Circuitos Digitais

Engenharia Elétrica/Engenharia de Automação/ Engenharia de Computação/Sistemas de Informação/ Ciência da Computação/Tecnologia de Redes

Prof. VICTOR MARQUES MIRANDA

CONTEÚDOS

- I. Conceitos Básicos de Sistemas Digitais
- II. Sistemas de Numeração
 - II.1. Conversões entre Bases
 - II.2. Operações Aritméticas
- III. Portas Lógicas e Formas de Representação de uma Função Lógica
- IV. Álgebra Booleana e Simplificação de Circuitos
- V. Redes Combinacionais e Minimização Lógica
- VI. Projeto Lógico Combinacional
- VII. Módulos-Padrão Combinacionais e Aritméticos
- VIII. Sistemas Sequenciais Parte 1: Máquinas de Estados, Elementos de Memória e Análise e Projeto de Redes Sequenciais Canônicas
- IX. Sistemas Sequenciais Parte 2: Módulos-Padrão Contadores
- Revisão dos Conteúdos e Aplicação da N2

Unidade 6 Projeto Lógico Combinacional

Objetivos

- ✓ Projeto Lógico Combinacional
 - ✓ Projetos de Redes de Portas de 2 Níveis de Uma Saída
 - ✓ Projeto de Redes de Portas de 2 Níveis de Múltiplas Saídas
- √ Codificações
- ✓ Projetos de Codificadores / Decodificadores

PROJETO LÓGICO COMBINACIONAL

Etapas de um Projeto Lógico Combinacional

Exercícios Resolvidos sobre Projeto Digital Combinacional

Exemplos Práticos

Projetos de Redes de Portas de 2 Níveis de Uma Saída

- Joe, Jack, e Jim se reúnem uma vez por semana para irem ao cinema ou jogar boliche.
- Para decidir o que fazer, eles votam e maioria simples vence.
- Supondo que um voto para o filme é representado por um nível lógico 1, projete um circuito lógico que calcule automaticamente a decisão.

ENTRADAS:

A: voto de Joe

B: voto de Jack

C: voto de Jim

Voto para cinema = 1 Voto para boliche = 0

SAÍDA(S):

F: decisão majoritária

Decisão para cinema = 1 Decisão para boliche = 0

OBS: Apesar de o exemplo derivar as formas canônicas, faz-se fundamental nesta etapa a obtenção da expressão mínima, via Mapa de Karnaugh, por questões de maior eficiência e menor custo.

E	Entradas Saída		Saída	
\boldsymbol{A}	В	С	F	SOP:
0	0	0	0	
0	0	1	0	$\bar{A}BC + A\bar{B}C + AB\bar{C} + ABC$
0	1	0	0	$F = \sum m(3,5,6,7)$
0	1	1	1	
1	0	0	0	
1	0	1	1	POS:
1	1	0	1	$(A+B+C)\cdot(A+B+\bar{C})\cdot$
1	1	1	1	
				$(A + \overline{B} + C) \cdot (\overline{A} + B + C)$
				$F = \Pi M(0,1,2,4)$

OBS: Faz-se fundamental, nesta etapa, a obtenção da expressão mínima, via Mapa de Karnaugh, por questões de maior eficiência e menor custo.

OBS: Nesta etapa, pelos mesos motivos explicados anteriormente, faz-se fundamental a construção do circuito mínimo.

- D Elaborar um circuito lógico que permita encher automaticamente um filtro de água de dois recipientes e vela
- A eletroválvula deve permanecer aberta (entrada de água) quando a saída do circuito for 1 e permanecerá fechada quando a saída for 0
- D O controle é efetuado por 2 eletrodos, A e B, colocados nos recipientes a e b, respectivamente

- Elaborar um circuito lógico que permita encher automaticamente um filtro de água de dois recipientes e vela
- D A eletroválvula deve permanecer aberta (entrada de água) quando a saída do circuito for 1 e permanecerá fechada quando a saída for 0
- D O controle é efetuado por 2 eletrodos, A e B, colocados nos recipientes a e b, respectivamente

- D Convenção
- Se o recipiente a está cheio então eletrodo A=1
- Se o recipiente a está vazio então eletrodo A=0
- Se o recipiente b está cheio então eletrodo B=1
- Se o recipiente b está vazio então eletrodo B=0

Solução 2

 Nesse problema, a eletroválvula deve permanecer aberta (S=1) nas situações 0 ou 1

