TECHNISCHE UNIVERSITÄT DRESDEN

FAKULTÄT ELEKTROTECHNIK UND INFORMATIONSTECHNIK

Steuerung von Systemen mit verteilten Parametern

gehalten im SS 2018

Institut für Regelungs- und Steuerungstheorie

Inhaltsverzeichnis

2	\mathbf{Mo}	dellierung von Systemen mit verteilten Parametern	3
	2.1	Modellierung in ortsfesten Koordinaten	3
		2.1.1 Bilanzgleichungen im \mathbb{R}^3	3
		2.1.2 Bilanzgleichungen im \mathbb{R}^1	4
	$\frac{2.2}{2.3}$	Modellierung in materialfesten Koordinaten	4
		Volumen	4
		$2.3.1 \text{im } \mathbb{R}^3 \dots \dots \dots \dots$	4
		$2.3.2 \text{im } \mathbb{R}^1 \dots $	5
3	Klassifikation partieller Differentialgleichungen		7
	3.1	Charakteristika von Gleichungen erster Ordnung	8
	3.2	Charakteristiken und Klassifikation von Gleichungssystemen 1. Ordnung	10
	3.3	Klassifikation und Charakteristiken von Gleichungen 2. Ordnung	11
4			13
	4.1	Motivation Steuerungsentwurf	13
	4.2	(Differentielle) Flachheit konzentriertparametrischer Systeme	13
	4.3	Flacher Ausgang für eine Klasse von Randwertaufgaben (RWA)	14
	4.4	Lösung der Cauchy'schen Randwertaufgabe für hyperbolische Systeme	16
	4.5	Lösung der Cauchy'schen Randwertaufgabe für parabolische Systeme	19
		4.5.1 Mathematische Vorbereitungen	19
		4.5.2 Existenz der Lösung	19
		4.5.3 Numerische Berechnung der Lösung	20
5	Methode der Modaltransformation		
	5.1	Einführung und Motivation	22
	5.2	Funktionaloperatoren und abstrakte Dgl	23
	5.3	Adjungierter Funktionaloperator	24
		5.3.1 Innenprodukt (Skalarprodukt) im \mathbb{C}^n	24

2 Modellierung von Systemen mit verteilten Parametern

2.1 Modellierung in ortsfesten Koordinaten

2.1.1 Bilanzgleichungen im \mathbb{R}^3

- Medien mit fester Lage und Ausdehnung $\Omega \in \mathbb{R}^3$ (Berandung $\delta\Omega$) im Raum
- Addressierung eines Punktes durch Ortsvektor $\boldsymbol{z} \in \Omega$
- Bilanzierung der Speichergröße S mit Dichtefunktion s über beliebiges raumfestes Volumen $V\in\Omega$ mit Berandung $\delta\Omega$

Speichergrößenwert in V:

$$S_V = \int_V s(\boldsymbol{z}, t) dV \tag{1}$$

Zeitableitung:

$$\dot{S}_{V} = \int_{V} \frac{\partial s(\boldsymbol{z}, t)}{\partial t} dV \tag{2}$$

Ursache der Änderung von S_V :

- ullet Quellendichte p im Inneren von V
- Zustrom über den Rand (gerichtete Flussdichte q

$$\frac{dS_V}{dt} = \int_V p(\boldsymbol{z}, t) dV - \int_{\delta V} \langle \boldsymbol{q}(\boldsymbol{z}, t), \boldsymbol{\nu}_{\delta V}(\boldsymbol{z}) \rangle \, d\delta V$$
 (3)

Aus dem Integralsatz von Gauss folgt:

$$\int_{\delta V} \langle \boldsymbol{q}(\boldsymbol{z}, t), \boldsymbol{\nu}_{\delta V}(\boldsymbol{z}) \rangle \, \mathrm{d}\delta V = \int_{V} \mathrm{div} \boldsymbol{q}(\boldsymbol{z}, t) \mathrm{d}V$$
(4)

also:

$$\frac{dS_V}{dt} = \int_V p(\boldsymbol{z}, t) - \operatorname{div} \boldsymbol{q}(\boldsymbol{z}, t) dV$$

mit (1) und (2)

$$0 = \int_{V} \left(\frac{\partial s(\boldsymbol{z}, t)}{\partial t} - p(\boldsymbol{z}, t) + \operatorname{div} \boldsymbol{q}(\boldsymbol{z}, t) \right) dV$$
 (5)

Da Volumen beliebig muss der Integrand verschwinden

$$0 = \frac{\partial s(\boldsymbol{z}, t)}{\partial t} - p(\boldsymbol{z}, t) + \operatorname{div} \boldsymbol{q}(\boldsymbol{z}, t)$$
(6)

- ullet Konkrete Aufgabnstellung definiert Zusammenhang zw. s und q
- Zusätzlich zu stellen: Randbedingungen zur pDgl.
- Klassifikation der Randbedingungen:

Vorgabe der Speichergröße auf $\delta\Omega\to {\rm Dirichlet}$

Vorgabe des Flusses auf $\delta\Omega \to \text{Neumann}$

Funktionaler Zusammenhang von s und q auf $\delta\Omega \to \text{gemischte RB}$

2.1.2 Bilanzgleichungen im \mathbb{R}^1

- Flussdichte $q(z,t) \to \text{Skalar } q(z,t) \in \mathbb{R}$
- Volumen $V \to \text{Intervall } [a, b]$
- Randintegral (4) $\int_{\delta V} \langle q(z,t), \nu_{\delta V}(z) \rangle d\delta V = q(b,t) q(a,t) = \int_{b}^{a} \frac{\partial q(z,t)}{\partial z} dz$

also statt (5)

$$\int_{b}^{a} \left(\frac{\partial s(z,t)}{\partial t} - p(z,t) + \frac{\partial q(z,t)}{\partial t} \right) dz = 0$$
 (7)

pDgl.:

$$\frac{\partial s(z,t)}{\partial t} - p(z,t) + \frac{\partial q(z,t)}{\partial t} \tag{8}$$

Faustregel: Zu einer p $\mathrm{Dgl.}\ n$ -ter Ordnung im Ort müssen n unabhängige Randbedingungen vorgegeben werden.

2.2 Modellierung in materialfesten Koordinaten

- deformierbare Medien in der Mechanik
- materialfestes Koordinatensystem
 - \rightarrow Addressierung eines Materialpunktes z durch Ortsvektor $x(z, t_0)$ in Referenzkonfiguration, die zue inem Zeitpunkt t_0 angenommen wird: $z = x(z, t_0)$
- im deformierten Zustand $z \neq x(z, t_0)$
- Bilanzierung in materialfesten Volumen (Dichtefunktionen p, s, q müsssen in materialfesten Koordinaten gegeben sein)
- Gleichungen aus 2.1 gelten in materialfesten Koordinaten

2.3 Modellierung in raumfesten Koordinaten durch Bilanzierung über materialfestem Volumen

2.3.1 im \mathbb{R}^3

Ziel: Modellierung bewegter Medien in raumfestem Bezugssystem (z.B. Fluidmechanik)

- Addressierung eines Punktes P des Kontinuums Ω durch den Ortsvektor r ine einer Referenzkonfiguration (Materialkoordinaten)
- Position von P zum Zeitpunkt t (Raumkoordinaten): $z(r,t) = \phi(r,t)$

Annahme: ϕ ist zu jedem Zeitpunkt bezüglich ${m r}$ umkehrbar (jedem Raumpunkt entspricht eindeutig ein Matrialpunkt)

$$\boldsymbol{r} = \psi(\boldsymbol{z}, t)$$

Geschwindigkeit des Materialpunktes P:

$$\dot{m{z}}(m{r},t) = rac{\partial \phi}{\partial t}(m{r},t)$$

Zuordnung der Geschwindigkeiten zu einem Raumpunkt z:

$$\boldsymbol{v}(\boldsymbol{z},t) := \dot{\boldsymbol{z}}(\psi(\boldsymbol{z},t),t)$$

• Modellierung durch Bilanzierung einer Speichergröße S_{V_t} (Dichte: s(z,t)) über ein materialfestes Volumen V, das zum Zeitpunkt t das Volumen V_t einnimmt:

$$S_{V_t} = \int_{V_t} s(\boldsymbol{z}, t) \mathrm{d}V_t$$

Integrationsgebiet V_t nicht konstant!

