Mathematischer Brückenkurs

Stefan Weinzierl

Institut für Physik, Universität Mainz

Wintersemester 2020/21

Abschnitt 1

Definition und Problemstellung

Motivation

- Lineare Gleichungssysteme treten in den Naturwissenschaften relativ oft auf, viele Problemstellungen lassen sich auf lineare Gleichungssysteme zurückführen.
- Lineare Gleichungssysteme sind systematisch lösbar.
- Der Gauß'sche Eliminationsalgorithmus ist eine systematische Lösungsmethode.

Definition

Unter einem linearen Gleichungssystem versteht man n Gleichungen mit m Unbekannten $x_1, x_2, ..., x_m$ der Form

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + ... + a_{1m}x_m = b_1,$$

 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + ... + a_{2m}x_m = b_2,$
...
$$a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + ... + a_{nm}x_m = b_n.$$

Die Koeffizienten a_{ij} und b_i sind gegebene reelle oder komplexe Zahlen.

Jede Variable kommt nur linear vor und jeder Summand auf der linken Seite enthält nur eine Variable.

Beispiel

$$3x_1 + 3x_2 + 9x_3 = 36,$$

 $2x_1 + 3x_2 + 7x_3 = 29,$
 $x_2 + 4x_3 = 14.$

Gegenbeispiel

$$3x_1^5 + 3x_2 + 9x_3 = 36,$$

 $x_1 + x_1x_2 + 4x_3 = 14,$
 $\sin(x_1) + 7x_3 = 29.$

- $3x_1^5$ ist nicht linear: höhere Potenz in x_1
- x₁x₂ ist nicht linear: enthält mehr als eine Variable.
- $sin(x_1)$ ist keine lineare Funktion von x_1 .

Abschnitt 2

Der Gauß'sche Eliminationsalgorithmus

Zeilenvertauschungen

Wir betrachten nun einen Algorithmus um ein Gleichungssystem mit n Gleichungen und m Unbekannten systematisch zu vereinfachen und zu lösen.

Wir beginnen mit einer trivialen Beobachtung: Offensichtlich können Zeilen vertauscht werden, d.h. das Gleichungssystem

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1m}x_m = b_1,$$

 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2m}x_m = b_2,$

ist äquivalent zu dem Gleichungssystem

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2m}x_m = b_2,$$

 $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1m}x_m = b_1.$

Multiplikation mit Konstanten

Desweiteren sei $(x_1, x_2, ..., x_m)$ ein m-Tupel, welches die Gleichung

$$a_1x_1 + a_2x_2 + a_3x_3 + ... + a_mx_m = b,$$

erfüllt. Dann erfüllt es auch die Gleichung

$$(ca_1)x_1 + (ca_2)x_2 + (ca_3)x_3 + ... + (ca_m)x_m = cb$$

Umgekehrt gilt, daß für $c \neq 0$ jedes m-Tupel, welches die zweite Gleichung erfüllt, auch die erste Gleichung erfüllt.

Daraus folgt, daß man die linke und rechte Seite einer Gleichung mit einer konstanten Zahl *c* ungleich Null multiplizieren darf.

Addition von Zeilen

Die dritte elementare Umformung ist die folgende: Man darf eine Zeile durch die Summe dieser Zeile mit einer anderen Zeile ersetzen, d.h. die Gleichungssysteme

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1m}x_m = b_1,$$

 $a_{21}x_1 + a_{22}x_2 + ... + a_{2m}x_m = b_2,$

und

$$(a_{11} + a_{21}) x_1 + (a_{12} + a_{22}) x_2 + \dots + (a_{1m} + a_{2m}) x_m = b_1 + b_2,$$

$$a_{21} x_1 + a_{22} x_2 + \dots + a_{2m} x_m = b_2,$$

haben die gleichen Lösungen.

