#### Métricas de Erros

Previsão de valores numéricos (reais, inteiros)

Métricas diferentes da previsão de categorias

#### Uso:

- Regressão clássica
- Regressão ML
- Series Temporais
- Etc.

Devem ser consideradas no contexto e em comparação com outras métricas

## Mean Erro (ME)

#### Dependente de Escala

A média da diferença entre realizado e previsto

Qualquer número real

| Previsto | Realizado Dif. |       |
|----------|----------------|-------|
| 3,34     | 3,00           | -0,34 |
| 4,18     | 4,00           | -0,18 |
| 3,00     | 3,00           | 0     |
| 2,99     | 3,00           | 0,01  |
| 4,51     | 4,50           | -0,01 |
| 5,18     | 4,00           | -1,18 |
| 8,18     | 4,50           | -3,68 |

$$MAE = \sum_{I=1}^{N} \frac{p_i - t_i}{n}$$

$$ME = \frac{-5,38}{7} = -0,76$$



#### Mean Absolute Erros (MAE)

#### Dependente de Escala

A média da diferença absoluta entre o realizado e o previsto

Qualquer número real maior ou igual a zero

| Previsto | Realizado  | Dif. Absoluta |  |
|----------|------------|---------------|--|
| 3,34     | 3,00       | 0,34          |  |
| 4,18     | 4,00       | 0,18          |  |
| 3,00     | 3,00       | [0]           |  |
| 2,99     | 3,00       | 0,01          |  |
| 4,51     | 4,50       | 0,01          |  |
| 5,18     | 4,00       | 1,18          |  |
| 8,18     | 4,50  3,68 |               |  |
|          |            | 5,4           |  |

$$MAE = \sum_{I=1}^{N} \frac{|p_i - t_i|}{n}$$

MAE = 
$$\frac{5.4}{7}$$
 = 0.77



#### Root Mean Squared Error (RMSE)

#### Independente de Escala

O desvio padrão da amostra da diferença entre o previsto e o teste

Qualquer número real maior ou igual a zero

| Previsto | Realizado   | Dif. ao Quad. |  |
|----------|-------------|---------------|--|
| 3,34     | 3,00 0,1156 |               |  |
| 4,18     | 4,00        | 0,0324        |  |
| 3,00     | 3,00        | 0             |  |
| 2,99     | 3,00        | 1E-04         |  |
| 4,51     | 4,50        | 1E-04         |  |
| 5,18     | 4,00        | 1,3924        |  |
| 8,18     | 4,50        | 13,5424       |  |
|          |             |               |  |

$$RMSE = \sqrt{\frac{\sum_{I=1}^{N} (p_i - t_i)^2}{N}}$$

RMSE = 
$$\sqrt{\frac{15,083}{7}}$$



## Mean Percentage Error (MPE)

Independente de Escala (%)

Diferença percentual de erro

| Previsto | Realizado Erro % |          |
|----------|------------------|----------|
| 3,34     | 3,00 -11,3333    |          |
| 4,18     | 4,00             | -4,5     |
| 3,00     | ,00 3,00 0       |          |
| 2,99     | 3,00             | 0,333333 |
| 4,51     | 4,50             | -0,22222 |
| 5,18     | 4,00             | -29,5    |
| 8,18     | 4,50 -81,7778    |          |

$$ext{MPE} = rac{1}{N} \sum_{i=1}^{N} \left( rac{p_i - t_i}{t_i} imes 100 
ight)$$

MPE = 
$$\frac{126,78}{7}$$

$$MPE = -18,11\%$$

%

## Mean Absolute Percentage Error (MAPE)

Independente de Escala (%)

Diferença absoluta percentual de erro

| Previsto | Realizado | Erro abs. | Erro % abs. |
|----------|-----------|-----------|-------------|
| 3,34     | 3,00      | 0,1156    | 0,1133333   |
| 4,18     | 4,00      | 0,0324    | 0,045       |
| 3,00     | 3,00      | 0         | 0           |
| 2,99     | 3,00      | 1E-04     | 0,0033333   |
| 4,51     | 4,50      | 1E-04     | 0,0022222   |
| 5,18     | 4,00      | 1,3924    | 0,295       |
| 8,18     | 4,50      | 13,5424   | 0,8177778   |

MAPE = 
$$\frac{\sum_{I=1}^{N} \frac{|p_i - t_i|}{|t_i|}}{N}$$

$$MAPE = \frac{1,2766667}{7}$$

$$MAPE = 0.18$$

%

## Mean Error (ME)

 -2 → O modelo está prevendo, em média, 2 unidades a menos do que o valor real



#### Mean Absolute Error (MAE)

3 → O modelo erra, em média, 3 unidades (ex: 3°C na previsão de temperatura).



# Root Mean Squared Error (RMSE)

4 → O modelo tem um erro médio ponderado de 4 unidades



## Mean Percentage Error (MPE)

-5% → O modelo subestima, em média, 5% dos valores reais.



## Mean Absolute Percentage Error (MAPE)

8% → O modelo erra, em média, 8% do valor real.

