Pázmány Péter Katolikus Egyetem

(Aszimmetrikus) erősítő

Elektronikai és biológiai áramkörök

Állománynév: aramkorok_07jelfeldolgozo_aramkorok03.pdf

Irodalom: Tankönyv: R. J. Smith & R. C. Dorf, "Circuits, Devices and Systems," Wiley,

(5th Edition), pp. 517- 544, 279-295.

Előadó jegyzetei: http://users.itk.ppke.hu/~kolumban/aramkorok/

7. JELFELDOLGOZÓ ÁRAMKÖRÖK

TARTALOM:

- 7.1. Ideális erősítők definiciója és matematikai modellje
- 7.2. Szimmetrikus/aszimmetrikus jelfeldolgozás
- 7.3. Blokkdiagram algebra
- 7.4. A visszacsatolás alkalmazása
- 7.5. Műveleti erősítők alkalmazása

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_07jelfeldolgozo_aramkorok03.pdf: 1. oldal

Differenciál erősítő

ahol $i_i=0$ A, azaz $R_{be}\Rightarrow \infty$ Ω , és $R_{ki}=0$ Ω

7.1. Ideális erősítők definiciója és matematikai modellje

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_07jelfeldolgozo_aramkorok03.pdf: 2. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramköröl

7.2. Szimmetrikus/aszimmetrikus jelfeldolgozás

Vonalvevő alkalmazása (pl. Csavart érpárral működő Ethernet hálózatok) Szimmetrikus bemenet és szimmetrikus kimenet

Előnyök: • Bemeneten a közös módusú vezérlés, azaz zavaró jelek kiejtése Védelem külső zavarok ellen

> Kimeneten az ellentétes írányú áramok által generált elektromágneses tér (EMC, ElectroMagnetic Compability) kioltja egymást Nem zavar másokat

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

Szimmetrikus bemenet és aszimmetrikus kimenet

Előny: • Bemeneten a közös módusú vezérlés, azaz zavaró jelek kiejtése Védelem külső zavarok ellen

Tipikus alkalmazás: EKG és EEG erősítők

Aszimmetrikus bemenet és aszimmetrikus kimenet

Matematikai leírás:

Bemenet felbontása egy szimmetrikus és egy közös módusú komponensre

Definició szerint az ún. differenciál erősítő bemenetein mért v_2 és v_1 jeleket felbontjuk egy közös módusú bemeneti jelre

$$v_{cm} = \frac{v_1 + v_2}{2}$$

és egy szimmetrikus bemeneti jelre

$$\Delta v = v_2 - v_1$$

KOLUMBÁN Géza - Információs Technológiai Kar

aramkorok_07jelfeldolgozo_aramkorok03.pdf: 5. oldal

A v_{cm} közös módusú és Δv szimmetrikus bemeneti jelekkel a differenciál erősítő bemeneti jelei kifejezhetők mint $\Delta v \qquad \Delta v$

$$v_2 = v_{cm} + \frac{\Delta v}{2}$$
 és $v_1 = v_{cm} - \frac{\Delta v}{2}$

A differenciál erősítő kimeneti iele:

Pázmány Péter Katolikus Egyetem

A differenciál erősítő be- és kimenetein mért jelek

$$v_o = A\left(v_2 - v_1\right) = A\Delta v$$

Vedd észre: A közös módusú bemenet nem jelenik meg a kimeneten

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_07jelfeldolgozo_aramkorok03.pdf: 6. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramköröl

7.3. Blokkdiagram reprezentáció

Alapelv: Bármilyen bonyolultságú lineáris rendszer helyettesíthető egy, a **blokk-diagram algebrá**val meghatározott átviteli függvénnyel

ahol
$$G_{61}=rac{V_6}{V_1}=rac{G_AG_B}{1-G_AG_B\left(rac{G_D}{G_A}-1
ight)}$$

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörö

A blokkdiagram algebra alkalmazásának feltételei:

A rendszer átviteli függvényekkel jellemzett, lineáris blokkokat tartalmazhat csak

$$V_2(s) = G(s)V_1(s)$$

- Az egyes blokkok nem terhelik egymást, mert minden blokkra $Z_{in} \to \infty$ és $Z_{out} = 0$
- A rendszert alkotó blokkok **unilaterálisak**, azaz egy blokk kimeneti jele nem jut vissza a blokk bemenetére. A jel haladási irányát nyíllal jelöljük

