WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
C12N 15/31, C07K 14/315, 16/12, C12Q 1/68

(11) International Publication Number:

WO 98/18931

(43) International Publication Date:

7 May 1998 (07.05.98)

(21) International Application Number:

PCT/US97/19588

(22) International Filing Date:

30 October 1997 (30.10.97)

(30) Priority Data:

60/029,960

31 October 1996 (31.10.96)

96) US

(71) Applicant (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KUNSCH, Charles, A. [US/US]; 2398B Dunwoody Crossing, Atlanta, GA 30338 (US). CHOI, Gil, H. [KR/US]; 11429 Potomac Oaks Drive, Rockville, MD 20850 (US). DILLON, Patrick, J. [US/US]; 1055 Snipe Court, Carlsbad, CA 92009 (US). ROSEN, Craig, A. [US/US]; 22400 Rolling Hill Road, Laytonsville, MD 20882 (US). BARASH, Steven, C. [US/US]; 582 College Parkway #303, Rockville, MD 20850 (US). FANNON, Michael [US/US]; 13501 Rippling Brook Drive, Silver Spring, MD 20850 (US). DOUGHERTY, Brian, A. [US/US]; 708 Meadow Field Court, Mount Airy, MD 21771 (US).

(74) Agents: BROOKES, A., Anders et al.; Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 20850 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: STREPTOCOCCUS PNEUMONIAE POLYNUCLEOTIDES AND SEQUENCES

(57) Abstract

The present invention provides polynucleotide sequences of the genome of Streptococcus pneumoniae, polypeptide sequences encoded by the polynucleotide sequences, corresponding polynucleotides and polypeptides, vectors and hosts comprising the polynucleotides, and assays and other uses thereof. The present invention further provides polynucleotide and polypeptide sequence information stored on computer readable media, and computer—based systems and methods which facilitate its use.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS -	Lesotho -	SI	Slovenia	
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia	
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal	
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland	
AZ,	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad	
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo	
BB	Barbados	GH	Ghana .	MG	Madagascar	TJ	Tajikistan	
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan	
BF	Burkina Paso	GR	Greece		Republic of Macedonia	TR	Turkey	
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago	
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine	
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda	
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America	
CA	Canada	IT	Italy	MX	Mexico	UZ.	Uzbekistan	
CF	Central African Republic	JΡ	Japan	NE	Niger	VN	Viet Nam	
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia	
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe	
Cl	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand			1
CM	Cameroon		Republic of Korea	PL	Poland		/	
CN	China	KR	Republic of Korea	PT	Portugal			
ĊU	Cuba	KZ	Kazakstan	RO	Romania			
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation			
DE	Germany	LI	Liechtenstein	SD	Sudan			
DK	Denmark	LK	Sri Lanka	SE	Sweden			
ER	Estonia	LR	Liberia	SG	Singapore			

WO 98/18931 PCT/US97/19588

Streptococcus pneumoniae Polynucleotides and Sequences

FIELD OF THE INVENTION

5

10

20

25

The present invention relates to the field of molecular biology. In particular, it relates to, among other things, nucleotide sequences of *Streptococcus pneumoniae*, contigs, ORFs, fragments, probes, primers and related polynucleotides thereof, peptides and polypeptides encoded by the sequences, and uses of the polynucleotides and sequences thereof, such as in fermentation, polypeptide production, assays and pharmaceutical development, among others.

BACKGROUND OF THE INVENTION

Streptococcus pneumoniae has been one of the most extensively studied microorganisms since its first isolation in 1881. It was the object of many investigations that led to important scientific discoveries. In 1928, Griffith observed that when heat-killed encapsulated pneumococci and live strains constitutively lacking any capsule were concomitantly injected into mice, the nonencapsulated could be converted into encapsulated pneumococci with the same capsular type as the heat-killed strain. Years later, the nature of this "transforming principle," or carrier of genetic information, was shown to be DNA. (Avery, O.T., et al., J. Exp. Med., 79:137-157 (1944)).

In spite of the vast number of publications on *S. pneumoniae* many questions about its virulence are still unanswered, and this pathogen remains a major causative agent of serious human disease, especially community-acquired pneumonia. (Johnston, R.B., et al., Rev. Infect. Dis. 13(Suppl. 6):S509-517 (1991)). In addition, in developing countries, the pneumococcus is responsible for the death of a large number of children under the age of 5 years from pneumococcal pneumonia. The incidence of pneumococcal disease is highest in infants under 2 years of age and in people over 60 years of age. Pneumococci are the second most frequent cause (after *Haemophilus influenzae* type b) of bacterial meningitis and otitis media in children. With the recent introduction of conjugate vaccines for *H. influenzae* type b, pneumococcal meningitis is likely to become increasingly prominent. *S. pneumoniae* is the most important etiologic agent of community-

15

20

25

30

35

acquired pneumonia in adults and is the second most common cause of bacterial meningitis behind *Neisseria meningitidis*.

The antibiotic generally prescribed to treat *S. pneumoniae* is benzylpenicillin, although resistance to this and to other antibiotics is found occasionally. Pneumococcal resistance to penicillin results from mutations in its penicillin-binding proteins. In uncomplicated pneumococcal pneumonia caused by a sensitive strain, treatment with penicillin is usually successful unless started too late. Erythromycin or clindamycin can be used to treat pneumonia in patients hypersensitive to penicillin, but resistant strains to these drugs exist. Broad spectrum antibiotics (e.g., the tetracyclines) may also be effective, although tetracycline-resistant strains are not rare. In spite of the availability of antibiotics, the mortality of pneumococcal bacteremia in the last four decades has remained stable between 25 and 29%. (Gillespie, S.H., *et al.*, *J. Med. Microbiol.* 28:237-248 (1989).

S. pneumoniae is carried in the upper respiratory tract by many healthy individuals. It has been suggested that attachment of pneumococci is mediated by a disaccharide receptor on fibronectin, present on human pharyngeal epithelial cells. (Anderson, B.J., et al., J. Immunol. 142:2464-2468 (1989). The mechanisms by which pneumococci translocate from the nasopharynx to the lung, thereby causing pneumonia, or migrate to the blood, giving rise to bacteremia or septicemia, are poorly understood. (Johnston, R.B., et al., Rev. Infect. Dis. 13(Suppl. 6):S509-517 (1991).

Various proteins have been suggested to be involved in the pathogenicity of S. pneumoniae, however, only a few of them have actually been confirmed as virulence factors. Pneumococci produce an IgA1 protease that might interfere with host defense at mucosal surfaces. (Kornfield, S.J., et al., Rev. Inf. Dis. 3:521-534 (1981). S. pneumoniae also produces neuraminidase, an enzyme that may facilitate attachment to epithelial cells by cleaving sialic acid from the host glycolipids and gangliosides. Partially purified neuraminidase was observed to induce meningitis-like symptoms in mice; however, the reliability of this finding has been questioned because the neuraminidase preparations used were probably contaminated with cell wall products. Other pneumococcal proteins besides neuraminidase are involved in the adhesion of pneumococci to epithelial and endothelial cells. These pneumococcal proteins have as yet not been identified. Recently, Cundell et al., reported that peptide permeases can modulate

10

15

20

25

pneumococcal adherence to epithelial and endothelial cells. It was, however, unclear whether these permeases function directly as adhesions or whether they enhance adherence by modulating the expression of pneumococcal adhesions. (DeVelasco, E.A., et al., Micro. Rev. 59:591-603 (1995). A better understanding of the virulence factors determining its pathogenicity will need to be developed to cope with the devastating effects of pneumococcal disease in humans.

Ironically, despite the prominent role of *S. pneumoniae* in the discovery of DNA, little is known about the molecular genetics of the organism. The *S. pneumoniae* genome consists of one circular, covalently closed, double-stranded DNA and a collection of so-called variable accessory elements, such as prophages, plasmids, transposons and the like. Most physical characteristics and almost all of the genes of *S. pneumoniae* are unknown. Among the few that have been identified, most have not been physically mapped or characterized in detail. Only a few genes of this organism have been sequenced. (See, for instance current versions of GENBANK and other nucleic acid databases, and references that relate to the genome of *S. pneumoniae* such as those set out elsewhere herein.)

It is clear that the etiology of diseases mediated or exacerbated by S. pneumoniae, infection involves the programmed expression of S. pneumoniae genes, and that characterizing the genes and their patterns of expression would add dramatically to our understanding of the organism and its host interactions. Knowledge of S. pneumoniae genes and genomic organization would improve our understanding of disease etiology and lead to improved and new ways of preventing, ameliorating, arresting and reversing diseases. Moreover, characterized genes and genomic fragments of S. pneumoniae would provide reagents for, among other things, detecting, characterizing and controlling S. pneumoniae infections. There is a need to characterize the genome of S. pneumoniae and for polynucleotides of this organism.

15

20

25

30

35

SUMMARY OF THE INVENTION

The present invention is based on the sequencing of fragments of the *Streptococcus pneumoniae* genome. The primary nucleotide sequences which were generated are provided in SEQ ID NOS:1-391.

The present invention provides the nucleotide sequence of several hundred contigs of the *Streptococcus pneumoniae* genome, which are listed in tables below and set out in the Sequence Listing submitted herewith, and representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan. In one embodiment, the present invention is provided as contiguous strings of primary sequence information corresponding to the nucleotide sequences depicted in SEQ ID NOS:1-391.

The present invention further provides nucleotide sequences which are at least 95% identical to the nucleotide sequences of SEQ ID NOS:1-391.

The nucleotide sequence of SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ID NOS:1-391 may be provided in a variety of mediums to facilitate its use. In one application of this embodiment, the sequences of the present invention are recorded on computer readable media. Such media includes, but is not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.

The present invention further provides systems, particularly computerbased systems which contain the sequence information herein described stored in a data storage means. Such systems are designed to identify commercially important fragments of the *Streptococcus pneumoniae* genome.

Another embodiment of the present invention is directed to fragments of the Streptococcus pneumoniae genome having particular structural or functional attributes. Such fragments of the Streptococcus pneumoniae genome of the present invention include, but are not limited to, fragments which encode peptides, hereinafter referred to as open reading frames or ORFs, fragments which modulate the expression of an operably linked ORF, hereinafter referred to as expression modulating fragments or EMFs, and fragments which can be used to diagnose the

10

15

20

25

30

presence of *Streptococcus pneumoniae* in a sample, hereinafter referred to as diagnostic fragments or DFs.

Each of the ORFs in fragments of the Streptococcus pneumoniae genome disclosed in Tables 1-3, and the EMFs found 5' to the ORFs, can be used in numerous ways as polynucleotide reagents. For instance, the sequences can be used as diagnostic probes or amplification primers for detecting or determining the presence of a specific microbe in a sample, to selectively control gene expression in a host and in the production of polypeptides, such as polypeptides encoded by ORFs of the present invention, particular those polypeptides that have a pharmacological activity.

The present invention further includes recombinant constructs comprising one or more fragments of the *Streptococcus pneumoniae* genome of the present invention. The recombinant constructs of the present invention comprise vectors, such as a plasmid or viral vector, into which a fragment of the *Streptococcus pneumoniae* has been inserted.

The present invention further provides host cells containing any of the isolated fragments of the *Streptococcus pneumoniae* genome of the present invention. The host cells can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic cell, such as a yeast cell, or a procaryotic cell such as a bacterial cell.

The present invention is further directed to isolated polypeptides and proteins encoded by ORFs of the present invention. A variety of methods, well known to those of skill in the art, routinely may be utilized to obtain any of the polypeptides and proteins of the present invention. For instance, polypeptides and proteins of the present invention having relatively short, simple amino acid sequences readily can be synthesized using commercially available automated peptide synthesizers. Polypeptides and proteins of the present invention also may be purified from bacterial cells which naturally produce the protein. Yet another alternative is to purify polypeptide and proteins of the present invention from cells which have been altered to express them.

The invention further provides methods of obtaining homologs of the fragments of the *Streptococcus pneumoniae* genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. Specifically, by using the nucleotide and amino acid sequences disclosed herein as

15

20

25

30

a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

The invention further provides antibodies which selectively bind polypeptides and proteins of the present invention. Such antibodies include both monoclonal and polyclonal antibodies.

The invention further provides hybridomas which produce the abovedescribed antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

The present invention further provides methods of identifying test samples derived from cells which express one of the ORFs of the present invention, or a homolog thereof. Such methods comprise incubating a test sample with one or more of the antibodies of the present invention, or one or more of the DFs of the present invention, under conditions which allow a skilled artisan to determine if the sample contains the ORF or product produced therefrom.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the above-described assays.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the antibodies, or one of the DFs of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of bound antibodies or hybridized DFs.

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents capable of binding to a polypeptide or protein encoded by one of the ORFs of the present invention. Specifically, such agents include, as further described below, antibodies, peptides, carbohydrates, pharmaceutical agents and the like. Such methods comprise steps of: (a) contacting an agent with an isolated protein encoded by one of the ORFs of the present invention; and (b) determining whether the agent binds to said protein.

The present genomic sequences of *Streptococcus pneumoniae* will be of great value to all laboratories working with this organism and for a variety of commercial purposes. Many fragments of the *Streptococcus pneumoniae* genome will be immediately identified by similarity searches against GenBank or protein databases and will be of immediate value to *Streptococcus pneumoniae* researchers

10

15

20

25

30

35

and for immediate commercial value for the production of proteins or to control gene expression.

The methodology and technology for elucidating extensive genomic sequences of bacterial and other genomes has and will greatly enhance the ability to analyze and understand chromosomal organization. In particular, sequenced contigs and genomes will provide the models for developing tools for the analysis of chromosome structure and function, including the ability to identify genes within large segments of genomic DNA, the structure, position, and spacing of regulatory elements, the identification of genes with potential industrial applications, and the ability to do comparative genomic and molecular phylogeny.

DESCRIPTION OF THE FIGURES

FIGURE 1 is a block diagram of a computer system (102) that can be used to implement computer-based systems of present invention.

FIGURE 2 is a schematic diagram depicting the data flow and computer programs used to collect, assemble, edit and annotate the contigs of the Streptococcus pneumoniae genome of the present invention. Both Macintosh and Unix platforms are used to handle the AB 373 and 377 sequence data files, largely as described in Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, 585, IEEE Computer Society Press, Washington D.C. (1993). Factura (AB) is a Macintosh program designed for automatic vector sequence removal and end-trimming of sequence files. program Loadis runs on a Macintosh platform and parses the feature data extracted from the sequence files by Factura to the Unix based Streptococcus pneumoniae relational database. Assembly of contigs (and whole genome sequences) is accomplished by retrieving a specific set of sequence files and their associated features using Extrseq, a Unix utility for retrieving sequences from an SQL database. The resulting sequence file is processed by seq_filter to trim portions of the sequences with more than 2% ambiguous nucleotides. The sequence files were assembled using TIGR Assembler, an assembly engine designed at The Institute for Genomic Research (TIGR) for rapid and accurate assembly of thousands of sequence fragments. The collection of contigs generated by the assembly step is loaded into the database with the lassie program. Identification of open reading

frames (ORFs) is accomplished by processing contigs with zorf or GenMark. The ORFs are searched against *S. pneumoniae* sequences from GenBank and against all protein sequences using the BLASTN and BLASTP programs, described in Altschul *et al.*, *J. Mol. Biol. 215*: 403-410 (1990)). Results of the ORF determination and similarity searching steps were loaded into the database. As described below, some results of the determination and the searches are set out in Tables 1-3.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

10

15

20

25

30

35

The present invention is based on the sequencing of fragments of the *Streptococcus pneumoniae* genome and analysis of the sequences. The primary nucleotide sequences generated by sequencing the fragments are provided in SEQ ID NOS:1-391. (As used herein, the "primary sequence" refers to the nucleotide sequence represented by the IUPAC nomenclature system.)

In addition to the aforementioned *Streptococcus pneumoniae* polynucleotide and polynucleotide sequences, the present invention provides the nucleotide sequences of SEQ ID NOS:1-391, or representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan.

As used herein, a "representative fragment of the nucleotide sequence depicted in SEQ ID NOS:1-391" refers to any portion of the SEQ ID NOS:1-391 which is not presently represented within a publicly available database. Preferred representative fragments of the present invention are *Streptococcus pneumoniae* open reading frames (ORFs), expression modulating fragment (EMFs) and fragments which can be used to diagnose the presence of *Streptococcus pneumoniae* in sample (DFs). A non-limiting identification of preferred representative fragments is provided in Tables 1-3. As discussed in detail below, the information provided in SEQ ID NOS:1-391 and in Tables 1-3 together with routine cloning, synthesis, sequencing and assay methods will enable those skilled in the art to clone and sequence all "representative fragments" of interest, including open reading frames encoding a large variety of *Streptococcus pneumoniae* proteins.

While the presently disclosed sequences of SEQ ID NOS:1-391 are highly accurate, sequencing techniques are not perfect and, in relatively rare instances, further investigation of a fragment or sequence of the invention may reveal a

15

20

25

30

35

nucleotide sequence error present in a nucleotide sequence disclosed in SEQ ID NOS:1-391. However, once the present invention is made available (i.e., once the information in SEQ ID NOS:1-391 and Tables 1-3 has been made available), resolving a rare sequencing error in SEQ ID NOS:1-391 will be well within the skill of the art. The present disclosure makes available sufficient sequence information to allow any of the described contigs or portions thereof to be obtained readily by straightforward application of routine techniques. Further sequencing of such polynucleotide may proceed in like manner using manual and automated sequencing methods which are employed ubiquitous in the art. Nucleotide sequence editing software is publicly available. For example, Applied Biosystem's (AB) AutoAssembler can be used as an aid during visual inspection of nucleotide sequences. By employing such routine techniques potential errors readily may be identified and the correct sequence then may be ascertained by targeting further sequencing effort, also of a routine nature, to the region containing the potential error.

Even if all of the very rare sequencing errors in SEQ ID NOS:1-391 were corrected, the resulting nucleotide sequences would still be at least 95% identical, nearly all would be at least 99% identical, and the great majority would be at least 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-391.

As discussed elsewhere herein, polynucleotides of the present invention readily may be obtained by routine application of well known and standard procedures for cloning and sequencing DNA. Detailed methods for obtaining libraries and for sequencing are provided below, for instance. A wide variety of Streptococcus pneumoniae strains that can be used to prepare S. pneumoniae genomic DNA for cloning and for obtaining polynucleotides of the present invention are available to the public from recognized depository institutions, such as the American Type Culture Collection (ATCC). While the present invention is enabled by the sequences and other information herein disclosed, the S. pneumoniae strain that provided the DNA of the present Sequence Listing, Strain 7/87 14.8.91, has been deposited in the ATCC, as a convenience to those of skill in the art. As a further convenience, a library of S. pneumoniae genomic DNA, derived from the same strain, also has been deposited in the ATCC. The S. pneumoniae strain was deposited on October 10, 1996, and was given Deposit No. 55840, and the cDNA library was deposited on October 11, 1996 and was given Deposit No. 97755. The genomic fragments in the library are 15 to 20 kb

10

15

20

25

30

35

fragments generated by partial Sau3A1 digestion and they are inserted into the BamHI site in the well-known lambda-derived vector lambda DASH II (Stratagene, La Jolla, CA). The provision of the deposits is not a waiver of any rights of the inventors or their assignees in the present subject matter.

The nucleotide sequences of the genomes from different strains of *Streptococcus pneumoniae* differ somewhat. However, the nucleotide sequences of the genomes of all *Streptococcus pneumoniae* strains will be at least 95% identical, in corresponding part, to the nucleotide sequences provided in SEQ ID NOS:1-391. Nearly all will be at least 99% identical and the great majority will be 99.9% identical.

Thus, the present invention further provides nucleotide sequences which are at least 95%, preferably 99% and most preferably 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-391, in a form which can be readily used, analyzed and interpreted by the skilled artisan.

Methods for determining whether a nucleotide sequence is at least 95%, at least 99% or at least 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-391 are routine and readily available to the skilled artisan. For example, the well known fasta algorithm described in Pearson and Lipman, *Proc. Natl. Acad. Sci. USA* 85: 2444 (1988) can be used to generate the percent identity of nucleotide sequences. The BLASTN program also can be used to generate an identity score of polynucleotides compared to one another.

COMPUTER RELATED EMBODIMENTS

The nucleotide sequences provided in SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide sequence of SEQ ID NOS:1-391 may be "provided" in a variety of mediums to facilitate use thereof. As used herein, provided refers to a manufacture, other than an isolated nucleic acid molecule, which contains a nucleotide sequence of the present invention; *i.e.*, a nucleotide sequence provided in SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide of SEQ ID NOS:1-391. Such a manufacture provides a large portion of the *Streptococcus pneumoniae* genome and parts thereof (*e.g.*, a *Streptococcus pneumoniae* open reading frame (ORF)) in a form which allows a skilled artisan to examine the manufacture using

WO 98/18931

5

10

15

20

25

30

35

means not directly applicable to examining the *Streptococcus pneumoniae* genome or a subset thereof as it exists in nature or in purified form.

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD- ROM; electrical storage media such as RAM and ROM; and hybrids of these categories, such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. Likewise, it will be clear to those of skill how additional computer readable media that may be developed also can be used to create analogous manufactures having recorded thereon a nucleotide sequence of the present invention.

As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently know methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention. A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially- available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data-processor structuring formats (e.g., text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. Thus, by providing in computer readable form the nucleotide sequences of SEQ ID NOS:1-

20

25

30

35

391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a sequence of SEQ ID NOS:1-391 the present invention enables the skilled artisan routinely to access the provided sequence information for a wide variety of purposes.

The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system was used to identify open reading frames (ORFs) within the Streptococcus pneumoniae genome which contain homology to ORFs or proteins from both Streptococcus pneumoniae and from other organisms. Among the ORFs discussed herein are protein encoding fragments of the Streptococcus pneumoniae genome useful in producing commercially important proteins, such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

The present invention further provides systems, particularly computer-based systems, which contain the sequence information described herein. Such systems are designed to identify, among other things, commercially important fragments of the *Streptococcus pneumoniae* genome.

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention.

As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means.

As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage

15

20

25

35

means. Search means are used to identify fragments or regions of the present genomic sequences which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, MacPattern (EMBL), BLASTN and BLASTX (NCBIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems.

As used herein, a "target sequence" can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzymic active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

A variety of structural formats for the input and output means can be used to input and output the information in the computer-based systems of the present invention. A preferred format for an output means ranks fragments of the *Streptococcus pneumoniae* genomic sequences possessing varying degrees of homology to the target sequence or target motif. Such presentation provides a skilled artisan with a ranking of sequences which contain various amounts of the target sequence or target motif and identifies the degree of homology contained in the identified fragment.

A variety of comparing means can be used to compare a target sequence or target motif with the data storage means to identify sequence fragments of the

10

15

20

25

Streptococcus pneumoniae genome. In the present examples, implementing software which implement the BLAST and BLAZE algorithms, described in Altschul et al., J. Mol. Biol. 215: 403-410 (1990), is used to identify open reading frames within the Streptococcus pneumoniae genome. A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer-based systems of the present invention. Of course, suitable proprietary systems that may be known to those of skill also may be employed in this regard.

Figure 1 provides a block diagram of a computer system illustrative of embodiments of this aspect of present invention. The computer system 102 includes a processor 106 connected to a bus 104. Also connected to the bus 104 are a main memory 108 (preferably implemented as random access memory, RAM) and a variety of secondary storage devices 110, such as a hard drive 112 and a removable medium storage device 114. The removable medium storage device 114 may represent, for example, a floppy disk drive, a CD-ROM drive, a magnetic tape drive, etc. A removable storage medium 116 (such as a floppy disk, a compact disk, a magnetic tape, etc.) containing control logic and/or data recorded therein may be inserted into the removable medium storage device 114. The computer system 102 includes appropriate software for reading the control logic and/or the data from the removable medium storage device 114, once it is inserted into the removable medium storage device 114.

A nucleotide sequence of the present invention may be stored in a well known manner in the main memory 108, any of the secondary storage devices 110, and/or a removable storage medium 116. During execution, software for accessing and processing the genomic sequence (such as search tools, comparing tools, etc.) reside in main memory 108, in accordance with the requirements and operating parameters of the operating system, the hardware system and the software program or programs.

10

15

20

30

35

BIOCHEMICAL EMBODIMENTS

Other embodiments of the present invention are directed to isolated fragments of the *Streptococcus pneumoniae* genome. The fragments of the *Streptococcus pneumoniae* genome of the present invention include, but are not limited to fragments which encode peptides and polypeptides, hereinafter open reading frames (ORFs), fragments which modulate the expression of an operably linked ORF, hereinafter expression modulating fragments (EMFs) and fragments which can be used to diagnose the presence of *Streptococcus pneumoniae* in a sample, hereinafter diagnostic fragments (DFs).

As used herein, an "isolated nucleic acid molecule" or an "isolated fragment of the *Streptococcus pneumoniae* genome" refers to a nucleic acid molecule possessing a specific nucleotide sequence which has been subjected to purification means to reduce, from the composition, the number of compounds which are normally associated with the composition. Particularly, the term refers to the nucleic acid molecules having the sequences set out in SEQ ID NOS:1-391, to representative fragments thereof as described above, to polynucleotides at least 95%, preferably at least 99% and especially preferably at least 99.9% identical in sequence thereto, also as set out above.

A variety of purification means can be used to generate the isolated fragments of the present invention. These include, but are not limited to methods which separate constituents of a solution based on charge, solubility, or size.

In one embodiment, Streptococcus pneumoniae DNA can be enzymatically sheared to produce fragments of 15-20 kb in length. These fragments can then be used to generate a Streptococcus pneumoniae library by inserting them into lambda clones as described in the Examples below. Primers flanking, for example, an ORF, such as those enumerated in Tables 1-3 can then be generated using nucleotide sequence information provided in SEQ ID NOS:1-391. Well known and routine techniques of PCR cloning then can be used to isolate the ORF from the lambda DNA library or Streptococcus pneumoniae genomic DNA. Thus, given the availability of SEQ ID NOS:1-391, the information in Tables 1, 2 and 3, and the information that may be obtained readily by analysis of the sequences of SEQ ID NOS:1-391 using methods set out above, those of skill will be enabled by the present disclosure to isolate any ORF-containing or other nucleic acid fragment of the present invention.

10

15

20

25

30

35

The isolated nucleic acid molecules of the present invention include, but are not limited to single stranded and double stranded DNA, and single stranded RNA.

As used herein, an "open reading frame," ORF, means a series of triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

Tables 1, 2, and 3 list ORFs in the Streptococcus pneumoniae genomic contigs of the present invention that were identified as putative coding regions by the GeneMark software using organism-specific second-order Markov probability transition matrices. It will be appreciated that other criteria can be used, in accordance with well known analytical methods, such as those discussed herein, to generate more inclusive, more restrictive, or more selective lists.

Table 1 sets out ORFs in the *Streptococcus pneumoniae* contigs of the present invention that over a continuous region of at least 50 bases are 95% or more identical (by BLAST analysis) to a nucleotide sequence available through GenBank in October, 1997.

Table 2 sets out ORFs in the *Streptococcus pneumoniae* contigs of the present invention that are not in Table 1 and match, with a BLASTP probability score of 0.01 or less, a polypeptide sequence available through GenBank in October, 1997.

Table 3 sets out ORFs in the *Streptococcus pneumoniae* contigs of the present invention that do not match significantly, by BLASTP analysis, a polypeptide sequence available through GenBank in October, 1997.

In each table, the first and second columns identify the ORF by, respectively, contig number and ORF number within the contig; the third column indicates the first nucleotide of the ORF (actually the first nucleotide of the stop codon immediately preceding the ORF), counting from the 5' end of the contig strand; and the fourth column, "stop (nt)" indicates the last nucleotide of the stop codon defining the 3'end of the ORF.

In Tables 1 and 2, column five, lists the Reference for the closest matching sequence available through GenBank. These reference numbers are the databases entry numbers commonly used by those of skill in the art, who will be familiar with their denominators. Descriptions of the nomenclature are available from the National Center for Biotechnology Information. Column six in Tables 1 and 2 provides the gene name of the matching sequence; column seven provides the BLAST identity score and column eight the BLAST similarity score from the

comparison of the ORF and the homologous gene; and column nine indicates the length in nucleotides of the highest scoring segment pair identified by the BLAST identity analysis.

10

20

25

30

Each ORF described in the tables is defined by "start (nt)" (5') and "stop (nt)" (3') nucleotide position numbers. These position numbers refer to the boundaries of each ORF and provide orientation with respect to whether the forward or reverse strand is the coding strand and which reading frame the coding sequence is contained. The "start" position is the first nucleotide of the triplet encoding a stop codon just 5' to the ORF and the "stop" position is the last nucleotide of the triplet encoding the next in-frame stop codon (i.e., the stop codon at the 3' end of the ORF). Those of ordinary skill in the art appreciate that preferred fragments within each ORF described in the table include fragments of each ORF which include the entire sequence from the delineated "start" and "stop" positions excepting the first and last three nucleotides since these encode stop codons. Thus, polynucleotides set out as ORFs in the tables but lacking the three (3) 5' nucleotides and the three (3) 3' nucleotides are encompassed by the present invention. Those of skill also appreciate that particularly preferred are fragments within each ORF that are polynucleotide fragments comprising polypeptide coding sequence. As defined herein, "coding sequence" includes the fragment within an ORF beginning at the first in-frame ATG (triplet encoding methionine) and ending with the last nucleotide prior to the triplet encoding the 3' stop codon. Preferred are fragments comprising the entire coding sequence and fragments comprising the entire coding sequence, excepting the coding sequence for the N-terminal methionine. Those of skill appreciate that the N-terminal methionine is often removed during post-translational processing and that polynucleotides lacking the ATG can be used to facilitate production of N-termainal fusion proteins which may be benefical in the production or use of genetically engineered proteins. Of course, due to the degeneracy of the genetic code many polynucleotides can encode a given polypeptide. Thus, the invention further includes polynucleotides comprising a nucleotide sequence encoding a polypeptide sequence itself encoded by the coding sequence within an ORF described in Tables 1-3 herein. Further, polynucleotides at least 95%, preferably at least 99% and especially preferably at least 99.9% identical in sequence to the foregoing polynucleotides, are contemplated by the present invention.

20

25

30

Polypeptides encoded by polynucleotides described above and elsewhere herein are also provided by the present invention as are polypeptide comprising a an amino acid sequence at least about 95%, preferably at least 97% and even more preferably 99% identical to the amino acid sequence of a polypeptide encoded by an ORF shown in Tables 1-3. These polypeptides may or may not comprise an N-terminal methionine.

The concepts of percent identity and percent similarity of two polypeptide sequences is well understood in the art. For example, two polypeptides 10 amino acids in length which differ at three amino acid positions (e.g., at positions 1, 3 and 5) are said to have a percent identity of 70%. However, the same two polypeptides would be deemed to have a percent similarity of 80% if, for example at position 5, the amino acids moieties, although not identical, were "similar" (i.e., possessed similar biochemical characteristics). Many programs for analysis of nucleotide or amino acid sequence similarity, such as fasta and BLAST specifically list percent identity of a matching region as an output parameter. Thus, for instance, Tables 1 and 2 herein enumerate the percent identity of the highest scoring segment pair in each ORF and its listed relative. Further details concerning the algorithms and criteria used for homology searches are provided below and are described in the pertinent literature highlighted by the citations provided below.

It will be appreciated that other criteria can be used to generate more inclusive and more exclusive listings of the types set out in the tables. As those of skill will appreciate, narrow and broad searches both are useful. Thus, a skilled artisan can readily identify ORFs in contigs of the *Streptococcus pneumoniae* genome other than those listed in Tables 1-3, such as ORFs which are overlapping or encoded by the opposite strand of an identified ORF in addition to those ascertainable using the computer-based systems of the present invention.

As used herein, an "expression modulating fragment," EMF, means a series of nucleotide molecules which modulates the expression of an operably linked ORF or EMF.

10

15

20

25

30

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are fragments which induce the expression or an operably linked ORF in response to a specific regulatory factor or physiological event.

EMF sequences can be identified within the contigs of the Streptococcus pneumoniae genome by their proximity to the ORFs provided in Tables 1-3. An intergenic segment, or a fragment of the intergenic segment, from about 10 to 200 nucleotides in length, taken from any one of the ORFs of Tables 1-3 will modulate the expression of an operably linked ORF in a fashion similar to that found with the naturally linked ORF sequence. As used herein, an "intergenic segment" refers to fragments of the Streptococcus pneumoniae genome which are between two ORF(s) herein described. EMFs also can be identified using known EMFs as a target sequence or target motif in the computer-based systems of the present invention. Further, the two methods can be combined and used together.

The presence and activity of an EMF can be confirmed using an EMF trap vector. An EMF trap vector contains a cloning site linked to a marker sequence. A marker sequence encodes an identifiable phenotype, such as antibiotic resistance or a complementing nutrition auxotrophic factor, which can be identified or assayed when the EMF trap vector is placed within an appropriate host under appropriate conditions. As described above, a EMF will modulate the expression of an operably linked marker sequence. A more detailed discussion of various marker sequences is provided below. A sequence which is suspected as being an EMF is cloned in all three reading frames in one or more restriction sites upstream from the marker sequence in the EMF trap vector. The vector is then transformed into an appropriate host using known procedures and the phenotype of the transformed host in examined under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence.

As used herein, a "diagnostic fragment," DF, means a series of nucleotide molecules which selectively hybridize to *Streptococcus pneumoniae* sequences. DFs can be readily identified by identifying unique sequences within contigs of the *Streptococcus pneumoniae* genome, such as by using well-known computer analysis software, and by generating and testing probes or amplification primers

15

20

25

30

35

consisting of the DF sequence in an appropriate diagnostic format which determines amplification or hybridization selectivity.

The sequences falling within the scope of the present invention are not limited to the specific sequences herein described, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequences provided in SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferrably at least 99% and most at least preferably 99.9% identical to SEQ ID NOS:1-391, with a sequence from another isolate of the same species. Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another which encodes the same amino acid is expressly contemplated. Any specific sequence disclosed herein can be readily screened for errors by resequencing a particular fragment, such as an ORF, in both directions (i.e., sequence both strands). Alternatively, error screening can be performed by sequencing corresponding polynucleotides of Streptococcus pneumoniae origin isolated by using part or all of the fragments in question as a probe or primer.

Preferred DFs of the present invention comprise at least about 17, preferrably at least about 20, and more preferrably at least about 50 contiguous nucleotides within an ORF set out in Tables 1-3. Most highly preferred DFs specifically hybridize to a polynucleotide containing the sequence of the ORF from which they are derived. Specific hybridization occurs even under stringent conditions defined elsewhere herein.

Each of the ORFs of the Streptococcus pneumoniae genome disclosed in Tables 1, 2 and 3, and the EMFs found 5' to the ORFs, can be used as polynucleotide reagents in numerous ways. For example, the sequences can be used as diagnostic probes or diagnostic amplification primers to detect the presence of a specific microbe in a sample, particularly Streptococcus pneumoniae. Especially preferred in this regard are ORFs such as those of Table 3, which do not match previously characterized sequences from other organisms and thus are most likely to be highly selective for Streptococcus pneumoniae. Also particularly preferred are ORFs that can be used to distinguish between strains of Streptococcus pneumoniae, particularly those that distinguish medically important strain, such as drug-resistant strains.

20

25

30

35

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Information from the sequences of the present invention can be used to design antisense and triple helixforming oligonucleotides. Polynucleotides suitable for use in these methods are usually 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription, for triple-helix formation, or to the mRNA itself, for antisense inhibition. Both techniques have been demonstrated to be effective in model systems, and the requisite techniques are well known and involve routine procedures. Triple helix techniques are discussed in, for example, Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991). Antisense techniques in general are discussed in, for instance, Okano, J. Neurochem. 56:560 (1991) and Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)).

The present invention further provides recombinant constructs comprising one or more fragments of the *Streptococcus pneumoniae* genomic fragments and contigs of the present invention. Certain preferred recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a fragment of the *Streptococcus pneumoniae* genome has been inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. For vectors comprising the EMFs of the present invention, the vector may further comprise a marker sequence or heterologous ORF operably linked to the EMF.

Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Useful bacterial vectors include phagescript, PsiX174, pBluescript SK, pBS KS, pNH8a, pNH16a, pNH18a, pNH46a (available from Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (available from Pharmacia). Useful eukaryotic vectors include pWLneo, pSV2cat, pOG44, pXT1, pSG

10

15

20

25

30

(available from Stratagene) pSVK3, pBPV, pMSG, pSVL (available from Pharmacia).

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein- I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

The present invention further provides host cells containing any one of the isolated fragments of the *Streptococcus pneumoniae* genomic fragments and contigs of the present invention, wherein the fragment has been introduced into the host cell using known methods. The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or a procaryotic cell, such as a bacterial cell.

A polynucleotide of the present invention, such as a recombinant construct comprising an ORF of the present invention, may be introduced into the host by a variety of well established techniques that are standard in the art, such as calcium phosphate transfection, DEAE, dextran mediated transfection and electroporation, which are described in, for instance, Davis, L. et al., BASIC METHODS IN MOLECULAR BIOLOGY (1986).

A host cell containing one of the fragments of the Streptococcus pneumoniae genomic fragments and contigs of the present invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF. The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the Genetic Code, encode an identical polypeptide sequence.

Preferred nucleic acid fragments of the present invention are the ORFs and subfragments thereof depicted in Tables 2 and 3 which encode proteins.

WO 98/18931

10

15

20

25

30

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. This is particularly useful in producing small peptides and fragments of larger polypeptides. Such short fragments as may be obtained most readily by synthesis are useful, for example, in generating antibodies against the native polypeptide, as discussed further below.

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily employ well-known methods for isolating polypeptides and proteins to isolate and purify polypeptides or proteins of the present invention produced naturally by a bacterial strain, or by other methods. Methods for isolation and purification that can be employed in this regard include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography.

The polypeptides and proteins of the present invention also can be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. Those skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, CV-1 cell, COS cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level.

WO 98/18931 PCT/US97/19588

"Recombinant," as used herein, means that a polypeptide or protein is derived from recombinant (e.g., microbial or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial"defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern different from that expressed in mammalian cells.

5

10

15

20

30

35

"Nucleotide sequence" refers to a heteropolymer of deoxyribonucleotides. Generally, DNA segments encoding the polypeptides and proteins provided by this invention are assembled from fragments of the *Streptococcus pneumoniae* genome and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon.

Recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. The expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic regulatory elements necessary for gene expression in the host, including elements required to initiate and maintain transcription at a level sufficient for suitable expression of the desired polypeptide, including, for example, promoters and, where necessary, an enhancer and a polyadenylation signal; (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate signals to initiate translation at the beginning of the desired coding region and terminate translation at its end. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an N-terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

"Recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extra chromosomally. The cells can be prokaryotic or eukaryotic. Recombinant expression systems as defined herein will express

20

25

30

35

heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference in its entirety.

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3- phosphoglycerate kinase (PGK), alphafactor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and, when desirable, provide amplification within the host.

Suitable prokaryotic hosts for transformation include strains of *E. coli*, *B. subtilis*, *Salmonella typhimurium* and various species within the genera *Pseudomonas* and *Streptomyces*. Others may, also be employed as a matter of choice.

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (available form Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (available from Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter, where it is inducible, is derepressed or induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period to provide for expression of the induced gene product. Thereafter cells are typically harvested, generally by centrifugation, disrupted to release expressed protein, generally by physical or chemical means, and the resulting crude extract is retained for further purification.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described in Gluzman, *Cell 23:*175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines.

15

20

25

30

Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

Recombinant polypeptides and proteins produced in bacterial culture is usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

15

20

25

30

35

The present invention further includes isolated polypeptides, proteins and nucleic acid molecules which are substantially equivalent to those herein described. As used herein, substantially equivalent can refer both to nucleic acid and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between reference and subject sequences. For purposes of the present invention, sequences having equivalent biological activity, and equivalent expression characteristics are considered substantially equivalent. For purposes of determining equivalence, truncation of the mature sequence should be disregarded.

The invention further provides methods of obtaining homologs from other strains of Streptococcus pneumoniae, of the fragments of the Streptococcus pneumoniae genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. As used herein, a sequence or protein of Streptococcus pneumoniae is defined as a homolog of a fragment of the Streptococcus pneumoniae fragments or contigs or a protein encoded by one of the ORFs of the present invention, if it shares significant homology to one of the fragments of the Streptococcus pneumoniae genome of the present invention or a protein encoded by one of the ORFs of the present invention. Specifically, by using the sequence disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

As used herein, two nucleic acid molecules or proteins are said to "share significant homology" if the two contain regions which possess greater than 85% sequence (amino acid or nucleic acid) homology. Preferred homologs in this regard are those with more than 90% homology. Especially preferred are those with 93% or more homology. Among especially preferred homologs those with 95% or more homology are particularly preferred. Very particularly preferred among these are those with 97% and even more particularly preferred among those are homologs with 99% or more homology. The most preferred homologs among these are those with 99.9% homology or more. It will be understood that, among measures of homology, identity is particularly preferred in this regard.

Region specific primers or probes derived from the nucleotide sequence provided in SEQ ID NOS:1-391 or from a nucleotide sequence at least 95%, particularly at least 99%, especially at least 99.5% identical to a sequence of SEQ

15

20

25

30

35

ID NOS:1-391 can be used to prime DNA synthesis and PCR amplification, as well as to identify colonies containing cloned DNA encoding a homolog. Methods suitable to this aspect of the present invention are well known and have been described in great detail in many publications such as, for example, Innis et al., PCR Protocols, Academic Press, San Diego, CA (1990)).

When using primers derived from SEQ ID NOS:1-391 or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-391, one skilled in the art will recognize that by employing high stringency conditions (e.g., annealing at 50-60°C in 6X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC) only sequences which are greater than 75% homologous to the primer will be amplified. By employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences which are greater than 40-50% homologous to the primer will also be amplified.

When using DNA probes derived from SEQ ID NOS:1-391, or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-391, for colony/plaque hybridization, one skilled in the art will recognize that by employing high stringency conditions (e.g., hybridizing at 50-65°C in 5X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC), sequences having regions which are greater than 90% homologous to the probe can be obtained, and that by employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences having regions which are greater than 35-45% homologous to the probe will be obtained.

Any organism can be used as the source for homologs of the present invention so long as the organism naturally expresses such a protein or contains genes encoding the same. The most preferred organism for isolating homologs are bacteria which are closely related to *Streptococcus pneumoniae*.

ILLUSTRATIVE USES OF COMPOSITIONS OF THE INVENTION

Each ORF provided in Tables 1 and 2 is identified with a function by homology to a known gene or polypeptide. As a result, one skilled in the art can use the polypeptides of the present invention for commercial, therapeutic and industrial purposes consistent with the type of putative identification of the

15

20

25

30

35

polypeptide. Such identifications permit one skilled in the art to use the Streptococcus pneumoniae ORFs in a manner similar to the known type of sequences for which the identification is made; for example, to ferment a particular sugar source or to produce a particular metabolite. A variety of reviews illustrative of this aspect of the invention are available, including the following reviews on the industrial use of enzymes, for example, BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY HANDBOOK, 2nd Ed., MacMillan Publications, Ltd. NY (1991) and BIOCATALYSTS IN ORGANIC SYNTHESES, Tramper et al., Eds., Elsevier Science Publishers, Amsterdam, The Netherlands (1985). A variety of exemplary uses that illustrate this and similar aspects of the present invention are discussed below.

1. Biosynthetic Enzymes

Open reading frames encoding proteins involved in mediating the catalytic reactions involved in intermediary and macromolecular metabolism, the biosynthesis of small molecules, cellular processes and other functions includes enzymes involved in the degradation of the intermediary products of metabolism, enzymes involved in central intermediary metabolism, enzymes involved in respiration, both aerobic and anaerobic, enzymes involved in fermentation, enzymes involved in ATP proton motor force conversion, enzymes involved in broad regulatory function, enzymes involved in amino acid synthesis, enzymes involved in nucleotide synthesis, enzymes involved in cofactor and vitamin synthesis, can be used for industrial biosynthesis.

The various metabolic pathways present in *Streptococcus pneumoniae* can be identified based on absolute nutritional requirements as well as by examining the various enzymes identified in Table 1-3 and SEQ ID NOS:1-391.

Of particular interest are polypeptides involved in the degradation of intermediary metabolites as well as non-macromolecular metabolism. Such enzymes include amylases, glucose oxidases, and catalase.

Proteolytic enzymes are another class of commercially important enzymes. Proteolytic enzymes find use in a number of industrial processes including the processing of flax and other vegetable fibers, in the extraction, clarification and depectinization of fruit juices, in the extraction of vegetables' oil and in the maceration of fruits and vegetables to give unicellular fruits. A detailed review of the proteolytic enzymes used in the food industry is provided in Rombouts et al.,

20

25

30

Symbiosis 21:79 (1986) and Voragen et al. in Biocatalysts In Agricultural Biotechnology, Whitaker et al., Eds., American Chemical Society Symposium Series 389:93 (1989).

The metabolism of sugars is an important aspect of the primary metabolism of Streptococcus pneumoniae. Enzymes involved in the degradation of sugars, such as, particularly, glucose, galactose, fructose and xylose, can be used in industrial fermentation. Some of the important sugar transforming enzymes, from a commercial viewpoint, include sugar isomerases such as glucose isomerase. Other metabolic enzymes have found commercial use such as glucose oxidases which produces ketogulonic acid (KGA). KGA is an intermediate in the commercial production of ascorbic acid using the Reichstein's procedure, as described in Krueger et al., Biotechnology 6(Å), Rhine et al., Eds., Verlag Press, Weinheim, Germany (1984).

Glucose oxidase (GOD) is commercially available and has been used in purified form as well as in an immobilized form for the deoxygenation of beer. See, for instance, Hartmeir et al., Biotechnology Letters 1:21 (1979). The most important application of GOD is the industrial scale fermentation of gluconic acid. Market for gluconic acids which are used in the detergent, textile, leather, photographic, pharmaceutical, food, feed and concrete industry, as described, for example, in Bigelis et al., beginning on page 357 in GENE MANIPULATIONS AND FUNGI; Benett et al., Eds., Academic Press, New York (1985). In addition to industrial applications, GOD has found applications in medicine for quantitative determination of glucose in body fluids recently in biotechnology for analyzing syrups from starch and cellulose hydrosylates. This application is described in Owusu et al., Biochem. et Biophysica. Acta. 872:83 (1986), for instance.

The main sweetener used in the world today is sugar which comes from sugar beets and sugar cane. In the field of industrial enzymes, the glucose isomerase process shows the largest expansion in the market today. Initially, soluble enzymes were used and later immobilized enzymes were developed (Krueger et al., Biotechnology, The Textbook of Industrial Microbiology, Sinauer Associated Incorporated, Sunderland, Massachusetts (1990)). Today, the use of glucose- produced high fructose syrups is by far the largest industrial business using immobilized enzymes. A review of the industrial use of these enzymes is provided by Jorgensen, Starch 40:307 (1988).

Proteinases, such as alkaline serine proteinases, are used as detergent additives and thus represent one of the largest volumes of microbial enzymes used in the industrial sector. Because of their industrial importance, there is a large body of published and unpublished information regarding the use of these enzymes in industrial processes. (See Faultman et al., Acid Proteases Structure Function and Biology, Tang, J., ed., Plenum Press, New York (1977) and Godfrey et al., Industrial Enzymes, MacMillan Publishers, Surrey, UK (1983) and Hepner et al., Report Industrial Enzymes by 1990, Hel Hepner & Associates, London (1986)).

Another class of commercially usable proteins of the present invention are the microbial lipases, described by, for instance, Macrae et al., Philosophical Transactions of the Chiral Society of London 310:227 (1985) and Poserke, Journal of the American Oil Chemist Society 61:1758 (1984). A major use of lipases is in the fat and oil industry for the production of neutral glycerides using lipase catalyzed inter-esterification of readily available triglycerides. Application of lipases include the use as a detergent additive to facilitate the removal of fats from fabrics in the course of the washing procedures.

10

15

20

25

30

The use of enzymes, and in particular microbial enzymes, as catalyst for key steps in the synthesis of complex organic molecules is gaining popularity at a great rate. One area of great interest is the preparation of chiral intermediates. Preparation of chiral intermediates is of interest to a wide range of synthetic chemists particularly those scientists involved with the preparation of new pharmaceuticals, agrochemicals, fragrances and flavors. (See Davies et al., Recent Advances in the Generation of Chiral Intermediates Using Enzymes, CRC Press, Boca Raton, Florida (1990)). The following reactions catalyzed by enzymes are of interest to organic chemists: hydrolysis of carboxylic acid esters, phosphate esters, amides and nitriles, esterification reactions, trans-esterification reactions, synthesis of amides, reduction of alkanones and oxoalkanates, oxidation of alcohols to carbonyl compounds, oxidation of sulfides to sulfoxides, and carbon bond forming reactions such as the aldol reaction.

When considering the use of an enzyme encoded by one of the ORFs of the present invention for biotransformation and organic synthesis it is sometimes necessary to consider the respective advantages and disadvantages of using a microorganism as opposed to an isolated enzyme. Pros and cons of using a whole cell system on the one hand or an isolated partially purified enzyme on the other

hand, has been described in detail by Bud et al., Chemistry in Britain (1987), p. 127.

Amino transferases, enzymes involved in the biosynthesis and metabolism of amino acids, are useful in the catalytic production of amino acids. The advantages of using microbial based enzyme systems is that the amino transferase enzymes catalyze the stereo- selective synthesis of only L-amino acids and generally possess uniformly high catalytic rates. A description of the use of amino transferases for amino acid production is provided by Roselle-David, *Methods of Enzymology 136*:479 (1987).

Another category of useful proteins encoded by the ORFs of the present invention include enzymes involved in nucleic acid synthesis, repair, and recombination.

2. Generation of Antibodies

10

15

20

25

35

As described here, the proteins of the present invention, as well as homologs thereof, can be used in a variety of procedures and methods known in the art which are currently applied to other proteins. The proteins of the present invention can further be used to generate an antibody which selectively binds the protein. Such antibodies can be either monoclonal or polyclonal antibodies, as well fragments of these antibodies, and humanized forms.

The invention further provides antibodies which selectively bind to one of the proteins of the present invention and hybridomas which produce these antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

In general, techniques for preparing polyclonal and monoclonal antibodies as well as hybridomas capable of producing the desired antibody are well known in the art (Campbell, A. M., Monoclonal Antibody Technology: Laboratory Techniques In Biochemistry And Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1984); St. Groth et al., J. Immunol. Methods 35: 1-21 (1980), Kohler and Milstein, Nature 256:495-497 (1975)), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., Immunology Today 4:72 (1983), pgs. 77-96 of Cole et al., in Monoclonal Antibodies And Cancer Therapy, Alan R. Liss, Inc. (1985)). Any animal (mouse, rabbit, etc.) which is known to produce antibodies can be immunized with the pseudogene polypeptide. Methods for immunization are well known in the art. Such methods

10

15

20

25

30

35

include subcutaneous or interperitoneal injection of the polypeptide. One skilled in the art will recognize that the amount of the protein encoded by the ORF of the present invention used for immunization will vary based on the animal which is immunized, the antigenicity of the peptide and the site of injection.

The protein which is used as an immunogen may be modified or administered in an adjuvant in order to increase the protein's antigenicity. Methods of increasing the antigenicity of a protein are well known in the art and include, but are not limited to coupling the antigen with a heterologous protein (such as globulin or galactosidase) or through the inclusion of an adjuvant during immunization.

For monoclonal antibodies, spleen cells from the immunized animals are removed, fused with myeloma cells, such as SP2/0-Ag14 myeloma cells, and allowed to become monoclonal antibody producing hybridoma cells.

Any one of a number of methods well known in the art can be used to identify the hybridoma cell which produces an antibody with the desired characteristics. These include screening the hybridomas with an ELISA assay, western blot analysis, or radioimmunoassay (Lutz et al., Exp. Cell Res. 175:109-124 (1988)).

Hybridomas secreting the desired antibodies are cloned and the class and subclass is determined using procedures known in the art (Campbell, A. M., Monoclonal Antibody Technology: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1984)).

Techniques described for the production of single chain antibodies (U. S. Patent 4,946,778) can be adapted to produce single chain antibodies to proteins of the present invention.

For polyclonal antibodies, antibody containing antisera is isolated from the immunized animal and is screened for the presence of antibodies with the desired specificity using one of the above-described procedures.

The present invention further provides the above- described antibodies in detectably labelled form. Antibodies can be detectably labelled through the use of radioisotopes, affinity labels (such as biotin, avidin, etc.), enzymatic labels (such as horseradish peroxidase, alkaline phosphatase, etc.) fluorescent labels (such as FITC or rhodamine, etc.), paramagnetic atoms, etc. Procedures for accomplishing such labeling are well-known in the art, for example see Sternberger et al., J. Histochem. Cytochem. 18:315 (1970); Bayer, E. A. et al., Meth. Enzym. 62:308

10

15

20

25

30

(1979); Engval, E. et al., Immunol. 109:129 (1972); Goding, J. W., J. Immunol. Meth. 13:215 (1976)).

The labeled antibodies of the present invention can be used for in vitro, in vivo, and in situ assays to identify cells or tissues in which a fragment of the Streptococcus pneumoniae genome is expressed.

The present invention further provides the above-described antibodies immobilized on a solid support. Examples of such solid supports include plastics such as polycarbonate, complex carbohydrates such as agarose and sepharose, acrylic resins and such as polyacrylamide and latex beads. Techniques for coupling antibodies to such solid supports are well known in the art (Weir, D. M. et al., "Handbook of Experimental Immunology" 4th Ed., Blackwell Scientific Publications, Oxford, England, Chapter 10 (1986); Jacoby, W. D. et al., Meth. Enzym. 34 Academic Press, N. Y. (1974)). The immobilized antibodies of the present invention can be used for *in vitro*, *in vivo*, and in situ assays as well as for immunoaffinity purification of the proteins of the present invention.

3. Diagnostic Assays and Kits

The present invention further provides methods to identify the expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using one of the DFs or antibodies of the present invention.

In detail, such methods comprise incubating a test sample with one or more of the antibodies or one or more of the DFs of the present invention and assaying for binding of the DFs or antibodies to components within the test sample.

Conditions for incubating a DF or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the DF or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the DFs or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry and

10

15

20

25

Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985).

The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the DFs or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound DF or antibody.

In detail, a compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Trisbuffers, etc.), and containers which contain the reagents used to detect the bound antibody or DF.

Types of detection reagents include labelled nucleic acid probes, labelled secondary antibodies, or in the alternative, if the primary antibody is labelled, the enzymatic, or antibody binding reagents which are capable of reacting with the labelled antibody. One skilled in the art will readily recognize that the disclosed DFs and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

4. Screening Assay for Binding Agents

10

15

20

25

30

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents which bind to a protein encoded by one of the ORFs of the present invention or to one of the fragments and the *Streptococcus pneumoniae* fragment and contigs herein described.

In general, such methods comprise steps of:

- (a) contacting an agent with an isolated protein encoded by one of the ORFs of the present invention, or an isolated fragment of the *Streptococcus* pneumoniae genome; and
 - (b) determining whether the agent binds to said protein or said fragment.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention.

Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like capable of binding to a specific peptide sequence in order to generate rationally designed antipeptide peptides, for example see Hurby et al., "Application of Synthetic Peptides: Antisense Peptides," in Synthetic Peptides, A User's Guide, W. H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control.

10

15

20

25

30

35

One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

Agents suitable for use in these methods usually contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix- formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides, and other DNA binding agents.

5. Pharmaceutical Compositions and Vaccines

The present invention further provides pharmaceutical agents which can be used to modulate the growth or pathogenicity of *Streptococcus pneumoniae*, or another related organism, *in vivo* or *in vitro*. As used herein, a "pharmaceutical agent" is defined as a composition of matter which can be formulated using known techniques to provide a pharmaceutical compositions. As used herein, the "pharmaceutical agents of the present invention" refers the pharmaceutical agents which are derived from the proteins encoded by the ORFs of the present invention or are agents which are identified using the herein described assays.

As used herein, a pharmaceutical agent is said to "modulate the growth pathogenicity of Streptococcus pneumoniae or a related organism, in vivo or in vitro," when the agent reduces the rate of growth, rate of division, or viability of the organism in question. The pharmaceutical agents of the present invention can modulate the growth or pathogenicity of an organism in many fashions, although an understanding of the underlying mechanism of action is not needed to practice the use of the pharmaceutical agents of the present invention. Some agents will modulate the growth by binding to an important protein thus blocking the biological activity of the protein, while other agents may bind to a component of the outer

WO 98/18931 PCT/US97/19588

surface of the organism blocking attachment or rendering the organism more prone to act the bodies nature immune system. Alternatively, the agent may comprise a protein encoded by one of the ORFs of the present invention and serve as a vaccine. The development and use of a vaccine based on outer membrane components are well known in the art.

As used herein, a "related organism" is a broad term which refers to any organism whose growth can be modulated by one of the pharmaceutical agents of the present invention. In general, such an organism will contain a homolog of the protein which is the target of the pharmaceutical agent or the protein used as a vaccine. As such, related organisms do not need to be bacterial but may be fungal or viral pathogens.

10

15

20

25

30

35

The pharmaceutical agents and compositions of the present invention may be administered in a convenient manner, such as by the oral, topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes. The pharmaceutical compositions are administered in an amount which is effective for treating and/or prophylaxis of the specific indication. In general, they are administered in an amount of at least about 1 mg/kg body weight and in most cases they will be administered in an amount not in excess of about 1 g/kg body weight per day. In most cases, the dosage is from about 0.1 mg/kg to about 10 g/kg body weight daily, taking into account the routes of administration, symptoms, etc.

The agents of the present invention can be used in native form or can be modified to form a chemical derivative. As used herein, a molecule is said to be a "chemical derivative" of another molecule when it contains additional chemical moieties not normally a part of the molecule. Such moieties may improve the molecule's solubility, absorption, biological half life, *etc*. The moieties may alternatively decrease the toxicity of the molecule, eliminate or attenuate any undesirable side effect of the molecule, *etc*. Moieties capable of mediating such effects are disclosed in, among other sources, REMINGTON'S PHARMACEUTICAL SCIENCES (1980) cited elsewhere herein.

For example, such moieties may change an immunological character of the functional derivative, such as affinity for a given antibody. Such changes in immunomodulation activity are measured by the appropriate assay, such as a competitive type immunoassay. Modifications of such protein properties as redox or thermal stability, biological half-life, hydrophobicity, susceptibility to proteolytic degradation or the tendency to aggregate with carriers or into multimers also may

10

15

20

25

30

be effected in this way and can be assayed by methods well known to the skilled artisan.

The therapeutic effects of the agents of the present invention may be obtained by providing the agent to a patient by any suitable means (e.g., inhalation, intravenously, intramuscularly, subcutaneously, enterally, or parenterally). It is preferred to administer the agent of the present invention so as to achieve an effective concentration within the blood or tissue in which the growth of the organism is to be controlled. To achieve an effective blood concentration, the preferred method is to administer the agent by injection. The administration may be by continuous infusion, or by single or multiple injections.

In providing a patient with one of the agents of the present invention, the dosage of the administered agent will vary depending upon such factors as the patient's age, weight, height, sex, general medical condition, previous medical history, etc. In general, it is desirable to provide the recipient with a dosage of agent which is in the range of from about 1 pg/kg to 10 mg/kg (body weight of patient), although a lower or higher dosage may be administered. The therapeutically effective dose can be lowered by using combinations of the agents of the present invention or another agent.

As used herein, two or more compounds or agents are said to be administered "in combination" with each other when either (1) the physiological effects of each compound, or (2) the serum concentrations of each compound can be measured at the same time. The composition of the present invention can be administered concurrently with, prior to, or following the administration of the other agent.

The agents of the present invention are intended to be provided to recipient subjects in an amount sufficient to decrease the rate of growth (as defined above) of the target organism.

The administration of the agent(s) of the invention may be for either a "prophylactic" or "therapeutic" purpose. When provided prophylactically, the agent(s) are provided in advance of any symptoms indicative of the organisms growth. The prophylactic administration of the agent(s) serves to prevent, attenuate, or decrease the rate of onset of any subsequent infection. When provided therapeutically, the agent(s) are provided at (or shortly after) the onset of an indication of infection. The therapeutic administration of the compound(s)

10

15

20

25

30

35

serves to attenuate the pathological symptoms of the infection and to increase the rate of recovery.

The agents of the present invention are administered to a subject, such as a mammal, or a patient, in a pharmaceutically acceptable form and in a therapeutically effective concentration. A composition is said to be "pharmacologically acceptable" if its administration can be tolerated by a recipient patient. Such an agent is said to be administered in a "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient.

The agents of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby these materials, or their functional derivatives, are combined in a mixture with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their formulation, inclusive of other human proteins, e.g., human serum albumin, are described, for example, in REMINGTON'S PHARMACEUTICAL SCIENCES, 16th Ed., Osol, A., Ed., Mack Publishing, Easton PA (1980). In order to form a pharmaceutically acceptable composition suitable for effective administration, such compositions will contain an effective amount of one or more of the agents of the present invention, together with a suitable amount of carrier vehicle.

Additional pharmaceutical methods may be employed to control the duration of action. Control release preparations may be achieved through the use of polymers to complex or absorb one or more of the agents of the present invention. The controlled delivery may be effectuated by a variety of well known techniques, including formulation with macromolecules such as, for example, polyesters, polyamino acids, polyvinyl, pyrrolidone, ethylenevinylacetate, methylcellulose, carboxymethylcellulose, or protamine, sulfate, adjusting the concentration of the macromolecules and the agent in the formulation, and by appropriate use of methods of incorporation, which can be manipulated to effectuate a desired time course of release. Another possible method to control the duration of action by controlled release preparations is to incorporate agents of the present invention into particles of a polymeric material such as polyesters, polyamino acids, hydrogels, poly(lactic acid) or ethylene vinylacetate copolymers. Alternatively, instead of incorporating these agents into polymeric particles, it is possible to entrap these materials in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization with, for example, hydroxymethylcellulose or gelatine-

10

15

20

25

30

35

microcapsules and poly(methylmethacylate) microcapsules, respectively, or in colloidal drug delivery systems, for example, liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules or in macroemulsions. Such techniques are disclosed in REMINGTON'S PHARMACEUTICAL SCIENCES (1980).

The invention further provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

In addition, the agents of the present invention may be employed in conjunction with other therapeutic compounds.

6. Shot-Gun Approach to Megabase DNA Sequencing

The present invention further demonstrates that a large sequence can be sequenced using a random shotgun approach. This procedure, described in detail in the examples that follow, has eliminated the up front cost of isolating and ordering overlapping or contiguous subclones prior to the start of the sequencing protocols.

Certain aspects of the present invention are described in greater detail in the examples that follow. The examples are provided by way of illustration. Other aspects and embodiments of the present invention are contemplated by the inventors, as will be clear to those of skill in the art from reading the present disclosure.

ILLUSTRATIVE EXAMPLES

LIBRARIES AND SEQUENCING

1. Shotgun Sequencing Probability Analysis

The overall strategy for a shotgun approach to whole genome sequencing follows from the Lander and Waterman (Landerman and Waterman, Genomics 2:231 (1988)) application of the equation for the Poisson distribution. According to this treatment, the probability, P, that any given base in a sequence of size L, in nucleotides, is not sequenced after a certain amount, n, in nucleotides, of random

15

20

25

30

35

sequence has been determined can be calculated by the equation $P = e^{-m}$, where m is L/n, the fold coverage. For instance, for a genome of 2.8 Mb, m=1 when 2.8 Mb of sequence has been randomly generated (1X coverage). At that point, $P = e^{-1} = 0.37$. The probability that any given base has not been sequenced is the same as the probability that any region of the whole sequence L has not been determined and, therefore, is equivalent to the fraction of the whole sequence that has yet to be determined. Thus, at one-fold coverage, approximately 37% of a polynucleotide of size L, in nucleotides has not been sequenced. When 14 Mb of sequence has been generated, coverage is 5X for a 2.8 Mb and the unsequenced fraction drops to .0067 or 0.67%. 5X coverage of a 2.8 Mb sequence can be attained by sequencing approximately 17,000 random clones from both insert ends with an average sequence read length of 410 bp.

Similarly, the total gap length, G, is determined by the equation $G = Le^{-m}$, and the average gap size, g, follows the equation, g = L/n. Thus, 5X coverage leaves about 240 gaps averaging about 82 bp in size in a sequence of a polynucleotide 2.8 Mb long.

The treatment above is essentially that of Lander and Waterman, Genomics 2: 231 (1988).

2. Random Library Construction

In order to approximate the random model described above during actual sequencing, a nearly ideal library of cloned genomic fragments is required. The following library construction procedure was developed to achieve this end.

Streptococcus pneumoniae DNA is prepared by phenol extraction. A mixture containing 200 μ g DNA in 1.0 ml of 300 mM sodium acetate, 10 mM Tris-HCl, 1 mM Na-EDTA, 50% glycerol is processed through a nebulizer (IPI Medical Products) with a stream of nitrogen adjusted to 35 Kpa for 2 minutes. The sonicated DNA is ethanol precipitated and redissolved in 500 μ l TE buffer.

To create blunt-ends, a 100 μ l aliquot of the resuspended DNA is digested with 5 units of BAL31 nuclease (New England BioLabs) for 10 min at 30°C in 200 μ l BAL31 buffer. The digested DNA is phenol-extracted, ethanol-precipitated, redissolved in 100 μ l TE buffer, and then size-fractionated by electrophoresis through a 1.0% low melting temperature agarose gel. The section containing DNA fragments 1.6-2.0 kb in size is excised from the gel, and the LGT agarose is melted and the resulting solution is extracted with phenol to separate the agarose from the

15

20

25

30

35

DNA. DNA is ethanol precipitated and redissolved in 20 μ l of TE buffer for ligation to vector.

A two-step ligation procedure is used to produce a plasmid library with 97% inserts, of which >99% were single inserts. The first ligation mixture (50 ul) contains 2 µg of DNA fragments, 2 µg pUC18 DNA (Pharmacia) cut with Small and dephosphorylated with bacterial alkaline phosphatase, and 10 units of T4 ligase (GIBCO/BRL) and is incubated at 14°C for 4 hr. The ligation mixture then is phenol extracted and ethanol precipitated, and the precipitated DNA is dissolved in 20 µl TE buffer and electrophoresed on a 1.0% low melting agarose gel. Discrete bands in a ladder are visualized by ethidium bromide-staining and UV illumination and identified by size as insert (I), vector (v), v+I, v+2i, v+3i, etc. The portion of the gel containing v+I DNA is excised and the v+I DNA is recovered and resuspended into 20 µl TE. The v+I DNA then is blunt-ended by T4 polymerase treatment for 5 min. at 37°C in a reaction mixture (50 ul) containing the v+I linears, 500 µM each of the 4 dNTPs, and 9 units of T4 polymerase (New England BioLabs), under recommended buffer conditions. After phenol extraction and ethanol precipitation the repaired v+I linears are dissolved in 20 µl TE. The final ligation to produce circles is carried out in a 50 µl reaction containing 5 µl of v+I linears and 5 units of T4 ligase at 14°C overnight. After 10 min. at 70°C the following day, the reaction mixture is stored at -20°C.

This two-stage procedure results in a molecularly random collection of single-insert plasmid recombinants with minimal contamination from double-insert chimeras (<1%) or free vector (<3%).

Since deviation from randomness can arise from propagation the DNA in the host, *E. coli* host cells deficient in all recombination and restriction functions (A. Greener, *Strategies 3 (1)*:5 (1990)) are used to prevent rearrangements, deletions, and loss of clones by restriction. Furthermore, transformed cells are plated directly on antibiotic diffusion plates to avoid the usual broth recovery phase which allows multiplication and selection of the most rapidly growing cells.

Plating is carried out as follows. A 100 µl aliquot of Epicurian Coli SURE II Supercompetent Cells (Stratagene 200152) is thawed on ice and transferred to a chilled Falcon 2059 tube on ice. A 1.7 µl aliquot of 1.42 M beta-mercaptoethanol is added to the aliquot of cells to a final concentration of 25 mM. Cells are incubated on ice for 10 min. A 1 µl aliquot of the final ligation is added to the cells and incubated on ice for 30 min. The cells are heat pulsed for 30 sec. at 42°C and

placed back on ice for 2 min. The outgrowth period in liquid culture is eliminated from this protocol in order to minimize the preferential growth of any given transformed cell. Instead the transformation mixture is plated directly on a nutrient rich SOB plate containing a 5 ml bottom layer of SOB agar (5% SOB agar: 20 g tryptone, 5 g yeast extract, 0.5 g NaCl, 1.5% Difco Agar per liter of media). The 5 ml bottom layer is supplemented with 0.4 ml of 50 mg/ml ampicillin per 100 ml SOB agar. The 15 ml top layer of SOB agar is supplemented with 1 ml X-Gal (2%), 1 ml MgCl (1 M), and 1 ml MgSO /100 ml SOB agar. The 15 ml top layer is poured just prior to plating. Our titer is approximately 100 colonies/10 µl aliquot of transformation.

All colonies are picked for template preparation regardless of size. Thus, only clones lost due to "poison" DNA or deleterious gene products are deleted from the library, resulting in a slight increase in gap number over that expected.

3. Random DNA Sequencing

10

15

20

25

30

35

High quality double stranded DNA plasmid templates are prepared using a "boiling bead" method developed in collaboration with Advanced Genetic Technology Corp. (Gaithersburg, MD) (Adams et al., Science 252:1651 (1991); Adams et al., Nature 355:632 (1992)). Plasmid preparation is performed in a 96-well format for all stages of DNA preparation from bacterial growth through final DNA purification. Template concentration is determined using Hoechst Dye and a Millipore Cytofluor. DNA concentrations are not adjusted, but low-yielding templates are identified where possible and not sequenced.

Templates are also prepared from two *Streptococcus pneumoniue* lambda genomic libraries. An amplified library is constructed in the vector Lambda GEM-12 (Promega) and an unamplified library is constructed in Lambda DASH II (Stratagene). In particular, for the unamplified lambda library, *Streptococcus pneumoniae* DNA (> 100 kb) is partially digested in a reaction mixture (200 ul) containing 50 µg DNA, 1X Sau3AI buffer, 20 units Sau3AI for 6 min. at 23°C. The digested DNA was phenol-extracted and electrophoresed on a 0.5% low melting agarose gel at 2V/cm for 7 hours. Fragments from 15 to 25 kb are excised and recovered in a final volume of 6 ul. One µl of fragments is used with 1 µl of DASHII vector (Stratagene) in the recommended ligation reaction. One µl of the ligation mixture is used per packaging reaction following the recommended protocol with the Gigapack II XL Packaging Extract (Stratagene, #227711). Phage

15

20

25

30

35

are plated directly without amplification from the packaging mixture (after dilution with 500 μ l of recommended SM buffer and chloroform treatment). Yield is about 2.5x10³ pfu/ul. The amplified library is prepared essentially as above except the lambda GEM-12 vector is used. After packaging, about 3.5x10⁴ pfu are plated on the restrictive NM539 host. The lysate is harvested in 2 ml of SM buffer and stored frozen in 7% dimethylsulfoxide. The phage titer is approximately 1x10⁹ pfu/ml.

Liquid lysates ($100 \,\mu$ l) are prepared from randomly selected plaques (from the unamplified library) and template is prepared by long-range PCR using T7 and T3 vector-specific primers.

Sequencing reactions are carried out on plasmid and/or PCR templates using the AB Catalyst LabStation with Applied Biosystems PRISM Ready Reaction Dye Primer Cycle Sequencing Kits for the M13 forward (M13-21) and the M13 reverse (M13RP1) primers (Adams et al., Nature 368:474 (1994)). Dye terminator sequencing reactions are carried out on the lambda templates on a Perkin-Elmer 9600 Thermocycler using the Applied Biosystems Ready Reaction Dye Terminator Cycle Sequencing kits. T7 and SP6 primers are used to sequence the ends of the inserts from the Lambda GEM-12 library and T7 and T3 primers are used to sequence the ends of the inserts from the Lambda DASH II library. Sequencing reactions are performed by eight individuals using an average of fourteen AB 373 DNA Sequencers per day. All sequencing reactions are analyzed using the Stretch modification of the AB 373, primarily using a 34 cm well-to-read distance. The overall sequencing success rate very approximately is about 85% for M13-21 and M13RP1 sequences and 65% for dye-terminator reactions. average usable read length is 485 bp for M13-21 sequences, 445bp for M13RP1 sequences, and 375 bp for dye-terminator reactions.

Richards et al., Chapter 28 in AUTOMATED DNA SEQUENCING AND ANALYSIS, M. D. Adams, C. Fields, J. C. Venter, Eds., Academic Press, London, (1994) described the value of using sequence from both ends of sequencing templates to facilitate ordering of contigs in shotgun assembly projects of lambda and cosmid clones. We balance the desirability of both-end sequencing (including the reduced cost of lower total number of templates) against shorter read-lengths for sequencing reactions performed with the M13RP1 (reverse) primer compared to the M13-21 (forward) primer. Approximately one-half of the templates are sequenced from both ends. Random reverse sequencing reactions are

done based on successful forward sequencing reactions. Some M13RP1 sequences are obtained in a semi-directed fashion: M13-21: sequences pointing outward at the ends of contigs are chosen for M13RP1 sequencing in an effort to specifically order contigs.

5

10

15

20

25

4. Protocol for Automated Cycle Sequencing

The sequencing is carried out using ABI Catalyst robots and AB 373 Automated DNA Sequencers. The Catalyst robot is a publicly available sophisticated pipetting and temperature control robot which has been developed specifically for DNA sequencing reactions. The Catalyst combines pre-aliquoted templates and reaction mixes consisting of deoxy- and dideoxynucleotides, the thermostable Taq DNA polymerase, fluorescently-labelled sequencing primers, and reaction buffer. Reaction mixes and templates are combined in the wells of an aluminum 96-well thermocycling plate. Thirty consecutive cycles of linear amplification (i.e.., one primer synthesis) steps are performed including denaturation, annealing of primer and template, and extension; i.e., DNA synthesis. A heated lid with rubber gaskets on the thermocycling plate prevents evaporation without the need for an oil overlay.

Two sequencing protocols are used: one for dye-labelled primers and a second for dye-labelled dideoxy chain terminators. The shotgun sequencing involves use of four dye-labelled sequencing primers, one for each of the four terminator nucleotide. Each dye-primer is labelled with a different fluorescent dye, permitting the four individual reactions to be combined into one lane of the 373 DNA Sequencer for electrophoresis, detection, and base-calling. ABI currently supplies pre-mixed reaction mixes in bulk packages containing all the necessary non-template reagents for sequencing. Sequencing can be done with both plasmid and PCR- generated templates with both dye-primers and dye- terminators with approximately equal fidelity, although plasmid templates generally give longer usable sequences.

30

35

Thirty-two reactions are loaded per AB373 Sequencer each day, for a total of 960 samples. Electrophoresis is run overnight following the manufacturer's protocols, and the data is collected for twelve hours. Following electrophoresis and fluorescence detection, the ABI 373 performs automatic lane tracking and base-calling. The lane-tracking is confirmed visually. Each sequence electropherogram (or fluorescence lane trace) is inspected visually and assessed for quality. Trailing

10

15

sequences of low quality are removed and the sequence itself is loaded via software to a Sybase database (archived daily to 8mm tape). Leading vector polylinker sequence is removed automatically by a software program. Average edited lengths of sequences from the standard ABI 373 are around 400 bp and depend mostly on the quality of the template used for the sequencing reaction. ABI 373 Sequencers converted to Stretch Liners provide a longer electrophoresis path prior to fluorescence detection and increase the average number of usable bases to 500-600 bp.

INFORMATICS

1. Data Management

A number of information management systems for a large-scale sequencing lab have been developed. (For review see, for instance, Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, IEEE Computer Society Press, Washington D. C., 585 (1993)) The system used to collect and assemble the sequence data was developed using the Sybase relational database management system and was designed to automate data flow wherever possible and to reduce user error. The database stores and correlates all information collected during the entire operation from template preparation to final analysis of the genome. Because the raw output of the ABI 373 Sequencers was based on a Macintosh platform and the data management system chosen was based on a Unix platform, it was necessary to design and implement a variety of multi- user, client-server applications which allow the raw data as well as analysis results to flow seamlessly into the database with a minimum of user effort.

25

30

35

20

2. Assembly

An assembly engine (TIGR Assembler) developed for the rapid and accurate assembly of thousands of sequence fragments was employed to generate contigs. The TIGR assembler simultaneously clusters and assembles fragments of the genome. In order to obtain the speed necessary to assemble more than 10⁴ fragments, the algorithm builds a hash table of 12 bp oligonucleotide subsequences to generate a list of potential sequence fragment overlaps. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Beginning with a single seed sequence fragment, TIGR Assembler extends the current contig by attempting to add the best matching

10

20

25

30

fragment based on oligonucleotide content. The contig and candidate fragment are aligned using a modified version of the Smith-Waterman algorithm which provides for optimal gapped alignments (Waterman, M. S., Methods in Enzymology 164:765 (1988)). The contig is extended by the fragment only if strict criteria for the quality of the match are met. The match criteria include the minimum length of overlap, the maximum length of an unmatched end, and the minimum percentage match. These criteria are automatically lowered by the algorithm in regions of minimal coverage and raised in regions with a possible repetitive element. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Fragments representing the boundaries of repetitive elements and potentially chimeric fragments are often rejected based on partial mismatches at the ends of alignments and excluded from the current contig. TIGR Assembler is designed to take advantage of clone size information coupled with sequencing from both ends of each template. It enforces the constraint that sequence fragments from two ends of the same template point toward one another in the contig and are located within a certain range of base pairs (definable for each clone based on the known clone size range for a given library).

The process resulted in 391 contigs as represented by SEQ ID NOs:1-391.

3. Identifying Genes

The predicted coding regions of the *Streptococcus pneumoniae* genome were initially defined with the program GeneMark, which finds ORFs using a probabilistic classification technique. The predicted coding region sequences were used in searches against a database of all nucleotide sequences from GenBank (October, 1997), using the BLASTN search method to identify overlaps of 50 or more nucleotides with at least a 95% identity. Those ORFs with nucleotide sequence matches are shown in Table 1. The ORFs without such matches were translated to protein sequences and compared to a non-redundant database of known proteins generated by combining the Swiss-prot, PIR and GenPept databases. ORFs that matched a database protein with BLASTP probability less than or equal to 0.01 are shown in Table 2. The table also lists assigned functions based on the closest match in the databases. ORFs that did not match protein or nucleotide sequences in the databases at these levels are shown in Table 3.

ILLUSTRATIVE APPLICATIONS

1. Production of an Antibody to a Streptococcus pneumoniae Protein

Substantially pure protein or polypeptide is isolated from the transfected or transformed cells using any one of the methods known in the art. The protein can also be produced in a recombinant prokaryotic expression system, such as *E. coli*, or can be chemically synthesized. Concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows.

2. Monoclonal Antibody Production by Hybridoma Fusion

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler, G. and Milstein, C., Nature 256:495 (1975) or modifications of the methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall, E., Meth. Enzymol. 70:419 (1980), and modified methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. et al., Basic Methods in Molecular Biology, Elsevier, New York. Section 21-2 (1989).

10

15

20

25

20

30

3. Polyclonal Antibody Production by Immunization

Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than others and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al., J. Clin. Endocrinol. Metab. 33:988-991 (1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al., Chap. 19 in: Handbook of Experimental Immunology, Wier, D., ed, Blackwell (1973). Plateau concentration of antibody is usually in the range of 0.1 to 0.2 mg/ml of serum (about 12M). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in: Manual of Clinical Immunology, second edition, Rose and Friedman, eds., Amer. Soc. For Microbiology, Washington, D. C. (1980)

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they are also used semi- quantitatively or qualitatively to identify the presence of antigen in a biological sample. In addition, antibodies are useful in various animal models of pneumococcal disease as a means of evaluating the protein used to make the antibody as a potential vaccine target or as a means of evaluating the antibody as a potential immunotherapeutic or immunoprophylactic reagent.

4. Preparation of PCR Primers and Amplification of DNA

Various fragments of the *Streptococcus pneumoniae* genome; such as those of Tables 1-3 and SEQ ID NOS:1-391 can be used, in accordance with the present invention, to prepare PCR primers for a variety of uses. The PCR primers are preferably at least 15 bases, and more preferably at least 18 bases in length. When selecting a primer sequence, it is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approximately the same. The PCR primers and amplified DNA of this Example find use in the Examples that follow.

10

15

20

5. Gene expression from DNA Sequences Corresponding to ORFs

A fragment of the Streptococcus pneumoniae genome provided in Tables 1-3 is introduced into an expression vector using conventional technology. Techniques to transfer cloned sequences into expression vectors that direct protein translation in mammalian, yeast, insect or bacterial expression systems are well known in the art. Commercially available vectors and expression systems are available from a variety of suppliers including Stratagene (La Jolla, California), Promega (Madison, Wisconsin), and Invitrogen (San Diego, California). If desired, to enhance expression and facilitate proper protein folding, the codon context and codon pairing of the sequence may be optimized for the particular expression organism, as explained by Hatfield et al., U. S. Patent No. 5,082,767, incorporated herein by this reference.

WO 98/18931 PCT/US97/19588

The following is provided as one exemplary method to generate polypeptide(s) from cloned ORFs of the Streptococcus pneumoniae genome fragment. Bacterial ORFs generally lack a poly A addition signal. The addition signal sequence can be added to the construct by, for example, splicing out the poly A addition sequence from pSG5 (Stratagene) using Bgll and Sall restriction endonuclease enzymes and incorporating it into the mammalian expression vector pXT1 (Stratagene) for use in eukaryotic expression systems. pXT1 contains the LTRs and a portion of the gag gene of Moloney Murine Leukemia Virus. The positions of the LTRs in the construct allow efficient stable transfection. vector includes the Herpes Simplex thymidine kinase promoter and the selectable neomycin gene. The Streptococcus pneumoniae DNA is obtained by PCR from the bacterial vector using oligonucleotide primers complementary to the Streptococcus pneumoniae DNA and containing restriction endonuclease sequences for PstI incorporated into the 5' primer and BglII at the 5' end of the corresponding Streptococcus pneumoniae DNA 3' primer, taking care to ensure that the Streptococcus pneumoniae DNA is positioned such that its followed with the poly A addition sequence. The purified fragment obtained from the resulting PCR reaction is digested with PstI, blunt ended with an exonuclease, digested with BgIII, purified and ligated to pXT1, now containing a poly A addition sequence and digested BglII.

5

10

15

20

25

30

The ligated product is transfected into mouse NIH 3T3 cells using Lipofectin (Life Technologies, Inc., Grand Island, New York) under conditions outlined in the product specification. Positive transfectants are selected after growing the transfected cells in 600 ug/ml G418 (Sigma, St. Louis, Missouri). The protein is preferably released into the supernatant. However if the protein has membrane binding domains, the protein may additionally be retained within the cell or expression may be restricted to the cell surface. Since it may be necessary to purify and locate the transfected product, synthetic 15-mer peptides synthesized from the predicted *Streptococcus pneumoniae* DNA sequence are injected into mice to generate antibody to the polypeptide encoded by the *Streptococcus pneumoniae* DNA.

10

15

20

Alternatively and if antibody production is not possible, the Streptococcus pneumoniae DNA sequence is additionally incorporated into eukaryotic expression vectors and expressed as, for example, a globin fusion. Antibody to the globin moiety then is used to purify the chimeric protein. Corresponding protease cleavage sites are engineered between the globin moiety and the polypeptide encoded by the Streptococcus pneumoniae DNA so that the latter may be freed from the formed by simple protease digestion. One useful expression vector for generating globin chimerics is pSG5 (Stratagene). This vector encodes a rabbit globin. Intron II of the rabbit globin gene facilitates splicing of the expressed transcript, and the polyadenylation signal incorporated into the construct increases the level of expression. These techniques are well known to those skilled in the art of molecular biology. Standard methods are published in methods texts such as Davis et al., cited elsewhere herein, and many of the methods are available from the technical assistance representatives from Stratagene, Life Technologies, Inc., or Promega. Polypeptides of the invention also may be produced using in vitro translation systems such as in vitro ExpressTM Translation Kit (Stratagene).

While the present invention has been described in some detail for purposes of clarity and understanding, one skilled in the art will appreciate that various changes in form and detail can be made without departing from the true scope of the invention.

All patents, patent applications and publications referred to above are hereby incorporated by reference.

