EE P 500 D: LLMs and ChatGPT | Fine-Tuning LLMs

Dr. Karthik Mohan

Univ. of Washington, Seattle

November 12, 2023

Transformer Archtiecture

Transformers Architecture

Transformer

Reference: Attention is all you need! Verwan Archi'keh

Figure 1: The Transformer - model architecture.

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention layers running in parallel.

First Attention Models

Reference paper

BERT Tout

Birchun

Figure 1: The graphical illustration of the proposed model trying to generate the t-th target word y_t given a source sentence (x_1, x_2, \ldots, x_T) .

Transformers Architecture

BERT - Bi-directional Encoders from Transformers

BERT Embeddings

BERT pre-training

Two Tasks

- Masked LM Model: Mask a word in the middle of a sentence and have BERT predict the masked word
- Openitive and negative labels. How are these generated?

BERT pre-training

Two Tasks

- Masked LM Model: Mask a word in the middle of a sentence and have BERT predict the masked word
- Openitive and negative labels. How are these generated?

ICE: Supervised or Un-supervised?

• Are the above two tasks supervised or un-supervised?

BERT pre-training

Two Tasks

- Masked LM Model: Mask a word in the middle of a sentence and have BERT predict the masked word
- Openitive and negative labels. How are these generated?

ICE: Supervised or Un-supervised?

• Are the above two tasks supervised or un-supervised?

Data set!

English Wikipedia and book corpus documents!

BERT - Bi-directional Encoders from Transformers

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
Open AI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Hiny BERT

ROUGE/METTOR Scores for language Tasks (Similar to Precision of Recall)

Document Summarization — BERT Based Extractive Model

BERT based model After scoring, we can generates a score for reorder sentences based each sentence in the on scores, order of document. appearance (or other post processing criteria), Input: pairs of sentence Document to be summarized is converted to sentences using and take top_k and document a Spacy Senticizer. sentences as summary Output: sentence scores sentence 1 score 1 Sentencizer (Spacy) score 2 sentence 2 score 3 Extractive Model Document sentence 3 . . . score n sentence n Summe orzation To tractive - D Chotapa BART

Question Answering — BERT Based Extractive Model

Vision Transformers: Transformers Architecture for Vision

BERT, BART and GPT archs and tasks

(a) BERT: Random tokens are replaced with masks, and the document is encoded bidirectionally. Missing tokens are predicted independently, so BERT cannot easily be used for generation.

(b) GPT: Tokens are predicted auto-regressively, meaning GPT can be used for generation. However words can only condition on leftward context, so it cannot learn bidirectional interactions.

(c) BART: Inputs to the encoder need not be aligned with decoder outputs, allowing arbitary noise transformations. Here, a document has been corrupted by replacing spans of text with mask symbols. The corrupted document (left) is encoded with a bidirectional model, and then the likelihood of the original document (right) is calculated with an autoregressive decoder. For fine-tuning, an uncorrupted document is input to both the encoder and decoder, and we use representations from the final hidden state of the decoder.

Figure 1: A schematic comparison of BART with BERT (Devlin et al., 2019) and GPT (Radford et al., 2018).

BART

- (a) To use BART for classification problems, the same input is fed into the encoder and decoder, and the representation from the final output is used.
- (b) For machine translation, we learn a small additional encoder that replaces the word embeddings in BART. The new encoder can use a disjoint vocabulary.

Figure 3: Fine tuning BART for classification and translation.

BART Paper

BERT Embeddings

A methodology for fine-tuning transformers for classification tasks

OPICK Base pre-trained Architecture: Pick a base pre-trained architecture as a starting point for your fine-tuning. Example: bert-base-uncased is one such pre-trained model that can be loaded through Hugging Face Transformers Library

A methodology for fine-tuning transformers for classification tasks

- Pick Base pre-trained Architecture: Pick a base pre-trained architecture as a starting point for your fine-tuning. Example: bert-base-uncased is one such pre-trained model that can be loaded through Hugging Face Transformers Library
- **Extract output from pre-training:** How do you want to use the output from pre-training going into *fine-tuning*? a) Extract embedding from the first token, CLS b) Average embeddings of all tokens as a starting point (mean pooling).

A methodology for fine-tuning transformers for classification tasks

- Pick Base pre-trained Architecture: Pick a base pre-trained architecture as a starting point for your fine-tuning. Example: bert-base-uncased is one such pre-trained model that can be loaded through Hugging Face Transformers Library
- **Extract output from pre-training:** How do you want to use the output from pre-training going into *fine-tuning*? a) Extract embedding from the first token, CLS b) Average embeddings of all tokens as a starting point (mean pooling).
- **Add fine-tuning layers:** Add fine-tuning layers on top of the pre-trained layers. Example, starting with the pooled embeddings, construct one or more dense layers (Feed-Forward NN style) to extract finer representations of the input. Add the output layer and its activation (typically softmax for classification tasks).

A methodology for fine-tuning transformers for classification tasks

- O Pick Base pre-trained Architecture: Pick a base pre-trained architecture as a starting point for your fine-tuning. Example: bert-base-uncased is one such pre-trained model that can be loaded through Hugging Face Transformers Library
- **Extract output from pre-training:** How do you want to use the output from pre-training going into *fine-tuning*? a) Extract embedding from the first token, CLS b) Average embeddings of all tokens as a starting point (mean pooling).
- **Add fine-tuning layers:** Add fine-tuning layers on top of the pre-trained layers. Example, starting with the pooled embeddings, construct one or more dense layers (Feed-Forward NN style) to extract finer representations of the input. Add the output layer and its activation (typically softmax for classification tasks).
- Set training schedule, hyper-parameters, etc: Set up optimizer (e.g. ADAM), hyper-parameters, training schedule, etc for training.