

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ: ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА: КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ

ОТЧЕТ

по лабораторной работе № 2

Тема: _Три сх	емы включения транзи	стора (Вариант 13)	
Дисциплина:	Электроника		
Студент	ИУ6-42Б	13.05.24	А. П. Плютто
	(Группа)	(Подпись, дата)	(И. О. Фамилия)
Преподаватель	,		Н. В. Аксенов
		(Подпись, дата)	(И. О. Фамилия)

Содержание

1. Задание	3
1.1. Цель работы	
1.2. Задание	
1.3. Параметры схемы	
2. Схема с общим эмиттером	
3. Схема с общей базой	
4. Схема с общим коллектором	
5. Аналитический рассчет	
5.1. Общий эмиттер	
5.2. Общая база	
 5.3. Общий коллектор 	
6. Вывод	

1. Задание

1.1. Цель работы

Изучить, как влияют различные способы включения биполярного транзистора и величина сопротивления нагрузки на свойства усилительного каскада.

1.2. Задание

Подготовить к работе схему в Multisim. Подключить к ней измерительные приборы, подать питание.

- 1. Подавая на вход схемы синусоидальный сигнал с частотой $f_c=2$ кГц (средняя частота для усилителя) и напряжением $U_{\rm r}=35$ мВ, для каждого из усилительных каскадов ОЭ, ОБ, ОК провести экспериментальную оценку малосигнальных параметров каскада $R_{\rm Bx}$, κ_i , κ_u , κ_p , $R_{\rm вых}$ различных сопротивлениях нагрузки $R_{\rm H}$. Построить зависимости параметров усилителя от $R_{\rm H}$. При опенке выходного сопротивления усилителя $R_{\rm вых}=\frac{U_{\rm вых \ xx}}{i_{\rm вых \ ks}}$ будем считать, что холостой ход на выходе усилителя возникает, если установить $R_H=R_{\rm H \ make}$, а режим короткого замыкания при $R_H=R_{\rm H \ muh}$.
- 2. Используя формулы таблицы, оценить те же параметры усилителя и вычислить относительное расхождение между экспериментальными и аналитическими результатами.
- 3. Пользуясь экспериментальными данными определить, какой каскад и при каких $R_{\rm H}$ обладает наибольшим усилением по мощности. Объясните почему?
- 4. Дать заключение, как соотносятся между собой у различных каскадов $\kappa_i, \kappa_u, R_{\text{вх}}, R_{\text{вых}}$. Объясните полученные результаты.
- 5. Экспериментально определить верхнюю граничную частоту для каждого из каскадов ОЭ, ОБ и ОК при $R_{\rm H}$ указанном в варианте. Напряжение на выходе ГСС поддерживать неизменным на всех частотах и равным 35 мВ.
- 6. Рассчитать $f_{\rm B}$ для каждого каскада и сопоставить расчетные и экспериментально полученные значения между собой.

1.3. Параметры схемы

N	$E_{\scriptscriptstyle m K}$	B	I_s	R_1	R_2	$R_{\scriptscriptstyle m K},R_{\scriptscriptstyle m S}$	$R_{ m r}$	$C_{б \mathfrak{s}}$	$C_{ m 6k}$	f_{lpha} (C_1, C_2	$C_{блок}$	R_H
	В		A	кОм	кОм	кОм	кОм	пΦ	пФ	МГц	ηФ	нФ	кОм
13	12	100	Ge	10	5	3	3	3	5	100	2	100	4

2. Схема с общим эмиттером

Рисунок 1 — Схема с общим эмиттером

Проведем несколько измерений тока и напряжения с разной нагрузкой (сопротивлением):

$R_{\scriptscriptstyle m H}$, Om	100	1k	4k	100k
$U_{\scriptscriptstyle m BX},{ m B}$	0,0109	0,0109	0,0109	0,0109
$I_{\scriptscriptstyle m BX},$ A	$8,02*10^{-6}$	$8,02*10^{-6}$	$8,02*10^{-6}$	$8,02*10^{-6}$
$U_{\scriptscriptstyle m BbIX},{ m B}$	0,459	0,356	0,8145	1,38
$I_{\scriptscriptstyle m BMX},$ A	0,000459	0,000356	0,0002036	$1,38*10^{-8}$

Ниже представлена схема с холостым ходом, где $R_{\scriptscriptstyle \rm H}=5$ ТОм.

