Using Statistic and ML to Find Biomarkers Suitable For Ovarian Cancer Prognosis

魏燿良 4108029016 曾德旭 4108029019

Contents

- 1 Dataset introduction
- 2 Research motivation, & Literature review
- 3 Fishbone diagram

- 4 Research method
- 5 Result & discussion

6 reference

Dataset Introduction

Dataset Introduction

- Dataset name: Genome-wide expression profiling reveals novel biomarkers in epithelial ovarian cancer
- Source:
 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=G

SE212991

Dataset Introduction

• Gene expression profiling of 2 normal and 4 ovarian cancer samples.

• Columns: 7

• Rows : 28026

GSM6568182 Tumor Sample 1 GSM6568183 Normal Sample 1 GSM6568184 Tumor Sample 2 GSM6568185 Tumor Sample 3 GSM6568186 Normal Sample 2 GSM6568187 Tumor Sample 4

Attribute information

	Geneid	N1	N2	T1	T2	T3	T4
0	A1BG	7	12	35	22	41	46
1	A1BG-AS1	0	0	7	0	4	5
2	A1CF	1	21	43	16	37	32
3	A2M	10	10	43	312	51	56
4	A2M-AS1	0	0	4	0	5	4
	***		2200	***	22.55	***	***
28021	ZYG11A	37	48	39	45	57	61
28022	ZYG11B	1	362	90	416	135	99
28023	ZYX	24	0	18	40	2	40
28024	ZZEF1	72	65	121	68	98	190
28025	ZZZ3	76	31	25	20	46	74

Overview of dataset

Research Purpose and Motivation

• Purpose:

 the main goal of our research is to find potential biomarkers suitable for prognosis.

• Motivation:

- learn more about how to do microarray data analysis.
- Try using our technical ability to contribute and add value to the medical industry.

Fishbone Diagram

Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer

John B. Welsh*, Patrick P. Zarrinkar*†, Lisa M. Sapinoso*, Suzanne G. Kern*, Cynthia A. Behling[‡], Bradley J. Monk⁵, David J. Lockhart*[†], Robert A. Burger⁵, and Garret M. Hampton*|

*Genomics Institute of the Novartis Research Foundation, 3115 Merryfield Row, San Diego, CA 92121; *Department of Pathology, University of California, San Diego, CA 92103; *Affymetrix, Inc., 3380 Central Expressway, Santa Clara, CA 95051; and *Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of California, Irvine–Medical Center, Orange, CA 92868;

Communicated by Peter G. Schultz, Genomics Institute of the Novartis Research Foundation, La Jolla, CA, December 1, 2000 (received for review November 2, 2000)

2

Ye et al. Cell Death Discovery (2021)7:71 https://doi.org/10.1038/s41420-021-00451-x

Cell Death Discovery

ARTICLE

Open Access

A novel defined pyroptosis-related gene signature for predicting the prognosis of ovarian cancer

Ying Ye^{1,2}, Qinjin Dai³ and Hongbo Qi^{1,2}

Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer

John B. Welsh*, Patrick P. Zarrinkar*[†], Lisa M. Sapinoso*, Suzanne G. Kern*, Cynthia A. Behling[‡], Bradley J. Monk[§], David J. Lockhart*¹, Robert A. Burger[§], and Garret M. Hampton*[‡]

*Genomics Institute of the Novartis Research Foundation, 3115 Merryfield Row, San Diego, CA 92121; *Department of Pathology, University of California, San Diego, CA 92103; *Pat/ymetrix, Inc., 3380 Central Expressway, Santa Clara, CA 95051; and *Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of California, Invier-Medical Center, Orange, CA 92868

Communicated by Peter G. Schultz, Genomics Institute of the Novartis Research Foundation, La Jolla, CA, December 1, 2000 (received for review November 2, 2000)

Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer

John B. Welsh*, Patrick P. Zarrinkar*†, Lisa M. Sapinoso*, Suzanne G. Kern*, Cynthia A. Behling*, Bradley J. Monk⁵, David J. Lockhart* Robert A. Burger⁵, and Garret M. Hampton*

*Genomics Institute of the Novartis Research Foundation, 3115 Merryfield Row, San Diego, CA 92121; *Department of Pathology, University of California, San Diego, CA 92103; "Affymetrix, Inc., 3380 Central Expressway, Santa Clara, CA 95051; and *Div. Obstetrics and Gynecology, University of California, Irvine-Medical Center, Orange, CA 92868

Normal **Tumor** 9 10 11 12 13 14 15 a b

Result verification

Our research purpose and strategy

- Identify gene groups with high differential expression between normal genes and tumor genes.
- Finding potential biomarkers suitable for prognosis.