Deshalb wird die zeitliche Änderung von S_{V_t} mit dem Transportsatz von Reynolds beschrieben:

$$\dot{S}_{V_t} = \int_{V_t} \frac{\partial s(\boldsymbol{z},t)}{\partial t} \mathrm{d}V_t + \int_{\delta V_t} s(\boldsymbol{z},t) \left\langle \boldsymbol{\nu}_{\delta V_t}(\boldsymbol{z},t), \boldsymbol{v}(\boldsymbol{z},t) \right\rangle \mathrm{d}\delta V_t$$

mit der Notation aus 2.1 ergibt sich:

$$\frac{\partial s(\boldsymbol{z},t)}{\partial t} - p(\boldsymbol{z},t) + \operatorname{div}\boldsymbol{q}(\boldsymbol{z},t) + \operatorname{div}\boldsymbol{s}(\boldsymbol{z},t)\boldsymbol{v}(\boldsymbol{z},t) = 0$$
(9)

2.3.2 im \mathbb{R}^1

• Wert der Bilanzgröße durch Integration über das mitbewegte Intervall $V_t = [a(t), b(t)]$

$$S_{V_t} = \int_{a(t)}^{b(t)} s(z, t) \mathrm{d}z$$

Ableitung der Grenzen:

$$\frac{\partial a(t)}{\partial t} = v(a(t), t)$$
 $\frac{\partial b(t)}{\partial t} = v(b(t), t)$

statt Anwendung des Transportsatzes von Reynolds

$$\frac{\mathrm{d}}{\mathrm{d}t}S_{V_t} = \frac{\mathrm{d}}{\mathrm{d}t} \int_{a(t)}^{b(t)} s(z,t) \mathrm{d}z = s(b(t),t)\dot{b}(t) - s(a(t),t)\dot{a}(t) + \int_{a(t)}^{b(t)} \frac{\partial s(z,t)}{\partial t} \mathrm{d}z$$

$$= s(b(t),t)v(b(t),t) - s(a(t),t)v(a(t),t) + \int_{a(t)}^{b(t)} \frac{\partial s(z,t)}{\partial t} \mathrm{d}z$$

$$= \int_{a(t)}^{b(t)} \frac{\partial}{\partial z} v(z,t)s(z,t) \frac{\partial s(z,t)}{\partial t} \mathrm{d}z$$

mit der Notation aus 2.1 ergibt sich:

$$\frac{\partial s(z,t)}{\partial t} - p(z,t) + \frac{\partial}{\partial z}(v(z,t)s(z,t) + q(z,t)) = 0$$
 (10)

3 Klassifikation partieller Differentialgleichungen

Erinnerung: Methoden der Charakteristiken zur Lösung pDgl.

Beispiel 3.1 Gesucht ist x(z,t) $z,t,x \in \mathbb{R}$

$$(1+x)\frac{\partial x}{\partial t} - (1+z)\frac{\partial x}{\partial z} = z - t$$

$$\leftrightarrow (1+x)\frac{\partial x}{\partial t} - (1+z)\frac{\partial x}{\partial z} - z + t = 0$$

Ansatz: z = z(s), t = t(s), x = x(s) = x(z(s), t(s)) Es gilt:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\partial x}{\partial z} \frac{\mathrm{d}z}{\mathrm{d}s} + \frac{\partial x}{\partial t} \frac{\mathrm{d}t}{\mathrm{d}s}$$

$$\leftrightarrow \frac{\partial x}{\partial z} \frac{\mathrm{d}z}{\mathrm{d}s} + \frac{\partial x}{\partial t} \frac{\mathrm{d}t}{\mathrm{d}s} - \frac{\mathrm{d}x}{\mathrm{d}t} = 0$$

Markieren in beiden Gleichungen, wass gleichgesetzt wird

Offenbar muss gelten:

$$\frac{\mathrm{d}t}{\mathrm{d}s} = 1 + t$$

$$\frac{\mathrm{d}z}{\mathrm{d}s} = -(1 + z)$$

$$\frac{\mathrm{d}x}{\mathrm{d}s} = z - t$$

Dieses Gls. nennt man charakteristisches Dgl. System Lösung (charakteristische Kurven):

$$t(s) = C_1 e^s - 1$$

$$z(s) = C_2 e^{-s} - 1$$

$$x(s) = C_3 - C_2 e^{-s} - C_1 e^s$$

Es gilt:

$$e^{s} = \frac{t+1}{C_{1}} = \frac{C_{2}}{z+1}$$

 $\leftrightarrow (t+1)(z+1) = C_{1}C_{2} =: C$

ferner:

$$x = C_3 - (z+1) - (t+1)$$

 $x + z + t = C_3 - 2 =: d$

Eine Lösung:

$$x(z,t) = -z - t + d$$

Allgemein:
$$x = \phi((z+1)(t+1), x+z+t)$$
 ist Lösung mit beliebiger C^1 -Fkt. : ϕ : $\mathbb{R}^2 \to \mathbb{R}$

3.1 Charakteristika von Gleichungen erster Ordnung

Ausgangspunkt:

$$a(x(z,t),z,t)\frac{\partial x(z,t)}{\partial z} + b(x(z,t),z,t)\frac{\partial x(z,t)}{\partial t} = c(x(z,t),z,t)$$
(1)

Dabei ist x eine Größe nach der aufgelöst werden muss. Für eine beliebige Kurve

$$\Gamma: s \mapsto (z, t) = (a(s), b(s))$$

wird eine Lösung von (1) vorgegeben:

$$x(a(s), b(s)) = h(s) \tag{2}$$

Frage: Berechnung der Ableitungen $\frac{\partial x(z,t)}{\partial z}$ und $\frac{\partial x(z,t)}{\partial t}$ auf Γ aus h möglich? Vorgehen: Differenzieren von (2) nach s

$$\frac{\mathrm{d}h(s)}{\mathrm{d}s} = \frac{\partial x(z,t)}{\partial z}(\alpha(s),\beta(s))\alpha'(s) + \frac{\partial x(z,t)}{\partial t}(\alpha(s),\beta(s))\beta'(s)$$

Zusammen mit (1) folgt:

$$\underbrace{\begin{pmatrix} a & b \\ \alpha' & \beta' \end{pmatrix}}_{C} \begin{pmatrix} \frac{\partial x}{\partial z} \\ \frac{\partial x}{\partial t} \end{pmatrix} = \begin{pmatrix} c \\ h' \end{pmatrix}$$
(3)

Kann nicht aufgelöst werden (Matrix nicht regulär), nennt man die Kurve Γ charakteristisch. Prüfung der Singularität von C wenn Zeilen linear abhängig sind

$$\alpha' = \frac{\mathrm{d}z}{\mathrm{d}s} = f_d a \Big|_{\Gamma} \qquad \beta' = \frac{\mathrm{d}t}{\mathrm{d}s} = f_d b \Big|_{\Gamma}$$
 (4)

mit der beliebigen Funktion f_d .