Situação	Α	В	S
0	0	0	1
1	0	1	1
2	1	0	0
3	1	1	0

- Portanto,
- $S = \bar{A}.B + \bar{A}.B$

Simplificando o Circuito Anterior

- D Observe que
- $S = \bar{A}.B + \bar{A}.B$
- Pela propriedade distributiva
- $\alpha.(\beta+\gamma) = \alpha.\beta + \alpha.\gamma$
- Fazendo α=Ā, β=Β,
 γ=Β
- Portanto
- $S = \bar{A}.(B + B)$
- $S = \bar{A}.(1)$
- \bullet S = \bar{A}

Circuito antes da simplificação

Circuito após a simplificação

Projeto de Redes de Portas de 2 Níveis de Múltiplas Saídas

- D O desenho representa o cruzamento das ruas A e B, cada uma com seu semáforo
- D Deseja-se instalar, no cruzamento, um sistema automático de semáforos, com as seguintes características
- Quando houver carros transitando somente na rua B, o semáforo
 2 deverá permanecer verde para os carros trafegarem livremente
- Igualmente, quando houver carros transitando somente na rua A, o semáforo 1 deverá permanecer verde
- Quando houver carros transitando em ambas as ruas, o semáforo da rua A deve ficar verde, pois é a rua preferencial

- É possível usar um circuito lógico para solucionar este problema; para isso é necessário obter sua expressão
- Para tanto, estabelece-se a notação

Condição	Notação
Existência de carro na rua A	A = 1
Não existência de carro na rua A	A = 0 (ou Ā = 1)
Existência de carro na rua B	B = 1
Não existência de carro na rua B	B = 0 (ou B = 1)
Verde do sinal 1 aceso	G1 = 1
Verde do sinal 2 aceso	G2 = 1
Se G1=1 então Vermelho do sinal 1 apagado Verde do sinal 2 apagado Vermelho do sinal 2 aceso	R1 = 0 G2 = 0 R2 = 1
Se G2=1 então Vermelho do sinal 1 aceso Verde do sinal 1 apagado Vermelho do sinal 2 apagado	R1 = 1 G1 = 0 R2 = 0

 Com base nisso, a tabela verdade é montada e cada situação é analisada individualmente

Α	В	G1	R1	G2	R2
0	0				
0	1				
1	0				
1	1				
	0 0 1 1	A B 0 0 0 1 1 0 1 1	A B G1 0 0 0 1 1 0 1 1	A B G1 R1 0 0 0 1 1 0 1 1	A B G1 R1 G2 0 0 0 1 1 0 1 1

D Situação 0: representa a ausência de veículos em ambas as ruas (A=0 e B=0). Assim, é irrelevante qual sinal permanece aceso. Em situações irrelevantes, utiliza-se o símbolo ∅ para indicar que as variáveis podem assumir 0 ou 1

Situação	Α	В	G1	R1	G2	R2
0	0	0	Ø	Ø	Ø	Ø
1	0	1				
2	1	0				
3	1	1				

- D Situação 0: representa a ausência de veículos em ambas as ruas (A=0 e B=0). Assim, é irrelevante qual sinal permanece aceso. Em situações irrelevantes, utiliza-se o símbolo ∅ para indicar que as variáveis podem assumir 0 ou 1.
- D Situação 1: representa presença de veículos na rua B e ausência de veículos na Rua A. Portanto, é necessário acender o sinal verde para a rua B.

	Situação	Α	В	G1	R1	G2	R2
Ī	0	0	0	Ø	Ø	Ø	Ø
	1	0	1			1	
	2	1	0				
	3	1	1				

- D Situação 0: representa a ausência de veículos em ambas as ruas (A=0 e B=0). Assim, é irrelevante qual sinal permanece aceso. Em situações irrelevantes, utiliza-se o símbolo ∅ para indicar que as variáveis podem assumir 0 ou 1.
- D Situação 1: representa presença de veículos na rua B e ausência de veículos na Rua A. Portanto, é necessário acender o sinal verde para a rua B e lembrar da convenção.

Se G2=1 então	
Vermelho do sinal 1 aceso	R1 = 1
Verde do sinal 1 apagado	R1 = 1 G1 = 0
Vermelho do sinal 2 apagado	R2 = 0

Situação	Α	В	G1	R1	G2	R2
0	0	0	Ø	Ø	Ø	Ø
1	0	1	0	1	1	0
2	1	0				
3	1	1				

D Situação 2: representa presença de veículos na rua A e ausência de veículos na Rua B. Portanto, é necessário acender o sinal verde para a rua A.

Situação	Α	В	G1	R1	G2	R2
0	0	0	Ø	Ø	Ø	Ø
1	0	1	0	1	1	0
2	1	0	1			
3	1	1				

D Situação 2: representa presença de veículos na rua A e ausência de veículos na Rua B. Portanto, é necessário acender o sinal verde para a rua A e lembrar da convenção.

