

Statistics Review

- · A statistic is a function of a sample of data
- An <u>estimator</u> is a <u>statistic</u>
- Population parameter → unknown (M, 5²)
- The sample, y, will be considered random

Sincovis random, estimators using y will be random

Since estimators are random, they have a problem function given a special name: sampling distribution.

We will obtain properties of the sampling distribution to see if the estimator is "good" or not.

s is random!

Vis a sample of values

Ly like in Assign 1 die rolls

Sanything I calculate using

y is also random!

3.1 Random Sampling from the Population (

holds an unknown touth

- Typically, we want to know something about a population
- · The population is considered to be very large (infinite), and contains some unknown "truth"
- · We likely won't observe the whole population, but a sample from the pop.
- . We'll use the sample, v, to estimate that something

2

Example: suppose we want to know the mean height of a

U of M student

Let n= height of a student

Population parameter of interest: (Ay)

Population parameter of interest: (Ay)

Population parameter of interest: (Ay)

We can't afford to observe the whole pop.

We'll have to collect a sample, y. Population (very inrge) [Picture] 3

We want the sample to reflect the population.

Question: How should the sample be selected from the population?

- In particular we want the sample to be i.i.d.

 Identically -> all come from the correct pop. (no mini U)

 Independently -> no commercian/link btm. people (no basketball)

 Founds;

So, the sample y is random!!

- Could have gotten a different y
- Parallel universe

171.6 186.6 182.4 185.5 174.8 178.8 192.8 179.3 172.0

Table 3.1: Entire population of heights (in cm). The true (unobservable) population mean and variance are $\mu_y = \frac{70}{100}$ and $\sigma_y^2 = 39.7$. 177.3 170.2 187.2 178.3 170.3 178.7 171.7 160.5 183.9 175.7 179.4 181.2 180.0 175.9 182.6 181.7 182.6 181.7 165.7 172.7 180.2 181.5 176.5 162.1 180.3 175.6 174.9 178.9 178.7 175.6 166.4 180.9 179.9 171.2 173.2 178.6 173.1 175.6 183.7 181.4 168.7 186.3 174.2 171.0 175.2 182.2 178.4 168.1 186.0 180.8 176.2 170.8 180.3 169.5 167.2 189.9 177.3 $\frac{173.4}{163.4}$ 180.0 172.9 171.0 178.0 176.0 176.5 171.9 184.2 184.1 165.3 180.2 180.9 187.1 178.3 179.9 183.4 167.1 173.9 172.0 178.6 177.9 167.4 1**72.7**

 $\frac{1}{y} = \frac{1}{n} \sum_{i=1}^{n} y$

5

How could i.i.d. be violated in the heights example? with -U

Example: mean income of Cabadians. How could i.i.d. be violated?

How should we estimate the mean neight?

We want My. Use \(\frac{y}{2}\) to estimate My.

3.2 Estimators and Sampling Distributions

An estimator uses the sample ν to "guess" something about the pop. We collect our sample, $g=\{173.0,1717,182.0,181.5,182.1,174.0,168.7,182.0,1717,168.1,180.0,175.7,163.4,186.3,160.5,171.0,173.0,172.0,172.0,172.0,170.0,180 whoold we use this sample to estimate the mean height?$

(

3,2,1 Sample mean

A popular choice for estimating a population mean is by using a sample mean (or sample overage or just average)

in reality don't (3.1)

- From heights example: y
 = 174.1, μ_y = 176.8
 There are many ways to estimate μ_y. Examples? mode/media
- Why is (3.1) so popular?
- How good is y at estimating my in general?
- . To answer these questions: idea of a sampling distribution

wiringe /

7

- Randomly sample from the population → get y
- oy is random
- Use y to calculate \bar{y}
 - o y is random
 - could have gotten a different sample → could have gotten a different y
 - o population is always the same (μ_y)

8

3.2.2 Sampling distribution of the sample mean

- \bullet \bar{y} is random variable (it's an estimator, all estimators are random)
- random variables usually have probability functions
- y has a sampling distribution (probability function for an estimator)
- sampling distribution imagine all possible values for \overline{y} that you could get - plot a histogram
- Using a computer, I drew 1 mil, different random samples of n 20 from table 3.1. Calculate y each time. Plot histogram:

10

Which probability function is right for y? Why?

• Look at figure 3.1

Notice the summation operator in equation 3.1

Answer: Normal Reason: CLT

y is random. We'll derive its:

• mean • variance

Use these to determine if it's a "good" estimator via three statistical properties:

Bias

Efficiency

Consistency

П

3.2.3 Bias

An estimator is unbiased if its expected value is equal to the population parameter it's estimating.

