Objetivos

- Aprender los conceptos de divisibilidad y sus propiedades (Ejercicios 1 y 2).
- Adquirir destrezas en la manipulación de los números enteros para probar propiedades de divisibilidad (Ejercicios 3, 7, 8, 9 y 10).
- Aprender los conceptos de cociente y resto, sus propiedades y su utilidad para demostrar propiedades de divisibilidad (Ejercicios 4, 5, 6).

Ejercicios

Los ejercicios con el símbolo (a) tienen una ayuda al final del archivo para que recurran a ella después de pensar un poco.

- 1) Sean $a, b, c \in \mathbb{Z}$. Demostrar las siguientes afirmaciones:
 - (a) Si ab = 1, entonces a = b = 1 ó a = b = -1.
 - (b) Si $a \mid 1$ entonces a = 1 ó a = -1.
 - (c) Si $a, b \neq 0$, $a \mid b \neq b \mid a$, entonces a = b ó a = -b.
 - (d) Si $a \neq 0$ y $a \mid b$, entonces $a \mid b \cdot c$.
 - (e) Si $a \neq 0$, $a \mid b$ y $a \mid c$, entonces $a \mid (bx + cy)$ para $x, y \in \mathbb{Z}$ arbitrarios.
 - (f) Si $a \neq 0$, $a \mid b \neq a \mid (b+c)$, entonces $a \mid c$.
 - (g) Si $a \neq 0$ y $a \mid b$, entonces $a^n \mid b^n$ para todo natural n (más adelante veremos que si $a^n \mid b^n$ para algún natural n, entonces $a \mid b$).
 - (h) $a \mid b \text{ y } b \neq 0 \Rightarrow |a| \leq |b|$.
- 2) Sean $a, b, c \in \mathbb{Z}$. Probar que las siguientes afirmaciones son falsas dando un contraejemplo.
 - (a) $a \mid b \cdot c \Rightarrow a \mid b \circ a \mid c$.

(c) $a \mid c \vee b \mid c \Rightarrow a \cdot b \mid c$.

(b) $a \mid (b+c) \Rightarrow a \mid b \circ a \mid c$.

- (d) $a \mid c \lor b \mid c \Rightarrow (a+b) \mid c$.
- 3) Probar las siguientes afirmaciones usando inducción.
 - (a) 8 divide a $3^{2n} 1 \quad \forall n \in \mathbb{N}$.
- (b) 3 divide a $2^n + 5^{n+1} \quad \forall n \in \mathbb{N}$.
- 4) Hallar el cociente y el resto de la división de:
 - (a) 127 por 99.
- (b) -135 por 23.
- (c) 135 por -23.
- (d) -135 por -23.
- 5) Sea X un conjunto arbitrario de 20 números naturales. Probar que hay al menos dos elementos de X cuya diferencia es divisible por 19.
- 6) Dados b, c enteros, probar las siguientes propiedades:
 - (a) 0 es par y 1 es impar.
 - (b) Dados dos enteros consecutivos, entonces uno es par y el otro es impar.
 - (c) El producto de un número entero por su consecutivo es un número par.
 - (d) La suma de un número par y uno impar es impar.
 - (e) b+c es par si y sólo si b y c son ambos pares o ambos impares.
 - (f) Dado un número entero n, n es par si y sólo si n^2 es par.
- 7) Probar que el producto de tres enteros consecutivos es divisible por 6.

- 8) Determinar los enteros positivos n tales que
 - (a) $n^2 7n + 10$ es divisible por n 3. (b) $n^2 + 2n + 3$ es divisible por n + 1.
- 9) Sean $a, b \in \mathbb{Z}$.
 - (a) (a) Probar que si $a \neq b$, entonces $a b \mid a^n b^n$ para todo $n \in \mathbb{N}$.
 - (b) Probar que si n es un número natural impar y $a \neq -b$, entonces $a + b \mid a^n + b^n$.
 - (c) Probar que si n es un número natural par y $a \neq -b$, entonces $a + b \mid a^n b^n$.
- 10) (a) Probar que las siguientes afirmaciones son verdaderas para todo $n \in \mathbb{N}$.
 - (a) El producto de n enteros consecutivos es divisible por n!
 - (b) $2^n \prod_{i=1}^n (2i-1)$ es divisible por n!

Ayudas

- 9) Puede hacerlo por inducción y en el paso inductivo, sumar y restar algo apropiado a $a^{n+1} b^{n+1}$. O puede calcular explícitamente el cociente.
- 10) En la primer parte usar que los números combinatorios son enteros y elegir un número combinatorio apropiado. En la segunda parte usar (2n)! y la primer parte.

Ejercicios complementarios

Si ya hizo los ejercicios anteriores continue con la siguiente guía. Los ejercicios que siguen son similares y le pueden servir para practicar antes de los exámenes.

- 11) Probar que cualquiera sea $n \in \mathbb{N}$:
 - (a) $3^{2n+2} + 2^{6n+1}$ es múltiplo de 11.
 - (b) $3^{2n+2} 8n 9$ es divisible por 64.
- 12) Probar las siguientes afirmaciones.
 - (a) Sea a un número entero impar. Probar que $a^2 1$ es divisible por 8.
 - (b) $n^2 + 2$ no es divisible por 4 para todo $n \in \mathbb{Z}$.
- 13) Dado $m \in \mathbb{N}$ hallar los restos posibles de m^2 y m^3 en la división por 3 y por 11.
- **14)** Sean n, m y a números naturales, $a \neq 1$. Probar que si r es el resto de la división de n por m, entonces el resto de la división de $a^n 1$ por $a^m 1$ es $a^r 1$.
- **15)** Sean $a_1, a_2, a_3, \ldots, a_n$ números enteros. Probar que existen índices i, j con $1 \le i \le j \le n$ tales que $\sum_{k=i}^{j} a_k$ es divisible por n. (Sugerencia: considere los restos en la división por n de los n números $a_1, a_1 + a_2, a_1 + a_2 + a_3, \cdots, a_1 + a_2 + \cdots + a_n$.)
- **16)** Probar que las siguientes afirmaciones son verdaderas para todo $n \in \mathbb{N}$:

- (a) $\binom{2n}{n}$ es divisible por 2.
- (b) $\binom{2n}{n}$ es divisible por n+1 (Sugerencia: probar que $(2n+1)\binom{2n}{n}=(n+1)\binom{2n+1}{n}$ y observar que $\binom{2n}{n}=(2n+2)\binom{2n}{n}-(2n+1)\binom{2n}{n}$).