	Situação	Α	В	G1	R1	G2	R2
Ī	0	0	0	Ø	Ø	Ø	Ø
	1	0	1	0	1	1	0
	2	1	0	1	0	0	1
	3	1	1				

Se G1=1 então
Vermelho do sinal 1 apagado
Verde do sinal 2 apagado
Vermelho do sinal 2 aceso R1 = 0 G2 = 0 R2 = 1

D Situação 2: representa presença de veículos na rua A e ausência de veículos na Rua B. Portanto, é necessário acender o sinal verde para a rua A e lembrar da convenção.

0	0	0	Ø	Ø	Ø	Ø
1	0	1	0	1	1	0
2	1	0	1	0	0	1
0 1 2 3	1	1	1	0	0	1
'	'		'			

Situação A B G1 R1 G2 R2

Se G1=1 então	
Vermelho do sinal 1 apagado	R1 = 0
	G2 = 0
Vermelho do sinal 2 aceso	R2 = 1

D Situação 3: representa a presença de veículos em ambas as ruas. Nesse caso, o sinal verde para a rua A deve permanecer aceso, pois ela é preferencial, aplicando-se, novamente, a convenção acima.

Na situação 0, com saídas irrelevantes, tanto faz qual sinal permanece aceso. Portanto, é possível adotar que o verde do sinal 2 permaneça aceso.

Situação	Α	В	G1	R1	G2	R2
0	0	0	Ø	Ø	Ø	Ø
1	0	1	0	1	1	0
2	1	0	1	0	0	1
3	1	1	1	0	0	1

- Na situação 0, com saídas irrelevantes, tanto faz qual sinal permanece aceso. Portanto, é possível adotar que o verde do sinal 2 permaneça aceso.
- D Isso nos leva a uma tabela verdade com novos valores preenchidos para a situação 0.

Situação	Α	В	G1	R1	G2	R2
0	0	0			1	
1	0	1	0	1	1	0
2	1	0	1	0	0	1
3	1	1	1	0	0	1

- Na situação 0, com saídas irrelevantes, tanto faz qual sinal permanece aceso. Portanto, é possível adotar que o verde do sinal 2 permaneça aceso.
- Isso nos leva a uma tabela verdade com novos valores preenchidos para a situação 0, lembrando que

Se G2=1 então	
Vermelho do sinal 1 aceso	R1 = 1
Verde do sinal 1 apagado	G1 = 0 $R2 = 0$
Vermelho do sinal 2 apagado	R2 = 0

Situação	Α	В	G1	R1	G2	R2
0	0	0	0	1	1	0
1	0	1	0	1	1	0
2	1	0	1	0	0	1
3	1	1	1	0	0	1

- D Cada saída, G1, R1, G2, R2 terá um circuito independente.
- Iniciando pela escrita da expressão de G1, em quais situações G1 acende?

Situação	Α	В	G1	R1	G2	R2
0	0	0	0	1	1	0
1	0	1	0	1	1	0
2	1	0	1	0	0	1
3	1	1	1	0	0	1

- Iniciando pela escrita da expressão de G1, em quais situações G1 acende?
 Nas Situações 2 OU 3
- Situação 2:
- G1=1 quando A = 1 e B = 0, ou seja, A = 1 e B = 1
- Usando uma porta E, é possível escrever G1=1 quando A.B =1
- Situação 3:
- G1=1 quando A = 1 e B = 1
- Portanto, G1=1 quando A.B =1
- D Como tem-se G1=1 na Situação 2 OU Situação 3, uma porta OU contendo as expressões tanto da Situação 2 quanto da Situação 3 resultará no valor 1 nesses casos, que representa a situação referente ao verde aceso do semáforo 1.
- G1 = A.B + A.B

Situação	Α	В	G1	R1	G2	R2
0	0	0	0	1	1	0
1	0	1	0	1	1	0
2	1	0	1	0	0	1
3	1	1	1	0	0	1

- Agora, em quais situações R1 acende?Nas Situações 0 OU 1
- Situação 0:
- R1=1 quando A = 0 e B = 0, ou seja, Ā = 1 e B = 1
- Usando uma porta E, é possível escrever R1=1 quando
 Ā.B =1
- Situação 1:
- R1=1 quando A = 0 e B = 1
- Portanto, R1=1 quando Ā.B =1
- D Como tem-se R1=1 na Situação 0 OU Situação 1, uma porta OU contendo as expressões tanto da Situação 0 quanto da Situação 1 resultará no valor 1 nesses casos, que representa a situação referente ao vermelho aceso do semáforo 1.
- •R1 = Ā.B + Ā.B

