

Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

756.9
R 31
Top. 2

U. S. DEPT. OF AGRICULTURE
NATIONAL AGRICULTURAL LIBRARY

JUL 8 1966

CURRENT SERIAL RECORDS

STORAGE FLOOD ROUTING WITHOUT COEFFICIENTS

June 1966 ARS 41-122
Agricultural Research Service

UNITED STATES DEPARTMENT OF AGRICULTURE

CONTENTS

	Page
Introduction	3
Formulation	3
Solution Formulation	6
Solution Program	7
Examples	7
Consistency of the Storage Flood Routing Method	14
Conclusions	16
Literature Cited	20
Symbols Used in the Program	20
Appendix 1	23
Main Line Program	23
Read and Table Look-up Subroutines	25
Solve Subroutine	26
Appendix 2	27
Program Input Format	27
Program Output Format	27
Loading Sequence	27

Trade names and company names are used in this publication solely to provide specific information. Mention of a trade name does not imply any endorsement of preferential treatment of the product listed by the U.S. Department of Agriculture.

STORAGE FLOOD ROUTING WITHOUT COEFFICIENTS

D. L. Brakensiek¹

INTRODUCTION

Flood routing methods that are based on the conservation of mass (continuity) and a single-valued relationship between depth of flow and flow rate are usually termed "storage flood routing" methods. This type of formulation is discussed more rigorously under the theory of kinematic waves. A fundamental reference to this theory is made by Lighthill and Whitham (7).² Henderson (4) considered the kinematic treatment of flood waves in prismatic channels. More recently, Henderson and Wooding (5) applied the kinematic wave theory to the overland flow problem.

Many hydrologists using storage flood routing utilize coefficients, such as X and K of the Muskingum method (2) or C of the convex method.³ This report presents a numerical method for storage flood routing without coefficients. A number of flow problems are solved with a computer program. Some limitations of the kinematic formulation are illustrated by example.

FORMULATION

The formulation of storage of kinematic flood routing is composed of the continuity equation

$$\frac{\partial Q}{\partial x} + \frac{\partial A}{\partial t} = q \quad (1)$$

and a rating function

$$Q = Q(A) \quad (2)$$

where

Q = flow rate, c.f.s.,

A = flow area, ft.²,

q = lateral inflow (+) or lateral outflow (-), c.f.s./ft., and

x, t = distance (feet) and time (seconds) coordinates.

¹ Research hydraulic engineer, Soil and Water Conservation Research Division, Agricultural Research Service, U.S. Department of Agriculture.

² Underscored numbers in parentheses refer to Literature Cited, page 20.

³ Mockus, Victor. Chapter II, Computer program for project formulation hydrology. Prepared for Soil Conservation Service, U.S. Department of Agriculture, by C-E-I-R, Inc. January 1964.

The salient features of the continuity equations are obtained by substituting $Q = AV$ into equation 1, differentiating the product, and multiplying both sides by $\Delta t \Delta x$, to obtain volumes,

$$\Delta x \Delta t \left(\frac{A \partial V}{\partial x} + \frac{V \partial A}{\partial x} + \frac{\partial A}{\partial t} \right) = q (\Delta x \Delta t).$$

where

V = velocity, ft./sec.

Δt = time increment, sec.

Δx = length increments, ft.

The terms on the left-hand side are usually referred to as follows:

- (a) - prism storage,
- (b) - wedge storage, and
- (c) - time rate of change of storage.

The usual treatment of equations 1 and 2 is to recast them as follows:

Using the grid pattern in figure 1, equation 1 can be written (with $q = 0$),

Figure 1.--Grid for finite difference approximations.

$$\frac{\partial Q}{\partial x} = \frac{Q_4 - Q_2}{\Delta x}$$

$$\frac{\partial A}{\partial t} = \frac{A_4 - A_3 + A_2 - A_1}{2 \Delta t}$$

$$\bar{q} = \frac{q_4 + q_2}{2}$$

$$\frac{Q_4 - Q_2}{\Delta x} + \frac{(A_4 + A_2)}{2\Delta t} - \frac{(A_3 + A_1)}{2\Delta t} = 0$$

or

$$Q_4 - Q_2 + \left(\frac{(A_4 + A_2)}{2} \Delta x - \frac{(A_3 + A_1)}{2} \Delta x \right) \frac{1}{\Delta t} = 0. \quad (3a)$$

Now if we define

$$S_2 = \left(\frac{(A_4 + A_2)}{2} \right) \Delta x = \text{storage at } t = t + \Delta t,$$

$$S_1 = \frac{(A_3 + A_1)}{2} \Delta x = \text{storage at } t = t,$$

$Q_4 = O = \text{outflow, and}$

$Q_2 = I = \text{inflow,}$

The equation 3a can be written

$$I - O = \frac{S_2 - S_1}{\Delta t}$$

or

$$(I - O) \Delta t = \Delta S. \quad (3b)$$

Equation 3b is similar to the usual continuity expression (inflow - outflow = change of storage). Storage is evaluated as

$$S = S(O) \quad (4)$$

or

$$S = S(O, I) \quad (5)$$

where

$$\begin{aligned} S &= \text{storage, c.f.s.-hrs.,} \\ O &= \text{outflow, c.f.s., and} \\ I &= \text{inflow, c.f.s.} \end{aligned}$$

Equation 4 is used by methods that neglect wedge storage, such as the storage-indication method. Equation 5 is used by the Muskingum method where two coefficients X and K are introduced to account for both prism and wedge storage. The development in this report is based on only equations 1 and 2, i.e., no functional form is assumed for relating reach storage to inflow and outflow. The assumption inherent in kinematic wave theory is not altered; i.e., the equation of motion can be approximated by a single-valued function, equation 2.

