Алгоритм Laplacian Eigenmaps для точек вне обучающей выборки

Вельдяйкин Николай 1

Янович Юрий^{1,2}

Аннотация Методы снижения размерности позволяют заменить многомерные описания данных на их низкоразмерные аналоги почти без потери информации, что способно упростить построение моделей по ним в рамках машинного обучения. Как правило, программные реализации алгоритмов снижения размерности строят лишь низкоразмерные описания для точек из обучающих выборок. Однако для последующего решения задач классификации и регрессии важно уметь строить вложение для новых точек вне обучающей выборки (out-of-sample extension), не перестраивая заново всю модель.

В статье записан алгоритм расширения алгоритма Laplacian Eigenmaps на точки вне обучающей выборки. Он реализован авторами в виде публичной ветки библиотеки scikit-learn. Для демонстрации качества работы кода проведен вычислительный эксперимент.

Ключевые слова: снижение размерности, расширение вне выборки

1 Введение

Понятие "большие данные" включает в себя не только большой объем данных, но и их высокую размерность, так как реальные данные обычно имеют очень высокую размерность (например, размерность цифровой черно-белой фотографии равна числу ее пикселей и может достигать сотен тысяч; изображения головного мозга, получаемые ежесекундно с помощью функциональной магнитно-резонансной томографии, имеют размерность порядка полутора миллионов). Однако многие традиционные методы и алгоритмы становятся неэффективными или просто неработоспособными для данных высокой размерности, и этот феномен назван проклятием размерности [1]. Известный статистик Д. Донохо сказал в 2000 году на конференции, посвященной математическим вызовам 21-го века: "мы можем с полной уверенностью сказать, что в наступающем веке анализ многомерных данных станет очень важным занятием, и совершенно новые методы многомерного анализа данных будут разработаны, просто мы еще не знаем, каковы они будут" [2].

 $^{^{1}}$ Национальный исследовательский университет «Высшая школа экономики», Москва

 $^{^{2}}$ Институт проблем передачи информации им. А. А. Харкевича РАН, Москва

Однако совокупность конкретных "реальных" данных, полученных из реальных источников, в силу наличия различных зависимостей между компонентами данных и ограничений на их возможные значения, занимает, как правило, малую часть высокоразмерного пространства наблюдений, имеющую невысокую внутреннюю размерность (например, множество всех чернобелых портретных изображений человеческих лиц с исходной размерностью порядка сотен тысяч, имеет внутреннюю размерность не выше ста). Следствием невысокой внутренней размерности является возможность построения низкоразмерной параметризации таких данных с минимальной потерей содержащейся в них информации. Поэтому многие алгоритмы для работы с высокоразмерными данными начинаются с решения задачи снижения размерности, результатом которого являются низкоразмерные описания таких данных.

На данный момент разработано множество алгоритмов снижения размерности: IsoMap [3], Locally-linear Embedding [4], Local Tangent Space Alignment [5], Laplacian Eigenmaps [6], Hessian Eigenmaps [7], Grassmann & Stiefel Eigenmaps [8], и др. Как правило, такие алгоритмы строят лишь низкоразмерные описания для точек из обучающих выборок. Однако для последующего решения задач классификации и регрессии важно уметь строить вложение для новых точек вне обучающей выборки, не перестраивая заново всю модель.

Статья посвящена реализации расширения алгоритма Laplacian Eigenmaps на точки вне обучающей выборки в рамках библиотеки scikit-learn на языке программирования Python.

2 Алгоритм Laplacian Eigenmaps

Задачу снижения размерности легко представить, как поиск отображения — действительно, нам необходимо для каждого набора точек из пространства высокой размерности получить набор точек в пространстве меньшей размерности. Идеальным случаем было бы найти универсальную биекцию, для которой существует обратная, но понятно, что задать отображение из исходного пространства размерности l в пространство размерности m, $\forall l$, m — задача сложная. К тому же, осознавая цель данного отображения, а именно, упрощение анализа предоставленных данных для вычислительной машины, учитывая необходимость сохранения относительного расстояния между точками после отображения. То есть, если выбрать три любые точки и одну назвать выделенной, то ближняя к выделенной точка должна остаться ближней после отображения, а дальняя — дальней в смысле расстояния этих пространств. Указанную эвристику использует, в частности, алгоритм Laplacian Eigenmaps, описанный ниже.

Входными данными алгоритма являются:

```
— обучающая выборка D = \{x_1, x_2, \dots, x_n\} \subset \mathbb{R}^l;
```

— функция близости $K(\cdot,\cdot)$: $\mathbb{R}^l \times \mathbb{R}^l \to [0,\infty)$. Например, K(x,x')=1 для $|x-x'|<\varepsilon$ и 0— иначе, где $\varepsilon>0$ — параметр. Однако, функция близости может зависеть и от объектов обучающей выборки.