Situação	Α	В	G1	R1	G2	R2
0	0	0	0	1	1	0
1	0	1	0	1	1	0
2	1	0	1	0	0	1
3	1	1	1	0	0	1

- D Escrevas as expressões quando
- G2 = 1
- R2 = 1

Situação	Α	В	G1	R1	G2	R2
0	0	0	0	1	1	0
1	0	1	0	1	1	0
2	1	0	1	0	0	1
3	1	1	1	0	0	1

- D G2=1 nas situações 0 OU 1
 - Situação 0: Ā.B = 1
 - Situação 1: Ā.B = 1
 - Portanto, G2 = Ā.B + Ā.B
- P R2=1 nas situações 2 OU 3
 - Situação 2: A.B = 1
 - Situação 3: A.B = 1
 - Portanto, R2 = A.B + A.B

Situação	Α	В	G1	R1	G2	R2
0	0	0	0	1	1	0
1	0	1	0	1	1	0
2	1	0	1	0	0	1
3	1	1	1	0	0	1

D Em resumo:

•
$$G1 = A.B + A.B$$

•
$$R1 = \bar{A}.B + \bar{A}.B$$

•
$$G2 = \bar{A}.B + \bar{A}.B$$

•
$$R2 = A.B + A.B$$

D Ou seja,

•
$$G1 = R2 = A.B + A.B$$

•
$$G2 = R1 = \bar{A}.B + \bar{A}.B$$

EXERCICIOS DAS LISTAS:

"Projeto Lógico Combinacional" e

"Projeto Lógico – Exemplos Práticos"

Projeto de Redes de Portas de 2 Níveis de Múltiplas Saídas

Exemplo 2: Projeto de um Display de 7 Segmentos

Projeto de um Display de 7 Segmentos

(IDOETA & CAPUANO Cap 5 - Pág's. 196 a 201)

- Displays de LED (ligth-emitting diode diodos emissores de luz) são largamente utilizados no nosso cotidiano.
- Um tipo bem comum é constituído de sete segmentos, designados pelas letras a a g, conforme figura abaixo.

Display de 7 Segmentos: Projeto

Como ativar os LEDs correspondentes aos dígitos de 0 a 9 fornecidos como entrada codificada em BCD? **DECODIFICADOR BCD** DF 7 **SEGMENTOS** Binary coded decimal input 7-segment display

Etapas 1 – Interpretação Lógica + Etapa 2 – Tabela Verdade

- Normalmente, é preenchida linha por linha.
- Cada conjunto de entradas fornece um conjunto de saídas.

Desimal	Decimal Entradas					Saídas no display						
Decimal	Α	В	С	D	а	b	С	d	е	f	g	
4	0	1	0	0	0	1	1	0	0	1	1	

Decodificando...

Characteres	Display				21			(<u>-)</u> (2)	HRCI	orto	S	
о	f b c	0	0	0	o	21 1	1	1	1	1	1.	0
1.	b c	o	o	o	1	0	1	1	o	o O	o	o
2	g b	О	o	1		1	1 -	0	1	1	o	1 -
3	g b c	0	0	1	1	1	1	1	1	o	0	1
4	f g b	0	1	o	o	o	1	1.	o	O	'n	1
5	f g	0	1	. 0	1	1.	Ο.	1	1.	0	1	1
6	f g	·O	1	1	o	1	o	1.	1	1.	1	. 1
7	7.	,o	1	1	1.	1	1	1	o	o	o	o
8	f g b e d c	1	0	O -	0	1	1	1	1	1	1.	1
9	f g b	1.	O	o	,: 1	1	1 .	1	1	.	1	1

Etapa 3 – Mapa de Karnaugh

- Cada coluna da tabela verdade corresponde a uma saída do circuito a ser projetado.
- Aqui enfocaremos apenas a saída do segmento a.

Etapa 3 – Expressão Lógica Mínima

Etapa 4 – Circuito Lógico Mínimo

Repetir estas etapas, expressões e circuitos mínimos, para os outros segmentos (saídas).

Exercício

- Derivar o mapa de Karnaugh e projetar o circuito lógico de todos os sete segmentos.
- Após derivar as expressões mínimas para os sete segmentos, você deve reunir os circuitos lógicos resultantes em um só projeto:

(a)
$$a = A + C + BD + \overline{B}\overline{D}$$

ou $a = A + C + B \odot D$

(b) $b = \overline{B} + \overline{CD} + \overline{CD}$ ou $b = \overline{B} + \overline{CO} D$

(d)
$$d = A + \overline{BD} + \overline{BC} + C\overline{D} + B\overline{CD}$$

Solução

(g)
$$g = A + B\overline{C} + \overline{B}C + C\overline{D}$$

ou $g = A + B \oplus C + C\overline{D}$

Solução

Circuito simplificado do Decodificador para display de 7 segmentos

Outros Caracteres

Os displays de 7 segmentos podem ainda escrever outros caracteres, que são frequentemente utilizados em sistemas digitais para representar outras funções, bem como formar palavras-chave em software de programação. A tabela 5.13 mostra como exemplo, outras possibilidades de caracteres.