S. pneumoniae - Coding regions containing known sequences

1			deession		•		
	43.7	1003	gb U41735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	92	200	567
2	6169	5720	gb U04047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	96	450	450
2 6	6592	6167	emb 283335 SPZ8	S.pneumoniae dexB, capllA,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and alla gene	86	426	426
3 111	9770	9147	emb 283335 SP28	S.pneumoniae dexB, capi(A,B,C,D,E,F,G,H.I,J,K) genes, dTDP-rhamnose biosynthesis genes and alia gene	96	624	624
3 12	10489	9671	emb 283335 SP28	S.pneumoniae dexb, capilA.B.C.D.E.F.G.H.I.J.Kl genes. dTDP-rhamnose biosynthesis genes and alia gene	91	819	819
3 113	11546	112019	gb U43526	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	66	474	474
3	12017	13375	gb U43526	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	66	1359	1359
3 115	13421	14338	[gb]U43526	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	66	918	916
3 16	14329	15171	gb U43526	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	66	843	843
3 117	15132	17282	gb U43526 	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	66	2151	2151
3	17267	18397	gb U43526	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	66	1069	1111
1	46	1188	emb Y11463 SPDN	Streptococcus pneumoniae dnaG, rpoD, cpoA genes and ORF3	66	1143	1143
4 2	1198	2529	emb Y11463 SPDN	Streptococtus pneumoniae dnaG, rpoD, cpoA genes and ORF3	99	876	1332
2	11297	111473	95 041735	Streptococcus pneumoniae peptide methlonine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	83	175	771
6 17	1125	7364	emb 277726 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (1372 bp)	93	238	240
9	7322	1570	emb 277725 SPIS	S. pneumoniae DNA for insertion sequence IS1381 (966 bp)	95	160	249
6 9	7533	7985	emb z77725 sPIS	S.pneumoniae DNA for insertion sequence IS1381 (966 bp)	66	453	453
6 23	20197	19733	emb 283335 SP28	S.pneumoniae dexB. cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and alia gene	96	465	465
2 10	8305	7682	8245 583335 cm	S.pneumoniae dexB. cep1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	95	624	624

[4] S. pneumoniae - Coding regions containing known sequences

1	6	1-	1~	16	1 -	1-	1-	1-	:-	1 -	-	-	1_	1 ~	1-	1 ~	1-	1-	1-	<u> </u>	<u> </u>
ORF nt	819	7221	372	1089	438	234	1 957	1 381	1 2259	1 993	1074	312	411	432	453	432	489	204	882	756	1341
HSP nt length	819	513	316	1089	259	234	957	381	2259	70	437	96	114	340	453	382	368	167	100	756	1341
percent ident	96	93	1 66	66	66	66	86	66	- 66	- 86	1 66	87	86	68	98	96	1.51	1 66	94	66	86
match gene name	S.pneumoniae dexB, capl (A, B, C, D, B, F, G, H, I, J, K) genes, dTDP-rhemnose biosynthesis genes and aliA gene	Streptococcus pneumoniae methyl transferase (mtr) gene cluster, complete	S.pneumoniae yorf[A, B, C, D, E], ftsL, pbpX and regR genes	S.pneumonise yorf[A, B,C,D,E], [tsL, pbpX and regR genes	S.pneumoniae yorf(A, B,C,D,E), ftsL, pbpX and regR genes	S.pneumoniae yorf(A, B, C, D, E), ftsL, pbpX and regR genes	S.pneumoniae yorf(A, B,C,D,E), ftsL, pbpX and regR genes	S pneumoniae yorf[A,B,C,D,E], ftst, pbpX and regR genes	Streptococcus pneumoniae pbpX gene for penicillin binding protein 2X	Streptococcus pneumoniae pbpX gene for penicillin binding protein 2X	S.pneumonise recP gene, complete cds	S.pneumontae dexB. capllA B.C.D.E.F.G.H.I.J.K genes, dTDP-rhamnose biosynthesis genes and aliA gene	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	Streptcoccus pneumoniae type 19F capsular polysaccharide biosynthesis operon, (cps19fABCDEFCHIJKLMO) genes, complete cds, and aliA gene, partial cds	S.pneumoniae DNA for insertion sequence 181318 (1372 bp)	S. pneumoniae DNA for insertion sequence 181318 (823 bp)	S.pneumoniae iga gene	Streptococcus pneumoniae attachment site (attB), DNA sequence	Streptococcus pneumoniae attachment site (attB), DNA sequence	Streptococcus pneumoniae orfL gene, partial cds, competence stimulating peptide precursor (comC), histidine protein kinase (comD) and response regulator (comE) genes, complete cds, tRNA-Arg and tRNA-Gin genes	Streptococcus pneumoniae orfl gene, parial cds, competence stimulating peptide precursor (comC), histidine protein kinase (comD) and response regulator (comE) genes, complete cds, RNA-Arg and tRNA-Gin genes
match	emb 283335 SP28	95 [129323]	emb 279691 SOOR	emb{279691 SOOR	emb 279691 SOOR	emb 279691 SOOR	emb 279691 SOOR	emb 279691 SOOR	emb x16367 SPPB	emb x16367 SPPB	gb H31296	emb[z83335 SP28	gb M36180	95 009239	emb 277726 SPIS	emb 277727 SPIS	emb x94909 SPIG	[gb[L07752]	gb L07752	96 033315	gb u33315
Stop (nt)	8206	8078	919	1980	3477	3247	4557	4886	7142	8124	1126	2148	2108	8511	3458	3873	529	757	1827	182	931
Start (nt)	9024	9304	548	1 892	3040	3480	3601	4506	4884	1 7132	53	1837	2518	8942	3910	4304	41	554	946	937	2271
ORF ID	=_	=	7		5	9	-	8	6	92	-	n	-	6	_	8	-	~	-	-	~
Contig	۲.	01	= -	=======================================	11	-	=======================================	=	111	=	61	7	7	15	-1	-11	19	19	19	50	20

S. pneumoniae - Coding regions containing known sequences

Cont ig	10 G	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt	ORF DE
50		3175	2684	gb[U76218]	Streptococcus pneumoniae competence stimulating peptide precursor ComC (comC), histidine kinase homolog ComD (comD), and response regulator homolog ComE (comE) genes, complete cds	66	492	492
50	*	3322	4527	gb AF000658	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative serine protease (sphtra), SPSpoJ (spspoJ), initiator protein (spdnas) and beta subunit of DNA polymerase III (spdnan) genea, complete cds	66	1206	1206
02	5	4573	5343	[gb]AF000658]	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative setine protease (sphtra), SPSpoJ (spspoJ), initiator protein (spdnas) and beta subunit of DNA polymerase III (spdnan) genes, complete cds	66	111	17.7
50	9	5532	6917	gb AF000658	1	66	1386	1386
20		5669	8212	gb AF000658	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative serine procease (sphra), SPSpoJ (spspoJ), initiator protein (spdnas) and beta subunit of DNA polymerase III (spdnan) genes, complete cla	66	1218	1218
20		8214	8471	gb AF000658	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative serine protease (sphtra), SPSpoJ (spspoJ), initiator protein (spdnas) and beta subunit of DNA polymerase III (spdnan) genes, complete ds	86	258	258
50	6	8534	9670	gb AF000658	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative setine procease (sphtra), SPSpQJ (sppgOJ), initiator procean (spdmaa) and beta subunit of DNA polymerase III (spdman) genes, complete cds	66	134	7811
22	=	11887	12267	emb 277726 SPIS	S. pneumoniae DNA for insertion sequence IS1318 (1372 bp)	- 66	226	186
22	115	12708	12256	SPIS	S.pneumoniae DNA for insertion sequence IS1318 (823 bp)	- 6	151	
22	116	13165	12662	emb 277726 spis	S.pneumoniae DNA for insertion sequence ISI318 (1372 bp)	86	504	705
22	2-	18398	18910	emb 286112 SP28	S.pneumoniae genes encoding galacturonosyl transferase and transposase and insertion sequence 151915	95	463	513
22	74	18829	19299	emb 286112 SP28	S.pneumoniae genes encoding galacturonosyl transferase and transposase and insertion sequence 181515	- 66	443	471
23	-	5624	4203	emb x52474 SPPL	S.pneumoniae ply gene for pneumolysin	1 66	1422	1422
23	-	6063	5629	dp H17717	S.pneumoniae pneumolysin gene, complete cds	86	197	- 368
26	-	2500	~	emb x94909 SPIG	S pneumoniae iga gene	87	7467	
56	~	5823	5584	95 047687	Streptococcus pneumoniae immunoglobulin Al protease (iga) gene, complete cds	66	151	240
56	<u> </u>	6878	\$685	gb U47687	Streptococcus pneumoniae immunoglobulin Al protease (iga) gene, complete ds	100	05	1194
	•	•		+		-	-	_

TABLE 1

S. pneumoniae - Coding regions containing known sequences

Contig ID	ORF	Start (nt)	Stop (nt)	metch	match gene name	percent	HSP nt	ORP at
5 6	Б ——	14498	14854	emb[283335 SP28	S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose blosynthesis genes and alla gene	1 3dent	1ength 338	l length
56	6	14763	14924	emb z83335 SP28	S.pneumoniae dexB, capl(A,B,C,D,E,F,G,H,I,J,K genes, dTDP-rhamnose biosynthesis genes and aliA gene	100	94	162
56	2_	14922	15173	95 004047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds		242	252
58	- -	80	205	emb 283335 5P28	S.pneumoniae dexB. cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose blosynthasis genes and alia, gene	66	426	426
28	~	503	952	95 004047	Streptococcue pneumoniae SSZ dextran glucosidase gene and insertion sequence 151202 transposase gene, complete cds	97	450	450
28		.780	1298	95 004047	Streptococcus pneumoniae SS2 dextran glucosidase gene and insertion sequence IS1102 transposase gene, complete cds	96	181	519
7	-	207	1523	95 108611	Streptococcus pneumoniae maltose/maltodextrin uptake (malx) and two maltodextrin permease (malc and mall) genes, complete cds	66	1317	7161
ř	7	1477	2367	95 108611	Streptococcus pneumoniae maltose/maltodextrin uptake (malx) and two maltodextrin permease (malt and malp) genes, complete cds	96	795	891
*	2	2593	3420	gb L21856	1 0		7 7 7 7	
34	-	2790	1 2647	[gb L21856]	malk gene, complete			978
34	5	3418	4416	gb L21856	gene, complete			****
T	6	7764	7507	gb U41735	ase (msrA)	6	201	258
34	97	10562	10257	emb x63602 SPB0	S. pneumon1 ae mmsA-Box	6		- : :
35		1176	1439	emb 283335 SP28	S.pneumoniae daxB, capi(A.B.C.D.E.F.G.H.I.J.K) genes, dTDP-rhamnose biosynthesis genes and alia gene	83	248	264
SE SE	5	1458	1961	dp (109239	Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis operon, (cps19fABCDEFGHIJKLANO) genes, complete cds, and aliA gene, partial cds	86	264	504
35	17	16172	15477	emb x85787 SPCP	S.pneumoniae dexB. cps14A. cps14B. cps14C. cps14D, cps14E, cps14F, cps14G, cps14H, cps14L, cps14L, cps14L, tasA cenes	97	969	969
35	8	16961	16170	emb 283335 SP28	S.pneumoniae dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose blosynthesis genes and aliA gene	98	792	792
ž	6	17620	16871	96 009239	Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis operon. (cps19fABCDEFGHIJKLMONO) genes, complete cds, and aliA gene,	8	750	750
•	•			++			- +	

5. pneumoniae - Coding regions containing known sequences

Cont ig ID	g ORF	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt	ORF nt
35	2	19061	17604	emb x85787 SPCP	S.pneumonise dexB, cps14A, cps14B, cps14C, cps14D, cps14E, cps14F, cps14G, cps14H, cps14I, cps14J, cps14K, cps14L, tasA genes	1 dent	1 tength	1 length
36	-13	18960	18352	gb U40786	Streptococcus pneumoniae surface antigen A variant precursor (psaA) and 18 kDa protein genes, complete cds, and ORF1 gene, partial cds	66	609	609
36	-50	19934	18966	96) (183509)	Streptococcus pneumoniae surface adhesin A precursor (psaA) gene, complete cds	66	696	696
37	-	2743	179	emb 267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf	66	2565	25.55
7.6	7	2985	2824	emb 267739 SPPA	S. pneumoniae parC, parE and transposase genes and unknown orf	90		
37	-	5034	3070	[emb 267739 SPPA	genes and unknown		701	291
7.	-	1.5134	5790	emb 267739 SPPA	genes and unknown		CORT	1965
75	-	1,6171	5833	emb 267739 SPPA	and) Co	160
38	-13	12969	13268	[9b]H28679		36	655	866
139		1256	2137	gb U41735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	66	882	882
39	m	2405	3370	96 041735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	66	996	996
\$	6	5253	7208	gb H29686	S.pneumoniae mismatch repair (hexB) gene, complete cds	- 66	7561	1066
=		6	1037	emb 217307 SPRE	S.pneumoniae rech gene encoding Rech	- 66	1027	201
4		1328	1 2713	emb[234303 SPCI	Streptococcus pneumoniae cin operon encoding the cinh, rech, dinF, lyth genes, and downstream sequences	66	1386	1386
2	-	3083	4045	dp H13812	S.pneumoniae autolysin (lytA) gene, complete cds			
4	-	3272	3096	BP M13812	S.pneumoniae autolysin (lyth) gene, complete cds			200
=	5	3603	3860	gb M13812	S.pneumonise autolysin (lytA) gene, complete cds			77
41	9	4755	5162	ap 136660	Streptococcus pneumoniae ORF, complete cds		- 007	867
7	-	5270	5716	1099917 95	Streptococcus pneumoniae ORF, complete cds	3		80.
4	8	6112	6918	ab L3660	Streptococcus pneumoniae ORF, complete cds		100	- FG
41	6	6916	7119	ab 136660	Streptococcus pneumoniae ORF, complete cds	100	204	200
=	01	7082	7660	ap r36660	Streptococcus pneumoniae ORF, complete cds	97	552	270
- }	=	7680	9767	gb L36660	Streptococcus pneumoniae ORF, complete cds	- 86	81	300
2	127	9169	8717	emb 277727 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (823 bp)	97	353	453
				•				

S. pneumoniae - Coding regions containing known sequence

	Contig	ID	Start (nt)	Stop (nt)	metch	match gene name	percent	HSP nt length	OMF nt length
14 9669 9475 semb 202001 ST22 S. promumoniae poph gene and open reading freese 19 1566 2 1730 7325 semb 202001 ST22 S. promumoniae poph gene and open reading freese 19 190 190 3 1842 922 semb 202001 ST22 S. promumoniae poph gene and open reading freese 190 190 190 4 8423 925 semb 20201 ST22 S. promumoniae DRA Grinestion resource 13318 (1375 bp) 190 190 5 8420 925 semb 20201 ST22 S. promumoniae DRA Grinestion resource 13318 (1375 bp) 190 170 6 2407 235 semb 20201 ST22 S. promumoniae DRA Grinestion resource 13318 (1375 bp) 190 170 7 256 2407 235 semb 20201 ST22 S. promumoniae DRA Grinestion resource 13318 (1375 bp) 190 190 8 2417 2418 semb 20201 ST22 S. promumoniae DRA Grinestion resource 13318 (1375 bp) 190 190 9 2418 semb 20201 ST22 S. promumoniae DRA Grinestion resource (190 pp) gene conjecte cds 190 190 10 1105 semb 20201 ST22 S. promumoniae dead, capit N.B.C.D.E.F.G.H.L.J.M genes, dTDP-rhamonee 190 190 11 1164 2900 semb 20201 ST22 S. promumoniae dead, capit N.B.C.D.E.F.G.H.L.J.M genes, dTDP-rhamonee 190 190 11 1164 2900 semb 20201 ST22 S. promumoniae dead, capit N.B.C.D.E.F.G.H.L.J.M genes, dTDP-rhamonee 190 190 11 1164 2900 semb 20201 ST22 S. promumoniae dead, capit N.B.C.D.E.F.G.H.L.J.M genes, dTDP-rhamonee 190 190 10 1105 semb 20201 ST22 S. promumoniae dead, capit N.B.C.D.E.F.G.H.L.J.M genes, dTDP-rhamonee 190 190 11 1164 290 semb 20201 ST22 S. promumoniae alia gene capit capit necessity of the capit capit necessity of the capit necessit	41	2	9533	9132	emb 277725 SPIS	DNA for insertion sequence IS1381 (966	96	160	402
5 7300 7353 chab[223001]stres [s presumentae DNA for insertion sequence 153138 (1372 bp) 97 455 6 6055 7667 chab[277726]stres [stress to measure and controlled trease of measure and controlled trease o	7	7=	6996	9475	emb 282001 SP28	pcpA gene and	100	189	195
6 3039 7400 ceab[277724] ESTS Spreament to DNA for insertion sequence (S1316 (177724) ESTS Spreament to DNA for insertion sequence (S1311 (966 bp)) 95 6453 68127 ceab[277725] ESTS Spreament to DNA game and open reading frames 100 1839 100	3	5	7190	:	emb 282001 SP28	S. pneumoniae pcpA gene and open reading frames	66	366	366
1 1843 8032 8035 8035 8045 8035 804	44	9	8089	1 7607		for insertion sequence IS1318	16	453	453
1 1849 1845 194	4	- 1	8423	8022	emb 277725 SPIS		95	160	402
9 6460 4681 [ab] [L39074] Streptococcus preumoniae SEA7 game, partial cds 1786 1786 1786 1786 1786 1786 1786 1786 1787 1786 1786 1786 1787 1786 1786 1787 1786 1786 1787 1786 1786 1787 1787 1786 1786 1787 1787 1786 1787 1787 1786 1787	*	8	8559	8365	emb 282001 SPZ8	S. pneumoniae pcpA gene and open reading frames	1000	189	195
2 211 2601 pb 102051 Street coccoug presentle a SST destrangiate cide 100 216 2407 2156 pb 100407 Street coccouge presentle as SST destrangiate cide and insertion 97 224 2407 2156 pb 100407 Street coccouge presentle as SST destrangiate cides and an	48	6	6480	4687	gb L39074	pyruvate oxidase (spxB) gene, complete	66	1794	1794
6 2407 2156 gb U00017 Streptococcus procuencies estate and innection 97 243 7 2366 2405 (amb 283135 SP28) Spreamonies death capillA B C D E F G M.1.J.NI genes. dTop-ribamose 100 94 8 2831 2475 (amb 283135 SP28) Spreamonies death, capillA B C D E F G M.1.J.NI genes. dTop-ribamose 99 338 13 12409 11105 (amb 283135 SP28) Spreamonies death and all A genes. and a gen	49	~	231	2603	gb L20561	gene, partial	100	216	2373
7 2566 2405 emb 2831315 8P28 Spreumoniae doxb, capilA, B, C, D, E, P, G, H, I. J, Ki genes, dTDP-rhamnose 100 94 110	- 53	9	2407	2156	95 [004047]	preumoniae SSZ dextran 102 transposase gene, co	6	242	252
1 12409 11105 cmm 23333 SP26 S. pneumoniae dex8: capilA.B.C.D.E.F.G.H.I.J.Kl genes. dTDP-rhamose 99 318 118 11864 9100 cmm 23333 SP26 S. pneumoniae dex8: capilA.B.C.D.E.F.G.H.I.J.Kl genes. dTDP-rhamose 67 591 1 1 1 1 1 1 1 1 1	£		2566	2405	emb 283335 SP28	capl(A, B, C, D, E, F, G, H, I, J, K) genes, s and aliA gene	100	96	162
13 12409 11105 mmb 283135 8728 S.pneumoniae decB. CapilA.B.C.D.E.F.G.H.I.J.Kl genes. dTOP-rhamnose 67 591 191 11864 3900 emb 2841379 18228 S.pneumoniae dir gene (isolate 33) 590 590 596 1965 1	53		2831	2475		pneumoniae dexB; capilA,B,C,D,E,F,G,H,I,J,K genes. biosynthesis genes and aliA gene	66	338	357
12 12646 1994 smb 284179 HS28 S.pneumoniae dfr gene (isolate 921) 11864 9900 smb 216082 PHAL Streptococcus pneumoniae aliB gene 11864 9900 smb 216082 PHAL Streptococcus pneumoniae mismatch repair protein (hexA) gene, complete cds 100 237 131 1357 2813 9b H18729 S.pneumoniae mismatch repair protein (hexA) gene, complete cds 99 246 1310 1310 1319 13	54			11105	emb 283335 SP28	dexB, cap1[A, B, C, D, E, F, G, H, I, J, K] genes,	67	591	1305
11 3 239 gb H18729 S. pneumoniae mismatch repair protein (hexA) gene, complete cds 100 237 131 131 251 gb H18729 S. pneumoniae mismatch repair protein (hexA) gene, complete cds 99 2310 252 233 gb H18729 S. pneumoniae mismatch repair protein (hexA) gene, complete cds 99 2310 235 235 2323 gb H18729 S. pneumoniae mismatch repair protein (hexA) gene, complete cds 95 69 237 238 4664 gb H18729 S. pneumoniae mismatch repair protein (hexA) gene, complete cds 96 372 238 238 238 239 2310 2	\$5	_		19949	emb 284379 HS28	dfr.	66	540	540
1 3 239 gb H18729 S. pneumoniae mismatch repair protein (hexA) gene, complete cds 100 237 231 261 gb H18729 S. pneumoniae mismatch repair protein (hexA) gene, complete cds 99 236 2330 2357 2823 gb H18729 S. pneumoniae mismatch repair protein (hexA) gene, complete cds 99 266 2370 2358 464 gb H18729 S. pneumoniae mismatch repair protein (hexA) gene, complete cds 96 372 2938 295 2938 295 2938 295 2938 295 2938 295	61	-	11864	0066	emb 216082 PNAL		86	1965	1965
2 233 2611 gb H18729 S.pneumoniae mismatch repair protein (hexA) gene, complete cds 99 2330 4 2958 4664 gb H18729 S.pneumoniae mismatch repair protein (hexA) gene, complete cds 95 2918 5 3770 3399 gb L20670 Streptococcus pneumoniae hyaluronidase gene, complete cds 99 2918 7 7161 4171 gb L20670 Streptococcus pneumoniae hyaluronidase gene, complete cds 99 2918 8 1160 gb H14340 S.pneumoniae DpnI gene region encoding dpnC and dpnD, complete cds 96 462 99 1417 gb H14339 S.pneumoniae DpnII gene region encoding dpnC, complete cds 98 462 99 1417 Gb J304234 S.pneumoniae exodeoxyribonuclease (exoA) gene, complete cds 99 147 99 881	63	-		239	gb M18729	mismatch repair protein (bexA) gene,	1000	237	237
3 2557 2823 gb H18729 S.pneumoniae mismatch repair protein (hex.) gene, complete cds 99 266 1 1 2958 4664 gb H18729 S.pneumoniae hyaluronidase gene, complete cds 96 372 2338 2 2 2 2 2 2 2 2 2	63	~	233	2611	gb H18729	pneumoniae mismatch repair protein (hexA) gene, complete	66	2330	2379
4 2958 4664 gb H18729 S. pneumoniae mismatch repair protein (hexA) gene, complete cds 95 69 6 3770 3399 gb L20670 Streptococcus pneumoniae hyaluronidase gene, complete cds 99 2938 7 7161 4171 gb H1440 S. pneumoniae DpnI gene region encoding dpnC and dpnD, complete cds 100 483 2 678 1160 gb H14140 S. pneumoniae DpnI gene region encoding dpnC and dpnD, complete cds 100 483 3 2490 1210 gb H141319 S. pneumoniae Excdeoxyribonuclease (excA) gene, complete cds 98 462 1 7 4220 4424 gb J04234 S. pneumoniae excdeoxyribonuclease (excA) gene, complete cds 99 147	63		2557	2823	gb H18729	pneumoniae mismatch repair protein (hexA) gene, complete	66	266	267
6 3770 3399 gb L20670 Streptococcus pneumoniae hyaluronidase gene, complete cds 96 372 2918 2 2 2 2 2 2 2 2 2	1 63	7	2958	4664	gb M18729	mismatch repair protein (hexA) gene, complete	1 95	69	1707
7 7161 4171 gb 120670 Streptococcus pneumoniae hyaluronidase gene, complete cds 99 2918 1 1 702 gb M14340 S.pneumoniae DpnI gene region encoding dpnC and dpnD, complete cds 100 693 2 678 1160 gb M14330 S.pneumoniae DpnI gene region encoding dpnM, dpnB, complete cds 98 462 3 2490 1210 gb M14339 S.pneumoniae exodeoxyribonuclease (exoA) gene, complete cds 99 147 4 4 4 gb 304234 S.pneumoniae exodeoxyribonuclease (exoA) gene, complete cds 99 881	1 67	9	3770	3399	gb L20670	complete	96	372	372
1 102 192	19	-	7161	4171	gb 120670	gene, complete	66	2938	2991
2 678 1160 gb H14319 S. pneumoniae DpnI gene region encoding dpnC and dpnD, complete cds 100 483 3 2490 1210 gb H14319 S. pneumoniae DpnII gene region encoding dpnH, dpnA, dpnB, complete cds 98 462 1 7 4230 4424 gb J04214 S. pneumoniae exodeoxyribonuclease (exoA) gene, complete cds 99 147 8 5197 4316 gb J04214 S. pneumoniae exodeoxyribonuclease (exoA) gene, complete cds 99 881	70		-	702	gb M14340	Donl gene region encoding dpnC and dpnD, complete	1000	693	702
3 2490 1210 9b H14339 S.pneumoniae Dpn11 gene region encoding dpnH, dpnA, dpnB, complete cds 98 462 1	0.	~	678	1160	gb M14340	DpnI gene region encoding dpnC and dpnD,	1000	483	483
7 4230 4424 gb J04234 S.pneumoniae exodeoxyribonuclease (exoA) gene, complete cds 99 147 8197 8196	70		2490	1210	9b M14339	pneumoniae Dpnii gene region encoding dpnM, dpnA, dpnB, complete	86	462	1281
8 5197 4316 gb J04234 S.pneumoniae exodeoxyribonuclease (exoA) gene, complete cds	70		4230	4424	gb J04234	exodeoxyribonuclease (exoA) gene,	66	. 147	198
	70	8	5197	4316	gb J04234	pneumoniae exodeoxyribonuclease (exoA) gene, complete	1 66 1	881	882

S. pneumoniae - Coding regions containing known sequences

Contig	ORF ID	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt length	ORF nt
70	13	8108	9874	gb 120562	Streptococcus pneumoniae Exp8 gene, partial cds	93	234	17971
12	72	27964	28341	emb x63602 SPBO	S. pneumoniae mmsA-Box	93	233	378
2	٥.	4607	3552	emb 226850 SPAT	S.pneumoniae (H222) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit	-6	102	1056
7.3	-	471	133	emb[x63602]SPB0	S.pneumoniae mmsA-Box	91	193	339
23	-	3658	7.6	[gb]J04479]	S.pneumoniae DNA polymerase I (polA) gene, complete cds	66	2682	2682
٤.	œ ——	4864	5379	gb[M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	86	318	516
۲۲	<u>-</u> _	3622	1999	emb 283335{SP28	S.pneumonlae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and alia gene	95	624	624
۲,	-	3341	2523	emb 283335 SP28	S.pneumoniae dexB, capliA,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	16	819	819
9,	-	341	-	emb x77249 sPR6	S.pneumoniae (R6) ciaR/ciaH genes	1 66	339	339
78	7	1 1095	325	emb X77249 SPR6	S.pneumoniae (R6) claR/claH genes	1 .66	11.1	1177
82	01	111436	10816		Streptococcus pneumoniae signal peptidase I (spi) gene, complete cds	1 6	621	621
92	=	12402	111434	gb U93576	Streptococcus pneumoniae ribonuclease HII (rnhB) gene, complete cds	98	953	696
82	112	112381	112704	gb U93576	Streptococcus pneumoniae ribonuclesse HII (rnhB) gene, complete cds	100	51	324
63	8	3212	3550	emb 277727 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (823 bp)	97	290	339
83	9	4662	6851	gb M36180	Streptococcus pneumoniae transposse, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	66	2190	2190
8	=	6849	8213	gb #36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	66	1365	1365
8	2_	8236	0606	gb H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	66	855	855
83	=	9283	113017	gb L15190	Streptococcus pneumoniae SAICAR synthetase (purC) gene, complete cds	1001	101	3735
83	23	22147	23313	gb L36923	Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, Complete cds	86	218	1167
83	24	23268	23450	8b L36923	Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete cds	86	172	183
8	25	27527	23505	gb L36923	Streptococcus pneumoniae beta-N-acetylhexosaminidase (strii) gene, complete cds	66	3826	4023
						+	•	

n seguences	
ő	
ons containing k	
regions	
Coding	
pneumoniae -	
s,	
r_1	
Ę	

******	-							
Contig	10	Start (nt)	Stop (nt)	metch acession	match gene name	percent	HSP nt length	ORF nt
83	- 50	28472	17772	gb L36923	Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete	66	416	702
8		4554	6173	emb 283335 SP28	S.pneumoniae dexB, capi[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	86	697	1620
87	9	1 5951	5316	emb 277725 SPIS	S. Dneumoniae DNA for insertion sequence IS1381 (966 bp)	96	439	636
88	<u>~</u> _	2957	3511	gb M36180	Streptococcus pneumoniae transposese, (comA and comb) and SAICAR synthetese (purC) genes, complete cds	94	\$55	555
88	ا	3466	4269	[gb[H36180]	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	96	804	804
89	2_	9878	10093	95 436180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	97	211	216
68		10062	10412	emb 283335 SP28	S.pneumoniae dexB. capilk, B.C.D.E.F.G.H.I.J.Kl genes, dTDP-rhamnose biosynthesis genes and alik gene		335	351
93	2	5303	4941	emb x63602 SPBO	S. pneumoniae mmsA-Box	89	237	363
6		1708	1520	95 U41735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	91	140	189
66		89	700	emb 283335 SPZ8	S.pneumoniae dexB. cap1[A.B.C.D.E.F.G.H.I.J.K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	93	592	612
66	~	1773	27.	emb X17337 SPAH	Streptococcus pneumoniae ami locus conferring aminopterin resistance	66	866	666
66	-	2794	1712		Streptococcus pneumoniae ami locus conferring aminopterin resistance	1 66	1083	1083
66	7	3732	2788	emb X17337 SPAH	Streptococcus pneumoniae ami locus conferring aminopterin resistance	100	945	945
66 1	5	5249	3714	SPAH	Streptococcus pneumoniae ami locus conferring aminopterin resistance	100	1536	1536
66	9 :	1 7262	7728	[emb X17337 SPAH	Streptococcus pneumoniae ami locus conferring aminopterin resistance	- 66	1986	1986
101	-	216	1538	emb x54225 SPEN	S.pneumoniae epuA and endA genes for 7 kDa protein and membrane endonuclease	66	146	1323
101	~	1492	1719	emb x54225 SPEN	S.pneumoniae epuk and genes for 7 kDa protein and membrane endonuclease	- 66	228	228
101		1694	1855	emb X54225 SPEN	S.pneumoniae epuA and endA genes for 7 kDa protein and membrane endonuclease	001	162	162
101	4	1701	2582	emb x54225 SPEN	S.pneumoniae epuA and endA genes for 7 kDa protein and membrane endonuclease	100	882	882
103	-	5556	5041	emb 295914 SP29	Streptococcus pneumoniae sodA gene	1001	396	516
104	2	1347	1556	emb 277727 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (823 bp)	83	206	210
						-+	•	+

S. pneumoniae - Coding regions containing known sequences

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt length	ORF nt length
105		5381	5028	emb 267739 SPPA	S. pneumoniae parC, parE and transposase genes and unknown orf	98	353	354
105	9	6089	5379	emb 267739 SPPA	S. pneumoniae parC, parE and transposase genes and unknown orf	98	84	711
107	~	2785	1880	emb x16022 SPPE	S. pneumoniae penA gene	86	72	906
107	°	2913	4988	emb x16022 SPPE	S. pneumoniae penA gene	66	1692	2076
107	9	4981	5888	emb X13136 SPPE	Streptococcus pneumoniae penA gene for penicillin binding protein 2B lacking N-term. (penicillin resistant strain)	91	107	615
108	6	9068	8718	emb 267739 SPPA	S. pneumoniae parC, parE and transposase genes and unknown orf	95	342	351
108	21	11308	10922	emb 267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf	66	199	387
109		2768	2241	emb 277725 SPIS	S. pneumoniae DNA for insertion sequence 151381 (966 bp)	96	61	528
109	-	2688	2855	emb[277726 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (1372 bp)	96	148	168
109	2	2962	3269	emb 277727 SPIS	S.pneumoniae DWA for insertion sequence IS1318 (823 bp)	97	353	408
109	9	5320	3584	gb M18729	S.pneumoniae mismatch repair protein (hexA) gene, complete cds	100	371	1737
511		431	m	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	98	429	429
113	01	9788	8532	emb x99400 SPDA	S.pneumoniae dack gene and ORF	66	1257	1257.
113	=	9870	10985	emb x99400 SPDA	S.pneumoniae dack gene and ORF	66	1116	1116
71.		2530	2030	gb[M36180]	Streptococcus pneumoniae transposase. (comA and comB) and SAICAR synthetase (purC) genes, complete cds	95	481	501
115	<u> </u>	11303	10932	gb U04047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	97	372	372
117	_	897	3302	emb x72967 SPNA	S. pneumoniae nank gene	66	2402	2406
117	7	3277	3831	emb x72967 SPNA	S. pneumontae nank gene	66	237	555
117	m	4327	3899	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purt) genes, complete cds	96	429	429
121	7	1369	1941	gb U72720	Streptococcus pneumoniae heat shock protein 70 (dnaK) gene, complete cds and DnaJ (dnaJ) gene, partial cds	66	202	573
121	<u>~</u>	2412	4253	95 072720	Streptococcus pneumoniae heat shock protein 70 (dnaK) gene, complete cds and DnaJ (dnaJ) gene, partial cds	66	1842	1842
122		2066	5587	gb U04047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	89	451	522
•	•							1 1 1 1 1 1 1 1 1 1 1

S. pneumoniae - Coding regions containing known sequences

Cont ig	ID	Start (nt)	Stop (nt)	acession	match gene name	percent	HSP nt length	ORF nt length
125		1811	189	gb H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	92	66	1623
128	2	12496	11204	emb 283335 SP28	S. pneumoniae daxB. capilA.B.C.D.E.F.G.H.I.J.Kl genes. dTDP-rhamnose biosynthesis genes and alia gene	16	705	1293
134	_	-	492	emb Y10818 SPY1	S.pneumoniae spsA gene	66	203	492
134	~	556	2652	gb AF019904	Streptococcus pneumoniae choline binding protein A (cbpA) gene, partial cds	86	689	2097
134	e e	1160	837	emb Y10818 SPY1	S.pneumoniae spsA gene	98	324	324
134	-	3952	2882	gb AF019904	Streptococcus pneumoniae choline binding protein A (cbpA) gene, partial cds	86	215	1001
134		7992	9848	gb U12567	Streptococcus pneumoniae P13 glycerol-3-phosphate dehydrogenase (glpD) gene, partial cds, and glycerol uptake facilitator (glpF) and ORF3 genes, complete cds	66	285	1857
134	6	9846	10622	gb U12567	Streptococcus pneumoniae Pl3 glycerol-3-phosphate dehydrogenase (glpD) gene, partial cds, and glycerol uptake facilitator (glpF) and ORF3 genes, complete cds	66	570	111
134	9	10805	11122	gb U12567	Streptococcus pneumoniae P13 glycerol-3-phosphate dehydrogenase (glpD) gene, partial cds, and glycerol uptake facilitator (glpF) and ORF3 genes, complete cds	001	318	318
137	===	1970	8443	gb U09239	Streptcoccus pneumoniae type 19F capsular polysaccharide biosynthesis operon, (cps)9fABCDEFGHIJKLMNO) genes, complete cds, and aliA gene, partial cds	06	420	474
137	3	8590	8775	emb z83335 sP28	S.pneumoniae dexB. capi[A,B.C.D.E.F.G.H.I.J.K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	94	174	186
137	115	8773	8967	emb 283335 SP28	S.pneumoniae dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	96	195	195
137	116	9223	9687	emb 277726 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (1372 bp)	96	446	465
137	=	9641	10051	emb 277727 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (823 bp)	96	293	411
139	100	12998	12702	emb x63602 SPB0	S.pneumoniae mmsA-Box	1 06	234	297
141	8	7805	8938	emb 249988 SPMM	Streptococcus pneumoniae mmsA gene	1 66	338	1134
141	6	8936	110972	emb 249988 SPKM	Streptococcus pneumoniae mmsA gene	1 66	2037	2037
141	92	11472	112467	етр 249988 ВРИМ	Streptococcus pneumoniae mask gene	100	1 94	966
142	7	257	814	95 480215	Streptococcus pneumoniae uvs402 protein gene, complete cds	86	174	558
142	_ 	787	957	[gb[H80215]	Streptococcus pneumoniae uvs402 protein gene, complete cds	100	142	171
142	-	980	3022	gb M80215	Streptococcus pneumoniae uvs402 protein gene, complete cds	95	1997	2043
						•	*	+

S. pneumoniae - Coding regions containing known sequences

Contin	LORF	Start	20.00	40444		*************		
Q.		(ut)	:	acession	macch gene name	percent	HSP nt length	ORF nt length
142	- 2	3020	3595	gb H80215	Streptococcus pneumoniae uvs402 protein gene, complete cds	100	153	576
145	-	-	219	emb[235135 SPAL	S.pneumoniae alia gene for amia-like gene A	97	185	219
145	-	171	1994	8p 120556	Streptococcus pneumoniae plpA gene, partial cds	1 66	1811	1824
145	-	2287	1599	emb[247210 SPDE	S.pneumoniae dexB, caplA, caplB and caplC genes and orfs	- 66	1052	5313
145		9934	7766	gb H90527	Streptococcus pneumoniae penicillin-binding protein (ponA) gene, complete	66	2169	2169
145	<u>s</u>	10488	9922	gb H90527	Streptococcus pneumoniae penicillin-binding protein (pdnA) gene, complete	66	512	567
146	-	159	-	emb 282002 SP28	S.pneumoniae pcpB and pcpC genes	- B6	156	156
146	7	344	06	emb 282002 SPZ8	S.pneumoniae pcp8 and pcpC genes	- 86	255	255
146	116	11795	110794	emb 282002 SP28	S.pneumoniae pcpB and pcpC ganes	85	276	1002
147	=	10678	10202	emb 221702 SPUN	S.pneumoniae ung gene and mutx genes encoding uracil-DNA glycosylase and 8- oxodGTP nucleoside triphosphatase	86	477	477
- 14	2	11338	10676	emb 221702 SPUN	S.pneumoniae ung gene and mutx genes encoding uracil-DNA glycosylase and 8- oxodGTP nucleoside triphosphatase	- 66	663	663
148	2	6006	8815	gb U41735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	06	180	195
156	-	1154	1402	emb x63602 SPBO	S. pneumoniae transA-Box	94	185	249
159	=	9048	8521	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	86	526	528
160			147	emb 226851 SPAT	S.pneumoniae (R6) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit.	100	142	147
160	~	179	868	emb 226851 SPAT	S.pneumoniae (R6) genes for ATPase a subunit, ATPase b subunit and ATPase c	66	720	720
160		906	1406	emb 226850 SPAT	S.pneumoniae (M222) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit	95	501	501
160	-	1373	1942	emb[226850 SPAT	S.pneumoniae (M122) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit	- 48	306	570
161		-	984	emb x77249 SPR6	S. pneumoniae (R6) claR/claH genes	1 66	984	984
161		0169	7497	emb x83917 SPGY	S.pneumoniae orflgyrB and gyrB gene encoding DNA gyrase B subunit	- 66	437	588
161	-	7443	9386	emb x83917 SPGY	S. pneumoniae orflgyrB and gyrB gene encoding DNA gyrase B subunit	86	1912	1944
163		~	2155	gb L20559	Streptococcus pneumoniae Exp5 gene, pertial cds	1 86	327	2154
					1 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		+	+

S. pneumoniae - Coding regions containing known sequences

Contig	ID	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt	ORF nt
165		32	1618	96/101/96	S.pneumoniae malX and malM genes encoding membrane protein and amylomeltase, complete cds, and malP gene encoding phosphorylase	66	1587	1587
165	~	1608	3902	96 301796	S.pneumonise malX and malH genes encoding membrane protein and amylomaltase, complete cds, and malP gene encoding phosphorylase	100	280	2295
1 166	-	378	-	emb Y11463 SPDN	Streptococcus pneumoniae dnaG, rpoD, cpoA genes and ORF3 and ORF5	1 100	375	375
166	~	1507	320	emb Y11463 SPDN	Streptococcus pneumoniae dhaG, rpoD, cpoA genes and ORF3 and ORF5	1 66	1188	1188
166	_	3240	1432	emb[Y11463 SPDN	Streptococcus pneumoniae dhaG, rpoD, cpoA genes and ORF3 and ORF5	66	563	1809
167	-	1077	328	emb 271552 SPAD	Streptococcus pneumoniae adcCBA operon	96	155	750
167	- 2	1844	666	emb 271552 SPAD	Streptococcus pneumoniae adcCBA operon	86	405	846
167	-	2714	1842	emb 271552 SPAD	Streptococcus pneumoniae adcCBA operon	1 66	604	873
167	7	3399	2641	emb 271552 SPAD	Streptococcus pneumoniae adcCBA operon	1 66 1	703	759
168	-	-	2259	gb L20558	Streptococcus pneumoniae Exp4 gene, partial cds	66	282	2259
170	92	7338	7685	emb 277726 SPIS	S. pneumonise DNA for insertion sequence 181318 (1372 bp)	98	315	348
172	•	2462	4981	95 U47625	Streptococcus pneumoniae formate acetyltransferese (exp72) gene, partial cds	97	365	2520
175		373	50	gb H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	68	353	354
175	-	1843	3621	emb 247210 SPDE	S.pneumoniae dexB, caplA, caplB and caplC genes and orfs	95	89	1779
176	5	3984	2980	emb 267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf	100	573	1005
178	-	-	425	emb[267739 SPPA	S. pneumoniae parC, parE and transposase genes and unknown orf	1 56	423	423
179	-	426	20	emb 283335 sP28	S. pneumoniae dexB. cap1(A, B, C, D, E, F, G, H, I, J, K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	66	338	357
180		3084	1855	emb x95718 SPGY	S. pneumoniae gyrA gene	66	381	1230
186	-	714	•	emb 279691 SOOR	S. pneumoniae yorf [A, B, C, D, E], ftst, pbpx and regR genes	- 88	- 65	7117
186	~	2254	809	emb 279691 SOOR	S.pneumoniae yorf[A.B.C.D.E], ftsL, pbpX and regR genes	86	315	1647
186	<u></u>	707	880	emb 279691 soon	S.pneumoniae yorf[A,B,C,D,E], ftsL, pbpX and regR genes	- 86	174	174
189		7	259	gb U72720	Streptococcus pneumoniae heat shock protein 70 (dnak) gene, complete cds and DnaJ (dnaJ) gene, partial cds	66	258	258
189	~	009	385	96 072720	Streptococcus pneumoniae heat shock protein 70 (dnaK) gene, complete cds and DnaJ (dnaJ) gene, partial cds	866	204	216
						144000000000000000000000000000000000000		•

S. pneumoniae. - Coding regions containing known sequences

Contig	OR ID	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt	ORF nt
189		1018	851	gb U72720	Streptococcus pneumoniae heat shock protein 70 (dnaK) gene, complete cds and DnaJ (dnaJ) gene, partial cds	66	168	168
189		1012	2154	 	Streptococcus pneumoniae heat shock protein 70 (dnak) gene, complete cds and DnaJ (dnaJ) gene, partial cds	66	1062	1143
191	6	1 7829	7524	emb x63602 SPB0	S.pneumoniae mmsA-Box	95	234	306
194			729	gb H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	91	728	729
199	~	1117	881	emb 283335 SP28	S.pneumoniae dexB, capl[A,B,C,D,E,P,G,H,I,J,K] genes, MTDP-rhamnose biosynthesis genes and aliA gene	96	211	237
199	- -	1499	1762	emb[283335 SP28	S.pneumoniae dexB. csp1(A.B.C.D.E.F.G.H.I.J.K.) genes, dTDP-rhamnose biosynthesis genes and aliA gene	68	248	264
199	<u>~</u> _	1.781	2284	emb 283335 SP28	S.pneumoniae dexB. capilA, B, C.D, E, G, H, I, J, K genes, dTDP-rhamnose biosynthesis genes and aliA gene	86	504	504
203	-	1977	337	gb L20563	Streptococcus pneumoniae Exp9 gene, partial cds	- 66	342	1641
204	-	1145	_	gb L36131	Streptococcus pneumoniae explü gene, complete cds, reck gene, 5' end	- 66	1143	1143
208	~	65	2296	95 089711	Streptococcus pneumoniae pneumococcal surface protein A PspA (pspA) gene, complete cds	06	471	2238
213	E .	2455	2123	emb 283335 SPZ8	S.pneumoniae dexB, capi A, B, C, D, E, F, G, H, I, J, K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	96	332	333
216		368	27	emb 283335 SP28	S.pneumoniae dexB, capl (A, B, C, D, E, F, G, H, I, J, K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	66	338	357
216	_	2650	2327	gb M28678	S.pneumoniae promoter sequence DNA	- 86	98	124
222	-	417	₹ .	emb 283335 SP28	S.pneumoniae dexB, capl (A, B, C, D, E, P, G, H, I, J, K) genes, dTDP-rhamnose biosynthesis genes and alia gene	- 86	414	414
722		5266	4238	emb AJ000336 SP	Streptococcus pneumoniae 1dh gene	- 66	1029	1029
239		-	804	gb M31296	S. pneumoniae rec? gene, complete cds	95	484	804
247	m_	1625	1807	gb H36180	Streptococcus preumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	96	178	183
249		921	1364	emb 283335 SP28	S.pneumonise dexB, capi(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and allA gene	P6	443	444
253	-	362	•	gb H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	66	360	360
253	5	1238	2050	emb 283335 SP28	S.pneumoniae daxB, capina B, C.D, E.F, G, H, I, J, X genes, dTDP-rhamnose biosynthesis genes and alia gene	- 56	420	813
					• • • • • • • • • • • • • • • • • • •		-	•

ng regions containing known sequences	
e - Codi	
S. pneumonia	
TABLE 1	

Contig ORF ID ID 253 6			match acession emb[z83335{SP28	match gene name S.pneumoniae dexB, cap1(A.B.C.D.E.P.G.H.I.J.K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	percent ident	HSP nt length	ORF nt length 504	• •
- ~	798	1 1841	emb 282002 SP28	S.pneumoniae pcpB and pcpC genes	97	531	798	++
	2493	1969	emb 267739 SPPA	parE and	92	672	1044	- + -
2	985	077	emb X17337 SPAH	Streptococcus pneumoniae ami locus conferring aminopterin resistance	96	117	216	- + -
	1245	907	95[#36180]	Streptococcus pneumonlae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	97	339	339	- +
	495	1208	95 016156	Streptococcus pneumoniae dihydropteroate synthase (sulA), dihydrofolate synthetase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genes, complete cds	95	94	714	
	1291	72277	95/016156}	Streptococcus pneumoniae dihydropteroate synthase (sula), dihydrofolate synthetase (sulB), quanosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genes, complete cds	97	755	987	
	2261	3601	95 016156	Streptococcus pneumonies dihydropteroate synthase (sulA), dihydrofolate synthatase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase pyrophosphokinase (sulD) genes, complete cds	86	1341	1341	
50	3561	4136	gb U16156	Streptococcus pneumoniae dihydropteroate synthase (sulh), dihydrofolate synthatase (sulb), quanosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genes, complete cds	66	576	576	
•	4164	4949	95 016156	Streptococcus pneumoniae dihydropteroate synthase (sulh), dihydrofolate synthetase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase pyrophosphokinase (sulD) genes, complete cds	66	748	786	
	5544	5140	gb U16156	Streptococcus pneumoniae dihydropteroate synthase (sulh), dihydrofolate synthetase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genes, complete cds	100	186	405	
-	1793	1990	emb x63602 SPBO	S.pneumoniae mmsA-Box	- 68	196	90.	
-	562	104	gb H29686	S.pneumoniae mismatch repair (hexB) gene, complete cds	68	091		
-	25	524	95 004047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	96	450	450	
~	1001	525	emb 283335 SP28	S.pneumoniae daxB, capl(A.B.C.D.E.F.G.H.I.J.K] genes, dTDP-rhamnose blosynthesis genes and alia gene	- 68	205	477	
~	807	559	824S 58888 qma	S. pneumoniae daxB, capi (A, B, C, D, E, F, G, H, I, J, K) genes, dTDP-rhamnose biosynthesis genes and alla gene	06	170	249	
-	1374	1099	9Б #36180	Streptococcus pneumonise transposase, (comA and comB) and SAICAR synthetase	85	264	276	
							-	

	U
,	
Į	1

1 1 5 52 52 52 52 52 5	•	-	- +	- •	_		• • —		+					_						
1 157 Stop stop seesion match game and unknown off seek Stop		ORF nt	length	1671	1284	354	753		540	_	393	216		519	363		672	441		237
1 1 1414 151 camb 267740 SFCY S. pneumoniae gyrB gene and unknown orf 1 1414 151 camb 267730 SFCY S. pneumoniae gyrB gene and unknown orf 1 1414 151 camb 267730 SFCY S. pneumoniae gyrB gene and unknown orf 1 1414 151 camb 267730 SFCY S. pneumoniae gyrB gene and unknown orf 1 1462 camb 263703 SFCY S. pneumoniae gyrB gene and intensposase genes and unknown orf 1 1462 camb 263103 SFCY S. pneumoniae gyrB gene and all A gene 1 1462 camb 263103 SFCY S. pneumoniae gyrB gene and all A gene 1 153 S45 qub u41735 S. pneumoniae gyrB gene and all A gene 1 151 camb 263103 SFCY S. pneumoniae gyrB gene and all A gene 1 151 camb 263103 SFCY S. pneumoniae gyrB gene and all A gene 1 151 camb 263133 SFCY S. pneumoniae gyrB gene and all A gene 1 151 camb 263133 SFCY S. pneumoniae gyrB gene and all A gene 1 151 camb 263133 SFCY S. pneumoniae gyrB gene and all A gene 1 151 camb 263133 SFCY S. pneumoniae gyrB gene and all A gene 1 151 camb 263133 SFCY S. pneumoniae gyrB gene and all A gene 1 151 camb 263133 SFCY S. pneumoniae gyrB genes and all A gene 1 151 camb 263133 SFCY S. pneumoniae gyrB genes and all A gene 1 151 camb 263133 SFCY S. pneumoniae gyrB genes and all A gene 1 151 camb 263133 SFCY S. pneumoniae gyrB genes and all A gene 1 151 camb 263133 SFCY S. pneumoniae gyrB genes and all A gene 1 151 camb 263133 SFCY S. pneumoniae gyrB genes and all A gene 1 151 camb 263133 SFCY S. pneumoniae gyrB genes and all A gene 1 151 camb 263133 SFCY S. pneumoniae gyrB genes and all A gene 1 151 camb 263133 SFCY S. pneumoniae gyrB genes and all A gene 1 151 camb 263133 SFCY S. pneumoniae gyrB genes and all A gene 1 151 camb 263133 SFCY S. pneumoniae gyrB genes and all A gene 1 151 camb 263133 SFCY S. pneumoniae gyrB genes and all A gene 1 151 camb 263133 SFCY S. pneumoniae gyrB genes and all A gene 1 1			Length	553	430	353	299		233		16	102		435	353		63	441	_	- PS
1 3 1673 match 11D (nt) accession 1 3 1673 smb 267740 SPGY 1 1434 151 smb 267740 SPGY 1 1457 510 smb 267739 SPPA 2 1237 485 smb 283335 SP28 1 603 64 smb 283335 SP28 1 603 64 smb 283335 SP28 1 153 545 gb U41735 1 153 545 gb U41735 1 153 545 gb U41735 1 153 245 gb U41735 1 673 2 smb 283335 SP28 1 1 1 1 1 1 1 1 1		percent	Jaent	96	66	69	16		94		6	97		95	94		56	96		96
1 3 1673 1673 1673 1774 1781		watti gene name	/ S. pneumoniae gyrB gene and unknown orf	S. S. Dueittoni as dove	dens and original capar, capar, capar	1 S. Dneumoniae parC, parE and transposase genes and unknown orf	S.pneumoniae dexB, biosynthesis gener	S.pneumoniae pcpA gene and open reading frames	S. pneumoniae dexB. capila, B.C.D.E.F.G.H.I.J.K.] genes, blosyrichesis genes and alia gene.	Streptococcus pneumoniae peoride marking and facility	-:		. –	7.			blosynthesis genes and alia gene	Streptococcus pneumoniae SS2 dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cit	S programma days	cps14H, cps14I, cps14J, cps14K, cps14L, tasA genes
1 1434 Stop Stop 15 16 15 16 15 16 15 16 15 16 15 16 16	HAT THE	acession	emb 267740 SPGY	emb 247210 SPDB				emb 282001 SP28	emb 283335 SP28	gb U41735		emb 226850 SPAT	emb 267739 SPPA		emb 283335 SP28	emb 283335 SP28		gb U04047	emb x85787 SPCP	
	-		1673	151	1	- !	485	462	4	545		6	!	1	į	~			-	_
			e -	1434	157		1237	1	603	153		908	-	1600	9657	673	-	1168	347	-
	OKE	2	-	-	-		~	-		-			-		-		-	~	-	-
	Concid	QI I	293	1 296	317		325	326	327	334		957	360	160	}	362		795	384	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig ID	ORF TD	Start (nt)	Stop (nt)	match	match gene name	e sin	1 ident	length (nt)
228	7	1760	1942	pir F60663 F606	translation alongation factor Tu - Streptococcus oralis	100	100	183
319	-	2	205	gi 984927	neomycin phosphotransferase (Cloning vector pBSL99)	100	100	204
260	-	2	1138	pir F60663 F606	translation elongation factor Tu - Streptococcus oralis	66	98	1137
25	~	486	1394	gi 1574495	hypothetical (Haemophilus influentae)	86	96	606
2	7	685	1002	91 310627	phosphoenolpyruvate:sugar phosphotransferase system MPr (Streptococcus mutans)	86	93	318
312	_	190	7	gi 347999	ATP-dependent protease proteolytic subunit (Streptococous salivarius)	86	96	189
329	-	1	807	91 924848	inosine monophosphate dehydrogenase (Streptococcus pyogenes)	86	96	807
336	~	290	589	191 987050	lac2 gene product (unidentified cloning vector)	86	86	300
181	6	5948	7366	gi 153755	phospho-beta-D-galactosidase (EC 3.2.1.85) [Lactococcus lactis cremoris]	1 . 16	94	1419
312	7	1044	1961	81 347998	uracil phosphoribosyltransferase (Streptococcus salivarius)	1 6	88	684
32	8	6575	7486	Sp P37214 ERA_S	CTP-BINDING PROTEIN ERA HOMOLOG	96	91	912
8		951	2741	gi 153615	phosphoenolpyruvate:sugar phosphotransferase system enzyme I (Streptococcus sallvarius)	96	92	1791
127	-		168	fgi 581299	Initiation factor IF-1 (Lactococcus lactis)	96	89	168
128	7	10438	11154	91 1276873	DeoD (Streptococcus thermophilus)	96		717
181	-	1362	1598	191 46606	lacD polypeptide (AA 1-326) (Staphylococcus aureus)	96	80	237
218	_		834	g1 1743856	Intrageneric coaggregation-relevant adhesin (Streptococcus gordonii)	96	93	834
319	~	115	441	91 208225	heat-shock protein 82/neomcyn phosphotransferase fusion protein (hsp82-neo) [unidentified cloning vector]	96	96	327
54	=======================================	8622	10967	gn1 PID d100972	Pyruvate formate-lyase [Streptococcus mutans]	95	68	2346
181	~	909	1289	gi 149396	lacD (Lactococcus lactis)	95	1 68	684
99	-	3410	3045	91 1850606	YIXM (Streptococcus mutans)	96	98	366
88	2	1 2797	7337	gi 703442	thymidine kinase (Streptococcus gordonii)	94	98	636
148	6	6431	7354	91 995767	UDP-glucose pyrophosphorylase (Streptococcus pyogenes)	94	85	924
160		4430	5848	61 153573	H+ ATPase (Enterococcus faecalis)	94	87	1419
~		4598	3513	91 153763	plasmin receptor (Streptococcus pyogenes)	93	98	1086
12	<u></u>	787	6204	91 1103865	[Ormyl-tetrahydrofolate synthetase [Streptococcus mutans]	93 –	84	1674
						+	+	7

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

10	10	(nt)	(at)	acession	מנוס ומושע	E	dident	(nt)
65	Ξ	4734	5120	191 40150	L14 protein (AA 1-122) [Bacillus subtilis]	1 93	87	387
68	-	53	1297	91 47341	antitumor protein (Streptococcus pyogenes)	- 66	87	1245
80	-	m	299	gn1 P1D d101166	ribosomal protein S7 [Bacillus subtilis]	- 68	86	297
127	_	695	1093	91 142462	ribosomal protein S11 (Bacillus subtilis)	93	98	399
160	5	1924	3462	91 1773264	ATPase, alpha subunit (Streptococcus mutans)	1 93	85	1539
211	- 5	3757	3047	gi 535273	aminopeptidase C [Streptococcus thermophilus]	1 66	82	7117
262	-	16	564	91 149394	lacB [Lactococcus lactis]	- 66 -	06	549
366	-	197	-	91 295259	tryptophan synthase beta subunit (Synechocystis sp.)	1 83	91	195
25		1392	1976	91 1574496	hypothetical (Haemophilus influentae)	92	80	585
36	121	120781	19927	gi 310632	hydrophobic membrane protein (Streptococcus gordonii)	92	98	855
181		1265	1534	gi 149396	lacb (Lactococcus lactis)	1 92	83	270
181		3662	4060	91 149410	enzyme III [Lactococcus lactis]	92	83	399
32	-	5631	3937	gn1 PID e294090	fibronectin-binding protein-like protein A (Streptococcus gordonii)	16 1	85	1695
9.0		3054	1462	gi 1850607	signal recognition particle Ffh (Streptococcus mutans)	1 91	84	1593
65	02	4442	4726	pir S17865 S178	ribosomal protein S17 - Bacillus stearothermophilus	91	80	285
- 11	~	260	1900	gi 287871	groEL gene product (Lactococcus lactis)	91	82	1641
84	-	2	2056	91 871784	Clp-like ATP-dependent protease binding subunit (Bos taurus)	91	19.	2055
66	-	10750	9272	[gi 153740	sucrose phosphorylase (Streptococcus mutans)	1 6 1	78	1479
66	6	11947	111072	gi 153739	membrane protein (Streptococcus mutans)	1 91	78	876
127	5	2065	2469	pir 507223 R585	ribosomai protein L17 - Bacillus stearothermophilus	1 91	78	405
132	9	9539	9390	gi 143065	hubst [Bacillus stearothermophilus]	16	- 68	150
137	-	4765	6153	gn1 P1D d100347	Na+ -ATPasa beta subunit (Enterococcus hirae)	- 16	1 61	1389
151	-	11119	9734	gi 1815634	glutamine synthetase type 1 (Streptococcus agalactiae)	16	82	1386
201	~	1798	278	91 2208998	dextran glucosidase DexS (Streptococcus suis)	16	79	1521
222		673	1839	[91 153741	ATP-binding protein (Streptococcus mutans)	16	85	1167
293	<u>-</u>	4113	4400	gi 1196921	unknown protein [Insertion sequence IS861]	91	1.1.	288
32	7	6166	6570	Loit Laskon Lasko	A CAROLINIA CONTRACTOR	•	**********	

pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	3 8	(ut)	ar (ar	acession	match gene name	sim	1 ident	length (nt)
33	~	841	527	gi 1196921	unknown protein (Insertion sequence IS861)	06	70	315
88	127	120908	19757	[gn1 P1D e274705	-	06	80	1152
55	121	119777	(18515	gn1 P1D e221213	ClpX protein [Bacillus subtilis]	06	27	1263
56	7	717	977	91/1710133	flagellar filament cap (Borrella burgdorferi)	06	- 05	261
65	-	-	909	91 1165303	L3 (Bacillus subtilis)	06	75	909
114	-	~	988	91 153562	aspartate beta-semialdehyde dehydrogenase (EC 1.2.1.11) [Streptococcus mutans]	90	08	987
120	7	1345	1 827	191 407880	(Streptococcus e	06	75	519
159	112	0694.	8298	191 143012	GMP synthetase [Bacillus subtilis]	06	84	609
166	-	4076	3282	91 1661179	high affinity branched chain amino acid transport protein (Streptococcus mutans)	06	78	795
183	-	28	1395	91 308858	ATP:pyruvate 2-0-phosphotransferase [Lactococcus lactis]	06	196	1368
191	-	2891	1662	191 149521	rryptophan synthase beta subunit [Lactococcus lactis]	06	78	1230
198	~	1551	436	91 2323342	(AF014460) CcpA (Streptococcus mutans)	06	76	1116
305	-	37	783	91 1573551	asparagine synthetase A (asnA) (Haemophilus influenzae)	06 -	80	747
	_	2285	3343	91 149434	[putative [Lactococcus lactis]	69	BL	1059
46	8	757	7362	pir A45434 A454	ribosomal protein L19 - Bacillus stearothermophilus	89	76	216
49	6	8363	110342	91 153792	recP peptide (Streptococcus pneumoniae)	68	83	1980
12	1.4	18410	19447	gi 308857	ATP:D-fructose 6-phosphate 1-phosphotransferase [Lactocccus lactis]	1 68 1	81	1038
- 25	=	9896	10669	gn1 PID d100932	120-forming NADH Oxidase (Streptococcus mutens)	68	1 11	984
65	5	2418	2786	91 1165307	S19 (Bacillus subtills)		81 1	369
65	8	3806	4225	sp P14577 RL16_	50S RIBOSOMAL PROTEIN LIG.	1 68 1	82	420
65	81	8219	8719	91 143417	ribosomal protein SS (Bacillus stearothermophilus)	1 68 1	1 94	501
5	6	6337	5315	gi 532204	prs (Listeria monocytogenes)	1 68 1	1 02	1023
76	-	3360	1465	gn1 PID e200671	lepA gene product (Bacillus subtilis)	68	76	1896
99	9	12818	11919	91 153738	membrane protein (Streptococcus mutans)	1 68 1	1 67	9006
120	~	3552	1300	191 407881	stringent response-like protein (Streptococcus equisimilis)	- 89	1 62	2253
122	- S	4512	2791	Jan 1 Pipie 280490	and property for strain of the	•		

FABLE 2

Contig	ID	Start (nt)	Stop (nt)	match	match gene name	e is	* ident	length (nt)
176	-	699	7	gi 47394	5-oxoprolyl-peptidase (Streptococcus pyogenes)	89	18	999
177	9	3050	3934	gi 912423	putative (Lactococcus lactis)	89	17	885
181	8	4033	15751	91 149411	entyme III [Lactococcus lactis]	- 88	08	1719
211	-	3149	2793	[91 535273	aminopeptidase C (Streptococcus thermophilus)	68	69	357
361	-	431	838	91 1196922	unknown protein (Insertion sequence 18861)	68	0,	408
34.	11	11839	10535	sp P30053 SYH_S	HISTIDYL-TRNA SYNTHETASE (EC 6.1.1.21) (HISTIDINETRNA LIGASE) (HISRS).	88	78	1305
38	1	1646	2623	91 2058544	putative ABC transporter subunit ComYA (Streptococcus gordonii)	88	78	978
54	7		122	gn1 PID d101320	YqgU (Bacillus subtilis)	88	99	225
57	7	611	1468	gn1 PID e1 34943	putative reductase 1 (Saccharomyces cerevisiae)	88	15.	858
65	5	5497	6909	pir A29102 R5BS	ribosomal protein L5 - Bacillus stearothermophilus	88	75	573
65	120	9030	9500	91 2078381	ribosomal protein L15 (Staphylococcus aureus)	88	8	471
78	3.	3636	1108	gn1 PID d100781	lysyl-aminopeptidase [Lactococcus lactis]	88	80	2529
106	7	12965	12054	91 2407215	(AF017421) putative heat shock protein HtpX (Streptococcus gordonii)	888	22	912
107	7	219	962	gn1 PID e339862	[putative acylneuraminate lyase [Clostridium tertium]	88	75	744
	8	14073	110420	191 402363	RNA polymerase beta-subunit (Bacillus subtilis)	88	74	3654
126	6	13096	12062	gn1 P1D e311468	unknown (Bacillus subtilis)	88	2	1035
140	17	19143	118874	91 1573659	H. influenzae predicted coding region H10659 (Haemophilus influenzae)	88	61	270
144	-	394	555	gn1 PID e274705	[lactate oxidase (Streptococcus iniae)	88	75	162
148	-	2723	3493	gi 1591672	phosphate transport system ATP-binding protein (Methanococcus Jannaschii)	88	89	177
160	8	5853	6278	191 1773267	ATPase, epsiion subunit (Streptococcus mutans)	88	9	929
177	-	1770	2885	91 (149426	putative (Lactococcus lactis)	88	1 21	1116
211	9	4140		91 535273	aminopeptidase C [Streptococcus thermophilus]	88	7,	528
231	7	580	957	91 40186	homologous to E.coli ribosomal protein L27 [Bacillus subtilis]	88	1 8′	378
260	5	2387	2998	91 1196922	unknown protein (Insertion sequence 15861)	88	1 69	612
291	9	2017	3375	gn1 P1D d100571	adenylosuccinate synthetase (Bacillus subtilis)	88	75	1359
319	-	658	317	91 603578	serine/threonine kinase (Phytophthora capsici)	88	88	342
40	2	4353	4514	91 153672	lactose repressor [Streptococcus mutans]	87	95	162
		•				+	+	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont ig	ORF TO	Start (nt)	Stop (nt.)	match	match gene name	* sim	* ident	length
49	9	10660	10929	91 1196921	unknown protein [Insertion sequence IS861]	- 18	72	270
69	7	3140	3808	gi 1165309	S3 (Bacillus subtilis)	87	73	699
99	115	6623	7039	91 1044978	ribosomal protein S8 (Bacillus subtilis)	87	73	417
75	8	5411	6625	91 1877422	galactokinase Streptococcus mutans	- 69	78	1215
80	22	103	2805	[gn] [PID] d101166	elongation factor G (Bacillus subtilis)	87	94	2103
83	-	541	248	[gi 1196921	unknown protein (Insertion sequence IS861)	87	69	294
140	[23	25033	23897	gn1 PID e254999	phenylalany-tRNA synthetase beta subunit (Bacillus subtills)	87	74	1137
214	14.	10441	8516	91 2281305	glucose inhibited division protein homolog GidA (Lectococcus lactis	78.	75	1926
1 220	~	2742	874	gn1 PID e324358	product highly similar to elongation factor EF-G (Bacillus subtilis)	87	73	1869
260		2096	2389	91 1196921	unknown protein (Insertion sequence 19861)	87	72	294
323	-	27	959	gi 897795	30S ribosomal protein (Pediococcus acidilactici)	87	73	624
357	-	154	570	gi 1044978	ribosomal protein 58 (Bacillus subtilis)	1 68	73	417
49	=	110927	111445	[gi [1196922	unknown protein (Insertion sequence 15861)	98	63	519
65	112	7461	9224	191 951051	relaxase (Streptococcus pneumoniae	86	89	1764
59	-	1553	2401	pir A02759 R5BS	ribosomal protein L2 - Bacillus stearothermophilus	86	- 44	849
9	23	10957	11610	gi 44074	adenylate kinase [Lactococcus lactis]	86	1 94	654
82	-	4374	4856	91 153745	mannitol-specific enzyme III (Streptococcus mutans)	86	72	483
1 102	-	4270	4986	gn1 PID e264705	OMP decarboxylase [Lactococcus lactis]	86	76	1 717
106	9	7824	6880	gn1 PID e137598	aspartate transcarbamylase [Lactobacillus leichmannil].	98	- 89	945
107	-	7	273	gn1 P1D e339862	putative acylneuraminate lyase (Clostridium tertium)	98	12	273
=	-	10432	6710	gn1 PID e228283	DNA-dependent RNA polymerase (Streptococcus pyogenes)	98	80	3723
131	6	5704	4892	91 11661193	polipoprotein diacylglycerol transferase (Streptococcus mutans)	98	71	813
134	_	6430	7980	gi 2388637	glycerol kinase (Enterococcus faecalis)	86	1 67	1551
146	=	7473	6583	191 1591731	melvalonate kinase (Methanococcus jannaschil)	96	72	891
153	~	595	2010	91 (2160707	dipeptidase [Lactococcus lactis]	98	78	1416
154	-	2	1435	91 1857246	6-phosphogluconate dehydrogenase [Lactococcus lactis]	98	74	1434
						-+	· •	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ID	Start (nt)	Stop (nt)	match	match gene name	mis .	• ident	length (nt)
161	5	5025	6284	91 47529	Unknown (Streptococcus salivarius)	98	99	1260
184		7	1483	91 642667	NADP-dependent glyceraldehyde-l-phosphate dehydrogenase (Streptococcus mutans)	98	2,3	1482
210	8	3659	1759	91 153661	translational initiation factor IF2 (Enterococcus faecium)	86	96	2913
250	-	2	187	[91 1573551	asparagine synthetase A (asnA) (Haemophilus influenzae)	98	89	186
36	*	2644	3909	91 2149909	cell division protein (Enterococcus faecalis)	88	22	1266
38	-	2475	3587	91 2058545	putative ABC transporter subunit ComYB (Streptococcus gordonii)	85	72	1113
86	- 5	1577	3915	91 2058546	ComYC Streptococcus gordonii	88	80	339
52	\$	7672.	3789	gn1 P10 d101316	Yqf3 (Bacillus subtilis)	85	72	993
82	2	4915	6054	91 153746	mannitol-phosphate dehydrogenase (Streptococcus mutans)	85	89	1140
83	115		15793	gi 143371	phosphoribosyl aminoimidazole synthetase (PUR-M) (Bacillus subtilis)	85	69	1104
87	~	1417	2388	gi 1184967	ScrR (Streptococcus mutans)	98	69	972
108	~	2666	3154	91 153566	ORF (19K protein) (Enterococcus faecalis)	85	67	489
127	7	312	692	gi 1044989	ribosomal protein S13 (Bacillus subtilis)	88	27	381
128	_	1534	2409	91 1685110	tetrahydrofolate dehydrogenase/cyclohydrolase (Streptococcus thermophilus)	85	111	876
137	-	2962	4767	gn1 PID d100347	Na+ -ATPase alpha subunit (Enterococcus hirae)	88	74	1806
170	~~	2622	709	gn1 P1D d102006	(ABO01488) FUNCTION UNKNOWN, SIMILAR PRODUCT IN E.COLI, H. INFLUENZAE AND NEISSERIA MENINGITIDIS. (Bacillus subtlis)	88	70	1914
187	-	3760	4386	[gi 727436	putative 20-kba protein (Lactococcus lactis)	85	99	627
233	~	728	1873	gi 1163116	ORF-5 (Streptococcus pneumontae)	85	67	1146
234	-	962	1255	[g1 (2293155	(AFG08220) YLIA (Bacillus subtilis)	85	61	294
240	-	309	1931	gi 143597	CTP synthetase [Bacillus subtilis]	85	70	1623
9	-	199	1521	91 508979	GTP-binding protein (Bacillus subtilis)	98	72	1323
10	-	4375	3443	gn1 PID e339862	putative acylneuraminate lyase [Clostridium tertium]	84	107	933
4	-	63	2093	gi 520753	DNA topoisomerase I [Bacillus subtilis]	84	1 69	2031
19	4	1793	2593	91 2352484	(AF005098) RWASEH II (Lactococcus lactis)	84	1 89	801
20	11 -11	117720	19687	gn1 PID d100584	cell division protein (Bacillus subtilis)	84	1 11	1968
22	128 2	21723	20884	191 299163	alanine dehydrogenase (Bacillus subtilis)	84	1 89	840
					◆ 5 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	+		

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	g ORF	Start	Stop (nt)	match	match gene name	ais *	1 ident	length
30	120	01.77	6797	2000				(nt)
			7610	19100296	Kruckonase Streptococcus mutans	84	7.5	939
33	6	5650	5300	gi 147194	phnA protein (Escherichia coll)	- 84	11,	351
36		121551	120772	[91 310631	ATP binding protein (Streptococcus gordonii)	84	72	780
48	-	2837	2505	91 882609	6-phospho-beta-glucosidase [Bscherichia coli]	84	69	111
28	-	41	1516	91 450849	amylase (Streptococcus bovis)	84		1476
- 59	<u>0</u> 2	6715	7116	gi 951053	ORFIO, putative (Streptococcus pneumoniae)	84	74	402
62	-	1 21	644	gi 806487	ORF211; putative (Lectococcus lactis)	28	99	624
65	=	6777	8207	91 1044980	ribosomal protein Li8 (Bacillus subtilis)	84	73	429
65	77	1 9507	10397	gi 44073	Secy protein (Lactococcus lactis)	94	89	891
106	-	5474	2262	gn1 PID e199387	carbamoyl-phosphate synthase (Lectobacillus plantarum)	94	73	1165
159	-	147	•	91 806487	ORF111; putative [Lactococcus lactis]	84		444
163	~	4690	5910	91 2293164	(AF008220) SAM synthase (Bacillus subtilis)	84	69	1661
192	-	46	1308	91 495046	tripeptidase (Lactococcus lactis)	84	73	1261
348		671	۰	91 1787753	(AE000145) £346; 79 pct identical to 335 amino acids of ADH_ZYMMO SW: P20368 but has 10 additional N-ter residues (Eschericila coli)	84	1,	999
7	-	1572	3575	91113766	(thrSv) (EC 6.1.1.3) (Bacillus subtilis]	83	1 59	2004
6	9	3893	3417	gn1 PID d100576	single strand DNA binding protein (Bacillus subtilis)	83	1 89	477
11	115	7426	8457	gi 520738	comA protein (Streptococcus pneumoniae)	8	99	201
20	77	13860.	14144	gn1 P1D d100583	unknown (Bacillus subtilis)	83	19	285
53		3358	2606	91 1788294	(AEGO0299) o238; This 238 as orf is 40 pct identical (5 gaps) to 231 residues of an approx. 248 as protein YEBC_ECOLI SW: P24237 (Escherichia coli)	8	74	753
82	9	3304	3005	91 1573659	H. influentae predicted coding region HI0659 (Haemophilus influenzae)	83	57	300
35	-	5108	3867	91 311707	hypothetical nucleotide binding protein (Acholeplasma laidlawii)	83	63	1242
55	61	17932	17528	1911537085	ORF_f141 (Escherichia coli)	83	59	405
25	02 -	118539	17919	91 496558	orfx [Bacillus subtilis]	83	- 69	621
65	9	2795	3142	80	L22 (Bacillus subtilis)	83	1 79	348
68	9	6877	6683	19111213494	immunoglobulin Al protease (Streptococcus pneumonlae)	83	- 75	195
						-	+	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

a a	10 (nt)	; — †	(ut)	Acession	match gene name	e is	• ident	length (nt)
1 - 1	15 15112	-	14771	gn1 PID e323522	putative rpoZ protein (Bacillus subtilis)	8	54	342
96 1	112 8963	-	9633	91 (47394	S-oxoprolyl-peptidase (Streptococcus pyogenes)	83	73	699
98		-	263	91 1183885	glutamine-binding subunit (Bacillus subtilis)	- 63	55	261
120	4 7170		_	91 310630	zinc metalloprotesse (Streptococcus gordonii)	83	72	1938
-	7 2998		4347	91 1500567	M. Jannaschii predicted coding region MJ1665 [Methanococcus jannaschii]	83	72	1350
137		-	440	gi 472918	V-type Na-AlPase (Enterococcus hirae)	83	09	438
160	6 3466	-	4356	91 1773265	ATPase, gamma subunit (Streptococcus mutans)	83	67	100
234	4 2278	-	2964	91 663279	transposase (Streptococus pneumoniae)	6		
226	3 2367	-	2020	91 142154	thioredoxin (Symechococcus PCC6301	-	ď	
303	1 1 3	-	1049	91 40046	phosphoglucose isomerase A (AA 1-449) (Bacillus stearothermophilus)	6	3	
-	2 1155	-	1931	91 289282	glutamy1-tRNA synthetase (Bacillus subtilis			
6 17	7 15370	0 14318	-	91 633147	ribose-phosphate pyrophosphokinase Bacillus caldolyticus	82	7	
-	1 299	_	96	91 143648	osomal protein L28 (Bacillus subtilis)	2 6 1		
6	3 1479	-	1090	91 385178	unknown (Bacillus subtilis)	82		
6	7 4213	-	3899	gn1 P1D d100576	Iribosomal protein S6 [Bacillus subtilis]	83	9	
12	6 4688	-	7	gn1 PID d100571	unknown (Bacillus subtilis)		3 3	
22 17	7 13422	-	ĭ —	gi 520754	putative [Bacillus subtilis]			/ 8/
22 18	8 14897	7 15658	Ϊ_	gn1 P1D d101929	uridine monophosphate kinase (Symechocystis sp.)		6	1416
33 16	6 11471	1 (10641	1	PID d101190		70	70	762
35 5	9 7400	-	6255	gi 1881543	UDP-N-acetylalucosamina-2-animarasa (cresses	78	89	831
40 110	8003	3 7533	Ī	oi 1173519	riho[latin gonthase has a mark to the control of th	85	68	1146
48 133	123360	-	-		Street on the second of the se	82	89	471
	- [Ì	Ė	1911193092	outer membrane protein (Campylobacter jejuni)	82	61	279
52 14	113833	3 14765	_ į	91/142521	deoxyribodipyrimidine photolysse (Bacillus subtilis)	82	61	933
60 4	7679	- †	1849 9	gn1 PID d102221	(AB001610) uvrA (Deinococcus radiodurans)	82	1 99	2869
62 4	1 2131	- i	_ <u> </u>	91 2246749	(AF009622) thioredoxin reductase [Listeria monocytogenes]	82	63	675
- [16586	6 17518	i	gn1 PID e322063	ss-1,4-galactosyltransferase (Streptococcus pneumoniae)	82	09	933
113 (113	9222	1 1837		985001b Q14 ful	gn1 P1D d100586 unknown (Bac11]us subt[1]is			

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start	Stop	match	match gene name	* sim	1 ident	length
<u>a</u>	2	(nt)	(ut)	acession		_	_	(ut)
7.4	-		3771	gn1 PID d101199	alkaline amylopullulanase (Bacillus sp.)	83	69	3771
8	6	3696	3983	gn1 PID e305362	unnamed protein product (Streptococcus thermophilus)	83	52	288
98	Ξ	10776	9394	91 683583	5-enolpyruvylshikimate-3-phosphate synthase [Lactococcus lactis]	82	67	1383
68	77	8295	9752	91 40025	homologous to E.coli 50k (Bacillus subtilis)	87	99	1458
115	6	10347	8812	gn1 P1D d102090	[AB003927] phospho-beta-galactosidase 1 [Lactobacillus gasseri]	82	74	1536
118	-	-	1332		seryl-tRNA synthetase (Bacillus subtilis)	82	71	1332
151		4657	6246	pir S06097 S060	type I site-specific deoxyribonuclease (EC 3.1.21.3) CfrA chain S	8	99	1590
173	9	4183	3503	91/2313836	(AE000584) conserved hypothetical protein (Helicobacter pylori)	82	99	681
177	21	5481	7442		(AB001341) NcrB (Escherichia coll)	85	88	1962
193	~	178	1 576	pir S08564 R3BS	ribosomal protein S9 - Bacillus stearothermophilus	82	70	399
1 245	~	1 258	845	gi 146402	EcoA type I restriction-modification enzyme S subunit [Eacherichia coli]	82	89	888
6	2	3400	3146	gn1 P1D d100576	ribosomal protein S18 (Bacillus subtilis)	81	99	255
16	_	7484	8413	[gi 1100074	tryptophanyl-tRNA synthetase (Clostridium longisporum)	81	70	930
50	Ξ	10308	13820	gn1 PrD d100583	transcription-repair coupling factor (Bacillus subtilis)	81	63	3513
38	~	1232	1606	91 2058543	putative DNA binding protein (Streptococcus gordonii)	81	63	375
45	7	1 3061	1751	91 460259	enolase (Bacillus subtilis)	81	67	1311
46	-	2	1267	91 (431231	[uracil permease [Bacillus caldolyticus]	81	61	1266
48		2453	1440	gn1 P1D d100453	Mannosephosphate Isomerase (Streptococcus mutans)	81	70	1014
54	- 2	1106	336	91 154752	transport protein (Agrobacterium tumefaciens)	81	64	177
59	22	10306	10821	191 44073	SecY protein [Lactococcus lactis]	81	99	516
89	-	3874	2603	91 55686	serine hydroxymethyltransferase [Bacillus subtilis]	18	69	1272
66	116	19126	18929	91/2313526	(AE000557) H. Fylori predicted coding region HP0411 [Helicobacter pylori]	91	75	198
106	,	8373	7822	gn1 PID e199384	pyrR (Lactobacillus plantarum)	81	61	552
108	9	5054	6877	gi (1469939	group B oligopeptidase PapB (Streptococcus agalactiae)	91	99	1824
113	115	15899	18283	pir S09411 S094	spoili protein - Bacillus subtilis	91	65	2385
128	2	3359	3634	191 1685111	orf1091 [Streptococcus thermophilus]	83	69	276
•		•			→====================================	•	• • • • • • • • • • • • • • • • • • • •	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

								1
Contig	08 C	Start (nt)	Stop (nt)	metch	match gene name	t sim	1 ident	length (nt)
151	-	830	1 3211	gi 304896	ScoE type I restriction-modification enzyme R subunit (Escherichia coli)	18	65.	2382
159	Ξ	6722	7837	91 2239288	GMP synthetase [Bacillus subtilis]	81	1 69	1116
170	-	739	458	gn1 PID d102006	(ABO01488) FUNCTION UNKNOWN. (Bacillus subtilis)	18	55	282
191	7	1759	893	91 149522	[tryptophan synthase alpha subunit [Lactococcus lactis]	81	9	867
214	_	2290	1994	gi 157587	reverse transcriptase endonuclease [Drosophila virilis]	18 1	45	297
217	-	4415	4008	91 466473	cellobiose phosphotransferase enzyme II' (Bacillus stearothermophilus)	18	59	408
262	7	. 695	898	g1 153675	Lagatose 6-P kinase (Streptococcus mutans)	18	- 89	300
299	-	1.663	-	gn1 PID e301154	StySKI methylase (Salmonella enterica)	18	09	1 099
1 366		376	83	91 149521	tryptophen synthase beta subunit (Lactococcus lactis)	18	65	294
12	91	8766	9242	91 1216490	OMA/pantothenate metabolism flavoprotein (Streptococcus mutans)	1 08 1	99	1. 644
11	=	0809	5748	gn1 P1D e305362	unnamed protein product (Streptococcus thermophilus)	90	1 29	303
11	911	8455	9906	91 703126	leucocin A translocator (Leuconostoc gelidum)	80	59	612
18	- 3	2440	1613	g1 1591672	phosphate transport system ATP-binding protein (Methanococcus jannaschii)	1 80 1	- 88	828
22	E -	4248	1579	[gi 452309	valy1-tRNA synthetase (Bacillus subtilis)	80	1 69	2670
28	-	1691	3288	91 1573660	H. Influenzae predicted coding region H10660 (Haemophilus influenzae)	80	63	384
32	2	905	1933	gn1 P1D e264499	dihydroorotate dehydrogenase B [Lactococcus lactis]	1 08 1	99	1032
39	-	-	1266	gn1 PID e234078	hom (Lactococcus lactis)	- 08 -	63	1266
52	5	4363	3593	91 1183884	ATP-binding subunit (Bacillus subtilis)	80	57	177
54	5	4550	4744	91 2198820	[AF004225] Cux/CDF(1B1); Cux/CDP homeoprotein [Mus musculus]	89	09	195
65	Ξ	7109	1 7486	gi 951052	ORF9, putative (Streptococcus pneumoniae)	80	- 89	378
59		1230	1550	pir A02815 R5BS	ribosomal protein L23 - Bacillus stearothermophilus	- 08	1 69	321
65	112	5174	5503	pir A02819 R5BS	ribosomal protein L24 - Bacillus stearothermophilus	08	1 02	330
99	6	9884	10687	91 (2313836	(AE000584) conserved hypothetical protein [Helicobacter pylori]	80	99	804
82	- 5	648	2438	191 (622991	mannitol transport protein (Bacillus stearothermophilus)	80	1 59	1791
1 85	-	950	630	91 528995	polyketide synthase (Bacillus subtilis)	80	7 94	321
89	-	6870	5779	91 853776	peptide chain release factor 1 (Bacillus subtilis)	- 08	63	1092
93	22	8718	7438	gn1 PID d101959	hypothetical protein (Synechocystis sp.)	80	09	1281
						*	-+	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

1310 1450	Contig	108F	Start (nt)	Stop (nt)	match	match gene name	e is	* ident	length (nt)
1 12 12 12 12 12 12 12	106	- 2	6854	15751	gn1 PID e199386	ě	80	99	1104
9 4346 3355 [amil-Dipidio02344] 106 Tiboseaaal procein is if leactillus subtilisis 6 6 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	109	~	1 2160	1450	[gi 40056	phoP gene product (Bacillus subtilis)	80	53	111
18 1946 1912 1911 19	124	6	4246	13953	gn1 PID d102254	[10S ribosomal protein S16 [Bacillus subtilis]	80	99	294
13 1365 1315 14 151210 Dutativo transpoarse [Straphococcus michael 10 10 10 10 10 10 10 1	128		5148	6428	gi 2281308	phosphopentomutase [Lactococcus lactis cremoris]	80	99	1281
13 13474 194171210 Dublithue transpease (Stropcoccus mutans) 60 70 12 2474 984 [9] 1877233 [galactose-1-P-ucidy] transferase (Stropcoccus mutans) 80 65 10 744 773 [9] 1877233 [cacloshilla C-associated protein (Recoccus Justile) 80 60 11 2 619 [9] [414375 [acclosocal protein (Stropcoccus Justile) 80 66 11 2 619 [9] [414476 [acclosocal protein (Stropcoccus Justile) 70 66 11 2 618 [9] [414476 [acclosocal protein (Stropcoccus Justile) 70 66 11 2 618 [9] [414476 [acclosocal protein (Stropcoccus Justile) 70 66 11 2 618 [40] [40] [40 [40] [40] [40] [40] [40] [40] [40] [40] [40] 12 13 [40] [40] [40] [40] [40] [40] [40] [40] [40] [40] [40] [40]	137	119	12665	11376	[91 159109	NADP-dependent glutamate dehydrogenase [Glardia intestinalis]	80	89	1290
2	140	-13	;	19457	191 517210	putative transposase [Streptococcus pyogenes]	80	0,4	243
10 7474 7728 [91] 1979800 Cyclophilin C-sasociated protein [Nea masculua] 60 </td <td>158</td> <td>7</td> <td>2474</td> <td>984</td> <td> gi 1877423</td> <td></td> <td>80</td> <td>9</td> <td>1491</td>	158	7	2474	984	gi 1877423		80	9	1491
1 2 (19) [91] [13095 lacc [Lactococcus lactis] 1 27 (19) [91] [13167 Libosomal protein St [Bacillus aubtilis] 66 70 70 2 1652 658 [91] [13167 Libosomal protein St [Bacillus aubtilis] 66 70 70 1 2 658 [91] [13160 Rec protein [Streptococcus progenes] 70 61 70 62 70	171	2	1 7474	1728	191 397800	8	80	09	255
1 27 599 Gel [43467 Frbboommal protein of Beeflius aubtiliar 70 70 2 1652 958 [61 33060 RecF protein (Steptococcus progeneal 80 61 70 62 1 2 958 [61 33060 RecF protein (Steptococcus progeneal 80 61 70 62 1 1 12 958 [61 44315 Puttative (Lectococus Incidence) 79 64 70 1 1 115 15 [61 152275 Abcs (Thermonerobacterium thermosulturigenes) 79 64 71 1 1175 135 [61 152275 Abcs (Thermonerobacterium thermosulturigenes) 79 64 71 1 1175 135 [61 152275 Abcs (Thermonerobacterium thermosulturigenes) 79 62 71 1 115 136 [61 152275 Abcs (Thermonerobacterium thermosulturigenes) 79 62 71 1 115 124 263 [61 15234 [61 1524275 [61 1524275	181	-	2	619		lacc (Lactococcus lactis)	80	99	618
1 1 13	313	-	27	539	1911143467		80	70	513
1 2 958 gil 472160 Cipc adenosine triphosphatese Bacillus subtilis 901 73 73 73 73 73 73 74 74	1 329	7	1652	828		RecF protein (Streptococcus pyogenes	80	63	267
1 1112 13580 gil 1494135 putative (Lactococcus lactis) 79 64 1 1175 135 gil 1542975 AbcB Thermoanserobacterium thermoanliturigenes 79 62 14 2444 8201 gml Proje233891 UDP-glucose 4 espimerase [Bacillus subtilis] 79 62 13 1242 2633 gml Proje233891 UDP-glucose 4 espimerase [Bacillus subtilis] 79 68 13 1242 2633 gml Proje34288 titah Espimose E	171	-	7	856	91 442360	ClpC adenosine triphosphatase (Bacillus subtilis)	80	58	957
1 1175 135 919 919 1543975 AbcB Thermosnerobacterium thermosulturigenes 19 1185 919	8	,	4312	5580		putative (Lactococcus lactis)	64	99	1269
14 9244 8201 gml PID e233891 UDP-glucose 4-spinerase Bacillus subtilis 79 62 3 1222 2633 gml PID e324318 ftsA Enterococcus hires 9 9 9 13 1222 2633 gml PID e324418 ftsA Enterococcus hires 9 9 9 9 13 7155 8378 gml PID e31442 dmhorm Bacillus subtilis 9 9 64 1 1 1 1 1 1 1 1 1	23	-	1175	135	91 1542975	AbcB (Thermoanserobacterium thermosulfurigenes)	64	61	1041
3 1242 2633 gni PiD e334218 ftest Enterococcus hiree 7 9011 8229 gi 405134 dathydrodipicolinate reductase Bacillus subtilis 79 56	33	14	9244	8201		[UDP-glucose 4-epimerase [Bacillus subtilis]	79	62	1044
13 7155 9378 91 405134 acetate kinase Bacillus subtilis 7155 9378 91 1146234 dihydrodipicolinate reductase (Bacillus subtilis 79 56 1 1 1 1 1 1 1 1 1	36		1242	2633		[tsA [Enterococcus hirae]	92	28	1392
7 9011 8229 gi 1166344 dihydrodipicolinate reductase [Bacillus subtilis] 79 56	38	=	7155	8378	91 405134	acetate kinase (Bacillus subtilis)	64	895	1224
19 8661 8915 gil 2078180 ribosomal protein LJO (Staphylococcus aureus) 79 68 1 1 1 1 1 1 1 1 1	55	7	106	8229		dihydrodipicolinate reductase (Bacillus subtilis)	66	26	783
4 3678 2128 gnl PID e311452 unknown (Bacillus subtilis) 1 1 1 1 1 1 1 1 1	9	139	1 8661	8915	91 2078380	ribosomal protein L30 (Staphylococcus aureus)	67	89	255
9 7881 7279 gi 677850 hypothetical protein (Staphylococcus aureus) 9 7881 79 59 1 1 1 1 1 1 1 1 1	69	-	3678	2128		unknown (Bacillus subtilis)	79	99	1551
10 8491 9781 9781 9781 9781 9781 978 62 7300 91 43342 90 92 92 93 93 94 94 94 94 94 94	69	6	1 7881	7279	gi 677850	hypothetical protein (Staphylococcus aureus)	64	29	603
3 2906 7300 93 143342 polymerase III (Bacillus subtilis) 790 65 790 65 790 65 790 65 790 65 790 65 790	72	2	8491	9783			62	62	1293
13 12233 11118 gi (83582 prephenate dehydrogenase (Lectococcus lactis) 79 65	80		2906	7300	91 143342	polymerase III (Bacillus subtilis)	66	65	4395
13 12233 11118 gi 683582 prephenate dehydrogenase (Lactococcus lactis) 79 58	82	=	13326	15689			62	65	2364
3 940 1734 91 537286 triosephosphate isomerase (Lactococcus lactis) 65 67 68 68 69 69 69 69 69 69	986	=	Ì	11118	91 683582		64	88	1116
6 4023 4742 gnl PID d100262 LivG protein (Salmonella typhimurium)	92	<u></u>	940	1734		isomerase	19	9	795
	86	<u>.</u>	4023	4742	9100262		19	63	720

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins TABLE 2

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	Eig •	1 ident	length (nt)
66	112	16315	14150	191 153736	a-galactosidase (Streptococcus mutans)	- 62	99	2166
107	-	5684	6406	gi 460080	D-slanine:D-slanine ligase-related protein (Enterococcus faecalis)	66	88	123
113	-	6858	8303	91 466882	pps1; B1496_C2_189 (Hycobacterlum leprae)	- 62	64	1446
151	01	113424	112213	[91]450686	[3-phosphoglycerate kinase (Thermotoga maritima)	1 79	09	1212
162	- 5	1158	1 3017	[91 506700	CapD (Staphylococcus aureus)	- 62	69	1860
7.1	5	2876	3052	91 912423	putative [Lactococcus lactis]	- 62	19	1771
177	8	4198	4563	gi 149429	putative Lactococcus lactis	- 23	61	366
187	-	2728	2907	gn1 PID d102002	[AB001488] FUNCTION UNKNOWN. [Bacillus subtilis]	- 62	53	180
189	_	3589	4350	gn1 PID e183449	putative ATP-binding protein of ABC-type (Bacillus subtilis)	96	61	762
191	2	4249	3449	91 149519	[indoleglycerol phosphate synthase [Lactococcus lactis]	64	99	801
717		1805	12737	91 147404	mannose permease subunit II-M-Man (Escherichia coli)	64	57	933
212		3863	3621	gn1 PID e209004	glutaredoxin-like protein [Lactococcus lactis]	64	88	243
215	-	1 987	115	[gi 2293242	(AF008220) arginine succinate synthase [Bacillus subtilis]	64	64	273
323	~	1 530	1.81	gi 89779S	[30S ribosomal protein [Pediococcus acidilactici]	62	69	252
380	-	694	~	91 1184680	polynuclectide phosphorylase (Bacillus subtilis)	96.	64	693
384	7	655	239	[gi 143328	phoP protein (put.); putative [Bacillus subtilis]	64	59	417
9		2820	4091	1911853767	UDP-N-acetylglucosamine 1-carboxyvinyltransferase (Bacillus subtilis)	1 78	, 62	1272
	-	50	1786	91/149432	putative (Lactococcus lactis)	1 78	63	1 7571
6		1351	124	91 897793	1998 gens product (Pediococcus acidilactici)	86	- 65	228
15	8	7364	8314	gn1 P1D d100585	cysteine synthetase A [Bacillus subtilis]	1 84	63	951
20	01	.9738	10310	gn1 PID d100583	stage V sporulation (Bacillus subtilis)	1 96	88	573
1 20	190	17165	[1771]	gi 49105	hypoxanthine phosphoribosyltransferase [Lactococcus lactis]	1 38	59	549
22	22	17388	18416	gn1 PID d101315	YqfE (Bacillus subtilis)	78	09	1029
22	127	20971	20612	[g1 299163	alanine dehydrogenase [Bacillus subtilis]	187	59	360
34	-	7407	7105	[gi]41015	aspartate-tRNA ligase (Escherichia coli)	- 38	55	303
35	=	6257	5196	91 1657644	Cap8E Staphylococcus aureus	78	1 09	1062
					+	•	4-6	4

S. pneumoniae - Putative coding regions of novel proteins Bimilar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match acession	match gene name	E is	* ident	length (nt)
0	=_	9287	8001	91/1173518	GTP cyclohydrase II/ 3,4-dihydroxy-2-butanone-4-phosphate synthase [Actinobacillus pleuropneumoniae]	82	98	1287
48	<u>.</u>	22422	23183	91 2314330	(AE000623) glutamine ABC transporter, ATP-binding protein (glnQ) (Helicobacter pylori)	78	88	762
25	7	2101	1430	91 1183887	integral membrane protein (Bacillus subtilis)	187	- 34	672
55	-14	13605	12712	gn1 PID d102026	(AB002150) YbbP [Bacillus subtilis]	78	88	986
\$\$	11	16637	115612	gn1 PID e313027	hypothetical protein (Bacillus subtilis)	18	51	1026
12	7	19756	119598	91 179764	calcium channel alpha-1D subunit (Homo sapiens)	82	57	159
74	=	15031	14018	91 1573279	Holliday junction DNA helicase (ruvB) [Haemophilus influenzae]	78	52	1014
1 75	6	6623	1972	[gi 1877423	galactose-1-P-uridyl transferase (Streptococcus mutans)	94	62	1350
18	112	12125	113906	gi 1573607	[L-fucose isomerase (fuci) [Haemophilus influenzae]	82	99	1782
- 82	-	2423	4417	91 153744	ORF X; putative (Streptococcus mutans)	78	64	1995
	82	16926	18500	91 143373	phosphoribosyl aminoimidazole carboxy formyl formyltransfersse/inosine monophosphate cyclohydrolass (PUR-H(J)) (Bacillus subtilis)	78	63	1575
83	20	120212	20775	91 143364	phosphoribosyl aminoimidazole carboxylase I (PUR-E) (Bacillus subtilis)	78	64	564
92	7	165	878	gn1 PID d101190	ORF2 (Streptococcus mutans)	78	62	714
86	8	5863	6069	91 2331287	(AF013188) release factor 2 (Bacillus subtilis)	78	63	1047
113	-	1071	2741	gi 580914	dna2X (Bacillus subtilis)	78	79	1671
127	-	1133	2071	gi 142463	[RNA polymerase alpha-core-subunit [Bacillus subtilis]	18	59	939
132	-	2782	497	g1 1561763	[pullulanase [Bacteroides thetalotaomicron]	96	58	2286
135	7	2698	3537	91 1788036	(AE000269) NH3-dependent NAD synthetase (Escherichia coli)	18	99	840
140	124	26853	25423	gi 1100077	phospho-beta-glucosidase (Clostridium longisporum)	78	64	1431
150	- 2	4690	4514	91 149464	amino peptidase [Lactococcus lactis]	78	42	177
152	-	-	795	91 639915	NADM dehydrogenase subunit (Thunbergia alata)	78	43	195
162	-	4997	4110	gn1 PID e323528	putative YhaP protein (Bacillus subtilis)	78	94	888
181	2	8651	7947	gi 149402	[lactose repressor (lacR; alt.) [Lactococcus lactis]	78	8	705
500	-	13627	4958	gn1 PID d100172	invertase (Zymomonas mobilis)	18	61	1332
203	-	3230	3015	91 1174237	Cyck [Pseudomonas fluorescens]	78	57	216
						*****		• • • • • • • • • • •

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

1	Contig ID	IORF IO	Start (nt)	Stop (nt)	metch	match gene name	e is	1 ident	length (nt)
13 532 365 3610 2797 901 PD D D D D D D D D	210			27.17	gi 580902		78	42	384
1 9 2317 914 984 0 41 1370 914 984 0 91 91 91 91 91 91 91	214	9	3810	2797		. haemolytica o-sialoglycoprotein transmembrane [Bacillus subtills]	78	9	1014
1 24 211 901464490 10cohol dehydrogenese 2 [Detamosès histolytica] 19 11173047 190ce germination and vagetative growth protein (garcz) (Haemophilus 78 14 172 8 91 157310 10cative transposae (Streptococcus pyogenes) 78 78 77 78 91 157310 10cative transposae (Streptococcus pyogenes) 78 78 78 78 78 78 78 7	214	13	6322	: :	91 1377831	unknown (Bacillus subtilis)	94	62	1842
1 215 309 gl 517210	1 217	-	6	1112	91 488430	alcohol dehydrogenase 2 [Entamosba histolytica]	87	94	2709
1 122 123 123 121	222	<u>~</u>	2316	3098	91 1573047	spore germination and vegetative growth protein (gerc2) [Haemophilus influenzae]	7.8	65	783
1 137	268	7	742	8	191517210		9,4	65	735
1 1567 1079 gill393541 com@ OMP7 Bacillus aubtilis 78	276	-	223	753		protein L1 (Bacillus	92	9	531
1 117 794 gi 1916729 Gadb Staphylococcus aureus 78 78 78 78 78 78 78	312		1567	1079	191 289261		1 96	54	489
12 762 265 9 1 842439 phosphatidylglycerophosphate synthase (Bacillus subtilis) 78 11 737 3 9 1 842439 polymucieotide phosphorylass (Bacillus subtilis) 77 12 1658 2255 9 1 199433 patentive (Lactococcus lactis) 77 14 6948 7350 9 1 520738 comA protein (Exceptococcus pneumoniae) 77 12 9656 9 1 190433 Tree (Bacillus subtilis) 77 14 11421 12131 9 1 207366 phosphoglyceromitae (SpmA) (Heemophilus influenzee) 77 14 11422 12131 9 1 207045 phosphoglyceromitae (SpmA) (Heemophilus influenzee) 77 13 1836 9 1 207045 multidrug resistance protein Lark (Lactococcus lactis) 77 1 1004 1254 9 1 40103 ribosomal protein Lark (Lactococcus subtilis) 77 1 1084 1016 9 1 40103 ribosomal protein (Bacillus subtilis) 77 1 1085 1016 9 1 40103 ribosomal protein (Bacillus subtilis) 77	339	-	117	794	91 1916729	[cadD Staphylococcus aureus]	78	53	678
1 717 3 gi 1184680 polymuclectide phosphorylace Bacillus subtilis 71 71 71 71 71 71 71	342	7	762	265	91 1842439		78	29	869
15 11923 11018 Gal 1399855 Carboxyltransferase beta submit (Symechococus PCC7942] 77 77 77 77 77 77 77	383	-	737	_	91 1184680	polymuclectide phosphorylase (Bacillus subtilis)	78	99	735
2 1698 2255 gi 149433 putative (Lactococcus lactis) 77 77	,	115		111018	91 1399855	carboxyltransfarase beta subunit (Symechococcus PCC1942)	- 1	63	906
14 6948 7550 gi 520738 comA protein (Streptococcus pneumonise) 77 77 77 77 77 77 77	8	7	1698	2255	gi 149433	putative (Lactococcus lactis)	-11	88	558
12 9761 8967 gal 1000451 TreP [Bacillus subtilis] 114 11421 12131 gal 1573766 phosphoglycecomutaes (gpmA) [Haemophilus influenzae] 77 77 77 77 77 77 77	1,	-	6948	7550	91 520738	comA protein Streptococcus pneumoniae	در	09	603
14	30	112	1 9761	1 8967	191 1000451	TreP [Bacillus subtilis]	7.	\$	795
3 3836 4096 gi 1708640 YeaB Bacillus subtilis 2 607 1254 gi 40103 ribosomal protein Ld Bacillus stearothermophilus 2 607 1254 gi 40103 ribosomal protein Ld Bacillus stearothermophilus 3 608 7240 gi 40551 HMP Streptococcus suis 4 7509 7240 gi 40552 gi 1590947 Amidophosphoribosyltransferase Wethanococcus jannaschii 77 77 5 4583 4026 gil 1590947 Amidophosphoribosyltransferase Wethanococcus jannaschii 77 6 13006 5444 gil 1910 e319895 (AJ000496) cycilc nucleotide-gated channel beta subunit Rattus norvegicus 77 6 14088 12799 gil 1531377 sugar-binding protein Streptococcus mutans 77 77 11 14088 12799 gil 153737 sugar-binding protein Streptococcus mutans 77 77 77 12 12799 gil 153737 sugar-binding protein Streptococcus mutans 77 77 77 77 77 77 77	36	-	111421	12131	91 1573766	(gpmA)	7.	1 99	111
8 8377 8054 91 1890649 multidrug resistance protein LarA [Lactococcus lactis] 77 77 77 77 78 78 78 7	1 55	_	3836	4096	91 1708640	[Bacilius	77	85	261
2 607 1254 91 40103 Tibosomal protein L4 Bacillus stearothermophilus 77 77 77 77 77 77 77	19	8	7758	8054	gi 1890649	resistance	7.1	51 (324
8 7509 7240 91 47551 MRP [Streptococcus suis] 77 77 77 77 77 77 77	9	7	1 607		91 40103	ribosomal protein L4 (Bacillus stearothermophilus)	77	63	648
1 1083 118 gnl PID e381578 hypothetical 12.2 kd protein [Bacillus subtilis] 77	89	8	1509	7240	gi 47551	HRP (Streptococcus suis)	- 4	89	270
5 4583 4026 gnl PID e281578 hypothetical 12.2 kd protein (Becillus subtilis) 77	69	-	1083	118		unknown (Bacillus subtilis)	77	57	996
14 13104 14552 gi 1590947 amidophosphoribosyltransferase [Methanococcus jannaschii] 77	۲۲	5	4583	4026		hypothetical 12.2 kd protein (Bacillus subtilis)	14	1 09	558
4 3006 5444 gn1 PID e32995 (AJ000496) cyclic nucleotide-gated channel beta subunit [Rattus norvegicus] 77	83	-		14552	gi 1590947		14	95	1449
11 8518 8880 gi 551879 ORF 1 (Lactococcus lactis)	94	-	3006	5444	e329895	channel beta subunit [Rattus	77	99	2439
11 14082 12799 gi 153737 sugar-binding protein (Streptococcus mutans)	96	=	8518	8880	gi 551879		۱۲۰	62	363
	66		- !	12799	191 153737	sugar-binding protein (Streptococcus mutans)	77	61	1284

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	98 G	Start (nt)	Stop (nt)	match	match gene name	e is	* ident	length (nt)
1 106	~	361	1176	[gi 148921	LicD protein (Haemophilus influenzae)	77	51	816
108	7	3152	4030	gi 1574730	tellurite resistance protein (tehB) [Haemophilus influenzae]	77	58	879
118	-	3520	13131	191 11573900	D-alanine permease (dagA) [Haemophilus influenzae]	77	57	1 060
124	7	1796	101	91 1573162	LRNA (guanine-N1)-methyltransferase (trmD) [Haemophilus influenzae)	77	88	726
126	-	5909	4614	[gn1 PID d101163	[Srb (Bacillus subtilis]	77	62	1296
128	7	630	1373	gn1 PID d101328	[tqiz (Bacillus subtilis]	77	88	744
130	_	-	1287	[gn] PID e325013	hypothetical protein (Bacillus subtilis)	11	61	1287
139	8	4388	3639	191 2293302	(AF008220) YtqA (Bacillus subtilis)		- 65	750
140	Ξ	10601	9582	91 289284	cysteinyl-tRNA synthetase (Bacillus subtilis)	7.	64	1350
140	118	19451	19263	91 517210	putative transposase (Streptococcus pyogenes)	77	99	189
141	7	976	1683	gn1 PID e157887	URF5 (as 1-573) (Drosophila yakuba)	72	20	1 807
141	4	27.35	5293	91 556258	secA (Listeria monocytogenes)	177	- 65	2559
144	7	67.1	2173	gn1 PID d100585	lysyl-tRNA thynthetase [Bacillus subtilis]		61	1503
163	5	6412	7398	gi 511015	dihydroorotate dehydrogenase A (Lactococcus lactis)	7.	62	987
164	0.	7841	1074	gn1 P1D d100964		4	52	768
1 191	8	7257	18791	91 149516	anthranilate synthase alpha subunit [Lactococcus lactis]	- 12	57	1467
198	-	5377	5177	91 1573856	hypothetical (Haemophilus influenzae)	7.7	99	201
213	-	202	462	91 1743860	Brca2 [Mus'musculus]	77	os	261
250	~	231	509	gn1 PID e334776	[YlbH protein (Bacillus subtilis]	1.4	09	279
1 289		1737	1276	gn1 PID d100947	Ribosomal Protein L10 (Bacillus subtilis)	77	62	462
292	7	1399	668	gi 143004	transfer RNA-Gln synthetase (Bacillus stearothermophilus)		88	732
٠	~	2734	1166	gn1 PID d101824	peptide-chain-release factor 3 (Symechocystis sp.)	9/	53	1569
,	23	18474	118235	[gi 455157	acyl carrier protein (Cryptomonas phil	16	57	240
6	-	5706	4342	gi 1146247	asparaginyl-tRNA synthetase (Bacillus subtilis)	1 94	61	1365
10	5	4531	4385	gn1 P10 e314495	hypothetical protein (Clostridium perfringens)	196	53	147
18	7	1615	842	91 1591672	phosphate transport system ATP-binding protein (Methanococcus jannaschii)	196	96	774

. pneumoniae - Putative coding regions of novel proteins similar to kno

Contig	P G	Start (nt)	Stop (nt)	match	match gene name	e is	* Ident	length (nt)
22	137	127796	[28173	gn1 P1D e13389	translation initiation factor IF3 (AA 1-172) [Bacillus stearothermophilus]	94	64	378
35	9	3869	2682	[gi 1773346	Cap5G (Staphylococcus aureus)	9/	61	1188
æ	78	21113	21787	91 2314328	(AE000633) glutamine ABC transporter, permease protein (glnP) [Helicobacter pyloxi]	76	52	675
52	12	12881	13786	91 142521	[deoxyribodipyrimidine photolyase [Bacillus subtilis]	92		906
55	97	11521	10571	gn1 P1D e283110	[femD Staphylococcus aureus]	94	61	951
57		7824	6229	191 290561	[0188 [Escherichia coll]	94	47	1266
62	5	2406	2095	gn1 PID e313024	hypothetical protein (Bacillus subtilis)	94	59	312
65	6	4223	4441	91 40148	[L29 protein (AA 1-66) (Bacillus subtilis]	1 26	58	219
89	~	1328	1752	gn1 PID e284233	enabolic ornithine carbamoyltransferase [Lactobacillus plantarum]	92	61	1044
69		7297	6005	gn1 P1D d101420	Pyrimidine nucleoside phosphorylase (Bacillus stearothermophilus)	1 94	61	1293
٤,	112	7839	1267	gn1 PID e243629	unknown [Mycobacterium tuberculosis]	1 94	53	573
7	5	8433	7039	gn1 P1D d102048	C. thermocellum beta-glucosidase; P26208 (985) (Bacillus subtilis)	1 94	09	1395
88		7643	7936	191 (2314030	(AE000599) conserved hypothetical protein (Helicobacter pylori)	1 96	61	294
82	115	16019	16996	91 11573900	D-alanine permease (dagA) (Reemophilus influenzae)	1 94	36	976
83	61	18616	19884	91 143374	phosphoribosyl glycinamide synthetase (PUR-D; gtg start codon) (Bacillus subtilis)	94	09	1269
98	14	13409	12231	91 143806	Arof (Bacillus subtilis)	1 96	88	1179
83	-	n	1442	911153804	sucrose-6-phosphate hydrolase (Streptococcus mutans)	1 94	- 65	1440
87	116	15754	15110	gn1 PID e323500	putative Gmk protein (Bacillus subtilis)	1 96	36	645
93	7	1769	1539	91 1574820	1,4-alpha-glucan branching enzyme (glgB) (Haemophilus influenzae)	1 96	9\$	231
96	-	5.1	365	91 144313	6.0 kd ORP [Plasmid ColEI]	1 94 1	73	315
116	7	2151	1678	91 153841	pneumococcal surface protein A [Streptococcus pneumoniae]	1 92	59	474
123	9	3442	5895	gi 1314297	CipC ATPase (Listeria monocytogenes)	1 92	1 65	2454
126	~	2156 .	2932	gn1 Pr0 d101328	YqiZ (Bacillus subtilis)	1 92	61	111
128	01	6973	1977	91 944944	purine nucleoside phosphorylase (Bacillus subtilis)	1 96	09	825
161	=	6186	5812	91 1674310	(AE000058) Mycoplasma pneumoniae, MG085 homolog, from M. genitalium [Mycoplasma pneumoniae]	92	47	375
	•					-		•

 $oldsymbol{E}$ 2.