Ye et al. Cell Death Discovery (2021)7:71 Cell Death Discovery https://doi.org/10.1038/s41420-021-00451-> ARTICLE **Open Access** A novel defined pyroptosis-related gene signature

for predicting the prognosis of ovarian cancer

Ying Ye12, Qinjin Dai3 and Hongbo Qi612

- Given the existing findings, knowing that pyroptosis plays an important role in the development of tumours and antitumour processes; however, its specific functions in OC have been less studied.
- Thus, performing a systematic study to determine the expression levels of pyroptosis-related genes between normal ovarian and OC tissues, explore the prognostic value of these genes, and study the correlations between pyroptosis and the tumour immune microenvironment.

Ye et al. Cell Death Discovery (2021)7:71
https://doi.org/10.1038/s41420-021-00451-x

Cell Death Discovery

ARTICLE

Open Access

A novel defined pyroptosis-related gene signature for predicting the prognosis of ovarian cancer

Ying Ye^{1,2}, Qinjin Dai³ and Hongbo Qi⁶^{1,2}

Literature Review--Our ideas

- we decided to try some clustering methods, such as K-means or DBscan, etc with PCA decomposition for cluster analysis to find potential clustering rules.
- Also, we discussed the principle of choosing the groups we want. Same as the above method, it must have strong differential expression and convergent results from normal state genes.

• Implementing the new technologies of today to improve our healthcare industries.

- With successful implementation of new technologies, we can:
 - Improve the quality of healthcare (more competitive)
 - Reduce cost
- A healthy society also means a more productive society

- With the help of modern technologies like AI, automation, etc. we can be more efficient, reduce the cost of healthcare.
- Lower cost means healthcare will be more accessible to everyone, not only for the rich.

Data Analysis

Workflow Part 1

• The graph of the boxplot is very small, which is very strange.

12000							
	T4	Т3	T2	T1	N2	N1	
10000	28026.000000	28026.000000	28026.000000	28026.000000	28026.000000	28026.000000	count
8000	46.020659	26.949012	53.482516	27.834190	26.375009	18.046849	mean
8000	1041.508054	95.228727	746.548294	67.068825	165.972202	63.183212	std
6000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	min
	7.000000	2.000000	1.000000	4.000000	0.000000	0.000000	25%
4000	22.000000	13.000000	12.000000	16.000000	4.000000	0.000000	50%
2000	49.000000	37.000000	36.000000	39.000000	25.000000	27.000000	75%
	145957.000000	14654.000000	105727.000000	9465.000000	11743.000000	6473.000000	max
-							

Overview and description of dataset

- Because of the "Max" value, boxplot is compressed.
- This also shows that there is a large difference between each data, because the data distribution is not uniform. Especially T2, T4.

- For us, the data distribution of N1 and N2 is important.
- We found that the data distribution of N1 and N2 is not the same.

	N1	N2
count	28026.000000	28026.000000
mean	18.046849	26.375009
std	63.183212	165.972202
min	0.000000	0.000000
25%	0.000000	0.000000
50%	0.000000	4.000000
75%	27.000000	25.000000
max	6473.000000	11743.000000

Overview and description of N1 and N2

- We believe that the factor causing the different distributions is that the mean, sd, and max of N2 are all greater than N1. It means that there must be some problem genes in N1 or N2.
- Therefore, the problematic part needs to be removed before starting the analysis.

