Вступ

Курсова робота виконана за номером технічного завдання 2130_{10} (010010100001 $_2$) і складається з двох частин: синтез автомата та синтез комбінаційних схем.

Вихідними даними при синтезі автомата є заданий алгоритм, тип тригера та елементна база. Вихідними даними при синтезі комбінаційних схем є таблиця істинності та елементна база.

2. Синтез автомата

Відповідно до технічного завдання складаємо графічну схему алгоритму з урахуванням тривалості сигналів та робимо розмітку станів автомата.

Рисунок 2.1

Згідно блок-схеми алгоритму будуємо граф автомату і виконаємо кодування станів автомату. Кожному переходові автомата з одного стану в інший відповідає дуга графа. Дузі приписується логічна умова за якої здійснюється перехід автомата з одного стану в інший, а також набір управляючих сигналів, що відповідають даному переходові. Кількість тригерів, необхідних для організації пам'яті автомата визначаємо із співвідношення

 $m > [log_2M]; m = [log_27] = 3.$

Зм.	Арк.	№ докум	Підпис	Дата

Рисунок 2.2

Відповідно до технічного завдання використовуватимемо D-тригер. Складемо таблицю переходів цього типу тригерерів.

Ταδηυця 2.1

Перехід	Д
$\theta \rightarrow \theta$	0
<i>0</i> →1	1
1→0	0
1→1	1

Використовуючи дані рисунків 2.1 і 2.2 заповнимо структурну таблицю автомата.

Ταδηυця 2.2

								Логі	чна		Ke	рую	4 <i>İ</i>		Функц	ії збудл	ження
	Почат	ковий	стан		Стан	н пере.	ходу	уми	ова		CL	гна/	<i>1U</i>		П	пригері	<i>B</i>
ПС	Q 3	Q 2	Q 1	СП	Q3'	Q2'	Q1'	X_1'	X2'	<i>Y</i> ₁	<i>Y</i> ₂	<i>Y</i> ₃	<i>Y</i> ₄	Y ₅	Дз	П2	Д1
<i>Z</i> ₁	0	0	0	Z_2	0	1	1	-	-	1	1	0	0	0	0	1	1
Z_2	0	1	1	<i>Z</i> ₃	0	0	1	-	-	0	1	0	0	0	0	0	1
Z3	0	0	1	<i>Z</i> 1	0	0	0	-	0	0	0	0	0	0	0	0	0
Z3	0	0	1	Z4	1	0	1	-	1	0	0	1	0	0	1	0	1
Z4	1	0	1	Z 5	1	1	1	-	-	0	0	0	1	1	1	1	1
Z 5	1	1	1	<i>Z</i> ₆	1	1	0	_	1	0	1	0	0	0	1	1	0
Z 5	1	1	1	<i>Z</i> ₇	0	1	0	-	0	0	0	0	0	0	0	1	0
<i>Z</i> ₆	1	1	0	<i>Z</i> ₇	0	1	0	-	-	0	1	0	0	0	0	1	0
<i>Z</i> ₇	0	1	0	<i>Z</i> ₇	0	1	0	1	_	0	0	1	0	0	0	1	0
<i>Z</i> ₇	0	1	0	Z1	0	0	0	0	-	1	0	1	0	0	0	0	0

ПС-початковий стан, СП-стан переходу.

На підставі структурної таблиці(табл. 2.2) автомата визначаємо МДНФ фуггнкції збудження тригерів і функцій управляючих сигналів, враховуючи

					//
Зм.	Арк.	№ докум	Підпис	Дата	

ІАЛЦ.463626.004 ПЗ

заданий елементний базис(ЗАБО, 41, HE). Аргументами функцій тригерів та вихідних сигналів є коди станів та вхідні сигнали. Для отримання МДНФ функцій використаємо метод діаграм Вейча(Рисунки 2.3-2.14).

