

Cloud Computing

Kapitel 5: Infrastructure-as-a-Service

Dr. Josef Adersberger

Das Problem

Terminologie

Task: Atomare Rechenaufgabe inklusive Ausführungsvorschrift.

Job: Menge an Tasks mit gemeinsamen Ausführungsziel. Die Menge an Tasks ist i.d.R. als DAG mit Tasks als Knoten und Ausführungsabhängigkeiten als Kanten repräsentiert.

Properties: Ausführungsrelevante Eigenschaften der Tasks und Jobs, wie z.B.:

- Task: Ausführungsdauer, Priorität, Ressourcenverbrauch
- Job: Abhängigkeiten der Tasks, Ausführungszeitpunkt

Scheduler: Ausführung von Tasks auf den verfügbaren Resources unter Berücksichtigung der Properties und gegebener **Scheduling-Ziele** (z.B. Fairness, Durchsatz, Ressourcenauslastung). Ein Scheduler kann **präemptiv** sein, also die Ausführung von Tasks unterbrechen und neu aufsetzen können.

Resources: Cluster an Rechnern mit CPU-, RAM-, HDD-, Netzwerk-Ressourcen. Ein Rechner stellt seine Ressourcen temporär zur Ausführung eines oder mehrerer Tasks zur Verfügung (**Slot**). Die parallele Ausführung von Tasks ist isoliert zueinander.

Aufgaben eines Cluster-Schedulers:

Die einfachste Form des Scheduling: Statische Partitionierung

Auslastung pro Knoten

Vorteil: Einfach zu realisieren

Nachteile:

- Nicht flexibel bei geänderten Bedürfnissen
- Geringere Auslastung → hohe Opportunitätskosten

Bildquelle: Practical Considerations for Multi-Level Schedulers, Benjamin Hindman, 19th Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP) 2015

Heterogenität im Scheduling

- In typischen Clustern ist die Workload an Jobs sehr heterogen.
- Charakteristische Unterschiede sind:
 - Ausführungsdauer: min, h, d, INF.
 - Ausführungszeit: sofort, später, zu einem Zeitpunkt.
 - Ausführungszweck: Datenverarbeitung, Request-Handling.
 - Ressourcenverbrauch: CPU-, RAM-, HDD-, NW-dominant.
 - Zustand: zustandsbehaftet, zustandslos.
- Zu unterscheiden sind mindestens:
 - **Batch-Jobs**: Ausführungszeit im Minuten- bis Stundenbereich. Eher niedrige Priorität und gut unterbrechbar. Müssen i.d.R. bis zu einem bestimmten Zeitpunkt abgeschlossen sein. Zustandsbehaftet.
 - **Service-Jobs**: Sollen auf unbestimmte Zeit unterbrechungsfrei laufen. Haben hohe Priorität und sollten nicht unterbrochen werden. Sind teilweise auch zustandslos.

Heterogeneity and Dynamicity of Clouds at Scale: Google Trace Analysis, Charles Reiss et al., 2012

Ressourcenverbrauch

Bestehende Ressourcen einer Cloud können durch dynamische Partitionierung wesentlich effizienter genutzt werden.

Cluster-Zustand

Statische Partitionierung Dynamische Partitionierung

Vorteile der dynamischen Partitionierung:

- Höhere Auslastung der Ressourcen → weniger
 Ressourcen notwendig → geringere Betriebskosten
- Potenziell schnellere Ausführung einzelner Tasks, da Ressource opportun genutzt werden können.

Ein Cluster-Scheduler: Eingabe, Verarbeitung, Ausgabe.

<u>Eingabe</u> eines Cluster-Schedulers ist Wissen über die Jobs und Tasks (Properties) und über die Ressourcen:

- Resource Awareness: Welche Ressourcen stehen zur Verfügung und wie ist der entsprechende Bedarf des Tasks?
- Data Awareness: Wo sind die Daten, die ein Task benötigt?
- QoS Awareness: Welche Ausführungszeiten müssen garantiert werden?
- **Economy Awareness**: Welche Betriebskosten dürfen nicht überschritten werden?
- Priority Awareness: Wie ist die Priorität der Task zueinander?
- Failure Awareness: Wie hoch ist die Wahrscheinlichkeit eines Ausfalls? (z.B. da ein Rack oder eine Stromvers.)
- **Experience Awareness**: Wie hat sich ein Tasks in der Vergangenheit verhalten?

