# Assignment\_STAT6180

Alyssa Lim

5/6/2020

# Question 1 - Companies Data

```
companies = read.table("companies.dat", header = TRUE)
```

#### **Correlation Matrix**

The Correlation Matrix indicates the linear relationship between the variables

- The upper right of the matrix contains the correlation coefficients
- The lower left of the matrix illustrate the linear relationship using scatter plot
- The diagonal of the matrix shows the distribution of the variables

#### library("PerformanceAnalytics")

```
## Warning: package 'PerformanceAnalytics' was built under R version 3.6.3
## Loading required package: xts
## Warning: package 'xts' was built under R version 3.6.3
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 3.6.3
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
##
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
##
       legend
```

```
companies.cor <- companies[, c(2,3,4,5,6,7,8)]
chart.Correlation(companies.cor, histogram = TRUE, pch = 19)</pre>
```



# Scatter Plots and Variables Relationship

#### a. Stock Prices Plots

- The **stock price depends on the company earnings**, which means when the earnings is high the stock price will also rise
- The stock price affects yield inversely proportional, if the stock price is high the yield will decrease

# **Stock Prices vs Earnings**

# Stock Prices vs ROE





### Stock Prices vs Yield



### b. Dividend vs Yield Plot

• The yield depends on the dividend, yield's behaviour is based on the increase or decrease of the dividend issued by the company

# **Dividend vs Yield**



### c. ROS Plots

- The Return of Sales is dependent on sales, but inversely proportional with each other.
- Return of Sales measures company's efficiency, while Return of Equity measure performance. **Performance increases as company efficiency also increases**.

# Sales vs ROS

# **ROS vs ROE**



# 

Return of Sales

### Regression Model

#### Regression Summary

RESPONSE = Stock Prices

PREDICTORS = All

- $R^2 = 0.7717$  indicates that the model is strong, this is due to all predictors are used in fitting the model
- $P-Value=1.139e^{-06}$  which is less than 0.05 significance level, which indicates linear relationship between the response and all predictors

```
fitAll = lm(stock_prices ~ ., data = companies.cor)
summary(fitAll)
```

```
##
## Call:
## lm(formula = stock_prices ~ ., data = companies.cor)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.9692 -3.4477 0.3714 3.0018 8.0128
##
```

```
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
                                      6.274 1.74e-06 ***
## (Intercept)
                28.0223916 4.4664430
## dividend
                                      2.162
                                               0.0408 *
               10.3797828 4.8012590
## yield
                -3.3987596  0.5179006  -6.563  8.69e-07 ***
## earnings
                 2.7203359 0.5791694
                                      4.697 8.97e-05 ***
## sales
                 0.0003916 0.0013411
                                      0.292
                                               0.7728
## return_sales 0.6787534 0.3695837
                                       1.837
                                               0.0787 .
## return_equity -0.0842791 0.2165979 -0.389
                                               0.7006
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.757 on 24 degrees of freedom
## Multiple R-squared: 0.7717, Adjusted R-squared: 0.7146
## F-statistic: 13.52 on 6 and 24 DF, p-value: 1.139e-06
```

### Validating the Full Regression Model

```
\varepsilon \sim N(0, \sigma^2)
```

- Q-Q plot indicates normal residual as it follows a straight line
- Residual vs Fitted plot doesn't contain any pattern which confirms constant variance

### Therefore, Full Regression Analysis is Valid

# Normal Q-Q Plot

# **Residual vs Fitted**





### 95% Confidence Interval of the Slope

The confidence interval shows the range, where the possible true value of the slope, for Earnings lies.

```
confint(fitAll, 'earnings', level=0.95)
```

```
##
               2.5 %
                       97.5 %
## earnings 1.524989 3.915683
```

