

Asymmetric Total Synthesis of Commiphoranes A and B

Ting Fung Lam

Petasis Research Group, Loker Hydrocarbon Research Institute September 20, 2017

Fibrosis overview

Primary cause - Chronic inflammation

Newly isolated commiphoranes

Commiphoranes originates from Myrrh

Retrosynthetic analysis

Enantioselective crotylation

Stereochemistries are controlled by chiral reagents

Acyl chloride formation

Intramolecular Friedel-Crafts promoted by HFIP

- Requires no reagent
- HFIP stabilizes transition state
- Works for sterically hindered substrates

Regioselective halogenation

Selectflour,
$$I_2$$
, MeCN, rt

OAc

13

14

15

NBS, H_2SO_4 , H_2O , $GO \circ C$

OAc Br

OAc

Selectflour, I_2 , MeOH, rt
OAc

OAc

Selectflour MeCN, rt

OAc

Selectflour MeCN, rt

OAc

Selectflour MeCN, rt

OAc

Selectflour MeCN, rt

NBS

NBS

NBS

NBS

NBS

Synthesis of fragment 7

DCC-mediated esterification

Connects both halves of the compound

Intramolecular Heck reaction

Chiral BINAP ligand controls stereoselectivity

Radical cyclization – An alternative to Heck reaction

Intramolecular hemiacetal formation

Intramolecular hemiacetal formation

Summary

Summary (2)

Crotylation Mechanism

Strain-release Lewis acidity of silane

FC regioselectivity

- Para position is most electron rich
- Poor selectivity for reactive MeCO+

Carbonylation mechanism

$$\begin{array}{c} H \\ CH_{3}CH_{2} \\ CH_{3}CH_{2} \\ CH_{3}CH_{2} \\ CH_{3}CH_{2} \\ CH_{3}CH_{3} \\ CH_{3}CH_{2} \\ CH_{3}CH_{2} \\ CH_{3}CH_{3} \\ CH_{3}CH_{2} \\ CH_{3}CH_{3} \\ CH_{3}CH_{2} \\ CH_{3}CH_{3} \\ CH_{3}CH_{$$