介绍

ZSERVER4D是一套高级通讯系统的地基平台、它偏向干开发工艺和多平台支持。

功能

支持运行平台Android,IOS,Win32/64,Linux,OSX,物联网IOT(ARM Ubuntu18.04或则更高版,包括树莓1-3代,香橙,高通,三星)

支持编译器: FPC3.0.4以及DelphiXE10.2和以后的版本

并行计算支持HPC服务器,并行深度参数服务器可配置

良好支持轻量云主机,腾讯云,阿里云,亚马逊云,均有数百台使用ZServer4D的服务器在运行中

支持内置的Pascal语系的内网穿透核心库XNat(直接内核支持,非外部支持)

支持基于FRP的内网穿透(外部shell方式支持),在公司或家里自己架设宅服 宅服架设说明

ZServer4D的前后台均支持苹果要求的IPV6审核条件,支持AAAA,A记录秒切,支持所有IPV6的云主机

內置高级加密系统,一万在线客户端会有一万把密钥,并且能动态定时更换密钥(请参考ZServer4D的附属开源项目 https://github.com/PassByYou888/CoreCipher)

架构设计可以轻松实现IP池和入口网络秒切,非常利于在国内商业环境中防止对手DDos攻击

支持去中心化网络群集, 支持去中心化网络群集一键对接

全面支持Linux服务器开发(fpc方向)

内置NoSQL并行化内核,良好支持大数据,良好支持聚类分析,支持分布式数据库负载,支持分布式数据查询结果汇集(NoSQL技术体系从11月初开始一直处于整理中,工程较大,可能短期不能完成,但是未来会以开源形式为Delphi国内带来前沿的数据库支持体系)

开发平台支持

- Delphi及IDE要求: Delphi Rad studio XE10.2.1 or Last
- FPC编译器支持:FPC3.0.4 or last,可参看本项目随附的IOT入手指南将FPC升级至github最新的版本
- CodeTyphon 6.0 or last (尽量使用Online更新到最新的Cross工具链+相关库)

平台支持,test with Delphi 10.2 upate 1 Tokyo and FPC 3.0.4

- $\bullet \quad \text{Windows: delphi-CrossSocket(C/S OK), delphi-DIOCP(C/S OK), delphi-ICS(C/S OK), delphi-Indy(C/S OK), delphi-fpc Synapse(C/S OK)} \\$
- Android:Indy(C/S OK), CrossSocket(Only Client)
- IOS Device: Indy(C/S OK), CrossSocket(Only Client)
- IOS Simulaor: n/a
- OSX: Indy(C/S OK), ICS(未测试), CrossSocket(C/S OK)
- Ubuntu16.04 x64 server: Indy(C/S OK), CrossSocket(C/S OK)
- Ubuntu18.04 x86+x64 Desktop:only fpc3.0.4 Synapse(C/S OK)
- Ubuntu18.04 x86+x64 Server:only fpc3.0.4 Synapse(C/S OK)
- Ubuntu18.04 arm32+arm neon Server:only fpc3.0.4 Synapse(C/S OK)
- Ubuntu18.04 arm32+arm neon desktop:only fpc3.0.4 compile ok,no test on run.
- Ubuntu16.04 Mate arm32 desktop:only fpc3.0.4 compile ok, test passed
- Raspberry Pi 3 Debian linux armv7 desktop,only fpc 3.0.4,test passed.
- wince(arm eabi hard flaot), windows 10 IOT, only fpc 3.3.1, test passed.

CPU架构支持,test with Delphi 10.2 upate 1 Tokyo and FPC 3.0.4

- MIPS(fpc-little endian), soft float, test pass on QEMU
- intel X86(fpc-x86), soft float
- intel X86(delphi+fpc), hard float,ATHLON64,COREI,COREAVX,COREAVX2
- intel X64(fpc-x86_64), soft float
- intel X64(delphi+fpc), hard float,ATHLON64,COREI,COREAVX,COREAVX2
- ARM(fpc-arm32-eabi,hard
 - float):ARMV3,ARMV4,ARMV4T,ARMV5,ARMV5T,ARMV5TE,ARMV5TEJ,ARMV6,ARMV6K,ARMV6T2,ARMV6Z,ARMV6M,ARMV7A,ARMV7A,ARMV7A,ARMV7M,ARMV7EM
- ARM(fpc-arm64-eabi,hard float):ARMV8, aarch64

文档

编译指南 CodeTyphon多架构及多平台开发陷阱 在Lazarus或则CodeTyphon编译时出现缺失mtprocs库的解决办法

日常问题 库说明

IOT完全攻略

关于XNAT内网穿透库 宅服架设(FRP外壳支持)

BigStream机制详解 多媒体通讯CompleteBuffer BatchStream机制详解 HPC服务器的工作机制详解 延迟反馈机制详解 p2pVM隧道技术 p2pVM第二篇机理说明

云服务器框架 怎样开发基于ZS的底层通讯IO接口 console模式的后台程序开发

部署Ubuntu服务器的开发环境(delphi方向) Linux桌面开发指南(fpc方向)

