Unitary representations of space(time) symmetries

Joshua Benabou Javier Echevarría Cuesta

December 15, 2020

Euclidean groups

It appears, empirically, that the laws of physics are invariant under spatial rotations and translations.

Definition

The **Euclidean group** E(n) is the isometry group of the Euclidean space \mathbb{E}^n .

We restrict our attention to the special Euclidean group

$$SE(n) := T(n) \times SO(n)$$
.

We also choose to study the cases n = 2 and n = 3.

Wu experiment, 1956

Special Euclidean group in two-dimensional space

Faithful representation on \mathbb{R}^3 given by

$$g(b,\theta) \mapsto egin{pmatrix} \cos \theta & -\sin \theta & b_1 \ \sin \theta & \cos \theta & b_2 \ 0 & 0 & 1 \end{pmatrix},$$

where $\theta \in [0, 2\pi)$ and $b \in \mathbb{R}^2$.

A general element of the subgroup SO(2) is $R(\theta) := g(0, \theta) = e^{-i\theta J}$, with

$$J = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

The subgroup of translations needs two generators P_1 and P_2 .

Proposition

The generators of the Lie algebra ise(2) satisfy

$$[P_1, P_2] = 0$$
, $[J, P_1] = iP_2$, and $[J, P_2] = -iP_1$.

Unitary irreps by the Lie algebra method

We have uninteresting irreps that factor through the quotient SE(2)/T(2).

- We give ourselves a Lie algebra representation $\rho : \mathfrak{se}(2)_{\mathbb{C}} \to \operatorname{End}(\mathcal{H})$.
- We define $\mathbf{P}^2 = \rho(P_1)^2 + \rho(P_2)^2$ and the ladder operators $P_{\pm} = P_1 \pm iP_2$ satisfying $[P_+, P_-] = 0$, $[J, P_{\pm}] = \pm P_{\pm}$. Then $\{J, P_{\pm}\}$ generates $\mathfrak{se}(2)_{\mathbb{C}}$.
- **③** We write $\mathcal{H} = \bigoplus_p \mathcal{H}_p$, where each \mathcal{H}_p is the eigenspace corresponding to some eigenvalue $p^2 \ge 0$ of \mathbf{P}^2 .
- **③** Since [**P**², ρ (J)] = [**P**², ρ (P_{\pm})] = 0, each subspace \mathcal{H}_p is invariant under the action of \mathfrak{se} (2)_ℂ. We hence fix $p \ge 0$.
- **1** We pick a $\rho(J)$ -eigenbasis $\{e_m\}$ for \mathcal{H}_p labelled by integers. Then

$$\begin{split} \|\rho(P_{\pm})e_{m}\|^{2} &= \langle \rho(P_{\pm})e_{m}, \rho(P_{\pm})e_{m} \rangle = \langle e_{m}, \rho(P_{\pm})^{*}\rho(P_{\pm})e_{m} \rangle \\ &= \langle e_{m}, \rho(P_{\mp})\rho(P_{\pm})e_{m} \rangle = \langle e_{m}, \mathbf{P}^{2}e_{m} \rangle \\ &= \rho^{2}\|e_{m}\|^{2} = \rho^{2}. \end{split}$$

If p = 0, each subspace $\langle e_m \rangle$ is an irrep.

Unitary irreps by the Lie algebra method (cont'd)

- **1** Pick an initial vector e_{m_0} in \mathcal{H}_p with p > 0.
- ② Apply $\rho(P_{\pm})$ successively. No need to consider $\rho(J)$ because

$$\rho(J)\rho(P_{\pm})e_m = (\rho(P_{\pm})\rho(J) \pm \rho(P_{\pm}))e_m = (m \pm 1)\rho(P_{\pm})e_m.$$

o For each $k \in \mathbb{N}$, define

$$\tilde{e}_k = (i/p)^k \rho(P_+)^k e_{m_0}$$
 and $\tilde{e}_{-k} = (-i/p)^k \rho(P_-)^k e_{m_0}$.

Then $\{\tilde{e}_k\}_{k\in\mathbb{Z}}$ is an orthonormal basis of an irrep $\tilde{\mathcal{H}}_p\subseteq\mathcal{H}_p$.

