Série 7

David Wiedemann

20 avril 2021

1

Pour montrer que f est un difféomorphisme global, il faut montrer que $f^{-1}\in C^1(F,E)$ (l'existence de f^{-1} est donnée par hypothèse).

Par hypothèse, en tout point $y \in F$, $f \in C^1$ dans un voisinage ouvert $U_y \subset E$ de $f^{-1}(y)$ et f^{-1} est C^1 dans un voisinage ouvert $H_y \subset F$ de y et donc en particulier au point y.

Prenons donc un ensemble de points $\{y_1, \ldots, y_n\}$ tel que

$$\bigcup_{i=1}^{n} H_{y_i} = F \text{ et } \bigcup_{i=1}^{n} U_{y_i} = E$$

L'existence de ces deux recouvrements est évidente étant donné que les U_{y_i} sont non vides et ouverts.

 $f^{-1} \in C^1(H_{y_i}, U_{y_i})$ pour tout $0 \le i \le n$ et donc f^{-1} est C^1 sur union finie de ces ensembles, et donc $f^{-1} \in C^1(F, E)$, ce qui conclut la démonstration.

 $\mathbf{2}$

Montrons d'abord que f_{ϵ} est bijective.

Soit $y \in \mathbb{R}^n$, montrons que y possède un unique antécédent par f_ϵ . Soit

$$g_y \colon \mathbb{R}^n \mapsto \mathbb{R}^n$$

 $x \mapsto y - \epsilon \cdot h(x)$

Nous allons montrer que g_y possède un unique point fixe en montrant que g_y satisfait les hypothèses du théorème du point fixe de Banach.

Etant donné que \mathbb{R}^n est fermé, il est clair que $g_y(\mathbb{R}^n) \subset \mathbb{R}^n$, il suffit donc de montrer que g_y est contractante.

Soit $x_1, x_2 \in \mathbb{R}^n$, on a

$$||g_y(x_2) - g(x_1)|| = ||\epsilon h(x_1) - \epsilon h(x_2)||$$

$$= ||\epsilon (Dh(z)(x_1 - x_2))||$$

$$\leq |||\epsilon Dh(z)||| ||x_1 - x_2||$$

Où z est donné par le théorème des accroissements finis.

Et car $\epsilon < M^{-1}$, on a $\epsilon M < 1$ et donc $|||\epsilon Dh(z)||| < 1$ pour tout $z \in \mathbb{R}^n$.

Ainsi g_y est contractante et possède un point fixe, ie. il existe un unique x tel que

$$x = y - \epsilon \cdot h(x)$$

Ou encore

$$y = x + \epsilon \cdot h(x)$$

Et donc x est l'inverse unique de y par f_{ϵ} .

Montrons maintenant que f_{ϵ} est un difféomorphisme local en tout point $x_0 \in \mathbb{R}^n$.

Pour montrer ceci, on va montrer que la matrice $Df_{\epsilon}(x_0)$ est inversible. Supposons par l'absurde que $Df_{\epsilon}(x_0)$ n'est pas inversible, alors il existe $v, w \in \mathbb{R}^n$ deux vecteurs linéairement indépendants satisfaisant

$$Df_{\epsilon}(x_0) \cdot v = Df_{\epsilon}(x_0) \cdot w$$

$$v + \epsilon Dh(x_0) \cdot v = w + \epsilon Dh(x_0) \cdot w$$

$$v - w = -\epsilon Dh(x_0) \cdot (v - w)$$

$$\|v - w\| = \|\epsilon Dh(x_0)(v - w)\|$$

Or

$$\|\epsilon Dh(x_0)(v-w)\| \le \|\epsilon Dh(x_0)\| \|v-w\| < \|v-w\|$$

Et donc

$$||v - w|| < ||v - w||$$

Ce qui est une contradiction.

Ainsi, $Df_{\epsilon}(x_0)$ est inversible et donc la jacobienne de f_{ϵ} est inversible en tout point $x \in \mathbb{R}^n$, et donc f_{ϵ} est un difféomorphisme local en tout point de \mathbb{R}^n .

On conclut par la partie 1 et donc f_{ϵ} est un difféomorphisme global.