Universidade Tecnológica Federal do Paraná – UTFPR Departamento Acadêmico de Eletrônica – DAELN Departamento Acadêmico de Informática – DAINF Engenharia de Computação

Disciplina: IF66J - Oficina de Integração 3

Semestre: 2016/1

RELATÓRIO GERENCIAL Dalle Pad – O Gadget que te transforma em um DJ

Equipe: Dalle Pad

Leonardo Winter Pereira / leonardowinterpereira@gmail.com

Lucas Zimmermann Cordeiro / luke_lzc@gmail.com Luis Felipe Mazzuchetti Ortiz / luisfmazzu@gmail.com

PRÉ-PROJETO

Perfil do projeto

Problema:	O controlador MIDI auxilia músicos amadores e profissionais na edição e criação de músicas, incentivando-os à utilizar sua criatividade com os diferentes tipos de efeitos e funcionalidades. Por possuir um preço elevado, principalmente em lojas brasileiras, músicos amadores e/ou sem condições financeiras podem não possuir acesso à esse produto. Assim, o problema do projeto se limita ao custo total do projeto e à utilizaçao da conexão Bluetooth. Ao longo do desenvolvimento do projeto, o problema que se procura resolver é: Existe como confeccionar um controlador MIDI que utilize as comunicações citadas e que possua custo acessivel?
Objetivo:	Desenvolver um controlador MIDI capaz de exercer todas as principais funções impostas a ele no meio musical através de um dispositivo que possua sistema operacional <i>Android</i> e comunicação por bluetooth ou através de um computador ou <i>notebook</i> , utilizando-se das comunicações USB e MIDI.
Visão Geral	:

Requisitos

Fun	Funcionais			
1	O software deverá permitir ao usuário final controlar dados MIDI;			
2	O software deverá permitir que o usuário altere as configurações do Dalle Pad;			
3	O software deverá realizar funções básicas, como trocar efeitos e tocá-los;			
4	O hardware deverá possibilitar uma fácil interação do usuário com o software através de botões e potenciômetros;			
5	O hardware deverá realizar uma ação ao ser pressionado um botão ou modificado um potênciometro.			

Não	funcionais
1	O projeto deverá possuir um relatório técnico;
2	O hardware deverá possuir PCB's para facilitar o interfaceamento e evitar o acúmulo de fios;
3	O aplicativo deverá possuir uma Interface gráfica funcional (em um estado inicial deve ser necessário ao menos a edição de som para cada botão, efeitos e volume, bem como uma interface simples de aprendizado);
4	O projeto deverá apresentar conexão entre ambas as partes através de USB, MIDI e Bluetooth;
5	O invólucro deverá ser de plástico (para que possa ser impresso em uma impressora 3D) ou de um material que possa ser desenvolvido pela equipe;
6	O software deverá ser desenvolvido na plataforma Android.

Detalhes de implementação

Sistema embarcado:	- Microcontrolador Arduino Mega;			
	- Botão interruptor com parafuso;			
	- Potenciômetro Mixer Fader B10K;			
	- Potenciômetro Linear B10K;			
	- Shield MIDI;			
	- Módulo Bluetooth;			
	- Invólucro de plástico / Madeira / Acrílicro (ou semelhante - Poliestireno).			
Comunicação:	- Bluetooth;			
	- MIDI.			
Estação base:	- PC: Software livre não desenvolvido pela equipe, utilizado para testar todas funcionalidades presentes em um controlador MIDI;			
	- Android: Software desenvolvido pela equipe com objetivo de controlar funcionalidades básicas do controlador MIDI à distância, como a troca de efeitos dos botões ou reprodução de música.			
Invólucro:	- SOLID WORKS;			
	- Versão de plástico já com análise de custos;			
	- Versão de Madeira – baixo custo.			

Perfil da equipe

Nome:	Leonardo Winter Pereira
Competências:	- Oratória;
	- Metódico;
	- Organização;
	- Utilização de Softwares para projetos mecânicos;
	- Programação.
Funções:	- Poder de tomar decisões em nome da equipe, preferencialmente, mas não necessariamente, ouvindo a opinião dos demais integrantes do grupo e respeitando a opinião que agrade a maioria;
	- Falar em nome da equipe, quando não for possível que a equipe toda o faça;
	- Desenvolver o projeto mecânico;
	- Auxiliar no desenvolvimento do aplicativo.

Nome:	Luis Felipe Mazzuchetti Ortiz						
Competências:	- Programação para Android;						
	- Manutenção de software;						
	- Metódico;						
	- Organizado.						
Funções:	-Desenvolver o esquemático do Software do projeto; -Entender a transferência de dados MIDI entre o hardware o software; -Estudar sobre os protocolos MIDI e decidir qual será melho utilizado para o projeto; -Desenvolver o software para a plataforma Android; -Corrigir eventuais problemas no hardware; -Aprimorar o software caso haja tempo antes do fim de projeto.						

