	Lectur	2 6			
n the last	Ceclure:				
Convex:					
Affine:					
Subspace:					
For every affi	ne set we	have	a paralle	1 subspace	•
Xe	>				
)imension, o	l alline se	2			
			, t .,		
),mension, o					

Polyhedron

$$P = \{ x \mid a; x \leq b; s \in [x = d] \}$$

Problem 2

1) Given $P = \int x \in \mathbb{R}^2 / x_1 \ge 0$, $2x_1 + x_2 \le 3$? $x_2 \ge 0$, $x_1 + 2x_2 \le 3$

Is the point (1) a vertex?

2) IP = [x / x > 0, Cx = d] xeIR

vertices: have at least n-m zero entries

_ ,	11					
3	Ηοω	many	ver tices	00	the	polyhedron

Consider the set of of motrices PER*xx with elements p.; >, 0, and 2 p.; = 1 (sum of elements in each row equals one) G = SIPE R ** | p. >, 0, 2 p: ; = 1} (i) is G a convex set? (why?) (ii) can every IP in G be expressed as a convex combination of matrices with exactly one 1 per row?

Prove that, for $x \in \mathbb{R}^n$, if the function f(x) is a convex function, then the set $C = \{x | f(x) \leq b\}$ is a convex set, with $b \in \mathbb{R}$ a given constant.

Can you find the solution to the following problem (call this P1), by solving an LP?

minimize_x
$$||x||_1^2 + 2||x||_1$$

subject to $Ax = b$, (1)

where $x \in \mathbb{R}^n$, A is an $m \times n$ matrix and $b \in \mathbb{R}^m$. If yes, explain which LP you can solve, if not, explain why.

Consider the optimization problem $3x_{1}^{2}+5x_{2}^{2}+1.2x_{3}+x_{4}+6$ mim 4 x, 2 + x2 + x4 + 1.3 x: e IR X3 - X4 58 0 < x; < 10, i={1,2,3,4} s t Show that it is equivalent to the min 3 y, + 5 y 2 + 1.2 y 3 + y 4 6 y 5 43-445845 4 4, + 42 + 44 13 45 = 1 9 4: 5100 45 , 16 51, 23 y: 510 y 5 3 i 6 5 3 4} 4: >0 : 6 [1.2.3.4.5]