Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.ai</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Math for Machine Learning

Linear algebra - Week 4

W4 Lesson 1

Determinants and Eigenvectors

Machine learning motivation

- Reduce dimensions (columns) of dataset
- Preserve as much information as possible

species	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g		PC1	PC2	species
Adelie	40.6	17.2	187.0	3475.0		1.353843	-0.422253	Adelie
Adelie	38.9	17.8	181.0	3625.0		1.760446	-0.350965	Adelie
Adelie	35.7	16.9	185.0	3150.0	\longrightarrow	2.005766	-1.113797	Adelie
Gentoo	50.0	15.3	220.0	5550.0		-2.585758	0.061768	Gentoo
Adelie	34.5	18.1	187.0	2900.0	2.438111	2.438111	-0.786227	Adelie

Characterize your transformation

Det = 5 Det =
$$0.2 = \frac{1}{5}$$

Determinants and Eigenvectors

Singularity and rank of linear transformations

Singular transformation

Singular transformation

Singular and non-singular transformations

Rank of linear transformations

Determinants and Eigenvectors

Negative determinants?

 $Det = 3 \cdot 2 - 1 \cdot 1$ Det = 5

$$Det = 1 \cdot 1 - 3 \cdot 2$$

$$Det = -5$$

Determinants and Eigenvectors

3	1
1	2

$$det = 5$$

$$det = 40$$

$$3 \cdot 2 - 1 \cdot 1$$

$$5 \cdot 2 - 2 \cdot 1$$

$$3 \cdot 2 - 1 \cdot 1$$
 $5 \cdot 2 - 2 \cdot 1$ $16 \cdot 6 - 8 \cdot 7$

$$det(AB) = det(A) det(B)$$

Determinant of a product

Determinant of a product

Quiz

- The product of a singular and a non-singular matrix (in any order) is:
 - Singular
 - Non-singular
 - Could be either one

Solution

If A is non-singular and B is singular, then det(AB) = det(A) x det(B) =
 0, since det(B) = 0. Therefore det(AB) = 0, so AB is singular.

When one factor is zero

$$5 \cdot 0 = 0$$

When one factor is singular...

Non-singular			Sing	Singular		Singular	
	3	1	1	2	_	4	8
	1	2	1	2	_	3	6
Det = 5		Det	Det = 0		Det = 0		

If one factor is singular...

Determinants and Eigenvectors

Determinant of inverse

Quiz

Find the determinants of the following matrices

0.4	-0.2		
-0.2	0.6		

0.25 -0.25 -0.125 0.625

Solution

Determinant of an inverse

$$det = 5$$

$$det = 0.2$$

$$det = 8$$
 $det = 0.125$

$$det = 0$$

$$5^{-1} = 0.2$$

$$8^{-1} = 0.125$$

$$0^{-1} = ???$$

Determinant of an inverse

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

Why?

Why is this?

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

$$\det(AA^{-1}) = \det(A) \det(A^{-1})$$

$$\det(I) = \det(A) \det(A^{-1})$$

det(AB) = det(A) det(B)

Determinant of the identity matrix

$$\det \begin{array}{c|c} 1 & 0 \\ \hline 0 & 1 \\ \end{array} = 1 \cdot 1 - 0 \cdot 0 = 1$$

$$det(I) = 1$$

W4 Lesson 2

Determinants and Eigenvectors

3	1
1	2

3	1
1	2

What is not a basis?

Not bases

Determinants and Eigenvectors

Is this a basis?

Is this a basis for something?

A basis is a minimal spanning set

A basis is a minimal spanning set

Not a basis

Number of elements in the basis is the dimension

Dimensions: 1
1 element in the basis

Dimensions: 2 2 elements in the basis

Linearly independent and linearly dependent vectors

Linearly independent and linearly dependent vectors

$$\gamma + \beta =$$

$$\alpha v_1 + \beta v_2 = v_3$$

$$\alpha v_1 + \beta v_2 = v_3$$

$$\alpha \begin{bmatrix} -1\\1 \end{bmatrix} + \beta \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} -5\\3 \end{bmatrix}$$

$$1 - \alpha + 2\beta = -5$$

$$\alpha + \beta = 3$$

$$\alpha v_1 + \beta v_2 = v_3$$

$$\alpha \begin{bmatrix} -1 \\ 1 \end{bmatrix} + \beta \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -5 \\ 3 \end{bmatrix}$$

 v_3 is a linear combination of v_1 and v_2

$$1 - \alpha + 2\beta = -5$$

$$2 \alpha + \beta = 3$$

$$3\beta = -2 \longrightarrow \beta = -\frac{2}{3}$$

$$\alpha - \frac{2}{3} = 3 \longrightarrow \alpha = \frac{11}{3}$$

Quiz

Are these vectors linearly independent?

$$\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

Solution

Are these vectors linearly independent?

$$\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

Linearly dependent

Solution

Are these vectors linearly independent?

$$\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

$$1 \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \quad -1 \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

Linearly dependent

Solution

Are these vectors linearly independent?

$$\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

Not a basis!

Linearly independent

$$\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$$

Linearly independent

$$\begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

Linearly independent

$$\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

Basis: a formal definition

A basis is a set of vectors that:

- Spans a vector space
- Is linearly independent

Not all sets of N vectors are a basis for N-dimensional space

Spans a line
Linearly independent
Is a basis

Spans the plane
Linearly independent
Is a basis

Spans a line Linearly dependent Not a basis

Spans the plane Linearly dependent Not a basis

Determinants and Eigenvectors

Eigenbasis

Basis

Eigenbasis

Eigenbasis

Determinants and Eigenvectors

- $Av = \lambda v$ for each eigenvector / eigenvalue
- Eigenvectors: direction of stretch
- Eigenvalues: how much stretch
- Eigenbasis: the set of a matrix's eigenvectors, can be arranged as a matrix with one eigenvector in each column
- Save work and characterize a transformation

Determinants and Eigenvectors

Calculating eigenvalues and eigenvectors

If λ is an eigenvalue:

For infinitely many (x,y)

$$\begin{array}{c|cccc}
2-\lambda & 1 & x \\
0 & 3-\lambda & y
\end{array} =
\begin{array}{c|cccc}
0 \\
0$$

