Нестационарное двумерное движение вязкого баротропного газа описывается системой уравнений

$$\begin{split} &\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_1}{\partial x_1} + \frac{\partial \rho u_2}{\partial x_2} = 0, \\ &\frac{\partial \rho u_1}{\partial t} + \frac{\partial \rho u_1^2}{\partial x_1} + \frac{\partial \rho u_1 u_2}{\partial x_2} + \frac{\partial p}{\partial x_1} = \mu \left(\frac{4\partial^2 u_1}{3\partial x_1^2} + \frac{\partial^2 u_1}{\partial x_2^2} + \frac{1}{3\partial x_1 \partial x_2} \right) + \rho f_1, \\ &\frac{\partial \rho u_2}{\partial t} + \frac{\partial \rho u_1 u_2}{\partial x_1} + \frac{\partial \rho u_2^2}{\partial x_2} + \frac{\partial p}{\partial x_2} = \mu \left(\frac{1}{3\partial x_1 \partial x_2} + \frac{\partial^2 u_2}{\partial x_1^2} + \frac{4\partial^2 u_2}{3\partial^2 x_2} \right) + \rho f_2, \\ &p = p(\rho), \end{split}$$

где μ - коэффициент вязкости газа (известная неотрицательная константа), p - давление газа (известная функция), f - вектор внешних сил (также известная функция от переменных Эйлера, см. ниже).

Неизвестные функции: плотность ρ и вектор скорости u являются функциями переменных Эйлера

$$(t,x) \in Q = [0,T] \times \Omega.$$

Граничные условия для неизвестного решения: $\rho|_{\Gamma^-} = \rho_{\gamma} = 1$, $u_1|_{\Gamma^-} = \omega \in \{0,1;1\}$, $\frac{\partial u_1}{\partial x_1}|_{\Gamma^+} = 0$. На оставшейся границе компоненты скорости равны нулю, а функция плотности считается неизвестной. Для решения задачи вводится равномерная сетка с шагом h_x по оси X, h_y по оси Y, τ по времени.

Для автоматического обеспечения условия положительности функции плотности систему дифференциал уравнений можно преобразовать к виду

$$\begin{split} &\frac{\partial g}{\partial t} + \frac{1}{2} \sum_{k=1}^{2} \left(u_{k} \frac{\partial g}{\partial x_{k}} + \frac{\partial u_{k} g}{\partial x_{k}} + (2 - g) \frac{\partial u_{k}}{\partial x_{k}} \right) = f_{0}, \\ &\frac{\partial u_{k}}{\partial t} + \frac{1}{3} \left(u_{k} \frac{\partial u_{k}}{\partial x_{k}} + \frac{\partial u_{k}^{2}}{\partial x_{k}} \right) + \frac{1}{2} \sum_{m=1, m \neq k}^{2} \left(u_{m} \frac{\partial u_{k}}{\partial x_{m}} + \frac{\partial u_{m} u_{k}}{\partial x_{m}} - u_{k} \frac{\partial u_{m}}{\partial x_{m}} \right) + p'_{\rho} \frac{\partial g}{\partial x_{k}} = \\ &= \frac{\mu}{\rho} \left(\frac{4}{3} \frac{\partial^{2} u_{k}}{\partial x_{k}^{2}} + \sum_{m=1, m \neq k}^{2} \left(\frac{\partial^{2} u_{k}}{\partial x_{m}^{2}} + \frac{1}{3} \frac{\partial^{2} u_{m}}{\partial x_{k} \partial x_{m}} \right) \right) + f_{k}, \ k = 1..s, \\ &p = p(\rho), \quad g = \ln \rho. \end{split}$$

