

	Minimum	Maximum ————% of dry n	Mean	SD
			iattei	
Corn Stover				
Cellulose ^b	31.3	41	37.5	2.8
Structural glucan	33.8	41	37.5	2.2
Hemicellulose	20	34.4	26.1	4.8
Xylan	19.8	25.8	21.7	2.1
Arabinan	1.7	6.1	2.7	1.6
Galactan	0.7	3	1.6	1
Mannan	0.3	1.8	0.6	1.1
Total lignin	15.8	23.1	18.9	2.6
Acid soluble lignin	1.9	3.6	2.9	0.9
Acid insoluble lignin	13.6	19.8	16.4	3.1
Acid detergent lignin	3.1	5	4.1	1.3
Crude protein	3.5	8.7	4.7	2.2
Ash	4.2	7.5	6.3	1.2
Soil	= 1	-	1.3	

	Harve	est 1 (Oct. 199	1)	На	rvest 2 (Aug. 19	992)	
	Time zero		ks storage			26 weeks storage	
	% of dry matter	Inside % ch	Outside ange	% of dry matter	Inside % ch	Outside ange	
omposition o	n whole biomass b	asis					
Extractives	17.0	-7.7	-10.5	14.2	<0.6	-1.8	
Ash	5.8	+0.3	+0.2	4.8	<1.0	<1.0	
Protein	3.2	+0.6	+0.6	2.8	-0.8	-0.9	
omposition o	n extractive-free ba	asis					
Lignin	21.4	+0.8	+1.5	20.6	-0.5	-0.4	
Arabinan	3.4	-0.4	-0.4	3.2	<0.2	< 0.2	
Xylan	24.9	-1.5	-1.6	25.5	<1.3	<1.3	
Mannan	0.4	< 0.1	+1.4	0.3	< 0.2	< 0.2	
Galactan Glucan	1.1 37.8	<0.1 -2.1	<0.1 -2.2	1.0 40.8	+0.1 <2.5	<0.1 <2.5	

Remarks on chemical-physical composition

13

- Chemical-physical composition of biomass is relevant to certain conversion processes (i.e. fermentation for ethanol production, oil extraction for biodiesel production), in which such a structure is partly preserved.
- > It is relevant also to anaerobic digestion, where hydrolysis is an important step.
- > To thermochemical processes, where this structure is completely destroyed, this composition is not relevant.
- Nevertheless, chemical-physical composition can vary greatly, not only with biomass variety, but also with the age and the development phase of the plant, the season, the climatic conditions experienced during the growth and also after harvesting, during storage, etc.

F. Viganò

17

The conventional determination of moisture is drying in an oven in air to constant weight at 105°C (Ref. DIN 51718). Prolonged drying in the oven can result in loss of volatile constituents due to decomposition, distillation or oxidation.

The moisture content of biomass can change during handling. Typically, after harvesting, moisture content of biomass decreases form the initial value (that for woody biomass can be higher than 50% by mass) to a lower equilibrium value, which can be as low as 5-25%. This equilibrium value depends not only on the biomass variety, but also on ambient conditions (mainly temperature and humidity).

Very dry biomass materials are hygroscopic. When put in contact with humid air, they show a very rapid uptake of moisture.

F. Viganò

POLITECNICO DI MILANO

Ash

18

The ash content of woody biomass without bark is in general below 1%. In contrast, fast growing biomass has an ash content up to 20% (e.g. in some types of rice straw). All fast growing herbaceous biomass like straw, hay or leafs etc. contain about an order of magnitude more ash and heteroatoms than wood. Typical ash contents of straw or hay are 5 to 10%.

Higher ash and heteroatom concentrations are also an indication of higher fertiliser requirements for the faster growing species. Nature recovers the valuable inorganic constituents after fast growth e.g. from the older wood parts. In some cases soil impurities can considerably contribute to the ash content.

Ash composition may be relevant to some particular valorization paths, for example all the termo-chemical routes.

