Antianginás szerek & Kálcium antagonisták

Megyeri Attila 2020.09.22.

Myocardialis ischaemia

- egyensúly felborul: (O₂) ellátás(kínálat)<igény(kereslet)
 - szöveti hypoxia → ↑ metabolitok → fájdalom
 - angina pectoris (angere = szorítani, pectus = mellkas)
 - de van: "silent" ischemia is
- angina típusai
 - effort (klasszikus, stabil, terhelésre jelentkező)
 - vazospasztikus (variant, Prinzmetal lokális érgörcs)
 - instabil (plakk ruptura, részlegesen elzáró labilils trombus)

háttérben: atherosclerosis / coronaria betegség

Myocardialis ischaemia

- korrekció lehetőségei
 - ↓ igény (kereslet)
 - ↓ szív munka
 - hatékonyabb metabolizmus (kevesebb O₂ per ATP)
 - † ellátás (kínálat)
 - coronaria dilatatio

Kereslet

(a myocardialis oxigén igény meghatározói)

- szívfrekvencia
- kontraktilitás
- falfeszülés ← arteriás nyomás (systoles), periférias vénás tónus (diastoles)
 - intraventricularis nyomás
 - kamraátmérő (térfogat)
 - falvastagság

Kínálat

(a coronaria áramlás & a myocardialis oxigén ellátás meghatározói)

- coronaria vascularis rezisztencia (fordított arány)
 - coronaria rezisztenciát befolyásoló tényezők
 - metabolitok
 - vegetatív aktivitás
 - gyógyszerek
 - endothelium károsodás
 - sérült endothelium→coronaria nem dilatál (ld coronaria "steal")
- perfusios nyomás (aorta diastoles nyomása)
- diastole tartama

Coronary steal

no steal control steal

- a nitrátok angina esetén jól használhatók
 - nem csak a koronáriákra hatnak
- dipyridamole angina esetén nem jó
 - diagnosztikus stressz tesztként használható

Gyógyszeres kezelés angina pectorisban?

- sok beteg nem alkalmas
 - revascularizációra PCI ("percutaneous coronary intervention")
 - "coronary artery bypass graft surgery" (CABG)
- jelentős hányadban nem teljes a revascularizáció PCI vagy CABG után
- ilyenkor: gyógyszeres terápia
 - hagyományos antianginás szerek
 - újabb antianginás szerek (általában refrakter anginára)

Antianginás szerek csoportjai

- szerves **nitrátok** (pl. nitroglycerin)
 - elsősorban akut kezelésre de prophylaxisra is
- calcium csatorna blokkolók (pl. nifedipine)
 - prophylaxisra
 - dihydropyridinek és nem-dihydropyridinek
- β blokkolók
 - prophylaxisra
- újabb antianginás szerek
 - ranolazine ic. Ca $\downarrow \rightarrow \downarrow$ kontraktilitás
 - trimetazidine hatékonyabb O₂ felhasználás
 - ivabradine ↓ szívfrekvencia

elsődleges: \downarrow O_2 igény: \downarrow frekvencia / kontraktilitás / kamra fal feszülés járulékosan: \uparrow O_2 ellátás: coronaria dilatáció (variáns anginában elsődleges)

Nitrátok

- nitroglicerin = glyceryl trinitrát (GTN)
 - a prototípus
 - illékony, adsorptio műanyagokhoz spray
- amilnitrit
 - illékony, belégzésre, elavult
- isosorbid dinitrát (ISDN)
 - nitroglicerinnél lassabb felszívódás, hasonló metabolizmus
- isosorbid-5-mononitrát (ISMN)
 - jó orális biol. hozzáf., lassú hatás, akutan nem
- pentaerythritol tetranitrát
 - tartós hatás
- nicorandil
 - kombinált: NO felszabadulás + K⁺ csatorna nyitás
- molsidomine
 - profarmakon, akut kezelésre nem
 - spontán NO felszabadulás / tolerancia ritkább ?
- nitroprusside
 - parenteralis, hypertensiv krízis (nem angina), spontán NO felszab.
 - vénás és artériás dilatator is, fényérzékeny, cianid mérgezés, rövid hatástartam

