PROBABILITY DISTRIBUTIONS

Random Variable

G. KARTHIKEYAN THIRUVARUR DT

A random variable x is a function defined on a sample space s into the real numbers R such that the inverse image apoints or subset or interval of R is an event in S, for which probability is assigned.

Exercise 11.1

i) suppose x is the number of tails occurred when three fair coins are tossed once simultaneously. Find the values of the random variable x and turmber of points in its inverse images,

Banylow space S= SHHH, HHT, HTH, THH HTT, THT, TTH, TTT ? given that ncs)=8 x be the random variable denotes

no of tails

-x=0,1,2,3

o tail. X(HHH) =0 X

1 tail $X(THH) = I \times (THH) = I$

2 tail XCHTT) = 2 X(THT) = 2 X(TTH) = 2 rent acomment of editors

3 tail X(TTT)=3

x (w) denotes the number of tails

 $\times (w) = \begin{cases} 0 & \text{if } w = HHH \\ 1 & \text{if } w = HHT_1THH, HTH.} \\ 2 & \text{if } w = HTT_1THT, TTH.} \\ 3 & \text{if } w = TTT.} \end{cases}$

values of Random Variable	0	1	2	3	Total.
Number of points in inverse image	+1.	3	3	177	. 8

Excamples 11.1

suppose two coins are bossed one. If x denote the number of tails, w write down the sample space. (ii) find the inverse image of 1 (iii) the values of the random variable and humber of elements in its inverse images.

U sample space
$$3 = \{HH, HT, TH, TT\}$$
 $n(s) = 4$
U) \times be the number of tails $\times (TT) = 2 \times (TH) = 1 \times (HT) = 1$

Thirty convert $x(w) = \begin{cases} 2 & \text{if } w = TT \\ 1 & \text{if } w = TH, HT \end{cases}$

inverse image of 1 is STH, HT?

value of Random variable.	1000	1	2	Total
Number of elements in inverse image	11/1/2	2	1100	F 54 €

supposiz a pair of unbiased dice is rolled once. If x denotes the total score of two dice, write down.

the sample space (i) the values taken by the random variable x (iii) The inverse image of 10, (iv) the number of elements in inverse image of x.

i) Sample spaces=
$$\begin{cases} C(1), C(1/2); C(1/3), C(1/4), C(1/5), C(1/6) \\ (2/1), (2/2), (2/3), (2/4), (2/5), (2/6) \\ (3/1), (3/2), (3/3), (3/4), (3/5), (3/6) \\ (4/1), (4/2), (4/3), (4/4), (4/5), (4/6) \\ (5/1), (5/2), (5/3), (5/4), (5/5), (5/6) \\ \times (\alpha/\beta) = \alpha + \beta \qquad (6/1), (6/2), (6/3), (6/4), (6/5), (6/6) \end{cases}$$

$$\times (1/1) = 2$$

$$\times (1/2) = \times (2/1) \pm 3$$

x(1/1)=2

x(1/2) = x(2/1) #30 10 m 21 m 21 m 21/21 12 12 $\times (1/3), = \times (2/2) = \times (3/1) = 4$

 $\times (1/4)_1 = \times (2/3) = \times (3/2) = \times (4/1) = 5$

×(1,5) = ×(2,4) = ×(3,3) = ×(4,2) = ×(5,1)=6

X(1,6) = X(2,5) = X(3,4) = X(4,3) = X(5,2) = X(6,1) = 7

x(2,6) = x(3,5) = x(4,4) = x(5,3) = x(6,2) = 8

 $\times (3,6) = \times (4,5) = \times (5,4) = \times (6,3) = 9$ $\times (4,5) = \times (5,5) = \times (6,4) = 10$ $\times (5,6) = \times (6,5) = 11$ $\times (6,6) = 12$

(i) X= 2,3,4,5,6,7,8,9,10,11,12

Value of random variable 2 3 4 5 6 7 8 9 10 11 1216

Number of elements in 1 2 3 4 5 6 5 4 3 2 1 36

Example 11,3

An win contains 2 white and 3 red balls.

A sample of 3 balls chosen. If & denotes the number of red balls, Find the value of random variable x and its number of inverse images iwle from

 $n(9) = 5C_3 = 5C_2 = \frac{5\times4}{1\times2} = 10$

× denote no. of red balls

x = 1,2,3 (o red not possible

 $x(one red) = 2c_2 \times 3c_1 = 1 \times 3 = 3$ $x(bwo red) = 2c_1 \times 3c_2 = 2 \times 3 = 6$ $x(rbose red) = 2c_2 \times 3c_3 = 1 \times 1 = 6$

value of random variable x	1	. 2	3	TOTAL
Number of elements in images	3.,	6	1	10

Example 11.4

Two balls are chosen randomly from an urn containing & white and 4 black balls, suppose that we win. \$30 for each black ball selected, and we lose. \$20 for each, white ball selected. If x denotes the winning amount, then find the values of x and number of points in its inverse images

