

Roteiro de hoje!

- Definição
- Introdução ao Agrupamento de Dados
 - Definições de Agrupamento
 - Caso de Uso
- Algoritmos Particionais
 - Conceitos básicos
 - Algoritmo
 - Validação
 - Exemplo prático
 - Atividade

Qual é o Agrupamento Natural destes Objetos?

Qual é o Agrupamento Natural destes Objetos?

Empregados da Escola

Agrupamento

é subjetivo!

O que é Agrupamento de Dados

- ♦ Encontrar os rótulos (classes) implícitos dos dados sem supervisão.
- Organizar dados em grupos tal que exista:
 - Alta similaridade intra-grupo.
 - Baixa similaridade entre grupos.

Ilustrando Agrupamento

→ Agrupamento baseado na Distância Euclidiana no espaço 3-D.

Distâncias intra-grupos são minimizadas

Distâncias entre grupos são maximizadas

O que é Agrupamento de Dados

- Dado um conjunto de objetos, cada um tendo um conjunto de atributos, e uma métrica de similaridade entre eles, achar agrupamentos tal que:
 - Objetos de um agrupamento são muito similares entre si.
 - Objetos de agrupamentos diferentes são menos similares entre si.
- Métricas de Similaridade:
 - Distância Euclidiana, se os atributos são contínuos.
 - Outras métricas específicas a cada problema

Agrupamento: Casos de Uso

Segmentação de Clientes

- Auxilia empresas a melhorar a carta de clientes
- Segmenta os clientes com base no histórico de compras, interesses ou monitoração de atividades
- Paper: Prepaid Telecom Customers Segmentation using the K-means Algorithm
 - Agrupa clientes que possuem planos pré-pagos
 - Identifica padrões em termos de dinheiro gasto em recarga, envio de SMS e navegação na internet
 - Auxilia a empresa a visar padrões específicos de clientes para o direcionamento de campanhas de marketing

Agrupamento: Casos de Uso

Analise de Jogadores

Fantasy league analysis

- Identificar uma lista de jogadores similares
- O algoritmo de ML aprende o que um "olheiro" realiza
- Criar um "Fantasy team" baseado no resultados dos padrões encontrados pelo algoritmo k-means

Agrupamento: Casos de Uso

Detecção de Fraude

- Utiliza dados históricos sobre informações fraudulentas
- Quando uma nova reclamação aparece é possível isolar com base na sua proximidade de cluster que indicam padrões fraudulentos
- ♦ A identificação de fraudes pode ter um impacto muito grande nas empresas

Tipos de Agrupamentos

Quantos agrupamentos?

Seis agrupamentos

Quatro agrupamentos

Dois agrupamentos

Tipos de Agrupamentos

Agrupamento Particional

k-means:

- Cada grupo está associado a um centroide (ponto central).
- ◆ Cada objeto é atribuído ao grupo com o centroide mais próximo.
- → O algoritmo é bem simples.
- Número de grupos, **k**, deve ser especificado.
 - 1: Select K points as the initial centroids.
 - 2: repeat
 - 3: Form K clusters by assigning all points to the closest centroid.
 - 4: Recompute the centroid of each cluster.
 - 5: **until** The centroids don't change

Algoritmo K-means – Detalhamento

- ◆ Centroides iniciais são geralmente aleatórios.
 - → Agrupamento varia conforme a inicialização.
- ◆ Centroide são (tipicamente) a média de todos os objetos do grupo.
- ◆ A medida de distância geralmente empregada é a distância Euclidiana.
- ★ k-means geralmente converge com poucas iterações.
 - Critério de parada é geralmente modificado para "até que poucos objetos alterem o grupo".
- ◆ Complexidade é O(n * k * i * d)
 - n = número de objetos
 - ★ k = número de grupos
 - i = número de iterações
 - d = número de atributos

Aonde estão os centroides?

Importância da Escolha dos Centroids

Iniciais

Importância da Escolha dos Centroids Iniciais

Considere o conjunto de dados abaixo, o qual possui 6 registros de peso e altura normalizados de 0 a 10.

