(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001年12月27日(27.12.2001)

PCT

(10) 国際公開番号 WO 01/98833 A1

Hiroyuki) [JP/JP]; 〒520-0842 滋賀県大津市園山2

丁目15番1号 東レ晴園寮462 Shiga (JP). 田村一貴 (TAMURA, Kazutaka) [JP/JP]; 〒520-0822 滋賀県大

津市秋葉台19番21号 Shiga (JP). 妹尾将秀 (SENOO,

Masahide) [JP/JP]; 〒569-0814 大阪府高槻市富田町1 丁目18番14号 STマンション皿305 Osaka (JP).

葉県浦安市美浜1丁目8番1号 東レ株式会社 知的財産

(51) 国際特許分類?: G03F 7/039, C08F 20/12, 20/26, 12/24, H01L 21/027

(21) 国際出願番号:

PCT/JP01/00315

(22) 国際出願日:

2001年1月19日(19.01.2001)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2000-187335 特願2000-192298 2000年6月22日(22.06.2000) JP

2000年6月27日(27.06.2000) JР (81) 指定国 (国内): KR, SG, US.

部内 Chiba (JP).

(84) 指定国 *(*広域*)*: ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

(74) 代理人: 岩見知典(IWAMI, Tomonori); 〒279-8555 千

(71) 出願人(米国を除く全ての指定国について): 東レ株式 会社(TORAY INDUSTRIES, INC.) [JP/JP]; 〒103-8666 東京都中央区日本橋室町2丁目2番1号 Tokyo (JP).

添付公開書類:

国際調査報告書

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 仁王宏之 (NIWA,

2文字コード及び他の略語については、 定期発行される 各*PCT*ガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: POSITIVE TYPE RADIATION-SENSITIVE COMPOSITION AND PROCESS FOR PRODUCING PATTERN WITH THE SAME

(54) 発明の名称: ポジ型感放射線性組成物およびこれを用いたパターンの製造方法

(57) Abstract: A positive type radiation-sensitive composition comprising (A) a compound in which an alkali-soluble group comprising a carboxyl group or phenolic hydroxyl group has been protected by an acid-eliminable group (a) which is any of the following (a1) to (a3), and (B) an acid generator which generates an acid upon irradiation with a radiation; and a method of forming a resist pattern using the composition. (a1) The acid-eliminable group (a) is -CR3, provided that at least two of the R's are aromatic rings. (The alkali-soluble group is a carboxyl group.) (a2) The acid-eliminable group (a) is -CR3, provided that at least one of the R's is an aromatic ring having an electron-donating group. (a3) The acid-eliminable group (a) has an alkali-soluble group (a') or has an alkali-soluble group (a") protected by an acid-eliminable group.

(57) 要約:

本願発明は、(A)カルボキシル基又はフェノール性水酸基からなるアルカリ可溶性基を下記(a1)~(a3)のいずれかの酸脱離基(a)で保護し化合物と、(B)放射線の照射によって酸を発生する酸発生剤とを含有するポジ型感放射線性組成物、ならびにこれを用いたレジストパターン形成方法。

- (a1)酸脱離基(a)が-CR₃であり、Rの少なくとも2つは芳香環である。 (アルカリ可溶性基はカルボキシル基である。)
- (a2)酸脱離基(a)が-CR₃であり、Rの少なくとも1つが電子供与性基を有する芳香環である。
- (a3) 酸脱離基(a)が、更にアルカリ可溶性基(a')を有するか又は酸脱離基で保護されたアルカリ可溶性基(a'')を有する。

明細書

ポジ型感放射線性組成物およびこれを用いたパターンの製造方法

5 技術分野

本発明は半導体集積回路、リソグラフィー用マスクなどの製造に用いられるポジ型感放射線性組成物に関する。

背景技術

20

25

- 10 近年、半導体回路、リソグラフィー用マスクの製造などの分野では、集積度の向上に伴って、パターンの微細化が進んでいる。これを実現するためにレジスト材料としてさらに高解像度のものが要求されるようになってきており、0.25 μm以下のサブクォーターミクロンのパターンが高感度で加工できることが必要となってきた。従来のような比較的長波長の光源を用いるリソグラフィーでは、
- 15 このような微細な加工を行うことは困難であり、よりエネルギーの高い X 線や電子線、真空紫外線を用いたリソグラフィーが検討されており、これらの光源に対応したレジストが求められている。

このような露光光源に対応し、高感度、高解像度の特性を持つ公知のレジスト材料として、化学増幅型のレジストが盛んに検討されている。化学増幅型のレジストは光酸発生剤の作用によって露光部に酸が発生し、この酸の触媒作用によって露光部の溶解性が変化する機構を持つレジストである。従来、このような化学増幅型レジストのうち比較的良好なレジスト性能を示すものに、アルカリ可溶性樹脂中のアルカリ可溶性基を t ープチル基、1,1ージフェニルエチル基(USP 5688628)、トリチル基(特開平6-83057)などの3級エステル基、tープトキシカルポニル基、アセタール基などの酸分解性基で保護した樹脂が用いられている。

しかしながら、解像度と感度は相反する関係にあり、サブクォーターミクロン のパターン加工を行うための解像度を得るには、感度が十分ではないなどの欠点 があった。

発明の開示

本発明は、a1)~a3)のいずれかの化合物とb)放射線の照射によって酸を 発生する酸発生剤を含有することを特徴とするポジ型感放射線性組成物、ならび にこれを用いたレジストパターンの製造方法に関する。

a 1) カルボキシル基を一般式(1)で示される酸脱離基で保護した化合物。

10

5

 $(R^1$ および R^2 は芳香環であり、 R^3 はアルキル基、置換アルキル基、シクロアルキル基、芳香環を示す。 $R^1 \sim R^3$ はそれぞれ同じでも異なっていてもよい。) a 2) アルカリ可溶性基を一般式(2) で示される酸脱離基で保護した化合物。

20

15

25 a 3) アルカリ可溶性基を酸脱離基 a で保護した化合物であって、酸脱離基 a はアルカリ可溶性基を有するか、もしくは酸脱離基 a は酸脱離基 b で保護されたアルカリ可溶性基を有する。

発明を実施するための最良の形態

本発明のポジ型感放射線性組成物は、a1)~a3)のいずれかの化合物と、b) 放射線の照射によって酸を発生する酸発生剤からなる。

a 1)の化合物は、カルボキシル基を一般式(1)で示される酸脱離基で保護した化合物である。R ¹およびR ²は芳香環であり、R ³はアルキル基、置換アルキル基、シクロアルキル基、芳香環を示す。R ¹~R ³はそれぞれ同じでも異なっていてもよい。R ¹およびR ²の具体例としては、フェニル基、ナフチル基、ピリジル基、フリル基、チエニル基などが挙げられる。また、R ³の具体例としては、メチル基、エチル基、プロピル基、ブチル基、メトキシメチル基、エトキシブチル基、ヒドロキシエチル基、シクロヘキシル基、およびR ¹の具体例として上に挙げた基などが挙げられる。酸素に結合した3級炭素上に芳香環を二つ以上導入することで芳香環の共鳴効果により酸による脱離基の脱離反応が起こりやすくなり、3級炭素上に芳香環を持たないものや一つだけ有するものと比較してレジスト感度が大幅に向上する。また、芳香環を多数導入することによりドライエッチング耐性が向上する。

15

10

$$R^{1}$$
 $-- C$
 R^{2}
 R^{3}
(1)

20

25

a~2)の化合物は、アルカリ可溶性基を一般式(2)で示される酸脱離基で保護した化合物である。 $R^4 \sim R^6$ はアルキル基、置換アルキル基、シクロアルキル基、芳香環のいずれかであり、 $R^4 \sim R^6$ のうち少なくとも 1 つが電子供与性基を有する芳香環である。 $R^4 \sim R^6$ はそれぞれ同じでも異なっていてもよい。 ここでいう電子供与性基としては水素よりも電子を供与する傾向が強いものであればどのようなものでもよく、アシルオキシ基、アミノ基、アルキル基、アルコキシ基などが例として挙げられる。 このうち好ましく用いられる電子供与性基は炭素数 $2 \sim 6$ のアシルオキシ基、炭素数 $1 \sim 4$ のアルキル基、炭素数 $1 \sim 6$ のアルコキシ基であり、なかでも炭素数 $1 \sim 6$ のアルコキシ基が最も好ましい。電子供与性

