- 1 -

TN-P765

10/505228

DESCRIPTION

PYRROLOPYRIMIDINE DERIVATIVES

5 TECHNICAL FIELD

10

15

20

25

The present invention relates to novel pyrrolopyrimidine derivatives for use as pharmaceutical agents having an activity of inhibiting glycogen synthase kinase-3 (GSK-3). More specifically, the present invention relates to novel pyrrolo[3,2-d]pyrimidine derivatives useful for use as pharmaceutical agents for treating and/or preventing diseases for which GSK-3 activity has been implicated as a causative agent, specifically impaired glucose tolerance, type 1 diabetes, type 2 diabetes, diabetic complications (retinopathy, nephropathy, neurotic disorders, macroangiopathy etc.), Alzheimer's disease, neurodegenerative diseases (AIDS encephalopathy, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis etc.), bipolar affective disorder (manicdepressive psychosis), traumatic encephalopathy and spinal injury, epilepsy, obesity, atherosclerosis, hypertension, polycystic ovary syndrome, Syndrome X, alopecia, inflammatory diseases (osteoarthritis, rheumatoid arthritis, atopic dermatitis, psoriasis, ulcerative colitis, Crohn's disease, sepsis, generalized inflammatory syndrome etc.), cancer, immune deficiency and the like.

BACKGROUND ART

30 GSK-3 is a serine/threonine kinase, for which two types of isoforms (α type and β type, encoded by separate genes) have been identified (see Non-patent document 1). Either of GSK-3 isoforms assumes a monomer structure, and have been constantly activated in resting cells.

Originally GSK-3 was identified as a kinase that inhibits glycogen synthase kinase by directly phosphorylating the enzyme (see Non-patent document 2). Under insulin

stimulation, it is believed, GSK-3 is inactivated which leads to the activation of glycogen synthase kinase and furthermore to the induction of insulin effect such as sugar transport. It is known that GSK-3 is also inactivated by other growth factors such as IGF-1 and FGF via signals from the receptor tyrosine kinase (see Non-patent document 3, Non-patent document 4, and Non-patent document 5).

5

10

15

20

25

30

35

GSK-3 inhibitors are useful for the treatment of various diseases for which GSK-3 activation is responsible. Furthermore, since the inhibition of GSK-3 simulates the activation of signaling pathway of growth factors, it is also useful for the treatment of diseases for which the inactivation of their signaling pathway is responsible. Various diseases for which GSK-3 inhibitors are thought to be useful are illustrated below.

Type 1 diabetes is caused by the autoimmune destruction of the insulin-producing cells, β -cells, in the pancreas leading to insulin deficiency. Therefore, in order to maintain life of patients with type 1 diabetes, the routine administration of insulin is imperative. The current insulin therapy, however, cannot reproduce the strict control of blood sugar levels which is attained by normal β -cells. Thus, type 1 diabetes tends to induce diabetic complications with retinopathy, nephropathy, neurotic disorders, macroangiopathy or the like.

Type 2 diabetes a multifactorial disease in which insulin resistance in the liver, skeletal muscles, and adipose tissues combined with deficient secretion of insulin from the pancreas causes high blood sugar. As a result, diabetic complications with retinopathy, nephropathy, neurotic disorders, macroangiopathy and the like are induced. Skeletal muscles are an important tissue in glucose incorporation by insulin stimulation, and the incorporated glucose is metabolized by either of

the glycolysis/TCA cycle or glycogen accumulation. Glycogen accumulation in the skeletal muscles plays a very important role in glucose homeostasis, and in patients with type 2 diabetes the amount of glycogen accumulated in the skeletal muscles is decreased. GSK-3 is acting in the direction of increased blood glucose by phosphorylating glycogen synthase kinase thereby inhibiting the glycogen accumulation in the peripheral tissues and by lowering insulin reactivity.

5

10

15

20

25

30

35

Recently, it was reported that the expression of GSK-3 is enhanced in skeletal muscles of patients with type 2 diabetes and that an inverse correlation can be observed between GSK-3 α activity in skeletal muscles and insulin effect (see Non-patent document 6). excessive expression of GSK-3 β and the activated GSK-3 β mutants (S9A, S9E) in the HEK-293 cells leads to the inhibition of glycogen synthase kinase activity (see Nonpatent document 7). The excessive expression of $GSK-3\beta$ in the CHO cells in which insulin receptors and insulin receptor substrate 1 (IRS-1) have been expressed leads to the decline of insulin effect (see Non-patent document 8). Recently, a study using C57BL/6J mice that show tendency of obese diabetic revealed a relationship between enhanced GSK-3 activity and the progress of insulin resistant/type 2 diabetes (see Non-patent document 9).

Conventionally, lithium salts have been used as pharmaceutical agents that inhibit GSK-3 activity (see Non-patent document 10). It has been reported that treatment with a lithium salt reduces blood sugar levels and ameliorates pathological conditions in either of type 1 diabetic and type 2 diabetic patients (see Non-patent document 11). However, it has been reported that lithium salts have a variety of effects on molecular targets other than GSK-3.

From the foregoing, it is thought that GSK-3

inhibitors can serve as effective pharmaceutical agents for ameliorating impaired glucose tolerance, type 1 diabetes, type 2 diabetes or complications thereof.

5

10

15

20

25

30

35

It has also been suggested that GSK-3 is involved in the progress of pathological conditions of Alzheimer's disease. Alzheimer's disease is characterized by the formation of senile plaques due to the deposition of amyloid β peptide (A β) in the brain and the ensuing formation of neurofibrillary changes. These changes lead to massive death of nerve cells leading to the appearance of dementia conditions. In this progress of pathological conditions, GSK-3 is believed to be involved in abnormal phosphorylation of tau protein which leads to neurofibrillary changes (see Non-patent document 12). There is also a report that GSK-3 inhibitors may prevent the death of nerve cells (see Non-patent document 13). Based on these findings, it is believed that the application of GSK-3 inhibitors to Alzheimer's disease can delay the progress of the pathological conditions. At present, as therapeutic agents for Alzheimer's disease, agents that perform symptomatic treatments are present (see Non-patent document 14) but no pharmaceutical agents are present that prevent the death of nerve cells and delay the progress of the pathological From the foregoing, GSK-3 inhibitors are conditions. considered to become pharmaceutical agents effective for ameliorating Alzheimer's dementia.

There is a report that GSK-3 inhibitors prevent the death of nerve cells, specifically the death of nerve cells due to hyperexcitation via glutamic acid (see Non-patent document 15 and Non-patent document 16). This suggests a possibility that GSK-3 inhibitors may be effective for the treatment of bipolar affective disorder (manic-depressive psychosis), epilepsy and many degenerative brain diseases and neurotic diseases. In addition to the above-mentioned Alzheimer's disease, neurodegenerative diseases include AIDS encephalopathy,

Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, Pick's disease, progressive supranuclear palsy and the like. Also, the hyperexcitation via glutamic acid is considered to be a factor in brain disorders in stroke (cerebral infarction, cerebral hemorrhage, subarachnoid hemorrhage), traumatic encephalopathy and spinal injury, bacterial and virus infections and the like, and GSK-3 inhibitors are expected to be effective for these diseases. All of them are diseases accompanied by the death of nerve cells. present, there are no pharmaceutical agents that effectively prevent the death of nerve cells, From the foregoing, it is thought that GSK-3 inhibitors may be pharmaceutical agents effective for the amelioration of neurodegenerative diseases, bipolar affective disorder (manic-depressive psychosis), epilepsy, stroke, traumatic encephalopathy and spinal injury, and the like.

5

10

15

20

25

Also, an in vitro study has been reported that Wint10B strongly inhibits the differentiation from prefatty cells to mature fatty cells (see Non-patent document 17). GSK-3 specific inhibitors simulate Wint10B signals in pre-fatty cells, i.e. stabilizes free $\alpha\beta$ -catenin present in the cytoplasm, to inhibit the induction of c/EBP α and PPAR γ , and by so doing inhibits fat formation (see Non-patent document 18). From the foregoing, GSK-3 inhibitors are expected to be pharmaceutical agents effective for the treatment of obesity.

Also, β -catenin is known to be a biological substrate for GSK-3. β -catenin is phosphorylated by GSK-3 and undergoes proteosome-dependent decomposition (see Non-patent document 19). On the other hand, the transient stabilization of β -catenin is thought to be responsible for hair growth (see Non-patent document 20). From the foregoing, GSK-3 inhibitors are expected to be

pharmaceutical agents effective for the treatment of alopecia.

5

10

15

20

25

30

35

Furthermore, a study on fibroblasts derived from a GSK-3 β -knock out mouse suggested that GSK-3 β positively controls the activity of a transcription factor NF κ B (see Non-patent document 21). NF κ B is responsible for cellular response properties to a variety of inflammatory stimulations. From the foregoing, GSK-3 inhibitors are expected to be pharmaceutical agents effective for the treatment of inflammatory diseases such as osteoarthritis, rheumatoid arthritis, atopic dermatitis, psoriasis, ulcerative colitis, Crohn's disease, sepsis and generalized inflammatory syndrome by negatively controlling the NF κ B activity.

A transcription factor NF-AT is dephosphorylated by calcineurin and potentiates immune reactions (see Non-patent document 22). Conversely GSK-3, by phosphorylating NF-AT and transporting it extranuclearly, acts in the direction of inhibiting the expression of early immune response genes. From the foregoing, GSK-3 inhibitors are expected to be pharmaceutical agents effective for immunopotentiation for cancer immunotherapy etc.

Substances that are conventionally known to have an activity of inhibiting GSK-3 include hymenialdisine derivatives (see Non-patent document 23 and Patent document 1), maleimide derivatives (see Non-patent document 24), Paullone derivatives (see Non-patent document 25 and Patent document 2), purine derivatives (see Patent document 3), pyrimidine and pyridine derivatives (see Patent document 4), hydroxyflavone derivatives (see Patent document 5), pyrimidone derivatives (see Patent document 6, Patent document 7, Patent document 8, Patent document 9, Patent document 19, Patent document 11, Patent document 12, and Patent document 13), pyrrole-2,5-dione derivatives (see Patent

```
document 14 and Patent document 15), diamino-1,2,4-
      triazole-carboxylic acid derivatives (see Patent document
      16), pyrazine derivatives (see Patent document 17),
      bicyclic inhibitors (see Patent document 18), indirubine
 5
      derivatives (see Patent document 19), carboxamide
      derivatives (see Patent document 20), peptide inhibitors
      (see Patent document 21), 2,4-diaminothiazole derivatives
      (see Patent document 22), thiazolidine dione derivatives
      (see Patent document 23), aromatic amide derivatives (see
10
      Patent document 24), and the like.
      Non-patent document 1: Trends in Biochem. Sci. 16: 177,
      1991;
      Non-patent document 2: Eur. J. Biochem. 107: 519, 1980;
      Non-patent document 3: Biochem. J. (GB) 294: 625, 1993;
15
      Non-patent document 4: Biochem. J. (GB) 303: 21, 1994;
      Non-patent document 5: Biochem. J. (GB) 303: 27, 1994;
      Non-patent document 6: Diabetes (USA) 49: 263, 2000;
      Non-patent document 7: Proc. Natl. Acad. Sci. USA 93:
      10228, 1996;
      Non-patent document 8: Proc. Natl. Acad. Sci. USA 94:
20
      9660, 1997;
      Non-patent document 9: Diabetes (USA) 48: 1662, 1999;
      Non-patent document 10: Proc. Natl. Acad. Sci. USA 93:
      8455, 1996;
      Non-patent document 11: Biol. Trace Elements Res. 60:
25
      131, 1997;
      Non-patent document 12: Acta Neuropathol. 103: 91, 2002;
      Non-patent document 13: J. Neurochem. 77: 94, 2001;
      Non-patent document 14: Expert Opin. Pharmacother. 1:
30
      121, 1999;
      Non-patent document 15: Proc. Natl. Acad. Sci. USA 95:
      2642, 1998;
      Non-patent document 16: J. Neurochem. 77: 94, 2001;
      Non-patent document 17: Science 289: 950, 2000;
35
      Non-patent document 18: J. Biol. Chem. 277: 30998, 2002;
      Non-patent document 19: EMBO J. 17: 1371, 1998;
      Non-patent document 20: Cell 95: 605, 1998;
```

```
Non-patent document 21: Nature 406: 86, 2000;
      Non-patent document 22: Science 275: 1930, 1997;
      Non-patent document 23: Chemistry & Biology 7: 51, 2000;
      Non-patent document 24: Chemistry & Biology 7: 793, 2000;
5
      Non-patent document 25: Eur. J. Biochem. 267: 5983, 2000;
      Patent document 1: International Patent Publication WO
      01/41768 brochure;
      Patent document 2: International Patent Publication WO
      01/60374 brochure;
10
      Patent document 3: International Patent Publication WO
      98/16528 brochure;
      Patent document 4: International Patent Publication WO
      99/65897 brochure;
      Patent document 5: International Patent Publication WO
15
      00/17184 brochure:
      Patent document 6: International Patent Publication WO
      00/18758 brochure:
      Patent document 7: International Patent Publication WO
      01/70683 brochure:
20
      Patent document 8: International Patent Publication WO
      01/70729 brochure;
      Patent document 9: International Patent Publication WO
      01/70728 brochure;
      Patent document 10: International Patent Publication WO
25
      01/70727 brochure:
      Patent document 11: International Patent Publication WO
      01/70727 brochure:
      Patent document 12: International Patent Publication WO
      01/70726 brochure;
30
      Patent document 13: International Patent Publication WO
      01/70725 brochure;
      Patent document 14: International Patent Publication WO
      00/21927 brochure;
      Patent document 15: International Patent Publication WO
35
      01/74771 brochure;
      Patent document 16: International Patent Publication WO
      01/09106 brochure;
```

Patent document 17: International Patent Publication WO 01/44206 brochure;

Patent document 18: International Patent Publication WO 01/44246 brochure;

5 Patent document 19: International Patent Publication WO 01/37819 brochure;

Patent document 20: International Patent Publication WO 01/42224 brochure;

Patent document 21: International Patent Publication WO

10 01/49709 brochure;

Patent document 22: International Patent Publication WO 01/56567 brochure;

Patent document 23: International Patent Publication WO 01/85685 brochure;

Patent document 24: International Patent Publication WO 01/81345 brochure.

It is an object of the present invention to provide clinically applicable novel compounds that have a potent and selective inhibitory activity against GSK-3.

20 DISCLOSURE OF THE INVENTION

25

After intensive and extensive research to attain the above objective, the present inventors have found that novel pyrrolo[3,2-d]pyrimidine derivatives represented by the following formula (I) or pharmaceutically acceptable salts thereof exhibit excellent activity of inhibiting GSK-3, and thereby have completed the present invention.

Thus, the present invention is:

(1) A pyrrolo[3,2-d]pyrimidine derivative represented by Formula (I) or a pharmaceutically acceptable salt thereof

[In Formula (I), X represents an oxygen atom or a sulfur atom.

In Formula (I), n represents 0, 1, or 2.

In Formula (I), A represents a nitrogen atom or CH.

In Formula (I), G° represents a divalent group of substituted or unsubstituted benzene, furan, thiophene, pyrrole, isoxazole, cyclopentane or cyclohexane, or a divalent group represented by $-CR^{1}R^{2}-(R^{1} \text{ and } R^{2}, \text{ which may be the same or different, represent a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group having one to four carbons, or <math>NR^{10}R^{20}$ (R^{10} and R^{20} , which may be the same or different, represent a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group having one to four carbons), or an optionally substituted group in which R^{1} and R^{2} bind to each other and form a 3- to 7-membered ring together with a carbon atom (C in $-CR^{1}R^{2}-$) to which R^{1} and R^{2} are bound, provided that R^{1} and R^{2} are not $NR^{10}R^{20}$ at the same time).

In Formula (I), G^1 represents a single bond, or a group that binds A to which G^1 binds and R^3 in the form of $A-C(=0)-O-R^3$, $A-C(=0)-R^3$, $A-C(=0)-NR^{30}-R^3$, $A-C(=S)-NR^{31}-R^3$, $A-C(=0)-NR^{32}-S(=0)_2-R^3$, or $A-S(=0)_2-R^3$ (R^{30} to R^{32} represent, independently from one another, a hydrogen atom or a substituted or unsubstituted aliphatic hydrocarbon group having one to four carbons).

In Formula (I), R^3 represents a group selected from the following 1)-5).

1) a single bond,

5

10

15

20

5

10

15

20

25

30

35

2) a substituted or unsubstituted alicyclic hydrocarbon group having three to eight carbons (substituents are one or more substituents selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxy group, an optionally substituted alkoxy group having one to seven carbons, an aryloxy group having six to ten carbons, an aralkoxy group having seven to nine carbons, an acyloxy group having two to seven carbons, an oxo group, an alkylsulfonyloxy group having one to six carbons, an optionally substituted acyl group having two to seven carbons, a carboxyl group, an alkoxycarbonyl group having two to seven carbons, a carbamoyl group, an optionally substituted alkylcarbamoyl group having two to seven carbons, an amino group, an optionally substituted alkylamino group having one to six carbons, an optionally substituted acylamino group having two to seven carbons, an alkoxycarbonylamino group having two to eight carbons, an alkylsulfonylamino group having one to six carbons, a cyano group, a nitro group, an alkylthio group having one to six carbons, an alkylsulfinyl group having one to six carbons, an alkylsulfonyl group having one to six carbons, a sulfamoyl group, an alkylaminosulfonyl group having one to six carbons, a sulpho group, an optionally substituted alicyclic hydrocarbon group having three to six carbons, and an optionally substituted aliphatic hydrocarbon group having one to six carbons), 3) a substituted or unsubstituted aromatic hydrocarbon group having six to 14 carbons (substituents are one or more substituents selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxy group, an optionally substituted alkoxy group having one to seven carbons, an aryloxy group having six to ten carbons, an aralkoxy group having seven to nine carbons, an acyloxy group having two to seven carbons, an oxo group, an alkylsulfonyloxy group having

one to six carbons, an optionally substituted acyl group

5

10

15

20

25

30

35

having two to seven carbons, a carboxyl group, an alkoxycarbonyl group having two to seven carbons, a carbamoyl group, an optionally substituted alkylcarbamoyl group having two to seven carbons, an amino group, an optionally substituted alkylamino group having one to six carbons, an optionally substituted acylamino group having two to seven carbons, an alkoxycarbonylamino group having two to eight carbons, an alkylsulfonylamino group having one to six carbons, a cyano group, a nitro group, an alkylthio group having one to six carbons, an alkylsulfinyl group having one to six carbons, an alkylsulfonyl group having one to six carbons, a sulfamoyl group, an alkylaminosulfonyl group having one to six carbons, a sulpho group, an optionally substituted alicyclic hydrocarbon group having three to six carbons, and an optionally substituted aliphatic hydrocarbon group having one to six carbons), 4) a substituted or unsubstituted heterocyclic group containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom (substituents are one or more substituents selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxy group, an optionally substituted alkoxy group having one to seven carbons, an aryloxy group having six to ten carbons, an aralkoxy group having seven to nine carbons, an acyloxy group having two to seven carbons, an oxo group, an alkylsulfonyloxy group having one to six carbons, an optionally substituted acyl group having two to seven carbons, a carboxyl group, an alkoxycarbonyl group having two to seven carbons, a carbamoyl group, an optionally substituted alkylcarbamoyl group having two to seven carbons, an amino group, an optionally substituted alkylamino group having one to six carbons, an optionally substituted acylamino group having two to seven carbons, an alkoxycarbonylamino group having

two to eight carbons, an alkylsulfonylamino group having

one to six carbons, a cyano group, a nitro group, an alkylthio group having one to six carbons, an alkylsulfinyl group having one to six carbons, an alkylsulfonyl group having one to six carbons, a sulfamoyl group, an alkylaminosulfonyl group having one to six carbons, a sulpho group, an optionally substituted alicyclic hydrocarbon group having three to six carbons, and an optionally substituted aliphatic hydrocarbon group having one to six carbons),

5

10

15

20

25

30

35

5) a substituted or unsubstituted aliphatic hydrocarbon group having one to ten carbons (substituents are one or more substituents selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxy group, an optionally substituted alkoxy group having one to seven carbons, an optionally substituted phenylalkoxy group having seven to ten carbons, an alkoxy group having one to four carbons substituted with an optionally substituted heterocyclic group (containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom), an optionally substituted aryloxy group having six to ten carbons, an acyloxy group having two to seven carbons, an oxo group, an alkylsulfonyloxy group having one to six carbons, an optionally substituted acyl group having two to seven carbons, a carboxyl group, an alkoxycarbonyl group having two to seven carbons, a carbamoyl group, an optionally substituted alkylcarbamoyl group having two to seven carbons, an amino group, an optionally substituted alkylamino group having one to six carbons, an optionally substituted acylamino group having two to seven carbons, an alkoxycarbonylamino group having two to eight carbons, an alkylsulfonylamino group having one to six carbons, a cyano group, a nitro group, an alkylthio group having one to six carbons, an alkylsulfinyl group having one to six carbons, an alkylsulfonyl group having one to six carbons, a sulfamoyl group, an alkylaminosulfonyl group

having one to six carbons, a sulpho group, an optionally substituted alicyclic hydrocarbon group having three to six carbons, an optionally substituted aromatic hydrocarbon group having six to 14 carbons, and an optionally substituted heterocyclic group (containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom)).

In Formula (I), R^4 represents a group selected from the following 1)-4).

1) a single bond,

5

10

15

20

25

30

35

2) a substituted or unsubstituted alicyclic hydrocarbon group having three to eight carbons (substituents are one or more substituents selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxy group, an optionally substituted alkoxy group having one to seven carbons, an aryloxy group having six to ten carbons, an aralkoxy group having seven to nine carbons, an acyloxy group having two to seven carbons, an oxo group, an alkylsulfonyloxy group having one to six carbons, an optionally substituted acyl group having two to seven carbons, a carboxyl group, an alkoxycarbonyl group having two to seven carbons, a carbamoyl group, an optionally substituted alkylcarbamoyl group having two to seven carbons, an amino group, an optionally substituted alkylamino group having one to six carbons, an optionally substituted acylamino group having two to seven carbons, an alkoxycarbonylamino group having two to eight carbons, an alkylsulfonylamino group having one to six carbons, a cyano group, a nitro group, an alkylthio group having one to six carbons, an alkylsulfinyl group having one to six carbons, an alkylsulfonyl group having one to six carbons, a sulfamoyl group, an alkylaminosulfonyl group having one to six carbons, a sulpho group, an optionally substituted alicyclic hydrocarbon group having three to six carbons, and an optionally substituted aliphatic hydrocarbon group having one to six carbons),

5

10

15

20

25

30

- 3) a substituted or unsubstituted aromatic hydrocarbon group having six to 14 carbons (substituents are one or more substituents selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxy group, an optionally substituted alkoxy group having one to seven carbons, an aryloxy group having six to ten carbons, an aralkoxy group having seven to nine carbons, an acyloxy group having two to seven carbons, an oxo group, an alkylsulfonyloxy group having one to six carbons, an optionally substituted acyl group having two to seven carbons, a carboxyl group, an alkoxycarbonyl group having two to seven carbons, a carbamoyl group, an optionally substituted alkylcarbamoyl group having two to seven carbons, an amino group, an optionally substituted alkylamino group having one to six carbons, an optionally substituted acylamino group having two to seven carbons, an alkoxycarbonylamino group having two to eight carbons, an alkylsulfonylamino group having one to six carbons, a cyano group, a nitro group, an alkylthio group having one to six carbons, an alkylsulfinyl group having one to six carbons, an alkylsulfonyl group having one to six carbons, a sulfamoyl group, an alkylaminosulfonyl group having one to six carbons, a sulpho group, an optionally substituted alicyclic hydrocarbon group having three to six carbons, and an optionally substituted aliphatic hydrocarbon group having one to six carbons),
- 4) a substituted or unsubstituted heterocyclic group containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom (substituents are one or more substituents selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxy group, an optionally substituted alkoxy group having one to seven carbons, an aryloxy group having six to ten carbons, an aralkoxy group having seven

to nine carbons, an acyloxy group having two to seven carbons, an oxo group, an alkylsulfonyloxy group having one to six carbons, an optionally substituted acyl group having two to seven carbons, a carboxyl group, an alkoxycarbonyl group having two to seven carbons, a carbamoyl group, an optionally substituted alkylcarbamoyl group having two to seven carbons, an amino group, an optionally substituted alkylamino group having one to six carbons, an optionally substituted acylamino group having two to seven carbons, an alkoxycarbonylamino group having two to eight carbons, an alkylsulfonylamino group having one to six carbons, a cyano group, a nitro group, an alkylthio group having one to six carbons, an alkylsulfinyl group having one to six carbons, an alkylsulfonyl group having one to six carbons, a sulfamoyl group, an alkylaminosulfonyl group having one to six carbons, a sulpho group, an optionally substituted alicyclic hydrocarbon group having three to six carbons, and an optionally substituted aliphatic hydrocarbon group having one to six carbons).

5

10

15

20

25

30

35

In Formula (I), G^2 represents a hydrogen atom, - C(=0)-OH, -C(=0)-NH-OH, $-S(=0)_2-OH$, or a 5-tetrazolyl group];

- (2) A pyrrolo[3,2-d]pyrimidine derivative described in
- (1) or a pharmaceutically acceptable salt thereof, wherein A represents a nitrogen atom;
- (3) A pyrrolo[3,2-d]pyrimidine derivative described in
- (2) or a pharmaceutically acceptable salt thereof, wherein G^0 is a divalent group represented by $-CR^1R^2-(R^1$ and R^2 are as defined above);
- (4) A pyrrolo[3,2-d]pyrimidine derivative described in
- (2) or a pharmaceutically acceptable salt thereof, wherein G^0 is a divalent group represented by $-CR^1R^2$ -wherein R^1 and R^2 , which may be the same or different, are a hydrogen atom or an optionally substituted aliphatic hydrocarbon group having one to four carbons, or R^1 and R^2 bind to each other and form a cyclopropane

ring together with a carbon atom to which R1 and R2 are bound;

- (5) A pyrrolo[3,2-d]pyrimidine derivative described in
- (2) or a pharmaceutically acceptable salt thereof,
- wherein G⁰ is a divalent group represented by -CR¹R²-5 wherein R¹ and R², which may be the same or different, are a hydrogen atom or a methyl group, or R¹ and R² bind to each other and form a cyclopropane ring together with
- 10 (6) A pyrrolo[3,2-d]pyrimidine derivative described in

a carbon atom to which R1 and R2 are bound;

- (2) or a pharmaceutically acceptable salt thereof, wherein G⁰ is a divalent group represented by -CR¹R²wherein R¹ is an optionally substituted aliphatic hydrocarbon group having one to four carbons and R2 is a
- 15 hydrogen atom;

- (7) A pyrrolo[3,2-d]pyrimidine derivative described in
- (2) or a pharmaceutically acceptable salt thereof, wherein G⁰ is a divalent group represented by -CR¹R²wherein R¹ is a methyl group and R² is a hydrogen atom;
- (8) A pyrrolo[3,2-d]pyrimidine derivative described in
- (2) or a pharmaceutically acceptable salt thereof, wherein G° is a divalent group represented by -CR1R2wherein each of R^1 and R^2 is a methyl group, or R^1 and R^2 bind to each other and form a cyclopropane ring together
- with a carbon atom to which R1 and R2 are bound; 25
 - (9) A pyrrolo[3,2-d]pyrimidine derivative described in
 - (2) or a pharmaceutically acceptable salt thereof, wherein G° is a divalent group of an optionally substituted benzene, furan, thiophene, pyrrole,
- isoxazole, cyclopentane or cyclohexane, and G^0 , $(CH_2)_n$, A, 30 -(CH₂)₂-, and a nitrogen atom and a carbon atom in the pyrrole ring of the pyrrolopyrimidine ring form a 10- to 12-membered bicyclic structure;
 - (10) A pyrrolo[3,2-d]pyrimidine derivative described in
- 35 (2) or a pharmaceutically acceptable salt thereof, wherein G° is a divalent group of an optionally substituted benzene, and G^0 , $(CH_2)_n$, A_1 , $-(CH_2)_2$ -, and a

nitrogen atom and a carbon atom in the pyrrole ring of the pyrrolopyrimidine ring form a 10- to 12-membered bicyclic structure;

(11) A pyrrolo[3,2-d]pyrimidine derivative described in (2) or a pharmaceutically acceptable salt thereof, wherein G° is a divalent group of benzene, furan, thiophene, pyrrole, isoxazole, cyclopentane or cyclohexane, and G°, (CH₂)_n, A, -(CH₂)₂-, and a nitrogen atom and a carbon atom in the pyrrole ring of the pyrrolopyrimidine ring form a 10- to 12-membered bicycli

- pyrrolopyrimidine ring form a 10- to 12-membered bicyclic structure, and said bicyclic structure has 3-5 substituents;
 - (12) A pyrrolo[3,2-d]pyrimidine derivative described in(2) or a pharmaceutically acceptable salt thereof,
- wherein G^0 is a divalent group of an optionally substituted isoxazole, and G^0 , $(CH_2)_n$, A, $-(CH_2)_2$ -, and a nitrogen atom and a carbon atom in the pyrrole ring of the pyrrolopyrimidine ring form a 10- to 12-membered bicyclic structure;
- 20 (13) A pyrrolo[3,2-d]pyrimidine derivative described in any of (2) to (12) or a pharmaceutically acceptable salt thereof, wherein R³ is a divalent group of an optionally substituted, saturated aliphatic hydrocarbon group having five to ten carbons, an optionally substituted alicyclic
- 25 hydrocarbon group having five to eight carbons, an optionally substituted aromatic hydrocarbon group having six to ten carbons, or an optionally substituted heterocyclic group (containing one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom);
 - (14) A pyrrolo[3,2-d]pyrimidine derivative described in any of (2) to (12) or a pharmaceutically acceptable salt thereof, wherein R³ is a divalent group of an optionally substituted heterocyclic group (containing, in the ring, one to four atoms selected from the group consisting of
- one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom);

 (15) A pyrrolo[3,2-d]pyrimidine derivative described in

any of (2) to (12) or a pharmaceutically acceptable salt thereof, wherein $A-G^1-R^3$ represents a group that binds in the form of $A-C(=0)-NH-R^3$, $A-C(=S)-NH-R^3$, or $A-C(=O)-NH-S(=O)_2-R^3$, and R^3 is a divalent group of an optionally substituted aliphatic hydrocarbon group having one to ten carbons, an optionally substituted alicyclic hydrocarbon group having three to eight carbons, an optionally substituted aromatic hydrocarbon group having six to ten carbons, or an optionally substituted heterocyclic group (containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom);

5

10

15

20

25

30

35

sulfur atom);

(16) A pyrrolo[3,2-d]pyrimidine derivative described in any of (2) to (12) or a pharmaceutically acceptable salt thereof, wherein A-G¹-R³ represents a group that binds in the form of A-C(=0)-NH-R³ or A-C(=S)-NH-R³, and R³ is a divalent group of an optionally substituted aliphatic hydrocarbon group having one to ten carbons, an optionally substituted alicyclic hydrocarbon group having three to eight carbons, an optionally substituted aromatic hydrocarbon group having six to ten carbons, or an optionally substituted heterocyclic group (containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a

(17) A pyrrolo[3,2-d]pyrimidine derivative described in any of (2) to (12) or a pharmaceutically acceptable salt thereof, wherein A-G¹-R³ represents a group that binds in the form of A-C(=O)-NH-R³, and R³ is a divalent group of an optionally substituted aliphatic hydrocarbon group having one to ten carbons, an optionally substituted alicyclic hydrocarbon group having three to eight carbons, an optionally substituted aromatic hydrocarbon group having six to ten carbons, or an optionally substituted heterocyclic group (containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom);

(18) A pyrrolo[3,2-d]pyrimidine derivative described in any of (2) to (12) or a pharmaceutically acceptable salt thereof, wherein A-G1-R3 represents a group that binds in the form of $A-C(=0)-NH-R^3$, and R^3 is a divalent group of an optionally substituted alkane having five to ten carbons, an optionally substituted alicyclic hydrocarbon group having five to eight carbons, an optionally substituted aromatic hydrocarbon group having six to ten carbons, or an optionally substituted heterocyclic group (containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom);

(19) A pyrrolo[3,2-d]pyrimidine derivative described in any of (2) to (12) or a pharmaceutically acceptable salt thereof, wherein A-G1-R3 represents a group that binds in the form of $A-C(=0)-NH-R^3$, and R^3 is a divalent group of an optionally substituted heterocyclic group (containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a

20 sulfur atom);

5

10

15

25

30

35

(20) A pyrrolo[3,2-d]pyrimidine derivative described in any of (2) to (19) or a pharmaceutically acceptable salt thereof, wherein A-G1-R3 represents a group that binds in the form of $A-C(=0)-R^3$, $A-C(=0)-NH-R^3$, or $A-C(=S)-NH-R^3$, and G^2 represents any of -C(=0)-OH, -C(=0)-NH-OH, -

 $S(=0)_2-OH$, and 5-tetrazolyl group;

(21) A pyrrolo[3,2-d]pyrimidine derivative described in any of (2) to (19) or a pharmaceutically acceptable salt thereof, wherein $A-G^1-R^3$ represents a group that binds in the form of $A-C(=0)-R^3$, $A-C(=0)-NH-R^3$, or $A-C(=S)-NH-R^3$, and G^2 represents -C(=0)-OH;

(22) A pyrrolo[3,2-d]pyrimidine derivative described in any of (2) to (19) or a pharmaceutically acceptable salt thereof, wherein A-G1-R3 represents a group that binds in the form of $A-C(=0)-NH-R^3$, and G^2 represents any of -C(=0)-OH, -C(=0)-NH-OH, $-S(=0)_2-OH$, and 5-tetrazolyl

group;

- (23) A pyrrolo[3,2-d]pyrimidine derivative described in any of (2) to (19) or a pharmaceutically acceptable salt thereof, wherein $A-G^1-R^3$ represents a group that binds in the form of $A-C(=O)-NH-R^3$, and G^2 represents -C(=O)-OH; (24) A pyrrolo[3,2-d]pyrimidine derivative described in
- (24) A pyrrolo[3,2-d]pyrimidine derivative described in any of (2) to (12) or a pharmaceutically acceptable salt thereof, wherein -G¹- represents a single bond, and R³ is a divalent group of an alkane having two to six carbons substituted with an optionally substituted alkoxy group
- having one to four carbons, an optionally substituted phenylalkoxy group having seven to ten carbons, or an optionally substituted aryloxy group having six to ten carbons;

5

- (25) A pyrrolo[3,2-d]pyrimidine derivative described in any of (2) to (12) or a pharmaceutically acceptable salt thereof, wherein -G¹- represents a single bond, and R³ is a divalent group of an alkane having two to four carbons substituted with an optionally substituted alkoxy group having one to four carbons;
- (26) A pyrrolo[3,2-d]pyrimidine derivative described in any of (2) to (12) or a pharmaceutically acceptable salt thereof, wherein -G¹- represents a single bond, and R³ is a divalent group of an alkane having two to four carbons substituted with a phenylalkoxy group having seven to ten carbons;
 - (27) A pyrrolo[3,2-d]pyrimidine derivative described in any of (2) to (12) or a pharmaceutically acceptable salt thereof, wherein -G¹- represents a single bond, and R³ is a divalent group of an alkane having two to four carbons substituted with an alkoxy group having one to four carbons substituted with an optionally substituted heterocyclic group (containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom);
- 35 (28) A pyrrolo[3,2-d]pyrimidine derivative described in any of (2) to (12) or a pharmaceutically acceptable salt thereof, wherein $-G^1$ represents a single bond, and R^3 is

a divalent group of an alkane having two to four carbons substituted with an optionally substituted phenoxy group; (29) A pyrrolo[3,2-d]pyrimidine derivative described in any of (2) to (12) or a pharmaceutically acceptable salt thereof, wherein $-G^1$ - represents a single bond, and R^3 is a divalent group of an alkane having two to four carbons substituted with an optionally substituted benzyloxy group;

5

- (30) A pyrrolo[3,2-d]pyrimidine derivative described in any of (2) to (12) or a pharmaceutically acceptable salt thereof, wherein -G¹- represents a single bond, and R³ represents -CH2-, and R⁴ is a divalent group of an aromatic hydrocarbon group having six to ten carbons said group having G² other than a hydrogen atom or a
- substituent at a carbon atom of R^4 at a position adjacent to the carbon atom of R^4 at which $-R^3$ binds, or a heterocyclic group (containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom) having G^2 other
- than a hydrogen atom or a substituent at an atom at a position adjacent to the carbon atom of R^4 at which $-R^3$ -binds;
 - (31) A pyrrolo[3,2-d]pyrimidine derivative described in any of (2) to (30) or a pharmaceutically acceptable salt thereof, wherein X is an oxygen atom;
 - (32) A pyrrolo[3,2-d]pyrimidine derivative described in any of (2) to (30) or a pharmaceutically acceptable salt thereof, wherein X is a sulfur atom;
- (33) A pyrrolo[3,2-d]pyrimidine derivative described in any of (2) to (30) or a pharmaceutically acceptable salt thereof, wherein G⁰ is a divalent group represented by CR¹R²-, wherein R¹ and R², which may be the same or different, are a hydrogen atom or a methyl group, n represents 1, and X is a sulfur atom;
- 35 (34) A pyrrolo[3,2-d]pyrimidine derivative described in
 (1) or a pharmaceutically acceptable salt thereof,
 wherein A represents CH;

(35) A pyrrolo[3,2-d]pyrimidine derivative described in (34) or a pharmaceutically acceptable salt thereof, wherein G^{0} is a divalent group represented by $-CR^{1}R^{2}$ -, wherein R^{1} and R^{2} , which may be the same or different, are a hydrogen atom or a substituted or unsubstituted aliphatic hydrocarbon group having one to four carbons, or R^{1} and R^{2} bind to each other and form a cyclopropane ring together with a carbon atom to which R^{1} and R^{2} are bound;

5

20

- (36) A pyrrolo[3,2-d]pyrimidine derivative described in (34) or a pharmaceutically acceptable salt thereof, wherein G⁰ is a divalent group represented by -CR¹R²-, wherein R¹ and R², which may be the same or different, are a hydrogen atom or a methyl group, or R¹ and R² bind to each other and form a cyclopropane ring together with a carbon atom to which R¹ and R² are bound; (37) A pyrrolo[3,2-d]pyrimidine derivative described in (34) or a pharmaceutically acceptable salt thereof,
 - wherein G^0 is a divalent group represented by $-CR^1R^2$ -, wherein R^1 is a substituted or unsubstituted aliphatic hydrocarbon group having one to four carbons and R^2 is a hydrogen atom;
 - (38) A pyrrolo[3,2-d]pyrimidine derivative described in (34) or a pharmaceutically acceptable salt thereof, wherein G^0 is a divalent group represented by $-CR^1R^2-$, wherein R^1 is a methyl group and R^2 is a hydrogen atom; (39) A pyrrolo[3,2-d]pyrimidine derivative described in (34) or a pharmaceutically acceptable salt thereof, wherein G^0 is a divalent group represented by $-CR^1R^2-$,
- wherein both of R^1 and R^2 are a methyl group, or R^1 and R^2 bind to each other and form a cyclopropane ring together with a carbon atom to which R^1 and R^2 are bound;
 - (40) A pyrrolo[3,2-d]pyrimidine derivative described in (34) or a pharmaceutically acceptable salt thereof,
- wherein G° represents a divalent group of an optionally substituted benzene, furan, thiophene, pyrrole, isoxazole, cyclopentane or cyclohexane, and G°, (CH₂), A,

- $-(CH_2)_2-$, and a nitrogen atom and a carbon atom in the pyrrole ring of the pyrrolopyrimidine ring form a 10- to 12-membered bicyclic structure;
- (41) A pyrrolo[3,2-d]pyrimidine derivative described in (34) or a pharmaceutically acceptable salt thereof, wherein G° represents a divalent group of optionally substituted benzene, and G°, (CH₂)_n, A, -(CH₂)₂-, and a nitrogen atom and a carbon atom in the pyrrole ring of the pyrrolopyrimidine ring form a 10- to 12-membered bicyclic structure;
 - (42) A pyrrolo[3,2-d]pyrimidine derivative described in (34) or a pharmaceutically acceptable salt thereof, wherein G° represents a divalent group of a substituted benzene, furan, thiophene, pyrrole, isoxazole,
- 15 cyclopentane or cyclohexane, and G^0 , $(CH_2)_n$, A, $-(CH_2)_2$ -, and a nitrogen atom and a carbon atom in the pyrrole ring of the pyrrolopyrimidine ring form a 10- to 12-membered bicyclic structure and said bicyclic structure has 3-5 substituents;
- 20 (43) A pyrrolo[3,2-d]pyrimidine derivative described in (34) or a pharmaceutically acceptable salt thereof, wherein G° represents a divalent group of an optionally substituted isoxazole, and G°, (CH₂)_n, A, -(CH₂)₂-, and a nitrogen atom and a carbon atom in the pyrrole ring of
- 25 the pyrrolopyrimidine ring form a 10- to 12-membered bicyclic structure;
 - (44) A GSK-3 inhibitor comprising a pyrrolo[3,2-d]pyrimidine derivative described in any of (1) to (43) or a pharmaceutically acceptable salt thereof;
- (45) A pharmaceutical composition comprising a pyrrolo[3,2-d]pyrimidine derivative described in any of (1) to (43) or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier;
- (46) A therapeutic or preventive agent for a disease in which GSK-3 is involved, said agent comprising as an active ingredient a pyrrolo[3,2-d]pyrimidine derivative described in any of (1) to (43) or a pharmaceutically

acceptable salt thereof;

5

10

15

20

25

(47) A therapeutic or preventive agent according to claim (46) wherein a disease in which GSK-3 is involved is one selected from the group consisting of diabetes, diabetic complications, Alzheimer's disease, neurodegenerative diseases, manic-depressive psychosis, traumatic encephalopathy, alopecia, inflammatory diseases, cancer, and immune deficiency;

(48) A pyrrolo[3,2-d]pyrimidine derivative represented by Formula (II)

$$G^{0}$$
 $(CH_{2})_{n}$
 A
 $(CH_{2})_{n}$
 A
 $(CH_{2})_{n}$
 A
 $(CH_{2})_{n}$
 $(CH_{2})_{n}$

[In Formula (II), n, A, R³, R⁴, G⁰, G¹, and G² are as defined for Formula (I). X¹ represents a chlorine atom, a bromine atom, an iodine atom, or an alkyl or arylsulfonyl group having one to eight carbons that may be substituted with a fluorine atom, a chlorine atom, or a bromine atom.]

(49) A pyrrolo[3,2-d]pyrimidine derivative described in (48) wherein X^1 is a chlorine atom or a trifluoromethylsulfonyloxy group.

BEST MODE FOR CARRYING OUT THE INVENTION

In the above Formula (I), G^0 represents a divalent group of a substituted or unsubstituted benzene, furan, thiophene, pyrrole, isoxazole, cyclopentane, or cyclohexane, or a divalent group represented by $-CR^1R^2-(R^1 \text{ and } R^2, \text{ which may be the same or different, represent a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group having one to four carbons, or <math>NR^{10}R^{20}$ (R^{10} and R^{20} , which may be the same or different,

represent a hydrogen atom or a substituted or unsubstituted aliphatic hydrocarbon group having one to four carbons), or an optionally substituted group in which R^1 and R^2 bind to each other and form a 3- to 7-membered ring together with a carbon atom (C in $-CR^1R^2-$) to which R^1 and R^2 are bound, provided that R^1 and R^2 are not $NR^{10}R^{20}$ at the same time).

5

10

15

20

25

30

35

When G° is a divalent group of a substituted or unsubstituted benzene, furan, thiophene, pyrrole, isoxazole, cyclopentane, or cyclohexane, examples of a divalent group of benzene, furan, thiophene, pyrrole, isoxazole, cyclopentane, or cyclohexane include 1,2phenylene, 1,3-phenylene, 2,3-furandiyl, 3,4-furandiyl, 2,4-furandiyl, 2,5-furandiyl, 2,3-thiophenediyl, 3,4thiophenediyl, 2,4-thiophenediyl, 2,5-thiophenediyl, 1,2pyrrolediyl, 1,3-pyrrolediyl, 2,3-pyrrolediyl, 3,4pyrrolediyl, 2,4-pyrrolediyl, 2,5-pyrrolediyl, 3,4isoxazolediyl, 3,5-isoxazolediyl, 4,5-isoxazolediyl, 1,2cyclopentylene, 1,3-cyclopentylene, 1,2-cyclohexylene, and 1,3-cyclohexylene. Go, a divalent group of benzene, furan, thiophene, pyrrole, isoxazole, cyclopentane, or cyclohexane, may be substituted with one or more substituents selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxy group, a methoxy group, an ethoxy group, an oxo group, a cyano group, a carboxyl group, a carbamoyl group, an amino group, a nitro group, and a sulpho group. Go, a divalent group of a substituted or unsubstituted benzene, furan, thiophene, pyrrole, isoxazole, cyclopentane, or cyclohexane is preferably 1,2-phenylene.

When G^0 represents a divalent group represented by - CR^1R^2 - (R^1 and R^2 , which may be the same or different, represent a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group having one to four carbons, or $NR^{10}R^{20}$ (R^{10} and R^{20} , which may be the same or different, represent a hydrogen atom or a substituted or

unsubstituted aliphatic hydrocarbon group having one to four carbons), or a group in which R^1 and R^2 bind to each other and form a 3- to 7-membered ring together with a carbon atom (C in $-CR^1R^2$ -) to which R^1 and R^2 are bound, provided that R^1 and R^2 are not $NR^{10}R^{20}$ at the same time), the above Formula (I) represents a pyrrolo[3,2-d]pyrimidine derivative represented by the following Formula (Ia):

5

10

15

20

25

[In Formula (Ia), A, R^1 , R^2 , R^3 , R^4 , G^1 , G^2 , and X are as defined for Formula (I)].

When R1 and R2 represent a substituted or unsubstituted aliphatic hydrocarbon group having one to four carbons, examples of such an aliphatic hydrocarbon group having one to four carbons include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3butenyl, ethinyl, 1-propynyl, 2-propynyl, 1-butynyl, 2butynyl, and 3-butynyl. An aliphatic hydrocarbon group having one to four carbons may be substituted with one or more substituents selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxy group, a methoxy group, an ethoxy group, an oxo group, a cyano group, a carboxyl group, a carbamoyl group, an amino group, a nitro group, a sulpho group, and a phenyl group. Preferred examples of such R1 and R^2 comprising a substituted or unsubstituted aliphatic hydrocarbon group having one to four carbons include methyl, trifluoromethyl, ethyl, propyl, and

isopropyl.

5

10

15

20

25

30

35

When R^1 and R^2 represent $NR^{10}R^{20}$ (R^{10} and R^{20} , which may be the same or different, represent a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group having one to four carbons, or a substituted or unsubstituted alkylene group having two to five carbons that is formed by the binding of R^{10} and R^{20}), examples of R¹⁰ and R²⁰, an aliphatic hydrocarbon group having one to four carbons, include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, 2-propenyl, 2-butenyl, 3-butenyl, 2-propynyl, 2-butynyl, and 3-butynyl. Examples of an alkylene group having two to five carbons that is formed by the binding of R^{10} and R^{20} include 1,2ethylene, 1,3-propylene, 1,4-butylene, 1,5-pentylene. R¹⁰ and R²⁰, an aliphatic hydrocarbon group having one to four carbons, and an alkylene group having two to five carbons that are formed by the binding of R¹⁰ and R²⁰ may be substituted with one or more substituents selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxy group, a methoxy group, an ethoxy group, a t-butoxy group, an oxo group, a cyano group, a carboxyl group, a carbamoyl group, an amino group, a sulpho group, and a phenyl group. Preferred examples of such R1 and R2, NR10R20, include amino and dimethyl. However, R1 and R2 are not NR¹⁰R²⁰ at the same time.

When R¹ and R² bind to each other and form a 3- to 7-membered ring together with a carbon atom to which R¹ and R² are bound, examples of a group forming such a 3- to 7-membered ring include cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane tetrahydrofuran, tetrahydropyran, pyrrolidine, and piperidine. A group forming such a 3- to 7-membered ring may be substituted with one or more substituents selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxy group, a methoxy group, an ethoxy group, an oxo group, a cyano group, a carboxyl

group, a carbamoyl group, an amino group, a sulpho group, and a phenyl group. Preferred examples of a group forming such a 3- to 7-membered ring include cyclopropane.

As preferred examples of R^1 and R^2 , there can be mentioned a hydrogen atom, a methyl group, an ethyl group, and one in which R^1 and R^2 bind to each other and form cyclopropane with a carbon atom to which they are bound, with the methyl group being preferred.

5

10

15

When G° in Formula (I) represents a divalent group of a substituted or unsubstituted benzene, furan, thiophene, pyrrole, isoxazole, cyclopentane, or cyclohexane, G° , $(CH_2)_n$, A, $-(CH_2)_2$ -, and a nitrogen atom and a carbon atom in the pyrrole ring of the pyrrolopyrimidine ring may form a 10- to 12-membered bicyclic structure. At this time, G° is preferably a substituted or unsubstituted benzene, furan, thiophene, pyrrole, or isoxazole.

As specific examples of said bicyclic structure, 20 there can be mentioned 1H, 2H, 3H, 4H, 5H-benzo[f]1, 4diazaperhydroepine, 1H,2H,3H,4H,5H,6H, benzo[f]1,4diazaperhydroocine, 1H,2H,3H,4H,5H-thiopheno[2,3-f]1,4diazepine, 1H,2H,3H,4H,5H-furano[2,3-f]1,4-diazepine, 1H, 2H, 3H, 4H, 5H-pyrrolo[2, 3-f]1, 4-diazepine, 25 4H,5H,6H,7H,8H-isoxazolo[5,4-f]1,4-diazepine, 2,5diazabicyclo[5,3,1]undeca-1(11),7,9-triene, 2,5-diaza-10thiabicyclo[[5,2,1]deca-1(9),7-diene, 2,5-diaza-10oxabicyclo[5,2,1]deca-1(9),7-diene, 2,5,10triazabicyclo[5,2,1]deca-1(9),7-diene, 2,5-30 diazabicyclo[5,4,0]undecane, 2,5diazabicyclo[5,3,0]decane, 1H,2H,3H,4H,5H,6Hbenzo[f]azaperhydroocine, 1H,2H,3H,4H,5Hbenzo[e]azaperhydroocine, 4H,5H,6H,7H,8H-thiopheno[3,2e]azepine, 4H,5H,6H,7H,8H-furano[3,2-e]azepine, 3-aza-10-35 thiabicyclo[5,2,1]deca-2(9),7-diene, 3-aza-10oxabicyclo[5,2,1]deca-1(9),7-diene, 3-

azabicyclo[5,4,0]undecane, 3-azabicyclo[5,3,0]decane and

the like.

