

UNIVERSIDADE FEDERAL DE SERGIPE CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA

GUSTAVO VINÍCIUS OLIVEIRA DOS SANTOS GUILHERME BRANDÃO DE OLIVEIRA LUCAS NASCIMENTO DE ARAUJO

Projeto Pórtico móvel

São Cristóvão - SE

Agosto de 2023

UNIVERSIDADE FEDERAL DE SERGIPE CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA

GUSTAVO VINÍCIUS OLIVEIRA DOS SANTOS GUILHERME BRANDÃO DE OLIVEIRA LUCAS NASCIMENTO DE ARAUJO

Projeto Pórtico móvel

Este artigo é realizado no intuito de documentar o projeto de uma talha com cabo de aço montada em pórtico móvel sob trilho para servir de avaliação para matéria Elementos de Máquinas ministrada pelo professor André Costa

São Cristóvão - SE

Agosto de 2023

Sumário

1.	Introdução8
2.	Classificação8
3.	Dimensionamento11
	3.1 Modelo do pórtico11
	3.2 Viga principal12
	3.3 Pernas12
	3.4 Chapas13
	3.5 Cabos14
	3.6 Potência nominal do motor18
	3.7 Talha Elétrica18
	3.8 Rodas e trilhos19
	3.9 Parafusos23
	3.9.1 Coeficiente de segurança contra a fadiga para os parafusos28
	3.10 Soldagem32
	3.10.1 Junção entre 1 e 2 / Junção entre 3 e 533
	3.10.2 Junção entre 2 e 435
	3.10.3 Junção entre (1-3) e 435
	3.10.4 Junção entre o elemento 6 e a viga principal36
4.	Cálculo de Tensões36
	4.1 Viga principal36
	4.1.1 Solicitações devido ao próprio peso
	(Sg)37
	4.1.2 Solicitações devido a carga de serviço
	(SL)38
	4.1.3 Os efeitos horizontais mais desfavoráveis
	(SH)40
	4.1.4 Verificações contra o escoamento41

	4.1.5 Verificação contra a fadiga43
	4.2 Pernas45
	4.2.1 Cálculo de tensões e verificação contra escoamento45
	4.2.2 Verificação contra fadiga50
5.	Conclusão54
6.	Referências55
7.	Anexos56

TABELAS

Tabela 1 - Estado de carga de trabalho8
Tabela 2 - Classe de funcionamento9
Tabela 3 - Classe de utilização10
Tabela 4 - Grupo do equipamento10
Tabela 5 - Valores do coeficiente de majoração10
Tabela 6 - Valores do coeficiente dinâmico ψ11
Tabela 7 - Construção do Cabo14
Tabela 8 - Tipo de Serviço x Fator de Segurança14
Tabela 9 - Grupo de Mecanismo15
Tabela 10 - Fator de dimensionamento15
Tabela 11 - Tabela de Cabos de Aço16
Tabela 12 - Relação do tipo de cabo e do diâmetro do tambor ou da polia17
Tabela 13 - Bloco de rodas22
Tabela 14 - Dimensões dos parafusos (ISO)24
Tabela 15 - Classe de parafusos24
Tabela 16 - Especificação SAE para parafusos de aço25
Tabela 17 - Parâmetros de rigidez de vários materiais26
Tabela 18 - Coeficientes para a equação do fator de superfície29
Tabela 19 - Fatores de confiabilidade30
Tabela 20 - Tensão admissível à tração42
Tabela 21 - Forças e momentos devido a carga43
Tabela 22 - Tensões alternadas e médias43

FIGURAS

Figura 1 - CAD Pórtico montado11	
Figura 2 - Seção viga principal12	
Figura 3 - Viga principal em vista12	
Figura 4 - Pernas em vista13	
Figura 5 - Posicionamento da chapa 113	
Figura 6 - Posicionamento da chapa 214	
Figura 7 - Talha elétrica NAGANO19	
Figura 8 - Trilho perfil americano21	
Figura 9 - Explicação de leitura do modelo dos blocos de rodas	22
Figura 10 - Bloco de rodas23	
Figura 11 - Estimativa de resistência à fadiga não corrigida	28
Figura 12 - Identificação dos elementos da estrutura lateral e seus esforços	normais32
Figura 13 - Tipos de solda de filete33	
Figura 14 - Distribuição de tensão na seção da viga	37
Figura 15 - Diagramas devido ao peso próprio37	,
Figura 16 - Esforço cortante [N]	38
Figura 17 - Momento fletor [Nm]	38
Figura 18 - Diagrama devido carga de serviço39	١
Figura 19 - Momento fletor [kNm]	39
Figura 20 - Diagrama devido carga de serviço, trolley deslocado	39
Figura 21 - Esforço cortante [kN] com trolley deslocado	.40
Figura 22 - Gráfico do coeficiente ξ40	
Figura 23 - Reações horizontais transversais com trolley no centro da viga.	41

Figura 24 - Momento fletor4	1
Figura 25 - Fator de Superfície	44
Figura 26 - Encontrando valor do corretor de superfície	45
Figura 27 - Tubo ligado à perna vertical e à viga	46
Figura 28 - Variáveis relativas às dimensões	46
Figura 29 - Esforços atuantes	46
Figura 30 - Considerações do projeto	47
Figura 31 - Verificações contra o escoamento	47
Figura 32 - Verificação contra o cisalhamento	47
Figura 33 - Considerações do projeto	47
Figura 34 - Estrutura Lateral4	18
Figura 35 - Tensão Máxima e normal admissível no elemento 6	50

1. Introdução

Utilizado para o içamento de cargas, os pórticos são equipamentos bastante presentes em vários segmentos industriais que facilitam a movimentação de cargas pesadas, tornando o processo muito mais ágil, fácil e seguro dentro do ambiente operacional. O presente relatório consistiu em desenvolver o projeto de uma talha com cabo de aço montada em pórtico móvel sob trilho para içamento de cargas de até 3 toneladas a uma altura de elevação de 6 metros. Neste relatório foram abordados diversos fatores necessários para o desenvolvimento do equipamento, tais como: Dimensionamento das estruturas, soldas e parafusos, seleção de materiais adequados ao que foi solicitado, determinação dos coeficientes de segurança e seleção dos componentes considerados essenciais para este projeto, como cabos, parafusos, rodas e trilhos.

Para o desenvolvimento do projeto, foram utilizados os softwares Ftool e Solidworks para os cálculos estruturais e simulação, respectivamente, como também, foi utilizado o Microsoft Excel para as anotações dos dados necessários junto com programação Python para alguns cálculos. Visando garantir maior confiabilidade ao projeto, fez-se consultas bibliográficas, de normas técnicas e de catálogos de fabricantes reconhecidos, assim como, a atuação conjunta da equipe para uma melhor tomada de decisões.

2. Classificação

Segundo a NBR 8400 [], é necessário fazer diversas classificações para o cálculo de equipamentos de levantamento e movimentação de cargas. Primeiramente, é escolhido o estado de carga que o equipamento vai lidar durante seu funcionamento.

Estado de carga	Definição	Fração mínima da carga máxima
0 (muito leve)	Equipamentos levantando excepcionalmente a carga nominal e comumente cargas muito reduzidas	P=0
1 (leve)	Equipamentos que raramente levantam a carga nominal e comumente cargas de ordem de 1/3 da carga nominal	P = 1/3
2 (médio)	Equipamentos que freqüentemente levantam a carga nominal e comumente cargas compreendidas entre 1/3 e 2/3 da carga nominal	P = 2/3
3 (pesado)	Equipamentos regularmente carregados com a carga nominal	P=1

Tabela 1 - Estado de carga de trabalho. Fonte: NBR 8400.

Para o pórtico em questão foi escolhido o estado de carga 1, onde raramente vai ser levantado a carga nominal.

Como requisito, é necessário que o equipamento tenha uma altura de elevação (H) de 6 metros, realize 60 ciclos/hora (N), com um tempo de trabalho de 8 horas/dia e uma velocidade de elevação (VL) de elevação de 8m/min. Através desses valores, utilizando a equação 2.1, encontra-se o tempo médio de funcionamento de 1,2 h:

$$Tm = 2 \times H \times N \times T / 60 \times VL$$

Classe de funcionamento	Tempo médio de funcionamento (h)	Duração total teórica de utilização (h)
V0,25	tm ≤ 0,5	≤ 800
V0,5	0,5 ≤ tm ≤ 1	1600
V1	1≤tm≤2	3200
V2	2 ≤ tm ≤ 4	6300
V3	4 ≤ tm ≤ 8	12500
V4	8 ≤ tm ≤ 16	25000
V5	Tm > 16	50000

Tabela 2 - Classe de funcionamento. Fonte: NBR 8400.

Através disso, utilizando a duração total teórica de utilização obtida na tabela é calculado o número convencional de ciclos de levantamento (Nx), usando a equação 2.2, abaixo.

$$Nx = 3600 \times Td/TS$$

TS = tempo de duração do ciclo [s];

Td = duração total teórica de utilização;

Com o valor Nx, utilizando a tabela seguinte é obtido o número convencional de ciclos de levantamento e a frequência do movimento de levantamento, chegando à classe A de utilização.

Classe de utilização	Freqüência de utilização do movimento de levantamento	Numero convencional de ciclos de levantamento	
А	Utilização ocasional não regular, seguida de longos períodos de repouso	6,3 x 10 ⁴	
В	Utilização regular em serviço intermitente	2,0 x 10 ⁵	
С	Utilização regular em serviço intensivo	6,3 x 10 ⁵	
D	Utilização em serviço intensivo severo, efetuado, por exemplo, em mais de um turno	2,0 x 10 ⁶	

Tabela 3 - Classe de utilização. Fonte: NBR 8400.

Com a classe de utilização 1 e o estado de carga A, encontra-se o grupo da estrutura do equipamento.

Estado de cargas (ou estado de tensões para um elemento)	Classe de utilização e número convencional de ciclos de levantamento (ou de tensões para um elemento)				
	A 6,3 x 10⁴	B 2,0 x 10 ⁵	C 6,3 x 10⁵	D 2,0 x 10 ⁶	
0 (muito leve) P=0	1	2	3	4	
1 (leve) P = 1/3	2	3	4	5	
2 (médio) P = 2/3	3	4	5	6	
3 (pesado) P=1	4	5	6	6	

Tabela 4 - Grupo do equipamento. Fonte: NBR 8400.

É possível que aconteçam erros no dimensionamento ou imprevistos, ultrapassando as solicitações, portanto utiliza-se um coeficiente de Grupos 1 2 3 4 5 6 (Mx). Neste majoração 1 1 caso Mx = 1. M_x 1 1,06 1,12 1,20

Tabela 5 – Valores do coeficiente de majoração. Fonte: NBR 8400.

Devido aos efeitos dinâmicos é necessário encontrar um coeficiente dinâmico para ser

Equipamento	Coeficiente dinâmico Ψ	Faixa de velocidade de elevação da carga (m/s)		
	1,15	0 < v₁ ≤ 0,25		
Pontes ou pórticos rolantes	1 + 0,6 v _L	0,25 < v _L < 1		
	1,60	v _L ≥1		

utilizado nas solicitações da estrutura.

Tabela 6 – Valores do coeficiente dinâmico ψ. Fonte: NBR 8400.

Com uma velocidade de elevação de 8 m/min, ou seja, 0,133 m/s, chega-se a um coeficiente dinâmico de 1,15.

3. Dimensionamento

3.1 Modelo do pórtico

Figura 1- CAD Pórtico montado. Fonte: Autores.

