Analisi di reti metaboliche basata su proprietà di connessione

Massimo Nocentini
massimo.nocentini@gmail.com

Università degli Studi di Firenze

Firenze, 22 febbraio 2012

- Motivazioni
 - Analisi di reti metaboliche
 - Il problema delle storie
- Nostro contributo
 - Objettivi
 - Metodologia
 - Risultati

- Motivazioni
 - Analisi di reti metaboliche
 - Il problema delle storie
- Nostro contributo
 - Obiettivi
 - Metodologia
 - Risultati

- Motivazioni
 - Analisi di reti metaboliche
 - Il problema delle storie
- Nostro contributo
 - Obiettivi
 - Metodologia
 - Risultati

Definizione di rete metabolica

Definizione

Una rete metabolica è un insieme di reazioni chimiche che si verificano all'interno di una cellula

È interessante studiarle per:

- capire le proprietà fisiologiche e biochimiche delle cellule
- ricostruire le reazioni che avvengono all'interno di organismi, sia batteri che esseri umani
- studiare il comportamento della cellula in relazione al contesto che la ospita

Codifica delle reti

SBML (**S**ystems **B**iology **M**arkup **L**anguage) è un linguaggio per descrivere sistemi oggetto di trasformazioni fisiche

```
<sbml>
  <model id="ACYPI" name="Acyrthosiphon pisum">
   tofCompartments>
     <compartment id="CCO 45 IN" name ="CCO-IN" />
     <compartment id="CCO 45 OUT" name ="CCO-OUT" />
    </listOfCompartments>
    stOfSpecies>
     <species id="ADENYLOSUCC IN NIL"</pre>
              name="adenvlo-succinate"
              compartment="CCO-IN"/>
    </listOfSpecies>
    listOfReactions>
     <reaction id="CITRAMALYL 45 COA 45 LYASE 45 RXN"</pre>
               name="Citramalyl-CoA lyase"
               reversible="false">
       <listOfReactants>
         <speciesReference species="CPD 45 627 IN NIL"/>
       stofProducts>
         <speciesReference species="PYRUVATE IN NIL"/>
         <speciesReference species="ACETYL 45 COA IN NIL"/>
       </listOfProducts>
     </reaction>
    </listOfReactions>
  </model>
</sbml>
```

- Motivazioni
 - Analisi di reti metaboliche
 - Il problema delle storie
- Nostro contributo
 - Obiettivi
 - Metodologia
 - Risultati

Dalla rete al grafo

Data una reazione *non reversibile r* tale che $reagenti(r) = \{r_1, \dots, r_n\} \land prodotti(r) = \{p_1, \dots, p_m\},$ costruiamo il sotto grafo $reagenti(r) \times prodotti(r)$

Esempio

Se $reagenti(r) = \{a, b, c, d\} \land prodotti(r) = \{a, e, f\}$ allora

Seed Compounds

- cercare le componenti fortemente connesse
- selezionare vertici in componenti sorgenti come seed compounds

Storie

Definizione

Dato un grafo orientato $G=(\mathbb{B}\cup\mathbb{W},E)$, una storia è un sotto grafo aciclico $G'=(\mathbb{B}\cup\mathbb{W}',E')$ di G tale che $E'\subseteq E$ e

$$\mathbb{W}' = \{ w \in \mathbb{W} : indeg(w) > 0 \land outdeg(w) > 0 \}$$

B: vertici a cui è permesso essere sorgenti o pozzi

- Motivazioni
 - Analisi di reti metaboliche
 - Il problema delle storie
- Nostro contributo
 - Obiettivi
 - Metodologia
 - Risultati

- rappresentare una rete mediante un grafo astraendo dai molti dettagli di SBML
- fornire strumenti per analizzare insiemi di reti per avere informazioni sui metaboliti che appaiono in più di una rete
- costruire in modo automatico l'insieme B sfruttando le informazioni di tutte le reti studiate
- verificare se il metodo è accettabile per misurare la validità di B

- rappresentare una rete mediante un grafo astraendo dai molti dettagli di SBML
- fornire strumenti per analizzare insiemi di reti per avere informazioni sui metaboliti che appaiono in più di una rete
- costruire in modo automatico l'insieme

 sfruttando le informazioni di tutte le reti studiate
- verificare se il metodo è accettabile per misurare la validità di B

- rappresentare una rete mediante un grafo astraendo dai molti dettagli di SBML
- fornire strumenti per analizzare insiemi di reti per avere informazioni sui metaboliti che appaiono in più di una rete
- costruire in modo automatico l'insieme B sfruttando le informazioni di tutte le reti studiate
- verificare se il metodo è accettabile per misurare la validità di B

- rappresentare una rete mediante un grafo astraendo dai molti dettagli di SBML
- fornire strumenti per analizzare insiemi di reti per avere informazioni sui metaboliti che appaiono in più di una rete
- costruire in modo automatico l'insieme B sfruttando le informazioni di tutte le reti studiate
- verificare se il metodo è accettabile per misurare la validità di B

- Motivazioni
 - Analisi di reti metaboliche
 - Il problema delle storie
- Nostro contributo
 - Obiettivi
 - Metodologia
 - Risultati