F. Viganò

Ash content of biomass feedstock								
	Wheat straw bran		Rice straw	Hay	Cotton stalks	Wood		
K ₂ O	2,2	1,0	6,2	4,0	0,5	0,04		
CaO	0,3	0,1	0,5	0,4	1,7	(0,13)		
SiO ₂	3,6	<0,1	9,9	0,6	0,4	(0,08)		
CI	0,7	<0,1	1,0	1,0	0,5	(<0,001)		
P ₂ O ₅	0,2	0,5	< 0,1	0,7	< 0,1	0,02		
Fe ₂ O ₃	< 0.1	< 0,1	0,6	< 0,1	1,0	(0,004)		
MgO	0,1	<0,1	0,2	<0,1	0,2	0,02		
	Source: Re	port SES6-CT-2	2003-502705, <i>E</i> F. Viganò	European proje		NICO DI MILANO		

Procedure for the ultimate analysis

2

- ➤ Most of the measurement systems employ catalytic combustion with pure oxygen to decompose the biomass sample to nitrogen, water, carbon dioxide and sulphur dioxide, which are then determined quantitatively by chromatography using flame ionization or thermal conductivity detectors.
- ➤ Oxygen may be determined directly (not by difference) by catalytic conversion to carbon monoxide.
- ➤ The determination of chlorine content, when done, is carried out separately after combustion to HCl in a separate analyser.

F. Viganò

POLITECNICO DI MILANO

Example of ultimate analyses

26

	Source: Report SES6-CT-2003-502705, European project RENEW									
		Wheat		Rice		Hay	Cotton	Wood		
		straw	bran	straw	husks		stalks			
c	:	45,7 (43,2)	47,7	39,2 (41,8)	44,5 (41)	45,9	46,6 (39,5)	48,6 (50)		
H	ł	5,7 (5,0)	6,4	4,8 (4,6)	6,3 (4,3)	6,0	5,6 (5,1)	6,1 (6)		
C)	43,3 (39,4)	42,0	36,4 (36,5)	36,9 (36)	39,4	42,8 (39,1)	45,0 (43)		
N	1	0,5 (0,6)	2,8	0,4 (0,7)	0,9 (0,4)	2,3	0,7 (0,4)	0,2		
S	6	0,3 (0,1)	0,3	0,2 (0,1)	0,6 (0,01)	0,3				
c	CI.	0,7 (0,3)		1,9 (0,3)	(0,1)	1,0	0,5 (0,1)	< 0,1		

The organics CHO composition of lignocellulose like wood or straw is not much different and approximately represented by $C_6H_9O_4$. For quick estimates a more simplified formula is useful: $C_3(H_2O)_2$. It may be viewed at as a mixture of 50% by mass carbon, with 50 wt% water.

F. Viganò

HHVs of dry lignocellulosic biomass

29

Source: Report SES6-CT-2003-502705, European project RENEW								
		Wheat		Rice		Cotton	Wood	
HHV (kJ/kg) stra	w bran	straw	husks		stalks		
Experimen	tal 1710	00			17100			
Calculated	1) 1720	00 19000	14700	18600	18200	17400	18400	
Calculated	1930	00 20300	15300	17600	18800	19300	20400	
Literature 3	1710	00	15400	15700	16500	15200	19000	

- 1) HHV= 339 C+1214(H-O/8)+226 H+105 S
- 2) HHV = 20490 271 Ash
- 3) http://www.vt.tuwien.ac.at/biobib/
- 1) Dulong-Bertholot equation (kJ/kg all contents are by mass).
- 2) Considering biomass as $C_6H(H_2O)_3$ with different ash contents, the HHV can be calculated according to Ebeling and Jenkins from the dry ash free heating value: HHV (kJ/kg) = K 271 A where K is the HHV of lignocelluose daf (20490 kJ/kg) and A is the percent ash by mass on a dry basis.

F. Viganò

POLITECNICO DI MILANO

Contributions to Heating Value

30

Typically three contributions are considered for most fuels:

- The contribution of Volatile Matter (VM), which is typically positive and depends on the nature of the fuel.
- The contribution of Ash, which is zero, as a result of the conventional behavior of ash as an inert material.
- > The contribution of Moisture, considered as liquid water, thus:

$$LHV_{Moisture} = -\Delta H_{eva,H2O} = -2.442 \frac{MJ}{kg}$$
 $HHV_{Moisture} = 0$

$$\begin{split} LHV_{biomass} &= LHV_{VM} \cdot y_{VM} + LHV_{ASH} \cdot y_{ASH} + LHV_{Moisture} \cdot y_{Moisture} \\ HHV_{biomass} &= HHV_{VM} \cdot y_{VM} + HHV_{ASH} \cdot y_{ASH} + HHV_{Moisture} \cdot y_{Moisture} \end{split}$$

F. Viganò

LHV – HHV connection

33

The difference between the two heating values on dry basis is determined by heat of evaporation of the water produced during combustion.

$$LHV_{DRY} = HHV_{DRY} - \Delta H_{EV, H_2O} \cdot P_{H_2O} = HHV_{DRY} - 2.442 \frac{MJ}{kg} \cdot P_{H_2O}$$