Has infinitely many solutions

$$\det \frac{2-\lambda}{0} \frac{1}{3-\lambda} = 0$$

Characteristic polynomial

$$(2 - \lambda)(3 - \lambda) - 1 \cdot 0 = 0 \qquad \qquad \lambda = 2$$

$$\lambda = 3$$

Finding eigenvectors

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

Solve the equations

$$2x + y = 2x$$

$$x = 1$$

$$0x + 3y = 2y$$

$$y = 0$$

$$2x + y = 3x$$

$$x = 1$$

$$0x + 3y = 3y$$

$$y = 1$$

Quiz

• Find the eigenvalues and eigenvectors of this matrix:

943

Solution

- Eigenvalues: 11, 1
- Eigenvectors: (2,1), (-1,2)

9	4
4	3

• The characteristic polynomial is

det
$$\frac{9-\lambda}{4} = (9-\lambda)(3-\lambda) - 4 \cdot 4 = 0$$

- Which factors as $\lambda^2 12\lambda + 11 = (\lambda 11)(\lambda 1)$
- The solutions are $\lambda = 11$ $\lambda = 1$

$$\lambda I = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$

Characteristic polynomial: $det(A - \lambda I) = 0$

det

2 - λ	1	-1	
1	-λ	-3	= (
-1	-3	-λ	

$$(2 - \lambda)\lambda^{2} + 3 + 3 - 9(2 - \lambda) + \lambda + \lambda = -\lambda^{3} + 2\lambda^{2} + 11\lambda - 12 = 0$$
$$-(\lambda + 3)(\lambda - 1)(\lambda - 4) = 0$$

Eigenvalues: -3, 1, 4

$$A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 0 & -3 \\ -1 & -3 & 0 \end{bmatrix}$$
 Eigenvalues: $-3, 1, 4$

$$Av = \lambda v$$

$$A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 0 & -3 \\ -1 & -3 & 0 \end{bmatrix}$$
 Eigenvalues: $-3, 1, 4$

$$Av = \lambda v$$

$$2x_1 + x_2 - x_3 = 4x_1$$

$$x_1 - 3x_3 = 4x_2$$

$$-x_1 - 3x_2 = 4x_3$$

$$R_1 -2x_1 + x_2 - x_3 = 0$$

$$R_2 x_1 - 4x_2 - 3x_3 = 0$$

$$R_3 -x_1 - 3x_2 - 4x_3 = 0$$

$$R_2 + R_3$$
 $3R_1 + R_3$
 $-7x_2 - 7x_3 = 0$ $-7x_1 - 7x_3 = 0$
 $x_2 = -x_3$ $x_1 = -x_3$

$$x_1 = k$$

$$x_2 = k$$

$$x_3 = -k$$

infinite solutions of this form

$$x_1 = k$$
 $x_1 = 1$ $x_1 = 2$
 $x_2 = k$ $x_2 = 1$ $x_2 = 2$
 $x_3 = -k$ $x_3 = -1$ $x_3 = -2$

Eigenvector:

this works! so does this!

$$A = \begin{array}{c|cccc} 2 & 1 & -1 \\ 1 & 0 & -3 \\ \hline -1 & -3 & 0 \end{array}$$

$$\lambda_1 = 4$$

$$\lambda_2 = 1$$

$$\lambda_1 = 4$$
 $\lambda_2 = 1$ $\lambda_3 = -3$

Eigenvectors

Note on dimensions

Eigenvalues — Determinant — Square Matrix

9	4
4	3

9	4	5
4	3	-2

Determinants and Eigenvectors

On the number of eigenvectors

Number of eigenvectors

$$A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 0 & -3 \\ -1 & -3 & 0 \end{bmatrix}$$

Eigenvectors

$$A = \begin{array}{c|ccc} 2 & 0 & 0 \\ -1 & 4 & -0.5 \\ \hline 0 & 0 & 2 \end{array}$$

Characteristic polynomial = $det(A - \lambda I)$ = det

2 - λ	0	0
1	4 - λ	0.5
0	0	2 - λ

$$(2 - \lambda)^2 (4 - \lambda) + 0 + 0 - 0 - 0 - 0 = 0$$

Eigenvalues: 4, 2, 2

Repeated eigenvalue

$$A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 4 & -0.5 \\ 0 & 0 & 2 \end{bmatrix}$$
 Eigenvalue: 4

$$Av = 4v$$

$$A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 4 & -0.5 \\ 0 & 0 & 2 \end{bmatrix}$$
 Eigenvalue: 4

$$Av = 4v$$

$$2x_1 = 4x_1$$

$$-x_1 + 4x_2 - 0.5x_3 = 4x_2$$

$$2x_3 = 4x_3$$

Eigenvector

- 0
- 1
- 0

$$A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 4 & -0.5 \\ 0 & 0 & 2 \end{bmatrix}$$
 Eigenvalue: 2

$$Av = 2v$$

$$A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 4 & -0.5 \\ 0 & 0 & 2 \end{bmatrix}$$
 Eigenvalue: 2

$$Av = 2v$$

$$\begin{array}{r}
 2x_1 \\
 -x_1 + 4x_2 - 0.5x_3 \\
 2x_3
 \end{array}$$

$$2x_1 = 2x_1$$

$$-x_1 + 4x_2 - 0.5x_3 = 2x_2$$

$$2x_3 = 2x_3$$

$$0 = 0
-x_1 + 2x_2 - 0.5x_3 = 0
0 = 0$$

$$A = \begin{array}{c|cccc} 2 & 0 & 0 \\ -1 & 4 & -0.5 \\ \hline 0 & 0 & 2 \end{array}$$

Eigenvalues

$$\lambda_1 = 4$$

$$\lambda_2 = 2$$

$$\lambda_1 = 4$$
 $\lambda_2 = 2$ $\lambda_3 = 2$

Eigenvectors

$$A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 4 & -0.5 \\ 4 & 0 & 2 \end{bmatrix}$$

$$A = \begin{array}{c|cccc} 2 & 0 & 0 \\ -1 & 4 & -0.5 \\ 4 & 0 & 2 \end{array}$$

