Question number	Scheme	Marks
9 a	$\left(ax^4 = 3x^4\right) \Rightarrow a = 3$	B1
	$(4c = 64) \Rightarrow c = 16$	B1
	$(bx^3 - 4ax^3 = 4x^3) \Rightarrow b - 4a = 4 \text{ or } (4ax^2 - 4bx^2 + cx^2 = -36x^2)$	
	$\Rightarrow 4a - 4b + c = -36 \text{ or} (4bx - 64x = 0x) \Rightarrow 4b - 64 = 0$	M1
	b=16	A1
	$\begin{bmatrix} x^4 & x^3 & 6 & 1 \end{bmatrix}^2$	(4) B1 (M1
b	$\int_0^2 (x^3 + x^2 - 6x) dx = \left[\frac{x^4}{4} + \frac{x^3}{3} - \frac{6}{2} x^2 \right]_0^2$	on ePen) M1
		M1 (A1
	$= \left(\frac{2^4}{4} + \frac{2^3}{3} - 3(2)^2 \right) - (0)$	on ePen)
	$=\pm \frac{16}{3}$ oe	A1 (M1 on ePen)
	$\left[\left[\frac{x^4}{4} + \frac{x^3}{3} - 3x^2 \right]_x^0 = \pm \frac{16}{3} \Rightarrow \left[(0) - \left(\frac{x^4}{4} + \frac{x^3}{3} - 3x^2 \right) \right] = \pm \frac{16}{3} \text{ oe}$	M1
	$3x^4 + 4x^3 - 36x^2 + 64 = 0$	A1
	$(x-2)^2 (3x^2 + 16x + 16) = 0 *$	A1* cso (7)
ALT	$\int_{x}^{2} (x^{3} + x^{2} - 6x) dx = \left[\frac{x^{4}}{4} + \frac{x^{3}}{3} - 3x^{2} \right]_{x}^{2}$	B1 (M1 on ePen) M1
	$= \left(\frac{2^4}{4} + \frac{2^3}{3} - 3(2)^2 \right) - \left(\frac{x^4}{4} + \frac{x^3}{3} - 3(x)^2 \right)$	M1 (A1 on ePen)
	$\pm \left(-\frac{16}{3} - \frac{x^4}{4} - \frac{x^3}{3} + 3x^2 \right) = 0$	A1 (M1 on ePen)
	$3x^4 + 4x^3 - 36x^2 + 64 = 0$	M1 A1
	$(x-2)^2 (3x^2 + 16x + 16) = 0 *$	A1
c	(When $(x-2)=0$ $x=2$ and when $3x^2+16x+16=0$)	M1 A1
	$(3x+4)(x+4) = 0$ so $x = -\frac{4}{3}$ and $x = -4$	
	$(x \neq -4 \text{ as it is to the left of the point at } x = -3) \ x = -\frac{4}{3}$	M1
	When " $x = -\frac{4}{3}$ " $y = \left("-\frac{4}{3}"\right)^3 + \left("-\frac{4}{3}"\right)^2 - 6\left("-\frac{4}{3}"\right) = \frac{200}{27}$	dM1
	So $A = \left(-\frac{4}{3}, \frac{200}{27}\right)$	A1 (5)
	Total	16 marks

Part	Mark	Notes		
(a)	B1	a=3		
	B1	c = 16		
	M1	For a clear process to equate coefficients to find either of the equations $b-4a=4$ or $4a-4b+c=-36$ or $4b-64=0$. Allow one error.		
		For algebraic division: there must be a complete attempt to divide by $x^2 + px + q$ and		
		reach an expression of the form $3x^2 + rx + 16$, $p,q,r \neq 0$		
F 11 1	A1	b=16		
Full marks may be awarded for all of <i>a</i> , <i>b</i> and <i>c</i> appearing correctly with no method shown. Embedded <i>a</i> , <i>b</i> and <i>c</i> should be awarded full marks.				
(b)	B1 (M1 on	Correct limits of $x = 0$ and $x = 2$ – or used later in working.		
	ePen)			
	M1	For a minimally acceptable attempt to integrate any 3 term cubic of the form $x^3 + fx^2 + gx$. Limits do not need to be present.		
	IVII	See general guidance for the definition of a minimally acceptable attempt.		
	M1 (A1	Substitution of their limits into any changed expression, the correct way round minimum 3		
	on ePen)	terms. Sub of 0 not needed. Allow this mark to be implied by a fully correct value.		
	A1 (M1 on ePen)	Either for a fully correct substitution, or for $\pm \frac{16}{3}$		
		For (0) $-\left(\frac{x^4}{4} + \frac{x^3}{3} - 3x^2\right) = \pm \frac{16}{3}$ oe. Allow use of their integrated expression and their		
		$\begin{pmatrix} 1 & 1 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 &$		
	M1	16 which can be in any equivalent form, including an unavaluated expression. Allow use		
		$\pm \frac{16}{3}$ which can be in any equivalent form, including an unevaluated expression. Allow use		
		of n rather than x . The limit of 0 need not be seen.		
	A1	For $3x^4 + 4x^3 - 36x^2 + 64 = 0$ Allow use of <i>n</i> rather than <i>x</i> . $\frac{16}{3}$ must have been evaluated.		
A.E. (E)	A1* cso	For $(x-2)^2(3x^2+16x+16) = 0$. No errors in working. Candidates can use <i>n</i> throughout.		
ALT	B1 (M1 on ePen)	Correct limits of $x = x$ and $x = 2$ – seen on the integral or used later in working. These can be either way round.		
	M1	For a minimally acceptable attempt to integrate any 3 term cubic of the form		
		$x^3 + fx^2 + gx$. Limits do not need to be present.		
		See general guidance for the definition of a minimally acceptable attempt.		
	M1 (A1 on ePen)	For substitution of both of their limits into any changed expression. Minimum 3 terms		
	•	$(16 r^4 r^3 a)$		
	A1 (M1 on ePen)	For $\pm \left(-\frac{16}{3} - \frac{x^3}{4} - \frac{x^3}{3} + 3x^2 \right) = 0$		
	M1	For a valid attempt to multiply their equation throughout to arrive at integer coefficients.		
	A1 A1	As main scheme. Candidates can use <i>n</i> throughout.		
(c)		For a complete and minimally acceptable attempt to solve $3x^2 + 16x + 16 = 0$ to give $x = 0$		
	M1	See general guidance for definition of minimally acceptable.		
		Some candidates may have factorised in part b), if used in part c), marks can be awarded		
	A1	For $x = -\frac{4}{3}$ and $x = -4$		
		Chooses " $x = -\frac{4}{3}$ ", can be stated explicitly or used later implicitly.		
	M1	Allow choice of their x coordinate for $-3 < x < 0$		
	dM1	For substituting $x = "-\frac{4}{3}"$ into $y = x(x+3)(x-2)$		
		Allow substitution of their <i>x</i> , dependent on previous method mark		
	A1	$A = \left(-\frac{4}{3}, \frac{200}{27}\right)$ students may list $x = -\frac{4}{3}, y = \frac{200}{27}$		
<u> </u>]	<u> </u>		