	T1	T2	ТЗ	T4
count	28026.000000	28026.000000	28026.000000	28026.000000
mean	27.834190	53.482516	26.949012	46.020659
std	67.068825	746.548294	95.228727	1041.508054
min	0.000000	0.000000	0.000000	0.000000
25%	4.000000	1.000000	2.000000	7.000000
50%	16.000000	12.000000	13.000000	22.000000
75%	39.000000	36.000000	37.000000	49.000000
max	9465.000000	105727.000000	14654.000000	145957.000000

 We don't spend time preprocessing the group data because they are unbalanced as expected.

- Using bar graphs to show genes volume and patterns.
- Using heat-map to show the correlation between genes.

Workflow Part 2

WorkFlow Part 2

- Checking data for null values before processing.
- There are no missing or null values.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 28026 entries, 0 to 28025
Data columns (total 7 columns):
    Column Non-Null Count Dtype
            28026 non-null
    Geneid
                            object
    N1
            28026 non-null int64
    N2
            28026 non-null int64
            28026 non-null int64
    T1
    T2
            28026 non-null int64
    T3
            28026 non-null int64
     T4
            28026 non-null int64
dtypes: int64(6), object(1)
memory usage: 1.5+ MB
```


Checking null value

Checking missing value

Traditional Statistics Method

• Normalize each row by using Min Max Scaler

$$x_{scaled} = rac{x - x_{min}}{x_{max} - x_{min}}$$

Before normalization

<u>After normalization</u>

- Scale each row by its own MinMaxScaler, the purpose is to set a universal trade off value.
- Different genes have the same difference ratio now, so different genes can be compared together to determine the universal value of the differential expression of ovarian cancer genes.

- We select the maximum and minimum values from the N1-N2 data to determine the universal value of the differential expression of ovarian cancer genes.
- Exceeding the red line of y=1 means ovarian cancer gene expression exceeding the normal level.

Overview of datasets now.

Boxplot of overview data now

Overview and description of N1-T4

- Trade off value = mean of difference $\pm 3 \text{ SD} / \text{Top } 0.01\%$
- Find the gene groups which difference between normal genes and tumor genes are exceeds the trade-off value.

group

	N_mean	T_mean	delta_mean
count	28026.000000	28026.000000	28026.000000
mean	0.220023	0.485239	0.182117
std	0.231254	0.194555	0.157499
min	0.000000	0.000000	0.000000
25%	0.000000	0.333333	0.062500
50%	0.142857	0.500000	0.140625
75%	0.450000	0.633333	0.267746
max	1.000000	1.000000	1.000000

• The distribution of N1 and N2 is very close, and it is also clearly distinguished from T1-T4.

	Geneid	N1	N2	T1	T2	Т3	T4	İ
114	ABHD4	4	0	25	21	19	25	
132	ABRACL	0	0	5	4	3	4	
181	ACMSD	3	0	19	15	21	19	
269	ACTRT1	0	0	8	8	4	6	
307	ADAM3A	0	0	37	14	37	40	
27624	ZNF503-AS2	0	0	11	13	10	12	
27716	ZNF597	0	0	23	12	17	22	
27792	ZNF688	0	0	49	48	26	51	
27883	ZNF790	0	1	15	25	19	23	
27914	ZNF835	0	0	34	18	39	37	
370 rows	s × 7 columns							

Correlation heatmap between N1-T4

- Find genes with the same trait "H"; 465 genes are selected.
- Try to find genes that each patient has in common.

- Scale each row by its own MinMaxScaler.
- Trade off value = $mean \pm 0.86$ SD
- If x exceeds the trade-off value, it is set to "H", indicating a high risk level. Vice versa, if x is between compromise values, it is set to "N", which means normal level.

1 A1BG-AS1 0.0 0.0 H H N 4.000000 2.943920 1.468229 6.53177 2 A1CF 0.0 1.0 H H N 1.550000 0.578792 1.052239 2.04776 3 A2M 0.0 0.0 N H N 105.500000 131.109369 -7.254057 218.25405	.	Geneid	N1	N2	T1	T2	ТЗ	T4	mean_T1toT4	SD_T1toT4	trade_off_lower	trade_off_upper
2 A1CF 0.0 1.0 H H N N 1.550000 0.578792 1.052239 2.04776 3 A2M 0.0 0.0 N H N N 105.500000 131.109369 -7.254057 218.25405	0	A1BG	0.0	1.0	N	н	N	Н	5.800000	2.072036	4.018049	7.581951
3 A2M 0.0 0.0 N H N N 105.500000 131.109369 -7.254057 218.25405	1	A1BG-AS1	0.0	0.0	н	н	N	N	4.000000	2.943920	1.468229	6.531771
	2	A1CF	0.0	1.0	Н	Н	N	N	1.550000	0.578792	1.052239	2.047761
4 A2M-AS1 0.0 0.0 N H N N 3.250000 2.217356 1.343074 5.15692	3	A2M	0.0	0.0	N	н	N	N	105.500000	131.109369	-7.254057	218.254057
	4	A2M-AS1	0.0	0.0	N	Н	N	N	3.250000	2.217356	1.343074	5.156926

