

Asimov comparisons with different dcp values

Patrick Dunne - Imperial College London

Overview

- Asked to study three new Asimov points by OA
- All based on point 1/A but with different values of dcp (see below)
- Energy spectra and Asimov contours with and without RC generated for each point
- All plots shown below marginalise over the two mass hierarchies

Set	А	С	D	Е
$\sin^2(\theta_{12})$	0.304			
$\sin^2(\theta_{13})$	0.0217			
$\sin^2(\theta_{23})$	0.528			
Δm_{12}^2	7.35e-05			
Δm_{23}^2	0.002509			

Energy Spectra

Energy spectra - Asimov C $(\delta_{CP}=0)$

Energy spectra - Asimov D $(\delta_{\mathit{CP}} = \pi)$

Energy spectra - CP conserving (C and D)

Energy spectra - Asimov A ($\delta_{CP} = -1.601$)

Energy spectra - Asimov E $(\delta_{CP} = \frac{\pi}{2})$

woRC contours

CP conserving sets - woRC appearance parameters

CP conserving sets - woRC disappearance parameters

CP conserving sets - woRC dcp

CP violating sets - woRC appearance parameters

CP violating sets - woRC disappearance parameters

- ▶ Differences seen here seem to be due to $\delta_{CP} = \pi$ fit choosing wrong mass hierarchy
- Confirmed in contours where only one hierarchy is considered where differences are smaller (see backup)

CP violating sets - woRC dcp

wRC contours

CP conserving sets - wRC appearance parameters

CP conserving sets - wRC disappearance parameters

CP conserving sets - wRC dcp

CP violating sets - wRC appearance parameters

CP violating sets - wRC disappearance parameters

CP violating sets - wRC dcp

- ► Little difference between CP conserving asimovs
- Spectra are very similar (see right
- ▶ CP violating Asimovs show tighter exclusions for -1.601 than $\frac{\pi}{2}$
- This is due to there being a lot more ν_e events for -1.601 than for $\frac{\pi}{2}$
- wRC being processed now

Backup

CP violating sets - woRC disappearance parameters NH & IH separately

