

Suites

Paris Descartes 2016 Mathématiques et calcul 1 2

Suites

- Introduction
- Exemple : cercle et polygones
- Exemple : évolution temporelle en écologie
- Les ensembles de nombres
- Définitions
- Limite d'une suite
- Unicité de la limite
- Suites bornées
- Suites divergentes
- Sommes et produits de suites
- Comparaison de suites
- Valeurs absolues
- Suites arithmétiques
- Suites géométriques
- Suites monotones
- Suites adjacentes
- Suites extraites
- Suites récurrentes
- Croissance comparée (1)

Paris Descartes 2016 Mathématiques et calcul 1 3

Suites Introduction

Les suites : outils mathématiques utilisés notamment comme :

- modèle pour la proximité infinitésimale (via les limites)
- modèle pour les évolutions temporelles

Paris Descartes 2016 Mathématiques et calcul 1 4

Suites

 π

 π = périmètre du cercle/diamètre du cercle

périm. du dodécagone/diam. du cercle = 3, 105828541

Exemple: cercle et polygones

périmètre de l'hexagone/diamètre du cercle $\,=\,3$

périm. pour 24 côtés/diam. du cercle = 3, 132628613

Suites

Exemple: cercle et polygones

$\pi = \lim_{n \to \infty} \frac{\text{périmètre pour } n \text{ côtés}}{\text{diamètre du cercle}}$

 $\pi = 3,141592653589793238462643383279502884197-169399375105820974944592307816406286208998-628034825342117067982148086513282306647093-844609550582231725359408128481117450284102-701938521105559644622948954930381964428810-975665933446128475648233786783165271201909-145648566923460348610454326648213393607260-249141273724587006606315588174881520920962-829254091715364367892590360011330530548820-466521384146951941511609433057270365759591-953092186117381932611793105118548074462379-962749567351885752724891227938183011949129-833673362440656643086021394946395224737190-702179860943702770539217176293176752384674-818467669405132000568127145263560...$

Paris Descartes

2016

Mathématiques et calcul 1

,

Suites

Exemple : évolution temporelle en écologie

Exemple : évolution temporelle en écologie

 p_n = taille (en fraction de la taille maximale) de la population de la génération n pour une espèce donnée (bactérie, insecte, ...)

Dynamique: $p_{n+1} = kp_n(1-p_n)$

k : taux combiné de reproduction et d'épuisement des ressources

Paris Descartes

2016

Mathématiques et calcul 1

10

Suites

Les ensembles de nombres

Les ensembles de nombres utilisés en mathématiques sont :

Les entiers naturels :

$$\mathbb{N} = \{0, 1, 2, 3, 4, \dots, n, \dots\}$$

Les entiers relatifs :

$$\mathbb{Z} = \{\cdots, -n, \cdots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \cdots, n \cdots\}$$

Les nombres rationnels :

$$\mathbb{Q} = \{ \frac{p}{q} \mid p \in \mathbb{Z}, q \in \mathbb{N}, q \neq 0 \}$$

Les nombres réels :

 \mathbb{R}

Les nombres complexes :

$$\mathbb{C} = \{a + i.b \mid a \in \mathbb{R}, b \in \mathbb{R}, i^2 = -1\}$$

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$

Une suite de nombres réels est un ensemble de nombres réels numérotés.

$$u_0 = 0, \ u_1 = 1, \ u_2 = 2, \ u_3 = 3, \ u_4 = 4, \dots$$
 $u_n = n$ $u_0 = 0, \ u_1 = 2, \ u_2 = 4, \ u_3 = 6, \ u_4 = 8, \dots$ $u_n = 2n$ $u_0 = 1, \ u_1 = 3, \ u_2 = 5, \ u_3 = 7, \ u_4 = 9, \dots$ $u_n = 2n + 1$ $u_1 = \frac{1}{1}, \ u_2 = \frac{1}{2}, \ u_3 = \frac{1}{3}, \ u_4 = \frac{1}{4}, \ u_5 = \frac{1}{5}, \dots$ $u_n = \frac{\sin(n)}{n^2 + 1}$ $u_1 = \frac{\sin(n)}{n^2 + 1}$

13

Mathématiques et calcul 1

Suites Définitions

2016

Une suite est une application de \mathbb{N} (ou \mathbb{N}^*) dans \mathbb{R} :

$$u: \mathbb{N} \longrightarrow \mathbb{R}$$
 $n \rightarrow u_n$

Remarque: On note u_n les éléments de la suite, plutôt que u(n); on « numérote » chaque élément de la suite : u_0 : premier élément, u_1 : deuxième élément, ..., u_n : n+1-ième élément, etc.

Paris Descartes

Suites Définitions

$$u_0 = -\frac{1}{2}$$
 et $u_{n+1} = \frac{(u_n + 1)(9 - u_n)}{4}$

$$u_1 = \frac{(u_0+1)(9-u_0)}{4} = 1,19$$
 $u_7 = \frac{(u_6+1)(9-u_6)}{4} = 5,86$

$$u_2 = \frac{(u_1+1)(9-u_1)}{4} = 4,27$$
 $u_8 = \frac{(u_7+1)(9-u_7)}{4} = 5,39$

$$u_3 = \frac{(u_2+1)(9-u_2)}{4} = 6.23$$

$$u_4 = \frac{(u_3+1)(9-u_3)}{4} = 5,01$$

$$u_5 = \frac{(u_4+1)(9-u_4)}{4} = 6$$

$$u_6 = \frac{(u_5+1)(9-u_5)}{4} = 5,25$$

$$u_7 = \frac{(u_6+1)(9-u_6)}{4} = 5,86$$

$$u_8 = \frac{(u_7+1)(9-u_7)}{4} = 5,39$$

$$u_3 = \frac{(u_2+1)(9-u_2)}{4} = 6.23$$
 $u_9 = \frac{(u_8+1)(9-u_8)}{4} = 5,77$

$$u_4 = \frac{(u_3+1)(9-u_3)}{4} = 5,01$$
 $u_{10} = \frac{(u_9+1)(9-u_9)}{4} = 5,47$

$$u_5 = \frac{(u_4+1)(9-u_4)}{4} = 6$$
 $u_{11} = \frac{(u_{10}+1)(9-u_{10})}{4} = 5,71$

$$u_6 = \frac{(u_5+1)(9-u_5)}{4} = 5,25$$
 $u_{12} = \frac{(u_{11}+1)(9-u_{11})}{4} = 5,52$

Paris Descartes

2016

Mathématiques et calcul 1

15

Suites

Définitions

Limite d'une suite

Limite

Soit une suite $(u_n)_{n\in\mathbb{N}}$ et L un nombre réel, on dit que u_n a pour limite L si :

$$\forall \varepsilon > 0$$
, $\exists N \in \mathbb{N}$: pour $n \ge N$, $|u_n - L| \le \varepsilon$

Notation : $\lim_{n\to\infty} u_n = L$

On dit aussi : u_n converge vers L

Suites

$$|u_n - L| \le \varepsilon \iff -\varepsilon \le u_n - L \le \varepsilon \iff L - \varepsilon \le u_n \le L + \varepsilon$$

Paris Descartes

2016

Mathématiques et calcul 1

17

Suites

Limite d'une suite

Limite

Exemples de suites convergentes

La suite
$$a_n = 1 - \frac{1}{n+1}$$

Suites a_n convergentes non monotones

Paris Descartes

2016

Mathématiques et calcul 1

19

Suites

Unicité de la limite

Unicité de la limite

$$\forall \varepsilon > 0$$
, $\exists N \in \mathbb{N}$: pour $n \ge N$, $|u_n - L| \le \varepsilon$

Théorème : Si une suite $(u_n)_{n\in\mathbb{N}}$ converge vers une limite L, cette limite est unique.

