	OCaml	Python
test d'égalité	=	==
test de différence	<>	!=
division euclidienne	/	//
modulo	mod	%
et	&&	and
ou		or

Opérateurs en OCaml/Python

	OCaml	
Définition	let r = ref	
Accéder à la valeur	!r	
Modifier la valeur	r :=	

Références

- () est une valeur de type unit, qui signifie rien.
- Si f : 'a -> 'b -> 'c alors f prend deux arguments de type 'a et 'b et renvoie un résultat de type 'c.
 De plus, f x (application partielle) est la fonction de type 'b -> 'c qui à y associe f x y.
- On créé souvent une liste avec une fonction récursive :

```
let rec range n = (* renvoie [n - 1; ...; 1; 0] *)
   if n = 0 then []
   else (n-1)::range (n - 1)
```

On peut éventuellement utiliser une référence sur une liste :

```
let range n =
   let l = ref [] in (* moins idiomatique *)
   for i = n - 1 downto 0 do
        l := i::!l
   done; !l
```

- Impossible de modifier une liste 1.
 e::1 renvoie une nouvelle liste mais ne modifie pas 1.
 let 1 = [] in ... ne sert à rien.
- Impossible d'écrire 1. (i) pour une liste 1 : il faut utiliser une fonction récursive pour parcourir une liste.

```
let rec appartient e l = match l with | [] \rightarrow false | t::q \rightarrow e = t || appartient e q
```

• Chaque cas d'un match sert à définir de nouvelles variables, et ne permet pas de comparer des valeurs.

```
Exemple : Dans appartient, il ne faut pas écrire | e::q \rightarrow \dots (ceci remplacerait le e en argument). Pour tester l'égalité : | t::q \rightarrow  if t = e then ... ou | t::q when t = e \rightarrow \dots
```

• Les indices d'un tableau à n éléments vont de 0 à n-1 :

```
let appartient e t =
  let r = ref false in
  for i = 0 to n - 1 do
      if t.(i) = e then r := true
  done; !r
```

• Impossible de renvoyer une valeur à l'intérieur d'une boucle (pas de return en OCaml) :

```
let appartient e t =
  for i = 0 to n - 1 do
      if t.(i) = e then true (* NE MARCHE PAS !!! *)
  done; false
```

• Types union et enregistrement :

Remarque: l'égalité (avec =) est automatiquement définie avec un nouveau type. Exemple: si t1 et t2 sont des arbres binaires, alors t1 = t2 vaut true si t1 = V et t2 = V ou si t1 = N(r1, g1, d1), t2 = N(r2, g2, d2) avec r1 = r2, g1 = g2 et d1 = d2.

- Quelques fonctions utiles (avec les équivalents sur Array) :
 - Array.make_matrix
n p e renvoie une matrice $n\times p$ dont chaque élément est e
 - List.iter f l appelle f sur chaque élément de l
 - List.map f [a1; ...; an] renvoie [f a1; ...; f an]
 - List.filter f l renvoie la liste des e tels que f e
 - List.exists f l et List.for_all f l.

Type	Exemple	Obtenir valeur	Modification	Taille	Création
array	[1; 2] : int array	t.(i)	t.(i) <	Array.length $(en O(1))$	Array.make n e $(\text{en } \mathrm{O}(n))$
string	"abc" : string	s.[i]		$\operatorname{String.length}$ (en $\operatorname{O}(1)$)	String.make n e
list	[1; 2] : int list	Fonction récursive		List.length $(en O(n))$	
tuple	(1, "abc", [1; 2]) : int*string*int list	let a, b, c = t			

Remarque : une « liste » Python est en réalité un tableau.

File de priorité

- Une file de priorité max (FP max) est une structure de données possédant les opérations suivantes :
 - Extraire maximum : supprime et renvoie le maximum
 - Ajouter élément
 - Tester si la FP est vide

On définit une FP min en remplaçant maximum par minimum

• Il est possible d'utiliser un arbre binaire de recherche pour implémenter une FP max, en utilisant le fait que le maximum est tout à droite de l'arbre. Les opérations d'ajout et d'extraction sont alors linéaires en la hauteur de l'arbre. On peut mettre à jour un élément (changer sa valeur) en le supprimant puis en le réajoutant (avec la nouvelle valeur).

Tas

• Un tas max est un arbre binaire presque complet (tous les niveaux, sauf le dernier, sont complets) où chaque noeud est plus grand que ses fils.

Remarque : la racine est le maximum du tas.

Exemple de tas max

Un tas min est comme un tas max, sauf que chaque noeud doit être plus petit que ses fils.

• Soit T un arbre binaire presque complet de hauteur h et avec n noeuds. Alors $h = \lfloor \log_2(n) \rfloor$ (donc $h = O(\log(n))$).

<u>Preuve</u>: T contient plus de sommets qu'un arbre binaire complet de hauteur h-1 et moins de sommets qu'un arbre binaire complet de hauteur h, donc :

$$2^{h} - 1 < n \le 2^{h+1} - 1$$

$$\implies 2^{h} \le n < 2^{h+1}$$

$$\implies h \le \log_2(n) < h + 1$$

$$\implies h = |\log_2(n)|$$

- On stocke les noeuds du tas dans un tableau t tel que :
- t.(0) est la racine de t.
- t.(i) a pour fils t.(2*i + 1) et t.(2*i + 2), si ceux-ci sont définis.

Le père de t.(j) est donc t.((j - 1)/2) (si $j \neq 0$). Exemple : le tas en exemple ci-dessus est représenté par $t = \lceil |23 \rceil$; 5; 14; 3; -2; 7; 2; 2; -8; -6; -4; 5|].

