Dynamic Programming Recipe

- Define a set of problems, such that
 - base case easy to solve
 - final case matches (closely) the final problem we want to solve.
- Write it as a recursion: Solve bigger problem in terms of the smaller problems. (Should be a DAG on the problem instances!)
- Compute the problems on the DAG in the linearized order!

Shortest reliable path.

Shortest reliable path.

Given *G*, *k*. Find shortest path that uses at most *k* edges.

Shortest reliable path.

Given *G*, *k*. Find shortest path that uses at most *k* edges.

More edges, higher chance of a problem.

Shortest reliable path.

Given *G*, *k*. Find shortest path that uses at most *k* edges.

More edges, higher chance of a problem.

Shortest path?

Shortest reliable path.

Given *G*, *k*. Find shortest path that uses at most *k* edges.

More edges, higher chance of a problem.

Shortest path? $s \rightarrow d \rightarrow e \rightarrow f \rightarrow g \rightarrow t$

Shortest reliable path.

Given *G*, *k*. Find shortest path that uses at most *k* edges.

More edges, higher chance of a problem.

Shortest path? $s \rightarrow d \rightarrow e \rightarrow f \rightarrow g \rightarrow t$ Cost: 5

Shortest reliable path.

Given *G*, *k*. Find shortest path that uses at most *k* edges.

More edges, higher chance of a problem.

Shortest path? $s \rightarrow d \rightarrow e \rightarrow f \rightarrow g \rightarrow t$ Cost: 5

Shortest path that uses at most 4 edges?

Shortest reliable path.

Given *G*, *k*. Find shortest path that uses at most *k* edges.

More edges, higher chance of a problem.

Shortest path? $s \rightarrow d \rightarrow e \rightarrow f \rightarrow g \rightarrow t$ Cost: 5

Shortest path that uses at most 4 edges? $s \rightarrow a \rightarrow b \rightarrow c \rightarrow t$

Shortest reliable path.

Given *G*, *k*. Find shortest path that uses at most *k* edges.

More edges, higher chance of a problem.

Shortest path? $s \rightarrow d \rightarrow e \rightarrow f \rightarrow g \rightarrow t$ Cost: 5

Shortest path that uses at most 4 edges? $s \rightarrow a \rightarrow b \rightarrow c \rightarrow t$ Cost: 6

Shortest reliable path.

Given *G*, *k*. Find shortest path that uses at most *k* edges.

More edges, higher chance of a problem.

Shortest path? $s \rightarrow d \rightarrow e \rightarrow f \rightarrow g \rightarrow t$ Cost: 5

Shortest path that uses at most 4 edges? $s \rightarrow a \rightarrow b \rightarrow c \rightarrow t$ Cost: 6

Shortest path that uses at most 3 edges?

Shortest reliable path.

Given G, k. Find shortest path that uses at most k edges.

More edges, higher chance of a problem.

Shortest path? $s \rightarrow d \rightarrow e \rightarrow f \rightarrow g \rightarrow t$ Cost: 5

Shortest path that uses at most 4 edges? $s \rightarrow a \rightarrow b \rightarrow c \rightarrow t$ Cost: 6

Shortest path that uses at most 3 edges? $s \rightarrow t$

Shortest reliable path.

Given G, k. Find shortest path that uses at most k edges.

More edges, higher chance of a problem.

Shortest path? $s \rightarrow d \rightarrow e \rightarrow f \rightarrow g \rightarrow t$ Cost: 5

Shortest path that uses at most 4 edges? $s \rightarrow a \rightarrow b \rightarrow c \rightarrow t$ Cost: 6

Shortest path that uses at most 3 edges? $s \rightarrow t$ Cost: 10.

Dijkstra's?

Dijkstra's?

Dynamic Program.

Dijkstra's?

Dynamic Program.

Subproblems: shortest path to node using few edges.

Dijkstra's?

Dynamic Program.

Subproblems: shortest path to node using few edges.

dist(v, i) - length of shortest path to v using i or fewer edges.

Dijkstra's?

Dynamic Program.

Subproblems: shortest path to node using few edges.

dist(v, i) - length of shortest path to v using i or fewer edges.

$$\mathsf{dist}(v,i) = \mathsf{min}_{(u,v) \in E}(\mathit{dist}(u,i-1) + \mathit{I}(u,v))$$

Dijkstra's?

Dynamic Program.

Subproblems: shortest path to node using few edges.

dist(v,i) - length of shortest path to v using i or fewer edges.

$$\mathsf{dist}(v,i) = \mathsf{min}_{(u,v) \in E}(\mathit{dist}(u,i-1) + \mathit{l}(u,v))$$

$$dist(s, i) = 0$$

Dijkstra's?

Dynamic Program.

Subproblems: shortest path to node using few edges.

dist(v, i) - length of shortest path to v using i or fewer edges.

$$dist(v,i) = \min_{(u,v) \in E} (dist(u,i-1) + I(u,v))$$

$$\operatorname{dist}(s,i) = 0$$
 , $\operatorname{dist}(v,0) = \infty$ for $v \neq s$

Dijkstra's?

Dynamic Program.

Subproblems: shortest path to node using few edges.

dist(v,i) - length of shortest path to v using i or fewer edges.

$$dist(v,i) = min_{(u,v) \in E}(dist(u,i-1) + I(u,v))$$

$$\operatorname{dist}(s,i) = 0$$
, $\operatorname{dist}(v,0) = \infty$ for $v \neq s$

O(nk) table entries.

Dijkstra's?

Dynamic Program.

