1.38 Theorem. Let $a, b \in \mathbb{Z}$. If (a, b) = 1, then there exist $x, y \in \mathbb{Z}$ such that ax + by = 1.

Proof. Let $a, b \in \mathbb{Z}$ be given such that (a, b) = 1. We want to show there exist $x, y \in \mathbb{Z}$ such that ax + by = 1. By contradiction, suppose for all $x, y \in \mathbb{Z}$ that $ax + by \neq 1$, provided (a, b) = 1.