Künneth Theorem

Khanh Nguyen

April 2024

1 UNIVERSAL COEFFICIENT THEOREM

Theorem 1 (universal coefficient theorem). Let R be a PID, N be an R-module, C_{\bullet} be chain complexes of R-module, and C_{\bullet} is degree-wise free (each C_n is a free R-module). Then, there is a short exact sequence

$$0 \longrightarrow H_n(C_{\bullet}) \otimes N \longrightarrow H_n(C_{\bullet} \otimes N) \longrightarrow \operatorname{Tor}_1(H_{n-1}(C_{\bullet}), N) \longrightarrow 0$$

and this sequence splits (but not naturally)

2 KÜNNETH THEOREM FOR CHAIN COMPLEXES OF R-MODULES

Definition 1 (direct sum of chain complexes of R-module). In the category of chain complexes of R-module (Ch(R-Mod)), let C_{\bullet} , $D_{\bullet} \in \text{ob Ch}(R\text{-Mod})$, define the direct sum $C_{\bullet} \oplus D_{\bullet} \in \text{ob Ch}(R\text{-Mod})$ as follows:

$$(C_{\bullet} \oplus D_{\bullet})_n = C_n \oplus D_n$$

and the boundary map $\partial: (C_{\bullet} \oplus D_{\bullet})_n \to (C_{\bullet} \oplus D_{\bullet})_{n-1}$ is defined by

$$\partial: (C \oplus D)_n \to (C \oplus D)_{n-1}$$

 $c \oplus d \mapsto \partial c \oplus \partial d$

Definition 2 (tensor product of chain complexes of R-module). In the category of chain complexes of R-module (Ch(R-Mod)), let C_{\bullet} , $D_{\bullet} \in \text{ob Ch}(R\text{-Mod})$, define the tensor product $C_{\bullet} \otimes D_{\bullet} \in \text{ob Ch}(R\text{-Mod})$ as follows:

$$(C_{\bullet} \otimes D_{\bullet})_n = \bigoplus_{p+q=n} C_p \otimes D_q$$

and the boundary map $\partial: (C_{\bullet} \otimes D_{\bullet})_n \to (C_{\bullet} \otimes D_{\bullet})_{n-1}$ is the linear extension of $\partial: C_p \otimes D_q \to (C_{\bullet} \otimes D_{\bullet})_{n-1}$ where

$$\partial(c \otimes d) = \partial c \otimes d + (-1)^{|c|} c \otimes \partial d$$

where $c \otimes d \in C_p \otimes D_q$ and |c| = p

Proof. TODO - bilinear chain map factors through tensor product

Definition 3 (the Tor functor). *TODO*

Theorem 2 (Künneth theorem for chain complexes). Let R be a PID, C_{\bullet} , D_{\bullet} be chain complexes of R-module, and C_{\bullet} is degree-wise free (each C_n is a free R-module). Then, there is a short exact sequence

$$0 \longrightarrow \bigoplus_{p+q=n} H_p(C_{\bullet}) \otimes H_q(D_{\bullet}) \stackrel{\times}{\longrightarrow} H_n(C_{\bullet} \otimes D_{\bullet}) \longrightarrow \bigoplus_{p+q=n-1} \operatorname{Tor}_1^R(H_p(C_{\bullet}), H_q(D_{\bullet})) \longrightarrow 0$$

and this sequence splits (but not naturally)

Proof. Consider the case where the boundary map in C_{\bullet} is zero, that is, for all $c \in C_n$, $\partial c = 0$. Then,

$$\partial: C_p \otimes D_q \to C_p \otimes D_{q-1}$$
$$c \otimes d \mapsto (-1)^{|c|} c \otimes \partial d$$

Figure 1: road map

Hence, $C_{\bullet} \otimes D_{\bullet}$ can be written as a direct sum of chain complexes $C_{\bullet} \otimes D_{\bullet} = \bigoplus_{p} C_{p} \otimes D_{\bullet - p}$. Therefore

$$H_n(C_{\bullet} \otimes D_{\bullet}) = H_n \left(\bigoplus_p C_p \otimes D_{\bullet - p} \right)$$

$$= \bigoplus_p H_n(C_p \otimes D_{\bullet - p})$$

$$= \bigoplus_p C_p \otimes H_n(D_{\bullet - p}) \qquad (C_p \text{ is free, cons of UCT})$$

$$= \bigoplus_{p+q=n} C_p \otimes H_q(D_{\bullet}) \qquad (\text{shifted chain complex})$$

$$= \bigoplus_{p+q=n} H_p(C_{\bullet}) \otimes H_q(D_{\bullet}) \qquad (C_p = H_p(C_{\bullet}))$$

