DD2448 Foundations of Cryptography Lecture 3

Douglas Wikström KTH Royal Institute of Technology dd2448@kth.se

March 22, 2024

Double DES

We have seen that the key space of DES is too small. One way to increase it is to use DES twice, so called "double DES".

$$2\mathrm{DES}_{k_1,k_2}(x) = \mathrm{DES}_{k_2}(\mathrm{DES}_{k_1}(x))$$

Is this more secure than DES?

This question is valid for any cipher.

Meet-In-the-Middle Attack

- ▶ Get hold of a plaintext-ciphertext pair (m, c)
- ▶ Compute $X = \{x \mid k_1 \in \mathcal{K}_{DES} \land x = \mathsf{E}_{k_1}(m)\}.$
- ▶ For $k_2 \in \mathcal{K}_{DES}$ check if $\mathsf{E}_{k_2}^{-1}(c) = \mathsf{E}_{k_1}(m)$ for some k_1 using the table X. If so, then (k_1, k_2) is a good candidate.
- ▶ Repeat with (m', c'), starting from the set of candidate keys to identify correct key.

Triple DES

What about triple DES?

$$3\mathrm{DES}_{k_1,k_2,k_3}(x) = \mathrm{DES}_{k_3}(\mathrm{DES}_{k_2}(\mathrm{DES}_{k_1}(x)))$$

- ► Seemingly 112 bit "effective" key size.
- ▶ 3 times as slow as DES. DES is slow in software, and this is even worse. One of the motivations of AES.
- ► Triple DES is still considered to be secure.

Modes of Operation

Modes of Operation

- ► Electronic codebook mode (ECB mode).
- Cipher feedback mode (CFB mode).
- Cipher block chaining mode (CBC mode).
- Output feedback mode (OFB mode).
- Counter mode (CTR mode).

ECB Mode

Electronic codebook mode

Encrypt each block independently:

$$c_i = \mathsf{E}_k(m_i)$$

ECB Mode

Electronic codebook mode

Encrypt each block independently:

$$c_i = \mathsf{E}_k(m_i)$$

▶ Identical plaintext blocks give identical ciphertext blocks.

ECB Mode

Electronic codebook mode

Encrypt each block independently:

$$c_i = \mathsf{E}_k(m_i)$$

- ▶ Identical plaintext blocks give identical ciphertext blocks.
- ► How can we avoid this?

Cipher feedback mode

xor plaintext block with previous ciphertext block after encryption:

$$c_0 = \text{initialization vector}$$

$$c_i = m_i \oplus \mathsf{E}_k(c_{i-1})$$

Cipher feedback mode

xor plaintext block with previous ciphertext block after encryption:

$$c_0$$
 = initialization vector

$$c_i = m_i \oplus \mathsf{E}_k(c_{i-1})$$

Sequential encryption and parallel decryption.

Cipher feedback mode

xor plaintext block with previous ciphertext block after encryption:

$$c_0 = \text{initialization vector}$$

$$c_i = m_i \oplus \mathsf{E}_k(c_{i-1})$$

- Sequential encryption and parallel decryption.
- Self-synchronizing and unidirectional.

Cipher feedback mode

xor plaintext block with previous ciphertext block after encryption:

$$c_0 = \text{initialization vector}$$

$$c_i=m_i\oplus \mathsf{E}_k(c_{i-1})$$

- Sequential encryption and parallel decryption.
- Self-synchronizing and unidirectional.
- ▶ How do we pick the initialization vector?

CBC Mode

Cipher block chaining mode

xor plaintext block with previous ciphertext block **before** encryption:

$$c_0 = \text{initialization vector}$$

$$c_i = \mathsf{E}_k \big(c_{i-1} \oplus m_i \big)$$

CBC Mode

Cipher block chaining mode

xor plaintext block with previous ciphertext block **before** encryption:

$$c_0 = \text{initialization vector}$$

 $c_i = \mathsf{E}_k (c_{i-1} \oplus m_i)$

Sequential encryption and parallel decryption

CBC Mode

Cipher block chaining mode

xor plaintext block with previous ciphertext block **before** encryption:

$$c_0 = \text{initialization vector}$$

 $c_i = \mathsf{E}_k (c_{i-1} \oplus m_i)$

- Sequential encryption and parallel decryption
- Self-synchronizing.

