1. Import necessary Libraries

```
In [38]:
```

```
#For computational and random seed purpose
import numpy as np
np.random.seed(42)
#to read csv file
import pandas as pd
#To split into train and cv data
from sklearn.model_selection import train_test_split
#To compute AUROC
from sklearn.metrics import auc, roc auc score
#for AUROC graph
import matplotlib.pyplot as plt
#for oversampling technique
from imblearn.over sampling import SMOTE # (https://imbalanced-learn.org/stable/references/generated/imblearn.ove
r_sampling.SMOTE.html)
#Data is imbalanced, we need calibrated model
from sklearn.calibration import CalibratedClassifierCV
#for hyperparameter tuning and Cross-validation fold
from sklearn.model_selection import GridSearchCV,StratifiedKFold,RepeatedStratifiedKFold
#to ignore the error message
import warnings
warnings.filterwarnings("ignore")
#for heatmap and other plotting technique
import seaborn as sns
#to strandize the real value data
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import LabelEncoder
#To create Knn model on datasets
from sklearn.neighbors import KNeighborsClassifier
#for roc curve
from sklearn.metrics import roc_curve,roc_auc_score,accuracy_score
import eli5
from eli5.sklearn import PermutationImportance
import joblib
import sys
sys.modules['sklearn.externals.joblib'] = joblib
from mlxtend.feature selection import SequentialFeatureSelector
from sklearn.linear_model import LogisticRegression
from sklearn.feature selection import RFE
from scipy.stats import kurtosis
from scipy.stats import skew
import warnings
warnings.filterwarnings('ignore')
from catboost import CatBoostClassifier
from sklearn.preprocessing import RobustScaler
In [39]:
```

```
#locate parent directory
data_dir = "./"

#Read the training data
df_train = pd.read_csv('train.csv')
print(df_train)

id target 0 1 2 ... 295 296 297 298 299
0 0 1.0 -0.098 2.165 0.681 ... -2.097 1.051 -0.414 1.038 -1.065
```

```
... -2.097 1.051 -0.414 1.038 -1.065
            0.0 1.081 -0.973 -0.383
                                     ... -1.624 -0.458 -1.099 -0.936 0.973
            1.0 -0.523 -0.089 -0.348
                                     ... -1.165 -1.544 0.004 0.800 -1.211
2
      2
            1.0 0.067 -0.021 0.392
                                         0.467 -0.562 -0.254 -0.533 0.238
                                     . . .
            1.0 2.347 -0.831 0.511
                                     ... 1.378 1.246
                                                       1.478 0.428 0.253
4
      4
                                     . . .
                                     ... -0.243 0.525
            0.0 -1.199 0.466 -0.908
                                                        0.281 -0.255 -1.136
245
    245
                                     ... 1.004 -0.979
                       0.233 -0.380
246
    246
            0.0 0.237
                                                        0.007
                                                              0.112 -0.558
                                     ... -0.727 0.461 0.760
247
    247
            0.0 1.411 -1.465 0.119
                                                              0.168 -0.719
                0.620 1.040 0.184
                                     ... 0.478 -0.910 -0.805 2.029 -0.423
248
    248
            1.0
    249
                                     ... 0.812 0.269 -1.454 -0.625 1.474
249
            0.0 0.489 0.403 0.139
```

[250 rows x 302 columns]

```
In [40]:

#Read test data
df_test = pd.read_csv('test.csv')
df_test
```

Out[40]:

	id	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
0	250	0.500	-1.033	-1.595	0.309	-0.714	0.502	0.535	-0.129	-0.687	1.291	0.507	-0.317	1.848	-0.232	-0.340	-0.0
1	251	0.776	0.914	-0.494	1.347	-0.867	0.480	0.578	-0.313	0.203	1.356	-1.086	0.322	0.876	-0.563	-1.394	0.3
2	252	1.750	0.509	-0.057	0.835	-0.476	1.428	-0.701	-2.009	-1.378	0.167	-0.132	0.459	-0.341	0.014	0.184	-0.4
3	253	-0.556	-1.855	-0.682	0.578	1.592	0.512	-1.419	0.722	0.511	0.567	0.356	-0.060	0.767	-0.196	0.359	0.0
4	254	0.754	-0.245	1.173	-1.623	0.009	0.370	0.781	-1.763	-1.432	-0.930	-0.098	0.896	0.293	-0.259	0.030	-0.€
19745	19995	1.069	0.517	-0.690	0.241	0.913	-0.859	0.093	-0.359	-0.047	0.713	2.191	0.774	-0.110	-0.721	0.375	0.5
19746	19996	-0.529	0.438	0.672	1.436	-0.720	0.698	-0.350	2.150	-1.241	-0.167	-0.188	0.541	-0.392	1.727	-0.965	0.5
19747	19997	-0.554	-0.936	-1.427	0.027	-0.539	0.994	-1.832	-1.156	0.474	1.483	1.524	0.143	-0.607	-1.142	2.786	-0.3
19748	19998	-0.746	1.205	0.750	-0.236	1.139	-1.727	-0.677	-1.254	-0.099	-0.724	0.014	-0.575	-0.142	1.171	-0.198	0.3
19749	19999	0.736	-0.216	-0.110	-1.404	-0.265	-1.770	0.715	0.469	1.077	0.333	-0.994	-0.331	1.009	0.607	-1.729	1.4

