Test 2 Info, Math 330

Definitions to know: Suppose $D \subseteq \mathbb{R}$ and $f: D \to \mathbb{R}$.

- 1. We say f is **continuous at** $x_0 \in D$ iff...
 - (a) <u>sequential def</u> $\forall \{x_n\} \subseteq D$, if $\lim_{n \to \infty} x_n = x_0$, then $\lim_{n \to \infty} f(x_n) = f(x_0)$.
- (b) $\underline{\epsilon \delta \operatorname{def}} \ \forall \epsilon > 0$, $\exists \delta > 0$ such that $\forall x \in D$, if $|x x_0| < \delta$, then $|f(x) f(x_0)| < \epsilon$. remark: we say f is **continuous on** D or simply f is **continuous** iff $\forall x_0 \in D$, the function f is continuous at x_0 .
- 2. We say f is **uniformly continuous on** D iff...
 - (a) sequential def $\forall \{u_n\}, \{v_n\} \subseteq D$, if $\lim_{n \to \infty} (u_n v_n) = 0$, then $\lim_{n \to \infty} (f(u_n) f(v_n)) = 0$.
 - (b) $\frac{\epsilon \delta \operatorname{def}}{\forall \epsilon > 0, \ \exists \delta > 0 \text{ such that } \forall x_0, x \in D, \text{ if } |x x_0| < \delta, \text{ then } |f(x) f(x_0)| < \epsilon.$
- 3. We say that $x_0 \in br$ is a **limit point of** D iff $\exists x_n \subseteq D \setminus \{x_0\}$ such that $\lim_{n \to \infty} x_n = x_0$.
- 4. Suppose x_0 is a limit point of D and $L \in \mathbb{R}$. We say the **limit of** f **as** x **approaches** x_0 **is** L and write $\lim_{x\to x_0} f(x) = L$ iff...
 - (a) <u>sequential def</u> $\forall \{x_n\} \subseteq D \setminus \{x_0\}$, if $\lim_{n \to \infty} x_n = x_0$, then $\lim_{n \to \infty} f(x_n) = L$.
 - (b) $\underline{\epsilon \delta \text{ def}} \, \forall \epsilon > 0, \, \exists \delta > 0 \text{ such that } \forall x \in D, \text{ if } 0 < |x x_0| < \delta \text{ , then } |f(x) L| < \epsilon.$

Results to know:

- 1. Algebra of Continuous Functions: 3.4, 3.5, 3.6
- 2. Extreme Value Theorem (3.9): Suppose $f:[a,b]\to\mathbb{R}$ is continuous. Then f attains maximum and minimum values.

I.e.
$$\exists x_1, x_2 \in [a, b]$$
 such that $\forall x \in [a, b]$, we have $f(x_1) \leq f(x) \leq f(x_2)$

3. Intermediate Value Theorem (3.11): Suppose $f[a, b] \to \mathbb{R}$ is continuous. If c is strictly between f(a) and f(b), then $\exists x_0 \in \mathbb{R}$ such that

$$a < x_0 < b$$
 and $f(x_0) = c$

4. Theorem 3.17. Suppose $f:[a,b]\to\mathbb{R}$. If f is continuous, then f is uniformly continuous.