• En pratique, comme on ne peut pas ajouter d'élément à un tableau, on utilise un tableau t plus grand que le nombre

d'éléments du tas pour pouvoir y ajouter des éléments. On stocke le nombre d'éléments dans une variable n.

```
type 'a tas = {t : 'a array; mutable n : int}

let swap tas i j = (* échange tas.t.(i) et tas.t.(j) *)
    let tmp = tas.t.(i) in
    tas.t.(i) <- tas.t.(j);
    tas.t.(j) <- tmp</pre>
```

- On utilise deux fonctions auxiliaires pour rétablir la propriété de tas après modification :
 - up tas i : suppose que tas est un tas max sauf tas.t.(i) qui peut être supérieur à son père. Fait monter (on dit aussi percoler) tas.t.(i) de façon à obtenir un tas max.
 - down tas i : suppose que tas est un tas max sauf tas.t.(i) qui peut être inférieur à un fils. Fait descendre tas.t.(i) de façon à obtenir un tas max.

```
let rec up h i =
    let p = (i - 1)/2 in
    if i <> 0 && tas.t.(p) < tas.t.(i) then (
        swap h i p;
        up h p
    )

let rec down tas i =
    let m = ref i in (* maximum parmi i et ses fils *)
    if 2*i + 1 < tas.n && tas.t.(2*i + 1) > tas.t.(!m)
    then m := 2*i + 1;
    if 2*i + 2 < tas.n && tas.t.(2*i + 2) > tas.t.(!m)
    then m := 2*i + 2;
    if !m <> i then (
        swap h i !m;
        down h !m
    )
```

• Pour ajouter un élément à un tas : l'ajouter comme dernière feuille (dernier indice du tableau) puis faire remonter.

Exemple: ajout de 9 dans un tas.

tas.n <- tas.n + 1

• Pour extraire le maximum d'un tas : échanger la racine avec la dernière feuille puis descendre la nouvelle racine.

```
\underline{\text{Complexit\'e}}: O(h) = O(\log(n))
```

```
let rec extract_max h =
    swap h 0 (h.n - 1);
    h.n <- h.n - 1;
    down h 0;
    h.a.(h.n)</pre>
```

Exemple:

Suppression de la racine qu'on remplace par la dernière feuille

Percolation

Tas obtenu après extraction du maximum

Applications

- Tri avec une file de priorité: on ajoute tous les éléments dans un tas puis on les extrait un par un.
 On obtient ainsi le tri par tas en $O(n \log(n))$ avec un tas.
 On peut même utiliser le tableau en entrée comme tableau tas.t du tas, ce qui permet d'obtenir un tri en place, c'est-à-dire sans utiliser de tableau supplémentaire (O(1) en mémoire).
- Algorithme de Dijkstra, pour extraire le sommet de distance estimée minimum à chaque itération. Dans le pseudocode suivant, on peut utiliser une file de priorité pour ${\tt q}$:

• Algorithme de Kruskal, pour obtenir l'arête de poids minimum à chaque itération.

• Un **couplage** de G = (V, E) est un ensemble d'arêtes $M \subseteq E$ tel qu'aucun sommet ne soit adjacent à 2 arêtes de M:

$$\forall e_1, e_2 \in M, \ e_1 \neq e_2 \implies e_1 \cap e_2 = \emptyset$$

Un sommet $v \in V$ est **couvert** par M s'il appartient à une arête de M. Sinon, v est **libre** pour M.

• Exercice : Écrire une fonction est_couplage : (int*int) list -> int > bool déterminant si une liste d'arêtes (chaque arête étant un couple) forme un couplage.

• La taille de M, notée |M|, est son nombre d'arêtes.

M est un couplage **maximum** s'il n'existe pas d'autre couplage de taille strictement supérieure.

M est un couplage **maximal** s'Il n'existe pas de couplage M' tel que $M \subseteq M'$.

M est un couplage **parfait** si tout sommet de G appartient à une arête de M.

Un chemin est **élémentaire** s'il ne passe pas deux fois par le même sommet.

Un chemin élémentaire de G est M-alternant si ses arêtes sont alternativement dans M et dans $E \setminus M$.

Un chemin de G est M-augmentant s'il est M-alternant et si ses extrémités sont libres pour M.

• Soit M un couplage de G et P un chemin M-augmentant. Alors $M\Delta P$ est un couplage de G et $|M\Delta P|=|M|+1$.

Un couplage M

 $M\Delta P$, où P = 3 - 0 - 1 - 2 - 5 - 4

• M est un couplage maximum de $G \iff$ Il n'existe pas de chemin M-augmentant dans G.

Preuve:

- \Longrightarrow Soit M un couplage maximum. Supposons qu'il existe un chemin M-augmentant P. Alors $M\Delta P$ est un couplage de G et $|M\Delta P|>|M|$: absurde.
- \Leftarrow Supposons qu'il existe un couplage M^* vérifiant $|M^*| > |M|$. Considérons $G^* = (V, M\Delta M^*)$.

Les degrés des sommets de G^* sont au plus 2, donc G^* est composé de cycles et de chemins uniquement.

Chacun de ces cycles et chemins alternent entre des arêtes de M et des arêtes de M^* .

Comme $|M^*| > |M|$, un de ces chemins contient plus d'arêtes de M^* que de M: c'est un chemin M-augmentant.