5

10

In the above Formula (I), X represents a sulfur atom or an oxygen atom. Thus, a pyrrolo[3,2-d]pyrimidine derivative of the above Formula (I) represents a pyrrolo[3,2-d]pyrimidine derivative represented by the following Formula (Ib):

[in Formula (Ib), n, A, R^3 , R^4 , G^0 , G^1 , and G^2 are as defined for Formula (I)],

and the following Formula (Ic):

$$G^{0} \xrightarrow{NC} \xrightarrow{NH} (Ic)$$

$$G^{2}-R^{4}-R^{3}-G^{1}$$

[in Formula (Ic), n, A, R^3 , R^4 , G^0 , G^1 , and G^2 are as defined for Formula (I)]. A preferred X is a sulfur atom.

In the above Formula (I), n represents 0, 1 or 2. Thus, when n represents 0, the pyrrolo[3,2-d]pyrimidine derivative of the above Formula (I) represents a pyrrolo[3,2-d]pyrimidine derivative represented by the following Formula (Id):

[in Formula (Id), A, R^3 , R^4 , G^0 , G^1 , G^2 , and X are as defined for Formula (I)], and when n represents 1, a pyrrolo[3,2-d]pyrimidine derivative represented by the following Formula (Ie):

5

10

15

[in Formula (Ie), A, R^3 , R^4 , G^0 , G^1 , G^2 and X are as defined for Formula (I)], and when n represents 2, a pyrrolo[3,2-d]pyrimidine derivative represented by the following Formula (If):

[in Formula (If), A, R^3 , R^4 , G^0 , G^1 , G^2 and X are as defined for Formula (I)]. Preferred n is 1.

In the above Formula (I), A represents a nitrogen atom or CH. Thus, when A represents a nitrogen atom, it

represents a pyrrolo[3,2-d]pyrimidine derivative represented by Formula (Ig):

[in Formula (Ig), n, R^3 , R^4 , G^0 , G^1 , G^2 and X are as defined for Formula (I)], and when A represents CH, it represents a pyrrolo[3,2-d]pyrimidine derivative represented by the following Formula (Ih):

5

10

15

20

$$G^0$$
 NH
 $(CH_2)_n$
 $H-C$
 $G^2-R^4-R^3-G^1$
 (Ih)

[in Formula (Ih), n, R^3 , R^4 , G^0 , G^1 , G^2 and X are as defined for Formula (I)]. Preferred A is a nitrogen atom.

In the above Formula (I), G^1 represents a single bond, or a group that binds A bound to G^1 and R^3 in the form of $A-C(=0)-O-R^3$, $A-C(=0)-R^3$, $A-C(=0)-NR^{30}-R^3$, $A-C(=S)-NR^{31}-R^3$, $A-C(=0)-NR^{32}-S(=0)_2-R^3$, or $A-S(=0)_2-R^3$ (R^{30} to R^{32} represent, independently from one another, a hydrogen atom or a substituted or unsubstituted aliphatic hydrocarbon group having one to four carbons).

When A and R^3 to which G^1 binds are bound in the form of $A-C(=O)-NR^{30}-R^3$ (R^{30} represents a hydrogen atom or a substituted or unsubstituted aliphatic hydrocarbon group having one to four carbons), examples of an

aliphatic hydrocarbon group having one to four carbons of R³⁰ include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, 2-propenyl, 2-butenyl, 3-butenyl, 2-propynyl, 2-butynyl, and 3-butynyl. An aliphatic hydrocarbon group having one to four carbons of R³⁰ may be substituted with one or more substituents selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxy group, a methoxy group, an ethoxy group, an oxo group, a cyano group, a carboxyl group, a carbamoyl group, an amino group, a sulpho group, and a phenyl group. As preferred examples of such R³⁰, there can be mentioned a hydrogen atom, a methyl, an ethyl, and a propyl group, with a hydrogen atom being most preferred.

5

10

15

20

25

30

35

When A and R^3 to which G^1 binds are bound in the form of $A-C(=S)-NR^{31}-R^3$ (R^{31} represents a hydrogen atom or a substituted or unsubstituted aliphatic hydrocarbon group having one to four carbons), examples of an aliphatic hydrocarbon group having one to four carbons or R^{31} include the same ones as described for the above examples of R^{30} . As preferred examples of such R^{31} , there can be mentioned a hydrogen atom, a methyl, an ethyl, and a propyl group, with a hydrogen atom being most preferred.

When A and R^3 to which G^1 binds are bound in the form of $A-C(=0)-NR^{32}-S(=0)_2-R^3$ (R^{32} represents a hydrogen atom or a substituted or unsubstituted aliphatic hydrocarbon group having one to four carbons), examples of an aliphatic hydrocarbon group having one to four carbons of R^{32} include the same ones as described for the above examples of R^{30} . As preferred examples of such R^{32} , there can be mentioned a hydrogen atom, a methyl, an ethyl, and a propyl group, with a hydrogen atom being most preferred.

As preferred examples of such G^1 , there can be mentioned a single bond, or a group that binds A and R^3 to which G^1 binds in the form of $A-C(=0)-R^3$, A-C(=0)-NH-

 R^3 , or A-C(=S)-NH- R^3 .

In above Formula (I), R^3 represents a group selected from the following 1)-5).

1) a single bond,

- 2) a substituted or unsubstituted alicyclic hydrocarbon group having three to eight carbons (substituents are one or more substituents selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxy group, an optionally substituted
- alkoxy group having one to seven carbons, an aryloxy group having six to ten carbons, an aralkoxy group having seven to nine carbons, an acyloxy group having two to seven carbons, an oxo group, an alkylsulfonyloxy group having one to six carbons, an optionally substituted acyl
- group having two to seven carbons, a carboxyl group, an alkoxycarbonyl group having two to seven carbons, a carbamoyl group, an optionally substituted alkylcarbamoyl group having two to seven carbons, an amino group, an
- optionally substituted alkylamino group having one to six carbons, an optionally substituted acylamino group having two to seven carbons, an alkoxycarbonylamino group having two to eight carbons, an alkylsulfonylamino group having one to six carbons, a cyano group, a nitro group, an
- alkylthio group having one to six carbons, an
 alkylsulfinyl group having one to six carbons, an
 alkylsulfonyl group having one to six carbons, a
 sulfamoyl group, an alkylaminosulfonyl group having one
 to six carbons, a sulpho group, an optionally substituted
 alicyclic hydrocarbon group having three to six carbons,
- and an optionally substituted aliphatic hydrocarbon group having one to six carbons),
 - 3) a substituted or unsubstituted aromatic hydrocarbon group having six to 14 carbons (substituents are one or more substituents selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxy group, an optionally substituted alkoxy group having one to seven carbons, an aryloxy group

having six to ten carbons, an aralkoxy group having seven to nine carbons, an acyloxy group having two to seven carbons, an oxo group, an alkylsulfonyloxy group having one to six carbons, an optionally substituted acyl group 5 having two to seven carbons, a carboxyl group, an alkoxycarbonyl group having two to seven carbons, a carbamoyl group, an optionally substituted alkylcarbamoyl group having two to seven carbons, an amino group, an optionally substituted alkylamino group having one to six 10 carbons, an optionally substituted acylamino group having two to seven carbons, an alkoxycarbonylamino group having two to eight carbons, an alkylsulfonylamino group having one to six carbons, a cyano group, a nitro group, an alkylthio group having one to six carbons, an 15 alkylsulfinyl group having one to six carbons, an alkylsulfonyl group having one to six carbons, a sulfamoyl group, an alkylaminosulfonyl group having one to six carbons, a sulpho group, an optionally substituted alicyclic hydrocarbon group having three to six carbons, 20 and an optionally substituted aliphatic hydrocarbon group having one to six carbons), 4) a substituted or unsubstituted heterocyclic group containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, 25 and a sulfur atom (substituents are one or more substituents selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxy group, an optionally substituted alkoxy group having one to seven carbons, an aryloxy group having six to ten carbons, an aralkoxy group having seven 30 to nine carbons, an acyloxy group having two to seven carbons, an oxo group, an alkylsulfonyloxy group having one to six carbons, an optionally substituted acyl group having two to seven carbons, a carboxyl group, an 35 alkoxycarbonyl group having two to seven carbons, a carbamoyl group, an optionally substituted alkylcarbamoyl group having two to seven carbons, an amino group, an

optionally substituted alkylamino group having one to six carbons, an optionally substituted acylamino group having two to seven carbons, an alkoxycarbonylamino group having two to eight carbons, an alkylsulfonylamino group having one to six carbons, a cyano group, a nitro group, an alkylthio group having one to six carbons, an alkylsulfinyl group having one to six carbons, an alkylsulfonyl group having one to six carbons, a sulfamoyl group, an alkylaminosulfonyl group having one to six carbons, a sulfamoyl group, an optionally substituted alicyclic hydrocarbon group having three to six carbons, and an optionally substituted aliphatic hydrocarbon group having one to six carbons),

5

10

15

20

25

30

35

5) a substituted or unsubstituted aliphatic hydrocarbon group having one to ten carbons (substituents are one or more substituents selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxy group, an optionally substituted alkoxy group having one to seven carbons, an optionally substituted phenylalkoxy group having seven to ten carbons, an alkoxy group having one to four carbons substituted with an optionally substituted heterocyclic group (containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom), an optionally substituted aryloxy group having six to ten carbons, an acyloxy group having two to seven carbons, an oxo group, an alkylsulfonyloxy group having one to six carbons, an optionally substituted acyl group having two to seven carbons, a carboxyl group, an alkoxycarbonyl group having two to seven carbons, a carbamoyl group, an optionally substituted alkylcarbamoyl group having two to seven carbons, an amino group, an optionally substituted alkylamino group having one to six carbons, an optionally substituted acylamino group having two to seven carbons, an alkoxycarbonylamino group having two to eight carbons, an alkylsulfonylamino group having one to six carbons, a

cyano group, a nitro group, an alkylthio group having one to six carbons, an alkylsulfinyl group having one to six carbons, an alkylsulfonyl group having one to six carbons, a sulfamoyl group, an alkylaminosulfonyl group having one to six carbons, a sulpho group, an optionally substituted alicyclic hydrocarbon group having three to six carbons, an optionally substituted aromatic hydrocarbon group having six to 14 carbons, and an optionally substituted heterocyclic group (containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom)).

5

10

15

20

25

30

35

In the above Formula (I), when R³ represents a substituted or unsubstituted alicyclic hydrocarbon group having three to eight carbons, examples of an alicyclic hydrocarbon group having three to eight carbons include cyclopropane, cyclobutane, cyclopentane, cyclopentene, cyclohexane, cyclohexene, cycloheptane, cycloheptane, cycloheptane, cycloheptane, cyclooctane, bicyclo[2.2.1]heptane,

bicyclo[2.2.1]heptene, bicyclo[3.1.1]heptane, and bicycle[2.2.2]octane. As preferred examples of such an alicyclic hydrocarbon group having three to eight carbons, there can be mentioned an alicyclic hydrocarbon group having five to eight carbons such as cyclopentane, cyclopentene, cyclohexane, cyclohexene, cycloheptane, cycloheptene, and cyclooctane, with cyclopentane and cyclohexane being most preferred.

As a substituent comprising an alicyclic hydrocarbon group having three to eight carbons for substitution of R³, there can be mentioned a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxy group, an alkoxy group having one to seven carbons comprising a linear or branched alkyl group or a cycloalkyl group and an oxy group such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobuboxy, s-butoxy, t-butoxy, pentyloxy, isopentyloxy, neopentyloxy, t-pentyloxy, hexyloxy, isohexyloxy, 2-methylpentyloxy, 1-ethylbutoxy,

cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy, cycloproylmethyloxy, cycloproylethyloxy, cyclopentylmethyloxy, and cyclohexylmethyloxy; an aryloxy group having six to ten carbons such as phenoxy, 1-5 naphthoxy, and 2-naphthoxy; an aralkoxy group having seven to nine carbons such as benzyloxy, α -phenethyloxy, β -phenethyloxy, and 3-phenylpropyloxy; an acyloxy group having two to seven carbons such as acetoxy, propionyloxy, butylyloxy, isobutylyloxy, valeryloxy, 10 isovaleryloxy, pivaloyloxy, and hexanoyloxy; an oxo group; an alkylsulfonyloxy group having one to six carbons comprising a linear or branched alkyl group and a sulfonyloxy group such as methylsulfonyloxy, ethylsulfonyloxy, propylsulfonyloxy, butylsulfonyloxy, and t-butylsulfonyloxy; an acyl group having two to seven 15 carbons such as acetyl, propionyl, butylyl, isobutylyl, valeryl, isovaleryl, pivaloyl, and hexanoyl; a carboxyl group; an alkoxycarbonyl group comprising a linear or branched alkyl group and an oxycarbonyl group such as 20 methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, sbutoxycarbonyl, and t-butoxycarbonyl; a carbamoyl group; an alkylcarbamoyl group having two to seven carbons comprising a linear or branched alkyl group or a 25 cycloalkyl group and a carbamoyl group such as Nmethylcarbamoyl, N-ethylcarbamoyl, N-propylcarbamoyl, Nisopropylcarbamoyl, N-butylcarbamoyl, Nisobutylcarbamoyl, N-s-butylcarbamoyl, N-tbutylcarbamoyl, N-pentylcarbamoyl, N-30 cyclopropylcarbamoyl, N-cyclobutylcarbamoyl, Ncyclopentylcarbamoyl, N-cyclohexylcarbamoyl, Ncycloheptylcarbamoyl, N-cyclopropylmethylcarbamoyl, N,Ndimecarbamoyl, N-ethyl-N-methylcarbamoyl, N,Ndiethylcarbamoyl, and N,N-dipropylcarbamoyl; an amino 35 group; an alkylamino group having one to six carbons comprising a linear or branched alkyl group or a

cycloalkyl group and an amino group such as methylamino, ethylamino, propylamino, isopropylamino, butylamino, isobutylamino, s-butylamino, t-butylamino, pentylamino, hexylamino, cyclopropylamino, cyclobutylamino, 5 cyclopentylamino, cyclohexylamino, cyclopropylmethylamino, dimethylamino, Nethylmethylamino, diethylamino, N-methylpropylamino, Nmethylisopropylamino, N-methylbutylamino, N-methyl-tbutylamino, N-ethylisopropylamino, dipropylamino, 10 diisopropylamino, and ethylbutylamino; an acylamino group having two to seven carbons such as acetylamino, propionylamino, butylylamino, isobutylylamino, valerylamino, and hexanoylamino; an alkoxycarbonylamino group having two to eight carbons such as 15 methoxycarbonylamino, ethoxycarbonylamino, and tbutoxycarbonylamino; an alkylsulfonylamino group having one to six carbons such as methylsulfonylamino, ethylsulfonylamino, butylsulfonylamino, and tbutylsulfonylamino; a cyano group; a nitro group; an alkylthio group having one to six carbons such as 20 methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio, s-butylthio, t-butylthio, pentylthio, and hexylthio; an alkylsulfinyl group having one to six carbons comprising a linear or branched alkyl 25 group or a cycloalkyl group and a sulfinyl group such as methylsulfinyl, ethylsulfinyl, propylsulfinyl, isopropylsulfinyl, butylsulfinyl, isobutylsulfinyl, sbutylsulfinyl, t-butylsulfinyl, pentylsulfinyl, and cyclopentylsulfinyl; an alkylsulfonyl group having one to 30 six carbons comprising a linear or branched alkyl group or a cycloalkyl group and a sulfonyl group such as methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, butylsulfonyl, isobutylsulfonyl, sbutylsulfonyl, t-butylsulfonyl, pentylsulfonyl, 35 hexylsulfonyl, cyclopentylsulfonyl, and cyclohexylsulfonyl; a sulpho group; a sulfamoyl group; an aminosulfonyl group having one to six carbons comprising

a linear or branched alkyl group or a cycloalkyl group and an aminosulfonyl group such as methylaminosulfonyl, ethylaminosulfonyl, propylaminosulfonyl, isopropylaminosulfonyl, butylaminosulfonyl, 5 isobutylaminosulfonyl, s-butylaminosulfonyl, pentylaminosulfonyl, dimethylaminosulfonyl, N-ethyl-Nmethylaminosulfonyl, diethylaminosulfonyl, dipropylaminosulfonyl, cyclopropylaminosulfonyl, cyclopentylaminosulfonyl, cyclohexylaminosulfonyl, and 10 cyclopropylmethylaminosulfonyl; an alicyclic hydrocarbon group having three to six carbons such as cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl; and a linear or branched aliphatic hydrocarbon group having one to six carbons that may contain an unsaturated bond such as 15 methyl, ethyl, vinyl, ethynyl, propyl, 1-propenyl, 2propenyl, isopropyl, isopropenyl, 1-propinyl, 2-propinyl, butyl, isobutyl, s-butyl, t-butyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1methyl-2-propenyl, 2-methyl-2-propenyl, 1-butynyl, 2-20 butynyl, pentyl, isopentyl, neopentyl, t-pentyl, 1pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, hexyl, 5hexenyl, 4-methyl-3-pentenyl, isohexyl, 2-methylpentyl, and 1-ethylbutyl.

An alkyl group according to the present invention 25 including the definition of substituents of an alicyclic hydrocarbon group having three to eight carbons for substitution of the above R3 represents, for example, a linear or branched saturated aliphatic hydrocarbon group such as methyl, ethyl, propyl, isopropyl, butyl, pentyl, hexyl, heptyl, octyl, isopropyl, isobutyl, s-butyl, t-30 butyl, isopentyl, neopentyl, t-pentyl, and isohexyl. A cycloalkyl group according to the present invention including the definition of substituents of an alicyclic hydrocarbon group having three to eight carbons for substitution of the above R3 represents, for example, a 35 saturated alicyclic hydrocarbon group such as cyclopropyl, cyclobutyl, and cyclohexyl.

As a substituent of an alicyclic hydrocarbon group having three to eight carbons for substitution of said R³, an alkoxy group having one to seven carbons, an acyl group having two to seven carbons, an alkylcarbamovl group having two to seven carbons, an alkylamino group 5 having one to six carbons, an acylamino group having two to seven carbons, an alicyclic hydrocarbon group having three to six carbons, and an aliphatic hydrocarbon group having one to six carbons may further be substituted with 10 (one or more substituents selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxy group, an alkoxy group having one to six carbons such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, s-butoxy, t-15 butoxy, pentyloxy, and cyclopropyloxy, a methoxymethyloxy group, a 2-methoxyethoxy group, a formyl group, a trifluoroacetyl group, an acyl group having two to seven carbons such as acetyl, propionyl, butylyl, isobutylyl, valeryl, and isovaleryl, an oxo group, a carboxyl group, 20 an alkoxycarbonyl group having two to seven carbons such as methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, and t-butoxycarbonyl, a carbamoyl group, an alkylcarbamoyl group having two to seven carbons such as N-methylcarbamoyl, N,N-dimethylcarbamoyl, N-25 ethylcarbamoyl, N-ethyl-N-methylcarbamoyl, N,Ndiethylcarbamoyl, N-propylcarbamoyl, Nisopropylcarbamoyl, N-butylcarbamoyl, Ncyclopropylcarbamoyl, and N-cyclopropylmethylcarbamoyl, 30 an amino group, an alkylamino group having one to six carbons such as methylamino, ethylamino, propylamino, isopropylamino, dimethylamino, N-ethylmethylamino, diethylamino, N-methylpropylamino, Nmethylisopropylamino, cyclopropylamino, and 35 cyclopropylmethylamino, a cyclic amino group having four to six carbons containing, in the ring, one to two atoms selected from the group consisting of an oxygen atom, a

nitrogen atom, and a sulfur atom, such as 1-pyrrolidinyl, piperadinyl, 4-methylpiperadinyl, piperidino, and morpholino, a trifluoroacetylamino group, an acylamino group having one to seven carbons such as formylamino, acetylamino, propionylamino, butylylamino, isobutylylamino, and valerylamino, an alkylsulfonylamino group having one to six carbons such as methylsulfonylamino, ethylsulfonylamino, propylsulfonylamino, and butylylsulfonylamino, a nitro group, and a cyano group).

5

10

15

20

25

30

35

In the above Formula (I), when R³ represents a substituted or unsubstituted aromatic hydrocarbon group having six to 14 carbons, examples of an aromatic hydrocarbon group having six to 14 carbons include a divalent group containing, in the ring, at least one aromatic ring such as benzene, indene, indane, naphthalene, 1,2-dihydronaphthalene, 1,2,3,4tetrahydronaphthalene, azulene, acenaphthylene, acenaphthene, fluorene, phenanthrene, and anthracene. Preferred examples of an aromatic hydrocarbon group having six to 14 carbons of R³ include an aromatic hydrocarbon group having six to ten carbons such as benzene, indene, indane, naphthalene, 1,2dihydronaphthalene, and 1,2,3,4-tetrahydronaphthalene, and a further preferred example is a divalent group of benzene, with 1,3-phenylene and 1,4-phenylene being most preferred.

As a substituent of an aromatic hydrocarbon group having six to 14 carbons for substitution of R³, there can be mentioned a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxy group, an optionally substituted alkoxy group having one to seven carbons, an aryloxy group having six to ten carbons, an aralkoxy group having seven to nine carbons, an acyloxy group having two to seven carbons, an oxy group, an alkylsulfonyloxy group having one to six carbons, an optionally substituted acyl group having two to seven

carbons, a carboxyl group, an alkoxycarbonyl group having two to seven carbons, a carbamoyl group, an optionally substituted alkylcarbamoyl group having two to seven carbons, an amino group, an optionally substituted alkylamino group having one to six carbons, an optionally substituted acylamino group having two to seven carbons, an alkoxycarbonylamino group having two to eight carbons, an alkylsulfonylamino group having one to six carbons, a cyano group, a nitro group, an alkylthio group having one to six carbons, an alkylsulfinyl group having one to six carbons, an alkylsulfonyl group having one to six carbons, a sulfamoyl group, an alkylaminosulfonyl group having one to six carbons, a sulpho group, an optionally substituted alicyclic hydrocarbon group having three to six carbons, and an optionally substituted aliphatic hydrocarbon group having one to six carbons.

5

10

15

20

25

30

35

The definition of a substituent of an aromatic hydrocarbon group having six to 14 carbons for substitution of R³ is the same as for a substituent of an alicyclic hydrocarbon group having three to eight carbons for substitution of the above R³. Specific examples of a substituent of an aromatic hydrocarbon group having six to 14 carbons for substitution of said R³ include the same one as that described as specific examples of a substituent of an alicyclic hydrocarbon group having three to eight carbons for substitution of the above R³.

Preferred examples of a substituent of an aromatic hydrocarbon group having six to 14 carbons for substitution of R³ include a fluorine atom, a chlorine atom, a bromine atom; an alkoxy group having one to six carbons comprising a linear or branched alkyl group and an oxy group such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, s-butoxy, t-butoxy, pentyloxy, isopentyloxy, neopentyloxy, t-pentyloxy, and hexyloxy; a cyano group; a nitro group; a carboxyl group; a hydroxy group; an amino group; a mono- or di-alkylamino group comprising a linear or branched alkyl and an amino

group such as methylamino, ethylamino, propylamino, isopropylamino, butylamino, isobutylamino, s-butylamino, t-butylamino, pentylamino, hexylamino, dimethylamino, Nethylmethylamino, diethylamino, N-methylpropylamino, Nmethylisopropylamino, N-methylbutylamino, N-methyl-t-5 butylamino, N-ethylisopropylamino, dipropylamino, diisopropylamino, and ethylbutylamino; a carbamoyl group; an aminosulfonyl group; an alicyclic hydrocarbon group having three to six carbons such as cyclopropyl, 10 cyclobutyl, cyclopentyl, and cyclohexyl; an acyl group having two to seven carbons such as acetyl, propionyl, butylyl, isobutylyl, pivaloyl, and hexanoyl; an alkylthio group having one to six carbons such as methylthio, ethylthio, propylthio, isopropylthio, butylthio, 15 isobutylthio, s-butylthio, t-butylthio, pentylthio, and hexylthio; an alkylsulfonyl group having one to six carbons such as methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, butylsulfonyl, isobutylsulfonyl, s-butylsulfonyl, t-butylsulfonyl, 20 pentylsulfonyl, and hexylsulfonyl; an alkoxycarbonyl group having two to seven carbons such as acetoxy, propionyloxy, butylyloxy, isobutylyloxy, valeryloxy, isovaleryloxy, pivaloyloxy, and hexanoyloxy; an acylamino group having two to seven carbons such as acetylamino, 25 propionylamino, butylylamino, isobutylylamino, valerylamino, and hexanoylamino; a trifluoromethyl group; and a trifluoromethoxy group; and a linear or branched aliphatic hydrocarbon group having one to six carbons that may contain an unsaturated bond such as methyl, 30 ethyl, vinyl, ethynyl, propyl, 1-propenyl, 2-propenyl, isopropyl, isopropenyl, 1-propinyl, 2-propinyl, butyl, isobutyl, s-butyl, t-butyl, 1-butenyl, 2-butenyl, 3butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1methyl-2-propenyl, 2-methyl-2-propenyl, 1-butynyl, 2-35 butynyl, pentyl, isopentyl, neopentyl, t-pentyl, 1pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, hexyl, 5hexenyl, 4-methyl-3-pentenyl, isohexyl, 2-methylpentyl,

and 1-ethylbutyl. Among them, more preferred examples of a substituent of an aromatic hydrocarbon group having six to 14 carbons for substitution of R³ include a fluorine atom, a chlorine atom, a bromine atom, an alkoxy group having one to six carbons, a cyano group, a nitro group, a carboxyl group, a hydroxy group, an amino group, a mono- or di-alkylamino group having one to six carbons, a carbamoyl group, an alicyclic hydrocarbon group having three to six carbons, an acyl group having two to seven carbons, an alkylsulfonyl group having one to six carbons, an alkoxycarboxyl group having two to seven carbons, an acylamino group having two to seven carbons, a trifluoromethyl group, a trifluoromethoxy group, and a saturated alkyl group having one to six carbons such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sbutyl, t-butyl, pentyl, isopentyl, neopentyl, t-pentyl, hexyl, isohexyl, 2-methylpentyl, and 1-ethylbutyl.

5

10

15

20

25

30

35

An alkoxy group having one to seven carbons, an acyl group having two to seven carbons, an alkylcarbamoyl group having two to seven carbons, an alkylamino group having one to six carbons, an acylamino group having two to seven carbons, an alicyclic hydrocarbon group having three to six carbons, and an aliphatic hydrocarbon group having one to six carbons as a substituent of an aromatic hydrocarbon group having six to 14 carbons for substitution of said R³ may further be substituted with (one or more substituents selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxy group, an alkoxy group having one to six carbons such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, s-butoxy, tbutoxy, pentyloxy, and cyclopropyloxy, a methoxymethyloxy group, a 2-methoxyethoxy group, a formyl group, a trifluoroacetyl group, an acyl group having two to seven carbons such as acetyl, propionyl, butylyl, isobutylyl, valeryl, and isovaleryl, an oxo group, a carboxyl group, an alkoxycarbonyl group having two to seven carbons such

as methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, and t-butoxycarbonyl, a carbamoyl group, an alkylcarbamoyl group having two to seven carbons such as 5 N-methylcarbamoyl, N, N-dimethylcarbamoyl, Nethylcarbamoyl, N-ethyl-N-methylcarbamoyl, N,Ndiethylcarbamoyl, N-propylcarbamoyl, Nisopropylcarbamoyl, N-butylcarbamoyl, Ncyclopropylcarbamoyl, and N-cyclopropylmethylcarbamoyl, 10 an amino group, an alkylamino group having one to six carbons such as methylamino, ethylamino, propylamino, isopropylamino, dimethylamino, N-ethylmethylamino, diethylamino, N-methylpropylamino, Nmethylisopropylamino, cyclopropylamino, and 15 cyclopropylmethylamino, a cyclic amino group having four to six carbons containing, in the ring, one to two atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom, such as 1-pyrrolidinyl, piperadinyl, 4-methylpiperadinyl, piperidino, and 20 morpholino, a trifluoroacetylamino group, an acylamino group having one to seven carbons such as formylamino, acetylamino, propionylamino, butylylamino, isobutylylamino, and valerylamino, an alkylsulfonylamino group having one to six carbons such as 25 methylsulfonylamino, ethylsulfonylamino, propylsulfonylamino, and butylylsulfonylamino, a nitro group, and a cyano group).

In the above Formula (I), when R³ represents a substituted or unsubstituted heterocyclic group containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom, examples of a heterocyclic group containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom include a monocyclic, bicyclic or tricyclic divalent group such as furan, thiophene, pyrrole, pyrroline, pyrrolidine, oxazole, oxazolidine,

30

35

isoxazole, isoxazolidine, thiazole, thiazolidine, isothiazole, isothiazolidine, furazane, imidazole, imidazoline, imidazolidine, pyrrazole, pyrrazoline, pyrrazolidine, triazole, thiadiazole, oxadiazole, 5 tetrazole, pyran, tetrahydropyran, thiopyran, tetrahydrothiopyran, tetrahydrofuran, 1,3-dioxoran, 1,4dioxane, pyridine, pirazine, pyrimidine, pyridadine, benzofuran, dibenzofuran, 1,4-dioxacycloheptane, benzothiophene, indole, 1,2-methylenedioxybenzene, 10 benzimidazole, benzothiazole, benzoxazole, chroman, isochroman, quinoline, decahydroquinoline, isoquinoline, phthalazine, cinnoline, 1,8-naphthilidine, 1,2,3,4tetrahydroisoquinoline, quinazoline, quinoxaline, purine, pteridine, azetidine, morpholine, thiomorpholine, 15 piperidine, homopiperidine, piperadine, homopiperadine, indoline, isoindoline, phenoxadine, phenazine, phenothiazine, pyrrolopyrimidine, pyrazolopyrimidine, and quinuclidine.

As examples of a heterocyclic group of said R³ containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom, there can be mentioned a monocyclic or bicyclic divalent group of an aromatic heterocycle having two to nine carbons containing, in the ring, one to three atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom, such as furan, pyrrole, thiophene, pyrrazole, oxazole, thiazole, isoxazole, isothiazole, pyrrazole, imidazole, pyridine, pyrimidine, pyradine, pyridadine, benzothiophene, benzofuran, 1,2-methylenedioxybenzene, benzimidazole, indole, quinoline, isoquinoline, quinazoline, purine, phthalazine, cinnoline, 1,8-naphthilidine, and pteridine.

20

25

30

35

As examples of a substituent of a heterocyclic group of R³ containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom, there can be mentioned a fluorine atom, a chlorine atom, a bromine atom, an iodine

5

10

15

20

25

30

35

atom, a hydroxy group, an optionally substituted alkoxy group having one to seven carbons, an aryloxy group having six to ten carbons, an aralkoxy group having seven to nine carbons, an acyloxy group having two to seven carbons, an oxo group, an alkylsulfonyloxy group having one to six carbons, an optionally substituted acyl group having two to seven carbons, a carboxyl group, an alkoxycarbonyl group having two to seven carbons, a carbamoyl group, an optionally substituted alkylcarbamoyl group having two to seven carbons, an amino group, an optionally substituted alkylamino group having one to six carbons, an optionally substituted acylamino group having two to seven carbons, an alkoxycarbonylamino group having two to eight carbons, an alkylsulfonylamino group having one to six carbons, a cyano group, a nitro group, an alkylthio group having one to six carbons, an alkylsulfinyl group having one to six carbons, an alkylsulfonyl group having one to six carbons, a sulfamoyl group, an alkylaminosulfonyl group having one to six carbons, a sulpho group, an optionally substituted alicyclic hydrocarbon group having three to six carbons, and an optionally substituted aliphatic hydrocarbon group having one to six carbons.

The definition of a substituent of a heterocyclic group containing, in the ring for substitution of said \mathbb{R}^3 , one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom is the same as for a substituent of an alicyclic hydrocarbon group having three to eight carbons for substitution of the above \mathbb{R}^3 . As specific examples of a substituent of a heterocyclic group containing, in the ring of said \mathbb{R}^3 , one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom, there can be mentioned the same one as that described as specific examples of a substituent of an alicyclic hydrocarbon group having three to eight carbons for substitution of the above \mathbb{R}^3 .

As preferred examples of a substituent of a heterocyclic group of said R3 containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom, there 5 can be mentioned a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkoxy group having one to six carbons comprising a linear or branched alkyl group and an oxy group such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, s-butoxy, t-butoxy, 10 pentyloxy, isopentyloxy, neopentyloxy, t-pentyloxy, and hexyloxy; a cyano group; a nitro group; a carboxyl group; a hydroxy group; an amino group; a mono- or di-alkylamino group comprising a linear or branched alkyl and an amino group such as methylamino, ethylamino, propylamino, 15 isopropylamino, butylamino, isobutylamino, s-butylamino, t-butylamino, pentylamino, hexylamino, dimethylamino, Nethylmethylamino, diethylamino, N-methylpropylamino, Nmethylisopropylamino, N-methylbutylamino, N-methyl-tbutylamino, N-ethylisopropylamino, dipropylamino, diisopropylamino, and ethylbutylamino; a carbamoyl group; 20 an aminosulfonyl group; an alicyclic hydrocarbon group having three to six carbons such as cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl; an acyl group having two to seven carbons such as acetyl, propionyl, butylyl, isobutylyl, pivaloyl, and hexanoyl; an alkylthio 25 group having one to six carbons such as methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio, s-butylthio, t-butylthio, pentylthio, and hexylthio; an alkylsulfonyl group having one to six 30 carbons such as methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, butylsulfonyl, isobutylsulfonyl, s-butylsulfonyl, t-butylsulfonyl, pentylsulfonyl, and hexylsulfonyl; an alkoxycarbonyl group having two to seven carbons such as acetoxy, propionyloxy, butylyloxy, isobutylyloxy, valeryloxy, 35 isovaleryloxy, pivaloyloxy, and hexanoyloxy; an acylamino group having two to seven carbons such as acetylamino,

propionylamino, butylylamino, isobutylylamino, valerylamino, and hexanoylamino; a trifluoromethyl group; a trifluoromethoxy group; and a linear or branched aliphatic hydrocarbon group having one to six carbons 5 that may contain an unsaturated bond such as methyl, ethyl, vinyl, ethynyl, propyl, 1-propenyl, 2-propenyl, isopropyl, isopropenyl, 1-propinyl, 2-propinyl, butyl, isobutyl, s-butyl, t-butyl, 1-butenyl, 2-butenyl, 3butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-10 methyl-2-propenyl, 2-methyl-2-propenyl, 1-butynyl, 2butynyl, pentyl, isopentyl, neopentyl, t-pentyl, 1pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, hexyl, 5hexenyl, 4-methyl-3-pentenyl, isohexyl, 2-methylpentyl, and 1-ethylbutyl. Among them, as more preferred examples of a substituent of a heterocyclic group containing, in 15 the ring of substitution, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom, there can be mentioned a fluorine atom, a chlorine atom, a bromine atom, an alkoxy group having one to six carbons, a cyano group, a nitro group, 20 a carboxyl group, a hydroxy group, an amino group, a mono- or di-alkylamino group having one to six carbons, a carbamoyl group, an alicyclic hydrocarbon group having three to six carbons, an acyl group having two to seven 25 carbons, an alkylsulfonyl group having one to six carbons, an alkoxycarboxyl group having two to seven carbons, a trifluoromethyl group, a trifluoromethoxy group, and a saturated alkyl group having one to six carbons such as methyl, ethyl, propyl, isopropyl, butyl, 30 isobutyl, s-butyl, t-butyl, pentyl, isopentyl, neopentyl, t-pentyl, hexyl, isohexyl, 2-methylpentyl, and 1ethylbutyl.

An alkoxy group having one to seven carbons, an acyl group having two to seven carbons, an alkylcarbamoyl group having two to seven carbons, an alkylamino group having one to six carbons, an acylamino group having two to seven carbons, an alicyclic hydrocarbon group having

35

three to six carbons, and an aliphatic hydrocarbon group containing, in the ring of substitution of said R3, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom, may 5 further be substituted with (one or more substituents selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxy group, an alkoxy group having one to six carbons such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, 10 s-butoxy, t-butoxy, pentyloxy, and cyclopropyloxy, a methoxymethyloxy group, a 2-methoxyethoxy group, a formyl group, a trifluoroacetyl group, an acyl group having two to seven carbons such as acetyl, propionyl, butylyl, isobutylyl, valeryl, and isovaleryl, an oxo group, a 15 carboxyl group, an alkoxycarbonyl group having two to seven carbons such as methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, and t-butoxycarbonyl, a carbamoyl group, an alkylcarbamoyl group having two to seven carbons such as N-methylcarbamoyl, N,N-dimethylcarbamoyl, 20 N-ethylcarbamoyl, N-ethyl-N-methylcarbamoyl, N,Ndiethylcarbamoyl, N-propylcarbamoyl, Nisopropylcarbamoyl, N-butylcarbamoyl, Ncyclopropylcarbamoyl, and N-cyclopropylmethylcarbamoyl, 25 an amino group, an alkylamino group having one to six carbons such as methylamino, ethylamino, propylamino, isopropylamino, dimethylamino, N-ethylmethylamino, diethylamino, N-methylpropylamino, Nmethylisopropylamino, cyclopropylamino, and cyclopropylmethylamino, a cyclic amino group having four 30 to six carbons containing, in the ring, one to two atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom, such as 1-pyrrolidinyl, piperadinyl, 4-methylpiperadinyl, piperidino, and 35 morpholino, a trifluoroacetylamino group, an acylamino group having one to seven carbons such as formylamino, acetylamino, propionylamino, butylylamino,

isobutylylamino, and valerylamino, an alkylsulfonylamino group having one to six carbons such as methylsulfonylamino, ethylsulfonylamino, propylsulfonylamino, and butylsulfonylamino, a nitro group, and a cyano group).

5

10

15

20

25

30

35

In the above Formula (I), when R³ represents a substituted or unsubstituted aliphatic hydrocarbon group having one to ten carbons, examples of an aliphatic hydrocarbon group having one to ten carbons of R3 include a divalent group of an alkane having one to four carbons such as methane, ethane, propane, isopropane, butane, isobutane, s-butane, and t-butane, an alkane having five to ten carbons such as pentane, isopentane, neopentane, t-pentane, 2-methylpentane, 4-methylpentane, 1ethylbutane, hexane, heptane, 2-methylhexane, 5methylhexane, 1,1-dimethylpentane, 6-methylheptane, octane, nonane, and decane; an alkene such as ethylene, propene, 2-methylpropene, 1-butene, 2-butene, 2methylbutene, 1,3-butadiene, 1-pentene, 2-pentene, 4methyl-1-pentene, 1-hexene, 2-hexene, 3-hexene, 1,5hexadiene, 2-heptene, 2-octene, 2-nonene, and 2-decene; an alkyne such as acetylene, propyne, 1-butyne, 3-methyl-1-butyne, 3,3-dimethyl-1-butyne, 1-pentyne, 2-pentyne, 3pentyne, 1-hexyne, 2-hexyne, 3-hexyne, 1-methyl-3pentyne, 1-methyl-3-hexyne, 2-heptyne, 2-octyne, 2nonyne, and 2-decyne. As preferred examples of an aliphatic hydrocarbon group having one to ten carbons of such R3, there can be mentioned a divalent group of an aliphatic hydrocarbon group having one to six carbons such as methane, ethane, propane, butane, pentane, hexane, ethylene, propene, 1-butene, acetylene, and propyne. Further preferred are methylene, 1,2-ethylene, and 1,3-propylene.

As a substituent of an aliphatic hydrocarbon group having one to ten carbons for substitution of R³, there can be mentioned a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxy group; an alkoxy

group having one to seven carbons comprising a linear or branched alkyl group or a cycloalkyl group and an oxy group such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, s-butoxy, t-butoxy, pentyloxy, 5 isopentyloxy, neopentyloxy, t-pentyloxy, hexyloxy, isohexyloxy, 2-methylpentyloxy, 1-ethylbutoxy, cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy, cyclopropylmethyloxy, cyclopropylethyloxy, cyclopentylmethyloxy, and cyclohexylmethyloxy; a 10 phenylalkoxy group having seven to ten carbons such as benzyloxy, α -phenetyloxy, β -phenetyloxy, 3phenylpropyloxy, 1-methyl-1-phenylethoxy, 1-methyl-2phenyloxy, 2-methyl-2-phenylethoxy, 4-phenylbutoxy, 1methyl-1-phenylpropyloxy, 2-methyl-1-phenylpropyloxy, 1-15 methyl-2-phenylpropyloxy, 1-methyl-3-phenylpropyloxy, and 2-methyl-3-phenylpropyloxy; an alkoxy group having one to four carbons substituted with a heterocyclic group (containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, 20 and a sulfur atom) such as 2-furylmethoxy, 2-(2furyl)ethoxy, 3-(2-furyl)propoxy, 4-(2-furyl)butoxy, 3furylmethoxy, 2-(3-furyl)ethoxy, 3-(3-furyl)propoxy, 4-(3-furyl)butoxy, 2-thienylmethoxy, 2-(2-thienyl)ethoxy, 3-(2-thienyl)propoxy, 4-(2-thienyl)butoxy, 3-25 thienylmethoxy, 2-(3-thienyl)ethoxy, 3-(3thienyl)propoxy, 4-(3-thienyl)butoxy, 2-pyridylmethoxy, 2-(2-pyridyl)ethoxy, 3-pyridylmethoxy, 2-(3pyridyl)ethoxy, 4-pyridylmethoxy, 2-(4-pyridyl)ethoxy, 2indolylmethoxy, 3-indolylmethoxy, 2-benzofuranylmethoxy, 30 3-benzofuranylmethoxy, 2-thiazolylmethoxy, 4thizolylmethoxy, 5-thizolylmethoxy, 2-oxazolylmethoxy, 4oxazolylmethoxy, 5-oxazolylmethoxy, 3-isoxazolylmethoxy, 2-imidazolylmethoxy, 4-imidazolylmethoxy, and 5tetrazolylmethoxy; an aryloxy group having six to ten 35 carbons such as phenoxy, 1-naphthoxy, and 2-naphthoxy; an acyloxy group having two to seven carbons such as acetoxy, propionyloxy, butylyloxy, isobutylyloxy,

valeryloxy, isovaleryloxy, pivaloyloxy, and hexanoyloxy; an oxy group; an alkylsulfonyloxy group having one to six carbons comprising a linear or branched alkyl group and a sulfonyloxy group such as methylsulfonyloxy, 5 ethylsulfonyloxy, propylsulfonyloxy, butylsulfonyloxy, and t-butylsulfonyloxy; an acyl group having two to seven carbons such as acetyl, propionyl, butylyl, isobutylyl, valeryl, isovaleryl, pivaloyl, and hexanoyl; a carboxyl group; an alkoxycarbonyl group having two to seven 10 carbons comprising a linear or branched alkyl group and an oxycarbonyl group such as methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, s-butoxycarbonyl, and t-butoxycarbonyl; a carbamoyl group; an alkylcarbamoyl 15 group having two to seven carbons comprising a linear or branched alkyl group or a cycloalkyl group and a carbamoyl group such as N-methylcarbamoyl, Nethylcarbamoyl, N-propylcarbamoyl, N-isopropylcarbamoyl, N-butylcarbamoyl, N-isobutylcarbamoyl, N-s-20 butylcarbamoyl, N-t-butylcarbamoyl, N-pentylcarbamoyl, Ncyclopropylcarbamoyl, N-cyclobutylcarbamoyl, Ncyclopentylcarbamoyl, N-cyclohexylcarbamoyl, Ncycloheptylcarbamoyl, N-cyclopropylmethylcarbamoyl, N,Ndimethylcarbamoyl, N-ethyl-N-methylcarbamoyl, N,N-25 diethylcarbamoyl, and N-dipropylcarbamoyl; an amino group; an alkylamino group having one to six carbons comprising an linear or branched alkyl group or a cycloalkyl group and an amino group such as methylamino, ethylamino, propylamino, isopropylamino, butylamino, 30 isobutylamino, s-butylamino, t-butylamino, pentylamino, hexylamino, cyclopropylamino, cyclobutylamino, cyclopentylamino, cyclohexylamino, cyclopropylmethylamino, dimethylamino, Nethylmethylamino, diethylamino, N-methylpropylamino, N-35 methylisopropylamino, N-methylbutylamino, N-methyl-tbutylamino, N-ethylisopropylamino, dipropylamino, diisopropylamino, and ethylbutylamino; an acylamino group

having two to seven carbons such as acetylamino, propionylamino, butylylamino, isobutylylamino, valerylamino, and hexanoylamino; an alkoxycarbonylamino group having two to eight carbons such as 5 methoxycarbonylamino, ethoxycarbonylamino, and tbutoxycarbonylamino; an alkylsulfonylamino group having one to six carbons such as methylsulfonylamino, ethylsulfonylamino, butylsulfonylamino, and tbutylsulfonylamino; a cyano group; a nitro group; an 10 alkylthio group having one to six carbons such as methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio, s-butylthio, t-butylthio, pentylthio, and hexylthio; an alkylsulfinyl group having one to six carbons comprising a linear or branched alkyl 15 group or a cycloalkyl group and a sulfinyl group such as methylsulfinyl, ethylsulfinyl, propylsulfinyl, isopropylsulfinyl, butylsulfinyl, isobutylsulfinyl, sbutylsulfinyl, t-butylsulfinyl, pentylsulfinyl, and cyclopentylsulfinyl; an alkylsulfonyl group having one to 20 six carbons comprising a linear or branched alkyl group or a cycloalkyl group and a sulfonyl group such as methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, butylsulfonyl, isobutylsulfonyl, sbutylsulfonyl, t-butylsulfonyl, pentylsulfonyl, 25 hexylsulfonyl, cyclopentylsulfonyl, and cyclohexylsulfonyl; a sulpho group; a sulfamoyl group; an aminosulfonyl group having one to six carbons comprising a linear or branched alkyl group or a cycloalkyl group and an aminosulfonyl group such as methylaminosulfonyl, ethylaminosulfonyl, propylaminosulfonyl, 30 isopropylaminosulfonyl, butylaminosulfonyl, isobutylaminosulfonyl, s-butylaminosulfonyl, pentylaminosulfonyl, dimethylaminosulfonyl, N-ethyl-Nmethylaminosulfonyl, diethylaminosulfonyl, 35 dipropylaminosulfonyl, cyclopropylaminosulfonyl, cyclopentylaminosulfonyl, cyclohexylaminosulfonyl, and cyclopropylmethylaminosulfonyl; an alicyclic hydrocarbon

group having three to six carbons such as cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl; an aromatic hydrocarbon group having six to 14 carbons which is a monovalent group of a monocyclic, bicyclic or tricyclic aromatic hydrocarbon such as benzene, naphthalene, indene, indane, 1,2,3,4-tetrahydronaphthalene, and fluorene; a heterocyclic group (containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom) 10 representing a monocyclic, bicyclic or tricyclic (containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom) heterocyclic monovalent group such as furan, thiophene, pyrrole, pyrroline, pyrrolidine, 15 oxazole, oxazolidine, isoxazole, isoxazolidine, thiazole, thiazolidine, isothiazole, isohiazolidine, imidazole, imidazoline, imidazolidine, pyrrazole, pyrrazoline, pyrrazolidine, triazole, thiadiazole, oxadiazole, tetrazole, pyran, tetrahydropyran, thiopyran, 20 tetrahydrothiopyran, pyridine, pirazine, pyrimidine, pyridadine, benzofuran, dibenzofuran, benzothiophene, indole, benzimidazole, benzothiazole, benzoxazole, chroman, isochroman, quinoline, decahydroquinoline, isoquinoline, quinazoline, quinoxaline, purine, pteridine, azetidine, morpholine, thiomorpholine, piperidine, homopiperidine, piperadine, homopiperadine, indoline, isoindoline, phenoxadine, phenazine, phenothiazine, and quinuclidine.

5

25

30

35

As preferred examples of a substituent of an aliphatic hydrocarbon group having one to ten carbons for substitution as said R3, there can be mentioned a hydroxy group, an optionally substituted alkoxy group having one to seven carbons, an optionally substituted phenylalkoxy group having seven to ten carbons, an optionally substituted aryloxy group having six to ten carbons, an alkoxy having one to four carbons substituted with an optionally substituted heterocyclic group (containing, in 5

10

15

20

25

30

35

the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom), an oxo group, an optionally substituted acyl group having two to seven carbons, a carboxyl group, an alkoxycarbonyl group having two to seven carbons, a carbamoyl group, an optionally substituted alkylcarbamoyl group having two to seven carbons, an amino group, an optionally substituted alkylamino group having one to six carbons, an optionally substituted acylamino group having two to seven carbons, an alkylsulfonylamino group having one to six carbons, a cyano group, an alkoxycarbonylamino group having two to eight carbons, an alkylthio group having one to six carbons, an alkylsulfonyl group having one to six carbons, a sulfamoyl group, an optionally substituted aromatic hydrocarbon group having six to 14 carbons, and an optionally substituted heterocyclic group (containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom).

As preferred examples of a substituent of an aliphatic hydrocarbon group having one to ten carbons for substitution as said R³, there can be mentioned a hydroxy group, an optionally substituted alkoxy group having one to seven carbons, a carboxyl group, an amino group, an optionally substituted alkylamino group having one to six carbons, a cyano group, an alkoxycarbonylamino group having two to eight carbons, an acylamino group having two to seven carbons, an alkylthio group having one to six carbons, an optionally substituted aromatic hydrocarbon group having six to 14 carbons, and an optionally substituted heterocyclic group (containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom).

A heterocyclic group (containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom) as a substituent of an aliphatic hydrocarbon group having one to ten carbons for substitution as said R^3 binds to an aliphatic hydrocarbon group having one to ten carbons as R^3 on a carbon atom or a nitrogen atom.

5

10

15

20

25

30

35

As more preferred examples as R³ of a heterocyclic group (containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom) that binds to an aliphatic hydrocarbon group having one to ten carbons on a carbon atom, there can be mentioned a monovalent group of a monocyclic or bicyclic aromatic hydrocarbon group having three to nine carbons containing, in the ring, one to two atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom, such as furan, pyrrole, thiophene, pyrrazole, oxazole, thiazole, isoxazole, isothiazole, pyrrazole, imidazole, pyridine, pyrimidine, pyradine, pyridadine, benzothiophene, benzofuran, 1,2-methylenedioxybenzene, benzimidazole, indole, quinoline, isoquinoline, and quinazoline.

