

Date:

Report No.: EED32L00074901

Page 1 of 172

TEST REPORT

Product : WIFI Module

Trade mark : GSD

Model/Type reference : WC0PR1601, WC0PR1601F

Serial Number : N/A

Report Number : EED32L00074901

FCC ID : 2AC23-WC0PR1601

Date of Issue : Jun. 27, 2019

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Hui Zhou Gaoshengda Technology Co., LTD NO.75 Zhongkai Development Area, Huizhou, Guangdong, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:	Jay Zheng	Compiled by:	Levin lan
	Jay Zheng		Kevin Lan
Reviewed by:	Ware Xin	Approved/by:	ke In Tay
	Ware Xin		Kevin Yang

Jun. 27, 2019 🙀 😈 📕 👸 Check No.:3096396831

2 Version

Version No.	Date	Description				
00	Jun. 27, 2019	Original				
	**	25				

Page 3 of 172

3 Test Summary

Test Item	Test Requirement	Test method	PASS	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013		
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

Model No.: WC0PR1601, WC0PR1601F

Only the model WC0PR1601 was tested, their electrical circuit design, layout, components used and internal wiring are identical ,but the SMT connector is different.

Page 4 of 172

4 Content

1 COVER PAGE	1
2 VERSION	
3 TEST SUMMARY	
4 CONTENT	
5 TEST REQUIREMENT	4
5.1 TEST SETUP	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
7 EQUIPMENT LIST	1 1
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	13
Appendix A): Conducted Peak Output Power	
PHOTOGRAPHS OF TEST SETUP	153
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	155

Page 5 of 172

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

Page 6 of 172

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment for RF test:						
Temperature:	25°C					
Humidity:	51% RH					
Atmospheric Pressure:	1010mbar					

Page 7 of 172

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
rest Mode	TX/KX	Low(L)	Middle(M)	High(H)	
000 44b/a/a/UT00	0440MH= 0460 MH=	Channel 1	Channel 6	Channel11	
802.11b/g/n(HT20)	2412MHz ~2462 MHz	2412MHz	2437MHz	2462MHz	
000 44 (LIT40)	04000411- 0450 0411-	Channel 1	Channel 4	Channel7	
802.11n(HT40)	2422MHz ~2452 MHz	2422MHz	2437MHz	2452MHz	
TX mode:	The EUT transmitted the continuous signal at the specific channel(s).				

Test mode:

Pre-scan under all rate at lowest channel 1 for Ant1

Mode			8	02.11b					
Data Rate 1Mbps 2Mbps 5.5Mbps 11Mbps Power(dBm) 18.09 18.16 18.21 18.31					/				
Mode	- 6	10		(4)	80	2.11g	(45)		(2
Data Rate 6Mbps 9Mbps 12Mbps 18Mbps 24Mbps 36Mi				s 36Mbp	s 48Mbps	54Mbps			
Power(dBm	Power(dBm) 16.7 16.66 15.59 15.51 15.44 15		15.41	15.41 15.37					
Mode					802.11n	(HT20)		215	
Data Rate	6.5	Mbps	13Mbps	19.5Mbps	26Mbps	39Mbps	52Mbps	58.5Mbps	65Mbps
Power(dBm)	1	5.51	15.45	15.40	15.31	15.27	15.22	15.19	15.11
Mode		802.11n (HT40)							
Data Rate	13.	5Mbps	27Mbps	40.5Mbps	54Mbps	81Mbps 108Mbps 121.5Mbps			135Mbps
Power(dBm)	1	4.76	14.72	14.67	14.60	14.52	14.46	14.40	14.31

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).