 $n(9) = 100_2 = \frac{15}{142} = 45$

W	B	rotal
6	4	10

x denote winning amount

x (2 black) = 30+30=60 x(1 black,1 white) = 30-20=10 x(2 white) = 2(-20) = -40 3A

$$x = -40, 10, 60$$
 $x(-40) = x(2 \text{ white}) = 6c_2 \times 4c_0$
 $= \frac{3c_2 \times 5}{1 \times 2} \times 1 = 15$
 $x(10) = x(1 \text{ white } 1 \text{ black}) = 6c_1 \times 4c_1 = 6 \times 4 = 24$
 $x(60) = x(2 \text{ black}) = 6c_0 4c_2 = 1 \times \frac{2}{1 \times 2} = 6$

Values of the Random variable 60 10 -40 Total Number of elements in inverse 6 24 15 45

²⁾ In a pack of 52 playing cards, two cards are drawn at random simultaneously. If the number of black cards drawn is a random variable, find the values of the random variable and number of points in its inverse images.

value of random variable	. 0		2	TOTAL
No. of points in Inverse Image	325	676	325	1326

3) An urn contains 5 mangoes and 4 apples. Three fruits are taken at random. If the number of apples taken is a random varriable. Then find the values of the random variable and number of points in the inverse images,

Total Fruits
Total 5+4=9 Cwithout replacing) $N(3) = 9(3) = \frac{3}{4} \times \frac{4}{5} \times 7 = 84$

Let x be the random variable denotes the no. of apples taken. X=0,1,2,3

x (w) denots no of apples.

Padasalai. Net $X(w) = \begin{cases} 0 & \text{if no apple (3 mangles) baken} \\ 1 & \text{if one apple (2 mangles) baken} \end{cases}$ 2 1'F two apples (1 mango) taken. 3 if 3 apples (no mango) takenx(no apple) = x(0) = 4C0 5C3 = 1 x 5x4x9 $\times (0) = 10$ x (one apple) =x(1)= 4(1×5(2) = 4×5x4 = 40 \times (two apple) = \times (2) = $46 \times 56 = \frac{2 \times 3}{1 \times 6} \times 5 = 30$ x(3apples) = x(3) = 46x56 = 46x1 = 42 3 Total value of Random variable X Inverse image 10 40 30 4 Number of elements in 4) Two balls are chosen randomly from an won containing 6 red and 8 black balls, suppose that we win 215 por each red ball selected and we lose ZIO for 10 black ball selected . i devictes the winning amount then find the values of x and number of points in its inverse images, Total balls = 6+8=14 $n(s) = 14C_2 = \frac{14 \times 13}{1 \times 3} = 91$ Let x be the amount won X=-10×2,-10+15, 15+15 $\times = -20, 5, 30$ ×(w)= \(-20. If two black balls. 5 if one black one red. x (two black ball.) =x (-20) = 66 ×86 = 1×8×7 = 28 \times (1 blanck 1 red) = \times (5) = . 64×84 = 6×8 = 48 $\times (2 \text{ red balls}) = \times (30) = 66 \times 86 = \frac{3}{1 \times 2} \times 1 = 15$ value of radiom variable -20 5 30 Total No. of points in Inverse Image 28 48 15 91

> uestions & Answer Keys to our email id - padasalai net@gmail.com Scanned by CamScanner

www.Padasalai.Net & A www.TroThesc.face 301

5) A six sided die is marked 2 www.TroThesc.face 301

two of its paces and 4 on remaining theree faces

the of its paces and 4 on remaining theree faces

The die is therown twice IT x denote the total

The die is therown twice iTf x denote the total

scores in two therows, find the values of the random variable and number of points in its inverse images,

```
hcs)=36/
2 4 5 5 6 6 6
                      x is assigned to each point
  5 6 6 7
                      (X/B) the sum on the faces
3 5 6 6 7
                             X(X,B)=X+B
         7888
                       x(2/2) = 4
         7 8 88
                     x(2,3)=x(3)2)=5
                   x(2,14) = (3,3) = x(4,2) = 6
x(2/2) onetimes
     2 times
X(2,3)
                   x(4,3) = x(3,4) = 7
XC3.27 2 times
                   XC4/4)=8
         > takes the tolues 4,5,6,7,8
   values of random
                      4 5 6
   Number of elements in 1 4 10 12 9
                                           36
```

A random variable x is said to be a discrete random variable If the range of X is countable.

probability mass function (PMF)

If x is a discrete random variable with discrete values $x_1, x_2, \dots, x_n, \dots$ then the function f or P defined by $f(x_k) = p(x = x_k)$, for $k = 1, 2, \dots, n$.

Its called PMF.