Subproblems: shortest path to node using few edges.

dist(v,i) - length of shortest path to v using i or fewer edges.

$$dist(v,i) = \min_{(u,v) \in E} (dist(u,i-1) + I(u,v))$$

$$\operatorname{dist}(s,i) = 0$$
, $\operatorname{dist}(v,0) = \infty$ for $v \neq s$

O(nk) table entries. O(|E|) time per "iteration".

Dijkstra's?

Dynamic Program.

Subproblems: shortest path to node using few edges.

dist(v,i) - length of shortest path to v using i or fewer edges.

$$dist(v,i) = \min_{(u,v) \in E} (dist(u,i-1) + I(u,v))$$

$$\operatorname{dist}(s,i) = 0$$
, $\operatorname{dist}(v,0) = \infty$ for $v \neq s$

O(nk) table entries. O(|E|) time per "iteration".

Dijkstra's?

Dynamic Program.

Subproblems: shortest path to node using few edges.

dist(v, i) - length of shortest path to v using i or fewer edges.

$$dist(v,i) = \min_{(u,v) \in E} (dist(u,i-1) + I(u,v))$$

$$\operatorname{dist}(s,i) = 0$$
, $\operatorname{dist}(v,0) = \infty$ for $v \neq s$

O(nk) table entries. O(|E|) time per "iteration".

Number of iterations?

Dijkstra's?

Dynamic Program.

Subproblems: shortest path to node using few edges.

dist(v, i) - length of shortest path to v using i or fewer edges.

$$dist(v,i) = \min_{(u,v) \in E} (dist(u,i-1) + I(u,v))$$

$$\operatorname{dist}(s,i) = 0$$
, $\operatorname{dist}(v,0) = \infty$ for $v \neq s$

O(nk) table entries. O(|E|) time per "iteration".

Number of iterations? *k*

Dijkstra's?

Dynamic Program.

Subproblems: shortest path to node using few edges.

dist(v, i) - length of shortest path to v using i or fewer edges.

$$dist(v,i) = \min_{(u,v) \in E} (dist(u,i-1) + I(u,v))$$

$$\operatorname{dist}(\boldsymbol{s},i) = 0$$
 , $\operatorname{dist}(\boldsymbol{v},0) = \infty$ for $\boldsymbol{v} \neq \boldsymbol{s}$

O(nk) table entries. O(|E|) time per "iteration".

Number of iterations? $k \Longrightarrow \text{ time is } O(|E|k)$.

Dijkstra's?

Dynamic Program.

Subproblems: shortest path to node using few edges.

dist(v, i) - length of shortest path to v using i or fewer edges.

$$dist(v,i) = \min_{(u,v) \in E} (dist(u,i-1) + I(u,v))$$

$$\operatorname{dist}(s,i) = 0$$
, $\operatorname{dist}(v,0) = \infty$ for $v \neq s$

O(nk) table entries. O(|E|) time per "iteration".

Number of iterations? $k \Longrightarrow \text{ time is } O(|E|k)$.

Is this familiar?

Dijkstra's?

Dynamic Program.

Subproblems: shortest path to node using few edges.

dist(v, i) - length of shortest path to v using i or fewer edges.

$$dist(v,i) = \min_{(u,v) \in E} (dist(u,i-1) + I(u,v))$$

$$\operatorname{dist}(s,i) = 0$$
, $\operatorname{dist}(v,0) = \infty$ for $v \neq s$

O(nk) table entries. O(|E|) time per "iteration".

Number of iterations? $k \Longrightarrow \text{time is } O(|E|k)$.

Is this familiar?

Bellman Ford...

Dijkstra's?

Dynamic Program.

Subproblems: shortest path to node using few edges.

dist(v, i) - length of shortest path to v using i or fewer edges.

$$dist(v,i) = \min_{(u,v) \in E} (dist(u,i-1) + I(u,v))$$

$$\operatorname{dist}(s,i) = 0$$
, $\operatorname{dist}(v,0) = \infty$ for $v \neq s$

O(nk) table entries. O(|E|) time per "iteration".

Number of iterations? $k \Longrightarrow \text{ time is } O(|E|k)$.

Is this familiar?

Bellman Ford...Dynamic Program!

|V| single source shortest paths.

|V| single source shortest paths.

Bellman Ford takes O(|V||E|) time.

|V| single source shortest paths.

Bellman Ford takes O(|V||E|) time.

O(|V|(|V||E|))

|V| single source shortest paths.

Bellman Ford takes O(|V||E|) time.

$$O(|V|(|V||E|)) = O(|V|^2|E|)$$
 time.

|V| single source shortest paths.

Bellman Ford takes O(|V||E|) time.

$$O(|V|(|V||E|)) = O(|V|^2|E|)$$
 time.

Can we do better?

|V| single source shortest paths.

Bellman Ford takes O(|V||E|) time.

$$O(|V|(|V||E|)) = O(|V|^2|E|)$$
 time.

Can we do better?

Find d(i,j) for all i, j.

|V| single source shortest paths.

Bellman Ford takes O(|V||E|) time.

$$O(|V|(|V||E|)) = O(|V|^2|E|)$$
 time.

Can we do better?

Find d(i,j) for all i, j.

"Bellman": d(i,j,h) shortest path from i to j using h hops.

|V| single source shortest paths.

Bellman Ford takes O(|V||E|) time.

$$O(|V|(|V||E|)) = O(|V|^2|E|)$$
 time.

Can we do better?

Find d(i,j) for all i, j.

"Bellman": d(i,j,h) shortest path from i to j using h hops.

$$d(i,j,h) = \min_{(j',j) \in E} \{d(i,j',h-1) + I(j',j)\}.$$

|V| single source shortest paths.

