Изчислимост и сложност

Добре дошли! :)

Лекция №1

Примитивно рекурсивни и частично рекурсивни функции

1. Специфично за частичните функции

Ще разглеждаме функции в множеството на естествените числа

$$\mathbb{N} = \{0, 1, \dots\},\$$

които са <u>частични</u>. Това означава, че в някои точки те могат да не са дефинирани, т.е. да нямат стойност. Такива ще са изчислимите функции, които основно ще изучаваме в този курс. Това ще са функциите, които се пресмятат – най-общо казано – с някаква програма. И тъй като програмите, както е известно, невинаги завършват, то значи и функциите, които те пресмятат, в общия случай трябва да са частични.

Ще пишем $f: \mathbb{N}^n \longrightarrow \mathbb{N}$, за да означим, че f е частична функция на n аргумента в \mathbb{N} . Съвкупността от всички такива функции ще отбелязваме с \mathcal{F}_n , с други думи

$$\mathcal{F}_n = \{ f \mid f : \, \mathbb{N}^n \longrightarrow \mathbb{N} \}.$$

По-надолу ще предполагаме, че f е произволна n-местна частична функция. Ако тя е дефинирана в точката (x_1, \ldots, x_n) , това ще отбелязваме така:

$$!f(x_1,\ldots,x_n),$$

а ако не е дефинирана — ще пишем съответно $\neg!f(x_1,\ldots,x_n)$.

Множеството от всички точки, в които f е дефинирана, ще наричаме $de \phi u n u u u u n n o m e c c m s o (dome u n)$ на f и ще означаваме с Dom(f), или формално:

$$Dom(f) = \{(x_1, \dots, x_n) \mid !f(x_1, \dots, x_n)\}.$$

Ако $Dom(f) = \mathbb{N}^n$, ще казваме, че f е momanha (навсякъде дефинирана). Разбира се, всяка тотална функция може да се разглежда и като частична, т.е. тя също принадлежи на $\mathcal{F}_n = \{f \mid f : \mathbb{N}^n \longrightarrow \mathbb{N}\}$. Когато казваме $\phi yn\kappa yus$, в общия случай ще имаме предвид частична функция. Ако става въпрос за тотална функция, това ще бъде отбелязвано експлицитно, ако не се подразбира от контекста.

По-нататък n-торките (x_1, \ldots, x_n) ще съкращаваме до \bar{x} , когато това не води до някаква неяснота.

1.1 Условно равенство

Когато пишем равенство между изрази, в които участват частични функции, е необходимо да уточним какво ще разбираме в случаите, когато някоя от двете страни (или и двете едновременно) не са дефинирани. За тази цел ще използваме нова релация, която ще наричаме условно равенство и ще означаваме с \simeq .

Определение 1.1. Нека $\alpha(\bar{x})$ и $\beta(\bar{x})$ са изрази, в които участват частични функции. Тогава

$$\begin{array}{cccc} \alpha(\bar{x}) \simeq \beta(\bar{x}) & \stackrel{\text{деф}}{\Longleftrightarrow} & !\alpha(\bar{x}) \ \& \ !\beta(\bar{x}) \ \& \ \alpha(\bar{x}) = \beta(\bar{x}) \\ & \lor \ \neg !\alpha(\bar{x}) \ \& \ \neg !\beta(\bar{x}). \end{array}$$

С други думи, условното равенство има стойност ucmuna или когато и двете му страни са дефинирани и имат една и съща стойност, или когато и двете му страни не са дефинирани. В останалите случаи то е лъжа. В частност, $f(\bar{x}) \simeq y$ ще е вярно точно когато f е дефинирана в \bar{x} и нейната стойност е y.

 $\underline{\mathit{Графиката}\ G_f}$ на частичната функция f въвеждаме по обичайния начин:

$$G_f = \{(x_1, \dots, x_n, y) \mid f(x_1, \dots, x_n) \simeq y\}.$$

Определение 1.2. За две n-местни частични функции f и g ще казваме, че са pa g h (и ще пишем f=g), ако $f(\bar{x})\simeq g(\bar{x})$ за всяко $\bar{x}\in\mathbb{N}^n$.

