Chapter 1 The Foundations: Logic and Proofs Kenneth H. Rosen 7th edition

Section 1.6: Rules of Inference

Rules of Inference

Infer means:

- To deduce or conclude (something) from evidence and reasoning rather than from explicit statements.
- Proofs in mathematics are
 - Valid arguments
 - ▶ These arguments establish the truth of mathematical statements.
- By an *argument*, we mean a sequence of statements that end with a conclusion.
- By *valid*, we mean that the conclusion, or final statement of the *argument*, must follow from the truth of the preceding statements, or *premises* of the argument.
- An argument is valid if the truth of all its premises implies that the conclusion is true
 - i.e. the conclusion is true if the premises are all true.

- From the definition of a valid argument form we see that the argument form with premises $p_1, p_2, ..., p_n$ and conclusion q is valid if and only if $(p_1 \land p_2 \land \cdots \land p_n) \rightarrow q$ is a tautology.
- The key to showing that an argument in propositional logic is valid is to show that its argument form is valid.

Rule of Inference	Name	Rule of Inference	Name
p	Modus ponens		Addition
$p \rightarrow q$		p	
\therefore q		$p \lor q$	
$\neg q$	Modus tollens		Simplification
$p \rightarrow q$		$p \wedge q$	
$\therefore \neg p$		\therefore p	
$p \rightarrow q$	Hypothetical syllogism	p	Conjunction
$q \rightarrow r$		q	
$\therefore p \to r$		$p \land q$	
$p \vee q$	Disjunctive syllogism	$p \lor q$	Resolution
$\neg p$		$\neg p \lor r$	
\therefore q		$\therefore q \vee r$	

Example 1:

Consider the following argument:

- "If you have a current password, then you can log onto the network."
- "You have a current password."
- Therefore,
- "You can log onto the network."

Solution:

Let,

p = "You have a current password"

 $q = "You \ can \ log \ onto \ the \ network."$

Then, the argument has the form

$$\begin{array}{c}
p \to q \\
\hline
p \\
\hline
\vdots \quad q
\end{array}$$

Here, we can see that the argument uses the form of Modus Ponens rule. The argument is thus a valid one. Now if, both $p \to q$ and p are true, then q must also be true.

What if, you have two premises, $p \rightarrow q$ and p and the conclusion as q where, not both of the premises are true?

Example 2:

Consider the following argument:

- "If you have access to the network, then you can change your grades."
- "You have access to the network."
- Therefore,
- "You can change your grades."

Solution:

▶ Let,

p = "You have access to the network."

q = "You can change your grades."

Then, the argument has the form

$$\begin{array}{c}
p \to q \\
\hline
p \\
\hline
\vdots q
\end{array}$$

Here, we can see that the argument uses the form of Modus Ponens rule. The argument is thus a valid one. Now, both $p \to q$ and q are not true, namely the first one is false. Thus, we cannot conclude that q is true.

Example 3:

Determine whether the argument given here is valid and determine whether its conclusion must be true because of the validity of the argument.

If
$$\sqrt{2} > \frac{3}{2}$$
, then $(\sqrt{2})^2 > (\frac{3}{2})^2$. We know that $\sqrt{2} > \frac{3}{2}$. Consequently $(\sqrt{2})^2 = 2 > (\frac{3}{2})^2 = \frac{9}{4}$.

Solution:

Let, $p = \sqrt{2} > \frac{3}{2}$ $q = (\sqrt{2})^2 > (\frac{3}{2})^2$

The argument can be represented as

$$\begin{array}{c}
p \to q \\
p \\
\hline
\vdots \quad q
\end{array}$$

The argument is valid as it is constructed using modus ponens. But, we cannot conclude that the conclusion is true. Because, the premises p is false. Also by observation, we can see that the conclusion, q is also false.

Example 4:

- State which rule of inference is the basis of the following argument:
 - "It is below freezing now. Therefore, it is either below freezing or raining now."

Solution:

Let,
 p = "It is below freezing now."
 q = "It is raining now."

The argument can be represented as,

$$\begin{array}{c}
p \\
\therefore p \lor q
\end{array}$$

This argument uses the addition rule.