基は一つの芳香環に2つ以上あっても良い。電子供与性基を有する芳香環の具体 例としては、4-アセチルオキシフェニル基、4-アセチルオキシナフチル基、 3-ベンジルオキシフェニル基、4-ジメチルアミノフェニル基、2-ジメチル アミノフェニル基、4-アミノナフチル基、p-トリル基、m-トリル基、o-トリル基、2,4-ジメチルフェニル基、2,4,6-トリメチルフェニル基、 4-t-プチルフェニル基、4-メチルナフチル基、4-メトキシフェニル基、 2-メトキシフェニル基、3-エトキシフェニル基、4-t-ブトキシフェニル 基、4-フェノキシフェニル基、4-メトキシナフチル基、3-イソプロポキシ フェニル基、4-メトキシ-3-メチルフェニル基、3,5-ジメトキシフェニ ル基などが挙げられる。またR4~R6のうち電子供与性基を有する芳香環以外の 具体例としては、メチル基、エチル基、プロピル基、ブチル基、メトキシメチル 基、エトキシブチル基、ヒドロキシエチル基、シクロヘキシル基、フェニル基な どが挙げられる。酸素に結合した3級炭素上の芳香環に電子供与性基を導入する と脱保護の際に生成するカルボカチオンの正電荷が安定化されるので、脱保護が 容易となりレジスト感度が大幅に向上する。また、a2)の化合物のアルカリ可 溶性基としてはカルボキシル基、フェノール性水酸基が好ましい。

$$\begin{array}{c}
R^4 \\
--C - R^5 \\
R^6
\end{array} (2)$$

20

5

10

15

一般式(2)の酸脱離基に含まれる電子供与性基を有する芳香環として好ましいのは、下記一般式(3)で表される構造である。

$$R^{8}$$
 R^{9} R^{10} (3)

10

15

20

25

(

R⁸、R¹⁰、R¹²はそれぞれ独立に水素原子、炭素数 1 ~ 4のアルキル基、炭素数 1 ~ 6のアルコキシ基を表し、そのうち少なくとも一つは上記アルキル基もしくはアルコキシ基を表す。R⁹およびR¹¹はそれぞれ独立に水素原子、炭素数 1 ~ 4のアルキル基、炭素数 1 ~ 6のアルコキシ基を表す。オルト位またはパラ位に電子供与性基を導入することで、より高い感度を発現する。

a 3) の化合物は、アルカリ可溶性基を酸脱離基 a で保護した化合物であり、酸脱離基 a がアルカリ可溶性基を有するか、もしくは酸脱離基 a が酸脱離基 b で保護されたアルカリ可溶性基を有する。酸脱離基 a と酸脱離基 b は同一の構造であってもよい。酸脱離基 a は、フェノール性水酸基あるいはカルボキシル基を少なくとも一つ有するか、もしくは前記フェノール性水酸基あるいはカルボキシル基をさらに酸脱離基 b で保護したものであるのが好ましい。このような酸脱離基 a の構造として、一般式 (4) で表される基が挙げられる。

 $R^{13}\sim R^{15}$ はそれぞれ独立にアルキル基、置換アルキル基、シクロアルキル基、アリール基、置換アリール基、アルカリ可溶性基を含む基、酸脱離基bで保護されたアルカリ可溶性基を含む基のいずれかであり、少なくとも一つはアルカリ可溶性基を含む基または酸脱離基bで保護されたアルカリ可溶性基を含む基である。 $R^{13}\sim R^{15}$ はそれぞれ同じでも異なっていてもよい。ここで、一般式(4)の $R^{13}\sim R^{15}$ のうち少なくとも1つが一般式(5)または(6)で表される基であることが好ましい。

$$-A = \begin{bmatrix} A^{19} & (OY)_m \\ A^{18} & A^{17} \end{bmatrix}$$
(5)

——B——COOY (6)

Aは炭素数 $1 \sim 4$ のアルキレン基、炭素数 $6 \sim 1$ 0のアリーレン基、単結合を表す。 Bは炭素数 $1 \sim 6$ のアルキレン基、炭素数 $6 \sim 1$ 0のアリーレン基、炭素数 $7 \sim 1$ 2のアルキレンアリーレン基、単結合を表す。 $R^{16} \sim R^{19}$ はそれぞれ独立に水素原子、炭素数 $1 \sim 4$ のアルキル基を表す。 Yは酸脱離基 b または水素原子を表し、mは $1 \sim 3$ である。なかでも感度の点で特に好ましいのは、一般式(4)の $R^{13} \sim R^{15}$ のうち少なくとも一つが一般式(7)または(8)で表される基である場合である。

20

25

15

10

R 2 o および R 2 l はそれぞれ独立に水素原子、炭素数 1 ~ 4 のアルキル基を表す。 Y は酸脱離基または水素原子を表し、mは 1 ~ 3 である。また、 R 2 2 および R 2 3 は水素原子、炭素数 1 ~ 4 のアルキル基を表す。 Y は酸脱離基 b または水素原子を表す。 酸脱離基 b の例としては、メトキシメチル基、メチルチオメチル基、 エトキシメチル基、エチルチオメチル基、 メトキシエトキシメチル基、 ベンジルオキシメチル基、 ベンジルチオメチル基、 フェナシル基、 ブロモフェナシル基、 メトキシフェナシル基、 メチルチオフェナシル基、 α - メチルフェナシル基、 シクロプロピルメチル基、 ベンジル基、 ジフェニルメチル基、 トリフェニルメチル基、 プロモベンジル基、 ニトロベンジル基、 メトキシベンジル基、 メチルチオベ

10

15

20

ンジル基、エトキシベンジル基、メトキシカルボニルメチル基、エトキシカルボ ニルメチル基、n-プロポキシカルボニルメチル基、イソプロポキシカルボニル メチル基、n-ブトキシカルボニルメチル基、t-ブトキシカルボニルメチル基、 プロペニル基、1-メトキシエチル基、1-メチルチオエチル基、1,1-ジメ トキシエチル基、1-エトキシエチル基、1-エチルチオエチル基、1,1-ジ エトキシエチル基、1-フェノキシエチル基、1-フェニルチオエチル基、1, 1-ジフェノキシエチル基、1-ベンジルオキシエチル基、1-ベンジルチオエ チル基、1-シクロプロピルエチル基、1-フェニルエチル基、1,1-ジフェ ニルエチル基、1-メトキシカルボニルエチル基、1-エトキシカルボニルエチ ル基、1-n-プロポキシカルボニルエチル基、1-イソプロポキシカルボニル エチル基、1-n-プトキシカルポニルエチル基、1-t-プトキシカルボニル エチル基、イソプロピル基、 s - ブチル基、 t - ブチル基、1, 1 - ジメチルブ チル基、トリメチルシリル基、エチルジメチルシリル基、メチルジエチルシリル 基、トリエチルシリル基、イソプロピルジメチルシリル基、メチルジイソプロピ ルシリル基、トリイソプロピルシリル基、t-ブチルジメチルシリル基、メチル ジーt-プチルシリル基、トリーt-プチルシリル基、フェニルジメチルシリル 基、メチルジフェニルシリル基、トリフェニルシリル基、メトキシカルポニル基、 エトキシカルボニル基、イソプロポキシカルボニル基、tープトキシカルボニル 基、アセチル基、プロピオニル基、ブチリル基、ヘプタノイル基、ヘキサノイル 基、バレリル基、ピバロイル基、イソバレリル基、ラウリロイル基、ミリストイ ル基、パルミトイル基、ステアロイル基、オキサリル基、マロニル基、スクシニ ル基、グルタリル基、アジポイル基、ピペロイル基、スペロイル基、アゼラオイ ゛ル基、セバコイル基、アクリロイル基、プロピオイル基、メタクリロイル基、ク ロトノイル基、オレオイル基、マレオイル基、フマロイル基、メサコノイル基、 ベンゾイル基、フタロイル基、イソフタロイル基、テレフタロイル基、ナフトイ 25 ル基、トルオイル基、ヒドロアトロポイル基、アトロポイル基、シンナモイル基、 フロイル基、テノイル基、ニコチノイル基、イソニコチノイル基、p-トルエン スルホニル基、メシル基、シクロプロピル基、シクロペンチル基、シクロヘキシ ル基、シクロヘキセニル基、4-メトキシシクロヘキシル基、テトラヒドロピラ

15

ニル基、テトラヒドロフラニル基、テトラヒドロチオピラニル基、テトラヒドロチオフラニル基、3-プロモテトラヒドロピラニル基、4-メトキシテトラヒドロピラニル基などが挙げられる。

要件a1)~a3) の化合物は重合体であることが好ましい。重量平均分子量はポリスチレン換算によるGPC(ゲル・パーミエーション・クロマトグラフィ) 測定値で4000~100000、好ましくは5000~100000、より好ましくは5000~5000である。重量平均分子量5000未満では膜形成が困難となり、重量平均分子量が50000を越えるとレジスト感度が低下する。

10 a 1) ~ a 3) の化合物としてより好ましいのは、下記一般式 (9) で表される構造単位を含む重合体である。R ^{2 4}は水素原子、炭素数 1 ~ 4 のアルキル基、シアノ基、ハロゲンを示す。 Z は一般式 (1)、 (2) または (4) で表される基である。

$$\begin{array}{ccc}
 & R^{24} \\
 & C \\$$

また、a2)またはa3)の化合物として、下記一般式(10)で表される構 20 造単位を含む重合体も好ましい。R²³は水素原子、炭素数1~4のアルキル基、 シアノ基、ハロゲンを表す。Xは一般式(2)または(4)で表される酸脱離基 である。

$$-CH_2-C$$

$$OX$$

$$(10)$$

25

このような重合体を得るには、例えばアクリル酸やメタクリル酸のカルボキシル

基を一般式(1)で表される酸脱離基で保護した構造のモノマーや、p-ヒドロキシスチレンの水酸基を一般式(2)で表される酸脱離基で保護した構造のモノマーを合成し、アゾビスイソブチロニトリルなどで重合すれば良い。

