Problem 1.11. Find the gradients of the following functions:

(a)
$$f(x, y, z) = x^2 + y^3 + z^4$$
.

(b)
$$f(x, y, z) = x^2 y^3 z^4$$
.

(c)
$$f(x, y, z) = e^x \sin(y) \ln(z)$$
.

Problem 1.12. The height of a certain hill (in feet) is given by

$$h(x, y) = 10(2xy - 3x^2 - 4y^2 - 18x + 28y + 12),$$

where y is the distance (in miles) north, x the distance east, of South Hadley.

- (a) Where is the top of the hill located?
- (b) How high is the hill?
- (c) How steep is the slope (in feet per mile) at a point 1 mile north and 1 mile east of South Hadley? In what direction is the slope steepest, at that point?

Problem 1.13. Let \boldsymbol{z} be the separation vector from a fixed point (x', y', z') to the point (x, y, z), and let \boldsymbol{z} be its length. Show that

- (a) $\nabla(x^2) = 2x$;
- (b) $\nabla (1/r) = -\hat{r}/r^2$.
- (c) What is the *general* formula for $\nabla(z^n)$?

Problem 1.11

a)

$$\nabla f = (2x, 3y^2, 4z^3)$$

b)

$$\nabla f = (2xy^3z^4, 3y^2x^2z^4, 4z^3x^2y^3)$$

c)

$$\nabla f = \left(e^x \sin(y) \ln(z), \cos(y) e^x \ln(z), \frac{1}{z} e^x \sin(y)\right)$$

Problem 1.12

a)

$$\nabla h = (10(2y - 6x - 18), 10(2x - 8y + 28))$$

$$\nabla h = 0$$

$$x = -2$$
 $y = 3$

b)

$$h(-2,3) = 720ft$$

c)

$$\nabla h(1,1) = (-220, 220)$$

$$\vec{v} = \frac{1}{||\nabla h||} \cdot \nabla h = \frac{1}{\sqrt{(-220)^2 + (220)^2}} \cdot (-220, 220) = \frac{1}{220\sqrt{2}} \cdot (-220, 220) = \langle \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle$$