139 4						,	
_	3641	3192		(AF008220) YtqA [Bacillus subtilis]	1 26	53	450
-	114872	112536	91 1184680	polynucleotide phosphorylase (Bacillus subtilis)	1 96	62	2337
143 2	1 2583	3905	911143795	transfer RNA-Tyr synthetase [Bacillus subtilis]	1 26	1 19	1323
170 6	5095	6114	gn1 PID d100959	ycgQ (Bacillus subtilis)	1 92	7	1020
180 2	1 1927	557	Bi 40019	ORF 821 (as 1-821) [Bacillus subtilis]	1 94	53	1371
191	1 5815	5228	91 551880	anthranilate synthase beta subunit (Lectococcus lactis)	1 96	61	588
195 3	-	2444	91 2149905	D-glutamic acid adding entyme (Enterococcus faccalis)	1 96	09	1386
200 3	-	3629	191 431272	lysis protein (Bacillus subtilis)	1 94	58	1716
201 1	431	207	191 2208998	dextran glucosidase DexS (Streptococcus suis)	1 76	57	225
214 2	1283	2380	191 663278	transposase (Streptococcus pneumoniae)	1 94	\$5	1098
225 3	2338	1 3411	91 1552775	ATP-binding protein (Escherichia coli)	1 26 1	95	1074
233 1	~	1724	191 1163115	neuraminidase B (Streptococcus pneumoniae)	1 94	- 09	723
347 1	523	38	91 537033	ORF [356 [Escherichia coll]	94	09	486
356 2	842	1 165	91 2149905	D-glutamic acid adding enzyme (Enterococcus faecalis)	1 76	61	678
366 3	1 734	348	91/149520	[phosphoribosy] anthranilate isomerase [Lactococcus lactis]	94	69	387
2 - 8	112599	11484	gi 1574293	[fimbrial transcription regulation repressor (pilB) [Haemophilus influenzae]	75	62	1116
6 13	12553	111894	gn1 PtD d102050	ydik (Bacillus subtilis)	1 25	51	099
9 10	1 7282	6062	91 142538	aspartate aminotransferase (Bacillus sp.)	1 25	55	1221
10 112	1 8080	1 7940	gi 149493	SCRFI methylase [Lactococcus lactis]	1 22	26	141
18 5	4266	1 3301	gn1 PID d101319	YqgH (Bacillus subtilis)	75	52	996
22	1838	2728	91/1373157	orf-X; hypothetical protein; Method: conceptual translation supplied by author [Bacillus subtilis]	75	62	891
30 11	9015	1 7828	gi 153801	enzyme scr-II (Streptococcus mutans)	1 25	64	1188
31 5	2362	2030	91 2293211	(AF008220) putative thioredoxin (Bacillus subtilis)	1 25	23	333
32 9	1 7484	8359		00560 [formamidopyrimidina-DNA glycosylase [Streptococcus mutans]	1 25	61	876
33 - 4	1735	1448	gi 413976	Ipa-52r gene product (Bacillus subtilis)	75	53 –	288
33 10	6470	5769	191 533105	unknown (Bacillus subtilis)	75	98	702

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig ID	ORF	Start (nt)	Stop (nt)	match	match gene name	e is	* ident	length (nt)
ű	112	6878	1 7183	pir A00205 FECL	ferredoxin (4Fe-4S) - Clostridium thermaceticum	25	95	306
36		181	~	91 2088739	(AF003141) strong similarity to the PABP/P2/CRBP/CRABP family of transporters (Caenorhabditis elegans)	75	43	180
38	72	14510	15379	gi 1574058	hypothetical (Haemophilus influenzae)	25	95 .	870
48	133	23398	24066	191 193009	outer membrane protein (Campylobacter jejuni)	75	95	699
51	-	~	916	91 43985	nifS-like gene Lactobacillus delbrueckii	75	55	318
15	2	8318	11683	91 537192	CG Site No. 620; alternate gene names hs, hsp, hsr, rm, apparent frameshift in GenBank Accession Number X06545 [Escherichia coll]	75	80	3366
54	118	19566	20759	191 666069	orf2 gene product [Lactobacillus leichmannii]	- 25	88	1194
57	6	8448	7822	91 290561	ol88 [Escherichia coli]	1 75	05	627
65	=	6072	6356	91 606241	30S ribosomal subunit protein S14 (Escherichia coli)	25	64	285
0,	-	1706	2472	gi 1256617	adenine phosphoribosyltransferase (Bacillus subtilis)	25	57	9009
11	24	30399	29404	91 1574390	C4-dicarboxylate transport protein [Haemophilus influenzae]	27	57	966
23	- 5	910	455	gn1 PID e249656	Yner (Bacillus subtilis)	57	57	456
97		1810	491	91 1146219	[28.2% of identity to the Escherichia coli GTP-binding protein Era; putative [Bacillus subtilis]	75	65	1320
82	9	6360	6536	91 1655715	BrtD (Rhodobacter capsulatus)	1 25	85	771
83	9	1938	2975	gn1 PID e323529	[putative PlsX protein (Bacillus subtilis]	27	95	1038
93	=	1.7368	1 5317	gi 39989	methionyl-tRNA synthetase [Bacillus stearothermophilus]	25	88	2052
93	2	9409	8699	gi 1591493	glutamine transport ATP-binding protein Q (Methanococcus jannaschii)	25.	54	711.
93	-	1795	÷	gn1 PID e323510	Ylov protein (Bacillus subtilis)	25	57	1749
103	~	362	1186	gn1 PID e266928	unknown (Mycobacterium tuberculosis)	75	99	825
104	-	691	915	91 460026	repressor protein (Streptococcus pneumoniae)	1 25	54	225
113	2	2951	3883	gn1 P1D d101119	ABC transporter subunit (Symechocystis sp.)	1 27	55	933
121	-	320	1390	91 2145131	repressor of class I heat shock gene expression HrcA (Streptococcus mutens)	1 32	58	1001
127	9	2614	3000	91 1500451	M. jannaschii predicted coding region MJI558 [Methanococcus jannaschii]	75	77	387
137	118	10082	110687	91 393116	P-glycoprotein 5 (Entamoeba histolytica)	75	52	909
149	= !	8499	9338	gn1 P1D d100582	[unknown [Bacillus subtilis]	75	55	840
					+011110000001000110011+0+0010110101101	+	·	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

1 10 11 11 12 12 12 12	Contig			Stop	match	match gene name	l t atm	I then	Jeneth
1 6 1910 1573 5 4 10047 Inach polypoptida, part of Cert failly subtiliar 15 1916 17 1916 17 1916 17 1916 17 1916 17 1916 17 1916 17 1916 17 1916 191		=	(uc)	(uc)	dession				(nt)
1 1986 3 601 PID 6231919 IDD-9 elucose A depiesacsa (Bacillus substituis) 75 2 7353 6774 9i 162378 13 140278 13 140280	151	9	9100	1 7673	91 40467	part	75	57	1428
2 9 1735 6774 [01] [42078 [Diveace] dehydropense [becilius scenarioshilus] 75 2 1735 9730 [91] [PD] [e2054455 [unibleaded55] [unibleaded57] [unibleaded	158	-	986			UDP-glucose 4-epimerase (Bacillus subtilis)	27	63	984
1 245 279 Gail Propiezio del Concesta del Concest	172	8	5653	6774	gi 142978	glycerol dehydrogenase [Bacillus stearothermophilus]	75		1122
1 244 29 cmi Projektives Cross-se Cross-section	172	6	1 7139	1 9730		unknown (Mycobacterium tuberculosis)	75	58	2592
1 6 5225 4213 G 1574806 Sparraidhae/putreacine transformer (pock) [Haemophilus	173	-	261	67		[C10C5.6 [Caenorhabditis elegans]	75	50	183
6 2215 4210 [eli19318] [phosphortbasy] anthranilate transferace [Lactococcus lactis] 75 6 1 153 [eli4013] [AR000642] conserved hypothatical protein [Hallcobacter pyloti] 75 1 1 1 153 [eli4013] [homolog of E-coli fibosomal protein Lil Bacillus subtilis] 75 4 1 2 4.18 [eli1233159] [homolog of E-coli fibosomal protein Lil Bacillus subtilis] 75 1 2 4.18 [eli1231329] [homolog of E-coli fibosomal protein Lil Bacillus subtilis] 75 1 2 1.21 [eli123132] [homolog of E-coli fibosomal protein Lil Bacillus subtilis] 74 2 1.25 [eli123131] [homolog of E-coli fibosomal protein Lil Bacillus subtilis] 74 4 1.25 [eli223131] [homolog of E-coli fibosomal protein Lil Bacillus subtilis] 74 5 4.682 [eli223131] [homolog fibosomal protein Lil Bacillus subtilis] 74 6 5885 4800 [eli121042] [homolog fibosomal protein Lil Bacillus subtilis] 74 1 <td>185</td> <td></td> <td>3066</td> <td>2014</td> <td>91 1574806</td> <td>spermidine putrescine transport ATP-binding protein (potA) [Haemophilus influenzae]</td> <td>75</td> <td>56</td> <td>1053</td>	185		3066	2014	91 1574806	spermidine putrescine transport ATP-binding protein (potA) [Haemophilus influenzae]	75	56	1053
6 1 1181 gi[3114988 (AEDODG622) conserved hypothetical procein [Hallcobactor pyloril] 75 75 75 75 75 75 75 75	191	9	5235	4213	91 149518	phosphoribosyl anthranilate transferase (Lactococcus lactis)	27	61	1023
1 2 418 91 1239 155 151 91 140173 Intercation of E.coli Tibosomal protein [21] Bacillus subtilis] 75 75 151 91 1239 1529 152 151 91 1113198 Uniforom protein (Bacillus subtilis] 75 75 151 91 1113198 Uniforom protein (Bacillus subtilis] 75 75 75 75 75 75 75 7	226	~	1774	1181			25	65	594
1 22 418 91 2291359 APCO082201 Ytgf Bacillus subtilis 75 75 151 91 119198 APCO082201 Ytgf Bacillus subtilis 75 75 75 75 75 75 75	231	-	-	153	191 40173		75	57	153
1 552 151 Gill19199 Unknown protein (Bacillus subtilis) 75 75 75 75 75 75 75 7	234	_	7	418	•	(AF008220) Ytql [Bacillus subtilis]	25	- 65	417
1 1358 3827 94 (40011	279	-	552	151	gi 1119198	unknown protein (Bacillus subtilis)	27	90	402
10 14721 17560 gi 1293323 (AF008220) Ytd1 (Becillus subtilis)	291	-	1 3558	1 3827	191 40011	(AA 1-161) (Bacillus	75	87	270
10 16721 17560 941 2293323 (AF008220) YtdI (Bacillus subtilis) 74 74 74 74 74 74 74 7	375	~	1 137	628	191 410137	ORFX13 (Bacillus subtilis)	75	88	492
6 4682 6052 91 1354211 PET112-11ke protein Bacillus subtilis 74 3141 2427 9ni PID 4101319 Yog1 Bacillus aubtilis 74 3141 2427 9ni PID 4101319 Yog1 Bacillus aubtilis 74 74 74 74 74 74 7585 4800 91 1072381 91utamyl-aminoperidase Electococcus mutans 74 74 74 75 75 91 91 91 91 91 91 91 91 91 9	9	-30	116721	117560		(AF008220) Ytdl (Bacillus subtilis)	74	53	840
4 3341 2427 gml PID[d101319 Yqg1 [Bacillus subtilis]	,	9	4682	1 6052	91 1354211	PET112-11ke protein (Bacillus subtilis)	74	09	1371
6 5885 4800 gil 1072381 glutemyl-aminopeptidase [Lactococcus lactis] 74	18	-	3341	1 2427	gni Pib dioi319	YqgI (Bacillus subtilis)	74	54	915
1 2 367 91 91 91 91 91 91 91 9	7	9	1 5885	4800	gi 1072381	glutamyl-aminopeptidase (Lactococcus lactis)	74	59	1086
1 2 367 [gn1 PID d100932 H2O-forming NADH Oxidase Streptococcus mutans]	24	-	139	548	91 2314762	1	74	46	192
18 11432 12964 gi 537034 ORF_0488 (Escherichia colij) 10 8924 6669 gi 1513069 P-type adenosine triphosphatase (Listeria monocytogenes) 74 11 11964 11401 gn1 PID e283110 femD Staphylococcus aureus 74 12 1782 427 gi 2293216 (AF008220) putative UDP-N-acetylmuramate-alanine ligase (Bacillus subtilis) 74 10 9414 8065 gn1 PID d101325 YqiB (Bacillus subtilis 74 1	25	-	1 2	367	gn1 PID d100932	[H2O-forming NADH Oxidase [Streptococcus mutans]	1 1/2	63	366
10 8924 6669 Gal 1313069 P-type adenosine triphosphatase [Listeria monocytogenes] 74 74 74 74 791 79293216 (AF008220) putative UDP-N-acetylmuramate-alanine ligase [Bacillus subtilis] 74 74 75 75 75 75 75 75	38	118	[11432	12964	91 537034	ORF_0488 (Escherichia coli)	74	57	1533
11 11964 11401 fani PID e283110 femD [Staphylococcus aureus] 2 1782 427 gi 2293216 (AF008220) putative UDP-N-acetylmuramate-alanine ligase [Bacillus subtilis] 74 10 9414 8065 gnl PID d101325 YqiB Bacillus subtilis] 74	8	97	8924	6999	91 1513069		74	53	2256
2 1782 427 gi 2293216 (AF008220) putative UDP-N-acetylmuramata-alanine ligase [Bacillus subtilis] 74 10 9414 8065 gnl PID d101325 YqlB Bacillus subtilis] 2 666 926 pir C31496 C314 hisc homolog - Bacillus subtilis 74 9 8985 8080 Gi 683585 prephenate dehydratase [Lactococcus lactis]	55	=	11964	11401		[femD [Staphy]ococcus aureus]	74	799	564
10 9414 8065 gnl PID d101325 YqiB [Bacillus subtilis] 2 666 926 Pir C33496 C334 PisC homolog - Bacillus subtilis 74 74 74 74 74 74 74 7	19	- 5	1782	427	91 [2293216	'008220) putative UDP-N-acetylmuramate-alanine ligase (Bacillus	74	55	1356
2 666 926	26	2	9414	8065	101325	YqiB (Bacillus subtilis)	74	54	1350
9 8985 8080 gi 683585 prephenate dehydratase (Lactococcus lactis)	8		999	926	6 0334	- i	7.4	55	261
	96	6 !	8982	8080	91 683585		74	55	906

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ID	Start (nt)	Stop (nt)	match	match gene name	ais 1	* ident	length
102	5	5005	5652	91 143394	OMP-PRPP transferase (Bacillus subtilis)	74	57	648
103	5	4364	3267	gn1 PID e323524	YloN protein (Becillus subtilis)	74	62	1098
801	~	6864	7592	[gn1 PID e257631	methyltransferase (Lactococcus lactis)	74	98	729
131	~	478	146	gn1 PID d101320	YqgZ Bacillus subtilis]	24	45	333
61	~	1380	919	gn1 PID e313025	hypothetical protein (Bacillus subtilis)	74	09	462
137	-	6167	6787	gn1 P1D d100479	-	74		621
149	-	3008	3883	gn1 P1D d100581	gn PID d100581 high level kasgamycin resistance (Bacillus subtilis)	74	\$5	876
157	~	243	824	gi (1573373	methylated-DNAprotein-cysteine methyltransferase (dat1) (Haemophilus	74	87	582
164	. —	3515	4249	91 410131	ORFX7 (Bacillus subtilis)	74	4 8 8	31.6
167	~	5446	5201	91 413927	Ipa-3r gene product (Bacillus subtilis)	74		336
171	-	-	1818	gn1 PID d102251	beta-galactosidase (Bacillus circulans)	24	62	8181
172	-	1064	2392	91 466474	cellobiose phosphotransferase enzyme II'' (Bacillus stearothermophilus)	74	1 08	1329
185	<u></u>	326	n	91 1573646	Mg(2+) transport ATPase protein C (mgtC) (SP:P22037) (Haemophilus	74	89	324
188		1089	2018	191 1573008	ATP dependent translocator homolog (msbA) (Haemophilus influenzae)	74	44	916
189	=	6491	7174	91 1661199	sakacin A production response regulator (Streptococcus mutans)	74	09	489
210	-	520	1287	91 2293207	(AF008220) YtmQ [Bacillus subtilis]	74	09	768
261	-	836	192	91 666983	putative ATP binding subunit (Bacillus subtilis)	74	55	645
263		1619	3655	91 663232	Similarity with S. cerevisiae hypothetical 117.7 kD protein in subtelomeric Y' repeat region (Saccharomyces cerevisiae)	74	42	2037
265	2	844	1227	gi 49272	Asparaginase (Bacillus licheniformis)	74	64	384
368	-	-	942	91 603998	unknown (Saccharomyces cerevisiae)	74	39	942
-	16 [1	13357	11921	gn1 PID d101324	YqhX (Bacillus subtilis)	73	57	1437
17	10	5706	5449	gn1 PID e305362	unnamed protein product (Streptococcus thermophilus)	73	47	258
	-	522	244	gn1 PID d100576	single strand DNA binding protein (Bacillus subtilis)	13	55	279
32 -	-	5667	6194	gn1 PID d101315	YqfG (Bacillus subtilis)	73	88	528
7	112	10281	9790	gn1 PID d102151	(AB001684) ORF42c (Chlorella vulgaris)	73	1 97	492
						+	*	•

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	OR O	Start (nt)	Stop (nt)	match	match yene name	e is	• ident	length (nt)
40	112	9876	9226	191 1173517	riboflavin synthase alpha subunit [Actinobacillus pleuropneumoniae]	73	55	651
55	~	3592	839	gn1 P10 d101887	cation-transporting ATPase PacL (Synechocystis sp.)	73	09	2754
- 55	118	17494	16586	gn1 PID e265580	unknown (Mycobacterium tuberculosis)	33	52	606
69	16	1213	1767	91 143419	ribosomal protein L6 (Bacillus stearothermophilus)	73	09	555
99	<u> </u>	3300	3659	gn1 P1D e269883	Lace [Lactobacillus casel]	73	52	360
0.	01	5557	5733	191 857631	envelope protein (Human immunodeficiency virus type 1)	13	09	177
11	-	6133	8262	gn1 P1D e322063	ss-1,4-galactosyltransferase Streptococcus pneumoniae	73	\$	2130
1 72	-	6	1881	91 2293177	(AF008220) transporter (Bacillus subtilis)	73	20	849
1 76	,	1 7019	6195	gn1 P10 d101325	YqiF (Bacillus subtilis)	23	99	825
16	112	10009	9533	91 1573086	uridine kinase (uridine monophosphokinase) (udk) (Haemophilus influenzae)	33	54	1 774
80	7	8113	9372	gi 1377823	aninopeptidase (Bacillus subtilis)	73	09	1260
6	2	3389	8991	gn1 PID d101954	d101954 dihydroxyacid dehydratase (Synechocystis sp.)	13	54	1722
86	6	6912	7619	gn1 PID e314991	FtsE (Mycobacterium tuberculosis)	73	54	1 801
108	=	10928	10440	191 388109	regulatory protein (Enterococcus faecalis)	33	54	489
128	9	3632	4222	[91]1685111	orf1091 [Streptococcus thermophilus]	7.3	63	591
138	~	1575	394	gi 147326	transport protein (Escherichia coli)	22	09	1182
140	=	12538	11903	pir E53402 E534	serine O-acetyltransferase (EC 2.3.1.30) - Bacillus stearothermophilus	23	55	636
162	2	5701	4991	gn1 PID e323511	putative YhaQ protein (Bacillus subtilis)	67	20	711
1 164	7	2323	2790	gi 1592076	hypothetical protein (SP:P25768) [Methanococcus jannaschii]	66	52	468
164	80.	4815	5546	g1 410137	ORFX13 (Bacillus subtilis)	33	36	732
170		4394	5302	gn1 PID d100959	homologue of unidentified protein of B. coli [Bacillus subtilis]	67	46	1 606
178	_	3893	4855	91 46242	nodulation protein B, S'end (Rhizobium loti)	73	99	963
204	9	9605	4278	gn1 PID e214719	PicR protein (Bacillus thuringiensis)	13	7	819
213	~	632	2037	91 1565296	ribosomal protein Si homolog; sequence specific DNA-binding protein [Leuconostoc lactis]	33	55	1206
231	~	84	287	91 40173	homolog of E.coll ribosomel protein L21 (Bacillus subtilis)	73	19	204
237	-	2	505	gi 1773151	adenine phosphoribosyltransferase [Escherichia coli]	73	\$1	504
				111111	**************************************			********

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	sim	* ident	length (nt)
569	-	7	691	gn1 P1D d101328	Yqix (Bacillus subtilis)	67	36	1 069
289	-	1272	832	pir A02771 R7MC	ribosomal protein L7/L12 - Micrococcus luteus	23	99	441
343		114	484	91 1788125	(AE000276) hypothetical 30.4 kD protein in man2-cspC intergenic region [Escherichia coli]	23	47	471
356	-	222	•	gi 2149905	D-glutamic acid adding enzyme (Enterococcus faecalis)	1 67	05	219
,	2	3165	4691	gn1 P1D d101833	amidase (Synechocystis sp.)	27	52]	1527
,	6	1 7195	1 7647	91 146976	husB (Escherichia coli)	72	54	453
	77	13743	13300	gn1 PID e289141	similar to hydroxymyristoyl-(acyl carrier protein) dehydratese (Bacillus subtilis)	22	- 65	444
22	-119	15637	16224	gn1 PID d101929	ribosome releasing factor (Symechocystis sp.]	72	51	588
33	=	112111	111425	gn1 PID d101190	ORF3 (Streptococcus mutans)	72	55	687
34	-	7147	1 5627	[91] 196501	aspartyl-tRNA synthetase [Thermus thermophilus]	72	52	1521
86	-3	15372	16085	pir H64108 H641	L-ribulose-phosphate 4-epimerase (araD) homolog - Maemophilus influenzae	72	54	714
39	5	5094	6905	gn1 P1D e254877	unknown (Mycobacterium tuberculosis)	72	56	1812
90	9	4469	4636	[gi 153672	[lactose repressor (Streptococcus mutans)	27.	58	168
48	7	1459	1253	91 310380	Inhibin beta-A-subunit (Ovis aries)	72	33	207
88	- 5	21729	22424	91 2314329	(AE000623) glutamine ABC transporter, permease protein (glnP) (Hellcobacter pylori)	22	68	969
05	- 2	4529	3288	19111750108	YnbA (Bacillus subtilis)	72	54	1242
51	-	1044	2282	g1 2293230	(AF008220) YtbJ (Bacillus subtilis)	127	1 84 1	1239
52	=	13681	113938	gi 142521	deoxyribodipyrimidine photolyase [Bacillus subtilis]	72	45	258
1 55	-	841	35	91 882518	ORF_0304; GTG start [Escherichia coli]	72	59	807
22	5	2832	3191	gn1 PID e209886	mercuric resistance operon regulatory protein [Bacillus subtilis]	127	7	360
1 76	9	6229	1772	91 142450	ahrC protein (Bacillus subtilis)	72	53	459
62	5	5905	4592	gi 2293279	(AF008220) YtcG [Bacillus subtilis]	72	- 97	474
87	=	14726	112309	gn1 P1D e323502	putative PriA protein (Bacillus subtilis)	72	52	2418
91	-	444	662	gi 500691	MY01 gene product (Saccharomyces cerevisiae)	72	- 05	219
16	-	4516	4764	91 829615	skeletal muscle sodium channel alpha-subunit [Equus caballus]	72	38	249
						+	-	+

 ${f E}$ 2. S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Inteline App31 protein [Bacillus subtilis]	Contig ID	ORF TD	Start (nt)	Stop (nt)	match	match gene name	sim	• Ident	length (nt)
1 1452 118 GI 413131 California phosphates regulatory procein (Spreabscypties ap.) 1 3 2132 Gal PID G10331 Gultamine-binding pertylassic procein (Symechocypties ap.) 2 1735 2478 Gi 21325 (APO15775) carboxypoptidase (Bacillus subtilis) 3 1735 2478 Gi 21325 (APO15775) carboxypoptidase (Bacillus subtilis) 4 8 855 8795 Gi 27327 (APO16775) carboxypoptidase (Bacillus subtilis) 5 8166 1247 Gal PID 21326 (APO1676) (APO1676) (APO1676) (APO1676) 6 855 816 Gi 27327 (APP-dependent section (Bacillus subtilis) 7 8 8 8 8 9 Gi 27337 (APP-dependent section (Bacillus subtilis) 8 8 851 (41) (Gil)	95	2	2004	7171	gn1 P1D e323527	7 – 1	122	07	1 288
1 3 2192 Control Problem Control	109	-	1452	118	Gi 143331	alkaline phosphatase regulatory protein [Bacillus subtilis]	22	52	1335
1 135 1378 1378 191 413136 (1491)3715 carboxypeptidae (Becillua subtilis)	126	- !	6	2192	gn1 PID d101831		22	99	2190
10 5601 5702 61 47222 10F 4 (Synaehococus hirse) 10 5601 5703 61 47224 10F 4 (Synaehococus pp.) 11 1256 1367 1371 10F pp 132291 19700-batical protein (Bacillus subtilis) 12 2084 1083 501 107 10	130	6	1735	1 2478	91 2415396	(AP015775) carboxypeptidase [Bacillus subtilis]	22	53	744
10 1860 1910 91 91 921 921 921 921 922 921 922 920 921 922 920 922 920 922 920 922 920 922 920 922 920 922	137	9	2585	2929	gi 472922	v-type Na-ATPase [Enterococcus hirae]	22	46	345
1 1026 1247 Gan Projectives Prypochetical procesn Pacifiles subtilis 1 1025 1316 1314 13174327	140	110	1 9601	9203	gi 49224	URP 4 (Synechococcus sp.)	22	48	399
2 2084 1083 9n1 PID 8335016 hypothetical protein [Becillus subtilia] 3 5181 5186 91 77237 TPP-dependent acetoin dehydrogenase bate-aubunit [Clostridius magnum] 8 5381 5433 91 974323 NaD PID 4002032 NaD PID 4002032 NaD PID 4002032 NaD PID 400203 NaD PID	146	s -	1906	1247	gn1 PID e324945	i	72	45	099
5 6156 5146 91 47227 TPP-dependent section dehydrogenase beta-subunit [Closeridium magnum] 8 5381 6433 91 974332 NNDPPH-dependent dihydroxyacetone-phosphate reductase [Bacillus subtilis] 14 100256 9573 91 1788770 (ABG00310) o463; 24 pct identical (14 gaps) to 338 residuas from colij 10026 91 1788770 Panicillus-binding protein 4. Pabe_BACSU SW: P3399 (451 as) [Escherichla colij 10020 91 1788770 Panicillus-binding protein 4. Pabe_BACSU SW: P3399 (451 as) [Escherichla colij 10020 91 1788770 Panicillus-binding protein 4. Pabe_BACSU SW: P3399 (451 as) [Escherichla colij 10020 91 1788770 Panicillus-binding protein 4. Pabe_BACSU SW: P3399 (451 as) [Escherichla colij 10020 91 91 91 91 91 91 91 9	147	~	2084	1083	gn1 PID e325016	hypothetical protein (Bacillus	121	95	1002
14 10256 9675 gni PrD d10119 YqqaY [Bacillus subtilis] 14 10256 9675 gni PrD d101119 YqqaY [Bacillus subtilis] 15 4005 4999 gi 1788770 [ARD00310] od63; 24 pct identical [44 gaps] to 318 residues from call 100 9907 10620 gi 1788770 minknown [Saccherocayes careaisiae] 10 9907 10620 gi 1781373 unknown [Saccherocayes careaisiae] 11 12 1449 gi 1781373 unknown [Saccherocayes careaisiae] 12 13 1449 gi 1781373 unknown [Saccherocayes careaisiae] 13 1449 gi 1781373 unknown [Saccherocayes careaisiae] 14 15 16 gi 1781373 unknown [Saccherocayes careaisiae] 15 16 16 gi 1781373 unknown [Saccherocayes careaisiae] 16 17 17 17 17 gi 1781373 unknown [Saccherocayes careaisiae] 17 17 18 gi 1781373 unknown [Saccherocayes careaisiae] 18 19 gi 1781373 unknown [Saccherocayes careaisiae] 19 10467 gi 1781374 unknown [Saccherocayes careaisiae] 10 gi 1781374 gi 1781374 unknown [Saccherocayes careaisiae] 11 1005 gi 1781374 unknown [Saccherocayes careaisiae] 12 12 13 13 14 gi 1781384 gi 1781384 gaclilus subtilis] 10 12 12 12 12 12 12 12	147	2	6156	5146	gi 472327	TPP-dependent acetoin dehydrogenase beta-subunit [Clostridium magnum]	72	98	1011
14 10256 9675 gri PID diologic McR0003301 o465; 24 pct identical (14 gaps) to 318 residues from penicullin-binding protein 4. PBPE_BACSU SN: P33959 (451 aa) [Escherichia coli] 10 9907 10620 gri 1761387 unknown [Saccharomyces carevisiae] 1 3 449 gri 1761387 unknown [Saccharomyces carevisiae] 1 2862 3602 gri 1761387 unknown [Saccharomyces carevisiae] 1 1 1 449 gri 1761387 unknown [Saccharomyces carevisiae] 1 1 1 1 449 gri 176139 favorhetical intense of a gapattokinase 2 alpha and beta subunits LysC of B. subtilis 1 1018 14 gri 471395 This ORP is homologous to a 40.0 kd hypothetical protein in the http 3/	148	8	5381	6433	91 974332	NAD(P)H-dependent dihydroxyacetone-phosphate reductase [Bacillus subtilis]	22	54	1053
10 9907 10620 91 1788770 Panicillin-binding protein 4', PBPE_BACSU SW: P12959 (451 aa) [Eacherichia protein 4', PBPE_BACSU SW: P12959 (451 aa) [Eacherichia coli] 10 9907 10620 91 1574175 Phyothetical [Haemophilus influenze] 1 2862 3602 91 1574175 Phyothetical [Haemophilus influenze] 1 1 1449 91 1574175 Phyothetical [Haemophilus influenze] 1 1018 14 91 1774175 Phyothetical [Haemophilus influenze] 1 1018 14 91 1774175 Phyothetical [Haemophilus influenze] 1 1018 14 91 1774175 Phyothetical call of the subunits LysC of B. subtilis 1 1018 14 91 17741795 Phyothetical call of the subunits LysC of B. subtilis 1 1018 14 91 1775197 Phyothetical call of the subunits of the subuni	148	= = =	10256	9675	gn1 PID d101319	YqgN (Bacillus subtilis)	127	20	582
10 9907 10620 94 763187	159		4005	4949	91 1788770	(AE000330) 0463; 24 pct identical (44 gaps) to 338 residues from penicillin-binding protein 4., PBPE_BACSU SW: P32959 (451 aa) (Escherichia coll)	72	\$	945
1 1449 91 290513 6770 (Escherichia coli) 1449 91 290513 6770 (Escherichia coli) 2 899 540 91 290513 6770 (Escherichia coli) 1018 14 91 474195 70 70 70 70 70 70 70 7	172	110	9907	10620	191 763387	[unknown [Saccharomyces cerevisiae]	72	55	714
1 3 449 g1 290513 [f470 [Escherichia coli]]	220	- 3	2862	3602	91/1574175	hypothetical (Maemophilus influenzae)	22	20	141
1 1018 14 gi 474195 This ORP is homologous to a 40.0 kd hypothetical protein in the htmb 3. 1 1018 14 gi 474195 This ORP is homologous to a 40.0 kd hypothetical protein in the htmb 3. 1 1018 14 gi 474195 This ORP is homologous to a 40.0 kd hypothetical protein in the htmb 3. 1 63 587 gi 745399 Eregion from E. coli, Accession Number X61000 [Mycoplasma-like organism] 1 1326 4 gi 158127 Protein Kinase C (Drosophila melanogaster)	267	1	,	449	191 290513	[f470 [Escherichia coli]	127	48	447
1 1018 14 91 474195 Triss ORP is homologous to a 40.0 kd hypothetical protein in the htrB 3' region from E. coli, Accession Number X61000 [Mycoplasma-like organism] 1 63 587 91 746399 Itanscription elongation factor [Escherichia coli] 1 1326 4 91 158127 Protein Kinase C [Drosophila melanogaster] 1 227 3 9n Pip 4 1005 Pip 4 1005 Pip 4 4435 1869 91 49384 Pip Pip 4 4435 1869 91 49384 Pip Pip 4 4435 1869 91 49384 Pip Pip 4 4435 Pip 4 4 4435 Pip 4 4 4 4 4 4 4 4 4	281	~	899	540	gn1 P1D d100964	2 alpha and beta subunits Lysc of B.	72	45	360
1 63 587	290	-	1018	14	91 474195	This ORP is homologous to a 40.0 kd hypothetical protein in the htrB 3' region from E. coli, Accession Number X61000 [Mycoplasma-like organism]	72	\$5	1005
1 1326 4 gi 58127 protein kinase C (Drosophila melanogaster) 1 227 3 gni PiD d101164 unknown (Bacillus subtilis) 1 1 1005 gni PiD d102048 C. thermocellum beta-glucosidase; P26208 (985) (Bacillus subtilis) 10 8134 10467 gni PiD e264229 unknown (Mycobacterium tuberculosis) 20 16231 15464 gi R046 3-oxoacyl-(acyl-carrier protein) reductase (Cuphea lanceolata) 1 1297 2 gni PiD d100571 replicative DNA helicase (Bacillus subtilis) 4 4435 1869 gi 499384 orfi89 Bacillus subtilis)	300	_	63	587	[gi[746399	transcription elongation factor (Escherichia coli)	1 27	20	525
1 227 3 gni PID d101164 unknown (Bacillus subtilis)	316	-	1326	*	gi 158127	protein kinase C (Drosophila melanogaster)	72	9	1323
1	342	-	1227	~	gn1 PID d101164	unknown (Bacillus subtilis)	72	54	225
10 8134 10467 gan PID e264229 unknown (Mycobacterium tuberculosis)	354	-	-	1005	gn1 PID d102048	C. thermocellum beta-glucosidase, P26208 (985) (Bacillus subtilis)	72	52	1005
20	9	2		10467	gn1 PID e264229	unknown [Mycobacterium tuberculosis]	111	57	2334
1 1297 2 gnl PID d100571 replicative DNA helicase (Bacillus subtilis) 4 4435 3869 gi 499384 orf189 (Bacillus subtilis)	7	20	16231	15464	- 1]-oxoacy1-(acy1-carrier protein) reductase (Cuphea lanceolata)	71	52	768
4 4435 3869 91 499384 orf189 Bacillus subtilis	15	7	1297	2	gn1 PID d100571	replicative DNA helicase (Bacillus subtilis)	71	51	1296
	15	-	4435	1 3869	91 499384		17	- 4	567

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	metch	match gene name	s sin	* ident	length (nt)
18	9	5120	4218	gn1 P1D d101318	YagG (Bacillus subtilis)	7.1	51	903
29	-		540	91 1773142	similar to the 20.2kd protein in TETB-EXOA region of B. subtilis [Escherichia coli]	71	26	540
38	20	13327	13830	191 537036	ORP_0158 (Escherichia coli)	71	48	504
51	7	115015	112676	gi 149528	dipeptidyl peptidase IV [Lactococcus lactis]	1.1	55	2340
55	53	21040	20585	91 2343285	[AF015453] surface located protein [Lactobacillus rhamnosus]	71	28	456
60	~	705	265	gn1 PID d101320	Yqg2 (Bacillus subtilis)	11/	44	441
17.	18	24679	126226	gi 580920	rodD (gtaA) polypeptide (AA 1-673) [Bacillus subtilis]	71	44	1548
12	25	(30587	30360	91 606028	ORF_0414; Geneplot suggests frameshift near start but none found [Escherichia coli]	71	05	228
7.2	9	5239	6229	191 580835	lysine decarboxylase [Bacillus subtilis]	11	48	1491
22		11991	12878	gi 624085	similar to rat beta-alanine synthetase encoded by GenBank Accession Number \$27881; contains ATP/GTP binding motif (Paramecium bursaria Chlorella virus 1)		94	8 8
13	Ξ	7269	1 7033	191 1906594	PNI (Rattus norvegicus)	11	42	237
74	9	10385	8517	91 1573733	prolyl-tRNA synthetase (proS) [Haemophilus influenzae]	112	52	1869
18	6	5772	6578	91 147404	mannose permease subunit II-M-Man [Escherichia coli]	ונ	45	807
98	2	4602	3604	gn1 PID e322063	ss-1,4-galactosyltransferase [Streptococcus pneumoniae]	11	53	666
105	7	3619	4707	[gi 2323341	(AF014460) PepQ (Streptococcus mutans)	71	88	1089
	2	13557	12955	gi 1519287	LemA [Listeria monocytogenes]	ונג	48	603
114	7	1029	1979	gi 310303	mosa (Rhizobium melllot!)	71	- 88	951
122	~	564	1205	91 1649037	glutamine transport ATP-binding protein GLNQ (Salmonella typhimurium)	11	- 05	642
132	5	9018	7063	gn1 PID d102049	 H. influenzae hypothetical ABC transporter; P44808 (974) [Bacillus subtilis] 	11	51	1956
140		1141	227	91 1673788	(AE000015) Mycoplasma pneumonies, fructose-bisphosphate aldolase; similar to Swiss-Prot Accession Number P11243, from B. subtilis (Mycoplasma pneumoniae)	17	6	915
0	'n	5635	4973	gn1 P1D d100964	homologue of hypothetical protein in a rapamycin synthesis gene clustar of Streptomyces hygroscopicus (Bacillus subtilis)	17	89	663
141		7369	7845	gn1 P10 d102005	(ABD01488) FUNCTION UNKNOWN, SIMILAR PRODUCT IN E. COLI AND HYCOPLASHA PNEUMONIAE. (Bacillus subtilis)	ני	51	477
				í!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	· • • • • • • • • • • • • • • • • • • •	+		•

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

1554 691 1592 Circle Caseal Process Process	Cont ig	TOR I	Start (nt)	Stop (nt)	match	metch gene name	sin	* ident	length (nt)
13 2005 1934 [4] [33334] Coord (Bedlius subtilia) 13 1300 1310 [1118] [4] [133374] [And000090] VAPE [Inhicobius sp. We3244] 71 65 13 1310 [1118] [4] [1313778] [And000010] Mappelhatical protein in pure 5 : region [Racherichia coli]] 71 65 13 1311 [311] [411432] [422] [411432] [422] [411432] [422] [423] [42	193	-	-	165	91 46912		1,1	- 65	165
13 1310 1311 5111123374 (ASSODORO) Vig. Reliablian sp. Web33141 71 53 12 2566 3732 9111293738 (ARBO0311) hypothetical protein in pure 5 region (Recherichia coll) 71 66 12 1002 114 911312 (Perg demo product (Recherichia coll) 71 66 13 1002 1386 911589300 (Perg demo product (Recherichia coll) 71 66 14 1002 1386 911589300 (Perg demo product (Recherichia coll) 71 66 15 1003 1386 91158910 (Perg demo product (Recherichia coll) 71 66 15 1004 1004 (Perg demo product (Recherichia coll) 71 66 15 1015861 (Perch demo) Perch demo (Recherichia coll) 71 66 16 102 (Perch demo) Perch demo) Perch demo) Perch demo) 71 66 10 101 101 Perch demo) Perch demo) Perch demo) 71 71 <td< td=""><td>194</td><td>-</td><td>2205</td><td>1594</td><td>(91 535351</td><td>Cody [Bacillus subtilis]</td><td>17</td><td>52</td><td>612</td></td<>	194	-	2205	1594	(91 535351	Cody [Bacillus subtilis]	17	52	612
2 2022 1014 19114732 [18000231] Mypotherical procein in pure 5 - region [Recherichis coll] 71 46 2 2022 1014 19114122 [69C gene product [Bacillus abbillis] 71 46 5 1015 1015 1015 1015 1015 1015 gene product [Bacillus abbillis] 71 48 6 1060 2020 1016 1015 gene product [Bacillus abbillis] 71 48 1 100 2020 1016 1015 gene product [Bacillus abbillis] 71 48 2 1 100 2020 1016 1016 gene product [Bacillus abbillis] 71 48 2 1 100 2020 1016 1016 gene product [Bacillus abbillis] 71 48 2 1 100 1016 1016 1016 gene product [Bacillus abbillis] 71 48 2 2 1 100 1016 1016 gene product [Bacillus abbillis] 71 48 2 3 1 100 1016 gene product [Bacillus abbillis] 71 71 48 2 4 2 10 1016 gene product [Bacillus abbillis] 71 71 71 71 2 5 1 10 1016 gene product [Bacillus abbillis] 71 71 71 71 71 3 6 1 1 2 1 10 1016 gene product [Bacillus abbillis] 71 71 71 71 71 71 71	199	-	1510	1319	91 2182574	(AEC00090) YapE [Rhizobium sp. NGR234]	12	45	192
2 1022 1111 19141422 George genes perchetic Rachillus abbellists 71 46 5 1911 2011 1914161 Oner genes prochetic Rachillus abbellists 71 46 6 1058 2316 19156 10000 10000 10000 1000 1000 1000 1000 10000 1000 1000 10000 1000 10000	208		2616	3752	[91]1787378	protein in purB 5'	17.	57	1137
6 1056 1386 1916 10873 1916 10873 1916 1	209	~	2022	1141	gi 41432	[fepC gene product [Escherichla coli]	12	46	882
6 1056 1356 1316 91 5109000 Over) gene product [Bacillus subtilie] 13 1256 1318 91 5137467 Fibonucleatide reductase Ri subunit [Mycobacterius tuberculosis] 71 75 75 75 75 75 75 75	210	- 2	11911	3071	91 49316	gene product	127	45	1161
1 7541 1391 191537597 Thomacleactide reductase RI subunit Inycobacterius Luberculisais 71 500 1 200 2320 pull Pingidini33 Vegat Seculius aubtilisa 71 50 1 13 1053 pull Pingidino34 Inamacos of separatakinase 2 siphs and beta subunita Lyac of 8. subulitisa 71 66 2 1006 1874 gil 135501 Inhrhom Inhodobaccer capacitatus 71 66 2 1006 1874 gil 135894 Inhrhom Inhodobaccer capacitatus 71 66 4 2.137 1865 101 Inhrhom Inhodobaccer capacitatus 71 71 71 1 1 2 101 Inhrhom Inhodobaccer capacitatus 71 71 71 71 1 1 3 66 17 191 projector Inhrhom Inhodobaccer capacitatus 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 72 <	210	9	3069	3386	91 580900	ORF3 gene product (Bacillus subtilis)	112	48	318
1 300 3230 gnilerpidion320 reget (Baccillus subtilis) 71 50 1 1 13 1053 gnilerpidion324 [Bacillus subtilis] 71 46 71 46 2 1008 1874 gil75561 [Information of supercenting subtilis] 71 46 71 46 1 2 906 712 gil153874 [Information of subtilis] 71 71 46 1 3 165 gnilprid dotas [Information of subtilis] 71	212	- 5	13561	1381	9i 557567	,	17	53	2181
1 13 1053 gml PD d1000564 hemalogue of separtokinase 2 alpha and beta subunite Lyac of B. subtilise 1 1 1 1 1 1 1 1 1 1	233	_	2003	2920			116	50	918
2 1008 1874 gil1558601 junknoom [Bacillus subtilis] 71 46 2 906 712 gil1535874 junknoom [Rhadobacter capculatus] 71 46 4 2137 1565 gnl Projectors kabo055814 yzbr [Bacillus subtilis] 71 14 1 3 683 gil1591045 hypochetical protein (SP-P1406) [Hethanococcus junaschili) 71 15 1 4 2137 156 71 10 42 1 5 64 7419 76 71 71 23 1 688 7 gil197526 [clumping factor (Staphylococcus aureus)] 70 42 1 688 7 gil197526 [clumping factor (Staphylococcus aureus)] 70 42 1 688 1 gil197526 [clumping factor (Staphylococcus aureus)] 70 42 10 8335 9075 gnl Projector (Staphylococcus aureus)] 70 42 10 8345 9075 gnl	244		£1	1053	gn1 P1D d100964	espartokinase 2 alpha and bete subunits Lysc of B.	2	55	1041
2 906 712 [q1 135874 Unknown (Rhodobaccer capsulates) 71 14 4 2137 1565 [q1 1591045 [AB005554] yxpp [Bacillus abblilis] 71 14 1 3 683 [q1 1591045 [Appothatical protein (SP-P31466) [Hethanococcus jannaschii] 71 18 1 3 164 [Q1 1591244 [Appothatical protein (SP-P31466) [Hethanococcus jannaschii] 71 18 1 619 2 [Q1 1591244 [Appothatical protein (SP-P31470) [Hethanococcus jannaschii] 71 18 1 619 2 [Q1 1591244 [Appothatical protein (SP-P31466) [Hethanococcus jannaschii] 71 18 1 619 2 [Q1 1591244 [Appothatical protein (SP-P31466) [Hethanococcus jannaschii] 71 18 1 688 2 [Q1 1591246 [Aumping factor (Staphylococcus aureus)] 71 18 1 688 2 [Q1 1501040000 [Aumping factor (Staphylococcus aureus)] 70 42 1 1054 [Appothatical protein carealise (Staphyloc	251	7	1008	1874	1911755601	unknown [Bacillus subtilis]	1 12	46	867
4 2137 1565 gnil PID d102245 [A8005541] yxbF [Bacillus subtilis] 71 48 1 3 683 glil591045 hypothetical protein (SP-P31466) (Hethanococcus jamaschii) 71 1 48 1 5 164 glil591234 hypothetical protein (SP-P31277) (Hethanococcus jamaschii) 71 1 68 1 688 2 gil199726 clumping factor (Staphylococcus aureus) 71 23 1 688 2 gil199726 clumping factor (Staphylococcus aureus) 70 42 1 688 2 gil199726 clumping factor (Staphylococcus aureus) 70 42 10 839 9075 gnil PID e26946 unknown (Bacillus subtilis) 70 45 14 11024 10254 gnil PID e100229 unknown (Bacillus subtilis) 70 52 1 1057 287 gnil PID e101020 unknown (Bacillus subtilis) 70 52 2 1057 287 gnil PID e101020 <t< td=""><td>282</td><td>- 2</td><td>906</td><td>112</td><td>91 1353874</td><td></td><td>1 12</td><td>46</td><td>195</td></t<>	282	- 2	906	112	91 1353874		1 12	46	195
1 3 683 91 1591045 hypothetical protein (SP-P31466) [Methanococcus jannaschiil] 71 36 71 36 71 36 71 36 71 37 36 71 37 37 37 37 37 37 37	312	-	2137	1565	gn1 PID d102245	yxbF	1 22	34	573
1 3 164 g1 1591214 hypothetical protein (SP-P42297) (Methanococcus jannaschiii)	338	-	6	683	49 I	hypothetical protein (SP:P31466) (Methanococcus jannaschii)	111	48	681
1 689 2 gi 1397526 clumpling factor (Staphylococcus aureus) 71 23 1 688 2 gi 197526 clumpling factor (Staphylococcus aureus) 70 42 1 688 2 gi 19756 clumpling factor (Staphylococcus aureus) 70 42 1 0 8395 9075 gil PID e155543 purative iron dependant repressor (Staphylococcus epidermidis) 70 46 1 0 8395 9075 gil PID e100309 undefined open reading frame (Bacillus sterothermophilus) 70 55 1 1 0 1024 10354 gil PID e101030 biotin carboxyl carrier protein of acetyl-CoA carboxylase (Symachocystis) 70 56 2 1 0 1 0 2 2 gil PID e101030 biotin carboxyl carrier protein of acetyl-CoA carboxylase (Symachocystis) 70 52 2 1 0 2 2 2 2 3 6 3 6 1 3 6 1 3 6 1 3 6 1 2 2 5 8 6 1846 gil PID e101039 Art540cp (Saccharomyces carevisiae) 3 6 1 3 6 1 3 6 1 13 10 2055 11512 gil 11532 gil 11532 gil 11532 gil 1163295 Art540cp (S	346	-	-	164	91 1591234	hypothetical protein (SP:P42297) (Methanococcus jannaschii)	12	36	162
1 688 2 gil 197526 clumping factor (Staphylococcus aureus) 71 23 1 8 7419 6958 gil PID e269466 Unknown (Bacillus subtilis) 70 46 1 0 8395 9075 gil PID e255543 putative iron dependant repressor (Staphylococcus epidermidis) 70 46 1 1 1024 10254 gil PID e100290 undefined open reading frame (Bacillus stearchermophilus) 70 56 1 8 14213 13719 gil PID e100290 undefined open reading frame (Bacillus stearchermophilus) 70 56 2 1 1057 287 gil PID e100381 unknown (Bacillus subtilis) 70 52 2 2586 1846 gil PID e100381 unknown (Bacillus subtilis) 70 54 2 2586 1846 gil 2193447 (AF008930) ArPase (Bacillus subtilis) 70 54 13 10955 11512 gil 1165295 Ydf540cp (Saccharomyces cerevisiae) Racillus (Irans) 70 50 6 4315 380 91 39198 91 39	374	-	619	7	91 397526	clumping factor (Staphylococcus aureus)	1 11 1	23	618
8 7419 6958 gnl PID e269486 unknown (Bacillus subtilis) 70 42 70 42 70 43 70 43 70 43 70 42 70 43 70 43 70 45 70 70 70 70 70 70 70 7	17.	-	688	7	gi 397526	clumping factor Staphylococcus aureus	12	23	189
10 8395 9075 gnl PID e255543 putative iron dependant repressor [Staphylococcus epidermidis] 70 46 46 46 4715 10254 gnl PID d100290 undefined open reading frame [Bacillus stearothermophilus] 70 55 70 56 70 57 70 50 70 7	•	8	7419	6958		Unknown (Bacillus subtilis)	1 02	42	462
14 11024 10254 gal PID d100290 undefined open reading frame [Bacillus stearothermophilus] 70 55	•	92	8395	!	gn1 P1D e255543	[putative iron dependant repressor [Staphylococcus epidermidis]	0,	99	681
18 14213 13719 gnl PID d101090 biotin carboxyl carrier protein of acetyl-CoA carboxylase [Symechocystis 70 56 2 1057 287 gnl PID d100581 unknown [Bacillus subtilis] 70 52 4 2610 1789 gnl PID d101195 tyc.J Bacillus subtilis] 70 52 5 2586 1846 gil 2293447 (AF008930) ATPase (Bacillus subtilis) 70 54 13 10955 11512 gil 1165295 Ydf540cp [Saccharomyces cerevisiee] 70 50 6 4315 3980 gil 39478 ATP binding protein of transport ATPases (Bacillus (irmus) 70 51	7	P .	ŀ	10254	gn1 PID d100290	undefined open reading frame [Bacillus stearothermophilus]	1 02	55	111
2 1057 287	1	- 18		13719	gn1 PID d101090	biotin carboxyl carrier protein of acetyl-CoA carboxylase (Symechocystis sp.)	70	95	495
4 2610 1789 gnl PID d101195 yycJ (Bacillus subtilis) 70 52 70 52 70 54 70 54 70 54 70 54 70 54 70 54 70 54 70 54 70 50 70 7	6	~	1057	287	i i	unknown (Bacillus subtilis)	1. 04	52	171
2 2586 1846 gi 2293447 (AF008930) ATPase (Bacillus subtilis) 10955 11512 gi 1165295 Ydr540cp (Saccharomyces cerevisiae) 70 50 6 4315 3980 gi 39478 ATP binding protein of transport ATPases (Bacillus firmus) 70 51	12	-	2610	:		lyyc3 (Bacillus subtilis)	70	52	822
13 10955 11512 gi 1165295 Ydr340cp Saccharomyces cerevisiae 6 4315 3980 gi 39478 ATP binding protein of transport ATPases (Bacillus firmus) 70 51	17	2	2586	1846	91 2293447	(AF008930) ATPase (Bacillus subtilis)	1.02	54	741
6 4315 3980 gi 39478 ATP binding protein of transport ATPases (Bacillus firmus) 70 51	22	Ė	- 1	!	911165295	Ydr540cp (Saccharomyces cerevistae)	70	- 05	558
	30	9	-:	- ;	91 39478	ä	70	51	336

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	OR T	Start (nt)	Stop (nt)	match	match gene name	sia -	1 ident	length (nt)
	-	1 370	113	91 662792	single-stranded DNA binding protein unidentified eubacterium	0,	36	258
33	115	10639	9521	91/1161219	homolgous to D-amino acid dehydrogenase enzyme (Pseudomonas aeruginosa)	0,	80	1 6111
38	9	1 3812	4312	91 2058547	ComYD (Straptococcus gordonii)	02	48	501
38	125	117986	18477	91 537033	OFF_f356 (Escherichia coli)	20	- 58	492
40	=	11054	9846	91/11/3516	riboflavin-specific deaminase (Actinobacillus pleuropneumoniae)	0,	52	1209
42	-	1 722	1954	[91]1146183	putative (Bacillus subtilis)	0,	51	1233
4	_	2373	1 1612	gi 1591493	glutamine transport ATP-binding protein Q (Methanococcus jannaschii)	0,	48	762
45	8	9197	8049	gn1 PID d102036	subunit of ADP-glucose pyrophosphorylase [Bacillus stearothermophilus]	0,	54	1149
65	~	567	986	gn1 P1D d100302	neopullulenase [Bacillus sp.]	0, 1	42	390
9		1 1874	795	gn1 PID e276466	aminopeptidase P (Lactococcus lactis)	1 02	48	1080
19	-	1 5553	2437	gn1 PID e275074	SNF (Bacillus cereus)	02	51	1 7116
19	-	7914	6802	gi 1573037	cystathionine gamma-synthase (metB) [Haemophilus influenzae]	0,	52	1 (111
63	-	5372	7222	gn1 PID d100974	unknown (Bacillus subtilis)	0,	54	1851
89	-	7126	6962	91 1263014	emm18.1 gene product (Streptococcus pyogenes)	0,	37	165
22	112	110081	110911	91 2313093	[AE000524] carboxymorspermidine decarboxylase (nspC) [Helicobacter pylori]	02	95	831
27	2	7888	8124	91 1877423	galactose-1-P-uridyl transferase (Streptococcus mutans)	- 02	65	237
67	-	3424	1 2525	191 39881	ORF 311 (AA 1-311) (Bacillus subtilis)	02	47	1 006
1 87	2	9369	7324	gn1 PID e323506	putative Pkn2 protein (Bacillus subtilis)	0,	52	2046
96	7	10640	11788	91 1573209	tRNA-guanine transglycosylasa (tgt) [Haemophilus influenzae]	0,	52	1149
113	- 5	574	1086	gi 433630	A180 (Saccharomyces cerevisiae)	102	59	513
123	- 5	2901	3461	gn1 PID d100585	unknown (Bacillus subtilis)	70	45	561
125	5	4593	4282	gn1 P1D e276474	capacitative calcium entry channel 1 (Bos taurus)	1 04	35	312
129	5	4500	3454	PID d101314	YqeT (Bacillus subtilis)	1 00	47	1047
133	_	2608	1394	91 2293312	(AF008220) Yter (Bacillus subtilis)	1 02	20	1215
135	=	420	662	gn1 PID e265530	yorfE (Streptococcus pneumoniae)	70	47	243
137	_	438	932	gi 472919	v-type Na-ATPase (Enterococcus hirae)	70	52	195
138	-	440		gi 147336	transmembrane protein (Escherichia coli)	70	42	438
						•		+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

140 116 18796 167 10 8263 204 4 3236 207 3 2627 282 3 1136 6 121 17554 6 121 17554 6 122 18482 22 6 4662 22 9 7992 22 12 9871	16364 6695 2747 2869 882 19471 19471 19471 19471 19471	g1 976441 g2 149535 gn1 P1D d102049 gn1 P1D e309213	NS-methyltetrahydrofolate homocysteine methyltransferase (Saccharomyces cerevisiae)	. 70	53	2433
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2005 2005 2005 2005 2005 2005 2005 2005	gr 149535 gn PrD d102049 gn PrD e309213				
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2869 882 18453 119471 5824 8651		[D-alanine activating enzyme [Lactobacillus casei]	2	52	1569
2 2 2 2 2 2	19453 19471 19471 19471 19471 19471 19471		E. coli hypothetical protein; P31805 (267) (Bacillus subtilis)	70	51	480
2 2 2 2 2	18453 119471 19471 5824 8651		recGAP [Dictyostellum discoideum]	0,	45	243
12 9 6 21	118453 119471 5824 8651 110767	91 1353874	unknown (Rhodobacter capsulatus)	1 02	20	255
22 6 2	19471 5824 8651 10767	[gn1 PID e233879	hypothetical protein (Bacillus subtilis)	69	*	900
9 6 7	8651	{gi 580883	ipa-88d gene product [Bacillus subtilis]	69	53	990
122	10767	91 2209379	(AF006720) ProJ (Bacillus subtilis)	69	48	1143
112	110767	gn1 PID d100580	unknown (Bacillus subtilis)	69	51	099
		gn1 P1D d100581	unknown [Bacillus subtilis]	69	51	897
27 7 5857	5348	gn1 P1D d102012	(ABOO1488) FUNCTION UNKNOWN. (Bacillus subtilis)	69	38	510
36 10 7294	110116	91 437916	isoleucyl-tRNA synthetase (Staphylococcus aureus)	69	53	2823
38 1 2	1 1090	91 141900	alcohol dehydrogenase (EC 1.1.1.1) [Alcaligenes eutrophus]	1 69 1	48	1089
40 14 11333	111944	91 1573280	Holliday junction DNA helicase (ruvA) (Haemophilus influenzae)	69	44	612
40 15 11942	112517	91 1573653	DNA-3-methyladenine glycosidase I (tagI) (Haemophilus influenzae)	69	50	576
45 6 6947	5490	91 580887	starch (bacterial glycogen) symthase (Bacillus subtilis)	69	47	1458
48 34 24932	24153	gn1 PID e233870	hypothetical protein (Bacillus subtilis)	69	36	780
49 6 6183	6521	91 396297	similar to phosphotransferase system enzyme II (Escherichia coli)	1 69 1	20	339
49 8 7586	8338	91 396420	similar to Alcaligenes eutrophus pHG1 D-ribulose-5-phosphate 3 epimerase	69	69	753
55 6 8262	7033	91 1146238	poly(A) polymerase (Bacillus subtilis)	69	- 05	1230
59 3 954	2333	[gn1 PID e313038	hypothetical protein [Bacillus subtilis]	69	54	1380
62 3 1170	1418	915	hypothetical protein (Symechocystis sp.)	1 69	49	249
63 8 7298	1 7762	g1 293017	ORF3 (put.); putative [Lactococcus lactis]	69	42	465
66 4 3657	5081	91 153755	phospho-beta-D-galactosidase (EC 3.2.1.85) [Lactococcus lactis cremoris]	- 69	49	1425
66 5 5126	6829	91 433809	entyme II (Streptococcus mutans)	69	1 99	1704
71 6 10017	110664	gn1 PID e322063	ss-1,4-galactosyltransferase (Streptococcus pneumoniae)	- 69	39	648

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont 19 ID	<u>8</u> 6	Start (nt)	Stop (nt)	acession	match gene name	eis .	* ident	length (nt.)
1,1	21	27730	27966	gn1 PID d100649	DE-cadherin (Drosophila melanogaster)	69	30,	237
77	-	-	237	191 287870	groES gene product [Lactococcus lactis]	69	4	23.7
18	2	3622	4101	91 1573605	fucose operon protein (fucU) [Haemophilus influenzee]	69	52	480
83	-	40	714	pir (033496 0334	hisC homolog - Bacillus subtilis	69	46	529
83	116	15742	16335	[91]143372	phosphoribosyl glycinamide formyltransferase (PUR-N) (Bacillus subtilis)	69	46	594
88	7	1212	916	191 1194097	IFN-response element binding factor 1 (Mus musculus)	69	87	297
16	5	3678	4274	91 1574712	anserobic ribonuleoside-triphosphate reductase activating protein (nrdG) [Haemophilus influenzae]	69	44	597
86	5	3247	4032	gn1 PID d100262	Live protein (Salmonella typhimurium)	69	51	786
108	5	4085	9505	gn1 PID e257629	transcription factor (Lactococcus lactis)	69	69	472
126	_	3078	4568	gn1 PID d101329	YqjJ (Bacillus subtilis)	69	67	1491
131	9	4121	2889	gn1 P1D d101314	YqeR (Bacillus subtilis)	69	47	1233
136	~	1505	2299	gn1 P10 d100581	unknown (Bacillus subtills)	69	47	795
149		3852	4763	gn1 PID e323525	Ylog protein (Bacillus subtilis)	69	20	912
691	2	9336	10655	91 151571	Homology with E.coli and P.seruginosa lysk gene; product of unknown function; putative (Pseudomonas syringse)	69	52	1320
153	-	3191	3829	191 1710373	BrnQ (Bacillus subtilis)	69	44	639
169	_	849	2324	gn1 PID d100582	temperature sensitive cell division (Bacillus subtilis)	69	49	1476
180	-	999	•	gi 488339	alpha-amylase (unidentified cloning vector)	69	20	564
212	-	9611	231	[91]1395209	ribonucleotide reductase R2-2 small subunit (Mycobacterium tuberculosis)	69	53	996
226	-	2	199	pir JQ2285 JQ22	nodulin-26 - soybean	69	- 17	999
233	5	3249	٠	91 472918	v-type Na-ATPase (Enterococcus hirae)	69	56	1518
235	-	099	1766	91 148945	methylase (Haemophilus influenzae)	69	43	1107
243	~	865	2361	gn1 PID d100225	ORF5 (Barley yellow dwarf virus)	1 69	1 69	1497
251	-	2899	1967	91 2289233	macrolide-efflux protein (Streptococcus agalactiae)	69	51	933
310	-	-		PID e322442		69	55	282
369	-	898	~	91 397526	clumping factor (Staphylococus aureus)	1 69	22	867
370	-	749	-	91 397526	clumping factor (Staphylococcus auraus)	1 69	21	747
						+		•

S. pneumoniae - Putative coding ragions of novel proteins similar to known proteins

Cont ig	03 01	Start (nt)	Stop (nt)	match	match gene name	e is	1 ident	length
379	-	44	1 280	gn1 PID d100649	DE-cadherin (Drosophila melanogaster)	69	30	237
388		260	72	91 1787524	(AE000225) hypothetical 32.7 kD protein in trpL-btuR intergenic region (Escherichia coli)	69	*	189
-	7	2006	3040	gn1 PID d101809	ABC transporter (Symechocystis sp.)	89	43	1035
12	- 2	13958	2600	91 2182992	histidine kinase (Lactococcus lactis cremoris)	89	45	1359
15	- 5	1790	1311	pir S16974 R5BS	ribosomal protein L9 - Bacillus stearothermophilus	68	26	480
16	9	7353	5701	gi 1787041	[AE000184) o530; This 530 am orf is 33 pct identical (14 gaps) to 525 residues of an approx. 640 am protein YHES_HAEIN SW: P44808 [Escherichia coll]	89	45	1653
17	112	6479	6805	91 553165	acetylcholinesterase [Homo sapiens]	- 89	68	327
20	=	14128	14505	91 142700	P competence protein (ttg start codon) (put.); putative (Bacillus subtilis)	89	- 07	378
22	135	24612	25397	91 289262	ComE ORF3 Bacillus subtilis	1 89	36	786
30		4548	4288	91 311388	ORF1 (Azorhizobium caulinodans)	89	99	261
36	5	1166	4585	91 1573041	hypothetical [Haemophilus influenzae]	68	54	675
46	9	5219	6040	91 1790131	(AE000446) hypothetical 29.7 kD protein in ibpA-gyrB intergenic region	89	\$	822
54	2	6235	7086	[gi]882579	CG Site No. 29739 [Escherichia coli]	1 89	55	852
55	5	7069	5165	gn1 PID d101914	ABC transporter [Symechocystis sp.]	68	45	1905
12		6134	5613	91 1573353	outer membrane integrity protein (tolA) [Haemophilus influenzae]	1 89	20 -	522
11	2	15342	16613	gi 580866	ipa-12d gene product (Bacillus subtilis)	68	31	1272
1, 1	22	117560	18792	91 44073	SecY protein [Lactococcus lactis]	89	35	1233
11.	=======================================	22295	24703	gi 1762349	involved in protein export (Bacillus subtilis)	89	20 -	2409
22	91	10208	9729	_	durpase (Bacteriophage rlt)	89	51	480
986	81	17198	16011	91 413943	1pa-19d gene product [Bacillus subtilis]	- 89	53	1188
87	= = = = = = = = = = = = = = = = = = = =	17491	15866	91 150209	ORF 1 (Mycoplama mycoides)	- 89	43	1626
88	9	5139	4354	gi 1498824	M. Jannaschii predicted coding region MJ0062 (Methanococcus Jannaschil)	68	40 4	786
89	= :	8021	8242	gi 150974	4-oxalocrotonate tautomerase [Pseudomonas putida]	89	43	222
76	8	6755	5394	91/2367358	(AE000491) hypothetical 52.9 kD protein in aldB-rpsF intergenic region [Escherichia coli]	89	7	1362
				+		•	•	

S. pneumonise - Putative coding regions of novel proteins similar to known proteins

Cont ig ID	10%	Start (nt)	Stop (nt)	match	match gene name	ais *	1 ident	length
98	_	1418	1 2308	gn1 PID d100261	Liva protein (Salmonella typhimurium)			(nt)
66	l	116414	117280	gi 455363	regulatory protein (Streptococus mutane)	90	40	891
115	_	5054	1 3693	gi 466474		89	20	1 967
124	-	1 3394	1221	cocoocedaral and	; -	89	\$	1362
125	,	2022		70/00/01/07/07/07/07	- ; :	89	99	174
	. .		7767	191 1450566	transmembrane protein (Bacillus subtilis)	- 69	50	1002
? .	7	4858	2888	gn1 PID d101732	DNA ligase (Synechocystis sp.)	68	65	
140	_	7765	1 7580	191 1209711	unknown (Saccharomyces cerevisiae)			
150	_	539	r _	91 402490	ADP-ribosylarginine hydrolase [Mus musculus]	00	47	186
164	-	88	1 867	gn1 PID e255114	glutamate racemase (Bacillus subtlis)		66	537
164	~	819	1835	gn1 PID e255117	hypothetical protein (Bacillus subrille)	89	6	810
169		3946	4104	pir B54545 B545	[hynotherical protein	69 -	20	1017
170	-	4247	4396	91 304146		1 89 1	0	159
12.1	8	6002	7054	101138722	cern (pacifins supplies)	69	52	150
000			!	***************************************	Precursor (aa -20 to 381) (Acinatobacter calcoaceticus)	- 68	54	1053
241	7	2473	1871	gn1 PID e313075	hypothetical protein (Bacillus subtilis)	89	1 99	
211	~	696	1802	91 1439528	EIIC-man [Lactobacillus curvatus]			
214	8	4926	4231	gn1 PID d102049	H. influenzae hypothetical protein: P41990 (182) (Backlille		6.0	8.34
217	9	4955	5170	gn1 P1D e326966	similar to B milastic out	89	98	969
_			_		transcriptuse) [Arabidopsis thalians]	89	36	216
218	_	3930	4745	91 2293198	(AF008220) YtgP (Bacillus subtilis)	68	82	210
220	9	4628	4338	4338 - gn1 PID e325791	(AJ000005) orfl (Bacillus megaterium)	89		010
236	-	746	108	191 410137	ORFX13 [Bacillus subtilis]	3	7	7.37
752	- 2	675	1451	gi 396348	homoserine transsuccinylase (Escherichia colti		9	639
250	-	1.17	1229	gi 310859	IORF2 (Symechococcus an I	8	49	777
254	-	\$17	155	oi 11787105		- 68	05	459
			:		INCOUNTED FOR WAS 0669; This 669 as orf is 40 pct identical (1 gaps) to 217 residues of an approx. 232 as protein YBBA_HAEIN SW: P45247 [Escherichia coli]	89	7	363
	-		774	gn1 PID e261990	putative orf [Bacillus subtilis]	1 89	47	1 455
345	- 		653	91 149513	thymidylate synthase (EC 2.1.1.45) [Lactococcus lactis]			
				* I III.		-	70	- 100

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	nis *	* ident	length (nt)
386	7	417	4	91/1573353	outer membrane integrity protein (tolk) [Haemophilus influenzae]	89	51	414
7	4	5722	4697	91 1592141	[M. jannaschil predicted coding region MJIS07 [Methanococcus jannaschil]	67	26	1026
3	9	5397	4591	[gi [2293175	(AF008220) signal transduction regulator (Bacillus subtilis)	67	9	807
\$	~	2301	574	91 (2313385	(AE000547) para-aminobentoate synthetase (pabB) (Helicobacter pylori)	67	89	1728
9	61	16063	16758	91 413931	[fpa-7d gene product [Bacillus subtilis]	1 69 1	7	1 969
23	89	7094	7897	91 1928962	pyrroline-5-carboxylate reductase [Actinidia deliciosa]	67	51	804
59	02	8335	9072	91 468745	gtcR gene product (Bacillus brevis)	1 69 1	4	738
31	<u> </u>	1379	1 585	91 2425123	(AF019986) PksB [Dictyostelium discoideum]	1 69 1	69	. 795
32	Ξ	8849	10150	gi 42029	ORF1 gene product (Escherichia coli)	1 69 1	47	1302
36	91	14830	15546	191 1592142	ABC transporter, probable ATP-binding subunit (Methanococcus jannaschii)	1 69 1	63	117
38	6	4958	5392	[gn1 PID e214803	[72283.3 [Caenorhabditis elegans]	1 69 1	47	435
38.	7,1	13775	114512	191 537037	ORF_0216 (Escherichia coli)	1 69 1	52	738
45	6	10428	9181	91 551710	branching enzyme (glgB) (EC 2.4.1.18) (Bacillus stearothermophilus)	1 69	51	1248
48	53	18344	17514	91 413949	[1pa-25d gene product (Bacillus subtilis)	1 69	80	831
20	-	1773	952	gn1 P1D d101330	YqjQ (Bacillus subtilis)	1 69	55	822
53	_	431	-	g1 1574291	[fimbrial transcription regulation repressor (pilB) [Haemophilus influenzae]	1 69	0.4	429
55	13	12740	11946	gn1 PID e252990	ORF YDL037c [Saccharomyces cerevisiae]	1 69	51	795
63	6	9210	8329	gn1 PID e264711	ATP-binding cassette transporter A (Staphylococcus aureus)	67	05	882
1,	~	5614	6117	gi 1197667	vitellogenin (Anolis pulchellus)	1 . 69	36	504
68	^	4489	4983	91 1142714	phosphoenolpyruvate:mannose phosphotransferase element IIB [Lectobacillus curvatus]	67	42	495
83	,	2957	3214	91 1276746	Acyl carrier protein (Porphyra purpurea)	69	37	258
96	8	8140	689	gi 1147744	PSR [Enterococcus hirae]	1 69 1	45	1332
97		986	1366	gn1 PID d102235	(AB000631) unnamed protein product (Streptococcus mutans)	67	43	381
102	-	601	1413	91 682765	mccB gene product (Escherichia coli)	69	36	813
106		1109	1987	gi 148921	LicD protein (Haemophilus influenzae)	67	E.	879
115	7	5982	5656	gi 895750	putative cellobiose phosphotransferase enzyme III (Bacillus subtilis)	67	₹	327
							•	*********

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

8 9 11 2	8421 · 8127 2215	8077					+
21 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8127		gi 466473	celloblose prosprotransferase enlyme II Bacillus stearothermophilus	``	51	345
8 6 2 3	1215	7021	91 147326	transport protein (Escherichia coli)	67	45	1107
8 9 9		2859	gn1 P1D d100581	unknown (Bacillus subtilis)	67	- 67	645
9 8	23317	20906	gn1 P10 d101912	phenylalanyl-tRNA synthetase (Synachocystis sp.)	67	£3	2412
80	2894	1893	91 2182994	histidine kinase [Lactococcus lactis cremoris]	67	77	1002
	111476	11117	gn1 P10 d100085	ORF129 [Bacillus cereus]	1 69	48	360
160 10 7	7453	8646	91 2281317	OrfB: similar to a Streptococcus pneumoniae putative membrane protein encoded by GenBank Accession Number X99400; inactivation of the OrfB gene leads to UV-sensitivity and to decrease of homologous recombination (plasmidic test) {Lactococcus l	69	9	1194
1 163 3 3	3099	4505	gn1 PID d101317	YqfR (Bacillus subtilis)	67	47	1407
167 8 6	6704	5454	91 1161933	DitB [Lectobacilius case]]	1 49	45	1251
1 169 4 2	2322	2879	gn PID d101331	[Bacil]	67	41	858
- 11	7656	8384	91 153841	pneumococcal surface protein A (Streptococcus pneumoniae)	67	- 05	729
1 186	1930	3723	91 1542975	AbcB (Thermoanaerobacterium thermosulfurigenes)	1 19	46	1794
9	3599		gn1 PID e325178	Hypothetical protein (Bacillus subtilis)	67	52	459
205 3 1	1663	2211	91 606073	ORF_0169 [Escherichia coli]	1.9	47	549
-	2896	3456	91 2276374	DtxR/iron regulated lipoprotein precursor (Corymebacterium diphtheriae)	67	- 64	561
217 3 4	4086	3703	91 895750	putative cellobiose phosphotransferase enzyme III (Bacillus subtilis)	67	42	384
246 2 2	291	299	91 11842438	unknown (Bacillus subtilis)	1 19	\$	372
252 1	~	745	191 2351768	PspA (Streptococcus pneumoniae)	1 69	7	744
265 3 1	1134	1811	191 2313847	(AE000585) L-asparaginase II (ansB) (Helicobacter pylori)	67	7	678
295 1	-	375	91 2276374	DtxR/iron regulated lipoprotein precursor (Corynebacterium diphtheriae)	67	43	375
1 1	4898	5146	gn1 P10 e255179	unknown (Mycobacterium tuberculosis)	99	26	249
3 1	389	~	gn1 PID e269548	Unknown (Bacillus subtilis)	99	48	387
3 (20 19	19267	20805	91 39956		99	- 05	1539
4 3 2	2545	2718	91 1787564	(AE000228) phage shock protein C (Escherichia coli)	99	36	174
5 9 13	113197	112592	91 1574291	fimbrial transcription regulation repressor (pilB) (Haemophilus influenzae)	99	9	909

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

2	6	(nt)	(ut)	acession			T T T T T T T T T T T T T T T T T T T	(nt)
6	-	2872	1451	gn1 PID e266928	unknown (Mycobacterium tuberculosis)	99	43	1422
12	7	1469	1200	91 520407	orf2; GTG start codon (Bacillus thuringiensis)	99	42	270
15	71	10979	9897	91 (2314738	(AE000653) translation elongation factor EF-Ts (tsf) [Helicobacter pylori]	99	49	1083
16	7	1312	734	gn1 PID d102245	(AB005554) yxbF (Bacillus subtilis)	99	35	579
22		1372	1851	91 (1480916	signal peptidase type II (Lactococcus lactis)	99	38	480
22	_	5828	7096	gn1 PID e206261	ma-glutamyl phosphate reductase (Streptococcus th	99	51	1269
22	30	16194	17138	gnl PID e281914	Yith [Bacillus subtilis]	99	20	945
e 	7	. 530	976	91 2314379	[AE000627] ABC transporter, ATP-binding protein (yhcG) [Helicobacter pylori]	9	9	447
32	-	199	984	91 312444	ORF2 (Bacillus caldolyticus)	99	49	786
£	2	8352	7234	91 1387979	44 identity over 302 residues with hypothetical protein from Synechocystis sp. accession D64006_CD; expression induced by environmental stress; some similarity to glycosyl transferases; two potential membrane-spanning helices (Bacillus subtil	99	4	1119
34	9	5658	4708	gn1 PID e250724	orf2 (Lactobacillus sake)	99	39	951
34	1.4	9792	9574	gi 1590997	M. jannaschii predicted coding region MJ0272 (Methanococcus jannaschii)	99	84	219
35	91	15163	14501	91 1773352	Cap5M (Staphylococcus aureus)	99	9.7	663
36	6	6173	9269	91 1518680	minicell-associated protein DivIVA (Bacillus subtilis)	99	35	804
36	==	10396	10824	bbs 155344	insulin activator factor, INSAF (human, Pancreatic insulinoma, Peptide Partial, 744 aal (Homo saplens)	99	\$	429
48	-	28	1419	gn1 PID e325204	hypothetical protein (Bacillus subtilis)	99	20	1392
48	_	3810	4112	91 2182574	[AE000090] Y4pE (Rhizobium sp. MGR234)	99	0	303
52	-	3595	2789	91 388565	major cell-binding factor (Campylobacter jejuni)	99	52	807
54	_	2992	1076	gn1 PID d101831	glutamine-binding periplasmic protein [Synechocystis sp.]	99	43	1587
61	02	9740	9183	gn1 PID e154144	mdr gene product (Staphylococcus aureus)	99	- 44	828
22	=	10893	111993	91 (2313129	[AEGO0526] N. pylori predicted coding region HP0049 [Helicobacter pylori]	99	4	11011
74	6	13267	12476	gi 1573941	hypothetical (Haemophilus influenzae)	99	43	792
27		7	898	91 1574631	nicotinamide mononucleotide transporter (pnuC) (Haemophilus influenzae)	99	8	867
25		5303	4275	91 41312	put. E8G repressor protein [Escherichie coli]	99	0	1029

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORP	Start (nt)	Stop (nt)	match	match gene name	ais.	* ident	length (nt)
82	_	6813	9123	gn1 PID e255128	trigger factor (Bacillus subtilis)	99	53	1311
69	-	908	1219	pir c33496 c334	hisC homolog - Bacillus subtilis	99	44	315
98	120	9407	8925	91 683584	shikimate kinase (Lactococcus lactia)	99	41	483 {
88	01	1001	0909	91 2098719	[putative fimbrial-associated protein (Actinomyces naeslundii)	99	52	942
68	-	951	-	91 410118	ORFX19 [Bacillus subtilis]	99	41	948
6	,	3661	2711	91 1787936	(AR000260) [238; This 298 aa orf is 51 pct identical (5 gaps) to 297 residues of an approx. 304 aa protein YCSN_BACSU SW: £42972 [Escherichia coli)	99	64	951
104	_	1805	3049	91 1469784	putative cell division protein ftsW (Enterococcus hirae)	99	8.7	1245
106	<u>-</u>	13576	14253	gi 40027	homologous to E.coli gids [Bacillus subtilis]	99	52	678
107	-	965	1864	91 144858	ORF A [Clostridium perfringens]	99	49	1 006
1112	_	5718	6593	gi 609332	DorA [Haemophilus influenzae]	99	£3	876
115	-	m	302	1911727367	Hyrlp (Saccharomyces cerevisiae)	99	95	300
122	-	3	995	gn1 PID d101328	YqiY (Bacillus subtilis)	99	36	564
126	8	11759	11046	gn1 P10 d101163	ORF3 (Bacillus subtilis)	99	8	714
128	Ξ	8201	8431	91 726288	growth associated protein GAP-43 (Xenopus laevis)	99	17	231
131	8	4894	4508	91 486661	TMnm related protein (Saccharomyces cerevisiae)	99	39	387
140		3236	2574	91 40056	phoP gene product [Bacillus subtilis]	99	36	663
1 140	115	16318	15434	gi 1658189	5,10-methylenetetrahydrofolate reductase (Erwinia carotovora)	99	48	885
146	122	7926	7636	gn1 PID d101140	transposase (Symechocystis sp.)	99	42	291
147	9	7137	6154	gi 472326	TPP-dependent acetoin dehydrogenase alpha-subunit [Clostridium magnum]	99	48	984
149	9	4435	5430	gn1 P10 d101887	pentose-5-phosphate-3-epimerase (Synechocystis sp.)	99	94	966
1 149	-	10754	11575	191 42371	pyruvate formate-lyase activating enzyme (AA 1-246) (Escherichia coli)	99	42	822
1 186	-	2578	2270	gn1 P1D d101199	ORF11 (Enterococcus faecalis)	99	41	309
207	~	2340	2597	gn1 PID e321893	envelope glycoprotein gp160 (Human immunodeficiency virus type 1)	99	46	258
210	-	3358	3678	gi 49318	ORF4 gene product (Bacillus subtilis)	99	46	321
217	8	5143	5355	91 49538	thrombin receptor (Cricetulus longicaudatus)	99	38	213
220	-	3875	3642	91 466648	alternate name ORFD of L23635 [Escherichia coll]	99	- E	234
		ı	! !				•	

pneumoniae - Putative coding regions of novel proteins similar to known proteins

	Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	e is	* ident	length (nt)
12 1864 2860 [91]1175399 [DILLLLIVA abb Creation Creation Control of Suppose Control of Suppo	223	-	1070	138	gn1 P1D e247187	zinc finger protein (Bacteriophage phigle)	99	45	933
13 68.2 dbb Andoods12_2 (Andoods12_2	224	7	1864	2640	91 1176399	[Staphylococcus	99	ij	1 111
2 893 556 91 512100 Intraction of Engineer (Intramococcus Januacetii) 66 66 66 66 66 66 66 66	243	-	9	872			99	45	870
1 24 643 9411499316 Sin processes (Perchandence Spinnaschill) 65 65 65 65 65 65 65 6	1 268	- 2	1 891	568	91 517210	transposase	99	09	324
10 1999 11190 91 1514294 Physophetical (issamphillus influented) 56 11190 91 14284 Phonologous on the R. coll rade game product and to unidentified protein from (55 11190 91 14284 Phonologous on the R. coll rade game product and to unidentified protein from (55 11190 91 14284 Phonologous on the R. coll rade game product and to unidentified protein from (55 11190 91 14284 Physophetical protein H0239 - Hemophilus influence (strain ad KR20) 65 11190 91 14281 91 14281 91 14291 91	322	-	2	643	91 1499836		99	0.0	642
11 10465 11130 gil 14354 Paeablogous to E. coll radC game product and to unidentified protein from Stappy Joocean aureni Ibacilius aubtilia 5 647 605 pir[64146[6411 hypothetical protein H01393 - Haemophilus Influenzae (strain Rd M720) 65 65 65 65 65 65 65 6	s	!!	13909	13178		[hypothetical (Haemophilus influenzae]	65	34	732
2 647 405 Dir[C64146[C641] Mypothetical protein HI0259 - Heamophilus influenzee (strain ad my20) 65 1 6246 6821 puriticalidulus Propriation of the protein list subtilisis 65 1 1428 2222 puritical protein list subtilisis 65 65 1 1428 2222 puritical protein list propriation list propriate l	۰		10465	11190	gi 142854 		69	87	726
1 6346 6821 gni PiD d101323 Typk (Becillus subtilis) 65 1 1873 1197 glil163111 ORP-1 Streeptococcus pneumoniae) 65 1 1428 2222 gni PiD e313300 hypothetical protein Stephylococcus sciuri) 65 65 1 1428 22776 26884 gill12000 CpAx Actinobacillus pleuropmeumoniae) 65 65 13 12676 2689 gill12000 CpAx Actinobacillus pleuropmeumoniae) 65 65 13 12678 12680 gill12000 Pypothetical Heamophilus influenzee 65 65 13 12678 12679 Mypothetical Heamophilus influenzee 65 65 12 1350 12680 gill2004 Pypothetical Heamophilus influenzee 65 65 12 1350 12680 gill3004 Pypothetical Heamophilus influenzee 65 65 12 1351 1472 14740429 Pypothetical Heamophilus influenzee 66 76 15	٠,	7	647	405			65	42	243
12 1873 1197 [91] [15311] ORP-1 [Streptococcus pneumoniae] 65 14 1871 2222 [91] [PID] [e125010 Dypochetical protein [Staphylococcus sciuti] 65 14 1871 1873 [91] [FID] [e114303 CpxA Actinobacillus pleuropneumoniae] 65 12 1648 290 [91] [1044826 [F1485.1] (Camoribabilits alegans) 65 13 10662 [1068] [91] [173390 Phypothetical [Heamophilus influenze] 65 12 17521 [688] [91] [173391 Phypothetical [Heamophilus influenze] 65 12 17521 [688] [91] [173391 Phypothetical [Heamophilus influenze] 65 12 17521 [688] [91] [17394 Phypothetical [Heamophilus influenze] 65 13 1853 [91] [149449 Putative transferase [Saccharomyces cerevisiae] 65 14 171 [718] [718] [718] [719944 H. Jannaschil predicted coding region Moopin Rechilus [718] 65 15 17172 [718] [7199554 [718] [7199554 [7180600] [7190600 [7180600] [7190600	۲	_	6246	6821		Yahu (Bacillus subtilis)	65	20	576
1 14.28 22.22 gan PID e3135010 hypothetical protein Bacillus subtilis 65 4 3815 3157 Gan PID e314300 hypothetical protein Staphylococcus sciuri 65 14 25776 26364 Gil 1013030 CpxA Actinobacillus pleuropnumoniae 65 12 1648 290 Gil 1014826 Plat5. 1 (Ceenorhabditis alegans) 65 13 10062 10856 Gil 1573390 hypothetical (Haemophilus influenzae) 65 12 17521 16883 Gil 101062 Gald Protein Ceenorhabditis alegans 65 12 17521 16883 Gil 17373331 hypothetical (Haemophilus influenzae) 65 12 17521 16883 Gil 17962 Gald Protein Ceenorhabditis Ceenorha	10	7	1873	1397	1116311 16]	ORF-1 (Streptococcus pneumoniae)	65	24	477
4 13815 3317 901 PID =314910 Mypothetical protein Staphylococcus sciuri) 65 2 1648 250 91 1044826 F7482.1 Icemorthabditis aleganal 65 13 10062 10056 91 1044826 F7482.1 Icemorthabditis aleganal 65 13 10062 10056 91 1573390 Mypothetical Haemophilus influenzeal 65 13 10062 10085 91 1573390 Mypothetical Haemophilus influenzeal 65 13 10062 10085 91 1573390 Mypothetical Haemophilus influenzeal 65 13 10062 10085 91 17796 Publicative transcriptional regulator Bacillus stantinal 65 65 15 1472 91 149945 H. Jannaschil predicted coding region My0912 Haemophilus influenzeal 65 65 15 1472 91 1499745 H. Jannaschil predicted coding region My0912 Haemophilus influenzeal 65 65 1 1472 91 1498514 Otf reta Streptococcus pyogenes	16	_	1428	1 2222		hypothetical protein (Bacillus subtilis)	65	45	195
134 12576 16884 941 11210300 CptA Actinobacillus pleuropneumonise] 1688 290 941 1044826 12485.1 Ceenorhabditis elegans] 65 1688 1290 941 1044826 12485.1 Ceenorhabditis elegans] 65 1588 941 1573390 hypothetical Haemophilus influenzae] 65 1588 1588 941 1573391 hypothetical Haemophilus influenzae] 65 1588 1588 941 1480429 putative transcriptional regulator Bacillus scearothermophilus 65 1588 941 1489745	23	.4	3815	3357	gn1 PID e314910	hypothetical protein (Staphylococcus sciuri)	65	40	459
13 10648 190 gi 1044826 F14E5.1 Geenorhabditis influenzee 65 13 10062 10656 gi 1573390 hypothetical [Haemophilus influenzee] 65 12 17521 16883 gi 1573391 hypothetical [Haemophilus influenzee] 65 13 1855 19027 18833 gnl piD e36484 YCR030C, len: 215 Gaccharomyces carevisiae) 65 13 1856 5334 gi 1480429 putative transcriptional regulator [Bacillus atearothermophilus] 65 15 11728 15588 gi 1489745 H. jannschil predicted coding region MC0912 [Methanococcus jannsschil] 65 15 11728 15588 gi 1499745 H. jannschil predicted coding region MC0912 [Methanococcus jannsschil] 65 15 11728 15588 gi 1499745 H. jannschil predicted coding region MC0912 [Methanococcus jannsschil] 65 17 1963 4745 gi 189745 Orf reta [Streptococcus pyogenes] 65 18 1070 gil 189742 Orf reta [Streptococcus pyogenes] 65 19 2171 1077 gnl piD e311453 unknown [Bacillus subtilis] 65 1 6029 5325 gi 800660 decxyribose-phosphate aldolase [Bacillus subtilis] 65 1 65 Geocharomy physin late to several spermidine synthases [B	22	. :	25776	26384	91 1123030	CpxA (Actinobacillus pleuropneumoniae)	65	42	609
13 19062 10856 gi 1573390 hypothetical [Haemophilus influenzed] 65 122 17521 16883 gi 1573391 hypothetical [Haemophilus influenzed] 65 123 19027 18533 gin PID e264484 YCR02Oc, len: 215 [Saccharomyces careviside] 65 13 1955 5314 gi 1480429 putetive transcriptional regulator [Bacillus stearothernophilus] 65 15 14728 15588 gi 1489745 H. jannaschii predicted coding region MJO912 [Hethanococcus jannaschii] 65 17 1963 4745 gi 496514 ORF_o310 [Escherichla colii] 65 18 1710 1077 gin PID e311453 unknown Bacillus subtilis 65 18 1764 8575 gi 809660 deoxyribose-phosphate aldolase [Bacillus subtilis 65 18 7664 8577 gil PID e267589 Unknown, highly similar to several spermidine synthases [Bacillus subtilis] 65 18 7664 8577 gil PID e267589 Unknown, highly similar to several spermidine synthases [Bacillus subtilis] 65	Ç	~	1648	290	gi 1044826	[F14E5.1 [Caenorhabditis elegans]	65	38	1359
12 17521 16883 94 1573391 hypothetical Haemophilus influenzee 15 19927 18933 911 1910 19264484 YCRO20c, len:215 ISaccharomyces cerevisiae 65 65 65 65 65 65 65	48	113	10062	10856	gi 1573390	hypothetical (Haemophilus influentae)	65	45	195
13 1855 19027 18533 gnl PID e264484 YCR020C, Ien:215 Saccharomyces cerevisiae) 65 65 65 65 65 65 65 6	84	!	117521	116883	gi 1573391	hypothetical (Haemophilus influenzae)	65	37	639
3 1856 5334 94 1480429 putative transcriptional regulator Bacillus stearothermophilus 65 16 5337 4519 94 1490429	48	125	119027	118533	gn1 PID e264484		65	38	495
6 5337 4519 91 171963 1 18NA isopentenyl transferase (Saccharomyces cerevisiae) 65	49		3856	5334	gi 1480429	putative transcriptional regulator [Bacillus stearothermophilus]	65	32	1479
15 14728 15588 91 1499745 M. jannaschii predicted coding region MJ0912 [Methanococcus jannaschii] 65 7 3963 44745 91 496514 Orf zeta [Streptococcus pyogenes] 65 8 2500 3483 91 887824 ORF_0310 [Escherichia coli] 65 9 2171 1077 911 9107 911 9107 9108 9100 91	05	-	5337	4519	[91]171963	[KRNA isopenteny] transferase (Saccharomyces cerevisiae)	65	42	819
7 3963 4745 gi 436514 Orf zeta Straptococcus pyogenes 3 2500 3483 gi 887824 ORF_olio Escherichia coli) 65 65	52	115	14728	115588	91 1499745		65	46	861
3 2500 3483	65	-	1 3963	4745	91 496514	orf seta (Streptococcus pyogenes)	65	42	783
3 2171 1077 gnl PID e311453 unknown Bacillus subtilis 6029 5325 gi 809660 deoxyribose-phosphate aldolase Bacillus subtilis 65	89	-	2500	3483	91 887824	ORF_0310 (Escherichia coli)	65	46	984
7 6029 5325 gi 809660 deoxyribose-phosphate aldolase [Bacillus subtilis] 65	69	-	12171	1077		unknown [Bacillus subtilis]	65	42	1095
5 8536 9783 g1 1573224 g1ycosyl transferase lgtC (GP:U14554_4) Haemophilus influenzae 65 65 8827 gnl PID e267589 Unknown, highly similar to several spermidine synthases (Bacillus subtilis) 65	69	-	6029	5325		decxyribose-phosphate aldolase (Bacillus subtilis)	65	55	705
8 7664 8527 gnl PID e267589 Unknown, highly similar to several spermidine synthases (Bacillus subtilis) 65	1,1		8536	9783	91 1573224	transferase lgtC (GP:U14554_4)	9	42	1248
	72	8	7664	8527	e267589	Unknown,	65	39	864