Page 8 of 172

6 General Information

6.1 Client Information

Applicant:	Hui Zhou Gaoshengda Technology Co., LTD
Address of Applicant:	NO.75 Zhongkai Development Area, Huizhou, Guangdong, China
Manufacturer:	Hui Zhou Gaoshengda Technology Co., LTD
Address of Manufacturer:	NO.75 Zhongkai Development Area, Huizhou, Guangdong, China
Factory:	Hui Zhou Gaoshengda Technology Co., LTD
Address of Factory:	NO.75 Zhongkai Development Area, Huizhou, Guangdong, China

6.2 General Description of EUT

Product Name:	WIFI Module
Model No.(EUT):	WC0PR1601, WC0PR1601F
Test Model No.:	WC0PR1601
Trade Mark:	GSD
EUT Supports Radios application:	2.4G WiFi: IEEE802.11b/g/n(20MHz)/n(40MHz), 2412MHz-2462MHz 5G WiFi: IEEE802.11a/ac(HT20)/ac(HT40)/ac(HT80), 5150-5250MHz, 5725-5850MHz
Power Supply:	DC 3.3V
Sample Received Date:	Apr. 04, 2019
Sample tested Date:	Apr. 15, 2019 to Jun. 26, 2019

6.3 Product Specification subjective to this standard

Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz					
Operation requestcy.	IEEE 802.11n(HT40): 2422MHz to 2452MHz					
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels IEEE 802.11n HT40: 7 Channels					
Channel Separation:	5MHz					
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g:OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20 and HT40): OFDM (64QAM, 16QAM, QPSK,BPSK)					
Firmware version of the sample:	V1.0(manufacturer declare)					
Hardware version of the sample:	V1.0(manufacturer declare)					
Test Power Grade:	N/A					
Test Software of EUT:	Win7_MP_Kit_RTL11ac_8821CU_USB_v3.00_20171106 (manufacturer declare)					
Antenna Type:	PIFA Antenna					
Antenna gain:	2.5dBi					
Test Voltage:	DC 3.3V					

Page	9	of	172
I ago	J	OI.	112

Operation	Frequency ea	ch of chan	nel(802.11b/g/n	HT20)	b)		(2)	
Channel	Frequency	Channel	Frequency	Channel	Fred	quency	Channe	Frequency
1	2412MHz	4	2427MHz	7	244	2MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	244	7MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	245	52MHz		(3)
Operation	Frequency ea	ch of chanı	nel(802.11n HT ₄	10)				
Channe	I Frequ	ency	Channel	Frequenc	су	Chan	nel	Frequency
13	24221	MHz	4	2437MH	z	7	13	2452MHz
2	24271	MHz	5	2442MH	lz			

2447MHz

6.4 Description of Support Units

The EUT has been tested independently

2432MHz

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None

6.8 Other Information Requested by the Customer

None.

Page 10 of 172

6.9 Measurement Uncertainty(95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Dadiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Page 11 of 172

7 Equipment List

		RF test sy	ystem		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-28-2020
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-28-2020
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-28-2020
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	(2	01-09-2019	01-08-2020
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-28-2020
PC-1	Lenovo	R4960d		03-01-2019	02-28-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-28-2020
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2	(F)	03-01-2019	02-28-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019

Conducted disturbance Test								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020			
Temperature/ Humidity Indicator	Defu	TH128		06-14-2019	06-12-2020			
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-29-2020			
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020			
LISN	R&S	ENV216	100098	05-08-2019	05-06-2020			
LISN	schwarzbeck	NNLK8121	8121-529	05-08-2019	05-06-2020			
Voltage Probe	R&S	ESH2-Z3 0299.7810.56	100042	06-13-2017	06-11-2020			
Current Probe	R&S	EZ-17 816.2063.03	100106	05-20-2019	05-18-2020			
ISN	TESEQ	ISN T800	30297	01-06-2019	01-15-2020			

Page 12 of 172

Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	9	05-24-2019	05-22-2020
TRILOG Broadband Antenna TRILOG Broadband Antenna	Schwarzbeck Schwarzbeck	VULB9163 VULB9163	9163-401 9163-618	12-21-2018 07-30-2018	12-20-2019 07-29-2019
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.604 1	08-08-2018	08-07-2019
Spectrum Analyzer	R&S	FSP40	100416	04-28-2019	04-26-2020
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020
Receiver	R&S	ESCI7	100938- 003	11-23-2018	11-22-2019
Multi device Controller	maturo	NCD/070/107 11112		01-09-2019	01-08-2020
LISN	schwarzbeck	NNBM8125	81251547	05-08-2019	05-06-2020
LISN	schwarzbeck	NNBM8125	81251548	05-08-2019	05-06-2020
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-28-2020
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	02-28-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020
Communication test set High-pass filter	R&S Sinoscite	CMW500 FL3CX03WG 18NM12- 0398-002	104466	01-18-2019	01-17-2020 01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4	- (01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001	(01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002	9	01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-09-2019	01-08-2020