Output feedback mode

$$s_0 = \text{initialization vector}$$

 $s_i = \mathsf{E}_k(s_{i-1})$
 $c_i = s_i \oplus m_i$

Output feedback mode

Generate stream, xor plaintexts with stream (emulate "one-time pad"):

$$s_0 = \text{initialization vector}$$

 $s_i = \mathsf{E}_k(s_{i-1})$
 $c_i = s_i \oplus m_i$

Sequential.

Output feedback mode

$$s_0 = \text{initialization vector}$$

 $s_i = \mathsf{E}_k(s_{i-1})$
 $c_i = s_i \oplus m_i$

- Sequential.
- Synchronous.

Output feedback mode

$$s_0 = \text{initialization vector}$$

 $s_i = \mathsf{E}_k(s_{i-1})$
 $c_i = s_i \oplus m_i$

- Sequential.
- ► Synchronous.
- ► Allows batch processing.

Output feedback mode

$$s_0 = \text{initialization vector}$$

 $s_i = \mathsf{E}_k(s_{i-1})$
 $c_i = s_i \oplus m_i$

- ► Sequential.
- ► Synchronous.
- Allows batch processing.
- Malleable!

Counter mode

$$s_0 = \text{initialization vector}$$

 $s_i = \mathsf{E}_k(s_0 || i)$
 $c_i = s_i \oplus m_i$

Counter mode

Generate stream, xor plaintexts with stream (emulate "one-time pad"):

$$s_0 = \text{initialization vector}$$

 $s_i = \mathsf{E}_k(s_0 || i)$
 $c_i = s_i \oplus m_i$

Parallel.

Counter mode

$$s_0 = \text{initialization vector}$$

 $s_i = \mathsf{E}_k(s_0 || i)$
 $c_i = s_i \oplus m_i$

- ► Parallel.
- Synchronous.

Counter mode

$$s_0 = \text{initialization vector}$$

 $s_i = \mathsf{E}_k(s_0 || i)$
 $c_i = s_i \oplus m_i$

- Parallel.
- ► Synchronous.
- Allows batch processing.

Counter mode

$$s_0 = \text{initialization vector}$$

 $s_i = \mathsf{E}_k(s_0 || i)$
 $c_i = s_i \oplus m_i$

- Parallel.
- ► Synchronous.
- Allows batch processing.
- Malleable!

Linear Cryptanalysis of the SPN

Basic Idea – Linearize

Find an expression of the following form with a high probability of occurrence.

$$P_{i_1} \oplus \cdots \oplus P_{i_p} \oplus C_{j_1} \oplus \cdots \oplus C_{j_c} = K_{\ell_1,s_1} \oplus \cdots \oplus K_{\ell_k,s_k}$$

Each random plaintext/ciphertext pair gives an estimate of

$$K_{\ell_1,s_1} \oplus \cdots \oplus K_{\ell_k,s_k}$$

Collect many pairs and make a better estimate based on the majority vote.

How do we come up with the desired expression?

How do we compute the required number of samples?

Definition. The bias $\epsilon(X)$ of a binary random variable X is defined by

$$\epsilon(X) = \Pr\left[X = 0\right] - \frac{1}{2} .$$

Definition. The bias $\epsilon(X)$ of a binary random variable X is defined by

$$\epsilon(X) = \Pr\left[X = 0\right] - \frac{1}{2} .$$

 $pprox 1/\epsilon^2(X)$ samples are required to estimate $\Pr[X=0]$ (Matsui)

Linear Approximation of S-Box (1/3)

Let X and Y be the input and output of an S-box, i.e.

$$Y = S(X)$$
.

