

AGENDA

Merck Case-Study

Data Understanding

Analysis Approach

Predictive Model
Development

Recommendations

Merck: Case-Study

Merck: Breast Cancer Detection

Our past and our future.

Business Perspective

Decrease the turnaround time in cancer detection process within patient diagnosis

Reduce the cost of generating the models by leveraging just the oncology data & Increase Insights for cohort treatment

The Client

Merck is a pharmaceutical and life sciences company and one of the largest pharmaceutical companies in the world. Merck & Co. manufactures a variety of well-known pharmaceutical drugs, vaccines, and animal health products. It made the first smallpox vaccine for commercial use in the U.S. It is also the maker of the painkiller Vioxx and the HPV vaccine Gardasil.

Business Challenges

Traditional models are lacking in accuracy and do affect the overall patient diagnosis

The cost of gathering the patient data from EHR systems like EPIC and Cerner is very high and requires a lot of compliance clearance

Technical Challenges

Gail model used simple statistical architectures and the additional inputs were derived from costly and/or invasive procedures

Lack of centralized analytical platform that can generate the required data for breast cancer detection and provide results instantly

Merck: All about the company

Our past and our future.

Service Line

Vaccines

Infectious diseases

COVID-19

Cardio-metabolic disorders

Discovery & development

Geo Reach

Latin America

Employees: 3,433 #Revenue: 1,012 million

Europe

Employees: 26,715 #Revenue: 4,735 million

Middle East

Employees: 1,366 #Revenue: 591 million

APAC

Employees: 12,728#Revenue: 5,599 million

Total Employees: **57K**

Sales: 16K Million

Merck: SWOT Analysis

Strengths and Weaknesses

Data Understanding

Data Set Description

Mean values of the cell area

Variable Name Description Id number ID The diagnosis of breast tissues Diagnosis MEAN Mean of distances from center to points on the perimeter Radius mean Texture mean Mean Standard deviation of gray-scale values Mean distance around the cell nucleus Perimeter mean Mean area/size of the cell nucleus Area_mean Smoothness mean Mean Local variation in radius length Compactness_mean Average of calculation: Perimeter² / area – 1.0 Concavity_mean Mean severity of concave portions of the contour Mean number of concave portions of the contour Concave.points_mean Mean proportionality of cell nucleus Symmetry_mean Fractal dimension mean Mean of calculation: coastline approximation -

Mean: averages of cell nucleus characteristics

Data Set Description

Standard Error values of the cell area

Variable Name	Description
STANDARD ERROR	
Radius_se	Standard error of distances from center to points on the perimeter
Texture_se	Standard error of Standard deviation of gray-scale values
Perimeter_se	Standard error distance around the cell nucleus
Area_se	Standard error area/size of the cell nucleus
Smoothness_se	Standard error Local variation in radius length
Compactness_se	Standard error of calculation: Perimeter ² / area – 1.0
Concavity_se	Standard error severity of concave portions of the contour
Concave.points_se	Standard error number of concave portions of the contour
Symmetry_se	Standard error proportionality of cell nucleus
Fractal_dimension_se	Standard error of calculation: coastline approximation - 1

SE: measures accuracy with which a sample distribution represents a population

Data Set Description

Worst values of the cell area

		Variable Name	Description
		WORST	
		Radius_worst	Worst of distances from center to points on the perimeter
		Texture_worst	Worst Standard deviation of gray-scale values
		Perimeter_worst	Worst distance around the cell nucleus
		Area_worst	Worst area/size of the cell nucleus
		Smoothness_worst	Worst Local variation in radius length
		Compactness_worst	Worst of calculation: Perimeter ² / area – 1.0
		Concavity_worst	Worst severity of concave portions of the contour
		Concave.points_worst	Worst number of concave portions of the contour
		Symmetry_worst	Worst proportionality of cell nucleus
:: mean of three largest values		Fractal_dimension_worst	Worst of calculation: coastline approximation - 1

Target Variable

Predicting the class of the oncology data

Analysis Approach

Solution Approach

Explore the dataset and summarize the relations between the variables. Create descriptive statistics, box plots, scatter plots, and a correlation matrix for all variables.

Use **logistic regression** to predict the diagnosis of breast tissue based on all or selected cell nucleus characteristics.

Build a **classification model** (single and pruned decision trees, random forest) and extract the rules to be used for the prediction of breast tissue diagnosis.

