Precalculus

Compute the trigonometric functions in a right angle triangle, part 1

Todor Milev

2019

³ Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

$$\sin \theta = \cos \theta = \tan \theta =$$

$$\csc \theta = \sec \theta = \cot \theta =$$

Compute the trigonometric functions in a ...

Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

$$\sin \theta = \cos \theta = \tan \theta =$$

$$\csc \theta = \sec \theta = \cot \theta =$$

Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse = ?

$$\sin \theta = \cos \theta = \tan \theta =$$

$$\csc \theta = \sec \theta = \cot \theta =$$

Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

hypotenuse =
$$\sqrt{4^2 + 3^2}$$

$$\sin \theta = \cos \theta = \tan \theta =$$

$$\csc \theta = \sec \theta = \cot \theta =$$

Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25}$$

$$\sin \theta = \cos \theta = \tan \theta =$$

$$\csc \theta = \sec \theta = \cot \theta =$$

³ Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
.

$$\sin \theta = \cos \theta = \tan \theta =$$

$$\csc \theta = \sec \theta = \cot \theta =$$

Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
.

$$\sin \theta = ? \cos \theta = \tan \theta =$$

$$\csc \theta = \sec \theta = \cot \theta =$$

³ Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
.

$$\sin \theta = \frac{3}{5} \cos \theta = \tan \theta =$$
 $\csc \theta = \sec \theta = \cot \theta =$

Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
.

$$\sin \theta = \frac{3}{5}$$
 $\cos \theta = ?$ $\tan \theta =$ $\csc \theta = \sec \theta = \cot \theta =$

³ Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
.

$$\sin \theta = \frac{3}{5} \quad \cos \theta = \frac{4}{5} \quad \tan \theta =$$
 $\csc \theta = \quad \sec \theta = \quad \cot \theta =$

Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
.

$$\sin \theta = \frac{3}{5}$$
 $\cos \theta = \frac{4}{5}$ $\tan \theta = ?$
 $\csc \theta = \sec \theta = \cot \theta =$

Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
.

$$\sin \theta = \frac{3}{5} \quad \cos \theta = \frac{4}{5} \quad \tan \theta = \frac{3}{4}$$
$$\csc \theta = \quad \sec \theta = \quad \cot \theta =$$

Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
.

$$\sin \theta = \frac{3}{5}$$
 $\cos \theta = \frac{4}{5}$ $\tan \theta = \frac{3}{4}$
 $\csc \theta = \frac{2}{5}$ $\sec \theta = \cot \theta = \frac{1}{5}$

 3 Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of $\theta.$

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
.

$$\sin \theta = \frac{3}{5} \quad \cos \theta = \frac{4}{5} \quad \tan \theta = \frac{3}{4}$$

$$\csc \theta = \frac{5}{3} \quad \sec \theta = \quad \cot \theta = \frac{3}{4}$$

 3 Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of $\theta.$

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
.

$$\sin \theta = \frac{3}{5} \quad \cos \theta = \frac{4}{5} \quad \tan \theta = \frac{3}{4}$$
$$\csc \theta = \frac{5}{3} \quad \sec \theta = ? \quad \cot \theta =$$

³ Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
.

$$\sin \theta = \frac{3}{5} \quad \cos \theta = \frac{4}{5} \quad \tan \theta = \frac{3}{4}$$

$$\csc \theta = \frac{5}{3} \quad \sec \theta = \frac{4}{4} \quad \cot \theta = \frac{3}{4}$$

Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
.

$$\sin \theta = \frac{3}{5} \quad \cos \theta = \frac{4}{5} \quad \tan \theta = \frac{3}{4}$$

$$\csc \theta = \frac{5}{3} \quad \sec \theta = \frac{5}{4} \quad \cot \theta = ?$$

³ Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
.

$$\sin \theta = \frac{3}{5} \quad \cos \theta = \frac{4}{5} \quad \tan \theta = \frac{3}{4}$$

$$\csc \theta = \frac{5}{3} \quad \sec \theta = \frac{4}{4} \quad \cot \theta = \frac{3}{4}$$