Ясно е, че ако f=g, то Dom(f)=Dom(g) и $f(\bar{x})=g(\bar{x})$ за всяко $\bar{x}\in Dom(f)$. Равенството на две функции може да се разпише и по следния начин:

$$f = g \iff \forall x_1 \dots \forall x_n \ f(x_1, \dots, x_n) \simeq g(x_1, \dots, x_n)$$

$$\iff \forall x_1 \dots \forall x_n \forall y (f(x_1, \dots, x_n) \simeq y \iff g(x_1, \dots, x_n) \simeq y)$$

$$\iff \forall x_1 \dots \forall x_n \forall y ((x_1, \dots, x_n, y) \in G_f \iff (x_1, \dots, x_n, y) \in G_g)$$

$$\iff G_f = G_g.$$

Излезе (без да е изненадващо), че две частични функции са равни точно тогава, когато имат едни и същи графики.

1.2 Релацията включване

Сега ще въведем една релация между частични функции, която няма аналог при тоталните функции. Релацията е $\underline{e\kappa nousane}$ (\subseteq) и смисълът ѝ е, че ако $f \subseteq g$, то g "знае повече" от f, или g "носи повече информация" от f. Ето точното определение:

Определение 1.3. Нека $f, g \in \mathcal{F}_n$. Тогава

$$f \subseteq g \stackrel{\text{ped}}{\iff} \forall x_1 \dots \forall x_n \forall y \ (f(x_1, \dots, x_n) \simeq y \implies g(x_1, \dots, x_n) \simeq y).$$

Ако $f \subseteq g$, ще казваме още, че f е $nod \phi y n k u u s$ на g или обратно — че g е $npod \delta n x cenue$ на f. Преразказано, една функция се продължава от друга, ако там, където първата е дефинирана (и значи има някаква стойност), там и втората е дефинирана и има същата стойност.

От определението се вижда, че

$$f \subseteq g \iff G_f \subseteq G_q$$

което обяснява защо използваме теоретико-множествения символ ⊆. Да отбележим и още един очевиден факт, който ще използваме често:

$$f \subseteq g \implies Dom(f) \subseteq Dom(g)$$
.

Ето как изглеждат схематично графиките на f и g, такива че $f \subseteq g$:

Ако f е тотална и $f \subseteq g$, то очевидно f = g, т.е. върху тоталните функции релацията включване съвпада с релацията равенство.

Когато задаваме някаква функция f и искаме да кажем, че в т. (x_1, \ldots, x_n) тя няма стойност, това ще записваме и така: $f(x_1, \ldots, x_n) \simeq \neg!$.

Ето един пример за две функции f и g, такива че f е подфункция на g:

Пример 1.1. Да дефинираме функциите f и g както следва:

$$f(x,y) \simeq \begin{cases} \lfloor \frac{x}{y} \rfloor, & \text{ako } y > 0 \\ \neg !, & \text{ako } y = 0, \end{cases}$$

$$g(x,y) = \begin{cases} \lfloor \frac{x}{y} \rfloor, & \text{ako } y > 0\\ 0, & \text{ako } y = 0. \end{cases}$$

Ясно е, че в точките, в които е дефинирана, f има същата стойност като g, с други думи, $f \subseteq g$.

Релацията *строго включване* (\subset) се дефинира от \subseteq по обичайния начин:

$$f \subset g \iff f \subseteq g \& f \neq g.$$

За функциите f и g от $\Pi pumep~1.1$ от по-горе всъщност имаме $f \subset g$.

От наблюдението, че две функции са равни точно когато графиките им съвпадат, получаваме следната връзка между релациите = и ⊆:

$$f = g \iff G_f = G_g$$

$$\iff G_f \subseteq G_g \& G_g \subseteq G_f$$

$$\iff f \subseteq g \& g \subseteq f.$$

Излезе, че

$$f = g \iff f \subseteq g \& g \subseteq f$$
.

От тази еквивалентност се вижда един начин да покажем, че две vac-muvuu функции са равни — като проверим, че едната е подфункция на другата и обратно. Оказва се, че можем леко да отслабим това условие, като заменим включването $g \subseteq f$ с по-слабото $Dom(g) \subseteq Dom(f)$. Тази дребна наглед корекция в бъдеще ще ни спестява писане. Но да се убедим първо, че можем да направим това:

Задача 1.1. Нека f и g са n-местни функции. Докажете, че f=g тогава и само тогава, когато са изпълнени условията:

- 1) $f \subseteq g$;
- 2) $Dom(g) \subseteq Dom(f)$.

Решение. Ако f = g, то $f \subseteq g$ и $g \subseteq f$ и от последното, в частност, следва и включването между домейните $Dom(g) \subseteq Dom(f)$.