As preferred examples as R³ of a heterocyclic group (containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom) that binds to an aliphatic hydrocarbon group having one to ten carbons on a nitrogen atom, there can be mentioned a monovalent group of a monocyclic heterocyclic group having two to nine carbons containing, in the ring, one to two atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom, such as pyrrolidine, piperidine, morpholine, thiomorpholine, homopiperidine, homopiperadine, 1,2,3,6-tetrahydropyridine, or piperadine

An alkoxy having one to seven carbons, a phenylalkoxy group having seven to ten carbons, an aryloxy group having six to ten carbons, an alkoxy group having one to four carbons substituted with a heterocyclic group (containing, in the ring, one to four atoms selected from the group consisting of an oxygen

atom, a nitrogen atom, and a sulfur atom), an acyl group having two to six carbons, an alkylcarbamoyl group having two to seven carbons, an alkylamino group having one to six carbons, an acylamino group having two to seven 5 carbons, an alicyclic hydrocarbon group having three to six carbons, a aliphatic hydrocarbon group having one to six carbons, an aromatic hydrocarbon group having six to 14 carbons, and a heterocyclic group (containing, in the ring, one to four atoms selected from the group 10 consisting of an oxygen atom, a nitrogen atom, and a sulfur atom) as a substituent of an aliphatic hydrocarbon group having one to ten carbons for substitution as said R, may further be substituted with (one or more substituents selected from the group consisting of a 15 fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxy group, an alkoxy group having one to six carbons such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, s-butoxy, t-butoxy, pentyloxy, and cyclopropyloxy, a methoxymethyloxy group, a 2-20 methoxyethoxy group, a formyl group, a trifluoroacetyl group, an acyl group having two to seven carbons such as acetyl, propionyl, butylyl, isobutylyl, valeryl, and isovaleryl, an oxo group, a carboxyl group, an alkoxycarbonyl group having two to seven carbons such as 25 methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, and t-butoxycarbonyl, a carbamoyl group, an alkylcarbamoyl group having two to seven carbons such as N-methylcarbamoyl, N, N-dimethylcarbamoyl, Nethylcarbamoyl, N-ethyl-N-methylcarbamoyl, N,N-30 diethylcarbamoyl, N-propylcarbamoyl, Nisopropylcarbamoyl, N-butylcarbamoyl, Ncyclopropylcarbamoyl, and N-cyclopropylmethylcarbamoyl, an amino group, an alkylamino group having one to six 35 carbons such as methylamino, ethylamino, propylamino, isopropylamino, dimethylamino, N-ethylmethylamino, diethylamino, N-methylpropylamino, N-

methylisopropylamino, cyclopropylamino, and cyclopropylmethylamino, a cyclic amino group having four to six carbons containing, in the ring, one to two atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom, such as 1-pyrrolidinyl, piperadinyl, 4-methylpiperadinyl, piperidino, and morpholino, a trifluoroacetylamino group, an acylamino group having one to seven carbons such as formylamino, acetylamino, propionylamino, butylylamino,

5

10

15

20

25

30

35

isobutylylamino, and valerylamino, an alkylsulfonylamino group having one to six carbons such as methylsulfonylamino, ethylsulfonylamino, propylsulfonylamino, and butylylsulfonylamino, a nitro group, and a cyano group, an alkyl group having one to six carbons such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, and t-butyl, a trifluoromethyl group, and a trifluoromethoxy group).

When a substituent of an aliphatic hydrocarbon group having one to ten carbons for substitution as said R3 is an optionally substituted alkoxy group having one to seven carbons, an optionally substituted phenylalkoxy group having seven to ten carbons, an optionally substituted aryloxy group having six to ten carbons, and an alkoxy group having one to four carbons substituted with an optionally substituted heterocyclic group (containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom), a preferred aliphatic hydrocarbon group having one to ten carbons of R3 is a divalent group of an alkane having two to six carbons such as ethane, propane, isopropane, butane, isobutane, s-butane, tbutane, pentane, isopentane, neopentane, t-pentane, 2methylpentane, 4-methylpentane, 1-ethylbutane, and hexane. Furthermore, a divalent group of an alkane having two to four carbons such as ethane, propane, isopropane, butane, isobutane, s-butane, and t-butane are specifically preferred.

In the above Formula (I), R^4 represents a group selected from the following 1)-4).

1) a single bond,

5

35

- 2) a substituted or unsubstituted alicyclic hydrocarbon group having three to eight carbons (substituents are one or more substituents selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxy group, an optionally substituted alkoxy group having one to seven carbons, an aryloxy
- group having six to ten carbons, an aralkoxy group having seven to nine carbons, an acyloxy group having two to seven carbons, an oxo group, an alkylsulfonyloxy group having one to six carbons, an optionally substituted acyl group having two to seven carbons, a carboxyl group, an
- alkoxycarbonyl group having two to seven carbons, a carbamoyl group, an optionally substituted alkylcarbamoyl group having two to seven carbons, an amino group, an optionally substituted alkylamino group having one to six carbons, an optionally substituted acylamino group having
- two to seven carbons, an alkoxycarbonylamino group having two to eight carbons, an alkylsulfonylamino group having one to six carbons, a cyano group, a nitro group, an alkylthio group having one to six carbons, an alkylsulfinyl group having one to six carbons, an
- alkylsulfonyl group having one to six carbons, a sulfamoyl group, an alkylaminosulfonyl group having one to six carbons, a sulpho group, an optionally substituted alicyclic hydrocarbon group having three to six carbons, and an optionally substituted aliphatic hydrocarbon group
- 30 having one to six carbons),
 - 3) a substituted or unsubstituted aromatic hydrocarbon group having six to 14 carbons (substituents are one or more substituents selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxy group, an optionally substituted alkoxy group having one to seven carbons, an aryloxy group having six to ten carbons, an aralkoxy group having seven

to nine carbons, an acyloxy group having two to seven carbons, an oxo group, an alkylsulfonyloxy group having one to six carbons, an optionally substituted acyl group having two to seven carbons, a carboxyl group, an 5 alkoxycarbonyl group having two to seven carbons, a carbamoyl group, an optionally substituted alkylcarbamoyl group having two to seven carbons, an amino group, an optionally substituted alkylamino group having one to six carbons, an optionally substituted acylamino group having 10 two to seven carbons, an alkoxycarbonylamino group having two to eight carbons, an alkylsulfonylamino group having one to six carbons, a cyano group, a nitro group, an alkylthio group having one to six carbons, an alkylsulfinyl group having one to six carbons, an 15 alkylsulfonyl group having one to six carbons, a sulfamoyl group, an alkylaminosulfonyl group having one to six carbons, a sulpho group, an optionally substituted alicyclic hydrocarbon group having three to six carbons, and an optionally substituted aliphatic hydrocarbon group 20 having one to six carbons), 4) a substituted or unsubstituted heterocyclic group containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom (substituents are one or more 25 substituents selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxy group, an optionally substituted alkoxy group having one to seven carbons, an aryloxy group having six to ten carbons, an aralkoxy group having seven 30 to nine carbons, an acyloxy group having two to seven carbons, an oxo group, an alkylsulfonyloxy group having one to six carbons, an optionally substituted acyl group having two to seven carbons, a carboxyl group, an alkoxycarbonyl group having two to seven carbons, a 35 carbamoyl group, an optionally substituted alkylcarbamoyl group having two to seven carbons, an amino group, an optionally substituted alkylamino group having one to six

carbons, an optionally substituted acylamino group having two to seven carbons, an alkoxycarbonylamino group having two to eight carbons, an alkylsulfonylamino group having one to six carbons, a cyano group, a nitro group, an alkylthio group having one to six carbons, an alkylsulfinyl group having one to six carbons, an alkylsulfonyl group having one to six carbons, a sulfamoyl group, an alkylaminosulfonyl group having one to six carbons, a sulfamoyl group, an alkylaminosulfonyl group having one to six carbons, a sulpho group, an optionally substituted alicyclic hydrocarbon group having three to six carbons, and an optionally substituted aliphatic hydrocarbon group having one to six carbons).

5

10

15

20

25

30

35

In the above Formula (I), when R⁴ represents a substituted or unsubstituted alicyclic hydrocarbon group having three to eight carbons, as examples of such a substituted or unsubstituted alicyclic hydrocarbon group having three to eight carbons, there can be mentioned those that are the same as the one shown as an example of 2) a substituted or unsubstituted alicyclic hydrocarbon group having three to eight carbons of the above R³.

In the above Formula (I), when R4 represents a substituted or unsubstituted aromatic hydrocarbon group having six to 14 carbons, examples of such a substituted or unsubstituted aromatic hydrocarbon group having six to 14 carbons include those that are the same as the one shown as an example of 3) a substituted or unsubstituted aromatic hydrocarbon group having six to 14 carbons in the above R3. As examples of such an unsubstituted aromatic hydrocarbon group having six to 14 carbons, there can be mentioned a divalent group of benzene, with 1,2-phenylene being most preferred. As a substituent of an aromatic hydrocarbon group having six to 14 carbons for substitution, a fluorine atom, a hydroxy group, a methoxy group, a methylenedioxy group, a carboxyl group, a cyano group, and a nitro group are specifically preferred.

In the above Formula (I), when R4 represents a

heterocyclic group containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom, examples of such a substituted or unsubstituted heterocyclic group containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom include those that are the same as the one shown as an example of 4) a substituted or unsubstituted heterocyclic group containing, in the ring, one to four atoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom, of the above R³.

5

10

15

20

In the above Formula (I), G^2 represents any of a hydrogen atom, -C(=0)-OH, -C(=0)-NH-OH, $-S(=0)_2-OH$, and a 5-tetrazolyl group. As preferred ones of such G^2 , there can be mentioned a hydrogen atom, -C(=0)-OH and -C(=0)-OH, with -C(=0)-OH being most preferred.

In Formula (I) according to the present invention, preferred combinations of $G^2-R^4-R^3-$ are shown in Chemical formula 1 to Chemical formula 11. In the structures of Chemical formula 1 to Chemical formula 11, the symbol "---" represents a binding site of $G^2-R^4-R^3-$ and G^1 .

For the pyrrolo[3,2-d]pyrimidine derivative represented by the above Formula (I), there are tautomers represented by the following Formula (III):

[wherein, n, A, R^3 , R^4 , G^0 , G^1 , G^2 , and X are as defined for n, A, R^3 , R^4 , G^0 , G^1 , G^2 , and X in the above Formula (I)]. However, all of these tautomers are considered to be within the scope of the present invention.

5

10

15

20

25

30

When an asymmetric structure is present on an atom constituting the molecule of the pyrrolo[3,2-d]pyrimidine derivative represented by the above Formula (I), optically active substances thereof and mixtures containing them at any ratio are considered to be within the scope of the present invention.

The pyrrolo[3,2-d]pyrimidine derivative represented by the above Formula (I) may have a basic group in the molecule, and, if this is the case, it can be converted to a medically acceptable acid additive salt as desired. Such an acid includes, for example, inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, and carbonic acid; or organic acids such as acetic acid, citric acid, malic acid, oxalic acid, tartaric acid, lactic acid, maleic acid, fumaric acid, and methanesulfonic acid.

The pyrrolo[3,2-d]pyrimidine derivative represented by the above Formula (I) may have an acid group in the molecule, and if this is the case, it can be converted to a medically acceptable salt as desired. Such a salt includes, for example, a non-toxic cation salt, specifically an alkali metal ion such as Na⁺ and K⁺, an alkali earth metal ion such as Mg²⁺ and Ca²⁺, a metal ion such as Al³⁺ and Zn²⁺, an organic acid salt such as

ammonia, triethylamine, ethylenediamine, propanediamine, pyrrolidine, piperidine, piperadine, pyridine, lysine, choline, ethanolamine, N,N-dimethylethanolamine, 4-hydroxypiperidine, glucosamine, N-methylglucamine or the like.

5

10

As preferred specific examples of the present invention, there can be mentioned compounds described in the following Table 1 to Table 59. In the following Table 1 to Table 59, each of M1-M37 and P1-P47 represents a substituent each defined in the above Chemical formula 1 to Chemical formula 12.

Table 1

Compound		Γ.	· · · ·		<u></u>	
Compound No.	G°	n	A	$(A) - G^1 - (R^3)$	$-R^3-R^4-G^2$	Х
1	P1	1	N	-C(=O)-O-	M1	0
2	P1	1	N	-C(=O)-O-	M2	0
3	P1	1	N	-C(=O)-O-	м3	0
4	P1	1	N	-C(=O)-O-	M11	0
5	P1	1	N	-C(=O)-	M1	0
6	P1	1	N	-C(=O)-	M2	0
7	P1	1	N	-C(=O)-	мз	0
8	P1	1	N	-C(=O)-	M4	0
9	P1	1	N	-C(=O)-	М5	0
10	P1	1	N	-C(=O)-	M6	0
11	P1	1	N	-C(=O)-	M7	0
12	P1	1	N	-C(=O)-	м8	0
13	P1	1	N	-C(=O)-	M10	0
14	P1	1	N	-C(=O)-	M11	0
15	P1	1	N	-C(=O)-	M12	0
16	P1	1	N	-C(=O)-	M21	0
17	P1	1	N	-C(=O)-	M22	0
18	P1	1	N	-C(=O)-	M23	0
19	P1	1	N	-C(=O)-	M24	0
20	P1	1	N	-C(=O)-	M25	0
21	P1	1	N	-C(=O)-	M26	0
22	P1	1	N	-C(=O)-	M27	0
23	P1	1	N	-C(=O)-	M28	0
24	P1	1	N	-C(=O)-	M29	0
25	P1	1	N	-C(=O)-	M30	0
26	P1	1	N	-C(=O)-	M31	0
27	P1	1	N	-C(=O)-	M32	0
28	P1	1	N	-C(=O)-	м33	0
29	P1	1	N	-C(=O)-	M34	0
30	P1	1	N	-C(=O)-	M35	0
31	P1	1	N	-C(=O)-	м36	0
32	P1	1	N	-C(=O)-	M37	0
33	P1	1	N	-C(=O)-	м38	0
34	P1	1	N	-C(=O)-	м39	0
35	P1	1	N	-C(=O)-	M40	0
36	P1	1	N	-C(=O)-	M41	0
37	P1	1	N	-C(=O)-	M42	0
38	P1	1	N	-C(=O)-	M43	0
39	P1	1	N	-C(=O)-	M44	0

Table 2

Compound	_		 	<u> </u>		
No.	G°	n	A	$(A) - G^1 - (R^3)$	$-R^3-R^4-G^2$	Х
40	P1	1	N	-C(=O)-	M45	0
41	P1	1	N	-C(=O)-	M46	0
42	P1	1	N	-C(=O)-	M47	0
43	P1	1	N	-C(=O)-	M48	0
44	P1	1	N	-C(=O)-	M49	0
45	P1	1	N	-C(=O)-	M50	0
46	P1	1	N	-C(=O)-	M51	0
47	P1	1	N	-C(=O)-	M52	0
48	P1	1	N	-C(=O)-	M53	0
49	P1	1	N	-C(=O)-	M54	0
50	P1	1	N	-C(=O)-	M55	0
51	P1	1	N	-C(=O)-	M56	0
52	P1	1	N	-C(=O)-	M57	0
53	P1	1	N	-C(=O)-	M58	0
54	P1	1	N	-C(=O)-	M59	0
55	P1	1	N	-C(=O)-	M60	0
56	P1	1	N	-C(=O)-	M61	0
57	P1	1	N	-C(=O)-	M62	0
58	P1	1	N	-C(=O)-	M63	0
59	P1	1	N	-C(=O)-	M64	0
60	P1	1	N	-C(=O)-	M65	0
61	P1	1	N	-C(=O)-	M66	0
62	P1	1	N	-C(=O)-	M67	0
63	P1	1	N	-C(=O)-	M68	0
64	P1	1	N	-C(=O)-	M69	0
65	P1	1	N	-C(=O)-	M70	0
66	P1	1	N	-C(=O)-	M71	0
67	P1	1	N	-C(=O)-	M72	0
68	P1	1	N	-C(=O)-	M73	0
69	P1	1	N	-C(=O)-	M74	0
70	P1	1	N	-C(=O)-	M75	0
71	P1	1	N	-C(=O)-	M76	0
72	P1	1	N	-C(=O)-	M77	0
73	P1	1	N	-C(=O)-	M78	0
74	P1	1	N	-C(=O)-	M79	0
75	P1	1	N	-C(=O)-	M80	0
76	P1	1	N	-C(=O)-	M81	0
77	P1	1	N	-C(=O)-	M82	0
78	P1	1	N	-C(=O)-	M83	0

Table 3

Compound	G ⁰			(3) (1) (3)	$-R^3-R^4-G^2$	v
No.		n	A	$(A) - G^1 - (R^3)$		Х
79	P1	1	N	-C(=0)-	M84	0
80	P1	1	N	-C(=0)-	M85	0
81	P1	1	N	-C(=0)-	M86	0
82	P1	1	N	-C(=O)-	M87	0
83	P1	1	N	-C(=O)-	м88	0
84	P1	11	N	-C(=O)-	M89	0
85	P1	1	N	-C(=O)-	M90	0
86	P1	1	N	-C(=O)-	M81	S
87	P1	1	N	-C(=O)-	M82	S
88	P1	1	N	-C(=O)-	M83	S
89	P1	1	N	-C(=O)-	M84	S
90	P1	2	N	-C(=O)-	M85	S
91	P1	2	N	-C(=O)-	M86	S
92	P1	2	N	-C(=O)-	M87	s
93	P1	1	N	-C(=O)-	M88	S
94	P1	1	N	-C(=O)-	M89	S
95	P1	1	N	-C(=O)-	M90	S
96	P1	1	N	-C(=O)-	M91	0
97	P1	1	N	-C(=O)-	M92	0
98	P1	1	N	-C(=O)-	M93	0
99	P1	1	N	-C(=O)-	M94	0
100	P1	1	N	-C(=O)-	M95	0
101	P1	1	N	-C(=O)-	M96	0
102	P1	1	N	-C(=O)-	M97	0
103	P1	1	N	-C(=O)-	M98	0
104	P1	1	N	-C(=O)-	м99	0
105	P1	1	N	-C(=O)-	M100	0
106	P1	1	N	-C(=O)-	M101	0
107	P1	1	N	-C(=O)-	M102	0
108	P1	1	N	-C(=O)-	M103	0
109	P1	1	N	-C(=O)-	M104	0
110	P1	1	N	-C(=O)-NH-	M1	0
111	P1	1	N	-C(=O)-NH-	M2	0
112	P1	1	N	-C(=O)-NH-	м3	0
113	P1	1	N	-C(=O)-NH-	M4	0
114	P1	1	N	-C(=O)-NH-	М5	0
115	P1	1	N	-C(=O)-NH-	М6	0
116	P1	1	N	-C(=O)-NH-	M7	0
117	P1	1	N	-C(=O)-NH-	м9	0

Table 4

Compound	G⁰	n	A	$(A) - G^1 - (R^3)$	$-R^3-R^4-G^2$	х
No.	P1	1	N	-C(=O)-NH-	M10	0
119	P1	1	N	-C(=O)-NH-	M11	0
120	P1	1	N	-C(=O)-NH-	M12	0
121	P1	1	N	-C(=O)-NH-	M13	0
122	P1	1	N	-C(=O)-NH-	M14	0
123	P1	1	N	-C(=O)-NH-	M15	0
124	P1	1	N	-C(=O)-NH-	M16	0
125	P1	1	N	-C(=O)-NH-	M17	0
126	P1	1	N	-C(=O)-NH-	M18	0
127	P1	1				
128	P1 P1	1	N	-C(=O)-NH-	M19	0
		1	N	-C(=O)-NH-	M20	
129	P1		N	-C(=O)-NH-	M21	0
130	P1	1	N	-C(=O)-NH-	M22	0
131	P1	1	N	-C(=O)-NH-	M23	0
132	P1	1	N	-C(=O)-NH-	M24	0
133	P1	1	N	-C(=O)-NH-	M25	0
134	P1	1	N	-C(=O)-NH-	M26	0
135	P1	1	N	-C(=O)-NH-	M29	0
136	P1	1	N	-C(=O)-NH-	M30	0
137	P1	1	N	-C(=O)-NH-	M31	0
138	P1	1	N	-C(=O)-NH-	M32	0
139	P1	1	N	-C(=O)-NH-	M33	0
140	P1	1	N	-C(=O)-NH-	M34	0
141	P1	1	N	-C(=O)-NH-	M35	0
142	P1	1	N	-C(=O)-NH-	M36	0
143	P1	1	N	-C(=O)-NH-	M37	0
144	P1	1	N	-C(=O)-NH-	M38	0
145	P1	1	N	-C(=O)-NH-	M39	0
146	P1	1	N	-C(=O)-NH-	M40	0
147	P1	1	N	-C(=O)-NH-	M41	0
148	P1	1	N	-C(=O)-NH-	M42	0
149	P1	1	N	-C(=O)-NH-	M43	0
150	P1	1	N	-C(=O)-NH-	M44	0
151	P1	1	N	-C(=O)-NH-	M45	0
152	P1	1	N	-C(=O)-NH-	M46	0
153	P1	1	N	-C(=O)-NH-	M47	0
154	P1	1	N	-C(=O)-NH-	M48	0
155	P1	1	N	-C(=O)-NH-	M49	0
156	P1	1	N	-C(=O)-NH-	M50	0

Table 5

Compound No.	G°	n	A	$(A) - G^1 - (R^3)$	$-R^3-R^4-G^2$	Х
157	P1	1	N	-C(=O)-NH-	M51	0
158	P1	1	N	-C(=O)-NH-	M52	0
159	P1	1	N	-C(=O)-NH-	M53	0
160	P1	1	N	-C(=O)-NH-	M54	0
161	P1	1	N	-C(=O)-NH-	M55	0
162	P1	1	N	-C(=O)-NH-	M56	0
163	P1	1	N	-C(=O)-NH-	M57	0
164	P1	1	N	-C(=O)-NH-	M58	0
165	P1	1	N	-C(=O)-NH-	M59	0
166	P1	1	N	-C(=O)-NH-	M60	0
167	P1	1	N	-C(=O)-NH-	M61	0
168	P1	1	N	-C (=O)-NH-	M62	0
169	P1	1	N	-C(=O)-NH-	M63	0
170	P1	1	N	-C(=O)-NH-	M64	0
171	P1	1	N	-C(=O)-NH-	M65	0
172	P1	1	N	-C(=O)-NH-	M66	0
173	P1	1	N	-C(=O)-NH-	M67	0
174	P1	1	N	-C(=O)-NH-	M68	0
175	P1	1	N	-C(=O)-NH-	M69	0
176	P1	1	N	-C(=O)-NH-	M70	0
177	P1	1	N	-C(=O)-NH-	M71	0
178	P1	1	N	-C(=O)-NH-	M72	0
179	P1	1	N	-C(=O)-NH-	M73	0
180	P1	1	N	-C(=O)-NH-	M74	0
181	P1	1	N	-C(=O)-NH-	M75	0
182	P1	1	N	-C(=O)-NH-	M76	0
183	P1	1	N	-C(=O)-NH-	M77	0
184	P1	1	N	-C(=O)-NH-	M78	0
185	P1	1	N	-C(=O)-NH-	M79	0
186	P1	1	N	-C(=O)-NH-	M80	0
187	P1	1	N	-C(=O)-NH-	M81	0
188	P1	1	N	-C(=O)-NH-	M82	0
189	P1	1	N	-C(=O)-NH-	M83	0
190	P1	1	N	-C(=O)-NH-	M84	0
191	P1	1	N	-C(=O)-NH-	M85	0
192	P1	1	N	-C(=O)-NH-	M86	0
193	P1	1	N	-C(=O)-NH-	M87	0
194	P1	1	N	-C(=O)-NH-	M88	0
195	P1	1	N	-C(=O)-NH-	M89	0

Table 6

Compound No.	G°	n	A	$(A) - G^1 - (R^3)$	$-R^3-R^4-G^2$	х
196	P1	1	N	-C(=O)-NH-	M90	0
197	P1	1	N	-C(=O)-NH-	M91	0
198	P1	1	N	-C(=O)-NH-	M92	0
199	P1	1	N	-C(=O)-NH-	M93	0
200	P1	1	N	-C(=O)-NH-	M94	0
201	P1	1	N	-C(=O)-NH-	M95	0
202	P1	1	N	-C(=O)-NH-	M96	0
203	P1	1	N	-C(=S)-NH-	M1	0
204	P1	1	N	-C(=S)-NH-	M2	0
205	P1	1	N	-C(=S)-NH-	м3	0
206	P1	1	N	-C(=S)-NH-	M4	0
207	P1	1	N	-C(=S)-NH-	М5	0
208	P1	1	N	-C(=S)-NH-	М6	0
209	P1	1	N	-C(=S)-NH-	M7	0
210	P1	1	N	-C(=S)-NH-	м9	0
211	P1	1	N	-C(=S)-NH-	M10	0
212	P1	1	N	-C(=S)-NH-	M11	0
213	P1	1	N	-C(=S)-NH-	M12	0
214	P1	1	N	-C(=S)-NH-	M14	0
215	P1	1	N	-C(=S)-NH-	M18	0
216	P1	1	N	-C(=S)-NH-	M19	0
217	P1	1	N	-C(=S)-NH-	M29	0
218	P1	1	N	-C(=S)-NH-	M30	0
219	P1	1	N	-C(=S)-NH-	M31	0
220	P1	1	N	-C(=S)-NH-	M33	0
221	P1	1	N	-C(=S)-NH-	M34	0
222	P1	1	N	-C(=S)-NH-	M35	0
223	P1	1	N	-C(=S)-NH-	M41	0
224	P1	1	N	-C(=S)-NH-	M42	0
225	P1	1	N	-C(=S)-NH-	M43	0
226	P1	1	N	-C(=S)-NH-	M44	0
227	P1	1	N	-C(=S)-NH-	M47	0
228	P1	1	N	-C(=S)-NH-	M48	0
229	P1	1	N	-C(=S)-NH-	M49	0
230	P1	1	N	-C(=S)-NH-	M50	0
231	P1	1	N	-C(=S)-NH-	M51	0
232	P1	1	N	-C(=S)-NH-	M52	0
233	Pl	1	N	-S(=0) ₂ -	M2	0
				·		

Table 7

Compound No.	G⁰	n	A	$(A)-G^{1}-(R^{3})$	$-R^3-R^4-G^2$	х
234	P1	1	N	-S(=O) ₂ -	M49	0
235	P1	1	N	-S(=0) ₂ -	M55	0
236	P1	1	N	-S(=0) ₂ -	M59	0
237	P1	1	N	-S(=0) ₂ -	M71	0
238	P1	1	N	-S(=0) ₂ -	M72	0
239	P1	1	N	-C(=0)-NH-S(=0) ₂ -	M49	0
240	P1	1	N	-C(=0)-NH-S(=0) ₂ -	M55	0
241	P1	1	N	-C(=O)-NH-S(=O) ₂ -	м59	0
242	P1	1	N	-C(=0)-NH-S(=0) ₂ -	M85	0
243	P1	1	N	-C(=0)-NH-S(=0) ₂ -	M87	0
244	P1	1	N	Single bond	M2	0
245	P1	1	N	Single bond	м3	0
246	P1	1	N	Single bond	M4	0
247	P1	1	N	Single bond	M5	0
248	P1	1	N	Single bond	м6	0
249	P1	1	N	Single bond	м9	0
250	P1	1	N	Single bond	М10	0
251	P1	1	N	Single bond	M11	0
252	P1	1	N	Single bond	M12	0
253	P1	1	N	Single bond	M14	0
254	P1	1	N	Single bond	M18	0
255	P1	1	N	Single bond	M21	0
256	P1	1	N	Single bond	M25	0
257	P1	1	N	Single bond	M29	0
258	P1	1	N	Single bond	м30	0
259	P1	1	N	Single bond	м31	0
260	P1	1	N	Single bond	м33	0
261	P1	1	N	Single bond	м34	0
262	P1	1	N	Single bond	м35	0
263	P1	1	N	Single bond	м36	0
264	P1	1	N	Single bond	M37	0
265	P1	1	N	Single bond	м38	0
266	P1	1	N	Single bond	м39	0
267	P1	1	N	Single bond	M40	0
268	P1	1	N	Single bond	M41	0
269	P1	1	N	Single bond	M42	0
270	P1	1	N	Single bond	M43	0

Table 8

Compound No.	G°	n	A	$(A) - G^1 - (R^3)$	$-R^3-R^4-G^2$	х
271	P1	1	N	Single bond	M44	0
272	P1	1	N	Single bond	M45	0
273	P1	1	N	Single bond	M46	0
274	P1	1	N	Single bond	M47	0
275	P1	1	N	Single bond	M48	0
276	P1	1	N	-C(=O)-O-	M1	S
277	P1	1	N	-C(=O)-	M2	S
278	P1	1	N	-C(=O)-	м3	s
279	P1	1	N	-C(=O)-	M5	S
280	P1	1	N	-C(=O)-	М8	S
281	P1	1	N	-C(=O)-	M10	S
282	P1	1	N	-C(=O)-	M11	S
283	P1	1	N	-C(=O)-	M12	S
284	P1	1	N	-C(=O)-	M27	S
285	P1	1	N	-C(=O)-	M28	S
286	P1	1	N	-C(=O)-	м33	S
287	P1	1	N	-C(=O)-	M34	S
288	P1	1	N	-C(=O)-	M35	S
289	P1	1	N	-C(=O)-	м36	S
290	P1	1	N	-C(=O)-	M41	S
291	P1	1	N	-C(=O)-	M42	S
292	P1	1	N	-C(=O)-	M43	S
293	P1	1	N	-C(=O)-	M44	S
294	P1	1	N	-C(=O)-	M45	S
295	P1	1	N	-C(=O)-	M47	S
296	P1	1	N	-C(=O)-	M48	S
297	P1	1	N	-C(=O)-	M49	S
298	P1	1	N	-C(=O)-	M51	S
299	P1	1	N	-C(=0)-	M52	S
300	P1	1	N	-C(=O)-	M53	S
301	P1	1	N	-C(=O)-	M54	S
302	P1	1	N	-C(=0)-	M55	S
303	P1	1	N	-C(=0)-	M57	S
304	P1	1	N	-C(=0)-	M58	S
305	P1	1	N	-C(=0)-	M59	S
306	P1	1	N	-C(=O)-	M61	S
307	P1	1	N	-C(=0)-	M62	S
308	P1	1	N	-C(=O)-	M63	S
309	P1	1	N	-C(=O)-	M64	S

Table 9

Compound No.	G°	n	A	$(A) - G^1 - (R^3)$	$-R^3-R^4-G^2$	Х
310	P1	1	N	-C(=O)-	M69	S
311	P1	1	N	-C(=O)-	M72	S
312	P1	1	N	-C(=O)-	M76	S
313	P1	1	N	-C(=O)-	M77	s
314	P1	1	N	-C(=O)-	M80	S
315	P1	1	N	-C(=O)-	M85	s
316	P1	1	N	-C(=O)-	M86	S
317	P1	1	N	-C(=O)-	M87	S
318	P1	1	N	-C(=O)-	M91	S
319	P1	1	N	-C(=O)-	M95	S
320	P1	1	N	-C(=O)-	M97	S
321	P1	1	N	-C(=O)-	м98	S
322	P1	1	N	-C(=O)-	м99	s
323	P1	1	N	-C(=O)-	M102	S
324	P1	1	N	-C(=O)-	M103	S
325	P1	1	N	-C(=O)-NH-	M2	S
326	P1	1	N	-C(=O)-NH-	м3	s
327	P1	1	N	-C(=O)-NH-	M4	S
328	P1	1	N	-C(=O)-NH-	M5	S
329	P1	1	N	-C(=O)-NH-	M10	S
330	P1	1	N	-C(=O)-NH-	M11	S
331	P1	1	N	-C(=O)-NH-	M13	S
332	P1	1	N	-C(=O)-NH-	M14	S
333	P1	1	N	-C(=O)-NH-	M15	s
334	P1	1	N	-C(=O)-NH-	M16	S
335	P1	1	N	-C(=O)-NH-	M17	S
336	P1	1	N	-C(=O)-NH-	M18	S
337	P1	1	N	-C(=O)-NH-	M19	S
338	P1	1	N	-C(=O)-NH-	M33	S
339	P1	1	N	-C(=O)-NH-	M34	S
340	P1	1	N	-C(=O)-NH-	M35	S
341	P1	1	N	-C(=O)-NH-	M37	S
342	P1	1	N	-C(=O)-NH-	м38	S
343	P1	1	N	-C(=O)-NH-	м39	S
344	P1	1	N	-C(=O)-NH-	M41	S
345	P1	1	N	-C(=O)-NH-	M42	S
346	P1	1	N	-C(=O)-NH-	M43	S
347	P1	1	N	-C(=O)-NH-	M44	S
348	P1	1	N	-C(=O)-NH-	M45	S

Table 10

Compound No.	G°	n	A	(A)-G ¹ -(R ³)	$-R^3-R^4-G^2$	х
349	P1	1	N	-C(=O)-NH-	M47	S
350	P1	1	N	-C(=O)-NH-	M48	s
351	P1	1	N	-C(=O)-NH-	M49	s
352	P1	1	N	-C(=O)-NH-	M51	S
353	P1	1	N	-C(=O)-NH-	M52	S
354	P1	1	N	-C(=O)-NH-	M53	S
355	P1	1	N	-C(=O)-NH-	M54	S
356	P1	1	N	-C(=O)-NH-	M55	S
357	P1	1	N	-C(=O)-NH-	M56	S
358	P1	1	N	-C(=O)-NH-	M57	S
359	P1	1	N	-C(=O)-NH-	M58	S
360	P1	1	N	-C(=O)-NH-	M59	S
361	P1	1	N	-C(=O)-NH-	M61	S
362	P1	1	N	-C(=O)-NH-	M62	S
363	P1	1	N	-C(=O)-NH-	M63	s
364	P1	1	N	-C(=O)-NH-	M64	s
365	P1	1	N	-C(=O)-NH-	M71	S
366	P1	1	N	-C(=O)-NH-	M85	S
367	P1	1	N	-C(=O)-NH-	M86	S
368	P1	1	N	-C(=O)-NH-	M87	S
369	P1	1	N	-C(=O)-NH-	M91	s
370	P1	1	N	-C(=S)-NH-	M2	S
371	P1	1	N	-C(=S)-NH-	м3	s
372	P1	1	N	-C(=S)-NH-	М5	s
373	P1	1	N	-C(=S)-NH-	M10	S
374	P1	1	N	-C(=S)-NH-	M11	S
375	P1	1	N	-C(=S)-NH-	M12	S
376	P1	1	N	-C(=S)-NH-	M29	ន
377	P1	1	N	-C(=S)-NH-	M30	ន
378	P1	1	N	-C(=S)-NH-	M31	S
379	P1	1	N	-C(=S)-NH-	M33	S
380	P1	1	N	-C(=S)-NH-	M34	S
381	P1	1	N	-C(=S)-NH-	M35	S
382	P1	1	N	-C(=S)-NH-	M36	S
383	P1	1	N	-C(=S)-NH-	M41	S
384	P1	1	N	-C(=S)-NH-	M42	S
385	P1	1	N	-C(=S)-NH-	M43	S
386	P1	1	N	-C(=S)-NH-	M44	S
387	P1	1	N	-C(=S)-NH-	M45	S

Table 11

					**	
Compound No.	G°	n	A	$(A)-G^{1}-(R^{3})$	$-R^3-R^4-G^2$	х
388	P1	1	N	-C(=S)-NH-	M46	S
389	P1	1	N	-C(=S)-NH-	M47	S
390	P1	1	N	-C(=S)-NH-	M48	S
391	P1	1	N	-C(=S)-NH-	M49	s
392	P1	1	N	-C(=S)-NH-	M51	S
393	P1	1	Ŋ	-C(=S)-NH-	M52	S
394	P1	1	N	-C(=S)-NH-	M53	S
395	P1	1	N	-C(=S)-NH-	M54	s
396	P1	1	N	-C(=S)-NH-	M55	S
397	P1	1	N	-C(=S)-NH-	M56	S
398	P1	1	N	-C(=S)-NH-	M57	S
399	P1	1	N	-C(=S)-NH-	M58	S
400	P1	1	N	-C(=S)-NH-	M59	S
401	P1	1	N	-C(=S)-NH-	M64	S
402	P1	1	N	-C(=S)-NH-	M85	S
403	P1	1	N	-C(=S)-NH-	M86	S
404	P1	1	N	-C(=S)-NH-	M87	s
405	P1	1	N	-C(=S)-NH-	M91	S
406	P1	1	N	-C(=S)-NH-	M95	ທ
407	P1	1	N	-C(=S)-NH-	M99	S
408	P1	1	N	-S(=O) ₂ -	M2	s
409	P1	1	N	-S(=O) ₂ -	M11	s
410	P1	1	N	-S(=O) ₂ -	M49	s
411	P1	1	N	Single bond	M2	ន
412	P1	1	N	Single bond	M5	S
413	P1	1	N	Single bond	м9	S
414	P1	1	N	Single bond	M11	S
415	P1	1	N	Single bond	M12	S
416	P1	1	N	Single bond	M18	S
417	P1	1	N	Single bond	M25	S
418	P1	1	N	Single bond	M29	S
419	P1	1	N	Single bond	M30	S
420	Pl	1	N	Single bond	M31	S
421	P1	1	N	Single bond	м33	S
422	P1	1	N	Single bond	M34	S
423	P1	1	N	Single bond	м35	S
424	P1	1	N	Single bond	M37	S
425	P1	1	N	Single bond	м38	S

Table 12

Compound	G°	n	A	$(A) - G^1 - (R^3)$	$-R^3-R^4-G^2$	х
No. 426	P1	1	N	Single bond	M39	S
427	P1	1	N	Single bond	M40	S
428	P1	1	N	Single bond		s
429	P1	1	 		M41	
430	P1	1	N	Single bond	M42	S
431	P1	1		Single bond	M43	S
432	P1 P1	1	N	Single bond	M44	
432	P1	1	N	Single bond	M47	S
			N	Single bond	M48	S
434	P1	0	N	-C(=O)-O-	M1	0
435	P1	0	N	-C(=O)-	M2	0
436	P1	0	N	-C(=O)-	М3	0
437	P1	0	N	-C(=O)-	M4	0
438	P1	0	N	-C(=O)-	M5	0
439	P1	0	N	-C(=O)-	M8	0
440	P1	0	N	-C(=O)-	M10	0
441	P1	0	N	-C(=O)-	M11	0
442	P1	0	N	-C(=O)-	M12	0
443	P1	0	N	-C(=O)-	M14	0
444	P1	0	N	-C(=O)-	M18	0
445	P1	0	N	-C(=O)-	M21	0
446	P1	0	N	-C(=O)-	M25	0
447	P1	0	N	-C(=O)-	M27	0
448	P1	0	N	-C(=O)-	M28	0
449	P1	0	N	-C(=O)-	M49	0
450	P1	0	N	-C(=O)-	M51	0
451	P1	0	N	-C(=O)-	M52	0
452	P1	0	N	-C(=O)-	M59	0
453	P1	0	N	-C(=O)-	M85	0
454	P1	0	N	-C(=O)-	M86	0
455	P1	0	N	-C(=O)-	M87	0
456	P1	0	N	-C(=O)-NH-	м5	0
457	P1	0	N	-C(=O)-NH-	M10	0
458	P1	0	N	-C(=O)-NH-	M11	0
459	P1	0	N	-C(=O)-NH-	M12	0
460	P1	0	N	-C(=O)-NH-	M18	0
461	P1	0	N	-C(=O)-NH-	M25	0
462	P1	0	N	-C(=O)-NH-	M49	0
463	P1	0	N	-C(=O)-NH-	M51	0
464	P1	0	N	-C(=O)-NH-	M52	0

Table 13

Compound No.	G°	n	А	$(A)-G^{1}-(R^{3})$	$-R^3-R^4-G^2$	х
465	P1	0	N	-C(=O)-NH-	M53	0
466	P1	0	N	-C(=O)-NH-	M54	0
467	P1	0	N	-C(=O)-NH-	M55	0
468	P1	0	N	-C(=O)-NH-	M56	0
469	P1	0	N	-C(=O)-NH-	M57	0
470	P1	0	N	-C(=O)-NH-	M58	0
471	P1	0	N	-C(=O)-NH-	M59	0
472	P1	0	N	-C(=O)-NH-	M60	0
473	P1	0	N	-C(=O)-NH-	M61	0
474	P1	0	N	-C(=O)-NH-	M64	0
475	P1	0	N	-C(=O)-NH-	M85	0
476	P1	0	N	-C(=O)-NH-	M86	0
477	P1	0	N	-C(=O)-NH-	M87	0
478	P1	2	N	-C(=O)-NH-	M85	0
479	P1	0	N	-C(=O)-NH-	M90	0
480	P1	0	N	-C(=O)-NH-	M91	0
481	P1	0	N	-C(=S)-NH-	M2	0
482	P1	0	N	-C(=S)-NH-	м3	0
483	P1	0	N	-C(=S)-NH-	M4	0
484	P1	0	N	-C(=S)-NH-	M5	0
485	P1	0	N	-C(=S)-NH-	М8	0
486	P1	0	N	-C(=S)-NH-	M10	0
487	P1	0	N	-C(=S)-NH-	M11	0
488	P1	0	N	-C(=S)-NH-	M12	0
489	P1	0	N	-C(=S)-NH-	M14	0
490	P1	0	N	-C(=S)-NH-	M18	0
491	P1	0	N	-C(=S)-NH-	M21	0
492	P1	0	N	-C(=S)-NH-	M25	0
493	P1	0	N	-C(=S)-NH-	M27	0
494	P1	0	N	-C(=S)-NH-	M28	0
495	P1	0	N	-C(=S)-NH-	M49	0
496	P1	0	N	-C(=S)-NH-	M51	0
497	P1	0	N	-C(=S)-NH-	M52	0
498	P1	0	N	-C(=S)-NH-	M59	0
499	P1	0	N	-C(=S)-NH-	M85	0
500	P1	0	N	-C(=S)-NH-	M86	0
501	P1	0	N	-C(=S)-NH-	M87	0
502	P1	0	N	-C(=S)-NH-	M89	0
503	P1	0	N.	-C(=S)-NH-	M90	0

Table 14

Compound No.	G°	n	A	$(A)-G^{1}-(R^{3})$	$-R^3-R^4-G^2$	х
504	P1	0	N	-C(=S)-NH-	M91	0
505	P1	0	N	-S(=O) ₂ -	M2	0
506	P1	0	N	-S(=O) ₂ -	M11	0
507	P1	0	N	-S(=O) ₂ -	M41	0
508	P1	0	N	Single bond	M2	0
509	P1	0	N	Single bond	м3	0
510	P1	0	N	Single bond	M11	0
511	P1	0	N	Single bond	M12	0
512	P1	0	N	Single bond	M18	0
513	P1	0	N	Single bond	M25	0
514	P1	0	N	Single bond	M35	0
515	P1	0	N	Single bond	M43	0
516	P1	0	N	-C(=O)-O-	M1	S
517	P1	0	N	-C(=O)-	M2	S
518	P1	0	N	-C(=O)-	м3	S
519	P1	0	N	-C(=O)-	M4	S
520	P1	0	N	-C(=O)-	М5	S
521	P1	0	N	-C(=O)-	М8	S
522	P1	0	N	-C(=O)-	M10	S
523	P1	0	N	-C(=O)-	M11	S
524	P1	0	N	-C(=O)-	M12	S
525	P1	0	N	-C(=O)-	M14	S
526	P1	0	N	-C(=O)-	M18	S
527	P1	0	N	-C(=O)-	M21	S
528	P1	0	N	-C(=O)-	M25	S
529	P1	0	N	-C(=O)-	M27	S
530	P1	0	N	-C(=O)-	M28	S
531	P1	0	N	-C(=O)-	M49	S
532	P1	0	N.	-C(=O)-	M51	S
533	P1	0	N	-C(=O)-	M52	S
534	P1	0	N	-C(=O)-	M59	S
535	P1	0	N	-C(=O)-	M85	S
536	P1	0	N	-C(=O)-	M86	S
537	P1	0	N	-C(=O)-	M87	S
538	P1	0	N	-C(=O)-NH-	M5	S
539	P1	0	N	-C(=O)-NH-	M10	S
540	P1	0	N	-C(=O)-NH-	M11	S
541	P1	0	N	-C(=O)-NH-	M12	s

Table 15

Compound		I	I		3 4 0	
No.	G°	n	A	$(A) - G^1 - (R^3)$	$-R^3-R^4-G^2$	X
542	P1	0	N	-C(=O)-NH-	M18	S
543	P1	0	N	-C (=O)-NH-	M25	S
544	P1	0	N	-C(=O)-NH-	M49	S
545	P1	0	N	-C(=O)-NH-	M51	S
546	P1	0	N	-C(=O)-NH-	M52	s
547	P1	0	N	-C(=O)-NH-	M60	S
548	P1	0	N	-C(=O)-NH-	M61	S
549	P1	0	N	-C(=O)-NH-	M85	S
550	P1	0	N	-C(=O)-NH-	M86	S
551	P1	0	N	-C(=O)-NH-	M87	S
552	P1	0	N	-C(=S)-NH-	M5	S
553	P1	0	N	-C(=S)-NH-	M11	S
554	P1	0	N	-C(=S)-NH-	M41	s
555	P1	0	N	-C(=S)-NH-	M59	s
556	P1	0	N	-C(=S)-NH-	M87	S
557	P1	0	N	-S(=O) ₂ -	M2	s
558	P1	0	N	-S(=0) ₂ -	M11	ß
559	P1	0	N	-S(=0) ₂ -	M41	s
560	P1	0	N	Single bond	M2	S
561	P1	0	N	Single bond	М3	S
562	P1	0	N	Single bond	M11	S
563	P1	0	N	Single bond	M12	S
564	P1	0	N	Single bond	M18	S
565	P1	0	N	Single bond	M25	S
566	P1	0	N	Single bond	M35	ഗ
567	P1	0	N	Single bond	M43	s
568	P1	0	N	-C(=O)-	M13	S
569	P1	0	N	-C(=0)-	M15	S
570	P1	0	N	-C(=0)-	M16	S
571	P1	0	N	-C(=0)-	M17	S
572	P1	0	N	-C(=0)-	M19	S
573	P1	0	N	-C(=0)-	M20	S
574	P1	0	N	-C(=O)-	M22	S
575	P1	0	N	-C(=O)-	M23	S
576	P1	0	N	-C(=O)-	M24	S
577	P1	0	N	-C(=O)-	м33	S
578	P1	0	N	-C(=O)-	M34	S
579	P1	0	N	-C(=O)-	M35	S

Table 16

Compound	5 0	T			_3 _4 _2	
No.	G ⁰	n	A	$(A) - G^1 - (R^3)$	$-R^3-R^4-G^2$	X
580	P1	0	N	-C(=O)-	M40	S
581	P1	0	N	-C(=O)-	M57	S
582	P1	0	N	-C(=O)-	M60	S
583	P1	0	N	-C(=O)-	M62	S
584	P1	0	N	-C(=O)-	M70	S
585	P1	0	N	-C(=O)-	M77	S
586	P1	0	N	-C(=O)-	M83	S
587	P1	0	N	-C(=O)-NH-	M2	S
588	P1	0	N	-C (=O)-NH-	мз	S
589	P1	0	N	-C(=O)-NH-	M14	S
590	P1	0	N	-C(=O)-NH-	M19	S
591	P1	0	N	-C(=O)-NH-	M35	S
592	P1	0	N	-C(=O)-NH-	M56	S
593	P1	0	N	-C(=O)-NH-	M57	s
594	P1	0	N	-C(=O)-NH-	M58	S
595	P1	0	N	-C(=O)-NH-	M59	S
596	P1	0	N	-C(=O)-NH-	M62	S
597	P1	0	N	-C(=O)-NH-	M72	S
598	P1	0	N	-C(=O)-NH-	M77	0
599	P1	0	N	-C(=O)-NH-	M77	S
600	P1	0	N	-C(=O)-NH-	M90	s
601	P1	0	N	-C(=O)-NH-	M91	s
602	P1	0	N	-C(=O)-NH-	M113	s
603	P1	0	N	-C(=O)-NH-	M117	S
604	P1	0	N	-C(=O)-NH-	M118	s
605	P1	0	N	-C(=O)-NH-	M120	S
606	P1	0	N	-C(=O)-NH-	M126	s
607	P1	0	N	-C(=O)-NH-	M337	S
608	P1	0	N	-C(=O)-NH-	м339	S
609	P1	0	N	-C(=S)-NH-	M2	S
610	P1	0	N	-C(=S)-NH-	M14	S
611	P1	0	N	-C(=S)-NH-	M18	S
612	P1	0	N	-C(=S)-NH-	M21	S
613	P1	0	N	-C(=S)-NH-	M25	S
614	P1	0	N	-C(=S)-NH-	M26	S
615	P1	0	N	-C(=S)-NH-	M35	S
616	P1	0	N	-C(=S)-NH-	M49	S
617	P1	0	N	-C(=S)-NH-	M77	0
618	P1	0	N	-C(=S)-NH-	M77	S

Table 17

Compound No.	G°	n	A	(A)-G ¹ -(R ³)	$-R^3-R^4-G^2$	х
619	P1	0	N	-C(=S)-NH-	M117	s
620	P1	0	N	Single bond	M19	S
621	P1	0	N	Single bond	M33	0
622	P1	0	N	Single bond	M33	s
623	P1	0	N	Single bond	M34	s
624	P1	0	N	Single bond	M36	S
625	P1	0	N	Single bond	M37	0
626	P1	0	N	Single bond	M37	S
627	Pl	0	N	Single bond	M38	S
628	P1	0	N	Single bond	M39	S
629	P1	0	N	Single bond	M40	S
630	P1	0	N	Single bond	M41	0
631	P1	0	N	Single bond	M143	S
632	P1	0	N	Single bond	M174	0
633	P1	0	N	Single bond	M175	S
634	P1	0	N	Single bond	м190	S
635	P1	0	N	Single bond	M200	S
636	P1	0	N	Single bond	M201	S
637	P1	0	N	Single bond	M206	S
638	P1	0	N	Single bond	M207	S
639	P1	0	N	Single bond	M208	S
640	P1	0	N	Single bond	M209	S
641	P1	0	N	Single bond	M234	S
642	P1	0	N	Single bond	M239	0
643	P1	0	N	Single bond	M239	S
644	P1	0	N	Single bond	M275	S
645	P1	0	N	Single bond	M297	S
646	P1	0	N	Single bond	M298	S
647	P1	0	N	Single bond	M299	S
648	P1	0	N	Single bond	м300	S
649	P1	0	N	Single bond	M301	S
650	P1	0	N	Single bond	M302	S
651	P1	0	N	Single bond	м303	S
652	P1	1	N	-C(=O)-	M32	S
653	P1	1	N	-C(=O)-	M46	S
654	P1	1	N	-C(=0)-	M50	S
655	P1	1	N	-C(=O)-	M56	S
656	P1	1	N	-C(=O)-	M60	S
657	P1	1	N	-C(=O)-	M67	S