Definition 3.1 Eine nichttriviale Kurve $\Gamma: s \mapsto (\alpha(s), \beta(s)) \in \mathbb{R}^2$ heißt charakteristische Projektion zur pDgl. (1), wenn (4) mit einer beliebigen Funktion f_d gilt.

Charakteristiken:

Differenz der Zeilen von (3) ergibt:

$$\frac{\mathrm{d}x}{\mathrm{d}s}\Big|_{\Gamma} = h' = fc\Big|_{\Gamma}$$

Lösung der Kurve Γ (entlang der Projektion) genügt der Dgl. Es folgt mit (4) das charakteristische Dgl.-System zu (1) ($f_d = 1$, da beliebig):

$$\frac{\mathrm{d}z}{\mathrm{d}s} = a \quad \frac{\mathrm{d}t}{\mathrm{d}s} = b \quad \frac{\mathrm{d}x}{\mathrm{d}s} = c \tag{5}$$

Lösungen $s\mapsto (t,z,x)$ des charakteristischen Systems (5) heißen charakteristische Kurven zu (1).

3.2 Charakteristiken und Klassifikation von Gleichungssystemen 1. Ordnung

Ausgangspunkt:

$$\mathbf{A}(\mathbf{x}(z,t))\frac{\partial \mathbf{x}(z,t)}{\partial z} + \mathbf{B}(\mathbf{x}(z,t))\frac{\partial \mathbf{x}(z,t)}{\partial t} = \mathbf{c}(\mathbf{x}(z,t),z,t)$$
(6)

kurz:
$$\mathbf{A} \frac{\partial \mathbf{x}(z,t)}{\partial z} + \mathbf{B} \frac{\partial \mathbf{x}(z,t)}{\partial t} = \mathbf{c}$$
 (6')

Annahme:

$$\det(\mu \mathbf{A} + \nu \mathbf{B}) \neq 0$$

 $\mu, \nu \in \mathbb{R} \to \text{Regularität}$ von (6). Charakteristiken: Eine Kurve $\Gamma: s \mapsto (\alpha(s), \beta(s)) = (z, t)$ ist eine charakteristische Projektion zu (6), wenn es nicht möglich ist aus

$$\boldsymbol{x}(\alpha(s), \beta(s)) =: \boldsymbol{h}(s)$$
 (7)

die Ableitungen $\frac{\partial x(z,t)}{\partial z}$, $\frac{\partial x(z,t)}{\partial t}$ auf Γ zu berechnen. Differenzieren von (7):

$$\frac{\partial \boldsymbol{x}(\alpha(s), \beta(s))}{\partial z} \alpha'(s) + \frac{\partial \boldsymbol{x}(\alpha(s), \beta(s))}{\partial t} \beta'(s) = \boldsymbol{h}'(s)$$

ergibt mit (6')

$$A\frac{\partial x}{\partial z} + B\frac{\partial x}{\partial t} = c \tag{8a}$$

$$\alpha' \frac{\partial \mathbf{x}}{\partial z} + \beta' \frac{\partial \mathbf{x}}{\partial t} = \mathbf{h}' \tag{8b}$$

Beobachtung: α', β' können nicht verschwinden. Fall 1: $\alpha' \neq 0$ $(8a)\alpha - (8b)\boldsymbol{A}$: $(\alpha'\boldsymbol{B} - \beta'\boldsymbol{A})\frac{\partial \boldsymbol{x}}{\partial t} = \alpha'\boldsymbol{c} - \boldsymbol{A}\boldsymbol{h}'$ Fall 2: $\beta' \neq 0$ $(8a)\beta - (8b)\boldsymbol{B}$: $(\beta'\boldsymbol{A} - \alpha'\boldsymbol{B})\frac{\partial \boldsymbol{x}}{\partial z} = \beta'\boldsymbol{c} - \boldsymbol{B}\boldsymbol{h}'$ Damit $\frac{\partial \boldsymbol{x}}{\partial z}$ bzw. $\frac{\partial \boldsymbol{x}}{\partial t}$ nicht bestimmt werden können, muss gelten:

Fall 2:
$$\beta' \neq 0$$
 $(8a)\beta - (8b)B$: $(\beta'A - \alpha'B)\frac{\partial x}{\partial z} = \beta'c - Bh'$

$$\det(\beta' \mathbf{A} - \alpha' \mathbf{B}) \stackrel{!}{=} 0 \tag{9}$$

Für Charakterisierung wird folgender Spezialfall betrachtet: Untersuchung der Kurve $s \mapsto (0, s)$. Diese Kurve soll keine Charakteristik sein.

Dann folgt für Charakteristik $\alpha(s) \neq 0 \Longrightarrow \text{Multiplikation von (6) mit } A^{-1}$

$$\frac{\partial x}{\partial z} = -\underbrace{A^{-1}B}_{B^*} \frac{\partial x}{\partial t} + \underbrace{A^{-1}c}_{c^*}$$

aus (9) folgt:

$$\det(\beta' \boldsymbol{I}_n - \alpha' \boldsymbol{B}^*) = 0$$

da $a' \neq 0$

$$\det\left(\underbrace{\frac{\alpha'}{\beta'}}_{\lambda} \mathbf{I}_n - \mathbf{B}^*\right) = 0 \text{ mit } \beta(s) = t(s) \quad \beta' = \frac{dt}{ds}$$
$$\alpha(s) = z(s) \quad \alpha' = \frac{dz}{ds}$$

 $\lambda = \frac{dt}{dz}$ sind somit die Eigenwerte von $\boldsymbol{B}^* = \boldsymbol{A}^{-1}\boldsymbol{B}$. Klassifikation:

- alle Eigenwerte sind komplex → elliptisches System (z.B. örtlich 2-dim stationäre Probleme, d.h. t ist 2. Ortskoordinate)
- ullet alle Eigenwerte reel, zu jedem Eigenwert existiert ein Eigenvektor, B^* ist diagonalisierbar \rightarrow hyperbolisches System
- B^* besitzt nur einen reellen Eigenvektor \rightarrow parabolisches System

parabolisch/hyperbolisch: dynamische Phänomene Mischtypen möglich, physikalisch sinnvoll: hyperb.-parab.

Klassifikation und Charakteristiken von Gleichungen 2. Ordnung

Ausgangspunkt: Skalare pDgl. 2. Ordnung (jetz: Gl. 10)

$$a\frac{\partial^2 x}{\partial z^2} + 2b\frac{\partial^2 x}{\partial z \partial t} + c\frac{\partial^2 x}{\partial t^2} = d \tag{10}$$

 $\begin{array}{c} (a,b,c,d \text{ h\"{a}ngen von } z,t,x,\frac{\partial x}{\partial z},\frac{\partial x}{\partial t} \text{ ab}) \\ \text{Vorgabe von } x,\frac{\partial x}{\partial z},\frac{\partial x}{\partial t} \text{ auf} \end{array}$

$$\Gamma: \mathbb{R} \to \mathbb{R} \times \mathbb{R} \text{ mit } s \mapsto (\alpha(s), \beta(s)) = (z, t)$$

mit

$$\alpha(s), \beta(s)) = h(s) \tag{11a}$$

$$\frac{\partial x}{\partial z}(\alpha(s), \beta(s)) = \phi(s) \tag{11b}$$

$$\frac{\partial x}{\partial z}(\alpha(s), \beta(s)) = \phi(s)$$

$$\frac{\partial x}{\partial t}(\alpha(s), \beta(s)) = \psi(s)$$
(11b)

