MATH 6740: Financial Mathematics and Simulation Homework 4 solutions/presentation

Jubiao "Jack" Yang^a

^aRensselaer Polytechnic Institute, Troy, NY 12180

Solve Exercise Problems 2.5 and 2.10 in (Shreve, 2004, Chapter 2), and Problems 3.1, 3.2, and 3.4 in (Shreve, 2004, Chapter 3).

1. Exercise 2.5

The p.d.f. for random variable X is:

$$f_X(x) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dy$$

$$= \int_{-|x|}^{+\infty} \frac{2|x| + y}{\sqrt{2\pi}} \exp\left\{-\frac{(2|x| + y)^2}{2}\right\} dy$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-|x|}^{+\infty} (2|x| + y) \exp\left\{-\frac{(2|x| + y)^2}{2}\right\} d(2|x| + y)$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-|x|}^{+\infty} \exp\left\{-\frac{(2|x| + y)^2}{2}\right\} d\frac{(2|x| + y)^2}{2}$$

$$= \frac{1}{\sqrt{2\pi}} \left(\exp\{-\frac{|x|^2}{2}\right\} - \exp\{-\infty\}\right) = \frac{1}{\sqrt{2\pi}} \exp\{-\frac{x^2}{2}\}, \tag{1}$$

and the p.d.f. for random variable Y is:

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dx$$

$$= 2 \int_{0}^{+\infty} \frac{2|x|+y}{\sqrt{2\pi}} \exp\left\{-\frac{(2|x|+y)^{2}}{2}\right\} dx$$

$$= \frac{2}{\sqrt{2\pi}} \int_{\max\{0,-y\}}^{+\infty} (2x+y) \exp\left\{-\frac{(2x+y)^{2}}{2}\right\} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\max\{0,-y\}}^{+\infty} \exp\left\{-\frac{(2x+y)^{2}}{2}\right\} d\frac{(2x+y)^{2}}{2}$$

$$= \frac{1}{\sqrt{2\pi}} \left(\exp\left\{-\frac{(2\max\{0,-y\}+y)^{2}}{2}\right\} - 0\right)$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{|y|^{2}}{2}\right\} = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{y^{2}}{2}\right\}. \tag{2}$$

Therefore both X and Y are standard normal random variables. The covariance of them is:

$$cov(X,Y) = E[(X - E[X]) (Y - E[Y])] = E[XY]$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy f_{X,Y}(x,y) dx dy$$

$$= \int_{-\infty}^{+\infty} y \left(\int_{-\infty}^{+\infty} x \frac{2|x| + y}{\sqrt{2\pi}} \exp\left\{ -\frac{(2|x| + y)^2}{2} \right\} dx \right) dy$$

$$= \int_{-\infty}^{+\infty} y \cdot 0 dy = 0,$$
(3)

therefore X and Y are uncorrelated. However, since $f_{X,Y}(x,y) \neq f_X(x)f_Y(y)$, X and Y are not independent.

2. Exercise 2.10

$$\int_{A} g(X)dP(X) = \int_{-\infty}^{+\infty} g(x)1_{\omega \in A} f_{X}(x)dx$$

$$= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} \frac{y f_{X,Y}(x,y)}{f_{X}(x)} dy \right) 1_{\omega \in A} f_{X}(x)dx$$

$$= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} y f_{X,Y}(x,y) dy \right) 1_{\omega \in A} dx$$

$$= \int_{-\infty}^{+\infty} y \left(\int_{-\infty}^{+\infty} f_{X,Y}(x,y) dx \right) 1_{\omega \in A} dy$$

$$= \int_{-\infty}^{+\infty} y 1_{\omega \in A} f_{Y}(y) dy = \int_{A} Y dP(Y). \tag{4}$$

3. Exercise 3.1

According to Definition 3.3.3(iii) in Shreve (2004), $W(u_2) - W(u_1)$ is independent of $\mathbb{F}(u_1)$; while according to Definition 3.3.3(i) in Shreve (2004), $\mathbb{F}(t) \subset \mathbb{F}(u_1)$. Therefore $W(u_2) - W(u_1)$ is independent of $\mathbb{F}(t)$.

