# Interpolation and Quantifiers in Ortholattices



Sankalp Gambhir



Simon Guilloud



Viktor Kunčak

Laboratory For Automated Reasoning And Analysis



• We rely extensively on propositional reasoning

- We rely extensively on propositional reasoning
- Validity checking coNP-hard

- We rely extensively on propositional reasoning
- Validity checking coNP-hard
- Can we do better?

- We rely extensively on propositional reasoning
- Validity checking coNP-hard
- Can we do better?
- Abstractions?

- We rely extensively on propositional reasoning
- Validity checking coNP-hard
- Can we do better?
- Abstractions?
  - Need: soundness

- We rely extensively on propositional reasoning
- Validity checking coNP-hard
- Can we do better?
- Abstractions?
  - Need: soundness
  - Want: predictability, efficiency

• Intuitionistic Logic

- Intuitionistic Logic
  - Validity PSPACE-Complete <sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Statman. "Intuitionistic propositional logic is polynomial-space complete". In: TCS 1979

- Intuitionistic Logic
  - Validity PSPACE-Complete <sup>1</sup>
- Orthologic

<sup>&</sup>lt;sup>1</sup>Statman. "Intuitionistic propositional logic is polynomial-space complete". In: TCS 1979

- Intuitionistic Logic
  - Validity PSPACE-Complete <sup>1</sup>
- Orthologic
  - $\qquad \qquad \mathbf{Validity} -\!\!\!\!\! O(n^2) \ \mathrm{time}^{\ 2}$

<sup>&</sup>lt;sup>1</sup>Statman. "Intuitionistic propositional logic is polynomial-space complete". In: TCS 1979

<sup>&</sup>lt;sup>2</sup>Guilloud, Bucev, Milovančević, and Kunčak. "Formula normalizations in verification". In: CAV 2023

- Intuitionistic Logic
  - Validity PSPACE-Complete <sup>1</sup>
- Orthologic
  - $\qquad \qquad \mathbf{Validity} -\!\!\!\!\! O(n^2) \ \mathrm{time}^{\ 2}$

<sup>&</sup>lt;sup>1</sup>Statman. "Intuitionistic propositional logic is polynomial-space complete". In: TCS 1979

<sup>&</sup>lt;sup>2</sup>Guilloud, Bucev, Milovančević, and Kunčak. "Formula normalizations in verification". In: CAV 2023

- Intuitionistic Logic
  - Validity PSPACE-Complete <sup>1</sup>
- Orthologic
  - $\qquad \qquad \text{Validity} \longrightarrow O(n^2) \text{ time }^2$

```
\begin{array}{cccc} \mathsf{Propositional\ Logic} & \leftrightarrow & \mathsf{Boolean\ Algebras} \\ \mathsf{Intuitionistic\ Logic} & \leftrightarrow & \mathsf{Heyting\ Algebras} \\ & & \mathsf{Orthologic} & \leftrightarrow & \mathsf{Ortholattices} \end{array}
```

<sup>&</sup>lt;sup>1</sup>Statman. "Intuitionistic propositional logic is polynomial-space complete". In: TCS 1979

<sup>&</sup>lt;sup>2</sup>Guilloud, Bucev, Milovančević, and Kunčak. "Formula normalizations in verification". In: CAV 2023

#### **Ortholattices**

```
Commutativity
                    x \vee y = y \vee x
                   x \lor (y \lor z) = (x \lor y) \lor z
Associativity
Reflexivity
              x \lor x = x
One
                     x \vee 1 = 1
7ero
                     x \lor 0 = x
Double Negation \neg \neg x = x
Excluded Middle x \vee \neg x = 1
             x \lor (y \land z) = (x \lor y) \land (y \lor z)
De Morgan
Distributivity x \lor (z \land y) = (x \lor z) \land (x \lor y)
```

#### **Ortholattices**

```
Commutativity
                     x \lor y = y \lor x
                     x \lor (y \lor z) = (x \lor y) \lor z
Associativity
Reflexivity
                x \lor x = x
One
                      x \vee 1 = 1
7ero
                      x \lor 0 = x
Double Negation \neg \neg x = x
Excluded Middle x \vee \neg x = 1
                     x \lor (y \land z) = (x \lor y) \land (y \lor z)
De Morgan
Distributivity X x \lor (z \land y) = (x \lor z) \land (x \lor y)
Absorption
                    x \lor (x \land y) = x
```

#### **Ortholattices**

- incomplete but sound approximation for Boolean algebras
- quadratic-time normalization procedure
- found use recently in formula caching for verification <sup>3</sup>
- as well as in interactive theorem proving <sup>4</sup>