3.2 Viga principal

Para a viga principal foi escolhida uma viga em perfil I com uma bitola W 250 x 28,4, padrão Gerdau, tendo um comprimento total de 6 m. O material escolhido foi o ASTM A572 grau 60.

Figura 2 - Seção viga principal. Fonte: Autores.

Figura 3 - Viga principal em vista. Fonte: Autores.

3.3 Pernas

Para as pernas foi escolhido tubos quadrados, onde os tubos posicionados verticalmente e horizontalmente possuem uma seção de 80x80 e os inclinados possuem seção de 70x70, ambos com 3 mm de espessura. Também existe um tubo de apoio da viga com a mesma seção dos tubos inclinados. O material desses tubos é o A500 grau A.

Figura 4- Pernas em vista. Fonte: Autores.

3.4 Chapas

Utilizou-se duas chapas de 10 mm de aço 1020 para realizar a ligação entre as pernas e viga principal, sendo a seção da perna soldada na chapa e a chapa parafusada na viga conforme figura seguinte.

Figura 5 - Posicionamento da chapa 1. Fonte: Autores.

Mais duas outras chapas de 10 mm foram utilizadas, seguindo o mesmo raciocínio de ligar tubos com a viga.

Figura 6 - Posicionamento da chapa 2. Fonte: Autores.

3.5 Cabos

Para selecionarmos um cabo adequado ao nosso projeto, utilizaremos o catálogo de produtos da SIVA para cabos de aço e acessórios. Optamos por escolher o cabo de classe 6x36 Warrington Seale com Alma de Fibra através das tabelas abaixo:

Tabelas 7 - Construção do Cabo. Fonte: SIVA

Seguindo as recomendações do catálogo, adotaremos para talhas elétricas um fator de segurança FS = 7, conforme tabela a seguir:

APLICAÇÕES	FATOR DE Segurança
Cabos estáticos	3 a 4
Cabo para tração no sentido horizontal	4 a 5
Guinchos, guindastes, escavadeiras	5
Pontes rolantes	6 a 8
Talhas elétricas e outras	7
Guindastes estacionários	6 a 8
Lingas de cabo de aço	5 a 6
Elevadores de obra	8 a 10

Tabela 8 - Tipo de Serviço x Fator de Segurança. Fonte: SIVA

Com base na NBR 8400, encontraremos o diâmetro mínimo adequado para o cabo através da seguinte equação:

$$d_c = Q\sqrt{T}$$

Onde:

- d_c Diâmetro externo mínimo (mm).
- Q Fator de dimensionamento.
- T Esforço máximo de tração (daN).

O fator de dimensionamento é selecionado com base no grupo de mecanismo a qual o equipamento em questão está classificado. O grupo de mecanismo é obtido a partir do cruzamento feito entre a classe de funcionamento e o estado de solicitação indicados anteriormente (tabelas 2 e 4) conforme a tabela:

Fatadas de sellaites	Classes de funcionamento						
Estados de solicitação	V 0,25	V 0,5	V1	V2	V3	V4	V5
1	1Bm	1Bm	1Bm	1Am	2m	3 m	4 m
2	1Bm	1Bm	1Am	2 m	3 m	4 m	5 m
3	1Bm	1Am	2 m	3 m	4 m	5 m	5 m

Tabela 9 - Grupo de Mecanismo. Fonte: NBR 8400.

Sabendo que o grupo de mecanismo é 1Am e que o cabo em questão é um cabo normal, temos que o fator de dimensionamento Q é igual a 0,280 com base na tabela a seguir:

Course de massanismos	Valores mínimos de Q			
Grupo de mecanismo	Cabo normal	Cabo não rotativo		
1 Bm	0,265	0,280		
1 Am	0,280	0,300		
2 m	0,300	0,335		
3 m	0,335	0,375		
4 m	0,375	0,425		
5 m	0,425	0,475		

Tabela 10 - Fator de dimensionamento. Fonte. NBR 8400.

O cálculo do esforço máximo de tração T consiste na razão entre a carga máxima suportada pelo cabo, de 3 toneladas, e a quantidade de cabos, esta última igual a 2.

$$T = \frac{3000 * 9,81}{2} = 14715 \, N$$

$$T = 1471,5 \text{ daN}$$

Obtido os dados necessários, podemos calcular o diâmetro mínimo do cabo:

$$d_c = Q\sqrt{T} = 0.280 * \sqrt{1471.5}$$

 $d_c = 10.74 \text{ mm}$

Logo, segundo a NBR 8400, o diâmetro mínimo do cabo de aço a ser selecionado será de 10,74 mm.

Determinado o diâmetro mínimo do cabo, precisamos calcular a carga de ruptura do mesmo. Sabendo que o fator de segurança FS adotado foi igual a 7 e tendo em posse o valor do esforço máximo de tração do cabo, calculamos a carga de ruptura através da relação abaixo:

$$CR = FS * T = 7 * 14715 = 103005 \text{ N}$$

 $CR = 10500 \text{ kgf}$

Dessa forma, precisamos selecionar um cabo que satisfaça as seguintes condições:

- $CR \ge 10500 \text{ kgf}$
- $d_c \ge 10,74 \text{ mm}$

Para a seleção do cabo, consultamos a tabela de cabos de aço da SIVA abaixo:

BIT	OLA		TABELA	DE PESO			TABELA I.P.S.			TABELA E.I.P.S.			
DIÂM	IETRO	PES	O POR MET	RO LINEAR	(kg)	CARGAS DE RUPTURA RESISTÊNCIA 1.770 N/nm² (IPS) em kgf			1	CARGAS DE RUPTURA RESISTÊNCIA 1.960 N/nm² (EIPS) em kgf			
pol.	mm	6:	x7	6x19	/ 6x36	6	x7	6x19	/ 6x36	6	x7	6x19	/ 6x36
pui.		AF / AFA	AA / AACI	AF / AFA	AA / AACI	AF / AFA	AA / AACI	AF / AFA	AA / AACI	AF / AFA	AA / AACI	AF / AFA	AA / AACI
1/16"	1,59	0,012	0,013			151	163			167	181		
5/64"	1,99	0,014	0,015			236	255			261	283		
3/32"	2,38	0,019	0,021			340	367			376	407		
1/8"	3,18	0,034	0,037			604	653			669	723		
5/32"	3,97	0,054	0,061			944	1.021			1.045	1.130		
3/16"	4,76	0,078	0,086	0,09	0,10	1.359	1.469	1.351	1.457	1.505	1.627	1.496	1.613
1/4"	6,35	0,140	0,154	0,16	0,17	2.416	2.613	2.402	2.591	2.676	2.893	2.659	2.869
5/16"	7,94	0,221	0,244	0,24	0,27	3.778	4.085	3.755	4.051	4.183	4.523	4.158	4.486
3/8"	9,53	0,310	0,341	0,35	0,39	5.442	5.885	5.409	5.836	6.026	6.517	5.990	6.462
7/16"	11,10	0,430	0,473	0,48	0,52	7.383	7.983	7.339	7.917	8.176	8.840	8.126	8.767
1/2"	12,70	0,570	0,627	0,63	0,68	9.665	10.451	9.607	10.364	10.702	11.573	10.638	11.476
9/16"	14,30	0,710	0,781	0,79	0,88	12.254	13.250	12.180	13.139	13.569	14.672	13.487	14.550
5/8"	15,90	0,880	0,968	0,98	1,07	15.149	16.381	15.058	16.244	16.775	18.139	16.674	17.988
3/4"	19,10			1,41	1,55			21.729	23.441			24.061	25.957
7/8"	22,20			1,92	2,11			29.354	31.667			32.505	35.066
1"	25,40			2,50	2,75			38.427	41.454			42.552	45.904
1.1/8"	28,60			3,17	3,48			48.719	52.557			53.949	58.199
1.1/4"	31,75			3,91	4,30			60.042	64.772			66.487	71.725
1.3/8"	34,90			4,73	5,21			72.547	78.262			80.334	86.664
1.1/2"	38,10			5,63	6,19			86.460	93.272			95.741	103.285
1.3/4"	44,45				8,43								140.582
2"	50,80				11,01								183,617
2.1/4"	57,15				13,93								232.390
2.1/2"	63,50				17,30								286.902
2.3/4"	69,85				20,80								347.151
3"	76,20				24,70								413.138
3.1/2"	88,90				33,80								562.327

Tabela 11 - Tabela de Cabos de Aço. Fonte: SIVA.

Como indicado na tabela, selecionamos um cabo com diâmetro e carga de ruptura superior aos dimensionados e, a partir destes valores, podemos encontrar o novo fator de segurança do cabo:

$$FS' = \frac{CR}{T} = \frac{10638}{1500}$$

$$FS' = 7,1$$

Verificando que o novo fator de segurança é um pouco maior que o recomendado, podemos afirmar que o cabo de aço 6x36 Warrington Seale, com alma de fibra, EIPS e polido com diâmetro de $\frac{1}{3}$, é uma escolha adequada e segura para o projeto.

Para cabos da classe 6x36, o diâmetro do tambor é calculado através relação fornecida pela SIVA logo abaixo:

TIPO DE CABO	DIÂMETROS RECOMENDADOS	DIÂMETROS MÍNIMOS
6X7	72xØ do cabo	42xØ do cabo
6X19 SEALE	51xØ do cabo	34xØ do cabo
6X25 FILLER	39xØ do cabo	26xØ do cabo
6X41 W-S	31xØ do cabo	20xØ do cabo
8x19 SEALE	39xØ do cabo	26xØ do cabo
18x7	51xØ do cabo	34xØ do cabo

Tabela 12 - Relação do tipo de cabo e do diâmetro do tambor ou da polia. Fonte: SIVA.

Com base na tabela x, temos que o diâmetro mínimo e recomendado do tambor para o cabo escolhido é:

$$D_{recomendado} = 31 \times 12,7$$

 $D_{recomendado} = 393,7 \text{ mm}$

$$D_{minimo} = 20 x 12,7$$

 $D_{minimo} = 294 \text{ mm}$

3.6 Potência nominal do motor

A potência nominal do motor de elevação é calculada conforme descrito na NBR 10981-Talhas de corrente com acionamento motorizado. É fornecido no Anexo B - Seleção de motores elétricos para elevação a fórmula da potência:

$$P = \frac{M \times g \times V}{60000 \times \eta}$$

Onde:

- M Capacidade total (3000kg);
- g Aceleração da gravidade (9,81 m/s²);
- V Velocidade de elevação (8 m/min);
- η Rendimento total do mecanismo e dos componentes de enrolamento do cabo (0,98);

Em posse dos dados, calculamos a potência nominal mínima:

$$P = \frac{3000 \times 9,81 \times 8}{60000 \times 0,98}$$

$$P = 4 \text{ kW}$$

3.7 Talha elétrica

Para selecionarmos uma talha adequada ao nosso projeto, precisamos considerar alguns requisitos previamente calculados e/ou fornecidos, são estes:

- Carga de trabalho requerida 3000 kg;
- Diâmetro do cabo 12,7 mm;
- Potência mínima do motor 4 kW

Após feito uma busca no mercado, selecionamos a talha elétrica NAGANO modelo NTE93TR, visto que a mesma atende aos requisitos do projeto. A talha em questão, com base na tabela de referências do fornecedor, possui altura de elevação de 9m, motor de 4,5 kW, capacidade de carga de 3 toneladas e 2 cabos com diâmetro nominal de 13mm.

Figura 7 - Talha Elétrica NAGANO. Fonte: NAGANO.

