Learning Compact, General Purpose Neural Network Architectures

Kale-ab Tessera, Dr. Benjamin Rosman University of Witwatersrand

Neural Architecture Search - Why?

Deep Learning:

Data + Architectures + Non-architecture hyperparameters — Weights.

NAS:

Data + Non-architecture hyperparameters

Architectures + Weights.

Why?

- Current Methods -
- Focusing -
- Architectures -

- Primitive, limited by our biases.
- Optimizing weights $oldsymbol{ heta}$, correct function form $oldsymbol{f}$?
- Extremely complicated.

Neural Architecture Search - Current Methods?

Issues:

- 1. Computationally intensive & millions of parameters (Zoph and 6 [2016], Zoph et al. [2018], Real et al. [2017, 2019]).
- 2. Still require domain engineering (Zoph and Le [2016], Zoph et al.[2018]).
- 3. Restrictive search space convolutional layers (Zoph et al. [2018], Real et al. [2019], Baker et al. [2016], Suganuma et al. [2017]).

Image: Adapted from Elsken et al. Neural architecture search: A survey.

Our Work - Compact, General Purpose

Goal:

Compact General Purpose

Dense vs Sparse Neural Networks:

Smaller Models, fewer weights.
Only Neurons, Weights, Hidden layers.

#DLIndaba2019 #SautiYetu

Our Work - Sparse vs Dense NN - 1 Hidden Layer

Our Work - Sparse vs Dense NN - Depth

Deeper NN ——— Behaviour Holds ... Number of weights = Capacity!

Our Work - Conclusion

Density - % of active weights in a layer.

Preliminary Results - Mnist

- **97.86%** Accuracy.
- **0.072** Test Loss.
- Approx. 60 000 active weights.
- No tuning of non-architecture hyperparameters!

Future

- Dynamic Neural Network Architectures.
- Performance Estimation.

References

- Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018). Learning transferable architectures for scalable image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 8697–8710.
- Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. (2018). Regularized evolution for image classifier architecture search. arXiv preprint arXiv:1802.01548.
- Baker, B., Gupta, O., Naik, N., and Raskar, R. (2016). Designing neural network architectures using reinforcement learning. CoRR, abs/1611.02167.
- Elsken, T., Metzen, J. H., and Hutter, F. (2018b). Neural architecture search: A survey. arXiv preprint arXiv:1808.05377