<sup>&</sup>lt;sup>3</sup>Guilloud, Bucev, Milovančević, and Kunčak. "Formula normalizations in verification". In: CAV 2023

<sup>&</sup>lt;sup>4</sup>Guilloud, Gambhir, and Kunčak. "LISA - A Modern Proof System". In: ITP 2023

#### **Contributions**

- Proof System for Quantified Orthologic (QOL)
- Failure of Quantifier Elimination
- Failure of Refutation-based Interpolation
- Proof of Implicational Interpolation

## Moving to a Sequent Calculus

Sequent

$$\gamma_1,\gamma_2,\ldots \vdash \delta_1,\delta_2,\ldots$$

#### Moving to a Sequent Calculus

Sequent

$$\gamma_1,\gamma_2,\ldots \vdash \delta_1,\delta_2,\ldots$$

Proof rules

$$\overline{\phi \vdash \phi}$$
 Hypothesis

$$\frac{\Gamma \vdash \phi \qquad \Gamma \vdash \psi}{\Gamma \vdash \phi \land \psi} \quad \mathsf{RightAnd}$$

#### From Ortholattices to Orthologic

Intuitionistic logic — at most one formula on the right-hand side of the sequent

$$\gamma_1,\gamma_2,\ldots \vdash \psi$$

#### From Ortholattices to Orthologic

Intuitionistic logic — at most one formula on the right-hand side of the sequent

$$\gamma_1,\gamma_2,\ldots \vdash \psi$$

Orthologic — at most two formulas in the entire sequent

$$\begin{aligned} \phi &\vdash \psi \\ \phi, \psi &\vdash \\ \vdash \phi, \psi \end{aligned}$$

#### From Ortholattices to Orthologic

Intuitionistic logic — at most one formula on the right-hand side of the sequent

$$\gamma_1,\gamma_2,\ldots \vdash \psi$$

Orthologic — at most two formulas in the entire sequent

$$\phi \vdash \psi$$
$$\phi, \psi \vdash$$
$$\vdash \phi, \psi$$

For convenience, written with left/right annotations, e.g.  $\phi^L, \psi^R$ 

#### Orthologic — Proof Rules

$$\begin{array}{cccc} & \overline{\phi^L,\phi^R} & \operatorname{Hyp} \\ & \frac{\Gamma,\psi^R & \psi^L,\Delta}{\Gamma,\Delta} & \operatorname{Cut} \\ & \frac{\Gamma}{\Gamma,\Delta} & \operatorname{Weaken} \\ & \frac{\Gamma,\phi^L}{\Gamma,(\phi\wedge\psi)^L} & \operatorname{LeftAnd} & \frac{\Gamma,\phi^R & \Gamma,\psi^R}{\Gamma,(\phi\wedge\psi)^R} & \operatorname{RightAnd} \\ & \frac{\Gamma,\phi^L & \Gamma,\psi^L}{\Gamma,(\phi\vee\psi)^L} & \operatorname{LeftOr} & \frac{\Gamma,\phi^R}{\Gamma,(\phi\vee\psi)^R} & \operatorname{RightOr} \\ & \frac{\Gamma,\phi^R}{\Gamma,(\neg\phi)^L} & \operatorname{LeftNot} & \frac{\Gamma,\phi^L}{\Gamma,(\neg\phi)^R} & \operatorname{RightNot} \\ & \frac{\Gamma,\phi^R}{\Gamma,(\neg\phi)^L} & \operatorname{LeftNot} & \frac{\Gamma,\phi^L}{\Gamma,(\neg\phi)^R} & \operatorname{RightNot} \\ & \end{array}$$

#### **Orthologic** — **Proof Search**

- Proofs in orthologic are at most quadratic in size of the formula
- Proofs can be found in cubic-time in the presence of axioms<sup>1</sup>

<sup>1</sup>Orthologic with Axioms Simon Guilloud, Viktor Kunčak POPL 2024, 19 Jan Friday 16:50

# Interpolation

Given that

$$A_{\bar{x},\bar{y}} \implies B_{\bar{y},\bar{z}}$$

#### Interpolation

Given that

$$A_{\bar{x},\bar{y}} \implies B_{\bar{y},\bar{z}}$$

 $\text{find } I_{\bar{y}} \text{ such that } A_{\bar{x},\bar{y}} \implies I_{\bar{y}} \text{, and } I_{\bar{y}} \implies B_{\bar{y},\bar{z}}.$ 