Rappresentazione della rete con grafo

```
<sbml>
 <model id="ACYPI" name="Acyrthosiphon pisum">
   <compartment id="CCO 45 IN" name ="CCO-IN" />
     <compartment id="CCO 45 OUT" name ="CCO-OUT" />
   </listOfCompartments>
   Species>
     <species id="ADENYLOSUCC IN NIL"</pre>
             name="adenylo-succinate"
             compartment="CCO-IN"/>
   </listOfSpecies>
   tofReactions>
     <reaction id="CITRAMALYL 45 COA 45 LYASE 45 RXN"</pre>
             name="Citramalyl-CoA lyase"
             reversible="false">
       stOfReactants>
        <speciesReference species="CPD 45 627 IN NIL"/>
       stofProducts>
        <speciesReference species="PYRUVATE IN NIL"/>
        <speciesReference species="ACETYL 45 COA IN NIL"/>
       </reaction>
   </model>
</sbml>
```


Componenti fortemente connesse

Componenti sorgenti e pozzo

Selezione dell'insieme B

- Motivazioni
 - Analisi di reti metaboliche
 - Il problema delle storie
- Nostro contributo
 - Obiettivi
 - Metodologia
 - Risultati

Analisi delle reti

Models (165)	Sources	Whites	Sinks
Wigglesworthia gloss	(C: 65, V: 65:6)	(C: 11, V: 535:250)	(C: 76, V: 94:21)
Wolbachia endosym	(C: 61, V: 61:9)	(C: 14, V: 619:326)	(C: 73, V: 91:20)
Wolbachia pipientis	(C: 71, V: 71:8)	(C: 14, V: 581:282)	(C: 75, V: 93:21)
Wolinella succinogen	(C: 78, V: 78:14)	(C: 12, V: 848:420)	(C: 105, V: 136:43)
Xylella fastidiosa-XYL	(C: 67, V: 68:14)	(C: 9, V: 996:546)	(C: 103, V: 125:34)
Yersinia pestis-YERPE3	(C: 132, V: 135:40)	(C: 19, V: 1348:711)	(C: 152, V: 186:83)
Yersinia pseudotube	(C: 122, V: 122:36)	(C: 22, V: 1465:781)	(C: 156, V: 192:69)
Average pairs	(C: 165, V: 168:0)	(C: 17, V: 1167:0)	(C: 191, V: 220:0)

Tutte le reti hanno una struttura a "clessidra":

- molte componenti sorgenti contenenti pochi vertici
- poche componenti intermedie contenenti molti vertici
- molte componenti pozzo contenenti pochi vertici

Troppi vertici sorgenti e pozzi

L'obiettivo sarebbe stato averne poch

Analisi delle reti

Models (165)	Sources	Whites	Sinks
Wigglesworthia gloss	(C: 65, V: 65:6)	(C: 11, V: 535:250)	(C: 76, V: 94:21)
Wolbachia endosym	(C: 61, V: 61:9)	(C: 14, V: 619:326)	(C: 73, V: 91:20)
Wolbachia pipientis	(C: 71, V: 71:8)	(C: 14, V: 581:282)	(C: 75, V: 93:21)
Wolinella succinogen	(C: 78, V: 78:14)	(C: 12, V: 848:420)	(C: 105, V: 136:43)
Xylella fastidiosa-XYL	(C: 67, V: 68:14)	(C: 9, V: 996:546)	(C: 103, V: 125:34)
Yersinia pestis-YERPE3	(C: 132, V: 135:40)	(C: 19, V: 1348:711)	(C: 152, V: 186:83)
Yersinia pseudotube	(C: 122, V: 122:36)	(C: 22, V: 1465:781)	(C: 156, V: 192:69)
Average pairs	(C: 165, V: 168:0)	(C: 17, V: 1167:0)	(C: 191, V: 220:0)

Tutte le reti hanno una struttura a "clessidra":

- molte componenti sorgenti contenenti pochi vertici
- poche componenti intermedie contenenti molti vertici
- molte componenti pozzo contenenti pochi vertici

Troppi vertici sorgenti e pozzi

L'obiettivo sarebbe stato averne pochi

Analisi dei vertici

```
(types: [Sources], count: 1586, distribution: 12.791%)
(types: [Sinks], count: 1448, distribution: 11.678%)
(types: [Whites], count: 7705, distribution: 62.142%)
(types: [Sinks, Sources], count: 38, distribution: 0.306%)
(types: [Whites, Sources], count: 538, distribution: 4.339%)
(types: [Whites, Sinks], count: 847, distribution: 6.831%)
(types: [Whites, Sinks, Sources], count: 237, distribution: 1.911%)
```

Studiando un insieme di reti, più del 10% dei vertici non hanno un ruolo univoco

Incertezza sulla costruzione di I

Vertici con più di un ruolo inducono incertezza sul decidere la loro appartenenza all'insieme $\ensuremath{\mathbb{B}}$