Example 5:

- State which rule of inference is used in the argument:
 - If it rains today, then we will not have a barbecue today. If we do not have a barbecue today, then we will have a barbecue tomorrow. Therefore, if it rains today, then we will have a barbecue tomorrow.

Solution:

Let,

p = "It is raining today."

q = "We will not have a berbecue today."

r = "We will have a berbecue tomorrow."

The argument can be represented as,

$$p \to q$$

$$q \to r$$

$$\therefore p \to r$$

The argument thus uses the hypothetical syllogism rule.

Using Rules of Inference to Build Arguments

Example 1:

- Show that the premises
 - "It is not sunny this afternoon and it is colder than yesterday,"
 - "We will go swimming only if it is sunny,"
 - "If we do not go swimming, then we will take a canoe trip,"
 - "If we take a canoe trip, then we will be home by sunset"

Lead to the conclusion

"We will be home by sunset."

Using Rules of Inference to Build Arguments(Contd.)

Solution:

```
Let,

p = "It is sunny this afternoon."

q = "It is colder than yesterday."

r = "We will go swimming."

s = "We will take a canoe trip."

t = "We will be home by sunset."

Then the premises become
```

Then, the premises become,

1. $\neg p \land q$ 2. $r \rightarrow p$ 3. $\neg r \rightarrow s$ 4. $s \rightarrow t$

The conclusion is simply t.

Using Rules of Inference to Build Arguments(Contd.)

We construct an argument to show that our premises lead to the desired conclusion as follows,

Steps	Reasons
1. $\neg p \land q$	premise
<i>2.</i> ¬p	Simplification using (1)
3. $r \rightarrow p$	premise
<i>4.</i> ¬ <i>r</i>	Modulus tollens using (2)and (3)
5. $\neg r \rightarrow s$	premise
6. s	Modulus ponens using (4)and (5)
7. $s \rightarrow t$	premise
8. t	Modulus ponens using (6)and (7)

Thus, we can see that our premises lead to the desired conclusion.

Using Rules of Inference to Build Arguments (Contd.)

Example 2:

Show that the premises

- "If you send me an e-mail message, then I will finish writing the program."
- "If you do not send me an e-mail message, then I will go to sleep early."
- "If I go to sleep early, then I will wake up feeling refreshed."

Lead to the conclusion

"If I do not finish writing the program, then I will wake up feeling refreshed."

Using Rules of Inference to Build Arguments(Contd.)

Solution:

Let,

p = "You send me an e - mail message."

q ="I will finish writing the program."

r = "I will go to sleep early."

s ="I will wake up feeling refreshed."

Then the premises become,

- 1. $p \rightarrow q$
- 2. $\neg p \rightarrow r$
- $r \rightarrow s$

The conclusion is $\neg q \rightarrow s$

Using Rules of Inference to Build Arguments(Contd.)

We construct an argument to show that our premises lead to the desired conclusion as follows,

Steps	Reasons
1. $p \rightarrow q$ 2. $\neg q \rightarrow \neg p$	premise Contrapositive rule
3. $\neg p \rightarrow r$ 4. $\neg q \rightarrow r$ 5. $r \rightarrow s$	<pre>premise Hypothetical syllogism using(3) premise</pre>
6. $\neg q \rightarrow s$	Hypothetical syllogism using (3)

Thus, we can see that our premises lead to the desired conclusion.

Resolution

 Resolution is nothing but a rule of inference based on the tautology,

$$((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$$

- Using this resolution, we can derive rule of inference.
 - Let,

$$r = False.$$

Then the resolution becomes,

$$((p \lor q) \land \neg p) \to q$$

This is the same as disjunctive syllogism.

Example I:

- Use resolution to show that the hypotheses
 - "Jasmine is skiing or it is not snowing"
 - "It is snowing or Bart is playing hockey"
- Imply that
 - "Jasmine is skiing or Bart is playing hockey."

Solution:

Let,

$$p =$$
"It is snowing"

$$r = "Jasmine is skiing"$$

$$q = "Bart is playing hockey."$$

The hypotheses can be represented as follows

1.
$$\neg p \lor r$$

$$p \lor q$$

The resolution suggests that

$$((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$$

Thus, the hypotheses implies,

$$(q \lor r)$$

Example 2:

▶ Show that the premises $(p \land q) \lor r$ and $r \rightarrow s$ imply the conclusion $p \lor s$.