* $f(x_k) > 0$ for $k = 1, 2, \dots, n$ and $x \leq f(x_k) = 1$

Send Your Questions & Answer Keys to our email id - padasalai net@gmail.com Scanned by CamScanner

cumulative Distribution Function (or) Distribution Function

$$F(x) = p(x \le x) = \sum_{x \in X} f(xi), x \in R$$

$$*$$
 $f(x_i) = F(x_i) - F(x_{i-1})$, $i = 1,2,3,...$

Exercise 11,2

i) Three pair coins are tossed simultaneously. Find the probability mass function for number of heads occurred.

$$S = \{ HHT, THH, HHT, THH, HHH \} = 2$$

n(s)=8

no or heads = 17,12,3

values of Rundom variable	0		2 3	Tolal
Namber of elements in inverse images	1	3 (::::::::::::::::::::::::::::::::::::	3 1	8-

p(x=0)= 1/8 p(x=1)= 3 p(x=2)= 3 p(x=3)= 1/8

probability mass function is

\propto	0	7	2	3
t00)	1/8	3/8	3/8	1/8

2) A six sided die is marked 1' on one face.
3' on two of its paces, and 5 on remaining three paces, the die is thrown twice If x demotes the total ecore in two throws, find

i) the probability mass function (ii) the cumulative distribution function (iii) PC+=×<10) (1) P(×>6)

values of RVX	2	4	6	8	10	TOTAL
Number of elements in inverse images	1	4	10	12	9	36

$$p(x=2) = \frac{1}{36}, p(x=4) = \frac{4}{36}, p(x=6) = \frac{10}{36}, p(x=8) = \frac{12}{36}$$

$$p(x=10) = \frac{9}{36}$$

(1) The probability mass function is

(ii)
$$P(4 \le x \le 10) = P(x = 4) + P(x = 8) + P(x = 8)$$

= $\frac{1}{36} + \frac{1}{36} = \frac{1}{36} = \frac{26}{36} = \frac{1}{36} = \frac{1}{36$

3) Find the probability mass function and cumulative distribution function of number of girls child in families with 4 children, assuming equal probabilities for boys and girls.

$$n(9)=2^4=16$$

Let x be the random variable denotes no of girls child.

G. Kantukevan

Thurwairum DT

value of R.V X	0	1	2	3	4,
Number of elements	400	40,	402	403	404
In Inverse Image	1	4	6	4	. 1

$$P(x=0) = \frac{1}{16} = P(x=4)$$

 $P(x=1) = \frac{4}{164} = P(x=3)$

$$P(x=2) = 9/88$$

Probability mass function is $f(x) = \begin{cases} \frac{1}{16} & \text{for } x=0,4 \\ \frac{1}{16} & \text{for } x=0,4 \end{cases}$

$$F(x) = P(x \le x) \quad |x| \quad$$

$$F(x) = P(x \le \infty)$$
 | $x = 0$ | $x = 2$ | $x = 0$ | $x = 2$ | $x =$

$$F(4) = P(x \le 4) = \frac{15}{16} + \frac{1}{16} = \frac{16}{16} = 1$$
cumulative distribution function is

OL COLD	11 CM 200	LOWING	011 03	*****		
3C	0	0100	2	3	4	
FCX)	1/16	3/6	1/16	15/16	1	

4) suppose a discrete random variable can only take the values o, 1, and 2. The probability mass function is defined by.

$$f(x) = \begin{cases} \frac{2^{2}+1}{k}, & \text{for } x=0,1/2 \end{cases}$$

Find the w value of k (ii), cumulative distribution function (iii) PCX> 1)

given for is a P.M.F.

$$\leq f(x) = 1$$

$$0^{2+1} + \frac{1^{2}+1}{1^{2}} + \frac{2^{2}+1}{1^{2}} = 1$$

P(x=-1) = F(-1) = 0.15 F(x=0) = F(0)-F(-1)=0.35-015

> . , PCX=0)= 0,20 PCX=1)=FCD-FCO)=0,60-0,35 DCX=1) =0.25

Function

P(x=2)=F(2)-F(1)=0.85-060

=0.25

P(X=3) = F(3) F(2) = 1-0.85

i) probability mass function is P(x=x) 0.15 0.20 0.25 0.25 0.15

(ii) PCx<0) = PCx=0) = f(0)+f(-1) P(x=-1)+p(x=0) = 0,20+0,15

(iii) P(x>2) = P(2 < x < 3) = = p(x=2) + p(x=3)= 0,25+0,15 -0,40

Find in the probability mass function in p(x=3) and

 $f(0) = P(X=0) = F(0) = \frac{1}{2}$ $f(1) = P(X=1) = F(1) - F(0) = \frac{2}{3} - \frac{1}{2} = \frac{6-5}{10} - \frac{1}{10}$ $f(2) = P(X=2) = F(2) - F(1) = \frac{4}{3} - \frac{2}{3} = \frac{1}{10}$ $f(3) = P(X=3) = F(3) - F(2) = \frac{9}{10} - \frac{4}{5} = \frac{1}{10}$

