2.2 Homework: Angle addition

- 1. The size of an angle is its "measure," which can be from 0° to 360°
 - (a) Write down the name of this angle. Start with an angle symbol \angle .

(b) What is the degree measure made by these two opposite rays, \overrightarrow{BA} and \overrightarrow{BC} ?

(c) What is the degree measure of the angle, $m \angle XYZ$?

- 2. Given the diagram, answer each using proper notation, including the angle symbol \angle .
 - (a) Name the ray opposite to \overrightarrow{OR} :
 - (b) What is the measure of $\angle POM$?
 - (c) Name a right angle: _____
 - (d) Name the angle adjacent to $\angle QOR$:
 - (e) Spicy: Are $\angle NOP$ and $\angle QOR$ complementary, supplementary, or neither?

Angle addition situations

3. Apply the Angle Addition postulate. Write an equation to support your work.

Given $m\angle ABD = 50^{\circ}$, $m\angle ABC = 90^{\circ}$.

Find $m \angle DBC$.

4. Given the angle measures and situation shown, write an equation and solve for x.

$$\mathbf{m} \angle ABD = 2x$$

$$m\angle DBC = 2x + 15^{\circ}$$

$$m \angle ABC = 115^{\circ}$$

5. The ray \overrightarrow{BD} makes a 90° angle with the line \overleftarrow{ABC} . Given the complementary angles' measures are $\text{m}\angle DBE = 3x + 20^\circ$ and $\text{m}\angle EBC = 25^\circ$.

Find x, writing an equation to support your work.