 $D_3 = Q_3 \overline{Q}_2 \vee Q_3 X_2 \overline{Q}_1 \vee \overline{Q}_2 X_2 Q_1$

Рисунок 2.3

 $D_2 = Q_3 \sqrt{Q_2} \overline{Q_1} \sqrt{X_1} \overline{Q_1}$

 $D_1 = Q_3 \overline{Q}_2 \sqrt{Q}_3 Q_2 Q_1 \sqrt{Q}_3 X_2 Q_1 \sqrt{Q}_2 \overline{Q}_1$

Зм.	Арк.	№ докум	Підпис	Дата

Функціональну схему управляючого автомата будуємо за отриманими формами функцій управляючих сигналів та функцій збудження тригерів.

3. Синтез комбінаційних схем

Дано систему з 4 перемикальних функцій (табл 2.9). Представимо функцію f4 в канонічних формах алгебр Буля, Шефера, Пірса та Жегалкіна.

1. Алгебра Буля {I, АБО, HE}

$$f_{4 \prod \prod H \phi} = \overline{x}_{4} \overline{x}_{3} \overline{x}_{2} x_{1} \ Vx_{4} \overline{x}_{3} \overline{x}_{2} \overline{x}_{1} V \overline{x}_{4} x_{3} \overline{x}_{2} x_{1} V x_{4} \overline{x}_{3} x_{2} x_{1} V x_{4} x_{3} \overline{x}_{2} \overline{x}_{1} V x_{4} x_{3} \overline{x}_{2} x_{1} V x_{4} x_{3} x_{2} x_{2} V x_{1}) \cdot (x_{4} V x_{3} V x_{$$

- 2. Алгебра Шефера {I-HE} Отримується з ДДНФ при застосуванні правил де Моргана та аксіоми $x/x=\overline{x\cdot x}=\overline{x}$.
- $f_{4} = \frac{((x_{4}/x_{4})/(x_{3}/x_{3})/(x_{2}/x_{2})/x_{1})/(x_{4}/(x_{3}/x_{3})/(x_{2}/x_{2})/(x_{1}/x_{1})/(x_{4}/x_{3}/(x_{2}/x_{2})/(x_{1}/x_{1})/(x_{4}/x_{3}/(x_{2}/x_{2})/(x_{1}/x_{1}))/(x_{4}/x_{3}/x_{2}/x_{1})/(x_{4}/x_{2}/x_{2}/x_{1})/(x_{4}/x_{2}/x_{2}/x_{1})/(x_{4}/x_{2}/x_{2}/x_{1})/(x_{4}/x_{2}/x_{2}/x_{2}/x_{2}/x_{1})/(x_{4}/x_{2}$
- 3. Алгебра Пірса {AБО-HЕ} Отримується з ДКНФ за допомогою правил \det Моргана та аксіоми $x\sqrt[4]{x}=\overline{x}\cdot\overline{x}=\overline{x}$

$$f_{4} = (x_{4} \sqrt{x_{3}} \sqrt{x_{2}} \sqrt{x_{1}}) \sqrt{(x_{4} \sqrt{x_{3}} \sqrt{x_{2}} \sqrt{x_{1}})} = (x_{4} \sqrt{x_{3}} \sqrt{x_{2}} \sqrt{x_{1}}) \sqrt{(x_{4} \sqrt{x_{3}} \sqrt{x_{2}} \sqrt{x_{1}})} \sqrt{(x_{4} \sqrt{x_{3}} \sqrt{x_{2}}$$

