CORE

a study into classifying aesthetics using machine learning

Ashley Zhang

Table of Contents

Ideation	3
Dataset Creation	3
Custom Dataset	3
Small-Scale Prototype	4
1. Data Collection	4
2. Preprocessing Data	4
3. Splitting Data	4
4. Transfer Learning	4
5. Compiling Model	4
6. Training	5
7. Data & Results from Small-Scale Test	5
a1. Training Epochs	5
b1. Train and Validation Accuracy	5
c1. Train and Validation Loss	5
d1. Confusion Matrices	5
e1. Classification Report	5
Upscaling	6
1. Obtaining more data	6
3. Data & Results from upscaled version	6
a2. Training Epochs	6
b2. Train and Validation Accuracy	6
c2. Train and Validation Loss	6
d2. Confusion Matrices	6
e2. Classification Report	6
f1. Predicted versus Actual outputs where 0 : coquette :: 1 : grunge :: 2 : y2k	7
4. Optimization	7
One-hot Encoding Labels	8
5. Data & Results from one-hot encoded version	8
a3. Training Epochs	8
b3. Train and Validation Loss	8
c3. Train and Validation Accuracy	8
d3. Confusion Matrices	8
e3. Classification Report	8
f2. Predicted versus Actual outputs where 0 : coquette :: 1 : grunge :: 2 : y2k	8

Ideation

1. Aesthetics

- a. image-to-text: given an image of an article of clothing, generate text describing it
- b. text-to-image: given certain parameters, generate an image of clothing matching said params
- c. classification: given an image, classify image within its aesthetic realm
 - i. $VGG19 \rightarrow pre-trained model$
 - ii. k-nearest neighbors
 - iii. decision tree
 - iv. support vector machine

2. x-core

- a. -core suffix typically denotes "the central, innermost, or most essential part of anything"
- b. but may also be related to "the permanent, dedicated, and completely faithful nucleus of a group or movement"
- c. x-core being representative of an arbitrary aesthetic
 - i. from Cottagecore, Dreamcore, Normcore, And Other -Core Words.

Dataset Creation

- currently experiencing lack of datasets catering towards fashion, particularly that of Gen Z trends
- create own image datasets (things to keep in mind)
 - a. train, test, validation 80/10/10 split
 - b. labels
 - i. trending aesthetics based on Aesthetics Wiki: y2k, coquette, academia, grunge, cottagecore, punk, vintage, dreamcore
 - c. size of files
 - i. use Google Colab GPU for faster runtime
 - d. standardization
 - i. if obtaining from internet, need to make same size and extension
 - ii. convert to grayscale, get value of each pixel, and store in csv file + label
 - iii. use standardscaler to standardize pixel values
 - e. website inspo: Pinterest, Aesthetics Wiki, Tumblr
 - f. some aesthetics overlap or have similar visuals
 - i. label as widest overarching aesthetic / don't go into specifics
 - ii. can always fine tune later

Custom Dataset

- tried programmatically downloading using Javascript in inspect element, doesn't work anymore due to updates to Google's HTML/CSS architecture
- using Fatkun Batch Download Image in Chrome Extensions, can download from multiple tabs
 - must manually determine relevancy of images
- crop and resize images to fit VGG19 input dimensions of 224×224
- zip -r x-core.zip . -x ".DS_Store" -x "__MACOSX"
- find . -name '.DS Store' -type f -delete
 - removes MACOSX folder and .DS Store files from zipped file
 - otherwise looping through causes errors
- get images from various sources due to variability in definition of aesthetic

Small-Scale Prototype

1. Data Collection

- a. using Fatkun Batch Download, obtain around 100 images for each of three categories: y2k, grunge, and coquette
 - i. manually filter out irrelevant images
 - ii. for first prototype, all images were downloaded from first page of Google Images
- b. zip files for upload into Google Colab → consider Jupyter Notebook
 - i. use commands above to delete Mac hidden files and folders

2. Preprocessing Data

- a. generate tf.data.Dataset object using image dataset from directory
 - i. use image_size parameter to resize images to (224, 224) after reading from disk

```
# data pipeline
data = image_dataset_from_directory('data', image_size=(224, 224))
```

Found 300 files belonging to 3 classes.

ii.

b. normalize data by dividing x values (rgb of pixels) by 255

```
data = data.map(lambda x, y: (x/255, y))
```

