MATH 215 FALL 2023 Homework Set 8: §15.7 – 16.1 Zhengyu James Pan (jzpan@umich.edu)

1. For the following problem, take r, θ, ρ , and ϕ to have the standard definitions in cylindrical and spherical coordinates. Describe (and try to sketch) the following surfaces:

(a)
$$r = \theta$$

Solution: A cylinder through a spiral starting from the origin.

(b)
$$\rho = \theta$$

Solution: A spiral in the xy plane, where each point has vertical arcs of circles passing through them to the line x = y = 0, each with the origin as their center.

(c)
$$r = \rho$$

Solution: The xy plane.

(d) $\theta = \phi$

Solution: A curved surface. When a curve is drawn on this surface with ρ fixed, the curve looks similar to a sin curve when viewed from the y-axis.

2. Let E be the ball of radius 1 centered at the point (0, 0, 1).

- (a) Show that E is given in Cartesian coordinates by the equation $x^2 + y^2 + z^2 2z \le 0$.
- (b) Write E in spherical coordinates. Make sure to specify the domain of ρ , θ , and ϕ .
- (c) Suppose the density on E is proportional to the distance to the origin, with the largest density being equal to 2. Use spherical coordinates to compute the mass

and center of mass of E.

- (d) Suppose we tried to do this problem for the ball of radius 1 centered at the point (0, 1, 0). Why is this problem harder with the new ball?
- 3. Begin with a sphere of radius R and bore a hole into the sphere in the shape of a right circular cylinder, leaving only a band of height h. Find the volume of the resulting shape.

Solution: The radius of the cylinder will be $r_c = \sqrt{R^2 - h^2}$. We use cylindrical coordinates to perform the integration.

$$2\pi \int_{-h}^{h} \int_{\sqrt{R^{2}-z^{2}}}^{\sqrt{R^{2}-z^{2}}} r \, dr \, d\theta$$

$$= \pi \int_{-h}^{h} (r^{2}) \left| \sqrt{\frac{R^{2}-z^{2}}{R^{2}-h^{2}}} \, dr \, d\theta \right|$$

$$= \pi \int_{-h}^{h} R^{2} - z^{2} - R^{2} + h^{2} \, d\theta$$

$$= \pi \left(-\frac{z^{3}}{3} + h^{2}z \right) \right|_{z=-h}^{h}$$

$$= \left[\frac{4\pi h^{3}}{3} \right]$$

4. Find the mass of a wedge cut from a sphere of radius R by two planes that intersect along a diameter and at an angle of $\frac{\pi}{5}$, assuming that the density is proportional to the distance from the origin in such a way that the maximum density is 2. (This shape should look like a segment of an orange.)

Solution: We use spherical coordinates for this problem, with (r, θ, ϕ) . The density function will be $\rho(r) = \frac{2r}{R}$ to have a maximum density of 2 when the distance is equal

to the radius.

$$\frac{\pi}{5} \int_{0}^{R} \int_{0}^{\pi} \frac{2r}{R} r^{2} \sin(\phi) d\phi dr$$

$$= \frac{\pi}{5R} \int_{0}^{R} 2r^{3} \int_{0}^{\pi} \sin(\phi) d\phi dr$$

$$= \frac{\pi}{5R} \int_{0}^{R} 2r^{3} \left(-\cos(\phi)\right) \Big|_{\phi=0}^{\pi} dr$$

$$= \frac{\pi}{5R} \int_{0}^{R} 4r^{3} dr$$

$$= \frac{\pi}{5R} \left(r^{4}\right) \Big|_{r=0}^{R}$$

$$= \left[\frac{\pi R^{3}}{5}\right]$$

5. Find $\int \int_R f(x,y) dA$ where $f(x,y) = 3y^2 - 4xy - 4x^2$ and R is the quadrilateral with vertices (0, 2), (3, 0), (5, 4), and (2, 6). *Hint*: There may be a straightforward but tedious way to solve this problem, as well as a faster, more subtle, way to solve this problem.

