Metody Obliczeniowe w Nauce i Technice Laboratorium 2 - Rozwiązywanie układów równań liniowych Sprawozdanie

Jakub Pinowski

2020-03-09

1 Wstęp

Do rozwiązania problemów zadanych na laboratorium użyty został Python 3.7 (w przypadku pierwszego i drugiego zadania w postaci Jupyter Notebook'a) z pakietami numpy, scipy, networkx oraz matplotlib.

2 Metoda Gaussa-Jordana

Pierwszym zadaniem było zaimplementowanie oraz przetestowanie funkcji rozwiązującej układ równań liniowych metoda Gaussa-Jordana.

2.1 Porównanie z numpy.linalg.solve

W porównaniu użyta została losowa macierz o rozmiarze $600 \times 600 \times 200$ z wartościami z przedziału [10,500].

2.1.1 Wyniki

Największa różnica wyników podzielona przez wartość obliczoną przez numpy była rzędu 10^{-10} . Funkcje dały więc w praktyce takie same rezultaty.

2.1.2 Czas działania

• Gauss-Jordan: 94.77914547920227

• Numpy: 0.048226356506347656

Widzimy, że pod względem czasu działania zaimplementowany algorytm wypada bardzo słabo przy funkcji bibliotecznej

3 Faktoryzacja LU

Zaimplementowana funkcja wykonująca faktoryzację LU zwraca 3 macierze P, L oraz U. Dla wejściowej macierzy A prawdziwe jest równanie PA = LU. P to macierz powstała na skutek częściowego poszukiwania elementu wiodącego podczas wykonywania faktoryzacji i pozwala na ułożenie wierszy macierzy A w odpowiedniej kolejności, tak by równanie było prawdziwe i można było użyć macierzy L i U do rozwiązywania układu równań Ax = B.

Funkcja została przetestowana dla macierzy 300 x 300

3.1 Wyniki

Po wymnożeniu macierzy L przez U otrzymaliśmy macierz której elementy były odchylone maksymalnie o wartości rzędu 10^{-7} od elementów macierzy PA, faktoryzacja przebiegła zatem pomyślnie.

3.2 Porównanie czasu z scipy.linalg.lu

• Moja faktoryzacja LU: 5.8890955448150635s

• SciPy LU: 0.0007963180541992188s

Widzimy więc ponownie wyższość funkcji bibliotecznych nad funkcją zaimplementowaną na potrzeby laboratorium.

4 Analiza obwodu elektrycznego

Analiza miała polegać na obliczeniu wartości natężenia prądu w poszczególnych częściach obwodu, reprezentowanego jako graf ważony (V, E) (waga krawędzi jest jej rezystancja).

4.1 Algorytm

Algorytm korzysta z praw Kirchhoff'a do wyznaczenia układu równań liniowych w których niewiadomymi są nateżenia na poszczególnych krawędziach. Robi to w dwóch etapach.

4.1.1 I prawo Kirchhoff'a

Z pierwszego prawa Kirchhoff'a wiemy, że różnica sumy prądów wchodzących i sumy prądów wychodzących jest w każdym węźle równa zero. Pozwala nam to na zbudowanie |V| - 1 równań, ponieważ węzły pomiędzy którymi wpięta jest siła elektromotoryczna traktujemy jako jeden.

4.1.2 II prawo Kirchhoff'a

Drugie prawo Kirchhoff'a pozwala na skonstruowanie dodatkowych równań przy pomocy cykli w grafie. Wiemy, że sumując napięcia w takim cyklu (ze znakiem odpowiadającym kierunkowi płynącego prądu) otrzymamy wartość 0. Również tyczy się to cyklu z krawędzią zawierającą źrodło SEM pomiędzy S i T, której nie uwzględniamy w grafie. Jednak, żeby nie wprowadzać redundacji w układzie równań musimy dobrać cykle w taki sposób, aby równania były liniowo niezależne. Można to osiągnąć poprzez wyznaczenie najmniejszego zbioru cykli budujących graf¹. Takie podejście daje nam |E| - |V| + 1 niezależnych cykli, dodając do tego dowolny cykl przechodzący przez źródło SEM dostajemy |E| - |V| równań. Dodatkowe równanie jest potrzebne, żeby wprowadzić do układu informację o wartości przyłożonej SEM.

W ten sposób uzyskaliśmy |E|+1 równań w układzie z |E| niewiadomymi. Rozwiązania takiego równania z niekwadratową macierzą, przy pomocy metody najmniejszych kwadratów, dostarcza nam funkcja scipy.linalg.lstsq(A, B).

4.2 Wizualizacja

Do wizualizacji otrzymanych rozwiązań użyte zostały funkcje networkx używające biblioteki matplotlib. Kierunki krawędzi reprezentują kierunek przepływu prądu, grubość uzależniona jest od rezystancji (grubsza krawędź = mniejszy opór), a kolor pokazuje wartość natężenia prądu w danym fragmencie (ciemniejsza krawędź = większy prąd). Dodatkowo wierzchołki ustawiają się w zależności od ilości połączeń i natężenia prądu na krawędziach. Im więcej krawędzi do danego wierzchołka i im mniejsze natężenia prądu na tych krawędzaich, tym bliżej wierzchołek jest danej grupy wierzchołków, oznacza to grupowanie się wierzchołków między którymi płynie mały prąd.

4.3 Weryfikacja poprawności

Dodatkowo zaimplementowana została funkcja sprawdzająca poprawność rozwiązania. Test polega na sprawdzeniu I prawa Kirchhoff'a dla wszystkich wierzchołków oraz na sprawdzeniu II prawa Kirchhoff'a dla kilku ścieżek od S do T o rozłącznych zbiorach krawędzi (suma spadków napięć powinna być równa SEM).

4.4 Program

Skrypty zaimplementowane na potrzeby zadania

circuit_main.py - główny program, przyjmuje jako argumenty nazwy plików z zapisanymi grafami

¹Jest to podział na takie cykle, że każdy zawiera krawędź, która nie występuje w żadnym innym cyklu w tym podziałe. W bibliotece networkx realizuje go funkcja networkx.cycle_basis(Graph)

- circuit_analyzer.py główny algorytm rozwiązujący problem zadanego obwodu
- circuit_generator.py funkcje do generowania przykładowych grafów i zapisywania ich do plików + wygenerowanie przykładowych grafów
- circuit_plotter.py funkcja do wyświetlania grafu z rozwiązaniem
- circuit_check.py funkcja testująca rozwiązanie
- circuit_reader.py funkcja czytająca graf z pliku (każda linia: wierzchołek_1 wierzchołek_2 rezystancja; linia rozpoczynająca się przez STU zawiera wierzchołek_S wierzchołek_T SEM)

4.5 Przykładowe wyniki działnia programu

Każdy podany graf przeszedł pomyślnie test zawarty w pliku circuit_check.py

Figure 1: Dwa spójne grafy połączone mostkiem

Figure 2: Trzy spójne grafy połączone mostkami

Figure 3: Graf spójny o 20 wierzchołkach

Figure 4: Graf spójny o 60 wierzchołkach

Figure 5: Graf spójny o 100 wierzchołkach

Figure 6: Siatka 2D 5 x 5

Figure 7: Siatka 2D 10 x 10

Figure 8: Graf kubiczny o 20 wierzchołkach

Figure 9: Graf kubiczny o 50 wierzchołkach

Figure 10: Graf kubiczny o 90 wierzchołkach