UEM - UNIVERSIDADE ESTADUAL DE MARINGÁ

CCE - Departamento de Estatística

Disciplina: Estatística Bayesiana - 2023/24

Prof. Carlos Ap. dos Santos

Exercícios Computacionais

1. Supor que um novo software é desenvolvido para um equipamento de tomografia computadorizada usado por centros médicos. Numa fase de testes e correções de possíveis erros do software, o mesmo é testado por um dado período de tempo fixado. Os dados de contabilidade do software são dados pelas contagens de erros (em que o software é tentativamente corrigido), que ocorrem em intervalos fixos de tempo durante esse período de testes.

Considerar os dados da tabela abaixo, representando os números de falhas ou erros do software testado por 25 horas, continuamente.

hora	nº falhas	hora	nº falhas	hora	nº falhas
1	27	11	4	21	2
2	16	12	7	22	1
3	11	13	2	23	2
4	10	14	5	24	1
5	11	15	5	25	1
6	7	16	6		
7	2	17	0		
8	5	18	5		
9	3	19	1		
10	1	20	1		

Assumir um processo de Poisson homogêneo com função intensidade $\lambda_i = \lambda_a k_1^i$, em que $0 < k_1 < 1$; $\lambda_a > 0$ para $i = 1, 2, 3, \ldots$ com distribuição para o número de falhas m_i no i-ésimo período de tempo dada por,

$$\Pr(M_i = m_i) = \frac{\exp{-\lambda_i \lambda_i^{m_i}}}{m_i!}$$

em que $m_i = 0, 1, 2,$

Considerando m_1, m_2, \ldots, m_n (n = 25), os números de falhas observadas durante os n períodos de tempo, a função de verossimilhança para λ_a e k_1 é dada por,

$$\mathcal{L}(\lambda_a, k_1) \propto \lambda_a^{d_1} k_1^{d_2} \exp{-\lambda_a \sum_{i=1}^n k_1^i} ,$$

em que $d_1 = \sum_{i=1}^n m_i$ e $d_2 = \sum_{i=1}^n i m_i$.

Assumindo independência a priori entre λ_a e k_1 , considerar as seguintes distribuições a priori:

$$\lambda_a \sim Gama(b_1, b_2)$$

$$k_1 \sim Beta(e_1, e_2)$$

onde b_1, b_2, e_1 e e_2 são hiperparâmetros conhecidos.

Elabore um programa para obter os resumos a *posteriori* e apresente os gráficos pertinentes para verificar a convergência do algoritmo.

2. Considere para os dados abaixo, duas distribuições exponenciais independentes, com distribuições a priori gama, ou seja,

$$f_1(t_{1i}) = \lambda_{1i} \exp(-\lambda_{1i} t_{1i})$$

$$f_2(t_{2i}) = \lambda_{2i} \exp(-\lambda_{2i} t_{2i})$$

e

$$\lambda_1 \sim Gama(a_1, b_1)$$

$$\lambda_2 \sim Gama(a_2, b_2)$$

onde a_1 , b_1 , a_2 e b_2 , são hiperparâmetros conhecidos. Obtenha a função de verossimilhança e estime os parâmetros, verificando a convergência, computacionalmente.

2005 - 2006	T_1	T_2	2004 - 2005	T_1	T_2
Lyon-Real Madrid	26	20	Internazionale-Bremen		34
Milan-Fernebahce	63	18	Real Madrid-Roma		39
Chelsea-Anderlecht	19	19	Man.United-Fernebahce		7
Club Brugge-Juventus	66	85	Bayern-Ajax	51	28
Fernebahce-PSV	40	40	Moscow-PSG		64
Internazionale-Rangers	49	49	Barcelona-Shakhtar	64	15
Panathinaikos-Bremen	8	8	Leverkursen-Roma		48
Ajax-Arsenal	69	71	Arsenal-Panathinaikos		16
Man. United-Benfica	39	39	Dynamo Kyiv-Real Madrid		13
Real Madrid-Rosenborg	82	48	Man. United-Sparta		14
Villareal-Benfica	72	72	Bayern-M. Tel Aviv	55	11
Juventus-Bayern	66	62	Bremen-Internazionale	49	49
Club Brugge-Rapid	25	9	Anderlecht-Valencia	24	24
Olympiacos-Lyon	41	3	Panathinaikos-PSV		30
Internazionale-Porto	16	75	Arsenal-Rosenborg		3
Schalke-PSV	18	18	Liverpool-Olympiacos		47
Barcelona-Bremen	22	14	M. Tel Aviv-Juventus	28	28
Milan-Schalke	42	42	Bremen-Panathinaikos	2	2
Rapid-juventus	36	52			

3. Na tabela abaixo temos os dados de um estudo médico considerado para avaliar a influência de 3 covariáveis: X_1 (proporção de pacientes com escolaridade de pelo menos 8 anos de escola); X_2 (proporção de pacientes do sexo feminino); X_3 (salário mensal médio dos pacientes em unidades de 1000,00) na resposta y (índice médio de resposta para pacientes recebendo uma nova terapia contra o vírus HIV) realizado por 8 hospitais (um estudo meta-análise).

y	X_1	X_2	X_3
0.10	0.08	0.40	0.75
0.65	0.17	0.40	1.02
0.30	0.08	0.38	1.09
0.30	0.30	0.50	1.35
0.28	0.05	0.52	1.20
0.78	0.18	0.32	2.20
0.28	0.09	0.45	2.95
0.45	0.45	0.65	2.50

Para analisar esses dados foi considerado um modelo de regressão linear dado por

$$y_i = \alpha + \beta_{1i} X_{1i} + \beta_{2i} X_{2i} + \beta_{3i} X_{3i} + \epsilon_i$$

em que os termos de erros ϵ_i são supostos independentes e identicamente distribuídos com distribuíção normal $N(0, \sigma^2)$; para i = 1, 2, ..., 8. Assumindo independência a priori entre os parâmetros α ; $\beta_1; \beta_2$; β_3 e σ^2 , assumir as seguintes distribuições a priori:

$$\alpha \sim N(0, a_0^2), \quad \beta_1 \sim N(0, a_1^2), \quad \beta_2 \sim N(0, a_2^2), \quad \beta_3 \sim N(0, a_3^2), \quad \sigma^2 \sim IG(b, d)$$

Encontre a função de verossimilhança para $\theta = (\alpha, \beta_1, \beta_2, \beta_3, \sigma^2)$. Elabore um programa para obter os resumos a posteriori e apresente os gráficos pertinentes para verificar a convergência do amostrados de Gibbs.