Table 18

Compound No.	G ^o	n	A	$(A) - G^1 - (R^3)$	$-R^3-R^4-G^2$	х
658	P1	1	N	-C(=O)-	M68	S
659	P1	1	N	-C(=O)-	M70	S
660	P1	1	N	-C(=O)-	M71	S
661	P1	1	N	-C(=O)-	M73	S
662	P1	1	N	-C(=O)-	M74	S
663	P1	1	N	-C(=O)-	M75	S
664	P1	1	N	-C(=O)-	M100	S
665	P1	1	N	-C(=O)-	M101	S
666	P1	1	N	-C(=O)-	M128	S
667	P1	1	N	-C(=O)-	M129	0
668	P1	1	N	-C(=O)-	M129	S
669	P1	1	N	-C(=O)-	M130	s
670	P1	1	N	-C(=O)-	M132	s
671	P1	1	N	-C(=O)-	M133	0
672	P1	1	N	-C(=O)-	M133	S
673	P1	1	N	-C(=O)-	M134	0
674	P1	1	N	-C(=O)-	M134	S
675	P1	1	N	-C(=O)-	M135	0
676	P1	1	N	-C(=O)-	M135	S
677	P1	1	N	-C(=O)-	M136	0
678	P1	1	N	-C(=O)-	M136	S
679	P1	1	N	-C(=O)-	M137	0
680	P1	1	N	-C(=O)-	M137	S
681	P1	1	N	-C(=O)-	M138	0
682	P1	1	N	-C(=O)-	M138	ន
683	P1	1	N	-C(=O)-	M139	0
684	P1	1	N	-C(=O)-	M139	S
685	P1	1	N	-C(=O)-	M140	0
686	P1	1	N	-C(=O)-	M140	s
687	P1	1	N	-C(=O)-	M141	0
688	P1	1	N	-C(=O)-	M141	S
689	P1	1	N	-C(=O)-	M142	S
690	P1	1	N	-C(=O)-	M160	S
691	P1	1	N	-C(=O)-	M161	0
692	P1	1	N	-C(=O)-	M161	S
693	P1	1	N	-C(=O)-	M162	S
694	P1	1	N	-C(=O)-	M168	S
695	P1	1	N	-C(=O)-	M169	0
696	P1	1	N	-C(=O)-	M169	S

Table 19

Compound No.	G°	n	A	(A)-G ¹ -(R ³)	$-R^3-R^4-G^2$	Х
697	P1	1	N	-C(=O)-	M170	S
698	P1	1	N	-C(=O)-	M194	S
699	P1	1	N	-C(=0)-	M206	S
700	P1	1	N	-C(=O)-	M270	S
701	P1	1	N	-C(=O)-	M275	S
702	P1	1	N	-C(=O)-	M276	0
703	P1	1	N	-C(=O)-	M276	S
704	P1	1	N	-C(=O)-	M278	S
705	P1	1	N	-C(=O)-	M279	S
706	P1	1	N	-C(=O)-	M299	s
707	P1	1	N	-C(=O)-	м306	ន
708	P1	1	N	-C(=O)-	M308	S
709	P1	1	N	-C(=O)-	M310	s
710	P1	1	N	-C(=O)-	M312	S
711	P1	1	N	-C(=O)-	M315	s
712	P1	1	N	-C(=O)-	M316	S
713	P1	1	N	-C(=O)-	M319	S
714	P1	1	N	-C(=O)-	M320	s
715	P1	1	N	-C(=O)-	M326	s
716	P1	1	N	-C(=O)-	M327	s
717	P1	1	N	-C(=O)-	м330	S
718	P1	1	N	-C(=O)-	M331	S
719	P1	1	N	-C(=O)-	м333	S
720	P1	1	N	-C(=O)-	м350	s
721	P1	1	N	-C(=O)-	M351	S
722	P1	1	N	-C(=O)-	M352	S
723	P1	1	N	-C(=O)-	M354	S
724	P1	1	N	-C(=O)-NH-	M1	S
725	P1	1	N	-C(=O)-NH-	М6	S
726	P1	1	N	-C(=O)-NH-	M7	s
727	P1	1	N	-C(=O)-NH-	М8	S
728	P1	1	N	-C(=O)-NH-	м9	S
729	P1	1	N	-C(=O)-NH-	M12	S
730	P1	1	Ň	-C (=O)-NH-	M20	S
731	P1	1	N	-C(=O)-NH-	M21	S
732	P1	1	N	-C(=O)-NH-	M22	S
733	P1	1	N	-C(=O)-NH-	M23	S
734	P1	1	N	-C(=O)-NH-	M24	S
735	P1	1	N	-C(=O)-NH-	M25	ន

Table 20

Compound No.	G°	n	А	$(A)-G^{1}-(R^{3})$	$-R^3-R^4-G^2$	Х
736	P1	1	Ņ	-C(=O)-NH-	M26	S
737	P1	1	N	-C(=O)-NH-	M27	S
738	P1	1	N	-C(=O)-NH-	M28	S
739	P1	1	N	-C(=O)-NH-	M29	s
740	P1	1	N	-C(=O)-NH-	м30	s
741	P1	1	N	-C(=O)-NH-	M31	S
742	P1	1	N	-C(=O)-NH-	M32	S
743	P1	1	N	-C(=O)-NH-	M36	S
744	P1	1	N	-C(=O)-NH-	M40	S
745	P1	1	N	-C(=O)-NH-	M46	S
746	P1	1	N	-C(=O)-NH-	M50	s
747	P1	1	N	-C(=O)-NH-	M60	S
748	P1	1	N	-C(=O)-NH-	M65	S
749	P1	1	N	-C(=O)-NH-	M66	S
750	P1	1	N	-C(=O)-NH-	M67	S
751	P1	1	N	-C(=O)-NH-	M68	S
752	P1	1	N	-C(=O)-NH-	M69	S
753	P1	1	N	-C(=O)-NH-	M70	S
754	P1	1	N	-C(=O)-NH-	M72	S
755	P1	1	N	-C(=O)-NH-	M73	S
756	P1	1	N	-C(=O)-NH-	M74	S
757	P1	1	N	-C(=O)-NH-	M75	S
758	P1	1	N	-C(=O)-NH-	M76	S
759	P1	1	N	-C(=O)-NH-	M77	S
760	P1	1	N	-C(=O)-NH-	M78	ß
761	P1	1	N	-C(=O)-NH-	M79	ß
762	P1	1	N	-C(=O)-NH-	M80	S
763	P1	1	N	-C(=O)-NH-	M81	S
764	P1	1	N	-C(=O)-NH-	M82	S
765	P1	1	N	-C(=O)-NH-	M83	S
766	P1	1	N	-C(=O)-NH-	M84	S
767	P1	1	N	-C(=0)-NH-	M88	S
768	P1	1	N	-C(=0)-NH-	M89	S
769	P1	1	N	-C(=0)-NH-	M90	S
770	P1	1	N	-C(=0)-NH-	M92	S
771	P1	1	N	-C(=O)-NH-	M93	S
772	P1	1	N	-C(=0)-NH-	M94	S
773	P1	1	N	-C(=0)-NH-	M95	S
774	P1	1	N	-C(=O)-NH-	м96	S

Table 21

Compound No.	G°	n	A	$(A)-G^{1}-(R^{3})$	$-R^3-R^4-G^2$	х
775	P1	1	N	-C(=O)-NH-	M97	S
776	P1	1	N	-C(=O)-NH-	м98	S
777	P1	1	N	-C(=O)-NH-	м99	s
778	P1	1	N	-C(=O)-NH-	M100	S
779	P1	1	N	-C(=O)-NH-	M101	S
780	P1	1	N	-C(=O)-NH-	M102	S
781	P1	1	N	-C(=O)-NH-	M103	s
782	P1	1	N	-C(=O)-NH-	M104	S
783	P1	1	N	-C(=O)-NH-	M105	S
784	P1	1	N	-C(=O)-NH-	M106	S
785	P1	1	N	-C(=O)-NH-	M107	S
786	P1	1	N	-C(=O)-NH-	M108	s
787	P1	1	N	-C(=O)-NH-	M109	S
788	P1	1	N	-C(=O)-NH-	M110	S
789	P1	1	N	-C(=O)-NH-	M111	S
790	P1	1	N	-C(=O)-NH-	M112	S
791	P1	1	N	-C(=O)-NH-	M113	0
792	P1	1	N	-C(=O)-NH-	M113	S
793	P1	1	N	-C(=O)-NH-	M114	S
794	P1	1	N	-C(=O)-NH-	M115	S
795	P1	1	N	-C(=O)-NH-	M116	S
796	P1	1	N	-C(=O)-NH-	M117	s
797	P1	1	N	-C(=O)-NH-	M118	s
798	P1	1	N	-C(=O)-NH-	M119	s
799	P1	1	N	-C(=O)-NH-	M120	s
800	P1	1	N	-C(=O)-NH-	M121	S
801	P1	1	N	-C(=O)-NH-	M122	S
802	P1	1	N	-C(=O)-NH-	M123	s
803	P1	1	N	-C(=O)-NH-	M124	s
804	P1	1	N	-C(=O)-NH-	M125	s
805	P1	1	N	-C(=O)-NH-	M126	s
806	P1	1	N	-C(=O)-NH-	M127	S
807	P1	1	N	-C(=O)-NH-	M128	S
808	P1	1	N	-C(=O)-NH-	M129	S
809	Pl	1	N	-C(=O)-NH-	M130	S
810	P1	1	N	-C(=O)-NH-	M131	S
811	P1	1	N	-C(=O)-NH-	M132	S
812	P1	1	N	-C(=O)-NH-	M133	S
813	P1	1	N	-C(=O)-NH-	M134	S

Table 22

Compound	G ^o		7	(n) C^1 (n^3)	$-R^3-R^4-G^2$	v
No.		n	A	$(A) - G^1 - (R^3)$		Х
814	P1	1	N	-C (=O)-NH-	M135	S
815	P1	1	N	-C(=O)-NH-	M136	S
816	P1	1	N	-C(=O)-NH-	M137	s
817	P1	1	N	-C(=O)-NH-	м138	S
818	P1	1	N	-C(=O)-NH-	м139	S
819	P1	1	N	-C(=O)-NH-	M140	S
820	P1	1	N	-C(=O)-NH-	M141	S
821	P1	1	N	-C(=O)-NH-	M142	S
822	P1	1	N	-C(=O)-NH-	M143	S
823	P1	1	N	-C(=O)-NH-	M144	S
824	P1	1	N	-C(=O)-NH-	M145	S
825	P1	1	N	-C(=O)-NH-	M146	S
826	P1	1	N	-C(=O)-NH-	M147	s
827	P1	1	N	-C(=O)-NH-	M148	s
828	P1	1	N	-C(=O)-NH-	M149	s
829	P1	1	N	-C(=O)-NH-	M150	S
830	P1	1	N	-C(=O)-NH-	M151	S
831	P1	1	N	-C(=O)-NH-	M152	S
832	P1	1	N	-C(=O)-NH-	M153	S
833	P1	1	N	-C(=O)-NH-	M154	S
834	P1	1	N	-C(=O)-NH-	М155	S
835	P1	1	N	-C(=O)-NH-	M156	s
836	P1	1	N	-C(=O)-NH-	M157	S.
837	P1	1	N	-C(=O)-NH-	M158	s
838	P1	1	N	-C(=O)-NH-	M159	S
839	P1	1	N	-C(=O)-NH-	M160	S
840	P1	1	N	-C(=O)-NH-	M161	S
841	P1	1	N	-C(=O)-NH-	M162	S
842	P1	1	N	-C(=O)-NH-	M163	S
843	P1	1	N	-C(=O)-NH-	M164	S
844	P1	1	N.	-C(=O)-NH-	M165	s
845	P1	1	N	-C(=O)-NH-	M166	S
846	P1	1	N	-C(=O)-NH-	M167	S
847	P1	1	N	-C(=O)-NH-	M168	S
848	P1	1	N	-C(=O)-NH-	M169	S
849	P1	1	N	-C(=O)-NH-	M170	S
850	P1	1	N	-C(=O)-NH-	M171	S
851	Pl	1	N	-C(=O)-NH-	M172	S
852	Pl	1	N	-C(=O)-NH-	M173	S
L		<u> </u>		·		

Table 23

(I	1	
Compound No.	${\sf G}^{\sf o}$	n	A	$(A) - G^1 - (R^3)$	$-R^3-R^4-G^2$	Х
853	P1	1	N	-C(=O)-NH-	M174	S
854	P1	1	N	-C(=O)-NH-	M175	s
855	P1	1	N	-C(=O)-NH-	M176	s
856	P1	1	N	-C(=O)-NH-	M177	S
857	P1	1	N	-C(=O)-NH-	M178	S
858	P1	1	N	-C(=O)-NH-	M179	S
859	P1	1	N	-C(=O)-NH-	M180	S
860	P1	1	N	-C(=O)-NH-	M181	S
861	P1	1	N	-C(=O)-NH-	M182	S
862	P1	1	N	-C(=O)-NH-	M183	S
863	P1	1	N	-C(=O)-NH-	M184	S
864	P1	1	N	-C(=O)-NH-	M185	S
865	P1	1	N	-C(=O)-NH-	M186	S
866	P1	1	N	-C(=O)-NH-	M187	ធ
867	P1	1	N	-C(=O)-NH-	M188	ន
868	P1	1	N	-C(=O)-NH-	M189	S
869	P1	1	N	-C(=O)-NH-	М190	S
870	P1	1	N	-C(=O)-NH-	M191	S
871	P1	1	N	-C(=O)-NH-	M192	s
872	P1	1	N	-C(=O)-NH-	м193	S
873	P1	1	N	-C(=O)-NH-	M194	S
874	P1	1	N	-C(=O)-NH-	м195	S
875	P1	1	N	-C(=O)-NH-	M196	S
876	P1	1	N	-C(=O)-NH-	M197	S
877	P1	1	N	-C(=O)-NH-	M198	S
878	P1	1	N	-C(=O)-NH-	M199	S
879	P1	1	N	-C(=O)-NH-	M200	S
880	P1	1	N	-C(=O)-NH-	M201	S
881	P1	1	N	-C(=O)-NH-	M202	S
882	P1	1	N	-C(=O)-NH-	M203	S
883	P1	1	N	-C(=O)-NH-	M204	S
884	P1	1	N	-C(=O)-NH-	M205	S
885	P1	1	N	-C(=O)-NH-	M206	S
886	P1	1	N	-C(=O)-NH-	M207	S
887	P1	1	N	-C(=O)-NH-	M208	S
888	P1	1	N	-C(=O)-NH-	M209	S
889	P1	1	N	-C(=O)-NH-	M210	S
890	P1	1	N	-C(=O)-NH-	M211	S
891	P1	1	N	-C(=O)-NH-	M212	S
·	<u> </u>	'		•	•	

Table 24

Compound No.	G°	n	A	(A)-G ¹ -(R ³)	$-R^3-R^4-G^2$	х
892	P1	1	N	-C(=O)-NH-	M213	S
893	P1	1	N	-C(=O)-NH-	M214	S
894	P1	1	N	-C(=O)-NH-	M215	s
895	P1	1	N	-C(=O)-NH-	M216	s
896	P1	1	N	-C(=O)-NH-	M217	S
897	P1	1	N	-C(=O)-NH-	M218	S
898	P1	1	N	-C(=O)-NH-	M219	s
899	P1	1	N	-C(=O)-NH-	M220	S
900	P1	1	N	-C(=O)-NH-	M221	s
901	P1	1	N	-C(=O)-NH-	M222	S
902	P1	1	N	-C(=O)-NH-	M223	s
903	P1	1	N	-C(=O)-NH-	M224	S
904	P1	1	N	-C(=O)-NH-	M225	S
905	P1	1	N	-C(=O)-NH-	M226	S
906	P1	1	N	-C(=O)-NH-	M227	S
907	P1	1	N	-C(=O)-NH-	M228	S
908	P1	1	N	-C(=O)-NH-	M229	S
909	P1	1	N	-C(=O)-NH-	M230	S
910	P1	1	N	-C(=O)-NH-	M231	s
911	P1	1	N	-C(=O)-NH-	M232	s
912	P1	1	N	-C(=O)-NH-	M233	S
913	P1	1	N	-C(=O)-NH-	M234	S
914	P1	1	N	-C(=O)-NH-	M235	S
915	P1	1	N	-C(=O)-NH-	M236	S
916	P1	1	N	-C(=O)-NH-	M237	S
917	P1	1	N	-C(=O)-NH-	M238	S
918	P1	1	N	-C(=O)-NH-	M239	S
919	P1	1	N	-C(=O)-NH-	M240	S
920	P1	1	N	-C(=O)-NH-	M241	S
921	P1	1	N	-C(=O)-NH-	M242	S
922	P1	1	N	-C (=O)-NH-	M243	S
923	P1	1	N	-C(=O)-NH-	M244	S
924	P1	1	N	-C(=O)-NH-	M245	S
925	P1	1	N	-C(=O)-NH-	M246	S
926	P1	1	N	-C(=O)-NH-	M247	S
927	P1	1	N	-C(=O)-NH-	M248	S
928	P1	1	N	-C(=O)-NH-	M249	S
929	P1	1	N	-C(=O)-NH-	M250	S
930	P1	1	N	-C (=O)-NH-	M251	S

Table 25

Compound	G°	n	A	$(A) - G^1 - (R^3)$	$-R^3-R^4-G^2$	Х
No. 931	P1	1	N	-C(=O)-NH-	M252	S
932	P1	1	N	-C(=O)-NH-	M253	S
933	Pl	1	N	-C(=O)-NH-	M254	S
934	P1	1	N	-C(=O)-NH-	M255	S
935	P1	1	N	-C(=O)-NH-	M256	s
936	P1	1	N	-C(=O)-NH-	M257	S
937	P1	1	N	-C(=O)-NH-	M257	s
938	P1	1	N	-C(=O)-NH-	M259	s
939	P1	1	N	-C(=O)-NH-	M260	S
940	P1	1	N	-C(=O)-NH-	M261	s
941	P1	1	N	-C(=O)-NH-	M262	S
942	P1	1	N	-C(=O)-NH-	M263	S
943	P1	1		-C(=O)-NH-	M264	S
944		1	N			S
	P1	1	N	-C(=O)-NH-	M265	
945	P1		N	-C(=O)-NH-	M266	S
946	P1	1	N	-C(=O)-NH-	M267	S
947	P1	1	N	-C(=O)-NH-	M268	S
948	P1	1	N	-C(=O)-NH-	M269	S
949	P1	1	N	-C(=O)-NH-	M270	S
950	P1	1	N	-C(=O)-NH-	M271	S
951	P1	1	N	-C(=O)-NH-	M272	S
952	P1	1	N	-C(=O)-NH-	M273	S
953	P1	1	N	-C(=O)-NH-	M274	S
954	P1	1	N	-C(=O)-NH-	M275	S
955	P1	1	N	-C(=O)-NH-	M276	S
956	P1	1	N	-C(=O)-NH-	M277	0
957	P1	1	N	-C(=O)-NH-	M277	S
958	P1	1	N	-C(=O)-NH-	M278	s
959	P1	1	N	-C(=O)-NH-	M279	s
960	P1	1	N	-C(=O)-NH-	M280	s
961	P1	1	N	-C(=O)-NH-	M281	S
962	P1	1	N	-C(=O)-NH-	M282	S
963	P1	1	N	-C (=O)-NH-	M283	s
964	P1	1	N	-C(=O)-NH-	M284	S
965	P1	1	N	-C(=O)-NH-	M285	S
966	P1	1	N	-C(=O)-NH-	M286	S
967	P1	1	N	-C(=O)-NH-	M287	S
968	P1	1	N	-C(=O)-NH-	M288	S
969	P1	1	N	-C(=O)-NH-	M289	S

Table 26

Compound No.	G°	n	A	(A)-G ¹ -(R ³)	$-R^3-R^4-G^2$	х
970	P1	1	N	-C(=O)-NH-	M290	s
971	P1	1	N	-C(=O)-NH-	M291	S
972	P1	1	N	-C(=O)-NH-	M292	s
973	P1	1	N	-C(=O)-NH-	M293	S
974	P1	1	N	-C(=O)-NH-	M294	s
975	P1	1	N	-C(=O)-NH-	M295	S
976	. P1	1	N	-C(=O)-NH-	M296	s
977	. P1	1	N	-C(=O)-NH-	M297	S
978	P1	1	N	-C(=O)-NH-	M298	S
979	P1	1	N	-C(=O)-NH-	M299	s
980	P1	1	N	-C(=O)-NH-	м300	S
981	P1	1	N	-C(=O)-NH-	M301	s
982	. P1	1	N	-C(=O)-NH-	M302	S
983	P1	1	N	-C(=O)-NH-	м303	S
984	P1	1	N	-C(=O)-NH-	M304	S
985	P1	1	N	-C(=O)-NH-	M305	S
986	P1	1	N	-C(=O)-NH-	м306	S
987	P1	1	N	-C(=O)-NH-	M307	s
988	P1	1	N	-C(=O)-NH-	м308	S
989	P1	1	N	-C(=O)-NH-	м309	S
990	P1	1	N	-C(=O)-NH-	M310	S
991	P1	1	N	-C(=O)-NH-	M311	ß
992	P1	1	N	-C(=O)-NH-	M312	S
993	P1	1	N	-C(=O)-NH-	M313	S
994	P1	1	N	-C(=O)-NH-	M314	S
995	P1	1	N	-C(=O)-NH-	М315	s
996	P1	1	N	-C(=O)-NH-	M316	S
997	P1	1	N	-C(=O)-NH-	M317	ഗ
998	P1	1	N	-C(=O)-NH-	M318	S
999	P1	1	N	-C(=O)-NH-	м319	s
1000	P1	1	N	-C(=O)-NH-	M320	S
1001	P1	1	N	-C(=O)-NH-	M321	S
1002	P1	1	N	-C(=O)-NH-	M322	S
1003	P1	1	N	-C(=O)-NH-	м323	S
1004	P1	1	N	-C(=O)-NH-	M324	S
1005	P1	1	N	-C(=O)-NH-	M325	S
1006	P1	1	N	-C(=O)-NH-	M326	S
1007	P1	1	N	-C(=O)-NH-	M327	S
1008	P1	1	N	-C(=O)-NH-	M328	ន

Table 27

Compound	G ⁰	n	A	$(A) - G^1 - (R^3)$	$-R^3-R^4-G^2$	х
No. 1009	P1	1	N	-C(=O)-NH-	M329	S
1010	P1	1	N	-C(=O)-NH-	M330	S
1011	P1	1	N	-C(=O)-NH-	M331	S
1012	P1	1	N	-C(=O)-NH-	M332	S
1013	P1	1	N	-C(=O)-NH-	M333	S
1014	P1	1	N	-C(=O)-NH-	M334	s
1015	P1	1	N	-C(=O)-NH-	M335	s
1016	P1	1	N	-C(=O)-NH-	M336	S
1017	P1	1	N	-C(=O)-NH-	M337	s
1018	P1	1	N	-C(=O)-NH-	M338	S
1019	P1	1	N	-C(=O)-NH-	м339	s
1020	P1	1	N	-C(=O)-NH-	M340	s
1021	P1	1	N	-C(=O)-NH-	M341	S
1022	P1	1	N	-C(=O)-NH-	M342	S
1023	P1	1	N	-C(=O)-NH-	м343	s
1024	P1	1	N	-C(=O)-NH-	M344	S
1025	P1	1	N	-C(=O)-NH-	M345	S
1026	P1	1	N	-C(=O)-NH-	M346	S
1027	P1	1	N	-C(=O)-NH-	M347	s
1028	P1	1	N	-C(=O)-NH-	M348	S
1029	P1	1	N	-C(=O)-NH-	M349	S
1030	P1	1	N	-C(=O)-NH-	M350	S
1031	P1	1	N	-C(=O)-NH-	M351	S
1032	P1	1	N	-C(=O)-NH-	M352	ß
1033	P1	1	N	-C(=O)-NH-	м353	s
1034	P1	1	N	-C(=O)-NH-	M354	S
1035	P1	11	N	-C(=O)-NH-	M355	S
1036	P1	1	N	-C(=O)-NH-	M356	s
1037	P1	1	N	-C(=O)-NH-	M357	S
1038	P1	1	N	-C(=O)-NH-	м358	S
1039	P1	1	N	$-C(=0)-NH-S(=0)_2-$	M49	S
1040	P1	1	N	-C(=0)-NH-S(=0) ₂ -	M50	S
1041	P1	1	N	-C(=0)-NH-S(=0) ₂ -	M54	S
1042	P1	1	N	-C(=0)-NH-S(=0) ₂ -	M55	S
1043	P1	1	N	-C(=O)-NH-S(=O) ₂ -	M56	S
1044	P1	1	N	-C(=0)-NH-S(=0) ₂ -	м63	S
1045	P1	1	N	-C(=0)-NH-S(=0) ₂ -	M84	s

Table 28

Compound No.	G°	n	A	$(A)-G^{1}-(R^{3})$	$-R^3-R^4-G^2$	X
1046	P1	1	N	$-C(=0)-NH-S(=0)_2-$	M85	S
1047	P1	1	N	$-C(=0)-NH-S(=0)_2-$	м86	S
1048	P1	1	N	-C(=0)-NH-S(=0) ₂ -	м99	S
1049	P1	1	N	-C(=0)-NH-S(=0) ₂ -	M253	S
1050	P1	1	N	-C(=0)-NH-S(=0) ₂ -	м330	S
1051	P1	1	N	-C(=0)-NH-S(=0) ₂ -	м338	S
1052	P1	1	N	-C(=0)-NH-S(=0) ₂ -	M348	s
1053	P1	1	N	-C(=O)-O-	M2	S
1054	P1	1	N	-C(=O)-O-	мз	S
1055	P1	1	N	-C(=O)-O-	M4	S
1056	P1	1	N	-C(=O)-O-	м5	0
1057	P1	1	N	-C(=O)-O-	м5	S
1058	P1	1	N	-C(=O)-O-	м6	s
1059	P1	1	N	-C(=O)-O-	M7	S
1060	P1	1	N	-C(=O)-O-	M10	s
1061	P1	1	N	-C(=O)-O-	M11	S
1062	P1	1	N	-C(=O)-O-	M12	S
1063	P1	1	N	-C(=S)-NH-	M13	S
1064	P1	1	N	-C(=S)-NH-	M50	S
1065	P1	1	N	-C(=S)-NH-	M88	S
1066	P1	1	N	-C(=S)-NH-	M89	0
1067	P1	1	N	-C(=S)-NH-	M89	S
1068	P1	1	N	-C(=S)-NH-	M90	0
1069	P1	1	N	-C(=S)-NH-	M90	S
1070	P1	1	N	-C(=S)-NH-	M91	0
1071	P1	1	N	-C(=S)-NH-	м98	0
1072	P1	1	N	-C(=S)-NH-	M98	s
1073	P1	1	N	-C(=S)-NH-	M105	0
1074	P1	1	N	-C(=S)-NH-	M105	S
1075	P1	1	N	-C(=S)-NH-	M106	0
1076	P1	1	N	-C(=S)-NH-	M106	S
1077	P1	1	N	-C(=S)-NH-	M107	0
1078	P1	1	N	-C(=S)-NH-	M107	S
1079	P1	1	N	-C(=S)-NH-	M108	0
1080	P1	1	N	-C(=S)-NH-	M108	S
1081	P1	1	N	-C(=S)-NH-	M109	0
1082	Pl	1	N	-C(=S)-NH-	M109	S

Table 29

Compound No.	G°	n	A	(A)-G ¹ -(R ³)	$-R^3-R^4-G^2$	Х
1083	P1	1	N	-C(=S)-NH-	M111	0
1084	P1	1	N	-C(=S)-NH-	M111	S
1085	P1	1	N	-C(=S)-NH-	M112	0
1086	P1	1	N	-C(=S)-NH-	M112	S
1087	P1	1	N	-C(=S)-NH-	M113	0
1088	P1	1	N	-C(=S)-NH-	M113	S
1089	P1	1	N	-C(=S)-NH-	M117	0
1090	P1	1	N	-C(=S)-NH-	M117	S
1091	P1	1	N	-C(=S)-NH-	M130	0
1092	P1	1	N	-C(=S)-NH-	M130	S
1093	P1	1	N	-C(=S)-NH-	M131	0
1094	P1	1	N	-C(=S)-NH-	M131	S
1095	P1	1	N	-C(=S)-NH-	M132	0
1096	P1	1	N	-C(=S)-NH-	M132	S
1097	P1	1	N	-C(=S)-NH-	м153	0
1098	P1	1	N	-C(=S)-NH-	м153	S
1099	P1	1	N	-C(=S)-NH-	M154	0
1100	P1	1	N	-C(=S)-NH-	M154	S
1101	P1	1	N	-C(=S)-NH-	М155	0
1102	P1	1	N	-C(=S)-NH-	M155	S
1103	P1	1	N	-C(=S)-NH-	M156	0
1104	P1	1	N	-C(=S)-NH-	M156	S
1105	P1	1	N	-C(=S)-NH-	M162	0
1106	P1	1	N	-C(=S)-NH-	M162	S
1107	P1	1	N	-C(=S)-NH-	M163	0
1108	P1	1	N	-C(=S)-NH-	M163	S
1109	P1	1	N	-C(=S)-NH-	M164	0
1110	P1	1	N	-C(=S)-NH-	M164	s
1111	P1	1	N	-C(=S)-NH-	M165	0
1112	P1	1	N	-C(=S)-NH-	M165	S
1113	P1	1	N	-C(=S)-NH-	M166	0
1114	Pl	1	N	-C(=S)-NH-	M166	S
1115	P1	1	N	-C(=S)-NH-	M167	0
1116	P1	1	N	-C(=S)-NH-	M167	S
1117	P1	1	N	-C(=S)-NH-	M261	0
1118	P1	1	N	-C(=S)-NH-	M261	S
1119	P1	1	N	-C(=S)-NH-	м333	s
1120	P1	1	N	-C(=S)-NH-	M334	S
1121	P1	1	N	-C(=S)-NH-	M346	s

Table 30

Compound No.	G°	n	A	$(A)-G^{1}-(R^{3})$	$-R^3-R^4-G^2$	х
1122	P1	1	N	-C(=S)-NH-	M348	S
1123	P1	1	N	-C(=S)-NH-	M350	S
1124	P1	1	N	-C(=S)-NH-	M352	S
1125	P1	1	N	-C(=S)-NH-	M353	S
1126	P1	1	N	-S(=0) ₂ -	М5	s
1127	P1	1	N	-S(=0) ₂ -	M47	s
1128	P1	1	N	-S(=0) ₂ -	м50	s
1129	P1	1	N	-S(=0) ₂ -	M53	S
1130	P1	1	N	-S(=0) ₂ -	M55	s
1131	P1	1	N	-S(=0) ₂ -	M57	S
1132	P1	1	N	-S(=0) ₂ -	M59	s
1133	P1	1	N	-S(=0) ₂ -	M60	S
1134	P1	1	N	-S(=0) ₂ -	M72	S
1135	P1	1	N	-S(=0) ₂ -	M73	s
1136	P1	1	N	-S(=0) ₂ -	м96	S
1137	P1	1	N	-S(=0) ₂ -	M195	S
1138	P1	1	N	-S(=0) ₂ -	M220	S
1139	P1	1	N	Single bond	м3	S
1140	P1	1	N	Single bond	M4	S
1141	P1	1	N	Single bond	М6	S
1142	P1	1	N	Single bond	M7	S
1143	P1	1	N	Single bond	м8	S
1144	P1	1	N	Single bond	M10	S
1145	P1	1	N	Single bond	M13	S
1146	P1	1	N	Single bond	M14	S
1147	P1	1	N	Single bond	M15	0
1148	P1	1	N	Single bond	M15	S
1149	P1	1	N	Single bond	M16	S
1150	P1	1	N	Single bond	M17	S
1151	P1	1	N	Single bond	M19	S
1152	P1	1	N	Single bond	M20	S
1153	P1	1	N	Single bond	M21	S
1154	P1	1	N	Single bond	M22	S
1155	P1	1	N	Single bond	M23	S
1156	P1	1	N	Single bond	M24	S
1157	P1	1	N	Single bond	M26	S

Table 31

6		1				
Compound No.	G ^o	n	A	$(A)-G^{1}-(R^{3})$	$-R^3-R^4-G^2$	Х
1158	P1	1	N	Single bond	M27	S
1159	P1	1	N	Single bond	M28	S
1160	P1	1	N	Single bond	M32	S
1161	P1	1	N	Single bond	M36	S
1162	P1	1	N	Single bond	M45	S
1163	P1	1	N	Single bond	M46	s
1164	P1	1	N	Single bond	M82	S
1165	P1	1	N	Single bond	M104	S
1166	P1	1	N	Single bond	M105	S
1167	P1	1	N	Single bond	M107	S
1168	P1	1	N	Single bond	M108	s
1169	P1	1	N	Single bond	M110	s
1170	P1	1	N	Single bond	M111	S
1171	P1	1	N	Single bond	M114	s
1172	P1	1	N	Single bond	M115	ន
1173	P1	1	N	Single bond	M116	s
1174	P1	1	N	Single bond	M118	S
1175	P1	1	N	Single bond	M119	0
1176	P1	1	N	Single bond	M119	S
1177	P1	1	N	Single bond	M120	S
1178	P1	1	N	Single bond	M121	S
1179	P1	1	N	Single bond	M122	s
1180	P1	1	N	Single bond	M123	s
1181	P1	1	N	Single bond	M124	S
1182	P1	1	N	Single bond	M125	s
1183	P1	1	N	Single bond	M126	S
1184	P1	1	N	Single bond	M127	S
1185	P1	1	N	Single bond	M128	s
1186	P1	1	N	Single bond	M129	S
1187	P1	1	N	Single bond	M130	S
1188	P1	1	N	Single bond	M133	s
1189	P1	1	N	Single bond	M134	S
1190	P1	1	N	Single bond	M140	S
1191	P1	1	N	Single bond	M141	s
1192	P1	1	N	Single bond	M142	S
1193	P1	1	N	Single bond	M143	S
1194	P1	1	N	Single bond	M144	s
1195	P1	1	N	Single bond	M145	0
1196	P1	1	N	Single bond	M145	s
	·	•				

Table 32

Compound No.	G ⁰	n	A	$(A)-G^{1}-(R^{3})$	$-R^3-R^4-G^2$	х
1197	P1	1	N	Single bond	M146	0
1198	P1	1	N	Single bond	M146	s
1199	P1	1	N	Single bond	M147	0
1200	P1	1	N	Single bond	M147	S
1201	P1	1	N	Single bond	M148	S
1202	P1	1	N	Single bond	M149	S
1203	P1	1	N	Single bond	M150	S
1204	P1	1	N	Single bond	M151	S
1205	P1	1	N	Single bond	M152	S
1206	P1	1	N	Single bond	M153	S
1207	P1	1	N	Single bond	M154	0
1208	Pl	1	N	Single bond	M154	S
1209	P1	1	N	Single bond	M155	S
1210	P1	1	N	Single bond	M156	· S
1211	P1	1	N	Single bond	M157	S
1212	P1	1	N	Single bond	M158	S
1213	P1	1	N	Single bond	M159	S
1214	P1	1	N	Single bond	M160	s
1215	P1	1	N	Single bond	M161	0
1216	P1	1	N	Single bond	M161	S
1217	P1	1	N	Single bond	M162	S
1218	P1	1	N	Single bond	M163	S
1219	P1	1	N	Single bond	M164	S
1220	P1	1	N	Single bond	M165	S
1221	P1	1	N	Single bond	M169	S
1222	P1	1	N	Single bond	M170	S
1223	P1	1	N	Single bond	M171	S
1224	P1	1	N	Single bond	M172	S
1225	P1	1	N	Single bond	M173	S
1226	P1	1	N	Single bond	M174	S
1227	P1	1	N	Single bond	M175	S
1228	P1	1	N	Single bond	M176	S
1229	P1	1	N	Single bond	M177	S
1230	P1	1	N	Single bond	M178	S
1231	P1	1	N	Single bond	M179	S
1232	P1	1	N	Single bond	M180	S
1233	P1	1	N	Single bond	M181	0
1234	P1	1	N	Single bond	M181	S
1235	P1	1	N	Single bond	M182	S

Table 33

-						
Compound No.	G°	n	A	$(A) - G^1 - (R^3)$	$-R^3-R^4-G^2$	х
1236	P1	1	N	Single bond	M183	s
1237	P1	1	N	Single bond	M184	s
1238	P1	1	N	Single bond	M185	s
1239	P1	1	N	Single bond	M186	S
1240	P1	1	N	Single bond	M187	s
1241	P1	1	N	Single bond	M188	·s
1242	P1	1	N	Single bond	M189	S
1243	P1	1	N	Single bond	M190	s
1244	P1	1	N	Single bond	M191	S
1245	P1	1	N	Single bond	M192	S
1246	P1	1	N	Single bond	M193	0
1247	P1	1	N	Single bond	M193	s
1248	P1	1	N	Single bond	M194	0
1249	P1	1	N	Single bond	M194	S
1250	P1	1	N	Single bond	M195	s
1251	P1	1	N	Single bond	M196	s
1252	P1	1	N	Single bond	M197	s
1253	P1	1	N	Single bond	M198	S
1254	P1	1	N	Single bond	M199	0
1255	P1	1	N	Single bond	M199	S
1256	P1	1	N	Single bond	M200	S
1257	P1	1	N	Single bond	M201	s
1258	P1	1	N	Single bond	M202	s
1259	P1	1	N	Single bond	M203	s
1260	P1	1	N	Single bond	M204	S
1261	P1	1	N	Single bond	M205	s
1262	P1	1	N	Single bond	M206	S
1263	P1	1	N	Single bond	M207	s
1264	P1	1	N	Single bond	M208	s
1265	P1	1	N	Single bond	M209	S
1266	P1	1	N	Single bond	M210	S
1267	P1	1	N	Single bond	M211	S
1268	P1	1	N	Single bond	M212	S
1269	P1	1	N	Single bond	M213	S
1270	P1	1	N	Single bond	M214	S
1271	P1	1	N	Single bond	M215	S
1272	P1	1	N	Single bond	M216	S
1273	P1	1	N	Single bond	M217	S
1274	P1	1	N	Single bond	M218	S

Table 34

Compound No.	G°	n	A	(A)-G ¹ -(R ³)	$-R^3-R^4-G^2$	Х
1275	P1	1	N	Single bond	M219	S
1276	P1	1	N	Single bond	M220	S
1277	P1	1	N	Single bond	M221	s
1278	P1	1	N	Single bond	M222	s
1279	P1	1	N	Single bond	M223	s
1280	P1	1	N	Single bond	M224	s
1281	P1	1	N	Single bond	M225	S
1282	P1	1	N	Single bond	M226	s
1283	P1	1	N	Single bond	M227	s
1284	P1	1	N	Single bond	M228	s
1285	P1	1	N	Single bond	M229	S
1286	P1	1	N	Single bond	M230	S
1287	P1	1	N	Single bond	M231	S
1288	P1	1	N	Single bond	M232	S
1289	P1	1	N	Single bond	M233	S
1290	P1	1	N	Single bond	M234	S
1291	P1	1	N	Single bond	M235	S
1292	P1	1	N	Single bond	M236	s
1293	P1	1	N	Single bond	M237	s
1294	P1	1	N	Single bond	M238	S
1295	P1	1	N	Single bond	M239	s
1296	P1	1	N	Single bond	M240	s
1297	P1	1	N	Single bond	M241	S
1298	P1	1	N	Single bond	M242	S
1299	P1	1	N	Single bond	M243	S
1300	P1	1	N	Single bond	M244	S
1301	P1	1	N	Single bond	M245	S
1302	P1	1	N	Single bond	M246	s
1303	P1	1	N	Single bond	M247	S
1304	P1	1	N	Single bond	M248	S
1305	P1	1	N	Single bond	M249	0
1306	P1	1	N	Single bond	M249	S
1307	P1	1	N	Single bond	M250	0
1308	P1	1	N	Single bond	M250	S
1309	P1	1	N	Single bond	M251	S
1310	P1	1	N	Single bond	M252	S
1311	P1	1	N	Single bond	M253	S
1312	P1	1	N	Single bond	M254	S
1313	P1	1	N	Single bond	M255	S

Table 35

Compound No.	G°	n	A	$(A)-G^{1}-(R^{3})$	$-R^3-R^4-G^2$	х
1314	P1	1	N	Single bond	M256	0
1315	P1	1	N	Single bond	M256	S
1316	P1	1	N	Single bond	M257	S
1317	P1	1	N	Single bond	M258	S
1318	P1	1	N	Single bond	M259	S
1319	P1	1	N	Single bond	M260	S
1320	P1	1	N	Single bond	M261	0
1321	P1	1	N	Single bond	M261	S
1322	P1	1	N	Single bond	M262	S
1323	P1	1	N	Single bond	M274	S
1324	P1	1	N	Single bond	M275	S
1325	P1	1	N	Single bond	M276	S
1326	P1	1	N	Single bond	M277	0
1327	Pl	1	N	Single bond	M277	S
1328	P1	1	N	Single bond	M281	s
1329	P1	1	N	Single bond	M282	S
1330	P1	1	N	Single bond	M286	s
1331	P1	1	N	Single bond	M287	0
1332	P1	1	N	Single bond	M287	s
1333	P1	1	N	Single bond	M288	s
1334	P1	1	N	Single bond	M289	s
1335	P1	1	N	Single bond	M290	s
1336	P1	1	N	Single bond	M291	S
1337	P1	1	N	Single bond	M292	S
1338	P1	1	N	Single bond	M297	S
1339	P1	1	N	Single bond	M298	S
1340	P1	1	N	Single bond	M299	S
1341	P1	1	N	Single bond	M300	S
1342	P1	1	N	Single bond	M301	S
1343	P1	1	N	Single bond	M302	S
1344	P1	1	N	Single bond	M307	s
1345	P1	1	N	Single bond	M308	S
1346	P1	1	N	Single bond	M315	S
1347	P1	1	N	Single bond	M316	S
1348	P1	1	N	Single bond	M318	S
1349	P1	1	N	Single bond	M319	S
1350	P1	1	N	Single bond	M320	S
1351	P1	1	N	Single bond	M321	S
1352	P1	1	N	Single bond	M322	S

Table 36

Compound No.	G°	n	А	(A)-G ¹ -(R ³)	$-R^3-R^4-G^2$	х
1353	P1	1	N	Single bond	M323	S
1354	P1	1	N	Single bond	M324	S
1355	P1	1	N	Single bond	M325	S
1356	P1	1	N	Single bond	M326	S
1357	P1	1	N	Single bond	M327	0
1358	P1	1	N	Single bond	M327	S
1359	P1	1	N	Single bond	M328	S
1360	P1	1	N	Single bond	M329	s
1361	P1	1	N	Single bond	м333	s
1362	P1	1	N	Single bond	M334	S
1363	P1	1	N	Single bond	M335	S
1364	P1	1	N	Single bond	M342	S
1365	P1	1	N	Single bond	M343	S
1366	P1	1	N	Single bond	M344	S
1367	P1	1	N	Single bond	M345	S
1368	P1	1	N	Single bond	M347	S
1369	P1	1	N	Single bond	M351	S
1370	P1	1	N	Single bond	M354	S
1371	P1	1	N	Single bond	M355	0
1372	P1	1	N	Single bond	M355	s
1373	P1	1	N	Single bond	M356	S
1374	P1	1	N	Single bond	м358	0
1375	P1	1	N	Single bond	м358	s
1376	P1	2	N	-C(=O)-	M2	0
1377	P1	2	N	-C(=O)-	M2	S
1378	P1	2	N	-C(=O)-	М5	S
1379	P1	2	N	-C(=O)-	М8	0
1380	P1	2	N	-C(=O)-	М8	S
1381	P1	2	N	-C(=O)-	M10	S
1382	P1	2	N	-C(=O)-	M11	0
1383	P1	2	N	-C(=O)-	M11	S
1384	P1	2	N	-C(=O)-	M12	S
1385	P1	2	N	-C(=O)-	M13	s
1386	P1	2	N	-C(=O)-	M14	s
1387	P1	2	N	-C(=O)-	M15	S
1388	P1	2	N	-C(=O)-	M16	S
1389	P1	2	N	-C(=O)-	M17	S
1390	P1	2	N	-C(=O)-	M18	S
1391	Pl	2	N	-C(=O)-	M19	S

Table 37

Compound No.	G°	n	A	$(A)-G^{1}-(R^{3})$	$-R^3-R^4-G^2$	Х
1392	P1	2	N	-C(=O)-	M20	S
1393	P1	2	N	-C(=O)-	M21	S
1394	P1	2	N	-C(=O)-	M22	S
1395	P1	2	N	-C(=O)-	M23	S
1396	P1	2	N	-C(=O)-	M24	s
1397	P1	2	N	-C(=O)-	M25	S
1398	P1	2	N	-C(=O)-	M33	S
1399	P1	2	N	-C(=O)-	M34	s
1400	P1	2	N	-C(=O)-	M35	S
1401	P1	2	N	-C(=O)-	M40	S
1402	P1	2	N	-C(=O)-	M49	0
1403	P1	2	N	-C(=O)-	M49	s
1404	P1	2	N	-C(=O)-	M57	S
1405	P1	2	N	-C(=O)-	M60	S
1406	P1	2	N	-C(=O)-	M62	S
1407	P1	2	. N	-C(=O)-	M70	S
1408	P1	2	N	-C(=O)-	M77	s
1409	P1	2	N	-C(=O)-	M83	S
1410	P1	2	N	-C(=O)-NH-	M2	ន
1411	P1	2	N	-C(=O)-NH-	м3	ഗ
1412	P1	2	N	-C(=O)-NH-	M5	0
1413	P1	2	N	-C(=O)-NH-	M5	S
1414	P1	2	N	-C(=O)-NH-	M10	ន
1415	P1	2	N	-C(=O)-NH-	M11	0
1416	P1	2	N	-C(=O)-NH-	M11	s
1417	P1	2	N	-C(=O)-NH-	M14	S
1418	P1	2	N	-C(=O)-NH-	M18	S
1419	P1	2	N	-C(=O)-NH-	M19	S
1420	P1	2	N	-C(=O)-NH-	M25	S
1421	P1	2	N	-C(=O)-NH-	M35	S
1422	P1	2	N	-C(=O)-NH-	M49	S
1423	P1	2	N	-C(=O)-NH-	M56	S
1424	P1	2	N	-C(=O)-NH-	M57	S
1425	P1	2	N	-C(=O)-NH-	M58	S
1426	P1	2	N	-C(=O)-NH-	M59	S
1427	P1	2	N	-C(=O)-NH-	M60	S
1428	P1	2	N	-C(=O)-NH-	M62	S
1429	P1	2	N	-C(=O)-NH-	M72	S
1430	P1	2	N	-C(=O)-NH-	M77	0

Table 38

Compound No.	G°	n	A	$(A)-G^{1}-(R^{3})$	$-R^3-R^4-G^2$	Х
1431	P1	2	N	-C(=O)-NH-	M77	s
1432	P1	2	N	-C(=O)-NH-	M90	0
1433	P1	2	N	-C(=O)-NH-	M90	S
1434	P1	2	N	-C(=O)-NH-	M91	S
1435	P1	2	N	-C(=O)-NH-	M113	S
1436	P1	2	N	-C(=O)-NH-	M117	S
1437	P1	2	N	-C(=O)-NH-	M118	S
1438	P1	2	N	-C(=O)-NH-	M120	S
1439	P1	2	N	-C(=O)-NH-	M126	S
1440	P1	2	N	-C(=O)-NH-	M337	S
1441	P1	2	N	-C(=O)-NH-	м339	S
1442	P1	2	N	-C(=S)-NH-	M2	S
1443	P1	2	N	-C(=S)-NH-	M5	0
1444	P1	2	N	-C(=S)-NH-	M5	S
1445	P1	2	N	-C(=S)-NH-	M11	0
1446	P1	2	N	-C(=S)-NH-	M14	S
1447	P1	2	N	-C(=S)-NH-	M18	S
1448	P1	2	N	-C(=S)-NH-	M21	S
1449	P1	2	N	-C(=S)-NH-	M25	s
1450	P1	2	N	-C(=S)-NH-	M26	S
1451	P1	2	N	-C(=S)-NH-	M35	S
1452	P1	2	N	-C(=S)-NH-	M49	S
1453	P1	2	N	-C(=S)-NH-	M77	0
1454	P1	2	N	-C(=S)-NH-	M77	S
1455	P1	2	N	-C(=S)-NH-	M90	0
1456	P1	2	N	-C(=S)-NH-	M117	S
1457	P1	2	N	Single bond	M2	S
1458	P1	2	N	Single bond	M11	0
1459	P1	2	N	Single bond	M11	S
1460	P1	2	N	Single bond	M19	S
1461	P1	2	N	Single bond	M33	0
1462	P1	2	N	Single bond	м33	S
1463	P1	2	N	Single bond	M34	S
1464	P1	2	N	Single bond	M35	S
1465	P1	2	N	Single bond	м36	S
1466	P1	2	N	Single bond	M37	0
1467	P1	2	N	Single bond	M37	S
1468	P1	2	N	Single bond	м38	S
1469	P1	2	N	Single bond	M39	S