Frage: Wann können $\frac{\partial^2 x(z,t)}{\partial z^2}$, $\frac{\partial^2 x(z,t)}{\partial z \partial t} = \frac{\partial^2 x(z,t)}{\partial z \partial z}$, $\frac{\partial^2 x(z,t)}{\partial t^2}$ auf Γ aus h, ϕ, ψ berechnet werden? Es gilt:

(11a)
$$h'(s) = \frac{\partial \mathbf{x}}{\partial z} \alpha' + \frac{\partial \mathbf{x}}{\partial t} \beta' = \varphi(s) \alpha'(s) + \psi(s) \beta'(s)$$
(11b)
$$\varphi'(s) = \frac{\partial^2 \mathbf{x}}{\partial z} \alpha' + \frac{\partial^2 \mathbf{x}}{\partial z \partial t} \beta'$$
(11c)
$$\psi'(s) = \frac{\partial^2 \mathbf{x}}{\partial z \partial t} \alpha' + \frac{\partial^2 \mathbf{x}}{\partial^2 t} \beta'$$

aus (11b), (11c) und (10) folgt:

$$\underbrace{\begin{pmatrix} a & 2b & c \\ \alpha' & \beta' & 0 \\ 0 & \alpha' & \beta' \end{pmatrix}}_{\mathbf{M}} \underbrace{\begin{pmatrix} \frac{\partial^2 \mathbf{x}}{\partial z^2} \\ \frac{\partial^2 \mathbf{x}}{\partial z \partial t} \\ \frac{\partial^2 \mathbf{x}}{\partial t^2} \end{pmatrix}}_{\mathbf{M}} = \begin{pmatrix} d \\ \varphi' \\ \psi' \end{pmatrix} \tag{12}$$

 $charakteristisch \Rightarrow \det(\mathbf{M}) = 0$

$$\Rightarrow a\beta'^2 - 2b\alpha'\beta' + c\alpha'^2 = 0 \tag{13}$$

Spezialfall (wie in 3.2) Betrachtung von Charakteristiken mit $\alpha'(s) \neq 0$ und zusätzlich $z = \alpha(s) = s$

$$\Rightarrow a\beta' - 2b\alpha'\beta' + c\alpha'^2 = 0 | \cdot \frac{1}{\alpha'} (= 1)$$

$$a\frac{\beta'^2}{\alpha'^2} - 2b\frac{\beta'}{\alpha'} + c = 0$$

$$a\lambda^2 - 2b\lambda + c = 0$$

$$\lambda_{1/2} = \frac{b}{a} \pm \frac{\sqrt{b^2 - ac}}{a}$$

$$b^2-ac>0$$
reelle Lsg., hyperbolisch
$$b^2-ac<0$$
konj. kompl. Lsg., elliptisch
$$b^2=ac$$
parabolisch

13

4 Steuerungsentwurf

4.1 Motivation Steuerungsentwurf

 \Rightarrow Folien

4.2 (Differentielle) Flachheit konzentriertparametrischer Systeme

Modell Feder-Masse-Schwinger

$$m\ddot{x}(t) + \sigma \frac{x(t)}{l} = u(t)$$

Stellgröße u ergibt sich direkt aus der vertikalen Auslenkung x und deren zweiter Ableitung \ddot{x} . Damit ist x ein flacher Ausgang y. Mithin gilt für die Steuerung:

$$u_{ref}(t) = m\ddot{y}_{ref}(t) + \frac{\sigma}{l}y_{ref}(t)$$

Trajektorienplanung für $y_{ref}:t\mapsto y_{ref}(t)$ muss zweimal stetig differenzierbar sein.

Beispiel 4.1

$$y_{ref}(t) = \begin{cases} y_0 & t < 0 \\ y_0 + (y_1 - y_0)\varphi(t/t^*) & t \in [0, t^*] \\ y_1 & t > t^* \end{cases}$$

mit $\varphi(\tau) = 10\tau^3 - 15\tau^4 + 6\tau^5$ für Übergang von y_0 auf y_1 , innerhalb der Zeit t^* .

Abbildung fehlt
Reglerentwurf:

1. Vorgabe einer Fehlerdynamik:

$$\ddot{\tilde{y}}(t) + k_1 \dot{\tilde{y}}(t) + k_0 \tilde{y}(t) = 0, \quad \tilde{y} = y - y_{ref}$$

$$\ddot{y} = \ddot{y}_{ref} - k_1 \dot{\tilde{y}} - k_0 \tilde{y}$$

2. ins Modell eingesetzt:

$$u = m(\ddot{y}_{ref} - k_1\dot{\tilde{y}} - k_0\tilde{y}) + \frac{\sigma}{1}y$$

Verteiltparametrisches Beispiel:

Beispiel 4.2 Schwingende Saite (Modellbildung s. Folie)

$$\rho \frac{\partial^2 x}{\partial t^2}(z,t) - \sigma \frac{\partial^2 x}{\partial z^2}(z,t) = 0$$
 mit RB: $x(0,t) = 0$, $\sigma \frac{\partial x}{\partial z}(l,t) = u(t)$

Flacher Ausgang: $y(t) = \frac{\partial x}{\partial z}(0,t)$ aus Grenzübergang Modellbildung (s. Folie)

Weiteres Vorgen: Wenn y bekannt ist, können x(0,t) (aus RB) und $\frac{\partial x}{\partial z}(0,t)$ (aus Def. von y) berechnet werden.

Probleme:

- ullet Rekursion wie im konzentriertparametrischen Fall zur Berechung der werte am rechten Rand (z=l) nicht möglich
- stattdessen: Berechnung der Lösung der pDgl. aus bekannten Randtrajektorien für $t \mapsto x(0,t)$ und $t \mapsto \frac{\partial x}{\partial z}(0,t)$ nötig.
- ⇒ Cauchy'sche Randwertaufgabe (sämtliche RB am gleichen Rand vorgegeben)
- ⇒ Lösung der Randwertaufgabe und Auswertung der physikalischen Randbedingungen liefert Stellgrößenverlauf.

Thema im Folgenden: Transformation einer gegebenen RWA auf eine Cauchy'sche RWA durch Einführung eines flachen Ausgangs.

4.3 Flacher Ausgang für eine Klasse von Randwertaufgaben (RWA)

Ausgangspunkt: n pDgl. 1. Ordnung bezüglich z

$$\frac{\partial \boldsymbol{x}}{\partial z}(z,t) = \boldsymbol{f}(\boldsymbol{x}(z,t), \ddot{\boldsymbol{x}}(z,t), \ddot{\boldsymbol{x}}(z,t), \dots)$$
(1)

$$\hat{=} \frac{\partial^{n} x}{\partial z^{n}}(z,t) = f\left(x(z,t), \frac{\partial x}{\partial z}(z,t), \dots, \frac{\partial^{n-1} x}{\partial z^{n-1}}(z,t), \dot{x}(z,t), \ddot{x}(z,t), \dots\right) \tag{1'}$$

Randbedingungen: Modell n-ter Ordnung benötigt n Randbedingungen (RB)

1. vollständig gesteuerte RB

o.B.d.A. bei z = 0:

m dieser RB mit m Stelleingriffen in $\mathbf{u} = (u_1, ..., u_m)$ bei z=0:

$$\mathbf{R}_0(\mathbf{u}(t), \mathbf{x}(0, t), \dot{\mathbf{x}}(0, t,), ...) = 0 \text{ mit}$$

$$\mathbf{R}_0 = (R_{0,1}, \dots, R_{0,m})^{\mathrm{T}} \tag{2a}$$

können nach \boldsymbol{u} aufgelöst werden, dh. $\mathrm{rang}(\frac{\partial \boldsymbol{R}_0}{\partial \boldsymbol{u}}) = m$

Interpretation: $\boldsymbol{x}(0,t)$ ist flacher Ausgang des Systems (2a), denn \boldsymbol{u} lässt sich aus $\boldsymbol{x}(0,t)$ und dessen Ableitungen integrallos berechnen.

