Приложение № 2.2.1.13 к Основной образовательной программе среднего общего образования, утвержденной приказом директора от 10.12.2021 г. № 37-П/2021

ОБЩЕОБРАЗОВАТЕЛЬНАЯ АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ОРГАНИЗАЦИЯ «ОБРАЗОВАТЕЛЬНЫЙ ЦЕНТР «УСТЬ-ЛАБИНСКИЙ ЛИЦЕЙ»

РАБОЧАЯ ПРОГРАММА

учебного предмета «Физика» базового уровня среднего общего образования для универсального (биология) профиля

Рабочую программу составили: Учитель А.А. Гладилин

Учитель М.Г. Кононец

Данная рабочая программа обеспечивает достижение образовательных результатов, предусмотренных ФГОС СОО по учебному предмету «Физика» на базовом уровне среднего общего образования и выполнение основной образовательной программы ОАНО «Усть-Лабинский Лицей» (далее – Лицей).

Настоящая рабочая программа разработана на основе рабочей программы учебного предмета «Физика» на базовом уровне среднего общего образования к УМК автора Грачева А.В.

В соответствии с учебным планом Лицея рабочая программа рассчитана на 136 часов и реализуется за 2 учебных года в течение 1-2 полугодий.

Учебный предмет «Физика» базового уровня среднего общего образования состоит из 2 учебных курсов:

- «Физика. 10 класс» 1 год обучения 70 часов (35 недель по 2 часа в неделю);
- «Физика. 11 класс» 2 год обучения 66 часов (33 недели по 2 часа в неделю).
 Преподавание ведется по учебникам УМК:
- 1. Физика. 10 класс. Базовый и углубленный уровень: учебник / Грачев А.В., Погожев В.А., Салецкий А.М., Боков П.Ю. М.: Издательский центр ВЕНТАНА-ГРАФ.
- 2. Физика. 11 класс. Базовый и углубленный уровень: учебник / Грачев А.В., Погожев В.А., Салецкий А.М., Боков П.Ю. М.: Издательский центр ВЕНТАНА-ГРАФ.

1. Планируемые результаты освоения учебного предмета «Физика» базового уровня среднего общего образования

Предметные результаты

В результате изучения учебного предмета «Физика» на базовом уровне обучающийся научится:

- демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;
- демонстрировать на примерах взаимосвязь между физикой и другими естественными науками;
- устанавливать взаимосвязь естественнонаучных явлений и применять основные физические модели для их описания и объяснения;
- использовать информацию физического содержания при решении учебных,
 практических, проектных и исследовательских задач, интегрируя информацию из
 различных источников и критически ее оценивая;

- различать и уметь использовать в учебно-исследовательской деятельности методы научного познания (наблюдение, описание, измерение, эксперимент, выдвижение гипотезы, моделирование и др.) и формы научного познания (факты, законы, теории), демонстрируя на примерах их роль и место в научном познании;
- проводить прямые и косвенные изменения физических величин, выбирая измерительные приборы с учетом необходимой точности измерений, планировать ход измерений, получать значение измеряемой величины и оценивать относительную погрешность по заданным формулам;
- проводить исследования зависимостей между физическими величинами: проводить измерения и определять на основе исследования значение параметров, характеризующих данную зависимость между величинами, и делать вывод с учетом погрешности измерений;
- использовать для описания характера протекания физических процессов физические величины и демонстрировать взаимосвязь между ними;
- использовать для описания характера протекания физических процессов физические законы с учетом границ их применимости;
- решать качественные задачи (в том числе и межпредметного характера): используя модели, физические величины и законы, выстраивать логически верную цепочку объяснения (доказательства) предложенного в задаче процесса (явления);
- решать расчетные задачи с явно заданной физической моделью: на основе анализа условия задачи выделять физическую модель, находить физические величины и законы, необходимые и достаточные для ее решения, проводить расчеты и проверять полученный результат;
- учитывать границы применения изученных физических моделей при решении физических и межпредметных задач;
- использовать информацию и применять знания о принципах работы и основных характеристиках изученных машин, приборов и других технических устройств для решения практических, учебно-исследовательских и проектных задач;
- использовать знания о физических объектах и процессах в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде, для принятия решений в повседневной жизни.

