

IIC1253 — Matemáticas Discretas — 1' 2019

PAUTA TAREA 4

Pregunta 1

Pregunta 1.1

El objetivo era demostrar la existencia de la clausura simétrica, para lo cual vamos a ver que $R^S = R \cup R^{-1}$. Para probar que R^S es efectivamente la clausura simétrica, debemos comprobar lo siguiente:

- $R \subseteq R^S$. Claramente cierto dado que $R \subseteq R \cup R^{-1}$.
- R^S es simétrica. Suponemos que $(a,b) \in R$, entonces $(b,a) \in R^{-1}$ y por lo tanto, $R^S = R \cup R^{-1}$ es simétrica. De igual manera, podemos suponer que $(a,b) \in R^{-1}$ y entonces $(b,a) \in R$, concluyendo lo mismo
- Para cualquier otra R' simétrica tal que $R \subseteq R'$, se cumple que $R^S \subseteq R'$. Tomamos $(a,b) \in R^S$, entonces hay dos casos:
 - 1. $(a,b) \in R$, entonces $(a,b) \in R'$ dado que $R \subseteq R'$.
 - 2. $(a,b) \in R^{-1}$, entonces $(b,a) \in R$ y como R' es simétrica, se cumple que $(a,b) \in R'$.

Por lo tanto, $R^S \subseteq R'$.

El puntaje fue otorgado de la siguiente manera:

- (4 puntos) Demuestra las 3 características de la clausura simétrica, de manera clara y precisa.
- (3 puntos) Demostración con pequeños errores u omisiones en alguna de las características.
- (0 puntos) Otros casos.

Pregunta 1.2

En esta pregunta, había que mostrar que la clausura conexa $\mathbb{R}^{\mathbb{C}}$ no siempre existe. Una manera directa de mostrar esto, es creando un contraejemplo. Se propone el siguiente:

$$R = \{(a, a), (b, b)\}$$

Y se definen:

$$R_1 = \{(a, a), (b, b), (a, b)\}$$

$$R_2 = \{(a, a), (b, b), (b, a)\}$$

Es fácil ver que $R \subseteq R_1$ y $R \subseteq R_2$ y que R_1 y R_2 son conexas. La idea entonces era notar que no puede existir la clausura conexa pues esta debería estar contenida tanto en R_1 como en R_2 , lo cual llevará a una contradicción.

- (4 puntos) El contraejemplo es correcto y la explicación es clara
- (3 puntos) El contraejemplo es correcto o tiene errores menores y/o la explicación no es clara.
- (0 puntos) Otros casos.

Pregunta 2

Pregunta 2.1

- Refleja: Supongamos una secuencia $s \in S$, debemos demostrar que $(s,s) \in R$. Aplicando la función f(x) = x a una secuencia $s = a_0 a_1 ...$, obtenemos que $f(s) = f(a_0) f(a_1) ... = a_0 a_1 ... = s$, por lo que $(s,s) \in R$, es decir, R es refleja.
- Transitiva: Supongamos que $(s, s') \land (s', s'') \in R$, debemos demostrar que $(s, s'') \in R$. Como $(s, s') \in R$, entonces existe $f: \mathbb{N} \to \mathbb{N}$, tal que f(s) = s'. Además como $(s', s'') \in R$, entonces existe $g: \mathbb{N} \to \mathbb{N}$, tal que g(s') = s''. Finalmente como f(s) = s', entonces g(f(s)) = s'', por lo tanto $(s, s'') \in R$ y R es transitiva.
- No simétrica: Por contraejemplo, supongamos que $(s,s') \in R$ bajo la función f(x) = 0, es decir, f(s) = 0000000... = s', sin embargo, no existe $g : \mathbb{N} \to \mathbb{N}$ tal que g(s') = s, por lo tanto $(s',s) \notin R$, lo que implica que R no es simétrica.

El puntaje fue otorgado de la siguiente manera:

- (4 Puntos) Los tres puntos demostrados correctamente.
- (3 Puntos) Dos de los tres puntos demostrados correctamente.
- (0 Puntos) En otros casos.

Pregunta 2.2

Para que R^* sea orden de equivalencia debemos demostrar que es refleja, simétrica y transitiva.