Рисунок 2 — Холостой ход

Также находим значение тока при коротком замыкании, $R_{\scriptscriptstyle
m H} = 0.0000001$ Ом.

Рисунок 3 — Короткое замыкание

С помощью данных, представленных выше (рисунки 3, 4) находим

$$R_{ ext{buix}} = rac{U_{ ext{xx}}}{I_{ ext{k3}}} = rac{1.4}{0.000475} = 2947.36$$
 ом

Рассчитываем коэффициент передачи усилителя по току K_i , коэффициент передачи усилителя по напряжению K_u , коэффициент усиления мощности K_p и входное сопротивление $R_{\rm BX}$.

Входное сопротивление $R_{\scriptscriptstyle \mathrm{BX}} = \frac{U_{\scriptscriptstyle \mathrm{BX}}}{I_{\scriptscriptstyle \mathrm{BX}}}$

Коэффициент передачи усилителя по току $K_i = rac{I_{ ext{\tiny BLIX}}}{I_{ ext{\tiny RY}}}$

Коэффициент передачи усилителя по напряжению $K_u = \frac{U_{\scriptscriptstyle \mathrm{Bbix}}}{U_{\scriptscriptstyle \mathrm{uv}}}$

Коэффициент усиления мощности $K_p = K_i K_u$ Выходное сопротивление $R_{\text{вых}} = \frac{U_{\text{xx}}}{I_{\text{ка}}}$

$R_{\scriptscriptstyle m BX},$ Om	1359,102	1359,102	1359,102	1359,102
k_{i}	57,232	44,389	25,387	0,002
k_u	42,110	32,661	74,725	126,606
k_p	2410,041	1449,770	1897,003	0,218

Рисунок 4 — Частотный анализ

На сопротивлении 5 кОм максимальное напряжение — 23, 925В. Граничная частота на напряжении $\sqrt{2}f_{\rm max}=193~{
m kHz}.$

3. Схема с общей базой

Рисунок 5 — Схема с общей базой

Проведем несколько измерений тока и напряжения с разной нагрузкой (сопротивлением):

$R_{\scriptscriptstyle m H}$, Om	100	1k	4k	100k
$U_{\scriptscriptstyle m BX},{ m B}$	0,522	0,522	0,522	0,522
$I_{\scriptscriptstyle \mathrm{BX}},\mathrm{A}$	0,0000115	0,0000115	0,0000115	0,0000115
$I_{\scriptscriptstyle m BMX},$ A	0,000011	0,0000085	0,0000048	$3,309*10^{-7}$
$U_{\scriptscriptstyle m BbIX},{ m B}$	0,001102	0,0085	0,0195	0,0331

Ниже представлена схема с холостым ходом, где $R_{\scriptscriptstyle \mathrm{H}}=5\,$ ТОм.

Рисунок 6 — Холостой ход

Также находим значение тока при коротком замыкании, $R_{\scriptscriptstyle \rm H} = 0.0000001$ Ом.

Рисунок 7 — Короткое замыкание

С помощью данных, представленных выше (рисунки 7, 8) находим

$$R_{ ext{bux}} = rac{U_{ ext{xx}}}{I_{ ext{k3}}} = 0, rac{0341}{0}, 0000113 = 3017$$
 ом

Рассчитываем коэффициент передачи усилителя по току K_i , коэффициент передачи усилителя по напряжению K_u , коэффициент усиления мощности K_p и входное сопротивление $R_{\scriptscriptstyle \mathrm{BX}}$.

$R_{\scriptscriptstyle m BX},$ Om	45391,30435	45391,30435	45391,30435	45391,30435
k_{i}	0,956521739	0,739130435	0,417391304	0,028773913
k_u	0,002111111	0,016283525	0,037356322	0,063409962
k_p	0,002019324	0,012035649	0,015592204	0,001824553

Рисунок 8 — Частотный анализ

На сопротивлении 5 кОм максимальное напряжение — 0, 5575В. Граничная частота на напряжении $\sqrt{2}f_{\rm max}=9,8\,$ мГц.

