

Me...

Emails me: start with "[MLAI]" in the subject title

- Email: yingjiezhang@gsm.pku.edu.cn
- Office hour: Wed 10-11am; or by appointment
- Website: sites.google.com/view/yingjiezhang/home
- My Research:
 - <u>Topics</u>: Mobile and Sensor Technologies, Big Data and Smart City, User-generated Content, Sharing Economy, and Social Media.
 - Methodologies: Econometrics, Machine Learning, Text Mining, and Field Experiment.

Teaching Assistant

Guangxin Yang (杨广鑫)

- 2nd PhD Student in Marketing
- Email: ygx@stu.pku.edu.cn.
- TA session: Saturday 10:00-11:00; or by appointment
- A novice at ML with you guys. Debug Python code together!

What is MACHINE LEARNING

Machine Learning

Learning to drive an autonomous vehicle (robotics)

Tesla Self-Driving cars

Uber Self-Driving services

Learning to beat the masters at go games (Games/Reasoning)

Learning to recognize handwriting (computer vision)

Learning to recognize spoken words (speech recognition)

Learning to...

identify spam emails

suggest people you may know

recommend movies

. . .

Search results are optimized for ad revenues

Search results are optimized for ad revenues

魏则西事件五周年

相关组织机构

青年魏则西去世五周年

时间: 2016年4月12日

2016年4月12日,21岁的魏则西因滑膜肉瘤去世,在其生前求医过程中,通过百度搜索到武警北京总队第二医院,被该医院宣传的"生物免疫疗法"、"斯坦福技术"所骗,花费不赀却未收获任何效果,贻误合理治疗时机。魏则西去世后,莆田系医院虚假宣传、百度搜索竞价排名、部队医院对外承包混乱等问题引发社会强烈关注。

- Search results are optimized for ad revenues
- An autonomous vehicle is permitted to drive unassisted on the road

- Search results are optimized for ad revenues
- An autonomous vehicle is permitted to drive unassisted on the road

- Search results are optimized for ad revenues
- An autonomous vehicle is permitted to drive unassisted on the road

31岁企业家驾驶蔚来ES8车祸身亡,行驶数据浮出水面

2021年08月15日 19:22:36

来源: 北京青年报

1595人参与 420评论

්

日前,一则蔚来ES8"自动驾驶"发生车祸死亡的事件引起网友关注。8月15日,疑似涉事车辆行驶数据曝光。

31岁创始人驾驶ES8车祸身亡

8月14日,认证名为"美一好"的个人公众号发布讣告称,2021年8月12日下午2时,上善若水投资管理公司创始人、意统天下餐饮管理公司创始人、美一好品牌管理公司创始人林文钦(昵称"萌剑客"),驾驶蔚来ES8汽车启用自动驾驶功能(NOP领航状态)后,在沈海高速涵江段发生交通事故,不幸逝世,终年31岁。

×

美一好>

•••

讣告 | 我们的"萌剑客"走了

2021年8月12日下午2时,上善若水投资管理公司 创始人、意统天下餐饮管理公司创始人、美一好品牌管 理公司创始人林文钦先生(昵称"萌剑客"),驾驶蔚来 ES8汽车启用自动驾驶功能(NOP领航状态)后,在沈 海高速涵江段发生交通事故,不幸逝世,终年31岁。

- Search results are optimized for ad revenues
- An autonomous vehicle is permitted to drive unassisted on the road
- A doctor is prompted by an intelligent system with a plausible diagnosis for her patient

- Search results are optimized for ad revenues
- An autonomous vehicle is permitted to drive unassisted on the road
- A doctor is prompted by an intelligent system with a plausible diagnosis for her patient

- Search results are optimized for ad revenues
- An autonomous vehicle is permitted to drive unassisted on the road
- A doctor is prompted by an intelligent system with a plausible diagnosis for her patient

DEFINING a ML Problem

ML brings together different areas

ML brings together different areas

- Statistical methods
 - Infer conclusions from data
 - Estimate reliability of predictions
- Computer science
 - Large-scale computing architectures
 - Algorithms for capturing, manipulating, indexing, combining, retrieving and performing predictions on data
 - Software pipelines that manage the complexity of multiple subtasks

ML brings together different areas

- Statistical methods
 - Infer conclusions from data
 - Estimate reliability of predictions
- Computer science
 - Large-scale computing architectures
 - Algorithms for capturing, manipulating, indexing, combining, retrieving and performing predictions on data
 - Software pipelines that manage the complexity of multiple subtasks
- Economics, biology, psychology
 - How can an individual or system efficiently improve their performance in a given environment?
 - What is learning and how can it be optimized?

