Applied Data Science Projektarbeit «Vivino für Autos»

Applied Data Science

Studenten: Tim Baenziger, Philippe Fuhrer, Silvan Kirchhofer

Prüfende Dozentin: Maria Pelli

FS2021

Agenda

- I. Einleitung
- II. Methode & Vorgehensweise
- III. Base Model
- IV. Transfer Learning Model
- V. Price Prediction
- VI. Ethische Fragestellungen
- VII. Beantwortung der Forschungsfrage
- VIII. Schlussfolgerungen
- IX. Quellenverzeichnis

Einleitung

- Hintergrund
 - Fortschritte im Bereich AI erlaubt es Automarken zu erkennen
 - Die Preisbestimmung von Autos
 - Wichtig für die Automobilbranche & für Privatpersonen
 - Kann automatisiert werden
 - Entwicklung einer App im Stil von "Vivino"
- Problemstellung
 - Erkennung der Automarke basierend auf Bildern sowie Bestimmung des Preises aufgrund weiterer Attribute
- Zielsetzung
 - Optimierung der Bilderkennung von Automarken via CNN und Transfer Learning
 - Zusätzlich: Preisbestimmung aufgrund von weiteren Attributen
- Forschungsfrage
 - Kann basierend auf dem Kaggle Car-Dataset eine genaue Bild-Klassifikation von ausgewählten Auto-Marken sowie eine Bestimmung der Verkaufspreise für den Schweizer Markt gemacht werden?

Methodik & Vorgehensweise

Überblick der Vorgehensweise

Methodik & Vorgehensweise

Namen der Jupyter Notebooks im Überblick

Methodik & Vorgehensweise

Kollaboration & Data Sources

Data Sources: Kaggle API + Webscraping

Kollaboration & Versionierung: Google Colab Pro & GitHub

Datenbezug über kaggle API

kaggle

API

Using Kaggle's beta API, you can interact with Competitions and Datasets to download data, make submissions, and more via the command line. Read the docs

- kaggle.json -> API Key
- 690 MB .zip
- Ca 1.5 GB Image .jpg

Data Exploration

- 64'467 Auto-Bilder
- 20 Marken
- Analyse der Bilder
 - RGB
 - Unterschiedliche Grössen
 - Unterschiedliche Perspektiven
 - Achtung «unbrauchbare» Bilder


```
data['brand'].value_counts().head(20)
Chevrolet
                  5079
Toyota
                  4598
Ford
                  4416
BMW
                  4121
Nissan
                  3881
Audi
                  3131
Mercedes-Benz
                  3097
Honda
                  2675
Kia
                  2160
Lexus
                  2125
Hyundai
                  2091
                  2067
GMC
Volkswagen
                  1752
Subaru
                  1605
Mazda
                  1475
Dodge
                  1345
Porsche
                  1344
Lincoln
                  1324
Cadillac
                  1311
Volvo
                  1231
Name: brand, dtype: int64
```


Processing der Daten & Feature Engineering

- Beschränkung auf 10 Auto-Marken
- Feature Engineering
 - Grey Scaling
 - Resizing (200, 300)
 - Speichern der Daten in einem Numpy-Array

```
[ ] X= []
  y= []
  for i in range(len(data)):
      src = data.loc[i,'src']
      src = cv2.imread(src, cv2.IMREAD_COLOR)
      dst = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
      X.append(cv2.resize(dst, dsize=(200, 300), interpolation=cv2.INTER_AREA))
      y.append(data.loc[i,'brand'])

fig, axes = plt.subplots(1,10,figsize=(25,10))
  for i in range(0,10):
      axes[i].imshow(X[i])
```


Architektur

Conv2D Conv2D Conv2D Conv2D **Flatten Dense** MaxPool MaxPool MaxPool MaxPool Dense Dropout Dropout Dropout Dropout **Dropout**

0	model.summary()			
C	Model: "sequential_3"			
	Layer (type)	Output		Param #
	conv2d_12 (Conv2D)		296, 196, 32)	832
	max_pooling2d_12 (MaxPooling	(None,	148, 98, 32)	0
	dropout_15 (Dropout)	(None,	148, 98, 32)	0
	conv2d_13 (Conv2D)	(None,	148, 98, 32)	25632
	max_pooling2d_13 (MaxPooling	(None,	74, 49, 32)	0
	dropout_16 (Dropout)	(None,	74, 49, 32)	0
	conv2d_14 (Conv2D)	(None,	74, 49, 64)	18496
	max_pooling2d_14 (MaxPooling	(None,	37, 24, 64)	0
	dropout_17 (Dropout)	(None,	37, 24, 64)	0
	conv2d_15 (Conv2D)	(None,	37, 24, 64)	36928
	max_pooling2d_15 (MaxPooling	(None,	18, 12, 64)	0
	dropout_18 (Dropout)	(None,	18, 12, 64)	0
	flatten_3 (Flatten)	(None,	13824)	0
	dense_6 (Dense)	(None,	256)	3539200
	dropout_19 (Dropout)	(None,	256)	0
	dense_7 (Dense)	(None,		2570
	Total params: 3,623,658 Trainable params: 3,623,658 Non-trainable params: 0			

Die Architektur des Base Models basiert auf der bekannten VGG16 Architektur, wurde jedoch mangels Rechenleistung etwas verschlankt.

