HF and VHF Propagation

Joe Wilkes, PhD WA2SFF

Joe's Background

- Licensed since 1961
 - Extra Class WA2SFF
- Electrical Engineer
 - Studied Wireless Communications in Grad
 School
 - Thesis Topic: Mitigating the effects of multipath fading on FM radio signals
- Co-author of three books on Wireless Communications

Misconceptions

- 10 meters is dead
- 6 meters is dead
- Low sunspots means HF is useless
- 2 meter band openings are from skip

Outline

- HF Propagation
- Websites To Help DX
- VHF Propagation
 - If time permits

Radio Waves

- Radio Waves, like light travel in a straight line
- But the earth is a sphere and is not flat
 - Sorry "Flat Earth" people

- To travel long distances, we need:
 - A "mirror" to reflect the waves Ionosphere (HF/low) VHF)
 - A way to bend the waves Troposphere (VHF/UHF)
- For local communications, the atmosphere has some effect on bending the waves, depending on:
 - Antenna height (higher is better)
 - Frequency (lower is better)

Local HF Communication Range

QST
January 1985
"Radio Waves
and
Communications
Distance," W1FB

Fig. 1 — Typical high-frequency range, in miles, for ground waves compared to frequency. $km = mi \times 1.609$.

Layers in Earth's Atmosphere

For long distance
HF propagation,
we are interested
primarily in the Ionosphere

For Long Distance VHF/UHF propagation, The Troposphere is of interest

https://en.wikipedia.org/wiki/Ionosphere

The Ionosphere

- The ionosphere is a shell of electrons and electrically charged atoms and molecules that surrounds the Earth, stretching from a height of about 50 km (31 mi) to more than 1,000 km (620 mi).
- The amount of ionization in the ionosphere varies greatly with the amount of radiation received from the Sun.
- The ionization varies with:
 - Day or night
 - Location on the earth
 - Summer vs. Winter
 - The Sunspot Cycle of 11 years
- Solar Flares can disrupt the Ionosphere

Fundamentals

- HF and low VHF propagation depends on the ionosphere
- Three layers are key

Radio Propagation

Layers of ionosphere

- F layer
 - Height ~ 200 miles
 - Reflects signals (HF & VHF)
- E layer
 - Height 65-75 miles
 - Reflects signals above15 meters

- Height 45-55 miles
- Attenuates signals
- Disappears at night

https://en.wikipedia.org/wiki/Ionosphere

Ionosphere acts as mirror

- The mirror is not perfect
- Different parts of the ionosphere reflect signals at different times
- The received signal arrives from many spots in the Ionosphere
- The signals combine at the receiver
- As the ionosphere changes the paths change and the signal fades in and out
- This is called multipath fading

As the frequency gets higher the mirror stops working

Radio Propagation

Definitions

- Critical frequency
 - The highest frequency that will be reflected back to the earth when the antenna is aimed straight up
 - Higher frequencies are not reflected and pass through the Ionosphere
- Maximum Usable frequency (MUF)
 - The highest frequency that can be used to communicate between two points on the earth
 - The MUF is always lower than the critical frequency
- If we want to reflect at an angle, we need to use a lower frequency than the critical frequency
- Thus the further we want to talk, the lower the frequency

Lowest Usable Frequency (LUF)

- The D-layer attenuates signals
- The lowest frequency that will pass through the D-layer without significant attenuation is called the Lowest Useable Frequency (LUF)
- Frequencies lower than the LUF
 - Will not get though the D-layer
 - Therefore, will not be reflected off the F-layer or E-layer
- The D layer is primarily ionized by the Sun; so at night, the D layer disappears
- That's why we can hear AM broadcast from 1000's miles away at night.
- During eclipse's, the moon blocks the Sun and the D layer goes away.
- A few years ago, a few people thought they discovered a new propagation mode. It was just the D layer going away during the eclipse.

