DACON 동서발전 태양광 발전량 예측 AI 경진대회

- 통계학과 19 이나윤 (12기)
- 수학과 18 이두형 (12기)
- 통계학과 19 기다연 (13기)
- 의예과 20 박재찬 (13기)

동서발전 태양광 발전량 예측 AI 경진대회

주제: 시간대별 태양광 발전량 예측

배경:

태양광 발전은 매일 기상 상황과 계절에 따른 일사량의 영향을 받습니다. 이에 대한 예측이 가능하다면 보다 원활한 전력 수급 계획이 가능합니다.

인공지능 기반 태양광 발전량 예측 모델을 만들어주세요.

site_info.csv (발전소 정보): 발전소 발전용량(MW), 주소, 설치각, 입사각, 위도, 경도

energy.csv (발전소별 발전량): 당진수상/당진자재창고/당진/울산 태양광 발전량. 1시간 단위 계량 (2018/03/01 00:00~2021/01/31 23:00)

dangjin_fcst_data.csv (당진지역 발전소 동네 예보) : 온도, 습도, 풍속, 풍향, 하늘상태(1,2,3,4) (2018/03/01 00:00~2021/03/01 23:00)

dangjin_obs_data.csv (당진지역 발전소 기상 관측 자료) : 일시, 기온, 풍속, 풍향, 습도, 전운량(10분위) (2018/03/01 00:00~2021/01/31 23:00)

ulsan_fcst_data.csv (울산지역 발전소 동네 예보) : 온도, 습도, 풍속, 풍향, 하늘상태(1,2,3,4) (2018/03/01 00:00~2021/03/01 23:00)

ulsan_obs_data.csv (울산지역 발전소 기상 관측 자료) : 일시, 기온, 풍속, 풍향, 습도, 전운량(10분위) (2018/03/01 00:00~2021/01/31 23:00)

-> 2021년 2월 1일 00:00부터 2021년 7월 8일 23:00 예측

(1) 외부 관측 데이터 활용 -> 변수 추가 (미세먼지, 이슬점)

- 기상자료개방포털 (종관기상관측)

https://data.kma.go.kr/data/grnd/sel ectAsosRltmList.do?pgmNo=36

- 에어코리아

에어코리아 (airkorea.or.kr)

Correlation

WindSpeed - 0.32 -0.05 1.00 0.16 -0.35 -0.13 0.29 -0.16 -0.21 -0.03 -0.05 0.20 0.01

rain --0.09 0.00 0.29 -0.07 0.19 0.10 100 0.05 0.05 -0.25 0.22 -0.40 -0.01

10m - 0.21 -0.04 0.20 0.06 -0.44 -0.28 -0.40 -0.23 -0.23 0.18 -0.26 1.00 -0.02

69 -0.03 0.19 -0.42 -0.32 -0.25 -0.69 -0.68 1.00 -0.26 0.18 -

rain c -0.11 0.88 -0.21 -0.29 0.76 0.46 0.05 0.95 1.00

Humidity --0.47 0.37 -0.35 -0.13 1.00

Cloud --0.24 0.27 -0.13 -0.11

• [논문] 기계학습을 이용한 태양광 발전량 예측 및 결함 검출 시스템 개발

scienceon.kisti.re.kr

-0.42 0.49 -0.44 0.29지가

0.68 0.36 -0.23 0.81

1.00 0.10 0.42 0.46 -0.32 0.74 -0.28 0.23 날전이

https://scienceon.kisti.re.kr/srch/selectPORSrchArticle.do?cn=JAKO201631642279260&dbt=NART

• [논문] 현재 기상 정보의 이동 평균을 사용한 태양광 발전량 예측

냥광 발전에 미치는 영향

미세먼지가 태양광 발전에 미치는 영향(2)

드-段左문 사이트 링크

(2) NA 데이터 전처리 (MICE/PPCA)

KUBIG

(2) NA 데이터 전처리 : MICE

MICE(multivariate imputation by chained equations)

1. 결측값을 그럴듯한 값으로 대체하여 유사 대체 완료

자료 m개 생성

- 2. 각각 유사 대체 완료 자료 분석
- 3. 개별적 분석 결과를 결합하여 종합적 결론 도출


```
ppca(Matrix, nPcs = 2, seed = NA, threshold = 1e-05,
maxIterations = 1000, ...)
```

Arguments

Matrix	matrix — Data containing the variables in columns and observations in rows. The data may contain missing values, denoted as NA .
nPcs	numeric – Number of components to estimate. The preciseness of the missing value estimation depends on the number of components, which should resemble the internal structure of the data.
seed	numeric Set the seed for the random number generator. PPCA creates fills the initial loading matrix with random numbers chosen from a normal distribution. Thus results may vary slightly. Set the seed for exact reproduction of your results.
threshold	Convergence threshold.
maxIterations	the maximum number of allowed iterations
	Reserved for future use. Currently no further parameters are used.

