

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

ациональный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.04.01 Информатика и вычислительная техника

МАГИСТЕРСКАЯ ПРОГРАММА 09.04.01/07 Интеллектуальные системы анализа, обработки и интерпретации больших данных

	отчет								
	по дом	машнему зада	нию № 1						
Название: Дескриптивный анализ данных									
Дисциплина: Методы машинного обучения									
Студент	ИУ6-22М (Группа)	-	(Подпись, дата)	<u>Д.С. Каткова</u> (И.О. Фамилия)					
Преподаватель		_	<u> </u>	С.Ю. Папулин					
			(Подпись, дата)	(И.О. Фамилия)					

Домашнее задание 1. Дескриптивный анализ данных

Каткова Дарья, ИУ6-22М

Цель работы

Приобрести опыт решения практических задач по анализу данных, таких как загрузка, трансформация, вычисление простых статистик и визуализация данных в виде графиков и диаграмм, посредством языка программирования Python.

Вариант: 5-1-3

```
In [2]: surname = "Каткова" # Фамилия

alp = 'aбвгдеёжзийклмнопрстуфхцчшщъыьэюя'
w = [1, 42, 21, 21, 34, 6, 44, 26, 18, 44, 38, 26, 14, 43, 4, 49,
7, 42, 29, 4, 9, 36, 34, 31, 29, 5, 30, 4, 19, 28, 25,

d = dict(zip(alp, w))
variant = sum([d[el] for el in surname.lower()]) % 40 + 1

print("Задача № 1, шаг 5 - вариант: ", variant % 5 + 1)
print("Задача № 1, шаг 11 - вариант: ", variant % 2 + 1 )
print("Задача № 2 - вариант: 5
Задача № 1, шаг 11 - вариант: 1
Задача № 2 - вариант: 3
```

Задание 1. Анализ индикаторов качества государственного управления (WGI)

```
In [3]: # Подключение библиотек
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
```

Загрузка данных в DataFrame и сортировка данных по убыванию индекса DataFrame

```
In [4]: df_corruption = pd.read_excel('wgidataset.xlsx', sheet_name = "Cont # Сортировка по убыванию индекса df_corruption = df_corruption.sort_index(ascending = False) # Вывод десяти строк, начиная с головы df_corruption.head(10)
```

Out[4]:

	Country/Territory	Code	Estimate	StdErr	NumSrc	Rank	Lower	Uppe
213	Zimbabwe	ZWE	-0.278847	0.244907	5.0	47.849461	30.645161	60.75268
212	Zambia	ZMB	-0.840641	0.262077	4.0	24.731182	5.913979	41.39785
211	Congo, Dem. Rep.	ZAR	-1.647852	0.315914	3.0	0.000000	0.000000	12.36559
210	South Africa	ZAF	0.732927	0.210325	6.0	76.344086	66.129036	81.18279
209	Serbia	SRB	-1.140072	0.262077	4.0	11.827957	0.537634	29.03225
208	Yemen, Rep.	YEM	-0.743732	0.262077	4.0	27.419355	8.602151	47.31182
207	Jersey, Channel Islands	JEY	NaN	NaN	NaN	NaN	NaN	Nat
206	West Bank and Gaza	WBG	0.041492	0.340507	2.0	59.139786	35.483871	73.11827
205	Vanuatu	VUT	0.216309	0.439480	1.0	62.365593	36.559139	80.64516 _°
204	Vietnam	VNM	-0.489799	0.212363	6.0	37.096775	24.731182	52.15053

10 rows × 146 columns

Отображение данных по индексу WGI за 2022 год в виде горизонтального столбчатого графика (rank)

```
In [5]: # Установим индекс Country/Territory
df_rank = df_corruption.set_index('Country/Territory')

# Выбираем для отображения Rank за 2022 год, заполняем нулями там,
df_rank = df_rank[["Rank.23"]].fillna(0).sort_values("Rank.23")

# Отображаем данные в виде горизонтального столбчатого графика
df_rank.plot.barh(color = 'violet', figsize = (5, 50), title = "202")
```


Сформируем DataFrame из исходного для региона в соответствии с вариантом 5: Sub Saharan Africa

```
In [6]: df_regions = pd.read_excel("regions.xlsx")

# Объединим regions.xlsx и ControlofCorruption по Code
df_merged = pd.merge(df_regions, df_corruption, on='Code')

# Сформируем DataFrame для региона Sub Saharan Africa (SSA) и отсор
df_SSA = df_merged[df_merged.Region=='SSA'].sort_index(ascending = df_SSA.head(10)
```