19750 rows × 301 columns

```
In [41]:

df_train.dropna(inplace=True)
df_test.dropna(inplace=True)
```

Observation

We have read the training and test dataset. After reading both of dataset, we got it know that test dataset is having more features compare to training dataset

```
In [42]:
```

```
def feature_engg(df,test=False):
 perform feature Engieering in basic statistics, trignometory, hyperbolic and exponential function
 parameters:
  if test:
   data = df.drop(['id'],axis=1)
   data = df.drop(['id','target'],axis=1)
  #mean and std
  df['mean'] = np.mean(data,axis=1) # taking mean value along with column
  df['std'] = np.std(data,axis=1) # taking std along with column
  df['median'] = np.median(data,axis=1)
 df['min'] = np.min(data,axis=1)
  df['max'] = np.max(data,axis=1)
 # applying trignometric function
  df['sin mean'] = np.sin(df['mean'])
  df['cos_mean'] = np.cos(df['mean'])
  df['tan mean'] = np.tan(df['mean'])
 df['sin_std'] = np.sin(df['std'])
  df['cos_std'] = np.cos(df['std'])
 df['tan_std'] = np.tan(df['std'])
  df['sin_median'] = np.sin(df['median'])
  df['cos_median'] = np.cos(df['median'])
  df['tan_median'] = np.tan(df['median'])
  sin_data = np.sin(data) #calculated the sin_data
  cos data = np.cos(data) #calculated the cos data
  tan data = np.tan(data) #calculated the tan data
  df['mean_sin'] = np.mean(sin_data,axis=1) #calculating the mean of sin_data
```

```
df['mean_cos'] = np.mean(cos_data,axis=1) #calculating the mean of cos_data
 df['mean tan'] = np.mean(tan data,axis=1) #calculating the mean of tan data
 #hyperbolic function
  sinh data = np.sinh(data)
  cosh_data = np.cosh(data)
  tanh data = np.tanh(data)
  arcsinh data = np.arcsinh(data)
 arccosh data = np.arccosh(data)
 df['mean sinh'] = np.mean(sinh data,axis=1)
 df['mean cosh'] = np.mean(cosh_data,axis=1)
 df['mean tanh'] = np.mean(tanh data,axis=1)
 df['mean_arsinh'] = np.mean(arcsinh_data,axis=1)
 df['mean_arcosh'] = np.mean(arccosh_data,axis=1)
 df['sinh_mean'] = np.sinh(df['mean'])
 df['tanh_mean'] = np.tanh(df['mean'])
  df['arsinh mean'] = np.arcsinh(df['mean'])
  df['sinh_std'] = np.sinh(df['std'])
  df['cosh std'] = np.cosh(df['std'])
  df['tanh_std'] = np.tanh(df['std'])
 df['sinh_median'] = np.sinh(df['median'])
 df['cosh_median'] = np.cosh(df['median'])
 df['tanh median'] = np.tanh(df['median'])
#exponential function
 exp data = np.exp(data)
  expm1 data = np.expm1(data)
  exp2_data = np.exp2(data)
 df['mean_exp'] = np.mean(exp_data,axis=1)
  df['mean_expm1'] = np.mean(expm1_data,axis=1)
 df['mean exp2'] = np.mean(exp2_data,axis=1)
 df['exp1_mean'] = np.exp(df['mean'])
 df['expm1_mean'] = np.expm1(df['mean'])
  df['exp2 mean'] = np.exp2(df['mean'])
 df['exp1 median'] = np.exp(df['median'])
  df['expm1 median'] = np.expm1(df['median'])
 df['exp2 median'] = np.exp2(df['median'])
 df['exp1 std'] = np.exp(df['std'])
  df['expm1_std'] = np.expm1(df['std'])
 df['exp2_std'] = np.exp2(df['std'])
  # Polynomial FE
 # X**2
  df['mean_x2'] = np.mean(np.power(data,2), axis=1)
 # X**3
 df['mean x3'] = np.mean(np.power(data,3), axis=1)
 df['mean_x4'] = np.mean(np.power(data,4), axis=1)
 # X**5
 df['mean x5'] = np.mean(np.power(data,5), axis=1)
 # X**6
 df['mean x6'] = np.mean(np.power(data,6), axis=1)
 # X**7
 df['mean x7'] = np.mean(np.power(data,7), axis=1)
 #logithm FE
  df['x2 mean'] = np.power(df['mean'],2)
  # X**3
 df['x3_mean'] = np.power(df['mean'],3)
 # X**4
 df['x4_mean'] = np.power(df['mean'],4)
 df['x5_mean'] = np.power(df['mean'],5)
 # X**6
 df['x6_mean'] = np.power(df['mean'],6)
 # X**7
 df['x7 mean'] = np.power(df['mean'],7)
 #skewness and kurtosis
  skew data = skew(data)
  kurtosis data = kurtosis(data)
 df['skewness'] = np.mean(skew_data)
  df['kurtosis'] = np.mean(kurtosis_data)
  data['mean skewness'] = skew(df['mean'])
  data['mean kurtosis'] = kurtosis(df['mean'])
  df['x2 median'] = np.power(df['median'],2)
 # X**3
  df['x3_median'] = np.power(df['median'],3)
```

```
# X**4

df['x4_median'] = np.power(df['median'],4)
# X**5

df['x5_median'] = np.power(df['median'],5)
# X**6

df['x6_median'] = np.power(df['median'],6)
# X**7

df['x7_median'] = np.power(df['median'],7)
return df
```

