Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра информатики				
	ОТЧЕТ			
на тему Знакомство с программными средствами				
машинного обучения нейронных сетей				
Магистрант:		А.С. Долматович		

Факультет компьютерных систем и сетей

Ход работы

Для выполнения лабораторной работы использовалась среда Anaconda Navigator.

Порядок выполнения:

- 1) Создано новое окружение (tensorflow-env)
- 2) Установлен пакет tensorflow
- 3) Установлен пакет keras

4) Запущен демонстрационный пример (cifar10 CNN)

5) Демонстрация работы

Download and prepare the CIFAR10 dataset

Verify the data

Create the convolutional base

Model: "sequential"

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	30, 30, 32)	896
max_pooling2d (MaxPooling2D)	(None,	15, 15, 32)	0
conv2d_1 (Conv2D)	(None,	13, 13, 64)	18496
max_pooling2d_1 (MaxPooling2	(None,	6, 6, 64)	0
conv2d_2 (Conv2D)	(None,	4, 4, 64)	36928

Total params: 56,320 Trainable params: 56,320 Non-trainable params: 0

Add Dense layers on top

Model: "sequential"			
Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	30, 30, 32)	896
max_pooling2d (MaxPooling2D)	(None,	15, 15, 32)	0
conv2d_1 (Conv2D)	(None,	13, 13, 64)	18496
max_pooling2d_1 (MaxPooling2	(None,	6, 6, 64)	0
conv2d_2 (Conv2D)	(None,	4, 4, 64)	36928
flatten (Flatten)	(None,	1024)	0
dense (Dense)	(None,	64)	65600
dense_1 (Dense)	(None,	10)	650

Total params: 122,570 Trainable params: 122,570 Non-trainable params: 0

Compile and train the model

```
Epoch 2/10
50000/50000 [=============] - 13s 251us/sample - loss: 1.1804 - accuracy: 0.5778 - val loss: 1.0679 - val accuracy: 0.6247
Epoch 3/10
50000/50000 [=
     Epoch 4/10
50000/50000 [================== ] - 13s 25lus/sample - loss: 0.9350 - accuracy: 0.6713 - val_loss: 0.9505 - val_accuracy: 0.6666
Epoch 5/10
50000/50000 [
        Epoch 6/10
50000/50000 [=
Epoch 7/10
        50000/50000 r=
        =========] - 12s 249us/sample - loss: 0.7608 - accuracy: 0.7316 - val_loss: 0.8829 - val_accuracy: 0.6971
         50000/50000 [
Epoch 9/10
50000/50000 [:
      Epoch 10/10
50000/50000 [:
```

Evaluate the model

```
10000/1 - 1s - loss: 1.1445 - accuracy: 0.6989
```


Ответы на вопросы

- Как задать модель нейронной сети. Какие есть интерфейсы и их параметры?
 - The Sequential model API

```
from keras.models import Sequential
from keras.layers import Dense, Activation

model = Sequential([
    Dense(32, input_shape=(784,)),
    Activation('relu'),
    Dense(10),
    Activation('softmax'),
])
```

Model (functional API)

```
from keras.models import Model
from keras.layers import Input, Dense

a = Input(shape=(32,))
b = Dense(32)(a)
model = Model(inputs=a, outputs=b)
```

- Как задать весовые коэффициенты нейронной сети?
 - sample_weight
 - class weight
- Как задать полносвязный слой нейронной сети?
 - model.add(Dense(32, input_shape=(16,)))
- Как задать свёрточный слой нейронной сети?
 - layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3))
- Какие есть средства для работы с рекуррентными нейросетями?
 - class RNN
 - class SimpleRNN
 - GRU
 - LSTM
 - ConvLSTM2D
 - CuDNNGRU
 - CuDNNLSTM
- Как задать функцию активации нейронной сети и какие поддерживаются в keras?

- class Activation или argument activation
 - elu
 - softmax
 - selu
 - softplus
 - softsign
 - relu
 - tanh
 - sigmoid
 - hard sigmoid
 - exponential
 - linear
 - LeakyReLU
 - PReLU
 - ELU
 - ThresholdedReLU
 - Softmax
 - ReLU
- Чем отличается linear от ReLU, softplus?
 - softplus $\log (\exp (x) + 1)$.
 - linear линейная функция активации
 - ReLu max(x, 0) для значений по умолчанию,
 - f(x) = max value для $x \ge max$ value
 - f(x) = x для threshold $\leq x \leq max$ value
 - $f(x) = negative_slope * (x threshold)$ во всех остальных случаях
- Как задать функцию ошибки\ потерь нейронной сети?
 - model.compile (loss=loss.mean_squared_error, optimizer='sgd') Можно либо передать имя существующей функции потерь, либо передать символическую функцию TensorFlow, которая возвращает скаляр для каждой точки данных и принимает следующие два аргумента:
 - y_true: настоящие ярлыки
 - y_pred: предсказания.
- Чем отличается mean_squared_error от cosinus_proxmity, по каким формулам они вычисляются?
 - cosinus_proxmity

$$\cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum\limits_{i=1}^{n} A_i B_i}{\sqrt{\sum\limits_{i=1}^{n} A_i^2} \sqrt{\sum\limits_{i=1}^{n} B_i^2}},$$

mean_squared_error

$$ext{MSE} = rac{1}{n}\sum_{i=1}^n (Y_i - \hat{Y}_i)^2.$$

• Как задать метод обучения нейронной сети?

```
from keras import optimizers

model = Sequential()
model.add(Dense(64, kernel_initializer='uniform', input_shape=(10,)))
model.add(Activation('softmax'))

sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='mean_squared_error', optimizer=sgd)
```

- Чем отличается SGD от rprop, Adadelta, Adam; nesterov от momentum?
 - SGD оптимизатор стохастического градиентного спуска.
 - Adadelta это более надежное расширение Adagrad, которое адаптирует скорости обучения на основе движущегося окна обновлений градиентов, а не накапливает все прошлые градиенты. Таким образом, Adadelta продолжает учиться, даже если было сделано много обновлений.
 - Adam алгоритм для градиентной оптимизации стохастических целевых функций первого порядка, основанный на адаптивных оценках моментов более низкого порядка.
 - momentum: float> = 0. Параметр, который ускоряет SGD в соответствующем направлении
 - nesterov: bool. Нужно ли применять Нестеров импульс.
- Как указать обучающую выборку?
 - model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation data=(x test, y test), huffle=True)

СПИСОК ИСТОЧНИКОВ

[1] Оф. сайт Chocolatey. — Электронный ресурс. — Режим доступа: https://chocolatey.org/ — Дата

доступа: 22.11.2019.

[2] Оф. сайт Python. — Электронный ресурс. — Режим доступа: https://www.python.org/ — Дата

доступа: 22.11.2019.

[3] Оф. сайт РІР. — Электронный ресурс. — Режим доступа: https://pypi.org/project/pip/ — Дата доступа: 22.11.2019.

[4] Документация виртуальной среды Python. — Электронный ресурс. — Режим доступа:

https://docs.python.org/3/library/venv.html — Дата доступа: 22.11.2019.

[5] Пример глубокого обучения с помощью библиотеки Keras. — Электронный ресурс. — Режим

доступа: https://keras.io — Дата доступа: 22.11.2019.