

Broad Question

- How to organize the Web?
- First try: Human curated 人工策划 Web directories
 - Yahoo, DMOZ, LookSmart
- Second try: Web Search
 - Information Retrieval investigates: Find relevant docs in a small and trusted set
 - Newspaper articles, Patents, etc.
 - But: Web is huge, full of untrusted documents, random things, web spam, etc. 网络是巨大的

随机的东西, 网络垃圾邮件

的集合中查找相关文档

Web Search: 2 Challenges

2 challenges of web search:

- (1) Web contains many sources of information Who to "trust"? 网络
 - □ Trick: Trustworthy pages may point to each other!
- (2) What is the "best" answer to query "newspaper"?
 - □ No single right answer 诀窍:真正了解报纸的页面可能都指向许
 - □ Trick: Pages that actually know about newspapers might all be pointing to many newspapers

Ranking Nodes on the Graph

- All web pages are not equally "important" www.joe-schmoe.com vs. www.stanford.edu
- There is large diversity in the web-graph node connectivity. Let's rank the pages by the link structure!

性。让我们按照链接结构对页面进 行排序!

PageRank: The "Flow" Formulation

Links as Votes

- Idea: Links as votes 连接当作投票
 - Page is more important if it has more links
 - In-coming links? Out-going links?
- Think of in-links as votes:
 - www.stanford.edu has 23,400 in-links
 - www.joe-schmoe.com has 1 in-link
- Are all in-links are equal?
 - □ Links from important pages count more 重要页面的链接值更大
 - Recursive question!

9

Simple Recursive Formulation

- Each link's vote is proportional to the importance of its source page
- If page j with importance r_j has n out-links, each link gets r_i/n votes
- Page j's own importance is the sum of the votes on its in-links

Solving the Flow Equations

- - No unique solution
 - □ All solutions equivalent modulo the scale factor 所有解都等于尺度因子取模
- Additional constraint forces uniqueness: 附加约束强制得到唯一性
 - $r_y + r_a + r_m = 1$
 - Solution: $r_y = \frac{2}{5}$, $r_a = \frac{2}{5}$, $r_m = \frac{1}{5}$
- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs

 □ Saussian elimination method works for small examples, but we need a better method for large web-size graphs
- We need a new formulation!

我们需要一个新的公式

PageRank: Matrix Formulation 矩阵公式

随机邻接矩阵

- Stochastic adjacency matrix M
- **Let page** i has d_i out-links

外链这里列指「

If
$$i \to j$$
, then $M_{ji} = \frac{1}{d_i}$ else $M_{ji} = 0$

- *M* is a column stochastic matrix

 Columns sum to 1
- Rank vector r: vector with an entry per page每页一个元素
- ullet r_i is the importance score of page i
- $\square \sum_i r_i = 1$ 这里一定考
- The flow equations can be written

$$r = M \cdot r$$

 $r_j = \sum \frac{r_i}{d}$

f的链接等于M乘旧的 转接

Example

- Remember the flow equation: $r_i = \sum_{i=1}^{r_i} \frac{r_i}{r_i}$
- Flow equation in the matrix form $i \rightarrow j \sum_{i \rightarrow j} d_i$

$$M \cdot r = r$$

□ Suppose page *i* links to 3 pages, including *j*

Eigenvector Formulation

- The flow equations can be written 特征值是1的特征向量 $r = M \cdot r$
- So the rank vector r is an eigenvector of the stochastic web matrix M
 - □ In fact, its first or principal eigenvector, 相对于特征值1的主特征向量 (★_with corresponding eigenvalue 1
- 最大的特征值就 1,因为M时列 column stochastic (with non-negative entries)

□ We know r is unit length and each column of M sums to one, so $Mr \le 1$

NOTE: x is an eigenvector with the corresponding eigenvalue λ if: $Ax = \lambda x$

We can now efficiently solve for r!
 The method is called Power iteration 我们现在

种力法称刃暴次迭代

Example: Flow Equations & M

	y	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r = M \cdot r$$

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

у		1/2	1/2	0	y
a	=	1/2	0	1	a
m		0	$\frac{1}{2}$	0	m
111		Ľ	, 2	<u> </u>	111

17

Power Iteration Method

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
 - Suppose there are N web pages

