Homework #4

Eric Pettengill

Using the Default dataset do the following.

(a) Fit a logistic regression model that uses income and balance to predict default

(b) Estimate the test error using 5-fold cross validation.

```
set.seed(1018)
fitControl <- trainControl(method = "repeatedcv",</pre>
                            number = 5)
glmfit <- train(default ~ income + balance,</pre>
             data = Default,
             method = "glm",
             family = "binomial",
             trControl = fitControl)
glmfit$resample[,c(3,1)]
##
       Resample Accuracy
## 1 Fold1.Rep1 0.9730000
## 2 Fold2.Rep1 0.9740000
## 3 Fold3.Rep1 0.9734867
## 4 Fold4.Rep1 0.9760120
## 5 Fold5.Rep1 0.9720000
## test error
1-mean(glmfit$resample[,1])
```

- ## [1] 0.02630025
- (c) Add student to the model and estimate the test error using 5-fold cross validation. Comment.

Resample Accuracy

```
## 1 Fold1.Rep1 0.9730000
## 2 Fold2.Rep1 0.9735000
## 3 Fold3.Rep1 0.9729865
## 4 Fold4.Rep1 0.9760120
## 5 Fold5.Rep1 0.9710000
## test error
1-mean(glmfit$resample[,1])
## [1] 0.0267003
The model in (b) performs slightly better than the model in (c)
5.4 #6
 (a) Determine the estimated standard errors for the coefficients (income and balance) of the model fit in
     part (a) above.
glmfit <- glm(default ~ income + balance, data = Default, family = "binomial")</pre>
summary(glmfit)$coefficients[-1,2]
##
                      balance
         income
## 4.985167e-06 2.273731e-04
 (b) Write a function, boot.fn, to use in the boot() function to estimate the standard errors.
boot.fn <- function(data, index) {</pre>
  coef(glm(default ~ income + balance, data = Default, family = "binomial", subset = index))[c(2,3)]
 (c) Use the boot() function to estimate the standard errors of the model in (a).
set.seed(1018)
boot.obj <- boot::boot(Default, boot.fn, R = 1000)</pre>
apply(boot.obj$t, 2, sd)
## [1] 4.791449e-06 2.312668e-04
 (d) Compare the estimates to the true values.
data.frame(Actual = summary(glmfit)$coefficients[-1,2],
           Bootstrap = apply(boot.obj$t, 2, sd))
##
                  Actual
                             Bootstrap
## income 4.985167e-06 4.791449e-06
```

The bootstrap estimate for income is slightly lower than the actual value given in the glm output while the bootstrap estimate for balance in slightly higher than the actual value.

balance 2.273731e-04 2.312668e-04