Package 'MORST'

October 13, 2020

Type Package

Title Minimax Optimal Ridge-type Set Test

Version 0.8.0
Author Yaowu Liu
Maintainer Yaowu Liu <yaowuliu615@gmail.com></yaowuliu615@gmail.com>
Description This package implemented MORST, a fast and powerful test that is designed to be power robust to the strength of signals. While mainly motivated from the linear regression setting, MORST is a generic test and has several versions. This package implemented the score version of MORST in GLMs and a specific function of MORST tailored to genetic association studies. At the core of MORST, it is the choice of the ridge-type parameter tau_c, which is implemented in this package. With tau_c, one can easily develop other versions of MORST or adapt MROST to other applications.
Depends R (>= $3.2.0$)
License GPLv3
Encoding UTF-8
LazyData true
Imports Rcpp (>= 1.0.1), Matrix
LinkingTo Rcpp
RoxygenNote 7.1.1
R topics documented:
Get_Q_pval MORST_glm Null_model_glm SetBasedTests tau_c
Index

2 Get_Q_pval

Get_Q_pval

Get the p-value of a quadratic test

Description

The survival function (i.e., p-value) of the weighted sum of i.i.d. Chi-squared variables with df=1 (i.e., a quadratic test). A hybrid of davies's method, saddle point method, and liu's method is used.

Usage

```
Get_Q_pval(Q, w)
```

Arguments

Q The value of the quadratic test statistic. It must be positive.

w a numeric vector of positive weights. See details.

Details

Compute P[T > Q], where $T = \sum_{i=1}^k w_i X_i$, X_i 's are i.i.d. Chi-squared variables with df=1, and w_i 's are the elements of w.

A hybrid of several methods is used to acheive both accuracy and computation effeciency. Specifically, when the p-value > 1e-10, the davies' method is used; when 1e-10 < p-value < 1e-15, the saddle point method is used; when p-value < 1e-15, liu's method is used.

Value

The p-value of the quadratic test.

Author(s)

Yaowu Liu

References

Davies, R. B. (1980). Algorithm AS 155: The distribution of a linear combination of X2 random variables. *Journal of the Royal Statistical Society. Series C (Applied Statistics)*, 29(3):323-333.

Kuonen, D. (1999). Miscellanea. saddlepoint approximations for distributions of quadratic forms in normal variables. *Biometrika*, 86(4):929-935.

Liu, H., Tang, Y., and Zhang, H. H. (2009). A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables. *Computational Statistics & Data Analysis*,53(4):853-856.

Examples

```
Get_Q_pval(50, seq(1,10,1))
Get_Q_pval(200, seq(1,10,1))
Get_Q_pval(1000, seq(1,10,1))
```

MORST_glm 3

MORST_glm	The score version of MORST for Generalized Linear Models.
	, , , , , , , , , , , , , , , , , , ,

Description

Calculate the score version MORST p-value for GLM. For genetic association study, please use the function SetBasedTests.

Usage

```
MORST_glm(
   X,
   obj,
   alpha = 0.05,
   weights = NULL,
   tau.type = "approx",
   target_power = 0.5,
   n.points = 50
)
```

Arguments

```
a numeric matrix or dgCMatrix of predictors.

an output from Null_model_glm.

alpha the alpha parameter in MORST. It is suggested to be the significance level.

weights a numeric vector of nonnegative weights. If NULL, the equal weight is used.

tau.type either "minimax" or "approx". See tau_c for details.

target_power a value that is used when tau.type == "approx". See tau_c for details.

n.points number of grid points used when tau.type == "minimax". See tau_c for details.
```

Value

The p-value of MORST.

Author(s)

Yaowu Liu

References

Liu, Y., Li, Z., and Lin, X. (2020+) A Minimax Optimal Ridge-Type Set Test for Global Hypothesis with Applications in Whole Genome Sequencing Association Studies. *Journal of the American Statistical Association*. Accepted.

4 Null_model_glm

Examples

```
X<-matrix(rnorm(20000),ncol=20); Z=matrix(rnorm(nrow(X)*4),ncol=4)

### linear regression for continuous outcome
Y<-rnorm(nrow(X));obj<-Null_model_glm(Y,Z,family="gaussian")

MORST_glm(X,obj)

### Logistic regression for binary outcome
Y<-rbinom(nrow(X),1,0.4);obj<-Null_model_glm(Y,Z,family="binomial")

MORST_glm(X,obj,alpha = 1e-04)

### Binomial outcome
Y<-rbinom(nrow(X),5,0.4);Y<-cbind(Y,5-Y);obj<-Null_model_glm(Y,Z,family="binomial")

MORST_glm(X,obj,weights=runif(ncol(X)))

### Poisson outcome
Y<-rpois(nrow(X),5);obj<-Null_model_glm(Y,Z,family="poisson")

MORST_glm(X,obj,alpha = 1e-04,weights=runif(ncol(X)),tau.type = "minimax")</pre>
```

Null_model_glm

Fit the GLM null model for MORST

Description

fit a GLM null model

Usage

```
Null_model_glm(Y, Z, family = "gaussian", include_intercept = TRUE)
```

Arguments

Y a numeric vector of outcomes.

Z a numeric matrix of covariates that need to be adjusted.

include_intercept

logical. If TRUE, the intercept will be included in the null model.

famlily a character. Should be "gaussian", "binomial" or "poisson". For each famliy, the

cannonical link is used.

Value

This function returns an object that has model parameters and residuals of the NULL model of no association between outcomes Y and predictors X after adjusting for covariates Z. After obtaining it, please use MORST_glm or SetBasedTests to conduct the association test.

