

ELEC 3210 Introduction to Mobile Robotics Lecture 2

(Machine Learning and Infomation Processing for Robotics)

Huan YIN

Research Assistant Professor, Dept. of ECE

eehyin@ust.hk

About

- Autonomous Navigation
- Wheeled Mobile Robot
- Sening and Estimation
 - Kalman Filter
 - Particle Filter
 - Graph Optimization
 - Place Recognition
- Motion Planning
 - Path Planning
 - Trajectory Planning
- Visual Perception
- Frontiers of Mobile Robotics
- 2D Laser-based ROS Projects

R.O.B.O.T. Comics

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Not About

- Soft Robotics
- Mechanics
- Machine Learning
- Swarm
- Vehicular Communication
- Robot Motion and Control (ELEC 4220 Prof Fumin Zhang)
- Robotic Manipulation (ELEC 4220 Prof Fumin Zhang)
- Drones (ELEC 5660 Prof Shaojie Shen)
- Visual-Inertial SLAM (ELEC 5660 Prof Shaojie Shen)
- etc

Grade (Tentative)

- Quiz 20%
 - Randomly in lectures
 - 1 page A4 paper
 - Maybe 4~6 times
- Homework 30%
 - Submit after letures in due time
 - Maybe 3 times
- Group Projects
 - Proj 1 10%
 - Proj 2 20%
 - Proj 3 20%

Requirements

- Love Robots ©
- Basic Math
 - Linear Algebra
 - Probability
- Programming (Important!)
 - C++
 - Linux + ROS (Robot Operating System)

C++ Online Resources

Thanks to Prof. Cyrill Stachniss and his team

Canvas

• Files

Discussions

∨ Discussions			Ordered by Recent Activity
	::	Environment Setup Issue All Sections Last post at Sep 4, 6:06 PM	0 2 ⊘ Д ⋮
	**	ROS for Mac All Sections Last post at Sep 4, 3:44 PM	0 2 ⊘ Д :

Robot Navigation Paradigm

- Sensing&Estimation Estimate current and past robot pose
- Planning Generate future robot pose
- Control Stabilize robot pose

Outline

- Pose
 - Math
 - Concepts

Rigid Body

- Two distinct positions and orientations of the same rigid body
 - Let p and q be two points on a rigid body
 - ||p(t)-q(t)||=||p(0)-q(0)||=constant

Soft Robotics

• Soft Robotics

Courtesy: Nature 12

Reference Frame

- Pose = position (translation) + orientation (rotation)
- We associate any position and orientation with a reference frame
 - We use **right-handed** coordinate frames
 - We can find three linearly independent vectors \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 that are basis vectors for reference frame A
 - We can write any vector as a linear combination of basis vectors in either frame $v = v_1 a_1 + v_2 a_2 + v_3 a_3$

Notation

Be Aware of Potential Confusion!!!

- Vectors
 - *x*, *y*, *a*, ...

- Matrices
 - A, B, C, ...

- Reference frames
 - A, B, C, ...
 - a, b, c, ...

- Transformations
 - ${}^{A}\mathbf{A}_{B}$, ${}^{A}\mathbf{R}_{B}$...
 - \mathbf{A}_{ab} , \mathbf{R}_{ab} ...
 - $g_{ab}(.)$, $h_{ab}(.)$...

- A displacement of a transformation of points
 - Transformation (g) of points induces an action (g*) on vectors

$$g_*(\mathbf{v}) = g(\mathbf{q}) - g(\mathbf{p})$$

Length are preserved

$$\|g(\mathbf{q}) - g(\mathbf{p})\| = \|\mathbf{q} - \mathbf{p}\|$$

Cross products are preserved

$$g_*(\mathbf{v}) \times g_*(\mathbf{w}) = g_*(\mathbf{v} \times \mathbf{w})$$

Orthogonal vectors are mapped to orthogonal vectors

18

- Rigid body displacements are transformations that satisfy two important properties:
 - Lengths are preserved
 - Cross products are preserved
- Rigid body transformations and rigid body displacements are often used interchangeably
 - Transformations generally used to describe relationship between reference frames attached to different rigid bodies.
 - Displacements describe relationships between two positions and orientation of a frame attached to a displaced rigid body

Rotation

Rotations

- Coordinate frames are right-handed
- Principle axes of frame A:

