# Wielowarstwowy regułowy model fleksji języka polskiego

Wojciech Jaworski, Szymon Rutkowski

Instytut Informatyki Uniwersytetu Warszawskiego

Instytut Podstaw Informatyki Polskiej Akademii Nauk

15 października 2018

#### Model

- Model reprezentuje zasady morfologiczne języka polskiego jako zestaw operacji wykonywanych na obserwowanej formie słowa prowadzących do przekształcenia jej w lemat i zestaw cech morfoskładniowych.
- Celem jest stworzenie reprezentacji polskiej fleksji, która
  - jest zwarta i zrozumiała dla człowieka,
  - odzwierciedla strukturę języka,
  - jest precyzyjna w sposób umożliwiający jej bezpośrednią implementację w postaci odgadywacza (ang. guesser) oraz generatora form.
- Model został opracowany na podstawie Słownika Gramatycznego Języka Polskiego w wersji z 30.07.2017.



## Zakres analizy

- Tworząc model skupiliśmy się na produktywnej części polskiej fleksji, by uchwycić odmianę słów nowych, nieznanych, nie należących do słownika.
- Model nie obejmuje nieregularnych czasowników oraz niewielkiej liczby słów należących do innych części mowy o nieregularnej odmianie.
  - Wynika to stąd, że znany zamknięty zbiór słów można zawrzeć w słowniczku załączonym do modelu.
- Model nie analizuje również form które nie mają widocznych cech fleksyjnych takich jak
  - znaki interpunkcyjne,
  - liczby, daty, itp. zapisane cyframi,
  - skróty.
- Model obejmuje
  - odmianę akronimów,
  - odmianę słów o niepolskiej ortografii,
  - niektóre formy gwarowe.



## Niejednoznaczność

- Zadania lematyzacji i anotacji morfosyntaktycznej nie da się wykonać w sposób jednoznaczny jedynie na podstawie obserwacji pojedynczej, wyrwanej z kontekstu formy.
- Guesser określa z pomocą swoich reguł jedynie zbiór możliwych interpretacji.
- Mogą stanowić one dane wejściowe dla taggera przeprowadzającego dezambiguację morfosyntaktyczną na podstawie modeli statystycznych.

## Warstwy

- Warstwa ortograficzno-fonetyczna abstrahuje od polskiej ortografii przez przekonwertowanie formy segmentu do wewnętrznej reprezentacji, odzwierciedlającej prawidłowości morfonologiczne języka.
- Warstwa analityczna generuje lemat oraz określa występujące afiksy.
- Warstwa interpretacji nadaje segmentowi interpretację morfosyntaktyczną na podstawie wykrytych afiksów.
- Warstwa korygująca wygenerowane formy i lematy zawierające wygłos.

## Warstwa ortograficzno-fonetyczna

- Zadania warstwy ortograficzno-fonetycznej to:
  - wprowadzenie zasady jeden znak jeden dźwięk,
  - wprowadzenie operatora palatalizacji,
  - ujednolicenie ortografii, przykładowo:
    - w słowie "Franz" piszemy przez "z" na końcu, czytamy "c" i odmieniamy tak, jak słowa kończące się na "c"
    - w słowie "ZOZ" piszemy przez "z" na końcu, czytamy "z" i odmieniamy tak, jak słowa kończące się na "z"
    - w słowie "NFZ" piszemy przez "z" na końcu, czytamy "zet" i odmieniamy tak, jak słowa kończące się na "t"
- Konwersja jest odwracalna, ale nie jest jednoznaczna.
- Celem przeprowadzenia tej konwersji jest uproszczenie kolejnych reguł, które mogą korzystać z uogólnień dokonanych już przez tę warstwę.

- W polskim zapisie ortograficznym formy zawierające ten sam rdzeń często różnią się.
- Widać to na przykład w ciągu wyrazów: pani, pań, panie.
- Za pomocą reguł

|                           | prawy kontekst                                            |
|---------------------------|-----------------------------------------------------------|
| $n' \leftarrow ni$        | a ą e ę o ó u                                             |
| $n^\prime \leftarrow n$   | i <i>sylabotwórcze</i>                                    |
| $n' \leftarrow \acute{n}$ | a ą e ę o ó u<br>i sylabotwórcze<br>spółgłoska lub wygłos |

można je przekształcić do postaci: pan'i, pan', pan'e, gdzie dobrze widoczny jest wspólny rdzeń (pan').

- Domyślna reguła przepisuje znak wejściowy bez zmian; uruchamia się ona, kiedy żadna z innych reguł nie znajduje zastosowania.
- Stosowalność reguł wymaga
  - dopasowania ciągu znaków podlegającego przekształceniu,
  - dopasowania prawego kontekstu (ciągu znaków następującego bezpośrednio po ciągu przekształcanym).

## Wybrane reguly ortograficzno-fonetyczne

| reguła                       | reguła                    | reguła                    | prawy kontekst         |
|------------------------------|---------------------------|---------------------------|------------------------|
| $b' \leftarrow bi$           | $p' \leftarrow pi$        | $m' \leftarrow mi$        | a ą e ę o ó u          |
| $b^\prime \leftarrow b$      | $p' \leftarrow p$         | $m' \leftarrow m$         | i <i>sylabotwórcze</i> |
| $v' \leftarrow wi$           | $f' \leftarrow fi$        |                           | a ą e ę o ó u          |
| $v' \leftarrow w$            | $f' \leftarrow f$         |                           | i <i>sylabotwórcze</i> |
| $V \leftarrow W$             |                           | $x \leftarrow ch$         | litera inna niż i      |
| $d' \leftarrow dzi$          | t' ← ci                   | $n' \leftarrow ni$        | aąeęoóu                |
| $d' \leftarrow dz \\$        | $t' \leftarrow c$         | $n^\prime \leftarrow n$   | i sylabotwórcze        |
| $d' \leftarrow d\acute{z}$   | t′ ← ć                    | $n' \leftarrow \acute{n}$ | spółgłoska lub wygłos  |
| $z' \leftarrow zi$           | s' ← si                   |                           | a ą e ę o ó u          |
| $z' \leftarrow z$            | $s' \leftarrow s$         |                           | i <i>sylabotwórcze</i> |
| $z' \leftarrow \acute{z}$    | $s' \leftarrow \acute{s}$ |                           | spółgłoska lub wygłos  |
| -<br>ǯ ← dż                  | $\check{c} \leftarrow cz$ | 3 ← dz                    | litera inna niż i      |
| $\check{z}\leftarrow\dot{z}$ | $\check{s} \leftarrow sz$ | $\check{r} \leftarrow rz$ | litera inna niż i      |
| $g' \leftarrow gi$           | $k' \leftarrow ki$        |                           | a ą e ę o ó u          |
| $g' \leftarrow g$            | $k' \leftarrow k$         |                           | i <i>sylabotwórcze</i> |

## Podział głosek

- Głoski dzielimy na funkcjonalnie miękkie i funkcjonalnie twarde.
- Funkcjonalnie twarde to takie, które można zmiękczyć, należą do nich:

 Funkcjonalnie miękkie to takie, których zmiękczyć się nie da, należą do nich:

$$b', t', d', f', m', n', p', s', v', z', l, c, \check{c}, \jmath, \check{\jmath}, \check{r}, \check{s}, \check{z}$$

- Dalszą analizę będziemy wykonywać osobno dla słów mających funkcjonalnie twardą ostatnią głoskę rdzenia (np. pan, gwiazda) i tych, które mają ją funkcjonalnie miękką (np. pani, kość).
- Mają one bowiem różne paradygmaty odmiany ze względu na możliwość wystąpienia sufiksów zmiękczających.



