МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Высшая школа общей и прикладной физики

Отчет по лабораторной работе «Изучение равноускоренного движения при помощи машины Атвуда»

Выполнил:

студент 1 курса ВШ ОПФ Тарханов Андрей Алексеевич

Цель работы

С помощью изучения равноускоренного движения грузов на машине Атвуда определить влияние силы трения на характер движения грузов, силу трения, возникающую в блоке, ускорение свободного падения.

Приборы

Машина Атвуда - это классическая экспериментальная установка для изучения законов равноудаленного движения тел. Это неподвижный блок, через который перекинута нить с двумя грузиками на концах. При равных весах грузов система находится в индифферентном равновесии, при разнице - движущихся массах - грузы приходят в равноудаленное движение.

Теоретическое обоснование

Рассмотрим грузы массами m_1 и m_2 , удерживаемые вместе нитью, перекинутой через блок, которую мы будем считать невесомой и нерастяжимой. Мы вычисляем силы, действующие на грузы (рис. 1), и записываем для каждой из нагрузок второй закон Ньютона в проекции на

направленную вниз ось х:

$$\begin{cases}
 m_1 a_{1x} = m_1 g - T_1 \\
 m_2 a_{2x} = m_1 g - T_1
\end{cases} (1)$$

Из условия нерастяжимости нити $a_{1x} = -a_{2x}$ (2)

Из условия невесомости нити $T_2 - T_1 = F_{Tp}$ (3)

Из уравнений (1)-(3) получаем $a_{2x} = \frac{(m_2 - m_1)g - F_{Tp}}{m_1 + m_2}$ (4)

Из формул кинематики находим, что $a = 2h/t^2$ (5)

Результаты измерений и рассчёты

m ₁ , г	m ₂ , г	m ₂ -m ₁ ,	m_2+m_1 ,	h, см	t, c				t 0
		Γ	Γ		t_1	t_1	t_1	t_1	t _{cp} , c
140	150	10	290	10	0,771	0,766	0,759	0,757	0,763
				15	0,943	0,945	0,955	0,965	0,952
				20	1,206	1,196	1,208	1,184	1,199
				25	1,326	1,282	1,260	1,253	1,280
				30	1,371	1,401	1,435	1,461	1,417
130	160	30	290	10	0,461	0,457	0,449	0,444	0,453
120	170	50	290	10	0,344	0,349	0,347	0,344	0,346

На основе значений, полученных для грузов m_1 и m_2 , построим график зависимости h от t^2 .

Из графика найдём ускорение для системы грузов массами 140 г и 150 г. Оно равно a_1 =31,2 см/ c^2 .

По формуле (5) рассчитаем ускорения для грузов массами m_1 =130 г и m_2 =160 г. Оно равно a_2 =97,5 см/ c^2 .

По формуле (5) рассчитаем ускорения для грузов массами m_1 =120 г и m_2 =170 г. Оно равно a_3 =166,7 см/ c^2 .

Зная значения a_1 , a_2 , a_3 , построим график зависимости а от (m_2-m_1) .

Учитывая, что $m_2+m_1={\rm const}$ и используя формулу (4) найдём по графику g и $F_{\rm rp}$, где $g/(m_1+m_2)^-$ угловой коэффициент, $F_{\rm rp}/(m_1+m_2)^-$ отсекаемый на оси Оу отрезок. Получаем, что $g=1010{\rm cm/c^2}$, $F_{\rm rp}=0,2$ H.

Расчет погрешностей

Учитывая, что Δh =0,1 см, Δt =0,001 с, относительные погрешности равны

$$\epsilon_1 = \frac{0.1 \text{ cm}}{10 \text{ cm}} + 2 * \frac{0.001 \text{ c}}{0.453 \text{ c}} = 0.022$$

$$\varepsilon_2 = \frac{0.1 \text{ cm}}{10 \text{ cm}} + 2 * \frac{0.001 \text{ c}}{0.346 \text{ c}} = 0.023$$

Абсолютные погрешности соответственно равны Δa_1 =2,1 см/с², Δa_2 =3,8 см/с²

Вывод

В ходе работы были проведены опыты по нахождению влияния силы трения на характер движения грузов, силы трения, возникающей в блоке, ускорения свободного падения. Я убедился в равноускоренном характере движения грузов на машине Атвуда. В ходе работы я получил следующие результаты: g=1010cm/ c^2 , $F_{Tp}=0.2$ H.