H.	Ь			d	E/P	F
	$\frac{1}{2}$		/	L	L	П
ר			Р	9	L	5
E	ע		Ш	Ч		
Tabela 5.	13	, .				٠.

Determine as **expressões lógicas simplificadas** de um decodificador para controlar um *display* de 7 segmentos, que deverá receber um número de 3 bits e fornecer saídas necessárias para a visualização de letras, conforme a figura abaixo. Considere a existência de valores de entrada irrelevantes.

Exemplo 3

								a	
Display →	H						f	g	b
Entrada do decodificador > (em decimal)	0	1	2	3	4		<u>e</u>	d	С

(IDOETA & CAPUANO Cap 5 - Pág's. 207, 208, 209)

Projete um decodificador para, a partir de um código binário, escrever a sequência da figura 5.28 em um display de 7 segmentos catodo comum.

CARACTERE	5	E	0	P	_	Е	_	8
CASO	0	1	2	3	4	5	6	7

Para escrever os 8 símbolos mostrados na figura, um código binário de 3 bits é suficiente. A tabela 5.16 apresenta o código binário de entrada e os níveis aplicados em cada segmento para escrever a seqüência de caracteres.

	Α	В	C	а	b	c	d	e	ſ	g
	0	0	0	1	0	1	1	0	1	1
	0	0	1	0	0	0	1	1	1.	1
a	0	1.	0	0	0	1	1	1	0	1.
f g b	0	1.	1	1	1	0	0	1	1	1
e d c	1	0	0	0	O	0	0	0	0	1
	1	0	1	1	0	0	1	1	1	1
	1	1	0	0	0	O	0	1	0	1
	1	1	1	1	1	1	1	1	1	1

a;

(a)
$$\overline{ABC} + BC + AC$$

c:

(c)
$$c = \overline{AC} + ABC$$

b:

(b)
$$b = BC$$

d:

(d)
$$d = \overline{AC} + AC + \overline{BC}$$
 ou

$$d = A \odot C + \overline{B}C$$

e:

(e)
$$e = B + C$$

f:

(f)
$$f = \overline{A} \overline{B} + C$$

g:

(g)
$$g = 1$$

Codificações

Codificações Digitais e Números Binários

Botão

Sensore

Tecla

CaractASCI

	Symbol	Ercoding
,	R	1010010
,	S	1010011
	T	1010100
	L	1001100
	N	1001110
	Е	1000101
	0	0110000
		0101110
	<tab></tab>	0001001

Códigos

Binary	Decimal	Octal	3-Bit String	Hexadecimal	4-Bit String
0	0	0	000	0	0000
1	1	1	001	1	0001
10	2	2	010	2	0010
11	3	3	011	3	0011
100	4	4	100	4	0100
101	5	5	101	5	0101
110	6	6	110	6	0110
111	7	7	111	7	0111
1000	8	10		8	1000
1001	9	11	_	9	1001
1010	10	12	_	A	1010
1011	11	13		В	1011
1100	12	14		C	1100
1101	13	15		D	1101
1110	14	16	_	E	1110
1111	15	17	_	F	1111

Códigos

Decimal digit	BCD (8421)	2421	Excess-3	Biquinary	1-out-of-10
0	0000	0000	0011	0100001	1000000000
1	0001	0001	0100	0100010	0100000000
2	0010	0010	0101	0100100	0010000000
3	0011	0011	0110	0101000	0001000000
4	0100	0100	0111	0110000	0000100000
5	0101	1011	1000	1000001	0000010000
6	0110	1100	1001	1000010	0000001000
7	0111	1101	1010	1000100	000000100
8	1000	1110	1011	1001000	000000010
9	1001	1111	1100	1010000	0000000001
		Unused	d code words		
	1010	0101	0000	0000000	0000000000
	1011	0110	0001	0000001	0000000011
	1100	0111	0010	0000010	0000000101
	1101	1000	1101	0000011	0000000110
	1110	1001	1110	0000101	0000000111
	1111	1010	1111	• • •	•••

Código BCD

- Decimal Codificado em Binário (Binary Coded Decimal)
 - O BCD não é outro sistema de numeração, como o binário e o hexadecimal.