Обратно, нека са верни 1) и 2). Трябва да покажем, че $f\subseteq g$ и $g\subseteq f$. Първото включване е точно условието 1). За да покажем, че и $g\subseteq f$, да приемем, че за произволни $\bar x,y$ $g(\bar x)\simeq y$. Тогава $\bar x\in Dom(g)$, а оттук съгласно 2) ще имаме и $\bar x\in Dom(f)$, т.е. $f(\bar x)\simeq z$ за някое z. Сега от условието 1) получаваме, че и $g(\bar x)\simeq z$, и значи y=z. И така, получихме, че за произволни $\bar x,y$:

$$g(\bar{x}) \simeq y \implies f(\bar{x}) \simeq y,$$

което по дефиницията на \subseteq означава, че $g \subseteq f$.

От еквивалентността

$$f = g \iff G_f = G_g$$

се вижда, че релацията включване между функции се изразява чрез включване между множества, за което знаем, че е частична наредба. Следователно и релацията "подфункция" ечастична наредба. Да обърнем внимание, че тя също е частична, т.е. не всеки две функции от \mathcal{F}_n са свързани чрез нея. Такива са например константните функции f_0 и f_1 , които за всяко $\bar{x} \in \mathbb{N}^n$ връщат 0 и 1, съответно. Не се заблуждавайте: вярно е, че $\forall \bar{x}$ $f_0(\bar{x}) \leq f_1(\bar{x})$, обаче не е вярно, че $f_0 \subseteq f_1$. \Box

Интуитивно, $f\subseteq g$ означава, че f е "по-малко информативна" от g. Тогава "най-малко информативна" ще е функцията, която не е дефинирана в нито една точка.

Всъщност има безброй много такива функции, в зависимост от броя на аргументите им. За фиксирано $n \geq 1$ с $\emptyset^{(n)}$ ще означаваме n-местната функция, която не е дефинирана за нито една n-торка $\bar{x} \in \mathbb{N}^n$ и тази функция ще наричаме n-икъде недефинираната (или n-разната) функция на n аргумента. Да отбележим, че за всяка $f \in \mathcal{F}_n$ е в сила включването

$$\emptyset^{(n)} \subseteq f$$
,

с други думи, никъде недефинираната функция $\emptyset^{(n)}$ е най-малкият (относно \subseteq) елемент на \mathcal{F}_n .

2. Примитивно рекурсивни функции

Дефиницията на примитивно рекурсивните функции идейно прилича на дефиницията на регулярните множества — тръгваме от някакви начални прости обекти и ги затваряме относно някакви прости операции. В

нашия случай началните обекти се наричат *изходни* (базисни) примитивно рекурсивни функции, които въвеждаме по-долу заедно с операциите, относно които ще ги затворим. Така ще определим примитивно рекурсивните и частично рекурсивните функции, въведени от Ербран, Гьодел и Клини.

2.1 Изходни (базисни) примитивно рекурсивни функции

Идеята е това да са възможно най-простите функции над естествените числа, чиято "изчислимост" не оставя съмнение в никого. Разбира се, тези функции трябва да са и достатъчно изразителни, за да можем, тръгвайки от тях, да получим всички възможни изчислими функции.

Определение 1.4. <u>Изходните (базисните) примитивно рекурсивни фун</u>кции са следните:

1) функцията S (от successor), която дава наследника на всяко $x \in \mathbb{N}$:

$$\mathcal{S}(x) = x + 1;$$

2) едноместната константна функция \mathcal{O} , която за всяко $x \in \mathbb{N}$ връща 0:

$$\mathcal{O}(x) = 0;$$

3) проектиращите функции $I_k^n, n = 1, 2, \dots$ и $1 \le k \le n$, дефинирани като:

$$I_k^n(x_1,\ldots,x_n)=x_k$$

за всяка n-торка (x_1, \ldots, x_n) от \mathbb{N}^n .

В частност, при k=n=1 получаваме $I_1^1(x)=x$ за всяко $x\in\mathbb{N}$, т.е. изходната функция I_1^1 е udenmumem om в \mathbb{N} . Предназначението на проектиращите функции е по-скоро техническо.

2.2 Изходни (базисни) операции

Както при избора на изходните функции, и тук целта е тези начални операции да са възможно най-прости и едновременно с това — достатъчно мощни, за да може чрез тях да се зададат всички изчислими функции.

Изходните операции, които ще въведем, следвайки дефиницията на Ербран-Гьодел-Клини, са три — суперпозиция, примитивна рекурсия и минимизация. В този раздел ще определим първите две от тях, а в раздел 1.3 — третата.