Now let C_{\bullet} be an arbitrary chain complex, we have the short exact sequence of chain complexes

$$0 \longrightarrow Z_{\bullet} \longrightarrow C_{\bullet} \longrightarrow B_{\bullet-1} \longrightarrow 0$$

where $Z_n = \ker(\partial: C_n \to C_{n-1})$ and $B_n = \operatorname{im}(\partial: C_{n+1} \to C_n)$ are *n*-cycle and *n*-boundary and consider $Z_{\bullet}, B_{\bullet-1}$ as chain complexes with zero boundary map. Each Z_n, B_n are free as they are submodules of free *R*-module C_n . As $B_{\bullet-1}$ is free, the sequence splits, hence, the sequence below is exact

$$0 \longrightarrow Z_{\bullet} \otimes D_{\bullet} \longrightarrow C_{\bullet} \otimes D_{\bullet} \longrightarrow B_{\bullet-1} \otimes D_{\bullet} \longrightarrow 0$$

That induces a long exact sequence in homology

$$H_n(Z_{\bullet} \otimes D_{\bullet}) \xrightarrow{(i_n)_*} H_{n+1}(B_{\bullet-1} \otimes D_{\bullet})$$

$$H_n(Z_{\bullet} \otimes D_{\bullet}) \xrightarrow{(i_{n-1})_*} H_n(B_{\bullet-1} \otimes D_{\bullet})$$

$$H_{n-1}(Z_{\bullet} \otimes D_{\bullet}) \xrightarrow{(i_n)_*} \dots$$

where the connecting homomorphisms $(i_n)_*, (i_{n-1})_*$ are induced by inclusion maps

$$(Z_{\bullet} \otimes D_{\bullet})_n \longleftrightarrow (C_{\bullet} \otimes D_{\bullet})_n$$

From the long exact sequence, we have the short exact sequence

$$0 \longrightarrow \operatorname{coker}(i_n)_* \longrightarrow H_n(C_{\bullet} \otimes D_{\bullet}) \longrightarrow \ker(i_{n-1})_* \longrightarrow 0$$

Discussed in the previous argument, as Z_{\bullet} and $B_{\bullet-1}$ are free,

$$H_n(Z_{\bullet} \otimes D_{\bullet}) = \bigoplus_{p+q=n} Z_p \otimes H_q(D_{\bullet})$$
$$H_{n+1}(B_{\bullet-1} \otimes D_{\bullet}) = \bigoplus_{p+q=n} B_p \otimes H_q(D_{\bullet})$$

Since tensor product is right-exact, exactness of the top sequence implies exactness of the bottom sequence

$$0 \longrightarrow B_p \hookrightarrow \xrightarrow{j} Z_p \longrightarrow H_p(C_{\bullet}) \longrightarrow 0$$

$$B_p \otimes H_q(D_{\bullet}) \xrightarrow{(i_*)_{p+q} = j \otimes 1} Z_p \otimes H_q(D_{\bullet}) \longrightarrow H_p(C_{\bullet}) \otimes H_q(D_{\bullet}) \longrightarrow 0$$

Hence, $\operatorname{coker}(i_*)_n = \bigoplus_{p+q=n} H_p(C_{\bullet}) \otimes H_p(D_{\bullet})$. On the other hand, the top sequence is the free resolution of $H_p(C_{\bullet})$. Then, $\operatorname{Tor}_1^R(H_p(C_{\bullet}), H_q(D_{\bullet}))$ is the first homology group of the bottom sequence

$$2 1 0$$

$$0 B_p j Z_p 0$$

$$0 B_p \otimes H_q(D_{\bullet}) \xrightarrow{(i_*)_{p+q}=j\otimes 1} Z_p \otimes H_q(D_{\bullet}) 0$$

That is, $\ker(i_*)_{n-1} = \bigoplus_{p+q=n-1} \operatorname{Tor}_1^R(H_p(C_{\bullet}), H_q(D_{\bullet}))$ TODO - here, there are to functors, one is $\otimes D$ composed with H and the other is $\otimes H(D)$ - need to prove TODO - split