• Initialize:
$$r^{(0)} = [1/N,....,1/N]^T$$

□ Iterate:
$$r^{(t+1)} = M \cdot r^{(t)}$$

□ Stop when
$$|r^{(t+1)} - r^{(t)}|_1 < \varepsilon$$

Power Iteration:

 $r_j^{(t+1)} = \sum_{i \in \mathcal{N}} \frac{r_i^{(t)}}{\mathbf{d}_i}$

d_i out-degree of node i

 $|\mathbf{x}|_1 = \sum_{1 \le i \le N} |x_i|$ is the \mathbf{L}_1 norm Can use any other vector norm, e.g., Euclidean

18

PageRank: How to solve?

- Power Iteration:
 - Set $r_i = 1/N$
 - **1:** $r'_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - **2:** r = r'
 - Goto 1
- **Example:**

$$\begin{pmatrix} r_y \\ r_a \\ r_m \end{pmatrix} = \begin{array}{c} 1/3 \\ 1/3 \\ 1/3 \\ \text{Iteration 0, 1, 2, ...} \\ \end{array}$$

	y	a	m
у	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

■ Example:

Set $r_j = 1/N$	//
$1: r'_j = \sum_{i \to j} \frac{r_i}{d_i}$	a ← → m
2 : $r = r'$	

PageRank: How to solve?

Details! Why Power Iteration works? (1)

- Power iteration: 求主特征向量(对应最大特征值的向量)的方法 A method for finding dominant eigenvector (the vector corresponding to the largest eigenvalue)
- $r^{(1)} = M \cdot r^{(0)}$ $r^{(2)} = M \cdot r^{(1)} = M(Mr^{(1)}) = M^2 \cdot r^{(0)}$ $\mathbf{r}^{(3)} = \mathbf{M} \cdot \mathbf{r}^{(2)} = \mathbf{M} (\mathbf{M}^2 \mathbf{r}^{(0)}) = \mathbf{M}^3 \cdot \mathbf{r}^{(0)}$
- Claim: Sequence $M \cdot r^{(0)}$, $M^2 \cdot r^{(0)}$, ... $M^k \cdot r^{(0)}$ approaches the dominant eigenvector of M

Details!

Why Power Iteration works? (2)

- Claim: Sequence $M \cdot r^{(0)}$, $M^2 \cdot r^{(0)}$, ... $M^k \cdot r^{(0)}$, ... approaches the dominant eigenvector of M
- 接近M的主导特征向量 Proof:
 - Assume îvî has n lineariy independent eigenvectors. $x_1, x_2, ..., x_n$ with corresponding eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$, where $\lambda_1 > \lambda_2 > \cdots > \lambda_n$
 - Vectors x_1,x_2,\dots,x_n form a basis and thus we can write: $r^{(0)}=c_1\,x_1+c_2\,x_2+\dots+c_n\,x_n$
 - $Mr^{(0)} = M(c_1 x_1 + c_2 x_2 + \dots + c_n x_n)$
 - $= c_1(Mx_1) + c_2(Mx_2) + \cdots + c_n(Mx_n)$
 - $= c_1(\lambda_1 x_1) + c_2(\lambda_2 x_2) + \dots + c_n(\lambda_n x_n)$ Repeated multiplication on both sides produces
 - $M^k r^{(0)} = c_1(\lambda_1^k x_1) + c_2(\lambda_2^k x_2) + \dots + c_n(\lambda_n^k x_n)$

Why Power Iteration works? (3)

- **Claim:** Sequence $M \cdot r^{(0)} \cdot M^2 \cdot r^{(0)} \cdot ... M^k \cdot r^{(0)} \cdot ...$ approaches the dominant eigenvector of M
- Proof (continued):
 - Repeated multiplication on both sides produces $M^{k}r^{(0)} = c_{1}(\lambda_{1}^{k}x_{1}) + c_{2}(\lambda_{2}^{k}x_{2}) + \dots + c_{n}(\lambda_{n}^{k}x_{n})$
 - $M^{k}r^{(0)} = \lambda_{1}^{k} \left[c_{1}x_{1} + c_{2} \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{k} x_{2} + \dots + c_{n} \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{k} x_{n} \right]$
 - and so $\left(\frac{\lambda_i}{2}\right)^n = 0$ as $k \to \infty$ (for all $i = 2 \dots n$).
 - \Box Thus: $M^k r^{(0)} \approx c_1(\lambda_1^k x_1)$

Note if $c_1=0$ then the method won't converge 初始的 r_0 ,第一个向量不能为0????

