CS4246 Al Planning and Decision Making

Monte Carlo Tree Search in Texas Holdem' Poker

Choo XianJun, Davin¹ Lim Keng Kiat¹ Wang Zi¹

¹Department of Computer Science National University of Singapore

Monte Carlo Tree Search

• Why MCTS?

Monte Carlo Tree Search

- Why MCTS?
- Comparison against classic tree search algorithms
 - α - β pruning
 - A* search

Overview

- Monte Carlo
 - A statistical approach

Overview

- Monte Carlo
 - A statistical approach
- Tree Search
 - Search on a sequential problem domain

- Selection
 - While we are at a visited node, select a child node
 - How? We shall discuss this later.

Selection

- 2 Expansion
 - If we reach an unvisited node, expand/create all possible child nodes
 - Mark node as visited and pick one of child nodes to explore

Selection

2 Expansion

- Simulation
 - While we have not reached a terminal node, simulate a playthrough/rollout

Selection

2 Expansion

Simulation

- Backpropagation
 - Compute reward at terminal node
 - Backpropagate reward back towards the root
 - Update relevant details needed to make selection decisions

Selection

2 Expansion

Simulation

Backpropagation

MCTS Outline

Figure: Monte Carlo Tree Search outline from Chaslot (2010)

Selection Choices

• Exploration vs. Exploitation

Selection Choices

- Exploration vs. Exploitation
- Upper Confidence Bound (UCB1)

$$UCB1 = \overline{X}_j + \sqrt{\frac{2 \ln n}{n_j}}$$

Selection Choices

- Exploration vs. Exploitation
- Upper Confidence Bound (UCB1)

$$UCB1 = \overline{X}_j + \sqrt{\frac{2 \ln n}{n_j}}$$

Upper Confidence Bound for Trees (UCT)

$$UCT = \overline{X}_j + 2C_p \sqrt{\frac{2 \ln n}{n_j}}$$

Properties

- Ahueristic
 - Compared to other classical search algorithms that need intermediate evaluation functions/heuristics

Properties

- Ahueristic
 - Compared to other classical search algorithms that need intermediate evaluation functions/heuristics
- Anytime
 - Able to make sense even if stopped halfway during computation

Properties

- Ahueristic
 - Compared to other classical search algorithms that need intermediate evaluation functions/heuristics
- Anytime
 - Able to make sense even if stopped halfway during computation
- Asymmetric
 - Favour more promising nodes

Asymmetric Tree Growth

Figure: Illustration of asymmetric search tree of our MCTS Poker bot

- Parallelization
 - Leaf/Root/Tree parallelization

- Parallelization
 - Leaf/Root/Tree parallelization
- Re-using search trees
 - Start search tree for new node from appropriate branch of old node

- Parallelization
 - Leaf/Root/Tree parallelization
- Re-using search trees
 - Start search tree for new node from appropriate branch of old node
- Opponent Modelling
 - Vanilla MCTS assumes uniform distribution over opponent's actions

- Parallelization
 - Leaf/Root/Tree parallelization
- Re-using search trees
 - Start search tree for new node from appropriate branch of old node
- Opponent Modelling
 - Vanilla MCTS assumes uniform distribution over opponent's actions
- Adaptive Play
 - Able to detect change in opponent's strategy/playing style

2 Player Limit Texas Holdem' Poker

- Rules
 - Hand strength: Royal Flush > Straight Flush > Four of a Kind > ...
 - Small blinds, Big blinds
 - Actions: Fold, Check, Call, Raise (Small), Raise (Big)
 - Stages: Deal, Flop, Turn, River

2 Player Limit Texas Holdem' Poker

- Rules
 - Hand strength: Royal Flush > Straight Flush > Four of a Kind > ...
 - Small blinds, Big blinds
 - Actions: Fold, Check, Call, Raise (Small), Raise (Big)
 - Stages: Deal, Flop, Turn, River
- Properties
 - Partially observable
 - Non-deterministic
 - ullet Large belief space o We approximate with MCTS

2 Player Limit Texas Holdem' Poker

- Rules
 - Hand strength: Royal Flush > Straight Flush > Four of a Kind > ...
 - Small blinds, Big blinds
 - Actions: Fold, Check, Call, Raise (Small), Raise (Big)
 - Stages: Deal, Flop, Turn, River
- Properties
 - Partially observable
 - Non-deterministic
 - ullet Large belief space o We approximate with MCTS
- Alternative approaches (Game theory, etc)

Implementation

- Python 2.7
- Demo

Where can we go from here?

- Look into MCTS extensions
- Extend our MCTS bot to Multiplayer No Limit Texas Holdem' Poker
- Hook up our MCTS bot with an actual Poker game client and see how well it fares

Thank you for your time

- For references and source codes, refer to report.
- Questions?

