projects

proposa

- 1 Introduction
- 2 Relevant projects
- 3 Research proposal
- 4 Expected results

Relevan

proposa

Expecte results

Introduction

- Control Methods for Robotics
- Robust Control

Octavio A. Villarreal Magaña

- BSc. Mechatronic Engineering (UNAM, Mexico)
 - Systems and Control
 - Robotics

Relevant projects

pposal 1 Introduction

2 Relevant projects

3 Research proposal

4 Expected results

Locomotion Control of Zebro

- Course project
- Locomotion control of six-legged robot
- Use of max-plus algebra¹
- Traversing unstructured terrain
- Safe gait switching

¹G. A. D. Lopes, T. J. J. V. D. Boom, B. D. Schutter, and R Babu (2010). "Modeling and control of legged locomotion via switching max-plus systems". In: Proceedings of the 10th International Workshop on Discrete Event Systems (WODES 2010). 6 pp.

Relevant

projects

Expecte results

Implementation in real robot

- Commissioned by dutch artist
- Max-plus algebra for reference generation
- Independent controller for each leg
- Construction of the robot
- Implementation using ROS
- Simple obstacle avoidance

Relevant projects

Expecte results

Robust output-feedback control of 3D directional drilling systems

- MSc Thesis
- In collaboration with the University of Minnesota
- Complex dynamics (Delay Differential Equations)
- Observer design to only use local measurements
- Robust against parameter uncertainty

Lancius de la contraction

Relevant

Proposa

Expecte results

Control of robotic arm

 Control Methods for Robotics course assignment

Four rotational joints

 Different control algorithms (Workspace and configuration space control)

Relevant projects

proposa

Expecte results

Nonlinear geometric control of quadcopter

 Control Methods for Robotics course assignment

 Workspace and orientation nonlinear control

 Capable of performing aggresive maneuvers²

²T. Lee, M. Leok, and N. Harris McClamroch (2010). "Control of Complex Maneuvers for a Quadrotor UAV using Geometric Methods on SE(3)". In: ArXiv e-prints. arXiv: 1003.2005 [math.00]

projects

Research proposal

Expected

- 1 Introduction
- 2 Relevant projects
- 3 Research proposal
- 4 Expected results

Expecte results

Objective of max-plus algebra in locomotion

"Obtain synchronized time references for each of the leg's lift-off times (moment when a leg leaves the ground) and touch-down times (moment when a leg touches the ground) in a systematic way".

Definition of max-plus algebra

"Tropical" algebra defined by:

$$(\Re_{ extit{max}}, \oplus, \otimes, arepsilon, e)$$

where:

$$\Re_{max} := \Re \cup \{-\infty\},$$

$$x \oplus y := max(x, y),$$

$$x \otimes y := x + y,$$

$$\varepsilon := -\infty,$$

$$e := 0.$$

Definition of max-plus algebra

Extension to matrices:

$$(\Re_{max}^{n\times m},\oplus,\otimes,\mathcal{E},E)$$

with:

$$[A \oplus B]_{ij} = a_{ij} \oplus b_{ij} := \max(a_{ij}, b_{ij}),$$

$$[A \otimes C]_{ij} = \bigoplus_{k=1}^{m} a_{ik} \otimes c_{kj} := \max_{k=1,...,m} (a_{ik} + c_{kj}),$$

Absorbing and identity element:

$$[\mathcal{E}]_{ij} = \varepsilon,$$
 $[E]_{ij} = \begin{cases} e, & \text{if } i = j \\ \varepsilon, & \text{otherwise.} \end{cases}$

Powers:

$$D^{\otimes k} := D \otimes D \otimes ... \otimes D.$$

and the second

project

Research proposal

Expected results

Gait generation using max-plus algebra

Gait Parameters³:

i Leg index.

 $t_i(k)$ Touchdown time of leg.

 $l_i(k)$ Lift-off time.

au Current time instant.

