

SUMMARY OF NAIVE BAYES

SYRACUSE UNIVERSITY

School of Information Studies

BUILD A NAIVE BAYES CLASSIFIER

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

P(refund=no) = 7/10P(refund=yes) = 3/10

naive Bayes Classifier:

P(Refund=Yes|No) = 3/7P(Refund=No|No) = 4/7P(Refund=Yes|Yes) = 0P(Refund=No|Yes) = 1 P(Marital Status=Single|No) = 2/7P(Marital Status=Divorced|No)=1/7 P(Marital Status=Married|No) = 4/7 P(Marital Status=Single|Yes) = 2/3 P(Marital Status=Divorced|Yes)=1/3 P(Marital Status=Married|Yes) = 0 For taxable income: If class=No: sample mean=110 sample variance=2975 If class=Yes: sample mean=90 sample variance=25

Conditional probability

USE NAIVE BAYES CLASSIFIER FOR PREDICTION

Given a test record, calculate posterior probabilities, and choose decision with maximum posterior probabilities.

$$X = (Refund = No, Married, Income = 120K)$$

```
P(X | Class=No) = P(Refund=No | Class=No) \\ \times P(Married | Class=No) \\ \times P(Income=120K | Class=No) \\ = 4/7 \times 4/7 \times 0.0072 = 0.0024
```

 $P(Class=No|X) = P(X|Class=No) \times P(Class=No) / P(X)$

USE NAIVE BAYES CLASSIFIER FOR PREDICTION

Given a test record:

$$X = (Refund = No, Married, Income = 120K)$$

```
P(X|Class=No) = P(Refund=No|Class=No) \\ \times P(Married|Class=No) \\ \times P(Income=120K|Class=No) \\ = 4/7 \times 4/7 \times 0.0072 = 0.0024
```

$$P(Class=No|X) = P(X|Class=No) \times P(Class=No) / P(X)$$

```
P(X|Class=Yes) = P(Refund=No|Class=Yes) \\ \times P(Married|Class=Yes) \\ \times P(Income=120K|Class=Yes) \\ = 1 \times 0 \times 1.2 \times 10^{-9} = 0
```

FEATURES OF BAYESIAN LEARNING METHODS

Each observed training example can incrementally decrease or increase the estimated probability that a hypothesis is correct, and therefore the algorithm is robust to inconsistent examples.

Prior knowledge can be combined with observed data to determine the final probability of a hypothesis.

E.g., an unbalanced coin has 60% chance heads, 40% tails.

Bayesian methods provide probabilistic predictions.

E.g., "This pneumonia patient has a 93% chance of complete recovery."

CHALLENGE OF BAYESIAN METHODS

Practical difficulty

- Requires initial knowledge of many probabilities
- Estimates the probabilities when they are unknown
- May need to assume normal distribution for continuous variables

Significant cost to compute all probabilities

Specialized assumptions to reduce the computational cost

E.g., naive Bayes is fast.

Independence assumption may not hold for some attributes

Use other techniques, such as Bayesian belief networks (BBN).

Domingos, P., & Pazzani, M. (1997). On the optimality of the simple Bayesian classifier under zero-one loss. *Machine Learning*, 29, 103–30.

Mitchell, T. (1990). Machine learning. New York: McGraw-Hill.