Analisi dei vertici

```
(types: [Sources], count: 1586, distribution: 12.791%)
(types: [Sinks], count: 1448, distribution: 11.678%)
(types: [Whites], count: 7705, distribution: 62.142%)
(types: [Sinks, Sources], count: 38, distribution: 0.306%)
(types: [Whites, Sources], count: 538, distribution: 4.339%)
(types: [Whites, Sinks], count: 847, distribution: 6.831%)
(types: [Whites, Sinks, Sources], count: 237, distribution: 1.911%)
```

Studiando un insieme di reti, più del 10% dei vertici non hanno un ruolo univoco

Incertezza sulla costruzione di B

Vertici con più di un ruolo inducono incertezza sul decidere la loro appartenenza all'insieme $\ensuremath{\mathbb{B}}$

Combinazione delle due analisi

Models (165)	Sources	Whites	Sinks
Crithidia deanei-CDE	(C: 153, V: 153:6)	(C: 18, V: 472:264)	(C: 152, V: 158:14)
Cupriavidus taiwane	(C: 127, V: 129:38)	(C: 14, V: 1484:843)	(C: 164, V: 217:82)
Desulfotalea psychr	(C: 75, V: 75:12)	(C: 14, V: 1118:606)	(C: 108, V: 131:31)
Drosophila melanog	(C: 87, V: 87:11)	(C: 5, V: 978:559)	(C: 114, V: 138:37)
Erwinia carotovora s	(C: 126, V: 127:46)	(C: 18, V: 1428:766)	(C: 152, V: 191:75)
Escherichia coli-EC4	(C: 315, V: 320:220)	(C: 22, V: 1559:810)	(C: 337, V: 374:267)

Se consideriamo tutti i vertici che hanno un ruolo univoco rispetto ad un insieme di reti, è possibile raffinare ogni $\mathbb B$ escludendo i vertici che non hanno un ruolo conforme

Riepilogo

- \bullet l'unico caso utile riguarda l'analisi di modelli singoli, anche se in molti casi rimangono molti vertici in $\mathbb B$

Attualmente l'insieme \mathbb{B} viene costruito in base a osservazioni e studi *empirici*, costituito da metaboliti con proprietà particolari. Per costruirlo in modo automatico partizioniamo la rete in componenti connesse in quanto:

- è difficile assegnare il ruolo ad ogni vertice studiando l'intera rete date le sue dimensioni
- è possibile astrarre dai cicli ed identificare classi di metaboliti equivalenti
- due metaboliti equivalenti si producono a vicenda, pertanto gli associamo il ruolo della componente che li contiene
- se una componente è sorgente o pozzo nel "meta grafo" allora aggiungiamo i vertici che la compongono in B

Attualmente l'insieme $\mathbb B$ viene costruito in base a osservazioni e studi *empirici*, costituito da metaboliti con proprietà particolari. Per costruirlo in modo automatico partizioniamo la rete in componenti connesse in quanto:

- è difficile assegnare il ruolo ad ogni vertice studiando l'intera rete date le sue dimensioni
- è possibile astrarre dai cicli ed identificare classi di metaboliti equivalenti
- due metaboliti equivalenti si producono a vicenda, pertanto gli associamo il ruolo della componente che li contiene
- se una componente è sorgente o pozzo nel "meta grafo" allora aggiungiamo i vertici che la compongono in B

Attualmente l'insieme \mathbb{B} viene costruito in base a osservazioni e studi *empirici*, costituito da metaboliti con proprietà particolari. Per costruirlo in modo automatico partizioniamo la rete in componenti connesse in quanto:

- è difficile assegnare il ruolo ad ogni vertice studiando l'intera rete date le sue dimensioni
- è possibile astrarre dai cicli ed identificare classi di metaboliti equivalenti
- due metaboliti equivalenti si producono a vicenda, pertanto gli associamo il ruolo della componente che li contiene
- se una componente è sorgente o pozzo nel "meta grafo" allora aggiungiamo i vertici che la compongono in B

Attualmente l'insieme $\mathbb B$ viene costruito in base a osservazioni e studi *empirici*, costituito da metaboliti con proprietà particolari. Per costruirlo in modo automatico partizioniamo la rete in componenti connesse in quanto:

- è difficile assegnare il ruolo ad ogni vertice studiando l'intera rete date le sue dimensioni
- è possibile astrarre dai cicli ed identificare classi di metaboliti equivalenti
- due metaboliti equivalenti si producono a vicenda, pertanto gli associamo il ruolo della componente che li contiene
- se una componente è sorgente o pozzo nel "meta grafo" allora aggiungiamo i vertici che la compongono in B

Attualmente l'insieme $\mathbb B$ viene costruito in base a osservazioni e studi *empirici*, costituito da metaboliti con proprietà particolari. Per costruirlo in modo automatico partizioniamo la rete in componenti connesse in quanto:

- è difficile assegnare il ruolo ad ogni vertice studiando l'intera rete date le sue dimensioni
- è possibile astrarre dai cicli ed identificare classi di metaboliti equivalenti
- due metaboliti equivalenti si producono a vicenda, pertanto gli associamo il ruolo della componente che li contiene
- se una componente è sorgente o pozzo nel "meta grafo" allora aggiungiamo i vertici che la compongono in ${\mathbb B}$