SOLUTION FORMULATION

A simultaneous solution of equations 1 and 2 is accomplished by obtaining a numerical solution on a small computer (IBM 1620, 40 K memory and indirect addressing). Equation 1 is approximated by the finite difference quotients shown in figure 1. Substituting these quotients into equation 1, one obtains:

$$\frac{Q_4 - Q_2}{\Delta x} + \frac{A_4 - A_3 + A_2 - A_1}{2\Delta t} = \bar{q}$$

or

$$\frac{\Delta t}{\Delta x} Q_4 + \frac{A_4}{2} = \left(\frac{A_1 + A_3}{2} \right) + \frac{\Delta t}{\Delta x} Q_2 + \left(\frac{-A_2}{2} + \Delta t \bar{q} \right)$$

or

$$\lambda Q_4 + \frac{A_4}{2} = \alpha + \beta \quad (6)$$

where

$$\lambda = \Delta t / \Delta x,$$

$$\alpha = (A_1 + A_3) / 2, \text{ and}$$

$$\beta = \lambda Q_2 + \left(\frac{-A_2}{2} + \Delta t \bar{q} \right).$$

The subscripts in these equations are defined as follows:

A_1 = flow area at location x and time t ,

A_3 = flow area at location $x + \Delta x$ and time t ,

A_2, Q_2 = flow area or rate at location x and time $t + \Delta t$, and

A_4, Q_4 = flow area or rate at location $x + \Delta x$ and time $t + \Delta t$.

Equation 2 is retained in the computer memory as an array of numerical values, i.e., paired Q and A values.

The rating functions are determined by one of several procedures. If normal flow (turbulent flow) is assumed, the Manning or Chezy equation can be applied at each channel section. An alternative for natural channels is to calculate a series of water surface profiles; e.g., using U.S. Department of Agriculture Hydrograph Laboratory Computer Program No. 2 (8). The computed values for rates of flow and depths of flow at each section along the channel system define a section rating function.

Since the rating function is not an explicit function but a set of numerical values, a simultaneous solution of equations 6 and 2 requires an iteration procedure. In this study, the procedure used is known as the method of false position 6. A special constraint is required to account for incipient flow at downstream sections during rising stages and for cessation of flow at upstream sections during falling stages, i.e., for value of $(\alpha + \beta) \leq 0$, Q_4 and A_4 are set equal to base flow.

SOLUTION PROGRAM

Presented in appendix 1 are the source programs for the main line and three subroutines. These programs are written in Fortran II.

Program input and output formats are presented in appendix 2. Arrays of data are read in by way of the "Read" subroutine. Flow area values are calculated for flow rate values by an interpolation function. Arguments are obtained from the "Table Look-up" subroutine. One limitation on inflow input is that the final rate of inflow must equal the initial value (return to a dry channel or to the initial base flow). Note that lateral flow hydrographs must have the same number of entries as the inflow hydrograph. Dummy zeros can be entered.

In storage flood routing methods, calculations proceed, as usual, in a downstream direction. An inflow hydrograph is given at the upstream section as a boundary condition. For overland flow applications, this is the "null" hydrograph. The initial conditions are known rates of flow and flow areas. These can be zero if a dry channel is assumed. If base flow is assumed, flow area should be calculated from the section rating functions. Lateral flow (q) can be put in as a plus quantity for local inflows or as a minus quantity for transmission losses. Inflow from a tributary can be treated as lateral flow introduced over a short channel length.

Initially the program section, "Routing During Inflow," determines the time of incipient flow at the next downstream section; thereafter, inflow is routed by application of the "Solve" subroutine. This subroutine performs the iteration solution of equation 6 with discharge values calculated from the rating function table. Iteration cycling is terminated by a tolerance (TOLR) level.

After the last value of inflow has been routed, computations are transferred to the main line program section "Routing After Inflow" section of the program. Routing computations continue until downstream outflow decreases to a value within 0.1 of the initial value; the last outflow entry is then set equal to the initial inflow value. All input data arrays are filled out to correspond in length to the outflow arrays. During solution punch out, outflow section data are interchanged with inflow section data so as to become inflow data for the next routing reach. After data arrays are read in for the next outflow section, computations proceed for the next routing reach. Problem solution is complete after the last section data have been read in and a Reader "no feed" signal occurs on the IBM 1620 console.

EXAMPLES

Example 1 is an inflow hydrograph introduced on a constant base flow of 150 c.f.s. Manning's equation was utilized for the rating function of a theoretical rectangular channel 30 feet wide, with a bed slope of 0.001 and an n-value of 0.03. Since this was a prismatic channel, the rating functions are the same at all sections of the channel. The time scale increment (Δt) was 3,600 seconds, and the distance scale increment (Δx) was 7,200 feet. Table 1 presents program input and table 2 presents the program output. Figure 2 is a succession of routed hydrographs. Figure 3 is a typical storage outflow function generated by the routing method. The storage values were calculated by the average end-area method. The storage loop indicates the importance of wedge storage. If the wedge storage term in the continuity equation were neglected, the relationship would be a single-valued curve.

For example 2, an inflow hydrograph was introduced on an initially dry channel with a constant (in time and space) lateral outflow (q) of 0.05 c.f.s./ft. The same channel geometry was used as in example 1, and Manning's equation was used to calculate the rating functions. The program input is presented in table 3. A succession of routed hydrographs is presented in figure 4. The rather uniform decline in the hydrograph results from the constant transmission loss.