Nitroglycerin (glyceryl trinitrate)

Nitrátok hatásmechanizmusa

- NO felszab. → guanilát cikláz ↑ → cGMP ↑ → PKG↑ → MLC foszforiláció ↓ → simaizom relaxáció
 - enzimatikus
 - GTN: mitochondrial aldehyde dehydrogenase (ALDH2) + mások?
 - "direkt" (nem-enzimatikus)
 - pl. molsidomine
- elsősorban venodilatáció (túladagolás veszélyes)
 - + epicardialis coronariák + atherosclerotic stenosis + collateralis erek (nincs "coronary steal")
- egyéb simaizmok
 - bronchusok, gastroint., genitourin. klinikai haszon ?
- thrombocyta aggregáció gátlás (mérsékelt)

Pharmacokinetics of nitrates

- nitroglycerine (GTN)
 - for acute use:
 - sublingual tablet, spray
 - avoids first pass effect
 - quick onset (peak ~ 4 min)
 - short duration (30 min)
 - high dose is not possible
 - for chronic use (longer duration)
 - larger oral doses
 - transdermal patches
 - buccal slow release
- isosorbide mononitrate
 - oral F=100%
 - slow onset \rightarrow no acute use

Nitrátok terápiás indikációi

- bármely típusú angina
 - effort fő: ↓ vénás vissza → ↓ intracardialis térfogat → ↓ O_2 fogy.
 - instabil ? coronaria dil / \downarrow O₂ fogy / thrombocyta \downarrow
 - Prinzmetal / variant coronaria relaxáció
- kombinációban
 - β-blokkolókkal vagy Ca csatorna blokkolókkal
- akut kezelésre és profilaxisra is
- tartós alkalmazás ?
 - tolerancia ? / mortalitás ?

Nitráttolerancia, mellékhatások, interakciók

tolerancia

- mechanizmus ?
 - neurohumoralis aktiváció, SH depléció, szabadgyökök, a mitochondrialis aldehid-dehidrogenáz inaktivációja ...
- csökkentésre: szakaszos adagolás
- mellékhatások dózisfüggő!
 - lüktető fejfájás / arckipirulás
 - orthostaticus hypotonia
 - reflex tachycardia
 - methaemoglobinaemia
 - Id. nitrát → nitrit csecsemőkben
 - cianid mérgezésben használták
 - 一个 intracranialis nyomás (túladagoláskor) kontraindikáció
- interakciók
 - sildenafil (Viagra®)
 - antihipertenziv szerek

Interaction of nitrates with PDE5 inhibitors

- risk factors for erectile dysfunction ≈ coronary artery disease
- PDE5 inhibitors:
 sildenafil (Viagra),
 tadalafil (Cialis),
 vardenafil (Levitra)
- profound cGMP ↑ → severely reduced BP

indications of PDE5 inhibitors: **erectile dysfunction**, **pulmonary hypertension**

Ca²⁺ channel blockers

- voltage activated Ca²⁺ channels
 - several types: L, T, N, P/Q, R
 - currently used drugs are L-type Ca²⁺ channel blockers (mostly)
 - **depolarization** \rightarrow opening \rightarrow EC Ca²⁺ entry \rightarrow contraction
 - although different in smooth muscle and heart

Ca²⁺ channel blockers

tissue selectivity

- vascular smooth muscle relaxation
 - primarily dihydropyridines: nifedipine, amlodipine ...
 - predominantly arterial \rightarrow blood pressure and TPR \downarrow
 - coronaries → variant angina
 - vascular bed selectivity: e.g. nimodipine cerebral arteries (evidence?)
- heart: negative inotrop, chronotrop, dromotrop
 - cardiac myocytes, SA, AV nodal cells
 - primarily: verapamil / diltiazem
- other tissues: no / less effect (relative)
 - skeletal muscle, bronchi, neural tissue / gastroint., genitourin.

drug	vasodilation	contractility ↓	automaticity \downarrow	conduction ↓
verapamil	4	4	5	5
diltiazem	3	2	5	4
nifedipine	5	1	1	0

relative effects: 0 = no effect, 5 = prominent effect

Mechanism of action / basis of selectivity

- all bind to $\alpha 1$ but at **different sites**
- reduced Ca²⁺ influx → relax. / neg. inotropy / ↓ SA / ↓ AV
- verapamil use dependent blockade / ↓ rate of recovery
 of the slow Ca²⁺ channel in SA and AV nodes → cardiac eff.

