formation avec conduite accompagnée".

R₁: "la personne a réussi lexamen à la première présentation ".

R₂: " la personne a réussi lexamen à la deuxième présentation ".

R₃: " la personne a réussi lexamen à la troisième présentation ".

Dans les questions suivantes, les probabilités demandées seront données sous forme dune fraction irréductible.

1) Recopier et compléter l'arbre pondéré ci-dessous associé à cette épreuve

- 2) a/ Calculer la probabilité que la personne interrogée ait suivi une formation avec conduite accompagnée et réussit lexamen à sa deuxième présentation.
 - b/ Montrer que la probabilité que la personne interrogée ait réussi lexamen à sa deuxième présentation est égale à $\frac{1}{3}$.
 - c/ La personne interrogée a réussi lexamen à sa deuxième présentation. Quelle est la probabilité quelle ait suivi une formation avec conduite accompagnée?
- 3) On note X la variable aléatoire qui, à toute personne choisie au hasard dans le groupe, associe le nombre de fois où elle sest présentée à lexamen jusquà sa réussite.

- a/ Déterminer la loi de probabilité de la variable aléatoire X.
- b/ Calculer lespérance mathématique de cette variable.
- 4) On choisit, successivement de façon indépendante, n personnes parmi les 300 du groupe étudié, où $n \in IN^*$.
 - a/ Calculer la probabilité p_n de lévènement F : " au moins une personne à réussi lexamen à la troisième tentative ".
 - **b**/ Déterminer le plus petit entier naturel n tel que $p_n \ge 0,99$.

Exercice 2 (4 points)

Le plan est orienté dans le sens direct, on considère un carré ABCD de centre O tel que $(\overrightarrow{AB}, \overrightarrow{AD}) \equiv \frac{\pi}{2} [2\pi]$. On désigne par I, J et K les milieux respectifs des segments [AB], [AD] et [AJ].

- 1) Soit f la similitude directe qui envoie D sur O et C sur I. Donner le rapport et l'angle de f.
- 2) a/ Déterminer les images des droites (BC) et (BD) par f et en déduire f(B).
 - **b**/ Déterminer l'image du carré ABCD par f et en déduire f(A).
 - c/ Montrer que f(I) = K.
- 3) Soit Ω le centre de f. Montrer que Ω est le point d'intersection des droites (BJ) et (CK) puis placer Ω .
- 4) Soit g la similitude indirecte qui envoie D sur O et C sur I.
 - a/ Montrer que $g = S_{(OI)} \circ f$ et déterminer g(B).
 - b/ Donner la forme réduite de g.
- 5) On suppose que AB = 4 et on munit le plan du repère orthonormé direct (A, \vec{i}, \vec{j}) tel que $\vec{j} = \overrightarrow{AK}$.
 - a/ Donner l'écriture complexe de f puis montrer que l'affixe de Ω est $z_{\Omega} = \frac{4}{5} + \frac{8}{5}i$.
 - **b**/ Montrer que g a pour écriture complexe $z' = -\frac{1}{2}i\overline{z} + 4 + 2i$.
 - c/ Caractériser alors g⁻¹ ∘ f.

Exercice 3 (5 points)

Les parties A et B sont indépendantes.

A- On considère dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E) : 2209x – 46y = 1.

- 1) a/ Vérifier que le couple (1, 48) est une solution de (E).
 - **b**/ Résoudre alors, dans $\mathbb{Z} \times \mathbb{Z}$, l'équation (E).
 - c/ Résoudre dans $\mathbb{Z} \times \mathbb{Z}$ le système (S) : $\begin{cases} 2209x 46y = 1 \\ x \equiv y \pmod{5} \end{cases}$.
 - **d**/ Soit l'entier naturel N = $\sum_{k=0}^{47} 47^k$.

Montrer que le couple $(47^{46}, N)$ est une solution de (E). En déduire le reste de N modulo 2209.

- 2) On considère dans $\mathbb Z$ l'équation (F) : $x^{2209} \equiv 3 \pmod{47}$.
 - a/ Montrer que si x est une solution de (F) alors x et 47 sont premiers entre eux.
 - **b**/ Déduire que si x est une solution de (F) alors $x^{46} \equiv 1 \pmod{47}$.

- c/ Montrer que si x est une solution de (F) alors $x \equiv 3 \pmod{47}$.
- d/ Déduire l'ensemble des solutions de l'équation (F).
- **B-** Soient p et q deux entiers naturels **premiers** vérifiant : p < q et $10^{p+q-1} \equiv 1 \pmod{pq}$.
- 1) a/ Montrer que p et 10 sont premiers entre eux.
 - b/ En déduire que $10^{p-1} \equiv 1 \pmod{p}$ et $10^q \equiv 1 \pmod{p}$.
- 2) a/ Montrer que p-1 est q sont premiers entre eux.
 - b/ Prouver que p = 3, en déduire que $10^{q+2} \equiv 1 \pmod{q}$.
- 3) a/ En utilisant le théorème de Fermat, montrer que $10^{q-1} \equiv 1 \pmod{q}$.
 - **b**/ En déduire que q = 37.

