Docket No.: 8733.167.00-US

This listing of claims will replace all prior versions, and listings, of claims in the application.

**Listing of Claims:** 

1. (Currently Amended) A method of fabricating a liquid crystal display device including

a thin film transistor formed at an intersection between a gate line and a data line, and a pixel

electrode connected to a source electrode of the thin film transistor and overlapped with at least

one of the gate line and the data line with having an organic insulating film therebetween, said

method comprising:

forming the thin film transistor, the gate line and the data line on a transparent substrate;

forming the organic insulating film on the transparent substrate to a thickness of between

0.8μm and 1.5μm; and

forming the pixel electrode on the organic insulating film so as to be overlapped, by a

predetermined area, with the gate line and the data line, wherein a parasitic capacitance thickness

of the organic insulating film in an overlapping area between the pixel electrode and the data line

is different from a parasitic capacitance thickness of the organic insulating film in an overlapping

area between the pixel electrode and the gate line.

2. (Original) The method according to claim 1, wherein a thickness of the organic

insulating film provided between the pixel electrode and at least one of the gate line and the data

line is less than  $1.3\mu m$ .

Page 2 of 13

3. (Original) The method according to claim 1, wherein a dielectric constant of the organic insulating film is less than 3.0.

Docket No.: 8733.167.00-US

- 4. (Original) The method according to claim 3, wherein the organic insulating film is made from Benzocyclobutene.
- 5. (Original) The method according to claim 1, wherein a parasitic capacitance in an overlapping area where the pixel electrode is overlapped with said at least one of the gate line and the data line is less than 0.0003pF.
- 6. (Original) The method according to claim 1, wherein a width of an overlapping area at which the pixel electrode is overlapped with said at least one of the gate line and the data line is greater than  $1.5\mu m$ .
  - 7. (Currently Amended) A liquid crystal display device, comprising:
  - a data line on a substrate;
  - a gate line on the substrate;
- a thin film transistor formed at an intersection of the gate line and the data line on the substrate;

an organic insulating film formed on the thin film transistor, the gate line, and the data line to a thickness of between  $0.8\mu m$  and  $1.5\mu m$ ; and

a pixel electrode formed on the organic insulating film and connected to a source electrode of the thin film transistor, said pixel electrode overlapping the gate line and the data line, wherein a parasitic capacitance thickness of the organic insulating film in an overlapping Application No.: 09/689,599

Response dated May 16, 2005

Reply to Advisory Action dated April 20, 2005 and to the final Office Action dated December 28, 2004

area between the pixel electrode and the data line is different from a parasitic capacitance

thickness of the organic insulating film in an overlapping area between the pixel electrode and

Docket No.: 8733.167.00-US

the gate line.

8. (Original) The thin film transistor of claim 7, wherein the organic insulating film has a

dielectric constant of less than 3.0.

9. (Original) The liquid crystal display device according to claim 8, wherein the organic

insulating film is made from Benzocyclobutene.

10. (Original) The liquid crystal display device according to claim 7, wherein the

thickness of the organic insulating film is less than  $1.3\mu m$ .

11. (Original) The liquid crystal display device according to claim 10, wherein the

thickness of the organic insulating film is between  $1.25\mu m$  and  $1.27\mu m$ .

12. (Previously Presented) The liquid crystal display device according to claim 7,

wherein a parasitic capacitance in an overlap area where the pixel electrode overlaps at least one

of the gate line and the data line is less than 0.0003pF.

13. (Previously Presented) A liquid crystal display device including a thin film transistor

formed at an intersection between a gate line and a data line, and a pixel electrode connected to a

source electrode of the thin film transistor and overlapped with at least one of the gate line and

the data line with having an organic insulating film therebetween, wherein a thickness and a

Page 4 of 13

Reply to Advisory Action dated April 20, 2005 and to the final Office Action dated December 28, 2004 dielectric constant of the organic insulating film are selected such that a signal delay is less than 10 µsec for each of the gate lines and the data line, wherein the thickness and the dielectric constant of the organic insulating film are selected such that a liquid crystal pixel cell driven with the pixel electrode charges to a voltage which is more than 95% of a video data voltage within ½

of an enabling interval of a control signal that is applied to a gate electrode for defining a channel

Claim 14 (Canceled).

of the thin film transistor.