BCD

- É um sistema decimal, no qual cada dígito é codificado em binário.
- As combinações de 1010 até 1111 não são definidas e, portanto, não são utilizadas.

Binário

 A conversão de decimal para binário toma o valor completo do número, e não cada algarismo individualmente.

Código BCD

Converter (137)₁₀ em BCD e em binário:

```
(137)_{10} = 10001001 (binário)
(137)_{10} = 0001 \ 0011 \ 0111 (BCD)
```

- O código BCD requer 12 bits, ao passo que o código binário puro requer apenas 8 bits.
- Isso acontece por que o código BCD não utiliza todas as combinações possíveis de 4 bits.

Código BCD

	Decimal	Binary	BCD
	0	0	0
	1	1	0001
	2	10	0010
	3	11	0011
	4	100	0100
Código	5	101	0101
	6	110	0110
BCD	7	111	0111
	8	1000	1000
	9	1001	1001
	10	1010	0001 0000
	11	1011	0001 0001
	12	1100	0001 0010
	13	1101	0001 0011
	14	1110	0001 0100
	15	1111	0001 0101

Código BCD (8421)

Vantagens

- Por mimetizar o sistema decimal, evita erros de arredondamento por conversão de base.
- Facilita conversão para decimal ou para caracteres.

Desvantagens

- Operações aritméticas são mais complexas e mais lentas.
- Ocupa mais espaço de armazenamento.

Código BCD (8421)

O código BCD é muito comum em equipamentos eletrônicos que exibem dados numéricos em displays, tal como despertadores e calculadoras.

Código Gray

- Sistemas digitais operam em altas velocidades e reagem a variações que ocorrem nas entradas.
- Quando diversas condições de entrada variam ao mesmo tempo, a situação pode ser mal interpretada e gerar um resultado errôneo.
- Por exemplo, quando uma entrada varia de 3 (011₂) para 4 (100₂), os três bits devem ser mudados simultaneamente.
- O Código Gray foi projetado para que apenas um único bit seja alterado entre dois números inteiros consecutivos.
- Não é um código ponderado, ou seja, a posição dos bits não contribuem para o valor do número representado.
- Não pode ser utilizado para realizar operações aritméticas, mas sim operações de entrada e saída em sistemas digitais.

Código Gray

Gray de 3 bits

- Usado em encoders:
 - Valor digital que indica uma posição mecânica

Decimal number	Binary code	Gray code
0	000	000 0
1	001	001 1
2	010	011 3
3	011	010 2
4	100	110 6
5	101	111 7
6	110	101 5
7	111	100 4

Gray de 2 bits

- 0 C
- 0 1
- 1 1
- 1 0

Observe que a palavra de código vai de um valor decimal para outro com mudança de apenas de 1 dígito binário.

Código Gray

Gray de 4 bits:

Decimal	Binario	GRAY	
0	0000	0000	0
1	0001	0001	1
2	0010	0011	3
3	0011	0010	2
4	0100	0110	6
5	0101	0111	7
6	0110	0101	5
7	0111	0100	4
8	1000	1100	12
9	1001	1101	13
10	1010	1111	15
11	1011	1110	14
12	1100	1010	10
13	1101	1011	11
14	1110	1001	9
15	1111	1000	8

Conversão Gray ↔ Binário

Para converter binário em Gray, comece com o bit mais significativo e use-o como o Gray MSB. Em seguida, compare o binário MSB com o próximo bit, se eles forem iguais então o bit na codificação Gray será 0, se forem diferentes será 1. Repita a operação até o último bit.

Para converter Gray em binário, comece com o bit mais significativo e use-o como o binário MSB. Nos passos seguintes, cada bit binário é obtido comparando o bit binário à esquerda com o bit correspondente em Código Gray. Bits similares produzem um 0 e bits diferentes produzem um 1. Repita a operação até o último bit.

Convertendo

- (a) binário em Gray e
- (b) Gray em binário.

Exemplo:

Binário: 10 11 00 01 1

Gray: 11 10 10 01 0

Conversão Gray ↔ Binário

20. [Kleitz 8.22] Converta os seguintes códigos Gray para binário usando o circuito abaixo:

Gray code input G_3 G_2 G_1 G_0 G_0 G_1 G_0 G_0

Binary output

- a. 1100
- b. 0101
- c. 1100
- d. 0111

Código ASCII

- Além de dados numéricos, um computador precisa ser capaz de manipular informações não-numéricas. Em outras palavras, ele deve reconhecer não só números, mas também códigos que representam letras do alfabeto maiúsculas e minúsculas, sinais de pontuação e outros caracteres especiais, chamados códigos alfanuméricos.
- O código alfanumérico mais utilizado é o **código ASCII** (American Standard Code for Information Interchange).
- É um código de **7 bits** e, logo, tem 2⁷ = **128 representações** codificadas. Isso é mais do que necessário para representar todos os caracteres de um teclado padrão.

