* Decision Tree *

O Decision Tree: -

Supervised Learning technique.

mostly classification.

Greaf Node-

La Final o/p of decision.

La No further branching. (college

Decision Node-

Le rest performed on the Feature / attro.

branches.

- Decision Tre: Graphical representation for getting all possible solo to problem / decision.
- CART Algorithm: Classification & Regression Tree Algo.
 Used to build Decision Tree.
- · Decision Tree Terminology:-
- D Root Node Decision Tree starts.

 **Represent entire data set & divide further.

Cc

- 2 Leaf Node Final olp Node (class/Label).
- 3 Splitting Divide decision node into sub-nodes according to given condition.
- 4 sub-tree Sub-section of a tree.
- 5 Pruning Remove unwanted branches from tree.
- 6 Parent/child Node Root called as Parent. Grothers child Nodes.
- 7 Branches Decision Rules used for splitting.

- · Why use Decision Tree !
 - 1 DT mimic humain brain for decision-making ability, easy to understand.
 - 2 Easy to understand logic, bcz toee-like structure.
- · How Decision Pree Algo Works:
 - D'Algo stable from root, contains complete dataset.
- 3 Find best atto using ASM (Atto sell Measure).
 - 3 Divide dataset, s into sub-sets contain possible values for best attr.
 - Ogenerate Decision Tree node, which contains the best atto.
 - E Recursively divide the tree using new attr, until we cannot further divide. c/a Final/leaf node.
 - · Prouning (Get Optimal Decision Tree):-

Optial Decision Tree.

- Large tree May lead to over fitting.
 - · Small Tree May not capture all Features.
- Les size of DT without reducing Accuracy.
- 2 types of technique for Pouning
 O cost complexity Prouning
 - @ Reduced Error Pruning

• Attribute Selection Measure (ASM):-

Pused to find best atto for root & sub-nodes.

2 Popular Techniques:

- 1 Information Gain
- 2 Gini Index

Terminologies used to (Gîne Impurity) define pure/impure

1 Entropy: Measure impurity / randomness of split / node.

node.

set of data points to consider.

$$E(s) = -P_1 \log_2(P_1) - P_2 \log(P_2)$$

Data points in S,

belong to label 1.

- · Max Entropy Data split in many labels/ class. Grie. Impure Split (1). -Max uncertainty.
- · Min Entropy Data belong to only I class/labels. Gi.e. Pure split (0).

Entropy range for Binary split is 0 to 1.

2 Information Gain:

Measurement of changes in entropy after segmentation of dataset based on attr.

about a class.

build Decision Tope.

with highest info gain split first.

$$Gain(S,A) = En(S) - \sum_{Val(A)} \frac{|SV|}{|S|} \cdot E_n(S_V)$$

3 Gini Index:

Decision tree in CART algo.

Low gini Index atto is preferred.

Splits.

Lower GJ-More homogeneous / Pure Distribution.

Higher GI - Heterogeneous/Impure Distribution.

La GJ faster to compute & more sensitive to probability changes.

· Example Dataset -

Day	Outlook	Temperature	Humidity	wind	Play
7	Sunny	Hot	High	weak	NO
2	Sunny	Hot	High	strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	mild	High	weak	Yes
5	Rain	C001	Normal	weak	ves
6	Rain	C001	Normal	Strong	NO
7	Overcast	(00)	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	NO
9	Sunny	cool	Nomal	weak	yes
10	Rain	Mild	Normal	Wedk	Yes
11	Sunny	Mild	Normal	strong	Yes
12	Overcast	Mild	High	strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	strong	NO

· Calculate Entropy of Initial Dataset -

$$P(Yess) = \frac{9}{14} & P(NO) = \frac{5}{14}$$

$$E(S) = -P(YeS) log_2(P(YeS)) - P(NO) log_2(P(NO))$$

= $-\frac{9}{14} log_2(\frac{9}{14}) - \frac{5}{14} log_2(\frac{5}{14})$

· Calculate Info Gain of Each Vasiable -

1) Outlook Feature -

Sunny-5 Rain-5 Overcast-4

(27es, 3No) (37es, 2No) (47es, 0No)

$$E(Sunny) = \frac{-2}{5}log_2(\frac{2}{5}) - \frac{3}{5}log_2(\frac{3}{5}) = 0.971$$

$$E(Rain) = \frac{-3}{5}log_2(\frac{3}{5}) - \frac{2}{5}log_2(\frac{2}{5}) = 0.971$$

$$E(Overcast = \frac{-4}{4}log_2(\frac{4}{4}) = 0 = 0$$

$$\exists q (outlook) = E(s) - \sum_{val} E(s_{val}) * p(val)$$

$$= 0.940 - \left[\frac{5}{14} * 0.971 + \frac{5}{4} * 0.971 + 0 \right]$$

$$= 0.246$$

2) Temperature feature -

$$E(Hot) = -\frac{2}{4} \log_2\left(\frac{2}{4}\right) - \frac{2}{4} \log_2\left(\frac{2}{4}\right) = 1$$

$$E(Mild) = -\frac{4}{6} \log_2\left(\frac{4}{6}\right) - \frac{2}{6} \log_2\left(\frac{2}{6}\right) = 0.91$$

$$E(Cool) = -\frac{3}{4} \log_2\left(\frac{3}{4}\right) - \frac{1}{4} \log_2\left(\frac{1}{4}\right) = 0.81$$

3) manorablitary Feature -

$$E(strong) = \frac{-3}{6}log_2(\frac{3}{6}) - \frac{3}{6}log_2(\frac{3}{6}) = 1$$

$$E(\text{weak}) = -\frac{6}{8} \log_2(\frac{6}{8}) - \frac{2}{8} \log_2(\frac{2}{8}) = 0.81$$

$$36 (\frac{1}{14}) = E(3) - \sum_{val} P(val) * E(S_{val})$$

$$= 0.940 - \left[\frac{6}{14} * 1 + \frac{8}{14} * 0.81\right]$$

= 0.048

4) Humidity
wind Feature -

$$E(High) = -\frac{3}{7}log_2(\frac{3}{7}) - \frac{4}{7}log_2(\frac{4}{7}) = 0.98$$

$$E(\text{Hormal}) = -\frac{6}{7} \log_2(\frac{6}{7}) - \frac{1}{7} \log_2(\frac{1}{7}) = 0.59$$

- choose Highest Info Gain Feature is "Outlook".

 Choose this feature for split.
- Repeat: Repeat above steps until it reaches to terminal nodes.

· Advantages:

- O simple because mimic human brain decision making
- 2 Useful for decision-related problems.
- 3 Help think about all possible outcomes.
- @ Less requirement of data cleaning.

O Disadvantages:

- 1) Decision Tree contain lots of layers, complex.
- @ May overfitting solve by Random Forcest.
- 3 More labels => 1 computational complexity.