Section 6.3 Orthogonal Sets

Review

 $\hat{y} = \frac{y \cdot u}{u \cdot u} u$ is the orthogonal projection of ____ onto ____.

Suppose $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthogonal basis for W in \mathbb{R}^n . For each \mathbf{y} in W,

$$\mathbf{y} = \left(\frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1}\right) \mathbf{u}_1 + \dots + \left(\frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p}\right) \mathbf{u}_p$$

EXAMPLE: Suppose $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal basis for \mathbf{R}^3 and let $W = \operatorname{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$. Write \mathbf{y} in \mathbf{R}^3 as the sum of a vector $\hat{\mathbf{y}}$ in W and a vector \mathbf{z} in W^{\perp} .

Solution: Write

$$\mathbf{y} = \left(\frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1}\right) \mathbf{u}_1 + \left(\frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2}\right) \mathbf{u}_2 + \left(\frac{\mathbf{y} \cdot \mathbf{u}_3}{\mathbf{u}_3 \cdot \mathbf{u}_3}\right) \mathbf{u}_3$$

where

$$\hat{\mathbf{y}} = \left(\frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1}\right) \mathbf{u}_1 + \left(\frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2}\right) \mathbf{u}_2$$

$$\mathbf{z} = \left(\frac{\mathbf{y} \cdot \mathbf{u}_3}{\mathbf{u}_3 \cdot \mathbf{u}_3}\right) \mathbf{u}_3.$$

To show that \mathbf{z} is orthogonal to every vector in W, show that \mathbf{z} is orthogonal to the vectors in $\{\mathbf{u}_1,\mathbf{u}_2\}$.

Since

$$z \cdot u_1 = = 0$$

$$z \cdot u_2 = = 0$$

THEOREM 8 THE ORTHOGONAL DECOMPOSITION THEOREM

Let W be a subspace of \mathbb{R}^n . Then each \mathbf{y} in \mathbb{R}^n can be uniquely represented in the form

$$y = \hat{y} + z$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} . In fact, if $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is any orthogonal basis of W, then

$$\hat{\mathbf{y}} = \left(\frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1}\right) \mathbf{u}_1 + \dots + \left(\frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p}\right) \mathbf{u}_p$$

and $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$.

The vector $\hat{\mathbf{y}}$ is called the **orthogonal projection of y onto** W.

EXAMPLE: Let
$$\mathbf{u}_1 = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, and $\mathbf{y} = \begin{bmatrix} 0 \\ 3 \\ 10 \end{bmatrix}$.

Observe that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal basis for $W = \operatorname{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$. Write \mathbf{y} as the sum of a vector in W and a vector orthogonal to W.

Solution:

$$\mathsf{proj}_{W}\mathbf{y} = \mathbf{\hat{y}} = (\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}})\mathbf{u}_{1} + (\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}})\mathbf{u}_{2}$$

$$= \begin{pmatrix} & & \\ & 0 & \\ & 1 & \end{bmatrix} + \begin{pmatrix} & & \\ & 0 & \\ & 1 & \end{bmatrix} = \begin{bmatrix} & 3 & \\ & 3 & \\ & 1 & \end{bmatrix}$$

$$\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} 0 \\ 3 \\ 10 \end{bmatrix} - \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ 0 \\ 9 \end{bmatrix}$$

Geometric Interpretation of Orthogonal Projections

THEOREM 9 The Best Approximation Theorem

Let W be a subspace of \mathbb{R}^n , \mathbf{y} any vector in \mathbb{R}^n , and $\hat{\mathbf{y}}$ the orthogonal projection of \mathbf{y} onto W. Then $\hat{\mathbf{y}}$ is the point in W closest to \mathbf{y} , in the sense that

$$\|y-\widehat{y}\|<\|y-v\|$$

for all \mathbf{v} in W distinct from $\hat{\mathbf{y}}$.

Outline of Proof: Let \mathbf{v} in W distinct from $\hat{\mathbf{y}}$. Then

 $\mathbf{v} - \hat{\mathbf{y}}$ is also in W (why?)

 $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$ is orthogonal to $W \Rightarrow \mathbf{y} - \hat{\mathbf{y}}$ is orthogonal to $\mathbf{v} - \hat{\mathbf{y}}$

$$\mathbf{y} - \mathbf{v} = (\mathbf{y} - \hat{\mathbf{y}}) + (\hat{\mathbf{y}} - \mathbf{v}) \implies \|\mathbf{y} - \mathbf{v}\|^2 = \|\mathbf{y} - \hat{\mathbf{y}}\|^2 + \|\hat{\mathbf{y}} - \mathbf{v}\|^2.$$
$$\|\mathbf{y} - \mathbf{v}\|^2 > \|\mathbf{y} - \hat{\mathbf{y}}\|^2$$

Hence, $\|\mathbf{y} - \hat{\mathbf{y}}\| < \|\mathbf{y} - \mathbf{v}\|_{\cdot \blacksquare}$

EXAMPLE: Find the closest point to \mathbf{y} in Span $\{\mathbf{u}_1,\mathbf{u}_2\}$ where

$$\mathbf{y} = \begin{bmatrix} 2 \\ 4 \\ 0 \\ -2 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \text{ and } \mathbf{u}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}.$$

