Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО"

Факультет информационных технологий и программирования Направление "Прикладная математика и информатика"

Отчет к лабораторной работе №3

Методы решения систем линейных уравнений

Выполнили студенты группы М3237

Ярошевский Илья Аникина Вероника Крюков Александр

1 Цели работы

- 1. Реализовать прямой метод решения СЛАУ на основе LU-разложения
- 2. Провести исследование метода на матрицах, число обусловленности которых регулируется за счёт изменения диагонального преобладания
- 3. Провести исследование метода на матрицы Гильберта различной размерности
- 4. Реализовать метод Гаусса с выбором ведущего элемента для плотных матриц

2 Ход работы

Матрицы с диагональным преобладанием строились так:

$$a_{ii} = \begin{cases} -\sum_{i \neq j} a_{ij} & i > 1\\ -\sum_{i \neq j} a_{ij} + 10^{-k} & i = 1 \end{cases}$$

, где $a_{ij} \in \{0, -1, -2, -3, -4\}: i \neq j$ выбиралось случайным образом. Так-же задавалось максимальное расстояние от главной диагонали, дальше которого все элементы были нулевыми. Это позволяет тратить меньше памяти, за счет хранение матрицы, в которой ненулевые элементы сосредоточены около главной диагонали, в профильном формате.

Матрицы Гильберта строились по формуле: $a_{ij} = \frac{1}{i+j-1}, i, j = \overline{1,n}$. Для таких плотных матриц не существенно в какой форме их хранить, так как в любом случае потребуется $O(n^2)$ памяти

2.1 Прямой метод

2.1.1 Оценка количества операций

Оценим количество операций умножения и деления для матрицы размера n

• LU-разложение

$$\frac{2 \cdot n^3 + 3 \cdot n^2 + n - 6}{6}$$

• Прямой и обратный ход метода Гаусса имеют одинаковую сложность: $n^2+2\cdot n$. Учитывая, что в матрице U из разложения на главной диагонали стоят значения равные 1, сложность прямого хода составит: $\frac{n^2+3n}{2}$

Тогда итоговое количество операций составит:

$$\frac{2\cdot n^3+12\cdot n^2+22\cdot n-6}{6}$$

2.1.2 Тестирование на матрицах с диагональным преобладание

n	$\mid k \mid$	$ x^* - x_k $	$\frac{\ x^* - x_k\ }{\ x^*\ }$	Количество операций
10	0	$5.46103 \cdot 10^{-14}$	$2.7832 \cdot 10^{-15}$	
10	1	$1.43296 \cdot 10^{-13}$	$7.30302 \cdot 10^{-15}$	
10	2	$3.46274 \cdot 10^{-12}$	$1.76478 \cdot 10^{-13}$	
10	3	$1.29306 \cdot 10^{-11}$	$6.59007 \cdot 10^{-13}$	
10	4	$3.44677 \cdot 10^{-10}$	$1.75664 \cdot 10^{-11}$	569
10	5	$1.29248 \cdot 10^{-9}$	$6.5871 \cdot 10^{-11}$	
10	6	$3.30301 \cdot 10^{-8}$	$1.68337 \cdot 10^{-9}$	
10	7	$5.74436 \cdot 10^{-7}$	$2.92759 \cdot 10^{-8}$	
10	8	$8.32931 \cdot 10^{-6}$	$4.24501 \cdot 10^{-7}$	
10	9	$1.43609 \cdot 10^{-6}$	$7.31898 \cdot 10^{-8}$	
50	0	$1.14086 \cdot 10^{-12}$	$5.50651 \cdot 10^{-15}$	
50	1	$4.26714 \cdot 10^{-13}$	$2.0596 \cdot 10^{-15}$	
50	2	$2.93195 \cdot 10^{-10}$	$1.41515 \cdot 10^{-12}$	
50	3	$2.0648 \cdot 10^{-9}$	$9.96604 \cdot 10^{-12}$	
50	4	$6.88083 \cdot 10^{-9}$	$3.32113 \cdot 10^{-11}$	$4.6849 \cdot 10^4$
50	5	$1.4312 \cdot 10^{-7}$	$6.90788 \cdot 10^{-10}$	
50	6	$1.83487 \cdot 10^{-8}$	$8.85625 \cdot 10^{-11}$	
50	7	$2.38532 \cdot 10^{-5}$	$1.15131 \cdot 10^{-7}$	
50	8	0.000193578	$9.34332 \cdot 10^{-7}$	
50	9	0.00413754	$1.99704 \cdot 10^{-5}$	
100	0	$9.65618 \cdot 10^{-12}$	$1.66005 \cdot 10^{-14}$	
100	1	$1.06903 \cdot 10^{-10}$	$1.83783 \cdot 10^{-13}$	
100	2	$6.80943 \cdot 10^{-10}$	$1.17065 \cdot 10^{-12}$	
100	3	$9.96402 \cdot 10^{-9}$	$1.71298 \cdot 10^{-11}$	
100	4	$4.38007 \cdot 10^{-8}$	$7.53005 \cdot 10^{-11}$	$3.53699 \cdot 10^6$
100	5	$1.54526 \cdot 10^{-6}$	$2.65656 \cdot 10^{-9}$	
100	6	$1.16246 \cdot 10^{-6}$	$1.99846 \cdot 10^{-9}$	
100	7	$6.24677 \cdot 10^{-5}$	$1.07392 \cdot 10^{-7}$	
100	8	0.0003323	$5.71277 \cdot 10^{-7}$	
100	9	0.00224864	$3.86579 \cdot 10^{-6}$	
500	0	$1.59548 \cdot 10^{-11}$	$2.46801 \cdot 10^{-15}$	
500	1	$3.26512 \cdot 10^{-9}$	$5.05073 \cdot 10^{-13}$	
500	2	$1.2449 \cdot 10^{-7}$	$1.9257 \cdot 10^{-11}$	
500	3	$5.4828 \cdot 10^{-8}$	$8.4812 \cdot 10^{-12}$	
500	4	$1.14655 \cdot 10^{-5}$	$1.77358 \cdot 10^{-9}$	$4.2168499 \cdot 10^7$