•
$$\mathbf{x} = [1 \ 0 \ 0]^T$$

•
$$y = [0 \ 1 \ 0]^T$$

•
$$\mathbf{z} = [0 \ 0 \ 1]^T$$

• Principle axes of frame *B*:

•
$$\mathbf{x}_{ab}$$
, \mathbf{y}_{ab} , $\mathbf{z}_{ab} \subset \mathbb{R}^3$

- The Rotation Matrix:
 - $\mathbf{R}_{ab} = [\mathbf{x}_{ab}, \mathbf{y}_{ab}, \mathbf{z}_{ab}]$
 - Coordinates of principle axes of B related to A

Properties of a Rotation Matrix

- Let $\mathbf{R} = [\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3]$ be a rotation matrix
- Orthogonal:

•
$$\mathbf{r}_i^T \cdot \mathbf{r}_j = \begin{cases} 0 \text{ if } i \neq j \\ 1 \text{ if } i = j \end{cases}$$

•
$$\mathbf{R} \cdot \mathbf{R}^T = \mathbf{I}$$

Special orthogonal:

•
$$\det \mathbf{R} = \mathbf{r}_1^T \cdot (\mathbf{r}_2 \times \mathbf{r}_3) = \mathbf{r}_1^T \cdot \mathbf{r}_1 = 1$$

- The set of all rotations forms the Special Orthogonal Group
 - Special orthogonal group
 - 3D rotations: SO(3)
 - 2D rotations: SO(2)
 - $SO(n) = {\mathbf{R} \in \mathbb{R}^{n \times n} | \mathbf{R} \cdot \mathbf{R}^T = \mathbf{I}, \det \mathbf{R} = 1}$

Properties of a Rotation Matrix

(G,\cdot) is a group if:

- 1) $g_1, g_2 \in G \Rightarrow g_1 \cdot g_2 \in G$
- 2) $\exists ! e \in G$, s.t. $g \cdot e = e \cdot g = g$, $\forall g \in G$
- 3) $\forall g \in G, \exists ! g^{-1} \in G, s.t. g \cdot g^{-1} = g^{-1} \cdot g = e$
- 4) $g_1 \cdot (g_2 \cdot g_3) = (g_1 \cdot g_2) \cdot g_3$

Group examples:

- 1. The set of all integers with addition operation
- 2. The set of all real numbers with arithmetic operations
- $SO(3) = {\mathbf{R} \in \mathbb{R}^{3 \times 3} | \mathbf{R} \cdot \mathbf{R}^T = \mathbf{I}, \det \mathbf{R} = 1}$
- SO(3) is a group under the operation of matrix multiplication
 - 1. Closure: If \mathbf{R}_1 , $\mathbf{R}_2 \in SO(3)$, then $\mathbf{R}_1 \cdot \mathbf{R}_2 \in SO(3)$
 - 2. Identity: The identity matrix is the identity element
 - 3. Inverse: If $\mathbf{R} \in SO(3)$, then $\mathbf{R}^{-1} \in SO(3)$
 - 4. Associativity: $\mathbf{R}_1 \cdot (\mathbf{R}_2 \cdot \mathbf{R}_3) = (\mathbf{R}_1 \cdot \mathbf{R}_2) \cdot \mathbf{R}_3$

Properties of a Rotation Matrix

- A transformation that rotates the coordinates of a point from frame B to frame A
 - Let $\mathbf{q}_b = [x_b, y_b, z_b]^T \in \mathbb{R}^3$ be coordinate of point \mathbf{q} in frame B
 - Let \mathbf{q}_a be coordinate of point \mathbf{q} in frame A

•
$$\mathbf{q}_a = x_b \cdot \mathbf{x}_{ab} + y_b \cdot \mathbf{y}_{ab} + z_b \cdot \mathbf{z}_{ab} = [\mathbf{x}_{ab}, \mathbf{y}_{ab}, \mathbf{z}_{ab}] \begin{bmatrix} x_b \\ y_b \\ z_b \end{bmatrix} = \mathbf{R}_{ab} \cdot \mathbf{q}_b$$