Characteristic polynomial = $det(A - \lambda I)$ = det

2-λ	0	0
1	4-λ	0.5
-4	0	2-λ

$$(2 - \lambda)^2 (4 - \lambda) + 0 + 0 - 0 - 0 - 0$$

Eigenvalues: 4, 2, 2

Repeated eigenvalue

$$A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 4 & -0.5 \\ 4 & 0 & 2 \end{bmatrix}$$
 Eigenvalue: 4

$$Av = 4v$$

$$A = egin{pmatrix} 2 & 0 & 0 \\ -1 & 4 & -0.5 \\ 4 & 0 & 2 \end{pmatrix}$$
 Eigenvalue: 4

$$Av = 4v$$

$$2x_1 \\
-x_1 + 4x_2 - 0.5x_3 \\
4x_1 + 2x_3$$

$$2x_1 = 4x_1$$

$$-x_1 + 4x_2 - 0.5x_3 = 4x_2$$

$$4x_1 + 2x_3 = 4x_3$$

$$\begin{aligned}
-2x_1 &= 0 \\
-x_1 - 0.5x_3 &= 0 \\
4x_1 - 2x_3 &= 0
\end{aligned}$$

$$x_1 = 0$$
 $x_3 = 0$ $x_2 =$ any number

$$\begin{array}{c}
0 \\
1 \\
0
\end{array}$$

$$\begin{array}{c}
x_1 = 0 \\
x_2 = 1 \\
x_3 = 0
\end{array}$$

Same as before!

$$A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 4 & -0.5 \\ 4 & 0 & 2 \end{bmatrix}$$
 Eigenvalue: 2

$$Av = 2v$$

$$A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 4 & -0.5 \\ 4 & 0 & 2 \end{bmatrix}$$
 Eigenvalue: 2

$$Av = 2v$$

$$2x_1 \\
-x_1 + 4x_2 - 0.5x_3 \\
4x_1 + 2x_3$$

$$2x_1 = 2x_1$$

$$-x_1 + 4x_2 - 0.5x_3 = 2x_2$$

$$4x_1 + 2x_3 = 2x_3$$

$$\begin{array}{rcl}
0 & = & 0 \\
-x_1 + 2x_2 - 0.5x_3 = & 0 \\
4x_1 & = & 0
\end{array}$$

$$x_1 = 0 \qquad \qquad x_3 = 4x_2$$

$$x_1 = 0$$

 $x_3 = 2$

On the same line $x_2 = 0.5$ Same eigenvector

$$A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 4 & -0.5 \\ 4 & 0 & 2 \end{bmatrix}$$
 Eigenvalue: 2

$$Av = 2v$$

$$2x_1 \\
-x_1 + 4x_2 - 0.5x_3 \\
4x_1 + 2x_3$$

$$2x_1 = 2x_1$$

$$-x_1 + 4x_2 - 0.5x_3 = 2x_2$$

$$4x_1 + 2x_3 = 2x_3$$

$$0 = 0
-x_1 + 2x_2 - 0.5x_3 = 0
4x_1 = 0$$

$$x_1 = 0 \qquad \qquad x_3 = 4x_2$$

0 k 4k

$$A = \begin{array}{c|cccc} 2 & 0 & 0 \\ -1 & 4 & -0.5 \\ \hline 4 & 0 & 2 \end{array}$$

Eigenvalues

$$\lambda_1 = 4$$

$$\lambda_2 = 2$$

$$\lambda_3 = 2$$

Eigenvectors

Can't create an eigenbasis from this matrix

Summary

а	b
С	d

Eigenvalues

$$\lambda_1, \lambda_2$$

If
$$\lambda_1 \neq \lambda_2$$
 2 eigenvectors (2 different directions)

If
$$\lambda_1 = \lambda_2$$

$$1 \text{ eigenvector}$$

$$(1 \text{ direction})$$

$$2 \text{ eigenvectors}$$

$$(2 \text{ different directions})$$

$$\lambda_1, \lambda_2, \lambda_3$$

If
$$\lambda_1 \neq \lambda_2 \neq \lambda_3$$
 3 eigenvectors (3 different directions)

If
$$\lambda_1 = \lambda_2 \neq \lambda_3$$

$$2 \text{ eigenvectors}$$
(2 different directions)
$$3 \text{ eigenvectors}$$
(3 different directions)

If
$$\lambda_1 = \lambda_2 = \lambda_3$$

1 eigenvector
(1 direction)
2 eigenvectors
(2 different directions)
3 eigenvectors
(3 different directions)

Determinants and Eigenvectors

Dimensionality reduction annd projection

Dimensionality Reduction

- Reduce dimensions (# of columns) of dataset
- Preserve as much information as possible

Dimensionality Reduction

- Leads to smaller datasets
- Easier to visualize

Customer Age	Account Age	Days Since Login		
23	1 month 10 days			
71	45 months	2 days	Easy approach - ju	
54	30 months	15 days	Loses valuab 2	se information \$70
36	22 months	12 days		

х	у
1.0	1.0
1.2	1.6
-0.5	0.2
-1.3	-0.6

x	у
1.0	1.0
1.2	1.6
-0.5	0.2
-1.3	-0.6

х	у
1.0	1.0
1.2	1.6
-0.5	0.2
-1.3	-0.6

						y (1.2, 1.6)
	X	у				1.5
•	1.0	1.0	1		(1 + 1)	$\begin{array}{c} 1 \\ (1,1) \end{array}$
	1.2	1.6	1	=		(-0.5, 0.2) 0.5
	0.5	0.2				-1.5 - 1 - 0.5 0.5 1 1 -0.5
-	1.3	-0.6				-1
						(-1.3, -0.6)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$			•			y (1.2, 1.6)
1.2 1.6	x	у				
1.2 1.6 -0.5 0.2 -0.5 -0.5 -0.5 1 1	1.0	1.0	1		(1 + 1)	$\begin{array}{c} 1 \\ (1,1) \end{array}$
-0.5 0.5 1 1 -0.5 -0.5 -0.5 1 1	1.2	1.6	1	=		(-0.5, 0.2) 0.5
-1 3 -0 6	-0.5	0.2				
	-1.3	-0.6				

	x	у
\rightarrow	1.0	1.0
	1.2	1.6
	-0.5	0.2
	-1.3	-0.6

$$\frac{1}{1} \frac{1}{\sqrt{2}} =$$

 $(1+1)/\sqrt{2}$

	х	у
	1.0	1.0
	1.2	1.6
	-0.5	0.2
	-1.3	-0.6

$$\frac{1}{1} \frac{1}{\sqrt{2}} = \frac{(1+1)/\sqrt{2}}{1}$$

	х	у
	1.0	1.0
	1.2	1.6
	-0.5	0.2
	-1.3	-0.6

	X	у
	1.0	1.0
	1.2	1.6
	-0.5	0.2
	-1.3	-0.6

x	У
1.0	1.0
1.2	1.6
-0.5	0.2
-1.3	-0.6

x	У
1.0	1.0
1.2	1.6
-0.5	0.2
-1.3	-0.6

x	у
1.0	1.0
1.2	1.6
-0.5	0.2
-1.3	-0.6

x	у
1.0	1.0
1.2	1.6
-0.5	0.2
-1.3	-0.6

x	у
1.0	1.0
1.2	1.6
-0.5	0.2
-1.3	-0.6

x	У
1.0	1.0
1.2	1.6
-0.5	0.2
-1.3	-0.6

x	у
1.0	1.0
1.2	1.6
-0.5	0.2
-1.3	-0.6

x	У
1.0	1.0
1.2	1.6
-0.5	0.2
-1.3	-0.6

To project a matrix A onto a vector v

$$A_P = A \frac{v}{\|v\|_2}$$

To project a matrix A onto vectors v_1 and v_2

To project a matrix A onto vectors v_1 and v_2

$$A_{P} = A \begin{bmatrix} v_{1} & v_{2} \\ \|v_{1}\|_{2} & \|v_{2}\|_{2} \end{bmatrix}$$