Figure 5 presents two additional surface flow problems. Presented in figure 5 at top, is a set of hydrographs resulting from a constant inflow of 150 c.f.s. This problem would be typical of the border of furrow irrigation problem. Also, releases from a detention reservoir might lead to a similar problem. In this example, transmission losses were set to zero. The program input for this example is given in table 4. Figure 5, at bottom, illustrates the overland flow

Table 1.--Input for example 1

3600	3600	50	50	1	27	35							001
0	1	2	4	7	11	16	23	30	1	1	00		
40	50	60	80	100	120	150	200	250	2	1	00		
300	350	400	450	500	550	600	650	700	3	1	00		
800	900	1000	1100	1200	1300	1400	1500		4	100			
0	.1633	.5179	1.6369	4.1364	8.7595	16.2298	29.4354	45.4092	1	1	11		
72.3008	103.49	138.41	217.91	308.26	408.21	572.12	875.32	1209.9	2	1	11		
1565.15	1939.71	2325.76	2724.55	3133.9	3548.1	3970.2	4397.9	4831.0	3	1	11		
5709.5	6601	7503	8408	9326	10245	11177	12103		4	1	11		
150	400	650	1088	1775	2775	3775	4275	4400	1	1	22		
4275	3838	3338	2775	2338	1963	1650	1338	1088	2	1	22		
900	713	525	400	275	150	150	150	150	3	1	22		
0	0	0	0	0	0	0	0	0	0	3	1	22	
0	0	0	0	0	0	0	0	0	0	2	1	22	
0	0	0	0	0	0	0	0	0	0	1	1	22	
0	1	2	4	7	11	16	23	30	1	1	00		
40	50	60	80	100	120	150	200	250	2	1	00		
300	350	400	450	500	550	600	650	700	3	1	00		
800	900	1000	1100	1200	1300	1400	1500		4	100			
0	.1633	.5179	1.6369	4.1364	8.7595	16.2298	29.4354	45.4092	1	1	11		
72.3008	103.49	138.41	217.91	308.26	408.21	572.12	875.32	1209.9	2	1	11		
1565.15	1939.71	2325.76	2724.55	3133.9	3548.1	3970.2	4397.9	4831.0	3	1	11		
5709.5	6601	7503	8408	9326	10245	11177	12103		4	1	11		
0	0	0	0	0	0	0	0	0	0	1	1	44	
0	0	0	0	0	0	0	0	0	0	2	1	44	
0	0	0	0	0	0	0	0	0	0	3	1	44	
7200	150											002	

Figure 2.--Succession of routed hydrographs.

Table 2.--Output for example 1

IN SECTION NO = 1	OUT SECTION NO = 2		
IN AREA	IN DISCH	OUT AREA	OUT DISCH
62.915	150.000	62.915	150.000
118.357	400.000	99.849	307.579
162.843	650.000	147.341	557.596
231.783	1088.000	211.841	954.559
328.012	1775.000	302.998	1587.613
456.162	2775.000	424.965	2524.881
576.877	3775.000	547.966	3531.256
635.632	4275.000	620.306	4143.905
650.242	4400.000	645.582	4360.114
635.632	4275.000	638.202	4296.988
584.340	3838.000	595.476	3932.010
524.637	3338.000	538.697	3454.469
456.162	2775.000	472.599	2909.573
401.534	2338.000	415.538	2449.689
353.016	1963.000	365.748	2061.307
311.326	1650.000	322.645	1734.789
268.029	1338.000	280.105	1423.800
231.783	1088.000	242.763	1161.472
203.688	900.000	212.420	958.435
173.232	713.000	183.072	772.670
141.375	525.000	152.521	587.407
118.357	400.000	127.306	448.132
92.637	275.000	103.261	324.558
62.915	150.000	76.982	205.916
62.915	150.000	65.720	161.147
62.915	150.000	63.475	152.223
62.915	150.000	63.027	150.443
62.915	150.000	62.915	150.000

IN SECTION NO = 2	OUT SECTION NO = 3		
IN AREA	IN DISCH	OUT AREA	OUT DISCH
62.915	150.000	62.915	150.000
99.849	307.579	86.461	247.099
147.341	557.596	130.575	465.990
211.841	954.559	192.227	828.188
302.998	1587.613	278.227	1410.453
424.965	2524.881	394.877	2286.205
547.966	3531.256	518.228	3284.904
620.306	4143.905	602.050	3987.742
645.582	4360.114	638.380	4298.508
638.202	4296.988	638.993	4303.754
595.476	3932.010	604.556	4009.174
538.697	3454.469	551.875	3563.929
472.599	2909.573	488.422	3039.118
415.538	2449.689	430.014	2565.149
365.748	2061.307	378.825	2162.272
322.645	1734.789	334.335	1822.364

Table 2.--Output for example 1--Continued

280.105	1423.800	292.033	1508.545
242.763	1161.472	253.818	1237.030
212.420	958.435	221.745	1020.835
183.072	772.670	192.665	830.846
152.521	587.407	162.528	648.094
127.306	448.132	136.630	499.075
103.261	324.558	112.799	372.226
76.982	205.916	88.473	256.190
65.720	161.147	72.484	188.034
63.475	152.223	65.718	161.139
63.027	150.443	63.653	152.931
62.915	150.000	63.085	150.673
62.915	150.000	62.949	150.134
62.915	150.000	62.915	150.000

IN SECTION NO = 3	OUT SECTION NO = 4
IN AREA	OUT AREA
62.915	62.915
86.461	77.694
130.575	115.222
192.227	172.598
278.227	254.583
394.877	365.414
518.228	488.359
602.050	581.156
638.380	628.588
638.993	637.840
604.556	611.644
551.875	563.784
488.422	503.495
430.014	444.704
378.825	392.244
334.335	346.389
292.033	303.778
253.818	264.697
221.745	231.493
192.665	202.093
162.528	172.390
136.630	146.123
112.799	122.143
88.473	98.883
72.484	80.855
65.718	70.075
63.653	65.344
63.085	63.648
62.949	63.116
62.915	62.962
62.915	62.915

Figure 3.--Reach storage-outflow relationship.