③ Relabel separable space $\tilde{\mathcal{H}}_p$ as $\ell^2(\mathbb{Z})$ and define

$$\rho(J)e_m = me_m$$
, and $\rho(P_{\pm})e_m = \mp ipe_{m\pm 1}$.

Proposition

The faithful unitary irreducible representations of SE(2) are characterized by a real number p>0. With exponential map and $\rho(J)$, $\rho(P_\pm)$ as above, we may explicitly define a representation $U_p: SE(2) \to GL(\ell^2(\mathbb{Z}))$.

Special Euclidean group in three-dimensional space

As before, we have a faithful representation, this time on \mathbb{R}^4 , given by

$$g(Q,b)\mapsto \begin{pmatrix} Q & b \\ 0 & 1 \end{pmatrix}$$

where $Q \in SO(3)$ and $b \in \mathbb{R}^3$.

Every rotation in SO(3) can be uniquely decomposed in terms of Euler angles into a product

$$R_z(\alpha)R_y(\beta)R_z(\gamma)$$

around the fixed *y*- and *z*-axes, where $\alpha, \gamma \in [0, 2\pi)$ and $\beta \in [0, \pi]$.

Again, we have the uninteresting unitary irreducible representations that factor through SE(3)/T(3). These are the spin-j representations

$$D_j:\mathsf{SO}(3)\to\mathsf{GL}(\mathbb{C}^{2j+1}).$$

Unitary irreps by the induction method

We follow the recipe to construct a representation for a group $G = N \times H$ if N is a normal abelian subgroup.

Output Pick a χ character of N. The unitary characters of T(3) are labelled by $p \in \mathbb{R}^3$ and given by

$$\chi_p: \mathsf{T}(3) o \mathbb{S}^1, \quad \mathsf{T}(b) \mapsto e^{-i\langle b, p \rangle}.$$

② Consider the orbit of χ in \widehat{N} for the H-action $h \cdot \chi = \chi \circ \operatorname{adj}(h)^{-1}$.

Here the SO(3)-action on the dual $\widehat{T(3)}$ is given by

$$(Q \cdot \chi_p)(T(b)) = \chi_p(g(Q,0)^{-1}T(b)g(Q,0)) = \chi_p(T(Q^{-1}b)).$$

9 Pick a unitary irrep of the stabilizer in H of χ for this action. For $p \in \mathbb{R}^3$, we call the stabilizer SO(3) $_p$ of χ_p its **little group**. Since $Q^T = Q^{-1}$,

$$SO(3)_p = \{Q \in SO(3) \mid Qp = p\}.$$

Unitary irreps by the induction method (cont'd)

When p = 0, we have SO(3)_p = SO(3). Otherwise, p is characterized by two angles (θ, ψ), and SO(3)_p ≅ SO(2). Hence for each λ ∈ ℤ we have a unitary irrep Q → e^{-iλψ}, where ψ ∈ [0, 2π) satisfies

$$R(0,0,\psi) = R(\theta,\phi,0)^{-1}QR(\theta,\phi,0).$$

Make N ⋈ H_χ act on the previous representation space. We obtain a unitary representation U_λ : T(3) ⋈ SO_p(3) → ℂ[×] given by

$$U_{\lambda}(T(b)Q) = \chi_{\rho}(T(b))e^{-i\lambda\psi} = e^{-i\langle b,\rho\rangle}e^{-i\lambda\psi}.$$

1 Induce from $N \times H_{\chi}$ to G.

Proposition

The faithful unitary irreducible representations of SE(3) are characterized by a real number p>0 and an integer λ . They can be realized as

$$\operatorname{Ind}_{\mathsf{T}(3)\rtimes \mathsf{SO}(3)_{\rho_0}}^{\mathsf{SE}(3)} U_\lambda,$$

where $p_0 \in \mathbb{R}^3$ satisfies $||p_0|| = p$.

Poincaré Group

Definition

The Poincaré group is the isometry group of Minkowski space $\mathbb{R}^{3,1}$.

The generators are the spacetime translations T(b), $b \in \mathbb{R}^{3,1}$, and Lorentz transformations $\Lambda \in O(3,1)$

The (restricted) Poincaré group $T(4) \rtimes SO^{\uparrow}(3,1)$ is the full symmetry group of any relativistic field theory, and thus **elementary particles are irreps of this group**.

