

Curso de Data Science

Aula 02 - Distribuições de probabilidade discretas

O que você irá aprender nesta aula?

Distribuições de probabilidade discretas

- Uniforme
- Binomial

Introdução

Desafio: aproveite o código de lançamento de dados em Python.
 Faça 100 lançamentos, e salve os resultados em uma variável do tipo lista.

Introdução

 Uma distribuição de probabilidade descreve todos os possíveis valores de probabilidade que uma variável pode tomar

Introdução

Uma distribuição de probabilidade pode ser:

 Discreta, a soma de todos as probabilidades individuais deve ser igual a 1

 Contínua, a área do gráfico deve ser igual a 1

Distribuição discreta uniforme

Ex.2, da aula anterior: Probabilidade de jogar um dado

$$P = 1/6 = 0.16 = 16\%$$

Soma deve ser 1!

Experimento de Bernoulli: resultado tem apenas duas possibilidades, mutualmente exclusivas

Distribuição Binomial: numero de sucessos em n experimentos independentes de Bernoulli, cada um com probabilidade constante p.

$$P(x:n,p) = \binom{n}{x} (p)^{x} (1-p)^{(n-x)}$$

Probabilidade de observar x sucessos em n tentativas

Probabilidade constante p

Visualização interativa:

https://shiny.rit.albany.edu/stat/binomial/

Exemplo: se você lança um dado 16 vezes, qual a probabilidade de que o resultado seja 5 em 3 lançamentos?

Não confundir: dado tem 6 lados, mas nosso experimento é binário!

$$X = 3$$
, $n = 16$, $p = 1/6$

Exemplo: se você lança um dado 16 vezes, qual a probabilidade de que o resultado seja 5 em 3 lançamentos?

Não confundir: dado tem 6 lados, mas nosso experimento é binário!

$$X = 3$$
, $n = 16$, $p = 1/6$

Está de acordo acordo com a inspeção gráfica

$$P(x:n,p) = {n \choose x} (p)^x (1-p)^{(n-x)}$$

$$= \left(\frac{n!}{x! (n-x)!}\right) (p)^x (1-p)^{(n-x)}$$

$$= \left(\frac{16!}{3! (13)!}\right) (1/6)^3 (5/6)^{(13)}$$

$$= \left(\frac{16 \cdot 15 \cdot 14}{3 \cdot 2}\right) \left(\frac{1^3}{6^3}\right) \left(\frac{5^{13}}{6^{13}}\right) = 0.242$$

Exemplo: se você lança um dado 16 vezes, qual a probabilidade de que o resultado seja 5 em 3 lançamentos?

Não confundir: dado tem 6 lados, mas nosso experimento é binário!

$$X = 3$$
, $n = 16$, $p = 1/6$

Em Python

```
>>> from scipy.stats import binom
```

>>> binom.pmf(3,16,1/6)

Então, nesta aula, vimos:

Distribuições de probabilidade discretas

- Uniforme
- Binomial

Muito obrigado!