Page 13 of 172

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix A)
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Page 14 of 172

Appendix A): Conducted Peak Output Power Result Table

WC0PR1601: Antenna 1

Mode	Channel	Conducted Peak Output Power [dBm]	Verdict
11B	LCH	18.31	PASS
11B	MCH	17.85	PASS
11B	НСН	17.58	PASS
11G	LCH	16.7	PASS
11G	MCH	16.57	PASS
11G	HCH	16.05	PASS
11N20SISO	LCH	15.51	PASS
11N20SISO	MCH	15.68	PASS
11N20SISO	HCH	15.29	PASS
11N40SISO	LCH	14.76	PASS
11N40SISO	MCH	14.67	PASS
11N40SISO	HCH	14.72	PASS

WC0PR1601: Antenna 2

Mode	Channel	Conducted Peak Output Power [dBm]	Verdict
11B	LCH	18.02	PASS
11B	MCH	17.82	PASS
11B	HCH	17.81	PASS
11G	LCH	16.96	PASS
11G	MCH	17.3	PASS
11G	HCH	17.75	PASS
11N20SISO	LCH	16.76	PASS
11N20SISO	MCH	16.32	PASS
11N20SISO	HCH	16.67	PASS
11N40SISO	LCH	15.66	PASS
11N40SISO	MCH	15.53	PASS
11N40SISO	НСН	15.17	PASS

Page 15 of 172

Test Graph

WC0PR1601: Antenna 1

Page 17 of 172

Page 19 of 172

WC0PR1601: Antenna 2

Page 20 of 172

Page 21 of 172

Page 22 of 172

Page 23 of 172

Appendix B): 6dB Occupied Bandwidth Result Table

WC0PR1601: Antenna 1

Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
11B	LCH	9.622	14.977	PASS
11B	MCH	9.383	14.966	PASS
11B	HCH	9.348	15.001	PASS
11G	LCH	16.53	17.488	PASS
11G	MCH	16.67	17.493	PASS
11G	HCH	16.67	17.501	PASS
11N20SISO	LCH	17.33	18.338	PASS
11N20SISO	MCH	17.35	18.434	PASS
11N20SISO	HCH	17.37	18.368	PASS
11N40SISO	LCH	35.81	36.460	PASS
11N40SISO	MCH	35.72	36.342	PASS
11N40SISO	HCH	35.76	36.445	PASS

WC0PR1601: Antenna 2

Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
11B	LCH	9.287	14.977	PASS
11B	MCH	9.878	14.973	PASS
11B	HCH	9.991	15.091	PASS
11G	LCH	16.60	17.520	PASS
11G	MCH	16.58	17.529	PASS
11G	HCH	16.56	17.539	PASS
11N20SISO	LCH	17.41	18.483	PASS
11N20SISO	MCH	17.43	18.504	PASS
11N20SISO	HCH	17.46	18.517	PASS
11N40SISO	LCH	36.24	36.709	PASS
11N40SISO	MCH	36.26	36.708	PASS
11N40SISO	HCH	36.11	36.737	PASS

Page 24 of 172

Test Graph

WC0PR1601: Antenna 1

Page 26 of 172

Page 27 of 172

Page 28 of 172

WC0PR1601: Antenna 2

Page 30 of 172

Page 31 of 172

Report No. : EED32L00074901 Page 32 of 172

Appendix C): Band-edge for RF Conducted Emissions Result Table

WC0PR1601: Antenna 1

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
11B	LCH	5.355	-50.537	-24.65	PASS
11B	HCH	4.697	-49.048	-25.3	PASS
11G	LCH	-2.542	-49.392	-32.54	PASS
11G	HCH	-3.576	-49.313	-33.58	PASS
11N20SISO	LCH	-3.378	-50.761	-33.38	PASS
11N20SISO	HCH	-3.714	-49.831	-33.71	PASS
11N40SISO	LCH	-7.468	-49.737	-37.47	PASS
11N40SISO	HCH	-7.030	-49.886	-37.03	PASS