- ► S'il y a 2 limites différentes L et L': |L-L'| > 0
- ▶ pour $0 < \varepsilon = \frac{|L-L'|}{3}$

$$\exists N \in \mathbb{N} : \text{ si } n \ge N, \quad |u_n - L| \le \varepsilon \quad \text{et} \quad |u_n - L'| \le \varepsilon$$

$$|L-L'| = |L-u_n+u_n-L'| \le |L-u_n|+|u_n-L'| \le \frac{2|L-L'|}{3}$$

Exercice

Rappel : Soit une suite $(u_n)_{n\in\mathbb{N}}$ et L un nombre réel, on dit que

 u_n a pour limite L si :

$$\forall \varepsilon > 0$$
, $\exists N \in \mathbb{N}$: pour $n \ge N$, $|u_n - L| \le \varepsilon$

Exercice: Donner les limites des suites suivantes:

1.
$$u_n = \frac{1}{n}$$

2.
$$V_n = 2 - \frac{1}{n^2}$$

3.
$$W_n = 3 + \frac{(-1)^n}{n}$$

4.
$$X_n = \frac{n+1}{n}$$

Paris Descartes

2016

Mathématiques et calcul 1

21

Suites

Suites bornées

Suites bornées

On dit qu'une suite $(u_n)_{n\in\mathbb{N}}$ est

▶ majorée si : $\exists M \in \mathbb{R}$, $\forall n \in \mathbb{N}$: $u_n \leq M$

▶ minorée si : $\exists m \in \mathbb{R}$, $\forall n \in \mathbb{N}$: $u_n \ge m$

▶ bornée si : $\exists C \in \mathbb{R}$, $\forall n \in \mathbb{N}$: $|u_n| \leq C$

Proposition : bornée ← (majorée et minorée)

Exercice : Dire si les suites suivantes sont majorées, minorées, bornées :

1.
$$u_n = 2n$$

2.
$$v_n = -3n + 6$$

3.
$$w_n = \sin\left(\frac{\pi n}{4}\right)$$

4.
$$x_n = (-1)^n$$

5.
$$y_n = n^2$$

6.
$$z_n = n^2 \times (-1)^n$$

Suites Suites bornées

Propriété des suites convergentes

Proposition: Une suite convergente est bornée

- ▶ Pour $\varepsilon = 1$ $\exists N : n \ge N, |u_n L| \le 1$
- $|u_n| = |u_n L + L| \le |u_n L| + |L| \le 1 + |L|$
- ▶ Il n'y a qu'un nombre fini d'entiers inférieurs à N, l'ensemble $\{|u_0|, |u_1|, \cdots |u_{N-1}|\}$ a donc un plus grand élément : $M = \max_{0 \le i \le N-1} |u_i|$
- ▶ $\forall n \in \mathbb{N}$, soit: n < N et $|u_n| \le M$ soit: $n \ge N$ et $|u_n| \le 1 + |L|$ dans tous les cas: $|u_n| \le \max(M, 1 + |L|)$

Paris Descartes

2016

Mathématiques et calcul 1

23

Suites

Suites divergentes

Une suite qui ne converge pas est dite divergente

Exemples:

$$u_n=\left(-1\right)^n$$
 $u_0=1,\quad u_n=-1,\quad u_2=1,\quad u_3=-1,\quad \dots,\quad u_{2p}=1,\quad u_{2p+1}=-1,\quad \dots$ Supposons que $\lim_{n\to\infty}u_n=L$

- ▶ Pour $\varepsilon = \frac{1}{2}$, $\exists N \in \mathbb{N}$, $\forall n \ge N : |u_n L| \le \frac{1}{2}$
- ▶ Pour $n = 2p \ge N$:

$$\begin{split} 2 &= |u_{2p} - u_{2p+1}| = |u_{2p} - L + L - u_{2p+1}| \\ &\leq |u_{2p} - L| + |u_{2p+1} - L| \leq \frac{1}{2} + \frac{1}{2} = 1 \end{split}$$

Conséquence : une suite bornée n'est pas forcément convergente!

Une suite qui ne converge pas est dite divergente Exemples :

$$u_n = \sqrt{n+1}$$

$$u_0 = \sqrt{1}$$
, $u_1 = \sqrt{2}$, $u_2 = \sqrt{3}$, $u_3 = \sqrt{4}$, ...

- ► Soit $A \in \mathbb{R}$, $A \ge 0$
- ► $\exists N \in \mathbb{N}: A^2 1 \leq N$
- ▶ Alors pour $n \in \mathbb{N}$, $n \ge N$: $A \le \sqrt{n+1} = u_n$

Paris Descartes 2016 Mathématiques et calcul 1 25

Suites

Suites divergentes

On dit qu'une suite $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$ si :

$$\forall A \in \mathbb{R}, A \ge 0, \exists N \in \mathbb{N} : \forall n \ge N, A \le u_n$$

Notation :
$$\lim_{n\to\infty} u_n = +\infty$$

On dit qu'une suite $(u_n)_{n\in\mathbb{N}}$ tend vers $-\infty$ si :

$$\forall A \in \mathbb{R}, A \leq 0, \exists N \in \mathbb{N} : \forall n \geq N, A \geq u_n$$

Notation:
$$\lim_{n\to\infty} u_n = -\infty$$

Exercice: Donner les limites des suites suivantes:

1.
$$u_n = 4n$$

3.
$$w_n = 2n^2$$

2.
$$v_n = -2n + 5$$

4.
$$x_n = -7n^3$$

Limites et opérations

Soit 2 suites, u_n et v_n , convergentes, de limites respectives L et L'.

- ▶ $\forall \lambda \in \mathbb{R}$, $\lim_{n \to \infty} (\lambda u_n) = \lambda L$
- $\lim_{n\to\infty} (u_n + v_n) = L + L'$
- $\lim_{n\to\infty} (u_n.v_n) = L.L'$
- Si $L \neq 0$, $\lim_{n \to \infty} \frac{1}{u_n} = \frac{1}{L}$

Paris Descartes

2016

Mathématiques et calcul 1

28

Suites

Sommes et produits de suites

Limites infinies et opérations

$$\lim_{n\to\infty}u_n=\pm\infty\implies\lim_{n\to\infty}\frac{1}{u_n}=0$$

$$\lim_{n\to\infty} u_n = 0^+ \implies \lim_{n\to\infty} \frac{1}{u_n} = +\infty$$

$$\lim_{n\to\infty} u_n = 0^- \implies \lim_{n\to\infty} \frac{1}{u_n} = -\infty$$

Exercice: Donner les limites des suites suivantes:

$$u_n = \frac{1}{\log(n+2)}$$
 ; $v_n = \frac{1}{\sin(1/n)}$.

Limites des polynomes 1

Proposition:
$$\lim_{n\to\infty} n^p = \begin{cases} +\infty & \text{si } p > 0 \\ 0 & \text{si } p < 0 \end{cases}$$

Exemples:
$$\lim n^3 = +\infty$$
 $\lim \frac{1}{n^2} = 0$

Paris Descartes

2016

Mathématiques et calcul 1

30

Suites

Sommes et produits de suites

Limites des polynomes 2

Rappel:
$$\lim_{n\to\infty} n^p = \begin{cases} +\infty & \text{si } p > 0 \\ 0 & \text{si } p < 0 \end{cases}$$

Conséquence 1:

$$\lim_{n\to\infty} a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0 = \begin{cases} +\infty & \text{si } a_k > 0 \\ -\infty & \text{si } a_k < 0 \end{cases}$$

$$a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0 =$$

$$a_k n^k \left(1 + \frac{a_{k-1}}{a_k} n^{-1} + \frac{a_{k-2}}{a_k} n^{-2} + \dots + \frac{a_1}{a_k} n^{-k+1} + \frac{a_0}{a_k} n^{-k} \right)$$

$$\lim_{n\to\infty}\frac{a_{k-1}}{a_k}n^{-1}=0$$

$$\lim_{n\to\infty}\frac{a_{k-2}}{a_k}n^{-2}=0\dots$$

► donc
$$\lim_{n\to\infty} 1 + \frac{a_{k-1}}{a_k} n^{-1} + \frac{a_{k-2}}{a_k} n^{-2} + \dots + \frac{a_1}{a_k} n^{-k+1} + \frac{a_0}{a_k} n^{-k} = 1$$

