Implementation Discrete Choice Random Utility Model

August 2025

- Setup: N alternatives and $2^N 1$ choice sets.
 - Example: For 3 products $\{A,B,C\}$, we have choice sets $\{A,B,C\}$, $\{A,B\}$, $\{A,C\}$, $\{B,C\}$, $\{A,B\}$, $\{A,B\}$, $\{A\}$, $\{B\}$ and $\{C\}$.
 - Comment: the choice sets $\{A\}$, $\{B\}$ and $\{C\}$ are not exactly necessary....
- Input: A choice probability vector for each choice set.
 - Example: We have the data p^{obs} :

A	0.5
В	0.3
С	0.2
A	0.6
В	0.4
A	0.7
С	0.3
В	0.4
С	0.6
A	1
В	1
С	1
	B C A B C B C A B

- Step 1: Create N! deterministic choice vector and their associated probabilities $\{v_i\}_{i=1}^{N!}$
 - Example: With 3 choice we create 6 choice probability vector

		A > B > C	A > C > B	B > A > C	B > C > A	C > B > A	C > A > B
$\{A,B,C\}$	A	1	1	0	0	0	0
	В	0	0	1	1	0	0
	С	0	0	0	0	1	1
$\{A,B\}$	A	1	1	0	0	0	1
	В	0	0	1	1	1	0
$\{A,C\}$	A	1	1	1	0	0	0
	С	0	0	0	1	1	1
$\{B,C\}$	В	1	0	1	1	0	0
	С	0	1	0	0	1	1
$\{A\}$	A	1	1	1	1	1	1
<i>{B}</i>	В	1	1	1	1	1	1
$\{C\}$	С	1	1	1	1	1	1

• Implement the following optimization problem:

$$\min_{p} ||p - p^{\text{obs}}||_{2}^{2} = \sum_{D \subset 2^{X}} \sum_{x \in D} (p(x, D) - p^{\text{obs}}(x, D))^{2},$$
 (1)

subject to

$$p = \sum_{i=1}^{n} \lambda_i v_i \tag{2}$$

$$1 = \sum_{i=1}^{n} \lambda_i$$

$$\lambda_i \ge 0, \forall i \in [2^N],$$

$$(3)$$

$$\lambda_i \ge 0, \forall i \in [2^N], \tag{4}$$

where X is the set of alternatives and p(x, D) is the probability of choosing x from choice set D.