Nome: João Vitor de Freitas Barbosa DRE: 117055449
Nome: Gabriel Martins Machado Christo DRE: 117217732

# Tarefa 5

Busca Informada - 15 Puzzle

## Introdução do problema

O Puzzle 15 é um jogo famoso, muito utilizado no contexto da computação com a finalidade de testar a funcionalidade algoritmos de busca. O objetivo do jogador é deslizar as peças até que se chegue ao estado final:



imagens disponíveis no wikipedia

Neste trabalho estaremos interessados em modelar a solução do Puzzle 15 como um problema de busca e utilizar o algoritmo A\* para encontrar o caminho ótimo de um estado inicial válido até o estado final.

## Modelagem do problema

Com objetivo de representar o problema no PROLOG, faremos a modelagem para representar o tabuleiro e suas mudanças de estado.

Sejam

- Q = conjunto de nós a serem pesquisados;
- $\mathbf{S}$  = o estado inicial da busca

#### Faça:

- 1. Inicialize Q com o nó de busca (S) como única entrada;
- 2. Se Q está vazio, interrompa. Se não, escolha o melhor elemento de Q;
- 3. Se o estado (n) é um objetivo, retorne n;
- 4. (De outro modo) Remova  ${\bf n}$  de  ${\bf Q}$ ;
- 5. Encontre os descendentes do estado (n) que não estão em visitados e crie todas as extensões de n para cada descendente;
- 6. Adicione os caminhos estendidos a  ${\bf Q}$  e vá ao passo  ${\bf 2};$

caminhos expandidos;

Uma estimativa que sempre subestima o comprimento real do caminho ate o objetivo é chamada de admissível. O uso de uma estimativa admissível garante que a busca de custo-uniforme ainda encontrará o menor caminho.

#### Algoritmo A\*

## Representação do Tabuleiro

Os tabuleiros são representados como matrizes, com representação sendo feito por listas de listas. O espaço em branco é a constante x. A matriz inicial é dada pela seguinte cláusula Prolog:

```
matriz([ [15, 2, 1, 12],
 [8, 5, 6, 11],
 [4, 9, 10, 7],
 [3, 14, 13, x] ]).
```

O código foi feito para ser compatível com qualquer matriz quadrada com tamanho N > 1.

## Regras do Jogo



Podemos pensar nas regras de transição do jogo como a troca de posição do x (espaço em branco) com alguma peça vizinha. No código PROLOG nossa abordagem foi:

- Acessar a matriz do nó atual.
- Encontrar a posição da célula vazia.
- Encontrar a posição de um vizinho.
- Trocar essas peças de posição.

Mas existem quatro possibilidades quando usamos esta abordagem, cada uma relacionada a posição do vizinho. Por conta disso, criamos quatro cláusulas, uma para cada regra. Um exemplo da regra dirEsq:

```
regra(Node, dirEsq, (Final, G2, _)):-
   Node = (Matriz, G, _),
   matriz_encontrar(Matriz, x, (X,Y)),
   AlvoX is X+1,
   AlvoY is Y,
   matriz_trocaPeca(Matriz, (X,Y), (AlvoX, AlvoY), Final),
   G2 is G + 1.
```

O predicado exposto acima recebe um Nó da árvore e seu valor de G (custo até chegar no nó). A aplicação da regra aumenta o valor em G, representando o custo de andar do Nó atual até o Nó vizinho. Além disso, podemos destacar os predicados  $matriz\_encontrar$  e  $matriz\_trocaPeca$ , desenvolvidos para ajudar na manipulação da matriz

em si. As regras restantes são semelhantes, mudando apenas a forma como a tupla (*AlvoX*, *AlvoY*) é calculada.

### Tabuleiro Válido

Sabemos que não é qualquer tipo de tabuleiro que possui solução. Portanto, é necessário criar um predicado que valida o tabuleiro, o qual retorna se o mesmo possui solução ou não. As restrições foram consultadas na <u>página geeksforgeeks</u> e traduzidas para o prolog em três predicados:

| 3  | 9  | 1  | 15 |
|----|----|----|----|
| 14 | 11 | 4  | 6  |
| 13 | Χ  | 10 | 12 |
| 2  | 7  | 8  | 5  |

N = 4 (Even)
Position of X from bottom = 2 (Even)
Inversion Count = 56 (Even)

→ Not Solvable

```
matriz_valida(Matriz):-
   matriz_tamanho(Matriz, N, N),
    impar(N),
   matriz_quantInversoes(Matriz, Inversoes),
    not(impar(Inversoes)).
matriz_valida(Matriz):-
   matriz tamanho(Matriz, N, N),
   not(impar(N)),
   matriz_encontrar(Matriz, x, (_,I)),
   Row is N - I,
   not(impar(Row)),
    matriz_quantInversoes(Matriz, Inversoes),
    impar(Inversoes),!.
matriz_valida(Matriz):-
   matriz_tamanho(Matriz, N, N),
   not(impar(N)),
   matriz_encontrar(Matriz, x, (_,I)),
   Row is N - I,
   impar(Row),
   matriz_quantInversoes(Matriz, Inversoes),
    not(impar(Inversoes)),!.
```

Os predicados expostos acima representam respectivamente que a matriz é válida, se respeita as seguintes regras:

- Seu tamanho for ímpar e sua quantidade de inversões for par;
- Seu tamanho for par e um dos casos abaixo for satisfeito:
  - A posição do buraco contando de baixo para cima é par e a quantidade de inversões é ímpar.
  - A posição do buraco contando de baixo para cima é ímpar e a quantidade de inversões é par.