We consider the bias of linear combinations of the form

$$a \cdot X \oplus b \cdot Y = \left(\bigoplus_{i} a_{i} X_{i}\right) \oplus \left(\bigoplus_{i} b_{i} Y_{i}\right)$$
.

Linear Approximation of S-Box (1/3)

Let X and Y be the input and output of an S-box, i.e.

$$Y = S(X)$$
.

We consider the bias of linear combinations of the form

$$a\cdot X\oplus b\cdot Y=\left(igoplus_i a_iX_i
ight)\oplus \left(igoplus_i b_iY_i
ight)\ .$$

Example: $X_2 \oplus X_3 = Y_1 \oplus Y_3 \oplus Y_4$ The expression holds in 12 out of the 16 cases. Hence, it has a bias of (12-8)/16 = 4/16 = 1/4.

Linear Approximation of S-Box (2/3)

- ▶ Let $N_L(a, b)$ be the number of zero-outcomes of $a \cdot X \oplus b \cdot Y$.
- The bias is then

$$\epsilon(a\cdot X\oplus b\cdot Y)=\frac{N_L(a,b)-8}{16},$$

since there are four bits in X, and Y is determined by X.

Linear Approximation Table (3/3)

$$N_L(a, b) - 8$$

		Output Sum															
		0	-1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
I n p u t S u m	0	+8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	-2	-2	0	0	-2	+6	+2	+2	0	0	+2	+2	0	0
	2	0	0	-2	-2	0	0	-2	-2	0	0	+2	+2	0	0	-6	+2
	3	0	0	0	0	0	0	0	0	+2	-6	-2	-2	+2	+2	-2	-2
	4	0	+2	0	-2	-2	-4	-2	0	0	-2	0	+2	+2	-4	+2	0
	5	0	-2	-2	0	-2	0	+4	+2	-2	0	-4	+2	0	-2	-2	0
	6	0	+2	-2	+4	+2	0	0	+2	0	-2	+2	+4	-2	0	0	-2
	7	0	-2	0	+2	+2	-4	+2	0	-2	0	+2	0	+4	+2	0	+2
	8	0	0	0	0	0	0	0	0	-2	+2	+2	-2	+2	-2	-2	-6
	9	0	0	-2	-2	0	0	-2	-2	-4	0	-2	+2	0	+4	+2	-2
	Α	0	+4	-2	+2	-4	0	+2	-2	+2	+2	0	0	+2	+2	0	0
	В	0	+4	0	-4	+4	0	+4	0	0	0	0	0	0	0	0	0
	C	0	-2	+4	-2	-2	0	+2	0	+2	0	+2	+4	0	+2	0	-2
	D	0	+2	+2	0	-2	+4	0	+2	-4	-2	+2	0	+2	0	0	+2
	Е	0	+2	+2	0	-2	-4	0	+2	-2	0	0	-2	-4	+2	-2	0
	F	0	-2	-4	-2	-2	0	+2	0	0	-2	+4	-2	-2	0	+2	0

Piling-Up Lemma

Lemma. Let X_1, \ldots, X_t be independent binary random variables and let $\epsilon_i = \epsilon(X_i)$. Then

$$\epsilon\left(\bigoplus_{i}X_{i}\right)=2^{t-1}\prod_{i}\epsilon_{i}.$$

Proof. Case t = 2:

$$\begin{aligned} \Pr\left[X_{1} \oplus X_{2} = 0\right] &= \Pr\left[\left(X_{1} = 0 \land X_{1} = 0\right) \lor \left(X_{1} = 1 \land X_{1} = 1\right)\right] \\ &= \left(\frac{1}{2} + \epsilon_{1}\right)\left(\frac{1}{2} + \epsilon_{2}\right) + \left(\frac{1}{2} - \epsilon_{1}\right)\left(\frac{1}{2} - \epsilon_{2}\right) \\ &= \frac{1}{2} + 2\epsilon_{1}\epsilon_{2} \ . \end{aligned}$$