4. Схема с общим коллектором

Рисунок 9 — Схема с общим коллектором

Проведем несколько измерений тока и напряжения с разной нагрузкой (сопротивлением):

$R_{\scriptscriptstyle m H}$, Om	100	1k	4k	100k
$U_{\scriptscriptstyle m BX},{ m B}$	0,0164	0,018	0,0182	0,0183
$I_{\scriptscriptstyle \mathrm{BX}},$ A	0,0000061	0,0000056	0,0000055	0,0000055
$I_{\scriptscriptstyle m BMX},$ A	0,0001277	0,0000175	0,0000045	0,000000181
$U_{\scriptscriptstyle m BMX},{ m B}$	0,0127	0,0175	0,018	0,0181

Ниже представлена схема с холостым ходом, где $R_{\scriptscriptstyle \rm H}=5\,$ ТОм.

Рисунок 10 — Холостой ход

Также находим значение тока при коротком замыкании, $R_{\scriptscriptstyle \mathrm{H}} = 0.0000001$ Ом.

Рисунок 11 — Короткое замыкание

С помощью данных, представленных выше (рисунки 11, 12) находим $R_{\text{вых}}=\frac{U_{\text{хx}}}{I_{\text{ks}}}=0, \frac{0181}{0},000334=54,19$ Ом

Рассчитываем коэффициент передачи усилителя по току K_i , коэффициент передачи усилителя по напряжению K_u , коэффициент усиления мощности K_p и входное сопротивление $R_{\rm BX}$.

$R_{\scriptscriptstyle m BX},$ Om	2688,52459	3214,285714	3309,090909	3327,272727
k_i	20,93442623	3,125	0,818181818	0,032909091
k_u	0,774390244	0,972222222	0,989010989	0,989071038
k_p	16,21141543	3,038194444	0,809190809	0,032549429

Рисунок 12 — Частотный анализ

На сопротивлении 5 кОм максимальное напряжение — 0,515В. Граничная частота на напряжении $\sqrt{2}f_{\rm max}=7,9$ мГц.

5. Аналитический рассчет

Рисунок 13 — Ток для эмиттера

Рисунок 14 — Ток для базы

Рисунок 15 — Ток для коллектора

$$I_{\scriptscriptstyle 9}=0,00119\mathrm{A}$$

$$I_{\rm f}=0,0012{\rm A}$$

$$I_{\rm k}=0,0012{\rm A}$$

5.1. Общий эмиттер

-	•
	$R_{ exttt{bx}} = R_{ exttt{bx}} = R_{ exttt{fp o}} \ R_{ exttt{f}} \ $
Входное сопротивление	$R_{ ext{bx}} = rac{R_{ ext{bx Tp o9}} * R_{ ext{6}}}{R_{ ext{bx Tp o9}} + R_{ ext{6}}}$
	$R_{6} = R_1 \ R_2$
Сопротивление базы	$R_{\rm G} = \frac{R_1 * R_2}{R_1 + R_2}$
Входное сопротивление	$R_{\rm bx\ Tp\ o9} = r_{\rm fas} + (1+B)*r_{\rm 9M}$
транзистора	$r_{\rm da3}\approx 0\Omega$
Сопротивление эмиттера	$r_{\scriptscriptstyle exttt{9M}} = rac{arphi}{I_{\scriptscriptstyle exttt{9M}}} \Omega$
	$\varphi = k \frac{T}{q} = 0.026$

Коэффициент передачи по току	$K_i = \frac{R_{\rm 6}}{R_{\rm 6}} + R_{\rm bx\ Tp\ o9}*B*\frac{R_{\rm k}}{R_{\rm k}} + R_{\rm h}$
Коэффициент передачи по напряжению	$K_u = rac{B*R_{ ext{\tiny KH}}}{R_{ ext{\tiny BX TP O9}}}$
по наприжению	$R_{\scriptscriptstyle{ ext{KH}}} = R_{\scriptscriptstyle{ ext{K}}} \ R_{\scriptscriptstyle{ ext{H}}}$
Коэффициент мощности	$K_{\mathrm{p}} = K_{i} * K_{u}$

$R_{\rm 6}$, Ом	3333.333333
$R_{\scriptscriptstyle ЭM},$ Ом	21.8487395
$R_{ m BX\ TP\ oo}, { m OM}$	1332.773109
$R_{\scriptscriptstyle m BX},$ Om	952.0950894