Bellman Ford takes O(|V||E|) time.

$$O(|V|(|V||E|)) = O(|V|^2|E|)$$
 time.

Can we do better?

Find d(i,j) for all i, j.

"Bellman": d(i,j,h) shortest path from i to j using h hops.

$$d(i,j,h) = \min_{(j',j) \in E} \{d(i,j',h-1) + l(j',j)\}.$$

O(|V|) iterations,

|V| single source shortest paths.

Bellman Ford takes O(|V||E|) time.

$$O(|V|(|V||E|)) = O(|V|^2|E|)$$
 time.

Can we do better?

Find d(i,j) for all i, j.

"Bellman": d(i,j,h) shortest path from i to j using h hops.

$$d(i,j,h) = \min_{(j',j) \in E} \{d(i,j',h-1) + I(j',j)\}.$$

O(|V|) iterations, O(|V||E|) per iteration.

|V| single source shortest paths.

Bellman Ford takes O(|V||E|) time.

$$O(|V|(|V||E|)) = O(|V|^2|E|)$$
 time.

Can we do better?

Find d(i,j) for all i, j.

"Bellman": d(i,j,h) shortest path from i to j using h hops.

$$d(i,j,h) = \min_{(j',j) \in E} \{d(i,j',h-1) + l(j',j)\}.$$

O(|V|) iterations, O(|V||E|) per iteration. $O(|V|^2|E|)$

|V| single source shortest paths.

Bellman Ford takes O(|V||E|) time.

$$O(|V|(|V||E|)) = O(|V|^2|E|)$$
 time.

Can we do better?

Find d(i,j) for all i, j.

"Bellman": d(i,j,h) shortest path from i to j using h hops.

$$d(i,j,h) = \min_{(j',j) \in E} \{d(i,j',h-1) + I(j',j)\}.$$

O(|V|) iterations, O(|V||E|) per iteration. $O(|V|^2|E|)$

Really Bellman-Ford for |V| sources!

|V| single source shortest paths.

Bellman Ford takes O(|V||E|) time.

$$O(|V|(|V||E|)) = O(|V|^2|E|)$$
 time.

Can we do better?

Find d(i,j) for all i, j.

"Bellman": d(i,j,h) shortest path from i to j using h hops.

$$d(i,j,h) = \min_{(j',j) \in E} \{d(i,j',h-1) + I(j',j)\}.$$

$$O(|V|)$$
 iterations, $O(|V||E|)$ per iteration. $O(|V|^2|E|)$

Really Bellman-Ford for |V| sources!

Can we do better?

Remember Knapsack without Repetition.

Remember Knapsack without Repetition.

Best knapsack using first *i* items.

Remember Knapsack without Repetition.

Best knapsack using first *i* items.

d(i,j,k) - shortest path from i to j using first k nodes on path.

Remember Knapsack without Repetition.

Best knapsack using first *i* items.

d(i,j,k) - shortest path from i to j using first k nodes on path.

Remember Knapsack without Repetition.

Best knapsack using first *i* items.

d(i,j,k) - shortest path from i to j using first k nodes on path.

$$d(i,j,0) = \infty$$
 for $(i,j) \notin E$.

Remember Knapsack without Repetition.

Best knapsack using first *i* items.

d(i,j,k) - shortest path from i to j using first k nodes on path.

$$d(i,j,0) = \infty$$
 for $(i,j) \notin E$.

Remember Knapsack without Repetition.

Best knapsack using first *i* items.

d(i,j,k) - shortest path from i to j using first k nodes on path.

$$d(i,j,0) = \infty$$
 for $(i,j) \notin E$.

$$d(i,j,k) = \min(d(i,j,k-1),d(i,k,k-1) + d(k,j,k-1))$$

For each edge $(i,j) \in E$, d(i,j,0) = l(i,j). Initialization time.

- (A) $O(n^2)$
- (B) O(|E|)

For each edge $(i,j) \in E$, d(i,j,0) = l(i,j). Initialization time.

- (A) $O(n^2)$
- (B) O(|E|)

В.

For each edge $(i,j) \in E$, d(i,j,0) = l(i,j).

Initialization time.

- (A) $O(n^2)$
- (B) O(|E|)

B. or A.

For each edge $(i,j) \in E$, d(i,j,0) = l(i,j).

Initialization time.

- (A) $O(n^2)$
- (B) O(|E|)

B. or A. depends...

For each edge $(i,j) \in E$, d(i,j,0) = l(i,j).

Initialization time.

- (A) $O(n^2)$
- (B) O(|E|)

B. or A. depends...just doesn't matter!

For each edge $(i,j) \in E$, d(i,j,0) = l(i,j).

Initialization time.

- (A) $O(n^2)$
- (B) O(|E|)

B. or A. depends...just doesn't matter!

Fill in table.

For each edge $(i,j) \in E$, d(i,j,0) = l(i,j).

Initialization time.

- (A) $O(n^2)$
- (B) O(|E|)

B. or A. depends...just doesn't matter!

Fill in table.

$$d(i,j,k) = \min(d(i,j,k-1),d(i,k,k-1) + d(k,j,k-1))$$

For each edge $(i,j) \in E$, d(i,j,0) = l(i,j).

Initialization time.

- (A) $O(n^2)$
- (B) O(|E|)

B. or A. depends...just doesn't matter!

Fill in table.

$$d(i,j,k) = \min(d(i,j,k-1),d(i,k,k-1) + d(k,j,k-1))$$

- (A) $O(n^3)$
- (B) $O(|E|^3)$

For each edge $(i,j) \in E$, d(i,j,0) = l(i,j).

