QI	Expression	Analytical sum
1	$\sum_{n=1}^{\infty} \varepsilon^{-1+n} dP[n, 0]$	$-\frac{S}{W^3}$
7	$\sum_{n=1}^{\infty} n \varepsilon^{-1+n} dP[n, 0]$	$2 \varepsilon^2$
ო	$\sum_{n=1}^{\infty} n^2 \varepsilon^{-1+n} dP[n, 0]$	$(-2+c^2) \varepsilon - c \varepsilon^2$
4	$\sum_{n=1}^{\infty} n^3 \varepsilon^{-1+n} dP[n, 0]$	$\frac{s \left(-1-15 \text{ c } \varepsilon - 18 \left(-2+c^2\right) \varepsilon^2 - c \left(-39+c^2\right) \varepsilon^3 + 3 \left(-20+c^2\right) \varepsilon^4 + 9 \text{ c } \varepsilon^5 + 8 \varepsilon^6\right)}{w^9}$
5	$\sum_{n=1}^{\infty} \frac{\varepsilon^{-1+n} dP[n,0]}{n}$	$-\frac{s\ (1+w)}{w\ (1+w-c\ \varepsilon)}$
9	$\sum_{n=2}^{\infty} \frac{\varepsilon^{-1+n} dP[n,0]}{-1+n}$	$-s \left(\frac{1-w^2+2 c w \varepsilon}{w+w^2-c w \varepsilon} + Log [2] - Log [1+w-c \varepsilon] \right)$
7	$\sum_{n=1}^{\infty} \frac{\varepsilon^{-1+n} dP[n,0]}{1+n}$	$\frac{1-w-c\varepsilon}{sw\varepsilon^2}$
80	$\sum_{n=1}^{\infty} n^2 \ \varepsilon^{-1+n} \ dP[n, 1]$	$\frac{c\; \left(1+2\; c\; \varepsilon-\varepsilon^2\right)}{w^5} \; + \; \frac{\varepsilon\; \left(-12+17\; c^2-6\; c\; s^2\; \varepsilon+3\; s^2\; \varepsilon^2\right)}{w^7} \; + \\ \frac{5\; \varepsilon^2\; \left(10\; c^3-6\; c^4\; \varepsilon+\varepsilon\; \left(8+7\; s^4-6\; \varepsilon^2\right)+c^2\; \varepsilon\; \left(-1+3\; \varepsilon^2\right)+c\; \left(-11+2\; \varepsilon^2+\varepsilon^4\right)\right)}{w^9}$
6	$\sum_{n=1}^{\infty} n \varepsilon^{-1+n} dP[n, 1]$	$\frac{c \left(w^2 - \left(5 \ s^2 + 2 \ w^2\right) \ \varepsilon^2\right) + \varepsilon \ \left(w^2 + s^2 \ \left(-5 - 2 \ w^2 + 10 \ \varepsilon^2\right)\right)}{w^7}$
10	$\sum_{n=1}^{\infty} \varepsilon^{-1+n} dP[n, 1]$	$\frac{\text{C W}^2 - 3 \text{ S}^2 \varepsilon}{\text{W}^5}$
11	$\sum_{n=1}^{\infty} \frac{\varepsilon^{-1+n} dP[n,1]}{n}$	$\frac{C - \varepsilon}{w^3} - \frac{\varepsilon}{w \; (1 + w - C \; \varepsilon)}$
12	$\sum_{n=1}^{\infty} \frac{\varepsilon^{-1+n} dP[n,1]}{1+n}$	$\frac{\left(-w^2-s^2\ (1+2\ w)\right)\ \varepsilon-c^3\ \varepsilon^2+c\ \left(w^2+w^3+\varepsilon^2\right)}{w^3\ (1+w-c\ \varepsilon)^2}$
13	$\sum_{n=1}^{\infty} \frac{\varepsilon^{-1+n} dP[n,1]}{n^2}$	$-\frac{c}{w\;(c+w)\;(c+w-\epsilon)} \; + \; \frac{(-1+c)\;(-1+w)}{s^2\;(c+w)\;\epsilon} \; - \; \frac{c\;(1+w)}{w\;(-1-w+c\;\epsilon)} \; - \; \frac{c\;Log\left[\frac{1+c}{c+w-\epsilon}\right] + Log\left[\frac{1}{2}\;(1+w-c\;\epsilon)\right]}{s^2\;\epsilon}$
14	$\sum_{n=2}^{\infty} n \ \epsilon^{-1+n} \ dP[n, 2]$	$\frac{12 c_{S E}}{w^5} - \frac{15 s \left(-2+5 s^2\right) \varepsilon^2}{w^7} - \frac{15 s \varepsilon^3 \left(7 c s^2+2 c w^2-7 s^2 \varepsilon\right)}{w^9}$
15	$\sum_{n=2}^{\infty} \varepsilon^{-1+n} dP[n, 2]$	$s \varepsilon \left(2 c w^2 - 5 s^2 \varepsilon\right)$ w^7
16	$\sum_{n=2}^{\infty} \frac{\varepsilon^{-1+n} dP[n,2]}{n}$	
17	$\sum_{n=2}^{\infty} \frac{\varepsilon^{-1+n} dP[n,2]}{-1+n}$	$-2 s - \frac{2 s}{w^3} - \frac{2 s^3 (1+w)^6}{c^2 w^3 (1+w-c \varepsilon)^3} + \frac{s (1+w)^4 \left(2 c^2 w^2 + 3 s^2 \left(-1+w (2+w) \right) \right)}{c^2 w^4 \left(1+w-c \varepsilon \right)^2} + \frac{s (1+w)^2 \left(2 c^2 w^2 \left(-1+2 w\right) + s^2 \left(3-6 w+6 w^3 \right) \right)}{c^2 w^5 \left(-1-w+c \varepsilon \right)} + \frac{s^3 \left(3-w^2 \left(4+w^3\right) + 3 c \varepsilon \right)}{c^2 w^5}$
18	$\sum_{n=2}^{\infty}$	- 3 s (-1+c ε) w ⁵
19	$\sum_{n=2}^{\infty} \frac{\varepsilon^{-1+n} dP[n,2]}{n^2}$	$\frac{s}{w^3} + \frac{2 \ c \ (1-c \ \epsilon)}{s^3 \ w \ \epsilon} + \frac{\left(1+c^2\right) \ (1+w)}{s \ w \ (1+w-c \ \epsilon)} - \frac{2 \ \left(\left(1+c^2\right) \ Log\left[\frac{1+c}{c+w-\epsilon}\right] + c \ \left(1+2 \ Log\left[\frac{1}{2} \ (1+w-c \ \epsilon)\right]\right)\right)}{s^3 \ \epsilon}$