$$r \times 2 \qquad r \times c \qquad c \times 2$$

To project a matrix A onto vectors v_1 and v_2

$$A_P = AV$$

$$r \times 2$$
 $r \times c$ $c \times 2$

Determinants and Eigenvectors

Motivating PCA

Dimensionality Reduction

Benefits of Dimensionality Reduction

- Easier dataset to manage
- PCA reduces dimensions while minimizing information loss
- Simpler visualization

Determinants and Eigenvectors

Variance and covariance

Mean

"The average of the data"

$$Variance(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - Mean(x))^2 = 16$$

x _i - Mean(x)	(x; - Mean(x)) ²	
1	1	
-5	25	
2	4	→ 64
5	25	
-3	9	
	1 -5 2	1 1 -5 25 2 4

$$Mean(x) = 9$$

$$Variance(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - M \partial_{i}^2 an(x))^2$$

$$Var(x)$$
 μ

"The average squared distance from the mean"

$$Var(y) = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \mu_Y)^2$$

y-variance Smaller

Larger

$$Var(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu_x)^2$$

Problem

Covariance

"Take the average"

$$Cov(x, y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)$$

$$Var(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu_x)^2 (x_i - \mu_x)^2$$

negative covariance

covariance zero (or very small)

positive covariance

Covariance

$$Cov(x, y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)$$

"The direction of the relationship between two variables"

negative covariance

covariance zero (or very small)

positive covariance

Determinants and Eigenvectors

The covariance matrix

$$\begin{bmatrix} 3 & -2 \\ -2 & 1 \end{bmatrix}$$

$$\left[\begin{array}{cc}3&0\\0&1\end{array}\right]$$

$$\begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}$$

$$Var(y) \begin{bmatrix} x & y \\ Cov(x,y) & Cov(x,y) \\ y & Cov(y,x) & Cov(x,y) \end{bmatrix}$$

$$Cov(x, x) = Var(x)$$


```
\begin{array}{ccc} (x_1 & y_1) \\ x_2 & y_2 \\ \vdots & \vdots \\ x_n & y_n \end{array}
```

$$A = \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \\ \vdots & \vdots \\ x_n & y_n \end{bmatrix} \qquad \mu = \begin{bmatrix} \mu_x & \mu_y \\ \mu_x & \mu_y \\ \vdots & \vdots \\ \mu_x & \mu_y \end{bmatrix}$$

$$A = \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \\ \vdots & \vdots \\ x_n & y_n \end{bmatrix} \qquad \mu = \begin{bmatrix} \mu_x & \mu_y \\ \mu_x & \mu_y \\ \vdots & \vdots \\ \mu_x & \mu_y \end{bmatrix}$$

$$C = \frac{1}{n-1} (A - \mu)^{T} (A - \mu)$$

$$A = \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \\ \vdots & \vdots \\ x_n & y_n \end{bmatrix} \qquad \mu = \begin{bmatrix} \mu_x & \mu_y \\ \mu_x & \mu_y \\ \vdots & \vdots \\ \mu_x & \mu_y \end{bmatrix}$$

$$C = \frac{1}{n-1} (A - \mu)^{T} (A - \mu) = \frac{1}{n-1} \begin{pmatrix} & & \\ & - & \end{pmatrix}^{T} \begin{pmatrix} & \\ & \end{pmatrix}^{T} \end{pmatrix} \begin{pmatrix} & \\ & \end{pmatrix}^{T} \begin{pmatrix} & \\ & \end{pmatrix}^{T} \begin{pmatrix} & \\ & \end{pmatrix}^{T} \end{pmatrix} \begin{pmatrix} & \\ & \end{pmatrix}^{T} \begin{pmatrix} & \\ & \end{pmatrix}^{T} \begin{pmatrix} & \\ & \end{pmatrix}^{T} \end{pmatrix} \begin{pmatrix} & \\ & \end{pmatrix}^{T} \begin{pmatrix} & \\ & \end{pmatrix}^{T} \end{pmatrix} \begin{pmatrix} & \\ & \end{pmatrix}^{T} \begin{pmatrix} & \\ & \end{pmatrix}^{T} \end{pmatrix} \begin{pmatrix} & \\ & \end{pmatrix} \end{pmatrix} \begin{pmatrix}$$

$$A = \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \\ \vdots & \vdots \\ x_n & y_n \end{bmatrix} \qquad \mu = \begin{bmatrix} \mu_x & \mu_y \\ \mu_x & \mu_y \\ \vdots & \vdots \\ \mu_x & \mu_y \end{bmatrix}$$

$$C = \frac{1}{n-1} (A - \mu)^{T} (A - \mu) = \frac{1}{n-1} \left(\begin{bmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \\ \vdots & \vdots \\ x_{n} & y_{n} \end{bmatrix} - \begin{bmatrix} \mu_{x} & \mu_{y} \\ \mu_{x} & \mu_{y} \\ \vdots & \vdots \\ \mu_{x} & \mu_{y} \end{bmatrix} \right)^{T} \left(\begin{bmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \\ \vdots & \vdots \\ x_{n} & y_{n} \end{bmatrix} - \begin{bmatrix} \mu_{x} & \mu_{y} \\ \mu_{x} & \mu_{y} \\ \vdots & \vdots \\ \mu_{x} & \mu_{y} \end{bmatrix} \right)$$

$$= \frac{1}{n-1} \begin{bmatrix} x_1 - \mu_x & y_1 - \mu_y \\ x_2 - \mu_x & y_2 - \mu_y \\ \vdots & \vdots \\ x_n - \mu_x & y_n - \mu_y \end{bmatrix}^T \begin{bmatrix} x_1 - \mu_x & y_1 - \mu_y \\ x_2 - \mu_x & y_2 - \mu_y \\ \vdots & \vdots \\ x_n - \mu_x & y_n - \mu_y \end{bmatrix}$$