Limites des fractions rationnelles

Rappel:
$$\lim_{n\to\infty} n^p = \begin{cases} +\infty & \text{si } p > 0 \\ 0 & \text{si } p < 0 \end{cases}$$

Conséquence 2 :

$$\lim_{n\to\infty} \frac{a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0}{b_\ell n^\ell + b_{\ell-1} n^{\ell-1} + \dots + b_1 n + b_0} = \lim_{n\to\infty} \frac{a_k n^k}{b_\ell n^\ell}$$

$$a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0 =$$

$$a_k n^k \left(1 + \frac{a_{k-1}}{a_k} n^{-1} + \frac{a_{k-2}}{a_k} n^{-2} + \dots + \frac{a_1}{a_k} n^{-k+1} + \frac{a_0}{a_k} n^{-k} \right)$$
tend vers 1

$$b_{\ell}n^{\ell} + b_{\ell-1}n^{\ell-1} + \dots + b_{1}n + b_{0} = b_{\ell}n^{\ell} \underbrace{\left(1 + \frac{b_{\ell-1}}{b_{\ell}}n^{-1} + \dots + \frac{b_{1}}{b_{\ell}}n^{-\ell+1} + \frac{b_{0}}{b_{\ell}}n^{-\ell}\right)}_{\text{tend vers 1}}$$

Paris Descartes

2016

Mathématiques et calcul 1

32

Suites

Sommes et produits de suites

Rappels:

$$\lim_{n \to \infty} n^p = \begin{cases} +\infty & \text{si } p > 0 \\ 0 & \text{si } p < 0 \end{cases}$$

$$\lim_{n \to \infty} \frac{a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0}{b_\ell n^\ell + b_{\ell-1} n^{\ell-1} + \dots + b_1 n + b_0} = \lim_{n \to \infty} \frac{a_k n^k}{b_\ell n^\ell}$$

Exercice: Donner les limites des suites suivantes:

1.
$$u_n = 4n^2 + 3n + 5$$

2.
$$v_n = -2n^3 + n^2 - 4n + 1$$

3.
$$w_n = \frac{4n^2 + 3n + 5}{-2n^3 + n^2 - 4n + 1}$$

4.
$$x_n = \frac{n^5 + 3n^4 + n^2 - n - 2}{-3n^4 + n^3 - 7n - 5}$$

5.
$$y_n = \frac{4n^3 + 5}{-n^3 + 4n^2 - n + 8}$$

6.
$$z_n = \frac{4n^2 + 7n - 6}{-n^2 + 4n + 2}$$

Limites et opérations

Exercice

Soit une suite u_n qui converge vers $L \neq 0$.

Montrer que : $\exists N \in \mathbb{N}$: $\forall n \geq N$, $u_n \neq 0$

- ► Si L > 0: $\exists N \in \mathbb{N}$: $\forall n \ge N$, $|u_n L| < \frac{L}{2}$. Or $|u_n - L| \ge L - u_n$, donc $u_n \ge L - |u_n - L| \ge L - \frac{L}{2} = \frac{L}{2} > 0.$
- ► Si L < 0: soit $v_n = -u_n$: converge vers -L > 0, donc par ce qui précède, $\exists N \in \mathbb{N}$: $\forall n \geq N$, $v_n > 0$; càd $u_n < 0$

Paris Descartes

2016

Mathématiques et calcul 1

34

Suites

Comparaison de suites

Limites et inégalités

Soit 2 suites, u_n et v_n .

▶ Si $\forall n \in \mathbb{N}$, $u_n \le v_n$ et si u_n et v_n convergent,

$$\lim_{n\to\infty}u_n\leq\lim_{n\to\infty}v_n$$

En particulier : si u_n converge et si $\forall n \in \mathbb{N}$, $u_n \ge a$

$$\lim_{n\to\infty}u_n\geq a$$

Attention: même si $\forall n \in \mathbb{N}, \quad u_n > a, \quad \lim_{n \to \infty} u_n \ge a$

$$\forall n \in \mathbb{N}^*$$
, $u_n = \frac{1}{n} > 0$, mais $\lim_{n \to \infty} u_n = 0$

Limites et inégalités

Soit 3 suites, a_n , b_n et c_n .

- ▶ si $\forall n \in \mathbb{N}$, $a_n \leq b_n \leq c_n$
- ▶ si a_n et c_n convergent
- ightharpoonup si $\lim_{n\to\infty}a_n=\lim_{n\to\infty}c_n$

Alors:

$$b_n$$
 converge et $\lim_{n\to\infty} b_n = \lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n$

Paris Descartes

2016

Mathématiques et calcul 1

36

Suites

Comparaison de suites

$$\forall n \in \mathbb{N}^*, \quad v_n = \frac{(-1)^n}{n^2}.$$

Soient
$$u_n = \frac{-1}{n^2}$$
 et $w_n = \frac{1}{n^2}$

$$\forall n \in \mathbb{N}^*, \quad u_n \le v_n \le w_n$$

$$\lim_{n\to\infty}u_n=0=\lim_{n\to\infty}w_n$$

$$\hookrightarrow$$
 donc $\lim_{n\to+\infty} v_n = 0$

Exercice: Donner les limites des suites suivantes:

1.
$$u_n = \frac{3n+6+(-1)^n}{5n+5}$$

2.
$$v_n = \frac{\sin(n\pi/6)}{n^2}$$

3.
$$w_n = \frac{n^3 + 2n^2((-1)^n + 4) + 5n - 1}{3n^3 + n^2 + 4n + 1}$$

4.
$$z_n = \frac{n^4 - 5n^3((-1)^n + 4\sin(n\pi/8)) + 5n^2 - 6n - 7}{3n^5 + n^4 + 4n^3 + n^2 + n + 1}$$

Paris Descartes

2016

Mathématiques et calcul 1

38

Suites

Comparaison de suites

$$\forall n \in \mathbb{N}^*, \quad V_n = \frac{1}{n} + \frac{1}{n + \sqrt{1}} + \frac{1}{n + \sqrt{2}} + \dots + \frac{1}{n + \sqrt{n}}$$

$$V_{1} = \frac{1}{1} + \frac{1}{1+\sqrt{1}}$$

$$V_{2} = \frac{1}{2} + \frac{1}{2+\sqrt{1}} + \frac{1}{2+\sqrt{2}}$$

$$V_{3} = \frac{1}{3} + \frac{1}{3+\sqrt{1}} + \frac{1}{3+\sqrt{2}} + \frac{1}{3+\sqrt{3}}$$

$$V_{4} = \frac{1}{4} + \frac{1}{4+\sqrt{1}} + \frac{1}{4+\sqrt{2}} + \frac{1}{4+\sqrt{3}} + \frac{1}{4+\sqrt{4}}$$

►
$$\forall k: 0 \le k \le n, \quad n \le n + \sqrt{k} \le n + \sqrt{n}$$

▶ Donc:
$$\forall k$$
: $0 \le k \le n$, $u_n = \frac{n+1}{n+\sqrt{n}} \le v_n \le \frac{n+1}{n} = w_n$

Technique de calcul

$$\forall n \in \mathbb{N}^*$$
, $V_n = \frac{1}{n} + \frac{1}{n+\sqrt{1}} + \frac{1}{n+\sqrt{2}} + \cdots + \frac{1}{n+\sqrt{n}}$

$$\forall k: \quad 0 \le k \le n, \qquad n \le n + \sqrt{k} \le n + \sqrt{n}$$

$$\Rightarrow \quad 0 \le k \le n, \qquad \frac{1}{n + \sqrt{n}} \le \frac{1}{\le n + \sqrt{k}} \le \frac{1}{n}$$

$$n+1 \text{ lignes} \begin{cases} k=0 & \frac{1}{n+\sqrt{n}} & \leq & \frac{1}{n} & \leq & \frac{1}{n} \\ k=1 & \frac{1}{n+\sqrt{n}} & \leq & \frac{1}{n+\sqrt{1}} & \leq & \frac{1}{n} \\ k=2 & \frac{1}{n+\sqrt{n}} & \leq & \frac{1}{n+\sqrt{2}} & \leq & \frac{1}{n} \\ k=3 & \frac{1}{n+\sqrt{n}} & \leq & \frac{1}{n+\sqrt{3}} & \leq & \frac{1}{n} \\ \cdots & \cdots & \cdots & \cdots \\ k=n & \frac{1}{n+\sqrt{n}} & \leq & \frac{1}{n+\sqrt{n}} & \leq & \frac{1}{n} \end{cases}$$

$$\frac{n+1}{n+\sqrt{n}} & \leq V_n & \leq \frac{n+1}{n}$$

41

Paris Descartes

2016

Mathématiques et calcul 1

Suites

Comparaison de suites

$$\forall n \in \mathbb{N}^*, \quad v_n = \frac{1}{n} + \frac{1}{n + \sqrt{1}} + \frac{1}{n + \sqrt{2}} + \dots + \frac{1}{n + \sqrt{n}}$$

