

Erozja

» Erozja jedna z dwóch najprostszych operacji morfologicznych

» Wykorzystuje element strukturalny SE:

1	1	1
1	1	1
1	1	1

{ (-1, -1), (0, -1), (1, -1), (-1, 0), (0, 0), (1, 0),

Set of coordinate points =

Element strukturalny SE

- » SE może mieć różne rozmiary
- » Zazwyczaj, przyjmuje wartości 0,1 lub NIC !!!
- » Mogą pojawić się "Puste miejsca" w SE.

		1	1	1		
	1	1	1	1	1	
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
	1	1	1	1	1	
		1	1	1		

1	1	
1	(0)	
1		0

1	1	1
1	٩	1
1	1	1

Dylatacja & Erozja

- » Podstawowe operacje.
- » Są swoim dopełnieniem:
 - Erozja "kurczy" obiekty, "rozszerza" tło

 Dylatacja "rozszerza" obiekty, "kurczy" tło

Przykład erozji

» Wykorzystuje element SE:

1	1	1
1	1	1
1	1	1

Set of coordinate points =

Przykład dylatacji

Czy obraz jest jaśniejszy czy ciemniejszy? Czy można na tej właściwości zdefiniować erozję?

Operacje morfologiczne

Operacje morfologiczne dla obrazów w skali szarości:

- Erozja -> Filtr Minimalny
- Dylatacja -> Filtr Maksymalny

Wyjaśnienie -> tablica

Detekcja krawędzi - BW

- 1. Dylatacja obrazu wejściowego
- Odejmij obraz wejściowy od obrazu po dylatacji
- 3. Pozostają tylko krawędzie

Otwarcie & Zamknięcie

- » Bazują na operacjach podstawowych:
 - Dylatacja
 - Erozja
- » Zwykle stosowane do obrazów BW, ale można stosować do obrazów w skali szarości
- » Otwarcie i zamknięcie dopełniają się na wzjaem

Otwarcie

- » Podobna do erozji
 - Usuwa zakłócenia impulsowe
- » Erozja, następnie dylatacja
- » Taki sam SE dla obu operacji.
- » SE zawiera tylko 1.

Otwarcie

» SE: kwadrat 3x3

Otwarcie - przykład

» Otwarcie, dysk – 11 pikseli

Otwarcie - przykład

» SE: 3x9 i 9x3

Otwarcie – skala szarości

» SE: 5x5

Zamknięcie

Zamknięcie

- » Podobne do dylatacji
 - Usuwa otwory
- » Zamknięcie jest definiowane jako Dylatacja, a następnie Erozja z wykorzystaniem tego samego SE dla obu operacji.
- » Dylatacja, następnie erozja!
- » SE, zawiera tylko jedynki!

Zamknięcie

» SE: kwadrat 3x3

Zamknięcie - przykład

- 1. Progowanie
- 2. Zamknięcie SE: dysk 20

Progowanie

Zamknięcie^{2-Mar-20}

Zamknięcie – skala szarości

» SE – kwadrat 5x5

Morfologia - podsumowanie

Rozmiar SE

Erozja SE 5x5

Erozja SE 15x15

Rozmiar SE

Dylatacja SE 5x5

Dylatacja SE 15x15

E-D SE 5x5

D-E SE 5x5

Krawędź

I-erode(I,ones(3,3))

dilate(I,ones(3,3))-I

Transformacja odległości

» Przykład obliczeniowy -> tablica

Transformacja Odległości

Image features (2D)

Distance Transform

1	0	1	2	3	4	3	2
1	0	1	2	3	3	2	1
1	0	1	2	3	2	1	0
1	0	0	1	2	1	0	1
2	1	1	2	1	0	1	2
3	2	2	2	1	0	1	2
4	3	3	2	1	0	1	2
5	4	4	3	2	1	0	1

Source: Yuri Boykov

obraz

krawędzie

Transformacja odległości

Matlab -> bwdist

Problem Anizotropii vs odległość

0	0	0	0	0	0	0	0	0	0	2.8	2.2	2	2	2	2	2	2	2.2	2.8	4.5	2.8	2	2	2	2	2	2	2.8	4.5
0	0	0	0	0	0	0	0	0	0	2.2	1.4	1	1	1	1	1	1	1.4	2.2	4.1	2.2	1	1	1	1	1	1	2.2	4.1
0	0	1	1	1	1	1	1	0	0	2	1	0	0	0	0	0	0	1	2	4	2	0	0	0	0	0	0	2	4
0	0	1	0	0	0	0	1	0	0	2	1	0	1	1	1	1	0	1	2	4	2	0	1	1	1	1	0	2	4
0	0	1	0	0	0	0	1	0	0	2	1	0	1	2	2	1	0	1	2	4	2	0	2	2	2	2	0	2	4
0	0	1	0	0	0	0	1	0	0	2	1	0	1	2	2	1	0	1	2	4	2	0	2	2	2	2	0	2	4
0	0	1	0	0	0	0	1	0	0	2	1	0	1	1	1	1	0	1	2	4	2	0	1	1	1	1	0	2	4
0	0	1	1	1	1	1	1	0	0	2	1	0	0	0	0	0	0	1	2	4	2	0	0	0	0	0	0	2	4
0	0	0	0	0	0	0	0	0	0	2.2	1.4	1	1	1	1	1	1	1.4	2.2	4.1	2.2	1	1	1	1	1	1	2.2	4.1
0	0	0	0	0	0	0	0	0	0	2.8	2.2	2	2	2	2	2	2	2.2	2.8	4.5	2.8	2	2	2	2	2	2	2.8	4.5
(a) (b)												(0	c)																

Figure 3: Exemplary results of EDT for isotropy and anisotropy data. (a) Binary image; (b) EDT for isotropy data (1mm pixel spacing); (c) EDT for anisotropy data (1mm in vertical direction, 2mm in the horizontal direction). 1.4, 2.2, 2.8, 4.1, 4.5 represent $\sqrt{2}$, $\sqrt{5}$, $\sqrt{8}$, $\sqrt{17}$, $\sqrt{20}$, respectively.

Przykład obliczeniowy -> tablica