No of Pages : 2 Course Code : 18XW21

Roll No:

(To be filled in by the candidate)

PSG COLLEGE OF TECHNOLOGY, COIMBATORE - 641 004

SEMESTER EXAMINATIONS, APRIL 2019

MSc - SOFTWARE SYSTEMS Semester : 2

18XW21 APPLIED LINEAR ALGEBRA

Time: 3 Hours Maximum Marks: 100

INSTRUCTIONS:

- 1. Answer **ALL** questions. Each question carries 20 Marks.
- 2. Subdivision (a) carries 3 marks each, subdivision (b) carries 7 marks each and subdivision (c) carries 10 marks each.
- 3. Course Outcome : Qn.1 | CO1 | Qn.2 | CO2 | Qn.3 | CO3 | Qn.4 | CO4 | Qn.5 | CO5
- 1. a) Support or refute: Every homogeneous system of linear equations is consistent.
 - b) (i) Derive an equation involving g, h, and k that makes the following augmented

matrix consistent
$$\begin{bmatrix} 1 & -4 & 7 & g \\ 0 & 3 & -5 & h \\ -2 & 5 & -9 & k \end{bmatrix}$$
. (3)

(ii) A network in which the flow rate and direction of flow in certain branches are given below. Deduce the flow rates and directions of flow in the remaining branches.

(4)

- c) Determine an LU-Decomposition of the matrix, $A = \begin{bmatrix} 2 & 6 & 2 \\ -3 & -8 & 0 \\ 4 & 9 & 2 \end{bmatrix}$.
- 2. a) Does $\sin 3x$ lie in the space spanned by $\{\sin x, \sin^3 x\}$? Justify.
 - b) (i) Comment: The vectors $v_1 = (1, 1, 2, -1)$, $v_2 = (4, 9, 9, -4)$ and $v_3 = (5, 8, 9, -5)$ in \mathbb{R}^4 form a linearly independent set. (3)
 - (ii) Let V be a vector space over a field F. Prove that a non-empty subset W of V is a subspace of V if and only it $\alpha u + \beta v \in W$ for all $u, v \in W$ and $\alpha, \beta \in F$. (4)
 - c) (i) Find a subset of vectors $v_1 = (1, -2, 0, 3)$, $v_2 = (2, -5, -3, 6)$, $v_3 = (0, 1, 3, 0)$, $v_4 = (2, -1, 4, 7)$ and $v_5 = (5, -8, 1, 2)$ that forms a basis for the space spanned by these vectors. Express each vector not in the basis as a linear combination of the basis vectors.

No of Pages : 2 Course Code : 18XW21

(OR)

(ii) Verify that the set of all triples (x, y, z) of real numbers with the operations of addition and scalar multiplication defined by (x, y, z) + (x', y', z') = (x + x' + 1, y + y' + 1, z + z' + 1) and k(x, y, z) = (0,0,0) form a vector space or not. If not, list all axioms that fail to hold.

- 3. a) Let V be a vector space and T be a linear transformation defined on V. Prove that kernel of T is a subspace of V..
 - b) (i) Prove or disprove: Composition of two linear transformations is also a linear transformation. (3)
 - (ii) Consider the basis $B = \{u_1, u_2\}$ and $B' = \{v_1, v_2\}$ for R^2 , where $u_1 = (1, 0)$, $u_2 = (0, 1)$, $v_1 = (2, 1)$ and $v_2 = (-3, 4)$. Find the transition matrix from B' to B. (4)
 - c) Consider the basis $S = \{v_1, v_2, v_3\}$ for R^3 , where $v_1 = (1, 1, 1), v_2 = (1, 1, 0)$ and $v_3 = (1, 0, 0)$ and let $T: R^3 \to R^3$ be a linear operator such that $T(v_1) = (-1, 2, 4)$ $T(v_2) = (0, 3, 2)$ and $T(v_3) = (1, 5, -1)$. Find a formula for $T(x_1, x_2, x_3)$ and use that formula to find T(2, 4, -1).
- 4. a) Sketch the unit circle in the inner product space $V = R^2$ under the inner product $\langle u, v \rangle = 5u_1v_1 + 9u_2v_2$ where $u = (u_1, u_2)$ and $v = (v_1, v_2)$ in R^2 .
 - b) (i) Define an inner product $\langle p(x), q(x) \rangle = \int_0^1 p(x)q(x)dx$. Verify that this satisfies each of the axioms for an inner product. (3)
 - (ii) If ||u|| = 3, ||v|| = 2 and $\langle u, v \rangle = 0$ then compute the value of $\langle u 2v, 3u + 4v \rangle$. (4)
 - c) (i) If $S = \{v_1, v_2, \dots, v_n\}$ is an orthonormal set of nonzero vectors in an inner product space V, then prove that S is an orthonormal basis for V and for any vector u in V $u = \langle u, v_1 \rangle v_1 + \langle u, v_2 \rangle v_2 + \dots + \langle u, v_n \rangle v_n$

(OR)

- (ii) Find the QR decomposition of the matrix , $\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 1 & 2 & 0 \end{pmatrix}$.
- 5. a) If A is a $n \times n$ matrix such that one of its eigenvalues is zero, then A is an invertible matrix. Comment on this statement.
 - b) (i) Give the geometrical interpretation of eigenvectors in \mathbb{R}^2 . (3)
 - (ii) Determine the bases for the eigen spaces of the matrix $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$. (4)
 - c) Find a singular value decomposition for $A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \end{pmatrix}$.

/END/

FD/RL