вариант	ф.	номер	група	поток	курс	специалност
1						
Име:						

Втора контролна работа по "Логическо програмиране" спец. "Компютърни науки" $18.12.2010~\mathrm{r}.$

Задача 1. Да се докаже, че множеството, съдържащо следните три формули, е изпълнимо:

 $\forall x \forall y (p(x,y) \implies \forall z (p(z,x) \lor p(y,z)))$ $\forall x \forall y \forall z (p(x,y) \& p(y,z) \implies \neg p(x,z))$ $\forall x \forall y (p(x,y) \implies \neg p(y,x))$

Задача 2. Структурата \mathcal{A} е с универсум множеството на естествените числа и е за език без функционални символи и единствен предикатен символ p, който е триместен и се интерпретира по следния начин:

$$(n, m, k) \in p^{\mathcal{A}} \longleftrightarrow n^5 m^4 = k$$

Да се докаже, че множество от вида $\{m\}$ е определимо тогава и само тогава, когато $m \in \{0\}.$

вариант	ф.	номер	група	поток	курс	специалност
1						
Име:						

Втора контролна работа по "Логическо програмиране" спец. "Компютърни науки" $18.12.2010~\mathrm{r}.$

Задача 1. Да се докаже, че множеството, съдържащо следните три формули, е изпълнимо:

 $\forall x \forall y (p(x,y) \Longrightarrow \forall z (p(z,x) \lor p(y,z)))$ $\forall x \forall y \forall z (p(x,y) \& p(y,z) \Longrightarrow \neg p(x,z))$ $\forall x \forall y (p(x,y) \Longrightarrow \neg p(y,x))$

Задача 2. Структурата \mathcal{A} е с универсум множеството на естествените числа и е за език без функционални символи и единствен предикатен символ p, който е триместен и се интерпретира по следния начин:

$$(n, m, k) \in p^{\mathcal{A}} \longleftrightarrow n^5 m^4 = k$$

Да се докаже, че множество от вида $\{m\}$ е определимо тогава и само тогава, когато $m \in \{0\}$.

вариан	TC	<u>þ.</u>	номер	група	поток	курс	специалност
1							
Име:							

Втора контролна работа по "Логическо програмиране" спец. "Компютърни науки" 18.12.2010 г.

Задача 1. Да се докаже, че множеството, съдържащо следните три формули, е изпълнимо:

 $\forall x \forall y (p(x,y) \Longrightarrow \forall z (p(z,x) \lor p(y,z)))$ $\forall x \forall y \forall z (p(x,y) \& p(y,z) \Longrightarrow \neg p(x,z))$ $\forall x \forall y (p(x,y) \Longrightarrow \neg p(y,x))$

Задача 2. Структурата \mathcal{A} е с универсум множеството на естествените числа и е за език без функционални символи и единствен предикатен символ p, който е триместен и се интерпретира по следния начин:

$$(n, m, k) \in p^{\mathcal{A}} \longleftrightarrow n^5 m^4 = k$$

Да се докаже, че множество от вида $\{m\}$ е определимо тогава и само тогава, когато $m \in \{0\}$.

вариант	ф.	номер	група	поток	курс	специалност
2						
Име:						

Втора контролна работа по "Логическо програмиране" спец. "Компютърни науки" 18.12.2010 г.

Задача 1. Да се докаже, че множеството, съдържащо следните три формули, е изпълнимо:

$$\forall x \forall y (p(x, y) \Longrightarrow \neg p(y, x))$$

$$\neg \exists x \exists y \exists z (p(x, y) \& p(y, z) \& p(z, x))$$

$$\forall x \forall y (p(x, y) \Longrightarrow \forall z (p(z, x) \lor p(y, z)))$$

Задача 2. Структурата \mathcal{A} е с универсум множеството на естествените числа и е за език без функционални символи и единствен предикатен символ p, който е триместен и се интерпретира по следния начин:

$$(n, m, k) \in p^{\mathcal{A}} \longleftrightarrow n^3 m^6 = k$$

Да се докаже, че множество от вида $\{m\}$ е определимо тогава и само тогава, когато $m \in \{0\}$.

вариант	ф.	номер	група	поток	курс	специалност
2						
Име:						

Втора контролна работа по "Логическо програмиране" спец. "Компютърни науки" $18.12.2010~\mathrm{r.}$

Задача 1. Да се докаже, че множеството, съдържащо следните три формули, е изпълнимо:

 $\forall x \forall y (p(x, y) \Longrightarrow \neg p(y, x))$ $\neg \exists x \exists y \exists z (p(x, y) \& p(y, z) \& p(z, x))$ $\forall x \forall y (p(x, y) \Longrightarrow \forall z (p(z, x) \lor p(y, z)))$

Задача 2. Структурата \mathcal{A} е с универсум множеството на естествените числа и е за език без функционални символи и единствен предикатен символ p, който е триместен и се интерпретира по следния начин:

$$(n, m, k) \in p^{\mathcal{A}} \longleftrightarrow n^3 m^6 = k$$

Да се докаже, че множество от вида $\{m\}$ е определимо тогава и само тогава, когато $m \in \{0\}.$

вариант	ф.	номер	група	поток	курс	специалност
2						
Име:						

Втора контролна работа по "Логическо програмиране" спец. "Компютърни науки" $18.12.2010~\mathrm{r.}$

Задача 1. Да се докаже, че множеството, съдържащо следните три формули, е изпълнимо:

 $\forall x \forall y (p(x,y) \implies \neg p(y,x))$ $\neg \exists x \exists y \exists z (p(x,y) \& p(y,z) \& p(z,x))$ $\forall x \forall y (p(x,y) \implies \forall z (p(z,x) \lor p(y,z)))$

Задача 2. Структурата \mathcal{A} е с универсум множеството на естествените числа и е за език без функционални символи и единствен предикатен символ p, който е триместен и се интерпретира по следния начин:

$$(n, m, k) \in p^{\mathcal{A}} \longleftrightarrow n^3 m^6 = k$$

Да се докаже, че множество от вида $\{m\}$ е определимо тогава и само тогава, когато $m \in \{0\}$.