Machine Learning Workflow

• *Definition*: A computer program learns if its performance at tasks in T, as measured by P, improves with experience E.

• *Definition*: A computer program learns if its performance at tasks in T, as measured by P, improves with experience E.

- Three components
 - Task, T
 - Performance measure, P
 - Training, E

- Three components
 - Task T
 - Performance measure P
 - Training E

Example I: Handwriting recognition

- T:
- P:
- E:

- Three components
 - Task T
 - Performance measure P
 - Training E

Example I: Handwriting recognition

- T: recognizing and classifying handwritten words with images
- P: percent of words correctly classified
- E: a database of handwritten words with given classifications

- Three components
 - Task T
 - Performance measure P
 - Training E

Example II: Self-driving

- T:
- P:
- E:

- Three components
 - Task T
 - Performance measure P
 - Training E

Example II: Self-driving

- T: driving on public four-lane highways using vision sensors
- P: average distance traveled before an error
- E: a sequence of images and steering commands recorded while observing a human driver

- Three components
 - Task T
 - Performance measure P
 - Training E

Exercise: Siri response to voice commands

- T:?
- P:?
- E:?

- Over 20 years ago, we had rule-based systems:
 - 1. Put a bunch of linguists in a room
 - 2. Have them think about the structure of their native language and write down the rules they devise

- Over 20 years ago, we had rule-based systems:
 - 1. Put a bunch of linguists in a room
 - 2. Have them think about the structure of their native language and write down the rules they devise

Give me directions to Starbucks

If: "give me directions to X"
Then: directions(here, nearest(X))

- Over 20 years ago, we had rule-based systems:
 - 1. Put a bunch of linguists in a room
 - 2. Have them think about the structure of their native language and write down the rules they devise

Give me directions to Starbucks

If: "give me directions to X"
Then: directions(here, nearest(X))

How do I get to Starbucks?

If: "how do I get to X""
Then: directions(here, nearest(X))

- Over 20 years ago, we had rule-based systems:
 - 1. Put a bunch of linguists in a room
 - 2. Have them think about the structure of their native language and write down the rules they devise

Give me directions to Starbucks

If: "give me directions to X"
Then: directions(here, nearest(X))

How do I get to Starbucks?

If: "how do I get to X""
Then: directions(here, nearest(X))

Where is the nearest Starbucks?

If: "where is the nearest X"
Then: directions(here, nearest(X))

Solution #2 Annotate Data and Learn

- Experts:
 - Very good at answering questions about specific cases
 - Not very good at telling HOW they do it
- 1990s: So why not just have them tell you what they do on SPECIFIC CASES and then let MACHINE LEARNING tell you how to come to the same decisions that they did

Solution #2 Annotate Data and Learn

- Collect raw sentences $\{x^{(1)}, \dots, x^{(n)}\}$
- Experts annotate their meaning $\{y^{(1)}, \dots, y^{(n)}\}$

Solution #2 Annotate Data and Learn

- Collect raw sentences $\{x^{(1)}, \dots, x^{(n)}\}$
- Experts annotate their meaning $\{y^{(1)}, \dots, y^{(n)}\}$

```
x^{(1)}: Give me directions to Starbucks
```

 $y^{(1)}$:directions(here, nearest(Starbucks))

 $x^{(3)}$: Show me the closest Starbucks

 $y^{(3)}: map(nearest(Starbucks))$

 $x^{(2)}$: Send a text to John that I'll be late

 $y^{(2)}$:txtmsg(John, I'll be late)

