Matemática Discreta

Matemática Discreta

Agrupamentos e Identidades Combinatórias

Universidade de Aveiro 2016/2017

http://moodle.ua.pt

Número de arranjos com repetição de *n* elementos *k* a *k*

Número de configurações de *k* objectos (escolhidos de entre *n* tipos de objectos) que dependem da ordem e podem conter mais do que um objecto do mesmo tipo.

Notação
$$\rightarrow A_n^{(k)}$$
.

Pelo princípio da multiplicação tem-se que $A_n^{(k)} = n^k$ (verificar!).

Exemplo: Supondo que se encontra disponível um número não limitado de bolas vermelhas, azuis e pretas e sabendo que as bolas da mesma cor são indistinguíveis, determine o número de sequências de k=5 bolas que é possível formar.

Resposta: $A_3^{(5)} = 35 = 243$.

Arranjos simples (ou sem repetição) de n elementos k a k

Número de configurações de k objectos (escolhidos de entre n tipos de objectos) que dependem da ordem.

Notação
$$\rightarrow A_{n,k}$$
.

Usando o princípio da multiplicação generalizada mostra-se que (prove!)

$$A_{n,k} = n \times (n-1) \times \cdots \times (n-k+1).$$

Permutações (simples) de *n* elementos:

$$P_n = A_{n,n} = n \times (n-1) \times (n-2) \times \cdots \times 3 \times 2 \times 1 = n!$$

Por convenção, $P_0 = 0! = 1$.

Arranjos com e sem repetição

Arranjos simples:

$$A_{n,k} = \frac{n!}{(n-k)!}$$

Observação: Dado $\alpha \in \mathbb{R}$ e $k \in \mathbb{N}$, o coeficiente factorial $(\alpha)_k$ é definido por

$$(\alpha)_k = \alpha(\alpha-1)\cdots(\alpha-k+1).$$

Consequentemente, $A_{n,k} = (n)_k$.

Arranjos com e sem repetição

Exemplos:

Quantas sequências podemos formar com uma bola azul, uma bola vermelha e uma bola preta?

Resposta: $P_3 = 3! = 6$.

De quantas maneiras se podem sentar 5 pessoas em 3 cadeiras distintas (sentando-se uma pessoa em cada cadeira)? Resposta: $A_{5,3} = \frac{5!}{(5-3)!} = 5 \times 4 \times 3 = 60$.

Qual o número de alinhamentos possíveis de 12 escuteiros de tal modo que dois deles (fixos) sejam sempre vizinhos um do outro?

Resposta: $2! \times 11! = 79833600$ (o produto \times vem do princípio da multiplicação).

Combinações simples (sem repetição)

Combinações simples (ou sem repetição) de n elementos k a k

Número de subconjuntos de k elementos (sem repetição) de um conjunto com n elementos distintos (sem que a ordem pela qual os elementos são enumerados seja considerada)

Notação
$$\rightarrow \begin{pmatrix} n \\ k \end{pmatrix}$$
.

Algumas propriedades básicas

1.
$$\binom{n}{k} = \frac{A_{n,k}}{k!} = \frac{n!}{(n-k)!k!}$$
.

2.
$$\binom{n}{k} = \binom{n}{n-k}$$
.

$$3. \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-2}{k-1} + \cdots + \binom{k-1}{k-1}.$$

Exemplo

Com 20 jogadores de futebol quantas equipas de 11 jogadores é possível formar?

Resposta:
$$\binom{20}{11} = \frac{20!}{9!11!} = 167960.$$

Exercício: Sabendo que num departamento trabalham 4 mulheres e 9 homens, determine:

- (a) o número de comissões que se podem formar com 2 mulheres e 3 homens;
- (b) o número de comissões de 5 elementos com, pelo menos,
- 2 mulheres e 2 homens.

Combinações com repetição

Num exemplo anterior verificou-se que existe uma bijecção entre os diferentes modos de colocar k bolas iguais em n caixas distintas e as sequências binárias com n-1 zeros e k uns.

Cada maneira de colocar k bolas iguais nas n caixas corresponde a uma das combinações com repetição de n elementos (caixas) k a k. Por exemplo

corresponde ao pseudoconjunto $\{C_1, C_1, C_3, C_3, C_4\}$.

Combinações e permutações com repetição

Consequências

O número de combinações com repetição de n elementos k a k coincide com o número de combinações sem repetição de n-1+k (comprimento de uma sequência binária) k a k (número de uns na sequência binária), isto é,

$$\begin{pmatrix} n+k-1 \\ k \end{pmatrix}$$
.

Exemplo: Vamos determinar o número de possibilidades de colocação de 20 bolas iguais em 5 caixas distintas, com pelo menos duas bolas em cada caixa.