- Composition Rule
 - $\mathbf{R}_{ac} = \mathbf{R}_{ab} \cdot \mathbf{R}_{bc}$

Rotation is a Rigid Body Transformation

- $\mathbf{R}_{ab} = [\mathbf{x}_{ab}, \mathbf{y}_{ab}, \mathbf{z}_{ab}]$ preserves:
 - Length: $\|\mathbf{R}_{ab}(\mathbf{p}_b \mathbf{q}_b)\| = \|\mathbf{p}_b \mathbf{q}_b\|$
 - Cross product: $\mathbf{R}_{ab}(\mathbf{v} \times \mathbf{w}) = (\mathbf{R}_{ab}\mathbf{v}) \times (\mathbf{R}_{ab}\mathbf{w})$

Example - Rotation

$$\mathbf{R}_{\mathbf{x}}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$$

Example - Rotation

$$\mathbf{R}_{\mathbf{y}}(\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$$

$$\mathbf{R}_{\mathbf{z}}(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Properties of Rotation

- SO(3) is a continuous group
 - The multiplication operation is a continuous operation
 - The inverse is a continuous function
- SO(3) is a smooth manifold
 - A manifold of dimension n is a set M which is locally resembled to Euclidean space \mathbb{R}^n near each point
 - Example: sphere is a differentiable manifold that is locally resembled to \mathbb{R}^2

- General rigid body motions that includes both translation and rotation forms the product space of \mathbb{R}^3 and SO(3). Denoted as SE(3) Special Euclidean group.
 - $SE(3) = \{(p, R): p \in \mathbb{R}^3, R \in SO(3)\} = \mathbb{R}^3 \times SO(3)$

- Special Euclidean group:
 - $SE(3) = \{(p, R): p \in \mathbb{R}^3, R \in SO(3)\} = \mathbb{R}^3 \times SO(3)$
- Transformation of a point between different coordinate frames:

•
$$p^a = R_{ab}p^b + p_{ab} = g_{ab}(p^b)$$

Homogeneous coordinates of a point:

•
$$oldsymbol{\overline{p}} = egin{bmatrix} p_x \ p_y \ p_z \ 1 \end{bmatrix}$$

• Homogeneous coordinates of a vector:

•
$$\overline{\boldsymbol{v}} = \begin{bmatrix} v_x \\ v_y \\ v_z \\ 0 \end{bmatrix}$$

Homogeneous representation of rigid body motion:

•
$$\bar{p}^a = \begin{bmatrix} p^a \\ 1 \end{bmatrix} = \begin{bmatrix} R_{ab} & p_{ab} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p^b \\ 1 \end{bmatrix} = \bar{g}_{ab}\bar{p}^b$$

Homogeneous representation of rigid body motion:

•
$$\bar{g}_{ab} = \begin{bmatrix} \mathbf{R}_{ab} & \mathbf{p}_{ab} \\ 0 & 1 \end{bmatrix}$$

Composition rule for rigid body motions:

•
$$\bar{g}_{ac} = \bar{g}_{ab} \cdot \bar{g}_{bc} = \begin{bmatrix} \mathbf{R}_{ab} \mathbf{R}_{bc} & \mathbf{R}_{ab} \mathbf{p}_{bc} + \mathbf{p}_{ab} \\ 0 & 1 \end{bmatrix}$$

• Compare with composition of rotational motion: $m{R}_{ac} = m{R}_{ab} \cdot m{R}_{bc}$

Properties of Rigid Body Motion

- $SE(3) = \{(p,R): p \in \mathbb{R}^3, R \in SO(3)\} = \mathbb{R}^3 \times SO(3)$
- SE(3) is a group under the operation of matrix multiplication
 - Closure
 - Identity
 - Inverse
 - Associativity
- $g \in SE(3)$ is a rigid body transformation
 - Lengths are preserved
 - Cross products are preserved

Rotation Representations

Rotation Representations

- Rotation matrices
- Euler angles
- Exponential coordinates
- Quaternions

Elementary rotations:

•
$$R_{x}(\phi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{bmatrix}$$

•
$$R_y(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

•
$$R_z(\psi) = \begin{bmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Any rotation can be described by three successive rotations about linear independent axes
- However, this is an almost 1-1 transform with singularities:
 - $R_z(\psi) \cdot R_x(\phi) \cdot R_v(\theta) \Rightarrow R$
 - $R_z(\psi) \cdot R_x(\phi) \cdot R_y(\theta) \notin R$

• Different Euler angle conversions:

Proper Euler angles	Tait-Bryan angles
$X_1 Z_2 X_3 = \begin{bmatrix} c_2 & -c_3 s_2 & s_2 s_3 \\ c_1 s_2 & c_1 c_2 c_3 - s_1 s_3 & -c_3 s_1 - c_1 c_2 s_3 \\ s_1 s_2 & c_1 s_3 + c_2 c_3 s_1 & c_1 c_3 - c_2 s_1 s_3 \end{bmatrix}$	$X_1 Z_2 Y_3 = \begin{bmatrix} c_2 c_3 & -s_2 & c_2 s_3 \\ s_1 s_3 + c_1 c_3 s_2 & c_1 c_2 & c_1 s_2 s_3 - c_3 s_1 \\ c_3 s_1 s_2 - c_1 s_3 & c_2 s_1 & c_1 c_3 + s_1 s_2 s_3 \end{bmatrix}$
$X_1 Y_2 X_3 = \begin{bmatrix} c_2 & s_2 s_3 & c_3 s_2 \\ s_1 s_2 & c_1 c_3 - c_2 s_1 s_3 & -c_1 s_3 - c_2 c_3 s_1 \\ -c_1 s_2 & c_3 s_1 + c_1 c_2 s_3 & c_1 c_2 c_3 - s_1 s_3 \end{bmatrix}$	$X_1 Y_2 Z_3 = \begin{bmatrix} c_2 c_3 & -c_2 s_3 & s_2 \\ c_1 s_3 + c_3 s_1 s_2 & c_1 c_3 - s_1 s_2 s_3 & -c_2 s_1 \\ s_1 s_3 - c_1 c_3 s_2 & c_3 s_1 + c_1 s_2 s_3 & c_1 c_2 \end{bmatrix}$
$Y_1 X_2 Y_3 = \begin{bmatrix} c_1 c_3 - c_2 s_1 s_3 & s_1 s_2 & c_1 s_3 + c_2 c_3 s_1 \\ s_2 s_3 & c_2 & -c_3 s_2 \\ -c_3 s_1 - c_1 c_2 s_3 & c_1 s_2 & c_1 c_2 c_3 - s_1 s_3 \end{bmatrix}$	$Y_1 X_2 Z_3 = \begin{bmatrix} c_1 c_3 + s_1 s_2 s_3 & c_3 s_1 s_2 - c_1 s_3 & c_2 s_1 \\ c_2 s_3 & c_2 c_3 & -s_2 \\ c_1 s_2 s_3 - c_3 s_1 & c_1 c_3 s_2 + s_1 s_3 & c_1 c_2 \end{bmatrix}$
$Y_1 Z_2 Y_3 = \begin{bmatrix} c_1 c_2 c_3 - s_1 s_3 & -c_1 s_2 & c_3 s_1 + c_1 c_2 s_3 \\ c_3 s_2 & c_2 & s_2 s_3 \\ -c_1 s_3 - c_2 c_3 s_1 & s_1 s_2 & c_1 c_3 - c_2 s_1 s_3 \end{bmatrix}$	$Y_1 Z_2 X_3 = \begin{bmatrix} c_1 c_2 & s_1 s_3 - c_1 c_3 s_2 & c_3 s_1 + c_1 s_2 s_3 \\ s_2 & c_2 c_3 & -c_2 s_3 \\ -c_2 s_1 & c_1 s_3 + c_3 s_1 s_2 & c_1 c_3 - s_1 s_2 s_3 \end{bmatrix}$
$Z_1 Y_2 Z_3 = \begin{bmatrix} c_1 c_2 c_3 - s_1 s_3 & -c_3 s_1 - c_1 c_2 s_3 & c_1 s_2 \\ c_1 s_3 + c_2 c_3 s_1 & c_1 c_3 - c_2 s_1 s_3 & s_1 s_2 \\ -c_3 s_2 & s_2 s_3 & c_2 \end{bmatrix}$	$Z_1 Y_2 X_3 = \begin{bmatrix} c_1 c_2 & c_1 s_2 s_3 - c_3 s_1 & s_1 s_3 + c_1 c_3 s_2 \\ c_2 s_1 & c_1 c_3 + s_1 s_2 s_3 & c_3 s_1 s_2 - c_1 s_3 \\ -s_2 & c_2 s_3 & c_2 c_3 \end{bmatrix}$
$Z_1 X_2 Z_3 = \begin{bmatrix} c_1 c_3 - c_2 s_1 s_3 & -c_1 s_3 - c_2 c_3 s_1 & s_1 s_2 \\ c_3 s_1 + c_1 c_2 s_3 & c_1 c_2 c_3 - s_1 s_3 & -c_1 s_2 \\ s_2 s_3 & c_3 s_2 & c_2 \end{bmatrix}$	$Z_1 X_2 Y_3 = \begin{bmatrix} c_1 c_3 - s_1 s_2 s_3 & -c_2 s_1 & c_1 s_3 + c_3 s_1 s_2 \\ c_3 s_1 + c_1 s_2 s_3 & c_1 c_2 & s_1 s_3 - c_1 c_3 s_2 \\ -c_2 s_3 & s_2 & c_2 c_3 \end{bmatrix}$