## Sufiksy i alternacje

W poniższej tabeli znajdują się wybrane formy rzeczowników *gwiazda*, *sąsiad*, *szpieg* i *waga* oraz przymiotników *rudy* i *nagi* uporządkowane według końcówek.

| -a<br>-om | gwiazda<br>gwiazdom      | sąsiada<br>sąsiadom      | ruda                 | szpiega<br>szpiegom | waga<br>wagom        | naga  |
|-----------|--------------------------|--------------------------|----------------------|---------------------|----------------------|-------|
| -ą        | gwiazdą                  |                          | rudą                 |                     | wagą                 | nagą  |
| -е        |                          |                          | rude                 |                     |                      | nagie |
| -em       |                          | sąsiadem                 |                      | szpiegiem           |                      |       |
| -у        | gwiazdy                  | sąsiady                  | rudy                 | szpiegi             | wagi                 | nagi  |
| -i        |                          | sąsi <mark>edz</mark> i  | ru <mark>dz</mark> i | szpiedzy            |                      | nadzy |
| -ie       | gwi <mark>eźdz</mark> ie | sąsi <mark>edz</mark> ie |                      |                     | wa <mark>dz</mark> e |       |
| =         | gwiazd                   | sąsiad                   |                      | szpieg              | wag                  |       |

Na czerwono zaznaczone są alternacje rdzenia i zmiany końcówki.



## Sufiksy i alternacje

Zastosowanie reguł warstwy ortograficzno-fonetycznej upraszcza alternacje.

| -a         | gv'azda                  | sąs'ada                 | ruda  | szp'ega   | waga                | naga                |
|------------|--------------------------|-------------------------|-------|-----------|---------------------|---------------------|
| -om        | gv'azdom                 | sąs′adom                |       | szp'egom  | wagom               |                     |
| -ą         | gv′azdą                  |                         | rudą  |           | wagą                | nagą                |
| -е         |                          |                         | rude  |           |                     | nag'e               |
| -em        |                          | sąs′adem                |       | szp'eg'em |                     |                     |
| -у         | gv′azdy                  | sąs′ady                 | rudy  | szp′eg′i  | wag'i               | nag <mark>′i</mark> |
| -′i        |                          | sąs′ <mark>e</mark> d′i | rud'i | szp'eʒy   |                     | naʒy                |
| -'e        | gv' <mark>ez'</mark> d'e | sąs′ <mark>e</mark> d′e |       |           | wa <mark>z</mark> e |                     |
| <b>-</b> ε | gv'azd                   | sąs'ad                  |       | szp'eg    | wag                 |                     |

### Rodzaje sufiksów

- Ze względu na występujące alternacje końcówki możemy podzielić na
  - neutralne: -a, -ami, -ach, -om, -o, -u
  - zmiękczające głoski g i k: -e, -ego, -ej, -em, -emu
  - -y występujące czasami jako -i: -y, -ych, -ym, -ymi
  - ▶ zmiękczające -'i
  - zmiękczające -'e
  - wygłos -ε
- W przypadku głoski g występują dwa rodzaje zmiękczenia: zamiana na g' oraz zamiana na z.
- Z uwagi na to, że w formie adj:pl:nom:m1:pos w przypadku głoski g następuje zamiana na 3y, a w przypadku innych głosek mamy tu typową palatalizację, uznajemy 3y za efekt działania zmiękczającego -'i.
- Analogicznie postępujemy w przypadku paradygmatów rzeczownikowych zmiękczającego -'i oraz zmiękczającego -'e.



## Grupy alternacyjne

Dla każdej końcówki możemy wypisać występujące przy nich alternacje:

|   | $\alpha$ y         | lphae     | lpha      | lphai                 | lphaie                   |        |
|---|--------------------|-----------|-----------|-----------------------|--------------------------|--------|
| d | $dy \rightarrow d$ | de 	o d   | $d \to d$ | $ed'i \rightarrow ad$ | ed'e 	o ad               | d 	o d |
|   |                    |           |           |                       | $ez'd'e \rightarrow azd$ |        |
| g | g'i 	o g           | $g'e\tog$ | g 	o g    | 3y 	o g               | ${\sf 3e} 	o {\sf g}$    | g 	o g |

- W nagłówku tabeli umieszczone są nazwy grup alternacji.
- Nazwy składają się z
  - lacktriangle symbolu lpha oznaczającego głoskę funkcjonalnie twardą oraz
  - jednej lub dwu liter oznaczających sufiks.
- Zaznaczone w nazwie litery sufiksu są włączone do alternacji.

## Tabela alternacji dla głosek funkcjonalnie twardych

|   | $\alpha$ y          | lphae                            | $\alpha$                            | lphai                 | lphaie                        | lpha arepsilon                   |
|---|---------------------|----------------------------------|-------------------------------------|-----------------------|-------------------------------|----------------------------------|
| Х | $xy \rightarrow x$  | xe 	o x                          | $X \to X$                           | $s'i \rightarrow x$   | $\check{s}e\tox$              | x 	o x                           |
|   |                     |                                  |                                     |                       |                               | $ex \to x$                       |
| d | $dy \rightarrow d$  | de 	o d                          | $d \to d$                           | $d'i \to d$           | d'e 	o d                      | d 	o d                           |
|   |                     |                                  |                                     | $ed'i \rightarrow ad$ | $z'd'e \to zd$                | ed 	o d                          |
|   |                     |                                  |                                     |                       | ed'e 	o ad                    | $od \to od$                      |
|   |                     |                                  |                                     |                       | ed'e 	o od                    | ad 	o ed                         |
|   |                     |                                  |                                     |                       | $ez'd'e \rightarrow azd$      |                                  |
| f | $fy \rightarrow f$  | $fe \rightarrow f$               | $f \rightarrow f$                   | $f'i \rightarrow f$   | $f'e \rightarrow f$           | $f \to f$                        |
| h | $hy \rightarrow h$  | he 	o h                          | $h \to h$                           | $z'i \to h$           | $\check{s}e 	o h$             | h 	o h                           |
|   |                     |                                  |                                     |                       | $\check{z}e 	o h$             |                                  |
| m | $my \rightarrow m$  | $me \to m$                       | $m\tom$                             | $m'i \to m$           | $m'e \to m$                   | $m\tom$                          |
|   |                     |                                  |                                     | $s'm'i \to sm$        | $s'm'e \rightarrow sm$        | $em \to m$                       |
| r | $ry \rightarrow r$  | $\text{re} \rightarrow \text{r}$ | $\textbf{r} \rightarrow \textbf{r}$ | $\check{r}y \to r$    | $\check{r}e 	o r$             | $r\tor$                          |
|   |                     |                                  |                                     |                       | $e\check{r}e	o ar$            | $\text{er} \rightarrow \text{r}$ |
|   |                     |                                  |                                     |                       | etře $ ightarrow$ atr         | $'$ er $\rightarrow$ r           |
|   |                     |                                  |                                     |                       | $ m \check{r}e  ightarrow rr$ | $or \to or$                      |
|   |                     |                                  |                                     |                       |                               | $\star$ cer $\rightarrow$ kr     |
|   |                     |                                  |                                     |                       |                               | $obr \to obr$                    |
|   |                     |                                  |                                     |                       |                               | $ostr \to ostr$                  |
| k | $k'i \rightarrow k$ | $k'e \to k$                      | $k \to k$                           | $cy \to k$            | $ce \to k$                    | $k \rightarrow k$                |
|   |                     |                                  |                                     |                       |                               | ek 	o k                          |
|   |                     |                                  |                                     |                       |                               | ąk $ ightarrow$ ęk               |
|   |                     |                                  |                                     |                       | 4 D > 4 🗗 > 4                 | 를 <b>사 를 사 기를</b> 나              |

## Reguly analityczne

- Możemy teraz zdefiniować reguły opisujące zmiany następujące podczas dodawania sufiksu do rdzenia.
- Każda reguła składa się z opisu modyfikacji wykonywanych na przetwarzanej formie oraz zbioru definiowanych atrybutów.
- Reguly te są parametryzowane przez grupy alternacyjne.
- Przykładowa reguła ucinająca końcówkę "ego" u przymiotników:
  - $-\alpha e$  go flex:=ego palat:=n cat:=adj
- Po zastąpieniu  $\alpha$ e przez kolejne alternacje należące do tej grupy otrzymujemy reguły
  - $\begin{array}{ll} \text{dego} \rightarrow \text{d} & \text{flex:=ego palat:=n con:=d cat:=adj} \\ \text{g'ego} \rightarrow \text{g} & \text{flex:=ego palat:=n con:=g cat:=adj} \\ \end{array}$
  - zamieniające rudego na rud oraz nag'ego na nag.
- Wartość atrybutu con jest dodawana podczas rozwijania reguły na podstawie wybranej alternacji.