В результате изучения учебного предмета «Физика» на базовом уровне обучающийся получит возможность научиться:

- понимать и объяснять целостность физической теории, различать границы ее
 применимости и место в ряду других физических теорий;
- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- характеризовать системную связь между основополагающими научными понятиями:
 пространство, время, материя (вещество, поле), движение, сила, энергия;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
- самостоятельно планировать и проводить физические эксперименты;
- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические,
 сырьевые, экологические, и роль физики в решении этих проблем;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении физических задач,
 находить адекватную предложенной задаче физическую модель, разрешать проблему
 как на основе имеющихся знаний, так и при помощи методов оценки;
- проводить индивидуальную исследовательскую деятельность по физике (или разрабатывать индивидуальный проект) в качестве исполнителя: планировать ход работы, отбирать и структурировать необходимую информацию, проводить эксперименты, интерпретировать результаты, делать выводы на основе полученных результатов, представлять продукт своих исследований;
- решать практико-ориентированные качественные и расчетные физические задачи с выбором физической модели, используя несколько физических законов или формул, связывающих известные физические величины, в контексте межпредметных связей.

2. Содержание и тематическое планирование учебного предмета «Физика» базового уровня среднего общего образования

1 год обучения (учебный курс «Физика. 10 класс. Базовый уровень»)

***	Коли-	
Наименование	чество	Содержание темы
темы	часов	-
Тема 1.	10	Положение тела в пространстве. Способы описания
Кинематика		механического движения. Системы отсчёта. Перемещение.
		Путь. Скорость. Прямолинейное равномерное движение.
		Решение задач кинематики прямолинейного равномерного
		движения. Графический и аналитический способы решения.
		Относительность движения. Сложение движений. Закон
		сложения перемещений и скоростей. Движение связанных тел.
		Ускорение. Прямолинейное равноускоренное движение.
		Свободное падение. Решение задач о равноускоренном
		движении. Графический и аналитический способы решения.
		Движение тела, брошенного под углом к горизонту.
		Равномерное движение по окружности. Угловая скорость.
		Период и частота вращения. Ускорение при равномерном
		движении по окружности. Равноускоренное движение по
		окружности. Поступательное и вращательное движения
		твёрдого тела. Сложение поступательного и вращательного
		движений. Плоское движение. Мгновенная ось вращения.
		Примеры решения задач о плоском движении твёрдых тел.
Тема 2.	12	Закон инерции. Инерциальные системы отсчёта. Первый закон
Динамика		Ньютона. Сила. Измерение сил. Инертность. Масса. Второй
		закон Ньютона. Взаимодействие тел. Третий закон Ньютона.
		Деформации. Сила упругости. Закон Гука. Сила трения.
		Механическое напряжение. Модуль Юнга. Решение задач о
		движении тела под действием нескольких сил, о движении
		взаимодействующих тел. Решение задач, требующих анализа
		возможных вариантов движения и взаимодействия тел.
		Динамика равномерного движения материальной точки по
		окружности. Динамика равноускоренного движения
		материальной точки по окружности. Закон всемирного
		тяготения. Движение планет и искусственных спутников.
		Законы Кеплера. Принцип относительности Галилея.
Тема 3.	8	Инерциальные и неинерциальные системы отсчёта. Импульс. Изменение импульса материальной точки. Система
законы	0	
		тел. Закон сохранения импульса. Центр масс. Теорема о движении центра масс. Механическая работа. Вычисление
сохранения в механике		работы сил. Мощность. Кинетическая энергия. Потенциальная
мслапикс		энергия. Механическая энергия системы тел. Изменение
		механической энергии. Закон сохранения механической энергии.
		меланической эпергии. Закон сохранения механической энергии.

