3D Transformations: Review

3D Rotation

- Rotation about Z-axis
- Z-coordinate will not change
- ► Z' = Z
- If we ignore the Zcoordinate, it is 2-D transformation in XY plane

$$\begin{bmatrix} X' \\ Y' \\ Z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Rotation about Principal Axes

$$|X' = X \cos \alpha - Y \sin \alpha | Y' = Y \cos \gamma - Z \sin \gamma | Z' = Z \cos \beta - X \sin \beta$$

$$|Y' = X \sin \alpha + Y \cos \alpha | Z' = Y \sin \gamma + Z \cos \gamma | X' = Z \sin \beta + X \cos \beta$$

$$|Z' = Z | X' = X | Y' = Y | X' = X | Y' = Y | X' = X | X' = X$$

$$Y' = Y \cos \gamma - Z \sin \gamma$$

$$Z' = Y \sin \gamma + Z \cos \gamma$$

$$X' = X$$

$$X' = X \cos \alpha - Y \sin \alpha \quad Y' = Y \cos \gamma - Z \sin \gamma \quad Z' = Z \cos \beta - X \sin \beta$$

$$Y' = X \sin \alpha + Y \cos \alpha \quad Z' = Y \sin \gamma + Z \cos \gamma \quad X' = Z \sin \beta + X \cos \beta$$

$$Z' = Z \quad X' = X \quad Y' = Y$$

Rotation about Principal Axes

$$X' = X \cos \alpha - Y \sin \alpha$$

$$Y' = X \sin \alpha + Y \cos \alpha$$

$$Z' = Z$$

Rotation about Z

$$\begin{bmatrix} \cos \alpha & -\sin \alpha & 0 & 0 \\ \sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation about X

Γ1	0	0	0
0	$\cos \gamma$	$-\sin\gamma$	0
0	$\sin \gamma$	$\cos \gamma$	0
0	0	0	1_

Rotation about Y

$$\begin{bmatrix} \cos \beta & 0 & \sin \beta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \beta & 0 & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Concatenation of Rotations

Rotation around X by γ followed by rotation around Y by β followed by rotation around Z by α

$$R = R_{\alpha}^{Z} R_{\beta}^{Y} R_{\gamma}^{X}$$

$$R = \begin{bmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta \sin \gamma - \sin \alpha \cos \gamma & \cos \alpha \sin \beta \cos \gamma + \sin \alpha \sin \gamma \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta \sin \gamma + \cos \alpha \cos \gamma & \sin \alpha \sin \beta \cos \gamma - \cos \alpha \sin \gamma \\ -\sin \beta & \cos \beta \sin \gamma & \cos \beta \cos \gamma \end{bmatrix}$$

Interpretation of Rotation Matrices

How do I visualize this rotation?

Properties of Rotation Matrices

A rotation matrix transforms its own rows onto the principal axes

$$\begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \begin{bmatrix} r_{11} \\ r_{12} \\ r_{13} \end{bmatrix} = ?$$

$$\begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \begin{bmatrix} r_{31} \\ r_{32} \\ r_{33} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \begin{bmatrix} r_{11} \\ r_{12} \\ r_{21} \end{bmatrix} = ? \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \begin{bmatrix} r_{21} \\ r_{21} \\ r_{21} \\ r_{31} & r_{32} \\ r_{23} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Rotation about Arbitrary Axis

- To rotate about an axis **n** by an angle θ
- Set up rotations such that n rotates onto one of the principal axis [How?]
- 2. Rotate about that axis by heta
- Undo the transformations in step 1

Rotation about Arbitrary Axis

• Question: Given an arbitrary 3D rotation matrix, how can we find out the axis \mathbf{n} and the angle θ that represents this rotation?

Given R on the left, how can we tell n and θ ?

Eigenvectors and Values of a Rotation Matrix

- lacktriangleright 3D rotation matrix has eigenvalues of 1, cos θ + i sin θ and cos θ -i sin θ
- The eigenvector associated with the real eigenvalue represents the axis of rotation [proof?]