- 4. Алгебра Жегалкіна {ВИКЛЮЧНЕ АБО, I, const 1}
- Виписуємо ДДНФ функції. $f_{4\, I\!J\!H\!\Phi} = \overline{x}_4 \, \overline{x}_3 \overline{x}_2 x_1 \, V x_4 \overline{x}_3 \overline{x}_2 \overline{x}_1 V x_4 \overline{x}_3 \overline{x}_2 x_1 V x_4 \overline{x}_3 \overline{x}_2 \overline{x}_1 V x$
- Замінюємо знак операції АБО між термами на ВИКЛЮЧНЕ АБО. $f_4 = \overline{x}_4 \overline{x}_3 \overline{x}_2 x_1 \oplus x_4 \overline{x}_3 \overline{x}_2 \overline{x}_1 \oplus \overline{x}_4 x_3 \overline{x}_2 x_1 \oplus x_4 \overline{x}_3 x_2 x_1 \oplus x_4 x_3 \overline{x}_2 \overline{x}_1 \oplus x_4 x_3 \overline{x}_2 x_1 \oplus x_4 \overline{x}_3 \overline{x}_4 x_1 \oplus x_4 \overline{x}_3 \overline{x}_4 \overline{x}_4 \overline{x}_$
- Кожен аргумент із запереченням замінюємо на його суму по модулю 2 з одиницею згідно аксіоми $\overline{x} = x \oplus 1$ $f_4 = (x_4 \oplus 1)(x_3 \oplus 1)(x_2 \oplus 1)x_1 \oplus x_4(x_3 \oplus 1)(x_2 \oplus 1)(x_1 \oplus 1) \oplus x_4(x_3 \oplus 1)(x_2 \oplus 1)x_1 \oplus x_4(x_3 \oplus 1)x_2x_1 \oplus x_4x_3(x_2 \oplus 1)(x_1 \oplus 1) \oplus x_4x_3x_2x_1 \oplus (x_4 \oplus 1)x_3(x_2 \oplus 1)x_1$
- Розкриваємо дужки і спрощуємо вираз шляхом видалення парних термів за аксіомами $x \oplus x = 0$, $x \oplus 0 = x$

Зм.	Арк.	№ докум	Підпис	Дата

 $f_{4} = (x_{4}x_{1} \oplus x_{1})(x_{3} \oplus \hbar)(x_{2} \oplus \hbar) \oplus (x_{4}x_{3} \oplus x_{4})(x_{2}x_{1} \oplus x_{2} \oplus x_{1} \oplus \hbar) \oplus (x_{4}x_{3}x_{1} \oplus x_{4}x_{1})$ $(x_{2} \oplus \hbar) \oplus x_{4}x_{3}x_{2}x_{1} \oplus x_{4}x_{2}x_{1} \oplus (x_{4}x_{3}x_{2} \oplus x_{4}x_{3})(x_{1} \oplus \hbar)x_{4}x_{3}x_{2}x_{1} =$ $x_{4}x_{3}x_{2}x_{1} \oplus x_{4}x_{3}x_{1} \oplus x_{4}x_{2}x_{1} \oplus x_{4}x_{1} \oplus x_{3}x_{2}x_{1} \oplus x_{3}x_{1} \oplus x_{2}x_{1} \oplus x_{4}x_{3}x_{2}x_{1} \oplus x_{4}x_{3}x_{2} \oplus$ $x_{4}x_{3}x_{1} \oplus x_{4}x_{3} \oplus x_{4}x_{2}x_{1} \oplus x_{4}x_{2} \oplus x_{4}x_{1} \oplus x_{4} \oplus x_{4}x_{3}x_{2}x_{1} \oplus x_{4}x_{3}x_{1} \oplus x_{4}x_{2}x_{1} \oplus x_{4}x_{3}x_{2}x_{1}$ $x_{4}x_{2}x_{1} \oplus x_{4}x_{3}x_{2}x_{1} \oplus x_{4}x_{3}x_{2} \oplus x_{4}x_{3}x_{1} \oplus x_{4}x_{3} \oplus x_{4}x_{3}x_{2} \oplus x_{4}x_{3}x_{1} \oplus x_{4}x_{3}x_{2} \oplus$ $x_{4}x_{3}x_{2}x_{1}$ $x_{4}x_{3}x_{2}x_{1}$

