My title*

My subtitle if needed

First author

Another author

March 16, 2024

First sentence. Second sentence. Third sentence. Fourth sentence.

1 Introduction

You can and should cross-reference sections and sub-sections. We use R Core Team (2023) and Wickham et al. (2019).

The remainder of this paper is structured as follows. Section 2....

2 Data

3 Model

The goal of our modelling strategy is twofold. Firstly,...

Here we briefly describe the Bayesian analysis model used to investigate... Background details and diagnostics are included in Appendix B.

^{*}Code and data are available at: LINK.

3.1 Model set-up

Define y_i as the political preference of the individual and is 1 if the individual prefers Biden and 0 if the person prefers trump. Then gender_i is the individual's gender and $\operatorname{education}_i$ is the individual's education

$$y_i | \pi_i \sim \text{Bern}(\pi_i)$$
 (1)

$$\operatorname{logit}(\pi_i) = \alpha + \beta_1 \times \operatorname{gender}_i + \beta_2 \times \operatorname{education}_i \tag{2}$$

$$\alpha \sim \text{Normal}(0, 2.5)$$
 (3)

$$\beta_1 \sim \text{Normal}(0, 2.5)$$
 (4)

$$\beta_2 \sim \text{Normal}(0, 2.5)$$
 (5)

(6)

We run the model in R (R Core Team 2023) using the rstanarm package of Goodrich et al. (2022). We use the default priors from rstanarm.

3.1.1 Model justification

We expect a positive relationship between the size of the wings and time spent aloft. In particular...

We can use maths by including latex between dollar signs, for instance θ .

4 Results

Our results are summarized in Table 1.

5 Discussion

5.1 First discussion point

If my paper were 10 pages, then should be be at least 2.5 pages. The discussion is a chance to show off what you know and what you learnt from all this.

Table 1: Explanatory models of flight time based on wing width and wing length

	First model
(Intercept)	-0.22
, - ,	(0.06)
genderMale	0.45
	(0.02)
educationHigh school graduate	0.07
	(0.06)
educationSome college	-0.31
	(0.06)
education2-year	-0.28
	(0.06)
education4-year	-0.61
	(0.06)
educationPost-grad	-0.94
	(0.06)
Num.Obs.	47466
R2	0.037
Log.Lik.	-31245.082
ELPD	-31252.1
ELPD s.e.	55.6
LOOIC	62504.2
LOOIC s.e.	111.1
WAIC	62504.2
RMSE	0.48

5.2 Second discussion point

5.3 Third discussion point

5.4 Weaknesses and next steps

Weaknesses and next steps should also be included.

Appendix

A Additional data details

B Model details

B.1 Posterior predictive check

In Figure 1a we implement a posterior predictive check. This shows...

In Figure 1b we compare the posterior with the prior. This shows...

- (a) Posterior prediction check
- (b) Comparing the posterior with the prior

Figure 1: Examining how the model fits, and is affected by, the data

B.2 Diagnostics

Figure 2a is a trace plot. It shows... This suggests...

Figure 2b is a Rhat plot. It shows... This suggests...

Figure 2: Checking the convergence of the MCMC algorithm

References

Goodrich, Ben, Jonah Gabry, Imad Ali, and Sam Brilleman. 2022. "Rstanarm: Bayesian Applied Regression Modeling via Stan." https://mc-stan.org/rstanarm/.

R Core Team. 2023. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D'Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019. "Welcome to the tidyverse." *Journal of Open Source Software* 4 (43): 1686. https://doi.org/10.21105/joss.01686.