Exercices supplémentaires Probabilités, L3 Maths/Info

Luca Ganassali

Le nombre d'étoiles $(\star, \star\star, \star\star\star)$ donne une idée sur la difficulté de l'exercice. Si le temps le permet, nous parlerons des exercices de type \star ou $\star\star$ en TD. J'invite plus généralement les étudiants intéressés à venir en discuter à la fin des TDs, ou à m'envoyer leurs idées/versions rédigées par mail.

1 Expérience aléatoire, variables aléatoires

Exercice 1 (On se promène sur \mathbb{Z} , $\star \star$).

Bob se promène sur \mathbb{Z} en partant de l'origine (point 0) au temps t=0. A chaque pas de temps, il fait un saut à droite (+1) avec probabilité 1/2, ou un saut à gauche (-1) avec probabilité 1/2. On note S_t la position de Bob au temps t ($t \in \mathbb{N}$).

- 1) Que vaut $\mathbb{P}(S_t = 0)$ pour tout t?
- 2) En moyenne, combien de fois Bob repasse-t-il par l'origine? *Indication : l'espérance est linéaire...*

Exercice 2 (*Indicatrice d'Euler*, \star).

Soit $n \ge 1$. On tire X uniformément au hasard dans $\Omega = \{1, \dots, n\}$. On note, pour tout entier m:

$$A_m := \{m \text{ divise } x\}$$

et

$$B := \{x \text{ est premier avec } n\}$$
.

On note p_1, \ldots, p_r les diviseurs premiers de n.

- 1) Pour m divisant n, que vaut $\mathbb{P}(A_m)$?
- 2) Montrer que les évènements A_{p_1}, \ldots, A_{p_r} sont mutuellement indépendants. C'est l'occasion de revoir la définition de l'indépendance mutuelle.
- 3) En déduire $\mathbb{P}(B)$.
- 4) Application : soit $\phi(n)$ le nombre d'entiers inférieurs à n qui sont premiers avec n. Montrer que

$$\phi(n) = n \prod_{k=1}^{r} \left(1 - \frac{1}{p_k} \right).$$

Exercice 3 (*Une permutation aléatoire*, $\star \star$).

On tire σ uniformément au hasard dans l'ensemble des permutations de $\{1,\ldots,n\}$. On note $F(\sigma)$ son nombre de points fixes.

- 1) Quelle est l'espérance de $F(\sigma)$? Indication : l'espérance est linéaire...
- 2) En utilisant la formule du crible (ou formule de Poincaré) du TD 2, montrer que

$$\mathbb{P}\left(F(\sigma)=k\right)=\frac{1}{k!}\sum_{q=0}^{n-k}\frac{(-1)^q}{q!}.$$

(on pourra commencer par le cas k = 0).

3) Quelle semble être la loi asymptotique de $F(\sigma)$ quand $n \to \infty$? Justifier.

Exercice 4 (Entraînement au dénombrement, \star).

Sur un échiquier de taille 5×5 on place uniformément au hasard 5 pions (une case ne peut contenir qu'un seul pion au plus). Quelle est la probabilité de chacun des événements suivants :

- 1) Il n'y a aucun pion sur les deux diagonales.
- 2) Une colonne au moins est vide.
- 3) Il y a exactement un pion par ligne et par colonne.

Exercice 5 (*Paradoxe des anniversaires*, $\star \star$).

On modélise la date d'anniversaire d'une personne par une variable uniforme dans $\{1,365\}$. Dans un groupe de n personnes, quelle est la probabilité pour que deux personnes au moins aient leur anniversaire le même jour?

A partir de quelle valeur de n cette valeur est-elle supérieure à 0.5?

Exercice 6 (Sa place dans l'avion, $\star \star \star$).

Un avion compte n places assises. Le premier passager à rentrer n'a plus aucune idée de sa place, et il en prend une uniformément au hasard. Ensuite, les autres passagers obéissent à la règle suivante. Chacun à leur tour ils vont à leur place : si celle-ci est libre, il la prennent; sinon, ils en prennent une au hasard uniformément parmi les places libres.

Quelle est la probabilité pour que le dernier passager se retrouve assis à sa place?

Exercice 7 (*Des tournois*, $\star \star \star$).