## Reguly ucinalace sufiks formy i dodające sufiks lematu rzeczownika z głoską funkcjonalnie twardą

```
flex := y, \downarrow, noun
                                  flex := e, \downarrow, noun
                            flex := em, \downarrow, noun
                                  flex := a, \downarrow, noun
                                  flex := ach, \downarrow, noun
  -lpha am^{\prime}i
                                  flex := ami, \downarrow, noun
  -lpha a
                                   flex := a, \downarrow, noun
   -lpha ę
                                  flex := e, \downarrow, noun
                                  flex := 0, \downarrow, noun
   -lpha om
                                   flex := om, \downarrow, noun
   -lpha ov^{\prime}i
                                  flex := owi, \downarrow, noun
   -lpha ov^{\prime}e
                                   flex := owie, \downarrow, noun
   -lpha óv
                                  flex := \acute{o}w, \downarrow, noun
                                   flex := u, \downarrow, noun
                                  flex := um, \downarrow, noun
\begin{array}{ll} -\alpha \mathrm{i} & \mathrm{flex} := \mathrm{i}, \downarrow, \mathrm{noun} \\ -\alpha \mathrm{ie} & \mathrm{flex} := \mathrm{ie}, \downarrow, \mathrm{noun} \\ -\alpha \varepsilon & \mathrm{flex} := \varepsilon, \downarrow, \mathrm{noun} \\ \star -\alpha \varepsilon \; \mathrm{m'i} & \mathrm{flex} := \mathrm{ami}, \downarrow, \mathrm{noun} \end{array}
```

```
lemma := y
 +\alphay
 +\alpha e
               lemma := e
 +\alpha a
               lemma := a
 +lpha 0
               lemma := o
+lpha ov^{\prime}e
               lemma := owie
+lpha um
               lemma := um
 \star + lpha us
               lemma := us
 +\alphai
               lemma := i
               lemma := \varepsilon
 +\alpha\varepsilon
```

Reguły dla końcówek ych, ym, ymi, ego, ej, emu zostały pominiete. Symbol + oznacza, że reguła przykleja sufiks.

## Rozpakowywanie reguł Rozpatrzmy alternacje

|   | $\alpha$ y          | lphae               | $\alpha$          | $oldsymbol{lpha}$ i   | lphaie                   | lpha arepsilon    |
|---|---------------------|---------------------|-------------------|-----------------------|--------------------------|-------------------|
| d | $dy \rightarrow d$  | de 	o d             | $d \to d$         | $ed'i \rightarrow ad$ | ed'e 	o ad               | d 	o d            |
|   |                     |                     |                   |                       | $ez'd'e \rightarrow azd$ |                   |
| g | $g'i \rightarrow g$ | $g'e \rightarrow g$ | $g \rightarrow g$ | $3y \rightarrow g$    | m 3e  ightarrow g        | $g \rightarrow g$ |

#### oraz reguły analityczne

$$\begin{bmatrix} -\alpha \text{ a} & \text{flex} := \text{a}, \downarrow, \text{noun} \\ -\alpha \text{e m} & \text{flex} := \text{em}, \downarrow, \text{noun} \\ -\alpha \text{ie} & \text{flex} := \text{ie}, \downarrow, \text{noun} \end{bmatrix} \otimes \begin{bmatrix} +\alpha \text{ a} & \text{lemma} := \text{a} \\ +\alpha \varepsilon & \text{lemma} := \varepsilon \end{bmatrix}$$

#### Po rozwinięciu alternacji otrzymamy reguły:

$$\begin{bmatrix} da \rightarrow d & flex := a, \downarrow, con := d, noun \\ ga \rightarrow g & flex := a, \downarrow, con := g, noun \\ dem \rightarrow d & flex := em, \downarrow, con := d, noun \\ g'em \rightarrow g & flex := em, \downarrow, con := g, noun \\ ed'e \rightarrow ad & flex := ie, \downarrow, con := d, noun \\ ez'd'e \rightarrow azd & flex := ie, \downarrow, con := d, noun \\ 3e \rightarrow g & flex := ie, \downarrow, con := g, noun \\ \end{bmatrix} \otimes \begin{bmatrix} d \rightarrow da & lemma := a \\ g \rightarrow ga & lemma := a \\ d \rightarrow d & lemma := a \\ d \rightarrow d & lemma := a \\ g \rightarrow g & lemma := \varepsilon \\ \end{bmatrix}$$

## Rozpakowywanie reguł cd.

```
 \begin{bmatrix} da \rightarrow d & flex := a, \downarrow, con := d, noun \\ ga \rightarrow g & flex := a, \downarrow, con := g, noun \\ dem \rightarrow d & flex := em, \downarrow, con := d, noun \\ g'em \rightarrow g & flex := em, \downarrow, con := g, noun \\ ed'e \rightarrow ad & flex := ie, \downarrow, con := d, noun \\ ez'd'e \rightarrow azd & flex := ie, \downarrow, con := d, noun \\ g \rightarrow ga & lemma := a \\ d \rightarrow d & lemma := a \\ d \rightarrow d & lemma := \varepsilon \\ g \rightarrow g & lemma := \varepsilon \end{bmatrix}
```

### Teraz łączymy reguły z pierwszej kolumny z tymi z kolumny drugiej:

```
da \rightarrow da
                         flex := a, \downarrow, con := d, lemma := a, noun
                         flex := a, \downarrow, con := g, lemma := a, noun
ga \rightarrow ga
dem \rightarrow da
                         flex := em, \downarrow, con := d, lemma := a, noun
g'em \rightarrow ga
                         flex := em, \downarrow, con := q, lemma := a, noun
ed'e \rightarrow ada
                         flex := ie, \downarrow, con := d, lemma := a, noun
ez'd'e \rightarrow azda
                         flex := ie, \downarrow, con := d, lemma := a, noun
                         flex := ie, \downarrow, con := g, lemma := a, noun
3e \rightarrow ga
da \rightarrow d
                         flex := a, \downarrow, con := d, lemma := \varepsilon, noun
                         flex := a, \downarrow, con := g, lemma := \varepsilon, noun
qa \rightarrow q
dem \rightarrow d
                         flex := em, \downarrow, con := d, lemma := \varepsilon, noun
                         flex := em, \downarrow, con := g, lemma := \varepsilon, noun
g'em \rightarrow g
ed'e \rightarrow ad
                         flex := ie, \downarrow, con := d, lemma := \varepsilon, noun
ez'd'e \rightarrow azd
                         flex := ie, \downarrow, con := d, lemma := \varepsilon, noun
                         flex := ie, \downarrow, con := g, lemma := \varepsilon, noun
3e \rightarrow a
```