Initialization time.

- (A) $O(n^2)$
- (B) O(|E|)

B. or A. depends...just doesn't matter!

Fill in table.

$$d(i,j,k) = \min(d(i,j,k-1),d(i,k,k-1) + d(k,j,k-1))$$

- (A) $O(n^3)$
- (B) $O(|E|^3)$

A.

For each edge $(i,j) \in E$, d(i,j,0) = l(i,j).

Initialization time.

- (A) $O(n^2)$
- (B) O(|E|)

B. or A. depends...just doesn't matter!

Fill in table.

$$d(i,j,k) = \min(d(i,j,k-1),d(i,k,k-1) + d(k,j,k-1))$$

- (A) $O(n^3)$
- (B) $O(|E|^3)$

A. $O(n^3)$ table entries.

For each edge $(i,j) \in E$, d(i,j,0) = l(i,j).

Initialization time.

- (A) $O(n^2)$
- (B) O(|E|)

B. or A. depends...just doesn't matter!

Fill in table.

$$d(i,j,k) = \min(d(i,j,k-1),d(i,k,k-1)+d(k,j,k-1))$$

- (A) $O(n^3)$
- (B) $O(|E|^3)$

A. $O(n^3)$ table entries. O(1) time per entry.

For each edge $(i,j) \in E$, d(i,j,0) = l(i,j).

Initialization time.

- (A) $O(n^2)$
- (B) O(|E|)

B. or A. depends...just doesn't matter!

Fill in table.

$$d(i,j,k) = \min(d(i,j,k-1),d(i,k,k-1) + d(k,j,k-1))$$

- (A) $O(n^3)$
- (B) $O(|E|^3)$

A. $O(n^3)$ table entries. O(1) time per entry.

 $O(n^3)$ time.

For each edge $(i,j) \in E$, d(i,j,0) = l(i,j).

Initialization time.

- (A) $O(n^2)$
- (B) O(|E|)

B. or A. depends...just doesn't matter!

Fill in table.

$$d(i,j,k) = \min(d(i,j,k-1), d(i,k,k-1) + d(k,j,k-1))$$

- (A) $O(n^3)$
- (B) $O(|E|^3)$

A. $O(n^3)$ table entries. O(1) time per entry.

 $O(n^3)$ time. (versus $O(n^2|E|)$ for n Bellman-Fords).

Travelling Salesman Problem.

Travelling Salesman Problem.

Given distances between *n* cities, find cycle that visits each city once of minimum cost.

Travelling Salesman Problem.

Given distances between *n* cities, find cycle that visits each city once of minimum cost.

try all orders and check.

Travelling Salesman Problem.

Given distances between *n* cities, find cycle that visits each city once of minimum cost.

try all orders and check. n!

Travelling Salesman Problem.

Given distances between *n* cities, find cycle that visits each city once of minimum cost.

try all orders and check. n! times n.

Travelling Salesman Problem.

Given distances between *n* cities, find cycle that visits each city once of minimum cost.

try all orders and check. n! times n. Uh oh!

Travelling Salesman Problem.

Given distances between *n* cities, find cycle that visits each city once of minimum cost.

try all orders and check. n! times n. Uh oh!

Can we do better?

Travelling Salesman Problem.

Given distances between *n* cities, find cycle that visits each city once of minimum cost.

try all orders and check. n! times n. Uh oh!

Can we do better?

Much better, but still not polynomial!

TSP Dynamic Program

Subproblem: best tour that visits the first *i* cities.

Subproblem: best tour that visits the first *i* cities.

Visit cities in order?

Subproblem: best tour that visits the first *i* cities.

Visit cities in order?

W.l.o.g. - start tour at 1.

Subproblem: best tour that visits the first *i* cities.

Visit cities in order?

W.l.o.g. - start tour at 1.

Subproblem: best tour that visits a subset *S* of cities...

Subproblem: best tour that visits the first *i* cities.

Visit cities in order?

W.l.o.g. - start tour at 1.

Subproblem: best tour that visits a subset *S* of cities...

....and ends at node j.

Subproblem: best tour that visits the first *i* cities.

Visit cities in order?

W.l.o.g. - start tour at 1.

Subproblem: best tour that visits a subset S of cities...

....and ends at node j.

$$C(S,j) = \min_{i \in S-j} \{C(S-j,i) + d_{ij}\}$$

Subproblem: best tour that visits the first *i* cities.

Visit cities in order?

W.l.o.g. - start tour at 1.

Subproblem: best tour that visits a subset S of cities...

....and ends at node j.

$$C(S,j) = \min_{i \in S-j} \{C(S-j,i) + d_{ij}\}$$

For all i we have $C(\{i\},i) = 0$

Subproblem: best tour that visits the first *i* cities.

Visit cities in order?

W.l.o.g. - start tour at 1.

Subproblem: best tour that visits a subset S of cities...

....and ends at node j.

$$C(S,j) = \min_{i \in S-j} \{C(S-j,i) + d_{ij}\}$$

For all i we have $C(\{i\},i) = 0$

Fill in subsets in order of size.

Subproblem: best tour that visits the first *i* cities.

Visit cities in order?

W.l.o.g. - start tour at 1.

Subproblem: best tour that visits a subset S of cities...

....and ends at node j.

$$C(\mathcal{S},j) = \min_{i \in \mathcal{S}-j} \{C(\mathcal{S}-j,i) + d_{ij}\}$$

For all i we have $C(\{i\},i) = 0$

Fill in subsets in order of size.

