Q The direction cosines of the projection of the line
$$\frac{1}{2}(x-1) = -y = z+2$$
 on the plane $2x + y - 3z = 4$ are-

(A)
$$\left(\frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$$
 (B) $\left(\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$ (C) $\left(\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}\right)$ (D) None of these

(C)
$$\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}\right)$$
 (D) None of these

Soly
$$L: \frac{x-1}{2} = \frac{y}{-1} = \frac{z-(-2)}{1}$$

$$L: \frac{x-1}{2} = \frac{y}{-1} = \frac{z-(-2)}{1}$$

$$(2\hat{1}-\hat{j}+\hat{k}) \cdot (2\hat{1}+\hat{j}-3\hat{k}) =$$

The direction ratios of a normal to the plane passing through
$$(1,0,0)$$
, $(0,1,0)$ and making an angle $\frac{\pi}{4}$ with plane $x + y = 3$ can be-

(A) $0,1,0$ (B) $1,1,\sqrt{2}$
(C) $1,0,0$ (D) $\sqrt{2},1,1$

Solve Let equal the plane $i \ge 0$
 $f: a(x-1) + b(y-0) + c(z-0) = 0$

 $\alpha:b:C=\alpha:x:\pm 12$

1010 + 12

$$\frac{\pi}{\eta} \cdot \overline{\eta}_{1} = |\overline{\eta}_{1}||\overline{\eta}||\cos \frac{\pi}{4}$$

$$\frac{2}{a^{2}+b^{2}+c^{2}} \cdot \frac{1}{\sqrt{2}}$$

$$\frac{2}{a^{2}+b^{2}+2ab} = \frac{2}{a^{2}+b^{2}+c^{2}}$$

$$2ab = c^{2} \Rightarrow 2a^{2} = c^{2}$$

$$\overrightarrow{n_1} = \overrightarrow{1+1}$$

$$\overrightarrow{n_1} = |\overrightarrow{n_1}||\overrightarrow{n_1}| \cos \overline{1}$$

$$\alpha+b = \sqrt{2} \sqrt{a^2+b^2+c^2} \cdot \sqrt{2}$$

$$\alpha^2+b^2+2ab = \alpha^2+b^2+c^2$$

Q If for unit vectors \hat{a} , \hat{b} and non-zero \vec{c} , $\hat{a} \times \hat{b} + \hat{a} = \vec{c}$ and $\hat{b} \cdot \vec{c} = 0$, then volume of parallelopiped with coterminous edges \hat{a} , \hat{b} and \vec{c} will be (in cu.units)- $(\mathcal{D})^{\frac{1}{2}}$ (B) 4 (A) 6 (**c**) 1

(A) 6 (B) 4 (C) 1 (D)
$$\frac{1}{2}$$

Seth
$$V = \begin{bmatrix} \hat{a} & \hat{b} & \vec{c} \end{bmatrix} = (\hat{a} \times \hat{b}) \cdot \vec{c}$$

$$\hat{a} \times \hat{b} + \hat{c} = 0 - \hat{c}$$

dot with
$$\vec{c}$$

$$(\hat{a} \times \hat{b}) \cdot \vec{c} + \hat{a} \cdot \vec{c} = \vec{c}^2$$

$$V = \vec{c} - \hat{a} \cdot \vec{c} = 2 - 1 = 1$$

$$(\hat{a} \times \hat{b}) \cdot \hat{b} + \hat{a} \cdot \hat{b} = \vec{c} \cdot \hat{b} \Rightarrow \hat{a} \cdot \hat{b} = 0$$

$$(\hat{a} \times \hat{b}) \cdot \hat{b} + \hat{a} \cdot \hat{b} = \vec{c} \cdot \hat{b} \Rightarrow \hat{a} \cdot \hat{b} = 0$$

$$(\hat{a} \times \hat{b}) \cdot \hat{b} + \hat{a} \cdot \hat{b} = \vec{c} \cdot \hat{b} \Rightarrow \hat{a} \cdot \hat{b} = 0$$

$$(\hat{a} \times \hat{b}) \cdot \hat{b} + \hat{a} \cdot \hat{b} = \vec{c} \cdot \hat{b} \Rightarrow \hat{a} \cdot \hat{b} = 0$$

$$(\hat{a} \times \hat{b}) \cdot \hat{b} + \hat{a} \cdot \hat{b} = \vec{c} \cdot \hat{b} \Rightarrow \hat{a} \cdot \hat{b} = 0$$

$$(\hat{a} \times \hat{b}) \cdot \hat{b} + \hat{a} \cdot \hat{b} = \vec{c} \cdot \hat{b} \Rightarrow \hat{a} \cdot \hat{b} = 0$$

