Algorithms in Invariant Theory

With 0 Figures

Anakin Dey

Last Edited on 5/7/25 at 15:27

Contents

1	Introduction		1
	1.1	Symmetric Polynomials	1
	1.2	Gröbner Bases	3
	1.3	What is Invariant Theory?	5
	1.4	Torus Invariants and Integer Programming	6

Preface

A core interest of mine (at the time of writing this) is algorithms in the context of commutative algebra and algebraic geometry. As such, Bernd Sturmfel's text *Algorithms in Invariant Theory* [Str08] is a good resource for first learning this stuff. Perhaps in the future I'll include notes and some source code

Chapter 1

Introduction

1.1 Symmetric Polynomials

Solution: [Str08] 1.1.5: From [Page 23, 2.11'][Mac98], we have the following identities

$$\begin{aligned} 1 \cdot \sigma_1 &= p_1, \\ 2 \cdot \sigma_2 &= p_1 \sigma_1 - p_2, \\ 3 \cdot \sigma_3 &= p_1 \sigma_2 - p_2 \sigma_1 + p_3, \\ &\vdots \\ k \cdot \sigma_k &= \sum_{r=1}^k (-1)^{r-1} p_r \sigma_{k-r}. \end{aligned}$$

Treating the σ_i as indeterminants, we can re-express the above system of equations:

$$\begin{split} p_1 &= 1 \cdot \sigma_1, \\ p_2 &= p_1 \sigma_1 - 2 \cdot \sigma_2, \\ p_3 &= p_2 \sigma_1 - p_1 \sigma_2 + 3 \cdot \sigma_3, \\ &\vdots \\ p_k &= \left(\sum_{r=1}^{k-1} (-1)^{r-1} p_{k-r} \sigma_r\right) + (-1)^{k-1} \cdot k \sigma_k. \end{split}$$

Consider $\sigma_1, -\sigma_2, \sigma_3, \dots, (-1)^n \sigma_{n-1}, \sigma_n$ as indeterminants. Thus, we obtain the following matrix equation:

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ p_1 & 2 & 0 & \cdots & 0 \\ p_2 & p_1 & 3 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ p_{k-1} & p_{k-2} & \cdots & \cdots & (-1)^k \cdot k \end{pmatrix} \begin{pmatrix} \sigma_1 \\ -\sigma_2 \\ \vdots \\ (-1)^k \sigma_{k-1} \\ \sigma_k \end{pmatrix} = \begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_{k-1} \\ p_k \end{pmatrix}.$$

Then, Cramer's rule yields that

$$\sigma_{k} = \det \begin{pmatrix} 1 & 0 & 0 & \cdots & p_{1} \\ p_{1} & 2 & 0 & \cdots & p_{2} \\ p_{2} & p_{1} & 3 & \cdots & p_{3} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ p_{k-1} & p_{k-2} & \cdots & \cdots & p_{k} \end{pmatrix} \det \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ p_{1} & 2 & 0 & \cdots & 0 \\ p_{2} & p_{1} & 3 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ p_{k-1} & p_{k-2} & \cdots & \cdots & (-1)^{k} \cdot k \end{pmatrix}^{-1}$$

$$= \frac{(-1)^{k}}{k!} \det \begin{pmatrix} 1 & 0 & 0 & \cdots & p_{1} \\ p_{1} & 2 & 0 & \cdots & p_{2} \\ p_{2} & p_{1} & 3 & \cdots & p_{3} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ p_{k-1} & p_{k-2} & \cdots & \cdots & p_{k} \end{pmatrix}$$

$$= \frac{(-1)^{k}}{k!} \cdot (-1)^{k} \det \begin{pmatrix} p_{1} & 1 & 0 & \cdots & 0 \\ p_{2} & p_{1} & 2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ p_{k-1} & p_{k-2} & \cdots & p_{1} & k-1 \\ p_{k} & p_{k-1} & \cdots & \cdots & p_{1} \end{pmatrix} = \frac{1}{k!} \det \begin{pmatrix} p_{1} & 1 & 0 & \cdots & 0 \\ p_{2} & p_{1} & 2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ p_{k-1} & p_{k-2} & \cdots & p_{1} & k-1 \\ p_{k} & p_{k-1} & \cdots & \cdots & p_{1} \end{pmatrix}$$

1.2 Gröbner Bases

Lemma 1.2.1:

Let $R = \mathbb{C}[x_1, \dots, x_n]$. Then with the usual grading, let $H(R, z) \coloneqq \sum_{d=0}^{\infty} \dim_{\mathbb{C}}(R_d) z^d$. We have that

$$H(R,z) := \sum_{d=0}^{\infty} \dim_{\mathbb{C}}(R_d) z^d = \sum_{d=0}^{\infty} \binom{d+n-1}{n-1} = \frac{1}{(1-z)^n}.$$

