班级	
姓名	

练习八

1. 求下列函数在指定点 z_0 处 Taylor 展式。

(1)
$$\frac{1}{4-3z}$$
, $z_0 = 1+i$

(1)
$$\sin z$$
, $z_0 = 1$

2. 将下列各函数在指定圆环域内展为 Laurent 级数。

(1)
$$z^2 e^{\frac{1}{z}}$$
, $0 < |z| < \square$

(2)
$$\frac{z^2-2z+5}{(z-2)(z^2+1)}$$
, $1 < |z| < 2$

3. 将 $\frac{1}{(z^2+1)^2}$,在z=i的去心邻域内展为 Laurent 级数。

4. 证明在 $f(z) = \cos(z + \frac{1}{z})$ 以 z 的各幂表出的 Laurent 展开式中的各系数为: $c_n = \frac{1}{2\pi} \int_0^{2\pi} \cos(2\cos\theta) \cos n\theta d\theta , \quad n=0, \pm 1, \dots$

提示: 令 C 为单位圆 |z|=1,在 C 上取积分变量 $z=e^{i\theta}$,则 $z+\frac{1}{z}=2\cos\theta, dz=ie^{i\theta}d\theta$ 。

*5. 思考题

- (1)实变量函数中函数展成 Taylor 级数和复变量函数中函数展开为 Taylor 级数的条件有什么不同?
- (2)确定 f(z)的 Taylor 级数的收敛半径时,应注意什么? 奇点为什么在收敛圆周上?
- (3)Laurent 级数与 Taylor 级数有何关系?