S. pnaumoniae - Putative coding regions of novel proteins similar to known proteins

Contig ID	ORF	Start (nt)	Stop (nt)	metch	match gene name	s in	1 ident	length (nt)
96	- 2	5773	4097	gn1 PID d101723	DNA REPAIR PROTEIN RECN (RECOMBINATION PROTEIN N). [Escherichia coli]	9	44	1677
9,	6	8099	7875	91 1574276	exodeoxyribonuclease, small subunit (xse8) [Haemophilus influenzae]	69	38	225
- 84	~	2870	2352	gi 2313188	(AE000512) conserved hypothetical protein (Helicobacter pylori)	9	41	519
98	115	14495	13407	gn1 P1D d101880]-dehydroquinate synthase (Synechocystis sp.)	65	99	1 6801
87		3706	2423	91 (151259	HMG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii]	9	51	1284
88	_	2425	2736	91 1098510	unknown (Lactococcus lactis)	65	30	312
68	~	1627	1007	gn1 PrD d102008	[ABG01488] SIMILAR TO ORFI4 OF ENTEROCOCCUS FAECALIS TRANSPOSON TN916.	59	41	621
111	9	6635	6186	[gn] PID e246063	NN23/nucleoside diphosphate kinase (Xenopus laevis)	9	50	450
116	~	-	1016	gn1 PtD d101125	queuosine biosynthesis protein QueA (Symechocystis sp.)	1 65 1	2	1014
123	-	69	389	g1 49839	ORF2 (Clostridium perfringens)	9	36	321
123	-	6522	7190	191 1575577	DNA-binding response regulator (Thermotoga maritima)	65	39	1 699
125	-	3821	2859	gn1 PID e257609	sugar-binding transport protein (Anaerocellum thermophilum)	65	4.7	963
761	112	8015	7818	91 2182574	(AE000090) Y4pE (Rhizobium sp. NGR234)	99	41	198
147	7	5021	3885	gi 472329	dihydroliposmide acetyltransferase [Clostridium magnum]	65	1 4	1137
148	7	1053	1931		YqgH (Bacillus subtilis)	9	42	879
181	7	3212	4687	91 304897	EcoE type I restriction modification enzyme M subunit [Escherichia coli]	65	50	1476
156	7	730	637	91 310893	membrane protein (Theileria parva)	69	47	294
164	-	4256	4837	gi 410132	ORFX8 (Bacfillus subtilis)	1 69 1	48	582
169	9	3192	3914	gi 1552737	similar to purine nucleoside phosphorylase (deoD) [Escherichia coli]	1 65	41	723
176	-	2951	2220	gn1 PID e339500	oligopeptide binding lipoprotein (Streptococcus pneumoniae)	65	\$	732
195	-	4556	3900	91 1592142	ABC transporter, probable ATP-binding subunit [Methanococcus jannaschii]	9	- 07	657
196		160	1572	gn1 PID d102004	(ABGO1488) PROBABLE UDP-N-ACETYLAURAMOYLALANYL-D-GLUTAHYL-2, 6- DIAMINOLIGASE (EC 6.3.2.15). (Bacillus subtilis)	65	51	1413
204	~	2246	1215	911143156	membrane bound protein (Bacillus subtilis)	9	37	1032
210	-	1544	1891	91 49315	ORF1 gene product (Bacillus subtilis)	92	48	348
242	~	1625	723	91 1787540	(AE000226) f249; This 249 aa orf is 32 pct identical (8 gaps) to 244 residues of an approx. 272 aa protein AGAR_ECOLI SW: P42902 (Escherichia coli)	59	42	903
1	•	•		*		*	•	•

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

	7 -					+		******
1000	3 2	(nt)	(ut)	acen	match gene name	e ie	f ident	length (nt)
284	-	-	006	191 559861	clyM [Plasmid pAD1]	65	36	006
304	-	~	574	gn1 PID e290934	unknown [Mycobacterium tuberculosis]	9	52	573
1 315	-	2	1483	191 790694	mannuronan C-5-epimerase (Azotobacter vinelandii)	65	57	1482
320			569	gn1 PID d102048	K. aerogenes, histidine utilization repressor; P12380 (199) DNA binding [Becillus subtilis]	65	46	567
358	-	-	1 309	gn1 PID e323508	YloS protein (Bacillus subtilis)	65	55	309
7	- 1	17571	9699	gi 1498753	nicotinate-nucleotide pyrophosphorylase [Rhodospirillum rubrum]	- 64	42	876
9	9	1 5924	6802	Interplate	methionine aminopeptidase (Symechocystis sp.)	64	52	879
8	-	3417	1 3686	gi 1045935	DNA helicase II (Mycoplasma genitalium)	64	5.8	270
11	-	3249	2689	gn1 PID e265529	Orf8 (Streptococcus pneumoniae)	64	46	561
21	-	6504	1 7145	gi 1762328	Ycr59c/YigZ homolog (Bacillus subtilis)	64	45	642
1 22	=	9548	9895	gn1 P1D d100581	unknown (Bacillus subtilis)	64	38	348
22	20	122503	23174	gi 289260	ComE ORF1	64		672
56	-	114375	14199	91 409286	bard [Bacillus subtilis]	64	30	177
1 27	7	1510	1334	g1 40795	OdeI methylase (Desulfovibrio vulgaris)	199	51	171
62	7	614	297	91 2326168	type VII collagen (Mus musculus)	64	20	318
32	~	368	121	 	hypothetical 20.3K protein (insertion sequence IS1131) - Agrobacterium tumefaciens (strain P022) plasmid Ti	79	05	354
9	-	6	449	gi 46970	epiD gene product (Staphylococcus epidermidis)	.64	41	447
40	-	4683	4976	gn1 PID e325792	[AJ000005) glucose kinase [Bacillus megaterium]	799	45	294
45	_	8068	_ !	gn1 PID d102036	subunit of ADP-glucose pyrophosphorylase (Bacillus stearothermophilus)	99	- 04	1149
15	~	301	1059	gi 43985	inifS-like gene [Lactobacillus delbrueckii]	99	54	759
15	=	15251	18397	lgi 2293260	(AF008220) DWA-polymerase III alpha-chain (Bacillus subtilis)	64	46	3147
53	_	1157	555	gi 1574292	hypothetical [Maemophilus influenzae]	79	47	603
88	-	4236	1606	gi 1573826	alanyl-tRNA synthetase (alas) [Haemophilus influenzae]	64	51	2631
99	-	n	1259	91 895749	putative cellobiose phosphotransferase enzyme II'' [Bacillus subtilis]	64	42	1257
89	- 2	5213	6556	[gi]436965	[malk] gene products (Bacillus stearothermophilus)	64	-	1344
69	9	5356		gn1 PID d101316	Cdd (Bacillus subtilis	- 64	52	408
		1				•	•	•

S. pneumoniae - Putative coding regions of novel proteins Mimilar to known proteins

1-glutemine-D-fructone-d-phosphore amidocramitense (Bacillus subtilis) 64 50 -glutemine-D-fructone-d-phosphore amidocramitense (Bacillus subtilis) 64 57 -gluting protein) 10 10 10 10 10 10 10 1	Contig	ORF	Start (nt)	Stop (nt)	metch acession	match gene name	E SI S	1 ident	length
13 138 1445 bine 13179 contain binding protein bi	74	-	6948	5038	1911726480	amidotransferase (Bacillus	99	20	1911
13 1905 1913 1914 1915 1914 1915 1914 1915 1914 1915 19	25		1283	1465	bbs 133379	TLS-CHOP=fusion protein(CHOP=c/EBP transcription factor, TLS-nuclear RNA-binding protein) [human, myxoid liposarcomas cells, Peptide Hutant, 462 as] [Homo sapiens]	4	52	183
11 10066 3300 gni Fir0 6103113 Vecto leactilus arbbillish 64 64 64 64 64 64 64 6	18	=	14016	14231	91 143175	methanol dehydrogenase alpha-10 subunit [Bacillus sp.]	64	35	216
11 10046 9300 gmil projections protection protein (sections subtilis) 64 36 36 36 36 36 37 3706 gmil projections protein (sections subtilis) 64 38 38 38 38 38 38 38 3	83	22	21851	22090		YqfA (Bacillus subtilis)	99	44	240
1 3032 9706 gml Projectible Librario Projection Project	87		10046	9300		putative Ptci protein (Bacillus subtilis)	64	43	747
1 2 1316 [41101913010] [4110181 [4110181] [411081] [4110818]	86	-	5032	5706		hypothetical protein (Bacillus subtilis)	64	38	675
1 131 1319	105	-	2	1276	91 1657503	. aureus mercury(II) reductase (Escherichia	64	45	1275
1 2 1127 Juli Dia 12020 Diagnostication Diagnostic	113	-	5136	6410		NifS (Symechocystis sp.)	99	20	1275
1 1125 2136 gni Piro e333284 Gnr PDL2444 (Sarcchacomyces Gerevisiae) 64 60 1 1 1 1 1 1 1 1 2 3 4 4 1 1 1 1 1 2 3 4 4 4 4 5 4 4 5 5 4 4	119	-	2	1297		hypothetical protein (Natronobacterium pharaonis)	64	37	1296
4 1467 1796 gni PrD d101184 hypochetical protein (Synechocyetis sp.) 641 561 562 1 1 1786 1749 gni PrD d101114 tqeU [Bacillus subtilis] 641 542 542 1 1784 1487 1784 pir J271841 unknown (Bacillus subtilis) 641	123	-	11125	2156		ORF YDL244w (Saccharomyces cerevisiae)	64	07	1032
4 3467 2709 gan PID d1001314 Yagu Bacillus subtilis 64 42 42 42 42 43 44 44 4	124	2	2331	1780		hypothetical protein (Symechocystis sp.)	64	20	552
1 192 3 gi[1377841	129	*	3467	2709		YqeU (Bacillus subtilis)	64	52	789
13 1326 2651 91 J2213130 1 1 1 1 1 1 2 26548 91 J22245 mevalonate pyrophosphate decarboxylase [Mattus norvegicus] 64 44 44 44 44 44 44 4	1 131	-	152	m —	91 1377841	unknown (Bacillus subtilis)	64	42	150
3 3226 2651 91 2293301 (APFO08220) Ytq8 (Bacillus subtilis) 64 44 45 10 6730 5648 91 132245 mevalonate pyrophosphate decarboxylase (Rattus norvegicus) 64 45 11 12 1018 91 1312245 mevalonate pyrophosphate decarboxylase (Rattus norvegicus) 64 46 11 11 11 11 11 11	137	=_	7196	7549	pir JC1151 JC11 		64	05	354
10 6730 5648 [91] 1322245 mevalonate pyrophosphate decarboxylase [Rattus norvegicus] 64 45 1 1 1 2 1018 gin PID e137033 unknown gene product [Lactobacillus leichmennii] 64 46 1 1 1 1 1 1 1 1 1	139		3226	2651	91 2293301	(AF008220) YtqB (Bacillus subtilis)	64	44	576
1 2 1018 gn1 PID e137033 unknown gene product (Lactobacillus leichmannii) 64 46 1 1 1 1 1 1 1 1 1	146	01	6730	5648	91 1322245	mevalonate pyrophosphate decarboxylase [Rattus norvegicus]	99	45	1083
11 8430 6783 91 2130630 (AF000430) dynamin-like protein [Homo sapiens] 64 28 28	147	-	7	1018		unknown gene product (Lactobacillus leichmannii)	99	1 97	1017
7 4313 3612 gnl PID d102050 transmembrane [Bacillus subtilis] 64 31 43 43 44 1299 2114 gnl PID d100892 homologous to Gln transport system permease proteins [Bacillus subtilis] 64 64 64 64 64 64 64 6	148	Ξ	8430	6783	191 2130630	(AF000430) dynamin-like protein [Homo sapiens]	9	28	354
4 1299 2114 9n1 PID d100892 homologous to Gln transport system permesse proteins [Bacillus subtilis] 64 43 43 5 5880 6162 9i 517204 ORF1, putative 42 kDa protein (Streptococcus pyogenes) 64 58 13 9707 8769 9n1 PID d100964 homologue of ferric anguibactin transport system permerase protein FatD of 64 40 5 3906 4598 9i 534045 antiterminator [Bacillus subtilis] 64 39 10 6154 6507 9i 581307 response regulator [Lactobacillus plantarum] 64 31 46 4 3519 2863 9i 149520 phosphoribosyl anthranilate isomerase [Lactococcus lactis] 64 46	156	_	4313	1 3612		transmembrane (Bacillus subtilis)	64	31	702
6 5880 6362 91 517204 ORFI, putative 42 kDa protein (Streptococcus pyogenes) 64 58 58	157	-	1299	2114	gn1 P10 d100892	homologous to Gln transport system permease proteins (Bacillus subtilis)	64	43	816
13 9707 8769 gnl PID d100964 homologue of ferric anguibactin transport system permerase protein FatD of 64 40 40 40 4508 gi 514045 antiterminator [Bacillus subtilis] 5 3906 4598 gi 514045 antiterminator [Bacillus subtilis] 64 39 46 46 46 46 46 46 46 4	162	9	5880	6362	91 517204	ORF1, putative 42 kDa protein (Streptococcus pyogenes)	9	98	483
5 3906 4598 gi 534045 antiterminator (Bacillus subtilis)	164	2_	7076	8769	gn1 P1D d100964	homologue of ferric anguibactin transport system permerase protein FatD of V. anguillarum (Bacillus subtilis)	64	40	939
10 6154 6507 64 5319 response regulator (Lactobacillus plantarum) 64 33	271	- 2	3906	4598	gi 534045	antiterminator [Bacillus subtilis]	6.4	39	693
4 3519 2863 gi 149520 phosphoribosyl anthranilate isomerase [Lactococcus lactis] 64 46	189	100	6154	6507	191 581307	response regulator (Lactobacillus planterum)	64	33	354
	191	4	1 3519	2863	gi 149520	phosphoribosyl anthranilate isomerase [Lactococcus lactis]	64	46	657

S. pneumoniae - Putative coding regions of novel proteins similar to known protein

Contig	TD GR	Start (nt)	Stop (nt)	match	match gene name	e sin	• ident	length (nt)
202	-	1 76	1140	gn1 PID e293806	O-acetylhomoserine sulfhydrylase [Leptospira meyeri]	99	47	1065
224	-	234	1571	, m ,	collagenase (prtC) [Haemophilus influenzae]	64	42	1338
1 231	_	1 291	647	191 40174	ORP X (Bacillus subtilis)	99	43	357
253	m 	709	1089	pir JC1151 JC11	hypothetical 20.3K protein (insertion sequence [S1131] - Agrobacterium tumefaciens (strain P022) plasmid Ti	99	05	381
592	-	820	2	91 1377832	unknown (Bacillus subtills)	64	31	819
297	- -	1 - 1	099	191 11590871	collagenase [Methanococcus jannaschii]	64	- 87	1 099
328	-	263	12	91 992651	Gin4p (Saccharomyces cerevisiae)	64	41	243
S	-	8730	8608	91 556885	Unknown (Bacillus subtilis)	63	88	633
0.	9	5178	4483	191 1573101	hypothetical (Haemophilus influenzae)	63	0\$	969
12	Ξ	9324	9902	91 806536	membrane protein (Bacillus acidopullulyticus)	63	42	579
15	01	1 8897	9187	gi 722339	unknown (Acetobacter xylinum)	1 69	40	291
17	7	1031	309	gn1 P1D e217602	PinU (Lactobacillus plantarum)	69	32	723
18	B.	8777	6975	91 1377843	unknown [Bacillus subtilis]	63	45	804
26	-	9780	8.07	gi 142440	ATP-dependent nuclease [Bacillus subtilis]	63	46	2703
53	2	3488	4192	91 11377829	unknown (Bacillus subtilis)	63	35	207
34	Ξ	8830	7988	gn1 P1D d101198	ORF8 (Enterococcus faecalis)	63	45	843
35	~	11187	876	gi [722339	unknown (Acetobacter xylinum)	63	39	312
48	115		11691	[gi]1573389	hypothetical (Haemophilus influenzae)	63	41	819
12	=	112719	12189	gi 142450	ahrC protein (Becillus subtilis)	69	35	531
35	-	1979	5022	gi 1708640	YeaB (Bacillus subtilis)	63	=	1044
55	115	13669	14670	gn1 PID e311502	[thioredoxine reductase [Bacillus subtilis]	63	-	1002
89	9	9242	8919	sp P37686 YIAY_	HYPOTHETICAL 40.2 KD PROTEIN IN AVTA-SELB INTERGENIC REGION (F382).	63	40	324
98	_	6554	5685		lic-1 operon protein (licD) [Haemophilus influenzae]	63	7	870
88	8	1 6085	5180	91 2098719		69	43	906
96	8	1 5858	6484	[gi 1052803	orflyyrb gene product (Streptococcus pneumoniae)	63	38	627
100	-	240	1.1940	191 1171	[tucosidase [Dictyostellum discoideum]	63	36	1701
								*

S. pneumoniae - Putative coding regions of novel proteins afmilar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	s in	1 ident	length (nt)
104	-	13063	5765	91 144985	phosphoenolpyruvate carboxylase (Corymebacterium glutamicum)	63	46	2703
106	8	9189	8554	[g1[533099	endonuclease III (Bacillus subtilis)	63	45	636
122	9	4704	4886	gn1 PID d101139	transposase [Synechocystis sp.]	63	96	183
128	١ ،	4517	5203	[gn1 PID d101434	orf2 (Methanobacterium thermosutotrophicum)	63	20	687
137	-	1 963	1547	gi 472920	v-type Na-ATPase (Enterococcus hirae)	63	27	585
142	7	4100	4585	gn1 PID e313025	hypothetical protein (Bacillus subtilis)	63	77	486
159	s	1741	2571	91 1787043	(AE000184) £771; This 271 as orf is 24 pct identical (16 gaps) to 265 residues of an approx. 272 as protein YIDA_ECOLI SW: P09997 (Escherichia coli)	6	66	831
171	77	8803	: .	gn1 P1D e324918	ighl protease (Streptococcus sanguis)	63	84	2604
7.71	-	~	347	91/1773150	hypothetical 14.8kd protein (Escherichia coli)	63	34	345
178	7	1 423	1 917	lgi 722339	unknown (Acetobacter xylinum)	63	7	495
178	e -	794	1 1012	gi 1591582	cobalamin blosynthesis protein N (Methanococcus janneschil)	63	36	219
195	-	1377	271	gn1 PID e324217	[ftsQ (Enterococcus hirae)	63	33	1203
234	- 2	1739	1527	91 1591582	cobalamin biosynthesis protein N (Methanococcus jannaschii)	63	36	213
249	-	81	257	gi 1000453	TreR (Bacillus subtilis)	63	41	177
283	7	1 127	1347	gi 396486	ORF8 (Bacillus subtilis)	63	7	1221
293	- 3	2804	3466	gi 722339	unknown {Acetobacter xylinum}	63	37	663
311	-	905	486	gi 1877424	[UDP-galactose 4-epimerase [Streptococcus mutans]	63	46	420
324	-	2	556	91 1477741	histidine periplasmic binding protein P29 (Campylobacter jejuni)	63	36	555
365	-	219	=	gi 2252843	(AF013293) No definition line found (Arabidopsis thaliana)	63	33	207
382	7	88	378	gi 722339	unknown (Acetobacter xyllnum)	63	40	291
385	-	364	158	gi 2252843	(AF013293) No definition line found (Arabidopsis thallana)	63	33	207
7	-	2495	288	gn1 PID e325007	penicillin-binding protein [Bacillus subtilis]	62	42	2208
	23	23374	24231	gn1 P10 e254993	hypothetical protein (Bacillus subtilis)	62	35	858
9	116	14320	13193	gn1 PID e349614	nifS-like protein [Mycobacterium leprae]	62	37	1128
7	-	6819	7232	gn1 PID d101324	YqhY (Bacillus subtilis)	62	32	414
7	61	15466	114207	gn1 P1D d101804	beta ketoacyl-acyl carrier protein synthase (Synechocystis sp.)	62	43	1260
								* 1 1 1 1 1 1 1 1 1 1

pneumoniae - Putative coding regions of novel proteins bimilar to known protein

,	1	(nt)	(nt)	acession	ממנים מפוס ביים ביים ביים ביים ביים ביים ביים ביי	mis •	1 ident	length (nt)
·	21	17155	116229	gn1 PID e323514	putative FabD protein (Bacillus subtilis)	62	46	927
7	124	119526	118519	191 1276434	beta-ketoacyl-ACP synthase III (Cuphea wrightii)	62	37	1008
21	_	5904	4702	91 1573768	A/G-specific adenine glycosylase (muty) (Haemophilus influenzae)	62	43	1203
12	6	8032	8793	gi 1591587	pantothenate metabolism flavoprotein (Methanococcus jannaschil)	62	33	762
15	11	9678	9328	pir JC1151 JC11	hypothetical 20.3K protein (insertion sequence IS1131) - Agrobacterium tumefaciens (strain PO22) plasmid Ti	62	3	351
1.7	7	1 2609	2442	91 1591081	H. Jannaschii predicted coding region NJ0374 (Methanocqccus jannaschii)	62	43	168
17	<u>.</u>	3053	2835	gi 149570	role in the expression of lactacin F, part of the laf operon (Lactobacillus ap.)	62	44	219
22	2	8627	9538	gn1 P1D d100580	similar to B. subtilis DnaH	62	43	912
30		865	2043	91 2314379	(AE000627) ABC transporter, ATP-binding protein (yhcG) (Helicobacter pylori)	62	43	1179
2	5.	2235	1636	91 413976	ipa-52r gene product (Bacillus subtilis)	62	44	909
38	Ξ	5689	6123	81 148231		62	34	435
40	12	14272	13328	gn1 PID d101904	hypothetical protein (Symechocystis sp.)	62	43	945
42		3	311	91 1146182	putative (Bacillus subtilis)	62	41	309
3	7	1267	4005	91 1786952	[AE000176] 0877; 100 pct identical to the first 86 residues of the 100 as hypothetical protein fragment YBGB_ECOLI SW: P54746 [Escherichia coli]	62	5	2739
48	112	9732	9304	gi 662920	repressor protein (Enterococcus hirae)	62	32	429
15	8	5664	7181	gn1 PID e301153	StySKI methylase (Salmonella enterica)	62	7.7	1518
22		2791	2099	91 1183886	integral membrane protein (Bacillus subtilis)	62	- 17	693
55	116	115702	14704	gn1 PID e313028	hypothetical protein (Bacillus subtilis)	62	40	666
59	9	3418	3984	91 2065483	unknown (Lactococcus lactis)	62	32	567
3	- 5	4997	4809	91 149771	pilin gene inverting protein (PivML) [Moraxella lacunata]	62	28	189
0,	5	10002	10739	91 992977	bplG gene product (Bordetella pertussis)	62	45	738
7	5	18790	20382	91 1280135	coded for by C. elegans cDNA cm2le6; coded for by C. elegans cDNA cm0le2; similar to melibiose carrier protein (thiomethylgalactoside permease II) (Ceenorhabditis elegans)	62	62	1593
12	28	132217	32768	gn1 PID d101312	YqeG (Becillus subtilis)	62	35	552
74		11666	10383	91 1552753	hypothetical (Escherichia coli)	62	38	1284

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	e sin	• ident	length (nt)
Ó8	.	9370	6096	gn1 P1D d102002	(AB001488) FUNCTION UNKNOWN. (Bacillus subtilis)	62	46	240
- 6	01	8906	7041	91 882463	protein-N(pi)-phosphohistidine-sugar phosphotransferase [Escherichia coli]	62	42	2028
86	-	2306	3268	gn1 PID d101496	Bra£ (integral membrane protein) (Pseudomonas aeruginosa)	62	42	963
102		2823	1 3539	gn1 PID e313010	hypothetical protein (Bacillus subtilis)	62	24	717
103		2795	1242	gn1 PID d102049	H. influenzae hypothetical ABC transporter; P44808 (974) [Bacillus subtilis]	62	14	1554
111	2	2035	3462	91 581297	Nisp [Lactococcus lactis]	62	4	1428
112	-	3154	4080	91(1574379	lic-1 operon protein (licA) (Haemophilus influenzae)	29	96	927
112	9	4939	5649	gi 1574381	lic-1 operon protein (licC) (Haemophilus influenzae)	62	39	1117
124		1137	121	gi 1573024	anaerobic ribonucleoside-triphosphate reductase (nrdb) [Haemophilus	62	45	417
124	9	3162	2329	91 609076	[leucy] aminopeptidase [Lactobacillus delbrueckii]	62	9	834
126	١ ،	111073	7516	[gn1 {PID d101163	ORF4 (Bacillus subtilis)	62	38	3558
129	9	4983	4540	pir S41509 S415	zinc finger protein EF6 - Chilo iridescent virus	62	80	444
131	_	4510	4103	91 1857245	[unknown [Lactococcus lactis]	62	42	408
149	2	1923	2579	gi 1592142	ABC transporter, probable ATP-binding subunit (Methanococcus jannaschii)	62	4.1	657
149	-	5360	6055	gn1 P1D e323508	(YloS protein (Bacillus subtilis)	62	ç	969
156	1	450	238	gn1 P1D e254644	membrane protein (Streptococcus pneumoniae)	62	60	213
156	9	3606	2935	gn1 PID d102050	gnl PID[d102050 transmembrane (Bacillus subtilis)	62	37	672
171	2	1779	2291	191 43941	EIII-B Sor PTS (Klebsiella pneumoniae)	62	35	513
172	7	385	123	91 895750	putative cellobiose phosphotransferase enzyme III (Bacillus subtilis)	62	39	339
173	2	2599	893	91 1591732	cobalt transport ATP-binding protein O [Methanococcus jannaschii]	62	42	1707
179	~	492	1754	gi 1574071	H. influenzae predicted coding region H11038 (Haemophilus influenzae)	62	38	1263
181	9	2856	13707	gi 1777435	LacT (Lactobacillus casei)	62	42	852
185	7	2074	311	91 2182397	(AE000073) Y4fN [Rhizobium sp. NGR234]	62	7	1764
200	~	1901	1984	91 450566	transmembrane protein [Bacillus subtilis]	62	37	924
202	_	2583	3473	g1 42219	P35 gene product (AA 1 - 314) [Escherichia coli]	62	4	891
210	_	1374	1565	gi 49315	ORF1 gene product (Bacillus subtilis)	62	45	192
						*	*	*

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	;	Start	Stop	match	match gene name	1 sim	1 ident	length
3		(JU)	35	- acession				(nt)
211	- :	-	1 971	91 147402	mannose permease subunit III-Man (Escherichia coli)	62	43	696
223	-	1495	1034	gn1 P1D d101190	ORF2 (Streptococcus mutans)	62	41	462
228	-	34	606	gi 530063	glycerol uptake facilitator (Streptococcus pneumoniae)	62	=	976
234	7	06	1 917	19112293259	(AP008220) YtqI (Becillus subtilis)	62	38	828
282	2	1765	1487	gn1 PID e276475	[galactokinase (Arabidopsis thalians]	62	33	1 675
375			159	91 1674231	(AE000052) Mycoplasma pneumoniae, hypothetical protein homolog; similar to Swiss-Prot Accession Number P35155, from B. subtilis (Mycoplasma pneumoniae)	62	00	159
385	- 5	584	357	91/1573353	outer membrane integrity protein (tolA) [Haemophilus influenzae]	62	47	228
	5	118550	19269	91 606162	ORF_f229 [Escherichia coll]	19	- 4	720
	~	2725	3225	91 211,4425	stmilsr to Synechocystis sp. hypothetical protein, encoded by GenBank Accession Number D64006 (Bacillus subtilis)	61	5	501
11	9	3326	3054	gi 149569		61	43	273
	-	4061	4957	gn1 PID d101068	xylose repressor (Synechocystis sp.)	61	38	897
24	=	8388	1 7234	[gn1 PID d101329	YqjH (Bacillus subtilis)	61	42	1155
57	9	3974	6037	01316	YqfK (Bacillus subtilis)	61	42	2064
58	2	7356	6565	sp P45169 POTC_	SPERMIDINE/PUTRESCINE TRANSPORT SYSTEM PERHEASE PROTEIN POTC.	61	34	792
67	-	8	692	91 537108	ORF_[254 (Escherichia coli]	61	46	1 069
89	6	8816	1 7890	gi 19501	PPLZ12 gene product (AA 1-184) [Lupinus polyphyllus]	61	7	927
70	115	10737	12008	91 992976	bplf gene product (Bordetella pertussis)	61	77	1272
72	=	9759	10202	gn1 PID d101833	carboxynorspermidine decarboxylase (Synechocystis sp.)	61	36	444
9,	8	7881	7003	gn1 PID d100305	[farnesyl diphosphate synthase [Bacillus stearothermophilus]	61	45	879
1 87	7	4914	13697	191 528991	Unknown (Bacillus subtilis)	61	42	1218
87	ń	112311	11361	gi 1789683	(AE000407) methionyl-tRNA formyltransferase [Escherichia coli]	61	=	951
91	~	167	2989	1911537080	ribonucleoside triphosphate reductase [Escherichia coli]	61	45	2259
105		11172	3499	gn1 PID d101851	hypothetical protein [Synechocystis sp.]	19	*	789
1115	9	8964	6478	91 895747	putative cel operon regulator (Bacillus subtilis)	19	36	1491
123	8	7181	8518	91 1209527	protein histidine kinase (Enterococcus faecalis)	61	- 07	1338
						+	+	+

S. pneumoniae - Putative coding regions of novel proteins similar to known prote

Contig ID	ORF ID	Start (nt)	Stop (nt)	match	match gene name	a sim	• ident	length (nt)
126	9	7525	6725	91 1787043	[AE000184] £271; This 271 as orf is 24 pct identical (16 gaps) to 265 residues of an approx. 272 as protein YIDA_ECOLI SW: P09997 (Bacherichia coli)		38	801
128	-	-	639	gn1 P1D d101328	YqiY (Bacillus subtilis	- 61	17	689
139	_	4794	5054	91 1022726	unknown (Staphylococcus haemolyticus)	61	63	261
139	6	12632	5913	gn1 PID e270014	beta-galactosidase (Thermoanaerobacter ethanolicus)	- 61	7	6720
143	-	2552	6 2	91 520541	penicillin-binding proteins 1A and 1B (Bacillus subrilis)	19	42	2511
148	91	12125	111424	gi 1552743	tetrahydrodipicolinate N-succinyltransferase [Escherichia coli]	19	42	702
162	_	4 112	3456	gn1 P1D d101829	phosphoglycolate phosphatase (Symechocystis sp.)	19	30	657
27.1	~	727	1077	gn1 PTD d102048	B. subtlis, cellobiose phosphotransferase system, celA; P46318 (220)		3	351
177	_	1101	2771	gn1 PID d100574	unknown (Bacillus subtilis)	19	43.	672
202	~	1278	2585	91 1045831	hypothetical protein (GB:L18965_6) [Mycoplasma genitalium]	19	36	1308
224	~	2782	3144	91 1591144	M. Jannaschii predicted coding region MJ0440 [Mathanococcus Jannaschii]	61	30	363
225	7	3395	3766	gi 1552774	tical (Escherichia	19	9	372
249	~	212	802	91 1000453	TreR (Bacillus subtilis)	61	42	591
254	~	843	484	gn1 P1D d100417	ORF120 [Escherichia coli]	19	36	360
257	-	_	350	gn1 P1D e255315	unknown [Mycobacterium tuberculosis]	61	42	348
293		3971	3657	pir JC1151 JC11	hypothetical 20.3K protein (insertion sequence ISIIII) - Agrobacterium tumefaciens (strain PO22) plasmid Ti	19	\$	315
301	-	949	-2	191 2291209	(AF016424) contains similarity to acyltransferases (Caenorhabditis elegans)	61	66	933
373	-	1066	287	91 393396	Tb-192 membrane associated protein (Trypanosoma brucei subgroup)	19	38	780
•	24	24473	24955	[91[537093	ORF_0153b [Escherichia coli]	09	27	483
9	5	4636	5739	91 2293258	(AFO08220) YtoI (Bacillus subtilis)	09	35	1104
9	122	11936	11187	91 293017	ORF3 (put.); putative [Lactococcus lactis]	09	44	750
11	2	6708	6484	gi 149569	lactacin F (Lactobacillus sp.)	- 09	32	225
81		6977	5670	91 1788140	(AED00278) 0481; This 481 as orf is 35 pct identical (19 gaps) to 309 residues of an approx. 856 as protein NOLL_HUMAN SM: P46087 (Escherichia coli)	9	63	1308
20	115	15878	17167	gn1 PID d100584	unknown (Bacillus subtilis)	09	44	1290
						•	**********	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match acession	match gene name	sim	• ident	length (nt)
22	-		243	gn1 P1D d102050	transmembrane (Bacillus subtilis)	09	36	243
32	10	8296	8964	gi 2293275	(AF008220) YtaG (Bacillus subtilis)	9	37	699
38	115	8837	1 9697	91 40023	B.subtills genes rpmH, rnpA, 50kd, gidA and gidB (Bacillus subtilis)	09	35	861
\$	9	8610	5944	191 171 187	protein kinase 1 (Saccharomyces cerevisiae)	09	36	2667
*	-		1269	gn1 P1D e235823	unknown (Schizosaccharomyces pombe)	60	77	1269
45	01	11138	10368	91 397488	1.4-alpha-glucan branching enzyme (Bacillus subtilis)	9	43	17.1
48	119	115766	114378	gn1 P1D e205173	orf1 (Lactobacillus helveticus)	9	39	1389
49	12	116727	16951	gn1 PID d102041	[AB002668] unnamed protein product [Haemophilus actinomycetemcomitans]	1 09	32	225
05	_	2	868	gnl PID e246537	ORP286 protein (Pseudomonas stutzeri)	9	31	1 768
62	~	638	1177	[gn1 P1D d100587	unknown (Bacillus subtilis)	09	42	540
99		1 3590	5203	91 1573583	H. influenzae predicted coding region H10594 (Haemophilus influenzae)	9	36	1614
6	=	5781	6182	gn1 P1D d102014	(ABOO1488) SIMILAR TO YDER GENE PRODUCT OF THIS ENTRY (YDER_BACSU).	09	33	402
0,	112	6343	6133	gn1 PID e324970	hypothetical protein (Bacillus subtilis)	9	38	1791
12	æ	11701	14157	91 580866	ipa-12d gene product (Bacillus subtilis)	9	33	2457
.74	8	112509	111664	[gn1 P1D d101832	phosphatidate cytidylyltransferase (Symechocystis sp.)	09	45	846
36		4116	3367	gi 2352096 	orf; similar to serine/threonine protein phosphatase (Fervidobacterium islandicum)	09	39	750
8	-	1372	7665	91 1786420	(AE000131) f86; 100 pct identical to GB: ECODINJ_6 ACCESSION: D38582 [Escherichia col1]	9	30	294
18	9	4073	4522	gi 147402	mannose permease subunit III-Man (Escherichia coli)	9	35	450
98	-	940	155	191 143177	putative (Bacillus subtilis)	9	76	786
92	-		192	91 396348	homoserine transsuccinylase [Escherichia coli]	9	45	192
<u> </u>	<u> </u>	10619	9384	gi 1788389 	(AE000297) o464; This 464 as orf is 33 pct identical (9 gaps) to 331 residues of an approx. 416 as protein MTRC_NEIGO SW: P43505 (Escherichia coli)	09	27	1236
94	-	5548	18121	gn1 PID e329895	(AJ000496) cyclic nucleotide-gated channel beta subunit (Rattus norvegicus)	09	80	2574
16	-	5396	4533	91 1591396	[transketolase' [Methanococcus jannaschil]	09	5	864
102	7	2081	2833	gn1 P1D e320929	hypothetical protein (Mycobacterium tuberculosis)	60	43	753

S. pneumoniae - Putative coding regions of novel proteins withlar to known proteins

Contig	ORF 1D	Start (nt)	Stop (nt)	match	match gene name	# sim	• ident	length (nt)
106	6	1 9773	9183	[gn] [PID[e334782	[YlbN protein [Bacillus subtilis]	09	15	165
113	80	6361	6837	91 466875	nifU; B1496_Cl_157 (Mycobacterium leprae)	09	5	477
115	2	2755	524	gn1 P10 e328143	(AJ000332) Glucosidase II (Homo sapiens)	09	32	2232
122	1 7	4763	\$008	gn1 PID d101876	transposase (Symechocystis sp.]	60	39	306
127	8	4510	5283	91 1777938	Pgm (freponema pallidum)	1 09	38	774
138	-	3082	2672	gn1 PID e325196	hypothetical protein [Bacillus subtilis]	09	36	117
139	-	177	9	gn1 PID d100680	ORP [Thermus thermophilus]	1 09	39	174
139	Ξ	14520	13009	91 537145	ORP_f437 (Escherichia coli)	- 09	30	1512
140	2	2592	1249	91 1209527	protein histidine kinase (Enterococcus faecalis)	09	37	1344
141	-	210	1049	91 (463181	ES ORF from bp 3842 to 4081; putative [Human papillomavirus type 33]	60	34	840
141	5	5368	6405	gi 145362	tyrosine-sensitive DAHP synthase (arof) (Escherichia coli)	60	41	1038
142	•	3558	4049	191 600711	putative (Bacillus subtilis)	60	37	492
148	01	7742	8713	gn1 PID e313022	hypothetical protein (Bacillus subtilis)	09	27	972
153	2	13667	4278	91 2293322	(AF008220) branch-chain amino acid transporter (Bacillus subtilis)	09	42	612
155	_	1413	748	91 2104504	putative UDP-glucose dehydrogenase [Escherichia coll]	60	- 07	999
158	_	3116	2472	gn1 PID d100872	a negative regulator of pho regulon (Pseudomonas aeruginosa)	09	1 (6	645
159	<u>.</u>	178	1386	gn1 P10 e308090	product highly similar to Bacillus anthracis CapA protein (Bacillus subtilis)	09	60	609
163	,	8049	8468	[gnt Pro dro1313	YqeN (Bacillus subtilis	- 09	38	420
170	<u>~</u>	4130	2688	191 1574179	H. influenzae predicted coding region HI1244 (Haemophilus influenzae)	09	39	1443
171		4717	1 5901	91 606076	ORF_0384 [Escherichia coli]	09	*	1185
183	£	2440	2135	gi 1877427	repressor (Streptococcus pyogenes phage T12)	09	38	306
191	02	9444	8428	91 415664	cetabolite control protein [Bacillus megaterium]	9	42	1017
200	_	139	1083	91 438462	[transmembrane protein (Bacillus subtilis)	09	37	945
201	_	3895	1928	91 475112	enzyme Ilabc [Pediococcus pentosaceus]	- 09	39	1968
214	21	110930	10439	91 1573407	hypothetical [Haemophilus influenzae]	- 09	39	492
218	-	2145	1 2363	191 608520	myosin heavy chain kinase A [Dictyostellum discoideum]	09	31	219
				•		•	*	

pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	s sim	* ident	length (nt)
226	4	2518	2351	91 437705	hyaluronidase (Streptococcus pneumoniae)	09	53	168
242	-	725	~	91 43938	Sor regulator (Klebsiella pneumoniae)	09	7	723
245	-	-	288	gi 304897	EcoE type I restriction modification enzyme H subunit [Escherichia coli]	09	98	288
251	_	908	45	gi 671632	unknown (Staphylococcus aureus)	1 09 1	36	961
259	-	696	83	91 153794	rgg (Streptococcus gordonii)	1 09 1	32	888
260	7	1492	1662	pir 531840 5318	probable transposase - Bacillus stearothermophilus	- 09 -	26	171
274	_	836	96	91 1592173	N-ethylammeline chlorohydrolase (Methanococcus fannaschii)	1 09 1	- 0\$	741
308	-	463	7	191 1787397	(AE000214) 0157 (Escherichia coli)	09	43	462
318	-		308	gn1 PID e137594	xerC recombinase [Lactobacillus leichmannii]	1 09 1	42	306
344	-	7.3	522	191 509672	repressor protein (Bacteriophage Tuc2009)	09	32	450
5	-	576	-	gi 2293147	(AF008220) YtxM (Bacillus subtilis)	- 65	31	573
7	122	18140	17142	gn1 PID e280724	Unknown (Mycobacterium tuberculosis)	- 65	39	666
01		1413	-	91 1353880	stalidase L (Macrobdella decora)	- 65	41	1410
15	9	6463	5156	91 580841	F1 (Bacillus subtilis)	65	35	1308
22	~	479	1393	91 142469	als operom regulatory protein (Bacillus subtilis)	- 29	34	915
22	5	2698	4614	gn1 PTD e280623	PCPA (Streptococcus pneumonise)	89	44	1 7161
30	_	208	558	gn1 PID e233868	hypothetical protein (Bacillus subtilis)	- 65	37	351
30	-	3678	2455	gn1 PID e202290	unknown [Lactobacillus sake]	- 89	33	1224
35	=	12201	11071	gn1 P1D e238664	hypothetical protein (Bacillus subtilis)	65	35	1131
35	=	13288	12182	91 1657647	Cap8H Staphylococcus aureus	89	39	1107
36	118	18076	17897	91 1500535	M. jannaschii predicted coding region MJ1635 [Methanococcus jannaschii]	- 65	33	180
38	122	6172	7137	gi 2293239	(AF008220) YEAR (Bacillus subtilis)	- 65	7	996
42		1952	3361	91 1684845	pinin (Canis familiaris)	- 65	40	1410
80		2678	1728	gn1 PrD d101329	VqjK (Bacillus subtilis)	- 65	41	951
96	5	1870	2388	gn1 P1D e137594	xerC recombinase (Lectobacillus leichmannii)	- 65	=	519
19	9	6812	5628		aminotransferase (Bacillus subtilis)	- 65	9	1185
67	- 1	2382	3023	91 1146190	2-keto-3-deoxy-6-phosphogluconate aldolase (Bacillus subtilis)	- 65	36	642
					•			*********

pneumoniae - Putative coding regions of novel proteins similar to known proteins

Stop (nt)	- 1	match acession	metch gene name	E .	• ident	length (nt)
8899 gi 1573628	1573628		antothenate kinase (coak) [Heemophilus influenzee]	- 65 -	38	333
10055 gn1 PID e323504	1 PID e323504	i	putative Fmu protein (Bacillus subtilis)	65	44	1329
15894 91 1673731	1673731		(AE000010) Mycoplasma pneumoniae, fructose-permease IIBC component; similar to Swiss-Prot Accession Number P20966, from E. coll (Mycoplasma pneumoniae)	65	G	1968
8521 91 1590886	9		M. jannaschii predicted coding region MJ0110 (Methanococcus jannaschii)	59	38	246
1526 gn1 PID e209005 h		=-	homologous to ORF2 in nrdEF operons of E.coli and S.typhimurium [Lactococcus lactis]	65	43	461
13178 gn1 PID e279632 u	; — ·	3	unknown (Mycobacterium tuberculosis)	65	38	261
23388 91 482922 pr		<u>a</u>	protein with homology to pail repressor of B.subtilis (Lactobacillus delbrueckii)	89	0#	516
9014 gn1 P1D d102005 (A	<u> </u>	50	(ABOO1488) FUNCTION UNKNOWN, SIMILAR PRODUCT IN H. INFLUENZAE AND SYNECHOCYSTIS. [Bacillus subtilis]	83	32	684
8244 gi 710422 cm	_	5	cmp-binding-factor 1 (Staphylococcus aureus)	65	40	1032
6013 gn1 P1D d100965 fer	· ·	E E	ferric anguibactin binding protein precusor Fat8 of V. anguillarum [Becillus subtilis]	\$	41	981
7823 gn1 PID d100964 hon		Б.	homologue of ferric anguibactin transport system permerase protein FatC of [V. anguillarum [Bacillus subtilis]	89	35	1014
1072 gi 289759 coc	<u>. </u>	8 -	coded for by C. elegans CDNA CE2G3 (GenBank:214728); putative (Caenorhabditis elegans)	59	0#	672
4200 gi 2313445 (A		5	(AE000551) H. pylori predicted coding region HP0342 (Helicobacter pylori)	- 59	38	360
2508 91 509672 re	_	Le l	repressor protein (Bacteriophage Tuc2009)	- 59	20	261
2820 91 606080 ORF		OR .	ORF_0290; Geneplot suggests frameshift linking to 0267, not found [Escherichia coll]	65	38	579
1711 91 1613768 hit	80	Ē	histidine protein kinase (Streptococcus pneumonise)	59	32	1410
1019 gn1 PID d100579 un		5	unknown (Bacillus subtilis)	89	40	603
4306 gn1 PID e313073 hy		2	hypothetical protein (Bacillus subtilis)	59	38	900
2	_	٤.	Yqht (Bacillus subtilis)	- 59	46	40\$
2367 91 1787045 (4	<u>-</u>	2	(AE000184) [108; This 108 aa orf is 15 pct identical (15 gaps) to 105 residues of an approx. 296 aa protein PFLC_ECOLI SW: P12675 (Escherichia colij	29	42	195
1480 91 40073 ORF		ORF	ORF107 (Bacillus subtilis)	- 59	39	327

pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	<u> </u>	(ut)	(uc)	acession		E 58	1 toeuc	(nt)
256	-	868	~	gn1 PID d101924	hemolysin Symechocystis sp.	65	39	1 867
258	-	6 5	820	91 2246532	ORF 73, contains large complex repeat CR 73 (Kaposi's sarcoma-associated herpesvirus)	65	50	756
270	-	386	1126	gn1 PID d102092	YfnB (Bacillus subtilis)	65	40	741
281	-	552	166	91 666062	putative [Lactococcus lactis]	- 65	126	387
309	~	3	479	gi 405879	yeir (Escherichia coli)	65	38	477
363	-	2	1894	gi 915208	[gastric mucin [Sus scrofa]	65	31	1893
387	- 7	425	84	191 160671	S antigen precursor (Plasmodium falciperum)	- 65	7	342
2	9	11223	10465	gn1 P1D d101812	LumQ (Synechocystis sp.)	85	29	759
59	-	2098	3513	gn1 PID d100479 Na+	Na+ -ATPase subunit J (Enterococcus hirae)	- 88 -	39	1416
30	-	4058	3651	91 39478	ATP binding protein of transport ATPases (Bacillus firmus)	- 58	34	408
33	9	2983	2210	gn1 PID d101164	unknown (Bacillus subtilis)	- 88	45	174
36	-	5316	6119	91 1518679	orf (Bacillus subtilis)	- 58	32	864
÷	-	5926	1971	91 1788150	(AE000278) protease II (Escherichia coli)	- 58	12	1956
46	-	3704	1225	gn1 P10 e267329	gnl PID e267329 Unknown (Bacillus subtilis)	88	42	1518
48	14	111722	11066	gn1 P1D d101771	thiamin biosynthetic bifunctional enzyme (Symechocystis sp.)	- 58	34	657
\$2	-	1229	_	Piblai	reductase [Pseudomonas aeruginosa]	- 58	35	1227
53	- 5	702	412	191 (2313357	(AE000545) cytochrome c biogenesis protein (ccdA) [Helicobacter pylori]	1 88	25	291
58	-	6586	5498	91 147329	transport protein (Escherichia coli)	- 38	41	1089
69		4934	3807	gn1 PID e311492	unknown (Bacillus subtilis)	- 88	41	1128
12	27 3	31357	12277	91 2408014	hypothetical protein (Schizosaccharomyces pombe)	- 58	33	921
72	-	3586	2882	91 18694	nodulin-21 (AA 1-201) [Glycine max]	88	34	705
74	-	6937	4230	gi 2293252	(AF008220) YtmO [Bacillus subtilis]	88	33	708
79	-	4594	3422	91 1217989	ORF3 (Streptococcus pneumoniae)	1 88 1	77	1173
82	8	10585	8171	gi 882711	exonuclease V alpha-subunit (Escherichia coli)	- 88	38	2415
86	11	116017	15337	91 47642	5-dehydroquinate hydrolyase (1-dehydroquinase) (Salmonella typhi)	85	32	681
97	~	931	460	10111111111				

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	10 OR D	Start (nt)	Stop (nt)	match	match gene name	E I	* ident	length (nt)
108	- 5	358	[2724	91 537020	vac8 gene product (Escherichia coli]	95	37	2367
111	5	4593	5240	91 1592142	ABC transporter, probable ATP-binding subunit [Methanococcus jannaschii]	88	36	648
120	-	4421	5110	gn1 PID d101320	YqgX [Bacillus subtilis]	88	47	069
128	116	13131	12673	91 662919	ORF U (Enterococcus hirse)	88	42	459
132	-	6174	4939	91 1800301	[macrolide-efflux determinant [Streptococcus pneumoniae]	88	35	1236
133	-	111	890	gn1 PID e269488	[Unknown (Bacillus subtilis]	88	36	780
160	Ξ	8615	9865	191 473901	ORF1 [Lactococcus lactis]	88 -	39	1251
161	9	6268	6849	gn1 PID d101024	DJ-1 protein (Homo sapiens)	85 -	32	582
169	7	214	~	gn1 PID d100447	translation elongation factor-3 (Chlorella virus)	88	31	213
187	-	487	~	gi 475114	regulatory protein [Pediococcus pentosaceus]	88	38	486
187	9	4384	4620	gi 167475	dessication-related protein [Craterostigma plantagineum]	85	55	237
190	- 2	1464	1640	gn1 PID e246727	competence pheromone (Streptococcus gordonii)	85	38	171
192	~	2012	1344	0556	rat GCP360 [Rattus rattus]	1 58	3	699
206	-	1292	969	79	product similar to WrbA [Lactobacillus sake]	88	35	597
216	~	2333	555	gn1 P1D e325036	hypothetical protein (Bacillus subtilis)	88	33	1779
217	- 5	5250	4321	91 466474	[cellobiose phosphotransferase enzyme II'' [Bacillus stearothermophilus]	- 88	38	930
712		5636	5106	gn1 PID d102048	B. subtilis callobiose phosphotransferase system celB; P46317 (998) transmembrane [Bacillus subtilis]	88	44	531
232	-	2	811	gi 1573777	cell division ATP-binding protein (ftsE) [Haemophilus influenzae]	28	39	810
264	-	2	715	91 973330	Nath (Bacillus subtilis)	- 28	32	714
280		£	767	91 1786187	(Ag000111) hypothetical 29.6 kD protein in thrC-talB intergenic region	88	31	735
306	-	845	-	gn1 PID e334780	[YlbL protein (Bacillus subtilis)	28	47	843
360		1556	1092	sp P46351 Y2GD_	HYPOTHETICAL 45.4 KD PROTEIN IN THIAMINASE I 5'REGION.	85	32	465
363	5	2160	1867	gi 160671	S antigen precursor (Plasmodium falciperum)	88	51	294
372	_	908	_	91 393394	[Tb-29] membrane associated protein [Trypanosoma brucei subgroup]	88	37	804
382	~	749	519	pir JC1151 JC11	hypothetical 20.3K protein (insertion sequence [S]]3]] - Agrobacterium tumefaciens (strain PO22) plasmid Ti	85	4	231
					~**************************************	+	+	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig 1D	ORF ID	Start (nt)	Stop (nt)	match	match gene name	ets *	1 ident	length (nt)
n	6	8409	7471	91 1499745	M. jannaschii predicted coding region MJ0912 (Methanococcus jannaschii)	57	38	939
10	01	7674	7507	91/1737169	homologue to SKP1 (Arabidopsis thaliana)	57	30	168
2	-	7	412	gn1 P1D d100139	ORF (Acetobacter pasteurianus)	52	42	411
31	7	2032	1388	[91 2293213	(AF008220) YtpR (Bacillus subtilis)	57	37	645
33	11	6931	6449	gn1 PID e324949	hypothetical protein (Bacillus subtilis;	57	36	483
45	2	5446	2060	91 1592204	phosphoserine phosphatase (Methanococcus jannaschii)	57	44	387
49	_	6523	7632	91 155369	PTS enzyme-II fructose (Manthomonas campestris)	57	35	1110
52	9	4520	6850	gi 1574144	single-stranded-DNA-specific exonuclease (recJ) (Haemophilus influenzae)	57	35	2331
53	5	2079	1795	91 1843580	replicase-associated polyprotein (oat blue dwarf virus)	57	94	285
63	9	5312	4995	91 2182608	[AE000094] Y4rJ [Rhizobium sp. NGR234]	1. 45	39	318
72	51	13883	13059	[gn1 PID d100892	homologous to SwissProt:YIDA_ECOLI hypothetical protein [Bacillus subtilis]	57	04	825
61	7	2561	1815	gn1 P1D d100965	homologue of NADFH-flavin oxidoreductase Frp of V. harveyi (Bacillus subtilis)	52	4	747
82	6	9596	9763	91 1206045	short region of similarity to glycerophosphoryl diester phosphodiesterases [Ceenorhabditis elegans]	52	38	168
98	110	17621	14493	91 1787983	(AE000264) o288; 92 pct identical (1 gaps) to 222 residues of fragment YDIB_ECOLI SW: P28244 (223 aa) [Escherichia coli)	. 22	36	618
93	_	1695	7711	91 1500003	mutator mutT protein [Mathanococcus }annaschii]	52	33	519
96	9	3026	4519	91 559882	threonine synthase [Arabidopsis thallana]	57	43	1494
66	=	11211	18212	91 773349	BirA protein (Bacillus subtilis)	57	\$	1002
112	60	7448	7903	gi 1591393	M. jannaschii predicted coding region MJ0678 (Methanococcus jannaschii)	57	30	456
113	92	18627	18328	pir A45605 A456	mature-parasite-infected erythrocyte surface antigen MESA - Plasmodium falciperum	57	22	300
123	~	343	1110	pir F64149 F641	hypothetical protein H10355 - Maemophilus influenzae (strain Rd KW20)	57	38	768
123	7	2108	2884	gn1 PID d102148	(ABOO1684) sulfate transport system permease protein (Chlorella vulgaris)	57	39	111
127	01	6477	5587	91 1573082	nitrogenase C (nifC) (Haemophilus influenzae	52	35	891
ł	113	9251	9790	91 153692	pneumolysin (Streptococcus pneumonise)	57	38	540
131	4	2139	1363	gi 42081	nagD gene product (AA 1-250) (Escherichia coli)	57	36	רור
1 1 1	111				P);;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;			

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont ig	98. 5	Start	Stop	match	match gene name	t sin	4 ident	length
136		214	1221	bbs 148453	SpaA=endocarditis immunodominant antigen Streptococcus sobrinus, MUCOB 263, Peptide; 1566 aa (Streptococcus sobrinus)	52	44	1008
140	52	28701	26851	91 505576	beta-glucoside permease [Bacillus subtilis	1 57	38	1851
141	9	6395	7438	91 995560	unknown Schitosaccharomyces pombe	57.	4	1044
144	_	3231	1 2785	gn1 PID d100139	ORF (Acetobacter pasteurianus)	- 25	42	447
155	4	5454	4564	91 (600431	glycosyl transerase (Erwinia amylovora)	57	34	891
159	6	1 4877	5854	911290509		57	35	976
167	Ξ	9710	9249	gn1 PID d100139	ORF (Acetobacter pasteurianus)	52	42	. 462
171	9	4023	4436	91 147402	mannose permease subunit III-Man [Escherichia coli]	- 22	29	414
178	-	1 2170	1076	gn1 Pt0 d1 0 2 0 0 4	[48801488] ATP-DEPENDENT RNA HELICASE DEAD HOHOLOG. (Bacillus subtilis)	- 25	39	1095
190	-	145	1455	gi 149420	export/processing protein [Lactococcus lactis]	52	000	1311
198	٠.	298	95	gi 522268	Unidentified ORF22 [Bacteriophage bIL67]	57	36	204
203	- 5	3195	2110	gn1 P10 e283915	orf c01003 (Sulfolobus solfataricus)	52	- 17	1086
205	-	40	507	gi 1439527	[EllA-man (Lactobacillus curvatus)	1 22	28	468
214		4243	3797	gn1 PID d102049	H. influenzae, ribosomal protein alanine acetyltransferase; P44105 (189)	52	89	447
268		1767	1276	gi 43979	L.curvatus small cryptic plasmid gene for rep protein (Lactobacillus curvatus)	52	36	492
351	-	324	34	gn1 PID e275871	T03F6.b (Caenorhabditis elegans)	25	31	291
386	-	226	7	gi 160671	S antigen precursor (Plasmodium falciparum)	57	45	225
2	5	10486	7778	gi 405857	yehu (Escherichia coli)	95	33	1710
80	2	3674	3910	[gi 467199	pksC; L518_F1_2 [Mycobacterium leprae]	95	39	237
27	-	3442	1874	gn1 PID d101907	sodium-coupled permease (Synechocystis sp.)	95	36	1569
21	-	1880	333	91 2313949	(AE000593) osmoprotection protein (proWX) [Helicobacter pylori)	95	33	1548
22	129	21968	22456	gn1 P1D d102001	(ABG01488) PROBABLE ACETYLTRANSFERASE. (Bacillus subtilis)	99	37	489
22	-	1361	~	91 215132	[ea59 (525) [Bacteriophage lambda]	95	30	1359
28	6	1 4667	4278	91 1592090	DNA repair protein RAD2 (Methanococcus jannaschii)	26	29	390
33	-	8	386		ORF (Acetobacter pasteurianus)	95	41	364
				•	→ 9 4 4 8 9 8 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		* * * * * * * * * * * * * * * * * * * *	

S. pneumoniae - Putative coding regions of novel proteins Bimilar to known protein

1 13.2 13.2 13.2 13.1 10.1 10.0023 10.002 10.0023 10.002	Cont ig ID	ID E	Start (nt)	Stop (nt)	match	match gene name	sim .	1, ident	length (nt)
14 1117 4118 41	36	_	5122	5397	pir PQ0053 PQ00	protein (proC 3' region)	95	28	276
15 1371 1310 1311 1311 1311 1311 1311 1311 1312 1311 1311 1312 13	40	7	1 3137	4318	fgi 1800301	macrolide-efflux determinant Streptococcus pneumoniae	95	72	1182
17 11775 110031 01 1113729 transcription activator Deachlias scanocharcophilus	40	116	112511	13191		PlnU [Lactoba¢illus plantarum]	95	38	681
4 1874 1234 goll PD[d100105] Genebaces procein Ibacillus accesocherecophilus] 56 23 24 25 25 25 25 25 25 25	8	11	1 1	13023	gi[143729	activator (Bacillus	95	35	753
1 1812 1419 porl Prob[dioolis part Decebecter paracelanas 1811 1812 1812 1812 1813 1814 1815 1	75	4	1674	2594	gn1 PID d102036	(Bacillus	96	25	921
1 1810 1318 131	98	6	1842	1459	[gn1 P1D d100139		56	41	384
2 1360 2118 gnil Projetole 109101 hypochetical procein (Symechocystis sp.) 56 31 3 2151 1394 gil 137201 Onc_015 (Secherichia coll) 56 31 4 2254 285 gnil Projetolo340 Onc_015 (Secherichia coll) 56 28 3 1203 2054 gnil Red40035 high-editivity periplasmic glutamine binding procein (Salmonella Simulatura) 56 27 4 4003 1007 gnil Projetolo340 human onn-muscle syosin heavy Chain Head septemble Simulatural 56 27 11 6608 6405 gil 1302397 haccono 13 Y44M lebitachium sp. WGR341 56 39 11 6608 6405 gil 1302397 haccono 13 Y44M lebitachium sp. WGR341 56 39 10 6814 7245 gil 1302397 haccono 144M lebitachium sp. WGR341 56 39 10 6814 7245 gil 1304001 hypochetical procein (Symethocyteil sp.) 56 39 10 6814 7245 gil 12010000 p	89	-	5815	4940	gi 85377	similar to E.coli PRFA2	95	42	876
1 2754 2955 1910 1910 2006 1910 2005 1910 2005 200	105	5	1360	2718	gn1 Pr0 d101913	protein (Symechocystis	95	37	1359
4 2734 1965 Smiletpld100340 ORF [Plum pox virus] 56 28 30 1 1203 2054 Smiletpld100340 Indph-affinity periplasmic glucamine binding protein [Salmonella 56 30 8 3939 364 Smiletpld100347 Indph-affinity periplasmic glucamine binding protein [Salmonella 56 27 11 6608 6603 311738237 Indepondentical protein (Synachlocystis ap.) 56 39 10 6814 7245 311532011 Smilete permesse (cyah) (Hethanococcus jannaachili 56 39 10 6814 7245 Jail 1532011 Smilete permesse (cyah) (Hethanococcus jannaachili 56 39 10 6814 7245 Jail 1532011 Smilete permesse (cyah) (Hethanococcus jannaachili 56 39 10 6814 7245 Jail 150401039 Indepondateiteal protein (Synachocyatis ap.) 56 39 1 4656 Jail 1510[J0101039 Indepondate transport system permesse protein Pack (Synachocyatis ap.) 56 36 36 1 <td>112</td> <td>2</td> <td>1 2151</td> <td>3194</td> <td>191 537201</td> <td>(Escherichia</td> <td>95</td> <td>31</td> <td>1044</td>	112	2	1 2151	3194	191 537201	(Escherichia	95	31	1044
3 1203 2054 gil 649015 high-affinity periplasmic glucamine binding procein [Salmonella 56 30 30 3199 3694 gil PID 6248893 unknown inycobecterium tuberculosis 56 32 32 32 33 34 4403 4107 gil PID 6248893 unknown inycobecterium tuberculosis 56 32 32 33 34 34 34 34 34	113	-	2754	2963	gn1 PtD d100340	ORF (Plum pox virus)	95	28	210
8 1939 1864 Gari Propiezeres Industrian Ind	122	<u> </u>	1203	2054	gi 1649035	high-affinity periplasmic glutamine binding protein (Salmonella typhimurium)	95	30	852
1 6608 6405 91 2182337 IAEO000731 74fM Phizopium sp. NGR214 560 6405 91 2182337 IAEO000731 74fM Phizopium sp. NGR214 560 5605	124	8	3939	3694		unknown (Mycobacterium tuberculosis)	36	27	246
11 6608 6405 94	125	7	4403	4107	gn1 PID d100247	chain (Homo	95	32	297
5 4769 3849 gnl PID d1010870 hypothetical protein [Synechocystis sp.] 10 6814 1245 gil 592011 sulfate permease (cysA) [Mathanococcus jannaschil] 56 34 34 35 35	72	=	6608	6405	91 2182397	(AE000073) Y4fN (Rhizobium sp. NGR234)	95	35	204
10 6814 7245 gi 1592011 Sulfate permease (CyaA) [Methanococcus jannaschil] 56 34	34	- 5	4769	3849	gn1 PID d101870		26	39	921
8 5019 4582 pir A47071 A470 orfi immediately 5' of nifs - Bacillus subtilis 56 329 130	37	01	6814	7245	gi 1592011		95	34	432
8 4676 366 gnl PID d101911 hypothetical protein Synachocystis sp. 3 1906 2739 gnl PID d101099 phosphate transport system permease protein PstA Synachocystis sp. 4 4449 2743 gnl PID d101099 phosphate transport system permease protein PstA Synachocystis sp. 5 208 gil PID d101099 phosphate transport system permease of the resolvase family of enzymes 1 2 208 gil 1787791 (AE000249) fil7; This 117 aa orf is 27 pct identical (16 gaps) to 101] 7 4979 5668 gil 196293 similar to Bacillus subtilis hypoth 20 kDa protein, in tsr 3 region 56 40 7 3732 3367 gil 1732200 PfS permease for mannose subunit IPMan Vibrio furnissii 56 36 36 36 8 27 2402 819 pir 557904 5579 virR49 protein - Streptococcus pyogenes (strain CS101, serotype #49) 56 35 11	42	8	5019	4582	pir A47071 A470		95	29	438
3 1906 2739 gnl PID d101099 phosphate transport system permease protein PatA [Synachocystis sp.] 56 36 27 1 2 208 gi 1767791 (AE000249) f117; This 317 aa orf is 27 pct identical (16 gaps) to 301 56 34 2011 2 208 gi 1767791 (AE000249) f117; This 317 aa orf is 27 pct identical (16 gaps) to 301 56 34 2011 2 208 gi 196293 similar to Bacillus subtilis hypoth. 20 kDa protein, in tsr 3' region 56 40 2011 2 2402 819 pir 557904 5579 virR49 protein - Streptococcus pyogenes (strain CS101, serotype #49) 56 35 35 37 37 37 37 37 37	46	8	4676	3660	gn1 Pr0 d101911	hypothetical protein (Synechocystis sp.]	96	32	1017
4 4449 2743 gnl PID e304628 probably site-specific recombinase of the resolvase family of enzymes 56 27 1 2 208 gi 1787791 (AEC00249) f 117; This 117 as orf is 27 pct identical (16 gaps) to 301 56 34 2 208 gi 1396293 residues of an approx. 320 as protein YXXC_BACSU SW: P39140 [Escherichia coli] 3 4979 5668 gi 396293 similar to Bacillus subtilis hypoth. 20 kDa protein, in tsr 3' region 56 40 4979 5668 gi 396293 similar to Bacillus subtilis hypoth. 20 kDa protein, in tsr 3' region 56 36 7 3732 3367 gi 1732200 PTS permesse for mannose subunit IIPMan [Vibrio furnissii] 56 36 36 8 2402 819 pir 557904 5579 virR49 protein - Streptococcus pyogenes (strain CS101, serotype M49) 56 35 35 35 35 35 35 35	148		1906	2739	gn1 PID d101099	phosphate transport system permease protein PstA (Symechocystis sp.)	56	36	834
1 2 208 gi 1787791 (AE000249) f 177; This 177 aa orf is 27 pct identical (16 gaps) to 301 56 34 187 187 187 187 2011	150	-	4449	2743	gn1 P1D e304628	site-specific recombinase of the resolvase family of ophage TP21)	36	27	1707
7 4979 5668 gi[396293 similar to Bacillus subtilis hypoth. 20 kDa protein, in tsr 3' region 56 40 7 3732 3367 gi[1732200 PTS permesse for mannose subunit IIPMan [Vibrio furnissii] 56 36 2 2402 819 pir[557904[5579] virR49 protein - Streptococcus pyogenes (strain CS101, serotype M49) 56 35 1	22	-	2	208	91 1787791	[1]7; This 117 as orf is 27 pct identical (of an approx. 120 as protein YXXC_BACSU SW;	95	34	207
7 3732 3367 91 1732200 PTS permease for mannose subunit IIPMan [Vibrio furnissii] 56 36 36 2 2 2 2 2 2 2 2 2	72	_	4979	5668	91 396293		26	40	069
2 2402 819 pir SS7904 SS79 virR49 protein - Streptococcus pyogenes (strain CS101, serotype M49) 56 35	96	-	3732	3367	91 1732200	mannose	95	36	366
	87	7	2402	819	6/55/1	protein -	56	35	1584

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORP	Start	Stop	match	match gene name	l sim	1 ident	length
2	2	(nt)	(nt)	acession				(nt)
204	1	2772	2239	gi 606376	ORF_o162 (Escherichia coli)	95	35	534
206	~	3342	1633	[gi 559861	clyM (Plasmid pAD1	95	38	1710
219		1689	1096	gi 1146197	putative (Bacillus subtilis)	56	27	594
230	7	409	1485	pir C60328 C603	hypothetical protein 2 (sr 5' region) - Streptococcus mutans (strain OM2175, serotype f)	98	9	1077
233	-	2930	3268	91 1041785	rhoptry protein [Plasmodium yoelii]	36	24	339
273	2	1543	2724	91 143089	lep protein (Bacillus subtilis)	56	32	1182
1 353	-	1	516	gn1 PID e325000	hypothetical protein (Bacillus subtilis)	96	17	516
359	-	87	641	gi 1786952	(AE000176) 0877; 100 pct identical to the first 86 residues of the 100 as hypothetical protein fragment YBGB_ECOLI SW: P54746 [Escherichia coll!]	96	46	555
363	1	4482	4198	gi 1573353	outer membrane integrity protein (tolA) (Haemophilus influenzae)	96	38	285
376	-	2	508	gn1 PID e325031	hypothetical protein (Bacillus subtilis)	26	33	507
1 18	-	836	111	gn1 PID d100872	a negative regulator of pho regulon (Pseudomonas aeruginosa)	55	31	999
28	4	1824	1618	gn1 PID e316518	STAT protein (Dictyostelium discoideum)	55	0.0	207
59	٠	4496	5041	91 1088261	unknown protein (Anabaena sp.)	55	31	546
38	91	. 2696	10702	gi 58090S	B. subtilis genes rpmH, rnpA, 50kd, gidA and gidB (Bacillus subtilis)	55	31	1008
6	s	5727	6182	191 1786951	(AEGO0176) heat-responsive regulatory protein [Escherichia coli]	55	29	456
- 51	-	2381	3241	gn1 PID d101293	YbbA (Bacillus subtilis)	55	42	861
52	6	9640	10866	91 153016	ORF 419 protein (Staphylococcus aureus)	55	23	1221
53	-	1 1813	1349	gi 896042	OspF (Borrelia burgdorferi]	55	30	465
09	2	4794	5756	91 1499876	magnesium and cobalt transport protein (Methanococcus jannaschii)	88	38	963 [
1,	6	14176	15408	191/1857120	glycosyl transferase (Neisseria meningitidis)	55	77	1233
7.5	9	3389	4229	gn1 P1D e209890	NAD alcohol dehydrogenase [Bacillus subtilis]	55	9.7	1041
108	2	10488	9820	gn1 PID e324997	hypothetical protein (Bacillus subtilis)	55	36	699
113	2	67221	13037	gn1 P10 e311496	unknown (Bacillus subtilis)	55	34	765
113	=	_ ;	13945	gi 1573423	1-phosphofructokinase (fruK) [Haemophilus influenzae]	55	39	939
126	s .	6764	5907	91 1790131	(AE000446) hypothetical 29.7 kD protein in ibpA-gyrB intergenic region [Escherichia coli]	55	37	828

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	Eis	* ident	length (nt)
129	3	2719	905	gn1 PID d101425	Pr-peptidase (Bacillus licheniformis)	55	35	1818
138	~	2593	1610	91 142833	ORF2 (Bacillus subtilis)	55	1 78	984
140	•	6916	5633	gn1 P1D d100964	homologue of hypothetical protein in a rapamycin synthesis gene cluster of Streptomyces hygroscopicus (Bacillus subtilis)	\$5	26	1284
147	e	3854	2136	gi 472330	dihydrolipoamide dehydrogenase (Clostridium magnum)	55	39	1 6171
147	0.	10204	8921	gn1 PID e73078	[dihydroorotase [Lactobacillus leichmannii]	55	38	1284
148	5	3430	4119	gi 290572	Peripheral membrane protein U [Escherichia coli]	55	29	1 069
148	9	4171	4650	[gi 695769	transposase Kanthobacter autotrophicus	55	37	480
149	-	12564	11650	[gn1 P1D d101329		55	32	915
156		1113	550	91 2314496	(AE000614) conserved hypothetical integral membrane protein (Helicobacter pylori)	55	34	564
159	2	6625	5897	91 290533	similar to E. coli ORF adjacent to suc operon; similar to gntR class of regulatory proteins (Escherichia coll)	55	29	729
164		1784	2332	gn1 PID e255118	hypothetical protein (Bacillus subtilis)	55	37	549
164	5	2772	3521	3521 - gi 40348	put. resolvase Tnp I (AA 1 - 284) [Bacillus thuringlensis]	55	35	750
164	Ξ	7428	7216	gn1 P1D e249407	unknown [Mycobacterium tuberculosis]	55	38	213
167	2	3860	3345	191 535052	involved in protein secretion [Bacillus subtilis]	55.	28	516
186	5	2880	2563	91 606080	ORF_0290; Geneplot suggests frameshift linking to 0267, not found [Escherichia coli]	55	35	318
189	8	4311	5396	gn1 P1D e183450	hypothetical EcsB protein (Bacillus subtilis)	55	32	1086
192	2	3270	3079	91 1196504	vitellogenin convertase (Aedes aegypti)	55	38	192
195	2	2454	1384	91 1574693	transferase, peptidoglycan synthesis (murG) [Haemophilus influenzae]	55	33	101
198	-	3013	2471	gn1 PrD e313074	hypothetical protein (Bacillus subtilis)	55	29	543
214	_	373	744	gn1 PID d101741	transposase (Synechocystis sp.)	55	33	372
219	2	1115	456	91 288301	ORF2 gene product (Bacillus megaterium)	55	30	1 099
263	7	3742	3443	91 18137	cgcr-4 product (Chlamydomonas reinhardtii)	25	48	300
285	7	7	829	gn1 P10 d100974	unknown (Bacillus subtilis)	55	- 04	828
286	7	650	249	gi 396844	ORF (18 kDa) [Vibrio cholerae]	55	31	402
297	7	1229	9691	gi 150848	prtC (Porphyromonas gingivalis)	- 55	39	468
			ı			+	•	•

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF TD	Start (nt)	Stop (nt)	match acession	match gene name	E S in	1 ident	length (nt)
309	2	218	982	gi 1574491	hypothetical [Haemophilus influenzae]	- 88	35	765
328	~	646	224	91 571500	[prohibitin (Saccharomyces cerevisiae]	55	27	423
330	-	1340	474	91 396397	sox8 [Escherichia coli]	- 55	29	867
364	-	2538	1546	91 393394	Tb-291 membrane associated protein (Trypanosoma brucei subgroup)	- 55	36	666
368	-	941	105	[gi[160671	S antigen precursor [Plasmodium falciparum]	1 55	- 04	837
	5	4604	3624	91 2293176	(AF008220) signal transduction protein kinase (Bacillus subtilis)	54	26	981
6	=	1 7746	7246	91 1146245	putative (Bacillus subtilis)	54	38	501
38	124	116213	17937	gi 1480429	putative transcriptional regulator [Bacillus stearothermophilus]	54	27	1725
0	æ	1 5076	4882	91 39989	methionyl-tRNA synthetase (Bacillus stearothermophilus)	54	35	195
43		1 3980	1 2367	gn1 PID e148611	ABC transporter (Lactobacillus helveticus)	54	25	1614
52	2	110844	112103	gi 1762962	FemA Staphylococcus simulans	54	29	1260
1 57	-		512	gi 558177	endo-1,4-beta-xylanase (Cellulomonas fimi)	54	36	510
88	-	4749	4246	gn1 PID d101237	hypothetical (Bacillus subtilis)	1 54	29	504
12	-	10684	111703	gi 510255	orf3 (Escherichia coli)	54	31	10201
17	120	27546	727737	91 202543	serotonin receptor [Rattus norvegicus]	1 54 1	31	192
1 72	- 1	844	1098	91 148613	srnB gene product (Plasmid F)	54	37	255
27		7438	6695	gi 1196496	recombinase (Moraxella bovis)	54	38	744
74	100	14043	13465	91 1200342	[ORF 3 gene product [Bradyrhizobium japonicum]	54	32	579
1 74	112	116483	115995	g1 2317798	maturase-related protein (Pseudomonas alcaligenes)	54	30	489
98	-	1 2877	2155	91 46988	orf9.6 possibly encodes the O unit polymerase (Salmonella enterica)	54	34	723
89	5	4433	13921	gi 147211	phnO protein (Escherichia coli)	54	17	513
06	-	6	464	91 2317798	maturase-related protein (Pseudomonas alcaligenes)	54	30	462
96	2	8058	8510	gn1 PID d102015 	(ABOO1488) SIMILAR TO SALMONELLA TYPHIMUBIUM SLYY GENE REQUIRED FOR SURVIVAL IN MACROPHAGE. (Bacillus subtilis)	54	32	453
97	9	4662	3604	91 1591394	[transketolase' (Methanococcus jannaschii]	54	30	1059
106	Ξ	10406	112010	191 606286	ORF_0637 [Escherichia coli]	54	32	1605
147	œ ——	8663	7404	 	ORF_ID:031947; similar to (SwissProt Accession Number P37340) [Escherichia coli]	8	35	1260
					→	********		

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	19 ONF	F Start	t Stop	match	match gene name	E SIB	1 ident	l length
171	-	1 2477	1 3223	91 1439528	[EIIC-man (Lactobacillus curvatus)	54	36	747
174	-	1 2068	1787	gn1 PID d100518	motor protein [Homo sapiens]	54	35	282
188		1 526	11188	gn1 P1D e250352	unknown (Mycobacterium tuberculosis)	54	31	199
198	- 2	3582	2884	e313074	hypothetical protein (Bacillus subtilis)	54		000
207	-	-	1 1641	gn1 PtD d101813	hypothetical protein (Synechocystis sp.)	54	2.4	1641
210	-	-	655	91 2293206	(AP008220) YtmP (Bacillus subtilis)	5.4	20	88.4
225	~	996	1 2357	[gn1 PID e330194	R11H6.1 (Caenorhabditis elegans)	54	3.68	1342
241	-	1681	347	gn1 PID d101813	hypothetical protein (Synechocystis sp.)	54	26	21.61
263	-	1 907	1395	gn1 P1D d101886	transposase (Synechocystis sp.)	54	30	489
263	9	1 3450	1 2977	gi 160671	S antigen precursor (Plasmodium falciparum)	54	47	474
772	-	1 2517	1363	91 1196926	unknown protein (Streptococcus mutans)	54	30	1155
307	-	828	-	91 (2293198	(AF008220) YtgP (Bacillus subtilis)	54	28	825
325	-	19	1 768	19112182507	(AE000083) Y41H (Rhizobium sp. NGR234)	54	37	750
332		898	1 590	91 1591815	ADP-ribosylglycohydrolase (drag) [Methanococcus jannaschii]	54	32	308
385		240	479	91 530878	Amino acid feature: N-glycosylation sites, aa 41 43, 46 48, 51 53, 72 74, 107 109, 128 130, 132 134, 158 160, 163 165; amino acid feature: Rod protein domain, aa 169 340; amino acid feature: globular protein domai	24	64	240
۲	125	119702	19493	gn1 PrD e255111	hypothetical protein (Bacillus subtilis)	53	32	210
23		2497	2033	gn1 PID d102015	(ABOO1488) SIMILAR TO SALMONELLA TYPHIMURIUM SLYY GENE REQUIRED FOR SURVIVAL IN MACROPHAGE. (Bacilius subtilis)	83	25	465
29	Ξ	9042	110121	91 143331	alkaline phosphatase regulatory protein (Bacillus subtilis)	53	31	1080
33	-	1479	1009	pir S10655 S106	hypothetical protein X - Pyrococcus woesei (fragment)	53	33	471
36	9	4583	5134	[gn1 P1D e316029	unknown (Mycobacterium tuberculosis)	53	30	552
38	12	8521	8898	91 580904	homologous to E.coli rnpA (Bacillus subtilis)	53	30	378
52	-	1 7007	8686	91 1377831	unknown (Bacillus subtilis)	- s	29	1680
54	=	117555	19564	91 666069	orf2 gene product (Lactobacillus leichmannii)	53	36	2010
26	-	7	. 681	91 1592266	restriction modification system S subunit [Methanococcus jannaschii]	53	32	681
				-		-+	*******	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont ig	9 ORF	Start (nt)	t Stop (nt)	match	match gene name	s sin	1 Ident	length
57	2	9431	8487	91 1788543	(AE000310) f351; Residues 1-121 are 100 pct identical to YOJL ECOLI SW: P33944 (122 as) and as 152-351 are 100 pct identical to YOJK_ECOLI SW: P33943 [Escherichia coli]		31	945
19	-	429	-	gn1 PID e236467	B0024.12 Caenothabditis elegans	53	33	426
12	-	1 5772	-	91 393394	Tb-291 membrane associated protein (Trypanosoma brucei subgroup)	53	33	5769
22	7	1 894	2840	91 2293178	(AF008220) YtsD (Bacillus subtilis)	53	27	1947
5	=	9793	9212	91 1778556	putative cobalamin synthesis protein (Escherichia coli)	53	32	582
88	-	5217	4342	gi 2098719	putative fimbrial-associated protein Actinomyces naeslundii	53	80	928
93	-	2395	1688	gi 563366	[gluconate oxidoreductase [Gluconobacter oxydans]	53	3 5	900
96	-	6632	1 7762	[gi 517204	ORF1, putative 42 kDa protein (Streptococcus pyogenes)		42	
108	-	1 7629	8600	91 149581	maturation protein (Lactobacillus paracasei)	5		
128	-	6412	1 6972	PIDes	unknown Mycobacterium tuberculosis	3 5	36	7/6
128	113	8429	1 9253	1911311070	pentraxin fusion protein (Xenopus laevis)	5		100
148	-	۳ -	1 950	pir A61607 A616	probable hemolysin precursor - Streptococcus agalactiae (strain 74-360)			9 1 9
163	-	1 2162	3022	91/1755150	nocturnin (Xenopus laevis)			
171	_	2304	2624	91/1732200	PTS permease for mannose subunit 11PHan [Vibrio furnissii]			
182	2	3785	3051	gn1 PID d100572	unknown [Bacillus subtilis]	7	7	175
209	_	2948	1935	91 1778505		3 5		(2)
218	5	3884	2406	91 40162	murE gene product (Bacillus subtilis	3		\$107
250	_	673	1 790	gn1 P1D e334776	VIbH protein (Bacillus subtilis)	3 3		N
275	-	-	1 1611	PID d101314	Yqew (Bacillus subtilis)	66	100	318
332	-	544	~	gi 409286	barillus subtilis	3		1101
~	~	1 2543	3445	gn1 PID e233879	hypothetical protein (Bacillus subtilis)			600
	122	22402	23376	gi 38969	lacF gene product (Agrobacterium radiobacter)		7	506
5	-	8094	1 2356	, v	[gAl protease (Streptococcus sanguis)		3 2	
22	126	119961	20212	91 152901	ORF 3 (Spirochaeta aurantia)	52		556
22	=======================================	123140	124666	191 289262	COME ORF3 Bacillus subcilis	52	32	1527
27	9	5397	4803	91 39573	P20 (AA 1-178) (Bacillus licheniformis)	52	35	597

pneumoniae - Putative coding regions of novel proteins Similar to known proteins

Contig ID	ORF	Start (nt)	Stop (nt)	match	match gene name	sim	* ident	length (nt)
35	10	8604	7357	gi 508241	putative O-antigen transporter [Escherichia coli]	25	27	1248
.	-	4801	3662	gn1 P1D d102243	(AB005554) homologs are found in E. coli and H. influenzae; see SWISS_PROT ACC!: P42100 (Bacillus subtilis)	22	36	1140
48	118	114385	13726	gn1 PID e205174	orf2 [Lactobacillus helveticus]	52	25	099
69	~	5321	5755	91 2317740	(AF013987) nitrogen regulatory IIA protein (Vibrio cholerae)	52	19	435
54	-	2773	4668	94 1500472	M. jannaschii predicted coding region MJ1577 [Methanococcus jannaschii]	52	36	1896
5.4	9	5250	4969	91 2182453	(AE000079) Y410 [Rhizobium sp. NGR234]	52	40	282
99	9	8400	6955	91 43140	TrkG protein (Escherichia coli)	52	30	1446
1,1	92	130659	31312	gn1 PID e314993	unknown (Mycobacterium tuberculosis)	52	23	654
25	7	1673	1035	gn1 PID d102271	[AB001683] FarA [Streptomyces sp.]	52	27	639
81	2	1439	.2893	gn1 PID e311458	rhamulose kinase (Bacillus subtilis)	52	32	1455
81	80	4987	5781	gi 147403	mannose permease subunit II-P-Man (Escherichia coli)	52	37	795
83	<u> </u>	20687	21853	91 143365	phosphoribosyl aminoimidazole carboxylase II (PUR-K; ttg start codon) [Bacillus subtilis]	52	37	1167
98	9	5785	4592	91 1276879	Epsf (Streptococcus thermophilus)	52	26	1194
98	20	19390	17861	191 454844	ORF 3 (Schistosoma mansoni)	52	26	1530
96	1	10540	9659	91 288299	ORF1 gene product (Bacillus megaterium)	52	33	882
111	-	7	2026	gi 148309	cytolysin 8 transport protein (Enterococcus faecalis)	52	27	2025
112	7	1457	2167	91 471234	orf1 (Haemophilus influenzae)	52	33	1117
118		2931	2365	bbs 151233	Hip=14 kds macrophage infectivity potentiator protein (Legionella pneumophila, Philadelphia-1, Peptide, 184 aa) (Legionella pneumophila)	52	33	567
122	6	5646	5951	91/8214	myosin heavy chain (Drosophila melanogaster)	52	36	306
122	=	6129	6374	gi 434025	dihydroliposmide acetyltransferase [Pelobacter carbinolicus]	52	52	216
134	9	4880	6313	191 153733	M protein trans-acting positive regulator (Streptococcus pyogenes)	52	43	1434
135	_	1238	2716	gn1 P1D e245024	unknown (Mycobacterium tuberculosis)	52	35	1479
141		1681	2319	gn1 P10 d100573	unknown (Bacillus subtilis)	52	32	639
191		2562	5024	91 1146243	22.4% identity with Escherichia coli DNA-damage inducible protein; putetive [Bacillus subtilis]	52	36	2463
173	2	896	183	91 1215693	putative orf; GT9_orf434 [Mycoplasma pneumoniae]	52	30	786
			•		◆0.23500000000000000000000000000000000000		*	

S. pneumoniae - Putative coding regions of novel proteins Similar to known proteins

Contig	ORF	Start	Stop	match	match gene name	A sin	* ident	length
<u>a</u>	i	(nt)	(uc)	acession				(nt)
198	9	4400	3567	gn1 PID e313010	hypothetical protein (Bacillus subtilis)	52	26	834
210	112	8844	9107	gi 497647	DNA gyrase subunit B (Mycoplasma genitalium)	52	38	264
214	01	5264	5431	191 550697	envelope protein (Human immunodeficiency virus type 1)	52	36	168
225	-	15	884	gi 1552773	hypothetical (Escherichia coli)	52	34	870
230	-	39	362	gn1 PID d100582	unknown (Bacillus subtilis)	52	28	324
287	-	1 871	~	gn1 PID e335028	protease/peptidase [Mycobacterium leprae]	52	29	870
1 363	2	1305	-	gi 393394	[Tb-291 membrane associated protein [Trypanosoma brucel subgroup]	\$25	32	1302
1 23	- 5	2048	6,11	gn1 P1D e254943	unknown (Mycobacterium tuberculosis)	51	30	876
55		742	1521	91 929900	5 - methylthioadenosine phosphorylase (Sulfolobus solfataricus)	15		780
45	_	410	1597	gi 1877429	integrase (Streptococcus pyogenes phage T12)	115	32	1188
80	92	19227	18946	gi 2314455	[(AEGOO633) transcriptional regulator (tenA) (Helicobacter pylori)	51	2	282
در ا	- 2	4276	4016	191 474177	alpha-D-1,4-glucosidase (Staphylococcus xylosus)	51	31	261
81	Ξ	8935	12057	91/311070	pentraxin fusion protein (Xenopus laevis)	51	33	3123
83	2	1195	1986		YqfI (Becillus subtilis)	51	56	792
86	0.	1531	8538	[gi 41500	ORF 3 (AA 1-352); 38 kD (put. ftsX) (Escherichia coli)	51	28	1008
113	9	3908	5173	gi 466882	pps1; B1496_C2_189 [Mycobacterium leprae]	51	27	1266
124	-	326	57	19:12191168	(AF007270) contains similarity to myosin heavy chain (Arabidopsis thaliana)	- 15	32	270
129	2	7286	6816	6816 [91 1046241	orfld [Bacteriophage HP]]	75	30	471
143		4963	3983	gi 1354935	probable copper-transporting atpase (Escherichia coli)	51	56	981
148	115	11359	10226	91 [2293256	(AF008220) putative hippurate hydrolase (Bacillus subtilis)	51	36	1134
149	®	6003	6167	91 1633572	Herpesvirus saimiri ORF73 homolog (Kaposi's sarcoma-associated herpes-like virus)	51	21	1161
151	.6	12092	11550	gn1 PID e281580	hypothetical 40.7 kd protein (Bacillus subtilis)	51	34	543
159	9	2555	3208	91 146944	СМР-N-acetylneuraminic acid synthetase (Escherichia coli)	51	36	654
174	_	7671	-	gi 1773166	probable copper-transporting atpase [Escherichia coli]	51	28	1794
265	-	2231	1773	gn1 P1D e256400	anti-P. falciparum antigenic polypeptide (Saimiri sciureus)	51	18	459
772	7	643	1311	pir S32915 S329	pilD protein - Neisseria gonorrhoeae	51	33	699

pneumoniae - Putative coding regions of novel proteins similar to known proteins

21 4000	1 400	-				*	•	•
ar ar	;	(nt)	(ur)	acession	match gene name	eis •	• ident	length (nt)
350	-	1 890	~	91 290509	0307 Escherichia colij	1 21	30	888
363	-	1228	4485	gi 1707247	partial CDS (Caenorhabditis elegans)	51	23	3258
1 367	-	1001	7	191 393394	Tb-291 membrane associated protein [Trypanosoma brucei subgroup]	51	32	1698
15	2	5174	4497	gn1 PID e58151		50	38	678
16	4	2220	2582	gn1 PID e325010	hypothetical protein (Bacillus subtilis)	20	29	363
61 1	2	2591	4159	[91 [1552733	similar to voltage-gated chloride channel protein (Escherichia coli)	20	30	1569
25	4	2701	1997	gi 887849	ORF_f219 (Escherichia coli)	50	27	1 207
35	-	211	417	gn1 PID e236697	unknown (Saccharomyces cerevislae)	50	33 1	207
39	-	3416	5152	gn1 PID d100974	unknown (Bacillus subtilis)	20	27	1737
22		4000	5181	gi 1592027	[carbamoy]-phosphate synthase, pyrimidine-specific, large subunit [Methanococcus jannaschii]	0.5	27	1182
51	6	9717	8303	gi 1591847	Type I restriction-modification enzyme, S subunit (Methanococcus	05	28	1125
52	8	8740	9534	91 144297	acetyl esterase (XynC) (Caldocellum saccharolyticum)	20	34	1 267
52	116	16591	115770	91 2108229	basic surface protein (Lactobacillus fermentum)	- 05	34	822
1 57	-	6031	6336	91 2275264	605 ribosomal protein L78 (Schizosaccharomyces pombe)	- 05	40	306
1, 1	123	29348	28383	gn1 P1D d101328	YqjA (Bacillus subtilis)	20	30	996
98	112	111155	10769	gn1 PID e324964	hypothetical protein (Bacillus subtilis)	- 05	24	387
93	~	1205	330	91 1066016	similar to Escherichia coli pyruvate, water dikinase, Swiss-Prot Accession Number P23538 (Pyrococcus furiosus)	05	24	876
96	5	1673	1 2959	[gn1 PID e322433	gamma-glutamylcysteine synthetase [Brassica juncea]	20	29	1287
96	~	218	1111	(91 151110	leucine-, isoleucine-, and valine-binding protein (Pseudomonas aeruginosa)	- 05	30	954
103	-	3303	2785	191 154330	O-antigen ligase (Salmonella typhimurium)	- 05	31	519
1115	- 5	6480	1 5980	91 895747	putative cel operon regulator (Bacillus subtilis)	- 05	26	501
129	Ξ	9556	1305	gi 1216475	skeletal muscle ryanodine receptor (Homo sapiens)	- 05	32	255
129	=	8192	7965	91 1152271	319-kDA protein (Rhizoblum meliloti)	05	90	228
151	5	7634	6819	gi 40348	put. resolvase Tmp I (AA 1 - 284) (Bacillus thuringiensis)	٥ <u>٠</u>	35	816
153	_	-	597	gn1 P10 d102015	[(ABG01488) SIMILAR TO NITROREDUCTASE. (Bacillus subtilis)	- 05	29	597
						•	•	

pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig ID	ORF	Start (nt)	Stop (nt)	match	match gene name	# sim	* ident	length (nt)
155	5	5986	5432	91 1276880	EpsG (Streptococcus thermophllus)	05	1 28	888
160	6	7390	6323	91 1786983	(AE000179) 0331; 92 pct identical to the 333 aa hypothetical protein YBHE_ECOLI SW: P52697; 26 pct identical (7 gaps) to 167 residues of the 373 aa protein HLE_TRICU SW: P46057; SW: P52697 [Escherichia coli)	20	30	1068
163	9	7396	8091	gn1 PID d101313	Yqen (Bacillus subtilis)	05	22	969
167	۰	5232	3940	91 413926	ipa-2r gene product (Bacillus subtilis)	05	27	1293
169	~	1 807	130	gn1 PID e304540	endolysin (Bacteriophage Bastille	05	35	678
. 171	<u>.</u>	3168	4025	91 60 60 80	ORF_0290; Geneplot suggests frameshift linking to 0267, not found [Escherichia coli]	20	27	858
210	=	8151	8414	1911330038	HRV 2 polyprotein (Human rhinovirus)	05	25	264
364	-	1538	135	91 393396	Tb-192 membrane associated protein (Trypanosoma brucei subgroup)	05	31	1404
10	~	1 5911	1 5090	91 144859	ORF B [Clostridium perfringens]	6.0	24	822
56	<u>.</u>	10754	9768	gi 142440	ATP-dependent nuclease [Bacillus subtilis]	49	31	786
99	_	7776	8398	gi 414170	trkA gene product (Hethanosarcina mazeii)	64	26	1380
"	9	5364	4648	gn1 P1D e285322	Reck protein (Mycobacterium smegmatis)	64	78	71.7
82	13	- 1	113249	gn1 PID e255091	hypothetical protein (Bacillus subtilis)	64	20	561
93	6	4866	4531	191 40067	X gene product (Bacillus sphaericus)	49	36	336
112	s	4019	4948	91 1574380	lic-1 operon protein (licB) [Haemophilus influenzae]	49	27	930
129	_	809	4949	gn1 PID e267587	Unknown (Bacillus subtilis)	49	35	1110
135	2	3875	4438	gi 39573	P20 (AA 1-178) [Bacillus licheniformis]	49	25	564
154	7	1423	1953	gn1 PID d101102	regulatory components of sensory transduction system (Synechocystis sp.)	64	29	531
156	2	2878	1637	gn1 PID d101732	hypothetical protein (Synechocystis sp.)	69	25	1242
173	5	3500	2940	91 490324	LORF X gene product (unidentified)	49	30	561
182	-	1 1057	7	gi 331002	first methionine codon in the ECLF1 ORF (Saimiriine herpesvirus 2)	49	25	1056
192	9	5352	3667	gi 2394472	(AF024499) contains similarity to homeobox domains Caenorhabditis elegans	69	23	1686
253	4	1129	1350	91 531116	SIR4 protein (Saccharomyces cerevisiae)	67	23	222
772	-	009	136	91 396844	ORF (18 kDs) (Vibrio cholerae)	49	32	465
327	m	1435	887	887 g1 733524	phosphatidylinositol-4,5-diphosphate 3-kinase [Dictyostellum discoideum]	64	24	549
					++++++++++++++++++++++++++++++++++++++	+	+	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	08. 1.0	Start (nt)	Stop (nt)	match	match gene name	Eis	* ident	length (nt)
365	-	1436	132	91 393394	Tb-291 membrane associated protein [Trypanosoma brucei subgroup]	49	16	1305
E .	-	4461	1 3277	911145644	codes for a protein of unknown function (Escherichia coli)	48	26	1185
0	-	652	1776	gn1 PID e290649	ornithine decarboxylase (Nicotiana tabacum)	48	29	1125
67	*	1377	2384	91 1172652	[2-keto-3-deoxygluconate kinase [Haloferax allcantel]	48	30	1008
74	7	4269	3871	91 2182678	(AEC00101) Y4vJ (Rhizobium sp. NGR234)	48	27	399
81	7	1 1326	541	191 153672	actose repressor (Streptococcus mutans)	48	33	786
8	-	2981	3646	91 146042	fuculose-1-phosphate aldolase (fucA) (Escherichia coli)	48	30	999
97		602	51	gi 153794	rgg (Streptococcus gordonii)	48	29	552
110	-	-	3132	191 1381114	prtB gene product (Lactobacillus delbrueckii)	48	23	3132
131	- 2	2914	2147	gn1 PID e183811	Acyl-ACP thioesterase (Brassica napus)	48	27	768
133	-	3494	1 2628	gn1 PID e261988	putative ORF (Bacillus subtilis)	48	27	867
139	9	4231	4599	91 1049388	ZX470.1 gene product (Caenorhabditis elegans)	48	23	369
139		5036	5995	91 1022725	unknown (Staphylococcus haemolyticus)	48	1 62	630
140	17	11936	11007	gn1 P1D d102049	H. influenzae, ribosomal protein alanine acetyltransferase; P44305 (189) [Bacillus subtilis]	48	27	930
146	6	5670	4654	[91 1591731	melvalonate kinase [Methanococcus jannaschii]	48	24	1017
161	-	1280	2374	gn1 PID d101578	Collagensse precursor (EC 3.4). (Escherichia coli)	4.8	24	1095
172	=	110581	111048	gn1 PID d101132	hypothetical protein (Symechocystis sp.)	48	27	468
1 182	-	2930	2586	gi 40067	X gene product (Bacilius sphaericus)	48	37	345
210	115	10786	11196	[sp P13940 LE29_	LATE EMBRYOGENESIS ABUNDANT PROTEIN D-29 (LEA D-29).	48	30	411
214	112	6231	6482	91 140389	non-toxic components (Clostridium botulinum)	84	7 92	252
221	-	704	-	g1 1573364	H. influenzae predicted coding region HI0392 [Haemophilus influenzae]	- 89	27	702
227	7	647	3928	91 1673693	(AE000005) Mycoplasma pneumoniae, C09_orf718 Protein [Mycoplasma pneumoniae]	48	30	3282
253	~	089	758	gn1 PID e236697	unknown (Saccharomyces cerevisiae)	48	31	279
363	6	1874	1122	91 18137	Cgcr-4 product Chlamydomonas reinhardtiii	48	- 0\$	753
389	_	505	2	91/18137	cgcr-4 product (Chlamydomonas reinhardtii)	8.4	38	504
e	12	20879	22258	gn1 P10 e264778	putative maltose-binding pootein (Streptomyces coelicolor)	47	33	1380
						+	•	*******

nneumoniae - Putative coding regions of novel proteins sīmilar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	e is	* ident	length
9	4	4089	4658	gi 39573	P20 (AA 1-178) [Bacillus licheniformis]	47	23	570
15	-	3736	1760	gn1 PID d100572	unknown [Bacillus subtilis]	47	25	1977
35	115	114516	113263	19111773351	Cap5L [Staphylococcus aureus]	47	, 20	1254
رة -	9	3547	4002	pir A37024 A370	32K antigen precursor - Mycobacterium tuberculosis	47	38	456
55	60	110154	9273	91 39848	U] [Bacillus subtilis]	47	26	882
92	-	1753	3276	gn1 P1D e280611	PCPC [Streptococcus pneumoniae]	47	35	1524
127		5589	5386	gi 1786458	(AE000114) f120; This 120 as orf is 76 pct identical (0 gaps) to 42 residues of an approx. 48 as protein Y127_HAEIN SW: P41949 [Escherichia coli]	47	32	204
0.1	-	1 1232	1759	gn1 P1D e266555	unknown (Mycobacterium tuberculosis)	47	23	528
140		4951	3542	gn1 PtD d100964	homologue of hypothetical protein in a rapamycin synthesis gene cluster of Straptomyces hygroscopicus (Bacillus subtilis)	4	24	1410
151	4	6814	6200	gi 1522674	M. jannaschii predicted coding region MJECL41 [Methanococcus jannaschii]	47	27	615
157	-	803	1174	uni Pip dioi320	YqgZ [Bacillus subtilis]	47	25	372
178	'n	3267	2155	91 2367190	(AE000390) 0334; sequence change joins ORFs ygjR & ygjS from earlier version (YGJR_ECOLI SW: P42599 and YGJS_ECOLI SW: P42600) (Escherichia colij	41	30	1113
273	-	2	1549	gn1 PID e254973	autolysin sensor kinase (Bacillus subtilis)	47	32	1548
300	7	880	644	91 1835755	zinc finger protein Png-1 (Mus musculus)	47	22	237
54	114	14182	12638	pir S43609 S436	rofA protein - Streptococcus pyogenes	46	24	1545
88	-	2	1 1018	gn1 PID e223891	xylose repressor (Anaerocellum thermophilum)	46	27	1017
96		4553	5860	gn1 PID d101652	ORF_ID:0347#5; similar to [SwissProt Accession Number P45272] [Escherichia coli]	46	23	1308
112		1127	e -	gi 2209215 	(AF004325) putative oligosaccharide repeat unit transporter (Streptococcus pneumoniae)	8	24	1125
122	13	1 7308	1982	gi 1054776	hr44 gene product (Homo sapiens)	46	34	675
127	-	9198	8125	91 1469286	atuk gene product [Actinobacillus pleuropneumoniae]	46	28	1074
132	-	7093	6197	lgi (153794	rgg (Streptococcus gordonii)	46	76	897
140	8	8220	17723	gi 1235795	pullulanase (Thermoanaerobacterium thermosulfurigenes)	46	21	498
140	6	1 9205	8315	gi 407878	leucine rich protein (Streptococcus equisimilis)	46	12	891

