CS201: Discrete Math for Computer Science 2021 Fall Semester Written Assignment # 5 Due: Dec. 15th, 2021, please submit at the beginning of class

Q.1 Let S be the set of all strings of English letters. Determine whether these relations are reflexive, irreflexive, symmetric, antisymmetric, and/or transitive.

- (1) $R_1 = \{(a, b) | a \text{ and } b \text{ have no letters in common}\}$
- (2) $R_2 = \{(a,b)|a \text{ and } b \text{ are not the same length}\}$
- (3) $R_3 = \{(a,b)|a \text{ is longer than } b\}$

Solution:

- (1) Irreflexive, symmetric
- (2) Irreflexive, symmetric
- (3) Irreflexive, antisymmetric, transitive

Q.2 How many relations are there on a set with n elements that are

- (a) symmetric?
- (b) antisymmetric?
- (c) irreflexive?
- (d) both reflexive and symmetric?
- (e) neither reflexive nor irreflexive?
- (f) both reflexive and antisymmetric?
- (g) symmetric, antisymmetric and transitive?

Solution:

1

- (a) $2^{n(n+1)/2}$
- (b) $2^n 3^{n(n-1)/2}$
- (c) $2^{n(n-1)}$
- (d) $2^{n(n-1)/2}$
- (e) $2^{n^2} 2 \cdot 2^{n(n-1)}$
- (f) $3^{n(n-1)/2}$
- (g) 2^n

Q.3 Suppose that the relation R is irreflexive. Is the relation R^2 necessarily irreflexive?

Solution: R^2 might not be irreflexive. For example, $R = \{(1, 2), (2, 1)\}.$

Q.4 Give an example of a relation R such that its transitive closure R^* satisfies $R^* = R \cup R^2 \cup R^3$, but $R^* \neq R \cup R^2$.

Solution: We fix the ground set $S = \{a, b, c, d\}$, and we consider the relation $R = \{(a, b), (b, c), (c, d)\}$. Then the transitive closure of R equals $R^* = \{(a, b), (b, c), (c, d), (a, c), (b, d), (a, d)\}$. On the other hand, $R^2 = \{(a, c), (b, d)\}$, and $R^3 = \{(a, d)\}$. Hence, R^3 is necessary to get R^* .

Q.5 Suppose that R_1 and R_2 are both reflexive relations on a set A.

- (1) Show that $R_1 \oplus R_2$ is *irreflexive*.
- (2) Is $R_1 \cap R_2$ also reflexive? Explain your answer.
- (3) Is $R_1 \cup R_2$ also reflexive? Explain your answer.

Solution:

- (1) Since $(a, a) \in R_1$ and $(a, a) \in R_2$ for all $a \in A$, it follows that $(a, a) \notin R_1 \oplus R_2$ for all $a \in A$. Thus, $R_1 \oplus R_2$ is irreflexive.
- (2) Yes. Since $(a, a) \in R_1$ and $(a, a) \in R_2$ for all $a \in A$, it follows that $(a, a) \notin R_1 \cap R_2$
- (3) Yes. Since $(a, a) \in R_1$ and $(a, a) \in R_2$ for all $a \in A$, it follows that $(a, a) \notin R_1 \cup R_2$

Q.6 Let R be the relation on the set of ordered pairs of positive integers such that $((a, b), (c, d)) \in R$ if and only if ad = bc.

- (a) Show that R is an equivalence relation.
- (b) What is the equivalence class of (1,2) with respect to the equivalence relation R?
- (c) Give an interpretation of the equivalence classes for the equivalence relation R.

