회귀분석팀

6팀

김형석

김준령

윤여원

김현우

이채은

INDEX

- 1. Introduction
- 2. Subset Selection
- 3. Dimension Reduction
 - 4. Shrinkage
- 5. Regression for Spatial Data
 - 6. Appendix

1

Introduction

 $\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$

High variance

설명변수(X)가 많은 경우

다중공선성의 발생 가능성이 높아져

학습성능 대비 추정모델의 Variance 가 커짐

예측 성능이 크게 떨어질 가능성 존재

 $\theta_0 + \theta_1 x$

High bias

설명변수(X)가 적은 경우

추정모델의 Bias가 커져

학습성능 대비 **추정모델의 Bias 가 커짐**

예측 성능이 크게 떨어질 가능성 존재

$$\theta_0 + \theta_1 x + \theta_2 x^2$$
"Just right"

따라서 **예측오차(Prediction Error)** 값을 기준으로

적정한 개수의 설명변수(X) 를 갖는 최적의 회귀모델을 선택할

필요성을 인식!

그렇다면 예측오차(Prediction Error) 란 구체적으로 어떤 것을 의미하는 걸까?

따라서 예측오차(Prediction Error) 값을 기준으로

적정한 개수의 설명변수(X) 를 갖는 최적의 회귀모델을 선택할

필요성을 인식!

예측오차

예측오차 (Prediction Error)

훈련 데이터를 이용해 학습된 모델에 대해

테스트 데이터를 대입 시 발생하는 Loss 의 Expectation 값

:

$$E\left[\left(Y-\widehat{Y}\right)^{2}\right] = Bias^{2}\left[\widehat{f}(X)\right] + V\left[\widehat{f}(X)\right] + E\left[\varepsilon^{2}\right]$$

= Reducible Error + Irreducible Error

f(X): 데이터를 실제로 설명하는 모델 식

 $\hat{f}(X)$: 데이터로 추정한 모델 식

1 Introduction

예측오차

Prediction Error =
$$Bias^2[\hat{f}(X)] + V[\hat{f}(X)] + E(\varepsilon^2)$$

 $Irreducible Error(E(\varepsilon^2))$ 는 참값으로부터 발생되는

오차의 분산으로 줄일 수 없는 오차에 해당

$$E\left[\left(Y-\hat{Y}\right)^{2}\right] = Bias^{2}\left[\hat{f}(X)\right] + V\left[\hat{f}(X)\right] + E\left[\varepsilon^{2}\right]$$

따라서 Reducible Error 를

최대한 줄일 수 있는 최적의 회귀모델 선택해줘야 함

 $\hat{f}(X)$: 데이터로 추정한 모델 식

OT

2

Subset Selection

변수 선택 | 평가지표

데이터가 충분히 많다면 데이터셋을 분리하여 Test Error 를 계산

변수 선택 | 평가지표

그러나 데이터의 양이 부족하다면 Test Error 계산에 어려움이 존재

변수 선택 | 평가지표

이 경우 현재 가지고 있는 데이터셋을 이용하여

Test Error 를 추정해볼 필요가 있음

변수 선택 | 평가지표

Test Error 의 추정 (Estimation of Test Error)

활용할 수 있는 데이터를 통해 Test Error 의 대체 값을 계산하는 것

i Analytical Methods

(Indirect Estimation)

Adjusted R^2 , AIC, BIC, C_p

Subset Selection 방법에서 기준척도로 사용됨 Sample Re-use Methods

(Direct Estimation)

Cross-Validation, Bootstrap

데마 팀 클린업 자료 참고!

변수 선택 | 평가지표

Test Error 의 추정 (Estimation of Test Error)

활용할 수 있는 데이터를 통해 Test Error 의 대체 값을 계산하는 것

Analytical Methods

(Indirect Estimation)

Adjusted R^2 , AIC, BIC, C_p

Subset Selection 방법에서 기준척도로 사용됨 이번 회귀 팀 클린업에서는

Analytical Methods 의

평가지표들을 중점적으로

다뤄볼 예정!

데마 팀 클린업 자료 참고 !

평가지표 | Adjusted R²

Adjusted R²

자유도를 감안하여 결정계수(R^2)를 보정한 값

:

Adjusted
$$R^2 = \frac{ESS/(p-1)}{TSS/(n-1)} = 1 - \frac{MSE}{TSS/(n-1)}$$

분자, 분모에 각각의 제곱합에 대한 자유도를 나눠준 형태

평가지표 | Adjusted R²의 특징

① MSE 값을 기준으로 진행한 변수 선택 결과와 동일한 결과를 도출해줌

TSS/(n-1) 값은 일정하므로

MSE 값에 따라 $Adjusted R^2$ 값이 변한다는 것을 확인 가능

Adjusted
$$R^2 = \frac{ESS/(p-1)}{TSS/(n-1)} = 1 - \frac{MSE}{TSS/(n-1)}$$

평가지표 | Adjusted R^2 의 특징

② **설명변수(X) 추가 시 Penalty 를 부과**하므로 값이 항상 증가하지 않음

Adjusted R^2 값의 분기점에해당되는 설명변수(X) 개수로 작성된선형회귀모델을 최적의 모델로 선정

모델 Bias 역할

평가지표 | C_p , AIC, BIC

 C_p , AIC, BIC

Bias-Variance 특성을 고려하여 고안된 Test Error 의 대체 값으로

Likelihood 부분과 Penalty 부분으로 구성됨

Likelihood Part
모델의 Training Error 를 담당

H

(변수 개수에 따른 Penalty 를 담당

모델 Variance 역할

평가지표 | C_p , AIC, BIC

 C_p , AIC, BIC

Bias-Variance 특성을 고려하여 고안된 Test Error 의 대체 값으로

Likelihood 부분과 Penalty 부분으로 구성됨

모델 Bias 역할

모델 Variance 역할

평가지표 | C_p , AIC, BIC

 C_p , AIC, BIC

Bias-Variance 특성을 고려하여 고안된 Test Error 의 대체 값으로

Likelihood 부분과 Penalty 부분으로 구성됨

Likelihood Part

모델의 Training Error 를 담당

모델 Bias 역할

Likelihood 부분의 경우

확률분포 식을 토대로 계산되기에

분포적 가정이 없는 모델은

 C_p , AIC, BIC 의 사용이 불가

Ex) KNN Regression

평가지표 | C_p , AIC, BIC 의 특징

Likelihood 와 Penalty 부분의 합을 통해 U 커브 형태의 그래프를 보임

 C_p , AIC, BIC 의 그래프

실제 Test Error 의 그래프

평가지표 | \mathcal{C}_p , AIC, BIC 의 특징

Likelihood 와 Penalty 부분의 합을 통해 U 커브 형태의 그래프를 보임

Test Error 의 대체 값으로

사용하는 것에 대한 <mark>타당성</mark>을 가짐

변수선택법

변수선택법 (Subset Selection)