Proof: To see that $H(R,z) = \sum_{d=0}^{\infty} {d+n-1 \choose n-1}$, just count the number of monomials of degree d in n variables. The value ${d+n-1 \choose n-1}$ is the number of non-negative integer solutions to $a_1 + \cdots + a_n = d$. Each solution corresponds to a monomial $x_1^{a_1} \cdots x_n^{a_n}$. Then to see that $H(R,z) = \frac{1}{(1-z)^n}$, consider the product of infinite sums $(1+z+z^2+\cdots)\cdots(1+z+z^2+\cdots)$ a total of n-times. Then the coefficient of z^d again corresponds to the number of such non-negative integer solutions. Since $\frac{1}{1-z} = 1+z+z^2+\cdots$, we obtain the desired equality.

Lemma 1.2.2:

For $1 \le k \le n$, we have that

$$h_k(x_k,...,x_n) + \sum_{i=1}^k (-1)^i h_{k-i}(x_k,...,x_n) \sigma_i(x_1,...,x_n) = 0.$$

Proof: Using the generating functions for the h_i and σ_i , we have that the above expression is the coefficient of t^k in the product

$$\prod_{i=k}^{n} (1 - x_i t)^{-1} \cdot \prod_{i=1}^{n} (1 - x_i t) = \prod_{i=1}^{k-1} (1 - x_i t).$$

However, the right-hand side of this has degree k-1 in t. Thus, the coefficient of t^k is indeed 0.

Solution: [Str08] 1.2.1: Let M be a set of monomial generators for $\operatorname{init}(I)$ and let m be minimally nonstandard. Since m is a monomial and in $\operatorname{init}(I)$, we have that $m' \mid m$ for some monomial $m' \in M$. However, note that $m' \in \operatorname{init}(I)$ and furthermore by the fact that m is minimally nonstandard, we cannot have that m' strictly divides m. Thus, m' = m and $m \in M$. Then by Dickson's Lemma, we have that M is a finite set and thus there are finitely many minimally nonstandard monomials.

Solution: [Str08] 1.2.2: This is [CLO15, Chapter 2, \S 7, Theorem 5].

Solution: [Str08] 1.2.3: This is [CLO15, Chapter 3, \S 1, Theorem 2].

Solution: [Str08] 1.2.4: This is following [Rob85] and [GP07]. Let \geq be a monomial ordering on $\mathbb{C}[x_1,\ldots,x_n]$. This is equivalent to a total semigroup ordering \geq on \mathbb{Z}^n . Such a semigroup ordering gives a unique total ordering on \mathbb{Q}^n . To see this, for $\overline{q}=(q_1,\ldots,q_n)\in\mathbb{Q}^n$, let $m\in\mathbb{Z}$ such that $m\cdot q_i\in\mathbb{Z}$ for all i. Then say that $\overline{q}\geq 0$ if and only if $m\cdot \overline{q}\geq 0$ where the latter ordering is in \mathbb{Z}^n .

Let $V \subseteq \mathbb{Q}^n$ be a \mathbb{Q} -vector space with $\dim_{\mathbb{Q}}(V) = r$. Then let

$$V_0 := \{ z \in \mathbb{R}^n \mid \forall \varepsilon > 0, \exists z_+(\varepsilon), z_-(\varepsilon) \in V \cap B_{\varepsilon}(z) \text{ such that } z_+(\varepsilon) > 0, z_-(\varepsilon) < 0 \}.$$

Then V_0 is clearly a \mathbb{R} -subspace of \mathbb{R}^n . With the ordering \geq on \mathbb{Q}^n , we can define V_+ and V_- depending on if $\overline{q} \geq 0$ or $\overline{q} < 0$. We define a map $\pi \colon V \to \{-1,1\}$, where V has the Euclidean topology and $\{-1,1\}$ has the discrete topology. Let $\pi(q) = 1$ if there exists an open ball $U_{\varepsilon}(q)$ such that $U_{\varepsilon}(q) \cap V \subseteq V_+$ and $\pi(q) = -1$ if there exists an open ball $U_{\varepsilon}(q)$ such that $U_{\varepsilon}(q) \cap V \subseteq V_-$. Then π is continuous. Recall that topological vector spaces over \mathbb{R} are connected. Thus, we cannot have that $\dim_{\mathbb{R}} V_0 < r-1$ as if it were, then $V_{\mathbb{R}} \setminus V_0$ would be connected $\langle \langle \text{why is this bad?} \rangle \rangle$. Then suppose that $\dim_{\mathbb{R}} V_0 = r$. Then we have an ordered basis e_1, \ldots, e_r such that $e_i > 0$ for all i. But then the linear combinations of the e_i with positive coefficients are a subspace of V_+ which is a contradiction $\langle \langle \text{why?} \rangle \rangle$.