Send Your Questions & Answer Keys to our email id - padasalai.net@gmail.com Scanned by CamScanner

www.Padasalai.Net

www.TrbTnpsc.com

@ The probability density function of x is

$$f(x) = \int x \quad 0 < x < 1$$

$$000 \Rightarrow \begin{cases} 2 - x \quad 1 \leq x < 2 \end{cases}$$

$$000 \Rightarrow \begin{cases} 0 \quad 0 + \text{harwide} \\ 92 \text{in } p(0) = x \leq 1.8 \end{cases}$$

$$92 \text{in } p(0) = x \leq 1.8$$

$$\begin{array}{ll}
p(0.2) & = 0.6 \\
= \int_{0.2}^{0.6} f(x) dx = \int_{0.2}^{0.6} x dx \\
= \left[\frac{x^2}{2}\right]_{0.6}^{0.6} = \frac{1}{2} \left[0.6^2 - 0.2^2\right]
\end{array}$$

$$= 0.16$$

$$= 0.16$$

$$p(1.2 \le x \le 1.8) = \int_{1.2}^{1.8} f(x) dx = \int_{1.2}^{1.8} (2-x) dx$$

$$= -\frac{[2-x)^2}{2} \Big]_{1,2}^{1,8} = -\frac{1}{2} \Big[(2-1)8 \Big]_{-(2-1)2}^{2} \Big]$$

$$= -\frac{1}{2} \Big[(2-1)8 \Big]_{-(2-1)2}^{2} \Big[(2-1)8 \Big]_{-(2-1)2}^{2} \Big]$$

$$= -\frac{1}{2} \left[0.2^2 - 0.8^2 \right] = -\frac{1}{2} \left[0.04 - 0.64 \right]$$
$$= \frac{1}{2} \left[20.60 \right] = 0.30$$

(iii)
$$P(0.5 \le x < 1.5) = \int_{0.5}^{1.5} f(x) dx = \int_{0.5}^{1.5} f(x) dx + \int_{0.5}^{1.5} f(x) dx$$

$$= \int_{0.5}^{1} x dx + \int_{0.5}^{1.5} (2 + x) dx$$

$$=\frac{1}{2}\left[\left(\frac{2}{2}-0.5^{2}\right)-\left(\left(2-1.5\right)^{2}-\left(2-0^{2}\right)\right]$$

$$=\frac{1}{2}\left[\left(\frac{2}{2}-0.5^{2}\right)-\left(\left(2-1.5\right)^{2}-\left(2-0^{2}\right)\right]$$

$$=\frac{1}{2}\left[(1-0.25)-(0.5^2-1^2)\right]$$

2 www.Padasalai.Net www.TrbTnpsc.com

3 Suppose the amount of milk sold daily at a milk booth is distributed with a minimum of 200 litres and a maximum of 600 litres with probability density punction fox= { k 200 = x < 600

Find is the value of k is the distribution function (ii) The probability that dialy sales will fall between 300 litres and 500 litres.

i) given for is a P.d.f
$$\int_{-\infty}^{60} f \cos d\alpha = 1$$

$$\int_{-\infty}^{600} k d\alpha = 1$$

$$\int_{-\infty}^{600} k d\alpha = 1$$

 $\int_{0}^{600} k dx = 1 \Rightarrow k \left[\frac{1}{200} \right] = 1$ $200 \qquad k (600 - 200) = 1$ 400 k = 1

(ii) distribution function
$$f(x) = \int_{-\infty}^{\infty} f(t) dt$$
when $f(x) = \int_{-\infty}^{\infty} f(t) dt$

G. Karthikeyan
$$= 0 + \int_{-200}^{\infty} \frac{1}{400} dt = \frac{1}{400} \left[\begin{array}{c} t \\ 1 \\ 200 \end{array} \right]$$
Thirmwentured

$$=\frac{200}{400} - \frac{200}{400}$$

$$=\frac{x}{400}-1_{2}$$
when
$$x \in (600,00)$$

$$=(x) = \int_{-\infty}^{\infty} f(t)dt + \int_{-\infty}^{\infty} f(t)dt$$

Send Your Questions & Answer Keys to our email id - padasalai net@gmail.com Scanned by CamScanner

www.TrbTnpsc.com

(iii)
$$P(300 < x < 500) = F(500 +) - F(300)$$

$$= \left(\frac{500}{400} - \frac{1}{2}\right) - \left(\frac{300}{400} - \frac{1}{2}\right)$$

$$= \frac{500 - 300}{400} + \frac{1}{2}$$

$$= \frac{200}{400} = \frac{1}{2}$$

The probability density function of x is given by fox) = \ ke - 3/3 for x>0

Find is the value of k (i) The distribution pundion jii) PCXZ3) (IV PC5=x) (V PCXZ4)