$$C = \frac{1}{n-1} (A - \mu)^{T} (A - \mu) = \frac{1}{n-1} \begin{pmatrix} \begin{bmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \\ \vdots & \vdots \\ x_{n} & y_{n} \end{bmatrix} - \begin{bmatrix} \mu_{x} & \mu_{y} \\ \mu_{x} & \mu_{y} \\ \vdots & \vdots \\ \mu_{x} & \mu_{y} \end{bmatrix} \end{pmatrix}^{T} \begin{pmatrix} \begin{bmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \\ \vdots & \vdots \\ x_{n} & y_{n} \end{bmatrix} - \begin{bmatrix} \mu_{x} & \mu_{y} \\ \mu_{x} & \mu_{y} \\ \vdots & \vdots \\ \mu_{x} & \mu_{y} \end{bmatrix} \end{pmatrix}$$

$$= \frac{1}{n-1} \begin{bmatrix} x_{1} - \mu_{x} & y_{1} - \mu_{y} \\ x_{2} - \mu_{x} & y_{2} - \mu_{y} \\ \vdots & \vdots \\ x_{n} - \mu_{x} & y_{n} - \mu_{y} \end{bmatrix}^{T} \begin{bmatrix} x_{1} - \mu_{x} & y_{1} - \mu_{y} \\ x_{2} - \mu_{x} & y_{2} - \mu_{y} \\ \vdots & \vdots \\ x_{n} - \mu_{x} & y_{n} - \mu_{y} \end{bmatrix}$$

$$= \frac{1}{n-1} \begin{bmatrix} x_{1} - \mu_{x} & x_{2} - \mu_{x} & \dots & x_{n} - \mu_{n} \\ y_{1} - \mu_{y} & y_{2} - \mu_{y} & \dots & y_{n} - \mu_{y} \end{bmatrix} \begin{bmatrix} x_{1} - \mu_{x} & y_{1} - \mu_{y} \\ x_{2} - \mu_{x} & y_{2} - \mu_{y} \\ \vdots & \vdots \\ x_{n} - \mu_{x} & y_{n} - \mu_{y} \end{bmatrix}$$

$$= \frac{1}{n-1} \begin{bmatrix} x_{1} - \mu_{x} & x_{2} - \mu_{x} & \dots & x_{n} - \mu_{n} \\ y_{1} - \mu_{y} & y_{2} - \mu_{y} & \dots & y_{n} - \mu_{y} \end{bmatrix} \begin{bmatrix} x_{1} - \mu_{x} & y_{1} - \mu_{y} \\ x_{2} - \mu_{x} & y_{2} - \mu_{y} \\ \vdots & \vdots \\ x_{n} - \mu_{x} & y_{n} - \mu_{y} \end{bmatrix}$$

$$C = \frac{1}{n-1} (A - \mu)^{T} (A - \mu) = \frac{1}{n-1} \left(\begin{bmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \\ \vdots & \vdots \\ x_{n} & y_{n} \end{bmatrix} - \begin{bmatrix} \mu_{x} & \mu_{y} \\ \mu_{x} & \mu_{y} \\ \vdots & \vdots \\ \mu_{x} & \mu_{y} \end{bmatrix} \right)^{T} \left(\begin{bmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \\ \vdots & \vdots \\ x_{n} & y_{n} \end{bmatrix} - \begin{bmatrix} \mu_{x} & \mu_{y} \\ \mu_{x} & \mu_{y} \\ \vdots & \vdots \\ \mu_{x} & \mu_{y} \end{bmatrix} \right)$$

$$= \frac{1}{n-1} \begin{bmatrix} x_{1} - \mu_{x} & y_{1} - \mu_{y} \\ x_{2} - \mu_{x} & y_{2} - \mu_{y} \\ \vdots & \vdots \\ x_{n} - \mu_{x} & y_{n} - \mu_{y} \end{bmatrix}^{T} \begin{bmatrix} x_{1} - \mu_{x} & y_{1} - \mu_{y} \\ x_{2} - \mu_{x} & y_{2} - \mu_{y} \\ \vdots & \vdots \\ x_{n} - \mu_{x} & y_{n} - \mu_{y} \end{bmatrix}$$

$$= \frac{1}{n-1} \begin{bmatrix} x_{1} - \mu_{x} & x_{2} - \mu_{x} & \dots & x_{n} - \mu_{n} \\ y_{1} - \mu_{y} & y_{2} - \mu_{y} & \dots & y_{n} - \mu_{y} \end{bmatrix} \begin{bmatrix} x_{1} - \mu_{x} & y_{1} - \mu_{y} \\ x_{2} - \mu_{x} & y_{2} - \mu_{y} \\ \vdots & \vdots \\ x_{n} - \mu_{x} & y_{n} - \mu_{y} \end{bmatrix}$$

$$(x_{1} - \mu_{x})(x_{1} - \mu_{x}) + (x_{2} - \mu_{x})(x_{2} - \mu_{x}) + \dots + (x_{n} - \mu_{x})(x_{n} - \mu_{x})$$

$$C = \frac{1}{n-1} (A - \mu)^{T} (A - \mu) = \frac{1}{n-1} \left(\begin{bmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \\ \vdots & \vdots \\ x_{n} & y_{n} \end{bmatrix} - \begin{bmatrix} \mu_{x} & \mu_{y} \\ \mu_{x} & \mu_{y} \\ \vdots & \vdots \\ \mu_{x} & \mu_{y} \end{bmatrix} \right)^{T} \left(\begin{bmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \\ \vdots & \vdots \\ x_{n} & y_{n} \end{bmatrix} - \begin{bmatrix} \mu_{x} & \mu_{y} \\ \mu_{x} & \mu_{y} \\ \vdots & \vdots \\ \mu_{x} & \mu_{y} \end{bmatrix} \right)$$

$$= \frac{1}{n-1} \begin{bmatrix} x_{1} - \mu_{x} & y_{1} - \mu_{y} \\ x_{2} - \mu_{x} & y_{2} - \mu_{y} \\ \vdots & \vdots \\ x_{n} - \mu_{x} & y_{n} - \mu_{y} \end{bmatrix}^{T} \begin{bmatrix} x_{1} - \mu_{x} & y_{1} - \mu_{y} \\ x_{2} - \mu_{x} & y_{2} - \mu_{y} \\ \vdots & \vdots \\ x_{n} - \mu_{x} & y_{n} - \mu_{y} \end{bmatrix}$$

