Penyederhanaan Fungsi Logika [Sistem Digital]

Eka Maulana, ST, MT, MEng. Universitas Brawijaya

Mengapa perlu Penyederhanaan?

SEDERHANA → Cheaper → Smaller → Faster

Diperlukan MANIPULASI ALJABAR BOOLE

Metode:

Penyederhanaan Fungai Boole Bentuk Standard dan Kanonik Representasi dengan Tabel Kebenaran Karnaugh Map (K-MAP)

Makin Ringkas Makin Optimal

Berdasarkan Jumlah rangkaian Logika dalam satu chip

SSI, kurang dari 12 MSI, 12 - 99 LSI, 100 - 9.999 VLSI, 10.000 - 99.999 ULSI, 100.000 - 999.999 GSI, 1.000.000 atau lebih

Penting dalam Penyederhanaan!!!

Hukum De Morgan Commonly used...

Gerbang Logika dapat meneruskan sinyal input?

Mana yang kita pilih?

Mari kita sederhanakan...[manual]

Sederhanakan rangkaian a ke b

Mari kita sederhanakan...[manual]

Esensi Penyederhanaan?

Penyederhanaan berarti meminimalisir jumlah **operasi** dan **variabel** dalam ekspresi aljabar logika.

Sederhanakan ekspresi logika berikut:

a.
$$F = ABC + ABC' + AB'C$$

b.
$$F = A'C(A'BD)' + A'BC'D' + AB'C$$

c.
$$F = (A'+B).(A+B+D)D'$$

d.
$$F = AB'C + A'BD + C'D'$$

e.
$$F = A'BC + A'BC' + AC$$

f.
$$F = A'B'C' + A'BC' + ABC'$$

Bentuk Standard dan Kanonik

Bentuk Standard

SOP (Sum of Product) → Term-term AND di OR kan contoh: AB'C + A'BC'

POS (Product of Sum) → Term-term OR di AND kan contoh: (A+B'+C).(A'+B+C')

Bentuk Kanonik

Minterm → product term in which all the variables appear exactly once, either complemented or uncomplemented

Maxterm → sum term in which all the variables appear exactly once, either complemented or uncomplemented

Minterm (m)

- Represents exactly one combination in the truth table.
- Denoted by m_{j} , where j is the decimal equivalent of the minterm's corresponding binary combination (b_{j}) .
- A variable in m_j is complemented if its value in b_j is 0, otherwise is uncomplemented.
- Example: Assume 3 variables (A,B,C), and j=3. Then, $b_j=0$ 011 and its corresponding minterm is denoted by $m_j=A'BC$

Maxterm (M)

- Represents exactly one combination in the truth table.
- Denoted by M_{j} , where j is the decimal equivalent of the maxterm's corresponding binary combination (b_{j}) .
- A variable in M_j is complemented if its value in b_j is 1, otherwise is uncomplemented.
- Example: Assume 3 variables (A,B,C), and j=3. Then, $b_j = 0.011$ and its corresponding maxterm is denoted by $M_j = A+B'+C'$

Notasi Tabel Kebenaran Minterm & Maxterm

- Minterms dan Maxterms mudah direpresentasikan menggunakan tabel kebenaran.
- Contoh:

Asumsikan 3 variabel x,y,z

		,		
Х	У	Z	Minterm	Maxterm
0	0	0	$x'y'z' = m_0$	$x+y+z = M_0$
0	0	1	$x'y'z = m_1$	$x+y+z'=M_1$
0	1	О	$x'yz' = m_2$	$x+y'+z = M_2$
0	1	1	$x'yz = m_3$	$x+y'+z'=M_3$
1	0	0	$xy'z' = m_4$	$x'+y+z = M_4$
1	0	1	$xy'z = m_5$	$x'+y+z'=M_5$
1	1	0	$xyz' = m_6$	$x'+y'+z = M_6$
1	1	1	xyz = m ₇	$x'+y'+z'=M_7$

Contoh Penulisan m dan M

Tabel kebenaran untuk f₁(a,b,c)

The canonical sum-of-products form for f₁ is

$$f_1(a,b,c) = m_1 + m_2 + m_4 + m_6$$

= a'b'c + a'bc' + ab'c' + abc'