In [43]:

```
df_train = feature_engg(df_train)
df_train.head(5)
```

Out[43]:

	id	target	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
0	0	1.0	-0.098	2.165	0.681	-0.614	1.309	-0.455	-0.236	0.276	-2.246	1.825	-0.912	-0.107	0.305	0.102	0.826	0.4
1	1	0.0	1.081	-0.973	-0.383	0.326	-0.428	0.317	1.172	0.352	0.004	-0.291	2.907	1.085	2.144	1.540	0.584	1.1
2	2	1.0	-0.523	-0.089	-0.348	0.148	-0.022	0.404	-0.023	-0.172	0.137	0.183	0.459	0.478	-0.425	0.352	1.095	0.3
3	3	1.0	0.067	-0.021	0.392	-1.637	-0.446	-0.725	-1.035	0.834	0.503	0.274	0.335	-1.148	0.067	-1.010	1.048	-1.
4	4	1.0	2.347	-0.831	0.511	-0.021	1.225	1.594	0.585	1.509	-0.012	2.198	0.190	0.453	0.494	1.478	-1.412	0.2

5 rows x 365 columns

In [44]:

```
df_test = feature_engg(df_test,True)
df_test.head(5)
```

Out[44]:

Т	T						_		_									
	id	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
0	250	0.500	-1.033	-1.595	0.309	-0.714	0.502	0.535	-0.129	-0.687	1.291	0.507	-0.317	1.848	-0.232	-0.340	-0.051	0.
1	251	0.776	0.914	-0.494	1.347	-0.867	0.480	0.578	-0.313	0.203	1.356	-1.086	0.322	0.876	-0.563	-1.394	0.385	1.
2	252	1.750	0.509	-0.057	0.835	-0.476	1.428	-0.701	-2.009	-1.378	0.167	-0.132	0.459	-0.341	0.014	0.184	-0.460	-С
3	253	-0.556	-1.855	-0.682	0.578	1.592	0.512	-1.419	0.722	0.511	0.567	0.356	-0.060	0.767	-0.196	0.359	0.080	-C
4	254	0.754	-0.245	1.173	-1.623	0.009	0.370	0.781	-1.763	-1.432	-0.930	-0.098	0.896	0.293	-0.259	0.030	-0.661	0.

5 rows x 364 columns

Observation

We applied feature engineering on the training dataset and came up with new features

In [45]:

```
X_train = (df_train.drop(['id','target'],axis = 1))
X_test = (df_test.drop(['id'],axis = 1))
y_train = df_train['target']
smote = SMOTE()
X_train,y_train = smote.fit_resample(X_train,y_train)
```

```
In [46]:

X_train.shape

Out[46]:

(320, 363)
```

Observation

We have dropped the labled data from both training and test dataset and applied Oversampling Technique

```
In [47]:
stand = StandardScaler()
X_train = stand.fit_transform(X_train)
X_test = stand.transform(X_test)

In [48]:
X_train.shape
Out[48]:
(320, 363)
In [49]:
X_train.shape
```

Observation

Out[49]: (320, 363)

We have used StandardScaler() method to standardize the both training and test dataset.

