Problem 5.2b: Let  $\mathbb{F}$  be an ordered field. Prove: For all  $n \in \mathbb{N}$ , if  $a_1 \in \mathbb{F}$ ;  $a_2 \in \mathbb{F}$ ; ... $a_n \in \mathbb{F}$ , and  $\sum_{k=1}^{n} a_k^2 = 0$ , then  $a_1 = a_2 = a_3 = \dots = a_n = 0$ .

*Proof.* Assume  $n \in \mathbb{N}$ . We need to prove two claims.

i. We want to show that: If for n=1, then if  $a_1,...,a_n \in \mathbb{F}$  and  $\sum_{k=1}^n a_k^2 = 0$ , then  $a_1 = a_2 = ... = a_n = 0$ .

Assume n = 1. Assume  $a_1, ..., a_n \in \mathbb{F}$ . So  $a_1 \in \mathbb{F}$ . Assume  $\sum_{k=1}^n a_k^2 = 0$ , meaning

$$\sum_{k=1}^{n} a_k^2 = \sum_{k=1}^{1} a_k^2 = a_1^2 = 0$$

So  $a_1^2 = 0$ . By trichotomy, we can imply that  $a_1 = 0$ .

So we have proved that for n = 1, then if  $a_1, ..., a_n \in \mathbb{F}$  and  $\sum_{k=1}^n a_k^2 = 0$ , then  $a_1 = a_2 = ... = a_n = 0$ .

ii. We also want to show that: If for  $n = n_0$ , if  $a_1, ..., a_n \in \mathbb{F}$  and  $\sum_{k=1}^{n} a_k^2 = 0$ , then  $a_1 = a_2 = ... = a_n = 0$ , then for  $n = n_0 + 1$ , if  $a_1, ..., a_n \in \mathbb{F}$  and  $\sum_{k=1}^{n} a_k^2 = 0$ , then  $a_1 = a_2 = ... = a_n = 0$ .

Assume for  $n = n_0, a_1, ..., a_{n_0} \in \mathbb{F}$  and  $\sum_{k=1}^n a_k^2 = 0$  then  $a_1 = a_2 = ... = a_{n_0} = 0$ . We want to prove that for  $n = n_0 + 1$ , if  $b_1, b_2, ..., b_n \in \mathbb{F}$  and  $\sum_{k=1}^n b_k^2 = 0$  then  $b_1 = b_2 = ... = b_n = 0$ .

Assume  $b_1, b_2, ... b_{n_0+1} \in \mathbb{F}$  and  $\sum_{k=1}^{n_0+1} b_k^2 = 0$ . We let  $a_1 = b_1 = a_2 = \sum_{k=1}^{n_0+1} b_k^2 = 0$ .

 $b_2 = \dots = a_{n_0} = b_{n_0} = 0$ . And so we have  $\sum_{k=1}^{n_0} b_k^2 = 0$ . Consider

$$\sum_{k=1}^{n_0} b_k^2 + b_{n_0+1}^2 = b_{n_0+1}^2$$

 $\sum_{k=1}^{n_0+1} b_k^2 = b_{n_0+1}^2$ 

But our assumption says  $\sum_{k=1}^{n_0+1} b_k^2 = 0$ . So  $b_{n_0+1}^2 = 0$ . So  $b_{n_0+1} = 0$ . And so we have  $b_1 = b_2 = \dots = b_{n_0} = b_{n_0+1} = 0$ .

Proving both claim (i) and (ii) completes our proof by induction on n.  $\square$ 