We establish Wigner's classification of the unitary irreps of positive energy:

- ullet reps. corresponding to particles, indexed by mass $M\geq 0$ and spin $s\in rac{1}{2}\mathbb{N}$
- non-physical "continuous spin" representation for massless states.

Also: non-physical negative energy representations (tachyons).

Unitary representations of the Poincaré group

Faithful unitary reps. of the Poincaré group are infinite dimensional.

We use method of induced representations to find them:

- **①** Choose basis from eigenvectors p^{μ} of the generators of translations P^{μ} .
- ② Given p^{μ} , identify the maximal subgroup of Lorentz group leaving p^{μ} invariant ("little group").
- lacktriangledown From a unitary irrep of the "little group" on the p^{μ} -eigenspace, induce one for the Poincaré group by Lorentz-transforming the basis vectors.

Proposition

 $C_1 \equiv -P_{\mu}P^{\mu} = P_0^2 - \mathbf{P}^2$ is a Casimir operator of the Poincaré group.

We will classify irreps by region of the light-cone in which p^{μ} (sign of eigenvalue c_1).

Null vector $c_1 = 0, p^{\mu} = 0$

The null vector $p^{\mu} \equiv 0$ is Lorentz invariant so its little group is the Lorentz group.

Unitary irreps of the Lorentz group are indexed by two parameters j_0, ν .

We induce a unitary irrep of the Poincaré group in which the basis consists of common eigenvectors $|0jm\rangle$ of (P^{μ}, J^2, J_3) with resp. eigenvalues (0, j, m).

Given matrices $D_{j_0,\nu}(\Lambda)$ from unitary rep. of the Lorentz group, we have:

$$T(b)|0jm\rangle = |0jm\rangle, \qquad (1)$$

$$\Lambda |0jm\rangle = |0j'm'\rangle D_{j_0,\nu}(\Lambda)_{jm}^{j'm'}. \tag{2}$$

This representation describes the vacuum.

Time-like vector $c_1 = -p_\mu p^\mu = M^2$

We define a "standard vector": $p_t^{\mu} \equiv (p_0, \mathbf{p}) = (M, \mathbf{0})$.

The little group of p_t is SO(3) whose unitary irreps are the spin j = s reps. D_j .

The basis vectors of the p_t^{μ} -eigenspace $|\mathbf{0}, \lambda\rangle$ satisfy

$$P^{\mu} |\mathbf{0}, \lambda\rangle = |\mathbf{0}, \lambda\rangle \, p_t^{\mu} \qquad ; p_t^{\mu} = (M, \mathbf{0}),$$
 (3)

$$J^{2} |\mathbf{0}, \lambda\rangle = |\mathbf{0}, \lambda\rangle \, s(s+1), \tag{4}$$

$$J_3 |\mathbf{0}, \lambda\rangle = |\mathbf{0}, \lambda\rangle \lambda. \tag{5}$$

A general Lorentz transformation is obtained as two rotations and a boost along the z axis: $\Lambda = R(\alpha, \beta, 0)L_3(\zeta)R^{-1}(\phi, \theta, \psi)$, where $v = c \tanh(\zeta)$.

We obtain a complete basis of general eigenvectors by Lorentz-transforming, giving $|\mathbf{p}\lambda\rangle \equiv H(P)|\mathbf{0}\lambda\rangle$ where $H(p)=R(\alpha,\beta,0)L_3(\zeta)$.

Time-like vector $c_1 = -p_\mu p^\mu = M^2$ (cont'd)

Proposition

The Poincaré group acts on the span of $\{|\mathbf{p}\lambda\rangle\}$ as

$$T(b)|\mathbf{p}\lambda\rangle = |\mathbf{p}\lambda\rangle e^{-ib_{\mu}p^{\mu}}$$
 (6)

$$\Lambda |\mathbf{p}\lambda\rangle = |\mathbf{p}'\lambda'\rangle D_s[R(\Lambda, \rho)]_{\lambda}^{\lambda'} \tag{7}$$

where $p^{'\mu} = \Lambda^{\mu}_{\nu} p^{\nu}$ and $R(\Lambda, p) \equiv H^{-1}(p) \Lambda H(p)$. This rep., labelled by (M, s), is a unitary irrep.