Визначимо приналежність перемикальної функції f_4 п'яти передповних класів:

- K₀: f(0,0,0,0)=0 3δepizaε 0;
- K₁ f(1,1,1,1)=1 3δepizaε 1;
- K, f(0,0,1,1)=0, f(1,1,0,0)=1 самодвоїста
- K_м f(1,1,0,0)=1, f(1,1,0,1)=0, f(1,1,0,1)< f(1,1,0,0) не монотонна
- К_л поліном Жегалкіна не лінійний не лінійна

Результати зведемо до таблиці

Ταδη 3.1

f_4	$K_{\mathcal{O}}$	K_{1}	K_{c}	K	K_{α}	
	+	+	+	1	_	

Мінімізація функції f_{\perp} методом Квайна-Мак-Класкі

Виходячи з таблиці записуємо в першу колонку ДДНФ функції поєднуючи набори у групи за кількістю одиниць. Виконуючи склеювання формуємо другу колонку, після виконання поглинань одержуємо СДНФ функції.

UUU1	0X01
<i>-0101</i>	X001
<i>1000</i>	100X
-1001	1X00
-1011	10X1
-1100	1X11
<u>-1111</u>	

Для знаходження МДНФ будуємо таблицю покриття. Одержані прості імпліканти запишемо у таблицю покриття.

Ταδηυця 3.2

	0001	0101	1000	1001	1011	1100	1111
0X01	+	\oplus					
X001	+			+			
100X			+	+			
1X00			+			$ ot\!\!\!/$	
10X1				+	+		
1X11					+		\oplus

В ядро функції входять ті терми, без яких неможливо покрити хоча б

Зм.	Арк.	№ докум	Підпис	Дата

одну імпліканту.

Ядро =
$$\{\bar{x}_4\bar{x}_2x_1, x_4\bar{x}_2\bar{x}_1, x_4x_2x_1\}$$

В МДНФ функції входять всі терми ядра а також ті терми, що забезпечують покриття всієї функції з мінімальною ціною. З таблиці бачимо вибираємо МДНФ $f_{4MДН\Phi} = \bar{x}_4 \bar{x}_2 x_1 \lor x_4 \bar{x}_3 x_1 \lor x_4 \bar{x}_2 x_1 \lor x_4 \bar{x}_2 \bar{x}_1$

Мінімізація функції f₄ методом невизначених коефіцієнтів Складаємо таблицю{таблЗ.З) коефіцієнтів.

Ταδηυμя 3.3

													,		
F	<i>X</i> ₄	X ₃	<i>x</i> ₂	<i>X</i> ₁	X_4X_3	X_4X_2	X_4X_1	X_3X_2	X_3X_1	x_2x_1	$X_4X_3X_2$	X_4X_3X	X_4X_2X	$X_3X_2X_1$	$X_4X_3X_2X_1$
0	Ф	Ф	Ф	Ф	00	θθ	00	00	θθ	00	<i>000</i>	000	000	000	<i>0000</i>
1	₽	₽	₽	4	00	<i>00</i>	01	<i>-00</i>	01	01	<i>000</i>	<i>001</i>	001	<i>-001</i>	<i>0001</i>
0	Ф	Ð	1	Ф	-00	01	<i>00</i>	01	00	10	<i>001</i>	<i>000</i>	010	<i>010</i>	<i>-0010</i>
0	Ф	Ф	1	1	00	01	01	01	01	1 1	<i>001</i>	001	011	011	<i>0011</i>
0	Ф	1	Ф	Ф	01	00	<i>00</i>	10	10	00	<i>010</i>	010	<i>000</i>	100	<i>0100</i>
1	Ә	1	Ә	1	01	<i>00</i>	01	-10	11	01	<i>010</i>	<i>011</i>	001	101	<i>0101</i>
0	Ә	1	1	Ә	01	01	00	11	10	-10	<i>011</i>	<i>010</i>	010	-110	<i>0110</i>
0	Ф	1	1	1	01	01	<i>01</i>	-11	1 1	1 1	<i>011</i>	<i>011</i>	<i>011</i>	111	<i>0111</i>
1	1	Ф	Ф	Ф	10	10	10	00	00	00	100	100	100	<i>-000</i>	1000
1	1	Ф	Ф	1	10	10	-11	00	01	1 1	100	101	101	001	1001
0	4	Ф	1	Ф	10	1 1	10	01	θθ	10	101	100	-110	<i>010</i>	1010
1	1	Ф	1	4	10	1 1	-11	01	01	1 1	101	101	111	011	1011
1	1	1	Ф	Ә	-11	10	10	10	10	00	-110	-110	100	-100	-1100
0	4	1	Ф	4	-11	10	-11	10	1 1	01	-110	011	101	101	1101
0	1	1	1	Ә	-11	1 1	10	1 1	10	10	111	110	110	-110	-1110
1	1	1	1	1	-11	1 1	11	11	11	11	111	111	111	111	1111