Table Size:

Subproblem: best tour that visits the first *i* cities.

Visit cities in order?

W.l.o.g. - start tour at 1.

Subproblem: best tour that visits a subset S of cities...

....and ends at node j.

$$C(S,j) = \min_{i \in S-j} \{C(S-j,i) + d_{ij}\}$$

For all i we have $C(\{i\},i) = 0$

Fill in subsets in order of size.

Table Size: 2ⁿ

Subproblem: best tour that visits the first *i* cities.

Visit cities in order?

W.l.o.g. - start tour at 1.

Subproblem: best tour that visits a subset *S* of cities...

....and ends at node j.

$$C(S,j) = \min_{i \in S-j} \{C(S-j,i) + d_{ij}\}$$

For all i we have $C(\{i\},i) = 0$

Fill in subsets in order of size.

Table Size: $2^n \times n$.

Subproblem: best tour that visits the first *i* cities.

Visit cities in order?

W.l.o.g. - start tour at 1.

Subproblem: best tour that visits a subset S of cities...

....and ends at node j.

$$C(\mathcal{S},j) = \min_{i \in \mathcal{S}-j} \{C(\mathcal{S}-j,i) + d_{ij}\}$$

For all i we have $C(\{i\},i) = 0$

Fill in subsets in order of size.

Table Size: $2^n \times n$.

Fill in each entry: O(n) time.

Subproblem: best tour that visits the first *i* cities.

Visit cities in order?

W.l.o.g. - start tour at 1.

Subproblem: best tour that visits a subset S of cities...

....and ends at node j.

$$C(\mathcal{S},j) = \min_{i \in \mathcal{S}-j} \{C(\mathcal{S}-j,i) + d_{ij}\}$$

For all i we have $C(\{i\},i) = 0$

Fill in subsets in order of size.

Table Size: $2^n \times n$.

Fill in each entry: O(n) time.

Time: $O(n^22^n)$

Subproblem: best tour that visits the first *i* cities.

Visit cities in order?

W.l.o.g. - start tour at 1.

Subproblem: best tour that visits a subset *S* of cities...

....and ends at node j.

$$C(\mathcal{S},j) = \min_{i \in \mathcal{S}-j} \{C(\mathcal{S}-j,i) + d_{ij}\}$$

For all i we have $C(\{i\},i) = 0$

Fill in subsets in order of size.

Table Size: $2^n \times n$.

Fill in each entry: O(n) time.

Time: $O(n^22^n)$

Answer? (A) $\min_{S,j} \{C(S,j) + d_{j1}\}$ (B) $\min_{j} \{C(V,j) + d_{j1}\}$, (C)

 $\min_{j} \{C(V,j)\}$

Given a graph G = (V, E), find the smallest subset, S, where $\forall v \in V, v \in S$, or $(u, v) \in E$ and $u \in S$.

Given a graph G = (V, E), find the smallest subset, S, where $\forall v \in V, v \in S$, or $(u, v) \in E$ and $u \in S$.

Given a graph G = (V, E), find the smallest subset, S, where $\forall v \in V, v \in S$, or $(u, v) \in E$ and $u \in S$.

Dominating Set!

Given a graph G = (V, E), find the smallest subset, S, where $\forall v \in V, v \in S$, or $(u, v) \in E$ and $u \in S$.

Dominating Set!
Better Dominating Set.

Given a graph G = (V, E), find the smallest subset, S, where $\forall v \in V, v \in S$, or $(u, v) \in E$ and $u \in S$.

Dominating Set!
Better Dominating Set.

Application?

Given a graph G = (V, E), find the smallest subset, S, where $\forall v \in V, v \in S$, or $(u, v) \in E$ and $u \in S$.

Dominating Set!
Better Dominating Set.

Application?
Place ice cream stand on corners

Given a graph G = (V, E), find the smallest subset, S, where $\forall v \in V, v \in S$, or $(u, v) \in E$ and $u \in S$.

Dominating Set!
Better Dominating Set.

Application?

Place ice cream stand on corners ... and only one block to any ice-cream.

Given a graph G = (V, E), find the smallest subset, S, where $\forall v \in V, v \in S$, or $(u, v) \in E$ and $u \in S$.

Dominating Set!
Better Dominating Set.

Application?

Place ice cream stand on corners ... and only one block to any ice-cream.

What could be more important than ice-cream!

Given a tree T = (V, E), find the smallest subset, S, where $\forall v \in V, v \in S$, or $(u, v) \in E$ and $u \in S$.

Given a tree T = (V, E), find the smallest subset, S, where $\forall v \in V, v \in S$, or $(u, v) \in E$ and $u \in S$.

Given a tree T = (V, E), find the smallest subset, S, where $\forall v \in V, v \in S$, or $(u, v) \in E$ and $u \in S$.

What's the best dominating set?

Given a tree T = (V, E), find the smallest subset, S, where $\forall v \in V, v \in S$, or $(u, v) \in E$ and $u \in S$.

What's the best dominating set?

Root tree at A.

Given a tree T = (V, E), find the smallest subset, S, where $\forall v \in V, v \in S$, or $(u, v) \in E$ and $u \in S$.

What's the best dominating set?

Root tree at A. Subproblems correspond to subtrees.

Given a tree T = (V, E), find the smallest subset, S, where $\forall v \in V, v \in S$, or $(u, v) \in E$ and $u \in S$.

What's the best dominating set?

Root tree at A. Subproblems correspond to subtrees.

Given a tree T = (V, E), find the smallest subset, S, where $\forall v \in V, v \in S$, or $(u, v) \in E$ and $u \in S$.