Dans cet exercice, nous allons voir que les probabilités peuvent parfois venir en aide pour prouver des résultats déterministes (i.e. sans aléa).

Un *tournoi* à n joueurs est défini par un sous-ensemble de $\{1,\ldots,n\}^2$ tel que pour tous éléments distincts x et y de $\{1,\ldots,n\}$, on a $(x,y)\in T$ ou $(y,x)\in T$, mais pas les deux. (En fait, un tournoi représente à l'aide d'arêtes orientées (des flèches) les issues de tous les matchs dans un tournoi à n joueurs : $(x,y)\in T$ si et seulement si le joueur x a battu le joueur y pendant leur rencontre.)

- 1) Combien y a t il de tournois différents à n joueurs?
- **2**) Combien y a t il de tournois différents à *n* joueurs admettant un leader absolu (i.e. un joueur qui a battu tout le monde)?
- 3) Pour tout $k \le n$, on dit qu'un tournoi T à n joueurs est k-séparé si pour tout sous-ensemble $S \subset \{1,\ldots,n\}$ de k joueurs, un des joueurs de $\{1,\ldots,n\}\setminus S$ a battu tous les joueurs de S. Par exemple, le tournoi à 3 joueurs $T=\{(1,2),(2,3),(3,1)\}$ est 1-séparé, mais pas 2-séparé.
 - 2.a) Montrer que si T est (k+1)—séparé alors T est k—séparé.
 - 2.b) Existe-t-il un tournoi à 4 joueurs qui soit 2-séparé?
 - 2.c) Soit k un entier. Montrer que si n est tel que $\binom{n}{k}(1-2^{-k})^{n-k}<1$, alors il existe un tournoi à n joueurs qui soit k—séparé.

On considèrera un tournoi T à n joueurs, aléatoire uniforme. Pour chaque sous-ensemble S de k joueurs, on poura noter

$$A_S := \{aucun \ joueur \ de \ \{1, \dots, n\} \setminus S \ n'a \ battu \ tous \ les joueurs \ de \ S\}.$$

4) Un chemin hamiltonien d'un tournoi T est un sous-ensemble de T de la forme

$$\{(1, \sigma(1)), (\sigma(1), \sigma(2)), \dots, (\sigma(n-1), 1)\},\$$

avec σ une bijection de $\{2,\ldots,n\}$ dans $\{2,\ldots,n\}$. Par exemple, le tournoi

$$T = \{(1,3), (2,1), (2,3), (3,4), (4,1), (4,2)\}$$

admet un chemin hamiltonien.

Montrer qu'il existe un tournoi à n joueurs admettant au moins $\frac{(n-1)!}{2^n}$ chemins hamiltoniens. Indication : si X est une v.a. à valeurs dans $X(\Omega)$ fini, et que $\mathbb{E}[X] \geq x$, alors il existe $\omega \in \Omega$ tel que $X(\omega) \geq x$.

2 Raisonnement ensembliste, tribus, mesure

Exercice 8 (Lemme de Borel-Cantelli et loi du zéro-un de Borel, $\star \star$).

Dans cet exercice, nous allons retravailler avec l'évènement $\limsup A_n$ dont la définition a été abordée dans le TD2

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé. On considère une suite d'évènements $(A_n)_{n\in\mathbb{N}}$ à valeurs dans \mathcal{F} . On rappelle la définition de l'évènement $\limsup A_n \in \mathcal{F}$:

$$\limsup A_n := \bigcap_{n \in \mathbb{N}} \bigcup_{k > n} A_k.$$

- 1) Comment réécrire "avec des mots" l'évènement $\limsup A_n$?
- 2) On suppose que $\sum_{n=0}^{\infty} \mathbb{P}(A_n)$ converge. Montrer qu'alors

$$\mathbb{P}\left(\limsup A_n\right) = 0.$$

C'est le lemme de Borel-Cantelli.

3) On suppose que $\sum_{n=0}^{\infty} \mathbb{P}(A_n)$ diverge et que les évènements $(A_n)_{n\in\mathbb{N}}$ sont mutuellements indépendants. Montrer qu'alors

$$\mathbb{P}\left(\limsup A_n\right) = 1.$$

C'est la loi du zéro-un de Borel.