Irreducibility: $\{|\mathbf{p}\lambda\rangle\}$ may be generated from e.g $|\mathbf{0}\lambda=s\rangle$ by applying $\{J_{\pm}\}$ and the $\{H(p)\}$, there is no nontrivial invariant subspace.

Unitarity: the rep. matrices on the RHS of (6)- (7) are unitary.

The $|M, s; \mathbf{p}\lambda\rangle$ represent states of **mass** M, 3-momentum \mathbf{p} , and **intrinsic spin** s. The eigenvalue λ is of $J_3 = \mathbf{J} \cdot \mathbf{P}/|\mathbf{p}|$ corresponds to the *helicity*.

The second Casimir operator

As the "mass" M is related to $C_1 = -P_\mu P^\mu$, the "spin" s is related to a second Casimir of the Poincaré group:

Definition

The Pauli-Lubanski Vector is $W^{\lambda} = \epsilon^{\lambda\mu\nu\sigma}J_{\mu\nu}P_{\sigma}/2$.

We have $W_{\lambda}P^{\lambda}=0$ and the commutation relations

$$[W^{\lambda}, P^{\mu}] = 0 \tag{8}$$

$$[W^{\lambda}, J^{\mu\nu}] = i(W^{\mu}g^{\lambda\nu} - W^{\nu}g^{\mu\lambda}) \tag{9}$$

$$[W^{\lambda}, W^{\sigma}] = i\epsilon^{\lambda\sigma\mu\nu} W_{\mu} P_{\nu} \tag{10}$$

The second Casimir operator (cont'd)

Proposition

 $C_2 \equiv W^\lambda W_\lambda$ is a Casimir of the Poincaré group. On the $\{p^\mu\}$ -eigenspace, the components of $\{W^\mu\}$ form the Lie algebra of little group of p^μ . The unitary irreps of the Poincaré group are indexed by the eigenvalues of the $-P^2$ and $-W^2/p^2$.

Example: for $p^{\mu} = p_t^{\mu} = (M, \mathbf{0})$, $W = (0, M\mathbf{J})$ whose components generate SO(3).

For the remaining cases we will construct the little group from the Lie algebra generated by $\{W^{\mu}\}$.

Light-Like Vector $p_{\mu}p^{\mu}=0$

We define the standard light-like vector: $p_l^{\mu} \equiv (\omega_0, 0, 0, \omega_0)$ with $\omega_0 \neq 0$.

We obtain a general momentum $p^{\mu}=(\omega,\mathbf{p})$, where $\mathbf{p}=\omega\hat{\mathbf{p}}$ and $\hat{\mathbf{p}}$ has angles (θ,ϕ) , as:

$$p^{\mu} = H(p)^{\mu}_{\nu} p^{\nu}_{l} = [R(\phi, \theta, 0) L_{3}(\zeta)]^{\mu}_{\nu} p^{\nu}_{l}$$
(11)

The components of $W^{\lambda}=\epsilon^{\lambda\mu\nu\sigma}J_{\mu\nu}p_{l\sigma}/2$ are, in terms of rotations and boosts:

$$W^0 = W^3 = \omega_0 J_{12} = \omega_0 J_3 \tag{12}$$

$$W^{1} = \omega_{0}(J_{23} + J_{20}) = \omega_{0}(J_{1} + K_{2})$$
 (13)

$$W^2 = \omega_0(J_{31} - J_{10}) = \omega_0(J_2 - K_1)$$
 (14)

and $C_2 = W_1^2 + W_2^2$. Lie algebra of the little group:

$$[W^1, W^2] = 0, \quad [W^2, J_3] = iW^1, \quad \text{and} \quad [W^2, J_3] = -iW^2$$
 (15)

This is the same Lie algebra as for SE(2)!

Light-Like Vector $p_{\mu}p^{\mu} = 0$ (cont'd)

Unitary irreps of SE(2) are either:

- degenerate (w = 0), basis vectors labeled by eigenvalues λ of J_3
- non-degenerate and infinite-dimensional (w>0), basis vectors $\{|w,\lambda\rangle\,,\lambda=0,\pm1,..\}$

The "continuous spin representation" (M = 0, w > 0) has not yet observed in nature.

