第7章 偏微分方程数值解

本章主要内容

- (1) **抛物型方程的有限差分方法** 古典显格式, 古典隐格式, Richardson 格式, Crank-Nicolson 格式
- (2) 差分格式的收敛性和稳定性
- (3) **双曲型方程的有限差分格式** 显格式, 隐格式
- (4) **椭圆型方程的差分格式** 五点差分格式, 收敛性

偏微分方程一般可分为抛物型方程、双曲型方程和椭圆型方程三种类型,如下面是3个典型的定解问题:

(1)一维抛物型方程初边值问题

$$\begin{cases} \frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = f(x, t), & x \in (0, l), \ t \in (0, T), \\ u(x, 0) = \varphi(x), & x \in [0, l], \\ u(0, t) = \alpha(t), \ u(l, t) = \beta(t), & t \in [0, T]. \end{cases}$$

(2) 一维双曲型方程初边值问题

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = f(x, t), & x \in (a, b), \ t \in (0, T), \\ u(x, 0) = \varphi(x), \ u_t(x, 0) = \psi(x), & x \in [a, b], \\ u(a, t) = \alpha(t), \ u(b, t) = \beta(t), & t \in [0, T]. \end{cases}$$

(3) 二维 Poisson 方程边值问题

$$\begin{cases} -\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) = f(x,y), & (x,y) \in \Omega \subset \mathbf{R}^2, \\ u(x,y) = \varphi(x,y), & (x,y) \in \Gamma \end{cases}$$

用差分方法求微分方程近似解时常要用到以下几个公式:

$$g'(x_0) = \frac{1}{h} [g(x_0 + h) - g(x_0)] - \frac{h}{2} g''(\xi_1), \ \xi_1 \in (x_0, x_0 + h), \tag{0.1}$$

$$g'(x_0) = \frac{1}{h}[g(x_0) - g(x_0 - h)] + \frac{h}{2}g''(\xi_2), \ \xi_2 \in (x_0 - h, x_0), \tag{0.2}$$

$$g'(x_0) = \frac{1}{h} \left[g\left(x_0 + \frac{h}{2}\right) - g\left(x_0 - \frac{h}{2}\right) \right] - \frac{h^2}{24} g'''(\xi_3),$$

$$\xi_3 \in \left(x_0 - \frac{h}{2}, x_0 + \frac{h}{2}\right), \tag{0.3}$$

$$g''(x_0) = \frac{1}{h^2} [g(x_0 + h) - 2g(x_0) + g(x_0 - h)] - \frac{h^2}{12} g^{(4)}(\xi_4),$$

$$\xi_4 \in (x_0 - h, x_0 + h),$$
(0.4)

$$g(x_0) = \frac{1}{2} [g(x_0 - h) + g(x_0 + h)] - \frac{h^2}{2} g''(\xi_5),$$

$$\xi_5 \in (x_0 - h, x_0 + h). \tag{0.5}$$

抛物型方程的差分方法

考虑下面的定解问题:

$$\begin{cases} \frac{\partial u}{\partial t} - a \frac{\partial^2 u}{\partial x^2} = f(x, t), & x \in (0, l), \ t \in (0, T), \\ u(x, 0) = \varphi(x), & x \in [0, l], \\ u(0, t) = \alpha(t), & u(l, t) = \beta(t), \ t \in [0, T], \end{cases}$$
(1.1)

$$u(x,0) = \varphi(x), \quad x \in [0,l], \tag{1.2}$$

$$u(0,t) = \alpha(t), \quad u(l,t) = \beta(t), \quad t \in [0,T],$$
 (1.3)

其中 a 是正常数, $f, \varphi, \alpha, \beta$ 是已知函数, 满足 $\varphi(0) = \alpha(0), \varphi(l) = \beta(0)$. 假设定解问题 (1.1)-(1.3) 存在唯一解 u(x,t), 且具有一定的光滑性.

1.1 网格剖分

记 $D = \{(x,t)|0 \le x \le l, 0 \le t \le T\}, h = l/M, \tau = T/N, x_i = ih(0 \le i \le M), t_k = k\tau(0 \le k \le N),$ 用两簇平行直线

$$x = x_i, \quad i = 0, 1, \dots, M,$$

 $t = t_k, \quad k = 0, 1, \dots, N$

将区域 D 分割成矩形网格(见图1.1). h 和 τ 称为空间步长和时间步长. 网格点 (x_i, t_k) 称为节点. 记 $\bar{D}_h = \{(x_i, t_k) | 0 \le i \le M, 0 \le k \le N \}$, $D_h = \{(x_i, t_k) | 1 \le i \le M - 1, 1 \le k \le N \}$, $\Gamma_h = \bar{D}_h \setminus D_h$. 称 D_h 为内部节点, Γ_h 为边界节点. 在位于 $t = t_k$ 上的所有节点称为第 k 层节点.

图 1.1 网格剖分

1.2 古典显格式 (向前 Euler 格式)

考虑在点 (x_i, t_k) 处的方程

$$\frac{\partial u}{\partial t}(x_i, t_k) - a \frac{\partial^2 u}{\partial x^2}(x_i, t_k) = f(x_i, t_k). \tag{1.4}$$

由 (0.1) 和 (0.4) 可得

$$\frac{\partial u}{\partial t}(x_i, t_k) = \frac{1}{\tau} [u(x_i, t_{k+1}) - u(x_i, t_k)] - \frac{\tau}{2} \frac{\partial^2 u}{\partial t^2}(x_i, \eta_i^k),$$
$$\eta_i^k \in (t_k, t_{k+1}),$$

$$\frac{\partial^2 u}{\partial x^2}(x_i, t_k) = \frac{1}{h^2} [u(x_{i+1}, t_k) - 2u(x_i, t_k) + u(x_{i-1}, t_k)] - \frac{h^2}{12} \frac{\partial^4 u}{\partial x^4}(\xi_i^k, t_k), \quad \xi_i^k \in (x_{i-1}, x_{i+1}).$$

将上面两式代入(1.4)得

$$\frac{1}{\tau}[u(x_i, t_{k+1}) - u(x_i, t_k)] - \frac{a}{h^2}[u(x_{i+1}, t_k) - 2u(x_i, t_k) + u(x_{i-1}, t_k)]$$

⋈ ∢ ▶ № 2 □ ×

$$= f(x_i, t_k) + \frac{\tau}{2} \frac{\partial^2 u}{\partial t^2}(x_i, \eta_i^k) - \frac{ah^2}{12} \frac{\partial^4 u}{\partial x^4}(\xi_i^k, t_k).$$

$$1 \le i \le M - 1, \quad 0 \le k \le N - 1.$$
(1.5)

由初始条件 (1.2) 和边界条件 (1.3) 得

$$u(x_i, t_0) = \varphi(x_i)$$
 $1 \le i \le M - 1$,
 $u(x_0, t_k) = \alpha(t_k)$, $u(x_M, t_k) = \beta(t_k)$, $0 \le k \le N$.

记

$$R_{ik}^{(1)} = \frac{\tau}{2} \frac{\partial^2 u}{\partial t^2}(x_i, \eta_k) - \frac{ah^2}{12} \frac{\partial^4 u}{\partial x^4}(\xi_i, t_k).$$

在 (1.5) 中忽略 $R_{ik}^{(1)}$, 并用 u_i^k 代替 $u(x_i, t_k)$ 得下面的差分格式:

$$\begin{cases}
\frac{1}{\tau}(u_i^{k+1} - u_i^k) - \frac{a}{h^2}(u_{i+1}^k - 2u_i^k + u_{i-1}^k) = f(x_i, t_k), \\
1 \le i \le M - 1, \quad 0 \le k \le N - 1, \\
u_i^0 = \varphi(x_i), \quad 1 \le i \le M - 1, \\
u_0^k = \alpha(t_k), \quad u_M^k = \beta(t_k), \quad 0 \le k \le N.
\end{cases} \tag{1.6}$$

差分格式 (1.6)-(1.8) 称为古典显格式 (向前 Euler 格式), $R_{ik}^{(1)}$ 称为 差分格式 (1.6)-(1.8) 的截断误差. 记 $r = \frac{a\tau}{h^2}$, 称 r 是步长比. (1.6) 可写

$$u_i^{k+1} = (1 - 2r)u_i^k + r(u_{i-1}^k + u_{i+1}^k) + \tau f(x_i, t_k).$$

可将差分格式 (1.6)-(1.8) 写成向量和矩阵形式:

$$\begin{bmatrix} u_1^{k+1} \\ u_2^{k+1} \\ \vdots \\ u_{M-2}^{k+1} \\ u_{M-1}^{k+1} \end{bmatrix} = \begin{bmatrix} 1-2r & r \\ r & 1-2r & r \\ & \ddots & \ddots & \ddots \\ & r & 1-2r & r \\ & r & 1-2r \end{bmatrix} \begin{bmatrix} u_1^k \\ u_2^k \\ \vdots \\ u_{M-2}^k \\ u_{M-1}^k \end{bmatrix} + \begin{bmatrix} \tau f(x_1, t_k) + r\alpha(t_k) \\ \tau f(x_2, t_k) \\ \vdots \\ \tau f(x_{M-2}, t_k) \\ \tau f(x_{M-1}, t_k) + r\beta(t_k) \end{bmatrix}, \quad k = 0, 1, \dots, N-1.$$

1.3 古典隐格式 (向后 Euler 格式)

还是考虑 (x_i, t_k) 点的方程

$$\frac{\partial u}{\partial t}(x_i, t_k) - a \frac{\partial^2 u}{\partial x^2}(x_i, t_k) = f(x_i, t_k). \tag{1.9}$$

 $\frac{\partial u}{\partial t}(x_i, t_k)$ 用向后差商 (0.2) 近似, $\frac{\partial^2 u}{\partial r^2}(x_i, t_k)$ 还是用二阶差商近似得

$$\frac{\partial u}{\partial t}(x_i, t_k) = \frac{1}{\tau} [u(x_i, t_k) - u(x_i, t_{k-1})] + \frac{\tau}{2} \frac{\partial^2 u}{\partial t^2}(x_i, \eta_i^k),$$
$$\eta_i^k \in (t_{k-1}, t_k),$$

$$\frac{\partial^2 u}{\partial x^2}(x_i, t_k) = \frac{1}{h^2} [u(x_{i+1}, t_k) - 2u(x_i, t_k) + u(x_{i-1}, t_k)] - \frac{h^2}{12} \frac{\partial^4 u}{\partial x^4}(\xi_i^k, t_k), \quad \xi_i^k \in (x_{i-1}, x_{i+1}).$$

代入 (1.9) 得

$$\frac{1}{\tau}[u(x_i, t_k) - u(x_i, t_{k-1})]$$

$$-\frac{a}{h^{2}}[u(x_{i+1}, t_{k}) - 2u(x_{i}, t_{k}) + u(x_{i-1}, t_{k})]$$

$$= f(x_{i}, t_{k}) - \frac{\tau}{2} \frac{\partial^{2} u}{\partial t^{2}}(x_{i}, \eta_{i}^{k}) - \frac{ah^{2}}{12} \frac{\partial^{4} u}{\partial x^{4}}(\xi_{i}^{k}, t_{k}).$$

$$1 \leq i \leq M - 1, \quad 1 \leq k \leq N.$$
(1.10)

由初始条件 (1.2) 和边界条件 (1.3) 得

$$u(x_i, 0) = \varphi(x_i)$$
 $1 \le i \le M - 1$,
 $u(x_0, t_k) = \alpha(t_k)$, $u(x_M, t_k) = \beta(t_k)$, $0 \le k \le N$.

