Universidad de la República Facultad de Ingeniería Instituto de Matemática y Estadística

Matemática Discreta 2 Curso 2018

PRÁCTICO 4: CONGRUENCIAS

Ejercicio 1. Probar las siguientes propiedades:

- **a**. $a \equiv b \pmod{n}$ y $c \equiv d \pmod{n} \Rightarrow a + c \equiv b + d \pmod{n}$ y $ac \equiv bd \pmod{n}$.
- **b**. $b \equiv c \pmod{n}$ y $a \in \mathbb{Z} \Rightarrow a + b \equiv a + c \pmod{n}$.
- **c**. $a \equiv b \pmod{n}$ y $m|n \Rightarrow a \equiv b \pmod{m}$.
- **d**. $a \equiv b \pmod{m}$ y $n \in \mathbb{Z} \Rightarrow na \equiv nb \pmod{m}$. ¿Vale el recíproco?
- **e**. $a \equiv b \pmod{m}$ y $n \in \mathbb{N} \Rightarrow a^n \equiv b^n \pmod{m}$.
- **f**. $ac \equiv bc \pmod{m}$ y $d = \text{mcd}(c, m) \Rightarrow a \equiv b \pmod{m/d}$.

Ejercicio 2.

- a. Si $a \equiv 22 \pmod{14}$, hallar el resto de dividir a a por 2, por 7 y por 14.
- **b**. Si $a \equiv 13 \pmod{5}$, hallar el resto de dividir a $33a^3 + 3a^2 197a + 2$ por 5.
- c. Hallar, para cada $n \in \mathbb{N}$, el resto de la división de $\sum_{i=1}^n (-1)^i \cdot i!$ por 36.

Ejercicio 3.

a. Probar que si a y b son enteros y p un número primo entonces

$$(a+b)^p \equiv a^p + b^p \pmod{p}$$

¿Vale el resultado si p no es primo?

b. Probar (por inducción) el Teorema de Fermat: $a^p \equiv a \pmod{p}$, para todo a entero y todo primo p.

Ejercicio 4.

- **a**. Hallar todos los $a \in \mathbb{Z}$ tales que $a^3 \equiv 3 \pmod{11}$.
- **b**. Probar que no existe ningún entero a tal que $a^3 \equiv -3 \pmod{13}$.
- **c**. Probar que $a^2 \equiv -1 \pmod{5} \Leftrightarrow a \equiv 2 \pmod{5}$ o $a \equiv 3 \pmod{5}$.
- **d**. Probar que $a^7 \equiv a \pmod{7}$ para todo $a \in \mathbb{Z}$.

Ejercicio 5. Encontrar las soluciones (módulo 35) de la ecuación

$$x^2 - 1 \equiv 0 \pmod{35}.$$

Ejercicio 6. Sea $n \in \mathbb{N}$ cuya representación en base 10 es $a_k a_{k-1} \cdots a_2 a_1 a_0$.

- **a**. Probar que $n \equiv 2a_1 + a_0 \pmod{4}$.
- **b**. Probar que $n \equiv 4a_2 + 2a_1 + a_0 \pmod{8}$.
- **c**. Enunciar y demostrar un resultado similar a los anteriores para 2^k .

Ejercicio 7.

- **a**. Demostrar que $10^n \equiv (-1)^n \pmod{11}$.
- **b**. Enunciar y probar un criterio de divisibilidad entre 11.
- **c**. Hallar el dígito d, de modo que el número 2d653874 sea múltiplo de 11.

Ejercicio 8. Demostrar que $4^n \equiv 4 \pmod{6}$ para todo entero $n \ge 1$.

Ejercicio 9.

a. Probar que para todo $a \in \mathbb{Z}$ se cumple que

$$a^2 \equiv 0 \pmod{4}$$
 o $a^2 \equiv 1 \pmod{4}$.

