Recurrent Neural Network Introduction

Pritam Prakash Shete

Computer Division, BARC

Centre for Excellence in Basic Sciences

Topics

- Applications
- Recurrent neural network (RNN) model
- Back propagation through time
- Different types of RNN

Applications – Speech recognition

- Input
 - Audio clip Sequence data
- Output
 - Text transcript Sequence data
- Example
 - The Quick Brown Fox Jumps Over The Lazy Dog

Applications – Sentiment classification

- Input
 - Text Sequence data
- Output
 - Number of stars
- Example
 - Input This movie is excellent.
 - Output 5 stars

Applications – Name entity recognition

- Input
 - Text Sequence data
- Output
 - Numbers 0 or 1
- Example
 - Input Mumbai is capital of Maharashtra.
 - Output 1 0 0 0 1

Applications – Machine translation

- Input
 - Sentence in one language
 Sequence data
- Output
 - Translation in another language Sequence data
- Example
 - Input तू कसा आहेस?
 - Output How are you?

Applications – Music generation

- Input
 - Genre of music (integer)
 - First few notes of music
- Output
 - Music Sequence data

Applications – Image captioning

- Input
 - Image Image features Sequence data
- Output
 - Caption Sequence data

"man in black shirt is playing guitar."

Applications – Action recognition

- Input
 - Video Sequence data
- Output
 - Caption Sequence data
- Example
 - Input Video
 - Output Reading a book

Recurrent neural network – Example

- Name entity recognition
- Input x Mumbai is capital of Maharashtra.

$$x^{<1>} x^{<2>} x^{<3>} x^{<4>} x^{<5>}$$
• Output $-y-1 0 0 0 1$

$$y^{<1>} y^{<2>} y^{<3>} y^{<4>} y^{<5>}$$

• $x^{<t>}$ and $y^{<t>}-t$ - Temporal sequence

Recurrent neural network – Example

- Length of input sequence T_x
- Length of output sequence T_v
- (x^{<t>}, y^{<t>}) tth element of temporal sequence
- $(x^{(i)<t>}, y^{(i)<t>})$ t^{th} element of i^{th} sample
- (Tx⁽ⁱ⁾, Ty⁽ⁱ⁾)– Input and output length of ith sample

- Word dictionary
- Top common words
- Dictionary size
 - Small 10000
 - Common 50000

)	
a		1
•••		•••
capital		300
•••		•••
is		501
•••		•••
Maharashtra		2001
•••		•••
Mumbai		2301
•••		•••
of		2401
•••		•••
Zurich		10000

- One hot encoding
- Example
 - Word capital
 - 1 at 300th location
 - 0 everywhere

300

501

•••

2001

•••

2301

•••

2401

10000

- One hot encoding
- Example
 - Word is
 - 1 at 501st location
 - 0 everywhere

- One hot encoding
- Example
 - Word Maharashtra
 - 1 at 2001st location
 - 0 everywhere

a capital 300 ••• is **501** ... ••• Maharashtra 2001 ••• Mumbai 2301 ••• of 2401 Zurich 10000

Recurrent neural network – Why?

- Standard neural network
 - Different lengths in different samples for input and output sequences
 - No feature sharing across different text positions
 - Large vocabulary Large number of parameters

- Use information from previous input
 - Simple Recurrent neural network
- No information from future input
 - Solution Bi directional neural network

•
$$a^{<0>} = 0$$

•
$$a^{<0>} = 0$$

•
$$a^{<1>} = g(W_{aa} a^{<0>} + W_{ax} x^{<1>} + b_a)$$

•
$$\hat{y}^{<1>} = g(W_{ya} a^{<1>} + b_y)$$

- $a^{<0>} = 0$
- $a^{<1>} = g(W_{aa} a^{<0>} + W_{ax} x^{<1>} + b_a) tanh or relu$
- $\hat{y}^{<1>} = g(W_{ya} a^{<1>} + b_y) sigmoid or softmax$