Сеточную функцию, разностное приближение для плотности ρ , обозначим Н. Аналогично, разностные аналоги g и и обозначим через G и V. Для поиска численного решения задачи используется следующая разностная схема:

$$\begin{split} G_t + 0.5 \sum_{k=1}^2 \left(V_k \hat{G}_{x_k}^0 + (V_k \hat{G})_{x_k}^0 + 2(\hat{V}_k)_{x_k}^0 - G(V_k)_{x_k}^0 \right) &= f_0, \ x \in \Omega_{\bar{h}}; \\ G_t + 0.5 \left((V_k \hat{G})_{x_k} + 2(\hat{V}_k)_{x_k} - G(V_k)_{x_k} \right) - \\ &- 0.5 h_k \left((GV_k)_{x_k \bar{x}_k}^{+1_k} - 0.5(GV_k)_{x_k \bar{x}_k}^{+2_k} + (2 - G)((V_k)_{x_k \bar{x}_k}^{+1_k} - 0.5(V_k)_{x_k \bar{x}_k}^{+2_k}) \right) = \\ &= f_0, \qquad x \in \gamma_k^-, k = 1, \ 2; \\ G_t + 0.5 \left((V_k \hat{G})_{\bar{x}_k} + 2(\hat{V}_k)_{\bar{x}_k} - G(V_k)_{\bar{x}_k} \right) + \\ &+ 0.5 h_k \left((GV_k)_{x_k \bar{x}_k}^{-1_k} - 0.5(GV_k)_{x_k \bar{x}_k}^{-2_k} + (2 - G)((V_k)_{x_k \bar{x}_k}^{-1_k} - 0.5(V_k)_{x_k \bar{x}_k}^{-2_k}) \right) = \\ &= f_0, \qquad x \in \gamma_k^+, k = 1, \ 2; \\ (V_k)_t + \frac{1}{3} \left(V_k (\hat{V}_k)_{x_k}^0 + (V_k \hat{V}_k)_{x_k}^0 \right) + \\ &+ \frac{1}{2} \sum_{m=1, m \neq k}^2 \left(V_m (\hat{V}_k)_{x_m}^0 + (V_m \hat{V}_k)_{x_m}^0 - V_k (\hat{V}_m)_{x_m}^0 \right) + \\ &+ p_\rho'(e^G) \hat{G}_{x_m}^0 = \tilde{\mu} \left(\frac{4}{3} (\hat{V}_k)_{x_k \bar{x}_k} + \sum_{m=1, m \neq k}^2 (\hat{V}_k)_{x_m \bar{x}_m} \right) - \\ &- (\tilde{\mu} - \mu e^{-G}) \left(\frac{4}{3} (V_k)_{x_k \bar{x}_k} + \sum_{m=1, m \neq k}^2 (V_k)_{x_m \bar{x}_m} \right) + \\ &+ \frac{\mu e^{-G}}{3} \sum_{m=1, m \neq k}^2 (V_m)_{x_k x_m}^0 + f_k, \quad x \in \Omega_{\bar{h}}; \\ \hat{V}_k = 0, \qquad x \in \gamma_{\bar{h}}, \qquad k = 1, \ 2. \end{split}$$

Распишем уравнения схемы в поточечном виде и преобразуем их, приведя подобные слагаемые при неизвестных значениях с верхнего слоя. Получим:

$$4G_{m_1,m_2}^{n+1} - \frac{\tau}{h_x}G_{m_1-1,m_2}^{n+1}(V1_{m_1,m_2}^n + V1_{m_1-1,m_2}^n) + \frac{\tau}{h_x}G_{m_1+1,m_2}^{n+1}(V1_{m_1,m_2}^n + V1_{m_1+1,m_2}^n)$$

$$- \frac{\tau}{h_y}G_{m_1,m_2-1}^{n+1}(V2_{m_1,m_2}^n + V2_{m_1,m_2-1}^n) + \frac{\tau}{h_y}G_{m_1,m_2+1}^{n+1}(V2_{m_1,m_2}^n + V2_{m_1,m_2+1}^n)$$

$$- \frac{2\tau}{h_x}V1_{m_1-1,m_2}^{n+1} + \frac{2\tau}{h_x}V1_{m_1+1,m_2}^{n+1} - \frac{2\tau}{h_y}V2_{m_1,m_2-1}^{n+1} + \frac{2\tau}{h_y}V2_{m_1,m_2+1}^{n+1} =$$

$$= 4G_{m_1,m_2}^n + \tau G_{m_1,m_2}^n \left(\frac{V1_{m_1+1,m_2}^n - V1_{m_1-1,m_2}^n}{h_x} + \frac{V2_{m_1,m_2+1}^n - V2_{m_1,m_2-1}^n}{h_y}\right)$$