3.8 Rodas e Trilhos

Para que possamos escolher as rodas, precisamos considerar a carga média atuante nas rodas e a quantidade das mesmas, o grupo de mecanismo (Tabela X), a velocidade do pórtico e a superfície de rolamento do trilho com base no trilho a ser escolhido.

- **Grupo de mecanismo** 1Am (Tabela X);
- Velocidade de translação do pórtico $V_p = 30.5 \, m/min = 0.51 \, m/s$ (definido pelos autores);
- Carga média $F_{média}$, definido pela NBR 8400 através da seguinte fórmula;

$$F_{m\acute{e}dia} = \frac{F_{Rmin\acute{m}o} + 2 x F_{Rm\acute{a}ximo}}{3}$$

Onde:

- $F_{Rminimo}$ Força atuante na extremidade oposta à roda considerada sem a carga de trabalho atuando no equipamento (N);
- $F_{Rm\acute{a}ximo}$ Força atuando na extremidade da roda considerada com a carga de trabalho atuando no equipamento (N);

Devido a complexidade na realização dos cálculos, podemos optar por calcular a carga média $F_{m\acute{e}dia}$ através de uma estimativa, onde, respeitando os parâmetros da equação e levando em consideração o número de rodas a serem instaladas ($n_{rodas}=4$) teremos:

• $F_{Rminimo}$ - Peso do equipamento (P) dividido pela quantidade de rodas:

$$F_{Rminimo} = \frac{P}{n_{rodas}} = \frac{743,26 \times 9,8 \text{ m/s}^2}{4} = 1821 \text{ N} \text{ onde:}$$

O peso do equipamento foi calculado levando em consideração os tubos que definem o pórtico e a viga principal, ambos selecionados previamente (tabelas X e X)

• $F_{Rm\acute{a}ximo}$ - Peso do equipamento (P) mais a carga de trabalho (3 toneladas) dividido pela quantidade de rodas:

$$F_{Rm\acute{a}ximo} = \frac{(743,26 \, kg + 3000 \, kg) \, x \, 9.8 \, m/s^2}{4} =$$
9171 N

Estimado os parâmetros, calculamos $F_{médio}$:

$$F_{m\acute{e}dio} = \frac{1821 + 2 \times 9171}{3} = 6721 \text{ N}$$

Através do catálogo da COMERCIALFORTE, escolhemos inicialmente um trilho de perfil americano, modelo CR104, feito em aço carbono standard ASTM A759 e de superfície de rolamento plana. Conforme a NBR, a largura útil do boleto do trilho para superfície de rolamento plana (b_{plana}) é calculada através da seguinte relação:

$$b_{nlana} = L - 2xR$$
 onde:

- L largura do boleto do trilho, indicado em vermelho (mm);
- R raio do boleto do trilho, indicado em verde (mm);

$$b_{nlana} = 63.5 - 2 \times 7.94 = 47.62 \text{ mm}$$

Figura~8-Trilho~perfil~americano.~Fonte:~COMERCIALFORTE.

Obtido b_{plana} , selecionamos através do catálogo da STAHL um bloco de rodas adequado ao pórtico:

			S	R-S 125										
Zulässige Radlast (max.) *1 Permissible wheel load (max.) *1 Charge adm. par galet (max.) *1	Einstufung nach FEM (ISO) Classification to FEM (ISO) Classification selon FEM (ISO)	Schienenkopfbreite *2 Railhead width *2 Largeur du champignon *2		Zulässige ideelle Radlasten R _{id zul} in [kg] bei Fahrgeschwindigkeit v in [m/min] Permissible ideal wheel loads R _{id zul} in [kg] at travel speed v in [m/min] Charges idéelles admissibles par galets R _{id zul} en [kg] avec vitesse de direction v en [m/min]										
R _{zul}		k _{eff}	8	10	12,5	16	20	25	32	40	50	63	80	100
[kg]		[mm]				•	•	()	g]		•	•	•	
5000	1Bm	40	5000	4850	4700	4550	4400	4200	4050	3850	3650	3350	3050	2800
	(M3)	50	5000	5000	5000	5000	5000	5000	5000	4800	4550	4200	3800	3500
		60	5000	5000	5000	5000	5000	5000	5000	5000	4650	4300	3950	3650
]	1Am	40	4450	4350	4200	4050	3950	3800	3600	3450	3250	3000	2750	2550
	(M4)	50	5000	5000	5000	5000	4900	4650	4300	3950	3700	3400	3150	2900
		60	5000	5000	5000	5000	5000	4650	4300	3950	3700	3400	3150	2900
İ	2m	40	4000	3900	3750	3650	3500	3350	3200	3050	2900	2700	2450	2250
	(M5)	50	5000	4850	4650	4300	3950	3700	3400	3150	2900	2700	2500	2300
		60	5000	5000	4650	4300	3950	3700	3400	3150	2900	2700	2500	2300
	3m	40	3600	3500	3400	3250	3150	2900	2700	2500	2300	2150	2000	1850
	(M6)	50	4300	3950	3700	3400	3150	2900	2700	2500	2300	2150	2000	1850
		60	4300	3950	3700	3400	3150	2900	2700	2500	2300	2150	2000	1850
	4m	40	3200	3100	2900	2700	2500	2300	2150	2000	1850	1700	1600	1450
	(M7)	50	3400	3150	2900	2700	2500	2300	2150	2000	1850	1700	1600	1450
		60	3400	3150	2900	2700	2500	2300	2150	2000	1850	1700	1600	1450
	5m	40	2700	2500	2300	2150	2000	1850	1700	1600	1450	1350	1250	1150
	(M8)	50	2700	2500	2300	2150	2000	1850	1700	1600	1450	1350	1250	1150
		60	2700	2500	2300	2150	2000	1850	1700	1600	1450	1350	1250	1150

Tabela 13 - Bloco de rodas. Fonte: STAHL Crane Systems.

Figura 9 - Explicação de leitura do modelo dos blocos de rodas. Fonte: STAHL Crane Systems.

Figura 10 - Bloco de rodas. Fonte: STAHL Crane Systems.

Sendo assim, serão escolhidas 4 blocos de rodas modelo **SR-S 125** com rodas de 125 mm de diâmetro e capacidade de carga de 4300kg (42140 N) acopladas com para-choque para absorção de possíveis impactos. Para averiguar que as rodas escolhidas são adequadas ao projeto, verificamos as seguintes condições:

- $F_{Rm\acute{a}ximo} = 9171 \text{ N} \le R_{zul} = 3000 \text{ x } 9.81 = 49050 \text{ N}$
- $F_{m\acute{e}dia} = 6721 N < R_{id\ zul} = 4300 x 9,81 = 42183 N$

Obs: R_{zul} e $R_{id\ zul}$ são, respectivamente, a capacidade de carga e carregamento ideal permissível do bloco de roda, ambos presentes na tabela 13.

Satisfeita as condições, o bloco de rodas escolhido é adequado para o projeto.

3.9 Parafusos

A viga principal está fixa no pórtico em suas extremidades através de parafusos enroscados em duas placas, distribuídos e conectados entre o pórtico e a base da viga. Utilizando o sistema métrico ISO, selecionamos 20 parafusos sextavados **M6 x 1 classe 9,8** de rosca grossa, SAE grau 5,2. Para cada placa nas extremidades do pórtico, estão conectados 6 parafusos em uma chapa e 4 parafusos em outra que fixam a viga principal. As cargas que agem nos parafusos são axiais, ou seja, sofrem tração e compressão.

Adotamos inicialmente um fator de segurança da junção (Fsj) igual a 4, levando em conta eventuais custos em caso de falhas no equipamento. Dito isso, podemos calcular as forças atuantes em cada parafuso (P) levando em consideração a carga de trabalho (3 ton) requerida mais o peso da talha acoplada (359 kg):

$$P = \frac{(3000 + 359) \times 9,81}{20}$$
$$P = 1,65 kN$$

$$Fsj = 4$$

		Roscas grossa	as		Roscas finas	
Diåmetro maior d (in)	Passo p mm	Diâmetro menor d, (mm)	Área sob tração A_i (mm²)	Passo p mm	Diâmetro menor d, (mm)	Área sob tração A_i (mm 2)
3,0	0,50	2,39	5,03			
3,5	0,60	2,76	6,78			
4,0	0,70	3,14	8,78			
5,0	0,80	4,02	14,18			
6,0	1,00	4,77	20,12			
7,0	1,00	5,77	28,86			
8,0	1,25	6,47	36,61	1,00	6,77	39,17
10,0	1,50	8,16	57,99	1,25	8,47	61,20
12,0	1,75	9,85	84,27	1,25	10,47	92,07
14,0	2,00	11,55	115,44	1,50	12,16	124,55
16,0	2,00	13,55	156,67	1,50	14,16	167,25

Tabela 14 - Dimensões dos parafusos (ISO). Fonte: Norton.

Categoria de propriedade	Intervalo de tamanho inclusivo	Resistência mínima de prova MPa	Resistência mínima de tração, MPa	Resistência mínima de escoamento, MPa	Material	Marcação de cabeça
4,6	M5-M36	225	400	240	Baixo e médio carbono	4,6
4,8	M1,6-M16	310	420	340	Baixo e médio carbono	4,8
5,8	M5-M24	380	520	420	Baixo e médio carbono	5,8
8,8	M16-M36	600	830	660	Médio carbono, Q&T (temperado e revenido)	8,8
9,8	M1,6-M16	650	900	720	Médio carbono, Q&T (temperado e revenido)	9,8
10,9	M5-M36	830	1040	940	Baixo carbono, martensita, Q&T (temperado e revenido)	10,9
12,9	M1,6-M36	970	1220	1100	Liga, Q&T (temperado e revenido)	12,9

Tabela 15 - Classe de parafusos. Fonte: Shigley

Grau SAE nº	Intervalo de tamanho inclusivo, in	Resistência mínima de prova,* kpsi	Resistência mínima de tração,* kpsi	Resistência mínima de escoamento,* kpsi	Material	Marcação de cabeça
1	$\frac{1}{4}$ -1 $\frac{1}{2}$	33	60	36	Baixo ou médio carbono	0
2	$\frac{1}{4} - \frac{3}{4}$	55	74	57	Baixo ou médio carbono	Š
	$\frac{7}{8}$ -1 $\frac{1}{2}$	33	60	36		
4	$\frac{1}{4}$ -1 $\frac{1}{2}$	65	115	100	Médio carbono, estirado a frio	\bigcirc
5	$\frac{1}{4}$ -1	85	120	92	Médio carbono, Q&T	
	$1\frac{1}{8}-1\frac{1}{2}$	74	105	81	(temperado e revenido)	
5,2	1-1	85	120	92	Martensita de baixo carbono, Q&T (temperado e revenido)	
7	$\frac{1}{4}$ – 1 $\frac{1}{2}$	105	133	115	Liga de baixo carbono, Q&T (temperado e revenido)	Ŏ
8	$\frac{1}{4}$ –1 $\frac{1}{2}$	120	150		Liga de médio carbono, Q&T (temperado e revenido)	0
8,2	1/4-1	120	150	130	Martensita de baixo carbono, Q&T (temperado e revenido)	0

Tabela 16 - Especificação SAE para parafusos de aço. Fonte: Shigley.

Com os dados previamente selecionados e calculados, podemos realizar os cálculos necessários para o estudo do parafuso selecionado.