Out[6]:

	Country	Code	Region	Country/Territory	Estimate	StdErr	NumSrc	Rank
176	Zimbabwe	ZWE	SSA	Zimbabwe	-0.278847	0.244907	5.0	47.849461
175	Zambia	ZMB	SSA	Zambia	-0.840641	0.262077	4.0	24.731182
164	Uganda	UGA	SSA	Uganda	-0.723757	0.262077	4.0	27.956989
159	Togo	TGO	SSA	Togo	-0.842621	0.315914	3.0	24.193548
157	Tanzania	TZA	SSA	Tanzania	-0.702762	0.262077	4.0	29.569893
150	Sudan	SDN	SSA	Sudan	-1.240006	0.262077	4.0	6.989247
147	South Sudan	SSD	SSA	South Sudan	NaN	NaN	NaN	NaN
146	South Africa	ZAF	SSA	South Africa	0.732927	0.210325	6.0	76.344086
145	Somalia	SOM	SSA	Somalia	-1.273832	0.315914	3.0	5.376344
140	Sierra Leone	SLE	SSA	Sierra Leone	-0.756474	0.315914	3.0	26.344086

10 rows × 148 columns

Построение графиков индекса WGI за 1996-2022 для стран своего региона (estimate).

In [7]: # Установим индекс Country и отфильтруем по Estimate
df_estimate = df_SSA.set_index('Country').filter(regex='Estimate')
df_estimate.head(10)

Out[7]:

	Estimate	Estimate.1	Estimate.2	Estimate.3	Estimate.4	Estimate.5	Estimate.6
Country							
Zimbabwe	-0.278847	-0.504802	-1.127275	-1.156760	-1.188868	-1.253563	-1.314617
Zambia	-0.840641	-0.853156	-0.818261	-0.758519	-0.641859	-0.604488	-0.592440
Uganda	-0.723757	-0.989971	-1.028190	-1.025739	-0.948509	-0.811879	-0.833649
Togo	-0.842621	-0.831448	-0.751899	-0.758070	-0.902239	-0.943994	-0.873771
Tanzania	-0.702762	-0.803638	-0.810984	-0.840932	-0.734542	-0.565570	-0.607606
Sudan	-1.240006	-1.119795	-1.018885	-1.035823	-1.170058	-1.246903	-1.387641
South Sudan	NaN	NaN	NaN	NaN	NaN	NaN	NaN
South Africa	0.732927	0.638809	0.550270	0.332902	0.275541	0.397753	0.483857
Somalia	-1.273832	-1.169290	-1.231536	-1.032931	-1.465910	-1.803035	-1.683112
Sierra Leone	-0.756474	-0.724984	-0.736802	-0.789459	-0.892783	-0.881413	-1.085492

10 rows × 24 columns

```
In [8]: # Переименуем названия столбцов
years = np.arange(1996, 2023, 1)

# Удалим года, информации о которых нет (1997, 1999, 2001)
years = np.delete(years, 1)
years = np.delete(years, 2)
years = np.delete(years, 3)

# Для корректного отображения преобразуем years в строку
df_estimate.columns = map(str, years)

# Отобразим данные в виде графиков
df_estimate.T.plot(color='violet', figsize=(20,10), title='1996-202
```

Out[8]: <Axes: title={'center': '1996-2022 Sub Saharan Africa Estimate'}>

Найдем страны с наибольшим и наименьшим значением WGI региона SSA за 2022 год (estimate)

```
In [9]: # Наибольшее значение WGI региона
    max_estimate = df_estimate['2022'].idxmax()
    max_estimate

Out[9]: 'Seychelles'

In [10]: # Наименьшее значение WGI региона
    min_estimate = df_estimate['2022'].idxmin()
    min_estimate

Out[10]: 'South Sudan'
```

Определим средние значения региона SSA за каждый год в период с 1996 по 2022 (estimate)

```
In [11]: # Средние значения WGI региона
         mean = df_estimate.mean()
         mean
Out[11]: 1996
               -0.526003
         1998
               -0.551466
         2000
               -0.545919
         2002
               -0.554189
         2003
               -0.589383
         2004
               -0.658061
         2005
               -0.659048
         2006
               -0.618499
         2007
               -0.600693
         2008
               -0.595974
         2009
              -0.590122
         2010
              -0.595736
         2011
               -0.610929
               -0.652935
         2012
         2013
               -0.658446
         2014
              -0.659135
         2015
              -0.668719
         2016
              -0.671172
         2017
               -0.679782
         2018
               -0.671723
         2019 -0.668655
         2020 -0.643094
         2021 - 0.629466
         2022 - 0.631573
         dtype: float64
```

