8. Scattering	
8.1 Gereal discussion	
Many physics experiments:	\(\)
, , ,	7 detectors
incident beam of	1 100 -
particles (A) ter	Jet(B)
	Š

possible outcomes:

1) elastic scattering:

particle A bounces off terget what changin

internal structure of A or B

(ex. e-e scattering)

2) inelastic scattering:

internal structure of A or B changes;

kinetic energy absorbed in collision

(ex. e-scattering of H oten collision

- (ex. e-scattery off H atom, collision raises degrafts)
- 3) rearrangement collisions: outgoin particles are not AdB

we will focus on elastic scattering

. Simplifying assumptions

- · porticles A. B sphleis
- · assume A, B have no internal structure felicitic)
- assume interaction from potential V(vi- viz)
 in Com frame, scattering of a porticle of mois in by potential V(x) (potential scuttering)

number of particles per unitagles de dy = F F (0, \$) dr de differential scattering K-section

or cross sectional area of turget

Looking for solution to
$$\left(\frac{p^2}{2m} + V\right) |\psi\rangle = E |\psi\rangle$$

$$\left(\frac{K^2}{2m} + V(x)\right) |\psi(x)| = \frac{K^2 K^2}{2m} |\psi(x)|$$
He

Solution has general form (choose
$$k=2$$
 for now)
$$\psi(x) = \frac{1}{(2\pi \hbar)^3 \ln (e^{-ikz} + f(\theta, \phi) e^{-ikr}/r)}$$
in coming wave

asymptotic form from (52+k2) eikr = 0 [more: justial waves] details of f(0,0) depend on target (U)

From definitions, do = 1f(0,0)|2

8.2 Lippmar - Schwinger

. Want to solve

write

$$|\phi\rangle = \lim_{V \to 0} |\psi\rangle = |p\rangle$$

(F=KKX)

$$\Rightarrow |x\rangle = \frac{1}{E-H_0}V |\psi\rangle$$

$$\Rightarrow \boxed{|\psi\rangle = |\phi\rangle + \frac{1}{E - H_0} V |\psi\rangle}$$

$$\underline{\text{Lippman - Schwinger}}$$

Note: E-Ho somewhat formal.

. Unlike in thre-indep. pert. theory, con't project out IP?, because of cts. spectrum [unless Put in cutoff]

Can deal with singularity by moving off real axis $\frac{1}{E-H_0} \longrightarrow \frac{1}{E-H_0 \pm i\epsilon} \qquad \begin{array}{c} \text{[see book]} \\ \text{For deboils} \end{array}$

Recall time-independent part. theory - reduces to

$$|\Pi^{(k)}\rangle = \frac{Q_n}{E_n - H_o} \vee |\Pi^{(k-1)}\rangle$$
when no correction to E; $E^{(k)} = 0$, $E = 0$, $E = 0$, $E = 0$, $E = 0$.

Same equation — could derive by potting in box, applying. Figure thy.

$$\Rightarrow (\triangle_r + K_s) \uparrow (\overline{x}) = O(\overline{x}) \uparrow (\overline{x})$$

Standard technique: Green's functions

I IF QXI satisfies homogeneous equ

$$(\nabla^2 + k^2) \varphi(\underline{x}) = 0$$

then
$$\psi(x) = \phi(x) + \int d^3x' G(x-x') U(x') \psi(x')$$

satisfies (x)

$$(\nabla^2 + k^2) \psi(\underline{x}) = (\nabla^2 + k^2) \int d^3x' G(\underline{x} - \underline{x}') U(\underline{x}') \psi(\underline{x}')$$

$$= U(\underline{x}) \psi(\underline{x})$$

So need Green's Function for $\nabla^2 + K^2$ + Given by $-\frac{1}{4\pi} e^{\pm ikr}/r$

[Denvation: book - uses ± is prescription, contrar integrals]

[Hw: check)

Since we want

take G+ for outgoing wave.