Finetuning

Finetuning Aktion	Resultat
Anzahl Layers erhöht	Accuracy sinkt
Optimizer von rmsProp zu adam	Accuracy steigt
Activation von relu auf elu	Overfit sinkt
Anpassen von learning rate	Keine Veränderung
Verschiedene Regulizer	Keine Veränderung
Dropout Layer	Overfit sinkt
Batch size verkleinert	Accuracy sinkt
Kernel Anzahl vergrössert und verkleiner	Accuracy sinkt Overfitt steigt

```
input_shape = X_train.shape[1:]
model = models.Sequential()
model.add(layers.Conv2D(filters = 32, kernel_size = (5,5), activation ='elu', input_shape = X_train.shape[1:]))
model.add(layers.MaxPool2D(pool_size=(2,2)))
model.add(layers.Dropout(0.25))
model.add(layers.Conv2D(filters = 32, kernel_size = (5,5),padding = 'Same', activation = 'elu'))
model.add(layers.MaxPool2D(pool size=(2,2)))
model.add(layers.Dropout(0.25))
model.add(layers.Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same', activation = 'elu'))
model.add(layers.MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(layers.Dropout(0.25))
model.add(layers.Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same', activation = 'elu'))
model.add(layers.MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(layers.Dropout(0.25))
model.add(layers.Flatten())
model.add(layers.Dense(256, activation = "relu"))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(10, activation = "softmax")) # set number of outputs
optimizer = RMSprop(learning_rate=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
model.compile(loss=keras.losses.categorical_crossentropy, optimizer=optimizer , metrics=['accuracy'])
```

```
datagen = ImageDataGenerator()
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
#rotation_range=10, # randomly rotate images in the range (degrees, 0 to 180)
#zoom_range = 0.1, # Randomly zoom image
#width_shift_range=0.1, # randomly shift images horizontally (fraction of total width)
#height_shift_range=0.1, # randomly shift images vertically (fraction of total height)
horizontal_flip=True, # randomly flip images

vertical_flip=True) # randomly flip images

datagen.fit(X_train)
```

Epochs	Accuracy	Loss	Augmentation
19/100	0.593	1.5	No

Epochs	Accuracy	Loss	Augmentation
100	0.65	1.2	Yes

Ergebnisse

- Hohe Rechenleistung erforderlich
- Hohe Anforderung an RAM
- Anfangs hoher Overfit
- Data Augmentation
 - Horizontal & Vertical Flip
 - Weniger Overfit
 - Bessere Accuracy
- Accuracy nie über 65%

Webscraping für Second Model und Processing der Daten

Die Daten für das Finetuning des Base Models wurden mit einem Scraper von Car4You extrahiert und anschliessend ein Data-Cleansing durchgeführt.


```
rom bs4 import BeautifulSoup
 import urllib.request
f = open("_car_info_scraped_from_car4you_V2.csv", "w", newline="")
thewriter.writerow(["brand", "model", "km", "fuel_type", "price"])
carbrands = ["vw", "toyota", "ford", "bmw", "nissan", "audi", "mercedes-benz", "honda", "kia", "volvo"]
chars_to_remove=["/","*"]
  or brand in carbrands:
   page = 0
    while page <= 100:
            url = "https://www.carforyou.ch/de/auto/"+brand+"?page="+str(page)
            response = requests.get(url)
            soup = BeautifulSoup(response.content, "lxml")
            images = soup.find_all("img")
            prices = soup.find_all("p", class_ = "text-grey-dark leading-sm font-bold w-12/12")
            infos = soup.find_all("p", class_ = "text-grey-4 md:text-md leading-xs pb-14")
            models = soup.find_all("h1", class_ = "text-md leading-xs text-grey-dark font-regular mb-10")
               text_for_name = str(brand+","+str(models[count].text.replace("/",","))+","+str(infos[count].text.replace(" · ",","))+","+str(prices[count].text[4:])+","+str(count)
                    text_for_name = text_for_name.replace(character, "")
                image_src = image["src"]
                thewriter.writerow([text for name])
                urllib.request.urlretrieve(image_src, text_for_name+".jpg")
```