- 4) Dans la question précédente, montrer que l'hypothèse d'indépendance est cruciale.
- 5) Applications:
 - (i) On tire une infinité de fois un dé équilibré (les tirages sont indépendants). Montrer que presque sûrement on obtient une infinité de fois la séquence 123456.
 - (ii) On reprend le contexte de l'exercice 1: on part de 0 et à chaque étape on part à droite (+1) avec probabilité $p \in (0,1)$ et à gauche (-1) avec probabilité 1-p. Montrer que si $p \neq 1/2$, alors presque sûrement, on ne revient qu'un nombre fini de fois en 0.
 - (iii) Soient $(X_n)_{n\geq 1}$ un suite de variables indépendantes telles que pour tout $n\geq 1$, X_n suit une loi exponentielle de paramètre n. Montrer que presque sûrement

$$X_n \xrightarrow[n \to \infty]{} 0.$$

Exercice 9 (Ensemble triadique de Cantor, $\star \star$).

Dans cet exercice, nous allons voir un exemple de partie de \mathbb{R} mesurable, non dénombrable, mais de mesure de Lebesque nulle.

On définit une suite $(C_n)_{n\in\mathbb{N}}$ de parties de \mathbb{R} de la façon suivante. On pose $C_0=[0,1]$, puis on 'découpe C_0 en trois', $C_0=[0,1/3]\cup]1/3,2/3[\cup [2/3,1]$, et on enlève l'intervalle ouvert central pour obtenir

$$C_1 = [0, 1/3] \cup [2/3, 1].$$

On réitère le procédé sur chaque intervalle fermé disjoints de C_n pour obtenir C_{n+1} . Ainsi,

$$C_2 = [0, 1/9] \cup [2/9, 1/3] \cup [2/3, 7/9] \cup [8/9, 1].$$

L'ensemble triadique de Cantor est défini par

$$C := \bigcap_{n \ge 0} C_n.$$

On notera λ la mesure de Lebesgue sur \mathbb{R} .

1) Montrer que C est compact et que $\lambda(C) = 0$.

2) Soit $n \in \mathbb{N}^*$. Pour $(a_1, \dots, a_n) \in \{0, 1\}^n$, on note

$$I_{a_1,\dots,a_n} := \left[\sum_{k=1}^n \frac{2a_k}{3^k}, \sum_{k=1}^n \frac{2a_k}{3^k} + \frac{1}{3^n} \right].$$

Montrer que

$$C_n = \bigcup_{(a_1, \dots, a_n) \in \{0,1\}^n} I_{a_1, \dots, a_n}.$$

3) Pour toute suite $a = (a_k)_{k \ge 1} \in \{0,1\}^{\mathbb{N}^*}$, on pose

$$\psi(a) := \sum_{k=1}^{+\infty} \frac{2a_k}{3^k}.$$

Montrer que ψ est une injection de $\{0,1\}^{\mathbb{N}^*}$ dans C, puis en déduire que C n'est pas dénombrable.

Exercice 10 (*Une partie de* \mathbb{R} *non Lebesgue-mesurable*, $\star \star \star$).

Dans cet exercice, nous allons voir un exemple de partie de $\mathbb R$ non Lebesque-mesurable.

On considère la relation d'équivalence \sim suivante sur]0,1[:

$$\forall x, y \in]0, 1[, x \sim y \iff x - y \in \mathbb{Q}.$$

Pour chaque classe d'équivalence, on fixe un représentant de la classe 1 et on note E l'ensemble de ces représentants : ainsi pour tout $x \in]0,1[$, il existe un unique $y \in E$ tel que $x \sim y$.

Pour $F \subset]0,1[$ et $t \in]0,1[$, on notera F+t l'ensemble $\{f+t,f\in F\}$.

- 1) Montrer que pour q et r deux éléments distincts de \mathbb{Q} , on a $(E+q)\cap (E+r)=\varnothing$.
- 2) Montrer que

$$]0,1[\subset\bigcup_{q\in\mathbb{Q}\cap]-1,1[}(E+q)\subset]-1,2[.$$

3) En utilisant la question précédente, montrer par l'absurde que E n'est pas Lebesgue-mesurable.

^{1.} Question en plus : a-t-on vraiment le droit de faire ça?