Exercice 4 (7.5 points)

Soit f la fonction définie sur $]-\infty$, 1 [par $f(x)=e^{-x}-\ln(1-x)-2$ et on note \mathscr{C}_f la courbe représentative de f dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$.

- 1) Soit u la fonction définie sur IR par $u(x) = e^x + x 1$.
 - a/ Dresser le tableau de variation de u.
 - b/ Calculer u(0) puis déduire le signe de u(x) sur IR.
- 2) a/ Vérifier que pour tout x < 0, $f(x) = (1-x) \left\lceil \frac{e^{-x}}{-x} \left(1 \frac{1}{1-x} \right) \frac{\ln(1-x)}{1-x} \right\rceil 2$.

En déduire $\lim_{x\to -\infty} f(x)$ et $\lim_{x\to -\infty} \frac{f(x)}{x}$ puis interpréter ce résultat graphiquement.

- b/ Vérifier que pour tout x < 1, $f'(x) = \frac{e^{-x}u(x)}{1-x}$.
- c/ Dresser le tableau de variation de f.
- 3) On a tracé dans l'annexe ci-jointe les courbes \mathscr{C}_h et \mathscr{C}_g des fonctions h et g définies par $h(x) = e^{-x}$ et $g(x) = \ln(1 - x) + 2$.

 \mathscr{C}_{h} et \mathscr{C}_{g} se coupent en deux points d'abscisses respectives α et β avec $\alpha < \beta$.

- a/ Justifier que α et β sont les seules solutions de l'équation f(x) = 0 dans $] \infty, 1[$.
- **b**/ Placer les points de \mathscr{C}_{f} d'abscisses α et β .
- c/ Tracer \mathscr{C}_f dans l'annexe.
- 4) Soit la fonction F définie sur $]-\infty,1]$ par $\left\{ \begin{array}{ll} F\left(x\right)=\int_{0}^{x}f\left(t\right)dt & \text{si }x<1\\ F(1)=-\frac{1}{2} \end{array} \right.$. On note Γ la courbe de

F dans le même repère orthonormé (O, \overrightarrow{i} , \overrightarrow{i}

a/ À l'aide d'une intégration par parties, montrer que pour tout $x \in]-\infty, 1[$, on a :

$$\int_0^x \ln(1-t) \, dt = (x-1) \ln(1-x) - x$$

Déduire que pour tout $x \in]-\infty, 1[$, on a : $F(x) = (1-x)(1+\ln(1-x))-e^{-x}$.

- b/ Montrer que F est continue à gauche en 1.
- c/ Étudier la dérivabilité de F à gauche en 1 puis interpréter ce résultat graphiquement.
- d/ Dresser le tableau de variation de F.
- 5) a/ Montrer que le point O est un point d'inflexion de Γ .

- **b**/ On a placé aussi dans l'annexe sur l'axe des ordonnées les points d'ordonnées $F(\alpha)$ et $F(\beta)$. Tarcer Γ dans l'annexe.
- c/ On note \mathcal{A} l'aire (en unité d'aire) de la partie hachurée du plan. Montrer que $\mathcal{A} = \beta e^{-\beta} \alpha e^{-\alpha} + \alpha \beta$.
- 6) On considère les suites réelles définies sur IN*\{1} par $W_n = \frac{1}{n} \sum_{k=1}^{n-1} e^{-\frac{k}{n}}$, $S_n = \frac{1}{n} \sum_{k=1}^{n-1} f\left(\frac{k}{n}\right)$

$$et \ U_n = \frac{1}{n} \sum_{k=1}^{n-1} ln \, \bigg(1 - \frac{k}{n} \bigg).$$

- a/ Vérifier que pour tout entier $n \ge 2$, $S_n = W_n U_n 2 + \frac{2}{n}$.
- **b**/ Montrer que pour tout entier $n\geqslant 2,$ $W_n=\frac{e^{-1}-e^{-\frac{1}{n}}}{n\left(e^{-\frac{1}{n}}-1\right)}.$
- c/ Montrer que : $\lim_{n\to +\infty} W_n = 1 \frac{1}{e}$.
- 7) a/ Montrer que pour tout entier $n\geqslant 2$ et pour tout $k\in \left\{ 0,1,2,...,n-2\right\} ,$ on a :

$$\frac{1}{n} \ln \left(1 - \frac{k+1}{n}\right) \leqslant \int_{\frac{k}{n}}^{\frac{k+1}{n}} \ln \left(1 - t\right) dt \leqslant \frac{1}{n} \ln \left(1 - \frac{k}{n}\right).$$

- **b**/ En déduire que pour tout entier $n\geqslant 2,\, \frac{1}{n}-1\leqslant U_n\leqslant \frac{1}{n}-1-\frac{1}{n}\ln\frac{1}{n}.$
- c/ Montrer alors que $\lim_{n\to +\infty} S_n = -\frac{1}{e}$.
- 8) Pour tout entier $n \geqslant 2$, on pose $V_n = \sqrt[n]{\frac{(n-1)!}{n^{n-1}}}$. Montrer que pour tout entier $n \geqslant 2$, on $a: U_n = In(V_n)$ puis déduire $\lim_{n \to +\infty} V_n$.

ANNEXE À RENDRE AVEC LA COPIE

