Binary Search Tree

7	5	1	8	3	6	0	9	4	2
	1	2	2	4	400 E	6	7	o	ο
0	1	2	3	4	(5)	6	/	8	9

Binary Search Tree

In order to apply binary search tree, firstly, the array is sorted. As a result, below array is obtained:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

For the array above #5 is the root. On the left side of #5, there is #3 and on the right side of #5, there is #8.

On the left side of #3, there is #1 and on the right side of #3, there is #4.

On the left side of #8, there is #7 and on the right side of the #8, there is #9.

On the left side of the #1, there is #0 and on the right side of the #1, there is #2.

On the left side of #7, there is #6.

There is a representation of the binary search tree below.