记

$$R_{ik}^{(2)} = -\frac{\tau}{2} \frac{\partial^2 u}{\partial t^2} (x_i, \eta_k) - \frac{ah^2}{12} \frac{\partial^4 u}{\partial x^4} (\xi_i, t_k).$$

在 (1.10) 中忽略 $R_{ik}^{(2)}$, 并用 u_i^k 代替 $u(x_i, t_k)$ 得下面的差分格式:

$$\begin{cases}
\frac{1}{\tau}(u_i^k - u_i^{k-1}) - \frac{a}{h^2}(u_{i+1}^k - 2u_i^k + u_{i-1}^k) = f(x_i, t_k), \\
1 \le i \le M - 1, \quad 1 \le k \le N, \\
u_i^0 = \varphi(x_i), \quad 1 \le i \le M - 1, \\
u_0^k = \alpha(t_k), \quad u_M^k = \beta(t_k), \quad 0 \le k \le N.
\end{cases}$$
(1.11)

差分格式 (1.11)-(1.13) 称为古典隐格式 (向后 Euler 格式). 将其写成矩阵向量形式:

$$\begin{bmatrix} 1+2r & -r & & & \\ -r & 1+2r & -r & & & \\ & \ddots & \ddots & \ddots & \\ & & -r & 1+2r & -r \\ & & & -r & 1+2r \end{bmatrix} \begin{bmatrix} u_1^k \\ u_2^k \\ \vdots \\ u_{M-2}^k \\ u_{M-1}^k \end{bmatrix}$$

$$= \begin{bmatrix} u_1^{k-1} \\ u_2^{k-1} \\ \vdots \\ u_{M-2}^{k-1} \\ \vdots \\ u_{M-1}^{k-1} \end{bmatrix} + \begin{bmatrix} \tau f(x_1, t_k) + r\alpha(t_k) \\ \tau f(x_2, t_k) \\ \vdots \\ \tau f(x_{M-2}, t_k) \\ \tau f(x_{M-1}, t_k) + r\beta(t_k) \end{bmatrix}, \quad k = 1, 2, \dots, N.$$

1.4 Richardson 格式

考虑节点 (x_i, t_k) 处方程

$$\frac{\partial u}{\partial t}(x_i, t_k) - a \frac{\partial^2 u}{\partial x^2}(x_i, t_k) = f(x_i, t_k),$$

将 $\frac{\partial u}{\partial t}(x_i, t_k)$ 用中心差商近似:

$$\frac{\partial u}{\partial t}(x_i, t_k) = \frac{1}{2\tau} [u(x_i, t_{k+1}) - u(x_i, t_{k-1})] - \frac{\tau^2}{6} \frac{\partial^3 u}{\partial t^3}(x_i, \eta_i^k),$$

将 $\frac{\partial^2 u}{\partial x^2}(x_i, t_k)$ 还是用 2 阶差商近似:

$$\frac{\partial^2 u}{\partial x^2}(x_i, t_k) = \frac{1}{h^2} [u(x_{i+1}, t_k) - 2u(x_i, t_k) + u(x_{i-1}, t_k)] - \frac{h^2}{12} \frac{\partial^4 u}{\partial x^4}(\xi_i^k, t_k), \quad \xi_i^k \in (x_{i-1}, x_{i+1}).$$

然后代入方程得

$$\frac{1}{2\tau}[u(x_i, t_{k+1}) - u(x_i, t_{k-1})]$$

$$-\frac{a}{h^{2}}[u(x_{i+1}, t_{k}) - 2u(x_{i}, t_{k}) + u(x_{i-1}, t_{k})]$$

$$= f(x_{i}, t_{k}) + \frac{\tau^{2}}{6} \frac{\partial^{3} u}{\partial t^{3}}(x_{i}, \eta_{i}^{k}) - \frac{ah^{2}}{12} \frac{\partial^{4} u}{\partial x^{4}}(\xi_{i}^{k}, t_{k}),$$

$$1 \leq i \leq M - 1, \quad 0 \leq k \leq N - 1.$$

记

$$R_{ik}^{(4)} = \frac{\tau^2}{6} \frac{\partial^3 u}{\partial t^3} (x_i, \eta_i^k) - \frac{ah^2}{12} \frac{\partial^4 u}{\partial x^4} (\xi_i^k, t_k),$$

忽略 $R_{ik}^{(4)}$, 并注意到初边值条件得下面的 Richardson 格式

$$\begin{cases} \frac{1}{2\tau}(u_i^{k+1}-u_i^{k-1}) - \frac{a}{h^2}(u_{i+1}^k-2u_i^k+u_{i-1}^k) = f(x_i,t_k), \\ 1 \leq i \leq M-1, \quad 1 \leq k \leq N-1, \\ u_i^0 = \varphi(x_i), \quad 1 \leq i \leq M-1, \\ u_0^k = \alpha(t_k), \quad u_M^k = \beta(t_k), \quad 0 \leq k \leq N. \end{cases}$$

Richardson 格式是一个 3 层格式, 需知道 (k-1) 层和 k 层的值才能求出第 (k+1) 层的值.

由方程和初边值条件得

$$u(x_{i}, \tau) = u(x_{i}, 0) + \tau \frac{\partial u}{\partial t}(x_{i}, 0) + \frac{\tau^{2}}{2} \frac{\partial^{2} u}{\partial t^{2}}(x_{i}, \bar{\eta}_{i})$$

$$= \varphi(x_{i}) + \tau \left[a\varphi''(x_{i}) + f(x_{i}, 0)\right] + \frac{\tau^{2}}{2} \frac{\partial^{2} u}{\partial t^{2}}(x_{i}, \bar{\eta}_{i}).$$

因此可取第1层的值

$$u_i^1 = \varphi(x_i) + \tau \left[a\varphi''(x_i) + f(x_i, 0) \right], \quad 1 \le i \le M - 1.$$

完整的 Richardson 格式

$$\begin{cases}
\frac{1}{2\tau}(u_i^{k+1} - u_i^{k-1}) - \frac{a}{h^2}(u_{i+1}^k - 2u_i^k + u_{i-1}^k) = f(x_i, t_k), \\
1 \le i \le M - 1, \quad 1 \le k \le N - 1, \\
u_i^0 = \varphi(x_i), \quad 1 \le i \le M - 1, \\
u_i^1 = \varphi(x_i) + \tau \left[a\varphi''(x_i) + f(x_i, 0)\right], \quad 1 \le i \le M - 1, \quad (1.16) \\
u_0^k = \alpha(t_k), \quad u_M^k = \beta(t_k), \quad 0 \le k \le N.
\end{cases}$$
(1.17)

后面可以知道, Richardson 格式是完全不稳定的格式, 无实用价值.

1.5 Crank-Nicolson 格式

为了要提高时间方向的精度, 记 $t_{k+\frac{1}{2}}=t_k+\frac{\tau}{2}$, 考虑点 $(x_i,t_{k+\frac{1}{2}})$ 处的微分方程

$$\frac{\partial u}{\partial t}(x_i, t_{k+\frac{1}{2}}) - a \frac{\partial^2 u}{\partial x^2}(x_i, t_{k+\frac{1}{2}}) = f(x_i, t_{k+\frac{1}{2}}). \tag{1.18}$$

利用中心差商(0.3)

$$\frac{\partial u}{\partial t}(x_i, t_{k+\frac{1}{2}}) = \frac{1}{\tau} [u(x_i, t_{k+1}) - u(x_i, t_k)] - \frac{\tau^2}{24} \frac{\partial^3 u}{\partial t^3}(x_i, \eta_i^k),$$

$$\eta_i^k \in (t_k, t_{k+1}),$$

由平均公式 (0.5) 和二阶差商公式得

$$\begin{split} &\frac{\partial u}{\partial t}(x_i, t_{k+\frac{1}{2}}) - \frac{a}{2} \left[\frac{\partial^2 u}{\partial x^2}(x_i, t_k) + \frac{\partial^2 u}{\partial x^2}(x_i, t_{k+1}) \right] \\ &= f(x_i, t_{k+\frac{1}{2}}) - \frac{a\tau^2}{8} \frac{\partial^4 u}{\partial x^2 \partial t^2}(x_i, \bar{\eta}_i^k), \quad \bar{\eta}_i^k \in (t_k, t_{k+1}), \end{split}$$

$$\frac{\partial^2 u}{\partial x^2}(x_i, t_k) = \frac{1}{h^2} [u(x_{i+1}, t_k) - 2u(x_i, t_k) + u(x_{i-1}, x_k)]$$

$$-\frac{h^2}{12}\frac{\partial^4 u}{\partial x^4}(\xi_i^k, t_k), \quad \xi_i^k \in (x_{i-1}, x_{i+1}),$$

$$\frac{\partial^2 u}{\partial x^2}(x_i, t_{k+1}) = \frac{1}{h^2}[u(x_{i+1}, t_{k+1}) - 2u(x_i, t_{k+1}) + u(x_{i-1}, x_{k+1})]$$

$$-\frac{h^2}{12}\frac{\partial^4 u}{\partial x^4}(\tilde{\xi}_i^k, t_{k+1}), \quad \tilde{\xi}_i^k \in (x_{i-1}, x_{i+1}),$$