Nome:	Lucas Zimmermann Cordeiro					
Competências:						
	- Eletrônica digital;					
	- Confecção de placas de circuito impresso;					
	- Debug e manutenção de hardware;					
Funções:	-Projetar e montar e testar o hardware necessário;					
	-Entender o funcionamento do Shield MIDI e módulo Bluetooth;					
	-Interfacear os módulos e componentes com o microcontrolador utilizado;					
	-Corrigir eventuais problemas no hardware;					
	-Desenvolver o esquemático da parte elétrica do projeto.					

Análise de riscos

1º ETAPA: IDEN	1º ETAPA: IDENTIFICAÇÃO DO RISCO					
Denominação d	o risco: De	lay no envio e rec	ebimento de	dados MIDI no aplic	ativo Android	
Descrição do Ri						
A transmissão d	e dados Mi	IDI através da co	nexão Blueto	ooth pode demorar	até seis vezes	
mais que com o	cabo MIDI.					
2º ETAPA: AVAI	LIAÇÃO DO	RISCO				
Impacto:	Alto:()	Médio/Alto:()	Médio:(x)	Médio/Baixo:()	Baixo:()	
Explique: Ao uti	lizar o aplic	ativo Android, too	ar efeitos po	de se causar incôn	nodo devido ao	
atraso do aperto	dos botões	e a saída do som				
					1	
Probabilidade:	Alto:()	Médio/Alto:()	Médio:(x)	Médio/Baixo:()	Baixo: ()	
Explique: Mesm	o sendo ma	ais lento, essa dife	erença de ter	npo tem pouca cha	nce de afetar a	
nossa audição e, assim, parecendo igual ao ligado ao cabo MIDI.						
3º ETAPA: RESPOSTA AO RISCO						
Estratégias e Ações: Utilização de técnicas apropriadas ao estabelecer a conexão Bluetooth.						

1º ETAPA: IDENTIFICAÇÃO DO RISCO Denominação do risco: Indisponibilidade da Impressora 3D do NUFER ou custo elevado. Descrição do Risco: Impressora 3D do NUFER (Núcleo de Prototipagem e Ferramental) indisponível ou apresentar um preço para a confecção muito acima do valor estipulado pelo gerente. 2º ETAPA: AVALIAÇÃO DO RISCO Alto:() Médio/Alto:(x) Médio:(Médio/Baixo:(Baixo:(Impacto: Explique: Como é requisito para a aprovação do projeto, este risco, caso ocorra, pode inviabilizar o projeto. Probabilidade: Alto:() Médio/Alto:() Médio:(x) Médio/Baixo:(Baixo: (Explique: Caso a equipe não dê a devida preocupação para este risco, o mesmo pode ocorrer com uma alta chance, visto que é utilizado um serviço terceirizado. 3º ETAPA: RESPOSTA AO RISCO Estratégias e Ações: Projetar o invólucro até o final da primeira fase do projeto, para que a equipe tenha flexibilidade na data para realizar a impressão. E, caso o problema realmente ocorra, procurar uma outra forma de realizar a impressão ou, em último caso, replanejar as atividades para que um dos integrantes do grupo passe a ser responsável pela confecção do mesmo nos laboratórios de mecânica da UTFPR.

1º ETAPA: IDEN	TIFICAÇÃO	O DO RISCO			
Denominação d	o risco: Atr	rasos na entrega de componentes.			
Descrição do Ri	sco:				
No desenvolvime	ento do proj	ijeto, alguns componentes serão importados, o que pode acarretar	ar		
em atraso.					
2º ETAPA: AVA	LIAÇÃO DO	O RISCO			
Impacto:	Alto:()	Médio/Alto:(x) Médio:() Médio/Baixo:() Baixo:()			
Explique: O tem	po de atras	so e a importância do componente podem afetar a implementação	0		
de alguns requisi	tos, até a in	nviabilidade de sua conclusão.			
Probabilidade:	Alto:(x)	Médio/Alto:() Médio:() Médio/Baixo:() Baixo: ()			
Explique: Os botões já apresentam atraso. Um atraso ainda maior complica cada vez mais o					
desenvolvimento	desenvolvimento do projeto.				
3º ETAPA: RESPOSTA AO RISCO					
Estratégias e Ações: Encomendar outra leva de botões ou então comprar, com um custo					
elevado, de algum revendedor brasileiro.					

