MIT OpenCourseWare
http://ocw.mit.edu

5.04 Principles of Inorganic Chemistry II Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

5.04, Principles of Inorganic Chemistry II Prof. Daniel G. Nocera

Lecture 4: Molecular Point Groups 1

The symmetry properties of molecules (i.e. the atoms of a molecule form a basis set) are described by **point groups**, since all the symmetry elements in a molecule will intersect at a common point, which is not shifted by any of the symmetry operations. There are also symmetry groups, called **space groups**, which contain operators involving translational motion.

The point groups are listed below along with their distinguishing symmetry elements

 C_1 : E (h = 1) no symmetry

 C_s : σ (h = 2) only a mirror plane

 C_i : i (h = 2) only an inversion center (rare point group)

CI isomer of dichloro(difluoro)ethane

 C_n : C_n and all powers up to $C_n^n = E(h = 2)$ a cyclic point group

 ${f C_{nv}}$: C_n and $n\sigma_v$ (h = 2n) ... by convention a σ_v contains C_n (as opposed to σ_h which is normal to C_n). For n even, there are $\frac{n}{2}\sigma_v$ and $\frac{n}{2}\sigma_v^{'}$ with the σ_v containing the most atoms and the σ_v s containing the least atoms

Consider a second example:

 $\mathbf{C}_{nh}: C_n$ and σ_h (normal to C_n) are generators of S_n operations as well (h = 2n)

 \mathbf{S}_{2n} : S_{2n} and all powers up to S_{2n}^{2n} = E (h = 2n).

$$S_{2n}$$
 is a generator; for this example, the generator S_4 gives rise to C_2 (= S_4^2), S_4^3 , E (= S_4^4)

The F's do not lie in the plane of the cyclopentane rings. If they did, then other symmetry operations arise; these are easiest to see by looking down the line indicated below:

$$F = C_F - C_F -$$

Note S_n , where n is odd, is redundant with C_{nh} because $S_n{}^n = \sigma_h$ for n odd. As an example consider a S_3 point group. S_3 is the generator for S_3 , $S_3{}^2 (= C_3{}^2)$ $S_3{}^3 (= \sigma_h)$, $S_3{}^4 (= C_3)$, $S_3{}^5$, $S_3{}^6 (= E)$. The $C_3{}'s$ and σ_h are the distinguishing elements of the C_{3h} point group.