[G-: outgoing place wome; difficult to arrange]

50 $\psi(x) = \frac{1}{(2\pi k)^{3/2}} e^{-\frac{2m}{k^2}} \int d^3x' \frac{1}{4\pi} \frac{e^{ik|x-x'|}}{(x-x'|)} V(x') \psi(x')$

$$\frac{e^{ik|X-X'|}}{|X-X'|} \sim \frac{e^{ikr}}{r} e^{i\frac{k\hat{X}\cdot X'}{K'}}$$

50 asymptotic from of
$$\psi$$
:
$$\psi(x) = \frac{1}{(2\pi k)^{3/2}} e^{ikz} - \frac{2m}{4\pi k^2} \frac{e^{ikr}}{r} \left(\frac{d^3 x'}{2^3 x'} e^{-ik' \cdot x'} \sqrt{(x')} \psi(x') \right)$$

$$= \frac{1}{(2\pi k)^{3/2}} \left[\frac{ikz}{r} + f(\Theta, \Phi) e^{ikr} / r \right]$$

$$\frac{1}{(2\pi k)^{3k}}f(\varphi,\varphi)=-\frac{2m}{4\pi k^{2}}\int d^{3}x'\,e^{-ik'\cdot x'}\,V(x')\,\psi(x')$$

(book: f(k', k) - same function, here just k = 2.

generalize to any $k, k' - \theta, \phi$ are rel. angles $\frac{1}{2}$.

note: book dops (1/2 in state norm $k = \frac{1}{2}$) $\frac{1}{2}$ are rel. angles $\frac{1}{2}$.

Integral equation difficult to solve; 4 on LHS. RHS

8.3. Born approximation

Use
$$(\Psi) = |P|$$
 on RHS
 $f''(\underline{k}, \underline{k}') = -\frac{2m}{4\pi k^2} \int d^3 \underline{x}' e^{i(\underline{k} - \underline{k}') \cdot \underline{x}'} V(\underline{x}')$

gives
$$d\sigma'' = |f''(\sigma, \phi)|^2 dS$$

= $\frac{m^2}{4\pi k^4} |\int d^3x' e^{-i(k-k')\cdot x'} V(x')|^2$

amounts to only taking one scattering event.	2
1 (x - x1)	
G[x-x1)	13
Born expansion . Ist order Born app	20174
MR) = d(x) + Jg,x,Q(x-x,) n(x,) d(x,)	
+ Jd3x'd3x" G(x-x')U(x) G(x'-x")U(x") Tand Born o	[Nye]
Tand Busine	Mr.
+	ppso
Born approximation from TDPT (previously Lippone-Schure	TEPT)
- Point - Spint - Spin	9-1-1-2
Golden role: 2T Kp'IVIP) P(E)	0.000
2π	n .
use box normalization IP> = 1/12 e ik.x K= = 2TT	<u> </u>
a comment of the second	
PdE = n'dordn = (= de dor	*
PSE - 11 00 ZATT - (217 - 6 - 00 Z	
$(\frac{1}{d\pi})\omega\varphi_{1}\varphi_{1} = (\frac{1}{m})\frac{d\sigma}{d\pi}$ $= \frac{\kappa}{m}\left \frac{1}{3\pi}\left(\frac{e^{-ikz}}{2\pi}\right)\right = \frac{\kappa}{m}\left \frac{1}{3\pi}\left(\frac{e^{-ikz}}{2\pi}\right)\left \frac{e^{-ikz}}{2\pi}\right $	549
To Colored & (Toridat flow) & JD	
200 100 Page 1	

So
$$\frac{d\sigma}{d\Omega} = \frac{mL^3}{\hbar k} \cdot \frac{2\pi}{k} \cdot \left(\frac{L}{2\pi}\right)^3 \cdot \frac{km}{\kappa^2} \left| \frac{1}{L^3} \right| d^3x e^{i(\underline{k}-\underline{k}')\cdot\underline{x}} V(\underline{x}) \right|^2$$

$$= \frac{m^2}{4\pi^2 k^4} \left| \int d^3x e^{i(\underline{k}-\underline{k}')\cdot\underline{x}} V(\underline{x}) \right|^2 \qquad (1st Born approx)$$