1º ETAPA: IDENTIF	1º ETAPA: IDENTIFICAÇÃO DO RISCO					
Denominação do ri	sco: Proble	mas com o adap	tador Bluetoo	th		
Descrição do Risco	D :					
O adaptador Blueto	oth utilizado	no sistema emb	arcado pode	apresentar problem	as. A compra	
de outro demorará to	empo neces	sário para o atras	so de parte de	o projeto.		
2º ETAPA: AVALIA	ÇÃO DO RI	SCO				
Impacto:	Alto:()	Médio/Alto:(x)	Médio:()	Médio/Baixo:()	Baixo:()	
Explique: Caso não	haja comur	nicação Bluetooth	n, o desenvol	vimento o aplicativo	Android seria	
atrasado devido à no	ecessidade d	dos testes usand	o essa comui	nicação.		
Probabilidade:	Alto:()	Médio/Alto:()	Médio:()	Médio/Baixo:(x)	Baixo: ()	
Explique: Membros	Explique: Membros da equipe já realizaram testes e o adaptador funcionou normalmente.					
3º ETAPA: RESPOSTA AO RISCO						
Estratégias e Ações: Procurar em lojas brasileiras adaptadores de melhor custo e menor						
tempo de envio, e comprá-lo caso haja falha.						

1º ETAPA: IDENTIFICAÇÃO DO RISCO Denominação do risco: Problemas com o shield MIDI Descrição do Risco: O shield MIDI utilizado no sistema embarcado pode apresentar problemas. O mesmo shield só está disponível fora do Brasil, sendo necessário adquirir outro tipo de shield e aprender sobre o mesmo. 2º ETAPA: AVALIAÇÃO DO RISCO Médio/Alto:(x) Médio:() Médio/Baixo:() Impacto: Alto:() Explique: O principal meio de testes do controlador MIDI será feito através do cabo MIDI conectado com o software no computador. Com a falta do shield MIDI, a equipe deverá realizar uma conversão (via software) dos dados recebidos pelo microcontrolador a partir da porta USB para dados MIDI. Entretanto, tal conversão é indesejada, uma vez que parte do projeto se baseia na utilização de conexão MIDI real. Alto:() Médio/Alto:() Médio:(x) Médio/Baixo:() Probabilidade: Baixo: () Explique: O shield MIDI adquirido é desenvolvido por uma pequena empresa européia e por isso não possui vários guias disponíveis sobre seu uso, podendo dificultar a utilização do 3º ETAPA: RESPOSTA AO RISCO Estratégias e Ações: Adquirir novo shield MIDI no Brasil e estudá-lo o quanto antes.

Formulário sugerido por Gasnier, 2000, Editora IMAN.

Cronograma

	Atividade	Início	Fim	%
1	Plano de projeto	02/03/2016	16/03/2016	100
2	Confecção do Relatório Gerencial	23/03/2016	29/03/2016	100
3	Compra dos materiais iniciais	01/03/2016	06/04/2016	80
4	Desenvolver esquemáticos	30/03/2016	06/04/2016	0
5	Desenvolver versão de testes do hardware	07/04/2016	20/04/2016	60
6	Desenvolver aplicativo inicial para Android	07/04/2016	01/05/2016	0
	com comunicação de dados MIDI			
7	Projetar e confeccionar a PCB	07/04/2016	20/04/2016	0
8	Projeto do invólucro no Solidworks	30/03/2016	13/04/2016	80
9	Confecção do invólucro	13/04/2016	01/05/2016	0
10	Soldagem dos componentes da PCB	20/04/2016	27/04/2016	0
11	Teste da PCB e componentes externos	27/04/2016	04/05/2016	0
12	Montagem dos componentes no invólucro	04/05/2016	11/05/2016	0
13	Finalização do aplicativo para Android	01/05/2016	25/05/2016	0
14	Montagem do produto final e testes	11/05/2016	25/05/2016	0
15	Correções e aprimoramentos	25/05/2016	15/06/2016	0
16	Testes finais	15/06/2016	22/06/2016	0
17	Produção do relatório técnico	23/03/2016	29/06/2016	40

Gantt Completo - Opcional

Entregas (AV1, AV2, AV3, AV4)

Entrega 1 (AV1)

- Bases teóricas (obrigatório)
- Re-avaliação de riscos (obrigatório)
- Acompanhamento do cronograma (obrigatório)
- Dificuldades (obrigatório)
- Atividades futuras (obrigatório)

Entrega 2 (AV2)

- PCB confeccionada
- Invólucro pronto
- Software em andamento: Apresentar conexão Bluetooth com o Arduino, além de receber dados MIDI (sem necessariamente apresentar funções relevantes ao projeto)
- Acompanhamento do cronograma (obrigatório)
- Dificuldades (obrigatório)
- Atividades futuras (obrigatório)

Entrega 3 (AV3)

- Conexão entre Software e Hardware, tanto Bluetooth quanto MIDI
- Software apresentando funções básicas definidas nos detalhes da implementação
- Hardware finalizado e montado do invólucro
- Acompanhamento do cronograma (obrigatório)
- Dificuldades (obrigatório)
- Atividades futuras (obrigatório)

Entrega 4 (AV4)

- Demonstração do funcionamento final em um video 3 minutos (obrigatório)
- Acompanhamento do cronograma (obrigatório)
- Dificuldades (obrigatório)
- Atividades futuras (obrigatório)
- Custos reais (obrigatório)

1. ENTREGA 1 (AV1)

1.1 Bases teóricas

Android Reference. 2015. Disponível em: http://developer.android.com

- Referência básica para qualquer projeto em Android;
- Auxílio na conexão sem fio / MIDI;

JACKSON, W. Learn Android App Development. 368: Focal Press, 2013

- Será utilizado para auxiliar no desenvolvimento do aplicativo Android;
- Útil para entender a lógica por trás de algumas bases do Android, através de exemplos.