Examples

```
## Load a sample metabolite dataset with 5\% missing values (metaboliteData)

data(metaboliteData)

## Perform probabilistic PCA using the 3 largest components

result <- pca(t(metaboliteData), method="ppca", nPcs=3, seed=123)

## Get the estimated complete observations

cObs <- completeObs(result)

## Plot the scores

plotPcs(result, type = "scores")
```

ppca 함수 주요 파라미터

- Matrix: 결측치 처리에 쓰일 데이터
- nPcs: 예측할 요소의 개수 (입력 데이터에 의존)
- maxIteration: 최대 반복 횟수

1) 당진 (Cloud 변수/10)

2) 당진 (Cloud 변수 범주화)

Cloud 변수 / 10 > Cloud 변수 범주화

1) 울산 (Cloud 변수/10)

2) 울산 (Cloud 변수 범주화)

Cloud 변수 / 10 > Cloud 변수 범주화

	X	Temperatu	WindSpee	WindDirec	Humidity	Cloud	steam_pre	dew_point	ground_su	hourly_average_fin	e_du
1	0	3.1	3.6	340	96	0.587038	7.3	2.5	2.7	13	
2	1	2.8	0.7	140	97	0.681275	7.2	2.3	2.7	11	
3	2	2.6	3.2	320	95	0.382004	7	1.8	2.5	10	
4	3	2	1.9	230	97	0.051127	6.8	1.5	2.1	19	
5	4	2.2	2.1	180	97	0.12323	6.9	1.7	2.3	21	
6	5	4.1	4.4	270	97	0.695503	7.9	3.6	2.8	28	
7	6	3.5	7.9	320	93	0.184502	7.3	2.4	2.9	27	
8	7	2.2	6.4	290	86	-2.25808	6.1	0	1.5	76	
9	8	1	7.7	320	82	-2.53824	5.4	-1.7	1.5	59	
10	9	0.3	8.9	320	71	-3.29991	4.4	-4.3	3.1	54	
11	10	0.6	7.9	320	63	-3.7432	4	-5.6	5.7	63	
12	11	0.5	9.1	320	58	-3.91567	3.7	-6.8	7.5	61	
13	12	0.7	6.7	320	60	-3.43272	3.9	-6.1	9.9	63	
14	13	1.5	6.5	320	60	-3.05194	4.1	-5.4	10.9	63	
15	14	0.1	5.1	340	56	-4.15424	3.5	-7.6	8.2	62	
16	15	0.4	5	320	56	-4.15825	3.5	-7.3	8.4	67	
17	16	0.3	6	290	56	-4.40242	3.5	-7.4	6.5	67	
18	17	-0.5	4.6	320	59	-4.92324	3.5	-7.5	3.3	71	
19	18	-1.3	5.4	290	62	-4.97212	3.5	-7.6	0.8	61	
20	19	-1.7	4.4	320	63	-5.22753	3.4	-7.8	0	64	
21	20	-1.8	4.3	320	63	-4.97268	3.4	-7.9	0	53	

Cloud 변수

1) 0보다 작은 음수의 경우

: 0으로 통일

2) 10보다 큰 수의 경우

: 10으로 통일

(3) Forecast data 보간 (cubic interpolation)

예보 발표 시간 몇 시간 후 예측?

Forecast time	forecast	Temperature	Humidity	WindSpeed	WindDirection	Cloud	Target time
2018-03-01 11:00:00	4	0	60	7.3	309	2	2018-03-01 15:00
2018-03-01 11:00:00	7	-2	60	7.1	314	1	→ 2018-03-01 18:00
2018-03-01 11:00:00	10	-2	60	6.7	323	1	→ 2018-03-01 21:00
2018-03-01 11:00:00	13	-2	55	6.7	336	1	→ 2018-03-02 00:00
2018-03-01 11:00:00	16	-4	55	5.5	339	1	2018-03-02 03:00

Forecast 데이터에서, 예보 target time은 3시간 간격으로 주어져 있음.

→주어진 3시간 간격 데이터 사이의 데이터를 보간해야 함.