Der Gauß'sche Eliminationsalgorithmus

Mit Hilfe dieser drei elementaren Umformungen

- Zeilenvertauschungen
- Multiplikation mit Konstanten
- Addition von Zeilen

läßt sich ein Algorithmus zur systematischen Vereinfachung von linearen Gleichungssystemen angeben.

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1m}x_m = b_1,$$

 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2m}x_m = b_2,$
 $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3m}x_m = b_3,$
 \dots
 $a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots + a_{nm}x_m = b_n.$

$$1 \cdot x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1m}x_m = b_1,$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2m}x_m = b_2,$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3m}x_m = b_3,$$

$$\dots$$

$$a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots + a_{nm}x_m = b_n.$$

$$1 \cdot x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1m}x_m = b_1,$$

$$0 \cdot x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2m}x_m = b_2,$$

$$0 \cdot x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3m}x_m = b_3,$$

$$\dots$$

$$0 \cdot x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots + a_{nm}x_m = b_n.$$

$$1 \cdot x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1m}x_m = b_1,$$

$$0 \cdot x_1 + 1 \cdot x_2 + a_{23}x_3 + \dots + a_{2m}x_m = b_2,$$

$$0 \cdot x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3m}x_m = b_3,$$

$$\dots$$

$$0 \cdot x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots + a_{nm}x_m = b_n.$$

$$1 \cdot x_{1} + 0 \cdot x_{2} + a_{13}x_{3} + \dots + a_{1m}x_{m} = b_{1},$$

$$0 \cdot x_{1} + 1 \cdot x_{2} + a_{23}x_{3} + \dots + a_{2m}x_{m} = b_{2},$$

$$0 \cdot x_{1} + 0 \cdot x_{2} + a_{33}x_{3} + \dots + a_{3m}x_{m} = b_{3},$$

$$\dots$$

$$0 \cdot x_{1} + 0 \cdot x_{2} + a_{n3}x_{3} + \dots + a_{nm}x_{m} = b_{n}.$$

$$1 \cdot x_{1} + 0 \cdot x_{2} + a_{13}x_{3} + \dots + a_{1m}x_{m} = b_{1},$$

$$0 \cdot x_{1} + 1 \cdot x_{2} + a_{23}x_{3} + \dots + a_{2m}x_{m} = b_{2},$$

$$0 \cdot x_{1} + 0 \cdot x_{2} + 1 \cdot x_{3} + \dots + a_{3m}x_{m} = b_{3},$$

$$\dots$$

$$0 \cdot x_{1} + 0 \cdot x_{2} + a_{n3}x_{3} + \dots + a_{nm}x_{m} = b_{n}.$$

$$1 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \dots + a_{1m}x_m = b_1,
0 \cdot x_1 + 1 \cdot x_2 + 0 \cdot x_3 + \dots + a_{2m}x_m = b_2,
0 \cdot x_1 + 0 \cdot x_2 + 1 \cdot x_3 + \dots + a_{3m}x_m = b_3,
\dots
0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \dots + a_{nm}x_m = b_n.$$

Der Gauß'sche Eliminationsalgorithmus

Algorithmus

- **1** Setze i = 1 (Zeilenindex), j = 1 (Spaltenindex).
- 2 Falls $a_{ij} = 0$ suche k > i, so daß $a_{kj} \neq 0$ und vertausche Zeilen i und k.
- § Falls ein solches k aus Schritt 2 nicht gefunden werden kann, setze $j \rightarrow j+1$.
- Falls man in Schritt 3 den Wert j = m + 1 erreicht, beende den Algorithmus, andernfalls gehe zurück zu Schritt 2.
- Multipliziere Zeile i mit 1/aij.
- **5** Für alle Zeilen $k \neq i$ addiere zur Zeile k das $(-a_{kj})$ -fache der i-ten Zeile.
- **O** Setze $i \rightarrow i+1$ und $j \rightarrow j+1$.
- Falls man in Schritt 7 den Wert i = n + 1 oder den Wert j = m + 1 erreicht, beende den Algorithmus, andernfalls gehe zurück zu Schritt 2.

