Задание №2 «Функции Грина. Эволюционные задачи»

Задача 2.1. Вычислить преобразование Лапласа функции ошибок $\mathcal{L}[\operatorname{erf}(t)](s)$.

$$\operatorname{erf}(t) = \frac{2}{\sqrt{\pi}} \int_0^t e^{-\tau^2} d\tau$$

Задача 2.2. Решить задачу Коши

$$\[\frac{d^2}{dt^2} + \nu^2 \] x(t) = \varphi(t), \qquad x(0) = x_0, \ \dot{x}(0) = \dot{x}_0.$$

с правой частью $\varphi(t) = e^{-\alpha t}$, $\alpha > 0$.

Задача 2.3. Найти запаздывающую функцию Грина оператора $\hat{L} = \left[\frac{d^2}{dt^2} + \nu^2\right]^2$.

Задача 2.4 (*). Рассмотрите запаздывающую функцию Грина G(t<0)=0, фурье-образ которой $G(\omega)$ есть мероморфная функция, аналитичная в $\{\operatorname{Im}\omega>0\}$. Рассмотрите интеграл

$$f(\omega) = \int_{-\infty}^{\infty} \frac{G(\omega')d\omega'}{\omega' - \omega - i0}$$

и получите выражения, по которым можно восстановить функцию $G(\omega)$, если известна только её вещественная или мнимая часть.

Задача 2.5 (*). Найти запаздывающую функцию Грина $G(x,t;\tau)$ механической системы, состоящей из шарика, скользящего по вертикальной спице, соединенного с пружинкой и полубесконечной струной, натянутой вдоль оси оси x.

$$u_{tt}(x,t) = c^2 u_{xx}(x,t), \quad x > 0$$

$$u_{tt}(0,t) = -\omega_0^2 u(0,t) + \varkappa u_x(0,t) + f(t).$$

Рис. 2.1: Иллюстрация к задаче 2.5.