Определение 1.5. Нека f е произволна n-местна функция, а g_1, \ldots, g_n са n на брой функции, всички на k аргумента. $\underline{Cynepnosuuusma}$ на тези функции е k-местната функция h, която се дефинира по следния начин:

$$h(x_1, \dots, x_k) \simeq y \iff \exists z_1 \dots \exists z_n \ (g_1(x_1, \dots, x_k) \simeq z_1 \& \dots \& g_n(x_1, \dots, x_k) \simeq z_n \& f(z_1, \dots, z_n) \simeq y)$$
 (1.1)

за всяко (x_1,\ldots,x_k) от \mathbb{N}^k

Суперпозицията на f и g_1,\ldots,g_n ще означаваме с

$$f(g_1,\ldots,g_n).$$

При n=1 функцията f(g) ще наричаме *композиция* на f и g и ще бележим с обичайното $f\circ g$.

От еквивалентността (1.1) следва в частност, че

$$!f(g_1,\ldots,g_n)(\bar{x}) \iff !g_1(\bar{x}) \& \ldots \& !g_n(\bar{x}) \& !f(g_1(\bar{x}),\ldots,g_n(\bar{x})).$$

Ако приемем, че така разбираме дефинираността на $f(g_1, \ldots, g_n)(\bar{x})$, определението за суперпозиция можем да запишем и по-кратко като:

$$f(g_1,\ldots,g_n)(\bar{x}) \stackrel{\text{деф}}{\simeq} f(g_1(\bar{x}),\ldots,g_n(\bar{x})).$$

Втората изходна операция е npumumuвна peкуpcus. Най-общо, една функция f се задава с pekypcus, ако се определя "чрез себе си", което можем да си представим схематично така:

$$f(x) \simeq \dots f, x \dots$$

Най-простата схема за дефиниция по рекурсия на едноместна функция f е следната: по дадени константа $c \in \mathbb{N}$ и $g \in \mathcal{F}_2$, функцията f определяме посредством равенствата:

$$| f(0) = c$$

$$| f(x+1) \simeq g(x, f(x)).$$

Горната рекурентна връзка обикновено се нарича *проста схема на примитивна рекурсия*. За f ще казваме, че е получена с *примитивна рекурсия* от c и g. Тук константата c задава d g ни казва как да пресметнем f(x+1), ако знаем f(x).

Букварният пример за дефиниция чрез тази схема е рекурсивната дефиниция на функцията f(x) = x!. За нея имаме

$$\begin{vmatrix}
f(0) = 1 \\
f(x+1) = (x+1).f(x).
\end{vmatrix}$$

Тук константата c = 1, а g(x, y) = (x + 1)y.

Да се опитаме да обобщим ситуацията за функция на повече променливи. Как би изглеждала възможно най-простата схема на рекурсия, ако f е на два аргумента примерно? Как да дефинираме рекурсивно f(x,y)— с рекурсия по x, по y или и по двата аргумента?

Известно е, че рекурсия u по dвата аргумента може да доведе до функциичудовища. Пример за това е $\underline{\phi}$ ункцията на Aкерман, която се задава със следната двойна рекурсия:

$$| f(0,y) \simeq y + 1 f(x+1,0) \simeq f(x,1) f(x+1,y+1) \simeq f(x,f(x+1,y)).$$

Тази функция расте с шеметна скорост — например f(4,2) е число с 19 729 цифри в десетичния си запис!

Малко офтопик: ако си мислите, че горната рекурсивна схема *поначало* е сложна, защото рекурсията е двойна — ами не винаги е така. Да вземем ето тази рекурсивна схема, която се различава с всичко на всичко "една единица" от дефиницията на Акерман (в дъното на рекурсията):

$$\begin{vmatrix} g(0,y) \simeq y \\ g(x+1,0) \simeq g(x,1) \\ g(x+1,y+1) \simeq g(x,g(x+1,y)). \end{vmatrix}$$

Иненадващо, тази рекурсивна схема определя функция, която е почти константа (вижте $3a\partial a ua$ 1.3 по-надолу).

Оказва се, че подходящото обобщение на простата схема на примитивна рекурсия е рекурсия само $no\ e \partial u n$ от аргументите на определяемата функция f. Ние ще изберем това да бъде последният аргумент.

Определение 1.6. Нека $g(x_1, \ldots, x_n)$ и $h(x_1, \ldots, x_n, y, z)$ са фиксирани частични функции, съответно на n и n+2 аргумента. Казваме, че f се получава с npumumuвна pekypcuя от g и h, ако за всички \bar{x}, y са изпълнени равенствата:

$$\begin{vmatrix}
f(x_1, \dots, x_n, 0) \simeq g(x_1, \dots, x_n) \\
f(x_1, \dots, x_n, y + 1) \simeq h(x_1, \dots, x_n, y, f(x_1, \dots, x_n, y)).
\end{vmatrix} (1.2)$$

За функцията f ще казваме още, че e примитивна рекурсия на g и h. Равенствата 1.6 определят общата схема на примитивната рекурсия. Ясно e, че при n=0 от нея получаваме простата схема, която въведохме по-горе.

Да се убедим най-напред, че *Определение* 1.6 наистина определя точно една функция.

Твърдение 1.1. Нека $g \in \mathcal{F}_n$, а $h \in \mathcal{F}_{n+2}$. Съществува единствена функция f, която е примитивна рекурсия на g и h.

Доказателство. Ще покажем, че за всяко $\bar{x} \in \mathbb{N}^n$ и всяко $y \in \mathbb{N}$, $f(\bar{x},y)$ е еднозначно определена. Последното означава, че или $f(\bar{x},y)$ няма стойност, или има стойност и тази стойност е единствена.

За целта да фиксираме $\bar{x} \in \mathbb{N}^n$. С индукция по y ще покажем, че $\forall y P(y)$, където P е следното свойство:

$$P(y) \stackrel{\text{деф}}{\Longleftrightarrow} f(\bar{x},y)$$
 е еднозначно определена.

Базовият случай P(0) е ясен, защото тогава $f(\bar{x},0) \simeq g(\bar{x})$.

Сега да допуснем, че за някое y е в сила P(y), т.е. $f(\bar{x},y)$ е еднозначно определена. Но тогава същото ще е вярно и за $f(\bar{x},y+1)$, тъй като в този случай

$$f(\bar{x}, y+1) \stackrel{(1.2)}{\simeq} h(\bar{x}, y, f(\bar{x}, y)).$$

Така показахме и P(y+1), с което приключва проверката на $\forall y P(y)$, а оттук и доказателството на твърдението.

С разсъждение, подобно на горното, лесно се убеждаваме, че операцията примитивна рекурсия запазва тоталността, т.е. приложена върху тотални функции, тя връща отново тотална функция.

Твърдение 1.2. Нека $g \in \mathcal{F}_n$ и $h \in \mathcal{F}_{n+2}$ са тотални функции. Тогава и тяхната примитивна рекурсия е тотална функция.

Доказателство. Да означим с f примитивната рекурсия на g и h. Сега трябва да видим, че за всяко $\bar{x} \in \mathbb{N}^n$ и всяко $y \in \mathbb{N}$, $!f(\bar{x},y)$. Както в предишното доказателство, фиксираме $\bar{x} \in \mathbb{N}^n$ и с рутинна индукция по y показваме, че $\forall y Q(y)$, където Q се определя така:

$$Q(y) \quad \stackrel{\mathrm{def}}{\Longleftrightarrow} \quad !f(\bar{x},y).$$

2.3 Примитивно рекурсивни функции

Определение 1.7. Казваме, че една функция е *примитивно рекурсив*на (пр. р.), ако тя може да се получи от изходните примитивно рекурсивни функции чрез краен брой прилагания на операциите суперпозиция и примитивна рекурсия. Да отбележим, че горната дефиниция всъщност е <u>индуктивна.</u> Тя може да бъде изказана и по следния начин:

- 1) Всяка от изходните функции S, \mathcal{O} и I_k^n е примитивно рекурсивна.
- 2) Ако f и $g_1, \ldots g_n$ са примитивно рекурсивни, то и тяхната суперпозиция $f(g_1, \ldots, g_n)$ е примитивно рекурсивна.
- 3) Ако f и g са примитивно рекурсивни, а h е получена с примитивна рекурсия от тях, то и h е примитивно рекурсивна.

Индуктивният характер на тази дефиниция означава, че всяко свойство, отнасящо се до примитивно рекурсивните функции, ще трябва да се доказва с индукция, следваща пунктовете на дефиницията. Такъв тип индукция се нарича *структурна индукция*. За илюстрация да докажем следващото твърдение.

Твърдение 1.3. Всяка примитивно рекурсивна функция е тотална.

Доказателство. Нека h е примитивно рекурсивна. Ако тя е получена по т. 1) от горната дефиниция, то h е някоя от изходните функции \mathcal{S}, \mathcal{O} и I_k^n , които са тотални. Нека сега h е получена по т. 2) от дефиницията. Това означава, че $h = f(g_1, \ldots, g_n)$, като за f и g_1, \ldots, g_n индуктивната хипотеза е вярна, т.е. те са тотални функции. Но тогава и h ще е такава, защото суперпозицията очевидно запазва тоталността.