<u>Ausgabe</u> eines Cluster-Schedulers: Placement Decision als

- Slot-Reservierungen
- Slot-Stornierungen (im Fehlerfall, Optimierungsfall, Constraint-Verletzung)

<u>Verarbeitung</u> im Cluster-Scheduler: Scheduling-Algorithmen entsprechend der jeweiligen Scheduling-Ziele, wie z.B.:

- Fairness: Kein Task sollte unverhältnismäßig lange warten müssen, während ein anderer bevorzugt wird.
- Maximaler Durchsatz: So viele Tasks pro Zeiteinheit wie möglich.
- Minimale Wartezeit: Möglichst geringe Zeit von der Übermittlung bis zur Ausführung eines Tasks.
- Ressourcen-Auslastung: Möglichst hohe Auslastung der verfügbaren Ressourcen.
- Zuverlässigkeit: Ein Task wird garantiert ausgeführt.
- Geringe End-to-End Ausführungszeit (z.B. durch Daten-Lokalität und geringe Kommunikationskosten)

Cluster-Scheduling ist eine Optimierungsaufgabe.

Scheduling ist eine Optimierungsaufgabe, die NP-vollständig ist.

- ... und ist NP-vollständig. Die Optimierungsaufgabe lässt sich auf das Travelling Salesman Problem zurückführen.
- Das bedeutet:
 - Es ist kein Algorithmus bekannt, der eine optimale Lösung garantiert in Polynomialzeit erzeugt.
 - Algorithmus muss für tausende Jobs und tausende Ressourcen skalieren. Optimale Algorithmen, die den Lösungsraum komplett durchsuchen sind nicht praktikabel, da deren Entscheidungszeit zu lange ist für große Eingabemengen (|Jobs| x |Ressourcen|).
 - Praktikable Scheduling-Algorithmen sind somit Algorithmen zur näherungsweisen Lösung des Optimierungsproblems (Heuristiken, Meta-Heuristiken).

Architektur eines Cluster-Schedulers

The Datacenter as a Computer

Idee: Ein Cluster sieht von Außen aus wie ein großer Computer.

Konsequenz: Es müssen als Fundament viele Konzepte klassischer Betriebssysteme übertragen werden (ein Cluster-Betriebssystem). Das gilt insbesondere auch für das Scheduling.

Buch: The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines, 2009, Luiz André Barroso und Urs Hölzle

Eine konzeptionelle Architektur für Cluster-Scheduler.

Job Queue:

- Eingehende Jobs zur Ausführung
- Events zu eingegangenen Jobs

Job Scheduler:

- Jobs einplanen
- Taskausführung steuern

Execution Monitor:

- Task-Ausführung überwachen
- Ressourcen überwachen

Anforderungen:

- Performance
 - Geringe Queing-Time
 - Geringe Decision-Time
 - Geringe Ausführungslatenz
- Hoch-Verfügbarkeit und Fehlertoleranz
- Skalierbarkeit bzgl. Anzahl an Jobs und verfügbaren Ressourcen.

Executor:

- Task ausführen
- Informationen zur Ressource bereitstellen

Scheduler-Architektur. Variante 1: kein Scheduler.

Statische Partitionierung.

Scheduler-Architektur. Variante 2: Monolithischer Scheduler.

Vorteile:

Globale Optimierungsstrategien einfach möglich.

Nachteile:

- Heterogenes Scheduling für heterogene Jobs schwierig:
 - Komplexe und umfangreiche Implementierung notwendig
 - ... oder homogenes Scheduling von geringerer Effizienz.
- Potenzielles Skalierbarkeits-Bottleneck.

Scheduler-Architektur. Variante 3: 2-Level-Scheduler.

- Auftrennung der Scheduling-Logik in einen Resource Scheduler und einen App Scheduler.
 - Der Resource Scheduler kennt alle verfügbaren Ressourcen und darf diese allokieren. Er nimmt Ressourcen-Anfragen (Requests) entgegen und unterbreitet entsprechend einer Scheduling-Policy (definierte Scheduling-Ziele) Ressourcen-Angebote (Offers).
 - Der **App Scheduler** nimmt Jobs entgegen und "übersetzt" diese in Ressourcen-Anfragen und wählt applikationsspezifisch die passenden Ressourcen-Angebote aus.
- Offers sind eine zeitlich beschränkte Allokation von Ressourcen, die explizit angenommen werden muss.
- Grundsätzlich **pessimistische Strategie**: Disjunkte Offers. I.d.R. sind aber auch optimistische Offers verfügbar, bei denen eine gewisse Überschneidung erlaubt ist.
- Im Sinne der Fairness kann ein prozentualer Anteil der Ressourcen für einen App Scheduler garantiert werden.

Scheduler-Architektur. Variante 3: 2-Level-Scheduler.

