© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°05

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1 – Concours National Marocain MP 2000

- On considère un espace vectoriel E de dimension finie $n \ge 2$ sur le corps \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$). $\mathcal{L}(E)$ désigne la \mathbb{K} -algèbre des endomorphismes de E. Si $(u, v) \in \mathcal{L}(E)^2$, l'endomorphisme composé $u \circ v$ sera tout simplement noté uv; [u, v] désignera l'endomorphisme uv vu et l'identité se notera Id.
- Si u est un endomorphisme de E, on note tr(u) la trace de u et Sp(u) l'ensemble des valeurs propres de u.

 \$\mathcal{T}\$ désigne l'ensemble des endomorphismes de E de trace nulle. Si \(\lambda\) est une valeur propre de u, on notera E_{\(\lambda\)}(u) le sous-espace propre de u associé à la valeur propre \(\lambda\).
- Pour $u \in \mathcal{L}(E)$, on pose $u^0 = \text{Id et si } k \ge 1$, $u^k = uu^{k-1}$. On rappelle qu'un endomorphisme u est dit nilpotent s'il existe $p \in \mathbb{N}^*$ tel que $u^p = 0$ (endomorphisme nul).
- On définit l'application

$$\Phi: \left\{ \begin{array}{ccc} \mathcal{L}(\mathsf{E})^2 & \longrightarrow & \mathcal{L}(\mathsf{E}) \\ (u,v) & \longmapsto & [u,v] \end{array} \right.$$

et, pour $u \in \mathcal{L}(E)$, l'application

$$\Phi_u: \left\{ \begin{array}{ccc} \mathcal{L}(\mathbf{E}) & \longrightarrow & \mathcal{L}(\mathbf{E}) \\ v & \longmapsto & [u,v] \end{array} \right.$$

• Pour $(m, p) \in \mathbb{N}^2$, on note $\mathcal{M}_{m,p}(\mathbb{K})$ l'ensemble des matrices à coefficients dans \mathbb{K} , à m lignes et p colonnes. I_m est la matrice identité d'ordre m. Enfin, $\operatorname{diag}(\alpha_1, \alpha_2, \dots, \alpha_n)$ désigne la matrice carrée d'ordre n de terme général $\alpha_i \delta_{i,j}$ où $\delta_{i,j}$ est le symbole de Kronecker (on rappelle que $\delta_{i,j} = 1$ si i = j et $\delta_{i,j} = 0$ si $i \neq j$).

Partie I

I.A Quelques propriétés de Φ_u

- 1 Montrer que \mathcal{T} est un hyperplan de $\mathcal{L}(E)$.
- **2** Montrer que Φ est une application bilinéaire antisymétrique.
- 3 Soit $u \in \mathcal{L}(E)$ un endomorphisme qui n'est pas une homothétie.
 - **3.a** Montrer que vect(Id, $u, ..., u^{n-1}$) est inclus dans Ker Φ_u et que dim(Ker Φ_u) ≥ 2 .
 - **3.b** Montrer que si $v \in \text{Ker } \Phi_u$, alors $v(E_{\lambda}(u)) \subset E_{\lambda}(u)$ pour tout $\lambda \in \text{Sp}(u)$.
- Montrer que l'image de Φ est incluse dans \mathcal{F} et que, pour $u \in \mathcal{L}(E)$, Im $\Phi_u \subset \mathcal{F}$. Existe-t-il $(u,v) \in \mathcal{L}(E)^2$ tel que $[u,v] = \operatorname{Id} ?$ Peut-on avoir $\operatorname{Im} \Phi_u = \mathcal{F} ?$

© Laurent Garcin MP Dumont d'Urville

- 5 Soit $u \in \mathcal{L}(E)$.
 - **5.a** Montrer que u est une homothétie si et seulement si pour tout $x \in E$, la famille (x, u(x)) est liée.
 - **5.b** En déduire que Ker $\Phi_u = \mathcal{L}(E)$ si et seulement si u est une homothétie.
- **6.a** Soit $(u, v) \in \mathcal{L}(E)^2$. Montrer par récurrence que pour tout

$$\forall k \in \mathbb{N}, \ \Phi_u^k(v) = \sum_{p=0}^k (-1)^p \binom{k}{p} u^{k-p} v u^p$$

6.b En déduire que si u est nilpotent, alors Φ_u l'est aussi.

I.B Détermination de l'image de Φ

Soit *u* un endomorphisme non nul de E de trace nulle.

