Comparaison et alignement de séquences

Séquence Biologique

- Séquence AND(A,C,G,T) Exemple: TATTTACAAC
- Séquence ARN (A,C,G,U) Exemple: UAUAACAAGG
- Séquence protéique ARNDCQEGHILKM

L'évolution des séquences

Temps t= t0

S1 TATACATTAG

S2 TATACATTAG

S1 TATTACATTAG

S2 TATACATTG

Temps t= t

S1 TATTACATTAG

S2 TATACATTG

Déduire la correspondance

Des questions sur les séquences

1.

Question biologique : Quelles sont les similitudes entre le génome des Homo sapiens et les chimpanzé

Question informatique : soit deux séquences **S1** et **S2**. calculer le de similarité sim(S1,S2).

2.

Question biologique:

ce gène cause le cancer dans les souris, les humains ont-ils ce gène.

Question informatique : soit une séquence **S** (le gène de la souris) et D la base de donnée de tous les gènes des Êtres humains, trouver la séquence **R** ou le sim(**R,S**) est supérieure au seuil.

Cliquez pour ajouter un titre

Comment comparer deux séquences?

Le Dot-Plot

Maizel et Lenk 1981 – Staden 1982

■ Tableau indexé par les caractères des deux séquences

■ Identité: ■ Non Identité: □

Les similarités (ressemblances locales) apparaissent le long des segments diagonaux

Sans fenêtre

	G	A	T	C	T	A	С
G	*						
T			*		*		
T			*		*		
C				*			*
T			*		*		
G	*						
G C A				*			*
A		*				*	

Fenêtre de taille 2

	G	Α	T	С	Τ	Α	С
G T							
T			*				
С				*			
T C T							
G							
G C A							
Α							

Fenêtre de taille 3

	G	T	С	T	Α	С
G						
T						
Τ		*				
С						
Т						
G						
G C						
Α						

Fenêtre de taille 3, Seuil identité >= 2/3

	G	Α	T	С	Т	Α	С
G	*						
Т					*		
Т			*				*
С				*			
Т					*		
G							
G C A							
Α							

Fenêtre de taille 3, Seuil identité >= 2/3

	G	Α	Т	С	T	Α	С
G	*						
G T					*		
Т			*				*
C				*			
					*		
G							
T G C							
Α							

Fenêtre de taille 3, Seuil identité >= 2/3

		Α	Т	С	Τ	Α	С
G	*						
T				(*	/	
Т			*				
C				*			*
C T					*		
G							
G C A							
Α							

- Beaucoup de « bruit »
- Utiliser une fenêtre pour « lisser »
- Choisir un seuil au dessus duquel la similarité dans la fenêtre génère un point
- => Trouver un équilibre en faisant varier la taille de la fenêtre et le seuil

- Autre critère de « bruit » = nature des séquences.
- ADN 4 lettres => beaucoup de bruit.
- Protéines 20 aa => moins de bruit.
- En protéines, mutations silencieuses non visibles ne « bruitent » pas l'alignement.

Le Dot-Plot: exemple

Cliquez pour ajouter un texte

Diagonale = 2 séquences « identiques » Pavés sombres = répétitions

ADN?

Orientation différente = une inversion.

Moins de point si protéique, et/ou si fenêtre plus grande et seuil plus haut.

Pas d'inversion en protéines

Exemple des Hémoglobines Humaines

Identités = 3/10

Identités = 5/10

Avantages et inconvénients du Dot-Plot

- Simple et rapide, graphique mais ...
- L'interprétation visuelle rend impossible l'utilisation du Dot-Plot dans le cadre d'une « comparaison massive »
 - i.e., une séquence protéique versus la banque UniProtKB qui contient environ 21 millions de protéines (02-Avril-12)

Alignement de séquences 2 à 2 (nucléotides ou acides aminés)

 Mise en correspondance de deux séquences (ADN ou protéines) pour faire apparaître les similarités, i.e., segments communs

AAAATTTTTTGGCCTTTAA et AAAAGCCCAA

AAAATTTTTTGGCCTTTAA AAAAGCCCAA

AAAATTTTTTGGCCTTTAA
AAAA GCCC AA

- Mise en correspondance de deux séquences (ADN ou protéines)
- 3 événements élémentaires :
 - ■Correspondance (match)
 - **■**Substitution (mismatch)
 - ■Indel (Insertion/Délétion)

ACGGCTAT	ACGGCTAT	ACGGCTAT		
		11 1 111		
ACTGTAT	ACTGTAT-	ACTG-TAT		

- Chaque alignement a 1 Score
- Il dépend des « pénalités » fixées pour les événements élémentaires
- Par exemple:
 - □ Correspondance/Match: +2
 - Substitution/Mismatch: -1
 - Indel: -2

Le score de l'alignement est la somme des scores des événements élémentaires

- Alignement des deux séquences nucléiques ACGGCTAT et ACTGTAT
 - □ Correspondance: +2, Substitution: -1, Indel: -2

Code Python

```
seq1 = 'ACGGCTAT'
seq2 = 'ACTGTAT-'
score = 0
for a, b in zip(seq1, seq2):
  if a == b:
    score +=2
  elif a =='-' or b == '-':
    score =score-2
  else:
    score =score-1
```

print(score)

Alignement Global

Needleman & Wunsch - 1970

But : Evaluation d'une ressemblance globale entre deux séquences = sur toute la longueur

Problème:

Quel est l'alignement de score maximal?