Used GridSearch for hyper-parameter tuning

In [50]:

```
def hyperparameter_model(models, params):

Hyperparameter tuning with StratifiedKFold follow by GridSearchCV follow by

,→CalibratedClassifier

Parameters:
models: Instance of the model
params: list of parameters with value fr tuning (dict)
Return:
grid_clf: return gridsearch model

"""

# Perform KCrossValidation with stratified target
str_cv = StratifiedKFold(n_splits=11, random_state=42,shuffle=True)
# Perform Hyperparamer using GridSearchCV
grid_clf = GridSearchCV(models, params, cv=str_cv, return_train_score=True,scoring='roc_auc')
# Fit the train model to evaluate score
grid_clf.fit(X_train, y_train)
return grid_clf
```

```
In [14]:
```

```
#kNN (See Docs: https://scikit-learn.org/stable/modules/generated/sklearn.→neighbors.KNeighborsClassifier.html)
# List of params
# List of params
params = {'n_neighbors':np.arange(3,51,2).tolist(), 'algorithm': ['kd_tree','brute']}
# Instance of knn model
knn_model = KNeighborsClassifier()
# Call hyperparameter for find the best params as possible
knn_clf = hyperparameter_model(knn_model, params)
```

```
In [16]:
```

```
print(knn_clf.best_params_)
```

```
{'algorithm': 'kd_tree', 'n_neighbors': 39}
```

```
In [17]:
knn_model = KNeighborsClassifier(**knn_clf.best_params_)
knn_model.fit(X_train,y_train)
Out[17]:
KNeighborsClassifier(algorithm='kd tree', n neighbors=39)
In [18]:
y_pred = knn_model.predict(X_train)
print(y_pred)
0. \ \ 0. \ \ 0. \ \ 0. \ \ 0. \ \ 0. \ \ 0. \ \ 0. \ \ 0. \ \ 0. \ \ 0. \ \ 0. \ \ 0. \ \ 0. \ \ 0. \ \ 0. \ \ 0.
  0. \ \ 0. \ \ 0. \ \ 0. \ \ 0. \ \ 0. \ \ 0. \ \ 0. \ \ 0. \ \ 0. \ \ 0. \ \ 0. \ \ 0. \ \ 0. \ \ 0. \ \ 0. \ \ 0.
  0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \  \, 0. \ \, 0. \  \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \,
  0. 0. 0. 0. 0. 0. 0. 0.]
In [19]:
train_auc = roc_auc_score(y_train,y_pred)
print(train_auc)
0.503125
In [20]:
```

y_predict = knn_model.predict_proba(X_test)[:,1]

```
In [21]:
```

```
y_pred_lr_test = pd.DataFrame({"ID": df_test['id'],"Target": y_predict})

y_pred_lr_test.to_csv('submission_knn1.csv', index=False)
y_pred_lr_test.head(20)
```

Out[21]:

	ID	Target
0	250	0.333333
1	251	0.051282
2	252	0.051282
3	253	0.025641
4	254	0.128205
5	255	0.051282
6	256	0.025641
7	257	0.025641
8	258	0.102564
9	259	0.102564
10	260	0.076923
11	261	0.128205
12	262	0.025641
13	263	0.102564
14	264	0.051282
15	265	0.076923
16	266	0.128205
17	267	0.076923
18	268	0.025641
19	269	0.076923

Name Submitted Wait time Execution time Score submission_knn1.csv just now 1 seconds 0 seconds 0.555

Complete

Jump to your position on the leaderboard ▼

test_auc = 0.555

Observation

As the first model, We have used KNN algorithm to trained the model with best parameter (algorithm='kd_tree',n_neighbours = 39) and got training AUC = 0.50 and Test_AUC = 0.55. It is less accurate but model is not overfitted.