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont ig	ORF	Start (nt)	Stop (nt)	match	match gene name	sin ,	* ident	length (nt)
162	-	-	1125	gi 1143209	ORF7; Method: conceptual translation supplied by author (Shigella sonneil	46	25	1125
199	-	-	585	191 1947171	[AF000299] No definition line found [Caenorhabditis elegans]	46	28	585
223		1971	1477	8P POZ562 MYSS_	MYOSIN HEAVY CHAIN, SKELETAL MUSCLE (FRAGMENTS).	46	27	495
232	~	1 760	1608	191 1016112	ycf38 gene product (Cyanophora paradoxa)	46	82	849
292	~	687	220	91 1673744	(AE000011) Mycoplasma pneumoniae, cytidine deaminase; similar to GenBank Accession Number C53312, from M. pirum [Mycoplasma pneumoniae]	99	29	468
30	ω	5843	6472	91 1788049	(AE000270) 0335; This 235 as orf is 29 pct identical (NO gaps) to 198 residues of an approx. 216 as protein YTXB_BACSU SW: P06568 (Escherichia coli)	45	24	630
48	9	1 3461	3868	91 722339	unknown Acetobacter xylinum	45	29	408
09		307	~	gi 1699079	coded for by C. elegans cDNA yk1h4.3; coded for by C. elegans cDNA yk188910.5; coded for by C. elegans cDNA yk188910.5; coded for by C. elegans cDNA yk59910.5; coded for by C. elegans cDNA yk41h4.5; coded for by C. elegans cDNA yk41h4.5; coded for by C. elegans cDNA cm20910; coded	\$	36	306
72	91	14371	114874	[gi 1321900	NADH dehydrogenase (ubiquinone) [Artemia franciscana]	45	25	504
66		9158	7941	91 152192	mutation causes a succinegivean-minus phenotype; Exoq is atransmembrane protein; third gene of the exovPQ operon;; putative [Rhizobium melliloti]	45	28	1218
127	77	7046	9099	bhs 153689	HitBeiron utilization procein (Hasmophilus influenzae, type b, DL42, NTHI TN106, Peptide, 506 as] (Hasmophilus influenzae)	45	24	441
137	2	1 1561	1 2619	91 472921	v-type Na-ATPase (Enterococcus hirae)	45	33	1059
209	-	1774	364	gi 304141	restriction endonuclease beta subunit [Bacillus coagulans]	45	28	411
314	-	604	7	gi 1480457	latex allergen (Hevea brasiliensis)	\$	12	603
20	118	119782	20288	gi 433942	ORF [Lactococcus lactis]	44	36	507
87	-	7030	6452	91 537207	ORF_(277 Escherichia coli)	44	56	579
166	5	4909	4037	gn1 P1D e308082	membrane transport protein (Bacillus subtilis)	7	25	873
247	-	818	1 75	gn1 PID d100718	ORF1 (Bacillus sp.)	44	20	744
32	-	1885	3876	91 (2351768	PspA (Streptococcus pneumoniae)	43	24	1992
36	117	115467	18256	gi 1045739	H. genitalium predicted coding region MG064 (Mycoplasma genitalium)	43	26	2790
54	5	114656	117343	91 520541	penicillin-binding proteins 1A and 1B (Bacillus subtills)	43	27	2688
67	~	969	1352	[gi 536934	yjcA gene product (Escherichia coli)	43	1 62	657
139	7	2416	338	gi 396400	similar to eukaryotic Na+/H+ exchangers [Escherichia coli	43	24	2079
							*	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

							****	4 1 1 1 1 1 1 1 1 1
Contig ID	108F	Contig ORF Start Stop ID ID (nt) (nt)	Stop (nt)	match	match gene name	s in	1 ident	length (nt)
298	-		608		ipa-48r gene product (Bacillus subtilis)	43	24	807
387	-	47	427	91 2315652	(AF016669) No definition line found (Caenorhabditis elegans)	43	30	381
185	â	4221	3127	91 2182399	(AE000073) Y4fP (Rhizobium sp. NGR234)	41	25	1095
340	-	1 582	00	582 70 gn1 PID 6218681	e218681 CDP-diacyiglycerol synthetase (Arabidopsis thaliana)	41	20	513
363	9	4205	1914	6 4205 1914 91 1256742	R27-2 protein [Trypanosoma cruzi]	43	7.2	2292
368	7	2	943	191 21783	LMW glutenin (AA 1-356) [Triticum aestivum]	7	34	942
155	-	4489	2861	2861 91 42023	member of ATP-dependent transport family, very similar to mdr proteins and hemolysin B, export protein [Escherichia coli]	6	18	1629
365	2	56	1438	95 1438 91 1633572	Herpssvirus saimiri ORF73 homolog (Kaposi's sarcoma-associated herpes-like virus)	ę	21	1344
~	_	2979	3860	3 2979 3860 gn1 PID d101908	d101908 [hypothetical protein (Synechocystis sp.)	39	36	882
-	s	5 3814 4647	4647	gnt PID	d101961 [hypothetical protein (Symechocystis sp.)	39	19	834
26	9	14035	10724	6 14035 10724 91 142439	ATP-dependent nuclease (Bacillus subtilis)	38	20	3312
47	-		4916	47 1 3 4916 9i 632549	NF-180 (Petromyzon marinus)	36	23	4914

proteins
known
ç
lar
STEL
nôt
ins
prote
novel p
ĕ
ions
regi
ing
codi
2
tati
Z
•
ae
i uowne

;	_	-	· ·	,	. – :	; —	, – .	, .	-	, —	-	; —	; — :	; – :	, – ;	; —	· — ·	-	-	. – :	, - -	. –	; -	-	, –	. –	: –
Stop (nt)	3009	4964	994	1574	6497	25396	26317	1689	12618	12841	15390	9419	9910	4280	5704	6298	6888	7672	-	1456	1434	243	3087	34	1050	4465	15893
Start (nt)	3428	4611	818	1182	5382	25046	25625	1519	12875	13215	15977	9955	19101	3915	6024	6069	7136	1968	1140	1779	1913	-	5675	324	1451	4890	14544
ORF ID	•	9	7		,	25	26	7	71	115	118	21	13	9	6	8	6	11	-	6	7	-	- 5	-	2	6	14
Contig	1	-				٦		9	v	9	9	7	,	œ	6	01	01	01	13	12	14	16	16	17	17	17	50

01
2
7
ij
2
٥
_
5
2
2
_
ŭ
ã
-
7
-
ø
u
2
=
89
9
tein
يَ
2
ã
_
7
5
2
-
ř
٥
2
5
region
ŭ
_
2
☲
×
ŭ
e codin
5
Í
=
ũ
2
-
- Puta
w
ĕ
7
5
Ĕ
2
š
۵
s.
S

†	; —	. –	. –	. – :	: :	: –	; —	.	: —		<u>. </u>	. –	· • —	: -	.	: –	<u>. –</u>	: –	<u>. –</u>	. –	• —	• –	• —	•		•	.
Stop (nt)	2589	4482	17362	19982	25764	26218	27572	6032	6653	518	2641	4223	4956	7671	3850	4597	5072	4919	5518	8207	6263	2344	5538	4668	7740	8641	9377
Start (nt)	3359		17099	19467	25540	26388	26382	6655	7132	36	3009	4819	4789	3017	4272	5028	5746	2596	5039	5595	6511	2664	5203	5327	8024	9360	9667
OR D	8	2	121	35	2	38	36	_	8	-	2	-	- 2	5	8	10	=	~	60	6	6	•	5		2	12	<u>-</u>
Cont ig	21	21	22	77		22	22	23	23	24	25	7.2	7.2	78	38	28	28	29	29	62	8	31	32	33	7	34	70
+	•	• — •		÷ i		-	· — ·		· — ·		. — ·	· — ·	· — ·	- -	 .	. — ·	: — :		. — .	-			: — ·	-	: — :	-	! — !

proteins
n protein
worx c
7
not stfallar to kno
200
e coding regions of novel proteins not
nove
o suc
regic
coding
Putative
2
pneumoniae

•																											
Stop (nt)	11902	8588	9670	1041	10893	11388	14595	4577	2001	5711	11376	3143	~	8732	1,06	6831	3665	3468	7081	3582	4229	8922	12494	15764	18351	1776	_
Start (nt)	13104	9688	11073	334	11120	10993	27121	4269	4480	5517	10732	1728	172	8884	9568	4831	3204	3875	6074	3196	4579	9323	13042	16342	17671	67615	209
R GI	18	11	12	7	12	133	15.	1	8	07	17	~	-	_		4	~		_	- 5		11	16	20	24	30	-
Cont ig ID	34	35	35	36	36	36	36	38	88	38	38	ę	Ç	£3	£	*	\$	46	9.	89	48	48	48	48	48	€	49
· ·			-	· — ·	. —	: —		-	-				_	-		_						:	-	: — .	 .	! — ·	! —

8
-
į
ž
_
3
š
_
ŭ
H
Similar
I III
.6
يد
ĕ
8
tein
a
ဦ
۵
a
Š
č
¥
a
Ë
ž
ě
Ξ
Ĕ
귷
ខ
ō
2
at
岩
۵
ı
ē
글
ğ
ä
Ē
ц,
ŝ

+	. ,	· — ·	· ·	• —		. —	. —	• —	• —	• —	• –	· • —	•	• -				· —	• -	. –		• –	• —	•			
1 1 1		3598	12883	5187	5459	6210	17506	10123	12141	1387	1939	2130	2501	7335	430	2736	3063	5549	5929	6451	1772	3176	2	3147	9495	1182	980
1 11	3307	3239	12146	5588	6013	6004	17685	10515	11947	935	1496	1624	2100	7541	~	2416	2734	4743	\$459	5741	2395	3316	2722	1180	9082	1343	1165
10 RF	<u>.</u>	s	=	-	8	6	16	6	12	~	-	2	4	9	-	-	2		6	9	-	5	-	7	8	-	7
Contig	20	51	52	54	54	\$4	5.4	55	55	99	96	57	57	28	59	65	29	65	65	09	19	61	64	99	99	67	69

8
Ë
te
2
ū,
Ę
5
×
S
Ħ
Ĩ
Ē
'n
۲
ĕ
š
ž
ž
ž
_
9
ĕ
7
9
õ
2
regions
ğ
5
8
ט
5
7
2
Z
ı
ø
4
neumoni
5
ē
Δ,

•																											
Stop (nt)	3922	4057	5504	21901	22338	27556	8081	4216	4582	4773	6428	8996	195	535	9210		~	8931	1150	16460	2929	1092	2875	17114	2000	6001	7006
Start (nt)	4059	4215	5268	20351	21859	26204	8458	3815	4214	4369	7183	9462	524	867	8602	7924	244	6631	1872	16810	4464	2147	3606	16767	5326	6459	7224
ORF	S	v	6	15	2	5	~		•	_	2	15	-	~	=	9	-	10	-	- 71	_	~	_	5			-
Contig ID	0,0	70	70	11	7.1	11	72	73	67	7.3	73	13	76	76	76	80	81	81	83	83	94	986	96	96	87	87	9,
				. — .		•										· — ·			- 4		-	· — ·	_ :			ł ł	

ABLE 3

proteins
known
S
illar
. slm
٤
proteins
novel
of
regions
coding
Putative
•
pneumoniae
œ.

; ;				. –	. –	. –	• ·		-	-	-	. – ·		 .	. –	. –	. —			·	-	-	<u>. </u>	. — :	<u>. </u>		• - -
Stop (nt)	17670	17928	1840	2878	6016	1621	6868	2395	952	3141	3691	4573	~	2379	3712	182	632	1147	1420	6753	18692	19541	1980	299	4373	6735	6517
Start (nt)	17930	18275	1619	2711	6252	2634	ורנר	669	110	2959	3170	4253	391	2648	4533	6	904	1407	1250	7043	18522	19717	4094	48	4924	6142	8609
ORF	118	19	7	7	6	_	6	7		-	7	9	-	9	8	-	7	<u> </u>	4	6	125	17	2	-	9	2	_
Contig ID	87	87	88	80	88	88	88	90	8	16	91	91	93	93	93	96	96	96	96	- 6	66	66	100	103	103	104	105
· ·			-	. — ·		-	: — :	-	-	_		: —	: —	! —	-	: —		! — ·	! — ·		-	-	+ —	! ·	! —		! !

28
E e
protein
EMOU)
ž
ů
lar
ins not slittillar t
stative coding regions of novel proteins not sti
23
it e
ă
۲e کا
5
ö
ons
iga
H
育
ŝ
7
282
- Putative
m
umonia
Ę
000
s.

																				· ·			. — .				
Stop (nt)	363	10212	268	3788	4606	10438	2121	1357	2333	6199	7416	069	3368	102	724	9509	6277	7621	756	5673	11209	1140	3830	134	14521	14532	14875
Start (nt)	-	9832.	7	3417	3809	10854	2873	2274	2698	5858	6301	346	2544	689	1011	6454	6540	7809	1433	5972	11838	625	2913	325	14027	14840	15363
PR DI	-	2	-	-	-	2		~	-	2	22	7	-	-	7	8	6	21	e -	01	=	7	-	7	77	13	=
Contig		106	108	111	111	115	116	118	122	122	122	124	128	129	129	129	129	129	131	161	134	135	136	137	139	139	139
		•		• =		•	• —	-	-		• —	-										-	•			•	•

proteins
Known
Ç
similar
not
proteins
novel
ö
regions
coding
Putative
ı
pneumoniae
S.

·	• ·	• - -	• —·	• —	• —	 .		• —	.		•	•		· —	•		• -			•		.					
Stop (nt)	20838	285	479	778	2885	9401	10676	9750	7276	8647	4765	1936	2880	6070	579	1909	2642	1741	1411	4311	294	780	1722	4017	1018	4945	4972
Start (nt)	19822		760	1149	3604	8223	9399	10052	7488	8913	5298	~	2557	6258	1355	2556	2061	1953	2181	4550	٦.	631	1384	3271	1332	5535	5406
ORF	120	-	e -	•	-	<u> </u>	7	118	-	6	-	7	-	6	~	-	e -	<u> </u>	~	8	-	~	-	-	7	_	•
Contig	140	T	146	146	146	146	146	146	147	147	148	149	149	149	150	150	153	154	155	156	157	159	.159	159	161	165	166
+ — <u>—</u> .		· — ·			_	· — ·			_			_			_	-		! — !	_	_		. .	-				! —

FABLE 3

proteins
known
ţ
similar
not
proteins
novel
5
egions
coding r
Putative
pneumoniae -

<u>+</u>	• - -		• - - •	· — ·	• — ·	• — ·		٠	. —	<u>. </u>		• .		• — •	• –	•	•		 .	• - -	•	• - -	• – •		• — :	• -	•
Stop (nt)	6395	3205	6243	6362	6962	7906	7476	1948	2677	835	1789	546	1466	4925	5177	5347	8703	3724	2473	1102	2006	2320	4219	4634	3557	4363	4821
Start (nt)	6075	2828	6485	1 1969	1303	8790	1350	2298	2913	629	893	1487	2200	4686	4923	2111	7396	3452	1853	2112	2617	2126	4683	1846	2940	3686	1183
ORF	6		-	8	6	=	6	2	-	~	-	7	-	6	01	=	12	9	- 2	7	-	7		9	-	-	2
Contig	167	169	170	170	170	170	171	172	173	175	175	176	176	177	177	177	177	178	181	182	182	183	185	185	187	188	188
+	• — ·			-		 .		: —	: — :	-	: —	. — .		. ·	-		; — .	. 		. — ·	-	.	- -	:	: — :	: — ·	

proteins
to known
similar
proteins not
novel prot
g of
ng reg
codi
Putative
ā
preumonia
Ġ

	•	• — ·	• —	•	• -	•	• —	• – ·	•			• - -		• –	• – •	•	•			•			•			.	
Stop (nt)	6493	2844	5564	-	10001	2268	2878	5331	839	2127	4543	6231	1849	861	6644	5769	6595	3276	1709	2460	2682	8230	10441	10705	2330	5277	5754
Start (nt)	5882	3143	9565	618	10357	2861	3081	0089	166	2315	6549	6620	1553	-	6844	5329	5993	3914	447	2038	2458	1370	9029	10439	2581	5065	5996
ORF	9		6	-	=	<u> </u>	-	_	-	-	. s		7	-	6	- 8	6	9	~	-	5	2	=	7	5	6	=
Contig	188	189	189	191	191	192	192	192	193	194	195	195	196	197	198		200	204		209	209	210	210	210	214	214	214
+	•	-	• —	•	• —	• —		• •	• •	. —	• —	• —	• •	• 	• —	• —	• ·	• •		• —	· —	• —	. ·	. — ·	· —	. — i	i i

S. pneumoniae - Putative coding regions of novel proteins not sidilar to known proteins

				,																							
Stop (nt)	194	1432	1972	3821	39	009	1964	510	1312	1838	312	687	64	270	362	1222	792	1616	2123	177	1900	2973	342	1022	1681	186	2295
Start (nt)	541	914	1430	3639	458	869	2617	1	1539	2116	52	310	099	~	_	443	2789	1179	1770	653	2244	3569	-	177	1124	857	1684
ORP	~	7	~	9	-	-	-	-	-	9	-	2	-	-		~	_	~	_	-	-	5		-	~	_	~
Contig	712	218	218	218	219	220	223	227	234	234	235	235	238	246	248	248	254	258	260		263	263	366		270		275
• -										\	. _ ·		_		: _ :	.		_	-				! _ !	. — .	! — .		! — !

ABLE 3

. preumoniae - Putative coding regions of novel proteins not similar to known proteins	
- Putative coding regions of novel proteins not	proteins
- Putative coding regions of novel proteins not	known
- Putative coding regions of novel proteins not	S
- Putative coding regions of novel proteins not	4th lar
- Putative coding regions of novel	8
- Putative coding regions of novel	proteins
- Putative coding regions o	novel
- Putative coding re	õ
. pneumoniae - Putative coding	regions
. pneumoniae - Putative	coding
. pneumoniae - 1	Putative
. pneumoniae	-
. pneumoni	9
	. pneumoni

Contig ONF Start Stop 178 1 2 406 128 1 1 2 406 128 134 1314		· — ·	· ·	• – •	_	•	•		•	•		• —	. – .	• - -	. –	•	•	• - -	•	•	·	• - -	.	÷ — 1
1 2 11463 1 1 1 1 1 1 1 1 1	Stop (nt)	406	391	1134	826	4	-	8	1 6			. •	. ~		8	8		ררר	133		. .	im	82	. 47	i 👸 i		انة	i 66 i
1 1 2 2 1 1 1 2 2 2 2 2 2 1 1 1 2 2 1	tar nt)	8	i -		1119	540	684		2	12	494	1 6	261	559	49.	8	3	313	477	• 🗝	-	~	i 10	in	-	افتا	i või	-
	ag 10	-	-	-	7	-	-	s	~	_	~	-	-	_	~	~	~	~	_	~	-	-	7	~	• 1	r i	~	-
	1 ~~ 1		282	1 00 1		iāō		291	293	294	296	1 6 1	302	309			317	-	919	327	331	333	333	333	341	-	i o i	i 🐳 i

S. pneumonise - Putative coding regions of novel proteins not similar to known proteins

		. — .					•			
Stop (nt)	413	973	448	628	1265	1004	510	693	-	30
Start (nt)	18	\$	636	948	1639	345	683	109	150	269
98 d	~	-	~	~	~	-	~	-	-	~
Contig	350	355	358	360	364	378	379	381	385	385

TABLE 3

(1) GENERAL INFORMATION:

(i) APPLICANT: Charles Kunsch

Gil H. Choi

Patrick S. Dillon

Craig A. Rosen

Steven C. Barash

Michael R. Fannon

Brian A. Dougherty .

- (ii) TITLE OF INVENTION: Streptococcus pneumoniae Polynucleotides and Sequences
- (iii) NUMBER OF SEQUENCES: 391
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Human Genome Sciences, Inc.
 - (B) STREET: 9410 Key West Avenue
 - (C) CITY: Rockville
 - (D) STATE: Maryland
 - (E) COUNTRY: USA
 - (F) ZIP: 20850
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4Mb storage
 - (B) COMPUTER: HP Vectra 486/33
 - (C) OPERATING SYSTEM: MSDOS version 6.2
 - (D) SOFTWARE: ASCII Text
- (vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER:
- (B) FILING DATE:
- (C) CLASSIFICATION:

(vii) PRIOR APPLICATION DATA:

- (A) APPLICATION NUMBER:
- (B) FILING DATE:
- (viii) ATTORNEY/AGENT INFORMATION:
- (A) NAME: Brookes, A. Anders
 - (B) REGISTRATION NUMBER: 36,373
 - (C) REPERENCE/DOCKET NUMBER: PB340P1

(vi) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: (301) 309-8504
- (B) TELEFAX: (301) 309-8512

150

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5625 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

CCAAGCAAAA	CCAGCTACAG	CTAAAGGAAC	TTACGTAACA	AACTTGACTA	TCACAACTAC	60
TCAAGGTGTT	GGTATCAAAG	TTGACGTAAA	CTCACTTTAA	TCAGTAGTTA	AAGTAATGTA	120
aaaaagttga	AGACGCTATG	TCTCAACTTT	TTTTGATGTA	CGACGGGCAT	GTTGTATAGT	180
AGATGTGTAC	TATTCTAGTT	TCAATCTACT	ATAGTAGCTC	AGAAGTCGGT	ACTTAAACGT	240
GCTATATCAA	AACCAGTCCT	TGAAAAACGT	GGACTGGTTT	CGTGTTTGGA	TTATTACCTT	300
GAACGACATG	CGTTAAAAGT	TAGTTGAACC	GCCGTATGCC	GAACGGACGT	ACGGTGGTGT	360
GAGAGGGGCT	AGAGATTATC	CCCTACTCGA	TTTCGAAATC	TAGTGGAATG	AATCTGGAAT	420
AGTCCATCGA	GCTTTCTAAT	ACTCTTCGAA	AATCTCTTCA	AACCACGTCA	ACGTCGCCTT	480
GCCGTGCGTA	TGGTTACTGA	CTTCGTCAGT	TCTATCCACA	ACCTCAAAAC	AGTGTTTTGA	540
GCTGACTACG	TCAGTTCCAT	CTACAACCTC	AAAACAGTGT	TTTGAGCAAC	CTGCGGCTAG	600
TTTCCTAGTT	TGCTCTTTGG	TTTTCATTGA	GTATAACACA	TTGTTAGAAG	TTGGTTTAAA	660
TTTCCTAATC	AGTTTGTTCA	CATTTACCTT	CGATATATTA	TATCCCATAG	TTAAGGTTGG	720
TCATACAGAT	GATTATAGTC	ATGGAGCCGT	AAAACTTAGT	GTTTCTTTAG	TTGACAAAGA	780
TGCCATGAAA	AAAATATTTG	TAACTGTAAT	AGGATATTTT	GAAATAAATA	TAGATGAAAA	840
TATCACCGAT	ATTCTATACG	TAAATGGTAC	TGCTATTCTT	TATCTTTATT	TACGTTCAAT	900
TGTTTCAATA	GTTTCGGCAA	TTGATAGCAG	TGAAGCAATG	TTGCTACCTA	TCATTAATGT	960
TTTAGAGTTA	СТАСАТАЛАТ	CTCAACCTTT	TGAAGAAGAA	TAATTTATTA	GCTCACTAAA	1020
TTGAGGGTAA	GGAAAAGTAA	AAGCAGTAAG	AAAAATGTCT	TGCATTATAC	AGCAACCTTT	1080
TGGGAATGAG	TGGATGGATT	GAATAAAATT	TGATTAAGAG	TGGATGATTT	ATCTGTAGAT	1140
TATTATTGGA	CAGTTAGTCT	TGAAGTAGTC	TAAGAATTAG	GTTATAATCA	GTAGAAGCCT	1200
ТССТААТААТ	GAGGAGGTTA	GTTTATGTAT	AGTAGACTGA	АТСТАВАВТА	GTACGAAACA	1260
АТТССТАААА	CATTTATAGA	AATTAATTTT	ACTTTCCCAA	TCGATTTGTT	СТСАТСТТАТ	1320
TTCAATCCGC	татататтат	GGTATCGAAT	CTTCATCAGA	ATGATAAAAT	TAATCAATTG	1380
ATATCTGATT	ACAAACAGAA	TATGAAAGCT	TTTTATATCA	СТАТТБАААА	ATTTATACGA	1440

GATGATGAAA	GCCTTAAGTG	TTATTTTATA	AAGGTTATTT	CAAGTCGTTC	CAAGGTAACA	1500
AGTCTAGATC	AGATTGAAGC	TGATAAAACG	ATACAAAGAA	AATATTCAAG	TGAGCTAAAA	1560
AAATTTATT G	GATTTTATAA	TGAGATTATT	TGTGAGGAAA	ATAGTTTCCT	ACATGTACGA	1620
AAGAGGTGGT	CGACTTGGTT	TAGGTAGTCG	ATGCGTGAGT	TGATAATTCT	CAGGGTATGG	1680
ACTTCTTTTT	CATGAATGAG	GTAAAAGAGC	AGGTATTGTT	TAGAGACAAT	CATTCTGAGC	1740
ATATTTTCTG	GATAGAGGGA	GTATCCGATT	TTATGATCAA	AGTTAATACC	GCCCTCTGGT	1800
GAGAAGATGA	GTAGGTTGGT	AATTTAAACT	ATTAAACAGA	ATTTTTGATT	AAAAGTATTA	1860
TTTCATGAGA	GAAATCCTAA	TTTCACAATC	CATAGGCAAA	CGCTTGCATT	TCGTTTTTTA	1920
TTGGACTATA	ATAGGTTGGT	ATAAAGCCTT	CTGTAGTAAT	AAAATGTAGA	AGGTGTAGAA	1980
AGTAAGGATT	TAGAATATTT	GTAGTTAAAA	ACACAATGTT	GCTATTCCTT	ACGATAGGGA	2040
GATAGATATG	GCAATGATAG	AAGTGGAACA	TCTTCAGAAA	AATTTTGTGA	AGACTGTTAA	2100
GGAACCGGGC	TTGAAGGGGG	CTTTGCGCTC	CTTTATTCAT	CCTGAAAAGC	AGACCTTTGA	2160
AGCGGTCAAG	GATTTGACCT	TTGAGGTTCC	AAAAGGGCAG	ATTTTAGGAT	TTATCGGGGC	2220
AAATGGTGCT	GGGAAGTCGA	CAACCATTAA	AATGCTGACA	GGAATTTTGA	AACCAACATC	2280
TGGTTTTTGT	CGGATTAACG	GCAAGATTCC	CCAGGACAAT	CGGCAAGATT	ATGTCAAAGA	2340
TATTGGCGTA	GTCTTTGGAC	AACGCACCCA	GCTATGGTGG	GATTTGGCTC	TGCAAGAGAC	2400
CTACACTGTC	TTAAAAGAGA	TTTATGATGT	GCCAGACTCG	CTCTTTCATA	AGCGTATGGA	2460
CTTTTTGAAT	GAAGTCTTGG	ATTTGAAGGA	CTTTATCAAG	GATCCCGTGC	GGACTCTTTC	2520
ACTGGGACAA	CGGATGCGGG	CGGATATTGC	GGCCTCCTTG	CTCCACAATC	CCAAGGTTCT	2580
TTTTTTAGAT	GAGCCGACCA	TTGGTTTGGA	CGTTTCGGTT	AAGGATAATA	TTCGTCGGGC	2640
AATTACTCAG	ATCAATCAAG	AGGAAGAAAC	TACCATTCTT	TTGACCACTC	ACGATTTGAG	2700
TGATATTGAG	CAACTTTGTG	ATCGGATTTT	CATGATTGAC	AAGGGGCAAG	AGATTTTTGA	2760
TGGAACGGTG	AGCCAACTCA	AGGAGACCTT	TGGTAAGATG	AAGACTCTCT	CTTTTGAACT	2820
GCTACCAGGT	CAAAGTCATC	TCGTCTCTCA	CTATGACGGT	CTGTCTGATA	TGACCATTGA	2880
TAGACAAGGA	AACAGCCTCA	ACATTGAATT	TGATAGTTCT	CGCTACCAGT	CAGCTGACAT	2940
TATCAAGCAA	ACCCTGTCTG	ATTTTGAAAT	CCGCGATTTG	AAGATGGTGG	ATACGGATAT	3000
TGAGGATATT	ATCCGTCGCT	TCTACCGAAA	GGAGCTCTAG	GATGATCAAA	TTGTGGAGAC	3060
GTTATAAACC	CTTTATCAAT	GCAGGGGTTC	AGGAGTTGAT	TACTTACCGA	GTCAACTTTA	3120
TTCTCTATCG	GATTGGCGAT	GTCATGGGGG	CTTTTGTGGC	CTTTTATCTC	TGGAAGGCTG	3180

			152			
TCTTTGATTC	TTCGCAAGAG	TCTTTGATTC	AGGGCTTCAG	TATGGCGGAT	ATCACCCTCT	3240
ACATCATCAT	GAGTTTTGTG	ACCAATCTTC	TGACTAGATC	CGATTCGTCC	TTTATGATTG	3300
GGGAGGAGGT	CAAGGATGGC	TCCATTATCA	TGCGTTTGTT	GCGACCAGTG	CATTTTGCGG	3360
CCTCCTATCT	TTTCACCGAG	CTTGGTTCCA	AGTGGTTGAT	TTTTATCAGC	GTTGGCCTTC	3420
CATTTTTAAG	TGTCATTGTC	TTGATGAAAA	TCATATCGGG	TCAAGGTATT	GTAGAGGTGC	3480
TAGGATTAAC	TGTCATTTAT	CTTTTTAGCT	TAACGCTCGC	CTATCTGATT	AACTTTTTCT	3540
TTAATATTTG	CTTTGGATTT	TCAGCCTTTG	TGTTTAAAAA	TCTTTGGGGT	TCCAACCTAC	3600
TTAAGACTTC	CATAGTGGCT	TTTATGTCGG	GGAGTTTGAT	TCCCTTGGCA	TTTTTTCCAA	3660
AGGTTGTTTC	AGATATTCTC	TCCTTTTTGC	CTTTTTCATC	CTTGATTTAT	ACTCCAGTTA	3720
TGATCATTGT	TGGAAAATAC	GATGCCAGTC	AGATTCTTCA	GGCACTCCTT	TTGCAGTTCT	3780
TCTGGCTCTT	AGTGATGGTG	GGATTGTCTC	AGTTAATTTG	GAAACGGGTC	CAGTCCTTTA	3840
TCACCATTCA	AGGAGGTTAG	TATGAAAAA	TATCAACGAA	TGCATCTGAT	TTTTATCAGA	3900
CAATACATCA	AACAAATCAT	GGAATATAAG	GTAGATTTTG	TGGTTGGTGT	CTTGGGAGTC	3960
TTTCTGACTC	AAGGCTTGAA	TCTCTTGTTT	CTCAATGTCA	TCTTTCAACA	TATTCCATTC	4020
CTAGAAGGCT	GGACCTTTCA	AGAGATAGCT	TTCATTTATG	GATTTTCCTT	GATTCCCAAG	4080
GGAATGGACC	ATCTCTTTTT	TGACAATCTC	TGGGCACTAG	GGCAACGCCT	AGTCCGAAAA	4140
GGGGAGTTTG	ACAAGTATCT	GACTCGTCCC	ATCAATCCTC	TCTTTCACAT	CCTAGTTGAA	4200
ACCTTTCAGA	TTGATGCCTT	GGGTGAACTC	TTAGTCGGTG	GTATTTTATT	GGGAACAACA	4260
GTGACCAGCA	TTGTTTGGAC	TCTTCCAAAA	TTCCTGCTTT	TCCTAGTTTG	TATTCCTTTT	4320
GCGACCTTGA	TTTATACTTC	TCTTAAAATC	GCAACAGCCA	GTATCGCCTT	TTGGACTAAG	4380
CAGTCAGGCG	CCATGATTTA	CATCTTCTAT	ATGTTCAATG	ACTTTGCTAA	GTATCCGATT	4440
TCTATTTACA	ATTCTCTTCT	TCGTTGGTTG	ATTAGCTTTA	TCGTGCCTTT	CGCCTTTACA	4500
GCCTACTATC	CAGCTAGCTA	TTTCTTACAG	GAAAAGGATG	TGTTCTTTAA	CGTAGGAGGT	4560
TTGATGTTGA	TTTCTCTGGT	TTTCTTTGTT	ATTTCCCTTA	AACTTTGGGA	TAAGGGCTTA	4620
GATTCCTACG	AAAGTGCGGG	TTCGTAAAAG	CTAAAGTAAG	ACTAAAATCA	AGAAAGAAAC	4680
TTATGATGTT	TGTAATTGAA	GAAGTCAAGG	ATGAAAATCA	AAAAAAGGCA	GTTGTCGCTG	4740
AGGTTTTGAA	GGATTTGCCA	GAATGGTTTG	GAATCCCAGA	AAGCACACAA	GCCTATATAG	4800
AAGGAACCAC	GACACTGCAA	GTTTGGACCG	CCTATCAGGA	GAGTGATTTG	ACTAGATTTG	4860
TAAGCTTATC	CTATTCGAGT	GAAGATTGTG	CAGAGATTGA	TTGTCTCGGC	GTAAAAAAGC	4920
TTATCAAGGT	AGAAAAATTG	GGAGCCAATT	GCTTGCTACT	TTAGAGAGTG	AAGCTCGTAA	4980

153

AAAA	GTTGGT	TATCTGCAGG	TCAAAACAGT	GGCAGAAGGT	TCTAATAAAG	ATTATGATCG	5040
AACA	AATGAC	TTTTATCGAG	GTCTTGGCTT	TAAAAAGTTA	GAGATTTTTC	CTCAACTATG	5100
Gaat	CCGCAA	AATCCTTGTC	AGATTTTGAT	TAAAAAGCTT	GAATAATATT	ACTTGACATC	5160
TATT	CTCAGA	GTGCTATACT	GTAAGTGTAA	TCGCCGATTT	AGCTTAGTTG	GTAGAGCAAG	5220
GCAC	TCGTAA	AGCCTAGGTT	ATAGGTAGAT	AAACGACTGA	GGATTTGAAA	AAATAGATAG	5280
GTAG	AAGATA	ACCGTTAAGC	CTTACTCTTA	GCGGTTATTT	ATATTGTTTA	ATAGCGCTAA	5340
ТАТТ	TTATCA	ATTATGCCTG	TTTTCGTGTT	TCTGGTAGTT	GTTCAAGTTT	ATTGCTACTA	5400
TTTT	TGATGG	TATGAATGTG	CTTATAATGT	ATCCCGGTTA	ACGAAAGTTT	TGGACTTATA	5460
CTCT	TCGAAA	ATCTCTTCAA	ACCACGTCAA	CGTCGCCTTG	CCGTGCGTAT	GGTTATGACT	5520
TCGT	CAGTTC	TATCCACAAC	CTCAAAACAG	TGTTTTGAGT	GACTACGTCA	GTTCCATCTA	5580
CAAC	CTCAAA	ACACTGTTTT	GCCCAATCTG	CGGCTAGTTT	CCTAG		5625

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7571 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

CTCTCCAGCT TTCCTTGCGA GTTGGCCATG TTGTGTCTTT AAGAAGTCTA AAAATATCTC 60 CAATAAAACG CATCGCTCTC TCCTATCTCG TTTCTCTGTG TGTAGTGTAC TTGCCACAAT 120 GCTTACAAAA TTTATTTACT TCTAGTCGTG TAGGCTTGAG GTTTCCGCTG ATCTTGATTG 180 AATAGTTTCT CGAACCACAA ACCGCACAAG CTAGGCTTGC TTTTTTTAGT GCCATAACGC 240 CTCCATCTTA TCCATTATAA CAAGAAAGCT AGGCTTTGAC AAGCATCTTA GCGAAATAGA 300 TTGACTATCG AATCCCATAT TGTTTGAGCC TTTTCCTTAA TCTTCGCATC TGAGATAGCC 360 CGGCTAGCCT CATCTACTAG ACTTTGCGCA CGCCCTCGAA TATCAGACAA ATTATCATCT 420 GTCTGGCTAT TATCATTGGT TTGTACTTGT CTTTTTGTAT TGGCTGGTGC AATTCCATTT 480 TGCTTATAAG CATTTTCAAC CGTAAAGGTA CTTCCTGGCG TATAAGGTAA AATGGTATTG 540 GCAATGTTTC TAAAGACATG AGCTGCACCG TTTGAAGTAG AGCCAGCTAG ATAGTGGTTT 600 TCATCAGTGG TCGGAAAGCC AAGCCAGTGG CTAATCACTA CATCCGGAGT ATAACCAATT 660 ACCCACTGGT CACTTGTGTA CTCCGGATTG AAAACTGCTT CAGTTGTTCC AGTTTTCCCT 720

			154			
GCCATGACAT	AGTCTGCAGG	CGATGAACTA	ATACCGGTAC	CGTTGGTGAA	AGTCCCCAAC	780
ATCATACTGG	TCATCTTGTC	AGCTACAGAC	TTATCAATCA	CCCGTTTTTG	TGAATTTTTA	840
TGACTCGCAA	TAACTTGTCC	ACTAGCATTT	TCAATTCTAC	TAATAAAATG	AGCTTCAGGC	900
ATTAAACCTT	CATTTGCAAA	GGCGGCGTAT	GCTTGAGCCA	TTTGAAGAGG	GTTGGTTTCA	960
ACACCGCTTC	CCAAGGCGAC	ACCAAGAACA	CGGTCGACCT	TTTCCATGTT	GAGTCCGAAT	1020
TTTTCGCCTG	CCTCAAAAGC	CTTGTCGACA	CCCAAATCAT	TAACAGTGGC	AACAGCAGGT	1080
AGATTAAGCG	ATTCTGCCAA	GGCTTGATAC	ATAGGAACTT	CTCGACTCGT	TTTGATCCCT	1140
GCATAGTTAT	CAACCTTATA	GCTGTCATAC	TGCATGGTAT	GGTTATCCAA	CTGCTTATTC	1200
AAAGCCCAGC	TTGCTTCAAC	TGCTGGCGTA	ТАЛАСЛАСТА	AAGGCTTAAT	TGTAGAACCA	1260
GGACTACGCT	TTGATTGGGT	TGCATAGTTG	AAATTCCGGA	ATCCAGTTTT	ATCATTGTCA	1320
GCAACTTGAC	CGACAACTCC	ACGAACTCCC	CCTGTTTTCG	GTTCGAGGGC	TACACTTCCT	1380
GATTGAGCAA	ACGTTCCATC	CTCTGCCCTC	GGAAATAGCG	ATGTGTTTTC	ATAAACAATC	1440
TGCATATTTG	CTTGGTAGTT	TTGGTCCAGC	TCTGTGTAAA	TGCGGTAGCC	ATTATTGACA	1500
ATCTCTTCCT	CTGTTAGATT	ATACTTGGAA	ACAGCTTCAT	TAACCACCGC	АТСААААТАА	1560
GAGGGGTAAC	GGTAATCTGA	GATTTTTCCT	TCATACTTAT	CGTGCAATTG	CGAAGTCATA	1620
TCAACTTCAG	CAGCTTTGGT	TTCTTGGTTT	ТТАТСААТАТ	ATCCTGCTGC	AACCATATTC	1680
TGCAAGACAG	TATCGCGCCG	ATTAGTAGAA	TCTTCTACGG	AATTCAAGGG	ATTATACAGT	1740
TCCGGCCCCT	TGAGCATCCC	TGCCAGAGTC	GCAGCTTGAT	CCAGACTCAC	TTCTGATGCA	1800
GAAACTCCAA	AGTATTTCTT	ACTCGCATCT	TCTACACCCC	ACACACCATT	TCCAAAATAA	1860
GCGTTGTTAA	GGTACATGGT	TAGAATTTGC	TCCTTACTAT	ATTTTTTGCT	TAATTCTAAG	1920
GCAAGGAAAA	ATTCTTTCGC	TTTTCTCTCA	ACAGTTTGAT	CCTGCGATAA	ATAGGCGTTT	1980
TTAGCCAGCT	GTTGGGTAAT	GGTAGAGCCA	CCACCTGAAC	GTCCAGCAGT	GACAATAGCC	2040
AAGAAAAAAC	GGCCATAGTT	AATCCCGTCA	TTTTTATAGA	AAGAACGGTC	TTCTGTCGCA	2100
ATAACAGCAT	TCTGCAAGTT	TTTACTGATG	TCAGTCAGCT	CAACATAGGT	TCCCTTTTGA	2160
CCAGACAAGG	CACCAGCCTC	TTTTTCTTCA	CGGTCAAAAA	TAAGAGTCCG	AGTTTTCAAG	2220
GCATTTTGCA	AATCATTGAC	ATTGGTCGAC	TTGGCTACAG	САААСАААТА	GATTCCAACT	2280
AGCAAGCCTG	CACTCAAACC	TAGTATAAGG	ATAATCTTTG	TTAGATGATA	ACGACGCCAG	2340
AATTTTCGAA	TCGGACCTAC	TTGGGCTAAT	TTTTTTCGAT	CACTACGAGA	GCGACGTAAG	2400
ATAGTAGAAT	CAGAGTCCTC	TAGTTCACTT	GTTTCTTTTT	TAAAAAGAGA	AAGAAATTTC	2460
TCAAATAATT	TATCTAATTT	CATGCGTTTA	TTTTATCATC	TTCATCATAG	GAAGACAAGA	. 2520

ATTTAGCTAT	TTCCTATCCA	AATAGGGCTT	TTTTTGTTAC	AATATCTGTA	TGCAATTCAC	2580
ATTTACATTA	CCCGCCTCTC	TACCTCAAAT	GACAGTAAAG	CAATTACTTG	AGGAACAACT	2640
CCTCATCCCT	AGAAAAATCC	GTCATTTTT	GAGAATCAAG	AAACATATTT	TGATAAATCA	2700
AGAAGAAGTC	CACTGGAAGG	AAATCGTAAA	TCCTGGAGAT	GTTTGCCAGT	TGACTTTTGA	2760
CGAGGAAGAT	TATTCCCAAA	AGACGATCCC	TTGGGGCAAC	CCAGACTTAG	TGCAGGAAGT	2820
TTATCAAGAT	CAACACTTGA	TTATTGTAAA	CAAACCAGAG	GGGATGAAAA	CGCATGGTAA	2880
TCAACCAAAC	GAAATTGCCC	TTCTTAACCA	TGTCAGTACC	TATGTTGGCC	AAACCTGCTA	2940
TGTCGTTCAT	CGTCTGGACA	TGGAAACCAG	TGGCTTAGTT	CTCTTTGCCA	AAAATCCTTT	3000
TATCCTGCCC	ATTCTCAATC	GCTTATTGGA	GAAAAAAGAG	ATTTCTAGAG	AATATTGGGC	3060
TCTAGTTGAT	GGAAATATCA	ACAGAAAAGA	ACTTGTTTTC	AGAGACAAAA	TTGGACGTGA	3120
TCGCCATGAT	CGTAGAAAAA	GAATAGTTGA	TGCAAAAAAT	GGGCAATATG	CTGAAACGCA	3180
TGTAAGCAGA	TTAAAGCAAT	TCTCAAACAA	GACTTCCTTG	GCTCATTGCA	AGCTAAAGAC	3240
AGGCCGAACC	CATCAGATTC	GTGTGCACCT	TTCGCATCAT	AATCTTCCTA	TCCTGGGAGA	3300
CCCTCTCTAT	AATAGTAAAT	CAAAGACAAG	CCGGCTTATG	CTTCATGCCT	TCCGACTTTC	3360
CTTTACCCAC	CCACTTACTT	TAGAGAAGCT	AACTTTCACT	ACCCTTTCAA	ATACATTTGA	3420
AAAAGAATTA	AAAAAGAATG	GATGATCGTG	TCATCCATTT	TTCCATATAA	AAAAGCAAGA	3480
CCACAAAGCC	TTGCTTTCTA	TCAACTCAAG	AATTATTTAG	CAATTTTTGC	GAAGTATTCA	3540
AGAGTACGAA	CAAGTTGTGC	AGTGTATGAC	ATTTCGTTGT	CGTACCATGA	TACAACTTTA	3600
ACCAATTGTT	TACCGTCAAC	GTCAAGAACT	TTAGTTTGAG	TTGCGTCAAA	CAATGAACCG	3660
TAAGACATAC	CTACGATATC	TGAAGATACG	ATTGGATCTT	CTGTGTAACC	GTATGATTCG	3720
TTTGAAGCTG	CTTTCATAGC	TGCGTTCACT	TCATCAACAG	TAACGTTCTT	TTCAAGAACT	3780
GCTACCAATT	CAGTAACTGA	TCCAGTTGGA	GTTGGAACGC	GTTGTGCAGA	TCCGTCAAGT	3840
TTACCATTCA	ATTCTGGGAT	TACAAGACCG	ATAGCTTTTG	CAGCACCAGT	TGAGTTAGGA	3900
ACGATGTTTG	CAGCACCAGC	GCGAGCACGG	CGAAGGTCAC	CACCACGGTG	TGGTCCGTCA	3960
AGGATCATTT	GGTCACCAGT	GTAAGCGTGG	ATAGTAGTCA	TCAATCCTTC	AACAACACCA	4020
AAGTTGTCTT	GAAGAGCTTT	AGCCATTGGA	GCCAAGCAGT	TTGTAGTACA	TGAAGCACCT	4080
GAGATAACTG	TTTCAGTACC	GTCAAGAACG	TCGTGGTTAG	TGTTGAATAC	AACTGTTTTA	4140
ACGTCGTTTC	CACCAGGAGC	AGTGATAACA	ACTTTTTAG	CTCCACCTTT	AAGGTGTTTT	4200
TCAGCTGCTT	CTTTCTTAGC	AAAGAAACCA	GTAGCTTCAA	GAACGATTTC	TACACCGTCA	4260

			156			
GTAGCCCAGT	CGATTTGTTC	TGGATCACGT	TCAGCAGAAA	CTTTGATGAA	TTTACCGTTA	4320
ACTTCAAATC	CACCTTCTTT	AACTTCAACA	GTACCGTCGA	AACGACCTTG	AGTTGTGTCG	4380
PATTTCAACA	AGTGTGCAAG	CATAACTGGA	TCTGTAAGGT	CGTTGATGCG	TGTAACTTCA	4440
ACACCTTCTA	CGTTTTGGAT	ACGACGGAAA	GCAAGACGAC	CGATACGTCC	GAAACCGTTA	4500
ATACCAACTT	TAACTACCAT	TAGTGATTTC	CTCCTTATGA	AAATCATGAA	ATTTTTATTG	4560
FGAAAAGAG T	AACTTGAATC	ACTACAAATC	ACCTTTCAAC	AAACCTATTA	TACAACTATT	4620
rgagttgaat	, TGCAAGTATG	GCCATTGTTT	TTCTATGTTA	GTTTCTTTT	AAGACTGTAA	4680
ACCAAGGAAT	CCCTTACTAT	TCATAGCATA	ACGATTCTAT	AGGATCCATT	ттастаатст	4740
PACGCGCCGG	GAAGTAGGCT	GAGACATAAC	CAAGTAATAG	AGCGAAAACT	AGAGTTCCTA	4800
AAACAGATAA	AAGATTTAAT	TTAAAAACCT	TAGTGATGGA	TGGGTAAAAG	TGACTTACAA	4860
rcgcattcgc	CAAACTTCCC	ACCCCTTGTG	CAACCAAAAA	TGCCAGCAGC	AAGGCGATGC	4920
CTACAATCCA	GATAGCCTCG	TAAATAAAA	TTCCTTTGAC	ATCACGATTC	TGATAACCAA	4980
CTGCTTTCAT	GACACCTATT	TCCTTGGAAC	GTTGCATGAT	ATTGATGTAA	ATAATGATAC	5040
CAATCATAAC	CGCTGCTACC	ACAATAGCTT	GTGATGAAAG	CACAATCAAT	AATCCCTGAA	5100
PAACACGAAT	AAAGGTAATC	ACAATATCAA	GAACTCTCTG	TTGAGAAAGC	ACAGTATACT	5160
CTTATTTTT	CTGTAATTCT	TCTGTTACTA	CTTTTGTCTG	TGATGGATCT	TTGAGTTCCA	5220
AGATAAAATA	AGATACAGCT	TTCGTAAATC	CAGCCTCTTT	CAAAATCGTT	TCCATTTGAT	5280
BAGACAGCAT	GAAACTGTTG	CTGTCCTCCA	TGTCATCTTC	ATCATTGATT	ACACGTACAA	5340
CTTCGTTTG	AAATTGAGCA	ATCTTACTAG	TTTCGGCAGC	ACTTTCTACA	ATGCTGGCTG	5400
GACTGATTT	GCCAATAAGA	TCATTAGCTG	TCAAATTTTT	TCCTGTCTGT	TCATTCCAAT	5460
PTTTTAGTAA	ACTGCTTGGA	ATCGTTAATC	CCTGTTCATT	TGTATCAGTA	TAGAGGGATC	5520
CAGCCAACAC	TTTGTCCGTC	TCATTATTAC	TAACAGAGAT	ACTTGTATCA	TCATAAAGAC	5580
CACTACTTG	AGCATAAGAA	GGCATCGTTT	GACTCAGATC	CATTTCTTGC	CCATCTATAG	5640
PAATATTTGA	CATGTTCATC	CCAAAAGGAC	TCTCCAAATA.	TTTAATAGCT	TCTTTCCCAA	5700
TGTATCCGT	GATATATAGT	CAATTGAAAC	AAGAGCAGGA	TAAAAAAGCC	TCGTAAAAGG	5760
TATTGCAACT	TGGTAATACC	TTTTTGAGGT	GCTTTTTGAT	ATGAGCCCAT	GTTTTCTCAA	5820
PAGGATTGTA	CTCAGGCGAG	TAGGGAGGAA	GAGGTAAAAG	TTTATGCCCA	AACTCTTCGC	5880
TAAAAGTTC	TAGCTTCCCC	ATTCTATGGA	ATCTTACATT	ATCCATAATA	ATAACCGATG	5940
STGTGTTTAA	TGTTGGTAAG	AGAAAATTCT	GAAACCAAGC	TTCAAAAAAG	TCGCTCGTCA	6000
CGTCTCTTC	GTAAGTCATT	GGAGCGATTA	ATTCACCATT	TGTTAGACCT	GCAACCAAAG	6060

AAATCCTCTG	ATATCTTCTT	CCAGATACTT	TGCCTCTTAT	TAATTGACCT	TTTAATGAGC	6120
GACCATATTC	TCGATAAAAA	TAAGTATCGA	ATCCTGTTTC	GTCAATCTAA	ACAGGTGCTA	6180
GGTGCTTTAA	ACTATTAAAA	TTCTTAAGAA	ATAAGGCTAC	TTTTTCTGGG	TCTTGTTCAT	6240
AGTAGGTĢTG	GTTCTTTTTT	CGAGTGTAGC	CCATAGCTTT	GAGCGTATAG	TGGATGGTAG	6300
PTGGATGACA	GCCAAATTCA	GAAGCTATTT	CAGTCAAATA	AGCGTCTGGA	TTGTCAGTAA	6360
GATAGTTTTT	AAGTCTATCT	CTATCAACCT	TTCTTGGTTT	TATTCCTTTT	ACTTGGTGGT	6420
PTAGCTCTCC	TGTTTTCTCT	TTTAGCTTTA	ACCAGCCATA	AATGGTATTA	CGTGAGATTT	6480
GGAAAACGTG	TGATGCTTCT	GTTATACTAC	CTGTTCGCTC	ACAATAAGAG	AGAACTTTTT	6540
TACGAAAATC	TATTGAATAT	GCCATAAAAA	GATTATACCA	CATTGTGTAC	TATTTTTGGT	6600
PCATTTTACT	ATATTTGAAG	AGGCGTTTAA	ACTATCTGAC	ATAAAACTCG	TTCTAGAGGA	6660
AAGACATCCT	TTAAAAAGTT	AGTTTATTTT	ACAACTTAGA	CATCAAGGTA	GGTTAACCCC	6720
ITCATGGAAA	AATCAAGACT	CTTAGCACTA	TGGGTTAAAC	TACCACTGGA	GACGTAATCA	6780
ATCGCTAAAC	CACGAAAACG	GCTAATAGTG	GTCATATCAA	TATTTCCAGA	ACATTCAATC	6840
CGAGAACGTC	CTGCAATTAG	GGTAATGGCC	TGTTCAATCT	GTTCCAATGA	CATATTATCC	6900
AACATGATAA	TATCAGCACC	CGCCGCCGCA	GCTTCTTCGG	CAGCAGCAAG	GCTTTCCACT	6960
PCCACCTCGA	CCATTTTCAC	AAAAGGGGCA	TAGGCACGCG	CTTGAGCAAT	TGCCTTTTGA	7020
ACACTACCTA	CTGCCGCAAT	GTGATTGTCT	TTTAGCAGGA	TAGCATCTGA	TAAATTAAAG	7080
CGATGATTAT	AGCCACCGCC	AACTCTCACG	GCATATTTCT	CAAAAAGACG	TAAATTAGGA	7140
GTAGTTTTTC	GAGTATCAAA	TACCTTAATG	CAATCATCGC	CTAAGGCTTC	TACATAAGCA	7200
GCTGTCATCG	AAGCAATCCC	TGATAAATGT	TGTAAAAAAT	TCAAGGCAAC	GCGTTCACAT	7260
GTTAAGAGAC	TTCTCACCGA	GCCTATGATT	TCTAAAACCA	AATCGCCACT	AGTCAAACGA	7320
PCCCCATCCT	TAAATTGATG	AGGATTCTGG	AAGGTCACCT	CGGCATCAAA	TAGGGTAAAA	7380
ACCCTTTGAA	AAACGGTTAG	CCCCGCTAAA	ACACCAGCTT	CCTTGGCAAA	AAGCGACACC	7440
TTGGCTTGGC	CATGATGATC	AAAAATGGCA	TTGGTACTGT	AATCTTCGGA	ATGAACATCT	7500
PCTCGCAAGG	CTGCTTTCAA	TGTATCATCT	ATTTGAAAAG	GGGTTAAATC	AGTTGAAATG	7560
ATTGACATCA	С					7571

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 26385 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

158

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

TTTGCTAGTG	GCTTAAATTC	TTCAGGAAAA	TCAGGCGTAT	CTAAAAGTCG	TGTCGTTTTT	60
GTTTCATCTA	TATAAAGACT	TCCTGCTCCC	CCTACAACTA	GAAAACGTGT	CTGTGTTCCA	120
GCAAGAAGCT	GATTAAATAG	TTCGATTGAT	TTGCTGTGGA	GCGGTAGCGT	ATCTGGTGTA	180
TAAGCACCAA	ACGCTGAAAT	AACAGCATCA	AATCCAGTAA	GATCATCTTT	TGTCAACTCA	240
AATAAATCTT	TAATAATTT	AGACTCAGCT	TGACTTTTGT	TTTCAGAACG	AACAATAGCC	300
GTTACTTCAT	GTCCTCGTTT	GACTGCTTCT	TCAACAATTG	CTTTCCCCGC	TTGTCCATTT	360
GCTGCAATAA	CTGCTAGTTT	CATTTTTTAT	ACCTCTCTTG	TTGTAATTAT	TTTAGTTACA	420
GAAATTGTGA	CACTCTTAAT	AATCAATGTC	AATAGTCTTG	CTTAATTATT	АТСААААТАТ	480
TTCTACCAAG	AAAACTAACC	ATGATTCTAG	TGAAAAAAA	TCTTCTTTGT	CAACAAATTT	540
ACTITCTTGT	TTTAAACATG	CTATAATAAT	CATAGCAAGA	GATCTAAGTT	GTCTGTTTTT	600
TTAAAACGAG	GTGATTATCA	TGCGTAGATT	CTATTCCCAT	CTCCCCTACT	ATCTGGTCAT	660
ATTATTCTTT	TATTGGCCAC	TTTATGAGTT	GTTCTTACTA	GTTGTTTCTG	ACCCCCTTAC	720
ACTCAAGGGA	СТСТАТАТАА	ACAATCTTCT	CTTCTTTACA	CCTCTGGTAA	TCTTGATTGT	780
ATCGTTACTC	TATAGCTACC	GTTTCCGTTT	CTCACTTTGA	TGGTTAGTTG	GTAACGGACT	840
GCTCTTTTAC	TTTACTATCA	TAACCTTTGG	TGAGTTTATA	CTAATTTACT	TGCTAATCTA	900
TGAAACAGTT	GCTCTGGTCG	GCATGGATTC	TGGTATTAGC	ATCAAGCATA	TTCTACAAAA	960
AATGAAAAAC	AAAAAACTTT	CACAAAATCC	TTGAAAAATC	TCACAATCAT	GCTATAATAA	1020
TCCATAGAGA	CAAGTCACTT	AGTCCCTTTC	TACTAGAGAG	TGCGTGGTTG	CTGGAAACGC	1080
ATAGGAAGTC	TAAACTGATA	CTACTCTTGA	GTTTTTTATG	AAAACATAAA	ACGGTGGCCA	1140
CGTTAGAGCC	GATCAGAGGT	GTCCCTCTCT	TTTGAGGTAC	ATAAATGAAG	GTGGAACCAC	1200
GTTGCGACGT	CCTTTCGAGG	ATGTCGCATT	TTTTTATTAG	GATACTAATT	ATGGAGTTGC	1260
AAGAATTAGT	GGAGCGCAGT	TGGGCAATCC	GACAAGCTTA	TCACGAACTG	GAAGTTAAGC	1320
ATCATGATTC	CAAGTGGACG	GTAGAAGAAG	ACCTCTTGGC	TTTATCTAAT	GATATTGGAA	1380
ATTTCCAACG	ACTGGTGATG	ACAAAGCAAG	GACGCTACTA	TGATGAAACA	CCCTACACAC	1440
TGGAACAAAA	ACTTTCAGAA	AATATCTGGT	GGCTATTAGA	ACTTTCTCAA	CGTTTGGATA	1500
TAGACATTCT	GACGGAAATG	GAAAACTTCC	TCTCTGATAA	AGAAAAGCAA	TTGAACGTTA	1560
GGACTTGGAA	GTAGTCTGCT	GATAAAAAAT	CAATGCTTAG	AAAÇTATGAA	ATAATAAAA	1620

AGGAGAACAT	CATGATTAAC	ATTACTTTCC	CAGATGGCGC	TGTTCGTGAA	TTCGAATCTG	1680
CCTAACAAC	TTTTGAAATT	GCCCAATCTA	TCAGCAATTC	CCTAGCTAAA	AAAGCCTTGG	1740
TGGTAAATT	CAACGGCAAA	CTCATCGACA	CTACTCGCGC	TATCACTGAA	GATGGAAGCA	1800
CGAAATTGT	GACACCTGAT	CACGAAGATG	CCCTTCCAAT	CTTGCGTCAC	TCAGCAGCTC	1860
\CTTGTTCGC	CCAAGCAGCT	CGTCGTCTTT	TCCCAGACAT	TCACTTGGGA	GTTGGTCCAG	1920
CATCGAAGA	TGGTTTCTAC	TACGATACTG	ACAACACAGC	TGGTCAAATC	TCTAACGAAG	1980
ACCTTCCTCG	TATCGAAGAA	GAAATGCAAA	AAATCGTCAA	AGAAAACTTC	CCATCTATTC	2040
TGAAGAAGT	GACTAAAGAC	GAGGCACGTG	AAATCTTCAA	AAATĠACCCT	TACAAGTTGG	2100
attgattga	AGAACACTCA	GAAGACGAAG	GCGGTTTGAC	TATCTATCGT	CAGGGTGAAT	2160
TGTAGACCT	CTGCCGTGGA	CCTCACGTTC	CATCAACAGG	TCGTATCCAA	ATCTTCCACC	2220
TTCTCCATGT	AGCTGGTGCG	TACTGGCGTG	GAAACAGCGA	CAACGCTATG	ATGCAACGTA	2280
CTACGGTAC	AGCTTGGTTT	GACAAGAAAG	ACTTGAAAAA	CTACCTTCAA	ATGCGTGAAG	2340
AGCTAAGGA	ACGTGACCAC	CGTAAACTTG	GTAAAGAGCT	TGACCTCTTT	ATGATTTCAC	2400
AGAAGTGGG	ACAAGGTTTG	CCATTCTGGT	TGCCAAATGG	TGCGACTATC	CGTCGTGAAT	2460
GGAACGCTA	CATCGTAAAC	AAAGAGTTGG	TTTCTGGCTA	CCAACACGTC	TACACTCCAC	2520
ACTTGCTTC	TGTTGAGCTT	TACAAGACTT	CTGGTCACTG	GGATCATTAC	CAAGAAGACA	2580
GTTCCCAAC	CATGGACATG	GGTGACGGGG	AAGAATTTGT	CCTTCGTCCA	ATGAACTGTC	2640
GCACCACAT	CCAAGTTTTC	AAACACCATG	TTCACTCTTA	CCGTGAATTG	CCAATCCGTA	2700
CGCTGAAAT	CGGTATGATG	CACCGTTACG	AAAAATCTGG	TGCCCTCACT	GGCCTTCAAC	2760
TGTACGTGA	AATGTCACTC	AACGACGGTC	ACCTATTCGT	TACTCCAGAA	CAAATCCAAG	2820
AGAATTCCA	ACGTGCCCTT	CAGTTGATTA	TCGATGTTTA	TGAAGACTTC	AACTTGACTG	2880
CTACCGCTT	CCGCCTCTCT	CTTCGTGACC	CTCAAGATAC	TCATAAGTAC	TTTGATAACG	2940
TGAGATGTG	GGAAAATGCC	CAAACCATGC	TTCGTGCAGC	TCTTGATGAA	ATGGGCGTGG	3000
CTACTTTGA	AGCCGAAGGT	GAAGCAGCCT	TCTACGGACC	AAAATTGGAT	ATCCAGATTA	3060
AACTGCCCT	TGGAAAAGAA	GAAACCCTTT	CTACTATCCA	ACTTGATTTC	TTGTTGCCAG	3120
ACGCTTCGA	CCTCAAATAC	ATCGGAGCTG	ATGGCGAAGA	TCACCGTCCA	GTCATGATCC	3180
CCGTGGGGT	TATCTCAACT	ATGGAACGCT	TCACAGCTAT	CTTGATTGAG	AACTACAAGG	3240
GGCCTTCCC	AACATGGCTG	GCACCACACC	AAGTAACCCT	CATCCCAGTA	TCTAACGAAA	3300
ACACGTGGA	CTACGCTTGG	GAAGTGGCCA	AGAAACTCCG	TGACCGCGGT	GTCCGTGCAG	3360

			160			
ACGTAGATGA	GCGCAATGAA	AAAATGCAGT	TCAAGATCCG	TGCTTCACAA	ACCAGCAAGA	3420
TTCCTTACCA	ATTAATTGTT	GGAGACAAAG	AAATGGAAGA	CGAAACAGTC	AACGTTCGTC	3480
GCTACGGCCA	AAAAGAAACA	CAAACTGTCT	CAGTTGATAA	TTTTGTTCAA	GCTATCCTAG	3540
CTGATATCGC	CAACAAATCA	CGCGTTGAGA	AATAAGAGTC	TAGCATAAAA	GCCTCCAATC	3600
TGGAGGCTTT	TTCTCATCTA	TTTTTACTCA	AGGACTAAGT	TCACTTGAGC	AAACTGAATC	3660
CGCACTGTCG	TTCCTTTTCC	GACCTCAGAC	TCGATACGAA	TCTGGTGCCC	CAGTTCTTCA	3720
GAAATTTTCT	TAGATAGATA	AAGGCCAAGT	CCAGAGGACT	GCTGGGTCAA	ACGGCCATTG	3780
TATCCTGAAA	AGCCACGTTC	AAATACTCGG	AGGACATCAC	TGTTTTTTAT	CCCGATTCCC	3840
GTATCTTTGA	TACAAAGCTC	TTGGTCATCC	ATATAAATCT	CCAGACCACC	TTCCTTGGTG	3900
TACTTGAGAC	TGTTTGAGAT	GATTTGCTCA	ATAACCACTA	GCAGCCACTT	TTTATCCGTC	3960
ACGATTTCTT	TATCAAGGTC	ATGTAGATTG	ACATTTAAGC	CTTTTTGAAT	AAAGAAAAGA	4020
GCATATTTAC	GAATTATTTC	CTTGACCAAG	TCCTCAATTT	GAACCTGCTT	TAAGACCAAA	4080
TCATCATGGA	AACTTTCTAA	ACGCAGGTAC	TGTAAAACTA	GGTTGGTATA	GGAGTCGATT	4140
TTGAAAATTT	CCTGTTCTAG	CTGCTGCTTC	AGTTGGCGGT	CGACCACTTC	TGCAACTAAG	4200
AGTTGACTGG	CTGCAATGGG	GGTCTTTATC	TGATGGACCC	ACAAGGTATA	GTAATCCAGC	4260
AAATCCGTCA	GTTTTCTTTC	TGCTTTTGAC	CTCTGCTGAT	AGAGTTCCAT	CTCACGCGCT	4320
TCTAATTTTT	CTGCTAAAGC	TATTTCCAAA	GGAGACTTGG	CTTCCCTCTC	TCCATAGAGA	4380
AGTTCCTGGC	GATAGACCTG	CGTTTCCACC	AATATGTCCC	aagtgaaaaa	TAATATGGTT	4440
ACAAAGCAAC	ACAAGAAGAA	AAAGTAGAGG	AAGTAAATTC	CTAGACTGGC	AAATAAAAC	4500
TGAAAGAGTA	AGACAAGAAA	TGCCAAAGAA	AGCAGATAGA	TAAAAAGACG	ACTACGGGAG	4560
CGCAGATAGG	CTAGAAAAA	TTGTTTCCAA	TCAAGCATGC	TTCAATCCGT	ACCCTATTCC	4620
TTTCTTGGTC	TCGATAAATC	CTACCAATCC	CTGCTCCTCC	AACTTTTTAC	GCAAACGAGC	4680
CACATTGACA	GAGAGGGTAT	TATCATCAAT	GAAAAAGTCA	CTGTTCCAAA	GTTCCCGCAT	4740
CAGGTCGTCA	CGTGCTACGA	TGTTGCCTGC	ATGCTCAAAT	AACACGCGTA	AAATCTGGAA	4800
TTCATTCTTG	GTCAAATTCA	AGACTTGCCC	TTGATAATGT	AAATCCATGG	ATTTGGTATT	4860
GAGGATAACA	CCAGCATATT	CCAGCAAACT	CTCATCACGC	CCAAACTCAT	AGGAACGACG	4920
CAACAAGCCC	TGAACCTTAG'	CTAAAAGAAC	CTGCTGGTCA	AAAGGCTTGG	TCACAAAGTC	4980
ATCCGCCCCC	ATATTGATTG	CCATGACAAT	ATCCATAGCC	TGGTCTCTCG	AAGAAAGAAA	5040
CATGATAGGT	ACCTTGGAAA	TCTTGCGGAT	TTCCTGACAC	CAGTGATAAC	CATTAAACAA	5100
GGGCAAACCA	ATATCCATGA	GGACCAGATG	AGGTTCCGAC	TGAACAAATA	GACTCAAAAC	5160

TTCCATAAAG	TCTTCTACCA	GGACCACTTC	AAATCCCCAT	TCAGAGAGCA	TTTTCCCAAT	5220
CTGTTGACGA	ATGACCTGAT	CATCTTCTAT	TAATAAAATC	TTGTGCATGC	GCTTCTCCTT	5280
TTCCATTATT	ATAACAGATT	TTTCCATGCT	AGATGGTCTG	AAACTGAATT	TGAAATAGCC	5340
TGTTTTTAGC	CAGTACAAAC	AGGCTATGCT	ACTAGCTAAT	TTGAGGGAAA	TTTGCTAAGA	5400
TAAATAAAA	GAAAGGAGCT	CTTATGGCCA	ATATTTTTGA	CTATCTGAAA	GATGTCGCAT	5460
ATGATTCTTA	TTACGACCTT	CCCTTGAATG	AGTTAGACAT	TCTAACCTTA	ATAGAAATCA	5520
CCTACCTCTC	CTTTGATAAT	CTGGTCTCCA	CACTTCCTCA	ACGTCTTTTA	GATCTAGCAC	5580
CTCAGGTTCC	AAGAGATCCC	ACCATGCTTA	CTAGCAAAAA	TCGCCTTCAA	TTATTAGATG	5640
AATTGGCTCA	ACACAAGCGC	ТТСАААААТТ	GCAAACTCTC	CCATTTTATC	AACGACATCG	5700
ACCCTGAACT	GCAAAAGCAA	TTTGCGGCTA	TGACTTATCG	TGTCAGCCTC	GATACCTATC	5760
TGATTGTCTT	TCGTGGGACA	GATGACAGTA	TCATTGGCTG	GAAGGAAGAT	TTCCACCTGA	5820
CCTATATGAA	GGAAATTCCT	GCTCAAAAGC	ACGCCCTTCG	CTATTTAAAG	AACTTTTTTG	5880
CCCATCATCC	TAAGCAAAAG	GTTATTCTA G	CTGGGCATTC	CAAGGGAGGA	AATCTCGCTA	5940
TCTATGCTGC	TAGCCAAATT	GAGCAAAGTT	TGCAAAATCA	GATCACAGCA	GTTTATACAT	6000
TTGATGCACC	TGGTCTCCAT	CAAGAATTGA	CACAGACTGC	GGGTTATCAA	AGGATAATGG	6060
ATAGAAGCAA	GATATTCATT	CCACAAGGTT	CCATTATCGG	TATGATGCTG	GAAATTCCTG	6120
CTCACCAAAT	CATCGTTCAG	AGTACTGCCC	TGGGTGGCAT	CGCCCAGCAC	GATACCTTTA	6180
GTTGGCAGAT	TGAGGACAAG	CACTTCGTCC	AACTGGATAA	GACCAACAGT	GATAGCCAGC	6240
AAGTAGACAC	AACCTTTAAA	GAATGGGTGG	CCACAGTCCC	TGACGAAGAA	CTTCAGCTCT	6300
ACTTCGACCT	CTTCTTTGGC	ACTATTCTTG	ATGCTGGTAT	TAGCTCTATC	AATGACTTGG	6360
CTTCCTTAAA	GGCGCTTGAA	TACATTCATC	ATCTCTTTGT	CCAAGCTCAA	TCCCTCACTC	6420
CAGAAGAAAG	AGAAACCTTG	GGTCGCCTTA	CCCAGTTATT	GATTGATACT	CGTTACCAGG	6480
CATGGAAAAA	TAGATAATAC	TCTTGAAAAT	TAAATGTATA	CAAAACAAAA	GACCTAGAAT	6540
ACATACTTTC	ATGTGCATTC	TAAGTCTTTT	TAAATAGAAT	CTAATAGTCA	ATAAAAATCA	6600
AAGAGCATTG	AGAGATAATG	GGGCTTGGAA	CGTCCCTCTC	GCTTCAACAA	AATGACCCCA	6660
TTATAGATTA	AAAAGATGCC	ACTTAGAAAA	AGCAAAAAAG	GAAGTAAGAC	AAAGGCAAAT	6720
ATATAAAAAG	CTAACTGAAC	ATTCTCGTAT	CCATTTTTAT	AAAAAAGGTA	GGATAGATAA	6780
AAATAACTTG	AAATGAGGGA	таатааааат	AATACTGGAT	TCCACAAACT	TCTATTATCC	6840
TTCCAAAATG	ACACTATAAA	GGCTAATACA	АТТССТАТАА	CGAGATACAT	TTCTTACTCC	6900

162 TTTAATAGCT ACATTTTATC ATAATTATCC AAAGAAAAA GAGGGCATTT ATCCCTCTTA 6960 ATCCTTCATC TGACTCTCTG CATCGGCCAC GACTTTTTCT AGACTGGTTT GACCAAGTTC 7020 TGCCTCCATA GTCAACTGAA TTCTCTCCAA TTTTTGATCC AAAACATCAT GAATATGAGC 7080 TCCTACAGGG CAATTTGGAT TCGGATTGTC ATGGAAACTG AAGAGTTGAC CTGTCTTACC 7140 AAGACATTCG ACCGCCTGAT AAACATCTAA AAGACTAATA TCCTTAAGGT CCTTGACAAT 7200 CTCTGTTCCG CCCGTTCCAC GCGCTACTGA AATCAGCTCT GCCTTCTTCA ACTGGGACAA 7260 GATCTTTCTG ATAATGACAG GATTGACCCC GACACTAGCA GCCAGAAAAT CACTGGTCAC 7320 CTTGCTTTCC TTCCCCTCGA GGGCAATGAT TATCAGCATA.TGAGTCGCAA TGGTAAATCT 7380 ACTTGGAATT TGCATCCTCT TCTCCTTTTT ACGAGGCTAC CCTGCCTCTA CTCTTCTTTT 7440 TCTATTATTA TACCCTTTTT AGTTGTAATG TCAATCGTTA CCACTTTTCA ACCAGTCGTC 7500 TAACTCCCGA TCGCAGCCCT CTTTCTGAGC CAATTCTCTC AAAAATTCCT GATGATGAGT 7560 ATGGTGGATC CCATTGACCA GACTTTCATA GTAAACCTCA AAATAGGGAA GTCTCAGGTC 7620 TTTAGCCAGC TGCAATTCAG CTGCTACATC GTAGTCTACC CGTCGGAAGT CCATATCTAC 7680 CAGGCCTTTG TCATCAAACT CCAAAATCAT ATACTGGGCC CGCAAGTCCT TCCGTAGCTG 7740 AGCGTCCAAA AAGAAAGGTT GGCCAATCGA ACCCGGATTG ACAATCAATT GCCCACCAGT 7800 CCCGTAACGA AGCAACTGCT GGTGAATATG TCCATAAACA GCAATATCAC AGGGAGGATG 7860 AGTCACCAAG CGGTCAAACT CCTCTTGTTT GCCAGTATGA ATCAACTCTC GCCCCCAGTT 7920 CTTATCAGGC AGATGATGGC TAATTCCCAC CGTCAAATCC CCAAACTGAC GATGAATTTG 7980 AAGAGGTTGA TTGTGGAGCA CTTCAATTTC TTCTAGGGAA ATTTCCTCTA AAACATACTG 8040 GCACTGGCGC AAGAGATAGC GTTGACTGGG GCGAGTACTG TCCAATTCCT TACGGACACC 8100 ATGCCAAAGA CTGTCTTCCC AGTTTCCCAA AACTCTAGCC GTAATCGGTA GTTGATCCAA 8160 CAAGTCCAAA ATCCTTCTAC GCCCTGTCCC TGGCATGAGA ATATCTCCCA AAAGCCAGTA 8220 TTCATCCACT CCTATCTGCC GAGCATCTGC CAAAACAGCC TCCAAGGCGG TGGTATTTCC 8280 ATGAATATCT GAAAGAAGAG CTATTTTCGT CATATCCATC TCCTCGTTTT TTCTCTTGCA 8340 ATAAGTATAA CATAAAAAGT CACAGCTAGA GAAATCTAGC TTTTTTTGAT ATACTAGATA 8400 AAGATATTAG ACAAGAGGAA ACGAATGACC CCAAACAAAG AAGACTATCT AAAATGTATT 8460 TATGAAATTG GCATAGACCT GCATAAGATT ACCAACAAGG AAATTGCGGC TCGCATGCAA 8520 GTCTCTCCCC CTGCCGTAAC TGAAATGATC AAACGAATGA AAAGTGAAAA TCTCATCCTA 8580 AAGGACAAGG AATGTGGCTA TCTACTGACT GACCTCGGTC TCAAACTGGT CTCTGAGCTC 8640 TATCGTAAGC ACCGCTTGAT TGAAGTTTTT CTAGTTCATC ATTTAGACTA TACAAGTGAC 8700

CAGATTCACG	AGGAAGCTGA	GGTCTTGGAA	CACACTGTCT	CTGACCTGTT	CGTGGAAAGA	8760
CTAGATAAAC	TGCTAGGTTT	CCCTAAAACC	TGCCCCCACG	GGGGAACTAT	TCCTGCCAAG	8820
GGAGAACTAC	TCGTTGAAAT	CAATAACCTC	CCACTAGCTG	ATATCAAGGA	AGCTGGCGCC	8880
TACCGCCTGA	CTCGGGTGCA	CGATAGTTTT	GACATTCTCC	ATTATCTGGA	CAAGCACTCA	8940
CTTCACATCG	GTGACCAGCT	CCAAGTCAAG	CAGTTTGATG	GCTTCAGCAA	TACCTTCACT	9000
ATCCTCAGTA	ACGACGAGGA	TTTACAAGTG	AATATGGACA	TTGCAAAACA	ACTCTATGTC	9060
GAGAAAATCA	ACTAATTTCT	CAAGTCCCCT	ACCAACCCTG	AAAGTTTTAT	TTTGGCTCTT	9120
TGTCAACTGT	AGTGGGTTGA	AGTCAGCTAA	GCTCGAGAAA	GGACAAATTT	TGTCCTTTCT	9180
TTTTTGATAT	TCAGAGCGAT	AAAAATCCGT	TTTTTGAAGT	TTTCAAAGTT	CCGAAAACCA	9240
AAGGCATTGC	GCTTGATAAG	TTTGATGAGA	TTATTGGTCG	CTTCCAGTTT	GGCATTAGAA	9300
TAGTGTAGTT	GAAGGCCGTT	GACAATCTTT	TCTTTATCTT	TGAGGAAGGT	TTTAAAGACA	9360
GTCTGAAAAA	TAGGATGAAC	CTGCTTTAGA	TTGTCCTCAA	TGAGTCCGAA	AAATTTCTCC	9420
GGTTTCTTAT	TCTGAAAGTG	AAACAGCAAG	AGTTGATAGA	GCTGATAGTG	GTGTTTCAAG	9480
TCTTGTGAAT	AGCTCAAAAG	CTTGTCTAAA	ATCTCTTTAT	TGGTTAAGTG	CATACGAAAA	9540
GTAGGACGAT	AAAATCGCTT	ATCACTCAGT	TTACGGCTAT	CCTGTTGTAT	GAGCTTCCAG	9600
TAGCGCTTGA	TAGCCTTGTA	TTCATGGGAT	TTTCGATCCA	ATTGGTTCAT	AATTTGAACA	9660
CGCACACGAC	TCATAGCACG	GCTAAGATGT	TGTACAATGT	GAAAGCGATC	CAACACGATT	9720
TTAGCATTCG	GGAGTGAAAC	AGTCTGGGAG	ACTGTTTCAG	CCTGAGCCTA	GAAATTTGAA	9780
AGCGAAGCTG	TTTAGCCAAG	TCATAGTAAG	GACTAAACAT	ATCCATCGTA	ATGATTTTCA	9840
CTTGACAACG	AACGGCTCTA	TCGTAGCGAA	GAAAGTGATT	TCGGATGACA	GCTTGTGTTC	9900
TGCCTTCAAG	AACAGTGATA	ATATTAAGAT	TATCAAAATC	TTGCGCAATG	AAACTCATCT	9960
TTCCCTTAGT	GAAGGCATAC	TCATCCCAAG	ACATAATCTT	TGGAAGCCGA	GAAAAATCAT	10020
GCTCAAAGTG	AAAGTCATTG	AGCTTGCGAA	TGACAGTTGA	AGTTGAAATG	GCCAGCTGAT	10080
GGGCÄATATC	AGTCATAGAA	ATTTTTTCAA	TTAACTTTTG	AGCAATYTTT	TGGTTGATGA	10140
TACGAGGGAT	TTGGTGATTT	TTCTTTACCA	GGGGAGTCTC	AGCAACCATC	ATTTTTGAAC	10200
AGTGATAGCA	CTTGAAACGA	CGCTTTCTAA	GGAGAATTCT	AGAAGGCATA	CCAGTCGTTT	10260
CAAGATAAGG	AATTTTAGAA	GGTTTTTGAA	AGTCATATTT	CTTCAATTGG	TTTCCGCACT	10320
CAGGGCAAGA	TGGGGCGTCG	TAGTCCAGTT	TGGCGATGAT	TTCCTTGTGT	GTATCCTTAT	10380
TGATGATGTC	TAAAATCTGG	ATATTAGGGT	CTTTAATGTC	TAGTAATTTT	GTGATAAAAT	10440

164 GTAATTGTTC CATATGATTC TTTCTAATGA GTTGTTTTGT CGCTTTTCAT TATAGGTCAT 10500 ATGGGACTTT TTTTCTACAA TAAAATAGGC TCCATAATAT CTATAGTGGA TTTACCCACT 10560 ACAAATATTA TAGAACCGTA AAAATAGAAG GAGATAGCAG GTTTTCAAGC CTGCTATCTT 10620 TTTTTGATGA CATTCAGGCT GATACGAAAT CATAAGAGGT CTGAAACTAC TTTCAGAGTA 10680 GTCTGTTCTA TAAAATATAG TAGATTGAAA TAAGATGTGA ACAACTCTAT CAGGAAAGTC 10740 AAATTAATTT ATAGAATTAT TTTAGCAGTC AAGGTGTACT GTTATAGATT CAATATATTA 10800 TATGACTATT AACCTTGTCT TCTCCTAAAA TTGACTTTCT TGTTTTCTTA TCTTGTCCAC 10860 TCGAAACAAG TATTGTAAGA ATTTGATTAT TTTTGAAAGT ACTTTTAATA TACTTGATAT 10920 AGTTAAAAAA GATTTGAAAC TAAATTCCAA ATTAGAAAAA GACTTGAAAT ACTAAAAAAA 10980 AAAAAGTATA CTCTAATTGA AAACGGTAAC AAAACTAATT TAGAGAATGA AATATAGAGT 11040 ATTTCTCTCT TAAAAGTTTT TGGTGAAACG AGATGTAGAA AGGAGATTTA GCCAAAGAGT 11100 CTATTAGTGC TAGAATAATA GATTAGAATT ATTTTAGAAA AACGAAGTGA GCAGCTTATA 11160 AATTCAAGTC CCCAAATAGA TTCATACTAG TATCTTTTGC AAAAAATAAA GGGCGACTTC 11220 CTTCATGAAT ATCAATTTCA TCTATAAGGA AGGTAGCTAA TTGAACTAAC TTATTTATTC 11280 TGTTTGTCGC TAGAAAAATC AGACCTCCTT GTGAAGATTG AGGAGATACT TAATGAAAAT 11340 CAAAGAAGAA ACTAGCAAGC TAGTAGCAGA TTGCCCAAAA CACCGCTTTG AGGTTGTAGA 11400 TAAGACTGAC CTATATAATC CAAGGTGAAG CGACTGTGGT TTGAAGAGAT TTTCAAAGAG 11460 TATAGGCTAG AGAGTAGTGT TTTTATGTCC TTCTAGTAGA AAATGCTAGA CAGAAGAATG 11520 GGGAACTTGG ATAGGAAAAA TAGATTGAGA AAGGAGGTTA GAAGAGATGA TTATTACAAA 11580 AATTAGCCGT TTAGGAACTT ATGTGGGAGT AAATCCACAT TTTGCAACAT TAATAGATTT 11640 TCTAGAAAAA ACAGGACTAG AAAATTTAAC AGAAGGTTCG ATTGCTATCG ATGGTAATCG 11700 ATTGTTTGGG AATTGCTTTA CTTATCTAGC AGATGGTCAA GCAGGGGCTT TCTTTGAAAC 11760 CCACCAAAAA TATTTGGATA TTCATTTAGT TTTGGAAAAC GAAGAAGCCA TGGCTGTTAC 11820 ATCGCCGGAA AATGTAAGCG TTACCCAAGA ATATGATGAA GAGAAAGATA TTGAATTATA 11880 CACAGGGAAA GTGGAACAGT TGGTTCATTT GAGAGCTGGC GAATGCCTCA TCACTTTTCC 11940 AGAAGATTTA CATCAACCCA AGGTTCGTAT AAATGATGAA CCTGTGAAAA AAGTTGTCTT 12000 TAAAGTTGCG ATTTCTTAAT GTAGAAAGAG AAGAACGATG AAAAAAATGA GAAAGTTTTT 12060 ATGTCTAGCT GGAATTGCGC TAGCGGCTGT TGCCTTGGTA GCTTGTTCAG GAAAAAAAGA 12120 AGCTACAACT AGTACTGAAC CACCAACAGA ATTATCTGGT GAGATTACAA TGTGGCACTC 12180 CTTTACTCAA GGACCCCGTT TAGAAAGTAT TCAAAAATCA GCAGATGCTT TCATGCAAAA 12240

GC	CATCCAAAA	ACGAAAATCA	AGATTGAAAC	ATTTTCTTGG	AATGACTTCT	ATACTAAATG	12300
G#	CTACAGGT	TTAGCAAATG	GAAATGTGCC	AGATATCAGT	ACAGCTCTTC	CTAACCAAGT	12360
AA	TGGAAATG	GTCAACTCAG	ATGCTTTGGT	TCCGCTAAAT	GATTCTATCA	AGCGTATTGG	12420
AC	CAAGATAAA	TTTAACGAAA	CTGCCTTAAA	TGAAGCAAAA	ATCGGAGATG	ATTACTACTC	12480
TO	STTCCTCTT	TATTCACATG	CACAAGTCAT	GTGGGTTAGA	ACAGATTTGT	TAAAAGAACA	12540
TA	latattgag	GTTCCTAAAA	CTTGGGATCA	ACTCTATGAA	GCTTCTAAAA	AATTGAAAGA	12600
AC	CTGGAGTT	TATGGCTTGT	CTGTTCCGTT	TGGAACAAAT	GACTTAATGG	CAACACGTTT	12660
CI	TGAACTTC	TACGTACGTA	rTGGTGGAGG	AAGCCTCTTA	ACAAAAGATC	TTAAAGCAGA	12720
CI	TGACAAGC	CAACTTGCTC	AAGATGGTAT	TAAATACTGG	GTTAAATTGT	ATAAAGAAAT	12780
CI	CACCTCAA	GATTCTTTGA	ACTTTAATGT	CCTTCAACAA	GCTACCTTGT	TCTATCAAGG	12840
A.F	AAACAGCA	TTTGACTTTA	ACTCTGGCTT	CCATATCGGA	GGAATTAATG	CCAACAGTCC	12900
TC	CAATTGATT	GATTCGATTG	ATGCTTATCC	TATTCCAAAA	ATCAAAGAGT	CTGATAAAGA	12960
cc	AAGGAATT	GAAACCTCAA	ACATTCCAAT	GGTTGTTTGG	AAAAATTCAA	AACATCCAGA	13020
AG	TTGCTAAA	GCATTCTTAG	AAGCACTTTA	TAATGAAGAA	GACTACGTTA	AATTCCTTGA	13080
TT	CAACTCCA	GTAGGTATGT	TGCCAACTAT	TAAGGGGATT	AGCGATTCTG	CAGCCTATAA	13140
AC	aaaatgaa	ACTCGTAAGA	AATTTAAACA	TGCTGAAGAA	GTAATTACTG	AAGCTGTTAA	13200
AA	AAGGTACT	GCTATTGGTT	ATGAAAATGG	GCCAAGTGTA	CAAGCTGGTA	TGTTGACTAA	13260
CC	AACACATT	ATTGAACAAA	TGTTCCAAGA	TATCATTACA	AATGGAACAG	ATCCTATGAA	13320
AG	CAGCAAAA	GAAGCAGAAA	AACAATTAAA	TGATTTATTT	GAGGCTGTTC	AGTAGATGTA	13380
AA	AGACTAGA	AAATAGGTGG	GATAGTGAGC	TGAAAAGCTC	TAGCCCAATC	TTGTAAAAGA	13440
AG	GGAGAAGG	AGAATGGTTA	AAGAACGTAA	TTTAACTCGC	TGGATATTTG	TTTTGCCAGC	13500
TA	TGATTATC	GTAGGATTAC	TCTTTGTTTA	TCCGTTTTTC	TCGAGTATTT	TTTATAGCTT	13560
TA	CCAATAAG	CATTTGATTA	TGCCTAATTA	TAAATTTGTT	GGTTTGGCTA	ACTATAAAGC	13620
TG	TGCTATCA	GATCCCAACT	TCTTTAATGC	GTTCTTTAAT	TCAATTAAGT	GGACCGTTTT	13680
CI	CATTAGTT	GGTCAAGTTT	TAGTAGGGTT	TGTATTGGCT	TTAGCTCTTC	ACAGAGTACG	13740
CC	ACTTCAAG	AAATTATATA	GGACATTATT	GATTGTTCCT	TGGGCATTTC	CTACCATCGT	13800
TA	TTGCCTTC	TCTTGGCAGT	GGATTCTAAA	CGGGGTTTAT	GGCTACTTAC	СТААТСТААТ	13860
CG	ATTAAAAT	GGTTTAATGG	AACATACACC	TGCATTTTTG	ACAGATAGTA	CATGGGCATT	13920
CC	TATGTTTG	GTGTTTATCA	ACATTTGGTT	TGGAGCACCA	ATGATTATGG	TTAATGTGCT	13980

			166			
TTCAGCTTTG	CAAACAGTAC	CAGAAGAACA	ATTTGAGGCT	GCTAAGATAG	ATGGTGCTTC	14040
AAGTTGGCAG	GTGTTCAAGT	TTATCGTCTT	TCCACATATT	AAAGTGGTTG	TAGGACTTCT	14100
AGTTGTTTTG	AGAACTGTAT	GGATCTTTAA	TAACTTTGAC	ATTATCTACC	TCATTACTGG	14160
TGGTGGACCA	GCCAATGCTA	CAACGACGCT	TCCAATTTTT	GCTTACAACC	TGGGCTGGGG	14220
AACTAAATTG	TTGGGTCGTG	CTTCAGCAGT	TACAGTACTG	CTCTTTATCT	TCTTGGTGGC	14280
GATTTGCTTT	ATCTACTTTG	CTATCATCAG	TAAGTGGGAA	AAGGAGGGTA	GAAAATAATG	14340
AAGAAGAAAT	CCAGTATTTA	TTTAGATATT	CTCTCACATG	TACTTTTAGT	TGGTGCGACC	14400
ATCGTTGCAG	TTTTCCCATT	GGTATGGATT	ATCATATCTT	CTGTCAAAGG	GAAAGGGGAA	14460
TTAACTCAGT	ATCCAACACG	ATTTTGGCCT	GAACAGTTTA	CATTAGATTA	TTTCACTCAT	14520
GTTATCAACG	ATTTGCACTT	CATTGATAAC	ATTCGAAACA	GTTTAATCAT	TGCCTTGGCT	14580
ACAACCCTTA	TTGCGATTAT	TATTTCTGCT	ATGGCAGCCT	ATGGTATTGT	TCGATTCTTT	14640
CCTAAATTGG	GAGCAATCAT	GTCGAGACTA	CTCGTCATTA	CCTACATTTT	CCCACCAATT	14700
TTGTTAGCAA	TTCCCTATTC	AATTGCCATT	GCTAAAGTTG	GGTTAACAAA	TAGTTTATTT	14760
GGCTTGATGA	TGGTTTATCT	ATCTTTTAGT	GTTCCATATG	CAGTTTGGCT	CTTAGTTGGA	14820
TTTTTCCAAA	CAGTTCCAAT	TGGAATTGAA	GAAGCGGCTA	GAATTGATGG	TGCAAATAAA	14880
TTTGTTACGT	TTTATAAAGT	TGTGCTACCG	ATTGTAGCAC	CAGGTATTGT	AGCAACAGCT	14940
АТТТАТАСАТ	TTATCAATGC	TTGGAATGAA	TTCCTGTATG	CCTTGATTTT	GATTAACAAT	15000
ACAGGAAAGA	TGACAGTAGC	AGTAGCCCTT	CGTTCACTTA	ATGGTTCAGA	AATACTAGAC	15060
TGGGGAGATA	TGATGGCAGC	GTCTGTTATT	GTAGTTCTTC	CATCAATTAT	TTTCTTCTCT	15120
ATCATCCAAA	ATAAGATTGC	AAGTGGATTA	TCAGAAGGAT	CTGTGAAGTA	GACGAAAGAA	15180
GGAAAAAAAT	GAATAAAAGA	GGTCTTTATT	CAAAACTAGG	AATTTCCGTT	GTAGGCATTA	15240
GTCTTTTAAT	GGGAGTCCCC	ACTTTGATTC	ATGCGAATGA	ATTAAACTAT	GGTCAACTGT	15300
CCATATCTCC	TATTTTTCAA	GGAGGTTCAT	ATCAACTGAA	CAATAAGAGT	ATAGATATCA	15360
GCTCTTTGTT	ATTAGATAAA	TTGTCTGGAG	AGAGTCAGAC	AGTAGTAATG	AAATTTAAAG	15420
CAGATAAACC	AAACTCTCTT	CAAGCTTTGT	TTGGCCTATC	TAATAGTAAA	GCAGGCTTTA	15480
ATTAATAAA	CTTTTCAATT	TTCATGAGAG	ATTCTGGTGA	GATAGGTGTA	GAAATAAGAG	15540
ACGCCCAAAA	GGGAATAAAT	TATTTATTTT	CCAGACCAGC	TTCATTATGG	GGAAAACATA	15600
AAGGACAGGC	AGTTGAAAAT	ACACTAGTAT	TTGTATCTGA	TTCTAAAGAT	AAAACATACA	15660
CAATGTATGT	TAATGGAATA	GAAGTGTTCT	CTGAAACAGT	TGATACATTT	TTGCCAATTT	15720
CAAATATAAA	TGGTATAGAT	AAGGCAACAC	TAGGAGCTGT	TAATCGTGAA	GGTAAGGAAC	15780