また、一般式(9)で表される構造単位において、R²⁴はシアノ基またはハロ 5 ゲンであることがより好ましい。このような構造を有するポリマーは、放射線の 照射によりポリマー主鎖が容易に切断され低分子量化する。その結果、露光部の 溶解性が向上して高感度、高コントラストとなる。

上記一般式(9)および(10)で表される構造単位の具体例を以下に挙げる。

10

15

20

(

(

$$-CH_2$$
 $-CH$
 $-CH_3$
 $-CH_3$
 $-CH_3$
 $-CH_3$
 $-CH_3$

$$-CH_2$$
 $-CH$ $-CH_3$ $-CH_3$

$$-CH_{2}-CH$$

$$CH_{3}$$

$$-CH_{2}$$

$$-CH_{3}$$

$$-CH_{2}$$

$$-CH_{3}$$

$$-C$$

$$-CH_2$$
 $-CH$ $-CH_3$ $-CH_3$ $-CH_3$

осн3

(

一般式(9)または(10)で表される構造単位を含む重合体は一般式(9)または(10)で表される構造単位のみを含む重合体であっても良いが、化学増幅型レジストとしての特性を損なわない限り他のモノマー単位を含む共重合体であっても良い。他のモノマー構造としてはアクリル酸、メチルアクリレート、エチルアクリレート、ヒドロキシエチルアクリレート、イソプロピルアクリレート、nーブチルアクリレート、tーブチルアクリレート、メタクリル酸、メチルメタ

10

(

クリレート、エチルメタクリレート、ヒドロキシエチルアクリレート、イソプロ ピルメタクリレート、n ープチルメタクリレート、t ープチルメタクリレート、 チル α ークロロアクリレート、イソプロピル α ークロロアクリレート、nーブチ ルα-クロロアクリレート、t-ブチルα-クロロアクリレート、メチルα-シ ゙アノアクリレート、エチルα-シアノアクリレート、ヒドロキシエチルα-シア ノアクリレート、イソプロピルαーシアノアクリレート、n ープチルα ーシアノ アクリレート、スチレン、p-ヒドロキシスチレン、 $\alpha-$ メチルスチレン、 $\alpha-$ メチルーpーヒドロキシスチレン、マレイン酸、無水マレイン酸、クロトン酸、 フマル酸、メサコン酸、シトラコン酸、イタコン酸、イタコン酸無水物、アクリ ロニトリル、メタクリロニトリル、クロトンニトリル、マレインニトリル、フマ ロニトリル、メタコンニトリル、シトラコンニトリル、イタコンニトリル、アク リルアミド、メタクリルアミド、クロトンアミド、マレインアミド、フマルアミ ド、メサコンアミド、シトラコンアミド、イタコンアミド、ビニルアニリン、ビ 15 ニルピロリドン、ビニルイミダゾールなどを挙げることができる。他のモノマー 単位がアルカリ可溶性基を有する場合には、該アルカリ可溶性基を酸脱離基で保 護することもできる。酸脱離基の具体例としては、酸脱離基bの具体例として挙 げた基などがある。

また、本発明で好ましく用いられる上記一般式(9)または(10)で表され る構造単位を含む重合体は、ドライエッチング耐性向上などのため以下のような 20 環構造を主鎖に含んでも良い。

10

15

20

25

本発明のポジ型感放射線性組成物は、b)放射線の照射によって酸を発生する酸発生剤を含有する。これにより、化学増幅機構によるパターン形成が可能となり、高感度で、高解像度のパターンを得ることができる。ここで用いられる酸発生剤は、発生する酸によってa1)~a3)の化合物のアルカリ水溶液への溶解速度を増加せしめるものであればどのようなものであっても良く、オニウム塩、ハロゲン含有化合物、ジアゾケトン化合物、ジアゾメタン化合物、スルホン化合物、スルホン酸エステル化合物、スルホンイミド化合物などを例として挙げることができる。

オニウム塩の具体的な例としては、ジアゾニウム塩、アンモニウム塩、ヨードニウム塩、スルホニウム塩、ホスホニウム塩、オキソニウム塩などを挙げることができる。好ましいオニウム塩としてはジフェニルヨードニウムトリフレート、ジフェニルヨードニウムドデシルベンゼンスルホネート、トリフェニルスルホニウムトリフレート、トリフェニルスルホニウムへキサフルオロアンチモネート、トリフェニルスルホニウムナフタ

(

25

レンスルホネート、(ヒドロキシフェニル) ベンジルメチルスルホニウムトルエンスルホネートなどが挙げられる。

ハロゲン含有化合物の具体的な例としては、ハロアルキル基含有炭化水素化合物、ハロアルキル基含有ヘテロ環状化合物などが挙げられる。好ましいハロゲン含有化合物としては1,1ービス(4ークロロフェニル)-2,2,2ートリクロロエタン、2ーフェニルー4,6ービス(トリクロロメチル)ーsートリアジン、2ーナフチルー4,6ービス(トリクロロメチル)ーsートリアジンなどを挙げることができる。

ジアゾケトン化合物の具体的な例としては、1,3ージケト-2ージアゾ化合 物、ジアゾベンゾキノン化合物、ジアゾナフトキノン化合物などが挙げられる。 好ましいジアゾケトン化合物は1,2ーナフトキノンジアジド-4ースルホン酸と2,2,3,4,4'ーテトラヒドロキシベンゾフェノンとのエステル、1,2ーナフトキノンジアジド-4ースルホン酸と1,1,1ートリス(4ーヒドロキシフェニル)エタンとのエステルなどを挙げることができる。

15 ジアゾメタン化合物の具体的な例としては、ビス(トリフルオロメチルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(フェニルスルホニル)ジアゾメタン、ビス(pートリルスルホニル)ジアゾメタン、ビス(2,4ーキシリルスルホニル)ジアゾメタン、ビス(pークロロフェニルスルホニル)ジアゾメタン、メチルスルホニルーpートルエンスルホニルジアゾメタン、シクロヘキシルスルホニル(1,1ージメチルエチルスルホニル)ジアゾメタン、ビス(1,1ージメチルエチルスルホニル)ジアゾメタン、フェニルスルホニル(ベンゾイル)ジアゾメタン等を挙げることができる。

スルホン化合物の具体的な例としては、β-ケトスルホン化合物、β-スルホニルスルホン化合物などが挙げられる。好ましい化合物としては、4-トリスフェナシルスルホン、メシチルフェナシルスルホン、ビス(フェニルスルホニル)メタンなどが挙げられる。

スルホン酸エステル化合物の例としては、アルキルスルホン酸エステル、ハロアルキルスルホン酸エステル、アリールスルホン酸エステル、イミノスルホネートなどが挙げられる。スルホン酸化合物の具体的な例としてはベンゾイントシレ

ート、ピロガロールトリメシレート、ニトロベンジルー9, 10-ジエトキシア ントラセン-2-スルホネートなどを挙げることができる。

スルホンイミド化合物の具体的な例としてはN-(トリフルオロメチルスルホ ニルオキシ)スクシンイミド、N-(トリフルオロメチルスルホニルオキシ)フ タルイミド、N- (トリフルオロメチルスルホニルオキシ) ジフェニルマレイミ 5 ド、N - (トリフルオロメチルスルホニルオキシ) ビシクロ [2.2.1] ヘプ トー5-エンー2, 3-ジカルボキシルイミド、N-(トリフルオロメチルスル ホニルオキシ) - 7 - オキサビシクロ[2.2.1] ヘプト-5-エン-2,3 - ジカルボキシルイミド、N - (トリフルオロメチルスルホニルオキシ)ビシク ロ [2.2.1] ヘプタン-5,6-オキシ-2,3-ジカルボキシルイミド、 10 **N-(トリフルオロメチルスルホニルオキシ)ナフチルジカルボキシルイミド、 N-(カンファースルホニルオキシ)スクシンイミド、N-(カンファースルホ** ニルオキシ)フタルイミド、N-(カンファースルホニルオキシ)ジフェニルマ レイミド、N- (カンファースルホニルオキシ) ビシクロ [2. 2. 1] ヘプト -5-エン-2, 3-ジカルボキシルイミド、N-(カンファースルホニルオキ 15 シ) - 7-オキサビシクロ [2.2.1] ヘプト-5-エン-2, 3-ジカルボ キシルイミド、N-(カンファースルホニルオキシ) ビシクロ [2.2.1] へ プタン-5, 6-オキシ-2, 3-ジカルボキシルイミド、N-(カンファース ルホニルオキシ) ナフチルジカルボキシルイミド、N- (4-メチルフェニルス ルホニルオキシ) スクシンイミド、N-(4-メチルフェニルスルホニルオキシ) 20 フタルイミド、N- (4-メチルフェニルスルホニルオキシ) ジフェニルマレイ ミド、N-(4-メチルフェニルスルホニルオキシ)ビシクロ[2.2.1]へ プトー5-エンー2, 3-ジカルボキシルイミド、N- (4-メチルフェニルス ルホニルオキシ)-7-オキサビシクロ[2.2.1] ヘプト-5-エン-2, 3 - ジカルボキシルイミド、N - (4 - メチルフェニルスルホニルオキシ)ビシ 25 クロ[2.2.1] ヘプタン-5,6-オキシ-2,3-ジカルボキシルイミド、 N- (4-メチルフェニルスルホニルオキシ) ナフチルジカルボキシルイミド、 N- (2-トリフルオロメチルフェニルスルホニルオキシ) スクシンイミド、N - (2-トリフルオロメチルフェニルスルホニルオキシ) フタルイミド、N - (2