►
$$\forall k: 0 \le k \le n, \quad n \le n + \sqrt{k} \le n + \sqrt{n}$$

▶ Donc:
$$\forall k$$
: $0 \le k \le n$, $u_n = \frac{n+1}{n+\sqrt{n}} \le v_n \le \frac{n+1}{n} = w_n$

•
$$u_n = \frac{n+1}{n+\sqrt{n}} = \frac{1+\frac{1}{n}}{1+\frac{1}{\sqrt{n}}}$$
, donc : $\lim_{n\to\infty} u_n = 1$

•
$$w_n = \frac{n+1}{n} = 1 + \frac{1}{n}$$
, donc : $\lim_{n \to \infty} w_n = 1$

$$\lim_{n\to\infty}v_n=1$$

Limites et inégalités

Attention : si $\lim_{n\to\infty} u_n \neq \lim_{n\to\infty} w_n$ la conclusion est fausse!

$$u_n = -2 - \frac{1}{n}$$
, $v_n = (-1)^n$, $w_n = 2 + \frac{1}{n}$

- ▶ $\forall n \in \mathbb{N}$, $u_n \leq v_n \leq w_n$
- $\triangleright u_n$ et w_n convergent :

$$\lim_{n\to\infty}u_n=-2\qquad \lim_{n\to\infty}w_n=2$$

▶ mais : v_n ne converge pas!

Paris Descartes

2016

Mathématiques et calcul 1

43

Suites

Comparaison de suites

Théorème : Soient u_n et v_n des suites telles que pour tout n,

$$u_n \leq v_n$$
.

Alors

$$\lim u_n = +\infty \implies \lim v_n = +\infty$$

et

$$\lim v_n = -\infty \implies \lim u_n = -\infty.$$

Exercice: Prouver ce théorème.

Exercice: Donner les limites des suites suivantes:

1.
$$u_n = n^2 + (-1)^n$$

2.
$$v_n = -n^4 + 3n^3 + 5n^2 + 2n - 1 + \cos(2\pi n/7)$$

Limites et valeurs absolues

Proposition : Si $\lim_{n\to\infty} u_n = L$, $\lim_{n\to\infty} |u_n| = |L|$

$$\left| |u_n| - |L| \right| \le |u_n - L|$$

Attention : si $\lim_{n\to\infty} |u_n| = |L|$, la suite u_n peut ne pas être convergente!

$$u_n = (-1)^n$$

Paris Descartes

2016

Mathématiques et calcul 1

45

Suites

Valeurs absolues

Théorème : Si $(v_n)_{n\in\mathbb{N}}$ est une suite telle que $|v_n|$ converge vers 0, alors $\lim_{n\to\infty}v_n=0$

- ► Soient $u_n = -|v_n|$ et $w_n = |v_n|$
- ▶ on a $u_n \le v_n \le w_n$
- $\lim_{n\to\infty} u_n = 0 = \lim_{n\to\infty} w_n$
- \hookrightarrow donc u_n converge vers 0

Théorème : Si $(u_n)_{n\in\mathbb{N}}$ est une suite bornée et $(v_n)_{n\in\mathbb{N}}$ est une suite qui converge vers 0, alors $\lim_{n\to\infty} u_n.v_n=0$

- ▶ $\exists M \in \mathbb{R}$, $\forall n \in \mathbb{N}$, $|u_n| \leq M$
- $ightharpoonup 0 \le |u_n.v_n| \le M.|v_n|$
- ▶ puisque $\lim_{n\to\infty} v_n = 0$, $\lim_{n\to\infty} u_n \cdot v_n = 0$

Attention : si $\lim_{n\to\infty} v_n = L \neq 0$, c'est faux !

 $u_n = (-1)^n$ est bornée, $v_n = 2 \quad \forall n \in \mathbb{N}$ est convergente,

mais: $u_n.v_n = (-1)^n.2$ ne converge pas!

Paris Descartes

2016

Mathématiques et calcul 1

47

Suites

Valeurs absolues

Exemple

Trouver la limite de la suite $u_n = (\cos(n))\sin(\frac{(-1)^n}{\sqrt{n}})$

- ► La suite $(-1)^n$ est bornée, la suite $\frac{1}{\sqrt{n}}$ converge vers 0; donc la suite $\frac{(-1)^n}{\sqrt{n}}$ converge vers 0
- ▶ donc la suite $sin(\frac{(-1)^n}{\sqrt{n}})$ converge aussi vers 0 puisque sin 0 = 0
- ▶ La suite cos(n) est bornée et la suite $sin(\frac{(-1)^n}{\sqrt{n}})$ converge vers 0 , donc la suite u_n converge vers 0

Exercice: Trouver la limite de la suite $v_n = \left((1 + \frac{1}{n})\cos(2\pi n/3)\right)\left(\frac{(-1)^n}{n^{4/3}}\right)$

Suite arithmétique

Soit a et r deux nombres réels, la suite $u_n = a + nr$ s'appelle une suite arithmétique de terme initial a et de raison r.

Proposition : Si
$$r > 0$$
, $\lim_{n \to \infty} u_n = +\infty$
Si $r < 0$, $\lim_{n \to \infty} u_n = -\infty$
Si $r = 0$, $\lim_{n \to \infty} u_n = a$

- ► Si r > 0, soit $A \in \mathbb{R}$, A > 0. $\exists N \in \mathbb{N}$: $N > \frac{A-a}{r}$
- ▶ $\forall n \in \mathbb{N}$, $n \ge N$, $u_n = a + nr \ge A$

$$\lim_{n\to\infty}u_n=+\infty$$

Paris Descartes

2016

Mathématiques et calcul 1

49

Suites

Suites arithmétiques

Exemples importants

Somme d'une suite arithmétique

$$S = \sum_{k=0}^{n} a + kr = \frac{(n+1)(2a+nr)}{2}$$

$$+ S = a + a+r + a+2r + \cdots + a+(n-1)r + a+nr$$

 $+ S = a+nr + a+(n-1)r + a+(n-2)r + \cdots + a+r + a$
 $+ S = a+nr + a+(n-1)r + a+(n-2)r + \cdots + a+r + a+nr$
 $+ S = a+nr + a+r + a+nr$
 $+ S = a+nr + a+r + a+nr$

$$2S = (n+1)(2a+nr)$$

Si
$$a = 0$$
 et $r = 1$ $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$

Suite géométrique

Soit $a \in \mathbb{R}$ et $u_n = a^n$, $\forall n \in \mathbb{N}$

1. Si
$$a > 1$$
, $\lim_{n \to \infty} a^n = +\infty$

2. Si
$$|a| < 1$$
, $\lim_{n \to \infty} a^n = 0$

3. Si
$$a = 1$$
, $\lim_{n \to \infty} a^n = 1$

4. Si $a \le -1$, a^n n'est pas convergente

Si
$$a > 1$$
: $a = 1 + h$, $h > 0$

$$a^{n} = (1+h)^{n} = \sum_{k=0}^{n} {n \choose k} h^{k} = 1 + n.h + \sum_{k=2}^{n} {n \choose k} h^{k} \underbrace{\sum_{k=2}^{n} {n \choose k} h^{k}}_{>0} \ge 1 + n.h$$

