- **1.14.4 Třída** \mathcal{RP} . Jazyk L patří do třídy \mathcal{RP} právě tehdy, když existuje RTM M takový, že:
 - 1. Jestliže $w \notin L$, stroj M se ve stavu q_f zastaví s pravděpodobností 0.
 - 2. Jestliže $w \in L$, stroj M se ve stavu q_f zastaví s pravděpodobností, která je alespoň rovna $\frac{1}{2}$.
 - 3. Existuje polynom p(n) takový, že každý běh M (tj. pro jakýkoli obsah druhé pásky) trvá maximálně p(n) kroků, kde n je délka vstupního slova.

Miller-Rabinův test prvočíselnosti je příklad algoritmu, který splňuje všechny tří podmínky (utvoříme-li k němu odpovídající RTM) a proto jazyk L, který se skladá ze všech složených čísel, patří do třídy \mathcal{RP} .

1.14.5 Turingův stroj typu Monte-Carlo. RTM splňující podmínky 1 a 2 z předchozí definice 1.14.4, se nazývá TM typu *Monte-Carlo*.

Uvědomte si, že RTM typu Monte-Carlo obecně nemusí pracovat v polynomiálním čase.

- **1.14.6** Tvrzení. Je dán jazyk $L \in \mathcal{RP}$, pak pro každou kladnou konstantu $0 < c < \frac{1}{2}$ je možné sestrojit RTM M (algoritmus) s polynomiální složitostí a takový, že:
 - 1. Jestliže $w \notin L$, stroj M se úspěšně zastaví (tj. zastaví se ve stavu q_f) pravděpodobností 0.
 - 2. Jestliže $w \in L$, stroj M se úspěšně zastaví (tj. zastaví se ve stavu q_f) s pravděpodobností aspoň 1-c.
- **1.14.7** Třída \mathcal{ZPP} . Jazyk L patří do třídy \mathcal{ZPP} právě tehdy, když existuje RTM M takový, že:
 - 1. Jestliže $w \not\in L$, stroj M se úspěšně zastaví (tj. zastaví se ve stavu q_f) s pravděpodobností 0.
 - 2. Jestliže $w \in L$, stroj M se úspěšně zastaví (tj. zastaví se ve stavu q_f) s pravděpodobností 1.
 - 3. Střední hodnota počtu kroků M v jednom běhu je p(n), kde p(n) je polynom a n je délka vstupního slova.

To znamená: M neudělá chybu, ale nezaručujeme vždy polynomiální počet kroků při jednom běhu, pouze střední hodnota počtu kroků je polynomiální.

- **1.14.8** Turingův stroj typu Las-Vegas. RTM splňující podmínky z předchozí definice 1.14.7, se nazývá typu *Las-Vegas*.
- **1.14.9** Tvrzení. Jestliže jazyk L patří do třídy \mathcal{ZPP} , pak i jeho doplněk \overline{L} patří do třídy \mathcal{ZPP} .

Stejný RTM M typu Las-Vegas slouží k přijetí jak jazyka L, tak i jeho doplňku \overline{L} ; stačí koncové (přijímající) stavy RTM M prohlásit za nekoncové a ze všech nekoncových stavů M udělat koncové.

Před. 11: 6/5/2014

Marie Demlová: Teorie algoritmů

1.14.10 Poznámka. Pro jazyky ze třidy \mathcal{RP} se tvrzení obdobné 1.14.9 neumí dokázat. To motivuje následující třídu jazyků.

1.14.11 Třída co- \mathcal{RP} . Jazyk L patří do třídy co- \mathcal{RP} právě tehdy, když jeho doplněk \overline{L} patří do třídy \mathcal{RP} .

1.14.12 Věta.

$$\mathcal{ZPP} = \mathcal{RP} \cap \text{co-}\mathcal{RP}.$$

Nástin důkazu. Ukážeme nejprve $\mathcal{RP} \cap \text{co-}\mathcal{RP} \subseteq \mathcal{ZPP}$.

Předpokládejme, že jazyk L leží v obou třídách \mathcal{RP} i co- \mathcal{RP} . Existují proto dva RTM M_1 a M_2 typu Monte Carlo pracující v polynomiálním čase a takové, že

 M_1 — přijímá jazyk L;

 M_2 — přijímá jazyk \overline{L} .