• Força de aperto - Fi:

$$Fi = K x At x Sp$$

Onde:

- K Percentual de pré-carga da resistência de prova do parafuso. Para conexões permanentes, adotaremos K = 90%;
- At Área sob tração do parafuso selecionado. At = $20,12 \text{ } mm^2$;
- Sp Resistência mínima de prova. Sp = 85 kpsi (586 MPa);

$$Fi = 0.90 \times 20.12 \times 586$$

 $Fi = 10.6 \text{ kN}$

- Comprimento de rosca e comprimento sem rosca do parafuso L_{rosca} e L_S :
- Comprimento de rosca dentro da zona de sujeição L_T :

$$L_{rosca} = 2 \times D_{major} + 0.25$$

Onde:

D_{maior} - Diâmetro maior do parafuso - D_{maior} = 6 mm;
 Obs: A tabela X de dimensões dos parafusos do Norton indica que o D_{maior} é expresso em polegadas (in). Contudo, por estar no padrão métrico ISO, consideramos as medidas do diâmetro em milímetros (mm).

$$L_{rosca} = 2 \times 6 + 0.25$$

 $L_{rosca} = 12.25 \text{ mm}$

Para os cálculos de L_S e L_T , definiu - se a espessura da junta (L) igual a 10 mm e comprimento do parafuso ($L_{Parafuso}$) igual a 14 mm, de forma que haja um tamanho de protuberância suficiente. Sendo assim:

$$L_S = L_{Parafuso} - L_{rosca} = 14 - 12,25 = 1,75 \text{ mm}$$

 $L_T = L - L_S = 10 - 1,75 = 8,25 \text{ mm}$

• Rigidez do parafuso e do material - K_b e K_m ;

$$K_b = \left(\frac{L_T}{At \ x \ E} + \frac{L_S \ x \ 4}{\pi \ x \ D_{major}^2 \ x \ E}\right)^{-1}$$

• E - Módulo de Elasticidade do SAE grau 5,2. E = **207 Gpa**

$$K_b = (\frac{8,25}{20,12 \times 207 \times 10^9} + \frac{1,75 \times 4}{\pi \times 6^2 \times 207 \times 10^9})^{-1} = 4,386212583 \times 10^{11} \frac{N}{mm}$$
$$K_b = 438621 \frac{kN}{m}$$

Para K_m , precisamos considerar os parâmetros de rigidez do aço apresentados na tabela a seguir:

	Coeficiente de	Módulo	elástico		
Material usado	Poisson	GPa	Mnsi	A	R
Aço	0,291	207	30,0	0,787 15	0,628 73
Alumínio	0,334	71	10,3	0,796 70	0,638 16
Cobre	0,326	119	17,3	0,795 68	0,635 53
Ferro fundido cinza	0,211	100	14,5	0,788 71	0,616 16
Expressão geral				0,789 52	0,629 14

Tabela 17 - Parâmetros de rigidez de vários materiais. Fonte: Shigley.

$$K_m = E \times D_{maior} \times A \times e^{\frac{B \times D_{maior}}{L}}$$

$$K_m = 207 \times 10^9 \times 6 \times 0,78715 \times e^{\frac{0.62873 \times 6}{10}} = 1,42564527 \times 10^{12} \frac{N}{mm}$$

$$K_m = 1425645 \frac{kN}{m}$$

• Fator de rigidez da junta - C:

$$C = \frac{K_b}{K_m + K_b}$$
$$C = \mathbf{0.23}$$

• Força P aplicada sentido pelo parafuso e pelo material - P_b e P_m :

$$P_b = C x P = 0.23 x 1.65 x 10^3$$
 $P_b = 379.5 N$
 $P_m = (1 - C)xP = (1 - 0.23) x 1.65 x 10^3$
 $P_m = 1270.5 N$

• Forças atuantes nos parafusos e material após a força P aplicada - F_b e F_m

$$F_b = F_i + P_b = 10,6x10^3 + 379,5$$

$$F_b = 11 \text{ kN}$$

$$F_m = F_i - P_m = 10,6x10^3 - 1270,5$$

$$F_m = 9,3 \text{ kN}$$

• Máxima tensão de tração nos parafusos - σ_b :

$$\sigma_b = \frac{F_b}{At} = \frac{11x10^3}{20,12}$$
 $\sigma_b =$ **546,7 MPa**

• Carga necessária para separar a junta - P_0 :

$$P_0 = \frac{F_i}{(I - C)} = \frac{10,6x10^3}{(I - 0,23)}$$
$$P_0 = 13766 \text{ N}$$

• Fator de segurança contra o escoamento e para separação da junta - Fs e Fsj2

Onde:

• Sy - Resistência mínima ao escoamento SAE 5,2. Sy = 92kpsi (634,3 MPa):

$$Fs = \frac{S_y}{\sigma_b} = \frac{634.3}{546.7}$$

$$Fs = 1.16$$

$$Fsj = \frac{P_0}{P} = \frac{13766}{1650}$$
$$Fsj2 = 8,34$$

3.9.1 Coeficiente de segurança contra a fadiga para os parafusos

De acordo com o livro de Norton, o coeficiente de segurança à falha por fadiga (Nf) pode ser calculado sem a elaboração do diagrama de Goodman por meio da seguinte equação:

$$Nf = \frac{S_e x (S_{ut} - \sigma_i)}{S_e x (\sigma_m - \sigma_i) + S_{ut} x \sigma_a}$$

Onde:

• S_e - Resistência à fadiga corrigida;

Para o cálculo de S_e , primeiro precisamos estimar a resistência à fadiga não corrigida (S_e') com base no material selecionado para o parafuso. Para o aço SAE grau 5,2 com resistência mínima de tração $S_{ut}=827,4$ MPa, vale a seguinte condição:

Figura 11 - Estimativa de resistência à fadiga não corrigida. Fonte: Norton. Dessa forma, temos:

$$S_e' \approx 0.5 \times 827.4 \approx 413.7 \text{ MPa}$$

A resistência à fadiga corrigida é o produto da de S_e ' com os fatores de correção para a resistência à fadiga:

$$S_e = C_{carreg} x C_{tamanho} x C_{superficie} x C_{temperatura} x C_{confiabilidade} x S_e'$$

Onde:

- C_{carreg} Fator devido à solicitação para força normal: ($C_{carreg} = 0.7$);
- $C_{tamanho}$ Fator devido ao tamanho para $D_{maior} = 6 \ mm \le 8 \ mm$: $(C_{tamanho} = 1)$;
- *C_{superfície}* Fator devido à superfície:

$$C_{superficie} = A x S_{ut}^{b}$$

Onde A e b são os coeficientes para o cálculo do fator a depender do tipo de acabamento superficial selecionado conforme tabela abaixo. Para o projeto, consideramos acabamento usinado:

	Para S _{ut} e	Para S _{ut} em MPa, use		si (não em psi), use
Acabamento superficial	Α	b	Α	b
Retificado	1,58	-0,085	1,34	-0,085
Usinado ou estirado a frio	4,51	-0,265	2,7	-0,265
Laminado a quente	57,7	-0,718	14,4	-0,718
Forjado	272	-0,995	39,9	-0,995

Tabela 18 - Coeficientes para a equação do fator de superfície. Fonte: Shigley.

$$C_{superficie} = 4,51 \times 827,4^{-0,265} = 2,55$$

- $C_{temperatura}$ Fator devido à temperatura: Para temperatura ambiente, $C_{temperatura} = 1$;
- $C_{confiabilidade}$ Fator devido à confiabilidade: Para 99% de confiabilidade, $C_{confiabilidade} = 0.81$ de acordo com a tabela abaixo:

Confiabilidade %	C _{conf}
50	1,000
90	0,897
95	0,868
99	0,814
99,9	0,753
99,99	0,702
99,999	0,659
99,9999	0,620

Tabela 19 - Fatores de confiabilidade. Fonte: Norton

Estimado os fatores, temos que:

$$S_e = 0.7 \times 1 \times 2.55 \times 1 \times 0.81 \times 413$$

 $S_e = 598.1 \text{ MPa}$

• Tensões locais média e alternada no parafuso - σ_a e σ_m ;

Para o cálculo das tensões, é necessário calcular as forças alternante e média, as tensões alternada e média, o fator de concentração de tensões à fadiga e para as componentes médias de tensão.

• Força Alternante e Média - Falt e Fmed;

Falt =
$$\frac{F_b - F_i}{2} = \frac{11 - 10.6}{2} = 0.2 \text{ kN}$$

Fmed =
$$\frac{F_b + F_i}{2} = \frac{11 + 10.6}{2} = 10.8 \text{ kN}$$

• Tensões Alternante e Média - σ_{alt} e σ_{media} ;

$$\sigma_{alt} = \frac{Falt}{At} = \frac{0.2x10^3}{20.12} =$$
10 MPa

$$\sigma_{media} = \frac{Fmed}{At} = \frac{10.8 \times 10^3}{20.12} =$$
536.8 MPa

 Fator de concentrações de tensões à fadiga e fator de concentrações para as componentes médias de tensão - Kf e Kfm;

$$Kf = 5.7 + 0.02682D_{major} = 5.7 + 0.02682 \times 6 = 5.86$$

Para as componentes médias de tensão, Kfm é obtido desde que atendido a seguinte condição:

$$Kf |x| |\sigma_{alt} + \sigma_{media}| > Sy$$

Onde Sy é a resistência mínima de escoamento. Para SAE grau 5,2, Sy = 92kpsi (**634, 3 MPa**):

$$5,86 \times |10 + 536,8| > 634,3$$

 $3204.2 Mya > 634.3 Mya$

Atendida a condição, temos que:

$$Kfm = \frac{Sy - Kf \times \sigma_{alt}}{\sigma_{media}} = \frac{634,3 - 5,86 \times 10}{536,8} = 1,07$$

Obtido os valores necessários, calculamos σ_a e σ_m :

$$\sigma_a = Kf \ x \ \sigma_{alt} = 5.86 \ x \ 10 =$$
58,6 MPa $\sigma_m = Kfm \ x \ \sigma_{media} = 1.07 \ x \ 536.8 =$ 574,4 MPa

• Tensão correspondente à força de aperto - σ_i ;

$$\sigma_i = Kfm \ x \ \frac{Fi}{At} = 1 \ x \ \frac{10,6x10^3}{20,12}$$

 $\sigma_i = 563,7 \ MPa$

Calculados os parâmetros, calculamos o coeficiente de segurança à falha por fadiga de Goodman:

$$Nf = \frac{S_e \, x \, (S_{ut} - \sigma_i)}{S_e \, x \, (\sigma_m - \sigma_i) + S_{ut} \, x \, \sigma_a} = \frac{598, l \, x \, (827, 4 - 563, 7)}{598, l \, x \, (574, 4 - 563, 7) + 827, 4 \, x \, 58, 6} = \mathbf{2,87}$$

Para os fatores de segurança à fadiga e separação da junta tivemos valores aceitáveis. Pode - se notar que obtemos um fator de segurança para separação da junta igual a 8,34, superior ao que foi definido inicialmente nesta seção (Fsj = 4). Foi obtido um valor baixo para o fator de segurança contra o escoamento (Fs = 1,16), o que é esperado, visto que a tensão máxima de tração dos parafusos é próxima à resistência de escoamento do material selecionado (Tabela X,

SAE 5,2). Dito isso, o parafuso **M6 x 1 classe 9,8** de rosca grossa, SAE grau 5,2 atende aos requisitos e é adequado para o projeto em questão.

3.10 Soldagem

Logo abaixo, na figura, identificam-se os elementos da estrutura lateral, ao passo que é informada a reação normal em cada um dos elementos. A partir do software Ftool, foi possível observar que existem esforços consideráveis apenas na direção normal a cada barra.

Figura 12 - Identificação dos elementos da estrutura lateral e seus esforços normais.