UNIVERSITÉ PARIS DESCARTES

Paris Descartes

2016

Mathématiques et calcul 1

51

Suites

Suites géométrique

Rappel

Pour tous nombres (entiers,..., réels, complexes) a et b et tout nombre entier $n \neq 0$:

$$(a+b)^n = \sum_{p=0}^{p=n} {n \choose p} a^p . b^{n-p} = \sum_{p=0}^{p=n} {n \choose p} a^{n-p} . b^p$$

$$(a+b)^{2} = a^{2} + 2a.b + b^{2}$$
$$(a+b)^{3} = a^{3} + 3a^{2}.b + 3a.b^{2} + b^{3}$$
$$(a+b)^{6} = a^{6} + 6a^{5}.b + 15a^{4}.b^{2} + 20a^{3}.b^{3} + 15a^{2}.b^{4} + 6a.b^{5} + b^{6}$$

Suite géométrique

Soit $a \in \mathbb{R}$ et $u_n = a^n$, $\forall n \in \mathbb{N}$

1. Si
$$a > 1$$
, $\lim_{n \to \infty} a^n = +\infty$

2. Si
$$|a| < 1$$
, $\lim_{n \to \infty} a^n = 0$

3. Si
$$a = 1$$
, $\lim_{n \to \infty} a^n = 1$

4. Si $a \le -1$, a^n n'est pas convergente

Si
$$|a| < 1$$
 et $a \neq 0$, $\frac{1}{|a|} > 1$, $\lim_{n \to \infty} \left(\frac{1}{|a|}\right)^n = +\infty$ $\lim_{n \to \infty} |a|^n = 0$

Si
$$a = 0$$
, $a^n = 0$: $\lim_{n \to \infty} a^n = 0$

Paris Descartes

2016

Mathématiques et calcul 1

54

Suites

Suites géométriques

Exemples importants

Suite géométrique

Soit
$$a \in \mathbb{R}$$
 et $u_n = a^n$, $\forall n \in \mathbb{N}$

1. Si
$$a > 1$$
,
$$\lim_{n \to \infty} a^n = +\infty$$

2. Si
$$|a| < 1$$
, $\lim_{n \to \infty} a^n = 0$

3. Si
$$a = 1$$
, $\lim_{n \to \infty} a^n = 1$

4. Si
$$a \le -1$$
, a^n n'est pas convergente

Si
$$a < -1$$
, $|a| > 1$, $\lim_{n \to \infty} |a|^n = +\infty$ a^n n'est pas bornée

Si
$$a = -1$$
, $a^n = (-1)^n$

Rappel

Proposition: Une suite convergente est bornée

- Pour $\varepsilon = 1$ $\exists N : n \ge N, |u_n L| \le 1$
- $|u_n| = |u_n L + L| \le |u_n L| + |L| \le 1 + |L|$
- ▶ Il n'y a qu'un nombre fini d'entiers inférieurs à N, l'ensemble $\{|u_0|, |u_1|, \cdots |u_{N-1}|\}$ a donc un plus grand élément : $M = \max_{0 \le i \le N-1} |u_i|$
- ▶ $\forall n \in \mathbb{N}$, soit: n < N et $|u_n| \le M$ soit: $n \ge N$ et $|u_n| \le 1 + |L|$ dans tous les cas: $|u_n| \le \max(M, 1 + |L|)$

58

Paris Descartes 2016 Mathématiques et calcul 1

Suites

Suites géométriques

Exemples importants

Somme d'une suite géométrique

Soit $a \in \mathbb{R} \setminus \{1\}$.

$$S = \sum_{k=0}^{n} a^{k} = \frac{1 - a^{n+1}}{1 - a}$$

$$-\frac{S}{S.a} = \frac{1}{a} + \frac{a}{a} + \frac{a^{2}}{a^{2}} + \frac{a^{3}}{a^{3}} + \cdots + \frac{a^{n}}{a^{n}} + \frac{a^{n+1}}{a^{n+1}}$$

$$S-S.a = 1$$

$$S(1-a) = 1-a^{n+1}$$

Somme d'une suite géométrique

Soit $a \in \mathbb{R} \setminus \{1\}$.

$$S = \sum_{k=0}^{n} a^{k} = \frac{1 - a^{n+1}}{1 - a}$$

Si
$$|a| < 1$$
, $u_n = 1 + a + a^2 + \dots + a^n$

$$\lim_{n\to\infty}u_n=\frac{1}{1-a}$$

Paris Descartes

2016

Mathématiques et calcul 1

60

Suites

Suites géométriques

Exercice : Soit $a \in \mathbb{R} \setminus \{1\}$. Montrer que pour tous $0 \le m \le n$,

$$\sum_{k=m}^{n} a^{k} = a^{m} \times \frac{1 - a^{n-m+1}}{1 - a}.$$

Exercice: Montrer que

$$0.99999999\cdots = 1.$$

Ou'en déduisez-vous?

Exercice: Donner la limite de $u_n = \left(\frac{1}{2} + \frac{1}{3n}\right)^n$.

Exercice: Soit

$$u_n = 2^n$$
 $v_n = 6^n$.

Donner les limites de u_n , de v_n , de u_nv_n et de u_n+v_n . Donner ensuite la limite de u_n/v_n pour en déduire la limite de u_n-v_n

Exemples importants Suites u_n telles que : $\left|\frac{u_{n+1}}{u}\right| < \alpha < 1$

Soit $\alpha \in \mathbb{R}$, $0 < \alpha < 1$ et $(u_n)_{n \in \mathbb{N}}$ une suite telle que :

$$\forall n \in \mathbb{N}, \quad u_n \neq 0, \quad \text{et} \quad \left| \frac{u_{n+1}}{u_n} \right| < \alpha$$

$$\lim_{n\to\infty}u_n=0$$

$$|\frac{u_n}{u_0}| = |\frac{u_1}{u_0}||\frac{u_2}{u_1}||\frac{u_3}{u_2}|\cdots|\frac{u_n}{u_{n-1}}| = \prod_{k=1}^n |\frac{u_k}{u_{k-1}}| < \alpha^n$$

- $|u_n| < \alpha^n |u_0|$
- $\qquad \qquad \bullet \quad \alpha < 1, \quad \lim_{n \to \infty} \alpha^n = 0$

Paris Descartes

2016

Mathématiques et calcul 1

62

Suites

Exemples importants

Suites géométriques

$$\lim_{n\to\infty}\frac{a^n}{n!}$$

$$a \neq 0$$
, $u_n = \frac{a^n}{n!}$

$$\frac{u_{n+1}}{u_n} = \frac{a^{n+1}}{(n+1)!} \frac{n!}{a^n} = \frac{a}{n+1}$$

- ► $\exists N \in \mathbb{N} : N > 2|a|$
- ► Pour $n \ge N$, $\left| \frac{u_{n+1}}{u} \right| = \frac{|a|}{n+1} \le \frac{|a|}{N+1} \le \frac{|a|}{N} < \frac{1}{2}$

$$|\frac{u_n}{u_N}| = |\frac{u_{N+1}}{u_N}||\frac{u_{N+2}}{u_{N+1}}|\cdots|\frac{u_n}{u_{n-1}}| = \prod_{k=N+1}^{k=n} |\frac{u_k}{u_{k-1}}| < (\frac{1}{2})^{n-N} = (\frac{1}{2})^n \cdot 2^N$$

$$|u_n| < (\frac{1}{2})^n \cdot 2^N \cdot |u_N| \quad \text{or } \lim_{n \to \infty} (\frac{1}{2})^n = 0 \quad \text{donc } \lim_{n \to \infty} u_n = 0$$

Exercice: Donner les limites des suites suivantes:

1.
$$u_n = 3^n$$

2.
$$v_n = (0.5)^n$$

3.
$$W_n = 2^n + 5^n$$

4.
$$x_n = 2^n - 5^n$$

5.
$$y_n = 2^n - \frac{5^n}{n!}$$

6.
$$z_n = (-0.2)^n - 5^n$$

7.
$$t_n = \frac{3^{n+1}-1}{2^n+1}$$

Paris Descartes

2016

Mathématiques et calcul 1

64

Suites

Suites monotones

Quelques définitions

On dit qu'une suite $(u_n)_{n\in\mathbb{N}}$ est

▶ croissante si : $\forall n \in \mathbb{N}$, $u_{n+1} \ge u_n$

▶ décroissante si : $\forall n \in \mathbb{N}$, $u_{n+1} \leq u_n$

Pour étudier la croissance (ou la décroissance) d'une suite, on calcule

$$u_{n+1} - u_n$$

et on étudie le signe de la différence.