将上面几个式子代入(1.18)得

$$\frac{1}{\tau}[u(x_{i}, t_{k+1}) - u(x_{i}, t_{k})]
-\frac{a}{2h^{2}}[u(x_{i+1}, t_{k}) - 2u(x_{i}, t_{k}) + u(x_{i-1}, t_{k})
+u(x_{i+1}, t_{k+1}) - 2u(x_{i}, t_{k+1}) + u(x_{i-1}, t_{k+1})]
= f(x_{i}, t_{k+\frac{1}{2}}) + \frac{\tau^{2}}{24} \frac{\partial^{3} u}{\partial t^{3}}(x_{i}, \eta_{i}^{k}) - \frac{ah^{2}}{24} \left[\frac{\partial^{4} u}{\partial x^{4}}(\xi_{i}^{k}, t_{k}) + \frac{\partial^{4} u}{\partial x^{4}}(\tilde{\xi}_{i}^{k}, t_{k+1}) \right]
-\frac{a\tau^{2}}{8} \frac{\partial^{4} u}{\partial x^{2} \partial t^{2}}(x_{i}, \bar{\eta}_{i}^{k}), \quad 1 \leq i \leq M - 1, \ 0 \leq k \leq N - 1.$$

记

$$R_{ik}^{(3)} = \frac{\tau^2}{24} \left[\frac{\partial^3 u}{\partial t^3} (x_i, \eta_i^k) - 3a \frac{\partial^4 u}{\partial x^2 \partial t^2} (x_i, \bar{\eta}_i^k) \right] - \frac{ah^2}{24} \left[\frac{\partial^4 u}{\partial x^4} (\xi_i^k, t_k) + \frac{\partial^4 u}{\partial x^4} (\tilde{\xi}_i^k, t_{k+1}) \right],$$

略去 $R_{ik}^{(3)}$, 用 u_i^k 代替 $u(x_i, t_k)$ 并注意到初边值条件得下面的差分格式

$$\begin{cases}
\frac{u_i^{k+1} - u_i^k}{\tau} - a \cdot \frac{1}{2} \left[\frac{u_{i+1}^k - 2u_i^k + u_{i-1}^k}{h^2} + \frac{u_{i+1}^{k+1} - 2u_i^{k+1} + u_{i-1}^{k+1}}{h^2} \right] \\
= f(x_i, t_{k+\frac{1}{2}}), \quad 1 \le i \le M - 1, \quad 0 \le k \le N - 1, \quad (1.19) \\
u_i^0 = \varphi(x_i), \quad 1 \le i \le M - 1, \quad (1.20) \\
u_0^k = \alpha(t_k), \quad u_M^k = \beta(t_k), \quad 0 \le k \le N.
\end{cases}$$
(1.21)

上面的差分格式称为 Crank-Nicolson 格式. 用矩阵和向量表示为

$$\begin{bmatrix} 1+r & -\frac{r}{2} \\ -\frac{r}{2} & 1+r & -\frac{r}{2} \\ & \ddots & \ddots & \ddots \\ & -\frac{r}{2} & 1+r & -\frac{r}{2} \\ & & -\frac{r}{2} & 1+r \end{bmatrix} \begin{bmatrix} u_1^{k+1} \\ u_2^{k+1} \\ \vdots \\ u_{M-2}^{k+1} \\ \end{bmatrix}$$

$$= \begin{bmatrix} 1-r & \frac{r}{2} \\ \frac{r}{2} & 1-r & \frac{r}{2} \\ & \ddots & \ddots & \ddots \\ & \frac{r}{2} & 1-r & \frac{r}{2} \\ & \frac{r}{2} & 1-r \end{bmatrix} \begin{bmatrix} u_1^k \\ u_2^k \\ \vdots \\ u_{M-2}^k \\ u_{M-1}^k \end{bmatrix}$$

$$+ \begin{bmatrix} \tau f(x_1, t_{k+\frac{1}{2}}) + \frac{r}{2}(\alpha(t_k) + a(t_{k+1})) \\ & \tau f(x_2, t_{k+\frac{1}{2}}) \\ & \vdots \\ & \tau f(x_{M-2}, t_{k+\frac{1}{2}}) \\ & \tau f(x_{M-1}, t_{k+\frac{1}{2}}) + \frac{r}{2}(\beta(t_k) + \beta(t_{k+1})) \end{bmatrix}$$

1.6 算例

例 1.1 用古典显格式、古典隐格式、Richardson 格式和 Crank-Nicolson 格式计算下面问题的数值解:

$$\begin{split} \frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} &= 0, \quad x \in (0, 1), \quad t \in (0, 1], \\ u(x, 0) &= e^x, \quad x \in (0, 1), \\ u(0, t) &= e^t, \quad u(1, t) = e^{t+1}, \quad t \in [0, 1]. \end{split}$$

该问题的精确解为 e^{x+t} .

表 1.1 给出了当 h = 1/10, $\tau = 1/200$ 时用古典显格式计算得到的部分数值结果, 数值解很好地逼近精确解.

表 1.1 古典显格式 $h = 1/10, \tau = 1/200$

k	(x,t)	数值解	精确解	误差
0	(0.5, 0.00)	1.648721	1.648721	0.000000
10	(0.5, 0.05)	1.733119	1.733253	0.000134
20	(0.5, 0.10)	1.821888	1.822119	0.000230
40	(0.5, 0.20)	2.013408	2.013753	0.000344
80	(0.5, 0.40)	2.459134	2.459603	0.000469
160	(0.5, 0.80)	3.668588	3.669297	0.000708
200	(0.5, 1.00)	4.480824	4.481689	0.000865

表 1.2 给出了当 h = 1/10, $\tau = 1/100$ 时用古典显格式计算得到的部分数值结果, 随着计算层数的增加, 误差越来越大, 数值结果没有实用意义.

表 1.2 古典显格式 $h = 1/10, \tau = 1/100$

k	(x,t)	数值解	精确解	误差
0	(0.5, 0.00)	1.648721	1.648721	0.000000
4	(0.5, 0.04)	1.715721	1.716007	0.000286
8	(0.5, 0.08)	1.787434	1.786038	0.001396
12	(0.5, 0.12)	2.054643	1.858928	0.195715
16	(0.5, 0.16)	17.26231	1.934729	15.32752
17	(0.5, 0.17)	43.00026	1.954237	44.95449
18	(0.5, 0.18)	133.4547	1.973878	131.4808

表 1.3 给出了当 h = 1/10, $\tau = 1/100$ 时用古典隐格式计算得到的部分数值结果, 数值解很好地逼近精确解.

表 1.3 古典隐格式 $h = 1/10, \tau = 1/100$

k	(x,t)	数值解	精确解	误差
0	(0.5, 0.00)	1.648721	1.648721	0.000000
10	(0.5, 0.10)	1.822891	1.822119	0.000772
20	(0.5, 0.20)	2.014927	2.013753	0.001174
30	(0.5, 0.30)	2.226965	2.225541	0.001424
40	(0.5, 0.40)	2.461227	2.459603	0.001624
50	(0.5, 0.50)	2,720096	2.718282	0.001814
60	(0.5, 0.60)	3.006178	3.004166	0.002012
70	(0.5, 0.70)	3.322344	3.320117	0.002227
80	(0.5, 0.80)	3.860015	3.857426	0.002589
90	(0.5, 0.90)	4.057922	4.055200	0.002722
100	(0.5, 1.0)	4.484697	4.481689	0.003008

表 1.4 给出了当 h = 1/10, $\tau = 1/100$ 时用 Richardson 格式计算得到的部分数值结果, 随着计算层数的增加, 误差越来越大, 数值结果没有实用意义.

表 1.4 Richardson 格式 h=1/10, au=1/100

k	(x,t)	数值解	精确解	误差
0	(0.5, 0.0)	1.648721	1.648721	0.000000
1	(0.5, 0.01)	0.116501	1.665291	1.548790
2	(0.5, 0.02)	8.837941	1.682028	7.155913
3	(0.5, 0.03)	-22.13696	1.698932	23.83589
4	(0.5, 0.04)	90.79588	1.716007	89.07987
5	(0.5, 0.05)	-329.1597	1.733253	330.8929
6	(0.5, 0.06)	1267.675	1.750672	1265.924
7	(0.5, 0.07)	-4908.295	1.768267	4910.063
8	(0.5, 0.08)	19285.74	1.786083	19283.96

表 1.5 给出了当 h = 1/10, $\tau = 1/10$ 时用 Crank-Nicolson 格式计算得到的部分数值结果, 数值解很好地逼近精确解.

表 1.5 Crank-Nicolson 格式 h=1/10, au=1/10

k	(x,t)	数值解	精确解	误差
0	(0.5, 0.0)	1.648721	1.648721	0.000000
1	(0.5, 0.1)	1.822394	1.822119	0.000231
2	(0.5, 0.2)	2.014105	2.013753	0.000352
3	(0.5, 0.3)	2.225953	2.225541	0.000412
4	(0.5, 0.4)	2.460072	2.459603	0.000469
5	(0.5, 0.5)	2.718802	2.718282	0.000520
6	(0.5, 0.6)	3.004743	3.004166	0.000577
7	(0.5, 0.7)	3.320755	3.320117	0.000638
8	(0.5, 0.8)	3.670002	3.669297	0.000705
9	(0.5, 0.9)	4.055979	4.055200	0.000779
10	(0.5, 1.0)	4.482550	4.481689	0.000861

2 差分格式的稳定性和收敛性

对抛物方程定解问题

$$\begin{cases} \frac{\partial u}{\partial t} - a \frac{\partial^2 u}{\partial x^2} = f(x, t), & x \in (0, l), \ t \in (0, T), \\ u(x, 0) = \varphi(x), & x \in [0, l], \\ u(0, t) = \alpha(t), & u(l, t) = \beta(t), \quad t \in [0, T] \end{cases}$$

建立了四个差分格式.

