hw 3,

Problem 1.

An for $\forall U \in X$, and $U \in X$ safisfying the strong formulation, suppose that U = U + V then $\frac{1}{2} a(w,w) - l(w) = \frac{1}{2} a(u,u) - l(u)$ (use linear and bilinear) $+ a(u,v) - l(v) + \frac{1}{2} a(v,v)$ Were $a(u,v) - l(v) = \int_{-\infty}^{1/2} k^{\perp} u_{\kappa} V_{\kappa} - f^{\perp} V \, dx + \int_{0}^{1} k^{-R} u_{\kappa} V_{\kappa} - f^{-R} V \, dx$

Where $a(u,v) - l(v) = \int_{0}^{1/2} k^{L} U_{x}V_{x} - f^{L} v \, dx + \int_{1/2} k^{R} U_{x}V_{x} - f^{R} v \, dx$ $= k^{L} \left(\int_{0}^{1/2} v \right)_{0}^{1/2} + \int_{0}^{1/2} - k^{L} U_{x}^{L} v - f^{L} v \, dx$ $= k^{L} \left(\int_{0}^{1/2} v \right)_{0}^{1/2} + \int_{0}^{1/2} (-k^{R} V_{xx}^{R} v - f^{R} v) \, dx$ $\text{With } (k0) = V(v) = 0, \quad |c|^{L} U_{x}(v) = k^{L} U_{x}^{L} (v), \quad |c|^{L} v = 0$ $\text{and } -k^{L} U_{x}^{L} - f^{L} = -k^{R} U_{xx}^{R} - f^{R} = 0, \quad |c|^{L} v = 0$ $\text{and } -k^{L} U_{x}^{L} - f^{L} = -k^{R} U_{xx}^{R} - f^{R} = 0, \quad |c|^{L} v = 0$

0(W,V) - P(V) =0 (1)

Furthermor, $a(v,v) = \int_{0}^{\sqrt{2}} k^{c} v_{k} v_{k} dx + \int_{\sqrt{2}}^{\sqrt{2}} k^{R} v_{k} v_{k} dx \geqslant 0$ So $\frac{1}{2} \alpha(v_{k}v_{k}) - l(v_{k}) = \frac{1}{2} \alpha(v_{k}v_{k}) - l(v_{k}) + \frac{1}{2} \alpha(v_{k}v_{k})$ $\frac{1}{2} \frac{1}{2} \alpha(v_{k}v_{k}) - l(v_{k})$ which among that $v_{k} = arg \min_{v_{k} \in \mathcal{X}} \frac{1}{2} \alpha(v_{k}v_{k}) - l(v_{k})$

from O, we know that A cu, v > D cu

- cb) $u^{L}(z) = 0$, $u^{R}(z) = 0$, $u^{L}(z) = U^{R}(z)$ are essential boundary/interface conditions $-k^{L}U_{x}^{L}(z) = -k^{R}U_{x}^{R}(z)$ is natural boundary/interface ondition.
- CC) because $(C_{X}^{L}(x)) = (C_{X}^{L}(x))$ leads to a delta function in $X = \{C_{X}^{L}(x)\} = (C_{X}^{L}(x)) = (C_{X}^{L}(x)) + (C_{X}^{L}(x)) = (C_{X}^{L}(x)) + (C_{X}^{L}(x)) + (C_{X}^{L}(x)) = (C_{X}^{L}(x)) + (C_{X}^{L}$

but it will not cause any problem. so UEH'(s)

Problem 2.

(a)
$$\int_{V} dV (\nabla^{2}u + f)u = \int_{V} dV (\nabla \cdot (\nabla u) - (\nabla u) (\nabla u) + fu) dV$$

$$= \int_{S} dS (\hat{n} \cdot \nabla u)u + \int_{V} (\nabla u) (\partial u) + fu) dV$$

$$= \int_{S} dS (\hat{n} \cdot \nabla u)u + \int_{V} (\nabla u) (\partial u) + fu dV$$

$$= \int_{S} dV - (\nabla u) \cdot (\nabla u) + fu$$
becomes $-\frac{\partial u}{\partial n}|_{TR} = \hat{n}_{C}U|_{TR} = U|_{TO} = 0$