aiven fooris a p.d.f.
$$\int_{-\infty}^{\infty} e^{-x/3} dx = 1$$

K. [e 3/3] = 1 -3K [80-e.] = -3K[0-1]=- K=-1

a) $x \in C_0, 0$ $F(x) = \int_{-\infty}^{\infty} p(x) dx = 0$

$$=1-e^{-xy_3}$$

$$=(x)=\begin{cases} 1-e^{-xy_3} & \text{for } x > 0 \\ 0 & \text{for } x \leq 0 \end{cases}$$

www.Padasalai.Net www.TrbTnpsc.com
$$P(X < 3) = P(X \le 3) = F(3) = 1 - e^{-1}$$

(ii)
$$P(5 \le x) = P(x > 5) = 1 - P(x < 5) = 1 - F(5)$$

$$= 1 - (1 - e^{-5/3})$$

$$= e^{-8/3}$$

Tf x is the random variable with probability density function fox) given by $f(x) = \begin{cases} x+1 & -1 \le x < 0 \\ -x+1 & 0 \le x < 11 \end{cases}$

pind the distribution punction Fax (i) pc-0,5≤×≤0,5)

is distribution function

a) when
$$x \in (-\infty, -1)$$

$$F(x) = \int_{-\infty}^{\infty} f(t) dt = 0$$

$$F(x) = \int_{\infty}^{\infty} f(x) dx = \int_{\infty}^{\infty} f(x) dx + \int_{\infty}^{\infty} f(x) dx$$

$$= \left[\frac{1}{2} + t \right]_{1}^{\infty} = \frac{2}{2} + x - \frac{1}{2} + 1$$

c) when
$$\infty \in [0,1)$$

6) If x is the random variable with distribution function Fox) given by

then find the in The pidif, fox)

$$f(x) = \frac{d}{dx}(f(x))$$

$$f(x) = \begin{cases} 0 & x < 0 \\ \frac{1}{2}(2x+1) & 0 \leq x < 1 \end{cases}$$

www.Padasalai.Net (6) www.TrbTnpsc.com
$$f(x) = \begin{cases} \frac{1}{2}(2x+1) & 0 \le x < 1 \\ 0 & 0 + hexivise. \end{cases}$$
(ii) $P(0.3 \le x \le 0.6) = F(0.6) - F(0.3)$

$$= \frac{1}{2}(0.6^2 + 0.6) - \frac{1}{2}(0.3^2 + 0.3)$$

$$= \frac{1}{2}[0.36 + 0.6 - 0.09 - 0.3]$$

$$= \frac{1}{2}[0.96 - 0.39]$$

$$= \frac{1}{2}[0.57]$$

$$= 0.285 \qquad G. kasthikeyan Thirwarur DT
$$0.3 = \frac{1}{2}\left[\frac{2x+1}{2}\right] = 0.6$$

$$= \frac{1}{2}\left[\frac{2x+1}{2}\right] = 0.6$$
(Book answer on thirwarur DT)
$$= \frac{1}{3}\left[4.84 - 2.56\right] = \frac{1}{3}\left[2.28\right]$$
Maline matrical Experitation
$$= \frac{1}{3}\left[4.84 - 2.56\right] = \frac{1}{3}\left[2.28\right]$$
Maline matrical Experitation$$

The expected value or mean or mathematical expectation of x, denoted by E(x) or M is

$$E(x) = \begin{cases} \begin{cases} x & \text{f(x)} \end{cases} & \text{if } x \text{ is discrete} \\ \int x & \text{f(x)} dx \end{cases} & \text{if } x \text{ is continuous} \end{cases}$$

*
$$E(g(x)) = \begin{cases} \begin{cases} g(x) f(x) & \text{if } g(x) \text{ is distrete} \\ \\ g(x) f(x) & \text{if } g(x) \text{ is distrete} \end{cases}$$

continuous

$$\times$$
 E(1)= $\int \frac{1}{2} f(x) dx = 1$ if x is clusterate $\int_{-\infty}^{\infty} f(x) dx = 1$ if x is continuous.

vouriance

$$V(x) = E(x^2) - (E(x))^2 = E(x-M)^2$$

$$V(x) = E(x-E(x))^2 = E(x-M)^2$$

properties

$$0 = (ax+b) = a = (x) + b$$

Exercise 11.4

1 For the random variable x with the given p.m.f. as below, find the mean and variance.

(i)
$$f(x) = \int_{-\frac{1}{2}}^{\frac{1}{2}} x = 0.1/3.4$$

903	. x	0	1	2 /	3)	4	5
	(fox)	1/5	1/5	16	1/5	1/5	to
008	zfox)	Ď	1/5	PHS	315	45	5 10
	schex.)	13	1/5	4.10	হ্ম ত	16	25

$$E(x) = \frac{8}{5} + \frac{7}{10} = \frac{16+7}{10} = \frac{23}{10}$$
 [mean=2.3]