3 KÜNNETH THEOREM FOR TOPOLOGICAL SPACES

3.1 FUNDAMENTAL THEOREM OF HOMOLOGICAL ALGEBRA

Definition 4 (initial object, terminal object, pointed category, zero map, kernel). Given a category C, an object 0 is initial if for all $X \in \text{ob } C$, there is only one map in Hom(0,X), an object * is terminal if for all $X \in \text{ob } C$, there is only one map in Hom(X,*). Category C is called pointed if it has initial and terminal objects and the unique map $0 \to *$ is an isomorphism. If C is a pointed category, we use the same symbol 0 for both initial object and terminal object. There exists a zero map

If C is a pointed category, we use the same symbol 0 for both initial object and terminal object. There exists a zero map between any two objects $M, N \in \text{ob } C$, defined by

the composition of $M \to 0$ and $0 \to N$. Let $f: M \to N$ be a morphism in C, a kernel of f is a map $i: K \to M$ such that fi=0 and such map is universal, that is, if $j: L \to M$ with fj=0, then it factors through K

Category C has kernels if every morphism has a kernel.

Definition 5 (preadditive category, Ab-enriched category). A category C is called preadditive category (or Ab-enriched category) if for any two objects $M, N \in \text{ob } C$, Hom(M, N) is an abelian group and composition is bilinear, that is, if f, g, h are morphisms in C

$$f(g+h) = fg + fh$$
$$(f+g)h = fh + gh$$

Definition 6 (chain complex, acyclic chain complex, exact sequence). In a pointed category with kernels, a chain complex is a sequence such that given any subsequence $A \to B \to C$, $A \to B$ factors through $\ker(B \to C)$, that is, there exists a map $A \to \ker(B \to C)$ such that the diagram below commutes

$$\cdots \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow \cdots$$
$$\ker(B \to C)$$

If there is a notion of epimorphism and the map $A \to \ker(B \to C)$ is an epimorphism, then the sequence is called exact at B. A sequence is called exact sequence or an acyclic chain complex if it is exact everywhere, possibly except the two ends.

Definition 7 (chain map, chain homotopy). Given two chain complexes C_{\bullet} , D_{\bullet} in a pointed category with kernels, for each $n \in \mathbb{Z}$, there is a map $f_n : C_n \to D_n$ such that the diagram below commutes, then f_{\bullet} is called a chain map

$$\dots \longleftarrow C_{n-1} \longleftarrow C_n \longleftarrow C_{n+1} \longleftarrow \dots$$

$$\downarrow^{f_{n-1}} \qquad \downarrow^{f_n} \qquad \downarrow^{f_{n+1}}$$

$$\dots \longleftarrow D_{n-1} \longleftarrow D_n \longleftarrow D_{n+1} \longleftarrow \dots$$

Chain complexes and chain maps form a category and it is called the category of chain complexes.

Given two chain complexes C_{\bullet} , D_{\bullet} in a pointed **preadditive** category with kernels. Let f_{\bullet} , g_{\bullet} : $C_{\bullet} \to D_{\bullet}$ be two chain maps. A chain homotopy from f_{\bullet} to g_{\bullet} is a collection of maps h_n : $C_{n-1} \to D_n$ such that $\partial h_{n+1} + h_n \partial = f_n - g_n$

$$\dots \stackrel{\partial}{\longleftarrow} C_{n-1} \stackrel{\partial}{\longleftarrow} C_n \stackrel{\partial}{\longleftarrow} C_{n+1} \stackrel{\partial}{\longleftarrow} \dots$$

$$\dots \stackrel{h_n}{\longleftarrow} D_n \stackrel{h_{n+1}}{\longleftarrow} D_{n+1} \stackrel{\partial}{\longleftarrow} \dots$$

Definition 8 (projective class). Let C be a pointed category with kernels. A projective class in C is a pair $(\mathcal{P}, \mathcal{E})$ where \mathcal{P} is a collection of objects (called **projectives**) and \mathcal{E} is a collection of morphisms (called **epimorphisms**) such that

1. An object P is **projective** if and only if P has the universal lifting property against every **epimorphism** $M \to N$, that is, given any **epimorphism** $M \to N$, if there is a map $P \to N$, then it factors through M

$$M \xrightarrow{epi} N$$
 \uparrow
 \uparrow

2. A morphism $f: M \to N$ is an **epimorphism** if and only if every **projective** has the universal lifting property against f, that is, given any **projective** P, if there is a map $P \to N$, then it factors through M

$$M \xrightarrow{f} N$$

$$\uparrow$$

$$P$$

3. C has enough **projectives**, that is, given any object $M \in \text{ob } C$, for every **projective** P, there exists an **epimorphism** $P \to M$.

