Problems & Solutions of Quiz 2

Theory of Computation, Fall 2022

Q1. (20 pts) Are the following statements true or false? No explanation is required.

- (a) Every context-free grammar generates at least one string.
- (b) A context-free grammar in Chomsky norm form must be unambiguous.
- (c) A context-free grammar may have an infinite number of rules.
- (d) Non-deterministic PDA are equivalent to deterministic PDA.
- (e) Let L be a language over Σ . If L is context–free, so is the following language:

$$Pref(L) = \{ u \in \Sigma^* : uv \in L \text{ for some } v \in \Sigma^* \}$$
 (1)

	Ind.	Key
	(a)	False
	(b)	False
	(c)	False
	(d)	False
•	(e)	True

Q2. (15 pts) Construct a context-free grammar that generates the following language.

$$\{xy \in \{0,1\}^* : x \text{ has equal number of 0's and 1's, and } y = y^R\}$$
 (2)

Sol:

$$S \to AB$$
 $A \to AA \mid 0A1 \mid 1A0 \mid e$ (3) $B \to 0B0 \mid 1B1 \mid 0 \mid 1 \mid e$

Q3. (15 pts) Construct a pushdown automaton that accepts the following language.

$$\{w \in \{a,b\}^* : \text{in } w, 2 \cdot \#a = \#b + 3\}$$
 (4)

Sol:

$$P = (K, \Sigma, \Gamma, \Delta, s, F)$$

$$K = \{s, f\}$$

$$\Sigma = \{a, b\}$$

$$\Gamma = \{A, B\}$$

$$s = s$$

$$F = \{f\}$$

$$(5)$$

The list of $((q, a, \beta), (p, \gamma))$ shown below contains all elements in Δ .

(q,a,eta)	(p,γ)
(s,e,e)	(f, BBB)
(f,a,e)	(f,AA)
(f,a,B)	(f,A)
(f,a,BB)	(f,e)
(f,b,e)	(f,B)
(f,b,A)	(f,e)