Analytical Methods 를 기준 평가지표로 사용하여

회귀모델에 대한 최적의 변수 개수를 결정하는 방법

Best Subset Selection

Best Subset Selection

가능한 모든 변수 조합을 고려하여

후보 모델들을 정의한 다음에 변수 선택을 진행하는 방법

Null model

a

b

a, b

a, c

b, c

Tull model

Full model

a, b

a, b

b, c

Best Subset Selection | 장단점

가능한 후보 모델들의 총 개수

$$\binom{p}{0} + \binom{p}{1} + \dots + \binom{p}{p} = 2^p$$

p : 모델의 최대 변수개수

모든 가능한 모델들을 고려하므로 항상 Best Model 을 리턴 고려할 최대 변수 개수가 많아지면 계산비용이 커져 효율성이 떨어짐

Forward Stepwise Selection

Forward Stepwise Selection

Null 모델에서부터 시작해서 가장 유의미한 특성을 선택해가며

후보 모델들을 구축한 다음에 변수 선택 과정을 진행하는 방식

Null model

1 variable model

2 variables model

a, b

a, c

a, b, c

Backward Stepwise Selection

Backward Stepwise Selection

Full 모델에서부터 시작해서 가장 무의미한 특성을 제거해가며

후보 모델들을 구축한 다음에 변수 선택 과정을 진행하는 방식

Full model

a, b, c

1 variable model

a

null

null

Forward / Backward Stepwise Selection | 장단점

가능한 후보 모델들의 총 개수

$$1 + \sum_{k=0}^{p-1} (p-k) = 1 + p(p+1)/2 < 2^{p}$$

p : 모델의 최대 변수개수

Best Subset Selection 보다

계산적인 측면에서 더 효율적

모든 모델을 고려하지 않기에

결과가 항상 Best Model 이라고

장담할 수 없음

3

Dimension Reduction

차원 축소기법

차원 축소기법 (Dimension Reduction)

고차원의 데이터를 저차원의 데이터로 변환하는 기법으로

너무 많은 설명변수(X) 를 사용했을 때의 문제점 해결

차원 축소기법

차원 축소기법 (Dimension Reduction)

고차원의 데이터를 저차원의 데이터로 변환하는 기법으로

너무 많은 설명변수(X) 를 사용했을 때의 문제점 해결

이번주 클린업에서는 주성분 회귀분석에 대해 다루어 보겠음!

3 Dimension Reduction

주성분 회귀분석

주성분 회귀분석 (Principal Component Regression)

설명변수(X) 의 전체 분산정도를 가장 잘 설명하는

주성분(Z) 들을 새로운 설명변수로 사용하는 회귀 모델

Dimension Reduction

주성분 회귀분석 | 모델링 과정

① 표준화된 설명변수에 대해 고유값 분해를 적용

$$X_s^T X_s = \begin{bmatrix} v_1 & \dots & v_p \end{bmatrix} \begin{bmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_p \end{bmatrix} \begin{bmatrix} v_1 & \dots & v_p \end{bmatrix}^{-1}$$

 $X_S = \begin{bmatrix} X^S_1 & \dots & X^S_p \end{bmatrix}$: 표준화된 설명변수 벡터

데이터의 분산정도를 Fair 하게 비교하기 위해 표준화를 진행

 v_1 ... , $v_p: X_s^T X_s$ 고유값 분해 후 고유벡터

 $X_s^T X_s$ 는 대칭행렬이기 때문에

고유값 분해 후 고유벡터 v_1 \cdots p_p 는 서로 직교하게 됨

Dimension Reduction

주성분 회귀분석 | 모델링 과정

각각의 v_1 … v_p 에 대해 X_s 라는 선형변환을 적용하여 새롭게 만들어진 Z_1 … Z_p 축들 역시 서로 직교하게 됨

주성분 회귀분석 | 모델링 과정

주성분(Z)의 특징에 대해 알아보자!

② 선형변환을 통해 주성분(*Z*) 을 생성

1

 Z_1 ... Z_p 는 데이터의

분산정도를 최대로 설명할 수 있는 축임

(:: 각각에 대응되는 v_1 ... v_p 는

분산을 최대로 설명하는 축)

<u> 가가이 v_1 ... v_n 에 대</u>

2

$$\lambda_1 > \cdots > \lambda_p$$
 인 경우

Z 축들의 분산정도 크기는

아래 대소 관계를 따름

$$V(Z_1) > \cdots > V(Z_p)$$

사롭게 만들해당 내용에 대한 구체적인 증명 과정은 교하게 됨 24-2 리드오프 3주차 전반부 교안 내용 참고

Dimension Reduction

주성분 회귀분석 | 모델링 과정

③ 주성분(Z) 을 설명변수로 하는 선형회귀모델을 Fitting ----

$$y = \theta_0 + \theta_1 Z_1 + \dots + \theta_P Z_P$$

$$\widehat{y} = \widehat{\theta}_0 + \widehat{\theta}_1 Z_1 + \dots + \widehat{\theta}_P Z_P$$

이 경우 Z_1 ... Z_p 축은 서로 직교하기 때문에 결과적으로 해당 회귀모델은 다중공선성 문제를 해결 가능

Dimension Reduction

주성분 회귀분석 | 모델링 과정

주성분(Z) 을 생성할 때 **전체 X_s 데이터를 이용**하기 때문에

주성분의 일부($Z_1, ..., Z_{M < P}$) 만으로 회귀모델을 Fitting 하더라도

데이터의 손실은 발생하지 않음

$$\widehat{\mathbf{y}} = \widehat{\boldsymbol{\theta}}_0 + \widehat{\boldsymbol{\theta}}_1 \mathbf{Z}_1 + \dots + \widehat{\boldsymbol{\theta}}_P \mathbf{Z}_P$$

Dimension Reduction(M < P)

$$\widehat{y} = \widehat{\theta}_0 + \widehat{\theta}_1 Z_1 + \dots + \widehat{\theta}_M Z_M$$

Dimension Reduction

주성분 회귀분석 | 모델링 과정

그렇다면 축소된 차원 수인 **M 의 최적값**은 어떻게 결정해볼 수 있을까?

$$\hat{y} = \hat{\theta}_0 + \hat{\theta}_1 Z_1 + \dots + \hat{\theta}_P Z_P$$

Dimension Reduction(M < P)

$$\hat{y} = \hat{\theta}_0 + \hat{\theta}_1 Z_1 + \dots + \hat{\theta}_M Z_M$$

주성분 회귀분석 | 최적의 M 값 결정

$$Y = \theta_0 + \varepsilon$$

: Lowest Test Error

$$Y = \theta_0 + \theta_1 Z_1 + \dots + \theta_k Z_k + \varepsilon$$

:

$$Y = \theta_0 + \theta_1 Z_1 + \cdots + \theta_P Z_P + \varepsilon$$

$$M = k$$

작성할 수 있는 모든 주성분 회귀 모델들의

Test Error 값을 비교해 가장 값이 작은 모델의 차원수를 M 으로 결정

주성분 회귀분석 | 모델링 과정 정리

----- 주성분 회귀모델의 구축과정 ·----

- ① 설명변수 X를 표준화한 X_s 를 만듦 ($X_{s_ij} = (X_{ij} \bar{X}_j)/s_j$)
- ② $X_s^T X_s$ 에 대해 고유값 분해를 진행하여 Z 축들을 정의한 뒤, Test Error 값을 가장 작게 하는 최적의 Z 축 개수(= M) 결정 (CV, bootstrap, AIC, BIC, C_p 등을 통해서도 수행 가능)
- ③ 정의한 Z 축들과 원래 Y 데이터를 이용해, 선형회귀모델을 Fitting

$$y = \theta_0 + \theta_1 Z_1 + \dots + \theta_M Z_M \longrightarrow \hat{y} = \hat{\theta}_0 + \hat{\theta}_1 Z_1 + \dots + \hat{\theta}_M Z_M$$

4

Shrinkage

Shrinkage

Shrinkage (Regularization)

OLS 과정에서 목적식의 **회귀계수에 대한 제약조건을 추가**하여

일부 계수의 추정치를 0으로 수축(shrink)시키는 방법

설명변수(X) 개수가 많아지면 **다중공선성**과 **차원의 저주**로 인해 모델의 예측 성능이 저하될 수 있음

정규화(Regularization)를 통해 해당 문제점을 해결해보자!