Random Walk Interpretation

- Imagine a random web surfer:
 - At any time t, surfer is on some page i
 - \Box At time t+1, the surfer follows an out-link from i uniformly at random
 - Ends up on some page j linked from i
 - □ Process repeats indefinitely 从i开始在某页i结
- Let:
- p(t) ... vector whose ith coordinate is the prob. that the surfer is at page i at time t
- ullet So, p(t) is a probability distribution over pages

The Stationary Distribution

什么时候达到稳态

- Where is the surfer at time *t*+1?
 - Follows a link uniformly at random

$$p(t+1) = M \cdot p(t)$$

$$p(t+1) = \mathbf{M} \cdot p(t)$$

Suppose the random walk reaches a state

$$p(t+1) = M \cdot p(t) = p(t)$$

then p(t) is stationary distribution of a random walk

- Our original rank vector r satisfies $r = M \cdot r$
 - \Box So, r is a stationary distribution for the random walk

Existence and Uniqueness^{存在性和唯}

A central result from the theory of random walks (a.k.a. Markov processes): 随机游动理论(又称马尔

For graphs that satisfy **certain conditions**. the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time t = 0

不管初始是什么值,最终都会达到稳定解

Perron-Frobenius theorem [Nonnegative Matrix, irreducible (connected), primitivity (k-connected)]

> A自乘k次,那么所有的点都 是连接起来了,这样第一大特 征值全是正的

PageRank: Three Questions

 $r_j^{(t+1)} = \sum_{i o j} rac{r_i^{(t)}}{\mathrm{d_i}}$ or equivalently r = Mr

- Does this converge?
- Does it converge to what we want?

■ Are results reasonable?

PageRank: **The Google Formulation**

Does this converge?

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

Example:

$$r_{a} = 1 \quad 0 \quad 1 \quad 0$$
 $r_{b} \quad 0 \quad 1 \quad 0$

Iteration 0, 1, 2, ...

20

Does it converge to what we want?

a → **b**

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

■ Example:

Iteration 0, 1, 2, ...

30

PageRank: Problems

2 problems:

- (1) Some pages are dead ends (have no out-links)
 - Random walk has "nowhere" to go to
 - Such pages cause importance to "leak out" 重要性消失

- Random walked gets "stuck" in a trap
- And eventually spider traps absorb all importance group里的点重要性都很大

Dead end Spiritar to

31

Problem: Spider Traps

- **■** Power Iteration:
 - \Box Set $r_i = 1$
 - $r_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - And iterate

 $\begin{array}{c|ccccc} & y & a \\ y & \frac{1}{2} & \frac{1}{2} \\ a & \frac{1}{2} & 0 \\ m & 0 & \frac{1}{2} \end{array}$

m is a spider trap

 $r_y = r_y/2 + r_a/2$ $r_a = r_y/2$ $r_m = r_a/2 + r_m$

Example:

Iteration 0, 1, 2, ...

All the PageRank score gets "trapped" in node m.

Solution: Teleports! 瞬移

- The Google solution for spider traps: At each time step, the random surfer has two options
 - \Box With prob. β , follow a link at random
 - □ With prob. 1- β , jump to some random page
 - **Output** Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

33

Problem: Dead Ends

- Power Iteration:

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

And iterate

	y	a	m
y	1/2	1/2	0
a	1/2	0	0
m	0	1/2	0

 $r_y = r_y/2 + r_a/2$ $r_a = r_y/2$

 $r_m = r_a/2$

Example:

Iteration 0, 1, 2, .

Here the PageRank "leaks" out since the matrix is not stochastic.

2.4

Solution: Always Teleport!