Genes value after label transformation

T1 to T4 value count

- The distribution of N1 and N2 is very close, and it is also clearly distinguished from T1-T4.
- More specifically, it means that we have found genes that meet our expectations, and these genes only appear in T1-T4.

ē	Geneid	N1	N2	T1	T2	ТЗ	T4
103	ABHD13	0.0	0.0	Н	Н	Н	Н
206	ACP6_1	0.0	0.0	Н	Н	Н	Н
234	ACTBL2	0.0	0.0	Н	Н	Н	Н
473	AFF2_1	0.0	0.0	Н	Н	Н	Н
556	AIF1_2	0.0	0.0	Н	Н	Н	Н
27918	ZNF84	0.0	1.0	Н	Н	Н	Н
27925	ZNF84-DT	0.0	1.0	Н	H	Н	Н
27942	ZNF90	0.0	1.0	Н	Н	Н	Н
27945	ZNF93	0.0	0.0	Н	Н	Н	Н
27955	ZNRD1ASP_4	0.0	0.0	Н	Н	Н	Н
465 rows	s × 11 columns						

Correlation heatmap between N1-T4

WorkFlow Part 2--Traditional Statistics Method

• Final outcome after doing traditional statistical analysis. We get 828 suspect genes.

	Geneid	N1	N2	T1	T2	Т3	T4		
114	ABHD4	4	0	25	21	19	25		
132	ABRACL	0	0	5	4	3	4		
181	ACMSD	3	0	19	15	21	19		
269	ACTRT1	0	0	8	8	4	6		
307	ADAM3A	0	0	37	14	37	40		
27624	ZNF503-AS2	0	0	11	13	10	12		
27716	ZNF597	0	0	23	12	17	22		
27792	ZNF688	0	0	49	48	26	51		
27883	ZNF790	0	1	15	25	19	23		
27914	ZNF835	0	0	34	18	39	37		
370 rows × 7 columns									

	Geneid	N1	N2	T1	T2	ТЗ	T4	
103	ABHD13	0.0	0.0	Н	Н	Н	Н	
206	ACP6_1	0.0	0.0	Н	Н	Н	Н	
234	ACTBL2	0.0	0.0	Н	Н	Н	Н	
473	AFF2_1	0.0	0.0	Н	Н	Н	Н	
556	AIF1_2	0.0	0.0	Н	Н	Н	Н	
27918	ZNF84	0.0	1.0	Н	Н	Н	Н	
27925	ZNF84-DT	0.0	1.0	Н	H	Н	Н	
27942	ZNF90	0.0	1.0	Н	Н	Н	Н	
27945	ZNF93	0.0	0.0	Н	Н	Н	Н	
27955	ZNRD1ASP_4	0.0	0.0	Н	Н	Н	Н	
465 rows × 11 columns								

Overlapping group of statistics method

Final outcome with traditional statistical analysis

Modern ML Method

- Removing 10,648 suspected normal genes, those genes have high variance. We removed the genes:
 - Which difference between N1 and N2 is greater than the overall difference.
 - |N1-N2| > overall mean
 - Which difference ratio between N1 and N2 is greater than the overall difference.
 - |N1/N2| > overall mean ratio or |N2/N1| > overall mean ratio

This gene is what we don't want

Overall mean and SD of difference and difference ratio of N1 and N2

- Fit the DBSCAN model with 17378 genes, parameters are eps=70 and min_samples=45.
- Decompose the 6-dimensional data of 17378 genes into 2 dimensions.
- Plot the graph.

The number of PCA components needed to explain variance

DBSCAN labels value count

185

- Fit the K-means model with 17378 genes, parameters are n_clusters=6 and min_samples=45.
- Decompose the 6-dimensional data of 17378 genes into 2 dimensions.

The number of PCA components needed to explain variance

K-means labels
value count

• Final outcome after doing ML analysis. We get 259 suspect genes.

	Geneid	N1	N2	T1	T2	Т3	T4
0	C3			8.833333	495.500000	2.833333	11.666667
1	IFI44L	1	0	23.000000	429.000000	23.500000	10.500000
2	IGHA1			0.000000	420.000000	0.000000	1.000000
3	NPDC1	0	0	27.000000	421.000000	2.000000	46.000000
4	RAC1			-19.000000	459.000000	-17.000000	-2.000000
107	VWA1			14.000000	142.000000	8.000000	28.000000
108	ZNHIT1	0		15.000000	208.000000	7.000000	30.000000
109	ACKR1			3.000000	1668.000000	0.000000	6.000000
110	HBA1	1	0	-0.090909	1499.727273	-0.454545	0.000000
111	HBA2			0.075000	1321.587500	0.000000	0.075000
112 rc	ws × 8 co	lumn	S				

-	Geneid	N1	N2	T1	T2	Т3	T4			
0	A2M	10	10	43	312	51	56			
1	ACACB	115	105	189	201	150	207			
2	ACKR1	0	0	3	1668	0	6			
3	ACTB	50	54	41	585	41	253			
4	ADGRV1	175	191	220	205	190	155			
180	VPS53	110	115	115	220	128	160			
181	WDFY3	109	122	199	148	161	155			
182	YWHAB	28	28	47	617	50	69			
183	ZEB2	68	93	63	459	76	134			
184	ZNF106	116	98	115	358	100	108			
185 rd	185 rows × 8 columns									

Overlapping group of ML method

Final outcome with ML analysis

Workflow Part 3

WorkFlow Part 3--Overlapping group

• It seems that there is not much overlap items.

Overlapping group of ML method

Overlapping group of statistics method

WorkFlow Part 3--Web scraping

- Using Python to grab the information that appears on the DAVID website.
- After submitting the gene ID, we only extract the data in "Disease".

WorkFlow Part 3--Web scraping

• The "Term" in the chart is our target. We extract and analyze it to make a word cloud figure.

WorkFlow Part 3--Word cloud

WorkFlow Part 3--Word cloud