2. vollständig differentiell paramterierbare RB

o.B.d.A. bei
$$z = l$$
:

$$n - m$$
 RB bei $z = l$

$$\mathbf{R}_{l}(\mathbf{x}(l,t),\dot{\mathbf{x}}(l,t,),...) = 0 \text{ mit}$$

$$\mathbf{R}_{l} = (R_{l,1}, \dots, R_{l,n-m})^{\mathrm{T}}$$
 (2b)

können nach \boldsymbol{x} aufgelöst werden, dh. $\mathrm{rang}(\frac{\partial \boldsymbol{R}_{l}}{\partial \boldsymbol{x}}) = n - m$

Annahme: es existiert ein $\boldsymbol{y}(t) = (y_1(t),...,y_m(t))^{\mathrm{T}}$ mit

$$y(t) = g(x(l,t), \dot{x}(l,t), \dots)$$
 (3)

sodass gilt:

$$\boldsymbol{x}(l,t) = \boldsymbol{h} \Big(\boldsymbol{y}(t), \dot{\boldsymbol{y}}(t), \ldots \Big)$$
 (4)

Interpretation \boldsymbol{y} ist flacher Ausgang des konzentriertparametirischen Systems (2b) Abbildung fehlt

4.4 Lösung der Cauchy'schen Randwertaufgabe für hyperbolische Systeme

Ausgangspunkt:

$$\frac{\partial \boldsymbol{x}}{\partial z}(z,t) + \boldsymbol{B}(z)\frac{\partial \boldsymbol{x}}{\partial t}(z,t) = \boldsymbol{C}(z)\boldsymbol{x}(z,t)$$
 (5)

mit $x(z,t) \in \mathbb{R}^n$ und hyperbolisch, da EW von B(z) reell und verschieden.

Ziel: Berechnung er Lösung $(z,t)\mapsto \boldsymbol{x}(z,t)$ aus bekanntem Verlauf $t\mapsto \boldsymbol{x}(z_0,t)$ (z.B. $z_0=l$)

Erinnerung: Eigenwerte $\lambda_1(z),...,\lambda_n(z)$ der Matrix $\boldsymbol{B}(z)$ mit z=[0,l] entprechen Anstiegen der Charakteristiken, da System hyperbolisch

char. Projektion

Spannen die Eigenvektoren $r_1(z),...,r_n(z)$ von B(z) den \mathbb{R}^n auf und B(z) ist mittels $T=(r_1(z),...,r_n(z))$ diagonalisierbar:

$$\mathbf{\Lambda}(z) = \mathbf{T}^{-1}(z)\mathbf{B}(z)\mathbf{T}(z) = \begin{pmatrix} \lambda_1(z) & 0 \\ & \ddots & \\ 0 & & \lambda_n(z) \end{pmatrix}$$

Transformation von (5) auf hyperbolische Normalform durch Wechsel der abhängigen Veränderlichen

$$\boldsymbol{x}(z,t) = \boldsymbol{T}(z)\tilde{\boldsymbol{x}}(z,t)$$

Einsetzen in (5) liefert die hyperbolische Normalform

$$T(z)\frac{\partial \tilde{x}}{\partial z}(z,t) + \frac{\partial T(z)}{\partial z}\tilde{x}(z,t) + B(z)T(z)\frac{\partial \tilde{x}}{\partial t}(z,t) = C(z)T(z)\tilde{x}(z,t)$$

$$\Leftrightarrow \frac{\partial \tilde{x}}{\partial z}(z,t) + T^{-1}(z)\frac{\partial T(z)}{\partial z}\tilde{x}(z,t) + \underbrace{T^{-1}(z)B(z)T(z)}_{=:\Lambda(z)}\frac{\partial \tilde{x}}{\partial t}(z,t) = T^{-1}(z)C(z)T(z)\tilde{x}(z,t)$$

$$\Leftrightarrow \frac{\partial \tilde{x}}{\partial z}(z,t) + \Lambda(z)\frac{\partial \tilde{x}}{\partial t}(z,t) = \underbrace{\left(T^{-1}(z)C(z)T(z) - T^{-1}(z)\right)}_{=:\tilde{C}}\tilde{x}(z,t)$$

$$\Leftrightarrow \frac{\partial \tilde{\boldsymbol{x}}}{\partial z}(z,t) + \boldsymbol{\Lambda}(z) \frac{\partial \tilde{\boldsymbol{x}}}{\partial t}(z,t) = \tilde{\boldsymbol{C}}\tilde{\boldsymbol{x}}(z,t)$$
(6)

schön, weil

$$\begin{split} \tilde{x}_1' + \lambda_1 \dot{\tilde{x}}_1 &= \tilde{c}_1^{\mathrm{T}} \tilde{\boldsymbol{x}} & \tilde{c}_i^{\mathrm{T}} \quad i\text{-te Zeile von } \tilde{\boldsymbol{C}} \\ \tilde{x}_2' + \lambda_2 \dot{\tilde{x}}_2 &= \tilde{c}_2^{\mathrm{T}} \tilde{\boldsymbol{x}} \\ &\vdots \\ \tilde{x}_n' + \lambda_n \dot{\tilde{x}}_n &= \tilde{c}_n^{\mathrm{T}} \tilde{\boldsymbol{x}} \end{split}$$

Charakteristik durch (z_0, t_0) :

$$z \mapsto t_i(z; z_0) + t_0 \quad \text{mit} \quad \frac{\mathrm{d}t_i}{\mathrm{d}z}(z; z_0) = \lambda_i(z)$$
 (7)

Ableitung von \tilde{x}_i i=1,...,n entlang der zugehörigen Charakteristik durch (z_0,t_0)

$$\frac{\partial \tilde{x}_i}{\partial z}(z, t_i(z; z_0) + t_0) + \lambda_i(z) \frac{\partial \tilde{x}_i}{\partial t}(z, t_i(z; z_0) + t_0) = \tilde{c}_i^{\mathrm{T}}(z) \tilde{x}_i(z, t_i(z; z_0) + t_0) - \tilde{x}_i(z_0, t_0)$$
(8)

Integration $\int_{z_0}^{z}$ liefert:

$$\tilde{x}_i(z, t_i(z; z_0) + t_0) - \tilde{x}_i(z_0, t_0) = \int_{z_0}^z \tilde{c}_i^{\mathrm{T}}(\xi) \tilde{x}_i(\xi, t_i(\xi; z_0) + t_0) - \tilde{x}_i(z_0, t_0) d\xi$$

 $da t = t_i(z; z_0) + t_0$

$$\tilde{x}_i(z,t) - \tilde{x}_i(z_0, t - t_i(\xi; z_0)) = \int_{z_0}^{z} \tilde{c}_i^{\mathrm{T}}(\xi) \tilde{x}_i(\xi, t) - \tilde{x}_i(z_0, t_0) d\xi$$
(9)

Satz 4.1 (ohne Beweis) Das System (9) von Integralgleichungen besitzt für beliebige beschränkte Randtrajektorien $t \mapsto \tilde{x}_i(z_0, t)$ eine eindeutige Lösung $(z, t) \mapsto \tilde{x}(z, t)$.

