SECTION A [25 marks]

This section consists of 3 questions. Answer all questions.

1 Evaluate the following limits

i.
$$\lim_{x \to -3} \frac{2x^3 + 5x^2 - 2x + 3}{x^2 + x - 6}$$

[5 marks]

ii. $\lim_{x \to 2^{-}} \frac{x - 2}{\left| 2x^2 + x - 10 \right|}$

[4 marks]

2 (a) Find the derivative of $f(x) = \frac{1}{2\sqrt{x}}$ by using the first principles.

[5 marks]

(b) If $f(x) = \sqrt{x + \sqrt{x}}$, find f'(x) and deduce the value of f'(1).

[4 marks]

Find the critical numbers for $f(x) = x^3 + 4x^2 - 16x$. Hence, find the x-coordinate of the point of inflection and state the range of values x when f(x) is decreasing.

[7 marks]

SM015 SESSION 2023/2024

KOLEJ MATRIKULASI PERAK, KMPk PKA : PECUTAN PSPM

SECTION B [75 marks]

This section consists of 7 questions. Answer all questions.

1 Given $z = \frac{\sqrt{3} + i}{1 + i\sqrt{3}}$. Express z in the form of a + bi. Hence, determine modulus and argument of z.

[5 marks]

2 (a) Given $\frac{\sqrt{5}-\sqrt{2}}{\sqrt{2}-\sqrt{3}-\sqrt{5}}$. Rationalise the denominator and simplify.

[5 marks]

(b) Solve $\frac{1}{|x-3|} > \frac{3}{|x+1|}$

[6 marks]

3 (a) If $g(x) = \ln\left(\frac{1-x}{1+x}\right)$, show that $g(x) + g(y) = g\left(\frac{x+y}{1+xy}\right)$.

[4 marks]

(b) Given that $f(x) = \frac{ax+3}{x-b}$. Find the values of a and b if f(2) = 7 and $f^{-1}(1) = -4$. Hence, show f(x) is a one to one function.

[6 marks]

- 4 Given $f(x) = e^{x+3} 2$.
 - (a) Find $f^{-1}(x)$, if it exist.

[3 marks]

(b) On the same axis, sketch the graphs of f(x) and $f^{-1}(x)$. Hence, state the domain and range of f(x) and its inverse.

[5 marks]

(c) Show that $f \circ f^{-1}(x) = x$.

[2 marks]

5 (a) Sketch the graph $f(x) = \sqrt{9x^2 - 1}$ and state the intervals where f is continuous.

[3 marks]

(b) Function g is defined as follows. $g(x) = \begin{cases} mx^2 + 3 &, x \in \left[-\frac{1}{3}, \frac{1}{3} \right] \\ \sqrt{9x^2 - 1} &, x \notin \left[-\frac{1}{3}, \frac{1}{3} \right] \end{cases}$

Given that g is continuous for all values of x. Find the value of the constant m.

[3 marks]

(c) Function h is defined as $h(x) = \frac{3x-1}{\sqrt{9x^2-1}}$. State the intervals of continuity of h. Find all the asymptotes of h. Hence sketch the graph h.

[8 *marks*]

6 (a) Given $y = (ax + b)e^{-3x}$ where a and b are constant. Show that $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 0$

[6 marks]

(b) The parametric equations of a curve are given by $x = \frac{1}{3}\sin^3 2\theta$ and $y = 2\cos^3 2\theta$.

Find $\frac{dy}{dx}$ in terms of θ . Hence, find the value of the parameter θ if $\frac{dy}{dx} = -2\sqrt{3}$

where $0 < \theta < \frac{\pi}{2}$.

[6 marks]

(c) Given $xe^y + y \ln x = 5$, find $\frac{dy}{dx}$ in terms of x and y.

[4 marks]

7 The diagram shows a swimming pool measures 20 m wide, 40 m long, 3 m deep at the shallow end and 4 m deep at the other end.

If the pool is being filled at a rate of $0.8\,\text{m}^3$ / min , what is the rising rate of the water-level when the water-level at the deepest end is $0.5\,\text{m}$? How long does it take before the water-level start to rise at a constant rate?

[9 marks]

END OF QUESTION PAPER

Answers

Section A

1 (a)
$$-\frac{22}{5}$$

(b)
$$-\frac{1}{9}$$

$$2 (a) \frac{-1}{4x\sqrt{x}}$$

(b)
$$-\frac{1}{9}$$

(b) $f'(x) = \frac{1+2\sqrt{x}}{4\sqrt{x}\sqrt{x+\sqrt{x}}}, \ f'(1) = \frac{3\sqrt{2}}{8}$

Critical numbers are
$$x = \frac{4}{3}$$
, $x = -4$; No x-coordinate of the inflection point; $f(x)$ is decreasing at $-4 < x < \frac{4}{3}$

Section B

1
$$\frac{\sqrt{3}}{2} - \frac{1}{2}i$$
, $|z| = 1$, $\arg(z) = -\frac{\pi}{6}$

2 (a)
$$\frac{\sqrt{6} - \sqrt{10} + 2}{-4}$$

3 (a) DIY

(b)
$$\{x: 2 < x < 5 ; x \neq 3\}$$

(b)
$$a = 2, b = 1$$
; DIY

4 (a)
$$f^{-1}(x) = \ln(x+2) - 3$$

(b)

$$\begin{split} D_f &= (-\infty, \infty) & R_f &= \left(-2, \infty\right) \\ D_{f^{-1}} &= \left(-2, \infty\right) & R_{f^{-1}} &= (-\infty, \infty) \end{split}$$

Shown (c)

f is continuous on the interval $\left(-\infty, -\frac{1}{3}\right] \cup \left[\frac{1}{3}, +\infty\right)$ 5

(b) m = -27

(c)
$$\left(-\infty, -\frac{1}{3}\right) \cup \left(\frac{1}{3}, +\infty\right)$$

Vertical asymptotes $x = -\frac{1}{3}$

Horizontal asymptotes at y = -1 and y = 1

6 Shown (a)

 $\frac{dy}{dx} = -6\cot 2\theta$; $\theta = \frac{\pi}{6}$

- (c) $\frac{dy}{dx} = \frac{-xe^y y}{x(xe^y + \ln x)}$
- $\frac{dy}{dt} = 0.002 m / s, T = 500 \text{ minutes}$ 7