Электродинамика и распространение радиоволн

Семинар 7

Русов Юрий Сергеевич

ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ МОНОХРОМАТИЧЕСКОГО ИСТОЧНИКА В НЕОГРАНИЧЕННЫХ СРЕДАХ

- Провести работу над ошибками в домашнем задании №1 и контрольной работе №1.
- 2. Решить предлагаемые задачи, используя исходные данные для своего варианта. Вариант задания определяется следующими параметрами: М номер группы (1 для РЛ1-41, 2 для РЛ1-42, 3 для РЛ1-43, 4 для РЛ1-44, 5 для РЛ1-49, 6 для РЛ6-41, 7 для РЛ6-49), N порядковый номер студента в списке группы.

Наиболее часто допускаемые ошибки в домашнем задании №1 и контрольной работе №1.

 Отсутствует указание размерности в итоговых результатах.

Например, при записи выражения для мгновенного значения напряженности электрического поля после подстановки исходных численных данных должна быть указана размерность получаемой величины.

$$Em cos(\omega t - \beta z)$$

После подстановки численных данных

$$E(t,z) = 100\cos(200t - 50z) B/M.$$

Наиболее часто допускаемые ошибки в домашнем задании №1 и контрольной работе №1.

2. Отсутствуют обозначения и размерности величин на осях графиков.

Пример неправильного оформления

Наиболее часто допускаемые ошибки в домашнем задании №1 и контрольной работе №1.

2. Отсутствуют обозначения и размерности величин на осях графиков.

Пример правильного оформления

Наиболее часто допускаемые ошибки в домашнем задании №1 и контрольной работе №1.

3. Неверное решение задачи 5 ДЗ1. Нет записи итоговых выражений для напряженностей после подстановки исходных данных.

7). Выражения для мгновенных значений:

$$\overline{E}(z,t) = Re\left\{\dot{\overline{E}}(z,t)\right\},\,$$

$$\overline{H}(z,t)=Re\left\{\dot{\overline{H}}(z,t)\right\}.$$

Наиболее часто допускаемые ошибки в домашнем задании №1 и контрольной работе №1.

3. Неверное решение задачи 5 ДЗ1.

В записи итоговых выражений для мгновенных значений напряженностей электрического и магнитного полей присутствуют мнимые единицы.

Мгновенные значения полей - действительные величины. Мнимых единиц тут быть не может!

Наиболее часто допускаемые ошибки в домашнем задании №1 и контрольной работе №1.

3. Неверное решение задачи 5 Д31. Пример **правильной записи**

$$\vec{E}(z,t) = \overline{x_0} \cdot 1,74 \cdot e^{-0.39z} \cos(6.28 \cdot 10^6 t - 0.405 \cdot z) \left[\frac{B}{M} \right];$$

$$\vec{H}(z,t) = \overline{y_0} \cdot 0.02 \cdot e^{-0.39z} cos(6.28 \cdot 10^6 t - 0.405 \cdot z - 0.77) \ \left[\frac{A}{\rm M}\right].$$

Наиболее часто допускаемые ошибки в домашнем задании №1 и контрольной работе №1.

3. Неверное решение задачи 2 КР1.

Амплитуда напряженности магнитного поля получена взятием действительной части, как в примере **неправильного решения**

Наиболее часто допускаемые ошибки в домашнем задании №1 и контрольной работе №1.

3. Неверное решение задачи 2 КР1.

Здесь амплитудное значение находится как модуль комплексной амплитуды (**модуль**, а не **действительная часть**!)

Пример правильного решения

Наиболее часто допускаемые ошибки в домашнем задании №1 и контрольной работе №1.

3. Нет подстановки исходных численных данных в итоговое выражение

Пример неправильного представления решения

$$H_m = E_m \sqrt{\frac{\mu_0 \mu}{\varepsilon_0 \varepsilon}} = 0,065 \frac{A}{M}.$$

Наиболее часто допускаемые ошибки в домашнем задании №1 и контрольной работе №1.

3. Нет подстановки исходных численных данных в итоговое выражение

Пример правильного представления решения

$$\frac{2}{2}e^{-\frac{\pi}{4}}\sqrt{\frac{4\pi}{2}} = \sqrt{\frac{48 \cdot 40^{-\frac{\pi}{4}}}{\frac{1}{10^{-9}(17-91)}}} = \sqrt{\frac{144 \pi^{\frac{3}{4}} \cdot 40^{\frac{3}{4}}}{17-911}} = 91,433 + 0,265i[04]$$

Задание для самостоятельного решения

В диэлектрике с параметрами ε_a , μ_a , σ вдоль оси z распространяется электромагнитная волна, имеющая линейную поляризацию по x и частоту f. Напряженность электрического поля в точке z=0 в момент времени t=0 равна E_m . Записать выражения для мгновенных значений электрического и магнитного поля.

Задание для самостоятельного решения

Исходные данные: $\varepsilon_a = \varepsilon_0 \cdot \varepsilon_r$; $\varepsilon_r = (3+N)/2$; $\mu_a = \mu_0 \cdot \mu_r$; $\mu_r = (M+N)/2$; $E_m[B/M] = 0,07 \cdot M + 0,2 \cdot N$; $f[M\Gamma \mu] = (N+2)/10$; $\sigma[CM/M] = N \cdot 10^{-3}$.

Вариант задания определяется следующими параметрами: М — номер группы (1 для РЛ1-41, 2 для РЛ1-42, 3 для РЛ1-43, 4 для РЛ1-44, 5 для РЛ1-49, 6 для РЛ6-41, 7 для РЛ6-49), N — порядковый номер студента в списке группы.

Литература

Основная литература по дисциплине

- 1. Голубева Н.С., Митрохин В.Н. Основы радиоэлектроники сверхвысоких частот: учеб. пособие для вузов. М.: Изд-во МГТУ им. Н.Э. Баумана, 2006. 486 с. ISBN 5-7038-2740-Х. Режим доступа: http://ebooks.bmstu.ru/catalog/205/book1163.html
- 2. Кугушев А.М., Голубева Н.С., Митрохин В.Н. Основы радиоэлектроники. Электродинамика и распространение радиоволн. Учеб. пособие для вузов. М.: Изд-во МГТУ им. Н.Э. Баумана, 2001. 368 с.

Дополнительные учебные материалы

1. Сборник задач по курсу «Электродинамика и распространение радиоволн»: учеб. пособие / Баскаков С.И., Карташев В.Г., Лобов Г.Д., Филатова Е.А., Штыков В.В.; Под ред. С.И. Баскакова. М.: Высшая школа, 1981. 208 с.