Построим графики индекса WGI за 1996-2022 для стран SSA и выделите страны с наибольшим и наименьшим значением WGI за 2022 год, а также отобразите среднее значение по региону и РФ.

```
In [12]: # Транспонируем
df_estimate = df_estimate.T
```

```
In [14]: # Отобразим данные в виде графиков df_estimate.plot(color='#bdbdbd', figsize=(20,10), title='1996-2022 # Наибольшее значение WGI региона df_estimate[max_estimate].plot(label="max", color='red', marker='*' # Наименьшее значение WGI региона df_estimate[min_estimate].plot(label="min", color='green', marker=' # Среднее значение по РФ RF = df_merged.set_index('Country/Territory').T.get("Russian Federa RF.plot(label="Russia", color='orange', marker='*', legend=True) # Среднее значение по региону mean.T.plot(color='blue', marker='*', legend=True, label="mean", xt
```

Out[14]: <Axes: title={'center': '1996-2022 Sub Saharan Africa Estimate'}>

Определим, как изменилось значение показателя rank с 1996 по 2022 для Europe and Central Asia

```
In [15]: # Фильтруем по региону согласно варианту ECA и установим индекс Cou df_ECA = df_merged[df_merged.Region=='ECA'].set_index('Country/Terr # Выбираем из таблицы столбцы Rank (1996 год) и Rank.23 (2022 год) df_ECA = df_ECA.filter(items = ['Rank', 'Rank.23']) # Находим разницу rank между 2022 и 1996 годом df_ECA['Diff'] = df_ECA['Rank'] - df_ECA['Rank.23'] # Меняем заголовки столбца df_ECA.columns = ['1996', '2022', 'Difference'] df_ECA
```

Out [15]:

	1996	2022	Difference
Country/Territory			
Albania	19.354839	38.679245	-19.324406
Armenia	38.172043	56.132076	-17.960033
Azerbaijan	2.688172	16.981133	-14.292960
Belarus	42.473118	31.603773	10.869345
Bosnia and Herzegovina	48.924732	25.943396	22.981337
Georgia	1.075269	72.169815	-71.094546
Kazakhstan	12.365591	48.584908	-36.219316
Kosovo	NaN	47.169811	NaN
Kyrgyz Republic	17.204302	10.377358	6.826943
Moldova	39.784946	42.924530	-3.139584
Montenegro	NaN	50.943398	NaN
North Macedonia	32.258064	43.867924	-11.609859
Russian Federation	15.053763	19.339622	-4.285859
Serbia	11.827957	35.377357	-23.549400
Tajikistan	5.913979	6.132075	-0.218097
Türkiye	51.612904	34.905659	16.707245
Turkmenistan	15.591398	5.660378	9.931021
Ukraine	13.440860	29.245283	-15.804423
Uzbekistan	12.903226	24.528301	-11.625075

Выведем таблицу для варианта 3 - Europe and Central Asia (WGI - rank)

Out[16]:

	Регион	Страна	WGI 1996	WGI 2022	Изменение
mean_2022	ECA	-	22.390892	33.714002	11.323110
max_2022	ECA	Georgia	1.075269	72.169815	71.094546
min_2022	ECA	Turkmenistan	15.591398	5.660378	-9.931021
Russia 2022	ECA	Russian Federation	15.053763	19.339622	4.285859

Отобразим диаграмму размаха (boxplot) индекса WGI за 2022 для всех стран и для каждого региона в отдельности (на одном графике) (estimate)

```
In [18]: # Группируем по региону и выбираем столбцы estimate за 2022 год и с
regions = df_merged.groupby('Region')[['Estimate.23', 'Country']]
df_box = []

# Формируем массив DataFrame'ов по каждому региону
for region in regions:
    df_box.append(region[1].set_index('Country').set_axis([region[0]])

# Создаем DataFrame для всех стран и добавляем его к массиву
df_all_regions = df_merged.set_index('Country/Territory').filter(re
df_box.append(df_all_regions)

# Объединяем массив DataFrame'ов
df_box = pd.concat(df_box, sort = True)
df_box.boxplot()
```

Out[18]: <Axes: >

Задание 2.