11

#### Interpolation

Given that

$$A_{\bar{x},\bar{y}} \implies B_{\bar{y},\bar{z}}$$

 $\text{find }I_{\bar{y}}\text{ such that }A_{\bar{x},\bar{y}}\implies I_{\bar{y}}\text{, and }I_{\bar{y}}\implies B_{\bar{y},\bar{z}}.$ 

- Focus search to relevant facts
- Better counterexamples
- Abstraction generalization <sup>5</sup>

<sup>&</sup>lt;sup>5</sup>McMillan. "Interpolation and Model Checking." In: Handbook of Model Checking

$$A_{\bar{x},\bar{y}} \implies B_{\bar{y},\bar{z}}$$

<sup>&</sup>lt;sup>6</sup>D'Silva, Kroening, Purandare, and Weissenbacher. "Interpolant Strength". In: VMCAI 2010

$$A_{\bar{x},\bar{y}} \implies B_{\bar{y},\bar{z}}$$

With quantifiers, we get some interpolants for free:

- $\bullet \quad I_1: \exists \bar{x}. A_{\bar{x},\bar{y}}$
- $\quad \blacksquare \quad I_2: \forall \bar{z}.B_{\bar{y},\bar{z}}$

<sup>&</sup>lt;sup>6</sup>D'Silva, Kroening, Purandare, and Weissenbacher. "Interpolant Strength". In: VMCAI 2010

$$A_{\bar{x},\bar{y}} \implies B_{\bar{y},\bar{z}}$$

With quantifiers, we get some interpolants for free:

- $\bullet \quad I_1: \exists \bar{x}. A_{\bar{x},\bar{y}}$
- $\quad \blacksquare \quad I_2: \forall \bar{z}.B_{\bar{y},\bar{z}}$

By quantifier elimination for Boolean algebras, the quantifier-free formulas  $QE(I_1)$  and  $QE(I_2)$  can be computed.

<sup>&</sup>lt;sup>6</sup>D'Silva, Kroening, Purandare, and Weissenbacher. "Interpolant Strength". In: VMCAI 2010

$$A_{\bar{x},\bar{y}} \implies B_{\bar{y},\bar{z}}$$

With quantifiers, we get some interpolants for free:

- $\bullet \quad I_1: \exists \bar{x}. A_{\bar{x},\bar{y}}$
- $\quad \blacksquare \quad I_2: \forall \bar{z}.B_{\bar{y},\bar{z}}$

By quantifier elimination for Boolean algebras, the quantifier-free formulas  $QE(I_1)$  and  $QE(I_2)$  can be computed.

Better: we get least and most general interpolants. <sup>6</sup>

<sup>&</sup>lt;sup>6</sup>D'Silva, Kroening, Purandare, and Weissenbacher. "Interpolant Strength". In: VMCAI 2010

We present the semantics of Quantified Orthologic (QOL) on complete ortholattices.

We present the semantics of Quantified Orthologic (QOL) on complete ortholattices.

- Greatest lower bound (universal quantification):  $\bigwedge x.\phi$
- Least upper bound (existential quantification):  $\bigvee x.\phi$

We present the semantics of Quantified Orthologic (QOL) on complete ortholattices.

- Greatest lower bound (universal quantification):  $\bigwedge x.\phi$
- Least upper bound (existential quantification):  $\bigvee x.\phi$

$$\begin{array}{c|c} \frac{\Gamma, \phi[x := \gamma]^L}{\Gamma, (\bigwedge x. \phi)^L} \text{ LeftForall} & \frac{\Gamma, \phi[x := x']^R}{\Gamma, (\bigwedge x. \phi)^R} & \text{RightForall} \\ \frac{\Gamma, \phi[x := x']^L}{\Gamma, (\bigvee x. \phi)^L} & \text{LeftExists} \\ \frac{\Gamma, \phi[x := x']^L}{\Gamma, (\bigvee x. \phi)^L} & \text{LeftExists} \\ \end{array} & \frac{\Gamma, \phi[x := \gamma]^R}{\Gamma, (\bigvee x. \phi)^R} & \text{RightExists} \end{array}$$

**Theorem (Soundness)** For every sequent S, if  $\vdash S$  then  $\models S$ .

Theorem (Completeness) For every sequent S, if  $\models S$  then  $\vdash S$ .

**Theorem (Soundness)** For every sequent S, if  $\vdash S$  then  $\models S$ .

Theorem (Completeness) For every sequent S, if  $\models S$  then  $\vdash S$ .