Ex) 가상의 목적식

$$\underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i} (y_i - \hat{y}_i)^2 + \mathbf{10000} \beta_3^2 + \mathbf{10000} \beta_4^2 \right\}$$

 β_3 와 β_4 의 값이 조금만 증가해도

전체 식의 값이 큰 폭으로 증가하여 모델 학습과정에 있어 지장이 생김

Shrinkage

이 경우 β_3 와 β_4 **회귀계수의 크기에 대해 Penalty를 부과(정규화)**하여 해당 문제를 해결할 수 있음

정규화를 적용해볼 수 있는 방법에는 어떤 것들이 있을까?

Shrinkage

Ridge Regression

Ridge Regression (L2 Regularization)

OLS 목적식에 대해

L2 Norm 형태의 제약조건을 회귀계수에 부여한 회귀 모델

Ridge Regression | 목적식

Ridge Regression 의 목적식

$$\hat{\beta}_{Ridge} = \frac{argmin}{\beta} \sum_{i} \left(y_i - \beta_0 - \sum_{j} \beta_j x_i \right)^2$$
 subject to $\sum_{j} \beta_j^2 \le s$

$$= \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i} \left(y_{i} - \beta_{0} - \sum_{j} \beta_{j} x_{i} \right)^{2} + \lambda \sum_{j} \beta_{j}^{2} \right\}$$

Ridge Regression | 기하학적 해석

$$\sum_{i} (y_{i} - \beta_{0} - \sum_{j} \beta_{j} x_{i})^{2} = RSS$$

$$\beta_{2}$$

$$\beta_{2}$$

$$\beta_{3}$$

$$\beta_{Ridge}$$

$$\beta_{1}$$

$$\sum_{i} \beta_{j}^{2} \leq S$$

 $\widehat{oldsymbol{eta}}_{Ridge}$ 의 기하학적 위치 ____

제약조건을 충족하기 위해

파란색 원에 존재하는 회귀계수($\hat{\beta}$)들 중

RSS 값을 최소화하는 것을 찾아야 함

 $\widehat{oldsymbol{eta}}_{Ridge}$ 는 <mark>타원과 원의 접점</mark>에 존재함

Ridge Regression | 하이퍼파라미터의 영향

Ridge Regression 의 목적식

$$\hat{\beta}_{Ridge} = \underset{\beta}{argmin} \sum_{i} \left(y_i - \beta_0 - \sum_{j} \beta_j x_i \right)^2$$
 subject to $\sum_{j} \beta_j^2 \le s$

$$= \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i} \left(y_{i} - \beta_{0} - \sum_{j} \beta_{j} x_{i} \right)^{2} + \lambda \sum_{j} \beta_{j}^{2} \right\}$$

목적식의 하이퍼파라미터 s, λ 에 주목해보자!

Ridge Regression | 하이퍼파라미터의 영향

하이퍼파라미터 s, λ 와 계수 추정량의 관계

s 값이 작아질수록 ($=\lambda$ 의 값이 커질수록)

회귀계수들에 적용되는 Penalty 가 커지며,

계수 추정량의 크기는 작아지게 됨

Ridge Regression | 하이퍼파라미터의 영향

극단적으로 **λ 값이 0이 되면** 제약 조건식 부분이 사라져 원래 OLS 목적식과 같아지게 되므로 정규화 과정의 의미가 사라짐

Cross-Validation을 통해 최적의 λ 값을 찾아야 함

Ridge Regression | 특징

① $\hat{\beta}_{Ridge}$ (Ridge Estimator)는 Unique 한 Solution이 도출됨

목적식에서 $\widehat{oldsymbol{eta}}_{Ridge}$ (Ridge Estimator) 를 구하는 과정

$$Q(\beta) = (Y - X\beta)^{T} (Y - X\beta) + \lambda \beta^{T} \beta$$

$$= Y^{T} Y - 2\beta^{T} X^{T} Y + \beta^{T} (X^{T} X + \lambda I) \beta$$

$$\rightarrow \frac{\partial}{\partial Y} Q(\beta) = 2X^{T} Y + 2(X^{T} X + \lambda I) \beta = 0$$

$$\therefore \widehat{\beta}_{Ridge} = (X^{T} X + \lambda I)^{-1} X^{T} Y$$

Ridge Regression | 특징

① \hat{eta}_{Ridge} (Ridge Estimator)는 Unique 한 Solution이 도출됨

목적식에서
$$\hat{\beta}_{Ridge}$$
(Ridge imator) 를 구하는 과정
$$Q(\beta) = (Y - X\beta)^T (Y - X\beta) + \lambda \beta^T \beta$$

회귀계수들에 제약조건을 공평하게 적용하려면

반드시 설명변수들에 대한 표준화 작업을 먼저 진행해줘야 함 $\rightarrow \frac{\partial U(\beta)}{\partial Y} = ZX^*Y + Z(X^*X + \lambda I)\beta = U$

$$\therefore \widehat{\boldsymbol{\beta}}_{Ridge} = \left(\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I} \right)^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

Ridge Regression | 특징

② λI 값을 통해 다중공선성 문제를 해결 가능

$$(X^TX + \lambda I)^{-1}$$
 가 존재하므로 $\widehat{oldsymbol{eta}}_{Ridge}$ 계산이 가능해짐

$$det(X^TX + \lambda I)^{-1}$$
 의 크기를 조정하여 $\widehat{oldsymbol{eta}}_{Ridge}$ 의 분산정도를 낮춤

Ridge Regression | 특징

③ $\hat{\beta}_{Ridge}$ (Ridge Estimator) 를 통해선 변수선택이 불가능함

Lasso Regression

Lasso Regression (L1 Regularization)

OLS 목적식에 대해

L1 Norm 형태의 제약조건을 회귀계수에 부여한 회귀 모델

Lasso Regression | 목적식

Lasso Regression 의 목적식

$$\hat{\beta}_{Lasso} = \frac{argmin}{\beta} \sum_{i} \left(y_i - \beta_0 - \sum_{j} \beta_j x_i \right)^2 subject to \sum_{j} |\beta_j| \le s$$

$$= \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i} \left(y_{i} - \beta_{0} - \sum_{j} \beta_{j} x_{i} \right)^{2} + \lambda \sum_{j} |\beta_{j}| \right\}$$

Lasso Regression | 기하학적 해석

$$\sum_{i} (y_{i} - \beta_{0} - \sum_{j} \beta_{j} x_{i})^{2} = RSS$$

$$\beta_{2}$$

$$\beta_{2}$$

$$\beta_{1}$$

$$\beta_{2}$$

$$\beta_{1}$$

$$\sum_{j} |\beta_{j}| \leq S$$

Lasso Regression | 하이퍼파라미터의 영향

Lasso Regression 의 목적식

$$\hat{\beta}_{Lasso} = \frac{argmin}{\beta} \sum_{i} \left(y_i - \beta_0 - \sum_{j} \beta_j x_i \right)^2 subject to \sum_{j} |\beta_j| \le s$$

$$= \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i} \left(y_{i} - \beta_{0} - \sum_{j} \beta_{j} x_{i} \right)^{2} + \lambda \sum_{j} |\beta_{j}| \right\}$$

목적식의 하이퍼파라미터 s, λ 에 주목해보자!