That is, \bar{y} is unbiased if $E|\bar{y}| = \mu_y$

Unbiased if it gives "the right answer on average".

Biased if it gives the wrong answer on average.

12

 $\mathbf{E}[y] = \mathbf{E}\left[\frac{1}{n}\sum_{i=1}^{n}y_{i}\right]$

Roles of the area (I) E[CY) - CE[Y] () E(X+Y) = E(X) + E(Y)

$$E[\bar{y}] = E\left[\frac{1}{n}\sum_{i=1}^{n} y_{i}\right]$$

$$= \frac{1}{n}E\left[\sum_{i=1}^{n} y_{i}\right]$$

$$= \frac{1}{n}E[y_{1} + y_{2} + \dots + y_{n}]$$

$$= \frac{1}{n}(E[y_{1}] + E[y_{2}] + \dots - E[y_{n}])$$

$$= \frac{1}{n}(\mu_{y} + \mu_{y} + \dots + \mu_{y})$$

$$= \frac{n\mu_{y}}{n} = \mu_{y}$$
13

$$\begin{split}
& \left[\left[\frac{1}{n} \sum_{y_i} y_i \right] = \frac{1}{n} E\left[\sum_{y_i} y_i \right] = \frac{1}{n} E\left[y_i + y_i + \dots + y_n \right] \\
& = \frac{1}{n} \left\{ E\left[y_i \right] + E\left[y_i \right] + \dots + E\left[y_n \right] \right\} & \text{ Sample is } \\
& = \frac{1}{n} \left\{ \mathcal{M}_1 + \mathcal{M}_1 + \dots + \mathcal{M}_n \right\} = \frac{1}{n} n \mathcal{M}_1 = \mathcal{M}_2
\end{split}$$

E[v] = uv if unbiased

3.2.4 Efficiency

An estimator is efficient if it has the smallest variance among all other potential estimators (for us, potential = linear, unbiased)

Need to get the variance of \bar{y} .

14

$$Var[y] \quad Var\left[\frac{1}{n}\sum_{i=1}^{n}y_{i}\right]$$

$$= \frac{1}{n^{2}}Var\left[\sum_{i=1}^{n}y_{i}\right]$$

$$= \frac{1}{n^{2}}Var\left[y_{1} + y_{2} + \dots + y_{m}\right]$$

$$= \frac{1}{n^{2}}\left(Var\left[y_{1}\right] + Var\left[y_{2}\right] + \dots + Var\left[y_{m}\right]\right)$$

$$= \frac{1}{n}\left(\sigma_{y}^{2} + \sigma_{y}^{2} + \dots + \sigma_{y}^{2}\right)$$

$$= \frac{n\sigma_{y}^{2}}{n^{2}} - \frac{\sigma_{y}^{2}}{n^{2}} + \frac{\sigma_{y}^{2}$$

- Gauss-Markov theorem proves this is minimum variance
- We'll also need this to prove consistency, and for hyp, testing

3.2.5 Consistency

Suppose we had a lot of information. $(n \to \infty)$

What value should we get for our estimator? > forth w/

How would state this mathematically? $\lim_{\gamma \to 0} \text{Var}(\tilde{\gamma}) \to 0 \quad \text{and} \quad \lim_{\gamma \to 0} \mathbb{E}[\tilde{\gamma}] \to \mathcal{M}_{\gamma}$

Q) Prove that the sample mean is a consistent estimator for the population mean.

Define the terms unbiasedness, efficiency, and consistency.

$$Var(\overline{Y}) = Var(\frac{1}{n^2} \ge y_i)$$

$$= \frac{1}{n^2} Var(\underbrace{Y}) = \frac{1}{n^2} Var(\underbrace{Y}) + \underbrace{Var(X+Y)}_{Var(X+Y)} = Var(X) + Var(Y)}_{Var(X+Y)}$$

$$= \frac{1}{n^2} \left\{ Var(\underbrace{Y}) + Var(\underbrace{Y}) + \dots + Var(\underbrace{Y}) \right\}$$

$$= \frac{1}{n^2} \left\{ Var(\underbrace{Y}) + Var(\underbrace{Y}) + \dots + Var(\underbrace{Y}) \right\}$$

$$= \frac{1}{n^2} \left\{ \nabla_Y^2 + \nabla_Y^2 + \dots + \nabla_Y^2 \right\} = \frac{N \nabla_Y^2}{n^2}$$

