International Rectifier

IRFR48ZPbF IRFU48ZPbF

Features

- Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Timax
- Lead-Free

Description

This HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications.

HEXFET® Power MOSFET

D-Pak IRFR48ZPbF

I-Pak IRFU48ZPbF

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	62	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	44	Α
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	42	
I _{DM}	Pulsed Drain Current ①	250	
P _D @ T _C = 25°C	Power Dissipation	91	W
	Linear Derating Factor	0.61	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS (Thermally limited)}	Single Pulse Avalanche Energy®	74	mJ
E _{AS} (Tested)	Single Pulse Avalanche Energy Tested Value ©	110	
I _{AR}	Avalanche Current ①	See Fig.12a, 12b, 15, 16	Α
E _{AR}	Repetitive Avalanche Energy ®		mJ
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting Torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Typ.	Max.	Units
$R_{\theta JC}$	Junction-to-Case ®		1.64	
$R_{\theta JA}$	Junction-to-Ambient (PCB mount) ②®		40	°C/W
R _{eJA}	Junction-to-Ambient ®		110	

HEXFET® is a registered trademark of International Rectifier.

International **TOR** Rectifier

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.054		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		8.86	11	mΩ	$V_{GS} = 10V, I_D = 37A$ ③
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 50\mu A$
gfs	Forward Transconductance	120			S	$V_{DS} = 25V, I_{D} = 37A$
I _{DSS}	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 55V, V_{GS} = 0V$
				250		$V_{DS} = 55V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			200	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-200		V _{GS} = -20V
Q_g	Total Gate Charge		40	60		I _D = 37A
Q_{gs}	Gate-to-Source Charge		11		nC	$V_{DS} = 44V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		15			V _{GS} = 10V ③
t _{d(on)}	Turn-On Delay Time		15			$V_{DD} = 28V$
t _r	Rise Time		61			$I_D = 37A$
t _{d(off)}	Turn-Off Delay Time		40		ns	$R_G = 12 \Omega$
t _f	Fall Time		35			V _{GS} = 10V ③
L _D	Internal Drain Inductance		4.5			Between lead,
					nΗ	6mm (0.25in.)
L _S	Internal Source Inductance		7.5			from package
						and center of die contact
C _{iss}	Input Capacitance		1720			$V_{GS} = 0V$
Coss	Output Capacitance		290			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		160		pF	f = 1.0MHz
Coss	Output Capacitance		1000			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
C _{oss}	Output Capacitance		230			$V_{GS} = 0V, V_{DS} = 44V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		360			V _{GS} = 0V, V _{DS} = 0V to 44V ④

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
IS	Continuous Source Current			37		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			250		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25$ °C, $I_S = 37A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		20	40	ns	$T_J = 25$ °C, $I_F = 37A$, $V_{DD} = 28V$
Q _{rr}	Reverse Recovery Charge		14	28	nC	di/dt = 100A/μs ③
t _{on}	Forward Turn-On Time	Intrinsi	turn-or	time is	negligib	le (turn-on is dominated by LS+LD)

International TOR Rectifier

IRFR/U48ZPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Typical Forward Transconductance vs. Drain Current

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10. Normalized On-Resistance vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. | Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit 6

Fig 12c. Maximum Avalanche Energy vs. Drain Current

Fig 14. Threshold Voltage vs. Temperature www.irf.com

Fig 15. Typical Avalanche Current vs. Pulsewidth

Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

- 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax} . This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{imax} (assumed as 25°C in Figure 15, 16).

 t_{av} = Average time in avalanche.

D = Duty cycle in avalanche = $t_{av} \cdot f$

 $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see figure 11)

$$\begin{split} P_{D \text{ (ave)}} &= 1/2 \text{ (} 1.3 \cdot \text{BV} \cdot I_{av}) = \triangle \text{T/ } Z_{thJC} \\ I_{av} &= 2\triangle \text{T/ } [1.3 \cdot \text{BV} \cdot Z_{th}] \\ E_{AS \text{ (AR)}} &= P_{D \text{ (ave)}} \cdot t_{av} \end{split}$$

Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 18a. Switching Time Test Circuit

Fig 18b. Switching Time Waveforms

International IOR Rectifier

IRFR/U48ZPbF

D-Pak (TO-252AA) Package Outline

Dimensions are shown in millimeters (inches)

- 1.- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- A- LEAD DIMENSION UNCONTROLLED IN L5.
- A- DIMENSION D1, E1, L3 & b3 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.
- 5.— SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10
 [0.13 AND 0.25] FROM THE LEAD TIP.
- DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005 [0.13] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- DIMENSION b1 & c1 APPLIED TO BASE METAL ONLY.
- A. DATUM A & B TO BE DETERMINED AT DATUM PLANE H
- 9.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-252AA.