Exemple : Soit la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_n = \ln(n+1) - \ln(n)$

$$u_{n+1} - u_n = \left(\ln(n+2) - \ln(n+1) \right) - \left(\ln(n+1) - \ln(n) \right)$$

$$= \ln\left(\frac{n+2}{n+1}\right) + \ln\left(\frac{n}{n+1}\right)$$

$$= \ln\left(\frac{n(n+2)}{(n+1)^2}\right)$$

$$\frac{n(n+2)}{\left(n+1\right)^{2}} < 1 \quad \text{donc} \quad u_{n+1} - u_{n} = \ln\left(\frac{n(n+2)}{\left(n+1\right)^{2}}\right) < 0$$

$$u_{n} \text{ est décroissante.}$$

Paris Descartes

2016

Mathématiques et calcul 1

66

Suites

Suites monotones

Si $\forall n \in \mathbb{N}$, $u_n > 0$, pour étudier la croissance de u_n , on peut calculer :

$$\frac{U_{n+1}}{U_n}$$

- ▶ si $\frac{u_{n+1}}{u_n} \ge 1$, la suite est croissante
- ▶ si $\frac{u_{n+1}}{u_n} \le 1$, la suite est décroissante

Exemple : Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = ne^{-\frac{1}{n!}}$

$$\frac{u_{n+1}}{u_n} = \frac{(n+1)e^{-\frac{1}{(n+1)!}}}{ne^{-\frac{1}{n!}}}$$
$$= \frac{n+1}{n}e^{\frac{1}{n!}-\frac{1}{(n+1)!}}$$
$$= \frac{n+1}{n}e^{\frac{n}{(n+1)!}} > 1$$

La suite u_n est donc croissante

Paris Descartes 2016 Mathématiques et calcul 1 68

Suites Suites monotones

Exercice: Donner la monotonie des suites suivantes:

1.
$$u_n = \frac{3}{n+5}$$

2.
$$v_n = \frac{n}{n^2 + 1}$$

- 3. w_n définie par $w_0 = 1$ et $w_{n+1} = w_n + w_n^2$
- 4. x_n définie par $x_0 = 1$ et $x_{n+1} = \sqrt{1 + x_n^2}$.

Exercice : Soit u_n définie par $u_0 = 1$, $u_{n+1} = u_n + 2n + 3$.

- 1. Etudier la monotonie de u_n .
- 2. Montrer que pour tout n, $u_n > n^2$.
- 3. Donner la limite de u_n .

Suites Suites monotones

Limites et monotonie

Théorème:

- ► Une suite croissante et majorée converge.
- ► Une suite décroissante et minorée converge.
- ▶ Une suite croissante et non majorée tend vers $+\infty$.
- ▶ Une suite décroissante et non minorée tend vers $-\infty$.

Paris Descartes 2016 Mathématiques et calcul 1 70

Suites Suites monotones

Suite a_n croissante et majorée

Suites Suites monotones

Limites et monotonie

Une suite croissante et majorée converge

Soit $(u_n)_{n\in\mathbb{N}}$ une suite croissante et $A = \{u_n \mid n \in \mathbb{N}\}$

- $\rightarrow A \neq \emptyset$
- ▶ La suite est majorée ($\forall n \in \mathbb{N} \quad u_n \leq M$), donc A est majorée :

 $A \subset \mathbb{R}$ donc A admet une borne supérieure L.

- ▶ $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$: $L \varepsilon < u_N \le L$
- ► La suite est croissante, donc : $\forall n \in \mathbb{N}, n \geq N : L \varepsilon < u_N \leq u_n \leq L + \varepsilon$ $|u_n L| \leq \varepsilon$

 \hookrightarrow la suite u_n a pour limite L

Paris Descartes

2016

Mathématiques et calcul 1

72

Suites

Suites monotones

Rappel

Soit une suite $(u_n)_{n\in\mathbb{N}}$ et L un nombre réel, on dit que u_n a pour limite L si :

 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$: pour $n \ge N$, $|u_n - L| \le \varepsilon$

Notation : $\lim_{n\to\infty} u_n = L$

On dit aussi : u_n converge vers L

$$|u_n - L| \le \varepsilon \iff -\varepsilon \le u_n - L \le \varepsilon \iff L - \varepsilon \le u_n \le L + \varepsilon$$

Rappel

Soit une suite $(u_n)_{n\in\mathbb{N}}$ et L un nombre réel, on dit que u_n a pour limite L si :

$$\forall \varepsilon > 0$$
, $\exists N \in \mathbb{N}$: pour $n \ge N$, $|u_n - L| \le \varepsilon$

Notation : $\lim_{n\to\infty} u_n = L$

On dit aussi : u_n converge vers L

$$|u_n - L| \le \varepsilon \iff -\varepsilon \le u_n - L \le \varepsilon \iff L - \varepsilon \le u_n \le L + \varepsilon$$

Paris Descartes

2016

Mathématiques et calcul 1

74

Suites

Cuitas manatanas

Exemple

$$u_0 = 0$$
, $u_{n+1} = \frac{u_n^2 + 1}{2}$

$$u_1 = \frac{1}{2}$$

$$u_2 = \frac{\frac{1}{4} + 1}{2} = \frac{5}{8}$$

$$u_3 = \frac{89}{128}$$

. . .

Exemple

$$u_0 = 0$$
, $u_{n+1} = \frac{u_n^2 + 1}{2}$

- ▶ Montrons que pour tout $n, u_n \in [0, 1]$:
 - ▶ Vrai pour n = 0.
 - ▶ Si $0 \le u_n \le 1$, alors $\frac{0^2+1}{2} \le \frac{u_n^2+1}{2} \le \frac{1^2+1}{2}$, càd $\frac{1}{2} \le u_{n+1} \le 1$. ▶ Donc c'est vrai pour tout $n \in \mathbb{N}$.

 $\hookrightarrow u_n$ est majorée

- u_n est croissante : $u_{n+1} u_n = \frac{u_n^2 + 1}{2} u_n = \frac{(u_n 1)^2}{2} \ge 0$
- ▶ Donc u_n converge vers une limite L
- $u_{n+1} \longrightarrow L \text{ et } u_{n+1} = \frac{u_n^2 + 1}{2} \longrightarrow \frac{L^2 + 1}{2}, \text{ donc } L = \frac{L^2 + 1}{2}, \text{ càd}$ $(L-1)^2=0$
- ▶ Donc L = 1.

u_n converge vers 1

Paris Descartes

2016

Mathématiques et calcul 1

77

Suites

Suites monotones

Exemple

$$u_n = \sum_{k=0}^n \frac{1}{k!}$$

 $ightharpoonup u_n$ est croissante : pour tout n,

$$u_{n+1} - u_n = \sum_{k=0}^{n+1} \frac{1}{k!} - \sum_{k=0}^{n} \frac{1}{k!} = \frac{1}{(n+1)!} \ge 0$$

Montrons que pour tout $n \ge 1$, $n! \ge 2^{n-1}$:

$$1! = 1 = 2^{1-1}$$
 et pour $n \ge 2$, $n! = 2 \times 3 \times \cdots \times n \ge 2 \times 2 \times \cdots \times 2 = 2^{n-1}$

Donc pour tout n,

$$u_n \le 1 + \sum_{k=1}^n \frac{1}{2^{k-1}} = 1 + \sum_{\ell=0}^{n-1} \frac{1}{2^{\ell}} = 1 + \frac{1 - \frac{1}{2^n}}{1 - \frac{1}{2}} \le 3$$

Donc u_n converge vers une limite L

u_n converge

(vous verrez plus tard que L = e)

Exemple

$$u_n = \sum_{k=1}^n \frac{1}{k^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$$

$$u_1 = 1$$

$$u_2 = 1 + \frac{1}{2^2}$$

$$u_3 = 1 + \frac{1}{2^2} + \frac{1}{3^2}$$

$$u_4 = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2}$$

$$u_5 = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2}$$

...........