Fonte: Autores

Os elementos vertical (4 a 6) e horizontal (1 a 3) possuem seção transversal de 80x80x3,00 mm. Já os elementos inclinados (2 e 5) possuem seção transversal de dimensão 70x70x3,00 mm. Essa configuração proporciona maior facilidade no processo de soldagem, já que permite que as soldas nos quatro lados do tubo sejam calculadas como sendo soldas de filete do tipo ângulo, como mostra a Figura 13.

Figura 13 - Tipos de solda de filete. Fonte: Norton

3.10.1 Junção entre 1 e 2 / Junção entre 3 e 5

Por ser simétrica, a estrutura possui o mesmo cálculo de soldagem nas junções entre 1-2 e 3-5, vamos considerar aqui a junção entre 1 e 2.

Como o elemento 2 tem largura externa (seção quadrada) 70 mm, então tem-se um comprimento do cordão em cada lado do tubo é L=70 mm, sendo o comprimento total 4L=280 mm. Com o auxílio da linguagem de programação Python, definimos esse comprimento EM UMA variável chamada L

```
L = 0.07 # Comprimento do cordão de solda em um lado (m)
```

Para calcular a força na solda, note que, na direção y, o elemento 2 apoia-se no elemento 1 (que por sua vez tem seu apoio no trilho). Já, na direção x, considera-se que o elemento 1 é estagnado e calcula-se a componente da força relativa ao elemento 2 nessa direção, através da fórmula:

$$F_{12} = F_2 \cos \theta$$

Onde $\vartheta = 60^{\circ}$ é o ângulo que o elemento 2 faz com a horizontal.

Tem-se cisalhamento da solda.

```
# Módulo da força suportada pela solda (direção x) (N)
f12 = abs(F2*np.cos(60*np.pi/180))
print(f"Força na solda: {round(f12, 2)} N")
Força na solda: 8700.0 N
```

Agora, supondo que os tubos são perpendiculares, o que não ocorre na realidade, calcula-se a largura **h** da garganta da solda. Para cisalhamento da solda, temos que:

$$h = \frac{1,41F.\,fs}{S_{\nu}.\,L}$$

Onde \mathbf{F} é a força na solda, \mathbf{fs} é o coeficiente de segurança, onde Norton recomenda 2,5 e \mathbf{Sy} é a tensão de escoamento do eletrodo, utilizando-se o eletrodo E6013, tem-se uma tensão de escoamento $\mathbf{Sy} = 331$ MPa, que é maior que a tensão de escoamento do material selecionado para os tubos, o aço ASTM A500 grau A (250 MPa)

```
# Largura da garganta, supondo tubos perpendiculares, usando eletrodo E6013 (m)
h_perp_12 = 1.41*f12*2.5/(331e6*L*4)
print(f"Largura h (perpendicular): {round(h_perp_12*1000, 2)} mm")
```

Largura h (perpendicular): 0.33 mm

A área a sofrer cisalhamento necessária à garganta é:

$$A = hL\cos 45 = 0,707hL$$

```
# Área total necessária na garganta (m2)
A = h_perp_12*(L*4)*np.cos(45*np.pi/180)
print(f"Área necessária à garganta: {round(A*1e6, 2)} mm2")
```

Área total necessária à garganta: 65.51 mm2

Como temos um tubo inclinado, seus lados fazem ângulos diferentes com a horizontal, sendo dois lados a 90°, um lado a 60° e outro lado a 120°. A fim de ter uma dimensão h da garganta da solda igual em cada lado do tubo, fez-se a seguinte consideração a partir da ideia de área em cisalhamento no cordão de solda

$$A = 2(h_1L_1)\cos 45 + h_2L_2\cos \left(rac{60}{2}
ight) + h_3L_3\cos \left(rac{120}{2}
ight)$$

Note que A é a área em cisalhamento para tubos perpendiculares. Para tubos com angulação, essa área é diferente de A = 0,707hL, sendo dada pela equação acima, para o caso de uma inclinação de 60° em um dos lados do tubo.

Resolvendo a equação anterior para $L_1 = L_2 = L_3 = 70 \text{ mm}$, tem-se que:

$$h=rac{A}{2L\cos 45+L\cos \left(rac{60}{2}
ight)+L\cos \left(rac{120}{2}
ight)}$$

Dimensão h é 0.34 mm em cada lado do tubo

Como a largura da garganta da solda é muito pequena para aplicações práticas, Norton recomenda que esta largura h seja de 3 mm.

3.10.2 Junção entre 2 e 4

De modo parecido, tem-se que na direção x, o elemento 2 apoia-se no elemento 4. Já na direção y, considera-se que o elemento 4 é estagnado e calcula-se a componente da força relativa ao elemento 2 nessa direção por:

$$F_{24} = F_2 \sin 60$$

Onde $\vartheta = 60^{\circ}$ é o ângulo que o elemento 2 faz com a horizontal.

A seguir é calculada a largura da garganta, de forma semelhante à etapa anterior, com as devidas ponderações.

A solda está sujeita apenas a cisalhamento.

```
# Força suportada pela solda (direção y) (N)
f24 = abs(F2*np.sin(60*np.pi/180))

# Largura da garganta, supondo tubos perpendiculares, usando eletrodo E6013 (m)
h_perp_24 = 1.41*f24*2.5/(331e6*L*4)

# Área total necessária na garganta (m2)
A = h_perp_24*(L*4)*np.cos(45*np.pi/180)

# Dimensão h da garganta em cada lado do tubo, considerando os angulos de 60 e 120
graus (m)
h24 = A/(2*L*np.cos(45*np.pi/180) + L*np.cos(30.*np.pi/180) +
L*np.cos(60*np.pi/180))

print(f"Dimensão h é {round(h24*1000, 2)} mm em cada lado do tubo")
```

Dimensão h é 0.58 mm em cada lado do tubo

Aqui, também tem-se que a largura h da garganta de solda deve ser de 3 mm, devido à mesma observação anterior (Norton)

3.10.3 Junção entre (1-3) e 4

Aqui, não é necessário calcular uma largura equivalente, pois os tubos são perpendiculares. É importante salientar que, tanto o elemento (1-3), quando o elemento 4 têm 80 mm de largura, portanto, será dimensionada uma soldagem do tipo ângulo para apenas dois lados do tubo (2L = 160 mm).

Para uma carga de 8700 N na solda, tem-se o seguinte dimensionamento:

```
# Força suportada pela solda (direção x) (N)
```

```
f14 = abs(F1)

# Dimensão h da garganta, com tubos perpendiculares, usando eletrodo E6013 (m)
h14 = 1.41*f14*2.5/(331e6*0.08*2)

print(f"Dimensão h é {round(h14*1000, 2)} mm em cada lado do tubo")
```

Dimensão h é 0.58 mm em cada lado do tubo

A largura h da garganta será de 3 mm.

3.10.4 Junção entre o elemento 6 e a viga principal

Semelhante aos itens 3.10.1 e 3.10.2, porém com um ângulo de 45° entre os tubos

```
# Força suportada pela solda (direção y) (N)
ft = abs(300.*np.cos(45*np.pi/180))

# Largura da garganta, supondo tubos perpendiculares, usando eletrodo E6013 (m)
h_perp_t = 1.41*ft*2.5/(331e6*L*4)

# Área total necessária na garganta (m2)
A = h_perp_t*(L*4)*np.cos(45*np.pi/180)

# Dimensão h da garganta em cada lado do tubo, considerando os ângulos de 45 e 135
graus (m)
h_t = A/(2*L*np.cos(45*np.pi/180) + L*np.cos(22.5*np.pi/180) +
L*np.cos(67.5*np.pi/180))

print(f"Dimensão h é {round(h_t*1000, 2)} mm em cada lado do tubo")
```

Dimensão h é 0.01 mm em cada lado do tubo

4. Cálculo de tensões

4.1 Viga principal

Segundo a NBR 8400 (ABNT, 1984), as principais solicitações na viga principal são devido às cargas de serviço (SL) e ao próprio peso (Sg). São feitos os cálculos de tensões na viga devido ao momento (S) e esforço cortante (τ), utilizando as equações:

$$\tau = V/Aa$$

W = módulo de resistência

```
Mmáx = momento fletor máximo;
Aa = área da alma = 0,001664 m²;
V = esforço cortante;
```

Segundo Norton, em uma viga longa, as tensões de cisalhamento devido à flexão são pequenas comparadas às tensões normais. Como a tensão de cisalhamento é máxima na linha neutra, a área da alma acaba resistindo às forças cortantes na viga.

Figura 14- Distribuição de tensão na seção da viga. Fonte: Norton

4.1.1 Solicitações devido ao próprio peso (Sg)

A carga devido ao peso da viga (w1), pode ser encontrada utilizando a equação seguinte:

$$w1=A \times \rho \times g$$

A = área da seção = 0,0036 [m²]; g = aceleração gravitacional [9,81 m/s²]; ρ = densidade [kg/m²];

Obtendo w1 = 287,237 N/m. Utilizando o Ftool, encontra-se o momento e o esforço cortante devido essa carga distribuída.

Figura 15 - Diagramas devido ao peso próprio. Fonte: Autores.

Figura 16 - Esforço cortante [N]. Fonte: Autores.

Figura 17 - Momento fletor [Nm]. Fonte: Autores.

Pode ser observado que o esforço cortante é muito baixo, podendo ser desconsiderado. Para o momento fletor de 1,292 kN, a tensão devido ao próprio peso é:

4.1.2 Solicitações devido a carga de serviço (SL)

Conforme a NBR 8400 [], a Carga de Serviço pode ser definida pela carga útil somada a carga dos acessórios de içamento. Sendo carga útil (Q) = 3 [ton.] e para peso dos acessórios será utilizado o peso do conjunto Talha (T) = 359 [kg].

Carga de Serviço =
$$SL = (Q + T) \times g = 32,95 \text{ kN}$$

Para as solicitações devidas à carga de serviço, através da análise estática, considera-se a carga sendo aplicada no centro da viga principal, ou seja, a 3,0 metros de suas extremidades, com o objetivo de encontrar o máximo momento fletor.

Figura 18 - Diagrama devido carga de serviço. Fonte: Autores.

Figura 19 - Momento fletor [kNm]. Fonte: Autores.

Considerando o momento fletor máximo resultante da carga aplicada no centro da viga encontra-se a tensão devido essa carga:

Na segunda análise considera-se a carga sendo aplicada a 5,5 metros de uma de suas extremidades e a 0,5m da outra, já que a talha possui cerca de 1m de comprimento. Isso é feito para encontrar o esforço máximo cortante sofrido pela viga.

Figura 20 - Diagrama devido carga de serviço, trolley deslocado. Fonte: Autores.

Figura 21 - Esforço cortante [kN] com trolley deslocado. Fonte: Autores.

O cálculo da tensão cisalhante é realizado utilizando a razão entre o cortante (V) = 30,2 [kN] e a área da alma (Aa) = 0,001664 [mm²], encontrando (τsι 0,5m) = 18,14 [MPa].

4.1.3 Os efeitos horizontais mais desfavoráveis (SH)

Para o pórtico univiga, podem acontecer reações horizontais transversais geradas pela translação direta, ou seja, imagina-se um caso onde as duas rodas da direita do *trolley* exercem uma força que causa um momento em torno do eixo y da seção transversal da viga.

Para o Pórtico Univiga, obtêm-se a relação (v/a) = 0,47, onde o vão (v) 0,11 [m] , e a distância entre eixos do trolley (a) = 0,23 [m]. O vão é a distância transversal entre as superfícies externas dos pneus em relação ao comprimento do trolley. Encontra-se então um valor para o coeficiente de reações (ξ) de 0,05.