Why can't we talk sometimes

- If the MUF is lower than the LUF
- Then we can't talk

Single and Multiple Hops

- Long distance communications require multiple hops
 - The signal reflects off of the Ionosphere and then off the ground then off the Ionosphere
 - Around the world propagation requires 2-4 hops or more

Figure 2 — Signals from Sackville, ON, can arrive at K4ERO in Rising Fawn, GA by one or two ionospheric hops.

What are Sunspots

- Sunspots are dark/cooler areas on the Sun
 - Normal temperature of surface of Sun 5,500 °C
 - Sunspots are 2,700–4,200 °C
- But edges of sunspots radiate a lot of Ultra Violet Light
- Ultra Violet Light charges the ionosphere
- The more sun spots, the higher the charge, and the better the propagation
- Increase and decrease in an 11 year cycle
 - There are other cycles as well
 - We are still learning about sunspots and predictions are often wrong
- During Sunspot maximums
 - MUF can exceed 50 MHz

Sunspots

Never Look Directly at the Sun!

Last Solar Max 2014

Solar Min 2020

Radio Propagation

Page 18

Recent Sunspots

Never Look Directly at the Sun!

https://www.spaceweather.com/

Highest Sun Spots Ever in last 400 years

- 1958: MUF>60 MHz
- Some lucky hams worked Japan on 6 meters
 - I started out on 6 meters in 1961
 - Other hams told me how I missed the peak

Recent Sunspots

SILSO graphics (http://sidc.be/silso) Royal Observatory of Belgium 2020 February 1

NASA Cycle 25 Predication

Radio Propagation

Propagation

- Random
- Never guaranteed
- Predictable
- Methods of predications
 - Charts (not used anymore)
 - Computer programs
 - Website with receivers

Tricks To Improve The Odds

- Listen to WWV and CHU
 - WWV 5, 10, 15, 20, 25 MHz
 - CHU 7333
- Listen to "freeband", 27.5-28 MHz
- Listen to TV channels 2 or 3
 - May not be possible anymore
 - Most low VHF stations moved to UHF
- Listen on scanner to frequencies between 30-50 MHz

Propagation Aids

- http://wsprnet.org/drupal/wsprnet/map
- https://www.dxmaps.com/spots/mapg.php?lan=e
- sk6aw.net/cluster

wspernet.org

Radio Propagation

dxmaps.com

sk6aw.net

Ū 🔏 sk6aw.ne	t/cluster/ □ ··· ☑ ☆ □ ··· ☑ ☆						
SK6AV	W.NET Sign in! I	Band Any	Mode	Any -	DX Continent Any	Show 25 Announces	WCY Info
	DX Call	Frequency	Spotter	Band Mode	DXCC Info	Comment	Time
	LZ1ZF	3603.2	RL4A	80m SSB	[EU] Bulgaria	SSB TULA	18:01z
	CT1EGX	14074.0	F5UOU	20m DIG	[EU] Portugal	FT8 -06dB from IM57 764Hz	18:01z
	W4ID	7213.0	W5GAI	40m SSB	[NA] United States	POTA K-2895 SC GIVHANS FERRY S	18:01z
	BI1KFY	7074.0	SV1VS	40m DIG	[AS] China	FT8 -26dB from ON80 2106Hz	18:00z
	RA4CL	3584.9	UA4CGR	80m DIG	[EU] European Russia	011	18:00z
	F4FPG	7152.5	SV4SCL	40m SSB	[EU] France	(1494Km) LSB KM09vn -> JN25qm	18:00z
	LZ125LAZ	7024.0	DL3HQN	40m CW	[EU] Bulgaria		18:00z
	W1SRR	14336.0	CU3BL	20m SSB	[NA] United States	POTA=K-4559	18:00z
	SX200HEP	10136.0	OZ2LP	30m DIG	[EU] Greece		18:00z
	GB100L	7160.0	M0KED	40m SSB	[EU] England	SES,100 years LSWC	17:59z
	W4ID	7213.0	K4UOJ	40m SSB	[NA] United States	pota k-2895	17:59z
	EI5HIB	14313.0	EI5HIB	20m SSB	[EU] Ireland	CQ CQ CQ	17:58z
	AC6CD	18100.9	VE3FBZ	17m DIG	[NA] United States		17:58z
	EC1YL	7120.0	EA2XG	40m DIG	[EU] Spain	Etapa 11 Rosalia de Castro	17:58z
	SX2A	1830.0	YO6DDF	160m CW	[EU] Greece	NO CW Top band??	17:57z
	PU5LHF	28475.0	PU5LHF	10m SSB	[SA] Brazil	CQ CQ DX.	17:57z
	KD5JRM	7227.0	AB4BA	40m SSB	[NA] United States	POTA NM	17:57z
	IQ8XF	144174.0	IK1PAG	2m DIG	[EU] Italy	(855Km) jn70 <tr>jn35 best +2</tr>	17:57z
	RT6DI	3584.9	UA4CGR	80m DIG	[EU] European Russia	021	17:56z
	F5GRA	14203.0	K1WLP	20m SSB	[EU] France		17:56z
	SX2A	10136.0	OZ2LP	30m DIG	[EU] Greece		17:56z
	K4C	14216.0	F8BNU	20m SSB	[NA] Puerto Rico	tnx for qso.73	17:55z
	IZ0DXD	7047.5	IK0XBX	40m DIG	[EU] Italy	75th ARI PG AWARD www.iq0pg.it	17:55z
	I5YDI	144300.0	EA6AAU		[EU] Italy	(796Km) JM19JK <tr>JN54BB FUERTE</tr>	17:55z
	IK2CIO	144300.0	I5IIL		[EU] Italy		17:55z