古典显格式 (向前 Euler 格式)

$$\begin{cases} \frac{1}{\tau}(u_i^{k+1} - u_i^k) - \frac{a}{h^2}(u_{i+1}^k - 2u_i^k + u_{i-1}^k) = f(x_i, t_k), \\ 1 \le i \le M - 1, \quad 0 \le k \le N - 1, \\ u_i^0 = \varphi(x_i), \quad 1 \le i \le M - 1, \\ u_0^k = \alpha(t_k), \quad u_M^k = \beta(t_k), \quad 0 \le k \le N. \end{cases}$$

古典隐格式(向后 Euler 格式)

$$\begin{cases} \frac{1}{\tau}(u_i^k - u_i^{k-1}) - \frac{a}{h^2}(u_{i+1}^k - 2u_i^k + u_{i-1}^k) = f(x_i, t_k), \\ 1 \le i \le M - 1, \quad 1 \le k \le N, \\ u_i^0 = \varphi(x_i), \quad 1 \le i \le M - 1, \\ u_0^k = \alpha(t_k), \quad u_M^k = \beta(t_k), \quad 0 \le k \le N. \end{cases}$$

Richardson 格式

$$\begin{cases} \frac{1}{2\tau}(u_i^{k+1} - u_i^{k-1}) - \frac{a}{h^2}(u_{i+1}^k - 2u_i^k + u_{i-1}^k) = f(x_i, t_k), \\ 1 \le i \le M - 1, \quad 1 \le k \le N - 1, \\ u_i^0 = \varphi(x_i), \quad 1 \le i \le M - 1, \\ u_i^1 = \varphi(x_i) + \tau \left[a\varphi''(x_i) + f(x_i, 0)\right], \quad 1 \le i \le M - 1, \\ u_0^k = \alpha(t_k), \quad u_M^k = \beta(t_k), \quad 0 \le k \le N. \end{cases}$$

$$\begin{cases} \frac{u_i^{k+1} - u_i^k}{\tau} - a \cdot \frac{1}{2} \left[\frac{u_{i+1}^k - 2u_i^k + u_{i-1}^k}{h^2} + \frac{u_{i+1}^{k+1} - 2u_i^{k+1} + u_{i-1}^{k+1}}{h^2} \right] \\ = f(x_i, t_{k+\frac{1}{2}}), \quad 1 \le i \le M - 1, \quad 0 \le k \le N - 1, \\ u_i^0 = \varphi(x_i), \quad 1 \le i \le M - 1, \\ u_0^k = \alpha(t_k), \quad u_M^k = \beta(t_k), \quad 0 \le k \le N. \end{cases}$$

称古典显(隐)格式和 Crank-Nicolson 格式为两层格式, 称 Richardson 格式为三层格式.

对于差分格式,我们需要讨论稳定性和收敛性.

稳定性是考虑的计算过程中的误差传播问题;收敛性考虑的是当步长趋于零时差分方程的解是否趋于微分方程问题的解。

我们需要引进范数作为工具.

记 $\Omega_h = (x_0, x_1, \dots, x_M)$. 称 $w = (w_0, w_1, \dots, w_M)$ 为 Ω_h 上的网格函数。记 $\mathbb{W} = \{w \mid w \to \Omega_h \bot$ 的网格函数 \}. 称 \mathbb{W} 为网格函数空间。

对于网格函数引进范数。设 $w \in \mathbb{W}$. 定义下面的范数:

$$L_{2}- 范数 ||w||_{2} = \sqrt{h \left[\frac{1}{2}(w_{0})^{2} + \sum_{i=1}^{M-1}(w_{i})^{2} + \frac{1}{2}(w_{M})^{2}\right]}.$$

$$L_{\infty}- 范数 ||w||_{\infty} = \max_{0 \le i \le M} |w_{i}|.$$

$$L_{1}- 范数 ||w||_{1} = h \left[\frac{1}{2}|w_{0}| + \sum_{i=1}^{M-1}|w_{i}| + \frac{1}{2}|w_{M}|\right].$$

设
$$\{u_i^k \mid 0 \le i \le M, 0 \le k \le N\}$$
 是差分格式的解. 定义 $u^k = (u_0^k, u_1^k, \dots, u_M^k),$

则 u^k 为 Ω_h 上的网格函数。

定义 2.1 设 $\{u_i^k|0 \le i \le M, 0 \le k \le N\}$ 是差分格式的解, $\{v_i^k|0 \le i \le M, 0 \le k \le N\}$ 是由于初始数据有误差而得到的差分格式的近似解, 记

$$\varepsilon_i^k = u_i^k - v_i^k, \quad 0 \le i \le M, 0 \le k \le N.$$

如果存在与步长 h, τ 无关的常数 C, 使得

$$\|\varepsilon^k\| \le C \|\varepsilon^0\|, \quad 1 \le k \le N, \quad (\mathsf{m} \ \mathsf{g} \ \mathsf{k} \ \mathsf{d})$$

或者

$$\|\varepsilon^k\| \le C(\|\varepsilon^0\| + \|\varepsilon^1\|), \quad 1 \le k \le N, \quad (= \text{\textit{EAA}})$$

则称该差分格式关于范数 ||.|| 是稳定的, 否则称不稳定.

我们有下面的结论:

定理 2.1 当步长比 $r \leq \frac{1}{2}$ 时, 古典显格式关于 L_{∞} 范数是稳定的; 当 $r > \frac{1}{2}$ 关于 L_{∞} 范数不稳定.

- 定理 2.2 对任意步长比 r, 古典隐格式关于 L_{∞} 范数是稳定的.
- 定理 2.3 对任意步长比 r, Crank-Nicolson 格式关于 L_2 范数稳定.
- 定理 2.4 对任意步长比 r, Richardson 格式关于 L_{∞} 范数和 L_2 范数都是不稳定的.

定义 2.2 设 $U_i^k = u(x_i, t_k)$ 是微分方程定解问题的解, u_i^k 是对应的 差分格式的解. 记

$$e_i^k = U_i^k - u_i^k, \quad 0 \le i \le M, \ 0 \le k \le N.$$

如果

$$\lim_{h \to 0 \atop \tau \to 0} \max_{0 \le k \le N} ||e^k|| = 0,$$

则称差分格式在范数 ||.|| 下是收敛的. 如果

$$\max_{0 \le k \le N} ||e^k|| = O(h^p + \tau^q),$$

则称差分格式关于空间步长 p 阶、关于时间步长 q 阶收敛.

定理 2.5 当步长比 $r \leq \frac{1}{2}$ 时, 古典显格式在 L_{∞} 范数下关于空间步长 2 阶、关于时间步长 1 阶收敛的.

定理 2.6 对任意步长比 r, 古典隐格式在 L_{∞} 范数下关于空间步长 2 阶、关于时间步长 1 阶收敛的.

定理 2.7 对任意步长比 r, Crank-Nicolson 格式在 L_2 范数下关于空间步长和时间步长都是 2 阶收敛的.

3 双曲型方程的差分方法

考虑下面的初边值问题:

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = f(x, t), & 0 < x < l, & 0 < t < T, \\ u(x, 0) = \varphi(x), & u_t(x, 0) = \psi(x), & 0 < x < l \\ u(0, t) = \alpha(t), & u(l, t) = \beta(t), & 0 \le t \le T. \end{cases}$$

和上节一样, 记 h = l/M, $\tau = T/N$, $x_i = ih$, $t_k = k\tau$.

3.1 显格式

考虑 (x_i, t_k) 处的方程

$$\frac{\partial^2 u}{\partial t^2}(x_i, t_k) - a^2 \frac{\partial^2 u}{\partial x^2}(x_i, t_k) = f(x_i, t_k)$$
(3.1)

$$\frac{\partial^2 u}{\partial t^2}(x_i, t_k) = \frac{1}{\tau^2} [u(x_i, t_{k+1}) - 2u(x_i, t_k) + u(x_i, t_{k-1})] - \frac{\tau^2}{12} \frac{\partial^4 u}{\partial t^4}(x_i, \eta_i^k), \quad \eta_i^k \in (t_{k-1}, t_{k+1}),$$

图 3.1 网格剖分

$$\frac{\partial^2 u}{\partial x^2}(x_i, t_k) = \frac{1}{h^2} [u(x_{i+1}, t_k) - 2u(x_i, t_k) + u(x_{i-1}, t_k)] - \frac{h^2}{12} \frac{\partial^4 u}{\partial x^4}(\xi_i^k, t_k), \quad \xi_i^k \in (x_{i-1}, x_{i+1}),$$

上面 2 式代入 (3.1) 得

$$\frac{1}{\tau^2} [u(x_i, t_{k+1}) - 2u(x_i, t_k) + u(x_i, t_{k-1})]
- \frac{a^2}{h^2} [u(x_{i+1}, t_k) - 2u(x_i, t_k) + u(x_{i-1}, t_k)]
= f(x_i, t_k) + R_{ik}, \quad 1 \le i \le M - 1, \quad 1 \le k \le N - 1,$$

其中

$$R_{ik} = \frac{\tau^2}{12} \frac{\partial^4 u}{\partial t^4} (x_i, \eta_i^k) - \frac{a^2 h^2}{12} \frac{\partial^4 u}{\partial x^4} (\xi_i^k, t_k).$$

另外,由初始条件,有

$$u(x_i, 0) = \varphi(x_i), \quad 1 \le i \le M - 1,$$

$$u(x_i, t_1) = u(x_i, 0) + \tau \frac{\partial u}{\partial t}(x_i, 0) + \frac{\tau^2}{2} \frac{\partial^2 u}{\partial t^2}(x_i, 0) + \frac{\tau^3}{6} \frac{\partial^3 u}{\partial t^3}(x_i, \eta_i)$$

$$= \varphi(x_i) + \tau \psi(x_i) + \frac{\tau^2}{2} [a^2 \varphi''(x_i) + f(x_i, 0)]$$

$$+ \frac{\tau^3}{6} \frac{\partial^3 u}{\partial t^3} (x_i, \eta_i)$$

$$\equiv \Psi(x_i) + \frac{\tau^3}{6} \frac{\partial^3 u}{\partial t^3} (x_i, \eta), \quad 1 \le i \le M - 1.$$