Lasso Regression | 하이퍼파라미터의 영향

큰 λ 값	작은 λ 값
적은 변수 (계수가 0이 됨)	많은 변수
간단한 모델	복잡한 모델
해석 쉬움	해석 어려움
높은 학습오차 (과소적합 위험 증가)	낮은 학습오차 (과적합 위험 증가)

Lasso Regression | 하이퍼파라미터의 영향

Cross-Validation을 통해 최적의 λ 값을 찾아야 함!

큰 ス값	작은 λ 값
적은 변수 (계수가 0이 됨)	많은 변수
간단한 모델	복잡한 모델
해석 쉬움	해석 어려움
높은 학습오차 (과소적합 위험 증가)	낮은 학습오차 (과적합 위험 증가)

Lasso Regression | 특징

① $\hat{\beta}_{Lasso}$ (Lasso Estimator) 를 통해 **변수 선택이 가능**함

λ 값(Penalty 정도) 이 커짐에 따라 β 값이 정확히 0으로 축소됨

□

변수 선택 가능 !

Lasso Regression | 특징

① $\hat{\beta}_{Lasso}$ (Lasso Estimator) 를 통해 **변수 선택이 가능**함

Lasso Regression | 특징

② 데이터가 달라지더라도 \hat{eta}_{Lasso} 값은 크게 변하지 않음

분할시킨 데이터셋 각각을 모델에 넣어 $\hat{\beta}_{Lasso}$ 을 구해본 결과 $\hat{\beta}_{Lasso}$ 값의 변동이 적음을 확인

Lasso Regression | 특징

② 데이터가 달라지더라도 \hat{eta}_{Lasso} 값은 크게 변하지 않음

설명변수(X)들 간에 **다중공선성이 존재**하는 경우

 $\hat{\beta}$ 의 변동성이 커져 **변수선택의 결과는 일관되지 않을 수** 있음

Lasso Regression | 특징

③ \hat{eta}_{Lasso} 는 Unique 한 Solution이 도출되지 않음

$$\underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i} \left(y_{i} - \beta_{0} - \sum_{j} \beta_{j} x_{i} \right)^{2} + \lambda \sum_{j} |\beta_{j}| \right\}$$

제약 조건식(= $\lambda \sum_j |\beta_j|$) 이 절댓값 형태로, β 에 대한 미분이 불가능하므로 유일한 해를 가지지 않음

Elastic-Net

Elastic-Net

Ridge 및 Lasso 의 정규화 방식을 혼합한 형태의 회귀 모델

Elastic-Net | 목적식

Elastic-Net 의 목적식

$$\widehat{\beta}_{Elastic} = \frac{argmin}{\beta} \sum_{i} \left(y_i - \beta_0 - \sum_{j} \beta_j x_i \right)^2$$

subject **to** $(1 - \alpha) \sum_{j} |\beta_{j}| + \alpha \sum_{j} |\beta_{j}|^{2} \le s$ where $\alpha = \lambda_{2}/(\lambda_{1} + \lambda_{2})$

$$= \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i} \left(y_{i} - \beta_{0} - \sum_{j} \beta_{j} x_{i} \right)^{2} + \lambda_{1} \sum_{j} |\beta_{j}| + \lambda_{2} \sum_{j} |\beta_{j}|^{2} \right\}$$

Elastic-Net | 목적식의 해석

Elastic-Net 의 제약 조건식은 Strictly Convex 하다는 성질을 가짐

서로 강하게 상관된 변수들이 함께 선택되는 현상

Strictly Convex 는 **Grouping Effect** 를 항상 보장

따라서 Elastic-Net은 **서로 상관성이 있는 변수**들을 **동시에 선택 혹은 제거할 수 있음**

Elastic-Net | 목적식의 해석

Elastic-Net | 목적식의 해석

Elastic-Net에서의 Grouping Effect 식

$$|\hat{\beta}_{Elastic_i} - \hat{\beta}_{Elastic_j}| \le (\sum_i y_i/\lambda_2) \sqrt{2(1-p_{ij})}$$

 p_{ij} : X_i 와 X_j 간의 상관계수

(음의 상관관계를 갖는 경우 X_k 대신 $-X_k$ 를 사용)

 p_{ij} 값이 커질수록 $\hat{oldsymbol{eta}}_{Elastic_i}$ 과 $\hat{oldsymbol{eta}}_{Elastic_j}$ 간의 차이가 작아지므로 값이 서로 유사해짐을 확인할 수 있음

Elastic-Net | 목적식의 해석

다중공선성 존재 시 예측성능이 떨어지는 Lasso의 한계점을 보완 가능

Pij 以「「コーコー PElastici ー PElasticj ニー

차이가 작아지므로 값이 서로 유사해짐을 확인할 수 있음

Elastic-Net | Parameter(λ) Selection

목적식의 파라미터 λ_1 , λ_2 는 Grid Search 방식을 적용하여 최적의 λ 값들을 도출할 수 있음

Fused Lasso

Fused Lasso

Lasso보다 강한 L1 Norm 형태의 제약조건을 적용한 회귀 모델

검은 테두리 영역: Lasso Regression의 제약조건

빨간 테두리 영역: Fused Lasso Regression의 제약조건

Fused Lasso | 목적식

Fused Regression 의 목적식

$$\widehat{\beta}_{FL} = \underset{\beta}{argmin} \left\{ \sum_{i} \left(y_i - \beta_0 - \sum_{j} \beta_j x_i \right)^2 + \lambda_1 \sum_{j} |\beta_j| + \lambda_2 \sum_{j} |\beta_i - \beta_j| \right\}$$

① 물리적으로 근접한 관측치들의 회귀계수를 비슷한 값으로 추정하게 됨

② 기존의 Lasso에 비해 Strict한 제약 공간을 형성

Fused Lasso | Elastic-Net과의 비교

Elastic-Net

상관관계가 높은 관측치들 간의 회귀계수 값을 비슷하게 추정 Fused Lasso

물리적으로 근접한 관측치들 간의 회귀계수 값을 비슷하게 추정

Fused Lasso | Elastic-Net과의 비교

공간적, 시간적으로 **순서**가 존재하는 데이터의 특성을 설명하기에 용이함

주로 **시계열데이터**를 다룰 때 많이 사용하는 회귀 모델

Fused Lasso

물리적으로 근접한 관측치들 간의 회귀계수 값을 비슷하게 추정

5

Regression for Spatial Data

Spatial Effects

Spatial Effects

Spatial Effects 중 상관성에 대해 알아보자!

