5. 双目立体视觉系统

- 平行视图
- 图像校正
- 对应点搜索

5. 双目立体视觉系统

- 平行视图
- 图像校正
- 对应点搜索

E = 本质矩阵

$$K = K' = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

p 点像素坐标为(u,v)

p' 点像素坐标为 (u',v')

$$p'^{T} E p = 0$$

$$E = T \times R = [T_{\times}]R$$

F = 基础矩阵

内参数分别为 K 和 K'

p 点像素坐标为(u,v)

p'点像素坐标为(u',v')

$$p'^{T}Fp = 0$$

$$F = K'^{-T}[T_{\times}]RK^{-1}$$

$$= K'^{-T}EK^{-1}$$

基础矩阵F

$$F = K'^{-T}[T_{\times}]RK^{-1}$$

基础矩阵F

$$F = K'^{-T}[T_{\times}]RK^{-1}$$

极几何

基础矩阵F

$$F = K'^{-T}[T_{\times}]RK^{-1}$$

$$[t_{\times}]M = M^{-T}[(M^{-1}t)_{\times}]$$

 O_1

基础矩阵F

$$F = K'^{-T}[T_{\times}]RK^{-1}$$

$$[t_{\times}]M = M^{-T}[(M^{-1}t)_{\times}]$$

$$\diamondsuit t = T, M = K'^{-1}$$

$$[T_{\times}]K'^{-1} = K'^{T}[(K'T)_{\times}]$$

$$[T_{\times}] = K'^{T}[(K'T)_{\times}]K'$$

基础矩阵F

$$F = K'^{-T}[T_{\times}]RK^{-1}$$

 $e' = K'[R\ T] \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = K'T$

$$[t_{\times}]M = M^{-T}[(M^{-1}t)_{\times}]$$

$$t = T, M = K'^{-1}$$

$$[T_{\times}]K'^{-1} = K'^{T}[(K'T)_{\times}]$$

$$[T_{\times}] = K'^{T}[(K'T)_{\times}]K'$$

$$F = {K'}^{-T}[T_{\times}]RK^{-1} = {K'}^{-T}K'^{T}[(K'T)_{\times}]K'RK^{-1} = [(K'T)_{\times}]K'RK^{-1} = [e'_{\times}]K'RK^{-1}$$

基础矩阵F

$$F = K'^{-T}[T_{\times}]RK^{-1}$$

 $e' = K'[R\ T] \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = K'T$

$$[t_{\times}]M = M^{-T}[(M^{-1}t)_{\times}]$$

$$\diamondsuit t = T, M = K'^{-1}$$

$$[T_{\times}]K'^{-1} = K'^{T}[(K'T)_{\times}]$$

$$[T_{\times}] = K'^{T}[(K'T)_{\times}]K'$$

$$F = {K'}^{-T}[T_{\times}]RK^{-1} = {K'}^{-T}K'^{T}[(K'T)_{\times}]K'RK^{-1} = [(K'T)_{\times}]K'RK^{-1} = [e'_{\times}]K'RK^{-1}$$

$$F = [e'_{\times}]K'RK^{-1}$$

极几何特例: 平行视图

p 点像素坐标 (p_u, p_v) p' 点像素坐标 (p'_u, p'_v)

- 两个图像平面平行;
- ▶ 基线平行于图像平面,极点e和e'位于无穷远处

$$F = [e'_{\times}]K'RK^{-1}$$

平行视图的基础矩阵

$$K = K'$$
 $R = I$ $T = \begin{bmatrix} T \\ 0 \\ 0 \end{bmatrix}$ $e' = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

$$F = [e'_{\times}]K'RK^{-1}$$

平行视图的基础矩阵

$$K = K'$$
 $R = I$ $T = \begin{bmatrix} T \\ 0 \\ 0 \end{bmatrix}$ $e' = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

$$F = [e'_{\times}]K'RK^{-1} = [e'_{\times}] = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

平行视图的极几何

极线为?
$$l = F^T p' = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} p'_u \\ p'_v \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ -p'_v \end{bmatrix}$$

极线是水平的,平行于u轴!

平行视图的极几何

p 点像素坐标 (p_u, p_v) p' 点像素坐标 (p'_u, p'_v)

$$p$$
和 p' 有何关系? $p'^T F p = 0 \Longrightarrow (p'_u \ p'_v \ 1) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = 0$ p 和 p' 的 v 坐标一样! $p_v = p'_v \iff p_v = p'_v$

平行视图的极几何

p 点像素坐标 (p_u, p_v) p' 点像素坐标 (p'_u, p'_v)

p和p'有何关系?

极线是水平的, 平行于u轴!

p和p'的v坐标一样!

p'点沿着扫描线寻找即可!!!

三角测量

噪声的存在,两条直线通常不相交!

问题:已知p和p', K和K'以及R, T

求解: P点的三维坐标?

▶线性解法

▶非线性解法

 $P = \times l'$

平行视图的三角测量

平行视图的三角测量

$$p_u - p'_u = \frac{B \cdot f}{z}$$

平行视图的三角测量

视差 $p_u - p'_u = \frac{B \cdot f}{z}$

视差与深度z成反比!

视差图

http://vision.middlebury.edu/stereo/

$$p_u - p_u' = \frac{B \cdot f}{z}$$

立体图像像对

视差图 / 深度图

视差原理应用

3D电影!

$$p_u - p_u' = \frac{B \cdot f}{z}$$

5. 双目立体视觉系统

- 平行视图 (完)
- 图像校正
- 对应点搜索