Prüfungsrelevante Verfahren, Sätze und Rechenregeln

2 Diskrete Strukturen

2.1 Mengenlehre und Kombinatorik

- zwei Mengen A und B sind gleich wenn sie die selben Elemente haben, d.h. wenn $A \subseteq B \land B \subseteq A$
- Beachte z.B. dass $\{\{1,2\},7\} \nsubseteq \mathbb{N}$
- Schnitt und Vereinigung sind kommutativ, assoziativ, distributiv in beide Richtungen; für Beweise kann es nützlich sein sich die Definitionen dieser Operationen in Erinnerung zu rufen; $\overline{A \cup B} = \overline{A} \cap \overline{B}, \overline{A \cap B} = \overline{A} \cup \overline{B}$
- $A \times B = \{(a,b) \mid a \in A \land b \in B\}$ heißt kartesisches Produkt oder Produktmenge; $|A \times B| = |A| \cdot |B|$
- **Potenzmenge** $\mathcal{P}(A)$ ist die Menge aller (auch unechten) Teilmengen von A, $|\mathcal{P}(A)| = 2^{|A|}$, es gilt stets $\emptyset \in \mathcal{P}(A)$
- $\bullet \ \binom{n}{k} = \frac{n!}{k!(n-k)!}$
- Handschlaglemma: Anzahl der Teilnehmer einer Konferenz, die einer ungeraden Anzahl von Teilnehmern die Hand geben, ist immer gerade

2.2 Abbildungen

- für $f: A \to B, A' \subseteq A$ heißt $f[A'] = \{f(a) \mid a \in A'\}$ Bild von A' unter f
- injektiv: $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$ ("für jedes $b \in B$ existiert höchstens ein $a \in A$ mit f(a) = b") Beweise über Gegenbeispiel oder $f(a_1) = f(a_2)$ setzen
- surjektiv: f[A] = B ("für jedes $b \in B$ existiert mindestens ein $a \in A$ mit f(a) = b") Beweise über Gegenbeispiel oder Definitionsbereich der Umkehrfunktion untersuchen
- bijektiv: injektiv und surjektiv ("für jedes $b \in B$ existiert genau ein $a \in A$ mit f(a) = B")
- für f injektiv (!!) definieren wir $f^{-1}: f[A] \to A, b \mapsto f^{-1}(b) = a$ mit $f^{-1}(b) = a$ g.d.w. f(a) = b
- für $f: A \to B, g: B \to C$ ist **Komposition** $g \circ f: A \to C, x \mapsto g(f(x))$ (\Rightarrow von rechts nach links ausführen!!)

2.3 Permutationen

- **Permutation** von X ist bijektive Abbildung von X nach X, für $X = \{1, ..., n\}$ ist S_n Menge aller Permutationen und $\pi \in S_n$ mit $\pi = \begin{pmatrix} 1 & ... & n \\ \pi(1) & ... & \pi(n) \end{pmatrix}$ und $|S_n| = n!$
- **k-Zyklus** = k-Tupel der Form (a_1, \ldots, a_k) mit $\pi(a_k) = a_1, \pi(a_i) = a_{i+1}$, jedes Element von S_n kann als Komposition elementfremder Zyklen notiert werden: $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix} = (1, 2, 3) \circ (4, 5) = (123)(45)$
- bei elementfremden Zyklen ist Reihenfolge egal: (123)(45) = (45)(123); Elemente die auf sich selbst abgebildet werden heißen **Fixpunkte** und müssen nicht notiert werden: (123)(4) = (123); mit welchem Element im Zyklus angefangen wird ist Egal: (123)(45) = (312)(54)
- **Transposition** = 2-Zyklus, jedes Element von S_n kann mit Transpositionen geschrieben werden als: $(a_1, \ldots, a_k) = (a_1 a_2)(a_2 a_3) \ldots (a_{k-1} a_k)$ (nicht elementfremd \Rightarrow Reihenfolge wichtig!!)
- bei Komposition von Permutationen für jede Zahl von rechts nach links durchgehen: $\underbrace{(123)}_{(2)}\underbrace{(35)}_{(1)} = \underbrace{(1235)}_{(3)}$ 5 wird in (1) auf 3 abgebildet, in (2) wird 3 auf 1 abgebildet, also $5 \to 3 \to 1$ und damit $5 \to 1$ in (3)

2.4 Beweis mittels vollständiger Induktion (Beispiel)

Beweis. Die Aussage A_n sei $\sum_{k=0}^n q^k = \frac{1-q^{n+1}}{1-q}$ mit $n \in \mathbb{N}, q \in \mathbb{R}, q \neq 1$.