$$= 8.1 - 2.3^2$$
 mean = 2.3
= $8.1 - 5.29$ variance = 2.81

(i)
$$f(x) = \begin{cases} 4-x \\ -2.81 \end{cases}$$

	www.	Padasalai.Net	(8)	2038	www.	TrbTnpsc.com +	
	William .	refere)	36	4	3 6		
	1010	2200					
	WWW.P.	x2fox)	र्ट	8	6	WANTED .	
	EC×)=	ex fox)	= 3	+ 4+	3 = 10	± = 1.667	
	and the second second					PARTY AND A CONTRACTOR OF THE PARTY OF THE P	F 2
ti ter	ECX5)=	= Exctox)	=3+	8+8	= 20) [[27
	V	n(x)= EC	×2)-(E	(x))	2 3		
		= = =	5 -(글,	2 2	0_25	= 60-50= 105 189	
		=0.	- (2) - (4)		-		
	mean=1	67, var		=0.5	6	variance = 0.56	
(III)					٥	10	
	$f(x) = \S$	0 0	∠x< Hiovivi	2 9e		G. Karthi Keyan	
		$x = \int_{-\infty}^{2} x f$		1000	187 5	PGIT GGHSS	2007
	EC	$x = \int x dx$	سريم	~		Thirumakkotta	
		20-01	(x - 1) c	iv (=	2 (1	x2-20) dx.	
		= 2)					
11 1	, – 1	= 2 3	_~Z		2 [/ 3	3-4)-(3-4)	
	added over						
	a fil tops	=2 8-4	13+	2 = 3	2 [골 -	3 = 7 [4-9]	
	E(x)	픻	261. 1000.				
33213	120	3)= :-	-7.7-	1 3		2012年入事。	
	Ecx	$) = \int_{-\infty}^{\infty} d$	oo de	x 1	4-2	And the Samuel of the Samuel o	
		12		Odo	C	(23-x2)dx	
		5				53.700/N -7-70	
26/8		=2 [3	4 -2	372	= 2 [(4-4)	
		=2[16/4	-물-	+4	=2	[- - 3] = + - 1 1 5 - 28	3
	E.	》=당		rei ;		g.m	
182	v	ar(x) = E	(x2)-	(E(X)	2	51-50	
- 2/3/a	Send Your Ques	= l tions & Answe	7 _ (5 Keys to) = 6 our er	17 - 2 naffid - p	51-50 18 Dadasalai net@gmail.com Scanned by Car	n S ca

Scanned by CamScanner

Let x be the random variable denotes the number of red balls

RED	BLACK	TOTAL		
4	3	7		

$$f(0) = P(x=0) = \frac{4C_0 \times 3C_2}{7C_2} = \frac{1 \times 3}{\frac{7 \times 6}{1 \times 3}} = \frac{3}{21} = \frac{1}{7}$$

$$f(0) = P(x=1) = \frac{4C_1 \times 3C_1}{7C_2} = \frac{4 \times 3}{\frac{21}{7}} = \frac{4}{7}$$

$$f(2) = P(x=2) = \frac{4C_2 \times 3C_0}{7C_2} = \frac{26 \times 1}{217} = \frac{2}{7}$$

probability mass function is $\frac{x}{px=x}$ o

www.Padasalai.Net

$$E(x) = \xi x + cx$$

 $= o(\frac{1}{7}) + i(\frac{4}{7}) + 2(\frac{2}{7})$
 $= o + \frac{4}{7} + \frac{4}{7}$

mean = &

3) If M and 02 are the mean and variance of the discrete. random variable x and E(x+3)=10 and E(x+3)2=116 find 1 and 02

$$E(x+3)^2 = 116$$

 $E(x^2+6x+9) = 116$

G. Karthikeyan

$$E(x^2)+6E(x)+9=116$$

 $E(x^2)+6(7)+9=116$

$$E(x^2) = 116 - 51$$

 $E(x^2) = 65$

$$VOJC(x) = ECx^2 - (E(x))^2 = 65 - 7^2 = 65 - 49 = 16$$

$$N = 7$$
 $\sigma^2 = 16$

4) Four fair coins are tossed once, Find the probability mass function, mean and variance for number of heads $n(s) = 2^4 = 16$

Let x be the random variable. denotes number

$$p(x=0) = \frac{4C_0}{16} = \frac{1}{16}$$
, $p(x=1) = \frac{4C_1}{16} = \frac{4}{16}$

$$p(x=2) = \frac{4G}{16} = \frac{6}{16}$$
, $p(x=3) = \frac{4G}{16} = \frac{4}{16}$, $p(x=4) = \frac{4G}{16}$

p.m.f vs	20	0	1	2	3	4	
ď	fcx)	16	4	<u>6</u> 16	4	76	
	xf(x)	0	4	12/16	12/6	4	
	2500	0	#	24	36	16	

Send Your Questions & Answer Keys to our email id - padasalai net@gmail.com Scanned by CamScanner