What's the best dominating set?

Root tree at A. Subproblems correspond to subtrees.

Best solution S structure?

Given a tree T = (V, E), find the smallest subset, S, where $\forall v \in V, v \in S$, or $(u, v) \in E$ and $u \in S$.

What's the best dominating set?

Root tree at A. Subproblems correspond to subtrees.

Best solution S structure?

for subtree at *B*.

Given a tree T = (V, E), find the smallest subset, S, where $\forall v \in V, v \in S$, or $(u, v) \in E$ and $u \in S$.

What's the best dominating set?

Root tree at A. Subproblems correspond to subtrees.

Best solution S structure?

for subtree at B.

B could be in S

Given a tree T = (V, E), find the smallest subset, S, where $\forall v \in V, v \in S$, or $(u, v) \in E$ and $u \in S$.

What's the best dominating set?

Root tree at A. Subproblems correspond to subtrees.

Best solution S structure?

for subtree at B.

B could be in S

B could not be in S and be covered by a node in subtree.

Given a tree T = (V, E), find the smallest subset, S, where $\forall v \in V, v \in S$, or $(u, v) \in E$ and $u \in S$.

What's the best dominating set?

Root tree at A. Subproblems correspond to subtrees.

Best solution S structure?

for subtree at B.

B could be in S

B could not be in S and be covered by a node in subtree.

B could not be in S and not be covered by a node in subtree.

Best solution *S* structure?

Best solution *S* structure? for subtrees at *u*.

Best solution *S* structure? for subtrees at *u*. *u* could be in *S*

Best solution S structure? for subtrees at u. u could be in S u could not be in S and be covered by a node in subtree.

Best solution S structure? for subtrees at u. u could be in S u could not be in S and be covered by a node in subtree. u could not be in S and not be covered by a node in subtree.

for subtrees at u.

u could be in S

u could not be in *S* and be covered by a node in subtree.

u could not be in S and not be covered by a node in subtree.

Subproblem: DS(u,in_cover,covered).

for subtrees at u.

u could be in S

u could not be in *S* and be covered by a node in subtree.

u could not be in S and not be covered by a node in subtree.

Subproblem: DS(u,in_cover,covered).

vertex *u*, booleans in_cover,covered.

for subtrees at u.

u could be in S

u could not be in *S* and be covered by a node in subtree.

 \boldsymbol{u} could not be in \boldsymbol{S} and not be covered by a node in subtree.

Subproblem: DS(u,in_cover,covered).

vertex *u*, booleans in_cover,covered.

Best solution where u is in cover or not

for subtrees at u.

u could be in S

u could not be in *S* and be covered by a node in subtree.

 \boldsymbol{u} could not be in \boldsymbol{S} and not be covered by a node in subtree.

Subproblem: DS(u,in_cover,covered).

vertex *u*, booleans in_cover,covered.

Best solution where u is in cover or not

and covered or not in subtree.

for subtrees at u.

u could be in S

u could not be in *S* and be covered by a node in subtree.

u could not be in S and not be covered by a node in subtree.

Subproblem: DS(u,in_cover,covered).

vertex *u*, booleans in_cover,covered.

Best solution where *u* is in cover or not

and covered or not in subtree.

DS(u,true,true)

= $1 + \sum_{\text{subtree}v} \min\{DS(v, false, false), DS(v, false, true), DS(v, true, true)\}.$

```
u could be in S
  u could not be in S and be covered by a node in subtree.
  u could not be in S and not be covered by a node in subtree.
Subproblem: DS(u,in_cover,covered).
 vertex u, booleans in_cover,covered.
   Best solution where u is in cover or not
     and covered or not in subtree.
DS(u,true,true)
= 1 + \sum_{\text{subtree}_{v}} \min\{DS(v, false, false), DS(v, false, true), DS(v, true, true)\}.
DS(u,false,true) =
   \min_{\text{subtree}_x} DS(x, true, true) +
\sum_{\text{subtree } v \neq x} \min \{ DS(v, false, true), DS(v, true, true) \}.
```

Best solution *S* structure? for subtrees at *u*.

```
Best solution S structure?
  for subtrees at u.
  u could be in S
  u could not be in S and be covered by a node in subtree.
  u could not be in S and not be covered by a node in subtree.
Subproblem: DS(u,in_cover,covered).
 vertex u, booleans in_cover,covered.
   Best solution where u is in cover or not
     and covered or not in subtree.
DS(u,true,true)
= 1 + \sum_{\text{subtree}_{v}} \min\{DS(v, false, false), DS(v, false, true), DS(v, true, true)\}.
DS(u,false,true) =
   \min_{\text{subtree}_x} DS(x, true, true) +
\sum_{\text{Subtree } v \neq x} \min\{DS(v, false, true), DS(v, true, true)\}.
DS(u,false,false) = \sum_{SIIhtreev} DS(v,false,true)
```

```
Best solution S structure?
  for subtrees at u.
  u could be in S
  u could not be in S and be covered by a node in subtree.
  u could not be in S and not be covered by a node in subtree.
Subproblem: DS(u,in_cover,covered).
 vertex u, booleans in_cover,covered.
   Best solution where u is in cover or not
     and covered or not in subtree.
DS(u,true,true)
= 1 + \sum_{\text{subtree}_{v}} \min\{DS(v, false, false), DS(v, false, true), DS(v, true, true)\}.
DS(u,false,true) =
   \min_{\text{subtree}_x} DS(x, true, true) +
\sum_{\text{Subtree } v \neq x} \min\{DS(v, false, true), DS(v, true, true)\}.
DS(u,false,false) = \sum_{SIIhtreev} DS(v,false,true)
```

Subproblem: DS(u,in_cover,covered).

