

Aula 3: Partição de dados

André C. P. L. F de Carvalho ICMC/USP andre@icmc.usp.br

Tópicos

- Desempenho de algoritmos/modelos
- Desempenho preditivo
- Partição dos dados
- Amostragem
- Reamostragem

Introdução

- Procedimentos experimentais e avaliação de desempenho
 - Diferente para tarefas descritivas e preditivas
 - Este módulo tratará de tarefas preditivas
 - Classificação
 - Fácil adaptar para regressão

Avaliação de algoritmos/modelos

- Erro
 - Desempenho preditivo
- Custo
 - Tempo de processamento
 - Memória necessária
- Interpretabilidade
- Medidos para algoritmo e/ou modelo

Tarefa preditiva

- Depende da tarefa a ser resolvida:
 - o Classificação: considera taxa de exemplos incorretamente classificados
 - Ex.: Acurácia
 - o Regressão: considera diferença entre valor previsto e valor correto
 - Ex.: R²
- Média dos erros obtidos em diferentes execuções de um experimento

- Comparação de algoritmos
 - o Algoritmo que gera melhor(es) modelos
 - Deve ser justo para os algoritmos investigados
 - Pode variar valores de hiperparâmetros
 - Mesmos subconjuntos de dados para todos
 - Mesmo número de modelos avaliados por todos
 - Mesmos recursos para todos

- Comparação de modelos
 - o Melhor modelo gerado pelo mesmo algoritmo
 - Pode variar subconjuntos de dados usados
 - Deve variar valores dos hiperparâmetros
 - Pode variar conformação dos dados
 - Amostragem
 - Partição
 - Seleção de atributos

- Principal objetivo em tarefas de classificação:
 - Classificação correta de novos exemplos
 - Errar o mínimo possível
 - Minimizar taxa de erro para novos exemplos
- Geralmente não é possível medir com exatidão essa taxa de erro para novos exemplos
 - o Deve ser estimada com duas amostras do conjunto de dados original
 - Utilizar uma amostra A (treinamento) para Induzir um modelo
 - Utilizar uma amostra B (teste, que simula situação em que existem novos exemplos)

Partição de dados

- Permite melhor estimativa do desempenho de um modelo ou algoritmo
 - o Treinamento (validação) e teste
- Procedimentos
 - Amostragem única
 - Hold-out
 - Re-amostragem

Hold out

Métodos de reamostragem

- Amostragem única é pouco confiável
- Gerar várias partições para conjuntos de treinamento (validação) e teste
- Reamostragem
 - Random subsampling
 - K-fold Cross-validation
 - Leave-one-out
 - Bootstrap (ou Bootstrapping)

Random subsampling

k-fold cross-validation

N

N Exemplos

4-fold cross-validation

4-fold cross-validation

Leave-one-out

- Tende à taxa de erro verdadeira
- Custo computacionalmente elevado para conjuntos grandes
 - o Geralmente utilizado para pequenos conjuntos de dados
 - o 10-fold cross validation aproxima leave-one-out
- Resultado é a média dos N experimentos
- Variância tende a ser elevada

5 x 2 Cross-validation

Conjuntos de treinamento e teste com mesmo tamanho

Seja um conjunto de N exemplos
Para i = 1 até 5
Dividir N aleatoriamente em duas metades
Usar metade 1 para treinamento e metade 2 para teste
Usar metade 2 para treinamento e metade 1 para teste

Bootstrap

- Estocástico, com diversas variações
 - o Alguns exemplos podem não participar do treinamento
- Variação mais simples:
 - Amostragem com reposição
 - Cada partição é uma amostra aleatória com reposição do conjunto total de exemplos
 - Conjunto de treinamento têm o mesmo número de exemplos do conjunto total
 - Exemplos que restarem são utilizados para teste

Bootstrap

- Se conjunto original tem N exemplos
 - o Amostra de tamanho N tem ≈ 63,2% dos exemplos do conjunto de dados original
- Processo é repetido k vezes
 - Resultado final é a média dos k experimentos

Bootstrap

- Estima incerteza de um algoritmo
 - o K-fold cross-validation é mais usado para estimar acurácia preditiva
 - Seleção de algoritmos/modelos
- Tende a ter menor variância e ser mais pessimista que *k-fold cross-validation*

Considerações Finais

- Desempenho preditivo
- Avaliação do desempenho
 - o Erro
 - o Tempo de resposta
 - Memória
 - Representação
- Partições do conjunto de dados

Final da

Spresentação