WC0PR1601: Antenna 2

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
11B	LCH	5.472	-49.885	-24.53	PASS
11B	HCH	5.878	-48.638	-24.12	PASS
11G	LCH	-2.256	-50.322	-32.26	PASS
11G	НСН	-1.238	-49.525	-31.24	PASS
11N20SISO	LCH	-2.338	-49.574	-32.34	PASS
11N20SISO	НСН	-2.011	-49.663	-32.01	PASS
11N40SISO	LCH	-6.645	-48.021	-36.65	PASS
11N40SISO	нсн	-6.878	-49.566	-36.88	PASS

Page 33 of 172

Test Graph WC0PR1601: Antenna 1

Page 35 of 172

Page 36 of 172

WC0PR1601: Antenna 2

Page 38 of 172

Page 39 of 172

Appendix D): RF Conducted Spurious Emissions Result Table

WC0PR1601: Antenna 1

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	5.409	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	5.475	<limit< td=""><td>PASS</td></limit<>	PASS
11B	HCH	4.88	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	-2.525	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	-3.443	<limit< td=""><td>PASS</td></limit<>	PASS
11G	НСН	-3.765	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	-3.437	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	MCH	-3.222	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	НСН	-3.472	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	LCH	-7.002	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	MCH	-6.736	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	HCH	-6.649	<limit< td=""><td>PASS</td></limit<>	PASS

WC0PR1601: Antenna 2

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	4.987	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	4.505	<limit< td=""><td>PASS</td></limit<>	PASS
11B	НСН	5.773	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	-2.144	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	-0.512	<limit< td=""><td>PASS</td></limit<>	PASS
11G	НСН	-1.272	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	-2.325	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	MCH	-2.391	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	НСН	-1.837	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	LCH	-6.363	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	MCH	-6.533	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	НСН	-6.933	<limit< td=""><td>PASS</td></limit<>	PASS

Page 40 of 172

Test Graph

WC0PR1601: Antenna 1

Page 44 of 172

Page 46 of 172

Page 48 of 172

WC0PR1601: Antenna 2

Page 50 of 172

Page 52 of 172

Page 54 of 172

Report No.: EED32L00074901 Page 56 of 172

Appendix E): Power Spectral Density Result Table

WC0PR1601: Antenna 1

Mode	Channel	Power Spectral Density [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
11B	LCH	-8.594	8	PASS
11B	MCH	-6.763	8	PASS
11B	HCH	-7.615	8	PASS
11G	LCH	-16.215	8	PASS
11G	MCH	-16.569	8	PASS
11G	HCH	-17.570	8	PASS
11N20SISO	LCH	-16.960	8	PASS
11N20SISO	MCH	-17.109	8	PASS
11N20SISO	HCH	-16.751	8	PASS
11N40SISO	LCH	-21.704	8	PASS
11N40SISO	MCH	-21.699	8	PASS
11N40SISO	HCH	-22.236	8	PASS

WC0PR1601: Antenna 2

Mode	Channel	Power Spectral Density [dBm/3kHz]	Limit [dBm/3kHz]	Verdict	
11B	LCH	-9.961	8	PASS	
11B	MCH	-10.266	8	PASS	
11B	НСН	-8.937	8	PASS	
11G	LCH	-16.519	8	PASS	
11G	MCH	-14.768	8	PASS	
11G	НСН	-15.846	8	PASS	
11N20SISO	LCH	-16.769	8	PASS	
11N20SISO	МСН	-16.410	8	PASS	
11N20SISO	НСН	-16.548	8	PASS	
11N40SISO	LCH	-20.552	8	PASS	
11N40SISO	мсн	-21.070	8	PASS	
11N40SISO	НСН	-21.423	8	PASS	

Page 57 of 172

Test Graph WC0PR1601: Antenna 1

Page 58 of 172

Page 59 of 172

Page 60 of 172

Page 61 of 172

WC0PR1601: Antenna 2

Page 62 of 172

Page 63 of 172

Page 64 of 172

Page 65 of 172

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PIFA Antenna and no consideration of replacement. The best case gain for 2.4GHz of the antenna is 2.5dBi.

