Conceitos Básicos de Banco de Dados

Laboratório de Bases de Dados Profa. Dra. Cristina Dutra de Aguiar Ciferri

Sistema de Banco de Dados (SBD)

- → Sistema de armazenamento de dados
- **→** Objetivos:
 - manter informações
 - torná-las disponível quando necessário
- → Armazenamento não volátil
- **→** Componentes:
 - banco de dados
 - sistema gerenciador de banco de dados
 - usuários
 - hardware

Sistema de Banco de Dados (SBD)

Banco de Dados (BD)

- → Depósito de dados armazenados
- → Os dados devem ser logicamente coerentes
- → Uma coleção randômica não é um BD

Sistema Gerenciador de Banco de Dados (SGBD)

- → Coleção de programas para:
 - criar
 - manter
 - o banco de dados
- → Camada existente entre os dados e os usuários
- → Isola os usuários dos detalhes de *hardware*
- → Atende às solicitações dos usuários

Sistema Gerenciador de Banco de Dados (SGBD)

→ Recursos:

- adição de novos arquivos
- inserção de dados
- recuperação de dados
- atualização dos dados
- eliminação dos dados
- criação de visões
- atribuição de privilégios

— ...

Usuários

- → Administrador do BD
 - coordena e monitora o uso do BD
 - > tem conhecimento total do BD
- → Projetista do BD
 - identifica os dados a serem armazenados no BD
 - escolhe as estruturas apropriadas para representar e armazenar esses dados
- → Programador de aplicações
 - escreve os programas aplicativos
- → Usuário final

Hardware

- → Volumes de armazenamento secundário
- → Dispositivos de entrada e saída
- → Canais de entrada e saída
- → Controladores de dispositivos
- → Processador + memórias associadas
 - ULA
 - registradores
 - unidade de controle

♦ ...

Arquitetura de Três Níveis

Arquitetura ANSI-X3-SPARC

Arquitetura de Três Níveis

- → Objetivo
 - separar as aplicações dos usuários do BD físico
 - prover uma visão abstrata dos dados
- → Três níveis de abstração
 - organização física dos dados
 - esquema interno
 - organização lógica global dos dados
 - esquema conceitual
 - organização lógica particular dos dados
 - esquema externo (visão)

Arquitetura de Três Níveis

- **→** Esquema interno
 - dados armazenados na memória secundária
 - contém definições de estruturas de dados e mecanismos de acesso
- → Esquema conceitual
 - definição do conteúdo da informação
 - utiliza o conceito de modelo de dados
 - independe de estruturas de dados e mecanismos de acesso
- → Esquema externo
 - usuário apenas vê parte dos dados
 - visões: também chamadas de subesquemas

Instâncias e Esquemas

→ Instância

- coleção de informações armazenadas no BD em um determinado momento
- também chamado de extensão do BD
- sofre alterações constantemente

→ Esquema

- projeto do BD, incluindo as entidades e os relacionamentos entre estas
- também chamado de intenção do BD
- não sofre alterações com frequência

Estado do Banco de Dados

- → Os dados armazenados em um BD em um determinado momento
- **→** Estado vazio
 - após a criação do BD
- **♦** Estado inicial
 - após o povoamento
 (ou carregamento) do
 BD com os dados
 iniciais

- → Novo estado
 - após cada operação realizada nos dados do BD
- **→** Estado atual
 - estado do BD em um determinado momento

Projeto de Banco de Dados

Laboratório de Bases de Dados Profa. Dra. Cristina Dutra de Aguiar Ciferri

Projeto de Banco de Dados

- → Objetivo da abordagem de BD
 - oferecer abstração dos dados
 - separar aplicações dos usuários dos detalhes de hardware
 - ferramenta utilizada ⇒ modelo de dados
- → Modelo de dados
 - conjunto de ferramentas conceituais para a descrição dos dados, dos relacionamentos existentes entre os dados, da semântica e das restrições que atuam sobre estes

Modelos de Dados: Categorias

→ Divisão baseada nos tipos de conceitos oferecidos pelo modelo para descrever a estrutura do banco de dados

- → Modelo de dados conceitual
 - modelo de alto nível
 - oferece conceitos próximos aos usuários
 - ➤ Modelo Entidade-Relacionamento (ER)

Modelos de Dados: Categorias

- → Modelo de dados de implementação
 - oferece conceitos que
 - podem ser facilmente utilizados por usuários finais
 - não estão distantes da forma na qual os dados estão organizados no computador
 - é implementado de maneira direta
 - ➤ Modelo Relacional

Modelos de Dados: Categorias

- → Modelo de dados físico
 - modelo de dados físico
 - descreve como os dados estão armazenados fisicamente no computador
 - SGBDR (Sistema Gerenciador de Banco de Dados Relacional) Oracle

Projeto de Banco de Dados

Modelo Relacional

- → Relação esquema R:
 - utilizada para descrever uma relação
 - denotada por $R(A_1, A_2, ..., A_n)$
 - formada por
 - um nome de relação R
 - uma lista de atributos A₁, A₂, ..., A_n
 - para cada atributo A_i ($1 \le i \le n$)
 - dom(A_i): domínio de A_i
 - domínio: conjunto de valores atômicos
 - caracteriza a intenção do BD

