媒体信号处理基础-实验报告 2

学号: 3150105267 姓名:卢雨洁

1、 实验内容及要求

实验工具: MATLAB 2018a

实验内容:

- 1. 用 matlab 语言编码实现长度为 8 的一维离散余弦变换(不能使用 matlab 内嵌的 dct()函数);
- 2. 应用 matlab 内嵌的 dct()函数验证自己所实现代码的正确性;
- 3. 对 1D 随机信号利用上面实现的离散余弦变换对信号进行变换, 然后做反变换,对比恢复后的信号与原信号之间的差异;
- 4. 随机生成包含一定高斯噪声的正弦随机信号 ,然后利用 DCT 变换对信号进行去噪处理。

2、 关键代码及注释

STEP1 关键代码与注释

解决问题如下

- 1、用 matlab 语言编码实现长度为 8 的一维离散余弦变换(不能使用 matlab 内嵌的 dct()函数);
- 2、应用 matlab 内嵌的 dct()函数验证自己所实现代码的正确性;

```
function result = my_idct(N)%一维离散余弦反变换
length = N%长度为 N
my_dct = DLab2_dct(length)%通过已实现的变换函数得到 DCT 变换
序列
reverse_dct = idct(my_dct)%利用 matlab 自带反变换函数验证
for i = 0:length-1%遍历计算每一项
   if i == 0%根据公示计算每一项的 cu 系数
       cu = sqrt(1/length);
    else
       cu = sqrt(2/length);
    end
   sum = 0;%初始各项和为 0
   for j = 0:length-1
       sum = sum + my_dct(j + 1) * cos(pi * (j + 0.5) * i / length);%
各项和按照公式计算
    end
   my rdct(i + 1) = cu * sum;%记录每一项的值
end
```

STEP2 关键代码与注释

解决问题如下

3、对 1D 随机信号利用上面实现的离散余弦变换对信号进行变换,然后做反变换,对比恢复后的信号与原信号之间的差异;

```
function result = my_dct(N)%一维离散余弦变换,长度为 N
seg = rand(1, N);%长度为 N 的序列 in
length = N;%长度为 N
seq%显示 seq 的内容
for i = 0:length-1 %遍历计算 cu 系数, 使得 DCT 变换矩阵成为正交矩阵
          %根据公示设置 cu 系数的值
       cu = sqrt(1/length);
   else
       cu = sqrt(2/length);
   end
   sum = 0;%初始为 0
   for j = 0:length-1%进行累加
       sum = sum + seq(j + 1) * cos(pi * (j + 0.5) * i / length);%按照公式计算各
项和
   end
   result(i + 1) = cu * sum;%计算变换后序列的每一项的值
end
result%输出 my dct 的 DCT 变换结果与 verify result 作比较
verify_result = dct(seq)%利用 matlab 自带的 dct 函数对 seq 序列作变换
```

STEP3

解决问题如下

4、随机生成包含一定高斯噪声的正弦随机信号,然后利用 DCT 变换对信号进行去噪处理。

x = (1:100) + 50 * cos((1:100) * 2 * pi / 40);%长度为 100 的正 弦信号

n = 5 * rand(1, 100);%高斯伪随机信号噪声 plot(x, 'r')%红颜色线为原信号 hold on

x = x + n;%随机生成包含一定高斯噪声的正弦随机信号 plot(x, 'g')%绿颜色线为带噪声的信号 plot(x)

x_dct = dct(x);%DCT 变换

x_dct(21:100) = 0;%DCT 去噪

xx = idct(x_dct);%DCT 反变换

plot(xx, 'b')%蓝颜色线为利用 DCT 去噪的信号

hold off

5、 实验结果及分析

结果一:

一维 DCT 变换与 dct()函数验证长度为 8 的序列

seq:长度为8的序列

result: 实现的算法 DCT 变换的结果

verify_result: 利用 matlab 自带函数验证 seq 变换结果与实现的算

法结果相同

结果二:

长度为8时的随机序列反变换与原信号的比较

seq =								
	0.8499	0.6835	0.0045	0.9196	0.3823	0.7013	0.2880	0.2193
result =								
	1.4313	0.3325	-0.0566	0.4161	0.2453	0.1366	-0.1673	-0.6016
<pre>verify_result =</pre>								
	1.4313	0.3325	-0.0566	0.4161	0.2453	0.1366	-0.1673	-0.6016
<pre>my_dct =</pre>								
	1.4313	0.3325	-0.0566	0.4161	0.2453	0.1366	-0.1673	-0.6016
reverse_dct =								
	0.8499	0.6835	0.0045	0.9196	0.3823	0.7013	0.2880	0.2193
my_rdct =								
	0.6139	1.1677	0.0941	0.8437	0.4405	0.3718	-0.0072	-0.1046
error =								
	-0.2360	0.4842	0.0896	-0.0759	0.0582	-0.3296	-0.2952	-0.3239

seq:随机长度1D随机信号

result/my_dct: 利用实现的离散余弦变换对信号进行变换的结果

verify_result : dct()函数验证信号结果

reverse_dct:原信号

my_rdct: 反变换

error:恢复后的信号与原信号之间的差异

长度为 5 时的随机序列反变换与原信号的比较

seq = result = 1.0109 0.1673 0.4600 -0.5857 -0.1128 verify_result = 1.0109 0.1673 0.4600 -0.5857 -0.1128 $my_dct =$ 1.0109 0.1673 0.4600 -0.5857 -0.1128 reverse_dct = my_rdct = 0.4203 0.9558 0.2503 -0.0352 0.6805 error = -0.1281 0.1214 0.1605 -0.0406 -0.1020

结果三:

plot(x, 'r')%红颜色线为原信号

plot(x + n, 'g')%绿颜色线为带噪声的信号

plot(xx, 'b')%蓝颜色线为利用 DCT 去噪的信号