$\Pi y cm \delta \alpha - \kappa omn лексный корень многочлена <math>h(x) = x^3 - 3x + 1$. $\Pi pedcmasume$ элемент

$$\frac{\alpha^4 - \alpha^3 + 4\alpha + 3}{\alpha^4 + \alpha^3 - 2\alpha^2 + 1} \in Q(\alpha)$$

в виде $f(\alpha)$, где $f(x) \in Q[x]$ и $\deg f(x) \leqslant 2$. Представим нашу дробь в виде:

$$\frac{g(x)}{k(x)} = \frac{\alpha^4 - \alpha^3 + 4\alpha + 3}{\alpha^4 + \alpha^3 - 2\alpha^2 + 1}$$

Воспользуемся алгоритмом Евклида для нахождения НОД многочленов h(x), k(x):

- $k(x) = h(x)(x+1) + (x^2 + 2x)$
- $(x^3 3x + 1) = (x^2 + 2x)(x 2) + (x + 1)$
- $(x^2 + 2x) = (x+1)(x+1) 1$

$$1 = (x+1)(x+1) - (x^2 + 2x) = (x+1)((x^3 - 3x + 1) - (x^2 + 2x)(x - 2)) - (x^2 + 2x) =$$

$$= (x+1)(x^3 - 3x + 1) - (x^2 - x - 1)(x^2 + 2x) = (x+1)h(x) - (x^2 - x - 1)(k(x) - h(x)(x + 1)) =$$

$$= (x^3 - x)h(x) + (-x^2 + x + 1)k(x)$$

$$\frac{g(\alpha)}{k(\alpha)} = \frac{g(\alpha) \cdot 1}{k(\alpha)} = \frac{g(\alpha) \left(n_1(\alpha) h(\alpha) + n_2(\alpha) k(\alpha) \right)}{k(\alpha)} = n_2(\alpha) g(\alpha) =$$

$$= (-\alpha^2 + \alpha + 1)(\alpha^4 - \alpha^3 + 4\alpha + 3) =$$

$$= (-\alpha^3 + 2\alpha^2 - 3\alpha + 2)(\alpha^3 - 3\alpha + 1) - 10\alpha^2 + 16\alpha + 1 = -10\alpha^2 + 16\alpha + 1$$

Задача 2

Найдите минимальный многочлен для числа $\sqrt{3} - \sqrt{5}$ над Q.

$$x = \sqrt{3} - \sqrt{5} \Rightarrow x^2 = 3 + 5 - 2\sqrt{15} \Rightarrow (x^2 - 8)^2 = 60 \Rightarrow$$

 $x^4 - 16x^2 + 4 = 0$

Корни:

$$\pm\sqrt{3}\pm\sqrt{5}$$

Отметим, что множетили в разложение данного многочлена являются неприводимыми, откуда вытекает, что данная степень многочлена является минимальной.

Задача 3

Пусть F— подполе в \mathbb{C} , полученное присоединением к \mathbb{Q} всех комплексных корней многочлена x^4+x^2+1 (то есть F— наименьшее подполе в \mathbb{C} , содержащие \mathbb{Q} и все корни этого многочлена).

Найдите степень расширения $[F:\mathbb{Q}]$.

 $x^4+x^2+1=(x^2-x+1)(x^2+x+1)=(x-\frac{1}{2}+\frac{\sqrt{3}}{2}i)(x-\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}+\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)$ Отметим, что данный нам многочлен является делителем x^6-1 , поэтому все его корни образуются из $\frac{1}{2}+\frac{\sqrt{3}}{2}i$. Отсюда наименьшее подполе , содержащие все корни многочлена из условия есть $\mathbb{Q}(\frac{1}{2}+\frac{\sqrt{3}}{2}i)$. Получаем степень поля 2, так как присоединенный элемент является корнем квадратного уравнения $x^2-x+1=0$.

Задача 4

Пусть $F = \mathbb{C}(x)$ — набор рациональных дробей и $K = \mathbb{C}(y)$, где $y = x + \frac{1}{x}$. Найдите степень расширения [F:K].

Перепишем уравнение в более удобной для нас форме: $x^2 - xy + 1 = 0$, над полем C(y). Далее предположим, что $x = \frac{g(y)}{h(y)}$. Заметим, что при $x \to \pm i$ переменная $y \to 0$. То есть справа мы имеем одинаковые пределы, слева — разные. Отсюда $x \notin C(y)$, степень расширения равна 2.