### Rozpakowywanie reguł cd.

```
flex := a, \downarrow, con := d, lemma := a, noun
da \rightarrow da
                         flex := a, \downarrow, con := g, lemma := a, noun
ga \rightarrow ga
                         flex := em, \downarrow, con := d, lemma := a, noun
dem \rightarrow da
g'em \rightarrow ga
                         flex := em, \downarrow, con := g, lemma := a, noun
ed'e \rightarrow ada
                         flex := ie, \downarrow, con := d, lemma := a, noun
ez'd'e \rightarrow azda
                         flex := ie, \downarrow, con := d, lemma := a, noun
3e \rightarrow ga
                         flex := ie, \downarrow, con := g, lemma := a, noun
da \rightarrow d
                         flex := a, \downarrow, con := d, lemma := \varepsilon, noun
qa \rightarrow q
                         flex := a, \downarrow, con := g, lemma := \varepsilon, noun
dem \rightarrow d
                         flex := em, \downarrow, con := d, lemma := \varepsilon, noun
g'em \rightarrow g
                         flex := em, \downarrow, con := g, lemma := \varepsilon, noun
ed'e \rightarrow ad
                         flex := ie, \downarrow, con := d, lemma := \varepsilon, noun
ez'd'e \rightarrow azd
                         flex := ie, \downarrow, con := d, lemma := \varepsilon, noun
                         flex := ie, \downarrow, con := g, lemma := \varepsilon, noun
3e \rightarrow q
```

#### Rozpakowane reguły możemy użyć do lematyzacji form:

```
gv'azda \rightarrow gv'azda

gv'azda \rightarrow gv'azd

szp'eg'em \rightarrow szp'ega

szp'eg'em \rightarrow szp'eg

gv'ez'd'e \rightarrow gv'azda

gv'ez'd'e \rightarrow gv'azd

waze \rightarrow waga

waze \rightarrow wag
```

```
flex := a, \downarrow, con := d, lemma := a, noun flex := a, \downarrow, con := d, lemma := \varepsilon, noun flex := em, \downarrow, con := g, lemma := a, noun flex := em, \downarrow, con := g, lemma := \varepsilon, noun flex := ie, \downarrow, con := d, lemma := a, noun flex := ie, \downarrow, con := d, lemma := \varepsilon, noun flex := ie, \downarrow, con := g, lemma := a, noun flex := ie, \downarrow, con := g, lemma := a, noun flex := ie, \downarrow, con := g, lemma := \varepsilon, noun
```

## Warstwa interpretacji

- Warstwa interpretacji zawiera reguły przypisujące interpretację morfosyntaktyczną na podstawie wartości atrybutów.
- Warstwa ta dokonuje selekcji kandydatów powstałych w wyniku działania warstwy analitycznej (wprowadzając jednocześnie kolejną niejednoznaczność).

```
\begin{array}{lll} \text{flex} := \texttt{a}, \downarrow, \text{lemma} := \texttt{a}, \text{noun} & \rightarrow & \text{subst:sg:nom:m1.m2.f} \\ \text{flex} := \texttt{a}, \downarrow, \text{lemma} := \texttt{a}, \text{noun} & \rightarrow & \text{subst:sg:nom:m1.m2.f} \\ \text{flex} := \texttt{a}, \downarrow, \text{lemma} := \varepsilon, \text{noun} & \rightarrow & \text{subst:sg:gen.acc:m1.m2} \\ \text{flex} := \texttt{a}, \downarrow, \text{lemma} := \varepsilon, \text{noun} & \rightarrow & \text{subst:sg:gen:m3} \\ \text{flex} := \texttt{em}, \downarrow, \text{lemma} := \varepsilon, \text{noun} & \rightarrow & \text{subst:sg:inst:m1.m2.m3} \\ \end{array}
```

- Dla rzeczowników jest to najmniej ustrukturalizowana warstwa.
- W przypadku czasowników, przymiotników i przysłówków to odwzorowanie jest dość jednoznaczne.
- Reguły interpretacji zostały wytworzone półautomatycznie na podstawie SGJP.



#### Działanie warstwy interpretacji Reguły interpretacji

```
\begin{array}{llll} \text{flex} := \texttt{a}, \downarrow, \text{lemma} := \texttt{a}, \text{noun} & \rightarrow & \text{subst:sg:nom:m1.m2.f} \\ \text{flex} := \texttt{a}, \downarrow, \text{lemma} := \texttt{a}, \text{noun} & \rightarrow & \text{subst:sg:nom:m1.m2.f} \\ \text{flex} := \texttt{a}, \downarrow, \text{lemma} := \varepsilon, \text{noun} & \rightarrow & \text{subst:sg:nom:m1.m2.m2} \\ \text{flex} := \texttt{a}, \downarrow, \text{lemma} := \varepsilon, \text{noun} & \rightarrow & \text{subst:sg:gen:acc:m1.m2} \\ \text{flex} := \texttt{em}, \downarrow, \text{lemma} := \varepsilon, \text{noun} & \rightarrow & \text{subst:sg:inst:m1.m2.m3} \\ \end{array}
```

#### przypiszą formom

```
\begin{array}{ll} \operatorname{gv'azda} \to \operatorname{gv'azda} & \operatorname{flex} := \operatorname{a}, \downarrow, \operatorname{con} := \operatorname{d}, \operatorname{lemma} := \operatorname{a}, \operatorname{noun} \\ \operatorname{gv'azda} \to \operatorname{gv'azd} & \operatorname{flex} := \operatorname{a}, \downarrow, \operatorname{con} := \operatorname{d}, \operatorname{lemma} := \operatorname{e}, \operatorname{noun} \\ \operatorname{szp'eg'em} \to \operatorname{szp'ega} & \operatorname{flex} := \operatorname{em}, \downarrow, \operatorname{con} := \operatorname{g}, \operatorname{lemma} := \operatorname{a}, \operatorname{noun} \\ \operatorname{szp'eg'em} \to \operatorname{szp'eg} & \operatorname{flex} := \operatorname{em}, \downarrow, \operatorname{con} := \operatorname{g}, \operatorname{lemma} := \operatorname{e}, \operatorname{noun} \\ \operatorname{flex} := \operatorname{em}, \downarrow, \operatorname{con} := \operatorname{g}, \operatorname{lemma} := \operatorname{em}, \operatorname{em} \\ \operatorname{supp} := \operatorname{em}, \operatorname{em} := \operatorname{em}, \operatorname{em}, \operatorname{em} := \operatorname{em}, \operatorname{em}, \operatorname{em} := \operatorname{em}, \operatorname{em}, \operatorname{em} := \operatorname{em}, \operatorname{em}
```

#### następujące interpretacje morfosyntaktyczne:

```
\begin{array}{lll} \text{gv'azda} \rightarrow \text{gv'azda} & \text{subst:sg:nom:m1.m2.f} \\ \text{gv'azda} \rightarrow \text{gv'azda} & \text{subst:pl:nom.acc.voc:n:pt} \\ \text{gv'azda} \rightarrow \text{gv'azd} & \text{subst:sg:gen.acc:m1.m2} \\ \text{gv'azda} \rightarrow \text{gv'azd} & \text{subst:sg:gen.m3} \\ \text{szp'eg'em} \rightarrow \text{szp'eg} & \text{subst:sg:inst:m1.m2.f} \\ \end{array}
```

## Quasi-paradygmaty odmiany

- Reguły przypisujące interpretacje można pogrupować ze względu na wartość atrybutu lemma i rodzaj rzeczownika generowany przez regułę.
- Uzyskujemy w ten sposób "quasi-paradygmaty" odmiany rzeczowników.
- Należy jednak pamiętać, że dany lemat nie jest do takich "paradygmatów" sztywno przypisany:
  - nie musi on mieć form pochodzących tylko z jednego paradygmatu i
  - nie musi mieć wszystkich form występujących w danym paradygmacie.