Выходом алгоритма являются низкоразмерные описания точек обучающей выборки:

$$-y_1,\ldots,y_n\in\mathbb{R}^m.$$

Algorithm 1. Laplacian Eigenmaps [10]:

- 1. По выборке $D = \{x_1, x_2, \dots, x_n\} \subset \mathbb{R}^l$ строим матрицу близости (affinity matrix) $M = (M_{ij})_{i,j=1}^n$ размера $n \times n$: $M_{ij} = K(x_i, x_j)$.
- 2. Определим диагональную матрицу $Q: Q_{ii} = \sum_{j=1}^{n} M_{ij}, \ u$ вычисляем матрицу

$$\tilde{M} = (\tilde{M}_{ij})_{i,j}^n = Q^{-0.5} \times M \times Q^{-0.5}.$$

3. Находим m+1 наименьшее собственное значение

$$\lambda_0 = 0 < \lambda_1 \le \ldots \le \lambda_m$$

матрицы \tilde{M} и соответствующие им собственные векторы

$$V_0,\ldots,V_m\in\mathbb{R}^n$$
.

4. Используя полученную матрицу собственных векторов, получаем вложение: $Y = (y_1|y_2|\dots|y_n)^T = (V_1|\dots|V_m)$, где $y_1,\dots,y_n \in \mathbb{R}^m$, где \cdot^T – операция транспонирования.

Этим алгоритмом решается задача минимизации

$$\sum_{i,j=1}^{n} K(x_i, x_j) \cdot |y_i - y_j|^2$$

при ограничениях $\sum_{i=1}^{n} y_i = 0$ и $\sum_{i=1}^{n} y_i^2 = 1$.

3 Расширение на точки вне обучающей выборки

В дополнение к данным со входа алгоритма Laplacian Eigenmaps, и данным, вычисленным в процессе его работы, для работы требуется новая точка $x \in \mathbb{R}^l$.

В качестве выходных данных выдаётся низкоразмерное описание $y \in \mathbb{R}^m$ для точки x.

Algorithm 2. 1. Вычисляем $K(x, x_i)$, i = 1, ..., n. Для $i: x = x_i$ присваиваем $K(x, x_i) = \infty$.

$$\bar{K}(a,b) := \frac{1}{n} \frac{K(a,b)}{\sqrt{E_x\left(K(a,x)\right)E_{x'}\left(K(b,x')\right)}}.$$

Так как ни носитель выборки, ни мера неизвестны, то оцениваем математические ожидания простым усреднением по точкам обучающей выборки D.

- 3. Вычисляем вектор $\hat{M} = (\bar{K}(x, x_1), \dots, \bar{K}(x, x_n))^T \in \mathbb{R}^n$.
- 4. Вычисляем искомое y по формуле $y = (V_1 | \dots | V_m)^T \cdot \hat{M}$.

Алгоритм расширения был разработан на основе статей [11] и [12], реализован как ветка популярной библиотеки scikit-learn и находится в открытом доступе [13].

4 Вычислительный эксперимент

Для демонстрации работы коды взята выборка точек из множества S-curve из библиотеки scikit-learn. Множество S-curve является подмножеством \mathbb{R}^3 , поэтому l=3. По построению, множество является двумерной поверхностью, поэтому естественно искать вложение для m=2. Была сгенерирована i.i.d. выборка из n=2000 точек. В качестве функции $K_D(\cdot,\cdot)$ использовались k=10 ближайших соседей.

На Рисунке 1 представлена демонстрация корректности работы реализованного вложения: при расширении точки, близкие к обучающим, отображаются в близкие к обучающим (второй столбец). Более того, расширение примененное к обучающей выборке почти неразличимо с их вложением на этапе построения (третий столбец).

На Рисунке 2 представлена демонстрация неустойчивости модели Laplacian Eigenmaps к изменениям выборки. В качестве обучающей выборки использовались вся выборка (первый столбец), только точки с четными индексами – второй столбец и только точки с нечетными индексами – третий столбец. Можно заметить, что модель по полной выборке имеет отличный от других моделей масштаб, модели по по подвыборкам, хотя и имеют один масштаб, но значительно отличаются, в то время как реализованное расширение близко к исходной выборке. Черным квадратами на графике обозначены две точки с четными индексами, черными треугольниками – две точки с нечетными индексами. Можно заметить, что несмотря на похожесть второго и третьего столбцов, положения данных точек в разных столбцах сильно отличается. Следовательно, при использовании стандартного в машинном обучении разбиения на обучающую и тестовую подвыборки следует обучать модель снижения размерности на обучающей выборке, а для тестовой производить расширение. Остальные подходы (например, обучение на обучающей, а затем обучения на совокупности обучающей и тестовой) могут давать существенно различные результаты даже для близких точек обеих подвыборок.