Notation

In der Praxis schreibt man das lineare Gleichungssystem

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + ... + a_{1m}x_m = b_1,$$

 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + ... + a_{2m}x_m = b_2,$
...
$$a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + ... + a_{nm}x_m = b_n.$$

wie folgt auf:

Dies ist ausreichend, da alle Umformungen nur auf die Koeffizienten a_{ij} und b_i wirken.

Beispiel

Wir betrachten das obige Beispiel:

$$3x_1 + 3x_2 + 9x_3 = 36,$$

 $2x_1 + 3x_2 + 7x_3 = 29,$
 $x_2 + 4x_3 = 14.$

Aufgeschrieben ergibt dies:

Umformungen

```
Multipliziere mit 1/3
36
29
12
29
     Addiere das (-2)-fache der 1. Zeile
14
     Addiere das (-1)-fache der 2. Zeile
 5
     Addiere das (-1)-fache der 2. Zeile
```

Umformungen (Fortsetzung)

```
Multipliziere mit 1/3
 Addiere das (-2)-fache der 3. Zeile
 Addiere das (-1)-fache der 3. Zeile
```

Ergebnis

Der Gauß'sche Eliminationsalgorithmus endete mit

Das lineare Gleichungssystem ist somit äquivalent zu dem Gleichungssystem

$$x_1 = 1$$

$$x_2 = 2,$$

$$x_3 = 3.$$

Der Rang eines linearen Gleichungssystems

Durch Umbenennung der Variablen $x_1, ..., x_m$ (dies ist gleichbedeutend mit Spaltenvertauschungen) lässt sich durch den Gauß'schen Eliminationsalgorithmus die folgende Form erreichen:

Man bezeichnet *r* als den Rang (engl. "rank").

Lösungen eines linearen Gleichungssystems

Das lineare Gleichungssystem hat keine Lösung, eine eindeutige Lösung oder mehrere Lösungen falls:

- Ist eine der Zahlen b_{r+1} , ..., b_n ungleich Null, so hat das lineare Gleichungssystem keine Lösung.
- Ist r = m und $b_{r+1} = ... = b_n = 0$, so gibt es eine eindeutige Lösung.
- Ist r < m und $b_{r+1} = ... = b_n = 0$, so gibt es mehrere Lösungen.

1. Fall: Keine Lösung

- Ist eine der Zahlen b_{r+1} , ..., b_n ungleich Null, so hat das lineare Gleichungssystem keine Lösung.
- In diesem Fall ist notwendigerweise r < n.

1 0	0 1	 0 0	$a_{1(r+1)} \\ a_{2(r+1)}$	 a _{1 m} a _{2 m}	b ₁ b ₂
0	0	 1	$a_{r(r+1)}$	 a_{rm}	b_r
0	0	 0	$a_{r(r+1)}$	 0	b_{r+1}
0	0	 0	0	 0	b_n

2. Fall: Eindeutige Lösung

- Ist r = m und $b_{r+1} = ... = b_n = 0$, so gibt es eine eindeutige Lösung.
- Dies beinhaltet auch den Spezialfall r = n. Für r = n ist $\{b_{r+1}, ..., b_n\} = \emptyset$ und der zweite Fall reduziert sich auf r = n = m.

3. Fall: Mehrere Lösungen

- Ist r < m und $b_{r+1} = ... = b_n = 0$, so gibt es mehrere Lösungen.
- Dies beinhaltet auch den Spezialfall r = n. Für r = n ist $\{b_{r+1}, ..., b_n\} = \emptyset$ und der dritte Fall reduziert sich auf auf r = n und r < m.