Page 66 of 172

Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz	20%	1011						
rest Flocedule.	1)The mains terminal disturbation		conducted in a chields	nd room					
	2) The EUT was connected to Stabilization Network) whi power cables of all other which was bonded to the gother unit being measured. A power cables to a single LI exceeded.	o AC power source ich provides a 50Ω/s units of the EUT we bround reference plan a multiple socket outle	through a LISN 1 (Lii $50\mu H + 5\Omega$ linear im the connected to a seconnected to a seconnected to a seconnected to a seconnected to connected to co	ne Impedance pedance. The econd LISN 2, the LISN 1 for onnect multiple					
	3)The tabletop EUT was pla reference plane. And for f horizontal ground reference	loor-standing arrange		-					
	 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all 								
	of the interface cables must be changed according to ANSI C63.10 on conducted measurement.								
Limit:	CAN	(4)	(40)						
0	Fraguency range (MHz)	Limit ((dBµV)						
	Frequency range (MHz)	Quasi-peak	Average						
	0.15-0.5	66 to 56*	56 to 46*						
10	0.5-5	56	46	(20)					
)	5-30	60	50	(0)					
	* The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency								
Test Ambient:		d.: 52%	Press.: 101kPa						

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Page 67 of 172

	-		,				(-					00.000
No.	Freq.		ding_Le	evel	Correct Factor	N	(dBuV)		1,50	nit uV)		rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1539	32.37	29.20	-1.17	9.91	42.28	39.11	8.74	65.78	55.78	-26.67	-47.04	Р	
2	0.2460	31.88	27.14	-4.07	9.95	41.83	37.09	5.88	61.89	51.89	-24.80	-46.01	Р	
3	0.2819	31.08	28.36	-2.35	9.98	41.06	38.34	7.63	60.76	50.76	-22.42	-43.13	P	
4	0.3620	27.82	24.17	1.61	9.93	37.75	34.10	11.54	58.68	48.68	-24.58	-37.14	P	
5	0.4660	27.86	24.32	1.65	9.89	37.75	34.21	11.54	56.58	46.58	-22.37	-35.04	P	7 ==
6	26.6260	9.17	6.46	-5.49	9.94	19.11	16.40	4.45	60.00	50.00	-43.60	-45.55	Р	

Page 68 of 172

No.	Freq.		ding_Le	vel	Correct Factor	N	(dBuV)	1.2	Lir (dB	nit uV)		rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1620	31.34	28.46	-3.65	9.91	41.25	38.37	6.26	65.36	55.36	-26.99	-49.10	P	
2	0.1900	30.72	27.93	-1.21	9.91	40.63	37.84	8.70	64.03	54.03	-26.19	-45.33	P	
3	0.2353	31.25	28.13	2.62	9.94	41.19	38.07	12.56	62.26	52.26	-24.19	-39.70	P	
4	0.2620	31.22	28.30	2.59	9.97	41.19	38.27	12.56	61.36	51.36	-23.09	-38.80	P	
5	0.3020	27.01	23.76	-4.91	10.00	37.01	33.76	5.09	60.19	50.19	-26.43	-45.10	P	
6	26.5180	8.63	4.10	-4.97	9.94	18.57	14.04	4.97	60.00	50.00	-45.96	-45.03	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-pea	
	301VII 12-10112	Peak	1MHz	3MHz	Peak	<u> </u>
	Above 1GHz	Peak 1MHz		10Hz	Average	15
Test Procedure:	(42)	1 can	TIVITIZ	10112	Average	(C. 20)
	a. The EUT was placed at a 3 meter semi-ardetermine the position b. The EUT was set 3 was mounted on the c. The antenna height determine the maximum polarizations of the additional determine the maximum polarizations of the additional determine the maximum was turned from 0 did e. The test-receiver symbols and with Maximum f. Place a marker at the frequency to show or bands. Save the specific for lowest and higher and higher than the distance h. Test the EUT in the i. The radiation measurement in the process of the specific forms of the interest of the EUT in the interest of the EU	d on the top of a ronechoic camber. The on of the highest rameters away from a top of a variable-his varied from one mum value of the finantenna are set to emission, the EUT and to heights from egrees to 360 degrees to 360 degrees to 360 degrees to 360 degrees to 400 degrees to 400 degrees to 500 degrees	he table was adiation. the interfer height ante meter to found the interfer height ante make the roll was arrand 1 meter to rees to find eak Detect control of the head of the head of the height had been been table 0.8 of the Highest ormed in X, xis position	rence-receinna tower. bur meters h. Both hor measuremenged to its vo 4 meters a d the maxim Function a closest to the y emissions for each poer rom Semi- meter to 1 eter). t channel Y, Z axis p ing which i	above the grizontal and ent. worst case a and the rotanum reading and Specified the transmit is in the restrower and modern and Specified the transmit is in the restrower and modern and Specified the transmit is in the restrower and modern and specified the transmit is in the restrower and modern	a, which pround to vertical and ther table d ricted odulation chamber bove
Limit:	Frequency	Limit (dBµV		1,4	mark	
	30MHz-88MHz	40.0		<u> </u>	eak Value	
	88MHz-216MHz	43.9			eak Value	
	216MHz-960MHz	46.0	-		eak Value	
	960MHz-1GHz	54.0	- 16.	-	eak Value	
	Above 1GHz	54.0			ge Value	
		74.0	Peak			
Test Ambient:	Temp.: 25°C	Humid.: 51%		Press.: 1	101kDa	
i oot / tillbiolit.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