Inequalities correspond directly to sequents:

$$\gamma \leq \delta \iff \vdash (\gamma^L, \delta^R)$$

## **Quantifier Elimination**

Given a formula  $\phi$  with quantifiers, produce an equivalent quantifier-free formula  $QE(\phi)$  ,

$$\phi \iff QE(\phi)$$

### Theorem

 $Quantified\ Orthologic\ does\ not\ admit\ quantifier\ elimination.$ 

#### **Theorem**

Quantified Orthologic does not admit quantifier elimination.

Counterexample:  $\phi = \bigvee x. (\neg x \wedge (y \vee x))$ 

#### **Theorem**

Quantified Orthologic does not admit quantifier elimination.

Counterexample:  $\phi = \bigvee x.(\neg x \land (y \lor x))$ 

Quantifier elimination must contain only y:  $0, 1, y, \neg y, \dots$ 

#### **Theorem**

Quantified Orthologic does not admit quantifier elimination.

Counterexample:  $\phi = \bigvee x.(\neg x \land (y \lor x))$ 

Quantifier elimination must contain only y:  $0, 1, y, \neg y, ...$ 





Given two sequents  $\gamma$  and  $\delta$ , and a proof of contradiction assuming  $\gamma$  and  $\delta$ , find an interpolant sequent I, such that

 $\hspace{0.4cm} \hbox{ I can be deduced from } \gamma \hspace{0.1cm} \hbox{alone} \\$ 

Given two sequents  $\gamma$  and  $\delta$ , and a proof of contradiction assuming  $\gamma$  and  $\delta$ , find an interpolant sequent I, such that

- I can be deduced from  $\gamma$  alone
- ${\color{red} \bullet}$  I and  $\delta$  are inconsistent when assumed together

Given two sequents  $\gamma$  and  $\delta$ , and a proof of contradiction assuming  $\gamma$  and  $\delta$ , find an interpolant sequent I, such that

- I can be deduced from  $\gamma$  alone
- $\ \ \ \ I$  and  $\delta$  are inconsistent when assumed together
- $\bullet \quad FV(I) \subset FV(\gamma) \cap FV(\delta)$

Given two sequents  $\gamma$  and  $\delta$ , and a proof of contradiction assuming  $\gamma$  and  $\delta$ , find an interpolant sequent I, such that

- I can be deduced from  $\gamma$  alone
- $\ \ \ \ I$  and  $\delta$  are inconsistent when assumed together
- $\bullet \quad FV(I) \subset FV(\gamma) \cap FV(\delta)$

Given two sequents  $\gamma$  and  $\delta$ , and a proof of contradiction assuming  $\gamma$  and  $\delta$ , find an interpolant sequent I, such that

- I can be deduced from  $\gamma$  alone
- $\bullet$   $\ I$  and  $\delta$  are inconsistent when assumed together
- $\bullet \quad FV(I) \subset FV(\gamma) \cap FV(\delta)$

#### **Theorem**

Orthologic does not admit refutation-based interpolation.

Given two sequents  $\gamma$  and  $\delta$ , and a proof of contradiction assuming  $\gamma$  and  $\delta$ , find an interpolant sequent I, such that

- I can be deduced from  $\gamma$  alone
- I and  $\delta$  are inconsistent when assumed together
- $\bullet \quad FV(I) \subset FV(\gamma) \cap FV(\delta)$

#### **Theorem**

Orthologic does not admit refutation-based interpolation.

Counterexample:

$$\gamma : (z \vee \neg y) \wedge (\neg z \vee \neg y)^{R}$$
$$\delta : (x \wedge \neg y) \vee (\neg x \wedge \neg y)^{R}$$

Given two sequents  $\gamma$  and  $\delta$ , and a proof of contradiction assuming  $\gamma$  and  $\delta$ , find an interpolant sequent I, such that

- I can be deduced from  $\gamma$  alone
- I and  $\delta$  are inconsistent when assumed together
- $FV(I) \subset FV(\gamma) \cap FV(\delta)$

#### **Theorem**

Orthologic does not admit refutation-based interpolation.

Counterexample:

$$\gamma : (z \vee \neg y) \wedge (\neg z \vee \neg y)^{R}$$
$$\delta : (x \wedge \neg y) \vee (\neg x \wedge \neg y)^{R}$$

No sequent  ${\cal I}$  containing only y can be a refutation-based interpolant for this example.