20

- トリフルオロメチルフェニルスルホニルオキシ)ジフェニルマレイミド、N-(2-トリフルオロメチルフェニルスルホニルオキシ) ビシクロ [2.2.1] ヘプト-5-エン-2, 3-ジカルボキシルイミド、N-(2-トリフルオロメ チルフェニルスルホニルオキシ)-7-オキサビシクロ[2.2.1]ヘプトー 5-エン-2, 3-ジカルボキシルイミド、N-(2-トリフルオロメチルフェ ニルスルホニルオキシ) ビシクロ[2.2.1] ヘプタン-5,6-オキシ-2, 3-ジカルボキシミド、N-(2-トリフルオロメチルフェニルスルホニルオキ シ) ナフチルジカルボキシルイミド、N-(4-フルオロフェニルスルホニルオ キシ)スクシンイミド、N-(2-フルオロフェニルスルホニルオキシ)フタル 10 イミド、N-(4-フルオロフェニルスルホニルオキシ)ジフェニルマレイミド、 N-(4-フルオロフェニルスルホニルオキシ) ビシクロ [2.2.1] ヘプト -5-エン-2, 3-ジカルボキシルイミド、N-(4-フルオロフェニルスル ホニルオキシ) -7-オキサビシクロ[2.2.1] ヘプト-5-エン-2,3 -ジカルボキシルイミド、N-(4-フルオロフェニルスルホニルオキシ)ビシ クロ[2.2.1] ヘプタン-5,6-オキシ-2,3-ジカルボキシルイミド、 N-(4-フルオロフェニルスルホニルオキシ)ナフチルジカルボキシルイミド 等を挙げることができる。

これらの酸発生剤は単独あるいは2種以上を混合して用いることができる。酸 発生剤の添加量は通例ポリマーに対して0.01~50重量%であり、より好ま しくは0.1~10重量%である。0.01重量%より少ないとパターン形成が 不可能となり、50重量%より多いと現像液との親和性が低下し、現像不良など が発生する。

本発明のポジ型感放射線性組成物はアルカリ可溶性樹脂を含んでもよい。

本発明のポジ型感放射線性組成物には必要に応じて、界面活性剤、増感剤、安・ 定剤、消泡剤、酸拡散抑制剤などの添加剤を加えることもできる。 25

本発明のポジ型感放射線性組成物は上記の成分を溶媒に溶解することにより得 られる。溶媒の使用量としては特に限定されないが、固形分が5~35重量%と なるように調整される。好ましく用いられる溶媒としては酢酸エチル、酢酸ブチ ル、酢酸アミル、プロピオン酸エチル、酪酸メチル、安息香酸メチル、乳酸メチ

ル、乳酸エチル、ピルビン酸エチル、 β - イソブチル酸メチル、3 - メトキシプロピオン酸メチル、3 - エトキシプロピオン酸エチル、 γ - ブチロラクトン等のエステル類、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ等のセロソルブ類、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート等のセロソルブエステル類、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のプロピレングリコールエステル類、1, 2 - ジメトキシエタン、1, 2 - ジエトキシエタン、テトラヒドロフラン、アニソールなどのエーテル類、メチルエチルケトン、メチルイソブチルケトン、メチルー n - アミルケトン、シクロヘキサノン、イソホロンなどのケトン類、ジメチルホルムアミド、ジメチルアセトアミド、n - メチルピロリドン、ジメチルスルホキシド、スルホランなどの非プロトン性極性溶媒から選ばれる溶媒、またはこれらの複合溶媒が挙げられる。

本発明のポジ型感放射線性組成物は被加工基板上に塗布、乾燥され、通例、0.2 μm~2 μmの膜厚の薄膜にして使用される。この薄膜に電子線、X線、真空紫外線等の放射線を用いてパターン露光し、露光後ベーク、現像を行うことによって微細パターンを得ることができる。特に電子線を用いた場合により効果が顕著となる。

本発明の感放射線性組成物の現像は、公知の現像液を用いて行うことができる。例としては、アルカリ金属の水酸化物、炭酸塩、リン酸塩、ケイ酸塩、ホウ酸塩 などの無機アルカリ、2ージエチルアミノエタノール、モノエタノールアミン、ジエタノールアミン等のアミン類、水酸化テトラメチルアンモニウム、コリン等 の4級アンモニウムを1種あるいは2種以上含む水溶液が挙げられる。

実施例

10

15

20

25 以下、実施例を挙げて、本発明をさらに具体的に説明するが、本発明はこれら 実施例に限定されない。なお、本実施例における重量平均分子量はポリスチレン 換算によるGPC(ゲル・パーミエーション・クロマトグラフィ)測定値である。 GPC測定には昭和電工(株)製GPCカラム"KF-804"、"KF-80 3"、"KF-802"の3本を繋いで用い、移動相にはテトラヒドロフランを

用い、流量は毎分0.8mlとした。試料濃度は0.2重量%、試料注入量は0. 1mlである。検出器は示差屈折計を用いた。

実施例1

5

10

15

20

1、1-ジフェニルエチルメタクリレートと、<math>p-ヒドロキシーα-メチルス チレンとの60:40(モル比)混合物を1、4-ジオキサン中、アゾビスイソ ブチロニトリルを開始剤として<math>70で重合し、下記化学式(11)の重合体(重量平均分子量8200)を得た。この重合体3g、トリフェニルスルホニウムトリフレート300mgをメチルセロソルブアセテートに溶解し、 $0.2\mum$ のフィルターで濾過し、レジスト組成物を得た。

得られたレジスト組成物を、HMDS処理したシリコンウエハ上にスピンコートした後、100 ℃で2 分間加熱し、膜厚0.5 μ mのレジスト膜を得た。このレジスト膜に電子線露光装置を用いて、加速電圧20 k V でパターン状に電子線を照射し、90 ℃、2 分加熱した後、2.38 %テトラメチルアンモニウムヒドロキシド水溶液(三菱ガス化学製 ELM-D)で1 分間現像を行った。2.7 μ C ℓ c m ℓ の露光量で、0.20 μ mのパターンが得られた。

実施例 2

実施例 1 で用いた共重合体の代わりに、下記化学式(1 2)の共重合体(重量 25 平均分子量 2 4 0 0 0)を用いる以外は実施例 1 と同様にレジスト膜を得、電子線を照射して、現像を行った。 3. $9 \, \mu\, \text{C} / \text{c}\, \text{m}^2$ の露光量で、 0. 2 $3 \, \mu\, \text{m}\, \text{m}$ パターンが得られた。

$$\begin{array}{c}
CI \\
CH_2 \longrightarrow C \\
COO \longrightarrow C
\end{array}$$
(12)

実施例3

実施例 1 で用いた共重合体の代わりに、下記化学式(13)の重合体(重量平均分子量 10000)を用いる以外は実施例 1 と同様にレジスト膜を得、電子線 10 を照射して、現像を行った。 4. $1 \mu \text{ C/c m}^2$ の露光量で、 0. $23 \mu \text{ m}$ のパターンが得られた

$$\begin{array}{cccc}
CH_3 & & & \\
CH_2 & & & \\
C & & \\
C & & & \\
C & &$$

15

5

実施例 4

実施例1で用いた共重合体の代わりに、下記化学式(14)の共重合体(重量 20 平均分子量9000)を用いる以外は実施例1と同様にレジスト膜を得、電子線 を照射して、現像を行った。2.9 μ C / c m²の露光量で0.22 μ mのパタ ーンが得られた。

実施例1で用いた共重合体の代わりに、下記化学式(15)の共重合体(重量 平均分子量7900)を用いる以外は実施例1と同様にレジスト膜を得、電子線 を照射して、現像を行った。2. $4 \mu C / c m^2$ の露光量で0. $19 \mu m$ のパタ ーンが得られた。

実施例 6

10

15

20

25

露光装置として i 線ステッパを用いる以外は実施例 4 と同様の実験を行った。 4 9 m J / c m 2 の露光量で 2 . 6 μ m のパターンが得られた。

実施例7

実施例1で用いた共重合体の代わりに、下記化学式(16)の共重合体(重量 平均分子量10000)を用いる以外は実施例1と同様にレジスト膜を得、電子線を照射して、現像を行った。1.6 μ C/cm²の露光量で、0.20 μ mの パターンが得られた。

$$\begin{array}{c|c}
-(CH_2 - C -)_{50} & CH_3 \\
\hline
-(CH_2 - C -)_{50} & CH_3 \\
\hline
-(CH_2 - C -)_{50} & CH_3
\end{array}$$
(16)