ORACLE. **Java Sound Programmer Guide**. 2015, Disponível em: http://docs.oracle.com/javase/7/docs/technotes/guides/sound/programmer_guide/contents.html

- Será utilizado para auxiliar no desenvolvimento do aplicativo Android;
- Auxílio para manipular dados MIDI pela linguagem Java, utilizando o Java Sound API.

COLBECK, J. MIDI Inside and Out. musicPRO guides, 2016

- Referência simples sobre o protocolo MIDI;
- Útil para um entendimento simplificado sobre o protocolo.

GUERIN, R. Midi Power! Course Technology PTR, 2009

- Referência completa sobre o protocolo MIDI;
- Útil se for de interesse ter um entendimento completo sobre o protocolo.

MCGUIRE, S. Modern MIDI. Focal Press, 2013

- Referência completa sobre o protocolo MIDI;
- Útil se for de interesse ter um entendimento completo sobre o protocolo.

ALVES, L. Fazendo Música no Computador. Editora Campus, 2009.

- Referência brasileira sobre MIDI;
- Além de tratar sobre o protocolo MIDI, o autor também se preocupa em ensinar o leitor a trabalhar com música no computador, ótimo para ter um entendimento básico sobre o assunto.

GHASSAEI, A. **Send and Receive MIDI with Arduino**. 2015. Disponível em: http://www.instructables.com/id/Send-and-Receive-MIDI-with-Arduino

- Importante auxílio para entender como o Arduino se conecta com uma porta de entrada / saída MIDI;

- Exemplo simplificado de envio de mensagens MIDI.

RAWASHDEH, M. **Arduino and Bluetooth HC-05 Connecting easily**. 2016. Disponível em:

- http://www.instructables.com/id/Arduino-AND-Bluetooth-HC-05-Connecting-easily/>
- Importante auxílio para entender como o Arduino se conecta com um módulo Bluetooth;
- Exemplo simplificado de uso.

1.2 Re-avaliação de riscos

1º ETAPA: IDEN	1º ETAPA: IDENTIFICAÇÃO DO RISCO					
Denominação d	o risco: De	lay no envio e rec	ebimento de	dados MIDI no aplic	ativo Android	
Descrição do Ri	sco:					
A transmissão d	e dados M	IDI através da co	nexão Blueto	ooth pode demorar	até seis vezes	
mais que com o	cabo MIDI.					
·						
		D1000				
2º ETAPA: AVA	LIAÇAO DO	RISCO				
Impacto:	Alto:()	Médio/Alto:()	Médio:(x)	Médio/Baixo:()	Baixo:()	
Explique: Ao uti	lizar o aplic	cativo Android, too	ar efeitos po	de se causar incôn	nodo devido ao	
atraso do aperto	dos botões	e a saída do som				
•						
Probabilidade:	Alto:()	Médio/Alto:()	Médio:(x)	Médio/Baixo:()	Baixo: ()	
Explique: Mesm	o sendo ma	ais lento, essa dife	erença de ter	npo tem pouca cha	nce de afetar a	
nossa audição e, assim, parecendo igual ao ligado ao cabo MIDI.						
3º ETAPA: RESPOSTA AO RISCO						
Estratégias e Ações: Utilização de técnicas apropriadas ao estabelecer a conexão						
Bluetooth.						
	•					

1º ETAPA: IDENTIFICAÇÃO DO RISCO Denominação do risco: Indisponibilidade da Impressora 3D do NUFER ou custo elevado. Descrição do Risco: Impressora 3D do NUFER (Núcleo de Prototipagem e Ferramental) indisponível ou apresentar um preço para a confecção muito acima do valor estipulado pelo gerente. 2º ETAPA: AVALIAÇÃO DO RISCO Médio/Alto:() Médio:(x) Médio/Baixo:(Impacto: Alto:() Baixo:(Explique: A impressora 3D poderá projetar o invólucro com o material mais viável e mais seguro para o projeto. Porém, também há a possibilidade de projetá-lo com outros materiais, podendo atrasar o projeto. **Probabilidade:** Alto:() Médio/Alto:() Médio:(x) Médio/Baixo:() Explique: Caso a equipe não dê a devida preocupação para este risco, o mesmo pode ocorrer com uma alta chance, visto que é utilizado um serviço terceirizado. 3º ETAPA: RESPOSTA AO RISCO Estratégias e Ações: Projetar o invólucro até o final da primeira fase do projeto, para que a equipe tenha flexibilidade na data para realizar a impressão. E, caso o problema realmente

ocorra, procurar uma outra forma de realizar a impressão ou, em último caso, replanejar as atividades para que um dos integrantes do grupo passe a ser responsável pela confecção do

mesmo nos laboratórios de mecânica da UTFPR.