$$+ 4\tau f_0, \quad x \in \Omega_h$$

$$G_{0,m_2}^{n+1}(2 - \frac{\tau}{h_x}V1_{0,m_2}^n) + G_{1,m_2}^{n+1}\frac{\tau}{h_x}V1_{1,m_2}^n + \frac{2\tau}{h_x}V1_{1,m_2}^{n+1} - \frac{2\tau}{h_x}V1_{0,m_2}^{n+1} = 2G_{0,m_2}^n + \frac{\tau}{h_x}G_{0,m_2}^n(V1_{1,m_2}^n - V1_{0,m_2}^n) + 2\tau f_0 + \frac{\tau}{h_x}\left(G_{0,m_2}^nV1_{0,m_2}^n - 2.5G_{1,m_2}^nV1_{1,m_2}^n + 2G_{2,m_2}^nV1_{2,m_2}^n - 0.5G_{3,m_2}^nV1_{3,m_2}^n + (2 - G_{0,m_2}^n)(V1_{0,m_2}^n - 2.5V1_{1,m_2}^n + 2V1_{2,m_2}^n - 0.5V1_{3,m_2}^n)\right), \quad x \in \gamma_k^-$$

$$G_{M,m_2}^{n+1}(2 + \frac{\tau}{h_x}V1_{M,m_2}^n) - G_{M-1,m_2}^{n+1}\frac{\tau}{h_x}V1_{M-1,m_2}^n + \frac{\tau}{h_x}V1_{M,m_2}^{n+1} - \frac{2\tau}{h_x}V1_{M-1,m_2}^{n+1} = 2G_{M,m_2}^n + \frac{\tau}{h_x}G_{M,m_2}^n(V1_{M,m_2}^n - V1_{M-1,m_2}^n) + 2\tau f_0 - \frac{\tau}{h_x}\left(G_{M,m_2}^nV1_{M,m_2}^n - 2.5G_{M-1,m_2}^nV1_{M-1,m_2}^n + 2G_{M-2,m_2}^nV1_{M-2,m_2}^n - 0.5G_{M-3,m_2}^nV1_{M-3,m_2}^n + (2 - G_{M,m_2}^n)(V1_{M,m_2}^n - 2.5V1_{M-1,m_2}^n + 2V1_{M-2,m_2}^n - 0.5V1_{M-3,m_2}^n)\right), \quad x \in \gamma_k^+$$

$$\begin{split} &V1_{m_1,m_2}^{n+1}(6+4\tau\tilde{\mu}(\frac{4}{h_x^2}+\frac{3}{h_y^2}))+\\ &V1_{m_1-1,m_2}^{n+1}(-\frac{\tau}{h_x}(V1_{m_1,m_2}^n+V1_{m_1-1,m_2}^n)-\tilde{\mu}\frac{8\tau}{h_x^2})+\\ &V1_{m_1+1,m_2}^{n+1}(\frac{\tau}{h_x}(V1_{m_1,m_2}^n+V1_{m_1+1,m_2}^n)-\tilde{\mu}\frac{8\tau}{h_x^2})+\\ &V1_{m_1,m_2-1}^{n+1}(-\frac{3\tau}{2h_y}(V2_{m_1,m_2}^n+V2_{m_1,m_2-1}^n)-\tilde{\mu}\frac{6\tau}{h_y^2})+\\ &V1_{m_1,m_2+1}^{n+1}(\frac{3\tau}{2h_y}(V2_{m_1,m_2}^n+V2_{m_1,m_2+1}^n)-\tilde{\mu}\frac{6\tau}{h_y^2})-\\ &-3\frac{\tau}{h_x}p_\rho'G_{m_1-1,m_2}^{n+1}+3\frac{\tau}{h_x}p_\rho'G_{m_1+1,m_2}^{n+1}=\\ &=6V1_{m_1,m_2}^n+6\tau f_1+\frac{3\tau}{2h_y}V1_{m_1,m_2}^n(V2_{m_1,m_2+1}-V2_{m_1,m_2-1})-\\ &-(\tilde{\mu}-\mu e^{-G})6\tau(\frac{4}{3h_x^2}(V1_{m_1+1,m_2}^n+V1_{m_1,m_2}^n+V1_{m_1-1,m_2}^n)+\\ &+\frac{1}{h_y^2}(V1_{m_1,m_2+1}^n-2V1_{m_1,m_2}^n+V1_{m_1,m_2-1}^n))+\\ &+\mu e^{-G}\frac{\tau}{2h_xh_y}(V2_{m_1+1,m_2+1}^n-V2_{m_1-1,m_2+1}^n-V2_{m_1+1,m_2-1}^n+V2_{m_1-1,m_2-1}^n), \end{split}$$