Optical theorem

Consider conservation of probability $Aux + = \frac{k}{m} Im(\psi^* \nabla \psi)$

Look at large sphere

correr. of prob: reduced amplitude @ 8=0

$$\int_{c}^{c} \frac{\ln \ln \left(e^{-ik^{2}} + f^{*}_{(\theta, \phi)} - ikr - ikr \cos \theta\right)}{\ln \ln \ln \left(e^{-ik^{2}} + f^{*}_{(\theta, \phi)} - ikr -$$

O flux from incoming wave

$$\int_{\Omega} \int_{\Omega} \frac{k k}{m} |f|^2 \frac{1}{r^2} r^2 d\Omega = \frac{k k}{m} \int_{\Omega} |f|^2 d\Omega$$

$$= \frac{k k}{m} \int_{\Omega} |f|^2 d\Omega$$

$$= \frac{k k}{m} \int_{\Omega} |f|^2 d\Omega$$

$$= \frac{k k}{m} \int_{\Omega} |f|^2 d\Omega$$

Interference term: oscillates rapidly as $\Gamma \rightarrow \alpha$ unless $\Theta = 0$.

$$\int_{\Theta} j_r \cong \frac{h}{m} 2Re \int_{\Theta=0}^{\infty} \frac{f(0)}{r} k e^{ikr(1-\cos\theta)} 2\pi r^2 \sin\theta d\theta$$

$$= \operatorname{Re} \frac{4\pi h k}{m} f(0) \lim_{\epsilon \to 0} e^{-ik(r+i\epsilon)} \frac{\theta^2}{2}$$

$$(r+i\epsilon) \theta d\theta$$

$$= \frac{4\pi k k}{m} R_0 f(0) \left[\frac{1}{ik} e^{ik(r+ic)\theta^2/2} \right]_0^{\infty}$$

$$=-\frac{4\pi k}{m} Inf(0).$$

Since total flux =0 by pob. conserv.

$$\frac{4\pi}{K} \text{Im } f(0) = O_{+0+}$$
 (Optical theorem)

Next: partial wore approach to scattering

Recall for decin of excided states

(k) basis unnatural for photons of particular A.M.

- wont vector spherical harmonius

Similar for scattering - use spherical wares

8.5 Spherical waves

Wont to find (continuum) states of free particle w fixed A.M. eigenvalues L^2 , L_z .

$$f(x) = \{x \mid E, l, m\} = C Re(r) Yam(\hat{x})$$

Free Schrödinger egn:

$$R_{1}^{"} + \frac{2}{r} R_{2}^{l} + \left(k^{2} - \frac{2(2+1)}{r^{2}}\right) R_{2} = 0$$

$$vse \qquad \rho = kr$$

$$R_{2}^{"}(\rho) + \frac{2}{\rho} R_{2}^{"}(\rho) + R_{2}(\rho) - \frac{2(2+1)}{\rho^{2}} R_{2}(\rho) = 0$$

Solution: Spherical Ressel Functions

$$R_{e}(r) = a j_{e}(kr) + b \Pi_{e}(kr)$$

$$j_{e}(p) = \left(\frac{tr}{2p}\right)^{1/2} J_{e+1/2}(p) \quad \text{Bessel for (regular ep:0)}$$

$$\Pi_{e}(p) = \left(\frac{\pi}{2p}\right)^{1/2} N_{e+1/2}(p) \quad \text{Neumann for. (singular ep:0)}$$

$$j_{\ell}(p) = (-p)^{\ell} \left(\frac{1}{p} \frac{d}{dp}\right)^{\ell} \left(\frac{s_{\ell} N p}{p}\right)$$

$$\Pi_{\ell}(p) = -(-p)^{\ell} \left(\frac{1}{p} \frac{d}{dp}\right)^{\ell} \left(\frac{cos p}{p}\right)$$