```
infarction right syndrome immune cardiovascular craniofacial dystonia anaplastic neurological neoplasms left thrombosis aging cirrhosis cerebral artery experimental endometriosis

middle cerebral abnormalities

middle cerebral imb thrombotic undifferentiated liver paroxysmal mammary cell embolus endometrioma carcinoma occlusion
```


Conclusion

Conclusion

- 1. From the ML method, we believe that the suspected gene may be associated with ovarian cancer. But it requires further research to prove.
 - a. one of the reason is that there is not enough research that studies our suspected genes
- 2. From the statistical method, Some genes that we found have proven to be associated with ovarian cancer.
- 3. Since our research methods only uses statistics and ML, further research is needed especially with medical analysis.

References

- Quackenbush, J. (2006). Microarray analysis and tumor classification.
 New England Journal of Medicine, 354(23), 2463-2472.
- Slonim, D. K., & Yanai, I. (2009). Getting started in gene expression microarray analysis. PLoS computational biology, 5(10), e1000543.
- Ye, Y., Dai, Q., & Qi, H. (2021). A novel defined pyroptosis-related gene signature for predicting the prognosis of ovarian cancer. Cell death discovery, 7(1), 1-11.
- Welsh, J. B., Zarrinkar, P. P., Sapinoso, L. M., Kern, S. G., Behling, C.
 A., Monk, B. J., ... & Hampton, G. M. (2001). Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer. Proceedings of the National Academy of Sciences, 98(3), 1176-1181.
- Yasodha, P., & Ananthanarayanan, N. R. (2018). Detecting the ovarian cancer using big data analysis with effective model. Biomedical Research (0970-938X).