Загрузить данные в один dataframe из всех файлов в папке /data/stock. Все файлы имеют одинаковую структуру, в том числе наименование столбцов. В качестве значений индекса dataframe'а необходимо указать значения столбца "Date". Название столбцов должные соответствовать названию акций (имя файла без .csv), а их значения - значениям цены закрытия (столбец "Close" в файлах .csv)

```
In [19]: # Подключение всех файлов
import glob
from pathlib import Path

glob_file = glob.glob('./stock/*.csv')

# Создаем переменную для хранения значений
df_file = {}

# Цикл прохождения по всем файлам
for file in glob_file:
    data = pd.read_csv(file, index_col='Date') # Считываем данные
    data_name = Path(file).stem # Получаем название файла
    df_file[data_name] = data['Close']

# Объединение всех файлов
df_all_files = pd.concat(df_file, axis=1, sort = True)
df_all_files.head(10)
```

Out[19]:

	csco	GTLB	ADBE	тсом	DBX	ABNB	ORCL	
Date								
2022- 01-01	55.669998	64.010002	534.299988	26.610001	24.750000	153.970001	81.160004	60.0
2022- 02-01	55.770000	58.270000	467.679993	25.820000	22.690001	151.490005	75.970001	54.5
2022- 03-01	55.759998	54.450001	455.619995	23.120001	23.250000	171.759995	82.730003	57.2
2022- 04-01	48.980000	47.930000	395.950012	23.650000	21.750000	153.210007	73.400002	51.9
2022- 05-01	45.049999	38.939999	416.480011	22.059999	20.840000	120.870003	71.919998	48.6
2022- 06-01	42.639999	53.139999	366.059998	27.450001	20.990000	89.080002	69.870003	41.6
2022- 07-01	45.369999	57.400002	410.119995	25.780001	22.740000	110.980003	77.839996	48.6
2022- 08-01	44.720001	59.869999	373.440002	25.719999	21.389999	113.120003	74.150002	44.1
2022- 09-01	40.000000	51.220001	275.200012	27.309999	20.719999	105.040001	61.070000	36.8
2022- 10-01	45.430000	48.459999	318.500000	22.629999	21.750000	106.910004	78.070000	39.8

10 rows × 25 columns

Рассчитаем корреляционную матрицу для всех акций

In [20]: # Корреляционная матрица для всех акций df_all_files.corr().head(10)

Out[20]:

	csco	GTLB	ADBE	тсом	DBX	ABNB	ORCL	EBAY
csco	1.000000	0.068856	0.554172	0.257188	0.496982	0.594365	0.463955	0.494938
GTLB	0.068856	1.000000	0.496556	0.103614	0.402517	0.460602	0.138574	0.251066
ADBE	0.554172	0.496556	1.000000	0.533298	0.816359	0.670509	0.785432	0.180354
тсом	0.257188	0.103614	0.533298	1.000000	0.423136	0.294269	0.836340	-0.149330
DBX	0.496982	0.402517	0.816359	0.423136	1.000000	0.332740	0.667833	-0.157363
ABNB	0.594365	0.460602	0.670509	0.294269	0.332740	1.000000	0.471504	0.644140
ORCL	0.463955	0.138574	0.785432	0.836340	0.667833	0.471504	1.000000	-0.070414
EBAY	0.494938	0.251066	0.180354	-0.149330	-0.157363	0.644140	-0.070414	1.000000
AMZN	0.404820	0.690644	0.819614	0.309545	0.478171	0.830690	0.534556	0.434078
INTC	0.420854	0.535441	0.713875	-0.014994	0.390625	0.738241	0.239485	0.580047

10 rows × 25 columns

Отобразим корреляционную матрицу в виде диаграммы.

```
In [21]: # Подключим библиотеку для диаграмм heatmap
import seaborn as sns

# Вывод диаграммы
plt.title("Корреляционная матрица")
sns.heatmap(df_all_files.corr(), square = True)
```

Out[21]: <Axes: title={'center': 'Корреляционная матрица'}>

В соответствии с вариантом №3 Uber (UBER) определить:

- акцию с максимальной положительной корреляцией (max)
- акцию с максимальной отрицательной корреляцией (min)
- акцию с минимальной корреляцией (которая больше всего соответствует отсутствию какой-либо корреляции (none)

```
In [22]: # Найдем корреляции акций, удалим лишнюю строчку с Uber
df_uber = df_all_files.corr().drop(["UBER"], axis = 1)
df_uber = df_uber.loc[["UBER"]].T
df_uber
```

