PIVOTING AND VERTICES

What happens when we pivot?

- Entering variable leaves non-basic set.
 - Leaving variable becomes non-basic.

Adjacent Vertices

Example #2: Adjacent Vertices

Adjacent Vertices

Definition: Two vertices are adjacent if and only if

- At least (n-1) active constraints are common.
- Rank of common active constraints is (n-1).

Claim

For non-degenerate/non-final dictionary D_1 if D_2 is obtained on pivot, then the vertices corr. to D_1 and D_2 are adjacent.

x_{B1}	\mathbf{b}_1	• • •	x_{B2}	\mathbf{b}_2	• • •
\overline{z}	c_0	$+c_{N1}x_{N1}$	\overline{z}	c_2	$+c_{N2}x_{N1}$

Simplex Pivoting Visualization

Pivoting Issues

- Does pivoting always move to an adjacent vertex?
 - Yes, if the current dictionary is non-degenerate.

- What happens in the degenerate case?
 - Case-1: Move to an adjacent vertex.
 - Case-2: Remain in the same vertex (?)

What happens if a dictionary is unbounded?