По подобен начин разсъждаваме ако h е получена по последния пункт 3) от дефиницията, като се възползваме от току-що доказаното Tespdenue 1.2.

По-нататък ще се убедим, че макар и примитивна по име, с такава рекурсия могат да се дефинират супербързорастящи функции — примерно експоненти (двойни, тройни и всякакви). Всъщност всяка тотална изчислима функция в естествените числа, за която се досетите, със сигурност ще е примитивно рекурсивна. Както ще видим по-нататък в курса, ще се изискват доста знания, за да конструираме тотална изчислима функция, която да не е примитивно рекурсивна.

3. Частично рекурсивни функции

Сега се насочваме към последната изходна операция — *минимизация*, която участва в дефиницията на частично рекурсивните функции.

Определение 1.8. Нека $f: \mathbb{N}^{n+1} \longrightarrow \mathbb{N}$ е произволна частична функция. Казваме, че n-местната функция g се получава с $\underline{\textit{минимизация}}$ (или с μ -onepaqus) от f, и пишем

$$g(x_1,\ldots,x_n)\simeq \mu y[f(x_1,\ldots,x_n,y)\simeq 0],$$

ако за g е изпълнено:

$$g(x_1,\ldots,x_n) \simeq y \iff f(x_1,\ldots,x_n,y) \simeq 0 \& \forall z_{z < y} \ f(x_1,\ldots,x_n,z) > 0$$
 за всички естествени x_1,\ldots,x_n и y .

Да обърнем внимание на следната особеност в горната дефиниция: ако $g(\bar{x}) \simeq y$, то y е не просто първото естествено число, за което $f(\bar{x},y) \simeq 0$; за него трябва да е вярно още, че $f(\bar{x},z)>0$ за всяко z< y. С други думи, ако $g(\bar{x}) \simeq y$, то за всички z< y, $f(\bar{x},z)$ има стойност и тя е различна от 0.

Сигурно се питате защо да не вземем минимизация, която просто връща първото естествено y, такова че $f(\bar{x},y)\simeq 0$, иначе казано, защо да не вземем следната μ -операция:

$$\mu y[f(\bar{x},y) \simeq 0] \stackrel{\text{деф}}{\simeq} \min\{y \mid f(\bar{x},y) \simeq 0\}.$$

По-нататък в курса ще покажем, че при такава минимизация ще съществуват функции, които са изчислими (с някаква програма), докато тяхната минимизация вече не е изчислима с никаква програма. Това означава, че тази операция извежда извън класа на изчислимите функции, а това е последното нещо, което бихме искали да имаме за една базисна операция.

Определение 1.9. Казваме, че една функция е <u>частично рекурсивна</u> (ч. р.), ако тя може да се получи от изходните примитивно рекурсивни функции чрез краен брой прилагания на операциите суперпозиция, примитивна рекурсия и минимизация.

Определение 1.10. Казваме, че една функция е *рекурсивна*, ако тя е частично рекурсивна и тотална.

Ясно е, че всички примитивно рекурсивни функции са и рекурсивни, защото те са:

- частично рекурсивни (в частност);
- тотални, съгласно Твърдение 1.3.

Ето как изглеждат на картинка класовете от функции, които въведохме, като в нея под *изчислима* функция засега ще разбираме функция, изчислима с *иякаква* програма. В следващата глава ще дадем строга дефиниция на това понятие и ще докажем, че изчислимите функции съвпадат с частично рекурсивните.

В тази диаграма всички включвания са строги. Примери за функции, които са рекурсивни, но не са примитивно рекурсивни са, да кажем, функцията на Акерман, както и универсалната функция за всички примитивно рекурсивни функции (нали не очаквате в този момент да формулираме и докажем такова твърдение? $\ddot{\smile}$). Съвсем лесно за доказване е, обаче, че частично рекурсивните функции се включват строго в рекурсивните, просто защото те могат да са частични. Тривиални примери са празната функция $\emptyset^{(n)}$ или да кажем функцията f от $\Pi pumep 1.1$ (ще го докажем следващия час).

Разбира се, и най-външното включване е строго, което се вижда найлесно с мощностни съображения. За целта първо съобразяваме, че всички частично рекурсивни функции са изброимо много, а после използваме, че множеството от всички функции над № е с мощността на континуума (както е добре известно).

