

Instructor: Prof. Stanley H. Chan

Mid Term 2

Fall 2020

Name: Elias Talcott	Session (circle one): Morning) Evening / DRC
Please copy and write the following statement:	
I certify that I have neither given nor red	ceived unauthorized aid on this exam.
I certify that I have reither given re(Please copy and write the above statement.)	or raceved anotherized and on this exam.
	El Falit (Signature)
Please state clearly each step you take to reach the firexplanations will not receive the full credit. χ	nal answer. A correct final answer without proper
Exercise 1. (30 POINTS)	

$$X \sim \text{Uniform}(0,1), Y \sim \text{Uniform}(-\frac{1}{2},\frac{1}{2}), W = X+Y, Z = X-Y$$

$$\Rightarrow W \sim \text{Uniform}(-\frac{1}{2},0) + 2\text{Uniform}(0,\frac{1}{2}) + \text{Uniform}(\frac{1}{2},1)$$

$$Z \sim \text{Uniform}(\frac{1}{2},1)$$

$$E[W] = \frac{1}{4}, E[Z] = \frac{3}{4} \longrightarrow E[W]E[Z] = \frac{3}{16}$$

$$Cov(W,Z) = E[WZ] - E[W]E[Z] = E[W,Z] - \frac{3}{16}$$

$$E[WZ] = \int_{-1/2}^{1} WZ \, p_{W,Z}(w,Z) \, dZ \, dw$$

Exercise 2. (40 POINTS)

(a)

$$X = f_{2ir} c_{in} f_{ip} (-1,1), N - G_{2isrian}(x, \sigma^{2})$$

$$f_{Y|x}(y|+1) = P_{X,Y}(x,y) = 2 P_{X,Y}(x,y)$$

$$Y = G_{2issian}(x \pm 1, \sigma^{2})$$

$$= 2 P_{X,Y}(x,x+\mu) = 2 P_{X,Y}(1,\mu+1)$$

(b)

$$E[Y|X=+1], E[Y|X=-1]$$

$$N(u) = value of N \in Center point$$

$$E[Y|X=+1] = E[G_{2025120}(u,\sigma^2)]+1$$

$$E[Y|X=+1] = N(u)+1$$

$$E[Y|X=-1] = E[G_{2025120}(u,\sigma^2)]-1$$

$$E[Y|X=-1] = N(u)-1$$

$$E[Y] = \frac{1}{2}(N(u)+1) + \frac{1}{2}(N(u)-1) - E[Y] = N(u)$$

(c)

probability of error = poe
$$|p=+|,o|p=-1|$$
 or $|p=-1|,o|p=+1$

$$poe = P[Y \vdash T \mid X = +1] + P[Y \ge T \mid X = -1]$$

$$= F_{Y|X}[Y \vdash T \mid +1] + F_{Y|X}[Y \ge T \mid -1]$$

$$= F_{X|Y}(+1,y) + F_{X|Y}(-1,y) + F_{X|Y}(-1,y)$$

$$= F_{X|Y}(+1,y) + F_{X|Y}(-1,y)$$

(d)		
		-
		,

Exercise 3. (30 POINTS)

in a ferror to the first terms.
e Casa
a de la companya de l

Useful Identities

1.
$$\sum_{k=0}^{\infty} r^k = 1 + r + r^2 + \dots = \frac{1}{1-r}$$

4.
$$\sum_{k=1}^{\infty} kr^{k-1} = 1 + 2r + 3r^2 + \dots = \frac{1}{(1-r)^2}$$

2.
$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}$$

1.
$$\sum_{k=0}^{\infty} r^k = 1 + r + r^2 + \dots = \frac{1}{1-r}$$
2.
$$\sum_{k=1}^{\infty} k = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
3.
$$\sum_{k=1}^{\infty} k^2 = 1^2 + 2^2 + 3^3 + \dots + n^2 = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}$$

3.
$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots$$
 6. $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$

6.
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Common Distributions

Bernoulli
$$\mathbb{P}[X=1]=p$$

$$\mathbb{E}[X] = p$$
 $Var[X] = p(1-p)$ $M_X(s) = 1 - p + pe^s$

Binomial
$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 $\mathbb{E}[X] = np$ $Var[X] = np(1-p)$ $M_X(s) = (1-p+pe^s)^n$

Geometric
$$p_X(k) = p(1-p)^{k-1}$$

$$p_X(k) = p(1-p)^{k-1}$$
 $\mathbb{E}[X] = \frac{1}{p}$ $\operatorname{Var}[X] = \frac{1-p}{p^2}$ $M_X(s) = \frac{pe^s}{1-(1-p)e^s}$

Poisson
$$p_X(k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

$$p_X(k) = \frac{\lambda^k e^{-\lambda}}{k!} \qquad \mathbb{E}[X] = \lambda \qquad \operatorname{Var}[X] = \lambda \qquad M_X(s) = e^{\lambda(e^s - 1)}$$

