

Publication number:

0 125 023 B1

FUROPEAN PATENT SPECIFICATION (12)

(a) Date of publication of patent specification: 05.06.91
(b) Int. Cl.⁵ C12N 15/13, C12N 15 63, C12N 15/81, C12N 15.85,

(21) Application number: 84302368.0

C12P 21 00, A61K 39 395

(2) Date of filing: 06.04.84

The file contains technical information submitted after the application was filed and not included in this specification

- Recombinant immunoglobulin preparations, methods for their preparation, DNA sequences. expression vectors and recombinant host cells therefor.
- Priority: 08.04.83 US 483457
- Date of publication of application: 14.11.84 Bulletin 84/46
- (45) Publication of the grant of the patent: 05.06.91 Bulletin 91/23
- (4) Designated Contracting States: AT BE CHIDE FRIGBIT LILU NL SE
- (6) References cited: EP-A- 0 057 107

EP-A- 0 068 763 EP-A- 0 073 656 EP-A- 0 088 994 EP-A- 0 102 634 EP-A- 0 120 694

Microbiology, 3rd ed., Harper International Ed. (1980), Chapter 17

Nucl.Acids Res. vol.8, no.9, 1980, pp. 2055-65

Proc.Natl.Acad.Sci. USA 78 (1981), pp. 4250-24

Proprietor: GENENTECH, INC. 460 Point San Bruno Boulevard South San Francisco California 94080(US)

Proprietor: CITY OF HOPE 1450 Fast Duarte Boad Duarte California 91010(US)

2 Inventor: Cabilly, Shmuel 325 South Second Avenue Arcadia California 91006(US) Inventor: Holmes, William Evans 29 Eastlake Pacifica California 94044(US) Inventor: Wetzel, Ronald Burnell

455 Urbano Drive San Francisco California 94127(US) Inventor: Heyneker, Herbert Louis

2621 Easton Drive Burlingame California 94010(US) Inventor: Riggs, Arthur Dale

4852 St. Andres Avenue La Verne California 91750(US)

Nature 298 (1982), pp. 286-88

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Molekulare Biologie der Zelle VCH Verlagsgesellschaft m.b.H., Weinheim (1986), p. 1075

TRENDS IN BIOCHEMICAL SCIENCES, vol.6, no.8, August 1981, North-Holland; N. GOUGH "The rearrangements of immunoglobulin genes", pp. 203-205

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol.77, no.4, April 1980; G. Köhler "Immunoglobulin chain loss in hybridoma lines", pp. 2197-2199

THE JOURNAL OF IMMUNOLOGY, vol.123, no.2, August 1979, Baltimore, USA; S.L. MOR-RISON "Sequentially derived mutants of the constant region of the heavy chain of murine immunoglobulins", pp. 793-800

Representative: Armitage, Ian Michael et al MEWBURN ELLIS & CO. 2/3 Cursitor Street London EC4A 1BQ(GB)

Description

This invention relates to the field of immunoglobulin production and to modification of naturally occuring immunoglobulin anino acid sequences. Specifically, the invention relates to using recombinant techniques to produce immunoglobulins which have chimeric or other modified forms.

A. Immunoglobulins and Antibodies

Antibodies are specific immunoglobulin polypeptides produced by the vertebrate immune system in a response to challenge by foreign proteins, glycoproteins, cells, or other antigenic foreign substances. The sequence of events which permits the organism to overcome invasion by foreign cells or to rid the system of foreign substances is at least partially understood. An important part of this process is the manufacture of antibodies which bind specifically to a particular foreign substance. The binding specificity of antibodies which bind specifically to a particular foreign substance. The binding specificity of appropriate specifically to a particular foreign substance. The binding specificity of specifically and a particular foreign substance. The binding specificity of specificities capable of being specificities capable of being specificities capable of being specificities are capable of eliciting responses, each almost exclusively directed to the particular antigen which elicited

Immunoglobulins include both antibodies, as above described, and analogous protein substances which lack antigen specificity. The latter are produced at low levels by the lymph system and in increased levels by myelomas.

A.1 Source and Utility

Two major souces of vertebrate antibodies are presently utilized—generation mi situ by the mammalian B III primphocytes and in cell culture by 9-cell hybrids. Antibodies are made in situ as a result of the differentiation of immature B lymphocytes into plasma cells, which occurs in response to stimulation by specific antigens. In the undifferentiated B cell, the portions of DNA coding for the various regions on the immunoglobulin chains are separated in the genomic DNA. The sequences are reassembled sequentially prior to transcription. A review of this process has been given by Gough, Trends in Blochem Sci. 6: 203 (1981). The resulting rearranged genome is capable of expression in the mature B lymphocyte to produce the desired antibody. Even when only a single antigen is introduced into the sphere of the immune system for a particular mammal, however, a uniform population of antibodies does not result. The in situ immune response to any particular antigen is defined by the mosaic of responses to the various determinants which are present on the antigen. Each subset of homologous antibody is contributed by a single population of B selfs—hence in situ generation of antibodies is "polycolant".

This limited but inherent heterogeneity has been overcome in numerous particular cases by use of hybridoma technology to create "monoclonal" antibodies (Kohler, et al., Eur. J. Immunol. 6: 511 (1976)) in this process, splencytes or lymphocytes from a mammal which has been injected with antigen are fused with a tumor cell line, thus producing hybrid cells or "hybridomas" which are both immortal and capable of producing the genetically coded antibody of the B cell. The hybrids thus formed are segregated mits single genetic strains by selection, dilution, and regrowth, and each strain thus represents a single genetic line. They therefore produce immunoreactive antibodies against a desired antigen which are assured to be homogenous, and which antibodies, referencing their pure genetic parentage, are called "monoclonal" Hybridoma technology has to this time been focused largely on the fusion of murine lines. but humanhuman hybridomas (Olsson, L. et al., (bid) 77: 6841 (1980)) and several other xenogenic hybrid combinations have been prepared as well. Alternatively, primary, antibody producing, B cells have been immortalized in who by transformation with viral DNA.

Polycional, or, much more preferably, monoclonal, antibodies have a variety of useful proparties similar to those of the present invention. For example, they can be used as specific immunoprecipitating reagents to detect the presence of the antigen which elicited the initial processing of the B cell genome by coupling this antigen-antibody reaction with suitable detection techniques such as labeling with radioscopes or with enzymes capable of assay (RIA, EMIT, and EUSA), Antibodies are thus the foundation of immunodiagnostic tests for many antigenic substances. In another important use, antibodies can be directly injected into subjects suffering from an attack by a substance or organism containing the antigen in question to combat this attack. This process is currently in its experimental stages, but its potential is clearly seen. Third, whole body diagnosis and treatment is made possible because imjected antibodies are directed to specific target disease issues, and thus can be used either to determine the presence of the disease by

carrying with them a suitable label, or to attack the diseased tissue by carrying a suitable drug.

Monoclonal antibodies produced by hybridomas, while theoretically effective as suggested above and clearly preferable to polyclonal antibodies because of their specificity, suffer from certain disadvantages, First, they tend to be contaminated with other proteins and cellular materials of hybridoma. (and, therefore, 5 mammalian) origin. These cells contain additional materials, notably nucleic acid fragments, but protein fragments as well, which are capable of enhancing, causing, or mediating carcinogic responses. Second, hybridoma lines producing monoclonal antibodies tend to be unstable and may alter the structure of antibody produced or stop producing antibody altogether (Kohler, G., et al., Proc. Natl. Acad. Sci (USA) 77; 2197 (1980); Morrison, S.L., J. Immunol. 123: 793 (1979)). The cell line genome appears to after itself in 10 response to stimuli whose nature is not currently known, and this alteration may result in production of incorrect sequences. Third, both hybridoma and B cells inevitably produce certain antibodies in glycosylated form (Melchers, F., Biochemistry, 10: 653 (1971)) which, under some circumstances, may be undesirable. Fourth, production of both monoclonal and polyclonal antibodies is relatively expensive. Fifth, and perhaps most important, production by current techniques (either by hybridoma or by B cell response) does 15 not permit manipulation of the genome so as to produce antibodies with more effective design components than those normally elicited in response to antigens from the mature B cell in situ. The antibodies of the present invention do not suffer from the foregoing drawbacks, and, furthermore, offer the opportunity to provide molecules of superior design.

Even those immunoglobulins which lack the specificity of antibodies are useful, although over a smaller spectrum of potential uses than the antibodies themselves. In presently understood applications, such immunoglobulins are helpful in protein replacement therapy for globulin related anemia. In this context, an inability to bind to antigen is in fact helpful, as the therapeutic value of these proteins would be impaired by such functionality. At present, such onn-specific antibodies are derivable in quantity only from myeloma cultures suitably induced. The present invention offers an alternative, more economical source. It also offers the opportunity of cancelling out specificity by manipulating the four chains of the letramer separately.

A.2 General Structure Characteristics

The basic immunoglobin structural unit in vertebrate systems is now well understood (Edeman, G.M., 30 Ann. N.Y., Acad. Sci. 190 5: 6 (1971). The units are composed of two identical light polypeptide chains of molecular weight approximately 23,000 daltons, and two identical heavy chains of molecular weight \$3,000 - 70,000. The four chains are joined by disulfide bonds in a "Y" configuration wherein the light chains bracket the heavy chains starting at the mouth of the Y and continuing through the divergent region as shown in figure 1. The "branch" portion, as there indicated, is designated the Tab region. Heavy chains are classified as as gamma, mu, alpha, eldat, or epsilon, with some subclasses among them, and the nature of this chains as it has a long constant region, determines the "class" of the antibody as IgG, IgM. IgA, IgD, or IgE. Light chains are classified as ether kappa or lambda. Each heavy chain class can be prepared with either kappa or lambda light chain. The light and heavy chains are covalently bonded to each other, and the "tall" portions of the two heavy chains are bonded to each other by covalent disulfide linkages when the immunoglobulins are generated either by hybridomas or by B cells. However, if non-covalent association of the chains can be effected in the correct geometry, the aggregate will still be capable of reaction with antigen, or or utility as a protein supplement as a non-specific immunoglobulini.

The amino acid sequence runs from the N-terminal end at the top of the Y to the C-terminal end at the bottom of each chain. At the N-terminal end is a variable region which is specific for the antigen which dicted it, and is approximately 100 amino acids in length, there being slight variations between light and heavy chain and from antibody to antibody. The variable region is linked in each chain to a constant region which extends the remaining length of the chain. Linkage is seen, at the genomic level, as occuring through a linking sequence known currently as the "J" region in the light chain gene, which encodes about 12 amino acids, and as a combination of "D" region and "J" region in the heavy chain gene, which together encode approximately 25 amino acids.

The remaining portions of the chain are referred to as constant regions and within a particular class do not to vary with the specificity of the antibody (i.e., the antigen eliciting it).

As stated above, there are five known major classes of constant regions which determine the class of the immunoglobulin molecule (IgG, IgM, IgA, IgD, and IgE corresponding γ, μ, α, δ, and ε heavy chain constant regions). The constant region or class determines subsequent effector function of the antibody, including activation of complement (Kabat, E.A., Structural Concepts in Immunology and Immunochemistry, 2nd Ed., p. 413-438, Holt, Binehart, Winston (1976)), and other cellular responses (Andrews, D.W., et al., Clinical Immunologiopy pp 1-18, W.B. Sanders (1980); Kohl, S., et al., Immunology, 48: 187 (1983); while

the variable region determines the antigen with which it will react.

B. Recombinant DNA Technology

5 Recombinant DNA technology has reached sufficient sophistication that it includes a repertore of techniques for cloning and expression of gene sequences. Yanous DNA sequences can be recombined with some facility, creating new DNA entities capable of producing hoterologous protein product in transformed microbes and cell cultures. The general means and methods for the <u>in vitro</u> ligation of various blunt ended or "sticky" ended fragments of DNA, for producing expression vectors, and for transforming organisms are now in hand.

DNA recombination of the assential elements (i.e., an origin of replication, one or more phenotypic selection characteristics, expression control sequence, heterologous gene insert and remander vectory generally is performed outside the host cell. The resulting recombinant replicable expression vector, or plasmid, is introduced into cells by transformation and large quantities of the recombinant vehicle is obtained by growing the transformant. Where the gene is properly insperded with reference to portions which govern the transcription and translation of the encoded DNA message, the resulting expression vector is useful to produce the polypeptide sequence for which the inserted gene codes, a process referred to a "expression." The resulting product may be obtained by lysis, if necessary, of the host cell and recovery of the product by appropriate purifications from other protein.

In practice, the use of recombinant DNA technology can express entirely heterologous polypeptide-socalled direct expression—or atternatively may express a heterologous polypeptide fused to a portion of the amino acid sequence of a homologous polypeptide. In the latter cases, the intended bioactive product is sometimes rendered biolinactive within the fused, homologous heterologous polypeptide until it is cleaved in an extracellular environment.

The art of maintaining cell or tissue cultures as well as microbial systems for studying genetics and cell physiology is well established. Means and methods are available for maintaining permanent cell lines, propared by successive serial transfers from isolated cells. For use in research, such cell lines are maintained on a solid support in liquid medium, or by growth in suspension containing support nutriments. Scale-up for large preparations seems to pose only mechanical problems.

Summary of the Invention

30

The invention can be used to prepare antibodies in pure "monoclonal" form. They can be manipulated at the genomic level to produce chimeras of variants which draw their homology from species which differ from each other. They can also be manipulated at the protein level, since all four chains do not need to be produced by the same cell. Thus, there are a number of "types" of immunoglobulins encompassed by the invention.

in another aspect the invention provides a replicable expression vector comprising DNA operably linked to a promoter compatible with a suitable prokaryotic or eukaryotic host cell, sad DNA expoding and immunoglobulin species having specificity for a particular identified antigen, the species having constant and variable regions, wherein a constant region is homologous to the corresponding constant region of an antibody of a first antibody class or a first mammalian species and a variable region thereof is homologous to the variable region than antibody derived from a second, different antibody class or mammalian species.

In a third aspect the invention provides a chimeric immunoglobulin species having specificity for a 45 particular known antigen and having a constant region homologous to a corresponding constant region of an antibody of a first mammalian species and a variable region homologous to a variable region of an antibody derived from a second, different mammalian species.

The methods of this invention can be used to produce, and the invention is directed to, immunoglobulins which comprise polypepidies not hithered found associated with each other in nature. Such so reassembly is particularly useful in producing "hybrid" antibodies capable of binding more than one artigen; and in producing "composile" immunoglobulins wherein heavy and light chains of different corgins essentially damp out specificity. Third, by genetic manipulation. "Chimeric" antibodies can be formed wherein, for example, the variable regions correspond to the amino acid sequence from one mammalian model system, whereas the constant region mimics the amino acid sequence of another. Again, the sed related to the sequence of another. Again, the sed related to the sequence of another, again, the sed related to the sequence of another. Again, the sequence is an artificial to the sequence of another in the sequence of another. Again, the sequence is an artificial to the sequence of another in the sequence of another is a sequence of another. Again, the sequence is a sequence of another is a sequence of another in the sequence of another is a sequence of another. Again, the sequence is a sequence of another is a sequence of another in the sequence of another is a sequence of another in the sequence of another is a sequence of another in the sequence of another is a sequence of another in the sequence of another in the sequence of another is a sequence of another in the sequence of another is a sequence of another in the sequence of another i

Two other types of immunoglobulin-like moleties may be produced: "univalent" antibodies, which are useful as homing carriers to target tissues, and "Fab proteins" which include only the "Fab" region of an

immunoglobulin molecule i.e., the branches of the "Y". These univalent antibodies and Faib fragments may be novel assemblies of mammalian chains, or chimeric, where for example, the constant and variable sequence patterns may be of different origin. Finally, either the light chain or heavy chain alone, or portions thereof, produced by recombinant techniques may be produced by the invention and may be mammalian or 5 chimeric.

In other aspects,the invention is directed to expression vectors or plasmids capable of effecting the production of such immunoglobulins in suitable host cells. It includes the host cells and cell cultures which result from transformation with these vectors. Finally, the invention is directed to methods of producing these immunoglobulind and the DNA sequences, plasmids, and transformed cells intermediate to them.

Brief Description of the Drawings

Figure 1 is a representation of the general structure of immunoglobulins.

Figure 2 shows the detailed sequence of the cDNA insert of pK17G4 which encodes kappa anti CEA chain.

Figure 3 shows the coding sequence of the fragment shown in Figure 2, along with the corresponding amino acid sequence.

Figure 4 shows the combined detailed sequence of the cDNA inserts of $p_{\gamma}298$ and $p_{\gamma}11$ which encode gamma anti CEA chain.

