Uber Load-Rebalancing for Predictable Demand Spikes

April 30, 2018

Concept

Problem

Handling demand spikes is a difficult problem, currently being resolved using surge pricing.

Observation

Not all demand spikes are unpredictable

Goal

Create a proactive policy
in place of a reactive
policy to maximize
revenues during
predictable demand spikes

Model Details

Model Overview

- Model 1 Relocation with Perfect Prediction
- Model 2 Sensitivity of Relocation Cost and Incremental Revenue
- Model 3 Simulation with Perfect Prediction
- Model 4 Simulation with Imperfect Prediction

Model Parameters

Parameter	Description	Parameter Type
X _{ij}	P(customer in location i selects Uber in location j)	Estimated
c _{ij}	Cost(relocating Uber from location i to location j)	Estimated
N _{0j}	# of Ubers in location j BEFORE relocation	Estimated
N _{1j}	# of Ubers in location j ATER relocation	Model Output
D _j	True Demand in location j	Estimated / Model Parameter
r	Revenue from pickup up a customer	Estimated
m _{ij}	# of Ubers relocated from location i to location j	Model Output / Decision Variable
y_{ij}	# of people who open app in location i matched with car from location j	Model Output / Decision Variable

Model 1 - Relocation with Perfect Prediction

$$egin{aligned} \max \sum_i \sum_j y_{ij} x_{ij} r - m_{ij} c_{ij} \ & ext{such that } N_{1j} = N_{0j} + \sum_i m_{ij} - \sum_i m_{ji} \quad orall j \ &N_{0j} \geq \sum_i m_{ji} \quad orall j \ &y_{ij} \geq 0 \quad orall i, j \ &\sum_j y_{ij} \leq D_j \quad orall i \ &\sum_j y_{ij} x_{ij} \leq N_{1j} \quad orall j \end{aligned}$$

13.7%

Increase of Total Profit

Model 2 - Sensitivity of Relocation Cost and Revenue

$$egin{aligned} \max \sum_i \sum_j lpha \cdot y_{ij} x_{ij} r - (1-lpha) \cdot m_{ij} c_{ij} \ & ext{such that } N_{1j} = N_{0j} + \sum_i m_{ij} - \sum_i m_{ji} \quad orall j \ & N_{0j} \geq \sum_i m_{ji} \quad orall j \ & y_{ij} \geq 0 \quad orall i, j \ & \sum_j y_{ij} \leq D_j \quad orall i \ & \sum_i y_{ij} \leq N_{1j} \quad orall j \end{aligned}$$

Model 3 - Simulation with Perfect Prediction

After moving cars inwards based on optimization predictions, we can expand profits *given* that there is indeed a demand spike big enough.

Model 4 - Simulation with Imperfect Prediction

As long as we don't overestimate demand by more than 4%, our model is robust.

Conclusion

Additional Analyses

- Finding the optimal surge price
- Identifying the demand spike threshold
- Developing incentives program to not undersupply or oversupply

Additional Economic Benefits

- Drivers have reliable places to go
- Less frequent surge pricing
- More customer loyalty