Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное

образовательное учреждение высшего образования

Санкт-Петербургский университет аэрокосмического приборостроения

ГУАП

КАФЕДРА № 2

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ ПРЕПОДАВАТЕЛЬ									
Кандидат тех. Наук, доцент		С.Л Козенко							
должность, уч. степень, звание	ИЩЕН С ОЦЕНКОЙ ПОДАВАТЕЛЬ цидат тех. Наук, доцент С.Л Козенко								
0 1 121 0 1111111 12 011011 1120 12 012									
по дисциплине: Вычислительная математика									

Санкт-Петербург 2023

подпись, дата

Костяков НА

инициалы, фамилия

РАБОТУ ВЫПОЛНИЛ

СТУДЕНТ ГР.

4134к

Цели работы: а) освоение методов интерполяции функций; б) совершенствование навыков по алгоритмизации и программированию вычислительных задач

Постановка задачи:

Составить схему алгоритма и программу на языке C/C++ решения задачи по теме «Интерполяция» в соответствии с индивидуальным заданием (варианты заданий приведены ниже в таблице).

	4	0.9	1.9	2.9	3.9	4.9	-0.5	0.0	4.5	16	41	Лагранжа
H												

Математическая часть

Интерполяция. Введение. Общая постановка задачи

При решении различных практических задач результаты исследований оформляются в виде таблиц, отображающих зависимость одной или нескольких измеряемых величин от одного определяющего параметра (аргумента). Такого рода таблицы представлены обычно в виде двух или более строк (столбцов) и используются для формирования математических моделей.

Таблично заданные в математических моделях функции обычно записываются в таблицы вида:

X	X_{θ}	X_1		X_n	
$Y_1(X)$	$Y(X_0)$	$Y(X_1)$	•••	$Y(X_n)$	
•••	•••	•••	•••	•••	(1)
$Y_m(X)$	$Y(X_0)$	$Y(X_1)$	•••	$Y(X_n)$	

Ограниченность информации, представленной такими таблицами, в ряде случаев требует получить значения функций $Y_j(X)$ (j=1,2,...,m) в точках X, не совпадающих с узловыми точками таблицы X_i (i=0,1,2,...,n). В таких случаях необходимо определить некоторое аналитическое выражение $\varphi_j(X)$ для вычисления приближенных значений исследуемой функции $Y_j(X)$ в произвольно задаваемых точках X. Функция $\varphi_j(X)$ используемая для определения приближенных значений функции $Y_j(X)$ называется аппроксимирующей функцией (от латинского *арргохіто* - приближаюсь). Близость аппроксимирующей функции $\varphi_j(X)$ к аппроксимируемой функции $Y_j(X)$ обеспечивается выбором соответствующего алгоритма аппроксимации.

Все дальнейшие рассмотрения и выводы мы будем делать для таблиц, содержащих исходные данные одной исследуемой функции (т. е. для таблиц с m=1). Пар1.1

Постановка задачи интерполяции

Наиболее часто для определения функции $\varphi(X)$ используется постановка, называемая постановкой задачи интерполяции.

В этой классической постановке задачи <u>интерполяции</u> требуется определить приближенную аналитическую функцию $\varphi(X)$, значения которой в узловых точках X_i совпадают со значениями $Y(X_i)$ исходной таблицы, т.е. условий

Построенная таким образом аппроксимирующая функция $\varphi(X)$ позволяет получить достаточно близкое приближение к интерполируемой функции Y(X) в пределах интервала значений аргумента $[X_0; X_n]$, определяемого таблицей. При задании значений аргумента X, не принадлежащих этому интервалу, задача интерполяции преобразуется в задачу экстраполяции. В этих случаях точность значений, получаемых при вычислении значений функции $\varphi(X)$, зависит от расстояния значения аргумента X от X_0 , если $X < X_0$, или от X_n , если $X > X_n$.

При математическом моделировании интерполирующая функция может быть использована для вычисления приближенных значений исследуемой функции в промежуточных точках подынтервалов $[X_i; X_{i+1}]$. Такая процедура называется уплотнением таблицы.

Алгоритм интерполяции определяется способом вычисления значений функции $\varphi(X)$. Наиболее простым и очевидным вариантом реализации интерполирующей функции является замена исследуемой функции Y(X) на интервале $[X_i; X_{i+1}]$ отрезком прямой, соединяющим точки Y_i, Y_{i+1} . Этот метод называется методом линейной интерполяции.

Интерполяционная формула Лагранжа

Предложенный Лагранжем алгоритм построения интерполирующих функций по таблицам (1) предусматривает построение интерполяционного многочлена $L_n(x)$ в виде

где $l_i(x)$ - многочлен степени n, для которого выполняются условия

Очевидно, что выполнение для (10) условий (11) определяет выполнение условий (2) постановки задачи интерполяции.

