Classificação de patentes utilizando Random Forest

Henrique Cursino Vieira Orientador Prof. Dr. Nikolai Valtchev Kolev

Tópicos

- Introdução
- Materiais e métodos
- Resultados
- Conclusão

Introdução

"A patente é o direito exclusivo concedido a uma invenção, que é um produto ou processo que proporciona, em geral, uma nova maneira de fazer algo ou oferece uma nova solução técnica para um problema." tradução direta - World Intellectual Property Organization, WIPO

Patent applications filed worldwide reached 3.3 million

1.1. Patent applications worldwide, 2004-2018

Introdução

- Justificativa

- Realizar busca por documentos mais relevantes por assunto e tema

Objetivo geral

- Classificação por múltiplos assuntos e temas

- Objetivo específico

 Classificar e determinar a relevância de cada documento de patente por assunto e tema

Materiais e métodos

- 1. Extração de dados
- 2. Construção do dicionário
- 3. Classificação a partir do dicionário
- 4. Modelagem

Materiais e métodos - Extração dos dados

- Webscraping
 - www.freepatentsonline.com/
 - python
 - requests
 - BeautifulSoap

Materiais e métodos - Construção do dicionario

- Processamento de linguagem Natural
- Corpora
 - É o plural de corpus. O corpus é a junção de textos para determinado estudo.
- Latent Dirichlet allocation (LDA)
 - Modelo estatístico, agrupa dados semelhantes a conjuntos não observados

Constrói o corpora de documentos de patente

Pré processamento do corpora

Geração da matriz documento-termo Obtenção dos tópicos pelo uso do LDA

Expansão das palavras relacionadas aos tópicos

Materiais e métodos - Validação do dicionario

- Avaliação dos tópicos
 - Correspondência entre o número de tópicos e assuntos
 - As palavras relacionadas ao tópico possuem sentido
 - Associar os tópicos gerados ao assunto

Materiais e métodos - Classificação a partir do dicionário

- Processamento de linguagem Natural
 - tokens
 - normalização
 - pontuação
 - stopwords

Materiais e métodos - Modelagem

Modelos aplicados

- Random Forest
 - baseado em árvore
- Naive Bayes
 - baseado em estatística bayesiana
- SVM
 - baseado em aprendizado estatístico
- Estratégia de separação treino/teste
 - Cross Validation
- Métricas
 - média da acurácia

- Extração
 - Foi extraído uma amostra de 904 documentos de patentes sobre agronomia
- Dicionário
 - 25 tópicos e 901 termos

Termos de maior destaque no corpora

Métrica de auxílio na escolha da do número de tópicos

painel pyLDAvis

Tópicos gerados automaticamente

topic	term	feature
digital_display_different	digital	digital
digital_value_field	digital	digital
field_datum_value	digital	digital
digital_display_different	display	display
digital_display_different	display	show
digital_display_different	display	exhibit

Dicionário construído

Sinônimos, hiperônimos e hipônimos adicionados

- Random Forest

- 10 folds
- Acurácia média: 0.83

- Naive Bayes

- 10 folds
- Acurácia média: 0.80

- SVM

- 10 folds
- Acurácia média: 0.78

Conclusão

- Conclusão do trabalho

- Possível classificar patentes em múltiplos tópicos
- Construção automática de dicionário
- Random Forest é o modelo mais adequado para este tipo de problema

- Trabalhos futuros

- Melhorar a construção automática de dicionários
- Testar modelos de redes neurais

Bibliografia

- ABBAS, A.; ZHANG, L.; KHAN, S. U. A literature review on the state-of-the-art in patent analysis. World Patent Information, Elsevier Ltd, v. 37, p. 3–13, 2014. ISSN 01722190. Disponível em: http://dx.doi.org/10.1016/j.wpi.2013.12.006>.
- ANNE, C. et al. Multiclass patent document classification. Artificial Intelligence Research, v. 7, n. 1, p. 1, 2017. ISSN 1927-6974.
- BREITZMAN, A. F.; MOGEE, M. E. The many applications of patent analysis. Journal of Information Science, v. 28, n. 3, p. 187–205, 2002. ISSN 01655515.
- LI, G. A Literature Review on Patent Texts Analysis Techniques. International Journal of Knowledge and Language Processing, v. 9, n. 3, p. 1–15, 2018.
- SHAHID, M. et al. Automatic patents classification using supervised machine learning. In: SPRINGER. International Conference on Soft Computing and Data Mining. [S.I.], 2020. p. 297–307.
- WANG, G. et al. Extraction of Principle Knowledge from Process Patents for Manufacturing Process Innovation. Procedia CIRP, The Author(s), v. 56, p. 193–198, 2016.
 ISSN 22128271. Disponível em: http://dx.doi.org/10.1016/j.procir.2016.10.053.
- WILLIAMS, H. L. How Do Patents Affect Research Investments? Annual Review of Economics, v. 9, n. 1, p. 441–469, 2017. ISSN 1941-1383.
- ZHU, H. et al. Patent automatic classification based on symmetric hierarchical convolution neural network. Symmetry, v. 12, n. 2, p. 1–12, 2020. ISSN 20738994.