Figure 5 shows the corresponding amino acid sequence encoded by the fragment in Figure 4.

Figures 6 and 7 outline the construction of expression vectors for kappa and gamma anti-CEA chains are respectively.

Figures 8A, 8B, and 8C show the results of sizing gels run on extracts of <u>E. coli</u> expressing the genes for gamma chain, kappa chain, and both kappa and gamma chains respectively.

Figure 9 shows the results of western blots of extracts of cells transformed as those in Figures 8.

Figure 10 shows a standard curve for ELISA assay of anti CEA activity.

25 Figures 11 and 12 show the construction of a plasmid for expression of the gene encoding a chimeric heavy chain.

Figure 13 shows the construction of a plasmid for expression of the gene encoding the Fab region of heavy chain.

30 Detailed Description

A. Definitions

As used herein, "antibodies" refers to latramers or aggregates thereof which have specific immunoreactive activity, comprising light and heavy chains usually aggregated in the "V" configuration of Figure 1, with or without covalent linkage between them; "immunoglobulins" refers to such assemblies whether or not specific immunoreactive activity is a property. "Non-specific immunoglobulin" ("NSI") means those immunoglobulins which do not possess specificity-riae, those which are not antibodies.

"Mammalian antibodies" refers to antibodies wherein the amino acid sequences of the chains are
40 homologous with those sequences found in antibodies produced by mammalian systems, either in situ, or in
hybridomas. These antibodies mimic antibodies which are otherwise capable of being generated, although
in impure form, in these traditional systems.

"Hybrid antibodies" refers to antibodies wherein chains are separately homologous with referenced mammalian antibody chains and represent novel assemblies of them, so that two different antigens are 49 precipitable by the tetramer. In hybrid antibodies, one pair of heavy and light chain is homologous to antibodies raised against one antigen, while the other pair of heavy and light chain is homologous to those raised against another antigen. This results in the property of "divalence" i.e., ability to brink of two antigers simultaneously, Such hybrids may of ocurse, also be formed using chimeric chains, as set forth below.

"Composite" immunoglobulins means those wherein the heavy and light chains mimic those of different species origins or specificities, and the resultant is thus likely to be a non-specific immunoglobulin (NSI). i.e.-lacking in antibody character.

"Chimeric antibodies" refers to those antibodies wherein one portion of each of the amino acid sequences of heavy and fight chains is homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular class, while the remaining segment of the chains is to homologous to corresponding sequences in another. Typically, in these chimeric antibodies, the variable region of both fight and heavy chains minics the variable regions of antibodies derived from one species of mammals, while the constant portions are homologous to the sequences in antibodies derived from another. One clear advantage to such chimeric forms is that, for example, the variable regions can conveniently.

derived from presently known sources using readily available hybridomas or B cells from non human host organisms in combination with constant regions derived from for example, human cell preparations. While the variable region has the advantage of case of preparation, and the specificity is not affected by its source, the constant region being human, is less likely to elicit an immune response from a human subject when the artibudies are injected than would the constant region from a non-human source.

However, the definition is not limited to this particular example. It includes any antibody in which either or both of the heavy or light chains are composed of combinations of sequences minimizing the sequences in antibodies of different sources, whether these sources be differing classes, differing antigen responses, or differing species of origin and whether or not the fusion point is at the variable constant boundary. Thus, to it is possible to produce antibodies in which neither the constant nor the variable region minic known antibody sequences. It then becomes possible, for example, to construct antibodies whose variable region has a higher specific affinity for a particular antigen, or whose constant region can elicit enhanced complement fixation or to make other improvements in properties possessed by a particular constant region.

Mattered antibodies" means antibodies wherein the amino acid sequence has been varied from that of a mammalian or other vertextate antibody. Because of the relevance of recombinant DNA techniques to this invention, one need not be confined to the sequences of amino acids found in natural antibodies; antibodies can be redesigned to obtain desired characteristics. The possible variations are many and range from the changing of just one or a few amino acids to the complete redesign of, for example, the constant region will, in general, be made in order to improve the cellular process characteristics, such as complement fixation, interaction with membranes, and other effector functions. Changes in the variable region will be made in order to improve the antigon binding characteristics. The antibody can also be engineered so as to aid the specific delivery of a toxic agent according to the "magnetate of the processing that the processing the sequence of the processing that the processing the proces

"Univalent antibodies" refers to aggregations which comprise a heavy chain light chain dimer bound to the Fc (or stem) region of a second heavy chain. Such antibodies are specific for antigen, but have the additional desirable property of targeting fissues with specific antigenic surfaces, without causing its antigenic effectiveness to be impaired—i.e., there is no antigenic modulation. This phenomenon and the porpoerty of univalent antibodies have heretofore been formed by proteolysis.

Univalent antibodies have heretofore been formed by proteolysis.

"Fab" region refers to those portions of the chains which are roughly equivalent, or analogous, to the sequences which comprise the Y branch portions of the heavy chain and to the light chain in its entirety, and which collectively (in aggregates) have been shown to exhibit antibody activity. "Fab protein", which so protein is one of the aspects of the invention, includes aggregates of one heavy and one light chain (commonly known as Fab), as well as tetramers which correspond to the two branch segments of the antibody Y, (commonly known as F(ab)₂), whether any of the above are covalently or non-covalently aggregated, so long as the aggregation is capable of selectively reacting with a particular antigen or antigen family. Fab antibodies have, as have univalent ones, been formed heretofore by prosolysis, and share the opporerty of not eliciting antigen modulation on target tissues. However, as they lack the "effector" Fc portion they cannot effect, for example, lysis of the target cell by macrophages.

"Fab protein" has similar subsets according to the definition of the present invention as does the general term "antibodies" or "immunoglobulins". Thus, "mammalian" Fab protein, "hybrid" Fab protein "chimeric" Fab and "atered" Fab protein are defined analogously to the corresponding definitions set forth in the previous paragraphs for the various types of antibodies.

Individual heavy or light chains may of course be "mammalian", "chimeric" or "altered" in accordance with the above. As will become apparent from the detailed description of the invention, it is possible, using the techniques disclosed to prepare other combinations of the four-peptide chain aggregates, besides those specifically defined, such as hybrid antibodies containing chimeric light and mammalian heavy chains, so hybrid Fab proteins containing chimeric Fab proteins of heavy chains associated with mammalian light chains, and so forth.

"Expression vector" includes vectors which are capable of expressing DNA sequences contained therein, i.e., the coding sequences operably linked to other sequences capable of effecting there expression. It is implied, although not always explicitly stated, that these expression vectors must be or replicable in the host organisms either as episomes or as an integral part of the chromosomal DNA. Clearly a lack of replicability would render them effectively inoperable. A useful, but not a necessary, element of an effective expression vector is a marker encoding sequence—i.e. a sequence encoding a protein which results in a phenotypic property (e.g., tetracycline resistance) of the cells containing the protein which

permits those cells to be readily identified. In sum, "expression vector" is given a functional definition, and any DNA sequence which is capable of effecting expression of a specified contained DNA code is included in this term, as it is applied to the specified sequence. As at present, such vectors are frequently in the form of plasmids, thus "plasmid" and "expression vector" are often used interchangeably. However, the 5 invention is intended to include such other forms of expression vectors which serve equivalent functions and which may, from time to time become known in the art.

"Recombinant host cells" refers to cells which have been transformed with vectors constructed using recombinant DNA techniques. As defined herein, the antibody or modification thereof produced by a recombinant host cell is by virtue of this transformation, rather than in such lesser amounts, or more commonly, in such less than detectable amounts, as would be produced by the untransformed host.

In descriptions of processes for isolation of antibodies from recombinant hosts, the terms "cell and "cell culture" are used interchangeably to denote the source of antibody unless it is clearly specified otherwise. In other words, recovery of antibody from the "cells" may mean either from spun down whole cells, or from the cell culture containing both the medium and the suspended cells.

B. Host Cell Cultures and Vectors

15

The vectors and methods disclosed herein are suitable for use in host cells over a wide range of prokaryotic and eukaryotic organisms.

In general, of course, prokaryotes are preferred for cioning of DNA sequences in constructing the vectors useful in the Invention. For example, E. coii k1/2 strain 294 (ATCC No. 31446) is particularly useful. Other microbial strains which may be used include E. coii strains such as E. coii B, and E. coii X1778 (ATTC No. 31537). These examples are, of course, intended to be illustrative rather than limiting.

Prokaryotes may also be used for expression. The aforementioned strains, as well as <u>E. coii</u> W3110 (F⁻, x⁻, prototrophic, ATTC No. 27325), bacillii such as Bacillus subtilus, and other enterobactioniaceae such as Salmonella typhlmurlum or Serratia marcesans, and various Pseudomonas species may be used.

In general, plasmid vectors containing replicon and control sequences which are derived from species competible with the host cell are used in connection with these hosts. The vector ordinarily carries a replication site, as well as marking sequences which are capable of providing phenotypic selection in suransformed cells. For example, E. coil is typically transformed using pBR322, plasmid derived from an E. coil species (Bolivar, et al., Gene 2: 95 (1977)), pBR322 contains genes for ampicillin and tetracycline resistance and thus provides easy means for identifying transformed cells. The pBR322 plasmid. or other microbial plasmid must also contain, or be modified to contain, promoters which can be used by the microbial organism for expression of its own problens. Those promoters most commonly used in recombinant DNA construction include the β-lactanase (penicillinase) and lactose promoter systems (Chang et al., Nature, 275: 815 (1978); Itakura, et al, Science, 198: 1058 (1977); (Goeddel, et al Nature 281: 544 (1879)) and a trypiophian (try) promoter system (Goeddel, et al, Nucleic Acids Res., 8: 4057 (1980); EPO Appl Pub. No. 0.038779). While these are the most commonly used, other microbial promoters have been discovered and utilized, and details concerning their nucleotide sequences have been published, enabling a skilled worker to ligate them functionally with plasmid vectors (Sebenshis, et al., Cell 20: 259 (1980)).

In addition to prokarystes, sukaryotic microbes, such as yeast cultures may also be used. Soccharomyces cerevisiae, or common backer's yeast is the most commonly used among eukaryotic microganisms, sithough a number of other strains are commonly available. For expression in Saccharomyces, the
plasmid YRp7, for example, (Stinchcomb, et al, Nature, 282: 39 (1979); Kingsman et al, Gene, 7: 141
45 (1979); Tschemper, et al, Gene, 10: 157 (1980)) is commonly used. This plasmid already contains the trp1
gene which provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan,
for example ATCC No. 44076 or PEP4-1 (Jones, Genetics, 85. 12 (1977). The presence of the trp1 tools
as a characteristic of the yeast host cell genome then provides an effective environment for detecting
transformation by growth in the absence of tryptophan.

Suitable promoting sequences in yeast vectors include the promoters for 3-phosphoglycerate kinase (Hitzeman, et al., J. Bio. Chem., 255: 2073 (1980)) or other glycotylic enzymes (Heas, et al., J. Avib. Enzyme Reg., 7: 149 (1969); Holland, et al., Biochemistry, 17: 4900 (1978)), such as enotase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate kinase, throsphophate isomerases, phosphoglucoses isomerase, and glucosionase. In constructing suitable expression plasmids, the termination sequences associated with these genes are also ligated into the expression vector 3" of the sequence desired to be expressed to provide polyadenylation of the mRNA and termination. Other promoters, which have the additional advantage of transcription controlled by growth conditions are the promoter regions for atched.

dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, and the aforementioned glycoraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization (Holland, ibid.). Any plasmid vector containing yeast-compatible promoter, origin of replication and termination sequences is suitable.

in addition to microorganisms, cultures of cells derived from multicollular organisms may also be used as hosts. In principle, any such cell culture is workable, whether from vertebrate or unvertebrate culture. However interest has been greatest in vertebrate cells, and propogation of vertebrate cells in culture (tissue culture) has beecome a routine procedure in recent years (Tissue Culture, Academic Press. Kruse and Patterson, editors (1973). Examples of such useful host cell limbs are VERO and Heta. cells. Chinese to hamster ovary (CHO) cell lines, and W138, BHK. COS-7 and MDCK cell lines. Expression vectors for such cells ordinarily include (if necessary) an origin of replication, a promoter located in front of the gene to expressed, along with any necessary ritosome binding sites. RNA splice sites, polyadenylation site, and transcriptional terminator sequences.

For use in mammalian cells, the control functions on the expression voctors are often provided by viral material. For example, commonly used promoters are derived from polyoma, Adenovirus 2, and most frequently Simian Virus 40 (SV40). The early and late promoters of SV40 virus are particularly useful because both are obtained easily from the virus as a fragment which also contains the SV40 viral cring or replication (Filers, et al., Nature, 273: 113 (1978)) incorporated herein by reference. Smaller or larger SV40 fragments may also be used, provided thore is included the approximately 250 by sequence extending from the Hind III site toward the BgI I site located in the viral origin of replication. Further, it as slop possible, and often desirable, to utilize promoter or control sequences normally associated with the desired gene sequence, provided such control sequences are compatible with the host cell systems.

An origin of replication may be provided either by construction of the vector to include an exogenous origin, such as may be derived from SV40 or other viral (e.g. Polyoma, Adeno. VSV, BPV, etc.) source, or may be provided by the host cell chromosomal replication mechanism. If the vector is integrated into the host cell chromosome, the latter is often sufficient.

It will be understood that this invention, although described herein in terms of a preferred embodiment, should not be construed as limited to those host cells, vectors and expression systems exemplified.

30 C. Methods Employed

C.1 Transformation:

If cells without formidable cell wall barriers are used as host cells, transfection is carried out by the as calcium phosphate precipitation method as described by Graham and Van der Eb. Virology. 52: 546 (1978). However, other methods for introducing DNA into cells such as by nuclear injection or by protoplast fusion may also be used.

If prokaryotic cells or cells which contain substantial cell wall constructions are used, the preferred method of transfection is calcium treatment using calcium chloride as described by Cohen, F.N. et al. Proc. 49. Natl. Acad. Sci. (USA), 99: 2110 (1972).

C.2 Vector Construction

Construction of suitable vectors containing the desired coding and control sequences employ standard 4s ligation techniques, Isolated plasmids or DNA fragments are cleaved, tailored, and religated in the form desired to form the plasmids required. The methods employed are not dependent on the DNA source, or intended host.

Cleavage is performed by treating with restriction enzyme (or enyzmes) in suitable buffer. In general, about 1 µg plasmid or DNA fragments is used with about 1 unit of enzyme in about 20 µl of buffer solution, 50 (Appropriate buffers and substrate amounts for particular restriction enzymes are specified by the manufacturer.) Incubation times of about 1 hour at 37°C are workable. After incubations, protein is removed by extraction with phenol and chloroform, and the nucleic acid is recovered from the aqueous fraction by precipitation with othanol.

If blunt ends are required, the preparation is treated for 15 minutes at 15° with 10 units of E. coll DNA Polymerase I (Klenow), phenol-chloroform extracted, and ethanol precipitated.

Size separation of the cleaved fragments is performed using 6 percent polyacrylamide gel described by Goeddel, D., et al, Nucleic Acids Res., 8: 4057 (1980) incorporated herein by reference.

For ligation, approximately equimolar amounts of the desired components, suitably end tailored to

provide correct matching are treated with about 10 units T4 DNA ligase per 0.5 $_{\rm FG}$ DNA. (When cleaved vectors are used as components, it may be useful to prevent religation of the cleaved vector by pretreatment with bacterial alkaline phosphatase.

In the examples described below correct ligations for plasmid construction are confirmed by transforming E. coli K12 strain 294 (ATCC 31446) with the ligation mixture. Successful transformants were selected by ampicilin or tetracycline resistance depending on the mode of plasmid construction. Plasmids from the transformants were then prepared, analyzed by restriction and/or sequenced by the method of Messing, et al. Nucleic Acids Res., 9:309 (1981) or by the method of Mexam, et al. Methods in Enzymology, 65:499 (1980).

D. Outline of Procedures

10

D.1 Mammalian Antibodies

The first type of antibody which forms a part of this invention, and is prepared by the methods thereof, is "mammalian antibody"-one wherein the heavy and light chains mimic the amine acid sequences of an antibody otherwise produced by a mature mammalian B lymphocyte either in situ or when fused with an immortalized cell as part of a hybridoma culture. In outline, these antibodies are produced as follows:

Messenger RNA coding for heavy or light chain is isolated from a suitable source, either mature B cells or a hybridoma culture, employing standard techniques of RNA isolation, and the use of oligo-dT cellulose chromatography to segregate the poly-A mRNA. The poly-A mRNA may, further, be fractionated to obtain sequences of sufficient size to code for the amino acid sequences in the light or heavy chain of the desired antibody as the case may be.