Supondo que o Objeto 1 é o centroide inicial do agrupamento 1 e o Objeto 2 é o centroide inicial do agrupamento 2, quais serão os valores dos centroides dos dois agrupamentos, ao final da

execução do algoritmo?

	4			
Cer	7tr			1
UCI		U	C	

Centroide 2

	Objeto	Peso	Altura
•	1	2	8
*	2	8	2
	3	6	8
	4	2	7
	5	8	4
	6	2	6

ALTURA

- 1. Selecione k objetos como centroides iniciais.
- 2. Repita
- 3. Forme k agrupamentos vinculando todos os objetos aos centroides mais próximos.
- 4. Recalcule o centroide de cada agrupamento.
- 5. Até que os centroides não mudem.

Passo 1: marcar os centroides.

	Objeto	Peso	Altura
	1	2	8
Centroide 1	2	8	2
	3	6	8
Centroide 2	4	2	7
	5	8	4
	6	2	6

Distancia euclidiana: $\sqrt{(x^2-x^1)^2+(y^2-y^1)^2}$

- 1. Selecione k objetos como centroides iniciais.
- 2. Repita
- 3. Forme k agrupamentos vinculando todos os objetos aos centroides mais próximos.
- 4. Recalcule o centroide de cada agrupamento.
- 5. Até que os centroides não mudem.

Passo 2: marcar os demais objetos.

demais objetos.	Objeto	Peso	Altura
	1	2	8
Centroide 1	2	8	2
	3	6	8
Centroide 2	4	2	7
	5	8	4
	6	2	6

Distancia euclidiana: $\sqrt{(x^2-x^1)^2+(y^2-y^1)^2}$

- 1. Selecione k objetos como centroides iniciais.
- 2. Repita
- 3. Forme k agrupamentos vinculando todos os objetos aos centroides mais próximos.
- 4. Recalcule o centroide de cada agrupamento.
- 5. Até que os centroides não mudem.

Passo 3: atribuir cada pronto ao centroide mais próximo.

	Objeto	Peso	Altura
Control of a	1	2	8
Centroide 1	2	8	2
	3	6	8
Centroide 2	4	2	7
	5	8	4
	6	2	6

Distancia euclidiana: $\sqrt{(x^2-x^1)^2+(y^2-y^1)^2}$

- 1. Selecione k objetos como centroides iniciais.
- 2. Repita
- 3. Forme k agrupamentos vinculando todos os objetos aos centroides mais próximos.
- 4. Recalcule o centroide de cada agrupamento.
- 5. Até que os centroides não mudem.

Retorna ao passo 3: marcar os demais objetos.

	Objeto	Peso	Altura
	1	2	8
Centroide 1	2	8	2
	3	6	8
Centroide 2	4	2	7
	5	8	4
	6	2	6

Passo 4: recalcular o centroide de cada agrupamento.

Agrupamento 1:

PESO =
$$(2 + 2 + 2 + 6) / 4 = 3$$

ALTURA = $(8 + 7 + 6 + 8) / 4 = 7,25$

Agrupamento 2:

PESO =
$$(8 + 8) / 2 = 8$$

ALTURA = $(2 + 4) / 2 = 3$

Novos centroides:

Agrupamento 1: (3; 7,25)

Agrupamento 2: (8; 3)

- 1. Selecione k objetos como centroides iniciais.
- 2. Repita
- Forme k agrupamentos vinculando todos os objetos aos centroides mais próximos.
- 4. Recalcule o centroide de cada agrupamento.
- 5. Até que os centroides não mudem.

Retorna ao passo 3: atribuir cada objeto ao

centroide mais próximo.

Centroide 1

Centroide 2

	Objeto	Peso	Altura
•	1	2	8
▼ [2	8	2
	3	6	8
	4	2	7
	5	8	4
	6	2	6

Passo 4: recalcular centroides.

Neste caso, na 2ª iteração, em diante, os centroides não mudam porque os objetos não trocam de grupos.