云调度服务器用法详解

百度翻译服务后台(支持Ubuntu16.04LTS服务器) 百度翻译服务API(支持Ubuntu16.04LTS服务器)

通讯接口支持(开发平台需求 Delphi Rad studio 10.2或则更高版本,低版本不支持)

1.indy 阻塞模式的通讯组件,已在ZServer4D内部集成(客户端兼容性好,服务器质量差强人意)

(open source) http://www.indyproject.org/

2.CrossSocket 异步式通讯组件,已在ZServer4D内部集成(服务器,客户端两边的质量都极好)

(open source) https://github.com/winddriver/Delphi-Cross-Socket

3.ICS异步式通讯组件,已在ZServer4D内部集成(质量很好)

(open source) http://www.overbyte.be

4.DIOCP 国人所开发的稳定DIOCP通讯库(服务器端的质量极好)

(Open source) https://github.com/ymofen/diocp-v5

通讯接口支持(FreePascal 3.0.4 or last with Lazarus, 低版本不支持)

1.synapse4(open source) 已经在ZServer4D内部集成,主要支持fpc,同时也兼容delphi(客户端的兼容性好,服务器端质量很好)

synapse是支持ssl的优秀开源项目

在ZServer4D中使用Synapse的最大连接数被限制为100.

关于物联网IoT平台

ZServer4D对loT平台的开发要求必须使用FPC编译器,ZServer4D对物联网的支持的标准系统暂时只有ARM Ubuntu18.04,要求最低FPC编译器版本为3.0.4(需要和它对应的RT内核库)

关于IoT平台的开发测试机: Ubuntu关网提及到的IO小板都可以购买,自己动手diy Linux需要一定的耐心,懒人建议使用CodeTyphon,如果使用Lazarus需要在arm Ubuntu Linux下需要自己动手编译ide+fpc3.0.4(先diy好gcc的环境,再编译Lazarus的工具链,官方wiki有详细说明)

关于处理机架构和大小端字节序

早期的PPC处理器架构都是大端字节序,这也造成了,早期的网络通讯标准,都是大端,它一直在影响我们使用。但是后来,到现在,大端字节序已经慢慢消失,主流的Intel处理器架构,包括ARM,X86,现在都采用了小端字节序。因此,在ZServer中,所有的二进制收发,都是以小端字节序工作的。假如你在后台需要处理大端字节序,使用外部自定义协议模式即可。

大端字节序的典型场景:比如在Indy的通讯接口中,我们发送Integer时,如果打开转换参数,它会被转换成大端字节序。

关于内存泄漏

ZServer4D内置的服务器有: Indy, ICS, CrossSocket, DIOCP, Synapse所有的服务器均无内存泄漏

ZServer4D内置的客户端接口,某些库采用的是用完抛弃的设计方式,这是针对应用程序使用的客户端库,并不是后台使用,这会有少量内存泄漏,它们是: indy,DIOCP(客户端)

有内存泄漏行为的客户端接口

- TCommunicationFramework_Client_Indy,用完抛弃
- TCommunicationFramework_Client_DIOCP,用完抛弃

无内存泄漏行为的安全客户端

- TCommunicationFramework_Client_ICS,安全回收,无泄漏
- TCommunicationFramework_Client_CrossSocket,安全回收,无泄漏
- TCommunicationFramework_Client_Synapse, 安全回收,无泄漏

在ZServer4D中所捆绑的类,包括编解码,链表,数据库,均无内存泄漏

关于压力测试

关于切入和使用

ZServer4D是系统化的生产工艺地基,它并不像VCL那样傻瓜,可以拿来就用,你需要自行动手进行需求的提炼,简单来说,你必须自己动手封装,然后再使用。ZServer4D有丰富Demo和文档提供技术参考。

最后一更新日志

大更新预告:下一次更新会增加沙箱服务器模型,ZS的服务器模型可工在特殊操作系统中

2018-9-29

- 修复:在DataFrameEngine重做了Variant类型的读写支持,统一多平台兼容性,不再使用RT库自带的Variant写入方法
- 修复:FPC中Enum为4 byte定义会丢失符号位的问题
- 修复:Synapse的接口在连接失败时,会尝试切换IPV4+IPV6重新连接
- 修复:Syanpse客户端在连接失败时不返回状态
- 工艺:新增FPC泛型支持库,FPCGenericStructlist.pas
- 工艺:新增线性事件支持库, LinerAction.pas
- 工艺:新增查询服务器支持(类似dns,主要针对万物互联需求:物联网设备太多,调度服务器不够用,可使用查询服务器分担), HostQuerv.pas
- 工艺:兼容基于FPC对IOT的支持: 从底层到高级,大规模统一调整命名,此项调整会影响很多工程的代码细节

```
// 本项目中的回调分为3种
// call: 直接指针回调,fpc+delphi有效
// method: 方法回调,会维承一个方法宿主的地址,fpc+delphi有效
// proc: 匿名过程回调,只有delphi有效
// 如果本项调整对于改造现有工程有一定的工作量,请使用字符串批量处理工具
// 在任何有回调重载的地方,方法与函数,均需要在后缀曾加回调类型首字母说明
// 如
RunOp 变更为 RunOpP() // 后缀加P表示匿名类型回调
RunOp 变更为 RunOpM() // 后缀加表示方法类型的回调
RunOp 变更为 RunOpC() // 后缀加表示者类型的回调
SendStreamCmd 变更为 SendStreamCmdP() // 后缀加P表示匿名类型回调
SendStreamCmd 变更为 SendStreamCmdM() // 后缀加P表示匿名类型的回调
```