実施例8

実施例1で用いた共重合体の代わりに、下記化学式(17)の共重合体(重量 平均分子量13000)を用いる以外は実施例1と同様にレジスト膜を得、電子

線を照射して、現像を行った。 2. $7 \mu \text{ C} / \text{ c m}^2$ の露光量で、 0. $2 3 \mu \text{ m}$ の パターンが得られた。

実施例9

5

15

実施例 1 で用いた共重合体の代わりに、下記化学式(18)の重合体(重量平均分子量 4400)を用いる以外は実施例 1 と同様にレジスト膜を得、電子線を10 照射して、現像を行った。3.0 μ C / c m 2 の露光量で、0.2 3 μ m のパターンが得られた。

実施例10

20 実施例1で用いた共重合体の代わりに、下記化学式(19)の共重合体(重量平均分子量26000)を用いる以外は実施例1と同様にレジスト膜を得、電子線を照射して、現像を行った。2.0 μ C/c m²の露光量で0.21 μ mのパターンが得られた。

実施例11

実施例1で用いた共重合体の代わりに、下記化学式(20)の共重合体(重量平均分子量58000)を用いる以外は実施例1と同様にレジスト膜を得、電子線を照射して、現像を行った。3.6 μ C / c m 2 の露光量で0.22 μ m のパターンが得られた。

$$\begin{array}{c|c} -CH_3 & CH_3 & CH_3 \\ -CH_2 - C & -CH_2 - C & -CH_2 \\ \hline & COOCH_2CH_2OH \\ \hline & COO-C - C & -COOCH_2CH_2OH \\ \hline \end{array}$$
 (20)

10

実施例12

露光装置として i 線ステッパを用いる以外は実施例 1 0 と同様の実験を行った。 3 4 m J / c m 2 の露光量で 0 . 3 5 μ m のパターンが得られた。

15

実施例13

実施例 1 で用いた共重合体の代わりに、下記化学式(2 1)の共重合体(重量平均分子量 9 7 0 0)を用いる以外は実施例 1 と同様にレジスト膜を得、電子線を照射して、現像を行った。 1. $6~\mu$ C / c m^2 の露光量で、 0. $1~9~\mu$ mのパターンが得られた。

25

20

実施例14

実施例1で用いた共重合体の代わりに、下記化学式(22)の共重合体(重量 平均分子量19000)を用いる以外は実施例1と同様にレジスト膜を得、電子 線を照射して、現像を行った。1.9 μ C / c m²の露光量で、0.20 μ mの

パターンが得られた。

$$\begin{array}{c|c} -(CH_2-CH) & 48 & (-CH_2-CH) \\ \hline & CH_3 & OH \\ \hline & CH_3 & OH \\ \hline \end{array}$$

実施例15

5

15

25

実施例1で用いた共重合体の代わりに、下記化学式(23)の重合体(重量平均分子量11000)を用いる以外は実施例1と同様にレジスト膜を得、電子線 を照射して、現像を行った。1. $4 \mu \text{ C/cm}^2$ の露光量で、0. $20 \mu \text{ m}$ のパターンが得られた。

実施例16

実施例1で用いた共重合体の代わりに、下記化学式(24)の重合体(重量平 20 均分子量9500)を用いる以外は実施例1と同様にレジスト膜を得、電子線を 照射して、現像を行った。1.2 μ C/c m²の露光量で、0.19 μ mのパターンが得られた。

$$\begin{array}{c}
\text{CH}_{2} \longrightarrow \text{CH}_{3} \longrightarrow \text{CH}_{3} \longrightarrow \text{CH}_{3} \longrightarrow \text{CH}_{3} \longrightarrow \text{CH}_{3}
\end{array}$$

$$\begin{array}{c}
\text{CH}_{2} \longrightarrow \text{CH}_{3} \longrightarrow \text{CH}_{3} \longrightarrow \text{CH}_{3} \longrightarrow \text{CH}_{3}
\end{array}$$

実施例17

実施例1で用いた共重合体の代わりに、下記化学式(25)の共重合体(重量平均分子量4500)を用いる以外は実施例1と同様にレジスト膜を得、電子線を照射して、現像を行った。3.0 μ C/cm²の露光量で0.24 μ mのパターンが得られた。

5

$$\begin{array}{c|c}
-(CH_2-CH) & CH_3 \\
\hline
-(CH_2-CH) & CH_3 \\
\hline
-(CH_2-CH) & CH_3
\end{array}$$

$$\begin{array}{c|c}
CH_3 & CH_3 \\
\hline
-(CH_2-CH_3) & CH_3
\end{array}$$

$$\begin{array}{c|c}
CH_3 & CH_3
\end{array}$$

10 実施例18

実施例1で用いた共重合体の代わりに、下記化学式(26)の共重合体(重量 平均分子量56000)を用いる以外は実施例1と同様にレジスト膜を得、電子線を照射して、現像を行った。3.5 μ C/cm²の露光量で0.23 μ mのパターンが得られた。

15

20 実施例19

実施例1で用いた共重合体の代わりに、下記化学式(27)の共重合体(重量 平均分子量18000)を用いる以外は実施例1と同様にレジスト膜を得、電子線を照射して、現像を行った。2. 4μ C / c m^2 の露光量で0. 21μ mのパターンが得られた。

実施例20

実施例1で用いた共重合体の代わりに、下記化学式(28)の共重合体(重量平均分子量25000)を用いる以外は実施例1と同様にレジスト膜を得、電子線を照射して、現像を行った。1. $7 \mu \text{ C/cm}^2$ の露光量で0. $20 \mu \text{ m}$ のパターンが得られた。

10 .

実施例 2 1

露光装置として i 線ステッパを用いる以外は実施例 1 3 と同様の実験を行った。 2 9 m J / c m 2 の露光量で 0 . 3 1 μ m 0 パターンが得られた。

15 実施例 2 2

実施例1で用いた共重合体の代わりに、下記化学式(29)の共重合体(重量平均分子量23000)を用いる以外は実施例1と同様にレジスト膜を得、電子線を照射して、現像を行った。2.0 μ C/c m²の露光量で、0.19 μ mのパターンが得られた。

20

25 実施例23

実施例1で用いた共重合体の代わりに、下記化学式(30)の共重合体(重量平均分子量18000)を用いる以外は実施例1と同様にレジスト膜を得、電子線を照射して、現像を行った。2.7 μ C/c m²の露光量で、0.22 μ mのパターンが得られた。

実施例24

実施例 1 で用いた共重合体の代わりに、下記化学式(3 1)の重合体(重量平均分子量 5 7 0 0 0)を用いる以外は実施例 1 と同様にレジスト膜を得、電子線を照射して、現像を行った。 3. 7μ C / c m^2 の露光量で、 0. $2 2 \mu$ mのパターンが得られた。

$$\begin{array}{c|c} -(CH_2-CH) & (31) \\ \hline \\ CH_3 & OH \\ \hline \\ CH_3 & OH \\ \end{array}$$

15

20

5

10

実施例25

実施例1で用いた共重合体の代わりに、下記化学式(32)の共重合体(重量 平均分子量35000)を用いる以外は実施例1と同様にレジスト膜を得、電子線を照射して、現像を行った。2. 5μ C/cm²の露光量で0. 21μ mのパターンが得られた。

25

実施例26

実施例1で用いた共重合体の代わりに、下記化学式(33)の共重合体(重量平均分子量4500)を用いる以外は実施例1と同様にレジスト膜を得、電子線を照射して、現像を行った。3.2 μ C μ C

ーンが得られた。

実施例27

5

·10

15

実施例1で用いた共重合体の代わりに、下記化学式(34)の共重合体(重量平均分子量18000)を用いる以外は実施例1と同様にレジスト膜を得、電子線を照射して、現像を行った。1. $6 \mu C/c m^2$ の露光量で0. $20 \mu m$ のパターンが得られた。

実施例28

露光装置として i 線ステッパを用いる以外は実施例 2 2 と同様の実験を行った。 3 6 m J / c m 2 の露光量で 0. 3 3 μ m のパターンが得られた。

20 実施例29

実施例1で用いた共重合体の代わりに、下記化学式(35)の共重合体(重量平均分子量21000)を用いる以外は実施例1と同様にレジスト膜を得、電子線を照射して、現像を行った。1. $7 \mu C / c m^2$ の露光量で0. 19 μm のパターンが得られた。

実施例30

実施例1で用いた共重合体の代わりに、下記化学式(36)の共重合体(重量平均分子量31000)を用いる以外は実施例1と同様にレジスト膜を得、電子線を照射して、現像を行った。2. 4μ C/c m^2 の露光量で0. 22μ mのパターンが得られた。

$$\begin{array}{c} -\left(\text{CH}_{2} - \stackrel{\text{CH}_{3}}{\stackrel{\text{CH}_{3}}}{\stackrel{\text{CH}_{3}}{\stackrel{\text{CH}_{3}}}{\stackrel{\text{CH}_{3}}}{\stackrel{\text{CH}_{3}}}{\stackrel{\text{CH}_{3}}}{\stackrel{\text{CH}_{3}}{\stackrel{\text{CH}_{3}}}{\stackrel{\text{CH}_{3}}}{\stackrel{\text{CH}_{3}}}}{\stackrel{\text{CH}_{3}}}{\stackrel{\text{CH}_{3}}}{\stackrel{\text{CH}_{3}}}{\stackrel{\text{CH}_{3}}}{\stackrel{\text{CH}_{3}}}{\stackrel{\text{CH}_{3}}}}{\stackrel{\text{CH}_{3}}}{\stackrel{\text{CH}_{3}}}{\stackrel{\text{CH}_{3}}}{\stackrel{\text{CH}_{3}}}}{\stackrel{\text{CH}_{3}}}}{\stackrel{\text{CH}_{3}}}{\stackrel{\text{CH}_{3}}}}}}}}}}}}}}}}}}}}}}}}}}}$$