Hawrence	Коли-	
Наименование	чество	Содержание темы
темы	часов	
Тема 4.	4	Твёрдое тело. Равновесие тела. Момент силы. Условия
Статика		равновесия твёрдого тела. Простые механизмы. Коэффициент
		полезного действия. Применение условий равновесия при
		решении задач статики. Гидростатическое давление.
		Атмосферное давление. Законы гидро- и аэростатики.
Тема 5.	12	Основные положения МКТ. Характер движения и
Основы МКТ и		взаимодействия молекул в газах, жидкостях и твёрдых телах.
термодинамики		Тепловое движение атомов и молекул. Броуновское движение.
		Диффузия. Масса молекул. Количество вещества. Молярная
		масса. Термодинамическая система. Внутренняя энергия
		термодинамической системы и способы её изменения. Закон
		сохранения энергии в тепловых процессах (первый закон
		термодинамики). Закон сохранения энергии. Температура и
		тепловое равновесие. Нулевой закон термодинамики.
		Количество теплоты. Удельная и молярная теплоёмкость
		вещества. Решение задач о теплообмене. Законы идеального газа.
		Объединённый газовый закон. Уравнение состояния идеального
		газа. Основное уравнение молекулярно-кинетической теории.
		Температура — мера средней кинетической энергии
		хаотического движения молекул. Распределение молекул газа по
		скоростям. Распределение Максвелла. Применение первого
Тема 6.	4	закона термодинамики к изопроцессам.
Тема о.	4	Преобразование энергии в тепловых машинах. Принцип действия тепловых машин. КПД тепловых двигателей. Цикл
		Карно. Принцип действия холодильных машин и тепловых
машины		насосов. Решение задач о тепловых машинах. Второй закон
		термодинамики. Необратимость процессов в природе.
Тема 7.	9	Испарение и конденсация. Скорость процесса испарения.
Агрегатные		Насыщенный пар. Влажность воздуха. Измерение влажности.
состояния		Решение задач о парах. Удельная теплота парообразования.
вещества и		Кипение. Зависимость температуры кипения от давления.
фазовые		Реальные газы. Структура твёрдых тел. Плавление и
переходы		кристаллизация. Удельная теплота плавления. Поверхностное
1 -71		натяжение.
Тема 8.	7	Электризация тел. Два вида электрических зарядов. Проводники
Электростатика		и диэлектрики. Объяснение электрических явлений. Закон
_		сохранения электрического заряда. Закон Кулона. Принцип
		суперпозиции. Сложение электрических сил. Решение задач.
		Дальнодействие и близкодействие. Электрическое поле.
		Напряжённость электрического поля. Силовые линии
		электрического поля. Однородное электрическое поле. Теорема
		Гаусса. Расчёт напряжённости поля равномерно заряженных
L		

Наименование темы	Коли- чество часов	Содержание темы
		плоскости, сферы. Работа сил электростатического поля. Потенциал и разность потенциалов. Эквипотенциальные поверхности. Доказательство потенциальности электростатического поля. Потенциал поля точечного заряда. Проводники в постоянном электрическом поле. Диэлектрики в постоянном электрическом поле. Диэлектрическая проницаемость. Конденсаторы. Ёмкость плоского конденсатора. Энергия электрического поля конденсатора. Параллельное и последовательное соединение конденсаторов.
Консультации	4	
Контрольные мероприятия	4	

2 год обучения (учебный курс «Физика. 11 класс. Базовый уровень»)

Наумоноромно	Коли-	
Наименование темы	чество	Содержание темы
	часов	
Тема 1.	11	Постоянный электрический ток. Условия возникновения
Постоянный		электрического тока. Направление и сила тока. Электрическая
электрический		цепь. Свободные носители заряда. Электрический ток в
ток		проводниках. Вольт-амперная характеристика проводника.
		Закон Ома для участка цепи. Электрическое сопротивление.
		Удельное электрическое сопротивление. Сверхпроводимость
		Расчёт сопротивления системы, состоящей из нескольких
		проводников. Последовательное и параллельное соединения
		резисторов. Измерение силы тока и напряжения. Работа и
		мощность электрического тока. Тепловое действие тока. Закон
		Джоуля—Ленца. Источник тока. Электродвижущая сила.
		Замкнутая электрическая цепь. Закон Ома для полной цепи.
		Полезная и полная мощность тока в замкнутой цепи. Передача
		электрической энергии. Закон Ома для участка цепи с
		источником тока. Правила Кирхгофа. Экспериментальные
		обоснования электронной проводимости металлов и сплавов
		Электрический ток в электролитах. Электролиз и его
		применение. Закон Фарадея для электролиза. Электрический
		ток в газах. Плазма. Газовые разряды. Электрический ток в
		вакууме. Вакуумный диод. Электронно-лучевая трубка.
		Электрический ток в полупроводниках. Полупроводниковые
		приборы. Перезарядка конденсатора.

