Week 8

Halle Berry Neuron

Fig. 8. A single unit in the human right anterior hippocampus that responds to different pictures of the actress Halle Berry including in costume and to the letter string of her name but not to other facial images or letter strings (Quiroga et al., 2005).

Agenda

- 1. Check-in
- 2. NN recap
- 3. Convolutional Networks
- 4. Finish deep learning notebook
- 5. Brief SVM discussion
- 6. Supervised learning comparison

Intuition: Forward Propagation

- Given a training example (X_1, X_2) and output Y_i
- · Propagate inputs/activations forward, applying sigmoid function on dot products

Neural Network Recap

- 1. What happens in forward propagation?
- 2. What happens in backprop?
- 3. What are the benefits of SGD and Mini-batches?
- 4. Why do GPUs speed up computation?
- 5. How do we handle regression problem?

Intuition: Backward Propagation (cont.)

Propagate costs backward to earlier nodes:

Computer Vision

Conferences

- CV is discussed at most ML and Al conferences
- CVPR is main CV conference

Datasets

- MNIST -- 60,000 images
- SVHN (http://ufldl.stanford.edu/housenumbers/) -- 600,000 images
- ImageNet (http://image-net.org/about-stats) -- 14M images,
 1TB, mapped to WordNet, includes features and hand labels

Feature Engineering

- A major focus of field
- Gradient based features popular
- SIFT: 1999, patented by BC.
- Also SURF, GIST, HOG

Engineering Examples

- Common in CV
- Do things that maintain label:
- Rotate, translate, skew, scale, etc

Toothbrush

Small brush; has long handle; used to clean teeth

1974 pictures 62.34% Popularity Percentile

Ever cleverer

Error rates on ImageNet Visual Recognition Challenge, %

Sources: ImageNet; Stanford Vision Lab

Deep (Feature/Representation) Learning

- Move away from feature engineering (still some and some Architechtural design)
- Today learned features generally outperform
- Learn similar gradient based features at early layers

conomict com

Convolution Nets

Learning vs Evolution vs Systems

Convolution Networks

The convolutional and pooling layers in ConvNets are directly inspired by the classic notions of simple cells and complex cells in visual neuroscience⁴³, and the overall architecture is reminiscent of the LGN-V1-V2-V4-IT hierarchy in the visual cortex ventral pathway⁴⁴. When ConvNet models and monkeys are shown the same picture, the activations of high-level units in the ConvNet explains half of the variance of random sets of 160 neurons in the monkey's inferotemporal cortex⁴⁵. ConvNets have their roots in the neocognitron⁴⁶,

About

- Yann LeCun. LeNet: http://yann.lecun.com/exdb/lenet/ (1989-1998)
- Inspired by Visual Cortex in cats (receptive fields)
- Designed with image recognition in mind--input and layers often shown as 2D or 3D which may look odd coming from 1D.
- Composition of layers. Rightmost feature layers are most similar to output in representation
- Feature learning layers are of different types: (1) convolution and (2) pooling
- AlexNet 2012 (with Hinton)
- (https://papers.nips.cc/paper/4824-imagene t-classification-with-deep-convolutional-neu ral-networks.pdf)

4

Image

Convolved Feature

Visualization	of the	filter o	n the	image
---------------	--------	----------	-------	-------

0	0	0	0	0	0	0
0	40	0	0	0	0	0
40	0	40	0	0	0	0
40	20	0	0	0	0	0
0	50	0	0	0	0	0
0	0	50	0	0	0	0
25	25	0	50	0	0	0

Pixel representation of receptive field

Pixel representation of filter

Layer 4a

Bookshelves

Dog eyes

Text, rivets

Birds

In this layer, which follows a pooling step, we see a signficant increase in complexity. We begin to see more complex patterns, and even parts of objects.

Understanding Deep Networks

- Feature visualization: https://distill.pub/2017/feature-visualization/
- Fear and Loathing in LV: https://www.youtube.com/wa tch?v=oyxSerkkP4o

Transfer Learning

- Train on one task, and use trained network or part of trained network when training for a different task
- Model Zoo (e.g. http://caffe.berkeleyvision.org/model_ zoo.html)
- https://www.kaggle.com/c/state-farmdistracted-driver-detection/forums/t/20 141/official-pre-trained-models-and-ex ternal-data-thread/116805

Super Brief Look at SVMs

SVM

Implementations

- LIBSVM/Liblinear -- National Taiwan; used in SK_Learm, e1071, Matlab
- SVMLight/SVMPerf -- Cornell

People

- Vapnik (AT&T, FB)
- Yann LeCun (AT&T, FB)
- Yoshua Bengio (AT&T, Montreal)
- Leon Bottou (AT&T, Google)
- Christopher Bishop (Edinburg, MS)
- Chris Burgess (AT&T, MS)
- Patrick Haffner (AT&T)

Review

- http://www.tristanfletcher.co.uk/SVM%20Explained.pdf
- http://svmlight.joachims.org/

Supervised Learning Comparison

Supervised learning

Training Complexity

KNN: none NB: 1 epoch

DT: (max depth) epoch

LR: until convergence

NN: until convergence

Prediction Complexity

KNN: 1 epoch

NB: constant

DT: constant

LR: constant

NN: layers * avg nodes

Representation

KNN: store train data

NB: counts

DT: tree

LR: parms

NN: parms + architechture

datascience@berkeley

Pros/Cons & When to Consider

KNN:

- Pros: Simple / explainable, Works with small data, online
- Cons: Storage, slow, No feature weighting

NB:

- Pros: Online, fast train/predict, scales to big col/rows
- Cons: strong ind assumption

DT:

- Pros: Feature selection, explainable, accurate as ensembles, fast train/predict
- Cons: Store trees, single tree can overfit

LR:

- Pros: Fast, explainable, widely useful, scales well
- Cons: linear, can take a lot of data

NN:

- Pros: accurate, nonlinear, unstructured/high dim data
- Cons: Expensive, black box, gpus, lots of data

Final Thoughts?