Fall 2020 Problem Solving through Computational Thinking, ECE30017

# Week 9

C6. Card Game

Deadline: 11:59 PM, 30 October (Fri)

P7. Underwater Cable

Deadline: 4:00 PM, 2 November (Mon)

## C6. Card Game

There is a single-player card game with n cards for  $1 \le n \le 50,000$ . Each card has an integer between 1 and  $10^9$  on its face. In a game, the dealer shows the n cards to the player one by one in sequence. Each time a card C is shown by the dealer, the player can take the card if one of the following conditions holds:

- The player has never taken any card yet.
- The cards taken by the player are in strictly ascending order, and the number on the current card C is greater than that on the last card that the player has taken.
- Once the player takes a card whose number is lower than the last card taken, the number on each card to be taken in the future should be lower than that of the latest card taken by the player.

The player can skip a card even though it satisfies the conditions shown above. The score that the player earns is the number of cards he/she had taken at the end.

Write a program that finds the maximum score that a player can achieve in a game, given a sequence of n cards.

## Requirements

## Input data

- The input data is given from the standard input.
- The first line contains an integer n that represents the number of cards in the game for  $1 \le n \le 50,000$ .
- The second to (n+1)-th lines contains the numbers on a sequence of n cards. The i-th line has one integer between 1 and  $10^9$  that represents the number on (i-1)-th card.

## **Output data**

- Print an integer to the standard output. The integer should be the maximum number of the cards that a player can take in the game.
- Your program should return the answer within 1.0 second.

(continued)

# **Example of test data**

## Input data



## Output data

6

# Team fof C6

| Team 601 | 홍원표 | 정예은 |     |
|----------|-----|-----|-----|
| Team 602 | 김석진 | 황소정 |     |
| Team 603 | 김윤정 | 한찬솔 |     |
| Team 604 | 정희석 | 윤다은 |     |
| Team 605 | 정현섭 | 전해주 |     |
| Team 606 | 정진혁 | 김준서 |     |
| Team 607 | 정원식 | 한정섭 |     |
| Team 608 | 김승우 | 홍석현 |     |
| Team 609 | 박수현 | 최재혁 |     |
| Team 610 | 신희주 | 지성민 |     |
| Team 611 | 송수근 | 윤지영 |     |
| Team 612 | 최우석 | 김유진 |     |
| Team 613 | 이예준 | 김기훈 |     |
| Team 614 | 박민준 | 김지원 |     |
| Team 615 | 임예찬 | 강하영 | 송진범 |

# P7. Underwater Cable

Due to an earthquake, an underwater network cable was broken into N pieces such that the length of the i-th piece is  $s_i$  kilometers. They are lying in sequence on the underwater surface.

You want to reconnect all pieces into one by using an underwater robot that can perform electric welding in water. The robot reconnects two adjacent pieces of the cable at a time. After each joining, the robot has to check along the whole joined piece whether or not the it has no defects because of high voltage electric shock during the welding operation. The time required for the electric welding to join the i-th and (i + 1)-th pieces is neglectibe, yet the defect-checking process requires  $(s_i + s_{i+1})$  hours.

Write a program that finds the minimum time in hours for the robot to reconnect the whole pieces together into one.

## P7. Underwater Cable

### Input

The input data is given to the standard input. The first line has a positive integer N for  $3 \le N \le 500$ , which indicates the number of pieces. The following line contains N positive integers, each separated by a blank, indicating the lengths of pieces from piece 1 to piece N in sequence. The length of a peice does not exceed 10000.

### **Output**

Print out the solution to the standard output.

### **Example 1**

Input file Output file 26 26

#### Example 2

Input file Ouput file

12 1 20 35 5 4 3 5 92 23 14 32 18