Continuità di una funzione

Andrea Canale

May 20, 2025

Contents

1	Fun	zioni continue	1	
	1.1	Casi di discontinuità	2	
	1.2	Tipi di discontinuità	2	
	1.3	Discontinuità eliminabile	3	
2	Cor	ntinuità di funzioni elementari	3	
	2.1	Potenze	3	
		2.1.1 Osservazione	3	
	2.2	Funzioni trigonometriche	4	
3	Pro	prietà delle funzioni continue	4	
4	Teo	rema di Weierstrass	5	
	4.1	Osservazioni	5	
1	\mathbf{F}	unzioni continue		
Da	to u	n punto $c \in \mathbb{R}$, una funzione $f(x): I(c) \subset \mathbb{R} \to \mathbb{R}$ si dice continua in	c	
se:				
		Osservazioni		

1.1 Casi di discontinuità

- Funzione non definita in c
- Il limite esiste ma è diverso da $f(\boldsymbol{x})$
- Il limite non esiste(limite destro diverso da quello sinistro)

1.2 Tipi di discontinuità

Una funzione ha un salto(o di prima specie) in x = c se:

$$\lim_{x \to c^-} f(x) \neq \lim_{x \to c^+} f(x)$$

Una funzione ha una discontinuità di seconda specie se

$$\lim_{x \to c} f(x) = \pm \infty$$
 o non esiste

Esempi di funzioni discontinue sono la funzione segnale, la funzione parte intera o la funzione mantissa.

1.3 Discontinuità eliminabile

Se abbiamo una discontinuità del primo tipo, possiamo eliminarla modificando la funzione:

Dato

$$\lim_{x \to c} f(x) = 0$$

Ridefiniamo f(x) come:

$$\begin{cases} f(x) = x & \text{se } x \neq c \\ f(x) = l & \text{se } x = c \end{cases}$$
 (1)

Cioè imponiamo la funzione uguale ad l in x = c

La discontinuità di seconda specie non è eliminabile invece

2 Continuità di funzioni elementari

2.1 Potenze

- Le funzioni potenza x^n sono sempre continue
- Le funzioni $\frac{1}{x^n}$ sono continue nel loro dominio
- Le funzioni x^{-n} sono continue tranne in 0

2.1.1 Osservazione

La funzione $\frac{1}{x}$ è continua nel suo dominio perchè in 0 non è definita. Ricordiamoci sempre di considerare il dominio quando parlianmo di continuità.

2.2 Funzioni trigonometriche

- sin(x), cos(x), arccos(x), ... sono sempre continue in $\mathbb R$
- tan(x) è continua su $\mathbb R$ tranne in $\{\frac{\pi}{2}+k\pi\}$

3 Proprietà delle funzioni continue

Se f, g sono continue in un intervallo I(c), allora, valgono i seguenti fatti:

- $f \pm g$ è continua in I(c)
- $f \cdot g$ è continua in I(c)
- $\frac{f}{g}$ è continua in I(c) se $g \neq 0$
- f o g è continua in I(c). Questa proprietà vale per composizione di k funzioni. Cioè se sono tutte continue in I(c), allora la composizione sarà continua in I(c). Nelle zone dove tutte sono continue, la composizione è continua

* * *

Se f è continua in un intervallo I(c), allora:

 $\frac{1}{f}$

è continua in I(c) se $f \neq 0$

4 Teorema di Weierstrass

Sia $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$, una funzione continua definita in un intervallo chiuso e limitato, allora esistono x_m e x_n tali che:

$$f(x_n) \le f(x) \ge f(x_m) \ \forall x \in [a, b]$$

Cioè esistono un massimo e un minimo assoluti nell'intervallo [a, b].

4.1 Osservazioni

• I punti di massimo e minimo non sono unici, ma potrebbero esisterne altri locali.

Solo x_1 e x_2 sono punti assoluti. x_3 è un minimo locale

- Se esiste un massimo assoluto, allora la funzione è limitata superiormente
- Se esiste un minimo assoluto, allora la funzione è limitata inferiormente
- Questo teorema funziona solo se la funzione è continua
- Questo teorema funziona solo se la funzione è definita in un intervallo chiuso e limitato