Teoría de Autómatas y Lenguajes Formales. Práctica 1

Lázaro Vargas García

Ejercicio 1. Find the power set R^3 of R = (1, 1), (1, 2), (2, 3), (3, 4). Check your answer with the script powerrelation.m and write a LATEX document with the solution step by step.

En este ejercicio, debemos hallar R^3 dada la relación binaria R siguiente:

$$R = \{(1,1), (1,2), (2,3), (3,4)\}$$

Para ello, aplicamos la definición de potencia de una relación:

Definición. Dado $R \subseteq A \times A$,

$$R^{n} = \begin{cases} R & n = 1 \\ \{(a,b) : \exists x \in A, (a,x) \in R^{n-1} \land (x,b) \in R\} & n > 1 \end{cases}$$

Solución. Empecemos por calcular R^2 . Nótese que en nuestro caso, $A = \{1, 2, 3, 4\}$

Los siguientes elementos de la forma $(x, y) \in A \times A$ pertenecen a R^2 :

- (1,1) Ya que $1 \in A$, $(1,1) \in R$ y $(1,1) \in R$
- (1,2) Ya que $1 \in A$, $(1,1) \in R$ y $(1,2) \in R$
- (1,3) Ya que $2 \in A$, $(1,2) \in R$ y $(2,3) \in R$
- (2,4) Ya que $3 \in A,$ (2,3) $\in R$ y (3,4) $\in R$

No hay más elementos que cumplan esta condición, entonces:

$$R^2 = \{(1,1), (1,2), (2,3), (3,4)\}$$

Empecemos por calcular R^2 . Nótese que en nuestro caso, $A = \{1, 2, 3, 4\}$ Los siguientes elementos de la forma $(x, y) \in A \times A$ pertenecen a R^3 :

- (1,1) Ya que $1\in A,$ (1,1) $\in R^2,$ y (1,1) $\in R$
- (1,2) Ya que $1 \in A$, $(1,1) \in R^2$, y $(1,2) \in R$
- (1,3) Ya que $2 \in A$, $(1,2) \in \mathbb{R}^2$, y $(2,3) \in \mathbb{R}$
- (1,4) Ya que $3\in A,\, (1,3)\in R^2,\, \mathbf{y}\, (3,4)\in R$

No hay más elementos que cumplan esta condición, entonces:

$$R^3 = \{(1,1), (1,2), (1,3), (1,4)\}$$