Lösungshinweise zur 13. Übung

Differential- und Integralrechnung für Informatiker

(A51)

Man beachte, dass alle in dieser Aufgabe auftretenden Funktionen stetig sind.

- a) Es ist $f(x) = \frac{1}{x\sqrt{1+x^2}} > 0$ für alle $x \ge 1$. Aus $L = \lim_{x \to \infty} x^2 f(x) = 1 < \infty$ und p = 2 > 1 folgt, dass f auf $[1, \infty)$ uneigentlich integrierbar ist.
- b) Die Funktion f ist auf $[0, \frac{\pi}{2})$ positiv. L'Hospitals Regel anwendend, erhält man

$$L = \lim_{\substack{x \to \frac{\pi}{2} \\ x < \frac{\pi}{2}}} \left(\frac{\pi}{2} - x \right) f(x) = \lim_{\substack{x \to \frac{\pi}{2} \\ x < \frac{\pi}{2}}} \frac{\frac{\pi}{2} - x}{\cos x} = \lim_{\substack{x \to \frac{\pi}{2} \\ x < \frac{\pi}{2}}} \frac{1}{\sin x} = 1.$$

Wegen $p=1 \ge 1$ und L>0 folgt, dass f auf $[0,\frac{\pi}{2})$ nicht uneigentlich integrierbar ist.

c) Es ist f(x) > 0 für alle x > 0. Aus

$$\lim_{\substack{x \to 0 \\ x > 0}} x^0 f(x) = \lim_{\substack{x \to 0 \\ x > 0}} \left(\frac{\arctan x}{x} \right)^2 = 1$$

folgt, dass f auf (0,1] uneigentlich integrierbar ist. Wegen

$$L = \lim_{x \to \infty} x^2 f(x) = \lim_{x \to \infty} x^2 \left(\frac{\arctan x}{x} \right)^2 = \frac{\pi^2}{4} < \infty$$

und p=2>1 schließen wir, dass f auch auf $[1,\infty)$ uneigentlich integrierbar ist. Somit ist also f auf $(0,\infty)$ uneigentlich integrierbar.

d) Die Funktion f ist auf ihrem Definitionsbereich positiv. Aus

$$\lim_{\substack{x \to 1 \\ x > 1}} \sqrt{x - 1} f(x) = \lim_{\substack{x \to 1 \\ x < 1}} \frac{\sqrt{x - 1} \ln x}{x \sqrt{x^2 - 1}} = 0$$

und $p = \frac{1}{2} < 1$ folgt die uneigentliche Integrierbarkeit von f auf (1,2]. Wegen

$$L = \lim_{x \to \infty} x^{\frac{3}{2}} f(x) = \lim_{x \to \infty} \frac{x^2}{x\sqrt{x^2 - 1}} \cdot \frac{\ln x}{\sqrt{x}} = 0$$

und $p=\frac{3}{2}>1$ ist f auch auf $[2,\infty)$ uneigentlich integrierbar. Somit ist also f auf $(1,\infty)$ uneigentlich integrierbar.

e) Beachte, dass -1 < a < 1 die Ungleichung $1 - a^2x^2 > 0$, für alle $x \in [0,1]$, impliziert. Außerdem ist f(x) > 0 für alle $x \in [0,1)$. Aus

$$L = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{1 - x} f(x) = \lim_{\substack{x \to 1 \\ x < 1}} \frac{\sqrt{1 - x}}{\sqrt{(1 - x^2)(1 - a^2 x^2)}} = \frac{1}{\sqrt{2}(1 - a^2)} < \infty$$

und $p = \frac{1}{2} < 1$ folgt, dass f auf [0,1) uneigentlich integrierbar ist.

f) Es gilt f(x) > 0 für alle $x \in (0, \infty)$. Aus

$$\lim_{\substack{x \to 0 \\ x > 0}} x^{\alpha - 1} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} \frac{\arctan x}{x} = 1$$

folgt, dass, falls $\alpha - 1 < 1$, also $\alpha < 2$, die Funktion f auf (0, 1] uneigentlich integrierbar, und, falls $\alpha - 1 \ge 1$, also $\alpha \ge 2$, die Funktion f auf (0, 1] nicht uneigentlich integrierbar ist.

Es sei $\alpha < 2$. Aus

$$\lim_{x \to \infty} x^{\alpha} f(x) = \lim_{x \to \infty} \arctan x = \frac{\pi}{2}$$

folgt, dass, falls $\alpha > 1$, die Funktion f auf $[1, \infty)$ uneigentlich integrierbar, und, falls $\alpha \leq 1$, die Funktion f auf $[1, \infty)$ nicht uneigentlich integrierbar ist.

Zusammenfassend, ist also f auf $(0, \infty)$ genau dann uneigentlich integrierbar, wenn $\alpha \in (1, 2)$ ist. Für die Werte $\alpha \leq 1$ und $\alpha \geq 2$ ist f auf $(0, \infty)$ nicht uneigentlich integrierbar.

(A 52)

Ohne Beschränkung der Allgemeinheit kann a > 0 gewählt werden.

1° Nach der Definition des Grenzwertes einer Funktion in einem Punkt gibt es eine reelle Zahl $c \ge a$, so dass $x^p f(x) \le L + 1$, für alle $x \ge c$, ist. Also gilt

$$0 \le f(x) \le \frac{L+1}{x^p}, \forall \ x \ge c.$$

Aus der am Anfang der 13. Vorlesung diskutierten Aufgabe ist bekannt, dass (wegen p > 1) die Funktion $x \in [a, \infty) \mapsto \frac{L+1}{x^p} \in \mathbb{R}$ auf $[a, \infty)$ uneigentlich integrierbar ist. Die Aussage 1° des ersten Vergleichskriteriums für uneigentliche Integrale (s. **Th1** in der 13. Vorlesung) impliziert nun die uneigentliche Integrierbarkeit von f auf $[a, \infty)$.

2° Es sei r so gwählt, dass 0 < r < L ist. Die Definition des Grenzwertes einer Funktion in einem Punkt erneut verwendend, folgt die Existenz einer reellen Zahl $c \ge a$ mit $r \ge x^p f(x)$, für alle $x \ge c$. Also gilt

$$0 < \frac{r}{r^p} \le f(x), \forall \ x \ge c.$$

Aus der am Anfang der 13. Vorlesung diskutierten Aufgabe ist bekannt, dass (wegen $p \leq 1$) die Funktion $x \in [a, \infty) \mapsto \frac{r}{x^p} \in \mathbb{R}$ auf $[a, \infty)$ nicht uneigentlich integrierbar ist. Die Aussage 2° des ersten Vergleichskriteriums für uneigentliche Integrale (s. **Th1** in der 13. Vorlesung) impliziert nun, dass f auf $[a, \infty)$ nicht uneigentlich integrierbar ist.