$$J_{\ell}(p) = \frac{s_{\ell} N p}{p}$$

$$J_{\ell}(p) = \frac{cos p}{p^{\ell}}$$

$$\Pi_{\ell}(p) = -\frac{cos p}{p^{\ell}}$$

$$\Pi_{\ell}(p) = -\frac{cos p}{p^{\ell}}$$

$$\int_{0}^{2} (p) \xrightarrow{\rho \to 0} \frac{p^{2}}{(2l+1)!!}$$
 $\int_{0}^{2} (p) \xrightarrow{\rho \to 0} \frac{p^{2}}{(2l-1)!!}$

large
$$\rho$$
:

 $j_2(\rho) \rightarrow \infty \rightarrow S_{1N}(\rho - \frac{2\pi}{2})$
 $N_2(\rho) \rightarrow \infty \rightarrow Cos(\rho - \frac{2\pi}{2})$

Hankel Functions $H_{2}^{\pm}(p) = H_{1}^{(1,2)}(p) = j_{R}(p) \pm i \Pi_{2}(p) \xrightarrow{p \to \alpha} (-i)^{\pm (2\pi i)} e^{\pm ip}$ For functions $I \in \{1, m\}$ smooth @ origin, must have $(X \mid E, 1, m) \sim j_{R}(Kr) Y_{2m}(X)$

Normalization of spherical wave 1 wort (E', l', m'l E, l, m) = See' Sum' & (E'-E) given by (X/E, l, m) = i (2mk) 1/2 (kr) Yem (X) from from from je(kr) je(kr) = # 8k2 S(k-k1) Connect to p basis: etke = 2 a. je(kr) Pe(coso) since & Pe(s) Pe(s) d3 = 2 111 - Set 1 d3 e ikr 2 Pe(2) = 2 2+1 Qe je (kr) EHW) e : = 2 (22+1) i / je (kr) Pe (=) more generally e" = 2 (2111) i'je(kr) Pe(k.f) => < p | E, l, m) = Timo & (E - 2m) Yem (p)

8.6 Portial wave scattering. Assume we have a potential V(r).

- spherically symmetric

- local (V(r) = 0, r > R) (note: doesn't include Codomb!) Outside r-R, solutions are spherical wares \$ = Ae(kr) Years) Ae(p) = linear combinate of je(p), the(p) = eip ht = outgoin ware ... He = incoming wave If V= Ø, ... lin comb. is A = je For general potential. solution for T? R is Ae(p) = = [He(p) + e he(p)] . Rotational symmetry > lim incomes = lim outgots (no mixing) Unitarity (proh. conservation) = 2 Pure phase (Se real) Scatters properties of U completely determined by partial waves. Simple gicture of scatter

Determining phase shifts

Want to solve Schrödinger in potential V(r) $\psi_{e}(\underline{x}) = A_{x}(r) \text{ Yem}(\hat{x})$

with B.C. A. (0) = 0.

Write $A_{2}(r) = \frac{1}{r} U_{2}(r)$ $U_{1}^{1} + \left(K^{2} - \frac{2m}{K^{2}} V - \frac{l(l+1)}{r^{2}}\right) U_{2} = 0$

Solve 1D Schrödinger out to F=R.

Then match $\beta R = \frac{\Gamma}{A_{2}} \frac{dA_{2}(r)}{dr}$ with $\frac{\Gamma}{2} \left[H_{2}(\rho) + e^{2i\delta R} H_{2}(\rho) \right]$ $= Ce^{i\delta R} \left[\cos \delta R \int_{R} \rho(\rho) - \sin \delta R \ln(\rho) \right]$

which has $\beta_{\ell} = kR \left[\frac{j_{\ell}(kR) \cos \delta_{\ell} - \pi_{\ell}(kR) \sin \delta_{\ell}}{j_{\ell}(kR) \cos \delta_{\ell} - \pi_{\ell}(kR) \sin \delta_{\ell}} \right]$

 $\Rightarrow + \tan \delta e = \frac{kR je(kR) - \beta_L je(kR)}{kR n'e(kR) - \beta_L ne(kR)}$

. This allows us to fix the phase shifts Se For each l.