500	5	$6.59951 \cdot 10^{-5}$	$1.02086 \cdot 10^{-8}$	
500	6	0.000661574	$1.02337 \cdot 10^{-7}$	
500	7	0.0112052	$1.73331 \cdot 10^{-6}$	
500	8	0.0891671	$1.3793 \cdot 10^{-5}$	
500	9	0.635155	$9.82504 \cdot 10^{-5}$	
1000	0	$2.48326 \cdot 10^{-8}$	$1.35912 \cdot 10^{-12}$	
1000	1	$1.55912 \cdot 10^{-8}$	$8.53328 \cdot 10^{-13}$	
1000	2	$3.0785 \cdot 10^{-7}$	$1.6849 \cdot 10^{-11}$	
1000	3	$1.72248 \cdot 10^{-5}$	$9.42737 \cdot 10^{-10}$	
1000	4	$2.15435 \cdot 10^{-5}$	$1.1791 \cdot 10^{-9}$	$3.35336999 \cdot 10^{8}$
1000	5	0.00109214	$5.97744 \cdot 10^{-8}$	
1000	6	0.0157364	$8.6127 \cdot 10^{-7}$	
1000	7	0.0697018	$3.81486 \cdot 10^{-6}$	
1000	8	0.843813	$4.61829 \cdot 10^{-5}$	
1000	9	1.70491	$9.33118 \cdot 10^{-5}$	

Можно заметить, что точность значительно уменьшается при увеличении как размерности пространства, так и числа k. Накопление погрешности происходит из-за слагаемого 10^{-k} , при уменьшении которого, теряется точность вычислений. Стоит заметить что при больших размерностях точность теряется быстрее, из-за прибавление 10^{-k} к большому числу, которое растет с увеличением размерности матрицы.

2.1.3 Тестирование на матрицах Гильберта

n	$ x^* - x_k $	$\frac{\ x^* - x_k\ }{\ x^*\ }$
10	$8.25036 \cdot 10^{-9}$	$4.20477 \cdot 10^{-10}$
50	$7.52844 \cdot 10^{-7}$	$3.63371 \cdot 10^{-9}$
100	$3.95193 \cdot 10^{-6}$	$6.79401 \cdot 10^{-9}$
500	0.000432803	$6.69491 \cdot 10^{-8}$
1000	0.00435918	$2.38583 \cdot 10^{-7}$

Тестирование на матрицах Гильберта также показывает уменьшении точности решения с увеличением размерности, из-за того что деление на большие числа приводит к уменьшению точности вычисляемого элемента.

