## **Simple Linear Regression**

## **Step 1: Reading and Understanding the Data**

```
In [43]:
import warnings
warnings.filterwarnings('ignore')
In [44]:
import numpy as np
import pandas as pd
In [45]:
import matplotlib.pyplot as plt
import seaborn as sns
In [46]:
CarName=pd.read_csv("D://CarPrice_Assignment.csv")
CarName.head()
Out[46]:
   car_ID symboling
                     CarName fueltype aspiration doornumber
                                                           carbody drivewheel enginelocation wheelbase ... enginesize
                   alfa-romero
0
                 3
                                           std
                                                      two convertible
                                                                         rwd
                                                                                      front
                                                                                               88.6 ...
                                                                                                             130
                        giulia
                    alfa-romero
1
                                           std
                                                          convertible
                                                                                     front
                                                                                               88.6 ...
                                                                                                             130
                                 gas
                                                      two
                                                                         rwd
                       stelvio
                    alfa-romero
2
                                 gas
                                           std
                                                          hatchback
                                                                         rwd
                                                                                      front
                                                                                               94.5 ...
                                                                                                             152
                   Quadrifoglio
3
       4
                    audi 100 ls
                                           std
                                                     four
                                                             sedan
                                                                         fwd
                                                                                     front
                                                                                               99.8 ...
                                                                                                             109
       5
                    audi 100ls
                                                                                               99.4 ...
                                                                                      front
                                                                                                             136
                                           std
                                                             sedan
                                                                         4wd
                                                      four
5 rows × 26 columns
                                                                                                              Þ.
In [47]:
CarName.shape
Out[47]:
(205, 26)
In [48]:
CarName.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):
 # Column
                       Non-Null Count Dtype
 0 car ID
                         205 non-null
                                           int64
    symboling
                        205 non-null
                                          int64
 1
  CarName
                        205 non-null object
                         205 non-null object
 3 fueltype
    aspiration
 4
                         205 non-null
                                           object
     doornumber
                         205 non-null
                                           object
```

```
6
    carbody
                      205 non-null
                                     object
 7
                     205 non-null
                                     object
    drivewheel
    enginelocation 205 non-null
                                     object
    wheelbase
                    205 non-null
                                     float64
 10 carlength
                     205 non-null
                                     float64
 11 carwidth
                      205 non-null
                                     float64
 12 carheight
                                     float64
                     205 non-null
 13 curbweight
                     205 non-null
                                    int64
 14 enginetype
                     205 non-null
                                     object
 15 cylindernumber 205 non-null
                                     object
                      205 non-null
 16 enginesize
                                     int64
 17
    fuelsystem
                      205 non-null
                                     object
 18 boreratio
                     205 non-null
                                     float64
                     205 non-null
 19 stroke
                                     float64
 20 compressionratio 205 non-null
                                     float64
                205 non-null
 21 horsepower
                                     int64
 22 peakrpm
                      205 non-null
                                     int64
 23 citympg
                     205 non-null
                                     int64
 24 highwaympg
                     205 non-null
                                    int64
 25 price
                      205 non-null
                                    float64
dtypes: float64(8), int64(8), object(10)
memory usage: 33.7+ KB
```

#### In [49]:

CarName.describe()

#### Out[49]:

|       | car_ID     | symboling  | wheelbase  | carlength  | carwidth   | carheight  | curbweight  | enginesize | boreratio  | stroke     | com |
|-------|------------|------------|------------|------------|------------|------------|-------------|------------|------------|------------|-----|
| count | 205.000000 | 205.000000 | 205.000000 | 205.000000 | 205.000000 | 205.000000 | 205.000000  | 205.000000 | 205.000000 | 205.000000 |     |
| mean  | 103.000000 | 0.834146   | 98.756585  | 174.049268 | 65.907805  | 53.724878  | 2555.565854 | 126.907317 | 3.329756   | 3.255415   |     |
| std   | 59.322565  | 1.245307   | 6.021776   | 12.337289  | 2.145204   | 2.443522   | 520.680204  | 41.642693  | 0.270844   | 0.313597   |     |
| min   | 1.000000   | -2.000000  | 86.600000  | 141.100000 | 60.300000  | 47.800000  | 1488.000000 | 61.000000  | 2.540000   | 2.070000   |     |
| 25%   | 52.000000  | 0.000000   | 94.500000  | 166.300000 | 64.100000  | 52.000000  | 2145.000000 | 97.000000  | 3.150000   | 3.110000   |     |
| 50%   | 103.000000 | 1.000000   | 97.000000  | 173.200000 | 65.500000  | 54.100000  | 2414.000000 | 120.000000 | 3.310000   | 3.290000   |     |
| 75%   | 154.000000 | 2.000000   | 102.400000 | 183.100000 | 66.900000  | 55.500000  | 2935.000000 | 141.000000 | 3.580000   | 3.410000   |     |
| max   | 205.000000 | 3.000000   | 120.900000 | 208.100000 | 72.300000  | 59.800000  | 4066.000000 | 326.000000 | 3.940000   | 4.170000   |     |
| 4     |            |            |            |            |            |            |             |            |            |            | Þ   |

# Step 2: Visualising the Data

### In [50]:

sns.pairplot(CarName)
plt.show()





#### In [51]:

```
sns.heatmap(CarName.corr(), cmap="YlGnBu", annot = True)
plt.show()
```



#### In [52]:

```
sns.boxplot(x='enginetype',y='price',data=CarName)
plt.show()
```



#### In [53]:

```
sns.boxplot(x='enginelocation',y='price',data=CarName)
plt.show()
```



### In [54]:

```
sns.boxplot(x='wheelbase',y='price',data=CarName)
plt.show()
```



### In [55]:

```
\label{lem:sns.boxplot} $$sns.boxplot(x='carlength',y='price',data=CarName)$ plt.show()
```



#### In [56]:

```
sns.boxplot(x='carwidth',y='price',data=CarName)
plt.show()
```



### In [57]:

```
sns.boxplot(x='carheight',y='price',data=CarName)
plt.show()
```



### In [58]:

```
sns.boxplot(x='curbweight',y='price',data=CarName)
plt.show()
```



#### In [59]:

```
x=CarName['carlength']
y= CarName['price']
```

### In [60]:

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, train_size = 0.7, test_size = 0.3,
random_state = 100)
```

```
TH [OT].
x train.head()
Out[61]:
122 167.3
125 168.9
166 168.7
168.8
199
Name: carlength, dtype: float64
In [62]:
y train.head()
Out[62]:
    7609.0
122
125
   22018.0
166
    9538.0
1
    16500.0
199
    18950.0
Name: price, dtype: float64
In [63]:
import statsmodels.api as sm
In [64]:
x_train_sm = sm.add_constant(x_train)
lr = sm.OLS(y_train,x_train_sm).fit()
In [65]:
lr.params
Out[65]:
const -63647.447004
carlength 442.308944
dtype: float64
In [66]:
print(lr.summary())
                  OLS Regression Results
_____
                     price R-squared:
Dep. Variable:
                                                0.509
                     OLS Adj. R-squared:
Model:
               Least Squares F-statistic:
Method:
                                                 146.4
Date:
             Sun, 26 Apr 2020 Prob (F-statistic):
                                              1.46e-23
              09:08:44
                           Log-Likelihood:
                                                -1433.2
                      143 AIC:
No. Observations:
                                                 2870.
Df Residuals:
                       141 BIC:
                                                 2876.
Df Model:
                       1
Covariance Type:
             nonrobust
______
        coef std err t P>|t| [0.025 0.975]
______
                    54.186 Durbin-Watson:
Omnibus:
                                                 1.898
                     0.000 Jarque-Bera (JB):
                                               133.614
Prob (Omnibus):
Skew:
                    1.572 Prob(JB):
                                              9.68e-30
Kurtosis:
                     6.541 Cond. No.
                                               2.41e+03
______
```

#### Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.41e+03. This might indicate that there are strong multicollinearity or other numerical problems.

#### In [67]:

```
plt.scatter(x_train, y_train)
plt.plot(x_train, 0.127 + 0.462*x_train, 'r')
plt.show()
```



#### In [68]:

```
y_train_pred = lr.predict(x_train_sm)
res = (y_train - y_train_pred)
```

#### In [69]:

```
fig = plt.figure()
sns.distplot(res, bins = 15)
fig.suptitle('Error Terms', fontsize = 15)
plt.xlabel('y_train - y_train_pred', fontsize = 15)
plt.show()
```



#### In [70]:

```
plt.scatter(x_train,res)
plt.show()
```



```
-5000
-10000
140 150 160 170 180 190 200
```

### In [71]:

```
x_test_sm = sm.add_constant(x_test)
y_pred = lr.predict(x_test_sm)
```

### In [72]:

```
y_pred.head()
```

### Out[72]:

160 9908.530450 186 12296.998749 59 14995.083310 165 10970.071916 140 5927.749950 dtype: float64

### In [73]:

```
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score
```

#### In [74]:

```
np.sqrt (mean_squared_error(y_test, y_pred))
```

#### Out[74]:

6602.1821375507725

### In [75]:

```
r_squared = r2_score(y_test, y_pred)
r_squared
```

### Out[75]:

0.3775614539285084

### In [76]:

```
plt.scatter(x_test, y_test)
plt.plot(x_test, 0.127 + 0.462* x_test, 'r')
plt.show()
```



```
In [77]:
from sklearn.model selection import train test split
x_train_lm, x_test_lm, y_train_lm, y_test_lm = train_test_split(x, y, train_size = 0.7, test_size =
0.3, random_state = 100)
In [78]:
x_train_lm.shape
Out[78]:
(143,)
In [79]:
x train lm
x_train_lm = x_train_lm.values.reshape(-1,1)
x\_train\_lm
x_test_lm = x_test_lm.values.reshape(-1,1)
In [80]:
print(x train lm.shape)
print(y_train_lm.shape)
print(x_test_lm.shape)
print(y_test_lm.shape)
(143, 1)
(143,)
(62, 1)
(62,)
In [81]:
from sklearn.linear_model import LinearRegression
lm = LinearRegression()
lm.fit(x_train_lm, y_train_lm)
Out[81]:
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
In [82]:
print(lm.intercept_)
print(lm.coef_)
-63647.447004327536
[442.3089444]
In [83]:
corrs = np.corrcoef(x_train, y_train)
print(corrs)
           0.71374864]
[[1.
[0.71374864 1. ]]
In [84]:
corrs[0,1] ** 2
Out[84]:
0.5094371243649879
```

```
In [85]:
from sklearn.model_selection import train_test_split
x_train,x_test, y_train, y_test = train_test_split(x, y, train_size = 0.7, test_size = 0.3,
random state = 100)
In [86]:
from sklearn.preprocessing import StandardScaler, MinMaxScaler
In [87]:
x_train_scaled = x_train.values.reshape(-1,1)
y_train_scaled = y_train.values.reshape(-1,1)
In [88]:
x train scaled.shape
Out[88]:
(143, 1)
In [89]:
scaler = StandardScaler()
x train scaled = scaler.fit transform(x train scaled)
y train scaled = scaler.fit transform(y train scaled)
In [90]:
print("mean and sd for x train scaled:", np.mean(x train scaled), np.std(x train scaled))
print("mean and sd for y_train_scaled:", np.mean(y_train_scaled), np.std(y_train_scaled))
mean and sd for x train scaled: 1.6148698540002277e-16 1.0
In [91]:
x train scaled = sm.add constant(x train scaled)
lr_scaled = sm.OLS(y_train_scaled,x_train_scaled).fit()
In [92]:
lr scaled.params
Out[92]:
array([1.68268177e-16, 7.13748642e-01])
In [93]:
print(lr_scaled.summary())
                     OLS Regression Results
_____
                                                                0.509
                              y R-squared:
OLS Adj. R-squared:
Dep. Variable:
Model:
                                                                 0.506
                    Least Squares F-statistic:
                                                                146.4
Method:
Date:
                 Sun, 26 Apr 2020 Prob (F-statistic):
                                                             1.46e-23
Time:
                         09:08:50 Log-Likelihood:
                                                               -151.99
No. Observations:
                             143
                                  AIC:
                                                                 308.0
Df Residuals:
                              141
                                   BIC:
                                                                 313.9
Df Model:
                                1
Covariance Type:
                  nonrobust
```

\_\_\_\_\_

\_\_\_\_\_

|                                     | coef                | std err        | t                  | P> t  | [0.025          | 0.975]                               |
|-------------------------------------|---------------------|----------------|--------------------|-------|-----------------|--------------------------------------|
| const<br>x1                         | 1.683e-16<br>0.7137 | 0.059<br>0.059 | 2.85e-15<br>12.101 | 1.000 | -0.117<br>0.597 | 0.117<br>0.830                       |
| Omnibus: Prob(Omnik Skew: Kurtosis: | ous):               | 0.             |                    | •     |                 | 1.898<br>133.614<br>9.68e-30<br>1.00 |
| ========                            |                     |                |                    |       |                 |                                      |

#### Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

## **Multiple Linear Regression**

#### In [94]:

```
plt.figure(figsize=(20, 12))
plt.subplot(2,3,1)
sns.boxplot(x = 'wheelbase', y = 'price', data =CarName)
plt.subplot(2,3,2)
sns.boxplot(x = 'carlength', y = 'price', data =CarName )
plt.subplot(2,3,3)
sns.boxplot(x = 'carwidth', y = 'price', data =CarName )
plt.subplot(2,3,4)
sns.boxplot(x = 'carheight', y = 'price', data = CarName)
plt.subplot(2,3,5)
sns.boxplot(x = 'curbweight', y = 'price', data = CarName)
plt.subplot(2,3,6)
sns.boxplot(x = 'enginesize', y = 'price', data = CarName)
plt.show()
                                    45000
                                    40000
 35000
                                    35000
```



#### In [95]:

```
plt.figure(figsize=(20, 12))
plt.subplot(2,3,1)
sns.boxplot(x = 'boreratio', y = 'price', data = CarName)
plt.subplot(2,3,2)
sns.boxplot(x = 'stroke', y = 'price', data = CarName)
plt.subplot(2,3,3)
sns.boxplot(x = 'compressionratio', y = 'price', data = CarName)
plt.subplot(2,3,4)
```

```
sns.boxplot(x = 'horsepower', y = 'price', data = CarName)
plt.subplot(2,3,5)
sns.boxplot(x = 'peakrpm', y = 'price', data = CarName)
plt.subplot(2,3,6)
sns.boxplot(x = 'citympg', y = 'price', data = CarName)
plt.show()
  45000
                                                            45000
                                                                                                                     45000
  40000
                                                            40000
  35000
                                                            35000
                                                                                                                     35000
   30000
                                                            30000
                                                                                                                     30000
25000
                                                                                                                   월 25000
                                                           25000
  20000
                                                            20000
  15000
                                                            15000
                                                                                                                     15000
  10000
                                                            10000
                                                                                                                     10000
   5000
                                                             5000
       2.24822399BB98B98B98B98B98B98B8B8B8B8B8B8B8B8B94
                                                                                                                          7.07.9.67.7.88.88.88.88.88.66.88.89.99.89.29.23.23.24.49.59.E010112/32025.292022228.0
  45000
                                                            45000
                                                                                                                     45000
   40000
                                                            40000
                                                                                                                     40000
   35000
                                                            35000
                                                                                                                     35000
   30000
를 25000
                                                          필 25000
                                                                                                                   을 25000
  20000
                                                            20000
                                                                                                                     20000
  15000
                                                            15000
                                                                                                                     15000
  10000
                                                            10000
                                                                                                                     10000
   5000
                                                            5000
                                                                                                                      5000
                          9245100026111245EEEEEEEEE
                                                                41 592 692 543 594 695 696 547 598 699 (HD) (50 (52 (H2 553 (54 (55 (Hb) (57 558 (H9) 650 (665 0 )
                                                                                                                          13 141516 171819 2021 222324 252627 282930 313233 343536 3738454749
```

### In [96]:

```
status = pd.get_dummies(CarName['cylindernumber'])
```

#### In [97]:

status.head()

### Out[97]:

|   | eight | five | four | six | three | twelve | two |
|---|-------|------|------|-----|-------|--------|-----|
| 0 | 0     | 0    | 1    | 0   | 0     | 0      | 0   |
| 1 | 0     | 0    | 1    | 0   | 0     | 0      | 0   |
| 2 | 0     | 0    | 0    | 1   | 0     | 0      | 0   |
| 3 | 0     | 0    | 1    | 0   | 0     | 0      | 0   |
| 4 | 0     | 1    | 0    | 0   | 0     | 0      | 0   |

#### In [98]:

```
status = pd.get_dummies(CarName['cylindernumber'], drop_first = True)
```

### In [99]:

```
CarName = pd.concat([CarName, status], axis = 1)
```

#### In [100]:

```
CarName.head()
```

### Out[100]:

| car_ID     | symboling | CarName                     | fueltype | aspiration | doornumber | carbody     | drivewheel | enginelocation | wheelbase | <br>peakrpm | ( |
|------------|-----------|-----------------------------|----------|------------|------------|-------------|------------|----------------|-----------|-------------|---|
| 0 1        | 3         | alfa-romero<br>giulia       | gas      | std        | two        | convertible | rwd        | front          | 88.6      | <br>5000    | Ī |
| 1 2        | 3         | alfa-romero<br>stelvio      | gas      | std        | two        | convertible | rwd        | front          | 88.6      | <br>5000    |   |
| <b>2</b> 3 | 1         | alfa-romero<br>Quadrifoglio | gas      | std        | two        | hatchback   | rwd        | front          | 94.5      | <br>5000    |   |
| 3 4        | 2         | audi 100 ls                 | gas      | std        | four       | sedan       | fwd        | front          | 99.8      | <br>5500    |   |
| <b>4</b> 5 | 2         | audi 100ls                  | gas      | std        | four       | sedan       | 4wd        | front          | 99.4      | <br>5500    |   |

5 rows × 32 columns

1

In [101]:

CarName.drop(['cylindernumber'], axis = 1, inplace = True)

In [102]:

CarName.head()

Out[102]:

|   | car_ID | symboling | CarName                     | fueltype | aspiration | doornumber | carbody     | drivewheel | enginelocation | wheelbase | <br>peakrpm | ( |
|---|--------|-----------|-----------------------------|----------|------------|------------|-------------|------------|----------------|-----------|-------------|---|
| 0 | 1      | 3         | alfa-romero<br>giulia       | gas      | std        | two        | convertible | rwd        | front          | 88.6      | <br>5000    |   |
| 1 | 2      | 3         | alfa-romero<br>stelvio      | gas      | std        | two        | convertible | rwd        | front          | 88.6      | <br>5000    |   |
| 2 | 3      | 1         | alfa-romero<br>Quadrifoglio | gas      | std        | two        | hatchback   | rwd        | front          | 94.5      | <br>5000    |   |
| 3 | 4      | 2         | audi 100 ls                 | gas      | std        | four       | sedan       | fwd        | front          | 99.8      | <br>5500    |   |
| 4 | 5      | 2         | audi 100ls                  | gas      | std        | four       | sedan       | 4wd        | front          | 99.4      | <br>5500    |   |

5 rows × 31 columns

1

In [103]:

status = pd.get\_dummies(CarName['CarName'])
status.head()

Out[103]:

|   | Nissan<br>versa | alfa-romero<br>Quadrifoglio | alfa-<br>romero<br>giulia | alfa-<br>romero<br>stelvio | audi<br>100<br>Is | audi<br>100ls | audi<br>4000 | audi<br>5000 | audi<br>5000s<br>(diesel) | audi<br>fox | <br>volkswagen<br>type 3 | volvo<br>144ea | volvo<br>145e<br>(sw) | volvo<br>244dl | volvo<br>245 | volvo<br>246 |  |
|---|-----------------|-----------------------------|---------------------------|----------------------------|-------------------|---------------|--------------|--------------|---------------------------|-------------|--------------------------|----------------|-----------------------|----------------|--------------|--------------|--|
| 0 | 0               | 0                           | 1                         | 0                          | 0                 | 0             | 0            | 0            | 0                         | 0           | <br>0                    | 0              | 0                     | 0              | 0            | 0            |  |
| 1 | 0               | 0                           | 0                         | 1                          | 0                 | 0             | 0            | 0            | 0                         | 0           | <br>0                    | 0              | 0                     | 0              | 0            | 0            |  |
| 2 | 0               | 1                           | 0                         | 0                          | 0                 | 0             | 0            | 0            | 0                         | 0           | <br>0                    | 0              | 0                     | 0              | 0            | 0            |  |
| 3 | 0               | 0                           | 0                         | 0                          | 1                 | 0             | 0            | 0            | 0                         | 0           | <br>0                    | 0              | 0                     | 0              | 0            | 0            |  |
| 4 | 0               | 0                           | 0                         | 0                          | 0                 | 1             | 0            | 0            | 0                         | 0           | <br>0                    | 0              | 0                     | 0              | 0            | 0            |  |

5 rows × 147 columns

•

In [104]:

```
status = pd.get_dummies(CarName['CarName'], drop_first = True)
CarName = pd.concat([CarName, status], axis = 1)
CarName.head()
```

Out[104]:

--

|   | car_ID<br>car_ID | symboling<br>symboling | CarName<br>CarName | fueltype<br>fueltype | aspiration<br>aspiration |      | carbody<br>carbody | drivewheel<br>drivewheel | enginelocation enginelocation | wheelbeee |     | volkswager<br>volks <b>wæ</b> er<br>type : |
|---|------------------|------------------------|--------------------|----------------------|--------------------------|------|--------------------|--------------------------|-------------------------------|-----------|-----|--------------------------------------------|
| _ |                  |                        | alfa-romero        |                      | -1.1                     |      |                    |                          | F                             | 00.0      |     |                                            |
| 0 | 1                | 3                      | giulia             | gas                  | std                      | two  | convertible        | rwd                      | front                         | 88.6      |     |                                            |
| 4 | 2                | 3                      | alfa-romero        | 200                  | std                      | two  | convertible        | rwd                      | front                         | 88.6      |     | (                                          |
|   | 2                | 3                      | stelvio            | gas                  | Siu                      | two  | Conventible        | Iwu                      | HOIIL                         | 00.0      | ••• | (                                          |
| 2 | 3                | 4                      | alfa-romero        |                      |                          | £    | hatchback          |                          | £4                            | 94.5      |     |                                            |
| 2 | 3                | ı                      | Quadrifoglio       | gas                  | std                      | two  | пацспраск          | rwd                      | front                         | 94.5      | ••• | (                                          |
| 3 | 4                | 2                      | audi 100 ls        | gas                  | std                      | four | sedan              | fwd                      | front                         | 99.8      |     | (                                          |
|   |                  |                        |                    |                      |                          |      |                    |                          |                               |           |     |                                            |
| 4 | 5                | 2                      | audi 100ls         | gas                  | std                      | four | sedan              | 4wd                      | front                         | 99.4      |     | (                                          |

### 5 rows × 177 columns

### In [105]:

```
CarName.drop(['CarName'], axis = 1, inplace = True)
CarName.head()
```

### Out[105]:

|   | car_ID | symboling | fueltype | aspiration | doornumber | carbody     | drivewheel | enginelocation | wheelbase | carlength | <br>volkswagen<br>type 3 |
|---|--------|-----------|----------|------------|------------|-------------|------------|----------------|-----------|-----------|--------------------------|
| 0 | 1      | 3         | gas      | std        | two        | convertible | rwd        | front          | 88.6      | 168.8     | <br>0                    |
| 1 | 2      | 3         | gas      | std        | two        | convertible | rwd        | front          | 88.6      | 168.8     | <br>0                    |
| 2 | 3      | 1         | gas      | std        | two        | hatchback   | rwd        | front          | 94.5      | 171.2     | <br>0                    |
| 3 | 4      | 2         | gas      | std        | four       | sedan       | fwd        | front          | 99.8      | 176.6     | <br>0                    |
| 4 | 5      | 2         | gas      | std        | four       | sedan       | 4wd        | front          | 99.4      | 176.6     | <br>0                    |

#### 5 rows × 176 columns

**4** 

### In [106]:

```
status = pd.get_dummies(CarName['fueltype'])
status.head()
```

### Out[106]:

|   | diesel | gas |
|---|--------|-----|
| 0 | 0      | 1   |
| 1 | 0      | 1   |
| 2 | 0      | 1   |
| 3 | 0      | 1   |
| 4 | 0      | 1   |

### In [107]:

```
status = pd.get_dummies(CarName['fueltype'], drop_first = True)
CarName = pd.concat([CarName, status], axis = 1)
CarName.head()
```

### Out[107]:

|   | car_ID | symboling | fueltype | aspiration | doornumber | carbody     | drivewheel | enginelocation | wheelbase | carlength | <br>volvo<br>144ea | volvo<br>145e<br>(sw) |
|---|--------|-----------|----------|------------|------------|-------------|------------|----------------|-----------|-----------|--------------------|-----------------------|
| 0 | 1      | 3         | gas      | std        | two        | convertible | rwd        | front          | 88.6      | 168.8     | <br>0              | 0                     |
| 1 | 2      | 3         | gas      | std        | two        | convertible | rwd        | front          | 88.6      | 168.8     | <br>0              | 0                     |
| 2 | 3      | 1         | gas      | std        | two        | hatchback   | rwd        | front          | 94.5      | 171.2     | <br>0              | 0                     |
| 3 | 4      | 2         | gas      | std        | four       | sedan       | fwd        | front          | 99.8      | 176.6     | <br>0              | 0                     |
|   | -      | ^         |          | . ( .)     | r          |             | 4 1        | ē              | 00.4      | 470.0     | ^                  | ^                     |

```
sedan
                                                                                                           1/6.6 ...
                                                                                                                            volvo
                                      std
                                                  tour
                                                                                                                     volvo
    car_ID symboling fueltype aspiration doornumber
                                                         carbody drivewheel enginelocation wheelbase carlength ...
                                                                                                                             145e
                                                                                                                     144ea
5 rows × 177 columns
                                                                                                                             (sw)
4
                                                                                                                               \mathbf{F}
In [108]:
CarName.drop(['fueltype'], axis = 1, inplace = True)
CarName.head()
Out[108]:
                                                                                                                            volve
                                                                                                                      volvo
    car_ID symboling aspiration doornumber
                                                carbody drivewheel enginelocation wheelbase carlength carwidth ...
                                                                                                                             145€
                                                                                                                      144ea
                                                                                                                             (sw
 0
                                              convertible
                                                                             front
                                                                                         88.6
                                                                                                  168.8
                                                                                                             64.1 ...
                             std
                                         two
                                                                rwd
         2
                    3
                                                                                         88.6
                                                                                                  168.8
                                                                                                                         0
 1
                             std
                                         two
                                              convertible
                                                                rwd
                                                                             front
                                                                                                             64.1 ...
 2
         3
                                                                                         94.5
                                                                                                  171.2
                                                                                                             65.5 ...
                                                                                                                         0
                             std
                                              hatchback
                                                                rwd
                                                                             front
                                         two
 3
         4
                    2
                             std
                                         four
                                                  sedan
                                                                fwd
                                                                             front
                                                                                         99.8
                                                                                                  176.6
                                                                                                             66.2 ...
                                                                                                                         0
                                                                                                                                (
                             std
                                                  sedan
                                                               4wd
                                                                              front
                                                                                         99.4
                                                                                                  176.6
                                                                                                             66.4 ...
                                         four
5 rows × 176 columns
                                                                                                                               ▶
In [109]:
status = pd.get dummies(CarName['aspiration'])
status.head()
Out[109]:
    std turbo
 0
            0
 1
      1
            0
 2
      1
            0
            0
     1
      1
            0
In [110]:
status = pd.get_dummies(CarName['aspiration'], drop_first = True)
CarName = pd.concat([CarName, status], axis = 1)
CarName.head()
Out[110]:
                                                                                                                            volvo
    car_ID symboling aspiration doornumber
                                                carbody drivewheel enginelocation wheelbase carlength carwidth
                                                                                                                      145e
                                                                                                                            244dl
         1
                                                                                                             64.1 ...
 0
                    3
                             std
                                         two
                                              convertible
                                                                rwd
                                                                              front
                                                                                         88.6
                                                                                                  168.8
                                                                                                                                0
         2
                    3
                                                                                         88.6
                                                                                                  168.8
                                                                                                             64.1 ...
                                                                                                                                0
                             std
                                         two
                                              convertible
                                                                rwd
                                                                             front
 2
         3
                                                                                                             65.5 ...
                                                                                                                                0
                             std
                                         two
                                              hatchback
                                                                rwd
                                                                              front
                                                                                         94.5
                                                                                                  171.2
                                                                                                                         0
         4
                    2
                                                                             front
                                                                                         99.8
                                                                                                  176.6
                                                                                                             66.2 ...
                                                                                                                         0
                                                                                                                                0
                             std
                                         four
                                                  sedan
                                                                fwd
         5
                    2
                             std
                                         four
                                                  sedan
                                                               4wd
                                                                              front
                                                                                         99.4
                                                                                                  176.6
                                                                                                             66.4 ...
                                                                                                                         0
                                                                                                                                0
5 rows × 177 columns
4
CarName.drop(['aspiration'], axis = 1, inplace = True)
CarName.head()
Out[111]:
```

|   | car_ID | symboling | doornumber | carbody     | drivewheel | enginelocation | wheelbase | carlength | carwidth | carheight | <br>volvo<br>145e<br>(sw) | volvo<br>244dl |
|---|--------|-----------|------------|-------------|------------|----------------|-----------|-----------|----------|-----------|---------------------------|----------------|
| 0 | 1      | 3         | two        | convertible | rwd        | front          | 88.6      | 168.8     | 64.1     | 48.8      | <br>0                     | 0              |
| 1 | 2      | 3         | two        | convertible | rwd        | front          | 88.6      | 168.8     | 64.1     | 48.8      | <br>0                     | 0              |
| 2 | 3      | 1         | two        | hatchback   | rwd        | front          | 94.5      | 171.2     | 65.5     | 52.4      | <br>0                     | 0              |
| 3 | 4      | 2         | four       | sedan       | fwd        | front          | 99.8      | 176.6     | 66.2     | 54.3      | <br>0                     | 0              |
| 4 | 5      | 2         | four       | sedan       | 4wd        | front          | 99.4      | 176.6     | 66.4     | 54.3      | <br>0                     | 0              |

### 5 rows × 176 columns

**(** 

### In [112]:

status = pd.get\_dummies(CarName['doornumber'])
status.head()

#### Out[112]:

|   | four | two |
|---|------|-----|
| 0 | 0    | 1   |
| 1 | 0    | 1   |
| 2 | 0    | 1   |
| 3 | 1    | 0   |
| 4 | 1    | 0   |

### In [113]:

```
status = pd.get_dummies(CarName['doornumber'], drop_first = True)
CarName = pd.concat([CarName, status], axis = 1)
CarName.head()
```

### Out[113]:

|   | car_ID | symboling | doornumber | carbody     | drivewheel | enginelocation | wheelbase | carlength | carwidth | carheight | <br>volvo<br>244dl | volvo<br>245 |
|---|--------|-----------|------------|-------------|------------|----------------|-----------|-----------|----------|-----------|--------------------|--------------|
| 0 | 1      | 3         | two        | convertible | rwd        | front          | 88.6      | 168.8     | 64.1     | 48.8      | <br>0              | 0            |
| 1 | 2      | 3         | two        | convertible | rwd        | front          | 88.6      | 168.8     | 64.1     | 48.8      | <br>0              | 0            |
| 2 | 3      | 1         | two        | hatchback   | rwd        | front          | 94.5      | 171.2     | 65.5     | 52.4      | <br>0              | 0            |
| 3 | 4      | 2         | four       | sedan       | fwd        | front          | 99.8      | 176.6     | 66.2     | 54.3      | <br>0              | 0            |
| 4 | 5      | 2         | four       | sedan       | 4wd        | front          | 99.4      | 176.6     | 66.4     | 54.3      | <br>0              | 0            |

### 5 rows × 177 columns

4

## In [114]:

```
CarName.drop(['doornumber'], axis = 1, inplace = True)
CarName.head()
```

### Out[114]:

|   | car_ID | symboling | carbody     | drivewheel | enginelocation | wheelbase | carlength | carwidth | carheight | curbweight | <br>volvo<br>244dl | volvo<br>245 |
|---|--------|-----------|-------------|------------|----------------|-----------|-----------|----------|-----------|------------|--------------------|--------------|
| 0 | 1      | 3         | convertible | rwd        | front          | 88.6      | 168.8     | 64.1     | 48.8      | 2548       | <br>0              | 0            |
| 1 | 2      | 3         | convertible | rwd        | front          | 88.6      | 168.8     | 64.1     | 48.8      | 2548       | <br>0              | 0            |
| 2 | 3      | 1         | hatchback   | rwd        | front          | 94.5      | 171.2     | 65.5     | 52.4      | 2823       | <br>0              | 0            |
| 3 | 4      | 2         | sedan       | fwd        | front          | 99.8      | 176.6     | 66.2     | 54.3      | 2337       | <br>0              | 0            |
| 4 | 5      | 2         | sedan       | 4wd        | front          | 99.4      | 176.6     | 66.4     | 54.3      | 2824       | <br>0              | 0            |

```
5 rows × 176 columns
status = pd.get dummies(CarName['carbody'])
status.head()
Out[115]:
    convertible hardtop hatchback sedan wagon
 0
                    0
                              0
                                     0
                                            0
 1
            1
                    0
                              0
                                     0
                                            0
 2
            0
                    0
                                     0
                                            0
 3
            0
                    0
                              0
                                     1
                                            0
                              0
            0
                    0
                                            0
In [116]:
status = pd.get_dummies(CarName['carbody'], drop_first = True)
CarName = pd.concat([CarName, status], axis = 1)
CarName.head()
Out[116]:
                                                                                                             volvo
    car_ID symboling
                      carbody drivewheel enginelocation wheelbase carlength carwidth carheight curbweight ...
                                                                                                            diesel
                                                                                                                   dashe
                                                                                64.1
                                                                                                    2548 ...
                  3 convertible
                                      rwd
                                                   front
                                                             88.6
                                                                      168.8
                                                                                         48.8
        2
                                                                                                                        C
 1
                  3 convertible
                                      rwd
                                                   front
                                                             88.6
                                                                      168.8
                                                                                64.1
                                                                                         48.8
                                                                                                    2548 ...
                                                                                                                0
 2
        3
                     hatchback
                                     rwd
                                                   front
                                                             94.5
                                                                      171.2
                                                                                65.5
                                                                                         52.4
                                                                                                    2823 ...
 3
        4
                  2
                         sedan
                                      fwd
                                                   front
                                                             99.8
                                                                      176.6
                                                                                66.2
                                                                                         54.3
                                                                                                    2337 ...
                                                                                                                0
                                                                                                                        C
        5
                  2
                                                             99.4
                                                                      176.6
                                                                                66.4
                                                                                         54.3
                                                                                                    2824 ...
                                                                                                                0
                         sedan
                                     4wd
                                                   front
5 rows × 180 columns
4
In [117]:
CarName.drop(['carbody'], axis = 1, inplace = True)
CarName.head()
Out[117]:
```

|   | car_ID | symboling | drivewheel | enginelocation | wheelbase | carlength | carwidth | carheight | curbweight | enginetype | <br>diesel | dashe |
|---|--------|-----------|------------|----------------|-----------|-----------|----------|-----------|------------|------------|------------|-------|
| 0 | 1      | 3         | rwd        | front          | 88.6      | 168.8     | 64.1     | 48.8      | 2548       | dohc       | <br>0      |       |
| 1 | 2      | 3         | rwd        | front          | 88.6      | 168.8     | 64.1     | 48.8      | 2548       | dohc       | <br>0      |       |
| 2 | 3      | 1         | rwd        | front          | 94.5      | 171.2     | 65.5     | 52.4      | 2823       | ohcv       | <br>0      |       |
| 3 | 4      | 2         | fwd        | front          | 99.8      | 176.6     | 66.2     | 54.3      | 2337       | ohc        | <br>0      |       |
| 4 | 5      | 2         | 4wd        | front          | 99.4      | 176.6     | 66.4     | 54.3      | 2824       | ohc        | <br>0      |       |

#### 5 rows × 179 columns

1

#### In [118]

```
status = pd.get_dummies(CarName['drivewheel'])
status.head()
```

### Out[118]:

4wd fwd rwd

• • • • •

```
4wd fwd rwd

1 0 0 1

2 0 0 1

3 0 1 0

4 1 0 0
```

### In [119]:

```
status = pd.get_dummies(CarName['drivewheel'], drop_first = True)
CarName = pd.concat([CarName, status], axis = 1)
CarName.head()
```

### Out[119]:

|   | car_ID | symboling | drivewheel | enginelocation | wheelbase | carlength | carwidth | carheight | curbweight | enginetype | <br>vw<br>rabbit | gas |
|---|--------|-----------|------------|----------------|-----------|-----------|----------|-----------|------------|------------|------------------|-----|
| 0 | 1      | 3         | rwd        | front          | 88.6      | 168.8     | 64.1     | 48.8      | 2548       | dohc       | <br>0            | 1   |
| 1 | 2      | 3         | rwd        | front          | 88.6      | 168.8     | 64.1     | 48.8      | 2548       | dohc       | <br>0            | 1   |
| 2 | 3      | 1         | rwd        | front          | 94.5      | 171.2     | 65.5     | 52.4      | 2823       | ohcv       | <br>0            | 1   |
| 3 | 4      | 2         | fwd        | front          | 99.8      | 176.6     | 66.2     | 54.3      | 2337       | ohc        | <br>0            | 1   |
| 4 | 5      | 2         | 4wd        | front          | 99.4      | 176.6     | 66.4     | 54.3      | 2824       | ohc        | <br>0            | 1   |

### 5 rows × 181 columns

#### In [120]:

```
CarName.drop(['drivewheel'], axis = 1, inplace = True)
CarName.head()
```

### Out[120]:

|   | car_ID | symboling | enginelocation | wheelbase | carlength | carwidth | carheight | curbweight | enginetype | enginesize | <br>vw<br>rabbit | gas |
|---|--------|-----------|----------------|-----------|-----------|----------|-----------|------------|------------|------------|------------------|-----|
| 0 | 1      | 3         | front          | 88.6      | 168.8     | 64.1     | 48.8      | 2548       | dohc       | 130        | <br>0            | 1   |
| 1 | 2      | 3         | front          | 88.6      | 168.8     | 64.1     | 48.8      | 2548       | dohc       | 130        | <br>0            | 1   |
| 2 | 3      | 1         | front          | 94.5      | 171.2     | 65.5     | 52.4      | 2823       | ohcv       | 152        | <br>0            | 1   |
| 3 | 4      | 2         | front          | 99.8      | 176.6     | 66.2     | 54.3      | 2337       | ohc        | 109        | <br>0            | 1   |
| 4 | 5      | 2         | front          | 99.4      | 176.6     | 66.4     | 54.3      | 2824       | ohc        | 136        | <br>0            | 1   |

#### 5 rows × 180 columns

### In [121]:

```
status = pd.get_dummies(CarName['enginelocation'])
status.head()
```

### Out[121]:

|   | front | rear |
|---|-------|------|
| 0 | 1     | 0    |
| 1 | 1     | 0    |
| 2 | 1     | 0    |
| 3 | 1     | 0    |
| 4 | 1     | 0    |

#### In [122]:

```
status = pd.get_dummies(CarName['enginelocation'], drop_first = True)
CarName = pd.concat([CarName, status], axis = 1)
```