Needleman & Wunsch - 1970

Un alignement = un chemin dans la matrice À chaque chemin est associé un score

L=19

ACTGGTCT--GACCTG--A
CTTG--CTGACTT--AGGA

---ACTGGT- GA-CCTGA
CTCTTGCTGACTTAGG---A

L=21

Nous cherchons l'alignement avec le mieux score

Needleman & Wunsch - 1970

Diviser pour mieux aligner

cet alignement de taille L aura le meilleur score ...

... à condition que cet alignement de taille L-1 ait le meilleur score!

Règle 1:

chaque case va contenir un score; le score de l'alignement sera celui de la case en bas à droite

Règle 2:

le score d'une case se déduit à partir de celui des cases au-dessus, à gauche ou en diagonale

Règle 3:

un pas horizontal/vertical coûte 1 gap un pas diagonal coûte 1 position alignée (match ou mismatch)

Needleman & Wunsch - 1970

Gap penality -4

Needleman & Wunsch - 1970

Etape 2:

on remplit toutes les cases <u>en gardant</u> <u>en mémoire le mouvement qui donne le</u> <u>meilleur score</u>

Score:

gap: -4 mismatch: -4

alignement $AC \rightarrow score = 0-4 = -4$

insertion de gap \rightarrow score = -4-4 = -8

insertion de gap \rightarrow score = -4-4 = -8

Etape 2:

on remplit toutes les cases <u>en gardant</u> <u>en mémoire le mouvement qui donne le</u> <u>meilleur score</u>

Score:

gap: -4 mismatch: -4

alignement $AC \rightarrow score = 0-4 = -4$

insertion de gap \rightarrow score = -4-4 = -8

insertion de gap \rightarrow score = -4-4 = -8

Needleman & Wunsch - 1970

Score:

gap: -4 mismatch: -4

match: +4

insertion de gap \rightarrow score = -4-4 = -8

Needleman & Wunsch - 1970

Score:

gap: -4 mismatch: -4

match: +4

alignement AT \rightarrow score = -4-4 = -8

insertion de gap \rightarrow score = -4-4 = -8

insertion de gap \rightarrow score = -8-4 = -12

Needleman & Wunsch - 1970

		A	C	T	G
	0	-4	-8	-12	-16
C	-4	-4	0	-4	-8
T	-8	-8	-4	4	0
T	-12	-12	-8	0	0
G	-16	-16	-12	-4	4

Score:

gap: -4

mismatch: -4

match: +4

meilleur score

Etape 3:

On part du score en bas à droite, et on remonte le cours des flèches pour trouver l'alignement (« backtracking »)

2 chemins = 2 alignements optimaux:

Bilan:

- 24 scores calculés
- 3^{4+4} = 6561 chemins possibles

Alignement **global**: on aligne les 2 séquences du début à la fin

Algorithme de « programmation dynamique »

- -2 séq A = (a1,...,an) et B(b1,...,bm)
- Si,j = score maximum entre 2 séquences alignées du début jusqu'aux résidus ai et bj tel que :

Si,j = max
$$\begin{vmatrix} Si-1,j-1+w(ai,bj) \\ Si-1,j+g \\ Si,j-1+g \end{vmatrix}$$

Récurrence

	Α	C	G	G	C	T	A	T
A								
C								
T								
G								
T								
A								

Exemple

	A	С	G	G	С	T	A	Т
Α								
C								
Т								
G								
Т								
Α								
T								

Exemple: Initialisation

→ Indel =
$$-2$$
 Indel = -2

		A	С	G	G	С	T	Α	T
	0	-2	-4	-6	-8	-10	-12	-14	-16
Α	-2								
С	-4								
T	-6								
G	-8								
T	-10								
Α	-12								
T	-14								

Exemple: Remplissage ligne par ligne

max
$$\begin{bmatrix} 1 & -2 - 2 = -4 \\ -2 - 2 = -4 \end{bmatrix}$$
 $0 + 2 = 2$

		Α	С	G	G	С	T	Α	T
	0	-2	-4	-6	-8	-10	-12	-14	-16
Α	-2_	2	0	-2	-4	-6	-8	-10	-12
С	-4								
Т	-6								
G	-8								
Т	-10								
Α	-12								
T	-14								