To construct the first row of the matrix, start with $V = \mathbb{Q}^n$ and consider the obtained V_0 . Then the dimension 1 subspace orthogonal to V_0 in \mathbb{R}^n defines the first row of A. We can continue this construction inductively to obtain the full matrix A.

Solution: [Str08] 1.2.6: First, we recall some definitions. The S-polynomial of f and g is

$$S(f,g) := \frac{\operatorname{lcm}(\operatorname{LM}(f),\operatorname{LM}(g))}{\operatorname{LT}(f)} f - \frac{\operatorname{lcm}(\operatorname{LM}(f),\operatorname{LM}(g))}{\operatorname{LT}(g)} g.$$

For a set of polynomials $\mathcal{F} = \{f_1, \dots, f_t\} \subseteq k[x_1, \dots, x_n]$, we write $f \to_{\mathcal{F}} 0$ if there exists $a_1, \dots, a_t \in k[x_1, \dots, x_n]$ such that $a_1f_1 + \dots + a_tf_t = 0$. Then [CLO15, Chapter 2, §9, Theorem 3] says that a basis $\mathcal{F} = \{f_1, \dots, f_t\}$ is a Gröbner basis for G if and only if $S(f_i, f_j) \to_{\mathcal{F}} 0$ for all $i \neq j$. But [CLO15, Chapter 2, §9, Proposition 4] says that for $f, g \in \mathcal{F}$ with relatively prime initial monomials, we have that $S(f, g) \to_{\mathcal{F}} 0$. This proves the claim. \square

1.3 What is Invariant Theory?

Solution: [Str08] 1.3.1: Let Γ be a finite group. Consider $f(x) = \prod_{g \in \Gamma} g \cdot x$. Then f is well defined as Γ is finite, invariant under the action of Γ , and of degree $|\Gamma| > 0$.

Now suppose Γ is the subgroup of matrices λI_n for $\lambda \in \mathbb{C}^{\times}$. Then for any polynomial $f(\overline{x}) = \sum_I \overline{a}^I \overline{x}^I \in \mathbb{C}[\overline{x}]^{\Gamma}$ and for any such $\lambda I_n \in \Gamma$, we have that

$$\sum_{I} \overline{a}^{I} \overline{x}^{I} = f(\overline{x}) = \lambda I_{n} \cdot f(\overline{x}) = \sum_{I} \overline{a}^{I} \lambda^{|I|} \overline{x}^{I}.$$

Then comparing coefficients, we deduce that $f(\overline{x})$ is fixed if and only if $f(\overline{x}) \in \mathbb{C}$. Thus, $\mathbb{C}[\overline{x}]^{\Gamma} = \mathbb{C}$.

Solution: [Str08] 1.3.3: Fix $a_1, \ldots, a_n \in \mathbb{Z}$ and let $\Gamma = \{ \operatorname{diag}(t^{a_1, \ldots, t^{a_n}}) \mid t \in \mathbb{C}^{\times} \}$. For $d \in \Gamma$ and a monomial $x_1^{\nu_1} \cdots x_n^{\nu_n}$, we have that $d \cdot x_1^{\nu_1} \cdots x_n^{\nu_n} = t^{a_1 \nu_1 + \cdots + a_n \nu_n} x_1^{\nu_1} \cdots x_n^{\nu_1}$. Thus, we want to determine the set of fixed exponent vectors

$$\mathcal{M} = \{ (v_1, \dots, v_n) \in \mathbb{Z}^n \mid v_1, \dots, v_n \ge 0, a_1 v_1 + \dots + a_n v_n = 0 \}.$$

This is exactly the object of student in §1.4, and in particular is solved by [Str08, Algorithm 1.4.5]. ((Is there a more direct way to see this?))