$$(\hat{a} \times \hat{b}) \cdot \hat{b} + \hat{a} \cdot \hat{b} = \vec{c} \cdot \hat{b} \Rightarrow \hat{a} \cdot \hat{b} = 0$$

$$(\hat{a} \times \hat{b}) \cdot \hat{b} + \hat{a} \cdot \hat{b} = \vec{c} \cdot \hat{b} \Rightarrow \hat{a} \cdot \hat{b} = 0$$

$$(\hat{a} \times \hat{b}) \cdot \hat{b} + \hat{a} \cdot \hat{b} = \vec{c} \cdot \hat{b} \Rightarrow \hat{b} = 0$$

(axb).
$$\hat{b}$$
 + \hat{a} . \hat{b} = \hat{c} . \hat{b} \Rightarrow \hat{a} . \hat{b} = \hat{b} \Rightarrow \hat{a} . \hat{b} = \hat{b} \Rightarrow \hat{a} . \hat{b} = \hat{b} \Rightarrow \hat{b}

In a tetrahedron OABC, the measures of the \angle BOC, \angle COA & \angle AOB are α , β & γ respectively, Q then $(\cos^2\alpha + \cos^2\beta + \cos^2\gamma - 2\cos\alpha\cos\beta\cos\gamma)$ can attain-(A) $\frac{1}{\sqrt{2}}$ (B) $\frac{\pi}{4}$ (P) 2 (c)1O(g)

$$\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}^2 = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \end{vmatrix}$$

$$= \begin{vmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{vmatrix}$$

$$= \begin{vmatrix} \vec{a} \ \vec{c} \ \vec{c} \end{vmatrix}$$

$$= \begin{vmatrix} \vec{c} \ \vec$$

Σωλα - Coλα COλβ COλγ < 1 [A,B]

Then the vector component of $2\hat{i} + 3\hat{j} + 4\hat{k}$ along \vec{r} is $n\left(\frac{\ell\hat{i} + m\hat{k}}{\ell^2 + m^2}\right)$, where ℓ & m are coprimes, then $\ell^2 + m^2 + n^2$ is equal to

Vector component of $(2\hat{1}+3\hat{j}+4\hat{k})$ along \overrightarrow{r}

 $\left(\left(2^{1}+3\right)+4^{2}\right)\cdot \uparrow$

 $1^2 + m + n = 209$

 $14\left(\frac{3\hat{1}+2\hat{k}}{13}\right)$

Q Let $\vec{a} = 3\hat{i} - 5\hat{k}$, $\vec{b} = 2\hat{i} + 7\hat{j}$ and $\vec{c} = \hat{i} + \hat{j} + \hat{k}$. Consider \vec{r} such that $\vec{r} \cdot \vec{a} = -1$, $\vec{r} \cdot \vec{b} = 6$ and $\vec{r} \cdot \vec{c} = 5$.

$$\overrightarrow{r} = \chi \hat{i} + y \hat{j} + z \hat{k}.$$

$$\overrightarrow{r} \cdot \overrightarrow{a} = -1 \Rightarrow 3\chi - 5Z = -1.$$

$$\overrightarrow{r} \cdot \overrightarrow{b} = 6 \Rightarrow 2\chi + 7y = 6.$$

$$\overrightarrow{r} \cdot \overrightarrow{c} = 5 \Rightarrow \chi + y + Z = 5.$$

المك

 $\vec{\gamma} = \vec{\xi}$

 $\gamma = 14$

l = 3

m = 2

If
$$\hat{i} + \hat{j}$$
 bisects the angle between $\vec{c} & \hat{j} + \hat{k}$, then $\vec{c} \cdot \hat{j}$ is equal to

$$C' = \lambda \left(\hat{l} + \hat{l} + \hat{l} \right)$$

$$\frac{60}{C} = \lambda \left(\frac{\hat{1} + \hat{j}}{\sqrt{2}} + \left(-\frac{\hat{j} - \hat{k}}{\sqrt{2}} \right) \right)$$

 $\vec{c} = \frac{\lambda}{\sqrt{2}} (\hat{1} - \hat{k})$

c. 1 = 0 Am

$$\frac{c}{c} = \lambda \left(\frac{\hat{1} + \hat{1}}{1 + \hat{1}} + \frac{1}{1 + \hat{1}} \right)$$

$$\frac{\partial h}{\partial x} = \frac{2}{60^{\circ}}$$

$$\frac{2}{\theta = 60^{\circ}}$$

$$= \left(-\frac{\hat{j} - \hat{k}}{\sqrt{2}}\right)$$

$$\Theta = 60^{\circ}$$