Logistic Regresstion Applied

```
In [51]:
#ref= https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
params = {'penalty':['l1','l2','elasticnet'],'C':[10**i for i in range(-4,5)], 'solver':['liblinear','sag','saga'
#the instance of Logistic Regression
log model = LogisticRegression(random state=42)
#Call Hyper-parameter function to get best hyperparameter tuning
log clf = hyperparameter model(log model,params)
In [52]:
print(log_clf.best_params_)
{'C': 1, 'penalty': 'l1', 'solver': 'saga'}
In [53]:
from sklearn import linear_model
model = LogisticRegression(penalty='l1', C=1, solver='saga')
model.fit(X_train,y_train)
Out[53]:
LogisticRegression(C=1, penalty='l1', solver='saga')
In [54]:
y pred = model.predict(X train)
print(y pred)
1. 1. 1. 0. 1. 1. 0. 1. 1. 0. 0. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 1.
1. 1. 1. 1. 0. 1. 0. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 0. 1. 1. 0. 1. 1. 1.
1. 0. 0. 1. 1. 1. 0. 1. 1. 0. 1. 1. 0. 1. 0. 1. 0. 1. 0. 0. 0. 0. 1. 1. 0.
1. \ \ 1. \ \ 0. \ \ 1. \ \ 1. \ \ 1. \ \ 1. \ \ 1. \ \ 0. \ \ 0. \ \ 1. \ \ 1. \ \ 1. \ \ 1. \ \ 1. \ \ 1. \ \ 1. \ \ 0.
0. 0. 0. 0. 0. 0. 0. 0.]
In [55]:
train_auc_lr = roc_auc_score(y_train,y_pred)
print(train_auc_lr)
1.0
y pred lr test = model.predict proba(X test)[:,1]
print(y pred lr test)
[0.0296196 \quad 0.33341024 \quad 0.86344733 \quad \dots \quad 0.87014075 \quad 0.99319125 \quad 0.17739898]
```

```
In [57]:
```

```
y_pred_lr_test = pd.DataFrame({"ID": df_test['id'],"Target": y_pred_lr_test})

y_pred_lr_test.to_csv('submission_logs1.csv', index=False)
y_pred_lr_test.head(20)
```

Out[57]:

	ID	Target
0	250	0.029620
1	251	0.333410
2	252	0.863447
3	253	0.997246
4	254	0.644034
5	255	0.386384
6	256	0.197760
7	257	0.420377
8	258	0.975555
9	259	0.187157
10	260	0.601244
11	261	0.171481
12	262	0.039011
13	263	0.879241
14	264	0.529214
15	265	0.940078
16	266	0.966850
17	267	0.685696
18	268	0.309618
19	269	0.760107

Name	Submitted	Wait time	Execution time	Score
submission_logs1.csv	just now	1 seconds	0 seconds	0.773

logistic_test_auc = 0.773

Observation

We have used Logistic Regression algorithm to trained the model with best parameter (c=1,penalty=11,solver=saga) and got training AUC = 1.0 and Test_AUC = 0.773. Training AUC is good and test auc little bit down compare to training AUC. But it is decent.

Support Vector Machine

In [58]:

from sklearn.svm import SVC

```
In [60]:
#ref = https://scikit-learn.org/stable/modules/svm.html
params = {'C':[10**i for i in range(-4,5)], 'kernel':['linear', 'poly', 'sigmoid', 'rdf']}
#The instance of SVC
svc_model = SVC(random_state=42)
#call the hyper-parameter function to get best parameters
svc_clf = hyperparameter_model(svc_model,params)
In [61]:
print(svc_clf.best_params_)
{'C': 1, 'kernel': 'poly'}
In [62]:
svc_clf = SVC(C = 1, kernel = 'poly',probability=True)
svc_clf.fit(X_train,y_train)
Out[62]:
SVC(C=1, kernel='poly', probability=True)
In [63]:
y_pred = svc_clf.predict(X_train)
train_svm_auc = roc_auc_score(y_train,y_pred)
print(train_svm_auc)
1.0
In [64]:
y_pred_svc_test = svc_clf.predict_proba(X_test)[:,1]
```

```
In [65]:
```

```
y_pred_svc_test = pd.DataFrame({"ID": df_test['id'],"Target": y_pred_svc_test})

y_pred_svc_test.to_csv('submission_svm1.csv', index=False)
y_pred_svc_test.head(20)
```

Out[65]:

	ID	Target
0	250	0.010239
1	251	0.799375
2	252	0.782953
3	253	0.776982
4	254	0.719545
5	255	0.762792
6	256	0.761592
7	257	0.770146
8	258	0.851095
9	259	0.745677
10	260	0.765826
11	261	0.558469
12	262	0.722451
13	263	0.758217
14	264	0.755097
15	265	0.784517
16	266	0.867675
17	267	0.792677
18	268	0.729581
19	269	0.715112

NameSubmittedWait timeExecution timeScoresubmission_svm1.csvjust now1 seconds0 seconds0.644

Complete

Jump to your position on the leaderboard -

Test_SVM_auc = 0.644

Observation

We have used Support Vector algorithm to trained the model with best parameter ('C': 1, 'kernel': 'Poly') and got training AUC = 1.0 and Test_AUC = 0.64. Training AUC is good and test auc a bit down compare to training AUC. But it is decent.

