<u>ผลการทดลอง ชุดที่ 2</u>

การทดลองที่ 2

การวัดความร้อนด้วยแคลอริมิเตอร์

ทำการทดลอง วัน พฤหัสบุลีที่ ... เดือน กันบายน พ.ศ. 2564 เวลา เช้า บ่าย ชื่อ ... ปุญญพัฒน่ สุมถึบมติล้าจร เลขประจำตัว ... เมายะเรา กลุ่มที่ ... ลำดับที่ ... นำ

ตอนที่ 1 การหาค่าคงที่แคลอริมิเตอร์

	ครั้งที่ 1	ครั้งที่ 2	
น้ำหนักแคลอริมิเตอร์ (g)	102.453	102.453	
น้ำหนักแคลอริมิเตอร์ + น้ำเย็น (g)	126.849	127.214	
น้ำหนักน้ำเย็นในแคลอริมิเตอร์ (g)	24.396	24.761	
น้ำหนักแคลอริมิเตอร์ + น้ำผสม	150.342	150.617	
น้ำหนักน้ำอุ่นในแคลอริมิเตอร์ (g)	23, 493	27, 4 03	
อุณหภูมิน้ำเย็นเริ่มต้น (°C)	28.)	28.8	
อุณหภูมิน้ำอุ่นก่อนเทผสม (°C)	62.0	62.0	
อุณหภูมิน้ำผสม (°C)	42.5	42.4	
ค่าคงที่แคลอริมิเตอร์ (cal/°C)	8.20	8.97	เฉลี่ย = 8,58

เวลา(วินาที)

อุณหภูมิ

น้ำเย็น

น้ำผสม

15

30

60 120 180 240 300

28.4 28.3 28.3 28.2 28.1

42.0 41.0 40.5 40.0 39.6

วิธีคำนวณหาค่าคงที่แคลอริมิเตอร์

ו ע	
2 A	
െ എ.എ	1
LIA / NI	

$$C_c = -(m_1 s \Delta T_1 + m_2 s \Delta T_2) / \Delta T_2$$

ו עפ	
<i>~</i> ⊲	
<i>െ</i> ഹി	2
MIGNAL	

C_c	$= -(m_1 s \Delta T_1)$	+	$m_2 s \Delta T_2) / \Delta T_2$
C	, , ,		2 2, 2

=-(23,403g x 1 ca)	9 · c · (-19.6 °) + 24.	76) 5 1 (a) 5 . c x 19.6°).cal/°C
	13.6 °C	
≈ 8,97 cal/°C		

ตอนที่ 2 การหาเอนทัลปีของการละลาย

	KNO ₃	Na ₂ CO ₃
น้ำหนักแคลอริมิเตอร์ (g)	102.453	101.248
น้ำหนักแคลอริมิเตอร์ + น้ำ (g)	151.771	150.025
น้ำหนักน้ำในแคลอริมิเตอร์ (g)	49.318	47.777
น้ำหนักสาร (g)	3.940	3.996
อุณหภูมิเริ่มต้นของน้ำ (°C)	30.1	27.1
อุณหภูมิสารละลาย (°C) จากกราฟ	24.2	30.8
ความร้อนที่น้ำได้รับหรือสูญเสีย (cal)	- 310	190
ความร้อนที่แคลอริมิเตอร์ได้รับหรือสูญเสีย (cal)	- 51	32
เอนทัลปีของการละลาย (cal/mol)	9.25 × 10	-5.89 × 10
ΔH _{soln} จาก Handbook (kcal/mol)	+8.35	-5.93
% ความผิดพลาด	10.8	0.7

เวลา (วิ	นาที)	15	30	45	60	120	180	240	300
อุณหภูริ	งิน้ำ (°C)		-		30.1	30.1	30.1	30.1	30.1
อุณหภูริ	มิสารละลาย (°C)	24.9	24.5	24.4	24.3	24.2	24.2	24.2	24.3