Page 70 of 172

Test plot as follows:

PK Detector **AV** Detector

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	51.74	54.92	74.00	19.08	Pass	Horizontal
2	2412.1902	32.28	13.36	-42.44	103.57	106.77	74.00	-32.77	Pass	Horizontal

Mode: 802.11 b(11Mbps) Transmitting Channel: 2412 Remark:

Test Graph

* AV Detector

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.81	52.99	74.00	21.01	Pass	Vertical
2	2411.9024	32.28	13.35	-42.43	92.97	96.17	74.00	-22.17	Pass	Vertical

Page 71 of 172

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	40.73	43.91	54.00	10.09	Pass	Horizontal
2	2410.7509	32.28	13.35	-42.43	99.40	102.60	54.00	-48.60	Pass	Horizontal

Mode: 802.11 b(11Mbps) Transmitting Channel: 2412

Remark: AV

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.78	41.96	54.00	12.04	Pass	Vertical
2	2410.7509	32.28	13.35	-42.43	90.66	93.86	54.00	-39.86	Pass	Vertical

Page 72 of 172

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2462.0175	32.35	13.47	-42.41	103.75	107.16	74.00	-33.16	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	52.72	56.08	74.00	17.92	Pass	Horizontal

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2462
Remark:	PK	25	-

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2462.1627	32.35	13.47	-42.41	94.15	97.56	74.00	-23.56	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	49.78	53.14	74.00	20.86	Pass	Vertical

Page 73 of 172

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.0738	32.35	13.48	-42.41	100.05	103.47	54.00	-49.47	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	41.52	44.88	54.00	9.12	Pass	Horizontal

Mode:		802.11 b(11Mbps) Transmitting	Channel:	2462
Remark:	1	AV	22	200	
st Graph	120	2)	(20)	(3)	(2)
120			FCC PART 15C	- I	
110					
100					

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.0738	32.35	13.48	-42.41	89.99	93.41	54.00	-39.41	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	40.67	44.03	54.00	9.97	Pass	Vertical

AV Detector

Page 74 of 172

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	PK	100	130

Cable Ant Pream Limit Freq. Reading Level Margin NO Factor loss Result Polarity gain [MHz] [dBµV] $[dB\mu V/m]$ $[dB\mu V/m]$ [dB] [dB] [dB] [dB] 2390.0000 -42.4453.99 74.00 20.01 1 32.25 13.37 50.81 **Pass** Horizontal 2417.9474 2 32.29 13.38 -42.43 99.55 102.79 74.00 -28.79 **Pass** Horizontal

> Mode: 802.11 g(6Mbps) Transmitting Channel: 2412 Remark:

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-42.44	50.30	53.48	74.00	20.52	Pass	Vertical
Ī	2	2408.7359	32.27	13.34	-42.43	89.88	93.06	74.00	-19.06	Pass	Vertical