$R_{\scriptscriptstyle m H}$, Om	100	1000	4000	100000
k_{i}	41.47963393	32.14671629	18.36955217	1.248416167
k_u	4.356669243	33.76418663	77.17528373	131.1230549
k_p	180.7130453	1085.407729	1417.675401	163.6961415
Δk_i	40.52311219	31.40758586	17.95216086	1.219642254
Δk_u	4.354558132	33.74790311	77.13792741	131.0596449
Δk_p	180.711026	1085.395693	1417.659808	163.694317
$\psi k_i\%$	43.36507183	43.49261616	44.0103854	43.38708346
$\psi u\%$	2063.685431	2073.518285	2065.92298	2067.862074
$\psi k_p\%$	89491.86695	90182.73487	90922.06655	89718.50439

Далее рассчитаем частоту.

$$\begin{split} f_{\scriptscriptstyle \rm B} &= \frac{1}{2*\pi*\tau_{\scriptscriptstyle \rm B}} \\ \tau_{\scriptscriptstyle \rm B} &= G(\tau_{\scriptscriptstyle \rm B} + {\rm C_{\scriptscriptstyle K9}}R_{\scriptscriptstyle \rm KH}) + {\rm C_{\scriptscriptstyle H}}R_{\scriptscriptstyle \rm KH} \ ({\rm C_{\scriptscriptstyle H}} \to 0 \ \Phi) \\ R_{\scriptscriptstyle \rm KH} &= R_{\scriptscriptstyle \rm K} \| R_{\scriptscriptstyle \rm H} \\ G &= \frac{R_{\scriptscriptstyle \rm F} + r_{\rm 6} + r_{\rm 9}}{R_{\scriptscriptstyle \rm F} + R_{\scriptscriptstyle \rm BX \ TP \ O9}} \ (r_{\rm 6} \to 0 \ {\rm Om}) \end{split}$$

$$R_{\scriptscriptstyle \mathrm{T}} = R_{\scriptscriptstyle \mathrm{T}} \| R_{\rm 6}$$

$$\tau_{\scriptscriptstyle \mathrm{B}} = \frac{\mathrm{B}+1}{2*\pi*f_{\alpha}}$$

$$f_{\scriptscriptstyle \mathrm{B}} = \frac{f_{\alpha}}{\mathrm{B}+1}$$

$$\mathrm{C}_{\scriptscriptstyle \mathrm{K}\ni} = \mathrm{C}_{\rm 6K}(\mathrm{B}+1)$$

$f_{\scriptscriptstyle m B}$, Гц	213360.4476
$ au_{_{ m B}}$, c	$7.46322*10^{-7}$
$r_{\scriptscriptstyle \mathrm{KH}},$ Om	1875
R_r , Ом	1000
$R_{ m r1}$, Ом	769.2307692
G, CM	0.365951166
$ au_{_{ m B}}$, c	$3.23779*10^{-7}$
$C_{\kappa \vartheta}, \Phi$	$9.15*10^{-}10$

5.2. Общая база

Входное сопротивление	$R_{\text{bx}} = \frac{R_{\text{bx Tp of}}}{B+1} \ R_{\text{f}}$	
	$R_{\rm bx\ Tp\ o6} = R_{\rm 6a3} + (1+B)R_{\rm 9M}$	
Сопротирноми эминтера	$R_{\scriptscriptstyle \mathrm{9M}} = rac{\phi}{I_{\scriptscriptstyle \mathrm{9M}}}$	
Сопротивление эммитера	$\phi = \frac{kT}{q} = 0,026$	
Коэффициент передачи по току	$K_i = R_{\text{9}} * \alpha * \frac{R_{\text{K}}}{R_{\text{9}} + \frac{R_{\text{BX TP of}}}{\text{B} + 1} * (R_{\text{K}} + R_{\text{H}})}$	
Коэффициент передачи по напряжению	$K_u = rac{B*R_{ ext{\tiny KH}}}{R_{ ext{\tiny BX TP O9}}}$	
по напряжению	$R_{ ext{\tiny KH}} = R_{ ext{\tiny K}} \ R_{ ext{\tiny H}}$	
Коэффициент мощности	$K_{\mathrm{p}} = K_{i} * K_{u}$	

Ниже в таблицах представлены рассчитанные значения.