$$\int_{V} d\hat{v} (\hat{v}^{2}u + f)u = -\int_{TR} dS \hat{n}_{C} U + \int_{U} dV (-\nabla u \cdot \nabla u + fv)$$
when u is the solution of strong formulation, Let $S = 0$, so $RHS = 0$.
Suppose that $a(u, u) = \int_{S} dV \nabla u \cdot \nabla u + \int_{TR} dS \hat{n}_{C} uv$

$$= \int_{S} dV fv$$
This satisfies that $a(u, u) = l(u)$ for $V u \in X$

$$= \frac{1}{2} \int_{S} dv (\nabla u)^{2} + \frac{1}{2} \int_{TR} dS \hat{n}_{C} u^{2} - \int_{S} dv fw$$

Problem 3

(a)
$$\int_{0}^{1} \left(\operatorname{Maxx} - f \right) v \, dx = \operatorname{Uarr} v \Big|_{0}^{1} - \int_{0}^{1} \operatorname{Max} \operatorname{Ux} \, dx - \int_{0}^{1} f v \, dx \right)$$

$$= \operatorname{Max} v \Big|_{0}^{1} - \operatorname{Max} \operatorname{Vx} \Big|_{0}^{1} + \int_{0}^{1} \operatorname{Max} \operatorname{Vxx} \, dx - \int_{0}^{1} f v \, dx$$

$$= \operatorname{Max} v \Big|_{0}^{1} - \operatorname{Max} \operatorname{Vx} \Big|_{0}^{1} + \int_{0}^{1} \operatorname{Max} \operatorname{Vxx} \, dx - \int_{0}^{1} f v \, dx$$

$$= \operatorname{Max} v \Big|_{0}^{1} - \operatorname{Max} \operatorname{Vx} \Big|_{0}^{1} + \int_{0}^{1} \operatorname{Max} \operatorname{Vxx} \, dx$$

$$= \int_{0}^{1} \operatorname{Max} \operatorname{Vx} \, dx$$

$$= \int_{0}^{1} \operatorname{Max} \operatorname{Vx} \, dx$$

$$X = \begin{cases} V \in H^2(X) \mid V(0) = V(1) = 0, \ V_{x}(0) = U(1) = 0 \end{cases}$$
So that
$$\int_{0}^{1} (u_{xxxx} - f) u dx = \Omega(u, u) - \ell(u) \quad \text{for} \quad \forall \ u \in X$$
if u is strong formulation sulution, then $\Omega(u, u) = \ell(u)$ for $\forall \ u \in X$

$$\int_{0}^{1} (u_{xx})^2 dx - \int_{0}^{1} f w dx$$

& (U) = 1, f. v dx

(b)
$$\chi = \frac{1}{2} V \in H^2(x) / V(0) = V(1) = 0$$
, $V(1) = 0$, $V(2) = V(1) = 0$!

Here we use $H^2(x)$ becouse $J(w)$ contains $\int_0^1 W_{xx}^2 dx$, which $S_{qq}^2 U(0) = 0$

(C)
$$|l(u)| = |l(u)| = |l(u)|$$

Problem 4.

$$\int_{0}^{1} \left(\operatorname{Maxxx} - f \right) \operatorname{V} dx = \operatorname{Max} \operatorname{V}_{0}^{1} - \int_{0}^{1} \operatorname{Max} \operatorname{Vx} dx - \int_{0}^{1} f \operatorname{v} dx$$

$$= \operatorname{Max} \operatorname{V}_{0}^{1} - \operatorname{Max} \operatorname{Vx}_{0}^{1} + \int_{0}^{1} \operatorname{Max} \operatorname{Vx}_{0} dx - \int_{0}^{1} f \operatorname{v} dx$$

we can define a cu, v) = for U=x Vxx dx & (U) = 1' + V dx because Nxx(0) = Uxx(1) =0, 50 VxxVx/0=0

UEX, 50 VI==U1150, 50 VxxxV 10 = 0

ح [(1 xxx - f) N dx = B(U, V) - J(N) so we can obtain the same a (u,v) and low, but using only V(0) = V(1)=0

ch) U(0) =0, U(1) =0 APP essential Uxx(0) =0 Uxx(1)=0 APP NAtural