ATTACCTCGC	AAAAGGAAGT	ATTGATGAAA	TCAGTCTATT	TAACAAAGCA	ATTAGTGATC	15840
AGGAAGTTTC	AACTATTCCC	TTGTCAAATC	CATTTCAGTT	AATTTTCCAA	TCAGGAGATT	15900
CTACTCAAGC	TAACTATTTT	AGAATACCGA	CACTATATAC	ATTAAGTAGT	GGAAGAGTTC	15960
TATCAAGTAT	TGATGCACGT	TATGGTGGGA	CTCATGATTC	TAAAAGTAAG	ATTAATATTG	16020
CCACTTCTTA	TAGTGATGAT	AATGGGAAAA	CGTGGAGTGA	GCCAATTTT	GCTATGAAGT	16080
TTAATGACTA	TGAGGAGCAG	TTAGTTTACT	GGCCACGAGA	TAATAAATTA	AAGAATAGTC	16140
AAATTAGTGG	AAGTGCTTCA	TTCATAGATT	CATCCATTGT	TGAAGATAAA	AAATCTGGGA	16200
AAACGATATT	ACTAGCTGAT	GTTATGCCTG	CGGGTATTGG	AAATAATAAT	GCAAATAAAG	16260
CCGACTCAGG	TTTTAAAGAA	ATAAATGGTC	ATTATTATTT	AAAACTAAAG	AAGAATGGAG	16320
ATAACGATTT	CCGTTATACA	GTTAGAGAAA	ATGGTGTCGT	TTATAATGAA	ACAACTAATA	16380
AACCTACAAA	TTATACTATA	AATGATAAGT	ATGAAGTTTT	GGAGGGAGGA	AAGTCTTTAA	16440
CAGTCGAACA	ATATTCGGTT	GATTTTGATA	GTGGCTCTTT	AAGAGAAAGG	CATAATGGAA	16500
AACAGGTTCC	TATGAATGTT	TTCTACAAAG	ATTCGTTATT	TAAAGTGACT	CCTACTAATT	16560
ATATAGCAAT	GACAACTAGT	CAGAATAGAG	GAGAGAGTTG	GGAACAATTT	AAGTTGTTGC	16620
CTCCGTTCTT	AGGAGAAAA	CATAATGGAA	CTTACTTATG	TCCCGGACAA	GGTTTAGCAT	16680
TAAAATCAAG	TAACAGATTG	ATTTTTGCAA	CATATACTAG	TGGAGAACTA	ACCTATCTCA	16740
TTTCTGATGA	TAGTGGTCAA	ACATGGAAGA	AATCCTCAGC	TTCAATTCCG	TTTAAAAATG	16800
CAACAGCAGA	AGCACAAATG	GTTGAACTGA	GAGATGGTGT	GATTAGAACA	TTCTTTAGAA	16860
CCACTACAGG	TAAGATAGCT	TATATGACTA	GTAGAGATTC	TGGAGAAACA	TGGTCGAAAG	16920
TTTCGTATAT	TGATGGAATC	CAACAAACTT	CATATGGCAC	ACAAGTATCT	GCAATTAAAT	16980
ACTCTCAATT	AATTGATGGA	AAAGAAGCAG	TCATTTTGAG	TACACCAAAT	TCTAGAAGTG	17040
GCCGCAAGGG	AGGCCAATTA	GTTGTCGGTT	TAGTCAATAA	AGAAGATGAT	AGTATTGATT	17100
GGAAATACCA	CTATGATATT	GATTTGCCTT	CGTATGGTTA	TGCCTATTCT	GCGATTACAG	17160
AATTGCCAAA	TCATCACATA	GGTGTACTGT	TTGAAAAATA	TGATTCGTGG	TCGAGAAATG	17220
AATTGCATTT	AAGCAATGTA	GTTCAGTATA	TAGATTTGGA	AATTAATGAT	TTAACAAAAT	17280
AAAGGAGAAA	AACATGGTTA	AATACGGTGT	TGTTGGAACA	GGGTATTTTG	GAGCTGAATT	17340
GGCTCGCTAC	ATGCAAAAGA	ATGATGGAGC	AGAGATTACT	CTTCTCTATG	ATCCAGATAA	17400
TGCAGAGGCG	ATTGCAGAAG	AATTGGGAGC	AAAAGTAGCA	AGTTCCTTAG	ATGAGTTGGT	17460
TTCTAGCGAT	GAAGTAGATT	GTGTTATCGT	CGCAACTCCA	AATAATCTTC	ATAAGGAACC	17520

			168			
GGTTATTAAG	GCTGCACAGC	ATGGTAAAAA		GAAAAACCAA	TTGCGCTTTC	17580
TTATCAAGAT	TGTCGCGAGA	TGGTAGATGC	GTGTAAAGAA	AACAATGTAA	CCTTTATGGC	17640
AGGACATATT	ATGAATTTCT	TTAATGGTGT	TCATCATGCA	AAAGAACTCA	TTAATCAAGG	17700
AGTTATCGGA	GACGTTCTAT	ATTGTCATAC	AGCTCGTAAT	GGTTGGGAAG	AACAACAACC	17760
GTCAGTATCA	TGGAAAAAA	TTCGTGAAAA	ATCAGGTGGT	CACTTGTATC	ACCACATCCA	17820
TGAATTGGAT	TGCGTTCAAT	TCCTTATGGG	GGGCATGCCT	GAAACTGTAA	CCATGACAGG	17880
TGGAAATGTG	GCCCATGAAG	GTGAACATTT	CGGTGATGAA	GATGATATGA	TTTTTGTCAA	17940
TATGGAATTT	TCTAATAAGC	GTTTTGCCTT	GTTAGAATGG	GGTTCAGCTT	ATCGTTGGGG	18000
TGAACATTAT	GTCTTAATCC	AAGGAAGCAA	AGGTGCCATC	CGCTTAGACT	TATTCAACTG	18060
TAAAGGAACT	CTTAAGCTAG	ATGGGCAAGA	AAGCTATTTC	TTGATTCACG	AATCGCAAGA	18120
AGAAGATGAT	GATCGGACTC	GTATCTATCA	TAGTACAGAG	ATGGATGGAG	CAATTGCTTA	18180
TGGTAAACCA	GGTAAACGTA	CTCCÁTTATG	GCTATCATCT	GTCATTGATA	AAGAAATGCG	18240
CTATCTGCAT	GAGATTATGG	AAGGAGCTCC	AGTATCAGAA	GAATTTGCAA	AACTTTTGAC	18300
AGGTGAAGCT	GCCCTAGAAG	CAATTGCTAC	TGCAGATGCT	TGTACCCAGT	CTATGTTTGA	18360
AGATCGCAAA	GTAAAATTGT	CAGAAATTGT	ТТАААТАААА	TTGGTATTCT	CCTATTTATA	18420
GGTCGACTTG	CTCCTCTGAA	AGTACTTTTA	GAGGAGCTGT	TTGACTTTGC	TAGTTTTTGA	18480
AACTGAAATC	TATTATACTA	CAAACTATTG	AAAGCGTTTT	AATTTTAAGG	TATAATAATC	18540
TCATAGAAAT	AAAGAAAAGG	AGGAAAGAGG	ATGCCACAGA	TTAGCAAAGA	AGCCTTGATT	18600
GAGCAAATCA	AAGATGGAAT	CATCGTTTCT	TGTCAGGCTC	TTCCTCATGA	ACCGCTTTAT	18660
ACAGAAGCGG	GAGGGGTGAT	TCCCTTGCTG	GTCAAAGCGG	CTGAGCAAGG	TGGAGCAGTC	18720
GGTATCCGAG	CAAACAGTGT	TCGCGATATC	AAGGAAATTA	AGGAAGTCAC	TAAACTTCCA	18780
ATCATTGGGA	TTATCAAACG	TGATTATCCA	CCTCAGGAAC	CCTTCATCAC	GGCTACTATG	18840
AAAGAAGTTG	ATGAATTGGC	AGAACTGGAC	ATCGAGGTGA	TTGCTCTGGA	TTGTACCAAG	18900
CGTGAACGCT	ACGATGGTTT	GGAAATTCAA	GAGTTCATTC	GTCAGGTTAA	GGAGAAATAT	18960
CCTAATCAGC	TTTTGATGGC	TGATACTAGT	ATCTTCGAAG	AAGGGCTAGC	AGCTGTAGAA	19020
GCAGGAATTG	ACTTTGTCGG	AACAACCTTA	TCAGGCTACA	CATCCTACAG	TCCAAAAGTA	19080
GACGGTCCAG	ATTTTGAATT	GATTAAGAAA	CTCTGTGATG	CTGGTGTAGA	TGTCATTGCA	19140
GAAGGAAAAA	TTCATACACC	AGAACAAGCC	AAACAAATCC	TTGAATATGG	AGTGCGAGGC	19200
ATCGTTGTTG	GTGGCGCCAT	TACTAGACCA	AAAGAGATTA	CAGAACGCTT	CGTTGCTAGT	19260
CTTAAATAAG	ATGTGAGGGG	GAGTTTTATG	TTTAAAGTTT	TACAAAAAGT	TGGAAAAGCT	19320

T	TTATGTTAC	CTATAGCTAT	ACTTCCTGCA	GCAGGTCTAC	TTTTGGGGAT	TGGTGGTGCA	19380
С	тттсааасс	CAACCACGAT	AGCAACTTAT	CCAATACTAG	ACAATAGTAT	TTTTCAATCA	19440
A	TATTCCAAG	TAATGAGCTC	TGCAGGAGAG	GTTGTATTCA	GTAATTTGTC	ACTACTTCTC	19500
Т	GTGTGGGAT	TATGTATTGG	CTTAGCGAAA	CGAGATAAAG	GAACCGCTGC	GTTAGCAGGA	19560
G	TAACTGGTT	ACTTAGTTAT	GACTGCAACG	ATCAAAGCTT	TGGTAAAACT	TTTTATGGCA	19620
G	AAGGATCTG	CAATTGATAC	TGGAGTTATT	GGAGCATTAG	TTGTCGGAAT	AGTTGCCGTA	19680
T	ATTTGCACA	ACCGATATAA	CAATATTCAA	TTACCTTCCG	CTTTAGGATT	CTTTGGAGGT	19740
Т	CACGCTTCG	TTCCTATTGT	TACATCGTTC	TCTTCTATCT	TGATTGGCTT	TGTCTTCTTT	19800
G	TTATTTGGC	CACCTTTCCA	ACAACTTCTT	GTTTCTACAG	GTGGATATAT	TTCTCAGGCG	19860
G	GTCCAATTG	GAACTTTTCT	ATATGGATTT	TTAATGAGAC	TTTCTGGAGC	AGTAGGCTTA	19920
C	ATCATATAA	TTTACCCTAT	GTTTTGGTAT	ACTGAACTTG	GTGGTGTTGA	AACTGTTGCA	19980
G	GACAAACAG	TGGTTGGAGC	TCAAAAAATA	TTTTTTGCTC	AATTAGCCGA	TTTGGCCCAT	20040
T	CTGGATTAT	TTACAGAAGG	AACAAGGTTT	TTTGCAGGTC	GTTTCTCAAC	AATGATGTTC	20100
G	GTTTACCGG	CTGCCTGTTT	AGCGATGTAC	CATAGTGTTC	CTAAAAATCG	TCGTAAAAAA	20160
T.	ACGCGGGTT	TGTTTTTTGG	AGTTGCTTTA	ACATCTTTTA	TTACCGGTAT	TACAGAACCA	20220
A	TTGAATTTA	TGTTTCTATT	CGTCAGTCCG	GTTCTATATG	TTGTTCACGC	ATTCCTTGAT	20280
G	GTGTTAGCT	TCTTTATTGC	AGACGTCTTA	AATATTTCAA	TAGGAAACAC	ATTTTCAGGA	20340
G	GTGTAATCG	ATTTCACTTT	ATTTGGAATT	TTGCAGGGGA	ACGCTAAGAC	GAATTGGGTT	20400
C	TTCAGATTC	CATTTGGACT	TATTTGGAGT	GTTTTGTATT	ATATTATTTT	TAGATGGTTC	20460
A	TTACTCAAT	TCAACGTTCT	AACGCCAGGG	CGAGGAGAAG	AAGTAGATTC	TAAAGAAATT	20520
T	CTGAATCCG	CAGATTCAAC	TTCAAATACT	GCAGATTATT	TAAAACAGGA	TAGÇCTACAA	20580
A	TTATCAGAG	CCTTGGGTGG	ATCAAATAAT	ATAGAAGATG	TAGATGCTTG	TGTGACACGT	20640
T	TACGTGTAG	CTGTAAAAGA	AGTTAATCAA	GTTGATAAAG	CACTTTTAAA	ACAAATTGGT	20700
G	CAGTTGATG	TCTTAGAAGT	GAAGGGTGGC	ATTCAAGCAA	TCTATGGAGC	AAAAGCAATC	20760
T	TATATAAA	atagtattaa	TGAAATTTTA	GGTGTAGATG	ATTAAGTACT	TACTGACTTA	20820
A'	TAAAAAACA	GAGGAGAGTG	ATGGATGAGT	AGGATGAAAT	GAAATCGCAT	ACAAGAAATA	20880
A	AGAACTCAT	TATCCAAGTT	GGATACGCTT	ATTACATAGG	AGAATACAAA	TGAAATTTAG	20940
A	AAATTAGCT	TGTACAGTAC	TTGCGGGTGC	TGCGGTTCTT	GGTCTTGCTG	CTTGTGGCAA	21000
T'	TCTGGCGGA	AGTAAAGATG	CTGCCAAATC	AGGTGGTGAC	GGTGCCAAAA	CAGAAATCAC	21060

			170			
TTGGTGGGCA	TTCCCAGTAT	TTACCCAAGA	AAAAACTGGT	GACGGTGTTG	GAACTTATGA	2112
AAAATCAATC	ATCGAAGCGT	TTGAAAAAGC	AAACCCAGAT	ATAAAAGTGA	AATTGGAAAC	21180
CATCGACTTC	AAGTCAGGTC	CTGAAAAAAT	CACAACAGCC	ATCGAAGCAG	GAACAGCTCC	21240
AGACGTACTC	TTTGATGCAC	CAGGACGTAT	CATCCAATAC	GGTAAAAACG	GTAAATTGGC	21300
TGAGTTGAAT	GACCTCTTCA	CAGATGAATT	TGTTAAAGAT	GTCAACAATG	AAAACATCGT	21360
ACAAGCAAGT	AAAGCTGGAG	ACAAGGCTTA	TATGTATCCG	ATTAGTTCTG	CCCCATTCTA	21420
CATGGCAATG	AACAAGAAAA	TGTTAGAAGA	TGCTGGAGTA	GCAAACCTTG	TAAAAGAAGG	21480
TTGGACAACT	GATGATTTTG	AAAAAGTATT	GAAAGCACTT	AAAGACAAGG	GTTACACACC	21540
AGGTTCATTG	TTCAGTTCTG	GTCAAGGGGG	AGACCAAGGA	ACACGTGCCT	TTATCTCTAA	21600
CCTTTATAGC	GGTTCTGTAA	CAGATGAAAA	AGTTAGCAAA	TATACAACTG	ATGATCCTAA	21660
ATTCGTCAAA	GGTCTTGAAA	AAGCAACTAG	CTGGATTAAA	GACAATTTGA	TCAATAATGG	21720
TTCACAATTT	GACGGTGGGG	CAGATATCCA	AAACTTTGCC	AACGGTCAAA	CATCTTACAC	21780
AATCCTTTGG	GCACCAGCTC	AAAATGGTAT	CCAAGCTAAA	CTTTTAGAAG	CAAGTAAGGT	21840
AGAAGTGGTA	GAAGTACCAT	TCCCATCAGA	CGAAGGTAAG	CCAGCTCTTG	AGTACCTTGT	21900
AAACGGGTTT	GCAGTATTCA	ACAATAAAGA	CGACAAGAAA	GTCGCTGCAT	СТААСАААТТ	21960
CATCCAGTTT	ATCGCAGATG	ACAAGGAGTG	GGGACCTAAA	GACGTAGTTC	GTACAGGTGC	22020
TTTCCCAGTC	CGTACTTCAT	TTGGAAAACT	TTATGAAGAC	AAACGCATGG	AAACAATCAG	22080
CGGCTGGACT	CAATACTACT	CACCATACTA	CAACACTATT	GATGGATTTG	CTGAAATGAG	22140
AACACTTTGG	TTCCCAATGT	TGCAATCTGT	ATCAAATGGT	GACGAAAAAC	CAGCAGATGC	22200
TTTGAAAGCC	TTCACTGAAA	AAGCGAACGA	AACAATCAAA	AAAGCTATGA	AACAATAGTC	22260
CTTAGTTATT	CTATAAAAAG	TAGTTTTTTA	AAGAACCTAA	GAGTGTATAC	CCCCTTTTCC	22320
CTCTACACAG	ATAGTGTAAG	AAAAGGGGGC	TTTTGTTTAA	AATGTAAGAA	ACTGTCACGA	22380
AATTAAAATG	AAGTTCTTAC	ATAAGCGAAT	CATAAAAAAT	TTCATTTTGA	TTTTAAAACA	22440
GTTCAAGAAA	GTCAAAAAAT	TATTCTATTT	GAAAGAGAGG	TGCCGACTGT	GAAAGTCAAT	22500
AAAATCCGTA	TGCGGGAAAC	AGTGATTTCC	TACGCTTTCC	TAGCACCAGT	ATTATTCTTC	22560
TTTGTCATCT	TTGTGTTGGC	TCCGATGGTG	ATGGGCTTCA	TTACAAGTTT	CTTTAACTAC	22620
TCAATGACTA	AATTTGAGTT	TGTAGGCTTG	GATAACTATA	TCCGTATGTT	TAAAGATCCT	22680
GTCTTTACAA	AATCTCTGAT	TAACACAGTT	ATTTTGGTTA	TTGGATCTGT	ACCAGTTGTT	22740
GTTCTATTCT	CACTCTTTGT	AGCATCTCAG	ACCTATCATC	AAAATGTCAT	TGCCAGATCC	22800
TTCTACCGTT	TCGTCTTCTT	CCTTCCTGTT	GTAACGGGTA	GTGTTGCCGT	GACAGTTGTT	22860

rggaaatgga	TTTATGACCC	ACTATCAGGG	ATTCTAAACT	TTGTCCTTAA	GTCCAGCCAC	22920
ATCATCAGCC	AAAACATTTC	TTGGTTGGGA	GATAAAAACT	GGGCATTGAT	GGCGATTATG	22980
АТТАТТСТСТ	TGACCACTTC	AGTTGGTCAG	CCCATCATCC	TTTATATCGC	TGCCATGGGG	23040
ATATTGACA	ATTCACTGGT	TGAAGCGGCG	CGTGTTGATG	GTGCAACTGA	GTTTCAAGTT	23100
TTTGGAAGA	TTAAATGGCC	AAGCCTTCTT	CCAACAACTC	TTTATATTGC	AATCATCACA	23160
ACAATTAACT	CATTCCAGTG	TTTCGCCTTG	ATTCAGCTTT	TGACATCTGG	TGGTCCAAAC	23220
FACTCAACAA	GTACCTTGAT	GTACTACCTT	TACGAAAAAG	CCTTCCAATT	GACAGAATAC	23280
GCTATGCCA	ACACAATTGG	TGTCTTCTTG	GCAGTCATGA	TTGCTATCGT	AAGCTTTGTT	23340
AATTTAAAG	TACTTGGAAA	CGACGTAGAA	TACTAAAGAA	AGGAGACAGC	TATGCAATCT	23400
CAGAAAAA	AACCATTAAC	AGCCTTTACT	GTTATTTCAA	CAATCATTTT	GCTCTTGTTG	23460
CTGTGCTGT	TCATCTTTCC	ATTCTACTGG	ATTTTGACAG	GGGCATTCAA	ATCACAACCT	23520
SATACAATTG	TTATTCCTCC	TCAGTGGTTC	CCTAAAATGC	CAACCATGGA	AAACTTCCAA	23580
CAACTCATGG	TGCAGAACCC	TGCCTTGCAA	TGGATGTGGA	ACTCAGTATT	TATCTCATTG	23640
TAACCATGT	TCTTAGTTTG	TGCAACCTCA	TCTCTAGCAG	GTTATGTATT	GGCTAAAAAA	23700
GTTTCTATG	GTCAACGCAT	TCTATTTGCT	ATCTTTATCG	CTGCTATGGC	GCTTCCAAAA	23760
CAAGTTGTCC	TTGTACCATT	GGTACGTATC	GTCAACTTCA	TGGGAATCCA	TGATACTCTC	23820
GGGCAGTTA	TCTTGCCTTT	GATTGGATGG	CCATTCGGTG	TCTTCCTCAT	GAAACAGTTC	23880
GTGAAAATA	TCCCTACAGA	GTTGCTTGAA	TCAGCTAAAA	TCGACGGTTG	TGGTGAGATT	23940
GTACCTTCT	GGAGTGTAGC	CTTCCCGATT	GTGAAACCAG	GGTTTGCAGC	CCTTGCAATC	24000
TTACCTTCA	TCAATACTTG	GAATGACTAC	TTCATGCAAT	TGGTAATGTT	GACTTCACGT	24060
ACAATTTGA	CCATCTCACT	TGGGGTTGCG	ACCATGCAGG	CTGAAATGGC	AACCAACTAT	24120
GTTTGATTA	TGGCAGGAGC	TGCCCTTGCT	GCTGTTCCAA	TCGTCACAGT	CTTCCTAGTC	24180
тссааааат	CCTTCACACA	GGGTATTACT	ATGGGAGCGG	TCAAAGGATA	ATACTCTGCG	24240
AAATCTCTT	CAAACTACGT	CAGCTTCACC	TTGCCATACT	TAAGTATTGC	CTGCGGTTAG	24300
TTCCTAGTT	TGTTCTTCAA	TTTTCATTGA	GTATAGGAAA	ATCAATCTAT	CAAGATACAG	24360
AGTATATTT	TATAGATTTA	GAGAATATAG	AGGTTATAAG	TGTCTACAAA	ATGGAGGGTA	24420
GCAGTTACT	TTATGAAGTT	TTGTCAGACA	СТТАТАААСТ	TAAGAATGGT	TTTAGTTAAC	24480
ATCAGAAAC	GAAGGAAAGA	GTATGATTTT	TGACGATTTG	AAAAACATCA	CCTTTTACAA	24540
GGGATTCAT	CCTAATTTAG	ACAAGGCTAT	CGACTATCTC	TACCAACATC	GTAAGGATTC	24600

			172			
TTTCGAATTA	GGAAAGTATG	ATATTGATGG	AGATAAAGTC	TTTCTAGTTG	TTCAGGAAAA	24660
TGTCCTCAAT	CAAGCTGAAA	ATGATCAATT	TGAGTATCAT	AAGAACTATG	CAGATTTGCA	24720
TTTGCTGGTA	GAAGGACATG	AATATTCGAG	CTACGGTTCA	CGTATCAAAG	ACGAGGCAGT	24780
AGCATTCGAC	GAAGCGAGTG	ACATTGGCTT	TGTTCATTGT	CATGAACACT	ACCCACTCTT	24840
GTTGGGTTAT	CACAATTTTG	CGATTTTCTT	CCCAGGTGAG	CCACATCAGC	CAAATGGTTA	24900
TGCAGGCATG	GAAGAAAAGG	TTCGAAAATA	ТСТСТТТААА	ATTTTGATTG	ATTAAAAATA	24960
GGATGAATTG	TTTTTTTGTA	AAGCTTTGAT	AATACTCTAC	CATGAAATTG	ATCTTTGTGA	25020
GGTAGAGAAA	TGAGAATAAA	ATATTTAAAA	ATTGGTATCT	TCTAAGTATG	CTGCAAGAGC	25080
TAGTTTCTTA	GATGGACAGG	GGATTACAGT	TGATGAGATG	GCTTGGATAA	TTAGGGGCAT	25140
TGTGAATGCA	TTGATTGGTA	GATACATAAA	ATTAGGTACT	TATGCGGCTA	AGTATGGTAT	25200
TAGTATGGCA	CGCTCGATCT	TAAGTAGGGT	AGCTGCAACT	GCAGCAGCAA	GAGTAGGATT	25260
ACTGACCAAG	ATTTCTGGAT	GGATTTTACG	AGTAGCTGTG	AATGTAGCTG	ATGTATATGG	25320
TAATTTTGCC	AACAATATTG	CTGCAGCTTG	GGATGCATAT	GATAAAATTC	CTAACAATGG	25380
rcgtataaac	TTTTAAAATG	CGAGAATGAA	AGCACTTTGT	ATTTTTTAT	TGAATATGTT	25440
AGCTTGGAÇA	GTGCTTGCAA	TGATAATTCG	TGGAGGGCTA	GATGGATTTG	ATAGGCATAC	25500
TTGGAGTACT	ATTTTAATTG	CGTCGCTGTT	CGGGGTATAT	GATTATAAGC	CCATAGATAA	25560
AAATAGAAAA	AAGTCCAAAA	GAAAAAATAG	ATTTGTTCAT	GGTAGGGACT	TATGAAAGCT	25620
PTACTGACAA	AAAAGAAAAC	AGTTTACAAA	GAAAAATGAT	GGAGGAGCAA	ACATGGCACA	25680
AAAAGGAGTA	AGCCTTATCA	AGGCAGCATT	TGATACAGAT	AACTTTCTCA	TGCGTTTTAG	25740
PGAGAAGGTC	TTGGACATCG	TGACAGCCAA	TCTTCTTTTT	GTCGTCTCTT	GTTTACCCAT	25800
CGTGACGATT	GGAGTGGCTA	AAATCAGCCT	CTACGAGACC	ATGTTCGAAG	TTAAGAAGAG	25860
CAGACGGGTG	CCTGTTTTTA	AAATCTATCT	AAGATCTTTC	AAGCAAAATC	TGAAACTAGG	25920
PCTTCAGCTG	GGTTTAATGG	agttaggaat	TGTGTTTCTT	ACCCTTTCAG	ATCTCTATCT	25980
TTTCTGGGGT	CAAACAGCTC	TGCCCTTCCA	ATTGCTGAAA	GCCATTTGTT	TAGGTATTCT	26040
GATTTTTCTT	ACTATCGTGA	TGCTGGCTAG	TTACCCTATC	GCGGCACGTT	ATGACCTATC	.26100
PTGGAAAGAA	ATTCTTCAAA	AAGGATTGAT	GTTGGCTAGT	TTTAACTTTC	CTTGGTTCTT	26160
CCTCATGTTA	GCCATTCTTG	TCCTCATTGT	GATGGTTCTT	TATCTGTCCG	CCTTCAGTCT	26220
ACTCTTAGGT	GGCTCAGTCT	TCCTACTTTT	TGGGTTTGGA	CTATTGGTCT	TTATCCAGAC	26280
rggattgatg	GAGAAAATTT	TCGCAAAATA	CCAATAGGAG	CTTTATTTCT	GAAACTACTT	26340
PCAAAGGCTC	CAAACGCTAT	TCTATAAGCG	AGAAACTAAA	ATCGG		26385

173

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2716 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

CCTGCCCGCA	TTGCCCTAGG	CATTAAGTAA	ACATATAAAA	GCATGTGAGA	GACTGTTGGA	60
AAAGCGAGGA	AATTTCCCCT	CTTTTCCTCT	AGTCTCTCCT	TTCTTTTGCT	GATTTTATTC	120
AAAGAAAATG	ATATAATAGT	AGTTATGGAG	AAAAAGAAAT	TACGCATCAA	TATGTTGAGT	180
TCAAGTGAGA	ÄAGTAGCAGG	ACAGGGAGTT	TCAGGTGCTT	ACCGTGAATT	AGTTCGTCTT	240
CTTCACCGTG	CTGCCAAGGA	CCAATTGATT	GTTACAGAAA	ATCTTCCAAT	CGAGGCAGAT	300
GTGACTCACT	TTCATACGAT	TGATTTTCCC	TATTATTAT	CAACCTTCCA	AAAGAAACGC	360
TCAGGGAGAA	AGATTGGCTA	TGTGCATTTC	TTGCCAGCTA	CACTTGAGGG	AAGTTTGAAA	420
ATTCCATTTT	TCTTAAAGGG	AATTGTGAAA	CGCTATGTAT	TTTCTTTTTA	CAACCGGATG	480
GAGCACTTGG	TTGTGGTCAA	TCCTATGTTT	ATTGAGGATT	TGGTAGCAGC	TGGTATTCCA	540
CGTGAAAAAG	TGACCTATAT	TCCTAACTTT	GTCAACAAGG	AAAAATGGCA	TCCTCTACCA	600
CAAGAAGAGG	TAGTCAGACT	GCGCACAGAT	CTTGGTCTTA	GTGACAATCA	GTTTATCGTA	660
GTAGGTGCTG	GGCAAGTTCA	GAAACGTAAA	GGGATTGATG	ACTTTATCCG	TCTGGCTGAG	720
GAATTGCCTC	AGATTACCTT	TATCTGGGCT	GGTGGCTTCT	CTTTTGGTGG	TATGACAGAT	780
GGTTATGAAC	ACTATAAGAA	AATTATGGAA	AATCCCCCTA	AAAATTTGAT	TTTTCCAGGC	840
ATTGTATCGC	CAGAGCGGAT	GCGCGAATTG	TATGCTCTAG	CGGATCTTTT	CTTGTTGCCT	900
AGTTACAATG	AGCTCTTTCC	TATGACTATT	TTAGAAGCTG	CGAGTTGTGA	GGCTCCTATT	960
ATGTTGCGTG	ATTTAGATCT	CTATAAGGTG	ATTTTGGAGG	GAAATTATCG	GGCGACAGCG	1020
GGTAGAGAAG	AGATGAAAGA	GGCTATTTTG	GAATATCAAG	CAAATCCTGC	TGTCTTAAAA	1080
GATCTCAAAG	AAAAGGCTAA	GAATATTTCC	AGAGAGTATT	CTGAAGAGCA	TCTGTTACAA	1140
ATCTGGTTGG	ACTTTTATGA	GAAACAAGCC	GCTTTAGGGA	GAAAGTAAAA	AGTGAGGTAA	1200
TCTATGCGAA	TTGGTTTATT	TACAGATACC	TATTTTCCTC	AGGTTTCTGG	TGTTGCGACC	1260
AGTATTCGAA	CCTTGAAAAC	AGAACTTGAA	AAGCAGGGAC	ATGCTGTTTT	TATCTTTACG	1320
ACGACAGATA	AGGATGTCAA	TCGCTACGAA	GATTGGCAAA	TTATCCGCAT	TCCAAGTGTT	1380

			154			
CCTTTCTTTG	CTTTTAAGGA	TCGTCGCTTT	174 GCCTACCGAG	GTTTTAGCAA	GGCACTTGAA	1440
ATTGCTAAAC	AGTATCAGCT	AGATATTATC	CATACTCAGA	CAGAATTTTC	TCTTGGCCTG	1500
PTGGGGATTT	GGATTGCGCG	TGAATTGAAA	ATTCCAGTCA	TCCATACCTA	TCACACCCAG	1560
PATGAAGACT .	ATGTCCATTA	TATTGCTAAG	GGGATGTTGA	TCCGGCCGAG	TATGGTCAAG	1620
PATCTGGTTA	GAGGTTTCCT	GCATGATGTG	GATGGGGTTA	TTTGCCCTAG	TGAGATTGTC	1680
CGTGACTTGC	TATCTGATTA	TAAGGTCAAG	GTTGAAAAAC	GGGTCATTCC	TACTGGGATT	1740
GAATTAGCCA	AGTTTGAGCG	TCCGGAAATC	AAGCAGGAAA	ATTTGAAAGA	ACTGCGTAGT	1800
AAACTAGGGA	TTCAAGATGG	TGAAAAGACG	TTGCTTAGTC	TTTCGAGAAT	CTCCTATGAA	1860
AAAAATATTC	AAGCAGTTTT	AGCAGCCTTT	GCTGATGTTC	TGAAAGAGGA	AGACAAGGTT	1920
AAACTGGTAG	TAGCTGGGGA	TGGCCCTTAT	CTGAATGACC	TCAAAGAGCA	AGCCCAGAAC	1980
CTAGAGATTC	AAGACTCAGT	CATCTTTACA	GGGATGATTG	CTCCTAGTGA	GACGGCTCTT	2040
PACTATAAAG	CGGCGGATTT	CTTCATTTCG	GCATCGACAA	GCGAAACGCA	AGGTTTGACC	2100
PACTTGGAAA	GCTTAGCCAG	TGGAACACCT	GTCATTGCTC	ACGGAAATCC	TTATTTGAAC	2160
AACCTCATCA	GTGATAAAAT	GTTTGGAACC	TTGTACTATG	GAGAACATGA	TTTGGCTGGT	2220
GCTATTTTGG	AAGCCCTGAT	TGCAACACCA	GACATGAACG	AGCATACCTT	ATCAGAGAAA	2280
PTGTATGAGA	TTTCAGCTGA	GAACTTTGGG	AAACGAGTGC	ATGAGTTTTA	TCTGGATGCC	2340
ATTATTTCAA	ATAACTTCCA	GAAAGATTTG	GCTAAAGATG	ATACGGTCAG	TCAGCGTATC	2400
PTTAAGACAG	TTTTGTATCT	TCAGCAACAG	GTGGTTGCTG	TACCTGTAAA	AGGATCTAGA	2460
CGCATGTTGA	AGGCTTCAAA	AACACAGTTG	ATCAGTATGA	GAGACTATTG	GAAAGACCAT	2520
GAAGAATAGA	AAGAGGAACA	GCTATGAAAA	AAACAATTAA	TGAGAAGCGG	TCGTGATAAA	2580
AAGATTGCGG	GTGTTTGTGC	TGGGGTGGCC	CATTATCTGG	ATATGGATCC	GACTATCGTT	2640
CAAGTCATTT	GGGGTGTTCT	TACTTGCTGT	TACGGAGCTG	GAATTGTAGC	TTACATTATT	2700
PTATGGATTA	TCGCGA					2716

(2) INFORMATION FOR SEQ ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 13926 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

CTTTGGTTTT GCCTTATTCA AGACATGAGG GCCATCAGGA ATGATCTGAA ACTGCGAATC

TGTTAACAGT	CTATGGAGAG	CTTTCATAGA	ACTAAGATTC	GGTTTATCTT	TGCTGCCACA	120
aattagtaag	GTTGGATAAG	GGTAAGTTCC	TGCTATATCC	GTTAAATCAA	GTGTCTTCAA	180
CTCCTCAGAA	ACTCCGACCA	TAAGAGTCTT	GTCTGCTCCC	TGTTTTTCAA	ATACTCTTTT	240
GGGAAGTAGT	TTAAAAATCA	GCAATTGAAG	ATAAAATAGG	ATATTCCCTG	CTAATTTAAG	300
CGGGCATCCT	GACAGAATCA	AAGCTCGAAG	ATTTGGTAAA	TCGTAACTGG	AAAGTTCTAG	360
TGTCAGGGCA	GCACCTAAGG	ACAATCCAAT	СААААСАААА	GGTTCTGTCT	CTTGAGCTAG	420
GTGCTGATAA	ACTCGCTCTT	TAGCTTGTTG	ATAGTTACTA	ACTCCAGAAG	GAAATAACTC	480
GATAGCCTCA	GAAGGATAAT	CTGTCAGTAG	ATTCCGAACT	TCTTTCCAAG	ACTCTGCTGA	540
CTGCCCTAAC	CCATGCAAAA	ATATTAATTT	CATCTAGTTC	TCCTCAAGGC	ТТААТТСАТА	600
CAAGCCTCTC	ACTGCATTAC	AGCCGTAAAT	AGCTTCTGCT	TGGGTTAAÁT	CTGCCAAGGT	660
CAAGACTTTC	TCTTCTACCT	GTCCTGTTTC	TAGCAAATGC	TGACGGTAAA	TTCCTGGCAA	720
GATTCCAAGT	CGGATAGGCG	GTGTGTAGAG	TTTTCCAGCG	ATTTTCAGAA	CCAAATTTCC	780
PATAGAGGTT	TCAAGCAGTT	CTCCTGACTT	ATTGTGGTAA	ATCTTCTCTT	GTTCTCCTAG	840
GCTCAAATGC	GGTCGGTGAG	TGGTTTTAAA	GTAGGTAAAG	GATTGATTCA	AAGCAGCTTC	900
CTGAAGACAG	ACTTGGGCCT	GACAAAAGCT	TGTACTGAGA	GGGGTTAATA	CTTGACGATT	960
GACTTCTATC	TCTCCAGATT	TGCTAAGGCT	GATTCGCAAG	CGGTAATCTC	GATTAGCTTC	1020
ACAATCCTGA	CACTCTTCCT	CAATCTTGTG	TCCCAAGTCT	TCTGCATCAA	AAGGAAAAGC	. 1080
AAAATAA CGA	CTAGCTTTTC	TCAGCCTTTC	CAGATGTTGT	TCTTCAAACA	TCAGTTGTTT	1140
TTGGCTGATT	TTTCCAGTTG	TAATTAATTG	GAAGCGAGCT	TGTTTACGAT	AGAGAACTGC	1200
rgccttttga	TGAACCTCTC	GGTATTCAGA	TTCCCATGTG	CTATCCCAAG	TAATCCCTCC	1260
CCAACTCCA	TAAATGGCTT	GACCTTTGTG	AAGTTGAATG	GTACGAATGG	CCACATTAAA	1320
ATCCGTCGT	CCATTTGGAA	GCAAGAGACC	AATCGTTCCA	CAGTAGACTC	CACGCGGTTG	1380
AGGCTCCAAG	TCCTTGATAA	TCTCCATTGT	CGCAATTTTC	GGTGCACCCG	TTATGGAACC	1440
CAAGGAAAG	AGTGAGCGGA	AGATTTCAAC	AAGGTCCACA	TCCTCTCGCA	ACTGACTCTT	1500
SATGGTCGAA	GTCATCTGCC	AAACAGTTGA	ATACTGCTCT	ACCTGACACA	GACGCTCCAC	1560
TGCTCGCTC	CCAACTTCAG	AAATACGGTT	CATATCATTG	CGCAAGAGGT	CCACAATCAT	1620
CATATTTTCA	GAGCGATTTT	TGGGATCCTG	TTCCAACCAA	CTGGCCTGTT	CAAGATCTTC	1680
TGGTCAGTT	ACCCCACGCT	GAGTCGTCCC	CTTCATTGGT	CGTGTTGTCA	ACTCGCGATC	1740
TTTTGCTCA	AAAAAGAGCT	CTGGGCTCAT	GGAAATCACT	GTCATCTCGT	CATGTTCCAC	1800

			176			
ATAGGCATTG	TAGCCCGCCT	CCTGCTCTAC	CACCATACGA	TTGTAGATGG	CAAAAGGATT	186
GGCATTTAAC	TTTTGCTTAA	GTTGGACGGT	GTAGTTGACC	TGATAGGTAT	CTCCCTGCCG	192
raaatgatgg	TGAATTTGGG	CAATGGCCTT	TTCATAGTCT	GCTGCAGACG	TTACTTCCTG	198
CCAATTTGAG	GGCAAATCAA	TATCCTCATA	AGTCAGAGGA	ATAGGGGAAG	TTTCTACGAT	204
ATCATGAACA	GTAAAGTAAA	GCAGGTACTC	TCCCAGTAGG	GGATCCTTGT	GAACTGCTAA	210
PTTTTCCTCA	AAAGCAGGTG	CAGCCTCGTA	GCTGACATAC	CCCACCACAT	AATAACCTTG	216
CTCTTGGTAG	CTTTCCACTT	GTGCCAGCAA	ATCTGCCACT	TCTTCTACAT	TTCTCGTTTT	222
CAACTCTTTA	ATAGGCTGGG	TAAAGGTATA	TCTCTCCCCC	AAAGTCCTAA	AATCAATCAC	228
PGTTTTTCTA	TGCATACCTT	AAGTATAGCA	TAAAATAAGA	AAACCCTCAT	CCGCAAAGCA	234
GATGAGAGAT	TTCAATTATT	TAAAGATTGA	agttttaaag	CTATTTGTTT	GTTGAAGAAG	240
ГТТСТТАТАА	ACAGCTTCTT	TTAATTTAAC	TGTATTATTC	ATAGATACTG	ТТТТАТТАСС	246
STTTGCTTCT	TGTTTAAGAG	TTTCGGCATC	TTTTTTAACA	GCTTCTTTAA	ACAATGTCAG	252
PAAATCATCG	TATGATGAAA	CGGAAGAACC	ATTTACTTCG	AATGTTGTTA	ATCCTTTCGT	258
PGCTTTATCT	TTAACTTCTT	TGAAGTAAGC	TTTTTTAAAT	TCTTCAATAG	TATTAAATGT	264
ATTGTTAGAT	ATTTTCTTGA	TAATATATTC	ATCACTTAGA	ACAGACTCAC	CATCTGTTTT	270
AGATTGTTGT	TTATATTTAT	TTGAAGCATA	ACCTAAGAAC	CCATTTTCGT	ATCCGTAGTA	276
ACCCCATAAT	CTAAAAGCAT	TATGTTTGAA	TGAAACAGCT	CCAGGAGCAC	CTTTACTAGT	282
ATTACCTCCG	TAGATACCGG	TCATCATTCT	AACACCTACA	TAAGGTGATT	GATCGTTATA	288
CTAATTGCT	TCGGGTTTAT	AGATACCATT	ACCTGGATTG	CGATTAGTCA	TTAATTGTTG	294
ATCAACTAAA	TCATTAACAG	ATTGAATATT	TAATTCATTT	TTCTCTTCTT	GACTTAGATT	300
rcgaatttta	TCCCATTGAT	TTAATTTATT	GTTATCACGG	TATTCTCTAT	CTATTTTTT	306
GAACCATGCA	CTATTTAAAT	CTTTATTTTG	TTGAGAAATC	ACAGATTCAG	CCTCAATTTC	312
ATCAAGAAGA	GTTAAAGTGT	CATTATAACC	CTTCATATAT	СТАТТААТАТ	CTTCTCGTGT	318
PTTTAGAGTT	TTTGGATCTG	TAATATACCA	CTGATTCCCA	TCATTTTTGC	GTTTAAATAC	324
CATATTAATA	CCTAAAGAAC	CAAACTCATC	AAATCCACTA	CCAGTAACAG	GAGTTTGTAG	330
CATACCCTGA	GCATATGCTT	CAGCATCAGT	ACCTTCACGG	TGTCCAAAGC	CACCTAAGTA	336
ATCGCACGG	TCGTTGACGT	GTGTTGTTTC	ATGTGTGTAA	ACTGAAATAC	CGTATTCACC	342
ACCATTTCT	AAATGAACAT	ATTTTACATC	AGTTCTAATA	TCATCAGAGT	TAGGATATAT	348
AGCAGCATAA	GCTCCTGTTC	CATTATAATT	АТААТАСТТА	TCCATAGGAC	CAAAGAATTC	354
CTAAGAGGA	GTATATACTT	TGTCGGTATT	ATAGCGGCCA	ТАТТТТСАА	CCCATCCACC	360

AGG	AGCGTTA	TAACCTTCCC	AAATAGGAAT	AACAGCATCT	CTTAGTAGTC	GTTGTTTAAC	3660
3TT	ATCAGAC	GCTAGACGAT	ACCAGAAATC	ATAATAGTTT	CTATAACCAT	CTGCAGCTTT	3720
3TT	AACGATA	TCTTTAATAT	CTTCTAATGA	TTTTTTACCT	AATCGCTCTG	CACTACCAAA	3780
3GC	AATTGCA	TTATAATTTG	AAATTAAATA	AAGATGTGCT	TTATCAATAT	TCAGTAGTGG	3840
GAG	TATAGTA	TTTCTAAGGT	GACTTCGTTT	TAAATTATCG	AATGCACGAT	GTTTAGAATT	3900
rTT	AATTTCT	TCGACCTCAG	AAGCGCGTTC	TGCGATGTAG	ACATGGTCTT	CTGTAGCATC	3960
\AT	AAACCAA	TCGTTCATAT	TGTCTATATT	TGTGAACAAT	TGTCTATTAT	AATTTAAAAA	4020
rgc	ATCTAAA	TTACCTGATT	TAGTATATTT	AGCCAATACT	TGACCGAATG	CGTCGAATGT	4080
ACG	TGAACCT	TTAATGTTGT	TCTCTTTAGA	ACCGATTTCA	ATTAATCTGT	CTAATACGCT	4140
AAC	TTTTTCA	CCATAGAAAT	CTGGTTTGAA	TAGCATTAAT	TCTTTAATAT	TAACATCACC	4200
AAA	тттааст	CCATAGTAAC	GATTTAGGTA	AGTTAAACCT	AGTAATAAAG	CTGCTTTGTT	4260
rtt	CTCGACT	TTATCACGAA	TCATTTGACG	AGCAGCTGGA	GAATCATTTA	GTTGATGTTC	4320
rtc	GTTTTGA	ACTAATTTTG	TGATTAGGTT	TGTTAAGTTT	TCTTTAACAT	CTGTGAAGCT	4380
TC	ТТСТААА	TATAAATCTT	TGATTGCATT	AACTCTATAG	TCACCTAATC	GATTTAGATG	4440
TG	ATACATC	GTTTGAGACT	GAAGCTCTAC	TGATTCTAAA	ATAGATTTTA	TATCATTAAC	4500
AAG	AGTAGTG	TTATCTTTTT	GAACGATATT	AGGTGTATAT	TTAATTCCTA	AGTCAGTTAT	4560
AGT	ATATTCT	TTTACATTAC	TTAAACCTTC	ACTGCTAGAA	GACAAGTTAA	AGTAATCTTT	4620
GT	ACCGTCC	GCATAGTGAA	CAATAATTTT	ATTAGCTTCA	TCTAGGTTTG	TGATAAACTC	4680
TT	GTTGTTC	ATCGCGGTAA	CAGAAAGAAC	TTCTTTAGTA	TTTAGATGGT	GTTCTTTATT	4740
'AA'	TTTATTA	CCTTGATATA	CAATATAATC	TTTATTGTAG	AATGGTATTA	ATTTTTCAAG	4800
TT	TTTATAG	GCTTGGTTAT	ATTCAGCGTT	ATAATCTTGA	ATACTAGAAT	AGGCTTTTTC	4860
TC	ATTAAGT	TTTGCAAGAG	GAGATAGATC	ACTTTCTAAT	TTATCAGCAG	TAATATTGAA	4920
GT	AGTAACT	TTAGCATCAG	CTTGTTCTTT	AGTTAATTTA	GTAAATGTTT	TAGATTTCCT	4980
AA	TGATCTA	TTACCTGACG	AATATCCCTC	TACCGCATAT	AAATCTTTTA	TATGAGCACT	5040
GC.	ATAATCA	GAATCATCAA	CGTCGTTAGA	GCCGAATAAC	TCCTCTCCAC	GGATAATCTT	5100
GC.	ATAGCTG	ACAGAATTAC	TTACCGTACC	TACAGGCCAA	GTCTTACTTG	CTATTGCTCC	5160
AC'	ттстаст	GGATTTGAAA	CATCTATTTT	ACCTTTTACA	ACCGACTCAG	TTAGGAGAGC	5220
.L.I.	TGTACCA	ATAAGATGGT	CTAGAGTTAA	TCCATAATCT	ACTTTAGGAA	CTAACAAGCT	5280
GC	GCGTGTT	TTGTTTCCTG	TAATAGTAGC	ATCAACATAT	GCTTTTCTAA	CAATTCCTCT	5340

178 ATAGTTTGTA CCTGCAATTC CCCCTGTATG AGAGCCATTT CCACTTGTAG AGTGTAGTTT 5400 F GCCAAAGAAA GCAACATTTT CAATACGAGT TCCATCATTC ATATTATTTA CAAATCCAGC 5460 AACATTATTA CGACCTGAAA GTGTGCCTGT AATTTTGACA TTTGTAATAA CTGAAGAACC 5520 TTTCATAGTA TTGGCTAATG ATGCAATATT ATCTTGACCA GAACGTTCTA TCTCTACATT 5580 TTCAAAATTC ACATTATTTA TCGTTGCGTT TGTTATCACA TTAAATAATG GATGTTCCAA 5640 TTCAGTAATA GCAAATTGTT TTCCTTCAGA ACTTAAAAGT TTTCCTGTGA ATTCTTTAGT 5700 GATATATGAT TTTCCATTAG GAACAACATT TCTAGCGCTC ATTGATTGTC CCAGACGATA 5760 TTCTTTGAA GGATCGTTTT GAATAGCTTC CACTAATTCT TTGAAATTAT AATATACATT 5820 ATCTTCGTGG ACTTTAGGTT TTTCAATATA GTGAACGTAT TCTTCTTCAA ATTTATTATC 5880 AGCAGTTCTA GAGACTAAAT TGTCTGCGAT TGCTGTAACT TTATATACAG GTGTTCCGTT 5940 AACCGTAGTT TCTTCTATAT TTTTAACAGC TAGTAATGTA GTTTTCTGAT TATTTGAAGT 6000 TATTTTTAAA TAATAATTGC TCTTATCATC AGGAATAGTT GTTATCAGTG ATTCATTAGT 6060 TTCTTTTCCA TTTTCGTATT TGATTAAATC TGTACGTTTA ATATTTTTAA GCTCAACTTT 6120 TTTAAGATCT AATTGAATAT TTTGATTTTC TAGAGTTTCA GTTTCTTCAC CGTTACCTCT 6180 GTCGTAAATC ATAGTTGTAG ATAGGGTGTA TTCTTTGTAG TACTCTAGGT TCTTAAATGC 6240 AGCGCTTATA GTTTCTGTTG TTACCTTGTC ATCTGTAAGG ACTACAGTAT TAATAACTTC 6300 6360 AGTATACTTA GCAACAGCTT CACGTTCCAA TATTTTCTTA TCGGTACTAG TCAATGTTAA 6420 TATTGGCTTT TCAGATAATT CAACCAATTT TTCAATAGTT GCAGTTAATT TTTCAACAGC 6480 TTCGTTAACT TCACTTTGTT TAGCATCTGT ATTAGCTGCA ACTTTTTCAG CCTTTGTAAC 6540 TTCAGTTTGG AGGTTTTGCC AACTTCTATC ACTGTAATGT TCTTTTACCT TTGTTTTTGC 6600 ATCTGCAATC GTATTGTTTA ATTCAGTTTT ATCAACGTTT AGAGCGTCAA TAGCCGTTTT 6660 AAGTTTATTT GTCTCGCTAT TTACCTCAGG CTGTTTTACA GGCTCTGAAG CATAGACACC 6720 TTTTGCAGTT TCTAAAACAG GTCCAAGAGC ATTGTAACTT GCTGTAGAAT AATCAGTAGG 6780 AGAAACTGAA CTAGCTTTAT CAATTTGATT ATTTAACTCA CTTTTATCAA CTGGTTCTTT 6840 AGTACCAATA CCCTTTATTT TATCTTCTGG TTTCGGTGTT TCCTCTACAG CCTTCTCTTC 6900 TTCAGGAACT TCTGGTTGCT TTTCTGGCTC AACTGGTGCC GTTGGTGCCT GTTCGTCTTC 6960 TCTTGGCGCG ACTGGTTCAC CTGCTTGTTC AACTTTTGGT TCCTCTGTTG GTTCTGTTTG 7020 TTTTTCTACA GCAGGCGTTT CAACTTTTGG TTGTTCAATA GATTGATTAA CAGTCTCCTC 7080 TTTTGGTTCT ACAGTTTCTT CAGCCTTGGT ATCTGGAGTT GACTCTTCTT GTTTCGGTGT 7140

TTCCTCTACA	GCCTTCTCTT	CTTCAGGAGC	TTCTGGTTGC	TTTTCTGGCT	CGACTGGTGC	7200
CTTTTCGTCT	TCTCTTGGCG	CGACTGGTTC	ACCTGCTTGT	TCAACTTTTG	ATTCCTCAGC	7260
TGGTTTGTCT	GATGGTTGAC	TTTCTGGCTT	AACTGCTACT	TTTTCCTCTG	GTTTTGACTC	7320
AACTTCTCCA	CCTACTTCTT	CAACTGGAGC	TGGTTCTGCT	GAATCTTCTT	TCCCCTCTTC	7380
TACTTTAGGA	AGGGTGTCGT	CAGTAGGTTT	TACCTCCGAT	TTTGGTTCTT	CCTTTGGACT	7440
TTCTTCTGTT	TTAGGTGCTT	CTTCTTTTGG	AGCTTCCTCT	GTCTCTACTA	CTTGGTTTTC	7500
TGTCCTAGCT	TGCTCCTGAT	TTGTTATTGA	TTGAGGAGTC	TCAACTTCGA	CCACAGTCAC	7560
CTCTCCAGGT	TTTGCTGAGG	тттсттстаа	AACAGTGTCC	AAGCCAAGCG	TTTTGAGGAT	7620
GTCACCTGAT	AGATAACCAA	CATAGCGATA	GCCCTCCATT	TCAACAACAC	CCTCTCGACT	7680
AGCCAGCGCT	AGGGTCGCAA	CTGGGTCTAC	AGCCCCTGCA	CTAGGAAGAA	CTACCAATCC	7740
CATAGCTCCA	ACTAGAAAGA	CGCTAGCAAT	TTTCTTTCTC	TTGTAGATTA	AAAGCAAGCT	7800
CCCAACAGTC	AGCAAACCAA	AAGCTGTCAA	AACAGATGCT	TCTGTCCCTG	TTTGAGGCAA	7860
CTGATCTTTT	TGATACACCA	AACCATATAC	AACTTCATTC	CTGTCAGGCT	TTCCTGTCTG	7920
AATTAAATCT	TTAGCTTCTT	GTGAAATAAT	CTCTTTATTT	ACATAGTGAT	AGGTGGCTGC	7980
GTCCACTACA	GAAGGAGCCA	TCAAAAGGCT	TCCAAGAAAT	ACAGAGCCTA	CAACTCCCTT	8040
AATCTTACGA	ATTGAAAAAC	GGTCTTTTTT	AAACACTTTT	ATCTCCTTTA	TTCATTCTCA	8100
AAAÇTTCCTA	ATAGCATCTT	GCGGATAGTG	CGCACGCGCA	CCTCCGATTA	ATTTTGGACG	8160
ACTAGCCAGT	GCCGTTACAT	GGGCATGACC	AATCTCTCTC	AAAATAGGGC	GAATCGGAAC	8220
CTGAACATGC	TTGACATGCA	TGCCAATTGC	AGTGTCTCCG	ATATCCAATC	CAGCATGAGC	8280
CTTGATAAAT	TCAACCTCAA	CTGGATCCTG	CATAAACTTA	AAGGCTGCCA	ACTGCCCCGA	8340
ACCTCCTGCA	TGAAGAGTAG	GATGGACACT	GACAATTTCC	AGACCAAACT	GCTCTGCCAC	8400
CTGACGTTCA	ACAACGAGAG	CCCGATTGAC	ATGCTCACAA	CCTTGAACTG	CTAAATGGAT	8460
ACCTCTACTA	CCTAGAATAT	CCAAGATAGT	CTCCACTATC	AGCTCACCAA	TCTCTTGACT	8520
GGATTCTTTC	CCAATATGAC	CACCTAGCAC	CTCACTAGAA	GATAGACCTA	AAACAAAAAG	8580
GGCCCCCTGC	TTCAAATTGG	TCTTTTCTAA	AACATCTTCC	ACTACCTGAC	GTGTTTCTCT	8640
TTGAATCTGT	GTCTCGTTCA	TCTCTGTTAC	CTCTGTTGTC	ACTCTTCTAT	CATACCGTTT	8700
TTTCTTGTTT	TTAGCAAGAT	AGACAACCTA	GAAAGTTTGC	CCAATTACGC	ATAAAACTCC	8760
CAGAATTGAC	TGGGAGTTAG	CTAGTTTCTA	TTCTATTTAT	ATATATTTCA	ACTTTCGTCC	8820
CTTTTTGGGG	TCTAGAATCA	ATCTTCATAT	GGTAATTGGC	TCCAAAATGA	AGTTTGAGCC	8880

			180			
GTTGATCGAC	ATTTTGAAGA	CCAACTCCCC	CACGTTTGAG	TTGACTTTGA	CTACTATCAC	8940
CAGCATCTTG	GAAGCCAACG	CCATCATCCT	CAATACGGAT	GACCAATCCC	GAATCCTGTT	9000
TCTGGACAGA	AAGTTTAATA	TGGCCCTGAC	CTTCCTTTTC	CTTAATGCCA	TGGTAAAGAG	9060
CATTTTCTAC	AAGGGGTTGT	AGGACCAGCT	TGGGTAAGAC	ТАААТТАТСА	AAGGCAACAT	9120
TTTCATTAAT	TTCGTATTCC	AGCTTATCTC	CATAGCGTTG	TTTCTGGATA	AAGAGATACT	9180
GGCGGACATG	ATTGATTTCG	TCAGAGAGAC	AAATCAAGTC	CTTGCCTTGA	TTGAGCGCCA	9240
AGCGGAAATA	GGTTGCCAAG	GACTTGGTCA	CCTGCACCAC	TCGCTGACTA	TCATGAAATT	9300
CAGCCATCCA	GATGATGGTG	TCCAAAGTGT	TATAGAGGAA	ATGTGGATTA	ATCTGGCTCG	9360
AAAGGGCTTG	AAGTTGGTAC	TGACGGGTCG	TTTCTTCCTG	GCTACGAATA	GCTACCATCA	9420
ACTGATCAAT	CTGATCCAAC	ATAGCATTAA	ATTGGCGAGT	TACTTCTCTC	AGTTCATAGG	9480
CACCAACTTC	CTTGGCACGA	AGATTTTGAG	CACCAGAAGC	AATTTCCAAC	ATGGTTTCTC	9540
TCAAATCCTT	CAAAGGAGCA	ATCCAGCGTT	TAAGACTGAA	CCACACTAAG	CAGAGACAGA	9600
CAAGAAGAGA	TGTGACACTG	GCCCCAAGCA	AGGTCCACAA	GAGCTGACTC	CGAACCTGGT	9660
CTAACTTTTC	CAATGATGAC	ACGCCAAGCA	CCGTCCAATC	AGTTCCTGCA	ATCTTCTCTT	9720
GACTGACGTA	GGATTTGTGA	CCAGGAGTAT	AACCCTGACC	TGTATCGATG	TAGGGTTTCA	9780
TAGCCTCCAT	TTTGCTAGAC	GAACTATAAA	CTGTGTGTTG	AGGATGGTAG	ACAAATTCAT	9840
GGTTTTCATT	GATAATGAAG	GCAAAGCCCT	GCTGCCCCAA	CTGGAGTTGA	TTGAGATAGG	9900
CTTCCAGAGT	TTCATAAGAA	ATATCCAAAC	GAAGCACACC	AAGATTGGCT	CCCTTTGCAT	9960
CAACAAGTTC	TTGAGTGACA	GAAATGACCC	ACTGACTATC	TGATTTACGA	GCTGGAGTCA	10020
AAACAGGCAT	AGCTCCCTGA	TGAATGGCCT	TTTGGTACCA	ATCCTCAGCC	ATCATATCAG	10080
AGGAAGTTTT	CATCTGCACA	CTGTCATCTG	TAGAAATGAC	CTGACCAGAT	TTGGTCACCA	10140
GCACAACAGT	TTTCAAGTCC	TTATCTGACT	TCAAGATGGT	CAAAAACAAA	TCTCGGATTC	. 10200
CCTCGACCTT	GTCTTGACTG	GGATTCTCAG	CATAGGCCAG	AACATCCGTC	TGCTGGGTCA	10260
AACCAGTCGA	GGTGGTTTCT	AGTTTTTTGA	TATAAGACTG	AATAAAGTGG	CTAGTCTGGC	10320
rgàtggtcgt [*]	TTGGCTGTTG	CCCTCAATGG	TGGCCTCAAT	GGCTGAAGAA	CTTGATTGAT	10380
AGTAGAAAGT	TCCAACCAGA	GCTAGGAGAA	TGAGAAAGAC	CAGAAAGATG	GAAATAACCA	10440
PTCTAACTAA	AAGAGAAGAA	CGCTTCATCG	GTCTTCTCCC	TTCTTAAACT	GACGAGGTGT	10500
CACACCTGCA	ATCTGCTTAA	AACGTTGGGT	AAAATAGTTC	ATATCTTCAA	AACCAACCTT	10560
CTCTGCGATC	TCATAAATCT	TCAGATCTGT	AGTTAAAAGC	AAGAGCTTGG	CTTGTTTAAC	10620
ACGTTCTCTC	ACCAGATAAT	CCTGAAAAGG	CAAGCCCAAC	TCTTTCTTAA	TCAAGGAACT	10680

CAGATAGGTC	GGACTAAAAC	CTAAGTCACT	GGCTAAAGAC	ТТТАААСТАА	ATTGGCTATC	10740
AGCCAGATGA	GACTGGATTT	TCTGGGCCAT	GTTTCCTTCA	AACCTATTAG	TCAATAAATC	10800
TTGTAACTGC	TCTTCTTTCT	CTTCCTTGTC	TAGTTTTTGT	TTGATTTTCC	CCAACATTTC	10860
CTCAATATCC	TGACGAGAAA	AGGGTTTGAG	CAGGTAGTCG	TCCACACCTA	GTTTGACAGC	10920
AGACAAGGCA	TAATCAAAAT	CATCGTAACC	TGTTAAAAAG	ACCAAATGAA	CCTGAGGATA	10980
GGTTTCTCGT	ACCAGACTGG	CCAACTGGAT	GCCATTTAGA	TGAGGCATGT	TGATATCGGT	11040
TAAAATGATA	TCTGGCACCT	GCTTTTGGAT	CAATTCCCAA	CCCTCCCTTC	CATTTTCAGC	11100
CTGACCGATG	ATTTCCATAT	CGTAGGCTGC	TACATTGACC	AGTTTAGTCA	AACCTTGTCT	11160
TACCAGATAT	TCATCTTCTA	CGATTAAGAT	TGTGTAGGTC	ATGCTCTGCT	CCTTTACCAC	11220
TTACTAGTAT	CAGTATAGCA	AAATTCTCCT	CTAACTGCTT	AGGAAAGACC	TCTTATACTC	11280
AATAAAAATC	AAAAAGTAAA	CTAGGAAGAT	AGCCACAGGT	TTCTCAAAGT	ACCGCTTTGA	11340
GGTTGTAAAT	AAAACTGACG	AAGTCGACTC	AAAGTATAGC	TTTGAGGTTG	TAGATAAAAC	11400
TGACGAAGTC	GATAACCCTA	CATACGGTAA	GGCGACGCTG	ACGTGGTTTG	AAGAGATTTT	11460
CGAAGAGTAT	TAATCAACAT	AATCTAGTAA	ATAAGCGTAc	CTTTTTCTTC	CATTTGGTCT	11520
TTGGGAATAA	AGCGGATAGA	GAGGCTATTG	ATACAGTAAC	GTAAGCCGCC	CTTGTCCTGT	11580
GGACCATCCG	TAAAGACATG	CCCAAGGTGA	GAATCTCCTA	CTCGGCTCCG	CACTTCCATA	11640
CGCGTCATAT	TGTAGGACTT	ATCTTCCTTG	TAGGTGACAA	CATCTGGACT	GATGGGTTGG	11700
GTAAAACTAG	GCCAGCCACA	ACCAGACTCA	AATTTGTCTT	TTGATGAAAA	GAGAGGTTCC	11760
CCAGTTGCTA	TATCCACATA	GATACCGGAT	TCAAATTTAT	CCCAGTAACG	GTTTGAGAAA	11820
GCTCGTTCTG	TTTGATTTTC	CTGGGTAACT	GCATACTCCT	CAGGTGACAG	GGTCTTTTTC	11880
AATTCCTCAT	CACTTGGTTT	TGGATATTTG	CTGGCATCAA	TGACAGGATA	GGCCGCCTGA	11940
TTAACATTGA	TATGGCAGTA	GCCATTTGGA	TTTTTCTTGA	GATAGTCTTG	ATGGTAATCC	12000
TCAGCCACCA	CAAAATTCTT	CAAGTTTTCC	TTTTCAACTG	CTAGAGGTTG	ATCGTATTTC	12060
TTAGCCACCT	CATCAAAGAC	TTGGTTAATC	ACTTCCAAAT	CCTTGTCATC	TGTGTAATAA	12120
ACACCAGTAC	GGTACTGGGT	CCCCACATCA	TTTCCTTGTT	TATTTTTGCT	GGTTGGATTG	12180
ATAATGCGGA	AATAGTGAAG	CAGGATTTCC	TTGAGAGAAA	TTTGCTTGGC	ATCATAGGTG	12240
ACATGGACGG	TTTCTGCATG	ACCTGTTTGG	TTAATCAATT	CGTACTTGGT	TGTTTCTCCT	12300
CTACCATTTG	CATAGCCTGA	AACGGCATCC	GTCACCCCGG	GAACACGTGA	GAAATATTCC	12360
TCCACTCCCC	AGAAACAACC	TCCAGCTAGA	TAAATTTCGT	GCAAGTCTGC	GTCTTTACTA	12420

ATTTCTGTTT	TTTTCACTGC	TTTTCCTCCT	182 TGGCTAACTG	CCGCCTTTTC	AATTTGCGAG	12480
GCATCTGTCT	GCCCTGCATT	TCGTATCAAT	AGAACATAGA	AACCGGTTAT	GGCTAGAAAA	12540
AATACTCCTA	GCAACAAGAA	GATTTTTAAC	TTATCATTCA	TAAGACGCCT	CCTAGGCTAA	12600
TTCCTTCAAA	GTTTGCAAAA	TTGCATCTTT	TTCCATGAAT	CCTGGATGTG	TTTTGACCAG	12660
CTTGCCTTCT	TTGTCTATAA	AGGCTTGGGT	TGGGTAAGAA	CGGACACCAT	AAGTTTCCAA	12720
AAGTTTGCCT	GATGGGTCAA	CTAGGACTGG	GAGATTTTTA	TAATCCAATC	CCTTATACCA	12780
ATTCTTAAAG	TCCGCTTCAG	ATTGCTCTCC	CTTATGTCCT	GGTGACACTA	CTGTCAAGAC	12840
CACATAGTCA	TCACCAGCTT	CTTTAGCAAT	CTCATCCGTA	TCTGGAAGAC	TAGCCAGACA	12900
GATGGAACAC	CAAGAAGCCC	AGAATTTGAG	ATAGACTTTC	TTGCCCTTGT	AATCAGATAA	12960
ACGGTAGGTC	TTGCCATCTA	CTCCCATCAA	TTCAAAATCA	GCCACCTCTT	TCCCTTTAGC	13020
TGCGCTTGTT	TTACTAGCTG	TCTGCTCCGT	CTTCATTTCA	TCTTTCGTTT	GGTGTTCACT	13080
AGTCACGGAC	TTGCCTGAAC	AAGCCGTCAA	ACAAAGGAGC	GAACCTGCTC	CAAGAACACA	13140
TGTTTGCCAT	TTTTTCATAT	TGATATTCCT	TTCCATTTTA	TTCAAATAAT	TGACTTAAAA	13200
TTGAAGCATT	TCCAAACAGA	ACCAAGAAGC	CCATCACAAT	AATGAGAAAA	CCACCCACTT	13260
TTTTGAGGAT	TCCGAGATAG	GGATGAAGTT	TTCGGAAATG	TTTCAAAACA	TAACTAGAGG	13320
TCAGAGCTAG	AAGCAAGAAT	GGTAGCGCCA	AGCCCAGCGT	ATACACCAAC	ATGAGACCAG	13380
CTCCCTGCCA	AGCTCCTGAA	CCACCTGAAG	CCGCCAAGGC	CAAAACAGAC	CCCAGAACCG	13440
GCCCCACGCA	AGGCGTCCAA	GCAAAACTAA	AGGTCAAGCC	CAATAAAAAT	GCCTGACTAT	13500
AGCCCTTACC	ATTTTGCCCC	TGTCCTTGCA	GTTGTAGCCT	CTTTTCCTTA	TAAAGCCCCT	13560
TAAAGTGTAG	AATCTCCATT	TGGTGCAAAC	CAAGAAGGAT	AATAATTGCC	CCAGTAAGAT	13620
ATTGGAACCA	AGAAGCATAA	AGCAAATCGC	CTAAAAAACC	AGCTCCATAG	CCCAACAAAA	13680
AAATATAAA	GGAAATTCCT	GCTATAAAGG	CCAGAGTTCG	таатаааста	GTAACTGAGA	13740
TTGAAAATTT	GCCGCTAGAA	GCCTGAGCAC	CATCCTTATC	ATCTAGTAAC	ACTCCTGTAT	13800
AGACCGGTAA	CAAAGGTAAG	ATACAAGGAG	AAAAGAAGGA	TAGAATCCCT	GCCAAAAAGA	13860
CACTTAGAAA	AAAGAAAATA	TGACCCATAA	AGTTCCTCCT	ATCATTTAT	TGATAGATTT	13920
ATTATA						13926

(2) INFORMATION FOR SEQ ID NO: 6:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 20199 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

CCCAGCAGAA	AAATGGCATT	TGGAGATAAT	GGAAATCGTA	AAAAAACTAT	GTTTGAGAAA	60
ATAACCTTGT	TTATCGTGAT	TATCATGCTA	GTAGCAAGTT	TATTGGGAAT	TTTTGCAACT	120
GCAATTGGTG	CCCTCAGTAA	TCTATAAAAT	AGATTCAAGA	AAATTTAGTG	ACTGGGATTT	180
CCCAGCCCTT	TTTTAAAGTG	AGAAGAAATA	ATGAGTATGT	TTTTAGATAC	AGCTAAGATT	240
AAGGTCAAGG	CTGGTAATGG	TGGCGATGGT	ATGGTTGCCT	TTCGTCGTGA	AAAATATGTC	300
CCTAATGGAG	GCCCTTGGGG	TGGTGATGGT	GGTCGTGGAG	GCAATGTGGT	CTTCGTTGTA	360
GACGAAGGAC	TACGTACCTT	GATGGATTTC	CGCTACAATC	GTCATTTCAA	GGCTGATTCT	420
GGTGAAAAAG	GGATGACCAA	AGGGATGCAT	GGTCGTGGTG	CTGAGGACCT	TAGAGTTCGA	480
GTACCACAAG	GTACGACTGT	TCGTGATGCG	GAGACTGGCA	AGGTTTTAAC	AGATTTGATT	540
GAACATGGGC	AAGAATTTAT	CGTTGCCCAC	GGTGGTCGTG	GTGGACGTGG	AAATATTCGT	600
TTCGCGACAC	CAAAAAATCC	TGCACCGGAA	ATCTCTGAAA	ATGGAGAACC	AGGTCAGGAA	660
CGTGAGTTAC	AATTGGAACT	AAAAATCTTG	GCAGATGTCG	GTTTAGTAGG	ATTCCCATCT	720
GTAGGGAAGT	CAACACTTTT	AAGTGTTATT	ACCTCAGCTA	AGCCTAAAAT	TGGTGCCTAC	780
CACTTTACCA	CTATTGTACC	AAATTTAGGT	ATGGTTCGCA	CCCAATCAGG	TGAATCCTTT	840
GCAGTAGCCG	ACTTGCCAGG	TTTGATTGAA	GGGGCTAGTC	AAGGTGTTGG	TTTGGGAACT	900
CAGTTCCTCC	GTCACATCGA	GCGTACACGT	GTTATCCTTC	ACATCATTGA	TATGTCAGCT	960
AGCGAGGGCC	GTGATCCATA	TGAGGACTAC	CTAGCTATCA	ATAAAGAGCT	GGAGTCTTAC	1020
AATCTTCGCC	TCATGGAGCG	TCCACAGATT	ATTGTAGCTA	ATAAGATGGA	CATGCCTGAG	1080
AGTCAGGAAA	ATCTTGAAGA	CTTTAAGAAA	AAATTGGCTG	AAAATTATGA	TGAATTTGAA	1140
GAGTTACCAG	CTATCTTCCC	AATTTCTGGA	TTGACCAAGC	AAGGTCTGGC	AACACTTTTA	1200
GATGCTACAG	CTGAATTGTT	AGACAAGACA	CCAGAATTTT	TGCTCTACGA	CGAGTCCGAT	1260
ATGGAAGAAG	AAGCTTACTA	TGGATTTGAC	GAAGAAGAAA	AAGCCTTTGA	AATTAGTCGT	1320
GATGACGATG	CGACATGGGT	ACTTTCTGGT	GAAAAACTCA	TGAAACTCTT	TAATATGACC	1380
AACTTTGATC	GTGATGAATC	TGTCATGAAA	TTTGCCCGTC	AGCTTCGTGG	TATGGGGGTT	1440
GATGAAGCCC	TTCGTGCGCG	TGGAGCTAAA	GATGGGGATT	TGGTCCGCAT	TGGTAAATTT	1500
GAGTTTGAAT	TTGTAGACTA	GGAGACTGGT	ATGGGAGATA	AACCGATATC	TTTCCGAGAT	1560
GCGGATGGTA	ATTTTGTTTC	CGCCGCAGAC	GTTTGGAATG	AAAAGAAATT	GGAAGAACTA	1620

			184		•	
TTTAATCGTC	TCAATCCAAA	TCGTGCCTTG	AGATTGGCAC	GAACTAAAAA	GGAAAATCCA	1680
TCTCAGTAAA	GAAGCTAAAA	AATCCCGTGC	CTCATCAGAC	ACGGGATTTT	GTGGTACGAC	1740
AGGCATGTAT	AGCAAACTGA	ATCTGGAATA	GCACAGCATA	TCTTCTAAAA	TATAGTAAAA	1800
TGAAATGAGA	ACAGGACAAA	TCGATCAGGA	CAGTAAAATC	GATTTCTAAC	AATGTTTTAT	1860
AAGCAGAGAT	GTACTATTCT	AGTTTCAATC	AACTATATTG	TTATAAATTG	ATTTGAATTT	1920
CAAAATTAAA	TTGTTTGATT	СТТАТТТСАА	TTTGTTATAG	TATATCTGAT	GTCAAAGTTC	1980
TCGGCGAGTC	AAATAGCGAT	TCCCAAGCCT	GACTATCGTG	AGGTAGCGGA	TTAAAATGGT	2040
CTGGGGATAG	ACCGTTTTAA	GTCTGACGCT	GGAAATAAGA	ATTGTCAGAA	GAAGGGATAG	2100
CGAAATCGTG	GCTCTACGAA	CAGGAACGTG	ATAATAAGGC	GTATATAGCG	GATAAGAGGG	2160
CATCAAACTC	TAAAGTCCAA	AAAGGTAGTC	GTAACCTATA	TGCGTAAATC	ACGAGAGTAA	2220
TTGAATTCGT	ACTAAGATTT	TCTATTTTCA	CTGTAACCTT	TTAACGCCCT	TATATCTTGT	2280
ATACACGAGG	AAAGATGTAC	GACTTATCCC	GTGAGGTCTA	TCACTATAAA	GAGAAAACGA	2340
CAGATAGAAG	TGATCCTGAG	TCACGGTTAT	CTGTCTGATA	GGACGGTATG	TATAAAACGC	2400
TTCTGTGAAC	TGAGAGAAGG	GGGAGAAGTT	CTTGCTAAAA	TTTAGTTGAA	CAGCCGTATT	2460
CCGATACTTA	GATAAGAGAT	CTAGTCTTAG	CTCCTACTCA	GTTTTAGGGG	ATAAAAAAGG	2520
GGCAATAGCG	ATTCGAGAAA	GATTATACTC	TTCGAAAATC	TCTTCAAATC	ACGTCAATAT	2580
CGCCTTGTCG	TATGTGTAGG	ATACTGACTA	CGTCAGTTCC	ATCTACAACC	TCAAAACAGT	2640
GTTTTGAGCA	ACCTGCGGCT	AGTTTCCTAG	TTTGATCTTT	GATTTTCATT	GAGTATTAGT	2700
AATTCAGTTA	CTAACTCGTC	AACTCTGATT	TATCCAATAA	AATTGAAAAG	GATGGAAAAA	2760
AGGATAAATT	TATGATATAC	TTTATTTTGA	AGACCTTATT	AGAAATCTTG	AAAGAGTATT	2820
GAAAACTTAG	AATGAGAAAA	ATTGTTATCA	ATGGTGGATT	ACCACTGCAA	GGTGAAATCA	2880
CTATTAGTGG	TGCTAAAAAT	AGTGTCGTTG	CCTTAATTCC	AGCTATTATC	TTGGCTGATG	2940
ATGTGGTGAC	TTTGGATTGC	GTTCCAGATA	TTTCGGATGT	AGCCAGTCTT	GTCGAAATCA	3000
TGGAATTGAT	GGGAGCTACT	GTTAAGCGTT	ATGACGATGT	ATTGGAGATT	GACCCAAGAG	3060
GTGTTCAAAA	TATTCCAATG	CCTTATGGTA	AAATTAACAG	TCTTCGTGCA	TCTTACTATT	3120
TTTATGGGAG	CCTCTTAGGC	CGTTTTGGTG	AAGCGACAGT	TGGTCTACCG	GGAGGATGTG	3180
ATCTTGGTCC	TCGTCCGATT	GACTTACACC	TTAAGGCGTT	TGAAGCTATG	GGTGCCACTG	3240
CTAGCTACGA	GGGAGATAAC	ATGAAGTTAT	CTGCTAAAGA	TACAGGACTT	CATGGTGCAA	3300
GTATTTACAT	GGATACGGTT	AGTGTGGGAG	CAACGATTAA	TACGATGATT	GCTGCGGTTA	3360
AAGCAAATGG	TCGTACTATT	ATTGAAAATG	CAGCCCGTGA	ACCTGAGATT	attgatgtag	3420

CTACTCTCTT	GAATAATATG	GGTGCCCATA	TCCGTGGGGC	AGGAACTAAT	ATCATCATTA	3480
PTGATGGTGT	TGAAAGATTA	CATGGGACAC	GTCATCAGGT	GATTCCAGAC	CGCATTGAAG	3540
CTGGAACATA	TATATCTTTA	GCTGCTGCAG	TTGGTAAAGG	AATTCGTATA	AATAATGTTC	3600
ITTACGAACA	CCTGGAAGGG	TTTATTGCTA	AGTTGGAAGA	AATGGGAGTG	AGAATGACTG	3660
PATCTGAAGA	CAGCATTTTT	GTCGAGGAAC	AGTCTAATTT	GAAAGCAATC	AATATTAAGA	3720
CAGCTCCTTA	CCCAGGCTTT	GCAACTGATT	TGCAACAACC	GCTTACCCCT	CTTTTACTAA	3780
GAGCGAATGG	TCGTGGTACA	ATTGTCGATA	CGATTTACGA	AAAACGTGTA	AATCATGTTT	3840
PTGAACTAGC	AAAGATGGAT	GCGGATATTT	CGACAACAAA	TGGTCATATT	TTGTACACGG	3900
etggacgtga	TTTACGTGGG	GCCAGTGTTA	AAGCGACCGA	CTTAAGAGCT	GGGGCTGCAC	3960
FAGTCATTGC	TGGGCTTATG	GCTGAAGGTA	AAACTGAAAT	TACCAATATC	GAGTTTATCT	4020
PACGTGGTTA	TTCTGATATT	ATCGAAAAAT	TACGTAATTT	AGGAGCGGAT	ATTAGACTTG	4080
PTGAGGATTA	AACCGTAGAG	GTGTTTATGA	ATATTTGGAC	CAAATTAGCA	ATGTTTTCTT	4140
PTTTTGAAAC	GGATCGCTTG	TATTTGCGTC	CTTTCTTTT	TAGTGATAGT	CAGGACTTCC	4200
GCGAGATAGC	TTCAAATCCA	GAAAATCTTC	AATTTATTT	CCCAACGCAG	GCAAGTCTGG	4260
AAGAAAGTCA	ATATGCACTG	GCCAATTACT	TTATGAAGTC	CCCTTTGGGA	GTGTGGGCAA	4320
PTTGTGACCA	GAAAAATCAA	CAAATGATTG	GTTCTATTAA	ATTTGAGAAG	TTAGATGAAA	4380
rcaaaaaa ga	AGCTGAGCTT	GGCTATTTTT	TGAGAAAAGA	TGCTTGGTCG	CAAGGATTTA	4440
rgacagaggt	TGTTAGAAAA	ATTTGTCAGC	TTTCTTTTGA	GGAATTTGGC	TTAAAACAAT	4500
ГАТТТАТСАТ	TACCCACCTT	GAAAATAAAG	CTAGCCAAAG	AGTTGCTCTT	AAGTCTGGAT	4560
TAGTTTGTT	CCGTCAGTTT	AAGGGAAGTG	ATCGTTACAC	AAGAAAAATG	CGGGATTATC	4620
FTGAATTTCG	GTATGTAAAA	GGAGAGTTCA	ATGAGTAAGC	ATCAGGAAAT	TCTAAGCTAT	4680
TTGGAGGAAT	TACCAGTAGG	TAAAAGGGTC	AGTGTTCGTA	GCATTTCGAA	TCATCTAGGA	4740
STTAGTGATG	GAACAGCCTA	TCGGGCTATT	AAAGAAGCTG	AAAACCGTGG	AATTGTGGAG	4800
ACCCGTCCTA	GAAGTGGAAC	AATTCGTGTT	AAATCCCAGA	AAGTTGCTAT	AGAGAGATTA	4860
CGTTTGCTG	AAATTGCAGA	AGTGACTTCT	TCTGAGGTTC	TGGCTGGGCA	AGAAGGTTTA	4920
BAGAGAGAAT	TTAGTAAGTT	TTCAATTGGT	GCCATGACTG	AACAAAATAT	CTTGTCTTAC	4980
CTTCATGATG	GGGGGCTCTT	GATTGTCGGA	GACCGAACCC	GTATTCAGTT	GCTAGCCTTG	5040
AAAATGAAA	ATGCAGTTCT	GGTTACAGGG	GGATTTCAGG	TTCATGATGA	TGTGCTTAAA	5100
тесссавте	AAAAAGGGAT	ብርርብርብብር ጥ ል	асаастаасс	МИСТИТА ССИМ	ጥ ልሮሮርምሮርርር	5160

			186			
ACCATGATCA	ATAAAGCCTT	GTCAAATGTC	CAAATCAAGA	CTGATATTCT	GACAGTTGAG	522
AAACTTTATC	GCCCTAGTCA	TGAGTATGGT	TTTCTGAGAG	AGACAGATAC	AGTTAAAGAT	528
TATTTGGACT	TGGTTCGTAA	GAATCGTAGC	AGCCGTTTCC	CTGTTATCAA	TCAACATCAG	534
GTCGTTGTTG	GTGTTGTAAC	CATGAGAGAC	GCTGGTGATA	AATCACCAAG	CACGACAATT	540
GATAAGGTTA	TGTCTCGTAG	TCTATTTTTG	GTTGGATTAT	CGACAAATAT	TGCCAATGTG	546
AGTCAACGGA	TGATCGCAGA	AGACTTTGAA	ATGGTACCAG	TTGTTCGAAG	CAATCAAACT	552
TTGCTTGGCG	TTGTGACGCG	ACGAGATGTC	ATGGAGAAGA	TGAGCCGTTC	CCAAGTTTCG	558
GCTCTACCAA	CTTTTTCTGA	GCAGATTGGA	CAAAAGCTCT	CTTATCACCA	TGATGAAGTA	564
GTCATTACAG	TGGAACCCTT	TATGCTAGAA	AAAAATGGAG	TTTTGGCTAA	TGGTGTATTG	570
GCAGAAATTC	TGACCCACAT	GACCCGATTT	AGTTGTTAAT	AGTGGTCGCA	ATCTCATTAT	576
CGAGCAGATG	CTGATCTACT	TTTTGCAGGC	TGTTCAGATA	GATGATATAT	TGCGCATTCA	582
GGCACGGATT	ATTCATCATA	CGAGACGGTC	AGCTATAATT	GATTACGATA	TTTATCATGG	588
TCACCAGATT	GTTTCAAAAG	CAAATGTGAC	TGTTAAAATT	AATŢAGAAAC	TAGGAGAAAA	594
GATGATAACA	TTAAAATCAG	CTCGTGAAAT	CGAAGCTATG	GACAAGGCTG	GTGATTTCT	600
AGCAAGTATT	CATATAGGCT	TACGTGATTT	GATTAAGCCA	GGCGTAGATA	TGTGGGAAGT	606
TGAAGAATAT	GTCCGCCGTC	GTTGTAAAGA	AGAAAATTTC	CTTCCACTTC	AGATTGGGGT	612
TGACGGTGCC	ATGATGGACT	ATCCTTATGC	TACCTGTTGC	TCTCTTAACG	ATGAAGTGGC	618
TCACGCTTTC	CCTCGTCATT	ATATCTTGAA	AGATGGTGAT	TTGCTCAAAG	TTGATATGGT	624
TTTGGGAGGT	CCCATTGCTA	AATCTGACCT	AAATGTCTCA	AAATTAAACT	TCAACAATGT	630
TGAACAAATG	AAAAAATACA	CTCAGAGCTA	TTCTGGTGGT	TTAGCAGACT	CATGTTGGGC	636
TTATGCTGTT	GGTACACCGT	CCGAAGAAGT	CAAAAACTTG	ATGGATGTAA	CCAAAGAAGC	642
TATGTACAAG	GGTATTGAGC	AAGCTGTTGT	TGGAAATCGT	ATCGGTGATA	TCGGTGCGGC	648
TATTCAAGAA	TACGCTGAAA	GTCGTGGTTA	CGGTGTAGTG	CGTGATTTGG	TTGGTCATGG	654
TGTTGGCCCA	ACTATGCACG	AAGAACCAAT	GGTTCCTAAC	TATGGTATTG	CAGGTCGTGG	.660
ACTCCGTCTT	CGTGAAGGAA	TGGTCTTAAC	CATTGAACCA	ATGATCAATA	CAGGCGATTG	666
GGAAATTGAT	ACAGATATGA	AAACTGGTTG	GGCGCATAAG	ACCATTGACG	GTGGATTGTC	672
ATGTCAGTAT	GAACACCAAT	TTGTCATTAC	GAAAGATGGA	CCTGTTATCT	TGACTAGCCA	678
AGGTGAAGAA	GGAACTTATT	AATAAAAAGT	GAAAAGACTA	CTGGAAGTTT	ATTTTGATAA	684
AAAATCCAGT	AGATCTTTTC	ATAATAAAAC	GCATTGTATC	AAGTGTTAGG	GGCTGATATC	690
ATGCGTTTTT	CTGCTTTTAA	GATTTTTTCC	AACTCTGTTT	GTAAGCGCAT	CATAACAAAG	6960

GGTCTAGGAT	TCAGGGCTCT	CCTCCTATAT	ACTATTAGTA	AAGTAAAACT	AAGGGAGGAT	7020
ATTTTAGTGT	CGCAGTCTAT	TGTTCCTGTA	GAGATTCCAC	AATATTGTCG	TTTTGATTCT	7080
AAAAAGAGAA	ATGGAATTCT	GTTTAATGTT	CGTATTGCCA	ATCTTAAATT	TACTTTTTTA	7140
PATTATACTT	CCTGCGAAAC	AAAATATGGT	ATAGTAGTTC	TATGAATGAT	GAAGCAAGTA	7200
AACAACTAAC	TGATGCACGA	TTTAAGCGTC	TTGTTGGTGT	TCAGCGTACC	ACTTTTGAAG	7260
AGATGTTAGC	TGTATTAAAA	ACAGCTTATC	AACTTAAACA	CGCAAAAGGT	GGACGAAAAC	7320
CTAAATTAAG	CCTAGAAGAC	CTTCTTATGC	CCACTCTTCA	ATAGTGCGAG	AATATCGAAC	7380
PTATGAAGAA	ATTGCGGCTG	ATTTTGGTAT	TCACGAAAGC	AACTTTATCC	GTCGGAGCCA	7440
atgggttgaa	ATAACTCTTG	TTCAAAGTGG	TTTTACGGTT	TCAAGAACTC	CTCTCAGTTC	7500
rgaggacacg	GTAATGATTG	ATGCGACGGA	AGTAAAAATC	AATCGCCCTA	AAAAAACAAT	7560
PAGCGAATGA	TTCTGGTAAA	AAGAAATTTC	ACGCTATGAA	GGCTCAAGCG	ATTGTCACAA	7620
GTCAAGGGAG	AATTGTTTCT	TTGGATATCG	CTGTGAACTA	TAGTCATGAT	ATGAAGTTGT	7680
rcaaaatgag	TCGTAGAAAT	ATCGAACAAG	CTGGTAAAAT	CTTGGCTGAC	AGTGGTTATC	7740
AAGGGCTCAT	GAAGATATAT	CCTCAAGCAC	AAACTCCACG	TAAATCCAGC	AAACTCAAGC	7800
CGCTAACAGC	TGAAGATAAA	GCCTATAACC	ATGCGCTATC	TAAGGAAAGA	AGCAAGGTTG	7860
AGAACATCTT	TGCCAAAGTA	AAAACGTTTA	AAATATTTTC	AACAACCTAT	CGAAATCATC	7920
GTAAACGCTT	CGGATTACGA	ATGAATTTGA	GTGCTGGTAT	TATCAATCAT	GAACTAGGAT	7980
PCTAGTTTTG	CAGGAAGTCT	ATTGAGGTAT	TGAGCTAGTT	TATGAAAAA	TTGGGTGAAA	8040
AGTCGAGTGT	TTTAGAAACC	CACAGTGTAG	TATTCTAGTT	TCAATCCACT	ATATTTTGCT	8100
ACTCCCCGTA	AAGTTTCTAT	TTTCCCTGAT	TTCTGATATA	ATAGAAATAT	TGACTTCAAG	8160
agtaaggaag	AGAAGATGAA	CGCATTATTA	AATGGAATGA	ATGACCGTCA	GGCTGAGGCG	8220
GTGCAAACGA	CAGAAGGTCC	CTTGCTAATC	ATGGCAGGGG	CTGGTTCTGG	AAAGACTCGT	8280
GTTTTGACCC	ACCGTATCGC	TTATTTGATT	GATGAAAAGC	TGGTCAATCC	TTGGAATATC	8340
TTGGCCATTA	CCTTTACCAA	CAAGGCTGCG	CGTGAGATGA	AAGAGCGTGC	TTATAGCCTC	8400
AATCCAGCGA	CTCAGGACTG	TCTGATTGCG	ACCTTCCACT	CCATGTGTGT	GCGTATTTTG	8460
CGTCGCGATG	CGGACCATAT	TGGCTACAAT	CGTAATTTTA	CAATTGTGGA	TCCTGGTGAA	8520
CAGCGAACGC	TCATGAAACG	TATTCTCAAA	CAGTTGAACT	TGGACCCTAA	AAAATGGAAT	8580
GAACGAACTA	TTTTGGGGAC	CATTTCCAAT	GCTAAGAATG	ATTTGATTGA	TGATGTTGCT	8640
TATGCTGCCC	AAGCTGGCGA	TATGTATACG	CAAATTGTGG	CCCAGTGTTA	TACAGCCTAT	8700

			188			•
CAAAAAGAAC	TTCGTCAGTC	TGAATCCGTT	GACTTTGATG	ATTTGATTAT	GCTGACCTTG	8760
CGTCTCTTTG	ATCAAAATCC	TGATGTTTTG	ACCTACTACC	AGCAAAAATT	CCAATACATC	8820
CACGTTGATG	AGTACCAAGA	TACCAACCAC	GCTCAGTACC	AATTGGTCAA	ACTCTTGGCT	8880
TCCCGTTTTA	AAAATATCTG	TGTGGTTGGG	GATGCGGACC	AGTCTATCTA	CGGTTGGCGT	8940
GGTGCTGATA	TGCAGAATAT	CTTGGACTTT	GAAAAGGATT	ACCCCAAAGC	CAAGGTTGTT	9000
TTGTTGGAGG	AAAATTACCG	CTCAACCAAA	ACCATTCTCC	AAGCGGCCAA	CGAGGTTATT	9060
AAAAATAATA	AAAATCGCCG	TCCTAAAAAT	CTCTGGACTC	AAAACGCTGA	TGGGGAGCAA	9120
ATCGTTTACT	ATCGTGCCGA	TGATGAGCTG	GATGAGGCTG	TATTTGTAGC	CAGAACCATC	9180
GATGAACTTA	GTCGCAGTCA	AAACTTCCTT	CATAAGGATT	TTGCAGTTCT	CTATCGGACT	9240
AATGCCCAGT	CCCGTACAAT	TGAGGAAGCC	CTGCTCAAGT	CTAACATTCC	TTATACCATG	9300
GTTGGCGGAA	ССАААТТСТА	CAGCCGTAAG	GAAATTCGCG	ATATTATTGC	TTATCTCAAC	9360
CTTATTGCTA	ATTTGAGTGA	CAATATTAGT	TTTGAGCGTA	TTATCAACGA	GCCTAAACGT	9420
GGAATTGGTC	TAGGTACAGT	TGAGAAAATC	CGTGATTTTG	CAAATTTGCA	AAATATGTCT	9480
ATGCTGGATG	CTTCTGCTAA	TATTATGTTG	TCTGGTATCA	AGGGTAAGGC	AGCCCAATCT	9540
ATCTGGGATT	TTGCCAATAT	GATGCTTGAT	TTGCGGGAGC	AGCTAGACCA	CTTAAGCATT	9600
ACAGAGTTGG	TTGAGTCCGT	CCTAGAAAAA	ACAGGTTATG	TCGATATTCT	TAACTCCCAA	9660
GCGACTCTAG	AAAGCAAGGC	ACGGGTTGAA	AATATCGAAG	AGTTTCTTTC	TGTTACGAAG	9720
AACTTTGATG	ACACCACGGA	TGTGACAGAA	GAGGAAACTG	GTCTGGACAA	ACTGAGTCGT	9780
TTCTTAAATG	ACTTGGCTTT	GATTGCCGAC	ACAGATTCAG	GTAGTCAGGA	GACATCAGAA	9840
GTGACCTTGA	TGACCCTGCA	TGCTGCCAAA	GGTCTCGAAT	TTCCAGTTGT	CTTTTTGATT	9900
GGGATGGAAG	AAAATGTCTT	TCCACTTAGT	CGTGCGACTG	AAGATTCAGA	TGAATTAGAA	9960
GAAGAGCGCC	GTCTAGCCTA	TGTAGGTATC	ACGCGTGCAG	AGAAAATTCT	CTATCTGACC	10020
AATGCCAACT	CACGCTTGCT	TTTTGGTCGT	ACCAATTATA	ACCGTCCGAC	TCGTTTTATT	10080
AACGAAATCA	GTTCAGACTT	GCTTGAGTAT	CAAGGTCTGG	CTCGTCCTGC	AAATACAAGC	10140
TTTAAGGCAT	CATATAGCAG	TGGTAGTATT	TCCTTTGGTC	AAGGTATGAG	TTTGGCTCAG	10200
GCTCTTCAAG	ACCGTAAACG	CGGTGCTGCC	CCAAAATCAA	TCCAGTCAAG	CGGTCTTCCA	10260
TTTGGTCAAT	TTACAGCTGG	CGCAAAACCA	GCATCTAGCG	AGGCAAATTG	GTCCATTGGT	10320
GATATTGCTC	TCCACAAGAA	ATGGGGAGAG	GGAACCGTTC	TGGAAGTTTC	AGGTAGCGGT	10380
GCTAGGCAGG	AATTGAAAAT	CAATTTCCCA	GAAGTAGGTT	TGAAAAAACT	TTTAGCCAGT	10440
GTGGCTCCAA	TTGAGAAAAA	AATCTAATTT	TCCATCCTTC	TCACGAATAA	TAAAGTGAGG	10500