Figura 22 - Gráfico do coeficiente ξ. Fonte: NBR 8400

A carga (P) = 1,647 [kN] é encontrada pela equação seguinte, onde carga a ser içada (Q) = 3000 [kg], a massa dos acessórios de içamento (T) = 359 [kg] e o coeficiente (ξ) = 0,05.

$$P = (Q+T).g.\xi$$

Essa carga (P) é aplicada no centro viga, sendo dividida entre duas rodas e com uma

distância entre elas igual a distância entre os eixos do trolley.

Figura 23 - Reações horizontais transversais com trolley no centro da viga. Fonte: Autores

Figura 24 - Momento fletor [kNm]. Fonte: Autores.

É obtido um momento fletor máximo de 2,37 [kNm]. Sendo (Mmáx) = 2,37 [kNm] e (Wy) = 3,48x10^-5, a solicitação devido às reações horizontais transversais geradas pela translação direta é (SH) = 68,1 [MPa].

4.1.4 Verificações contra o escoamento

Para verificar as condições de escoamento, deve-se levar em consideração o caso de solicitação a qual o equipamento pertence. O Pórtico Rolante em questão corresponde ao caso de solicitação I, serviço normal e sem vento.

A NBR 8400 informa que para o caso I, devem ser considerados as três solicitações (Sg, SL, SH), multiplicados pelo coeficiente de majoração (Mx) e pelo coeficiente dinâmico (ψ). Por conta disso, é utilizada a equação seguinte para as verificações.

$$Mx \times (SG + \psi SL) + SH)$$

Conforme a tabela seguinte, para a tensão admissível ao escoamento (σ a), deve-se considerar a tensão de escoamento dividido por 1,5.

Casos de Solicitação	Caso I	Caso II	Caso III
Tensão Admissível (σ_a)	$\frac{\sigma_e}{1,5}$	σ _e 1,33	$\frac{\sigma_e}{1,1}$

Tabela 20 - Tensão admissível à tração. Fonte: NBR 8400.

O aço escolhido para a viga principal foi o ASTM A572 GR 60, que possui a tensão de escoamento igual a (σ e) = 415 [MPa], a tensão admissível ao escoamento (σ a) = 276,66 [MPa], e de acordo com a verificação das solicitações por cisalhamento puro, a tensão admissível ao cisalhamento (τ a) = 159,73 [MPa].

Verificação das solicitações por cisalhamento puro: $\tau a = \sigma a \sqrt{3} = 159,73$ [MPa]

Segundo NBR 8400 (ABNT, 1984), as tensões normais devem ser menores ou iguais a tensão admissível ao escoamento (σa). Portanto:

$$\sigma = Mx \times (S_G + \psi S_L) + S_H) \leq \sigma_a$$

Para as tensões normais, sendo (MX) = 1, (SG) = 4,15 [MPa], (ψ) = 1,15, (SL) = 158,84 [MPa], (SH) = 68,1 [MPa]. Tem-se que (σ) = 254,92 [MPa] \leq (σ a) = 276,66 [MPa]. Assim sendo, está de acordo com a Norma.

Em segundo, para o cisalhamento, o esforço cisalhante (τxy), deve ser menor ou igual à tensão admissível ao cisalhamento (τa). Então:

$$\tau = MX \times (\tau G + \psi \tau L) + \tau H) \le \tau a$$

Em algumas solicitações as tensões de cisalhamento foram muito pequenas, sendo desconsideradas. Sendo (MX) = 1, (τG) = 0, (ψ) = 1,15, (τL) = 18,149 [MPa], (τH) = 0. Temse que (τ) = 20,87 [MPa] \leq (τa) = 159,73 [MPa]. Logo, está de acordo com a Norma.

Por último, deve-se verificar as tensões de comparação, que combinadas devem ser menores ou iguais a tensão admissível ao escoamento (σa), assim tem-se a equação de tensões combinadas, equivalente a Von Mises.

$$σcp=MX\times \sqrt{\left(\sigma x^2+\ \sigma y^2-\ \sigma x\ \sigma y\ +3\tau xy^2\right)}\leq \sigma a$$

Aonde (MX) = 1, (σx) = SL = 158,84 [MPa], (σy) = SH = 68,1 [MPa] e (τxy) = τL = 18,149 [MPa]. Tem-se que (σcp) = 141,55 [MPa] \leq (σa) = 276,66 [MPa]. Portanto, está de acordo com a Norma.

4.1.5 Verificação contra a fadiga

Para fadiga, considerando que o estado de carga 1, onde comumente é levantado ½ da carga e raramente a carga nominal, sendo carga nominal 3000 kg somado ao peso do conjunto talha 359 kg, tem-se:

Força máxima/mínima aplicada na carga = (carga/2) x 9,81

Força média = ((Força máxima+Força mínima)/2) x 9,81

Força alternada = ((Força máxima-Força mínima)/2) x 9,81

Momento = Força x 3

Força máxima aplicada	16,47 kN
Força mínima aplicada	5,49 kN
Força média	10,98 kN
Força alternada	5,49 kN
Momento alternado	16,7 kN
Momento médio	32,95 kN
Momento máximo	49,43 kN

Tabela 21 - Forças e momentos devido a carga. Fonte: Autores.

Com os momentos obtidos foi encontrado os valores de tensões alternadas e médias utilizando as equações (4.1.1) e (4.1.2).

Tensão normal alternada σa	52,94 MPa
Tensão normal média σm	105,89 MPa
Tensão cisalhante alternada τα	3,3 MPa
Tensão cisalhante média τm	6,6 MPa

Tabela 22 - Tensões alternadas e médias. Fonte: Autores.

As tensões combinadas são encontradas através da próxima equação, obtendo σ a = 53,25 MPa, σ m = 106,5 MPa.

$$\sigma' = \sqrt{(\sigma x^2 + 3\tau x y^2)}$$

Segundo o Norton:

• O limite de fadiga não corrigido (Se´) é igual a 260 MPa, já que o Sut = 520 MPa.

• Fator de tamanho para uma viga de perfil I, onde b= base da viga e h = altura da viga é:

$$A95_{2-2} = 0,05 \times b \times h = 0,001326 \text{ m}^2$$

• O diâmetro equivalente:

$$\sqrt{\frac{A95}{0,0766}}$$
 = 131,57 mm

• Corretor de tamanho para perfil I:

Ctam =
$$1,89d$$
 $^{-0,097}$ = $1,177$;

- Corretor de carregamento para flexão = 1:
- Corretor de superfície para laminado a quente = 0,67;

Figura 25 - Fator de Superfície. Fonte: Norton.

Figura 26 - Encontrando valor do corretor de superfície. Fonte: Autores; feito com Webplotdigitzer.

- Corretor de temperatura = 1;
- Corretor de confiabilidade para 90% = 0,814;

Podendo agora ser calculado o limite de fadiga corrigido (Se):

Se = Ccarr x Ctam x Csup x Ctemp x Cconf x Se'= 166,9 MPa

Tendo assim, um fator de segurança para o caso 3, onde a razão da tensão média e tensão alternada é constante, para linha de Goodman de:

Nfr =
$$\frac{Se \times Sut}{\sigma' a \times Sut + \sigma' m \times Se}$$
 = 1,9

4.2 Pernas

4.2.1 Cálculo de tensões e verificação contra escoamento

Para o dimensionamento das pernas do pórtico, isto é, sua estrutura lateral, foram consideradas as cargas devido ao peso próprio e a carga de serviço (33 KN) aplicada no local mais desfavorável.

Iniciando pelo tubo ligado à perna vertical e à viga, mostrado abaixo, foi modelado com o auxílio do software Ftool, a fim de se encontrar os esforços nesse elemento.

Figura 27 - Tubo ligado à perna vertical e à viga. Fonte: Autores

Utilizando a linguagem de programação Python, define-se as variáveis relativas às dimensões, logo seguidas dos cálculos de outros dados úteis, como área da seção transversal, momento de inércia e módulo de resistência.

```
1 = 70e-3 # Largura (m)
eq = 3e-3 # Espessura (m)

c = 0.70711 # Comprimento do tubo (m)
Aq = 1**2 - (1 - 2*eq)**2 # Area (m2)
Iq = (1**4 - (1 - 2*eq)**4)/12 # Momento de inercia (m4)
Wq = (1**4 - (1 - 2*eq)**4)/(6*1) # Modulo de resistencia (m3)
```

Figura 28 - Variáveis relativas às dimensões. Fonte: Autores

A partir do software Ftool, se obtém os esforços atuantes no elemento e os define em variáveis.

```
# Forças atuantes
F_normal = -300. # (N)
F_cisalhante = 400. # (N)
M_max = 200. # (Nm)
```

Figura 29 - Esforços atuantes. Fonte: Autores.

As considerações de projeto também são definidas.

```
# Considerações de projeto
escoamento = 230e6 # Para o aço ASTM A500 grau A (Pascal)
adm_normal = escoamento/1.5 # Tensão normal admissível, segundo a NBR8400 (Pascal)
adm_cisalhante = adm_normal/np.sqrt(3) # Tensão cisalhante admissível, segundo a NBR 8400 (Pascal)

print(f"Tensao admissível normal: {round(adm_normal/1e6, 2)} MPa")
print(f"Tensao admissível de cisalhamento: {round(adm_cisalhante/1e6, 2)} MPa")

v 0.0s

Tensao admissível normal: 153.33 MPa
Tensao admissível de cisalhamento: 88.53 MPa
```

Figura 30 - Considerações do projeto. Fonte: Autores.

Neste momento, são realizadas as verificações contra o escoamento. Primeiramente,

tração, que não deve ser maior (em módulo) que a admissível normal.

```
sigma = F_normal/Aq - M_max/Wq # Tensão normal devido às reações e ao peso próprio (Pascal)

# Flambagem
r = np.sqrt(Iq/Aq) #Raio de giração (m)
lamb = c/r # Índice de esbeltez

# Interpolação para obter o valor de omega em função do indice de esbeltez lambda; NBR8400:1984, p.18
valores_lamb = np.arange(20, 200, 10)
valores_omega = [1.04, 1.08, 1.14, 1.21, 1.3, 1.41, 1.55, 1.71, 1.9, 2.11, 2.43, 2.85, 3.31, 3.8, 4.32, 4.88, 5.47, 6.10]
omega = np.interp(lamb, valores_lamb, valores_omega)

sigma_corrigido = omega*sigma # Tensão normal, considerando flambagem
print(f"Tensão normal no elemento: {round(sigma_corrigido/1e6, 2)} MPa")

V 0.0s
Tensão normal no elemento: -12.75 MPa
```

Figura 31 - Verificações contra o escoamento. Fonte: Autores.

Segue-se a verificação de cisalhamento, que deve ter resultado menor (em módulo)

```
tau = F_cisalhante/Aq # Tensão cisalhante atuante no elemento (Pascal)
print(f"Tensão de cisalhamento: {round(tau/1e6, 2)} MPa")

v  0.0s
Tensão de cisalhamento: 0.5 MPa
```

que a tensão admissível normal.

Figura 32 - Verificação contra o cisalhamento . Fonte: Autores.

E, por fim, a verificação da tensão combinada, que deve ser menor (em módulo) que a tensão admissível de tração.

```
comb = np.sqrt(sigma**2 + 3.*tau**2)
print(f"As tensão combinada é: {round(comb/1e6, 2)} MPa")

✓ 0.0s

As tensão combinada é: 12.02 MPa
```

Figura 33 - Considerações do projeto. Fonte: Autores.

Partindo, agora, para a estrutura lateral, o seu desenho esquemático é mostrado abaixo. O diagrama foi gerado usando o

software Ftool.

