Important Formulas of Physical Chemistry

THE SOLID STATE

1. Calculation of numer of particles / atoms / ions in a Unit Cell:

2.	Type of Unit Cell	Numer of particles per Unit Cell	Relationship between edge length (a) and radius (r) of atom/ion
	Simple cubic	1	a = 2r
	Body centred cubic	2	$a = \frac{4}{\sqrt{3}} r$
	Face centred cubic	4	$a = 2\sqrt{2} r$

3. Density of unit cell (d)

$$d = \frac{Z \times M}{a^3 \times N_A}$$

Where **Z** is rank of unit cell (no. of atoms per unit cell), **m** is molar mass/ atomic mass, 'a' is edge length of the cube, 'a³' is volume of cubic unit cell and N_A is Avogatro number.

4. Packing efficiency =
$$\frac{d \times N_A}{M} \times \frac{4}{3} \pi r^3 \times 100$$

Here 'M' is molar mass 'r' is radius of atom, 'd' is density and N_A is Avogaotro's number (6.022 \times 10²³ mol⁻¹).

Rank of unit cell can be computed by packing efficiency value

Type of Unit Cell	Packing efficiency	Rank of Unit Cell
SC	52.4%	1
BCC	68.%	2
FCC	74%	4

Solution

1. Mole fraction (x)

if the number of moles of A and B are n_A and n_B respectrively, the mole fraction of A and B will be

$$x_A = \frac{x}{n_A + n_B}$$
, and $x_B = \frac{n_B}{n_A + n_B}$

$$x_A + x_B = 1$$

- 2. **Molarity (M)** = $\frac{\text{Moles of solute}}{\text{Volume of solution in litres}}$
- 3. **Moality (m)** = $\frac{\text{Moles of solute}}{\text{Mass of solvent in kilograms}}$
- 4. Parts per million (ppm)

$$= \frac{\text{Number of parts of the component}}{\text{Total number of parts of all components of the solution}} \times 10^{6}$$

5. Raoult's law for a solution of volatile solute in volatile solvent :

$$p_A = p_A^{\circ} x_A$$

 $p_B = p_B^{\circ} x_B$

Where p_A and p_B are partial vapour pressures of component 'A' and component 'B' in solution. p_A ° and p_B ° are vapour pressures of pure components 'A' and 'B' respectively.

6. Raoults law for a solution of non-volatile solute and volatile solvent:

$$\frac{{\rm p_A}^{\circ} - {\rm p_A}}{{\rm p_A}^{\circ}} = i {\rm x_B} \simeq i \; \frac{{\rm n_B}}{{\rm N_A}} = i \; \frac{{\rm W_B} \times {\rm M_A}}{{\rm M_B} \times {\rm W_A}} \; \; ({\rm for \; dilute \; solution})$$

Where x_B is mole fraction of solute, i is van't Hoff factor and $\frac{p_A - p_A}{p_A^\circ}$ is relative lowering of vapour pressure.

7. Elevation in boiling point (ΔT_b)

$$\Delta T_b = i.K_b m$$

where $\Delta T_b = T_b - T_b^{\circ}$
 $K_b = \text{molal boiling point elevation constant}$
 $m = \text{molality of solution.}$

8. Depression in freezing point (ΔT_f)

$$\Delta T_f = i.K_f m$$

where $\Delta T_f = T_f^{\circ} - T_f$
 $K_f = molal$ depression constant
 $m = molality$ of solution.

9. Osmotic pressure (π) of a solution

$$\pi V = i n R T$$
 or $\pi = i CR T$

where $\pi = osmotic pressure in bar or atm$
 $V = volume in litres$
 $i = Van't Hoff factor$
 $c = molar concentration in moles per litres$
 $n = number of moles$
 $T = Temperature on Kelvin Scale$
 $R = 0.083 L bar mol^{-1} K^{-1}$
 $R = 0.0821 L atm mol^{-1} K^{-1}$

10. Van't Hoff factor (i)

$$i = \frac{\text{Observed colligative property}}{\text{Theoretically calculated colligative property}}$$

$$i = \frac{\text{Normal molar mass}}{\text{Abnormal molar mass}}$$

$$\begin{cases} i > 1 & \text{For dissociation of molecules} \\ i < 1 & \text{For association of molecules} \\ i = 1 & \text{For ideal solution} \end{cases}$$

11. Relationship between relative lowering in vapour prescure and elevation in b.p.

$$\frac{\Delta p}{p_{\Delta}^{\circ}} = i \frac{\Delta T_{b}}{K_{b}} M_{A} \times 1000$$

Here

 Δp is lowering in vapour pressure, ${\bf p_A}^{\circ}$ is vapour pressure of pure solvent, i is van't Hoff factor, $\Delta {\bf T_b}$ is elevation in boiling point, ${\bf K_b}$ is molal elevation constant and ${\bf M_A}$ is molar mass of solvent

Electrochemistry

1. Conductivity (k)

$$K = \frac{1}{P} = \frac{1}{R} \times \frac{l}{A} = G \times G^*$$

Where R is resistance, l/A = cell constant (G*) and $\frac{1}{P}$ is resistivity.