Mit $\boldsymbol{x}(z,t) = \boldsymbol{T}(z)\tilde{\boldsymbol{x}}(z,t)$ folgt die Lösung der Cauchyschen Randwertaufgabe. Numerische Lösung durch Diskretisierung des Integrals (Euler-Schema)

1. Zerlegung von [0, l] in N+1 Intervalle $[z_k, z_{k+1}]$ der Länge Δz

$$\tilde{x}_i(z_{k+1}, t) - \tilde{x}_i(z_k, t - t_i(z_{k+1}; z_k)) = \int_{z_k}^{z_{k+1}} \tilde{c}_i^{\mathrm{T}}(\xi) \tilde{\boldsymbol{x}}(\xi, t - t_i(z_{k+1}; \xi)) d\xi$$

2. Approximation $t_i(z_{k+1}; z_k) \approx \Delta z \lambda_i(z)$

$$\int_{z_k}^{z_{k+1}} \tilde{c}_i^{\mathrm{T}}(\xi) \tilde{\boldsymbol{x}}(\xi, t - t_i(z_{k+1}; \xi)) d\xi \approx \Delta z \tilde{c}_i^{\mathrm{T}}(z_k) \tilde{\boldsymbol{x}}(z_k, t - t_i(z_{k+1}, z_k))$$

$$\Rightarrow \tilde{x}_i(z_{k+1}, t) = \tilde{x}_i(z_k, t - \Delta z \lambda_i(z_k)) + \Delta z \tilde{c}_i^{\mathrm{T}}(z_k) \tilde{\boldsymbol{x}}(z_k, t - \Delta z \lambda_i(z_k)) \tag{10}$$

Spezialfall: $\tilde{c}_i^{\rm T}=0$ Lösung ergibt sich durch eien Zeitverschiebung der Randtrajektorie (Totzeiten, Prädiktion)

Beispiel 4.3 Elektrische Übertragungsleitung

$$\begin{split} \frac{\partial u}{\partial z}(z,t) + L \frac{\partial i}{\partial t}(z,t) + Ri(z,t) &= 0 \\ \frac{\partial i}{\partial z}(z,t) + C \frac{\partial u}{\partial t}(z,t) + Gu(z,t) &= 0 \end{split}$$

$$mit \ \boldsymbol{x}(z,t) = \begin{pmatrix} u(z,t) \\ i(z,t) \end{pmatrix}$$

$$\frac{\partial \boldsymbol{x}}{\partial z}(z,t) + \boldsymbol{B} \frac{\partial \boldsymbol{x}}{\partial t}(z,t) + \boldsymbol{C} \boldsymbol{x}(z,t) = 0$$

$$mit \mathbf{B} = \begin{pmatrix} 0 & L \\ C & 0 \end{pmatrix} und \mathbf{C} = \begin{pmatrix} 0 & R \\ G & 0 \end{pmatrix}$$

Vorgabe
$$\boldsymbol{x}(z_0,t) =: \boldsymbol{x}_0(t)$$

gesucht:
$$\mathbf{x}(0,t) =: u_0(t)$$

Eigenwerte von
$$\mathbf{B}: \lambda_1 = \tau \quad \lambda_2 = -\tau \text{ mit } \tau = \sqrt{LC}$$

Eigenvektoren von
$$\boldsymbol{B}: \boldsymbol{r}_1 = \begin{pmatrix} \sqrt{L} \\ \sqrt{C} \end{pmatrix} \quad \boldsymbol{r}_2 = \begin{pmatrix} \sqrt{L} \\ -\sqrt{C} \end{pmatrix}$$

Transformation:
$$\mathbf{x}(z,t) = \mathbf{T}(z)\tilde{\mathbf{x}}(z,t)$$

$$\begin{array}{l} \textit{Transformation: } \boldsymbol{x}(z,t) = \boldsymbol{T}(z) \tilde{\boldsymbol{x}}(z,t) \\ \textit{mit } \boldsymbol{T}(z) = \begin{pmatrix} \sqrt{L} & \sqrt{L} \\ \sqrt{C} & -\sqrt{C} \end{pmatrix} \textit{ und } \boldsymbol{T}^{-1}(z) = \frac{1}{2\sqrt{LC}} \begin{pmatrix} \sqrt{C} & \sqrt{L} \\ \sqrt{C} & -\sqrt{L} \end{pmatrix} \\ \end{array}$$

 $hyperbolische\ Normalform:$

$$\begin{split} \frac{\partial \tilde{\boldsymbol{x}}}{\partial z}(z,t) + \tau \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{\partial \tilde{\boldsymbol{x}}}{\partial t} &= \frac{\tau}{2} \begin{pmatrix} -\alpha \tilde{x}_1 + \beta \tilde{x}_2 \\ -\beta \tilde{x}_1 + \alpha \tilde{x}_2 \end{pmatrix} \\ \alpha &= \frac{R}{L} + \frac{G}{C} \quad \beta = \frac{R}{L} - \frac{G}{C} \end{split}$$

Charakteristiken

$$(z_0, t_0) \mapsto t_1(z; z_0) + t_0 \quad \text{mit} \quad \frac{\mathrm{d}t_1}{\mathrm{d}z}(z; z_0) = \tau$$

 $(z_0, t_0) \mapsto t_2(z; z_0) + t_0 \quad \text{mit} \quad \frac{\mathrm{d}t_2}{\mathrm{d}z}(z; z_0) = -\tau$

auf den Charakteristiken gilt:

$$\tilde{x}_1(z,t) = \tilde{x}_1(z_0, t - \tau(z - z_0)) + \int_{z_0}^{z} (-\alpha \tilde{x}_1(\xi, t - \tau(z - \xi)) + \beta \tilde{x}_2(\xi, t - \tau(z - \xi)))$$

$$\tilde{x}_2(z,t) = \tilde{x}_2(z_0, t + \tau(z - z_0)) + \int_{z_0}^{z} (-\beta \tilde{x}_1(\xi, t + \tau(z - \xi)) + \alpha \tilde{x}_2(\xi, t + \tau(z - \xi)))$$

4.5 Lösung der Cauchy'schen Randwertaufgabe für parabolische Systeme

4.5.1 Mathematische Vorbereitungen

Γ-Funktion: Verallgemeinerung der Fakultät für nicht ganzzahlige Argumente.

 $\Gamma(i+1) = i!$ $i \in \mathbb{N}$ genügt der Funktionalgleichung:

$$\Gamma(x+1) = x\Gamma(x)$$
 $\Gamma(1) = 1$

Definition 4.1 Gevrey-Klasse und -Ordnung. Die Funktion f sei auf dem Intervall $\Omega \in \mathbb{R}$ definiert und dort beliebig oft differenzierbar. Dann gehört f auf Ω zur kleinen Gevrey-Klasse $G_{\alpha}(\mathcal{I})$ der Ordnung α , wenn zu jedem $\gamma > 0$ eine Konstante M derart existiert, dass gilt:

$$\sup_{t \in \mathcal{T}} \frac{\partial^i f}{\partial t^i}(t) < M \gamma^i \Gamma(\alpha i + 1)$$

(alle Ableitungen für alle t dürfen die Schranke (rechte Seite) nicht überschreiten)

Beispiel 4.4

$$\varphi_{\gamma} = \begin{cases} 0 & t < 0 \\ \frac{1}{2} \left(1 + \tanh\left(\frac{2t-1}{(4t(1-t))^{\sigma}}\right) \right) & t \in [0,1] \\ 1 & t > 1 \end{cases}$$

gehört zur kleinen Gevrey-Klasse der Ordnung α für $\sigma > \frac{1}{\alpha-1}$

Bei Interpolation treten in den Ableitungen bestimmter Ordnung in den Randpunkten Sprünge auf. Hier muss aber auch bei der ∞ . Ableitung kein Sprung sein.