15. (Original) The liquid crystal display device according to claim 13, wherein the thickness of the organic insulating film is less than  $1.5\mu m$ .

16. (Original) The liquid crystal display device according to claim 13, wherein the thickness of the organic insulating film is between  $0.8\mu m$  and  $1.5\mu m$ .

17. (Original) The liquid crystal display device according to claim 13, wherein the thickness of the organic insulating film provided between at least one of the gate line and the data line and the pixel electrode is less than  $1.3\mu m$ .

18. (Original) The liquid crystal display device according to claim 13, wherein the thickness of the organic insulating film provided between said at least one of the gate line and the data line and the pixel electrode is 1.25 to  $1.27\mu$ m.

Application No.: 09/689,599

Response dated May 16, 2005

Reply to Advisory Action dated April 20, 2005 and to the final Office Action dated December 28, 2004

19. (Previously Presented) The liquid crystal display device according to claim 13,

Docket No.: 8733.167.00-US

wherein the dielectric constant of the organic insulating film is less than 3.0.

20. (Original) The liquid crystal display device according to claim 19, wherein the

organic insulating film is made from Benzocyclobutene.

21. (Original) The liquid crystal display device according to claim 13, wherein a parasitic

capacitance in an overlap area where the pixel electrode is overlapped with said at least one of

the gate line and the data line is less than 0.0003pF.

22. (Previously Presented) A liquid crystal display device including a thin film transistor

formed at an intersection between a gate line and a data line, and a pixel electrode connected to a

source electrode of the thin film transistor and overlapped with at least one of the gate line and

the data line with having an organic insulating film therebetween wherein the thickness and the

dielectric constant of the organic insulating film are selected such that a liquid crystal pixel cell

driven with the pixel electrode charges to a voltage which is more than 95% of a video data

voltage within ½ of an enabling interval of a control signal that is applied to a gate electrode for

defining a channel of the thin film transistor.

23. (Original) The liquid crystal display device according to claim 22, wherein a

dielectric constant of the organic insulating film is less than 3.0.

Claims 24-26 (Canceled).

Page 6 of 13

Reply to Advisory Action dated April 20, 2005 and to the final Office Action dated December 28, 2004

27. (Previously Presented) The method according to claim 1, wherein a thickness of the organic insulating film provided between the pixel electrode and at least one of the gate line and the data line is between  $1.25\mu m$  and  $1.27\mu m$ .

Docket No.: 8733.167.00-US

Claims 28-31 (Canceled).

32. (Previously Presented) The method according to claim 1, wherein the thickness and the dielectric constant of the organic insulating film are selected such that a liquid crystal pixel cell driven with the pixel electrode charges to a voltage which is more than 95% of a video data voltage within ½ of an enabling interval of a control signal that is applied to a gate electrode for defining a channel of the thin film transistor.

- 33. (Previously Presented) The liquid crystal display device according to claim 13, wherein the liquid crystal pixel cell includes a cell having a largest signal delay.
- 34. (Previously Presented) The liquid crystal display device according to claim 33, wherein the liquid crystal pixel cell is located at a lower right corner of the display device.
- 35. (Previously Presented) The liquid crystal display device according to claim 13, wherein the pixel electrode is overlapped with the gate line and the data line, wherein a parasitic capacitance in an overlapping area between the pixel electrode and the data line is different from a parasitic capacitance in an overlapping area between the pixel electrode and the gate line.

36. (Previously Presented) The liquid crystal display device according to claim 35, wherein the thickness of the organic insulating film is less than  $1.5\mu m$ .

- 37. (Previously Presented) The liquid crystal display device according to claim 35, wherein the thickness of the organic insulating film is between  $0.8\mu m$  and  $1.5\mu m$ .
- 38. (Previously Presented) The liquid crystal display device according to claim 35, wherein the thickness of the organic insulating film provided between at least one of the gate line and the data line and the pixel electrode is less than  $1.3\mu m$ .
- 39. (Previously Presented) The liquid crystal display device according to claim 35, wherein the thickness of the organic insulating film provided between said at least one of the gate line and the data line and the pixel electrode is 1.25 to  $1.27\mu$ m.
- 40. (Previously Presented) The liquid crystal display device according to claim 35, wherein the dielectric constant of the organic insulating film is less than 3.0.
- 41. (Previously Presented) The liquid crystal display device according to claim 40, wherein the organic insulating film is made from Benzocyclobutene.
- 42. (Previously Presented) The liquid crystal display device according to claim 35, wherein a parasitic capacitance in an overlap area where the pixel electrode is overlapped with said at least one of the gate line and the data line is less than 0.0003pF.