 $x^{(4)}$: Set an alarm for seven in the morning

 $y^{(4)}$:setalarm(7:00AM)

- Three components
 - Task T
 - Performance measure P
 - Training E

Exercise: Siri response to voice commands

- T:
- P:
- E:

- Three components
 - Task T
 - Performance measure P
 - Training E

Exercise: Siri response to voice commands

- T: predicting action from speech
- P: percent of correct actions taken in user pilot study
- E: examples of (speech, action) pairs

Problem Formulation

- Formulate a problem in more than one ways:
- Loan applications:
 - Credit score (regression)
 - Default probability (density estimation)
 - Loan decision (classification)

Data Types

SYLLABUS

学业背景

Probability

专业

Minor

先修课程

编程背景

28%基本无基础

45% 有一点基础 **27%** 有比较好的基础(熟练运用至少 一款编程语言)

42%

心有余而力不足, 想学好机器学习基本算法

58%

期待,可以学习更加fancy的算法

£ 希望了解人工智能: 1 (1.56%) 希望可以学习到solid的理论知识,并且将机器学习应用到具体项目。: 1 (1.56%) 希望多实践: 1 (1.56%) 希望不要特别难: 1 (1.56%) 希望能够多接触到机器学习相关的算法和原理: 1 (1.56%) 无:7(10.94%) ,自己也会尽最大努力学好机器学习基本算法的!谢谢老师!: 1 (1.56%)编程经验的同学;在知识讲解之后能有较为细致的动手环节: 1 (1.56%)希望老师考试难度不要超出学习的内容,plaese~: 1 (1.56%)与练习,了解常用的机器学习算法,通过程序实现功能: 1 (1.56%) 暂无: 2 (3.13%) 希望能学到更多实际应用方面的知识,比如如何选择算法,如何根据需求 希望能比较深入地学习算法和实现: 1(1.57%) -定的资源去学习基本的算法(针对基础薄弱的同学) 想学好机器学习基本算法: 1 (1.57%) 比如应用场景、伦理、远期的发展、便宏观的趋势: 1 (1.56%) 希望能cover机器学习算法的原理、实现和应用;如果课堂上很难 期待学习基本的机器学习算法: 1 (1.56%) 入门人工智能: 1 (1.57%) 希望学到更多关于Python和统计的实用知识: 1 (1.56%) 尚无: 1 (1.57%) 希望能接触更深的算法, 打扎实基础: 希望讲解算法的数学基础,以帮助判断如何应用 希望多学一点可视化技术: 1 (1.57%) **望可以学习高级的算法并通过小组的形式完成项目** 基本没有编程基础,希望老师可以讲细一点: 1 (1.57%) 可以学到一些有趣的东西: 希望课程节奏循序渐进: 1 (1.57%) 〉太难,想要用好包,可以接触点python外的语言: 1 (1.56%)希望课堂内容涉猎更广,但考试考察偏重基本算法: 1 (1.57%) (1.56%) 想学习多一些有实际意义或者操作价值的能力: 1 (1.57%) 希望老师能够讲慢一点。 希望可以多讲一些干货,给分好一点就更好了 人工智能的应用和实践: 1 (1.56%) 够获得扎实的机器学习算法基础: 1 (1.56%) 希望简要了解机器学习及人工智能的发展历程、目前应用与前景;利 聖能掌握最基础的算法,并在实际问题中能够自主使用: 1 (1.56%) 想要学习金融的未来: 1(1.56%) 可以对机器学习和人工智能的底层逻辑有较为深刻的了解: 1 (1.56 希望对基础比较薄弱的同学友好一点: 1 (1.56%) 有重点易于理解就好: 1(1.56%) 一 希望能多教一点基础的东西: 1 (1.56%) 我比较缺乏算法基础和计算思维,想老师能在原理上多做些解释: 1 (1.56%) 导和限制,不要逼迫同学做无必要的内卷qwq感谢助教和老师~: 助教老师可以多帮帮忙: 多通过努力掌握课程内容,并且通过实例练习感受到乐趣和成就感~:1 (1.56%) 基础薄弱同学求救: 1 (1.56%) 希望能学到更多实际应用**编属的器景习程序如何选择等法**,如何根据需求调参等等 希望能比较深入地学习算法和实现 ◀1/23▶