4.5.2 Existenz der Lösung

Ausgangspunkt: homogenes lineares pDgl-System aus n Gleichungen 1. Ordnung

$$\frac{\partial \boldsymbol{x}}{\partial z}(z,t) + \boldsymbol{B}(z)\frac{\partial \boldsymbol{x}}{\partial t}(z,t) = \boldsymbol{C}(z)\boldsymbol{x}(z,t) \quad \boldsymbol{x} \in \mathbb{R}^n$$
(11)

Ziel: Berechnung der Lösung $(z,t) \mapsto \boldsymbol{x}(z,t)$ aus bekanntem Verlauf $t \mapsto \tilde{x}(z_0,t)$ mit bspw. $z_0 = l$ Annahme: \boldsymbol{B} hat nur einen Eigenwert $\lambda = 0$ der algebraischen Vielfachheit n

⇒ parabolisches System

geometrische Vielfachheit des Eigenwertes λ sei $M = n - rang(\mathbf{B})$

 $\Rightarrow M$ Eigenvektoren zur Matrix \boldsymbol{B}

Folge: Es existiert eine matrixwertige Funktion

$$z \mapsto T(z)$$
 $J(z) = T^{-1}(z)B(z)T(z)$

mit J in Jordan-Normalform

Satz 4.2 (11) genügen den obigen Annahmen. Sei \hat{m} die maximale in J(z) auftretende Länge eines Jordan-Blockes $z \in [0, l]$ und für die Randtrajektorie gelte:

$$(x)(z_0, \bullet) \in G_0(\Gamma)$$
 mit $\sigma = \frac{\hat{m}}{\hat{m} - 1}$

Dann exisitiert eine eindeutige Lösung der Cauchy'schen Randwertaufgabe zu (11) mit Randbedingung bei $z=z_0$

20

- 1. Abschätzung der maximalen Gevrey-Ordnung sehr konservativ, häufig höhere Ordnungen möglich
- 2. System der Form

$$\frac{\partial \mathbf{x}}{\partial z}(z,t) = \sum_{j=0}^{\beta} A_j(z) \frac{\partial^j \mathbf{x}}{\partial t^j}(z,t)$$
(12)

auf (11) zurückführbar

3. Bedingung für skalare Gleichungen der Form

$$\frac{\partial^n x}{\partial z^n}(z,t) = \sum_{i+\sigma_i \le n} a_{i,j}(z) \frac{\partial^i}{\partial z^i} \frac{\partial^i x}{\partial t^i}(z,t)$$
(13)

 $\sigma > 1$ Randtrajektorien aus $G_{\sigma}(\Omega)$

Wenn wir die Vorgaben auf dem Rand entsprechender Gevrey-Ordnung wählen, gibt es eine Lösung

4.5.3 Numerische Berechnung der Lösung

Lösung durch Iteration Integration von (13):

$$\boldsymbol{x}(z,t) = \boldsymbol{x}(z_0,t) + \sum_{j=0}^{\beta} \int_{z_0}^{z} A_j(\tilde{z}) \frac{\partial^j \boldsymbol{x}}{\partial t^j}(\tilde{z},t) d\tilde{z}$$

Lösung als Grenzwert:

$$\boldsymbol{x}(z,t) = \lim_{k \to \infty} \boldsymbol{x}_k(z,t)$$

der Iteration:

$$\boldsymbol{x}_{k+1}(z,t) = \boldsymbol{x}_k(z_0,t) + \sum_{j=0}^{\beta} \int_{z_0}^{z} A_j(\tilde{z}) \frac{\partial^j \boldsymbol{x}_k}{\partial t^j}(\tilde{z},t) d\tilde{z}$$

Vorsicht! Zur Berechnung von $\boldsymbol{x}_{k+1}(z,t)$ werden Zeitableitungen von $\boldsymbol{x}_k(z,t)$ benötigt. Da $k \to \infty$, hängt Lösung von Ableitungen der Randtrajektorie $\boldsymbol{x}(z_0,t)$ beliebig hoher Ordnung ab!

Potenzreihenansatz Ansatz für $\boldsymbol{x}_k(z,t) = \sum_{i=0}^k C_i(t) \frac{(z-z_0)^i}{i!}$ und $C_0(t) = \boldsymbol{x}(z_0,t)$. Einsetzen in (13) liefert

$$C_k(z,t) = \sum_{j=0}^{\beta} A_j C_{k-1}^{(j)}(t)$$

Diskretisierung von (13) liefert:

$$x(z + \Delta z, t) = x(z, t) + \Delta z \sum_{j=0}^{j} A_j(z) \frac{\partial^j x}{\partial t^j}(z, t)$$

In die Lösung gehen prinzipiell beliebig hohe Zeitableitungen der Randtrajektorie ein. Je nach Güte der Approximation (Anzahl der Iterationen, Index für Reihenabbruch, Größe von Δz) muss nur eine entsprechende (endl.) Anzahl von Ableitungen der Randtrajektorie des flachen Ausgangs berechnet werden.

Beispiel 4.5 Wärmeleitung

$$\frac{\partial x}{\partial t}(z,t) = \frac{\partial^2 x}{\partial z^2}(z,t)$$
 $x - Temperatur, z \in [0,1]$

x(0,t)=y(t) entspricht flachem Ausgang, $\frac{\partial x}{\partial z}(0,t)=0$ ideale Isolierung und Heizer bei z=1: $\frac{\partial x}{\partial z}(1,t)=f(x(1,t),u(t))$. Rand vollständig aktuiert.

$$x(z,t) = \sum_{i=0}^{\infty} C_i(t) \frac{z^i}{i!} \qquad \frac{\partial x}{\partial t}(z,t) = \sum_{i=0}^{\infty} \dot{C}_i(t) \frac{z^i}{i!}$$
$$\frac{\partial x}{\partial z}(z,t) = \sum_{i=0}^{\infty} C_{i+1}(t) \frac{z^i}{i!} \qquad \frac{\partial^2 x}{\partial z^2}(z,t) = \sum_{i=0}^{\infty} C_{i+2}(t) \frac{z^i}{i!}$$

in pDgl. eingesetzt:

$$\sum_{i=0}^{\infty} \dot{C}_i(t) \frac{z^i}{i!} = \sum_{i=0}^{\infty} C_{i+2}(t) \frac{z^i}{i!}$$

Initialisierung über Randbedingung $x(0,t)=y(t)\Rightarrow \boxed{C_0(t)=y(t)}$ und $\frac{\partial x}{\partial z}(0,t)=0\Rightarrow \boxed{C_1(t)=0}$

$$C_2(t) = \dot{y}(t)$$
 $(i = 0)$
 $C_3(t) = 0$ $(i = 1)$
 $C_4(t) = \ddot{y}(t)$ $(i = 2)$

$$x(z,t) = \sum_{i=0}^{\infty} y^{(i)}(t) \frac{z^{2i}}{(2i)!}$$

Stellgröße bei $z = 1$:

$$x(1,t) = \sum_{i=0}^{\infty} \frac{y^{(i)}(t)}{(2i)!}$$
$$\frac{\partial x}{\partial z}(z,t) = \sum_{i=0}^{\infty} y^{(i+1)}(t) \frac{z^{2i+1}}{(2i+1)!}$$
$$\frac{\partial x}{\partial z}(1,t) = \sum_{i=0}^{\infty} \frac{y^{(i+1)}(t)}{(2i+1)!}$$

Diese Lösungen können nun in $\frac{\partial x}{\partial z}(1,t) = f(x(1,t),u(t))$ eingesetzt werden um u(t) zu erhalten.

5 Methode der Modaltransformation

5.1 Einführung und Motivation

Worum geht es?