Tabela ASCII

TABELA 2.4 Listagem parcial do código ASCII.

IMDLAN 2.T	Listageiii parcia	uo cou	igo Asc.	1.1.		- 1-14-14-14	<u> 28 - 34 - 5 - 5 - 5</u>
Caractere	ASCII de 7 bits	Octal	Hex	Caractere	ASCII de 7 bits	Octal -	Hex
A.	100 0001	101	41	''Y''''''''''	101 1001	: 131	59
В	100 0010	102	42	Z	101 1010	132	5A
C	100 0011	103	43	0.1147	011 0000	060	30
r D	100 0100	104	44	1	011:0001	061	31
E	100 0101	105	45	2	011 0010	062	32
F	100 0110	106	46	رون 3 مر د	.011 0011	063	33
. G	100 0111	107	47 .	4	011 0100	064	34
· H	100 1000	110	48 (a. 1.5:	011 0101	065	35
1	100 1001	111	49	6	011 0110	066	36
. J	100 1010	112 ·	άΛ	7	011 0111	067	-37
K	100 1011	113	4B	8	011 1000	070	38
L	100 1100	114	4C	9	011 1001	071	39
М	100 1101	115	4D	blank	010 0000	040	20
N	100 1110	116 -	4E	s carting	010 1110	056	2E
0	100 1111	117	4F	(= =	010 1000	050	28
P	101 0000	120	50	+	010 1011	053	2B
) PQ	101 0001	121	51	\$	010 0100	044	24
R	101 0010	122	52	4874	010 1010	052	2Å
) S	101 0011	123	53)	010 1001	051	29
т.	101 0100	124	54	la	010 1101	055	2D
$U \in \mathbb{R}^{n}$	101 0101	125	55	- 1 -	010 1111	057	2F
V	101 0110	126	56		010 1100	054	2C
\mathbf{w}	101 0111	127	57	=	011.1101	075	3D
X -	101 1000	130	58	(RETURN)	000 1101	015	0D
				(LINEFEED)	000 1010	012	0A

Tabela ASCII

A seguinte sequência de bits é uma mensagem codificada em ASCII. Que mensagem é essa?

1001000 1000101 1001100 1010000

Solução

Converta cada código de 7 bits no seu equivalente em hexa. O resultado é:

48 45 4C 50

Agora, localize na Tabela 2.4 esses valores em hexa e determine o caractere representado por cada valor. O resultado é:

HELP

MAIS PROJETOS DE CODIFICADORES / DECODIFICADORES

vide exemplos resolvidos no Livro "Elementos da Eletrônica Digital", IDOETA & CAPUANO (Cap 5)

Exemplo 1: DECO Binário > Decimal

	BCD	842	1				Códi	go 98	7654	3210			
Α	В	С	D	S9	S8	S7	S6	S5	S4	S3	S2	S1	SO
0	0	0	Ó	0	0	0	0	0	0	0.	0	0	1
0.	0	0	1	0	0	. 0	0	0	0	$\cdot 0$	0	1	0
0	0	1	0	0	0	0	0	0	0	0	1	0	0
0	0	1	1	0	0	0	0	0	0	1 ·	. 0	0	0
0	1	.0	Ó	0	0	0	0	0	1	0	0	0	0
0	1	0	1	0	0	0	0	1	0	0	0	0	0
. 0	1	1	q	0	0	0	1	0	0	0	. 0	0	0
0	1	1	1	0	0	1	0	0	. 0	0.	0	0	0
1	0	0 .	ģ.	0	1	0	0	0	0	0	0	0.0	0
1	Ô	0	1_	1	0	0.	0	0	0_	0	0.	0	0

S_8 :								
	. (5	. (;				
	0	0	0	0	B			
Ā	0	0	0	0	В			
A	x	х	х	(X	<u>-₽</u>			
	_1/	0	х	X	B			
\overline{D} D \overline{D}								
(b) $S_8 = A\overline{D}$								

Х

(f) $S_4 = B\overline{C}\overline{D}$

Exemplo 1: DECO

Binário -> Decimal

Exemplo 2: Codificador Decimal -> Binário (IDOETA & CAPUANO Cap 5 – Pág's. 186, 187)