由边界条件,有

$$u(0, t_k) = \alpha(t_k), \quad u(x_M, t_k) = \beta(t_k), \quad 0 \le k \le N.$$

忽略 R_{ik} 得下面的差分格式

$$\begin{cases}
\frac{1}{\tau^{2}}(u_{i}^{k+1} - 2u_{i}^{k} + u_{i}^{k-1}) - \frac{a^{2}}{h^{2}}(u_{i+1}^{k} - 2u_{i}^{k} + u_{i-1}^{k}) = f(x_{i}, t_{k}), \\
1 \le i \le M - 1, \quad 1 \le k \le N - 1, \\
u_{i}^{0} = \varphi(x_{i}), \quad u_{i}^{1} = \Psi(x_{i}), \quad 1 \le i \le M - 1, \\
u_{0}^{k} = \alpha(t_{k}), \quad u_{M}^{k} = \beta(t_{k}), \quad 0 \le k \le N.
\end{cases}$$
(3.2)

记 $s = a\tau/h$, s 称为步长比, 则上面的差分格式可以写成

$$u_i^{k+1} = s^2(u_{i+1}^k + u_{i-1}^k) + 2(1 - s^2)u_i^k - u_i^{k-1} + \tau^2 f(x_i, t_k),$$

$$1 \le i \le M - 1, \ 1 \le k \le N - 1.$$

例 3.1 考虑双曲方程初边值问题

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0, & 0 < x < 1, 0 < t \le 1, \\ u(x,0) = \mathbf{e}^x, & u_t(x,0) = \mathbf{e}^x, & 0 < x < 1, \\ u(0,t) = \mathbf{e}^t, & u(1,t) = \mathbf{e}^{1+t}, & 0 < t \le 1, \end{cases}$$

该问题的精确解为 $u(x,t) = e^{x+t}$. 应用差分格式(3.2)-(3.4) 进行计算.

表 3.1 给出了h = 1/100, $\tau = 1/100$ 时部分数值结果,数值解较好逼近精确解; 表 3.2 给出了h = 1/100, $\tau = 1/80$ 时部分数值结果,随着层数道的增加,误差也增加.

表 3.1 双曲方程显格式 $h = 1/100, \tau = 1/100$

k	(x,t)	数值解	精确解	误差
0	(0.5, 0.0)	1.648721	1.648721	0.000000
10	(0.5, 0.1)	1.8222116	1.822119	0.000003
20	(0.5, 0.2)	2.013747	2.013753	0.000006
30	(0.5, 0.3)	2.225953	2.225541	0.000412
40	(0.5, 0.4)	2.459592	2.459603	0.000011
50	(0.5, 0.5)	2.718268	2.718282	0.000014
60	(0.5, 0.6)	3.004154	3.004166	0.000012
70	(0.5, 0.7)	3.320108	3.320117	0.000009
80	(0.5, 0.8)	3.669291	3.669297	0.000006
90	(0.5, 0.9)	4.055199	4.055200	0.000001
100	(0.5, 1.0)	4.481688	4.481689	0.000001

表 3.2 双曲方程显格式 $h = 1/100, \tau = 1/80$

k	(x,t)	数值解	精确解	误差
0	(0.5, 0.0)	1.648721	1.648721	0.000000
1	(0.5, 0.0125)	1.669459	1.699460	0.000001
2	(0.5, 0.0250)	1.690458	1.690459	0.000001
3	(0.5, 0.0375)	1.711720	1.711722	0.000002
4	(0.5, 0.050)	1.733254	1.733253	0.000001
5	(0.5, 0.0625)	1.755042	1.755055	0.000013
6	(0.5, 0.0750)	1.777168	1.777130	0.000038
7	(0.5, 0.0875)	1.799323	1.799484	0.000161
8	(0.5, 0.100)	1.822730	1.822119	0.000611
9	(0.5, 0.1125)	1.842627	1.845038	0.002411
10	(0.5, 0.1250)	1.877649	1.868246	0.009403
11	(0.5, 0.1375)	1.854973	1.891746	0.036773
12	(0.5, 0.1500)	2.059241	1.915541	0.143700
13	(0.5, 0.1625)	1.377665	1.939635	0.561970
14	(0.5, 0.1750)	4.163094	1.964033	2.199061
15	(0.5, 0.1875)	-6.623787	1.988737	8.612524
16	(0.5, 0.200)	35.774890	2.013753	33.761137

关于显式差分格式 (3.2)-(3.4), 有如下结论:

- 定理 3.1 (1) 当步长比 $s \le 1$ 时, 显式差分格式 (3.2)-(3.4) 在 L_2 范数下是稳定的; 当步长比 s > 1 时, 显式差分格式 (3.2)-(3.4) 在 L_2 范数下是不稳定的:
- (2) 当步长比 $s \le 1$ 时, 显式差分格式 (3.2)-(3.4) 在 L_2 范数下关于空间步长和时间步长都是二阶收敛的。

3.2 隐格式

还是考虑 (x_i, t_k) 点的方程

$$\frac{\partial^2 u}{\partial t^2}(x_i, t_k) - a^2 \frac{\partial^2 u}{\partial x^2}(x_i, t_k) = f(x_i, t_k).$$

利用平均公式得

$$\frac{\partial^2 u}{\partial t^2}(x_i, t_k) - \frac{a^2}{2} \left[\frac{\partial^2 u}{\partial x^2}(x_i, t_{k+1}) + \frac{\partial^2 u}{\partial x^2}(x_i, t_{k-1}) \right]$$
(3.5)

$$= f(x_i, t_k) - \frac{a^2 \tau^2}{2} \frac{\partial^4 u}{\partial x^2 \partial t^2} (x_i, \bar{\eta}_i^k), \tag{3.6}$$

将

$$\frac{\partial^2 u}{\partial t^2}(x_i, t_k) = \frac{1}{\tau^2} [u(x_i, t_{k+1}) - 2u(x_i, t_k) + u(x_i, t_{k-1})] - \frac{\tau^2}{12} \frac{\partial^4 u}{\partial t^4}(x_i, \eta_i^k), \quad \eta_i^k \in (t_{k-1}, t_{k+1}),$$

$$\frac{\partial^2 u}{\partial x^2}(x_i, t_k) = \frac{1}{h^2} [u(x_{i+1}, t_k) - 2u(x_i, t_k) + u(x_{i-1}, t_k)]$$

$$-\frac{h^2}{12}\frac{\partial^4 u}{\partial x^4}(\xi_i^k, t_k), \quad \xi_i \in (x_{i-1}, x_{i+1}),$$

代入 (3.6) 得

$$\frac{1}{\tau^2} [u(x_i, t_{k+1}) - 2u(x_i, t_k) + u(x_i, t_{k-1})] - \frac{a^2}{2h^2} [u(x_{i+1}, t_{k+1}) - 2u(x_i, t_{k+1}) + u(x_{i-1}, t_{k+1}) + u(x_{i+1}, t_{k-1}) - 2u(x_i, t_{k+1}) + u(x_{i-1}, t_{k-1})]
= f(x_i, t_k) + R_{ik}, \quad 1 \le i \le M - 1, \quad 1 \le k \le N - 1,$$

其中

$$R_{ik} = -\frac{a^2 \tau^2}{2} \frac{\partial^4 u}{\partial x^2 \partial t^2} (x_i, \bar{\eta}_i^k) + \frac{\tau^2}{12} \frac{\partial^4 u}{\partial t^4} (x_i, \eta_i^k) - \frac{a^2 h^2}{24} \left[\frac{\partial^4 u}{\partial x^4} (\bar{\xi}_i^{k+1}, t_{k+1}) + \frac{\partial^4 u}{\partial x^4} (\bar{\xi}_i^{k-1}, t_{k-1}) \right]$$

由初边值条件

$$u(x_i, t_0) = \varphi(x_i), \quad u(x_i, t_1) = \Psi(x_i) + \frac{\tau^3}{6} \frac{\partial^3 u}{\partial t^3} (x_i, \eta_i),$$

$$1 \le i \le M - 1,$$

$$u(x_0, t_k) = \alpha(t_k), \quad u(x_M, t_k) = \beta(t_k), \quad 0 \le k \le N.$$

忽略上面的 R_{ik} 和 $\frac{\tau^3}{6} \frac{\partial^3 u}{\partial t^3}(x_i, \eta_i)$,并用 u_i^k 代替 $u(x_i, t_k)$ 的下面的差分格式

$$\begin{cases}
\frac{1}{\tau^{2}}(u_{i}^{k+1} - 2u_{i}^{k} + u_{i}^{k-1}) - \frac{a^{2}}{2h^{2}}(u_{i+1}^{k+1} - 2u_{i}^{k+1} + u_{i-1}^{k+1}) \\
+u_{i+1}^{k-1} - 2u_{i}^{k-1} + u_{i-1}^{k-1}) = f(x_{i}, t_{k}), \\
1 \le i \le M - 1, \quad 1 \le k \le N - 1, \\
u_{i}^{0} = \varphi(x_{i}), \quad u_{i}^{1} = \Psi(x_{i}), \quad 1 \le i \le M - 1, \\
u_{0}^{k} = \alpha(t_{k}), \quad u_{M}^{k} = \beta(t_{k}), \quad 0 \le k \le N.
\end{cases} (3.7)$$

将 (3.7)-(3.9) 写成向量和矩阵形式

$$\begin{bmatrix} 1+s^2 & -\frac{1}{2}s^2 \\ -\frac{1}{2}s^2 & 1+s^2 & -\frac{1}{2}s^2 \\ & \ddots & \ddots & \ddots \\ & & -\frac{1}{2}s^2 & 1+s^2 & -\frac{1}{2}s^2 \\ & & & -\frac{1}{2}s^2 & 1+s^2 \end{bmatrix} \begin{bmatrix} u_1^{k+1} \\ u_2^{k+1} \\ \vdots \\ u_{M-2}^{k+1} \\ u_{M-1}^{k+1} \end{bmatrix}$$

$$= 2\begin{bmatrix} u_1^k \\ u_2^k \\ \vdots \\ u_{M-2}^k \\ u_{M-1}^k \end{bmatrix} + \begin{bmatrix} -(1+s^2) & \frac{1}{2}s^2 \\ \frac{1}{2}s^2 & -(1+s^2) & \frac{1}{2}s^2 \\ & \ddots & \ddots & \ddots \\ & \frac{1}{2}s^2 & -(1+s^2) & \frac{1}{2}s^2 \\ & \frac{1}{2}s^2 & -(1+s^2) \end{bmatrix} \\ \begin{bmatrix} u_1^{k-1} \\ u_2^{k-1} \\ \vdots \\ u_{M-2}^{k-1} \\ u_{M-1}^{k-1} \end{bmatrix} + \begin{bmatrix} \tau^2 f(x_1, t_k) + \frac{1}{2}s^2 (\alpha(t_{k-1}) + \alpha(t_{k+1})) \\ \tau^2 f(x_2, t_k) \\ \vdots \\ \tau^2 f(x_{M-2}, t_k) \\ \tau^2 f(x_{M-1}, t_k) + \frac{1}{2}s^2 (\beta(t_{k-1}) + \beta(t_{k+1})) \end{bmatrix}, \\ 1 < k < N-1. \end{bmatrix}$$

例 3.2 用隐格式(3.7)-(3.9)计算例3.1所给定解问题的近似解.