Solution: $\hat{\mathbf{y}} = (\frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1}) \mathbf{u}_1 + (\frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2}) \mathbf{u}_2$

$$= \left(\begin{array}{c} 1 \\ 1 \\ 0 \\ 0 \end{array} \right] + \left(\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array} \right] =$$

Part of Theorem 10 below is based upon another way to view matrix multiplication where A is $m \times p$ and B is $p \times n$

$$AB = \begin{bmatrix} \operatorname{col}_1 A & \operatorname{col}_2 A & \cdots & \operatorname{col}_p A \end{bmatrix} \begin{bmatrix} \operatorname{row}_1 B \\ \operatorname{row}_2 B \\ \vdots \\ \operatorname{row}_p B \end{bmatrix}$$

$$= (\operatorname{col}_1 A)(\operatorname{row}_1 B) + \dots + (\operatorname{col}_p A)(\operatorname{row}_p B)$$

For example

$$\left[\begin{array}{ccc} 5 & 6 \\ 3 & 1 \end{array}\right] \left[\begin{array}{ccc} 2 & 1 & 3 \\ 4 & 0 & -2 \end{array}\right] = \left[\begin{array}{ccc} 34 & 5 & 3 \\ 10 & 3 & 7 \end{array}\right]$$

$$\left[\begin{array}{ccc} 5 & 6 \\ 3 & 1 \end{array}\right] \left[\begin{array}{cccc} 2 & 1 & 3 \\ 4 & 0 & -2 \end{array}\right]$$

$$= \begin{bmatrix} 5 \\ 3 \end{bmatrix} \begin{bmatrix} 2 & 1 & 3 \end{bmatrix} + \begin{bmatrix} 6 \\ 1 \end{bmatrix} \begin{bmatrix} 4 & 0 & -2 \end{bmatrix}$$

=

So if
$$U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_p \end{bmatrix}$$
. Then $U^T = \begin{bmatrix} \mathbf{u}_1^T & \mathbf{u}_2^T & \vdots & \vdots & \mathbf{u}_p^T \end{bmatrix}$. So

$$UU^{T} = \mathbf{u}_{1}\mathbf{u}_{1}^{T} + \mathbf{u}_{2}\mathbf{u}_{2}^{T} + \cdots + \mathbf{u}_{p}\mathbf{u}_{p}^{T}$$

$$(UU^{T})\mathbf{y} = (\mathbf{u}_{1}\mathbf{u}_{1}^{T} + \mathbf{u}_{2}\mathbf{u}_{2}^{T} + \cdots + \mathbf{u}_{p}\mathbf{u}_{p}^{T})\mathbf{y}$$

$$= (\mathbf{u}_{1}\mathbf{u}_{1}^{T})\mathbf{y} + (\mathbf{u}_{2}\mathbf{u}_{2}^{T})\mathbf{y} + \cdots + (\mathbf{u}_{p}\mathbf{u}_{p}^{T})\mathbf{y}$$

$$= \mathbf{u}_{1}(\mathbf{u}_{1}^{T}\mathbf{y}) + \mathbf{u}_{2}(\mathbf{u}_{2}^{T}\mathbf{y}) + \cdots + \mathbf{u}_{p}(\mathbf{u}_{p}^{T}\mathbf{y})$$

$$= (\mathbf{y} \cdot \mathbf{u}_{1})\mathbf{u}_{1} + (\mathbf{y} \cdot \mathbf{u}_{2})\mathbf{u}_{2} + \cdots + (\mathbf{y} \cdot \mathbf{u}_{p})\mathbf{u}_{p}$$

$$\Rightarrow (UU^{T})\mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_{1})\mathbf{u}_{1} + (\mathbf{y} \cdot \mathbf{u}_{2})\mathbf{u}_{2} + \cdots + (\mathbf{y} \cdot \mathbf{u}_{p})\mathbf{u}_{p}$$

THEOREM 10

If $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthonormal basis for a subspace W of \mathbf{R}^n , then

$$\begin{aligned} \mathsf{proj}_W \mathbf{y} &= (\mathbf{y} \cdot \mathbf{u}_1) \mathbf{u}_1 + \dots + (\mathbf{y} \cdot \mathbf{u}_p) \mathbf{u}_p \\ \mathsf{lf} \ U &= \left[\begin{array}{ccc} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_p \end{array} \right], \, \mathsf{then} \\ \mathsf{proj}_W \mathbf{y} &= UU^T \mathbf{y} & \text{for all } \mathbf{y} \text{ in } \mathbf{R}^n. \end{aligned}$$

Outline of Proof:

$$\operatorname{proj}_{W} \mathbf{y} = \left(\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}\right) \mathbf{u}_{1} + \dots + \left(\frac{\mathbf{y} \cdot \mathbf{u}_{p}}{\mathbf{u}_{p} \cdot \mathbf{u}_{p}}\right) \mathbf{u}_{p}$$
$$= (\mathbf{y} \cdot \mathbf{u}_{1}) \mathbf{u}_{1} + \dots + (\mathbf{y} \cdot \mathbf{u}_{p}) \mathbf{u}_{p} = UU^{T} \mathbf{y}.$$