A cDNA library is then prepared from the mixture of mRNA using a suitable primer, preferably a nucleic acid sequence which is characteristic of the desired cDNA. Such a primer may be hypothesized as disynthesized based on the amino acid sequence of the antibody if the sequence is known. In the alternative cDNA from unfractionated poly-A mRNA from a cell line producing the desired antibody or poly-dT may also be used. The resulting cDNA is opinionally size fractionated on poly-garrylamide gel and then extended out the foreign containing the pBR322 or other suitable cloning vector which has been cleaved by a suitable restriction enzyme, such as Pst I, and extended with dG residues. Alternative means of forming cloning vectors containing the cDNA using other tails and other cloning vector remainder may, of course, also be used but the foreigning is a standard and preferable choice. A suitable host cell stalin, typically E. coil, is transformed with the annealed cloning vectors, and the successful transformants identified by means of, for example, tetracycline resistance or other phenotypic characteristic residing on the cloning vector plasming vector plasming.

Successful transformants are picked and transferred to microtiter dishes or other support for further growth and preservation. Nitrocellulose filter imprints of these growing cultures are then probed with suitable nucleotide sequences containing bases known to be complementary to desired sequences in the cDNA. Several types of probe may be used, preferably synthetic single stranded DNA sequences labeled by kinasing with ATPs2. The cells fixed to the nitrocellulose filter are lysed, the DNA denatured, and then fixed before reaction with kinased probe. Clones which successfully hybridize are detected by contact with a photoplate, then plasmids from the growing colonies isolated and sequenced by means known in the art to verify that the desired ordinos of the gene are present.

The desired gene fragments are excised and tailored to assure appropriate reading frame with the control segments when inserted into suitable expression vectors. Typically, nucleotides are added to the 5' end to include a start signal and a suitably costioned restriction endonuclease site.

The tailored gene sequence is then positioned in a vector which contains a promoter in reading frame with the gene and compatible with the proposed host cell. A number of plasmids such as those described in U.S. Pat. Appin. Ser. Nos. 307473; 291892; and 309597 (EPO Publ. Nos. 0036776; 0046970 and 001873) so have been described which already contain the appropriate promoters, control sequences, ribosome binding sites, and transcription termination sites, as well as convenient markers.

In the present invention, the gene coding for the light chain and that coding for the heavy chain are recovered separately by the procedures outlined above. Thus they may be inserted into separate expression plasmids, or together in the same plasmid, so long as each is under suitable promoter and translation control.

The expression vectors constructed above are then used to transform suitable cells. The light and heavy chains may be transformed into separate cell cultures, either of the same or of differing species; separate plasmids for light and heavy chain may be used to co-transform a single cell culture, or, finally, a

single expression plasmid containing both genes and capable of expressing the genes for both light and heavy chain may be transformed into a single cell culture.

Regardless of which of the three foregoing options is chosen, the cells are grown under conditions appropriate to the production of the desired protein. Such conditions are primarily mandated by the type of promoter and control systems used in the expression vector, rather than by the nature of the desired protein. The protein thus produced is then recovered from the cell culture by methods known in the art but choice of which is necessarily dependent on the form in which the protein is expressed. For example, it is common for mature heterologous proteins expressed in E. cold to be deposited within the cells as insoluble particles which require cell lysis and solubilization in denaturant to permit recovery. On the other hand, to proteins under proper synthesis circumstances, in yeast and bacterial strains, can be secreted into the medium (yeast and gram positive bacterial allowing recovery by less drastic procedures. Tissue culture cells as hosts also appear, in general, to permit reasonably facile recovery of heterologous proteins.

When heavy and light chain are coexpressed in the same host, the isolation procedure is designed so to recover reconstituted antibody. This can be accomplished in vitro as described below, or might be possible in vivo in a microorganism which secretes the IgG chains out of the reducing environment of the cytoplasm. A more detailed description is given in D.2, below.

D.2 Chain Recombination Techniques

20

The ability of the method of the invention to produce heavy and light chains or portions thereof, in isolation from each other offers the opportunity to obtain unique and unprecedented assembles of immunoglobulins, Fab regions, and univalent antibodies. Such preparations require the use of techniques to reassemble isolated chains. Such means are known in the art, and it is, thus, appropriate to review them here.

While single chain disulfide bond containing proteins have been reduced and reoxidized to regenerate in high yield native structure and activity (Freedman, R.B., et al. In Enzymology of Post Translational Modification of Proteins, I: 157-212 (1980) Academic Press, NT), proteins which Consist of discontinuous polypeptide chains held together by disulfide bonds are more difficult to reconstruct in vitro after reductive of cleavage, Insulin, a cambo case, has received much experimental attention over the years, and can not be reconstructed so efficiently that an industrial process has been built around it (Chance, R.E., et al., in Peptides: Proceedings of the Seventh Annual American Peptide Symposium (Rich, D.H. and Gross, E., ads.) 721-728. Pierce Chemical Co., Pockford, IL (1991)).

Immunoglobulin has proved a more difficult problem than insulin. The totramer is stabilized intra and sintermolecularly by 15 or more disulficie bonds. It has been possible to recombine heavy and light chains, disrupted by cleavage of only the interchain disulfides, to regain antibody activity even without restoration of the inter-chain disulfides (Edelman, G.M., et al., Proc. Natl. Acad. Sci. (USA) 50: 753 (1963)). In addition, active framents of 190 formed by proteolysis (Fab fragments of 190 000 MW) can be split into the fully reduced heavy chain and light chain components and fairly efficiently reconstructed to give active antibody 40 (Haber, E., Proc. Natl. Acad. Sci. (USA) 52: 1099 (1964); Whitiney, P.L., et al., Proc. Natl. Acad. Sci. (USA) 53: 524 (1965). Attempts to reconstitute active antibody from fully reduced native 196 have been largely unsuccessful, presumably due to insolubility of the reduced chains and of side products or intermediates in the refolding pathway (see discussion in Freedman, M.H., et al., J. Biol. Chem. 24: 1825 (1969); however, the immunoglobulin is randomly modified by polyalanylation of its Tysines before complete 40 reduction, the separated chains have the ability to recover antigen-combining activity upon reoxidation (bibl).

A particularly suitable method for immunoglobulin reconstitution is derivable from the nox classical insulin recombination studies, wherein starting material was prepared by oxidative sufficioys; thus generating thio-fablic S-sulfonate groups at all cysteines in the protein, non-reductively breaking disulfides (Chance et al. (supra)). Oxidative sulficioysis is a milid disulfide cleavage reaction (Means, G.E. et al., Chemical Modification of Proteins, Holden-Day, San Francisco (1971)) which is sometimes more gentle than reduction, and which generates derivatives which are stable until exposed to mild reducing agent at which time disulfide reformation can occur via thio-disulfide interchange. In the present invention the heavy all light chain S-sulfonates generated by öxidative sulfitolysis were reconstituted utilizing both air oxidation and strio-disulfide interchange for drive disulfide bond formation. The general procedure is set forth in detail or U.S. Serial No. 452,187, filed Dec. 22, 1982 (EPO Appin. No. 83.307840.5), incorporated herein by reference.

D.3 Variants Permitted by Recombinant Technology

Using the techniques described in paragraphs D.1 and D.2, additional operations which were utilized to gain efficient production of mammalian antibody can be varied in quite straightforward and simple ways to 5 produce a great variety of modifications of this basic antibody form. These variations are inherent in the use of recombinant technology, which permits modification at a genetic level of amino acid sequences in its ability to achieve these variations, as well as in its potential for economic and specific production of desired scarce, and often contaminated, molecules. The variations also inhere in the ability to isolate production of individual chains, and thus create novel assemblies.

Briefly, since genetic manipulations permit reconstruction of genomic material in the process of construction of expression vectors, such reconstruction can be manipulated to produce new coding sequences for the components of "natural" antibodies or immunoglobulins. As discussed in further detail below, the coding sequence for a mammalian heavy chain may not be derived entirely from a single source or single sequence. The procession of a sequence can be recovered by the techniques described in D.1 from differing pools of mRINA, such as murine-murine hybridomas, numan-murine hybridomas, or B cells differentiated in response to a series of antigen challenges. The desired portions of the sequences in each case can be recovered using the probe and analysis techniques described in D.1, and recombined in an expression vector using the same ligitation procedures as would be employed for portions of the same am model sequence. Such chimeric chains can be constructed of any desired length; hence, for example, a complete heavy chain can be constructed, or only sequence for the Fab region thereof.

The additional area of flexibility which arises from the use of recombinant techniques results from the power to produce heavy and light chains or fragments thereof in separate cultures or of unique combinations of heavy and light chain in the same culture, and to prevent reconstitution of the antibody or immunoglobulin aggregation until the suitable components are assembled. Thus, while normal artibody production results automatically in the formation of "mammalian antibodies" because the light and heavy chain portions are constructed in response to a particular determinant in the same cell, the methods of the present invention present the opportunity to assemble entirely new mixtures. Somewhat limited quantities of printing artibodies have been produced by "quadromas" i.e., fusions of two hybridoma cell cultures which permit random assemblies of the heavy and light chains so produced.

The present invention permits a more controlled assembly of desired chains, either by mixing the desired chains in vitro, or by transforming the same culture with the coding sequences for the desired chains.

35 D.4 Composite Immunoglobulins

The foregoing procedure, which describes in detail the recombinant production of mammallan antibodies is employed with some modifications to construct the remaining types of antibodies or NScisic encompassed by the present invention. To prepare the particular embodiment of composite non-special immunoglobulin wherein the homology of the chains corresponds to the sequences of immunoglobulins of different specificities, it is of course, only necessary to prepare the heavy and light chains in separate cultures and reassemble them as desired.

For example, in order to make an anti-CEA light chain-ranti-hepatitis heavy chain composite artibody, a suitable source for the mRNA used as a template for the light chain clone would comprise, for instance 45 and it CEA producing cell line of paragraph E.1. The mRNA corresponding to heavy chain would be derived from B cells raised in response to hepatitis infection or from hybridoma in which the B call was of this origin. It is clear that such composites can be assembled using the methods of the invention almost at will, and are limited only by available sources of mRNA suitable for use as templates for the respective chains. All other features of the process are similar to those described above.

D.5 Hybrid Antibodies

50

Hybrid antibodies are particularly useful as they are capable of simultaneous reaction with more than one antigen. Pairs of heavy and light chains corresponding to chains of antibodies for different antigens; such as those set forth in paragraph D.4 are prepared in four separate cultures, thus preventing premature assembly of the tetramer. Subsequent mixing of the four separately prepared peptides then permits assembly into the desired tetramers. While random aggregation may lead to the formation of considerable undesired product, that option of the product in which homologous light and heavy chains are bounded.

each other and mismatched to another pair gives the desired hybrid antibody.

D.6 Chimeric Antibodies

For construction of chimeric antibodies (wherein, for example, the variable sequences are separately derived from the constant sequences) the procedures of paragraph 0.1 and 0.2 are again applicable with appropriate additions and modifications. A preferred procedure is to recover desired portions of the genes encoding for parts of the heavy and light chains from suitable, differing, sources and then to religate these framents using restriction endouncleases to reconstruct the one coding for each chain.

For example, in a particularly preferred chimeric construction, portions of the heavy chain gene and of the light chain gene which encode the variable sequences of antibodies produced by a munne hybricioma culture are recovered and cloned from this culture and gene fragments encoding the constant regions of the heavy and light chains for human antibodies recovered and cloned from, for example, human myeloma cells. Suitable restriction enzymes may then be used to ligitate the variable portions of the mouse gene to the constant regions of the human gene for each of the two chains. The chimeric chains are produced as set forth in D.1, aggregated as set forth in D.2 and used in the same manner as the non-chimeric forms. Of course, any spilice point in the chains can be chosen.

D.7 Altered Antibodies

20

Altered antibodies present, in essence, an extension of chimeric ones. Again, the techniques of D.1 and D.2 are applicable; however, rather than splicing portions of the chaints), suitable amino acid atterations, deletions or additions are made using available techniques such as mutagenests (supra). For example, genes which encode antibodies having diminished complement fixation properties, or which have enhanced metal binding capacities are prepared using such techniques. The latter type may, for example, the advantage of tile known gene sequence encoding metallotionicil II (Karin, M., et al., Nature, 299: 797 (1982)). The chelating properties of this molecular fragment are useful in carrying heavy metals to tumor sites as an aid in tumor imaging (Scheinberg, D.A., et al., Science, 215: 19 (1982).

30 D.8 Univalent Antibodies

In another preferred embodiment, antibodies are formed which comprise one heavy and light chain pair coupled with the Fc region of a third (heavy) chain. These antibodies have a particularly useful property. They can, like ordinary antibodies, be used to target antigenic surfaces of tissues, such as tumors, but, unlike ordinary antibodies, they do not cause the antigenic surfaces of the target tissue to retreat and become non-receptive. Ordinary antibody use results in aggregation and subsequent inactivation, for several hours, of such surface antigens.

The method of construction of univalent antibodies is a straightforward application of the invention. The gene for heavy chain of the desired Fc region is cleaved by restriction enzymes, and only that control coding for the desired Fc region expressed. This portion is then bound using the technique of D.2 to separately produced heavy chain the desired pairs separated from heavy heavy and Fc.Fc combinations, and separately produced light chain added. Pre-briding of the two heavy chain portions thus diminishes the probability of formation of ordinary antibody.

45 D.9 Fab Protein

Similarly, it is not necessary to include the entire gene for the heavy chain portion. All of the aforcmentioned variations can be superimposed on a procedure for Fab protein production and the overall procedure differs only in that that portion of the heavy chain coding for the amino terminal 220 amino acids so is employed in the appropriate expression vector.

E. Specific Examples of Preferred Embodiments

The invention has been described above in general terms and there follow several specific examples of embodiments which set forth details of experimental procedure in producing the desired antibodies. Example E.1 sets forth the general procedure for preparing ant ICEA antibody components, i.e. for a "mammalian antibody". Example E.3 sets forth the procedure for reconstitution and thus is applicable to preparation of mammalian, composite, hybrid and chimeric immunoglobulins, and Fab proteins and

univalent antibodies. Example E.4 sets forth the procedure for tailoring the heavy or light chain so that the variable and constant regions may be derived from different sources. Example E.5 sets forth the method of obtaining a shortened heavy chain genome which permits the production of the Fab regions and, in an analogous manner. Fo region.

The examples set forth below are included for illustrative purposes and do not limit the scope of the invention.

E.1 Construction of Expression Vectors for Murine anti-CEA Antibody Chains and Peptide Synthesis

Carcinoembryonic antigen (CEA) is associated with the surface of certain tumor cells of human origin (Gold, P., et al., J., Med., 122; 467 (1965)), Antibodies which bind to CEA (anti-CEA antibodies) are useful in early detection of these tumors (Van Nagell, T.R., et al., Cancer Res. 40: 502 (1980)), and have the potential for use in treatment of those human tumors which appear to support CEA at their surfaces. A mouse hybridoma cell line which secretes anti-CEA antibodies of the lgvi class, CEA.66-E3, has been prepared as described by Wagener, C. et al., J. Immunol. 130, 2308 (1983) which is incorporated herein by reference, and was used as mRNA source. The production of anti CEA antibodies by this cell line was determined. The N-terminal sequences of the antibodies produced by these cells was compared with those of monoclonal anti CEA as follows. Purified IgG was treated with PCAse (Podell, D.N., et al., Biochem. Biophys, Res. Commun. 81: 176 (1978)), and then dissociated in 6M quanidine hydrochloride, 10 mM 2-20 mercaptoethanol (1.0 mg of immunoglobulin, 5 min, 100°C water bath). The dissociated chains were separated on a Waters Associates alkyl phenyl column using a linear gradient from 100 percent A (0.1 percent TFA-water) to 90 percent B (TFA/H2O/MeCN 0.1/9.9/90) at a flow rate of 0.8 ml/min. Three major peaks were eluted and analyzed on SDS gels by silver staining. The first two peaks were pure light chain (Mu 25,000 daltons), the third peak showed a (7:3) mixture of heavy and light chain, 1.2 nmoles of light 25 chain were sequenced by the method of Shively, J.E., Methods in Enzymology, 79: 31 (1981), with an NH₂terminal yield of 0.4 nmoles. A mixture of heavy and light chains (3 nmoles) was also sequenced, and sequence of light chain was deducted from the double sequence to yield the sequence of the heavy chain.

In the description which follows, isolation and expression of the genes for the heavy and light chains for an CEA antibody produced by CEA.68-E3 are described. As the constant regions of these chains belong to the gamma and kappa families, respectively, "fight chain" and "kappa chain", and "heavy chain" and "gamma chain", respectively, are used interchangeably below.