• On en déduit l'algorithme :

Couplage maximum par chemin augmentant

Remarques:

- On peut aussi partir d'un couplage initialement non vide, et on obtiendra quand même un couplage maximum à la fin.
- Il est difficile de trouver un chemin M-augmentant dans un graphe quelconque : c'est pour cela qu'on s'intéresse aux graphes bipartis dans la suite.
- Un graphe G = (V, E) est **biparti** s'il existe V_1 et V_2 tels que $V = V_1 \sqcup V_2$ et toute arête de E ait une extremité dans V_1 et l'autre dans V_2 .

Remarque : cela revient à donner une couleur à chaque sommet de façon à ce que les extrémités de chaque arête soient de couleurs différentes.

• Exercice : Écrire une fonction

est_biparti : int list array -> bool pour déterminer si un graphe (représenté par liste d'adjacence) est biparti, en complexité linéaire.

<u>Solution</u>: On fait un parcours en profondeur depuis un sommet quelconque en alternant les couleurs 0 et 1.

```
let est_biparti g =
  let n = Array.length g in
  let couleurs = Array.make n (-1) in
  let rec aux u c = (* on donne la couleur c à u *)
    if couleurs.(u) = -1 then begin
        couleurs.(u) <- c;
        List.for_all (fun v -> aux v (1 - c)) g.(u)
    end else couleurs.(u) = c
  in aux 0 0
```

- Il est facile de trouver un chemin M-augmentant dans un graphe biparti $G = V_1 \sqcup V_2$:
- Partir d'un sommet $v \in V_1$ libre.
- Se déplacer (DFS) en alternant entre des arêtes de M et des arêtes de $G \setminus M$, sans revenir sur un sommet visité.
- Si on arrive à un sommet libre de V_2 , alors on a trouvé un chemin M-augmentant.

Exemple de recherche d'un couplage maximum par chemin augmentant dans un graphe biparti :

 $\begin{aligned} M &\leftarrow M \Delta P, \, \text{où} \\ P &= 2 - 7 - 4 - 8 \end{aligned}$

 $\begin{aligned} M \leftarrow M \Delta P, \, \text{où} \\ P = 3 - 5 - 1 - 6 \end{aligned}$

• Définitions :

	Signification	Exemple
Alphabet	Ensemble fini de lettres	$\Sigma = \{a, b\}$
Mot	Suite finie de lettre	m = abaa
ε	Mot vide (sans lettre)	
Langage	Ensemble de mots	$L = \{\varepsilon, a, baa\}$

 ε est un mot, pas une lettre.

• Opérations sur des mots $u = u_1...u_n$ et $v = v_1...v_p$:

	Définition	Exemple avec $u = ab$ et $v = cbc$
Concaténation	$uv = u_1u_n v_1v_p$	uv = abcbc
Puissance	$u^n = uu$	$u^3 = ababab$
Taille	u =n	u =2

Deux mots sont égaux s'ils ont la même taille et les mêmes lettres.

• Opérations sur des langages $L_1 = \{\varepsilon, ab\}$ et $L_2 = \{b, ab\}$:

	Définition	Exemple
Concaténation	$L_1L_2 =$	$L_1L_2 =$
Concatenation	$\{uv u\in L_1, v\in L_2\}$	$\{b,ab,abb,abab\}$
Puissance	$L^n = \{u^n u \in L\}$	$L_1^2 = \{\varepsilon, ab, abab\}$
Etoile	$L^* = \bigcup L^k$	$L_1^* = \{\varepsilon, ab, abab\}$
	$k{\in}\mathbb{N}$	

Comme L_1 et L_2 sont des ensembles, on peut aussi considérer $L_1 \cup L_2, L_1 \cap L_2...$

- Les langages réguliers sont tous ceux qu'on peut obtenir avec les règles suivantes :
 - Un langage fini est régulier
 - $-L_1$ et L_2 réguliers $\implies L_1 \cup L_2$ régulier
 - $-L_1$ et L_2 réguliers $\implies L_1L_2$ régulier
 - -L régulier $\implies L^*$ régulier

Exemples: Un alphabet Σ est toujours régulier car fini. $\overline{\Sigma^*}$ est régulier car est l'étoile du langage régulier Σ .

• Une expression régulière est une suite de symboles contenant : lettres, \emptyset , ε , | (union, parfois notée +), *. À chaque expression régulière e on associe un langage L(e).

Exemple: Le langage de l'expression régulière $e = \overline{a^*b \mid \varepsilon \text{ est } L(e)} = (\{a\}^*\{b\}) \cup \{\varepsilon\}.$

• L régulier $\iff \exists$ une expression régulière de langage L.

Exemples de langages réguliers sur $\Sigma = \{a, b\}$:

- 1. Mots contenant au plus un $a: b^*(a|\varepsilon)b^*$.
- 2. Mots de taille $n \equiv 1 \mod 3 : ((a|b)^3)^*(a|b)$.
- 3. Mots contenant un nombre pair de $a:(ab^*a|b)^*$.
- 4. Mots contenant un nombre impair de a: $b^*a(ab^*a|b)^*$.
- Définition possible d'expression régulière en OCaml :

```
type 'a regexp =
    | Vide | Epsilon | L of 'a
    | Union of 'a regexp * 'a regexp
    | Concat of 'a regexp * 'a regexp
    | Etoile of 'a regexp

    (* définition de e ci-dessus *)
let e = Union(Concat(Etoile(a), b), Epsilon)
```

Exemple : déterminer si ε appartient au langage de e.

```
| let rec has_eps e = match e with | Vide | L _ -> false | Epsilon | Etoile _ -> true | Union(e1, e2) -> has_eps e1 || has_eps e2 | Concat(e1, e2) -> has_eps e1 && has_eps e2
```

