МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Машинное обучение»

Тема: Предобработка данных

Студент гр. 6304	Ваганов Н.
Преподаватель	Жангиров Т. Р.

Санкт-Петербург

Цель работы

Ознакомиться с методами предобработки данных из библиотеки Scikit Learn

Ход работы

Загрузка данных

1. Скачан и загружен датасет в датафрейм. Исключены бинарные признаки и признаки времени (рис. 1).

```
df =
pd.read_csv('heart_failure_clinical_records_dataset.csv').drop(c
olumns =
['anaemia','diabetes','high_blood_pressure','sex','smoking','tim
e','DEATH_EVENT'])
print(df)
```

	age	creatinine_phosphokinase	ejection_fraction	platelets	serum_creatinine	serum_sodium
0	75.0	582	20	265000.00	1.9	130
1	55.0	7861	38	263358.03	1.1	136
2	65.0	146	20	162000.00	1.3	129
3	50.0	111	20	210000.00	1.9	137
4	65.0	160	20	327000.00	2.7	116
294	62.0	61	38	155000.00	1.1	143
295	55.0	1820	38	270000.00	1.2	139
296	45.0	2060	60	742000.00	0.8	138
297	45.0	2413	38	140000.00	1.4	140
298	50.0	196	45	395000.00	1.6	136
299	rows	× 6 columns				

Рис. 1 — Загруженный датасет

2. Выполнено построение гистограммы признаков (рис. 2). Значения свойства *platelets* разделены на 1000 для более удобного представления.

Рисунок 2 — Гистограмма признаков

3. На основании гистограмм были определены диапазоны значений каждого из признаков, а также возле какого значения лежит наибольшее количество наблюдений.

Признак	Диапазон	Значение с наибольшим количеством наблюдений
age	(40, 95)	60
creatinine_phosphokin ase	(23, 7861)	582
ejection_fraction	(14, 80)	35
platelets	$(25, 850) \cdot 10^3$	$263\cdot 10^3$
serum_creatinine	(0.5, 9.4)	1
serum_sodium	(113, 148)	136

4. Выполнено преобразование датафрейма к формату numpy, т.к. библиотека Sklearn работает с этим форматом

Стандартизация данных

1. Выполнена стандартизация всех наблюдений на основе первых 150. После чего были построены гистограммы признаков (рис. 3)

Рисунок 3 — Гистограмма стандартизированных признаков

2. На основании гистограмм были определены диапазоны значений каждого из признаков, а также возле какого значения лежит наибольшее количество наблюдений.

Признак	Диапазон	Значение с наибольшим количеством наблюдений
age	(-1.8, 2.5)	-0.2
creatinine_phosphokin ase	(-0.5, 6.1)	-0.1

ejection_fraction	(-1.8, 3.2)	0.2
platelets	(-2.5, 6)	-0.1
serum_creatinine	(-0.9, 6.7)	-0.5
serum_sodium	(-5.1, 2.5)	-0.1

Диапазон и значение с наибольшим количеством наблюдений изменились. Причиной является примененное преобразование. Вероятная формула будет приведена в пункте 4.

3. Была проведена стандартизация на полном наборе наблюдений

```
scaler = preprocessing.StandardScaler()
data scaled = scaler.fit transform(data)
```

4. Вычислено мат. ожидание и СКО каждой из 3 выборок.

Выборка	Статистика	age	creatin ine_ph osphok inase	ejection _fractio n	platelet s	serum_ creatini ne	serum_ sodium
Оригинальная	мат. ожид.	60.83	581.83	38.08	263e3	1.39	136.62
	СКО	11.89	970.28	11.83	97e3	1.03	4.41
Стандартизирова	мат. ожид.	-0.17	-0.02	0.01	-0.03	-0.11	0.04
нная на 150	СКО	0.95	0.81	0.90	1.02	0.89	0.97
Стандартизирова	мат. ожид.	5.703e-16	0.0	-3.268e-17	7.723e-17	1.426e-16	-8.674e-16
нная	СКО	1.0	1.0	1.0	1.0	1.0	1.0

На основании результатов можно сделать вывод о том, что преобразование имеет следующую форму:

$$Y = \frac{X - \mu(X)}{std(X)}$$
, где $\mu(X)$ - мат. ожидание, а $std(X)$ - СКО.

5. В поля *mean_* и *var_* объекта *StandartScaler* записывается мат. ожидание и дисперсия величин, на основе которых производится стандартизация.

Приведение к диапазону

1. С помощью *MinMaxScaler* выполнено приведение данных к диапазону (рис. 4)

Рисунок 4 — Гистограмма после MinMaxScaler

В этом случае данные приводятся к диапазону [0,1]. Для этих целей используется следующее преобразование:

$$Y = \frac{X - min(X)}{max(X) - min(X)}$$

2. Параметры объекта *MinMaxScaler* хранят следующие минимальные и максимальные значения каждого признака:

	age	creatinine _phosphok inase	ejection_fr action	platelets	serum_cre atinine	serum_sod ium
мин.	4.00e+01	2.30e+01	1.40e+01	2.51e+04	5.00e-01	1.13e+02
макс.	9.500e+01	7.861e+03	8.000e+01	8.500e+05	9.400e+00	1.480e+02

3. С помощью *MaxAbsScaler* и *RobustScaler* выполнено приведение данных к диапазону (рис. 5 - 6)

Рисунок 5 — Гистограмма после MaxAbsScaler

Рисунок 6 — Гистограмма после RobustScaler

MaxAbsScaler приводит данные таким образом, что максимальное по модулю значение равно 1.

RobustScaler вычитает медиану и масштабирует данные в соответствии с межквартильным размахом.

4. Также была написана функция, которая приводит данные к диапазону [-5,10].

```
def range_5_10(data):
    custom_scaler = preprocessing.MinMaxScaler().fit(data)
    return custom_scaler.transform(data)*15-5
```

Результат на рис. 7.

Рисунок 7 — Гистограмма после range_5_10

Нелинейные преобразования

1. С помощью QuantileTransformer данные были приведены к равномерному и нормальному распределениям (рис. 8-9).

Рисунок 8 — Гистограмма после QuantileTransformer, равномерное распределение

Рисунок 9 — Гистограмма после QuantileTransformer, нормальное распределение

 $n_{quantiles}$ - количество квантилей, используемых для дискретизации функции распределения. Чем больше квантилей, тем ближе к требуемому распределению.

2. С помощью *PowerTransformer* данные были приведены к нормальному распределениям (рис. 10).

Рисунок 10 — Гистограмма после PowerTransformer

Дискретизация признаков

1. Была выполнена дискретизация признаков(рис. 11)

Рисунок 11 — Гистограмма после PowerTransformer Диапазоны интервалов

- age: [40., 55., 65., 95.]
- creatinine_phosphokinase: [23., 116.5, 250., 582., 7861.]
- ejection_fraction: [14., 35., 40., 80.]
- platelets: [25100., 153000., 196000., 221000., 237000., 262000., 265000., 285200., 319800., 374600., 850000.]
- serum creatinine: [0.5, 1.1, 9.4]
- serum_sodium: [113., 134., 137., 140., 148.]

Выводы

Были изучены методы предобработки данных с помощью библиотеки Scikit Learn. Было выяснено, что настройка (fit) на неполном наборе данных приводит к снижению качества результирующего набора данных. Форма распределения не изменяется при использовании линейных методов стандартизации. Нелинейные преобразования

позволяют преобразовать форму распределения, например к равномерному или нормальному.