E.1.1 Isolation of Messenger RNA for Anti CEA Light and Heavy (Kappa and Gamma) Chains

Total RNA from CEA.66-E3 cells was extracted essentially as reported by Lynch et al. Virology, 98: 251 (1979). Cells were pelleted by centrifugation and approximately 1 g portions of pellet resuspended in 10 ml of 10 mM NaCl. 10 mM Tris HCI (pH 7.4), 1.5 mM MgCls. The resuspended cells were lysed by addition of non-ionic detergent NP-40 to a final concentration of 1 percent, and nuclei removed by centrifugation. After addition of SDS (pH 7.4) to 1 percent final concentration, the supernatant was extracted twice with 3 ml opportions of phenol (redistilled)/chloroform: isosamyl alcohol 25:1 at 4 °C. The aqueous phase was made 0.2 M in NaCl and total RNA was precipitated by addition of two volumes of 100 percent ethanol and ovemlight storage at -20 °C. After centrifugation, polyA mRNA was purified from total RNA by oligo-dT cellulose chromatography as described by Aviv and Leder, Proc. Natf. Acad. Sci. (USA), 69: 1408 (1972), 142 µg of polyA mRNA was obtained from 1 g cells.

E.1.2 Preparation of E. coli Colony Library Containing Plasmids with Heavy and Light DNA Sequence Inserts

5 rg of the unfractionated poly% mRNA prepared in paragraph E.1.1 was used as template for oligo-dT primed proparation of double-stranded (ds) cDNA by standard procedures as described by Gooddel et al., Nature 281: 544 (1979) and Wickens et al., J. Biol. Chem. 253: 2483 (1978) incorporated herein by reference. The cDNA was size fractionated by 6 percent polyacrylamide gel electrophoresis and 124 rg of ds cDNA greater than 800 base pairs in length was recovered by electrochetition. A2 or portion of ds cDNA was extended with deoxy C residues using terminal deoxynucleotidyl transferase as described in Chang et BR322 (Bolivar et al., Gene 2: 95 (1977)) which had been cleaved with Pst I and talled with deoxy G. Each annealed mixture was then transformed into E. coli K12 strain 294 (ATCC No. 31446). Approximately 8500 amplicitili resentive, tetracycline resistant transformaris were obtained.

E.1.3 Preparation of Synthetic Probes

40

The 14mer, 5' GGTGGGAAGATGGA 3' complementary to the coding sequence of constant region for mouse MOPC21 kappa chain which begins 25 basepairs 3' of the variable region DNA sequence was used as kappa chain probe. A 15 mer, 5' GACCAGGCATCCCAG 3', complementary to a coding sequence located 72 basepairs 3' of the variable region DNA sequence for mouse MOPC21 gamma chain was used to probe gamma chain gene.

Both probes were synthesized by the phosphotnester method described in German Offenlegungschrift 2644432, incorporated herein by reference, and made radioactive by kinasing as follows: 250 ng of 10 deaxyoligonucleotide were combined in 25 µl of 60 mM Tris HCI (pH 8), 10 mM MgCL. 15 mM beta-mercaptoethanol, and 100 µCI (γ -2P) ATP (Amersham, 5000 Ci.mMole), 5 units of T4 polynucleotide kinase were added and the reaction was allowed to proceed at 37° C for 30 minutes and terminated by addition of EDTA to 20 mM.

15 E.1.4 Screening of Colony Library for Kappa or Gamma Chain Sequences

"2000 colonies prepared as described in paragraph E.1.2 were individually inoculated into wells of microtitre dishes containing LB (Miller, Experiments in Molecular Genetics, p. 431-3, Cold Spring Harbor Lab., Cold Spring Harbor, New York (1972)) + 5 µg.ml tetracycline and stored at -20°C after addition of 20 DMSO to 7 percent, Individual colonies from this library were transferred to duplicate sets of Schleicher and Sohuell BA85/20 nitrocellulose filters and grown on agar plates containing LB + 5 µg.ml tetracycline. After ~10 hours growth at 37°C the colony filters were transferred to agar plates containing LB + 5 µg ml tetracycline and 12.5 µg/ml chloramphenicol and reincubated overnight at 37°C. The DNA from each colony was then denatured and fixed to the filter by a modification of the Grunstein-Hogness procedure as described in Grunstein et al., Proc. Natl. Acad. Sci. (USA) 72; 3961 (1975), incorporated herein by reference. Each filter was floated for 3 minutes on 0.5 N NaOH, 1.5 M NaCl to lyse the colonies and denature the DNA then neutralized by floating for 15 minutes on 3 M NaCl, 0.5 M Tris HCl (pH 75). The filters were then floated for an additional 15 minutes on 2XSSC, and subsequently baked for 2 hours in an 80°C vacuum oven. The filters were prehybridized for "2 hours at room temperature in 0.9 M NaCl. 1X 30 Denhardts, 100 mM Tris HCI (pH 7.5), 5 mM Na-EDTA, 1 mM ATP, 1 M sodium phosphate (dibasic), 1 mM sodium pyrophosphate, 0.5 percent NP-40, and 200 agrml E. coli t-RNA, and hybridized in the same solution overnight, essentially as described by Wallace et al. Nucleic Acids Research 9: 879 (1981) using -40x106 com of either the kinased kappa or gamma probe described above.

After extensive washing at 37 °C in 6X SSC, 0.1 percent SDS, the filters were exposed to Kodak XR-5 35 X-ray film with DuPont Lightning-Plus intensifying screens for 124 hours at -80 °C. Approximately 20 colonies which hybridized with kappa chain probe and 20 which hybridized with gamma chain probe were characterized.

E.1.5 Characterization of Colonies which Hybridize to Kappa DNA Sequence Probe

Plasmid DNAs isolated from several different transformants which hybridized to kappa chain probe were cleaved with Pst I and fractionated by polyacrylamide gel electrophoresis (PAGE). This analysis demonstrated that a number of plasmid DNAs contained cDNA inserts large enough to encode full length kappa chain. The complete nucleotide sequence of the cDNA insert of one of these plasmids was determined by 46 the dideoxynuoleotide chain termination method as described by Smith, Methods Enzymol. 65, 560 (1980) incorporated herein by reference after subcloning restriction endonuclease cleavage fragments into M13 vectors (Messing et al., Nucleio Acids Research 9: 309 (1981). Figure 2 shows the nucleotide sequence of the cDNA insert of pK17G4 and Figure 3 shows the gene sequence with the corresponding amino acid sequence. Thus, the entire coding region of mouse anti-CEA kappa chain was isolated on this one large 50 DNA fragment. The amino acid sequence of kappa chain, deduced from the nucleotide sequence of the pK17G4 cDNA insert, corresponds perfectly with the first 23 N-terminal amino acids of nature mouse anti-CEA kappa chain as determined by amino acid sequence analysis of purified mouse anti-CEA kappa chain. The coding region of pK17G4 contains 27 basepairs or 9 amino acids of the presequence and 642 basepairs or 214 amino acids of the mature protein. The mature unplycosylated protein (MW 24.553) has a 55 variable region of 119 amino acids, including the J1 joining region of 12 amino acids, and a constant region of 107 amino acids. After the stop codon behind amino acid 215 begins 212 basepairs of 3' untranslated sequence up to the polyA addition. The kappa chain probe used to identify pK17G4 hybridizes to nucleotides 374-388 (figure 2).

E.1.6 Characterization of Colonies which Hybridize to Gamma 1 DNA Probe

Plasmid DNA isolated from several transformants positive for hybridization with the heavy chain gamma 1 probe was subjected to Pst I restriction endonuclease analysis as described in E.1.5. Plasmid DNAs 5 demonstrating the largest cDNA insert fragments were selected for further study. Nucleotide sequence coding for mouse heavy (gamma-1) chain, shows an Ncol restriction endonuclease cleavage site near the junction between variable and constant region. Selected plasmid DNAs were digested with both Pstl and Ncol and sized on polyacrylamide. This analysis allowed identification of a number of plasmid DNAs that contain Ncol restriction endonuclease sites, although none that demonstrate cDNA insert fragments large 10 enough to encode the entire coding region of mouse anti-CEA heavy chain.

In one plasmid isolated, p v298 the cDNA insert of about 1300 bp contains sequence information for the 5' untranslated region, the signal sequence and the N-terminal portion of heavy chain. Because pγ298 did not encode the C-terminal sequence for mouse anti-CEA gamma 1 chain, plasmid DNA was isolated from other colonies and screened with Pstl and Ncol. The C-terminal region of the cDNA insert of py11 was 15 sequenced and shown to contain the stop codon, 3' untranslated sequence and that portion of the coding sequence missing from p v298.

Figure 4 presents the entire nucleotide sequence of mouse anti-CEA heavy chain (as determined by the dideoxynucleotide chain termination method of Smith, Methods Enzymol., 65: 560 (1980)) and Figure 5 includes the translated sequence.

The amino acid sequence of gamma 1 (heavy chain) deduced from the nucleotide sequence of the p-298 cDNA insert corresponds perfectly to the first 23 N-terminal amino acids of mature mouse anti-CEA gamma 1 chain as determined by amino acid sequence analysis of purified mouse anti-CEA gamma-1 chain. The coding region consists of 57 basepairs or 19 amino acids of presequences and 1346 basepairs or 447 amino acids of mature protein. The mature unglycosolated protein (MW 52,258) has a variable 25 region of 135 amino acids, including a D region of 12 amino acids, and a J4 joining region of 13 amino acids. The constant region is 324 amino acids. After the stop codon behind amino acid 447 begins 96 bp of 3' untranslated sequences up to the polyA addition. The probe used to identify $P_{\gamma}298$ and $P_{\gamma}11$ hybridized to nucleotides 528-542 (Figure 4).

30 E.1.7 Construction of a Plasmid For Direct Expression of Mouse Mature Anti-CEA Kappa Chain Gene, pKCEAtrp207-1*

Figure 6 illustrates the construction of pKCEAtrp207-1*

20

First, an intermediate plasmid pHGH207-1", having a single trp promoter, was prepared as follows:

The plasmid pHGH 207 (described in U.S. Pat. Appl. Serial No. 307,473, filed Oct. 1, 1981 (EPO Pubin. No. 0036776)) has a double lac promoter followed by the trp promoter, flanked by EcoR I sites and was used to prepare pHGH207-1, pHGH207 was digested with BamH 1, followed by partial digestion with EcoR I. The largest fragment, which contains the entire trp promoter, was isolated and ligated to the largest EcoR I- BamH I fragment from pBR322, and the ligation mixture used to transform E. coli 294. TetR AmpR 40 colonies were isolated, and most of them contained pHGH207-1, pHGH207-1, which lacks the EcoR1 site between the amp^R gene and the trp promoter, was obtained by partial digestion of pHGH207-1 with EcoR I, filling in the ends with Klenow and dNTPs, and religation.

5 μg of pHGH207-1* was digested with EcoRI, and the ends extended to blunt ends using 12 units of DNA Polymerase I in a 50 µl reaction containing 60 mM NaCl, 7 mM MgCl₂, 7 mM Tris HCl (pH 7.4) and 1 J5 mM in each dNTP at 37°C for 1 hour, followed by extraction with phenol/CHCl3 and precipitation with ethanol. The precipitated DNA was digested with BamH I, and the large vector fragment (fragment 1) purified using 5 percent polyacrylamide gel electrophoresis, electroelution, phenol/CHCl3 extraction and ethanol precipitation.

The DNA was resuspended in 50 _{st}l of 10 mM Tris pH 8, 1 mM EDTA and treated with 500 units 50 Bacterial Alkaline Phosphatase (BAP) for 30' at 65° followed by phenol/CHCl3 extraction and ethanol precipitation.

A DNA fragment containing part of the light chain sequence was prepared as follows: 7 µg of pK17G4 DNA was digested with Pst I and the kappa chain containing cDNA insert was isolated by 6 percent gel electrophoresis, and electroelution. After phenol/CHCl3 extraction, ethanol precipitation and resuspension in 55 water, this fragment was digested with Ava II. The 333 bp Pst I-Ava II DNA fragment was isolated and purified from a 6 percent polyacrylamide gel.

A 15 nucleotide DNA primer was synthesized by the phosphotnester method G. O. 2,644.432 (supra) and has the following sequence:

Met Asp lie Val Met 5' ATG GAC ATT GTT ATG 3'

The 5' methiorine serves as the initiation codon. 500 ng of this primer was phosphorylated at the 5' end with 10 units 14 DNA kinase in 20 µi reaction containing 0.5 mM ATP. 200 ng of the Pat I-Ava II by fragment was mixed with the 20 µl of the phosphorylated primer, heated to 95' C for 3' minutes and quick frozen in a dry-tice ethanol bath. The denatured DNA solution was made 80mM NaCl, 7mM MgCl. 7 Mm 10' Tris HCl (pH 7-4), 12 mM each dNTP and 12 units DNA Polymerase Harge Fragment was added. After 2 hours incubation at 37' C this primer repair reaction was phenol CHCl, extracted, ethanol precipitatiod, and digested to completion with Sau 3A. The reaction mixture was then electrophoresod on a 6 porcent polyacrylamide get and "50 ng of the 182 basepair amino-terminal blunt-end to Sau 3A fragment (fragment 2) was obtained after electrophores.

15 100 ng of fragment 1 (supra) and 50 ng of fragment 2 were combined in 20 µl of 20 mM Tris HCl (pH 7.5), 10 mM MgCls, 10 mM DTT, 2.5 mM ATP and 1 unit of T4 DNA (gase. After overright ligation at 14 °C the reaction was transformed into E. coli K12 strain 294. Restriction endonuclease digestion of plasmid DNA from a number of ampicillin resistant transformants indicated the proper construction and DNA sequence analysis proved the desired nucleotide sequence through the initiation codon of this new plasmid.
20 KCEAINT (Floure 8).

The remainder of the coding sequence of the kappa light chain gene was prepared as follows:

The Pst LoDNA insert fragment from 7 _{eg} of K17G4 DNA was partially digested with Ava II and the Ava II cohesive ends were extended to blunt ends in a DNA Polymerase I large fragment reaction. Following 6 percent polyacrytamide gel electrophoresis the 686 basepair Pst I to blunt ended Ava II DNA fragment was 2s isolated, purified and subjected to Hpa II restriction endonuclease digestion. The 497 basepair Hpa II to blunt ended Ava II DNA fragment (fragment of the Ava II DNA fragment fragment fragment of the Ava II DNA fragment fragment fragment of the Ava II DNA fragment fragment

10 µg of pKCEAInt1 DNA was digested with Ava I, extended with DNA polymerase I large fragment, and digested with Xba I. Both the large blunt ended Ava I to Xba I vector fragment and the small blunt ended Ava I to Xba I vactor fragment and the small blunt ended Ava I to Xba I ragment were isolated and purified from a 6 percent polyacrylamide gel after elector fragment (fragment 4) was treated with Bacterial Alkaline Phosphatases (GAP), and the small fragment was digested with Hpa II, electrophoresed on a 6 percent polyacrylamide and the 169 basepair Xba I+bpa II DNA fragment (fragment 5) was purified. "75 ng of fragment 4. "50 ng of fragment 3 and "50 ng of fragment 5 were combined in a T4 DNA ligase reaction and inclubated overnight at 14", and the reaction mixture transformed into E, coli K12 strain 294. Plasmid DNA from six ampicillin seriestant transformants were analyzed by restriction endounclease digestion. One plasmid DNA demonstrated the proper construction and was designated pKcEAInt2.

Final construction was effected by ligating the K-CEA fragment, including the trp promoter from pKCEAInt2 into pBR322(XAP), (pBR322(XAP) is prepared as described in U.S. Application 452.227. filed December 22, 1982; from pBR322 by deletion of the AvaI-Pvull fragment followed by ligation.)

The K-CEA fragment was prepared by treating pKCEAInt2 with Ava I, blunt ending with DNA polymerase I (Klenow fragment) in the presence of DNTPs, digestion with Pst I and isolation of the desired fragment by quel electrophoresis and electroplution.

The large vector fragment from pBR322(XAP) was prepared by successive treatment with EcoR I. blunt ending with polymerase, and redigestion with Pst I. followed by isolation of the large vector fragment by electrophores

The K-CEA and large vector fragments as prepared in the preceding paragraphs were ligated with T4 DNA ligase, and the ligation mixture transformed into E_coli as above. Plasmid DNA from several ampiculin resistant transformants were selected for analysis. and one plasmid DNA demonstrated the proper construction, and was designated pKCEAtrp207-1.