Theorem 3 (fundamental theorem of homological algebra). Let C be a pointed category with kernels and $(\mathcal{P}, \mathcal{C})$ be a projective class in C. Given $f: M \to M'$ in C and the diagram below

$$0 \longleftarrow M \stackrel{\epsilon}{\longleftarrow} P_0 \stackrel{d}{\longleftarrow} P_1 \stackrel{d}{\longleftarrow} \dots$$

$$\downarrow^f \qquad \downarrow^{f_0} \qquad \downarrow^{f_1} \qquad \downarrow^{f_1} \qquad \dots$$

$$0 \longleftarrow M' \stackrel{\epsilon'}{\longleftarrow} P'_0 \stackrel{d'}{\longleftarrow} P'_1 \stackrel{d'}{\longleftarrow} \dots$$

where both chains are chain complexes, the top chain consists of projectives P_n and the bottom chain is acyclic. Then,

- There exists a chain map defined by $f_n: P_n \to P'_n$
- If C is preadditive, the lift is unique upto chain homotopy.

Proof.

1. The first statement is proved by induction

Suppose there exist maps $f_{n-1}: P_{n-1} \to P'_{n-1}$ and $f_{n-2}: P_{n-2} \to P'_{n-2}$. Let $K'_{n-1} = \ker(P'_{n-1} \to P'_{n-2})$.

Since the bottom chain is acyclic, the map $P'_n \to P'_{n-1}$ factors through K'_{n-1} by an epimorphism.

Since the top chain is a chain complex, the composition $P_n \to P_{n-1} \to P'_{n-1} \to P'_{n-2}$ equals $P_n \to P_{n-1} \to P_{n-2} \to P'_{n-2}$ and equals 0 zero, so $P_n \to P_{n-1} \to P'_{n-1}$ factors through K'_{n-1}

Since P_n is projective and $P'_n \to K'_{n-1}$ is an epimorphism, $P_n \to K'_{n-1}$ factors through P'_n by a map $f_n : P_n \to P'_n$

Base case: n = 0, let $P_{n-1} = M$, $P'_{n-1} = M'$, $P_{n-2} = 0$, $P'_{n-2} = 0$ and $f_{n-1} = f$, $f_{n-2} = 0$

2. Let $f_{\bullet}^{(1)}, f_{\bullet}^{(2)}: P_{\bullet} \to P_{\bullet}'$ be any two lifts from $f: M \to M'$

$$M \leftarrow_{\epsilon} P_{\bullet}$$

$$f \downarrow f^{(1)} () \downarrow f^{(2)}$$

$$M' \leftarrow_{\epsilon'} P'_{\bullet}$$

We will prove that $g_{\bullet} = f_{\bullet}^{(1)} - f_{\bullet}^{(2)}$ is chain homotopic to zero, that is to find maps $h_{n+1}: P_n \to P'_{n+1}$ such that d'h + hd = g

$$0 \xleftarrow{d} P_0 \xleftarrow{d} P_1 \xleftarrow{d} \dots$$

$$0 \downarrow g_0 \downarrow g_1 \downarrow$$

$$0 \xleftarrow{d'} P'_0 \xleftarrow{d'} P'_1 \xleftarrow{d'} \dots$$

Suppose there exists map $h_{n-1}: P_{n-2} \to P'_{n-1}$ and $h_{n-2}: P_{n-3} \to P'_{n-2}$ such that

$$g_{n-2} - h_{n-2}d = d'h_{n-1}$$

$$P_{n-3} \xleftarrow{d} P_{n-2} \xleftarrow{d} P_{n-1}$$

$$\downarrow h_{n-2} \downarrow h_{n-1}$$

$$\downarrow h_{n-2} \downarrow h_{n-1}$$

$$\downarrow h_{n-1} \downarrow h_{n-1}$$

$$\downarrow h_{n-2} \downarrow h_{n-1}$$

$$\downarrow h_{n-2} \downarrow h_{n-1}$$

$$\downarrow h_{n-1} \downarrow h_{n-1}$$

Consider the map $g_{n-1} - h_{n-1}d: P_{n-1} \to P'_{n-1}$,

$$\begin{aligned} d'(g_{n-1}-h_{n-1}d) &= d'g_{n-1}-d'h_{n-1}d & \text{(preadditive)} \\ &= d'g_{n-1}-(g_{n-2}-h_{n-2}d)d & \text{(induction)} \\ &= d'g_{n-1}-g_{n-2}d & \text{(preadditive, } dd=0) \\ &= 0 & \text{(} g_{\bullet} \text{ is a chain map)} \end{aligned}$$

Let $K'_{n-1} = \ker(d': P'_{n-1} \to P'_{n-2}).$

Since the bottom chain is acyclic, the map $d': P'_n \to P'_{n-1}$ factors through K'_{n-1} by an epimorphism.