## Rzeczowniki z wygłosem w lemacie

| cat=noun lemr | na= $arepsilon$ gender:=     |                        | cat=noun lemma=a | gender:=m2                                                  |
|---------------|------------------------------|------------------------|------------------|-------------------------------------------------------------|
| sg:nom.acc    |                              | $\varepsilon \uparrow$ | sg:nom           | $\varepsilon$                                               |
| sg:gen.dat.lc | c.voc pl:gen                 | <b>y</b> ↑             | sg:gen.acc       | а                                                           |
| sg:inst       |                              | aุ↑                    | sg:dat           | owi ∗u                                                      |
| pl:nom.acc.v  | OC                           | y↑ e↑                  | sg:inst          | em                                                          |
| pl:dat        |                              | om↑                    | sg:loc.voc       | $u\uparrow u\downarrow \rightarrow ie\downarrow \leftarrow$ |
| pl:inst       |                              | ami↑                   | pl:nom.acc.voc   | y↓ e↑ ∗e                                                    |
| pl:loc        |                              | ach↑                   | pl:gen           | ów y↑                                                       |
| cat=noun lemr | $ma = \varepsilon gender :=$ | -m1                    | pl:dat           | om                                                          |
| sg:nom        | $\varepsilon$                |                        | pl:inst          | ami                                                         |
| sg:gen        | <b>⋆y</b>                    |                        | pl:loc           | ach                                                         |
| sg:gen.acc    | a                            |                        | cat=noun lemma=  | gender:=m3                                                  |
| sg:dat        | owi ∗u                       |                        | sg:nom.acc       | $\varepsilon$                                               |
| sg:dat.loc    | sg:dat.loc +y                |                        | sg:gen           | u a                                                         |
| sg:acc        | <b>⋆y</b>                    |                        | sg:dat           | ∗u↓ owi                                                     |
| sg:inst       | em ∗ą                        |                        | sg:inst          | em                                                          |
| sg:loc        | ∗u ∗ie                       |                        | sg:loc           | ∗ie                                                         |
| sg:loc.voc    | u↑ u↓→ ie↓∙                  | <del></del>            | sg:loc.voc       | $u\!\!\uparrowu\!\!\downarrow\toie\!\!\downarrow\leftarrow$ |
| sg:voc        | cze↑ ∗y ∗ie                  |                        | sg:voc           | ∗ie                                                         |
| pl:nom.voc    | y↑ i↓ e↑ owie                | e ∗ie                  | pl:nom.acc.voc   | y↓ e↑ ∗e ∗a                                                 |
| pl:gen.acc    | ów y↑                        |                        | pl:gen           | ów y↑                                                       |
| pl:dat        | om                           |                        | pl:dat           | om                                                          |
| pl:inst       | ami                          |                        | pl:inst          | ami                                                         |
| pl:loc        | ach                          |                        | pl:loc           | ach                                                         |
| depr          | v.l.e↑                       |                        | 4 🗆 1            | 4 A A A A A A A A                                           |

## Rzeczowniki z kończące się na "a" w lemacie

#### cat=noun lemma=a gender:=f

sg:nom а sg:gen **ν** ⋆ε sg:gen.dat.loc ej sg:dat.loc y↑ ie↓ sg:acc ę ą sg:inst ą u↑ o a sg:voc pl:nom.acc.voc y↓ e pl:gen ε **y**↑ pl:gen.loc ych pl:dat ym om pl:inst vmi ami pl:loc ach

#### cat=noun lemma=a gender:=m1

```
sg:nom
              а
sg:gen
              v *ego
sq:qen.acc
              *ego
sg:dat
              *emu
sq:dat.loc
              v↑ ie↓
sg:acc
              ę
sg:inst
              a ∗ym
sg:loc
              ⋆ym
sg:voc
              0 *11
pl:nom.voc
              y↑ i↓ owie ∗e
pl:gen.acc
              ów ⋆ε
pl:dat
              om
pl:inst
              ami
pl:loc
              ach
depr
              у е
```

#### Lista nieobecności

- Głoski funcjonalnie miękkie.
- Leksemy typu "-cja", "-pia", "-dia", "-rium".
- Słowa pisane z użyciem obcej ortografii.
- Odmiana akronimów
- Odmiana (stopniowanie) przymiotników i przysłówków
- Odmiana czasowników
- Postprocessing wygłosu
- Formy gwarowe

## Reguly operacyjne

- Model składa się z
  - 723 reguł warstwy ortograficzno-fonetycznej
  - 748 alternacji
  - 367 reguł analitycznych
  - 960 reguł przypisujących interpretację
- W celu wytworzenia wydajnego systemu reguły te zostały złączone ze sobą:
  - do każdej możliwej sekwencji reguł analitycznych
  - zostały dopasowane reguły przypisujące interpretację;
  - następnie zostały przekonwertowane na standardową ortografię.
- W wyniku tego procesu powstało ok. 10 000 000 reguł operacyjnych.
- Następnie została dokonana selekcja reguł polegająca na wyborze tych, których użycie jest poświadczone w SGJP uzupełnionym o przykładowe formy gwarowe i dodatkowe odmienione akronimy.
- Reguł operacyjnych jest 31122.



### Reguly operacyjne

Liczbę reguł z podziałem na ich typy i części mowy:

|                   | noun  | adj  | adv | verb  | suma  |
|-------------------|-------|------|-----|-------|-------|
| produktywne       | 7534  | 1501 | 150 | 9107  | 18292 |
| * nieproduktywne  | 209   | 389  | _   | 3701  | 4299  |
| A obce            | 1275  | _    | _   | _     | 1275  |
| <b>B</b> obce     | 206   |      | _   | _     | 206   |
| <b>C</b> akronimy | 557   |      | _   | _     | 557   |
| <b>D</b> gwarowe  | 2639  | 380  | _   | 3474  | 6493  |
| suma              | 12420 | 2270 | 150 | 16282 | 31122 |

- Grupa "obcych A" dotyczy słów o obcej ortografii, w których pierwotna postać rdzenia jest zawarta w obserwowanej formie.
- W wypadku "obcych B" pierwotna postać rdzenia nie jest zawarta w obserwowanej formie i musi zostać odgadnięta (np. dopełniacz Chiraka od lematu Chirac).
- Wszystkim regułom towarzyszą informacje o frekwencji liczba form ze słownika lematyzowalnych za pomocą danej reguły.

### Pokrycie modelu

- Reguły produkcyjne opisują fleksję
  - = 99,76% lematów rzeczownikowych,
  - $\frac{00420}{66426+26}$  = 99,96% lematów przymiotnikowych.
  - = 98,39% lematów przysłówkowych,
  - $ightharpoonup \frac{28571}{28571+1229} = 95,88\%$  lematów czasownikowych.
- Po usunięciu lematów czasownikowych, które powstały poprzez dodanie prefiksu wartość wzrasta do  $\frac{13852}{13852+167}$  = 98,81%.
- Takie wartości wskazują, że opisywany model w sposób poprawny i pełny opisuje zawartą w SGJP fleksję języka polskiego.
- Leksemy niepokryte przez model odmieniają się w sposób nieregularny – powinny one stanowić zamkniety zbiór.
- Jest to szczególnie istotne przy czasownikach, gdzie 167 nieregularnych rdzeni generuje, po uzupełnieniu o prefiksy, 1229 nieregularnych leksemów.
- W przypadku przysłówków, na 422 niepokryte przez model leksemy składają się zasadniczo przysłówki niestopniowalne i niepochodzące od przymiotników.

## Dezambiguacja

- Rezultaty zwracane przez model są zazwyczaj wysoce niejednoznaczne.
- W celu ich ujednoznacznienia można podjąć następujące kroki
  - konfrontacja wyniku z SGJP
  - weryfikacja za pomocą listy znanych lematów
  - dezambiguacja statystyczna wykonywana przez tager

## Konfrontacja z SGJP

- Reguły produkcyjne mają swoje identyfikatory.
- Na podstawie SGJP została wytworzona lista rdzeni wraz przypisanymi im identyfikatorami reguł właściwych dla danego rdzenia.
- Interpretacje potwierdzone przez listę zostają opatrzone statusem "LemmaVal".
- Formy z SJGP niepokryte przez model zostały umieszczone w osobnym słowniczku.
- Interpretacje uzyskane za pomocą tego słowniczka są opatrzone statusem "LemmaAlt".
- Pozostałe interpretacje są oznaczone jako "LemmNotVal".
- Jeśli odgadywacz nie znajdzie żadnej interpretacji dla danej formy zwracają ze statusem "TokNotFound".
- W ten sposób odgadywacz uzyskuje pełne pokrycie na SGJP i funkcjonalność analizatora morfologicznego.