Figure 4.--Succession of routed hydrographs with a constant transmission loss.

Table 3.--Input for example 2

3600	3600	50	50	1	27	35							001
0	1	2	4	7	11	16	23	30	1	1	00		
40	50	60	80	100	120	150	200	250	2	1	00		
300	350	400	450	500	550	600	650	700	3	1	00		
800	900	1000	1100	1200	1300	1400	1500		4	100			
0	.1633	.5179	1.6369	4.1364	8.7595	16.2298	29.4354	45.4092	1	1	11		
72.3008	103.49	138.41	217.91	308.26	408.21	572.12	875.32	1209.9	2	1	11		
1565.15	1939.71	2325.76	2724.55	3133.9	3548.1	3970.2	4397.9	4831.0	3	1	11		
5709.5	6601	7503	8408	9326	10245	11177	12103		4	1	11		
0	250	650	1188	1775	2775	3775	4275	4400	1	1	22		
4275	3838	3338	2775	2338	1963	1650	1338	1088	2	1	22		
900	713	525	400	27	0	0	0	0	0	3	1	22	
-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05		
-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05		
-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05		
0	1	2	4	7	11	16	23	30	1	1	00		
40	50	60	80	100	120	150	200	250	2	1	00		
300	350	400	450	500	550	600	650	700	3	1	00		
800	900	1000	1100	1200	1300	1400	1500		4	100			
0	.1633	.5179	1.6369	4.1364	8.7595	16.2298	29.4354	45.4092	1	1	11		
72.3008	103.49	138.41	217.91	308.26	408.21	572.12	875.32	1209.9	2	1	11		
1565.15	1939.71	2325.76	2724.55	3133.9	3548.1	3970.2	4397.9	4831.0	3	1	11		
5709.5	6601	7503	8408	9326	10245	11177	12103		4	1	11		
-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05		
-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05		
-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05	-.05		
7200	0											002	

Table 4.--Input for example shown in figure 5, at top

3600	3600	50	50	1	27	35							001
0	1	2	4	7	11	16	23	30	1	1	00		
40	50	60	80	100	120	150	200	250	2	1	00		
300	350	400	450	500	550	600	650	700	3	1	00		
800	900	1000	1100	1200	1300	1400	1500		4	100			
0	.1633	.5179	1.6369	4.1364	8.7595	16.2298	29.4354	45.4092	1	1	11		
72.3008	103.49	138.41	217.91	308.26	408.21	572.12	875.32	1209.9	2	1	11		
1565.15	1939.71	2325.76	2724.55	3133.9	3548.1	3970.2	4397.9	4831.0	3	1	11		
5709.5	6601	7503	8408	9326	10245	11177	12103		4	1	11		
0	150	150	150	150	150	150	150	150					
150	150	150	150	150	150	150	150	150					
150	150	150	150	150	150	150	150	150					
0	0	0	0	0	0	0	0	0		0	1	22	
0	0	0	0	0	0	0	0	0		0	2	22	
0	0	0	0	0	0	0	0	0		0	3	22	
0	1	2	4	7	11	16	23	30	1	1	00		
40	50	60	80	100	120	150	200	250	2	1	00		
300	350	400	450	500	550	600	650	700	3	1	00		
800	900	1000	1100	1200	1300	1400	1500		4	100			
0	.1633	.5179	1.6369	4.1364	8.7595	16.2298	29.4354	45.4092	1	1	11		
72.3008	103.49	138.41	217.91	308.26	408.21	572.12	875.32	1209.9	2	1	11		
1565.15	1939.71	2325.76	2724.55	3133.9	3548.1	3970.2	4397.9	4831.0	3	1	11		
5709.5	6601	7503	8408	9326	10245	11177	12103		4	1	11		
0	0	0	0	0	0	0	0	0		0	1	22	
0	0	0	0	0	0	0	0	0		0	2	22	
0	0	0	0	0	0	0	0	0		0	3	22	
7200	0											002	

Figure 5.—Top, Succession of hydrographs with a constant inflow at top section;
Bottom, Succession of overland flow hydrographs.

problem. Inflow is a uniform and constant lateral rate of 0.005 c.f.s./ft. The rate could be assumed to be falling over a watershed and could be varied so as to evaluate the influence of temporal and spatial variations of rainfall. Program input is presented in table 5.

Table 5.--Input for example shown in figure 5, at bottom

CONSISTENCY OF THE STORAGE FLOOD ROUTING METHOD

A vexing characteristic of storage flood routing methods is the dependence of calculated discharges on the selection of reach lengths (Δx) and time increments (Δt). An indication of this difficulty with respect to storage flood routing with coefficients Muskingum was discussed by Gilcrest 3, thus: "However, it has been found that actual flood hydrographs along several hundred miles of river can, through judicious selection of routing reaches and time interval used in routing, be duplicated quite accurately...."

Several numerical trials were made to evaluate the influence of Δx and Δt on the storage flood routing without coefficients method. Tables 6 and 7 represent the routing of the same inflow hydrograph used in example 1. Three reach lengths are combined with two time increments. The indication is that the effect of Δx over the range shown here for a constant Δt is small. However, an influence of Δt is clearly evident.

Table 8 presents a set of routings for a triangular-shaped hydrograph inflow into a prismatic channel. The conclusion is that the peak reduction is completely dependent on Δt .