```
CarName.head()
```

### Out[122]:

|   | car_ID | symboling | enginelocation | wheelbase | carlength | carwidth | carheight | curbweight | enginetype | enginesize | <br>gas | turbo | 1 |
|---|--------|-----------|----------------|-----------|-----------|----------|-----------|------------|------------|------------|---------|-------|---|
| 0 | 1      | 3         | front          | 88.6      | 168.8     | 64.1     | 48.8      | 2548       | dohc       | 130        | <br>1   | 0     |   |
| 1 | 2      | 3         | front          | 88.6      | 168.8     | 64.1     | 48.8      | 2548       | dohc       | 130        | <br>1   | 0     |   |
| 2 | 3      | 1         | front          | 94.5      | 171.2     | 65.5     | 52.4      | 2823       | ohcv       | 152        | <br>1   | 0     |   |
| 3 | 4      | 2         | front          | 99.8      | 176.6     | 66.2     | 54.3      | 2337       | ohc        | 109        | <br>1   | 0     |   |
| 4 | 5      | 2         | front          | 99.4      | 176.6     | 66.4     | 54.3      | 2824       | ohc        | 136        | <br>1   | 0     |   |

#### 5 rows × 181 columns

**1** 

### In [123]:

```
CarName.drop(['enginelocation'], axis = 1, inplace = True)
CarName.head()
```

#### Out[123]:

|   | car_ID | symboling | wheelbase | carlength | carwidth | carheight | curbweight | enginetype | enginesize | fuelsystem | <br>gas | turbo | two |
|---|--------|-----------|-----------|-----------|----------|-----------|------------|------------|------------|------------|---------|-------|-----|
| 0 | 1      | 3         | 88.6      | 168.8     | 64.1     | 48.8      | 2548       | dohc       | 130        | mpfi       | <br>1   | 0     | 1   |
| 1 | 2      | 3         | 88.6      | 168.8     | 64.1     | 48.8      | 2548       | dohc       | 130        | mpfi       | <br>1   | 0     | 1   |
| 2 | 3      | 1         | 94.5      | 171.2     | 65.5     | 52.4      | 2823       | ohcv       | 152        | mpfi       | <br>1   | 0     | 1   |
| 3 | 4      | 2         | 99.8      | 176.6     | 66.2     | 54.3      | 2337       | ohc        | 109        | mpfi       | <br>1   | 0     | 0   |
| 4 | 5      | 2         | 99.4      | 176.6     | 66.4     | 54.3      | 2824       | ohc        | 136        | mpfi       | <br>1   | 0     | 0   |

### 5 rows × 180 columns

4

### In [124]:

```
status = pd.get_dummies(CarName['enginetype'])
status.head()
```

### Out[124]:

|   | dohc | dohcv | ı | ohc | ohcf | ohcv | rotor |
|---|------|-------|---|-----|------|------|-------|
| 0 | 1    | 0     | 0 | 0   | 0    | 0    | 0     |
| 1 | 1    | 0     | 0 | 0   | 0    | 0    | 0     |
| 2 | 0    | 0     | 0 | 0   | 0    | 1    | 0     |
| 3 | 0    | 0     | 0 | 1   | 0    | 0    | 0     |
| 4 | 0    | 0     | 0 | 1   | 0    | 0    | 0     |

#### In [125]:

```
status = pd.get_dummies(CarName['enginetype'], drop_first = True)
CarName = pd.concat([CarName, status], axis = 1)
CarName.head()
```

### Out[125]:

|   | car_ID | symboling | wheelbase | carlength | carwidth | carheight | curbweight | enginetype | enginesize | fuelsystem | <br>wagon | fwd | rwc |
|---|--------|-----------|-----------|-----------|----------|-----------|------------|------------|------------|------------|-----------|-----|-----|
| 0 | 1      | 3         | 88.6      | 168.8     | 64.1     | 48.8      | 2548       | dohc       | 130        | mpfi       | <br>0     | 0   | ,   |
| 1 | 2      | 3         | 88.6      | 168.8     | 64.1     | 48.8      | 2548       | dohc       | 130        | mpfi       | <br>0     | 0   | 1   |
| 2 | 3      | 1         | 94.5      | 171.2     | 65.5     | 52.4      | 2823       | ohcv       | 152        | mpfi       | <br>0     | 0   |     |
| 3 | 4      | 2         | 99.8      | 176.6     | 66.2     | 54.3      | 2337       | ohc        | 109        | mpfi       | <br>0     | 1   | (   |
| 4 | 5      | 2         | 99.4      | 176.6     | 66.4     | 54.3      | 2824       | ohc        | 136        | mpfi       | <br>0     | 0   | (   |

```
5 rows × 186 columns
```

4

### In [126]:

```
CarName.drop(['enginetype'], axis = 1, inplace = True)
CarName.head()
```

### Out[126]:

|   | car_ID | symboling | wheelbase | carlength | carwidth | carheight | curbweight | enginesize | fuelsystem | boreratio | <br>wagon | fwd | rwd |
|---|--------|-----------|-----------|-----------|----------|-----------|------------|------------|------------|-----------|-----------|-----|-----|
| 0 | 1      | 3         | 88.6      | 168.8     | 64.1     | 48.8      | 2548       | 130        | mpfi       | 3.47      | <br>0     | 0   | 1   |
| 1 | 2      | 3         | 88.6      | 168.8     | 64.1     | 48.8      | 2548       | 130        | mpfi       | 3.47      | <br>0     | 0   | 1   |
| 2 | 3      | 1         | 94.5      | 171.2     | 65.5     | 52.4      | 2823       | 152        | mpfi       | 2.68      | <br>0     | 0   | 1   |
| 3 | 4      | 2         | 99.8      | 176.6     | 66.2     | 54.3      | 2337       | 109        | mpfi       | 3.19      | <br>0     | 1   | 0   |
| 4 | 5      | 2         | 99.4      | 176.6     | 66.4     | 54.3      | 2824       | 136        | mpfi       | 3.19      | <br>0     | 0   | 0   |

### 5 rows × 185 columns

#### In [127]:

```
status = pd.get_dummies(CarName['fuelsystem'])
status.head()
```

#### Out[127]:

|   | 1bbl | 2bbl | 4bbl | idi | mfi | mpfi | spdi | spfi |
|---|------|------|------|-----|-----|------|------|------|
| 0 | 0    | 0    | 0    | 0   | 0   | 1    | 0    | 0    |
| 1 | 0    | 0    | 0    | 0   | 0   | 1    | 0    | 0    |
| 2 | 0    | 0    | 0    | 0   | 0   | 1    | 0    | 0    |
| 3 | 0    | 0    | 0    | 0   | 0   | 1    | 0    | 0    |
| 4 | 0    | 0    | 0    | 0   | 0   | 1    | 0    | 0    |

### In [128]:

```
status = pd.get_dummies(CarName['fuelsystem'], drop_first = True)
CarName = pd.concat([CarName, status], axis = 1)
CarName.head()
```

### Out[128]:

|   | car_ID | symboling | wheelbase | carlength | carwidth | carheight | curbweight | enginesize | fuelsystem | boreratio | <br>ohcf | ohcv | rotor |
|---|--------|-----------|-----------|-----------|----------|-----------|------------|------------|------------|-----------|----------|------|-------|
| 0 | 1      | 3         | 88.6      | 168.8     | 64.1     | 48.8      | 2548       | 130        | mpfi       | 3.47      | <br>0    | 0    | 0     |
| 1 | 2      | 3         | 88.6      | 168.8     | 64.1     | 48.8      | 2548       | 130        | mpfi       | 3.47      | <br>0    | 0    | 0     |
| 2 | 3      | 1         | 94.5      | 171.2     | 65.5     | 52.4      | 2823       | 152        | mpfi       | 2.68      | <br>0    | 1    | 0     |
| 3 | 4      | 2         | 99.8      | 176.6     | 66.2     | 54.3      | 2337       | 109        | mpfi       | 3.19      | <br>0    | 0    | 0     |
| 4 | 5      | 2         | 99.4      | 176.6     | 66.4     | 54.3      | 2824       | 136        | mpfi       | 3.19      | <br>0    | 0    | 0     |

#### 5 rows × 192 columns

4 In [129]:

```
CarName.drop(['fuelsystem'], axis = 1, inplace = True)
CarName.head()
```

### Out[129]:

|   | car_ID | symboling | wheelbase | carlength | carwidth | carheight | curbweight | enginesize | boreratio | stroke | <br>ohcf | ohcv | rotor | 2bb |
|---|--------|-----------|-----------|-----------|----------|-----------|------------|------------|-----------|--------|----------|------|-------|-----|
| 0 | 1      | 3         | 88.6      | 168.8     | 64.1     | 48.8      | 2548       | 130        | 3.47      | 2.68   | <br>0    | 0    | 0     | (   |
|   | 0      | 2         | 00.0      | 400.0     | 04.4     | 40.0      | 0540       | 400        | 0.47      | 0.00   | ^        | ^    | ^     | ,   |