10 実施例31

実施例1で用いた共重合体の代わりに、下記化学式(37)の共重合体(重量平均分子量19000)を用いる以外は実施例1と同様にレジスト膜を得、電子線を照射して、現像を行った。1. 6μ C/c m²の露光量で0. 20μ mのパターンが得られた。

実施例32

20 実施例 1 で用いた共重合体の代わりに、下記化学式(38)の共重合体(重量 平均分子量8000)を用いる以外は実施例 1 と同様にレジスト膜を得、電子線 を照射して、現像を行った。 3.5 μ C / c m 2 の露光量で、 0.24 μ m のパ ターンが得られた。

$$\begin{array}{c|c}
CH_3 \\
-(CH_2-C)_n \\
COO-C-CH_2COOtBu
\end{array}$$
(38)

実施例33

5

10

実施例1で用いた重合体の代わりに、下記化学式(39)の共重合体(重量平均分子量11000)を用いる以外は実施例1と同様にレジスト膜を得、電子線を照射して、現像を行った。3.3 μ C/cm²の露光量で、0.22 μ mのパターンが得られた。

実施例34

実施例 1 で用いた重合体の代わりに、下記化学式(40)の共重合体(重量平 15 均分子量 9000)を用いる以外は実施例 1 と同様にレジスト膜を得、電子線を 照射して、現像を行った。 3. $2\,\mu\,\text{C/c}\,\text{m}^2$ の露光量で、 0. $2\,2\,\mu\,\text{m}$ のパタ ーンが得られた。

25 実施例35

実施例1で用いた重合体の代わりに、下記化学式(41)の共重合体(重量平均分子量14000)を用いる以外は実施例1と同様にレジスト膜を得、電子線を照射して、現像を行った。3.9 μ C/c m²の露光量で0.23 μ mのパターンが得られた。

$$\begin{array}{c|c}
CH_2 - C \\
\hline
CH_2 - C \\
\hline
CH_3
\end{array}$$

$$\begin{array}{c}
CH_2 - CH \\
CH_3
\end{array}$$

$$\begin{array}{c}
CH_2 - CH \\
CH_3
\end{array}$$

$$\begin{array}{c}
CH_3 \\
CH_3
\end{array}$$

実施例36

5

10

15

25

露光装置として i 線ステッパを用いる以外は実施例 3 4 と同様の実験を行った。 3 6 m J / c m 2 の露光量で 0 . 3 3 μ m のパターンが得られた。

比較例1

比較例 2

実施例1で用いた共重合体の代わりに、下記化学式(42)の共重合体(重量 平均分子量12000)を用いる以外は実施例1と同様にレジスト膜を得、評価 20 を行った。

$$\begin{array}{c|c}
-(CH_2-CH) & CH_2-C \\
\hline
 & CH_2-CH_3 \\
\hline
 & COO-C-CH_3
\end{array}$$
(42)

5. $8 \mu \text{ C} / \text{cm}^2$ の露光量で 0. $25 \mu \text{ m}$ のパターンが得られ、感度、解像度とも十分な特性ではなかった。

産業上の利用可能性

本発明のポジ型感放射線性組成物は、上述のように特定の酸脱離基を含有する 化合物と、放射線の照射によって酸を発生する酸発生剤を用いることによって、 高解像度でかつ高感度の組成物を得ることが可能となった。

Г	· · · · · · · · · · · · · · · · · · ·	1		Т
解像度 (mm)	0 . 2 0	0 . 2 3	0.23	0.22
感度 (μC/cm²)	2. 7	3. 9	4.1	5. 9
Mw	8 2 0 0	2 4 0 0 0	10000	0006
	CH ₂	CH ₂ —C)—CH ₃	CH ₂ —Ch ₃ —CH ₃ —CH ₃	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

実施例	重合体	Mw	感度 (μC/cm²)	解像度(µm)
വ	$\frac{\text{Cl}}{\left(\text{CH}_2\text{C}\right)_{62}} \frac{\text{CH}_3}{\text{CH}_2} \frac{\text{CH}_2\text{C}}{\left(\text{CH}_2\text{C}\right)_{38}}$	7 9 0 0	2. 4	0.19
,	-₹			
9	実施例4と同じ	実施例4と同じ	49mJ/cm² (i線)	2.6
2	$\frac{c_1}{(c_{12}-c_{13})_{50}}$	10000	1. 6	0.20
		,		
,	HO -0-000			
∞	CH ₂ CH ₂ CH ₃	13000	2. 7	0.23
			,	

実施例	重合体	Mw	感度 (μC/cm²)	解像度 (μm)
6	H ₃ CH ₂ CH ₃ CH ₃ CH ₃ CH ₂ C C CH ₂ C C C C C C C C C C C C C C C C C C C	0 0	3.0	0.23
		-		
	HO \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
	£_{			
	·			
1 0	CH3 CH3	26000	0 6	0 2.1
<u></u> .	00 00 00	9		4 1
	\sim			
			-	
11	<u>ਜੂ</u>	0	v c	6 6
	CH2 - C 7 42 CH2 - C - 758			
	O2HD2HD000			
		-		
				
1 2	実施例10と同じ	実施例10と同じ	34mJ/cm² (1線)	0.35

6	
-	

実施例	重合体	<u>M</u> w	感度 (μC/cm²)	解像度(μm)
	8- 8-	0016	1.6	0.19
	COO—C—————————————————————————————————		•	
14	$\frac{\left(\text{CH}_2 - \text{CH} \right)^{\frac{1}{48}} \left(\text{CH}_2 - \text{CH} \right)^{\frac{1}{5}}}{\left(\text{CH}_2 - \text{CH} \right)^{\frac{1}{5}}}$	19000	1.9	0.20
,	CH ₃ CH ₃ OH CH ₃ OH			
1 5	$-\left(CH_{2}-C\right)\frac{CH_{3}}{-\left(CH_{2}-C\right)^{-1}\frac{CH_{3}}{56}}$	1 1 0 0 0	1.4	0.20
	COO-CH3 COO-CH3 CH3	,		
,			,	
9	$-\left(CH_2 - C \right)_{49} - \left(CH_2 - C \right)_{51}$	9500	I. 2	0.19
	coo-c-c-c-c-k		- -	
	\			

) .
1	

実施例	重合体	Mw	感度 (μC/cm²)	解像度(μm)
17	$\frac{(cH_2-cH_3)}{(cH_2-cH_3)}$	4500	3.0	0.24
	C00-C-CH3 OH			
1 8		56000	3.5	. 2 3
	CH ₃ ÒCH ₃			
6 1	CH ₃	18000	2.4	0.21
	COO-C-C-C-CCH3 O-COO			
0	ន្ត្រ	25000	1. 7	0.20
	COO-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C			
2 1	実施例13と同じ	実施例13と同じ	29m1/cm3 (1線)	0.31

4	
4	7

実施例	重合体	M w	感度 (μC/cm²)	解像度(μm)
2 2	CH2—C) 65 CH3 COO—C—C—C—C—32	23000	2. 0	0. 19
හ ව	CH ₂ —Ch ₃ CH ₂ —Ch ₃ CH ₂ —Ch ₄ CH ₄ CH ₄ —Ch ₄ CH ₄ CH ₄ —Ch ₄ CH ₄	18000	2.7	0.22
4	(CH ₂ -CH) 55 (CH ₂ -CH) 4€ (CH ₂ -CH) 4€	5.7 0 0 0	3.7	0.22
2 2	$ \begin{array}{c} $	35000	2.5	0.21

7	

1			
•			

実施例	<u>国</u> 合体	Mw	感度 (μC/cm²)	解像度(4m)
2 6	$\frac{\text{CH}_2}{\left(\text{CH}_2^{}\right)^{\frac{1}{52}}} = \frac{\text{CH}_3}{\left(\text{CH}_2^{}\right)^{\frac{1}{48}}}$	4500		0.23
		·		
i c	, o			
2	$\left \begin{array}{c} CH_2 - C_1 \\ + CCH_2 - C_2 \\ + CCH_2$	18000	1.6	0.20
	coo-c-c-c-coo			
8 8	実施例22と同じ	実施例22と同じ	36m3/cm² (1線)	0.33
D)	$\begin{pmatrix} cH_2 - c \\ + cH_2 - c \end{pmatrix}_{65} + cH_3 - c \\ + cH_2 - c \\ + cH_3 - c $	21000	1.7	0.19
	но-(•
		·		
0	$\left(-\frac{c_{H_3}}{+c_{H_2}} - \frac{c_{H_3}}{+c_{H_3}} \right)$	31000	2. 4	0.22