Qualquer outro caso a matriz é inválida e, portanto, não possui uma solução.



matriz dada pela proposta do trabalho

Estes predicados avaliaram a matriz dada no enunciado do trabalho e concluíram que ela é inválida, pois:

- Tamanho N = 4, ou seja, par;
- Posição do espaço em branco de baixo para cima é 1, ou seja, ímpar
- Possui 45 inversões, ou seja, ímpar.

### Heurísticas

h1: número de peças fora do lugar (errados)

O programa percorre a matriz e soma 1 sempre que a distância manhattan for maior que 0 (o número está fora do lugar).

```
% heuristica(++Tipo, +Matriz, -Estimativa)
heuristica(errados, Matriz, Estimativa):-
    matriz_paraLista(Matriz, Lista),
    erradoLista(Lista, Matriz, Estimativa).

% erradoLista (+Lista, +Matriz, -Custo)
erradoLista([], _, 0).
erradoLista([Elemento|Proximos], Matriz, Custo):-
    distanciaManhattan(Elemento, Matriz, Manhattan),
    Manhattan > 0, !,
    erradoLista(Proximos, Matriz, C1),
    Custo is C1 + 1.
erradoLista([_|Proximos], Matriz, Custo):-
    erradoLista(Proximos, Matriz, Custo).
```

#### h2: distância Manhattan (Manhattan)

O programa faz o somatório das distâncias Manhattan de cada elemento. A distância manhattan é a soma dos movimentos horizontais e verticais necessários para o elemento estar no lugar ideal.

```
% heuristica(++Tipo, +Matriz, -Estimativa)
heuristica(manhattan, Matriz, Estimativa):-
    matriz_paraLista(Matriz, Lista),
    manhattanLista(Lista, Matriz, Estimativa).
% manhattanLista (+Lista, +Matriz, -Custo)
manhattanLista([], _, 0).
manhattanLista([Elemento|Proximos], Matriz, Custo):-
    manhattanLista(Proximos, Matriz, C1),
    distanciaManhattan(Elemento, Matriz, C2),
    Custo is C1 + C2.
% distanciaManhattan (+Elemento, +Matriz, -Custo)
distanciaManhattan(Elemento, Matriz, Custo):-
    matriz encontrar(Matriz, Elemento, (J, I)),
    coordenadasIdeais(Elemento, Matriz, (E_J, E_I)),
    Custo is abs(I-E_I) + abs(J-E_J).
% coordenadasIdeais(+Elemento, +Matriz, -Coordenadas)
```

```
coordenadasIdeais(Elemento, Matriz, (E_J, E_I)):-
   matriz_tamanho(Matriz, Tam, _),
   Value is Elemento - 1,
   E_J is mod(Value, Tam),
   E_I is (Value-E_J)/Tam.
```

## Apresentação dos resultados obtidos

O programa retorna as ações feitas até o objetivo e a quantidade de nós gerados, para chamar o programa basta consultar:

```
% Para a Heuristica Fora do Lugar
busca_AStar(errados, Acoes, QuantidadeErrados),

% Para a Heuristica Distância Manhattan
busca_AStar(manhattan, Acoes, QuantidadeManhattan).
```

### Análise dos resultados

Ao realizar os testes, constatamos que a nossa implementação consegue resolver facilmente casos simples e com profundidades pequenas.

| No | Configuração Inicial   | Profund. | Heurística | Achou? | Gerados |
|----|------------------------|----------|------------|--------|---------|
| 1  | matriz([[ 1, 2, 3],    | 13       | Errados    | S      | 264     |
|    |                        |          | Manhattan  | S      | 157     |
| 2  | matriz([[ 1, 2, 3, 4], | 3        | Errados    | S      | 9       |
|    |                        |          | Manhattan  | S      | 9       |
| 3  | matriz([[ 5, 1, 3, 4], | 7        | Errados    | S      | 30      |
|    |                        |          | Manhattan  | S      | 28      |
| 4  | matriz([[ 2, 6, 3, 4], | 13       | Errados    | S      | 42      |
|    |                        |          | Manhattan  | S      | 31      |

| 5 | matriz([[ 2, 11, 6, 4],                  | 19       | Errados   | S | 475 |
|---|------------------------------------------|----------|-----------|---|-----|
|   |                                          |          | Manhattan | S | 62  |
| 6 | matriz([[ 3, 9, 1, 15], [ 14, 11, 4, 6], | Inválida | Errados   | Ν |     |
|   | [ 13, x, 10, 12],<br>[ 2, 7, 8, 5]]).    |          | Manhattan | N |     |
| 7 | matriz([[ 15, 2, 1, 12], [ 8, 5, 6, 11], | Inválida | Errados   | N |     |
|   | [ 4, 9, 10, 7],<br>[ 3, 14, 13, x]]).    |          | Manhattan | N |     |

O aumento da profundidade aumenta o uso de memória, pois está armazenando a fronteira e os nós gerados, ambos tendem a crescer ao longo da busca. Percebemos também que nos testes, a heurística Manhattan sempre se saiu igual ou superior à Errados. Em casos com profundidade maior, isso teve como consequência, um número muito menor de nós gerados, em especial no caso 5.

O algoritmo A\* se mostrou muito ineficiente com uso de memória, o que pode ser piorado com uso de heurísticas que não estimam bem o custo de chegar no estado final, ainda mais considerando que este puzzle é considerado de categoria NP Completo, que significa que no pior caso, achar a sequência de ações mais curta envolve percorrer todos os nós. Pelas nossas execuções ficou claro que a Heurística Manhattan se saiu melhor que a Errados, gerando menos nós e, portanto, ocupamos memória e sendo mais eficientes.