$$= \frac{1}{n^2} \left\{ \nabla_Y^2 + \nabla_Y^2 + \dots + \nabla_Y^2 \right\} = \frac{N \nabla_Y^2}{n^2}$$

$$= \frac{1}{n^2} \left\{ \nabla_Y^2 + \nabla_Y^2 + \dots + \nabla_Y^2 \right\} = \frac{N \nabla_Y^2}{n^2}$$

$$= \frac{1}{n^2} \left\{ \nabla_Y^2 + \nabla_Y^2 + \dots + \nabla_Y^2 \right\} = \frac{N \nabla_Y^2}{n^2}$$

$$= \frac{1}{n^2} \left\{ \nabla_Y^2 + \nabla_Y^2 + \dots + \nabla_Y^2 \right\} = \frac{N \nabla_Y^2}{n^2}$$

$$= \frac{1}{n^2} \left\{ \nabla_Y^2 + \nabla_Y^2 + \dots + \nabla_Y^2 \right\} = \frac{N \nabla_Y^2}{n^2}$$

$$= \frac{1}{n^2} \left\{ \nabla_Y^2 + \nabla_Y^2 + \dots + \nabla_Y^2 \right\} = \frac{N \nabla_Y^2}{n^2}$$

$$= \frac{1}{n^2} \left\{ \nabla_Y^2 + \nabla_Y^2 + \dots + \nabla_Y^2 \right\} = \frac{1}{n^2} \left\{ \nabla_Y^2 + \nabla_Y^2 + \dots + \nabla_Y^2 \right\}$$

properties of variance

Properties of variance

very unrealistic assumption

3.3 Hypothesis tests (known of almost all tests in Econ

Ho: $\mu_0 = \mu_{y,0}$

almost all tests in Econ $\widehat{H_A}: \mu_y \neq \mu_{y,0}$ (2-sided alternative)

- Estimate $\mu_{\overline{y}}$ (using \overline{y} for example)
- See if y
 appears "close" to μ_{y,0} o Remember, \bar{y} is random! (and Normal)
- If it's close → fail to reject
 If it's far → reject

Example:

· Hypothesize that mean height of a U of M student is 173cm

$$H_0: \mu_y = 173$$

$$H_A: \mu_y \neq 173$$

- Collect a sample: $y = \{173.9, 171.7, ..., 172.0\}$
- Calculate $\bar{y} = 174.1$
- Suppose (very unrealistically that we know that) \(\sigma_v^2 \)
- What now?

18

Figure 3.2: Normal distribution with $\mu=173$ and $\sigma^2=\frac{807}{100}$. Shaded area is the probability that the normal variable is greater than 174.1.

Significance level Pre-determined p-value that decided if you reject/fail to reject

The p-value for the above test is 0.44. How to interpret this?

3.3.1 Significance of a test

3.3.1 Significance of a test
$$\alpha = \frac{16\pi}{5}$$
. $\frac{1}{2}$. $\frac{3}{2}$. Type Lettor $\frac{2}{3}$.

3.3.3 Type II error (and power)

3.3.4 Test statistics 2-test statistics + test statistics

- Just a more convenient way of getting the p-value for the test
- · Each hypothesis test would present us with a new normal curve

Ho: My = 1000 y= 1022.3

- Just a more convenient way of getting the p-value for the test
- · Each hypothesis test would present us with a new normal curve that we would have to draw, and calculate a new area (see fig. 3.2)
- Instead: standardize
- This gives us one curve for all testing problems (the standard) normal curve)
- Calculate a bunch of areas under the curve, and tabulate them
- Not an issue with modern computers, but this is still the way we do things
- How to get a z test statistic?
- Do a z test for our heights example.

Flo. My - 10			
y= 1022.3			
	(1 mm 0 1)		
	~N(1000, 67)		
	À		
	2		
the My (if Ho is true) \$	Ĵ.		
free day	NI (173 (39.7)	N(0,1)	
73) (0.78) 4	NOW (12)		
7	~ N(0,1)	0.22	
1/20)	>	47 25	٧.
	<u></u>	197	_
		0 6.13	

