$$(\alpha)$$

$$\begin{array}{lll}
\mathcal{J}_{N} = \mathcal{T}(W \not N) \\
& \oplus \mathcal{J}_{N} = \mathcal{J}(W \not N) \\
& \oplus \mathcal{J}_{N} = \mathcal{J}_{N} + \mathcal{J}_{N} + \mathcal{J}_{N}
\end{array}$$

$$\begin{array}{lll}
\mathcal{J}_{N} = \mathcal{J}(W \not N) \\
& \oplus \mathcal{J}_{N} = \mathcal{J}_{N} + \mathcal{J}_{N}
\end{array}$$

$$\begin{array}{lll}
\mathcal{J}_{N} = \mathcal{J}_{N} + \mathcal{J}_{N} \\
& \oplus \mathcal{J}_{N} = \mathcal{J}_{N} + \mathcal{J}_{N}
\end{array}$$

$$\begin{array}{lll}
\mathcal{J}_{N} = \mathcal{J}_{N} + \mathcal{J}_{N} \\
& \oplus \mathcal{J}_{N} = \mathcal{J}_{N} + \mathcal{J}_{N}
\end{array}$$

$$\begin{array}{lll}
\mathcal{J}_{N} = \mathcal{J}_{N} + \mathcal{J}_{N} \\
& \oplus \mathcal{J}_{N} + \mathcal{J}_{N}
\end{array}$$

$$\begin{array}{lll}
\mathcal{J}_{N} = \mathcal{J}_{N} + \mathcal{J}_{N}$$

$$\begin{array}{lll}
\mathcal{J}_{N} = \mathcal{J}_{N} + \mathcal{J}_{N}
\end{array}$$

$$\begin{array}{lll}
\mathcal{J}_{N} = \mathcal{J}_{N} + \mathcal{J}_{N}$$

$$\begin{array}{lll}
\mathcal{J}_{N} = \mathcal{J}_{N} + \mathcal{J}_{N}
\end{array}$$

$$\begin{array}{lll}
\mathcal{J}_{N} = \mathcal{J}_{N} + \mathcal{J}_{N}$$

$$\begin{array}{lll}
\mathcal{J}_{N} = \mathcal{J}_{N} + \mathcal{J}_{N}
\end{array}$$

$$\begin{array}{lll}
\mathcal{J}_{N} = \mathcal{J}_{N} + \mathcal{J}_{N}$$

$$\begin{array}{lll}
\mathcal{J}_{N} = \mathcal{J}_{N} + \mathcal{J}_{N}
\end{array}$$

$$\begin{array}{lll}
\mathcal{J}_{N} = \mathcal{J}_{N} + \mathcal{J}_{N}$$

$$\begin{array}{lll}
\mathcal{J}_{N} = \mathcal{J}_{N} + \mathcal{J}_{N}$$

$$\begin{array}{lll}
\mathcal{J}_{N} = \mathcal{J}_{N} + \mathcal{J}_{N}
\end{array}$$

$$\begin{array}{lll}
\mathcal{J}_{N} = \mathcal{J}_{N} + \mathcal{J}_{N}$$

$$\begin{array}{lll}
\mathcal{J}_{N} = \mathcal{J}_{N} + \mathcal{J}_{N}$$

$$\begin{array}{lll}
\mathcal{J}_{N} = \mathcal{J}_{N} + \mathcal{J}_{N}
\end{array}$$

$$\begin{array}{lll}
\mathcal{J}_{N} = \mathcal{J}_{N} + \mathcal{J}_{N}$$

$$\begin{array}{lll}$$

3	
/	
	(a)
	$2 \text{ for output } -1 \leq \widehat{y_n} \leq 1$
	to 果要計算 Jass function, 且值在(-1, 1),
	最適合的應該 Mean square error,
	$MSE = \frac{1}{N} \frac{1}{2!} (y_2 - \hat{y}_2)^2$,因為對了 MSE $9 可以在14種範圍$
	世紀 Cross - entropy lass, 日為梅 log
	存在, 會導致 划以(鱼数), 不符定数學式!
	·選擇MSE.
	(b)
	要限定-15分与1之間,坚擇 tanh (你有 activation function
	χ -×
	$tanh(x) = \frac{e^x + e^{-x}}{e^x + e^{-x}}$ $tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ $tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$
	$tamh(x) = \frac{e^{x} - e^{x}}{e^{x} + e^{x}}$ $lim tomh(x) = \frac{e^{x} - e^{x}}{e^{x} + e^{x}}$ $= lim tomh(x) = \frac{e^{x} - e^{x}}{e^{x} + e^{x}}$ $= lim tomh(x) = \frac{e^{x} - e^{x}}{e^{x} + e^{x}}$ $= lim tomh(x) = \frac{e^{x} - e^{x}}{e^{x} + e^{x}}$
	$\lim_{x \to \infty} forh(x) = \frac{e^{-e}}{e^{x}}$
	<u> </u>