Označme p(n) ten větší z polynomů, které určují počet kroků M_1 a M_2 . Setrojíme RTM M typu Las-Vegas, který přijímá L takto: Pro dané vstupní slovo w

- 1. Mnechá pracovat M_1 po dobu p(n)kroků. Jestliže M_1 přijme, Mskončí a také přijme.
- 2. M nechá pracovat M_2 po dobu p(n) kroků. Jestliže M_2 přijme, M skončí a nepřijme.
- 3. Jestliže M neskončí ani v kroku 1 ani v kroku 2, M pokračuje krokem 1.

Dá se dokázat, že RTM M je typu Las-Vegas.

Nyní ukážeme, že $\mathcal{ZPP} \subseteq \mathcal{RP} \cap \text{co-}\mathcal{RP}$.

Předpokládejme, že jazyk L leží ve třídě \mathcal{ZPP} , existuje tedy RTM M_1 typu Las-Vegas, který přijímá jazyk L. Označme p(n) polynom, který udává střední hodnotu počtu kroků RTM M_1 pro vstupní slovo délky n. Vytvoříme RTM M typu Monte Carlo pracující polynomiálně dlouho a přijímající jazyk L.

M nechá na vstupu w pracovat RTM M_1 po dobu 2p(n). Jestliže M_1 úspěšně skončí, M úspěšně skončí; ve všech ostatních případech RTM M skončí neúspěšně.

Dá se dokázat, že M splňuje všechny podmínky pro RTM typu Monte Carlo. Protože pracuje v čase 2p(n), jedná se o polynomiální RTM typu Monte Carlo. Proto je jazyk L ve třídě \mathcal{RP} .

Protože třída \mathcal{ZPP} je uzavřena na doplňky, je každý jazyk ze třídy \mathcal{ZPP} také ve třídě co- \mathcal{RP} .

1.14.13 Věta. Platí

$$\mathcal{P} \subseteq \mathcal{ZPP}, \ \mathcal{RP} \subseteq \mathcal{NP}, \ \text{co-}\mathcal{RP} \subseteq \text{co-}\mathcal{NP}.$$

První inkluze je zřejmá, každý polynomiální Turingův stroj můžeme považovat za randomizovaný Turingův stroj typu Las-Vegas.

Marie Demlová: Teorie algoritmů

Druhá inkluze je složitější. Její důkaz spočívá v tom, že pro daný polynomiální RTM M typu Monte Carlo pracující v polynomiálním čase zkonstruujeme nedeterministický Turingův stroj, který přijímá stejný jazyk jako M.

Třetí inkluze jednoduše vyplývá z definic tříd co- $\mathcal{RP},$ co- \mathcal{NP} a z druhé inkluze.

1.15 Nerozhodnutelnost

1.15.1 Rekursivní jazyky. Řekneme, že jazyk L je rekursivní, jestliže existuje Turingův stroj M, který rozhoduje jazyk L.

Připomeňme, že Turingův stroj M rozhoduje jazyk L znamená, že jej přijímá a na každém vstupu se zastaví (buď úspěwně nebo neúspěšně).

1.15.2 Rekursivně spočetné jazyky. Řekneme, že jazyk L je rekursivně spočetný, jestliže existuje Turingův stroj M, který tento jazyk přijímá.

Jinými slovy, M se pro každé slovo w, které patří do L, úspěšně zastaví a pro slovo w, které nepatří do L se buď zastaví neúspěšně nebo se nezastaví vůbec.

1.15.3 Poznámka. Jazykům, které nejsou rekursivní, také říkáme, že jsou algoritmicky neřešitelné nebo nerozhodnutelné. Obdobně mluvíme o úlohách, které jsou nerozhodnutelné nebo algoritmicky neřešitelné. První pojem se užívá častěji pro rozhodovací úlohy, druhý i pro úlohy konstrukční či optimalizační.

Každý rekursivní jazyk je též rekursivně spočetný. Ukážeme, že naopak to neplatí, tj. existují rekursivně spočetné jazyky, které nejsou rekursivní.