2.2 Метод Гаусса с выбором ведущего элемента

2.2.1 Оценка количества операций

Для матрицы размера n решение уравнения методом Гаусса с выбором ведущего элемента количество операций будет равно:

$$\frac{n \cdot (n^2 - 3 \cdot n + 2)}{3} = \frac{n^3 - 3 \cdot n^2 + 2 \cdot n}{3}$$

2.2.2 Тестирование на матрицах с диагональным преобладание

n	$ k x^* - x_k $	$\frac{\ x^* - x_k\ }{\ x^*\ }$
Количество операций	l l	1 11. 11
10	$0 \mid 6.32562 \cdot 10^{-14}$	$3.22384 \cdot 10^{-15}$
10		$8.19336 \cdot 10^{-15}$
10		$ 1.17585 \cdot 10^{-13}$
10	$3 \mid 1.2928 \cdot 10^{-11}$	$6.58874 \cdot 10^{-13}$
10 240		$3.73281 \cdot 10^{-11}$
10		$2.12251 \cdot 10^{-10}$
10		$3.6595 \cdot 10^{-10}$
10	$7 \mid 1.43609 \cdot 10^{-7}$	$7.31899 \cdot 10^{-9}$
10	$8 \mid 5.45714 \cdot 10^{-6}$	$2.78121 \cdot 10^{-7}$
10	$9 \mid 1.00526 \cdot 10^{-5}$	$5.12329 \cdot 10^{-7}$
50	$0 \mid 3.39627 \cdot 10^{-12}$	$1.63926 \cdot 10^{-14}$
50		$3.41331 \cdot 10^{-13}$
50		$3.25012 \cdot 10^{-12}$
50	$3 \mid 1.86195 \cdot 10^{-8}$	$8.98695 \cdot 10^{-11}$
$50 \\ 3.92 \cdot 10^4$		$2.64366 \cdot 10^{-10}$
50		$4.42816 \cdot 10^{-11}$
50		$2.0635 \cdot 10^{-8}$
	I	

50	$\mid 7 \mid 3.20184 \cdot 10^{-5} \mid 1.54541 \cdot 10^{-7}$
50	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
50	
100	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
100	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
100	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
100	
100	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$3.234 \cdot 10^5$ 100	
100	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
100	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
100	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
100	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
500	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
500	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
500	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
500	$3 \mid 4.62975 \cdot 10^{-6} \mid 7.16164 \cdot 10^{-10}$
500	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$4.1417 \cdot 10^7$ 500	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
500	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
500	
500	
500	9 5.06399 0.000783335
1000	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
1000	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
1000	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
1000	$3 \mid 4.60324 \cdot 10^{-5} \mid 2.51941 \cdot 10^{-9}$
1000	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$3.32334 \cdot 10^{8}$ 1000	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
1000	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
1000	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

1000	8	2.49188	0.000136384
1000	9	33.2835	0.00182164

Здесь также можно наблюдать потерю точности при увеличении размерности и числа k. Метод гаусса работает с плотными матрицами, и требует большего числа операций, что приводит к меньшей точности результата по сравнению с прямым методом. Для больших размерностей результирующая погрешность получается достаточно большой.

2.2.3 Тестирование на матрицах Гильберта

n	$\ x^* - x_k\ $	$\frac{\ x^* - x_k\ }{\ x^*\ }$
10	$4.53743 \cdot 10^{-8}$	$2.31249 \cdot 10^{-9}$
50	$6.4107 \cdot 10^{-7}$	$3.09422 \cdot 10^{-9}$
100	$2.98603 \cdot 10^{-6}$	$5.13347 \cdot 10^{-9}$
500	0.000384986	$5.95524 \cdot 10^{-8}$
1000	0.00281381	$1.54003 \cdot 10^{-7}$

На плотных матрицах Гильберта метод Гаусса с выбором главного элемента показывает меньшую погрешность нежели прямой метод. Точность увеличивается ≈ 2 раза.

