(2) 根据教材定理 15.10 我们知道,对V上的任何同态导出的等价关系都是V的同余关系。容易证明:

引理 **15.2** 对任意代数系统 $V = \langle A, \circ_1, \circ_2, \cdots, \circ_n \rangle$, V 上的每一个同余关系都可以由 V 的某个自同态导出。

证明: 设 ~ 是 V 上的一个同余关系,作自然映射 $g:A\to A/\sim, \forall x\in A, g(x)=[x]$ 。由教材定理 15.11 可知,g 是从 V 到 V/\sim 的同态。同时,根据选择公理,存在函数 $f:A/\sim\to A$,使得 $\forall x\in A/\sim, f(x)\in x$ 。由商代数的定义立即有: f 是 V/\sim 到 V 的同态。从而由同态关系的传递性(证明见习题 5.23)知: $f\circ g:A\to A$ 是 V 的一个自同态。再由 f 和 g 的定义知,~正是 $f\circ g$ 导出的等价关系。如此就证明了: V 上的每一个同余关系都可以由 V 的某个自同态导出。

利用这个引理,我们知道,要找出V上的所有同余关系,只需逐一检查前面找到的13个自同态即可。

记 \sim_i 为 φ_i 在 A 上导出的等价关系,则:

- ① $\sim_1 = \sim_2 = I_A$,是 *A* 上的恒等关系。
- ② $\sim_3 = \sim_4 = \{\langle c, d \rangle, \langle d, c \rangle\} \cup I_A$,对应于划分 $\{\{a\}, \{b\}, \{c, d\}\}$ 。
- ③ $\sim_5 = E_A$,是 A 上的全域关系。
- ④ $\sim_6 = \sim_7 = \{\langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle c, a \rangle, \langle c, b \rangle\} \cup I_A$,对应于划分 $\{\{a, b, c\}, \{d\}\}_{\circ}$
- ⑤ $\sim_8 = \sim_{11} = \{\langle a, b \rangle, \langle a, d \rangle, \langle b, a \rangle, \langle b, d \rangle, \langle d, a \rangle, \langle d, b \rangle\} \cup I_A$,对应于划分 $\{\{a, b, d\}, \{c\}\}\}$ 。
- ⑥ $\sim_9 = \sim_{13} = \{\langle a, b \rangle, \langle b, a \rangle, \langle c, d \rangle, \langle d, c \rangle\} \cup I_A$,对应于划分 $\{\{a, b\}, \{c, d\}\}$ 。
- ⑦ $\sim_{10} = \sim_{12} = \{\langle a, b \rangle, \langle b, a \rangle\} \cup I_A$,对应于划分 $\{\{a, b\}, \{c\}, \{d\}\}\}$ 。

从而得知, V 上共有7个同余关系。

15.32

证明: $记 V_1 \times V_2 = \langle A \times B, \otimes, \Delta', \langle k, \overline{k} \rangle \rangle$ 。

作 $\varphi: A \times B \to A, \forall \langle a,b \rangle \in A \times B, \varphi(\langle a,b \rangle) = a$ 。由定义显然有, R 是 φ 导出的 A 上的等价关系。下面只要证明 φ 是同态映射,就可以分别由教材定理 15.10 和同态基本定理得证: R 是 $V_1 \times V_2$ 上的同余关系和 $V_1 \times V_2 / R \cong V_1$ 。

 φ 显然是函数。

 $\forall \langle a, b \rangle, \langle c, d \rangle \in A \times B$,

$$\varphi(\langle a, b \rangle \otimes \langle c, d \rangle) = \varphi(\langle a * c, b \circ d \rangle) \tag{积代数定义}$$

$$= a * c \tag{\varphi 定义}$$

$$= \varphi(\langle a, b \rangle) * \varphi(\langle c, d \rangle) \tag{\varphi 定义}$$

$$\varphi(\triangle'\langle a, b \rangle) = \varphi(\langle \triangle a, \overline{\triangle}b \rangle) \tag{积代数定义}$$

$$= \triangle a \tag{\varphi 定义}$$

这就证明了 φ 是 $V_1 \times V_2$ 到 V_1 的同态。

从而由 R 是 φ 在 A 上导出的等价关系和教材定理 15.10 得到: R 是 $V_1 \times V_2$ 上的同余关系。 又由于 B 是非空的(由代数系统定义,代数系统的载体是非空集合),因而对任意 $a \in A$,都有 $b \in B$,使得 $\langle a,b \rangle \in A \times B$, $\varphi(\langle a,b \rangle) = a$ 。这就证明了 $\varphi(A \times B) = A$,从而 V_1 就是 $V_1 \times V_2$ 在 φ 下的同态像。由同态基本定理知, $V_1 \times V_2 / R \cong V_1$ 。