(21) mean=2 E(x2)= 要28fcx)= 0+在+2+26+16 $|\nabla u_{\lambda}(x)| = |\nabla u_{\lambda}(x)|^{2} = \frac{86}{16} = 12$ mean=2

5) A commuter train punctually at a station variance =1 every half howr. Each morning, a student leaves his house to the train station. Let x denote the amount of time, in minutes, that the student waits for the train from the time he reaches the train station. It is known that the post of x is fix)= \frac{1}{30} 0<x<30

elsewhere obtain and interpret the expected value of the random

variable X.

given x be the random variable denotes the waiting time x is continuous on (0.30) $E(x) = \int x f(x) dx = \int_{30}^{30} dx$ G. Karr Hukrayam = [302-15] Thiruvairus Di

 $=\frac{30\times20}{30\times2}=15$

E(X)=15 expected value of waiting time = 15 minutes,

6) The time to failure in thiousands of hours of an electronic equipment used in a manufactured computer has the density function fox= 3 = 3x x>0 elsewhore

Find the expected lipe of this electronic equipment,

$$E(x) = \int_{-\infty}^{\infty} x f(x) dx$$

$$= \int_{0}^{\infty} x' 3 e^{-3x} dx$$

$$= 3 \frac{11}{3^{(H)}} = \frac{31}{93}$$

$$E(x) = \frac{1}{3}$$

Send Your Questions & Answer Keys to our email id - padasalai.net@gmail.com Scanned by CamScanner

www.Padasalai.Net $E(x) = \begin{cases} x + f(x) \end{cases}$ www.TrbTnpsc.com $= 200 \left(\frac{1}{600}\right) + 100 \times 4 + 50 \times 6 + 0 \frac{589}{600} + 0 \frac{589}{600}$ $= \frac{200 + 400 + 300}{600} = \frac{900}{600} = \frac{3}{2} = 1.50$ Expected amount winning = \$\frac{1}{600}\$ one Ticket cost = \$\frac{2}{600}\$ oo profit (differce) = 1.50 - 2.00 = -0.50 = 1.50 + 2.00 = 1.50 + 2.00 = -0.50 = 1.50 + 2.00 = -0.50 = 1.50 + 2.00 = -0.50

The Bernoulli distribution

Let x be to random variable follows Bernoullis trial x(success)=1, x(failure)=0 such that

$$f\infty = \int_{q=HP}^{P} x=1$$
 where $0 < P < 1$

x is called Bernoulli R.v.

* mean = p | variance = pq

Binomist distribution

The binomial random variable x, equals

no. of success with probability P, 9=1-P too a

failure, $p \cdot m \cdot f$ is $f(x) = nC_x P^x (1-P)^{n-x}$, $c = 0, 1, 2, \cdots n$. $f(x) = nC_x P^x q^{n-x}, x = 0, 1, 2, \cdots n$

mean=np variance=npq p+q=1

Exercise 11.5

i) compute p(x=k) for the binomial distribution B(n,P) where is n=6, $P=\frac{1}{3}$, k=3

$$b(x=x) = 6c^{3} \left(\frac{1}{3}\right)^{3} \left(\frac{3}{3}\right)^{3} = \frac{50 \times 53}{36}$$

$$b(x=x) = 6c^{3} \left(\frac{1}{3}\right)^{3} \left(\frac{3}{3}\right)^{6-3}$$

$$b(x=x) = 6c^{3} \left(\frac{1}{3}\right)^{3} \left(\frac{3}{3}\right)^{6-3}$$

$$b(x=x) = 6c^{3} \left(\frac{1}{3}\right)^{3} \left(\frac{3}{3}\right)^{6-3}$$

www.Padasalai.Net
$$\frac{20}{20\times 8}$$
 $p(X=3) = \frac{160}{20\times 8}$ $p(X=3) = \frac{160}{20\times 8}$ $p(X=4) = \frac{100}{5}$, $k=4$ $p(X=k) = \frac{100}{5}$, $k=6$ p

Send Your Questions & Answer Keys to our email id - padasalai net@gmail.com Scanned by CamScanner

www.Padasalai.Net 3) Using binomial distribution find the mean and variance of x for the following experiments.

(1) A fair coin is tossed 100 times, and x denote the

number of heads.

n=100 P= probability of getting head P=1/2 2=1-P=1/2

mean=np=100x=50 variance=npq=100=2=25

(i) A fair die is tossed 240 times, and x denotes the number of times that 4 appeared.

n=240 P= probability of getting 4 P=1/6 9=1-1=1-1/6=== mean=np= 240x1 = 40 variance=npq=240x1x5=200=100

1) The probability that a certain kind of component will survive a electrical test is 3. Find the probability that exactly 3 of the 5 components tested survive.

n=3 Let x be the random variable denotes 10.00 siurive components.