 τ_f Flight time.

 τ_g Ground time.

 τ_{Δ} Double stance time (adjustable).

³G. A. D. Lopes, T. J. V. D. Boom, B. D. Schutter, and R Babu (2010). "Modeling and control of legged locomotion via switching max-plus systems". In: *Proceedings of the 10th International Workshop on Discrete Event Systems (WODES 2010)*. 6 pp.

Expected

Gait generation using max-plus algebra

Gait cycle description for a biped:

$$t_1(k+1) = l_1(k+1) + \tau_f$$

$$l_1(k+1) = t_1(k) + \tau_g$$

$$t_2(k+1) = l_2(k+1) + \tau_f$$

$$l_2(k+1) = t_2(k) + \tau_g$$

Synchronization:

$$\begin{split} t_1(k+1) &= l_1(k+1) + \tau_f \\ l_1(k+1) &= \max(t_1(k) + \tau_g, t_2(k) + \tau_\Delta) \\ t_2(k+1) &= l_2(k+1) + \tau_f \\ l_2(k+1) &= \max(t_2(k) + \tau_g, t_1(k+1) + \tau_\Delta) \end{split}$$

Expected results

Gait generation using max-plus algebra

Described as a max-plus linear system:

$$\underbrace{\begin{bmatrix} t_1(k+1) \\ t_2(k+1) \\ l_1(k+1) \\ l_2(k+1) \end{bmatrix}}_{x(k+1)} = \underbrace{\begin{bmatrix} \tau_f \otimes \tau_g & \tau_f \otimes \tau_\Delta & \varepsilon & \varepsilon \\ \tau_g^{\otimes 2} \otimes \tau_g \otimes \tau_\Delta & (\tau_f \otimes \tau_\Delta)^{\otimes 2} & \varepsilon & \varepsilon \\ \tau_g & \tau_\Delta & \varepsilon & \varepsilon \\ \tau_f \otimes \tau_g \otimes \tau_\Delta & \tau_f \otimes \tau_\Delta^{\otimes 2} & \varepsilon & \varepsilon \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} t_1(k) \\ t_2(k) \\ l_1(k) \\ l_2(k) \end{bmatrix}}_{x(k)}$$

Gait definition:

$$\begin{aligned} \mathcal{G}_{\textit{walk}} &= \{1\} \prec \{2\} \\ \mathcal{G}_{\textit{hop}} &= \{1,2\} \end{aligned}$$

Expected results

Advantages

- Systematic gait generation
- Number of legs does not increase complexity greatly
- Safe gait switching ⁴
- Total cycle-time, steady-state and transient behavior analysis by studying properties of A matrix

⁴G. A. D. Lopes, R. Babuška, B. De Schutter, and A. J. J. Van Den Boom (2009). "Switching max-plus models for legged locomotion". In: 2009 IEEE International Conference on Robotics and Biomimetics, ROBIO 2009 19, pp. 221–226. Doi: 10.1109/ROBIO.2009. \$420626.

Outline

Introduction

projects

Research proposal

Expected results

Locomotion control of walking robots

Relevan projects

Research proposal

Expecte results

Locomotion control of walking robots

- Supervisory control : Defines A_j matrix $(\tau_g, \tau_f, \tau_{\Delta}, \text{etc.})$
 - Uses sensor information
- Gait scheduler: Defines lift-off and touch-down times for each leg (final and initial times for trajectory)
- Continuous time scheduler: Defines trajectory for each of the legs based on scheduled times
 - For example, an ellipsoidal trajectory
- Reference trajectory tracker: Follows the trajectory defined
 - e.g. workspace computed torque control

Expected results

Introduction

2 Relevant projects

Research proposal

4 Expected results

Expected results

Expected results

- Systematic method to generate gaits
- Methodology could provide safe gait switching
- Could be applied to several topologies of multi-legged robots
- Could provide robustness against unstructured scenarios