## Diarized Speech Recognition System for Patient-doctor Communication

Feng Wang, Zachary Bachrach

## Introduction:

Focus: tele-conferencing for patient-doctor appointments

Virtual appointments increasingly common (COVID-19).

- Lost ability to detect body language.
- New ability to process speech.

**Need:** efficient and engaged communication, optimize virtual medical appointments

Goal: an interface for patients and doctors

## **MVP**

#### An interface

where the user can input an audio recording of a doctor's appointment

#### **Output**

- the diarized transcript
- highlighted important information
  - physician statements and patient responses

## User stories

#### For doctors:

I want to **extract maximum information** from virtual patient appointments to **diagnose my patient accurately**.

#### For Patients:

I want a clear written set of instructions from my doctor.

As a patient, I want to specify a list of topics that I'd like to cover in the appointment. I want to be alerted if we forget to discuss those topics.

## User stories (cont.)

#### For both entities:

I want a transcript of the appointment

- for research purposes in the medical community.
- with important highlights for other medical professionals to reference before seeing the patient.

## Long-term Product Goals

Split input audio into patient and doctor transcript

Perform NLP on doctor transcript to identify instructions for the patient

Perform NLP on patient transcript to detect/diagnose (Alzheimer's, deception, etc.)

Perform NLP on patient transcript to highlight important information (patient responses)

Perform NLP on total transcript to make sure topics were covered

## NLP to detect Alzheimer's

#### Lexical changes

| Marker                  | Dementia                           | Healthy aging                                   |
|-------------------------|------------------------------------|-------------------------------------------------|
| Vocabulary size         | Sharp decrease                     | Gradual increase, then possible slight decrease |
| Lexical repetition      | Pronounced increase                | Possible small change                           |
| Word specificity        | Pronounced decrease                | Possible small change                           |
| Word class distribution | Fewer nouns, compensation in verbs | No change                                       |
| Fillers                 | Pronounced increase                | Possible slight increase                        |

## Syntactic changes

| Marker                          | Dementia            | Healthy aging                                                     |
|---------------------------------|---------------------|-------------------------------------------------------------------|
| Syntactic complexity            | Sharp decline       | Little or no change,<br>then possible rapid<br>decline in mid-70s |
| Use of passive voice            | Pronounced decrease | Possible small decrease                                           |
| Auxiliary verb in passive voice | Get dominates be    | Be dominates get                                                  |
| Passives without agent          | Greater decrease    | Moderate decrease                                                 |

Lexical and syntactic changes are present in Alzheimer's affected individuals[1].

## NLP to detect deception[2]

Linguistic Inquiry and Word Count (LIWC)- creates a profile of text

Input: I really try to exercise every day. It depends, I mean I try to run and stuff but I am so busy usually.

#### Output:

| TRADITIONAL LIWC DIMENSION | YOUR DATA | AVERAGE FOR PERSONAL WRITING |
|----------------------------|-----------|------------------------------|
| I-WORDS (I, ME, MY)        | 17.4      | 8.70                         |
| SOCIAL WORDS               | 0.0       | 8.69                         |
| POSITIVE EMOTIONS          | 0.0       | 2.57                         |
| NEGATIVE EMOTIONS          | 0.0       | 2.12                         |
| COGNITIVE PROCESSES        | 34.8      | 12.52                        |
| SUMMARY VARIABLES          |           |                              |
| ANALYTIC                   | 2.6       | 44.88                        |
| CLOUT                      | 1.0       | 37.02                        |
| AUTHENTICITY               | 99.0      | 76.01                        |
| EMOTIONAL TONE             | 25.8      | 38.60                        |
|                            |           |                              |

## Speech Diarization

- Detection
- 2. Segmentation
- 3. Embedding
- 4. Clustering
- 5. Transcription (ASR)



#### **Diarized Audio Recordings**



https://hackernoon.com/speaker-diarization-the-squad-way-2205e0accbda

## Speech Recognition systems (ASR)

ASR receives audio inputs and output text accordingly

- 1. Signal acquisition
- 2. Feature extraction
- 3. Acoustic modelling
- 4. Language & lexical modelling
- 5. Recognition of words

## Diarization Framework Option 1

Resemblyzer to perform segmentation and embedding extraction on input audio data file (diarization)

Google Text-to-speech API to perform audio-to-text conversion (good medical option, but PAID)

Python "speechrecognition" package to perform audio-to-text conversion

# Diarization Framework Option 2: Recurrent Neural Network Transducer (RNN-T))[3]



taking any pills? <doctor> yeah, ibuprofen <patient>

<doctor> take any pills?
<patient> yeah, ibuprofen

This RNN-T integrates 3 networks

- A transcription network
- Prediction network for next target label given prior labels
- Joint network to combine results and output probability distribution

## **Total Framework**

Combine speech diarization and speech recognition (1)

Combine (1) with tools outlined in user stories to achieve better patient doctor engagement during remote appointment.

## Citations

- [1] Graeme, H., Li, X., Lancashire, L., & Jokel, R. (n.d.). Natural language processing methods for the detection of symptoms of Alzheimer's disease in writing. Retrieved from http://www.cs.toronto.edu/pub/gh/Google-talk.pdf
- [2] Poesio, M., & Fornaciari, T. (n.d.). Detecting deception in text using NLP methods. Retrieved October 4, 2020, from <a href="https://research.signal-ai.com/assets/Deception Detection with NLP.pdf">https://research.signal-ai.com/assets/Deception Detection with NLP.pdf</a>
- [3] Shafey, Laurent El, Soltau, Hagen, and Shafran, Izhak. "Joint Speech Recognition and Speaker Diarization via Sequence Transduction." (2019). Web.

## Thank you

## Web app

Microsoft Azure platform (cloud hosting)

## **Julius**

Perform a large vocabulary continuous speech recognition (LVCSR)

Real-time processing

Versatile

Scalable

Free-open source in C.



Fig. 1. Overview of Julius.