Ondes évanescentes

Niveau: L3

<u>Prérequis</u>: Modèle de l'onde plane progressive harmonique en électromagnétisme, Modèle de Drude, Relations de passage en électromagnétisme, Coefficients de reflexion et transmission en puissance, Vecteur de Poynting, Milieux diélectriques.

Ondes évanescentes

Caractéristiques de l'onde évanescente :

• Forme générale :

$$\vec{E} = f(t) \exp(-kr)\vec{u}$$

Vecteur de Poynting :

$$<\vec{\Pi}>=\vec{0}$$

Réflexion sur un conducteur

Réflexion sur un conducteur

On a:

•
$$\overrightarrow{\underline{E}}_{i} = \overrightarrow{\underline{E}}_{0,i} \exp(i(\omega t - k_{1}z))$$

$$\bullet \ \overrightarrow{\underline{E}_r} = \overrightarrow{\underline{E}_{0,r}} \exp(i(\omega t + k_1 z))$$

•
$$\overrightarrow{\underline{E}_t} = \overrightarrow{\underline{E}_{0,t}} \exp(i(\omega t - k_2 z))$$

avec
$$k_1 = n_1 k_0 \vec{u_z}$$
 et $k_2 = \underline{n_2} k_0 \vec{u_z}$

Réflexion sur un conducteur

Comme l'onde est plane :

$$\bullet \ \underline{\overrightarrow{B}_{0,i}} = \frac{\vec{k_1}}{\omega} \wedge \underline{\overrightarrow{E}_{0,i}}$$

$$\bullet \ \ \overrightarrow{\underline{B}_{0,r}} = - \frac{\vec{k_1}}{\omega} \wedge \underline{\overline{E}_{0,r}}$$

$$\bullet \ \underline{\overrightarrow{B}_{0,t}} = \frac{\vec{k_2}}{\omega} \wedge \underline{\overrightarrow{E}_{0,t}}$$

Modèle de Drude

Forces à prendre en compte :

• Force électromagnétique :

$$ec{F_e} = q(ec{E} + ec{v} \wedge ec{B})$$

• Force d'amortissement visqueux :

$$\vec{F}_v = -\frac{m}{\tau} \vec{v}$$

avec $au \sim 10^{-14} s$

Lois de Snell-Descartes

Lois de Snell-Descartes

On a:

•
$$\overrightarrow{\underline{E}_1} = \overrightarrow{\underline{E}_{0,i}} \exp(i(\omega t - \vec{k_i} \cdot \vec{r})) + \overrightarrow{\underline{E}_{0,r}} \exp(i(\omega t - \vec{k_r} \cdot \vec{r}))$$

•
$$\overrightarrow{\underline{E}_2} = \overrightarrow{\underline{E}_{0,t}} \exp(i(\omega t - \vec{k_t} \cdot \vec{r}))$$

Lois de Snell-Descartes

Comme l'onde est plane :

•
$$\overrightarrow{\underline{B}}_{i} = \frac{n_{1}}{c} \overrightarrow{u}_{i} \wedge \overrightarrow{\underline{E}}_{i}$$

•
$$\overrightarrow{\underline{B}}_r = \frac{n_1}{c} \overrightarrow{u_r} \wedge \overrightarrow{\underline{E}}_r$$

$$\bullet \ \underline{\overrightarrow{B}}_t = \frac{n_2}{c} \overrightarrow{u_t} \wedge \underline{\overrightarrow{E}}_t$$

Réflexion totale

Réflexion totale frustrée

Réflexion totale frustrée

Molécule d'ammoniac

Fig. 4.7: La molécule d'ammoniac : (a) les deux configurations classiques ; (b) potentiel réel (trait plein) et potentiel simplifié (pointillé) décrivant le retournement de la molécule.