

MEC-E1070 Selection of Engineering Materials

Prof. Junhe Lian
Prof. Sven Bossuyt
Zinan Li (Course assistant)

Learning objectives for this Lecture

Knowledge and Understanding

Understanding eco-informed design and material selection & processes

Skills and Abilities

Ability to use Material Indices in eco-selection and connect processes with materials

Values and Attitudes

Appreciation of the possibilities to reduce environmental impact by design

Resources

- Text: "Materials: engineering, science, processing and design" 4th edition by M.F. Ashby, H.R. Shercliff and D. Cebon, Butterworth Heinemann, Oxford, 2011, Chapters 13-15.
- Text: "Materials and the Environment", 2nd Edition by M.F. Ashby, Butterworth-Heinemann, Oxford 2012, UK.
 Chapters 9-10

Outline of Lecture

An electric-powered Tesla car burns after a crash on the Swiss A2 motorway on Monte Ceneri near Bellinzona, Switzerland, May 10. | REUTERS

- Eco-informed selection the strategy
- Case study: drink containers
- Processes

Lithium-ion battery fracture to explosion.

EU strategic vision: Net-zero by 2050

Actions in transport sector

Union

European

climate action in the

Scaling up

Source:

Eco-informed design

Eco-informed design

- 80% of eco-impact tied in at design stage
- Build-in eco criteria at the design stage

The drivers for eco-design

Focus on carbon footprint by governments

Natural

resources

- Legislation (Carbon taxes, EuP, REACH)
- Incentives (Subsidies, concessions)
- Urge for "responsible" manufacture
- Doing more with less = \$\$\$

The materials life-cycle

Eco-informed selection: the strategy

The steps

Select new Materials and/or Processes

Recommend actions & assess potential savings

- When we did "what if's" we were guessing
- Can we do better? Be systematic?
- Apply the selection methodology

Eco-selection for a fizzy drink bottle

Design brief

Improve green credentials of bottle

Translation

Constraints

- Able to be molded
- Transparent / translucent
- Able to contain pressure

Objectives

Minimize embodied energy of bottle

Modelling the bottle

R= Bottle radius

t = Thickness of bottle wall

p = Internal pressure

 σ_v = Yield strength of material

 ρ = Density of material

H_m = Embodied energy of material/kg

E = Embodied energy/m² of wall

C_m = Material cost per kg

Cylindrical pressure vessel

• Circumferential stress
$$\sigma = \frac{pR}{t} < \sigma_y$$

Embodied energy per unit area of wall

$$E = tH_{m} \rho = pR H_{m} \rho$$

$$\sigma_{y}$$
Embodied energy / kg
of material

Find material with lowest energy, seek largest

$$\frac{\sigma_y}{H_m\,
ho}$$

Selection to minimize embodied energy

First apply constraints, then use index to optimize choice

Aalto University
School of Engineerin PLA meets the constraints at lowest embodied energy

Eco-selection for a fizzy drink bottle

Design brief

Improve green credentials of bottle

Translation

Constraints

- Able to be molded
- Transparent / translucent
- Able to contain pressure

Objectives

Minimize embodied energy of bottle

Minimize material cost of bottle

Modelling the bottle

R= Bottle radius

t = Thickness of bottle wall

p = Internal pressure

 σ_v = Yield strength of material

 ρ = Density of material

H_m = Embodied energy of material/kg

 $E = Embodied energy/m^2 of wall$

C_m = Material cost per kg

Cylindrical pressure vessel

- Circumferential stress $\sigma = \frac{pR}{t} < \sigma_y$
- Embodied energy per unit area of wall

$$E = tH_{m} \rho = pR \underbrace{H_{m} \rho}_{\sigma_{y}} \underbrace{Embodied \ energy \ / \ kg}_{of \ material}$$

Find material with lowest energy, seek largest

$$\frac{\sigma_y}{H_m\,\rho}$$

Find material with lowest cost, seek largest

Selection to minimize cost

Can't ignore cost

Trade-off plot

Organizing information

Organizing information: the PROCESS TREE