By induction $\Pr[X_1 \oplus \cdots \oplus X_t = 0] = \frac{1}{2} + 2^{t-1} \prod_i \epsilon_i$

Linear Trail

Four linear approximations with $|\epsilon_i| = 1/4$

 $S_{12}: X_1 \oplus X_3 \oplus X_4 = Y_2$

 $S_{22}: X_2 = Y_2 \oplus Y_4$ $S_{32}: X_2 = Y_2 \oplus Y_4$

 $S_{34}: X_2 = Y_2 \oplus Y_4$ $S_{34}: X_2 = Y_2 \oplus Y_4$

Combine them to get:

$$U_{4,6}\oplus U_{4,8}\oplus U_{4,14}\oplus U_{4,16}\oplus P_5\oplus P_7\oplus P_8=\bigoplus K_{i,j}$$
 with bias $|\epsilon|=2^{4-1}(\frac{1}{d})^4=2^{-5}$

Attack Idea

- ightharpoonup Our expression (with bias 2^{-5}) links plaintext bits to input bits to the 4th round
- Partially undo the last round by guessing the last key. Only 2 S-Boxes are involved, i.e., $2^8 = 256$ guesses
- ▶ For a correct guess, the equation holds with bias 2^{-5} . For a wrong guess, it holds with bias zero¹.

¹Why is this a harmless little lie for didactic reasons?

Attack Idea

- Our expression (with bias 2^{-5}) links plaintext bits to input bits to the 4th round
- Partially undo the last round by guessing the last key. Only 2 S-Boxes are involved, i.e., $2^8 = 256$ guesses
- ▶ For a correct guess, the equation holds with bias 2^{-5} . For a wrong guess, it holds with bias zero¹.

Required pairs $2^{10}\approx 1000$ Attack complexity $2^{18}\ll 2^{32}$ operations

¹Why is this a harmless little lie for didactic reasons?

Linear Cryptanalysis Summary

- 1. Find linear approximation of S-Boxes.
- 2. Compute bias of each approximation.
- 3. Find linear trails.
- 4. Compute bias of linear trails.
- 5. Compute data and time complexity.
- 6. Estimate key bits from many plaintext-ciphertexts pairs.

Linear cryptanalysis is a **known plaintext attack**.

Differential Cryptanalysis

The starting point is the analysis of individual S boxes. The goal is to find pairs (Δ, Δ') of differentials such that the following expression is satisfied more often than expected.

$$S(x \oplus \Delta) = S(x) \oplus \Delta'$$

If such expression can be combined similarly to a linear trace we get a corresponding non-random property of the cipher.

This can then be exploited.

Ideal Block Cipher

Negligible Functions

Definition. A function $\epsilon(n)$ is negligible if for every constant c > 0, there exists a constant n_0 , such that

$$\epsilon(n) < \frac{1}{n^c}$$

for all $n \ge n_0$.

Motivation. Events happening with negligible probability can not be exploited by polynomial time algorithms! (they "never" happen)

Negligible Functions

Definition. A function $\epsilon(n)$ is negligible if for every constant c > 0, there exists a constant n_0 , such that

$$\epsilon(n) < \frac{1}{n^c}$$

for all $n \geq n_0$.

Motivation. Events happening with negligible probability can not be exploited by polynomial time algorithms! (they "never" happen)

Caveat! Theoretic notion. Interpret with care in practice.

Pseudo-Random Function

"Definition". A function is pseudo-random if no efficient adversary can distinguish between the function and a random function.

Pseudo-Random Function

"Definition". A function is pseudo-random if no efficient adversary can distinguish between the function and a random function.

Definition. A family of functions $F : \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ is pseudo-random if for all polynomial time oracle adversaries A

$$\left|\Pr_{K}\left[A^{F_{K}(\cdot)}=1\right]-\Pr_{R:\left\{0,1\right\}^{n}\rightarrow\left\{0,1\right\}^{n}}\left[A^{R(\cdot)}=1\right]\right|$$

is negligible.