Entity Relationship

(ER) Model

Higher Level Concepts

Lab

- In your company:
 - An employee must work for one and only one dept
 - A dept must have one or more employees
 - A dept can run one or more projects, but it does not have to.
 - A project must have at least one department that sponsors it but it can belong to more. Each department that participates in a project has a budget for the project.
 - Each dept must have a mgr.
 - Each employee must report to a supervisor
 - An employee may be a supervisor for one or more employees
 - Employees can work on one or more projects for a given number of hours per week
 - A project must have at least one or more employees working on it
- Draw an ER diagram to represent this information

• Question :

- A part can contain other parts, but it does not have to.
- A part can be a component of one or more parts, but it does not have to.
- Draw the ER diagram that shows this.
 - Example:
 - P1 contains P2 and P3
 - P2 is contained in P1
 - P3 is contained in P1

- Recursive Relationships
 - Roles entities involved in a recursive relationship play different roles
 - Examples
 - A part plays the container role for the part that plays the contained role
 - A person plays the role of a husband for the person who plays the role of a wife
 - An employee plays the role of supervisor for employee who plays the role of supervisee

• Question:

- In a bank, there are many different types of accounts, such as Checking, Savings, CD, Money Market, Trust, etc.
- All accounts have an account number that is unique, a balance, and a type designation.
- Customers have a customer ID that is unique, name and address.
- An account belongs to one and only one customer.
- A customer must have at least one account but can have more.
- Draw an entity relationship model for this environment.

- Specialization vs. Generalization
 - Specialization
 - Top down design approach
 - Less detail to more detail
 - Good when the complete picture is not known
 - Generalization
 - Bottom up design approach
 - More detail to less detail
 - Grouping

Specialization Types

- Specialization can be:
 - Total all sub-types have been identified
 - Non-total some of the sub-types have been identified
- Specialization can also be:
 - Overlapping –sub-types may overlap
 - Disjoint sub-types cannot overlap
 - Combining the two aspects, gives us four alternatives

- Example
 - Every Emp is either a Salaried employee or an hourly employee.
 - There are no other types of employees
 - This is a **total disjoint** specialization

• Example:

- A Part is either a manufactured part or a purchased part
- The same part could be a purchased part or a manufactured part
- This is a **total overlapping** specialization

Example

- An Account is either a checking account or a savings account
- But there other types of accounts (Money Market, Loans, Etc.)
- We do not care about other accounts' special attributes. Therefore we do not have them as sub-types
- This is a **non-total disjoint** specialization

Example:

- An employee is either a teacher or a student. There are other employees in the organization (non-total)
- Some of the students in the university also teach (overlapping)
- This is a **non-total overlapping** specialization

Relational Model and Mapping from ER

Relational Model

Conceptual Data Model

Objects

Relationships between Objects

Entity Relationship Diagram (models your business)

Logical Data Model

Relational Schemas

Constraints

Dependencies

Relational Model (a logical model of your business)

Applies to this layer

Physical Data Model

Physical Database Objects
Create Table, Index, etc

Physical Model (Database Specific)

• The Relational Data Model

- The model was first introduced by Dr. E.F. Codd of IBM in 1970 in the following article
 - "A Relational Model for Large Shared Data Banks," Communications of the ACM, June, 1970.
- It is based on the *set* concept (from *mathematics*)
- It supports simple and powerful data querying or retrieval languages (Relational Algebra, SQL)
- The model also supports statements for manipulation of the contents of the database

- *Relational model* is the de facto standard for representation of the logical model
 - In this model, a database is represented as a set of *Relations* (or tables) that is why the name relational model
 - Each relation/table has a *unique name*
 - Each relation/table has a set of one or more *Attributes/columns*
 - The collection of all attributes of a relation is called a *Tuple/row*
 - The collection of all relations for a database is called the *Schema* of the database
 - Textually, we show a table as

Employee (<u>EID</u>, Name, Sal, DOB, Dno)

		Columns			
Shipm	ent				
	s#	status	city	p#	qty
	s1	20	London	p1	300
	s1	20	London	p2	200
Davis	s1	20	London	р3	400
Rows	s1	20	London	p4	200
	s1	20	London	p5	100
	s1	20	London	p6	100
	s2	10	Paris	p1	300
	s2	10	Paris	p2	400
	s3	10	Paris	p2	200
	s4	20	London	p2	200
	s4	20	London	р4	300
	s4	20	London	р5	400

