

# Computer Architecture

# **Syllabus**

Kun-Chih (Jimmy) Chen 陳坤志



Department of Computer Science and Engineering National Sun Yat-sen University



#### **Fact Sheet**

- Lecture
  - ❖ EC Rm.9032-1 Fri. 9:10am 12:00pm
- Instructor
  - Kun-Chih Chen (EC Rm.9033) <a href="mailto:kcchen@mail.cse.nsysu.edu.tw">kcchen@mail.cse.nsysu.edu.tw</a>
- Office Hour
  - ❖ Mon. 10am 12pm, EC Rm.9033
- TA Information
  - ◆ TA: Pavan Kumar MP <u>pavankumarmp@cereal.cse.nsysu.edu.tw</u> 李政融 (Andy) <u>andylee@cereal.cse.nsysu.edu.tw</u>
  - ❖ TA Lab: EC Rm. 5037
- Class web page (video, handout, announcement)
  - ❖ 中山大學網路大學 (cyber university)
- Prerequisites (but not necessary)
  - Computer Organization
  - Computer programming (C or C++)
- Grading
  - Homework 20% (HW#1:10%, HW#2: 10%)
  - ❖ Final project 40% (Proj#1:10%, Proj#2:10%, Proj#3:10%, Final report:10%, Bonus: 20%)

Logic design

Exam 40% (including midterm and final exam)

#### **Textbook and References**

#### Textbook

❖ John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative Approach 5<sup>th</sup> ed., Morgan Kaufmann Publishers, 2017. (ISBN: 978-0-12-811905-1)



#### Reference (Not required to purchase)

- John L. Hennessy and David A. Patterson, Computer Organization and Design: The Hardware/Software Interface 5<sup>th</sup> ed., Elsevier, 2014. (ISBN: 978-986-6052-67-5)
- ❖ John L. Hennessy and David A. Patterson, Computer Organization and Design: The Hardware/Software Interface RISV-V ed., Morgan Kaufmann Publishers, 2018. (ISBN: 978-0-12-812275-4)





# Schedule (1/2)

| Week | Date            | Lecture                                                                 | Handout                     | Submit    |
|------|-----------------|-------------------------------------------------------------------------|-----------------------------|-----------|
| 1    | 9/9             | Mid-autumn Festival                                                     |                             |           |
| 2    | 9/16 (virtual)  | Syllabus                                                                |                             |           |
| 3    | 9/23 (virtual)  | Fundamentals of Computer Architecture: cost and performance measurement |                             |           |
| 4    | 9/30 (virtual)  | Memory Hierarchy                                                        | Project#1                   |           |
| 5    | 10/7 (virtual)  | Memory Hierarchy                                                        |                             |           |
| 6    | 10/14 (virtual) | Virtual Memory                                                          |                             |           |
| 7    | 10/21 (virtual) | Virtual Memory                                                          | HW#1                        | Project#1 |
| 8    | 10/28           | Midterm                                                                 | Project#2,<br>Final Project |           |
| 9    | 11/4            | Baseline MIPS Architecture                                              |                             | HW#1      |

## Schedule (2/2)

| Week | Date  | Lecture                                                          | Handout   | Submit    |
|------|-------|------------------------------------------------------------------|-----------|-----------|
| 10   | 11/11 | Instruction-Level Parallelism (ILP): Pipeline Architecture       |           | Project#2 |
| 11   | 11/18 | Instruction-Level Parallelism (ILP): Pipeline Architecture       |           |           |
| 12   | 11/25 | Data-level Parallelism (DLP): Vector, SIMD, and GPU Architecture | Project#3 |           |
| 13   | 12/2  | Thread-level Parallelism (TLP): Distributed Memory Communication |           |           |
| 14   | 12/9  | Interconnection in Multicore System                              |           | Project#3 |
| 15   | 12/16 | Reliable System Design                                           | HW#2      |           |
| 16   | 12/23 | Final Exam                                                       |           |           |
| 17   | 12/30 | TBD                                                              |           | HW#2      |
| 18   | 1/6   | TBD                                                              |           |           |

### **Class Policy**

#### Lecture

- Do not hesitate to ask questions in office hour
- The videos are only allowed to keep it to yourself

#### Homework/Project

- Homework: Submit the hardcopy report in class
- Project: Submit the softcopy report and your final program to TA (zip file)
  - ➤ File Naming Rule: (Student ID #)\_(Student Name)\_(HW#) ex. D12345\_王小明\_HW1
- Late homework/project 1/3 off each week, no late homework after 3 weeks
- Discussion with classmates is encouraged!
- Cheating = zero grade for both students!

