COMP 3331/9331: Computer Networks and Applications

Week 7
TCP Fairness (Transport Layer)

Reading Guide: Chapter 3, Sections: 3.7

TCP Fairness

fairness goal: if K TCP sessions share same bottleneck link of bandwidth R, each should have average rate of R/K

Why AIMD?

- Some rate adjustment options: Every RTT, we can
 - Multiplicative increase or decrease: CWND→ a*CWND
 - Additive increase or decrease: CWND→ CWND + b

- Four alternatives:
 - AIAD: gentle increase, gentle decrease
 - AIMD: gentle increase, drastic decrease
 - MIAD: drastic increase, gentle decrease
 - MIMD: drastic increase and decrease

Simple Model of Congestion Control

- Two users
 - rates x₁ and x₂
- Congestion when $x_1+x_2 > 1$
- Unused capacity when x₁+x₂ < 1
- Fair when $x_1 = x_2$

Example

<u>AIAD</u>

- Increase: x + a_I
- Decrease: x a_D
- Does not converge to fairness

AIAD Sharing Dynamics

AIMD

- ❖ Increase: x+a₁
- Decrease: x*b_D

User 2: x_2

Converges to fairness

User 1: x_1

AIMD Sharing Dynamics

A Simple Model for TCP Throughput

A Simple Model for TCP Throughput

Packet drop rate,
$$p = 1/A$$
, where $A = \frac{3}{8}W_{\text{max}}^2$

Throughput,
$$B = \frac{A}{\left(\frac{W_{\text{max}}}{2}\right)RTT} = \sqrt{\frac{3}{2}} \frac{1}{RTT\sqrt{p}}$$

Implications (I): Different RTTs

Throughput =
$$\sqrt{\frac{3}{2}} \frac{1}{RTT\sqrt{p}}$$

- Flows get throughput inversely proportional to RTT
- TCP unfair in the face of heterogeneous RTTs!

Implications (2): Loss not due to congestion?

- TCP will confuse corruption with congestion
- Flow will cut its rate
 - Throughput ~ I/sqrt(p) where p is loss prob.
 - Applies even for non-congestion losses!

Implications: (3) How do short flows fare?

- ❖ 50% of flows have < 1500B to send; 80% < 100KB
 </p>
- Implication (I): short flows never leave slow start!
 - short flows never attain their fair share
- Implication (2): too few packets to trigger dupACKs
 - Isolated loss may lead to timeouts
 - At typical timeout values of ~500ms, might severely impact latency

Implications: (4) TCP fills up queues \rightarrow long delays

 A flow deliberately overshoots capacity, until it experiences a drop

- * Means that delays are large for everyone
 - Consider a flow transferring a 10GB file sharing a bottleneck link with 10 flows transferring 100B

Implications: (5) Cheating

- Three easy ways to cheat
 - Increasing CWND faster than +1 MSS per RTT

Increasing CWND Faster

Implications: (5) Cheating

- Three easy ways to cheat
 - Increasing CWND faster than +I MSS per RTT
 - Opening many connections

Open Many Connections

Assume

- A starts 10 connections to B
- D starts I connection to E
- Each connection gets about the same throughput

Then A gets 10 times more throughput than D

Implications: (5) Cheating

- Three easy ways to cheat
 - Increasing CWND faster than +1 MSS per RTT
 - Opening many connections
 - Using large initial CWND
- Why hasn't the Internet suffered a congestion collapse yet?

Robustness?

Transport Layer: Summary

- principles behind transport layer services:
 - multiplexing, demultiplexing
 - reliable data transfer
 - flow control
 - congestion control
- instantiation, implementation in the Internet
 - UDP
 - TCP

next:

- leaving the network "edge" (application, transport layers)
- into the network "core"