August 23 – August 29, 2019 Maribor, Slovenia Day 1 Tasks

covering
Azerbaijani (AZE)

T - Örtmə

Əgər heç olmasa bir dəfə Tetris oyununu oynamısınızsa, aşağıdakı fiqur sizə tanış gələ bilər:

Biz bu fiquru *T-tetromino* adlandıracağıq; *tetromino* sadəcə 4 əlaqəli xanadan ibarət olan həndəsi fiqura verilmiş bir addır. × ilə işarə olunmuş xana *mərkəzi xana* adlanır.

Manka m sətir və n sütundan ibarət düzbucaq-şəkilli bir cədvəl çəkir və hər xanaya bir ədəd yazır. Sətirlər 0-dan m-1-ə, sütunlar isə 0-dan n-1-ə qədər nömrələnib. O həmçinin bəzi xanaları (məsələn, qırmızı rənglə boyamaqla) xüsusi xana kimi qeyd edir. Bundan sonra, o, dostu Nikadan T-tetromino-ları cədvəldə aşağıdakı şərtlərlə yerləşdirməsini xahiş edir:

- T-tetromino-ların sayı xüsusi xanaların sayı ilə eyni olmalıdır. Hər bir T-tetromino-nun mərkəzi hər hansı bir xüsusi xanada yerləşməlidir.
- Heç bir T-tetromino başqa biri ilə kəsişməməlidir.
- Bütün T-tetromino-lar tamamilə cədvəldə yerləşməlidir.

Nəzərə alın ki, hər bir T-tetromino üçün 4 fərqli orientasiya mümkündür $(\top, \bot, \vdash, \lor \neg)$.

Əgər şərtlər yerinə yetirilə bilmirsə, Nika *No* cavabı verməlidir; Əks halda, o, T-tetromino-larla örtülmüş xanalardakı ədədlərin cəmi maksimum olan örtülməni tapmalıdır. Bu halda o, Mankaya maksimum cəmi deməlidir.

Nikaya məsələni həll etməkdə kömək edən proqram yazın.

Giriş verilənləri

Hər sətir tək bir boşluqla ayrılmış ədədlər ardıcıllığından ibarətdir.

İlk sətirdə m və n tam ədədləri verilir. Növbəti m sətirdən hər biri [0,1000] intervalında olan n tam ədəddən ibarətdir. i-ci sətirdəki j-ci tam ədəd cədvəlin i-ci sətrinin j-ci xanasındakı ədədi ifadə edir. Növbəti sətir $k \in \{1,\ldots,mn\}$ tam ədədindən ibarətdir. Növbəti k sətrin hər birində uyğun olaraq, i-ci xananın sətir və sütun indekslərini göstərən $r_i \in \{0,\ldots,m-1\}$ və $c_i \in \{0,\ldots,n-1\}$ tam ədədləri verilir. Xüsusi xanalaların siyahısında heç bir xanaya iki dəfə rast gəlinmir.

Çıxış verilənləri

T-tetromino-larla örtülmüş xanalardakı ədədlərin maksimum cəmini, və ya şərtləri ödəmək mümkün olmazsa No çıxışa verin.

Məhdudiyyətlər

• $1 < mn < 10^6$.

Alt tapşırıqlar

- ullet 5 bal: $k\leq 1000$; bütün fərqli xüsusi i və j xanaları üçün $|r_i-r_j|>2$ və ya $|c_i-c_j|>2$ bərabərsizliyi ödənilir.
- 10 bal: $k \leq 1000$; bütün fərqli xüsusi i və j xanaları üçün əgər $|r_i r_j| \leq 2$ və $|c_i c_j| \leq 2$ olarsa, onda (r_i, c_i) və (r_j, c_j) xanaları toxunur, və ya formal olaraq bu şərt ödənir: ($|r_i r_j| = 1$ və $|c_i c_j| = 0$) və ya ($|r_i r_j| = 0$ və ya $|c_i c_j| = 1$).
- 10 bal: $k \leq 1000$; bütün fərqli xüsusi i və j xanaları üçün əgər $|r_i-r_j| \leq 2$ və $|c_i-c_j| \leq 2$ olarsa, onda $|r_i-r_j| \leq 1$ və $|c_i-c_j| \leq 1$.
- ullet 10 bal: $k \leq 1000$; bütün xüsusi xanalar eyni sətirdə yerləşir.
- 15 bal: $k \le 10$.
- 20 bal: $k \le 1000$.
- 30 bal: əlavə məhdudiyyət yoxdur.

Nümunə 1

Giriş

```
5 6
7 3 8 1 0 9
4 6 2 5 8 3
1 9 7 3 9 5
2 6 8 4 5 7
3 8 2 7 3 6
3
1 1
2 2
3 4
```

Çıxış

67

Şərh

Maksimum cəmi əldə etmək üçün Nika tetromino-ları aşağıdakı kimi düzməlidir:

- (1, 1) xanasında ⊢;
- (2, 2) xanasında ⊢;
- (3, 4) xanasında ⊥.

Nümunə 2

Giriş

```
5 6
7 3 8 1 0 9
4 6 2 5 8 3
1 9 7 3 9 5
2 6 8 4 5 7
3 8 2 7 3 6
3
1 1
2 2
3 3
```

Çıxış

No