取 h = 1/100, $\tau = 1/80$, 所得部分结果列表 3.3, 数值结果很好逼近精确解.

表 3.3 双曲方程隐格式 $h=1/100, \tau=1/80$

k	(x,t)	数值解	精确解	误差
0	(0.5, 0.0)	1.648721	1.648721	0.000000
10	(0.5, 0.125)	1.868241	1.868246	0.000005
20	(0.5, 0.250)	2.116993	2.117000	0.000007
30	(0.5, 0.375)	2.398868	2.398875	0.000007
40	(0.5, 0.50)	2.718278	2.718282	0.000004
50	(0.5, 0.625)	3.080229	3.080217	0.000012
60	(0.5, 0.75)	3.490369	3.490343	0.000026
70	(0.5, 0.875)	3.955116	3.955077	0.000040
80	(0.5, 1.00)	4.481741	4.481689	0.000052

关于隐式差分格式 (3.7)-(3.9), 有如下结论:

定理 3.2 (1) 对任意步长比 s, 隐式差分格式 (3.7)-(3.9) 在 L_2 范数下是稳定的; (2) 对任意步长比 s, 隐式差分格式 (3.7)-(3.9) 在 L_2 范数下关于空间步长和时间步长都是二阶收敛的。

4 椭圆型方程的差分方法

考虑二维 Poisson 方程 Dirichlet 边值问题

$$\begin{cases}
-\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) = f(x,y), & (x,y) \in \Omega, \\
u = \varphi(x,y), & (x,y) \in \Gamma.
\end{cases}$$
(4.1)

其中Ω为矩形区域

$$\Omega = \{(x, y) | a < x < b, c < y < d\},\$$

 Γ 是 Ω 的边界.

4.1 差分格式的建立

将区间 [a,b] 作 m 等分,将 [c,d] 作 n 等分,记 $h_1 = (b-a)/m$, $h_2 = (d-c)/n$, $x_i = a+ih_1$, $0 \le i \le m$, $y_j = c+jh_2$, $0 \le j \le n$. h_1,h_2 称为 x 方向和 y 方向的步长. 用平行线

$$x = x_i, \quad 0 \le i \le m,$$

 $y = y_j, \quad 0 \le j \le n$

将 Ω 剖分为mn个小矩形,交点 (x_i,y_i) 称为网格节点.记

$$\Omega_h = \left\{ (x_i, y_i) \middle| 0 \le i \le m, 0 \le j \le n \right\},
\Omega_h = \left\{ (x_i, y_i) \middle| 1 \le i \le m - 1, 1 \le j \le n - 1 \right\},
\Gamma_h = \Omega_h \setminus \Omega_h.$$

 δ 称 Ω_h 为内结点, 称 Γ_h 为边界结点.

为方便起见,记

$$\omega \equiv \left\{ (i,j) \mid (x_i,y_j) \in \mathring{\Omega}_h \right\}, \qquad \gamma \equiv \left\{ (i,j) \mid (x_i,y_j) \in \Gamma_h \right\}.$$

$$S_h = \{v \mid v = \{v_{ij} \mid 0 \leq i, j \leq m\} \, \text{为}\Omega_h \bot \text{的网格函数} \}.$$

设 $v = \{v_{ij} | 0 \le i \le m, 0 \le j \le n\} \in S_h$, 引进如下记号:

$$D_x v_{ij} = \frac{1}{h_1} (v_{i+1,j} - v_{ij}),$$
 $D_{\bar{x}} v_{ij} = \frac{1}{h_1} (v_{i,j} - v_{i-1,j}),$

$$D_y v_{ij} = \frac{1}{h_2} (v_{i,j+1} - v_{ij}),$$
 $D_{\bar{y}} v_{ij} = \frac{1}{h_2} (v_{i,j} - v_{i,j-1}),$

⋈ ∢ ▶ ⋈) □ →

图 4.1 网格剖分

$$\delta_x^2 v_{ij} = \frac{1}{h_1} (D_x v_{ij} - D_{\bar{x}} v_{ij}), \qquad \delta_y^2 v_{ij} = \frac{1}{h_2} (D_y v_{ij} - D_{\bar{y}} v_{ij}),$$
$$||v||_{\infty} = \max_{0 \le i \le m} |v_{ij}|.$$

称 $||v||_{\infty}$ 为 v 的无穷范数.

在结点处考虑边值问题 (4.1)-(4.2), 有

$$-\left[\frac{\partial^2 u}{\partial x^2}(x_i, y_j) + \frac{\partial^2 u}{\partial y^2}(x_i, y_j)\right] = f(x_i, y_j), \qquad (i, j) \in \omega, \qquad (4.3)$$

$$u(x_i, y_i) = \varphi(x_i, y_i), \qquad (i, j) \in \gamma. \tag{4.4}$$

定义 Ω_h 上的网格函数

$$U = \left\{ U_{ij} \mid 0 \leqslant i \leqslant m, \ 0 \leqslant j \leqslant n \right\},\,$$

其中

$$U_{ij} = u(x_i, y_j), \qquad 0 \leqslant i \leqslant m, \quad 0 \leqslant j \leqslant n.$$

由公式 (0.4), 有

$$\frac{\partial^2 u}{\partial x^2}(x_i, y_j) = \frac{1}{h_1^2} \left[u(x_{i-1}, y_j) - 2u(x_i, y_j) + u(x_{i+1}, y_j) \right] - \frac{h_1^2}{12} \frac{\partial^4 u(\xi_{ij}, y_j)}{\partial x^4}$$

$$= \delta_x^2 U_{ij} - \frac{h_1^2}{12} \frac{\partial^4 u(\xi_{ij}, y_j)}{\partial x^4}, \qquad x_{i-1} < \xi_{ij} < x_{i+1};$$

$$\frac{\partial^2 u}{\partial y^2}(x_i, y_j) = \frac{1}{h_2^2} \left[u(x_i, y_{j-1}) - 2u(x_i, y_j) + u(x_i, y_{j+1}) \right] - \frac{h_2^2}{12} \frac{\partial^4 u(x_i, \eta_{ij})}{\partial y^4}$$

$$= \delta_y^2 U_{ij} - \frac{h_2^2}{12} \frac{\partial^4 u(x_i, \eta_{ij})}{\partial y^4}, \qquad y_{j-1} < \eta_{ij} < y_{j+1}.$$

将以上两式代入(4.3),并注意到边界条件(4.4),可得

$$-(\delta_x^2 U_{ij} + \delta_y^2 U_{ij}) = f(x_i, y_j) - \frac{h_1^2}{12} \frac{\partial^4 u(\xi_{ij}, y_j)}{\partial x^4} - \frac{h_2^2}{12} \frac{\partial^4 u(x_i, \eta_{ij})}{\partial y^4},$$

$$(i, j) \in \omega,$$

$$U_{ij} = \varphi(x_i, y_j), \quad (i, j) \in \gamma.$$
(4.5)

在上式中略去小量项

$$R_{ij} = -\frac{h_1^2}{12} \frac{\partial^4 u(\xi_{ij}, y_j)}{\partial x^4} - \frac{h_2^2}{12} \frac{\partial^4 u(x_i, \eta_{ij})}{\partial y^4},$$
 (4.7)

并用 uii 代替 Uii, 得到如下差分格式(五点差分格式)

$$\begin{cases}
-(\delta_x^2 u_{ij} + \delta_y^2 u_{ij}) = f(x_i, y_j), & (i, j) \in \omega, \\
u_{ij} = \varphi(x_i, y_j), & (i, j) \in \gamma.
\end{cases} (4.8)$$

称 R_{ij} 为差分格式 (4.8) 的局部截断误差, 它反映了差分格式 (4.8) 对精确解的满足程度, 即 R_{ij} 为差分格式 (4.8) 用精确解代替近似解后等式两边之差

$$R_{ij} = -\frac{1}{h_1^2} \Big[u(x_{i-1}, y_j) - 2u(x_i, y_j) + u(x_{i+1}, y_j) \Big]$$
$$-\frac{1}{h_2^2} \Big[u(x_i, y_{j-1}) - 2u(x_i, y_j) + u(x_i, y_{j+1}) \Big] - f(x_i, y_j).$$

记

$$M_4 = \max \left\{ \max_{(x,y)\in\bar{\Omega}} \left| \frac{\partial^4 u(x,y)}{\partial x^4} \right|, \max_{(x,y)\in\bar{\Omega}} \left| \frac{\partial^4 u(x,y)}{\partial y^4} \right| \right\}, \tag{4.10}$$

则有

$$\left| R_{ij} \right| \leqslant \frac{M_4}{12} (h_1^2 + h_2^2), \qquad 1 \leqslant i \leqslant m - 1, \quad 1 \leqslant j \leqslant n - 1. \quad (4.11)$$

4.2 差分格式解的存在性

定理 4.1 差分格式 (4.8)-(4.9) 存在唯一解.