Solution: [Str08] 1.3.4: Recall that $GL_n(\mathbb{C})$ is an affine algebraic subvariety of $\mathbb{A}^{n^2+1}_{\mathbb{C}}$. Consider the subspace of matrices in $GL_n(\mathbb{C})$ which have distinct eigenvalues. Note that this is a Zariski open, and thus dense, subspace of $GL_n(\mathbb{C})$. Indeed, let $A \in GL_n(\mathbb{C})$ have eigenvalues $\lambda_1, \ldots, \lambda_n$. Then the discriminant of the characteristic polynomial p_A of A is $D(p_A) = \prod_{1 \leq i < j \leq n} (\lambda_i - \lambda_j)$. Recall that the discriminant of a degree d polynomial f(x) is $\frac{(-1)^{\binom{d}{2}}}{LC(f)} \operatorname{Res}_x(f(x), f'(x))$. For the characteristic polynomials, this is all expressible in terms of the entries of the matrix. Thus, the subspace of matrices in $GL_n(\mathbb{C})$ is a dense open subset of $GL_n(\mathbb{C})$. As this is an infinite set of matrices, any polynomial invariant on this dense subset must be invariant everywhere.

Let $f(\overline{X}) \in \mathbb{C}[\overline{x}]^{\mathrm{GL}_n(\mathbb{C})}$, where \overline{X} is a matrix of indeterminates. Let A have distinct eigenvalues, and so A is diagonalizable so that there exists a matrix $M \in \mathrm{GL}_n(\mathbb{C})$ such $A = MDM^{-1}$ for some diagonal matrix D. In particular, the entries of D are the eigenvalues of A. Thus, $f(A) = f(MDM^{-1}) = f(D)$. Furthermore, we may conjugate A by permutation matrices to reorder the eigenvalues. Thus, f must be a *symmetric* polynomial in the eigenvalues of A, denote these by $e_i := e_i(\lambda_1, \dots, \lambda_n)$. Recall that via the characteristic polynomial, we can express these e_i in terms of the entries of A in general so that each $e_i \in \mathbb{C}[\overline{X}]$ and it makes sense to write that $\mathbb{C}[e_1, \dots, e_n] \subseteq \mathbb{C}[\overline{X}]$. Thus, $\mathbb{C}[\overline{X}]^{\mathrm{GL}_n(\mathbb{C})} \subseteq \mathbb{C}[e_1, \dots, e_n]$. Denote by $f_i(\overline{X})$ the coefficient of t^i in $\det(tI_n - \overline{X})$. Then by noting that the characteristic polynomial is fixed under conjugation, and by comparing coefficients, we see that each f_i is also fixed under conjugation. Thus, we overall have that each e_i is fixed under conjugation and overall, $\mathbb{C}[\overline{X}]^{\mathrm{GL}_n(\mathbb{C})} = \mathbb{C}[e_1, \dots, e_n]$.

1.4 Torus Invariants and Integer Programming

Solution: [Str08] 1.4.3: With the addition of slack variables, we can without loss of generality compute a Hilbert basis for the monoid

$$\mathcal{M}_{\mathcal{A}}' = \{ \overline{\mu} \in \mathbb{Z}^d \mid \mathcal{A} \cdot \overline{\mu} = \overline{0} \}.$$

At a high level, we may use [Str08, Algorithm 1.4.5] multiple times to compute the Hilbert basis for $\mathcal{M}'_{\mathcal{A}}$. Of course if $\overline{\mu} = \overline{0}$ then $\mathcal{A} \cdot \overline{0} = \overline{0}$. Then for the nonzero case, we may divide \mathbb{Z}^d into https://en.wikipedia.org/wiki/Orthant and apply [Algorithm 1.4.5] to each orthant. Then we can take the union over all the orthants of the Hilbert bases for each orthant to get a Hilbert basis for the whole space. This is still minimal because when defining a Hilbert basis, we care about *non-negative* integer linear combinations.

Bibliography

- [CLO15] D.A. Cox, J. Little, and D. O'Shea. *Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra*. Undergraduate Texts in Mathematics. Springer International Publishing, 2015. ISBN: 9783319167213. URL: https://books.google.com/books?id=yL7yCAAAQBAJ.
- [GP07] G. Greuel and G. Pfister. A Singular introduction to commutative algebra. With contributions by Olaf Bachmann, Christoph Lossen and Hans Sch"onemann. 2nd extended ed. English. 2nd ed. Berlin: Springer, 2007, p. xx 689. URL: http://link.springer.com/book/10.1007%2F978-3-540-73542-7.
- [Mac98] Ian Grant Macdonald. Symmetric functions and Hall polynomials. Oxford university press, 1998.
- [Rob85] Lorenzo Robbiano. "Term Orderings on the Polynominal Ring." In: vol. 204. Apr. 1985, pp. 513–517. ISBN: 978-3-540-15984-1. DOI: 10.1007/3-540-15984-3_321.
- [Str08] Bernd Strumfels. *Algorithms in Invariant Theory*. Springer Vienna, 2008. ISBN: 9783211774175. DOI: 10.1007/978-3-211-77417-5. URL: http://dx.doi.org/10.1007/978-3-211-77417-5.