- b. Averiguar si 3456745356002345676543462 es un cuadrado perfecto.
- c. Probar que ningún número de la sucesión

$$a_1 = 11, \quad a_2 = 111, \quad a_3 = 1111, \quad a_n = 11...11$$

es un cuadrado perfecto.

Ejercicio 10.

El código ISBN de libros tiene la forma $x_1x_2\dots x_9$ - x_{10} donde cada $x_i, i=1,2\dots 10$ es un dígito de 0 a 9, mientras x_{10} también puede ser igual al símbolo X. El símbolo x_{10} se llama el símbolo verificador y se calcula de la siguiente manera. Sea

$$c = \sum_{i=1}^{9} i \cdot x_i$$

y sea r el resto: $r \equiv c \pmod{11}, \ 0 \le r < 11$. Entonces

$$x_{10} = \begin{cases} r, & \text{si } 0 \le r \le 9 \\ X, & \text{si } r = 10 \end{cases}$$

- **a**. Probar que $\sum_{i=1}^{10} i \cdot x_i \equiv 0 \pmod{11}$.
- **b**. Probar que el dígito verificador detecta el error de intercambiar exactamente dos dígitos de los x_1, x_2, \ldots, x_9 (si intecambiamos exactamente dos de esos dígitos, obtenemos un dígito verificador diferente).

Ejercicio 11.

El número de la cédula uruguaya tiene la forma $x_1x_2...x_7$ - x_8 donde cada $x_i, i = 1, 2...8$ es un dígito de 0 a 9. El dígito verificador x_8 se calcula de la siguiente manera. Sea

$$c = \sum_{i=1}^{7} a_i \cdot x_i,$$

donde $(a_1, a_2, a_3, a_4, a_5, a_6, a_7) = (2, 9, 8, 7, 6, 3, 4)$. Entonces x_8 es: $r \equiv -c \pmod{10}$, $0 \le r < 10$.

- a. Verificar que el dígito verificador de su cédula se obtiene mediante la fórmula dada arriba.
- b. Investigar si el dígito verificador detecta el error de copiar mal un dígito (de los primeros 7).
- **c**. Probar que el dígito verificador detecta el error de intercambiar dos dígitos consecutivos de los x_1, x_2, \ldots, x_7 (en el sentido del ejercicio anterior).
- d. Escribir un programa para comprobar si una secuencia de 8 dígitos es un número de cédula o no.

Ejercicio 12. Resolver cada una de las congruencias siguientes:

- **a**. $3x \equiv 7 \pmod{16}$.
- **c**. $3x+9 \equiv 8x+61 \pmod{64}$.
- **e**. $9x + 3 \equiv 5 \pmod{18}$.

- **b**. $2x + 8 \equiv 5 \pmod{33}$.
- **d**. $6x 1 \equiv 5 \pmod{12}$.

Ejercicio 13.

- a. Probar que 2 es invertible módulo n si y solamente si n es impar. En tal caso, hallar el inverso.
- **b**. Hallar $71^{10} \pmod{141}$.

Ejercicio 14.

- a. Determinar el último dígito de 3^{55} .
- **b**. Hallar el resto de la división de 12^{1257} entre 5.

Ejercicio 15.

- a. Probar $2^{5n} \equiv 1 \pmod{31}$ para todo $n \in \mathbb{N}$.
- **b**. Hallar el resto de la división de 2^{51833} por 31.
- **c**. Sea $k \in \mathbb{N}$. Sabiendo que $2^k \equiv 39 \pmod{31}$, hallar el resto de la división de k por 5.
- **d**. Hallar el resto de la división de $43 \cdot 2^{163} + 11 \cdot 5^{221} + 61^{999}$ por 31.

Ejercicio 16.

- **a**. Probar que el inverso de 10 módulo 7 es -2.
- **b**. Sea n = 10x + y, probar que $n \equiv 0 \pmod{7}$ si y solo si $x 2y \equiv 0 \pmod{7}$.
- c. Utilizando lo anterior enunciar y demostrar un criterio de divisibilidad entre 7.