Author(s)

Yaowu Liu

SetBasedTests 5

Examples

```
X<-matrix(rnorm(20000),ncol=20); Z=matrix(rnorm(nrow(X)*4),ncol=4)
### linear regression for continuous outcome
Y<-rnorm(nrow(X));obj<-Null_model_glm(Y,Z,family="gaussian")
### Logistic regression for binary outcome
Y<-rbinom(nrow(X),1,0.4);obj<-Null_model_glm(Y,Z,family="binomial")
### Binomial outcome
Y<-rbinom(nrow(X),5,0.4);Y<-cbind(Y,5-Y);obj<-Null_model_glm(Y,Z,family="binomial")
### Poisson outcome
Y<-rpois(nrow(X),5);obj<-Null_model_glm(Y,Z,family="poisson")</pre>
```

SetBasedTests

Set based tests for testing the association between a set of genetic variants and a phenotype

Description

Calculate the Burden, SKAT, ACAT-V and MORST p-values under one or multiple sets of weights in GLMs or GLMMs.

Usage

```
SetBasedTests(
   G,
   obj,
   alpha = 1e-06,
   weights.beta = matrix(c(1, 25, 1, 1), nrow = 2),
   weights = NULL,
   tau.type = "approx",
   target_power = 0.5,
   n.points = 50,
   mac.thresh = 10
)
```

Arguments

a numeric matrix or dgCMatrix with each row as a different individual and each column as a separate gene/snp. Each genotype should be coded as 0, 1, 2.

obj an output from Null_model_glm or the function glmmkin from the GMMAT pack-

age. See details.

alpha the alpha parameter in MORST. It is suggested to be the significance level.

weights.beta a numeric vector/matrix of parameters for the beta weights for the weighted

kernels. If it is a matrix, each column corresponds to one set of the beta-weights parameters. If you want to use your own weights, please use the "weights"

parameter. It will be ignored if "weights" parameter is not null.

6 tau_c

weights a numeric vector/matrix of weights for the SNPs. If it is a matrix, each column

corresponds to one set of weights. When it is NULL, the beta weight with the

"weights.beta" parameter is used.

tau.type either "minimax" or "approx". See tau_c for details.

target_power a value that is used when tau.type == "approx". See tau_c for details.

n.points number of grid points used when tau.type == "minimax". See tau_c for details.

mac.thresh a threshold of the minor allele count (MAC) that is used in the ACAT-V test.

SNPs with MAC less than this thrshold will be frist aggregated by the Burden

test in ACAT-V.

Details

If you want to fit a GLM, please use the Null_model_glm function to obtain the null model *obj*. If you have a kinship matrix/GRM and would like to fit a GLMM, please use the function glmmkin from the the GMMAT package. Both dense and sparse kinship/GRM can be used.

The ACAT-V p-value might be slightly different from the result from the ACAT_V function in the ACAT package. This is because the variant-level p-values are calculated using slighly different methods

While the *alpha* parameter is suggested to be the significance level, practically there is no need to set *alpha* less than 1e-08. In most situations, the MORST p-values would only have negligible difference for values of *alpha* less than 1e-06. A super small *alpha* could slow down the computation and might cause some numerical issue. Therefore, the default value for *alpha* is 1e-06.

Value

The p-values of Burden, SKAT, ACAT-V and MORST under under one or multiple choices of weights.

Author(s)

Yaowu Liu

Examples

```
library(Matrix)
data(Geno)
G<-Geno[,1:100] # Geno is a dgCMatrix of genotypes
Y<-rnorm(nrow(G)); Z<-matrix(rnorm(nrow(G)*4),ncol=4)
obj<-Null_model_glm(Y,Z,family="gaussian")
SetBasedTests(G,obj)</pre>
```

tau_c

The choice of tau in MORST

Description

Calculate the parameter tau in MORST based on either the minimax criterion or an approximation of the minimax solution

tau_c 7

Usage

```
tau_c(eg.values, alpha, tau.type = "approx", target_power = 0.5, n.points = 50)
```

Arguments

eg.values a numeric vector of non-negative eigenvalues.

alpha the alpha parameter in MORST. It is suggested to be the significance level.

tau.type either "minimax" or "approx". If tau.type == "minimax", tau is calculated based

on the minimax criterion; if tau.type == "approx", tau is an approximation to

the minimax tau. Default value is "approx".

target_power a value that is used when tau.type == "approx". See details.

n.points number of grid points used when tau.type == "minimax". Should be at least 20

to have reasonable accuracy.

Details

The approximation method is substantially faster than the minimax method and will be introduced soon.

Value

the parameter tau in MORST

Author(s)

Yaowu Liu

References

Liu, Y., Li, Z., and Lin, X. (2020+) A Minimax Optimal Ridge-Type Set Test for Global Hypothesis with Applications in Whole Genome Sequencing Association Studies. *Journal of the American Statistical Association*. Accepted.

Examples

```
tau_c(seq(1,100,1),1e-04)

tau_c(seq(1,100,1),1e-04,tau.type = "minimax")

tau_c(c(2,rep(0.2,20)),0.05,tau.type = "minimax",n.points = 200)
```

Index

```
ACAT, 6
ACAT_V, 6

Get_Q_pval, 2
glmmkin, 5, 6
GMMAT, 5, 6

MORST_glm, 3, 4

Null_model_glm, 4, 5, 6

SetBasedTests, 3, 4, 5

tau_c, 3, 6, 6
```