E.1.8 Construction of a Plasmid Vector for Direct Expression of Mouse Mature Anti-CEA Heavy (Gamma 1) Chain Gene, p2CEAtrp207-1*

Figure 7 Illustrates the construction of p₇CEAtrp207-1*. This plasmid was constructed in two parts beginning with construction of the C-terminal region of the gamma 1 gene.

5 μg of plasmid pHGH207-1" was digested with Ava I, extended to blunt ends with DNA polymerase I large fragment (Klewon fragment), extracted with phenol CHCls, and ethanol precipitated The DNA was digested with BamH I treated with BAP and the large fragment (fragment A) was purified by 6 percent.

polyacrylamide gel electrophoresis and electroelution.

"5 $_{\rm PS}$ of p_{.2}11 was digested with Pst I and the gamma chain cDNA insert fragment containing the Cterminal portion of the gene was purified, digested with Ava II followed by extension of the Ava II cohesive ends with Klenow, followed by Taq I digestion. The 375 basepair blunt ended Ava II to Taq I fragment fragment B) was isolated and purified by get electrophoresis and electroclution.

 $9~\mu g$ of py298 was digested with Taq I and BamH I for isolation of the 496 basepair fragment (fragment

Approximately equimolar amounts of fragments A, B, and C were ligated overnight at 14° in 20µl reaction mixture, then transformed into E, coli strain 294. The plasmid DNA from six ampicullin resistant transformants was committed to restriction endonuclease analysis and one plasmid DNA, named pyCEAInt, demonstrated the correct construction of the C-terminal portion of damma 1 (Figure 5).

To obtain the N-terminal sequences, 30 μ g of py298 was digested with Pst I and the 628 basepair DNA fragment encoding the N-terminal region of mouse anti-CEA gamma chain was isolated and purified. This fragment was further digested with Alu I and Rsa I for isolation of the 280 basepair fragment. A 15 nucleotide DNA primer

met glu val met leu 5' ATG GAA GTG ATG CTG 3'

20 was synthesized by the phosphotriester method (supra).

The 5" methionine serves as the initiation codon. 500 ng of this synthetic oligomer primer was phosphorylated at the 5" end in a reaction with 10 units 14 DNA fragment was mixed with the phosphorylated primer. The mixture was heat denatured for 3 minutes at 95 and quenched in dry-tice ethanol. The denatured DNA solution was made 80mM NaCl, 7mM MgCl₂, 7 mM Tris HCl (pH 7-4), 12 mM in each dNTP and 12 units DNA Polymerase H_arge Fragment was added. After 2 hours incubation at 37° C, this primer repair reaction was phenoi/CHCl₂ sytracted, ethanol precipitated, and digseste to complete with Hpall. "50 ng of the expected 125 basepair blunt-end to HPa II DNA fragment (fragment D) was purified from the oel.

A second aliquot of p-298 DNA was digested with Pst I, the 628 basepair DNA fragment purified by polyacrylamide get electrophoresis, and further digested with BamH I and Hpa II. The resulting 380 basepair fragment (fragment E) was purified by get electrophoresis.

75 gg of pyCEAInti was digested with EcoR I, the cohesive ends were made flush with DNA polymerase I (Klenow), further digested with BAP and with BAP and electrophoresed on a 6 percent polyacytamide oel. The larce vector fragment (fragment F) was isolated and purified.

In a three fragment ligation, 50 ng fragment D, 100 ng fragment E, and 100 ng fragment F were ligated overnight at 4 in a 20 µl reaction mixture and used to transform E. coll K12 stain 294. The plasmid DNAs from 12 amplicillin resistant transformants were analyzed for the correct construction and the nucleotide sequence surrounding the initiation codon was verified to be correct for the plasmid named p-yCEAInt2.

The expression plasmid, p-cEAtrp207-Ir used for expression of the heavy chain gene is prepared by a 3 p-yCEAtrp2 (supra) and two fragments prepared from pyCEAtrp2.

pBR322/XAP) was treated as above by digestion with EcoR1, blunt ending with DNA polymerase (Klenow) in the presence of dNTPs, followed by digestion with Pst I, and Isolation of the large vector fragment by gel electrophoresis. A 1543 base pair fragment from py-CEAInt2 containing trp promoter linked with the N-terminal coding region of the heavy chain gene was isolated by treating py-CEAInt2 with Pst I followed by BamH I, and isolation of the desired fragment using PAGE. The 889 base pair fragment containing the C-terminal coding portion of the gene was prepared by partial digestion of py-CEAInt2 with Ava I, blunt ending with Klenow, and subsequent digestion with BamH I, followed by purification of the desired fragment by gell electrophoresis.

The aforementioned three fragments were then ligated under standard conditions using T4 DNA ligase, and a ligation mixture used to transform E. coli strain 294. Plasmid DNAs from several letracycline resistant transformants were analyzed; one plasmid DNA demonstrated the proper construction and was designated pyCEAtrp207-1*.

E.1.9 Production of Immunoglobulin Chains by E. coli

E. coli strain W3110 (ATTC No. 27325) was transformed with pyCEAtrp207-1* or pKCEAtrp207-1* using

standard techniques.

50

To obtain double transformants, E. coi strain W3110 cells were transformed with a modified pKCEAtrp207-11, pKCEAtrp207-11.2, which had been modified by cleaving a Pst I-Pvu I fragment from the amp ⁸ gene and religating. Cells transformed with pKCEAtrp207-11 are thus sensitive to amposition but still resistant to tetracycline. Successful transformants were retransformed using pyCEAInt2 which confers resistance to ampicillin but not tetracycline. Cells containing both pKCEAtrp207-112 and pyCEAInt2 thus identified by orwith in a medium containing both ampicillin and tetracycline.

To confirm the production of heavy and/or light chains in the transformed cells, the cell samples were inculated into MB tryptophan free medium containing 10_p am I tetracycline, and induced with indicacrylic racid (IAA) when the OD S50 reads 0.5. The induced cells were grown at 37°C during various time periods and then spun down, and suspended in TE buffer containing 2 percent SDS and 0.1 M ½-mercaptoethanol and boiled for 5 minutes. A 10 x volume of acetone was added and the cells kept at 22°C for 10 minutes, then centrifuged at 12,000 rpm. The procipitate was suspended in O'Farrell SDS sample buffer (O'Farrell, P.H., J. Biol. Chem., 250: 4007 (1975)); boiled 3 minutes, recentrifuged, and fractionated using SDS PAGE (10 percenti), and stained with silver stain (Goldman, D. et al., Science 211: 1437 (1981)); or subjected to Western blot using rabbit anti-mouse IgG (Burnett, W. N., et al., Anal. Biochem. 112: 195 (1981)), for identification light chain and heavy chain.

Cells transformed with pyCEAtrp207-11 showed bands upon SDS PAGE corresponding to heavy chan molecular weight as developed by silver stain. Cells transformed with pKCEAtrp207-11 showed the proper amolecular weight band for light chain as identified by Western Blot: double transformed cells showed bands for both heavy and light chain molecular weight proteins when developed using rabbit anti-mouse igG by Western blot, These results are shown in Figures 8A, 8B, and 8C.

Figure 8A shows results developed by silver stain from cells transformed with pyCEAtrp207-11. Lane 1 is monoclonal anti-CEA heavy chain (standard) from CEA.68-E3. Lanes 2b-5b are timed samples 2 hrs. 4 ab hrs, 6 hrs, and 24 hrs after IAA addition. Lanes 2a-5a are corresponding untransformed controls: Lanes 2c-5c are corresponding uninduced transformants.

Figure 8B shows results developed by Western blot from cells transformed with pKCEAtrp207-11 Lanes 1b-6b are extracts from induced cells immediately, 1hr, 3.5 hrs, 5 hrs, 8 hrs, and 24 hrs after IAA addition, and 1a-6a corresponding uninduced controls. Lane 7 is an extract from a pyCEAtrp207-11 control, lanes 8, 9, and 10 are varying amounts of anti CEA-4capa chain from CEA.66-83 cells.

Figure 8C shows results developed by Western blot from four colonies of double transformed cells 24 hours after IAA addition (lanes 4-7, Lanes 1-3 are varying amounts of monoclonal gamma chain controls, lease 6 and 9 are untransformed and p-yCEAtrp207-1' transformed cell extracts, respectively.

in another quantitative assay, frozen, transformed E, coil cells grown according to E1.10 (bellow) were lysed by heating in sodium odecyl sutside (SDS),#-metagliestance (all lysis buffer at 100°. Aliquots were loaded on an SDS polyacrylamide get next to tanes loaded with various amounts of hybridoma anti-CEA. The get was developed by the Western bioli, Burnett (supra), using "51-labeled sheep anti-mouse (g6 antibody from New England Nuclear. The results are shown in Figure 9. The figure shows that the E coil products co-migrate with the authentic hybridoma chains, indicating no detectable proteolytic degradation in E. coil. Heavy chain from mammalian cells is expected to be slightly heavier than E. coil material due to glycosylation in the former. Using the hybridoma lanes as a standard, the following estimates of heavy and light chain production were made:

			(Per gr	am of c	ells)
<u>E</u> .	coli	(W3110/pyCEAtrp207-1*)	5	mg Y	
Ε.	coli	(W3110/pKCEAtrp207-1*)	1.	5 mg K	
<u>E</u> .	coli	(W3110/pKCEAtrp207-1* Δ ,	pyCEAInt2) 0.	5 mg K,	1.0 mg

E.1.10 Reconstitution of Antibody from Recombinant K and Gamma Chains

In order to obtain heavy and light chain preparations for reconstitution, transformed cells were grown in larger batches, harvested and frozen. Conditions of growth of the variously transformed cells were as follows:

E. coli (W3110/p $_{\gamma}$ CEAtrp207-1* were inoculated into 500 ml LB medium containing $5\mu g$ ml tetracycline

Y

and grown on a rotary shaker for 8 hours. The culture was then transferred to 10 liters of fermentation medium containing yeast nutrients, salts, glucose, and 2.gg/ml letracycline. Additional glucose was added during growth aid at OD 550 = 20, indeleacylic (IAA), a trp derepressor, was added to a concentration of 50 gg/ml. The cells were fed additional glucose to a final OD 550 = 40, achieved approximately 6 hours 5 from the IAA addition.

E. coii (W3110) cells transformed with pKCEA trp 207-1* and double transformed (with pKCEAtrp207-1½ and p-CEAInt2) were grown in a manner analogous to that described above except that the OD 550 six hours after IAA addition at harvest was 25-30.

The cells were then harvested by centrifugation, and frozen.

E.2 Assay Method for Reconstituted Antibody

Anti-CEA activity was determined by ELISA as a criterion for successful reconstitution. Wells of microtitor plates (Dynatech Inmulon), were saturated with CEA by incubating 100 µl of 2.5 µl CEA-mil solution in 0.1M carbonate buffer, pH 9.3 for 12 hours at room temperature. The wells were then washed 4 times with phosphate buffered saline (PBS), and then saturated with BSA by incubating 200 µl of 0.5 percent BSA in PBS for 2 hours at 37°C, followed by washing 4 times with PBS. Fifty microtites of each sample was applied to each well. A standard curve (shorn in Figure 10), was run, which consisted of 50 µl samples of 10 µg, 5 pq, 11 µg, 500 qq, 100 qq, 50 qq, 10 qq, 5 qq, and 11 qq anti-CEA-mil in 0.5 percent BSA are in PBS, plus 50 µl of 0.5 percent BSA in PBS alone as a blank. All of the samples were incubated in the plate for 90 minutes at 37°C.

The plates were then washed 4 times with PBS, and sheep anti-mouse IgG-alkaline phosphate (TAGO, Inc.) was applied to each well by adding 100 µ l of an enzyme concentration of 24 units ml in 0.5 percent BSA in PBS. The solution was incubated at 37° C for 90 minutes. The plates were washed 4 times with PBS before adding the substrate, 100 µl of a 0.4 mgml solution of p-nitrophenylphosphate (Sigma) in ethanolamine buffered saline, pH 9.5. The substrate was incubated 90 minutes at 37° C for color development.

The A₁₅₀ of each well was read by the Microelisa Auto Reader (Dynatech) set to a threshold of 1.5, alloration of 1.0 and the 0.5 percent BSA in PBS (Blank) well set to 0.000. The A₂₅₀ data was tabulated in RS-1 on the VAX system, and the standard curve data fitted to a four-parameter logistic model. The unknown samples' concentrations were calculated based on the A₁₅₀ data.

E.3 Reconstitution of Recombinant Antibody and Assay

Frozen cells prepared as described in paragraph E.1.10 were thawed in cold lysis buffer [10mM Tris HCl, pH 7.5, 1mM EDTA, 0.1M NaCl, 1mM phenylmethylsutfonyl fluoride (PMSF)] and lysed by sonication. The lysate was partially clarified by centrifugation for 20 mins at 3.000 rpm. The supernatant was protected from proteolytic enzymes by an additional 1mM PMSF, and used immediately or stored frozen at -80° C; frozen Ivsates were never thawed more than once.

The S-sulfonate of E. coli produced anti-CEA heavy chain (₇) was prepared as follows: Recombinant E. coli cells transformed with ppCEAtp207-1: which contained heavy chain as insoluble bodies, were yested and centrifuged as above; the pellet was resuspended in the same buffer, sonicated and re-centrifuged. This pellet was washed once with buffer, then suspended in BM guanidine HCl, 0.11M Tris HCl, pH 8, ImM EDTA, 20 mgm is odium sulfite and 10 mgml sodium tetrathionate and allowed to react at 25 for about 16 tempts. The reaction mixture was dialyzed against 8M urea, 0.1M Tris HCl, pH 8, and stored at 4 1, to give a 3 mgml solution of ~\$\$CO.

650 µI of cell lysate from cells of various E. coll strains producing various lgG chains, was added to 500 mg urea. To this was added & #mercaptoethanio lio 20mM, Tris-HCl, pH 8.5 to 50mM and EDTA to 1mM, and in some experiments, y-SSO₂ was added to 0.1 mg/ml. After standing at 25° for 30-90 mins, the reaction mixtures were dialyzed at 4° against a buffer composed of 0.1M sodium glycinate, pH 10.8, 0.5M urea, 10mM glycine ethyl ester, 5mM reduced glutathione, 0.1mM oxidized glutathione. This buffer was prepared from Ny-saturated water and the dialysis was performed in a capped Wheaton bottle. After 16-48 hours, dialysis bags were transferred to 4° phosphate buffered saline containing 1mM PMSF and dialysis continued another 16-24 hrs. Dialysates were assayed by ELISA as described in paragraph E.2 for ability to 5b bind CEA. The results below show the values obtained by comparison with the standard curve in x ngml anti-CEA. Also shown are the reconstitution efficiencies calculated from the ELISA responses, minus the background 108 ng/ml) of cells producing K chain only, and from estimates of the levels of y and K chains in the reaction mixtures.

		ng/ml anti-CEA	Percent recombination
	E. coli W3110 producing IFN-aA (control)	0	
	E. coli (W3110/pKCEAtrp207-1*)	108	
	E. coli (W3110/pKCEAtrp207-1*), plus y-SSO	848	0.33
,	E. coli (W3110/pKCEAtrp207-1*4, pyCEAInt2)	1580	0.76
,	Hybridoma anti-CEA K-SSO ₃ and Y-SSO ₃	540	0.40

15 E.4 Preparation of Chimeric Antibody

10

Figures 11 and 12 show the construction of an expression vector for a chimeric heavy (gamma) chain which comprises the murine anti CEA variable region and human γ -2 constant region.

A DNA sequence encoding the human gamma-2 heavy chain is prepared as follows: the cDNA library coblained by standard techniques from a human multiple myeloma cell line is probed with 5' GGGCACTC-GACACAA3' to obtain the plasmid containing the cDNA insert for human gamma-2 chain (Takahashi, et al., Cell, 29: 671 (1982), incorporated herein by reference), and analyzed to verify its identity with the known sequence in human gamma-2 (Ellison, J., et al., Proc. Natl. Acad. Sci. (USA), 79: 1984 (1982) incorporated herein by reference).

as hown in Figure 11, two fragments are obtained from this cloned human gamma 2 plasmid (p-2). The first fragment is formed by digestion with Paull followed by digestion with Ava III. and purification of Pt. emailer DNA fragment, which contains a portion of the constant region, using 6 percent PAGE. The second fragment is obtained by digesting the p-2 with any restriction enzyme which cleaves in the 3' untranslated region of y2, as deduced from the nucleotide sequence, filling in with Klenow and dNTPs, cleaving with Ava so III, and isolating the smaller fragment using 6 percent PAGE. (The choice of a two sop, two fragment composition to supply the PvuII-3' untranslated fragment provides a cleaner path to product due to the proximity of the AvaIII site to the 3 terminal end thus avoiding additional restriction sites in the gene sequence matching the 5' untranslated region site.) p-CAEQ07-1' is digested with EcoR 1, treated with Klenow and dNTPs to fill in the cohesive end, and digested with Pvu II, the large vector fragment containing promoter isolated by 6 percent PAGE.