วิธีคำนวณหาเอนทัลปีของการละลาย

$$-q_r = q_{sol} + q_c = ms\Delta T + C_c\Delta T$$

$$q_r = -\left[(49.3185^{+} 3.9409) \cdot 10015^{-1} \text{K}^{-1} \cdot (99.2 \text{ K} - 30.1 \text{ K}) + (8.5800 \text{ K}^{-1}) (99.2 \text{ K} - 30.1 \text{ K}) \right]$$

$$= -\frac{361 \cdot 201}{0.03901 \cdot 1001} = \frac{361 \cdot 201}{0.03901 \cdot 1001} = \frac{9.25 \times 10^{3}}{0.03901 \cdot 1001} = \frac{9.25 \times 10^{3}}{0.03901} = \frac{9.25 \times 10^{3}}{0.03901} = \frac{9.25 \times 10^{3}}{0.03901} = \frac{9.$$

ตอนที่ 3 การหาความร้อนของปฏิกิริยาสะเทิน

ชนิดของกรดและเบส	HCI	CH ₃ COOH	HCI + NH ₃
ค่าที่วัดได้	+ NaOH	+ NaOH	
น้ำหนักแคลอริมิเตอร์ (g)	102.453	102.248	104.155
น้ำหนักแคลอริมิเตอร์ + สารละลายผสม (g)	206.388	208.363	213. OS>
น้ำหนักของสารละลายผสม (g)	103,935	103.115	108.898
อุณหภูมิของเบสในแคลอริมิเตอร์ (°C)	27.7	28.3	31.1
อุณหภูมิสุดท้ายของสารละลายผสม (°C), T _{max}	38.0	37.5	39.3
อุณหภูมิที่เปลี่ยนไป (ΔT) (°C)	10.5	9.2	8.2
ความร้อนของปฏิกิริยาสะเทิน (cal)	- 1158	-1019	-960
เอนทัลปีของปฏิกิริยาสะเทินต่อโมลของน้ำที่เกิดขึ้น (cal/mol)	- 1.5 × 10 °	-1.4 8104	-1.5 ×10 ⁴
∆H _{neut} จาก Handbook (kcal/mol)	-13.8	-13.4	-12.8
% ความผิดพลาด	8.7	4.5	1.5

เวลา (วินาที)	15	30	45	60	120	180	240	300
อุณหภูมิเบส (°C)				27.7	27.7	27.7	27.7	27.7
อุณหภูมิสารละลาย (°C)	38.0	37.9	37.8	37.8	37.5	37.3	37.1	36.9

วิธีคำนวณหาเอนทัลปีของปฏิกิริยาสะเทินต่อโมลของน้ำที่เกิดขึ้น

$$\begin{array}{rcl} -q_r &=& ms\Delta T + C_c\Delta T \\ q_r &=& - \left[(2103.455.5)(1.54.5^{\circ})(10.5\,\mathrm{K}) + (8.58\,\mathrm{cal\,K}^{-1})(10.5\,\mathrm{K}) \right] \\ &=& - 1158 \\ &=& - 1158 \\ &=& - 1158 \\ &=& - 1158 \\ &=& - 1158 \\ &=& - 1158 \\ &=& - 1158 \\ &=& - 1$$

เขียนสมการแสดงปฏิกิกิริยาสะเทินและคำนวณจำนวนโมลของน้ำที่เกิดขึ้น
NaOH + HCI -+ HO + NaClean)
. ทุกสมการกางควรจะนีวายเมื่อง อัพกระหายหวาย Nea H พ. ใช้ บัก H2O พุวของนี้การสาดน เป็น 1:1
นร็อก็คือจำนวน mol vas H2O ที่ได้มีตำเท่ากับจำนอน mol vas NaOH ที่ใช้ดังย จะได้
mol = mol > 15 mol x 10 1 x 50 ml
7 1 ml