Paris Descartes

2016

Mathématiques et calcul 1

79

Suites

Exemple

Suites monotones

$$u_n = \sum_{k=1}^n \frac{1}{k^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$$

- $u_{n+1} u_n = \sum_{k=1}^{n+1} \frac{1}{k^2} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{1}{(n+1)^2} > 0$ u_n est croissante
- \blacktriangleright $\forall n \in \mathbb{N}, u_n \leq 2 \frac{1}{n}$
 - 1. vraie pour $n = 1 : u_1 = 1 \le 2 \frac{1}{1}$
 - 2. supposons $u_n \le 2 \frac{1}{n}$ (hypothèse de récurrence)
 - 3. $u_{n+1} = u_n + \frac{1}{(n+1)^2} \le 2 \frac{1}{n} + \frac{1}{(n+1)^2}$
 - 4. $\frac{1}{(n+1)^2} = \frac{1}{(n+1)(n+1)} \le \frac{1}{n(n+1)} = \frac{1}{n} \frac{1}{n+1}$
 - 5. $u_{n+1} \le 2 \frac{1}{n} + \frac{1}{(n+1)^2} \le 2 \frac{1}{n} + \frac{1}{n} \frac{1}{n+1} = 2 \frac{1}{n+1}$
- ▶ $\forall n \in \mathbb{N}$: $u_n \le 2 \frac{1}{n} \le 2$ u_n est majorée

 u_n est convergente

Exercice : Soit v_n définie par $v_0 = 1/2$ et $v_{n+1} = v_n - v_n^2$.

- 1. Quelle est la monotonie de v_n ?
- 2. Montrer que pour tout n, $0 \le v_n \le 1$.
- 3. Montrer que v_n converge et donner sa limite.

Exercice: Soit v_n définie par $v_0 = 1$ et $v_{n+1} = \frac{v_n^2}{1 + v_n^2}$.

- 1. Montrer que pour tout n, $0 < v_n \le 1$.
- 2. Quelle est la monotonie de v_n ?
- 3. Montrer que v_n converge et donner sa limite.

Paris Descartes

2016

Mathématiques et calcul 1

81

Suites

Suites adjacentes

Suites adjacentes

Théorème: Soit deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telles que :

- 1. v_n est croissante et u_n est décroissante
- $2. \lim_{n\to\infty} (u_n v_n) = 0$

Alors:

- 1. les deux suites u_n et v_n convergent
- $2. \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n$

Deux suites qui vérifient ces hypothèses sont dites adjacentes

Suites adjacentes

$$u_n = \sum_{k=0}^n \frac{1}{k!}, \quad v_n = u_n + \frac{1}{n!n}$$

▶ $\forall n \in \mathbb{N}$, $u_{n+1} - u_n = \frac{1}{(n+1)!} \ge 0$ u_n est donc croissante

▶
$$\forall n \in \mathbb{N}$$
,
 $v_{n+1} - v_n = (u_{n+1} - u_n) + \frac{1}{(n+1)!(n+1)} - \frac{1}{n!n}$

$$= \frac{1}{(n+1)!} + \frac{1}{(n+1)!(n+1)} - \frac{1}{n!n}$$

$$= -\frac{1}{n(n+1)!(n+1)} \le 0$$

 v_n est décroissante

 $v_n - u_n = \frac{1}{n!n} \ge 0 \text{ et } v_n - u_n \to 0, \text{ quand } n \to \infty$

Paris Descartes

2016

Mathématiques et calcul 1

83

Suites

Suites adjacentes

Suites adjacentes

Démonstration

▶ On a $u_n - v_n$ décroissante et tendant vers 0, donc positive, donc on a le classement :

$$v_0 \leq v_1 \leq v_2 \leq \cdots \leq v_n \leq \cdots \leq u_n \leq \cdots \leq u_2 \leq u_1 \leq u_0$$

- $ightharpoonup v_n$ est majorée par u_0 , comme elle est croissante, elle converge vers L
- u_n est minorée par v_0 , comme elle est décroissante, elle converge vers L'

Comme
$$\lim_{n\to\infty} (v_n - u_n) = 0$$
, $L = L'$

Exercice: Dans chaque cas suivant, dire si les suites (u_n) et (v_n) sont adjacentes. Dans l'affirmative, donner leur limite commune.

1.
$$u_n = -\frac{1}{n+1}$$
 $v_n = \frac{1}{n+3}$

2.
$$u_n = 1 - \frac{1}{n+1}$$
 $v_n = 1 + \sin(\frac{\pi}{2n+2})$

3.
$$u_n = \frac{n+1}{n+1}$$
 $v_n = \frac{n+3}{n}$

4.
$$u_n = 1 - \frac{2}{n+1}$$
 $v_n = \frac{2n}{n+3}$

Paris Descartes 2016

Mathématiques et calcul 1

85

Suites Suites extraites

Soit une suite $(u_n)_{n\in\mathbb{N}}$.

On peut construire plusieurs suites à partir de $(u_n)_{n\in\mathbb{N}}$:

- ▶ La suite des termes de rang pair : $v_n = u_{2n}$
- ▶ La suite des termes de rang impair : $w_n = u_{2n+1}$
- ▶ La suite des termes de rang multiple de 3 : $a_n = u_{3n}$
- **•** . . .

La construction repose sur deux moyens :

- 1. on choisit certains termes de la suite
- 2. on ne revient pas en arrière

Suites Suites extraites

Soit $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ une application strictement croissante.

On appelle suite extraite de la suite $(u_n)_{n\in\mathbb{N}}$ une suite $(v_n)_{n\in\mathbb{N}}$ telle que : $v_n=u_{\varphi(n)}$

Exemples:

- $\varphi(n) = 2n$: suite des termes de rang pair: $v_n = u_{\varphi(n)} = u_{2n}$
- $\varphi(n) = 2n + 1$: suite des termes de rang pair : $W_n = U_{\varphi(n)} = U_{2n+1}$
- $\varphi(n) = 3n$: suite des termes de rang multiple de 3 : $a_n = u_{\varphi(n)} = u_{3n}$

Paris Descartes 2016 Mathématiques et calcul 1 87

Suites Suites extraites

Proposition: Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergente vers L.

Toute suite v_n extraite de la suite $(u_n)_{n\in\mathbb{N}}$ converge vers la même limite L.

(Proposition admise)

Cette proposition est utile pour montrer qu'une suite ne converge pas.

Suites Suites extraites

Exemple : $u_n = (-1)^n$

Si u_n converge vers L, toute suite extraite de u_n converge aussi vers L

- ▶ La suite extraite $v_n = u_{2n} = 1$, $\forall n \in \mathbb{N}$, donc $\lim_{n \to \infty} v_n = 1$
- ▶ La suite extraite $w_n = u_{2n+1} = -1$, $\forall n \in \mathbb{N}$, donc $\lim_{n \to \infty} w_n = -1$

Paris Descartes 2016 Mathématiques et calcul 1 89

Suites Suites extraites

Proposition : Soit u_n une suite; on pose $v_n = u_{2n}$ et $w_n = u_{2n+1}$.

$$\lim_{n\to\infty} u_n = L \quad \Leftrightarrow \quad \lim_{n\to\infty} v_n = \lim_{n\to\infty} w_n = L$$

Suites Suites extraites

Démonstration.