Summary: 3D Rotation Matrices

Rotations about Principal Axes

$$\begin{bmatrix} \cos \alpha & -\sin \alpha & 0 & 0 \\ \sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \gamma & -\sin \gamma & 0 \\ 0 & \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \beta & 0 & \sin \beta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \beta & 0 & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

About origin, in right handed coordinate system, counter clockwise when looking towards origin from positive axis

- Rotation matrix is orthonormal with Determinant of +1 and 3 dof
- Inverse of a rotation matrix is its transpose
- Concatenation of Rotations is also a rotation
- IMP: A rotation matrix transforms its own rows onto the principal axes

- Any 3D rotation matrix can be described as rotation about an axis $\bf n$ by an angle θ
- To rotate about given axis **n** by θ :
 - Rotate axes onto a principal axis
 - Two ways: by computing principal rotations or by composing appropriate matrix through cross products
 - Rotate about principal axes and then undo the earlier transformation
- To compute **n** and θ from a 3D rotation matrix
 - n is the eigenvector corresponding to the real eigenvalue of 1
 - θ can be computed by the other 2 eigenvalues, which are $\cos \theta \pm i \sin \theta$

Hierarchy of 3D Transformations

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\left[\begin{array}{c c} I & t\end{array}\right]_{3 imes 4}$	3	orientation	
rigid (Euclidean)	$\left[\begin{array}{c c} R & t\end{array}\right]_{3 imes 4}$	6	lengths	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{3 imes 4}$	7	angles	\Diamond
affine	$\left[\begin{array}{c}A\end{array} ight]_{3 imes4}$	12	parallelism	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{4 imes 4}$	15	straight lines	

Summary: 2D and 3D Transformations

- Image Registration
- 2D Transformations
 - Scaling
 - Shear
 - Rotation
 - Translation
- Inverse Transformations
- Rotation about an arbitrary point
- Concatenation of transformations
- Order of transformations
- Factorization of Transformations

- Displacement Models
 - Rigid / Euclidean
 - Similarity
 - Affine
 - Projective
 - Billinear, biquadratic etc
- Recovering the best affine transformation
 - Least Squared Error solution
 - Pseudo inverse
- Image Warping
- 3D Transformations
 - Rotations about Principal Axes
 - Rotations about Arbitrary Axes
- Properties of Rotation Matrices

Camera Models: Introduction

Modeling a Camera

Modeling a Camera

Shutter and Aperture

Aperture vs Shutter speed

- If **shutter speed** is doubled, and **aperture area** is doubled, the same amount of light should enter the camera
- Therefore, to shoot an image, there are several valid combinations of aperture and shutter speed
- High shutter speed: for fast moving objects
- Large aperture: low depth of field

Focus

- In general, any single point on the film can have light coming from different directions
- Therefore a single point in the world may be mapped to several locations in the image
- This generates blur
- To remove blur, all rays coming from a single world point must converge to a single image point

Example of Shallow Depth of Field

Pinhole Camera

- Lens is assumed to be single point
- Infinitesimally small aperture
- ▶ Has infinite depth of field i.e. everything is in focus

Fundamentals of Computer Vision – Summer 2012

Pinhole Camera Properties: Distant objects are smaller

Slide Credit: Forsyth/Ponce http://www.cs.berkeley.edu/~daf/bookpages/slides.html and Khurram Shafique, Object Video

Pinhole Camera Properties

- Lines map to lines
- Polygons map to polygons
- Parallel lines meet

Pinhole Camera Properties: Parallel Lines Converge

Pinhole Camera Properties: Parallel Lines Converge

Pinhole Camera

Advantage

- Because of small aperture, everything is in focus (infinite depth of field)
- Simple construction

Disadvantage

Small aperture requires
 high exposure time, often
 too long for practical
 purposes

Another Type of Camera: Orthographic Camera

 Parallel Lines remain parallel and do not converge (also termed parallel projection)