♠ PK Detector

- PK Limit

- AV Limit

AV Detector

AV Detector

Page 75 of 172

Cable Ant Pream Freq. Reading Level Limit Margin NO Result Polarity **Factor** loss gain [dBµV] [dBµV/m] [dBµV/m] [dB] [MHz] [dB] [dB] [dB] 1 2390.0000 32.25 13.37 -42.4439.76 42.94 54.00 11.06 **Pass** Horizontal 2 2418.2353 32.29 13.38 -42.43 89.55 92.79 54.00 -38.79 **Pass** Horizontal

Mode: 802.11 g(6Mbps) Transmitting Channel: 2412

Remark: AV

Ant Cable Pream Reading Limit Level Margin Freq. NO Result **Polarity Factor** loss gain [dBµV] [dBµV/m] [dBµV/m] [MHz] [dB] [dB] [dB][dB] 1 2390.0000 32.25 13.37 -42.44 38.76 41.94 54.00 12.06 **Pass** Vertical 2 2407.8723 32.27 13.34 -42.43 80.28 83.46 54.00 -29.46 **Pass** Vertical

Frequency[Hz]

- Vertical PK

Page 76 of 172

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.9449	32.35	13.48	-42.41	99.64	103.06	74.00	-29.06	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	51.90	55.26	74.00	18.74	Pass	Horizontal

Graph	16.76		1-40	1		1.43	1	
-			ECC P	ART 15C				
20			10017	ART 150		8		
10								
00								
90	~~							
80								
70								
60								
50			Warney and the same of the sam	March Company				name to
40								
30								
20								
10								
0								
0 2.452G	2.4658G	2.4716G	2.4774G	2.4832G	2.489G	2.4948G	2.5006G 2	2.5064G

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2458.8961	32.34	13.49	-42.41	91.15	94.57	74.00	-20.57	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	49.07	52.43	74.00	21.57	Pass	Vertical

Page 77 of 172

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2458.2428	32.34	13.49	-42.40	89.51	92.94	54.00	-38.94	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	41.30	44.66	54.00	9.34	Pass	Horizontal

Mode:	802.11 g(6Mbps) Tran	nsmitting Channel:	2462
Remark:	AV		
Graph	A31 (5	4281	()

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2456.5732	32.34	13.50	-42.41	80.56	83.99	54.00	-29.99	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	40.66	44.02	54.00	9.98	Pass	Vertical

- PK Limit

- AV Limit

Page 78 of 172

★ PK Detector **AV Detector** Cable Ant Pream Freq. Reading Level Limit Margin NO Result **Polarity Factor** loss gain [MHz] [dBµV] [dBµV/m] [dBµV/m] [dB] [dB] [dB] [dB] 2390.0000 1 32.25 13.37 -42.4452.20 55.38 74.00 18.62 **Pass** Horizontal 2 2415.0688 32.28 13.37 -42.43 99.53 102.75 74.00 -28.75 **Pass** Horizontal

Frequency[Hz]

- Horizontal PK

Mode: 802.11 n(HT20) (6.5Mbps) Transmitting Channel: 2412

Remark: PK

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	51.49	54.67	74.00	19.33	Pass	Vertical
2	2415.0688	32.28	13.37	-42.43	88.57	91.79	74.00	-17.79	Pass	Vertical

★ PK Detector

AV Detector

Page 79 of 172

Cable Ant Pream Freq. Reading Level Limit Margin NO Result **Polarity Factor** loss gain [MHz] [dBµV] [dBµV/m] [dBµV/m] [dB] [dB] [dB] [dB] 2390.0000 1 32.25 13.37 -42.4440.15 43.33 54.00 10.67 **Pass** Horizontal 2 2416.5081 32.28 13.38 -42.43 88.87 92.10 54.00 -38.10 **Pass** Horizontal

Mode: 802.11 n(HT40) (13.5Mbps) Transmitting Channel: 2412

Remark: AV

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.84	42.02	54.00	11.98	Pass	Vertical
2	2407.4406	32.27	13.33	-42.43	80.28	83.45	54.00	-29.45	Pass	Vertical

Page 80 of 172

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2464.9212	32.35	13.46	-42.40	99.72	103.13	74.00	-29.13	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	52.39	55.75	74.00	18.25	Pass	Horizontal

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2462
Remark:	PK		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2458.6783	32.34	13.49	-42.41	89.67	93.09	74.00	-19.09	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	49.69	53.05	74.00	20.95	Pass	Vertical