Ето и едно директно доказателство на този факт, което се базира на диагоналния метод на Kahmop.

Задача 1.2. Докажете, че съществуват функции, които не са частично рекурсивни (и следователно не могат да се пресметнат с никаква програма).

Решение. Ще конструираме едноместна функция, която не е частично рекурсивна.

Както вече отбелязахме, всички частично рекурсивни функции са изброимо много, а оттук и *едноместните* ч.р.ф. също ще са изброимо много. Да ги подредим в редичка:

$$f_0, f_1, \ldots f_n, \ldots$$

Ще конструираме функция $d(x) - \partial u$ агонална функция, такава че

$$d \neq f_n$$

за всяко n, и следователно d не може да е частично рекурсивна.

Условието $d \neq f_n$ означава, че $d(x) \not\simeq f_n(x)$ за поне едно x. Ние ще осигурим това различие за x=n, т.е. функцията d ще се различава от f_n в точката n.

За целта да вземем например

$$d(x) \simeq \begin{cases} \neg!, & \text{ako } ! f_x(x) \\ 0, & \text{ako } \neg! f_x(x). \end{cases}$$

Да допуснем, че d е частично рекурсивна. Тогава $d=f_n$ за някое n и значи

$$d(x) \simeq f_n(x)$$

за всяко x. Но при x=n имаме проблем, защото от една страна, би трябвало

$$d(n) \simeq f_n(n),$$

а от друга — функцията d избрахме точно с цел това да не се случва. $\ \square$

Задача 1.3. Нека за g е изпълнено:

$$\begin{vmatrix}
g(0,y) \simeq y \\
g(x+1,0) \simeq g(x,1) \\
g(x+1,y+1) \simeq g(x,g(x+1,y)).
\end{vmatrix} (1.3)$$

Докажете, че g има следния явен вид:

$$g(x,y) = \begin{cases} y, & \text{ако } x = 0\\ 1, & \text{иначе.} \end{cases}$$

Решение. Ясно е, че g(0,y) = y. Трябва да покажем, че

$$\forall x_{x \ge 1} \underbrace{\forall y \ g(x, y) = 1}_{P(x)}.$$

С индукция по $x \ge 1$ показваме, че $\forall x P(x)$, където

$$P(x) \iff \forall y \ q(x,y) = 1.$$

База x = 1, т.е. доказваме, че

$$\forall y \ \underbrace{g(1,y) = 1}_{Q(y)}.$$

Сега нека с Q означим свойството $Q(y) \iff g(1,y) = 1$. Ще докажем, че $\forall y \ Q(y)$, като този път използваме индукция относно y. При y = 0 от (1.3) получаваме:

$$g(1,0) = g(0,1) = 1.$$

Да допуснем, че за някое y е вярно Q(y). Тогава за Q(y+1) ще имаме, съгласно (1.3):

$$g(1,y+1) \ = \ g(0,g(1,y)) \ \stackrel{\text{\tiny H.X.}\ }{=} \ g(0,1) \ = \ 1.$$

С това приключва проверката на $\forall y \ Q(y)$, или все едно — на твърдението P(1). Сега да допуснем, че за някое $x \geq 1$ е изпълнено P(x). Трябва да покажем, че и P(x+1) е вярно, т.е.

$$\forall y \ \underbrace{g(x+1,y)=1}_{R(y)}.$$

Трябва да покажем, че $\forall y \ R(y)$, където $R(y) \iff g(x+1,y) = 1$. Действаме отново с индукция относно y.

При y=0 ще имаме

$$g(x+1,0) = g(x,1) \stackrel{\text{\tiny H.X.}}{=} \stackrel{P(x)}{=} 1.$$

Сега да приемем, че R(y) е вярно за някое y. Тогава за y+1 ще имаме, съгласно (1.3):

$$g(x+1,y+1) = g(x,g(x+1,y)) \stackrel{\text{u.x. } R(y)}{=} g(x,1) \stackrel{\text{u.x. } P(x)}{=} 1.$$

4. Примитивна рекурсивност на някои функции

В този раздел ще докажем примитивната рекурсивност на една дълга редица от функции в естествените числа. Фактът, че те са примитивно рекурсивни, ще е важен за това, което следва.

Ще започнем с едно спомагателно твърдение, което нататък ще използваме систематично. Ще го формулираме за трите типа функции, които въведохме, макар че основно ще го използваме за примитивно рекурсивните.