Spatial Effects | 상관성

상관성 (Dependence)

한 위치에서 발생한 사건이 그 주변 지역의 사건 발생에도 영향을 미치는 것

Ex) 지진

진원 지역으로부터 가까울수록

피해의 정도가 클 것이며,

이러한 경우에는

공간적 상관성이 존재한다고 볼 수 있음

Spatial Effects | 상관성

상관성 (Dependence)

한 위치에서 발생한 사건이 그 주변 지역의 사건 발생에도 영향을 미치는 것

공간 자기상관계수

공간 자기상관계수 (Spatial Autocorrelation)

공간적 자기상관정도를 수치로써 나타내는 지표

공간 자기상관계수

일반적으로 관측치의 자기상관성이

높은 Positive 값인 경우 근처의 관측치들과 비슷한 값을 가지며

높은 Negative 값인 경우 근처의 관측치들과 상반된 값을 가짐

Positive spatial autocorrelation

No spatial autocorrelation

Negative spatial autocorrelation

공간 자기상관계수

일반적으로 관측치의 자기상관성이

높은 Positive 값인 경우 근처의 관측치들과 비슷한 값을 가지며

공간 자기상관계수를 측정하는 방법에는 어떤 것들이 있을까?

No spatial

공간 자기상관계수

공간 자기상관계수 | Moran's I

Moran's I

전역(Global) 단위의 자기상관 정도를 평가할 때 사용되는 통계적 지표

---- Moran's l 계산식 -----

$$I = \frac{N \sum_{i=1}^{N} \sum_{j=1}^{N} w_{ij} (Y_i - \overline{Y}) (Y_j - \overline{Y})}{(\sum_{i=1}^{N} \sum_{j=1}^{N} w_{ij}) \sum_{i=1}^{N} (Y_i - \overline{Y})^2}$$

N: 지역단위 수, Y_k : k 지역의 속성, w_{ij} : 공간 가중치

공간 자기상관계수 | Moran's I

① *I* 값은 -1 ~ 1 사이의 값을 가짐

② I 값의 절댓값이 1에 가까울수록 강한 공간 자기상관정도를 보임

③ 부호에 따라서 Positive / Negative 양상의 정도를 결정함

공간 자기상관계수 | Moran's I

전체 공간에 대하여 Global 하게 자기상관 정도를 측정하기 때문에 지역 단위의 패턴(자기상관 정도) 측정이 어렵다는 한계점이 존재

LISA 지표와 Getis-Ord 지표를 사용하여 한계점을 극복해보자!

공간 자기상관계수 | LISA

LISA (Local Indicator of Spatial Association)

지역(Local) 단위의 자기상관정도를 평가할 때 사용되는 통계적 지표

:

전체 공간패턴에 대한 **개별 지역의 기여도**를 측정하고, **공간적 이웃과의 상관성**을 계산하여 특정 지역에서의 공간적 클러스터링을 평가함

공간 자기상관계수 | LISA

----· LISA의 계산식

$$I_{i} = \frac{(Y_{i} - \bar{Y})}{S_{Y}} \sum_{j \neq i}^{N} w_{ij} \frac{(Y_{j} - \bar{Y})}{S_{Y}} \quad where \quad S_{Y} = \sqrt{\sum_{i=1}^{N} (Y_{i} - \bar{Y})^{2} / (N - 1)}$$

 I_i 는 특정 i 지역에서의 LISA 값으로, 해당 값이 양수인지 음수인지에 따라서 다른 클러스터링을 형성함

공간 자기상관계수 | LISA

----- LISA의 계산식 -----

$$I_{i} = \frac{(Y_{i} - \bar{Y})}{S_{Y}} \sum_{j \neq i}^{N} w_{ij} \frac{(Y_{j} - \bar{Y})}{S_{Y}} \quad where \quad S_{Y} = \sqrt{\sum_{i=1}^{N} (Y_{i} - \bar{Y})^{2} / (N - 1)}$$

 I_i 의 값이 <mark>크고 양수</mark>일수록

① i 지역에 인접한 부분은 비슷한 속성을 가져서 강한 클러스터를 형성

② 공간의 전체적 패턴이 양의 자기상관정도를 가지는 데 큰 기여를 함

공간 자기상관계수 | LISA

----- LISA의 계산식 -----

$$I_{i} = \frac{(Y_{i} - \bar{Y})}{S_{Y}} \sum_{j \neq i}^{N} w_{ij} \frac{(Y_{j} - \bar{Y})}{S_{Y}}$$
 where $S_{Y} = \sqrt{\sum_{i=1}^{N} (Y_{i} - \bar{Y})^{2} / (N - 1)}$

 I_i 의 값이 크고 음수일수록

① i 지역에 인접한 부분은 상반된 속성을 가져서 약한 클러스터 형성

② 공간의 전체적 패턴이 음의 자기상관정도를 가지는 데 큰 기여를 함

공간 자기상관계수 | Getis-Ord

Getis-Ord

공간 내에서 Hot Spot 또는 Cold Spot 존재 여부를 판단하는 지표

공간 자기상관계수 | Getis-Ord

Getis-Ord

공간 내에서 Hot Spot 또는 Cold Spot 존재 여부를 판단하는 지표

Hot Spot ----- Cold Spot ----- 서로 유사한 관측치가 서로 상이한 관측치가 집중되는 군집

공간 자기상관계수 | Getis-Ord

--- Getis-Ord 계산식

$$G = \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} w_{ij} Y_{i} Y_{j}}{\sum_{i=1}^{N} \sum_{j=1}^{N} Y_{i} Y_{j}} \quad (For \ \forall_{i \neq j})$$

 G 값이 양수라면 Hot Spot,
 G 값이 음수라면 Cold Spot이

 전체 공간 내에 존재한다고 판단할 수 있음

공간 자기상관계수 | Getis-Ord

공간 자기상관계수 | 상관성 검정

공간 자기상관 지표 계산

표준화 수행

Z-검정 수행

Moran's I
$$Z_I = \frac{I - E[I]}{\sqrt{V[I]}}$$

$$Z_{I_i} = \frac{I_i - E[I_i]}{\sqrt{V[I_i]}}$$

$$Z_{I_i} = \frac{I_i - E[I_i]}{\sqrt{V[I_i]}}$$

공간 자기상관계수 | 상관성 검정

Null Hypothesis

 H_0 : 전역적 또는 지역적으로 공간 데이터에 상관성이 존재하지 않음 $Reject\ H_0\ if\ |z_0|>z_{1-\alpha/2}, n-2\ (Significance\ Level:\ lpha)$

공간 가중치 행렬

$$\text{Moran's I} \qquad I = \frac{N \sum_{i=1}^{N} \sum_{j=1}^{N} w_{ij} (Y_i - \bar{Y}) (Y_j - \bar{Y})}{(\sum_{i=1}^{N} \sum_{j=1}^{N} w_{ij}) \sum_{i=1}^{N} (Y_i - \bar{Y})^2}$$

$$\text{LISA} \qquad I_i = \frac{(Y_i - \bar{Y})}{S_y} \sum_{j \neq i}^{N} w_{ij} \frac{(Y_j - \bar{Y})}{S_y} \quad \text{where} \quad S_y = \sqrt{\sum_{i=1}^{N} (Y_i - \bar{Y})^2 / (N - 1)}$$

$$G = \frac{\sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} w_{ij} Y_i Y_j}{\sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} Y_i Y_j} \quad (For \ \forall_{i \neq j})$$

공간 가중치 행렬

공간 가중치 행렬

공간 가중치 행렬 (Spatial Weights Matrix)

특정 관측치에 대하여 이웃 여부에 따라 1 또는 0의 값을 가지는 행렬로,

정의에 따라 다양하게 행렬을 구성하여 공간 인접도를 표현하는 데 사용됨

KNN 알고리즘 등 여러 방법들을 적용 가능하며, 0, 1 대신 연속된 실수 값을 이용하기도 함!

