COORDINATION IN SOCIAL NETWORKS

COMMUNICATION BY ACTIONS

Chun-Ting Chen

Social Network Research Group

MOTIVATION

- The relevant information in making joint decision is dispersed in the society.
 (Hayek 1945)
- If so, how people act collectively? How do they form an uprising, a currency attack,...,etc.

I WANT TO SHOW

 In a long-term relationship, people can aggregate such information and coordinate their actions.

Time line:

- There is a fixed, finite, connected, undirected, and commonly known network.
- Players of two types— S or B—chosen by nature according to a probability distribution.
 - S: Strategic type; B: Behavior type
- Types are then fixed over time.
- Players play a collective action—a protest—many many many...many periods with discount factor.

- There are L players.
- The game played in each period —k-threshold game: a protest
- S-type's action set= $\{\mathbf{p}, \mathbf{n}\}$
- B-type's action set= $\{n\}$
- Pay-offs for S-type:

- There are L players.
- The game played in each period —k-threshold game: a protest
- S-type's action set= $\{\mathbf{p}, \mathbf{n}\}$
- B-type's action set= {n}
- Pay-offs for S-type:

If he chooses \mathbf{p} , and no less than k players choose \mathbf{p} , he gets payoff 1.

- There are L players.
- The game played in each period —k-threshold game: a protest
- S-type's action set= {p, n}
- B-type's action set= {n}
- Pay-offs for S-type:
 - If he chooses \mathbf{p} , and no less than k players choose \mathbf{p} , he gets payoff 1. If he chooses \mathbf{p} , and less than \mathbf{k} players choose \mathbf{p} , he gets payoff -1.

- There are L players.
- The game played in each period —k-threshold game: a protest
- $\bullet \; \text{ S-type's action set} = \{\textbf{p}, \textbf{n}\}$
- B-type's action set= {n}
- Pay-offs for S-type:

If he chooses \mathbf{p} , and no less than \mathbf{k} players choose \mathbf{p} , he gets payoff $\mathbf{1}$. If he chooses \mathbf{p} , and less than \mathbf{k} players choose \mathbf{p} , he gets payoff $\mathbf{-1}$. If he chooses \mathbf{n} , he gets payoff $\mathbf{0}$.

What player can/cannot observe

- Players can observe own/neighbors' types and actions, but not others'.
- In each day, the pay-off is hidden.

STATIC EFFICIENT OUTCOME

Type profile	Static efficient outcome
At least k S-types exist	All S-types play p
Otherwise	All S-types play n

WHAT I AM LOOKING FOR

An APEX (approaching ex-post efficient) equilibrium

DEFINITION (APEX STRATEGY)

An equilibrium is APEX \Leftrightarrow for all type distribution, there is a period, T, such that the actions in the equilibrium path repeats the static ex-post efficient outcome after T.

OUTLINE

- APEX equilibrium for k = n.
 - An example.
 - · Sketch of proof.
- ② APEX equilibrium for k < n.
 - Where the main challenge is.

RESULT 1: APEX FOR k = L

THEOREM (k = L)

If k = L, then an APEX equilibrium exists whenever discount factor is sufficiently high.

Let k = L = 3, when discount factor is high enough, an APEX sequential equilibrium can be constructed by

Period 1

- Period 1
 - $\bullet\,$ S-type 2: chooses n if the type distribution is NOT ($\!\mathcal{S},\mathcal{S},\mathcal{S}\!$), and then choose n forever;

- Period 1
 - S-type 2: chooses ${\bf n}$ if the type distribution is NOT (S,S,S), and then choose ${\bf n}$ forever;
 - S-type 2: chooses \mathbf{p} if the type distribution is (S, S, S).

- Period 1
 - S-type 2: chooses ${\bf n}$ if the type distribution is NOT (S,S,S), and then choose ${\bf n}$ forever;
 - S-type 2: chooses \mathbf{p} if the type distribution is (S, S, S).
 - S-type 1, 3: chooses p.

- Period 1
 - S-type 2: chooses ${\bf n}$ if the type distribution is NOT (S,S,S), and then choose ${\bf n}$ forever;
 - S-type 2: chooses p if the type distribution is (S, S, S).
 - S-type 1, 3: chooses **p**.
- Period 2
 - If S-type 2 chooses \mathbf{n} in the last period \Rightarrow S-type 1 (or S-type 3) chooses \mathbf{n} forever.
 - If S-type 2 chooses p in the last period ⇒ S-type 1 (or S-type 3) chooses p forever;
- Any deviation ⇒ Choosing n forever.

Main features in equilibrium construction in the above example

- The 1st-period actions serve as "messages" to reveal the relevant information.
- The 2nd-period is a commonly known "timing" to coordinate (i.e. a part of equilibrium strategy).
- Playing n forever serves as a "grim trigger".

And, by very similar argument as this example, the APEX equilibrium when k = L can be constructed.

DEFINITION FOR APEX FOR k < L

To find an APEX for k < L is more challenging, and therefore some assumptions and definitions are introduced.

DEFINITION

The type distribution has **strong connectedness**⇔ for every pair of S-types, there is a path consisting of S-types to connect them.

DEFINITION

The prior of type distribution has **full support on strong connectedness** \Leftrightarrow The prior puts positive weight only on those type distributions which has strong connectedness.

WITHOUT STRONG CONNECTEDNESS

Let k=2 and l=3

- Note that B-type will not reveal information.
- Without full support on strong connectedness, in general, an APEX equilibrium does not exist when pay-off is hidden.

RESULT 2: APEX FOR k < L

Theorem (k < L)

If k < L, then if network is a tree, if prior has full support on strong connectedness, then an APEX WPBE exists whenever discount factor is sufficiently high.

Equilibrium construction for k < L

- Challenges:
 - \bullet Only two actions— $\{n,p\}$ used for transmit relevant information.
 - How to find that finite time "T" for every state?
 - Group punishment is hard to be made. (Network-monitoring)

Equilibrium construction for k < L

To solve the challenge:

- We first consider fixed T.
- Then allow indeterministic T.

Equilibrium construction for k < L

Assume T is fixed, commonly known, and independent from states.

- By definition of APEX,
 - After *T*, actions are infinitely repeated and thus information can not be updated.
- Idea:
 - Suppose players can transmit information by "talking" within T rounds and then play a one-shot game.
 - Consider an augmented T-round "cheap talk" phase.
 - Consider an augmented T-round "costly talk" phase.

FURTHER WORKS

 Look for a general model such that a finite-time communication protocol exists and this protocol can be extended to an equilibrium.