Многочлены $l_i(x)$ записываются следующим образом

$$l_i(x) = q_i(x-x_0)(x-x_1) \cdot ... \cdot (x-x_{i-1})(x-x_{i+1}) \cdot ... \cdot (x-x_n).$$

Здесь q_i - константа, значение которой определяется с учётом (12) как

Отметим, что ни один множитель в знаменателе формулы (14) не равен нулю. Вычислив значения констант c_i , можно использовать их для вычисления значений интерполируемой функции в заданных точках.

Формула интерполяционного многочлена Лагранжа (11) с учётом формул (13) и (14) может быть записана в виде

Аналитические расчеты

Для вычисления я воспользовался калькулятором https://planetcalc.ru/8692/ и получил следующие результаты для точек 0,3 1,4 2,4 3,4 4,6 6

И график

Также в excel

- 4	Α	В	С	D	Е		F	G	н		1
4		X	Y							1 (37)	-
1	Nº			q i	$l_0(X)$		l ₁ (X)	l ₂ (X)	l ₃ (X)	l ₄ (X)	Урасч(X)
2	0	0,90	-0,50	-0,021	-0,500		0,000	0,000	0,000	0,000	-0,500
3	1	1,90	0,00	0,000	0,000	_	0,000	0,000	0,000	0,000	0,000
4	2	2,90	4,50	1,125	0,000	_	0,000	4,500	0,000	0,000	4,500
5	3	3,90	16,00	-2,667	0,000)	0,000	0,000	16,000	0,000	16,000
6	4	4,90	41,00	1,708	0,000)	0,000	0,000	0,000	41,000	41,000
7		0,3			-1,435	5	0,000	17,885	-30,618	15,350	1,182
8		1,4			-0,137	7	0,000	-2,461	3,500	-1,602	-0,699
9		2,4			0,020)	0,000	3,164	-2,500	0,961	1,645
10		3,4			-0,012	2	0,000	3,164	7,500	-1,602	9,051
11		4,6			0,020)	0,000	-2,360	13,586	20,309	31,555
12		6			-0,612	2	0,000	54,340	-190,142	232,545	96,132
13				<u> </u>							
14											
15							Ип	тепполания	по Лагран	ww	
16		X	Y(X)	Урасч(X)				перполлции	i iio ziai paii	, it y	
17		0,3		1,182		120,000					
18		0,90	-0,500	-0,500		100,000)			,	
19		1,4		-0,699		80,000)				
20		1,90	0,000	0,000		60,000)				
21		2,4		1,645		40,000)		ر		
22		2,90	4,500	4,500		20,000)				
23		3,4		9,051		0,000					
24		3,90	16,000	16,000		-20,000	1	2 3	4	5 6	7
25		4,6		31,555		20,000					
26		4,90	41,000	41,000				-	-1		
27		6		96,132							
28											

Схема программы

double lagr()

Int main()

Листинг программы

```
#include <iostream>
using namespace std;

double lagr(double x[5], double y[5], double s) {
    double res = 0;
    double upst[5];
    double dwnst[5];
    double poly[5];
```

```
double slag[5];
    for (int i = 0; i < 5; i++) {
        upst[i] = 1;
        dwnst[i] = 1;
        for (int m = 0; m < 5; m++) {</pre>
            if (m!=i)
                upst[i] = (s - x[m]) * upst[i];
                dwnst[i] = dwnst[i] * (x[i] - x[m]);
        poly[i] = upst[i] / dwnst[i];
        slag[i] = poly[i] * y[i];
        res = res + slag[i];
    return res;
}
int main()
    setlocale(LC_ALL, "RUS");
    double x[] = \{ 0.9, 1.9, 2.9, 3.9, 4.9 \};
    double y[] = \{ -0.5, 0, 4.5, 16, 41\};
    cout << "Ведите 1, если вы хотите задать свой массив, иначе на вход пойдут данные
согласно варианту: ";
    int var = 0;
    cin >> var;
    if (var==1) {
        cout << "Введите X\n";
        for (int i = 0; i < 5; i++) {
            cin \gg x[i];
        cout << "Введите y\n";
        for (int i = 0; i < 5; i++) {
            cin >> x[i];
        }
    }
    cout << "Введите, что вы ищите\n";
    double s;
    cin >> s;
    cout << "Pesynьтат в точке x0 = " << s << ": " << lagr(x, y, s);
}
```

Результаты работы

```
C:\Users\kosty\source\repos\vichmat_laba3_interpolyat\Debug\vichmat_laba3_interpolyat.exe
Ведите 1, если вы хотите задать свой массив, иначе на вход пойдут данные согласно варианту: 3
Введите, что вы ищите
Результат в точке х0 = 0.3: 1.1824
Введите, что вы ищите
1.4
Результат в точке х0 = 1.4: -0.699219
Введите, что вы ищите
2.4
Результат в точке х0 = 2.4: 1.64453
Введите, что вы ищите
3.4
Результат в точке х0 = 3.4: 9.05078
Введите, что вы ищите
4.6
Результат в точке х0 = 4.6: 31.5552
Введите, что вы ищите
Результат в точке х0 = 6: 96.1319
Введите, что вы ищите
```

Вывод

Я освоил навыки программирования интерполяционных функций