证明 差分格式 (4.8)-(4.9) 是线性的. 考虑其齐次方程组

$$\begin{cases}
-\left(\delta_x^2 u_{ij} + \delta_y^2 u_{ij}\right) = 0, & (i,j) \in \omega, \\
u_{ij} = 0, & (i,j) \in \gamma.
\end{cases}$$
(4.12)

设 $\|u\|_{\infty} = M > 0$. 则由 (4.13) 知, 存在 $(i_0, j_0) \in \omega$ 使得 $|u_{i_0, j_0}| = M$, 且 $|u_{i_0-1, j_0}|$, $|u_{i_0+1, j_0}|$, $|u_{i_0, j_0-1}|$, $|u_{i_0, j_0+1}|$ 中至少有一个小于 M. 考虑 (4.12) 中 $(i, j) = (i_0, j_0)$ 的等式, 有

$$\left(\frac{2}{h_1^2} + \frac{2}{h_2^2}\right)u_{i_0,j_0} = \frac{1}{h_1^2}(u_{i_0-1,j_0} + u_{i_0+1,j_0}) + \frac{1}{h_2^2}(u_{i_0,j_0-1} + u_{i_0,j_0+1}).$$

 $H \rightarrow P \rightarrow X \rightarrow X$

将上式两边取绝对值,可得

$$\left(\frac{2}{h_1^2} + \frac{2}{h_2^2}\right)M
\leqslant \frac{1}{h_1^2}(|u_{i_0-1,j_0}| + |u_{i_0+1,j_0}|) + \frac{1}{h_2^2}(|u_{i_0,j_0-1}| + |u_{i_0,j_0+1}|)
\leqslant \left(\frac{2}{h_1^2} + \frac{2}{h_2^2}\right)M.$$

与假设 M > 0 矛盾. 故 M = 0. 因而差分格式 (4.8)-(4.9) 是唯一可解的. 定理证毕.

4.3 差分格式的求解

差分格式 (4.8)-(4.9) 是以 $\{u_{ij} | 1 \le i \le m-1, 1 \le j \le n-1\}$ 为未知量的线性方程组. (4.8) 可改写为

$$-\frac{1}{h_2^2}u_{i,j-1} - \frac{1}{h_1^2}u_{i-1,j} + 2\left(\frac{1}{h_1^2} + \frac{1}{h_2^2}\right)u_{ij} - \frac{1}{h_1^2}u_{i+1,j} - \frac{1}{h_2^2}u_{i,j+1}$$

$$= f(x_i, y_j), \qquad 1 \leqslant i \leqslant m - 1, \quad 1 \leqslant j \leqslant n - 1. \tag{4.14}$$

记

$$\boldsymbol{u}_{j} = \begin{bmatrix} u_{1j} \\ u_{2j} \\ \vdots \\ u_{m-1,j} \end{bmatrix}, \quad 0 \leqslant j \leqslant n.$$

利用 (4.9) 可将 (4.14) 写为

$$Du_{j-1} + Cu_j + Du_{j+1} = f_j, 1 \le j \le n-1, (4.15)$$

其中

$$C = \begin{bmatrix} 2\left(\frac{1}{h_1^2} + \frac{1}{h_2^2}\right) & -\frac{1}{h_1^2} \\ -\frac{1}{h_1^2} & 2\left(\frac{1}{h_1^2} + \frac{1}{h_2^2}\right) & -\frac{1}{h_1^2} \\ & \ddots & \ddots & \ddots \\ & -\frac{1}{h_1^2} & 2\left(\frac{1}{h_1^2} + \frac{1}{h_2^2}\right) & -\frac{1}{h_1^2} \\ & & -\frac{1}{h_1^2} & 2\left(\frac{1}{h_1^2} + \frac{1}{h_2^2}\right) \end{bmatrix},$$

$$\boldsymbol{D} = \begin{bmatrix} -\frac{1}{h_2^2} & & & \\ & -\frac{1}{h_2^2} & & \\ & & \ddots & \\ & & & -\frac{1}{h_2^2} \\ & & & -\frac{1}{h_2^2} \end{bmatrix}, \ \boldsymbol{f}_j = \begin{bmatrix} f(x_1, y_j) + \frac{1}{h_1^2} \phi(x_0, y_j) & \\ f(x_2, y_j) & \\ \vdots & \\ f(x_{m-2}, y_j) & \\ f(x_{m-1}, y_j) + \frac{1}{h_1^2} \phi(x_m, y_j) \end{bmatrix}.$$

(4.15) 可进一步写为

$$\begin{bmatrix} \boldsymbol{C} & \boldsymbol{D} & & & \\ \boldsymbol{D} & \boldsymbol{C} & \boldsymbol{D} & & \\ & \ddots & \ddots & \ddots & \\ & \boldsymbol{D} & \boldsymbol{C} & \boldsymbol{D} \\ & & \boldsymbol{D} & \boldsymbol{C} \end{bmatrix} \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \\ \vdots \\ \boldsymbol{u}_{n-2} \\ \boldsymbol{u}_{n-1} \end{bmatrix} = \begin{bmatrix} \boldsymbol{f}_1 - \boldsymbol{D}\boldsymbol{u}_0 \\ \boldsymbol{f}_2 \\ \vdots \\ \boldsymbol{f}_{n-2} \\ \boldsymbol{f}_{n-1} - \boldsymbol{D}\boldsymbol{u}_n \end{bmatrix}. \quad (4.16)$$

上述线性方程组的系数矩阵是一个三对角块矩阵,每一行至多有5个非零元素,通常称这种绝大多数元素为零的矩阵为稀疏矩阵.常用迭代法求解以大型稀疏矩阵为系数矩阵的线性方程组.可以证明(4.16)的系数矩阵是对称正定的.

Jacobi 迭代方法 对 $k = 0, 1, 2, \dots$, 计算

$$u_{ij}^{(k+1)} = \left[f(x_i, y_j) + \frac{1}{h_2^2} u_{i,j-1}^{(k)} + \frac{1}{h_1^2} u_{i-1,j}^{(k)} + \frac{1}{h_1^2} u_{i+1,j}^{(k)} + \frac{1}{h_2^2} u_{i,j+1}^{(k)} \right] / \left[2 \left(\frac{1}{h_1^2} + \frac{1}{h_2^2} \right) \right],$$

$$i = 1, 2, \dots, m-1; \quad j = 1, 2, \dots, n-1.$$

Gauss-Seidel 迭代方法 对 $k = 0, 1, 2, \dots$, 计算

$$u_{ij}^{(k+1)} = \left[f(x_i, y_j) + \frac{1}{h_2^2} u_{i,j-1}^{(k+1)} + \frac{1}{h_1^2} u_{i-1,j}^{(k+1)} + \frac{1}{h_1^2} u_{i+1,j}^{(k)} + \frac{1}{h_2^2} u_{i,j+1}^{(k)} \right] / \left[2 \left(\frac{1}{h_1^2} + \frac{1}{h_2^2} \right) \right],$$

$$i = 1, 2, \dots, m-1; \quad j = 1, 2, \dots, n-1.$$

例 4.1 应用差分格式 (4.8)-(4.9) 计算如下问题

$$\begin{cases} -\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) = (\pi^2 - 1)e^x \sin(\pi y), \ 0 < x < 2, 0 < y < 1, \\ u(0, y) = \sin(\pi y), \quad u(2, y) = e^2 \sin(\pi y), \ 0 \leqslant y \leqslant 1, \\ u(x, 0) = 0, \quad u(x, 1) = 0, \quad 0 < x < 2. \end{cases}$$

该问题的精确解为 $u(x,y) = e^x \sin(\pi y)$.

将 [0,2] 作 m 等分, 将 [0,1] 作 n 等分, 用 Gauss-Seidel 迭代方法求解差分方程组 (4.8)-(4.9), 精确至 $||u^{(l+1)} - u^{(l)}||_{\infty} \le \frac{1}{2} \times 10^{-10}$.

表 4.1 给出了 5 个结点处的精确解和取不同步长所得的数值解. 表 4.2 给出了这些结点处取不同步长时所得数值解和精确解差的绝对值 $|u(x_i,y_i)-u_{ij}|$. 表 4.3 给出了取不同步长时所得数值解的最大误差

$$E(h_1, h_2) = \max_{\substack{1 \le i \le m-1 \\ 1 \le j \le n-1}} \left| u(x_i, y_j) - u_{ij} \right|.$$

由表 4.3 可以看出, 当步长 h_1, h_2 同时缩小到原来的 1/2 时, 最大误差 约缩小到原来的 1/4.

表 4.1: 部分结点处的精确解和取不同步长时所得的数值解

$\overline{(h_1,h_2) \setminus (x,y)}$	(1/2, 1/4)	(1, 1/4)	(3/2, 1/4)	(1/2, 1/2)	(1, 1/2)
(1/8, 1/8)	1.179943	1.946264	3.198998	1.668692	2.752434
(1/16, 1/16)	1.169343	1.928138	3.176531	1.653700	2.726799
(1/32, 1/32)	1.166702	1.923620	3.170908	1.649965	2.720410
(1/64, 1/64)	1.166042	1.922492	3.169502	1.649032	2.718814
精确解	1.165822	1.922116	3.169033	1.648721	2.718282

表 4.2 取不同步长时部分结点处数值解的误差的绝对值

$\overline{(h_1,h_2) \setminus (x,y)}$	(1/2, 1/4)	(1, 1/4)	(3/2, 1/4)	(1/2, 1/2)	(1, 1/2)
(1/8, 1/8)	1.412e - 2	2.415e - 2	2.997e - 2	1.997e - 2	3.415e - 2
(1/16, 1/16)	3.521e - 3	6.023e - 3	7.499e - 3	4.979e - 3	8.517e - 3
(1/32, 1/32)	8.796e - 4	1.505e - 3	1.875e - 3	1.244e - 3	2.128e - 3
(1/64, 1/64)	2.198e - 4	3.761e - 4	4.688e - 4	3.109e - 4	5.319e - 4

表 4.3 取不同步长时数值解的最大误差

$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$E_{\infty}(h_1,h_2)$	$E_{\infty}(2h_1, 2h_2)/E_{\infty}(h_1, h_2)$
(1/8, 1/8)	4.238e - 2	*
(1/16, 1/16)	1.061e - 2	3.994
(1/32, 1/32)	2.656e - 3	3.995
(1/64, 1/64)	6.640e - 4	4.000

4.4 差分格式解的先验估计式

本节应用极值原理来给出差分方程组

$$\begin{cases}
-\left(\delta_x^2 v_{ij} + \delta_y^2 v_{ij}\right) = g_{ij}, & (i,j) \in \omega, \\
v_{ij} = \varphi_{ij}, & (i,j) \in \gamma
\end{cases}$$
(4.17)

解的先验估计式.