Table 39

Compound No.	G°	n	A	(A)-G ¹ -(R ³)	$-R^3-R^4-G^2$	х
1470	P1	2	N	Single bond	M40	s
1471	P1	2	N	Single bond	M41	0
1472	P1	2	N	Single bond	M143	s
1473	P1	2	N	Single bond	M174	0
1474	P1	2	N	Single bond	M175	S
1475	P1	2	N	Single bond	M190	S
1476	P1	2	N	Single bond	M200	S
1477	P1	2	N	Single bond	M201	s
1478	P1	2	N	Single bond	M206	s
1479	P1	2	N	Single bond	M207	S
1480	P1	2	N	Single bond	M208	S
1481	P1	2	N	Single bond	M209	S
1482	P1	2	N	Single bond	M234	s
1483	P1	2	N	Single bond	M239	0
1484	P1	2	N	Single bond	M239	S
1485	P1	2	N	Single bond	M275	s
1486	P1	2	N	Single bond	M297	S
1487	P1	2	N	Single bond	M298	S
1488	P1	2	N	Single bond	м299	S
1489	P1	2	N	Single bond	м300	S
1490	P1	2	N	Single bond	M301	S
1491	P1	2	N	Single bond	м302	S
1492	P1	2 ,	N	Single bond	м303	s
1493	P2	0	N	-C(=0)-NH-S(=0) ₂ -	м6	s
1494	P2	0	N	-C(=O)-O-	· M1	S
1495	P2	0	N	Single bond	M13	S
1496	P2	1	N	-C(=O)-	M2	S
1497	P2	1	N	-C(=O)-	M10	0
1498	P2	1	N	-C(=O)-	M14	S
1499	P2	1	N	-C(=O)-NH-	M4	S
1500	P2	1	N	-C(=O)-O-	М8	S
1501	P2	1	N	Single bond	M11	S
1502	P2	1	N	Single bond	M15	S
1503	P2	2	N	-C(=0)-	M17	S
1504	P2	2	N	-C(=O)-NH-	M12	S
1505	P2	2	N	-C(=S)-NH-	М5	S
1506	Р3	0	N	-C(=S)-NH-	M33	S
1507	P3	0	N	Single bond	M18	S

Table 40

Compound No.	G°	n	A	(A)-G ¹ -(R ³)	$-R^3-R^4-G^2$	х
1508	Р3	0	N	Single bond	M28	S
1509	P3	1	N	-C(=O)-	M24	s
1510	P3	1	N	-C(=O)-NH-	м19	S
1511	P3	1	N	-C(=O)-NH-	M25	S
1512	Р3	1	N	-C(=0)-NH-S(=0) ₂ -	M21	0
1513	Р3	1	N	-C(=0)-O-	M29	S
1514	Р3	1	N	-C(=S)-NH-	M20	S
1515	Р3	1	N	Single bond	M31	0
1516	Р3	1	N	Single bond	M26	S
1517	P3	2	N	-C(=O)-	M27	S
1518	Р3	2	N	-C(=O)-NH-	M32	S
1519	Р3	2	N	Single bond	M22	S
1520	P4	0	N	-C(=O)-	M43	S
1521	P4	0	N	-C(=O)-NH-	M38	S
1522	P4	0	N	Single bond	M48	S
1523	P4	1	N	-C(=O)-	M40	S
1524	P4	1	N	-C(=O)-NH-	M45	S
1525	P4	1	N	-C(=O)-NH-S(=O) ₂ -	M34	ន
1526	P4	1	N	-C(=O)-O-	м36	S
1527	P4	1	N	-C(=O)-O-	M49	S
1528	P4	1	N	-C(=S)-NH-	M46	S
1529	P4	1	N	Single bond	M35	S
1530	P4	1	N	Single bond	м39	S
1531	P4	1	N	Single bond	M41	0
1532	P4	2	N	$-C(=0)-NH-S(=0)_2-$	M47	s
1533	P4	2	N	-C(=O)-O-	M42	S
1534	P5	0	N	-C(=O)-	M53	S
1535	P5	0	N	-C(=O)-	M63	S
1536	P5	1	N	-C(=O)-	M50	S
1537	P5	1	N	-C(=O)-	M56	S
1538	P5	1	N	-C(=O)-NH-	M64	S
1539	P5	1	N	$-C(=0)-NH-S(=0)_2-$	м60	s
1540	P5	1	N	-C(=O)-O-	M55	S
1541	P5	1	N	-C(=S)-NH-	м59	S
1542	P5	1	N	Single bond	M61	0
1543	P5	1	N	Single bond	M54	S
1544	P5	2	N	-C(=O)-O-	M62	S
1545	P5	2	N	Single bond	M52	S

Table 41

Compound No.	G°	n	A	(A)-G ¹ -(R ³)	$-R^3-R^4-G^2$	Х
1546	P5	2	N	Single bond	M57	s
1547	P6	0	N	-C(=0)-NH-S(=0) ₂ -	M73	S
1548	P6	0	N	-C(=0)-O-	M68	S
1549	P6	0	N	Single bond	M78	S
1550	P6	1	N	-C(=O)-	M66	S
1551	P6	1	N	-C(=O)-	M69	s
1552	P6	1	N	-C(=O)-	M76	s
1553	P6	1	N	-C(=O)-NH-	M71	0
1554	P6	1	N	-C(=O)-O-	M81	0
1555	P6	1	N	-C(=O)-O-	M75	s
1556	P6	1	N	Single bond	M70	s
1557	P6	1	N	Single bond	M74	S
1558	P6	1	N	Single bond	M80	s
1559	P6	2	N	-C(=O)-NH-	M77	S
1560	P6	2	N	Single bond	M67	S
1561	P7	0	N	-C(=0)-O-	м88	S
1562	P7	0	N	Single bond	м83	S
1563	P7	1	N	-C(=O)-	M89	S
1564	P7	1	N	-C(=O)-	м95	S
1565	P7	1	N	-C(=O)-NH-	M84	S
1566	P7	1	N	-C(=O)-NH-	м90	S
1567	P7	1	N	-C(=O)-O-	M94	S
1568	P7	1	N	-C(=S)-NH-	м85	s
1569	P7	1	N	Single bond	M91	0
1570	P7	1	N	Single bond	м96	S
1571	P7	2	N	-C(=O)-	M82	S
1572	P7	2	N	-C(=O)-	M92	S
1573	P7	2	N	-C(=O)-NH-	M97	s
1574	P7	2	N	Single bond	M87	S
1575	P8	0	N	-C(=O)-	M108	s
1576	P8	0	N	-C(=O)-NH-	M103	S
1577	P8	0	N	-C(=S)-NH-	м98	S
1578	P8	0	N	Single bond	M113	S
1579	P8	1	N	-C(=O)-	M105	S
1580	P8	1	N	-C(=O)-NH-	M110	S
1581	P8	1	N	$-C(=0)-NH-S(=0)_2-$	м99	S
1582	P8	1	N	-C(=0)-O-	M101	0
1583	P8	1	N	-C(=S)-NH-	M111	0

Table 42

Compound	, [
No.	'n	A	$(A) - G^1 - (R^3)$	$-R^3-R^4-G^2$	х
1584 P8	3 1	N	Single bond	M104	S
1585 P8	3 1	N	Single bond	M109	S
1586 P8	3 1	N	Single bond	M106	S
1587 P8	3 2	N	-C(=O)-	M102	S
1588 P8	3 2	N	-C(=0)-NH-S(=0) ₂ -	M112	S
1589 PS	9 0	N	-C(=O)-	M118	S
1590 PS	0	N	-C(=O)-NH-	M123	s
1591 PS) 1	N	-C(=O)-	M115	S
1592 PS) 1	N	-C(=O)-NH-	M116	S
1593 PS) 1	N	-C(=O)-NH-	M129	S
1594 PS) 1	N	-C(=0)-NH-S(=0) ₂ -	M125	S
1595 PS) 1	N	-C(=O)-O-	M120	S
1596 PS) 1	N	-C(=S)-NH-	M124	S
1597 PS) 1	N	Single bond	M126	S
1598 PS) 1	N	Single bond	M119	S
1599 PS	9 2	N	-C(=O)-O-	M127	s
1600 PS	2	N	Single bond	M117	S
1601 PS	2	N	Single bond	M122	ឆ
1602 P1	0 0	N	-C(=0)-NH-S(=0) ₂ -	M138	S
1603 P1	0 0	N	-C(=O)-O-	M133	S
1604 P1	0 0	N	Single bond	M143	S
1605 P1	0 1	N	-C(=O)-	M131	0
1606 P1	0 1	N	-C(=O)-	M141	0
1607 P1	0 1	N	-C(=O)-	M134	ß
1608 P1	0 1	N	-C(=O)-	M144	ß
1609 P1	0 1	N	-C(=O)-NH-	M136	ß
1610 P1	0 1	N	-C(=O)-O-	M140	S
1611 P1	0 1	N	Single bond	M130	S
1612 P1	0 1	N	Single bond	м139	S
1613 P1	0 1	N	Single bond	M145	S
1614 P1	0 2	N	-C(=S)-NH-	M137	S
1615 P1	0 2	N	Single bond	M132	S
1616 P1	1 0	N	-C(=0)-O-	M153	S
1617 P1	1 0	N	Single bond	M148	S
1618 P1	1 0	N	Single bond	M158	S
1619 P1	1 1	N	-C(=O)-	M154	S
1620 P1	1 1	N	-C(=0)-	M160	S
1621 P1	1 1	N	-C(=O)-NH-	M155	s

Table 43

Compound No.	G⁰	n	A	$(A) - G^1 - (R^3)$	$-R^3-R^4-G^2$	х
1622	P11	1	N	-C(=0)-NH-S(=0) ₂ -	M151	0
1623	P11	1	N	-C(=O)-O-	M146	S
1624	P11	1	N	-C(=O)-O-	M159	s
1625	P11	1	N	-C(=S)-NH-	M150	s
1626	P11	1	N	Single bond	M161	0
1627	P11	2	N	-C(=O)-	M147	S
1628	P11	2	N	-C(=O)-	M157	S
1629	P11	2	N	Single bond	M152	s
1630	P12	0	N	-C(=O)-	M173	s
1631	P12	0	N	-C(=O)-NH-	M168	S
1632	P12	1	N	-C(=O)-NH-	M175	S
1633	P12	1	N	$-C(=0)-NH-S(=0)_2-$	M164	S
1634	P12	1	N	-C(=O)-O-	M166	S
1635	P12	1	N	-C(=S)-NH-	M176	S
1636	P12	1	N	Single bond	M165	s
1637	P12	1	N	Single bond	M169	s
1638	P12	1	N	Single bond	M174	s
1639	P12	1	N	Single bond	M171	0
1640	P12	2	N	-C(=O)-	M167	s
1641	P12	2	N	-C(=O)-NH-	M162	s
1642	P12	2	N	-C(=O)-O-	M172	ន
1643	P13	0	N	-C(=O)-O-	M178	s
1644	P13	0	N	-C(=S)-NH-	M188	S
1645	P13	0	N	Single bond	M183	S
1646	P13	1	N	-C(=O)-	M179	S
1647	P13	1	N	-C(=O)-	M185	S
1648	P13	1	N	-C(=O)-NH-	M180	0
1649	P13	1	N	$-C(=0)-NH-S(=0)_2-$	M189	s
1650	P13	1	N	Single bond	M190	0
1651	P13	1	N	Single bond	M181	S
1652	P13	1	N	Single bond	M186	S
1653	P13	2	N	-C(=O)-	M182	s
1654	P13	2	N	-C(=O)-	M192	S
1655	P13	2	N	-C(=O)-NH-	M187	S
1656	P14	0	N	-C(=O)-	M195	S
1657	P14	0	N	-C(=O)-NH-	M193	S
1658	P14	0	N	-C(=O)-NH-	M206	S
1659	P14	0	N	-C(=S)-NH-	M201	S

Table 44

Compound No.	G°	n	A	(A)-G ¹ -(R ³)	$-R^3-R^4-G^2$	х
1660	P14	1	N	-C(=O)-	M208	S
1661	P14	1	N	-C(=O)-NH-S(=O) ₂ -	M202	S
1662	P14	1	N	-C(=O)-O-	M197	S
1663	P14	1	N	-C(=O)-O-	M204	S
1664	P14	1	N	Single bond	M194	S
1665	P14	1	N	Single bond	M203	S
1666	P14	1	N	Single bond	M207	S
1667	P14	1	N	Single bond	M196	S
1668	P14	2	N	-C(=O)-NH-	M200	0
1669	P14	2	N	Single bond	M199	S
1670	P15	0	N	-C(=O)-	M211	S
1671	P15	0	N	-C(=O)-	M221	s
1672	P15	0	N	Single bond	M216	s
1673	P15	1	N	-C(=O)-	M218	S
1674	P15	1	N	-C(=O)-	M224	S
1675	P15	1	N	-C(=O)-NH-	M213	S
1676	P15	1	N	-C(=O)-O-	M217	S
1677	P15	1	N	-C(=O)-O-	M223	S
1678	P15	1	N	-C(=S)-NH-	M214	S
1679	P15	1	N	Single bond	M209	S
1680	P15	1	N	Single bond	M222	S
1681	P15	2	N	$-C(=0)-NH-S(=0)_2-$	M215	s
1682	P15	2	N	-C(=O)-O-	M210	0
1683	P15	2	N	Single bond	M220	0
1684	P16	0	N	-C(=O)-O-	M230	0
1685	P16	0	N	Single bond	M235	s
1686	P16	1	N	-C(=O)-	M231	S
1687	P16	1	N	-C(=O)-	M237	s
1688	P16	1	N	-C(=O)-NH-	M232	s
1689	P16	1	N	$-C(=0)-NH-S(=0)_2-$	M228	S
1690	P16	1	N	-C(=O)-O-	M236	S
1691	P16	1	N	-C(=S)-NH-	M227	S
1692	P16	1	N	Single bond	M229	S
1693	P16	1	N	Single bond	M238	S
1694	P16	2	N	-C(=0)-	M234	S
1695	P16	2	N	-C (=O)-NH-	M239	S
1696	P16	2	N	Single bond	M225	S
1697	P17	0	N	-C(=O)-	M250	0

Table 45

Compound No.	G ^⁰	n	A	(A)-G ¹ -(R ³)	$-R^3-R^4-G^2$	х
1698	P17	0	N	-C(=O)-NH-	M245	S
1699	P17	0	N	Single bond	M255	S
1700	P17	1	N	-C(=O)-NH-	M252	S
1701	P17	1	N	-C(=0)-NH-S(=0) ₂ -	M241	S
1702	P17	1	N	-C(=O)-O-	M243	S
1703	P17	1	N	-C(=O)-O-	M256	S
1704	P17	1	N	-C(=S)-NH-	M253	S
1705	P17	1	N	Single bond	M242	S
1706	P17	1	N	Single bond	M246	S
1707	P17	1	N	Single bond	M251	S
1708	P17	1	N	Single bond	M248	S
1709	P17	2	N	-C(=O)-	M244	S
1710	P17	2	N	-C(=O)-O-	M249	S
1711	P18	0	N	-C(=O)-	M260	0
1712	P18	0	N	-C(=O)-NH-	M265	s
1713	P18	1	N	-C(=O)-	M270	0
1714	P18	1	N	-C(=O)-	M257	ន
1715	P18	1	N	-C(=O)-	M263	S
1716	P18	1	N	-C(=O)-NH-	M258	S
1717	P18	1	N	-C(=O)-NH-	M271	S
1718	P18	1	N	-C(=0)-NH-S(=0) ₂ -	M267	S
1719	P18	1	N	-C(=O)-O-	M262	s
1720	P18	1	N	-C(=S)-NH-	M266	S
1721	P18	2	N	-C(=O)-O-	M269	S
1722	P18	2	N	Single bond	M259	S
1723	P18	2	N	Single bond	M264	S
1724	P18	2	N	Single bond	M272	S
1725	P19	0	N	-C(=O)-	M273	S
1726	P19	0	N	-C(=O)-	M283	S
1727	P19	0	N	-C(=O)-NH-	M278	S
1728	P19	1	N	-C(=O)-	M276	S
1729	P19	1	N	-C(=O)-	M286	S
1730	P19	1	N	-C(=O)-NH-	M284	S
1731	P19	1	N	$-C(=0)-NH-S(=0)_2-$	M280	s
1732	P19	1	N	-C(=S)-NH-	M279	0
1733	P19	1	N	Single bond	M281	s
1734	P19	1	N	Single bond	M285	s
1735	P19	1	N	Single bond	M274	S

Table 46

Compound No.	G ⁰	n	А	$(A)-G^{1}-(R^{3})$	$-R^3-R^4-G^2$	х
1736	P19	2	N	Single bond	M277	S
1737	P19	2	N	Single bond	M287	s
1738	P20	0	N	-C(=O)-NH-S(=O) ₂ -	M293	S
1739	P20	0	N	-C(=O)-O-	M288	S
1740	P20	0	N	Single bond	M298	S
1741	P20	1	N	-C(=O)-	M299	0
1742	P20	1	N	-C(=O)-NH-	M291	S
1743	P20	1	N	-C(=O)-O-	M295	S
1744	P20	1	N	-C(=O)-O-	M301	S
1745	P20	1	N	Single bond	M290	s
1746	P20	1	N	Single bond	M294	s
1747	P20	1	N	Single bond	м300	S
1748	P20	2	N	-C(=O)-	M302	S
1749	P20	2	N	-C(=O)-NH-	M297	S
1750	P20	2	N	-C(=S)-NH-	M292	s
1751	P21	0	N	-C(=O)-	M316	s
1752	P21	0	N	-C(=O)-NH-	м308	S
1753	P21	0	N	-C(=S)-NH-	м309	0
1754	P21	0	N	Single bond	M315	S
1755	P21	1	N	-C(=O)-	м319	0
1756	P21	1	N	-C(=O)-	м304	S
1757	P21	1	N	-C(=O)-	м305	S
1758	P21	1	N	-C(=O)-	м306	S
1759	P21	1	N	-C(=O)-O-	M312	S
1760	P21	1	N	-C(=O)-O-	M318	s
1761	P21	1	N	Single bond	M311	S
1762	P21	2	N	-C(=O)-	M313	S
1763	P21	2	N	-C(=O)-NH-	M314	S
1764	P21	2	N	Single bond	M307	S
1765	P22	0	N	-C(=0)-	M329	0
1766	P22	0	N	-C(=0)-NH-S(=0) ₂ -	M323	S
1767	P22	0	N	-C(=S)-NH-	M322	S
1768	P22	0	N	Single bond	M330	S
1769	P22	1	N	-C(=0)-	M326	S
1770	P22	1	N	-C(=O)-	M332	S
1771	P22	1	N	-C(=0)-O-	M325	S
1772	P22	1	N	Single bond	M333	S
1773	P22	2	N	-C(=O)-NH-	M321	S

Table 47

Compound	G ^o	n	A	$(A)-G^{1}-(R^{3})$	$-R^3-R^4-G^2$	х
No. 1774	P22	2	N	-C(=O)-NH-	M327	S
1775	P22	2	N	-C(=O)-NH-	M334	S
1776	P22	2	N	-C(=S)-NH-	M335	S
1777	P22	2	N	Single bond	M320	S
1778	P22	2	N	Single bond	M328	S
1779	P23	0	N	-C(=O)-NH-S(=O) ₂ -	M336	s
1780	P23	0	ļ		M344	
			N	-C(=0)-O-		S
1781	P23	0	N	Single bond	M337	S
1782	P23	0	N	Single bond	M343	S
1783	P23	1	N	-C(=0)-	м339	0
1784	P23	1	N	-C(=0)-NH-	м340	S
1785	P23	1	N	-C(=O)-NH-	M347	S
1786	P23	1	N	-C(=0)-O-	M351	S
1787	P23	1	N	Single bond	M346	S
1788	P23	1	N	Single bond	M350	S
1789	P23	2	N	-C(=0)-	M342	S
1790	P23	2	N	$-C(=O)-NH-S(=O)_2-$	м349	0
1791	P23	2	N	-C(=S)-NH-	M348	S
1792	P23	2	N	Single bond	M341	S
1793	P24	0	N	-C(=O)-	M352	S
1794	P24	0	N	-C(=O)-	M355	S
1795	P24	0	N	-C(=O)-	M358	S
1796	P24	0	N	-C(=O)-	M360	S
1797	P24	0	N	-C(=O)-	M361	S
1798	P24	0	N	Single bond	M11	0
1799	P24	0	N	Single bond	M11	S
1800	P24	1	N	-C(=O)-	M359	S
1801	P24	1	N	-C(=O)-	M362	S
1802	P24	1	N	-C(=O)-	M365	S
1803	P24	1	N	-C(=O)-NH-	M353	S
1804	P24	1	N	Single bond	M356	S
1805	P24	2	N	-C(=O)-	M363	S
1806	P24	2	N	-C(=O)-O-	M357	0
1807	P24	2	N	Single bond	M354	S
1808	P25	0	N	-C(=O)-	M367	0
1809	P25	0	N	-C(=O)-	M369	S
1810	P25	0	N	-C(=O)-	M370	S
1811	P25	0	N	-C(=O)-	M373	S

Table 48

Compound No.	G ^o	n	A	$(A)-G^{1}-(R^{3})$	$-R^3-R^4-G^2$	Х
1812	P25	0	N	-C(=S)-NH-	м3	S
1813	P25	0	N	Single bond	M5	S
1814	P25	1	N	-C(=O)-	м368	S
1815	P25	1	N	-C(=O)-	M371	S
1816	P25	1	N	-C(=O)-	M7	S
1817	P25	1	N	-C(=0)-NH-S(=0) ₂ -	M4	0
1818	P25	1	N	Single bond	Ml	S
1819	P25	2	N	-C(=O)-	M366	S
1820	P25	2	N	-C(=O)-	M372	s
1821	P25	2	N	-C(=O)-NH-	M2	s
1822	P25	2	N	-C(=O)-NH-	м8	s
1823	P26	0	N	-C(=O)-	M25	S
1824	P26	0	N	-C(=O)-NH-	M17	S
1825	P26	0	N	-C(=O)-O-	M14	s
1826	P26	0	N	Single bond	M16	0
1827	P26	0	N	Single bond	M10	S
1828	P26	0	N	Single bond	M20	S
1829	P26	0	N	Single bond	M26	0
1830	P26	1	N	-C(=O)-	M12	s
1831	P26	1	N	-C(=O)-	M15	s
1832	P26	1	N	-C(=O)-O-	M21	s
1833	P26	1	N	-C(=S)-NH-	M18	s
1834	P26	1	N	Single bond	M24	s
1835	P26	2	N	-C(=O)-	M22	S
1836	P26	2	N	-C(=O)-NH-S(=O) ₂ -	M19	S
1837	P26	2	N	Single bond	M13	s
1838	P27	0	N	-C(=O)-	M35	s
1839	P27	0	N	-C(=O)-	M41	s
1840	P27	0	N	-C(=O)-NH-S(=O) ₂ -	M32	S
1841	P27	0	N	-C(=O)-O-	M34	s
1842	P27	0	N	Single bond	M29	s
1843	P27	1	N	-C(=O)-NH-	м36	0
1844	P27	1	N	-C(=O)-NH-	M30	S
1845	P27	1	N	-C(=O)-O-	M27	S
1846	P27	1	N	Single bond	м33	S
1847	P27	1	N	Single bond	M42	S
1848	P27	1	N	Single bond	м39	S
1849	P27	2	N	-C(=O)-	M28	S

Table 49

Compound No.	G°	n	A	$(A)-G^{1}-(R^{3})$	$-R^3-R^4-G^2$	Х
1850	P27	2	N	-C(=O)-O-	M40	S
1851	P27	2	N	-C(=S)-NH-	M31	S
1852	P27	2	N	Single bond	M37	S
1853	P28	0	N	-C(=O)-NH-	M56	0
1854	P28	0	N	-C(=O)-NH-	M43	S
1855	P28	0	N	-C(=O)-O-	M47	S
1856	P28	0	N	-C(=S)-NH-	M44	S
1857	P28	0	N	Single bond	M50	S
1858	P28	0	N	Single bond	M52	S
1859	P28	1	N	-C(=O)-	M48	S
1860	P28	1	N	-C(=O)-	M51	S
1861	P28	1	N	-C(=O)-	M54	S
1862	P28	1	N	$-C(=0)-NH-S(=0)_2-$	M45	ß
1863	P28	1	N	-C(=S)-NH-	M57	S
1864	P28	2	N	-C(=O)-NH-	M49	S
1865	P28	2	N	$-C(=0)-NH-S(=0)_2-$	м58	S
1866	P28	2	N	Single bond	M46	0
1867	P28	2	N	Single bond	M55	S
1868	P29	0	N	-C(=O)-	M61	S
1869	P29	0	N	-C(=O)-	M74	S
1870	P29	0	N	-C(=O)-NH-	M62	S
1871	P29	0	N	$-C(=0)-NH-S(=0)_2-$	M71	S
1872	P29	0	N	-C(=S)-NH-	M70	S
1873	P29	0	N	Single bond	M59	S
1874	P29	0	N	Single bond	M65	S
1875	P29	1	N	-C(=O)-NH-	M69	S
1876	P29	1	N	-C(=O)-O-	M66	0
1877	P29	1	N	-C(=O)-O-	M60	S
1878	P29	1	N	Single bond	M63	s
1879	P29	1	N	Single bond	M72	S
1880	P29	2	Ŋ	-C(=O)-	M64	S
1881	P29	2	N	-C(=O)-	M67	S
1882	P29	2	N	-C(=O)-O-	M73	S
1883	P30	0	N	-C(=O)-	M77	S
1884	P30	0	N	-C(=O)-	M80	S
1885	P30	0	N	-C(=O)-NH-	M88	S
1886	P30	0	N	-C(=O)-O-	M86	0
1887	P30	0	N	-C(=O)-O-	M79	S

Table 50

Compound	. 0			1 2	3 4 3	
No.	G ^o	n	A	$(A)-G^{1}-(R^{3})$	$-R^3-R^4-G^2$	X
1888	P30	0	N	Single bond	м89	S
1889	P30	1	N	-C(=O)-	M87	S
1890	P30	1	N	-C(=O)-	м90	S
1891	P30	1	N	-C(=O)-NH-	M75	S
1892	P30	1	N	-C(=0)-NH-S(=0) ₂ -	M84	S
1893	P30	1	N	Single bond	M81	S
1894	P30	1	N	Single bond	M78	s
1895	P30	2	N	-C(=O)-NH-	M82	S
1896	P30	2	N	Single bond	M76	0
1897	P30	2	N	Single bond	М85	S
1898	P31	0	N	-C(=O)-	M106	0
1899	P31	0	N	-C(=O)-NH-	м95	S
1900	P31	0	N	-C(=O)-NH-	M101	S
1901	P31	0	N	$-C(=0)-NH-S(=0)_2-$	м97	s
1902	P31	0	N	-C(=O)-O-	M92	S
1903	P31	0	N	Single bond	M104	S
1904	P31	1	N	-C(=O)-	м93	s
1905	P31	1	N	-C(=O)-O-	м99	S
1906	P31	1	N	-C(=O)-O-	M105	s
1907	P31	1	N	-C(=S)-NH-	м96	0
1908	P31	1	N	Single bond	M102	S
1909	P31	2	N	-C(=O)-	M100	s
1910	P31	2	N	-C(=O)-	M103	s
1911	P31	2	N	Single bond	M94	s
1912	P31	2	N	Single bond	м91	S
1913	P32	0	N	-C(=O)-	M116	0
1914	P32	0	N	-C(=O)-	M119	S
1915	P32	0	N	$-C(=0)-NH-S(=0)_2-$	M110	S
1916	P32	0	N	-C(=S)-NH-	M122	S
1917	P32	0	N	Single bond	M107	s
1918	P32	0	N	Single bond	M115	S
1919	P32	1	N	-C(=O)-NH-	M108	S
1920	P32	1	N	-C (=O)-NH-	M114	S
1921	P32	1	N	Single bond	M111	S
1922	P32	1	N	Single bond	M120	S
1923	P32	1	N	Single bond	M117	S
1924	P32	2	N	-C(=O)-NH-	M121	S
1925	P32	2	N	-C(=0)-O-	M112	S

Table 51

Compound No.	G°	n	A	$(A) - G^1 - (R^3)$	$-R^3-R^4-G^2$	х
1926	P32	2	N	-C(=O)-O-	M118	S
1927	P32	2	N	-C(=S)-NH-	M109	S
1928	P33	0	N	-C(=O)-NH-	M134	S
1929	P33	0	N	-C(=O)-O-	M125	S
1930	P33	0	N	-C(=O)-O-	M131	S
1931	P33	0	N	Single bond	M124	S
1932	P33	0	N	Single bond	M133	S
1933	P33	0	N	Single bond	M137	S
1934	P33	1	N	-C(=O)-	M126	0
1935	P33	1	N	-C(=O)-	M129	S
1936	P33	11	N	-C(=0)-	M132	S
1937	P33	11	N	$-C(=0)-NH-S(=0)_2-$	M123	s
1938	P33	1	N	-C(=O)-O-	м138	S
1939	P33	1	N	-C(=S)-NH-	м135	S
1940	P33	2	N	-C(=O)-NH-	M127	S
1941	P33	2	N	$-C(=0)-NH-S(=0)_2-$	м136	0
1942	P33	2	N	Single bond	м130	s
1943	P34	0	N	-C(=O)-	M142	S
1944	P34	0	N	-C(=O)-	M152	s
1945	P34	0	N	-C(=O)-NH-	M140	S
1946	P34	0	N	$-C(=0)-NH-S(=0)_2-$	M149	S
1947	P34	0	N	-C(=O)-O-	M151	s
1948	P34	0	N	Single bond	M146	0
1949	P34	1	· N	-C(=O)-NH-	M147	S
1950	P34	1	N	-C(=O)-NH-	M153	S
1951	P34	1	N	-C(=O)-O-	M144	s
1952	P34	1	N	Single bond	M141	S
1953	P34	1	N	Single bond	M150	S
1954	P34	2	N	-C(=0)-	M139	S
1955	P34	2	N	-C(=0)-	M145	S
1956	P34	2	N	-C(=S)-NH-	M148	S
1957	P34	2	N	Single bond	M154	S
1958	P35	0	N	-C(=O)-	М155	S
1959	P35	0	N	-C(=O)-NH-	M160	S
1960	P35	0	N	-C(=0)-O-	M164	S
1961	P35	0	N	-C(=O)-O-	M170	S
1962	P35	0	N	-C(=S)-NH-	M161	S
1963	P35	0	N	Single bond	M167	S

Table 52

Compound	G°		7	(7) (1 (73)	$-R^{3}-R^{4}-G^{2}$	v
No.	_	n	A	$(A) - G^1 - (R^3)$		Х
1964	P35	0	N	Single bond	M169	S
1965	P35	1	N	-C(=0)-	M165	S
1966	P35	1	N	-C(=O)-	M168	S
1967	P35	1	N	$-C(=O)-NH-S(=O)_2-$	M162	S
1968	P35	1	N	Single bond	M159	s
1969	P35	1	N	Single bond	M156	0
1970	P35	2	N	-C(=O)-NH-	M166	0
1971	P35	2	N	-C(=O)-O-	M157	S
1972	P35	2	N	Single bond	M163	S
1973	P36	0	N	-C(=O)-	M178	S
1974	P36	0	N	-C(=O)-NH-	M179	S
1975	P36	0	N	Single bond	M176	0
1976	P36	0	N	Single bond	M185	S
1977	P36	0	N	Single bond	M182	s
1978	P36	1	N	-C(=O)-	M171	S
1979	P36	1	N	-C(=O)-NH-	M186	0
1980	P36	1	N	-C(=O)-O-	M177	S
1981	P36	1	N	-C(=O)-O-	M183	s
1982	P36	1	N	-C(=S)-NH-	M174	S
1983	P36	1	N	Single bond	M180	S
1984	P36	2	N	-C(=O)-	M181	s
1985	P36	2	N	-C(=O)-	M184	S
1986	P36	2	N	-C(=0)-NH-S(=0) ₂ -	M175	s
1987	P36	2	N	Single bond	M172	s
1988	P37	0	N	-C(=O)-	M191	S
1989	P37	0	N	-C(=O)-	M194	S
1990	P37	0	N	-C(=O)-	M197	S
1991	P37	0	N	-C(=O)-O-	M196	0
1992	P37	0	N	-C(=S)-NH-	M187	S
1993	P37	0	N	-C(=S)-NH-	M200	S
1994	P37	1	N	-C(=O)-NH-	M192	S
1995	P37	1	N	-C(=O)-NH-S(=O) ₂ -	M201	s
1996	P37	1	N	Single bond	M189	S
1997	P37	1	N	Single bond	M198	S
1998	P37	1	N	Single bond	M195	S
1999	P37	2	N	-C(=O)-NH-	M199	S
2000	P37	2	N	-C(=O)-O-	M190	S
2001	P37	2	N	Single bond	M193	S

Table 53

Compound No.	G°	n	A	(A)-G ¹ -(R ³)	$-R^3-R^4-G^2$	х
2002	P37	2	N	Single bond	M202	S
2003	P38	0	N	-C(=O)-NH-	M205	S
2004	P38	0	N	-C (=O)-NH-	M212	S
2005	P38	0	N	$-C(=O)-NH-S(=O)_2-$	M214	S
2006	P38	0	N	-C(=0)-O-	M209	S
2007	P38	. 0	N	Single bond	M206	0
2008	P38	0	N	Single bond	M215	S
2009	P38	1	N	-C(=O)-	M204	S
2010	P38	1	N	-C(=O)-	M207	S
2011	P38	1	N	-C(=O)-	M210	S
2012	P38	1	N	-C(=O)-O-	M216	0
2013	P38	1	N	-C(=S)-NH-	M213	S
2014	P38	2	N	-C(=O)-	M217	S
2015	P38	2	N	Single bond	M211	S
2016	P38	2	N	Single bond	M208	S
2017	P39	0	N	-C(=O)-	M223	S
2018	P39	0	N	-C(=O)-	M230	S
2019	P39	0	N	$-C(=O)-NH-S(=O)_2-$	M227	S
2020	P39	0	N	Single bond	M224	S
2021	P39	0	N	Single bond	M232	S
2022	P39	0	N	Single bond	M221	S
2023	P39	1	N	-C(=O)-NH-	M225	S
2024	P39	1	N	-C(=O)-NH-	M231	S
2025	P39	1	N	-C(=O)-O-	M222	s
2026	P39	1	N	Single bond	M219	S
2027	P39	1	N	Single bond	M228	S
2028	P39	1	N	Single bond	M234	S
2029	P39	2	N	-C(=O)-	M220	S
2030	P39	2	N	-C(=O)-O-	M229	s
2031	P39	2	N	-C(=O)-O-	M235	S
2032	P39	. 2	N	-C(=S)-NH-	M226	0
2033	P40	0	N	-C(=O)-	M236	0
2034	P40	0	N	-C(=O)-NH-	M251	S
2035	P40	0	N	-C(=0)-O-	M242	S
2036	P40	0	N	-C(=S)-NH-	M239	S
2037	P40	0	N	Single bond	M241	s
2038	P40	0	N	Single bond	M245	S
2039	P40	0	N	Single bond	M250	S

Table 54

Compound No.	G°	n	A	$(A)-G^{1}-(R^{3})$	$-R^3-R^4-G^2$	х
2040	P40	1	N	-C(=O)-	M246	0
2041	P40	1	N	-C(=O)-	M243	s
2042	P40	1	N	-C(=O)-	M249	S
2043	P40	1	N	-C(=0)-NH-S(=0) ₂ -	M240	S
2044	P40	1	N	-C(=S)-NH-	M252	S
2045	P40	1	N	Single bond	M237	S
2046	P40	2	N	-C(=O)-NH-	M238	s
2047	P40	2	N	-C(=O)-NH-	M244	S
2048	P40	2	N	Single bond	M247	s
2049	P41	0	N	-C(=O)-	M259	S
2050	P41	0	N	-C(=O)-	M269	s
2051	P41	0	N	-C(=O)-NH-	M257	s
2052	P41	0	N	-C(=0)-NH-S(=0) ₂ -	M266	0
2053	P41	0	N	-C(=O)-O-	M268	s
2054	P41	0	N	Single bond	M254	s
2055	P41	0	N	Single bond	M260	s
2056	P41	1	N	-C(=O)-NH-	M264	S
2057	P41	1	N	-C(=O)-O-	M255	ន
2058	P41	1	N	-C(=O)-O-	M261	S
2059	P41	1	N	Single bond	M258	S
2060	P41	1	N	Single bond	M267	S
2061	P41	2	N	-C(=O)-	M256	0
2062	P41	2	N	-C(=O)-	M262	S
2063	P41	2	N	$-C(=0)-NH-S(=0)_2-$	M253	S
2064	P41	2	N	-C(=S)-NH-	M265	S
2065	P42	0	N	-C(=O)-	M272	S
2066	P42	0	N	-C(=O)-	M275	S
2067	P42	0	N	-C(=O)-NH-	M277	S
2068	P42	0	N	-C(=O)-O-	M281	S
2069	P42	0	N	Single bond	M284	S
2070	P42	0	N	Single bond	M286	0
2071	P42	1	N	-C(=O)-	M282	S
2072	P42	1	N	-C(=O)-	M285	S
2073	P42	1	N	-C(=O)-NH-	M270	S
2074	P42	1	N	$-C(=0)-NH-S(=0)_2-$	M279	ß
2075	P42	1	N	Single bond	M276	0
2076	P42	1	N	Single bond	M273	S
2077	P42	2	N	-C(=O)-NH-	M283	S

Table 55

Compound No.	G°	n	A	$(A) - G^1 - (R^3)$	$-R^3-R^4-G^2$	х
2078	P42	2	N	-C(=O)-O-	M274	S
2079	P42	2	N	Single bond	M271	s
2080	P42	2	N	Single bond	M280	S
2081	P43	0	N	-C(=O)-	M295	s
2082	P43	0	N	-C(=O)-NH-	M296	0
2083	P43	0	N	-C(=O)-NH-	M290	S
2084	P43	0	N	-C(=O)-O-	M287	S
2085	P43	0	N	Single bond	M302	S
2086	P43	0	N	Single bond	M299	s
2087	P43	1	N	-C(=O)-	M288	s
2088	P43	1	N	-C (=O)-NH-	M303	S
2089	P43	1	N	-C(=O)-O-	M294	S
2090	P43	1	N	-C(=O)-O-	M300	S
2091	P43	1	N	-C(=S)-NH-	M291	S
2092	P43	1	N	Single bond	M297	s
2093	P43	2	N	-C(=O)-	M298	s
2094	P43	2	N	-C(=O)-	M301	S
2095	P43	2	N	$-C(=O)-NH-S(=O)_2-$	M292	s
2096	P43	2	N	Single bond	M289	S
2097	P44	0	N	-C(=O)-	M311	S
2098	P44	0	N	-C(=O)-	M314	S
2099	P44	0	N	$-C(=O)-NH-S(=O)_2-$	м305	s
2100	P44	0	N	-C(=O)-O-	M313	s
2101	P44	0	N	-C(=O)-O-	M320	s
2102	P44	0	N	-C(=S)-NH-	M304	S
2103	P44	0	N	-C(=S)-NH-	M317	s
2104	P44	1	N	-C(=O)-NH-	M309	S
2105	P44	1	N	$-C(=O)-NH-S(=O)_2-$	м318	s
2106	P44	1	N	Single bond	M306	0
2107	P44	1	N	Single bond	M315	S
2108	P44	1	N	Single bond	M312	S
2109	P44	2	N	-C(=O)-NH-	M316	0
2110	P44	2	N	-C(=0)-O-	M307	S
2111	P44	2	N	Single bond	M310	S
2112	P44	2	N	Single bond	M319	S
2113	P45	0	N	-C(=O)-NH-	M322	S
2114	P45	0	N	-C(=O)-NH-	M329	S
2115	P45	0	N	-C(=O)-NH-	M335	S

Table 56

Compound No.	G ⁰	n	A	(A)-G ¹ -(R ³)	$-R^3-R^4-G^2$	х
2116	P45	0	N	-C(=O)-NH-S(=O) ₂ -	M331	S
2117	P45	0	N	-C(=O)-O-	M326	0
2118	P45	0	N	Single bond	M332	S
2119	P45	1	N	-C(=O)-	M321	S
2120	P45	1	N	-C(=O)-	M324	S
2121	P45	1	N	-C(=O)-	M327	S
2122	P45	1	N	-C(=O)-O-	M333	S
2123	P45	1	N	-C(=S)-NH-	M330	S
2124	P45	1	N	Single bond	M336	0
2125	P45	2	N	-C(=O)-	M334	s
2126	P45	2	N	-C(=O)-	M337	S
2127	P45	2	N	Single bond	M328	S
2128	P45	2	N	Single bond	M325	S
2129	P46	0	N	-C(=O)-	M340	S
2130	P46	0	N	-C(=O)-	M347	S
2131	P46	0	N	-C(=O)-	м350	S
2132	P46	0	N	-C(=0)-NH-S(=0) ₂ -	M344	s
2133	P46	0	N	-C(=S)-NH-	м356	0
2134	P46	0	N	Single bond	M341	S
2135	P46	0	N	Single bond	M349	S
2136	P46	1	N	-C(=O)-NH-	M342	s
2137	P46	1	N	-C(=O)-NH-	M348	S
2138	P46	1	N	-C(=O)-O-	м339	S
2139	P46	1	N	Single bond	M345	S
2140	P46	1	N	Single bond	M354	S
2141	P46	1	N	Single bond	M351	S
2142	P46	2	N	-C(=O)-NH-	M355	S
2143	P46	2	N	-C(=O)-O-	M346	0
2144	P46	2	N	-C(=O)-O-	M352	S
2145	P46	2	N	-C(=S)-NH-	M343	S
2146	P47	0	N	-C(=O)-O-	M359	S
2147	P47	0	N	-C(=0)-O-	M365	S
2148	P47	0	N	Single bond	м358	S
2149	P47	0	N	Single bond	M362	S
2150	P47	0	N	Single bond	M367	S
2151	P47	0	N	Single bond	M371	S
2152	P47	11	N	-C(=0)-	м366	0
2153	P47	1	N	-C(=O)-	м360	S

Table 57

Compound	~ 0		T .	(2) 61 (-3)	n3 n4 n2	
No.	G ⁰	n	A	$(A) - G^1 - (R^3)$	$-R^3-R^4-G^2$	Х
2154	P47	1	N	-C(=O)-	M363	S
2155	P47	1	N	$-C(=O)-NH-S(=O)_2-$	M357	S
2156	P47	1	N	-C(=O)-O-	M372	S
2157	P47	1	N	-C(=S)-NH-	M369	s
2158	P47	2	N	-C(=O)-	M373	S
2159	P47	2	N	-C(=O)-NH-	M361	S
2160	P47	2	N	$-C(=0)-NH-S(=0)_2-$	м370	S
2161	P47	2	N	Single bond	M364	S
2162	P2	1	CH	-C(=O)-O-	M16	S
2163	P2	1	CH	Single bond	M7	S
2164	P2	1	CH	Single bond	м9	S
2165	P3	0	СН	-C(=0)-O-	M23	S
2166	P3	1	СН	-C(=O)-	м30	S
2167	P4	1	CH	Single bond	M44	S
2168	P4	2	СН	-C(=O)-	M37	S
2169	P5	0	СН	-C(=O)-NH-	M58	ន
2170	P5	1	СН	-C(=O)-NH-	M51	0
2171	P5	ı	СН	Single bond	M65	ន
2172	P6	1	СН	-C(=O)-	M79	S
2173	P6	2	СН	-C(=S)-NH-	M72	ហ
2174	P7	0	СН	Single bond	м93	S
2175	P7	1	СН	$-C(=0)-NH-S(=0)_2-$	м86	S
2176	P8	1	CH	Single bond	M100	S
2177	P8	2	СН	-C(=O)-O-	M107	S
2178	P9	0	СН	-C(=O)-	M128	S
2179	P9	1	СН	-C(=O)-	M121	0
2180	P9	1	СН	-C(=O)-O-	M114	S
2181	P10	1	СН	Single bond	M135	S
2182	P10	2	СН	-C(=O)-NH-	M142	s
2183	P11	1	СН	-C(=O)-NH-	M149	S
2184	P11	1	СН	Single bond	M156	S
2185	P12	0	СН	-C(=S)-NH-	M163	S
2186	P12	1	CH	-C(=0)-	M170	S
2187	P12	2	СН	$-C(=0)-NH-S(=0)_{2}-$	M177	S
2188	P13	1	CH	-C(=0)-O-	M184	S
2189	P13	1	СН	-C(=0)-O-	M191	S
2190	P13	1	СН	Single bond	м9	0
2191	P14	1	CH	-C(=O)-	M198	S

Table 58

Compound			<u> </u>			
No.	G°	n	A	$(A) - G^1 - (R^3)$	$-R^3-R^4-G^2$	Х
2192	P14	2	СН	-C(=0)-	M205	S
2193	P15	1	СН	-C(=O)-NH-	M219	S
2194	P15	1	СН	Single bond	M212	S
2195	P16	0	CH	-C(=O)-NH-	M226	S
2196	P16	0	CH	-C(=S)-NH-	M240	0
2197	P16	1	CH	Single bond	M233	S
2198	P17	1	CH	-C (=O)-	M247	S
2199	P17	2	СН	$-C(=0)-NH-S(=0)_2-$	M254	S
2200	P18	1	CH	Single bond	M268	s
2201	P18	1	CH	Single bond	M261	s
2202	P19	1	СН	-C(=O)-O-	M275	s
2203	P19	1	СН	Single bond	м9	0
2204	P19	2	СН	-C(=O)-O-	M282	S
2205	P20	0	СН	-C(=O)-	M303	s
2206	P20	1	СН	-C(=O)-	M289	s
2207	P20	1	СН	-C(=0)-	M296	S
2208	P21	1	СН	$-C(=O)-NH-S(=O)_2-$	M310	S
2209	P21	1	СН	Single bond	M317	S
2210	P22	1	СН	-C(=O)-O-	M331	S
2211	P22	1	СН	Single bond	M324	S
2212	P23	1	СН	-C(=O)-	M345	S
2213	P23	1	СН	-C(=O)-O-	м338	ഗ
2214	P24	0	СН	-C(=O)-	M364	ß
2215	P25	0	СН	-C(=O)-O-	M6	S
2216	P26	0	СН	-C(=O)-NH-	M23	S
2217	P27	0	СН	-C(=O)-	м38	S
2218	P28	0	СН	-C(=O)-O-	M53	S
2219	P29	0	СН	Single bond	M68	S
2220	P30	0	СН	-C(=S)-NH-	M83	S
2221	P31	0	СН	Single bond	м98	s
2222	P32	0	СН	-C(=O)-	M113	S
2223	P33	0	СН	Single bond	M128	S
2224	P34	0	СН	Single bond	M143	s
2225	P35	0	СН	-C(=O)-	M158	S
2226	P36	0	СН	-C(=O)-NH-	M173	S
2227	P37	0	СН	-C(=O)-NH-S(=O) ₂ -	M188	S
2228	P38	0	СН	-C(=O)-NH-	M218	s
2229	P38	0	СН	-C(=0)-O-	M203	S

Table 59

Compound No.	G°	n	A	$(A)-G^{1}-(R^{3})$	$-R^3-R^4-G^2$	Х
2230	P39	0	СН	-C(=O)-	M233	S
2231	P40	0	СН	-C(=O)-O-	M248	S
2232	P41	0	СН	Single bond	M263	S
2233	P42	. 0	СН	-C(=S)-NH-	M278	S
2234	P43	0	СН	Single bond	M293	S
2235	P44	0	СН	-C(=O)-	м308	S
2236	P45	0	СН	Single bond	M323	S
2237	P46	0	СН	-C(=O)-	м353	S
2238	P46	0	СН	Single bond	м338	S
2239	P47	0	СН	-C(=O)-NH-	м368	S
2240	P1	1	N	-C(=S)-NH-	M110	S
2241	P1	1	N	-C(=S)-NH-	M27	S
2242	P1	1	N	Single bond	M72	S
2243	P1	0	N	-C(=O)-	M127	0
2244	P1	0	N	-C(=0)-	M128	0

In the above Formula (II), n, A, R^3 , R^4 , G^0 , G^1 and G^2 are as defined for n, A, R^3 , R^4 , G^0 , G^1 and G^2 , respectively, in the above Formula (I), and referred to as the same one illustrated in each of them.

5

10

15

20

25

30

In the above Formula (II), X¹ represents a chlorine atom, a bromine atom, an iodine atom, or an alkyl or arylsulfonyloxy group having one to eight carbons optionally substituted with a fluorine atom, a chlorine atom, or a bromine atom. When X1 represents a chlorine atom, a bromine atom, an iodine atom, or an alkyl or arylsulfonyloxy group having one to eight carbons optionally substituted with a fluorine atom, a chlorine atom, or a bromine atom, examples of said a chlorine atom, a bromine atom, an iodine atom, or an alkyl or arylsulfonyloxy group having one to eight carbons optionally substituted with a fluorine atom, a chlorine atom, or a bromine atom include methylsulfonyloxy, trifluoromethylsulfonyloxy, ethylsulfonyloxy, propylsulfonyloxy, butylsulfonyloxy, nonafluorobutylsulfonyloxy, t-butylsulfonyloxy, phenylsulfonyloxy, p-bromophenylsulfonyloxy, ptoluylsulfonyloxy, benzylsulfonyloxy, α phenetylsulfonyloxy, and β -phenetylsulfonyloxy. Preferred examples of said X1 include a chlorine atom, a bromine atom, an iodine atom, and a trifluoromethylsulfonyloxy group, with a chlorine atom and a trifluoromethylsulfonyloxy group being most preferred.

A pyrrolo[3,2-d]pyrimidine derivative represented by the above Formula (Ib) can be synthesized from a pyrrolo[3,2-d]pyrimidine derivative represented by the above Formula (II) according to the following synthetic method (A).

[Synthetic method (A)]

5

10

15

20

25

[wherein, n, A, R^3 , R^4 , G^0 , G^1 and G^2 are as defined for n, A, R^3 , R^4 , G^0 , G^1 and G^2 , respectively, in the above Formula (I). X^1 is as defined in the above Formula (II)].

Thus, by reacting a pyrrolo[3,2-d]pyrimidine derivative (II-A) of the present invention to thiourea, a pyrrolo[3,2-d]pyrimidine derivative (Ib-A) of the present invention can be synthesized. In the thioxo reaction with thiourea, a reaction may be effected using a solvent such as dioxane, ethanol, and 2-propanol at a reaction temperature of 0°C to 150°C.

A pyrrolo[3,2-d]pyrimidine derivative represented by the above Formula (II) can be synthesized from a pyrrolo[3,2-d]pyrimidine derivative represented by the above Formula (Ic) according to the following synthetic method (B).

[Synthetic method (B)]

$$G^{0}$$
 G^{0}
 G^{0

[wherein, n, A, R^3 , R^4 , G^0 , G^1 and G^2 are as defined for n, A, R^3 , R^4 , G^0 , G^1 and G^2 , respectively, in the above Formula (I). X^1 is as defined in the above Formula (II)].