This conclusion was first pointed out by Thomas (9). Especially evident from table 8 is a possible trend toward no crest reduction. This is in agreement with the work of Henderson (4) on kinematic waves. Thus, the method of storage flood routing is converging on the correct result. In view of the approach to a condition of no peak reduction as $\Delta t \rightarrow 0$, an effort is required to select Δt so as to approximate the true peak reduction condition. Presented in

Table 6.--Comparison of hydrographs for a time increment of 1 hour
with three reach lengths

Time (hours)	Hydrograph discharge		
	$\Delta x = 3,600$ feet	$\Delta x = 7,200$ feet	$\Delta x = 14,400$ feet
0	150	150	150
2	183	182	179
4	560	560	561
6	1,866	1,866	1,867
8	3,502	3,503	3,507
10	4,117	4,117	4,118
12	3,665	3,665	3,663
14	2,804	2,804	2,802
16	2,038	2,038	2,038
18	1,443	1,443	1,443
20	1,001	1,001	1,001
22	667	667	667
24	419	419	420
26	263	263	261
28	187	187	187
30	158	159	159
32	151	151	152
34	150	150	150
36	150	150	150

Table 7.--Comparison of hydrographs for a time increment of one-half hour
with three reach lengths

Time (hours)	Hydrograph discharge		
	$\Delta x = 3,600$ feet	$\Delta x = 7,200$ feet	$\Delta x = 14,400$ feet
0	150	150	150
2	158	157	150
4	443	445	452
6	1,768	1,769	1,771
8	3,622	3,623	3,628
10	4,262	4,262	4,260
12	3,768	3,767	3,765
14	2,816	2,816	2,814
16	2,023	2,024	2,024
18	1,435	1,435	1,435
20	994	994	995
22	662	662	662
24	410	411	412
26	243	243	241
28	169	169	171
30	150	152	153
32	150	150	150
34	150	150	150
36	150	150	150

Table 8.--Comparison of hydrographs for several time intervals with a constant reach length (prismatic channel)

Time (hours)	Inflow	Outflow 72,000 feet downstream for Δt of--			
		1/10 hour	1/4 hour	1/2 hour	1 hour
	<u>C.f.s.</u>	<u>C.f.s.</u>	<u>C.f.s.</u>	<u>C.f.s.</u>	<u>C.f.s.</u>
0	150	150	150	150	150
1/2	600	150	150	150	--
1	1,200	150	150	150	159
1 1/2	1,800	150	150	151	--
2	2,400	150	150	159	260
2 1/2	3,000	150	150	204	--
3	3,600	150	177	391	733
3 1/2	4,200	286	531	827	--
4	<u>4,800</u>	1,276	1,330	1,476	1,721
4 1/2	4,390	2,260	2,206	2,207	--
5	3,975	3,045	2,989	2,898	2,801
5 1/2	3,575	3,741	3,636	3,451	--
6	3,180	4,277	4,060	3,801	3,460
6 1/2	2,790	<u>4,402</u>	<u>4,193</u>	<u>3,933</u>	--
7	2,400	4,194	4,075	3,875	3,551

Tables 9 and 10 are the comparisons of the selection of Δt in the storage flood routing procedure so as to correspond to the peak reduction found with a higher order routing method (1). A Δt in the range of one-fourth to one-half hour appears to give a satisfactory correspondence. Figures 6 and 7 show the tabular comparison between routed hydrographs for two different hydrograph shapes. In figure 7, the 1/4-hour hydrograph could not be shown since it fell too close to the hydrograph predicted by the higher order routing method.

CONCLUSIONS

Formulation of the unsteady, non-uniform open channel flow problem in pure kinematics leads to a simple problem for solution. The computer program listed here appears to be functioning quite well over a wide spectrum of problems.

An unavoidable feature of storage flood routing methods is still of concern; namely, the selection of the reach length (Δx) and time increment (Δt). Tentative results of the numerical testing in this report indicate that the only concern in selecting the reach length is to fit the physical dimension of the channel system. However, the time increment selection has major influence on the shape of the routed hydrograph. For two extreme inflow hydrograph shapes, several time increment comparisons were made with a higher order routing method, i.e., a more complete equation of motion was utilized. The best correspondence occurred when the time increment was $\Delta t = tp/16$

where

tp = time to peak of the inflow graph.

Future development for this routing method will require extensive testing with data from actual floodflow situations. It may happen that the strongly nonprismatic character of actual channels may reduce the influence of time increments.

Table 9.--Comparison of storage flood routing read in 1/2-hour time increment without coefficients with a higher order formulation

Time (hours)	Inflow	Outflow ¹	Outflow ²	
			$\Delta t = 1/4$ hour	$\Delta t = 1/2$ hour
0	150	150	150	150
1/2	600	150	150	150
1	1,200	150	150	150
1 1/2	1,800	150	150	151
2	2,400	150	150	159
2 1/2	3,000	150	150	204
3	3,600	159	177	391
3 1/2	4,200	390	531	827
4	<u>4,800</u>	1,380	1,330	1,476
4 1/2	4,390	2,455	2,206	2,207
5	3,980	3,126	2,989	2,898
5 1/2	3,580	3,703	3,636	3,451
6	3,180	4,002	4,060	3,801
6 1/2	2,790	<u>4,062</u>	<u>4,193</u>	<u>3,933</u>
7	2,400	3,923	4,075	3,875

¹ Calculated with the equation of motion, neglecting only the inertia forces.

² Calculated by storage flood routing without coefficients.

Table 10.--Comparison of storage flood routing read in hourly time increments without coefficients with a higher order formulation

Time (hours)	Inflow	Outflow ¹	Outflow ²		
			$\Delta t = 1/4$ hour	$\Delta t = 1/2$ hour	$\Delta t = 1$ hour
0	150	150	150	150	150
1	400	154	150	150	150
2	650	157	150	157	182
3	1,075	182	150	213	288
4	1,775	349	380	445	559
5	2,775	921	910	949	1,082
6	3,775	1,810	1,730	1,769	1,866
7	4,275	2,837	2,790	2,767	2,753
8	<u>4,400</u>	3,737	3,700	3,623	3,503
9	4,275	4,176	4,190	4,119	3,970
10	3,875	<u>4,274</u>	<u>4,320</u>	<u>4,262</u>	<u>4,117</u>
11	3,375	4,101	4,150	4,119	3,988
12	2,775	3,742	3,800	3,767	3,665

¹ Calculated with the equation of motion, neglecting only the inertia forces.