Solution Design

Solution Aim : Recommendation

- Build a highly efficient model with an accuracy better than the traditional models used in Breast Cancer Risk Prediction Tool (BCRAT)
- Develop data mining models that used highly accessible personal health data to predict breast cancer risk
- Implement non-invasive and cost-effective risk stratification tools to increase early breast cancer detection and prevention

Deliverables

- > Research and gather the data set
- Clean the data and build a predictive model
- Generate final report of the analysis
 and provide recommendations

Data Explorations

Summary Statistics

Summarizing each variable

Variable	N	Mean	Std. Dev.	Min	Pctl. 25	Pctl. 75	Max
diagnosis	569						
B	357	62.7%					
M	212	37.3%					
radius_mean	569	14.127	3.524	6.981	11.7	15.78	28.11
texture_mean	569	19.29	4.301	9.71	16.17	21.8	39.28
perimeter_mean	569	91.969	24.299	43.79	75.17	104.1	188.5
area_mean	569	654.889	351.914	143.5	420.3	782.7	2501
smoothness_mean	569	0.096	0.014	0.053	0.086	0.105	0.163
compactness_mean	569	0.104	0.053	0.019	0.065	0.13	0.345
concavity_mean	569	0.089	0.08	0	0.03	0.131	0.427
concave.points_mean	569	0.049	0.039	0	0.02	0.074	0.201
symmetry_mean	569	0.181	0.027	0.106	0.162	0.196	0.304
fractal_dimension_mean	569	0.063	0.007	0.05	0.058	0.066	0.097
radius_se	569	0.405	0.277	0.112	0.232	0.479	2.873
texture_se	569	1.217	0.552	0.36	0.834	1.474	4.885
perimeter_se	569	2.866	2.022	0.757	1.606	3.357	21.98
area_se	569	40.337	45.491	6.802	17.85	45.19	542.2
smoothness_se	569	0.007	0.003	0.002	0.005	0.008	0.031
compactness_se	569	0.025	0.018	0.002	0.013	0.032	0.135
concavity_se	569	0.032	0.03	0	0.015	0.042	0.396
concave.points_se	569	0.012	0.006	0	0.008	0.015	0.053
symmetry_se	569	0.021	0.008	0.008	0.015	0.023	0.079
fractal_dimension_se	569	0.004	0.003	0.001	0.002	0.005	0.03
radius_worst	569	16.269	4.833	7.93	13.01	18.79	36.04
texture_worst	569	25.677	6.146	12.02	21.08	29.72	49.54
perimeter_worst	569	107.261	33.603	50.41	84.11	125.4	251.2
area_worst	569	880.583	569.357	185.2	515.3	1084	4254
smoothness_worst	569	0.132	0.023	0.071	0.117	0.146	0.223
compactness_worst	569	0.254	0.157	0.027	0.147	0.339	1.058
concavity_worst	569	0.272	0.209	0	0.114	0.383	1.252
concave.points_worst	569	0.115	0.066	0	0.065	0.161	0.291
symmetry_worst	569	0.29	0.062	0.156	0.25	0.318	0.664
fractal_dimension_worst	569	0.084	0.018	0.055	0.071	0.092	0.208

Key insights

- > The overall data don't require any normalization cause there is not much difference in the scale of each variable
- There is a need to convert the diagnosis variable into factors for classification models and into numeric for regression model
- As of now, there are 31 variables and not all variables are required for model development

Correlation Metrix

Feature Selection for Model development

Key insights

- Features with high correlation are more linearly dependent and hence have almost the same effect on the dependent variable. So, when two features have high correlation, we can drop one of the two features
- Radius_mean, Perimeter_mean, Area_mean, Radius_worst, Perimeter_worst & Area_worst are highly correlated. Radius_mean can be considered for the model development and rest of the variables can be discarded
- Radius_se, perimter_se & area_se are highly correlated and only one column instead of three can be considered
- > As of now, there are 24 variables for developing predictive models

Predictive Model Development

Model Goals & Objectives

Setting up the goals for model development

Regular Decision Tree

Predicting malignant and benign

Confusion Matrix and Statistics

Reference

Prediction B M B 119 12 M 14 83

Accuracy: 0.886

95% CI: (0.8374, 0.9241)

No Information Rate: 0.5833

Kappa: 0.7661

Mcnemar's Test P-Value: 0.8445

Sensitivity: 0.8947 Specificity: 0.8737 Pos Pred Value: 0.9084 Neg Pred Value: 0.8557 Prevalence: 0.5833 Detection Rate: 0.5219

Detection Prevalence: 0.5746
Balanced Accuracy: 0.8842

'Positive' Class : B

Accuracy: 88.6%

Deeper Decision Tree

Predicting malignant and benign

Confusion Matrix and Statistics

Reference

Prediction B M B 119 11 M 14 84

Accuracy: 0.8904

95% CI: (0.8424, 0.9278)

No Information Rate: 0.5833

P-Value [Acc > NIR] : <0.0000000000000002

Kappa: 0.7754

Mcnemar's Test P-Value: 0.6892

Sensitivity: 0.8947 Specificity: 0.8842 Pos Pred Value: 0.9154 Neg Pred Value: 0.8571 Prevalence: 0.5833 Detection Rate: 0.5219

Detection Prevalence : 0.5702

Balanced Accuracy : 0.8895

'Positive' Class : B

Accuracy: 89%

Pruned Decision Tree

Predicting malignant and benign

Confusion Matrix and Statistics

Reference Prediction B M B 127 6 M 6 89

Accuracy: 0.9474

95% CI: (0.9099, 0.9725)