#### Midterm/Final Exam

- Close book
- Bag isolation
- Seat assignment
- Cheating = zero grade for <u>both</u> students!

### **Current Computer Architecture**

Computer architecture, HW/SW, systems, bioinformatics, security



#### **Build fundamentally better architectures**

## **Four Key Current Directions**

Fundamentally Secure/Reliable/Safe Architectures

- Fundamentally Energy-Efficient Architectures
  - Memory-centric (Data-centric) Architectures

Fundamentally Low-Latency and Predictable Architectures

Architectures for AI/ML, Genomics, Medicine, Health

### The Transformation Hierarchy

Computer Architecture (expanded view)



Computer Architecture (narrow view)

#### **Axiom**

To achieve the highest energy efficiency and performance:

we must take the expanded view of computer architecture



Co-design across the hierarchy:
Algorithms to devices

Specialize as much as possible within the design goals

## **Current Research Mission & Major Topics**

### **Build fundamentally better architectures**



Broad research spanning apps, systems, logic with architecture at the center

- Data-centric arch. for low energy & high perf.
  - ❖ Proc. in Mem/DRAM, NVM, unified mem/storage
- Low-latency & predictable architectures
  - Low-latency, low-energy yet low-cost memory
  - QoS-aware and predictable memory systems
- Fundamentally secure/reliable/safe arch.
  - ❖ Tolerating all bit flips; patchable HW; secure mem
- Architectures for ML/AI/Genomics/Graph/Med
  - Algorithm/arch./logic co-design; full heterogeneity
- Data-driven and data-aware architectures
  - ML/Al-driven architectural controllers and design
  - Expressive memory and expressive systems

### What is computer architecture?

- is the science and art of designing computing platforms (hardware, interface, system SW, and programming model)
- to achieve a set of design goals
  - ❖ E.g., highest performance on earth on workloads X, Y, Z
  - E.g., longest battery life at a form factor that fits in your pocket with cost < \$\$\$ CHF</p>
  - ❖ E.g., best average performance across all known workloads at the best performance/cost ratio
  - **\*** ...
  - ❖ Designing a supercomputer is different from designing a smartphone → But, many fundamental principles are similar





Source: http://www.sia-online.org (semiconductor industry association)







**Figure 3.** TPU Printed Circuit Board. It can be inserted in the slot for an SATA disk in a server, but the card uses PCIe Gen3 x16.



**Figure 4.** Systolic data flow of the Matrix Multiply Unit. Software has the illusion that each 256B input is read at once, and they instantly update one location of each of 256 accumulator RAMs.

Jouppi et al., "In-Datacenter Performance Analysis of a Tensor Processing Unit", ISCA 2017.

❖ ML accelerator: 260 mm², 6 billion transistors, 600 GFLOPS GPU, ARM 2.2 GHz CPUs.



Two redundant chips for better safety.



### Why Study Computer Architecture?

- Enable better systems: make computers faster, cheaper, smaller, more reliable, ...
  - By exploiting advances and changes in underlying technology/circuits
- Enable new applications
  - Life-like 3D visualization 20 years ago? Virtual reality?
  - Self-driving cars?
  - Personalized genomics? Personalized medicine?
- Enable better solutions to problems
  - Software innovation is built on trends and changes in computer architecture
    - > 50% performance improvement per year has enabled this innovation
- Understand why computers work the way they do

### Cloud, Fog, and Edge Computing



### **Introduction of Projects**

#### Sniper Multi-Core Simulator

Cycle-accurate multi-core x86 simulator with max. 100 cores

#### Hotspot Temperature Simulator

Accurate and fast thermal model suitable for use in architectural studies

#### Project #1

- Sniper evaluation
- Performance analysis under <u>different core numbers</u> and memory levels with different association

#### Project #2

Performance and temperature analysis under <u>different</u> core numbers and memory levels

#### Project #3

 Performance analysis under TDP consideration (Bonus 20%: Find the optimal design parameter)