•
$$a^{} = g(W_{aa} a^{} + W_{ax} x^{} + b_a)$$

• $\hat{y}^{} = g(W_{ya} a^{} + b_y)$

•
$$\hat{y}^{} = g(W_{ya} a^{} + b_{y})$$

- $a^{<t>} = g(W_{aa} a^{<t-1>} + W_{ax} x^{<t>} + b_a)$
- $a^{<t>} = g(W_a [a^{<t-1>}, x^{<t>}] + b_a) Stack values$
- $\hat{y}^{<t>} = g(W_{ya} a^{<t>} + b_{y})$

•
$$a^{<1>} = g(W_{aa} a^{<0>} + W_{ax} x^{<1>} + b_a)$$

•
$$a^{<2>} = g(W_{aa} a^{<1>} + W_{ax} x^{<2>} + b_a)$$

•
$$a^{<3>} = g(W_{aa} a^{<2>} + W_{ax} x^{<3>} + b_a)$$

•
$$a^{} = g(W_{aa} a^{} + W_{ax} x^{} + b_a)$$

•
$$\hat{y}^{<1>} = g(W_{ya} a^{<1>} + b_{y})$$

•
$$\hat{y}^{<2>} = g(W_{ya} a^{<2>} + b_{y})$$

•
$$\hat{y}^{} = g(W_{ya} a^{} + b_{y})$$

• $L^{<1>}(\hat{y}^{<1>}, y^{<1>}) = -y^{<1>}log(\hat{y}^{<1>}) - (1-y^{<1>})log(1-\hat{y}^{<1>})$

•
$$L^{<2>}(\hat{y}^{<2>}, y^{<2>}) = -y^{<2>}log(\hat{y}^{<2>}) - (1-y^{<2>})log(1-\hat{y}^{<2>})$$

• $L^{<t>}(\hat{y}^{<t>}, y^{<t>}) = -y^{<t>}log(\hat{y}^{<t>}) - (1-y^{<t>})log(1-\hat{y}^{<t>})$

•
$$L(\hat{y}, y) = L^{<1>} + L^{<2>} + L^{<3>} + ... + L^{}$$

•
$$L(\hat{y}, y) = L^{<1>} + L^{<2>} + L^{<3>} + ... + L^{}$$

•
$$L(\hat{y}, y) = L^{<1>} + L^{<2>} + L^{<3>} + ... + L^{}$$

Different types of RNN

- Many to one
- One to many
- Many to many $(T_x = T_y)$
- Many to many $(T_x != T_y)$

Different types of RNN – Many to one

- Sentiment classification
 - Input Text $(x^{<1>}, x^{<2>}, ... x^{<Tx>})$ Many
 - Output Integer 1–5 One
 - Example

Different types of RNN – One to many

- Music generation
 - Input Genre of music (integer) One
 - Output Set of notes Many

Different types of RNN – One to many

- Music generation
 - Input Genre of music (integer) One
 - Output Set of notes Many

Different types of RNN – Many to many

- Name entity recognition $(T_x = T_y)$
 - Input Text $(x^{<1>}, x^{<2>}, ... x^{<Tx>})$ Many
 - Output Numbers $(y^{<1>}, y^{<2>}, ... y^{<Ty>})$ Many
 - Example
 - Mumbai is capital of Maharashtra. 1 0 0 0 1

Different types of RNN – Many to many

- Machine translation $(T_x != T_y)$
 - Input Text $(x^{<1>}, x^{<2>}, ... x^{<Tx>})$ Many
 - Output Text $(y^{<1>}, y^{<2>}, ... y^{<Ty>})$ Many
 - Example
 - तू कसा आहेस? How are you?

Different types of RNN – Many to many

- Machine translation $(T_x != T_v)$
 - Input Text $(x^{<1>}, x^{<2>}, ... x^{<Tx>})$ Many
 - Output Text $(y^{<1>}, y^{<2>}, ... y^{<Ty>})$ Many
 - Example
 - तू कसा आहेस? How are you?

Questions?

Thank you