Legfontosabb fogalmak:

- Visszacsatolás: A kimenő jel egy részének bemenetre való visszavezetése
- Zárt és nyílt hurok
- ullet G az előremenő ág erősítése míg H a visszacsatoló ág átvitele
- ullet V_S a referencia jel, V_F a visszacsatolt jel és V_1 a hibajel

Visszacsatolt rendszer V_S + V_1 G V_1

Megszakított, azaz nyílt hurok

KOLUMBÁN Géza - Információs Technológiai Kar

aramkorok_07jelfeldolgozo_aramkorok03.pdf: 9. oldal

A blokkdiagram algebra építő elemei

(a) G(s) átviteli függvénnyel jellemzett blokk, azaz négypólus

$$V_1 \qquad V_2 \qquad V_2 = G(s)V_1$$

(b) Előjelesen összegző pont

Pázmány Péter Katolikus Egyetem

$$V_{S} + V_{T}$$

$$\pm V_{T}$$

$$V_{T} = V_{S} \pm V_{F}$$

(c) Elágazás

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_07jelfeldolgozo_aramkorok03.pdf: 10. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramköröl

A blokkdiagram algebra szabályai

- (I) Egy tetszőleges zárthurkú rendszer helyettesíthető egy ekvivalens nyílthurkú rendszerrel
- (II) A kaszkádba kapcsolt blokkok transzfer függvénye megegyezik az egyes blokkok átvitelének szorzatával

(III) Az összegzés sorrendje szabadon felcserélhető

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramköröl

(IV) Az összegzési pont négypóluson való átemelése

(III) Az elágazási pont négypóluson való átemelése

7.4. A visszacsatolás alkalmazása

Blokkvázlat

Átviteli függvény

$$V_1 = V_S + V_F$$

$$V_F = HV_2$$

$$V_2 = GV_1 = G(V_S + V_F) = GV_S + GHV_2$$

$$V_2 = \frac{G}{1 - GH} V_S = G_{VCS} V_S$$

Ahol: • G az előremenő ág átvitele

• GH a nyílthurkú erősítés

Fontos: Figyelj oda a visszacsatolás előjelére, a fenti képlet összegző mellett érvényes!!!

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_07jelfeldolgozo_aramkorok03.pdf: 13. oldal

A visszacsatolás fajtái, és azok alkalmazása

• Pozitív visszacsatolás: 0 < GH < 1Alkalmazás: Erősítés növelés regeneratív vevőkben

Emlékeztetőül az átviteli függvény: $V_2 = \frac{G}{1-GH}V_S = G_{VCS}V_S$

ullet Oszcillátor: GH=1

Pázmány Péter Katolikus Egyetem

$$\underbrace{(1 - GH)}_{=0} V_2 \equiv GV_S = 0$$

Alkalmazás: Oszcillátorok és multivibrátorok megvalósítása

• Negatív visszacsatolás: GH < 0

Alkalmazások:

- Erősítés pontos értékének beállítása és stabilizálása
- Torzítás csökkentése
- Be- és kimeneti impedanciák optimális beállítása

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_07jelfeldolgozo_aramkorok03.pdf: 14. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramköröl

7.4(a) A pozitív visszacsatolás

Blokkvázlat

Átviteli függvény

$$V_2 = \frac{G}{1 - GH} V_S = G_{VCS} V_S$$

aramkorok_07jelfeldolgozo_aramkorok03.pdf: 15. oldal

A nyílthurkú erősítésre tett feltétel: 0 < GH < 1

Ha G=100 és H=0,009 akkor a hurokerősítés GH=0,9 és

$$G_{VCS} = \frac{G}{1 - GH} = \frac{100}{1 - 0.9} = 1000$$

Hátránya, ami miatt ma már nem használják: Igen nagyfokú érzékenység az áramköri paraméterek változásaira

g az aranıkon parameterek vanozasana

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramköröl

7.4(b) Oszcillátor kialakítása

Egy erősítő modellje

A visszacsatolt rendszer

Az oszcilláció feltétele: GH=1, ahol $GH(j\omega)$, egy frekvenciafüggő komplex mennyiség

