PDAs <=> CFGs

Sipser 2.2 (pages 119-122)

Finite automata and Pushdown automata

Regular => Pushdown

- Proposition: Every finite automaton can be viewed as a pushdown automaton that never operates on its stack.
- Proof:

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton.

Define $M' = (Q, \Sigma, \Gamma, \delta', q_0, F)$, where...

Finite automata and Pushdown automata

CFGs and PDAs

 Theorem 2.20: A language is context-free if and only if some pushdown automaton recognizes it.

Formally...

· A pushdown automaton is a 6-tuple

$$M = (Q, \Sigma, \Gamma, \delta, q_0, F)$$
, where

- -Q is a finite set of states
- $-\Sigma$ is a finite alphabet (the input symbols)
- Γ is a finite alphabet (the stack symbols)
- $-\delta: (Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon}) \to P(Q \times \Gamma_{\varepsilon})$ is the transition function
- $-q_0 = Q$ is the initial state, and
- $-F\subseteq Q$ is the set of accept states

Balanced brackets

• Let $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$, where

$$-Q = \{q_1, q_2, q_3\}$$

$$-\Sigma = \{[,]\}$$

$$-\Gamma = \{ f, \$ \}$$

$$-q_{0}=q_{1}$$

$$-F = \{q_1, q_3\}$$

 $-\delta$ is given by state diagram:

Recognizing context-free languages

 Lemma 2.21: If a language is context-free, then some pushdown automaton recognizes it.

Shorthand for...

For example...

- Let's use this construction on:
- $G = (V, \Sigma, R, S)$, where $V = \{S\}$ $\Sigma = \{[I, J]\}$ $R = \{S \rightarrow_G \varepsilon, S \rightarrow_G SS, S \rightarrow_G [S]\}$

Go backwards!

The proof

- Let $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ be a pushdown automaton.
- Assume WLOG (Without Loss Of Generality)
 - -P has exactly one accept state $q_{\it accept}$
 - P empties its stack before accepting
 - Each transition does either a push or a pop (but not both)

We build a grammar G...

- Given $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$
- Construct G = (V, Σ, R, S) , where

$$-V = \{A_{pq} \mid p,q \in Q\}$$

· Idea: design the rules so that

 A_{pq} generates all strings that take P from p with empty stack to q with empty stack

$$-S = A_{q_0, q_{accept}}$$

Designing the rules

P's operation on strings of

 A_{pq}

- Since P starts and ends with an empty stack:
 - The first move from p must be a push
 - The last move to q must be a pop
- Along the way, either:
 - 1. The stack never becomes empty
 - There is some intermediate state where the stack is empty

Case 1: The stack never empties between p and q

- On the first move from p
 - Let r be the state moving to
 - Let a be the input symbol read
 - Let t be the stack symbol pushed
- On the last move to q
 - Let s be the state moving from
 - Let b be the input symbol read
 - It must be the case that t is the stack symbol popped

Capturing this behavior

Model with the rule

$$A_{pq} \rightarrow aA_{rs}b$$

Case 2: the stack empties along the way from p to q

- Let r be the state where the stack is empty
- Model with the rule

Formally phrasing the rules

- If $(r, t) \in \delta(p, a, \varepsilon)$ and $(q, \varepsilon) \in \delta(s, b, t)$ then add the rule $A_{pq} \to aA_{rs}b$
- For each $p, q, r, \in Q$, add the rule $A_{pq} \rightarrow A_{pr} A_{rq}$
- For each $p \in Q$, add the rule $A_{pp} \to \varepsilon$

Proving we were right

- A_{pq} generates x if and only if x can bring P from p with empty stack to q with empty stack
- => (Claim 2.30) If A_{pq} generates x, then x can bring P from p with empty stack to q with empty stack
- Proof
 - By induction on the number of steps in the derivation of x from A_{pq}

If A_{pq} generates x, then x can bring P from p with empty stack to q with empty stack

Proof:

By (strong) induction on # steps in derivation.

Base case: 1 step.

What rule is it?

IH: Assume for at most k steps.

Inductive step: k+1 steps.

What could first rule applied look like?

And now the other way!

- Claim 2.31: If x can bring P from p with empty stack to q with empty stack, then A_{pq} generates x
- Proof
 - By (strong) induction on the number of steps in the computation of P
 - <u>Base case</u>: *O steps*.
 - · starts and ends in same state
 - \cdot no time to read symbol, must read ${\mathcal E}$
 - <u>IH</u>: Assume for at most k steps
 - Inductive case: k+1 steps.
 - . what could happen to the stack along the way?