Praktikum 13

Nadin Stahn

09.04.2024

Inhaltsverzeichnis

1	Kubische Splines	
	1.1	Lernziele
		Theorie
	1.3	Aufträge
	1.4	Abgabe

1 Kubische Splines

1.1 Lernziele

- Sie können das System der Bedingungsgleichungen zur Interpolation einer gegebenen Punktmenge mit kubischen Splinefunktionen aufstellen.
- Sie können die Splinefunktionen einer Punktmenge effizient algorithmisch berechnen.

1.2 Theorie

Im Abschnitt 5.1 haben Sie die Definition der kubischen Splinefunktionen, deren Eigenschaften und Berechnung kennengelernt. In diesem Praktikum wenden Sie das Gelernte an.

1.3 Aufträge

1. Wir greifen das Beispiel 5.1. aus dem Skript auf und betrachten Punkte des Graphen der Funktion

$$f(x) = \frac{1}{1+x^2}$$
 über dem Intervall $[-5, 5]$.

Berechnen Sie für n=6,9,15 über [-5;5] äquidistant verteilte Punkte (x_k,f_k) die natürliche Splineinterpolation S(x).

Stellen Sie jeweils f(x) und S(x) in einem Koordinatensystem graphisch dar.

2. Anwendung in der Robotersteuerung: Steuerung eines Roboters entlang einer Kurve in der Ebene durch vorgegebene Punkte $P_k = (x_k|y_k)$.

Wir geben uns n Punkte in der xy-Ebene in Form einer Liste aus Zeit- und Positionskoordinaten vor.

```
t = [ 0 2 4 6 8 10 12 14 16];

x = [ -50 200 500 750 1000 750 500 200 -50 ];

y = [ 200 0 250 500 250 0 250 500 200 ];
```

Zur Robotersteuerung sind auch Positionen nötig, die zwischen den gegebenen Punkten liegen.

Aus den vorgegebenen Punkten bestimmen wir Splinefunktionen $S_x(t)$ und $S_y(t)$, die folgendes leisten

- zu den vorgegeben Zeitwerten t_k die zugehörigen Positionen (x_k, y_k) liefern,
- für jeden Zeitpunkt $t \in [t_0; t_n]$ eine Position (x(t), y(t)) liefern,
- ullet eine glatte geschlossene Bewegungskurve in der xy-Ebene liefern.

Berechnen Sie die Bewegungskurve durch Splineinterpolation mit geeigneten Zusatzbedingungen (natürlich, periodisch, \dots ?).

1.4 Abgabe

Bitte geben Sie Ihre Lösungen bis spätestens vor dem nächsten Praktikum ab.

Downloads:

- PDF-Dokumentation:
 - Anleitung Praktikum 13