Rețele neuronale recurente

Large Movie Review Dataset

```
from tensorflow.keras.datasets import imdb
from tensorflow.keras.preprocessing import sequence
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding
from tensorflow.keras.layers import LSTM
from tensorflow.keras.layers import Dense
top words = 5000
(X train, y train), (X test, y test) = imdb.load data(num words=top words)
max review length = 500
X train = sequence.pad sequences(X train, maxlen=max review length)
X test = sequence.pad sequences(X test, maxlen=max review length)
embedding_vecor_length = 32
model = Sequential()
model.add(Embedding(top words, embedding vecor length,
                    input length=max review length))
model.add(LSTM(100))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary crossentropy', optimizer='adam',
              metrics=['accuracy'])
model.summary()
```

Model: "sequential"		
Layer (type)	Output Shape	Param #
embedding (Embedding)	(None, 500, 32)	160000
lstm (LSTM)	(None, 100)	53200
dense (Dense)	(None, 1)	101
Total params: 213,301 Trainable params: 213,301 Non-trainable params: 0		

```
model.fit(X_train, y_train, epochs=3, batch_size=64)
scores = model.evaluate(X_test, y_test, verbose=0)
print(f'Accuracy: {scores[1] * 100:.2f}%')
```

Accuracy: 85.77%

LSTM + Dropout

Accuracy: 87.83%

Accuracy: 74.61%

Bidirectional LSTM