## Bazy form podstawowych słów

- SGJP
  - ponad 333000 lematów
- SAWA
- TERYT
  - 304 powiaty
  - 38889 miejscowości
  - 24508 części miejscowości
  - 42871 ulice (11272 z nich mają osobowego patrona)
- nazwiska-polskie.pl
  - ponad 220000 nazwisk
- Wikipedia/DBpedia
- Geonames nazwy geograficzne
- KRS nazwy organizacji

## Algorytm dezambiguacji symbolicznej

- Algorytm polega na przypisaniu interpretacjom priorytetów i wyborze tych interpretacji, które mają najmniejszy priorytet.
- Kryteria wyboru priorytetu:

| 1 | lemat jest na liście znanych lematów      | +   |     |   |   |   | - |   |   |
|---|-------------------------------------------|-----|-----|---|---|---|---|---|---|
| 2 | lemat jest w SGJP                         | + - |     |   |   |   |   |   |   |
| 3 | lematyzacja przeprowadzona zgodnie z SGJP | + - |     |   |   | + | - |   |   |
| 4 | tag "no-sgjp"                             | + - |     |   |   |   |   |   |   |
| 5 | forma nieodmienna                         |     | + - |   |   |   |   |   |   |
| 6 | tag "poss-ndm"                            |     |     |   | + | - |   |   |   |
|   | priorytet                                 | 1   | 1   | R | 1 | R | 1 | 2 | R |

- Interpretacje z priorytetem oznaczonym "R" są odrzucane, gdy spełniony jest przynajmniej jeden z warunków:
  - forma została wydzielona z tekstu przy z odciętym aglutynatem,
  - forma została zlematyzowana ze zmienioną wielkością liter,
  - forma została zlematyzowana za pomocą reguły typu B.
- Jeśli interpretacja z priorytetem oznaczonym "R" nie zostaje odrzucona otrzymuje priorytet 3.

## Struktura form słownych w NKJP1M

|                                     | Liczba     | Liczba  | Procent    | Procent   |
|-------------------------------------|------------|---------|------------|-----------|
|                                     | unikalnych | form    | unikalnych | form      |
|                                     | form       |         | form       |           |
| lematyzowane przez SGJP             | 156565     | 906513  | 85,4720%   | 74,6117%  |
| symbole                             | 5796       | 250926  | 3,1642%    | 20,6528%  |
| poprawne spoza SGJP                 | 16581      | 42195   | 9,0519%    | 3,4729%   |
| formy z dywizem i apostrofem        | 659        | 783     | 0,3598%    | 0,0644%   |
| pt lematyzowane do sg przez SGJP    | 168        | 461     | 0,0917%    | 0,0379%   |
| tag inny niż proponowany przez SGJP | 1151       | 11020   | 0,6284%    | 0,9070%   |
| formy gwarowe bądź archaiczne       | 132        | 166     | 0,0721%    | 0,0137%   |
| powszechny błąd                     | 156        | 393     | 0,0852%    | 0,0323%   |
| zapis fonetyczny                    | 166        | 191     | 0,0906%    | 0,0157%   |
| literówka                           | 1415       | 1728    | 0,7725%    | 0,1422%   |
| niepoprawny tag                     | 383        | 593     | 0,2091%    | 0,0488%   |
| błąd tokenizacji                    | 5          | 5       | 0,0027%    | 0,0004%   |
| cały korpus                         | 183177     | 1214974 | 100,0000%  | 100,0000% |

- Pierwsze dwie kategorie oraz ostatnie pięć nie stanowi ciekawych danych do testowania odgadywacza.
- Pozostałe pięć kategorii wykorzystaliśmy do przeprowadzenia walidacji.

## Walidacja

- Odgadywacz został porównany z następującymi programami:
  - Analizator morfologiczny SAM (1996)
  - ► TaKIPI (2007)
- Wygrywa to porównanie niejako walkowerem z uwagi na to że:
  - SAM korzysta z innego tagsetu niż wszystkie obecne narzędzia (m.in. nie rozróżnia fleksemów form czasownika i segmentów nieodmiennych.
  - TaKIPI wymaga Morfeusza w wersji SlaT (rzuca wyjątek, gdy biblioteka libmorfeusz zwróci tag morfosyntaktyczny comp, interj, brev lub burk).
  - SAM generuje segmentation fault dla niektórych segmentów, np.: "Samotrzeciej", "samoprzyznaniem", "samorozwiązania", "samorozwiązanie", "zekowaniem".
  - TaKIPI zmienia wielkość liter przy lematyzacji, np. lematyzuje "XVII-wieczny" jako "xvii-wieczny".
  - SAM zmienia wielkość liter i usuwa myślniki przy lematyzacji, np. lematyzuje "XVII-wieczny" jako "xviiwieczny".



## Walidacja: formy poprawne spoza SGJP

|             | Liczba<br>unikalnych<br>form | Liczba<br>form | Procent<br>unikalnych<br>form | Procent form |
|-------------|------------------------------|----------------|-------------------------------|--------------|
| OK          | 14747                        | 38816          | 88,9338%                      | 91,9898%     |
| OK CC       | 207                          | 231            | 1,2483%                       | 0,5474%      |
| GOODPOS     | 151                          | 177            | 0,9106%                       | 0,4195%      |
| GOODPOS CC  | 364                          | 474            | 2,1952%                       | 1,1233%      |
| LEMMA       | 790                          | 1383           | 4,7642%                       | 3,2776%      |
| LEMMA CC    | 181                          | 935            | 1,0915%                       | 2,2158%      |
| FAIL        | 142                          | 180            | 0,8564%                       | 0,4266%      |
| cały korpus | 16582                        | 42196          | 100,0000%                     | 100,0000%    |

- OK przykład poprawnie przetworzony
- GOODPOS zgodność lematu i części mowy
- LEMMA zgodność lematu
- FAIL brak zgodności
- CC ignorowanie wielkości liter przy porównywaniu lematów

## Walidacja: formy z dywizem i apostrofem

|             | Liczba<br>unikalnych<br>form | Liczba<br>form | Procent<br>unikalnych<br>form | Procent form |
|-------------|------------------------------|----------------|-------------------------------|--------------|
| OK          | 459                          | 576            | 69,6510%                      | 73,5632%     |
| OK CC       | 3                            | 3              | 0,4552%                       | 0,3831%      |
| GOODPOS     | 15                           | 15             | 2,2762%                       | 1,9157%      |
| GOODPOS CC  | 2                            | 2              | 0,3035%                       | 0,2554%      |
| LEMMA       | 23                           | 23             | 3,4901%                       | 2,9374%      |
| FAIL        | 157                          | 164            | 23,8240%                      | 20,9451%     |
| cały korpus | 659                          | 783            | 100,0000%                     | 100,0000%    |

- OK przykład poprawnie przetworzony
- GOODPOS zgodność lematu i części mowy
- LEMMA zgodność lematu
- FAIL brak zgodności
- CC ignorowanie wielkości liter przy porównywaniu lematów

## Walidacja: pt lematyzowane do sg przez SGJP

|             | Liczba<br>unikalnych<br>form | Liczba<br>form | Procent<br>unikalnych<br>form | Procent form |
|-------------|------------------------------|----------------|-------------------------------|--------------|
| OK          | 130                          | 371            | 77,3810%                      | 80,4772%     |
| GOODPOS     | 13                           | 13             | 7,7381%                       | 2,8200%      |
| GOODPOS CC  | 8                            | 57             | 4,7619%                       | 12,3644%     |
| LEMMA CC    | 2                            | 2              | 1,1905%                       | 0,4338%      |
| FAIL        | 15                           | 18             | 8,9286%                       | 3,9046%      |
| cały korpus | 168                          | 461            | 100,0000%                     | 100,0000%    |