- Teleports: Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do teleports solve the problem? 蜘蛛陷阱

- Spider-traps are not a problem (converge), but with traps PageRank scores are not what we want
 - Solution: Never get stuck in a spider trap by teleporting out of it in a finite number of steps
- Dead-ends are a problem 不收敛
 - The matrix is not column stochastic (zero column) so our initial assumptions are not met
 - Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go

Solution: Random Teleports

- Google's solution that does it all: At each step, random surfer has two options:
 - \Box With probability β , follow a link at random
 - □ With probability $1-\beta$, jump to some random page
- PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i o j} eta \; rac{r_i}{d_i} + (1-eta) rac{1}{N}$$
 dimodrategy of nod

This formulation assumes that *M* has no dead ends. We can either preprocess matrix *M* to remove all dead ends (add 1/N in M) or explicitly follow random teleport links with probability 1.0 from dead-ends (*B*=0).

这个公式假定M没有dead

<u>ends。我们可以预处理矩阵M删除所有dead</u>

ends(加1/N)或显式地遵循概率1.0随机瞬移(β=0)。

The Google Matrix

■ PageRank equation [Brin-Page, '98]

$$r_j = \sum_{i \to i} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

■ The Google Matrix A:

$$A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$$

[1/N]_{NxN}...N by N matrix where all entries are 1/N

- We have a recursive problem: r = A · r And the Power method still works!
- What is β ?
 - □ In practice $\beta = 0.8, 0.9$ (make 5 steps on avg., jump)

38

Random Teleports ($\beta = 0.8$) $[1/N]_{N\times N}$ 1/3 1/3 1/3 1/2 1/2 0 0.8 1/2 0 0 + 0.2 1/3 1/3 1/3 1/3 1/3 1/3 0 1/2 1 y 7/15 7/15 1/15 7/15 1/15 1/15 m 1/15 7/15 13/15 7/330.20 0.20 0.18 5/33 0.46 0.52 0.56 21/33

How do we actually compute the PageRank?

Computing Page Rank

- Key step is matrix-vector multiplication
- $r^{\text{new}} = A \cdot r^{\text{old}}$
- Easy if we have enough main memory to hold A, rold, rnew
- Say N = 1 billion pages
 - We need 4 bytes for each entry (say)
 - 2 billion entries for vectors, approx 8GB
 - Matrix A has N² entries
 - 10¹⁸ is a large number!

 $A = \beta \cdot M + (1-\beta) [1/N]_{NxN}$

$$\mathbf{A} = 0.8 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 1 \end{bmatrix} + 0.2 \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

41

Matrix Formulation

- Suppose there are N pages
- 假设有N个页面, 考虑第i页,di向外链接,
- Consider page *i*, with d_i out-links 当i→j时, 我们有Mji = 1/dil
 - 否则Mji = 0,
- We have $M_{ii} = 1/|d_i|$ when $i \rightarrow j$ and $M_{ii} = 0$ otherwise
- The random teleport is equivalent to:
 - Adding a teleport link from i to every other page and setting transition probability to $(1-\beta)/N$
 - Reducing the probability of following each out-link from $1/|d_i|$ to $\beta/|d_i|$
 - □ Equivalent: Tax each page a fraction $(1-\beta)$ of its score and redistribute evenly

随机传送等于:

添加一个从i到其他页面的传送链接,并设置转换概率为(1-β)/N

降低每个外链的概率,从1/|di|到β/|di|

相当于:对每一页征收得分除以(1-β)的税, 然后重新平均分配

Rearranging the Equation

- $r = A \cdot r$, where $A_{ji} = \beta M_{ji} + \frac{1-\beta}{N}$
- $r_j = \sum_{i=1}^N A_{ji} \cdot r_i$

has no dead-ends

 $r_j = \sum_{i=1}^N \left[\beta \ M_{ji} + \frac{1-\beta}{N} \right] \cdot r_i$ $= \sum_{i=1}^N \beta \ M_{ji} \cdot r_i + \frac{1-\beta}{N} \sum_{i=1}^N r_i$ $= \sum_{i=1}^N \beta \ M_{ji} \cdot r_i + \frac{1-\beta}{N}$ since $\sum r_i = 1$

