K-D Trees

CSE 373

Data Structures

Lecture 22

Geometric Data Structures

- Organization of points, lines, planes, ... to support faster processing
- Applications
 - Astrophysical simulation evolution of galaxies
 - Graphics computing object intersections
 - Data compression
 - Points are representatives of 2x2 blocks in an image
 - Nearest neighbor search

k-d Trees

- Jon Bentley, 1975
- Tree used to store spatial data.
 - Nearest neighbor search.
 - Range queries.
 - Fast look-up
- k-d tree are guaranteed log₂ n depth where n is the number of points in the set.
 - Traditionally, k-d trees store points in ddimensional space which are equivalent to vectors in d-dimensional space.

Range Queries

Nearest Neighbor Search

Nearest neighbor is e.

k-d Tree Construction

- If there is just one point, form a leaf with that point.
- Otherwise, divide the points in half by a line perpendicular to one of the axes.
- Recursively construct k-d trees for the two sets of points.
- Division strategies
 - divide points perpendicular to the axis with widest spread.
 - divide in a round-robin fashion (book does it this way)

k-d Tree Construction (1)

X

divide perpendicular to the widest spread.

k-d Tree Construction (2)

x s1

12/6/02

K-D Trees - Lecture 22

k-d Tree Construction (3)

k-d Tree Construction (4)

k-d Tree Construction (5)

k-d Tree Construction (6)

k-d Tree Construction (7)

k-d Tree Construction (8)

k-d Tree Construction (9)

k-d Tree Construction (10)

k-d Tree Construction (11)

k-d Tree Construction (12)

k-d Tree Construction (13)

k-d Tree Construction (14)

k-d Tree Construction (15)

k-d Tree Construction (16)

k-d Tree Construction (17)

k-d Tree Construction (18)

2-d Tree Decomposition

k-d Tree Splitting

sorted points in each dimension

	1	2	3	4	5	6	7	8	9	
X	а	d	g	b	е		С	h	f	
У	а	С	b	d	f	Φ	r	g	i	

- max spread is the max of f_x -a_x and i_y a_y.
- In the selected dimension the middle point in the list splits the data.
- To build the sorted lists for the other dimensions scan the sorted list adding each point to one of two sorted lists.

k-d Tree Splitting

sorted points in each dimension

indicator for each set

scan sorted points in y dimension and add to correct set

k-d Tree Construction Complexity

- First sort the points in each dimension.
 - O(dn log n) time and dn storage.
 - These are stored in A[1..d,1..n]
- Finding the widest spread and equally divide into two subsets can be done in O(dn) time.
- We have the recurrence
 - $T(n,d) \le 2T(n/2,d) + O(dn)$
- Constructing the k-d tree can be done in O(dn log n) and dn storage

Node Structure for k-d Trees

- A node has 5 fields
 - axis (splitting axis)
 - value (splitting value)
 - left (left subtree)
 - right (right subtree)
 - point (holds a point if left and right children are null)

k-d Tree Nearest Neighbor Search

- Search recursively to find the point in the same cell as the query.
- On the return search each subtree where a closer point than the one you already know about might be found.

30

k-d Tree NNS (1)

k-d Tree NNS (2)

k-d Tree NNS (3)

k-d Tree NNS (4)

k-d Tree NNS (5)

k-d Tree NNS (6)

k-d Tree NNS (7)

k-d Tree NNS (8)

k-d Tree NNS (9)

k-d Tree NNS (10)

k-d Tree NNS (11)

k-d Tree NNS (12)

k-d Tree NNS (13)

k-d Tree NNS (14)

k-d Tree NNS (15)

k-d Tree NNS (16)

k-d Tree NNS (17)

k-d Tree NNS (18)

k-d Tree NNS (19)

k-d Tree NNS (20)

k-d Tree NNS (21)

Nearest Neighbor Search

```
NNS(q: point, n: node, p: point, w: distance) : point {
if n.left = null then {leaf case}
   if distance(q,n.point) < w then return n.point else return p;
else
   if w = infinity then
     if q(n.axis) < n.value then
        p := NNS(q, n.left, p, w);
        w := distance(p,q);
        if q(n.axis) + w > n.value then p := NNS(q, n.right, p, w);
     else
        p := NNS(q, n.right, p, w);
        w := distance(p,q);
        if q(n.axis) - w < n.value then p := NNS(q, n.left, p, w);
   else //w is finite//
      if q(n.axis) - w < n.value then
      p := NNS(q, n.left, p, w);
      w := distance(p,q);
      if q(n.axis) + w > n.value then p := NNS(q, n.right, p, w);
   return p
                                                                 52
```

The Conditional

q(n.axis) + w > n.value

Notes on k-d NNS

- Has been shown to run in O(log n) average time per search in a reasonable model. (Assume d a constant)
- Storage for the k-d tree is O(n).
- Preprocessing time is O(n log n) assuming d is a constant.

Geometric Data Structures

- Geometric data structures are common.
- The k-d tree is one of the simplest.
 - Nearest neighbor search
 - Range queries
- Other data structures used for
 - 3-d graphics models
 - Physical simulations