Image Formation: The Pin-Hole Camera

- Orient along z-axis
- World point (X,Y,Z) [in world coordinates]
- Image point at (x,y,z) [in real world coordinates]

Equation relating world coordinate and image coordinate?

$$\frac{-y}{Y} = \frac{f}{Z}$$

$$y = -\frac{fY}{Z} \qquad x = -\frac{fX}{Z}$$

It is customary to use a negative sign to indicate that the image is always formed upside down

- This relates the camera frame to the real image frame
- Example:
 - I take the image of a person (2m tall) standing 4m away from the camera, with a 35 mm camera using the geometry shown previously. How high will be the image?
 - Answer: y = -(35)(2000)/4000 = -17.5mm
 - i.e, the image will be formed inverted of length 17.5 mm
- How to convert to pixel frame (i.e. what will be the coordinates of the head of the person in the image?

- Suppose I know that the size of the film is 8cm x 6cm, and that the resolution of the camera is 640 x 480 pixels
- Implies, the center of the image is at 4cm x 3cm from the corner, and is at location (240, 320)
- Image will first be made right side up
- ▶ 17.5mm out of 60mm is 140 out of 480 pixels
- Hence the coordinates of the head will be (240-140 in x, same in y) = (100, 320)

We can write this as a matrix using the homogeneous coordinates

$$\begin{bmatrix} hx \\ hy \\ h \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

More General Perspective Camera Model

$$\begin{bmatrix} hx \\ hy \\ h \end{bmatrix} = \begin{bmatrix} m_x f & 0 & p_x & 0 \\ 0 & m_y f & p_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

- m_x and m_y are scaling, to convert to pixels
 - $m_x = \text{#of pixels in x direction / size of CCD array in x direction}$
 - $m_v = \text{#of pixels in y direction / size of CCD array in y direction}$
- p_x and p_y are principal point offset

38

$$\begin{bmatrix} hx \\ hy \\ h \end{bmatrix} = \begin{bmatrix} m_x f & 0 & p_x & 0 \\ 0 & m_y f & p_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Perspective Camera
 Model for the case when camera axes and world axes are aligned

- This is for the case when the camera's optical axis is aligned with the world z-axis
 - Or: it relates camera frame to real image frame
- What if that is not the case?

Camera Model

- If the camera is moved **C** from the origin, we should move the world point by -**C**
- Then the perspective transform equation will be applicable
- Same holds for rotations

- In general, the camera center is at a rotation of R^T , followed by a translation of C from the world origin
- Then

$$\begin{bmatrix} hx \\ hy \\ h \end{bmatrix} = \begin{bmatrix} m_x f & 0 & p_x & 0 \\ 0 & m_y f & p_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -C_X \\ 0 & 1 & 0 & -C_Y \\ 0 & 0 & 1 & -C_Z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Commonly used form for canonical view

$$\begin{bmatrix} hx \\ hy \\ h \end{bmatrix} = \begin{bmatrix} m_x f & 0 & p_x \\ 0 & m_y f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$h\bar{\mathbf{x}} = \mathbf{K} \left[\mathbf{I}_{3\times 3} | \mathbf{0}_{3\times 1} \right] \mathbf{X}$$

Perspective Camera Model

Canonical View
$$\begin{bmatrix} hx \\ hy \\ h \end{bmatrix} = \begin{bmatrix} m_x f & 0 & p_x \\ 0 & m_y f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

General View
$$\begin{bmatrix} hx \\ hy \\ h \end{bmatrix} = \begin{bmatrix} m_x f & 0 & p_x \\ 0 & m_y f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\mathbf{x} = \mathbf{K}[\mathbf{R} \mid \mathbf{T}]\mathbf{X}$$

$$\mathbf{x} = \mathbf{K}\mathbf{R}\left[\mathbf{I} \mid -\mathbf{C}\right]\mathbf{X}$$

T – Translation needed to bring camera to world origin

T = -RC where C is the vector to camera center