As $d'(g_{n-1}-h_{n-1}d)=0$, $g_{n-1}-h_{n-1}d$ factors through K'_{n-1} , that is, $g_{n-1}-h_{n-1}d$ equals the composition $P_{n-1}\to K'_{n-1}\to P'_{n-1}$

Since P_{n-1} is projective and $P'_n \to K'_{n-1}$ is an epimorphism, $P_{n-1} \to K'_{n-1}$ factors through P'_n by a map $h_n: P_{n-1} \to P'_n$, that is, the $d'h_n$ equals the composition $P_{n-1} \to P'_n \to K'_{n-1} \to P'_{n-1}$ and equals the composition $P_{n-1} \to K'_{n-1} \to P'_{n-1}$, hence

$$d'h_n = g_{n-1} - h_{n-1}d$$

Base case: n = 0, let $P_{n-2} = 0$, $P'_{n-2} = 0$, $P_{n-1} = M$, $P'_{n-1} = M'$, $h_{n-1} = 0$, then $d'(g_{n-1} - h_{n-1}d) = 0 \qquad (d': P'_{n-1} \to P'_{n-2} \text{ is the zero map } M' \to 0)$

3.2 RESOLUTION AND TOR FUNCTOR

Definition 9 (resolution, projective resolution). Let M be an object in a pointed category with kernels. A resolution of M is an exact sequence

$$0 \longleftarrow M \stackrel{\epsilon}{\longleftarrow} P_0 \stackrel{d}{\longleftarrow} P_1 \stackrel{d}{\longleftarrow} \dots$$

If P_n are projectives in a projective class $(\mathcal{P}, \mathcal{E})$, then the sequence is called \mathcal{P} -projective resolution.

Corollary 1. Let M be an object in a pointed preadditive category with kernels. Any two projective resolutions of M are chain homotopy equivalent 1 or equivalently M defines a chain homotopy type.

Definition 10 (Tor functor on R-Mod). *TODO*

3.3 EILENBERG-ZILBER THEOREM

Proposition 1 (projective module, projective class in R-Mod). In the category of R-module (R-Mod), there is a projective class $(\mathcal{P}, \mathcal{E})$ defined by epimorphism being surjective homomorphism. Then, the following are equivalent

- 1. $P \in \text{ob R-Mod}$ is projective
- 2. Every short exact sequence $0 \to M \to N \to P \to 0$ splits
- 3. P is a direct summand of a free R-module, that is, there exists $Q \in \text{ob R-Mod}$ such that $P \oplus Q$ is a free R-module.

Proof. TODO

Proposition 2 (models define projective class in Fun(C, R-Mod)). Given a category C, Fun(C, R-Mod) is a pointed preadditive category with kernels (more precisely, abelian category - will define in the future).

Let \mathcal{M} be any set of objects in C (called models), then \mathcal{M} defines a projective class $(\mathcal{P}, \mathcal{E})$ in Fun(C, R-Mod) where a morphism $G \to F$ is an epimorphism (relative to \mathcal{M}) if for all $M \in \mathcal{M}$, $G(M) \twoheadrightarrow F(M)$ is surjective. Then, the following are equivalent

- 1. $P \in \text{ob Fun}(C, R\text{-Mod})$ is projective
- 2. P is a retract of coproduct of $R \operatorname{Hom}(M,-)$ for some $M \in \mathcal{M}$ where $\operatorname{Hom}(M,-)$ is a functor $R\operatorname{-Mod} \to \operatorname{Set}$, R is the free R-module functor $\operatorname{Set} \to R\operatorname{-Mod}$. In the case of R-module, retract of coproduct is the direct summand of a R-module

Proof. TODO - prove using Yoneda lemma

Theorem 4 (Eilenberg-Zilber theorem). TODO

¹two chain complexes C_{\bullet} , D_{\bullet} are chain homotopy equivalent if there are two chain maps $f_{\bullet}: C_{\bullet} \to D_{\bullet}$, $g_{\bullet}: D_{\bullet} \to C_{\bullet}$ such that gf and fg are chain homotopic to identity