How much computing time did the 10-fold cross-validation take for the digits-recognition application (on my laptop)?

- A < 1 second
- B 1-10 seconds
- C 10 seconds to 1 minute
- D 1–10 minutes
- E > 10 minutes

We have a different cross-validated misclassification rate! Why?

- A There is randomness in the Bernoulli statistical model
- B There was a different random sample of 400 digits
- C Professor Welch changed the model
- D The GLM function gam converged to different solutions
- E The 10 folds in 10-fold cross-validation are randomly chosen.

The lines shown are contours of constant $\hat{p}(\mathbf{x})$. e.g., the middle line shows where $\hat{p}(\mathbf{x}) = 0.5$ (the decision boundary). Why is the decision boundary linear?

- A Because $p(\mathbf{x})$ is a linear function of of x_1 and x_2
- B Because $p(\mathbf{x})$ is a linear function of the parameters β_j
- C Because the linear predictor $\eta(\mathbf{x})$ is a linear function of x_1 and x_2
- D Because the linear predictor $\eta(\mathbf{x})$ is a linear function of the parameters β_j
- E Because it is called a generalized linear model.

Why are contours of constant $\hat{p}(\mathbf{x})$ linear?

A Because of the properties of the multivariate normal distribution

© Copyright William J. Welch 2014-2014. All rights reserved.

- B Because $p(\mathbf{x})$ is a linear function of the parameters \mathbf{a}
- C Because $p(\mathbf{x})$ is a linear function of the parameter b
- D Because $p(\mathbf{x})$ a linear function of the parameters β_j
- E Because it is called linear discriminant analysis.

