(reate a $2^2 \times 1$ MUX that implements the function $f(x,y,z) = x^2y + y^2$, using yz as control lines Provide the MUX's output expression

1) Write the binary values possible for xyz

				•
table	<u>×</u>	y	2	row #
1	0	0	0	0
,	0	0	١	1
X, 1	0	I	0	2
(0	١	_	3
	ر ا م	0	0	4
) 1	0	١	5
χ *	١	١	0	6
	1	١	1	7

+
2) Decompose x'y + y'z' into their literal numeric values:

find the rows in the table where:

3) Draw a table with headers for all the Mux inputs. Since the Mux is a 4x1 Mux, then it will have 4 inputs: Io ... Iz

$$I_0$$
 I_1 I_2 I_3
 X^1 0 1 2 3 \rightarrow rows in table 1 where \times is 0
 \times 4 5 6 7 \rightarrow rows in table 1 where \times is 1

-According to the problem statement, y and z will be used for the select lines, so the remaining variables, X in this case, will be used for the inputs to the MUX.

So if we take a look at table 1, we identify all the values where x is 0 and where x is 1

- When \times is 0, we can represent it as \times ?
When \times is 1, we can represent it as just \times

- 5) Designate a value for In depending on what is being circled:
 - If all numbers in the column for In are circled, then:

$$I_n = 1$$

- If no numbers are circled:

$$I_n = 0$$

6) Draw the MUX:

- If only one or a few are circled, then
In is assigned an expression that corresponds
to the variable of the row in which the
circled number is in:

eg. in table 2, the number 2 is circled in row x^2 , so $I_2 = x^2$ and likewise, $I_3 = x^2$

7) Finally, we write the output expression of the MUX, which will be a sum of minterms, where each minterm will contain an In variable.

$$I_0yz + I_1yz + I_2yz + I_3yz$$

This is just the skeleton of the expression. The numbers in green are designating numeric values to yz, counting upwards.

For the actual expression, we will negate y and z in accordance to these numbers.

substitute the In terms with their appropriate value:

$$(1)y'z' + (0)y'z + x'yz' + x'yz = (y'z') + x'yz' + x'yz$$