

IIT Madras BSc Degree

Copyright and terms of use

IIT Madras is the sole owner of the content available in this portal - onlinedegree.iitm.ac.in and the content is copyrighted to IIT Madras.

- Learners may download copyrighted material for their use for the purpose of the online program only.
- Except as otherwise expressly permitted under copyright law, no use other than for the purpose of the online program is permitted.
- No copying, redistribution, retransmission, publication or exploitation, commercial or otherwise of material will be permitted without the express permission of IIT Madras.
- Learner acknowledges that he/she does not acquire any ownership rights by downloading copyrighted material.
- Learners may not modify, publish, transmit, participate in the transfer or sale, create derivative works, or in any way exploit, any of the content, in whole or in part.

Backend Systems

Memory Hierarchy

On-chip registers: 10s-100s of bytes

- On-chip registers: 10s-100s of bytes
- SRAM (cache): 0.1 1 MB

- On-chip registers: 10s-100s of bytes
- SRAM (cache): 0.1 1 MB
- DRAM: 0.1 10 GB

- On-chip registers: 10s-100s of bytes
- SRAM (cache): 0.1 1 MB
- DRAM: 0.1 10 GB
- Solid-state disk (SSD) Flash: 1-100 GB

- On-chip registers: 10s-100s of bytes
- SRAM (cache): 0.1 1 MB
- DRAM: 0.1 10 GB
- Solid-state disk (SSD) Flash: 1-100 GB
- Magnetic disk (HDD hard disk drive?): 0.1 10 TB

- On-chip registers: 10s-100s of bytes
- SRAM (cache): 0.1 1 MB
- DRAM: 0.1 10 GB
- Solid-state disk (SSD) Flash: 1-100 GB
- Magnetic disk (HDD hard disk drive?): 0.1 10 TB
- Optical, magnetic, holographic, . . .

Storage Parameters

- Latency: time to read first value from a storage location (lower is better)
 - o Register < SRAM < DRAM < SSD < HDD

Storage Parameters

- Latency: time to read first value from a storage location (lower is better)
 - Register < SRAM < DRAM < SSD < HDD
- Throughput: number of bytes/second that can be read (higher is better)
 - DRAM > SSD > HDD (regs, SRAM limited capacity)

Storage Parameters

- Latency: time to read first value from a storage location (lower is better)
 - Register < SRAM < DRAM < SSD < HDD
- Throughput: number of bytes/second that can be read (higher is better)
 - DRAM > SSD > HDD (regs, SRAM limited capacity)
- Density: number of bits stored per unit area / cost (higher is better)
 - Volume manufacture important
 - HDD > SSD > DRAM > SRAM > Regs

CPU has as many registers as possible

- CPU has as many registers as possible
- Backed by L1, L2, L3 cache (SRAM)

- CPU has as many registers as possible
- Backed by L1, L2, L3 cache (SRAM)
- Backed by several GB of DRAM working memory

- CPU has as many registers as possible
- Backed by L1, L2, L3 cache (SRAM)
- Backed by several GB of DRAM working memory
- Backed by SSD for high throughput

- CPU has as many registers as possible
- Backed by L1, L2, L3 cache (SRAM)
- Backed by several GB of DRAM working memory
- Backed by SSD for high throughput
- Backed by HDD for high capacity

- CPU has as many registers as possible
- Backed by L1, L2, L3 cache (SRAM)
- Backed by several GB of DRAM working memory
- Backed by SSD for high throughput
- Backed by HDD for high capacity
- Backed by long-term storage, backup

Cold storage (?)

- Backups and archives:
 - Huge amounts of data
 - Not read very often
 - Can tolerate high read latency
- Amazon Glacier, Google, Azure Cold/Archive storage classes
- High latency of retrieval: up to 48 hours
- Very high durability
- Very low cost

Impact on application development

- Plan the storage needs based on application growth
- Speed of app determined by types of data stored, how stored
- Some data stores are more efficient for some types of read/write operations

Developer must be aware of choices and what kind of database to choose for a given application