- Quelques techniques de preuve :
 - Sur des mots : récurrence sur la taille du mot.
 - Pour montrer l'égalité de deux langages : double inclusion ou suite d'équivalences.
 - Pour montrer P(L) pour un langage régulier L: par induction (\approx récurrence), en montrant le cas de base (si L est un langage fini) et les cas d'hérédité $(P(L_1) \wedge P(L_2))$ $\Rightarrow P(L_1L_2), P(L_1) \wedge P(L_2) \Rightarrow P(L_1 \cup L_2), P(L_2)$ $\Rightarrow P(L^*)$.
 - Pour montrer P(e) pour une expression régulière e: par induction, en montrant les cas de base $(P(\emptyset), P(\varepsilon), P(a), \forall a \in \Sigma)$ et les cas d'hérédité $(P(e_1) \text{ et } P(e_2) \Longrightarrow P(e_1e_2)$ et $P(e_1|e_2), P(e) \Longrightarrow P(e^*)$.

 $\underline{\text{Exemple}}: \text{ Le miroir d'un mot } u = u_1...u_n \text{ est } \widetilde{u} = u_n...u_1 \text{ et le miroir d'un langage } L \text{ est } \widetilde{L} = \{\widetilde{u} | u \in L\}.$

Montrons : L régulier $\Longrightarrow \widetilde{L}$ régulier.

On pourrait le montrer par récurrence, mais il est peutêtre plus simple de définir une fonction f(e) qui à une expression régulière e associe une expression régulière pour le miroir de L(e):

- $-f(\emptyset) = \emptyset, \ f(\varepsilon) = \varepsilon \text{ et } \forall a \in \Sigma, f(a) = a.$
- $-f(e_1e_2)=f(e_2)f(e_1)$ (le miroir de uv est $\widetilde{v}\widetilde{u}$).
- $f(e_1|e_2) = f(e_1)|f(e_2).$
- $-f(e_1^*) = f(e_1)^*.$

On a bien défini une fonction f telle que, pour toute expression régulière e, f(e) est une expression régulière de $\widetilde{L(e)}$. Donc le miroir d'un langage régulier est régulier.

- Un automate est un 5-uplet $A = (\Sigma, Q, I, F, E)$ où :
 - $-\Sigma$ est un alphabet.
 - -Q est un ensemble fini d'états.
 - $-I \in Q$ est un ensemble d'états initiaux.
 - $-F \subseteq Q$ est un ensemble d'états acceptants (ou finaux)
 - $-E \subseteq Q \times \Sigma \times Q$ est un ensemble de **transitions**. On peut remplacer l'ensemble E de transitions par une **fonction de transition** $\delta: Q \times \Sigma \longrightarrow \mathcal{P}(Q)$
- – Un chemin dans A est **acceptant** s'il part d'un état initial pour aller dans un état final.
 - Un mot est **accepté** par A s'il est l'étiquette d'un chemin acceptant.
 - Le langage L(A) accepté (ou reconnu) par A est l'ensemble des mots acceptés par A.

$\underline{\text{Exemple}}$:

- Soit A l'automate suivant :

Alors $L(A) = \{ \text{ mot avec un nombre impair de } a \}$ = $L(b^*a(b^*ab^*ab^*)^*)$.

– Le langage $a(a+b)^*b$ est reconnaissable, car reconnu par l'automate ci-dessous.

- Pour déterminer algorithmiquement si un automate A accepte un mot $u=u_1...u_n$, on peut calculer de proche en proche $Q_0=I,\ Q_1=$ états accessibles depuis Q_0 avec la lettre $u_1,\ Q_2=$ états accessibles depuis Q_0 avec la lettre $u_2...$ et regarder si Q_n contient un état final.
- Soit $A = (\Sigma, Q, I, F, E)$ un automate.
 - A est **complet** si : $\forall q \in Q, \ \forall a \in \Sigma, \ \exists (q, a, q') \in E$
 - Un automate $(\Sigma, Q, \{q_i\}, F, E)$ est **déterministe** si :
 - 1. Il n'y a qu'un seul état initial q_i .
 - 2. $(q, a, q_1) \in E \land (q, a, q_2) \in E \implies q_1 = q_2$: il y a au plus une transition possible en lisant une lettre depuis un état
 - Un automate déterministe et complet possède une unique transition possible depuis un état en lisant une lettre. On a alors une fonction de transition de la forme δ :

On a alors une fonction de transition de la forme $\delta: Q \times \Sigma \longrightarrow Q$ qu'on peut étendre en $\delta^*: Q \times \Sigma^* \longrightarrow Q$ définie par :

- $* \delta^*(q,\varepsilon) = q$
- * Si u = av, $\delta^*(q, av) = \delta^*(\delta(q, a), v)$

Ainsi, $\delta^*(q, u)$ est l'état atteint en lisant le mot u depuis l'état q.

On a alors $u \in L(A) \iff \delta^*(q_i, u) \in F$.

• Deux automates sont **équivalents** s'ils ont le même langage.

- Soit A un automate. Alors A est équivalent à un automate déterministe complet.

<u>Preuve</u>: Utilise l'automate des parties $A' = (\Sigma, \mathcal{P}(Q), \{I\}, F', \delta')$ où $F' = \{X \subseteq Q \mid X \cap F \neq \emptyset\}$

Remarque: Si on veut juste un automate complet (pas forcément déterministe), on peut ajouter un état poubelle vers lequel on redirige toutes les transitions manquantes. Dans l'automate des parties, cet état poubelle est \emptyset .

Exemple : Un automate A avec son déterminisé A'.