## Multiple Regression

#### **Multiple Regression Summary**

RESPONSE : Stock Prices

PREDICTORS: All

```
summary(fitAll)
```

```
##
## Call:
## lm(formula = stock_prices ~ ., data = companies.cor)
##
```

```
## Residuals:
##
              1Q Median 3Q
      Min
                                    Max
## -8.9692 -3.4477 0.3714 3.0018 8.0128
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 28.0223916 4.4664430 6.274 1.74e-06 ***
             10.3797828 4.8012590 2.162 0.0408 *
## dividend
## yield
               ## earnings
              2.7203359 0.5791694 4.697 8.97e-05 ***
## sales
              0.0003916 0.0013411 0.292
                                             0.7728
## return_sales 0.6787534 0.3695837
                                     1.837
                                             0.0787
## return_equity -0.0842791 0.2165979 -0.389
                                           0.7006
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.757 on 24 degrees of freedom
## Multiple R-squared: 0.7717, Adjusted R-squared: 0.7146
## F-statistic: 13.52 on 6 and 24 DF, p-value: 1.139e-06
Hypothesis:
H_0: \beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5 + \beta_6 = 0
H_1: not all \beta_i = 0
aov.fitAll = anova(fitAll)
aov.fitAll
## Analysis of Variance Table
## Response: stock_prices
               Df Sum Sq Mean Sq F value
                                           Pr(>F)
##
## dividend
               1 62.26 62.26 2.7509 0.110214
               1 1182.77 1182.77 52.2623 1.806e-07 ***
## yield
## earnings
               1 488.63 488.63 21.5908 0.000102 ***
## sales
               1 10.25 10.25 0.4530 0.507366
## return_sales 1 88.31 88.31 3.9023 0.059829
## return_equity 1 3.43
                           3.43 0.1514 0.700630
## Residuals 24 543.15
                           22.63
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Test Statistic:
MS = aov.fitAll$`Mean Sq`
Full_{regSS} = MS[1] + MS[2] + MS[3] + MS[4] + MS[5] + MS[6]
```

```
## Fobs = 13.51843
```

RegMS = Full\_regSS/6
Fobs = RegMS/MS[7]
cat('Fobs = ', Fobs)

#### **Null Distribution:**

```
Pr(F_{6.24} \ge F_{obs} | \text{ all } \beta_i = 0)
```

#### P-Value:

```
cat('F6,24 = ', qf(.95, df1 = 6, df2 = 24))  
## F6,24 = 2.508189  
Pr(F_{6,24} \ge F_{obs}) = 2.51 < 13.52  
Pval = pf(q = 13.51843, df1 = 6, df2 = 24, lower.tail = FALSE)  
cat('P-value =', Pval)  
## P-value = 1.138712e-06
```

#### Conclusion:

- $P(F_{6,24} < F_{obs})$ , significant evidence to reject the null hypothesis
- P-value is less than 0.05 significance level, which indicates that our model is a regression model
- Though looking at the F-test output of each variables, we can see that Sales and Return seems to be insignificant predictors for these model

#### **Backward Model Selection**

1. All Predictors

Sales gives the highest t-test output of 0.7728, which mean it is the most insignicant predictor in the model.

### summary(fitAll)

```
##
## Call:
## lm(formula = stock_prices ~ ., data = companies.cor)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -8.9692 -3.4477 0.3714 3.0018 8.0128
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
                28.0223916 4.4664430
## (Intercept)
                                      6.274 1.74e-06 ***
## dividend
                10.3797828 4.8012590
                                      2.162
                                                0.0408 *
## yield
                -3.3987596  0.5179006  -6.563  8.69e-07 ***
## earnings
                 2.7203359 0.5791694
                                       4.697 8.97e-05 ***
## sales
                 0.0003916 0.0013411
                                      0.292
                                                0.7728
## return_sales 0.6787534 0.3695837
                                      1.837
                                                0.0787 .
```

```
## return_equity -0.0842791 0.2165979 -0.389 0.7006
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.757 on 24 degrees of freedom
## Multiple R-squared: 0.7717, Adjusted R-squared: 0.7146
## F-statistic: 13.52 on 6 and 24 DF, p-value: 1.139e-06
```

### 2. Remove Sales in predictors

Return on Equity (ROE) now gives the highest t-test output of **0.7281**, which means it is also a insignificant predictor in the model.

```
##
## Call:
## lm(formula = stock_prices ~ dividend + yield + earnings + return_sales +
      return_equity, data = companies.cor)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -9.1809 -3.5997 0.2969 2.9546 8.1417
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
                28.21292 4.33693 6.505 8.18e-07 ***
## (Intercept)
## dividend
                10.69800
                            4.58960
                                      2.331
                                             0.0281 *
                -3.37930
                            0.50411 -6.703 5.03e-07 ***
## yield
## earnings
                 2.73474
                            0.56641
                                     4.828 5.82e-05 ***
                            0.32600
## return_sales 0.63141
                                     1.937
                                             0.0641 .
## return_equity -0.07367
                            0.20959 -0.352
                                             0.7281
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.669 on 25 degrees of freedom
## Multiple R-squared: 0.7709, Adjusted R-squared: 0.725
## F-statistic: 16.82 on 5 and 25 DF, p-value: 2.689e-07
```