Logo, o algoritmo do k-Means termina e a resposta é:

Centroide do Agrupamento 1: (3; 7,25)

Centroide do Agrupamento 2: (8; 3)

	Objeto	Peso	Altura
	1	2	8
Centroide 1	2	8	2
	3	6	8
Centroide 2	4	2	7
	5	8	4
	6	2	6

Avaliando Agrupamentos

- ◆ Como avaliar a qualidade dos resultados do agrupamento?
- Mas os grupos não são subjetivos?
- Então para que avaliá-los?
 - Para evitar descobrirmos padrões em ruído.
 - Para comparar dois ou mais algoritmos de agrupamento.
 - Para comparar dois ou mais resultados de agrupamentos.
 - Para comprar dois grupos.

Avaliando Agrupamentos

- Medida mais comum é a Soma dos Erros Quadráticos (SSE sum of squared errors)
 - → Para cada objeto, o erro é a distância ao grupo mais próximo.
 - → Para obter SSE, elevamos os erros ao quadrado e os somamos.

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- \star x é um objeto do grupo C_i e m_i é o centro do grupo C_i .
- → Dados dois agrupamentos, podemos escolher o de menor SSE.
 - igoplus Utilize SSE apenas para comparar agrupamentos de mesmo k.
 - ◆ Quanto maior for k, menor será o SSE! Por quê?

Avaliando Agrupamentos

Quanto menor o SSE, mais compactos (coesos) são os grupos, pois minimizar o SSE

significa minimizar a variância intra-grupo.

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

Note que o quadrado da distância Euclidiana é o cálculo da distância sem a raiz quadrada. Portanto, SSE pode ser interpretado como a soma das distâncias Euclidianas sem raiz de todos os objetos com relação aos seus centroides.

Exercício

 ◆ Execute o algoritmo k-means para a base de dados abaixo, considerando k=2 para os centroides abaixo descritos. Ao final, informe os centroides resultantes e o SSE de cada grupo.

	X	Υ
1)	1	1
2)	1	2
3)	2	1
4)	3	2
5)	3	4
6)	4	4

- Centroides Iniciais:
- ◆ C₁ (X=3, Y=1)
- + C₂ (X=1, Y=4)

Exercício

 ◆ Execute o algoritmo k-means para a base de dados abaixo, considerando k=2 para os centroides abaixo descritos. Ao final, informe os centroides resultantes e o SSE de cada grupo.

	X	Υ
1)	1	1
2)	1	2
3)	2	1
4)	3	2
5)	3	4
6)	4	4

Centroides Iniciais:

$$+$$
 C₁ (X=3, Y=1)

Exercício - Resultados Finais

Centroides finais:

$$C_1(X = 1.75, Y = 1.5)$$

$$C_2 (X = 3.50, Y = 4.0)$$
 SSE = 3.74 (C₁) + 0.50 (C₂) = 4,24 5

Prática

- Dataset: movies
 - ♦ Encontrar possíveis recomendações de filmes a partir do agrupamento de gêneros.
- Fragmento do DataSet

```
movieId, title, genres
1, Toy Story (1995), Adventure | Animation | Children | Comedy | Fantasy
2, Jumanji (1995), Adventure | Children | Fantasy
3, Grumpier Old Men (1995), Comedy | Romance
4, Waiting to Exhale (1995), Comedy | Drama | Romance
5, Father of the Bride Part II (1995), Comedy
6, Heat (1995), Action | Crime | Thriller
7, Sabrina (1995), Comedy | Romance
8, Tom and Huck (1995), Adventure | Children
9, Sudden Death (1995), Action
10, GoldenEye (1995), Action | Adventure | Thriller
11, "American President, The (1995)", Comedy | Drama | Romance
12, Dracula: Dead and Loving It (1995), Comedy | Horror
13, Balto (1995), Adventure | Animation | Children
14, Nixon (1995), Drama
15, Cutthroat Island (1995), Action | Adventure | Romance
16, Casino (1995), Crime | Drama
17, Sense and Sensibility (1995), Drama | Romance
18, Four Rooms (1995), Comedy
19, Ace Ventura: When Nature Calls (1995), Comedy
```


Referências

- Adaptação dos slides de Pang-Ning Tan
 - Michigan State University
 - http://www.cse.msu.edu/~ptan/
 - ptan@cse.msu.edu
- Adaptação dos slides de Eamon Keogh
 - University of California at Riverside
 - http://www.cs.ucr.edu/~eamonn/
 - eamonn@cs.ucr.edu

