MAP0214

Prof. Arnaldo Gammal

20. PROGRAMA - Solução de Sistemas de Equações Lineares

Observe o circuito abaixo.

Dados $R_1 = 8\Omega$, $R_2 = 5\Omega$, $R_3 = 5\Omega$, $R_4 = 1\Omega$, $U_1 = 22V$, $U_2 = 7V$, $U_3 = 3V$.

a) Aplique as leis de Kirchhoff no sistema acima e obtenha três equações linearmente independentes para I_1 , I_2 e I_3 na forma

$$\begin{bmatrix} 0 & 5 & -1 \\ 13 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 15 \\ 0 \end{bmatrix} . \tag{1}$$

- b) Construa um programa que o resolva o sistema acima pelo método de Eliminação de Gauss usando pivotamento parcial. Imprima também as matrizes intermediárias até chegar na matriz triangular superior. O programa deve ser capaz de resolver n equações.
- c) Permute as duas primeiras linhas do sistema (1) e construa um programa que resolva o sistema pelo método de Jacobi, usando um critério de parada $\max |x_i^{(k+1)} x_i^{(k)}| < \epsilon$ para i = 1, ..., n, $\epsilon = 10^{-4}$ e k é o número da iteração. O programa deve imprimir tabelas contendo k, valores de I_1 , I_2 e I_3 e erro mostrando a convergência. O programa deve ser capaz de resolver sistemas com n equações.
 - d) Repita o item c) usando o método de Gauss-Seidel.

Entregar item a) manuscrito + programas e listagens impressos dos itens b), c) e d).