² Calculated by storage flood routing without coefficients.

Figure 6.—Storage flood routing with different time increments compared with a higher-order formulation.

Figure 7.—Storage routing with different time increments compared with a higher-order formulation.

LITERATURE CITED

(1) Brakensiek, D. L., Heath, A. L., and Comer, G. H.
1966. Numerical techniques for small watershed flood routing. U.S. Dept. Agr., Agr. Res. Serv. ARS 41-113, 40 pp.

(2) Chow, Ven Te.
1959. Open channel hydraulics. 680 pp. McGraw-Hill Book Co., Inc., New York.

(3) Gilcrest, B. R.
1950. Flood routing. In Rouse, Hunter, Engineering Hydraulics, pp. 635-710. John Wiley and Sons, Inc., New York.

(4) Henderson, F. M.
1963. Flood waves in prismatic channels. Amer. Soc. Civil Engin. Proc., Hydraul. Div. Jour. 89(HY4): 39-67.

(5) _____ and Wooding, R. A.
1964. Overland flow and groundwater from a steady rainfall of finite duration. Jour. Geophys. Res. 69(8): 1531-1540.

(6) Kunz, K. S.
1957. Numerical analysis. 381 pp. McGraw-Hill Book, Co., Inc., New York.

(7) Lighthill, M. J., and Whitham, G. B.
1955. Kinetic waves. I. Royal Soc. London, Proc., Ser. A., 229: 281-316.

(8) Shanholtz, V. O., and Holtan, H. N.
1965. Computer program USHL No. 2: Water surface profiles from spatially varied flow in natural channels. U.S. Dept. Agr., Agr. Res. Serv. ARS 41-101, 38 pp.

(9) Thomas, H. A.
1934. Hydraulics of flood movements in rivers. 70 pp. Carnegie Institute of Technology.

SYMBOLS USED IN THE PROGRAM

Symbol	Description
<u>Input:</u>	
DELT	Time increment used in routing computations (constant) in seconds
DELTI	Same as DELT, saved for initialization
DELA	Area increment in rating table (see Solve subroutine)
DELA1	Same as DELA, saved for initialization
TOLR	Tolerance (see Solve subroutine)
N1	Number of inflow hydrograph entries
N2	Number of tabulated rating function entries
AREA1(I) DISCH1(I) AREA2(I) DISCH2(I)	Entries in the upper and lower section rating function tables

Symbol	Description
(I = 1, N2)	
Q1(I)	Entries in the inflow hydrograph
QL1(I) } QL2(I) }	Entries in the upper and lower lateral inflow hydrographs
(I = 1, N1)	
Q2(I)	Initial flow rate at the lower section
(I = 1)	
DELX	Distance increment (can be changed for each reach)
<u>Output:</u>	
LL1	Upper section number
LL2	Lower section number
A1(I) } Q1(I) }	Upper section flow area and flow rate
A2(I) } Q2(I) }	Lower section flow area and flow rate
(I = 1, M)	
<u>Main Program:</u>	
READ	See Read subroutine
TBLLP	See Table Look-up subroutine
XINT	Function for interpolation
(C, D, E, F, G)	<u>Arithmetic statement arguments</u>
	C - Lower bound for wanted table D - Upper bound for wanted table E - Lower bound for argument table F - Upper bound for argument table G - Argument
N11	Value of N1 saved for initialization
M	Total number of outflow entries
I	Index of do loop

Symbol	Description
J1	Lower index value of a do loop used for filling out lateral inflow hydrograph entries
J	Index code for incrementing I
JC	Index code for decrementing I
KK1 (1 or 2)	Index code for a computed go to
ALPHA	First term of the right-hand side of equation 6
BETA	Second term of the right-hand side of equation 6
X1	Sum of ALPHA and BETA
SOLVE	See Solve subroutine
N3	Number of flow entries occurring after inflow ceases

Read Subroutines:

A(I1) (I1 = 1, K1)	List items of entries being read
I1	Index of implied do loop
K1	Number of items in list

Table Look-Up Subroutine:

X4	Look-up argument
A(J) (J = 1, N2)	Look-up table
J	Upper index of table bracket
K	Lower index of table bracket

Solve Subroutine:

A2(I)	Current area value for iteration
Q2(I)	Current flow value for iteration
X2	Left-hand side of equation 6
X2	Difference between X2 and X1
AU	Upper bound of area in iteration process
FAU	X2 if value of area too large
AL	Lower bound of area in iteration process
FAL	X2 if value of area too small
DELA	Area increment or decrement used to establish an upper or lower bound
ANEW	New value of area in iteration process
X3	Difference between new area value and previous area value
TOLR	Iteration cutoff