Water production during combustion depends on the hydrogen content. In the presence of halogens (CI, F, etc), they reduce the amount of hydrogen that produces water (some hydrogen is used in the production of acids).

$$P_{H_2O} = MM_{H_2O} \cdot \frac{1}{2} \left(\frac{y_H}{MM_H} - \frac{y_{Cl}}{MM_{Cl}} \right) = 8.94 \cdot y_H - 0.254 \cdot y_{Cl}$$

Moisture behaves as liquid water. Thus, it contributes to the difference between LHV and HHV:

$$LHV = HHV - 2.442 \frac{MJ}{kg} \cdot \left(P_{H_2O} + y_{Moisture}\right)$$

F. Viganò

Several bases ...

37

- Composition and properties of biomass feedstock when it is harvested or received to a plant / facility are usually referred as "As Received basis" (AR). This basis is typically characterized by a very high moisture content.
- After a certain storage time, moisture content decreases down to a quite stable value, which is the equilibrium value with the environment. Composition and properties of biomass in this condition are referred as "Air Dried basis" (AD).
- Mainly for calculation or analytic purposes, it is very useful to refer to dry biomass, i.e. biomass that has been artificially dried as described before. In this case, it is usual to talk about "dry basis" (DRY).
- > These three bases differ only by the moisture content.
- ➤ In many cases it can be interesting to consider only the part of the dry biomass that during oxidation volatilizes, i.e. the volatile matter (which is different from the volatiles of the proximate analysis). In this case the reference is called "Dry-Ash-Free basis" (DAF).

F. Viganò

POLITECNICO DI MILANO

What happens when moisture changes?

38

Moisture

Basis 1:

$$y_{Ash}^{(2)} = y_{Ash}^{(1)} \cdot \frac{1 - y_{Moisture}^{(2)}}{1 - y_{Moisture}^{(1)}} \quad y_C^{(2)} = y_C^{(1)} \cdot \frac{1 - y_{Moisture}^{(2)}}{1 - y_{Moisture}^{(1)}} \quad \dots$$

For LHVs and HHVs is better to refer to the most general case ...

F. Viganò

V

General case

41

Conventionally, to ash is assigned a zero energy content (both in LHV and HHV bases). To moisture the energy content of liquid water, thus:

$$LHV_{Moisture} = -2.442 \ MJ/kg$$

 $HHV_{Moisture} = 0$

LHV and HHV in the general case are expressed as weighted averages of the corresponding values for the three constituents of the feedstock:

$$\begin{split} LHV_{(X)} &= LHV_{VM} \cdot y_{VM,(X)} + LHV_{ASH} \cdot y_{ASH,(X)} + LHV_{Moisture} \cdot y_{Moisture,(X)} = \\ &= LHV_{VM} \cdot y_{VM,(X)} - 2.442 \frac{MJ}{kg} \cdot y_{Moisture,(X)} \end{split}$$

$$\begin{split} HHV_{(X)} &= HHV_{VM} \cdot y_{VM,(X)} + HHV_{ASH} \cdot y_{ASH,(X)} + HHV_{Moisture} \cdot y_{Moisture,(X)} = \\ &= HHV_{VM} \cdot y_{VM,(X)} \end{split}$$

The reference to the common basis (X) is crucial!

F. Viganò

POLITECNICO DI MILANO

Lecture outline

42

- > Types of characterization
- > Chemical-physical composition
- > Proximate composition
- > Ultimate composition
- Heating values
- Different bases
- > The case of waste

F. Viganò

Y

The case of waste

43

- > The waste is a mixture of diverse materials.
- ➤ Waste can include some biomass (e.g. wood) or biomass derived material (e.g. paper and cardboard).
- ➤ It can include also materials of fossil nature, typically many types of plastics.
- > Some materials can be in part derived from biomass (the biogenic share) and in part derived from fossil resources (the fossil share).
- From the point of view of the ultimate composition, the characteristics of waste can be expressed as weighted averages of those of the constituents

F. Viganò

POLITECNICO DI MILANO

Literature survey of the combustive properties of various materials

44

10 sources of data:

- ➤ 1 paper from the scientific journal "Waste Management" → Primary data.
- ▶ 6 paper from the scientific journal "Fuel" → 1 source with primary data.
- > 1 book "Combustion and incineration processes" by Niessen
 - → All secondary data.
- > 1 data collection from the "Solar Energy Research Institute"
 - → All secondary data.
- > 1 data collection from RSE "Ricerca Sistema Energetico"
 - → All secondary data.

> Total: 350 data collected

F. Viganò