Modelo Relacional

→ Relação r da relação esquema

$$R(A_1, A_2, ..., A_n)$$

- representa a instância da relação
- denotada por r(R)
- formada por um conjunto de n-tuplas

$$r = \{t_1, t_2, ..., t_m\}$$

cada n-tupla t é uma lista de n valores

$$t = \langle v_1, v_2, ..., v_n \rangle$$

- v_i ($1 \le i \le n$) é um elemento de dom(A_i) ou um valor nulo (i.e., null)
- caracteriza a extensão do BD

Restrições sobre uma Relação

→ Domínio

 dentro de cada tupla, o valor de cada atributo A deve ser um valor atômico de dom(A)

→ Chave primária

identifica de forma única cada tupla da relação

→ Valor nulo

- permitido: null (default)
- não permitido: not null
- → Integridade de entidade
 - nenhum valor de chave primária pode ser nulo

Restrições entre duas Relações

- → Integridade referencial
 - mantém a consistência entre as tuplas nas duas relações
 - declara que uma tupla em uma relação, a qual faz referência a uma outra relação, deve se referir a uma tupla existente nessa segunda relação
 - definida entre a chave estrangeira (FK) de uma relação esquema R₁ e a chave primária (PK) de uma relação esquema R₂

Restrições entre duas Relações

- → FK de R₁ é chave estrangeira de R₁, que faz referência à PK de R₂, se:
 - os atributos de FK têm os mesmos domínios que os atributos de PK
 - um valor de FK em uma tupla t_1 do estado corrente de $r_1(R_1)$
 - ocorre como um valor de PK para alguma tupla t_2 no estado corrente $r_2(R_2)$ ou
 - tem o valor null

Aspectos Adicionais

- → Opções para remoção/atualização
 - CASCADE
 - SET NULL
 - SET DEFAULT

Mapeamento do Modelo Entidade-Relacionamento para o Modelo Relacional

Laboratório de Bases de Dados Profa. Dra. Cristina Dutra de Aguiar Ciferri

Tipo-Entidade Forte

empregado (CPF_empregado, nome_empregado)

Tipo-Entidade Fraca

Tipo-Relacionamento (1:1)

Tipo-Relacionamento (1:1)

- não pode existir departamento sem gerente
- pode existir empregado que não gerencia o departamento

```
empregado (<u>CPF_empregado</u>, nome_empregado)
departamento (<u>sigla_depto</u>, nome_depto, CPF_empregado)
```

- entidades de departamento: participação total
- entidades de empregado: participação parcial

Tipo-Relacionamento (1:n)

empregado (CPF_empregado, nome_empregado, sigla_depto)

departamento (sigla_depto, nome_depto)

Atributo de Tipo-Relacionamento (1:1 e 1:n)

empregado (<u>CPF_empregado</u>, nome_empregado, sigla_depto, data_início)
departamento (<u>sigla_depto</u>, nome_depto)

Tipo-Relacionamento (m:n)

Tipo-relacionamento Unário (1:1)

pessoa (<u>código pessoa</u>, nome pessoa, código cônjuge)

Tipo-relacionamento Unário (1:n)

empregado (código emp, nome emp, código supervisor)

Tipo-relacionamento Unário (m:n)

Tipo-relacionamento Ternário

Generalização/Especialização

Outras Formas de Mapeamento

secretário (<u>CPF_empregado</u>, nome_empregado, idioma) técnico (<u>CPF_empregado</u>, nome_empregado, grau_técnico) engenheiro (<u>CPF_empregado</u>, nome_empregado, tipo_engenheiro)

Outras Formas de Mapeamento

empregado (<u>CPF_empregado</u>, nome_empregado, tipo_empregado, idioma, grau_técnico, tipo_engenheiro)

Outras Formas de Mapeamento

empregado (CPF_empregado, nome_empregado)

†

SeTeEn (<u>CPF_empregado</u>, idioma, grau_técnico, tipo_engenheiro, tipo_empregado)

Atributo Tipo-Empregado

→ Atributo único

- tipo-empregado
- assume valores diferentes, de acordo com o tipo do empregado

→ Diversos atributos

- tipo_empS, tipo_empT, tipo_empE, ...
- cada um dos atributos assume valor 0 ou 1, de acordo com o tipo do empregado
- ➤ abordagem muito mais flexível, principalmente para hierarquias com restrição de sobreposição

Mapeamento

```
universidade (<u>CGC_univ</u>, nome_univ)

ingressa/aluno (<u>CPF_pessoa</u>, <u>CGC_univ</u>, data_ingresso)

professor (<u>CPF_professor</u>, nome_professor)

orienta (<u>CPF_pessoa</u>, <u>CGC_univ</u>, <u>CPF_professor</u>)
```


médico (CRM_médico, nome_médico)

paciente (CPF_paciente, nome_paciente)

atendimento (CRM_médico, CPF_paciente, data, hora)

médico (CRM_médico, nome_médico)

paciente (CPF_paciente, nome_paciente)

atendimento (CRM_médico, CPF_paciente, data, hora)

atende (CRM_médico, CPF_paciente, obs)

médico (CRM_médico, nome_médico)

paciente (CPF_paciente, nome_paciente)

atendimento (<u>CRM_médico, CPF_paciente, data</u>, hora, <u>nro_atendimento</u>)

atende (CRM_médico, CPF_paciente, obs)