4	
J	

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	実施例	重合体	Mw	感度 (μC/cm²)	解像度 (μm)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cl CH2—CH2—CH2—CH2—CH2—CH2—CH2—CH2—CH2—CH2—	19000		0.20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		HO-OHO-OHO-OHO-OHO-OHO-OHO-OHO-OHO-OHO-		,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 2	₽	8 0 0 0		0.24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ဗ	CH3 09(-CH)	1.1000		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
	3 4	(-)- 0- 10- 10- 10- 10- 10- 10- 10- 10- 10-	0006		0.22

•	—
3	
Ţ	

実施例	重 合体	Μw	感度(μ C / c m²)	解像度 (μm)
ಲ	$\frac{\left(\text{CH}_2-\frac{1}{\zeta}\right)^{-10}}{\left(\text{CH}_2-\frac{1}{\zeta}\right)^{-1}}$ $\frac{\left(\text{CH}_2-\frac{1}{\zeta}\right)^{-1}}{\left(\text{CH}_3-\frac{1}{\zeta}\right)^{-1}}$ $\frac{\left(\text{CH}_2-\frac{1}{\zeta}\right)^{-1}}{\left(\text{CH}_3-\frac{1}{\zeta}\right)^{-1}}$ $\frac{\left(\text{CH}_3-\frac{1}{\zeta}\right)^{-1}}{\left(\text{CH}_3-\frac{1}{\zeta}\right)^{-1}}$	14000	3.9	0.23
3 6	実施例34と同じ	実施例34と同じ	36mJ/cm² (i線)	0.33

丧2 比較例

数例]	重合体	Mw	感度(μC/cm²)	解像度 (µm)
'	. "(-2-zH2)	21000	6.2	0.33
	- COO- CH3 - COO- CH3 - CH3			
-	$\frac{\text{CH}_2}{\text{CH}_2-\text{CH}} + \frac{\text{CH}_3}{40} + \frac{\text{CH}_2-\text{C}-\frac{\text{C}}{1-\frac{\text{C}}}}}}{1-\frac{\text{C}}{1-\frac{\text{C}}{1-\frac{\text{C}}{1-\frac{\text{C}}{1-\frac{\text{C}}{1-\frac{\text{C}}{1-\frac{\text{C}}{1-\frac{\text{C}}{1-\frac{\text{C}}{1-\frac{\text{C}}{1-\frac{\text{C}}{1-\frac{C}}1-\frac{\text{C}}}}}}}{1-\frac{\text{C}}}{1-\frac{\text{C}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	12000	5.8	0.25

- 1. a) アルカリ可溶性基を酸脱離基 a で保護した化合物および b) 放射線の照射によって酸を発生する酸発生剤を含有するポジ型感放射線性組成物であって、次の要件 a 1) ~ a 3) のいずれかを満足することを特徴とするポジ型感放射線性組成物。
 - a 1). アルカリ可溶性基がカルボキシル基であって、酸脱離基が一般式(1)で示される

5

$$- \begin{matrix} R^1 \\ - \\ C \\ R^2 \end{matrix} \qquad (1)$$

- 15 (R^1 および R^2 は芳香環であり、 R^3 はアルキル基、置換アルキル基、シクロアルキル基、芳香環を示す。 $R^1 \sim R^3$ はそれぞれ同じでも異なっていてもよい。)
 - a 2). 酸脱離基 a が一般式(2)で示される

20

$$\begin{array}{c}
R^4 \\
 \downarrow \\
C \longrightarrow R^5
\end{array}$$
(2)

- - a3).酸脱離基aがアルカリ可溶性基を有するか、もしくは酸脱離基aが.酸脱離基bで保護されたアルカリ可溶性基を有する

- 2. 要件a1)を満足する請求項1記載のポジ型感放射線性組成物。
- 3. $R^{1} \sim R^{3}$ がそれぞれ独立にアリール基もしくは置換アリール基であることを 特徴とする請求項 2 記載のポジ型感放射線性組成物。
 - 4. 要件a2)を満足する請求項1記載のポジ型感放射線性組成物。
- 5. a 2) の化合物のアルカリ可溶性基がカルボキシル基またはフェノール性水10 酸基である請求項 4 記載のポジ型感放射線性組成物。
 - 6. 電子供与性基を有する芳香環が一般式(3)で表される構造であることを特徴とする請求項4記載のポジ型感放射線性組成物。

15 $R^8 R^9$ R^{10} (3)

- 20 (R^8 、 R^{10} 、 R^{12} はそれぞれ独立に水素原子、炭素数 1 ~ 4のアルキル基、 炭素数 1 ~ 6のアルコキシ基を表し、そのうち少なくとも一つは上記アルキ ル基もしくはアルコキシ基を表す。 R^9 および R^{11} はそれぞれ独立に水素原子、 炭素数 1 ~ 4のアルキル基、炭素数 1 ~ 6のアルコキシ基を表す。)
- 25 7. 電子供与性基が炭素数 1 ~ 6 のアルコキシ基である請求項 4 記載のポジ型感放射線性組成物。
 - 8. 要件a3)を満足する請求項1記載のポジ型感放射線性組成物。

- 9. a 3) の化合物の酸脱離基 a がフェノール性水酸基を少なくとも一つ有するか、もしくは前記フェノール性水酸基をさらに酸脱離基 b で保護したものであることを特徴とする請求項 8 記載のポジ型感放射線性組成物。
- 5 10. a 3) の化合物の酸脱離基 a がカルボキシル基を少なくとも一つ有するか、 もしくは前記カルボキシル基をさらに酸脱離基 b で保護したものであること を特徴とする請求項 8 記載のポジ型感放射線性組成物。
- 11. a 3) の化合物の酸脱離基 a が一般式(4)で表される基であることを特徴 10 とする請求項 8 記載のポジ型感放射線性組成物。

(R¹³~R¹⁵はそれぞれ独立にアルキル基、置換アルキル基、シクロアルキル基、アリール基、置換アリール基、アルカリ可溶性基を含む基、酸脱離基 b で保護されたアルカリ可溶性基を含む基のいずれかであり、少なくとも一つはアルカリ可溶性基を含む基または酸脱離基 b で保護されたアルカリ可溶性基を含む基である。R¹³~R¹⁵はそれぞれ同じでも異なっていてもよい。)

20

12. 一般式 (4) の R ¹³ ~ R ¹⁵ の うち少なくとも 1 つが一般式 (5) または (6) で表される基であることを特徴とする請求項 1 1 記載のポジ型感放射線性組成物。

25

15

25

----B---COOY (6)

(Aは炭素数 $1 \sim 4$ のアルキレン基、炭素数 $6 \sim 1$ 0 のアリーレン基、単結合を表す。Bは炭素数 $1 \sim 6$ のアルキレン基、炭素数 $6 \sim 1$ 0 のアリーレン基、炭素数 $7 \sim 1$ 2 のアルキレンアリーレン基、単結合を表す。 $R^{16} \sim R^{19}$ はそれぞれ独立に水素原子、炭素数 $1 \sim 4$ のアルキル基を表す。 Y は酸脱離基 b または水素原子を表し、mは $1 \sim 3$ である。)

13. 一般式(4)のR¹³~R¹⁵のうち少なくとも一つが一般式(7)で表される 10 基であることを特徴とする請求項11記載のポジ型感放射線性組成物。

 $(R^{20}$ および R^{21} はそれぞれ独立に水素原子、炭素数 $1\sim 4$ のアルキル基を表す。 Y は酸脱離基 b または水素原子を表し、mは $1\sim 3$ である。)

20 14. 一般式 (4) の R ¹³ ~ R ¹⁵ のうち少なくとも一つが一般式 (8) で表される 構造であることを特徴とする請求項 1 1 記載のポジ型感放射線性組成物。

 $(R^{22}$ および R^{23} は水素原子、炭素数 $1\sim4$ のアルキル基を表す。 Y は酸脱離基 b または水素原子を表す。)

- 15. a 1) ~ a 3) の化合物が重量平均分子量5000~50000重合体であることを特徴とする請求項1記載のポジ型感放射線性組成物。
- 5 16. a1)~a3) の化合物が下記一般式(9) で表される構造単位を含む重合体であることを特徴とする請求項1記載のポジ型感放射線性組成物

 $(R^{24}$ は水素原子、炭素数 $1 \sim 4$ のアルキル基、シアノ基、ハロゲンを示す。 2 は一般式 (1) 、 (2) または (4) で表される基である。)

15 17. a 2) または a 3) の化合物が一般式(10)で表される構造単位を含む重合体であることを特徴とする請求項4または8記載ポジ型感放射線性組成物。

20

25

(R²³は水素原子、炭素数1~4のアルキル基、シアノ基、ハロゲンを表す。 Xは一般式(2)または(4)で表される酸脱離基である。)

18. R²⁴がシアノ基またはハロゲンであることを特徴とする請求項16記載のポジ型感放射線性組成物。

- PCT
- 19. 請求項1記載のポジ型感放射線性組成物を被加工基板上に塗布、乾燥、露光、現像するパターンの製造方法。
- 20. 電子線により露光を行うことを特徴とする請求項19記載のパターンの製造方法。