Solution: We can factor f(x,y) = (3y+2x)(y-2x). Then, we can use change of variables to change both the function and the bounds. Let u = 3y + 2x, v = y - 2x. Then f(u,v) = uv, $d(x,y) = (2-3(-2))^{-1} d(u,v) = \frac{1}{8}d(u,v)$. Also, R has vertices at (u,v) = (6,2), (6,-6), (22,-6), (22,2).

$$\frac{1}{8} \int_{-6}^{2} \int_{6}^{22} uv\sqrt{1 + u^{2} + v^{2}} du dv$$

$$t = 1 + u^{2} + v^{2}, dt = 2u du$$

$$= \frac{1}{16} \int_{-6}^{2} v \int_{u=6}^{u=22} \sqrt{t} dt dv$$

$$= \frac{1}{16} \int_{-6}^{2} v \left(\frac{2t^{3/2}}{3}\right)_{u=6}^{u=22} dv$$

$$= \frac{1}{16} \int_{-6}^{2} v \left(\frac{2(485 + v^{2})^{3/2}}{3}\right) - v \left(\frac{2(37 + v^{2})^{3/2}}{3}\right) dv$$

$$= \frac{1}{16} \int_{-6}^{2} v \left(\frac{2(485 + v^{2})^{3/2}}{3}\right) - v \left(\frac{2(37 + v^{2})^{3/2}}{3}\right) dv$$

$$w = 485 + v^{2}, dw = 2v dv; z = 37 + v^{2}, dz = 2v dv$$

$$= \frac{1}{16} \int_{v=-6}^{v=2} \left(\frac{(w)^{3/2}}{3}\right) dw - \frac{1}{16} \int_{v=-6}^{v=2} \left(\frac{(z)^{3/2}}{3}\right) dz$$

$$= \frac{1}{8} \left(\frac{(w)^{5/2}}{15}\right)_{-6}^{v=2} - \frac{1}{8} \left(\frac{(z)^{5/2}}{15}\right)_{v=-6}^{2}$$

$$= \frac{-7276.863857}{1}$$

- 6. Let E be the region in the first quadrant that is above the line $y = \frac{x}{3}$, below the line y = 3x, and between the curves defined by xy = 3 and xy = 27.
 - (a) Sketch the region.
 - (b) Evaluate $\int \int (\frac{x^2}{y^2} + x^2 y^2) dA$. (Hint: Try u = xy and $v = \frac{y}{x}$.)
 - (c) Why was the hint a reasonable guess for a change of coordinates?
- 7. Do Exercises 13-18 of §16.1 in Stewart's Multivariable Calculus.

Solution:

- 13. \overline{IV} vectors with direction and magnitude equal to displacement, except flipped vertically.
- 14. V downward direction when x < y, upward when y < x, horizontal when x = y.
- 15. I when y = -2, vectors are horizontal.
- 16. \overline{VI} magnitude increases more with x than y.
- 17. III the magnitude/direction oscillates when either coordinate is fixed.

- 18. *II* direction becomes more vertical when x increases, while horizontal component oscillates.
- 8. Do Exercises 19-22 of §16.1 in Stewart's Multivariable Calculus.

Solution:

- 19. *IV* only constant vector field.
- 20. \overline{I} the vector field is constant when z is fixed.
- 21. III always positive vertical direction, same direction as displacement from origin for x and y.
- 22. \overline{II} same direction/magnitude as displacement from origin.
- 9. Do Exercises 31-34 of §16.1 in Stewart's Multivariable Calculus.

Solution:

- 31. \overline{III} gradient is (2x, 2y), so linearly increasing magnitude and same direction as displacement from origin.
- 32. [IV] gradient is (2x + y, x), thus the direction is close to horizontal near the y-axis and becomes more vertical as x increases.
- 33. II gradient is (2x + 2y, 2y + 2x). Since the x and y coordinates are the same, the direction is always the same (1,1), except with positive or negative magnitude.
- 34. I Gradient will include something with cos for both f_x and f_y coordinates, thus the magnitude will oscillate.