- |7| *u* peut-il être une homothétie?
- **8** Montrer qu'il existe $e_1 \in E$ tel que la famille $(e_1, u(e_1))$ soit libre.
- 9 En déduire l'existence d'une base $(e_1, ..., e_n)$ de E telle que la matrice A de u dans cette base soit de la forme

$$\left(\begin{array}{cc}
0 & X^{\mathsf{T}} \\
Y & A_1
\end{array}\right)$$

où $(X, Y) \in \mathcal{M}_{n-1,1}(\mathbb{K})^2$ et $A_1 \in \mathcal{M}_{n-1}(\mathbb{K})$.

- 10 On suppose $A_1 = UV VU$ avec $(U, V) \in \mathcal{M}_{n-1}(\mathbb{K})^2$.
 - **10.a** Montrer que l'on peut trouver $\alpha \in \mathbb{K}$ tel que la matrice $U \alpha I_{n-1}$ soit inversible.

10.b On pose
$$U' = \begin{pmatrix} \alpha & 0 \\ 0 & U \end{pmatrix}$$
 et $V' = \begin{pmatrix} 0 & R^T \\ S & V \end{pmatrix}$ avec $(R, S) \in \mathcal{M}_{n-1}(\mathbb{K})^2$. Etablir l'équivalence

$$\mathbf{A} = \mathbf{U}'\mathbf{V}' - \mathbf{V}'\mathbf{U}' \iff \begin{bmatrix} \mathbf{X}^\mathsf{T} = -\mathbf{R}^\mathsf{T}(\mathbf{U} - \alpha\mathbf{I}_{n-1}) & \text{et} & \mathbf{Y} = (\mathbf{U} - \alpha\mathbf{I}_{n-1})\mathbf{S} \end{bmatrix}$$

11 Montrer alors par récurrence que l'image de Φ est égale à \mathcal{F} .

I.C Détermination de $tr(\Phi_u)$

Soit u un endomorphisme de E. Soient $\mathcal{B}=(e_1,\ldots,e_n)$ une base de E et $A=(a_{i,j})_{1\leq i,j\leq n}$ la matrice de u dans cette base. Pour $(i,j)\in [1,n]^2$, $u_{i,j}$ désigne l'endomorphisme de E tel que

$$\forall k \in \llbracket 1, n \rrbracket, \ u_{i,j}(e_k) = \delta_{j,k} e_i$$

- **12** Rappeler pourquoi $(u_{i,j})_{1 \le i,j \le n}$ est une base de $\mathcal{L}(E)$.
- **13** Calculer, pour tout $(i, j, k, l) \in [1, n]^4$ le produit $u_{i,j}u_{k,l}$ et montrer que l'on a :

$$\forall (i,j) \in [[1,n]]^2, \ \Phi_u(u_{i,j}) = \sum_{k=1}^n a_{k,i} u_{k,j} - \sum_{k=1}^n a_{j,k} u_{i,k}$$

14 En déduire $tr(\Phi_u)$.

© Laurent Garcin MP Dumont d'Urville

Partie II

II.A Cas où u est diagonalisable

Dans cette sous-partie, on suppose qu u est diagonalisable.

On pose $\mathrm{Sp}(u)=\{\lambda_1,\ldots,\lambda_p\}$. Pour tout $i\in [1,p]$, m_i désigne l'ordre de multiplicité de la valeur propre λ_i de u.

Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E formée de vecteurs propres de u. Pour simplifier les notations, on pose $u(e_i) = \mu_i e_i$ pour tout $i \in [1, n]$.

15.a Montrer que

$$\forall (i,j) \in [[1,n]]^2, \ \Phi_u(u_{i,j}) = (\mu_i - \mu_j)u_{i,j}$$

15.b En déduire que Φ_u est diagonalisable et préciser $Sp(\Phi_u)$.

16 Montrer que

$$\operatorname{Ker} \Phi_{u} = \left\{ v \in \mathcal{L}(\mathbf{E}) \mid \forall i \in \llbracket 1, p \rrbracket, \ v(\mathbf{E}_{\lambda_{i}}(u)) \subset \mathbf{E}_{\lambda_{i}}(u) \right\}$$

En déduire que Ker Φ_u est isomorphe à $\mathcal{L}(E_{\lambda_1}(u)) \times \mathcal{L}(E_{\lambda_2}(u)) \times \cdots \times \mathcal{L}(E_{\lambda_p}(u))$. Quel est le rang de Φ_u ?

On suppose en plus que u a n valeurs propres distinctes. Quel est la dimension de $\ker \Phi_u$? Quel est le polynôme minimal de u? En déduire que $\ker \Phi_u = \operatorname{vect}(\operatorname{Id}, u, \dots, u^{n-1})$.