- OK przykład poprawnie przetworzony
- GOODPOS zgodność lematu i części mowy
- LEMMA zgodność lematu
- FAIL brak zgodności
- CC ignorowanie wielkości liter przy porównywaniu lematów

## Walidacja: tag inny niż proponowany przez SGJP

|             | Liczba<br>unikalnych<br>form | Liczba<br>form | Procent<br>unikalnych<br>form | Procent form |
|-------------|------------------------------|----------------|-------------------------------|--------------|
| OK          | 537                          | 6261           | 46,6551%                      | 56,8149%     |
| OK CC       | 25                           | 45             | 2,1720%                       | 0,4083%      |
| GOODPOS     | 61                           | 157            | 5,2997%                       | 1,4247%      |
| GOODPOS CC  | 14                           | 46             | 1,2163%                       | 0,4174%      |
| LEMMA       | 332                          | 3512           | 28,8445%                      | 31,8693%     |
| LEMMA CC    | 105                          | 708            | 9,1225%                       | 6,4247%      |
| FAIL        | 77                           | 291            | 6,6898%                       | 2,6407%      |
| cały korpus | 1151                         | 11020          | 100,0000%                     | 100,0000%    |

- OK przykład poprawnie przetworzony
- GOODPOS zgodność lematu i części mowy
- LEMMA zgodność lematu
- FAIL brak zgodności
- CC ignorowanie wielkości liter przy porównywaniu lematów

## Walidacja: formy gwarowe bądź archaiczne

|             | Liczba<br>unikalnych<br>form | Liczba<br>form | Procent<br>unikalnych<br>form | Procent form |
|-------------|------------------------------|----------------|-------------------------------|--------------|
| OK          | 25                           | 28             | 18,9394%                      | 16,8675%     |
| GOODPOS     | 5                            | 5              | 3,7879%                       | 3,0120%      |
| GOODPOS CC  | 1                            | 1              | 0,7576%                       | 0,6024%      |
| LEMMA       | 8                            | 10             | 6,0606%                       | 6,0241%      |
| LEMMA CC    | 1                            | 1              | 0,7576%                       | 0,6024%      |
| FAIL        | 92                           | 121            | 69,6970%                      | 72,8916%     |
| cały korpus | 132                          | 166            | 100,0000%                     | 100,0000%    |

- OK przykład poprawnie przetworzony
- GOODPOS zgodność lematu i części mowy
- LEMMA zgodność lematu
- FAIL brak zgodności
- CC ignorowanie wielkości liter przy porównywaniu lematów

## Porównanie odgadywaczy: formy poprawne spoza SGJP

|                    | Procent unikalnych form |        |        | F      | Procent form | n      |
|--------------------|-------------------------|--------|--------|--------|--------------|--------|
|                    | ENIAM                   | TaKIPI | SAM    | ENIAM  | TaKIPI       | SAM    |
| OK                 | 88,93%                  | 5,07%  | 0,00%  | 91,99% | 48,12%       | 0,00%  |
| OK CC              | 1,25%                   | 13,10% | 0,00%  | 0,55%  | 6,70%        | 0,00%  |
| GOODPOS            | 0,91%                   | 6,46%  | 8,45%  | 0,42%  | 2,96%        | 3,80%  |
| GOODPOS_NONINFL    | 0,00%                   | 0,00%  | 0,00%  | 0,00%  | 0,00%        | 0,00%  |
| GOODPOS_VERB       | 0,00%                   | 0,00%  | 0,00%  | 0,00%  | 0,00%        | 0,00%  |
| GOODPOS CC         | 2,20%                   | 27,66% | 54,06% | 1,12%  | 13,85%       | 26,39% |
| GOODPOS_NONINFL CC | 0,00%                   | 0,00%  | 0,00%  | 0,00%  | 0,00%        | 0,00%  |
| GOODPOS_VERB CC    | 0,00%                   | 0,00%  | 0,00%  | 0,00%  | 0,00%        | 0,00%  |
| LEMMA              | 4,76%                   | 6,69%  | 5,44%  | 3,28%  | 3,53%        | 5,93%  |
| LEMMA CC           | 1,09%                   | 7,18%  | 1,32%  | 2,22%  | 3,36%        | 0,56%  |
| FAIL               | 0,86%                   | 33,23% | 30,69% | 0,43%  | 21,23%       | 63,30% |
| CRASH              | 0,00%                   | 0,00%  | 0,03%  | 0,00%  | 0,00%        | 0,01%  |

- OK przykład poprawnie przetworzony
- GOODPOS zgodność lematu i części mowy
- GOODPOS\_NONINFL zgodność lematu i tego, że część mowy jest nieodmienna
- GOODPOS\_VERB zgodność lematu i tego, że część mowy jest czasownikiem
- LEMMA zgodność lematu
- FAIL brak zgodności
- CRASH runtime error
- CC ignorowanie wielkości liter przy porównywaniu lematów

## Porównanie odgadywaczy: formy z dywizem i apostrofem

|                    | Procent unikalnych form |        |        | F      | Procent form | n      |
|--------------------|-------------------------|--------|--------|--------|--------------|--------|
|                    | ENIAM                   | TaKIPI | SAM    | ENIAM  | TaKIPI       | SAM    |
| OK                 | 69,65%                  | 19,42% | 0,00%  | 73,56% | 18,26%       | 0,00%  |
| OK CC              | 0,46%                   | 3,49%  | 0,00%  | 0,38%  | 3,70%        | 0,00%  |
| GOODPOS            | 2,28%                   | 21,24% | 0,61%  | 1,92%  | 21,58%       | 0,51%  |
| GOODPOS_NONINFL    | 0,00%                   | 0,00%  | 0,00%  | 0,00%  | 0,00%        | 0,00%  |
| GOODPOS_VERB       | 0,00%                   | 0,00%  | 0,00%  | 0,00%  | 0,00%        | 0,00%  |
| GOODPOS CC         | 0,30%                   | 3,34%  | 7,28%  | 0,26%  | 2,94%        | 6,39%  |
| GOODPOS_NONINFL CC | 0,00%                   | 0,00%  | 0,00%  | 0,00%  | 0,00%        | 0,00%  |
| GOODPOS_VERB CC    | 0,00%                   | 0,00%  | 0,00%  | 0,00%  | 0,00%        | 0,00%  |
| LEMMA              | 3,49%                   | 0,91%  | 0,00%  | 2,94%  | 0,77%        | 0,00%  |
| LEMMA CC           | 0,00%                   | 0,15%  | 0,00%  | 0,00%  | 0,13%        | 0,00%  |
| FAIL               | 23,82%                  | 46,43% | 92,11% | 20,95% | 48,40%       | 93,10% |
| CRASH              | 0,00%                   | 0,00%  | 0,00%  | 0,00%  | 0,00%        | 0,00%  |

- OK przykład poprawnie przetworzony
- GOODPOS zgodność lematu i części mowy
- GOODPOS\_NONINFL zgodność lematu i tego, że część mowy jest nieodmienna
- GOODPOS VERB zgodność lematu i tego, że cześć mowy jest czasownikiem
- LEMMA zgodność lematu
- FAIL brak zgodności
- CRASH runtime error
- CC ignorowanie wielkości liter przy porównywaniu lematów

Woiciech Jaworski. Szymon Rutkowski (MIM Wielowarstwowy regułowy model fleksji jezyka