The location and DNA sequence surrounding the Pvull site in the mouse gamma-1 gene are identical to the location and DNA sequence surrounding the Pvull site in the human gamma-2 gene.

The plasmid resulting from a three way ligation of the foregoing fragments, Chlim1, contains, under the influence of trp promoter, the variable and part of the constant region of murine anti-CEA gamma 1 chain, and a portion of the gamma 2 human chain, pChim1 will, in fact, express a chimeric heavy chan when transformed into E. coli, but one wherein the change from mouse to human does not take place at the variable to constant junction.

Figure 12 shows modification or pChim1 to construct pChim2 so that the resulting protein from expression will contain variable region from murine anti CRA antibody and constant region from the human 45 y-2 chain. First, a fragment is prepared from pChim1 by treating with Nco I, blunt ending with Klenow and oNTPs, cleaving with Pvu II, and isolating the large vector fragment which is almost the complete plasmid except for short segment in the constant coding region for mouse anti CEA. A second fragment is prepared from the previously described py2 by treating with Pvu II, followed by treating with any restriction enzyme which cleaves in the variable region, blunt ending with Klenow and dNTPs and solating the short fragment which comprises the iuncoin between variable and constant regions of this chain.

Ligation of the foregoing two fragments produces an intermediate plasmid which is correct except for an extraneous DNA fragment which contains a small portion of the constant region of the murne anti-CEA antigen, and a small portion of the variable region of the human gamma chain. This repair can be made by excising the Xba I to Pvu II fragment and cloning into MI3 phage as described by Massing et al. Nucleic Acids Res. 9: 300 (1981), followed by in vitro istel directed deletion mutageness as described by Adelman, et al., DNA 2, 183 (1983) which is incorporated herein by reference. The Xba I-Pvu II fragment thus modified is ligated back into the intermediate plasmid to form pChim2. This plasmid then is capable of expression in a suitable horst a cleanly constructed murine vanable human constant chimeric heavy chain.

In an analogous fashion, but using mRNA templates for cDNA construction for human kappa rather than γ chain, the expression plasmid for chimeric light chain is prepared.

The foregoing two plasmids are then double transformed into E. coli W3110, the cells grown and the chains reconstituted as set forth in paragraph E.1-E.3 supra.

E.5 Preparation of Altered Murine Anti-CEA Antibody

E.5.1 Construction of Plasmid Vectors for Direct Expression of Altered Murine Anti-CEA Heavy Chain Gene

The cysteine residues, and the resultant disulfido bonds in the region of amino acids 216-230 in the constant region of murine anti-CEA heavy chain are suspected to be important for complement fixation (Klein, et al., Proc. Natl. Acad. Sci., (USA), 78: 524 (1981)) but not for the antigen binding property of the resulting antibody. To decrease the probability of incorrect disulfide bond formation during reconstitution according to the process of the invention herein, the nucleotides encoding the amino acid residues 226-232 which includes codons for three cysteines, are deleted as follows:

A "deleter" deoxyoligonuceloide, 5' CTACAGCATGTCAGGGT is used to delete the relevant portions of the gene from pyCEAtrp207-1' by the procedure of Wallace, et al., Science, 209: 1396 (1980) or of Adelman, et al., DNA 2, 183 (1983), Briefly, the "deleter" deoxyoligonuceloide is annealed with denatured pyCEAtrp207-1' DNA, and primer repair synthesis carried out in vitro, followed by screening by hybridization of presumptive deletion clones with PS2 labelled deleter sequence.

E.5.2 Production of Cysteine Deficient Altered Antibody

The plasmid prepared in E.5.1 is transformed into an E. coli strain previously transformed with 5pKCEAtrp207-1' as described above. The colls are grown, extracted for recombinant antibody chains, and the altered antibody reconstituted as described in E.1.10.

E.6 Preparation of Fab

30 E.8-1 Construction of a Plasmid Vector for Direct Expression of Murine Anti-CEA Gamma 1 Fab Fragment Gene pyCEAFabtrp207-1*

Figure 13 presents the construction of p₇CEAFabtrp207-11. 5 _gg of pBR322 was digested with Hind III, the cohesive ends made flush by treating with Klenow and dNTPs; digested with Pst I, and treated with BA. The large vector fragment, fragment I, was recovered using 8 percent PAGE followed by electroelution.

5 µg of pyCEAtrp207-1* was digested with both BamH I and Pst I and the "1570 bp DNA fragment (fragment II) containing the trp promoter and the gene sequence encoding the variable region continuing into constant region and further into the anti-CEA gamma 1 chain hinge region, was isolated and purified after electrophoresis.

Expression of the anti-CEA gamma 1 chain Fab fragment rather than complete heavy chain requires that a termination codon be constructed at the appropriate location in the gene. For this, the 260 bp Nco 1-Nde I DNA fragment from 20 µg of the p-298 was isolated and purified. A 13 nucleotide DNA primer, the complement of which encodes the last 3 C-lemminal amino acids of the Fab gene and 2 bases of the 3 receded for the stop codon, was synthesized by the phosphotriester method (supra). The probe hybridizes to nucleotides 754 to 767 (Figure 4) which has the following sequence:

AspCysGlyStop 5' GGGATTGTGGTTG 3'

The third base of the stop codon is provided by the terminal nucleotide of the filled-in-Hind III site from pBR322 cleavage described above. 50 ng of this primer was used in a primer repair reaction by phosphorylation at the 5° end in a reaction with 10 units T4 DNA kinase containing 0.5 mM ATP in 20 µl. sa and mixing with "200 ng of the Noo IHAdi I DNA fragment. The mixture was heat denatured for 3 minutes at 95° and quenched in dry-lice ethanol. The denatured DNA solution was made 60mM NaCl. 7mM MigCls. 7 mM Tris HCl (pH 7.4), 12 mM in each dNTP and 12 units DNA Polymerase I-large Fragment was added. After 2 hours incubation at 37° C, this primer repair reaction was phenolCHCls, extracted, ethanol

precipitated, digested with BamH I and the reaction electrophoresed through a 6 percent polyacrylamide gel. "50 ng of the 181 bp blunt end to BamH I DNA fragment, fragment III, was isolated and punited,

"100 ng of fragment I, "100 ng each of fragments II and III were ligated overnight and transformed into E. coli K12 strain 294. Plasmid DNA from several tetracycline resistant transformants was analyzed for the proper construction and the nucleotide sequence through the repair blunt end filled-in Hind III junction was determined for verification of the TGA stop codon.

E.6.2 Production of Fab Protein

a The plasmid prepared in E.S.1 is transformed into an E. coll strain previously transformed with pKCEAtrp207-1 as described above. The cells are grown, extracted for recombinant antibody chains and the Fab protein reconstituted as described on E.1.10.

Claims

15

20

- 1. A method for preparing an immunoglobulin species having specificity for a particular identified antigen, the species comprising a chimeric immunoglobulin chain having constant and variable regions wherein a constant region is homologous to the corresponding constant region of an antibody of a first antibody class or first mammalian species and a variable region thereof is homologous to the variable region of an antibody derived from a second, different antibody class or mammalian species; wherein
 - (a) a DNA sequence is prepared encoding said immunoglobulin species:
 - (b) the sequence is inserted into at least one replicable expression vector operably linked to a suitable promoter:
 - (c) at least one prokaryotic or eukaryotic host cell culture with which the promoter is compatible is transformed with at least one vector of (b); and
 - (d) the host cell is cultured and the immunoglobulin species is recovered from the host cell culture.
- A method according to claim 1 wherein said constant and variable regions are homologous to constant and variable regions, respectively, of different mammalian species.
- A method according to claim 2 wherein the first mammalian species is human.
 - A method according to any preceding claim wherein the immunoglobulin species comprises a chain having a predetermined alteration, deletion or addition of at least one amino acid (in addition to the chimeric character).
 - A method according to claim 4 wherein said alteration, deletion or addition is in the constant region portion.
- 40 6. A method according to claim 4 or 5 wherein said addition, alteration or deletion is of from 1 to 7 amino acids.
 - 7. The method of any preceding claim wherein the host cell is E.coli or yeast
- 45 8. The method of any preceding claim wherein the vector contains DNA encoding both a heavy chain and a light chain.
 - The method of any preceding claim wherein the immunoglobulin species is a heavy chain, light chain or Fab immunoglobulin.
 - 10. The method of claim 9 wherein the chimeric immunoglobulin is recovered from the host cell culture as a mature immunoglobulin.
 - 11. The method of claim 9 or 10 wherein the light chain is of the kappa family and or the heavy chain is of the gamma family.
 - The method of any preceding claim wherein the immunoglobulin species is deposited within the cells
 as insoluble particles.

- 13. The method of claim 12 wherein the mature heavy or light chains are recovered from the particles by cell lysis followed by solubilization in denaturant.
- 14. The method of any of claims 1 to 11 wherein chimeric heavy or light chain is secreted into the medium.
- 15. The method of any of claims 1 to 11 wherein the host cell is a gram negative bacterium and chimeric mature heavy or light chain is secreted into the periplasmic space of the host cell bacterium.
- 16. The method of any of claims 1 to 15 comprising recovering both heavy and light chain and reconstituting light chain and heavy chain to form a chimeric immunoglobulin having altered affinity for a particular known antiene.
 - 17. The method of any of claims 1 to 16 wherein heavy and light chains are coexpressed in the same host.
- 18. A replicable expression vector comprising DNA operably linked to a promoter compatible with a suitable prokaryotic or eukaryotic host cell, said DNA encoding an immunoglobulin specificity for a particular identified antigen, the species having constant and variable regions, wherein a constant region is homologous to the corresponding constant region of an antibody of a first antibody class or a first mammalian species and a variable region thereof is homologous to the variable region of an antibody derived from a second, different antibody class or mammalian species.
 - 19. A vector according to claim 18 wherein said constant and variable regions are homologous to constant and variable regions, respectively, of different mammalian species.
- 25 20. Recombinant host cells transformed with the vector of claim 18 or 19.
 - 21. A method for preparing an immunoglobulin species having specificity for a particular identified antigen, the species comprising a chimeric immunoglobulin chain having constant and variable regions wherein a constant region is homologous to the corresponding constant region of an antibody of a first antibody class or first mammalian species and a variable region thereof is homologous to the variable region of an antibody derived from a second, different antibody class or mammalian species, comprising culturing cells according to claim 20 and recovering the immunoslobulin species from the cell culture.
 - 22. A chimeric immunoglobulin species having specificity for a particular known antigen and having a constant region homologous to a corresponding constant region of an antibody of a first mammallan species and a variable region homologous to a variable region of an antibody derived from a second, different mammallan species.
- 23. The chimeric immunoglobulin species of claim 22 wherein the immunoglobulin species comprises a mature heavy and/or light chain.

Revendications

- 1. Méthode de préparation d'une espèce d'immunoglobuline ayant une spécificité pour un antigène de lidertifié particulier, l'espèce comprenant une chaîne d'immunoglobuline chimérique ayant des répions constante et variable où une région constante est homologue à la région constante correspondante d'un anticorps d'une première classe d'anticorps ou d'une première espèce mammifère et sa région variable est homologue de la région variable d'un anticorps dérivé d'une seconde classe différente d'articorps ou espèce mammifère; où
- 50 (a) une séquence d'ADN est préparée codant ladite espèce d'immunoglobuline ;
 - (b) la séquence est insérée dans au moins un vecteur d'expression réplicable activement lié à un promoteur approprié :
 - (c) au moins une culture de cellules hôtes procaryotes ou eucaryotes avec laquelle le promoteur est compatible est transformée avec au moins un vecteur de (b); et
- (d) la cellule hôte est mise en culture et l'espèce d'immunoglobuline est récupérée de la culture de la cellule hôte.
 - 2. Méthode selon la revendication 1 où lesdites régions constantes et variables sont homologues aux

régions constantes et variables respectivement de différentes espèces mammilères.

- 3. Méthode selon la revendication 2 où la première espèce mammifère est humaine.
- 64. Méthode selon toute revendication précédente où l'espèce d'immunoglobuline comprend une chaîne ayant une altération, délétion ou addition prédéterminée d'au moins un acide aminé (en plus du caractère chimérious).
 - Méthode selon la revendication 4 où ladite altération, délétion ou addition est dans la portion de région constante.
 - Méthode selon la revendication 4 ou 5 où ladite addition, altération ou délétion est de 1 à 7 acides aminés.
- 7. Méthode selon toute revendication précédente où la cellule hôte est E. coli ou une levure.
 - Méthode selon toute revendication précédente où le vecteur contient un ADN codant à la fois une chaîne lourde et une chaîne légère.
- Méthode selon toute revendication précédente où l'espèce d'immunoglobuline est une immunoglobuline à chaîne lourde, à chaîne légère ou Fab.
 - 10. Méthode de la revendication 9 où l'immunoglobuline chimérique est récupérée de la culture de cellules hôtes sous la forme d'une immunoglobuline mûre.
 - Méthode de la revendication 9 ou 10 où la chaîne légère est de la famille kappa et ou la chaîne lourde est de la famille gamma.
- 12. Méthode selon toute revendication précédente où l'espèce d'immunoglobuline se dépose dans les cellules sous la forme de particules insolubles.
 - 13. Méthode de la revendication 12 où les chaînes mûres lourde ou légère sont récupérées des particules par lyse de la cellule suivie d'une solubilisation dans un agent dénaturant.
- 35 14. Méthode selon l'une quelconque des revendications 1 à 11 où une chaîne chimérique lourde ou légère est sécrétée dans le milieu.
 - 15. Méthode selon toute revendication 1 à 11 où la cellule hôte est une bactérie Gram-négative et une chaîne chimérique mûre lourde ou légère est sécrétée dans l'espace périplasmique de la bactérie de la cellule hôte.
 - 16. Méthode selon toute revendication 1 à 15 comprenant la récupération de la chaîne lourde et légère et la reconstitution de la chaîne légère et de la chaîne lourde pour former une immunoglobuline chimérique avant une affinité modifiée pour un antiéphe connu particulier.
 - Méthode selon l'une quelconque des revendications 1 à 16 où les chaînes lourde et légère sont coexprimées dans le même hôte.
 - 18. Vecteur d'expression réplicable comprenant un ADN activement lié à un promoteur compatible avec une cellule hôte procaryote eucaryote, ledit ADN codant une espèce d'immunoglobuline ayant une spécificé pour un artificié pour un artificie (la répidit par le la répidit et la ré
 - 19. Vecteur selon la revendication 18 où lesdites régions constante et variable sont homologues aux régions constante et variable, respectivement, d'espèces mammitères différentes.

- Cellules hôtes recombinantes transformées par le vecteur de la revendication 18 ou 19.
- 21. Méthode de préparation d'une espèce d'immunoglobuline avant une spécificité pour un antigène identifié particulier, l'espèce comprenant une chaîne d'immunoglobuline chimérique ayant des régions constante et variable où une région constante est homologue avec la région constante correspondante d'un anticorps d'une première classe d'anticorps ou d'une première espèce mammifère et une région variable est homologue avec la région variable d'un anticorps dérivé d'une seconde classe différente d'anticorps ou espèce mammifère, comprenant la mise en culture de cellules selon la revendication 20 et la récupération de l'espèce d'immunoglobuline de la culture de cellules.
- 22. Espèce d'immunoglobuline chimérique ayant une spécificité pour un antigène connu particulier et ayant une région constante homologue avec une région constante correspondante d'un anticorps d' une première espèce mammifère et une région variable homologue d'une région variable d'un anticoros dérivé d'une seconde espèce mammifère différente.
 - 23. Espèce d'immunoglobuline chimérique de la revendication 22 où l'espèce d'immunoglobuline comprend une chaîne lourde et/ou légère.

