Eksamenstermin: Sommereksamen 2020

Prøve: ETSMP Dato: 8. juni 2020

Opgave 1: Sandsynlighedsregning

Ved en automatiseret test af chip-set på mobil-telefoner, vil testen opdage en fejl, givet at chip-settet har en fejl, med en sandsynlighed på 34%. Givet at chip-settet ikke har en fejl, vil testen indikere at det har en fejl med en sandsynlighed på 8%.

Sandsynligheden for at der er en fejl på et givet chip-set er 2,5%.

- a) Hvad er sandsynligheden for at et chip-set både har en fejl og testen indikerer at det har en fejl?
- b) Hvad er sandsynligheden for at et chip-set ikke har en fejl?
- c) Hvis et tilfældigt chip-set bliver testet, hvad er sandsynligheden for at testen viser at det har en fejl (total sandsynlighed)?
- d) Hvis testen viser at chip-settet har en fejl, hvad er sandsynligheden for at chip-settet rent faktisk havde en fejl?

Eksamenstermin: Sommereksamen 2020

Prøve: ETSMP Dato: 8. juni 2020

Opgave 2: Stokastiske variable

Den simultane tæthedsfunktion (pmf) for de diskrete stokastiske variable X og Y er givet ved:

$f_{X,Y}(x,y)$	X = 2	X = 4	X = 6	X = 8	X = 10
Y = -1	$\frac{K}{2}$	$\frac{K}{4}$	$\frac{K}{2}$	$\frac{K}{2}$	$\frac{K}{4}$
Y=1	$\frac{K}{4}$	$\frac{K}{2}$	$\frac{K}{2}$	$\frac{K}{4}$	$\frac{K}{2}$

a) Bestem K, så $f_{X,Y}(x,y)$ er en gyldig tæthedsfunktion.

Antag at K = 0.25 ved de efterfølgende opgaver.

- b) Bestem og skitsér tæthedsfunktionen (pmf) $f_X(x)$ for X.
- c) Find fordelingsfunktionen (cdf) $F_X(x)$ for X.
- d) Opskriv formlerne til beregning af middelværdien og variansen af X og beregn disse.
- e) Opstil formlen for og find E[XY].
- f) Bestem den betingede sandsynlighed Pr(Y = 1|X = 6).

Eksamenstermin: Sommereksamen 2020

Prøve: ETSMP Dato: 8. juni 2020

Opgave 3: Stokastiske processer

En tids-diskret stokastisk proces X[n] er defineret som:

$$X[n] = -1.5 \cdot (Z[n] + 1)$$

hvor $Z[n] \sim \mathcal{N}(1,10)$ er i.i.d. (uafhængigt og ens fordelt).

- a) Plot tre realisationer af processen X[n] for $n=[1,\cdots,10]$. Brug en tilfældighedsgenerator og vis med kode (Matlab, Maple, Prime, Pyton el.lign.) hvordan realisationen er fremkommet. I Matlab kan randn() benyttes.
- b) Opstil formlen for og find den tidslige middel for én af de plottede realisationer.
- c) Bestem ensemble middelværdien og variansen for processen X[n].
- d) Er processen X[n] WSS (stationær i den bredde forstand)? Svaret skal begrundes.

Eksamenstermin: Sommereksamen 2020

Prøve: ETSMP Dato: 8. juni 2020

Opgave 4: Statistik

Et barn's højde måles i faste intervaller til:

Højde	55	60	70	75	79	90	101	112	121	129	134	143
(cm)												
Alder	1	3	6	9	12	24	36	48	60	72	84	96
(måneder)												

- a) Opstil signal-modellen for data, under antagelse af at der er en lineær sammenhæng mellem data, med overlagt i.i.d. (uafhængigt og ens fordelt) normalfordelt støj.
- b) Under antagelse af at der er en lineær sammenhæng mellem data, find den lineære regressions-linie, ved at udregne hældningen og skæringen.
- c) Opstil en hypotese og en alternativ hypotese, der tester om hældingen er 0.
- d) Kan nul-hypotesen afvises med et signifikans-niveau på 5%?
- e) Bestem 95% konfidens intervallet for hældningen? Hvad fortæller konfidens-intervallet?
- f) Plot residualerne (residualplottet) efter lineær regression. Ser det ud som om der er en lineær sammenhæng mellem alder og højde?