Classification

- **Expected information (entropy)** needed to classify a tuple in D: $Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$
- p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$p_{no} = 5 / 14$$

$$p_{yes} = 9 / 14$$

Type here to search

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

^ 🗸 🌥 🖭 🦟 ◁೫) 5:01 PM

 $Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$

Information needed (after using A to split D into v partitions) to classify:

$$Info_{A}(D) = \sum_{j=1}^{v} \frac{|D_{j}|}{|D|} \times Info(D_{j})$$

$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.694$$

$\mathit{Info}_{\mathit{age}}(D)$	$=\frac{5}{1(2.3)}$	$(3) + \frac{4}{1}I(4)$	$(0) + \frac{5}{1}I(3)$	(2) = 0.694
age (2)	14	14	14	_,

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	mediu m	no	excellent	no

$$\frac{5}{14}I(2,3)$$
 means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's.

Thus, $5/14 I(2,3) = 5/14(-2/5 \log 2/5 - 3/5 \log 3/5)$

Attribute Selection Measure: Information Gain (ID3/C4.5)

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

$$Gain(age) = 0.940 - 0.694 = 0.246$$

9

Attribute Selection: Information Gain

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Type here to search

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j) \qquad Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

Info income (D) =
$$4/14 I(2,2) + 6/14 I(4,2) + 4/14 I(3,1)$$

Info income (D) =
$$4/14 \{-2/4log(2/4)-2/4log(2/4)\} +$$

$$4/14 \left\{ -3/4\log(3/4) - 1/4\log(1/4) \right\} = 0.911$$

Info student? (D) = 7/14 I(6,1) + 7/14 I(3,4)Info student? (D) = $7/14 \{-6/7 \log(6/7) - 1/7 \log(1/7)\} + 7/14 \{-3/7 \log(3/7) - 4/7 \log(4/7)\}$ = 0.788Info CR (D) = 8/14 I(6,2) + 6/14 I(3,3)Info CR (D) = $8/14 \{-6/8 \log(6/8) - 2/8 \log(2/8)\} + 6/14 \{-3/6 \log(3/6) - 3/6 \log(3/6)\}$ = 0.892 Gain(income) = 0.029 Gain(student) = 0.151 $Gain(credit_rating) = 0.048$

