DengAl: Predicting Disease Spread

140441N - N.C.N.C. Pathirana

140552F - R.S.Samarawickrama

140575D - I.S.Seneviratne

140701M - S.L.S.wolff

Introduction

- Dengue is a mosquito borne disease caused by dengue viruses.
- Over the years it has spread rapidly causing deaths due to different factors that are congenial for it.
 - Temperature
 - Climate changes
 - Uncontrolled urbanization
 - Poor infrastructure

Introduction ctd.

- Data set for the prediction was based on two cities; San Juan and Iquitos .
- Data set included the following features.
 - City and Data Indicators
 - City sj for San Juan and iq Iquitos
 - Week_start_date Date given in yyyy-mm-dd format
 - NOAA's GHCN Daily Climate Data weather station measurement
 - station_max_temp_c maximum temperature
 - station_min_temp_c minimum temperature
 - station_avg_temp_c average temperature
 - station_percip_mm total precipitation
 - station_diur_temp_rng_c Diurnal temperature range

Introduction ctd.

- NOAA's NCEP Climate Forecast System Reanalysis measurements (0.5x0.5 degree scale)
 - reanalysis_sat_precip_amt_mm- Total precipitation
 - reanalysis_dew_point_temp_k- Mean dew point temperature
 - reanalysis_air_temp_k- Mean air temperature
 - reanalysis_relative_humidity_percent- Mean relative humidity
 - reanalysis_specific_humidity_g_per_kg- Mean specific humidity
 - reanalysis_precip_amt_kg_per_m2- Total precipitation
 - reanalysis_max_air_temp_k- Maximum air temperature
 - reanalysis_min_temp_air_k- Minimum air temperature
 - reanalysis_avg_temp_k- Average air temperature
 - reanalysis_tdtr_k- Diurnal temperature range

Introduction ctd.

- PERSIANN satellite precipitation measurements (0.25x0.25 degree scale)
 - precipitation_amt_mm Total precipitation
- Satellite vegetation Normalized difference vegetation index (NDVI) NOAA's CDR Normalized Difference
 Vegetation Index(0.5x0.5 degree scale) measurements
 - ndvi_se- Pixel southeast of city centroid
 - ndvi_sw- Pixel southwest of city centroid
 - ndvi_ne- Pixel northeast of city centroid
 - ndvi_nw- Pixel northwest of city centroid

Methodology

- Data Cleaning
 - Checked all the features and samples for missing values.
 - Missing values were filled with front fill method
- Feature Analysis
 - features of the dataset were analyzed by general statistical analysis which includes count, mean, standard deviation, minimum, maximum etc.
 - Dataset was divided into two sets based on the city.
 - Feature correlation was analyzed and found out that target does not correlate to any individual feature.

Methodology ctd.

- Satellite imagery scores of vegetation growing have a strong correlation in city Iquitos but not well in San Juan.
- Temperature features are strongly correlated in San Juan but not in Iquitos.
- XGBoost Prediction
 - XGBoost regressor was used to predict the target cases using average NDVI score.
- Monthly Trend Prediction
 - A Simple time series model using only month feature was tested.

Methodology ctd.

- Monthly Trend and Residual Prediction
 - A linear regression model was trained to predict the monthly trend
 - residual was calculated using the target.
 - residual was then predicted using temperature and vegetation data.
 - predicted residual was added to the predicted monthly to get the final target prediction

Results & Analysis

- Prediction from Monthly Trend resulted in a mean absolute error of 26.5
- After smoothing with rolling mean of window size 3, the mean absolute error was 25.8
- Correlation analysis revealed that individual features do not have any correlation to target prediction
- but satellite imagery score of vegetation data and temperature features tend to correlated in Iquitos (figure 1) and San Juan (figure 2) respectively.

Results & Analysis ctd

Figure 1 Figure 2

Results & Analysis ctd

- For XGBoost prediction average NDVI score was used since they tend to correlate each other.
- The prediction was not improved as expected.
- Mean absolute error for XGBoost approach was 27.37
- Finally a residual between the actual target and the predicted monthly trend was calculated.
- The residual was predicted with weather features and added to the predicted trend.
- It resulted in a mean absolute error of 20.77

Results & Analysis ctd

Actual and Predicted Value - Iquitos

Actual and Predicted Value - San Juan

Conclusion

- Front fill method of substitution for missing values did a fairly good job.
- Averaging NDVI and temperature scores is better than using component features alone since they show a degree of correlation.
- A prediction model alone could not achieve the desired accuracy, some feature selection and methodology is required to hit a lower error.
- The residual between the predicted monthly trend and the actual target has been fairly modeled by weather data.

Thank You!