Wednesday warm-up: Kinematics, II

Prof. Jordan C. Hanson

September 11, 2024

Figure 1: (Left) A system moves with constant velocity. Velocity is the slope on this plot. (Right) A system moves with non-constant velocity.

1 Memory Bank

- 1. $v = \frac{\Delta x}{\Delta t}$... Average velocity.
- 2. $x(t) = \frac{1}{2}at^2 + v_it + x_i$... Position versus time with constant accertation.
- 3. $a = \frac{\Delta v}{\Delta t}$... Acceleration is the change in velocity.
- 4. $v_f^2 = v_i^2 + 2a\Delta x$... Kinematic equation without time.

2 Graphical Analysis of Kinematics

1. Consider the motion of the runner depicted in Fig. 1. (a) What is the speed of the system after t=4 seconds? (b) What is the acceleration between t=0 and t=4 seconds? (c) What is the speed of the runner between t=0 and t=4 seconds?

2. Now change the y-axis units in Fig. 1 to velocity, in meters per second. Answer parts (a)-(c) from the previous question again. For part (c), write your answer as a function of time.

3. Suppose a runner accelerates at 3 m s⁻², starting from rest. (a) Where does the runner reach 10 m s⁻¹? (b) When does the runnder reach 10 m s⁻¹?