Manipulative Numbers

Suppose that A is a list of n numbers $\{A_1, A_2, A_3, \ldots, A_n\}$ and $B = \{B_1, B_2, B_3, \ldots, B_n\}$ is a permutation of these numbers, we say B is K-Manipulative if and only if:

 $M(B)=minimum(B_1\oplus B_2,B_2\oplus B_3,B_3\oplus B_4,\ldots,B_{n-1}\oplus B_n,B_n\oplus B_1)$ is not less than 2^K , where \oplus represents the *XOR* operator.

You are given A. Find the largest K such that there exists a K-manipulative permutation B.

Input:

The first line is an integer N. The second line contains N space separated integers - A_1 A_2 ... A_n .

Output:

The largest possible K, or -1 if there is no solution.

Constraints:

- 1 < n <= 100
- $0 \le A_i \le 10^9$, where $i \in [1, n]$

Sample Input #00

3 13 3 10

Sample Output #00

2

Explanation

Here the list A is $\{13,3,10\}$. One possible permutation $B=\{10,3,13\}$. Here $M(B)=minimum\{B_1\oplus B_2,B_2\oplus B_3,B_3\oplus B_1\}=minimum\{10\oplus 3,3\oplus 13,13\oplus 10\}=minimum\{9,14,7\}=7$.

So there exists a permutation B of A such that M(B) is not less than $4=2^2$. However there does not exist any permutation B of A such that M(B) is not less than $8=2^3$. So the maximum possible value of K is 2.

Sample Input #01

4 1234

Sample Output #01

1