4. Exercise 3.2

For $0 \le s \le t$:

$$E[W^{2}(t) - t|\mathbb{F}_{s}] = E[(W(t) - W(s))^{2} + 2W(t)W(s) - W^{2}(s) - t|\mathbb{F}(s)]$$

$$= E[(W(t) - W(s))^{2}] + 2W(s)E[W(t) - W(s) + W(s)|\mathbb{F}(s)] - W^{2}(s) - t$$

$$= var(W(t) - W(s)) + 2W(s)(W(s) + E[W(t) - W(s)|\mathbb{F}(s)]) - W^{2}(s) - t$$

$$= t - s + 2W^{2}(s) - W^{2}(s) - t$$

$$= W^{2}(s) - s,$$
(5)

therefore $\{W^2(t) - t\}$ is a martingale.

5. Exercise 3.4

5.1. (i)

$$\sum_{i=0}^{n-1} |W(t_{j+1}) - W(t_j)| \cdot \max_{0 \le k \le n-1} |W(t_{j+1}) - W(t_j)| \ge \sum_{i=0}^{n-1} (W(t_{j+1}) - W(t_j))^2, \tag{6}$$

therefore the first variation of Brownian motion is:

$$\lim_{\|\Pi\| \to 0} \sum_{j=0}^{n-1} |W(t_{j+1}) - W(t_j)| \ge \lim_{\|\Pi\| \to 0} \frac{\sum_{j=0}^{n-1} (W(t_{j+1}) - W(t_j))^2}{\max_{0 \le k \le n-1} |W(t_{j+1}) - W(t_j)|} = \frac{T}{0} = \infty.$$
 (7)

5.2. (ii)

$$\sum_{j=0}^{n-1} |W(t_{j+1}) - W(t_j)|^3 \le \max_{0 \le k \le n-1} |W(t_{j+1}) - W(t_j)| \cdot \sum_{j=0}^{n-1} |W(t_{j+1}) - W(t_j)|^2, \tag{8}$$

therefore the cubic variation of Brownian motion is:

$$\lim_{||\Pi|| \to 0} \sum_{j=0}^{n-1} |W(t_{j+1}) - W(t_j)|^3 \le \lim_{||\Pi|| \to 0} \max_{0 \le k \le n-1} |W(t_{j+1}) - W(t_j)| \cdot \lim_{||\Pi|| \to 0} \sum_{j=0}^{n-1} |W(t_{j+1}) - W(t_j)|^2$$

$$= 0 \cdot T = 0 \qquad (9)$$

Appendix A. Original Homework Questions (attached)

Exercise 2.5. Let (X,Y) be a pair of random variables with joint density function

$$f_{X,Y}(x,y) = \left\{ egin{aligned} rac{2|x|+y}{\sqrt{2\pi}} \exp\left\{-rac{(2|x|+y)^2}{2}
ight\} & ext{if } y \geq -|x|, \ 0 & ext{if } y < -|x|. \end{aligned}
ight.$$

Show that X and Y are standard normal random variables and that they are uncorrelated but not independent.

Exercise 2.10. Let X and Y be random variables (on some unspecified probability space $(\Omega, \mathcal{F}, \mathbb{P})$), assume they have a joint density $f_{X,Y}(x,y)$, and assume $\mathbb{E}|Y| < \infty$. In particular, for every Borel subset C of \mathbb{R}^2 , we have

$$\mathbb{P}\{(X,Y)\in C\} = \int_C f_{X,Y}(x,y)\,dx\,dy.$$

In elementary probability, one learns to compute $\mathbb{E}[Y|X=x]$, which is a nonrandom function of the dummy variable x, by the formula

$$\mathbb{E}[Y|X=x] = \int_{-\infty}^{\infty} y f_{Y|X}(y|x) dy, \qquad (2.6.1)$$

where $f_{Y|X}(y|x)$ is the conditional density defined by

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}.$$

The denominator in this expression, $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,\eta) d\eta$, is the marginal density of X, and we must assume it is strictly positive for every x. We introduce the symbol g(x) for the function $\mathbb{E}[Y|X=x]$ defined by (2.6.1); i.e.,

$$g(x) = \int_{-\infty}^{\infty} y f_{Y|X}(y|x) dy = \int_{-\infty}^{\infty} \frac{y f_{X,Y}(x,y)}{f_{X}(x)} dy.$$

In measure-theoretic probability, conditional expectation is a random variable $\mathbb{E}[Y|X]$. This exercise is to show that when there is a joint density for (X,Y), this random variable can be obtained by substituting the random variable X in place of the dummy variable x in the function g(x). In other words, this exercise is to show that

$$\mathbb{E}[Y|X] = g(X).$$

(We introduced the symbol g(x) in order to avoid the mathematically confusing expression E[Y|X=X].)

