

Mathematics and Statistics

$$\int_{M}d\omega=\int_{\partial M}\omega$$

Mathematics 3F03 Advanced Differential Equations

Instructor: David Earn

Lecture 17
Genericity and 3D Phase Portraits of Linear Systems
Wednesday 16 October 2013

Announcements

Test #1

Date: Wednesday 30 October 2013

Time: 11:30am to 1:20pm

Location: T29 / 101

■ Further info may be posted on the course wiki closer to the test date.

Announcements

- Assignment 2 results much better than Assignment 1.
- Make sure you hand in your entire solution!
- Assignment 3 due on Friday 25 Oct 2013.
 - Check course wiki for updates!
 - More questions will be posted by the end of the week!
- Tutorial this Friday, 18 Oct 2013.

Marks Distribution for Assignment 2

- Carefully read instructor's solutions posted on course wiki.
- Check TA comments posted on course wiki.

Genericity

Intuitive notion of "generic" property of an object

- "almost all" objects in a class possess the property
- parameter values chosen at random yield the property

Formal definition of "generic"

Definition (Open Ball in \mathbb{R}^n)

The *open ball* of radius ϵ about $X \in \mathbb{R}^n$ is the set

$$B_{\epsilon}(X) = \{ Y \in \mathbb{R}^n : |Y - X| < \epsilon \}.$$

Definition (Open Set in \mathbb{R}^n)

A set $U \subset \mathbb{R}^n$ is *open* if for any point $X \in U$ there is an open ball B such that $X \in B \subset U$.

Formal definition of "generic"

Definition (Dense Set)

A set $D \subset S$ is *dense* in S if there are points in D arbitrarily close to each point in S.

Examples:

- \blacksquare \mathbb{Q} is dense in \mathbb{R} .
- \mathbb{Q}^c is dense in \mathbb{R} .
- \mathbb{Q}^2 is dense in \mathbb{R}^2 .
- lacksquare \mathbb{O}^n is dense in \mathbb{R}^n .
- $\blacksquare \mathbb{Z}^n$ is NOT dense in \mathbb{Q}^n .

Formal definition of "generic"

Proposition (Finite intersections of open, dense sets)

If U_1, \ldots, U_k are each open and dense in S then $U = U_1 \cap \cdots \cap U_k$ is also open and dense in S.

Definition (Generic Property)

A property of a mathematical object is *generic* if it is satisfied in an open, dense subset of the space in which the object lives.

Theorem (Having distinct eigenvalues is a generic property)

The set of real $n \times n$ matrices with distinct eigenvalues is open and dense in the space of all real $n \times n$ matrices.

Qualitative Dynamics of 3D Linear Systems

3D Linear Systems

- Real 3×3 matrix A.
- Original coordinates: X' = AX
- Canonical coordinates: Y' = JY with $J = T^{-1}AT$.
- Three eigenvalues: λ_1 , λ_2 , λ_3 .
- Either $\lambda_i \in \mathbb{R} \ \forall j$ OR $\lambda_1 \in \mathbb{R}, \ \operatorname{Im}(\lambda_2) \neq 0, \ \lambda_3 = \overline{\lambda_2}.$
- Variety of cases...

3D Linear Systems

Eigenvalue types and their effects on phase portraits

- $\lambda_i < 0 \implies \exists$ stable direction
- $\lambda_i > 0 \implies \exists$ unstable direction
- $\lambda_i < 0$ for $j = 1, 2 \implies$ stable (planar) subspace
- $\lambda_i > 0$ for $j = 1, 2 \implies$ unstable (planar) subspace
- $\operatorname{Im}(\lambda_i) \neq 0 \implies \operatorname{oscillation}$
- Generalizes to higher dimensions, but harder to visualize. . .

Handedness of Coordinate Systems

- Always assume RIGHT-HANDED coordinate system.
- Viewed from above (z > 0), right-handed coordinate systems have the usual x-y orientation.

Distinct Eigenvalues: Saddles

Figure 6.1 The stable and unstable subspaces of a saddle in dimension 3. On the left, the system is in canonical form.

- $\lambda_3 < 0 < \lambda_2 < \lambda_1$ $V_3 = (0, 1, 2)^T$
- How do we know $\lambda_2 < \lambda_1$?
- What happens as $x \to 0$, i.e., as $t \to -\infty$? Look at x-y plane from above... $|y/x| \to \infty$

Distinct Eigenvalues: Sinks

Figure 6.2 A sink in three dimensions.

(in canonical coordinates)

■
$$\lambda_i$$
 < 0 for $j = 1, 2, 3$

• As
$$t \to \infty$$
, $y/x \to 0$, $z/y \to 0$, $\implies \lambda_3 < \lambda_2 < \lambda_1$

Instructor: David Earn

Distinct Eigenvalues: Spiral Centre

Figure 6.3 The phase portrait for a spiral center.

- $\lambda_3 < 0$
- $\lambda_{1,2} = \pm i\beta \ (\beta \neq 0)$
- Rotation is clockwise viewed from above, i.e., in the x-y plane
- Sign of β ?

■ Jordan block associated with $\lambda_{1,2}$ is $\begin{pmatrix} 0 & \beta \\ -\beta & 0 \end{pmatrix}$

- Given clockwise rotation, does it follow that bottom left entry $(-\beta)$ is negative, so $\beta > 0$? No.
- $\lambda_{1,2}$ associated with x-y plane, not x or y specifically
 - Better to call them λ_+ .
 - No meaning to $sign(\beta)$.
 - Bottom left entry in *original* coordinates determines sense of rotation.
 - Eigenvalues do not determine sense of rotation.

Distinct Eigenvalues: Spiral Saddle

Figure 6.5 Typical solutions of the spiral saddle tend to spiral toward the unstable line.

- $\lambda_3 > 0$, $\lambda_{1.2} = \alpha \pm i\beta$
- $\alpha < 0$, $\beta \neq 0$, sign(β) undetermined
- What would happen if $\lambda_3 = 0$? $\lambda_3 < 0$? $\alpha = 0$? $\alpha > 0$?

Repeated Eigenvalues: "Improper" Sink

Figure 6.9 The phase portrait for repeated real eigenvalues.

- $\lambda_{1,2,3} = \lambda < 0$
- \blacksquare \exists ! invariant line (x axis)
- ∃! invariant plane (x-y plane)
- Hard to infer ∃! invariant plane without knowing the possible forms of solutions with triply-repeated eigenvalue...

Repeated Eigenvalues: "Improper" Sink

Figure 6.9 The phase portrait for repeated real eigenvalues.

How would the phase portrait for

$$A = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix}$$

differ from the phase portrait shown here?

What about

$$A = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$$
?

How would its phase portrait differ?