Thus, when, for example, X¹ is a chlorine atom, a pyrrolo[3,2-d]pyrimidine derivative (Ic-B) of the present invention can be reacted to phosphorus oxychloride to synthesize a pyrrolo[3,2-d]pyrimidine derivative (II-B) of the present invention. In the chlorination reaction with phosphorus oxychloride, a standard condition for the chlorination reaction is followed, and for example in the presence or absence of triethylamine, 4-dimethylaminopyridine or dimethylamiline, and in the presence or absence of a solvent such as acetonitrile, reaction may be carried out at a temperature range of 0°C to 150°C.

5

10

25

30

Also, when, for example, X¹ is a
trifluoromethylsulfonyloxy group, a pyrrolo[3,2d]pyrimidine derivative (Ic-B) of the present invention
can be reacted to trifluoromethane sulfonic acid
anhydride to synthesize a pyrrolo[3,2-d]pyrimidine
derivative (II-B) of the present invention. In a
trifluoromethyl sulfonyloxy reaction with
trifluoromethane sulfonic acid anhydride, reaction may be
carried out together with an amine such as pyridine and
triethylamine in the presence or absence of a solvent
such as dichloromethane at a temperature range of 0°C to
100°C.

Among the pyrrolo[3,2-d]pyrimidine derivatives represented by the above Formula (Ib), a pyrrolo[3,2-d]pyrimidine derivative represented by the above Formula (Ib-C) can be synthesized from a pyrrolo[3,2-d]pyrimidine derivative represented by the above Formula (Ic-C) according to the following synthetic method (C).

[Synthetic method (C)]

5

10

15

20

$$G^{0}$$
 G^{0}
 G^{0

[wherein, n, A, R^3 , R^4 , G^0 , G^1 and G^2 are as defined for n, A, R^3 , R^4 , G^0 , G^1 and G^2 , respectively, in the above Formula (I)].

Thus, a pyrrolo[3,2-d]pyrimidine derivative (Ic-C) of the present invention may be reacted to a Lawesson reagent described below to synthesize a pyrrolo[3,2-d]pyrimidine derivative (Ib-C) of the present invention.

Reaction with a Lawesson reagent etc. may be carried out in an inert solvent such as benzene, toluene, and xylene at a temperature range of 10°C to 120°C for 1-24 hours to prepare a pyrrolo[3,2-d]pyrimidine derivative (Ib-C) of the present invention. Preferably, reaction is carried out in toluene at a temperature range of 60°C to 120°C for 2-12 hours.

Among the pyrrolo[3,2-d]pyrimidine derivatives represented by the above Formula (Ic), a pyrrolo[3,2-d]pyrimidine derivative represented by the above Formula (Ic-D2) can be synthesized from a pyrrolo[3,2-d]pyrimidine derivative represented by the above Formula (Ic-D1) according to the following synthetic method (D).

[Synthetic method (D)]

5

10

15

20

25

30

$$G^{0}$$
 G^{0}
 G^{0

[wherein, n, A, R^3 , R^4 , G^0 , G^1 and G^2 are as defined for n, A, R^3 , R^4 , G^0 , G^1 and G^2 , respectively, in the above Formula (I)].

Thus, a pyrrolo[3,2-d]pyrimidine derivative (Ic-D1) of the present invention may be reacted to a variety of electrophilic reagents to prepare a pyrrolo[3,2-d]pyrimidine derivative (Ic-DII) of the present invention.

When a carboxylic acid anhydride, a carboxylic acid chloride, a sulfonic acid chloride, an isocyanate, or an isothiocyanate is used as an electrophilic reagent, a pyrrolo[3,2-d]pyrimidine derivative (Ic-DI) of the present invention may be reacted in a solvent such as dichloromethane, chloroform, tetrahydrofuran, and dimethylformamide in the presence of pyridine, triethylamine, diisopropylethylamine etc. at a temperature range of 0°C to 60°C for 1-24 hours to prepare a pyrrolo[3,2-d]pyrimidine derivative (Ic-DII) of the present invention. Preferably, dichloromethane, tetrahydrofuran etc. as a solvent and triethylamine as a base are used, and reacted at a temperature range of 20°C to 60°C for 2-12 hours.

Also, when an aldehyde is used as an electrophilic reagent, and a reductive alkylation reaction is carried out to introduce a group represented by $G^2-R^4-R^3-G^1-$, a pyrrolo[3,2-d]pyrimidine derivative (Ic-DII) of the present invention may be reacted in a suitable solvent or a solvent mixture such as water, methanol, ethanol, 2-

propanol, acetic acid, methyl orthoformate, dichloromethane, and chloroform, using sodium triacetoxy borohydride, sodium cyanoborohydride, sodium tetrahydroborate as a reducing agent at a temperature range of 0°C to 60°C for 1-24 hours to prepare a pyrrolo[3,2-d]pyrimidine derivative (Ic-DII) of the present invention. Preferably, methanol, methyl orthoformate, acetic acid, dichloromethane, or a solvent mixture thereof is used, and reacted at a temperature range of 20°C to 60°C for 2-12 hours.

5

10

15

20

Also, when an alkylhalide is used as an electrophilic reagent, a pyrrolo[3,2-d]pyrimidine derivative (Ic-DI) of the present invention may be mixed with a variety of an alkyl chloride, an alkyl bromide, or an alkyl iodide in the presence of an organic or inorganic base, in a solvent such as dichloromethane, chloroform, acetone, and acetonitrile, and reacted at a temperature range of 0°C to 80°C for 1-24 hours to prepare a pyrrolo[3,2-d]pyrimidine derivative (Ic-DII) of the present invention. Preferably, triethylamine or potassium carbonate is used as a base and reacted in a solvent such as acetonitrile or acetone at a temperature range of 40°C to 80°C for 2-12 hours.

When a pyrrolo[3,2-d]pyrimidine derivative (Ic-DI) 25 of the present invention and a carboxylic acid are reacted to prepare an amide compound, condensing agents known to those skilled in the art such as dicyclohexyl carbodiimide, disopropyl carbodiimide, carbonyl diimidazole, hydrochloric acid 1-ethyl-3-(3-30 dimethylaminopropyl)carbodiimide hydrochloride and the like may be used, and by reacting in a solvent such as dichloromethane, chloroform, tetrahydrofuran, dioxane, and dimethylformamide at a temperature range of 0°C to 60°C for 1-24 hours, a pyrrolo[3,2-d]pyrimidine 35 derivative (Ic-DII) of the present invention can be prepared. Preferably, 1-ethyl-3-(3dimethylaminopropyl)carbodiimide hydrochloride is used as a condensing agent, and reacted in dichloromethane or dimethylformamide at a temperature range of 20°C to 40°C for 2-12 hours. The resulting pyrrolo[3,2-d]pyrimidine derivative (1c-DII) is purified by a method known to those skilled in the art such as silica gel chromatography, recrystalization, or the like.

5

10

15

20

25

30

Among the pyrrolo[3,2-d]pyrimidine derivatives represented by the above Formula (Ib), a pyrrolo[3,2-d]pyrimidine derivative represented by the above Formula (Ib-EII) can be synthesized from a pyrrolo[3,2-d]pyrimidine derivative represented by the above Formula (Ib-EI) according to the following synthetic method (E). [Synthetic method (E)]

[wherein, n, R^3 , R^4 , G^0 , G^1 and G^2 are as defined for n, R^3 , R^4 , G^0 , G^1 and G^2 , respectively, in the above Formula (I)].

Thus, a pyrrolo[3,2-d]pyrimidine derivative (Ia-EI) of the present invention may be reacted to a variety of electrophilic reagents to synthesize a pyrrolo[3,2-d]pyrimidine derivative (Ib-EII) of the present invention. Such a synthetic method is similar to that described in the above synthetic method (D) except that the alkylation reaction using an alkylhalide is omitted.

Among the pyrrolo[3,2-d]pyrimidine derivatives represented by the above Formula (Ic), a pyrrolo[3,2-d]pyrimidine derivative represented by the above Formula (Ic-F) can be synthesized from a pyrrolo[3,2-d]pyrimidine derivative represented by the above Formula (IV-F) according to the following synthetic method (F).

[Synthetic method (F)]

5

10

15

20

25

30

$$OCH_3$$
 OCH_3
 OCH_3
 OCH_3
 OCH_2
 OCH_3
 OCH_3
 OCH_2
 OCH_3
 OCH_3
 OCH_3
 OCH_2
 OCH_3
 OCH_3
 OCH_3
 OCH_2
 OCH_3
 OCH_3
 OCH_3
 OCH_2
 OCH_3
 $OCH_$

[wherein, n, A, R^3 , R^4 , G^0 , G^1 and G^2 are as defined for n, A, R^3 , R^4 , G^0 , G^1 and G^2 , respectively, in the above Formula (I)].

Thus, by subjecting a pyrrole derivative represented by (IV-F) to a cyclization reaction using a formamidine or formamide, a pyrrolo[3,2-d]pyrimidine derivative (Ic-F) of the present invention can be synthesized.

For the cyclization reaction of the pyrrole derivative (IV-F) using formamidine, formamidine acetate, for example, is reacted in a solvent such as 2-propanol at a temperature range of 0°C to 150°C. In a cyclization reaction using formamide, reaction can be attained by reacting formamide in the presence of, for example, an alkoxydic base such as sodium methoxide, sodium ethoxide, and potassium t-butoxide. As an organic solvent used in the reaction, there can be mentioned polar solvents such as formamide, methanol, ethanol, acetonitrile, dimethylformamide, and dimethoxyethane. Preferably formamide and methanol are used. This reaction may be carried out at a temperature range of 20°C to 100°C for 1-24 hours. Preferably reaction is carried out at a temperature range of 50°C to 80°C for 1-12 hours.

When the pyrrolo[3,2-d]pyrimidine derivatives of the present invention synthesized by the above synthetic methods (A), (B), (C), (D), (E), and (F) have an easily convertible substituent such as an alkoxycarbonyl group, an acyloxy group, and an aromatic nitro group, they can be converted to pyrrolo[3,2-d]pyrimidine derivatives of the present invention having a carboxyl group, a hydroxy

group, or an amino group, respectively, by subjecting them to a reaction known to those skilled in the art.

5

10

15

20

25

30

35

When the pyrrolo[3,2-d]pyrimidine derivatives of the present invention synthesized by the above synthetic methods (A), (B), (C), (D), (E), and (F) have a carboxyl group, they can be converted to pyrrolo[3,2-d]pyrimidine derivatives of the present invention having an alkoxycarbonyl group, a carbamoyl group, a N-alkylcarbamoyl group, and N-alkoxycarbamoyl group or the like, by subjecting them to a condensation reaction known to those skilled in the art.

When the pyrrolo[3,2-d]pyrimidine derivatives of the present invention synthesized by the above synthetic methods (A), (B), (C), (D), (E), and (F) have an amino group, they can be converted to pyrrolo[3,2-d]pyrimidine derivatives of the present invention having an acylamino group, an alkylsulfonylamino group or the like, by subjecting them to a condensation reaction known to those skilled in the art.

When they have an amino group, reductive alkylation known to those skilled in the art may be effected to convert to pyrrolo[3,2-d]pyrimidine derivatives of the present invention having a monoalkylamino group or a dialkylamino group.

When the pyrrolo[3,2-d]pyrimidine derivatives of the present invention synthesized by the above synthetic methods (A), (B), (C), (D), (E), and (F) have a hydroxy group, they can be converted to pyrrolo[3,2-d]pyrimidine derivatives of the present invention having an acyloxy group by subjecting them to a condensation reaction known to those skilled in the art.

When the pyrrolo[3,2-d]pyrimidine derivatives of the present invention synthesized by the above synthetic methods (A), (B), (C), (D), (E), and (F) have a formyl group, they can be converted to pyrrolo[3,2-d]pyrimidine derivatives of the present invention having an alkylmethyl group by subjecting them to reductive

alkylation known to those skilled in the art.

In the synthetic method of the pyrrolo[3,2-d]pyrimidine derivatives represented by the above Formula (I), a pyrrole derivative for use as a starting material represented by the above Formula (IV-F) can be synthesized from a lactam derivative represented by the following Formula (VII-G) according to a synthetic method (G).

[Synthetic method (G)]

5

10

15

20

25

30

$$G^0$$
 G^0
 G^0

[wherein, n, A, and G° are as defined for n, A, and G° , respectively, in the above Formula (I). R represents a group that is convertible to $G^{2}-R^{4}-R^{3}-G^{1}$].

Thus, by methylating a lactam derivative (VII-G), an intermediate (VI-G) can be obtained, which is then reacted to malononitrile to obtain a malonomethyl derivative (V-G). This is reacted to methyl bromoacetate in the presence of a base, and further cyclized to synthesize a pyrrole derivative (IV-G).

As an example of a methylation reaction of a lactam derivative (VII-G) in the synthetic method (G), there can be mentioned, but not limited to, a method in which a methylation agent such as dimethyl sulfate and trimethyl tetrafluoroborate oxonium is used in a suitable organic solvent or an organic solvent mixture to methylate the oxygen atom of the carbonyl group. Preferably, using trimethyl tetrafluoroborate oxonium in a solvent such as dichloromethane, chloroform and dichloroethane, the reaction is stirred at a temperature range of -20°C to 80°C for 1-24 hours, followed by treatment with a suitable aqueous base to obtain an intermediate (VI-G).

The aqueous base used herein is an aqueous solution of sodium carbonate, an aqueous solution of phosphate carbonate, an aqueous solution of sodium bicarbonate, an aqueous solution of potassium bicarbonate, or the like.

5

10

15

20

25

30

35

Then, malononitrile is reacted to the intermediate (VI-G) to obtain a malonomethylene derivative (V-G). The reaction proceeds by dissolving the intermediate (VI-G) and malononitrile in a suitable organic solvent such as methanol, ethanol, 2-propanol, benzene, toluene, and xylene, and stirring at a temperature range of 0°C to 130°C for 1-24 hours. A preferred example of a reaction condition include a system in which ethanol, toluene or a mixture thereof is used and stirred at a temperature range of 25°C to 80°C for 1-24 hours. The malonomethylene derivative (V-G) formed in this reaction is preferably purified by a method known to those skilled in the art such as silica gel chromatography or recrystalization.

The malonomethylene derivative (V-G) is then is reacted to methyl bromoacetate in a suitable polar organic solvent and in the presence of a suitable base to convert it to a pyrrole derivative (IV-G). As a suitable organic solvent, there can be mentioned acetone, acetonitrile, methylethylketone, tetrahydrofuran, or dimethylformamide, with acetone or acetonitrile being preferred. As a base, there can be mentioned an organic base such as pyridine, triethylamine, or diisopropylethylamine, and inorganic bases such as sodium carbonate, potassium carbonate, cesium carbonate, sodium bicarbonate, potassium bicarbonate or the like, with potassium carbonate or cesium carbonate being preferably The reaction proceeds at a temperature range of 20°C to 100°C for 1-24 hours. Preferably, reaction is carried out at a temperature range of 50°C to 80°C for 3-12 hours.

The thus obtained pyrrolo[3,2-d]pyrimidine derivative represented by the above Formula (I) has an

effect of inhibiting GSK-3 activity, and thus can be used as a GSK-3 activity inhibitor as a clinically applicable preventive and/or therapeutic agent. As diseases that can be treated by GSK-3 activity inhibitors, there can be mentioned diabetes mellitus, diabetic complications, atherosclerosis, hypertension, obesity, Syndrome X, Alzheimer's disease, neurodegenerative diseases (AIDS encephalopathy, Huntington's disease, Parkinson's disease, cerebral ischemia), manic-depressive psychosis, traumatic encephalopathy, alopecia, inflammatory diseases, cancer, and immune deficiency.

5

10

15

20

25

30

35

Also, a pyrrolo[3,2-d]pyrimidine derivative represented by Formula (I) and a pharmaceutically acceptable salt thereof may be rendered a pharmaceutical composition together with a pharmaceutically acceptable carrier and/or diluent. The pharmaceutical composition may be formulated into various dosage forms, and administered orally or parenterally. As parenteral administration, there can be mentioned intravenous, subcutaneous, intramuscular, transdermal, and rectal administration.

Dosage forms for oral administration include, for example, tablets, pills, granules, powders, liquids, suspensions, syrups, and capsules.

As used herein tablets may be formed according to a standard method using a pharmaceutically acceptable carrier such as an excipient, a binder, a disintegrant, and the like. Pills, granules, and powders can also be formed according to a standard method using an excipient as for tablets. Methods of forming liquids, suspensions, and syrups are standard methods that use a glycerin ester, an alcohol, water, a vegetative oil, and the like. Capsules may be formed by filling granules, powders, or liquids into a capsule of gelatin etc. and by shaping it.

In the case of intravenous, subcutaneous, and intramuscular administration, agents for parenteral administration may be administered as injections. For

injections, there are cases in which they are dissolved in a water-soluble liquid such as physiological saline, or cases in which they are dissolved in a non-aqueous liquid comprising an organic ester such as propylene glycol, polyethylene glycol, and a vegetative oil.

5

10

15

20

25

30

35

In the case of transdermal administration, dosage forms such as ointments and creams may be used.

Ointments may be mixed with lipids or vaselin, and creams may be mixed with emulsifying agents, and then formed.

To these various pharmaceutical formulations, pharmaceutically acceptable carriers such as an isotonizing agent, a preservative, a disinfectant, a wetting agent, a buffering agent, an emulsifying agent, a dispersant, and a stabilizer can be added as desired.

Also, these pharmaceutical formulations may be sterilized, as desired, by filtration with a bacteria-retaining filter and by the blending of a bacteriocidal agent.

The dosage of pyrrolo[3,2-d]pyrimidine derivatives represented by the above Formula (I) and pharmaceutically acceptable salt thereof may vary with the type of diseases, the administration route, conditions, age, sex, body weight etc. of the patient, but generally it is about 1-500 mg/day/person for oral administration. For parenteral administration such as intravenous, subcutaneous, and transdermal administration, it is about 0.1-100mg/day/person.
Examples

The present invention will now be illustrated with reference to the following examples, but it should be noted that the present invention is not limited to them in any way. For the data on the compounds synthesized in the following Examples, "HPLC retention time" indicates the retention time (unit: minutes) of the compound under the following analytical condition of HPLC analysis. High performance liquid chromatography (HPLC) analytical condition:

System: Hewlett-Packard 1100 HPLC

Column: Cadenza CD-C18 (manufactured by imtakt) 100

x 4.6 mm

5

20

25

30

Solvent: A: H₂O/acetonitrile = 95/5

(0.05% trifluoroacetic acid)

B: $H_2O/acetonitrile = 5/95$

(0.05% trifluoroacetic acid)

Flow rate: 1.0 mL/min

Gradient:

10 0-1 min Solvent B 10% Solvent A 90%

1-14 min Solvent B 10% → 100% Solvent A 90% → 0%

14-16 min Solvent B 100% Solvent A 0%

[Reference Example 1]

Synthesis of tert-butyl 4-(hydroxyimino)piperidine

15 <u>carboxylate</u>

To a solution of tert-butyl 4-piperidinone carboxylate in ethanol (400 mL), hydroxylamine hydrochloride (29.34 g) and sodium acetate (34.64 g) were added, and stirred at 100°C for seven hours. The reaction mixture was cooled to room temperature, and the filtrate obtained by filtering off the solid was concentrated under reduced pressure. Water was added to the residue, and extracted twice with ethyl acetate. The combined organic layer was washed in a saturated aqueous solution of sodium bicarbonate and saturated saline, and then dried on anhydrous magnesium sulfate, and filtered. The solvent was evaporated under reduced pressure, dried under vacuum to obtain a title compound (quantitative yield) as a white solid compound.

 $^{1}H-NMR$ (400 MHz, DMSO-d₆) $\delta(ppm)$: 1.46 (s, 9H), 2.27 (m,

2H), 2.49 (m, 2H), 3.36-3.52 (m, 4H), 10.50 (s, 1H). [Reference Example 2]

Synthesis of tert-butyl 5-oxo-1,4-diazaperhydroepin carboxylate

5

10

15

20

To a solution of tert-butyl 4-(hydroxyimino)piperidinone carboxylate (32.70 g) in acetonitrile (250 mL), 2-chloro-1,3-dimethylimidazolynium chloride (30.96 g) was added, to which triethylamine (51 mL) was added dropwise at room temperature over 20 minutes. After dropwise addition, it was further stirred at room temperature for 30 minutes, and then water (50 mL) was added and stirred overnight. After the reaction mixture was diluted with ethyl acetate, the organic layer was separated. The organic layer was washed in 0.1 mol/L hydrochloric acid, a saturated aqueous solution of sodium bicarbonate and saturated saline in this order, and then dried on anhydrous magnesium sulfate, and filtered. solvent was evaporated under reduced pressure, dried under vacuum to obtain a crude title compound as a brown semi-solid compound. The product was used in the subsequent reaction without further purification. [Reference Example 3]

Synthesis of tert-butyl 3-oxopiperadine carboxylate

25

To a solution of piperadine-2-one (2.01 g) in dioxane (20 mL) and water (10 mL), an aqueous solution of

two normal sodium hydroxide (10 mL) was added at room temperature and stirred. Then, a solution of tert-butyl dicarbonate (5.45 g) in dioxane (5 mL) was slowly added dropwise, and stirred as it is at room temperature for eight hours. Water was poured to the reaction mixture, and extracted twice with 50 mL of ethyl acetate. After the organic layers were combined and washed in saturated saline, it was dried on anhydrous magnesium sulfate, and filtered. The solvent was evaporated under reduced pressure, dried under vacuum to obtain a title compound (3.41 g, yield 68%) as a white solid compound. The product thus obtained was used in the subsequent reaction without further purification.

ESI/MS m/e: 201.2 $(M^++H, C_9H_{16}N_2O_3)$

5

10

15

[Reference Example 4]

Synthesis of 1-benzyl-2H,3H,4H-benzo[f]1,4-diazepine-5one

Under a nitrogen atmosphere, to methyl 2-[(2-20 aminoethyl)benzylamino|benzoic acid dihydrochloride (250 mg) in a solvent mixture of toluene-tetrahydrofuran (1:1, 10 mL), a solution of trimethylaluminum in hexane (15%, 0.8 mL) was added dropwise at 0°C. After stirring for 30 minutes, the reaction mixture was heated to 60°C and 25 stirred for four hours. To the reaction mixture was added 20 mL of water and 20 mL of ethyl acetate, the organic layer was separated, and the aqueous layer was reextracted with 20 mL of ethyl acetate. After the organic layer was combined and dried, it was concentrated 30 under reduced pressure, and the residue thus obtained was purified on silica gel chromatography (solvent: hexane/ethyl acetate = $1:1 \rightarrow 1:1$) to obtain a title compound (220 mg, yield 100%). ESI/MS m/e: 253.4(M^++H , $C_{16}H_{16}N_2O$)

[Reference Example 5]

Synthesis of tert-butyl 5-methoxy-2H,3H,6H,7H-1,4-diazepine carboxylate

5

10

15

20

25

To a solution of tert-butyl 5-oxo-1,4-diazaperhydroepin carboxylate in dichloromethane (400 mL), trimethyl tetrafluoroborate oxonium (33.86 g) was added and stirred overnight at room temperature. To the reaction mixture were added an aqueous solution of saturated sodium bicarbonate (200 mL) and water (100 mL), and then after stirring for 20 minutes, the aqueous layer was removed and the organic layer was dried on anhydrous magnesium sulfate, and filtered. The solvent was evaporated under reduced pressure, and the residue dried under vacuum to obtain a crude title compound as a oily compound. The product thus obtained was used in the subsequent reaction without further purification. [Reference Example 6]

NC CN NH NN N H₃C CH₃

Synthesis of tert-butyl 5-(dicyanomethylene)-1,4-

diazepine carboxylate

The crude product of tert-butyl 5-methoxy-2H,3H,6H,7H-1,4-diazepine carboxylate was dissolved in ethanol (200 mL) and toluene (100 mL), to which malononitrile (30.25 g) was added and stirred at 90°C for four hours. The reaction mixture was cooled to room

temperature, and after the solvent was evaporated under reduced pressure, the residue was diluted with ethyl acetate and water, and the organic layer was separated. The aqueous layer was extracted twice with ethyl acetate. The combined organic layer was washed with saturate saline, and dried on anhydrous magnesium sulfate and filtered. The solvent was evaporated under reduced pressure, and the residue was purified on silica gel chromatography (hexane/ethyl acetate = 5/2) to obtain a brown solid. The solid was washed in a small amount of diethylether to obtain a title compound (7.32 g, yield 19% of three steps from Reference Example 2) as a white solid compound.

5

10

25

30

¹H-NMR (400 MHz, DMSO-d₆) δ (ppm): 1.40 (s, 9H), 2.83 (br, 2H), 3.43-3.52 (m, 6H), 9.06 (br, 1H). 13C-NMR (400 MHz, DMSO-d6): δ 27.93, 32.70, 41.84, 45.37, 48.38, 79.49, 115.35, 116.90, 154.00, 175.10. ESI/MS m/e: 263.4(M⁺+H, $C_{13}H_{18}N_4O_2$) [Reference Example 7]

20 <u>Synthesis of tert-butyl 3-(dicyanomethylene)-piperadine</u> <u>carboxylate</u>

To a solution of crude tert-butyl 3-oxopperadine carboxylate (400 mg) in dichloromethane (4 mL), trimethyl tetrafluoroborate oxonium (470 mg) was added and stirred overnight at room temperature. To the reaction mixture were added an aqueous solution of saturated sodium bicarbonate (5 mL) and water (5 mL), and then after stirring for two hours, the aqueous layer was removed, and the organic layer was dried on anhydrous magnesium sulfate, and filtered. The solvent was evaporated under reduced pressure, and the residue was dried under vacuum

to obtain crude tert-butyl 3-methoxy-1,2,5,6tetrahydropyradine carboxylate (230 mg) as a pale yellow oily compound. Malononitrile (100 mg) was added to a solution of this crude product in ethanol (5 mL), which was then stirred overnight at room temperature, and then the solvent was evaporated, and the residue was extracted twice with ethyl acetate and water. The combined organic layer was washed with saturated saline, dried on anhydrous sodium sulfate and filtered. The solvent was evaporated under reduced pressure to obtain a title compound (395 mg) as a brown solid. ESI/MS m/e: 249.2 (M^++H , $C_{12}H_{16}N_4O_2$)

[Reference Example 8]

Synthesis of [1-benzyl-2H, 3H, 4H-benzo[f]1,4-diazepine-5ylidenelmethane-1,1-dicarbonitrile

As in Reference Example 7, 1-benzyl-2H, 3H, 4Hbenzo[f]1,4-diazepine-5-one (100 mg) was used to synthesize a title compound (74 mg, yield 62%).

20 ESI/MS m/e: 301.1 (M^++H , $C_{19}H_{16}N_4$) [Reference Example 9]

> Synthesis of methyl 8-amino 3-[(tert-butyl)oxocarbonyl]-9-cyano-1H, 2H, 4H, 5H-pyrrolo[1,5-f]1, 4-diazaperhydroepin-7-carboxylate

25

5

10

15

To a solution of tert-butyl 5-(dicyanomethylene)-1,4-diazaperhydroepin carboxylate (5.74 g) in acetonitrile (120 mL), cesium carbonate (14.25 g) and

methyl bromoacetate (6.69 g) were added at room temperature, and then stirred at 90°C for five hours. After the reaction mixture was cooled to room temperature, the solid component was filtered off. After the solvent of the filtrate was evaporated under reduced pressure, water was added to the residue for dilution, and then extracted twice with ethyl acetate. The combined organic layer was washed with saturated saline, dried on anhydrous magnesium sulfate, and filtered. The solvent was evaporated under reduced pressure, and the residue was dried under vacuum. The resulting solid was washed in methanol to obtain a title compound (4.53 g, yield of 62%) as a pale yellow solid compound.

¹H-NMR (400 MHz, DMSO-d₆) δ (ppm): 1.39 (s, 9H), 2.90 (br, 2H), 3.52 (m, 4H), 3.72 (s, 3H), 4.55 (m, 2H), 5.80 (s, 1H).

ESI/MS m/e: 335.4 (M $^+$ +H, $C_{16}H_{22}N_4O_4$) [Reference Example 10]

5

10

15

20

25

30

Synthesis of methyl 7-amino-2-[(tert-butyl)oxycarbonyl]-8-cyanopyrrolo[1,5-a]piperadine-6-carboxylate

To a solution of tert-butyl 3-(dicyanomethylene)piperadine carboxylate (395 mg) in acetonitrile (5 mL),
potassium carbonate (350 mg) and methyl bromoacetate (325
mg) were added at room temperature, and then stirred at
90°C for five hours. After the reaction mixture was
cooled to room temperature, 10 mL of water was added to
the reaction mixture, and extracted twice with 20 mL of
ethyl acetate. The combined organic layer was washed
with saturated saline, dried on anhydrous magnesium
sulfate, and filtered. The solvent was evaporated under
reduced pressure, and the residue was dried under vacuum.
The resulting solid was washed in methanol to obtain a

crude title compound (390 mg) as a pale yellow solid compound. The product was used in the subsequent reaction without further purification.

ESI/MS m/e: 321.0 (M^++H , $C_{15}H_{20}N_4O_4$)

5 [Reference Example 11]

Synthesis of methyl 10-amino-11-cyano-5-benzyl-6H,7H-benzo[f]pyrrolo[1,5-d]1,4-diazepine-9-carboxylate

As in Reference Example 10, [1-benzyl-2H,3H,4H
benzo[f] 1,4-diazepine-5-ylidene]methane-1,1dicarbonitrile (60 mg) was used to synthesize a crude
title compound (83 mg)

ESI/MS m/e: 373.2 (M+H, C₂₂H₂₀N₄O₂)
[Working Example 1]

Synthesis of tert-butyl 11-cyano-4-oxo-3-hydro-

Synthesis of tert-butyl 11-cyano-4-oxo-3-hydro-6H,7H,9H,10H-1,4-diazaperhydroepino[4',5'-1,5]pyrrolo[3,2-d]pyrimidine-8-carboxylate (Compound No. 1)

To methyl 8-amino 3-[(tert-butyl)oxocarbonyl]-9cyano-1H,2H,4H,5H-pyrrolo[1,5-f]1,4-diazaperhydroepin-7carboxylate (8.06 g), formamide (70 mL) and a solution of
28% sodium methoxide in methanol (45 mL) were added, and
stirred at 90°C for three hours. After the reaction

mixture was cooled to room temperature, acetic acid was
slowly added dropwise for neutralization. The resulting
solid was filtered, and sequentially washed in water and
methanol to obtain a title compound (5.80 g, yield 73%)

as a white solid compound.

HPLC retention time = 7.7 (min)

 1 H-NMR (400 MHz, DMSO-d₆) δ (ppm): 1.41 (m, 9H), 3.12 (m,

2H), 3.60 (m, 2H), 3.65 (m, 2H), 4.84 (m, 2H), 7.96 (s,

5 1H), 12.41 (br, 1H).

ESI/MS m/e: 330.2 $(M^++H, C_{16}H_{19}N_5O_3)$

[Working Example 2]

Synthesis of tert-butyl 10-cyano-4-oxo-3-

hydropyrimidino[4',5'-4,5]pyrrolo[2,1-c]piperadine-8-

carboxylate (Compound No. 434)

8-cyanopyrrolo[1,5-a]piperadine-6-carboxylate (314 mg), formamide (5 mL) and a solution of 28% sodium methoxide in methanol (5 mL) were added, and stirred at 90°C for 12 hours. After the reaction mixture was cooled to room temperature and 25 mL of water was added, it was extracted twice with 20 mL of ethyl acetate. The organic layers were combined and washed with saturated saline, and then it was dried on anhydrous sodium sulfate and filtered. The solvent was evaporated under reduced pressure, and the residue was purified on silica gel chromatography (ethyl acetate) to obtain a title compound (80.6 mg) as a white solid compound.

¹H-NMR (400 MHz, DMSO-d₆) δ (ppm): 1.45 (m, 9H), 3.84 (t, J=5.1, 2H), 4.48 (t, J=5.1, 2H), 4.83 (s, 2H), 7.91 (s, 1H), 11.8 (brs, 1H) ESI/MS m/e: 316.1 (M⁺+H, C₁₅H₁₇N₅O₃) [Working Example 3]

30 Synthesis of 9-oxo-5-benzyl-10-hydro-6H,7Hbenzo[f]pyrimidino[5',4'-2,3]pyrrolo[1,5-d]1,4-diazepine13-carbonitrile (Compound No. 1798)

As in Working Example 2, methyl 10-amino-11-cyano-5-benzyl-6H,7H-benzo[f]pyrrolo[1,5-d]1,4-diazepine-9-carboxylate was used to obtain a title compound.

5 HPLC retention time = 9.7 (min) ESI/MS m/e = 368.2 (M^+ +H: $C_{22}H_{17}N_5O$) [Working Example 4]

10

15

20

25

30

Synthesis of 4-oxo-3-hydro-6H,7H,8H,9H,10H-1,4-diazaperhydroepino[1',7'-1,5]pyrrolo[3,2-d]pyrimidine-11-carboxynitrile (Compound No. 249) hydrochloride

After tert-butyl 11-cyano-4-oxo-3-hydro-6H,7H,9H,10H-1,4-diazaperhydroepino[4',5'-1,5]pyrrolo[3,2-d]pyrimidine-8-carboxylate (5.80 g) was dissolved in 1,4-dioxane (100 mL) and methanol (40 mL), 4 mol/L hydrochloric acid / 1,4-dioxane solution (20 mL) was added thereto, which was stirred at room temperature for two hours and then at 60°C for four hours. The reaction mixture was cooled to room temperature, and the solvent was evaporated under reduced pressure. The residue was dried under vacuum to obtain a title compound (quantitative yield) as a white solid compound.

¹H-NMR (400 MHz, DMSO-d₆) δ (ppm): 3.32-3.55 (m, 6H), 5.09 (br, 2H), 7.99 (s, 1H), 9.92 (br, 2H), 12.55 (br, 1H). ESI/MS m/e: 230.3 (M*+H, C₁₁H₁₁N₅O) [Working Example 5]

[Working Example 5]

Synthesis of 4-oxo-8-(2,2,2-trifluoroacetyl)-3-hydro6H,7H,9H,10H-1,4-diazaperhydroepino[1',7'1,5]pyrrolo[3,2-d]pyrimidine-11-carbonitrile (Compound No. 12)

To a solution of 4-oxo-3-hydro-6H,7H,8H,9H,10H-1,4diazaperhydroepino[1',7'-1,5]pyrrolo[3,2-d]pyrimidine-11carbonitrile hydrochloride (2.05 g) in tetrahydrofuran (40 mL), triethylamine (32 mL) was added and stirred. 5 Then, after slowly adding dropwise trifluoroacetic acid anhydride (16.2 q), it was stirred at room temperature for three hours. Methanol was added to the reaction mixture to stop the reaction, and then the solvent was 10 evaporated under reduced pressure. Ethyl acetate was added to the residue to separate the organic layer. After the organic layer was washed with water and saturated saline, it was dried on anhydrous magnesium sulfate, and filtered. The solvent was evaporated under 15 reduced pressure, and the resulting solid was washed with a small amount of methanol and diethylether, and The solvent of the filtrate was evaporated recovered. under reduced pressure, and the resulting solid was washed sequentially with a small amount of methanol and 20 diethylether, and recovered. The solvent of the filtrate was evaporated under reduced pressure, and the resulting solid was washed as described above, and was combined with the solid recovered earlier to obtain a title compound (1.75 g, yield 70%) as a white solid. $^{1}\text{H-NMR}$ (400 MHz, DMSO-d₆) δ (ppm): 3.24-3.32 (m, 2H), 3.84 (m, 2H), 3.93 (m, 2H), 5.00 (m, 2H), 7.98 (s, 1H), 12.48 (s, 1H).

25

ESI/MS m/e: 326.1 (M^++H , $C_{13}H_{10}F_3N_5O_2$) [Working Example 6]

30 Synthesis of 8-[(4-methylphenyl)carbonyl]4-oxo-3-hydro-6H, 7H, 9H, 10H-1, 4-diazaperhydroepino[1', 7'-5,1|pyrrolo[3,2-d]pyrimidine-11-carbonitrile (Compound

No. 50)

5

10

To a solution of 4-oxo-3-hydro-6H,7H,8H,9H,10H-1,4diazaperhydroepino[1',7'-1,5]pyrrolo[3,2-d]pyrimidine-11carbonitrile hydrochloride (25 mg) in N,Ndimethylformamide/dichloromethane/triethylamine = 10/10/1 (2 mL), 4-methylbenzoyl chloride (15 mg) was added, and stirred at room temperature for five hours. Methanol was added to the reaction mixture to stop the reaction, and then the solvent was evaporated under reduced pressure. The residue was purified on a preparative HPLC to obtain a title compound as a white solid compound. HPLC retention time = 7.0 (min)

ESI/MS m/e: 384.1 (M^++H , $C_{19}H_{17}N_5O_2$)

15 [Working Example 7]

> Synthesis of (11-cyano-4-oxo(3-hydro-6H,7H,9H,10H-1,4diazaperhydroepino[4',5'-1,5]pyrrolo[3,2-d]pyrimidine-8y1))-N-(4-methylphenyl)carboxamide (Compound No. 161)

20 To a solution of 4-oxo-3-hydro-6H,7H,8H,9H,10H-1,4diazaperhydroepino[1',7'-1,5]pyrrolo[3,2-d]pyrimidine-11carbonitrile hydrochloride (25 mg) in N,Ndimethylformamide/dichloromethane/triethylamine = 10/10/1 (2 mL), 4-methylphenylisocyanate (13 mg) was added, and 25 stirred at room temperature for five hours. Methanol was added to the reaction mixture to stop the reaction, and

then the solvent was evaporated under reduced pressure. The residue was purified on a preparative HPLC to obtain a title compound as a white solid compound.

¹H-NMR (400 MHz, DMSO-d₆) δ (ppm): 2.23 (s, 3H), 3.15 (m, 2H), 3.74 (m, 2H), 3.81 (m, 2H), 4.91 (m, 2H), 7.05 (d, 8.6 Hz, 2H), 7.35 (d, 8.5 Hz, 2H), 7.97 (s, 1H), 8.52 (s, 1H), 12.38 (br, 1H).

ESI/MS m/e: 363.3 $(M^++H, C_{19}H_{18}N_6O_2)$

HPLC retention time = 7.3 (min)

10 [Working Example 8]

Synthesis of 8-[(4-methoxyphenyl)sulfonyl]-4-oxo-3-hydro-6H,7H,9H,10H-1,4-diazaperhydroepino[1',7'-

1,5]pyrrolo[3,2-d]pyrimidine-11-carbonitrile (Compound No. 236)

15

20

To a solution of 4-oxo-3-hydro-6H,7H,8H,9H,10H-1,4-diazaperhydroepino[1',7'-1,5]pyrrolo[3,2-d]pyrimidine-11-carbonitrile hydrochloride (25 mg) in N,N-dimethylformamide/dichloromethane/triethylamine = 10/10/1 (2 mL), 4-methoxybenzenesulfonyl chloride (19 mg) was added, and stirred at room temperature for five hours. Methanol was added to the reaction mixture to stop the reaction, and then the solvent was evaporated under reduced pressure. The residue was purified on a

25 preparative HPLC to obtain a title compound as a white solid compound.

HPLC retention time = 7.6 (min)

¹H-NMR (400 MHz, DMSO-d₆) δ (ppm): 3.20 (m, 2H), 3.25-3.43 (m, 4H), 3.81 (m, 3H), 4.90 (m, 2H), 7.10 (d, 9.0 Hz, 2H), 7.70 (d

30 2H), 7.70 (d, 9.0 Hz, 2H), 7.93 (d, 3.7 Hz, 1H), 12.38 (br, 1H).

ESI/MS m/e: $400.2 (M^++H, C_{18}H_{17}N_5O_4S)$

[Working Example 9]

Synthesis of 4-oxo-8-benzyl-3-hydro-6H,7H,9H,10H-1,4-diazaperhydroepino[1',7'-1,5]pyrrolo[3,2-d]pyrimidine-11-carbonitrile (Compound No. 251)

5

10

15

20

25

30

After tert-butyl 11-cyano-4-oxo-3-hydro-6H,7H,9H,10H-1,4-diazaperhydroepino[4',5'-1,5]pyrrolo[3,2-d]pyrimidine-8-carboxylate (355 mg) was dissolved in 1,4-dioxane (10 mL) and methanol (10 mL), 4 mol/L hydrochloric acid / 1,4-dioxane solution (1 mL) was added thereto, which was stirred at room temperature for three hours. 4 mol/L hydrochloric acid / 1,4-dioxane solution (0.5 mL) was further added and stirred for five The solvent of the reaction mixture was evaporated under reduced pressure, and the residue was dried under vacuum. To a solution of the white solid compound obtained in methanol, Dowex (-OH form) was added till the liquid becomes neutral, and stirred at room temperature for desalting. From the reaction mixture, the solid component was filtered off, and the solvent was evaporated under reduced pressure, and the residue was The white solid compound obtained dried under vacuum. (309 mg) was dissolved in N,N-dimethylformamide (5 mL) and tetrahydrofuran (10 mL), to which trimethyl orthoformate (1 mL) and benzaldehyde (286 mg) were added and stirred at room temperature. To this reaction mixture was added triacetoxy sodium borohydride (2.29 g) and stirred at room temperature for two hours. Furthermore, benzaldehyde (286 mg) was added and stirred overnight at room temperature. Methanol was added to the reaction mixture to stop the reaction, and then the solvent was evaporated under reduced pressure. residue was diluted with ethyl acetate and saturated

sodium bicarbonate, and after separating the organic layer it was extracted twice with ethyl acetate. The combined organic layer was washed with saturated saline, and dried on anhydrous magnesium sulfate, and filtered. The solvent was evaporated under reduced pressure and the residue was purified on silica gel chromatography (ethyl acetate) to obtain a title compound (193 mg, yield 45%) as a white solid compound.

HPLC retention time = 4.0 (min)

10 ESI/MS m/e: 320.2 (M⁺+H, $C_{18}H_{17}N_5O$)

[Working Example 10]

Synthesis of 4-chloro-8-(2,2,2-trifluoroacetyl)-6H,7H,9H,10H-1,4-diazaperhydroepino[1',7'-

1,5]pyrrolo[3,2-d]pyrimidine-11-carbonitrile

15

20

25

5

To a solution of 4-oxo-8-(2,2,2-trifluoroacetyl)-3-hydro-6H,7H,9H,10H-1,4-diazaperhydroepino[1',7'-1,5]pyrrolo[3,2-d]pyrimidine-11-carbonitrile (2.02 g) in acetonitrile (50 mL) were added N,N-dimethylaniline (0.752 g) and phosphorus oxychloride (19.03 g), and stirred at 100°C for four hours. The reaction mixture was cooled to room temperature, and the solvent was evaporated under reduced pressure. The residue was dried under vacuum to obtain a crude title compound as a green solid compound. The product was used in the subsequent reaction without further purification.

ESI/MS m/e: 344.1 (M^++H , $C_{13}H_9C_1F_3N_5O$)

[Working Example 11]

Synthesis of 4-thioxo-8-(2,2,2-trifluoroacetyl)-3-hydro-

30 <u>6H,7H,9H,10H-1,4-diazaperhydroepino[1',7'-</u>

1,5]pyrrolo[3,2-d]pyrimidine-11-carbonitrile (Compound No. 280)

After crude 4-chloro-8-(2,2,2-trifluoroacetyl)-6H, 7H, 9H, 10H-1, 4-diazaperhydroepino[1', 7'-1,5|pyrrolo[3,2-d]pyrimidine-11-carbonitrile was 5 dissolved in 1,4-dioxane (40 mL) and isopropanol (20 mL), thiourea (40 mL) was added thereto, which was stirred at 80°C for three hours. The reaction mixture was cooled to room temperature, and the solvent was evaporated under reduced pressure. The resulting solid was washed with 10 water, and further with ethanol and diethylether to recover the solid. These filtrates were combined and extracted with ethyl acetate. The organic layer was washed with saturated saline, dried on anhydrous magnesium sulfate, and filtered. The solvent was 15 evaporated under reduced pressure, and the resulting solid was washed with methanol to obtain a title compound (2.19 g, quantitative yield) as a white solid compound. HPLC retention time = 8.0 (min) 1 H-NMR (400 MHz, DMSO-d₆) δ (ppm): 3.32 (m, 2H), 3.89 (m, 20 4H), 5.70 (m, 2H), 8.17 (s, 1H), 13.78 (s, 1H). ESI/MS m/e: 342.1 (M^++H , $C_{13}H_{10}F_3N_5OS$) [Working Example 12] Synthesis of 5-benzyl-9-thioxo-10-hydro-6H,7H-

benzo[f]pyrimidino[5',4'-2,3]pyrrolo[1,5-d]1,4-diazepine-

13-carbonitrile (Compound No. 1799)

25

As in Working Example 11 and Working Example 12, 9-oxo-5-benzyl-10-hydro-6H,7H-benzo[f]pyrimidino[5',4'-2,3]pyrrolo[1,5-d]1,4-diazepine-13-carbonitrile was used

to obtain a title compound.

HPLC retention time = 11.4 (min)

ESI/MS m/e = 384.2 (M+H: C₂₂H₁₇N₅S)

[Working Example 13]

5 Synthesis of 4-thioxo-3-hydro-6H,7H,9H,10H-1,4-diazaperhydroepino[1',7'-1,5]pyrrolo[3,2-d]pyrimidine-11-carbonitrile (Compound No. 413)

To 4-thioxo-8-(2,2,2-trifluoroacetyl)-3-hydro6H,7H,9H,10H-1,4-diazaperhydroepino[1',7'1,5]pyrrolo[3,2-d]pyrimidine-11-carbonitrile (2.26 g) in methanol (50 mL), 2 mol/L ammonia/methanol solution (30 mL) was added and stirred at room temperature for four hours, and the solvent was evaporated under reduced
pressure. The residue was dried under vacuum to obtain a title compound (quantitative yield) as a white solid compound.

HPLC retention time = 1.502 (min)

 $^{1}\text{H-NMR}$ (400 MHz, DMSO-d₆) δ (ppm): 2.91 (br, 4H), 3.14 (m,

20 2H), 5.48 (br, 2H), 7.04 (br, 1H), 8.12 (s, 1H).

ESI/MS m/e: 246.3 (M^++H , $C_{11}H_{11}N_5OS$)

[Working Example 14]

Synthesis of 8-(phenylcarbonyl)-4-thioxo-3-hydro-

6H,7H,9H,10H-1,4-diazaperhydroepino[1',7'-

25 <u>5,1]pyrrolo[3,2-d]pyrimidine-11-carbonitrile (Compound</u>
No. 297)

To a solution (2 mL) of 4-oxo-3-hydro-6H,7H,8H,9H,10H-1,4-diazaperhydroepino[1',7'-

1,5]pyrrolo[3,2-d]pyrimidine-11-carbonitrile (25 mg) in N, N-dimethylformamide/dichloromethane/triethylamine = 10/10/1, benzoyl chloride (13 mg) was added, and stirred at room temperature for five hours. Methanol was added to the reaction mixture to stop the reaction, and then the solvent was evaporated under reduced pressure. residue was purified on a preparative HPLC to obtain a title compound as a white solid compound.

HPLC retention time = 7.4 (min)

5

10 ESI/MS m/e: 350.0 ($M^{+}+H$, $C_{18}H_{15}N_{5}OS$) [Working Example 15] Synthesis of 8-(2-cyanoacetyl)-4-thioxo-3-hydro-6H, 7H, 9H, 10H-1, 4-diazaperhydroepino[1', 7'-1,5|pyrrolo[3,2-d]pyrimidine-11-carbonitrile (Compound 15 No. 676)

To a solution (1.5 mL) of 4-thioxo-3-hydro-6H,7H,8H,9H,10H-1,4-diazaperhydroepino[1',7'-1,5|pyrrolo[3,2-d]pyrimidine-11-carbonitrile (30 mg) in 20 N, N-dimethylformamide/triethylamine = 2/1, cyano acetate(21 mg) was added, and furthermore a solution of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride (70 mg) and N-hydroxybenzotriazole (25 mg) in dichloromethane (1 mL) was added thereto, and stirred overnight at room temperature. Methanol was added to the 25 reaction mixture to stop the reaction, and then the solvent was evaporated under reduced pressure. residue was purified on a preparative HPLC to obtain a title compound as a white solid compound. 30 HPLC retention time = 5.0 (min) ESI/MS m/e: 313.1 (M^++H , $C_{14}H_{12}N_6OS$)

[Working Example 16]

Synthesis of (11-cyano-4-thioxo(3-hydro-6H,7H,9H,10H-1,4-diazaperhydroepino[4',5'-1,5]pyrrolo[3,2-d]pyrimidine-8-yl))-N-(4-methylphenyl)carboxamide (Compound No. 356)

- To a solution (2 mL) of 4-thioxo-3-hydro-6H,7H,8H,9H,10H-1,4-diazaperhydroepino[1',7'-1,5]pyrrolo[3,2-d]pyrimidine-11-carbonitrile (25 mg) in N,N-dimethylformamide/dichloromethane/triethylamine = 10/10/1, 4-methylphenyl isocyanate (13 mg) was added, and stirred at room temperature for five hours. Methanol was added to the reaction mixture to stop the reaction, and then the solvent was evaporated under reduced pressure. The residue was purified on a preparative HPLC to obtain a title compound as a white solid compound.
- 15 HPLC retention time = 8.6 (min) 1 H-NMR (400 MHz, DMSO-d₆) δ (ppm): 2.22 (s, 3H), 3.23 (m, 2H), 3.79 (m, 4H), 5.59 (m, 2H), 7.05 (d, 8.6 Hz, 2H), 7.33 (d, 8.6 Hz, 2H), 8.14 (d, 3.6 Hz, 1H), 8.56 (s, 1H), 13.73 (br, 1H).
- ESI/MS m/e: 379.1 (M*+H, C₁₉H₁₈N₆OS)

 [Working Example 17]

 Synthesis of 8-(phenylsulfonyl)-4-thioxo-3-hydro6H,7H,9H,10H-1,4-diazaperhydroepino[1',7'5,1]pyrrolo[3,2-d]pyrimidine-11-carbonitrile (Compound
 No. 410)

To a solution (2 mL) of 4-thioxo-3-hydro-6H,7H,8H,9H,10H-1,4-diazaperhydroepino[1',7'-1,5]pyrrolo[3,2-d]pyrimidine-11-carbonitrile (25 mg) in N,N-dimethylformamide/dichloromethane/triethylamine = 10/10/1, benzenesulfonyl chloride (16 mg) was added, and stirred at room temperature for five hours. Methanol was added to the reaction mixture to stop the reaction, and then the solvent was evaporated under reduced pressure. The residue was purified on a preparative HPLC to obtain a title compound as a white solid compound. HPLC retention time = 8.7 (min)
ESI/MS m/e: 386.1 (M*+H, C₁₇H₁₅N₅O₂S₂)
[Working Example 18]

5

10

15

Synthesis of 3-[(11-cyano-4-thioxo-3-hydro-6H,7H,9H,10H-1,4-diazaperhydroepino[4',5'-1,5]pyrrolo[3,2-d]pyrimidine-8-yl)carbonylamino]benzoic acid (Compound No. 792)

To ethyl 3-isocyanate benzoate (585 mg), a solution (20 mL) of 4-thioxo-3-hydro-6H,7H,8H,9H,10H-1,4-diazaperhydroepino[1',7'-1,5]pyrrolo[3,2-d]pyrimidine-11-carbonitrile (500 mg) in N,N-dimethylformamide/dichloromethane/triethylamine = 10/10/1 was added, and stirred at room temperature for five

hours. Methanol (5 mL) was added dropwise to stop the reaction, and then the solvent was evaporated under reduced pressure. The reaction mixture was dried under vacuum, and washed with methanol to obtain a crude reaction product. This was dissolved in 1,4-dioxane (15 mL), and 1 mol/L aqueous solution of sodium hydroxide (10 mL) was added thereto, and stirred overnight at room temperature. Acetic acid was added to stop the reaction, and the solvent was evaporated under reduced pressure.

