We take a closer look at the projectivities of the projective line \mathbb{P}^1_K , since they play a role in the "change of parameters" for projective curves. A projectivity $f: \mathbb{P}^1_K \to \mathbb{P}^1_K$ is induced by some bijective linear map $g: K^2 \to K^2$ given by some invertible matrix

$$M(g) = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

with $ad - bc \neq 0$. Since the projective line \mathbb{P}^1_K is isomorphic to $K \cup \{\infty\}$, it is easily verified that f is defined as follows:

$$c \neq 0 \begin{cases} z \mapsto \frac{az+b}{cz+d} & \text{if } z \neq -\frac{d}{c}, \\ -\frac{d}{c} \mapsto \infty, \\ \infty \mapsto \frac{a}{c}; & c = 0 \begin{cases} z \mapsto \frac{az+b}{d}, \\ \infty \mapsto \infty. \end{cases} \end{cases}$$

From Section 26.4, we know that the points not at infinity are represented by vectors of the form (z, 1) where $z \in K$ and that ∞ is represented by (1, 0). First, assume $c \neq 0$. Since

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} z \\ 1 \end{pmatrix} = \begin{pmatrix} az + b \\ cz + d \end{pmatrix},$$

if $cz + d \neq 0$, that is, $z \neq -d/c$, then

$$(az + b, cz + d) \sim \left(\frac{az + b}{cz + d}, 1\right),$$

so z is is mapped to (az + d)/cz + d). If cz + d = 0, then

$$(az+d,0)\sim (1,0)=\infty,$$

so -d/c is mapped to ∞ . We also have

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ c \end{pmatrix},$$

and since $c \neq 0$ we have

$$(a,c) \sim (a/c,1),$$

so ∞ is mapped to a/c. The case where c=0 is handled similarly.

If $K = \mathbb{R}$ or $K = \mathbb{C}$, note that a/c is the limit of (az + b)/(cz + d), as z approaches infinity, and the limit of (az + b)/(cz + d) as z approaches -d/c is ∞ (when $c \neq 0$).

Projections between hyperplanes form an important example of projectivities.