```
car_ID symboling wheelbase
                      94.5
                                               2823
                                                              2.68
                         <del>171.2</del>
3
            2
                  99.8
                         176.6
                                66.2
                                       54.3
                                               2337
                                                                           0
                                                                               0
                                                                                   0
                                                                                       (
     4
                                                       109
                                                              3.19
                                                                   3.40 ...
                  99.4
                         176.6
                                66.4
                                       54.3
                                               2824
                                                       136
                                                              3.19
                                                                   3.40 ...
                                                                           0
```

#### 5 rows × 191 columns

4 | P

#### In [130]:

```
from sklearn.model_selection import train_test_split
np.random.seed(0)
df_train, df_test = train_test_split(CarName, train_size = 0.7, test_size = 0.3, random_state = 100
)
```

### In [131]:

from sklearn.preprocessing import MinMaxScaler

### In [132]:

```
num_vars = ['wheelbase', 'carlength', 'carwidth', 'carheight', 'curbweight', 'enginesize']
df_train[num_vars] = scaler.fit_transform(df_train[num_vars])
```

#### In [133]:

df\_train.head()

#### Out[133]:

|     | car_ID | symboling | wheelbase | carlength | carwidth | carheight | curbweight | enginesize | boreratio | stroke | <br>ohcf | ohcv | rotor | 2 |
|-----|--------|-----------|-----------|-----------|----------|-----------|------------|------------|-----------|--------|----------|------|-------|---|
| 122 | 123    | 1         | -0.811836 | -0.487238 | 0.924500 | -1.134628 | -0.642128  | -0.660242  | 2.97      | 3.23   | <br>0    | 0    | 0     |   |
| 125 | 126    | 3         | -0.677177 | -0.359789 | 1.114978 | -1.382026 | 0.439415   | 0.637806   | 3.94      | 3.11   | <br>0    | 0    | 0     |   |
| 166 | 167    | 1         | -0.677177 | -0.375720 | 0.833856 | -0.392434 | -0.441296  | -0.660242  | 3.24      | 3.08   | <br>0    | 0    | 0     |   |
| 1   | 2      | 3         | -1.670284 | -0.367754 | 0.788535 | -1.959288 | 0.015642   | 0.123485   | 3.47      | 2.68   | <br>0    | 0    | 0     |   |
| 199 | 200    | -1        | 0.972390  | 1.225364  | 0.616439 | 1.627983  | 1.137720   | 0.123485   | 3.62      | 3.15   | <br>0    | 0    | 0     |   |

### 5 rows × 191 columns

| 4 | | | | | | |

#### In [134]:

df\_train.describe()

### Out[134]:

|       | car_ID     | symboling  | wheelbase         | carlength         | carwidth          | carheight         | curbweight        | enginesize        | boreratio  |      |
|-------|------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------|------|
| count | 143.000000 | 143.000000 | 1.430000e+02      | 1.430000e+02      | 1.430000e+02      | 1.430000e+02      | 1.430000e+02      | 1.430000e+02      | 143.000000 | 143. |
| mean  | 98.524476  | 0.797203   | 1.565182e-15      | 1.614870e-16      | -4.074441e-<br>15 | 5.341493e-16      | -1.614870e-<br>16 | -6.211038e-<br>17 | 3.307413   | 3.   |
| std   | 58.977655  | 1.195999   | 1.003515e+00      | 1.003515e+00      | 1.003515e+00      | 1.003515e+00      | 1.003515e+00      | 1.003515e+00      | 0.260997   | 0.   |
| min   | 1.000000   | -2.000000  | 2.006930e+00      | 2.574223e+00      | 2.510760e+00      | 2.371619e+00      | 1.937401e+00      | 1.566427e+00      | 2.680000   | 2.   |
| 25%   | 48.500000  | 0.000000   | -6.771770e-<br>01 | -6.186702e-<br>01 | -8.565171e-<br>01 | -7.222984e-<br>01 | -7.711028e-<br>01 | -6.847340e-<br>01 | 3.065000   | 3.   |
| 50%   | 97.000000  | 1.000000   | -3.405307e-<br>01 | -1.128552e-<br>01 | -1.993522e-<br>01 | 6.112865e-02      | -2.478347e-<br>01 | -3.663447e-<br>01 | 3.310000   | 3.   |
| 75%   | 147.500000 | 1.000000   | 4.505882e-01      | 7.076008e-01      | 4.804736e-01      | 7.414732e-01      | 7.203955e-01      | 3.928914e-01      | 3.540000   | 3.   |
| max   | 205.000000 | 3.000000   | 2.874442e+00      | 2.324616e+00      | 2.927846e+00      | 2.287711e+00      | 2.812547e+00      | 4.923816e+00      | 3.940000   | 4.   |

```
In [135]:
```

```
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize = (16, 10))
sns.heatmap(df_train.corr(), annot = True, cmap="YlGnBu")
plt.show()
```



#### In [136]:

```
y_train = df_train.pop('price')
x_train = df_train
```

#### In [137]:

```
import statsmodels.api as sm
x_train_lm = sm.add_constant(x_train[['wheelbase']])
lr = sm.OLS(y_train,x_train_lm).fit()
```

### In [138]:

```
lr.params
```

### Out[138]:

const 13056.347322 wheelbase 4843.563051 dtype: float64

### In [139]:

```
plt.scatter(x_train_lm.iloc[:, 1], y_train)
plt.plot(x_train_lm.iloc[:, 1],0.127 + 0.462*x_train_lm.iloc[:, 1], 'r')
plt.show()
```



#### In [140]:

```
print(lr.summary())
```

#### OLS Regression Results

\_\_\_\_\_\_ price R-squared: Dep. Variable: 0.388 OLS Adj. R-squared: Model: 0.383 Least Squares F-statistic: Method: 89.25 1.03e-16 Sun, 26 Apr 2020 Prob (F-statistic): Date: 09:16:07 Log-Likelihood: -1449.0 AIC: No. Observations: 143 2902. Df Residuals: 141 BIC: 2908. Df Model: 1

Df Model: I Covariance Type: nonrobust

|                    | coef                   | std err            | t               | P> t         | [0.025              | 0.975]               |
|--------------------|------------------------|--------------------|-----------------|--------------|---------------------|----------------------|
| const<br>wheelbase | 1.306e+04<br>4843.5631 | 512.700<br>512.700 | 25.466<br>9.447 | 0.000        | 1.2e+04<br>3829.989 | 1.41e+04<br>5857.137 |
|                    |                        |                    |                 |              |                     |                      |
| Omnibus:           |                        | 81.                | .027 Durbi      | in-Watson:   |                     | 1.896                |
| Prob(Omnibu        | ıs):                   | 0.                 | .000 Jarqı      | ıe-Bera (JB) | :                   | 332.436              |
| Skew:              |                        | 2.                 | .161 Prob       | (JB):        |                     | 6.49e-73             |
| Kurtosis:          |                        | 9.                 | .092 Cond.      | . No.        |                     | 1.00                 |
|                    |                        |                    |                 |              |                     |                      |

#### Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

#### In [141]:

```
x_train_lm = x_train[['wheelbase', 'carlength']]
```

#### In [142]:

```
import statsmodels.api as sm
x_train_lm = sm.add_constant(x_train_lm)
lr = sm.OLS(y_train, x_train_lm).fit()
lr.params
```

#### Out[142]:

const 13056.347322 wheelbase -136.259151 carlength 5672.367489

dtype: float64

### In [143]:

```
print(lr.summary())
```

## OLS Regression Results

Dep. Variable: price R-squared: 0.510

Model: OIS Add Resquared: 0.503

Least Squares F-statistic:
Sun, 26 Apr 2020 Prob (F-statistic): model. Method: 2.21e-22 Date: 09:16:08 Log-Likelihood: No. Observations: 143 AIC: 2872. 140 Df Residuals: BIC: 2881. Df Model: Covariance Type: nonrobust \_\_\_\_\_\_ coef std err t P>|t| [0.025 0.975] \_\_\_\_\_\_ 
 const
 1.306e+04
 460.484
 28.354
 0.000
 1.21e+04
 1.4e+04

 wheelbase
 -136.2592
 961.691
 -0.142
 0.888
 -2037.573
 1765.055

 carlength
 5672.3675
 961.691
 5.898
 0.000
 3771.053
 7573.682
 \_\_\_\_\_\_ 53.110 Durbin-Watson: Omnibus: 1.899 0.000 Jarque-Bera (JB): Prob(Omnibus): 127.588 1.97e-28 1.553 Prob(JB): 6.430 Cond. No. Kurtosis: 3.92 \_\_\_\_\_\_

#### Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

#### In [144]:

```
x_train_lm = x_train[['wheelbase', 'carlength','carwidth']]
```

#### In [145]:

```
import statsmodels.api as sm
x_train_lm = sm.add_constant(x_train_lm)
lr = sm.OLS(y_train,x_train_lm).fit()
lr.params
```

#### Out[145]:

 const
 13056.347322

 wheelbase
 -1460.620047

 carlength
 2068.091646

 carwidth
 5632.641754

dtype: float64

#### In [146]:

print(lr.summary())

| OLS Regression Results |
|------------------------|
|                        |

price R-squared: Dep. Variable: OLS Adj. R-squared:

Least Squares F-statistic:
Sun, 26 Apr 2020 0.652 Model: 0.644 Least Squares r-scalistic.

Sun, 26 Apr 2020 Prob (F-statistic): 86.66 Method: 1.14e-31 Date: 09:16:08 Log-Likelihood: No. Observations: 143 AIC: 2825. Df Residuals: 139 BIC: 2837. Df Model: 3

Df Model: 3 Covariance Type: nonrobust

| =======                                     | coef                                              | std err                                  | t                                  | P> t                             | [0.025                                       | 0.975]                                      |
|---------------------------------------------|---------------------------------------------------|------------------------------------------|------------------------------------|----------------------------------|----------------------------------------------|---------------------------------------------|
| const<br>wheelbase<br>carlength<br>carwidth | 1.306e+04<br>-1460.6200<br>2068.0916<br>5632.6418 | 389.480<br>832.203<br>943.796<br>748.048 | 33.522<br>-1.755<br>2.191<br>7.530 | 0.000<br>0.081<br>0.030<br>0.000 | 1.23e+04<br>-3106.033<br>202.039<br>4153.618 | 1.38e+04<br>184.793<br>3934.144<br>7111.665 |
| Omnibus: Prob(Omnib Skew: Kurtosis:         | ========<br>us):                                  | 65.1<br>0.0<br>1.0<br>8.4                | Jarque<br>587 Prob(J               | •                                | :                                            | 1.735<br>245.523<br>4.85e-54<br>4.89        |

\_\_\_\_\_\_

Warnings

[11] Standard Errors assume that the covariance matrix of the errors is correctly specified

```
[1] Diamata Biloto assume that the covariance matrix of the efform to correctly specified.
```

```
In [147]:
```

```
CarName.columns
```

#### Out[147]:

#### In [159]:

```
fig = plt.figure()
plt.scatter(y_test,y_pred)
fig.suptitle('y_test vs y_pred', fontsize=20)
plt.xlabel('y_test', fontsize=18)
plt.ylabel('y_pred', fontsize=16)
```

#### Out[159]:

Text(0, 0.5, 'y\_pred')



### In [148]:

 $\textbf{from stats} \textbf{models.stats.outliers\_influence import} \ \ \text{variance\_inflation\_factor}$ 

### In [153]:

```
def build_model(x,y):
    x= sm.add_constant(x)
    lm = sm.OLS(y,x).fit()
    print(lm.summary())
    return x

def checkVIF(x):
    vif = pd.DataFrame()
    vif['Features'] = x.columns
    vif['VIF'] = [variance_inflation_factor(x.values, i) for i in range(x.shape[1])]
    vif['VIF'] = round(vif['VIF'], 2)
    vif = vif.sort_values(by = "VIF", ascending = False)
    return(vif)
```

### In [154]:

```
x_train_new = build_model(x_train_lm,y_train)
```

OLS Regression Results

Dep. Variable: price R-squared: 0.652

| Model: Method: Date: Time: No. Observ Df Residua Df Model: Covariance | ls:             | Least Squa<br>Sun, 26 Apr 2<br>09:18 | ares F-3<br>2020 Pro<br>3:31 Loo<br>143 AI<br>139 BIO |                                                  | stic):                                             | 0.644<br>86.66<br>1.14e-31<br>-1408.7<br>2825.<br>2837. |
|-----------------------------------------------------------------------|-----------------|--------------------------------------|-------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|
| =======                                                               | coe             | f std err                            |                                                       | P> t                                             | [0.025                                             | 0.975]                                                  |
| const<br>wheelbase<br>carlength<br>carwidth                           | 2068.091        | 0 832.203<br>6 943.796               | 33.52:<br>-1.75!<br>2.19:<br>7.53                     | 0.08<br>L 0.03                                   | 1.23e+04<br>1 -3106.033<br>0 202.039<br>0 4153.618 | 184.793<br>3934.144                                     |
| Omnibus: Prob(Omnib Skew: Kurtosis:                                   | =======<br>us): | 0.                                   | .000 Ja:                                              | rbin-Watson<br>rque-Bera (<br>bb(JB):<br>nd. No. |                                                    | 1.735<br>245.523<br>4.85e-54<br>4.89                    |

#### Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

### In [155]:

x\_train\_new = build\_model(x\_train\_new,y\_train)

|                   |      | OLS Regres     | sion Re | sults         |         |          |
|-------------------|------|----------------|---------|---------------|---------|----------|
|                   |      | =========      | ======  |               | ======= |          |
| Dep. Variable:    |      | price          | R-squ   | ared:         |         | 0.652    |
| Model:            |      | OLS            | Adj. 1  | R-squared:    |         | 0.644    |
| Method:           |      | Least Squares  | F-sta   | tistic:       |         | 86.66    |
| Date:             | Su   | n, 26 Apr 2020 | Prob    | (F-statistic) | :       | 1.14e-31 |
| Time:             |      | 09:18:38       | Log-L   | ikelihood:    |         | -1408.7  |
| No. Observations: |      | 143            | AIC:    |               |         | 2825.    |
| Df Residuals:     |      | 139            | BIC:    |               |         | 2837.    |
| Df Model:         |      | 3              |         |               |         |          |
| Covariance Type:  |      | nonrobust      |         |               |         |          |
|                   |      |                | ======  |               |         |          |
|                   | coef | std err        | t       | P> t          | [0.025  | 0.975]   |
|                   |      |                |         |               |         |          |

|                                             | COEI                                              | 3ca err                                  | C                                  | 17   0                           | [0.025                                       | 0.575]                                      |
|---------------------------------------------|---------------------------------------------------|------------------------------------------|------------------------------------|----------------------------------|----------------------------------------------|---------------------------------------------|
| const<br>wheelbase<br>carlength<br>carwidth | 1.306e+04<br>-1460.6200<br>2068.0916<br>5632.6418 | 389.480<br>832.203<br>943.796<br>748.048 | 33.522<br>-1.755<br>2.191<br>7.530 | 0.000<br>0.081<br>0.030<br>0.000 | 1.23e+04<br>-3106.033<br>202.039<br>4153.618 | 1.38e+04<br>184.793<br>3934.144<br>7111.665 |
| Omnibus: Prob(Omnib Skew: Kurtosis:         | ======================================            | 65.1<br>0.0<br>1.6<br>8.4                | )00 Jarque<br>587 Prob(J           | •                                | :                                            | 1.735<br>245.523<br>4.85e-54<br>4.89        |

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

### In [157]:

checkVIF(x\_train\_new)

### Out[157]:

|   | Features  | VIF  |
|---|-----------|------|
| 2 | carlength | 5.87 |
| 1 | wheelbase | 4.57 |
| 3 | carwidth  | 3.69 |
| 0 | const     | 1.00 |