Викреслюємо в таблиці коефіцієнти, що знаходяться в рядках з нульовим значенням функції. Викреслені коефіцієнти мають нульові значення. Далі викреслюємо вже знайдені нульові коефіцієнти в інших рядках таблиці. Коефіцієнти, які залишилися, поглинають у рядку праворуч від себе всі інші коефіцієнти, в індекси яких входять індекси даного коефіцієнта.

Із не закреслених клітинок виберемо МДНФ функції.

$$f_{4MJH\phi} = \bar{x}_4 \bar{x}_2 x_1 \vee x_4 \bar{x}_3 x_1 \vee x_4 x_2 x_1 \vee x_4 \bar{x}_2 \bar{x}_1$$

Мінімізація функції f_4 методом діаграм Вейча

Заповнимо діаграми Вейча (Рис З.1), де кожна клітинка відповідає конституенті, кожен прямокутник, що містить 2^k елементів відповідає простій імпліканті.

Зм.	Арк.	№ докум	Підпис	Дата

Рисунок 3.1

 $f_{4M\Pi H\Phi} = \bar{x}_4 \bar{x}_2 x_1 \vee x_4 \bar{x}_3 x_1 \vee x_4 x_2 x_1 \vee x_4 \bar{x}_2 \bar{x}_1$

Для отримання МДНФ системи перемикальних функцій виконаємо мінімізацію прямих значень функцій методом Квайна-Мак-Класкі. Виходячи з таблиці істинності системи перемикальних функцій записуємо у першу колонку набори, де хоча б одна з функцій приймає значення одиниці. Кожній конституенті ставиться у відповідність множина міток, що вказують на приналежність конституенти до певної функції системи. Виписані терми поєднуємо у групи за однаковою кількістю одиниць. Виконуємо всі можливі попарні склеювання. Шляхом поглинання термів формуємо СДНФ системи перемикальних функцій.

1. Мінімізація системи функцій за ДДНФ:

Для видалення надлишкових імплікант будуємо таблицю покриття.

—	
0000 (1,2,3)	X000 (1,3)
0001 (1,2)	X100 (1,3)
0010 (1,2,3)	<u>X111 (1,2,3</u>)
<i>0100 (1,3)</i>	0X00 (1,3)
1000 (1,3)	OX10 (1,2,3)
0110 (1,2,3)	<u>1X00 (1,3)</u>
<u>1100 (1,2,3)</u>	00X0 (1,2,3)
0111 (1,2,3)	01X0 (1,3)
<u>1101 (1,2</u>)	<u>11X1 (1,2)</u>
1111 (1,2,3)	000X (1,2)
	011X (1,2,3)
	110X (1,2)

№ доким

Підпис

<i>ו א</i> או	.463626.004	ПЭ
$\Delta / I I I$	/, / / / / / / / /	117
\neg \prime \prime \Box	. TUJULU. UUT	110