APPENDIX 1

MAIN LINE PROGRAM

```

C STORAGE FLOOD ROUTING WITHOUT COEFFICIENTS          001
C ****
C DIMENSION AREA1(50),DISCH1(50),Q1(100),A1(100),AREA2(50) 002
C DIMENSION DISCH2(50),Q2(100),A2(100),QL1(100),QL2(100) 003
C COMMON AREA1,DISCH1,Q1,N1,I,J,K,M,AREA2,DISCH2,A2,Q2,X1,DELT1,DELT2 004
C COMMON N2,X4,X2,DELA,DELA1,ANEW,TOLR,X3 005
C COMMON A1,DELX,QL1,QL2 006
C ****
C XINT(C,D,E,F,G)=C+((G-E)/(F-E))*(D-C) 007
C C=LOWER BOUND FOR WANTED TABLE 008
C D=UPPER BOUND FOR WANTED TABLE 009
C E=LOWER BOUND FOR ARGUMENT TABLE 010
C F=UPPER BOUND FOR ARGUMENT TABLE 011
C G=ARGUMENT 012
C ****
C READ PAR CARD 013
C READ1,DELT,DELT1,DELA,DELA1,TOLR,N1,N2 014
1 FORMAT(2F5.0,3F4.1,2I3) 015
C ****
C READ FIRST SECTION RATING AND INFLOW 016
C CALL READ (AREA1,N2) 017
C CALL READ (DISCH1,N2) 018
C CALL READ (Q1,N1) 019
C CALL READ(QL1,N1) 020
C ****
C CALCULATE FIRST SECTION AREAS 021
19 DO 10 I=1,N1 022
C CALL TBLLP(DISCH1,Q1) 023
10 A1(I)=XINT(AREA1(K),AREA1(J),DISCH1(K),DISCH1(J),Q1(I)) 024
C ****
C READ SECOND SECTION RATING AND LATERAL INFLOW 025
C LL1=0 026
C LL2=0 027
N11=N1 028
59 M=N1 029
99 I=1 030
N1=N11 031
J1=N1+1 032
IF(M-N1) 952,952,951 033
951 DO 950 J=J1,M 034
950 QL2(J)=0.0 035
952 CONTINUE 036
CALL READ (AREA2,N2) 037
CALL READ(DISCH2,N2) 038
CALL READ(QL2,N1) 039
C ****
C READ SECOND SECTION INITIAL VALUE AND DELX 040
READ 2,DELX,Q2(I) 041
2 FORMAT (F5.0,F8.0) 042
CALL TBLLP(DISCH2,Q2) 043
A2(I)=XINT(AREA2(K),AREA2(J),DISCH2(K),DISCH2(J),Q2(I)) 044
J=1 045
N1=M 046
C ****
C ROUTING DURING INFLOW 047
100 ALPHA=(A1(I)+A2(I))/2. 048
I=J+1 049
BETA=(DELT/DELX)*Q1(I)+(-A1(I)+(DELT)*(QL1(I)+QL2(I)))/2. 050
C ****

```

APPENDIX 1--Continued

MAIN LINE PROGRAM--Continued

```

X1=ALPHA+BETA          059
IF (X1)101,101,102      060
101 Q2(I)=Q2(1)          061
A2(I)=A2(1)              062
DELT=DELT+DELT1         063
I=I-J                  064
J=J+1                  065
IF(J-N1)100,105,105      066
105 I=J                  067
GO TO 111                068
102 CALL SOLVE           069
IF (Q2(I)-Q2(1)=.1)698,698,699 070
698 Q2(I)=Q2(1)          071
A2(I)=A2(1)              072
699 CONTINUE             073
IF(SENSE SWITCH 2) 700,701 074
700 PUNCH 702,A2(I),Q2(I),I 075
702 FORMAT (2F13.3,I3)     076
701 CONTINUE             077
DELT=DELT1               078
IF (I-N1)110,111,111      079
110 J=I                  080
GO TO 100                081
*****                      082
C ROUTING AFTER INFLOW   083
111 N3=0                  084
112 J=I                  085
N3=N3+1                  086
501 ALPHA=(A1(N1)+A2(I))/2. 087
I=J+1                  088
BETA=(DELT/DELX)*Q1(N1)+(-A1(N1)+DELT*(QL1(N1)+QL2(N1)))/2. 089
X1=ALPHA+BETA            090
IF(X1)502,502,505        091
502 Q2(I)=Q2(1)          092
A2(I)=A2(1)              093
GO TO 600                094
505 CALL SOLVE           095
IF (Q2(I)-Q2(1)=.1)502,502,601 096
601 GO TO 112             097
600 M=M+N3                098
IF (M-100)602,602,801      099
801 M=100                 100
602 CONTINUE             101
I2=N1+1                  102
DO 900 I=I2,M             103
QL1(I)=0.0                104
QL2(I)=0.0                105
A1(I)=A1(N1)              106
900 Q1(I)=Q1(N1)          107
LL1=LL1+1                  108
LL2=LL1+1                  109
*****                      110
C PUNCH OUT AND INTERCHANGE 111
PUNCH 4                  112
4 FORMAT(///)
PUNCH 5,LL1,LL2            113
114
5 FORMAT(16H IN SECTION NO =I3,14X,17H OUT SECTION NO =I3) 115
PUNCH 6                  116

```

APPENDIX 1--Continued

MAIN LINE PROGRAM--Continued

6	FORMAT(4X,8H IN AREA,6X,9H IN DISCH,10X,9H OUT ARFA,5X,10H OUT DIS 1CH)	117
3	FORMAT (2F13.3,5X,2F13.3)	118
	DO 115 I=1,M	119
	PUNCH 3,A1(I),Q1(I),A2(I)*Q2(I)	120
	QL1(I)=QL2(I)	121
	A1(I)=A2(I)	122
115	Q1(I)=Q2(I)	123
C	*****	124
C	INTERCHANGE RATING TABLES	125
	DO 116 I=1,N2	126
	AREA1(I)=AREA2(I)	127
116	DISCH1(I)=DISCH2(I)	128
	GO TO 99	129
800	END	130
		131