The canonical product-of-sums form for f₁ is

$$f_1(a,b,c) = M_0 \cdot M_3 \cdot M_5 \cdot M_7$$

= $(a+b+c) \cdot (a+b'+c') \cdot$
 $(a'+b+c') \cdot (a'+b'+c').$

Observe that: $m_j = M_j$

a	b	С	f_1
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Shorthand: Σ and Π

- $f_1(a,b,c) = \sum m(1,2,4,6)$, where \sum indicates that this is a sum-of-products form, and m(1,2,4,6) indicates that the minterms to be included are m_1 , m_2 , m_4 , and m_6 .
- $f_1(a,b,c) = \prod M(0,3,5,7)$, where \prod indicates that this is a product-of-sums form, and M(0,3,5,7) indicates that the maxterms to be included are M_0 , M_3 , M_5 , and M_7 .
- Since $m_j = M_j$ ' for any j, $\sum m(1,2,4,6) = \prod M(0,3,5,7) = f_1(a,b,c)$

Konversi diantara bentuk Kanonik (Σ dan Π)

- Replace Σ with Π (or *vice versa*) and replace those j's that appeared in the original form with those that do not.
- Example:

```
f_1(a,b,c) = a'b'c + a'bc' + ab'c' + abc'
= m_1 + m_2 + m_4 + m_6
= \sum (1,2,4,6)
= \prod (0,3,5,7)
= (a+b+c) \cdot (a+b'+c') \cdot (a'+b+c') \cdot (a'+b'+c')
```

Perancangan dgn Tabel Kebenaran

Diketahui output x seperti dalam tabel, tentukan fungsi logika dari x.

A	В	C	x
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Langkah-langkah solusi dgn Tabel Kebenaran

#1 Tulis bentuk AND pada output = 1.

	D		x	
0	0	0	0	-
0	0	1	0	
0	1	0	0	
0	1	1	1	$\rightarrow \overline{A}BC$
1	0	0	0	
1	0	1	1	$\rightarrow A\overline{B}C$
1	1	0	1	$\rightarrow AB\overline{C}$
1	1	1	1	$\rightarrow ABC$

Langkah-langkah solusi

#2 Tulis ekspresi SOP nya

$$X = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

#3 Sederhanakan Ekspresi outputnya

$$X = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$X = BC (\overline{A} + A) + AC (\overline{B} + B) + AB (\overline{C} + C)$$

$$X = BC + AC + AB$$

Langkah-langkah solusi

#4 Merancang Rangkaian Gerbang logikanya

Peta Karnaugh (K-Map)

Metode grafik untuk menyederhanakan ekspresi logika atau tabel kebenaran

Dapat digunakan dengan banyak variabel masukan, tetapi dalam praktiknya terbatas pada 5-6 variabel saja

x_1 x_2	2	0	1		$x_2^{X_1}$		0		1
0	0	m_0	1 m ₁	atau	0	0	m_0	2	m_2
1	2	m_2	3 m ₃		1	1	m_1	3	m_3

Metode K-Map

- Nilainilai tabel kebenaran diletakkan pada Kmap.
- Kotakkotak Kmap yang berdekatan secara horisontal dan vertikal hanya berbeda 1 variabel.
- 3. Pola dari atas ke bawah atau kiri ke kanan *harus* berbentuk A B, AB, AB, AB
- 4. Bentuk **SOP bisa didapatkan dengan melakukan** operasi **OR pada semua term (AND) dari kotak yang bernilai 1**

Setiap kotak di baris **paling atas dianggap** berdekatan dengan kotakkotak pada baris **paling bawah**, **samping juga**

Contoh penggunaan K-MAP

2 variabel

Α	В	X
0	0	$1 \rightarrow \overline{AB}$
0	1	0
1	0	0
1	1	$1 \to AB$

$$\left\{ x = \overline{A}\overline{B} + AB \right\}$$

(a)

					1
٠,	Va	\ ri			
-7	\/ -	1 I I	_		
	V	4 I I	u	\sim	$\mathbf{\mathbf{\mathcal{C}}}$

Α	В	С	X
0	0	0	$1 \rightarrow \overline{ABC}$
0	0	1	$1 \rightarrow \overline{A}\overline{B}C$
0	1	0	$1 \rightarrow \overline{A}B\overline{C}$
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	$1 \rightarrow AB\overline{C}$
1	1	1	0

$$\begin{cases}
X = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C \\
+ \overline{A}B\overline{C} + AB\overline{C}
\end{cases}$$

(b)