0XX0 (1,3) 0XX0 (1,3) XX00 (1,3)

	F_1							F_2			F_3									
	0000	0001	0010	0110	1000	1100	1101	1111	0000	0001	0010	1101	1111	0000	0100	0111	1000	1100	1111	0010
1100(1,2,3						+												+		
000X(1,2)	+	\oplus							+	+										
00X0(1,2,3)	+		+						+		+			+						+
0X10(1,2,3)			+	+							+									+
011X(1,2,3)				+												+				
X111(1,2,3)								+					+			+			\oplus	
110X(1,2)						+	+					+								
11X1(1,2)							+	+				+	+							
0XX0 (1,3)	+		+	+										+	+					+
XX00(1,3	+				+	+								+	+		+	+		

На підставі таблиці покриття одержуємо МДНФ перемикальних функцій у формі I/AБO:

- $\bullet \quad f_1 = \overline{x}_4 \overline{x}_3 \vee \overline{x}_3 \overline{x}_2 \vee x_4 x_3 \overline{x}_2 \vee \overline{x}_4 \overline{x}_3 \overline{x}_2 \vee x_4 x_3 x_1$
- $f_2 = \overline{x}_4 \overline{x}_3 \overline{x}_2 \lor x_3 x_2 x_1 \lor \overline{x}_4 \overline{x}_3 \overline{x}_1 \lor x_4 x_3 \overline{x}_2$
- $f_3 = x_3 x_2 x_1 \sqrt{x_2 x_1} \sqrt{x_4 x_1}$

2. Мінімізація системи функцій за ДКНФ:

	• •	
0001 (3)	X011 (1,2,3)	<i>0XX1 (3)</i>
0100 (1,2)	X100 (2)	0XX1 (3)
<u>1000 (2)</u>	X110 (2)	01XX (2)
0011 (1,2,3)	0X01 (3)	01XX (2)
0101 (1,2,3)	0X11 (1,2,3)	X1X0 (2)
0110 (2)	1X00 (2)	X1X0 (2)
1001 (1,2)	<u>1X10 (1,2,3)</u>	10XX (2)
1010 (1,2,3)	00X1 (3)	10XX (2)
<u>1100 (2,3)</u>	01X0 (2)	1XX0 (2)
0111 (1,2,3)	01X1 (1,2,3)	1XX0 (2)
1011 (1,2,3)	10X0 (2)	
1110 (1,2,3)	10X1 (1,2)	
	<u>-11X0 (2,3)</u>	
	010X (1,2)	
	011X (2)	
	101X (1,2,3)	

Зм.	Арк.	№ докум	Підпис	Дата

Рисунок 3.3

Для видалення надлишкових імплікант будуємо таблицю покриття

Ταδηυμя 3.5

	F1					•		F2						F3													
	0011	0100	0101	0111	1001	1010	1011	1110	0011	0010	0101	0110	0111	1000	1001	1010	1011	1100	1110	0001	0011	0101	0111	1010	1011	1100	1110
0X11 (1,2,3)	+			+					+				+								+		+				П
X011 (1,2,3)	+								+												+				+		
010X (1,2)		+	+							+	+																
01X1 (1,2,3)			+	+							+		+									+	+				
10X1 (1,2)					+		+								+												
101X (1,2,3)						+	+									+								+	+		
1X10 (1,2,3)						+		+								+			+					+			+
11X0 (2,3)																		+	+							+	+
0XX1 (3)																				+	+	+	+				
01XX (2)										+	+	+	+														
X1X0 (2)										+		+						+	+								
10XX (2)														+	+	+	+										
1XX0 (2)														+		+		+	+								

На підставі таблиці покриття одержуємо МДНФ перемикальних функцій у формі I/AБO-HE:

