Calculus III

Homework on Lecture 2

1. Carry out the indicated operations between the indicated vectors.

$$\mathbf{u} = (-1, 2, 3)$$

 $\mathbf{v} = (2, -3, -5)$

$$\mathbf{w} = (3, 5, -7).$$

(a) $-\mathbf{u}$

(p) $\mathbf{n}+\mathbf{r}$

алѕиет. (1,-1,1)

(c) $\mathbf{u} - 2\mathbf{w}$

(d) $-3\mathbf{w} + \frac{\mathbf{v}}{2}$

(e) $\frac{\mathbf{w}+2\mathbf{u}+3\mathbf{v}}{6}$

(f) $\mathbf{u} + \mathbf{w} - (2\mathbf{v} + 3\mathbf{u})$

answer: (1,7,-3)

2. Compute the dot product.

(a)
$$\mathbf{u} = (2, -3, 5), \mathbf{v} = (-3, 5, 7).$$

(b)
$$\mathbf{u} = (\frac{1}{2}, \frac{1}{3}, \frac{1}{4}), \mathbf{v} = (\frac{1}{3}, \frac{1}{4}, \frac{1}{5}).$$

41 = 32 + 31 - 9 = 14

3. Determine if the vectors are orthogonal.

(a) $\mathbf{u} = (1, 2, 3), \mathbf{v} = (-1, 2, -1).$

(b) $\mathbf{u} = (1, 0, 1), \mathbf{v} = (-1, 1, 1).$

(c) $\mathbf{u} = (-1, 0, 1), \mathbf{v} = (-1, 1, 1).$

- 4. Find the angles between the vectors. You may use a calculator to get a numerical approximation.
 - (a) $\mathbf{u} = (1, 2, 3), \mathbf{v} = (3, 1, 2).$

(b) $\mathbf{u} = (-1, -1, -1), \mathbf{v} = (0, 0, 1)$ (c) $\mathbf{u} = (-1, -1, -1), \mathbf{v} = (0, 0, 1)$

- 5. A tetrahedron is a pyramid whose base is a triangle. The 8 points (1,1,1), (-1,1,1), (1,-1,1), (-1,-1,1), (1,1,-1), (-1,1,1
 - (a) Find 4 vertices of the cube so they form a regular tetrahedron, i.e., 4 points that are not in the same plane and such that the distance between any two is equal.
 - (b) Form two vectors, **u** and **v**, by connecting the origin with any two of the 4 points you found.
 - (c) Find the angle between ${\bf u}$ and ${\bf v}$.

(d) What is the angle between the two bonds of hydrogen atoms in the methane molecule CH_4 ?

Survices
$$\left(-\frac{1}{3}\right) pprox 109.471207^{\circ}$$

- 6. Find the
 - Scalar projection $comp_{\mathbf{v}}\mathbf{u}$ of \mathbf{u} onto \mathbf{v} .
 - \bullet The vector projection $\mathbf{proj}_{\mathbf{v}}\mathbf{u}$ of \mathbf{u} along $\mathbf{v}.$
 - ullet The component $orth_{\mathbf{v}}\mathbf{u}$ of \mathbf{u} orthogonal of \mathbf{v} .

The answer key has not been proofread, use with caution.

(a)
$$\mathbf{v} = (2, 3, 5), \mathbf{u} = (3, 5, 7).$$

answer comp
$$_{f v}$$
 ${11\over 61}$, ${11\over 61}$) $={f u}_{f v}$ ${\bf d}_{f d}$ ${\bf d}_{f d}$

(b)
$$\mathbf{v} = (5, 1, -3), \mathbf{u} = (2, 3, 5).$$

$$\left(\frac{691}{35},\frac{701}{35},\frac{51}{50}\right) = \mathbf{u_V}\mathbf{d}\mathbf{d}\mathbf{v}, \left(\frac{3}{5},\frac{2}{35},\frac{2}{5},\frac{2}{5}\right) = \mathbf{u_V}\mathbf{d}\mathbf{d}\mathbf{v}, \left(\frac{2}{5},\frac{2}{5},\frac{2}{5}\right) = \mathbf{u_V}\mathbf{d}\mathbf{v}$$