1.
$$\lim_{n\to\infty} u_n = L \implies \lim_{n\to\infty} v_n = \lim_{n\to\infty} w_n = L$$

2. $\lim_{n\to\infty} v_n = \lim_{n\to\infty} w_n = L \implies \lim_{n\to\infty} u_n = L$

1. Les suites $v_n = u_{2n}$ et $w_n = u_{2n+1}$ sont extraites de la suite u_n qui converge vers L, elles convergent donc aussi vers L

 $\triangleright v_n$ et w_n convergent vers L, donc : 2.

$$\forall \varepsilon$$
, $\exists N_1 \text{ et } \exists N_2$:

 $\forall n \geq N_1, |v_n - L| \leq \varepsilon$, et $\forall n \geq N_2, |w_n - L| \leq \varepsilon$ donc pour $N = \max\{N_1, N_2\}$,

$$\forall \varepsilon$$
, $\exists N$: $\forall n \geq N$, $|v_n - L| \leq \varepsilon$, et $|w_n - L| \leq \varepsilon$

- ► Soit n > 2N (donc $n \ge 2N + 1$):
 - Si n est pair, n = 2p et p > N donc : $|u_n - L| = |u_{2p} - L| = |v_p - L| \le \varepsilon$
 - ▶ Si *n* est impair, n = 2p + 1 et $p \ge N$ donc : $|u_n - L| = |u_{2p+1} - L| = |w_p - L| \le \varepsilon$

Paris Descartes

2016

Mathématiques et calcul 1

91

Suites

Suites extraites

Exercices (difficiles):

- 1. Soit u_n une suite et $x_n = u_{2n}$, $y_n = u_{2n+1}$, $z_n = u_{3n}$ 3 suites extraites de u_n . Montrer que si ces 3 suites sont convergentes, alors u_n est convergente.
- 2. Soit u_n une suite telle que pour tout $k \in \mathbb{N}$ tel que $k \ge 2$, la suites extraite u_{kn} est convergente. Peut-on dire que u_n est convergente? (penser à la suite u_n qui vaut 1 lorsque n est premier et 0 sinon)

Suites récurrentes

Soit I un intervalle de \mathbb{R} et f une fonction définie sur I :

$$f: I \longrightarrow \mathbb{R}$$

Une suite récurrente est définie

- 1. par son terme initial : u_0
- 2. et par son terme général : $u_{n+1} = f(u_n)$

Paris Descartes

2016

Mathématiques et calcul 1

93

Suites

Suites récurrentes

Exemple

Suite arithmétique

Une suite arithmétique, de terme initial a et de raison r, est définie par :

- 1. $u_0 = a$
- 2. $u_{n+1} = u_n + r$

La fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ associée est alors : f(x) = x + r

Proposition: $\forall n \in \mathbb{N}, u_n = a + nr$

- ▶ Pour n = 0, $u_0 = u_0 + 0 \times r$ Vrai pour n = 1
- ▶ Supposons que pour un certain $n \in \mathbb{N}$, $u_n = a + nr$ (hypothèse de récurrence)
- ► Calculons : $u_{n+1} = u_n + r = (a + nr) + r = a + (n+1)r$

Exemple

Suite géométrique

Une suite géométrique, de terme initial a et de raison q, est définie par :

- 1. $u_0 = a$
- 2. $u_{n+1} = u_n.q$

La fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ associée est alors : f(x) = x.q

Proposition: $\forall n \in \mathbb{N}, u_n = a.q^n$

- ► Pour n = 0, $u_0 = u_0 \cdot q^0$
- etc.

95

Paris Descartes 2016 Mathématiques et calcul 1

Suites

Suites récurrentes

Exercice: On considère les suites (u_n) et (v_n) définies par $u_0 = 0$, $v_0 = 2$ et

$$v_{n+1} = \frac{3u_n + 1}{4}$$
 $u_{n+1} = \frac{3v_n + 1}{4}$.

- 1. Montrer que la suite $s_n = u_n + v_n$ est constante.
- 2. Montrer que la suite $d_n = u_n v_n$ est géométrique et donner sa formule en fonction de n.
- 3. En déduire les formules de u_n et v_n en fonction de n, puis que ces suites sont adjacentes et donner leur limite.

Suites Suites récurrentes

Exemple

Paris Descartes

2016

Mathématiques et calcul 1

97

Suites

Suites récurrentes

Propriétés des suites récurrentes

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$. On dit que f est croissante si :

$$\forall x, x' \in \mathbb{R}, \quad x \ge x' : \quad f(x) \ge f(x')$$

Soit une u_n une suite récurrente définie par :

$$u_0$$
 et $u_{n+1} = f(u_n)$, avec f croissante.

- 1. Si $u_1 \ge u_0$, alors la suite u_n est croissante
- 2. Si $u_1 \le u_0$, alors la suite u_n est décroissante
- 3. Si $u_1 = u_0$, alors la suite u_n est constante

$$u_{n+1} = f(u_n)$$
, avec f croissante et $u_1 \ge u_0$

- ▶ La proposition est vraie pour n = 0
- ▶ Supposons que pour un certain $n \in \mathbb{N}$, $u_{n+1} \ge u_n$ (hypothèse de récurrence)
- ▶ La fonction f est croissante, donc :

$$u_{n+1} \ge u_n \implies u_{n+2} = f(u_{n+1}) \ge f(u_n) = u_{n+1}$$

Paris Descartes 2016 Mathématiques et calcul 1 99

Suites Suites récurrentes

Théorème : Soit $f: I \longrightarrow \mathbb{R}$ une fonction et u_n une suite définie par récurrence par :

$$u_0$$
 et $u_{n+1} = f(u_n)$

- 1. Si u_n est convergente vers $L \in I$
- 2. Si f est continue

Alors *L* vérifie :
$$f(L) = L$$

Exercice : Soit u_n définie par $u_0 = 0$ et $u_{n+1} = \frac{u_n^2 + 1}{2}$. Donner la seule limite possible de u_n .

Exemple

Si la suite $u_0=-\frac{1}{2}$, $u_{n+1}=\frac{(u_n+1)(9-u_n)}{4}$ est convergente,

sa limite
$$L$$
 vérifie : $L = \frac{(L+1)(9-L)}{4}$

On doit donc résoudre l'équation :

$$x = \frac{(x+1)(9-x)}{4} \iff x^2 - 4x - 9 = 0$$

Les deux racines sont : $x_1 = 2 - \sqrt{13}$ $x_2 = 2 + \sqrt{13}$

$$L=2+\sqrt{13}=5,605551275\cdots$$

Paris Descartes

2016

Mathématiques et calcul 1

102

Suites

Suites récurrentes

Exercice: Soit $f(x) = x - x^3$ et u_n définie par $u_0 = 4/10$ et $u_{n+1}=f(u_n).$

- 1. Montrer que pour tout n, $0 < u_n < 1$.
- 2. Montrer que u_n est décroissante.
- 3. u_n converge-t-elle? Si oui, donner la limite.

Paris Descartes 2016 Mathématiques et calcul 1 105

Suites

Croissance comparée (1)

►
$$\lambda > 1 \implies \forall \alpha > 0$$
, $\lim_{n \to \infty} \frac{\lambda^n}{n^{\alpha}} = +\infty$

► $|\lambda| < 1 \implies \forall \alpha > 0$, $\lim_{n \to \infty} n^{\alpha} \lambda^n = 0$

Exercice: Donner les limites des suites suivantes:

1.
$$a_n = n^2 (1/2)^n$$

2.
$$b_n = \frac{3^n}{n^5}$$

3.
$$u_n = (4n^2 + 3n + 5)e^{-n}$$

4.
$$v_n = \frac{5^n}{-2n^3 + n^2 - 4n + 1}$$
7. $t_n = \frac{n^3 4^n - n^2 5^n + 6}{n^3 2^n + n + 1}$

5.
$$w_n = \frac{4n^25^n + 3n + 5}{-2n^35^n + n^2 - 4n + 1}$$

6.
$$z_n = \frac{4n^25^n - 7n3^n - 6}{-n^22^n + 4n + 2}$$

7.
$$t_n = \frac{n^3 4^n - n^2 5^n + 6}{n^3 2^n + n + 1}$$

