

단순 선형 회귀 (Simple Linear Regression)

1. Correlation

두 변수 사이의 연관성 이해

- ❖ Explanatory Variable (설명 변수) & Response Variable (반응 변수)
 - Explanatory Variable $\rightarrow X$, Response Variable $\rightarrow Y$
 - Ex) 아버지 키와 아들의 키, 수면제 종류와 수면 시간, 온도에 따른 장비의 고장 여부
 - Explanatory Variable ? Response Variable ?
 - Explanatory Variable → Independent Variable (독립 변수), Response Variable → Dependent Variable (종속 변수)

- ❖ 두 변수 사이의 관계와 연관성의 이해를 위한 도구들
 - Scatter Plot (산점도)
 - Correlation Coefficient (상관계수)
 - Linear Regression (선형 회귀)

Drawing a Scatter Plot

❖ Scatter Plot

Scatter Graph, Scatter Chart, Scattergram, Scatter diagram

X-axis: Explanatory Variable

Y-axis : Response Variable

Colab

- Matplotlib
 - Import matplotlib.pyplot as plt
 - plt.scatter()
- Seaborn
 - Import seaborn as sns
 - sns.scatterplot()
 - sns.regplot()

(Google)Spreadsheet

Age (years)	1	2	3	5	8
Sleep (hours)	13	11	10	9	8

import pandas as pd
datum = pd.read_csv('https://raw.githubusercontent.com/inetguru/IDS-CB35533/main/datum.csv', index_col='id')
datum.head()

import matplotlib.pyplot as plt
plt.scatter(datum['friends'], datum['minutes'])
plt.show()

import seaborn as sns
#sns.scatterplot(x='friends',y='minutes', data=datum[['friends','minutes']])
sns.regplot(x='friends',y='minutes', data=datum[['friends','minutes']])
plt.show()

name

=importdata("https://raw.git

c friends

Patterns or Relationships in Scatterplot

- **Correlation** or dependence is any **statistical relationship**, whether causal or not, between two random variables or bivariate data.
 - it commonly refers to the degree to which a pair of variables are linearly related.

Describing Scatterplots

- Form, Direction, Strength, Outliers
 - Form: Is the association linear or nonlinear?
 - **Direction**: Is the association positive or negative?
 - Strength: Does the association appear to be strong, moderately strong, or weak?
 - Outliers: Do there appear to be any data points that are unusually far away from the general pattern?
- Practice : choose the scatterplot that best its this description
 - A strong, positive, linear association between 2 variables

A moderately strong, negative, linear association
 between the two variables with a few potential outliers.

A strong, negative, nonlinear association between the two variables.

Correlation Coefficient (상관 계수)

- (Pearson) Correlation Coefficient : a measure of linear correlation (direction and strength) between two sets of data.
 - also referred to as Pearson's r, or the bivariate correlation.
- Definition for a population
 - Given a pair of random variables (X, Y)

$$\rho_{X,Y} = \frac{\mathbb{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \cdot \sigma_Y}$$

- σ_X : the standard deviation of X, σ_Y : the standard deviation of Y, μ_X : is the mean of X, μ_Y : is the mean of Y
- Definition for a sample

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \cdot \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

• n: sample size, x_i, y_i are the individual sample points indexed with i. $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$, $\bar{y} = \frac{1}{n} \sum_{i=1}^n y_i$, the sample mean

Calculating Correlation Coefficient

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \cdot \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

id	name	friends	minutes	$x_i - \bar{x}$	$y_i - \bar{y}$
	0 Hero	70	175	3.5	10.5
	1 Dunn	6.	5 170	-1.5	5.5
	2 Sue	7:	2 205	5.5	40.5
	3 Chi	63	3 120	-3.5	-44.5
	4 Thor	7:	1 220	4.5	55.5
	5 Clive	64	130	-2.5	-34.5
	6 Hicks	60	105	-6.5	-59.5
	7 Devin	64	4 145	-2.5	-19.5
	8 Kate	6	7 190	0.5	25.5
	9 Klein	69	9 185	2.5	20.5

•
$$\bar{x} = 66.5, \bar{y} = 164.5$$

- data['friends'].mean()
- =AVERAGE(C2:C11)

$$\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = 1242.5$$

- sum((data['friends']-data['friends'].mean()) * (data['minutes']-data['minutes'].mean()))
- =SUMPRODUCT(E2:E11,F2:F11)

$$\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} = 11.7686023$$

- math.sqrt(sum((data['friends']- data['friends'].mean())**2))
- =SQRT(SUMSQ(E2:E11))

$$\sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2} = 114.1161689$$

- math.sqrt(sum((data['minutes']data['minutes'].mean())**2))
- =SQRT(SUMSQ(F2:F11))

$$r_{xy} = 0.9251759349$$

Built-in Functions

- data['friends'].corr(data['minutes'])
- = = CORREL(C2:C11,D2:D11)

Properties of Correlation Coefficient

- ➤ It always has a value between $-1 \le r \le 1$.
- \triangleright Strong positive linear relationships have values of r closer to 1.
- \triangleright Strong negative linear relationships have values of r closer to -1
- Weaker relationships have values of r closer to 0

- Practice Example
 - $r_1 = -0.42$, $r_2 = 0.73$, $r_3 = 0.87$, $r_4 = -0.77$
 - Scatterplot A :
 - Scatterplot B :
 - Scatterplot C :
 - Scatterplot D :

 $Source: https://upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Correlation_examples 2.svg/400 px-Correlation_examples 2.svg/400 px-Correl$

Several sets of (*x*, *y*) points, with the correlation coefficient of *x* and *y* for each set. Note that the correlation reflects the strength and direction of a linear relationship (top row), but not the slope of that relationship (middle), nor many aspects of nonlinear relationships (bottom). N.B.: the figure in the center has a slope of 0 but in that case the correlation coefficient is undefined because the variance of *Y* is zero.

Various Coefficients

- ❖ 상관 계수는 이상치(Outlier Values)의 영향을 많이 받음
 - 이상치에 Robust한 상관 계수들이 개발됨
- \diamond Kendall's Tau (τ) correlation coefficients

$$\tau = \frac{(\text{number of concordant pairs}) - (\text{number of discordant pairs})}{n(n-1)/2}$$

- Spearman's Rank correlation coefficients or Spearmans's ρ
 - The Spearman correlation coefficient is defined as the Pearson correlation coefficient
 between the rankings of two variables, or two rankings of the same variable
- Corr() function in Pandas
 - method = 'pearson', 'kendall', 'spearman'

All points in the gray area are concordant and all points in the white area are discordant with respect to point (X_1, Y_1) . With n=30 points, there are a total of $\binom{30}{2}=435$ possible point pairs. In this example there are 395 concordant point pairs and 40 discordant point pairs, leading to a Kendall correlation coefficient of 0.816.