- $f_1 = \bar{x}_4 x_2 x_1 \sqrt{x}_4 x_3 \bar{x}_2 \sqrt{x}_4 x_3 x_1 \sqrt{x}_4 \bar{x}_3 x_1 \sqrt{x}_4 \bar{x}_3 x_2 \sqrt{x}_4 x_2 \bar{x}_1$
- $\bullet \quad f_2 = \bar{x}_4 x_2 x_1 \vee x_4 x_3 \bar{x}_1 \vee \bar{x}_4 x_3 \vee x_4 \bar{x}_3$
- $\bullet \quad f_3 = x_4 \overline{x}_3 x_1 \vee x_4 x_2 \overline{x}_1 \vee x_4 x_3 \overline{x}_1 \vee \overline{x}_4 x_1$

Для програмування ПЛМ використаємо нормальну форму I/AБО тому, що ії вона має меншу ціну ніж форма I/AБО-НЕ.

Позначимо терми системи перемикальних функцій:

$$P_{1} = \overline{x}_{4}\overline{x}_{3} , P_{2} = \overline{x}_{3}\overline{x}_{2} , P_{3} = x_{4}x_{3}\overline{x}_{2} , P_{4} = \overline{x}_{4}\overline{x}_{3}\overline{x}_{2} , P_{5} = x_{4}x_{3}x_{1} , P_{6} = x_{3}x_{2}x_{1}$$

$$P_{7} = \overline{x}_{2}\overline{x}_{1} , P_{8} = \overline{x}_{4}\overline{x}_{1}$$

Тоді функції виходів описуються системою:

$$f_1=P_1\lor P_2\lor P_3\lor P_4\lor P_5$$
 , $f_2=P_4\lor P_3\lor P_6$, $f_3=P_6\lor P_7\lor P_8$ Визначимо мінімальні параметри ПЛМ:

- п=4 число інформаційних входів;
- р=8 число проміжних внутрішніх шин;
- т=3 число інформаційних виходів.

Зм.	Арк.	№ докум	Підпис	Дата

Складемо карту програмування ПЛМ(4,8,3) Таблиця 3.6

№ шини		Вхс		Виходи				
	<i>X</i> ₄	x_3	<i>X</i> ₂	<i>X</i> ₁	f_1	f_2	f_3	
1	0	0	-	ı	1	ı	-	
2	ı	0	0	ı	1	ı	-	
3	1	1	0	ı	1	1	-	
4	0	0	0	-	1	1	1	
5	1	1	-	1	1	1	-	
6	ı	1	1	1	ı	1	1	
7	1	1	0	0	1	1	1	
8	0	-	-	0	-	-	1	

Зм.	Арк.	№ докум	Підпис	Дата

4. Висновок

Виконано синтез автомата з пам'яттю. Тип автомата – автомат Мілі. Особливістю автоматів цього типу є те, що вихідні сигнали залежать від стану автомата та від діючих вхідних сигналів. Для мінімізації функцій управляючих сигналів та функцій збудження тригерів використано метод діаграм Вейча. Виконано мінімізацію функції f_4 методами Квайна-Мак-Класкі, діаграм Вейча, та невизначених коефіцієнтів. Отримані МДНФ функцій є ідентичними для цих трьох методів.

Виконано спільну мінімізацію функцій f_{ij} , f_{2i} і f_{3i} методом Квайна-Мак-Класкі та одержані дві операторні форми для реалізації на ПЛМ(I/AБО та I/AБО-HE). Для одержання форми I/AБО проведено мінімізацію за ДДНФ, а для одержання форми I/AБО-HE за ДКНФ. Для програмування ПЛМ використано нормальну форму I/AБО.

Зм.	Арк.	№ докум	Πίδημς	Дата

5. Список літератури

- 1. Конспект лекцій з курсу «Комп'ютерна логіка», 2012р.
- 2. Жабін В. та ін. Прикладна теорія цифрових автоматів: Навчальний посібник.—К.: НАУ-друк, 2009.—360с.

Зм.	Арк.	№ докум	Підпис	Дата