Subproblem: DS(u,in_cover,covered). vertex *u*, booleans in_cover,covered.

Subproblem: DS(u,in_cover,covered). vertex *u*, booleans in_cover,covered. Best solution where *u* is in cover or not

Subproblem: DS(u,in_cover,covered). vertex *u*, booleans in_cover,covered. Best solution where *u* is in cover or not and covered or not in subtree.

Subproblem: DS(u,in_cover,covered). vertex *u*, booleans in_cover,covered. Best solution where *u* is in cover or not and covered or not in subtree.

DS(u,true,true)

 $= 1 + \sum_{\text{Subtree}\textit{v}} \min \{ \textit{DS}(\textit{v}, \textit{false}, \textit{false}), \textit{DS}(\textit{v}, \textit{false}, \textit{true}), \textit{DS}(\textit{v}, \textit{true}, \textit{true}) \}.$

```
Subproblem: DS(u,in_cover,covered).

vertex u, booleans in_cover,covered.

Best solution where u is in cover or not and covered or not in subtree.

DS(u,true,true)
= 1 + ∑<sub>Subtreev</sub> min{DS(v, false, false), DS(v, false, true), DS(v, true, true)}.

DS(u,false,true) = min subtreex DS(x, true, true) + ∑<sub>Subtreev</sub> min{DS(v, false, true), DS(v, true, true)}.
```

```
Subproblem: DS(u,in_cover,covered).
 vertex u, booleans in_cover,covered.
    Best solution where u is in cover or not
      and covered or not in subtree.
DS(u,true,true)
= 1 + \sum_{\text{Subtree}_{v}} \min \{ DS(v, false, false), DS(v, false, true), DS(v, true, true) \}.
DS(u,false,true) =
   \min_{\text{subtree} x} DS(x, true, true) +
\sum_{\text{subtree } v \neq x} \min \{ DS(v, false, true), DS(v, true, true) \}.
DS(u,false,false) = \sum_{subtreev} DS(v,false,true)
```

```
Subproblem: DS(u,in_cover,covered).
 vertex u, booleans in_cover,covered.
    Best solution where u is in cover or not
      and covered or not in subtree.
DS(u,true,true)
= 1 + \sum_{\text{Subtree}_{v}} \min \{ DS(v, false, false), DS(v, false, true), DS(v, true, true) \}.
DS(u,false,true) =
   \min_{\text{subtree} x} DS(x, true, true) +
\sum_{\text{subtree } v \neq x} \min \{ DS(v, false, true), DS(v, true, true) \}.
DS(u,false,false) = \sum_{subtreev} DS(v,false,true)
```

```
Subproblem: DS(u,in_cover,covered).
 vertex u, booleans in_cover,covered.
   Best solution where u is in cover or not
     and covered or not in subtree.
DS(u,true,true)
= 1 + \sum_{\text{Subtree}_{v}} \min \{ DS(v, false, false), DS(v, false, true), DS(v, true, true) \}.
DS(u,false,true) =
   min Subtree_x DS(x, true, true) +
\sum_{\text{subtree } v \neq x} \min \{ DS(v, false, true), DS(v, true, true) \}.
DS(u,false,false) = \sum_{subtreev} DS(v,false,true)
```

For leaf u. DS(u,false,false)?

```
vertex u, booleans in_cover,covered.

Best solution where u is in cover or not and covered or not in subtree.

DS(u,true,true)
= 1 + \sum_{\text{Subtree}v} \min\{DS(v, false, false), DS(v, false, true), DS(v, true, true)\}.

DS(u,false,true) = \min_{\text{Subtree}} \sup_{v \neq x} DS(x, true, true) + \sum_{\text{Subtree}} \sup_{v \neq x} \min\{DS(v, false, true), DS(v, true, true)\}.

DS(u,false,false) = \sum_{\text{Subtree}v} DS(v, false, true)
```