	ท้ายกา ร ทดลอง
1.	ในการหาค่าคงที่แคลอริมิเตอร์ทั้ง 2 ครั้งได้ค่าคงที่แคลอริมิเตอร์เท่ากันหรือไม่ ไม่เท่ากัน
	และเปรียบเทียบค่าคงที่นี้กับกลุ่มอื่นได้ค่าเหมือนกันหรือไม่ <u>ไม่พ่าก</u> ัน
	เพอเลเหต์ใช <i>่ (พกาะ บากพชอวาชรู้วากบางชอรู้ท</i> าผอกุมล้องกุศาพุธจากชออฐฑาผอกุอกุภปฐกร
2.	สรุปผลการทดลอง ในการหาค่าเอนทัลปีของการละลายของสารทั้งสองชนิด และนำทฤษฎี
	ของการละลายมาใช้อธิบายปรากฏการณ์ดังกล่าวได้ดังนี้
	KNO3. AH soth เป็นบาก เนื่องจากพลังงาน Lattice > พลังงานโฮเดเช็น จึงเป็นปู่ได้ริยาญภคลามร้อน
	Na ₂ CO ₃ . AH ₅₀₁₄ เป็นลบ. เนื่อมจากผลังงาน ใจ!!ice < พลังงานไฮ เดเจ็น ว็จงเป็นปู่ใก็ริชาดายความร้อน
3.	ถ้าใช้ KNO₃ (หรือ Na₂CO₃) ปริมาณไม่เท่ากัน ค่าความร้อนที่น้ำได้รับของการละลาย KNO₃
	(หรือ Na ₂ CO ₃) จะเท่ากันหรือไม่
	ชากปริมาณุธารที่น่าโปละลาบมีการเปลี่ยนแปลง ปริมาณความร้อนที่คาย /ดูดกิจะเปลี่ยนแปลงลัวจ
	ถ้าใช้ KNO $_3$ (หรือ Na $_2$ CO $_3$) ปริมาณไม่เท่ากัน เอนทัลปีของการละลาย KNO $_3$ (หรือ Na $_2$ CO $_3$)
	จะเท่ากันหรือไม่ <u>\ท่ากัน</u> เพราะเหตุใด
	IWII: เก็นทัลป์ คือ ปริมาณความร้อนที่เปลี่ยนแปลงใน 1 mol
4.	จากผลการทดลองเรื่องเอนทัลปีของปฏิกิริยาสะเทิน ถ้าเปลี่ยนระบบกรดเบสเป็นดังต่อไปนี้
	เอนทัลปีของปฏิกิริยาสะเทินจะเปลี่ยนแปลงหรือไม่ อย่างไร เมื่อเทียบกับระบบ
	HCl 1.50 M กับ NaOH 1.50 M
	(i) HCl 1.00 M กับ NaOH 1.00 M
	lom เ มใเสบแมวล์ให้หมดรัยเกามเน็น อัด ให้สัมเลเล่น เอกล เอน มาเมาคัน อัดโล้ O,H ก่อันแอ๊ด วาเมา เลโทเมวล์โกเน็
	(ii) HNO ₃ 1.50 M กับ KOH 1.50 M
	าเละ OH new คืออาก พอ) เกระ เบละ บละ เกละ กลาง เกละ เบละ กลาง เกละ กลาง เกละ กลาง เกละ กลาง เกละ กลาง เกละ กลาง
5.	เมื่อเปรียบเทียบกับค่า Δ H จาก Handbook ถ้าต้องการให้ผลการทดลองถูกต้องมากขึ้น ควร
	ปรับปรุงการทดลองอย่างไรบ้าง
	1) ให้แคลองมีมาพอเพิ่มีคุณภาพสูง เพื่อใช้ผล กางพดลองไม่คลาดเกล้อน
	บ) เพลารในแน้วลารฉัมผัสกันมากพี่สุด เพื่อให้เกิดการละลาย หรือ ปฏิกิริยาละเทินโด้อย่าวนี้ประสิทธิภาพ
	3) ทำการพฤลองส้างเลาะเลอั้ง เพื่อให้ผลที่ได้มีความถูกต้อง และ แม่นชามกงั้น