Resolução

Distribuindo 2 bolas por cada uma das 5 caixas, conclui-se que o número de possibilidades de colocação das restantes 10 bolas nas 5 caixas corresponde ao número de combinações com repetição de 5 caixas 10 a 10.

$$\left(\begin{array}{c} 5+10-1\\ 10 \end{array}\right) = \left(\begin{array}{c} 14\\ 10 \end{array}\right) = \frac{14!}{4!10!} = 1001.$$

- Combinações e permutações com repetição

Permutações com repetição

Exemplo: Quantos números de telefones da rede fixa (portuguesa) podem ser atribuídos com dois 2 (incluindo já o 2 inicial), quatro 3, dois 6 e um 9?

 $n^{\underline{o}}$ de telefone: 2 - - - - - -

O problema a resolver consiste em determinar o número de sequências com 8 algarismos onde o 2 surge uma vez, o 3 surge quatro vezes, o 6 surge duas vezes e o 9 uma vez. Se se tiver em conta as repetições dos algarismos então cada sequência de 8 algarismos referida atrás corresponde a $P_1 P_4 P_2 P_1 = 1!4!2!1!$ das $P_8 = 8!$ sequências que existiriam se os dígitos fossem todos distintos. Conclui-se, assim, que é possível atribuir $\frac{8!}{1!1!2!4!} = 840$ números de telefone nas condições referidas.

Permutações com repetição

Considere-se um conjunto de n objectos distribuídos por k ($k \le n$) classes que têm n_1, n_2, \ldots, n_k objectos ($\sum_{i=1}^k n_i = n$). Supondo que os objectos pertencentes à mesma classe são indistinguíveis, o número de sequências que se podem formar com esses n objectos é dado pelo número de permutações com repetição

Notação
$$\longrightarrow \left(\begin{array}{c} n \\ n_1, \ldots, n_k \end{array}\right)$$
.

Estes números designam-se por números multinomiais.

Permutações com repetição

Exemplo

Vamos mostrar que o número de possibilidades de partir um conjunto A de cardinalidade n em k subconjuntos, A_1, \ldots, A_k , de cardinalidade n_1, \ldots, n_k $(n_1 + \cdots + n_k = n)$, respectivamente, é igual a $\binom{n}{n_1, \ldots, n_k} = \frac{n!}{n_1! n_2! \ldots n_k!}$.

Resolução: Começamos pela escolha dos elementos de A_1 , para os quais existem $\binom{n}{n_1}$ possibilidades. Depois escolhemos os elementos de A_2 , de entre os $n-n_1$ elementos de A que restam, para os quais existem $\binom{n-n_1}{n_2}$ possibilidades, etc. Como consequência, o número pretendido é

$$\binom{n}{n_1, \dots n_k} = \binom{n}{n_1} \binom{n - n_1}{n_2} \cdots \binom{n - n_1 - \cdots n_{k-1}}{n_k}.$$

Binómio de Newton

$$(1+x)^n = \underbrace{(1+x)(1+x) \dots (1+x)}_{n \text{ factores } n-1 \text{ factores } n-2 \text{ factores } \dots n-1 \text{ factores } n \text{ factores } n-1 \text{ factores$$

que é um polinómio em x de grau n. Note-se que o número de parcelas da forma $x^k 1^{n-k}$ ($k \in \{0, 1, ..., n\}$) é igual ao número de possibilidades de escolher x em k dos n factores e este número é $\binom{n}{k}$.

• Consequentemente, $(1 + x)^n = \sum_{k=0}^n {n \choose k} x^k$.

Fórmula do binómio de Newton ou fórmula binomial de Newton

• Se $a, b \in \mathbb{R}$ e $n \in \mathbb{N}$, então

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

• Como consequência, $2^n = \sum_{k=0}^n \binom{n}{k}$.

Exercício

Mostre que o número de subconjuntos de um conjunto com n elementos é dado por 2^n .

Exercício

Mostre que $n, k \in \mathbb{N}$, com $1 \le k \le n$,

$$\left(\begin{array}{c}n\\k\end{array}\right)=\left(\begin{array}{c}n-1\\k\end{array}\right)+\left(\begin{array}{c}n-1\\k-1\end{array}\right).$$

Método recursivo para a determinação de números binomiais

Tendo em conta que para $n, k \in \mathbb{N}$,

$$\begin{pmatrix} n \\ n+k \end{pmatrix} = 0, \quad e \quad \begin{pmatrix} n \\ 0 \end{pmatrix} = \begin{pmatrix} n \\ n \end{pmatrix} = 1,$$

convencionando que $\binom{0}{0} = 1$, então a igualdade

$$\begin{pmatrix} n \\ k \end{pmatrix} = \begin{pmatrix} n-1 \\ k \end{pmatrix} + \begin{pmatrix} n-1 \\ k-1 \end{pmatrix}$$

estabelece um método recursivo para a determinação dos números binomiais.