Connection to place make scattering

$$\psi(x) \xrightarrow{\Gamma + \infty} (2\pi k)^{3h} \left[e^{ik^{2}} + f(\theta) \xrightarrow{E^{ikr}} \right]$$

$$\frac{1}{1} = \frac{1}{1} \left[e^{ik^{2}} + f(\theta) \xrightarrow{E^{ikr}} \right]$$

$$\frac{1}{1} = \frac{1}{1} \left[e^{ik^{2}} + f(\theta) \xrightarrow{E^{ikr}} \right]$$

$$\frac{1}{1} = \frac{1}{1} \left[e^{ikr} - \frac{1}{1} e^{ikr} \right]$$

$$\psi(x) \xrightarrow{\Gamma + \infty} \sum_{k=0}^{\infty} (2k+1) P_{k}(\cos\theta) \frac{1}{2ik} \left[\frac{e^{ikr} - e^{-ikr} - 2\pi}{\Gamma} + \frac{1}{1} e^{ikr} - \frac{1}{1} e^{-ikr} -$$

for
$$f_{\ell} = \frac{e^{2i\delta_{\ell}}-1}{2ik} = \frac{e^{2i\delta_{\ell}}\sin\delta_{\ell}}{k} = \frac{1}{k\cot\delta_{\ell}-ik}$$

Properties of phone shifts'

X- section

$$\begin{aligned}
& = \int |f(0)|^2 dJZ \\
& = \frac{1}{k^2} \cdot 2\pi \int_{-1}^{1} d^3 \sum_{k,k'} (2k+1)(2k+1) e^{-\frac{1}{2}(k_2 - k_2)} & \text{Spolishold} P_{k}(3) P_{k}(1) \\
& = \frac{4\pi}{k^2} \sum_{k'} (2k+1) \sum_{k'} \sum_{k'} (2k+1) \sum_{k'} k' \\
& = \sum_{k'} \int_{-1}^{1} \int_{-1}^{1} d^3 \sum_{k'} \sum_{k'} (2k+1) \sum_{k'} k' \int_{-1}^{1} d^3 \sum_{k'} \sum_{k'} \sum_{k'} (2k+1) \sum_{k'} k' \int_{-1}^{1} d^3 \sum_{k'} \sum_{k'}$$

Optical theorem:

In
$$f(0) = \frac{27}{k} \frac{(22+1)}{51N^2} \delta_2 = \frac{k}{417} 6767$$

Kfe must le on unitarity circle

Unitarity bound:
$$\sigma_e \leq \frac{4\pi}{k^2}(2l+1)$$

Short - range potential:

If V=D except for T << 1/K

only l=0 partial wave contributes ('5-wave") since Je(KT)~0, l +0 (incoming: only je, no Me)

50 0=0. 8 4TT no matter how strong potential is.

Similarly, for any K, R, @ large l partial waves "uppressed for l>> KR since 1 en (KR) 2/(2e+1)!!

(natural: no effect @ impact parameter 6= 2 Po

Attractive us, repulsive potentials

Schrödiger: $\frac{U''}{W} = U + \frac{Q(Q+1)}{r^2} - K^2$

For large T, U"/W < 0.

U<0 decresses u"/u (more regative)
- "pulls in" whenction (attractive pot.)

⇒ δe>0

U>0 increases u"/u (less neg.)
- "poster out" when.