Number of rows = 12

Number of columns = 5

Definitions

Candidate

Key

A minimal superkey that does not contain a subset of

attributes that is itself a superkey

Primary Key

A chosen candidate key that uniquely identifies all other attribute values in any given row but may NOT

contain null entities

Foreign Key

An attribute or combination of attributes in one table

whose values must either match the primary key in

another table or be null

• Referential Integrity

- DeptID in Employee table is a foreign key pointing to the DeptID primary key in Department table
- Department table is called the parent table
- Employee table is called the child table
- Referential Integrity rule says, "there are no orphaned children rows in the child table.

Employee						Departme	t		
	EmpID	Ename	Sal	DepID			DepID	Dname	College
	123	Sam	27500	-2			1	Math	Liberal Arts
	234	Joe	100000	_3			2	Physics	Liberal Arts
	345	John	35000	1	//			Marketing	Business
	555	MarK	45000	1			4	Biology	Liberal Arts
	635	Jill	50000	4				Software	Engineering
	889	Katie	15000	- 5					
	111	Kathy	25000	4					
	120	Renee	20000	2					

Three Model View

Logical (Relational)

Customer(Cname, Street, Ccity)
Branch(Bname, Assets, Bcity)
Account(A#, Bal, Cname, Bname)
Loan(L#, Amt, Cname, Bname)

CNAME	STREET	CCITY
Baba	1234 Ireland	Minnetonka
Cook	2222 Main	MPLS
Erickson	1234 Second	Eagan
Ireland	1234 Third	Eagan
James	2222 Fourth	Edina
Janzen	1234 Fifth	Edina
Johnson	3333 Main	MPLS
Jones	1111 Main	MPLS
Love	1234 Ninth	Minnetonka
Rahimi	1111 Sixth	Eden Prairie
Tomcat	1234 Seventh	MPLS
Tones	1234 Eighth	Minnetonka
Melcher	1234 Nineth	MPLS
Woods	1234 Old	Minnetonka
Tomczak	1111 newest	Minnetonka

A#	CNAME	BNAME	BAL
1111	Rahimi	France	123.5
2222	Rahimi	Southdale	1111
3333	Rahimi	York	45
4444	Cook	France	6690
5555	Cook	York	10000
6666	Cook	Main	3338
7777	Jones	France	5678
8888	Jones	Southdale	999
9999	Jones	York	456
1234	Tomczak	France	123.5
4567	Love	France	300
9800	Love	Main	333
7765	James	France	100
7756	Woods	Eight Street	1000

L#	CNAME	BNAME	AMT
1001	Cook	France	10000
2002	Rahimi	Southdale	5000
3003	Cook	York	1000
4004	Rahimi	France	20000
5005	Rahimi	York	11000
6006	Cook	Main	30000
7007	Jones	France	4500
8008	Jones	Southdale	1200
9009	Jones	York	9000
1004	Tomczak	France	34560
4009	James	France	12300
9008	Melcher	France	4450
8888	Woods	France	4450

BNAME	ASSETS	BCITY
3rd Street	100000	Eagan
Airport	446000	Eagan
Eight Street	450000	MPLS
France	125000	Edina
Main	100000	Minnetonka
Northtown	347000	MPLS
Ridgedale	150000	Minnetonka
Second	123000	Minnetonka
Southdale	750000	Edina
York	300000	Edina

Physical (Relational)

Entity Relationship Diagram

Mapping to

Relational Model

- How do we realize an ER model by a relational model (Schema)?
- Automated process (using a tool)
- Non-automated process (paper and pencil)
- Key Rules:
 - Each entity maps to a table
 - Each attribute maps to a column the data type of the column is the date type of the attribute
 - A relationship maps either
 - To a table, or
 - As a Fkey column

Single Entity Mapping

Conceptual	Customer
	Cname A10
	Street A30
	CCity A10

Relationship with no Attributes

Relationship with Attributes (1 to M)

Relationship with Attributes (M to M)

• Ternary Relationship with Attributes

• Question:

- A company interviews some candidates and <u>may</u> make some offers for the job opening the company has
- Map the ERD to set of tables.

•Recursive Relationship

• Weak Entity Relationships

<u>Inheritance</u> Alternati

Alternative 1: Map All

Inheritance

Alternative 2:
Map Children