Mechanism of action

- smooth muscle relaxation
 - vascular
 - predominantly arterial → blood pressure and TPR ↓
 - coronaries → variant angina
 - different vascular selectivity: verapamil ↔ nifedipine
 - vascular bed selectivity: e.g. nimodipine
 - bronchiolar, GI, uterine
- cardiac muscle contractility \
- SA node pacemaker rate ↓
- AV nodal conduction rate \(\psi \)

verapamil (diltiazem)

Classification

chemical

- phenylalkilamine: verapamil
- benzothiazepine: diltiazem
- dihydropyridines (DHP): nifedipine, amlodipine ...

functional

- heart active (verapamil / diltiazem) no tachycardia
- vessel active (DHP) tachycardia (baroreflex)

drug	vasodilation	contractility ↓	automaticity \downarrow	conduction ↓
verapamil	4	4	5	5
diltiazem	3	2	5	4
nifedipine	5	1	1	0

relative effects: 0 = no effect, 5 = prominent effect

Chemical structures

Pharmacokinetics

Absorption

- good oral abs. + high first pass hepatic metabolism $\rightarrow \downarrow$ oral bioavail.
- iv.: verapamil, nifedipine, nimodipine, nicardipine
- bioavail. †: grapefruit juice, cirrhosis, saturation of metabol.
- fast absorption → quick onset → high C_{max}
 - deleterious: more pronounced baroreceptor reflex activation
 - except for e.g. amlodipine, lacidipine, sustained release nifedipine

Distribution

- high plasma protein binding
- Elimination
 - variable half-lives (1.3-64 h)
 - longer half life is more desirable
 - sustained-release forms (e.g. nifedipine)
 - extensive liver metabolism
 - inactive or weakly active metabolites
 - verapamil, diltiazem: CYP3A4 / P-gp blockade → drug interactions

Duration of action of DHPs

- short
 - nifedipine*, nimodipine, nicardipine
- intermediate
 - felodipine, nisoldipine, nitrendipine, isradipine
- long
 - amlodipine, lacidipine

^{*}but see sustained release formulations

Clinical use of Ca²⁺ channel blockers

- antihypertensive
- antianginal
- antiarrhythmic (verapamil, diltiazem)
- other
 - hypertrophic cardiomyopathy
 - migraine
 - Raynaud's phenomenon
 - preterm labor
 - post subarachnoid hemorrhage (nimodipine)

Ca²⁺ channel blockers in angina

- peripheral vasodilation
 - predominantly arterial
 - blood pressure and TPR \downarrow → \downarrow afterload → \downarrow wall stress (systolic) → \downarrow O₂ demand
- coronary dilation
 - important primarily in variant angina
 - most effective prophylaxis in variant angina
- other heart effects (non-dihydropyridines)
 - $-\downarrow$ contractility $/\downarrow$ frequency

Other indications of Ca²⁺ channel blockers

- supraventricular tachyarrhythmias verapamil
 - paroxysmal supraventricular tachycardia (PSVT)
 - atrial fibrillation / flutter (except +WPW)
- hypertension
 - chronic: no short acting oral dihydropyridines
 - acute: i.v. clevidipine, nicardipine, verapamil / oral nifedipine

Other indications of Ca²⁺ channel blockers

- hypertrophic cardiomyopathy
 - verapamil improved LV outflow obstruction
- migraine
 - for prophylaxis only
- Raynaud's phenomenon
 - nifedipine, felodipine, diltiazem
- preterm labor
 - not primary
- post subarachnoid hemorrhage
 - nimodipine
 - prevent cerebral vasospasm