Read and Table Look-up Subroutine

C	READ SUBROUTINE	001
	SUBROUTINE READ(A,K1)	002
	DIMENSION A(100)	003
	DIMENSION AREA1(50),DISCH1(50),Q1(100),A1(100),AREA2(50)	004
	DIMENSION DISCH2(50),Q2(100),A2(100),QL1(100),QL2(100)	005
	COMMON AREA1,DISCH1,Q1,N1,I,J,K,M,AREA2,DISCH2,A2,Q2,X1,DELI,DELI1	006
	COMMON N2,X4,X2,DELA,DELA1,ANEW,TOLR,X3	007
	COMMON A1,DELX,QL1,QL2	008
	READ 2,(A(I1),I1=1,K1)	009
2	FORMAT (9F8.0)	010
	RETURN	011
	END	012
C	TABLE LOOK-UP SUBROUTINE	001
C	A=ARGUMENT TABLE	002
C	B=ARGUMENT	003
	SUBROUTINE TBLLP(A,B)	004
	DIMENSION A(100),B(50)	005
	DIMENSION AREA1(50),DISCH1(50),Q1(100),A1(100),AREA2(50)	006
	DIMENSION DISCH2(50),Q2(100),A2(100),QL1(100),QL2(100)	007
	COMMON AREA1,DISCH1,Q1,N1,I,J,K,M,AREA2,DISCH2,A2,Q2,X1,DELT,DELT1	008
	COMMON N2,X4,X2,DELA,DELA1,ANEW,TOLR,X3	009
	COMMON A1,DELX,QL1,QL2	010
	X4=B(I)	011
	IF (X4)16,15,16	012
15	J=2	013
	GO TO 20	014
16	DO 30 J=1,N2	015
	IF (A(J)-X4)30,20,20	016
20	K=J-1	017
	RETURN	018
30	CONTINUE	019
	END	020

APPENDIX 1--Continued

Solve Subroutine

```

C      SOLVE ROUTINE
      SUBROUTINE SOLVE
      DIMENSION AREA1(50),DISCH1(50),Q1(100),A1(100),AREA2(50)
      DIMENSION DISCH2(50),Q2(100),A2(100),QL1(100),QL2(100)
      COMMON AREA1,DISCH1,Q1,N1,I,J,K,M,AREA2,DISCH2,A2,Q2,X1,DELT,DELT1
      COMMON N2,X4,X2,DELA,DELA1,ANEW,TOLR,X3
      COMMON A1,DELX,QL1,QL2
      XINT(C,D,E,F,G)=C+((G-E)/(F-E))*(D-C)
      AU =0.
      FAU =0.
      AL=0.
      FAL =0.
      DELA =DELA1
      IF(I-N1) 800,800,801
801  A2(I)=A1(N1)
      GO TO 11
800  A2(I)=A1(I)
11   CALL TBLLP(AREA2,A2)
      Q2(I)=XINT(DISCH2(K),DISCH2(J),AREA2(K),AREA2(J),A2(I))
      IF(SENSE SWITCH 1)700,701
700  PUNCH 702,A2(I),Q2(I),I
702  FORMAT (2F13.3,I3)
701  CONTINUE
      X2=(DELT/DELX)*Q2(I)+(A2(I))/2.
      X2=X2-X1
      IF (X2)3,5,2
2    DELA=DELA1
      AU=A2(I)
      FAU=X2
      IF (AL)4,12,4
12   A2(I)=A2(I)-DELA
13   IF (A2(I))7,7,11
7    DELA=DELA*.5
      A2(I)=A2(I)+DELA
      GO TO 13
3    DELA=DELA1
      AL=A2(I)
      FAL=-X2
      IF (AU)4,14,4
14   A2(I)=A2(I)+DELA
15   IF (A2(I)-AREA2(N2))11,11,16
16   DELA=DELA*.5
      A2(I)=A2(I)-DELA
      GO TO 15
4    ANEW=AU-(FAU/(FAU+FAL))*(AU-AL)
      X3=ANEW-A2(I)
      X3=ABSF(X3)
      IF (X3-TOLR)5,5,10
10   A2(I)=ANEW
      GO TO 11
5    A2(I)=ANEW
      CALL TBLLP(AREA2,A2)
      Q2(I)=XINT(DISCH2(K),DISCH2(J),AREA2(K),AREA2(J),A2(I))
      RETURN
      END

```

APPENDIX 2

Program Input Format¹

Parameter Card 1:

1-5	6-10	11-14	15-18	19-22	23-25	26-28
XXXXXX	XXXXXX	XXX.X	XXX,X	XXX,X	XXX	XXX
DELT	DELTI	DELA	DELA1	TOLR	N1	N2

Hydrograph and Rating Table Entries:

1-8	9-16	17-24	25-32	33-40	41-48
XXXXXXXXX.	XXXXXXXXX.	XXXXXXXXX.	XXXXXXXXX.	XXXXXXXXX.	XXXXXXXXX.
49-56	57-64	65-72	73-80 ²		
XXXXXXXXX.	XXXXXXXXX.	XXXXXXXXX.	XXXXXXXXX.		

Parameter Card 2:

1-5	6-13
XXXXX.	XXXXXXX.

Program Output Format¹

Inflow and Outflow Values:

1-13	14-26	32-44	45-57
XXXXXXXXXXX.XXX	XXXXXXXXXXX.XXX	XXXXXXXXXXX.XXX	XXXXXXXXXXX.XXX
A1(I)	Q1(I)	A2(I)	Q2(I)

Loading Sequence

1. Parameter card 1
2. Flow area portion of inflow section rating table
3. Flow portion of inflow section rating table
4. Inflow hydrographs at inflow section
5. Lateral inflow at inflow section
6. Flow area portion of outflow section rating table
7. Flow portion of outflow section rating table
8. Lateral inflow at outflow section
9. Parameter card 2

¹Decimal is shown at its implied position. If another position is required, it should be punched.

²Columns 73-80 are reserved for identification, such as card number, card type, section number, watershed location, etc.

U. S. DEPARTMENT OF AGRICULTURE
Agricultural Research Service
Beltsville, Maryland 20705

Postage and Fees Paid
U. S. Department of Agriculture

Official Business