4 - 1000

	1-161	1++11	HIF:	111-00	11-11	H La	41.00	4110	THE	4116
000	5501	4551	4803	4880	4840	490	.4761	.4721	4551	4541
P.I	3102	4503	1503	A\$3	/842	4504	.1361	.1325	.1297	1347
0.2	4277	4335	4127	A60	48.00	.0013	.2574	.2736	.3977	3559
0.3	2821	2753	-3743	-HIC	.320	. 100	.1294	.1357	.1730	2457
evs.	3445	3429	2072	200	Are	.7374	.1229	.1190	.11.76	3121
0.5	3845	32.91	3805	.261	.246	.2912	.3577	.3943	.3510	2776
DVS.	2711	2729	.9775	.2642	.3011	.2775	.25/6	.2514	.24%	2471
0.7	.2133	2799	0.755	.0387	.2000	.2200	.2236	.23%	3177	51.49
US.	2119	2001	.2000	.203	.300	.1977	.1910	.1922	234	1997
0.0	1611	151	.1799	.1700	.1776	.1711	.1965	.1900	. 437	.1511
LA.	15.97	1502	1523	1515	JK60	Jeffe	.1606	.1493	. 901	1379
11	15.97	1537	18.11	11966	1971	1251	230	1210	190	0.70
1.0	1150	1131	.1112	.1002	4075	.1000	.1039	.1000	. 900	1937
La.	1663	000	0001	2015	2001	7665	.1960	1900	.1839	1923
15	10.34	10.14	10.74	0004	0000	17000	0501	TATES	200	1661
Lä.	0000	0033	2011	1600	20015	2000	.1391	1700	4371	12.33
lñ.	16.15	0027	0000	0646	1616	A16.	196	2170	1970	0433
W.	110.01	1621	8007	10.1%	10000	107010	Larc	1000	150	1.0000
la.	16.23	66.21	8641	ACC.	AC59	A200	ARR	4307	.2301	1091
0	10.47	1691	HE TO	IF3/-	IFES.	STEA.	1540	2204	12/21	10.50
991	1034	1022	1017	1018	1530	ALC: N	3190	JUST	.1188	1,083
1.1	3073	3074	30170	30168	20102	27108	.3164	.0100	.01486	10-63
12	111,71	11124	0152	111500	01122	01500	11 111	11111	11100	10181
3.3	30177	.0034	00112	Men	JACO.	1974	.3991	3,023	.2387	1,084
200	1652	15,00	MATE	1875	18/13	1897	.300	.3366	.2396	1064
50	16/12	18.01	1807	1867	38.65	1984	21.0	2501	2121	10 28
2.0	3847	3540	18/44	3883	28/43	19940	.352)	.3358	.2357	.0036
	16/25	35,34	M03	ARCO	18.00	18000	.3523	.3328	.3327	.0226
38	16.25	15.25	M24	JACS.	MCS	1950	. 2001	20021	.2733	1919
29	MOR	MAGE	MICS	1807	38,05	20016	.3915	.3315	.2014	2014
533	3603	1603	8803	1802	JR.02	20011	.2911	.3911	OHO.	2010
3.1	1600	1003	SECT	JECO.	JECS	/9X6-	.386	.386	.0007	2007
5.2	Mar	Mar	MCS	ARCS.	1866	2000	.39%	3000	. 2005	1005
2.3	1605	1005	MECS	1804	1804	/9004	.384	.38%	.33%	1013
30	1603	Real	SECT	ALC:	Acco	JOSE C.	.3000	.3900	.5933	.0002

22

What is the probability that our a statistic will be within a certain interest, if the null hypothesis is true? For example, what is the following probability?

probability?
$$\Pr\left(\begin{array}{c} 1.96 \leq \leq 1.96 \\ \text{Pr}\left(-1.96 \leq \frac{\sqrt{-6 \mu_D}}{\sqrt{-6 \mu_D}}\right) = 95 \text{ f.} \end{array}\right) \tag{3.12}$$
 Finally, we solve equation 3.13 so that the null hypothesis $\mu_{y,0}$ is in the middle of the probability statement:

$$\Pr\left(\overline{y}, \frac{1.96 \times \sqrt{\frac{n_{p}^{2}}{n_{p}^{2}}} \le \underline{y}, \frac{1.96 \times \sqrt{\frac{n_{p}^{2}}{n_{p}^{2}}}}{\sqrt{\frac{1.96 \times 5.6.(\tilde{\gamma})}{n_{p}^{2}}}}\right) \underbrace{0.95}$$
(3.14)

3.4 Hypothesis Tests (unknown σ_v^2)

- Much more realistically, of (variance of y) will be unknown.
- Recall that: $Var[\bar{y}] = 0$
- Recall that. $z = \frac{y \mu_{y,0}}{s.e.(\bar{y})} = \frac{y \mu_{y,0}}{\sqrt[3]{n}}$
- So, we need to estimate σ²_y in order to perform hypothesis tests.

mean (Y) = FG 3.4.1 Estimating σ_y^2

 A "natural" estimator;