(IA):
$$n_0 = 0$$
: $\sum_{k=0}^{0} q^k = q^0 = 1 = \frac{1 - q^{0+1}}{1 - q}$ w.A. \Rightarrow Es gilt A_0

(IV):
$$\forall \tilde{n} : n_0 \le \tilde{n} \le n : \sum_{k=0}^{\tilde{n}} q^k = \frac{1 - q^{\tilde{n}+1}}{1 - q}$$

(IS):
$$\sum_{k=0}^{n+1} q^k = \sum_{k=0}^n q^k + q^{n+1} \stackrel{\text{(IV)}}{=} \frac{1 - q^{n+1}}{1 - q} + q^{n+1} = \frac{1 - q^{n+1} + (1 - q)q^{n+1}}{1 - q}$$
$$= \frac{1 - q^{n+1} + q^{n+1} - q^{n+2}}{1 - q} = \frac{1 - q^{(n+1)+1}}{1 - q}$$

 \Rightarrow Damit ist die Behauptung für alle $n\in\mathbb{N}$ vollständig bewiesen

• "Die Aussage A_n sei..." nur in VL und AuD Skript, evtl. wird sonst aber z.Z.: erwartet; IV muss auch nicht unbedingt notiert werden

- alles nochmal mit (n+1)+1 hinschreiben ist nicht nötig
- Varianten: $A_n \Rightarrow A_{n+1}/$ aus A_n folgt A_{n+1} für alle $n \in \mathbb{N}$ w.A. /Folglich gilt A_n für alle $n \in \mathbb{N}, n \geq n_0$
- Beachte dass oft auch nur für $n \in \mathbb{N}, n \geq k$ bewiesen wird (kein \tilde{n})!! und $n_0 = 0$ nicht immer gelten muss

2.5 Zahlentheorie

- $n \in \mathbb{N}, n \ge 1$ kann eindeutig geschrieben werden als $n = \prod_{i=1}^k p_i^{\alpha_i}$ mit p_i prim, $\alpha_i \in \mathbb{N} \Rightarrow \#\text{Teiler} = \prod_i (\alpha_i + 1)$
- für $a,b \in \mathbb{N}$ gilt $a \mid b \Leftrightarrow \exists k : k \in \mathbb{N} \land ak = b; \quad a \mid b_1 \land a \mid b_2 \Rightarrow a \mid (b_1 + b_2) \land a \mid (b_1 b_2)$
- für $m, n \in \mathbb{Z}$ mit n > 0 gilt $\exists q, r : (q, r \in \mathbb{Z} \land m = nq + r \land 0 \le r < n)$ $m \mod n := r$, für $a \mod n = b \mod n$ schreibe $a \equiv b \mod n$
- Homomorphieregel: $(a \mod n + b \mod n) \mod n = (a + b) \mod n$ (analog für ·)
- kgV(m,0) = kgV(0,n) = 0; $ggT(m,n) \cdot kgV(m,n) = m \cdot n \ (\Rightarrow kgV \text{ mit Euklid berechenbar})$
- Euklidischer Algorithmus: immer weiter $ggT(m, n) = ggT(n \mod m, m)$ berechnen; ggT(m, n) = m falls $m \mid n$; ggT(0, n) = n; m, n teilerfremd $\Leftrightarrow ggT(m, n) = 1$
- Lemma von Bézout: $m, n \in \mathbb{N} \Rightarrow \exists a, b : a, b \in \mathbb{Z} \land ggT(m, n) = am + bn$
- Erweiterter Euklidischer Algorithmus am Beispiel ("EEA", keine offizielle Abkürzung):

