

BOYNE RESORTS

EXPERIENCE THE LIFESTYLE

Chris Wolman

Lead Reporting Analyst

Shelby McNeill

Data Scientist

Domo

Al Labs

Data Science Professional Services

Bryan Powell

Associate Data Scientist

Domo

Al Labs

Data Science Professional Services

Key Takeaways

Create an end-to-end data science & machine learning solution, all in Domo

Use Jupyter
Workspaces
to build &
deploy custom
forecasting
models

Monitor model performance & data pipelines using automated dashboards & alerts

BOYNE RESORTS

EXPERIENCE THE LIFESTYLE

- Third largest mountain resort company in North America; founded in 1947
- Owns 10 ski resorts & 14 golf course across the US & Canada
 - Brighton (Utah)
 - Big Sky (Montana)
 - Sugarloaf and Sunday River (Maine)
 - Boyne Mountain and The Highlands (Michigan)
 - Cypress Mountain (British Columbia)
- Domo customer since 2020

Boyne's Million-Dollar Question

How many staff do we need next week?

What services do we need to provide?

How many skiers are coming?

Forecast using machine learning model

CONFIDENTIAL

6

Why use DOMO for machine learning solution?

- Build entire solution within your Domo instance
- Partner with
 Domo's AI Labs
 team for
 assistance

Skier Visit Custom Forecasting Solution

Fully-automated, 10-day forecast of daily skier visits for each resort

Forecast takes into consideration historical trends in skier visits, weather, number of tickets bought in advance, holidays, and more

Before & After

NO MORE LAST-MINUTE GUESSING: Estimating skier visits for the next 10 days using custom forecasting models

NO MORE LOST SPREADSHEETS: Forecasts are easily accessible to all via Domo dashboards

ANALYZE

MODEL

DEVELOP

DEPLOY

ASSESS

Spring 2022

Created a conceptual model, which listed features that influence skier visits

CONFIDENTIAL

19

Spring 2022

Completed a metric map that detailed data availability & quality for each feature in Boyne's conceptual model

Do you have a						Rank/Ordering of Text							
		measure in your						Category Labels	Variables	Name of Dataset in			
		data of this			Unit of Analysis/	Variable	Range or	of Integer	(from lowest to	Domo where	Link to Dataset in		
Variable Type	Variable	variable?	Variable Name in Dataset	Description of Variable	Granularity	Туре	Categories	Variables	highest)	Variable is Saved	Domo	Notes	
				Number of months employed at						Ski_Ops_Detail_All_Res	https://domo-data-		
Dependent Variable/Outcome	Total Skier Visits	Yes	tot_months_employ	company	By day by resort	Integer	0 to 10,000	N/A	N/A	orts	science.domo.com		
	Lift Tickets Booked for			Number of tickets booked for date o	f By date by resort by						https://domo-data-		
Feature	day of Interest	Yes	lift_tix_booked	interest on given date	date of interest.	Integer	0 to 9,500	N/A	N/A	lift_bookings_detail	science.domo.com		
	Max Temperature Day										https://domo-data-	There is quite a bit of missing data on this	
Feature	of Internest	Yes	max_temp_actual	Max Temperature on given date	By date by resort.	Integer	14 to 63	N/A	N/A	daily_weather_detail	science.domo.com	feature	
												We only have this data	
												for the past 2 years (we	
	Max Temperature 14-			Forecasted Max Temperature 14								started collecting it in	
Feature	Day Forecast	Yes	max_temp_14day_fc	days from today.	By date by resort	Integer	23 to 57	N/A	N/A	daily_weather_fc_detail	science.domo.com	2022)	

Spring 2022

Created a dataset with features from the conceptual model & metric map

Summer 2022

Examined relationships between predictive features & skier visits, which informed modeling strategies

PREPARE ANALYZE

MODEL

DEVELOP

DEPLOY

ASSESS

Summer 2022

Built & tested multiple custom forecasting models using Jupyter Workspaces

Fall 2022

Built a machine learning pipeline that was automated + monitored

Fall 2022

Built a machine learning pipeline that was automated + monitored all in DOMO

Domo

Winter 2022–Spring 2023

Beta launched the forecasting solution to Boyne's analytics team

Summer 2023

Examined model accuracy for the 2022-23 ski season

Evaluated potential data & modeling improvements

Tested v1 model vs alternate models using Jupyter Workspaces

PREPARE ANALYZE MODEL V2 DEVELOP DEPLOY ASSESS V2

Most accurate was an alternate model (dynamic harmonic regression model with predictive features)

Days Out	Mo V	del 1		nate lel A	Alternate Model B		
	MAE	MAPE	MAE	MAPE	MAE	MAPE	
1	414	44%	214	23%	476	50%	
2	421	45%	351	40%	528	55%	
3	438	46%	414	44%	551	59%	

Made adjustments to machine learning pipeline & redeployed

PREPARE

ANALYZE

MODEL V2 DEVELOP V2 DEPLOY V2

ASSESS V2

Solution is fully rolled-out to Boyne C-suite + leadership teams at each resort

STAY TUNED

Start work on V3 this summer

Is This Solution Worth the Investment?

Boyne's Million-Dollar Question

How many staff do we need next week?

What services do we need to provide?

How many skiers are coming?

Saving 1% in labor costs from staffing more efficiently

will cover the solution cost

Key Takeaways

Create an end-to-end data science & machine learning solution, all in Domo

Use Jupyter
Workspaces
to build &
deploy custom
forecasting
models

Monitor model performance & data pipelines using automated dashboards & alerts

Q & A