 $\tilde{\mu} = \mu ||e^{-G}||.$

Тесты для гладкого решения проводились на следующих функциях:

$$u_1 = \sin x \sin y e^t$$

$$u_2 = \sin x \sin y e^{-t}$$

$$g = \cos x \sin y + t$$

$$\rho = e^g$$

 $\mu = 0, 1$

$||G - \log \rho||_C$

N \ M	20	40	80
20	1.724239e-01	1.319644e-01	1.165274e-01
40	1.341082e-01	8.347367e-02	6.546352e-02
80	1.231899e-01	5.675641e-02	3.721350e-02

$||G - \log \rho||_{L_2}$

	7 11 2		
$N \setminus M$	20	40	80
20	2.966894e-01	2.254328e-01	2.160762e-01
40	2.213906e-01	1.242924e-01	1.109633e-01
80	1.937623e-01	7.665158e-02	5.776485e-02

$||G - \log \rho||_{W_2^1}$

N \ M	20	40	80
20	4.157127e-01	3.172089e-01	3.047600e-01
40	3.099346e-01	1.749753e-01	1.565194e-01
80	2.707725e-01	1.079297e-01	8.149345e-02

$||V1 - u1||_{C}$

	111~		
$N \setminus M$	20	40	80
20	1.835229e-01	1.408794e-01	1.294242e-01
40	1.439555e-01	8.318822e-02	7.080424e-02
80	1.260408e-01	5.153788e-02	3.888193e-02

V1 - u1	L_{2}
---------	---------

$N \setminus M$	20	40	80
20	3.163454e-01	2.231090e-01	2.058928e-01
40	2.376225e-01	1.274094e-01	1.080671e-01
80	2.028830e-01	7.995268e-02	5.754616e-02

$||V1 - u1||_{W_2^1}$

N \ M	20	40	80
20	4.467315e-01	3.154377e-01	2.911613e-01
40	3.354736e-01	1.801378e-01	1.528213e-01
80	2.863084e-01	1.130413e-01	8.137816e-02

$||V2 - u2||_C$

N \ M	20	40	80
20	6.935326e-02	4.938355e-02	4.802751e-02
40	5.839118e-02	2.747951e-02	2.536655e-02
80	5.292937e-02	1.754783e-02	1.321329e-02

$||V2 - u2||_{L_2}$

N \ M	20	40	80
20	1.731243e-01	1.275389e-01	1.196073e-01
40	1.288752e-01	7.273517e-02	6.329542e-02
80	1.097430e-01	4.521936e-02	3.369495e-02

$||V2-u2||_{W_2^1}$

$N \setminus M$	20	40	80
20	2.445440e-01	1.803346e-01	1.691445e-01
40	1.819533e-01	1.028443e-01	8.951019e-02
80	1.548603e-01	6.393507e-02	4.765032e-02

 $\mu = 0,01$

 $||G - \log \rho||_C$

N \ M	20	40	80
20	1.778039e-01	1.073139e-01	8.343375e-02
40	1.552394e-01	7.099682e-02	4.674950e-02
80	1.436987e-01	5.206320e-02	2.738282e-02

 $||G - \log \rho||_{L_2}$

N \ M	20	40	80
20	2.954388e-01	2.155685e-01	2.067912e-01
40	2.302943e-01	1.195706e-01	1.057967e-01
80	2.083809e-01	7.575748e-02	5.500631e-02

 $||G - \log \rho||_{W_2^1}$

N \ M	20	40	80
20	4.142137e-01	3.035718e-01	2.917586e-01
40	3.222751e-01	1.684537e-01	1.492888e-01
80	2.909565e-01	1.067033e-01	7.763397e-02