- 1. **Refleja:** Supongamos una secuencia $s \in S$, debemos demostrar que $(s,s) \in R^*$. Sabemos que R es refleja, por lo que $(s,s) \in R$, luego, por definición de relación inversa, $(s,s) \in R^{-1}$, por lo tanto $(s,s) \in R^*$ y R^* es refleja.
- 2. **Transitiva:** Supongamos que $(s,s') \land (s',s'') \in R^*$, debemos demostrar que $(s,s'') \in R^*$. Como $(s,s') \in R^*$, entonces $(s,s') \land (s',s'') \in R$, por lo que $(s',s) \land (s'',s') \in R^{-1}$. Además $(s,s') \land (s',s'') \in R^{-1}$, por lo que $(s',s) \land (s'',s') \in R$. Luego, por transitividad de R, $(s,s'') \land (s'',s) \in R$ y por inversa $(s,s'') \in R^{-1}$, por lo tanto $(s,s'') \in R^*$ y R^* es transitiva.
- 3. Simétrica: Supongamos $(s, s') \in R^*$, debemos demostrar que $(s', s) \in R^*$. Como $(s, s') \in R^*$, entonces $(s, s') \in R$, lo que significa que $(s', s) \in R^{-1}$. Además $(s, s') \in R^{-1}$, por lo que $(s', s) \in R$. Por lo anterior, $(s', s) \in R^*$ y R^* es simétrica.

Por último, para explicar las clases de equivalencia de R^* una posible explicación es la siguiente: para un $s=a_0,a_1,\ldots$ cualquiera, considere la relación sobre R_s sobre los naturales tal que $(i,j)\in R_s$ si, y solo si, $a_i=a_j$. Entonces la clase de equivalencia de s según R^* corresponde a todos los s' tal que $R_s=R_{s'}$. En otras palabras, todas las secuencias que coinciden en la igualdad de los valores en los mismos puntos.

El puntaje fue otorgado de la siguiente manera:

- (4 Puntos) Los cuatro puntos demostrados correctamente.
- (3 Puntos) Tres de los cuatro puntos demostrados correctamente.
- (0 Puntos) En otros casos

Pregunta 2.3

Para demostrar que \mathcal{R} es orden parcial debemos demostrar que es refleja, antisimétrica y transitiva.

- 1. **Refleja:** Supongamos una clase de equivalencia $C \in \mathcal{R}$. Sabemos que como es clase de equivalencia no es vacía, por lo tanto $\exists s \in C$. Luego, como R es refleja, entonces $(s,s) \in R$, por lo que $(C,C) \in \mathcal{R}$ y \mathcal{R} es refleja.
- 2. **Transitiva:** Supongamos $(C_1, C_2) \land (C_2, C_3) \in \mathcal{R}$, debemos demostrar que $(C_1, C_3) \in \mathcal{R}$. Por lo anterior $\exists s_1 \in C_1 \land \exists s_2 \in C_2$ tales que $(s_1, s_2) \in R$ y también $\exists s_2' \in C_2 \land \exists s_2 \in C_2$ tales que $(s_1, s_2) \land (s_2', s_3) \in R$. Luego, como $(s_2, s_2') \in C_2$, entonces $(s_2, s_2') \in R^*$, por lo que $(s_2, s_2') \in R$. Finalmente como $(s_1, s_2) \land (s_2, s_2') \land (s_2', s_3) \in R$, por transitividad de R, $(s_1, s_3) \in R$, lo que significa que $(C_1, C_3) \in \mathcal{R}$ y \mathcal{R} es transitiva.
- 3. Antisimétrica: Supongamos $(C_1, C_2) \in \mathcal{R}$ y $(C_2, C_1) \in \mathcal{R}$, debemos demostrar que $C_1 = C_2$. Por lo anterior $\exists s_1 \in C_1 \land \exists s_2 \in C_2$ tales que $(s_1, s_2) \in R$ y también $\exists s_2' \in C_2 \land \exists s_1' \in C_1$ tales que $(s_1, s_2) \land (s_2', s_1') \in R$. Luego, como $(s_2, s_2') \in C_2$, entonces $(s_2, s_2') \in R^*$, por lo que $(s_2, s_2') \in R$. Finalmente como $(s_1, s_2) \land (s_2, s_2') \land (s_2', s_1) \in R$, por transitividad de R, $(s_1, s_1') \in R$, lo que significa que $C_1 = C_2$ y \mathcal{R} es antisimétrica.

El puntaje fue otorgado de la siguiente manera:

- (4 Puntos) Los tres puntos demostrados correctamente.
- (3 Puntos) Dos de los tres puntos demostrados correctamente.
- (**0 Puntos**) En otros casos