공간 가중치 행렬 | Binary Contiguity Weights

Binary Contiguity Weights

공간상의 인접 여부에 따라 위치들 간의 Neighbor 여부를 판단

$$w_{ij} = \begin{cases} 1 & (if \ i \ and \ j \ is \ neighbor) \\ 0 & (Otherwise) \end{cases}$$

공간 가중치 행렬 | Distance Based Weights

Distance Based Weights

임의의 최소 거리 d 를 정의한 뒤, 이를 기준으로 Neighbor 여부를 판단

$$w_{ij} = \begin{cases} 1 & (d_{ij} < d) \\ 0 & (Otherwise) \end{cases}$$

공간 가중치 행렬 | 정규화

일반적으로 공간 가중치 행렬은 정규화 작업을 진행시켜준 뒤 사용

1 Row Standardized Weights

가중치 행렬의 각 행의 합이 1이 되도록 **행 단위 정규화**

$$w^*_{ij} = \frac{w_{ij}}{\sum_j w_{ij}}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/2 & 0 & 1/2 \\ \hline 1/2 & 1/2 & 0 \end{pmatrix}$$

행렬 전체 원소의 합이 1이 되는 것을 확인!

공간 가중치 행렬 | 정규화

일반적으로 공간 가중치 행렬은 정규화 작업을 진행시켜준 뒤 사용

② Stochastic Weights

가중치 행렬 전체 원소의 합이 1이 되도록 정규화

$$w^*_{ij} = \frac{w_{ij}}{\sum_{i,j} w_{ij}}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1/7 & 1/7 & 1/7 \\ 1/7 & 0 & 1/7 \\ 1/7 & 1/7 & 0 \end{pmatrix}$$

행렬 전체 원소의 합이 1이 되는 것을 확인!

공간 가중치 행렬 | 정규화

일반적으로 공간 가중치 행렬은 정규화 작업을 진행시켜준 뒤 사용

Spatial Effects

Spatial Effects 중 이질성에 대해 알아보자!

Spatial Effects | 이질성

공간의 이질성 (Heterogeneity)

공간이 변화함에 따라 관측치의 특성이 달라지는 것

공간의 이질적 특성에 따른 소매업 매출 차이

Spatial Effects | 이질성

Spatial Effects | 이질성

Spatial Effects | 이질성

단순선형 회귀모델에 대해 공간의 이질성을 반영한다면

아래와 같이 작성해볼 수 있음

이질성을 가정한 단순 선형회귀모델

$$y_i = x_i \beta_i + \varepsilon_i$$

 $oldsymbol{eta_i}$: 관측치별 회귀계수 추정값

Spatial Effects | 이질성

Spatial Effects | 이질성 검정

BP Test

Null Hypothesis vs Alternative Hypothesis

$$H_0$$
: $\gamma_1 = \gamma_2 = \cdots = \gamma_p = 0$ vs H_1 : Not H_0

데이터가 등분산성을 따라야 하므로, 귀무가설이 기각되지 않기를 원함

Test Statistic

$$\chi^2_{stat} = n R^2 \sim \chi^2_{p-1}$$

Reject H_0 if $\chi^2_{stat} > \chi^2_{p-1,\alpha}$ (Significance Level: α)

귀무가설을 Reject 하면 **공간의 이질성을 지닌다고 결론을 내림!**

Spatial Effects

Spatial Effects 중 비정상성에 대해 알아보자!

Spatial Effects | 비정상성

Spatial Effects | 비정상성

강정상성과 약정상 간에는 어떤 차이가 있을까?

강정상성과 약정상성의 조건에 대해 알아보자!

the Assumption

Spatial Effects | 비정상성

강정상성

종속변수의 확률 분포가 공간 lag 차(= h) 에만 의존하는 성질

강정상성을 수식으로 표현하면 아래와 같음

$$G(S_i) = \beta_0 + \beta_1 X_i + \varepsilon_i \cdots \textcircled{1}$$

For ① &
$$\forall_{n,h}$$

$$\{G(S_i), G(S_{i+1}), \dots, G(S_{i+n})\} = d \{G(S_{i+h}), G(S_{i+1+h}), \dots, G(S_{i+n+h})\}$$

Spatial Effects | 비정상성

약정상성

강정상성의 조건을 완화한 것으로, 아래의 조건을 따름

①
$$E[G(S_i)] = E[G(S_i)]$$
 for $\forall_{i,j}$

: Constant Mean (공간 위치에 따라 평균 값은 변하지 않음)

$$② V[G(S_i)] = V[G(S_i)] for \forall_{i,j}$$

: Constant Variance (공간 위치에 따라 분산 값은 변하지 않음)

: Covariance 값은 반드시 lag- h 에 대해서만 의존

Spatial Effects | 비정상성

약정상성

강정상성의 조건을 완화한 것으로, 아래의 조건을 따름

$$\textcircled{1} E[G(S_i)] = E[G(S_i)] \text{ for } \forall_{i,j}$$

: Constant Mean (공간 위치에 따라 평균 값은 변하지 않음)

약정상성 조건들 중 하나라도 위배되면,

해당 공간 데이터 셋은 Non-stationary 데이터라고 판단

: Covariance 값은 반드시 lag- h 에 대해서만 의존

Spatial Effects | 비정상성

공간 자기회귀모델

공간 자기회귀모델 (Spatial Autoregressive Model)

공간 데이터에 상관성이 존재하는 경우

이를 통제하기 위해 사용하는 회귀 모형

; -----, !

Spatial Error Model

Spatial Lag Model

5

Regression for Spatial Data

공간 자기회귀모델 | Spatial Error Model

Spatial Error Model

공간의 상관성이 **오차항 부분**에서 비롯되었다고 판단될 때 사용할 수 있는 공간자기회귀모형

$$Y = X\beta + \varepsilon, \ \varepsilon = \lambda W\varepsilon + u$$

λ : 오차항의 공간 자기상관계수

₩ : 공간가중치행렬

u : iid 한 분포를 따르는 오차항

5

Regression for Spatial Data

공간 자기회귀모델 | Spatial Lag Model

Spatial Lag Model

공간의 상관성이 **반응변수 부분**에서 비롯되었다고 판단될 때 사용할 수 있는 공간자기회귀모형

$$Y = \rho W Y + X \beta + \varepsilon$$

p : 반응변수의 공간자기상관계수

₩ : 공간 가중치행렬

 ε : iid 한 분포를 따르는 오차항

공간 자기회귀모델 | 모수 추정

Spatial Error Model 과 Spatial Lag Model 은 $oldsymbol{eta}$ 뿐만 아니라 $oldsymbol{
ho}$, $oldsymbol{\lambda}$ 를 추가로 추정해줘야 함

