Fonction de raccordement

Recherche d'un ensemble de définition d'une fonction de raccordement

$$f_1$$
 et f_2 sont deux fonctions numériques d'ensembles de définition respectifs D_1 et D_2 .
Soit la fonction f définie par : $f(x) = \begin{cases} f_1(x) & \text{si } x < a \\ f_2(x) & \text{si } x \geq a \end{cases}$ a réel.

 f_1 désigne la restriction de f à l'intervalle $]-\infty$, a[et f_2 désigne la restriction de f à l'intervalle $[a, +\infty[$. On a alors:

$$f(x) \text{ existe si et seulement si} \quad \begin{cases} f_1(x) \text{ existe dans } \mathbb{R} \\ x < a \end{cases} \quad \text{ou} \quad \begin{cases} f_2(x) \text{ existe dans } \mathbb{R} \\ x \ge a \end{cases}$$

$$f(x) \text{ existe si et seulement si} \quad \begin{cases} x \in D_1 \\ x < a \end{cases} \quad \text{ou} \quad \begin{cases} x \in D_2 \\ x \ge a \end{cases}$$

$$f(x)$$
 existe si et seulement si
$$\begin{cases} x \in D_1 \\ x < a \end{cases}$$
 ou
$$\begin{cases} x \in D_2 \\ x \ge a \end{cases}$$

$$f(x)$$
 existe si et seulement si $x \in D_1 \cap]-\infty$, $a[$ ou $x \in D_2 \cap [a, +\infty[$

On note S_1 l'ensemble des solutions du premier système et S_2 celui du second. Finalement l'ensemble de définition de la fonction f est la **réunion** $S_1 \cup S_2$.

$$D_f = S_1 \cup S_2$$

Exemple 1

On considère la fonction f définie par : $f(x) = \begin{cases} \sqrt{x+4} & \text{si } x \ge 2\\ x+3-\frac{2}{x-1} & \text{si } x < 2 \end{cases}$ Déterminons l'ensemble de définition de f.

f(x) existe si et seulement si
$$\begin{cases} x+4 \ge 0 \\ x \ge 2 \end{cases}$$
 ou
$$\begin{cases} x-1 \ne 0 \\ x < 2 \end{cases}$$
 f(x) existe si et seulement si
$$\begin{cases} x \ge -4 \\ x \ge 2 \end{cases}$$
 ou
$$\begin{cases} x \ne -1 \\ x < 2 \end{cases}$$

$$f(x)$$
 existe si et seulement si $\begin{cases} x \ge -4 \\ x \ge 2 \end{cases}$ ou $\begin{cases} x \ne -1 \\ x < 2 \end{cases}$

f(x) existe si et seulement si $x \ge 2$ ou $x \in]-\infty$, $-1[\cup]-1$, 2[donc f(x) existe si et seulement si $x \in]-\infty$, $-1[\cup]-1$, $2[\cup[2, +\infty[$ D'où $D_f =]-\infty$, $-1[\cup]-1$, $+\infty[$