Since g(X) is obviously $\sigma(X)$ -measurable, to verify that $\mathbb{E}[Y|X] = g(X)$, we need only check that the partial-averaging property is satisfied. For every Borel-measurable function h mapping \mathbb{R} to \mathbb{R} and satisfying $\mathbb{E}|h(X)| < \infty$, we have

 $\mathbb{E}h(X) = \int_{-\infty}^{\infty} h(x) f_X(x) dx. \tag{2.6.2}$

This is Theorem 1.5.2 in Chapter 1. Similarly, if h is a function of both x and y, then

 $\mathbb{E}h(X,Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y) f_{X,Y}(x,y) dx dy \qquad (2.6.3)$

whenever (X, Y) has a joint density $f_{X,Y}(x, y)$. You may use both (2.6.2) and (2.6.3) in your solution to this problem.

Let A be a set in $\sigma(X)$. By the definition of $\sigma(X)$, there is a Borel subset B of \mathbb{R} such that $A = \{\omega \in \Omega; X(\omega) \in B\}$ or, more simply, $A = \{X \in B\}$. Show the partial-averaging property

$$\int_{A} g(X)d\mathbb{P} = \int_{A} Yd\mathbb{P}.$$

Exercise 3.1. According to Definition 3.3.3(iii), for $0 \le t < u$, the Brownian motion increment W(u) - W(t) is independent of the σ -algebra $\mathcal{F}(t)$. Use this property and property (i) of that definition to show that, for $0 \le t < u_1 < u_2$, the increment $W(u_2) - W(u_1)$ is also independent of $\mathcal{F}(t)$.

Exercise 3.2. Let W(t), $t \ge 0$, be a Brownian motion, and let $\mathcal{F}(t)$, $t \ge 0$, be a filtration for this Brownian motion. Show that $W^2(t) - t$ is a martingale. (Hint: For $0 \le s \le t$, write $W^2(t)$ as $(W(t) - W(s))^2 + 2W(t)W(s) - W^2(s)$.)

Exercise 3.4 (Other variations of Brownian motion). Theorem 3.4.3 asserts that if T is a positive number and we choose a partition Π with points $0 = t_0 < t_1 < t_2 < \cdots < t_n = T$, then as the number n of partition points approaches infinity and the length of the longest subinterval $\|\Pi\|$ approaches zero, the sample quadratic variation

$$\sum_{j=0}^{n-1} (W(t_{j+1}) - W(t_j))^2$$

approaches T for almost every path of the Brownian motion W. In Remark 3.4.5, we further showed that $\sum_{j=0}^{n-1} \left(W(t_{j+1}) - W(t_j)\right)(t_{j+1} - t_j)$ and $\sum_{j=0}^{n-1} (t_{j+1} - t_j)^2$ have limit zero. We summarize these facts by the multiplication rules

$$dW(t) dW(t) = dt, \quad dW(t) dt = 0, \quad dt dt = 0.$$
 (3.10.1)

(i) Show that as the number m of partition points approaches infinity and the length of the longest subinterval approaches zero, the sample first variation

$$\sum_{j=0}^{n-1} |W(t_{j+1}) - W(t_j)|$$

approaches ∞ for almost every path of the Brownian motion W. (Hint:

$$\sum_{j=0}^{n-1} (W(t_{j+1}) - W(t_j))^2$$

$$\leq \max_{0 \leq k \leq n-1} \left| W(t_{k+1}) - W(t_k) \right| \cdot \sum_{j=0}^{n-1} \left| W(t_{j+1}) - W(t_j) \right|.)$$

(ii) Show that as the number n of partition points approaches infinity and the length of the longest subinterval approaches zero, the sample cubic variation

$$\sum_{j=0}^{n-1} \left| W(t_{j+1}) - W(t_j) \right|^3$$

approaches zero for almost every path of the Brownian motion W.

Shreve, S. E., 2004. Stochastic calculus for finance II: Continuous-time models. Vol. 11. Springer Science & Business Media.