ECE 6310 - Advanced Electromagnetic Fields: Homework Set #3

Miguel Gomez

2024-02-19

Preliminaries

In this document, we use standard notation for electromagnetic theory. Key equations and concepts are summarized below:

Vector Notation

- **%**: Electric field intensity
- **%**: Magnetic field intensity
- **2**: Electric flux density
- **3**: Magnetic flux density
- **J**: Current density
- ρ_v : Volume charge density

Differential Operators

- $\nabla \cdot$: Divergence of a vector field
- $\nabla \times$: Curl of a vector field
- \bullet ∇ : Gradient of a scalar field
- \bullet $\,\partial_i\,$: Partial derivative with respect to the independent basis element i

Maxwell's Equations

In integral form, Maxwell's equations are given by:

$$\oint_{\partial V} \mathcal{E} \cdot d\mathcal{E} = -\frac{d}{dt} \int_{V} \mathcal{B} \cdot d\mathcal{S} \qquad \text{(Faraday's Law of Induction)}$$

$$\oint_{\partial V} \mathcal{H} \cdot d\mathcal{E} = \int_{V} \mathcal{J} \cdot d\mathcal{S} + \frac{d}{dt} \int_{V} \mathcal{D} \cdot d\mathcal{S} \qquad \text{(Ampère's Circuital Law)}$$

$$(2)$$

$$\iint_{\partial V} \mathcal{D} \cdot d\mathcal{S} = \int_{V} \rho_{v} dV \qquad \text{(Gauss's Law for Electricity)}$$

$$\iint_{\partial V} \mathcal{B} \cdot d\mathcal{S} = 0 \qquad \text{(Gauss's Law for Magnetism)}$$

$$(3)$$

Other Relevant Equations

- Continuity Equation: $\nabla \cdot \mathbf{J} + \partial_t \rho_v = 0$
- Relationship between \mathscr{E} , \mathscr{D} : $\mathscr{D} = \epsilon \mathscr{E}$
- Relationship between \mathcal{H} , \mathcal{B} : $\mathcal{B} = \mu \mathcal{H}$

Boundary Conditions

Discuss the boundary conditions for \mathcal{E} , \mathcal{H} , \mathcal{D} , and \mathcal{B} at interfaces between different media.

1 - 6.19

Show that for observations made at very large distances ($\beta r \gg 1$) the electric and magnetic fields of Example 6-3 reduce to the following:

$$E_{\theta} =$$

$$H_{\phi} \approx$$

$$E_{r} \approx 0$$

$$E_{\phi} = H_{r} = H_{\theta} = 0$$

2 - 6.20

For 6.19, show that

• the time average power density is:

$$\mathbf{S} = \frac{1}{2} \mathrm{Re}[\mathbf{E} \times \mathbf{H}^*]$$

- Radiation Intensity
- Radiated Power
- Directivity
- Radiation Resistance

3 - 6.25

The current distribution on a very thin wire dipole antenna of overall length ℓ is given by:

$$I_e = \begin{cases} \hat{a}zI_0 \sin[\beta\left(\frac{\ell}{2} - z'\right)] & \text{if } 0 \le z' \le \frac{\ell}{2} \\ \hat{a}zI_0 \sin[\beta\left(\frac{\ell}{2} + z'\right)] & \text{if } -\frac{\ell}{2} \le z' \le 0 \end{cases}$$

where I0 is a constant. Representing the distance R of (6-112) by the far-field approximations of (6-112a) through (6-112b), derive the far-zone electric and magnetic fields radiated by the dipole using (6-97a) and the far-field formulations of Section 6.7

4 - 6.26

Show that the radiated far-zone electric and magnetic fields derived in Problem 6.25 reduce for a half-wavelength dipole $(\ell = \frac{\lambda}{2})$ to:

$$E_{\theta} \approx j\eta \frac{I_0 e^{-j\beta r}}{2\pi r} \left[\frac{\cos\left(\frac{\pi}{2}\cos\theta\right)}{\sin\theta} \right]$$
$$H_{\phi} \approx \frac{E_{\theta}}{\eta}$$

$$E_r \approx E_\phi \approx H_r \approx H_\theta \approx 0$$

5 - 6.38

A coaxial line of inner and outer radii a and b, respectively, is mounted on an infinite conducting ground plane. Assuming that the electric field over the aperture of the coax is:

$$E_a = -\hat{a}_{\rho} \frac{V}{\varepsilon \ln(b/a)\rho'}$$
where $a \le \rho' \le b$

where V is the applied voltage and is the permittivity of medium in the coax, find the far-zone spherical electric and magnetic field components radiated by the aperture.

Figure P6-38

- 6 7.3
- 7 7.15
- 8 7.37

References

[1] Constantine A. Balanis. advanced engineering electromagnetics, chapter 1, page 2–3. John Wiley & Sons, 2024.