# Maxwell-Chern-Simons Theory

Marina von Steinkirch, steinkirch@gmail.com State University of New York at Stony Brook

November 12, 2010

1

 $\mathbf{2}$ 

## Contents

- 1 Maxwell Gauge Theory
- 2 Chern-Simons Theory
- 3 Topologically Massive Gauge Theory
- 4 Mass Spectrum (Excitations)

## Introduction

Chern-Simons theory is a (2+1)-dimensional gauge theory differently of the (2+1)-Maxwell theory. Together they can be represented by the action

$$S_{MCS} = \int d^3x \left[ -\frac{1}{4e^2} F_{\mu\nu} F^{\nu\mu} + \kappa \epsilon^{\mu\nu\rho} A_{\mu} \partial_{\nu} A_{\rho} \right]. \quad (1)$$

In this paper I discuss basic aspects of the Maxwell-Chern-Simons theory and then find the equations of motion and the spectrum of excitations from the analogy to the Landau levels.

## 1 Maxwell Gauge Theory

The Maxwell gauge theory is defined in terms of the fundamental gauge field  $A_{\mu}=(A_0,\vec{A})$ , and its lagrangian is

$$\mathcal{L}_{M} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - A_{\mu} J^{\mu}, \tag{2}$$

where the field strength tensor is  $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ , and the matter current  $J^{\mu}$  is conserved  $(\partial_{\mu}J^{\mu})$ .

#### Gauge Invariance and Equation of Motions

- The Maxwell lagrangian is invariant under gauge transformation
  - $A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} f$
- and the derived equations of motion
  - $\partial_{\mu}F^{\mu\nu} = J^{\nu},$

are gauge invariants. With source free, it has planewave solutions.

#### In (2+1) Dimensions

In (2+1) dimensions the magnetic field is a pseudoscalar  $B = \epsilon^{ij} \partial_i A_j$  rather than a pseudovector  $\vec{B} = \vec{\nabla} \times \vec{A}$  in (3+1) dimensions. The electric field  $\vec{E} = -\vec{\nabla} A_0 - \vec{A}$  is a two dimensional vector.

# 2 Chern-Simons Theory

The Chern-Simons lagrangian is

$$\mathcal{L}_{CS} = \frac{\kappa}{2} e^{\mu\nu\rho} A_{\mu} \partial_{\nu} A_{\rho} - A_{\mu} J^{\mu}. \tag{3}$$

#### Gauge Invariance and Equations of Motion

Let us vary the equation (3) by a space-time derivative

$$\delta \mathcal{L}_{CM} \sim \partial_{\mu} (e^{\mu\nu\rho} \partial_{\nu} A_{\rho}),$$

clearly if we do not consider boundary terms, the action will be gauge invariant. Straightforward from

the Euler-Lagrange equation, we find the equations of motion, also gauge invariant,

$$\frac{\kappa}{2}\epsilon^{\mu\nu\rho}F_{\nu\rho} = J^{\mu}.\tag{4}$$

The source free solution reduces to  $F_{\mu\nu}=0$ , flat connections. We can show explicitly the current conservation:

$$\begin{array}{lcl} \partial_{\mu}(\frac{\kappa}{2}\epsilon^{\mu\nu\rho}F_{\nu\rho}) & = & \partial_{\mu}J^{\mu}. \\ \epsilon^{\mu\nu\rho}\partial_{\mu}F_{\nu\rho} & = & 0. \end{array}$$

#### Chern-Simons + Matter = Anyons

The matter current in equation (4) can be seen better writing  $J^{\mu} = (\rho, \vec{J})$  in terms of components, reveling a tying of flux to charge and the nature of *anyons*.

| $\rho = \kappa B$                | Charge density is locally                                                                                                 |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|                                  | proportional to Mag. Field.                                                                                               |
|                                  | Magnetic flux is proportional                                                                                             |
|                                  | to electric charge.                                                                                                       |
| $J^i = \kappa \epsilon^{ij} E_j$ | Charge-Flux relation is                                                                                                   |
| J                                | preserved under time evolution.                                                                                           |
|                                  | Proof:                                                                                                                    |
|                                  | $\dot{ ho} = \kappa \dot{B} = \kappa \epsilon^{ij} \partial_i \dot{A}_j$                                                  |
|                                  | $\partial_{\mu}J^{\mu} ightarrow J^{i}$                                                                                   |
|                                  | $\partial_{\mu}J^{\mu} \to J^{i}$ $= -\kappa \epsilon^{ij} \dot{A}_{j} + \epsilon^{ij} \chi = \kappa \epsilon^{ij} E_{j}$ |

## 3 Topologically Massive Gauge Theory

Topological electrodynamics (Chern-Simons charged particle system) is a theory describing an interaction of a U(1) gauge field A(x,t), a vector-valued function on the three-dimensional space, with a charged matter field, characterized by a current J(x,t). When we put together the two theories we get a surprising new form of gauge field mass generation, different of the Higgs mechanism. The Maxwell-Chern-Simons lagrangian is

$$\mathcal{L}_{MCS} = -\frac{1}{4e^2} F^{\mu\nu} F_{\mu\nu} + \frac{\kappa}{2} \epsilon^{\mu\nu\rho} A_{\mu} \partial_{\nu} A_{\rho}. \tag{5}$$

#### **Equations of Motion**

Calculating the Euler-Lagrange equation of motion gives

$$\partial_{\mu}F^{\mu\nu} + \frac{\kappa e^2}{2}\epsilon^{\nu\beta\alpha}F_{\beta\alpha} = 0. \tag{6}$$