$R_{\rm 6},$ Ом	3333.333333
$R_{\scriptscriptstyle \mathrm{9M}},\mathrm{OM}$	21.66666667
$R_{\scriptscriptstyle m BX\ TP\ oo},$ Ом	1321.666667
$R_{\scriptscriptstyle m BX}$, Ом	10.83333333
a	0.983606557

$R_{\scriptscriptstyle m H}$, Om	100	1000	4000	100000
k_{i}	126.1633114	98.72630873	57.2357264	3.961422591
k_u	4.393279909	34.04791929	77.82381553	132.2249293
k_p	554.2707412	3361.425392	4454.302613	523.798822
Δk_i	68.9313912	54.3372813	31.84919273	3.959701893
Δk_u	37.71681183	1.387368835	3.099044887	5.619424709
Δk_p	1855.770669	1911.655322	2557.299707	523.5809721
$\psi k_i\%$	2.204422129	2.224115157	2.254570362	2302.218056
$\psi u\%$	0.104328434	1.042478428	1.041472792	1.044385311
$\psi k_p\%$	0.229983908	2.318592073	2.34807369	2404.402721

Далее рассчитаем частоту.

$$\begin{split} f_{_{\rm B}} &= \frac{1}{2*\pi*\tau_{_{\rm B}}} \\ \tau_{_{\rm B}} &= G(\tau_{_{\rm B}} + \mathrm{C_{_{K9}}}R_{_{\mathrm{KH}}}) + \mathrm{C_{_{H}}}R_{_{\mathrm{KH}}} \; (\mathrm{C_{_{H}}} \to 0 \; \Phi) \\ R_{_{\mathrm{KH}}} &= R_{_{\mathrm{K}}} \| R_{_{\mathrm{H}}} \\ G &= \frac{R_{_{\mathrm{T}}} + r_{_{6}} + r_{_{9}}}{R_{_{\mathrm{T}}} + R_{_{\mathrm{BX}} \; \mathrm{Tp} \; \mathrm{o9}}} \; (r_{_{6}} \to 0 \; \mathrm{Om}) \\ R_{_{\mathrm{T}}} &= R_{_{\mathrm{T}}} \| R_{_{6}} \\ \tau_{_{\mathrm{B}}} &= \frac{B+1}{2*\pi*f_{\alpha}} \\ \end{split}$$

$$C_{\kappa \mathfrak{s}} = C_{6\kappa}(B+1)$$

$f_{\scriptscriptstyle m B}$, Гц	999388.4436	
$ au_{_{ m B}}$, c	$1.59333*10^{-7}$	
$r_{_{ m KH}},$ Om	1875	
R_r , Ом	1000	
$R_{ m r1}$, Ом	769.2307692	
G, Cm	0.078127284	
$ au_{\scriptscriptstyle m B},{ m c}$	$3.23779*10^{-7}$	
$C_{\kappa \vartheta}, \Phi$	$9.15*10^{-}10$	

5.3. Общий коллектор

Входное сопротивление	$R_{\mathrm{bx}} = \left(R_{\mathrm{bx\ Tp\ ok}} + (B+1)\right) * R_{\mathrm{h}} \ \ R_{\mathrm{d}}$
Входное сопротивление	$\boxed{R_{\rm bx\ TP\ OK} = R_{\rm das} + (1+B)R_{\rm sm}(R_{\rm das} \rightarrow 0)}$
D	$R_{ ext{ iny BMX}} = R_{ ext{ iny B}} \parallel \left(R_{ ext{ iny BM}} + rac{R_{ ext{ iny r1}} + r_{ ext{ iny 6}}}{ ext{ iny B+1}} ight)$
Выходное сопротивление	$R_{\mathrm{r}1}=R_r\parallel R_{\mathrm{G}};R_{\mathrm{G}} ightarrow 0$ Ом
Коэффициент передачи по току	$K_i = \frac{\frac{R_{\rm 6}({\rm B}+1)R_{\rm 9}}{R_{\rm 6}+R_{\rm bx\ tp\ ok}+({\rm B}+1)R_{\rm 9H}}}{R_{\rm 9}+R_{\rm H}}$
Коэффициент передачи по напряжению	$K_u = \frac{(B+1)R_{\rm \tiny 3H}}{R_{\rm \tiny BX\ TP\ OK} + (B+1)R_{\rm \tiny 3H}}$
по папряжению	$R_{\scriptscriptstyle \mathrm{KH}} = R_{\scriptscriptstyle \mathrm{K}} \ R_{\scriptscriptstyle \mathrm{H}}$
Коэффициент мощности	$K_{\mathrm{p}} = K_i * K_u$

Ниже в таблицах представлены рассчитанные значения.