Aircraft

Aviation Community

- Example: Z-Y-Z Euler angles:
 - Sequence of three rotations about body-fixed axes

•
$$\mathbf{R} = \mathbf{R}_z(\phi) \cdot \mathbf{R}_y(\theta) \cdot \mathbf{R}_z(\psi)$$

• $\mathbf{R} = \begin{bmatrix} c\phi c\theta c\psi - s\phi s\psi & -c\phi c\theta s\psi - s\phi c\psi & c\phi s\theta \\ s\phi c\theta c\psi + c\phi s\psi & -s\phi c\theta s\psi + c\phi c\psi & s\phi c\theta \\ -s\theta c\psi & s\theta s\psi & c\theta \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$

- If $\sin \theta \neq 0$:
 - $\theta = a\cos(r_{33})$
 - $\psi = \operatorname{atan} 2(\frac{r_{32}}{\sin \theta}, -\frac{r_{31}}{\sin \theta})$
 - $\phi = \operatorname{atan} 2(\frac{r_{23}}{\sin \theta}, \frac{r_{13}}{\sin \theta})$

- Example: Z-Y-Z Euler angles:
 - Sequence of three rotations about body-fixed axes

•
$$\mathbf{R} = \mathbf{R}_z(\phi) \cdot \mathbf{R}_y(\theta) \cdot \mathbf{R}_z(\psi)$$

• $\mathbf{R} = \begin{bmatrix} c\phi c\theta c\psi - s\phi s\psi & -c\phi c\theta s\psi - s\phi c\psi & c\phi s\theta \\ s\phi c\theta c\psi + c\phi s\psi & -s\phi c\theta s\psi + c\phi c\psi & s\phi c\theta \\ -s\theta c\psi & s\theta s\psi & c\theta \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$

• If $\sin\theta = 0$:

•
$$\mathbf{R} = \begin{bmatrix} c\phi c\psi - s\phi s\psi & -c\phi s\psi - s\phi c\psi & 0 \\ c\phi s\psi + s\phi c\psi & -s\phi s\psi + c\phi c\psi & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{R}_z(\phi + \psi)$$

• As long as $\phi + \psi$ is preserved, we have infinite set of Euler angles!

Rotation Representations

- Rotation matrices
- Euler angles

We will not introduce others in ELEC 3210 for less confusion!

- Exponential coordinates
 - 3 numbers with singularity, often for robotic arms
- Quaternions
 - Good properties

Quaternion

- Rotation matrix $\mathbf{R} \in SO(3)$
 - No singularity
 - Redundant parameters
- ZYX Euler angle
 - Singular at roll angle of 90 degrees
 - Minimum number of parameters
- Is there a singularity free parameterization that with reduced parameters?
 - YES, quaternion

Resources - Books

- Lynch, Kevin M., and Frank C. Park. **Modern robotics.** Cambridge University Press, 2017.
 - Chapter 3.2.1 Rotation Matrices
 - Chapter B.3 Other Representations of Rotations

Resources - Videos

- 3Blue1Brown
 - Visualizing quaternions (4d numbers) with stereographic projection
 - Quaternions and 3d rotation, explained interactively

Courtesy: 3Blue1Brown 45

Summary

- Rigid Body & Displacement
- Rotation Matrix
- Rigid Body Motion
 - Homogeneous Representation
- Other Represenations
 - Eular Angles

Next Lecture

- ROS
- Mobile Robot Localization
- Locomotion and Kinematics