- lineare Randwertaufgabe

 Darstellung der Lösung als verallgemeinerte Fourierreihe bezüglich des Ortes
- Koeffizienten der Fourierreihe genügen linearen gewöhnlichen Dgl.
- Approximation der Randwertaufgabe durch Reihenabbruch $early\ lumping\ \to\ Untersuchung\ und\ Entwurf\ auf\ ortsdiskretem\ Modell$
- ⇒ gewöhnliches Dgl. System (pro Koeffizient eine Dgl.) nutzbar für Simulation und Untersuchungen zu Stabilität, Steuerbarkeit, etc.

Wärmeleiter

$$\frac{\partial^2 x}{\partial z^2}(z,t) + \frac{\partial x}{\partial t}(z,t) - \alpha(x(z,t) - T_u(t)) = 0$$
Randbed.:
$$\frac{\partial x}{\partial z}(0,t) = 0 \quad \frac{\partial x}{\partial z}(1,t) = u(t)$$

$$x = \text{Temperatur}$$

Operatorformulierung

$$\begin{split} x^*(t) &= x(\cdot,t) \quad u^*(t) = \begin{pmatrix} u(t) \\ T_u(t) \end{pmatrix} \\ \dot{x}^*(t) &= Ax^*(t) + Bu^*(t) \quad Rx^*(t) = R_u u^*(t) \\ \text{mit} \\ Ax^*(t) &= \frac{\partial^2 x}{\partial z^2}(\cdot,t) - \alpha x(\cdot,t) \quad B = \begin{pmatrix} 0 & \alpha \end{pmatrix} \\ \text{und} \\ Rx^*(t) &= \begin{pmatrix} \frac{\partial x}{\partial z}(0,t) \\ \frac{\partial x}{\partial z}(1,t) \end{pmatrix} \quad R_u &= \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \end{split}$$

Diagonalisierung gewöhnlicher Dgl. Ausgangspunkt:

$$D_t x(t) = Ax(t) + Bu(t) x \in \mathbb{R}^n, u \in \mathbb{R}^m (1a)$$

$$D_t := \frac{\mathrm{d}^{\gamma}}{\mathrm{d}t^{\gamma}} + \sum_{i=0}^{\gamma-1} c_i \frac{\mathrm{d}^i}{\mathrm{d}t^i} \quad c_i \in \mathbb{R}$$
 (1b)

Annahme: A diagonalisierbar (Eigenvektoren von A spannen den \mathbb{R}^n auf)

$$\Lambda = T^{-1}AT = \operatorname{diag}(\lambda_1, ..., \lambda_n), \quad x = T\bar{x}, \bar{x} = T^{-1}x$$
$$D_t\bar{x}(t) = \Lambda\bar{x}(t) + \bar{B}u(t) \quad \bar{B} = TB$$

Dies führt auf System entkoppelter Dgl. in den Komponenten von \bar{x} Erinnerung:

- Spalten $r_1, ..., r_n$ von T sind Rechtseigenvektoren von A
- \bullet Zeilen $l_1^{\rm T},...,l_n^{\rm T}$ von T sind Linkseigenvektoren von A

Eigenwertaufgaben

$$Ar_i = \lambda_i r_i \quad A^{\mathrm{T}} = \lambda_i l_i \quad i = 1, ..., n$$

Orhtogonalität: $\langle l_i, r_j \rangle = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$

Transformation $x = T\bar{x}$ entspricht Darstellung von x als Linearkombination der Rechts-Eigenvektoren von A:

$$x(t) = \sum_{i=1}^{n} \bar{x}_i(t)r_i \tag{2}$$

Interpretation der Entkopplung Ausgangspunkt System (1)

Einsetzen der Zerlegung (2) in (1) und skalare Mutliplikation mit Links-Eigenvektoren:

$$\sum_{i=1}^{n} D_{t}\bar{x}_{i}(t) \langle l_{j}, r_{i} \rangle = \sum_{I=1}^{n} \bar{x}_{i}(t) \langle l_{j}, Ar_{i} \rangle + \langle l_{j}, Bu \rangle \quad j = 1, ..., n$$

Ausnutzen der Orthogonalität und $Ar_i = \lambda r_i$ liefert:

$$D_t \bar{x}_i(t) = \lambda_i \bar{x}_i(t) + \sum_{j=1}^m \bar{b}_{ij} u_j(t) \quad i = 1, ..., n$$
$$u = (u_1, ..., u_m)^{\mathrm{T}}, B = (b_1, ..., b_m), \bar{b}_{ij} = \langle l_i, b_j \rangle$$

Modaltransformation im endlichdimensionalen Koordinatenvektor $\bar{x} = (x_1, ..., x_n)^T \in \mathbb{R}$ Transformation $x_i^* = \langle r_i, x \rangle i = 1, ..., n$ liefert neue Koordinaten $\underbrace{x^* = (x_1^*, ... x_n^*)}_{\text{modale Koord.}} \in \mathbb{R}^n$ bzgl. der

Basis $r_1, ..., r_n$.

$$\dot{x}_{1}^{*} = \lambda_{1} x_{1}^{*} + f_{1}(u)$$

$$\dot{x}_{2}^{*} = \lambda_{2} x_{2}^{*} + f_{2}(u)$$

$$\vdots$$

$$\dot{x}_{n}^{*} = \lambda_{n} x_{n}^{*} + f_{n}(u)$$

Möglichkeit zur Approximation: Berücksichtigung von n* < n akalaren Dgl., z.B., um nur die langsamen Vorgänge zu untersuchen.

5.2 Funktionaloperatoren und abstrakte Dgl.

Ziel: Randwertaufgabe so formulieren, wie im örtlich konzentrierten Fall

$$D_t x(t) = Ax(t) + Bu(t)$$

Was ist dann x(t)? Wo ist z-Abhängigkeit?

Alternative Interpretation von x(z,t):

- ullet verteilte Systemvariablen sind ortsabhängige Funktionen aus einem Funktionenraum \mathcal{H} , keine reellen Zahlen.
- Einträge von x(t) können jetzt Funktionen sein $x(t) = x(\cdot,t) \hat{=} z\text{-abh. Funktion } x(t)(z).$
- $x(t) \in \mathcal{X} = \mathcal{H}^{n1} \times \mathbb{R}^{n2}$
- n1 Fkt. $x_1(\cdot,t),...,x_{n1}(\cdot,t)$
- n2 reelle Zahlen $\xi_1(t), ..., \xi_{n2}(t)$, so dass
- $x(t) = (x_1(\cdot, t), ..., x_{n1}(\cdot, t), \xi_1(t), ..., \xi_{n2}(t))$

Allgemeine Operatoren:

- $A: X \mapsto X, B: \mathbb{R}^m \mapsto X$
- \bullet A, B lineare Abbildungen, allgemeiner als Matrizen.

Bsp. für Funktionenräume:

• stetige Funktionen $C([a, b], \mathbb{K})$ im Intervall [a, b] auf dem stetige Fkt. mit Werten aus dem Körper \mathbb{K} definiert sind

Bsp. für lineare Abbildungen in Funktionenräumen:

- gewichtete Integration $y(z) = \int_{\Omega} g(z, \xi) x(\xi) d\xi$ (Funktion \to Funktion)
- Multiplikation mit Gewichtsfkt. y(z) = g(z)x (Zahl \rightarrow Funktion)

5.3 Adjungierter Funktionaloperator

5.3.1 Innenprodukt (Skalarprodukt) im \mathbb{C}^n

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \sum_{i=1}^n x_i \bar{y}_i \quad \text{mit } \boldsymbol{x} = (x_1, ..., x_n)^{\mathrm{T}}, \boldsymbol{y} = (y_1, ..., y_n)^{\mathrm{T}}$$

Eigenschaften des Skalarproduktes

1. bilinear