CSE443/543: High Performance Computing

Exercise #20: HPC Interconnects

Points: 20

Submission Instructions

Objective: The objective of this exercise is to:

• Gain familiarity with HPC interconnects.

Submission: Upload the following at the end of the lab exercise via Canvas CODE plugin:

1. This MS-Word document saved as a PDF file with the convention MUID_Exercise20.pdf.

Name: Maciej Wozniak

1. Illustrate the output from the following program (compiled to a file called gather) when it is executed using the command line(s) shown further below.

```
#include <iostream>
#include <boost/mpi.hpp>
namespace mpi = boost::mpi;

int main(int argc, char *argv[]) {
    mpi::environment env(argc, argv);
    mpi::communicator world;
    int rank = world.rank();

    rank %= 3; // Ensure rank is valid
    std::string src = "123456";
    std::string dest = src;
    // Gather a character from each process to dest at rank 0
    mpi::gather(world, src[rank], &dest[0], 0);

    if (rank == 0) {
        std::cout << "Result = " << src << ", " << dest << std::endl;
    }
}</pre>
```

```
$ mpiexec -n 6 ./gather 1 2 3 4 5 6
```

Illustrate the **optimal** sequence of operations that MPI would perform on a hypercube by tracing the sequence of communication operations along each dimension in the appropriate order. At each phase: \rightarrow Draw directed arrows between nodes to indicate flow of data. \rightarrow Fill in the intermediate value(s) that would be present at each of the processes as the operations proceed. For example, if a process with rank 2 has an value of 5, then this would be represented as shown in the adjacent figure.

Trace the three phases of *optimal* communication operations along each dimension in the hypercube figures shown below

Due by: BY THE END OF YOUR CLASS

The output from the program is:

Results = 123456. 123456 Results 123456,123123

2. The following table (namely, Table 1) illustrates the salient characteristics of three different interconnect topologies that are being proposed for a supercomputing cluster. All the topologies use exactly the same hardware/technology. Consequently, the speed and bandwidth of each link in all three networks is identical.

Network Name	Diameter	Bisection Width	Connectivity	Cost
Net-α	3	4	7	200
Net-β	2	5	5	150
Net-δ	5	2	3	100

Table 1: Salient characteristics of three different interconnect technologies.

- i. Given the interconnects in Table 1, if a supercomputing cluster design aims to have an interconnect topology that would have the lowest average latency, the best choice of topology would be:
 - **A.** Net- α
 - B. Net-β
 - C. Net- δ
 - **D.** Any one of the above

Due by: BY THE END OF YOUR CLASS

- ii. Given the interconnects in Table 1, if a supercomputing cluster design aims to have an interconnect topology that permits large volumes of data to be rapidly exchanged between compute nodes, the best choice of topology would be:
 - A. Net- α
 - **B.** Net- β
 - C. Net- δ
 - **D.** Any one of the above
- iii. Given the interconnects in Table 1, if a supercomputing cluster design aims to have an easily reconfigurable interconnect topology, the best choice of topology would be:
 - **A.** Net- α
 - **B.** Net-β
 - C. Net- δ
 - **D.** Any one of the above
 - 3. Clearly circle only the best response for each question below:
 - i. The architecture of a single compute node shown in the adjacent figure falls under the cateogry of

C. NUMA.

D. PUMA.

Legend:

M - Memory

- ii. The diameter of the interconnect topology shown in the figure below is:
 - **A.** 1
 - **B.** 2
 - **C.** 3
 - **D.** 4

- iii. The interconnect topology shown in the figure below is:
 - A. A bus
 - **B.** A crossbar
 - C. A 2-D hypercube
 - **D.** A 2-D Torus

- iv. The interconnect that is ideal for broadcasting would be:
 - A. A bus
 - **B.** A crossbar
 - C. A 2-D hypercube
 - **D.** A 2-D Torus
- v. Given 32 devices, the minimum number of stages needed in an omega network to interconnect these devices would be:
 - **A.** 3
 - **B.** 4
 - **C.** 5
 - **D.** 6

Submit file to Canvas

Upload just the following files:

1. This MS-Word document saved as a PDF file and named with the convention *MUid_Exercise20*.pdf.