• Soit L un langage reconnaissable. Alors \overline{L} (= $\Sigma^* \backslash L$) est reconnaissable.

<u>Preuve</u>: Soit $A = (\Sigma, Q, q_i, F, \delta)$ un automate déterministe complet reconnaissant L. Alors $A' = (\Sigma, Q, q_i, Q \backslash F, \delta)$ (on inverse états finaux et non-finaux) reconnaît \overline{L} .

- Soient L_1 et L_2 des langages reconnaissables. Alors :
 - $-L_1 \cap L_2$ est reconnaissable.
 - $-L_1 \cup L_2$ est reconnaissable.
 - $-L_1 L_2$ est reconnaissable.

<u>Preuve</u>: Soient $A_1 = (Q_1, q_1, F_1, \delta_1)$ et $A_2 = (Q_2, q_2, F_2, \delta_2)$ des automates finis déterministes complets reconnaissants L_1 et L_2 . Soit $A = (Q_1 \times Q_2, (q_1, q_2), F, \delta)$ (automate produit) où :

- $-F = F_1 \times F_2 : A \text{ reconnait } L_1 \cap L_2.$
- $-F = \{(q_1, q_2) \mid q_1 \in F_1 \text{ ou } q_2 \in F_2\} : A \text{ reconnait } L_1 \cup L_2.$
- $F = \{(q_1, q_2) \mid q_1 \in F_1 \text{ et } q_2 \notin F_2\}$: A reconnait $L_1 \setminus L_2$.

Remarque : Comme l'ensemble des langages reconnaissables est égal à l'ensemble des langages rationnels, l'ensemble des langages rationnels est aussi stable par complémentaire, intersection et différence.

Il n'y a pas de stabilité par inclusion (L rationnel et $L' \subseteq L$ n'implique pas forcément L' rationnel).

• (Lemme de l'étoile \heartsuit) Soit L un langage reconnaissable par un automate à n états.

Si $u \in L$ et $|u| \ge n$ alors il existe des mots x, y, z tels que :

- -u = xyz
- $-|xy| \le n$
- $-y \neq \varepsilon$
- $-xy^*z \subseteq L$ (c'est-à-dire : $\forall k \in \mathbb{N}, xy^kz \in L$)

 $\underline{\text{Preuve}}: \text{Soit } A = (\Sigma, Q, I, F, \delta)$ un automate reconnaissant L et n = |Q|.

Soit $u \in L$ tel que $|u| \ge n$.

u est donc l'étiquette d'un chemin acceptant C:

$$q_0 \in I \xrightarrow{u_0} q_1 \xrightarrow{u_1} \dots \xrightarrow{u_{p-1}} q_p \in F$$

C a p+1 > n sommets donc passe deux fois par un même état $q_i = q_j$ avec i < n. La partie de C entre q_i et q_j forme donc un cycle.

Soit $x = u_0 u_1 ... u_{i-1}$, $y = u_i ... u_j$ et $z = u_{j+1} ... u_{p-1}$. $xy^k z$ est l'étiquette du chemin acceptant obtenu à partir de C en passant k fois dans le cycle.

Application : $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ n'est pas reconnaissable.

<u>Preuve</u>: Supposons L_1 reconnaissable par un automate à n états. Soit $u=a^nb^n$. Clairement, $u\in L_1$ et $|u|\geq n$. D'après le lemme de l'étoile : il existe x,y,z tels que $u=xyz, \, |xy|\leq n, \, y\neq \varepsilon$ et $xy^*z\subseteq L$.

Comme $|xy| \le n$, x et y ne contiennent que des a: $x = a^i$ et $y = a^j$. Comme $y \ne \varepsilon$, j > 0.

En prenant k = 0: $xy^0z = xz = a^{n-j}b^n$.

Or j > 0 donc $a^{n-j}b^n \notin L_1$: absurde.

Automate de Glushkov : régulier \implies reconnaissable

- Une expression régulière est **linéaire** si chaque lettre y apparaît au plus une fois : $a(d+c)^*b$ est linéaire mais pas ac(a+b).
- Soit L un langage. On définit :
 - $-\ P(L) = \{a \in \Sigma \mid a\Sigma^* \cap L \neq \emptyset \}$ (premières lettres des mots de L)
 - $S(L) = \{a \in \Sigma \mid \Sigma^* a \cap L \neq \emptyset \}$ (dernières lettres des mots de L)
 - $-F(L)=\{u\in \Sigma^2\mid \Sigma^*u\Sigma^*\cap L\neq\emptyset\}$ (facteurs de longueur 2 des mots de L)
 - L est local si, pour tout mot $u = u_1 u_2 ... u_n \neq \varepsilon$:

$$u \in L \iff u_1 \in P(L) \land u_n \in S(L) \land \forall k, u_k u_{k+1} \in F(L)$$

Il suffit donc de regarder la première lettre lettre, la dernière lettre et les facteurs de taille 2 pour savoir si un mot appartient à un langage local.

Remarques:

- $* \Longrightarrow \text{est toujours vrai donc il suffit de prouver} \longleftarrow.$
- * Définition équivalente :

$$L \text{ local} \iff L \setminus \{\varepsilon\} = (P(L) \cap S(L)) \setminus N(L)$$

où
$$N(L) = \Sigma^2 \setminus F(L)$$
.