	Коли-	
Наименование	чество	Содержание темы
темы	часов	
Тема 2.	6	Магнитное взаимодействие. Магнитное поле. Индукция
Магнитное поле		магнитного поля. Сила Лоренца. Линии магнитной индукции.
		Картины магнитных полей. Закон Био—Савара—Лапласа.
		Решение задач о движении заряженных частиц в магнитном
		поле. Циклотрон, масс-спектрограф, МГД-генератор. Действие
		магнитного поля на проводник с током. Сила Ампера.
		Магнитное взаимодействие проводников с токами. Единица
		силы тока — ампер. Действие магнитного поля на рамку с
		током. Электродвигатель постоянного тока. Гальванометр.
		Динамик. Магнитные свойства вещества.
Тема 3.	9	Опыты Фарадея. Открытие электромагнитной индукции. ЭДС
Электромагнитн		индукции в движущемся проводнике. Магнитный поток. Закон
ая индукция		электромагнитной индукции. Правило Ленца. Вихревое
		электрическое поле. Индуктивность. Самоиндукция. Энергия
		магнитного поля тока.
Тема 4.	13	Механические колебания. Условия возникновения свободных
Колебания и		колебаний. Кинематика колебательного движения. Динамика
волны		колебательного движения. Преобразование энергии при
		механических колебаниях. Математический маятник.
		Затухающие и вынужденные колебания. Резонанс. Метод
		векторных диаграмм. Автоколебания. Свободные
		электромагнитные колебания. Уравнение гармонических
		колебаний. Формула Томсона. Процессы при гармонических
		колебаниях в контуре. Переменный ток. Источник переменного
		тока. Активное сопротивление в цепи переменного тока.
		Действующие значения силы переменного тока и переменного
		напряжения. Конденсатор в цепи переменного тока. Катушка
		индуктивности в цепи переменного тока. Вынужденные
		электромагнитные колебания. Резонанс. Закон Ома для
		электрической цепи переменного тока. Мощность в цепи
		переменного тока. Производство, передача и потребление
		электрической энергии. Трансформатор. Механические и
		электромагнитные волны. Механические волны. Уравнение
		гармонической бегущей волны. Звук. Электромагнитные волны.
		Свойства электромагнитных волн. Спектр электромагнитных
T 5	0	волн. Принципы радиосвязи и телевидения.
Тема 5.	9	Источники света. Закон прямолинейного распространения света.
Геометрическая		Закон отражения света. Построение изображений в плоских
оптика.		зеркалах. Закон преломления света на границе раздела двух
Свойства волн		изотропных однородных прозрачных сред. Дисперсия света.
		Явление полного внутреннего отражения. Линзы. Тонкие линзы.
		Фокусное расстояние и оптическая сила линзы. Построение

	Коли-	
Наименование	чество	Содержание темы
темы	часов	
	писов	изображений, создаваемых тонкими линзами. Глаз и зрение.
		Оптические приборы. Волновой фронт. Принцип Гюйгенса.
		Поляризация волн. Интерференция волн. Интерференция света.
		Использование интерференции в оптике. Дифракция света.
		Метод Гюйгенса—Френеля. Разрешающая способность
		оптической системы. Дифракционная решётка.
Тема 6.	2	Постулаты специальной теории относительности.
Элементы		Относительность одновременности событий. Замедление
теории		времени и сокращение длины. Закон сложения скоростей в СТО.
относительности		Масса, импульс и энергия в СТО.
Тема 7.	5	Равновесное тепловое излучение. Гипотеза Планка. Фотоэффект.
Квантовая		Законы фотоэффекта. Уравнение Эйнштейна для фотоэффекта.
физика.		Корпускулярно-волновой дуализм. Давление света. Гипотеза де
Строение атома		Бройля. Планетарная модель атома. Первый постулат Бора.
		Правило квантования орбит. Второй постулат Бора. Спектры
		испускания и поглощения. Лазеры и их применение.
Тема 8.	4	Состав ядра. Ядерные силы. Энергия связи атомного ядра.
Атомное ядро.		Радиоактивность. Закон радиоактивного распада. Причины
Элементарные		радиоактивности. Альфа- и бета-распады. Правила смещения.
частицы		Ядерные реакции. Деление и синтез ядер. Ядерная энергетика.
·		Методы регистрации ионизирующих ядерных излучений.
		Биологическое действие радиоактивных излучений. Дозиметрия.
		Элементарные частицы. Фундаментальные взаимодействия.
Тема 9.	3	Основные методы исследования в астрономии. Определение
Строение		расстояний до небесных тел. Солнце. Солнечная система.
Вселенной		Физические характеристики звёзд. Эволюция звёзд. Вселенная.
Консультации	4	
Контрольные	4	
мероприятия		