

Amortized Analysis and Dynamic Arrays

Amortized Analysis

- Cost per-operation over a sequence of operations
 - Can take the total work for N operations and divide by N, i.e. average cost per operation.
 - Different than average case
 - We don't average over the possible inputs
 - Still consider worst case input

Example: Incrementing a Binary Counter

A[m]	A[m-1]	 A[3]	A[2]	A[1]	A[0]	cost
0	0	0	0	0	0	
0	0	0	0	0	1	1
0	0	0	0	1	0	2
0	0	0	0	1	1	1
0	0	0	1	0	0	3
0	0	0	1	0	1	1
0	0	0	1	1	0	2
0	0	0	1	1	1	1
0	0	1	0	0	0	4
0	0	1	0	0	1	1
0	0	1	0	1	0	2
0	0	1	0	1	1	1
0	0	1	1	0	0	3

Cost is the number of bits that change to go from one value to the next

Binary Counter Analysis

A[m] A[m-1]	A[3	B] A[2]] A[1]] A[0]	cost
0	0	0	0	0	0	
0	0	0	0	0	1	1
0	0	0	0	1	0	2
0	0	0	0	1	1	1
0	0	0	1	0	0	3
0	0	0	1	0	1	1
0	0	0	1	1	0	2
0	0	0	1	1	1	1
0	0	1	0	0	0	4
=	_	_				_

- Over a sequence of N increments, how many times does:
 - A[0] change?
 - ✓ N times
 - A[1] change
 - ✓ N/2 times
 - A[2] change
 - ✓ N/4 times

Binary Counter Analysis

A[m]	A[m-1]	 A[3]	A[2]	A[1]	A[0]	cost
0	0	0	0	0	0	
0	0	0	0	0	1	1
0	0	0	0	1	0	2
0	0	0	0	1	1	1
0	0	0	1	0	0	3
0	0	0	1	0	1	1
0	0	0	1	1	0	2
0	0	0	1	1	1	1
0	0	1	0	0	0	4

Therefore, the total number of changes is:

$$=\sum_{i=0}^{\log N} \frac{N}{2^i}$$

$$\leq N \cdot \sum_{i=0}^{\infty} \frac{1}{2^{i}}$$
(But $\sum_{i=0}^{\infty} \frac{1}{2^{i}} = 2$)

$$\leq N \cdot \sum_{i=0}^{\infty} \frac{1}{2^i} = 2N$$

So the total work is 2N

Binary Counter Banker's Method

A[m]	A[m-1]	A[3]	A[2]	A[1]	A[0]	amortized cost
0	0	0	0	0	0	
0	0	0	0	0	1*	2
0	0	0	0	1*	0	2
0	0	0	0	1*	1*	2
0	0	0	1*	0	0	2
0	0	0	1*	0	1*	2
0	0	0	1*	1*	0	2
0	0	0	1*	1*	1*	2
0	0	1*	0	0	0	2

Different idea, assume the computer runs on tokens:

- Give each operation 2 tokens. Pay for the conversion of the 0 into a 1 with a token and store the remaining token there.
- All the other costs are turning 1s into 0s. Pay for those with the token stored there.

- Suppose we want to implement arrays without a fixed size limit.
 - insert operation adds a new element to the end of the array.
 - Why, when and how much?
 - When do we "re-size" the array?
 - When it's full
 - How much space do we add?
 - Double
 - Why?

What is the total cost of a sequence of N=2^k insert operations?

N for the inserts + $2 + 4 + 8 + 16 + \dots 2^{k-1} + 2^k$ = $N + N/2 + N/4 + \dots 2 < 2N$ So total cost is at most 3N

Dynamic Arrays Bankers Method

- Suppose we give each insert 3 tokens.
 - 1st token pays for the insert itself.
 - Remaining 2 tokens stored with the item.
 - Use the tokens in the full array to pay for the copy.

The 8 tokens stored at 2,10,4,and 1 "pay" for the copy. The newly inserted 8 has its two tokens.

Dynamic Arrays Deletion

Suppose we want to add the operation deletion: The delete operation gets 3 tokens.

- 1 pays for the delete itself
- 2 tokens go to the empty cell

- But there is no guarantee of tokens in the green
- 25% of the items must have 2 tokens each.
- Pays for a copy to an array of ½ the current size.

Result:

5	3	7	9		

Continuing from this array:

5 3 7 9

Remove 9:

5 3 7 **

Remove 7:

5 3 ** **

Shrink array to half its current size:

5 3

Dynamic Arrays Summary

- Array always has at least 25% of the positions in use
- 3 Tokens for insert
- 3 Tokens for delete
- O(1) Amortized time per operation.
- O(N) worst case time for any single operation.