Exemples:

- $\overline{-\text{ Si } L_2} = (ab)^* \text{ alors } P(L_2) = \{a\}, \ S(L_2) = \{b\} \text{ et } F(L_2) = \{ab, ba\}. \text{ De plus si } u = u_1u_2...u_n \neq \varepsilon \text{ avec } u_1 \in P(L), u_n \in S(L), \text{ et } \forall k, u_ku_{k+1} \in F(L) \text{ alors } u_1 = a, \ u_n = b \text{ et on montre (par récurrence) que } u = abab...ab \in {}_2. \text{ Donc } L_2 \text{ est local.}$
- Si $L_3 = a^* + (ab)^*$ alors $P(L_3) = \{a\}$, $S(L_3) = \{a, b\}$, $F(L_3) = \{aa, ab, ba\}$. Soit u = aab. La première lettre de u est dans $P(L_3)$, la dernière dans $S(L_3)$ et les facteurs de u sont aa et ba qui appartiennent à $F(L_3)$. Mais $u \notin L_3$, ce qui montre que L_3 n'est pas local.
- Un automate déterministe (Σ, Q, q_0, F, E) est **local** si toutes les transitions étiquetées par une même lettre aboutissent au même état : $(q_1, a, q_2) \in E \land (q_3, a, q_4) \in E \implies q_2 = q_4$
- Un langage local L est reconnu par un automate local.

<u>Preuve</u>: L est reconnu par (Σ, Q, q_0, F, E) où:

- $-\ Q = \Sigma \cup \{q_0\}$: un état correspond à la dernière lettre lue
- -F = S(L) si $\varepsilon \notin L$, sinon $F = S(L) \cup \{q_0\}$.
- $-E = \{(a_0, a, a) \mid a \in P(L)\} \cup \{(a, b, b) \mid ab \in F(L)\}$
- L'algorithme de Berry-Sethi permet de construire un automate à partir d'une expression régulière e.

Exemple avec $e = a(a+b)^*$:

- 1. On linéarise e en e', en remplaçant chaque occurrence de lettre dans e par une nouvelle lettre : $e' = e_1(e_2 + e_3)^*$
- 2. On peut montrer que L(e') est un langage local.
- 3. Un langage local est reconnu par l'automate local $A = (\Sigma, Q, q_0, F, E)$

4. On fait le remplacement inverse de 1. sur les transitions de A pour obtenir un automate reconnaissant L(e):

Automate de Thompson : régulier \implies reconnaissable

- Une ε -transition est une transition étiquetée par ε .
- Un automate avec ε -transitions est équivalent à un automate sans ε -transitions.

<u>Preuve</u>: Si $A = (\Sigma, Q, I, F, \delta)$ est un automate avec ε -transitions, on définit $A' = (\Sigma, Q, I', F, \delta')$ où :

- I' est l'ensemble des états atteignables depuis un état de I en utilisant uniquement des ε -transitions.
- $-\delta'(q, a)$ est l'ensemble des états q' tel qu'il existe un chemin de q à q' dans A étiqueté par un a et un nombre quelconque de ε (ce qui peut être trouvé par un parcours de graphe).
- L'automate de Thompson est construit récursivement à partir d'une expression régulière e :
 - Cas de base :

 $-T(e_1e_2)$: ajout d'une ε-transition depuis chaque état final de $T(e_1)$ vers chaque état initial de $T(e_2)$.

 $-T(e_1|e_2)$: union des états initiaux et des états finaux.

 $-T(e_1^*)$: ajout d'une ε -transition depuis chaque état final vers chaque état initial.

Élimination des états : reconnaissable \implies régulier

• Tout automate est équivalent à un automate avec un unique état initial sans transition entrante et un unique état final sans transition sortante.

<u>Preuve</u>: On ajoute un état initial q_i et un état final q_f et des transitions ε depuis q_i vers les états initiaux et depuis les états finaux vers q_f .

• Méthode d'élimination des états : On considère un automate A comme dans le point précédent. Tant que A possède au moins 3 états, on choisit un état $q \notin \{q_i, q_f\}$ et on supprime q en modifiant les transitions :

Exemple:

1. On commence par se ramener à un automate avec un état initial sans transition entrante et un état final sans transition sortante :

2. Suppression de l'état 1 :

3. Suppression de l'état 4 :

Avec $u = b^*ba$.

4. Suppression de l'état 3 :

5. Suppression de l'état 2 :

On obtient l'expression régulière $a|a(bu)^*bu(au|au(bu)^*bu)$, où $u=b^*ba$.

régulier \iff reconnaissable

- Théorème de Kleene : un langage est régulier si et seulement si il est reconnaissable par un automate.
- Les théorèmes sur les automates s'appliquent aussi aux langages réguliers, et inversement. Notamment, les langages réguliers sont stables par union, concaténation, étoile, intersection, complémentaire, différence.

- La logique propositionnelle définit la notion de formule vraie (si elle est vraie pour toute valuation). La déduction naturelle permet de formaliser la notion de preuve mathématique.
- Un séquent est noté $\Gamma \vdash A$ où Γ est un ensemble de formules logiques et A une formule logique. $\Gamma \vdash A$ signifie Intuitivement que sous les hypothèses Γ , on peut déduire A.
- Règles de déduction naturelle classique, où A, B, C sont des formules quelconques :