1º ETAPA: IDEN	1º ETAPA: IDENTIFICAÇÃO DO RISCO					
Denominação de	o risco: Atra	asos na entrega de	e componente	es.		
Descrição do Risco: No desenvolvimento do projeto, alguns componentes serão importados, o que pode acarretar em atraso.						
2º ETAPA: AVAI	LIAÇÃO DO	RISCO				
Impacto:	Alto:()	Médio/Alto:(x)	Médio:()	Médio/Baixo:()	Baixo:()	
Explique: O tem	po de atras	o e a importância	do compone	nte podem afetar a i	mplementação	
de alguns requisi	tos, até a in	viabilidade de sua	conclusão.			
Probabilidade:	Alto:(x)	Médio/Alto:()	Médio:()	Médio/Baixo:()	Baixo: ()	
Explique: Os bo	tões já apre	esentam atraso. U	m atraso aind	da maior complica ca	ida vez mais o	
desenvolvimento do projeto.						
3º ETAPA: RESPOSTA AO RISCO						
Estratégias e A elevado), de algu	,		a de botões	ou então comprar,	com um custo	

1º ETAPA: IDENTIFICAÇÃO DO RISCO						
Denominação do r	isco: Proble	mas com o adap	tador Blueto	oth		
Descrição do Risc	o:					
O adaptador Blueto	oth utilizado	no sistema emb	arcado pode	apresentar problem	as. A compra	
de outro demorará t	empo neces	sário para o atra	so de parte d	lo projeto.		
2º ETAPA: AVALIA	ÇÃO DO RI	SCO				
Impacto:	Alto:()	Médio/Alto:(x)	Médio:()	Médio/Baixo:()	Baixo:()	
Explique: Caso nã	io haja com	unicação Blueto	oth, o deser	nvolvimento o aplic	ativo Android	
seria atrasado devid	do à necession	dade dos testes	usando essa	comunicação.		
Probabilidade:	Alto:()	Médio/Alto:()	Médio:()	Médio/Baixo:(x)	Baixo: ()	
Explique: Membros	da equipe j	á realizaram test	es e o adapta	ador funcionou norm	nalmente.	
3º ETAPA: RESPO	3º ETAPA: RESPOSTA AO RISCO					
Estratégias e Ações: Procurar em lojas brasileiras adaptadores de melhor custo e menor						
tempo de envio, e comprá-lo caso haja falha.						

1º ETAPA: IDENTIFICAÇÃO DO RISCO							
Denominação do ri	isco: Proble	mas com o shiel	d MIDI				
Descrição do Risco	0:						
O shield MIDI utiliza	do no sistem	na embarcado p	ode apresent	ar problemas. O me	smo shield só		
está disponível fora	do Brasil, se	endo necessário	adquirir outr	o tipo de shield e a	prender sobre		
o mesmo.							
2º ETAPA: AVALIA	ÇÃO DO RI	SCO					
Impacto:	Alto:(x)	Médio/Alto:()	Médio:()	Médio/Baixo:()	Baixo:()		
Explique: O princip	al meio de	testes do contr	olador MIDI	será feito através	do cabo MIDI		
conectado com o s	software no	computador. C	om a falta d	lo shield MIDI, a e	quipe deverá		
realizar uma conver	rsão (via sof	tware) dos dado	os recebidos	pelo microcontrolad	lor a partir da		
porta USB para dad	dos MIDI. E	ntretanto, tal co	nversão é in	desejada, uma vez	que parte do		
projeto se baseia na	ı utilização d	e conexão MIDI	real.				
Probabilidade: Alto:() Médio/Alto:() Médio:(x) Médio/Baixo:() Baixo: ()							
Explique: O shield MIDI adquirido é desenvolvido por uma micro empresa européia e por isso							
não possui vários guias disponíveis sobre seu uso, podendo dificultar a utilização do mesmo.							
3º ETAPA: RESPOSTA AO RISCO							
Estratégias e Ações: Adquirir novo shield MIDI no Brasil e estudá-lo o quanto antes.							

Formulário sugerido por Gasnier, 2000, Editora IMAN.