Рис. 1. Корректность реализованного вложения. Верхний левый рисунок – точки выборки с четными индексами в исходном пространстве (желто-красные точки). Под ним – результат снижения размерности до двух. Во втором столбце на первый наложена подвыборка с нечетными индексами (сине-зеленые точки), вложение для нее построено алгоритмом расширения. В третьем столбце – результат наложения на первый подвыборки с четными индексами (сине-фиолетовые точки). На верхнем графике они в точности совпали с исходными желто-красными точками, на втором – с точностью до неразличимых глазом невязок.

5 Заключение

В работе выписано расширение алгоритма Laplacian Eigenmaps для точек вне обучающей выборки. Оно реализовано программно в рамках популярной библиотеки scikit-learn и находится в открытом доступе в сети. С помощью данного расширения был произведен иллюстративный вычислительный эксперимент, в котором алгоритм демонстрирует себя устойчивым по входным точкам и, следовательно, может быть использован для последующего решения задач классификации и регрессии.

Благодарности

Работа была выполнена при поддержке гранта РФФИ 16-29-09649 офи_м. Также, хочется выразить признательность студентам Горбачеву Сергею, Жижину Петру, Ребенко Ярославу и Хайдурову Руслану, участвовавшим вместе с Вельдяйкиным Николаем в проектном семинаре НИУ ВШЭ под руководством Яновича Юрия, в рамках которого была разработана реализация, за содержательные обсуждения, плодотворные дискуссии и совместную подготовку pull-request-а в scikit-learn.

Рис. 2. Неустойчивость модели к изменению обучающей выборки. В верхнем ряду расположены графики для выборок в исходном трехмерном пространстве, в нижнем – результаты сжатия до размерности 2. В первом столбце объединенная выборка в исходном пространстве (сверху) и вложение для нее (снизу). Во втором обучение производилось на точках с четными индексами (сине-зеленые точки), а расширение на точках с нечетными индексами (желто-красные точки). В третьем столбце – обучение на точках с нечетными индексами (желто-красные), а расширение на точках с четными индексами (сине-зеленые точки). В четвертом – сверху полная выборка, а снизу все точки с первой картинки – красным цветом, все точки со второй картинки – зеленым цветом, все точки с третьей картинки – синим цветом

Список литературы

- 1. Bellman R. E. Dynamic programming // Princeton University Press, 1957.
- 2. Donoho D. L. High-dimensional data analysis: The curses and blessings of dimensionality // AMS conference on math challenges of 21st century. 2000. Pp. 1–31.
- Tenenbaum J. B., de Silva V., Langford J. A Global Geometric Framework for Nonlinear Dimensionality Reduction // Science. — 2000. — Vol. 290, no. 5500. — Pp. 2319–2323.
- 4. Roweis S. T., Saul L. K. Nonlinear dimensionality reduction by locally linear embedding // Science. 2000. Vol. 290. Pp. 2323–2326.
- 5. Zhang Z., Zha H. Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment // SIAM Journal on Scientific Computing. 2004. Vol. 26, no. 1. Pp. 313–338.
- 6. Belkin M., Niyogi P. Laplacian Eigenmaps for dimensionality reduction and data representation // Journal Neural Computation. 2003. Vol. 15, no. 6. Pp. 1373–1396.

- Donoho D. L., Grimes C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data // Proceedings of the National Academy of Sciences. 2003. may. Vol. 100, no. 10. Pp. 5591–5596.
- 8. Bernstein A., Kuleshov A. P. Manifold Learning: generalizing ability and tangent proximity // International Journal of Software and Informatics. 2013. Vol. 7, no. 3. Pp. 359–390.
- 9. Scikit-learn library in Python [Online]. Available: http://scikit-learn.org
- 10. Ng A. Y., Jordan M. I., Weiss Y. On spectral clustering: Analysis and an algorithm //Advances in neural information processing systems. 2002. C. 849-856.
- 11. Von Luxburg, Ulrike: A tutorial on spectral clustering. // Statistics and computing, 17 (4), pp. 395–416 (2007)
- 12. Bengio Y. et al. Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering //Advances in neural information processing systems. 2004. C. 177-184.
- 13. Out-of-sample Laplacian Eigenmaps for scikit-learn [Online]. Available: https://github.com/hse-se-project/scikit-learn