	Introduction			Élimin	ation
Conjonction	$\frac{\Gamma \vdash A \Gamma \vdash B}{\Gamma \vdash A \land B} \ \land_i$		$\frac{\Gamma \vdash A \land}{\Gamma \vdash A}$	$\frac{B}{A} \wedge_e^g$	$\frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \ \land^d_e$
Disjonction	$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} \lor_i^g \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} \lor_i^d$		$\Gamma, A \vdash C$	$\Gamma, B \vdash C$ $\Gamma \vdash C$	$\frac{C \qquad \Gamma \vdash A \lor B}{C} \lor_e$
Implication	$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} -$	$ ightarrow_i$	$\overline{\Gamma} \vdash$	$A \to B$ $\Gamma \vdash B$	$\Gamma \vdash A \to_e$
Négation	$\frac{\Gamma, A \vdash \bot}{\Gamma \vdash \neg A} \neg$	i	Γ	$\vdash A$ Γ $\Gamma \vdash \bot$	$\vdash \neg A \neg_e$
Vrai ⊤	$\overline{\Gamma \vdash \top} \ ^{\top_i}$				
Faux ⊥				$\frac{\Gamma \vdash \bot}{\Gamma \vdash A}$	\perp_e

Axiome	Affaiblissement	Réduction à l'absurde
$\overline{\Gamma, A \vdash A}$ ax	$\frac{\Gamma \vdash A}{\Gamma, B \vdash A} \text{ aff }$	$\frac{\Gamma, \neg A \vdash \bot}{\Gamma \vdash A} \text{ raa}$

Il n'est pas nécessaire d'apprendre ces règles par coeur (elles seront rappelées), mais il faut les comprendre et savoir les utiliser.

- Une **preuve** d'un séquent $\Gamma \vdash A$ est un arbre dont les nœuds sont des séquents, les arcs des règles et la racine est $\Gamma \vdash A$. Exemples:
 - 1. Preuve de $(A \land B) \to C \vdash A \to (B \to C)$.

$$\frac{A \land B \to C \vdash A \land B \to C}{A \land B \to C} \text{ ax } \frac{\overline{A \vdash A} \text{ ax } \overline{B \vdash B}}{A, B \vdash A \land B} \stackrel{\text{ax}}{\land_i}$$

$$\frac{(A \land B) \to C, A, B \vdash C}{(A \land B) \to C, A \vdash B \to C} \xrightarrow{\rightarrow_i}$$

$$\frac{(A \land B) \to C \vdash A \to (B \to C)}{(A \land B) \to C \vdash A \to (B \to C)} \xrightarrow{\rightarrow_i}$$

2. Preuve de $A \vdash \neg \neg A$:

$$\frac{\overline{A \vdash A} \text{ ax } \frac{}{\neg A \vdash \neg A} \text{ ax }}{\frac{A, \neg A \vdash \bot}{A \vdash \neg \neg A} \text{ } \neg_{e}}$$

3. On peut décomposer une preuve longue en plusieurs parties, pour plus de lisibilité. Par exemple pour prouver $\vdash A \lor (B \land C) \longrightarrow (A \lor B) \land (A \lor C)$:

$$\frac{\frac{A \vdash A}{A \vdash A \lor B} \overset{\text{ax}}{\vee_i^g} \quad \frac{\frac{B \land C \vdash B \land C}{B \land C \vdash B} \overset{\text{ax}}{\wedge_e^g}}{B \land C \vdash A \lor B} \overset{\text{d}}{\vee_i^d} \quad \frac{A \lor (B \land C) \vdash A \lor (B \land C)}{A \lor (B \land C) \vdash A \lor B} \overset{\text{ax}}{\vee_e}}{\vee_e}$$

On montre de même $A \vee (B \wedge C) \vdash A \vee C \ (**)$ et finalement :

$$\frac{\overline{A \vee (B \wedge C) \vdash A \vee B} \quad *}{\overline{A \vee (B \wedge C) \vdash A \vee C}} \stackrel{**}{\wedge_i} \\ \frac{\overline{A \vee (B \wedge C) \vdash (A \vee B) \wedge (A \vee C)}}{\vdash \overline{A \vee (B \wedge C)} \longrightarrow_i} \stackrel{\wedge_i}{\wedge_i}$$

(Correction de la déduction naturelle) Si $\Gamma \vdash A$ est prouvable alors $\Gamma \models A$.

Preuve : Soit P(h) : « si T est un arbre de preuve de hauteur h pour $\Gamma \vdash A$ alors $\Gamma \models A$ ».

P(0) est vraie : Si T est un arbre de hauteur 0 pour $\Gamma \models A$ alors il est constitué uniquement d'une application de ax, ce qui signifie que $A \in \Gamma$ et implique $\Gamma \models A$.

Soit T un arbre de preuve pour pour $\Gamma \vdash A$ de hauteur h+1. Considérons la règle appliquée à la racine de T.

Soit
$$T$$
 this arose depretive pour pour $\Gamma \vdash A$ de natueur $n+1$. Consideron $T_1 \vdash A$ de natueur $n+1$. Consideron $T_1 \vdash A \land B$ and $T_2 \vdash A \land B$ Par hypothèse de récurrence sur T_1 et T_2 , on obtient $\Gamma \models A$ et $\Gamma \models B$.

Une valuation v satisfaisant toutes les formules de Γ satisfait donc à la fois A et B, et donc $A \wedge B$. On a bien $\Gamma \models A \wedge B$.

$$-(\wedge_e)$$
 Supposons T de la forme : $\frac{\Gamma_1}{\Gamma \vdash A \land B} (\wedge_e^g)$ Par récurrence sur T_1 , $\Gamma \models A \land B$ et donc $\Gamma \models A \land B$.

- Les autres cas sont similaires...