A generált szinuszjel paramétereinek meghatározása

Egy fokozat erősítése:

$$\mathbf{A} = A(j\omega) = \frac{A_O}{1 + j\omega R_o C_o}$$

Ha a H visszacsatolás frekvenciafüggetlen, akkor a nyílthurkú erősítés:

$$G(j\omega)H = A(j\omega)^{3}H = \left(\frac{A_{O}}{1 + j\omega R_{o}C_{o}}\right)^{3}H$$

Legyen az oszcillációs frekvencia $\omega_{osc}=\frac{\sqrt{3}}{R_oC_o}$ (stabil fázistolás)

$$G(j\omega)H\mid_{\omega_{osc}} = \left(\frac{A_O}{1+j\sqrt{3}}\right)^3 H = H\left(\frac{A_O}{2}\right)^3 \angle -180^\circ$$

Mivel az oszcilláció GH feltétele egy komplex mennyiség, ezért az felbontható egy, az **abszolút érték**re, és egy a **fázis**ra vonatkozó feltételre

Legyen a visszacsatolás frekvenciafüggetlen és kis értékű, hogy a visszacsatolás a kimenő jel teljesítményének csak egy nagyon kis részét használja fel

$$H = \mathbf{H} = 0,008$$

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_07jelfeldolgozo_aramkorok03.pdf: 17. oldal

(a) Az abszolút értékre vonatkozó feltétel az erősítő nemlinearitásán keresztül a rezgés amplitúdóját adja meg:

$$\mid GH(j\omega_{osc})\mid = \mathsf{H}\left(rac{|A_O|}{2}
ight)^3 \equiv 1$$

amiből az amplitúdófeltétel:

$$|A_O| = 2 \sqrt[3]{\frac{1}{\mathbf{H}}} = 10$$

(b) Az eredő fázistolás a rezgés frekvenciáját határozza meg:

$$\angle GH(j\omega_{osc}) = -180^{\circ} + 3 \times \angle A_O + 0^{\circ} \equiv \pm k \times 360^{\circ}, \ k = 0, 1, 2, \cdots$$

amely feltétel invertáló erősítőkkel ($\angle A_O = \angle -10 = -180^\circ$) teljesíthető

A megtervezett fázistolós oszcillátor adatai: H=0,008, A_O =-10 és ω_{osc} = $\frac{\sqrt{3}}{R_oC_o}$

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_07jelfeldolgozo_aramkorok03.pdf: 18. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

7.4(a) A negatív visszacsatolás

Átviteli függvény

$$V_2 = \frac{G}{1 - GH} V_S = G_{VCS} V_S$$

ahol GH < 0

Negatív visszacsatolás legfontosabb alkalmazása, az erősítés beállítása és stabilizálása

 $G_{VCS} = \frac{G}{1 - GH} \mid_{GH >> 1} \approx \frac{G}{-GH} = -\frac{1}{H}$

Vedd észre, a visszacsatolt erősítést a visszacsatolás határozza meg

- Műveleti erősítők G-t a műveleti erősítő határozza meg. Igen széles tartomány felett szór
 - H-t a diszkrét elemekből kialakított visszacsatolás határozza meg, ami igen pontos (akár 0,5%-os alkatrészek!!!)

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

Időállandó lecsökkentése negatív visszacsatolással

(Azaz határfrekvencia megnövelése)

Eredeti rendszer

Visszacsatolással feljavított rendszer

Az eredeti rendszer átviteli függvénye (feszültségosztó tétele):

$$\frac{v_2}{v_1} = \frac{1}{1 + sRC} = \frac{1}{1 + s\tau}$$

Átvitel DC meghajtásra

$$\frac{v_2}{v_1}|_{s=0}=1$$

Eredeti rendszer

Visszacsatolással feljavított rendszer

A visszacsatolással feljavított rendszer átvitele a v_1 és v_2 pontok között

$$\frac{v_2}{v_1} = \frac{G\frac{1}{1+sRC}}{1 - G\frac{1}{1+sRC}H} = \frac{G}{1+sRC - GH}$$