1.3 Acompanhamento do cronograma

	Atividade	Início	Fim	%
1	Plano de projeto	02/03/2016	16/03/2016	100
2	Elaboração do Relatório Gerencial	23/03/2016	29/03/2016	100
3	Compra dos materiais iniciais	01/03/2016	06/04/2016	100
4	Desenvolver diagramas	30/03/2016	06/04/2016	100
5	Desenvolver versão de testes do hardware	07/04/2016	20/04/2016	80
6	Desenvolver aplicativo inicial para Android	07/04/2016	01/05/2016	10
	com comunicação de dados MIDI			
7	Projetar e confeccionar a PCB	07/04/2016	20/04/2016	33
8	Projeto do invólucro no Solidworks	30/03/2016	13/04/2016	100
9	Confecção do invólucro	13/04/2016	01/05/2016	60
10	Soldagem dos componentes da PCB	20/04/2016	27/04/2016	0
11	Teste da PCB e componentes externos	27/04/2016	04/05/2016	0
12	Montagem dos componentes no invólucro	04/05/2016	11/05/2016	0
13	Finalização do aplicativo para Android	01/05/2016	25/05/2016	0
14	Montagem do produto final e testes	11/05/2016	25/05/2016	0
15	Correções e aprimoramentos	25/05/2016	15/06/2016	0
16	Testes finais	15/06/2016	22/06/2016	0
17	Produção do relatório técnico	23/03/2016	29/06/2016	40

Gantt Completo - Opcional

1.4 Dificuldades

01

Dificuldade: Alto custo de impressão 3D para o invólucro (500% sobre o valor para o projeto em madeira, considerando apenas o material gasto).

Solução: Realizar o invólucro de madeira, pois assim conseguimos reduzir bastante o custo e não perdemos qualidade.

02

Dificuldade: Utilização de um shield Midi para Arduino pouco documentado e sem exemplos online para servirem de guia.

Solução: O esquemático disponível do shield é relativamente simples, logo conseguimos realizar testes para compreendermos melhor o seu funcionamento.

03

Dificuldade: Alta densidade de fios que deverão ser conectados em diversas partes do circuito.

Solução: Utilizar fios previamente encapados, com pares trançados, para melhor organização, facilitar debugs, e evitar curtos e problemas mecânicos.

04

Dificuldade: Construção do diagrama UML do software (falta de experiência com a manipulação de dados MIDI em conjunto com o bluetooth).

Solução: A equipe encontrou uma documentação utilizando Java que irá ajudar no entendimento. Caso seja necessário a modificação do diagrama, o mesmo será feito durante o desenvolvimento do software.

1.5 Atividades futuras

1	Concluir versão de testes do hardware
2	Projetar e confeccionar a PCB
3	Soldagem dos componentes da PCB
4	Confecção do invólucro
5	Desenvolver aplicativo inicial para Android com comunicação de dados
	MIDI

2. ENTREGA 2 (AV2)

- 2.1 Software em andamento: Apresentar conexão Bluetooth com o Arduino, além de receber dados MIDI (sem necessariamente apresentar funções relevantes ao projeto)
- Definido diagrama UML para o software;
- Criado o design inicial do software;
- Conexão bluetooth comunicando com o arduino;
- Aprimorado o design do software;
- O Software recebe dados MIDI do ARDUINO com sucesso.

Figura 1- Digrama UML

Figura 2 - Design Inicial do Software

Figura 3 - Design aprimorado do software - MainView

Figura 4 - Design aprimorado do software - ConnectedView

2.2 Invólucro pronto

- Projetado, inicialmente, uma versão para ser impressa utilizando uma impressora 3D;
- Depois de verificar o elevado custo para a confecção, foi desenvolvido um novo projeto, desta vez em madeira;
- Foi contratado um serviço terceirizado para os cortes e montagem do invólucro;
- Foi necessário desenvolver uma forma de colar as peças em forma de uma tampa. Para tal, a melhor solução encontrada encontra-se demonstrada nas figuras abaixo.

Figura 5 - Invólucro após corte

Figura 6 – Invólucro montado – Visão inferior

2.3 PCB confeccionada

- Desenhado em papel e a mão, a visualização da posição dos componentes (barras de pinos em sua maioria) e trilhas, além de dimensões da placa;
- Criado o modelo da PCB no CAD Eagle;
- Impressa a folha com o desenho da PCB para ser imprimida em gráfica e

passada para a placa;

- Placa de fenolite adquirida e cortada para se adequar às dimensões do projeto;
- Modelo passado para a placa, para ser retocada (com caneta própria para isso) a mão e então corroída;
- Placa ainda deve ser limpa, furada, e componentes soldados;