Ansprüche

20

- 1. Verfahren zur Herstellung einer Immunoglobutingattung, die Spezifität für ein bestimmtes, identifiziertes Antigen besitzt, wobei die Gattung eine chimäre Immunoglobulinkette umfaßt, die konstante und variable Bereiche aufweist, worin ein konstanter Bereich homolog zum entsprechenden konstanten Bereich eines Antikörpers einer ersten Antikörperklasse oder ersten Säugetiergattung und ein variabler Bereich desselben homolog zum variablen Bereich eines Antikörpers ist, der von einer zweiten, unterschiedlichen Antikörperklasse oder Säugetiergattung abgeleitet ist; worin
 - (a) eine DNA Sequenz hergestellt wird, die die genannte Immunoglobulingattung kodiert;
 - (b) die Sequenz in wenigstens einen replizierbaren Expressionsvektor eingefügt wird, der operabel an einen geeigneten Promotor gebunden ist:
- (c) wenigstens eine prokaryotische oder eukaryotische Wirtszellenkultur, mit der der Promotor kompatibel ist, mit wenigstens einen Vektor von (b) transformiert wird: und (d) die Wirtszelle kultiviert wird und die Immunoglobulingattung aus der Wirtszellenkultur gewonnen wird.
- 35 2. Verfahren nach Anspruch 1, worin die genannten konstanten und variablen Bereiche ieweils homolog zu konstanten und variablen Bereichen von unterschiedlichen Säugetiergattungen sind.
 - 3. Verfahren nach Anspruch 2, worin die erste Säugetiergattung eine Humangattung ist.
- 40 4. Verfahren nach einem der vorhergehenden Ansprüche, worin die Immunoglobulingattung eine Kette mit einer vorgegebenen Veränderung, Löschung oder Zugabe wenigstens einer Aminosäure (zusätzlich zur chimären Beschaffenheit) umfaßt.
- 5. Verfahren nach Anspruch 4, worin sich die genannte Veränderung, Löschung oder Zugabe im konstanten Bereichsabschnitt befindet
 - Verfahren nach Anspruch 4 oder 5, worin die genannte Veränderung. Löschung oder Zugabe 1 bis 7 Aminosäuren umfaßt.
- 50 7. Verfahren nach einem der vorhergehenden Ansprüche, worin die Wirtszelle E, coli oder Hefe ist,
 - 8. Verfahren nach einem der vorhergehenden Ansprüche, worin der Vektor DNA enthält, die sowohl eine schwere Kette als auch eine leichte Kette kodiert.
- 55 9. Verfahren nach einem der vorhergehenden Ansprüche, worin die Immunoglobulingattung ein schwerkettiges, leichtkettiges oder Fab-Immunoglobulin ist.
 - 10. Verfahren nach Anspruch 9, worin das chimäre Immunoglobulin aus der Wirtszellenkultur als reifes

Immunoglobulin gewonnen wird.

- 11. Verfahren nach Anspruch 9 oder 10, worin die leichte Kette der Kappa-Familie und oder die schwere Kette der Gamma-Familie angehört.
- Verfahren nach einem der vorhergehenden Ansprüche, worin die Immunoglobulingattung innerhalb der Zellen in Form von unlöstlichen Teilchen abgelagert wird.
- Verfahren nach Anspruch 12, worin die reifen schweren oder leichten Ketten aus den Teilchen durch Zellenlyse gefolgt von Solubilisierung in einem Denaturierungsmittel gewonnen werden.
- Verfahren nach einem der Ansprüche 1 bis 11, worin die chimäre schwere oder leichte Kette in das Medium ausgeschieden wird.
- 15. Verfahren nach einem der Ansprüche 1 bis 11, worin die Wirtszelle ein gram-negatives Bakterum ist und eine chimäre reife schwere oder leichte Kette in den periplasmischen Raum des Wirtszellenbakteriums ausgeschieden wird.
- 16. Verfahren nach einem der Ansprüche 1 bis 15, umfassend die Gewinnung sowohl leichter als auch o schwerer Keite und die Rekonstitülerung leichter und schwerer Keite, um ein chimäres Immunoglobulin zu bilden, das eine veränderte Affnität für ein bestimmtes bekanntes Antigen besitzt.
 - Verfahren nach einem der Ansprüche 1 bis 16, worin die leichten und schweren Ketten im gleichen Wirt co-exprimiert werden.
- 18. Replizierbarer Expressionsvektor, umfassend DNA, die operabel an einen Promotor gebunden ist, der mit einer geeigneten prokaryotischen oder eukaryotischen Wirtszelle kompatibel ist, welche genannte DNA eine Immunoglobulingattung kodiert, die Speziflät für ein bestimmtes dentrilizaries Antigen besitzt, wobei die Gattung konstante und variable Bereche aufweist, worn ein konstanter Berech homolog zum entsprechenden konstanten Bereich eines Antikförper einer ersten Antikförperklasse der einer ersten Attikförperklasse antikförperklasse antikförperklasse der eines Antikförpers ist, der von einer zweiten, unterschiedlichen Antikförperklasse oder Säugetiergattung abgelette tist.
- 19. Vektor nach Anspruch 18, worin die genannten konstanten und variablen Bereiche jeweils homolog zu konstanten und variablen Bereichen von unterschiedlichen Säugetiergattungen sind.
 - 20. Rekombinante Wirtszellen, die mit dem Vektor nach Anspruch 18 oder 19 transformiert sind
- 40 21. Verfahren zur Herstellung einer Immunoglobulingattung, die Spazifität für ein bestimmtes, cenntifiziertes Antigen besitzt, die Gattang umfassend eine chimär immunoglobulinktet mit konstanten und varaiten Bereich eines Antikörpers einer ersten Antikörpersklasse oder ersten Stugelergattung ist und ein varaibei Bereich desselben hormolog zum variablen Bereich eines Antikörpers ist, der von einer zweiten, unterschiedlichen Antikörperklasse oder Säugeliergattung abgeleitet ist, umfassend das Kultivieren von Zellen nach Anspruch 20 und Geweinnen der Immunoglobulingattung aus der Zellkultur.
 - 22. Chimăre Immunoglobulingattung, die Spezifität (ür ein bestimmtes bakanntes Antigen bestzt und einen konstanten Bereich aufweist, der homolog zu einem entsprechenden konstanten Bereich neres Antikörpers einer ersten Säugetiergattung ist und einen variablen Bereich besitzt, der homolog zu einem variablen Bereich eines Antikörpers ist, der von einer zweiten, unterschiedlichen Säugetiergattung abnoblieft ist.
- Chimăre Immunoglobulingattung nach Anspruch 22, worin die Immunoglobulingattung eine reife schwere und/oder leichte Kette um/aßt.

Fig.1.

DIECTOTOS TISTOSOS TIGAMEGAS ANTOTRATO ECCASTOT ACAMATTCAT STOCACATA, GIAGGARA, GOSTAGAT CACTICAMOS CANTOTAS ACCIGANOS CANTOTAS ACCIGAMOS CANTOTAS ACCIGAMOS CANTOTAS ACCIGAMOS CANTOTAS ACCIGAMOS CANTOTAS ACCIGAMOS CANTOTAS ACCIGAMOS TO CANTOTAS ACCIDANOS ACCIDADOS ACCIDADOS CANTOTAS ACCIDADOS CANTOTAS ACCIDADOS CANTOTAS ACCIDADOS CANTOTAS ACCIDADOS ACCID	SCFTI SCFTI SCFTI SCFTI SCFTI SCFTI SCFTI SCFTI SCFTI SCCASTAGE ATGTGGGG ATGTGGGGGGGG	seura and de la composition de la	Sauge ball statistics of the sauge and statistatic bestatistics of the sauge of the	mn')! ddel TTAACATCTB GABGIGGCT GATGGTGTGC TTCTTGAACA ACTTCTAGC CAAGACATC AATGTCAAG GGAGATTGA TGGGAGTGA GACAAAATG Aattgtaag Ctgcaggag Tcagcacac aagacttgt tgaagatggg gittctgtag ttacagttga ccttctaact accgtcactt gctgitttag	
GTCCACATCA CAGGTGTAGT	AAACTACTGA TTTGATGACT	TGCAGTCTGA ACGTCAGACT	fnu4HI bbv SC TGCACCAACT CG ACGTGGTTGA	AATGTCAAGT TTACAGTTCA	
ACAAATTCAT TGTTTAAGTA	ACAATCTCCT TGTTAGAGGA	ATTAGCAATG TAATCGTTAC	fnu4 bbv GGGCTGATGC 7 CCCGACTACG A	CAAAGACATC GTTTCTGTAG	
tthiii G ACCCAGTCTC C TGGGTCAGAG	SCIFI CORII AGAAACCAGG TCTTGGTCC	hphI Cactctcacc GTGAGTGG	aluI sfaNI GAGCTGAAAC CTCGACTTTG	ACTTCTACCC TGAAGATGGG	Fig.2A.
tt Cattgtgatg Gtaacactac	scrFI ecoRII GCC TGGTATCAAC CGG ACCATAGTTG	GGACAGATTT CCTGTCTAAA	sau96 avall alul iG GACCAAGCTG .C CTGGTTCGAC	xmn I TTCTTGAACA AAGAACTTGT	
TTGAAGGAGA AACTTCCTCT	fnu4HI scrFI bbv ecoRI GC TGCTATAGC TG CG ACGATATCGG AC	xholl sau3A, dpnl AGTGGATCTG TCACCTAGAC	sa av TCGGTGCTGG AGCCACC	AGTCGTGTGC TCAGCACACG	
TTGTCTGGTG AACAGACCAC	fnu4 I bbv ATGTGGGTGC T TACACCCACG A	CTTCACAGGC	mn11 CCTCTCACGT GGAGAGTGCA	mnll ddel GAGGTGCCTC CTCCACGGAG	
GTTGCTGTGG CAACGACACC	FOKI GCCAGTCAGG A CGGTCAGTCC T	sau3A dpn I TCCCTGATCG AGGACTAGC	TAGCGGGTAT ATCGCCCATA	TTAACATCTG AATTGTAGAC	
	101	201	301	401	

saula 691 EGETCTEAN CASTIGACT MITCHERACA GLAMBACAG CACTACAGG TOUGHOUS COTTLEGIT GACCAGGAC GASTATGAG GACTATGAG GGCAGGACTI GICAACCIGA CIAGICCIGT GGTGATGIGG AGCTGTG GGGAGTGCAA CTGGTTCCIG GTGATACTIG GTGATTGTC	SANJE Nacili Parili CTATACCTGI GAGGCCACTC ACAAGACATC AACTTCACC ATTGTCAAGA GCTTCAACAG GAATGAGTGT TAGAGACAAA GGTGCTGAGA (GGCCACCACC GATATGGACA CTCCGGTGAG TGTTGTGTA TTGAAGTGGG TAACCAGTTGTC CGAGGTGTC CTACTCACA ATCTCTGTTT CCAGGACTCT GCGGTGGG GATATGGACA CTCCGGTGAG TGTTGAAGTGGG TAACCAGTTGT CGAAGTTGTC CTTACTCACA ATCTCTGTTT CCAGGACTCT GCGGTGGG	1) - Carlo C	CTT
mnli hincli CCCTCACGTT GACCAAG GGGAGTGCAA CTGGTTC	GAATGAGTGT TAGAGAC CTTACTCACA ATCTCTG	hgi Ctaccactet teceste Gatgetgaca acccac	hinfl Taaagtgagt CTTTGCA ATTTCACTCA GAAAGGT
fnu4HI bbva Cacctacagc atgagcagca Gtggatgtcg tactcgtcgt	alui Attgeaaga getteagag Taacagttet cgaagttgte	mn11 GAGGCTTCCC CACAAGCGAC CTCCGAAGGG GTGTTCGCTG	xmn1 TATTTGCAGA AAATATTCAA ATAAACGTCT TTTATAAGTT
sau3A dpn1 bc 11 ct gatcaggaca gcaaagacag ga ctagtctgt cgtttctgtc	hphi Acaagacatc aacttcacc Tgttctgtag ttgaagtggg	Mboll ddel TCTTCCCTTC TAAGGTCTTG AGAAGGGAAG ATTCCAGAAC	mnl mail mnij TEUTGETGE GETGGETTE GEGETTTT ATGATGGTAM TATTAGGAGA AAATATTGAA TAAAGGAGT TTTGGAGT GA AAGAGGAGG GGAGGGAAAG GAACGGGAAA TAGTAGGATT ATTAAGGT ATTAGAGTA GAAGGTGAA GT
hgai GCGTCCTGAA CAGTTGGACT CGCAGGACTT GTCAACCTGA	mnli haelil hael CTATACCTGT GAGGCCACTC GATATGGACA CTCCGGTGAG	alui alui Agcicccas ciccatccia Tcasseste sassiassat foki	mn]! mn]! mn]! TTCTCCTCCT CCTCCCTTC AAGAGGAGGA GGAGGGAAG
501	601	701	801

F19. 2B.

nucleotides: 882

	_	-							
	AAA	CUA	200 thr ACA	170 8 S P 6 A C	ty T	110 8 S P GAU	80 000	50 trp UGG	ser AGC
	GCAC	נכמו	1ys AAG	1 y s	Dhe	a 1 a G C U	9 1 g	tyr	4.8.1 GUC
	AUU	COUNC	CAC	Ser	AAC	919	val 606	11e	a 19
	UAAU	CUAU	thr	S S D	AAC	ly s AAA	AAU	Jeu	asp GAC
	AUGC	AGACAAAGGUCCUGAGACGCCACCACCAGCUCCCAGCUCCAUCCUAUCUUCCGUUCAA	ala 600	91 0	Jeu UUG	Jeu	Ser	CUA	91y 66A
	UAUC	ופכחכ	9 1 u 6 A G	GAU	phe UUC	9 J u	11e AUU	1 ys	val GUA
	CUUU	/222	cys UGU	ACU	000	Jeu	thr	010	ser UCA
	9900	00.00	thr	trp UGG	va 1 606	ly s A A G	Jeu	ser	thr
	חחככ	ACC.	tyr	Ser	va 1 600	thr	thr	g l n	ser
	וכככו	CACC	Ser	AAC	Ser	91y 666	phe	91y 66A	met AUG
	ישככו	,ACG	190 asn AAC	160 1eu	130 818 600	100 ala 600	70 GAU	40 CCA	g be
	CUCC	UGAC	hf s CAU	val GUC	91y 66U	914	thr	1 ys	lys AAA
)ncn	2000	8 7 9 C G A	91y 66c	9 1 y 66 A	phe	919	91 n	his
) ncc	AAA	91 u 6AA	AAU	ser	thr	ser	gl n	ser
W.	CAC	AGAC	tyr	6AA	thr	Jeu	91y 66A	tyr	91 n CAG
Fig. 3.	DOOR	AM	9 l u	8 7 9 C G A	leu	010	ser	trp	thr ACC
T	2000	214 cys uGU	asp GAC	glu GAA	91°	tyr	91y 66c	a]a	met AUG
	AAA	914 6A6	lys AAG	ser AGU	9] u 6A6	91y 666	thr	11e AUA	val 606
	CUC	AAU	thr	913	ser AGU	Ser	phe	ala 600	ile AUU
	0090	4 7 6 G	leu UUG	a s p GAU	Ser	tyr	200	ala 600	asp GAC
	9nne	210 asn AAC	180 thr ACG	150 11e AUU	120 Pro CCA	90 91n CAA	asp GAU	30 91y 660	91y 66A
	CACU	one one	Jeu	1 y S	CCA	gla CAA	010	val 606	val glu GUU GAA
¥ 5	CUAC	Ser	thr	trp UGG	phe	000	val 600	GAU	600
ACUU	CGAC	val lys GUC AAG	Ser	1ys AAG	11e	phe	91y 66A	gln CAG	913
0000	CAAG	val GUC	Ser	va 1 60 C	Ser	tyr	thr	ser	ser
000	CCCAI	11e	met AUG	AAU	CUA GUA	a sp GAU	h i s CAC	a 1 a	1 eu
UAUUCAAUAAAGUGAGUCUUUGCACUUGA	GBUCUUGGABGCUUCCCCACAAGGGACCUAGCACUGUUGGGBUGCUCCAAACCUCCUCCCCACCUCCUCCUCCUCCUCCCUUUCCUUGGUUUAUCAUGCUAAUAUUGGAAAA	573	Ser	11 e	thr	ala 6CA	9 T B	1 y s	trp UGG
UAAA	GAGG	Ser	ty r UAC	GAS	019 CCA	164	th ACC	0.3 s	1eu CUG
UCAA	Onno.	thr	thr	1ys AAA	8 1 8 GCA	a s p GAC	Ser	thr	leu
UAU	099	Ser	ser AGC	500	a l a 600	a sp GAU	ala GCA	11e AUC	9

