离散数学第六章作业

林陈冉

2017年4月6日

补充1 $\lambda = r \frac{k-1}{v-1} = 5 * \frac{3}{7}$ 不是整数, 故不存在这样的BIBD

补充2 显然, 对于补设计 \mathcal{B}^c , b' = b , v' = v , k' = v - k . 再考虑 r' , 若任意一对元素, 在原设计 \mathcal{B} 的 r 个区组中出现, 那么这对元素在剩下的 b - r 个区组中不出现, 这等价于在补设计 \mathcal{B}^c 的 b - r 个区组中出现, 即 r' = b - r . 讲一步可以验证参数间关系

$$b'k' = bv - bk = bv - rv = v'r'$$
$$(k'-1)r' - \lambda'(v'-1) = bk - rv + (k-1)r - \lambda(v-1) = 0$$

故补设计是BIBD

补充3

表 1: {0,2,3,4,8} mod 11 差分表

-	0	2	3	4	8
0	0	9	8	7	3
2	2	0	10	9	5
3	3	1	0	10	6
4	4	2	1	0	7
8	8	6	5	4	0

容易检验, 上表是 $\lambda = 2$ 的差分表, 其生成的SBIBD参数为 v = b = 11, k = r = 5, $\lambda = 2$.

补充4 3个样品的三元系是平凡的: $A = \{a_0, a_1, a_2\}$. 再构造一个7个样品的Steniner三元系, 不妨直接用差分集构造一个SBIBD, 课件中已经作为例子给出: $B_0 = \{b_0, b_1, b_3\}$, $B_1 = \{b_1, b_2, b_4\}$, $B_2 = \{b_2, b_3, b_5\}$, $B_3 = \{b_3, b_4, b_6\}$, $B_4 = \{b_4, b_5, b_0\}$, $B_5 = \{b_5, b_6, b_1\}$, $B_6 = \{b_6, b_0, b_2\}$.

将21个样本记为 c_{ij} , $0 \le i \le 2$, $0 \le j \le 6$, 可以生成21个样本的三元系: $C_0 = \{c_{00}, c_{01}, c_{03}\}$, $C_1 = \{c_{01}, c_{02}, c_{04}\}$, $C_2 = \{c_{02}, c_{03}, c_{05}\}$, \cdots , $C_69 = \{c_{26}, c_{00}, c_{12}\}$ (70个区组).

- **补充5** 设 $\lambda=6n+a$, 那么 $r=\lambda(v-1)/2=3n(v-1)+a(v-1)/2$, $b=\lambda v(v-1)/6=nv(v-1)+av(v-1)/6$, 故 a(v-1)/2 , 和 av(v-1)/6 都应为整数
- (1) 当 a=1 或 a=5 , 则 (v-1)/2 必须为整数, 那么 v 是奇数. 同时 v(v-1)/6 是整数, 那么 v=6m+3 或 v=6m+1;
- (2) 当 a=2 或 a=4 , 则 a/2 是整数, 那么 v 是任意数. 同时 v(v-1)/3 是整数, 那么 v=3m 或 v=3m+1;
- (3) 当 a=3 , 则 (v-1)/2 必须为整数, 那么 v 是奇数. 而且此时 av(v-1)/6 已经是整数了, 那么只要求 v 是奇数.
- 7 不存在SDR, 一共只有5个元素却有6个集合. 集合的最大个数是5, $A_2 \rightarrow d$, $A_3 \rightarrow b$, $A_4 \rightarrow c$, $A_5 \rightarrow a$, $A_6 \rightarrow e$.
- 8 有两个不同的SDR. 有 n 个集合时表述为, $\mathbb{A} = \{A_1, \dots, A_n\}$, $A_i = \{i \mod n, i+1 \mod n\}$, 集族 \mathbb{A} 有两个不同的SDR.
- **15** 任取 k 个集合, $|A_{i_1} \cup \cdots \cup A_{i_k}| \ge |A_{i_1}| = p \ge k$, 这说明了SDR的存在性