So we get: $r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_N$

 $[x]_N$... a vector of length N with all entries x

43

Sparse Matrix Formulation

■ We just rearranged the PageRank equation

$$r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_{N}$$

- where [(1-β)/N]_N is a vector with all N entries (1-β)/N
- M is a sparse matrix! (with no dead-ends) M是无dead ends的稀疏矩阵
 - □ 10 links per node, approx 10N entries
- So in each iteration, we need to:
 - □ Compute $r^{\text{new}} = \beta M \cdot r^{\text{old}}$
- Add a constant value (1-β)/N to each entry in r^{new}
 - Note if M contains dead-ends then $\sum_j r_j^{new} < 1$ and we also have to renormalize $r^{\rm new}$ so that it sums to 1

PageRank: The Complete Algorithm

- Input: Graph G and parameter β
 - □ Directed graph *G* (can have spider traps and dead ends)
 - \Box Parameter β
- Output: PageRank vector r^{new}
- repeat until convergence: $\sum_{i} |r_{i}^{new} r_{i}^{old}| > \varepsilon$
 - $\forall j: r_j^{new} = \sum_{i \to j} \beta \frac{r_i^{old}}{d_i}$ $r_j^{new} = 0 \text{ if in-degree of } j \text{ is } 0$
 - Now re-insert the leaked PageRank:
 - $\forall j: r_i^{new} = r_i^{new} + \frac{1-S}{N}$
 - $r^{old} = r^{new}$

where: $S = \sum_{i} r_{i}^{\prime new}$

If the graph has no dead-ends then the amount of leaked PageRank is 1-β. But since we have dead-ends the amount of leaked PageRank may be larger. We have to explicitly account for it by computing S. 45

如来自没有允许处于中医路的Fagerlank的效量。后由于我们有允的时, 泄露的PageRank的数量可能会更大。我们必须通过计算S来明确地解释它

Analysis

- Assume enough RAM to fit *r*^{new} into memory
 - □ Store *r*^{old} and matrix *M* on disk

Sparse Matrix Encoding

Say 10N, or 4*10*1 billion = 40GB

degree

source

■ Encode sparse matrix using only nonzero entries

目的节点

1, 5, 7

13, 23

destination nodes

17, 64, 113, 117, 245

Space proportional roughly to number of links

Still won't fit in memory, but will fit on disk

- In each iteration, we have to:
 - Read rold and M
 - Write r^{new} back to disk
 - □ Cost per iteration of Power method:= 2|r| + |M|
- Question:
 - □ What if we could not even fit *r*^{new} in memory?

如果内存装不下r_new怎么办?分块

48

Basic Algorithm: Update Step

- Assume enough RAM to fit rnew into memory
 - Store r^{old} and matrix M on disk
- 1 step of power-iteration is:

Initialize all entries of r^{new} = (1-β) / N
For each page *i* (of out-degree *d_i*):
Read into memory: *i*, *d_i*, *dest₁*, ..., *dest_{di}*, *r*^{old}(*i*)
For j = 1...d_i
r^{new}(dest_i) += β r^{old}(i) / *d_i*

ı	$r^{\text{non}}(\text{dest}_j) + p r^{\text{od}}(i) / a_i$					
0		r ^{new}	source degree destination			rolo
1			0	3	1, 5, 6	
3			1	Δ	17, 64, 113, 117	
4			2	2		
5			2	2	13, 23	
6						

Application to Measuring Proximity in Graphs

应用于测量接近度的图表 带重启的随机游走:S是单个元素

Random Walk with Restarts: S is a single element

Proximity on Graphs A H B a.k.a.: Relevance, Closeness, 'Similarity'...

Good proximity measure?

Shortest path is not good:

- No effect of degree-1 nodes (E, F, G)!
- Multi-faceted relationships

Good proximity measure?

■ Network flow is not good:

A

A

A

D

E

B

Does not punish long paths

不惩罚长路吗

什么是好的相似的定义?

PageRank: Summary

- "Normal" PageRank:标准页面排序
 - □ Teleports uniformly at random to any node均匀随机瞬移到任意结点
- Topic-Specific PageRank also known as Personalized PageRank: 特定主题的页面排序也称为个性化页面排序
 - □ Teleports to a topic specific set of pages 跳到特定主题页面的集合
 - Nodes can have different probabilities of surfer landing there: S = [0.1, 0, 0, 0.2, 0, 0, 0.5, 0, 0, 0.2]
- Random Walk with Restarts: 带重启的随机游走
 - □ Topic-Specific PageRank where teleport is always to the same node. S=[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

61

Questions?