

Large Language Models and Data Streams

Seminar Data Stream Management and Analysis

June 25, 2024

Silyu Li

Background

 LLM and AI have become very hot topics in recent years.

relevant concepts a

^aSource: urlhttps://www.cortical.io/blog/chatgpt-and-large-language-models-the-holy-grail-of-enterprise-ai/

Background

- LLM and AI have become very hot topics in recent years.
- Various models have shown their wide usage and significant competence in many fields.

relevant concepts^a

^aSource: urlhttps://www.cortical.io/blog/chatgpt-and-large-language-models-the-holy-grail-of-enterprise-ai/

Background

- LLM and AI have become very hot topics in recent years.
- Various models have shown their wide usage and significant competence in many fields.
- QA, content generation, translation, text classification etc [1].

relevant concepts^a

^aSource: urlhttps://www.cortical.io/blog/chatgpt-and-large-language-models-the-holy-grail-of-enterprise-ai/

Background

- LLM and AI have become very hot topics in recent years.
- Various models have shown their wide usage and significant competence in many fields.
- QA, content generation, translation, text classification etc [1].
- Most models are "static" [2].

relevant concepts^a

^aSource: urlhttps://www.cortical.io/blog/chatgpt-and-large-language-models-the-holy-grail-of-enterprise-ai/

Content of the presentation

- The evolution of language models and the techniques behind them.
- The training process of several LLM models.
- The definition and application of data streams.
- The need, benefits, challenges and use cases of combining LLM with data streams.

Large Language Models

Statistical Models

- N-Gram [3]
- Completely statistical.
- Calculate the next word's probability based on the N previous sub-words.
- Poor performance on large documents.

- Word2Vec [4]
- Map words into vector space.
- Similar words have a closer distance.
- Better performance on large documents.

- Seq2Seq [1]
- Works with Long Short-Term Memory(LSTM).
- Encodes input into vectors with fixed dimensionality and decodes them.
- Much Better performance on large documents, can work with different input lengths.
- But still vanishing gradient problems on very large documents.

- Transformer [2]
- Works with the self-attention mechanism.
- Can process the entire input sentence simultaneously with the help of positional encoding.
- Very good performance on large documents, more efficient and powerful.

- BERT, ChatGPT, LLaMA...
- Based on the transformer architecture.
- Trained on massive datasets and fine-tuned with downstream tasks.

Tokenization

- Purpose: Segmenting input text into tokens.
- WordPiece (BERT) [4]
- Byte Pair Encoding (GPT2, LLaMA) [1]

Pre-training

Given an unlabeled corpus of tokens $U = \{u_1, ..., u_n\}$ as a training dataset, the core idea of the pre-training phase is to predict the next token u_i for a sequence $\{u_{i-k}, ..., u_{i-1}\}$, specifically by maximizing the likelihood:

$$L_1(U) = \sum_{i} \log P(u_i | u_{i-k}, ..., u_{i-1}; \Theta)[2]$$
 (1)

k refers to the context window size and Θ is the parameter of the neural network with which the conditional probability P is modeled.

Fine-tuing

Given a labeled dataset C, where each instance of C has a sequence of tokens $\{c^1, ..., c^m\}$ and a label y, the goal of the fine-tuning phase is to maximize the following likelihood:

$$L_2(U) = \sum_{(x,y)} \log P(y|x^1, ..., x^m)[2]$$
 (2)

BERT

Training Process in the BERT model [3]

A comparison of different models

Model Name	BERT	GPT-2	LLaMA	GPT-3,5/ 4
Developer	GoogleAI	OpenAI	MetaAI	OpenAI
Release Date	2018	2019	2023	2022/2023
Nr. of Parameters	$110 \ { m M}/\ 340 \ { m M}$	1,5 B	7-65 B	175 B/1,7 T
Training Data	Wikipedia(en)	WebText	Various	WebText
	& BookCor-		open-source	
	pus		datasets	
Open-sourced	Yes	No	Yes	No
Major Applications?	QA	Text genera-	Text genera-	Content gen-
		tion & Trans-	tion & QA	eration & QA
		lation		

A comparison of different LLM models

LLM with data streams

Data Stream

Definition 1

A data stream S is an unbounded, potentially infinite multiset of data stream elements (s, τ) , where $\tau \in \mathbb{T}$. \mathbb{T} is a timestamp attribute with values from a monotonic, infinite time domain \mathbb{T} with discrete time units. [3]

LLM with data streams

Limitation of pre-trained LLMs

- Lack of knowledge beyond the scope of their training datasets.
- The performance is likely to gradually degrade over time [4].
- Extremely computationally expensive to be re-trained.
- Not able to process data streams as input.

LLMs and data streams

Challenges

Application Fields

LLMs and data streams

Prompt engineering

Text goes here

LLMs and data streams

Continual learning

Text goes here

Conclusion

Text goes here

References

- Liu, Yiheng, Tianle Han, Siyuan Ma, Jiayue Zhang, Yuanyuan Yang, Jiaming Tian, Hao He et al. "Summary of chatgpt-related research and perspective towards the future of large language models." Meta-Radiology (2023): 100017.
- Gupta, Kshitij, Benjamin Thérien, Adam Ibrahim, Mats L. Richter, Quentin Anthony, Eugene Belilovsky, Irina Rish, and Timothée Lesort. "Continual Pre-Training of Large Language Models: How to (re) warm your model?." arXiv preprint arXiv:2308.04014 (2023).
- Cavnar, William B., and John M. Trenkle. "N-gram-based text categorization." In Proceedings of SDAIR-94, 3rd annual symposium on document analysis and information retrieval, vol. 161175, p. 14. 1994.
- Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. "Distributed representations of words and phrases and their compositionality." Advances in neural information processing systems 26 (2013).

References

- Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence learning with neural networks." Advances in neural information processing systems 27 (2014).
- Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." Advances in neural information processing systems 30 (2017).
- Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).
- Wu, Yonghui, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun et al. "Google's neural machine translation system: Bridging the gap between human and machine translation." arXiv preprint arXiv:1609.08144 (2016).

References

- Sennrich, Rico, Barry Haddow, and Alexandra Birch. "Neural machine translation of rare words with subword units." arXiv preprint arXiv:1508.07909 (2015).
- Radford, Alec, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. "Improving language understanding by generative pre-training." (2018).
- Geisler, Sandra. "Data stream management systems." In Dagstuhl Follow-Ups, vol.
 5. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013.
- Shi, Haizhou, Zihao Xu, Hengyi Wang, Weiyi Qin, Wenyuan Wang, Yibin Wang, and Hao Wang. "Continual Learning of Large Language Models: A Comprehensive Survey." arXiv preprint arXiv:2404.16789 (2024).

