Assignment-2

MF1632008 陈硕

1. Quality attributes for Big Data Platform

Quality attributes	Reason
Performance	The size of big data is easily recognized as an obvious challenge.
	Furthermore, a large percentage of the data might not be of interest.
	Data volume is increasing faster than computing resources and processor
	speeds that exist in the marketplace. Response times for results are still
	critical, despite the increase of data size. To ensure speed and real-time
	feedback from big data, We need good performance.
Security	In big data environments, data is routinely replicated and migrated
	among a large number of nodes. In addition, sensitive information can be
	stored in system logs, configuration files, disk caches, error logs, and so
	on. Security and privacy issues are magnified by velocity, volume, and
	variety of big data, such as large-scale cloud infrastructures, diversity of
	data sources and formats, streaming nature of data acquisition and high
	volume inter-cloud migration. The use of large scale cloud
	infrastructures, with a diversity of software platforms, spread across
	large networks of computers, also increases the attack surface of the
	entire system
Reliability	The increase of unstructured data has a large impact on scalability. Data
	reliability relates to the limits of data density at tolerable device-level bit
	error rates. Traditional RAID does not provide the levels of data durability
	and performance for dealing with escalating volumes of data. For disks,
	there is the end of life, stress modes, and overheating in data centers to
	consider.

2. Solutions for quality attributes

Quality Attributes	Solutions
Performance	Response times for results are still critical, despite the increase of data
	size. To ensure speed and real-time feedback from big data, a new
	approach is emerging where data sets are processed entirely within a
	server's memory. Several vendor solutions offer in-memory analytics to
	address the requirements for real-time analysis results (for example, IBM
	InfoSphere Streams and BigInsights, SAS Visual Analytics, and SAP HANA).

	These apply in scenarios where there is a high velocity of data or real-time		
	return of results. The main limitation with traditional business intelligence		
	technologies is the time that it takes to read from and store to disk (disk		
	I/O). By storing the data in memory (RAM), this limitation is removed.		
	However, this needs to be balanced with the higher cost of RAM,		
	compared to disk storage, to determine whether business requirements		
	justify the additional expense.		
Security	1. Application Software Security: Use secure versions of open-source		
	software. As described above, big data technologies weren't originally		
	designed with security in mind.		
	2. Maintenance, Monitoring, and Analysis of Audit Logs		
	3. Secure Configurations for Hardware and Software. Build servers based		
	on secure images for all systems in your organization's big data		
	architecture.		
	4. Account Monitoring and Control		

 $\textbf{Hadoop:} \ \ \text{an open source frameword for big data distributed applications}$

Hadoop Applications				
Network				
Data Processing (MapReduce)	Data Storage (HDFS)			
Java Virtual Machine (JVM)				
Hypervisor/VMs				
Host Operating System				
Physical Hardware				

3. Tencent Cloud

3.1. Introduction

Tencent Cloud is a secure, reliable and high-performance cloud compute service provided by Tencent. Tencent is now the largest Internet company in China, and even Asia. It's providing services for hundreds of millions of people via its flagship products like QQ and WeChat.

Services	Production	
Compute	Cloud Virtual Machine, Cloud Load Balance, Virtual Private Cloud, Auto	
	Scaling, Cloud Physical Machine, Cloud Block Storage	
Storage and CDN	Cloud Object Storage, Content Delivery Network	
Database	Cloud Database, Cloud Redis, Cloud MongoDB, Cloud Memcached	
Security	Cloud Security, Dayu Distributed Defense, Business Security Protection	

3.2. Cloud Load Balance

Cloud Load Balance (CLB) distributes access traffic from multiple public IP to CVMs, automatically detects CVM ports, and removes unavailable CVMs, thereby improving service availability.

Service isolation

It supports over 100 million diversified Web services.

A Virtual Service Address (VIP) is set to virtualize multiple CVMs as a high-performance, highly available application service pool.

The CLB checks the health status of CVMs in the CVM pool and automatically isolates abnormal CVMs.

The CLB is created for clouds and eliminates CVM single-point risks.

Horizontal scaling

The CLB can expand the service capability of an application system by using the horizontal scaling function.

It combines with Auto Scaling to automatically create and release CVM instances and configure load balance, with no need to manually intervene and estimate resources, thereby reducing costs. The CLB creates and terminates CVMs based on monitoring status. Combined with 2nd-level charging, it makes full use of your computing resources.

Traffic distribution

- 1. For typical Web services such as forums and websites, it is recommended that different services such as pictures and texts be separated.
- 2. After splitting, each CLB instance and associated CVM group function as an independent service cluster.
- 3. The DNS service providers such as DNSpod supports CNAME switching for association between different services.

3.3. Cloud Security and Performance

Performance:

A CLB cluster supports up to 120 million simultaneous connections. It can handle heavy traffic with a peak of 40 Gbps, with a processing capability of 6 million packets per second. It is tolerant to diversified services and efficiently supports more than 100 million Web services.

The CLB can expand the service capability of an application system by using the horizontal scaling function. It combines with Auto Scaling to automatically create and release CVM instances and configure load balance, with no need to manually intervene and estimate resources. The CLB creates and terminates CVMs based on monitoring status. Combined with 2nd-level charging, it makes full use of your computing resources.

Security:

Cloud Security provides all-around security services for our customers; including network protection, intrusion detection, vulnerability protection, etc. It also produces security reports and solutions regularly, allowing for better insight into your business security status.

The DAYU system provides distributed anti-DDoS protection with TB bandwidth; high-defense zones allow for hundreds of GBs of capacity for a single IP; supports various protocols.

Nation-wide deployment and distributed detection; detects DNS hijacking quickly and accurately through comprehensive data collection and analysis.

Detect and stop malicious activities like intrusion, exploitation and web vulnerabilities; blocks malicious Web crawlers.

Simple APIs are provided to help you obtain professional security capacity for login, registration, UGC and promotions.