1	0	 0	$a_{1(r+1)}$	 a_{1m}	b_1
0	1	 0	$a_{1(r+1)}$ $a_{2(r+1)}$ $a_{r(r+1)}$ 0 0	 a_{2m}	b_2
0	0	 1	$a_{r(r+1)}$	 a _{rm}	b_r
0	0	 0	0	 0	0
0	0	 0	0	 0	0

Lösungen eines linearen Gleichungssystems

• Ist r < n und $b_{r+1} = ... = b_n = 0$, so reduzieren sich die Zeilen (r+1) bis n

auf die triviale Gleichung

$$0 = 0.$$

Diese Zeilen enthalten keine zusätzliche Information und können auch weggelassen werden.

Quiz

Für ein lineares Gleichungssystem mit vier Variablen x_1, x_2, x_3, x_4 liefert der Gauß'sche Eliminationsalgorithmus

- (A) Das Gleichungssystem hat keine Lösung.
- (B) Das Gleichungssystem hat die eindeutige Lösung $x_1 = 1$, $x_2 = 2$, $x_3 = 3$, $x_4 = 0$.
- (C) Das Gleichungssystem hat unendlich viele Lösungen, die auf einer Geraden im \mathbb{R}^4 liegen: $x_1 = 1 t$, $x_2 = 2 t$, $x_3 = 3$, $x_4 = t$.
- (D) Das Gleichungssystem hat unendlich viele Lösungen, die auf einer Ebene im \mathbb{R}^4 liegen: $x_1 = 1 t_2$, $x_2 = 2 t_2$, $x_3 = 3 + t_1$, $x_4 = t_2$.

Abschnitt 3

Anwendungen

Lineare Unabhängigkeit von Vektoren

Zur Erinnerung: m Vektoren \vec{v}_1 , \vec{v}_2 , ..., \vec{v}_m nennt man linear unabhängig, falls die Gleichung

$$\lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + ... + \lambda_m \vec{v}_m = \vec{0}$$

nur die Lösung $(\lambda_1, \lambda_2, ..., \lambda_m) = (0, 0, ..., 0)$ hat.

Andernfalls nennt man sie linear abhängig.

Ist der zugrundeliegende Vektorraum n-dimensional, so ergibt die obige Gleichung ausgeschrieben in Komponenten n lineare Gleichungen mit m Unbekannten $\lambda_1, \ldots, \lambda_m$.

Man kann nun mit Hilfe des Gauß'schen Eliminationsalgorithmuses feststellen, ob die Vektoren linear abhängig sind.

Beispiel

Sei

$$\vec{v}_1 = \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right), \quad \vec{v}_2 = \left(\begin{array}{c} 2 \\ 3 \\ 4 \end{array}\right), \quad \vec{v}_3 = \left(\begin{array}{c} -1 \\ -4 \\ -7 \end{array}\right).$$

Dies führt zu dem linearen Gleichungssystem

$$\lambda_1 + 2\lambda_2 - \lambda_3 = 0,$$

$$\lambda_1 + 3\lambda_2 - 4\lambda_3 \ = \ 0,$$

$$\lambda_1 + 4\lambda_2 - 7\lambda_3 \ = \ 0.$$

Lineare Unabhängigkeit von Vektoren

Wir formen dieses Gleichungssystem mit Hilfe des Gauß'schen Eliminationsalgorithmuses um:

1 1	2	-1 -4	0	Addiere das (-1) -fache der 1. Zeile Addiere das (-1) -fache der 1. Zeile
1	4	-7	0	Addiere das (-1) -fache der 1. Zeile
1	2	-1	0	Addiere das (-2) -fache der 2. Zeile
0	2	-3 -6	0	Addiere das (-2) -fache der 2. Zeile Addiere das (-2) -fache der 2. Zeile
0	1	5 -3 0	0	
0	0	0	0	

Lineare Unabhängigkeit von Vektoren

Somit gibt es mehrere Lösungen:

$$\lambda_1 = -5t, \quad \lambda_2 = 3t, \quad \lambda_3 = t, \quad t \in \mathbb{R}.$$

Die drei Vektoren sind linear abhängig.