- Soit V un ensemble (de **variables**). L'ensemble des **for- mules logiques** sur V est défini inductivement :
 - -T et F sont des formules (Vrai et Faux)
 - Toute variable $x \in V$ est une formule
 - Si φ est une formule alors $\neg \varphi$ est une formule
 - Si φ , ψ sont des formules alors $\varphi \wedge \psi$ (conjonction) et $\varphi \vee \psi$ (disjonction) sont des formules

```
type 'a formula =
    | T | F (* true, false *)
    | Var of 'a (* variable *)
    | Not of 'a formula
    | And of 'a formula * 'a formula
    | Or of 'a formula * 'a formula
```

• On peut représenter une formule logique par un arbre. Exemple : $(x \land \neg y) \lor \neg (y \lor z)$ est représenté par

- L'arité d'un connecteur logique est son nombre d'arguments (= nombre de fils dans l'arbre).
 - \neg est d'arité 1 (unaire) et \land, \lor sont d'arités 2 (binaire).
- La taille d'une formule est le nombre de symboles qu'elle contient (= nombre de noeuds de l'arbre).
- La **hauteur** d'une formule est la hauteur de l'arbre associé.
- (Exemple de démonstration par induction sur les formules) Soit φ une formule ayant $n(\varphi)$ symboles de négation et $b(\varphi)$ connecteurs binaire. Alors la taille $t(\varphi)$ de φ est : $t(\varphi) = 1 + n(\varphi) + 2b(\varphi)$.

<u>Preuve</u>: Montrons $P(\varphi): t(\varphi) = 1 + n(\varphi) + 2b(\varphi)$ par induction

Cas de base : t(T) = 1 = 1 + 0 + 0 donc P(T) est vraie. De même pour P(F) et P(x) où x est une variable.

Hérédité : Soit φ une formule.

- Si $\varphi = \neg \psi$ alors $t(\psi) = 1 + n(\psi) + 2b(\psi)$ par induction et $t(\varphi) = t(\neg \psi) = 1 + t(\psi) = 1 + \underbrace{1 + n(\psi)}_{n(\varphi)} + 2\underbrace{b(\psi)}_{b(\varphi)} =$

 $1 + n(\varphi) + 2b(\varphi)$ donc $P(\varphi)$ est vraie.

- Si $\varphi = \psi_1 \wedge \psi_2$ alors, par induction, $t(\psi_1) = 1 + n(\psi_1) + 2b(\psi_1)$ et $t(\psi_2) = 1 + n(\psi_2) + 2b(\psi_2)$. Donc $t(\varphi) = 1 + t(\psi_1) + t(\psi_2) = 1 + \underbrace{n(\psi_1) + n(\psi_2) + 2\underbrace{(1 + b(\psi_1) + b(\psi_2))}_{b(\varphi)}}$.

Donc $P(\varphi)$ est vraie.

– De même si $\varphi = \psi_1 \vee \psi_2$.

Par induction structurelle, $P(\varphi)$ est donc vraie pour toute formule φ .

- $\varphi \longrightarrow \psi$ est défini par $\neg \varphi \lor \psi$. $\varphi \longleftrightarrow \psi$ est défini par $\varphi \longrightarrow \psi \land \psi \longrightarrow \varphi$.
- Une valuation sur un ensemble V de variables est une fonction $v:V\longrightarrow \{0,1\}$. 0 est aussi noté Faux ou \bot . 1 est aussi noté Vrai ou \top . L'évaluation $\llbracket\varphi\rrbracket_v$ d'une formule φ sur v est définie inductivement :

$$- [T]_v = 1, [F]_v = 0$$
$$- [x]_v = v(x) \text{ si } x \in V$$

$$- \llbracket \neg \varphi \rrbracket_v = 1 - \llbracket \varphi \rrbracket_v$$

$$- [\![\varphi \wedge \psi]\!]_v = \min([\![\varphi]\!]_v, [\![\psi]\!]_v)$$

$$- \llbracket \varphi \vee \psi \rrbracket_v = \max(\llbracket \varphi \rrbracket_v, \llbracket \psi \rrbracket_v)$$

Si $\llbracket \varphi \rrbracket_v = 1$, on dit que v est un **modèle** pour φ .

- Une formule toujours évaluée à 1 est une **tautologie**. Une formule toujours évaluée à 0 est une **antilogie**. Une formule qui possède au moins une évaluation à 1 est **satisfiable**.
- Deux formules φ et ψ sur V sont **équivalentes** (et on note $\varphi \equiv \psi$) si, pour toute valuation $v: V \to \{0, 1\}: \llbracket \varphi \rrbracket_v = \llbracket \psi \rrbracket_v$.

$$- \ \neg \neg \varphi \equiv \varphi$$

$$-\varphi \vee \neg \varphi \equiv T \text{ (toujours vrai)}$$

$$-\neg(\varphi\vee\psi)\equiv\neg\varphi\wedge\neg\psi$$
 (de Morgan)

$$-\neg(\varphi \wedge \psi) \equiv \neg \varphi \vee \neg \psi$$
 (de Morgan)

$$- \varphi_1 \vee (\varphi_2 \wedge \varphi_3) \equiv (\varphi_1 \vee \varphi_2) \wedge (\varphi_1 \vee \varphi_3)$$

$$-\varphi_1 \wedge (\varphi_2 \vee \varphi_3) \equiv (\varphi_1 \wedge \varphi_2) \vee (\varphi_1 \wedge \varphi_3)$$

• La table de vérité permet de voir rapidement quelles sont les évaluations possibles d'une formule. Une formule à n variables possède 2^n évaluations possibles, et donc 2^n lignes dans sa table de vérité.

\boldsymbol{x}	y	$(x \land y) \lor (\neg x \land \neg y)$
0	0	1
0	1	0
1	0	0
1	1	1

Table de vérité de $(x \wedge y) \vee (\neg x \wedge \neg y)$