- Homework:
 - 3 individual assignments
 - Late assignment is NOT accepted
 - Supervised Learning
 - Unsupervised Learning + Model Evaluation
 - Advanced Topics (e.g., Deep Learning, Reinforcement Learning)
 - Re-grade: You can appeal your grade with a one-page explanation. A regrade may cause your grade to either go up or go down.

- Homework:
 - 3 individual assignments
 - Late assignment is NOT accepted
 - Supervised Learning
 - Unsupervised Learning + Model Evaluation
 - Advanced Topics (e.g., Deep Learning, Reinforcement Learning)
 - Re-grade: You can appeal your grade with a one-page explanation. A regrade may cause your grade to either go up or go down.
- Group Project
 - At most 5 students per group (No Free-riding)
 - Proposal
 - In-class presentation
 - Final reports

- Homework:
 - 3 individual assignments
 - Late assignment is NOT accepted
 - Supervised Learning
 - Unsupervised Learning + Model Evaluation
 - Advanced Topics (e.g., Deep Learning, Reinforcement Learning)
 - Re-grade: You can appeal your grade with a one-page explanation. A regrade may cause your grade to either go up or go down.
- Group Project
 - At most 5 students per group (No Free-riding)
 - Proposal
 - In-class presentation
 - Final reports
- Final Exam
 - Week 12 (in-class)

- Academic Honor Code: No plagiarism!
 - form study groups (with arbitrary number of people); discuss and work on homework problems in groups
 - write down the solutions independently
 - write down the names of people with whom you've discussed the homework

Class participation

Topics

- Regression
- K-Nearest Neighbors
- Decision Trees
- Naïve Bayes
- SVM
- Ensemble Models
- Cross Validation
- Overfitting / Underfitting
- Model Evaluation and Selection

- Unsupervised Learning
 - Clustering
 - PCA
- Reinforcement Learning
- Deep learning
 - Neural network
 - Backpropagation
 - CNNs, LSTM, etc.

Recommended Books

Overview of ML Models

Machine Learning Workflow

Applied ML

- Understand basic ML concepts and workflow (require basic statistics/probability background)
- Apply properly "black-box" ML components and features
- From theory to real-world practice

Criteria

Whether or not they are trained with human supervision

Criteria

Whether or not they are trained with human supervision

Supervised Learning

Fraud detection
Prediction of stock markets

Criteria

Whether or not they are trained with human supervision

Supervised Learning

Fraud detection
Prediction of stock markets

Unsupervised Learning

Customer segmentation Recommendation

Criteria

Whether or not they are trained with human supervision

Supervised Learning

Fraud detection
Prediction of stock markets

Semi-supervised Learning

Photo-hosting service
Speech analysis
Web-content classification

Unsupervised Learning

Customer segmentation Recommendation

Criteria

Whether or not they are trained with human supervision

Supervised Learning

Fraud detection
Prediction of stock markets

Semi-supervised Learning

Photo-hosting service
Speech analysis
Web-content classification

Unsupervised Learning

Customer segmentation Recommendation

Reinforcement Learning

Robotics
Go games
Self-driving cars

Criteria

Whether or not they are trained with human supervision

Supervised Learning

Fraud detection
Prediction of stock markets

Unsupervised Learning

Customer segmentation Recommendation

Semi-supervised Learning

Photo-hosting service
Speech analysis
Web-content classification

Reinforcement Learning

Robotics
Go games
Self-driving cars

Supervised Learning

Supervised Learning

- Regressions
- KNN
- Decision Trees
- SVM
- Naïve Bayes
- •

Supervised Learning

Data Dog Algorithm f(x) Label? Dog Not dog

Supervised Learning

Training data

Validation data

Test data

Data Division

• <u>Training dataset</u>: the sample of data used to fit the model

- Validation Dataset: the sample of data used to provide an unbiased evaluation of a model fit on the training dataset while tuning model hyperparameters.
- <u>Test Dataset</u>: a set of examples used only to assess the performance (i.e. generalization) of a fully specified classifier

