Policy gradient

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Policy gradient

- REINFORCE on steroids
 - lower variance
 - baseline
 - off-policy
 - reuse rollouts

$$\frac{1}{N} \sum_{\tau \sim P_{\pi,T}} R(\tau) \nabla \log P_{\pi,T}(\tau)$$

Vanilla policy gradient algorithm

 $\frac{1}{N} \sum_{\tau \sim P_{\pi,T}} R(\tau) \nabla \log P_{\pi,T}(\tau)$

- For i iterations
 - Collect rollouts
 - Estimate the sample gradient
 - Take a gradient step

Variance of REINFORCE

- What happens if all rewards are positive?
 - Only learn to do "more" things in τ
 - SGD zig-zags
- RL worst best of we have positive and negative returns

$$\frac{1}{N} \sum_{\tau \sim P_{\pi,T}} R(\tau) \nabla \log P_{\pi,T}(\tau)$$

Baselines

 Gradient for constant return is zero

$$\frac{1}{N} \sum_{\tau \sim P_{\pi,T}} R(\tau) \nabla \log P_{\pi,T}(\tau)$$

•
$$\mathbb{E}_{\tau \sim P_{\pi,T}}[b \, \nabla \log P_{\pi,T}(\tau)] = 0$$

- Reduces variance
 - Positive and negative returns
- Unbiased gradient estimate

On- vs off-policy

- REINFORCE is on-policy
 - Trajectories (rollouts)
 need to come from
 current policy
 - No reuse of trajectories between gradient update

$$\frac{1}{N} \sum_{\tau \sim P_{\pi,T}} R(\tau) \nabla \log P_{\pi,T}(\tau)$$

Off-policy

$$\frac{1}{N} \sum_{\tau \sim Q} \frac{P_{\pi,T}(\tau)}{Q(\tau)} R(\tau) \nabla \log P_{\pi,T}(\tau)$$

- Importance sampling
 - Many variants

Policy gradient algorithm

- For i iterations
 - Collect rollouts
 - Add to replay buffer
 - Update baseline network
 - For j batches
 - Estimate the sample gradient on replay buffer
 - Take a gradient step

Policy gradient

 REINFORCE with many tricks

$$\frac{1}{N} \sum_{\tau \sim P_{\pi,T}} R(\tau) \nabla \log P_{\pi,T}(\tau)$$

- Not very sample efficient
- Gradient estimate by sampling from an exponential trajectory space