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \qquad \mathbb{E}[X] = \mu \qquad \operatorname{Var}[X] = \sigma^2 \qquad M_X(s) = e^{\mu s + \frac{\sigma^2 s^2}{2}}$$

$$M_X(s) \equiv e^{-(s-s)}$$

Gaussian
$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\mathbf{z}[X] = \mu$$
 $\mathbf{var}[X] = 0$
 $\mathbf{z}[Y] = 1$ $\mathbf{Var}[Y] = 1$

$$M_X(s) = \frac{\lambda}{\lambda - s}$$

Exponential
$$f_X(x) = \lambda \exp\{-\lambda x\}$$
 $\mathbb{E}[X] = \frac{1}{\lambda}$ $\operatorname{Var}[X] = \frac{1}{\lambda^2}$ $M_X(s) = \frac{\lambda}{\lambda - s}$

$$egin{align} E[X] &= rac{\lambda}{\lambda} & ext{Var}[X] &= rac{\lambda^2}{\lambda^2} \ E[X] &= rac{a+b}{\lambda} & ext{Var}[X] &= rac{(b-a)^2}{\lambda} \ \end{array}$$

$$M_{\mathbf{Y}}(s) = \frac{e^{sb} - e^{sa}}{s}$$

Uniform
$$f_X(x) = \frac{1}{b-a}$$

$$\mathbb{E}[X] = \frac{a+b}{2} \quad \text{Var}[X] = \frac{(b-a)^2}{12} \qquad M_X(s) = \frac{e^{sb} - e^{sa}}{s(b-a)}$$

Fourier Transform Table

$$f(t) \longleftrightarrow F(w)$$

$$f(t) \longleftrightarrow F(w)$$

1.
$$e^{-at}u(t) \longleftrightarrow \frac{1}{a+jw}, a > 0$$
 10.

$$\operatorname{sinc}^2(\frac{Wt}{2}) \longleftrightarrow \frac{2\pi}{W}\Delta(\frac{w}{2W})$$

2.
$$e^{at}u(-t) \longleftrightarrow \frac{1}{a-jw}, a > 0$$

2.
$$e^{at}u(-t) \longleftrightarrow \frac{1}{a-jw}, \ a > 0$$
 11. $e^{-at}\sin(w_0t)u(t) \longleftrightarrow \frac{w_0}{(a+jw)^2+w_0^2}, \ a > 0$
3. $e^{-a|t|} \longleftrightarrow \frac{2a}{a^2+w^2}, \ a > 0$ 12. $e^{-at}\cos(w_0t)u(t) \longleftrightarrow \frac{a+jw}{(a+jw)^2+w_0^2}, \ a > 0$
4. $\frac{a^2}{a^2+t^2} \longleftrightarrow \pi a e^{-a|w|}, \ a > 0$ 13. $e^{-\frac{t^2}{2\sigma^2}} \longleftrightarrow \sqrt{2\pi} \sigma e^{-\frac{\sigma^2 w^2}{2\sigma^2}}$

3.
$$e^{-a|t|} \longleftrightarrow \frac{2a}{a^2 + w^2}, \ a > 0$$

12.
$$e^{-at}\cos(w_0t)u(t) \longleftrightarrow \frac{a+jw}{(a+jw)^2+w_0^2}, a>0$$

4.
$$\frac{a^2}{a^2+t^2} \longleftrightarrow \pi a e^{-a|w|}, \ a > 0$$

$$e^{-\frac{t^2}{2\sigma^2}} \longleftrightarrow \sqrt{2\pi}\sigma e^{-\frac{\sigma^2 w}{2}}$$

5.
$$te^{-at}u(t) \longleftrightarrow \frac{1}{(a+jw)^2}, a > 0$$

$$\delta(t) \longleftrightarrow 1$$

6.
$$t^n e^{-at} u(t) \longleftrightarrow \frac{n!}{(a+jw)^{n+1}}, a > 0$$
 15.

$$1 \longleftrightarrow 2\pi\delta(w)$$

7.
$$\operatorname{rect}(\frac{t}{\tau}) \longleftrightarrow \tau \operatorname{sinc}(\frac{w\tau}{2})$$

$$\delta(t-t_0)\longleftrightarrow e^{-jwt_0}$$

8.
$$\operatorname{sinc}(Wt) \longleftrightarrow \frac{\pi}{W}\operatorname{rect}(\frac{w}{2W})$$

$$e^{jw_0t}\longleftrightarrow 2\pi\delta(w-w_0)$$

9.
$$\Delta(\frac{t}{\tau}) \longleftrightarrow \frac{\tau}{2} \operatorname{sinc}^2(\frac{w\tau}{4})$$

Some definitions:

$$\operatorname{sinc}(t) = \frac{\sin(t)}{t} \qquad \operatorname{rect}(t) = \begin{cases} 1, & -0.5 \le t \le 0.5, \\ 0, & \text{otherwise.} \end{cases} \qquad \Delta(t) = \begin{cases} 1 - 2|t|, & -0.5 \le t \le 0.5, \\ 0, & \text{otherwise.} \end{cases}$$

14.

16.

17.

Basic Trigonometry

$$e^{j\theta} = \cos\theta + j\sin\theta$$
, $\sin 2\theta = 2\sin\theta\cos\theta$, $\cos 2\theta = 2\cos^2\theta - 1$.

$$\cos A \cos B = \frac{1}{2}(\cos(A+B) + \cos(A-B)) \quad \sin A \sin B = -\frac{1}{2}(\cos(A+B) - \cos(A-B))$$
$$\sin A \cos B = \frac{1}{2}(\sin(A+B) + \sin(A-B)) \quad \cos A \sin B = \frac{1}{2}(\sin(A+B) - \sin(A-B))$$