## Porównanie odgadywaczy: pt lematyzowane do sg przez SGJP

|                    | Procent unikalnych form |        |        | Procent form |        |        |
|--------------------|-------------------------|--------|--------|--------------|--------|--------|
|                    | ENIAM                   | TaKIPI | SAM    | ENIAM        | TaKIPI | SAM    |
| OK                 | 77,38%                  | 1,19%  | 0,00%  | 80,48%       | 0,43%  | 0,00%  |
| OK CC              | 0,00%                   | 0,60%  | 0,00%  | 0,00%        | 0,22%  | 0,00%  |
| GOODPOS            | 7,74%                   | 0,60%  | 25,00% | 2,82%        | 0,22%  | 13,23% |
| GOODPOS_NONINFL    | 0,00%                   | 0,00%  | 0,00%  | 0,00%        | 0,00%  | 0,00%  |
| GOODPOS_VERB       | 0,00%                   | 0,00%  | 0,00%  | 0,00%        | 0,00%  | 0,00%  |
| GOODPOS CC         | 4,76%                   | 0,00%  | 25,00% | 12,36%       | 0,00%  | 11,50% |
| GOODPOS_NONINFL CC | 0,00%                   | 0,00%  | 0,00%  | 0,00%        | 0,00%  | 0,00%  |
| GOODPOS_VERB CC    | 0,00%                   | 0,00%  | 0,00%  | 0,00%        | 0,00%  | 0,00%  |
| LEMMA              | 0,00%                   | 1,19%  | 0,60%  | 0,00%        | 0,43%  | 0,22%  |
| LEMMA CC           | 1,19%                   | 0,00%  | 0,00%  | 0,43%        | 0,00%  | 0,00%  |
| FAIL               | 8,93%                   | 96,43% | 49,40% | 3,90%        | 98,70% | 75,05% |
| CRASH              | 0,00%                   | 0,00%  | 0,00%  | 0,00%        | 0,00%  | 0,00%  |

- OK przykład poprawnie przetworzony
- GOODPOS zgodność lematu i części mowy
- GOODPOS\_NONINFL zgodność lematu i tego, że część mowy jest nieodmienna
- GOODPOS\_VERB zgodność lematu i tego, że część mowy jest czasownikiem
- LEMMA zgodność lematu
- FAIL brak zgodności
- CRASH runtime error
- CC ignorowanie wielkości liter przy porównywaniu lematów

## Porównanie odgadywaczy: tag inny niż proponowany przez SGJP

|                    | Procent unikalnych form |        |        | F      | Procent form | n      |
|--------------------|-------------------------|--------|--------|--------|--------------|--------|
|                    | ENIAM                   | TaKIPI | SAM    | ENIAM  | TaKIPI       | SAM    |
| OK                 | 46,66%                  | 9,73%  | 0,00%  | 56,81% | 27,30%       | 0,00%  |
| OK CC              | 2,17%                   | 0,00%  | 0,00%  | 0,41%  | 0,00%        | 0,00%  |
| GOODPOS            | 5,30%                   | 13,12% | 13,03% | 1,42%  | 8,08%        | 1,77%  |
| GOODPOS_NONINFL    | 0,00%                   | 0,00%  | 0,00%  | 0,00%  | 0,00%        | 0,00%  |
| GOODPOS_VERB       | 0,00%                   | 0,00%  | 0,00%  | 0,00%  | 0,00%        | 0,00%  |
| GOODPOS CC         | 1,22%                   | 0,09%  | 0,00%  | 0,42%  | 0,01%        | 0,00%  |
| GOODPOS_NONINFL CC | 0,00%                   | 0,00%  | 0,00%  | 0,00%  | 0,00%        | 0,00%  |
| GOODPOS_VERB CC    | 0,00%                   | 0,00%  | 0,00%  | 0,00%  | 0,00%        | 0,00%  |
| LEMMA              | 28,84%                  | 35,27% | 41,79% | 31,87% | 54,49%       | 64,95% |
| LEMMA CC           | 9,12%                   | 0,00%  | 0,87%  | 6,42%  | 0,00%        | 0,59%  |
| FAIL               | 6,69%                   | 41,70% | 44,31% | 2,64%  | 10,11%       | 32,70% |
| CRASH              | 0,00%                   | 0,00%  | 0,00%  | 0,00%  | 0,00%        | 0,00%  |

- OK przykład poprawnie przetworzony
- GOODPOS zgodność lematu i części mowy
- GOODPOS\_NONINFL zgodność lematu i tego, że część mowy jest nieodmienna
- GOODPOS\_VERB zgodność lematu i tego, że część mowy jest czasownikiem
- LEMMA zgodność lematu
- FAIL brak zgodności
- CRASH runtime error
- CC ignorowanie wielkości liter przy porównywaniu lematów

## Porównanie odgadywaczy: formy gwarowe bądź archaiczne

|                    | Procent unikalnych form |        |        | F      | Procent form | n      |
|--------------------|-------------------------|--------|--------|--------|--------------|--------|
|                    | ENIAM                   | TaKIPI | SAM    | ENIAM  | TaKIPI       | SAM    |
| OK                 | 18,94%                  | 2,27%  | 0,00%  | 16,87% | 1,81%        | 0,00%  |
| OK CC              | 0,00%                   | 0,76%  | 0,00%  | 0,00%  | 0,60%        | 0,00%  |
| GOODPOS            | 3,79%                   | 4,55%  | 4,55%  | 3,01%  | 4,82%        | 4,82%  |
| GOODPOS_NONINFL    | 0,00%                   | 0,00%  | 0,00%  | 0,00%  | 0,00%        | 0,00%  |
| GOODPOS_VERB       | 0,00%                   | 0,00%  | 0,00%  | 0,00%  | 0,00%        | 0,00%  |
| GOODPOS CC         | 0,76%                   | 0,76%  | 0,00%  | 0,60%  | 1,20%        | 0,00%  |
| GOODPOS_NONINFL CC | 0,00%                   | 0,00%  | 0,00%  | 0,00%  | 0,00%        | 0,00%  |
| GOODPOS_VERB CC    | 0,00%                   | 0,00%  | 0,00%  | 0,00%  | 0,00%        | 0,00%  |
| LEMMA              | 6,06%                   | 1,52%  | 5,30%  | 6,02%  | 1,20%        | 4,22%  |
| LEMMA CC           | 0,76%                   | 0,00%  | 0,76%  | 0,60%  | 0,00%        | 1,20%  |
| FAIL               | 69,70%                  | 90,15% | 89,39% | 72,89% | 90,36%       | 89,76% |
| CRASH              | 0,00%                   | 0,00%  | 0,00%  | 0,00%  | 0,00%        | 0,00%  |

- OK przykład poprawnie przetworzony
- GOODPOS zgodność lematu i części mowy
- GOODPOS\_NONINFL zgodność lematu i tego, że część mowy jest nieodmienna
- GOODPOS\_VERB zgodność lematu i tego, że część mowy jest czasownikiem
- LEMMA zgodność lematu
- FAIL brak zgodności
- CRASH runtime error
- CC ignorowanie wielkości liter przy porównywaniu lematów

## Wersja demonstracyjna

- Przedstawiony w artykule model został zaimplementowany i stanowi fragment kategorialnego parsera składniowo-semantycznego "ENIAM".
- Internetowa wersja demonstracyjna guessera dostępna jest pod adresem:

```
http://eniam.nlp.ipipan.waw.pl/morphology.html.
```

- Internetowa wersja demonstracyjna generatora form dostępna jest pod adresem:
  - http://eniam.nlp.ipipan.waw.pl/morphology2.html.

## Kod źródłowy i zasoby

 Kod źródłowy, dane modelu i otagowana lista frekwencyjna NKJP1M znajdują się w repozytorium:

```
http://git.nlp.ipipan.waw.pl/
wojciech.jaworski/ENIAM
```

- Odpowiednio w
  - katalogu morphology,
  - katalogu morphology/data i
  - pliku resources/NKJP1M/ NKJP1M-tagged-frequency-26.07.2017.tab
- Definicja tagsetu listy frekwencyjnej znajduje się w pliku resources/NKJP1M/ NKJP-tagged-frequency-tagset.txt