Adverse effects

- arteries
 - headache, flushing, dizziness
 - immediate release oral nifedipine
 - peripheral edema (ankle edema)
 - increased hydrostatic pressure
- other
 - gastroesophageal reflux
 - constipation verapamil
- heart
 - worsening of ischemia / angina
 - excessive hypotension / "coronary steal" / ↑ O₂ demand
 - bradycardia, transient asystole, exacerbation of heart failure
 - iv. verapamil + SA / AV disease or β-blocker use

Specific dihydropyridines

- nifedipine
 - prototype, short acting, acute use or sustained rel.
- amlodipine
 - delayed onset, long acting
- felodipine
 - intermediate duration, even greater vascular specificity
- lacidipine
 - lipophilic, slow onset, long duration, vascular selectivity, antioxidant activity
- nimodipine
 - cerebral vessel specific
- isradipine
 - typical peripheral vasodilation, negative chronotrop but little effect on AV conduction, no rise
 in heart rate
- clevidipine
 - newer, iv only, quick onset, short duration, artery specific
- nicardipine
 - oral and iv., coronary selective ?, good for cerebral vasospasms ?

β blockers in angina

- not vasodilators (with a few exceptions)
- useful effects in angina
 - $-\downarrow$ heart rate $/\downarrow$ contractility $/\downarrow$ blood pressure
 - \downarrow O_2 requirement
 - \uparrow diastolic perfusion time $\rightarrow \uparrow$ coronary perfusion
- clinical use
 - effort angina (silent!)
 - in stable angina clinical trials: β blockers > Ca blockers
 - after myocardial infarction
 - but do not use in vasospastic angina

β blockers

- undesirable effects in angina
 - ↑ end-diastolic volume / ↑ ejection time
 - might \uparrow O_2 requirement
 - to prevent: combination with nitrates

	Nitrates Alone	Beta Blockers or Calcium Channel Blockers	Combined Nitrates with Beta Blockers or Calcium Channel Blockers
Heart rate	Reflex ¹ increase	Decrease	Decrease
Arterial pressure	Decrease	Decrease	Decrease
End-diastolic volume	Decrease	Increase	None or decrease
Contractility	Reflex ¹ increase	Decrease	None
Ejection time	Decrease ¹	Increase	None

¹Baroreceptor reflex.

Note: Undesirable effects are shown in italics.

Adverse effects of \(\beta\)-receptor blockers

- bradycardia
- bronchoconstriction (in asthma)
- cardiac decompensation
 - see interaction with verapamil
- cold hands and feet
- sedation, vivid dreams, depression
- VLDL ↑, HDL/LDL ratio ↓
- hypoglycemia? IDDM
- worsening of peripheral vascular disease
- β-receptor up-regulation
 - gradual dose tapering

Ranolazine

- relatively new drug in angina (Ranexa®)
- reduces a late sodium current (I_{Na})
 - Na-Ca exchanger Na entry ↓ → ic. Ca ↓ → contractility → ↓ O₂ demand
- for chronic treatment in stable angina
 - primarily in those who are unresponsive to other
- antiarrhythmic properties
- potential PK drug interactions
 - liver metabolism (CYP3A4, CYP2D6) / P-gp
- may prolong QT interval

Trimetazidine

- a metabolic modulator
 - partially ↓ fatty acid oxidation pathway (pFOX inhibitor)
 - fatty acid oxidation requires more O₂ per ATP
 - inhibition seems to improve metabolic status
- approved in Europe (but not in US)
- no significant effects on heart rate
- Parkinson's disease risk 个 (EMA, 2012)
 - second line

Ivabradine

- a bradycardic
 - relatively selectively blocks I_f Na channel (funny current)
 - $-\downarrow$ heart rate
 - blocks hyperpolarization-activated Na ch in SA node
 - no other hemodynamic effects
- reduces the number of anginal attacks
 - not for acute treatment
- free of GI and bronchial effects

Drugs in unstable angina & acute coronary syndromes

- antiplatelet therapy
 - combination of aspirin and clopidogrel
- iv. heparin or sc. LMWH
- if PCI with stenting
 - glycoprotein IIb/IIIa inhibitors (abciximab, tirofiban, eptifibatide)
- nitroglycerin
- β-blockers
- lipid-lowering
- ACE-inhibitor