=> Se < 0.

$$\Rightarrow$$
 $A_{\ell}(R) = 0$

$$\Rightarrow$$
 cos $\delta_{\mathbf{r}}$ $j_{\mathbf{r}}(\mathbf{p}) - s_{iN} \delta_{\mathbf{r}} \Pi_{\mathbf{r}}(\mathbf{p}) \Big|_{\mathbf{p} = \mathbf{k}\mathbf{R}} = 0$

$$\Rightarrow \tan \delta_{\ell} = \frac{j_{\ell}(\rho)}{\Pi_{\ell}(\rho)}. \qquad \left[\Leftrightarrow e^{2i\delta} = -\frac{\Pi_{\ell}(\rho)}{\Pi_{\ell}(\rho)} \right]$$

ow-energy limit

3 - wave dominates

(4x geometrical expectation; ox since 2 large)

High- energy limit

_ Modes up to la kR contribute significantly

(je ~ (ke) e/(ze+1)!!)

$$5N^{2} \delta R = \frac{\tan^{2} \delta R}{1 + \tan^{2} \delta R} = \frac{j_{R}(kR)^{2}}{j_{R}(kR)^{2} + n_{R}(kR)^{2}}$$

Asymptotically,

jelp). nelp) - - - - cos (p- 2")

asympt. behavior only accurate as p>> l but for p=1, oscillating with ~ some amplitude.

so Se roughly randomly distributed phase as I goes from 0 - p.

[Sak: sin' de + sin' den = 1 false for l = p.]

can still approx for large kR: JINE &= 12
can still approx for large kR: $31N^2\delta_1 = \frac{1}{2}$ $\Rightarrow 5 + 61 \approx \frac{4\pi}{k^2} \sum_{k=0}^{kR} (2k+1) \cdot \frac{1}{2} \xrightarrow{kR \to \infty} 2\pi R$
Still 2x geometric x-section.
Enote: answer correct though argument & heuristic; a.g. in Sak, wrang
Expect physically
$\Theta = \pi - 2\alpha$
Incoming flux for dxdp = FR2sINXCOXXdpdx
scattered Flux Fo(0,0) SIND dOdD = Fo(0,0) . 4 . SINX COSX dox do
$\Rightarrow \sigma(\Theta, \Phi) = \mathbb{R}^2/A \text{constant in } \Theta.$
- σ fot = 5 σ (0, Φ) dΩ = TR2
why is this not what we get?
Use fe = 1 (e 2:80 - 1)
THE STREET STATE OF STREET STREET, STREET STREET, STRE

Shadow x-section

$$f_{\text{shadu}} = \frac{1}{2k} \sum (2l+1) P_{\ell}(\cos \theta)$$

but $\frac{1}{2} \sum_{q=0}^{\infty} (2l+1) P_{\ell}(\cos \theta) \sim S(\cos \theta - 1)$

$$\left[\int d^{3} \delta(3-1) P_{2}(3) = P_{2}(1) = 1 \right]$$

$$\left[\int \frac{1}{2} \mathcal{Z}(20+1) P_{2}(3) P_{2}(3) d^{3} = 1 \right]$$

so I shadow only relevant near 0=0.

represents part of fuhich concels plane wome eike in shadow of sphere.

Recall outgoing wave is [1+Zikfe] etkr (20+1)Pe(050)

so fe = 1/2k is what concels plane wave.

Carcellation up to la KR

affects impact parameter up to R. - * 1 R

1- KR

can check $\int |f_{shadow}|^2 del = TR^2$ $\int f_{shadow} f_{refl} = 0$. (from oscillations)

TAN $\delta e^{\frac{1}{2}(p)} = \frac{j_{1}(p)}{\prod_{k}(p)} \simeq \frac{p^{2k+1}}{(2k+1)!!(2k-1)!!}$

S-wave most important contribution at law energy, So~*KR.

Consider outside wavefunction (r=R) e low energy

Ao & [cos & jo(kr) - SIN & Mo Mo(kr)]

Mo = r Ao & [cos & SIN kr + SIN & COS kr]

For k & R, r=R but kr & 1,

Mo = c sin & [1 + cot & kr]

linewrow.of

who have a

(intercept point)

R

$$a = \lim_{k \to 0} \frac{-1}{k \cot 8.}$$
so as $k \to 0$ 80 $\sim -k \ln a$

Relate to total x- section:

lim Otot => 50 =
$$4\pi |f_0|^2 = 4\pi |k \cot \delta_0 - ik|^2$$
 $\Rightarrow 4\pi a^2$ (like hard sphere of public a)

a = "scattering length" gives limit of low-energy x-redn.