S Y M	DIMENSIONS					
B O	MILLIM	ETERS	INC	N O I		
L	MIN.	MAX.	MIN.	MAX.	E S	
Α	2,18	2.39	.086	.094		
A1	-	0.13	-	.005		
ь	0.64	0.89	.025	.035		
ь1	0.65	0.79	.025	.031	7	
b2	0.76	1,14	.030	.045		
ь3	4,95	5.46	,195	,215	4	
С	0.46	0.61	.018	.024		
c1	0.41	0.56	.016	.022	7	
c2	0,46	0.89	.018	,035		
D	5.97	6.22	.235	.245	6	
D1	5.21	-	.205	-	4	
Ε	6.35	6.73	.250	.265	6	
E1	4,32	-	.170	-	4	
e	2,29	BSC	.090 BSC			
н	9.40	10,41	.370	.410		
L	1.40	1.78	.055	.070		
L1	2,74	BSC	.108	REF.		
L2	0.51	BSC	.020	.020 BSC		
L3	0.89	1.27	.035	.050	4	
L4	-	1.02	-	.040		
L5	1,14	1,52	.045	.060	3	
ø	0.	10°	0,	10*		
ø1	0.	15*	0,	15*		
ø2	25*	35*	25*	35*		

LEAD ASSIGNMENTS

HEXFET

- 1.- GATE 2.- DRAIN 3.- SOURCE 4.- DRAIN

IGBT & CoPAK

- 1.- GATE 2.- COLLECTOR 3.- EMITTER 4.- COLLECTOR

D-Pak (TO-252AA) Part Marking Information

Notes:

- 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
- 2. For the most current drawing please refer to IR website at http://www.irf.com/package/

International **I⊆R** Rectifier

I-Pak (TO-251AA) Package Outline

Dimensions are shown in millimeters (inches)

(DATUM A)

- NOTES:
 1.- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- ⚠ DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED .005 [0,13] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- A- THERWAL PAD CONTOUR OPTION WITHIN DIMENSION 64, L2, E1 & D1.
- ▲ LEAD DIMENSION UNCONTROLLED IN L3.
- ⚠- DIMENSION 61, 63 & c1 APPLY TO BASE METAL ONLY.
- 7.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-251AA (Date 06/02).
- 8.- CONTROLLING DIMENSION ; INCHES.

S Y M	DIMENSIONS				
B	MILLIMETERS INCH		HES	0	
L	MIN.	MAX.	MIN.	MAX.	Ė
Α	2.18	2.39	.086	.094	
A1	0.89	1.14	.035	.045	
ь	0.64	0.89	.025	.035	
ь1	0.65	0,79	.025	.031	6
b2	0.76	1,14	.030	.045	
ь3	0,76	1.04	.030	.041	6
b4	4,95	5,46	.195	.215	4
С	0.46	0.61	.018	.024	
c1	0,41	0,56	.016	.022	6
c2	0,46	0.89	.018	.035	
D	5.97	6.22	.235	.245	3
D1	5,21	-	.205	-	4
E	6.35	6,73	.250	,265	3
E1	4.32	-	.170	-	4
e	2.29	2.29 BSC		.090 BSC	
L	8.89	9.65	.350	.380	
L1	1,91	2,29	.045	.090	
L2	0.89	1,27	.035	.050	4
L3	1,14	1,52	.045	.060	5
ø1	0.	15*	0.	15*	
ø2	25"	35*	25*	35*	

LEAD ASSIGNMENTS

<u>HEXFET</u>

1.- GATE 2.- DRAIN 3.- SOURCE 4.- DRAIN

I-Pak (TO-251AA) Part Marking Information

SECTION B-B & C-C

- 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
- 2. For the most current drawing please refer to IR website at http://www.irf.com/package/

D-Pak (TO-252AA) Tape & Reel Information

Dimensions are shown in millimeters

- NOTES:

 1. CONTROLLING DIMENSION: MILLIMETER.

 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).

 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:
1. OUTLINE CONFORMS TO EIA-481.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Limited by T_{Jmax} , starting $T_J = 25^{\circ}C$, L = 0.11mH ⑤ R_{G} = 25 $\!\Omega_{\rm A}$ I $_{AS}$ = 37 A, V_{GS} =10 V. Part not recommended for use above this value.
- 4 Coss eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- Limited by T_{Jmax} , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- This value determined from sample failure population. 100% tested to this value in production.
- ① When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994
- & R_{θ} is measured at T_J approximately 90°C

Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.09/2010