$$= \frac{1}{n-1} \begin{bmatrix} x_{1} - \mu_{x} & x_{2} - \mu_{x} & \dots & x_{n} - \mu_{n} \\ y_{1} - \mu_{y} & y_{2} - \mu_{y} & \dots & y_{n} - \mu_{y} \end{bmatrix} \begin{bmatrix} x_{1} - \mu_{x} \\ x_{2} - \mu_{x} \\ \vdots \\ x_{n} - \mu_{x} \end{bmatrix} \begin{bmatrix} x_{1} - \mu_{x} \\ y_{2} - \mu_{y} \\ \vdots \\ y_{n} - \mu_{y} \end{bmatrix}$$

$$= \frac{1}{n-1} \begin{bmatrix} x_{1} - \mu_{x} & x_{2} - \mu_{x} & \dots & x_{n} - \mu_{n} \\ y_{1} - \mu_{y} & y_{2} - \mu_{y} & \dots & y_{n} - \mu_{y} \end{bmatrix} \begin{bmatrix} x_{1} - \mu_{x} \\ \vdots \\ x_{n} - \mu_{x} \end{bmatrix} \begin{bmatrix} x_{1} - \mu_{x} \\ y_{2} - \mu_{y} \\ \vdots \\ y_{n} - \mu_{y} \end{bmatrix}$$

$$C = \frac{1}{n-1} (A - \mu)^{T} (A - \mu) = \frac{1}{n-1} \left(\begin{bmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \\ \vdots & \vdots \\ x_{n} & y_{n} \end{bmatrix} - \begin{bmatrix} \mu_{x} & \mu_{y} \\ \mu_{x} & \mu_{y} \\ \vdots & \vdots \\ \mu_{x} & \mu_{y} \end{bmatrix} \right)^{T} \left(\begin{bmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \\ \vdots & \vdots \\ x_{n} & y_{n} \end{bmatrix} - \begin{bmatrix} \mu_{x} & \mu_{y} \\ \mu_{x} & \mu_{y} \end{bmatrix} \right)$$

$$= \frac{1}{n-1} \begin{bmatrix} x_{1} - \mu_{x} & y_{1} - \mu_{y} \\ x_{2} - \mu_{x} & y_{2} - \mu_{y} \\ \vdots & \vdots \\ x_{n} - \mu_{x} & y_{n} - \mu_{y} \end{bmatrix}^{T} \begin{bmatrix} x_{1} - \mu_{x} & y_{1} - \mu_{y} \\ x_{2} - \mu_{x} & y_{2} - \mu_{y} \\ \vdots & \vdots \\ x_{n} - \mu_{x} & y_{n} - \mu_{y} \end{bmatrix}$$

$$= \frac{1}{n-1} \begin{bmatrix} x_{1} - \mu_{x} & x_{2} - \mu_{x} & \dots & x_{n} - \mu_{n} \\ y_{1} - \mu_{y} & y_{2} - \mu_{y} & \dots & y_{n} - \mu_{y} \end{bmatrix} \begin{bmatrix} x_{1} - \mu_{x} \\ x_{2} - \mu_{x} \\ \vdots \\ x_{n} - \mu_{x} \end{bmatrix} \begin{bmatrix} x_{1} - \mu_{x} \\ y_{2} - \mu_{y} \\ \vdots \\ y_{n} - \mu_{y} \end{bmatrix} = \begin{bmatrix} Var(x) \\ \vdots \\ x_{n} - \mu_{y} \end{bmatrix}$$

$$C = \frac{1}{n-1} (A - \mu)^{T} (A - \mu) = \frac{1}{n-1} \begin{pmatrix} \begin{bmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \\ \vdots & \vdots \\ x_{n} & y_{n} \end{bmatrix} - \begin{bmatrix} \mu_{x} & \mu_{y} \\ \mu_{x} & \mu_{y} \\ \vdots & \vdots \\ \mu_{x} & \mu_{y} \end{bmatrix} - \begin{bmatrix} \mu_{x} & \mu_{y} \\ \mu_{x} & \mu_{y} \\ \vdots & \vdots \\ \mu_{x} & \mu_{y} \end{bmatrix} - \begin{bmatrix} \mu_{x} & \mu_{y} \\ \mu_{x} & \mu_{y} \\ \vdots & \vdots \\ \mu_{x} & \mu_{y} \end{bmatrix}$$

$$= \frac{1}{n-1} \begin{bmatrix} x_{1} - \mu_{x} & y_{1} - \mu_{y} \\ x_{2} - \mu_{x} & y_{2} - \mu_{y} \\ \vdots & \vdots \\ x_{n} - \mu_{x} & y_{n} - \mu_{y} \end{bmatrix}^{T} \begin{bmatrix} x_{1} - \mu_{x} & y_{1} - \mu_{y} \\ x_{2} - \mu_{x} & y_{2} - \mu_{y} \\ \vdots & \vdots \\ x_{n} - \mu_{x} & y_{n} - \mu_{y} \end{bmatrix}$$

$$= \frac{1}{n-1} \underbrace{ \begin{bmatrix} x_{1} - \mu_{x} & x_{2} - \mu_{x} & \dots & x_{n} - \mu_{n} \\ y_{1} - \mu_{y} & y_{2} - \mu_{y} & \dots & y_{n} - \mu_{y} \end{bmatrix}}_{y_{1} - \mu_{y}} \underbrace{ \begin{bmatrix} x_{1} - \mu_{x} & y_{1} - \mu_{y} \\ x_{2} - \mu_{x} & y_{2} - \mu_{y} \\ \vdots & \vdots \\ x_{n} - \mu_{x} & y_{n} - \mu_{y} \end{bmatrix}}_{y_{1} - \mu_{y}} \underbrace{ \begin{bmatrix} x_{1} - \mu_{x} & y_{1} - \mu_{y} \\ x_{2} - \mu_{x} & y_{2} - \mu_{y} \\ \vdots & \vdots \\ x_{n} - \mu_{x} & y_{n} - \mu_{y} \end{bmatrix}}_{y_{1} - \mu_{y}} \underbrace{ \begin{bmatrix} v_{1} - \mu_{x} & v_{1} - \mu_{y} \\ v_{2} - \mu_{y} \\ \vdots & v_{n} - \mu_{y} \end{bmatrix}}_{y_{1} - \mu_{y}} \underbrace{ \begin{bmatrix} v_{1} - \mu_{x} & v_{1} - \mu_{y} \\ v_{2} - \mu_{y} \\ \vdots & v_{n} - \mu_{y} \end{bmatrix}}_{y_{1} - \mu_{y}} \underbrace{ \begin{bmatrix} v_{1} - \mu_{x} & v_{1} - \mu_{x} \\ v_{2} - \mu_{x} & v_{2} - \mu_{y} \\ \vdots & v_{n} - \mu_{y} \end{bmatrix}}_{y_{1} - \mu_{y}}$$

