Volumetric Segmentation of 3D Images

Shubham Sharma(M.Sc.-Ph.D.(OR), IIT Bombay) M.Sc. Ph.D.(OR) Phase-1 Project Presentation

November 26, 2019

Index

- Segmentation
- Images
- Convolutions
- U-net[1] and 3D U-net[2]
- Data-set [3]
- Results
- References

Segmentation

- Process of partitioning or segmenting different objects of interests from an image
- Pixel wise classification of images into different segments
- Main goal is to change the representation of the image in a more meaningful image that is easier to analyze

Figure 1: An example of nuclei segmentation; Source: Kaggle

Application of segmentation

- In case of medical images it :-
 - Can be used in locating and detecting tumors and other pathologies
 - Can be used in anomaly detection
 - Can be used in surgery planning
 - Used in Intra-surgery navigation
- Can be used in case of object detection for:-
 - Face detection
 - Locating images for satellite images
- Oan be used in case of recognition tasks for:-
 - Face detection
 - Locating images for satellite images

• This is an image to us

Figure 2: How humans see image; Source:Google

This is an image to a computer

Figure 3: How computers see image; Source:Google

Figure 4: Composition of RGB from 3 Grayscale images; Source:Wikipedia

Figure 5: Example of RGB(D) and volumetric image; Source:Wikipedia

2D and 3D convolutions

• 2D convolutions

Figure 6: 2D Convolutions; Source:Wikipedia

2D and 3D convolutions

Uses of 2D convolutions in image processing

Operation	Kernel ω	Image result g(x,y)
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Box blur	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur 3 × 3	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	
Gaussian blur 5 × 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9

Figure 7: The figure shows example of different convolution operations on an image; source: Wikipedia

2D and 3D convolutions

• 3D convolutions

Figure 8: 3D convolutions; source: Wikipedia

U-net

Figure 9: The U-net[1] architecture. Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on the top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the different operations(concatenation); Source:google

3D U-net

Figure 10: The 3D U-net[2] architecture. Blue boxes represent feature maps. The number of channels is denoted above each feature map.; Source:google

Data-set: Heart

Heart Data-set

- ► The Cardiac dataset from Medicaldecation.com contains 20 training images and 10 test images
- ► Has x and y dimensions as 320 and 320 and z(depth) varying from 90-130 in the different training images
- ► The intensities of pixels are ranging from 0-2000 roughly
- ▶ The target is left atrium.

Data-set: Heart

Figure 11: Original and Target image

Data-set: Spleen

Spleen Data-set

- ▶ The Spleen data-set contains 41 training images 20 testing images
- ► Has x and y dimensions as 512 and 512 and z(depth) varying from 40-168 roughly in the different training images
- ► The intensities of pixels are ranging from -1024 to 3072 roughly
- ▶ The challenge is large ranging foreground size

Data-set: Spleen

Figure 12: Original and Target image

Loss functions

- There are two loss functions that are used in this project:
 - Cross-entropy loss

$$CE_{-}Loss = -(y_i log(\hat{y}_i) + (1 - y_i) log(1 - \hat{y}_i))$$

$$\tag{1}$$

Dice loss

$$Dice_Coefficient = \frac{2|A \cap B|}{|A| + |B|}$$
 (2)

$$Dice_Loss = 1 - Dice_Coefficient$$
 (3)

- **★** $|A \cap B|$ is common elements between set A and B
- ★ |A| is the number of elements for set A(and likewise for set B).
- \star $|A \cap B|$ can be approximated with element wise multiplication of target and the resultant matrix.

Experiments 1

• Result 1

- ▶ Every image is resized to (1, 128, 128, 128) from cardiac dataset
- ▶ Network 1 is made by taking the no of layers same as that of a simple U-net
 - ★ No of trainable parameters 22,578,946
 - ★ Trained with cross-entropy loss with adam optimizer with a learning rate of 1e-4
 - ★ Trained for around 100 epochs
- ▶ Network 2 is made by some layers from network 1
 - ★ No of trainable parameters 5,602,306
 - ★ Trained with dice loss with adam optimizer with a learning rate of 1e-5 with decaying factor of 1e-1 after every 100 epochs
 - ★ Trained for around 100 epochs

Result 1: with cross-entropy loss

Figure 13: Segmentation on test image when cross-entropy loss is used

Result 1: with dice loss

Figure 14: Segmentation on test images when dice loss is used

Experiments 2

- Tried to maintain the aspect ratio for the images
- Cardiac images are resized to (1, 160, 160, 64)
- Spleen images are resized to (1, 128, 128, 32)