Ensemble Model: Random Forest

In [66]:

from sklearn.ensemble import RandomForestClassifier

```
In [67]:
#https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
params = {'n_estimators': [10,20,30,40,50,60,100,200,300,400,500],'max_depth':[2,3,5,7,9]}
#The instance of model
rdf_model = RandomForestClassifier(random_state=42)
# Call the hyperparameter function to get best parameter
rdf clf = hyperparameter model(rdf model,params)
In [68]:
print(rdf_clf.best_params_)
{'max_depth': 5, 'n_estimators': 400}
In [69]:
rdf clf = RandomForestClassifier(**rdf clf.best params )
rdf_clf.fit(X_train,y_train)
Out[69]:
RandomForestClassifier(max depth=5, n estimators=400)
In [70]:
y_pred = rdf_clf.predict(X_train)
train_rdf_auc = roc_auc_score(y_train,y_pred)
print(train_rdf_auc)
1.0
In [71]:
y_pred_rdf_test = rdf_clf.predict_proba(X_test)[:,1]
In [72]:
y_pred_rdf_test = pd.DataFrame({"ID": df_test['id'],"Target": y_pred_rdf_test})
y pred rdf test.to csv('submission rdf1.csv', index=False)
y_pred_rdf_test.head(20)
```

Out[72]:

ID Target 0 250 0.516006 1 251 0.568699 2 252 0.575418 3 253 0.579637 4 254 0.535900 5 255 0.507414 6 256 0.512040 7 257 0.527653 8 258 0.630538 9 259 0.463896 10 260 0.604303 11 261 0.430581 12 262 0.465354 13 263 0.519210 14 264 0.471482 15 265 0.606225 16 266 0.621462 17 267 0.566494 18 268 0.514597 19 269 0.463538			
1 251 0.568699 2 252 0.575418 3 253 0.579637 4 254 0.535900 5 255 0.507414 6 256 0.512040 7 257 0.527653 8 258 0.630538 9 259 0.463896 10 260 0.604303 11 261 0.430581 12 262 0.465354 13 263 0.519210 14 264 0.471482 15 265 0.606225 16 266 0.621462 17 267 0.566494 18 268 0.514597		ID	Target
2 252 0.575418 3 253 0.579637 4 254 0.535900 5 255 0.507414 6 256 0.512040 7 257 0.527653 8 258 0.630538 9 259 0.463896 10 260 0.604303 11 261 0.430581 12 262 0.465354 13 263 0.519210 14 264 0.471482 15 265 0.606225 16 266 0.621462 17 267 0.566494 18 268 0.514597	0	250	0.516006
3 253 0.579637 4 254 0.535900 5 255 0.507414 6 256 0.512040 7 257 0.527653 8 258 0.630538 9 259 0.463896 10 260 0.604303 11 261 0.430581 12 262 0.465354 13 263 0.519210 14 264 0.471482 15 265 0.606225 16 266 0.621462 17 267 0.566494 18 268 0.514597	1	251	0.568699
4 254 0.535900 5 255 0.507414 6 256 0.512040 7 257 0.527653 8 258 0.630538 9 259 0.463896 10 260 0.604303 11 261 0.430581 12 262 0.465354 13 263 0.519210 14 264 0.471482 15 265 0.606225 16 266 0.621462 17 267 0.566494 18 268 0.514597	2	252	0.575418
5 255 0.507414 6 256 0.512040 7 257 0.527653 8 258 0.630538 9 259 0.463896 10 260 0.604303 11 261 0.430581 12 262 0.465354 13 263 0.519210 14 264 0.471482 15 265 0.606225 16 266 0.621462 17 267 0.566494 18 268 0.514597	3	253	0.579637
6 256 0.512040 7 257 0.527653 8 258 0.630538 9 259 0.463896 10 260 0.604303 11 261 0.430581 12 262 0.465354 13 263 0.519210 14 264 0.471482 15 265 0.606225 16 266 0.621462 17 267 0.566494 18 268 0.514597	4	254	0.535900
7 257 0.527653 8 258 0.630538 9 259 0.463896 10 260 0.604303 11 261 0.430581 12 262 0.465354 13 263 0.519210 14 264 0.471482 15 265 0.606225 16 266 0.621462 17 267 0.566494 18 268 0.514597	5	255	0.507414
8 258 0.630538 9 259 0.463896 10 260 0.604303 11 261 0.430581 12 262 0.465354 13 263 0.519210 14 264 0.471482 15 265 0.606225 16 266 0.621462 17 267 0.566494 18 268 0.514597	6	256	0.512040
9 259 0.463896 10 260 0.604303 11 261 0.430581 12 262 0.465354 13 263 0.519210 14 264 0.471482 15 265 0.606225 16 266 0.621462 17 267 0.566494 18 268 0.514597	7	257	0.527653
10 260 0.604303 11 261 0.430581 12 262 0.465354 13 263 0.519210 14 264 0.471482 15 265 0.606225 16 266 0.621462 17 267 0.566494 18 268 0.514597	8	258	0.630538
11 261 0.430581 12 262 0.465354 13 263 0.519210 14 264 0.471482 15 265 0.606225 16 266 0.621462 17 267 0.566494 18 268 0.514597	9	259	0.463896
12 262 0.465354 13 263 0.519210 14 264 0.471482 15 265 0.606225 16 266 0.621462 17 267 0.566494 18 268 0.514597	10	260	0.604303
13 263 0.519210 14 264 0.471482 15 265 0.606225 16 266 0.621462 17 267 0.566494 18 268 0.514597	11	261	0.430581
14 264 0.471482 15 265 0.606225 16 266 0.621462 17 267 0.566494 18 268 0.514597	12	262	0.465354
15 265 0.606225 16 266 0.621462 17 267 0.566494 18 268 0.514597	13	263	0.519210
16 266 0.621462 17 267 0.566494 18 268 0.514597	14	264	0.471482
17 267 0.566494 18 268 0.514597	15	265	0.606225
18 268 0.514597	16	266	0.621462
	17	267	0.566494
19 269 0.463538	18	268	0.514597
	19	269	0.463538