$$C = \frac{1}{n-1} (A - \mu)^{T} (A - \mu) = \frac{1}{n-1} \begin{pmatrix} \begin{bmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \\ \vdots & \vdots \\ x_{n} & y_{n} \end{bmatrix} - \begin{bmatrix} \mu_{x} & \mu_{y} \\ \mu_{x} & \mu_{y} \\ \vdots & \vdots \\ \mu_{x} & \mu_{y} \end{bmatrix} \end{pmatrix}^{T} \begin{pmatrix} \begin{bmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \\ \vdots & \vdots \\ x_{n} & y_{n} \end{bmatrix} - \begin{bmatrix} \mu_{x} & \mu_{y} \\ \mu_{x} & \mu_{y} \\ \vdots & \vdots \\ \mu_{x} & \mu_{y} \end{bmatrix} \end{pmatrix}$$

$$= \frac{1}{n-1} \begin{bmatrix} x_{1} - \mu_{x} & y_{1} - \mu_{y} \\ x_{2} - \mu_{x} & y_{2} - \mu_{y} \\ \vdots & \vdots \\ x_{n} - \mu_{x} & y_{n} - \mu_{y} \end{bmatrix}^{T} \begin{bmatrix} x_{1} - \mu_{x} & y_{1} - \mu_{y} \\ x_{2} - \mu_{x} & y_{2} - \mu_{y} \\ \vdots & \vdots \\ x_{n} - \mu_{x} & y_{n} - \mu_{y} \end{bmatrix}$$

$$= \frac{1}{n-1} \begin{bmatrix} x_{1} - \mu_{x} & x_{2} - \mu_{x} & \dots & x_{n} - \mu_{n} \\ y_{1} - \mu_{y} & y_{2} - \mu_{y} & \dots & y_{n} - \mu_{y} \end{bmatrix} \begin{bmatrix} x_{1} - \mu_{x} \\ x_{2} - \mu_{x} \\ \vdots \\ x_{n} - \mu_{x} \end{bmatrix} \begin{bmatrix} x_{1} - \mu_{x} \\ y_{2} - \mu_{y} \\ \vdots \\ y_{n} - \mu_{y} \end{bmatrix} = \begin{bmatrix} Var(x) \\ \vdots \\ x_{n} - \mu_{x} \end{bmatrix}$$

$$C = \frac{1}{n-1} (A - \mu)^{T} (A - \mu) = \frac{1}{n-1} \begin{bmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \\ \vdots & \vdots \\ x_{n} & y_{n} \end{bmatrix} - \begin{bmatrix} \mu_{x} & \mu_{y} \\ \mu_{x} & \mu_{y} \\ \vdots & \vdots \\ \mu_{x} & \mu_{y} \end{bmatrix}^{T} \begin{bmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \\ \vdots & \vdots \\ x_{n} & y_{n} \end{bmatrix} - \begin{bmatrix} \mu_{x} & \mu_{y} \\ \mu_{x} & \mu_{y} \\ \vdots & \vdots \\ \mu_{x} & \mu_{y} \end{bmatrix}$$

$$= \frac{1}{n-1} \begin{bmatrix} x_{1} - \mu_{x} & y_{1} - \mu_{y} \\ x_{2} - \mu_{x} & y_{2} - \mu_{y} \\ \vdots & \vdots \\ x_{n} - \mu_{x} & y_{n} - \mu_{y} \end{bmatrix}^{T} \begin{bmatrix} x_{1} - \mu_{x} & y_{1} - \mu_{y} \\ x_{2} - \mu_{x} & y_{2} - \mu_{y} \\ \vdots & \vdots \\ x_{n} - \mu_{x} & y_{n} - \mu_{y} \end{bmatrix}$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \mu_{x})(y_{i} - \mu_{y}) = Cov(x, y)$$

$$C = \frac{1}{n-1} (A - \mu)^{T} (A - \mu) = \frac{1}{n-1} \begin{pmatrix} \begin{bmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \\ \vdots & \vdots \\ x_{n} & y_{n} \end{bmatrix} - \begin{bmatrix} \mu_{x} & \mu_{y} \\ \mu_{x} & \mu_{y} \\ \vdots & \vdots \\ \mu_{x} & \mu_{y} \end{bmatrix} \end{pmatrix}^{T} \begin{pmatrix} \begin{bmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \\ \vdots & \vdots \\ x_{n} & y_{n} \end{bmatrix} - \begin{bmatrix} \mu_{x} & \mu_{y} \\ \mu_{x} & \mu_{y} \\ \vdots & \vdots \\ \mu_{x} & \mu_{y} \end{bmatrix} \end{pmatrix}$$

$$= \frac{1}{n-1} \begin{bmatrix} x_{1} - \mu_{x} & y_{1} - \mu_{y} \\ x_{2} - \mu_{x} & y_{2} - \mu_{y} \\ \vdots & \vdots \\ x_{n} - \mu_{x} & y_{n} - \mu_{y} \end{bmatrix}^{T} \begin{bmatrix} x_{1} - \mu_{x} & y_{1} - \mu_{y} \\ x_{2} - \mu_{x} & y_{2} - \mu_{y} \\ \vdots & \vdots \\ x_{n} - \mu_{x} & y_{n} - \mu_{y} \end{bmatrix}$$

$$= \frac{1}{n-1} \begin{bmatrix} x_{1} - \mu_{x} & x_{2} - \mu_{x} & \dots & x_{n} - \mu_{n} \\ y_{1} - \mu_{y} & y_{2} - \mu_{y} & \dots & y_{n} - \mu_{y} \end{bmatrix}^{T} \begin{bmatrix} x_{1} - \mu_{x} & y_{1} - \mu_{y} \\ x_{2} - \mu_{x} & y_{2} - \mu_{y} \\ \vdots & \vdots \\ x_{n} - \mu_{x} & y_{n} - \mu_{y} \end{bmatrix} = \begin{bmatrix} Var(x) & Cov(x, y) \\ Cov(y, x) \end{bmatrix}$$