Chave	A	В	C	_D
Ch0	0	0	0	0
Ch1	0	0	0	1
Ch2	0	0	1	0
Ch3	0	0	1	1
Ch4	0	1	0	0
Ch5	0	1	0	1
Ch6	0	1	1	0
Ch7	0	1	1	1
Ch8	1	0	0	0
Ch9	1	0	0	1

Exemplo 3:

Decodificador Gray -> Binário

C	ódigo	Gra	ıy -	-	Bina	irio	
A	В	C	\mathbf{D}	S_3	S_2	$\mathbf{S_1}$	S_0
0	О	0	0	О	O	0.	0
О	0	0	1	0	O	О	1
0	0	1	1	0	Ο.	1	0
О	O	1	0	. 0	O	. 1	1
О	1	1	О	0	. 1	- O	0
0	1	1	1	0	· 1	0	1
0	1	О	1	0	1	1	0
0	1	O	O.	0	1	1	1
1.1	1	Q _	O	1	0	O	o
1	1	0	1	1	O	0	1
1 1	1,	1	1	1	O	1	0
1	1	1	o	1	O	1	1
1	О	1	, O	1	1	O	0
1	O	1	. 1	1	1	O	1
1	О	0	1	1	1	1	· · O
1	0	0_	O	. 1	1	1	1

Figura 5.24

$$S_1 = \overline{ABC} + \overline{ABC} + A\overline{BC} + ABC$$

Fatorando a expressão, temos: $S_1 = \overline{A}(\overline{BC + BC}) + A(\overline{BC + BC})$

 S_2 :

0

(b) $S_2 = \overline{A}B + A\overline{B}$

ou $S_2 = A \oplus B$

Lembrando que: $\overline{X}Y + X\overline{Y} = X \oplus Y$, podemos escrever:

$$S_1 = \overline{A}X + A\overline{X} = A \oplus X$$
 \therefore $S_1 = A \oplus B \oplus C$

Exemplo 3:

Decodificador Gray → Binário

 S_0 :

	7	3			
	0 -	1	0	1	B
Ā	Θ	0	1	0	В
Α	0	①	0	1	
	1	0	1	0	B
	D	1	D	D.	-

Figura 5.26

$$S_0 = A \oplus B \oplus C \oplus D$$

Exercícios

Fazer Decodificadores BCD ←→Excesso 3 (IDOETA & CAPUANO Cap 5 – Pág's. 192, 193, 194, 195, 196)

	BCD	8421			Exce	sso 3	
A	В	C	D	\hat{S}_3	S_2	S_1	S_0
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	. 0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	. 0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1.	1	1	0	0

	Exce	sso 3			BC)D	842	l
A	В	C	D	S_8	S_4	S_2	S_1
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	1
0	1	0	1	.0.	0	1	0
0	1	1	0	0	0	1	1
0	1	1	1	Ö	1	0.	0
1	0	0	0	0	1	ő	1
1	0	0	1	0	1	1	0
1	0	1	0	0	1	1	1
1	0	1	0	1	0	0	0
1	1	0	Q	1	0	Ó	1

EXERCICIOS DA LISTA:

"Projeto de Decodificadores"

EXERCÍCIOS

Exemplo Projeto Multinível

ERCEGOVAC – Página 88 (exemplo 4.4) e 89

(exemplo 4.5)

ALGUNS EXERCÍCIOS

vide Capítulo 5 do Livro "Elementos da Eletrônica Digital", IDOETA & CAPUANO

Exercícios

(IDOETA & CAPUANO Cap 5 - Pág. 229 em diante)

- 2 Desenvolva um circuito com uma entrada de controle M, para fornecer à saída o complemento de 1 de um número binário de 1 bit. (M = 0 = > Saída = número de entrada e M = 1 = > Saída = complemento de 1).
- 5.6.1 Elabore um Codificador Decimal/Binário para, a partir de um teclado com chaves numeradas de 0 a 3, fornecer nas saídas o código correspondente. Considere que as entradas das portas em vazio equivalem à aplicação de nível lógico 1.
- 5.6.2 Projete um circuito combinacional para em um conjunto de 4 fios, fornecer nível 0 em apenas um deles por vez (estando os demais em nível 1), conforme seleção binária aplicada às entradas digitais.
- 5.6.6 Projete um decodificador para, a partir de um código binário, escrever a sequência de 1 a 5 em um display de 7 segmentos catodo comum.
- 5.6.7 Idem ao anterior, para escrever a sequência da figura 5.62 em um display de 7 segmentos anodo comum.

CARACTERE		П	P	L	H	\exists	E	_
CASO	0	1	2	3	4	5	6	7

Dúvidas??

OBRIGADO PELA ATENÇÃO

Prof. Victor M. Miranda