Figura 7 – Design da PCB

2.4 Acompanhamento do cronograma

	Atividade	Início	Fim	%
1	Plano de projeto	02/03/2016	16/03/2016	100
2	Elaboração do Relatório Gerencial	23/03/2016	29/03/2016	100
3	Compra dos materiais iniciais	01/03/2016	06/04/2016	100
4	Desenvolver diagramas	30/03/2016	06/04/2016	100
5	Desenvolver versão de testes do hardware	07/04/2016	20/04/2016	100
6	Desenvolver aplicativo inicial para Android	07/04/2016	01/05/2016	100
	com comunicação de dados MIDI			
7	Projetar e confeccionar a PCB	07/04/2016	20/04/2016	80
8	Projeto do invólucro no Solidworks	30/03/2016	13/04/2016	100
9	Confecção do invólucro	13/04/2016	01/05/2016	100
10	Soldagem dos componentes da PCB	20/04/2016	27/04/2016	0
11	Teste da PCB e componentes externos	27/04/2016	04/05/2016	50
12	Montagem dos componentes no invólucro	04/05/2016	11/05/2016	40
13	Finalização do aplicativo para Android	01/05/2016	25/05/2016	20
14	Montagem do produto final e testes	11/05/2016	25/05/2016	40
15	Correções e aprimoramentos	25/05/2016	15/06/2016	0
16	Testes finais	15/06/2016	22/06/2016	0
17	Produção do relatório técnico	23/03/2016	29/06/2016	40

Gantt Completo - Opcional

2.5 Dificuldades

01

Dificuldade: Achar um CAD de desenvolvimento de placa adequado

Solução: Escolhido o Eagle pelo motivo de este ser livre, e como a utilização deste não era conhecida, tutoriais online foram seguidos para a confecção da placa.

02

Dificuldade: Achar a melhor maneira de conectar os botões ao processador

Solução: Cabos com conectores faston serão confeccionados, estes podem ser facilmente ligados aos botões via um cabo flat, que conecta na PCB, que por sua vez se conecta ao Arduino.

03

Dificuldade: Encontrar a melhor maneira de enviar dados MIDI através do ARDUINO

Solução: Através de algumas referências que apresentamos nas Bases Teóricas, conseguimos manipular dados MIDI, tal que softwares terceirizados já conseguem reconhecer os eventos.

2.6 Atividades futuras

1	Finalizar a montagem dos componentes no invólucro
2	Finalização do aplicativo para Android
3	Soldagem dos componentes da PCB
4	Teste da PCB e componentes externos

3. ENTREGA 3 (AV3)

3.1 Placa Universal confeccionada (Revisão da AV2)

- Uma vez que a confecção da PCB apresentou diversos problemas, foi definido modificar a ideia inicial e trabalhar com uma Placa Universal;
- Com uma PU de cobre e com o mesmo desenho anterior (segue nas imagens), o resultado adquirido encontra-se nas imagens abaixo:

Figura 8 – Desenho inicial da PCB

Figura 9 – Posicionamento da Placa Universal no Invólucro

3.2 Conexão entre Software e Hardware, tanto Bluetooth quanto MIDI

- A conexão, tanto via bluetooth quanto MIDI está funcionando perfeitamente.
- O único problema é o delay apresentado na comunicação. Problema este que ainda está em fase de melhorias.

Figura 10 - Aplicativo conectado com o Dalle Pad

3.3 Software apresentando funções básicas definidas nos detalhes da implementação

- Design do software se mantém o mesmo;
- Conexão com o arduino através do bluetooth estável;
- Assim que a conexão com o arduino é estabelecida, há a transição para a tela ConnectedView. Nessa tela, se um botão é apertado, o som sairá pelo celular (utilizando sons predefinidos no software);
- Ao clicar em um dos botões pela tela do celular, a opção de mudar o efeito daquele botão estará disponível para o usuário;
- Ao utilizarmos mais de um botão através do sotware, foi observado um grande delay que ainda não foi resolvido pela equipe;

Figura 11 - Seleção de efeitos no software

3.4 Hardware finalizado e montado no invólucro

- Cabos Flat foram utilizados para fazer a conexão entre a Placa Universal e os componentes;

Figura 12 – Cabo Flat dos botões - Superior

Figura 12 – Cabo Flat dos Botões - Inferior

Figura 13 – Cabo Flat Potenciômetros

Figura 14 – Exemplo de Conexão

3.5 Acompanhamento do cronograma

	Atividade	Início	Fim	%
1	Plano de projeto	02/03/2016	16/03/2016	100
2	Elaboração do Relatório Gerencial	23/03/2016	29/03/2016	100
3	Compra dos materiais iniciais	01/03/2016	06/04/2016	100
4	Desenvolver diagramas	30/03/2016	06/04/2016	100
5	Desenvolver versão de testes do hardware	07/04/2016	20/04/2016	100
6	Desenvolver aplicativo inicial para Android	07/04/2016	01/05/2016	100
	com comunicação de dados MIDI			
7	Projetar e confeccionar a PCB (PU)	07/04/2016	20/04/2016	100
8	Projeto do invólucro no Solidworks	30/03/2016	13/04/2016	100
9	Confecção do invólucro	13/04/2016	01/05/2016	100
10	Soldagem dos componentes da PCB	20/04/2016	27/04/2016	100
11	Teste da PCB e componentes externos	27/04/2016	04/05/2016	100
12	Montagem dos componentes no invólucro	04/05/2016	11/05/2016	100
13	Finalização do aplicativo para Android	01/05/2016	25/05/2016	90
14	Montagem do produto final e testes	11/05/2016	25/05/2016	90
15	Correções e aprimoramentos	25/05/2016	15/06/2016	0
16	Testes finais	15/06/2016	22/06/2016	0
17	Produção do relatório técnico	23/03/2016	29/06/2016	40

3.6 Dificuldades

01

Dificuldade: Delay maior do que o esperado ao utilizar o Bluetooth

Solução: Vários outros métodos estão sendo pesquisados e testados pela equipe, como a utilização de interrupções assim que um botão for pressionado e detectado pelo arduino.