设
$$v = \{v_{ij} | 0 \le i \le m, 0 \le j \le n\}$$
为 Ω_h 上的网格函数,记

$$(L_h v)_{ij} = -\left(\delta_x^2 v_{ij} + \delta_y^2 v_{ij}\right), \qquad (i, j) \in \omega.$$

引理 4.1 (极值原理) 设 $v = \{v_{ij} | 0 \le i \le m, 0 \le j \le n\}$ 为 Ω_h 上的网格函数. 如果

$$(L_h v)_{ij} \leqslant 0, \qquad (i,j) \in \omega,$$

则有

$$\max_{(i,j)\in\omega}v_{ij}\leqslant \max_{(i,j)\in\gamma}v_{ij}.$$

证明 用反证法. 设

$$\max_{(i,j)\in\omega}v_{ij} > \max_{(i,j)\in\gamma}v_{ij},$$

且 $\max_{(i,j)\in\omega} v_{ij} = M$,则一定存在 $(i_0,j_0) \in \omega$ 使得 $v_{i_0,j_0} = M$,且 v_{i_0-1,j_0} , v_{i_0+1,j_0} , v_{i_0,j_0-1} 和 v_{i_0,j_0+1} 中至少有一个的值小于 M. 因此

$$(L_h v)_{i_0, j_0} = 2 \left(\frac{1}{h_1^2} + \frac{1}{h_2^2} \right) v_{i_0, j_0} - \frac{1}{h_1^2} \left(v_{i_0 - 1, j_0} + v_{i_0 + 1, j_0} \right)$$

$$- \frac{1}{h_2^2} \left(v_{i_0, j_0 - 1} + v_{i_0, j_0 + 1} \right)$$

$$> 2\left(\frac{1}{h_1^2} + \frac{1}{h_2^2}\right)M - \frac{1}{h_1^2}(M+M) - \frac{1}{h_2^2}(M+M) = 0.$$

这与条件矛盾. 定理证毕.

定理 4.2 设 $\{v_{ij}\}$ 为 (4.17)-(4.18) 的解,则有

$$\max_{(i,j)\in\omega} |v_{ij}| \leqslant \max_{(i,j)\in\gamma} |\varphi_{ij}| + \frac{1}{4} \left[\left(\frac{b-a}{2} \right)^2 + \left(\frac{d-c}{2} \right)^2 \right] \max_{(i,j)\in\omega} |g_{ij}|.$$

上式中 $\left(\frac{b-a}{2}\right)^2 + \left(\frac{d-c}{2}\right)^2$ 为 Ω 的外接圆半径的平方.

证明 记

$$C = \max_{(i,j)\in\omega} |g_{ij}|,$$

$$P(x,y) = \left(\frac{b-a}{2}\right)^2 + \left(\frac{d-c}{2}\right)^2 - \left(x - \frac{a+b}{2}\right)^2 - \left(y - \frac{c+d}{2}\right)^2,$$

并定义 Ω_h 上的网格函数

$$w_{ij} = \frac{1}{4}CP(x_i, y_j), \qquad (i, j) \in \omega \bigcup \gamma,$$

则有

$$w_{ij} \geqslant 0,$$
 $(i,j) \in \omega \bigcup \gamma,$ $(L_h w)_{ij} = C,$ $(i,j) \in \omega.$

因而

$$L_h(\pm v - w)_{ij} = \pm (L_h v)_{ij} - (L_h w)_{ij} = \pm g_{ij} - C \leq 0,$$
 (i, j) $\in \omega$. 由极值原理, 知

$$\max_{(i,j)\in\omega}(\pm v-w)_{ij}\leqslant \max_{(i,j)\in\gamma}(\pm v-w)_{ij}\leqslant \max_{(i,j)\in\gamma}|\pm v_{ij}|+\max_{(i,j)\in\gamma}(-w_{ij})\leqslant \max_{(i,j)\in\gamma}|v_{ij}|,$$

$$\max_{(i,j)\in\omega} (\pm v)_{ij} = \max_{(i,j)\in\omega} (\pm v - w + w)_{ij}$$

$$\leqslant \max_{(i,j)\in\omega} (\pm v - w)_{ij} + \max_{(i,j)\in\omega} w_{ij}$$

$$\leqslant \max_{(i,j)\in\gamma} |v_{ij}| + \max_{(i,j)\in\omega} w_{ij}$$

$$\leqslant \max_{(i,j)\in\gamma} |\varphi_{ij}| + \frac{1}{4} \left[\left(\frac{b-a}{2} \right)^2 + \left(\frac{d-c}{2} \right)^2 \right] \max_{(i,j)\in\omega} |g_{ij}|.$$

易知

$$\max_{(i,j)\in\omega} |v_{ij}| \leqslant \max_{(i,j)\in\gamma} |\varphi_{ij}| + \frac{1}{4} \left| \left(\frac{b-a}{2} \right)^2 + \left(\frac{d-c}{2} \right)^2 \right| \max_{(i,j)\in\omega} |g_{ij}|.$$

定理证毕.

4.5 差分格式解的收敛性和稳定性

收敛性

定理 4.3 设 $\{u(x,y) | a \le x \le b, c \le y \le d\}$ 是定解问题 (4.1)-(4.2) 的解, $\{u_{ij} | 0 \le i \le m, 0 \le j \le n\}$ 为差分格式 (4.8)-(4.9) 的解, 则有

$$\max_{(i,j)\in\omega} \left| u(x_i, y_j) - u_{ij} \right| \le \frac{M_4}{48} \left[\left(\frac{b-a}{2} \right)^2 + \left(\frac{d-c}{2} \right)^2 \right] (h_1^2 + h_2^2),$$

其中 M_4 由 (4.10) 定义.

证明 记

$$e_{ij} = u(x_i, y_j) - u_{ij}, \qquad (i, j) \in \omega \bigcup \gamma,$$

将 (4.5)-(4.6) 分别与 (4.8)-(4.9) 相减, 得误差方程

$$-\left(\delta_x^2 e_{ij} + \delta_y^2 e_{ij}\right) = R_{ij}, \qquad (i,j) \in \omega, \tag{4.19}$$

$$e_{ij} = 0, \qquad (i,j) \in \gamma, \tag{4.20}$$

其中 Rii 由 (4.7) 定义. 由 (4.11), 有

$$\max_{(i,j)\in\omega} |R_{ij}| \leqslant \frac{M_4}{12}(h_1^2 + h_2^2).$$

应用定理 2.2.3, 有

$$\max_{(i,j)\in\omega} |e_{ij}| \leq \frac{1}{4} \left[\left(\frac{b-a}{2} \right)^2 + \left(\frac{d-c}{2} \right)^2 \right] \max_{(i,j)\in\omega} |R_{ij}|$$

$$\leq \frac{M_4}{48} \left[\left(\frac{b-a}{2} \right)^2 + \left(\frac{d-c}{2} \right)^2 \right] (h_1^2 + h_2^2).$$

定理证毕.

稳定性

假设在应用差分格式 (4.8)-(4.9) 时, 计算右端函数 $f(x_i, y_j)$ 有误差 f_{ij} , 计算边界值有误差 φ_{ij} . 设 $\{v_{ij}\}$ 为差分格式

$$-(\delta_x^2 v_{ij} + \delta_y^2 v_{ij}) = f(x_i, y_j) + f_{ij}, \qquad (i, j) \in \omega,$$
 (4.21)

$$v_{ij} = \varphi(x_i, y_j) + \varphi_{ij}, \qquad (i, j) \in \gamma \tag{4.22}$$

的解.记

$$\varepsilon_{ij} = v_{ij} - u_{ij}, \quad (i,j) \in \omega \cup \gamma.$$

将 (4.21)-(4.22) 与 (4.8)-(4.9) 相减, 得

$$-\left(\delta_x^2 \varepsilon_{ij} + \delta_y^2 \varepsilon_{ij}\right) = f_{ij}, \qquad (i,j) \in \omega, \tag{4.23}$$

$$\varepsilon_{ij} = \varphi_{ij}, \qquad (i,j) \in \gamma.$$
 (4.24)

应用定理 2.2.3, 得到

$$\max_{(i,j)\in\omega} |\varepsilon_{ij}| \leqslant \max_{(i,j)\in\gamma} |\varphi_{ij}| + \frac{1}{4} \left[\left(\frac{b-a}{2} \right)^2 + \left(\frac{d-c}{2} \right)^2 \right] \max_{(i,j)\in\omega} |f_{ij}|.$$

由上式可知, 当 $\max_{(i,j)\in\gamma} |\varphi_{ij}|$ 和 $\max_{(i,j)\in\omega} |f_{ij}|$ 为小量时, $\max_{(i,j)\in\omega} |\varepsilon_{ij}|$ 也为小量. 我们称差分格式 (4.8) 和 (4.9) 关于边界值和右端函数是稳定的.

H + P P 2 - - >

称 (4.23)-(4.24) 为**摄动方程**, 它的形式和差分格式 (4.8)-(4.9) 是一样的. 于是我们得到如下定理.

$$-\left(\delta_x^2 u_{ij} + \delta_y^2 u_{ij}\right) = f_{ij}, \qquad (i,j) \in \omega,$$

$$u_{ij} = \varphi_{ij}, \qquad (i,j) \in \gamma$$

的解,则有

$$\max_{(i,j)\in\omega} |u_{ij}| \leqslant \max_{(i,j)\in\gamma} |\varphi_{ij}| + \frac{1}{4} \left[\left(\frac{b-a}{2} \right)^2 + \left(\frac{d-c}{2} \right)^2 \right] \max_{(i,j)\in\omega} |f_{ij}|.$$

5 习题

p.345 \sim 346

1, 2, 3, 4, 7, 9, 10(上机题)