Summary

- Bands are not dead
- DX can be worked
- Web sites with beacon data can help
- GSARA Discord channel has a dx discussion group
- Listening to nearby frequencies can help

VHF Propagation

VHF Propagation

- E Skip
 - -10, 6, 2, 1-1/4??
- F Skip
 - 6 meters
 - rare with current sunspot numbers
- Tropospheric ducting
- Aurora

- Meteor scatter
- Forward scatter
- Back scatter
- Moon bounce
- Satellites

Tropospheric ducting

- As various times of the year and depending on weather conditions, the troposphere can act as a duct for VHF/UHF radio waves
 - $-2 \text{ m}, 1.25 \text{M}, \frac{3}{4} \text{ m}$
- Also known as as temperature inversion where the temperature of the atmosphere goes up the higher the altitude.
- This creates a condition where signals are bent by the troposphere and we get very good long range (500-1000 miles or more) propagation
- This was used to set range records for VHF and UHF by hams between California and Hawaii.
- The higher the antenna the better to connection to the troposphere

Aurora

- When Aurora occurs, the upper atmosphere is charged and can reflect VHF/UHF signals
- Since the Aurora (or Northern Lights) are North of us, we need to point our antennas North (or at the Aurora)
- Aurora signals tend to be raspy because of the nature of the aurora, flickering

Meteor Scattering

- As a meteor passes through the atmosphere it heats up the air and ionizes it.
- Radio waves can reflect off the ionized path
- Because these ionization trails only exist for fractions of a second to as long as a few seconds in duration, they create only brief windows of opportunity for communications.
- Today, mostly high speed digital communications are used
 WSJT-X modes (MSK144 is the most popular according to Wikipedia)

Forward and Back Scattering

- Scattering off of:
 - small ionized particles in the atmosphere,
 - ocean waves
 - Rain
 - Snow
- Path losses are very high
- Think of aiming a hose at a window screen: How much water is reflected off the screen

Moon Bounce

- With enough power and a big enough antenna, we can bounce our signals off the moon.
- the overall path loss is at best approximately 252 dB on 144 271 dB on 1296
- Need 1 KW,
 20-25 dBd antenna
- With WSJT-X, lower power, and smaller antennas can be used

Satellites

- There are multiple ham radio satellites in orbit around the earth
 - Orbital Satellites Carrying Amateur Radio (OSCAR)
- Most current activity is on 2 m and 3/4 m
- Can be done with an HT and a handheld antenna
- From a talk a few months ago
 - See https://www.work-sat.com/ for details