#### Massive Gauge Theory

From dimensional analysis we see that  $[e^2] = [m]$  and  $[\kappa] = [m^0]$  in (2+1) dimensions. Therefore these equations will describing the propagation of a degree of freedom with mass  $m = \kappa e^2$ . We see the origin of this mass explicitly rewriting equation (6) in terms of a dual gauge invariant field  $\tilde{F}^{\mu} = \frac{1}{2} \epsilon^{\mu\nu\rho} F_{\nu\rho}$ , and them rewriting the equations of motion

$$\left(\partial^{\nu}\partial_{\nu} + (\kappa e^2)^2\right)\tilde{F}^{\mu} = 0.$$

# 4 Mass Spectrum (Excitations)

We shall use the analogy to the classic Landau problem of charge moving in the plane in the presence of an external uniform  $\vec{B}$  perpendicular to the plan to find the spectrum of our theory. The quantization of the Landau problem is well understood, consists of equally spaced energy levels (Landau levels) by  $\hbar\omega_c$ , where  $\omega_c = \frac{B}{m}$  is the cyclotron frequency. Each Landau level is infinitely degenerated in the open plane, but for a finite area A the degeneracy is related to the net magnetic flux,  $\phi = \frac{BA}{2\pi}$ .

#### Canonical Chern-Simon

Let us quantize the lagrangian. We rewrite equation (5) in a canonical structure

$$\mathcal{L}_{MCS} = \frac{1}{2e^2} E_i^2 - \frac{1}{2e^2} B^2 + \frac{\kappa}{2} \epsilon^{ij} \dot{A}_i A_j + \kappa A_0 B. \quad (7)$$

In the  $A_0 = 0$  gauge,  $A_i$  are the 'coordinates' and we have the momentum fields

$$\Pi^{i} = \frac{\partial \mathcal{L}_{CSM}}{\partial \dot{A}_{i}} = \frac{1}{e^{2}} \dot{A}_{i} + \frac{\kappa}{2} \epsilon^{ij} A_{j}.$$

The hamiltonian is

$$\mathcal{H}_{MCS} = \Pi^i \dot{A}_i - \mathcal{L}$$

$$\mathcal{H}_{MCS} = \frac{e^2}{2} \Big( \Pi^i - \frac{\kappa}{2} \epsilon^{ij} A_j \Big)^2 + \frac{1}{2e^2} B^2 + A_0 \Big( \partial_i \Pi^i + \kappa B \Big)$$

Then  $A_i(\vec{x},t), \Pi^i(\vec{x},t)$  satisfy the canonical equaltime Poisson brackets, which becomes the equal-time canonical commutation,

$$[A^{i}(\vec{x}), \Pi^{j}(\vec{y})] = i\delta^{ij}\delta(\vec{x} - \vec{y}). \tag{8}$$

#### Analogy to the Landau Problem

We consider the long wavelength limit of 7, in which we drop all spatial derivatives,

$$L = \frac{1}{2e^2}\dot{A}_i^2 + \frac{\kappa}{2}\epsilon^{ij}\dot{A}_iA_j.$$

Now, thinking about the non-relativistic charged particle moving in the plane, we have

$$L = \frac{1}{2}m\dot{x}_i^2 + \frac{B}{2}\epsilon^{ij}\dot{x}_ix_j.$$

The momenta is  $p_i=\frac{\partial L}{\partial \dot{x}_i}=m\dot{x}_i+\frac{B}{2}\epsilon^{ij}x_j$  and the hamiltonian is

$$H = p_i \dot{x}_i - L = \frac{1}{2m} (p_i - \frac{B}{2} \epsilon^{ij} x_j)^2 = \frac{m}{2} v_i^2.$$

In the quantum level,  $[x_i, p_j] = i\delta_{ij}$  implies that the velocities do not commute  $[v_i, v_j] = -i\frac{B}{m^2}\epsilon_{ij}$ . We now can compare both equations/problems,

| Maxwell-Chern-Simons   | Landau                   |
|------------------------|--------------------------|
| $e^2$                  | $\frac{1}{m}$            |
| $m_{MCS} = \kappa e^2$ | $\omega_c = \frac{B}{m}$ |

Physical masses of the theory appear as physical frequencies of the corresponding quantum mechanic system. The inclusion of the Chern-Simons term in a gauge theory lagrangian is analogous to the inclusion of a Lorentz force in a mechanical system. The Landau system shows how to obtain characteristic frequency without introducing a harmonic binding term (such as in the Higgs mechanics).

Explicitly, a planar quantum mechanical harmonic system with a hamiltonian of the kind  $H = \frac{1}{2m}(p^i + \frac{b}{2}\epsilon^{ij}x^j)^2 + \frac{1}{2}m\omega^2\vec{c}^2$  can be separated into two distinct harmonic oscillators of frequency, let us say for our problem,

$$\omega_{\pm} = \frac{\omega_c}{2} \left( \sqrt{1 + \frac{4\omega^2}{\omega_c^2}} \pm 1 \right),$$

where  $\omega$  is the harmonic well frequency.

Taking  $\omega_c = \kappa e^2$  and  $\omega = \sqrt{2}ev$ , the characteristic frequencies are exactly mass poles  $m_{\pm}$ . In the limit which the cyclotron frequency dominates,

$$\omega_- \to \frac{\omega^2}{\omega_c} = \frac{2v^2}{\kappa} = m_-$$

and

$$\omega_+ \to \infty$$
.

Therefore, we have the analogy for our the (2+1) dimensions Maxwell-Chern-Simons, where the gauge field has two massive modes.

## References

- [1] Tsvelik, Quantum Field Theory in Condensed Matter.
- [2] Nakahara, Geometry, Topology and Physics.
- [3] Zee, Quantum Field Theory in a Nutshell.