Solution:

- (a) For reflexivity, $((a,b),(a,b)) \in R$ because $a \cdot b = b \cdot a$. If $((a,b),(c,d)) \in R$ then ad = bc, which also means that cb = da, so $((c,d),(a,b)) \in R$; this tells us that R is symmetric. Finally, if $((a,b),(c,d)) \in R$ and $((c,d),(e,f)) \in R$ then ad = bc and cf = de. Multiplying these equations gives acdf = bcde, and since all these numbers are nonzero, we have af = be, so $((a,b),(e,f)) \in R$; this tells us that R is transitive.
- (b) The equivalence classes of (1,2) is the set of all pairs (a,b) such that the fraction a/b equals 1/2.
- (c) The equivalence classes are the positive rational numbers.

Q.7 Show that the relation R on $\mathbb{Z} \times \mathbb{Z}$ defined on $(a,b)\mathbb{R}(c,d)$ if and only if a+d=b+c is an equivalence relation.

Solution: $((a,b),(a,b)) \in R$ because a+b=a+b. Hence R is reflexive.

If $((a,b),(c,d)) \in R$ then a+d=b+c, so that c+b=d+a. It then follows that $((c,d),(a,b)) \in R$. Hence R is symmetric.

Suppose that ((a,b),(c,d)) and ((c,d),(e,f)) belong to R. Then a+d=b+c and c+f=d+e. Adding these two equations and subtracting c+d from both sides gives a+f=b+e. Hence ((a,b),(e,f)) belongs to R. Hence, R is transitive.

Q.8 How many different equivalence relations with exactly three different equivalence classes are there on a set with five elements?

Solution: 25. There are two possibilities to form exactly three different equivalence classes with 5 elements. One is 3, 1, 1 elements for each equivalence class, and the other is 2, 2, 1 elements for each equivalence class. By counting techniques, there are $\binom{5}{3} + \binom{5}{1} \cdot \binom{4}{2}/2 = 25$.

Q.9 Let A be a set, let R and S be relations on the set A. Let T be another relation on the set A defined by $(x,y) \in T$ if and only if $(x,y) \in R$ and $(x,y) \in S$. Prove or disprove: If R and S are both equivalence relations, then T is also an equivalence relation.

Solution: We need to show that T is reflexive, symmetric, and transitive.

Reflexive: For any x, we have $(x, x) \in R$ and $(x, x) \in S$, then $(x, x) \in T$. **Symmetric**: Suppose that $(x, y) \in T$. This means $(x, y) \in R$ and $(x, y) \in S$. Since R and S are both symmetric, we have $(y, x) \in R$ and $(y, x) \in S$. Then $(y, x) \in T$.

Transitive: Suppose that $(x,y) \in T$ and $(y,z) \in T$. Then $(x,y) \in R$ and $(y,x) \in R$ imply that $(x,z) \in R$. Similarly, we have $(x,z) \in S$. This will imply that $(x,z) \in T$.

Q.10 Let \sim be a relation defined on \mathbb{N} by the rule that $x \sim y$ if $x = 2^k y$ or $y = 2^k x$ for some $k \in \mathbb{N}$. Show that \sim is an equivalence relation.

Solution: We first show the following lemma.

Lemma For any $x, y \in \mathbb{N}$, $x \sim y$ if and only if there exists some $k \in \mathbb{Z}$ such that $x = 2^k y$ in \mathbb{Q} .

Proof. Suppose that $x \sim y$. Then either $x = 2^k y$ for some $k \in \mathbb{N} \subseteq \mathbb{Z}$ and we are done, or $y = 2^{k'} x$ for some $k' \in \mathbb{N}$. In the latter case, solve for $x = 2^{-k'} y$ and let k = -k'. In the other direction, if $x = 2^k y$, and $k \geq 0$, then $x = 2^k y$ for some $k \in \mathbb{N}$, giving $x \sim y$. If instead k < 0, then $y = 2^{-k}$, again giving $x \sim y$.

To show \sim is an equivalence relation, we show the following three properties.

Reflexive For any $x \in \mathbb{N}$, $x = 2^0 x$ so $x \sim x$.