Correspondance=2 ou substitution=-1

Exemple: Remplissage ligne par ligne

		Α	С	G	G	С	T	Α	Т
	0	-2	-4	-6	-8	-10	-12	-14	-16
A	-2	2	0	-2	-4	-6	-8	-10	-12
_ <i>C</i>	-4	0	4	2	0	-2	-4	-6	-8
T	-6	-2	2	3	1	-1	0	-2	-4
G	-8	-4	0	4	5	3	1	-1	-3
	-10	-6	-2				5		1
A	-12	-8	-4	0	1	2	3	7	5
	-14	-10	-6	-2	-1	0	4	5	9

Correspondance=2 ou substitution=-1

Indel=-2

Indel=-2

Exemple: Recherche du chemin des scores maximaux

		A	C	G	G	C	T	A	T
	0_	-2	-4	-6	-8	-10	12	-14	-16
	×						- AC	CGGC	TAT
A	-2	2	0	-2	-4	-6	-	1 1	111
C	-4	0	4 🔻	2	0	-2	- A (CTG-	TAT
T	-6	-2	2	3	1	-1			
					•		0	-2	-4
G	-8	-4	0	4	5	3	1	-1	-3
T	-10	-6	-2	2	3	4	5	3	1
A	-12	-8	-4	0	1	2	3	7	5
T	-14	-10	-6	-2	-1	0	4	5	9
Corre	espond	ance=2	ou su	▼ In	idel=-2	→	Indel=		

Sensibilité aux paramètres

L'alignement optimal dépend de :

- · du coût des matchs/mismatchs
- · des pénalités pour les indels, etc.

Amélioration du modèle : les gaps

- Gap : succession d'indels
- ■Pénalités:
 - ■Pénalité fixe (exemple -5)

```
Score = 5+1+4-5+4+4-5-5-5+5+6+0+6+4
= 19
```

- ■Pénalité linéaire:
 - Pénalité d'ouverture de gap (exemple -5)
 - Pénalité d'extension de gap (exemple -0.5)

Score =
$$5+1+4-5+4+4-5-0.5-0.5+5+6+0+6+4 = 28$$

Amélioration du modèle : les gaps

Si les séquences ont des tailles très différentes?

On peut décider de ne pas pénaliser les gaps aux extrémités de la plus grande séquence :

Algorithme « End Gap Free » ou « Bestfit »

NWS en live ...

- »import aligne
- » import alignement
- »alignement.NWS("ATCG","CATG")
- » alignement.EGF("AAAATCGTTGG","CATG")

Algorithme global « End Gap Free » ou « Bestfit »

Reprend NWS sans pénaliser les gaps aux extrémités de la plus grande des 2 séquences

...

Alignement Local

Problème:

Quelles sont les régions de forte similarité entre les 2 séquences?

Alignement Local

- Deux séquences:
 - **□**GGCTGACCACCTT et GATCACTTCCATG

- Alignement global:
- 1 GA-TCACTTCCATG 13
- Corresp.: 2, Substi.: -1, Indel: -2

Alignement local:

- 5 GACCACCTT 13
- 1 GATCAC-TT 8

Alignement Local: Smith & Waterman

- L'algorithme d'alignement local de Smith & Waterman (1981) est basé sur l'algorithme introduit par Needleman & Wunsch
- Score max ou remise à zéro
- Traceback à partir du meilleur score dans toute la matrice

Local: Remplissage ligne par ligne

$$\begin{bmatrix} & 0 - 2 = -2 \end{bmatrix}$$

max
$$[\downarrow 0-2=-2 \rightarrow 0-2=-2 \searrow 0+2=2 \ 0]$$

		A	C	G	G	C	٢	A	T
	0	0	0	0	0	0	0	0	0
Α	0_	2	0	0	0	0	0	2	1
G	0	0	1	2	2	0	0	0	1
C	0	0	2	0	1	4	2	0	0
T	0	0	0	1	0	2	6	4	2
T	0	0	0	0	0	0	4	5	6
T	0	0	0	0	0	0	2	3	7
С	0	0	2	0	0	2	0	1	5

M=2MM=-1

Indel=-2

Indel=-2

Local: Remontée

$$\begin{bmatrix} -2-2=-4 \\ -2-2=-4 \end{bmatrix} -2-2=0$$

		A	C	G	G	C	Т	Α	Т
	0	0	0	0	0	0	0	0	0
A	0	2	0	0_	0	0	0	2	1
G	0	0	1	2	2	0	0	0	1
C	0	0	2	0	1	4	2	0	0
T	0	0	0	1	0	2	6	4	2
	GC!	TAT					,		
۲			Score	e = 2+2	2+2-1+2	2=7	4	5	16
Τ	GC!	ГТТ			2	3	7		
C					0	1	5		

M=2MM=-1

Indel=-2

Indel=-2

Score d'un alignement

- Score alignement = Σ scores événements élémentaires (Match, Mismatch, Indel)
- Amélioration du modèle : pénalité linéaire des gaps (gap open et gap extend)
- -Amélioration du modèle : les matrices de substitution (= Mismatch) => toutes les substitutions ne sont pas équivalentes et donc pénalisées différemment