No Information Rate: 0.5833

P-Value [Acc > NIR] : <0.0000000000000002

Kappa: 0.8917

Mcnemar's Test P-Value : 1

Sensitivity: 0.9549 Specificity: 0.9368 Pos Pred Value: 0.9549 Neg Pred Value: 0.9368 Prevalence: 0.5833

Detection Rate: 0.5570 Detection Prevalence: 0.5833

Balanced Accuracy : 0.9459

'Positive' Class : B

Accuracy: 94.74%

Random Forest

Predicting malignant and benign

rf

concave.points worst radius mean concave.points mean radius se concavity mean concavity worst texture worst symmetry worst texture mean compactness worst fractal dimension mean smoothness worst smoothness mean concavity se texture se compactness mean concave.points se symmetry mean compactness se fractal dimension se symmetry se fractal_dimension_worst smoothness se

Confusion Matrix and Statistics

Reference Prediction B M B 126 14 M 7 81

Accuracy: 0.9079

95% CI: (0.8627, 0.9421)

No Information Rate: 0.5833

Kappa: 0.8085

Mcnemar's Test P-Value: 0.1904

Sensitivity: 0.9474
Specificity: 0.8526
Pos Pred Value: 0.9000
Neg Pred Value: 0.9205
Prevalence: 0.5833
Detection Rate: 0.5526
Detection Prevalence: 0.6140

Balanced Accuracy : 0.9000

'Positive' Class : B

Accuracy: 90.79%

Logistics Regression

Predicting malignant and benign

coefficients:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-1153.535	1239490.132	-0.001	0.999
radius_mean	15.385	16638.571	0.001	0.999
texture_mean	11.984	49514.326	0.000	1.000
smoothness_mean	6038.605	5031697.659	0.001	0.999
compactness_mean	-3267.210	2613817.993	-0.001	0.999
concavity_mean	2658.886	2062549.697	0.001	0.999
concave.points_mean	-711.589	3295629.447	0.000	1.000
symmetry_mean	-433.331	2423459.606	0.000	1.000
fractal_dimension_mean	4323.195	13897561.644	0.000	1.000
radius_se	559.541	160885.066	0.003	0.997
texture_se	-75.326	248278.675	0.000	1.000
smoothness_se	3261.872	20549085.692	0.000	1.000
compactness_se	365.675	24791849.531	0.000	1.000
concavity_se	-246.804	10518600.979	0.000	1.000
concave.points_se	585.289	47706868.456	0.000	1.000
symmetry_se	-5840.094	9237498.761	-0.001	0.999
fractal_dimension_se	-33215.225	196044085.955	0.000	1.000
texture_worst	1.427	52658.673	0.000	1.000
smoothness_worst	-2221.345	2372655.538	-0.001	0.999
compactness_worst	268.619	2101338.163	0.000	1.000
concavity_worst	-223.573	1292850.037	0.000	1.000
concave.points_worst	674.118	6145089.669	0.000	1.000
symmetry_worst	938.637	437805.246	0.002	0.998
fractal_dimension_worst	716.289	17271722.653	0.000	1.000

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 438.57771753363 on 340 degrees of freedom Residual deviance: 0.00000011487 on 317 degrees of freedom

AIC: 48

Number of Fisher Scoring iterations: 25

Confusion Matrix and Statistics

FALSE TRUE FALSE 126 8 TRUE 7 87

Accuracy: 0.9342

95% CI: (0.8938, 0.9627)

No Information Rate: 0.5833

P-Value [Acc > NIR] : <0.0000000000000002

Kappa: 0.8645

Mcnemar's Test P-Value: 1

Sensitivity: 0.9474 Specificity: 0.9158 Pos Pred Value: 0.9403 Neg Pred Value: 0.9255 Prevalence: 0.5833 Detection Rate: 0.5526

Detection Rate : 0.5526 Detection Prevalence : 0.5877

Balanced Accuracy : 0.9316

'Positive' Class : FALSE

Accuracy: 93.42%

Model Recommendation

Predicting malignant and benign

Pruned Decision Tree

- ➤ The overall accuracy is 94.74%
- It's far better than a blind guess of 58%
- > The number of independent variables required for predicting accurately is less, just 4, out of 24 variables
- It's highly efficient and quick in predicting the outcome with less variables

Recommendations

Business Recommendation

Tangible solution for overall business development

A Diagnosis Tool in clinics

2

A Human-Machine Match on TV

The Economic Costs for Industry

- > Integrate into the clinical work
- ➤ Help the pathologist to detect cancer
- Improve the consistency of diagnosis
- decrease human error

- To educate women and community and attract donator, Merck could perform a human-machine Match on TV.
- > The match will provide numerous digitized image of FNA of breast mass to compare the error rates between pathologist and the model of Pruned decision tree
- > Through this kind of interesting way to appeal more and more people to pay attention to breast cancer

- Merck could compare the economic costs of using the model of pruned tree and the current screening processes.
- > If the model of Random Forest can save patient and clinics cost, even industry cost, there would be positive influence for medical industry.