2018-9-21

兼容 fpc 3.0.0, 可正常编译, 建议使用fpc 3.0.4 or last

2018-9-18

新平台,新平台测试通过,在新平台树莓派3B+,操作系统 Ubuntu16.04 Mate 下测试成功

新增几个技术文档

DoStatusIO.pas库

- 优化,干掉后台线程刷新,改用DoStatus方法替代线程,最简单的使用方法:在你的主循环中,加一句DoStatus不要给参数
- 优化,减少对某些库的依赖性

其它优化

- 优化,FPC3.0.4编译出来的程序,整体性能向前提升10%
- 优化,Delphi编译出来的程序,整体性能向前提升10%
- 优化,精细调整服务器主循环:特别说明,在Console模式下后台服务器程序中,必须加上线程同步检查: CheckThreadSynchronize,否则系统Console后台不能正常工作

2018-9-15

本次更新,大幅提升底层库的稳定性

重大更新

- 新接口,同时支持fpc+delphi:新增基于Synapse的通讯接口
- 内网穿透核心技术,同时支持fpc+delphi:新增内网穿透的开发库,由xNatService.pas,xNatClient.pas,xNATPhysics.pas三个小库组成,只需5 行代码即可驱动,可使用ZServer支持的任意通讯接口工作。已通过5万ip/每分钟连续4小时的压力穿透测试。
- loT物联网,只限fpc: 对loT平台的支持,基于fpc在各平台完整支持了Synapse通讯接口,包括: ARM Linux(loT需求),Linux x86+x64,OSX x86+x64,Win x86+x64
- 稳定和安全,大规模取替底层库使用inline的机制

- 优化,稳定性提升,深度考虑安全性
- 安全,重做了p2pVM的验证系统(每个p2pVM握手时,都会用不同的验证方式)
- 安全,p2pVM第一次握手时,必须有验证码
- 工艺,新增2种协议模式: cpZServer(原来的通讯协议),cpCustom(外部自定义的通讯协议)
- 工艺, 重做外部自定义通讯协议的开发工艺: 开发自定义通讯协议时, 不用再考虑同步异步问题
- 工艺,ProgressBackground全部统一替换成Progress
- 工艺,TCommunicationFrameworkServer服务器触发DoClientConnectAfter会区分协议,cpZServer,cpCustom会有各自处理机制
- 安全,在TCommunicationFramework中以性能换取了Progress的稳定性,客户端+服务器在高并发环境下不会再在这个地方出现异常报告了
- 周边: 极小概率bug, 修复CrossSocket的连接池释放时发生异常的问题(delphi)
- 周边: 控制台模式服务器bug, 修复ICS,Syanpse,Indy服务器在Console应用模式中不触发线程同步的问题(delphi)
- 周边: 小概率bug, 修复ICS服务器使用StopService偶发性的出现卡死的bug
- 周边: 合并了最新更新的CrossSocket内核
- 周边:优化,在MemoryStream64.pas库中对ZLib使用解压时,会预先分配内存或则文件空间,避免因为MemoryManager频繁Realloc造成性能耗损(在FPC方向程序中,性能可以相对提供10%)

TextParsing.pas库及其周边支持

- 大幅提升的解析性能,使用不变,相较以前,性能向前提升90%
- 新增可替代蚂蚁机制的文本探头技术
- 优化大规模解析程序的复杂度: 降低50%
- 修复对123{abc}这种写法的误判行为

TextDataEngine.pas库

- 重做数据结构支持,使用与以前不变
- 新增了对THashStringList的内置支持(相对THashVariantList,性能更加优异)

ListEngine.pas库

• 安全:对已生成的Hash会使用安全校验措施(我实测Hash的事故率为0,但是有网友报告说Hash会莫名其妙报错,我现在加了一个安全措施,如果还遇到hash无法命中,请检查自己的bug)

百度翻译api服务器

• 由于百度不再提供免费翻译api,我们首次运行百度翻译api服务器时,会生成一个配置文件,它会指引你如何注册翻译api的账号

本次新增两套Demo

- ZServer4D对大规模后台验证服务器的工艺,比如你后台有Oracle这类大型数据库,该Demo详细描述了三方验证工艺
- XNat内网穿透库的Demo

更多更新日志

注意

REST.BAAS等等单项式的HTTP服务请自行在服务器开发和集成,ZServer4D不提供外部http支持

如果你在使用ZServer4D,并且对开发有疑问,请加群去寻找答案(请不要直接联系作者)

qq群490269542

请支持ZServer4D的后续开发 支付宝转账