Apache Mesos

Mesos: A Platform for Fine-Grained Resource Sharing in the

Vorteile:

- Nachgewiesene Skalierbarkeit auf tausende von Knoten (z.B. Twitter, Airbnb, Apple Siri).
- Flexible Architektur für heterogene Scheduling-Logiken.

Nachteile:

■ App-Scheduler übergreifende Logiken nur schwer zu realisieren (z.B. globaler Ausführungsverzicht oder Gang-Scheduling)

Scheduler-Architektur. Variante 3: 2-Level-Scheduler.

- Es gibt ausschließlich applikationsspezifische Scheduler.
- Die App Scheduler synchronisieren kontinuierlich den aktuellen Zustand des Clusters (Cluster-Zustand: Job-Allokationen und verfügbare Ressourcen).
- Jeder App Scheduler entscheidet die Platzierung von Tasks auf Basis seines aktuellen Cluster-Zustands.
- Optimistische Strategie: Ein zentraler Koordinationsdienst erkennt Konflikte im Scheduling und löst diese auf, in dem er Zustands-Änderungen nur für einen der beteiligten App Scheduler erlaubt und für die anderen App Scheduler einen Fehler meldet.

Scheduler-Architektur. Variante 3: 2-Level-Scheduler.

Vorteile:

■ Tendenziell geringerer Kommunikations-Overhead.

■ Nachteile:

- Komplettes Scheduling muss pro App Scheduler entwickelt werden.
- Keine globalen Scheduling-Ziele (z.B. Fairness) möglich.
- Skalierbarkeit in großen Clustern unklar, da noch nicht in der Praxis erprobt und insbesondere Auswirkung bei hoher Anzahl an Konflikten ungeklärt.

Cluster-Scheduler: Mesos

Die Genealogie der Cluster-Scheduler.

Apache Mesos

- Entstanden an der UC Berkeley im Rahmen der Arbeiten von Ben Hindeman. 1. Release 2009.
- Open Source Projekt unter der Apache Lizenz 2.0.
- Ist im Kern ein Cluster-Scheduler und fasst sich selbst als Cluster-Betriebssystem auf.
- Eine kommerzielle Variante wird unter dem Namen DCOS von der Firma Mesosphere, Inc. entwickelt und vertrieben.
- 2-Level-Scheduler mit DRF als Default-Scheduling-Algorithmus.
- Alle Bestandteile von Mesos können ausfallsicher ausgelegt werden.
- Wird im großen Stil eingesetzt bei Twitter, Apple, Microsoft, Verizon, CERN, Airbnb, ...
- Alle Teile sind per REST-API zugänglich. Task-Isolation per Docker oder eigenem Mechanismus.

Quelle: https://www.typesafe.com/blog/play-framework-grid-deployment-with-mesos

Apache Mesos: Zusammenspiel der Bausteine.

Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center, Hindman et al., 2010

Marathon ist der 2nd-Level-Scheduler in Mesos, der auf die Ausführung von zustandslosen Services ausgelegt ist.

- Wurde initial von Tobi Knaup entwickelt als Mesos-Aufbau um langlaufende, zustandslose Services zuverlässig und komfortabel ausführen zu können.
- Besitzt eigenständige Web-UI und REST-API.
- Prozess werden kontinuierlich am Leben gehalten. Terminiert ein Prozess, so wird er automatisch wieder gestartet.
- Mechanismus für Health-Checking von Services.
- Eingebauter Mechanismus für Service Discovery und Load Balancing.

Quellen

Videos zum Thema Cluster Scheduling.

Scheduling in Cloud by Ms. Mala Kalra, https://youtu.be/hhwCc5yPylg

■ Omega: flexible, scalable schedulers for large compute clusters, https://youtu.be/XsXlm4wmB60

Cluster Management and Containerization, Ben Hindman, https://youtu.be/F1-UEIG7u5g

Literatur

- Omega: flexible, scalable schedulers for large compute clusters, Schwarzkopf et al., 2013
- Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center, Hindman et al., 2010
- Heterogeneity and Dynamicity of Clouds at Scale: Google Trace Analysis, Charles Reiss et al., 2012
- Scheduling Algorithms for Grid Computing: State of the Art and Open Problems, Dong et al., 2006
- Scheduling in Grid Computing Environment, Prajapati, 2014
- A Survey on Task Scheduling For Parallel Workloads in the Cloud Computing System, Abhijeet Tikar et al., 2014
- Multi-Resource Packing for Cluster Schedulers Paper, Grandl, 2014
- Dominant Resource Fairness: Fair Allocation of Multiple Resource Types, Ghodsi et al., 2011
- Mesos, Omega, Borg A Survey: http://www.umbrant.com/blog/2015/mesos_omega_borg_survey.html