..... ·

EP · US

PCT

国際調査報告

(法8条、法施行規則第40、41条) [PCT18条、PCT規則43、44]

出願人又は代理人 の書類記号 TP-00093	今後の手続きについては、国際調査報告の送付通知様式(PCT/ISA/220 及び下記5を参照すること。
国際出願番号 PCT/JP01/00315	国際出願日 (日.月.年) 19.01.01 優先日 (日.月.年) 22.06.00
出願人 (氏名又は名称) 東レ株式	式会社
国際調査機関が作成したこの国際調査 この写しは国際事務局にも送付される	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
この国際調査報告は、全部で 4	
この調査報告に引用された先行技	術文献の写しも添付されている。
1. 国際調査報告の基礎 a. 言語は、下記に示す場合を除く この国際調査機関に提出され	ほか、この国際出願がされたものに基づき国際調査を行った。 れた国際出願の翻訳文に基づき国際調査を行った。
│	
	れたフレキシブルディスクによる配列表
	別に提出された書面による配列表
	間に提出されたフレキシブルディスクによる配列表 が配列表が出願時における国際出願の開示の範囲を超える事項を含まない旨の陳述
	上配列とフレキシブルディスクによる配列表に記録した配列が同一である旨の陳述
2. 請求の範囲の一部の調査が	できない(第1欄参照)。
3. ② 発明の単一性が欠如している	る(第Ⅱ欄参照)。
4. 発明の名称は	人が提出したものを承認する。
	示すように国際調査機関が作成した。 ン型感放射線性組成物およびこれを用いたパターンの製造方法
5. 要約は 出願/	人が提出したものを承認する。
国際調	関に示されているように、法施行規則第47条(PCT規則38.2(b))の規定により 関査機関が作成した。出願人は、この国際調査報告の発送の日から1カ月以内にこ 祭調査機関に意見を提出することができる。
6. 要約書とともに公表される図は、 第 図とする。	、が示したとおりである。 X なし
. □ 出願ノ	しは図を示さなかった。
□ 本図に	t発明の特徴を一層よく表している。

第Ⅲ欄 要約(第1ページの5の続き)

本願発明は、(A)カルボキシル基又はフェノール性水酸基からなるアルカリ可溶性基を下記(a1)~(a3)のいずれかの酸脱離基(a)で保護し化合物と、(B)放射線の照射によって酸を発生する酸発生剤とを含有するポジ型感放射線性組成物、ならびにこれを用いたレジストパターン形成方法。

- (a1)酸脱離基(a)が-CR3であり、Rの少なくとも2つは芳香環である。(アルカリ可溶性基はカルボキシル基である。)
- (a2)酸脱離基(a)が-CR3であり、Rの少なくとも1つが電子供与性基を有する芳香環である。
- (a3) 酸脱離基(a)が、更にアルカリ可溶性基(a')を有するか又は酸脱離基で保護されたアルカリ可溶性基(a'')を有する。

. .

A CTAS	SSIFICATION OF SUBJECT MATTER				
Int	C1 ⁷ G03F 7/039, C08F 20/12, C	TORE 20/26 CORE 12/24.			
	H01L 21/027	JUGE 20/20/ COUR 12/21/			
j	·				
	to International Patent Classification (IPC) or to both n	national classification and IPC			
B. FIELD	B. FIELDS SEARCHED				
Minimum d	Minimum documentation searched (classification system followed by classification symbols)				
Int	Int.Cl7 G03F 7/00-7/42, H01L 21/027				
Í					
<u> </u>					
Documenta Tit	ation searched other than minimum documentation to the suyo Shinan Koho 1922-1996	ae extent that such documents are included	in the fields searched		
Koki	suyo Shinan Koho 1922-1996 ai Jitsuyo Shinan Koho 1971-2000	Toroku Jitsuyo Shinan K Jitsuyo Shinan Toroku K	Coho 1994-2000		
		•			
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)					
1					
C. DOCU	JMENTS CONSIDERED TO BE RELEVANT				
			1		
Category*	Citation of document, with indication, where a		Relevant to claim No.		
x	JP, 10-171122, A (NEC Corporat	.ion),			
^	26 June, 1998 (26.06.98), Claim 3; Par. Nos. [0014] to [(COST) (Pomiles none)	1,8,10,11,15,		
A	CTAIM 3; PAI. NOS. [OUT4] CO [[0015] (Family: none)	16,19		
	13,14,5				
i	JP, 10-287712, A (NEC Corporation),				
<u> </u>	27 October, 1998 (27.10.98),				
Х	Claims; Par. Nos. [0027] to [0028] 1,8,10,15,16.				
· '	& KR, 98081458, A				
i '	US, 5989775, A (Korea Kumho Petrochemical Co., Ltd.),				
1	US, 5989775, A (Korea Kumno Petrochemical Co., Ltd.), 23 November, 1999 (23.11.99),				
x	X Abstract; Claims, 1.8.10.15.1				
	& JP, 10-207071, A & KR, 98056207, A 19,20				
US, 5962185, A (Korea Kumho Petrochemical Co., Ltd.), 05 October, 1999 (05.10.99),					
х	Abstract; Claims,		1 1 0 0 15 16		
1	& JP, 10-142801, A & KR, 9802	2331. A	1,8,9,15,16, 19,20		
	JP, 4-136856, A (Mitsubishi Ele	ectric Corporation),	i		
Х	11 May, 1992 (11.05.92),		1-7		
Further	r documents are listed in the continuation of Box C.	See patent family annex.			
* Special	categories of cited documents:		et aut etters dans au		
"A" docume	ent defining the general state of the art which is not	priority date and not in conflict with the	e application but cited to		
consider	red to be of particular relevance document but published on or after the international filing	understand the principle or theory under	erlying the invention		
date	•	"X" document of particular relevance; the cl considered novel or cannot be considered	laimed invention cannot be		
"L" docume	ent which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other	step when the document is taken alone			
special r	reason (as specified)	- occument or paradoral relevance, the ci	laimed invention cannot be		
"O" docume	O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents. such				
"P" documen	ent published prior to the international filing date but later	combination being obvious to a person so document member of the same patent fa	skilled in the art		
than the	e priority date claimed	Or annument of the court of the	шшу		
	actual completion of the international search	Date of mailing of the international search	h report		
30 Ma	March, 2001 (30.03.01)	10 April, 2001 (10.04	4.01)		
	,	1			
	ailing address of the ISA/	Authorized officer			
	nese Patent Office	1			
T 11.37.	· · · · · · · · · · · · · · · · · · ·	1			
Facsimile No.	<i>j</i> . ,	Telephone No.			

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
	Claims; page 3, upper left column to lower right colu (Family: none)	mn 15,19,20
x	JP, 3-98051, A (Agency of Industrial Science a Technology), 23 April, 1991 (23.04.91), Claims (Family: none)	nd 1-3,16
	·	·
	·	•
	·	
,		

A. 発明の属する分野の分類(国際特許分類 (IPC))

Int.Cl' G03F 7/039, C08F 20/12, C08F 20/26, C08F 12/24, H01L 21/027

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl' G03F 7/00-7/42, H01L 21/027

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2000年

日本国登録実用新案公報

1994-2000年

日本国実用新案登録公報

1996-2000年

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

<u> </u>	<u> </u>	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する請求の範囲の番号
X	JP, 10-171122, A (日本電気株式会社), 26.6月.1998 (26.06.98),	1, 8, 10,
A	【請求項3】, 【0014】-【0015】 (ファミリーなし)	11, 15, 16, 19 13, 14, 18
X	JP, 10-287712, A (日本電気株式会社), 27.10月.1998 (27.10.98), 【特許請求の範囲】, 【0027】-【0028】 & KR, 98081458, A	1, 8, 10, 15, 16, 19

区欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

30.03.01

国際調査報告の発送日

1 0.04.01

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP)

郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官 (権限のある職員) 山 鹿 勇 次 郎

2M 9223

電話番号 03-3581-1101 内線 3273

		国際田願名	1/00-315
C (続き). 引用文献の	関連すると認められる文献		
カテゴリー*	引用文献名 及び一部の箇所が関連するときに	t その関連する策所の表示	関連する
X	US, 5989775, A (Korea Kumho Pe 23 Nov. 1999 (23. 11. 9 Abstract, Claims, & JP, 10-207071, A & KF	trochemical Co., Ltd.) 99),	請求の範囲の番号 1, 8, 10, 15, 17, 19, 20
х	US, 5962185, A (Korea Kumho Pe 5 Oct. 1999 (05. 10. 99 Abstract, Claims, & JP, 10-142801, A & KR)),	1, 8, 9, 15, 16, 19, 20
X	JP, 4-136856, A (三菱電機株: 11.5月.1992 (11.05.9 特許請求の範囲,第3頁左上欄〜右下欄, (ファミリーなし)	2).	1 - 7· 15, 19, 20
X	JP, 3-98051, A (工業技術院長) 23.4月.1991 (23.04.9 特許請求の範囲, (ファミリーなし)	1),	1-3, 16
	•		
			·

