

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Sommersemester 2024

Peter Philip,

Paula Reichert, Lukas Emmert

Analysis 2 (Statistik) Präsenzaufgabenblatt 5

Aufgabe 1 Es sei M die Menge der Normen auf dem K-Vektorraum X. Zeigen Sie, dass die Äquivalenz von Normen eine Äquivalenzrelation auf M ist.

Aufgabe 2

Gegeben seien der \mathbb{R} -Vektorraum $C([0,1]) := \{f : [0,1] \to \mathbb{R}, f \text{ ist stetig}\}$ und die Funktion

$$\langle \cdot, \cdot \rangle : C([0,1]) \times C([0,1]), \ \langle f, g \rangle := \int_0^1 f(x)g(x)dx.$$

Zeigen Sie, dass $\langle \cdot, \cdot \rangle$ ein Skalarprodukt auf C([0,1]) ist.

Hinweis: Sie können die folgende Aussage ohne Beweis verwenden (Sie können auch gerne versuchen, die Aussage zu beweisen).

Sei $I \subseteq \mathbb{R}$ ein abgeschlossenes Intervall und $f: I \to \mathbb{R}_0^+$ eine nichtnegative Funktion. Falls f auf I stetig ist, dann gilt:

$$\int_I f(x)dx = 0 \quad \Rightarrow \quad f \equiv 0 \quad \text{auf} \quad I.$$