MAC0317/MAC5920

Introdução ao Processamento de Sinais Digitais

Seção 2.4: A DFT unidimensional

Seção 2.4.1 Definição da DFT

No exemplo (1.23) vimos que um vetor $x \in \mathbb{C}^N$ pode ser escrito na base das exponenciais complexas $\{E_k | k=0,\ldots,N-1\}$ como $x=\sum_{k=0}^{N-1}c_kE_k$ onde $c_k=\frac{(x,E_k)}{(E_k,E_k)}=\frac{1}{N}(x,E_k).$

Definição 2.4.1

A DFT de um vetor $x \in \mathbb{C}^N$ qualquer é o vetor $X = DFT(x) \in \mathbb{C}^N$ cujas componentes são

$$X_k = (x, E_k) = \sum_{n=0}^{N-1} x_n e^{-i2\pi k \frac{n}{N}}, \ k = 0, \dots, N-1.$$

Observe que $X_k = Nc_k$ na definição da DFT: isso significa que, normalmente, ao computar a DFT por uma função de biblioteca, por exemplo numpy.fft.fft(x), os coeficientes X_k são N vezes maiores do que os pesos c_k associados às componentes

$$E_k$$
 na combinação linear $x = \sum_{k=0}^{N-1} c_k E_k$.

Observação 2.1

O coeficiente $c_0 = \frac{X_0}{N}$ mede a contribuição da forma de onda constante $E_0 = (1, 1, \dots, 1)$. Em outras palavras,

$$c_0 = \frac{X_0}{N} = \frac{1}{N} \sum_{n=0}^{N-1} x_n,$$

ou seja, c_0 é o valor médio do sinal x, também chamado de componente dc (*direct current*).

Observação 2.2

Na expressão da definição 2.4.1, o vetor X pode ser indexado em qualquer componente k, mesmo fora do intervalo $0 \le k < N$, e sua expressão é periódica em k com período N:

$$X_{N+k} = \sum_{n=0}^{N-1} x_n e^{-i2\pi(N+k)\frac{n}{N}} = \sum_{n=0}^{N-1} x_n e^{-i2\pi n} e^{-i2\pi k\frac{n}{N}} = X_k, \ \forall k \in \mathbb{Z}.$$

Frequentemente visualizamos as componentes X_k no intervalo $-\frac{N}{2} < k \le +\frac{N}{2}$, que correspondem às frequências que respeitam a condição de Shannon-Nyquist (frequências que não produzem rebatimento).

Definição 2.4.2

A IDFT de um vetor $X \in \mathbb{C}^N$ qualquer é o vetor $x = IDFT(X) \in \mathbb{C}^N$ dado pela expressão

$$x = \frac{1}{N} \sum_{k=0}^{N-1} X_k E_k,$$

de tal forma que suas componentes podem ser escritas como

$$x_n = \frac{1}{N}(X, \overline{E_n}) = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{i2\pi k \frac{n}{N}}, \ n = 0, \dots, N-1.$$

Errata: na 1a edição do livro falta a conjugação no termo $(X, \overline{E_n})$ da equação (2.7).

Observação: Existem textos e softwares que podem definir o par DFT/IDFT de maneira diferente. Poderíamos ter definido o par DFT/IDFT pelas equações

$$c_k = \frac{1}{N} \sum_{n=0}^{N-1} x_n e^{-i2\pi k \frac{n}{N}} \text{ e } x = \sum_{k=0}^{N-1} c_k E_k, \text{ onde a constante } \frac{1}{N} \text{ apareceria na DFT ao invés de na IDFT, como é mais comum.}$$

Também seria possível definir a DFT/IDFT com a mesma constante nas duas fórmulas:

$$\tilde{X}_k = \frac{1}{\sqrt{N}}(x, E_k)$$

e

$$x = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \tilde{X}_k E_k.$$

Essa versão corresponde a usar a base ortonormal das exponenciais complexas

$$\left\{\frac{E_k}{\|E_k\|} \mid k=0,\ldots,N-1\right\}.$$

Em qualquer caso, as definições da DFT e da IDFT devem ser "compatíveis", ou seja, precisam satisfazer

$$IDFT(DFT(x)) = x, \ \forall x.$$

Exemplo de sinal com rebatimento (aliasing)

Vamos considerar outra vez o sinal da seção 2.3

$$x(t) = 2\cos(2\pi 5t) + 0.8\sin(2\pi 12t) + 0.3\cos(2\pi 47t)$$

amostrado no intervalo $t \in [0, 1)$ usando duas taxas de amostragem diferentes:

$$N = 128 e N = 64.$$

```
In [45]: N = 128; t = np.arange(0, 1, 1/N); N2 = N/2; t\_sub = np.arange(0, 1, 1/N2) x = 2*np.cos(2*m.pi*5*t) + 0.8*np.sin(2*m.pi*12*t) + 0.3*np.cos(2*m.pi*47*t) x\_sub = 2*np.cos(2*m.pi*5*t\_sub) + 0.8*np.sin(2*m.pi*12*t\_sub) + 0.3*np.cos(2*m.pi*47*t\_sub) f, ax = plt.subplots(1,2,figsize=(15,5)) ax[0].set\_title("Sinal original");ax[0].plot(t,x) ax[1].plot(t\_sub,x\_sub); ax[1].set\_title("Sinal amostrado a 64 Hz") plt.show()
```


Espectro de energia das duas versões do sinal

Lembrando da expressão $||x||^2 = \sum_{k=0}^{N-1} N|c_k|^2$, e do fato de que as duas componentes

 E_k e E_{-k} juntas representam uma componente real (seno ou cosseno), vamos usar como medida de energia os valores

$$N(|c_{-k}|^2 + |c_k|^2),$$
 ou equivalentemente, lembrando que $c_k = \frac{X_k}{N},$
$$\frac{|X_{-k}|^2 + |X_k|^2}{N}.$$

```
In [46]: X= np.fft.fft(x); c = X/ (N); E = N * abs(c)**2 X_sub= np.fft.fft(x_sub); c_sub = X_sub / (N/2); E_sub = (N/2) * abs(c_sub)**2 f, ax = plt.subplots(1,2,figsize=(15,5)) ax[0].plot(E[0:int(N/2)]); ax[0].set_title("Energia do sinal original"); ax[1].plot(E_sub[0:int(N/4)]); ax[1].set_title("Energia do sinal reamostrado (Figura 2.7)"); plt.show(); f = 47; print("Componente de {0} Hz rebatida = {1} Hz".format(f,f%N2 if f%N2<=N2/2 else N2-f%N2))
```


Componente de 47 Hz rebatida = 17.0 Hz

Nesse exemplo o rebatimento da componente 47 Hz em uma componente de 17 Hz ocorre pois, usando uma taxa de amostragem de 64 Hz,

$$\cos(2\pi 47 \frac{n}{64}) = \cos(2\pi 47 \frac{n}{64} - 2\pi n \frac{64}{64})$$

$$= \cos(2\pi (47 - 64) \frac{n}{64})$$

$$= \cos(2\pi (-17) \frac{n}{64})$$

$$= \cos(2\pi 17 \frac{n}{64}), \forall n \in \mathbb{Z},$$

ou seja, as componentes de 47 Hz e de 17 Hz são indistinguíveis nessa taxa de amostragem.

Exemplo com pulsos quadrados (Figuras 2.8 - 2.10)

Considere um pulso quadrado de largura R e duração N, ou seja, um sinal $x \in \mathbb{R}^N$ tal que

$$x_n = \begin{cases} 1 & n < R \\ 0 & n \ge R, \end{cases}$$

cuja DFT é (exercício 2.11 resolvido):

$$X_k = \sum_{n=0}^{N-1} x_n e^{-i2\pi k \frac{n}{N}} = \sum_{n=0}^{R-1} (e^{-i2\pi k \frac{1}{N}})^n = \frac{1-z^R}{1-z} = \frac{1-e^{-i2\pi k \frac{R}{N}}}{1-e^{-i2\pi k \frac{1}{N}}}.$$

$$\begin{aligned} \text{Cada componente } X_k &= \frac{1 - e^{-i2\pi k} \frac{R}{N}}{1 - e^{-i2\pi k} \frac{1}{N}} \text{ possui energia} \\ |X_k|^2 &= \frac{|1 - e^{-i2\pi k} \frac{R}{N}|}{|1 - e^{-i2\pi k} \frac{1}{N}|} = \frac{\left(1 - \cos\left(2\pi k \frac{R}{N}\right)\right)^2 + \left(\sin\left(2\pi k \frac{R}{N}\right)\right)^2}{\left(1 - \cos\left(2\pi k \frac{1}{N}\right)\right)^2 + \left(\sin\left(2\pi k \frac{R}{N}\right)\right)^2} \\ &= \frac{1 - 2\cos\left(2\pi k \frac{R}{N}\right) + \left(\cos\left(2\pi k \frac{R}{N}\right)\right)^2 + \left(\sin\left(2\pi k \frac{R}{N}\right)\right)^2}{1 - 2\cos\left(2\pi k \frac{1}{N}\right) + \left(\cos\left(2\pi k \frac{1}{N}\right)\right)^2 + \left(\sin\left(2\pi k \frac{1}{N}\right)\right)^2} = \frac{2 - 2\cos\left(2\pi k \frac{R}{N}\right)}{2 - 2\cos\left(2\pi k \frac{1}{N}\right)} \\ &= \frac{1 - \cos\left(2\pi k \frac{R}{N}\right)}{1 - \cos\left(2\pi k \frac{1}{N}\right)}. \end{aligned}$$

Figura 2.8

Figura 2.9

Figura 2.10

Exemplo de sinal aleatório e sua DFT (Figura 2.11)

Considere $x \in \mathbb{R}^N$ obtido por N sorteios aleatórios de uma mesma distribuição normal, ou seja,

$$x_n = \mathcal{N}(0, \sigma^2),$$

onde $\mu=0$ é a média e σ^2 é a variância da distribuição normal.

É possível provar (exercício 2.12) que as componentes de Fourier X_k , sendo elas próprias combinações lineares das amostras aleatórias x_n , também possuem distribuição normal, sendo

$$X_0 = \mathcal{N}(0, N\sigma^2)$$

е

$$X_k = \mathcal{N}\left(0, \frac{N}{2}\sigma^2\right).$$

```
In [51]: N = 256; t = np.arange(N); x = np.random.rand(N) * 2 - 1 X = np.fft.fft(x); c = X / N; E = N * abs(c)**2 f, ax = plt.subplots(1,2,figsize=(15,5)) ax[0].set_title("Sinal aleatório"); ax[0].plot(t, x) ax[1].set_title("Energia da DFT"); ax[1].plot(np.arange(N) - N/2, np.roll(E, in <math>t(N/2))); plt.show()
```


Sugestões para plotar DFTs

- É usual plotarmos $|X_k|$ (magnitude) ou $|X_k|^2$ (energia), ou ainda alguma versão com mudança de escala ($|c_k| = |X_k|/N$ ou $N|c_k|^2 = |X_k|^2/N$). Apenas em algumas raras aplicações estaremos interessados no espectro de fase ($\angle X_k$).
- Quando os valores de X_k variam em uma faixa muito grande de valores, ou quando são muito baixos, é comum plotarmos espectros em escala logarítmica ($\log |X_k|$, ou $\log(1+|X_k|)$ para evitarmos $\log 0 = -\infty$).
- Escolha a faixa de frequências mais conveniente para o que se quer ilustrar. Frequentemente estaremos interessados em combinar as componentes -k e k para observar energias associadas a componentes reais (senos/cossenos), através de expressões como $(|X_{-k}|^2 + |X_k|^2)/N$, para $k = 1, \ldots, \frac{N}{2} 1$ (observe que as componentes k = 0 e $k = \frac{N}{2}$ devem ser consideradas separadamente).

Observação 2.3: Índices da DFT e Frequências em Hz

Os índices k das componentes X_k da DFT de um sinal $x \in \mathbb{C}^N$ representam frequências medidas em **número de ciclos completos no intervalo [0, N)**. Para traduzirmos esses índices em frequências em Hz, precisamos considerar **quantos segundos** dura o sinal x, através da expressão $T = \frac{N}{R}$. Uma componente que percorre k ciclos em N amostras percorrerá k ciclos em K segundos, o que corresponde a uma frequência de $\frac{k}{T} = \frac{kR}{N}$ Hz.

Observe que os índices $k=0,1,\ldots,\frac{N}{2}$ corresponderão dessa forma às frequências

$$\frac{0R}{N} = 0, \frac{1R}{N} = \frac{R}{N}, \dots, \frac{NR}{2N} = \frac{R}{2} \quad \text{Hz.}$$

Os índices $k=\frac{N}{2}+1,\ldots,N-1$, que equivalem (por rebatimento) aos índices $k=-\frac{N}{2}+1,\ldots,-1$, correspondem às frequências

$$\frac{(-N/2+1)R}{N} = -\frac{R}{2} + \frac{R}{N}, \dots, \frac{-1R}{N} = -\frac{R}{N}$$
 Hz.

Exemplo de áudio: Sinal de sino e sua DFT (Figura 2.12)

Exemplo de remoção de componentes mais fracas

```
In [54]: Y = X.copy(); C = 0.1 * abs(Y).max()
    for val in np.nditer(Y, op_flags=['readwrite']):
        if abs(val) < C:
            val[...] = 0
    rex = np.real(np.fft.ifft(Y)); EY = 2*abs(Y[0:int(N/2):1])**2/N
    f, ax = plt.subplots(1,2,figsize=(15,5))
    ax[0].set_title("Sinal ressintetizado"); ax[0].plot(rex)
    ax[1].set_title("Espectro ressintetizado"); ax[1].plot(np.arange(N/2) *rate/N,
        EY); plt.show()
    ipd.Audio(rex, rate=rate)</pre>
```


Out[54]:

▶ 0:00 / 0:06 **→**