g

⊢ ∀	وں	⋖ ⊢	⊢ ⋖	∀ ⊢ ∀
sau96 addeli stani milati stani milate parcitice egiterati anti anamentete cadificane teateciest cadenese teateciest constructes teateciest transference teateciest cadenese teateciest constructes teateciest transference activates transference teateciest cadenese transference teateciest transference transference transference teateciest transference transferen	SCPTI SAUPE Bhari Coolin avail Coolin ava	hpall hpall hindill hindi hindi hindi danceatra graceate graceate conceance conceance and conceance and conceance and conceance and conceance and conceance and conceance conceance conceance and conc	mnil mnil haeill esagacatoc casaracac ctotactoc aaatsacac totakosti okosacaco ccatotata cistocaka coccitita 111cottagi etictistaco sittitistos garatosaco titactoste agactocaca cictostoc gotacataat gacacottot gossoacaat aaacaaatca	serial seuse serial mall mall mall seuse serial seri
FGATG	AACCO	ACCA1	AAAGO	scrFI 6 sal ecoRII I CCTGGA
AAG 1	CAG	hphi hinfi GATTC A	AAT	sau9 hae1 GGC
S f a N I GT G T G C C A C A C C	CCAT	60.GA CGCT	mn)I CCTC	CACT
CAG	TATE	1 AGG	000	A TAG
AACAG	TAGAT	TGT GA	CAAG/ GTTC1	TGTC1
AAAG1 TTTC/	TCAG AGTC	ACAG TGTC	TGTG	CATC
ahalil FTTT AA/	101 T	0 4 0 2 E	AAT G	2999
TET	infl ATTC/ TAAG1	GGTAC	TGTA]	GACAC
10C	ACC.	CTT	HaeIII AGG CCA TGCC GGT	AAC TT6
CTTG	mm 1 1 000 TC	CACAC GTGTG fok1	ACGG STGC	SCCAA
TTAC	fnu4H1 bbv mn TGCAGCC ACGTCGG	AGTTO	mn11 GAGGA(mn) I dde I CCTCA(
AC 7.	5 ¥5	1 00 T	mnll mnl ddel CTGAGGTCT GAG	E 20 49
el alul CAGCT	TCTC	ACCA	mn 11 del dd GAGGTCT VCTCCAGA	1,1 VCCGT TGGCA
ddel GCTCA CGAGT	TTT	GTAG CATO	AGAC	hph1 GTCAC CAGTG
70.66 A600	6 CCTG GGAC	ATTA TAAT	GCAG	mnll ddel ccrca 66A6T
AACT TTGA	sau9 aval 66TC	TTGG	VATGA	BGAAC
A 16	scrFI sau96 mn11 ava11 ccf6 A666TCC	70 GG	56 A/ 56 T	CA AC
I I CAC AGTGG	scri 600 600 600 600 600 600	1666 ACCC	a I A C C T	666T
sau96 avall mnll GGA CCCCTC	TGGA ACCT	GGAG	rsal CTGTAC GACATG	ACT G
sau96 avall GGA CC	TTAA	1 1 5 6 C T 5 C 6 A	CACC 6766	GACT
AACA(1nf1 AGTC TCAG	mnli mboli (GAAGAGG	AGAA	TATG
0 T G	+ 95 O	11 G AG C TC	0 C A	50 F.
AGCA	1 CTGG	hinfl GACTCCGG A	STANG	SACTA
hinfi SAGTC CTCAC	16461 1070	CAGAC	GAGAC	A60.01
-	101	201	301	401

Fig. 4A.

			=	
CTGTCCAGCG	Thutte pruss of the pruse of the pruss of the pruss of the pruss of the pruss of the pruse of the pruss of the pruss of the pruss of the pruss of the pruse of the pruss of the pruss of the pruss of the pruss of the pruse of the pruss of the pruse of th	scr! nciaelil musil bgl bbgl bby Sackactor General Adviron Coolin Testiolang Collocative States Adminion streams of Sackactor General Adviron Coolin Testiolang Collocative States Adminion Adminion	sau3A mistli mboll mboll polithgia philosofic controlled controlled by the controlled controlled by the controlled by th	Saule Suff Suff
xholl sau3A dpnl bamHl CTCTGGATCC	sau96 1 hae111 SGCCAGCGAGA SCCCAGCGAGA	rsal GTACAGTCCC CATGTCAGGG	CATCAGCAAG GTAGTCGTTC	ddel Aciticcet C. Tgaaagggga G
scrFI ecoRII TGACCTGGAA	mnll mnll cAGCCCTCGG	ndel rsal CCTTGCATAT GTAC GGAACGTATA CATG	acci TTGTGGTAGA AACACCATCT	GTTCAACAGC CAAGTTGTCG
serF1 sau3A ncol sfau1 fok1 serF1 sau3A sa	CTGTCCCCTC GACAGGGGAG	scrfi collection to the collection scrfi scrfi ball bb. Scracesce Scracesce Scracesce Scraces Scratte Collection Scrfi collection scratter Scracesce Scraces	GTCACGTGTG CAGTGCACAC	smai scrfi scrfi ncfi hpali hpali ccc GGAGGAGCA
ddel TTTCCTGAG	fnu4HI bbv ddeI aluI C AGCTCAGTGA	scrF1 ecoR11 CCAGGGATTG GGTCCCTAAC	mstII hinfl ddeI GACTCCTAAG	smai scrfi scrfi ncfil ncfil hpai ACGCAACCC G
I TCAAGGGCTA	fnu4HI hbv dd ddei alui CACTCTGAGC AGCT	AAAATTGTGC TTTTAACACG	I CCATTACTCT GGTAATGAGA	ddel alul bgal cacactcag ac
foki scrfi ecoRii ecoRii	CTGACCTCTA	GGTGGACAG CCACCTGTTC	hphI foki hg1a ag gatgtgctca tc ctacacgagt	mn11 h91A TGGAGTGCA ACCTCCACGT
sfaNi fok hphi ecoRii bstEii	PstI GTCCTGCAGT CAGGACGTCA	Fnu4HI bbv GCAGCACCAA CGTCGTGGTT	AAAGCCCAAG TTTCGGGTTC	GTAGATGATG CATCTACTAC
CTAACTCCAT	pvull alul cttcccAGCT GAAGGGTCGA	scrF1 hae111 nci1 hpal1 CACCGGCCA (Mboll TCTTCCCCCC AGAAGGGGGG	Pvull alui CAGCTGTTT GTCGACAAA
fnu4HI bbv GCTGCCCAAA	hgfA GTGTGCACAC CACACGTGTG	bgl Caacgttgcc Gttgcaacgg	mboli TCTGTCTTCA AGACAGAAGT	saug6 avall AGGCCAGTT TCCAGGTCAA
501	601	701	801	901

33

			11 ode 2			
CATCTCCAAA GTAGAGGTTT	ATAACAGACT TATTGTCTGA	GCTCTTACTT	Mb ddel ccatactgag ggtatgactc	CTGTATAAAT GACATATTTA		
finuthi serpi KUTICCATA MISACCAGA GYTGCTTAA TGCCAAGAG TTCAANTGC GGGTCTAAS TGCAGTTTC CTGCCCCCA TGGGAAAAC CATCTCGAAA TGAAGGGAG TAGGTG TGCCAGTA ACGTTTAG AGATTAGG GGTGGAAAG GAGGGGSGS GAGGGSSTTTG GAAGAGGTTT	Naelli Pali Arcanasca Gaccanasc Tecenosis (Aracente Caeceche Senecials Secandsata Astenate Gaccicente Atanababet Tegetteges tisserices Assisteed (Aracentas Steandsate ectssiviae Costrectat Trensfenae Cissaccine Tattiseria	TOWNEL TO THE PROPERTY OF THE	acel mentante de proposa de la controla del la controla de la controla del controla del controla de la controla de la controla de la controla	scrF1 sau3A anale coort de coo		
CCTGCCCCA	AAGTCAGTCT TTCAGTCAGA	GCCCATCATG CGGGTAGTAC	sau96 mn11 hae111 CATGAGGCC TG	ACACCTACCT TGTGGATGGA		
fnu4HI bbv alui TGCAGCTTTC ACGTCGAAAG	haelll ael all G GCCAAGGATA C CGGTTCCTAT	ddel AGAACACTCA TCTTGTGAGT	CTCTGTGTTA GAGACACATA	hinfl CAGGACTCTG GTCCTGAGAC		
hincll GGGTCAACAG CCCAGTTGTC	hae haei bali GGAGCAGATG G CCTCGTCTAC C	GAGAACTACA CTCTTGATGT	hphi Ctttccctg Gaagtggac	sau96 cc TCTGGTCCTA 3GG AGACCAGGAT		
TTCAAATGCA AAGTTTACGT	CACCTCCCAA GTGGAGGGTT	fnu4H1 bbv GCAGCCAGCG CGTCGGTCGC	I GCAGGAAATA CGTCCTTTAT	mn CTTGGAGCCC GAACCTCGGG		Fin 4
TGGCAAGGAG ACCGTTCCTC	rsal TG TACACCATTC AC ATGTGGTAAG	AGTGGAATGG TCACCTTACC	CAACTGGGAG GTTGACCCTC	sau3A dpnI GA TCCCAGTGTC CT AGGGTCACAG		
I ACTGGCTCAA TGACCGAGTT	TCCACAGGTG AGGTGTCCAC	GTGGAGTGGC CACCTCACGG	mboli TGCAGAGAG ACGTCTTCTC	scrFI sau3. ecoRII dpnI fcc TGGTAAATGA TAGG AGG AGG ATTAGT A	GGGAAAAA	
SCRFI CCORTI ATGCACCAGG /	GACCGAAGGC	AGACATTACT TCTGTAATGA	alui AAGCTCAATG TTCGAGTTAC	sc cccactctcc GGGTGAGAGG	AAAGCACCCA GCACTGCCTT GGGAAAAA TTTCGTGGGT CGTGACGGAA CCCTTTTT	
ACTTCCCATC TGAAGGTAG	ACCAAAGGCA TGGTTTCCGT	mboll TCTTCCTGA AGAAGGGACT	accI CGTCTACAGC GCAGATGTCG	MAGAGCCICT TTCTCGGAGA	AAAGCACCCA TTTCGTGGGT	
1001	1101	1201	1301	1401	1501	

1 glu GAA	A GA	ser	thr	600	leu CUG	91n CAG	309	phe
UGU	30 Ser AGU	60 CCA	90 GAC	120 thr	150 cys 06c	180 1eu CUG	210 Pro CCG	240 val GUC
gln	b he	Jeu	91 u 6A G	val 600	91y 66A	val	h 1 s CAC	ser
val	thr	his	ser	Ser UCA	l eu CUG	ala 600	a 1 a	ser UCA
441	phe	Ser UCA	a 7 6 6	thr	thr	Pro CCA	4.4.1 GUU	val GUA
1ys AAA	91y 66A	S e A G E	leu CUG	91y 66A	val GUG	phe uuc	AAC	glu
Jeu	ser	91y 66U	ser	91n 91y CAA 66A	AuG	thr	0.75 UGC	CCA
val GUU	a 1 a	919	Ser	9 l y 660	Ser	his	thr	val 600
leu CUG	ala GCA	ser ser AGU AGU	met AUG	trp	AAC	val 606	val GUC	thr
va1 600	cys UGU	Ser	gla CAA	tyr	thr	91y 66U	thr	cy s UGU
-10 leu CUU	ser	11 e	le u CUG	a s p G A C	gla	Ser	glu GAG	f 1 e A U A
tyr	20 CUC	50 thr Acc	80 tyr UAC	110 met AUG	140 ala GCC	170 ser UCC	200 ser AGC	230 cy \$ UGC
11e AUU	1ys AAA	ala 6CA	Jeu CUG	ala 600	a1a 600	leu CUG	010	500
Jeu UUG	leu CUG	val 600	thr	ala asp tyr ala GCG GAC UAU GCU	ser	ser	ar9 000	1ys AAG
ser	ser	trp UGG	ASB	a s p GAC	91y 66A	91,9	000	cy s UGU
Je u CUC	91y 666	91u 6A6	ly s AAG	ala 606	or o	ser	ser AGC	91y 66U
91y 666	91y 66A	leu CUG	ala	val GUA	313	ASB	ser UCC	cys ngn
phe	glu pro GAG CCU	lys arg	asp asn GAC AAU	ser leu UCG UUA	leu CUG	trp	010	arg asp AGG GAU
asn	9 l u 6 A G	1ys AAG	asp GAC	ser	5 C A	thr	va1 600	arg AGG
met AUG	me t AUG	91u 6A6	A G A	11e AUU	tyr	val 606	thr	010
Met GAGUCAGCACUGAACACGGACCCCUCACG AUG	leu UUA	500	ser	Jeu	val GUC	thr	val GUG	val 606
2000	0 c 2 0	thr Acu	70 11e AUC	100 CCU	130 ser	160 val GUG	190 ser UCA	220 11e AUU
GACC	91y 66A	gla CAG	thr	000	CCA	0 L O	Ser	lys lys
CACG	91y 666	arg 000	p he	A GA	000	9 u 6A6	s e r A G C	1 y s
UGAA	ser	GUU	4 79 CGA	ala GCA	thr	0170	l eu CUG	val asp GUG GAC
GCAC	91 u 6A6	trp UGG	91 915	cys UGU	thr	phe	thr	val 606
4 JUD	600	ser	91 u 6AA	tyr UAC	1ys AAA	tyr	tyr	1ys AAG
¥9	le u CUG	me t AUG	cy s	tyr	ala 600	9 J y	leu	thr
	met AUG	a] a	g l n C A G	met AUG	Ser	lys AAG	a s p G A C	s e r A G C
	val 606	tyr	arg AGA	a 1 a	s er UCC	va 1 6 U C	ser ucu	Ser

Fig. 5A.

						_	
000	919	500	asp GAU	tyr	AAU	UCCCAGUGUCCU	
270 asp GAU	300 phe UUC	330 ala 600	360 135 AAG	390 85n AAC	420 91y 66A	UDVO	
GAU	thr	520	a 1 a	91u 6A6	ala GCA		
lys AAG	Ser	D P P	met AUG	ala 606	91 u 6A6	OP UGA	
Ser	ASD	ala 600	91 n CAG	0 C C A	t rp	1447 175 AAA	
11e AUC	D P C	ala GCA	lys glu gln AAG GAG CAG	gln pro	AAC	919	
a s p	91,0	ser	1ys AAG	919	Ser	010	
val GUA	arg glu glu gln CGG GAG GAG CAG	ASB	500	AAU	1ys AAG	ser	
va 1 606	9 J u	va1 600	200	trp gln trp UGG CAG UGG	gla	hts	AAA
va 1 600	a r g C G G	arg AGG	0 L Q	91n CA6	val 606	ser	3GAA/
cys UGU	200	cy s U6 C	11 e AUU	trp UGG	AAU	Jeu	0000
260 thr ACG	290 91n CAA	320 1ys AAA	350 thr ACC	380 346	2 2 2	his thr glu lys ser CAU ACU GAG AAG AGC	0000
val	thr	uc o	tyr	thr val	ser lys 1	1ys AAG	AGC A(
1ys AAG	gla	91 u 6A G	val 6UG	thr	Ser	9 J u 6 A G	ACCC.
pro lys	ala gin thr GCU CAG ACG	gly lys glu phe GGC AAG GAG UUC	gln val tyr	11 e	ξţ	thr	AAGC.
thr	thr	91y 66C	100	a s i	**1 600	h1s CAU	AUA
Jeu CUG	CAC	a s n A A U	ala GCU	glu GAA	phe	his	AUA
thr	val 606	Je u CUC	1ys AAG	523	tyr	430 glu gly leu his asn his GAG GGC CUG CAC AAC CAC	0000
11e	91u 6A6	trp	010	Phe	ser	h t s	Onoc
thr 11e ACC AUU	val 606	as p GAC	arg AGA	phe	91y 66c	Jeu	ACC
Je	a s p GAU	gla CAG	91y 66c	asp GAC	AAU	91y 66c	Onoc
250 val GUG	280 asp GAU	310 h1s CAC	340 1ys AAA	370 thr ACA	400 thr ACG	430 91u 6AG	CUA
a s p G A U	441 6UA	me t AUG	thr	met fle	AAC	his CAU	SACA
1ys AAG	a phe	11e AUC	ser lys	me t AUG	met AUG	ser val leu ucu gug uuA	000
010	trp UG6	500	ser	cy 5	41e	val	4 G G A
1ys AAG	Ser	Jea	11e	thr Acc	500	ser	CUAC
0 T O	p he	g A A B	thr	leu CUG	gla CAG	0.75	2000
970	6 J	Ser	glu lys thr GAG AAA ACC	Ser	thr	thr	UGGAGCCCUCUGGUCCUACAGGACUCUGACACCUACCUCCACCCCUCCCU
phe UUC	glu val GAG GUC	val GUC	91 u 6A6	441 GUC	Tys asn AAG AAC	thr phe Acu uuc	4600
4 Je	9 J u	ser	AUC AUC	ly s	A A G	thr	1990

Fig. 5B.

43