2. Relationship between k and $\Lambda_{\rm m}$

$$\Lambda_{\rm m} = \frac{1000 \times k}{c}$$

Where $\Lambda_{\rm m}$ is molar conductance, k is conductivity and C is molar concentration.

Kohlrausch's law

(a) In general if an electrolyte on dissociation gives v_+ cations and γ anions then, its limiting molar conductivity is given by

$$\Lambda^{\circ}_{m} = \gamma_{+} \lambda^{\circ}_{+} + \gamma_{-} \lambda^{\circ}_{-}$$

Here $\lambda_{_{\!+}}{}^{\circ}$ and $\lambda^{\circ}_{_{\!-}}$ are the limiting molar conductivities of cation and anion respectively and $\nu_{_{\!+}}$ and $\nu_{_{\!-}}$ are the number of cations and anions furnished by one formula unit.

(b) Degree of dissociation (α) is given by :

$$\alpha = \frac{\Lambda_{\rm m}^{\rm c}}{\Lambda_{\rm m}^{\circ}}$$

Here Λ_m° is molar conductivity at the concentration C and Λ_m° is limiting molar conductivity of the electrolyte.

(c) Dissociation constant (K.) of weak electrolyte

$$K = \frac{C\alpha^2}{1-\alpha} = \frac{C\left(\frac{\Lambda_m^c}{\Lambda_m^o}\right)^2}{\left(1 - \frac{\Lambda_m}{\Lambda_m^o}\right)}$$

3. Nernst Equation for electrode reaction : $M^{n+} + ne^- \rightarrow M$.

$$E = E^{\theta} - \frac{2.303 \text{ RT}}{\text{nF}} \log \frac{1}{[M^{n+}]}$$

For Cell potential of electrochemical reaction aA : bB ____ne__ cC + dD

$$E_{cell} = E_{cell}^{\theta} - \frac{2.303RT}{nF} \log [Q_c]$$

4. Relationship between E° cell and equilibrium constant (Kc)

$$E^{\theta}$$
 cell = $\frac{2.303RT}{nF}$ log K_c

$$E^{\theta}$$
 cell = $\frac{0.059v}{n}$ log K_{c}

5. $\Delta G^{\theta} = - nF E^{\theta} cell$

Where ΔG^{θ} = standard Gibbs energy change and nF is the amount of charge passed.

$$\Delta G^{\theta} = -2.303 \text{ RT log K}_{\circ}$$

Chemical Kinetics

1. Integrated rate law equation for zero order reaction

(a)
$$k = \frac{[R]_{\circ} - [R]}{t}$$

Where k is rate constant and $[R]_0$ is initial molar concentration.

(b)
$$t_{\frac{1}{2}} = \frac{[R]_{\circ}}{2k}$$

 $t_{1/2}$ is half life period of zero order reaction.

2. Integrated rate law equation for first order reaction

(a)
$$k = \frac{2.303}{t} \log \frac{[R]_{\circ}}{[R]}$$

Where k is rate constant, [R], is initial molar concentration and [R] is final concentration at time 't'.

(b) Half life period ($^{t}_{y_{2}}$) for first order reaction :

$$t_{\frac{1}{2}} = \frac{0.693}{k}$$

3. Anhenius epuation

(a)
$$k = A_e^{-Ea/RT}$$

Where 'A' is frequency factor, Ea is the energy of activation, R is universal gas contant and T is absolute temperature.

 $^{-\text{Ea}}/_{\text{RT}}$ gives the fraction of collisions having energy equal to or greater than Ea.

(b)
$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303 \text{ R}} \left(\frac{T_2 - T_1}{T_1 T_2} \right)$$

Where $\mathbf{k_1}$ is rate constant at temperature $\mathbf{T_1}$ and $\mathbf{k_2}$ is rate constant at temperature $\mathbf{T_2}$.