

Mechatronic Modeling and Design with Applications in Robotics

Frequency Domain Models

Element	Time-Domain	Impedance	Mobility
	Model		(Generalized
			Impedance)
Mass	$m\frac{dv}{dt} = f$	$Z_m = ms$	$M_{} = \frac{1}{-}$
m	dt = f		$M_m = \frac{1}{ms}$
Spring k	$\frac{df}{dt} = kv$	$Z_k = \frac{k}{s}$	$M_k = \frac{s}{k}$
Damper b	f = bv	$Z_b = b$	$M_b = \frac{1}{b}$

Note: Frequency domain is a special case of Laplace domain

Commonly, frequency domain is used when dealing with impedance approaches.

Element	Time-Domain	Impedance	Admittance
	Model	(Z)	(W)
Capacitor <i>C</i>	$c\frac{dv}{dt} = i$	$Z_c = \frac{1}{Cs}$	$W_c = Cs$
Inductor L	$L\frac{di}{dt} = v$	$Z_L = Ls$	$W_L = \frac{1}{Ls}$
Resistor R	Ri = v	$Z_R = R$	$W_R = \frac{1}{R}$

Note: Frequency domain is a special case of Laplace domain

Commonly, frequency domain is used when dealing with impedance approaches.

Series Connections

$$v = v_1 + v_2$$

$$\frac{v}{f} = \frac{v_1}{f} + \frac{v_2}{f}$$

$$M = M_1 + M_2$$
 $\frac{1}{Z} = \frac{1}{Z_1} + \frac{1}{Z_2}$

Parallel Connections

$$f = f_1 + f_2$$

$$\frac{f}{v} = \frac{f_1}{v} + \frac{f_2}{v}$$

$$Z = Z_1 + Z_2$$
 $\frac{1}{M} = \frac{1}{M_1} + \frac{1}{M_2}$

Series Connections	Parallel Connections
$v = v_1 + v_2$	$i = i_1 + i_2$
$\frac{v}{i} = \frac{v_1}{i} + \frac{v_2}{i}$	$\frac{i}{v} = \frac{i_1}{v} + \frac{i_2}{v}$
$Z = Z_1 + Z_2$	$W = W_1 + W_2$
$\frac{1}{W} = \frac{1}{W_1} + \frac{1}{W_2}$	$\frac{1}{Z} = \frac{1}{Z_1} + \frac{1}{Z_2}$

Note: Electrical Impedance and Mechanical Mobility are

"A-Type Transfer Functions"

[Across Variable/Through Variable]

Same Interconnection Law

Electrical Admittance and Mechanical Impedance are

"T-Type Transfer Functions"
[Through Variable/Across Variable]
Same Interconnection Law

Three elements are connected in parallel

Mechanical impedances add Overall Impedance

Function
$$Z(s) = \frac{F(s)}{V(s)} = Z_m + Z_k + Z_b = ms + \frac{k}{s} + b = \frac{ms^2 + bs + k}{s}$$

Mobility Function $M(s) = \frac{V(s)}{F(s)} = \frac{s}{ms^2 + bs + k}$

Note: Mobility (not mechanical impedance) is the natural transfer function for this system

Example 2: Oscillator with Support Motion

Mechanical Circuit Imped

Impedance Circuit

Spring and damper are connected in parallel: Their overall impedance =

$$Z_k + Z_b = \frac{1}{s} + b = Z_s$$

Mass is connected in series with this pair: Their overall mobility

$$\frac{V(s)}{F(s)} = M_m + \frac{1}{Z_s} = \frac{1}{ms} + \frac{1}{k/s + b} = \frac{ms^2 + bs + k}{ms(bs + k)}$$

Corresponding impedance
$$\frac{F(s)}{V(s)} = \frac{ms(bs+k)}{ms^2+bs+k}$$
; Mobility of mass $\frac{V_m(s)}{F(s)} = \frac{1}{ms}$ (s)

Transmissibility Functions

Force Transmissibility

Think of a machine mounted on ground.

Force Transmissibility
$$T_f = \frac{\text{Force Transmitted to Support } F_s}{\text{Applied Force } F}$$

Note: Inertia force path is not direct. Transmitted force f_s does not contain it.

Transmissibility Functions

Motion Transmissibility:

Think of a vehicle and its suspension system.

Motion Transmissibility
$$T_m = \frac{\text{System Motion } V_m}{\text{Support Motion } V}$$

Example 1: Ground-based Mechanical Oscillator

Mechanical (Physical) Circuit

Impedance Circuit

Parallel Connection - Common across variable; Through variables add

Force Transmissibility

$$T_{f} = \frac{F_{s}}{F} = \frac{F_{s}/V}{F/V} = \frac{Z_{b} + Z_{k}}{Z_{m} + Z_{b} + Z_{k}} = \frac{Z_{s}}{Z_{m} + Z_{s}} = \frac{b + k/s}{ms + b + k/s} = \frac{bs + k}{ms^{2} + bs + k}$$

$$T_f = \frac{Z_s}{Z_m + Z_s} = \frac{M_m}{M_s + M_m}$$
 Note: Suspension Impedance $Z_s = Z_b + Z_k = \frac{1}{M_s}$

Example 2: Oscillator with Support Motion

Think of a vehicle.

Mechanical (Physical) Circuit

Impedance Circuit

Motion Transmissibility

$$T_{m} = \frac{V_{m}}{V} = \frac{V_{m}/F}{V/F} = \frac{M_{m}}{M_{m} + M_{s}} = \frac{1}{1 + \frac{M_{s}}{M_{m}}} = \frac{1}{1 + \frac{Z_{m}}{Z_{s}}} = \frac{Z_{s}}{Z_{m} + Z_{s}}$$

- $\rightarrow T_f$ (Example 1) = T_m (Example 2)
- → They are complementary (dual) systems for transmissibility

Example 3: Ground-based 2DOF Mechanical System

Mechanical System

Impedance Circuit

Mobility of right hand side branch $M = \frac{1}{Z_{s1}} + \frac{1}{Z_{m2} + Z_s}$

Force through branch
$$F' = \left[\frac{\frac{1}{M}}{Z_{m1} + \frac{1}{M}}\right] F = \left[\frac{1}{MZ_{m1} + 1}\right] F$$
 Force is divided in proportion to

Force through Z_s is $F_s = \left[\frac{Z_s}{Z_{m2} + Z_s}\right] F'$

Force transmissibility
$$T_f = \frac{F_s}{F} = \left[\frac{1}{MZ_{m1} + 1}\right] \left[\frac{Z_s}{Z_{m2} + Z_s}\right]$$

Impedance.

Example 4: 2DOF Mechanical System with Support Motion

Think of a

vehicle

Impedance Circuit

Impedance of bottom composite unit
$$Z = \frac{1}{M_{m2}} + \frac{1}{M_{s1} + M_{m1}}$$

Velocity across this unit
$$V' = \left[\frac{\frac{1}{Z}}{M_s + \frac{1}{Z}}\right]V = \left[\frac{1}{M_sZ + 1}\right]V$$
Velocity is divided

Velocity of mass
$$m_1$$
 is $V_m = \left[\frac{M_{m1}}{M_{s1} + M_{m1}}\right]V'$

Motion transmissibility
$$T_m = \frac{V_m}{V} = \left[\frac{1}{M_s Z + 1}\right] \left[\frac{M_{m1}}{M_{s1} + M_{m1}}\right]$$

Velocity is divided in proportion to Mobility. Why?

The End!!