Name	Submitted	Wait time	Execution time	Score
submission_rdf1.csv	just now	1 seconds	1 seconds	0.715

Test_rdf_auc: 0.715

Observation

We have used Random Forest algorithm to trained the model with best parameter ('max_depth': 5, 'n_estimators': 400) and got training AUC = 1.0 and Test_AUC = 0.72. Model is accurate and it is not overfitted.

Decision Tree Classifier

In [95]:

 $\textbf{from sklearn.tree import} \ \ \texttt{DecisionTreeClassifier}$

```
In [96]:
#ref =https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
params = {'max_depth':[2,3,5,7,9],'criterion':['gini','entropy'],'min_samples_split':[2,3,4,5,6,]}
#The instance of Decision Tree Classifier
tree_model = DecisionTreeClassifier(random_state=42)
#Call Hyperparameter function to get best parameter
tree_clf = hyperparameter_model(tree_model,params)
In [97]:
print(tree_clf.best_params_)
{'criterion': 'gini', 'max_depth': 9, 'min_samples_split': 6}
In [98]:
tree_clf = DecisionTreeClassifier(**tree_clf.best_params_)
tree_clf.fit(X_train,y_train)
Out[98]:
DecisionTreeClassifier(max_depth=9, min_samples_split=6)
In [99]:
y_pred = tree_clf.predict(X_train)
train tree auc = roc auc score(y train,y pred)
print(train_tree_auc)
0.99375
In [100]:
y_pred_tree_test = tree_clf.predict_proba(X_test)[:,1]
```

In [101]:

```
y_pred_tree_test = pd.DataFrame({"ID": df_test['id'], "Target": y_pred_tree_test})

y_pred_tree_test.to_csv('submission_tree1.csv', index=False)
y_pred_tree_test.head(20)
```

Out[101]:

1		
	ID	Target
0	250	1.000000
1	251	0.000000
2	252	0.000000
3	253	1.000000
4	254	0.000000
5	255	0.000000
6	256	1.000000
7	257	1.000000
8	258	1.000000
9	259	0.000000
10	260	0.000000
11	261	0.000000
12	262	0.333333
13	263	1.000000
14	264	0.000000
15	265	1.000000
16	266	1.000000
17	267	1.000000
18	268	0.000000
19	269	1.000000

Name Submitted Wait time Execution time Score submission_tree1.csv just now 1 seconds 0 seconds 0.599

Complete

Jump to your position on the leaderboard ▼

Observation

Decision Tree is working poorly in this case

XGBoost Classifier

In [102]:

from xgboost import XGBClassifier

```
In [103]:
#list of hyper-parameter
params = \{ \text{'max\_depth':} [2,3,5,7,9], \text{'n\_estimators':} [10,20,30,40,50,100,200,400,500] \}
# The instance of XGBClassifier
xg_model = XGBClassifier()
# call hyparameter function to get best parameter
xg_clf = hyperparameter_model(xg_model,params)
In [104]:
print(xg_clf.best_params_)
{'max_depth': 2, 'n_estimators': 400}
In [105]:
xg_clf = XGBClassifier(**xg_clf.best_params_)
xg_clf.fit(X_train,y_train)
Out[105]:
XGBClassifier(max_depth=2, n_estimators=400)
In [107]:
y pred = xg clf.predict(X train)
In [108]:
train_xgboost_auc = roc_auc_score(y_train,y_pred)
print(train_xgboost_auc)
1.0
In [109]:
y_pred_xg_test = xg_clf.predict_proba(X_test)[:,1]
print(y_pred_xg_test)
[0.7702675  0.4989509  0.2832494  ...  0.35014024  0.9550946  0.3850446 ]
In [110]:
y_pred_xg_test = pd.DataFrame({"ID": df_test['id'],"Target": y_pred_xg_test})
y pred xg test.to csv('submission xgboost1.csv', index=False)
```

