Ronak Mehta

Email: ronakdm@uw.edu GitHub: github.com/ronakdm

Bio

I am a doctoral student with 2 years of statistics and machine learning research experience. My previous projects have spanned nonparametric statistics, time series analysis, uncertainty estimation, and lifelong/continual learning. My current projects are in the area of generative models in the natural language domain. I have worked on interdisciplinary teams alongside software engineers, social scientists, and neuroscientists. As a result, I am excited to build data science methods that both adhere to theoretical principles and answer grounded, empirical questions.

EDUCATION

University of Washington

Seattle, WA

Ph.D. in Statistics, GPA: 4.0/4.0

Fall 2020-Current

 Relevant Coursework: Generative Models, Reinforcement Learning, Natural Language Processing, Convex Optimization

Johns Hopkins University

Baltimore, MD

M.S.E. in Applied Mathematics & Statistics, GPA: 4.0/4.0

Fall 2018-Spring 2019

- Thesis: "Independence Testing for Time Series", Advisor: Dr. Joshua Vogelstein
- Relevant Coursework: Nonlinear Optimization, Statistical Theory, Matrix Analysis & Linear Algebra,
 Applied Bayesian Statistics, Topics in Model Selection, Statistical Pattern Recognition

Johns Hopkins University

Baltimore, MD

B.S. in Applied Mathematics & Statistics, GPA: 3.6/4.0

Fall 2015-Spring 2018

- Relevant Coursework: Real Analysis, Time Series Analysis, Intermediate Programming (C/C++), Data Structures (Java), Analysis of Algorithms

EXPERIENCE

Microsoft Research

Redmond, WA

Research Intern in Special Projects

Summer 2020

- Evaluated decision forest and neural network-based continual learning methods on a suite of natural language, vision, and time series tasks.
- Extended continual learning methods for settings in which task IDs are unknown.
- Proposed a mathematical framework that generalizes statistical decision theory for transfer, multitask, and continual learning.

Johns Hopkins University Department of Biomedical Engineering

Baltimore, MD

Assistant Research Engineer in Dr. Joshua Vogelstein Laboratory

Fall 2017-Spring 2020

- Developed decision forest methods for structured data, uncertainty estimation, and continual/lifelong learning.
- Developed hypothesis test to detect dependence between time series, with applications to fMRI data.

Goldman Sachs

New York, NY

Software Engineering Intern in Finance & Risk Technology

Summer 2018

- Implemented feature to add new metrics into large-scale data streaming platform for financial time series.
- Worked directly with end-users and developed software iteratively in a propriety language.

Johns Hopkins University Applied Physics Laboratory

Laurel, MD

Research Intern in Large-Scale Analytics Systems

Summer 2017

- Conducted sentiment and centrality analysis of Twitter communication network to identify problematic users.
- Implemented distributed clustering algorithm for categorical data using Apache Spark.

PREPRINTS

- [1] H. Helm, R. Mehta, B. Duderstadt, W. Yang, C. M. White, A. Geisa, J. T. Vogelstein, and C. E. Priebe, "A partition-based similarity for classification distributions", [arXiv link], 2020.
- [2] J. T. Vogelstein, H. S. Helm, **R. Mehta**, J. Dey, W. LeVine, W. Yang, B. Tower, J. Larson, C. White, and C. E. Priebe, "A general approach to progressive learning", [arXiv link], 2020.
- [3] R. Mehta, J. Chung, C. Shen, T. Xu, and J. T. Vogelstein, "Independence testing for multivariate time series", [arXiv link], 2019.
- [4] R. Mehta, R. Guo, J. Arroyo, M. Powell, H. Helm, C. Shen, and J. T. Vogelstein, "Estimating information-theoretic quantities with uncertainty forests", [arXiv link], 2019.
- [5] S. Panda, S. Palaniappan, J. Xiong, E. W. Bridgeford, R. Mehta, C. Shen, and J. T. Vogelstein, "Hyppo: A comprehensive multivariate hypothesis testing python package", [arXiv link], 2019.
- [6] R. Perry, T. M. Tomita, **R. Mehta**, J. Arroyo, J. Patsolic, B. Falk, and J. T. Vogelstein, "Manifold forests: Closing the gap on neural networks", [arXiv link], 2019.

TEACHING

University of Washington

• Teaching Assistant Winter 2021

Applied Regression (STAT 504)

• Teaching Assistant
Statistical Methods in Engineering & Science (STAT 390)

Fall 2020

John Hopkins University

• Instructor of Record Winter 2020

Mathematical Thinking and Proof-Writing for Engineers (EN.553.109)

• Teaching Assistant

Matrix Analysis & Linear Algebra (EN.553.792)

• Teaching Assistant Spring 2019

Probability & Statistics for the Biological Sciences & Engineering (EN.553.311)

• Teaching Assistant Fall 2018

 $Probability \ \mathcal{E} \ Statistics \ for \ the \ Physical \ Sciences \ \mathcal{E} \ Engineering \ (EN.553.310)$

• Teaching Assistant at Johns Hopkins University

Computational Molecular Medicine (EN.553.450)

Spring 2018

SKILLS

- Proficient: Python, R, MATLAB, Matplotlib, Seaborn, scikit-learn, joblib, PyTorch
- Familiar: Java, C/C++, Scala, Tensorflow, Keras, Apache Spark

Fall 2019