Result 2: Cardiac images with cross-entropy loss

Figure 15: Segmentation on test image when cross-entropy loss is used

Result 2: Cardiac images with dice loss

Figure 16: Segmentation on test image when dice loss is used

Result 2: Spleen images with cross-entropy loss

Figure 17: Segmentation on test image when cross-entropy loss is used

Result 2: Spleen images with dice loss

Figure 18: Segmentation on test image when dice loss is used

Results

Dice coefficient					
Data-set	Loss Function	Train images	Test images		
Cardiac	Cross-entropy	0.879	0.768		
	Dice loss	0.939	0.759		
Spleen	Cross-entropy	0.863	0.816		
	Dice loss	0.923	0.796		

Table 1: Dice coefficient corresponding to different loss functions for both the data-sets

Future works

A combination of both the losses can be taken

$$Loss = (\alpha) \times Dice_Loss + (1 - \alpha) \times CE_Loss$$
 (4)

ullet Will have to tune the value of lpha and also the parameters in network architecture

Other works

- VGG13[4] like network has been trained for 3D MNIST
- Contains 10000 training images and 2000 test images
- The network was trained for 60 epochs with learning rate 1e-5 and adam optimizer

Other works

Layer (type)	Output Shape	Param #		
Conv3d-1	[-1, 64, 16, 16, 16]	1,792		
BatchNorm3d-2	[-1, 64, 16, 16, 16]	128		
ReLU-3	[-1, 64, 16, 16, 16]	0		
Conv3d-4	[-1, 64, 16, 16, 16]	110,656		
BatchNorm3d-5	[-1, 64, 16, 16, 16]	128		
ReLU-6	[-1, 64, 16, 16, 16]	0		
MaxPool3d-7	[-1, 64, 8, 8, 8]	0		
Conv3d-8	[-1, 128, 8, 8, 8]	221,312		
BatchNorm3d-9	[-1, 128, 8, 8, 8]	256		
ReLU-10	[-1, 128, 8, 8, 8]	0		
Conv3d-11	[-1, 128, 8, 8, 8]	442,496		
BatchNorm3d-12	[-1, 128, 8, 8, 8]	256		
ReLU-13	[-1, 128, 8, 8, 8]	0		
MaxPool3d-14	[-1, 128, 4, 4, 4]	0		
Conv3d-15	[-1, 256, 4, 4, 4]	884,992		
BatchNorm3d-16	[-1, 256, 4, 4, 4]	512		
ReLU-17	[-1, 256, 4, 4, 4]	0		
Conv3d-18	[-1, 256, 4, 4, 4]	1,769,728		
BatchNorm3d-19	[-1, 256, 4, 4, 4]	512		
ReLU-20	[-1, 256, 4, 4, 4]	0		
MaxPool3d-21	[-1, 256, 2, 2, 2]	0		
Conv3d-22	[-1, 512, 2, 2, 2]	3,539,456		
BatchNorm3d-23	[-1, 512, 2, 2, 2]	1,024		
ReLU-24	[-1, 512, 2, 2, 2]	0		
Conv3d-25	[-1, 512, 2, 2, 2]	7,078,400		
BatchNorm3d-26	[-1, 512, 2, 2, 2]	1,024		
ReLU-27	[-1, 512, 2, 2, 2]	0		
MaxPool3d-28	[-1, 512, 1, 1, 1]	0		
Linear-29	[-1, 100]	51,300		
ReLU-30	[-1, 100]	0		
Linear-31	[-1, 10]	1,010		
Total params: 14,104,982				
Trainable params: 14,104,	982			
Non-trainable params: 0				
Input size (MB): 0.02				
Forward/backward pass size (MB): 16.27				
Params size (MB): 53.81				
Estimated Total Size (MB): 70.09				

Figure 19: Summary of the network used for classification

References I

- [1] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In *International Conference on Medical image computing and computer-assisted intervention*, pages 234–241. Springer, 2015.
- [2] Ozgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ronneberger. 3d u-net: learning dense volumetric segmentation from sparse annotation. In *International conference on medical image computing and computer-assisted intervention*, pages 424–432. Springer, 2016.
- [3] Amber L Simpson, Michela Antonelli, Spyridon Bakas, Michel Bilello, Keyvan Farahani, Bram van Ginneken, Annette Kopp-Schneider, Bennett A Landman, Geert Litjens, Bjoern Menze, et al. A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063, 2019.

References II

- [4] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. *arXiv preprint arXiv:1409.1556*, 2014.
- [5] Xiaofan Xu, David Corrigan, Alireza Dehghani, Sam Caulfield, and David Moloney. 3d object recognition based on volumetric representation using convolutional neural networks. In *International conference on articulated motion and deformable objects*, pages 147–156. Springer, 2016.