2.3 Метод сопряженных градиентов

Для тестирования метода сопряженных градиентов применялся следующий метод генерирования матриц с диагональным преобладанием:

$$a_{ii} = \begin{cases} \sum_{i \neq j} a_{ij} & i > 1\\ \sum_{i \neq j} a_{ij} + 1 & i = 1 \end{cases}$$

, где a_{ij} и расстояние от главной диагонали выбирались так-же, как и для методов Гаусса. Аналогично генерировались матрицы с обратным знаком внедиагональных элементов для тестирования метода Сопряженных градиентов.

2.3.1 Тестирование на матрицах с диагональным преобладание

n	Количество итераций	$ x^* - x $	$\frac{\ x^*-x\ }{\ x^*\ }$	$\operatorname{cond}(A)$
10	10	$6.52282 \cdot 10^{-13}$	$3.32434 \cdot 10^{-14}$	0.0638468
50	41	$8.95982 \cdot 10^{-7}$	$4.32458 \cdot 10^{-9}$	0.142443
100	44	$6.25949 \cdot 10^{-6}$	$1.07611 \cdot 10^{-8}$	0.153971
500	85	$2.94728 \cdot 10^{-5}$	$4.55907 \cdot 10^{-9}$	0.0545894
1000	82	$7.59348 \cdot 10^{-5}$	$4.156 \cdot 10^{-9}$	0.0502845
10000	238	0.000528598	$9.15489 \cdot 10^{-10}$	0.0134006
100000	909	0.00839306	$4.59704 \cdot 10^{-10}$	0.00494516

Погрешность данного метода решения СЛАУ так-же, как и предыдущих погрешность увеличивается с ростом размерности, при чем точность решения сопоставима. Главное преимущество данного метода в том, что он выполняет

2.3.2 Тестирование на матрицах с диагональным преобладание с обратным знаком недиагональных элементов

n	Количество итераций	$ x^* - x $	$\frac{\ x^* - x\ }{\ x^*\ }$	cond(A)
10	10	$5.11907 \cdot 10^{-12}$	$2.60892 \cdot 10^{-13}$	0.866552
50	28	$7.79714 \cdot 10^{-5}$	$3.7634 \cdot 10^{-7}$	4.77355
100	29	0.000204195	$3.51045 \cdot 10^{-7}$	3.81639
500	28	0.00174227	$2.69507 \cdot 10^{-7}$	4.77378
1000	32	0.0122171	$6.68658 \cdot 10^{-7}$	7.86291
10000	38	0.235374	$4.07649 \cdot 10^{-7}$	6.09502
100000	47	7.31364	$4.00582 \cdot 10^{-7}$	5.48494

Для матриц с неотрицательными внедиагональными элементами можно наблюдать большую погрешность, но в целом меньшее количество итераций.

2.3.3 Тестирование на матрицах Гильберта

n	Количество итераций	$ x^*-x $	$\frac{\ x^* - x\ }{\ x^*\ }$	cond(A)
10	5	0.311773	0.0158894	165700
50	11	1.48018	0.00714428	$1.02527 \cdot 10^6$
100	14	4.02852	0.00692568	804373
500	18	53.2963	0.00824426	440191
1000	21	144.311	0.0078983	421074

На плотных матрицах метод сопряженных градиентов получает очень большую погрешность, при чем она довольно быстро растет с увеличением размерности матрицы. Стоит отметить, что даже на больших размерностях метод показывает достаточно малое число итераций как

3 Выводы

Самую высокую точность решения на матрицах с диагональным преобладанием показывает прямой метод Гаусса на основе LU-разложения, немного менее точен метод Гаусса с выбором главного элемента. Метод сопряженных градиентов выдает абсолютную погрешность на три порядка хуже чем два других метода. На произвольных плотных матрицах метод Гаусса с выбором главного элемента работает с меньшей погрешностью.

По требуемому количеству памяти на разреженных матрицах лучше всего показывает себя прямой метод, так как ему достаточно матрицы в профильной форме. На разреженных симметричных матрицах метод сопряженных градиентов также требует малое количество памяти.

По количеству действий метод сопряженных градиентов на больших размерностях показывает лучшие результаты. Построение матрицы в разреженном формате выполняется за $O(n^2)$, на каждой итерации выполняется два матрично векторных произведений $(O(n^2))$. Заметим, что количество часто много меньше размерности матрицы, тогда как другие методы имеют асимптотику $O(n^3)$.