 $||V1 - u1||_C$

$N \setminus M$	20	40	80
20	1.847667e-01	1.195220e-01	1.085010e-01
40	1.525383e-01	7.006022e-02	5.919644e-02
80	1.428444e-01	4.735157e-02	3.294592e-02

 $||V1 - u1||_{L_2}$

N \ M	20	40	80
20	3.368712e-01	2.277318e-01	2.075963e-01
40	2.558655e-01	1.297671e-01	1.071882e-01
80	2.208923e-01	8.300132e-02	5.709806e-02

$||V1 - u1||_{W_2^1}$

N \ M	20	40	80
20	4.757334e-01	3.219692e-01	2.935607e-01
40	3.611642e-01	1.834719e-01	1.515742e-01
80	3.116014e-01	1.173464e-01	8.074284e-02

$||V2 - u2||_C$

N \ M	20	40	80
20	6.452129e-02	5.248424e-02	5.227693e-02
40	5.719746e-02	2.790375e-02	2.718189e-02
80	5.424733e-02	1.815146e-02	1.395062e-02

$||V2 - u2||_{L_2}$

N \ M	20	40	80
20	1.744254e-01	1.324204e-01	1.264982e-01
40	1.301602e-01	7.343929e-02	6.539326e-02
80	1.131877e-01	4.512547e-02	3.423289e-02

$||V2 - u2||_{W_2^1}$

$N \setminus M$	20	40	80
20	2.464513e-01	1.872349e-01	1.788885e-01
40	1.838020e-01	1.038418e-01	9.247659e-02
80	1.597288e-01	6.380509e-02	4.841103e-02

 $\mu=0,001$

 $||G - \log \rho||_C$

N \ M	20	40	80
20	1.824392e-01	1.039725e-01	7.919143e-02
40	1.596432e-01	6.936298e-02	4.447979e-02
80	1.479970e-01	5.142808e-02	2.621743e-02

 $||G - \log \rho||_{L_2}$

N \ M	20	40	80
20	2.974286e-01	2.158474e-01	2.068664e-01
40	2.327748e-01	1.197988e-01	1.058580e-01
80	2.111965e-01	7.608498e-02	5.504883e-02

 $||G - \log \rho||_{W_2^1}$

N \ M	20	40	80
20	4.170117e-01	3.039862e-01	2.918750e-01
40	3.257219e-01	1.687875e-01	1.493818e-01
80	2.948599e-01	1.071674e-01	7.769763e-02

 $||V1 - u1||_{C}$

11	110		
$N \setminus M$	20	40	80
20	1.854075e-01	1.174659e-01	1.074738e-01
40	1.544237e-01	6.973142e-02	5.828758e-02
80	1.452145e-01	4.747507e-02	3.238526e-02

 $||V1 - u1||_{L_2}$

N \ M	20	40	80
20	3.413731e-01	2.312294e-01	2.114104e-01
40	2.587793e-01	1.312795e-01	1.087149e-01
80	2.233507e-01	8.384592e-02	5.776683e-02

$||V1 - u1||_{W_2^1}$

N \ M	20	40	80
20	4.820936e-01	3.269123e-01	2.989441e-01
40	3.652663e-01	1.856096e-01	1.537292e-01
80	3.150505e-01	1.185383e-01	8.168715e-02

$||V2 - u2||_C$

N \ M	20	40	80
20	6.435777e-02	5.318733e-02	5.299093e-02
40	5.703496e-02	2.822431e-02	2.751209e-02
80	5.472384e-02	1.848110e-02	1.410741e-02

$||V2 - u2||_{L_2}$

N \ M	20	40	80
20	1.752351e-01	1.338733e-01	1.282582e-01
40	1.305739e-01	7.390590e-02	6.605218 e-02
80	1.137202e-01	4.528643e-02	3.449008e-02

$||V2 - u2||_{W_2^1}$

N \ M	20	40	80
20	2.476023e-01	1.892884e-01	1.813773e-01
40	1.843900e-01	1.045017e-01	9.340837e-02
80	1.604811e-01	6.403317e-02	4.877475e-02