Nachfolgend wurden die Daten analog zum Base Model behandelt -> Beschränkung auf 10 Automarken und Feature Engineering

Architektur

Model: "sequential_9"			
Layer (type)	Output	Shape	Param #
module_wrapper_9 (ModuleWrap	(None,	10)	3623658
flatten_9 (Flatten)	(None,	10)	0
dense_18 (Dense)	(None,	256)	2816
dropout_9 (Dropout)	(None,	256)	0
dense_19 (Dense)	(None,	10)	2570
Total params: 3,629,044 Trainable params: 3,584,084 Non-trainable params: 44,960			

Finetuning

epoch loss

epoch top k categorical accuracy

Finetuning Aktion	Resultat
Anzahl der trainierbaren Layers vergrössert/verkleinert	Accuracy wurde kleiner (9 trinable layers wurden als optimal identifiziert)
Veränderung der Activation Function von relu auf elu	Etwas bessere Accuracy aber vor allem schnellere Optimierung
Anzahl Dense Layers erhöht	Accuracy wurde kleiner
Data Augmentation	Keinen spürbaren Einfluss auf accuracy – jedoch auf Overfit
Anpassen von learning rate	Accuracy bleibt gleich
Verschiedene Regulizer	Keine Veränderung

Trotzdem, dass zahlreiche Stunden investiert wurden, um das extreme Overfit-Problem zu lösen, konnte keine definitive Lösung gefunden werden.

Durch die Eliminierungs-Methode kamen wir zum Schluss, dass das <u>Data-Set zu klein</u> für die Anwendung ist.

Ergebnisse

-> Val_Accuracy von 40% für eine Auto-Erkennungs-App nicht ausreichend.

Price Prediction

Exploratory Data Analysis

Price Prediction

Model Architektur und Ergebnisse

Model	Regression Tree Classifier von Sklearn
Max Depth	5 "keep it simple"

Regression Tree Classifier Score:

91%

Horsepower ≤ 305.0 mse = 728.92 samples = 192909

Ethische Fragestellungen

1. Datenschutz?

- Keine personenbezogenen Daten (keine Personen oder Nummernschilder erkennbar)
- Daher in Puncto Datenschutz unproblematisch
- Scraping ist Datenschutz-Grauzone (Urheberrecht)

2. Weitere Gefahrenpotenziale?

- Verstärkung Klassendenken (Preistransparenz Autos)
- Preis wird falsch kalkuliert (Konfliktpotenziale)
- Fremde Autos werden fotografiert (Konfliktpotenziale)

19

Beantwortung Forschungsfrage

Recap Forschungsfrage:

• Kann basierend auf dem Kaggle Car-Dataset eine genaue Bild-Klassifikation von ausgewählten Auto-Marken sowie eine Bestimmung der Verkaufspreise für den Schweizer Markt gemacht werden?

Antwort:

- Basierend auf dem Kaggle Car-Dataset konnte <u>keine</u> ausreichend akkurate Bild-Klassifikation für eine vergleichbare Applikation (wie Vivino) erstellt werden. Die Primären Gründe sind:
 - Mangelnde Datenqualität des Datasets
 - Unzureichende Rechenleistung trotz kostenpflichtiger Colab-Pro Version
 - Homogene Optik von Autos
- Die Bestimmung der Verkaufspreise konnte hingegen ohne grossen Aufwand umgesetzt werden

14.06.2021 ADS Projektarbeit HS2021 20

Schlussfolgerungen

Grundlegende Problemstellungen und Learnings

- Initiales Ziel zu ambitiös und ohne stärkere Rechenleistung nicht erreichbar (Stichwort: Ikarus)
- Viele Learnings aber auch ungelöste Problemstellungen
- Base Model: Datengrundlage heterogen & noisy
 - Das Kaggle Car-Dataset enthält viele «unbrauchbare» Bilder (Bilder von Rückspiegeln oder dem Interieur etc.)
 - Data-Set bereinigen -> hoher Aufwand
- Transfer Learning Model: Datengrundlage zu klein
- Data Augmentation noch experimentell

21

14.06.2021 ADS Projektarbeit HS2021

Quellenverzeichnis

Allgemeine Quellen

- Kaggle 60'000 Images of Cars
- Tensorflow ImageData Generator
- <u>Tensoforflow Conv2D</u>
- Car4You Webpage
- Stackoverfolw (mind. 50 versch. Links)
- <u>Medium</u>
- Keras Documentation

GitHub Repository

• https://github.com/PhilippeFuhrer/Car Image Recognition CNN With Kaggle Car Dataset

Q&A und Danke!

23