OLS 를 통해 추정하게 되면 ho, λ 의 불편성과 일치성을 보장하지 못하게 됨

MLE / GMM 기반의 최적화를 통해 β, ρ, λ 를 추정

공간 자기회귀모델 | 모수 추정

공간 자기회귀모델 | 모델 선택

라그랑주 승수 검정을 통해

Spatial Error Model과 Spatial Lag Model 중 모델 선택

$$LM_{lag} = \frac{(e^TWY/s^2)^2}{(WX\beta^T)(I - X(X^TX)^{-1}X^T)(WX\beta)/s^2 + tr(W^TW + W^2)} \sim {\chi_1}^2$$

$$LM_{error} = \frac{(e^T W e/s^2)^2}{tr(W^T W + W^2)} \sim \chi_1^2$$

e: 잔차(Residuals) 벡터, s^2 : 오차항 분산의 MLE 추정량

 β : 각각의 회귀 모형에서 추정한 회귀 계수 벡터

공간 자기회귀모델 | 모델 선택

Null Hypothesis

 H_0 : 오차항이나 설명변수에 의한 공간의 상관성이 존재하지 않음

Reject H_0 if $|LM| > \chi^2_{1,\alpha}$ (Significance Level: α)

귀무가설을 Reject하면, 상관성이 존재한다고 결론 내림

 LM_{lag} 이 유의하다는 결과가 나왔다면 Spatial Lag Model을,

LM_{error} 이 유의하다는 결과가 나왔다면 Spatial Error Model을 사용

두 Test 결과가 모두 유의하다는 결과가 나왔다면 Robust LM 통계량으로 추가적인 Test 수행

지리 가중회귀모델

지리 가중회귀모델 (Geographically Weighted Regression)

관측치마다 전부 다른 회귀계수 값을 추정하여

공간의 비정상성을 완전히 통제할 수 있는 국소회귀 모형

따라서 GWR을 이용하게 되면 상관계수와 이질성을 모두 통제할 수 있음!

지리 가중회귀모델

GWR의 모델 식 구조 ·

 $Y = X \otimes \beta + \varepsilon$ (\otimes : Componentwise Multiplication)

where
$$\beta = \begin{bmatrix} \beta_0(u_1, v_1) & \cdots & \beta_p(u_1, v_1) \\ \vdots & \ddots & \vdots \\ \beta_0(u_n, v_n) & \cdots & \beta_p(u_n, v_n) \end{bmatrix}$$
, $\varepsilon \sim iid N(0, \sigma^2 I)$

 (u_i, v_i) : i 번째 공간좌표

지리 가중회귀모델

GWR Fitting 결과 예시 (b) Distance of the river : Gangseo-gu (c) Infrasture area : Dongrae-gu (e) Urbanization : Dongrae-gu (f) Impermeable area: Dongrae-gu (h) Mean slope : Gangseo-gu Fig 2. The distribution of the GWR coefficients

지리 가중회귀모델

GWR Fitting 결과 예시

Variables	Minimum value	Maximum value	Average value
Intercept	-0.06691	2.22807	0.30683
Infrastructure area	-0.00004	0.00003	-0.00001
Poor drainage area	-0.00012	0.00007	0.00002
Urbanization area	-0.00005	0.00012	0.00002
Impervious area	-0.00004	0.00017	0.00003
Mean elevation	-0.20183	0.4225	-0.00471
Mean slope	-0.16852	0.06463	-0.03617

Table 4. Estimation of the GWR model coefficients

지리 가중회귀모델

	GWR Fittin	9 콘티 에시	
Variables	Minimum value	Maximum value	Average value
Intercept	-0.06691	2.22807	0.30683
Infrastructure area	-0.00004	0.00003	-0.00001
Po:	넣다면 지리 가중회구	l모델을 사용하기 전	에
Ur H	정상성 여부를 어떻?	게 검정할 수 있을까	?
In			
<u> </u>	통계적 검정 과정이	게 대해 알아보자!	
Mean slope	-0.16852	0.06463	-0.03617

지리 가중회귀모델 | 비정상성 진단

Null Hypothesis

 H_0 : 일반선형회귀와 GWR 간에 유의미한 차이가 없음 (= 정상성을 가짐)

Test Statistic

일반선형회귀와 GWR 로부터 계산된 RSS 값들을 기반으로 F-test를 진행

$$F_0 = \frac{RSS_{GWR} / df \text{ of } RSS_{GWR} (= m)}{RSS_{Origin} / df \text{ of } RSS_{Origin} (= n - p - 1)}$$

Accept H_0 if $|F_0| < F_{1-\alpha/2, m, n-p-1}$ (Significance Level: α)

귀무가설을 Reject 하면 해당 공간 데이터는 비정상성 데이터라고 결론을 내림!

6

Appendix

평가지표 $\mid C_p$ 계산 식

파란색 글씨 부분은 Likelihood 를

빨간색 글씨 부분은 변수에 따른 Penalty 정도를 나타냄

평가지표 | AIC 계산 식

파란색 글씨 부분은 Likelihood 를

빨간색 글씨 부분은 변수에 따른 Penalty 정도를 나타냄

평가지표 | BIC 계산 식

파란색 글씨 부분은 Likelihood 를

빨간색 글씨 부분은 변수에 따른 Penalty 정도를 나타냄

Best Subset Selection | 작동원리

① 같은 개수의 변수를 사용한 후보군 중 RSS 값이 가장 낮은 모델 선별

Best Subset Selection | 작동원리

② 선별된 p 개의 최종 후보 모델들에 대하여

Analytical Methods 평가지표에 따라 최적의 모델 결정

 μ_k : 각 group에서 training RSS가 가장 작은 Model

$$\mu_0: Y = \beta_0 + \varepsilon$$

$$\mu_1: Y = \beta_0 + \beta_4 X_4 + \varepsilon$$

$$\mu_2: Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

$$\mu_3: Y = \beta_0 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon$$

$$\mu_4: Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon$$

 C_p , AIC, BIC, Adjusted R^2 중 1개를 기준으로 최적의 Model 을 선별

Forward Stepwise Selection | 작동원리

① 최대 변수 개수가 p 이고, 변수 개수가 1개인 모델 후보군들 중

RSS **값이 가장 낮았던 모델이 X_k 를 포함**하는 것을 확인

$$feature: X_1, X_2, X_3, X_4$$
인경우 $\mu_0: Y = \beta_0 + \varepsilon \text{ (Null Model)}$ $k=1$ $Y = \beta_0 + \beta_1 X_1 + \varepsilon$ \vdots μ_1 $Y = \beta_0 + \beta_4 X_4 + \varepsilon$