3. Splitting Data

- a. split into train, test, validation using 80/10/10
- b. use take() and skip() methods

train = data.take(train_size)
val = data.skip(train_size).take(val_size)
test = data.skip(train_size + val_size).take(test_size)

4. Transfer Learning

a. using pre-trained model VGG19

from Illustration of the network architecture of VGG-19 model

- c. remove final dense layers \rightarrow specify 3 classes instead of expected 1,000 as output
- d. define the model using VGG19 as the input and a dense layer of 3 units using softmax activation as the output
 - i. softmax: function rescaling numerical input tensors into probabilities (elements within [0, 1] and add to 1)
 - ii. normalizes output of model to fit output classes
 - iii. ex. [0.0021657, 0.00588697, 0.11824302, 0.87370431]

5. Compiling Model

- a. loss function: sparse categorical cross entropy
 - i. since input classes of 3 > 2
 - ii. consider one-hot encoding labels → must change to categorical cross entropy

Layer (type)	Output Shape	Param #
input_2 (InputLayer)	[(None, 224, 224, 3)]	0
blockl_convl (Conv2D)	(None, 224, 224, 64)	1792
block1_conv2 (Conv2D)	(None, 224, 224, 64)	36928
blockl_pool (MaxPooling2D)	(None, 112, 112, 64)	0
block2_convl (Conv2D)	(None, 112, 112, 128)	73856
block2_conv2 (Conv2D)	(None, 112, 112, 128)	147584
block2_pool (MaxPooling2D)	(None, 56, 56, 128)	0
block3_conv1 (Conv2D)	(None, 56, 56, 256)	295168
block3_conv2 (Conv2D)	(None, 56, 56, 256)	590080
block3_conv3 (Conv2D)	(None, 56, 56, 256)	590080
block3_conv4 (Conv2D)	(None, 56, 56, 256)	590080
block3_pool (MaxPooling2D)	(None, 28, 28, 256)	0
block4_conv1 (Conv2D)	(None, 28, 28, 512)	1180160
block4_conv2 (Conv2D)	(None, 28, 28, 512)	2359808
block4_conv3 (Conv2D)	(None, 28, 28, 512)	2359808
block4_conv4 (Conv2D)	(None, 28, 28, 512)	2359808
block4_pool (MaxPooling2D)	(None, 14, 14, 512)	0
block5_convl (Conv2D)	(None, 14, 14, 512)	2359808
block5_conv2 (Conv2D)	(None, 14, 14, 512)	2359808
block5_conv3 (Conv2D)	(None, 14, 14, 512)	2359808
block5_conv4 (Conv2D)	(None, 14, 14, 512)	2359808
block5_pool (MaxPooling2D)	(None, 7, 7, 512)	0
flatten_1 (Flatten)	(None, 25088)	0
dense_1 (Dense)	(None, 3)	75267

Total params: 20,099,651 Trainable params: 75,267 Non-trainable params: 20,024,384 b. optimizer: adam vs. SGD

6. Training

- a. implement early stopping in callbacks to avoid overfitting
- b. fit with 20 epochs and a batch size of 32
- 7. Data & Results from Small-Scale Test

a1. Training Epochs

b1. Train and Validation Accuracy

CI.	Hain and	vandation Loss

				precision	recall	fl-score	support
[[1.	0. 1.	0.]	0	1.00	1.00	1.00	3 6
[0.	0.33333333	0.66666667]]	2	1.00	0.67	0.80	3
[[3 0 0] [0 6 0] [0 1 2]]			accuracy macro avg weighted avg	0.95 0.93	0.89 0.92	0.92 0.91 0.91	12 12 12