Átvitel DC meghajtásra

$$\frac{v_2}{v_1}|_{s=0} = \frac{G}{1 - GH}$$

KOLUMBÁN Géza - Információs Technológiai Kar

aramkorok_07jelfeldolgozo_aramkorok03.pdf: 21. oldal

Eredeti rendszer

Pázmány Péter Katolikus Egyetem

Visszacsatolással feljavított rendszer

A G' blokk feladata, a DC erősítés 1-re való beállítása

$$\frac{v_2}{v_1'} = \frac{v_2 v_1}{v_1 v_1'} = \frac{1 - GH}{G} \frac{G}{(1 - GH) + sRC} = \frac{1}{1 + s \frac{RC}{1 - GH}} = \frac{1}{1 + s \frac{\tau}{1 - GH}}$$

Vedd észre, a negatív visszacsatolással az időállandó a hurokerősítés arányában lecsökkent. A frekvenciatartományban ez sávszélesség növekedést jelent

Alkalmazás: Szabályozástechnika és erősítők sávszélességének megnövelése

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_07ielfeldolgozo_aramkorok03.pdf: 22. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

7.5. Műveleti erősítők szimbóluma és matematikai modellje

Tulajdonságok: • Szimmetrikus bemenet és aszimmetrikus kimenet

•
$$i_p=i_n=0$$
 A, $A_u\to\infty$ és $R_{ki}=0$ Ω

- Valóságos adatok (LF356): $i_p \approx i_n \approx 30$ pA, de ≤ 100 pA
 - $R_{out} < 40 \Omega$
 - $A_u \approx 200.000$, de > 50.000
 - Közös módusú elnyomási tényező $CMRR \approx 100 \text{ dB}, \text{ de} > 85 \text{ dB}$

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

7.5(a) Invertáló alapkapcsolás

Kulcs: 1. Műveleti erősítő két bemenete között ∼0 V feszültség van

$$V_p - V_n = \frac{V_o}{A} \to 0$$
, mivel $A \to \infty$

- 2. Műveleti erősítő neminvertáló bemenete földön van
- 3. Az invertáló bemenet földpotenciálon van, ezért virtuális földnek nevezzük
- 4. Felírjuk Kirchhoff csomóponti törvényét a virtuális földpontra

A megoldás:

Kirchhoff csomóponti törvényét a pirossal jelölt invertáló bemenetre felírva kapjuk

 $I_1 + I_F = \frac{V_1}{Z_1(s)} + \frac{V_o}{Z_2(s)} = 0$

Amiből az átviteli függvény (erősítés) kifejezhető

$$A_u = \frac{V_o}{V_1} = -\frac{Z_2(s)}{Z_1(s)}$$

Vedd észre: A_u értékét a **negatív visszacsatolás** állítja be

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_07jelfeldolgozo_aramkorok03.pdf: 25. oldal

7.5(b) Neminvertáló alapkapcsolás

Pázmány Péter Katolikus Egyetem

Kulcs: 1. Műveleti erősítő két bemenete között ∼0 V feszültség van

$$V_p - V_n = \frac{V_o}{A} \to 0, \quad \text{mivel} \quad A \to \infty$$

 A pirossal jelölt invertáló bemenetre a feszültségosztó tételt alkalmazzuk

$$V_1 - \frac{Z_1(s)}{Z_1(s) + Z_2(s)} V_o = V_p - V_n = 0$$

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_07jelfeldolgozo_aramkorok03.pdf: 26. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

A megoldás:

A neminvertáló alapkapcsolás átviteli függvénye (erősítése):

$$A_u = \frac{V_o}{V_1} = \frac{Z_1(s) + Z_2(s)}{Z_1(s)}$$

Vedd észre: ullet A_u értékét a **negatív visszacsatolás** állítja be

 Ha egy műveleti erősítő két bemenete között bármelyik kapcsolásban feszültség mérhető, akkor a műveleti erősítő vagy tönkrement, vagy a munkapontja rosszul van beállítva Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

7.5(c) Differenciál erősítő alapkapcsolás

Kulcs: Szuperpozició alkalmazása

$$V_o = V_{o1} + V_{o2} = -\frac{Z_2(s)}{Z_1(s)}V_1 + \frac{Z_1(s) + Z_2(s)}{Z_1(s)} \left(\frac{Z_2(s)}{Z_1(s) + Z_2(s)}V_2\right) = \frac{Z_2(s)}{Z_1(s)}(V_2 - V_1)$$

Vedd észre: A_u értékét a **negatív visszacsatolás** állítja be