Contoh penggunaan K-MAP

4 variabel

Α	В	С	D	Χ		
0	0	0	0	0		
0	0	0	1	1	$\rightarrow \bar{A}\bar{B}\bar{C}D$	
0	0	1	0	0		
0	0	1	1	0		
0	1	0	0	0		C
0	1	0	1	1	$\rightarrow \bar{A}B\bar{C}D$	$X = \overline{ABCD} + \overline{ABCD}$
0	1	1	0	0		+ ABCD + ABCD
0	1	1	1	0		
1	0	0	0	0		
1	0	0	1	0		
1	0	1	0	0		
1	0	1	1	0		
1	1	0	0	0	_	
1	1	0	1	1	\rightarrow ABCD	
1	1	1	0	0		
1	1	1	1	1	\rightarrow ABCD	

	ĒΒ	СD	CD	ĒD
ĀB	0	1	0	0
ĀB	0	1	0	0
AB	0	1	1	0
ΑĒ	0	0	0	0

. .

Looping > penggabungan kotak yang bernilai 1

	Ĉ	С	
$\bar{A}\bar{B}$	0	0	
ĀB	1	1	$X = \overline{A}B\overline{C} + \overline{A}BC$
AB	0	0	= ĀB
$A \overline{B}$	0	0	
	(k	0)	•

Aturan Looping

Proses *looping 2 kotak bernilai 1 yang berdekatan* dalam K-Map (pasangan), akan menghilangkan 1 variabel yang muncul dalam bentuk normal dan komplemennya.

QUAD

	$\bar{C}\bar{D}$	$\bar{C}D$	CD	$C\bar{D}$
ĀB	0	0	0	0
ĀВ	0	0	0	0
AB	1	1	1	1
$A\overline{B}$	0	0	0	0
(k	0)	X =	AB	

Aturan Looping

Proses *looping kotak bernilai 1 berjumlah 4 buah* yang berdekatan dalam KMap (*quad*), *akan* menghilangkan 2 variabel yang muncul dalam bentuk normal dan komplemennya.

OCTET

Penyederhanaan K-Maps

- 1. Buat KMap dan letakkan nilainilai 1 dan 0 pada kotak-kotak sesuai dengan tabel kebenaran.
- 2. Cari kotak bernilai 1 yang tidak berdekatan dengan kotak bernilai 1 lainnya, dan lakukan proses *looping (isolated 1.)*
- 3. Cari kotak bernilai 1 yang berdekatan dengan hanya 1 kotak bernilai 1 lainnya (pasangan) dan lakukan proses *looping*.
- 4. Cari kotakkotak bernilai 1 yang dapat dilakukan proses looping
- 5. octet, walaupun sudah dilakukan proses looping padanya.
- 6. Cari kotak bernilai 1 yang dapat dilakukan proses looping quad.
- 7. Cari kotakkotak bernilai 1 yang belum dilakukan proses looping.
- 8. Bentuk operasi OR untuk semua *term yang dihasilkan dari* setiap proses *looping. (SOP)*

Minimalkan penggunaan jumlah loop.

Penggunaan K-MAP

X(A,B,C,D)=m(2, 5, 7, 11, 13,15)

Don't Care (x)

Pada beberapa rancangan rangkaian logika, terdapat kondisi masukan yang nilai keluarannya tidak ditentukan.

Tidak peduli dengan nilai keluaran dari beberapa masukan tersebut, TINGGI atau RENDAH.

Contoh Don't Care

Α	В	С		Z
0	0	0		0
0	0	1		0
0	1	0		0
0	1	1		x
1	0	0		x∫care"
1	0	1		1
1	1	0		1
1	1	1		1
(a)				

Soal Latihan

Kerjakan di kertas terpisah

Contoh Don't Care

- 1. Sederhanakan fungsi rangkaian Logika berikut:
 - a. F = ABC + AB'C + A
 - b. G=A'B'C'+A'BC+ABC+AB'C'+AB'C
 - c. H=(C+D)'+A'CD'+ABC+A'B'CD+ACD'
- 2. Sederhanakan dan gambar rangkaian dari dengan K-Maps:
 - a. f(ABC)=m(1,2,3,5,7)
 - b. g(ABCD)=m(0,1,6,7,8,9,14,15)
 - c. h(ABCD)=M(1,5,6,9,13,14)
 - d.i(ABCD)=m(2,3,7,9,13,14), d(6,10)