3.40 m

Figura 34 - Estrutura Lateral. Fonte: Autores.

Convém retornar o fato de que, segundo o software, apenas existem esforços de magnitude considerável na direção normal, razão pela qual apenas estes serão considerados. A força de 30,3 KN advém da simulação anterior realizada pelo software: quando a carga de serviço (33 KN) é aplicada no nó, uma reação de 30,3 KN é gerada na estrutura lateral.

Foi realizado o dimensionamento para o elemento 6, que sofre um esforço direto de 30,3 KN, e por ser o elemento mais crítico, se o mesmo suportar tal carga, o restante dos elementos também suportará. A seguir, segue o código comentado que demonstra o processo de cálculo de tensões e verificação de escoamento para o elemento 6. A lógica é a mesma apresentada para o dimensionamento do elemento anterior (que liga a perna vertical e a viga), com a diferença de que a seção de tubo utilizada foi de 80x80x3,00 mm. O material é o mesmo.

```
import numpy as np

# Dimensões (Seção Quadrada)
c = 3.4 # Comprimento (m)
l = 80e-3 # Largura (m)
eq = 3e-3 # Espessura (m)
Aq = 1**2 - (1 - 2*eq)**2 #Area (m2)
Iq = (1**4 - (1 - 2*eq)**4)/12 # Momento de inercia (m4)
```

```
Wq = (1**4 - (1 - 2*eq)**4)/(6*1) \# Modulo de resistencia (m3)
# Considerações de projeto
escoamento = 230e6 # Para o aço ASTM A500 grau A (Pascal)
adm normal = escoamento/1.5 # Tensão normal admissível, segundo a NBR8400 (Pascal)
adm cisalhante = adm normal/np.sqrt(3) # Tensão cisalhante admissível, segundo a NBR 8400
(Pascal)
Maj = 1. # Coeficiente de majoração
# Reações no elemento 6
F6 = -30300. \# (Newtons)
# Força atuante no elemento 6
P = F6 - Aq*c*7870. \# Devido a reações e peso próprio (Newtons)
# Tensao atuante no elemento 6 (Pascal)
sigma = P/(Aq)
### Flambagem
r = np.sqrt(Iq/Aq) #Raio de giração em metros
lamb = c/r #Índice de esbeltez (desconsiderando a seçao que tem esforço normal nulo)
# Interpolação para obter o valor de omega em função do indice de esbeltez lambda;
NBR8400:1984, p.18
valores lamb = np.arange(20, 200, 10)
valores_omega = [1.04, 1.08, 1.14, 1.21, 1.3, 1.41, 1.55, 1.71, 1.9, 2.11, 2.43, 2.85, 3.31,
3.8, 4.32, 4.88, 5.47, 6.10]
omega = np.interp(lamb, valores lamb, valores omega)
# Tensão normal corrigida, isto é, considerando flambagem
sigma_corrigido = omega*sigma
print(f"Tensão máxima no elemento 6, com flambagem: {round(sigma corrigido/1e6, 2)} MPa")
print(f"A tensão normal admissível é de (em módulo) {round(adm normal/1e6, 2)} MPa")
```

Tensão máxima no elemento 6, com flambagem: -67.92 MPa A tensão normal admissível é de (em módulo) 153.33 MPa

Para a viga de ligação (elemento 1 a 3), tem-se também dimensionamento similar:

```
# Forças atuantes
F_normal = 8700. # (Newtons)
F_cisalhante = 100. # (Newtons)
M_max = 100. # (Nm)

# Verificação de tração
carga_distribuida = Aq*9.81*7870. # (N/m)
S_normal = Maj*(F_normal/Aq + M_max/Wq) # (Pascal) / Devido às reaçoes e ao peso próprio
print(f"Tensão normal: {round(S_normal*1e-6, 2)} MPa")

# Cisalhamento devido ao peso acima da vida de ligação
carga_serv = 32952. # Carga de serviço (Newtons)
```

```
peso_pernas = 66.2*9.81 # Peso da pernas (Newtons)
peso_viga_princ = 175.68*9.81 # Peso da viga principal (Newtons)

peso_acima = carga_serv + peso_pernas + peso_viga_princ # Peso acima da viga de ligação (Newtons)
S_cisalhante = Maj*peso_acima/(Aq) # Tensão de cisalamento atuante (Pascal)
print(f"Tensão de Cisalhamento: {round(S_cisalhante*1e-6, 2)} MPa")

# Solicitações combinadas
comb = Maj*np.sqrt(S_normal**2 + 3.*S_cisalhante**2)
print(f"Tensão combinada: {round(comb*1e-6, 2)} MPa")
```

Tensão normal: 13.79 MPa
Tensão de Cisalhamento: 38.23 MPa
Tensão combinada: 67.64 MPa

4.2.2 Verificação contra fadiga

Realizado o cálculo de fadiga para os elementos da estrutura lateral, abaixo está descrito o procedimento executado sob o elemento 6, o mais crítico, pois aplicando o algoritmo em outros elementos da estrutura, obteve-se coeficientes de segurança sempre maiores.

Utilizando o software Ftool, foi verificada uma carga máxima de 30,3 KN, quando a talha está no ponto mais próximo da perna, e uma carga mínima de 2,7 KN, quando a carga está no ponto mais distante, como mostra a Figura 36.

Figura 35 - Tensões máxima e mínima no elemento 6. Fonte: Autores

Utilizando Python, iniciamos inserindo os dados da geometria do elemento:

```
import numpy as np

1 = 80e-3 # Largura (m)
esp = 3e-3 # Espessura (m)
A = 1**2 - (1 - 2*esp)**2 # Área da seção transversal TUBULAR QUADRADA (m2)
```

Carregamento no elemento:

```
Fmax = -30300.

Fmin = -2700.
```

Componentes média e alternada do carregamento:

$$F_m = \frac{F_{max} + F_{min}}{2} \qquad F_a = \frac{F_{max} - F_{min}}{2}$$

```
F_media = (Fmax + Fmin)/2
F_alt = (Fmax - Fmin)/2

print(f"Componente média do carregamento: {F_media} N")
print(f"Componente alternada do carregamento: {F_alt} N")

Componente média do carregamento: -16500.0 N
```

Componente alternada do carregamento: -10500.0 N

Tensões média e alternada de compressão:

Tensao alternada de compressão: -14.94 MPa

$$\sigma_m = \frac{\dot{F}_m}{A}$$
 $\sigma_a = \frac{F_a}{A}$

```
sigma_media = F_media/A
sigma_alt = F_alt/A

print("Tensao média de compressão:", round(sigma_media/1e6, 2), "MPa")
print("Tensao alternada de compressão:", round(sigma_alt/1e6, 2), "MPa")

Tensao média de compressão: -17.86 MPa
```

Como os tubos nao apresentam concentradores de tensão, calculamos agora as tensões média e alternada de von Mises:

$$\sigma'_{a} = \sqrt{\sigma_{x_{a}}^{2} + \sigma_{y_{a}}^{2} - \sigma_{x_{a}}\sigma_{y_{a}} + 3\tau_{xy_{a}}^{2}}$$

$$\sigma'_{m} = \sqrt{\sigma_{x_{m}}^{2} + \sigma_{y_{m}}^{2} - \sigma_{x_{m}}\sigma_{y_{m}} + 3\tau_{xy_{m}}^{2}}$$

```
sigma_media_VM = np.sqrt(sigma_media**2)
sigma_alt_VM = np.sqrt(sigma_alt**2)
print("Tensao média de von Mises:", round(sigma_media_VM/1e6, 2), "MPa")
print("Tensao alternada von Mises:", round(sigma_alt_VM/1e6, 2), "MPa")
```

Tensao média de von Mises: 17.86 MPa Tensao alternada von Mises: 14.94 MPa

Seja S_e o limite de fadiga não corrigido para o aço ASTM A500 grau A, levando-se em conta que o número de ciclos está bem próximo da vida infinita, foi considerada como tal.

$$S_e = 0, 5S_{ult}$$

Aqui, S_{ult} é a tensão de escoamento do material.

```
escoamento = 230e6 # Aço ASTM A500 grau A

Se = 0.5*escoamento

print(f"Limite de fadiga não corrigido: {Se/1e6} Mpa")
```

Limite de fadiga não corrigido: 115.0 Mpa

Segundo a equação 6.7a no Norton, o fator de carregamento é $C_{carreg}=0,7$ para carregamento com forças normais.

```
C_carreg = 0.7
```

Segundo Norton, equação 6.7b, tem-se um fator de tamanho $C_{tamanho}=1$, pois o elemento está sendo solicitado por forças normais, e falhas que ocorrem sob esse tipo de solicitação não são sensíveis ao tamanho da seção transversal.

```
C_tamanho = 1.
```

O fator superficial C_{superf} para elementos laminados a quente é calculado a partir da equação 6.7e do Norton. Se este cálculo tiver resultado maior que 1, então deve-se considerar que esse fator vale 1.

```
A = 57.7
b = -0.718
```

```
C_superf = A*(escoamento/1e6)**b

if C_superf > 1:
    C_superf = 1.

print(f"O fator superficial é {C_superf}")
```

O fator superficial é 1.0

Considerando que o portico será utilizado em ambiente fechado e à temperatura ambiente, a temperatura de operação jamais chegará a 450°C, tem-se que o fator de temperatura $C_{temp}=1$, segundo a equação 6.7f do Norton

```
C_temp = 1.
```

O fator de confiabilidade C_{conf} é escolhido através da tabela 6.4 do Norton. Para uma confiabilidade de 99%, tem-se que $C_{conf}=0,814$.

```
C_conf = 0.814
```

Assim, o limite de fadiga corrigido, calculado, segundo o Norton, pela multiplicação de todos esses fatores *C* pelo limite de fadiga não corrigido, é o que segue:

```
Se_corrig = C_carreg*C_tamanho*C_superf*C_temp*C_conf*Se
print(f"Limite de fadiga corrigido é {round(Se_corrig/1e6, 2)} MPa")
Limite de fadiga corrigido é 65.53 MPa
```

O coeficiente de segurança é calculado como se segue sob o critério de Goodman, presumindo que as componentes média e alternada da tensão apresentam uma razão constante ao alternarem em amplitude máxima durante a vida útil do elemento (caso 3).

$$N = \frac{S_e S_{ut}}{\sigma'_a S_{ut} + \sigma'_m S_e}$$

```
N = Se_corrig*escoamento/(sigma_alt_VM*escoamento + sigma_media_VM*Se_corrig)
print(f"Coeficiente de segurança {round(N, 2)}")
Coeficiente de segurança 3.27
```

5. Conclusão

Concluímos que o projeto em questão atende aos requisitos inicialmente pedidos. Em conformidade com as normas e catálogos relacionados, o equipamento (talha montada no pórtico) será capaz de içar e mover cargas de até 3 toneladas sem a ocorrência de falhas. O projeto foi avaliado e dimensionado com o auxílio de softwares de simulação 3D e análises estruturais, como também, catálogos de peças e componentes que nos guiaram para uma escolha mais segura das mesmas.

O presente projeto foi desenvolvido com o intuito de ser durável e seguro, garantindo confiabilidade, segurança e praticidade para aqueles que o operarem.

Existem pórticos de modelos e funcionamento variáveis disponíveis no mercado que atendem as mais diversas necessidades. O pórtico dimensionado foi do tipo móvel sobre trilho. Para a movimentação do pórtico, foram utilizados blocos de rodas com motores acoplados, permitindo a movimentação do equipamento sem a necessidade de esforços humanos.

