SEST - CO3 - 2024-08-01 - Apply Statistical Estimations and Significance

Testing -> (ase I: Loth samples are independent of each other I both population migned J2 Sog me known -> 1/2 sq ne sample mans -s Ving CLT, distribution of T-E(7) is N(0,1) T = Sample Statistic f(7) = Expected Value (Mean) S. E(-1) = Standard Emor -> Paravielu of Intrust - (Mx X My) -> E(x-9) = Ws × My $-3 S. E \left(\overline{x} - \overline{y}\right) = \sqrt{\frac{\sigma_{x}^{2}}{n}} + \sqrt{\frac{\sigma_{y}^{2}}{m}}$

->
$$\frac{7}{4} = \frac{\sqrt{\frac{7}{n^2} + \frac{7}{y^2}}}{\sqrt{\frac{\sigma_n^2}{n} + \frac{\sigma_y^2}{m}}} \sim 2 \text{ Simples for means}$$

ソ 元 ' 元 Sup-A & 1 -s Ho: Mr = My against H, = Mr x My fr-D& y $-5 \frac{7}{2e} = \frac{7\overline{L} - \overline{y}}{\sqrt{\frac{\sigma_{n}^{2} + \frac{\sigma_{y}^{2}}{m}}}} = \frac{250 - 220}{\sqrt{\frac{40 \times 40}{400} + \frac{55 \times 55}{400}}}$ Z₂ = 8.8225 -> (-1.56, 1.56) = x for s! S.L. 7-J-36 8-8225 8-8225 8-8225 >1.56 . Ve right My S conclude that both the women shoppers are not eyel. -> Case 2: Rolla samples ou independent S

both population variances are unknown. -> Student's t-Dist L> Poth populations have noused distribution

Lo Both populations have noused distribution.
Lo Both population variantes one egyal. -> Pooted Sample Visione! $S^{2} = \frac{1}{m + n - 2} \left(\sum_{i=1}^{n} (x_{i} - \overline{x_{i}})^{2} + \sum_{j=1}^{n} (y_{i} - \overline{y})^{2} \right)$ -> hod / todistic: Te = 12 - 5 NJSE PAGSAN | 16 2) Stocks 21 25 Jample Man 7.27 Smple 5.0 | 1.30 / 1-16 -> Ho: Un= My against H: Mn= My Modification in franke ! $\frac{1}{m+n-2} \left[(m-1)s_{m}^{2} + (n-1)s_{n}^{2} \right]$

$$\int_{m+n-2}^{\infty} \frac{1}{m+n-2} \left[\frac{1}{20 \times 1.30 \times 1.30} + \frac{1}{21 \times 1.16 \times 1.16} \right]$$

$$\int_{c}^{\infty} \frac{1}{21 + 2s^{2} - 2} \left[\frac{20 \times 1.30 \times 1.30}{20 \times 1.30} + \frac{24 \times 1.16 \times 1.16}{21 \times 1.16} \right]$$

$$\int_{c}^{\infty} \frac{1}{s} \frac{1}{s}$$

Reject 100 S corclude hat there is a difference 6/w the 2 dividends.
-> (ase 3: Both sumples are related.
> Samples que not independent but related.
Samples n=m
Dif di = sci-di (i=1,2,3n) Vsing the difference
$J = \frac{1}{n} \sum_{i=1}^{n} d_i$
$S.y = Sd = \sqrt{\frac{1}{n-1}} \sum_{i=1}^{n} (J_i \times \overline{J})^{2}$
Test Hetistic = J
D-0-7 (n-1)

0.000

0.978

1.250

1.638

2.353

	2 00 70 3 5 00 7 1 I											
	df	111						3444				
	1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
	2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
_	3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841		12.924
	-54	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
	5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	The second second second	6.869
	6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
	7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
_	8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
	9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
1 1 2 - 1	10 11	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169 3.106	4.144	4.587 4.437
L- 4.685	12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
	13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
1	14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
T >	15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
<u> </u>	16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
	17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
14.609	18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
1-1-01	19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
	20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
	21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
	22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
	23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
	24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
	25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
	26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
	27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
	28 29	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
	30	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
	40	0.000	0.683	0.854 0.851	1.055	1.310	1.697 1.684	2.042	2.457	2.750	3.385	3.646 3.551
	60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
	80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
	100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
	1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
	Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
		0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
	-	076	50%	00%	70%		dence Le		90%	99%	99.0%	99.9%
-1.65						Connic	Jence Le	vei				
. 60												
						Tc				\sim		
	\					'				\neg		
	1				1			1		•		
1 \ /	1						_	1	1	7		4
IV	1				<i>I</i> –	$I \cdot I$	رّ	1			L 1 ~	. 1
	\ /				1	•	3	1	- 1		1·B I	4 1
1 1					L			J	·)
												,
(()												
	1					1	_	_	1			
- かんるわ	5.604					1 • 4			4.		.)	
	7					•	5		<i>ı</i> `	6 6	15	

-> Accept the S conclude there is no charge after training of the sutrepresen.