Out [22]:

```
UBER
 CSCO
        0.326346
 GTLB
        0.521399
 ADBE
        0.834611
 TCOM
        0.754442
  DBX
        0.595928
 ABNB
        0.680764
 ORCL
        0.832075
 EBAY
        0.085736
 AMZN
        0.796897
  INTC
        0.512572
 MSFT
        0.939538
  HPQ -0.180970
  PINS
        0.907751
 NVDA 0.969790
 TWLO -0.186828
 NFLX 0.937042
 TSLA -0.221155
GOOGL 0.737311
 META 0.954444
 SHOP
        0.836565
 SPOT
        0.933308
 XIACY
        0.495835
 AAPL 0.661323
   MU
        0.820809
```

```
In [23]: # Определим акцию с максимальной положительной корреляцией (max)
max_corr = df_uber.filter(regex='UBER').idxmax()
max_corr[0]
```

Out[23]: 'NVDA'

```
In [24]: # Определим акцию с максимальной отрицательной корреляцией (min)
    min_corr = df_uber.filter(regex='UBER').idxmin()
    min_corr[0]

Out[24]: 'TSLA'

In [26]: # Определим акцию с корреляцией, ближайшей к попе
    closest_to_zero_corr = df_uber.filter(regex='UBER').abs().idxmin()
    closest_to_zero_corr[0]
```

Построим диаграммы разброса

Out [26]: 'EBAY'

- (Ваша компания Компания с min),
- (Ваша компания Компания с тах),
- (Ваша компания Компания с none)

```
In [27]: # Диаграмма разброса UBER — Компания с min (TSLA)
plt.scatter(df_all_files["UBER"], df_all_files[min_corr[0]])
```

Out[27]: <matplotlib.collections.PathCollection at 0x15b64ff50>

In [32]: # Диаграмма разброса с UBER - Компания с max (NVDA)
plt.scatter(df_all_files["UBER"], df_all_files[max_corr[0]])

Out[32]: <matplotlib.collections.PathCollection at 0x15c0d8ed0>

In [29]: # Диаграмма разброса с UBER — Компания с none (EBAY)
plt.scatter(df_all_files["UBER"], df_all_files[closest_to_zero_corr

Out[29]: <matplotlib.collections.PathCollection at 0x15b6586d0>

Рассчет средней цены акций для каждого месяца (исходные данные взяты с интервалом в месяц)

```
In [30]: # Средняя цена акций для каждого месяца
         mean_per_month = df_all_files.T.mean()
         mean_per_month
Out[30]: Date
         2022-01-01
                        154.857167
         2022-02-01
                        140.774723
         2022-03-01
                        145.272287
         2022-04-01
                        115.763514
         2022-05-01
                        112.316034
         2022-06-01
                         99.256929
         2022-07-01
                        114.014999
         2022-08-01
                        107.380833
         2022-09-01
                         94.437083
         2022-10-01
                         97.227501
         2022-11-01
                        100.671666
         2022-12-01
                         92.028958
         2023-01-01
                        108.279540
         2023-02-01
                        108.613126
         2023-03-01
                        120.210832
         2023-04-01
                        115.778799
         2023-05-01
                        131.258401
                        145.426799
         2023-06-01
         2023-07-01
                        153.207200
         2023-08-01
                        152.016000
         2023-09-01
                        141.760400
         2023-10-01
                        140.454598
         2023-11-01
                        159.367601
         2023-12-01
                        164.859599
                        174.886801
         2024-01-01
         2024-02-01
                        189.609962
         2024-03-01
                        196.083201
         2024-03-12
                        196.083201
         dtype: float64
```

Постройте графики для акций из пункта 4 и средней из пункта 6.

```
In [31]: # Построение графиков для акций df_all_files["UBER"].plot(color='orange', marker='*', legend=True) df_all_files[max_corr[0]].plot(color='r', marker='*', legend=True) df_all_files[min_corr[0]].plot(color='g', marker='*', legend=True) df_all_files[closest_to_zero_corr[0]].plot(color='blue', marker='*' mean.plot(title="Графики акций", figsize=(10,5), grid=1, color='gre
```

Out[31]: <Axes: title={'center': 'Графики акций'}, xlabel='Date'>

Вывод:

В ходе выполнения домашнего задания был приобретен опыт решения практических задач по анализу данных, таких как загрузка, трансформация, вычисление простых статистик и визуализация данных в виде графиков и диаграмм, посредством языка программирования Python.