d1. Confusion Matrices

e1. Classification Report

Upscaling

- 1. Obtaining more data
 - a. aiming for around 500 images per class
 - b. using Fatkun Batch Download again
 - c. sourcing from multiple places this time, particularly from pre-curated Pinterest boards
 - i. due to subjectivity of aesthetics, obtaining images from multiple "collections" already created by humans can potentially prevent biases
 - ii. particularly in the broad scopes of grunge and y2k, it is evident that people have different definitions of what truly encompasses the aesthetic
 - d. End Results
 - i. coquette: 524 images +
 - ii. grunge: 528 images +
 - iii. y2k: 526 images = 1578 images total
- 2. Same pre-processing, splitting, compiling, and training process and parameters
- 3. Data & Results from upscaled version

```
Epoch 1/20
40/40 [===
                                          29s 632ms/step - loss: 0.9002 - accuracy: 0.6367 - val_loss: 0.6622 - val_accuracy: 0.7312
Epoch 2/20
40/40 [===
                                          27s 645ms/step - loss: 0.3620 - accuracy: 0.8727 - val_loss: 0.4288 - val_accuracy: 0.8687
Epoch 3/20
                                          27s 630ms/step - loss: 0.2259 - accuracy: 0.9367 - val loss: 0.3903 - val accuracy: 0.8438
40/40 [=
Epoch 4/20
40/40 [=
                                          28s 659ms/step - loss: 0.1920 - accuracy: 0.9430 - val_loss: 0.5478 - val_accuracy: 0.7875
Epoch 5/20
                                          28s 625ms/step - loss: 0.1277 - accuracy: 0.9766 - val_loss: 0.3602 - val_accuracy: 0.8875
40/40 [==
Epoch 6/20
40/40 [=
                                          27s 636ms/step - loss: 0.0942 - accuracy: 0.9844 - val_loss: 0.2121 - val_accuracy: 0.9375
Epoch 7/20
                                          27s 633ms/step - loss: 0.0695 - accuracy: 0.9891 - val_loss: 0.2644 - val_accuracy: 0.8938
40/40 [===
Epoch 8/20
                                          27s 617ms/step - loss: 0.0531 - accuracy: 0.9945 - val_loss: 0.2761 - val_accuracy: 0.9187
```

a2. Training Epochs

b2. Train and Validation Accuracy

[[0.91304348	0.	0.086956521
		0.04255319]
		0.933333333]]
[[42 0 4]	0.0444444	0.93333333]]
[144 2]		
. ,		
[1 2 42]]		

c2. Train and Validation Loss

	precision recall f1-score s		recall f1-score	
0	0.95	0.91	0.93	46
1	0.96	0.94	0.95	47
2	0.88	0.93	0.90	45
accuracy			0.93	138
macro avg	0.93	0.93	0.93	138
weighted avg	0.93	0.93	0.93	138

d2. Confusion Matrices

e2. Classification Report

Predicted: 2 Actual: 0

Predicted: 2 Actual: 0

Predicted: 1 Actual: 2

Predicted: 2 Actual: 1

Predicted: 0 Actual: 2

Predicted: 0 Actual: 1

Predicted: 2 Actual: 1

Predicted: 2 Actual: 0

Predicted: 2 Actual: 0

Predicted: 1 Actual: 2

f1. Predicted versus Actual outputs where 0: coquette :: 1: grunge :: 2: y2k

- 4. Optimization
 - a. https://www.kaggle.com/questions-and-answers/279139
 - b. reducing validation loss and increasing validation accuracy
 - i. decreasing batch size from 32 to 20 yields around 15% val loss and 95% val accuracy \rightarrow val loss considerably lower but also takes more time to train

One-hot Encoding Labels

- 1. using tf.one hot and map() transform all labels in tf.dataset object
- 2. will increase accuracy after upscaling
- 3. changed loss function from sparse categorical cross entropy to categorical cross entropy
- 4. changed accuracy metric from accuracy to categorical accuracy
- 5. Data & Results from one-hot encoded version

```
Epoch 15/<u>20</u>
38/<u>38</u> [============] - 47s 1s/step - loss: 0.0224 - categorical_accuracy: 0.9992 - val_loss: 0.0953 - val_categorical_accuracy: 0.9609
```

a3. Training Epochs

b3. Train and Validation Loss

c3. Train and Validation Accuracy

[[0.97560976 0. 0.024	39024]		precision	recall	f1-score	support
[0.02702703 0.94594595 0.027	02703]	0	0.98	0.98	0.98	41
[0. 0.04 0.96	11	1	0.95	0.95	0.95	37
[0. 0.04 0.90	11	2	0.96	0.96	0.96	50
[[40 0 1]						
[1 35 1]		accuracy			0.96	128
		macro avg	0.96	0.96	0.96	128
[0 2 48]]		weighted avg	0.96	0.96	0.96	128

d3. Confusion Matrices

- f2. Predicted versus Actual outputs where 0 : coquette :: 1 : grunge :: 2 : y2k
 - 6. performance overall improved, generating 0.0972 loss and 0.984 accuracy when evaluating model on testing dataset