

COMP1071 - Digital Electronics

Circuits

Ioannis Ivrissimtzis

email: ioannis.ivrissimtzis@durham.ac.uk

Room: MCS 2023

Slide acknowledgements: Eleni Akrida and Farshad Arvin

Overview of today's lecture

- Adder
- Subtractor
- Decoder
- Tristates
- Mux
- Simple ALU

Key circuits

Combinatorial / combinational circuits:

(Output depends only on current input)

Adders – add the contents of two registers

Decoders – decodes an n-digit binary number into 2^n data lines

Multiplexors – use a binary number to select an input

Sequential circuits

(Output depends on state and input, i.e. history of input)

Latches / flip-flops - basic memory element

Half-Adder

Based on 8 simple rules:

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$1 + 1 = 0$$
 with Carry

Carry +
$$0 + 0 = 1$$

Carry
$$+ 0 + 1 = 0$$
 with Carry

Carry
$$+ 1 + 0 = 0$$
 with Carry

Carry
$$+ 1 + 1 = 1$$
 with Carry

Inputs: A, B

Outputs: Sum, Carry

A	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Adder

Input is not just A and B, but A, B and the carry from the previous bit

Use two half-adders: Add A and B first, then add in the carried bit:

Chaining adders – ripple carry adder

How to add two 4 bit registers:

More full-adders can be chained together to give 8-, 16- or 32-bit adders.

Subtractor

Recall that we can create a **twos-complement negative** by inverting each bit and adding 1.

We subtract b from a by adding -b.

The NOT gates and setting $C_{in}=1$ give the effect of converting b to -b.

Beyond Simple Logic Gates - Decoder

A decoder has N inputs and 2^N outputs. Asserts exactly one of its outputs depending on the binary number represented by the N input bits.

The outputs are called *one-hot*, because exactly one is "hot" (high) at a given time.

N inputs, 2^N outputs.

Only one output is high at a time.

Which one depends on the input.

Decoder

2-bit decoder:

0

0

Decoder

Larger decoders require multi-input AND gates to be constructed.

This requires a lot of circuitry.

Can create deeper circuits with fewer transistors (i.e. less silicone), at the cost of slower response.

3-bit or '3-8' decoder

Beyond Simple Logic Gates - Mux (multiplexor)

Chooses 1 of many inputs to steer to its single output under the direction of control inputs (selector)

e.g., if the input to a circuit can come from several places a Mux is one way to funnel the multiple sources selectively to the single input.

Beyond Simple Logic Gates - Mux (multiplexor)

A multiplexor has **k+2^k inputs** and **1 output**.

The first k inputs (the selector *S*) represent a binary number.

The output takes the value of one of the remaining **2**^k inputs, the one indexed by the selector.

Overview of today's lecture

- Adder
- Subtractor
- Decoder
- Tristates
- Mux
- Simple ALU

Tristate

In contrast to a normal buffer which is either 1 or 0 at its output, a tristate buffer can be electrically disconnected from the bus wire, i.e., it will have no effect on any other signals currently on the bus.

Input	Enable	Output
0	0	Floating
0	1	0
1	0	Floating
1	1	1

A single transistor could work, but the output is not driven.

Linear truth table

Inverting Tristate

Input	Enable	Output
0	0	Floating
0	1	1
1	0	Floating
1	1	0

Here the output is driven by direct connection to VDD or ground.

Tristate

Input	Enable	Output
0	0	Floating
0	1	0
1	0	Floating
1	1	1

Mux (multiplexor)

 S	D_1	D_0	Υ	S	Y
0	0	0	0	0	D_0
0	0	1	1	1	D_0 D_1
0	1	0	0		
0	1	1	1		
1	0	0	0		
1	0	1	0		
1	1	0	1		
1	1	1	1		

2-to-1 line multiplexor

It looks like Y is driven by two outputs which violates the combinational circuit rules, but this is not in fact the case; we have been very careful in how the selectors are arranged so that only one of T0, T1 is ever driving the value, and the other is floating.

Mux

4-to-1 line multiplexor

- a) two-level logic, requiring multiple input gates.
- b) Using **tri-state** buffers take value of input if activated, otherwise floating value.
- c) Using hierarchical logic

Mux (example 2.12 in Harris & Harris)

- A Mux can be used to implement combinational logic functions.
- An 8-input Mux can be used to implement functions in three variables. For example:

		,	
Α	В	C	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

The control inputs A, B, C are used to select the minterms required at the output.

Mux (example 2.13 in Harris & Harris)

More economic designs than the one in the previous slide are possible.

For example, reduce the truth table to 4 rows by letting the output depend on C.

_ <u>A</u>	В	С	Y	A	В	Y	
0	0	0	1	0	0	\overline{C}	
0	0	1	0	0	1	C	
0	1	0	0	1	0	1	
0	1	1	1	1	1	0	
1	0	0	1/			•	
1	0	1	1				
1	1	0	0/				
1	1	1	0				

Building a simple ALU (Arithmetic Logic Unit)

CoFnDAdd1Subtract

Summary

- Adder & Subtractor
- Decoder & Mux
- Tristates
- ALU