Given two ortholattice formulas  $\gamma$  and  $\delta$ , such that  $\gamma \leq \delta$  wrt laws of OL, an implicational interpolant is a formula I such that

- $\gamma \leq I$
- $I \leq \delta$
- $\bullet \quad FV(I) \subset FV(\gamma) \cap FV(\delta)$

Given a provable sequent  $\Gamma, \Delta$ , an implicational interpolant is a formula I such that

- $\Gamma, I^R$
- $\quad \quad \blacksquare \quad I^L, \Delta$
- $\bullet \quad FV(I) \subset FV(\Gamma) \cap FV(\Delta)$

Given a provable sequent  $\Gamma, \Delta$ , an implicational interpolant is a formula I such that

- $\Gamma, I^R$
- $\quad \blacksquare \quad I^L, \Delta$
- $FV(I) \subset FV(\Gamma) \cap FV(\Delta)$

### **Theorem**

Orthologic admits implicational interpolation.

Given a provable sequent  $\Gamma, \Delta$ , an implicational interpolant is a formula I such that

- $\Gamma, I^R$
- $lacksquare I^L, \Delta$
- $\bullet \quad FV(I) \subset FV(\Gamma) \cap FV(\Delta)$

### **Theorem**

Orthologic admits implicational interpolation.

- linear-time in size of the proof
- thus quadratic-time in size of the sequent

#### **Theorem**

Orthologic admits implicational interpolation.

### Proof.

Base case:

### **Theorem**

Orthologic admits implicational interpolation.

## Proof.

Base case:

$$\overline{\ \phi^L,\phi^R}$$
 Hyp

### **Theorem**

Orthologic admits implicational interpolation.

### Proof.

Base case:

$$\overline{\ \phi^L,\phi^R}$$
 Hyp

Interpolant is  $I=\phi$ , and we trivially have proofs of  $\phi^L,I^R$  and  $I^L,\phi^R$ .

### **Theorem**

Orthologic admits implicational interpolation.

## Proof.

Inductive case:

### **Theorem**

 $Orthologic\ admits\ implication a l\ interpolation.$ 

## Proof.

Inductive case:

$$\frac{\Gamma,\phi^L}{\Gamma,\phi\wedge\psi^L}$$
 LeftAnd

### **Theorem**

 $Orthologic\ admits\ implication a l\ interpolation.$ 

### Proof.

Inductive case:

$$\frac{\Gamma,\phi^L}{\Gamma,\phi\wedge\psi^L}$$
 LeftAnd

Inductive hypothesis: there is an interpolant C for  $\Gamma,\phi^L$ , such that there are proofs of

$$\Gamma, C^R$$
  $C^L, \phi^L$ 

## Theorem

Orthologic admits implicational interpolation.

## Proof.

Inductive case:

$$\frac{\Gamma, \phi^L}{\Gamma, \phi \wedge \psi^L}$$
 LeftAnd

Inductive hypothesis: there is an interpolant C for  $\Gamma,\phi^L$ , such that there are proofs of

$$\Gamma, C^R$$
  $C^L, \phi^L$ 

We have the interpolant  $I={\cal C}$  inductively, and OL proofs of interpolation:

$$\frac{\Gamma, C^R}{\Gamma, C^R}$$

$$\frac{C^L,\phi^L}{C^L,\phi\wedge\psi^L}$$
 LeftAnd

## Orthologic — Conclusions and Future

## Starting with

- Orthologic, weakening of classical propositional logic
- Sound and complete proof system

### We show

- Semantics of Quantified Orthologic
- Absence of quantifier elimination
- Absence of refutation-based interpolation
- Existence of implicational interpolation

## References

- [1] Richard Statman. "Intuitionistic propositional logic is polynomial-space complete." In: Theoretical Computer Science 9.1 (1979), pp. 67–72. ISSN: 0304-3975.

  DOI: https://doi.org/10.1016/0304-3975(79)90006-9. URL: https://www.sciencedirect.com/science/article/pii/0304397579900069.
- [2] Simon Guilloud, Mario Bucev, Dragana Milovančević, and Viktor Kunčak. "Formula normalizations in verification." In: International Conference on Computer Aided Verification. Springer. 2023, pp. 398–422.
- [3] Simon Guilloud, Sankalp Gambhir, and Viktor Kunčak. "LISA A Modern Proof System." In: 14th International Conference on Interactive Theorem Proving (ITP 2023). Ed. by Adam Naumowicz and René Thiemann. Vol. 268. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2023, 17:1–17:19. ISBN: 978-3-95977-284-6. DOI: 10.4230/LIPIcs.ITP.2023.17. URL: https://drops.dagstuhl.de/