For leaf u. DS(u,false,false)? 0

Subproblem: DS(u,in_cover,covered).

```
Subproblem: DS(u,in_cover,covered).
 vertex u, booleans in_cover,covered.
   Best solution where u is in cover or not
     and covered or not in subtree.
DS(u,true,true)
= 1 + \sum_{\text{Subtree}_{v}} \min \{ DS(v, false, false), DS(v, false, true), DS(v, true, true) \}.
DS(u,false,true) =
   min Subtree_x DS(x, true, true) +
\sum_{\text{subtree } v \neq x} \min \{ DS(v, false, true), DS(v, true, true) \}.
DS(u,false,false) = \sum_{subtreev} DS(v,false,true)
For leaf u. DS(u,false,false)? 0
For leaf u. DS(u,true,true)?
```

```
Subproblem: DS(u,in_cover,covered).
 vertex u, booleans in_cover,covered.
   Best solution where u is in cover or not
     and covered or not in subtree.
DS(u,true,true)
= 1 + \sum_{\text{Subtree}_{v}} \min \{ DS(v, false, false), DS(v, false, true), DS(v, true, true) \}.
DS(u,false,true) =
   min Subtree_x DS(x, true, true) +
\sum_{\text{subtree } v \neq x} \min \{ DS(v, false, true), DS(v, true, true) \}.
DS(u,false,false) = \sum_{subtreev} DS(v,false,true)
For leaf u. DS(u,false,false)? 0
For leaf u. DS(u,true,true)? 1
```

```
Subproblem: DS(u,in_cover,covered).
 vertex u, booleans in_cover,covered.
   Best solution where u is in cover or not
     and covered or not in subtree.
DS(u,true,true)
= 1 + \sum_{\text{subtree} v} \min \{ DS(v, false, false), DS(v, false, true), DS(v, true, true) \}.
DS(u,false,true) =
   \min_{SUbtreex} DS(x, true, true) +
\sum_{\text{subtree } v \neq x} \min \{ DS(v, false, true), DS(v, true, true) \}.
DS(u,false,false) = \sum_{subtreev} DS(v,false,true)
For leaf u. DS(u,false,false)? 0
For leaf u. DS(u,true,true)? 1
For leaf u. DS(u,false,true)?
```

```
Subproblem: DS(u,in_cover,covered).
 vertex u, booleans in_cover,covered.
   Best solution where u is in cover or not
     and covered or not in subtree.
DS(u,true,true)
= 1 + \sum_{\text{Subtree}_{v}} \min \{ DS(v, false, false), DS(v, false, true), DS(v, true, true) \}.
DS(u,false,true) =
   \min_{SUbtreex} DS(x, true, true) +
\sum_{\text{subtree } v \neq x} \min \{ DS(v, false, true), DS(v, true, true) \}.
DS(u,false,false) = \sum_{subtreev} DS(v,false,true)
For leaf u. DS(u,false,false)? 0
For leaf u. DS(u,true,true)? 1
For leaf u. DS(u,false,true)? ??
```

```
Subproblem: DS(u,in_cover,covered).
 vertex u, booleans in_cover,covered.
   Best solution where u is in cover or not
     and covered or not in subtree.
DS(u,true,true)
= 1 + \sum_{\text{Subtreev}} \min\{DS(v, false, false), DS(v, false, true), DS(v, true, true)\}.
DS(u,false,true) =
   \min_{SUbtreex} DS(x, true, true) +
\sum_{\text{subtree } v \neq x} \min \{ DS(v, false, true), DS(v, true, true) \}.
DS(u,false,false) = \sum_{subtreev} DS(v,false,true)
For leaf u. DS(u,false,false)? 0
For leaf u. DS(u,true,true)? 1
For leaf u. DS(u,false,true)? ?? Big, actually.
```

```
Subproblem: DS(u,in_cover,covered).
 vertex u, booleans in_cover,covered.
   Best solution where u is in cover or not
     and covered or not in subtree.
DS(u,true,true)
= 1 + \sum_{\text{subtree} v} \min \{ DS(v, false, false), DS(v, false, true), DS(v, true, true) \}.
DS(u,false,true) =
   \min_{SUbtreex} DS(x, true, true) +
\sum_{\text{subtree } v \neq x} \min \{ DS(v, false, true), DS(v, true, true) \}.
DS(u,false,false) = \sum_{subtreev} DS(v,false,true)
For leaf u. DS(u,false,false)? 0
For leaf u. DS(u,true,true)? 1
For leaf u. DS(u,false,true)? ?? Big, actually.
O(V) table entries.
```

```
Subproblem: DS(u,in_cover,covered).
 vertex u, booleans in_cover,covered.
   Best solution where u is in cover or not
     and covered or not in subtree.
DS(u,true,true)
= 1 + \sum_{\text{Subtreev}} \min\{DS(v, false, false), DS(v, false, true), DS(v, true, true)\}.
DS(u,false,true) =
   \min_{\text{subtree} x} DS(x, true, true) +
\sum_{\text{subtree } v \neq x} \min \{ DS(v, false, true), DS(v, true, true) \}.
DS(u,false,false) = \sum_{subtreev} DS(v,false,true)
For leaf u. DS(u,false,false)? 0
For leaf u. DS(u,true,true)? 1
For leaf u. DS(u,false,true)? ?? Big, actually.
O(V) table entries.
   Fill in entry for degree d node, in time O(d^2).
```

```
Subproblem: DS(u,in_cover,covered).
 vertex u, booleans in_cover,covered.
   Best solution where u is in cover or not
     and covered or not in subtree.
DS(u,true,true)
= 1 + \sum_{\text{Subtree}_{V}} \min\{DS(v, false, false), DS(v, false, true), DS(v, true, true)\}.
DS(u,false,true) =
   \min_{SUbtreex} DS(x, true, true) +
\sum_{\text{subtree } v \neq x} \min \{ DS(v, false, true), DS(v, true, true) \}.
DS(u,false,false) = \sum_{subtreev} DS(v,false,true)
For leaf u. DS(u,false,false)? 0
For leaf u. DS(u,true,true)? 1
For leaf u. DS(u,false,true)? ?? Big, actually.
O(V) table entries.
   Fill in entry for degree d node, in time O(d^2).
   O(d) with a bit of care.
```

```
Subproblem: DS(u,in_cover,covered).
 vertex u, booleans in_cover,covered.
   Best solution where u is in cover or not
     and covered or not in subtree.
DS(u,true,true)
= 1 + \sum_{\text{Subtree}_{V}} \min\{DS(v, false, false), DS(v, false, true), DS(v, true, true)\}.
DS(u,false,true) =
   \min_{SUbtreex} DS(x, true, true) +
\sum_{\text{subtree } v \neq x} \min \{ DS(v, false, true), DS(v, true, true) \}.
DS(u,false,false) = \sum_{subtreev} DS(v,false,true)
For leaf u. DS(u,false,false)? 0
For leaf u. DS(u,true,true)? 1
For leaf u. DS(u,false,true)? ?? Big, actually.
O(V) table entries.
   Fill in entry for degree d node, in time O(d^2).
   O(d) with a bit of care.
O(|E|) time.
```