Ethyl acetate and water were added to the residue to separate the organic layer. The aqueous layer was extracted with ethyl acetate, and the combined organic layer was washed with saturated saline, and dried on anhydrous magnesium sulfate, and filtered. The solvent was evaporated under reduced pressure to obtain a title compound (633 mg, yield 76%) as a white solid compound. HPLC retention time = 6.7 (min)

¹H-NMR (400 MHz, DMSO-d₆) δ (ppm): 3.27 (m, 2H), 3.81 (br, 4H), 5.62 (m, 2H), 7.36 (t, 7.8 Hz, 1H), 7.53 (m, 1H), 7.78 (m, 1H), 8.09 (s, 1H), 8.15 (s, 1H), 8.87 (s, 1H),

12.89 (br, 1H), 13.74 (br, 1H). ESI/MS m/e: 409.2 (M^++H , $C_{19}H_{16}N_6O_3S$) [Working Example 19]

5

20

25

Synthesis of N-(3-(N-hydroxycarbamoyl)phenyl)(11-cyano-4-thioxo-(3-hydro-6H,7H,9H,10H-1,4-

diazaperhydroepino[4',5'-1,5]pyrrolo[3,2-d]pyrimidine-8-yl))carboxamide (Compound No. 847)

O-(tetrahydro-2H-pyrane-2-yl)hydroxylamine (86 mg),

1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide
hydrochloride (140 mg), N-hydroxybenzotriazole (50 mg),

and 3-[(11-cyano-4-thioxo-3-hydro-6H,7H,9H,10H-1,4diazaperhydroepino[4',5'-1,5]pyrrolo[3,2-d]pyrimidine-8yl)carbonylamino|benzoic acid (100 mg) were dissolved in N, N-dimethylformamide (2 mL), to which triethylamine (0.3 5 mL) was added, and stirred at room temperature for six hours. Water and an excess of ethyl acetate were added to the reaction mixture to separate the organic layer, and further extracted with ethyl acetate. From the combined organic layer, the solvent was evaporated under 10 reduced pressure. The residue was purified on a preparative HPLC to obtain a crude reaction product. 1,4-dioxane (3 mL) and 0.1 mol/L hydrochloric acid (0.6 mL) were added thereto, and stirred overnight at room The reaction mixture was neutralized with a temperature. 15 saturated sodium bicarbonate solution, and the solvent was evaporated under reduced pressure. The residue was purified on a preparative HPLC to obtain a title compound (23 mg, yield 22%) as a white solid compound. HPLC retention time = 5.2 (min)

¹H-NMR (400 MHz, DMSO-d₆) δ (ppm): 3.26 (br, 2H), 3.81 (br, 4H), 5.62 (br, 2H), 7.30 (m, 2H), 7.68 (m, 1H), 7.88 (s, 1H), 8.15 (m, 1H), 8.85 (s, 1H), 11.14 (s, 1H), 13.76 (s, 1H).

ESI/MS m/e: 424.3 $(M^{+}+H, C_{19}H_{17}N_{7}O_{3}S)$

25 [Working Example 20]

Synthesis of 8-benzyl-4-thioxo-3-hydro-6H,7H,9H,10H-1,4-diazaperhydroepino[1',7'-1,5]pyrrolo[3,2-d]pyrimidine-11-carbonitrile (Compound No. 414)

To a solution (34 mL) of 4-thioxo-3-hydro-6H,7H,8H,9H,10H-1,4-diazaperhydroepino[1',7'-1,5]pyrrolo[3,2-d]pyrimidine-11-carbonitrile (1.00 g) in N,N-dimethylformamide/dichloromethane/trimethyl orthoformate = 10/5/2, benzaldehyde was added, and stirred at room temperature for one hour. To this reaction mixture was added triacetoxy sodium borohydride (1.74 g) and stirred at room temperature for five hours. Methanol was added to the reaction mixture to stop the reaction, and then the solvent was evaporated under reduced pressure. The residue was purified on a cation exchange column to obtain a title compound (1.27 g, yield 92%) as a pale yellow solid compound.

HPLC retention time = 5.0 (min) ESI/MS m/e: 336.4 ($M^{+}+H$, $C_{18}H_{17}N_{5}S$) [Working Example 21]

5

10

15

Synthesis of 4-[(3,3-dimethyl-3-silabutoxy)methylthio]-8-benzyl-6H,7H,9H,10H-1,4-diazaperhydroepino[1',7'1,5]pyrrolo[3,2-d]pyrimidine-11-carbonitrile

A solution (26 mL) of 8-benzyl-4-thioxo-3-hydro-6H, 7H, 9H, 10H-1, 4-diazaperhydroepino[1', 7'-20 1,5]pyrrolo[3,2-d]pyrimidine-11-carbonitrile (534 mg) in N, N-dimethylformamide/tetrahydrofuran/triethylamine = 3/20/3 was cooled to 0°C under a nitrogen atmosphere, to which 2-(chloromethoxy)ethyltrimethylsilane (423 µl) was added dropwise. The reaction mixture was allowed to 25 return to room temperature and stirred at room temperature for two hours, to which methanol was added to stop the reaction. The solvent was evaporated under reduced pressure, and the residue was purified on a silica gel chromatography (hexane/ethyl acetate = 3/1) to 30 obtain a title compound (637 mg, yield 86%) as a pale yellow oily compound.

ESI/MS m/e: 466.3 ($M^{+}+H$, $C_{24}H_{31}N_{5}OSSi$)

[Working Example 22]

Synthesis of 10-methyl-8-benzyl-4-thioxo-3-hydro6H,7H,9H,10H-1,4-diazaperhydroepino[1',7'1,5]pyrrolo[3,2-d]pyrimidine-11-carbonitrile (Compound No. 1501)

5

A solution (2 mL) of 4-[(3,3-dimethyl-3silabutoxy)methylthio]-8-benzyl-6H,7H,9H,10H-1,4diazaperhydroepino[1',7'-1,5]pyrrolo[3,2-d]pyrimidine-11-10 carbonitrile (85 mg) in tetrahydrofuran was cooled to -78°C under a nitrogen atmosphere, and lithium bis(trimethylsilyl)amide (365 µl, 1.0 mol/L tetrahydrofuran solution) was added dropwise. stirring at -78°C for 30 minutes, methyl iodide (23 µl) 15 was added dropwise, and was further stirred at -78°C for To the reaction mixture, acetic acid was two hours. added to neutralize, and after returning to room temperature ethyl acetate and water were added for dilution, and the organic layer was separated. aqueous layer was extracted with ethyl acetate, and the 20 solvent of the combined organic layer was evaporated under reduced pressure. A solution (3 mL) of trifluoroacetic acid/dichloromethane = 1/10 was added to the residue, and stirred for two hours. The solvent was 25 evaporated under reduced pressure, and the residue was purified on a preparative HPLC to obtain a title compound (30 mg, yield 46%) as a pale yellow oily compound. HPLC retention time = 5.6 (min) $^{1}\text{H-NMR}$ (400 MHz, DMSO-d₆) δ (ppm): 1.57 (br, 3H), 3.07-30 4.33 (m, 9H), 7.45 (m, 5H), 8.19 (s, 1H), 13.85 (br, 1H). ESI/MS m/e: 350.2 (M^++H , $C_{19}H_{19}N_5S$) [Working Examples 23-361]

Each of the following compounds of the present invention was synthesized using respective starting material and reactants according to either of the methods described in Working Examples 1-22. ESI/MS data of HPLC/mass spectrometry, the retention time and purity of each compound in HPLC analysis under the following analytical condition, and the synthetic method and the corresponding Working Example number are summarized in Table 60 - Table 69. In the tables, Compound Nos. indicate those in Table 1 - Table 5 that were listed as preferred examples described above.

5

10

Table 60

24 14 C19 H17 N5 O2 348.4 6.4 89 Work. Ex. 6 25 27 C21 H21 N5 O2 376.5 7.9 100 Work. Ex. 6 26 29 C20 H19 N5 O3 378.5 6.4 100 Work. Ex. 6 27 30 C20 H19 N5 O3 378.5 6.3 100 Work. Ex. 6 28 31 C21 H21 N5 O4 408.5 5.5 100 Work. Ex. 6 29 38 C19 H16 C1 N5 O2 382.4 7.4 100 Work. Ex. 6 30 41 C26 H23 N5 O3 454.6 9.0 98 Work. Ex. 6 31 44 C18 H15 N5 O2 384.3 7.5 100 Work. Ex. 6 32 46 C22 H17 N5 O2 384.3 7.5 100 Work. Ex. 6 33 47 C22 H17 N5 O2 384.4 7.9 100 Work. Ex. 6 34 48 C19 H17 N5 O3 364.5 6.2 95 Work. Ex. 6 35 52 C19 H17 N5 O3 364.5 6.2 95 Work. Ex. 6 36 53 C19 H17 N5 O3<	Work. Ex. No.	Compound No.	Composition	ESI MS m/e	HPLC (min)	Purity (%)	Synthetic meth.
25	23	6	C13 H13 N5 O2	272.1	2.8	99	Work. Ex. 6
26 29 C20 H19 N5 O3 378.3 6.4 100 Work. Ex. 6 27 30 C20 H19 N5 O3 378.5 6.3 100 Work. Ex. 6 28 31 C21 H21 N5 O2 382.4 7.4 100 Work. Ex. 6 30 41 C26 H23 N5 O3 454.6 9.0 98 Work. Ex. 6 31 44 C18 H15 N5 O2 334.3 6.1 99 Work. Ex. 6 32 46 C22 H17 N5 O2 384.3 7.5 100 Work. Ex. 6 33 47 C22 H17 N5 O2 384.3 7.5 100 Work. Ex. 6 34 48 C19 H17 N5 O3 364.5 <	24	14	C19 H17 N5 O2	348.4	6.4	89	Work. Ex. 6
27 30 C20 H19 N5 O3 378.5 6.3 100 Work. Ex. 6 28 31 C21 H21 N5 O4 408.5 5.5 100 Work. Ex. 6 29 38 C19 H16 C1 N5 O2 382.4 7.4 100 Work. Ex. 6 30 41 C26 H23 N5 O3 454.6 9.0 98 Work. Ex. 6 31 44 C18 H15 N5 O2 334.3 6.1 99 Work. Ex. 6 32 46 C22 H17 N5 O2 384.3 7.5 100 Work. Ex. 6 33 47 C22 H17 N5 O2 384.4 7.9 100 Work. Ex. 6 34 48 C19 H17 N5 O3 364.5 6.2 95 Work. Ex. 6 35 52 C19 H17 N5 O3 364.5 6.5 100 Work. Ex. 6 37 54 C19 H17 N5 O3 364.5 6.5 100 Work. Ex. 6 38 63 C20 H20 N6 O2 377.3 4.5 80 Work. Ex. 6	25	27	C21 H21 N5 O2	376.5	7.9	100	Work. Ex. 6
28 31 C21 H21 N5 04 408.5 5.5 100 Work. Ex. 6 29 38 C19 H16 C1 N5 O2 382.4 7.4 100 Work. Ex. 6 30 41 C26 H23 N5 O3 454.6 9.0 98 Work. Ex. 6 31 44 C18 H15 N5 O2 384.3 7.5 100 Work. Ex. 6 32 46 C22 H17 N5 O2 384.4 7.9 100 Work. Ex. 6 33 47 C22 H17 N5 O2 348.6 6.6 100 Work. Ex. 6 34 48 C19 H17 N5 O3 364.5 6.2 95 Work. Ex. 6 35 52 C19 H17 N5 O3 364.5 6.2 95 Work. Ex. 6	26	29	C20 H19 N5 O3	378.3	6.4	100	Work. Ex. 6
29 38 C19 H16 C1 N5 O2 382.4 7.4 100 Work. Ex. 6 30 41 C26 H23 N5 O3 454.6 9.0 98 Work. Ex. 6 31 44 C18 H15 N5 O2 334.3 6.1 99 Work. Ex. 6 32 46 C22 H17 N5 O2 384.4 7.9 100 Work. Ex. 6 34 48 C19 H17 N5 O2 384.4 7.9 100 Work. Ex. 6 35 52 C19 H17 N5 O3 364.5 6.2 95 Work. Ex. 6 36 53 C19 H17 N5 O3 364.5 6.5 100 Work. Ex. 6 37 54 C19 H17 N5 O3 364.3 6.4 95 Work. Ex. 6	27	30	C20 H19 N5 O3	378.5	6.3	100	Work. Ex. 6
30	28	31	C21 H21 N5 O4	408.5	5.5	100	Work. Ex. 6
31 44 C18 H15 N5 O2 334.3 6.1 99 Work. Ex. 6 32 46 C22 H17 N5 O2 384.3 7.5 100 Work. Ex. 6 33 47 C22 H17 N5 O2 384.4 7.9 100 Work. Ex. 6 34 48 C19 H17 N5 O2 348.6 6.6 100 Work. Ex. 6 35 52 C19 H17 N5 O3 364.5 6.2 95 Work. Ex. 6 36 53 C19 H17 N5 O3 364.5 6.5 100 Work. Ex. 6 38 63 C20 H20 N6 O2 377.3 4.5 80 Work. Ex. 6 39 65 C18 H14 N6 O4 379.4 <t< td=""><td>29</td><td>38</td><td>C19 H16 Cl N5 O2</td><td>382.4</td><td>7.4</td><td>100</td><td>Work. Ex. 6</td></t<>	29	38	C19 H16 Cl N5 O2	382.4	7.4	100	Work. Ex. 6
32 46 C22 H17 N5 O2 384.3 7.5 100 Work. Ex. 6 33 47 C22 H17 N5 O2 384.4 7.9 100 Work. Ex. 6 34 48 C19 H17 N5 O2 348.6 6.6 100 Work. Ex. 6 35 52 C19 H17 N5 O3 364.5 6.2 95 Work. Ex. 6 36 53 C19 H17 N5 O3 364.5 6.5 100 Work. Ex. 6 37 54 C19 H17 N5 O3 364.3 6.4 95 Work. Ex. 6 38 63 C20 H20 N6 O2 377.3 4.5 80 Work. Ex. 6 40 66 C18 H14 N6 O4 379.4 6.1 100 Work. Ex. 6 41 67 C18 H14 N6 O4 379.4 6.5 100 Work. Ex. 6 42 70 C19 H14 N6 O2 359.4 5.9 100 Work. Ex. 6 43 71 C19 H14 N6 O2 359.4 6.0 97 Work. Ex. 6 44 96 C20 H17 N5 O4 392.4 6.5 97 Work. Ex. 6 45 102	30	41	C26 H23 N5 O3	454.6	9.0	98	Work. Ex. 6
33 47 C22 H17 N5 O2 384.4 7.9 100 Work. Ex. 6 34 48 C19 H17 N5 O2 348.6 6.6 100 Work. Ex. 6 35 52 C19 H17 N5 O3 364.5 6.2 95 Work. Ex. 6 36 53 C19 H17 N5 O3 364.5 6.5 100 Work. Ex. 6 37 54 C19 H17 N5 O3 364.3 6.4 95 Work. Ex. 6 38 63 C20 H20 N6 O2 377.3 4.5 80 Work. Ex. 6 40 66 C18 H14 N6 O4 379.4 6.1 100 Work. Ex. 6 41 67 C18 H14 N6 O4 379.4 6.5 100 Work. Ex. 6 42 70 C19 H14 N6 O2 359.4 5.9 100 Work. Ex. 6 43 71 C19 H14 N6 O2 359.4 6.0 97 Work. Ex. 6 44 96 C20 H17 N5 O4 392.4 6.5 97 Work. Ex. 6 45 </td <td>31</td> <td>44</td> <td>C18 H15 N5 O2</td> <td>334.3</td> <td>6.1</td> <td>99</td> <td>Work. Ex. 6</td>	31	44	C18 H15 N5 O2	334.3	6.1	99	Work. Ex. 6
34 48 C19 H17 N5 O2 348.6 6.6 100 Work. Ex. 6 35 52 C19 H17 N5 O3 364.5 6.2 95 Work. Ex. 6 36 53 C19 H17 N5 O3 364.5 6.5 100 Work. Ex. 6 37 54 C19 H17 N5 O3 364.3 6.4 95 Work. Ex. 6 38 63 C20 H20 N6 O2 377.3 4.5 80 Work. Ex. 6 39 65 C18 H14 N6 O4 379.4 6.1 100 Work. Ex. 6 40 66 C18 H14 N6 O4 379.4 6.5 100 Work. Ex. 6 41 67 C18 H14 N6 O4 379.1 6.6 98 Work. Ex. 6 42 70 C19 H14 N6 O2 359.4 5.9 100 Work. Ex. 6 44 96 C20 H17 N5 O4 392.4 6.5 97 Work. Ex. 6 45 102 C17 H14 N6 O2 335.4 4.5 100 Work. Ex. 6 46 103 C17 H14 N6 O2 335.4 4.5 100 Work. Ex. 6 47 104 C17 H14 N6 O2 3	32	46	C22 H17 N5 O2	384.3	7.5	100	Work. Ex. 6
35 52 C19 H17 N5 O3 364.5 6.2 95 Work. Ex. 6 36 53 C19 H17 N5 O3 364.5 6.5 100 Work. Ex. 6 37 54 C19 H17 N5 O3 364.3 6.4 95 Work. Ex. 6 38 63 C20 H20 N6 O2 377.3 4.5 80 Work. Ex. 6 39 65 C18 H14 N6 O4 379.4 6.1 100 Work. Ex. 6 40 66 C18 H14 N6 O4 379.4 6.5 100 Work. Ex. 6 41 67 C18 H14 N6 O4 379.1 6.6 98 Work. Ex. 6 42 70 C19 H14 N6 O2 359.4 5.9 100 Work. Ex. 6 43 71 C19 H14 N6 O2 359.4 6.5 97 Work. Ex. 6 44 96 C20 H17 N5 O4 392.4 6.5 97 Work. Ex. 6 45 102 C17 H14 N6 O2 335.4 4.5 100 Work. Ex. 6 46 </td <td>33</td> <td>47</td> <td>C22 H17 N5 O2</td> <td>384.4</td> <td>7.9</td> <td>100</td> <td>Work. Ex. 6</td>	33	47	C22 H17 N5 O2	384.4	7.9	100	Work. Ex. 6
36 53 C19 H17 N5 O3 364.5 6.5 100 Work. Ex. 6 37 54 C19 H17 N5 O3 364.3 6.4 95 Work. Ex. 6 38 63 C20 H20 N6 O2 377.3 4.5 80 Work. Ex. 6 39 65 C18 H14 N6 O4 379.4 6.1 100 Work. Ex. 6 40 66 C18 H14 N6 O4 379.1 6.6 98 Work. Ex. 6 41 67 C18 H14 N6 O2 359.4 5.9 100 Work. Ex. 6 42 70 C19 H14 N6 O2 359.4 5.9 100 Work. Ex. 6 43 71 C19 H14 N6 O2 359.4 <t< td=""><td>34</td><td>48</td><td>C19 H17 N5 O2</td><td>348.6</td><td>6.6</td><td>100</td><td>Work. Ex. 6</td></t<>	34	48	C19 H17 N5 O2	348.6	6.6	100	Work. Ex. 6
36 53 C19 H17 N5 O3 364.5 6.5 100 Work. Ex. 6 37 54 C19 H17 N5 O3 364.3 6.4 95 Work. Ex. 6 38 63 C20 H20 N6 O2 377.3 4.5 80 Work. Ex. 6 39 65 C18 H14 N6 O4 379.4 6.1 100 Work. Ex. 6 40 66 C18 H14 N6 O4 379.1 6.6 98 Work. Ex. 6 41 67 C18 H14 N6 O2 359.4 5.9 100 Work. Ex. 6 42 70 C19 H14 N6 O2 359.4 5.9 100 Work. Ex. 6 43 71 C19 H14 N6 O2 359.4 <t< td=""><td>35</td><td>52</td><td>C19 H17 N5 O3</td><td>364.5</td><td>6.2</td><td>95</td><td>Work. Ex. 6</td></t<>	35	52	C19 H17 N5 O3	364.5	6.2	95	Work. Ex. 6
38 63 C20 H20 N6 O2 377.3 4.5 80 Work. Ex. 6 39 65 C18 H14 N6 O4 379.4 6.1 100 Work. Ex. 6 40 66 C18 H14 N6 O4 379.4 6.5 100 Work. Ex. 6 41 67 C18 H14 N6 O4 379.1 6.6 98 Work. Ex. 6 42 70 C19 H14 N6 O2 359.4 5.9 100 Work. Ex. 6 43 71 C19 H14 N6 O2 359.4 6.0 97 Work. Ex. 6 44 96 C20 H17 N5 O4 392.4 6.5 97 Work. Ex. 6 45 102 C17 H14 N6 O2 335.4 4.5 100 Work. Ex. 6 46 103 C17 H14 N6 O2 335.4 2.1 98 Work. Ex. 6 47 104 C17 H14 N6 O2 335.4 1.8 98 Work. Ex. 6 48 105 C17 H13 C1 N6 O2 369.2 5.1 97 Work. Ex. 6 49 106 C17 H13 C1 N6 O2 369.2 5.1 97 Work. Ex. 6 50 114 C15 H18 N6 O2 369.4 5.8 100 Work. Ex. 6 50 114 C15 H18 N6 O2 369.4 5.8 100 Work. Ex. 6 51 119 C19 H18 N6 O2 363.5 6.5 100 Work. Ex. 7 51 119 C19 H18 N6 O2 377.5 7.2 100 Work. Ex. 7 51 136 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 53 136 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 54 137 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 55 141 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 55 141 C20 H20 N6 O2 381.6 6.5 100 Work. Ex. 7 56 143 C19 H17 F N6 O2 381.6 6.7 100 Work. Ex. 7 57 144 C19 H17 F N6 O2 381.6 6.8 100 Work. Ex. 7	36	53	C19 H17 N5 O3	364.5	6.5	100	Work. Ex. 6
39 65 C18 H14 N6 O4 379.4 6.1 100 Work. Ex. 6 40 66 C18 H14 N6 O4 379.4 6.5 100 Work. Ex. 6 41 67 C18 H14 N6 O4 379.1 6.6 98 Work. Ex. 6 42 70 C19 H14 N6 O2 359.4 5.9 100 Work. Ex. 6 43 71 C19 H14 N6 O2 359.4 6.0 97 Work. Ex. 6 44 96 C20 H17 N5 O4 392.4 6.5 97 Work. Ex. 6 45 102 C17 H14 N6 O2 335.4 4.5 100 Work. Ex. 6 46 103 C17 H14 N6 O2 335.4 2.1 98 Work. Ex. 6 47 104 C17 H14 N6 O2 335.4 1.8 98 Work. Ex. 6 48 105 C17 H13 C1 N6 O2 369.2 5.1 97 Work. Ex. 6 49 106 C17 H13 C1 N6 O2 369.4 5.8 100 Work. Ex. 6 50 114 C15 H18 N6 O2 315.3 5.2 99 Work. Ex. 6 50 114 C15 H18 N6 O2 363.5 6.5 100 Work. Ex. 7 51 119 C19 H18 N6 O2 377.5 7.2 100 Work. Ex. 7 52 135 C20 H20 N6 O2 377.5 7.2 100 Work. Ex. 7 53 136 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 54 137 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 55 141 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 55 141 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 55 141 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 56 143 C19 H17 F N6 O2 381.6 6.7 100 Work. Ex. 7 57 144 C19 H17 F N6 O2 381.6 6.8 100 Work. Ex. 7 58 145 C19 H17 F N6 O2 381.6 6.8 100 Work. Ex. 7	37	54	C19 H17 N5 O3	364.3	6.4	95	Work. Ex. 6
40 66 C18 H14 N6 O4 379.4 6.5 100 Work. Ex. 6 41 67 C18 H14 N6 O4 379.1 6.6 98 Work. Ex. 6 42 70 C19 H14 N6 O2 359.4 5.9 100 Work. Ex. 6 43 71 C19 H14 N6 O2 359.4 6.0 97 Work. Ex. 6 44 96 C20 H17 N5 O4 392.4 6.5 97 Work. Ex. 6 45 102 C17 H14 N6 O2 335.4 4.5 100 Work. Ex. 6 46 103 C17 H14 N6 O2 335.4 2.1 98 Work. Ex. 6 47 104 C17 H13 C1 N6 O2 369.2 5.1 97 Work. Ex. 6 48 105 C17 H13 C1 N6 O2 369.2 5.1 97 Work. Ex. 6 49 106 C17 H13 C1 N6 O2 369.4 5.8 100 Work. Ex. 7 51 119 C19 H18 N6 O2 315.3 5.2 99 Work. Ex. 7 52 135 C20 H20 N6 O2 377.5 7.2 100 Work. Ex. 7<	38	63	C20 H20 N6 O2	377.3	4.5	80	Work. Ex. 6
41 67 C18 H14 N6 O4 379.1 6.6 98 Work. Ex. 6 42 70 C19 H14 N6 O2 359.4 5.9 100 Work. Ex. 6 43 71 C19 H14 N6 O2 359.4 6.0 97 Work. Ex. 6 44 96 C20 H17 N5 O4 392.4 6.5 97 Work. Ex. 6 45 102 C17 H14 N6 O2 335.4 4.5 100 Work. Ex. 6 46 103 C17 H14 N6 O2 335.4 2.1 98 Work. Ex. 6 47 104 C17 H14 N6 O2 335.4 1.8 98 Work. Ex. 6 48 105 C17 H13 C1 N6 O2 369.2 5.1 97 Work. Ex. 6 49 106 C17 H13 C1 N6 O2 369.4 5.8 100 Work. Ex. 6 50 114 C15 H18 N6 O2 315.3 5.2 99 Work. Ex. 6 50 114 C15 H18 N6 O2 363.5 6.5 100 Work. Ex. 7 51 119 C19 H18 N6 O2 377.5 7.2 100 Work. Ex. 7 52 135 C20 H20 N6 O2 377.5 7.2 100 Work. Ex. 7 53 136 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 54 137 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 55 141 C20 H20 N6 O3 393.5 6.5 100 Work. Ex. 7 56 143 C19 H17 F N6 O2 381.6 6.7 100 Work. Ex. 7 57 144 C19 H17 F N6 O2 381.6 6.8 100 Work. Ex. 7 58 145 C19 H17 F N6 O2 381.5 6.8 100 Work. Ex. 7	39	65	C18 H14 N6 O4	379.4	6.1	100	Work. Ex. 6
42 70 C19 H14 N6 O2 359.4 5.9 100 Work. Ex. 6 43 71 C19 H14 N6 O2 359.4 6.0 97 Work. Ex. 6 44 96 C20 H17 N5 O4 392.4 6.5 97 Work. Ex. 6 45 102 C17 H14 N6 O2 335.4 4.5 100 Work. Ex. 6 46 103 C17 H14 N6 O2 335.4 2.1 98 Work. Ex. 6 47 104 C17 H13 C1 N6 O2 369.2 5.1 97 Work. Ex. 6 48 105 C17 H13 C1 N6 O2 369.2 5.1 97 Work. Ex. 6 49 106 C17 H13 C1 N6 O2 369.4 5.8 100 Work. Ex. 6 50 114 C15 H18 N6 O2 315.3 5.2 99 Work. Ex. 7 51 119 C19 H18 N6 O2 363.5 6.5 100 Work. Ex. 7 52 135 C20 H20 N6 O2 377.5 7.2 100 Work. Ex. 7 54 137 C20 H20 N6 O2 377.5 7.3 100 Work. Ex.	40	66	C18 H14 N6 O4	379.4	6.5	100	Work. Ex. 6
43 71 C19 H14 N6 O2 359.4 6.0 97 Work. Ex. 6 44 96 C20 H17 N5 O4 392.4 6.5 97 Work. Ex. 6 45 102 C17 H14 N6 O2 335.4 4.5 100 Work. Ex. 6 46 103 C17 H14 N6 O2 335.4 2.1 98 Work. Ex. 6 47 104 C17 H14 N6 O2 335.4 1.8 98 Work. Ex. 6 48 105 C17 H13 C1 N6 O2 369.2 5.1 97 Work. Ex. 6 49 106 C17 H13 C1 N6 O2 369.2 5.1 97 Work. Ex. 6 50 114 C15 H18 N6 O2 315.3 5.2 99 Work. Ex. 7 51 119 C19 H18 N6 O2 377.5 7.2 100 Work. Ex. 7 52 135 C20 <td>41</td> <td>67</td> <td>C18 H14 N6 O4</td> <td>379.1</td> <td>6.6</td> <td>98</td> <td>Work. Ex. 6</td>	41	67	C18 H14 N6 O4	379.1	6.6	98	Work. Ex. 6
44 96 C20 H17 N5 O4 392.4 6.5 97 Work. Ex. 6 45 102 C17 H14 N6 O2 335.4 4.5 100 Work. Ex. 6 46 103 C17 H14 N6 O2 335.4 2.1 98 Work. Ex. 6 47 104 C17 H14 N6 O2 335.4 1.8 98 Work. Ex. 6 48 105 C17 H13 C1 N6 O2 369.2 5.1 97 Work. Ex. 6 49 106 C17 H13 C1 N6 O2 369.4 5.8 100 Work. Ex. 6 50 114 C15 H18 N6 O2 369.4 5.8 100 Work. Ex. 7 51 119 C19 H18 N6 O2 363.5 6.5 100 Work. Ex. 7 52 135 C20 H20 N6 O2 377.5 7.2 100 Work. Ex. 7 53 136 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 54 137 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 55 141 C20 H20 N6 O2 381.6 6.5 100 Work. Ex. 7 56 143 C19 H17 F N6 O2 381.6 6.8 100 Work. Ex. 7 57 144 C19 H17 F N6 O2 381.6 6.8 100 Work. Ex. 7	42	70	C19 H14 N6 O2	359.4	5.9	100	Work. Ex. 6
45 102 C17 H14 N6 O2 335.4 4.5 100 Work. Ex. 6 46 103 C17 H14 N6 O2 335.4 2.1 98 Work. Ex. 6 47 104 C17 H14 N6 O2 335.4 1.8 98 Work. Ex. 6 48 105 C17 H13 C1 N6 O2 369.2 5.1 97 Work. Ex. 6 49 106 C17 H13 C1 N6 O2 369.4 5.8 100 Work. Ex. 6 50 114 C15 H18 N6 O2 315.3 5.2 99 Work. Ex. 7 51 119 C19 H18 N6 O2 363.5 6.5 100 Work. Ex. 7 52 135 C20 H20 N6 O2 377.5 7.2 100 Work. Ex. 7 53 136 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 54 137 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 55 141 C20 H20 N6 O3 393.5 6.5 100 Work. Ex. 7 56 143 C19 H17 F N6 O2 381.6 6.7 100 Work. Ex. 7 57 144 C19 H17 F N6 O2 381.6 6.8 100 Work. Ex. 7	43	71	C19 H14 N6 O2	359.4	6.0	97	Work. Ex. 6
46 103 C17 H14 N6 O2 335.4 2.1 98 Work. Ex. 6 47 104 C17 H14 N6 O2 335.4 1.8 98 Work. Ex. 6 48 105 C17 H13 C1 N6 O2 369.2 5.1 97 Work. Ex. 6 49 106 C17 H13 C1 N6 O2 369.4 5.8 100 Work. Ex. 6 50 114 C15 H18 N6 O2 315.3 5.2 99 Work. Ex. 7 51 119 C19 H18 N6 O2 363.5 6.5 100 Work. Ex. 7 52 135 C20 H20 N6 O2 377.5 7.2 100 Work. Ex. 7 53 136 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 54 137 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 55 141 C20 H20 N6 O3 393.5 6.5 100 Work. Ex. 7 56 143 C19 H17 F N6 O2 381.6 6.8 100 Work. Ex. 7 57 144 C19 H17 F N6 O2 381.6 6.8 100 Wor	44	96	C20 H17 N5 O4	392.4	6.5	97	Work. Ex. 6
47 104 C17 H14 N6 O2 335.4 1.8 98 Work. Ex. 6 48 105 C17 H13 C1 N6 O2 369.2 5.1 97 Work. Ex. 6 49 106 C17 H13 C1 N6 O2 369.4 5.8 100 Work. Ex. 6 50 114 C15 H18 N6 O2 315.3 5.2 99 Work. Ex. 7 51 119 C19 H18 N6 O2 363.5 6.5 100 Work. Ex. 7 52 135 C20 H20 N6 O2 377.5 7.2 100 Work. Ex. 7 53 136 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 54 137 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 55 141 C20 H20 N6 O3 393.5 6.5 100 Work. Ex. 7 56 143 C19 H17 F N6 O2 381.6 6.7 100 Work. Ex. 7 57 144 C19 H17 F N6 O2 381.6 6.8 100 Work. Ex. 7 58 145 C19 H17 F N6 O2 381.5 6.8 100 Work. Ex. 7	45	102	C17 H14 N6 O2	335.4	4.5	100	Work. Ex. 6
48 105 C17 H13 Cl N6 O2 369.2 5.1 97 Work. Ex. 6 49 106 C17 H13 Cl N6 O2 369.4 5.8 100 Work. Ex. 6 50 114 C15 H18 N6 O2 315.3 5.2 99 Work. Ex. 7 51 119 C19 H18 N6 O2 363.5 6.5 100 Work. Ex. 7 52 135 C20 H20 N6 O2 377.5 7.2 100 Work. Ex. 7 53 136 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 54 137 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 55 141 C20 H20 N6 O3 393.5 6.5 100 Work. Ex. 7 56 143 C19 H17 F N6 O2 381.6 6.8 100 Work. Ex. 7 57 144 C19 H17 F N6 O2 381.6 6.8 100 Work. Ex. 7 58 145 C19 H17 F N6 O2 381.5 6.8 100 Work. Ex. 7	46	103	C17 H14 N6 O2	335.4	2.1	98	Work. Ex. 6
49 106 C17 H13 C1 N6 O2 369.4 5.8 100 Work. Ex. 6 50 114 C15 H18 N6 O2 315.3 5.2 99 Work. Ex. 7 51 119 C19 H18 N6 O2 363.5 6.5 100 Work. Ex. 7 52 135 C20 H20 N6 O2 377.5 7.2 100 Work. Ex. 7 53 136 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 54 137 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 55 141 C20 H20 N6 O3 393.5 6.5 100 Work. Ex. 7 56 143 C19 H17 F N6 O2 381.6 6.7 100 Work. Ex. 7 57 144 C19 H17 F N6 O2 381.6 6.8 100 Work. Ex. 7 58 145 C19 H17 F N6 O2 381.5 6.8 100 Work. Ex. 7	47	104	C17 H14 N6 O2	335.4	1.8	98	Work. Ex. 6
50 114 C15 H18 N6 O2 315.3 5.2 99 Work. Ex. 7 51 119 C19 H18 N6 O2 363.5 6.5 100 Work. Ex. 7 52 135 C20 H20 N6 O2 377.5 7.2 100 Work. Ex. 7 53 136 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 54 137 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 55 141 C20 H20 N6 O3 393.5 6.5 100 Work. Ex. 7 56 143 C19 H17 F N6 O2 381.6 6.7 100 Work. Ex. 7 57 144 C19 H17 F N6 O2 381.6 6.8 100 Work. Ex. 7 58 145 C19 H17 F N6 O2 381.5 6.8 100 Work. Ex. 7	48	105	C17 H13 Cl N6 O2	369.2	5.1	97	Work. Ex. 6
51 119 C19 H18 N6 O2 363.5 6.5 100 Work. Ex. 7 52 135 C20 H20 N6 O2 377.5 7.2 100 Work. Ex. 7 53 136 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 54 137 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 55 141 C20 H20 N6 O3 393.5 6.5 100 Work. Ex. 7 56 143 C19 H17 F N6 O2 381.6 6.7 100 Work. Ex. 7 57 144 C19 H17 F N6 O2 381.6 6.8 100 Work. Ex. 7 58 145 C19 H17 F N6 O2 381.5 6.8 100 Work. Ex. 7	49	106	C17 H13 Cl N6 O2	369.4	5.8	100	Work. Ex. 6
52 135 C20 H20 N6 O2 377.5 7.2 100 Work. Ex. 7 53 136 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 54 137 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 55 141 C20 H20 N6 O3 393.5 6.5 100 Work. Ex. 7 56 143 C19 H17 F N6 O2 381.6 6.7 100 Work. Ex. 7 57 144 C19 H17 F N6 O2 381.6 6.8 100 Work. Ex. 7 58 145 C19 H17 F N6 O2 381.5 6.8 100 Work. Ex. 7	50	114	C15 H18 N6 O2	315.3	5.2	99	Work. Ex. 7
53 136 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 54 137 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 55 141 C20 H20 N6 O3 393.5 6.5 100 Work. Ex. 7 56 143 C19 H17 F N6 O2 381.6 6.7 100 Work. Ex. 7 57 144 C19 H17 F N6 O2 381.6 6.8 100 Work. Ex. 7 58 145 C19 H17 F N6 O2 381.5 6.8 100 Work. Ex. 7	51	119	C19 H18 N6 O2	363.5	6.5	100	Work. Ex. 7
54 137 C20 H20 N6 O2 377.5 7.3 100 Work. Ex. 7 55 141 C20 H20 N6 O3 393.5 6.5 100 Work. Ex. 7 56 143 C19 H17 F N6 O2 381.6 6.7 100 Work. Ex. 7 57 144 C19 H17 F N6 O2 381.6 6.8 100 Work. Ex. 7 58 145 C19 H17 F N6 O2 381.5 6.8 100 Work. Ex. 7	52	135	C20 H20 N6 O2	377.5	7.2	100	Work. Ex. 7
55 141 C20 H20 N6 O3 393.5 6.5 100 Work. Ex. 7 56 143 C19 H17 F N6 O2 381.6 6.7 100 Work. Ex. 7 57 144 C19 H17 F N6 O2 381.6 6.8 100 Work. Ex. 7 58 145 C19 H17 F N6 O2 381.5 6.8 100 Work. Ex. 7	53	136	C20 H20 N6 O2	377.5	7.3	100	Work. Ex. 7
56 143 C19 H17 F N6 O2 381.6 6.7 100 Work. Ex. 7 57 144 C19 H17 F N6 O2 381.6 6.8 100 Work. Ex. 7 58 145 C19 H17 F N6 O2 381.5 6.8 100 Work. Ex. 7	54	137	C20 H20 N6 O2	377.5	7.3	100	Work. Ex. 7
57 144 C19 H17 F N6 O2 381.6 6.8 100 Work. Ex. 7 58 145 C19 H17 F N6 O2 381.5 6.8 100 Work. Ex. 7	55	141	C20 H20 N6 O3	393.5	6.5	100	Work. Ex. 7
58 145 C19 H17 F N6 O2 381.5 6.8 100 Work. Ex. 7	56	143	C19 H17 F N6 O2	381.6	6.7	100	Work. Ex. 7
	57	144	C19 H17 F N6 O2	381.6	6.8	100	Work. Ex. 7
59 147 C19 H17 C1 N6 O2 397.5 7.3 100 Work. Ex. 7	58	145			6.8	100	Work. Ex. 7
	59	147	C19 H17 Cl N6 O2	397.5	7.3	100	Work. Ex. 7

Table 61

	Compound No.	Composition	ESI MS m/e	HPLC (min)	Purity (%)	Synthetic meth.
60	150	C19 H16 C12 N6 O2	431.5	8.4	100	Work. Ex. 7
61	151	C19 H16 C12 N6 O2	431.5	8.4	100	Work. Ex. 7
62	155	C18 H16 N6 O2	349.2	6.5	93	Work. Ex. 7
63	156	C24 H20 N6 O2	425.5	9.2	100	Work. Ex. 7
64	157	C22 H18 N6 O2	399.5	7.4	94	Work. Ex. 7
65	158	C22 H18 N6 O2	399.5	8.3	90	Work. Ex. 7
66	159	C19 H18 N6 O2	363.4	6.5	100	Work. Ex. 7
67	160	C19 H18 N6 O2	363.5	7.3	100	Work. Ex. 7
68	163	C19 H18 N6 O3	379.4	6.8	100	Work. Ex. 7
69	164	C19 H18 N6 O3	379.5	6.8	100	Work. Ex. 7
70	165	C19 H18 N6 O3	379.2	6.4	97	Work. Ex. 7
71	166	C20 H20 N6 O4	409.5	7.0	100	Work. Ex. 7
72	167	C20 H20 N6 O4	409.6	5.9	85	Work. Ex. 7
73	168	C19 H16 N6 O4	393.6	6.3	96	Work. Ex. 7
74	169	C19 H15 F3 N6 O3	433.5	8.8	100	Work. Ex. 7
75	170	C25 H22 N6 O3	455.6	9.0	89	Work. Ex. 7
76	171	C24 H20 N6 O3	441.6	8.5	100	Work. Ex. 7
77	172	C24 H20 N6 O3	441.6	9.3	84	Work. Ex. 7
78	173	C24 H20 N6 O3	441.6	9.1	78	Work. Ex. 7
79	175	C20 H21 N7 O2	392.6	3.5	100	Work. Ex. 7
80	176	C18 H15 N7 O4	394.5	7.3	100	Work. Ex. 7
81	177	C18 H15 N7 O4	394.5	7.3	87	Work. Ex. 7
82	178	C18 H15 N7 O4	394.1	7.3	93	Work. Ex. 7
83	179	C18 H14 Cl N7 O4	428.4	8.4	100	Work. Ex. 7
84	180	C18 H14 N8 O6	439.5	8.3	97	Work. Ex. 7
85	181	C19 H15 N7 O2	374.5	6.7	100	Work. Ex. 7
86	182	C19 H15 N7 O2	374.5	6.6	100	Work. Ex. 7
87	183	C20 H18 N6 O3	391.5	6.2	100	Work. Ex. 7
88	184	C19 H15 F3 N6 O2	417.4	7.2	100	Work. Ex. 7
89	186	C19 H15 F3 N6 O2	417.5	8.7	100	Work. Ex. 7
90	187	C18 H15 F N6 O2	367.3	6.3	100	Work. Ex. 7
91	188	C18 H15 F N6 O2	367.4	7.2	100	Work. Ex. 7
92	189	C18 H15 F N6 O2	367.4	6.9	100	Work. Ex. 7
93	190	C18 H14 F2 N6 O2	385.6	7.9	100	Work. Ex. 7
94	191	C18 H15 Cl N6 O2	383.4	6.9	100	Work. Ex. 7
95	192	C18 H15 Cl N6 O2	383.4	7.9	100	Work. Ex. 7
96	193	C18 H15 Cl N6 O2	383.4	7.9	100	Work. Ex. 7

Table 62

Work. Ex. No.	Compound	Composition	ESI MS m/e	HPLC (min)	Purity (%)	Syntl		c]
97	194	C18 H14 C12 N6 O2	417.4	8.9	100	Work.	Ex.	7
98	195	C20 H18 N6 O4	407.5	8.2	100	Work.	Ex.	7
99	196	C20 H18 N6 O4	407.5	7.0	100	Work.	Ex.	7
100	197	C20 H18 N6 O4	407.6	6.9	100	Work.	Ex.	7
101	198	C22 H20 N6 O6	465.6	7.6	98	Work.	Ex.	7
102	199	C18 H14 F2 N6 O2	385.3	6.6	100	Work.	Ex.	7
103	200	C18 H14 F2 N6 O2	385.4	7.5	100	Work.	Ex.	7
104	201	C18 H14 C12 N6 O2	417.4	9.3	100	Work.	Ex.	7
105	202	C21 H20 N6 O4	421.6	9.1	100	Work.	Ex.	7
106	235	C18 H17 N5 O3 S	384.2	8.0	92	Work.	Ex.	8
107	238	C17 H14 N6 O5 S	415.2	7.9	96	Work.	Ex.	8
108	239	C18 H16 N6 O4 S	413.5	6.0	100	Work.	Ex.	7
109	240	C19 H18 N6 O4 S	427.5	6.8	89	Work.	Ex.	7
110	242	C18 H15 C1 N6 O4 S	447.4	6.3	92	Work.	Ex.	7
111	282	C19 H17 N5 O S	364.3	7.5	97	Work.	Ex.	14
112	283	C20 H19 N5 O S	378.1	8.6	95	Work.	Ex.	14
113	330	C19 H18 N6 O S	379.1	7.7	94	Work.	Ex.	16
114	331	C21 H26 N6 O5 S	475.2	8.0	98	Work.	Ex.	16
115	332	C17 H20 N6 O3 S	389.2	6.4	97	Work.	Ex.	16
116	333	C18 H22 N6 O3 S2	435.2	7.3	98	Work.	Ex.	16
117	334	C20 H26 N6 O4 S	447.3	8.2	98	Work.	Ex.	16
118	335	C20 H26 N6 O3 S	431.1	8.0	97	Work.	Ex.	16
119	336	C16 H18 N6 O3 S	375.2	5.9	97	Work.	Ex.	16
120	337	C18 H22 N6 O3 S	403.2	6.8	98	Work.	Ex.	16
121	340	C20 H20 N6 O2 S	409.4	7.7	100	Work.	Ex.	16
122	341	C19 H17 F N6 O S	397.4	7.9	100	Work.	Ex.	16
123	342	C19 H17 F N6 O S	397.4	8.0	96	Work.	Ex.	16
124	344	C19 H17 Cl N6 O S	413.4	8.5	100	Work.	Ex.	16
125	347	C19 H16 C12 N6 O S	447.3		97	Work.	Ex.	16
126	351	C18 H16 N6 O S	365.2	7.8	82	Work.	Ex.	16
127	353	C22 H18 N6 O S	415.4	9.5	100	Work.	Ex.	16
128	354	C19 H18 N6 O S	379.4	7.8	95	Work.	Ex.	16
129	355	C19 H18 N6 O S	379.0	8.6	92	Work.	Ex.	16
130	359	C19 H18 N6 O2 S	395.4	8.0	93	Work.	Ex.	16
131	360	C19 H18 N6 O2 S	395.2	7.6	87	Work.	Ex.	16
132	361	C20 H20 N6 O3 S	425.4	7.0	100	Work.	Ex.	16
133	363	C19 H15 F3 N6 O2 S	449.4	10.0	100	Work.	Ex.	16

Work. Ex. No.	Compound No.	Composition	ESI MS m/e	HPLC (min)	Purity (%)	Synth meth.		С
134	365	C18 H15 N7 O3 S	410.3	8.5	93	Work.	Ex.	16
135	366	C18 H15 C1 N6 O S	399.3	8.3	100	Work.	Ēx.	16
136	368	C18 H15 C1 N6 O S	399.3	9.1	100	Work.	Ex.	16
137	374	C19 H18 N6 S2	395.3	9.2	98	Work.	Ex.	16
138	375	C20 H20 N6 S2	409.3	9.9	98	Work.	Ex.	16
139	391	C18 H16 N6 S2	381.3	8.5	97	Work.	Ex.	16
140	405	C20 H18 N6 O2 S2	439.2	8.7	95	Work.	Ex.	16
141	415	C19 H19 N5 S	350.0	5.9	97	Work.	Ex.	20
142	420	C19 H19 N5 S	350.1	5.9	95	Work.	Ex.	20
143	421	C19 H19 N5 O S	366.4	5.6	97	Work.	Ex.	20
144	422	C19 H19 N5 O S	366.0	5.5	95	Work.	Ex.	20
145	423	C19 H19 N5 O S	366.2	5.4	89	Work.	Ex.	20
146	424	C18 H16 F N5 S	354.2	5.1	100	Work.	Ex.	20
147	425	C18 H16 F N5 S	354.0	5.5	100	Work.	Ex.	20
148	426	C18 H16 F N5 S	354.1	5.4	94	Work.	Ex.	20
149	427	C18 H17 N5 O S	352.3	3.2	96	Work.	Ex.	20
150	428	C18 H16 C1 N5 S	370.0	6.0	100	Work.	Ex.	20
151	432	C22 H19 N5 S	386.2	6.8	95	Work.	Ex.	20
152	433	C22 H19 N5 S	386.2	6.8	95	Work.	Ex.	20
153	435	C12 H11 N5 O2	258.3	2.2	98	Work.	Ex.	6
154	439	C12 H8 F3 N5 O2	312.2	5.9	100	Work.	Ex.	5
155	449	C17 H13 N5 O2	320.1	5.8	100	Work.	Ex.	6
156	456	C14 H16 N6 O2	301.2	5.1	91	Work.	Ex.	7
157	462	C17 H14 N6 O2	335.3	6.5	98	Work.	Ex.	7
158	521	C12 H8 F3 N5 O S	328.1	7.8	99	Work.	Ex.	11
159	668	C14 H15 N5 O2 S	318.3	4.9	98	Work.	Ex.	14
160	672	C17 H15 N7 O S	364.0	3.8	95	Work.	Ex.	18
161	674	C17 H20 N6 O2 S	371.3	5.1	95	Work.	Ex.	18
162	678	C15 H16 N6 O2 S	343.4	3.6	97	Work.	Ex.	15
163	680	C14 H15 N7 O2 S	344.3	2.6	95	Work.	Ex.	15
164	682	C15 H16 N6 O2 S	343.3	4.3	93	Work.	Ex.	15
165	684	C15 H17 N7 O2 S	358.2	4.0	89	Work.	Ex.	15
166	686	C15 H16 N6 O2 S	343.2	3.5	95	Work.	Ex.	15
167	688	C15 H17 N7 O2 S	358.2	3.4	96	Work.	Ex.	15
168	692(±)	C21 H26 N6 O5 S	475.3	7.1	99	Work.	Ex.	15
169	692(R)	C21 H26 N6 O5 S	475.3	7.1	95	Work.	Ex.	15
170	696(S)	C20 H24 N6 O5 S	461.3	7.0	92	Work.	Ex.	15

