Explicar la convención Denavit-Hartenverg

Gutiérrez Muñoz José de Jesús 7 - A Ing. Mecatronica

23 - Septiembre - 2019

La representación Denavit-Hartenberg José Cortés Parejo. Marzo 2008 Se trata de un procedimieto sistemático para describir la estructura cinemática de una cadena articulada constituida por articulaciones con. un solo grado de libertad.

Para ello, a cada articulación se le asigna un Sistema de Referencia Local con origen en un punto Q_i y ejes ortonormales $[X_i,Y_i,Z_i]$, comenzando con un primer S.R fijo e inmóvil dado por los eje $[X_0,Y_0,Z_0]$, anclado a un punto fijo Q_0 de la Base sobre la que está montada toda la estructura de la cadena. Este Sistema de Referencia no tiene por qué ser el Universal con origen $(\mathbf{0},\mathbf{0},\mathbf{0})$ y la Base canónica.

Asignación de Sistemas de Referencia.

Las articulaciones se numeran desde 1 hasta n. A la articulación i -ésimase le asocia su propio eje de rotación como Eje $Z_i - 1$ de forma que el ejede giro de la 1^a articulación es Z_0 y el de la n -ésima articulación, $Z_n - 1$.

En la Figura adjunta se muestra la estructura del Robot PUMA juntocon sus articulaciones y ejes de rotación.

Para la articulación ${\bf i}$ -ésima (que es la que gira alrededor de Z_i-1), la elección del origen de coordenadas Q_i y del Eje X_i sigue reglas muy precisas en fun-

ción de la geometría delos brazos articulados. el Eje $\mathbf{Y}_i por suparte$, seescogeparaque el sistema $[X_i, Y_i, Z_i]$ seade $\mathbf{1}$.- Z_i \mathbf{y} Z_i-1 no son paralelos.

Entonces existe una única recta perpendicular a ambos, cuya intersección con los ejes proporciona su mínimadistancia (que puede ser 0). Esta distancia, a_i , medida desde el eje Z_i-1 hacia el eje Z_1 (con su signo), es unode los parámetros asociados a la articulación i-ésima. La distancia d_i desde Q_i-1 a la intersección de laperpendicular común

entre Z_i-1 y Z_i con Z_i-1 es el 2 de los parámetros. En este caso, el Eje X_i es esta recta, siendo el sentidopositivo el que va desde el Eje Z_i-1 al Z_i si a_i ¿0 .El origen de coordenadas Q_i

2- Z_i y $Z_i - 1$ son paralelos.

En esta situación el Eje X_i se toma en el planoconteniendo a Z_i-1 y Z_i y perpendicular a ambos. El origen Q_i es cualquier punto conveniente del eje Z_i . El parámetroia a_i es, como antes, la distancia perpendicularentre los ejes Z_i-1 y Z_i , y d_i es la distancia desde Q_i-1 .

Una vez determinado el Eje X_i , a la articulación i-ésima se le asocia un $3^e r$ parámetro fijo a_i que es el ángulo queforman los ejes $Z_i - 1$ y Z_i relación al eje X_1

.Nótese que cuando el brazo i -ésimo (que une rígidamentelas articulaciones i e i+1) gira en torno al eje Z_i-1 (que es el de rotación de la articulación i), los parámetros a_i , d_i y $_i$ permanecen constantes, pues dependenexclusivamente de las posiciones/orientaciones relativas entre los ejes Z_i-1 y Z_i , que son invariables. Por tanto, a_i , d_i y $_i$ pueden calcularse a partir de cualquier configuración de la estructura articulada, enparticular a partir de una configuración inicial estándar. Precisamente el ángulo $_i$ de giro que forman los ejes X_i-1 y X_i con respecto al eje Z_i-1 es el 4º parámetro asociado a la articulación i y el único de ellosque varía cuando el brazo i gira.

Es importante observar que el conjunto de los 4 parámetros $a_1,\,d_i,\,$ y $_i$ determina totalmente el Sistemade Referencia de la articulación i+1 en función del S.R de la articulación i.