43. (Previously Presented) The liquid crystal display device of claim 7, wherein the thickness and the dielectric constant of the organic insulating film are selected such that a liquid crystal pixel cell driven with the pixel electrode charges to a voltage which is more than 95% of a video data voltage within ½ of an enabling interval of a control signal that is applied to a gate electrode for defining a channel of the thin film transistor.

- 44. (Previously Presented) The liquid crystal display device according to claim 22, wherein a thickness of the organic insulating film is between  $0.8\mu m$  and  $1.5\mu m$ .
- 45. (Previously Presented) The liquid crystal display device according to claim 22, wherein a thickness of the organic insulating film provided between the pixel electrode and at least one of the gate line and the data line is between  $1.25\mu m$  and  $1.27\mu m$ .
- 46. (Previously Presented) The liquid crystal display device according to claim 22, wherein a thickness of the organic insulating film provided between the pixel electrode and at least one of the gate line and the data line is less than  $1.3\mu m$ .
- 47. (Previously Presented) The liquid crystal display device according to claim 22, wherein the organic insulating film is made from Benzocyclobutene.
- 48. (Previously Presented) The liquid crystal display device according to claim 22, wherein a parasitic capacitance in an overlapping area where the pixel electrode is overlapped with at least one of the gate line and the data line is less than 0.0003pF.

49. (Previously Presented) The liquid crystal display device according to claim 22, wherein a width of an overlapping area at which the pixel electrode is overlapped with at least one of the gate line and the data line is greater than  $1.5\mu m$ .

- 50. (Previously Presented) The liquid crystal display device according to claim 22, wherein the liquid crystal pixel cell includes a cell having a largest signal delay.
- 51. (Previously Presented) The liquid crystal display device according to claim 50, wherein the liquid crystal pixel cell is located at a lower right corner of the display device.
- 52. (Previously Presented) The liquid crystal display device according to claim 22, wherein the pixel electrode is overlapped with the gate line and the data line, wherein a parasitic capacitance in an overlapping area between the pixel electrode and the data line is different from a parasitic capacitance in an overlapping area between the pixel electrode and the gate line.
- 53. (Previously Presented) The liquid crystal display device according to claim 52, wherein a thickness of the organic insulating film is between  $0.8\mu m$  and  $1.5\mu m$ .
- 54. (Previously Presented) The liquid crystal display device according to claim 52, wherein a thickness of the organic insulating film provided between the pixel electrode and at least one of the gate line and the data line is between  $1.25\mu m$  and  $1.27\mu m$ .

Reply to Advisory Action dated April 20, 2005 and to the final Office Action dated December 28, 2004

55. (Previously Presented) The liquid crystal display device according to claim 52, wherein a thickness of the organic insulating film provided between the pixel electrode and at least one of the gate line and the data line is less than  $1.3\mu m$ .

- 56. (Previously Presented) The liquid crystal display device according to claim 52, wherein the organic insulating film is made from Benzocyclobutene.
- 57. (Previously Presented) The liquid crystal display device according to claim 52, wherein a parasitic capacitance in an overlapping area where the pixel electrode is overlapped with at least one of the gate line and the data line is less than 0.0003pF.
- 58. (Previously Presented) The liquid crystal display device according to claim 52, wherein a width of an overlapping area at which the pixel electrode is overlapped with at least one of the gate line and the data line is greater than  $1.5\mu m$ .
- 59. (Previously Presented) The liquid crystal display device according to claim 52, wherein the liquid crystal pixel cell includes a cell having a largest signal delay.
- 60. (Previously Presented) The liquid crystal display device according to claim 59, wherein the liquid crystal pixel cell is located at a lower right corner of the display device.