$$C = \frac{1}{n-1} (A - \mu)^{T} (A - \mu) = \frac{1}{n-1} \left(\begin{bmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \\ \vdots & \vdots \\ x_{n} & y_{n} \end{bmatrix} - \begin{bmatrix} \mu_{x} & \mu_{y} \\ \mu_{x} & \mu_{y} \\ \vdots & \vdots \\ \mu_{x} & \mu_{y} \end{bmatrix} \right)^{T} \left(\begin{bmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \\ \vdots & \vdots \\ x_{n} & y_{n} \end{bmatrix} - \begin{bmatrix} \mu_{x} & \mu_{y} \\ \mu_{x} & \mu_{y} \\ \vdots & \vdots \\ \mu_{x} & \mu_{y} \end{bmatrix} \right)$$

$$= \frac{1}{n-1} \begin{bmatrix} x_{1} - \mu_{x} & y_{1} - \mu_{y} \\ x_{2} - \mu_{x} & y_{2} - \mu_{y} \\ \vdots & \vdots \\ x_{n} - \mu_{x} & y_{n} - \mu_{y} \end{bmatrix}^{T} \begin{bmatrix} x_{1} - \mu_{x} & y_{1} - \mu_{y} \\ x_{2} - \mu_{x} & y_{2} - \mu_{y} \\ \vdots & \vdots \\ x_{n} - \mu_{x} & y_{n} - \mu_{y} \end{bmatrix}$$

$$= \frac{1}{n-1} \begin{bmatrix} x_{1} - \mu_{x} & x_{2} - \mu_{x} & \dots & x_{n} - \mu_{n} \\ y_{1} - \mu_{y} & y_{2} - \mu_{y} & \dots & y_{n} - \mu_{y} \end{bmatrix}^{T} \begin{bmatrix} x_{1} - \mu_{x} & y_{1} - \mu_{y} \\ x_{2} - \mu_{x} & y_{2} - \mu_{y} \\ \vdots & \vdots \\ x_{n} - \mu_{x} & y_{n} - \mu_{y} \end{bmatrix} = \begin{bmatrix} Var(x) & Cov(x, y) \\ Cov(y, x) & Var(y) \end{bmatrix}$$

Matrix formula

$$A - \mu = \begin{bmatrix} x_1 - \mu_x & y_1 - \mu_y \\ \vdots & \vdots \\ x_n - \mu_x & y_n - \mu_y \end{bmatrix} \quad C = \frac{1}{n-1} (A - \mu)^T (A - \mu)$$

Matrix formula

$$A = \begin{bmatrix} x_1 & y_1 & z_1 \\ \vdots & \vdots & \vdots \\ x_n & y_n & z_n \end{bmatrix} \qquad C = \frac{1}{n-1} (A - \mu)^T (A - \mu)$$

- 1. Arrange data with a different feature in each column
- 2. Calculate column averages
- 3. Subtract each average from their respective column to generate $A-\mu$

4.
$$\frac{1}{n-1}\left(A-\mu\right)^T\left(A-\mu\right)$$
 gives the covariance matrix C

Determinants and Eigenvectors

PCA - Overview

$$C = \begin{bmatrix} 9 & 4 \\ 4 & 3 \end{bmatrix}$$

2 1

Eigenvectors (direction)

11

Eigenvalues (magnitude)

$$C = \begin{bmatrix} 9 & 4 \\ 4 & 3 \end{bmatrix}$$

Eigenvectors (direction)

Eigenvalues (magnitude)

Eigenvectors (direction)

Eigenvalues (magnitude)

Determinants and Eigenvectors

PCA - Why it works

Determinants and Eigenvectors

PCA - Mathematical formulation

PCA Mathematical formulation

Goal: Reduce to 2 variables You have *n* observations of 5 variables $(x_1, x_2, x_3, x_4, x_5)$

Create matrix

$$X = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{15} \\ x_{21} & x_{22} & \dots & x_{25} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{n5} \end{bmatrix}$$

Center the data

$$X = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{15} \\ x_{21} & x_{22} & \dots & x_{25} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{n5} \end{bmatrix}$$

$$X - \mu = \begin{bmatrix} x_{11} - \mu_1 & x_{12} - \mu_2 & \dots & x_{15} - \mu_5 \\ x_{21} - \mu_1 & x_{22} - \mu_2 & \dots & x_{25} - \mu_5 \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} - \mu_1 & x_{n2} - \mu_2 & \dots & x_{n5} - \mu_5 \end{bmatrix}$$

PCA Mathematical formulation

You have *n* observations of 5 variables $(x_1, x_2, x_3, x_4, x_5)$ Goal: Reduce to 2 variables

3 Calculate Covariance Matrix

$$C = \frac{1}{n-1}(X-\mu)^{T}(X-\mu) = \begin{bmatrix} Var(X_{1}) & Cov(X_{1},X_{2}) & Cov(X_{1},X_{3}) & Cov(X_{1},X_{4}) & Cov(X_{1},X_{5}) \\ Cov(X_{1},X_{2}) & Var(X_{2}) & Cov(X_{2},X_{3}) & Cov(X_{2},X_{4}) & Cov(X_{2},X_{5}) \\ Cov(X_{1},X_{3}) & Cov(X_{2},X_{3}) & Var(X_{3}) & Cov(X_{3},X_{4}) & Cov(X_{3},X_{5}) \\ Cov(X_{1},X_{4}) & Cov(X_{2},X_{4}) & Cov(X_{3},X_{4}) & Var(X_{4}) & Cov(X_{4},X_{5}) \\ Cov(X_{1},X_{5}) & Cov(X_{2},X_{5}) & Cov(X_{3},X_{5}) & Cov(X_{4},X_{5}) & Var(X_{5}) \end{bmatrix}$$

PCA Mathematical formulation

You have n observations of 5 variables $(x_1, x_2, x_3, x_4, x_5)$ Goal: Reduce to 2 variables

- 4 Calculate Eigenvectors and Eigenvalues
- 5

Create Projection Matrix

6

Project Centered Data

Big
$$\lambda_1$$
 v_1 λ_2 v_2 λ_3 v_3 λ_4 v_4 λ_5 v_5

$$V = \begin{bmatrix} \frac{1}{\|v_1\|_2} & \frac{1}{\|v_2\|_2} \end{bmatrix}$$

$$X_{PCA} = (X - \mu)V$$

Determinants and Eigenvectors

Conclusion