- **1.15.4** Tvrzení. Jestliže jazyk L je rekursivní, pak je rekursivní i jeho doplněk \overline{L} .
- **1.15.5** Tvrzení. Jestliže jazyk L i jeho doplněk \overline{L} jsou oba rekursivně spočetné, pak L je rekursivní.
- **1.15.6** Tvrzení. Pro jazyk L může nastat jedna z následujících možností:
 - 1. L i \overline{L} jsou oba rekursivní.
 - 2. Jeden z L a \overline{L} je rekursivně spočetný a druhý není rekursivně spočetný.
 - 3. L i \overline{L} nejsou rekursivně spočetné.
- **1.15.7 Kód Turingova stroje.** Každý Turingův stroj M lze zakódovat jako binární slovo. Mějme Turingův stroj M s množinou stavů $Q = \{q_1, q_2, \dots, q_n\}$, množinou vstupních symbolů $\Sigma = \{0, 1\}$, množinou páskových symbolů $\Gamma = \{X_1, X_2, \dots, X_m\}$, kde $X_1 = 0, X_2 = 1$ a $X_3 = B$. Dále počáteční stav je stav q_1 , koncový stav je q_2 . Označme D_1 pohyb hlavy doprava a D_2 pohyb hlavy doleva. (Tj. $D_1 = R$ a $D_2 = L$.)

Jeden přechod stroje M

$$\delta(q_i, X_i) = (q_k, X_l, D_r)$$

zakódujeme slovem

$$w = 0^{i}10^{j}10^{k}10^{l}10^{r}$$
.

které nazýváme $K\acute{o}d$ Turingova stroje M, značíme jej $\langle M \rangle$, je

$$\langle M \rangle = 111 \, w_1 \, 11 \, w_2 \, 11 \dots 11 \, w_p \, 111,$$

Kde w_1, \ldots, w_p jsou slova odpovídající všem přechodům stroje M.

 ${f 1.15.8}$ Binární slova můžeme uspořádat do posloupnosti a tudíž je očíslovat. K binárnímu slovu w utvoříme 1w a toto chápeme jako binární zápis přirozeného čísla.

Tedy např. ϵ je první slovo, 0 je druhé slovo, 1 je třetí slovo, atd, 100110 je 1100110 = 64 + 32 + 4 + 2 = 102, tj. 100110 je 102-hé slovo. V dalším textu o binárním slovu na místě i mluvíme jako o slovu w_i . Tedy $w_1 = \epsilon$, $w_{102} = 100110$.

Jedná se vlastně o uspořádání slov nejprve podle délky a mezi slovy stejné délky o lexikografické uspořádání.

1.15.9 Diagonální jazyk L_d . Nejprve uděláme následující úmluvu. Jestliže binární slovo w nemá tvar z 1.15.7, považujeme ho za kód Turingova stroje M, který nepřijímá žádné slovo. Tj. $L(M) = \emptyset$.

Jazyk L_d se skládá ze všech binárních slov w takových, že Turingův stroj s kódem w nepřijímá slovo w. (Tedy L_d obsahuje i všechna slova w, která neodpovídají kódům nějakého Turingova stroje, ovšem obsahuje i další binární slova.)

1.15.10 Věta. Neexistuje Turingův stroj, který by přijímal jazyk L_d . Jinými slovy, $L_d \neq L(M)$ pro každý Turingův stroj M.

Nástin důkazu. Postupujeme sporem. Kdyby existoval Turingův stroj M takový, že $L_d = L(M)$, pak by tento Turingův stroj měl kód roven nějakému binárnímu slovu, tj. $\langle M \rangle = w_i$ pro nějaké i.

Na otázku, zda toto slovo w_i patří nebo nepatří do jazyka L_d , nemůžeme dát odpověď, která by nevedla ke sporu.

Kdyby $w_i \in L_d$, pak w_i splňuje podmínku: Turingův stroj s kódem w_i nepřijímá slovo w_i . Ale $L_d = L(M)$ kde $w_i = \langle M \rangle$ — spor.

Kdyby $w_i \notin L_d$, pak Turingův stroj s kódem w_i nepřijímá slovo w_i . Ale to je podmínka pro to, aby slovo w_i patřilo do L_d — spor.

Proto neexistuje Turingův stroj, který by přijímal jazyk L_d .