Symmetric If $x \sim y$, then from **Lemma** there exists $k \in \mathbb{Z}$ such that $x = 2^k y$. But then $y = 2^{-k} x$, so applying the lemma again, gives $y \sim x$.

Transitive If $x \sim y \sim z$, then $x = 2^k y$ and $y = 2^\ell z$ for some $k, \ell \in \mathbb{Z}$ by **Lemma**. Solve to get $x = 2^{k+\ell} z$, which gives $x \sim z$.

Q.11 Given functions $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$, f is **dominated** by g if $f(x) \leq g(x)$ for all $x \in \mathbb{R}$. Write $f \leq g$ if f is dominated by g.

- (a) Prove that \leq is a partial ordering.
- (b) Prove or disprove: \leq is a total ordering.

Solution:

(a) Reflexive For all $x \in \mathbb{R}$, $f(x) \le f(x)$, so $f \le f$.

Antisymmetric Let $f \leq g$ and $g \leq f$. Then for all $x \in \mathbb{R}$, $f(x) \leq g(x) \leq f(x)$ and thus f(x) = g(x). Since this holds for all x, we have f = g.

Transitive Let $f \leq g \leq h$. Then for all $x \in \mathbb{R}$, $f(x) \leq g(x) \leq h(x)$, giving $f(x) \leq h(x)$. So, $f \leq h$.

(b) It is not a total ordering. Let f(x) = x and g(x) = -x. Then $f(1) = 1 \le -1 = g(1)$ and $g(-1) = 1 \le -1 = f(-1)$. So it is not the case that for all $x, f(x) \le g(x)$, and it is not the case that for all $x, g(x) \le f(x)$. That is, these two functions are incomparable.

Q.12 Which of these are posets?

- (a) $({\bf R}, =)$
- (b) $(\mathbf{R}, <)$
- (c) (\mathbf{R}, \leq)
- (d) (\mathbf{R}, \neq)

Solution:

(a) Yes. (It is the smallest partial order: reflexivity ensures that very partial order contains at least all pairs (a,b).)

- (b) No. It is not reflexive.
- (c) Yes.
- (d) No. The relations is not reflexive, not antisymmetric, not transitive.

Q.13 Consider a relation ∞ on the set of functions from \mathbb{N}^+ to \mathbb{R} , such that $f \propto g$ if and only if f = O(g).

- (a) Is \propto an equivalence relation?
- (b) Is \propto a partial ordering?
- (c) Is \propto a total ordering?

Solution:

- (a) No. \propto is not symmetric. Let f(n) = n and $g(n) = n^2$. Here f = O(g) but $g \neq O(f)$.
- (b) No. \propto is not antisymmetric. Let f(n) = n and g(n) = 2n. Then f = O(g) and g = O(f), but $f \neq g$.

(c) No. It is not partial ordering, then not a total ordering.

Q.14 Answer these questions for the partial order represented by this Hasse diagram.

Figure 1: Q.14

- (a) Find the maximal elements.
- (b) Find the minimal elements.
- (c) Is there a greatest element?
- (d) Is there a least element?
- (e) Find all upper bounds of $\{a, b, c\}$.
- (f) Find the least upper bound of $\{a,b,c\}$, if it exists.
- (g) Find all lower bounds of $\{f, g, h\}$.
- (h) Find the greatest lower bound of $\{f,g,h\}$, if it exists.

Solution:

(a) The maximal elements are the ones with no other elements above them, namely l and m.

- (b) The minimal elements are the ones with no other elements below them, namely a,b and c.
- (c) There is no greatest element, since neither l nor m is greater than the other.
- (d) There is no least elements, since neither a nor b is less than the other.
- (e) We need to find elements from which we can find downward paths to all of a, b, and c. It is clear that k, l and m are the elements fitting this description.
- (f) Since k is less than both l and m, it is the least upper bound of a, b and c.
- (g) No element is less than both f and h, so there are no lower bounds.
- (h) Since there is no lower bound, there cannot be greatest lower bound.

8