X=0112/3/45

P= probability of a companents survive ×~Q(時漢) agter test

 $P = \frac{3}{4}$ q = 1 - P $q = 1 - \frac{3}{4} = \frac{1}{4}$ $p(x=\infty) = nc_{\infty} p^{\infty} q^{1-\infty}$, x=0,1,....5 $P(x=x) = 5C_{\infty} \left(\frac{3}{4}\right)^{x} \left(\frac{1}{4}\right)^{5-\infty}$

P(exactly 3 survive) = P(x=3)

 $=5(3(\frac{3}{4})^3(\frac{1}{4})^{5-3}$ G. Karthi keyan $= \frac{5 \times 4}{1 \times 2} \left(\frac{3}{4}\right)^{3} \left(\frac{1}{4}\right)^{2}$ $= \frac{10}{4^{3}} \frac{3^{3}}{4^{2}} = \frac{270}{1024}$ G. Karthikeyan

3 A retailer purchases a certain kind of electronic device from a manufacturer, The manufacturer indicates that the defective device rate is 5%

The inspector of the retailer randomly picks 10 items from a shipment, what is the Probability that there will be i) at least one defective item (ii) exactly 2 defective items.

Send Your Questions & Answer Keys to our email id - padasalai net@gmail.com Scanned by CamScanner

www.Padasalai.Net www.TrbTnpsc.com x be the random variable denotes no. of defective items x~8 (10, 0.05) p = probability of a defective item P= 5% $p(x=x) = n(x) p^{x}q^{n-x}$ D=0.05 P(x=x) = 100x (0,05)x (0,95)0-x. 2=1-P=0,95 i) atteast one defective p(x >1) = 1- P'(x<1) =1-P(x=0)=1+100 (0.05) (0.95) =1-(0,95)10 (ii) exactly 2 defective =P(x=2)= 1002 (0.05)2 (0.95) =10C2 (0.05)2 (0.95)8 B) If the probability that a phoresent light has a useful life of airleast 600 hours is 0,9, find. the probability that among 12 such lights in attending to will have a useful life of otleast 600 hours, q=1-P=1-0.9=01 P=0.9 x be the random variable denotes useful life. of attemst 600 hours of a light, X~B(12,0.9) $p(x=x) = nc_x p^x q^{n-x}$ $p(x=x) = 12c_{\infty} (0.9)^{2} (0.1)^{12-2}$ is escactly 10 $P(x=10) = 12C_{10}(0.9)^{10}(0.1)^{12-10}$ =120/10 (0,9)10 (0,1)2 (ii) atleast 11 $P(x \ge 11) = P(x = 11) + P(x = 12)$ = 12(11 (0:4)), (0:1), +15(15 (0:4), (0:1) $= 12 (0.9)^{11} (0.1) + 1 (0.9)^{12} (1)$

www.Padasalai.Net $= (0.9)^{11} \begin{bmatrix} 12 \times 0.1 + 0.9 \end{bmatrix}$ www.TrbTnpsc.com =(0,9)"[1,2+0,9] PC×>11) =21 (0,9)11 (iii) atteast 2 will not have a useful life of atleast = PC×<11)

p(atleast = 1-PC×>11)

[each Probability having 2 or more depecting] = 1-(21)(0,9)1 1) The mean and standard deviation of a binomial variable x are respectively 6 and 2. Find in The probability mass function (ii) P(x=3) (iii) P(x≥2) S-D2=4 mean=6 S.D=2 NP=6-0 variance=4 npg=4-2 ② > 200 = 1 9=== P=1-9=1-3 $0 \Rightarrow n = 6$ i probability mass function $p(x=x) = nc_x p^x q^{n-x}$ $p(x=x) = 18c_x (\frac{1}{3})^x (\frac{2}{3})^{18-3c}$ (i) PCX=3)=18(3 (3)(3)(3)18-3 $= 180^{3} (\frac{1}{3})^{3} (\frac{2}{3})^{12}$ (iii) P(×≥2) = 1-P(×<2) = 1- [p(x=0)+p(x=1)] $=1-\left[18c_{0}\left(\frac{1}{3}\right)^{6}\left(\frac{2}{3}\right)^{18-0}+18c_{1}\left(\frac{1}{3}\right)^{2}\left(\frac{2}{3}\right)^{18-1}\right]$ =1-[1(1)(3)18+18 支傷)17 =1-(3)17 [3+6]

=1-3(3)17

(Book answer wrong)

(checking)
$$n=5$$
 $P=\frac{1}{5}$ $q=\frac{4}{5}$

$$P(x=1)=5C_{1}\left(\frac{1}{5}\right)^{1}\left(\frac{4}{5}\right)^{5-1}$$

$$=\frac{1}{5}\left(\frac{4}{5}\right)^{4}=\frac{4^{4}}{5^{4}}=\frac{256}{25\times25}\times\frac{16}{4\times4}$$

$$P(x=1)=\frac{4096}{10000}=0.4096$$
(correct answer power) 10000

Need suggestions

G. Korthi Keyan
PG ASST GGHSS
Thirumakkottai
Thiruvarur DT
9715634957