3. Remove Return on Equity in predictors

```
##
## Call:
## lm(formula = stock_prices ~ dividend + yield + earnings + return_sales,
## data = companies.cor)
##
```

```
## Residuals:
##
      Min
               1Q Median
                              30
                                     Max
## -9.0146 -3.4573 0.3586 3.2298 7.9402
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 27.1990 3.1837 8.543 5.05e-09 ***
                                  2.498
## dividend
               11.0291
                           4.4155
                                            0.0192 *
## yield
                -3.3294
                           0.4755 -7.002 1.96e-07 ***
                 2.6959
## earnings
                           0.5461
                                   4.937 3.97e-05 ***
## return_sales 0.5661
                           0.2633
                                   2.150
                                            0.0411 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.59 on 26 degrees of freedom
## Multiple R-squared: 0.7697, Adjusted R-squared: 0.7343
## F-statistic: 21.73 on 4 and 26 DF, p-value: 5.634e-08
```

Therefore the best regression model for the data is:

```
Y = 27.2 + (11.03 * dividend) + (-3.33 * yield) + (2.7 * earnings) + (0.57 * ROS)
```

- All remaining predictors have T-test output less than 0.05 significance level, which indicates they are signicant predictors
- $R^2 = 0.7697$  indicates strong model, due to the model captures 77% of the variability in the companies data

# Question 2 - Prof 2020 Data

Added square and cube of the predictor variety

```
prof = read.table("prof_2020.dat", header = TRUE)
prof$variety2 = prof$variety^2
prof$variety3 = prof$variety^3
head(prof)
```

```
state variety mathprof variety2 variety3
##
## 1
        Alabama
                     78
                             252
                                     6084
                                            474552
                     73
                             259
                                     5329
## 2
        Arizona
                                            389017
## 3
        Arkansas
                     77
                             256
                                     5929
                                            456533
## 4 California
                     68
                             256
                                     4624
                                            314432
       Colorado
## 5
                     85
                             267
                                     7225
                                            614125
                             270
## 6 Connecticut
                     86
                                     7396
                                            636056
```

### Fitting the Data

Linear Model

```
lr = lm(mathprof ~ variety, data = prof)
summary(lr)
```

```
##
## Call:
## lm(formula = mathprof ~ variety, data = prof)
## Residuals:
                                   3Q
##
       Min
                 1Q Median
                                           Max
## -11.3623 -3.8687 0.1061
                               3.6503
                                        8.6629
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 162.1225
                          12.0493 13.455 2.14e-15 ***
                                   8.454 5.66e-10 ***
                1.2532
                           0.1482
## variety
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.188 on 35 degrees of freedom
## Multiple R-squared: 0.6713, Adjusted R-squared: 0.6619
## F-statistic: 71.47 on 1 and 35 DF, p-value: 5.659e-10
```

#### Quadratic Model

```
qr = lm(mathprof ~ variety + variety2, data = prof)
summary(qr)
```

```
##
## lm(formula = mathprof ~ variety + variety2, data = prof)
## Residuals:
               1Q Median
      Min
                               3Q
                                      Max
## -8.8465 -2.0569 -0.2999 2.0535 8.9431
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 772.22271 111.60653 6.919 5.66e-08 ***
              -14.23086
                           2.82561 -5.036 1.54e-05 ***
## variety
## variety2
                0.09767
                           0.01781
                                   5.484 4.04e-06 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.834 on 34 degrees of freedom
## Multiple R-squared: 0.8256, Adjusted R-squared: 0.8153
## F-statistic: 80.45 on 2 and 34 DF, p-value: 1.282e-13
```

#### Cubic Model

```
cr = lm(mathprof ~ variety + variety2 + variety3, data = prof)
summary(cr)
```

##

```
## Call:
## lm(formula = mathprof ~ variety + variety2 + variety3, data = prof)
## Residuals:
      Min
               1Q Median
                               3Q
## -8.6854 -2.1340 -0.2368 2.1942 8.8665
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.069e+03 1.603e+03 0.667
                                               0.509
## variety
             -2.559e+01 6.117e+01 -0.418
                                               0.678
              2.418e-01 7.756e-01 0.312
                                               0.757
## variety2
              -6.070e-04 3.266e-03 -0.186
## variety3
                                              0.854
##
## Residual standard error: 3.89 on 33 degrees of freedom
## Multiple R-squared: 0.8257, Adjusted R-squared: 0.8099
## F-statistic: 52.12 on 3 and 33 DF, p-value: 1.293e-12
```

### Data Plot

- Linear Fit = BLUE
- Quadratic Fit = RED
- Cubic Fit = GREEN



# Conclusion

The best model is Quadratic Model, due to:

- It gives the highest Adjusted  $R^2$  value of 0.8153 It has the lowest P-value of  $1.282e^{-13}$
- In cubic fit, variety3 is insignificant in the model, with the highest T-test output of 0.854
- In quadratic fit all predictors are significant, all predictors has T-test output of less than 0.05 significance level