Out[110]:

y_pred_xg_test.head(10)

	ID	Target
0	250	0.770267
1	251	0.498951
2	252	0.283249
3	253	0.995090
4	254	0.698269
5	255	0.321344
6	256	0.348547
7	257	0.270397
8	258	0.997484
9	259	0.552730

Name Submitted Wait time Execution time Score submission_xgboost1.csv just now 1 seconds 0 seconds 0.784

Complete

Jump to your position on the leaderboard ▼

xgboost test auc = 0.784

Observation

We have used Xgboost algorithm to trained the model with best parameter ('max_depth': 2, 'n_estimators': 400) and got training AUC = 1.0 and Test_AUC = 0.78. Model is accurate and it is not overfitted.

Stacking Classifier

```
In [111]:
```

```
import six
import sys
sys.modules['sklearn.externals.six'] = six
```

In [112]:

from mlxtend.classifier import StackingClassifier

In [113]:

```
#classifier 1
knn_model = KNeighborsClassifier(algorithm = 'kd_tree', n_neighbors = 39)
knn_model.fit(X_train,y_train)
#Classifier 2
model = LogisticRegression(penalty='l1', C=1, solver='saga')
model.fit(X_train,y_train)
#Classifier 3
svc_clf = SVC(C =1, kernel = 'poly',probability=True)
svc_clf.fit(X_train,y_train)
#classifier 3
rdf_clf = RandomForestClassifier(max_depth=5, n_estimators=400)
rdf_clf.fit(X_train,y_train)
#classifier 4
tree clf = DecisionTreeClassifier(criterion = 'gini', max_depth = 9, min_samples_split = 6)
tree_clf.fit(X_train,y_train)
#classifier 5
xg clf = XGBClassifier(max depth = 2, n estimators = 400)
xg_clf.fit(X_train,y_train)
#Stacking Classifer
sclf = StackingClassifier(classifiers=[knn_model,model,svc_clf,rdf_clf,tree_clf,xg_clf],meta_classifier=model,use
_probas=True)
#fit the model
sclf.fit(X_train,y_train)
#predict in probabilities
y pred = sclf.predict(X train)
```

```
In [114]:
```

```
train_auc = roc_auc_score(y_train,y_pred)
print(train_auc)
```

```
In [115]:
```

y_pred_stack_test = sclf.predict_proba(X_test)[:,1]

In [116]:

```
y_pred_stack_test = pd.DataFrame({"ID": df_test['id'],"Target": y_pred_stack_test})

y_pred_stack_test.to_csv('submission_stack1.csv', index=False)
y_pred_stack_test.head(20)
```

Out[116]:

	ID	Target
0	250	0.384830
1	251	0.664552
2	252	0.444153
3	253	0.984780
4	254	0.739978
5	255	0.819734
6	256	0.833805
7	257	0.795113
8	258	0.989374
9	259	0.650674
10	260	0.886006
11	261	0.119933
12	262	0.340979
13	263	0.982276
14	264	0.264743
15	265	0.984879
16	266	0.712580
17	267	0.982666
18	268	0.381315
19	269	0.941461

Summary of All Models

In [1]:

+ Model	+ Hyper-parameter	+ Train AUC	++ Test AUC
+======	-=====================================	+===== 0.500 	+======+ 0.550
logistic Regresstion	{'C': 1, 'penalty': 'l1', 'solver': 'saga'}	1 1	0.770
Support Vector Machine	{'C': 1, 'kernel': 'poly'}	1	0.640
XGBoost Classifier	{'max_depth': 2, 'n_estimators': 400}	1	0.780
Decision_tree Model	{'criterion': 'gini', 'max_depth': 9, 'min_samples_split': 6}	0.990 	0.590
Random forest	{'max_depth': 5, 'n_estimators': 400}	1 1	0.710
Calibrated Model		 1 +	0.760

We have used Calibrated Classifier and got training AUC = 1.0 and test AUC = 0.76

As per observation, XGboost is giving Good Accuracy from above applied algorithm