 $(\textit{M} = \textit{w} = 0, \lambda)$ reps. correspond to photon/gluons $(\lambda = \pm 1)$, and graviton $(\lambda = \pm 2)$ states.

We consider only the degenerate case, with little group SO(2).

Light-Like Vector $p_{\mu}p^{\mu} = 0$ (cont'd)

 p_l^μ -eigenspace is one-dimensional and the basis vector $|\mathbf{p_l}\lambda\rangle$ transforms as

$$P^{\mu} |\mathbf{p_l} \lambda\rangle = |\mathbf{p_l} \lambda\rangle \, \mathbf{p_l^{\mu}} \tag{16}$$

$$J_3 |\mathbf{p}_1 \lambda\rangle = |\mathbf{p}_1 \lambda\rangle \lambda \tag{17}$$

$$W_i |\mathbf{p_i}\lambda\rangle = 0 \quad ; \quad i = 1,2$$
 (18)

When λ is an integer (resp. odd half-integer), we obtain a single (resp. double) valued rep.

The general basis vector is obtained as $|\mathbf{p}\lambda\rangle \equiv H(p)\,|\mathbf{p}_1\lambda\rangle$, where $p=\omega_0e^{\zeta}$.

Proposition

The Poincaré group acts on the span of $\{|\mathbf{p}\lambda\rangle\}$ as

$$T(b)|\mathbf{p}\lambda\rangle = |\mathbf{p}\lambda\rangle e^{-ib_{\mu}p^{\mu}} \tag{19}$$

$$\Lambda |\mathbf{p}\lambda\rangle = |\Lambda \mathbf{p}\lambda\rangle e^{-i\lambda\theta(\Lambda,p)} \tag{20}$$

where $e^{-i\lambda\theta(\Lambda,p)} = \langle \mathbf{p_l}\lambda| H^{-1}(\Lambda p)\Lambda H(p)|\mathbf{p_l}\lambda\rangle$. This rep., labeled by $(M=0,\lambda)$, is a unitary irrep.

Space-like vector $c_1 = -p_\mu p^\mu < 0$

Space-like vectors cannot represent physical particles, but are relevant for deep inelastic scattering.

We define the standard vector: $p_s^{\mu} \equiv (0,0,0,Q)$ where $Q^2 = -c_1 > 0$.

Little group is generated by the components:

$$W^0 = QJ_3 \tag{21}$$

$$W_1 = QJ_{20} = QK_2 (22)$$

$$W_2 = QJ_{01} = -QK_1 (23)$$

and coincides with SO(2, 1). The second Casimir is

$$C_2 = Q^2(K_1^2 + K_2^2 - J_3^2)$$
 (24)

The Lie algebra of the little group is

$$[K_2, J_3] = iK_1, \quad [J_3, K_1] = iK_2, \quad \text{and} \quad [K_1, K_2] = -iJ_3.$$
 (25)

SO(2,1) is simple and non-compact (contains boosts). Its unitary irreps are thus infinite-dimensional.

Space-like vector $oldsymbol{c}_1 = -oldsymbol{ ho}_\mu oldsymbol{ ho}^\mu < 0$ (cont'd)

Unitary irreps of SO(2, 1) come in two classes, labeled by c_2 , with either $c_2 \in (0, \infty)$ or $c_2 = -j(j+1)$, where $j \in \mathbb{N}_0$.

For a given c_2 , we label basis vectors as $|p_s\lambda\rangle$.

We obtain a general basis of a unitary irrep of the Poincaré group is obtained as: $|\mathbf{p}\lambda\rangle \equiv H(p)|p_s\lambda\rangle$ where $H(p)\equiv R_3(\phi)L_1(\eta)L_3(\zeta)$.

Proposition

The Poincaré group acts on the span of $\{|\mathbf{p}\lambda\rangle\}$ as

$$T(b)|\mathbf{p}\lambda\rangle = |\mathbf{p}\lambda\rangle e^{-ib_{\mu}p^{\mu}}, \tag{26}$$

$$\Lambda |\mathbf{p}\lambda\rangle = |\Lambda \mathbf{p}\lambda'\rangle D_{c_2}[H^{-1}(\Lambda p)\Lambda H(p)]_{\lambda}^{\lambda'}, \tag{27}$$

where D_{c_2} is the matrix in the c_2 -representation of SO(2,1).