(3) Forecast data 보간 (cubic interpolation)

선형 보간 (linear interpolation)

(3) Forecast data 보간 (cubic interpolation)

	Cloud	Humidity	Temperatrue	date
	0.24995661	50.96545273	-2.104535188	2018-03-02 1:00:00
	0.249965288	52.77236218	-2.48362815	2018-03-02 2:00:00
보간한 데이터	0.25	55	-3	2018-03-02 3:00:00
1	0.250034712	57.22763782	-3.51637185	2018-03-02 4:00:00
보간한 데이터	0.25004339	59.03454727	-3.895464812	2018-03-02 5:00:00
J	 0.25	60	-4	2018-03-02 6:00:00

• 태양의 위치는 태양광 발전과 직접적인 연관이 있음.

• 태양은 천구상에서 일주운동(지구의 자전)과 연주운동(지구의 공전)을 함.

• 같은 시간일지라도 날짜가 바뀌면, 태양의 위치는 바뀜.

```
sun_system(date, lat, longt):
from datetime import datetime, timedelta
import math
temp_long = 135 - longt
N = int((date - datetime(int(date.year), 1, 1, 0, 0)).days) + 1
delta = -23.44 * math.cos(2*pi/365*(N+10)) / 180 * pi
sin alpha = math.sin(lat) ★ math.sin(delta) + math.cos(lat) ★ math.cos(delta) ★ math.cos(h)
sin_theta = math.sqrt(1 - sin_alpha*sin_alpha)
sin_phi = -1 ★ math.sin(h) ★ math.cos(delta) / sin_theta
cos_phi = (math.sin(delta) * math.cos(lat) - math.cos(h) * math.cos(delta) * math.sin(lat)) / sin_theta
    'sin(elev ang)' : [sin_alpha],
    'sin(azimuth ang)' : [sin_phi],
    'cos(azimuth ang)' : [cos_phi]
df = pd.DataFrame(result)
```

- 각 변수 설명(모든 값은 degree) 및 관련 설명 그림
- 적위(δ , declination of the Sun) : 날마다 변하는 태양 빛과 적도가 이루는 각도(지구 공통)
- 지역의 위도(φ, latitude) : 한국은 33 ~ 43도(평균 38도)
- 지역의 경도(longitude): 한국은 135도(영국 런던 그리니치천문대 기준)
- 시간각(h, hour angle): 1시간을 15도씩으로 계산하되, 남중고도 12시를 0h 하고 남중고도 직전은 (-), 직후는 (+).
- 태양천정각(θ, solor zenith angle) : 천정(하늘)과 태양이 이루는 각도
- 태양고도(a, solar elevation angle) : 지면과 태양이 이루는 각도(90 θ)
- 태양방위(Φ, soloar azimuth angle): 북쪽을 기준으로 시계방향으로 설정(북>동>남>서), xyz 좌표 방향과 반대

sin(elev ang)	sin(azimuth ang)	cos(azimuth ang)
0.381913	0.860378	-0.509657
0.530157	0.726173	-0.687512
0.636285	0.511144	-0.859495
0.693064	0.202606	-0.979260
0.696624	-0.156348	-0.987702

- 바람에 대한 변수는 WindSpeed(m/s)와 WindDirection(각도)으로 주어져 있음.
- 각도는 0과 360이 이어져야 하므로, 이를 벡터변환(좌표변환)해준다.

```
dangjin_fcst['Wind_x'] = dangjin_fcst['WindSpeed'] * np.cos(dangjin_fcst['WindDirection']/180*np.pi)
dangjin_fcst['Wind_y'] = dangjin_fcst['WindSpeed'] * np.sin(dangjin_fcst['WindDirection']/180*np.pi)
```

WindSpeed	WindDirection	Wind_x	Wind_y
7.3	309.0	4.594039	-5.673166
7.1	314.0	4.932074	-5.107313
7.1	314.0	5.350858	-4.032161
6.7	323.0	6.120755	-2.725136
6.7	323.0	5.134692	-1.971024

• 온도와 상대습도로 이슬점을 구할 수 있다.

```
def dew_temp(X):
    c = 243.12
    b = 17.62
    gamma = (b * X['Temperatrue']) / (c * X['Temperatrue']) * np.log(X['Humidity']/100)
    dp = (c*gamma) / (b-gamma)
    X['dew_point'] = dp
```