II.B Cas où dim E = 2

On suppose dans cette sous-partie que dim E=2. Soit u un endomorphisme de E qui n'est pas une homothétie.

Montrer que Ker $\Phi_u = \text{vect}(\text{Id}, u)$. On pourra utiliser une base de E de la forme (e, u(e)) dont on justifiera l'existence.

20 Montrer que le polynôme caractéristique de Φ_u est de la forme $X^2(X^2 + \beta)$ avec $\beta \in \mathbb{K}$.

21 Si $\beta = 0$, l'endomorphisme Φ_u est-il diagonalisable?

On suppose $\beta \neq 0$. Etudier la diagonalisabilité de Φ_u selon que $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

23 On suppose Φ_u diagonalisable.

23.a Montrer que $Sp(\Phi_u) = \{0, \lambda, -\lambda\}$ où λ est un scalaire non nul.

Dans la suite de la question, v désigne un vecteur propre de Φ_u associé à la valeur propre λ .

23.a L'endomorphisme v peut-il être inversible ? Calculer tr(v) puis v^2 .

23.b Détermination de Sp(u).

• Pour quelles valeurs du vecteur e, la famille (e, v(e)) est-elle une base de E?

• Vérifier que la matrice de u dans une telle base est triangulaire inférieure puis en déduire que $\operatorname{Sp}(u) = \left\{ \frac{\operatorname{tr}(u) - \lambda}{2}, \frac{\operatorname{tr}(u) + \lambda}{2} \right\}$.

23.c En déduire que *u* est diagonalisable.

II.C Cas où Φ_u est diagonalisable

Soit u un endomorphisme de E tel que Φ_u soit diagonalisable et $\mathrm{Sp}(u) \neq \emptyset$. Soit $(v_1, v_2, \dots, v_{n^2})$ une base de $\mathcal{L}(\mathrm{E})$ formée de vecteurs propres de Φ_u de sorte que $\Phi_u(v_i) = \beta_i v_i$ pour tout $i \in [1, n^2]$. Soient enfin $\lambda \in \mathrm{Sp}(u)$ et $x \in \mathrm{E}$ un vecteur propre associé.

- **24** Calculer $u(v_i(x))$ en fonction de λ , β_i et $v_i(x)$.
- **25** Montrer que l'application Ψ : $\begin{cases} \mathcal{L}(E) & \longrightarrow & E \\ v & \longmapsto & v(x) \end{cases}$ est linéaire surjective.
- **26** Montrer alors que u est diagonalisable.

Partie III

Soient λ une valeur propre *non nulle* de Φ_u et v un vecteur propre associé. On désigne par P_u le polynôme caractéristique de u.

- **27. 27.a** Montrer que $\forall x \in \mathbb{K}$, $v(x \operatorname{Id} u) = ((x + \lambda) \operatorname{Id} u)v$.
 - **27.b** Qu'en déduit-on sur P_u su $det(v) \neq 0$.
 - **27.c** Montrer alors que l'endomorphisme v n'est pas inversible.
- **28** Montrer que $\forall k \in \mathbb{N}^*$, $\Phi_u(v^k) = kv^k$. Qu'en déduit-on si $v^p \neq 0$ pour un certain $p \in \mathbb{N}^*$.
- **29** Conclure que $v^n = 0$.

Dans la suite, on suppose que $v^{n-1} \neq 0$.

- Soit $e \in E$ tel que $v^{n-1}(e) \neq 0$. Montrer que la famille $(e, v(e), \dots, v^{n-1}(e))$ est une base de E et écrire la matrice de l'endomorphisme v dans cette base.
- 31 On pose $\mathcal{A} = \{ w \in \mathcal{L}(E) \mid wv vw = \lambda v \}$.
 - **31.a** Montrer que \mathcal{A} contient un endomorphisme w_0 dont la matrice relativement à la base \mathcal{B} est diag $(0, \lambda, 2\lambda, \dots, (n-1)\lambda)$.
 - **31.b** Montrer que \mathcal{A} est un sous-espace affine de $\mathcal{L}(E)$ dont on précisera la direction.
 - **31.c** Déterminer la dimension ainsi qu'une base de la direction de A.
- Quelle est alors la forme de la matrice dans la base \mathcal{B} de l'endomorphisme u?
- On suppose dans cette question que la matrice de u dans une base \mathcal{B}' de E est de la forme diag $(\alpha, \alpha + \lambda, ..., \alpha + (n-1)\lambda)$. Décrire par leur matrice dans la base \mathcal{B}' les éléments de l'espace $E_{\lambda}(\Phi_u)$. Quelle est sa dimension?