R_1 , Ом	10000
R_2 , Ом	5000
$R_{\mathfrak{g}}$, Ом	3000
$R_{\scriptscriptstyle m K}$, Ом	3000
$I_{\scriptscriptstyle \ni},$ A	0.00119
I_{6} , A	0.0012

I_{κ} , A	0.0012	
R_r , Ом	1000	
$R_{ m r1}$, Ом	769.2307692	
$R_{\rm 6},$ Ом	3333.333333	
В	1	
$R_{\scriptscriptstyle \mathrm{9M}},$ Ом	21.8487395	
$R_{ m BX\ TP\ oo},$ Ом	1332.773109	
$R_{\scriptscriptstyle m BX},$ Om	7069.450225	
$R_{\scriptscriptstyle m BMX}$, Ом	34.06776536	

$R_{\scriptscriptstyle \mathrm{9H}},$ Ом	96.77419355	750	1714.285714	2912.621359
$R_{\scriptscriptstyle m H}$, Ом	100	1000	4000	100000
k_i	18.61746692	3.024827	0.797737308	0.03248031
k_u	0.815813528	0.971692978	0.987415295	0.992554451
k_p	15.18838138	2.939203155	0.78769802	0.032238476
Δk_i	2.316959306	0.100173	0.02044451	0.000428781
Δk_u	0.041423284	0.000529245	0.001595694	0.003483413
Δk_p	1.023034054	0.09899129	0.021492789	0.000310952
$\psi k_i\%$	0.889323009	0.96794464	0.975012266	0.986970744
$\psi u\%$	1.053491485	0.999455634	0.998386576	1.003521904
$\psi k_p\%$	0.936894218	0.967417724	0.973439158	0.99044676

Далее рассчитаем частоту.

$$\begin{split} f_{\scriptscriptstyle \mathrm{B}} &= \frac{1}{2*\pi*\tau_{\scriptscriptstyle \mathrm{B}}} \\ \tau_{\scriptscriptstyle \mathrm{B}} &= G(\tau_{\scriptscriptstyle \mathrm{B}} + \mathrm{C_{\scriptscriptstyle \mathrm{K}9}}R_{\scriptscriptstyle \mathrm{KH}}) + \mathrm{C_{\scriptscriptstyle \mathrm{H}}}R_{\scriptscriptstyle \mathrm{KH}} \ (\mathrm{C_{\scriptscriptstyle \mathrm{H}}} \to 0 \ \Phi) \\ R_{\scriptscriptstyle \mathrm{KH}} &= R_{\scriptscriptstyle \mathrm{K}} \| R_{\scriptscriptstyle \mathrm{H}} \\ G &= \frac{R_{\scriptscriptstyle \mathrm{T}} + r_{\scriptscriptstyle \mathrm{G}} + r_{\scriptscriptstyle \mathrm{9}}}{R_{\scriptscriptstyle \mathrm{T}} + R_{\scriptscriptstyle \mathrm{BX \ TP \ o9}}} \ (r_{\scriptscriptstyle \mathrm{G}} \to 0 \ \mathrm{Om}) \\ R_{\scriptscriptstyle \mathrm{T}} &= R_{\scriptscriptstyle \mathrm{T}} \| R_{\scriptscriptstyle \mathrm{G}} \end{split}$$

$$\tau_{_{\rm B}} = \frac{{\rm B}+1}{2*\pi*f_\alpha}$$

$$f_{\scriptscriptstyle \mathrm{B}} = rac{f_{lpha}}{\mathrm{B}+1}$$

$$C_{\rm k9}=C_{\rm dk}(B+1)$$

$f_{\scriptscriptstyle m B}$, Гц	3353715.91
$ au_{_{ m B}}$, c	$4.74804*10^{-8}$
$r_{\scriptscriptstyle ext{KH}},$ Om	1875
R_r , Ом	1000
$R_{ m r1},$ Om	769.2307692
G, CM	0.02328149
$ au_{_{ m B}}$, c	$3.23779*10^{-7}$
$C_{\kappa 9}, \Phi$	$9.15*10^{-10}$

6. Вывод

В результате выполнения лабораторной работы было изучено влияние различных способов включения биполярного транзистора и величина сопротивления нагрузки на свойства усилительного каскада.