Tarea Kernel, Img y Demostración - Matemáticas Discretas 2

Sebastián Ortiz González

Universidad Nacional de Colombia seortizg@unal.edu.co Bogotá, Colombia

1. Si $\theta: G \to H$ es un homomorfismo, $\operatorname{Kernel}(\theta) = \{x \in G : \theta x = 1\}$ y $\operatorname{Img}(\theta) = \{y \in H : \theta x = y \lor x \in G\}$, probar que $\operatorname{Kernel}(\theta)$ y $\operatorname{Img}(\theta)$ son subgrupos.

Para demostrar que Kernel(θ) y Img(θ) son subgrupos, verificamos las tres propiedades de un subgrupo: Cerradura: si a,b están en Kernel(θ) y en Img(θ), entonces $a \cdot b$ también está en Kernel(θ) y en Img(θ). Inversos: si a está en Kernel(θ) y en Img(θ), entonces su inverso a^{-1} también está en Kernel(θ) y en Img(θ). Elemento neutro: la identidad de G está en Kernel(θ) y en Img(θ).

• Kernel(θ):

Sea a,b en Kernel (θ) , es decir

 $\theta(a) = \theta(b) = 1$. Entonces, $\theta(ab) = \theta(a)$ $\theta(b) = 1 \cdot 1 = 1$, por lo que $ab \in \text{Kernel}(\theta)$.

.: Kernel(θ) es cerrado bajo la operación del grupo G.

 $a \in Kernel(\theta) \to \theta(a)=1$

$$\rightarrow \theta(a^{-1}) = (\theta(a))^{-1} = 1^{-1} = 1$$

 $\therefore a^{-1} \in G \iff \text{Kernel}(\theta)$ es cerrado bajo inversos.

 id_G : elemento neutro del grupo G.

 $id_G \in \text{Kernel}(\theta) \leftarrow \theta(id_G) = 1H$ ya que es un homomorfismo.

 \therefore Kernel(θ) contiene el elemento neutro.

 $Kernel(\theta)$ es un subgrupo de G.

■ $\operatorname{Img}(\theta)$:

Sea c,d en $Img(\theta)$, es decir,

 $\exists a,b \text{ tales que } \theta(a) = c \land \theta(b) = d \rightarrow$

$$\theta(ab^{-1}) = \theta(a)\theta(b^{-1}) = c\theta(b)^{-1} = cd^{-1}$$

$$\therefore ab^{-1} \in G \land \theta(ab^{-1}) \in Img(\theta)$$

 $\operatorname{Img}(\theta)$ es cerrado bajo la operación del grupo H.

 $C \in \text{Img}(\theta) \to \exists \ a \in G \text{ tal que } \theta(a) = c.$

Como θ es un homomorfismo, $\theta(a^{-1}) = (\theta(a))^{-1} = c^{-1}$

 $\therefore c^{-1} \in \text{Img}(\theta)$ es cerrado bajo inversos.

 $id_H \in \text{Img}(\theta) \leftarrow \theta(id_G) = id_H$ ya que es un homomorfismo.

Para mostrar que $\operatorname{Img}(\theta)$ contiene el elemento neutro de H, id_H , debemos encontrar un elemento $a \in G$ tal que $\theta(a)=id_H$.

Como θ es un homomorfismo, sabemos que $\theta(id_G)=id_H$. Por lo tanto, id_H está en la imagen de θ . $id_H \in \text{Img}(\theta)$, ya que id_G es el elemento neutro de G, y el homomorfismo θ preserva el elemento neutro.

2. Demostrar el siguiente teorema:

Sea X un subconjunto del grupo G, entonces hay un subgrupo más pequeño S de G que contiene a X. Es decir, si T es cualquier otro subgrupo que contiene X, $S \subseteq T$.

Para demostrar el teorema, construimos un subgrupo S de G a partir de X usando la siguiente definición. S: el conjunto de todos los elementos de G que se pueden escribir como una combinación finita de elementos de X y sus inversos.

$$S = \{g_1^{e_1} \cdot g_2^{e_2} \cdot ... \cdot g_n^{e_n} : n \in N, g_1, g_2, ..., g_n \in X \cup X^{-1}, e_1, e_2, ..., e_n \in \{-1, 1\}\}$$

 X^{-1} : conjunto de inversos de los elementos de X.

Ahora demostrar que S es un grupo de G que contiene a X y es más pequeño que cualquier otro subgrupo T de G que contenga a X.

S es cerrado bajo la operación del grupo G:

Sea $a \ y \ b \ en \ S$, entonces existen elementos finitos de $X \ y \ sus inversos \ (a_1, a_2, ..., a_n) \ y \ (b_1, b_2, ..., b_m)$ tales que

$$a = a_1^{e_1} \cdot a_2^{e_2} \cdot \dots \cdot a_n^{e_n} \wedge b = b_1^{f_1} \cdot b_2^{f_2} \cdot \dots \cdot b_m^{f_m}$$

pertenecen a S porque son una combinación finita de elemento de X y sus inversos.

S contiene el elemento neutro de G:

Como X es un subconjunto de G, entonces el elemento neutro de G pertenece a X y, por lo tanto, pertenece a S.

S es cerrado bajo la operación inversa del grupo G:

Sea a en S, entonces existe una combinación finita de elementos de X y sus inversos $(a_1, a_2, ..., a_n)$ tales que $a=a_1^{e_1}\cdot a_2^{e_2}\cdot \ldots \cdot a_n^{e_n}.$ Entonces, $a^{-1}=(a_1^{e_1}\cdot a_2^{e_2}\cdot \ldots \cdot a_n^{e_n})^{-1}=a_n^{-e_n}\cdot \ldots \cdot a_2^{-e_2}\cdot a_1^{-e_1}$ pertenece a S porque es una combinación finita de elementos X y sus inversos.

$$a^{-1} = (a_1^{e_1} \cdot a_2^{e_2} \cdot \dots \cdot a_n^{e_n})^{-1} = a_n^{-e_n} \cdot \dots \cdot a_2^{-e_2} \cdot a_1^{-e_1}$$

pertenece a S porque es una combinación finita de elementos de X y sus inversos.

S es un subconjunto de cualquier subgrupo G que contiene a X:

Sea T un subgrupo de G que contiene a X, debemos demostrar que S es un subconjunto de T.

Sea a en S, entonces existe una combinación finita de elementos de X y sus inversos

$$(a_1, a_2, ..., a_n)$$
 tal que

$$a = a_1^{e_1} \cdot a_2^{e_2} \cdot \dots \cdot a_n^{e_n}$$

Como T es un subgrupo que contiene a X, entonces todos los elementos de X y sus inversos pertenecen a T. Entonces.

 $a_1, a_2, ..., a_n \in T$.

Como T es cerrado bajo la operación G, entonces

 $a_1^{e_1} \cdot a_2^{e_2} \cdot \dots \cdot a_n^{e_n} \in T$. Por lo tanto, $a \in T$, lo que demuestra que S es un subconjunto de T.

S es un subgrupo de G que contiene a X.

S es más pequeño que cualquier otro subgrupo T de G que contenga a X.