

REGRESSION MODELS

What is regression analysis?

- Regression analysis is a statistical process for estimating relationship among variables.
- It is used to predict the unknown value from the given set of data.
- It is also used to understand which among the independent variables are related to the dependent variables.

Simple linear regression

This model assumes that the relationship between Y and X is linear

$$Y \approx \beta 0 + \beta 1X$$

Where,

 β 0 is the intercept and β 1 is the slope

 β 0 and β 1 are known as the model *coefficients* or *parameters*. Training data is used produce estimates $^{\hat{}}\beta$ 0 and $^{\hat{}}\beta$ 1

Simple linear regression

True regression which we come across everyday is never linear!

Sample data

Lets take an example.

These graphs show relationship between Advertising in TV, Radio and newspaper with

sales respectively.

Regression model

- True relationship between X and Y takes the form $Y = f(X) + \varepsilon$ for some unknown function f, where is a mean-zero random error term.
- We assume a model

$$Y = \beta_0 + \beta_1 X + \epsilon$$

we predict future sales using

$$\hat{y} = \beta_0 + \beta_1 X$$

where \hat{y} indicates a prediction of Y on the basis of X = x.

The hat symbol denotes an estimated value.

How to estimate the coefficients?

- We must use data to estimate the coefficients.
- Let (x1, y1), (x2, y2), ..., (xn, yn) represent n observation pairs.
- Minimizing the least squares criterion is one method to measure the closeness.
- Then $e_i = y_i \hat{y}_i$ represents the *i*th residual. We define the *residual sum of squares* (RSS) as residual sum of s $RSS = e_1^2 + e_2^2 + \cdots + e_n^2$,
- The least squares approach chooses $\hat{\beta}$ 0 and $\hat{\beta}$ 1 to minimize the RSS. Using
- Some calculus, one can show that the minimizers are

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2},$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x},$$

Accuracy of the Coefficient estimates

- How far off will that single estimate of μ hat be?
- In general, we answer this question by computing the standard error of μ hat, written as SE($^{2}\mu$).

$$Var(\hat{\mu}) = SE(\hat{\mu})^2 = \frac{\sigma^2}{n}$$

where σ is the standard deviation of each of the realizations yi of Y

$$\operatorname{SE}(\hat{\beta}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right], \quad \operatorname{SE}(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

Where , $\sigma^2 = Var(\epsilon)$

Confidence interval

 These standard errors can be used to compute confidence intervals. A 95% confidence interval is defined as a range of values such that with 95% probability, the range will contain the true unknown value of the parameter.

$$\hat{\beta}_1 \pm 2 \cdot \text{SE}(\hat{\beta}_1)$$

That is, there is approximately a 95% chance that the interval

$$\left[\hat{\beta}_1 - 2 \cdot \text{SE}(\hat{\beta}_1), \ \hat{\beta}_1 + 2 \cdot \text{SE}(\hat{\beta}_1)\right]$$

Hypothesis testing

- Standard errors can also be used to perform hypothesis tests on the coefficients.
- The most common hypothesis test involves testing the
- Null hypothesis of

H0: There is no relationship between X and Y (ie. $\beta_1 = 0$)

Alternative hypothesis of

HA: There is some relationship between X and Y (ie. $\beta_1 \neq 0$)

• Since if β_1 = 0 then the model reduces to Y = β_0 + ϵ , and X is not associated with Y.

T- Statistics

- If SE($^{\circ}\beta$ 1) is small, then even relatively small values of $^{\circ}\beta$ 1 may provide strong evidence that β 1 = 0, and hence that there is a relationship between X and Y.
- In contrast, if SE($^{\hat{}}\beta$ 1) is large, then $^{\hat{}}\beta$ 1 must be large in absolute value in order for us to reject the null hypothesis.
- In practice, we compute a *t-statistic*,

$$t = \frac{\hat{\beta}_1 - 0}{\text{SE}(\hat{\beta}_1)},$$

which measures the number of standard deviations that $\hat{\beta}1$ is away from 0.

P – value

- P-value is the probability of observing any value equal to |t| or larger, assuming $\beta 1 = 0$.
- A small p-value indicates that it is not likely to observe such a substantial association between the
 predictor and the response due to chance, in the absence of any real association between the
 predictor and the response.