para
$$n > 2$$
 e $0 < k < n$ fazer: $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$

Triângulo de Pascal

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 3 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

- Note-se que a n-ésima linha do triângulo de Pascal, contém os coeficientes do desenvolvimento de $(a + b)^n$.
- Para n = 3, $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

Fórmula multinomial

Teorema (fórmula multinomial)

Se $a_1, a_2, \ldots, a_r \in \mathbb{R}$ e $n \in \mathbb{N}$, então

$$(a_1 + a_2 + ... + a_r)^n = \sum_{t_1 + \dots + t_r = n} {n \choose t_1, \dots, t_r} a_1^{t_1} \cdots a_r^{t_r}$$

onde $t_1, t_2, t_r \in \mathbb{N} \cup \{0\}.$

• Com efeito, desenvolvendo o produto de *n* factores

$$(a_1 + a_2 + \ldots + a_r)(a_1 + a_2 + \ldots + a_r) \ldots (a_1 + a_2 + \ldots + a_r)$$

obtêm-se termos da forma $a_1^{t_1} \cdots a_r^{t_r}$, com $t_1 + \cdots + t_r = n$, que correspondem à escolha de a_1 em t_1 dos factores, a_2 em t_2 dos restantes factores, etc. Logo, existem $\binom{n}{t_1,\dots,t_r}$ termos da forma $a_1^{t_1} \cdots a_r^{t_r}$.

Identidades combinatórias diversas

Exemplo

Vamos mostrar que para cada inteiro positivo *n* se verifica a igualdade

$$\binom{n}{0}^2 + \binom{n}{1}^2 + \cdots + \binom{n}{n}^2 = \binom{2n}{n}.$$

Considerando a grelha $n \times n$, sabemos que existem

$$\binom{n+n}{n}$$

caminhos mais curtos entre A e B.

Podemos partir o conjunto de todos os caminhos mais curtos entre A e B nos n+1 subconjuntos disjuntos

 $A_0, \ldots, A_k, \ldots, A_n$, onde A_k (para $k \in \{0, 1, \ldots, n\}$) é o conjunto de todos caminhos mais curtos entre A e B que passam no ponto (k, n - k).

Por aplicação do princípio da adição,

$$|\mathcal{A}_0| + \cdots + |\mathcal{A}_k| + \cdots + |\mathcal{A}_n| = {2n \choose n}.$$

Basta provar a igualdade $|A_k| = {n \choose k}^2$.

Esta igualdade é consequência do facto de cada caminho de A_k ser a concatenação de um caminho mais curto entre A e (k, n - k) na grelha $k \times (n - k)$, cujo número é

$$\binom{n-k+k}{k}$$

com um caminho mais curto entre (k, n - k) e B na grelha $(n - k) \times k$, cujo número é

$$\binom{k+n-k}{n-k}$$
.

Exemplo

Vamos mostrar a igualdade

$$\binom{n}{t_1, t_2, \ldots, t_r} = \sum_{i=1}^r \binom{n-1}{t_1, \ldots, t_i - 1, \ldots, t_r},$$

que é uma generalização da igualdade $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$, uma vez que $\binom{n}{k} = \binom{n}{k,n-k}$.

A parte esquerda da igualdade é o número multinomial que corresponde ao número de possibilidades de partir o conjunto $\{1,2,\ldots,n\}$ (partições ordenadas) nos subconjuntos A_1,\ldots,A_r , com cardinalidade t_1,\ldots,t_r , respectivamente.

Podemos dividir estas partições nos seguinte *r* tipos de partições distintas:

- (1) aquelas em que $n \in A_1$, cuja cardinalidade corresponde ao número de partições de n-1 elementos em r subconjuntos, com cardinalidades t_1-1, t_2, \ldots, t_r , respectivamente;
- (2) aquelas em que $n \in A_2$, cuja cardinalidade corresponde ao número de partições de n-1 elementos em r subconjuntos, com cardinalidades $t_1, t_2 1, \ldots, t_r$, respectivamente;
- (·) etc:
 - (r) aquelas em que $n \in A_r$, cuja cardinalidade corresponde ao número de partições de n-1 elementos em r subconjuntos, com cardinalidades t_1, t_2, \ldots, t_r-1 , respectivamente.

LIdentidades combinatórias diversas

Identidades combinatórias diversas (cont.)

Logo, para i = 1, ..., r, o número de partições do tipo i é igual a

$$\binom{n-1}{t_1,\ldots,t_i-1,\ldots,t_r}$$

e, aplicando o princípio da adição, obtém-s a identidade pretendida.