Forward Stepwise Selection | 작동원리

② **다음 후보군**인 변수 개수가 2개인 모델들을 작성 시 **무조건 변수 하나는** X_k 로 고정

$$k = 2$$

$$\mu_{2} Y = \beta_{0} + \beta_{1}X_{1} + \beta_{4}X_{4} + \varepsilon$$

$$\vdots$$

$$Y = \beta_{0} + \beta_{3}X_{3} + \beta_{4}X_{4} + \varepsilon$$

Forward Stepwise Selection | 작동원리

③ 변수 개수가 커짐에 따라 같은 방식을 적용하여 모델 후보군들을 작성

$$k = 3$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_4 X_4 + \varepsilon$$

$$\vdots$$

$$\mu_4$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_4 X_4 + \varepsilon$$

$$\vdots$$

$$+\beta_3 X_3 + \beta_4 X_4 + \varepsilon$$

$$\mu_3$$
 $Y = \beta_0 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_2 X_2 + \beta_4 X_4 + \varepsilon$$

k = 4

Forward Stepwise Selection | 작동원리

④ 선별된 최종 후보 모델들에 대해

Analytical Methods 를 적용해 최적의 모델 결정

$$\mu_0: Y = \beta_0 + \varepsilon$$

$$\mu_1: Y = \beta_0 + \beta_4 X_4 + \varepsilon$$

$$\mu_2: Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

$$\mu_3: Y = \beta_0 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon$$

$$\mu_4: Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon$$

 C_p , AIC, BIC, Adjusted R^2 중 1개를 기준으로 최적의 Model 을 선별

① 최대 변수개수가 p이고, 변수 개수가 1개인 모델 후보군들 중

RSS 값이 가장 낮았던 모델이 X_k 를 포함하지 않는 것을 확인

$$feature: X_1, X_2, X_3, X_4$$
 인경우
$$\mu_4: Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon \text{ (Full Model)}$$

$$k = 3$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_4 X_4 + \varepsilon$$

$$\vdots$$

$$\mu_3 \quad Y = \beta_0 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon$$

② **다음 후보군**인 변수 개수가 p-2 개인 모델들을 작성 시 변수 X_k 를 제외한 나머지 변수들을 이용해 작성

$$k = 2$$

$$\mu_{2} Y = \beta_{0} + \beta_{2}X_{2} + \beta_{3}X_{3} + \varepsilon$$

$$\vdots$$

$$Y = \beta_{0} + \beta_{3}X_{3} + \beta_{4}X_{4} + \varepsilon$$

이 경우 X_1 을 제외한 나머지인 $X_2, X_3, ..., X_p$ 중 p-2 개 변수들을 골라 가능한 모든 모델들을 작성하는 식으로 후보군을 생성

③ 변수 개수가 작아 짐에 따라 같은 방식을 적용하여 모델 후보군들을 작성

$$k = 1$$

$$Y = \beta_0 + \beta_2 X_2 + \varepsilon$$

$$\mu_1 \quad Y = \beta_0 + \beta_3 X_3 + \varepsilon$$

$$\mu_0: Y = \beta_0 + \varepsilon$$
 (Null Model)

④ 선별된 최종 후보 모델들에 대해

Analytical Methods 를 적용해 최적의 모델 결정

$$\mu_0: Y = \beta_0 + \varepsilon$$

$$\mu_1: Y = \beta_0 + \beta_3 X_3 + \varepsilon$$

$$\mu_2: Y = \beta_0 + \beta_2 X_2 + \beta_3 X_3 + \varepsilon$$

$$\mu_3: Y = \beta_0 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon$$

$$\mu_4: Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon$$

 C_p , AIC, BIC, Adjusted R^2 중 1개를 기준으로 최적의 Model 을 선별

Ridge Regression vs Lasso Regression

Ridge Regression	Lasso Regression
L2 - norm	L1 – norm
변수 선택 불가능	변수 선택 가능
Unique Solution (미분을 통해)	Closed form solution 존재 X (numerical optimization 이용)
상관관계가 높은 상황에서 좋은 예측 성능 (상관성이 있는 변수들에 대하여 적절한 가중치를 배분)	변수 간 상관관계가 높은 상황에서 Ridge에 비해 상대 적으로 예측 성능이 떨어짐
제약 범위가 원	제약 범위가 마름모

지리 가중회귀모델

지리가중회귀모델의 β 추정 과정

① i 번째 관측치(장소)에 대해 오차항 $\varepsilon(u_i, v_i)$ 을 계산

$$Y = X \otimes \beta + \varepsilon$$

$$\varepsilon(u_i, v_i) = Y(u_i, v_i) - \beta_0(u_i, v_i) - \beta_1(u_i, v_i) X_{1i} - \dots - \beta_p(u_i, v_i) X_{pi}$$

지리 가중회귀모델

지리가중회귀모델의 β 추정 과정

② 구해본 오차항 $\varepsilon(u_i,v_i)$ 을 기준으로 공간 가중치 행렬(W_i) 을 정의

 $W_i \ (i=1 \sim n) = \begin{bmatrix} w_{i1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & w_{in} \end{bmatrix} \ where \ w_{ik} = exp\left[-\frac{1}{2}\left\{d_i(u_k, v_k)/h\right\}^2\right]$

 $d_i(u_k, v_k)$: (u_i, v_i) 와 (u_k, v_k) 사이의 거리, h: 대역폭

지리 가중회귀모델

지리가중회귀모델의 β 추정 과정

② 구해본 오차항 $\varepsilon(u_i, v_i)$ 을 기준으로 공간 가중치 행렬(W_i) 을 정의

지리 가중회귀모델

data point

지리가중회귀모델의 β 추정 과정

② 구해본 오차항 $\varepsilon(u_i, v_i)$ 을 기준으로 공간 가중치 행렬(W_i) 을 정의

대역폭(h) 의 경우 Cross Validation 등을 통해 최적의 값을 선택해줘야 함

 w_{ik} 의 경우

Gaussian 커널 형태의 함수를 이용해 거리 정도를 계산하여 정의

$$\lim_{k \to \infty} |\mathcal{L}_k| = \frac{1}{2} \{d_i(u_k, v_k)/h\}^2$$

지리 가중회귀모델

지리가중회귀모델의 β 추정 과정

③ W_i 를 $\{\varepsilon(u_i,v_i)\}^2$ 에 곱하여 목적식을 정의해준 뒤 편미분하여 추정량 $(=\hat{\beta}(u_i,v_i))$ 도출

 $\underset{\beta_{j}(u_{i}, v_{i})}{arg \min} \sum_{i=1}^{n} W_{i} \left\{ \varepsilon(u_{i}, v_{i}) \right\}^{2}, \qquad j = 1 \sim p$

 $eta_j(u_i,v_i)$ 별로 편미분을 진행

 $\widehat{\boldsymbol{\beta}}(u_i, v_i) = [\widehat{\boldsymbol{\beta}}_0(u_i, v_i), \dots, \widehat{\boldsymbol{\beta}}_p(u_i, v_i)]^T = (X^T W_i X)^{-1} X^T W_i Y$

지리 가중회귀모델

지리가중회귀모델의 β 추정 과정

③ W_i 를 $\{\varepsilon(u_i,v_i)\}^2$ 에 곱하여 목적식을 정의해준 뒤 편미분하여 추정량 $(=\hat{\beta}(u_i,v_i))$ 도출

추가로 $\hat{\sigma}^2$ 추정량 또한 아래와 같이 도출 가능

$$\widehat{\sigma}^2 = RSS_{GWR}/m$$

where $m = tr((I-L)^T(I-L))$, $L = X(X^TWX)^{-1}X^TW$

$$\widehat{\boldsymbol{\beta}}(u_i, v_i) = [\widehat{\boldsymbol{\beta}}_0(u_i, v_i), \dots, \widehat{\boldsymbol{\beta}}_p(u_i, v_i)]^T = (X^T W_i X)^{-1} X^T W_i Y$$

감사합니다