```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.linear_model import LinearRegression
import requests
%matplotlib inline
import os
os.chdir(r"C:\Users\camiu\M336\MATH 336 FOLDER(shen)\MATH336 (SHEN)")
```

Q4

In [60]: lifeExpectancy = pd.read_csv('LifeExpectancy19602020.csv')
lifeExpectancy.head()

Out[60]:		Country Name	Country Code	Indicator Name	Indicator Code	1960	1961	1962	1963	1
	0	Aruba	ABW	Life expectancy at birth, total (years)	SP.DYN.LE00.IN	65.662000	66.074000	66.444000	66.787000	67.11
	1	Africa Eastern and Southern	AFE	Life expectancy at birth, total (years)	SP.DYN.LE00.IN	42.716053	43.166935	43.603990	44.025617	44.437
	2	Afghanistan	AFG	Life expectancy at birth, total (years)	SP.DYN.LE00.IN	32.446000	32.962000	33.471000	33.971000	34.46
	3	Africa Western and Central	AFW	Life expectancy at birth, total (years)	SP.DYN.LE00.IN	37.205380	37.632546	38.052612	38.463746	38.86
	4	Angola	AGO	Life expectancy at birth, total (years)	SP.DYN.LE00.IN	37.524000	37.811000	38.113000	38.430000	38.760

5 rows × 66 columns

```
In [61]: jap = lifeExpectancy[lifeExpectancy['Country Name'] == 'Japan']
jap
```

Out[61]: Indicator Indicator **Country Country** 1960 1961 1962 1963 1964 Name Code Name Code Life expectancy 119 JPN at birth, SP.DYN.LE00.IN 67.666098 68.31 68.594878 69.658049 70.132439 Japan total (years)

1 rows × 66 columns

```
In [73]: japArr = np.array(lifeExpectancy.iloc[119,4:-1])
    print(len(japArr))
    year = np.arange(1960,2021)
    print(len(year))

x = year
    y = japArr
    plt.xlabel('Year')
    plt.ylabel('Life Expectancy')
    plt.title('Life Expectancy Japan 1960-2020')
    plt.scatter(x,y,color = 'green')
    plt.show()
```

61 61

(b)

```
japan = linModel(trend, sequence)
plt.plot(sequence, japan, color = 'orange', label = 'trendline')
plt.xlim(1960,2000)
plt.xlabel('Year')
plt.ylabel('Expectancy')
plt.title('Linear Regression')
plt.legend()
plt.scatter(x,y, color = 'purple', label = 'part a')
plt.show()
```

Slope: 0.3202,y-int trend: -558.49

(ii)

```
In [64]: # Load the data
    df = pd.read_table("/Users/camiu/M336/MATH 336 FOLDER(shen)/MATH336 (SHEN)/EarthTemper
    df
```

YEAR JAN **FEB** MAR **APR** JUN **AUG OCT** NOV **DEC** Out[64]: MAY JUL **SEP** 0 1850 -0.702 -0.284 -0.732 -0.570 -0.325 -0.213 -0.128 -0.233 -0.444 -0.452 -0.190 -0.268 1 1851 -0.303 -0.362 -0.485 -0.445 -0.302 -0.189 -0.215 -0.153 -0.108 -0.063 -0.030 -0.067 2 1852 -0.308 -0.477 -0.505 -0.559 -0.209 -0.038 -0.016 -0.195 -0.125 -0.216 -0.187 0.083 3 1853 -0.177 -0.330 -0.318 -0.352 -0.268 -0.179 -0.059 -0.148 -0.409-0.359-0.256-0.4444 1854 -0.360 -0.280 -0.284 -0.349 -0.230 -0.215 -0.228 -0.163 -0.115 -0.188 -0.369-0.232161 2011 0.313 0.327 0.425 0.480 0.384 0.489 0.510 0.488 0.454 0.453 0.347 0.401 162 2012 0.306 0.302 0.358 0.575 0.574 0.557 0.510 0.536 0.553 0.556 0.554 0.275 163 2013 0.450 0.486 0.401 0.439 0.520 0.487 0.514 0.533 0.535 0.497 0.639 0.508 164 2014 0.523 0.313 0.561 0.657 0.599 0.618 0.541 0.666 0.589 0.626 0.489 0.634 165 2015 0.688 0.660 0.681 0.656 0.696 0.730 0.696 0.732 0.784 0.820 0.810 1.010

166 rows × 14 columns

```
In [65]:
         print(df.shape)
         (166, 14)
In [66]:
         print(df.head(3))
          time = df['YEAR']
          temp = df['MAR']
            YEAR
                     JAN
                            FEB
                                   MAR
                                          APR
                                                 MAY
                                                        JUN
                                                                JUL
                                                                       AUG
                                                                              SEP
                                                                                     OCT
            1850 -0.702 -0.284 -0.732 -0.570 -0.325 -0.213 -0.128 -0.233 -0.444 -0.452
            1851 -0.303 -0.362 -0.485 -0.445 -0.302 -0.189 -0.215 -0.153 -0.108 -0.063
            1852 -0.308 -0.477 -0.505 -0.559 -0.209 -0.038 -0.016 -0.195 -0.125 -0.216
              NOV
                      DEC
                          ANNUAL
         0 -0.190 -0.268
                           -0.375
         1 -0.030 -0.067
                           -0.223
         2 -0.187 0.083
                          -0.224
         plt.plot(time, temp, 'blue', linewidth=4)
In [67]:
          plt.title("Cameron Uyeki's plot of March temperature anomalies")
          plt.xlabel('Year')
          plt.ylabel('Temperature [deg C]')
          plt.show()
```



```
In [68]: trend = np.polyfit(time, temp, 1)
print("March trend = {:.2f} deg C/century".format(trend[0] * 100))
```

March trend = 0.56 deg C/century

```
In [71]: plt.plot(time, temp, 'blue', linewidth=4)
  plt.plot(time, np.polyval(trend, time), 'red', linewidth=2)
  plt.title("Cameron Uyeki's plot of March temperature anomalies")
  plt.xlabel('Year')
  plt.ylabel('Temperature [deg C]')
  plt.show()
```



```
In [70]: # Plot histogram
    plt.hist(temp, bins=15)
    plt.title("Histogram of the March Temperature Anomalies")
    plt.xlabel("Temperature anomalies [deg C]")
    plt.ylabel("Frequency")
    plt.show()
```


In []: