第九章 控制单元的功能

- 9.1 操作命令的分析
- 9.2 控制单元的功能

9.1 操作命令的分析

完成一条指令分4个工作周期

取指周期

间址周期

执行周期

中断周期

9.1 操作命令的分析

一、取指周期

PC → MAR → 地址线

 $1 \rightarrow R$

 $M(MAR) \rightarrow MDR$

 $MDR \rightarrow IR$

 $(PC)+1 \longrightarrow PC$

指令形式地址 — MAR

 $Ad(IR) \longrightarrow MAR$

1 → R

 $M(MAR) \longrightarrow MDR$

 $MDR \longrightarrow Ad (IR)$

三、执行周期

9.1

- 1. 非访存指令
 - (1) CLA 清A 0 \rightarrow ACC

(2) COM 取反 ACC→ACC

- (3) SHR 算术右移 $L(ACC) \rightarrow R(ACC), ACC_0 \rightarrow ACC_0$
- (4) CSL 循环左移 $R(ACC) \rightarrow L(ACC), ACC_0 \rightarrow ACC_n$
- (5) STP 停机指令 0 → G

2. 访存指令

9.1

(1) 加法指令 ADD X

 $Ad(IR) \rightarrow MAR$

 $1 \rightarrow R$

 $M(MAR) \rightarrow MDR$

 $(ACC) + (MDR) \longrightarrow ACC$

(2) 存数指令 **STA** X

 $Ad(IR) \longrightarrow MAR$

 $1 \longrightarrow W$

 $ACC \longrightarrow MDR$

 $MDR \rightarrow M(MAR)$

(3) 取数指令 LDA X

9.1

 $Ad(IR) \rightarrow MAR$

 $1 \rightarrow R$

 $M(MAR) \rightarrow MDR$

 $MDR \rightarrow ACC$

- 3. 转移指令
 - (1) 无条件转 JMP X

 $Ad(IR) \rightarrow PC$

(2) 条件转移 BAN X (负则转)

 A_0 'Ad (IR) + $\overline{A_0}$ (PC) \longrightarrow PC

4. 三类指令的指令周期

```
非访存指令周期 取指周期 执行周期 直接访存指令周期 取指周期 执行周期 前接访存指令周期 取指周期 间址周期 执行周期 转移指令周期 取指周期 执行周期 转移指令周期 取指周期 执行周期
```

四、中断周期

9.1

程序断点存入"0"地址 程序断点进栈

 $0 \longrightarrow MAR$

 $(SP)-1 \longrightarrow MAR$

 $1 \longrightarrow W$

 $1 \longrightarrow W$

 $\overline{PC} \longrightarrow MDR$

 $PC \rightarrow MDR$

 $MDR \rightarrow M (MAR)$ $MDR \rightarrow M (MAR)$

中断识别程序入口地址 M → PC

 $0 \longrightarrow EINT (置 "0") 0 \longrightarrow EINT (置 "0")$

9.2 控制单元的功能

一、控制单元的外特性

系统总线

- (1) 时钟
 - CU 受时钟控制
 - 一个时钟脉冲

发一个操作命令或一组需同时执行的操作命令

- (2) 指令寄存器 OP(IR)→ CU 控制信号 与操作码有关
- (3) 标志 CU 受标志控制
- (4) 外来信号如 INTR 中断请求HRQ 总线请求

(1) CPU 内的各种控制信号

$$R_i \longrightarrow R_j$$

$$(PC) + 1 \longrightarrow PC$$

ALU 十、一、与、或 ······

(2) 送至控制总线的信号

MREQ 访存控制信号

IO/M 访 IO/ 存储器的控制信号

RD 读命令

WR 写命令

INTA 中断响应信号

HLDA 总线响应信号

1. 不采用 CPU 内部总线的方式

1. 不采用 CPU 内部总线的方式

1. 不采用 CPU 内部总线的方式

形式地址 — MAR

- MDR → MAR → 地址线 MDR₀ MAR_i
- 1 → R
- · 数据线 → MDR
- MDR \longrightarrow IR MDR₀ IR_i

有效地址 → Ad (IR)

• MDR → MAR → 地址线 MDR₀ MAR_i

- 1 → R
- · 数据线 → MDR
- MDR \longrightarrow Y \longrightarrow ALU MDR₀ Y_i
- $AC \longrightarrow ALU$ $AC_0 \longrightarrow ALU_i$
- $(AC) + (Y) \longrightarrow Z$
- $\begin{array}{c} \bullet \ Z \longrightarrow AC \\ Z_0 & AC_i \end{array}$

- 1. 机器周期
 - (1) 机器周期的概念 所有指令执行过程中的一个基准时间
 - (2) 确定机器周期需考虑的因素 每条指令的执行步骤 每一步骤 所需的 时间
 - (3) 基准时间的确定
 - •以完成 最复杂 指令功能的时间 为准
 - 以访问一次存储器的时间为基准

若指令字长 = 存储字长 取指周期 = 机器周期

一个机器周期内可完成若干个微操作

每个微操作需一定的时间

将一个机器周期分成若干个时间相等的时间段(节拍、状态、时钟周期)

用时钟周期控制产生一个或几个微操作命令

2. 时钟周期(节拍、状态)

9.2

3. 多级时序系统

9.2

机器周期、节拍(状态)组成多级时序系统

- 一个指令周期含若干个机器周期
- 一个机器周期包含若干个时钟周期

CLK ________

四、控制方式

9.2

产生不同微操作命令序列所用的时序控制方式

1. 同步控制方式

任一微操作均由 统一基准时标 的时序信号控制

(1) 采用 完全统一 的机器周期和节拍

以最长的微操作序列和最繁的微操作作为标准

(2) 采用不同节拍的机器周期

(3) 采用中央控制和局部控制相结合的方法 9.2

2. 异步控制方式

9.2

无基准时标信号

无固定的周期节拍和严格的时钟同步

采用 应答方式

- 3. 联合控制方式 同步与异步相结合
- 4. 人工控制方式
 - (1) Reset
 - (2) 连续 和 单条 指令执行转换开关
 - (3) 符合停机开关

2.8085 的外部引脚

(1) 地址和数据信号

 $A_{15}\sim A_8$ $AD_7\sim AD_0$ SID SOD

(2) 定时和控制信号

 λ X_1 X_2 出 CLK ALE S_0 S IO/M RD WR

(3) 存储器和 I/O 初始化

入 HOLD Ready 出 HLDA 9.2

		_	
$X_1 \square$	1	40	Vcc
X_2	2	39	HOLD
Reset out	3	38	HLDA
SOD [4	37	CLK(out)
SID 🗅	5	36	Rsest in
Trap 🗀	6	35	Ready
RST7.5	7	34	IO/M
RST6.5	8	33	S_1
RST5.5 □	9	32	RD
INTR □	10	31 📮	WR
INTA 🗆	11	30	ALE
$\mathbf{AD_0}$ \square	12	29	S_0
$\mathbf{AD}_{1}^{\circ} L$		28	A ₁₅
AD_2	14	27	A ₁₄
AD_3^2	15	26	A ₁₃
$\mathbf{AD}_{4}^{\circ} \; \Box$	16	25 🗆	A ₁₂
$\mathbf{AD}_{5}^{\cdot} \; \square$	17	24 🗆	A ₁₁
AD_6^{σ}	18	23	\mathbf{A}_{10}
$\mathbf{AD}_7^{\mathfrak{o}} \; \Box$	19	22	A_9
$\mathbf{V_{SS}}^{'}$	20	21	$\mathbf{A}_{\mathbf{o}}$

(4) 与中断有关的信号

入 INTR

出 INTA

Trap 重新启动中断

(5) CPU 初始化

入 Reset in

出 Reset out

(6) 电源和地

Vcc +5V

Vss 地

 $X_1 \square 1$ 40 **Vcc** $X_2 \square 2$ **39** ☐ **HOLD** Reset out \$\quad 3\$ 38 HLDA 37 CLK(out) SOD 4 SID 5 36 ☐ Rsest in 35 Ready Trap \Box 6 34 IO/M RST7.5 □ 7 RST6.5 □ 8 33 RST5.5 4 9 32 | RD 31 **WR** INTR L 10 INTA 🗆 11 30 ALE 29 🗆 $AD_0 \square 12$ S_0 $AD_1 \square 13$ A₁₅ 28 🗆 27 $AD_2 \square 14$ A_{14} $AD_3 \square 15$ 26 A_{13} 25 $AD_4 \square 16$ A_{12} 24 AD₅ □ 17 A_{11} $AD_6 \square 18$ 23 A_{10} $AD_7 \square 19$ $22 \square A_9$ $V_{SS} \square 20$ 21

9.2

3. 机器周期和节拍(状态)与控制信号的关系

小结 9.2

每个控制信号在指定机器周期的指定节拍 T 时刻发出

以一条输出指令(IO写)为例

机器周期 M 取指令操作码

机器周期 M₂ 取设备地址

机器周期 M₃ 执行 ACC 的内容写入设备