AGGATTTTTA	TGTACAGTAT	TTCATTCCAA	GAAGATTCAC	TATTACCAAG	AGAAAGGCTG	10560
GCCAAGGAAG	GAGTTGAAGC	GCTTAGTAAC	CAAGAGTTGC	TAGCTATTTT	ACTCAGGACA	10620
GGAACACGTC	AAGCTAGCGT	TTTTGAAATT	GCCCAAAAAG	TCTTGAACAA	TCTTTCAAGC	10680
CTAACGGATT	TGAAAAAAT	GACCCTGCAG	GAATTGCAGA	GTTTGTCTGG	TATTGGGCGT	10740
GTTAAGGCCA	TAGAATTACA	AGCTATGATT	GAACTGGGGC	ATCGTATTCA	CAAACACGAG	10800
ACTCTTGAAA	TGGAAAGTAT	TCTCAGCAGT	CAAAAGTTGG	CCAAGAAGAT	GCAGCAGGAA	10860
TTAGGGGATA	AAAAACAAGA	GCACCTGGTG	GCACTCTATC	TCAATACTCA	AAATCAAATC	10920
ATCCATCAGC	AGACCATTTT	TATCGGGTCT	GTAACTCGTA	GTATCGCTGA	ACCGCGAGAG	10980
ATTCTTCACT	ATGCAATCAA	GCATATGGCG	ACTTCTCTTA	TCTTGGTCCA	CAATCATCCT	11040
TCAGGAGCGG	TAGCGCCTAG	CCAAAATGAT	GATCATGTCA	CTAAACTTGT	TAAAGAAGCC	11100
TGCGAATTGA	TGGGGATTGT	TCTCTTGGAC	CATTTGATTG	TCTCTCATTC	TAATTACTTT	11160
AGTTATCGTG	AAAAGACAGA	ТТТААТСТАА	AGTTCATTAA	CGACATAGTC	AAAGAGTTTT	11220
TTATCTTTGG	GACGATTTTC	AAAAAGAAGT	TCTGGATGCC	ATTGGACACC	GAGAAAGGCG	11280
ACATCATCCG	TACTCATGAC	AGCCTCAATG	ATACCATCTT	TAGGATCATG	AGCCACAACT	11340
TTTAAATTTG	GTGCTAAGTC	CTTGATGCTC	TGGTGGTGGA	AGGAGTTGAT	ATGAGAGATT	11400
TCTCCATAGA	TTTCTTGGAG	AACGGTATCT	GGTTCTGTTA	CCAAGCGTTG	AGTTGTGTAC	11460
TCAACAGAAG	AATCCTGCCA	ATGGTCTTCG	ATATCTTGGT	ACAAAGTTCC	ACCCATGGCA	11520
ACGTTAAAGA	GTTGGGTACC	ACGGCAGACA	GAGAAAATGG	GCTTTTTCTG	TTTAATAGCT	11580
TCCTTGATGA	GGGCCAGTTC	GAAGATATCT	CTTTGAAGGT	GATAGTCATC	ACTATCAATG	11640
GTTTTGGGTT	CGCCATAAAA	TTTTGGATCG	ACATTTTGCC	CACCTGTCAA	GATGAGCTTG	11700
TCAATCAAAC	TGATATAGTG	GCAGGCCATT	TCTTGATCAC	CAATCGGTAG	GATGATGGGA	11760
ATCCCTCCAG	CATCTTTAAC	GCCTTCAACA	AAGCCTTTTG	CTGCGTAGCT	CATCATGATG	11820
TCATCATCTG	GATGAGTTTT	TTCGTTTCCT	GTAATCCCAA	TAACTGGTTT	TTTCATAAAA	11880
TGATTTTCGC	TTTCTAATCC	TCTTTTCGCA	TGAAGTAGAG	GAGGGTTTGG	AGTTCACTTG	11940
TCAAATCGAC	ATACTGAACG	ACCACGTCTT	TTGGTAAATG	CAGATGGACT	GGTGAAAAAC	12000
TGAGAATTCC	TTTCACACCA	GCATCAACCA	AGAGATTAGC	AACCTCTTGT	GACTTGACGC	12060
TGGGAACAGT	TAGGATAGCA	GTCTTCACAT	CAGCATCCTT	GATTTTATCC	TTGATCTGAG	12120
AAATCCCGTA	AATGGGAATC	CCGTCAGGAG	TTTGGGTACC	GACTTCAGGA	TGGTCGTCTA	12180
GGTCAAAGGC	CATGATAATC	TTCATCTTGT	TACGTTCGTG	GAAGCGGTAG	TGGAGAAGGG	12240

190 CATGGCCCAT ATTTCCAATA CCAACCAGCA TGACATTGGT AATAGAGTTG TCATTGAGCA 12300 AATCGGCAAA AAATGTCATT AGTTTTTTGA CATCATAGCC AAAACCACGA CGACCAAGTT 12360 CACCAAAATA GGAAAAATCA CGACGTACGG TCGCTGAATC AATACCGATA GCCTCTGCAA 12420 TTTGCTTAGA GTTGGCACGT TCAATCTTTT CTGCATGAAA TCTCTTAAAA ATTCGATAGT 12480 AGAGAGAG TCTTTTTGCT GTAGCTTTTG GAATAGCAAA CTGTTTATCT TTCACAAAAT 12540 CACAACCTTT CTATTCTTCT ATTTTATAGA AACATTGTGA AAAAATCAAC AAAAATAAGA 12600 AAAAACTAAG AAAAATCTTA GTTTTGATGT AAAAAATCTG CATGAGATAG AAAACGGTAG 12660 AGGTCTCCGA CCAGCCCCTG ATAAACTTTT TTGCCCCTAA AAGTCAGAGA AGTCACATAA 12720 AGTGTATCTG GTAAGGTTAC ACATCCTGAC AAAGTCAACA TGAGAGCCTC ATGATCCTCA 12780 TACTTGAGAG TACGCTCTAC ATGATAGCAG TCCTTATAGG TCAGTTCAAA CATTTTGGCT 12840 CTATCTTTCC GATTTTGTAA AGACACCACG TTCTACCAAG CTATCCATGA GGAAGTAGAA 12900 TTTTTCCTGA TGAATATGGT GGTCTTCTGA TTTGAAAATA TCAACTAGAC GAAGGCCAAA 12960 CTTGTCAGTG ATATTGATTT TAGCCCCTGT AAGTTCCTTG TTAATGATGA TTTTGAGTTG 13020 GAAGCCTTCA CCGCTGTTTG GCACTTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC 13080 CTTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTTT TTAACAGAAG GGCTAAGAGT 13140 GTAATCGTAA CGACAATTTT TTAACTGAAT GATTTTTTCA AATGCCATAT GGCTAACCTC 13200 CGATAATTTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTGTGGCG 13260 ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA 13320 GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC 13380 CAGCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTTCTG ACCAGGAAAT CCAATATTGA 13440 GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG 13500 CCAGAAAGGC AGTTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT 13560 CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGUT 13620 TTTTCTGTTC CTGGTCTCCG CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCGTAGA 13680 GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC 13740 CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 13800 CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT 13860 CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 13920 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13980 GAACCAAGTA ATCAATTGTT TCAAGGACAG CATGGTGCTC GATGGCAGTT GTGATGATAT 14040

GTTTTCCTTG	TTCTTGGTGA	CGAAGACAGT	AGCCAATGAT	GGTAGTATTA	TTGCCTTCAG	14100
TCCCACCAGA	AGTGAAAAAG	ATATGTTGAG	GTTTTGTCCT	TAGTAACTGG	GCTAGTTCCT	14160
GACGGGCTTC	TCGCAAGAGT	TTGCCAGCTT	GACGACCATG	ACCATGAATA	CTAGAAGGAT,	14220
TTCCGTGGGT	TTCTTGCATA	ACCTTGGTCA	TAGCTGAAAT	AGCAACTGCT	GACATAGGAG	14280
TCGTTGCAGC	ATTGTCCAAA	TAAATCAAAG	AATCACCTTA	TTTCTTTTTA	TTGTAGGCAA	14340
AGAGTGGGCT	GACTGGTTTT	CTTTCGTGAA	TACGGACGAT	AGCATCACCA	ATTAACTCAC	14400
TAGCAGTGAT	GTAGCATACA	TTTTTAGGAG	TTTTTTCTTT	TGTTGCTACT	GAATCAGTCA	14460
CAAGAATTTC	TTTAATATTA	GTATTGTCAA	GAAGCTCAGC	AGCTCCCTCG	ACGAAGAGAC	14520
CGTGGCTAGA	AACAGCATAA	ATTTCTGTAG	CTCCTTCACG	TTCAACGATT	TTAGAAGCTT	14580
CAGAGAAGGT	ACGTCCTGTA	TATAAAATAT	CATCAATCAA	GATAGCTTTC	TTACCTTCAA	14640
CATCACCAAT	AATATAACCT	TCGTTACGAG	TTGCATCGTC	TTGAGGGTAG	TCGATAATGG	14700
CGATAGGAGC	ATCAAGATAT	TCAGCCAGGC	TACGCGCACG	TTTGACACCT	GAATTTTTAG	14760
GGCTAACGAC	AACAACATCT	GAACCAAGCA	ATCCTTTATC	GCAGTAATGT	TTTGCGAATA	14820
GGGGAACAGT	GAAAAGATTA	TCCACTGGAA	TATCAAAGAA	ACCTTGAACC	TGAACGGCAT	14880
GCAAATCAAG	AGTCAGGATA	CGATCAACTC	CAGCCTTAAC	CAGCATATTG	GCAACTAGTT	14940
TTGCTGTAAG	TGGCTCACGA	GGACAAGCAA	TGCGGTCTTG	ACGTGCATAG	CCAAAATATG	15000
GAAGGACAAC	GTTGATACTG	TGGGCACTTG	CACGCACACA	AGCATCGACC	ATGATTAACA	15060
ATTCCATTAG	GTGGTTGTTG	ACAGGGAAAC	TTGTTGATTG	GATGATGTAA	ACATCATAAC	15120
CACGGACACT	TTCTTCGATA	TTTACTTGGA	TTTCTCCGTC	TGAAAATTGA	CGTGATGATA	15180
GTTTTCCAAG	TGGGACACCA	ACAGCTTGGG	CAATTTTTTG	TGCAATCTCT	TGGTTAGAGT	15240
TGAGTGCGAA	AAGTTTCATG	TTTTTTCTAT	CTGACATTAT	AGACCGTCCT	CTGTAAACTT	15300
TATAAATCCT	AGTTATATTT	ACCTTACATA	TATGAACTGG	GATTTGTGTA	TTTTTATCTT	15360
TTCTATTTTA	CCAAAAAATG	GAGATTATTT	CAGCTATTTT	TCATACTTTT	GACAAATCGA	15420
ACCAATTTTG	AAGGAGCTTT	TTGATAGGAA	ATCTGATTTT	TCTCTAAAAA	TTGTCGAAAA	15480
TCCTGTTTGC	CTTGCTCATG	ATTTTCCACT	TCAAGCTCCA	ATTCGTAATC	TGTTATATCA	15540
AAGTATCGGC	TCTGATCCAG	TGCCATGAGA	CCAATAGCTG	TTTTCATTTC	ATAGCGAAGC	15600
GTTGTTAGAC	AACCAAGAAC	CTGCCAGTTC	TTACTTTGGA	TACCATGTTT	CGCCAATTCA	15660
TCCAGTACTA	GCCCTTGAGG	AAGTTCTTCC	TTACTCAGAT	AGTTCTCAGC	ATCTTTTAGT	15720
TGCAATTTTT	GGTTGTATTC	CATGTTTCCA	ACACTCTGCG	GGACTTTGAG	TGTCAACTCA	15780

192 GCCCAGTCTT CAAAGGTTCG AATGCGCATA GCGACTTTCT TTTCTCGCAG TTCAAAATCA 15840 GGCGTGTCGA TGTAGTAATT TGTTTGAAGA ACAGGAGTGA CACCTGTGAA CTGGTCTTTT 15900 AGACGATTGT ATTCATCTTT TTTCAATAGT GTTTTCAATT CAATTTCTAA ATGTTTCATT 15960 TITCTTACCT TTTTTTATCG TTGAAAGCGG ATTTATGGTA TAATAAGCAT TGTATTTATT 16020 GTATATGAAT CTGGAGAAAA AATCAAAGAT ATTTTTGACG GATAATATGA GAACAAGGGA 16080 GAATATATGA CCTTAGAATG GGAAGAATTT CTAGATCCTT ACATTCAAGC TGTTGGTGAG 16140 TTAAAGATTA AACTTCGTGG TATTCGTAAG CAATATCGTA AGCAAAATAA GCATTCTCCA 16200 ATTGAGTTTG TGACCGGTCG AGTCAAGCCA ATTGAGAGCA TCAAAGAAAA AATGGCTCGT 16260 CGTGGCATTA CTTATGCGAC CTTGGAACAC GATTTGCAGG ATATTGCTGG CTTACGTGTG 16320 ATGGTTCAGT TTGTAGATGA CGTCAAGGAA GTAGTGGATA TTTTGCACAA GCGTCAGGAT 16380 ATGCGAATCA TACAGGAGCG AGATTACATT ACTCATAGAA AAGCATCAGG CTATCGTTCC 16440 TATCATGTGG TAGTAGAATA TACGGTTGAT ACCATCAATG GAGCTAAGAC TATTTTGGCA 16500 GAAATTCAAA TTCGTACTTT GGCCATGAAT TTCTGGGCAA CGATAGAACA TTCTCTCAAC 16560 TACAAGTACC AAGGGGATTT CCCAGATGAG ATTAAGAAGC GACTGGAAAT TACAGCTAGA 16620 ATCGCCCATC AGTTGGATGA AGAAATGGGT GAAATTCGTG ATGATATCCA AGAAGCCCAG 16680 GCACTTTTG ATCCTTGAG TAGAAAATTA AATGACGGTG TAGGAAACAG TGACGATACA 16740 GATGAAGAAT ACAGGTAAAC GAATTGATCT GATAGCCAAT AGAAAACCGC AGAGTCAAAG 16800 GGTTTTGTAT GAATTGCGAG ATCGTTTGAA GAGAAATCAG TTTATACTCA ATGATACCAA 16860 TCCGGATATT GTCATTTCCA TTGGCGGGGA TGGTATGCTC TTGTCGGCCT TTCATAAGTA 16920 CGAAAATCAG CTTGACAAGG TCCGCTTTAT CGGTCTTCAT ACTGGACATT TGGGCTTCTA 16980 TACAGATTAT CGTGATTTTG AGTTGGACAA GCTAGTGACT AATTTGCAGC TAGATACTGG 17040 GGCAAGGGTT TCTTACCCTG TTCTGAATGT GAAGGTCTTT CTTGAAAATG GTGAAGTTAA 17100 GATTTTCAGA GCACTCAACG AAGCCAGCAT CCGCAGGTCT GATCGAACCA TGGTGGCAGA 17160 TATTGTAATA AATGGTGTTC CCTTTGAACG TTTTCGTGGA GACGGGCTAA CAGTTTCGAC 17220 . ACCGACTGGT AGTACTGCCT ATAACAAGTC TCTTGGCGGT GCTGTTTTAC ACCCTACCAT 17280 TGAAGCTTTG CAATTAACGG AAATTGCCAG CCTTAATAAT CGTGTCTATC GAACACTGGG 17340 CTCTTCCATT ATTGTGCCTA AGAAGGATAA GATTGAACTT ATTCCAACAA GAAACGATTA 17400 TCATACTATT TCGGTTGACA ATAGCGTTTA TTCTTTCCGT AATATTGAGC GTATTGAGTA 17460 TCAAATCGAC CATCATAAGA TTCACTTTGT CGCGACTCCT AGCCATACCA GTTTCTGGAA 17520 CCGTGTTAAG GACGCCTTTA TCGGCGAGGT GGATGAATGA GGTTTGAATT TATCGCAGAT 17580

GAACATGTCA	AGGTTAAGAC	CTTCTTAAAA	AAGCACGAGG	TTTCTAAGGG	ATTGCTGGCC	17640
AAGATTAAGT	TTCGAGGTGG	AGCTATTCTG	GTCAATAATC	AACCGCAAAA	TGCAACGTAT	17700
CTATTGGACG	TTGGAGACTA	CGTTACCATT	GACATTCCCG	CTGAGAAAGG	CTTTGAAACC	17760
TTGGAGGCTA	TTGAGCTTCC	ATTAGATATT	CTCTATGAGG	ATGACCACTT	TCTAGTCTTG	17820
AATAAACCCT	ATGGAGTGGC	TTCTATTCCT	AGTGTCAATC	ACTCTAATAC	CATTGCCAAT	17880
TTTATCAAGG	GTTACTATGT	CAAGCAAAAT	TATGAAAATC	AGCAGGTTCA	CATTGTTACC	17940
AGACTAGATA	GGGATACTTC	TGGCTTGATG	CTCTTTGCCA	AGCACGGTTA	TGCCCATGCA	18000
CGATTAGACA	AGCAGTTGCA	GAAGAAATCT	ATCGAGAAAC	GCTACTTTGC	TTTGGTTAAG	18060
GGAGATGGAC	ATTTGGAGCC	AGAAGGGGAA	ATTATTGCTC	CGATTGCGÇG	TGATGAAGAT	18120
TCCATTATTA	CCAGACGAGT	GGCTAAAGGC	GGAAAGTATG	CCCATACTTC	ATACAAGATT	18180
GTAGCTTCTT	ATGGAAATAT	TCACTTGGTC	TATATTCACC	TGCACACTGG	TCGAACCCAT	18240
CAAATCCGAG	TCCATTTTTC	TCATATCGGT	TTTCCTTTGC	TGGĠAGATGA	TTTGTATGGT	18300
GGTAGTCTGG	AAGATGGTAT	TCAACGTCAG	GCTCTGCATT	GCCATTACCT	ATCCTTTTAT	18360
CATCCATTTT	TAGAGCAAGA	CTTGCAGTTA	GAAAGTCCCT	TGCCGGATGA	TTTTAGTAAC	18420
CTTATTACCC	AGTTATCAAC	TAATACTCTA	TAAAAACTGT	CTCAGAGTAT	AATTATTATC	18480
TTAAAGGAGA	AAACTCATGG	AAGTTTTTGA	AAGTCTCAAA	GCCAACCTTG	TTGGTAAAAA	18540
TGCTCGTATC	GTTCTCCCTG	AAGGGGAAGA	GCCTCGTATT	CTTCAAGCAA	CAAAACGCTT	18600
AGTAAAAGAA	ACAGAAGTGA	TTCCTGTTTT	GCTTGGAAAT	CCTGAAAAA	TTAAAATTTA	18660
TCTTGAAATT	GAAGGAATCA	TGGATGGTTA	TGAGGTCATC	GACCCTCAAC	ATTATCCTCA	18720
ATTTGAAGAA	ATGGTTTCTG	CCTTGGTGGA	GCGTCGCAAG	GGCAAAATGA	CTGAAGAAGA	18780
TGTACGCAAG	GTTTTGGTTG	AAGATGTCAA	CTACTTTGGT	GTGATGTTGG	TTTACTTGGG	18840
CTTGGTTGAT	GGAATGGTGT	CAGGAGCGAT	TCACTCAACA	GCTTCAACAG	TTCGCCCAGC	18900
TCTACAAATC	ATCAAAACTC	GTCCAAATGT	AACTCGTACT	TCAGGAGCCT	TCCTCATGGT	18960
TCGTGGTACG	GAACGTTACC	TATTTGGAGA	CTGTGCCATT	AACATCAATC	CAGATGCAGA	19020
AGCCTTGGCT	GAAATTGCCA	TCAACTCAGC	AATCACAGCT	AAGATGTTTG	GCATCGAACC	19080
TAAAATTGCC	ATGTTGAGCT	ATTCTACTAA	AGGTTCAGGG	TTTGGTGAAA	GCGTTGATAA	19140
GGTCGTTGAA	GCAACTAAAA	TTGCTCACGA	CTTGCGTCCT	GACCTTGAAA	TCGATGGTGA	19200
GTTGCAATTT	GATGCAGCCT	TTGTTCCTGA	AACTGCAGCT	CTGAAAGCTC	CTGGAAGTAC	19260
GGTAGCTGGT	CAAGCAAATG	TCTTCATCTT	CCCAGGTATC	GAGGCAGGAA	ATATTGGTTA	19320

CAAGATGGCT	GAACGCCTGG	GTGGCTTTGC	194 GGCTGTAGGA	CCTGTTTTGC	AAGGTTTAAA	19380	
CAAGCCAGTT	AATGATCTTT	CTCGTGGATG	TAATGCAGAT	GATGTTTACA	AGTTGACCCT	19440	
CATCACAGCA	GCTCAAGCAG	TTCATCAATA	GTGAAAACTA	TAAAGTGATA	TACTATGCTA	19500	
TACTGTAGTT	ATGAAACTAT	GTACGAAAAG	CACTGCCATT	AATTCCTGAG	ААСТАААТТА	19560	
CTGATTGGTG	TCAAAAAGGA	AAACTTCCAA	GCGATGATAT	CCTGTCTATA	CACGACCTAT	19620	
AGAAATCTGT	AATATACATA	TCCGTAAAAC	GATAAATTCC	CTTTTTGATT	TTAAATGAGT	19680	
ATGAAAAGAG	AATTTTTTGG	CTCTTTGTCA	ACTGTAGTGG	GTTGAAGAAA	AGCTAAGCTC	19740	
GAGAAAGGAC	AAATTTCATC	CTTTCTTTTT	TGATATTCAG	AGCGATAAAA	ATCCGTTTTT	19800	
TGAAGTTTTC	AAAGTTCCGA	AAACCAAAGG	CATTGCGCTT	GATAAGTTTG	ATGAGATTAT	19860	
TGGTCGCTTC	CAGTTTGGCG	TTAGAATAGT	GTAGTTGAAG	GGCGTTGATA	ĄŢĊŦŦŦŢĊŦŦ	19920	
TATCTTTGAG	GAAGGTTTTA	AAGACAGTCT	GAAAAATAGG	ATGAACCTGC	TTAAGATTGT	19980	
CCTCAATAAG	TCCGAAAAAT	TTCTCTGGTT	CCTTATTCTG	GAAGTGAAAA	AGCAAGAGTT	20040	
GATAGAGCTG	ATAGTGGTGT	TTCAAGTCTT	CCGAATAGCT	CAAAAGCTTG	TTTAAAATCT	20100	
CTTTATTGGT	TAAGTGCATA	CGAAAAATAG	GACGATAAAA	TCGCTTATCA	CTCAGTTTAC	20160	
GGCTATCCTG	TTGAATGAGT	TTCCAGTAGC	GCTTGATAG			20199	
(2) INFORMATION FOR SEQ ID NO: 7:							
	QUENCE CHAP (A) LENGTH: (B) TYPE: nu (C) STRANDED (D) TOPOLOGY	19702 base cleic acid NESS: doubl	pairs				

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

ACCCGATGTA	TCAGCGGATA	TTTACTCTAT	TTTTCAAACG	ATGTTATACC	CACAATAAAA	60
GAAAAAAGAC	CCTAAGGTCT	CCTTTGCTTT	TATTATTAAA	CGCGTTCAAC	TTTACCTGAT	120
TTCAAAGCAC	GAGCTGAAGC	CCAAACTTTT	TTAGGTTTAC	CATCGATAAG	AACAGTAACT	180
TTTTGAAGGT	TTGGTTTTAC	GGCACGTTTT	GTTTGGTTCA	TCGCGTGTGA	ACGGTTGTTT	240
CCTGATACAG	TCTTACGACC	TGTAAAGTAA	CATACTTTAG	CCATTGTGTT	TTCCTCCTAT	300
TAGATCTAAT	ATAGCGGATG	TGCTAGCACC	ACATACCGTA	CTATGTTATC	ACATTTTCTT	360
GTTTTTTGCA	agggaattgg	AAGATTTTTT	ATTTGTGTCT	TAAATCAGGT	CTTGCGTGAC	420
ATTTCTGCTC	TCCACATGCC	ATCGTTGATT	AACAGAACAC	CAGAATTAAA	ATTATGTGTA	480
TAAAAATCAT	CTCTAACTGC	AGCTAAGGGT	ATAGCCGTCA	AGTCCAAATC	CCACAGCTCA	540

PCTATCGATT	TTCTTACAAC	AATATCTGAA	TCCAAATACA	GTACACGAGA	CTCGCTTACA	600
PACTTTGGA!	TAAAATACCT	AAAAAAGCCG	CATATGAAAG	TCCCTCAAAG	GGGAGACGAT	660
AACCTTTCAC	AATATTACTG	TCAATCTAAA	CATTCACAAT	CTCACTATTC	AAAGTCTCTA	720
GT CTTT TTTC	CATCAATTGG	AACCATTCTC	GCGGAAGGTC	ATCATTAAAA	ACATAAAACT	780
TAAGATTATA	ATGATGAACA	CAAAGAGATT	TTATTGTTGT	TTCAACTTTA	TCCATATAAG	840
CATTATCTGC	ACCTAAGACA	ATCGCTTTTT	TCTCTTCTTT	CACTTTTTAT	CTCATTTCTT	900
TTATTCCC	TCATATTATT	CCCATCATAT	GTTTCCCATC	ATATGTTTCT	ACGTAACCAT	960
PATTTTCGCC	TATTCGTTCG	TAAAACCATA	CCAGTGGAGA	TTTTAGATGA	AGTCCCATTA	1020
CGGTTTACA	TTTTTACATT	ACGACACGGA	GTTTTACAAA	TCGATTTCAT	TTGCCAAACG	1080
PAGTTAGTG#	GCAGTTAGC	TAGTTCGCCA	AATAGCGACT	AGCGTCCAAC	AATTTGGAAC	1140
PTTAGTTCC#	ATTGTTGGTA	CTGAGTCACA	TCTTCTCCTC	TAACTCTACG	TCTGGATACT	1200
PGTCCGCAA	CCAGCGGAGG	GCAAAGTCAT	TTTCAAAGAG	AAAGACTGGT	TGGTCAAAAC	1260
GTCTTTGG	TAAGATATTG	CGACTTGACG	ACATCCGTTC	ATCCAAGTCC	TCAGGCTTGA	1320
rccaacgaac	GGTCTTTTTA	CCCATTGGGT	TCATAACTAC	TTCCGCATTG	TACTCGCCTT	1380
CCATGCGGTG	TTTAAAGACT	TCAAACTGGA	GTTGACCTAC	AGCGCCTAGC	ATGTACTCAC	1440
CTGTTTGGTA	ATTCTTATAA	AGCTGAACGG	CTCCTTCTTG	CACCAATTGC	TCAATCCCCT	1500
rgtggaagga	TTTTTGCTTC	ATAACATTCT	TAGCAGAAAC	TTTCATGAAA	ATCTCAGGTG	.1560
PAAAGGTTGG	CAGGGGTTCA	AATTCAAACT	TGTTTTTTCC	AACCGTCAAG	GTATCCCCAA	1620
CTGATAAGI	ACCGGTATCG	TAAACCCCGA	TAATATCACC	TGCCACGGCA	TTGGTCACAT	1680
CTCACGACT	CTCCGCCATA	AACTGGGTAA	CATTAGATAG	TTTAGCCCCC	TTACCAGTAC	1740
GAGGGAGATT	GACACTCATG	CCGCGCTCAA	ATTCGCCAGA	TACGATACGG	ACAAAGGCAA	1800
PACGGTCACG	GTGACGAGGG	TCCATGTTGG	CTTGGATTTT	AAAGACAAAG	CCTGAGAAAT	1860
CTTGTCATA	AGGATCCACA	ATTTCACCGT	CTGTTTTCTT	GTGACCATGT	GGTTCTGGAG	1920
CAAACTTGAG	GAAGGTTTCA	AGGAAGGTCT	GCACACCAAA	GTTTGTCAGG	GCTGAACCGA	1980
LAAAGACAGG	CGTCAATTCT	CCAGCCAGAA	TAGCTTCCTC	TGAAAACTCA	TTCCCGGCTT	2040
CAAAAATTTAA	CTCAATGTCA	TCCTTGACTT	GCTCGTAGAA	AGGATTGCTA	CCAAAGAGTT	2100
CTCCCCGTC	TTCTAGACTG	GCAAAACGCT	CATCCCCTTT	GTAAAGCTCT	AAACGTTGGT	2160
TATAGAGGTO	ATACAAGCCC	TCAAAGGCTT	TCCCCATCCC	GATAGGCCAG	TTCATAGGGT	2220
GCTAGCAAT	GCCCAAGATT	ТСТТССААТТ	CTTGCAAGAG	ATCCAAAGGC	TCACGACCCT	2280

			196			
CACGGTCCAG	CTTGTTCATA	AAGGTAAAGA	CTGGAATGCC	ACGATGTTTC	ACAACCTCAA	2340
ACAATTTCTT	GGTTTGAGCC	TCGATCCCCT	TGGCAGAGTC	CACGACCATG	ACCGCAGCAT	2400
CCACCGCCAT	CAAGGTACGA	TAGGTATCTT	CTGAGAAGTC	CTCGTGCCCT	GGCGTGTCTA	2460
AGATATTCAC	GCGCTTGCCG	TCGTAGTCAA	ATTGCATAAC	AGATGAAGTA	ACAGAAATCC	2520
CACGTTGCTT	CTCGATATCC	ATCCAGTCAG	ATTTAGCAAA	AGTCCCTGTT	TTCTTCCCTT	2580
TTACCGTACC	AGCCTCACGA	ATCTCACCCC	CAAAGTAGAG	TAACTGCTCA	GTGATGGTTG	2640
TTTTCCCCGC	GTCCGGGTGG	GAGATAATGG	CAAAGGTACG	ACGTTTCTTA	ATTTCTTCTT	2700
GAATATTCAT	AAGTTCTCTT	TCTTTGATTC	TCTATTTTTC	TTGTTTCAAT	AGCTGAGAAT	2760
GATTTTTACA	TTGGATTTTA	CCATTCCTTT	CAACACTCCA	TTATATCGGA	TTTTAGCATT	2820
TTTTTCAATT	TCTATTTCTT	TTCACTTCCC	CCTCCCTTAT	TTATAGGAAA	ATATGGTAAA	2880
ATAGAACAGA	CTAAAAATCA	TCATTTCACG	AAAGGATGCA	AGATGAAAAT	TACGCAAGAA	2940
GAGGTAACAC	ACGTTGCCAA	TCTTTCAAAA	TTAAGATTCT	CTGAAGAAGA	AACTGCTGCC	3000
TTTGCGACCA	CCTTGTCTAA	GATTGTTGAC	ATGGTTGAAT	TGCTGGGCGA	AGTTGACACA	3060
ACTGGTGTCG	CACCTACTAC	GACTATGGCT	GACCGCAAGA	CTGTACTCCG	CCCTGATGTG	3120
GCCGAAGAAG	GAATAGACCG	TGATCGCTTG	TTTAAAAACG	TACCTGAAAA	AGACAACTAC	3180
TATATCAAGG	TGCCAGCTAT	CCTAGACAAT	GGAGGAGATG	CCTAATGACT	TTTAACAATA	3240
AAACTATTGA	AGAGTTGCAC	AATCTCCTTG	TCTCTAAGGA	AATTTCTGCA	ACAGAATTGA	3300
CCCAAGCAAC	ACTTGAAAAT	ATCAAGTCTC	GTGAGGAAGC	CCTCAATTCA	TTTGTCACCA	3360
TCGCTGAGGA	GCAAGCTCTT	GTTCAAGCTA	AAGCCATTGA	TGAAGCTGGA	ATTGATGCTG	3420
ACAATGTCCT	TTCAGGAATT	CCACTTGCTG	TTAAGGATAA	CATCTCTACA	GACGGTATTC	3480
TCACAACTGC	TGCCTCAAAA	ATGCTCTACA	ACTATGAGCC	AATCTTTGAT	GCGACAGCTG	3540
TTGCCAATGC	AAAAACCAAG	GGCATGATTG	TCGTTGGAAA	GACCAACATG	GACGAATTTG	3600
CTATGGGTGG	TTCAGGTGAA	ACTTCACACT	ACGGAGCAAC	TAAAAACGCT	TGGAACCACA	3660
GCAAGGTTCC	TGGTGGGTCA	TCAAGTGGTT	CTGCCGCAGC	TGTAGCCTCA	GGACAAGTTC	3720
GCTTGTCACT	TGGTTCTGAT	ACTGGTGGTT	CCATCCGCCA	ACCTGCTGCC	TTCAACGGAA	3780
TCGTTGGTCT	CAAACCAACC	TACGGAACAG	TTTCACGTTT	CGGTCTCATT	GCCTTTGGTA	3840
GCTCATTAGA	CCAGATTGGA	CCTTTTGCTC	CTACTGTTAA	GGAAAATGCC	CTCTTGCTCA	3900
ACGCTATTGC	CAGCGAAGAT	GCTAAAGACT	CTACTTCTGC	TCCTGTCCGC	ATCGCCGACT	3960
PTACTTCAAA	AATCGGCCAA	GACATCAAGG	GTATGAAAAT	CGCTTTGCCT	AAGGAATACC	4020
TAGGCGAAGG	AATTGATCCA	GAGGTTAAGG	AAACAATCTT	AAACGCGGCC	AAACACTTTG	4080

AAAAATTGGG	TGCTATCGTC	GAAGAAGTCA	GCCTTCCTCA	CTCTAAATAC	GGTGTTGCCG	4140
TTTATTACAT	CATCGCTTCA	TCAGAAGCTT	CATCAAACTT	GCAACGCTTC	GACGGTATCC	4200
GTTACGGCTA	TCGCGCAGAA	GATGCAACCA	ACCTTGATGA	AATCTATGTA	AACAGCCGAA	4260
GCCAAGGTTT	TGGTGAAGAG	GTAAAACGTC	GTATCATGCT	GGGTACTTTC	AGTCTTTCAT	4320
CAGGTTACTA	TGATGCCTAC	TACAAAAAGG	CTGGTCAAGT	CCGTACCCTC	ATCATTCAAG	4380
ATTTCGAAAA	AGTCTTCGCG	GATTACGATT	TGATTTTGGG	TCCAACTGCT	CCAAGTGTTG	4440
CCTATGACTT	GGATTCTCTC	AACCATGACC	CAGTTGCCAT	GTACTTAGCC	GACCTATTGA	4500
CCATACCTGT	AAACTTGGCA	GGACTGCCTG	GAATTTCGAT	TCCTGCTGGA	TTCTCTCAAG	4560
GTCTACCTGT	CGGACTCCAA	TTGATTGGTC	CCAAGTACTC	TGAGGAAACC	ATTTACCAAG	4620
CTGCTGCTGC	TTTTGAAGCA	ACAACAGACT	ACCACAAACA	ACAACCCGTG	ATTTTTGGAG	4680
GTGACAACTA	ATGAACTTTG	AAACAGTCAT	CGGACTTGAA	GTCCACGTAG	AGCTCAACAC	4740
СААТТСАААА	ATCTTCTCAC	CTACTTCTGC	CCACTTTGGA	AATGACCAAA	ATGCCAACAC	4800
FAACGTGATT	GACTGGTCTT	TCCCAGGAGT	TCTACCAGTT	CTCAATAAAG	GGGTTGTTGA	4860
PGCCGGTATC	AAGGCTGCTC	TTGCCCTCAA	CATGGACATC	CACAAAAAGA	TGCACTTTGA	4920
CCGCAAGAAC	TACTTCTATC	CTGATAACCC	CAAAGCCTAC	CAAATTTCTC	AGTTTGATGA	4980
ACCAATCGGA	TATAATGGCT	GGATTGAAGT	CAAACTAGAA	GACGGTACGA	CCAAGAAAAT	5040
CGGTATCGAA	CGTGCCCACC	TAGAGGAAGA	CGCTGGTAAA	AACACCCATG	GTACAGATGG	5100
CTACTCTTAT	GTTGACCTCA	ACCGCCAAGG	GGTTCCCTTG	ATTGAGATTG	TATCTGAGGC	5160
AGATATGCGT	TCTCCTGAAG	AAGCCTATGC	TTATCTGACA	GCCCTCAAGG	AAGTTATCCA	5220
GTACGCTGGC	ATTTCTGACG	TTAAGATGGA	GGAAGGTTCG	ATGCGTGTGG	ATGCCAACAT	5280
CTCCCTTCGT	CCTTATGGTC	AAGAGAAATT	CGGTACCAAG	ACTGAATTGA	AGAACCTCAA	5340
CTCCTTCTCA	AACGTTCGTA	AAGGTCTTGA	ATACGAAGTC	CAACGCCAGG	CTGAAATTCT	5400
PCGCTCAGGT	GGTCAAATCC	GCCAAGAAAC	ACGCCGTTAC	GATGAAGCGA	ATAAAGCAAC	5460
CATCCTCATG	CGTGTCAAGG	AAGGGGCTGC	TGACTACCGC	TACTTCCCAG	AACCAGACCT	5520
ACCCCTCTTT	GAAATTTCTG	ACGAGTGGAT	TGAGGAAATG	CGGACTGAGT	TGCCAGAGTT	5580
rccaaaagaa	CCTCCTCCCC	GTTATGTATC	TGACCTTGGT	TTATCAGACT	ACGATGCTAG	5640
CAGTTGACT	GCTAATAAAG	TCACTTCTGA	CTTCTTTGAA	AAAGCTGTTG	CCCTAGGTGG	5700
rgatgccaaa	CAAGTCTCTA	ACTGGCTCCA	AGGGGAAGTC	GCTCAGTTCT	TGAATGCTGA	5760
AGGTAAAACA	СТССАВСАВА	ТССААТТСАС	ACCAGAAAAC	ттссттсааа	тсаттестат	5820

			198			
CATCGAAGAC	GGTACTATTT	CATCTAAGAT	TGCCAAGAAA	GTCTTTGTCC	ATCTAGCTAA	5880
AAATGGCGGT	GGCGCGCGTG	AATACGTGGA	AAAAGCAGGT	ATGGTTCAAA	TTTCAGATCC	5940
AGCTATCTTG	ATCCCAATCA	TCCACCAAGT	CTTTGCCGAT	AACGAAGCTG	CTGTTGCCGA	6000
CTTCAAGTCA	GGCAAACGTA	ACGCCGACAA	GGCtTTACAG	GATTCCTTAT	GAAGGCAACC	6060
AAAGGCCAAG	CCAACCCACA	AGTTGCCCTT	AAACTACTTG	CACAGGAATT	GGCGAAGTTG	6120
AAAGAAAACT	AGACAGAACA	AAACCAGCCC	TAAGGTTGGT	TTTTTCTTCT	CTACCAACTC	6180
CCAATAACTA	TTTTGGCTTT	ATTTCCAGAG	TATTTTATGG	TAAAATGAAG	AGTAATAATA	6240
PTTATTAAAG	AGGTAAAAAC	ATGATTGAAG	CAAGTACCTT	AAAAGCTGGT	ATGACCTTTG	6300
AAACAGCTGA	CGGCAAATTG	ATTCGCGTTT	TGGAAGCTAG	TCACCACAAA	CCAGGTAAAG	6360
GAAACACGAT	CATGCGTATG	AAATTGCGTG	ATGTCCGTAC	TGGTTCTACA	TTTGACACAA	6420
GCTACCGTCC	AGAGGAAAAA	TTTGAACAAG	CTATTATCGA	GACTGTCCCA	GCTCAATACT	6480
IGTACAAA AT	GGATGACACA	GCATACTTCA	TGAATACAGA	AACTTATGAC	CAATACGAAA	6540
PCCCTGTAGT	CAATGTTGAA	AACGAATTGC	TTTACATCCT	TGAAAACTCT	GATGTGAAAA	6600
PCCAATTCTA	CGGAACTGAA	GTGATCGGTG	TCACCGTTCC	TACTACTGTT	GAGTTGACAG	6660
TGCTGAAAC	TCAACCATCT	ATCAAAGGTG	CTACTGTTAC	AGGTTCTGGT	AAACCAGCAA	6720
GATGGAAAC	TGGACTTGTC	GTAAACGTTC	CAGACTTCAT	CGAAGCAGGA	CAAAAACTCG	6780
TATCAACAC	TGCAGAAGGA	ACTTACGTTT	CTCGTGCCTA	ATCTCTAGAA	AGAGGTCATT	6840
TATGGGAAT	TGAAGAACAA	CTTGGCGAAA	TCGTTATCGC	CCCACGTGTA	CTTGAAAAA	6900
CATTGCTAT	CGCTACTGCA	AAGGTAGAGG	GTGTTCACTC	TTTTTCAAAC	AGATCAGTGT.	6960
TGATACCCT	TTCAAAACTT	TCACTCGGCC	GTGGCATTTA	TCTTAAAAAC	GTGGACGAAG	7020
ACTCACAGC	AGATATCTAT	CTCTACCTTG	AGTACGGAGT	AAAAGTTCCT	AAGGTAGCGG	7080
PTGCTATCCA	GAAAGCTGTC	AAAGATGCCG	TCCGTAATAT	GGCTGATGTA	GAACTCGCTG	7140
TATCAATAT	TCACGTTGCA	GGTATCGTCC	CAGATAAAAC	ACCAAAACCA	GAATTGAAAG	7200
TCTATTTGA	CGAGGACTTC	CTCAATGACT	AGTCCACTAT	TAGAATCTAG	ACGCCAACTC	7260
GTAAATGCG	CTTTTCAAGC	TCTCATGAGC	CTTGAGTTCG	GTACGGATGT	CGAAACTGCT	7320
GTCGTTTCG	CCTATACTCA	TGATCGTGAA	GATACGGATG	TACAACTTCC	AGCCTTTTTG	7380
TAGACCTCG	TTTCTGGTGT	TCAAGCTAAA	AAGGAAGAAC	TAGATAAGCA	AATCACTCAG	7440
CATTTAAAAG	CAGGTTGGAC	CATTGAACGC	TTAACGCTCG	TGGAGAGAAA	CCTCCTTCGC	7500
TGGGAGTCT	TTGAAATCAC	TTCATTTGAC	ACTCCTCAGC	TGGTTGCTGT	TAATGAAGCT	7560
TCGAGCTTG	CAAAGGACTT	CTCCGATCAA	AAATCTGCCC	GTTTTATCAA	TGGACTGCTC	7620

AGCCAGTT	TG	TAACAGAAGA	ACAATAAGGC	TCTTTGTCAA	CTGTAGTGGG	TTGAAAAAA	7680
GCTAAGCT	CG	AGAAAGGACA	AATTTCGTCC	TTTCTTTTTT	GATGTTCAAA	GCGATAAAAA	7740
TCCGTTTT	TT	GAAGTTTTCA	AAGTTTCGAA	AACCAAAGGC	ATTGCGCTTG	ATAAGTTTGA	7800
TGAGATTA	TT	GGTCGCTTCC	AGTTTGGCAT	TAGAATAGTG	TAGTTGAAGG	GCGTTGACAA	7860
TCTTTTCT	TT	ATCTTTGAGG	AAGGTTTTAA	AGACAGTCTG	AAAAATAGGA	TGAGCCTGCT	7920
TAAGATTG	TC	CTCAATAAGT	CCGAAAAATT	TCTCTGGTTC	CTTATTCTGG	AAGTGAAACA	7980
GCAAGAGC	TG	ATAGAGCTGA	TAGTGGTGTT	TCAAGTCTTG	TGAATGGCTC	AAAAGCTTGT	8040
СТААААТС	TC	TTTATTGGTT	AAGTGCATAC	GAAAAGTAGG	ACGATAAAAT	CGCTTATCAC	8100
TCAGTCTA	CG	GCTATCCTGT	TGAATGAGTT	TCCAGTAGCG	CTTGATATCC	TTGTATTCAT	8160
GGGATTTT	'CG	ATGAAACTGA	TTCATGATTT	GGACACGCAC	ACGACTCATG	GCACGGCTAA	8220
GATGTTGT	'AC	AATGTGAAAG	CGATCAAGAA	CGATTTTAGC	ATTCGGGAGT	GAAACAGTCT	8280
GGGAGACT	GT	TTCAGCCTGA	GCCTAGGAAT	TTGAAAGCGA	AGCTGTTTAG	CCAAGTCATA	8340
GTAAGGGC	TA	AACATATCCA	TAGTAATAAT	TTTGACGCGA	CATCGGACAA	CTCTATCGTA	8400
GCGAAGAA	AG	TGATTTCGAA	TGATAGCTTG	TGTTCTACCC	TCAAGAACAG	TGATGATATT	8460
GAGATTGT	TA	AAATCTTGCG	CAATGAAGCT	CATCTTTCCC	TTTGTAAAAG	CATACTCATC	8520
CCAAGACA	TA	ATCTCAGGAA	GACAAGAAAA	ATCATGTTTA	AAGTGAAAAT	CATTGAGCTT	8580
ACGAATAA	CA	GTTGAAGTTG	AGATGGAAAG	CTGATGGGCA	ATATCAGTCA	TAGAAATCTT	8640
TTĊAATCA	AC	TTTTGAGCAA	TCTTTTGGTT	GATGATACGA	GGGATTTGGT	GATTTTTCTT	8700
GACGATAG	AA	GTTTCAGCGA	CCATCATTTT	TGAACAGTGA	TAGCACTTGA	ATCGACGCTT	8760
TCTAAGGA	GA	ATTCTAGTAG	GCATACCAGT	CGTTTCAAGA	TAAGGAATTT	TAGAAGGTTT	8820
TTGAAAGT	'CA	TATTTCTTCA	ATTGGTTTCC	GCACTCAGGG	CAAGATGGGG	CGTCGTAGTC	8880
CAGTTTGG	CG	ATGATTTCCT	TGTGTGTATC	CTTATTGATG	ATGTCTAAAA	TCTGGATATT	8940
AGGGTCTT	ΤA	ATGTCTAGTA	ATTTTGTGAT	AAAATGTAAT	TGTTCCATAT	GAATCTTTCT	9000
AATGAGTT	GT	TTTGTCGCTT	TTCATTATAG	GTCATATGGG	ACTTTTTTC	TACAATAAAA	9060
TAGGCTCC	AТ	AATATCTATA	GGGGATTTAC	CCACTACAAA	TATTATAGAG	CCAACAATAA	9120
AAAGAAAA	AG	TGTTTGATAG	ATATCAAACA	CTTTTTTCTT	TGCCTCCCAC	TATCTAAAAA	9180
AATGATAA	TA	GATATAATTG	TAAACAAAAA	TCCAGATAGG	TTTTGCATGA	TTGAGAAAGT	9240
TAAAAAAA	CT	ATGGCAGAGA	ATCGTTAATC	TCAGATTGTC	GGTAGAACGA	TAAACAAGGG	.9300
CAAAAAAG	AA	ACCAATCAGA	СТАТААТАТА	ATAAACTAAT	TGGATCTCTG	TGAGATAGTA	9360

200 TCAAATGGCT AATCCCAAAG ATGATAGCAG ATAGGATAAC ATCCAAATAG TACTTGGACT 9420 AGGGAAAGAA GGTATTCATA AAATACCCTC TATCAAGAGT CTCCTCAAAA ACAGGACCGA 9480 TGATTACAGG CAGGACAAAA GATAAGATAG TCGATAAAAA GGTTGGTTGT CCATTTGAAA 9540 AAAGCACGGT AAAATACTCA TCATGAATAT TCCTATGATT AATCAAATGA GCATAGCGTG 9600 CCCAAAAATT ACCGAGAATC TGATAAACCA CATAAGTTGC AAATAAGTAG AAGACAAATG 9660 ACCAGTTCCA GCTCTTTTTC TCAAAGATAA AGAGCATCTT TTTCTTTTTT AACCTCCAAA 9720 TTAATAGAAG GAAACTTCCC ACTAATCCCA TTGTTAAAAT AAGAGAATAG ACATCAGCTC 9780 CTAACCCTAA AATGATCGTC ACATACAATC CAATTGTTTG TGGTAAATAG GTAGATAGTA 9840 AAATAATAAG CAAAAATATT CCAAATTGTC TTAGTTTTTT TGTGTTTCTC ATCGTACTTT 9900 TTTGAAAGAT TACCCTGCTC GGAAGCCGTA CTTCCAAGCA TCTATATAAG AATTAAGTGC 9960 CCCTTGCCTC ATATAGGGAG CAAATTCTCT ATAATATAAC CATCTACTAT ATCCATCTTC 10020 CCAAACAGCA AGACCACCTG AAGTTTGCTC CAAGTCCTCA GTTGAAAGAA CTGTAAATGT 10080 ATTTGTACCT GTCATTGCAA GTACCTTCTT AAAATAGATT GTTGTAGGCT CACATTTATA 10140 GTATATTCT TTTTTGTCT ATTTTATAGC CCATCTCCTC AACTGGCAAT TTTTCGACCT 10200 GAATTACATT TTTCCATAAA AAATGAGACC TTTCTAGTCT CATTTAGTCA TTCTTAGTAT 10260 TTTCTAAATC GTTGATAGCG TTCTTCCAGC AACTCTTCTA GCGGTTTTTG TGAAAGTCTA 10320 GCCAGCTCCG TTTGGAGTTC TTTTTTGACA CTCTTAATCA GTTCTTTACT AGAAAGTCCT 10380 ATTTCAGAAA TCACCTTATC CACCACGTCC ATTTCTAACA GTTCATGCGA AGTGATTTTC 10440 ATCAGTTCTG CTGCTTCCAT AGCGCGAGTA CCGTCCTTCC ATAAAATGGA AGCAAAGCCT 10500 TCTGGACTGA GAATGGCATA GATAGAATTT TCCAGCATCC AGACACGGTC CGCGACAGCT 10560 AGAGCCAGAG CCCCGCCTGA ACCACCTTCA CCGATAATAA TGGCGATAAT AGGAACTTTC 10620 AGGTCACTCA TTTCCATGAG ATTGCGAGCG ATAGCTTCCC CTTGACCACG TTCTTCCGCT 10680 CCGACACCAG GATAAGCACC TGCTGTATTG ATAAAGGTCA CAACTGGACG GCCAAATTTC 10740 TCAGCCTGTT TCATCAACCG CAGTGCCTTT CGGTAGCCTT CTGGATGTGG TTGGCCAAAA 10800 TTCCGTTTGA GGTTGTCTTG CAAACTCTTG CCTTTTTGGA TACCAACCAC TGTTACAGCT 10860 TGGTCTCCAA GCCAACCAAT ACCACCAACA ACTGCACCAT CATCACGAAA AGAACGGTCA 10920 CCATGTAATT GGATAAATTC ATCAAAAATG CCTGTCGCAA AGTCCAAGGT TGTCAAGCGA 10980 CTCTGCTCAC GCGCTTCTCT GACTATTTTT GCAATATTCA TCTAGGACTC CCTCCATGCA 11040 ATCTGACTAG GCTAGCAATC GTATCTGGTA AGTCTCTTCT TTTGACAATA GCATCCACAA 11100 AGCCATGTTC TAATAGGAAT TCTGCCTTTT GGAAATCCTC AGGCAAGCTT TCACGAACCG 11160

TATTTTCAAT	CACACGACGC	CCAGCAAAAC	CAACCAAGCT	CTGTGGTTCA	GCCAGAATGA	11220
TATCGCCTTC	CATAGCGAAA	GAAGCTGTCA	CACCACCAGT	CGTTGGATCT	GTCAAAATGG	11280
TCAGGTAAAA	GAGACCAGCA	TTTGAATGGC	GTTTAACCGC	CGCAGAGATC	TTAGCCATCT	11340
GCATGAGACT	CATGATTCCT	TCCTGCATAC	GGGCTCCACC	AGAGGCTGTG	AATAGGACAA	11400
CTGGCAATTT	TTCGACAGTC	GCATACTCAA	ACAAACGAGT	GATTTTTTCA	CCTACAACCG	11460
TACCCATAGA	AGCCATGATA	AAGTTAGAAT	CCATAATCCC	AAGAGCCACA	GTCTGACCTT	11520
TAATAAGAGC	AGTTCCTGTC	ACAACGGCTT	CATGCAGACC	TGTTTTTCA	CGCATAGATG	11580
CCAGTTTCTT	TTGGTAACCA	GGGAAATGCA	AGGGATCCTT	GCTTTCAATC	CCTGTAAACA	11640
ATTCTTTGAA	GGTTCCCATA	TCAATCGTCA	AAGCCAAGCG	TTCTTGGGCA	GAAATACGAA	11700
AGGTATAGCT	ACAGTGCGGA	CAGATACGTT	CACTTCCCAG	ATCCTTCTGA	TAGATGGTAT	11760
GCTTACAGCC	TGGACACTGG	GAAAATAATT	CATCTGGAAC	CTCTGGCTTA	GCTTGAGGTT	11820
ТТТСССТААС	CGAACGATTG	GGATTGATTC	GAATATACTT	ATCTTTTTTA	CTAAATAGAG	11880
CCATTGATTC	CCCTTTTCGG	TTTAAACTCT	TAAAGTCATT	TTATTCTTTT	TCTTGATATT	11940
TAGGTAAGAA	GGTTTCCATC	AAGAAGGAAG	TATCATAATC	CCCAGCAATG	ACATTGCGAT	12000
CTGAAATGAG	GTCAAGCTGG	AAATCTGCAT	TGGTCTGCAC	TCCTTCAATT	тстааттсат	12060
AGAGGGCACG	TTGCATTTTC	ATCAAGGCGT	CAAAACGATT	TTCGCCGTGT	ACTATGATTT	12120
TGGCAATCAT	ACTATCATAA	TAAGGCGGAA	TGGTATAACC	TGGATAAACT	GCTGAATCCA	12180
CGCGCAAGCC	AACTCCACCA	CTTGGCAGAT	AGAGATTAGT	AATCTTACCT	GGACTTGGAG	12240
CAAAGTTAAA	GGCTGGGTTT	TCTGCATTGA	TACGACACTC	GATGGCATGA	CCGCGTAGGA	12300
CAATATCTTC	TTGCTTAACA	GACAAAGGCT	GACCTGCCGC	AATGCAAATC	TGTTCCTTAA	12360
CGATATCAAC	ACCTGAAACA	AACTCTGTTA	CTGGATGTTC	TACCTGAACA	CGAGTATTCA	12420
TCTCCATGAA	ATAGAAATTG	CTACTTGCTT	CATCAAGAAG	AAATTCAATG	GTTCCTGCAT	12480
TCTCATAGCC	AACAAACTCT	GCCGCTCGAA	CAGCAGCAGC	ACCTATTTCA	TGACGCAGCG	12540
TTTTTCCGAT	TGCAATCGAG	GGACTTTCTT	CCAAAACCTT	TTGGTTATTC	CTTTGAAGAG	12600
AACAATCCCG	TTCACCCAAG	TGAATCACAT	GTCCATGCTC	ATCACCTAGG	ATTTGAACCT	12660
CAATGTGCCG	AGCTGGATAG	ATAACCCGTT	CTATGTACAT	GGCACCATTG	CCATAATTGG	12720
CCTTGGCCTC	ACTAGAGGCA	GTTTCAAAGG	CAGAAACGAG	GTCATCTGGT	TTTTCAACCT	12780
TACGAATCCC	TTTACCACCT	CCACCTGCTG	AAGCCTTGAG	CATAACAGGA	TAGCCAATTT	12840
TTTCAGCAAC	AATCAAAGCT	TCTTCAGAGT	TATGCACTTC	TCCATCTGAA	CCTGGTATAA	12900

CAGGCACACC TGCTTTAATC ATCTGAGCAC GCGCATTGAT CTTATCCCCC ATCATATCCA 12960 TAACATGACC AGATGGACCG ATAAACTTGA TACCTACTTC TTCACACATG GTCGCAAATT 13020 TGGAATTTTC ACTGAGAAAT CCAAAACCAG GGTGAATAGC TTCTGCCTCA GTCAAGACTG 13080 CAGCTGATAG AACTGCATTA ATATTGAGAT AAGACTCTGT TGCCTTGCCA GGACCAATAC 13140 AAACTGCTTC ATCTGCCAAA AGCGTATGAA GAGCTTCCTT ATCAGCAGTT GAATAAACCG 13200 CTACCGTCGC AATCCCCAAT TCACGTGCCG CACGGATAAT ACGAACCGCA ATTTCACCAC 13260 GATTGGCAAT TAAAATTTTT CGAAACATGG AGAACCTCCT TAGTTCCCAA TTGCAAAAGT 13320 AAGGGTACCA CTGGCTGCAA GCTTGCCATC CACTTCAGCC TTTGCTTCAA CCACAGCTAT 13380 GGTGCCACGA CGTTTTACAA AAGTCGCTGT CATAACCAAT TGGTCGCCTG GTACAACTTG 13440 CTTCTTGAAC TTAACCTTGT CCATACCAGC GTAAAAGACC AGTTTTCCTT TATTTTCAGG 13500 TTTTGATAAC TCCAACACAC CGGCAGTTTG CGCCAAGGCT TCCATAATCA CAACACCTGG 13560 CATAACTGGG TATTGAGGAA AGTGGCCGTT AAAGAAAGGC TCGTTGATGG TCACATTTTT 13620 GATAGCAACA ATGGTATCCT CGCTCACTTC CAAGACACGG TCCACTAGAA GCATAGGATA 13680 ACGGTGGGGA AGAGCTTCTT TGATTCCTTG AATATCGATC ATTTGATACG TACCAATCCT 13740 TTACCAAACT CAACCATTTC TTCGTTAGAG ACGAGAATTT CCGTTACCAC ACCATCCTTA 13800 GGAGCTGGGA TTTCATTCAT GACTTTCATG GCTTCGATAA TTACCAATGT TTGACCTTTT 13860 TTGACACTAT CACCAACTGT AACGAAGGCA GGTTTATCTG GTCCAGCAGC CAAGTAAACC 13920 ACTCCAACAA GTGGACTCTC TACAAGATTT CCCTCAGTAG CCACACTTGC TTCAGCTGGA 13980 GCTGGAACTT CTTCTGCTAC AGTCTCTGCT GGAGCAGATG TAGGAGCTAC TGGACTCGGT 14040 GTTGCTAGAA CGGGTGCTGG AGCGACTTGA GTTGCAACTT CAGGCACAGG TCTTGCTTCA 14100 TTCTTGCTAA ACTGCAACTC ATCCGTCCCA TTTTTATAAG AAAATTCTCT CAAACTTGAC 14160 TGGTCAAATT GAGTCATCAA GTCTTTAATA TCGTTTAAAT TCATACTTAT CTATTCTCCC 14220 AACGTTTGAA AGCAAGAACT GCATTGTGGC CTCCAAAACC AAAAGTATTT GAAATAGCGT 14280 ATGGAATTTC TTTCTCCAAG CCTTGTCCAT AAACGACATT AGCTTCGATA TAATCTGATA 14340. CTTCACTTGT CCCAGCTGTC ATTGGTACAA AGTTATGACG CATAGCTTCG ATGGTGACGA 14400 TAGCTTCTAC TGCACCCGCA GCCCCCAGCA AATGTCCTGT AAAAGACTTG GTTGATGATA 14460 CAGGTACTTC CTTACCAAGA ACAGCTACGA TAGCACCACT TTCTCCTTTT TCATTGGCAG 14520 GAGTTGACGT TCCGTGAGCA TTGACATAGG CTACTTGCTC TGGAGAAATC TCAGCTTCTT 14580 CCAAGGCTAG TTTGATGGCC TTGATAGCTC CCTGACCTTC TGGATGTGGA GAAGTCATGT 14640 GGTAGGCATC ACAAGTATTT CCGTAACCAA CCACTTCAGC CAGGATAGTA GCTCCACGTT 14700

TTTCAGCGTG	TTCAAGACTT	TCTAGAACCA	ACATCCCTGA	ACCTTCACCC	ATAACAAACC	14760
CATTGCGATC	СТТАТСАААТ	GGGATCGAAG	CACGACTTGG	ATCCTCTGTA	GTAGAGAGAG	14820
CTGTTAAGGC	TTGGAAACCA	GCGATGGCAA	AAGGTGTGAT	AGAAGCTTCT	GTTCCTCCCA	14880
CCAACATCAC	ATCTTGGAAA	CCAAACTTAA	TGGAGCGGAA	GGCATCCCCA	ATCGCATCAT	14940
TTGATGAAGA	GCAGGCAGTA	TTGATAGATT	TACAAACACC	GTTTGCACCA	AAACGCATGG	15000
CTACATTCCC	AGAAGCCATA	TTTGGTAAAG	CTTTTGGAAG	AGTCATTGGT	TTGACACGTT	15060
TGGGTCCTTT	TTCATGAAGG	CGAAGTACCT	GATCTTCAAT	TTCCTTGATT	CCACCAATAC	15120
CAGATGCAAC	GATAACACCA	AAACGATCCC	TATTAAGAGC	СТСТАСАТСА	AGATTGGCAT	15180
GATTTACAGC	CTCTTGGGCT	GCATACAAGG	CATATAAAGA	ATAGTTATCA	AAACGGTTGG	15240
TATCTTTTTT	TACAAAGTAT	TTATCGAACG	GAAAATCTTG	GATTTCTGCC	GCATTATGCA	15300
CATCAAAGTC	ACTATGATCÀ	AATTTTGTAA	TGCCACCAAT	GCCGATTTTC	CCAGTTGCTA	15360
AACTATTCCA	AAATTCTTCT	GGTGTATTTC	CGATTGGAGA	TGTTACTCCA	TAACCTGTTA	15420
CCACTACTCG	ATTTAGTTTC	ATTCTTTTCA	CCTCTAGCTT	TCGCTACAȚA	CTTAAGCCAC	15480
CATCAATGGC	AACCACTTGT	CCAGTTAGAT	AATCTTGGCC	TGCTAAAAAT	ACTGTCAAAT	15540
CTGCAACCTG	CTCTGCCTGC	CCAAATTCTT	TCATCGGAAT	CTGAGCTAGT	GTAGCTTCCT	15600
TAATCTTATC	TGACAGGATA	GCGGTCATAT	CAGACTCAAT	CATTCCTGGA	GCAATCACAT	15660
TGACTCGTAT	ATTCCGACTA	GCGACCTCGC	GTGCCACAGA	CTTGGTAAAG	CCAATCAAGC	15720
CAGCCTTAGA	AGCAGCATAA	TTAGCTTGAC	CAATATTCCC	CATCAAACCA	ACAACACTAG	15780
ACATATTAAT	GATAGCACCT	TCTCTGGCTT	TCATCATCGG	TTTCAAGACT	GATTGTGTCA	15840
TATTAAAGGC	ACCAGTCAGA	TTGACCTTGA	GCACTTTTTC	AAAATCTGCT	TCTGTCATCT	15900
TGAGCATAAG	AGTATCTTGG	GTAATCCCTG	CATTGTTGAC	CAAAACATCT	ACTGAACCCA	15960
GTTCTGCAAT	AGCTTGATCA	ATCATACGCT	TAGCGTCTGC	AAAATCTGAT	ACATCTCCTG	16020
AAATGGGAAC	CACCTTGATA	CCATAGTTTG	AAAACTCAGC	GAGCAATTCT	TCTGAGATTG	16080
CCCCACGACT	GTTTAAGACA	ATGTTGGCTC	CTGCTTGAGC	AAACTTGTGG	GCGATGGCAA	16140
GACCAATTCC	ACGACTCGAA	CCTGTAATAA	AGATATTTTT	ATGTTCTAGT	TTCATTTTTT	16200
TCCTTTCAAA	ACTTCTACTT	ATTTTAGTCT	ATTTTTCTAA	AAGTGCTACT	AAACTCGCTT	16260
GATCTTCCAC	ATGAGCTAAG	TGAGCAGTTT	GATCAATTTT	TTTAACAAAA	CCTGACAAGA	16320
CTTTCCCCGG	TCCAATCTCG	ATAAAGTTGC	TTATGCCTGC	TTCTTGCATG	ACCCCAATAC	16380
TTTCATAGAA	ACGAACGGGT	TCCTTGACCT	GACGCGTCAA	GAGCTGAGCA	ATGTCCTCTT	16440

			204			
TTTGCATCAC	AGCAGCTTCT	GTATTGCCGA	CTAGGGGACA	AGTAAAATCT	GAAAAACTTA	16500
CCTGAGCTAG	AGTTTCAGCT	AGTTTCTGGC	TAGCAGGTTC	AAGGAGAGCG	GTGTGAAAGG	16560
GACCTGACAC	CTTAAGAGGA	ATCAAGCGTT	TGGCACCTGC	TTCTTGCAAA	AGTTCAACCG	16620
CTCGATCAAC	TGCAACCACT	TCTCCAGCAA	TGACGATTTG	TGCAGGTGTG	TTATAGTTGG	16680
CTGGAGTAAC	CACTCCAAGT	TCAGAAGCTT	TTTGACAGGC	TTCTTCAATG	ACCTCTACTG	16740
GCGTATTGAG	AACTGCTACC	ATCTTGCCAG	AGTCAGCAGG	AGCCGCTTCT	TCCATATAGG	16800
CTCCACGCTT	AGCTACCAAG	GCAACCGCAT	CTTCAAAATC	CAAGGCGCCA	CTTGCCACCA	16860
AGGCAGAGTA	TTCTCCAAGA	GACAAACCAG	CAACCATATC	AGGCTGATAG	CCCTTTTCTT	16920
GCAATAAACG	GTAGATAGCA	ACCGAAGTCG	CTAGAATGGC	TGGTTGCGTA	TAGCGGGTCT	16980
GATTGAGTTT	GTCTTCTTCC	GTATCGATGA	GATAACGCAA	ATCATAACCG	AGCACCTGGC	17040
TCGCTCGATC	AATCGTTTCT	TTAACAATCG	GATACTGATC	ATAGAAATCC	CGTCCCATCC	17100
CTAGATACTG	GGCACCTTGA	CCAGCAAATA	AAAAGGCTGT	TTTAGTCATT	TCTTACAACT	17160
CCTGTCCAGC	GAGAGGCTTC	TTCTTGAATT	TTCTTAGCGG	CTCCGTAATA	CAAATCTTTT	17220
AGGATTTCTT	CAGCTGTTTC	TTCTTTAGAA	ACAAGCCCTG	CGATTTGACC	TGCCATAACA	17280
GAGCCACCAT	CCACATCACC	GTGAACAACT	GCTTTGGCTA	GAGCACCTGC	TCCCATTTGT	17340
TCAAAGATTT	CTAAATCAGG	ATCTTCTTGC	TTAAAGGCAT	CTTTTTCAGC	CAGTTCAAAA	17400
TCTCTAGTCA	ACTGATTTTT	AATAGCACGA	ACAGCATGAC	CAAAGTGCTG	AGCTGAAATC	17460
GTAGTATCAA	TATCCCTTGC	TTTTAAAATT	TTCTCCTTGT	AGTTTGGATG	GGCATTCGAC	17520
TCTTTTGCAA	CTACAAACCG	TGTCCCCACC	TGTACAGCCT	CTGCACCTAG	CATAAAGCCA	17580
GCCGCAGCAC	CTTCACCATC	CGCAATTCCT	CCTGCAGCAA	TAACAGGAAT	AGATATAGCT	17640
GTGGCTACCT	GTCGCACCAA	GGTCATGGTT	GTTAATTTAC	CGATATGCCC	CCCAGCTTCC	17700
ATTCCTTCTG	CAATAACAGC	GTCTGCACCG	ATTTTTTCCA	TGCGTTTAGC	TAAAGCGACA	17760
CTAGGAACAA	CAGGAATAAC	GATTATCCCA	GCTTCATGGA	AACGTTCCAT	ATACTTGCTT	17820
GGATTTCCTG	CTCCTGTTGT	GACAACTTTA	ACACCTTCTT	CAATAACGAG	ATCCACGATG	17880
TCTTCCACAA	AGGGAGATAA	GAGCATGATG	TTGACCCCAA	AGGGTTTATC	AGTCAATGAT	17940
TTGATTTTAT	CAATATTGGC	CTTGACAACT	TCTTTCGGGG	CATTTCCCCC	ACCGATAATT	18000
CCTAATCCTC	CAGCCTTGGA	AACAGCCCCT	GCCAAATCAC	CATCAGCAAC	CCAGGCCATC	18060
CCTCCTTGGA	AAATAGGATA	ATCAATCTTC	AATAATTCTG	TAATACGCGT	TTTCATAGTG	18120
CCTCCAACCT	TCCTTGCTTA	CGTAATAGTT	CGATTTCACC	ATAATTTGAC	AGTCAAACTA	18180
TTACCTAAAC	AAGAGGGAGT	GGGTTTCTCC	CTACTCCTTC	TACTAATATT	CTGCTTATTT	18240

TGCTTGCTCT	TCAACGTAAG	CAACCAAGTC	ACCAACTGTT	TTCAAGTCAT	TTTCTGCTTC	18300
GATTTGGATA	TCAAAAGCAT	CTTCGATTTC	TGAGATTACT	TGGAACAAGT	CCAATGAATC	18360
TGCGTCCAAA	TCATCAAAAG	TTGATTCAAG	TGTTACTTCT	GATGCGTCTT	TTCCAAGTTC	18420
TTCAACGATA	ATTTCTTGTA	CTTTTTCAAA	TACTGCCATG	ATAGGACTCC	TTTAAAATAA	18480
ATAGTTTTT	TATAACAATG	TGTTCACCAC	ATGATTACCT	AAATTGTAAG	AATGAGCGTG	18540
CCCCAGGTCA	AGCCTCCACC	GAAGCCTGAT	AGAAGAACAG	TCTGGCTACC	ATCTAAAGGG	18600
ATGAGACCTT	GTTCTACACA	CTCTGAAAGT	AAAATCGGGA	TACTGGCTGC	ACTGGTATTG	18660
CCATATTCCA	TCATATTGGC	TGGAAGTTTG	GCTCGGTCAA	CACCAATTTT	TCTAGCCATC	18720
TTATCCAAAA	TACGGTCATT	GGCTTGATGA	AGTAGCAGAT	AATCCAAGTC	TGTCACCTCT	18780
ATAGGAGATT	CATCAATAGT	CTGCTTGATA	GACTTGGCTA	CATCTCGAAT	GGCAAAATCA	18840
AAGACTGTGC	GTCCATCCAT	CTTCAAAAAC	GAATCTGCAC	TTTCTTGATC	TGAAAATGGA	18900
GAATGTAAAC	CTGAATGCCC	ATAAGTTAAA	CACTCGCTGC	GACTTCCATC	GCTATTGAGA	18960
CTCTCAGCTA	AGAAATGCTC	TTGCTCGCTA	GCTTCTAACA	AGACACCACC	AGCACCATCT	19020
CCAAACAACA	CAGCTGTTGA	TCGATCCGAC	CAATCGACTG	CCTTAGAGAG	GGTTTCACTA	19080
CCAATCACCA	AGCCTTTTTG	AAAGCGACCA	GAAGCGATAA	ACTTTTCAGC	AGTTGAAAGA	19140
GCAAATACAA	ATCCACTGCA	AGCCGCGGTT	AAGTCAAAAG	CAAAGGCTTT	ATTAGCACCA	19200
ATATTAGCTT	GAACACGAGC	AGCTGTAGAG	GGCATCATCG	AATCTGGAGT	AATGGTAGCT	19260
AGGATGATAA	AATCCAGTTC	TTCTCCTGTT	ATTCCAGCTT	TTGCCATCAG	TTTCTTAGCA	19320
ACCTCTGTAG	CCAAATCACT	GGTAGATTCT	GTTCTTGAAA	TATGCCTTTG	TCGTATTCCC	. 19380
GTTCGACTTG	AAATCCACTC	ATCATTGGTA	TCCATAATCT	GAGCCAAGTC	GTGATTTGTA	19440
ACCACTTGCT	CTGGCACATA	ATGAGCAACC	TGACTTATTT	TTGCAAAAGC	CATTATTTCA	19500
AATCCTCCAA	AAATTGGTAA	AGATTAGTCA	AACCTTTACC	CATGACAGCA	ATTTCTTCCT	19560
CGCTCATGCC	ATCAATAATT	TTTTCTACCA	TGGCCTTGTG	GAAGCGTTTA	TGCAGTCTAT	19620
GAATCAAGCG	ACCCTTCTTT	GTCAAATGCA	GATGCACCAC	ACGACGATCC	TGTTCTGACC	19680
GAACTCGCTC	AATGTAGCCC	GG	•			19702

(2) INFORMATION FOR SEQ ID NO: 8:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6211 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

60	AACAAGTTAT	GTATGATAGT	TGAAAAAATG	TGAAAAATTT	TCTCTTCTCT	GAAAATTTCC
- 120	CTAAGACGGG	TTAGAATCTC	GAAAATCAGT	GAATAATGGA	AAAGAAAGGG	TTTTAAGAGG
180	TTGGTTATCC	GATACCATCT	TTTAGGAGTT	CACTTCGTGA	GTTTTGGAAA	GTCGGACCTA
240	TTCGCCACAT	TTTAAAGGCA	GATATATAAT	TTTATGATGC	GTTTTGCCTT	TGGTGGTGCG
300	AATCAACTGG	GGTTATGCCA	TGAAGCTGAA	GTTGTTTGCA	CATGAGCAAG	TCTAGGGCGC
360	TTACAGGGAT	ACAAATGCCA	ACCAGGAGCA	TCACTAGTGG	GTTGCCGTCG	AAAGTTGGGT
420	TGGCGCGAGC	ACAGGTCAGG	TTTGGTCTTT	GCGTTCCCCT	ATGAGCGATA	TGCGGATGCC
480	TGCCAATCAC	GGAATTACCA	AGACATCGTG	TTCAGGAGGC	AAGGATGCCT	AGGGATTGGG
540	CGGAAGCTGT	CGTATCATTA	TGATATTCCG	GTGAGACAGC	TACCAAGTTC	TAAGTACAAT
600	AAGACATATC	GACCTACCAA	AGTTGTAATT	GTCCAGGGCC	ACTACAGGCC	CCATATCGCA
660	ATCAGCCGAC	TTACCAAGTT	AGAAGTGAAT	TTTATTCACC	ACAGACTTCA	TGCTTTAGAA
720	AGGCTAAAAA	CAATTGTCCA	AATCTTGAAG	AAATCAAGAA	AATGATATGC	TCTTGAGCCG
780	AACTAAATGA	GCTGCTACGG	TTATGCTGAG	GTGGAATTAG	TTAGCTGGTG	GCCAGTCTTG
840	GAACGATTGC	TTGGGACAAG	AACCAGTCTT	TTCCAGTGGT	CGCTATCAAA	ATTTGCAGAA
900	CAGCAAATAT	GGGTCATTČG	AGGCATGCAC	TTGGAATGGG	CCACTCTTTC	AACGAGTCAC
960	ACCGTTTGAC	CGTTTCGATG	TATTGGTTCT	TTATGATTAG	GAAGCGGACT	TGCTATGACG
1020	TTGACCCAGC	CACATTGATA	TAAGGTTGCC	CTAAGAATGC	AAGACTTTCG	GGGGAATCCT
1080	AGAAGGCCTT	GGAGATGCTA	TCCTGTAGTT	GTGCAGACAT	AAGATTATCA	TGAGATTGGC
1140	TTGAGAAAGT	GAAAAGTGGA	CAACAACACT	CAACAGTTCA	CTAGCAGAAC	GCAAATGTTG
1200	TTCAACCGCA	GAGCGTGTGG	TGATAAGAAA	TTCGTTCTTA	AAGAATCGTG	CACTAAAGAC
1260	TAACAGACCT	GCCATTGTGG	GAATGGAGAT	GTGAATTGAC	GAACGAATTG	AGCAGTTATT
1320	GTCAGTTAGT	CAAAATGAAC	TTATCCCTAC	CAGCTCAGTA	CAAATGTGGA	TGGTCAACAC
1380	GTGCTAAAAT	GCAGCAATCG	TGGAATTCCA	CAATGGGCTT	GGTTTGGGAA	GACTTCAGGT
1440	AAATGACCAA	GGTGGTTTCC	TGTTGGGGAT	TAGTCTTGTT	GATAAGGAAG	TGCTAACCCA
1500	TGCTGAACAA	AAGGTGGTTA	GGTGCCAATC	ATATTTACAA	GCTATTTTGA	CCAGGAGTTG
1560	GAACATCAGA	TATGAAGGCA	GGAATCCTTC	GCCAGTGGCA	GGAATGGTTC	TCATTCACTT
1620	GTATTAAAAA	CAGGCTTATG	ATTGATGGCG	CTGATTTCCA	GATACCCTTC	GTCGGTCTTT
1680	CTGAGGATGT	GAAGTCATÇA	TCAAGACCTT	AGACCTTGGC	GACAATCCTG	CTATAAGTTT

PCCTATGCTA	ATTGAGGTAG	ATATTTCTCG	TAAGGAACAG	GTGTTACCAA	TGGTACCGGC	1740
IGGTAA GAGT	AATCATGAGA	TGTTGGGGGT	GCAGTTCCAT	GCGTAGAATG	TTAACAGCAA	1800
AACTACAAAA	TCGTTCAGGA	GTCCTCAATC	GCTTTACAGG	TGTCCTATCT	CGTCGTCAGG	1860
ITAATAT TGA	AAGCATCTCT	GTTGGAGCAA	CAGAAGATCC	GAATGTATCG	CGTATCACTA	1920
ITATTATTGA	TGTTGCTTCT	CATGATGAAG	TGGAGCAAAT	CATCAAACAG	CTCAATCGTC	1980
AGATTGATGT	GATTCGCATT	CGAGATATTA	CAGACAAGCC	TCATTTGGAG	CGCGAGGTGA	2040
ITTTGGTTAA	GATGTCAGCG	CCAGCTGAGA	AGAGAGCTGA	GATTTTAGCG	ATTATTCAAC	2100
CTTTCCGTGC	AACAGTAGTA	GACGTAGCGC	CAAGCTCGAT	TACCATTCAG	ATGACGGGAA	2160
ATGCAGAAAA	GAGCGAAGCC	CTATTGCGAG	TCATTCGCCC	ATACGGTATT	CGCAATATTG	2220
CTCGAACGGG	TGCAACTGGA	TTTACCCGCG	ATTAAAAATC	CAACTTAAAT	TTATTAAACC	2280
AGCCT AAA AG	GCAATAAATA	ATAGAAAAGA	GAGAAAAGCT	ATGACAGTTC	AAATGGAATA	2340
TGAAAAAGAT	GTTAAAGTAG	CAGCACTTGA	CGGTAAAAA	ATCGCCGTTA	TCGGTTATGG	2400
TTCACAAGGG	CATGCGCATG	CTCAAAACTT	GCGTGATTCA	GGTCGTGACG	TTATTATCGG	2460
PGTACGTCCA	GGTAAATCTT	TTGATAAAGC	AAAAGAAGAT	GGATTTGATA	CTTACACAGT	2520
AGCAGAAGCT	ACTAAGTTGG	CTGATGTTAT	CATGATCTTG	GCGCCAGACG	AAATTCAACA	2580
AGAATTGTAC	GAAGCAGAAA	TCGCTCCAAA	CTTGGAAGCT	GGAAACGCAG	TTGGATTTGC	2640
CCATGGTTTC	AACATCCACT	TTGAATTTAT	CAAAGTTCCT	GCGGATGTAG	ATGTCTTCAT	2700
GTGTGCTCCT	AAAGGACCAG	GACACTTGGT	ACGTCGTACT	TACGAAGAAG	GATTTGGTGT	2760
PCCAGCTCTT	TATGCAGTAT	ACCAAGATGC	AACAGGAAAT	GCTAAAAACA	TTGCTATGGA	2820
CTGGTGTAAA	GGTGTTGGAG	CGGCTCGTGT	AGGTCTTCTT	GAAACAACTT	ACAAAGAAGA	2880
AACTGAAGAA	GATTTGTTTG	GTGAACAAGC	TGTACTTTGT	GGTGGTTTGA	CTGCCCTTAT	2940
CGAAGCAGGT	TTCGAAGTCT	TGACAGAAGC	AGGTTACGCT	CCAGAATTGG	CTTACTTTGA	3000
AGTTCTTCAC	GAAATGAAAT	TGATCGTTGA	CTTGATCTAC	GAAGGTGGAT	TCAAGAAAAT	3060
CCTCAATCT	ATTTCAAACA	CTGCTGAATA	CGGTGACTAT	GTATCAGGTC	CACGTGTAAT	3120
CACTGAACAA	GTTAAAGAAA	ATATGAAGGC	TGTCTTGGCA	GACATCCAAA	ATGGTAAATT	3180
rgcaaatgac	TTTGTAAATG	ACTATAAAGC	TGGACGTCCA	AAATTGACTG	CTTACCGTGA	3240
ACAAGCAGCT	AACCTTGAAA	TTGAAAAAGT	TGGTGCAGAA	TTGCGTAAAG	CAATGCCATT	3300
CGTTGGTAAA	AACGACGATG	ATGCATTCAA	AATCTATAAC	TAATTAGAAA	TATATAGCGC	3360

	•		208			
TGTATAATGT	AATTACACCG	TCGGTAATAG	TGCTAGCAGA	CCAAAATAAA	GCAGATTGGT	3480
CGTATGATGA	AAATGCTGTA	ATTAACATTT	ATGATGATGC	TAATTTTGAA	GATGGTAGGT	3540
TGCATATGAA	CTTTGAACAA	TTCTTCAAAT	TGGCACAAAT	AGCTAGAGAA	GAAGGTCTTG	3600
AAATTCATTC	TCCGTTTGAG	AGAGCTGGTG	CGACTAAATC	TGCTCGTTAT	ATAGCGAAAT	3660
GGATTTTGAG	АААТААААА	CATTAACAAA	TATAGTTGGT	AAATCATTAG	GACCTAAATC	3720
AGCTGTTAGA	TTCGGAGAAG	CTTTATCCTA	TATTGAAGGT	CCTCTTCGCA	GAATAAATGA	3780
GACGATAGAT	GGCGGTTTAT	ATCAAATAGA	GCAAATTATT	GCATCTGGAT	TGAAAGAATC	3840
GGGTTTAAAT	GACTGGACTG	CGAAAACTTT	AGCTTCAGCT	ATTCGTGGGA	TATTAGATGT	3900
ACTTATTTAG	GGGTTGAAAT	CATATGAATA	TTACCAATTT	GTTTTCTATC	AAGACAGGAT	3960
GTGATGAAAC	TGATAGGCAA	CTGCAAAAAC	TATTTTTCA	GTTGGATTTA	CAATTGGGAG	4020
AATTGACAGA	TCAACTAAGA	AAATTAGATT	CTAATTTTGT	TCCTCGTAGT	CAATTTGTAG	4080
acacgttgga	TTTGAATGAT	GTAGAATATA	AAGAAATTTT	AAACTATTTT	ATCTTCCATC	4140
GTAATGATAG	TGAAGAAAGT	TTGGTAGAAT	GGTTATATGA	TTGGATTTCC	ACAAATCGTT	4200
ATGAACTTCC	TAAAGAGTTT	TCGATTCGTA	TGGCTCATAA	ATACCATGAA	AGTGTTACTG	4260
AAGTTTTCGG	AGATGAATAA	CTAAAAAACA	GTCATTAGTG	ACTGTTTTT	ATAGAAAAAG	4320
AGGTTTTATA	TGTTAAGTTC	AAAAGATATA	ATCAAGGCTC	ACAAGGTCTT	GAACGGTGTG	4380
GTTGTGAATA	CTCCACTGGA	TTACGATCAT	TATTTATCGG	AGAAGTATGG	TGCTAAGATT	4440
TATTTGAAAA	AAGAAAATGC	CCAGCGTGTT	CGCTCCTTTA	AAATTCGTGG	TGCCTATTAT	4500
GCCATTTCCC	AGCTCAGCAA	GGAAGAACGT	GAACGTGGGG	TAGTCTGCGC	TTCTGCGGGA	4560
AATCATGCGC	AGGGAGTAGC	CTATACTTGT	AATGAAATGA	AAATTCCTGC	TACTATCTTT	4620
ATGCCCATTA	CTACGCCACA	ACAAAAGATT	GGTCAGGTTC	GCTTTTTTGG	TGGGGATTTT	4680
GTAACTATTA	AACTAGTTGG	AGATACCTTT	GATGCCTCAG	CCAAAGCAGC	TCAAGAATTT	4740
ACAGTCTCTG	AAAATCGTAC	CTTTATTGAT	CCTTTTGATG	ATGCTCATGT	TCAAGCAGGT	4800
CAAGGAACAG	TTGCTTATGA	GATTTTAGAA	GAAGCTCGAA	AAGAATCGAT	TGATTTTGAT	4860
GCTGTCTTGG	TTCCTGTTGG	TGGTGGCGGT	CTCATTGCCG	GGGTTTCTAC	CTATATCAAG	4920
GAAACAAGTC	CAGAGATTGA	GGTTATCGGA	GTAGAGGCGA	ATGGAGCGCG	TTCCATGAAA	4980
GCTGCCTTTG	AGGCTGGAGG	TCCAGTAAAA	CTCAAGGAAA	TŢGATAAATT	TGCTGATGGG	5040
ATTGCTGTGC	AAAAGGTAGG	TCAGTTGACC	TATGAAGCAA	CTCGTCAACA	TATTAAAACT	5100
TTGGTAGGTG	TCGATGAGGG	ATTGATTTCT	GAAACCTTGA	TTGACCTTTA	CTCTAAGCAA	5160
GGGATAGTCG	CAGAACCTGC	TGGAGCGGCT	AGTATCGCCT	CTTTAGAGGT	TTTAGCTGAA	5220