K-Nearest Neighbors

An Illustrative Example

$$K = 1$$

An Illustrative Example

$$K = 1$$

$$K = 3$$

• Training: Store all the examples (X_{train}, Y_{train})

- Training: Store all the examples (X_{train}, Y_{train})
- Prediction: X_{new}
 - Let $X_1, ..., X_k$ be the k most similar examples to X_{new}
 - Use certain method (e.g., majority vote) to determine Y_{new} based on $(Y_1, ..., Y_k)$

- Training: Store all the examples (X_{train}, Y_{train})
- Prediction: X_{new}
 - Let $X_1, ..., X_k$ be the k most similar examples to X_{new}
 - Use certain method (e.g., majority vote) to determine Y_{new} based on $(Y_1, ..., Y_k)$

1. A distance metric

Euclidean distance
$$d(x_j, x_k) = \sqrt{\sum_i (x_{j,i} - x_{k,i})^2}$$

Manhattan distance $d(x_j, x_k) = \sum_i |x_{j,i} - x_{k,i}|$

- Training: Store all the examples (X_{train}, Y_{train})
- Prediction: X_{new}
 - Let $X_1, ..., X_k$ be the k most similar examples to X_{new}
 - Use certain method (e.g., majority vote) to determine Y_{new} based on $(Y_1, ..., Y_k)$

Keys

1. A distance metric

Euclidean distance
$$d(x_j, x_k) = \sqrt{\sum_i (x_{j,i} - x_{k,i})^2}$$

Manhattan distance $d(x_j, x_k) = \sum_i |x_{j,i} - x_{k,i}|$

2. Value of "K"

Cross validation: larger k? smaller k?

- Training: Store all the examples (X_{train}, Y_{train})
- Prediction: X_{new}
 - Let $X_1, ..., X_k$ be the k most similar examples to X_{new}
 - Use certain method (e.g., majority vote) to determine Y_{new} based on $(Y_1, ..., Y_k)$

Keys

1. A distance metric

Euclidean distance
$$d(x_j, x_k) = \sqrt{\sum_i (x_{j,i} - x_{k,i})^2}$$

Manhattan distance $d(x_j, x_k) = \sum_i |x_{j,i} - x_{k,i}|$

2. Value of "K"

Cross validation: larger k? smaller k?

3. Aggregation of the classes of neighbor points

Majority vote

KNN: Pros and Cons

KNN: Pros and Cons

Advantages:

- Very simple and intuitive
- The cost of the learning process is zero
- No assumption about the characteristics/distributions
- Works on both classification and regression tasks

KNN: Pros and Cons

Advantages:

- Very simple and intuitive
- The cost of the learning process is zero
- No assumption about the characteristics/distributions
- Works on both classification and regression tasks

• Drawbacks:

- Computationally expensive when the dataset is very large
 - Need to calculate the compare distance from new example to all other examples
- Sensitive to outliers

Python...

Python Quick Checks

- I can read python codes...
- I can write python functions...
- Errors and debugging...

Coding Tips

- Comments?
- Printed messages?
- Functions?

iPython

- Command: jupyter notebook
- Install: Anaconda

- Programming in the browser
- Codes, instructions, and outputs are displayed "in-line"
- Useful for writing codes that tells a story
- Used by scientists and researchers
- ...

Python Packages

Scikit-learn: Python Machine Learning Library

from sklearn.tree import DecisionTreeClassifier

- Numpy: Scientific Computing Library
 - Typically, data input to scikit-learn will be in the form of a Numpy array
 import numpy as np
- Pandas: Data Manipulation

import pandas as pd

Matplotlib: Plotting Library

import matplotlib.pyplot as plt

• Others: mglearn; graphviz; seaborn

Python Practice

Questions?

For Next Week...

- Python Review
- Regressions
- Bring your laptop with Python (and packages) installed