	Coefficient	Std. error	T-statistics	P-value
Intercept	7.0325	0.4578	15.36	<0.0001
TV	0.0475	0.0027	17.67	<0.0001

- We reject the null hypothesis—that is, we declare a relationship to exist between X and Y —if the p-value is small enough.
- Here, in this example we should come to a conclusion that TV is related to sales

Assessing the Overall Accuracy of the Model

We compute the Residual Standard Error

RSE =
$$\sqrt{\frac{1}{n-2}}$$
RSS = $\sqrt{\frac{1}{n-2}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}$,

where the residual sum-of-squares is

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

R-squared or fraction of variance explained

$$R^2 = \frac{\text{TSS} - \text{RSS}}{\text{TSS}} = 1 - \frac{\text{RSS}}{\text{TSS}}$$

where TSS (Total sum of squares)

$$TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

• It can be shown that R^2 = r^2, where r is the correlation between X and Y:

$$\operatorname{Cor}(\mathsf{X},\mathsf{Y}) = \quad r = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^n (y_i - \overline{y})^2}}.$$

Multiple linear regression

- This is when we have more than 1 predictor.
- In general, suppose that we have p distinct predictors.
- Then the multiple linear regression model takes the form

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

 Now when we include advertisement by TV, radio and newspaper to predict sales, the equation becomes

Sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times Radio + \beta_3 \times Newspaper + \varepsilon$$

Estimating the Regression Coefficients

The multiple regression coefficient estimates have somewhat complicated forms that are represented using matrix algebra.

	Coefficient	Std. error	T-statistics	P-value
Intercept	2.939	0.3119	9.42	<0.0001
TV	0.046	0.0014	32.81	<0.0001
Radio	0.189	0.0086	21.89	<0.0001
Newspaper	-0.001	0.0059	-0.18	0.8599

The newspaper regression coefficient estimate was significantly non-zero and the corresponding p-value is no longer significant, with a value around 0.86.

REGRESSION MODELS

When we consider the effect of only newspaper on sales, we get

	Coefficient	Std. error	T-statistics	P-value
Intercept	12.351	0.621	19.88	<0.0001
Newspaper	0.055	0.017	3.30	<0.0001

To understand this, we find the correlation of TV, radio, newspaper and sales

	TV	Radio	Newspaper	Sales
TV	1	0.0548	0.0567	0.7822
Radio		1	0.3541	0.5762
Newspaper			1	0.2283
Sales				1

- Notice that the correlation between radio and newspaper is 0.35.
- This reveals a tendency to spend more on newspaper advertising in markets where more is spent on radio advertising.

Is at least one predictor useful?

We calculate F-statistic using

$$F = \frac{(TSS - RSS)/p}{RSS/(n-p-1)} \sim F_{p,n-p-1}$$

When there is no relationship between the response and the predictor, F will be close to 1

If alternate hypothesis is true then F >> 1

Quantity	Value
Residual Standard Error	1.69
R^2	0.897
F-statistic	570

How to decide on important variables?

- We can't calculate the relationship using all the models by taking the subsets.
- When the predictor is 50, total predictors = 2^50 which is over billion
- There are 3 different approaches to solve this problem
- **Forward selection**: Begin with the *null model*. fit *p* simple linear regressions and add to the null model the variable that results in the lowest RSS. This approach is continued until some stopping rule is satisfied.
- **Backward selection**: Start with all variables in the model. Remove the variable with the largest p-value—that is, the variable that is the least statistically significant. This approach is continued until some stopping rule is reached.
- **Mixed selection**: This is a combination of forward and backward selection.

Qualitative predictions

- Predictors are not always quantitative. They can also be qualitative.
- There can be 2 level predictor like gender (male and female), classification (student and non-student) or multi level predictor like country (India, Pakistan, China)
- Predictors with 2 levels are indicated with dummy variable which takes 2 values 1 and -1

$$x_i = \begin{cases} 1 & \text{if } i \text{th person is female} \\ -1 & \text{if } i \text{th person is male} \end{cases}$$

This results in the model

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if } i \text{th person is female} \\ \beta_0 - \beta_1 + \epsilon_i & \text{if } i \text{th person is male.} \end{cases}$$

REGRESSION MODELS

For predictors with more than 2 levels (say n levels) we take n-1 dummy variables

For ethnicity with different levels like Asian, Caucasian, African American we take 2 dummy variables xi1 and xi2

$x_{ij} = \int 1$	if i th person is Asian		Xi1	Xi2
$x_{i1} - \begin{cases} 0 \end{cases}$	if i th person is Asian if i th person is not Asian,	Asian	1	0
$m = \int 1$	if i th person is Caucasian if i th person is not Caucasia	Caucasian	0	1
$x_{i2} = \begin{cases} 0 \end{cases}$	if i th person is not Caucasia	an. African <mark>Am</mark> er <mark>ican</mark>	0	0

Then the regression equation becomes,

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if } i \text{th person is Asian} \\ \beta_0 + \beta_2 + \epsilon_i & \text{if } i \text{th person is Caucasian} \\ \beta_0 + \epsilon_i & \text{if } i \text{th person is African American.} \end{cases}$$

Summary

We saw about:

- Regression analysis
- Simple linear regression
- How to create a regression model
- How to estimate the coefficients
- How to assess their accuracy
- Confidence interval
- Hypothesis testing

Summary

We also saw about

- T-statistics
- P-value
- Multiple linear regression
- Estimating their regression coefficients
- F-statistics
- Selection approaches to decide on important variable
- Quantifying qualitative predictions

Thank you