• Hour와 day of year는 주기성을 띄기 때문에, sin과 cos으로 주기성을 설정해줄 수 있다.

```
def prep(X):
    dew_temp(X)
   X['dayofyear'] = X['date'].dt.dayofyear
   X['hour'] = X['date'].dt.hour
   X['dayofyear'] = X['dayofyear'].astype('float')
   X['hour'] = X['hour'].astype['float']
   X['sin\_hour'] = np.sin(2*np.pi*(X.hour/24))
   X['\cos_hour'] = np.\cos(2*np.pi*(X.hour/24))
   X['sin_dayofyear'] = np.sin(2*np.pi*(X.dayofyear/365))
   X['cos_dayofyear'] = np.cos(2*np.pi*(X.dayofyear/365))
   X = X.drop(['hour', 'dayofyear'], axis=1)
```


• Forecast의 feature들은 그대로, Observation의 feature들은 3시간, 6시간, 12시간, 24시간 단위로 이동평균 값을 feature로 사용한다.

(ex. 05-27 19:00:00의 예측값 + 05-26 19:00:00을 기준으로 3시간, 6시간, 12시간, 24시간 전의 이동평균)

	Т3	Wx3	Wy3	НЗ	С3	dp3	FD3	Т6	Wx6	Wy6	 H24	C24	dp24	FD24
dat	•													
2018 03-0 23:00:0	3.000000	2.547811	-2.765482	30.666667	0.666667	-12.766667	22.333333	4.316667	1.610254	-1.399842	 47.333333	4.166667	-5.070833	17.833333
2018 03-0 00:00:0	2.100000	2.735749	-2.833886	34.666667	0.633333	-11.933333	25.666667	3.433333	1.759413	-1.593653	 44.791667	4.041667	-5.887500	18.708333
2018 03-0 01:00:0	1.300000	2.855183	-1.330378	38.000000	0.633333	-11.500000	25.000000	2.583333	2.280685	-1.525249	 42.500000	3.875000	-6.612500	18.750000
2018 03-0 02:00:0	0.466667	2.498318	-0.387623	41.666667	0.633333	-11.100000	27.000000	1.733333	2.523064	-1.576552	 41.083333	3.875000	-7.187500	19.666667

Lstm

: RNN에 장단기 메모리 셀을 추가하여 기존 RNN을 개선한 모델

: 시간적 상관성과 기상 요인과의 상관성으로 인한 발전량 예측의 어려움을 해결할 수 있는 모델

Lstm

: LSTM을 시계열 예측에 활용하기 위해서는,

input 데이터를 재구성하여 지도학습 형태로 만들어줘야함.

Sarimax: SARIMA + exogeneous variable

SARIMA(Seasonal Autoregressive Integrated Moving Average):

trend에 대하여 ARIMA를 수행하고, 계절성에 대해서 추가적으로 ARIMA를 수행한 것

SARIMA
$$(p, d, q)$$
 $(P, D, Q)_m$
 \uparrow \uparrow

Non-seasonal part Seasonal part of the model of the model where $m =$ seasonal lag of observations.

p: pacf에서 수렴하기 직전값 (0과 2 사이 범위)

d: adf테스트 및 추세의 가시적 확인으로 추세여부 확인 (0과 2사이 범위)

q: acf에서 수렴하기 직전값 (0과 2 사이 범위)

P: pacf에서 계절성이 주기가 몇 번 반복 됐는지 확인

D: 계절성이 있는지 확인하고 계절성 차분의 필요성에 따라

1 or 0

Q: acf기준 계절성 주기가 몇 번 반복 됐는지 확인

m: 계절성 주기 (계절주기가 1년이기에 12로 설정)

Sarimax: SARIMA + exogeneous variable

+ PCA

Light GBM

Boosting

여러 개의 알고리즘(Tree)이 순차적으로 학습-예측을 하면서 이전 모델의 잔차를 이용하여 모델을 발전시키는 머신러닝 방법

Light GBM

- LightGBM
- Level-wise tree growth
- Fast
- Available to use GPU
- Robust to Collinearity problem (Tree based)
- Overfitting 민감

현재 Output 및 추후 계획

점수(NMAE-10): 7.5782

941팀 중 "21등!"

2021년 5월

EDA, 전처리, 모델 만들기 (5월 3일~ 5월 26일)

모델 hyperparameter 조정 (5월 26일 ~ 6월 8일)

: 정기 회의 X 4

- -> LSTM, LGBM : Hyperparameter 조정
- -> SARIMAX : exogeneous 변수 조정 (auto_arima 함수 사용)
- -> 5월 30일 팀 병합 마감.
- -> 6월 8일 public 평가 마감.