É necessário que haja um estudo prévio da área em que o equipamento será utilizado e das necessidades do comprador, visto que a movimentação sobre os trilhos é limitada em comparação a um pórtico manual sobre rodas.

6. REFERÊNCIAS

- 1. NORTON, R.L. Projetos de Máquinas, uma abordagem integrada. São Paulo: BOOKMAN EDITORA LTDA. 2013.
- 2. BUDYNAS, R.G; NISBETT, J.K. Elementos de máquinas de Shigley. São Paulo. BOOKMAN EDITORA LTDA. 2016.
- 3. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 8400: Cálculo de equipamento para levantamento e movimentação de cargas. Rio de Janeiro. 1984.
- 4. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 10981: Talhas de corrente com acionamento motorizado. Rio de Janeiro. 1989.
- 5. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 8800: Projeto e execução de estruturas de aço de edifícios. Rio de Janeiro. 1986.
- 6. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 8261: Tubos de aço-carbono, com e sem solda, de seção circular, quadrada ou retangular para usos estruturais Requisitos. Rio de Janeiro. 2019.
- 7. SIVA. Catálogo de cabos de aço da SIVA, 2018. São Paulo: SIVA, 2018. 28 p.
- 8. COMERCIALFORTE. Catálogo de trilhos da COMERCIALFORTE. São Paulo. 51 p.
- 9. STAHL Crane Systems. Informação de produto Wheel Block SR., 2019. Alemanha: STAHL Crane Systems, 2019. 44 p.
- 10. NAGANO. NAGANO PRODUTOS, 2023. Bem vindo à Nagano Produtos. Disponível em: https://naganoprodutos.com.br/novo/index.asp. Acesso em: 1 ago. 2023.

7. Apêndice

Desenho mecânico da montagem completa

Desenho mecânico das pernas

Desenho mecânico da viga principal

Desenho mecânico chapa 1

Desenho mecânico chapa 2

Desenho mecânico tubo de apoio

Desenho mecânico trilho

Anexos

Catalogo Gerdau perfis estruturais Gerdau

				ESPES	SURA				EI	XOX-X			EIXO Y - Y			
BITOLA	Massa Linear	d	br	t _w	Ę.	h	ď	Área	I _X	W _x	r _x	l _y	Wy	r _y	u	Bitola
mm xkg/m	kg/m	mm	mm	mm	m m	mm	mm	c m²	cm4	c m³	cm	cm4	cm³	cm	m∛m	in x lb/ft
W 150 x 13,0	13,0	148	100	4,3	4,9	138	118	16,6	635	85,8	6,18	82	16,4	2,22	0,67	W 6x 8,5
W 150 x 18,0	18,0	153	102	5,8	7,1	139	119	23,4	939	122,8	6,34	126	24,7	2,32	0,69	W 6 x12
W 150 x 22,5(H)	22,5	152	152	5,8	6,6	139	119	29,0	1.229	161,7	6,51	387	50,9	3,65	0,88	W 6 x 15
W 150 x 24,0	24,0	160	102	6,6	10,3	139	115	31,5	1.384	173,0	6,63	183	35,9	2,41	0,69	W 6 x 16
W 150 x 29,8(H)	29,8	157	153	6,6	9,3	138	118	38,5	1.739	221,5	6,72	556	72,6	3,80	0,90	W 6 x20
W 150 x 37,1(H)	37,1	162	154	8,1	11,6	139	119	47,8	2.244	277,0	6,85	707	91,8	3,84	0,91	W 6 x25
W 200 x 15,0	15,0	200	100	4,3	5,2	190	170	19,4	1.305	130,5	8,20	87	17,4	2,12	0,77	W 8 x10
W 200 x 19,3	19,3	203	102	5,8	6,5	190	170	25,1	1.686	166,1	8,19	116	22,7	2,14	0,79	W 8 x13
W 200 x 22,5	22,5	206	102	6,2	8,0	190	170	29,0	2.029	197,0	8,37	142	27,9	2,22	0,79	W 8 x 15
W 200 x 26,6	26,6	207	133	5,8	8,4	190	170	34,2	2.611	252,3	8,73	330	49,6	3,10	0,92	W 8 x 18
W 200 x 31,3	31,3	210	134	6,4	10,2	190	170	40,3	3.168	301,7	8,86	410	61,2	3,19	0,93	W 8 x21
W 200 x 35,9(H)	35,9	201	165	6,2	10,2	181	161	45,7	3.437	342,0	8,67	764	92,6	4,09	1,03	W 8 x24
W 200 x 41,7(H)	41,7	205	166	7,2	11,8	181	157	53,5	4.114	401,4	8,77	901	108,5	4,10	1,04	W 8 x28
W 200 x 46,1(H)	46,1	203	203	7,2	11,0	181	161	58,6	4.543	447,6	8,81	1.535	151,2	5,12	1,19	W 8 x31
W 200 x 52,0(H)	52,0	206	204	7,9	12,6	181	157	66,9	5.298	514,4	8,90	1.784	174,9	5,16	1,19	W 8 x35
HP 200 x 53,0(H)	53,0	204	207	11,3	11,3	181	161	68,1	4.977	488,0	8,55	1.673	161,7	4,96	1,20	HP 8 x36
W 200 x 59,0(H)	59,0	210	205	9,1	14,2	182	158	76,0	6.140	584,8	8,99	2.041	199,1	5,18	1,20	W 8 x40
W 200 x 71,0(H)	71,0	216	206	10,2	17,4	181	161	91,0	7.660	709,2	9,17	2.537	246,3	5,28	1,22	W 8 x48
W 200 x 86,0(H)	86,0	222	209	13,0	20,6	181	157	110,9	9.498	855,7	9,26	3.139	300,4	5,32	1,23	W 8 x58
W 250 x 17,9	17,9	251	101	4,8	5,3	240	220	23,1	2.291	182,6	9,96	91	18,1	1,99	0,88	W 10 x 12
W 250 x 22,3	22,3	254	102	5,8	6,9	240	220	28,9	2.939	231,4	10,09	123	24,1	2,06	0,89	W 10 x 15
W 250 x 25,3	25,3	257	102	6,1	8,4	240	220	32,6	3.473	270,2	10,31	149	29,3	2,14	0,89	W 10 x 17
W 250 x 28,4	28,4	260	102	6,4	10,0	240	220	36,6	4.046	311,2	10,51	178	34,8	2,20	0,90	W 10 x 19
W 250 x 32,7	32,7	258	146	6,1	9,1	240	220	42,1	4.937	382,7	10,83	4/3	64,8	3,35	1,07	W 10 x 22
W 250 x 38,5	38,5	262	147	6,6	11,2	240	220	49,6	6.057	462,4	11,05	594	80,8	3,46	1,08	W 10 x 26
W 250 x 44,8	44,8	266	148	7,6	13,0	240	220	57,6	7.158	538,2	11,15	704	95,1	3,50	1,09	W 10 x 30
HP 250 x 62,0(H)	62,0	246	256	10,5	10,7	225	201	79,6	8.728	709,6	10,47	2.995	234,0	6,13	1,47	HP 10 x 42
W 250 x 73,0(H)	73,0	253	254	8,6	14,2	225	201	92,7	11.257	889,9	11,02	3.880	305,5	6,47	1,48	W 10 x 49
W 250 x 80,0(H)	80,0	256	255	9,4	15,6	225	201	101,9	12.550	980,5	11,10	4.313	338,3	6,51	1,49	W 10 x 54
HP 250 x 85,0(H)	85,0	254	260	14,4	14,4	225	201	108,5	12.280	966,9	10,64	4.225	325,0	6,24	1,50	HP 10 x 57
W 250 x 89,0(H)	89,0	260	256	10,7	17,3	225	201	113,9	14.237	1.095,1	11,18	4.841	378,2	6,52	1,50	W 10 x 60
W 250 x101,0 (H)	101,0	264	257	11,9	19,6	225	201	128,7	16.352	1.238,8	11,27	5.549	431,8	6,57	1,51	W 10 x 68
W 250 x 115,0 (H)	115,0	269	259	13,5	22,1	225	201	146,1	18.920	1.406,7	11,38	6.405	494,6	6,62	1,53	W 10 x 77

Especificações técnicas da talha elétrica da Nagano

Modelos			I ton	2 ton	3 ton	5 ton	10 ton	16 ton	20 ton		
Cap. de Carga	Kg		1000	2000	3000	5000	10000	16000	20000		
Cap. de Elevação	metro	os				9					
Vel. de Elevi	ração	m/			3		7	3,5	3,5		
Vel. do Troll	lley	min.				20					
	Diâmetro Nominal	mm	7,4	П	0	21,5					
Cabo de Aço	Estrut	ura									
	Taxa de Tensão	kgt/ mm²		170),29	180,-	48	19	190,68		
Tipo de Vigi	ga (GB/T 70	6-1998)	16 ~28b	20a -	-32c	25a ~	63c	36a	~63c		
Raio mín. p/ rolamento		m	8,1	1	2	2,5	4,5		6		
			ZDI 22-4	ZDI 31-4	ZDI 32-4	ZDI41-7	ZDI	51-4	ZDI52-4		
	Mode	do				ZD SI					
				0.4 / 3.0	0.5 / 4.5 F	0.8 / 7.5		1.5 / 13			
	Capaci-	low	1,5	3	4,5	7,5	13		8.5		
	dade	RW	1,5	0.4 / 3.0	0.5 / 4.5	0.8 / 7.5	1.5 / 13		0,5		
Motor de	R.P.M.	r/min.		1380		140	0	ı	380		
Elevação	Fase	s				3					
	Voltagem	V				220					
	Corrente A		7,6 11 18								
		A	4,3	1.25 / 7.6	1.4/11	2.4 / 18	5.2 / 33	41,7			
	Frequ- ência	Hz				50					
	Mode	lo	ZD Yı II-4	ZD Yı 12-4			ZDY: 21-4				
	Capaci- dade	low	0,2	0.	,4	0,8 0,8 × 2					
	R.P.M.	r/min.				1380					
Motor do Trolley	Fases					3					
, ,	Voltagem	V				220					
	Corrente	Α	0,72	1,3	25	2,2	4	2,	1 x 2		
	Frequ- ência	Hz				50					
Frequência Trabalho	de	t/h*				120					
Grade de Cl	lassificação					МЗ					
	н			~1035	~1065	~1305	~1450	~1900	-2000		
	L ₂			187	230	274	303	303	375		
		- 1			241.1242	200 (222		429 / 820			
	Li			279	341 / 343	380 / 337		,			
					341 / 343 1066	1209	1694		995		
	Lø			918			1694 2085	I	995 328		
Dimen-					1066	1209		1			
Dimen- sões Básicas	LØ	mm	196	918	1066	1209	2085	1	328		
sões	LØ m	mm	196	918	1066 1068 561	1209 1206 615	2085	2	328		
sões	LØ m	mm	196	918 512 240	1066 1068 561 264	1209 1206 615 320	2085	2 1 376	328		
sões	m n	mm	196	918 512 240 155 23	1066 1068 561 264 173	1209 1206 615 320 203	2085 1028	376 243 38	328		
sões	LØ m n	mm	196	918 512 240 155 23	1066 1068 561 264 173 25	1209 1206 615 320 203	2085 1028	376 243 38	328		
sões	m n h	mm	196	918 512 240 155 23	1066 1068 561 264 173 25	1209 1206 615 320 203 31	2085 1028	376 243 38	328 329		
sões	n h Ø B	mm	196	918 512 240 155 23 9	1066 1068 561 264 173 25	1209 1206 615 320 203 31 10:	2085 1028	243 376 243 38 ~	328 329		

selecionada