- > But optique géométrique :
 - conception instruments d'optique
- > Dernier système optique : œil
- > Problématique

FIGURE 1: Miroir d'eau à Bordeaux

Questions : Quel est l'objet ? Où est l'image ? Sont-ils réels ou virtuels ?

Lycée M. Montaigne – MP2I 2

1. Formation d'image en optique géométrique

1.1 Schéma général d'un montage optique

- > Sources lumineuses
 - <u>Définition</u> Source = Objet

Lycée M. Montaigne – MP2I

- 1. Formation d'image en optique géométrique
- 1.1 Schéma général d'un montage optique

CARACTÉRISATION DES SOURCES LUMINEUSES		
PRIMAIRE	PONCTUELLE	
Lumière émise spontanément	Source = point	
ou	OU	
SECONDAIRE	ÉTENDUE	
Doit être éclairée par une autre source	Ensemble de points sources, dimension finie	

FIGURE 3 : Caractérisation des sources lumineuses

- > Système optique
- > Surface photosensible

1. Formation d'image en optique géométrique

Rayons incidents

1.2 Système optique (5.0.)

- > Constitution
 - Définition S.O.
- Faisceau et rayons lumineux
 - Définition Faisceau lumineux
 - Définition Source étendue
 - Définition Rayons incidents
 - Définition Rayons émergents
- > 5.0. et conjugaison
 - Définition Conjugaison

Sens de propagation de la lumière

Système

Optique

FIGURE 4: Système optique

- 1. Formation d'image en optique géométrique
- 1.2 Système optique (S.O.)

> Caractéristiques d'un S.O.

CARACTÉRISATION DES SYSTÈMES OPTIQUES		
	CENTRÉ	SPHÉRIQUE
Définition	Axe de symétrie de révolution = <u>axe optique</u> .	Forme d'une sphère ou portion de sphère
Propriété	Tout rayon suivant l'axe optique : non dévié Axe optique : direction principale de propagation de la lumière orienté positivement selon le sens de la lumière	Tout rayon passant par le centre : non dévié

FIGURE 5 : Caractérisation des systèmes optiques

1. Formation d'image en optique géométrique

1.3 Caractérisation de l'objet et de l'image

> Distinction objet / image

S.O. en cascade

FIGURE 6 : Observation d'une image projetée sur un écran

Objets / Images définis par rapport à un 5.0.!

- 1. Formation d'image en optique géométrique
- 1.3 Caractérisation de l'objet et de l'image

CARACTÉRISATION DES OBJETS / IMAGES		
À DISTANCE FINIE		
Détermination possible de la position p/r au S.O.		
OU À L'INFINI		
Rayons forment un faisceau parallèle		

FIGURE 7 : Caractérisation des objets / images

- 1. Formation d'image en optique géométrique
- 1.3 Caractérisation de l'objet et de l'image

> Exemples

FIGURE 8 : Différents objets et images

- 1. Formation d'image en optique géométrique
- 1.4 Propriétés des systèmes optiques
- 1.4.1 Stigmatisme d'un système optique
- > Définition: S.O. rigoureusement stigmatique
- Exemples de S.O. réels
- Animation 1 : Figures animées pour la physique : Optique géométrique
 / Dioptres / Dioptre sphérique : stigmatisme

FIGURE 9 : Exemples de caustiques (fond d'une piscine, verre d'eau, lentille)

Caustique = aberration géométrique sphérique

S.O. réel non stigmatique

Pour approfondir...

[1] J.M. Courty, E. Kierlik, Scintillations estivales, *Pour la Science*, n°405, p 90-92, Juillet 2011

- 1. Formation d'image en optique géométrique
- 1.4 Propriétés des systèmes optiques

1.4.2 Aplanétisme d'un système optique

- > But d'un instrument d'optique
- > Définition :

S.O. rigoureusement aplanétique

- 1. Formation d'image en optique géométrique
- 1.4 Propriétés des systèmes optiques

1.4.3 Conditions de Gauss

- > <u>5.0. réels</u>
- > Capteurs
- Définition Conditions de Gauss (approx. Gauss) : rayons paraxiaux :

peu inclinés p/r A.O ET proches A.O.

> Réalisation expérimentale des conditions de Gauss

Diaphragme d'entrée

Animation 1

> Approximations mathématiques

$$\sin(\theta) \simeq \theta \qquad \cos(\theta) \simeq 1 \quad \tan(\theta) \simeq \theta$$

1. Formation d'image en optique géométrique

- 1.5 Conjugaison objet image par un S.O.
- > Conditions de Gauss respectées
- > Objet considéré

FIGURE 10 : Modélisation d'un objet étendu

l'A.O.

- 1. Formation d'image en optique géométrique
- 1.5 Conjugaison objet image par un S.O.

> Localisation de l'image

FIGURE 11 : Localisation de l'image

Position de A' sur l'A.O.: relation de conjugaison

Définition: Relation de conjugaison

$$\overline{OA'} = f(\overline{OA})$$

- 1. Formation d'image en optique géométrique
- 1.5 Conjugaison objet image par un S.O.

FIGURE 11: Localisation de l'image

• Taille de l'image A'B': rela° de grandissement

Définition : grandissement transversal

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = g(\overline{OA'}; \overline{OA})$$

 $\gamma > 0$: image droite $\gamma < 0$: image renversée

Remarque : Distances algébriques 🥂

2. Miroir plan

- 2.1 Constitution
 - **Propriété**
- 2.2 Construction de l'image d'un point objet
- Animation 2 : Figures animées pour la physique : Optique géométrique
 / Miroirs / Miroir plan
- > Méthode 1
 - **Propriété:**
 - Miroir: seul 5.0. réel rigoureuse[†] stigmatique
- > Nature de l'objet et de l'image

Lycée M. Montaigne – MP2I

2. Miroir et dioptre plans

2.3 Relations pour le miroir plan

> Relation de conjugaison

Propriété:

A' symétrique de A p/r plan du miroir Relation de conjugaison :

$$\overline{OA'} = -\overline{OA}$$

Méthode 2

- 2. Miroir et dioptre plans
- 2.3 Relations pour le miroir plan

> Grandissement

Propriété

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = 1$$

Miroir: seul S.O. réel rigoureuse[†] aplanétique

> Retour à la problématique

FIGURE 12: Miroir plan: grandissement

FIGURE 1 : Miroir d'eau à Bordeaux