Solution:

We can rewrite the premises $(p \land q) \lor r$ as two clauses, $p \lor r$ and $q \lor r$. We can also replace $r \to s$ by the equivalent clause $\neg r \lor s$. Using the two clauses $p \lor r$ and $\neg r \lor s$, we can use resolution to conclude $p \lor s$.

Rules of Inference for Quantifiers

Like the rules of inference for propositions, we now we see the rules of inference for quantified statements.

Rules of Inference	Name
$\frac{\forall x P(x)}{\therefore P(c)}$	Universal instantiation
$\frac{P(c) for an arbitrary c}{\therefore \forall x P(x)}$	Universal generalization
$\frac{\exists x P(x)}{\therefore P(c) \text{ for some element } c}$	Existential instantiation
$\frac{P(c) \ for \ some \ element \ c}{\therefore \ \exists x P(x)}$	Existential generalization

Universal Instantiation

P(c) is true, where c is a particular member of the domain, given the premise $\forall x P(x)$.

Universal Generalization

- $\forall x P(x)$ is true, given the premise that P(c) is true for all elements c in the domain.
- We show that $\forall x P(x)$ is true by taking an arbitrary element c from the domain and showing that P(c) is true.
- The element c that we select must be an arbitrary, and not a specific, element of the domain.

Existential Instantiation

- Allows us to conclude that there is an element c in the domain for which P(c) is true if we know that $\exists x P(x)$ is true.
- We cannot select an arbitrary value of c here, but rather it must be a c for which P(c) is true.

Existential Generalization

- Allows us to conclude that $\exists x P(x)$ is true when a particular element c with P(c) true is known.
- That is, if we know one element c in the domain for which P(c) is true, then we know that $\exists x P(x)$ is true.

Example 1:

- Show that the premises
 - "Everyone in this discrete mathematics class has taken a course in computer science"
 - "Marla is a student in this class"
- Imply the conclusion
 - "Marla has taken a course in computer science."

Solution:

Let,

D(x) =" x is in this Discrete Mathematics class."

C(x) =" x has taken a course in Computer Science."

Then, the premises can be represented as,

- 1. $\forall x(D(x) \rightarrow C(x))$
- D(Marla)

The conclusion is simply, C(Marla).

We construct an argument to show that our premises lead to the desired conclusion as follows,

Steps	Reasons
	premise
2. $D(Marla) \rightarrow C(Marla)$	Universal Instantiation using (1)
3. D(Marla)	premise
4. C(Marla)	Modus ponens using (2)and (3)

Thus, we can see that our premises lead to the desired conclusion.

Example 2:

- Show that the premises
 - "A student in this class has not read the book"
 - "Everyone in this class passed the first exam"
- Imply the conclusion
 - "Someone who passed the first exam has not read the book."

Solution:

Let,

$$C(x) =$$
"x is in this class."

$$B(x) =$$
" x has read the book."

$$P(x)$$
 ="x passed the first exam."

Then the premises can be represented as,

- 1. $\exists x (C(x) \land \neg B(x))$
- 2. $\forall x (C(x) \rightarrow P(x))$

The conclusion is simply, $\exists x (P(x) \land \neg B(x))$.

We construct an argument to show that our premises lead to the desired conclusion as follows,

Steps	Reasons
1. $\exists x (C(x) \land \neg B(x))$	premise
2. $C(a) \land \neg B(a)$	Existential instantiation using (1)
3. C(a)	Simplification from (2)
4. $\neg B(a)$	Simplification from (2)
5. $\forall x (C(x) \rightarrow P(x))$	premise
6. $C(a) \rightarrow P(a)$	Universal instantiation from (5)
7. $P(a)$	Modus ponens from (3)and (6)
8. $P(a) \wedge \neg B(a)$	Conjuntion from (4) and (7)
9. $\exists x (P(x) \land \neg B(x))$	Existential generalization from (8)

Thus, we can see that our premises lead to the desired conclusion.

THE END