PPPD - Lab. 07

Copyright ©2021 M. Śleszyńska-Nowak i in.

Zadanie punktowane, lab 07, 2017/2018

Temat: Klątwa wymiarowości

Treść zadania

W trakcie zajęć poznaliśmy sposób obliczania pola powierzchni figury przy użyciu metody typu Monte Carlo (MMC). Polegała ona na losowaniu punktów z prostokątnego obszaru i zliczaniu, ile z nich spełnia podane warunki. Do tej pory metodę tę wykorzystywaliśmy do obliczania pola powierzchni figury będącej zbiorem punktów w \mathbb{R}^2 , jednak – jak wiemy – nie żyjemy w dwuwymiarowym świecie, a zjawiska, które chcemy badać, wymagają czesto umiejetności analizowania wielowymiarowych zależności.

Dzisiejsze zadanie będzie polegało na zaobserwowaniu, jak zachowują się odległości między punktami w n-wymiarowej przestrzeni \mathbb{R}^n i dlaczego klątwa wymiarowości (ang. curse of dimensionality) zasłużyła sobie na swoją nazwę.

Funkcje distance i random_point [2 p.]

Napisz funkcję distance(x, y) obliczającą odległość euklidesową między dwoma punktami $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ (reprezentowanymi przy użyciu dwóch list liczbowych), gdzie $n \ge 1$, tj.:

$$\operatorname{distance}(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$

Następnie napisz funkcję random_point(n, a=-1, b=1) zwracającą n-elementową listę taką, że jej i-ty element jest pseudolosową wartością wygenerowaną z rozkładu jednostajnego na przedziale [a,b] dla każdego możliwego i. Do generowania każdej wartości wykorzystaj funkcję random.uniform().

Funkcje volume_exact i unit_ball_ratio [1 p.]

n-wymiarową kulą o środku $\mathbf{x} \in \mathbb{R}^n$ i promieniu r nazywamy zbiór:

$$B_n(\mathbf{x}, r) = {\mathbf{y} \in \mathbb{R}^n : \text{distance}(\mathbf{x}, \mathbf{y}) < r}.$$

Napisz funkcję volume_exact(n), która wyznaczy dokładną wartość objętości n-wymiarowej kuli o środku $(0, \ldots, 0)$ i promieniu r = 1, tj. kuli jednostkowej.

Dokładną wartość można wyznaczyć, korzystając ze wzoru:

$$V_n(r) = \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)}r^n,$$

gdzie:

- $\Gamma(x)$ jest funkcją gamma, zob. math.gamma(),
- π jest równe math.pi.

Okazuje się, że objętość n-wymiarowej jednostkowej kuli $B_n((0,\ldots,0),1)$ bardzo szybko maleje, a co za tym idzie metody typu Monte Carlo w wyższych wymiarach mogą stać się nieefektywne: będą potrzebowały dużej liczby punktów, by w ogóle trafić w badany obszar.

Aby zbadać to zjawisko, napisz wpierw funkcję unit_ball_ratio(n), która dla danego n zwróci stosunek dokładnej objętości kuli $B_n((0,\ldots,0),1)$ do objętości kostki $[-1,1]^n$.

Funkcja volume_approx [1 p.]

Następnie napisz funkcję volume_approx(n, m=10000) obliczającą przybliżoną wartość objętości n-wymiarowej kuli jednostkowej $B_n((0,\ldots,0),1)$.

Przybliżoną objętość możemy obliczyć przy użyciu metody typu Monte Carlo:

- 1. Wylosuj m punktów $\mathbf{x} \in \mathbb{R}^n$ z rozkładu jednostajnego na kostce $[-1,1]^n$.
- 2. Wyznacz frakcję (proporcję) punktów oddalonych od punktu (0, ..., 0) o nie więcej niż 1 (odległość euklidesowa).
- 3. Uzyskany w punkcie 2. wynik odpowiednio przeskaluj, mnożąc go przez objętość kostki $[-1,1]^n$.

Rysunki ilustrujące zachowanie sie odległości w przestrzeniach o dużym wymiarze [1 p.]

Narysuj wykresy ilustrujące, jak zmienia się objętość kuli $B_n((0,\ldots,0),1)$ wraz z rosnącym n oraz jak zmienia się stosunek objętości kuli $B_n((0,\ldots,0),1)$ do objętości kostki $[-1,1]^n$.

Wykorzystaj napisane przed chwilą funkcje volume_exact, volume_approx i unit_ball_ratio do utworzenia wektorow y_exact, y_approx, y_ratio, w taki sposób, że dla i = 0, ..., 18:

```
    y_exact[i] = volume_exact(i+1)
    y_approx[i] = volume_approx(i+1)
    y_ratio[i] = unit_ball_ratio(i+1)
```

Następnie skorzystaj z poniższego kodu, aby narysować ciekawe wykresy.

```
import matplotlib.pyplot as plt

fig = plt.figure()

x = range(1, 20)
y_exact = ... # volume_exact
y_approx = ... # volume_approx
y_ratio = ... # unit_ball_ratio

ax1 = fig.add_subplot(2, 1, 1)
ax1.scatter(x, y_approx, color="red", marker=(3,0,0))
ax1.scatter(x, y_exact)
ax1.grid()

ax2 = fig.add_subplot(2, 1, 2)
ax2.scatter(x, y_ratio)
ax2.grid()
```

fig.savefig('volume.png', dpi=90)

Rysunek 1: Objętość kuli

Funkcja czas_do_sukcesu oraz zapis wyników do pliku [1 p.]

Napisz funkcję czas_do_sukcesu(n), która zwraca liczbę punktów, które trzeba wylosować, aby trafić po raz pierwszy w kulę. Oczywiście przy każdym jej wywołaniu możemy otrzymywać inną wartość.

Utwórz plik tekstowy czas.txt i zapisz do niego:

- oczekiwane (średnie) czasy (rozumiane jako liczba punktów, które trzeba wylosować) do pojawienia się pierwszego wylosowanego punktu, który będzie należał do kuli. Zauważ, że czas ten będzie wynosił $\frac{1}{p}$, gdzie p prawdopodobieństwo wylosowania punktu należącego do kuli $B_n((0,\ldots,0),1)$, które znajdziemy przy użyciu funkcji unit_ball_ratio(n). Na przykład dla n=2 średni czas oczekiwania wyniesie około 2, natomiast dla n=10 będzie to już ponad 400.
- czas dla przykładowego losowania (wywołanie funkcji czas_do_sukcesu(n))

Ładnie sformatowany wynik dla wymiarów $n \in \{1, \dots, 15\}$ powinien wyglądać na przykład tak:

n		oczekiwany		przykładowy
1		1.00		1
2	ı	1.27	l	1

3	-	1.91	1	4
4	-	3.24	1	5
5	-	6.08	1	9
6	-	12.38	1	19
7	1	27.09	1	2
8	1	63.07		28
9	1	155.22		59
10	1	401.54		95
11	1	1086.99		2668
12		3067.56		9742
13	1	8995.98		2465
14	1	27340.18		83407
15	1	85905.30	1	95391

Jakość kodu [1 p.]

Aby otrzymać pozostały, siódmy punkt za zadanie:

- przesłany skrypt musi wykonać się bez błędów,
- kod musi być napisany w sposób czytelny,
- kod musi być dobrze i dokładnie udokumentowany.