Sample Distribution

Today's Class

- Sample Distribution
- Central Limit Theorem

Statistics and Their Distributions

- A **statistic** is any quantity whose value can be calculated from sample data.
- Prior to obtaining data, there is uncertainty as to what value of any particular statistic will result.
- Therefore, a statistic is a random variable and will be denoted by an uppercase letter; a lowercase letter is used to represent the calculated or observed value of the statistic

Random Samples

- The probability distribution of any particular statistic depends not only on the population distribution and the sample size *n* but also on the method of sampling.
- Frequently, we make the simplifying assumption that our data constitute a random sample X₁, X₂, ..., X_n from a distribution. This means that
 - The X is are independent
 - All the X is have the same probability distribution

Deriving a Sampling Distribution

- Given such a sample, we can evaluate a statistic of interest
- The values of the statistic calculated from these samples allow us to examine the distribution of the statistic
- By changing settings, we can examine how the distribution of the statistic changes

Example

 A large automobile service center charges \$40, \$45, and \$50 for a tune-up of four-, six, and eightcylinder cars, respectively. If 20% of its tune-ups are done on four-cylinder cars, 30% on six-cylinder cars, and 50% on eight-cylinder cars, then the probability distribution of revenue from a single randomly selected tune-up is given by

			-
Х	40	45	50
P(x)	0.2	0.3	0.5

 Suppose on a particular day, only two servicing jobs involve tune-ups. Let X₁ = the revenue from the first tune-up and X₂ = the revenue from the second

Distribution of the Sample Mean

 Let X₁, X₂, ... X_n be a random sample from a distribution with mean value μ and standard deviation σ. Then the expected value of sample mean is

$$E(\overline{X}) = \mu_{X} = \mu_{X}$$

and the variance of sample mean is

$$V(\overline{X}) = \sigma_{\overline{x}}^2 = \frac{\sigma^2}{n}$$

• • •

Example 5.24

- o In a notched tensile fatigue test on a titanium specimen, the expected number of cycles to first acoustic emission (used to indicate crack initiation) is $\mu = 28,000$, and the standard deviation of the number of cycles is $\sigma = 5000$. Let X_1, X_2, \ldots, X_{25} be a random sample of size 25, where each X_i is the number of cycles on a different randomly selected specimen.
 - What are the expected value and STD of the sample mean number of cycles until first emission?
 - What are the expected value and STD when n=100?

Example: Sample Mean

- The height of men can be represented by a normal distribution with mean 72 inches and standard deviation 2 inches. Suppose you measure the height of 10 randomly chosen men.
 - What are the expected value of the sample mean?

• • •

Central Limit Theorem (CLT)

- o Let X_1 , X_2 , ... X_n be a random sample from a distribution with mean value μ and variance σ^2
- Then if n is sufficiently large,

$$\overline{X} \sim N(\mu, \sigma^2/n)$$

• The larger the value of n, the better the approximation (n>30)

CLT Example

 Let X denote the number of flaws in copper wire. The pmf is as follows:

X	0	1	2	3
P(X=x)	0.48	0.39	0.12	0.01

 If one hundred wires are sampled from this population, what is the probability that the average number of flaws per wire in this sample is less than 0.5?