Table 64

171 696(R) C20 H24 N6 O5 S 461.4 7.0 93 Work Ex.	Work.	Compound	Composition	ESI MS	HPLC	Purity	<u> </u>
172		No.	Composition	m/e	(min)	(%)	meth.
173		696(R)	C20 H24 N6 O5 S	461.4	7.0	93	Work. Ex. 15
174		<u> </u>		<u> </u>	6.7	100	Work. Ex. 6
175	173	731	C15 H16 N6 O3 S	361.3		99	Work. Ex. 18
176	174	732	C17 H20 N6 O3 S2	421.5	6.3	96	Work. Ex. 18
177				403.2	5.8	99	Work. Ex. 18
178	176	735	C14 H14 N6 O3 S	347.2	4.1	97	Work. Ex. 18
179	177	736	C16 H18 N6 O3 S	375.1	4.9	96	Work. Ex. 18
180 741 C20 H20 N6 OS 393.4 8.5 72 Work. Ex. 181 747 C20 H20 N6 O3 S 425.4 8.2 93 Work. Ex. 182 749 C24 H20 N6 O2 S 457.4 10.5 100 Work. Ex. 183 750 C24 H20 N6 O2 S 457.4 10.3 100 Work. Ex. 184 752 C20 H21 N7 OS 408.4 4.7 100 Work. Ex. 185 753 C18 H15 N7 O3 S 410.4 8.6 100 Work. Ex. 186 755 C18 H14 C18 O5 S 445.4 9.5 93 Work. Ex. 187 756 C18 H15 N7 OS 390.4 7.8	178	739	C20 H20 N6 O S	393.4	8.3	100	Work. Ex. 16
181 747 C20 H20 N6 O3 S 425.4 8.2 93 Work. Ex. 182 749 C24 H20 N6 O2 S 457.4 10.5 100 Work. Ex. 183 750 C24 H20 N6 O2 S 457.4 10.3 100 Work. Ex. 184 752 C20 H21 N7 OS 408.4 4.7 100 Work. Ex. 185 753 C18 H15 N7 O3 S 410.4 8.6 100 Work. Ex. 186 755 C18 H14 C1 N7 O3 S 444.4 9.5 93 Work. Ex. 187 756 C18 H14 N8 O5 455.4 9.4 90 Work. Ex. 188 758 C19 H15 N7 OS 390.4 <t< td=""><td>179</td><td>740</td><td>C20 H20 N6 O S</td><td>393.4</td><td>8.5</td><td>95</td><td>Work. Ex. 16</td></t<>	179	740	C20 H20 N6 O S	393.4	8.5	95	Work. Ex. 16
182 749 C24 H20 N6 O2 S 457.4 10.5 100 Work. Ex. 183 750 C24 H20 N6 O2 S 457.4 10.3 100 Work. Ex. 184 752 C20 H21 N7 OS 408.4 4.7 100 Work. Ex. 185 753 C18 H15 N7 O3 S 410.4 8.6 100 Work. Ex. 186 755 C18 H14 C1 N7 O3 S 444.4 9.5 93 Work. Ex. 187 756 C18 H15 N7 OS 390.4 7.8 99 Work. Ex. 188 758 C19 H15 N7 OS 390.4 7.8 99 Work. Ex. 190 760 C19 H15 F3 N6 OS 383.3 <	180	741	C20 H20 N6 O S	393.4	8.5	72	Work. Ex. 16
183 750 C24 H20 N6 O2 S 457.4 10.3 100 Work. Ex. 184 752 C20 H21 N7 OS 408.4 4.7 100 Work. Ex. 185 753 C18 H15 N7 O3 S 410.4 8.6 100 Work. Ex. 186 755 C18 H14 C1 N7 O3 S 444.4 9.5 93 Work. Ex. 187 756 C18 H15 N7 OS 390.4 7.8 99 Work. Ex. 189 759 C20 H18 N6 OS 390.4 7.8 99 Work. Ex. 190 760 C19 H15 F3 N6 OS 433.4 8.4 95 Work. Ex. 191 763 C18 H15 F N6 OS 383.3 <td< td=""><td>181</td><td>747</td><td>C20 H20 N6 O3 S</td><td>425.4</td><td>8.2</td><td>93</td><td>Work. Ex. 16</td></td<>	181	747	C20 H20 N6 O3 S	425.4	8.2	93	Work. Ex. 16
184 752 C20 H21 N7 O S 408.4 4.7 100 Work. Ex. 185 753 C18 H15 N7 O3 S 410.4 8.6 100 Work. Ex. 186 755 C18 H14 C1 N7 O3 S 444.4 9.5 93 Work. Ex. 187 756 C18 H14 N8 O5 S 455.4 9.4 90 Work. Ex. 188 758 C19 H15 N7 O S 390.4 7.8 99 Work. Ex. 189 759 C20 H18 N6 O2 S 407.4 7.3 100 Work. Ex. 190 760 C19 H15 F3 N6 O S 383.3 7.7 83 Work. Ex. 191 763 C18 H15 F N6 O S 383.3 7.7 83 Work. Ex. 192 764 C18 H15 F N6 O S 383.3 8.5 94 Work. Ex. 193 765 C18 H15 F N6 O S 383.3 8.1 98 Work. Ex. 194 769 C20 H18 N6 O3 S 423.4 8.2 100 Work. Ex. 195 770 C22 H20 N6 O5 S 481.4 8.7 89 Work. Ex. 196 771 C18 H14 F2 N6 O S 401.3 7.9 100 Work. Ex. 197 772 C18 H14 F2 N6 O S 433.3 10	182	749	C24 H20 N6 O2 S	457.4	10.5	100	Work. Ex. 16
185 753 C18 H15 N7 O3 S 410.4 8.6 100 Work. Ex. 186 755 C18 H14 C1 N7 O3 S 444.4 9.5 93 Work. Ex. 187 756 C18 H14 N8 O5 S 455.4 9.4 90 Work. Ex. 188 758 C19 H15 N7 O S 390.4 7.8 99 Work. Ex. 189 759 C20 H18 N6 O2 S 407.4 7.3 100 Work. Ex. 190 760 C19 H15 F3 N6 O S 433.4 8.4 95 Work. Ex. 191 763 C18 H15 F N6 O S 383.3 7.7 83 Work. Ex. 192 764 C18 H15 F N6 O S 383.3 8.5 94 Work. Ex. 193 765 C18 H15 F N6 O S 383.3 8.1 98 Work. Ex. 194 769 C20 H18 N6 O3 S 423.4 8.2 100 Work. Ex. 195 770 C22 H20 N6 O5 S 481.4 8.7 89 Work. Ex.	183	750	C24 H20 N6 O2 S	457.4	10.3	100	Work. Ex. 16
186 755 C18 H14 C1 N7 O3 S 444.4 9.5 93 Work. Ex. 187 756 C18 H14 N8 O5 S 455.4 9.4 90 Work. Ex. 188 758 C19 H15 N7 O S 390.4 7.8 99 Work. Ex. 189 759 C20 H18 N6 O2 S 407.4 7.3 100 Work. Ex. 190 760 C19 H15 F3 N6 O S 433.4 8.4 95 Work. Ex. 191 763 C18 H15 F N6 O S 383.3 7.7 83 Work. Ex. 192 764 C18 H15 F N6 O S 383.3 8.5 94 Work. Ex. 193 765 C18 H15 F N6 O S 383.3 8.1 98 Work. Ex. 194 769 C20 H18 N6 O3 S 423.4 8.2 100 Work. Ex. 195 770 C22 H20 N6 O5 S 481.4 8.7 89 Work. Ex. 196 771 C18 H14 F2 N6 O S 401.3 7.9 100 Work. Ex.	184	752	C20 H21 N7 O S	408.4	4.7	100	Work. Ex. 16
187 756 C18 H14 N8 O5 S 455.4 9.4 90 Work. Ex. 188 758 C19 H15 N7 O S 390.4 7.8 99 Work. Ex. 189 759 C20 H18 N6 O2 S 407.4 7.3 100 Work. Ex. 190 760 C19 H15 F3 N6 O S 433.4 8.4 95 Work. Ex. 191 763 C18 H15 F N6 O S 383.3 7.7 83 Work. Ex. 192 764 C18 H15 F N6 O S 383.3 8.5 94 Work. Ex. 193 765 C18 H15 F N6 O S 383.3 8.1 98 Work. Ex. 194 769 C20 H18 N6 O3 S 423.4 8.2 100 Work. Ex. 195 770 C22 H20 N6 O5 S 481.4 8.7 89 Work. Ex. 196 771 C18 H14 F2 N6 O S 401.3 7.9 100 Work. Ex. 197 772 C18 H14 C12 N6 O S 433.3 10.7 100 Work. Ex. <	185	753	C18 H15 N7 O3 S	410.4	8.6	100	Work. Ex. 16
188 758 C19 H15 N7 O S 390.4 7.8 99 Work. Ex. 189 759 C20 H18 N6 O2 S 407.4 7.3 100 Work. Ex. 190 760 C19 H15 F3 N6 O S 433.4 8.4 95 Work. Ex. 191 763 C18 H15 F N6 O S 383.3 7.7 83 Work. Ex. 192 764 C18 H15 F N6 O S 383.3 8.5 94 Work. Ex. 193 765 C18 H15 F N6 O S 383.3 8.1 98 Work. Ex. 194 769 C20 H18 N6 O S 423.4 8.2 100 Work. Ex. 195 770 C22 H20 N6 O S 481.4 8.7 89 Work. Ex. 196 771 C18 H14 F2 N6 O S 401.3 7.9 100 Work. Ex. 197 772 C18 H14 F2 N6 O S 433.3 10.7 100 Work. Ex. 199 791 C19 H16 N6 O4 393.5 5.6 100 Work. Ex.	186	755	C18 H14 Cl N7 O3 S	444.4	9.5	93	Work. Ex. 16
189 759 C20 H18 N6 O2 S 407.4 7.3 100 Work. Ex. 190 760 C19 H15 F3 N6 OS 433.4 8.4 95 Work. Ex. 191 763 C18 H15 F N6 OS 383.3 7.7 83 Work. Ex. 192 764 C18 H15 F N6 OS 383.3 8.5 94 Work. Ex. 193 765 C18 H15 F N6 OS 383.3 8.1 98 Work. Ex. 194 769 C20 H18 N6 OS 383.3 8.1 98 Work. Ex. 195 770 C22 H20 N6 OS 401.3 7.9 100 Work. Ex. 196 771 C18 H14 F2 N6 OS 401.3 7.9 100 Work. Ex. 197 772 C18 H14 F2 N6 OS 401.3 8.8 99 Work. Ex	187	756	C18 H14 N8 O5 S	455.4	9.4	90	Work. Ex. 16
190 760 C19 H15 F3 N6 O S 433.4 8.4 95 Work. Ex. 191 763 C18 H15 F N6 O S 383.3 7.7 83 Work. Ex. 192 764 C18 H15 F N6 O S 383.3 8.5 94 Work. Ex. 193 765 C18 H15 F N6 O S 383.3 8.1 98 Work. Ex. 194 769 C20 H18 N6 O3 S 423.4 8.2 100 Work. Ex. 195 770 C22 H20 N6 O5 S 481.4 8.7 89 Work. Ex. 196 771 C18 H14 F2 N6 O 401.3 8.8 99 Work. Ex. 197 772 C18 H14 F2 N6 O 433.3 10.7 100 Work. Ex. <td>188</td> <td>758</td> <td>C19 H15 N7 O S</td> <td>390.4</td> <td>7.8</td> <td>99</td> <td>Work. Ex. 16</td>	188	758	C19 H15 N7 O S	390.4	7.8	99	Work. Ex. 16
191 763 C18 H15 F N6 O S 383.3 7.7 83 Work. Ex. 192 764 C18 H15 F N6 O S 383.3 8.5 94 Work. Ex. 193 765 C18 H15 F N6 O S 383.3 8.1 98 Work. Ex. 194 769 C20 H18 N6 O3 S 423.4 8.2 100 Work. Ex. 195 770 C22 H20 N6 O5 S 481.4 8.7 89 Work. Ex. 196 771 C18 H14 F2 N6 O S 401.3 7.9 100 Work. Ex. 197 772 C18 H14 F2 N6 O S 401.3 8.8 99 Work. Ex. 198 773 C18 H14 C12 N6 O S 433.3 10.7 100 Work. Ex. 199 791 C19 H16 N6 O4 393.5 5.6 100 Work. Ex. 200 793(S) C19 H24 N6 O4 S 433.4 7.0 96 Work. Ex. 201 793(R) C19 H24 N6 O4 S 433.4 7.0 96 Work. Ex. 202 796 C19 H16 N6 O3 S 409.3 8.0 98 <td>189</td> <td>759</td> <td>C20 H18 N6 O2 S</td> <td>407.4</td> <td>7.3</td> <td>100</td> <td>Work. Ex. 16</td>	189	759	C20 H18 N6 O2 S	407.4	7.3	100	Work. Ex. 16
192 764 C18 H15 F N6 O S 383.3 8.5 94 Work. Ex. 193 765 C18 H15 F N6 O S 383.3 8.1 98 Work. Ex. 194 769 C20 H18 N6 O3 S 423.4 8.2 100 Work. Ex. 195 770 C22 H20 N6 O5 S 481.4 8.7 89 Work. Ex. 196 771 C18 H14 F2 N6 O S 401.3 7.9 100 Work. Ex. 197 772 C18 H14 F2 N6 O S 401.3 8.8 99 Work. Ex. 198 773 C18 H14 C12 N6 O S 433.3 10.7 100 Work. Ex. 199 791 C19 H16 N6 O4 393.5 5.6 100 Work. Ex. 200 793(S) C19 H24 N6 O4 S 433.5 7.0 99 Work. Ex. 201 793(R) C19 H24 N6 O4 S 433.4 7.0 96 Work. Ex. 202 796 C19 H16 N6 O3 S 409.3 8.0 98 Work. Ex. 203 811 C19 H16 N6 O3 S 361.2 4.9 93	190	760	C19 H15 F3 N6 O S	433.4	8.4	95	Work. Ex. 16
193 765 C18 H15 F N6 O S 383.3 8.1 98 Work. Ex. 194 769 C20 H18 N6 O3 S 423.4 8.2 100 Work. Ex. 195 770 C22 H20 N6 O5 S 481.4 8.7 89 Work. Ex. 196 771 C18 H14 F2 N6 O S 401.3 7.9 100 Work. Ex. 197 772 C18 H14 F2 N6 O S 401.3 8.8 99 Work. Ex. 198 773 C18 H14 C12 N6 O S 433.3 10.7 100 Work. Ex. 199 791 C19 H16 N6 O4 393.5 5.6 100 Work. Ex. 200 793(S) C19 H24 N6 O4 S 433.5 7.0 99 Work. Ex. 201 793(R) C19 H24 N6 O4 S 433.4 7.0 96 Work. Ex. 202 796 C19 H16 N6 O3 S 409.3 6.4 99 Work. Ex. 203 811 C19 H16 N6 O3 S 409.3 8.0 98 Work. Ex. 204 836 C15 H16 N6 O3 S 403.4 7.1 99	191	763	C18 H15 F N6 O S	383.3	7.7	83	Work. Ex. 16
194 769 C20 H18 N6 O3 S 423.4 8.2 100 Work. Ex. 195 770 C22 H20 N6 O5 S 481.4 8.7 89 Work. Ex. 196 771 C18 H14 F2 N6 O S 401.3 7.9 100 Work. Ex. 197 772 C18 H14 F2 N6 O S 401.3 8.8 99 Work. Ex. 198 773 C18 H14 C12 N6 O S 433.3 10.7 100 Work. Ex. 199 791 C19 H16 N6 O4 393.5 5.6 100 Work. Ex. 200 793(S) C19 H24 N6 O4 S 433.5 7.0 99 Work. Ex. 201 793(R) C19 H24 N6 O4 S 433.4 7.0 96 Work. Ex. 202 796 C19 H16 N6 O3 S 409.3 6.4 99 Work. Ex. 203 811 C19 H16 N6 O3 S 409.3 8.0 98 Work. Ex. 204 836 C15 H16 N6 O3 S 361.2 4.9 93 Work. Ex. 205 837 C18 H22 N6 O3 S 403.4 7.1 99 Work. Ex. 206 838 C21 H20 N6 O3 S 437.4 97 Work. Ex. <td>192</td> <td>764</td> <td>C18 H15 F N6 O S</td> <td>383.3</td> <td>8.5</td> <td>94</td> <td>Work. Ex. 16</td>	192	764	C18 H15 F N6 O S	383.3	8.5	94	Work. Ex. 16
195 770 C22 H20 N6 O5 S 481.4 8.7 89 Work. Ex. 196 771 C18 H14 F2 N6 O S 401.3 7.9 100 Work. Ex. 197 772 C18 H14 F2 N6 O S 401.3 8.8 99 Work. Ex. 198 773 C18 H14 C12 N6 O S 433.3 10.7 100 Work. Ex. 199 791 C19 H16 N6 O4 393.5 5.6 100 Work. Ex. 200 793(S) C19 H24 N6 O4 S 433.5 7.0 99 Work. Ex. 201 793(R) C19 H24 N6 O4 S 433.4 7.0 96 Work. Ex. 202 796 C19 H16 N6 O3 S 409.3 6.4 99 Work. Ex. 203 811 C19 H16 N6 O3 S 409.3 8.0 98 Work. Ex. 204 836 C15 H16 N6 O3 S 361.2 4.9 93 Work. Ex. 205 837 C18 H22 N6 O3 S 403.4 7.1 99 Work. Ex. 206 838 C21 H20 N6 O3 S 437.4 97 Work. Ex. </td <td>193</td> <td>765</td> <td>C18 H15 F N6 O S</td> <td>383.3</td> <td>8.1</td> <td>98</td> <td>Work. Ex. 16</td>	193	765	C18 H15 F N6 O S	383.3	8.1	98	Work. Ex. 16
196 771 C18 H14 F2 N6 O S 401.3 7.9 100 Work. Ex. 197 772 C18 H14 F2 N6 O S 401.3 8.8 99 Work. Ex. 198 773 C18 H14 C12 N6 O S 433.3 10.7 100 Work. Ex. 199 791 C19 H16 N6 O4 393.5 5.6 100 Work. Ex. 200 793(S) C19 H24 N6 O4 S 433.5 7.0 99 Work. Ex. 201 793(R) C19 H24 N6 O4 S 433.4 7.0 96 Work. Ex. 202 796 C19 H16 N6 O3 S 409.3 6.4 99 Work. Ex. 203 811 C19 H16 N6 O3 S 409.3 8.0 98 Work. Ex. 204 836 C15 H16 N6 O3 S	194	769	C20 H18 N6 O3 S	423.4	8.2	100	Work. Ex. 16
197 772 C18 H14 F2 N6 O S 401.3 8.8 99 Work. Ex. 198 773 C18 H14 C12 N6 O S 433.3 10.7 100 Work. Ex. 199 791 C19 H16 N6 O4 393.5 5.6 100 Work. Ex. 200 793(S) C19 H24 N6 O4 S 433.5 7.0 99 Work. Ex. 201 793(R) C19 H24 N6 O4 S 433.4 7.0 96 Work. Ex. 202 796 C19 H16 N6 O3 S 409.3 6.4 99 Work. Ex. 203 811 C19 H16 N6 O3 S 409.3 8.0 98 Work. Ex. 204 836 C15 H16 N6 O3 S 361.2 4.9 93 Work. Ex. 205 837 C18 H22 N6 O3 S 403.4 7.1 99 Work. Ex. 206 838 C21 H20 N6 O3 S 437.4 97 Work. Ex.	195	770	C22 H20 N6 O5 S	481.4	8.7	89	Work. Ex. 16
198 773 C18 H14 Cl2 N6 O S 433.3 10.7 100 Work. Ex. 199 791 C19 H16 N6 O4 393.5 5.6 100 Work. Ex. 200 793(S) C19 H24 N6 O4 S 433.5 7.0 99 Work. Ex. 201 793(R) C19 H24 N6 O4 S 433.4 7.0 96 Work. Ex. 202 796 C19 H16 N6 O3 S 409.3 6.4 99 Work. Ex. 203 811 C19 H16 N6 O3 S 409.3 8.0 98 Work. Ex. 204 836 C15 H16 N6 O3 S 361.2 4.9 93 Work. Ex. 205 837 C18 H22 N6 O3 S 403.4 7.1 99 Work. Ex. 206 838 C21 H20 N6 O3 S 437.4 97 Work. Ex.	196	771	C18 H14 F2 N6 O S	401.3	7.9	100	Work. Ex. 16
199 791 C19 H16 N6 O4 393.5 5.6 100 Work. Ex. 200 793(S) C19 H24 N6 O4 S 433.5 7.0 99 Work. Ex. 201 793(R) C19 H24 N6 O4 S 433.4 7.0 96 Work. Ex. 202 796 C19 H16 N6 O3 S 409.3 6.4 99 Work. Ex. 203 811 C19 H16 N6 O3 S 409.3 8.0 98 Work. Ex. 204 836 C15 H16 N6 O3 S 361.2 4.9 93 Work. Ex. 205 837 C18 H22 N6 O3 S 403.4 7.1 99 Work. Ex. 206 838 C21 H20 N6 O3 S 437.4 97 Work. Ex.	197	772	C18 H14 F2 N6 O S	401.3	8.8	99	Work. Ex. 16
200 793(S) C19 H24 N6 O4 S 433.5 7.0 99 Work. Ex. 201 793(R) C19 H24 N6 O4 S 433.4 7.0 96 Work. Ex. 202 796 C19 H16 N6 O3 S 409.3 6.4 99 Work. Ex. 203 811 C19 H16 N6 O3 S 409.3 8.0 98 Work. Ex. 204 836 C15 H16 N6 O3 S 361.2 4.9 93 Work. Ex. 205 837 C18 H22 N6 O3 S 403.4 7.1 99 Work. Ex. 206 838 C21 H20 N6 O3 S 437.4 97 Work. Ex.	198	773	C18 H14 C12 N6 O S	433.3	10.7	100	Work. Ex. 16
201 793(R) C19 H24 N6 O4 S 433.4 7.0 96 Work. Ex. 202 796 C19 H16 N6 O3 S 409.3 6.4 99 Work. Ex. 203 811 C19 H16 N6 O3 S 409.3 8.0 98 Work. Ex. 204 836 C15 H16 N6 O3 S 361.2 4.9 93 Work. Ex. 205 837 C18 H22 N6 O3 S 403.4 7.1 99 Work. Ex. 206 838 C21 H20 N6 O3 S 437.4 97 Work. Ex.	199	791	C19 H16 N6 O4	393.5	5.6	100	Work. Ex. 7
201 793(R) C19 H24 N6 O4 S 433.4 7.0 96 Work. Ex. 202 796 C19 H16 N6 O3 S 409.3 6.4 99 Work. Ex. 203 811 C19 H16 N6 O3 S 409.3 8.0 98 Work. Ex. 204 836 C15 H16 N6 O3 S 361.2 4.9 93 Work. Ex. 205 837 C18 H22 N6 O3 S 403.4 7.1 99 Work. Ex. 206 838 C21 H20 N6 O3 S 437.4 97 Work. Ex.	200	793(S)	C19 H24 N6 O4 S	433.5	7.0	99	Work. Ex. 18
203 811 C19 H16 N6 O3 S 409.3 8.0 98 Work. Ex. 204 836 C15 H16 N6 O3 S 361.2 4.9 93 Work. Ex. 205 837 C18 H22 N6 O3 S 403.4 7.1 99 Work. Ex. 206 838 C21 H20 N6 O3 S 437.4 97 Work. Ex.	201	793(R)	C19 H24 N6 O4 S	433.4	7.0		
204 836 C15 H16 N6 O3 S 361.2 4.9 93 Work. Ex. 205 837 C18 H22 N6 O3 S 403.4 7.1 99 Work. Ex. 206 838 C21 H20 N6 O3 S 437.4 97 Work. Ex.	202	796	C19 H16 N6 O3 S	409.3	6.4	99	Work. Ex. 18
205 837 C18 H22 N6 O3 S 403.4 7.1 99 Work. Ex. 206 838 C21 H20 N6 O3 S 437.4 97 Work. Ex.	203	811	C19 H16 N6 O3 S	409.3	8.0	98	Work. Ex. 18
206 838 C21 H20 N6 O3 S 437.4 97 Work. Ex.	204	836	C15 H16 N6 O3 S	361.2	4.9	93	Work. Ex. 18
	205	837	C18 H22 N6 O3 S	403.4	7.1	99	Work. Ex. 18
207 956 C19 H16 N6 O3 377 5 5 7 100 Work FV	206	838	C21 H20 N6 O3 S	437.4		97	Work. Ex. 18
20, 300 CI 110 R0 03 377.3 3.7 100 WOLK. EX.	207	956	C19 H16 N6 O3	377.5	5.7	100	Work. Ex. 7

Table 65

Work. Ex. No.	Compound No.	Composit	ion	ESI MS m/e	HPLC (min)	Purity (%)	Syntl meth		c
208	1067	C20 H18 N6	02 S2	439.1	9.7	91	Work.	Ex.	16
209	1069	C20 H18 N6	02 S2	439.3	8.6	89	Work.	Ex.	16
210	1072	C17 H15 N7	S2	382.2	4.8	99	Work.	Ex.	16
211	1074	C18 H17 N7	S2	396.2	4.9	96	Work.	Ex.	16
212	1076	C18 H16 N6	O3 S3	461.1	4.4	87	Work.	Ex.	16
213	1078	C17 H20 N6	O S2	389.2	7.6	97	Work.	Ex.	16
214	1080	C17 H16 N6	O S2	385.0	8.5	98	Work.	Ex.	16
215	1082	C18 H17 N7	O2 S3	460.3	6.6	81	Work.	Ex.	16
216	1084	C21 H29 N7	02 S2	476.4	9.3	84	Work.	Ex.	16
217	1087	C19 H16 N6	03 S	409.4	6.1	99	Work.	Ex.	7
218	1088	C19 H16 N6	02 S2	425.1	7.1	91	Work.	Ex.	18
219	1090	C19 H16 N6	02 S2	425.1	7.0	97	Work.	Ex.	18
220	1092	C19 H25 N7	S2	416.2	5.5	86	Work.	Ex.	16
221	1094	C24 H23 N7	S2	474.2	6.2	84	Work.	Ex.	16
222	1096	C19 H16 N6	02 S2	425.3	8.5	91	Work.	Ex.	18
223	1098	C15 H18 N6	0 S2	363.3	6.9	98	Work.	Ex.	16
224	1100	C16 H20 N6	0 S2	377.3	7.3	98	Work.	Ex.	16
225	1102	C19 H25 N7	0 S2	432.4	4.8	98	Work.	Ex.	16
226	1104	C16 H18 N6	02 S2	391.1	6.4	98	Work.	Ex.	18
227	1106	C14 H17 N7	S2	348.1	4.2	99	Work.	Ex.	16
228	1108	C15 H19 N7	S2	362.1	4.3	99	Work.	Ex.	16
229	1110	C16 H21 N7	S2	376.4	4.6	96	Work.	Ex.	16
230	1112	C17 H23 N7	S2	390.3	5.0	92	Work.	Ex.	16
231	1114	C18 H17 N7	S2	396.5	4.7	95	Work.	Ex.	16
232	1116	C19 H19 N7	S2	410.4	4.9	92	Work.	Ex.	16
233	1118	C19 H27 N7	S2	418.3	5.4	83	Work.	Ex.	16
234	1141	C15 H19 N5	S	302.1	4.1	69	Work.	Ex.	20
235	1161	C20 H21 N5	02 S	396.0	5.0	95	Work.	Ex.	20
236	1163	C25 H23 N5	0 S	442.4	7.9	100	Work.	Ex.	20
237	1166	C17 H16 N6	S	337.4	2.3	99	Work.	Ex.	20
238	1172	C20 H21 N5	S	364.2	6.5	94	Work.	Ex.	20
239	1174	C19 H17 N5	02 S	380.3	3.7	87	Work.	Ex.	20
240	1176	C17 H16 N6	S	337.1	3.2	95	Work.	Ex.	20
241	1177	C25 H23 N5	0 S	442.5	7.9	99	Work.	Ex.	20
242	1178	C25 H23 N5	o s	442.5	7.6	100	Work.	Ex.	20
243	1179	C19 H16 N6	S	361.2	6.2	90	Work.	Ex.	20
244	1180	C19 H16 N6	S	361.3	5.1	87	Work.	Ex.	20

Table 66

Work. Ex. No.	Compound No.	Composition	ESI MS m/e	HPLC (min)	Purity (%)	Synthetic meth.
245	1181	C18 H23 N5 S	342.4	6.0	99	Work. Ex. 20
246	1182	C21 H23 N5 O3 S	427.2	5.5	93	Work. Ex. 20
247	1183	C19 H17 N5 O2 S	380.1	5.2	93	Work. Ex. 20
248	1184	C15 H19 N5 S	302.1	3.5	95	Work. Ex. 20
249	1192	C18 H17 N5 O S	352.2	4.7	96	Work. Ex. 20
250	1193	C18 H16 N6 O2 S	381.2	6.2	99	Work. Ex. 20
251	1194	C20 H21 N5 O2 S	396.3	4.9	95	Work. Ex. 20
252	1196	C18 H16 N6 O2 S	381.0	5.8	98	Work. Ex. 20
253	1198	C19 H17 N5 O2 S	380.1	4.5	99	Work. Ex. 20
254	1200	C18 H15 Cl N6 O2 S	415.4	9.2	78	Work. Ex. 20
255	1201	C18 H16 C1 N5 O S	386.3	5.9	92	Work. Ex. 20
256	1202	C19 H19 N5 O2 S	382.3	4.8	94	Work. Ex. 20
257	1203	C18 H16 N6 O3 S	397.3	5.0	87	Work. Ex. 20
258	1204	C19 H16 N6 O4 S	425.4	6.1	83	Work. Ex. 20
259	1205	C19 H15 F4 N5 S	422.3	8.8	97	Work. Ex. 20
260	1214	C19 H19 N5 O2 S	382.1	4.5	98	Work. Ex. 20
261	1222	C16 H14 N6 O3 S	371.0	6.0	74	Work. Ex. 20
262	1223	C17 H17 N5 O S	340.0	5.0	96	Work. Ex. 20
263	1224	C17 H17 N5 O2 S	356.0	2.2	100	Work. Ex. 20
264	1225	C18 H15 C1 F N5 S	387.9	6.4	96	Work. Ex. 20
265	1226	C20 H21 N5 O2 S	396.0	6.0	95	Work. Ex. 20
266	1227	C20 H21 N5 O2 S	396.0	5.9	96	Work. Ex. 20
267	1228	C18 H16 F N5 O S	370.0	4.7	78	Work. Ex. 20
268	1229	C19 H19 N5 O2 S	382.0	5.0	98	Work. Ex. 20
269	1230	C18 H17 N5 O2 S	368.1	3.6	100	Work. Ex. 20
270	1231	C19 H19 N5 O2 S	382.0	5.0	100	Work. Ex. 20
271	1232	C18 H17 N5 O2 S	367.9	2.6	95	Work. Ex. 20
272	1234	C19 H16 F3 N5 S	404.0	8.1	93	Work. Ex. 20
273	1235	C19 H18 F N5 O S	384.0	5.6	96	Work. Ex. 20
274	1236	C20 H21 N5 O2 S	396.0	6.0	95	Work. Ex. 20
275	1237	C18 H17 N5 O S	352.0	3.9	100	Work. Ex. 20
276	1238	C19 H19 N5 O2 S	382.0	4.1	86	Work. Ex. 20
277	1239	C18 H17 N5 O2 S	369.0	2.6	71	Work. Ex. 20
278	1240	C19 H16 F3 N5 S	404.0	7.0	95	Work. Ex. 20
279	1241	C19 H16 N6 S	361.0	5.1	94	Work. Ex. 20
280	1242	C20 H20 N6 O S	393.1	3.4	91	Work. Ex. 20
281	1243	C16 H15 N5 S2	342.0	4.6	97	Work. Ex. 20

Table 67

Work. Ex. No.	Compound No.	Composi	tion	ESI MS m/e	HPLC (min)	Purity (%)	Synt meth	hetic
282	1244	C17 H17 N5	S2	356.1	5.4	97	Work.	Ex. 20
283	1245	C16 H14 Br	N5 S2	422.0	6.8	96	Work.	Ex. 20
284	1247	C16 H14 N6	02 S2	387.0	7.8	93	Work.	Ex. 20
285	1249	C17 H17 N5	S2	356.1	5.7	100	Work.	Ex. 20
286	1250	C16 H15 N5	S2	342.0	4.6	96	Work.	Ex. 20
287	1251	C19 H19 N5	02 S	382.1	3.9	95	Work.	Ex. 20
288	1252	C19 H16 F3	N5 S	404.1	7.1	100	Work.	Ex. 20
289	1253	C16 H21 N5	S	316.1	4.9	97	Work.	Ex. 20
290	1255	C16 H21 N5	S	316.1	5.2	100	Work.	Ex. 20
291	1256	C20 H20 N6	04 S	441.1	5.9	100	Work.	Ex. 20
292	1257	C19 H18 N6	03 S	411.1	8.4	93	Work.	Ex. 20
293	1258	C20 H18 N6	02 S	407.2	6.3	100	Work.	Ex. 20
294	1259	C18 H15 Cl	N6 02 S	415.1	8.2	100	Work.	Ex. 20
295	1260	C18 H16 N6	03 S	397.2	5.4	68	Work.	Ex. 20
296	1261	C20 H18 N6	02 S	407.2	6.5	100	Work.	Ex. 20
297	1262	C18 H15 F2	N5 S	372.2	5.9	100	Work.	Ex. 20
298	1263	C18 H15 F2	N5 S	372.2	5.6	100	Work.	Ex. 20
299	1264	C18 H15 F2	N5 S	372.2	5.8	100	Work.	Ex. 20
300	1265	C18 H15 F2	N5 S	372.2	6.0	94	Work.	Ex. 20
301	1266	C16 H15 N5	o s	326.1	3.7	100	Work.	Ex. 20
302	1267	C18 H17 N5	02 S	368.2	3.3	81	Work.	Ex. 20
303	1268	C18 H15 Cl	F N5 S	388.1	6.5	100	Work.	Ex. 20
304	1269	C19 H19 N5	o s	366.2	4.7	96	Work.	Ex. 20
305	1270	C21 H21 N5	o s	392.2	6.6	100	Work.	Ex. 20
306	1271	C20 H17 N5	0 S	376.2	6.5	100	Work.	Ex. 20
307	1272	C21 H21 N5	0 S	392.3	6.5	94	Work.	Ex. 20
308	1273	C19 H16 Cl	N5 O2 S	414.4	6.2	95	Work.	Ex. 20
309	1274	C19 H19 N5	o s	366.2	5.7	100	Work.	Ex. 20
310	1275	C18 H15 F	N6 O2 S	399.2	6.5	100	Work.	Ex. 20
311	1276	C18 H15 Cl	F N5 S	388.1	6.6	94	Work.	Ex. 20
312	1277	C22 H18 N6		447.2	7.2	91	Work.	Ex. 20
313	1278	C18 H16 Cl	N5 O S	386.1	5.0	96	Work.	Ex. 20
314	1279	C19 H15 F4	N5 S	422.2	7.5	100	Work.	Ex. 20
315	1280	C19 H15 F4	N5 S	422.2	7.7	100	Work.	Ex. 20
316	1281	C19 H15 F4	N5 S	422.2	7.5	100	Work.	Ex. 20
317	1282	C19 H15 F4	N5 S	422.2	8.9	94	Work.	Ex. 20
318	1283	C19 H15 F4	N5 S	422.2	7.4	94	Work.	Ex. 20

Table 68

Work. Ex. No.	Compound No.	Composition	ESI MS m/e	HPLC (min)	Purity	Synthetic meth.
319	1284	C19 H19 N5 O S	366.2	6.1	92	Work. Ex. 2
320	1285	C19 H18 F N5 O S	384.2	5.7	100	Work. Ex. 2
321	1286	C22 H20 C1 N7 S	450.4	6.7	95	Work. Ex. 2
322	1287	C22 H18 N6 O3 S	447.2	7.3	100	Work. Ex. 2
323	1288	C19 H15 Cl F3 N5 S	438.3	8.9	100	Work. Ex. 2
324	1289	C15 H14 N6 S2	343.2	4.8	84	Work. Ex. 2
325	1290	C19 H18 F N5 O S	384.2	5.8	94	Work. Ex. 2
326	1291	C25 H30 N6 O2 S	479.3	7.9	86	Work. Ex. 2
327	1291	C25 H30 N6 O2 S	479.3	7.9	87	Work. Ex. 2
328	1292	C19 H17 N5 O S	364.2		84	Work. Ex. 2
329	1293	C19 H19 N5 O2 S	382.2	5.3	100	Work. Ex. 2
330	1294	C16 H14 Br N5 O S	406.1	5.7	89	Work. Ex. 2
331	1295	C20 H21 N5 O S	380.2	6.2	53	Work. Ex. 2
332	1296	C22 H30 N6 O3 S	459.3	7.6	85	Work. Ex. 2
333	1297	C19 H17 N5 O2 S	380.2		64	Work. Ex. 2
334	1298	C22 H18 C1 N5 O S	436.1	7.8	100	Work. Ex. 2
335	1299	C22 H18 N6 O3 S	447.1	6.8	100	Work. Ex. 2
336	1300	C19 H15 F4 N5 S	422.2	7.9	96	Work. Ex. 2
337	1301	C17 H21 N5 O2 S	360.2	4.4	71	Work. Ex. 2
338	1302	C21 H28 N6 O2 S	429.3	7.1	100	Work. Ex. 2
339	1303	C19 H19 N5 O S	366.2	5.5	100	Work. Ex. 2
340	1304	C22 H20 N6 O2 S2	465.2	7.2	92	Work. Ex. 2
341	1306	C19 H15 Cl F3 N5 S	438.1	8.5	100	Work. Ex. 2
342	1308	C23 H21 N7 O2 S	460.2	7.6	88	Work. Ex. 2
343	1309	C18 H16 F N5 O S	370.2	5.1	68	Work. Ex. 2
344	1310	C20 H18 N6 S	375.2	6.2	95	Work. Ex. 2
345	1311	C16 H17 N7 S	340.2	3.9	100	Work. Ex. 2
346	1312	C18 H15 Cl F N5 S	388.1	6.6	100	Work. Ex. 2
347	1313	C18 H15 F N6 O2 S	399.1	6.2	79	Work. Ex. 2
348	1315	C23 H20 N6 S	413.2	3.8	64	Work. Ex. 2
349	1316	C19 H15 F N6 S	379.1	5.8	100	Work. Ex. 2
350	1317	C21 H20 N6 S	389.1	7.0	100	Work. Ex. 2
351	1318	C19 H18 N6 O3 S	411.1	5.7	100	Work. Ex. 2
352	1319	C20 H19 N5 O S	378.1	4.9	98	Work. Ex. 2
353	1322	C18 H15 F2 N5 S	372.2	5.4	100	Work. Ex. 2
354	2164	C13 H14 N4 S	259.4	9.1	89	Work. Ex. 2
355	2190	C12 H13 N5 O	244.1	1.6	97	Work. Ex. 4

Table 69

5

10

Work. Ex. No.	Compound No.	Composition	ESI MS m/e	HPLC (min)	Purity (%)	Synthetic meth.
356	2203	C17 H21 N5 O3	344.3	7.2	100	Work. Ex. 1
357	2240	C18 H23 N7 O S2	418.2	4.9	88	Work. Ex. 16
358	2241	C24 H27 N7 O2 S2	510.3	9.6	75	Work. Ex. 16
359	2242	C18 H16 N6 O2 S	381.2	5.9	81	Work. Ex. 20
360	2243	C15 H17 N5 O2	300.3	6.0	97	Work. Ex. 6
361	2244	C23 H24 N6 O3	433.3	8.0	90	Work. Ex. 6

[Working Example 362]

 $^1\text{H-NMR}$ (400 MHz, DMSO-d₆) of the compounds of the present invention was determined. The following Table 70 - Table 71 show the data of chemical shift (δ : ppm) and coupling constant (J: Hz). Working Example Nos. in the Tables indicate those described in the above Working Examples, and Compound Nos. in the Tables indicate those in Table 1 - Table 59 listed as the above preferred examples.

Table 70

Compound No.	Work. Ex. No.	δ (mqq)
161	7	2.23(s, 3H), 3.15(m, 2H), 3.74(m, 2H), 3.81(m, 2H), 4.91(m, 2H), 7.05(d, 8.6Hz, 2H), 7.35(d, 8.5Hz, 2H), 7.97(s, 1H), 8.52(s, 1H), 12.38(br, 1H)
165	70	3.16(m, 2H), 3.70(s, 3H), 3.74(m, 2H), 3.80(m, 2H), 4.91(m, 2H), 6.83(d, 9.0Hz, 2H), 7.35(d, 8.8Hz, 2H), 7.97(s, 1H), 8.47(s, 1H), 12.38(br, 1H)
236	8	3.20(m, 2H), 3.25-3.43(m, 4H), 3.81(s, 3H), 4.90(m, 2H), 7.10(d, 9.0Hz, 2H), 7.70(d, 9.0Hz, 2H), 7.93(d, 3.7Hz, 1H), 12.38(br, 1H)
280	11	3.32(m, 2H), 3.89(m, 4H), 5.70(m, 2H), 8.17(s, 1H), 13.78(s, 1H)
351	126	3.25(m, 2H), 3.81(m, 4H), 5.61(m, 2H), 5.95(t, 7.4Hz, 1H), 7.24(t, 7.3Hz, 2H), 7.46(d, 7.6Hz, 2H), 8.15(d, 3.7Hz, 1H), 8.66(s, 1H), 13.74(br, 1H)
355	129	2.25(s, 3H), 3.25(m, 2H), 3.79(m, 4H), 5.59(m, 2H), 6.77(d, 7.6Hz, 1H), 7.12(t, 7.7Hz, 1H), 7.27(m, 2H), 8.15(d, 3.4Hz, 1H), 8.58(s, 1H), 13.74(br, 1H)
356	16	2.22(s, 3H), 3.23(m, 2H), 3.79(m, 4H), 5.59(m, 2H), 7.05(d, 8.6Hz, 2H), 7.33(d, 8.6Hz, 2H), 8.14(d, 3.6Hz, 1H), 8.56(s, 1H), 13.73(br, 1H)
413	13	2.91(br, 4H), 3.14(m, 2H), 5.48(br, 2H), 7.04(br, 1H), 8.12(s, 1H)
792	18	3.27(m, 2H), 3.81(br, 4H), 5.62(m, 2H), 7.36(t, 7.8Hz, 1H), 7.53(m, 1H), 7.78(m, 1H), 8.09(s, 1H), 8.15(s, 1H), 8.87(s, 1H), 12.89(br, 1H), 13.74(br, 1H)
796	202	3.26(m, 2H), 3.82(br, 4H), 5.63(m, 2H), 7.60(m, 2H), 7.83(m, 2H), 8.15(m, 1H), 9.00(s, 1H), 13.77(m, 1H)
811	203	3.33(m, 2H), 3.84(m, 4H), 5.68(m, 2H), 7.04(t, 7.6Hz, 1H), 7.54(m, 1H), 7.96(d, 8.1Hz, 1H), 8.16(s, 1H), 8.34(d, 8.6Hz, 1H), 11.09(s, 1H), 13.75(br, 1H)
847	19	3.26(br, 2H), 3.81(br, 4H), 5.62(br, 2H), 7.30(m, 2H), 7.68(m, 1H), 7.88(s, 1H), 8.15(m, 1H), 8.85(s, 1H), 11.14(s, 1H), 13.76(s, 1H)

Table 71

5

10

15

20

Compound No.	Work. Ex. No.	δ (ppm)
1088	218	3.35(m, 2H), 4.28(m, 4H), 5.68(m, 2H), 7.43(t, 7.8Hz, 1H), 7.58(m, 1H), 7.71(m, 1H), 7.88(s, 1H), 8.17(d, 3.4Hz, 1H), 9.63(s, 1H), 12.98(br, 1H), 13.77(s, 1H)
1090	219	3.33(m, 2H), 4.27(m, 4H), 5.67(br, 2H), 7.42(m, 2H), 7.86(m, 2H), 8.16(s, 1H), 9.69(s, 1H), 12.79(br, 1H), 13.77(br, 1H)
1096	222	3.35(m, 2H), 4.33(br, 4H), 5.72(br, 2H), 7.21(t, 7.6Hz, 1H), 7.55(t, 7.7Hz, 1H), 7.91(d, 7.8Hz, 1H), 8.08(d, 8.3Hz, 1H), 8.17(s, 1H), 10.71(br, 1H), 13.45(br, 1H), 13.78(s, 1H)
1501	22	1.57(br, 3H), 3.07-4.33(m, 9H), 7.45(m, 5H), 8.19(s, 1H), 13.85(br, 1H)

[Working Example 363]

Determination of inhibition of GSK-3 enzyme activity

To five μl of a test compound in 5% DMSO as a solvent, 25 µl of phospho-glycogen synthase peptide-2 substrate solution [6 µm phospho-glycogen synthase peptide-2, 20 µm ATP, 16 mM MOPS buffer, pH 7.0, 0.2 mM EDTA, 20 mM magnesium acetate, 0.1 μ l [γ - 33 P]ATP (specific activity: about 110 TBq/mmol) | was added, and 20 µl of a GSK-3 β enzyme solution [10 mU recombinant human GSK-3 β , 20 mM MOPS buffer, pH 7.0, 1 mM EDTA, 0.1% polyoxyethylenelauryl ether (23 Lauryl Ether; Brij 35), 5% glycerol, 0.1% β -mercaptoethanol] was further added to initiate the reaction. After reacting at room temperature for 20 minutes, an equal amount of 200 mM phosphate solution was added to stop the reaction. 90 µl of the reaction product was allowed to adsorb to the MultiScreen PH plate (Millipore), and washed with 100 mM phosphate solution. After drying said plate, 30 µl of MicroScint-O (Packard Bioscience) was added, and cpm was measured by a scintilation counter to examine the

inhibition activity. As used herein, Phospho GS Peptide 2 means Tyr-Arg-Arg-Ala-Ala-Val-Pro-Pro-Ser-Pro-Ser-Leu-Ser-Arg-His-Ser-Ser-Pro-His-Gln-Ser(P)-Glu-Asp-Glu-Glu-Glu (SEQ ID NO: 1).

5 After determining the GSK-3 enzyme-inhibiting activity (IC₅₀ value) of the compounds of the present invention, the inhibiting activity of $IC_{50} < 50$ nM was noted in Compound Nos. 692(R), 731, 732, 735, 736, 792, 796, 2164. The inhibiting activity of 50 nM \leq IC₅₀ < 100 nM was noted in Compound Nos. $692(\pm)$, 696(R), 734, 836, 10 1088, 1090, 1179, 1203, 1290, and 1295. Also, the inhibiting activity of 100 nM \leq IC₅₀ < 1 μ M was noted in Compound Nos. 137, 280, 282, 283, 297, 330, 331, 332, 333, 335, 336, 337, 340, 341, 342, 344, 351, 353, 354, 355, 356, 359, 360, 361, 365, 366, 368, 374, 375, 391, 15 405, 413, 414, 415, 420, 421, 422, 423, 424, 425, 426, 427, 428, 668, 672, 676, 678, 680, 682, 686, 688, 696(S), 747, 752, 753, 755, 756, 758, 759, 760, 763, 764, 765, 769, 771, 772, 793(S), 811, 837, 838, 847, 1069, 1072, 20 1074, 1076, 1078, 1080, 1082, 1084, 1096, 1098, 1100, 1104, 1114, 1141, 1161, 1166, 1172, 1174, 1176, 1180, 1181, 1183, 1184, 1192, 1193, 1194, 1196, 1198, 1200, 1201, 1202, 1204, 1205, 1214, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1235, 1236, 25 1237, 1238, 1239, 1241, 1242, 1243, 1244, 1245, 1247, 1249, 1250, 1251, 1253, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1266, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1277, 1278, 1284, 1285, 1286, 1287, 1289, 1291, 1291, 1292, 1293, 30 1294, 1296, 1297, 1299, 1301, 1302, 1303, 1308, 1309, 1310, 1312, 1313, 1315, 1316, 1318, 1319, 1322, 2240, 2241, 2242, 1501. Also, the inhibiting activity of 1 μM \leq IC $_{50}$ < 10 μM was noted in Compound Nos. 47, 50, 114, 119, 135, 136, 141, 143, 144, 147, 150, 155, 158, 160, 161, 164, 165, 167, 172, 173, 176, 177, 179, 180, 182, 35

183, 188, 189, 191, 193, 196, 198, 199, 200, 334, 347, 363, 410, 432, 433, 521, 674, 684, 739, 740, 741, 749, 750, 770, 773, 791, 1067, 1087, 1092, 1094, 1102, 1106, 1108, 1110, 1112, 1116, 1118, 1163, 1177, 1178, 1182, 1234, 1240, 1252, 1276, 1279, 1280, 1281, 1282, 1283, 1288, 1298, 1300, 1304, 1306, 1311, 1317, 1799. Compound Nos. in the Tables indicate those in Table 1 - Table 59 listed as the above preferred examples.

As described above, the pyrrolopyrimidine derivatives of the present invention exhibit potent GSK-3-inhibiting activity. Thus, it is clear now that they are clinically applicable as GSK-3 activity-inhibiting substance for use in the prevention and/or treatment of various diseases in which GSK-3 is involved.

15 [Working Example 364]

5

10

25

30

35

Preparation of tablets

Tablets were prepared with one tablet having the following composition:

	Compound (Working Example 1)	50	mg
20	Lactose	230	mg
	Potato starch	80	mg
	Polyvinyl pyrrolidone	11	mg
	Magnesium stearate	5	mg

The compound (the compound of Working Example 1) of the present invention, lactose, and potato starch were mixed, which were evenly swelled in a 20% polyvinyl pyrrolidone in ethanol, sieved through a 20 nm mesh, dried at 45°C, and sieved through a 15 nm mesh again. Granules thus obtained were blended with magnesium stearate and compressed to tablets.

INDUSTRIAL APPLICABILITY

The pyrrolo[3,2-d]pyrimidine derivatives of the present invention and pharmaceutically acceptable salts thereof exhibit excellent activity of inhibiting GSK-3. Thus, it was revealed that they are fully clinically applicable as GSK-3 activity-inhibiting substance for use in the prevention and/or treatment of various diseases in

which GSK-3 is involved.