Attractive:

Repulsive

deeper attructive potential

charge of sign signels bound state!

Scattering length a bound stutes

Suppose VIA has a barely bound state with $E_b = -\frac{\kappa^2 \alpha^2}{2m} \le 0$

U looks like inside wavefun of scattering state as K - 0.

so
$$\frac{r d}{dr} e^{-\alpha r}|_{r=\alpha} = -\alpha \approx \lim_{k \to 0} \frac{r u_0}{u_0} = \lim_{k \to 0} k \cot \delta_0 = -\frac{1}{\alpha}$$

(uo ~ 1+(cot 80) kr)

Binding energy -
$$E_{k} = \frac{k^{2}\alpha^{2}}{2m} = \frac{k^{2}}{2ma^{2}}$$

so a large positive scattering length a. K' = ma2.

Bound states as poles

L=0 wavefunction at large T

[Notation from Simultix: outgoing = (50), incoming.

queralizes: V(x) not not invariant: S not diagrama!

Bound state: asymptotically $e^{-\kappa r}$.

Fits form above where $k = i\alpha$, $S_0(i\alpha) = \infty$ or $k = -i\alpha$, $S_0(i\alpha) = 0$ Bound states appear as poles of $e^{2i\delta_0}$ & $kf_0 = \frac{1}{2i}(e^{2i\delta_0})$.

In kpole from bd. state $e^{-\kappa r}$ $e^{-\kappa r}$

similar story for ezish

Resonances

For any partial wave l, eff. potential is $V_{eff}(r) = V(r) + \frac{h^2}{zm} \frac{l(l+1)}{r^2}$

Potential can have "quasi-bound" state

quasi-bond (text)

Vea(r)

1		FIRST But the track and the same area.
Bd stoke to	- general R (low E)	
A (c)	« He (ixr)	e-*
r>R	r+00	- · · · · · · · · · · · · · · · · · · ·
	cd h,+	/
	= cd hi => -l-1	(he p)~ pin
ļ		
Board the	: βe(ix) = -l-1.	
20700 319192		
Raise poter	tial slightly. becomes qu	porod - isen
	Be(K) = - l-1	ne ~ (21-1)!
Expand		non (21-1)
	on Sa = Pja' - Beja	Pe+
	Pri- Berle	eminoral, emin del alc
	~ p28+1	0-40
	=+ p===================================	1+1+81
·		
		maran in a marana and a marana

Received By

Shift in Se - time lag in reflection due to resonance

max of on is saturated

shape of resonance:

$$\frac{1}{2} \prod_{k=1}^{\infty} \frac{(k_{0}R)^{2k}}{(2k-1)!! (2k-1)!! (2k-1)!! (2k-1)!}$$

$$\frac{1}{2}\prod_{k=1}^{2} \frac{(k_{0}R)^{2Q+1}}{(k_{0}R)^{2Q+1}} = \frac{2}{dk_{0}k_{0}}$$

$$\implies O_{e} = \frac{4\pi(2L+1)}{k_{0}^{2}} S_{1}N^{2} de \qquad [note: in ble def nell to E:]$$

$$Kfe = \frac{1}{CoT \delta - i} = \frac{1}{\frac{k_0 - k}{\Gamma k/2} - i} = \frac{\Gamma e/2}{K_0 - k - i\Gamma e/2}$$

so kfu has pole at $k = k_0 - i \Gamma_0/2$

rapid change in TE from proximity to the pole.

Rubul Schröderer ear for potential U(1)

$$U_e'' + (K^2 - U(r) - \frac{l(l+1)}{r^2})U_e = 0$$

Asymptotic form $r \to \infty$

Asymptotic form $r \to \infty$
 $r \to \infty$