02

Dificuldade: Ao tentar confeccionar a PCB, a tinta não estava passando como deveria para a placa, talvez devido a combinação de fatores como qualidade do papel, do ferro, e tamanho da placa.

Solução: Em vez de fazer uma PCB, fizemos a ligação das trilhas e conectores utilizando uma placa universal, o resultado ficou com uma aparência menos profissional, mas funcionou perfeitamente.

3.7 Atividades futuras

1	Correções e aprimoramentos;
2	Testes finais;
3	Escrita do relatório Técnico;
4	Vídeo de Apresentação do Projeto.

4. ENTREGA 4 (AV4)

4.1 Funcionamento do Projeto - Vídeo

- Um video de 3 minutos (ATÉ 180 segundos, mas 180 segundos é o ideal).
- A dinâmica da demonstração presente no video deve ser já a esperada para a demonstração ao vivo para a banca.
- A vídeo deve, em 3 minutos, ser capaz de demonstrar todas as funcionalidades técnicas do projeto.
- O roteiro do video deve ser muito bem planejado e organizado.

4.2 Acompanhamento do cronograma

	Atividade	Início	Fim	%
1	Plano de projeto	02/03/2016	16/03/2016	100
2	Elaboração do Relatório Gerencial	23/03/2016	29/03/2016	100
3	Compra dos materiais iniciais	01/03/2016	06/04/2016	100
4	Desenvolver diagramas	30/03/2016	06/04/2016	100
5	Desenvolver versão de testes do hardware	07/04/2016	20/04/2016	100
6	Desenvolver aplicativo inicial para Android	07/04/2016	01/05/2016	100
	com comunicação de dados MIDI			
7	Projetar e confeccionar a PCB (PU)	07/04/2016	20/04/2016	100
8	Projeto do invólucro no Solidworks	30/03/2016	13/04/2016	100
9	Confecção do invólucro	13/04/2016	01/05/2016	100
10	Soldagem dos componentes da PCB	20/04/2016	27/04/2016	100
11	Teste da PCB e componentes externos	27/04/2016	04/05/2016	100
12	Montagem dos componentes no invólucro	04/05/2016	11/05/2016	100
13	Finalização do aplicativo para Android	01/05/2016	25/05/2016	100
14	Montagem do produto final e testes	11/05/2016	25/05/2016	100
15	Correções e aprimoramentos	25/05/2016	15/06/2016	100
16	Testes finais	15/06/2016	22/06/2016	70
17	Produção do relatório técnico	23/03/2016	29/06/2016	100

4.3 Dificuldades

01

Dificuldade: Perda de conexão bluetooth no aplicativo Android

Solução: Ao iniciar o aplicativo, os sons são carregados para a memória para que o mesmo possa tocá-los sem delay. A devida alocação de buffers e limpeza adequada de memória reduzem significantemente a perda de conexão. Entretanto, o pressionamento constante de vários botões simultaneamente ainda leva ao mal funcionamento do aplicativo.

02

Dificuldade: Organização interna devido à grande quantidade de fios

Solução: Este problema foi mitigado colando os cabos à carcaça interna do produto para reduzir o comprimento deles que fica solto dentro da caixa.

4.4 Atividades futuras

1	Testes finais
2	Eventuais correções
3	Defesa

4.5 Custos Reais do Projeto

Discriminação	R\$/un	Qtde	Valor
Arduino Uno R3 ATmega	57.50	1	57.50
OLIMEX Shield-MIDI	78,50	1	78,50
SunFounder Bluetooth HC-06 RS232	37,20	1	37,20
Adaptador USB para Midi In-Out	34,00	1	34,00
Potenciômetro Linear B10K	1,38	8	11,04
Potenciômetro Deslizante B10K	4,88	2	9,75
Envoltório Potenciômetro Drehknopf 6mm	1,37	8	10,96
Knob para Potenciômetro Deslizante	1,50	2	3,00
Botão Interruptor 24mm	2,50	32	80,00
Chapa de madeira compensada 10mm	8,00	2	16,00
Chapa de madeira compensada 10mm	2,00	4	8,00
Mão-de-Obra terceirizada (Invólucro)	126,00	-	126,00
Materiais para confecções dos cabos e das placas	50,00	-	50,00

Total: R\$521,95