Automatic Image Captioning System

Saurav Saha
BT14CS002
Mr. Sandeep Dash
7th Semester
Dept. of CSE
NIT MIZORAM
Supervisor
Mr. Sandeep Dash
Assistant Professor
Dept. of CSE
NIT MIZORAM

- 1. INTRODUCTION
- 2. MOTIVATION
- 3. DATASET DESCRIPTION
- 4. LITERATURE REVIEW
- 5. SYSTEM DESCRIPTION
- 6. RESULTS
- 7. CONCLUSION
- 8. FUTURE WORKS
- 9. REFERENCES

- Given an image as input, the system generates automated caption for it.
- Explores the idea of generating embeddings for multiple modalities and project them into same representation space.[1]
- It also helps in either way retrieval as the generated embeddings correspond to each other.

 SYSTEM CAN BE AN AID TO VISUALLY IMPAIRED PEOPLE

 AUTOMATED FRAME-BY-FRAME DESCRIPTION/SUBTITLE GENERATION CAN BE DONE OF VIDEOS

 RELATED IMAGES CAN BE OBTAINED FOR A GIVEN CAPTION, WHICH CAN CONTAIN MORE SEMANTIC INFORMATION

Prevalent Approaches:

- Template Based
 - Detect objects & attributes
 - Sentence -> Phrase
 - Learn models like CRF
- Retrieval Based
 - Leverage Distance in Visual Space, find image related to test image
 - Combine the caption & modify it
- Neural Networks based[1, 2]
 - Learn Common Embedding
 - Use CNN, RNN, LSTM

Insights on DataSet:

Training Images: 9000

Test Images: 1000

1 caption per image

MS COCO 2014 Validation Dataset[3]

DATASET

Fig: a baseball player at bat in a game track

Fig: a ski lift carrying people over a snow covered mountain

Fig: a yellow and blue train on railway track

- TEXT
 REPRESENTATION
- IMAGE REPRESENTATION
- SYSTEM TRAINING
- IMAGE TO CAPTION GENERATION

TEXT REPRESENTATION

IMAGE REPRESENTATION

GENERATING CAPTION

- ANALYSIS ON TRAINING
- SUCCESSFUL CAPTIONS
- PARTIALLY SUCCESSFUL CAPTIONS
- UNSUCCESSFUL CAPTIONS
- BLEU SCORE

ANALYSIS ON LOSS

Fig: Loss on 21 epoch

Fig: Loss on 30 epoch [OVERFITTING]

ANALYSIS ON ACCURACY

Fig: Accuracy on 30 epoch

Fig: Accuracy on 21 epoch

SUCCESSFUL CAPTIONS

Original Caption: a large long train on a steel track

System Generated Caption: a train is stopped at a train station platform

Original Caption: this man is skiing down a mountain slope

System Generated Caption: a man in skies is walking in the snow

PARTIALLY SUCCESSFUL CAPTIONS

Original Caption: a white surface with many yellow and indigo flowers

System Generated Caption: bouquet of colorful flowers in a small vase

Original Caption: a female tennis player shows her arm muscles

System Generated Caption: a male tennis player wearing white is playing tennis

17

UNSUCCESSFUL CAPTIONS

Original Caption: a bunch of soccer players are playing a game

System Generated Caption: a baseball field with players and a crowd of spectators

Original Caption: a skateboarder riding their board in a skate park

System Generated Caption: diners at a cafe overlooking a sandy beach

18

BLEU SCORE

BLEU: Bilingual Evaluation Understudy[4]

BLEU-n	BLEU-1	BLEU-2	BLEU-3	BLEU-4
Score	23.24	10.18	4.83	2.45

Fig: BLEU-n SCORE for the generated captions

 System can successfully caption novel images for which representations are learnt.

 Since 1 caption per image was used for training, 5 caption per image would increase the accuracy manifold.

 System can generalize well for seen objects like train, pc, dog, snow etc.

- Dense Image Captioning using better Object Identification Model, Inception V3[5].
- Description Generation for a given image.
- Generating t-SNE[6] representation for understanding vector space distance of similar captions. Similar captions will have smaller distance.
- Training the system on 200,000 images with 5 caption each.

Thanks

References

- 1. Karpathy, Andrej, and Li Fei-Fei. "Deep Visual-semantic Alignments for Generating Image Descriptions." 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015). Web. 29 May 2016
- 2. Show and Tell: A Neural Image Caption Generator [https://github.com/karpathy/neuraltalk]
- 3. Microsoft COCO: Common Objects in Context arXiv
- 4. BLEU: a Method for Automatic Evaluation of Machine Translation
- 5. Christian Szegedy et al. "Rethinking the Inception Architecture for Computer Vision"
- 6. Visualizing Data using t-SNE Journal of Machine Learning Research