	1008	(499)	$-q_i$					
	\overline{m}	n				1008	499	$-q_i$
1008	1	0			1008	1	0	
499	0	1		,	499	0	1	
$1008 \mod 499 = 10$	1	$0 + 1 \cdot (-q_i) = -2$	$1008 = 499 \cdot 2 + 10 \Rightarrow -q_i = -2$	\Rightarrow	10	1	-2	-2
$499 \mod 10 = 9$	-49	$1 + (-2)(-q_i) = 99$	-49		9	-49	99	-49
$10 \bmod 9 = 1$	50	$-2 + 99(-q_i) = -101$	-1		1	50	-101	-1
$9 \bmod 1 = 0$					'		,	ļ

in m Spalte wird analog zu n Spalte gerechnet, das ganze bis in der linken Spalte 0 stehen würde

$$\Rightarrow \operatorname{ggT}(1008,499) = 1 = 50 \cdot 1008 - 101 \cdot 499 \qquad \text{(B\'ezout Koeffizienten } a = 50, b = -101)$$

- chinesischer Restsatz: Seien $0 < n_1, \ldots, n_k \in \mathbb{N}$ teilerfremd und seien $a_1, \ldots, a_k \in \mathbb{Z}$. Dann existiert genau ein $x \in \{0, 1, \ldots, \prod_{i=1}^k n_i 1\}$ mit $x \equiv a_i \mod n_i$ für alle $i = 1, \ldots, k$
- für k = 2: Seien $0 < m, n \in \mathbb{N}$ teilerfremd und seien $a_1, a_2 \in \mathbb{N}$. Dann existiert genau ein $x \in \{0, 1, \dots, mn 1\}$ mit $x \equiv a_1 \mod m \land x \equiv a_2 \mod n$; anschaulich heißt das, dass ein $m \times n$ Spielbrett eindeutig wie in VL durchnummeriert werden kann wenn ggT(m, n) = 1

2.6 Gruppentheorie

• für Beweise bieten sich oft Multiplikations-/Additionstabellen an

2.7 Potenzieren mod n

- Al Kashi's Trick
- Euler-Fermat
- Zerlegung

2.8 Kryptographie

• für p prim und g Primitivwurzel von \mathbb{Z}_p^* ist der **diskrete Logarithmus** von $x \in \mathbb{Z}_p^*$ zur Basis g die Zahl $m \in \{0, \dots, p-2\}$ mit $g^m \equiv x \mod p$ $(m = \log_g(x))$; m kann nicht effizient berechnet werden, x aus g^m schon

• Diffie-Hellman-Merkle:

- 1. Alice und Bob einigen sich auf Primzahl p und Primitivwurzel g von \mathbb{Z}_p^*
- 2. Alice wählt geheime Zufallszahl a und berechnet $a' = g^a \mod p$; Bob analog: $b' = g^b \mod p$
- 3. beide teilen sich a' und b' mit und berechnen das Geheimnis $c=g^{ab} \mod p = (a')^b \mod p = (b')^a \mod p$

Um damit Nachricht $m \le c$ zu verschlüsseln:

- 1. schreibe m und c binär als $m = m_1 \dots m_l, c = c_1 \dots c_k$
- 2. Alice verschickt $v_1 = m_1 + c_1 \mod 2, \dots, v_l = m_l + c_l \mod 2$; Bob berechnet $m_i = v_i + c_i \mod 2$

• RSA:

- 1. Bob wählt zufällig 2 Primzahlen p, q und berechnet n := pq
- 2. Bob wählt zufällig $d \in \mathbb{Z}_{\phi(n)}^*$ und berechnet $i, h \in \mathbb{Z}$ mit $i \cdot d + h \cdot \phi(n) = \operatorname{ggT}(d, \phi(n)) = 1$ (EEA)
- 3. n und i sind öffentliche Schlüssel und werden an Alice weitergegeben, d ist privater Schlüssel
- 4. Alice schickt $c = m^i \mod n$ an Bob mit Nachricht $m \ (0 \le m < n)$
- 5. Bob berechnet $m = c^d \mod n$

2.9 Ungerichtete Graphen

2.10 Gerichtete Graphen

2.11 Aussagenlogik

2.12 Relationen