14

Твърдение 1.4. Нека $f(x_1, \ldots, x_k)$ е произволна примитивно рекурсивна/частично рекурсивна/рекурсивна функция. Нека още i_1, \ldots, i_k са някакви числа между 1 и n (допускаме и повтарящи се). Да дефинираме n-местната функция g по следния начин:

$$g(x_1,\ldots,x_n)\simeq f(x_{i_1},\ldots,x_{i_k})$$

за всяко $x_1, \ldots, x_n \in \mathbb{N}^n$. Тогава g също е примитивно рекурсивна/частично рекурсивна/рекурсивна.

Доказателство. Функцията g можем да препишем и така:

$$g(x_1,\ldots,x_n) \stackrel{\text{geo}}{\simeq} f(x_{i_1},\ldots,x_{i_k}) \simeq f(I_{i_1}^n(x_1,\ldots,x_n),\ldots,I_{i_k}^n(x_1,\ldots,x_n)),$$

откъдето се вижда, че $g=f(I_{i_1}^n,\dots,I_{i_k}^n)$. Тъй като $I_{i_1}^n,\dots,I_{i_k}^n$ са изходни пр.р. функции, то ясно е, че ако f е примитивно (частично) рекурсивна, то и g ще е такава, а ако f е рекурсивна, то и g ще е рекурсивна, защото изходните функции са тотални.

Това твърдение ще използваме в ситуации като следните:

- $g(x_1, x_2) = f(x_1)$ въвеждане на фиктивна променлива (тук $i_1 = 1$);
- $g(x_1,x_2)=f(x_2,x_1)$ разместване на променливи (тук $i_1=2,i_2=1$);
- $g(x_1) = f(x_1, x_1)$ удвояване на променлива (тук $i_1 = i_2 = 1$).

С C_a^n ще означаваме n-местната константна функция, която връща винаги a:

$$C_a^n(x_1,\ldots,x_n) \stackrel{\text{деф}}{=} a$$

за всяка $(x_1,\ldots,x_n)\in\mathbb{N}^n$. Всички константни функции са примитивно рекурсивни, както се вижда от задачата по-долу.

Задача 1.4. Докажете, че за всяко $a\in\mathbb{N}$ и $n\in\mathbb{N}^+$ константната функция C_a^n е примитивно рекурсивна.

Решение. За всяко $\bar{x}\in\mathbb{N}^n$ имаме $C_a^n(\bar{x})=\underbrace{\mathcal{S}(\ldots\mathcal{S}(\mathcal{O}(I_1^n(\bar{x})))\ldots)}_{a\text{ пъти}}$

и значи C_a^n е следната композиция на изходни функции:

$$C_a^n = \underbrace{\mathcal{S} \circ \cdots \circ \mathcal{S}}_{a \text{ пъти}} \circ \mathcal{O} \circ I_1^n.$$

Предстои ни да видим как, тръгвайки от съвсем скромната функция "прибавяне на единица", можем да получим всички аритметични действия — събиране, изваждане, умножение, деление and much more $\ddot{\smile}$.

Твърдение 1.5. Следните функции са примитивно рекурсивни:

a) f(x,y) = x + y (събиране).

Доказателство. Ще конструираме примитивно рекурсивна схема за f. Избираме си рекурсията да е по втория аргумент на f (тя е комутативна, тъй че няма значение кой от двата ще изберем). Базисният случай е ясен:

$$f(x,0) = x + 0 = x.$$

Сега трябва да намерим връзка между f(x,y) и f(x,y+1). В случая тя се вижда веднага:

$$f(x,y+1) = x + (y+1) = (x+y) + 1 = f(x,y) + 1 = \mathcal{S}(f(x,y)).$$

Получаваме общо

за $h(x,y,z)=\mathcal{S}(z)$. Тази функция е примитивно рекурсивна, защото се получава от изходната \mathcal{S} с добавяне на две фиктивни променливи (тук използваме доказаното по-горе $Teopdenue\ 1.4$). Финално, f се получава с примитивна рекурсия от пр.р. функции I_1^1 и h, и следователно f е примитивно рекурсивна.

Въпрос: Как мислите, защо не използвахме по-краткото разсъждение, че събирането може да се представи като композиция на изходните функции \mathcal{S} и I_1^2 , което се вижда от следните равенства:

$$x+y=x+\underbrace{1+\cdots+1}_{y\text{ пъти}}\ =\ \underbrace{\mathcal{S}(\ldots\mathcal{S}(x)\ldots)}_{y\text{ пъти}}\ =\ \underbrace{\mathcal{S}(\ldots\mathcal{S}(I_1^2(x,y))\ldots)?}_{y\text{ пъти}}$$