209

TATATTAAGG GGAAAACCAT TTGTTGTATC ATTTCTGGAG GAAATAATGA TATCAACCGT ATGCCAGAAA TGGAAGAGCG TGCCTTGATT TATGATGGTA TCAAACATTA CTTTGTGGTC AATTTCCCAC AACGTCCAGG AGCTTTGCGT GAGTTTGTAA ATGATATCCT GGGGCCAAAT 5400 GATGATATCA CACGTTTTGA GTATATCAAA CGAGCTAGCA AGGGAACAGG CCCAGTATTA 5460 ATTGGGATCG CTTTAGCAGA TAAGCATGAT TATGCAGGTT TGATTCGTAG AATGGAAGGT 5520 TTTGATCCAG CTTATATTAA CTTAAATGGT AATGAAACCC TTTATAATAT GCTTGTCTGA 5580 GGACTAATAA AAAAATATCA TACCTTCATT TTGATTTCCT ATCTATTGAC AAGCATAGTC 5640 ACACTGTCTT TAATACTCTT CGAAAATCTC TTCAAACCAC GTTAGCTCTA TCTGCAACCT 5760 CCAAAACAGTG TTTTGAGCAA CTTGCGGCTA GCTTCCTAGT TTGCTCTTTG ATTTTCATTG 5760 AGTATAAAGGT ATGATTTGAT TTCTTTTTGT TGACAAATAT ACTATATTAA AAAGATATAT 5820 GGGATAATAA CTGAGCTTAT CTGTCTTGC ATCTCTATTA AGGATGGTTT AGATAATCGG 5880 GTGTCTGCTT CTAGGCTAGC ACCTCAATAT CCAAAGGAGT GATGAATTTG AAGGACATAA 5940 GGAATACCTA TCTCTCAGAT GATTTATTGA GGAAGAAAGA TAGGAGTTTT TGAGCTAGTG 6000 AAGGCTTGGA TTTCTAAAGG TTAGAACTAT CATCTTCAGT TCTTAAATCG AAGAAATAAG 6060 CTATCTTACG GAAATAGAGA AGCATTTTTT AAGAACTTGA ATAATTTCGC ACCTTAAGAG 6120 GGTAATAATA CAGTATTTT ATTAGCAAAT ATTTATGGTG TAGAGGCTAG CAAAACCTAT 6180 ATATTATCGG ATTTAAAAAG GAAGTAAGAA A 6211 (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7939 base pairs (B) TYPE: mucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear							
AATTTCCCAC AACGTCCAGG AGCTTTGCGT GAGTTTGTAA ATGATATCCT GGGGCCAAAT 5400 GATGATATCA CACGTTTTGA GTATATCAAA CGAGCTAGCA AGGGAACAGG CCCAGTATTA 5460 ATTGGGATCG CTTTAGCAGA TAAGCATGAT TATGCAGGTT TGATTCGTAG AATGGAAGGT 5520 TTTGATCCAG CTTATATAA CTTAAATGGT AATGAAACGC TTTATAATAT GCTTGTCTGA 5580 GGACTAATAA AAAAATATCA TACCTTCATT TTGATTTCCT ATCTATTGAC AAGCATAGTC 5640 ACACTGTCTT TAATACTCTT CGAAAATCTC TTCAAACCAC GTTAGCTCTA TCTGCAACCT 5700 CCAAAACAGTG TTTTGAGCAA CTTGCGGCTA GCTTCCTAGT TTGCTCTTTG ATTTTCATTG 5760 AGTATAAGGT ATGATTTGAT TTCTTTTTGT TGACAAATAT ACTATATAAA AAAGATATAT 5820 AAGTAATTAA CTGAGCTTAT CTGTCTTGTC ATCTCTATTA AGGATGGTTT AGATAATCGG 5880 GTGTCTGCTT CTAGGCTAGC ACCTCAATAT CCAAAGGAGT GATGAATTTG AAGGACATAA 5940 GGAATACCTA TCTCTCAGAT GATTTATTGA GGAAGAAAGA TAGGAGTTTT TGAGCTAGTG 6000 AAGGCTTGGA TTTCTAAAGG TTAGAACTAT CATCTTCAGT TCTTAAATCG AAGAAATAAG 6060 CTATCTTACG GAAATAGAGA AGCATTTTTT AAGAACTTG ATAATTTCCG ACCTTAAGAG 6120 GGTAATAATA CAGTATTTTT ATTAGCAAAT ATTTATGGTG TAGAGGCTAG CAAAACCTAT 6180 ATATTATCGG ATTTAAAAAG GAAGTAAGAA A (2) INFORMATION FOR SEQ ID NO: 9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7939 base pairs (B) TYPE: nucleic acid (C) STRANDEENESS: double	TATATTAAGG C	GAAAACCAT	TTGTTGTATC	ATTTCTGGAG	GAAATAATGA	TATCAACCGT	5280
GATGATATCA CACGTTTGA GTATATCAAA CGAGCTAGCA AGGGAACAGG CCCAGTATTA 5460 ATTGGGATCG CTTTAGCAGA TAAGCATGAT TATGCAGGTT TGATTCGTAG AATGGAAGGT 5520 TTTGATCCAG CTTATATTAA CTTAAATGGT AATGAAACGC TTTATAATAT GCTTGTCTGA 5580 GGACTAATAA AAAAATATCA TACCTTCATT TTGATTTCCT ATCTATTGAC AAGCATAGTC 5640 ACACTGTCTT TAATACTCTT CGAAAATCTC TTCAAACCAC GTTAGCTCTA TCTGCAACCT 5700 CAAAACAGTG TTTTGAGCAA CTTGCGGCTA GCTTCCTAGT TTGCTCTTTG ATTTTCATTG 5760 AGGTATAAGGT ATGATTTGAT TTCTTTTTGT TGACAAATAT ACTATATTAA AAAGATATAT 5820 AAGTAATTAA CTGAGCTTAT CTGTCTTGTC ATCTCTATTA AGGATGGTTT AGATAATCGG 5880 GTGTCTGCTT CTAGGCTAGC ACCTCAATAT CCAAAGGAGT GATGAATTTG AAGGACATAA 5940 GGAATACCTA TCTCTCAGAT GATTTATTGA GGAAGAAAGA TAGGAGTTTT TGAGCTAGTG 6000 AAGGCTTGGA TTTCTAAAAGG TTAGAACTAT CATCTTCAGT TCTTAAATCG AAGAAATAAG 6060 CTATCTTACG GAAATAGAGA AGCATTTTTT AAGAACTTGA ATAATTTCGC ACCTTAAGAG 6120 GGTAAATAATA CAGTATTTTT ATTAGCAAAT ATTTATGGTG TAGAGGCTAG CAAAACCTAT 6180 ATATTATCGG ATTTAAAAAG GAAGTAAGAA ATTTTATGGTG TAGAGGCTAG CAAAACCTAT 6180 ATATTATCGG ATTTAAAAAG GAAGTAAGAA A (2) INFORMATION FOR SEQ ID NO: 9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7939 base pairs (B) TYPE: nucleic acid (C) STRANDEENESS: double	ATGCCAGAAA 1	GGAAGAGCG	TGCCTTGATT	TATGATGGTA	TCAAACATTA	CTTTGTGGTC	5340
ATTGGGATCG CTTTAGCAGA TAAGCATGAT TATGCAGGTT TGATTCGTAG AATGGAAGGT 5520 TTTGATCCAG CTTATATTAA CTTAAATGGT AATGAAACGC TTTATAATAT GCTTGCTGA 5580 GGACTAATAA AAAAATATCA TACCTTCATT TTGATTTCCT ATCTATTGAC AAGCATAGTC 5640 ACACTGTCTT TAATACTCTT CGAAAATCTC TTCAAACCAC GTTAGCTCTA TCTGCAACCT 5700 CAAAACAGTG TTTTGAGCAA CTTGCGGCTA GCTTCCTAGT TTGCTCTTTG ATTTTCATTG 5760 ACGTATAAGGT ATGATTTGAT TTCTTTTTGT TGACAAATAT ACTATATTAA AAAGATATAT 5820 AAGTAATAA CTGAGCTTAT CTGTCTTGTC ATCTCTATTA AGGATGGTTT AGATAATCGG 5880 GTGTCTGCTT CTAGGCTAGC ACCTCAATAT CCAAAGGAGT GATGAATTTG AAGGACATAA 5940 GGAATACCTA TCTCTCAGAT GATTTATTGA GGAAGAAGA TAGGAGTTTT TGAGCTAGTG 6000 AAGGCTTGGA TTTCTAAAGG TTAGAACTAT CATCTTCAGT TCTTAAATCG AAGAAATAAG 6060 CTATCTTACG GAAATAGAGA AGCATTTTTT AAGAACTTGA ATAATTCGC ACCTTAAGAG 6120 GGTAAATAATA CAGTATTTT ATTAGCAAAT ATTTATGGTG TAGAGGCTAG CAAAACCTAT 6180 ATATTATCGG ATTTAAAAAG GAAGTAAGAA A 6211 (2) INFORMATION FOR SEQ ID NO: 9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7939 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	AATTTCCCAC A	ACGTCCAGG	AGCTTTGCGT	GAGTTTGTAA	ATGATATCCT	GGGGCCAAAT	5400
TTTGATCCAG CTTATATTAA CTTAAATGGT AATGAAACGC TTTATAATAT GCTTGTCTGA 5580 GGACTAATAA AAAAATATCA TACCTTCATT TTGATTTCCT ATCTATTGAC AAGCATAGTC 5640 ACACTGTCTT TAATACTCTT CGAAAATCTC TTCAAACCAC GTTAGCTCTA TCTGCAACCT 5700 CAAAAACAGTG TTTTGAGCAA CTTGCGGCTA GCTTCCTAGT TTGCTCTTTG ATTTTCATTG 5760 AGTATAAGGT ATGATTTGAT TTCTTTTTGT TGACAAATAT ACTATATTAA AAAGATATAT 5820 AAGTAAATAA CTGAGCTTAT CTGTCTTGTC ATCTCTATTA AGGATGGTTT AGATAATCGG 5880 GTGTCTGCTT CTAGGCTAGC ACCTCAATAT CCAAAGGAGT GATGAATTTG AAGGACATAA 5940 GGAATACCTA TCTCTCAGAT GATTTATTGA GGAAGAAAGA TAGGAGTTTT TGAGCTAGTG 6000 AAGGCTTGGA TTTCTAAAGG TTAGAACTAT CATCTTCAGT TCTTAAATCG AAGAAATAAG 6060 CTATCTTACG GAAATAGAGA AGCATTTTTT AAGAACTTGA ATAATTTCGC ACCTTAAGAG 6120 GGTAATAATA CAGTATTTT ATTAGCAAAT ATTTATGGTG TAGAGGCTAG CAAAACCTAT 6180 ATATTATCGG ATTTAAAAAG GAAGTAAGAA A 6211 (2) INFORMATION FOR SEQ ID NO: 9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7939 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	GATGATATCA (CACGTTTTGA	GTATATCAAA	CGAGCTAGCA	AGGGAACAGG	CCCAGTATTA	5460
GGACTAATAA AAAAATATCA TACCTTCATT TTGATTTCCT ATCTATTGAC AAGCATAGTC ACACTGTCTT TAATACTCTT CGAAAATCTC TTCAAACCAC GTTAGCTCTA TCTGCAACCT 5700 CAAAACAGTG TTTTGAGCAA CTTGCGGCTA GCTTCCTAGT TTGCTCTTTG ATTTTCATTG AGTATAAGGT ATGATTTGAT TTCTTTTTGT TGACAAATAT ACTATATTAA AAAGATATAT 5820 AAGTAATTAA CTGAGCTTAT CTGTCTTGTC ATCTCTATTA AGGATGGTTT AGATAATCGG GGTGTCTGCTT CTAGGCTAGC ACCTCAATAT CCAAAGGAGT GATGAATTTG AAGGACATAA 5940 GGAATACCTA TCTCTCAGAT GATTTATTGA GGAAGAAAGA TAGGAGTTTT TGAGCTAGTG AAGGCTTGGA TTTCTAAAGG TTAGAACTAT CATCTTCAGT TCTTAAATCG AAGAAATAAG 6060 CTATCTTACG GAAATAGAGA AGCATTTTTT AAGAACTTGA ATAATTTCGC ACCTTAAGAG GGTAATAATA CAGTATTTTT ATTAGCAAAT ATTTATGGTG TAGAGGCTAG CAAAACCTAT 6180 ATATTATCGG ATTTAAAAAG GAAGTAAGAA A 6211 (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7939 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	ATTGGGATCG C	TTTAGCAGA	TAAGCATGAT	TATGCAGGTT	TGATTCGTAG	AATGGAAGGT	5520
ACACTGTCTT TAATACTCTT CGAAAATCTC TTCAAACCAC GTTAGCTCTA TCTGCAACCT 5700 CAAAACAGTG TTTTGAGCAA CTTGCGGCTA GCTTCCTAGT TTGCTCTTTG ATTTTCATTG 5760 AGTATAAGGT ATGATTTGAT TTCTTTTTGT TGACAAATAT ACTATATTAA AAAGATATAT 5820 AAGTAATTAA CTGAGCTTAT CTGTCTTGTC ATCTCTATTA AGGATGGTTT AGATAATCGG 5880 GTGTCTGCTT CTAGGCTAGC ACCTCAATAT CCAAAGGAGT GATGAATTTG AAGGACATAA 5940 GGAATACCTA TCTCTCAGAT GATTTATTGA GGAAGAAAGA TAGGAGTTTT TGAGCTAGTG 6000 AAGGCTTGGA TTTCTAAAAGG TTAGAACTAT CATCTTCAGT TCTTAAATCG AAGAAATAAG 6060 CTATCTTACG GAAATAGAGA AGCATTTTTT AAGAACTTGA ATAATTTCGC ACCTTAAGAG 6120 GGTAATAATA CAGTATTTTT ATTAGCAAAT ATTTATGGTG TAGAGGCTAG CAAAACCTAT 6180 ATATTATCGG ATTTAAAAAG GAAGTAAGAA A 6211 (2) INFORMATION FOR SEQ ID NO: 9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7939 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	TTTGATCCAG C	TTATATTAA	CTTAAATGGT	AATGAAACGC	TTTATAATAT	GCTTGTCTGA	5580
CAAAACAGTG TTTTGAGCAA CTTGCGGCTA GCTTCCTAGT TTGCTCTTTG ATTTTCATTG 5760 AGTATAAGGT ATGATTTGAT TTCTTTTTGT TGACAAATAT ACTATATTAA AAAGATATAT 5820 AAGTAATTAA CTGAGCTTAT CTGTCTTGTC ATCTCTATTA AGGATGGTTT AGATAATCGG 5880 GTGTCTGCTT CTAGGCTAGC ACCTCAATAT CCAAAGGAGT GATGAATTTG AAGGACATAA 5940 GGAATACCTA TCTCTCAGAT GATTTATTGA GGAAGAAAGA TAGGAGTTTT TGAGCTAGTG 6000 AAAGGCTTGGA TTTCTAAAGG TTAGAACTAT CATCTTCAGT TCTTAAATCG AAGAAATAAG 6060 CTATCTTACG GAAATAGAGA AGCATTTTTT AAGAACTTGA ATAATTTCGC ACCTTAAGAG 6120 GGTAATAATA CAGTATTTTT ATTAGCAAAT ATTTATGGTG TAGAGGCTAG CAAAACCTAT 6180 ATATTATCGG ATTTAAAAAG GAAGTAAGAA A 6211 (2) INFORMATION FOR SEQ ID NO: 9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7939 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	GGACTAATAA A	AAAATATCA	TACCTTCATT	TTGATTTCCT	ATCTATTGAC	AAGCATAGTC	5640
AGTATAAGGT ATGATTTGAT TTCTTTTTGT TGACAAATAT ACTATATTAA AAAGATATAT 5820 AAGTAAATTAA CTGAGCTTAT CTGTCTTGTC ATCTCTATTA AGGATGGTTT AGATAATCGG 5880 GTGTCTGCTT CTAGGCTAGC ACCTCAATAT CCAAAGGAGT GATGAATTTG AAGGACATAA 5940 GGAATACCTA TCTCTCAGAT GATTTATTGA GGAAGAAAGA TAGGAGTTTT TGAGCTAGTG 6000 AAGGCTTGGA TTTCTAAAGG TTAGAACTAT CATCTTCAGT TCTTAAATCG AAGAAATAAG 6060 CTATCTTACG GAAATAGAGA AGCATTTTTT AAGAACTTGA ATAATTTCGC ACCTTAAGAG 6120 GGTAATAATA CAGTATTTTT ATTAGCAAAT ATTTATGGTG TAGAGGCTAG CAAAACCTAT 6180 ATATTATCGG ATTTAAAAAG GAAGTAAGAA A 6211 (2) INFORMATION FOR SEQ ID NO: 9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7939 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	ACACTGTCTT 1	PAATACTCTT	CGAAAATCTC	TTCAAACCAC	GTTAGCTCTA	TCTGCAACCT	5700
AAGTAATTAA CTGAGCTTAT CTGTCTTGTC ATCTCTATTA AGGATGGTTT AGATAATCGG 5880 GTGTCTGCTT CTAGGCTAGC ACCTCAATAT CCAAAGGAGT GATGAATTTG AAGGACATAA 5940 GGAATACCTA TCTCTCAGAT GATTTATTGA GGAAGAAAGA TAGGAGTTTT TGAGCTAGTG 6000 AAGGCTTGGA TTTCTAAAGG TTAGAACTAT CATCTTCAGT TCTTAAATCG AAGAAATAAG 6060 CTATCTTACG GAAATAGAGA AGCATTTTTT AAGAACTTGA ATAATTTCGC ACCTTAAGAG 6120 GGTAATAATA CAGTATTTTT ATTAGCAAAT ATTTATGGTG TAGAGGCTAG CAAAACCTAT 6180 ATATTATCGG ATTTAAAAAG GAAGTAAGAA A 6211 (2) INFORMATION FOR SEQ ID NO: 9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7939 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	CAAAACAGTG T	TTTGAGCAA	CTTGCGGCTA	GCTTCCTAGT	TTGCTCTTTG	ATTTTCATTG	5760
GTGTCTGCTT CTAGGCTAGC ACCTCAATAT CCAAAGGAGT GATGAATTTG AAGGACATAA 5940 GGAATACCTA TCTCTCAGAT GATTTATTGA GGAAGAAAGA TAGGAGTTTT TGAGCTAGTG 6000 AAGGCTTGGA TTTCTAAAGG TTAGAACTAT CATCTTCAGT TCTTAAATCG AAGAAATAAG 6060 CTATCTTACG GAAATAGAGA AGCATTTTTT AAGAACTTGA ATAATTTCGC ACCTTAAGAG 6120 GGTAATAATA CAGTATTTTT ATTAGCAAAT ATTTATGGTG TAGAGGCTAG CAAAACCTAT 6180 ATATTATCGG ATTTAAAAAG GAAGTAAGAA A 6211 (2) INFORMATION FOR SEQ ID NO: 9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7939 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	AGTATAAGGT A	TGATTTGAT	TTCTTTTTGT	TGACAAATAT	ACTATATTAA	AAAGATATAT	5820
GGAATACCTA TCTCTCAGAT GATTTATTGA GGAAGAAAGA TAGGAGTTTT TGAGCTAGTG 6000 AAGGCTTGGA TTTCTAAAGG TTAGAACTAT CATCTTCAGT TCTTAAATCG AAGAAATAAG 6060 CTATCTTACG GAAATAGAGA AGCATTTTTT AAGAACTTGA ATAATTTCGC ACCTTAAGAG 6120 GGTAATAATA CAGTATTTTT ATTAGCAAAT ATTTATGGTG TAGAGGCTAG CAAAACCTAT 6180 ATATTATCGG ATTTAAAAAG GAAGTAAGAA A 6211 (2) INFORMATION FOR SEQ ID NO: 9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7939 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	AAGTAATTAA C	TGAGCTTAT	CTGTCTTGTC	ATCTCTATTA	AGGATGGTTT	AGATAATCGG	5880
AAGGCTTGGA TTTCTAAAGG TTAGAACTAT CATCTTCAGT TCTTAAATCG AAGAAATAAG 6060 CTATCTTACG GAAATAGAGA AGCATTTTT AAGAACTTGA ATAATTTCGC ACCTTAAGAG 6120 GGTAATAATA CAGTATTTTT ATTAGCAAAT ATTTATGGTG TAGAGGCTAG CAAAACCTAT 6180 ATATTATCGG ATTTAAAAAG GAAGTAAGAA A 6211 (2) INFORMATION FOR SEQ ID NO: 9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7939 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	GTGTCTGCTT C	TAGGCTAGC	ACCTCAATAT	CCAAAGGAGT	GATGAATTTG	AAGGACATAA	5940
CTATCTTACG GAAATAGAGA AGCATTTTT AAGAACTTGA ATAATTTCGC ACCTTAAGAG 6120 GGTAATAATA CAGTATTTTT ATTAGCAAAT ATTTATGGTG TAGAGGCTAG CAAAACCTAT 6180 ATATTATCGG ATTTAAAAAG GAAGTAAGAA A 6211 (2) INFORMATION FOR SEQ ID NO: 9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7939 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	GGAATACCTA 1	CTCTCAGAT	GATTTATTGA	GGAAGAAAGA	TAGGAGTTTT	TGAGCTAGTG	6000
GGTAATAATA CAGTATTTT ATTAGCAAAT ATTTATGGTG TAGAGGCTAG CAAAACCTAT 6180 ATATTATCGG ATTTAAAAAG GAAGTAAGAA A 6211 (2) INFORMATION FOR SEQ ID NO: 9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7939 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	AAGGCTTGGA 1	TTCTAAAGG	TTAGAACTAT	CATCTTCAGT	TCTTAAATCG	AAGAAATAAG	6060
ATATTATCGG ATTTAAAAAG GAAGTAAGAA A 6211 (2) INFORMATION FOR SEQ ID NO: 9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7939 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	CTATCTTACG G	AAATAGAGA	AGCATTTTTT	AAGAACTTGA	ATAATTTCGC	ACCTTAAGAG	6120
(2) INFORMATION FOR SEQ ID NO: 9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7939 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	GGTAATAATA C	AGTATTITT	ATTAGCAAAT	ATTTATGGTG	TAGAGGCTAG	CAAAACCTAT	6180
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7939 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	ATATTATCGG A	TTTAAAAAG	GAAGTAAGAA	A			6211
(A) LENGTH: 7939 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	(2) INFORMAT	ION FOR SE	Q ID NO: 9:				
	(A (B (C	LENGTH: TYPE: nu STRANDED	7939 base p cleic acid NBSS: doubl	pairs			

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

CCGGACTCCC	CACGATTCTT	CAAAATAACT	GAGTATATTT	CTATCTTGAT	TTTCAGATAT	60
AAATTCTTCC	TTCTGTGGCC	TCTTCTTACG	CTTGAGAAGA	GCTTCTCCGA	CATGGCTTCT	120
TCCTTACTGA	GCAAAACCTT	GAGCATAGAT	AAGTTTGACT	GGCAAGCGTG	CTCTTGTATA	180
TTTGGCTCCC	TTCCCACTAT	TGTGGATAGC	GAGGCGTCTT	CTCATATCAG	TCGTATAGCC	240
TATATAGTAG	GATCCATCAC	GACACTCCAG	AACGTACATA	TAAGCCTTAT	GATCCATAAT	300
AAATCTCTTC	GATTTCGGGC	GTATAAGAGC	CATCATCATT	GTGGACAATC	AAAGGAGGTA	360

			210			
AGACCTTAAA	GCCACTTGTT	GAGCCATCCT	TGATCGCCTC	AATCAAAAGC	ATATTGGCTT	42
CCTTTTCTCT	TTTTGGATAA	ACAAACTGCA	GGCGCTTAGG	GGCTAGATTA	TGTCGTTTTA	. 48
ACGTATCCAA	AATATCCAGA	AGTCGATCAG	GACGATGAAC	CATGGCCAAA	CGCCCATTAG	54
ACTTGAGAAT	ACTCTGGGCA	CTACGACAGA	TTTCTTCCAA	ATTAGTCGTG	ATTTCGTGTC	60
GAGCCAAGAG	ATAATGTTCA	CTCTCGTTCA	GATTAGAATA	AGGATTCACC	TTGAAATAGG	66
GTGGATTACA	CAAAATCATA	TCCACCTTAC	TCCCCTGAAT	GTGAGCAGGC	ATATTTTTCA	72
AATCATCGCA	GATGACCTGC	ATTTGCTCCT	CTAATCCATT	CAAACGGACA	GAGCGTTCAG	78
CCATATCCGC	CAAACGCTCC	TGAATCTCAA	CAGACAATAT	CTGTGCTTGA	GTACGAGTGC	84
TAGCAAAAAG	CCCCACTGCT	CCATTCCCAG	CACAGAAATC	CACAATCAAC	CCCTTCTTAG	90
GAAAACGTGG	AAATCGTGAT	AAGAGAACAC	TATCCACCGA	ATAGCTAAAA	ACCTCTCTAT	96
TTTGAATGAT	TTTGATATCT	GTCGAAAAGA	GCTGGTTAAT	GCGCTCTCCT	GATTTTAATA	102
ATTGTTCTTC	TTCCATGGTC	CTATTATAGC	AAATTCATAT	TAACATTACA	AAAAATATAA	108
AACTCTAAAC	TACTTCTTCT	TTTTTAAATG	GTGCAGGGCT	TCTCCAGTCC	AGATTGGTAG	114
CATTCGTCGA	AAGGGAGCAA	AGCCGTAGTT	AAAGCGGTCG	CTTGAAAAGC	GTCTCCGTCT	120
AGGAAACTGG	TACTTTTCTT	CCTCCAAAGT	GCGGATAGAA	AGACTGGCTT	TCCCTGTAAA	126
TTCATCTAAA	TCCACTACCT	GAACTTGAAC	CTCTTCATCG	ACTTTCAAGG	TTTCATGAAT	132
ATTTTCAATA	AATCCTGTCC	GAATCTCTGA	AATGTGAATC	AGCCCCGTAT	CACCCGTCTC	138
TAACTCAACA	AAGGCACCGT	AGGGCTGAAT	CCCTGTAATA	CGCCCCTTTA	GCTTATCACC	1440
GATTTTCATC	TTAGTCCTCG	ATTTCAATAG	TTTCAATTAC	AACATCTTCA	ACTGGCTTGT	150
CCATAGCTCC	TGTCTCAACA	GCAGCAATGG	CATCCAAGAC	AGCGTAAGAT	GCTTCATCAG	156
CTAACTGACC	AAAAACCGTG	TGACGGCGGT	CTAGGTGAGG	TGTCCCACCT	TGATTGGCAT	162
AGATTTCTGC	AATCGGTTCT	GGCCAACCAC	CACGAGTAAT	TTCTTTCTTA	GAATAAGGTA	168
GGTGTTGGTT	TTGCACGATA	AAGAACTGGC	TGCCGTTGGT	ATTTGGACCA	GCATTTGCCA	174
TGGAAAGAGC	ACCACGGATA	TTGTAAAGCT	CTTCTGAGAA	TTCATCCTCA	AAAGATTCGC	180
CGTAGATTGA	CTCGCCACCC	ATACCAGTTC	CAGTTGGGTC	TCCACCTTGG	ATCATAAAGT	186
CCTTGATAAT	ACGGTGGAAA	ATGACACCAT	CATAGTAGCC	ATCTTTTGAA	AGAGATACAA	192
AGTTAGCCAC	TGTTTTAGGA	GCATGTTCAG	GGAAAAGCTT	GATACGTAAG	TCTCCGTGAT	198
TGGTCTTAAT	AGTCGCAAGA	GGACCTTCTA	CTGTTTCAAT	GTCTACTTGT	GGAAAATGCA	204
ATTCTTTTTC	TACCATACCA	AATACTTCTA	AGGCAGCAAA	AATGCCATCT	TCTTCTAATG	210
TTTTTGTAAT	ATAATCTGCT	TTTTCTTTGA	TTTTATCATG	AGAAATTCCC	ATGGCAACGC	216

TGATTCCAGC	ATAATCAAAG	AGTTCCAAGT	CGTTGAGACC	АТСТССАААА	ACCATGACCT	2220
TCTCTGGTTT	CAAGCCAAGG	TGTTCCACAA	CCTTTTCCAC	CCCCGTCGCT	TTGGAGCCTG	2280
AAATCGGCAC	AATATCAGAC	GAATGTTGAT	GCCAACGAAC	CATGCGAAGT	TTGTCTGAGA	2340
GACTGTCAGG	CAAGTGCAAG	TCATCTCCCT	ТАТСТТСААА	AGTCCACATC	TGATAGATAT	2400
CTTCTTTTTC	ATGGAAATCG	GGATCTACAT	CTAAGTCGGG	ATAAATTGGA	TTGATAGCTT	2460
CACTCATCAT	ATCGGTGCGA	GTCGACAACT	TGGCATCATG	ACTCCCAACC	AAGCCATACT	2520
CAATTCCTTC	TTGCTTAGCC	CAAGAGATAT	ACTCCTCAAC	ATCTGACTTT	TCAATCTGAT	2580
GCTGATAAAT	GACCTGACCT	TTTTTATCTT	CGATATAAGC	CCCATTCAAA	GTTACAAAAA	2640
AGTCAGGCTT	GAGATCACGA	ATCTCTGGAA	CAACACCAAA	AATGCCACGT	CCAGAGGCGA	2700
TTCCTGTTAA	AATTCCTTTT	TCACGCAACT	GTTTAAAAAC	AGTGGGAATT	GTAGTTGGAA	2760
TAAACCCTGT	CTTTGAATTC	CGCAATGTAT	CATCAATATC	AAAAAAGACA	ATCTTGATCT	2820
TCTTTGCCTT	GTATCTTAAT	TTCGCGTCCA	TCTCACTACC	TCTTTCAATC	TAACTCTTTC	2880
CATTATATCA	TAAAGTAGGC	AAATCCCCTA	TTTTCAAAAA	GTTTATCATT	TTTATTTTAA	2940
TTTCTTGGAT	GAGAAAAGAG	ACATATTTAT	GAAAAAGCTC	CATCGTGCTT	TTAATGTGTT	3000
CTCTTGTTTT	CAAACTCGTA	AAAAGGGAGC	CACTGATCCT	AACTCGCTCT	CTCATTTCAA	3060
AGCTTGTGAA	AAAAGACCCG	TTGGGGTCTT	AATTCGCTTT	CTTGTTTTCA	AGCTCATGAA	3120
AAAGAGACCC	AACTGGGTCT	TTTCTTTAAT	CTTCGTTTAC	GAAAGGCATC	AAAGCCATTA	3180
CGCGAGCGCG	TTTGATAGCT	GTTGTTACTT	TACGTTGGTT	TTTAGCTGAA	GTTCCTGTTA	3240
CACGACGAGG	AAGGATTTTC	CCACGTTCTG	AAACGAAACG	GCTAAGAAGC	TCAGTATCTT	3300
TGTAATCAAC	ATATTCAATT	TTGTTTGCTG	CGATGTAATC	AACTTTTTTA	CGGCGTTTGA	3360
ATCCGCCACG	ACGTTGTTGA	GCCATGTTTT	TTCTCCTTTA	TAAGTTTAGT	TGTCCATTAG	3420
AATGGTAAAT	CATCATCTGA	AATATCCAAT	GGGTTTGTTG	CTCCAAATGG	ATTTTCATTA	3480
CGTGAAAAGT	CTGGTACTGA	ATTTGTAGGT	GCTGAATAGT	TTGCAGTTGG	TGCAGAGTAA	3540
GCTCCACCTG	TGTGACCCTC	ACGCACACTA	CGGCTTTCCA	ACATTTGGAA	ATTCTCAGCC	3600
ACGACCTCTG	TCACGTAGAC	ACGTTGTCCT	TGCTGGTTAT	CGTAACTACG	AGTCTGGATA	3660
CGACCTGTCA	CCCCGATAAG	TGAGCCTTTT	TTAGCCCAGT	TAGCAAGATT	TTCAGCCTGT	3720
TGGCGCCACA	TAACGACATT	GATAAAATCA	GCCTCACGTT	CACCATTTTG	АСТСТТАААТ	3780
GTACGGTTTA	CTGCAAGAGT	AAAAGTCGCA	ACTGCTACAT	TTGATGGGGT	ATAACGCAAC	3840
TCAGCGTCAC	GTGTCATACG	CCCTACAAGT	ACAACATTGT	TAATCATAGT	TTACCTTCTT	3900

			212			
ACGCGTCAAT	TTTGACGATC	ATGTGACGAA	GAATGTCAGC	GTTGATTTTT	GAAAGACGGT	3960
CAAACTCTTT	AAGAGCTGCA	TCGTCATTTG	CTTCAACGTT	AACGATGTGG	TAAAGTCCTT	4020
CACGGAAATC	TTGGATTTCG	TATGCAAGAC	GACGTTTTTC	CCAAGTTTTT	GATTCAACAA	4080
CAGTTGCACC	GTTGTCAGTC	AAAATAGAGT	CAAAACGTGC	TACCAAAGCG	TTTTTAGCTT	4140
СТТСТТСААТ	GTTTGGACGA	ATGATATAAA	GAATTTCGTA	TTTAGCCATT	GATATGTTCC	4200
TCCTTTTGGT	CTAATGACCC	CAAGACTTTG	CAAGGGGTAA	GTGAGGTTCG	CTCACAATAA	4260
ACTATTATAC	TAGAAAAAAT	TTTTTTACGC	AAGTAAAAAC	ACTAGAATTC	GAAAAAACGC	4320
CACATGGGCG	TTTTCCTGTT	CTTATGGTTT	GATACGGTGC	AACATACGTG	GGAATGGAAT	4380
AGCTTCACGG	ATATGTTTTG	TTCCTGCTGC	GAAGGTTACC	ATACGTTCGA	TACCGATACC	4440
AAATCCTCCG	TGTGGAACTG	TACCGTATTT	ACGAAGGTCA	AGGTAGAATT	CATATTCTGT	4500
ACGATCCATG	CCAAGTTCAT	CCATCTTAGC	GACAAGGGCA	TCGTAATCTT	CCTCACGCAT	4560
AGACCCACCG	ATAATTTCTC	CATAGCCTTC	TGGAGCAAGC	AAGTCTGCAC	AAAGCACGCG	4620
CTCTGGATTT	CCAGGAACTG	GTTTCATGTA	GAAGGCCTTG	ATGGCTGCTG	GATAGTTCAT	4680
GACAAATGTT	GGCACACCAA	AGTGGTTTGA	AATCCAAGTT	TCGTGTGGTG	ACCCAAAGTC	4740
ATCACCATGC	TCAAGATGCT	CGTAGTCAGC	ATCTTCATCA	TTTTCATGCT	CTTGCAAGAG	4800
GTCAATGGCT	TGATCGTAAG	TGATACGTTT	GAATGGCTCT	GCAATGTAGC	GTTTCAAGAG	4860
TTCTGTATCA	CGTTCCAAGG	TTTCCAAGGC	TTGAGGCGCG	CGGTCAAGAA	CACCTTGTAG	4920
AAGAGCTTTC	ACATAAGCTT	CTTGCAAGTC	AAGCGACTCA	TCATGTGTCA	AGTATGAGTA	4980
CTCAGCATCC	ATCATCCAGA	ACTCAGTCAA	GTGACGGCGT	GTTTTTGATT	TTTCAGCACG	5040
GAAAACTGGA	CCAAAGTCAA	AGACACGACC	AAGAGCCATA	GCCCCTGCTT	CTAGGTAAAG	5100
CTGACCTGAT	TGGCTCAAGT	AGGCTGGCGT	TCCGAAGTAG	TCAGTTTCAA	AGAGTTCTGT	5160
AGAATCTTCT	GCCGCATTTC	CTGAAAGAAT	TGGGCTGTCA	AACTTCATAA	AACCGTTCTT	5220
GTCAAAGAAC	TCATAAGTTG	CATAGATAAT	AGCGTTACGG	ATTTGCAACA	CAGCTACTTG	5280
CTTACGAGAG	CGTAgCCACA	AGTGACGGTT	ATCCATCAAA	AAGTCTGTTC	CGTGTTCTTT	5340
TGGTGTGATT	GGGTAGTCTT	GAGATTCACC	GATCACTTCG	ATGTCTGTGA	TGTCCAACTC	5400
ATAGCCAAAT	TTAGAACGTT	CGTCCTCTTT	GACAATACCT	GTCACATAAA	CAGACGTTTC	5460
TTGGCTCAAG	CGTTTGATAA	CATCAAACTT	CTCAAGTCCC	ACTTCTTCAC	CAAATTTTTC	5520
GACAAAGTTT	GGTTTAAAAG	CCACACCTTG	AAAGAAGGCT	GTTCCATCAC	GCAATTGTAA	5580
GAAAGCGATT	TTTCCTTTTC	CTGATTTGTT	GGCAACCCAA	GCGCCAATCG	TCACTTCCTG	5640
ACCAACATAG	TCTTTTACGT	CAATAATCGT	TACACGTTTT	GTCATTATTT	TTCCTTTTCT	5700

TTTTTATTCT	TTATGGCAAA	CCACCTCTAT	ATTGTTCCCA	TCCAGGTCAA	TCATAAAAGC	5760
AGCATAGTAA	ATCGGATGCT	CACTTCGATA	ACCAGGAGCC	CCATTGTCTC	GCCCACCTGC	5820
CTCTAAGCCA	GCCTCATAAC	AAGCCTGAAC	TTCTTCCTTA	TTTTCTGCTA	AAAAAGCAAA	5880
NTGAACAGGA	TCTTGTGTTC	CCTGAGTCAG	CCAAAAATCA	CCACCAGGAT	GAGGGCTGTT	5940
CGGGGATAGA	AAACTAATTA	GAGAACTAGT	CTTAAAAGCC	AATTTATAGT	CCAAAGGAGC	6000
GAGAAAACTC	CTATAAAATC	CTTATGAAAT	TTGTAAATCC	TTTACCTTAA	TCTCAAAATG	6060
ATCAATCATT	CTCACTACCC	ATAAATGCTT	TCAAGCGTTC	GACTGCTTCT	TTAAGCGTGT	6120
CTAGGTCTGT	CGCATAGCTG	AGGCGGACAT	TTTCTGGTGC	TCCAAATCCA	GCTCCTGTTA	6180
CAAGGCCAC	TTCGGCTTCT	TCTAAGATAA	CAGTTGTAAA	GTCTGTCACA	TCCGTGTAGC	6240
TTTCATCTC	CATGGCCTTT	TTGACATTTG	GGAAGAGATA	GAAGGCCCCT	TGCGGTTTGA	6300
CACTTCAAA	TCCTGGTACC	TCTGCAAGGA	GGGGATAGAT	GGTATTAAGA	CGTTCCTCAA	6360
AGGCCTGACG	CATGCTTTCT	ACAGTATCTT	GCTCACCTGA	TAGAGCCTCA	ACTGCTGCAT	6420
ATTGGGCTAC	TGCTGACGGA	TTCGAAGTTG	TTTGACCTGC	AATCTTGGAC	ATGGCAGCGA	6480
PAATGTCTGC	TTCTCCAACG	GCATAACCAA	TCCGCCAACC	AGTCATGGCA	TAAGTTTTAG	6540
ACACACCATT	GATGACCACT	GTTTGCTTGC	GAATCGCTTC	CGATAGGCTA	GAAATCGGTG	6600
GAACTCATG	ACCATTATAA	ACCAAGCGGC	CATAGATATC	GTCTGCTAGG	ATGAGAATAT	6660
CATTTTCTAC	AGCCCAGTTT	CCAATTGCCA	AGAGTTCCTC	ACGGGTGTAA	ATCATACCTG	6720
rgggattaga	TGGCGAATTC	AGCACCAAAA	CCTTGGTCTT	GTCAGTGCGA	GCTGCTTCTA	6780
CTGCTCTAC	GGTCACCTTA	AAGTGATTGT	CTTCCTTAGC	AGAAACAAAG	ACGGGAACGC	6840
CTTCTGCCAT	CTTGACCTGA	TCTCCATAGC	TAACCCAGTA	TGGGGTTGGG	ATGATGACTT	6900
ATCACCTGG	ATTGACCACA	GCCATAAAGA	AGGTATAGAG	AGAATATTTG	GCTCCCGCAG	6960
GACTGTCAC	TTGATTTGAC	GCTACAGAAT	AGCCGTAAAA	GCGCTCAAAG	TAGCTATTGA	7020
CGCCGCCTT	AAGCTCTGGC	AGACCTGAGG	TTACTGTATA	AAAAGAAGCA	CGCCCATCTC	7080
SAATCGATGC	AATGGCGGCA	TCTTGGATAT	TTTTGGGAGT	AGTGAAATCT	GGCTCACCCA	7140
AGGTTAGAGA	CAAAATATCT	CTACCCTCAG	CCTTCAGTGC	TTTGGCACGG	GCTCCAGCAG	7200
CAAAGTCAC	ACTTTCTTCC	ATTTCTAAAA	CACGGTTGGA	TAGTTTCATA	GGCCCTCCTT	7260
STTGACCAAT	GCTCCTGTTT	CAAAATCTAC	TAGATAAAAA	TCAGATCCTG	ACTTAACTTC	7320
CAGATTGGC	TTATCTTGAT	AACGGCCAAA	GGTTATCTTG	TCAATCTCGC	CAGCTCCCTT	7380
መ ሶ ርመው አረን አ	ACCCMMMCMC	CONTRACTOR	TO A A A CA COC	mc ammma com	CAMAAACCMA	7440

	•		214			
AATCTTATGG	TCATCTTTAC	CAATCAGGAC	AGCAAGCGCT	TCTTGCTGTT	TGTTACGACC	7500
AAGAACGCTG	TAATAAGATT	CCAAGCCATT	GTATAAATCA	ACCTGATCAG	CCTGCTCTAA	7560
TCCTGCATAC	TGCTGAGCTA	ATTTTTCTCC	TTCACTTTTA	GCTGTTTGAT	AGGGTTTCAT	7620
GCTAAGAGAA	ACCATATACA	GAAAGGAACC	ACTGATAACC	ACAAACAAAA	TCGTCATCCC	7680
TAGACCATAC	TGCCACAGTA	GATTATTTTT	TGCTTTGTTT	TGTCTTTTTT	TCACTCGTCT	7740
ATTTTACCAT	CTATTAAGCT	TTATTACAAG	TGAATATAAG	AATACTCTTC	GAAAATCTCT	7800
TCAAACCACG	TCAGCTTTAT	CTGCAGACCT	CAAAGCTGTG	CTTTGAGCAA	CCAATTCTAT	7860
TTCTCCCTTC	AAACAAAACC	GATTTTGAAA	GTGAAACAGT	TCTTACTTTT	TCAGTCACAA	7920
ATGATTAGAG	TTTGCCGGG		-			7939

(2) INFORMATION FOR SEQ ID NO: 10:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9897 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

CCGCTCTACC GTCAAATAAT TACCATTTTG TTTAATACCG AAATTTTTAT CTACTGAAAA 60 TTCAGTTGGT CTGTTGGTAC GATCGTCGTA TACAGTACCA TTCTCACGAA TAGTATAATT 120 GTAATCAGTA TCACCTTGTT TCCTTAATTT AAGGTAATAA TTACCATCAA TTTGTTTATA 180 ACCTGAATCT TTTCTAGTTG CTTCTCTAAA ACTTACTCCA GCAGGCATCA CATCAGCAAA 240 CATGAGTACT TGTTTGTTCT TTTTTCAAC AATAACAGAG TCAATATAGG TTGCACCACC 300 GCTGATTTGT AAGTCACGTC CACCAACTTC ACGAGGCCAT TCTAATGGTA CTGGCGCAAA 360 ATCATCGAAT GCCAATGTTA ATTTTGGTTT AGTCCATGTC TTACCATTAT CATCACTATA 420 ACTTGTAGCA ATATTAATTT TATTCAAGAA ATCATGAGTT CCACCGTAAC GAGCGTCAAT 480 GCTTGAAAAT ACCCGACCAT TGCTAAAAGT ATACAGAACT GGAATACGGA AATAGTTAGA 540 ACCTGTTGTA TCATTAGCCG TATAAATTAA ATGTCCAGTA ACAGCGTTTG TTGTCATCTT 600 TTTAACAGTT TCTTCATCCA ATGCACTATT AAAGAATTTG ATATTTTCTA GTGTTCCGTT 660 AAAACCAAAC GCCGTTTTTC CTGCACGTTT CACTCCCCCA AGCATATAGT AATCAATACC 720 TTTAATATCC TTGATGTTTA GGAAATTATC CACTTTCTTT TCTACTACTT TTGTACCATT 780 TGCGTATAAA GAATATGTTT TTTTGACTGA ATCTGCTACT ACTGCAACAG TGTTAGTCAC 840 AGCCTCTTGT TTGTACTTAC CCCAAACTGA AGCAGGTCTG GATACTAGGT TATTTTTATT 900

GGAAGAAGTA	TCACGCGCTT	CCATCCCCAA	CTCACCATTG	TCTCTAAGGA	ACACATCTAC	960
ATAACTATTT	TGTTGACCGG	GTTTGGAATT	AGATATTCCA	AACAGAGCTT	GTAAGCCTTT	1020
CTCACTTGAC	TGATTGTACT	TAATCACTAC	AGTAAAGTCA	CCGCTAGTAA	ATTTATCCTT	1080
TAACTCTTTA	GTAACATTTT	CTCCGCCCCC	TGTTAAAGTA	ACATTATTT	TTTCTAAGAC	1140
AGGAGTTTCT	TCCGCTGTAG	AAGATGGATC	CTTAACAGTA	GTTTCAACTG	TTCGAGGTTG	1200
TACAGTAACT	TCCGAAGAGT	TATCCGATGT	AGGTTGTACT	TCCGAAATCG	GAGTCGTTGG	1260
TGCAACAGGT	TGCACCAACT	TTGGTGTTGA	TACTTCAGAA	GTTTCAGTCT	CCTGAGCTGC	1320
AACTGAGTTA	GCAACAAATG	CTGATAATAC	CACTACAGTA	CCTAAGGTTA	CATATTGTTT	1380
AATATTTTTT	TTCATTTTAT	TTTTCCTCGT	TTAAAACTTT	GATAACAAGT	TTTTTAACAG	1440
TTTCATCATT	GCAATGAATC	TTTGGTTGGT	GAAGATCTTC	TTCAAAAGTC	ACCAACATAT	1500
TCCCTGGAAG	CAATTCAACA	ATTTGATAGT	CTTTGCTATC	GTAAAAAGCA	ATATCCTTCT	1560
CTTCGCTAAA	AGGTACACGT	GACTGGGCAC	GAACTGGGGA	AGTTACTGCC	ATTTTTTCAG	1620
TATTTTCAAC	AACAATATGA	ATATCTAAAT	ATTTCTTATG	AGTTTCAAAA	ATATCTCCTG	1680
GAACTCCATC	AGCTAGATAA	GTCATACAAT	TTGCAAAAAC	ATTTTCCCCG	TCAATATCAA	1740
TTTTTCCATC	AACTAAATCT	GTCAAATTTG	TATTTTCTAA	AAAATCACAG	ACTITTGAAA	1800
AATATTTATT	GACAGAAGCA	TATCGTTTAA	AATCAGATTG	TTCAGAAATA	ATCATATTAT	1860
TTTCTCTTTT	CTATTAGTGA	CGAACTTCCC	AACTTGAATC	CGCTTTAATT	TCTGTAATAT	1920
CATGAATCGT	TGTATATTTA	GGTGCAGATA	CTTTATTTCC	AGTAAGAACA	GATACAATAT	1980
AACCTGAAAC	TACTGATACA	GAGATTGAAA	TCAATGAATA	TGCCCAGTAG	CTAACAGCTG	2040
TTGGAGGAAG	GAAGTATTTA	ATAAATACCA	TGACGATGGT	TGATACAATC	AGCGCTGCAT	2100
AAGCACCTTG	TTTATTTGCT	TTTTTAGAAA	CAAATCCAAG	AATAAATACA	CCACCAAGTA	2160
GACCAAGTAC	AAGTCCCATG	AAACTATTGA	ACCATTCGTA	TGCAGATTTA	ATATCTGAGT	2220
GAGCCATGAC	AATGGAAACA	CCAATTGAGA	ATAAACCTAC	TGCTAGAGAT	ACGAATTGTG	2280
CAATTTTCGT	ACGACGATTG	TCTGACATAT	TTTTAGAAAT	GACATCTTGA	ATATCCAATG	2340
TCCATGAAGT	TGCAACAGAG	TTCAAACCTG	TTGAAATAGT	TGATTGAGAT	GCTGCATAAA	2400
TCGCTGCCAA	GATCAAACCT	GTGATACCTA	CTGGTAACTG	GTATGCAATA	AAGTACATAA	2460
AGATTTGGTC	TTGAGGGATA	TTGCTAGCTG	CACTATCTGC	ATTTTGTACT	TGATAGAATA	2520
CGTACAAGCC	TGTACCAATC	aagtaaaaga	CTGTTGCAGT	TGCAAGTGAC	AAAACACCGT	2580
TTGTGAACAA	CATCTTATTA	AGTTTCTTAA	TATTTTGTGT	TGTAGTAAAA	CGTTGAACCA	2640

			216			
AATCTTGAGA	TGAAGCATAG	GAAGACAAGA	TTGTAAAGCC	TGAACCCATC	ACAATTAAAA	2700
AGATGGAGTT	TGAAAGCAAG	TTAGGATCGA	AAAGTTTTTC	ATTTGCAGCA	AGGAATTTCC	2760
CGTTTGCTAA	TGTTTCTGCT	ACTGCACCAA	AGCCACCTTT	AATATTAGCA	ATCAGTACAA	2820
ATAAAGCTAA	AACGACACCA	CTAATCAGAA	TCACACCTTG	AATAAAGTCT	GTCCATAATA	2880
CGGATTTTAG	ACCACCAGTA	TAAGAATAAA	CAATTGCAAC	TACACCCATC	AAAATAATCA	2940
AAATATTGAT	GTCAATTCCT	GTCAATACTG	ATAAACCAGC	TGATGGGAGG	TACATAATGA	3000
PAGACATACG	TCCCAATTGA	AATAATAA	ACAAGAGTGC	TGAAATAATA	CGAAGTGCTT	3060
Pagaattaaa	ACGTTTATCC	AAGTAATCAT	ATGCCGTATC	GATGTCTATC	CGTGCAAAGA	3120
PAGGTAAGAT	AAAACGAATT	GTCAGTGGAA	TAGCTACTAC	CATCCCTAAT	TGAGCAAACC	3180
АТААААТССА.	GCTACCTGCA	TAAGAGCTAC	CAGCGAGTCC	CAAGAAGGAA	ATCGGACTGA	3240
GCATTGTGGC	AAAAATGGAT	ACCGAAGTAA	CATACCAAGG	AACCGAACCA	TCTCCTTTAA	3300
AGAACTCTTT	TCCTTTCATC	TCTTTTTTAG	AGAAATAGAT	ACCTGCAACC	AACACCGCAA	3360
STAAATAAAC	AATCAAGATA	ATTAAGTCAA	TTATTGTAAA	TCCTGTTGTG	CCCATAACAT	3420
ATCTCCATAT	TGATTTTATT	TATTATAAAA	ATTCTTTTCG	TGCTTGTTGA	ATAAGTTCTG	3480
CTGCTTGTTT	TGCAACTTCC	AAGTCACCTT	CTGCCAATGC	TTCTAAAGGT	TGACGAACAG	3540
AACCTAAATC	AAGTTTTTCA	TTTAGACGCA	AAACTTCTTT	TGCTACAGCA	TACATATTTG	3600
CCTTACCTGA	TATCATCTTA	TAGATAACTT	CATTGATAGC	ATATTGAAGT	TTTTTAGCTG ,	3660
PATCTAAATC	TCGTTCTTGA	ATCAAACTTT	CCAATTTCAA	GAACAAATCT	GGCATAACGC	3720
CATAAGTACC	ACCAATACCA	GCTTCTGCTC	CCATCAAGCG	ACCACCAAGA	TATTGTTCAT	3780
TGGACCATT	GAATACAATG	TAATCTTCTC	CACCTGCAGC	TACAAACATT	TGAATATCTT	3840
GTACAGGCAT	AGAAGAATTT	TTAACTCCAA	TCACACGAGG	ATTTTGACGC	ATTGTTGCAT	3900
ACAAACTACC	AGTCAACGCA	ACCCCTGCCA	ATTGTGGAAT	ATTATAGATA	ATAAAATCTG	3960
PATTTGACGC	AGCTTCACTC	ATTGCATTCC	AATATGCTGC	GATTGAATAC	TCTGGCAATT	4020
TGAAATAAAT	AGGTGGGATA	GCTGCAATAG	CATCGACTCC	AACACTTTCT	GAATGTTTTG	4080
CCAATTCGAT	ACTATCTTTC	GTGTTATTAC	ATGCAATATG	GTTGATAACT	GTTAATTTAC	4140
CTTTAGCAAC	TTCCATAACA	GCTTCAATAA	TTTGTTTACG	ATCTTCTACA	CTTTGGTAAA	4200
CACATTCACC	TGAAGAACCA	TTTACATAGA	TACCTTTTAC	ACCTTTGTCA	ATGAAATATT	4260
STACCAGAGA	TTTTACACGA	TCTTGGCTAA	TTTCACCATT	TTCATCATAG	CAAGCATAAA	4320
ATGCAGGGAT	AACGCCTTTG	TATTTAGTTA	AATCTTTCAT	CAGATTTCTC	CTTTATATTG	4380
TTTTTTTTT	GATGACATTA	ATAAATCGCT	GAGCAATTTC	TTTTGGACGT	GTAATCGCTC	4440

CACCAATGAC	TACACTGGTA	ACACCTAAAC	TATAAGCTTT	TTTTAATTGT	TCTGGATAAT	4500
GAATTTTTCt	TCGGCAATTA	CCGGAATATT	AAAATCAGCC	AATTTTTCA	TTAGTTCAAA	4560
ATCAGGCTCA	TCTGATTGTA	CACTTGTACT	TGTGTAACCT	GATAATGTTG	TACCAACAAA	4620
ATCAACGCCT	GATTTAAATG	CATAGAGACC	TTCATCTAAA	TTACTTACAT	CCGCCATCAG	4680
CAATTGATTC	GGÄTATTTT	CTTTTATTT	TTTGATAAAT	TCACTGACAA	CTAAGCCATC	4740
ATATCTTGGT	CTTAAAGTTG	CATCAAATGC	AATGACTGTT	GTTCCGCATT	CTACAAGTTC	4800
ATCTACTTCT	TTCATCGTAG	CAGTAATATA	TGGTTCTTGA	GGTGGATAAT	CCCTTTTGAT	4860
AATTCCAATT	ATTGGTAAAT	CTACTACTTT	CTGAATTGCT	TTAATATCAC	GCACAGAATT	4920
rgcgcgaatg	CCCACTGCTC	CTGCCTCTAA	AGCTGCTTTA	GCCATAAAAG	GCATCAAGCT	4980
AAATTCTTCA	TTATAAAGGG	CTTCACCAGG	TAAAGCTTGA	CAAGAAACAA	TGACTCCACC	5040
I TGAACTTGG	СТТАТАААТТ	TTTCTTTAGT	CCAAATTTGG	CTCATTTTAT	TATTCCTCCT	5100
PATGGATAAT	AGTTTGATTG	TAATAATATT	GTCTCTCTGG	ACTTTCCAGA	TAATTAGAGA	5160
ATAAGCAGTC	TGTAATTAAA	AGTATTGGAA	actgaggtga	TATGCGATTG	CCATACGAGA	5220
GATGATCGGT	CGAAGCTAAT	AACAATAGTT	CATCAAAGAA	ACAATCTTCT	TCGTCAAATT	5280
PTCTTGTAGT	CATTAAAACT	GTTTTAGCGC	CTTTATCTGC	AGCTTTTTGT	AGACCTTCTA	5340
GTACAATATC	AGTTTGACCT	GAAATGGATG	CTCCAATGAC	AAGGCAATTT	TCATTAAGTA	5400
STAAGCTACT	CCACAAAATC	ATATCCTCGT	CTGATAATAC	TTCACCAATC	ACTCCGAGAC	5460
CATAAATCT	CATCTTCATT	TCTTGTAAAG	CAAGAACAGA	ACTTCCTTTA	CCGTAGAGAT	5520
ATACACGCTC	AGCAGTTTCT	ATCATCTCAG	CAATACGCTC	AAGTTGAACT	TCATCAAGAA	5580
CCTCTAACT	TTTTCTCAAC	ATTTCCTCAT	AGTCGGATAA	AACTTTTTCŢ	GTTGCCTCTG	5640
PATATAATGC	CAACTTTTCT	TTCTCATGAA	TCATCTCTTG	GTATTTGAAA	ATGAATTGTC	5700
PAAAACCTTT	AAAACCACAT	TTTTTCGCAA	ATCGAGTCAA	TGTTGCTTTG	GATACATTAA	5760
GTATTCGCA	CAATGCTTTA	GATGAATAAT	CATTCAGAGG	TTGCTGTTTT	AAGAAGAATT	5820
PAGCAATGTC	TTTTTCAGCA	TATGCCATAT	TTGGTAAGTT	AGCTTCTATC	ATTGGAATTA	5880
GTTCTTTTTG	CAGTAACATA	TGAGCTCCTT	AGTTGAAGTA	AACGTTTACA	TTCTTTATTT	5940
PAACACTTTT	TTTTTTTTC	AATATTTTTC	ATAAATTAGA	AACTAGTTTC	CAATTTCTTT	6000
CGTTTCATAA	CAGAACAACA	AACATAAAAA	TATAATAGTT	TTTATTCTTT	TTATCGTAAT	6060
TATATGTATT	GTAAGAACGT	TTATCACTAA	TAATATGTTC	ТААААТТАТА	ATTTAGTAA	6120
ր Հարդար Հաստո	ጥርረጥጥጥልጥጥ	Ծափախափանու	GC 3 3 ጥጥጥር ጥ 3	татаататт	ጥል መጥጥር ጥል ል ል	6190

			218			
AAAATTGAAA	AAATATTTCT	AGTTTCTTTA	TTTTATATAG	GTAATATATT	TTATTTCTAA	6240
ATTAAAAGAG	AATCCCATAA	AAACTACAGA	TTTATGAGAT	AAATCAGGTC	ACCTATTTTA	6300
AAAAAGCAGC	AAACTATAAA	CTAAAAAGTT	CCACACCAAA	TGTAACCCCA	TACTTCCCCA	6360
PAAGTCAGAT	TTATAGCGCA	CCATACCTAA	AAACATTCCA	AGTGAAACGT	ACAGACACCA	6420
AGCTAGAATG	GTTCCTGGAT	GATGTACTAA	GGCAAATAAA	ACACTTGTCA	AAGCAACTCG	6480
аататстаат	TTTCTAACCA	AGTTCCATAA	AATTTCACGA	TACAGAAATT	CTTCAACCAT	6540
ACTCGCATTG	ATTAAGAACA	ATAAAAATGA	AAACCAAGGA	ACTTGATGTT	GAAGGCCAAT	6600
FAAATTTGTT	TGATTCGTGC	TTCCTTGAGC	ATGAATCAGG	СТААААСАТА	GACTTATAAT	6660
CAGTAGACTA	GCTAGTCCAA	TACCAAGGCA	TTTCATCCTA	GTTTTCATAT	TGACCTTGAC	6720
CACTTGTTTT	CGTTGACCAT	ACATCCATAA	AAAAGAAAAA	AGAGACGCAC	CATAGAGAAC	6780
CTGTAGTATA	GTTAACTCAC	CGATACAAAG	AAATTTCAAT	AAGTATAGAG	ATACCAATAG	6840
GACATTTACT	TGTTGGAATA	TATAAACTGG	AATTATTCTT	TTCATAGTTA	CCTCCGAAAT	6900
AAATCTTCAT	AATCTAAATC	TAATATCTGC	ACAATCCTTT	CTACCCATGG	ACTTTGAGGC	6960
ATTCGTTGTT	CCATCTTGTA	GTGGCGAATC	TTTTGATATA	AACGATTCAA	TTCACTTGGA	7020
TAGTGAAACT	CTCCCGCAAA	CATTTTTCTG	GTTAACTCAA	TCCAGCTGAT	ATTTCTTTCA	.7080
GCCAAAATAA	TGGACAAGTT	СТСССААААТ	CGTTCAGCCA	TATTCTTCT	CCTTTAGTTA	7140
GATAAATAAT	GTGTTTGyGC	CATGTAAATC	AATTGTTTCG	TATCTCTTGG	CAATAGAGCT	7200
CTAGCCTCTT	CCAAATTCAG	ACTTGGATAA	ACCCGCTTAT	TTGAAACCAC	AAAAGGAAGT	7260
CCGATGGTTA	GTTCAGGATT	TTTAAAATT	ATCTCAACGA	AATCCGTTAA	TCTTAGATTG	7320
TCACGGTTCT	TAAATCGTAA	TAAATTGGGA	GATAAAAACT	CAAAACAATC	TGAAGAATAG	7380
CTCATCATCT	CAATTAATTT	GTCCTTTGTC	ATTTCAGAAA	CTGAATGACA	AGATACCTCA	7440
ATGCCATAGT	TTTGGAAGAA	GTCTAAAAGA	AGTTGÁTTTC	TTTGGCTATT	TTTACTTAGA	7500
TAGAGATCAA	TCATGGGAGA	CCTCCAACAA	ATTTGCTTCC	ATTTGATATT	CTGAGACGAT	7560
TAAGGAATCT	AACAACTTTG	AGAAGTTAAT	CGATTTCTTG	TCTTCATCAT	AAGCTTTTAC	7620
AGTTACTTGG	GTTGTAAGTA	TCCCCTCTTT	TCCCTCGGCT	CGATAGTCTT	GTCAATATAA	7680
AACAAAAACA	AGATTCTGAT	TATCATCTAC	AAAGGCATTA	ACTCCGTTCT	TTATATCCTG	7740
ACTTTCAAGG	AATTCCATAA	CGTTTTGAAG	ATAGGATTCA	TAAAATAGTG	GGTAATTATG	7800
TTTTTATGG	таатсатста	AAAATGTTAC	CTCAAACTCA	CATGGATAAT	TGGGCATCAA	7860
Aaatatttgt	TCATCCAGCT	GTTTGATTTC	TGCATCATGT	AATTCTGTTT	CTAATTCATC	7920
ACAATCTAGT	ATTGATTCTT	TATTTAATGC	TTTTATCTTT	TTCCTCTATT	TCTTTTAATT	7980

CTI	PTGCGAT	TGCGGCAATC	ACAGGAACGG	TTACACTATT	ACCAACTTGT	TTATAGAGCT	8040
ACT	TAATTAT	AGAGACTTTT	CTAGCAGCTT	CAAAAGCCTA	ATCAGGAAAG	CCATGCAATC	8100
AA	AACACTC	TTTAGGAGTG	ATTCGTCGTA	TTCTCAAACG	GTAAAATTGT	CCATCTATTA	8160
AAA	CACCAGC	TACTTGGTAA	ACTTGTTTAT	CTTCTCCTTC	ATAGCTAGCC	ACTACTACTC	8220
CAI	PTTGACC	ACTAGTTGTT	AACGTATTAG	CTATACCTTT	TCCAACTCTA	CCACGACGAT	8280
CTC	GAGAACT	TGGTCTTTCT	AAATTGATTG	AATCCCCAAT	CTCTGCTTGA	GCATATCCTT	8340
r TrT rT	rcgttgc	TTCCCGTACT	TTTAGAAATT	GGATTGGTTC	TGGAATTAGT	ATTTTGGGGA	8400
r T T	PATCTCC	TCCTTGCATC	GTAGTCAGTG	TTGGAGATAA	GCCCTCACTT	CCATAGACAC	8460
ACC	CTGTCTC	CTTAAAGCTA	GTCGGTAAAT	CTCCAACAAC	GACAATGCCA	TAACGATCCT	8520
AGT	AATTTAA	AGTAAACATC	GGCTCTTGAT	TTTCCTTAAA	GCGTCTCCCA	TTTTGTCTCT	8580
GTC	CTAATCT	ATCTGGTGTC	ATACAAGGAA	TCGCAACTTT	AAATCCTTCT	CCTTTACCAC	8640
AAC	CTAAGGT	TGGCGCAAGA	CCTTCTGAAT	AATAGACTTT	ACCGCTCATT	CCACTTCTTG	8700
\TG0	GATTCAA	ATTTCCTAGT	GCTTTCAAAG	TCTCAGAGTT	AGTTGCTTGA	CCTTCTCGTC	8760
GA	AAGGAAA	TAAGAGTCTG	GTACCTTTCT	TTCTAGAATG	TCCGATAATA	AACACCCTCT	8820
TCT	rg ttt tt	GGGAACGCCA	AAATCCTTAC	TGTTAAGCAC	CTGCCACTCA	ACATCAAACC	8880
CAZ	ACTCATC	AAGTGTGGTA	AGTATTGTGG	TGAACGTCCG	TCCCTTATCG	TGATTGAGTA	8940
GCC	CTTTAAC	ATTTTCAAGA	AAAAGAAAAC	GTGGTTGGAT	TTGTTTGGCC	GCCCGAGCAA	9000
TTC	CAAAGAA	CAAAGTTCCT	CTAGTATCTT	CAAATCCCAA	TCGTCTTCCT	GCGATTGAAA	9060
TGC	TTGACA	AGGGAATCCC	CCACAGATGA	CATCGACTTT	CCCTCTAAGT	TTTTTAAATT	9120
GTC	CATCTGA	AACATCTCGT	ATGTCATGAA	ATTCTATTTC	TCCTTCCGTT	TGAAAAATGG	9180
CTI	rataaga	TTTCCTAGCA	AATTTATCAA	TCTCACAAAA	TCCCAAGCAC	TCATGCCCTT	9240
AGC	CTTCCAT	TCCCATCCTA	AAGCCTCCTA	TCCCAGCAAA	ТАААТСТААА	ACCCAAATCA	9300
TC	ATACCTC	TCTCAACTAG	ATGTAACTTA	CAAAACCCCT	GACCTCATGA	GCCACTTTCT	9360
CCI	CCTCAT	GAGGTCAGTT	TTACTTTCTG	CTGTTCCAGT	ATCGTTTTTC	CTCGCTAGAT	9420
TCC	TCAAAA	GGGCAGACTC	CTCCCTTGGT	TCGTCACACG	ATTTTTTCAT	CTCGACTGTT	9480
TTT	TAATGCA	TCATTAACGA	CGCTTTTCTT	CTAGGTGGTT	CATAAGGAAC	AGGAAGATTC	9540
GGT	TGACTT	TTCTAATCCT	AGAATAAAGT	GCTGAAAACA	ATTCGGAATA	GGCATAGAGA	9600
TAC	GACAATT	TGAGGAGCTG	CTTGCGTCCT	GTTCGAACAC	ATTTTCCTAC	CACGTGAAGA	9660
AAA	GATGGC	GGAAGCGTTT	GATTGTTAAA	GTTTGGAAGT	CACCTCCAGC	TAGATGTTTG	9720

agaaaaagat	AGAGATTGTA	GGCGATACAG	220 CTCATCATCA	TACGAACTCG	TTTTTGATTA	9780
AGGTTGAACT	ATCCGTTTTA	TCGCCAAAAA	ATCCCTCCTT	CATCTCCTTG	ATGAAATTCT	9840
CGGCTTGACC	ACGTCCACGA	TAAAGCTGAA	ACTGGTCTTG	GCTTGTTCCG	GTACCGA	9897
(2) INFORM	ATION FOR SI	EQ ID NO: 1	1:			

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 8148 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

CCGTGGAACA	AGCCAAGACC	AGTTTCAGCT	TTATCGTGGA	CGTGGTCAAG	CCGAGAATTT	60
CATCAAGGAG	ATGAAGGAGG	GATTTTTTGG	CGATAAAACG	GATAGTTCAA	CCTTAATCAA	120
AAACGAAGTT	CGTATGATGA	TGAGCTGTAT	CGCCTACAAT	CTCTATCTTT	TTCTCAAACA	180
TCTAGCTGGA	GGTGACTTCC	AAACTTTAAC	AATCAAACGC	TTCCGCCATC	TTTTTCTTCA	240
CGTGGTAGGA	AAATGTGTTC	GAACAGGACG	CAAGCAGCTC	CTCAAATTGT	CTAGTCTCTA	300
TGCCTATTCC	GAATTGTTTT	CAGCACTTTA	TTCTAGGATT	AGAAAAGTCA	ACCTGAATCT	360
TCCTGTTCCT	TATGAACCAC	CTAGAAGAAA	AGCGTCGTTA	ATGATGCATT	AAAGAACAGT	420
CGAGATGAAA	AAATCGTGTG	ACGAACCAAG	GGAGGAGTCT	GCCCTTTTGA	GGAAATCTAG	480
CGAGGAAAAA	CGATACTGGA	ACAGCAGAAA	GTAAAACTGA	CCTCATGAGG	AGGAAGAAAG	540
TGGCTCATGA	GGTCAGGGGT	TTTGTAAGTT	ACATCTAGTT	GAGAGAGGTA	TGAATGATTT	600
GGGTAAATAC	AATGAGCTTG	AAAGAAGTAG	CAAACTCACC	AAGCGCCAAT	TCTTTGAGAA	660
TCAGATGCTG	GATTATACCA	TCATTGCGCA	TGAGAGTTTT	GAAATCATCC	GTCATTCTGT	720
CTACCAGACA	GATGATCGTG	AAGTGGAAAA	TGCTCTGGCT	TTTGAAGTGA	AAAATGATGA	780
AACAGACAAG	CTGATTCTGT	TATTAAGCGA	GGATATTGGT	GTAGGTGAAA	AATTGTGCCT	840
CGTTGACGGA	ACAAAAATGC	GTGGAAAATG	TTTAGTATAT	GATAAAATAA	ATGAGAGAAT	900
GATTCGCTTG	CAGTGCTAGA	AATAGGCATT	TTGAATAGTG	AATATGTTAT	AATAAGTATT	960
AGTAGGAGGT	GTTTTAGATT	GGAGAAGAAA	CTGACCATAA	AAGACATTGC	GGAAATGGCT	1020
CAGACCTCGA	AAACAACCGT	GTCATTTTAC	CTAAACGGGA	AATATGAAAA	AATGTCCCAA	1080
GAGACACGTG	AAAAGATTGA	AAAAGTTATT	CATGAAACAA	ATTACAAACC	GAGCATTGTT	1140
GCGCGTAGCT	TAAACTCCAA	ACGAACAAAA	TTAATCGGTG	TTTTGATTGG	TGATATTACC	, 1200
AACAGTTTCT	CAAACCAAAT	TGTTAAGGGA	ATTGAGGATA	TCGCCAGCCA	GAATGGCTAC	1260

CAGGTAATGA	TAGGAAATAG	TAATTACAGC	CAAGAGAGTG	AGGACCGGTA	TATTGAAAGC	1320
ATGCTTCTCT	TGGGAGTAGA	CGGCTTTATT	ATTCAGCCGA	CCTCTAATTT	CCGAAAATAT	1380
TCTCGTATCA	TCGATGAGAA	AAAGAAGAAA	ATGGTCTTTT	TTGATAGTCA	GCTCTATGAA	1440
CACCGGACTA	GCTGGGTTAA	AACCAATAAC	TATGATGCCG	TTTATGACAT	GACCCAGTCC	1500
TGTATCGAAA	AAGGTTATGA	ACATTTTCTC	TTGATTACAG	CGGATACGAG	TCGTTTGAGT	1560
ACTCGGATTG	AGCGGGCAAG	TGGTTTTGTG	GATGCTTTAA	CAGATGCTAA	TATGCGTCAC	1620
GCCAGTCTAA	CCATTGAAGA	TAAGCATACG	AATTTGGAAC	AAATTAAGGA	ATTTTTACAA	1680
AAAGAAATCG	ATCCCGATGA	AAAAACTCTG	GTATTTATCC	CTAACTGTTG	GCCCTACCT	1740
CTAGTCTTTA	CCGTTATCAA	AGAGTTGAAT	TATAACTTGC	CACAAGTTGG	GTTGATTGGT	1800
TTTGACAATA	CGGAGTGGAC	TTGCTTTTCT	TCTCCAAGTG	TTTCGACGCT	GGTTCAGCCC	1860
TCCTTTGAGG	AAGGACAACA	GGCTACAAAG	ATTTTGATTG	ACCAGATTGA	AGGTCGCAAT	1920
CAAGAAGAAA	GGCAACAAGT	CTTGGATTGT	AGTGTGAATT	GGAAAGAGTC	GACTTTCTAA	1980
AATGAAGGAA	AATGACTTGC	AATCTCTGTT	AAGAAATAAA	ATAATCCCAC	CTAGAACAAG	2040
CTAGGTGGGA	TTATTTGCCT	ATGAAATGAG	AAATTATGGG	AGCAAGCTCC	TAAATCAACT	2100
GTTTTTGATC	TACTTCTTTA	ACTACTTGAT	AAAAGTTATA	GAAGTAGGCC	AAACTTGAAA	2160
TGATGGTTAC	GACTAGGAAT	ATTGAAAATT	TCCATTGGAC	AGGGTTGGTT	AAAAGTTGTG	2220
GAAAGGATAT	GAGGAGAAAG	AAGAGGGCTG	CGTTGAGGAC	AGGTATCCGT	TTTGATTGTA	2280
TTTTCTCAAG	TCCTTTATTG	AGCGCAGGAA	GAAAGAGGAG	TAGGAGTAGT	AAAACTGTAT	2340
GAGAAATAGC	TCCTGAAGTA	AGGGCGAAGA	AAAGGAAAAT	ACTGATAAAA	ACATGAATGA	2400
TCAGTAGTCT	AGCTAGTGAT	TTCATAAGGC	ACCTCCTAAT	CCTGGTCTTT	TTTAGCTCTT	2460
GCAATACGAA	GTGAGTCGAC	AATATGTATC	ATCACTCCGA	AAAAGAAAGĊ	TCCCAGTATA	2520
GTTTTAAAAA	TATGTTTTGT	ATTTAGAAGA	GAACTGATAA	AATTTGGATT	TTCACTTGTT	2580
AGGGTATCAA	TGAGTGGAAT	TATAAAAAAT	ATCACTGTTC	CATAAATCGA	ACCTGCTTTC	2640
AGACCAGGAT	AACGTAACTG	TTTCTTTTCT	TTTTTCATGA	GTTTCCTCCT	AATCCTCATC	2700
TTGATTTTTC	TTAGTTTTTG	CAATGCGACG	GGAGATGAGG	AACTGTATGC	TCGCTCCGAA	2760
GAAAATAGAA	CCGAGAATAC	TTGATACACC	ATTTCTTATA	GTGAGAAGAG	AATGAAAATA	2820
GTCCTGACCT	TCATCTATGA	GTATCCTGAG	AAGAGGAGTT	АТААААААСА	TCCATAGACC	2880
AAAGAACAAA	CCTGCTTTCA	GACCTGGGTA	GTGTAGTTGC	TTGCTTTCTT	TCTCATTCAG	2940
CATATCTGGT	TCAATGACTG	TGATGCCTGT	TTTTTTCATT	TGGTAGGTGA	CATAGCCAGA	3000

			222			
AGCGATGAGG	GCAATCACTA	AAATCAGAGG	AGGATAGATT	AGAGCCACTT	CTTGAGGGTA	3060
TTTATAGGCC	AGAAGGAGTG	GAATAAGATT	TCCGAAAATC	ATCAGATAAA	AGAGGATGAT	3120
AAAGACTTGG	TTCCCAATAC	TATCGGCCTC	ACGCCGTTTG	TATTCGTCAA	GGGGACCAGA	3180
AATACCGTAT	GTGCGTTTGA	TCAGTTTTTC	AGTGAAGGTT	TCTTTTTCA	TGAGTTTGCT	3240
CCTTTTTTAA	AAATCTTCCT	CCCAAAAGAG	ACTGTTGAGG	TCACTTTGGA	GGCTGCGGGC	3300
GAGATTGAGA	CAGAGTTCCA	AGGTTGGATT	GTACTTGTCG	TTTTCAATCA	TATTGATAGT	3360
CTGTCTCGAG	ACACCGATAT	CCTTGGCGAG	TTCGAGCTGG	GAAATACCCA	ATTCCTTGCG	3420
AAATTCTTTC	ACACGATTCA	TCTGTTCTCC	TTTCTGATTT	ATGTCGTATA	TATTTGACTA	3480
TATTATAGTC	TTTTAAACAT	AAAGTGTCAA	GTATTTTGA	CATATTTTT	GAAGAAATAG	3540
TAGTCTCCTT	GTCCTATTTG	TCTGACAAGT	GCAAGCTGGT	CGGATTTGTG	GTAAAATAGA	3600
TAAGATATGA	CAAAAGAATT	TCATCATGTA	ACGGTCTTAC	TCCACGAAAC	GATTGATATG	3660
CTTGACGTAA	AGCCTGATGG	TATCTACGTT	GATGCGACTT	TGGGCGGAGC	AGGACATAGC	3720
GAGTATTTAT	TAAGTAAATT	AAGTGAAAAA	GGCCATCTCT	ATGCCTTTGA	CCAGGATCAG	3780
AATGCCATTG	ACAATGCGCA	AAAACGCTTG	GCACCTTACA	TTGAGAAGGG	AATGGTGACC	3840
TTTATCAAGG	ACAACTTCCG	TCATTTACAG	GCATGTTTGC	GCGAAGCTGG	TGTTCAGGAA	3900
attgatggaa	TTTGTTATGA	CTTGGGAGTG	TCTAGTCCTC	AATTAGACCA	GCGTGAGCGT	3960
GGTTTTTCTT	ATAAAAAGGA	TGCGCCACTG	GACATGCGGA	TGAATCAGGA	TGCTAGCCTG	4020
ACAGCCTATG	AAGTGGTGAA	CAATTATGAC	TATCATGACT	TGGTTCGTAT	TTTCTTCAAG	4080
TATGGAGAGG	ACAAATTCTC	TAAACAGATT	GCGCGTAAGA	TTGAGCAAGC	GCGTGAAGTG	4140
AAGCCGATTG	AGACAACGAC	TGAGTTAGCA	GAGATTATCA	AGTTGGTCAA	ACCTGCCAAG	4200
GAACTCAAGA	AGAAGGGGCA	TCCTGCTAAG	CAGATTTTCC	AGGCTATTCG	AATTGAAGTC	4260
AATGATGAAC	TGGGAGCGGC	AGATGAGTCC	ATCCAGCAGG	CTATGGATAT	GTTGGCTCTG	4320
GATGGTAGAA	TTTCAGTGAT	TACCTTTCAT	TCCTTAGAAG	ACCGCTTGAC	CAAGCAATTG	4380
TTCAAGGAAG	CTTCAACAGT	TGAAGTTCCA	AAAGGCTTGC	CTTTCATCCC	AGATGATCTC_	-4440
AAGCCCAAGA	TGGAATTGGT	GTCCCGTAAG	CCAATCTTGC	CAAGTGCGGA	AGAGTTAGAA	4500
GCCAATAACC	GCTCGCACTC	AGCCAAGTTG	CGCGTGGTCA	GAAAAATTCA	CAAGTAAGAG	4560
GGAAAAAGAT	GGCAGAAAAA	ATGGAAAAAA	CAGGTCAAAT	ACTACAGATG	CAACTTAAAC	4620
GGTTTTCGCG	TGTGGAAAAA	GCTTTTTACT	TTTCCATTGC	TGTAACCACT	CTTATTGTAG	4680
CCATTAGTAT	TATTTTTATG	CAGACCAAGC	TCTTGCAAGT	GCAGAATGAT	TTGACAAAAA	4740
TCAATGCGCA	GATAGAGGAA	AAGAAGACCG	AATTGGACGA	TGCCAAGCAA	GAGGTCAATG	4800

AACTATTA	CG	TGCAGAACGT	TTGAAAGAAA	TTGCCAATTC	ACACGATTTG	CAATTAAACA	4860
ATGAAAAT	TAT	TAGAATAGCG	GAGTAAGATA	TGAAGTGGAC	AAAAAGAGTA	ATCCGTTATG	4920
CGACCAAA	LAA	TCGGAAATCG	CCGGCTGAAA	ACAGACGCAG	AGTTGGAAAA	AGTCTGAGTT	4980
PATTATCI	'GT	CTTTGTTTTT	GCCATTTTT	TAGTCAATTT	TGCGGTCATT	ATTGGGACAG	5040
GCACTCGC	TT	TGGAACAGAT	TTAGCGAAGG	AAGCTAAGAA	GGTTCATCAA	ACCACCCGTA	5100
CAGTTCCT	'GC	CAAACGTGGG	ACTATTTATG	ACCGAAATGG	AGTCCCGATT	GCTGAGGATG	5160
CAACCTCC	TA	TAATGTCTAT	GCGGTCATTG	ATGAGAACTA	TAAGTCAGCA	ACGGGTAAGA	5220
TTCTTTAC	:GT	AGAAAAAACA	CAATTTAACA	AGGTTGCAGA	GGTCTTTCAT	AAGTATCTGG	5280
ACATGGAA	GA	ATCCTATGTA	AGAGAGCAAC	TCTCGCAACC	TAATCTCAAG	CAAGTTTCCT	5340
PTGGAGCA	AA	GGGAAATGGG	ATTACCTATG	CCAATATGAT	GTCTATCAAA	AAAGAATTGG	5400
AAGCTGCA	GA	GGTCAAGGGG	ATTGATTTTA	CAACCAGTCC	CAATCGTAGT	TACCCAAACG	5460
GACAATTI	GC	TTCTAGTTTT	ATCGGTCTAG	CTCAGCTCCA	TGAAAATGAA	GATGGAAGCA	5520
AGAGCTTG	CT	GGGAACCTCT	GGAATGGAGA	GTTCCTTGAA	CAGTATTCTT	GCAGGGACAG	5580
ACGGCATT	TAT	TACCTATGAA	AAGGATCGTC	TGGGTAATAT	TGTACCCGGA	ACAGAACAAG	5640
ITTCCCAA	CG	AACGATGGAC	GGTAAGGATG	TTTATACAAC	CATTTCCAGC	CCCCTCCAGT	5700
CCTTTATG	GA	AACCCAGATG	GATGCTTTTC	AAGAGAAGGT	AAAAGGAAAG	TACATGACAG	5760
CGACTTTC	GT	CAGTGCTAAA	ACAGGGGAAA	TTCTGGCAAC	AACGCAACGA	CCGACCTTTG	5820
ATGCAGAT	AC	AAAAGAAGGC	ATTACAGAGG	ACTTTGTTTG	GCGTGATATC	CTTTACCAAA	5880
GTAACTAT	'GA	GCCAGGTTCC	ACTATGAAAG	TGATGATGTT	GGCTGCTGCT	ATTGATAATA	5940
ATACCTTT	CC	AGGAGGAGAA	GTCTTTAATA	GTAGTGAGTT	AAAAATTGCA	GATGCCACGA	6000
PTCGAGAT	TG	GGACGTTAAT	GAAGGATTGA	CTGGTGGCAG	AACGATGACT	TTTTCTCAAG	6060
GTTTTGCA	CA	CTCAAGTAAC	GTTGGGATGA	CCCTCCTTGA	GCAAAAGATG	GGAGATGCTA	6120
CCTGGCTI	GA	TTATCTTAAT	CGTTTTAAAT	TTGGAGTTCC	GACCCGTTTC	GGTTTGACGG	6180
atgagtat	GC	TGGTCAGCTT	CCTGCGGATA	ATATTGTCAA	CATTGCGCAA	AGCTCATTTG	6240
GACAAGGG	AT	TTCAGTGACC	CAGACGCAAA	TGATTCGTGC	CTTTACAGCT	ATTGCTAATG	6300
ACGGTGTC	:AT	GCTGGAGCCT	ATTATTAAA	GTGCCATTTA	TGATCCAAAT	GATCAAACTG	6360
CTCGGAAA	TC	TCAAAAAGAA	ATTGTGGGAA	ATCCTGTTTC	TAAAGATGCA	GCTAGTCTAA	6420
CTCGGACT	'AA	CATGGTTTTG	GTAGGGACGG	ATCCGGTTTA	TGGAACCATG	TATAACCACA	6480
GCACAGGC	:AA:	GCCAACTGTA	ACTGTTCCTG	GGCAAAATGT	AGCCCTCAAG	TCTGGTACGG	6540

CTCAGATTGC	TGACGAGAAA	AATGGTGGTT	224 ATCTAGTCGG	GTTAACCGAC	TATATTTTCT	6600
CGGCTGTATC	GATGAGTCCG	GCTGAAAATC	CTGATTTTAT	CTTGTATGTG	ACGGTCCAAC	6660
AACCTGAACA	TTATTCAGGT	ATTCAGTTGG	GAGAATTTGC	CAATCCTATC	TTGGAGCGGG	6720
CTTCAGCTAT	GAAAGACTCT	CTCAATCTTC	AAACAACAGC	TAAGGCTTTA	GAGCAAGTAA	6780
GTCAACAAAG	TCCTTATCCT	ATGCCTAGTG	TCAAGGATAT	TTCACCTGGT	GATTTAGCAG	6840
AAGAATTGCG	TCGCAATCTT	GTACAACCCA	TCGTTGTGGG	AACAGGAACG	AAGATTAAAA	6900
ACAGTTCTGC	TGAAGAAGGG	AAGAATCTTG	CCCCGAACCA	GCAAGTCCTT	ATCTTATCTG	6960
ATAAAGCAGA	GGAGGTTCCA	GATATGTATG	GTTGGACAAA	GGAGACTGCT	GAGACCCTTG	7020
CTAAGTGGCT	CAATATAGAA	CTTGAATTTC	AAGGTTCGGG	CTCTACTGTG	CAGAAGCAAG	7080
ATGTTCGTGC	TAACACAGCT	ATCAAGGACA	таааааат	ТАСАТТААСТ	TTAGGAGACT	7140
AATATGTTTA	TTTCCATCAG	TGCTGGAATT	GTGACATTTT	TACTAACTTT	AGTAGAAATT	7200
CCGGCCTTTA	TCCAATTTTA	TAGAAAGGCG	CAAATTACAG	GCCAGCAGAT	GCATGAGGAT	7260
GTCAAACAGC	ATCAGGCAAA	AGCTGGGACT	CCTACAATGG	GAGGTTTGGT	TTTCTTGATT	7320
ACTTCTGTTT	TGGTTGCTTT	CTTTTTCGCC	CTATTTAGTA	GCCAATTCAG	CAATAATGTG	7380
GGAATGATTT	TGTTCATCTT	GGTCTTGTAT	GGCTTGGTCG	GATTTTTAGA	TGACTTTCTC	7440
AAGGTCTTTC	GTAAAATCAA	TGAGGGGCTT	AATCCTAAGC	AAAAATTAGC	TCTTCAGCTT	7500
CTAGGTGGAG	TTATCTTCTA	TCTTTTCTAT	GAGCGCGGTG	GCGATATCCT	GTCTGTCTTT	7560
GGTTATCCAG	TTCATTTGGG	ATTTTTCTAT	ATTTTCTTCG	CTCTTTTCTG	GCTAGTCGGT	7620
PTTTCAAACG	CAGTAAACTT	GACAGACGGT	GTTGACGGTT	TAGCTAGTAT	TTCCGTTGTG	7680
attagtttgt	CTGCCTATGG	AGTTATTGCC	TATGTGCAAG	GTCAGATGGA	TATTCTTCTA	7740
GTGATTCTTG	CCATGATTGG	TGGTTTGCTC	GGTTTCTTCA	TCTTTAACCA	TAAGCCTGCC	7800
AAGGTCTTTA	TGGGTGATGT	GGGAAGTTTG	GCCCTAGGTG	GGATGCTGGC	AGCTATCTCT	7860
ATGGCTCTCC	ACCAAGAATG	GACTCTCTTG	ATTATCGGAA	TTGTGTATGT	TTTTGAAACA	7920
ACTTCTGTTA	TGATGCAAGT	CAGTTATTTC	AAACTGACAG	GTGGTAAACG	TATTTTCCGT	7980
ATGACGCCTG	TACATCACCA	TTTTGAGCTT	GGGGGATTGT	CTGGTAAAGG	AAATCCTTGG	8040
AGCGAGTGGA	AGGTTGACTT	CTTCTTTTGG	GGAGTGGGAC	TTCTAGCAAG	TCTCCTGACC	8100
CTAGCAATTT	TATATTTGAT	GTAAGAATGG	CACCCTGATG	TTTCAGGG	,	8148

(2) INFORMATION FOR SEQ ID NO: 12:

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 9909 base pairs
(B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

60	CATAGAATTG	CTTTTAAGTT	TACTTTACCG	TTCCTGTAAA	TTAATATCCG	TACTCCACCC
120	TTTGACCAGC	TTTTTAGGAG	TTCCATCCAA	CAAGCATCTT	TGCTTGTCTT	AACTTTTAAA
180	TATAAGCTTC	TCTGCGATTT	TATAGATTTA	GGGTGATTAG	AACCTTGCTG	тттааатааа
240	GATACGGAGG	CCTGTTTCCT	TCTGGCTTCT	TCGGCTCATC	TAGTGATATA	АТСААТАААА
300	GCTCAAAACC	CTAGATAGGC	ACTTTCCTCG	ATTTCATTTC	ACGACATCAA	ATTTCCTATC
360	CTTCTTGGAC	GATTCTTCTA	ATGGGTTTTA	AGTCTTTGAT	TTCTTTTTCC	TATCATTCTA
420	CTGAATAAGG	TTTTGTTTAG	TTGAGATTGC	AACTCAATTG	TCCGCAAACA	TTCTAGCTCA
480	TCGCAATTTC	GAGATAATAG	GACATTGTAA	CCATCTGAAA	TTCAATCCAT	ACTACTTTTT
540	CCTCAAAAGT	AGATAATAGT	AGTCTTAGCT	GTTGATTTCC	TCTAATGTTG	TTTCTTTTGC
600	AACCATACGA	TGATACTCAT	AGAATCTCCT	CCAAAAGGAG	TTCTCACGCG	TGCCAAAAGA
66 <u>0</u>	CCTCACGACT	TCATCTGAAA	AAATGTGACT	CAAGTTTATA	GCATCTTTTA	AGCATGATAA
720	TTTCCTCACC	GATAATGGAA	AACTCGCTCA	CAACAAAACC	AGTTTTCTAT	AATCCGTTGC
780	CCTCTAACCA	CCACAAGTTA	AGGTGCTTCA	TTACCATATA	TCATATCTCG	AGTTACGGTA
840	САТАТССАТТ	TTCGATTCTA	CGAGCCTAAT	CAAGACTTAA	ACATACTCCT	TCGTAAGTCC
900	TCCGATCTTT	CTTATTTTTG	CACTTCTGCC	TTGGTGTAAA	ACCAACCACG	TTGCTTTGCG
960	TTCCAGTAAC	TTGGCAAAGT	CTGAATCAAG	CAGATCTGGG	TTGGATTTTT	TTGTTCATAT
1020	CATAAGAATG	CCTAACAATT	AAATCCCTTT	CACTTGGAGC	TTGATGCGAT	CTTACTTGGA
1080	TTAATAAGTC	AAAAGAATTT	TCGATCTTTT	TCTTTGTCGT	ACAATTGATT	CGTAnGCCAA
1140	ACCTCTCTTA	GTCATCAGCA	AATATCTATT	TTTCTTCACT	TTAGCCAAAC	AGCCGATTCT
1200	AAAAGTAATT	TTTACTTGAA	AGAATGAAAA	САТАТТТТАА	CCTATTATAT	TATTGTAAGC
1260	ATCATCTACA	CGACTAATTC	AGAGTAGCAA	ACCAACTTCT	CTCTCCGATG	CAATAAATAT
1320	GCGATTACCA	ATTGACCAAC	CTATAGCGCC	ATTACCAATT	TAACTCGATA	ATTTGTACGA
1380	ATAGTTTGTA	TGGTTTGTAA	TCCAAAACAT	TCTTGGGTCT	TTCCGTGTCG	ACCAAAGCCT
1440	TCTTGTTGGA	TGATAAAACG	TTCAATTGCT	GTCCAATTTT	GCGTATAACG	ATTAGCTTCT
1500	CTTCCCAAGT	TGCATCATTT	GCCTAAATCA	CATCCTTCAA	ACAAATTATT	ACTAATTTAT
1560	AATCTGCCAC	TGATAGGCTA	ТАААТАСТСТ	CCAAGTCTTC	ACTCCTTTTT	AATGGGTTCA

			226			
ACGAGCATCG	TATTCATCTT	CTAGGGCTTC	AAGAGTTTTG	GTGCGAATAA	GTTCCGAAAG	1620
GGAAACTCCT	TCAAACTTAG	CCATTCCTTT	CATAAATGTT	TTATCAGCTT	CAGAAACTTT	1680
ТААТСТААТА	GTAGTCATCT	TTTGTGCTCC	CTTTTTTAAT	GGTAACACCA	TTGTATTACT	1740
TTTTAGGTGT	TCAGTCAATA	TAAAAAGAAC	ACCTTCTCAG	CGTTCTTTCT	ATATCTCTGT	1800
CAATGGTGTT	GCGGTATCTG	GTGAGGTATC	ATAAACCTTA	AAGTCTACTC	CGACTCCCAG	1860
ATCAGCTTGA	GCCAGCTGAT	TGACCATGGT	CATATGAGCC	AGTTCCTTGA	TATTGTTTTC	1920
CTTAGATAAA	TGCCCAAGGT	AAATCTTCTT	AGTACGATTT	CCTAGCGTCC	GAATCATAGC	1980
TTCAGCACCG	TCCTCGTTAG	AAAGGTGACC	AAGGTCAGAT	AGGATTCGTT	GTTTGAGTCG	2040
CCAAGCGTAA	GAACCTGATC	GCAAAATCTC	TACATCATGG	TTGGCCTCGA	TAAGATAACC	2100
ATCCGCATTT	TCGACAATGC	CCGCCATACG	GTCACTGACA	TAACCTGTAT	CTGTCAAGAG	2160
GACAAAACTC	ттатсатсст	TCATAAAGCG	ATAGAACTGC	GGTGCGACTG	CATCATGGCT	2220
TACACCAAAA	CTCTCGATGT	CGATATCTCC	AAAGGTTTTG	GTTTTACCCA	TTTCAAAAAT	2280
ATGCTTTTGC	GAAGAATCCA	CCTTGCCAAG	ATATTTACTA	TTTTCCATAG	CTTGCCAGGT .	2340
CTTTTCATTG	GCATAAAGAT	CCATACCATA	CTTGCGAGCC	AAAACGCCTA	CTCCATGGAT	2400
ATGATCTGAA	TGCTCATGGG	TAATCAAGAT	GGCATCCAGG	TCTTCTGGCT	TACGGTTAAT	2460
TTCAGCTAGC	AGACTGGTAA	TTTTCTTGCC	AGACAAGCCT	GCATCTACTA	AAAGCTTCTT	2520
TTTTGAGGTT	TCCAGATAAA	AAGAATTTCC	ACTGGAACCC	GACGCTAAAA	TACTGTATTT	2580
AAAGCCTATT	TCACTCATTC	TAGTCTTCTA	CTTCATCCTC	CCATACTTCT	TCTTTCACTG	2640
CATCCTTATC	ATAAGGGAGT	ACAATGGTAA	AGGTTGAACC	CTTGCCGTAT	TCACTCTTGG	2700
CCCAAATAAA	GCCCTTATGT	TGTTTGATAA	TTTCTTTAGC	GATAGACAGT	CCTAGACCTG	2760
TACCACCTTG	TGCACGACTT	CTAGCACGAT	CCACACGATA	GAAACGGTCA	AAGATACGTG	2820
GTAAATCCTG	CTTAGGAATC	CCCAAACCGT	GGTCAGAAAT	GGATAAAATC	ATCTGGTCTT	2880
CAGTTGTCTT	CATTCTGACA	GTGATTTTAC	CCCCATCTGG	CGAATACTTA	ATAGCATTAT	2940
ТТААААТАТТ	GTCGACAACC	TGCGTCATCT	TATCTGTATC	AATTTCCATC	CAGATAGAAT	3000
TGATGGGATA	ATCTCTCACC	AACTCATATT	TTTTCTCCTT	TTCCTGTCCT	TTCATCTTGT	3060
CAAAACGATT	GAGGATAAAG	GTAATAAAAG	CAGTGAAGTT	AATCAGTTCC	ACATCTAGGT	3120
GACTGGTAGC	ATTATCAATA	CGTGAAAGAT	GGAGGAGATC	CGTCACCATG	CGCATCATAC	3180
GGTTGGTCTC	ATCAAGAGAA	ACCTTGATAA	AGTCTGGTGC	TACAGTTTCA	CACAAAGCCC	3240
CCTCATCCAA	GGCTTCAAGA	TAGGATTTTA	CGCTAGTCAG	AGGAGTCCGT	AACTCATGGC	3300
TAACATTGGA	AACAAAGAGT	CTTCGTTCGC	GTTCTTCCTT	CTCCTGCTCC	GTCGTATCAT	3360

3CMAP	MUNGC	CACCAAACCT	GAAATAAAGC	CAGACTCTCG	ACGPATCAAG	GCAAAGCGAA	3420
TCG	aggtt	CAAATATTCG	CCATTGATAT	CTTGGGAATC	TAGCAACAAT	TCTGGACTTT	3480
GGT	AATCAA	ATCACGCAAT	TCATAGTTTT	CTTCTATCTT	GAGCAATTCC	AAAATGCTTC	3540
PATTO	CAGAAC	ATCTTCCTTA	ACCAACCCCA	GTTGCTTCTT	GGCTGTATCG	TTAATCATGA	3600
TAATO	TGACC	CCGACGGTTA	GTCGCAAGAA	CCCCATCTGT	САТАТААААС	AGAATACTAT	3660
PTAGO	CTCTT	ACTCTCTTGT	TCTAGATTTT	CCTGAGTGAG	ACGAATAACC	TCCGACAAGT	3720
CATTO	CAAATT	ATTGGTAATA	TTGGTGATTT	CAGACCCACC	TTGCATATCA	AGAACCTTGG	3780
ATA	ATCTCC	TGCAATCAAA	TCTTTAACCT	TTTGATTGAC	TTGCTTCAAC	TGAATATTAT	3840
CACGI	TTATT	TTCCAGTAAT	AAGAGGGTCA	CAACAAGGAT	GAAACCTAAC	AAAATCAGGA	3900
PAAAC	GATAAA	ATCTCTGGTA	AAAATGGTTT	GTTTCAGTAA	ATCAAGCATT	ATTTCTCATG	3960
TAATA	CCCTA	CACCACGGCG	CGTCAAGATA	TACTCTGGTC	GGCTGGGCGT	ATCTTCAATC	4020
rtctc	CACGCA	GACGTCGTAC	AGTCACATCA	ACTGTACGGA	CATCACCAAA	ATAGTCATAA	4080
CCCZ	AGACAG	TCTCAAGCAA	GTGTTCGCGC	GTGATGACTT	GACCTGTATG	CGATGCTAAA	4140
rgat <i>i</i>	CAAAA	GCTCAAATTC	ACGATGGGTT	AAGTCTAGTT	CTTCGCCATA	TTTTTTAGCC	4200
ACGTA	AGGCGT	CTGGAACAAT	TTCTAAATCC	CCAATTTGGA	TAGGTTGAGG	тттастатст	4260
CTTC	CTGAC	CATCTACTGG	CATAGGTTGA	GAACGACGCA	GAAGAGCTTT	AACACGCGCC	4320
rgcaa	CTCAC	GATTGGAGAA	GGGTTTTGTT	ACATAGTCAT	CTGCCCCAAG	TTCCAAACCG	4380
ATAAC	CTTAT	CAAATTCACT	ATCTTTGGCT	GAAAGCATAA	GAATGGGCAC	ACTGCTTGTC	4440
PTACO	SAATGG	TCTTAGCAAC	TTCTAAACCA	TCAATTTCTG	GAAGCATCAA	ATCCAGAATA	4500
TAAT	ATCTG	GTTGCTCTGC	TTCAAATTGC	TCTAGCGCTT	CACGACCATT	AAAAGCAGTT	4560
ACAAC	TTCGT	AACCTTCCTT	GGTCATATTA	AACTTGATAA	TATCCGAGAT	TGGTTTCTCA	4620
CATC	TACAA	TTAGTATTTT	TTTCATATGT	TCACCTTTTT	CTCTACTATT	ATACCAAAAA	4680
ATAG	TCAGA	AGACACAATA	GCTAGTCTTG	GCTACTGTCT	AAGTTGGCTT	GTGCATAAAC	4740
CTGCC	AGATT	TTTTGTTGGG	GTTTGGCAAG	TGGGTAATTC	TTGAATTCTT	CTGGTGAAAG	4800
CAGO	GAACT	TCCCTATCTG	AAAAATCATG	GAAGTCACTC	ACCTGACCTG	CTACAATCTG	4860
PACAT	GCCAT	TTTCGATGAC	TAAAAACATG	CTGGACTGTA	TCAAAACAAA	CATCAAGCCA	4920
TCAA	CATCT	AGGTCATAGT	CCTGCTGGAA	ACTCTCTTCT	GGACTGGGAC	CAAAGTTCAC	4980
CTTI	CTTCC	GCAACCTGAT	GAAAGAGGTC	AAACTGCTCT	TCTTGCGAAA	AGTTATCAAC	5040
TCTA	TAAAG	GGGAAATGCC	AAAAACCTGC	CAAGAGCTTT	TCGCTTTCAT	TTTTTCAAG	5100

-	-	•	
•	,	×	

TAAAAATTGT	CCTTGAGAAT	TTTTCACAAC	TAAGGCTTTA	AGATAAATAG	GAACCGGCTT	516
TTTCTTAGGA	GATTTAATTG	GATAACGGTC	CATGGTTCCA	TTCTGATATG	CCGCACTAAA	522
GTCCTTGACT	GGGCTTTCTT	CAGGTCTGGG	ATTTACAGGA	GACTCAATAT	CAGACCCTAA	528
GTCCATCAAG	GCTTGATTAA	AATCACCCGG	ACGATCCGGA	TTAATCAAGA	TCTCCATCAT	534
TGCCTGAAAA	ATTTTTCGAT	TACTTGGAAT	CCCAATATCG	TGGTTGACTT	CAAACAGACG	540
CGCCAAGACC	CGCATGACAT	TACCATCTAC	AGCTGGCTCA	GGCAAGTTAA	AAGCAATACT	546
GGAAATGGCT	CCTGCTGTGT	AAGGTCCAAT	CCCTTTCAAG	CTGGAAATTC	CTTCATAGGT	552
ATTTGGAAAT	TGGCCACCAA	AGTCAGTCAT	AATCTGCTGG	GCTGCAGCCT	GCATATTGCG	558
AACTCGAGAA	TAATAGCCCA	AGCCCTCCCA	AGCTTTCAGT	AAACTCTCCT	CAGGCGCAGT	564
IGCCAGACTT	TCGACAGTTG	GĄAACCAGTC	САААААТСТТ	TCGTAGTAAG	GGATAACTGT	570
ATCCACCCTG	GTCTGCTGAA	GCATGATTTC	AGATACCCAG	ATGTGATAAG	GATTTTTACT	576
PCTCCTCCAA	GGCAAATCTC	TTTTGTTTTC	ATCATACCAA	GCGAGAAGTT	TCTCACGGAA	582
AGAAATGACT	TTCTCCTCCG	GCCACATGAC	GATACCGTAT	TCTTTCAAAT	CTAACATATC	588
ICTAGTATAA	CACAGAAGGT	TTCACCTGTC	TTTGTATCTG	АТТТАТААТА	TTTTCAATAG	594
АТАСТАТАТА	ACTTTTCTAT	СТАСТТАТАС	TCAATGAAAA	TCAAAGAGCA	AACTAGGAAG	600
CTAGCCGCAG	GTTGCTCAAA	ACACTGTTTT	GAGGTTGTGG	ATAGAACTGA	CAGAGTCAGT	606
АТСАТАТАСТ	ACGGCAAGGT	GAAGCTGACG	TAGTTTGAAG	AGATTTTCGA	AGAGTATAAA	612
CTTATTGAT	GAACTGCTTG	CAGTCTGAGA	AAAAATGAGC	TTGGATATTA	TTTCCAAACT	618
CACTTAAAGT	CAATTTCAAT	CCACTAGAAC	AAGCCTAGTA	CAGTTCCATC	GCTTTCAACA	624
PCCATGTTGA	GAGCTGCTGG	ACGTTTTGGA	AGACCTGGCA	TGGTCATAAC	ATCACCAGTT	630
AGGCAACGA	TGAAGCCTGC	ACCTAATTTT	GGTACCAATT	CACGAATGGT	AATTTCAAAG	636
TTTTCTGGTG	CTCCAAGCGC	ATTTGGATTG	TCTGAGAAAC	TGTATTGAGT	TTTAGCCATA	642
CAGATTGGCA	ATTTGTCCCA	ACCGTTTTGA	ACGATTTGAG	CAATTTGTGT	TTGAGCTTTC	6486
TCTCAAAGT	TCACTTTGCT	ACCACGATAG	ATTTCAGTGA	CAATTTTTTC	AATCTTTTCT	6540
GGACAGAAA	GGTCATTATC	ATACAAACGT	TTATAGTTAG	CTGGATTTTC	AGCAATTGTC	660
TAACAACTG	TTTCGGCAAG	TGCTACTCCA	CCTTCTGCTC	CATCAGCCCA	GACACTAGCC	6660
ATTCAACTG	GTACATCGAT	TGAGGCACAG	AGTTCTTTTA	AGGCTGCAAT	TTCAGCTTCT	6720
STATCAGATA	CAAATTCGTT	AATAGCTACA	actgctggaa	TACCGAACTT	ACGGATATTT	6786
CAACGTGGC	GTTTCAAGTT	AGCAAAACCT	GCACGAACTG	CCTCTACATT	TTCTTCAGTC	6840
GAGCGTCTT	TAGCCACACC	ACCATTCATC	TTAAGGGCAC	GAAGGGTTGC	GACAATAACA	6900

ACTGCATCTG	GAGATGTTGG	CAAGTTTGGT	GTCTTGATAT	CAAGGAATTT	CTCAGCACCA	6960
AGGTCCGCAC	CAAAACCAGC	TTCAGTAACA	GTGTAATCAG	CCAAGTGAAG	GGCTGTTGTC	7020
GTCGCCAAAA	CAGAGTTACA	GCCATGAGCG	ATATTGGCAA	ATGGACCACC	GTGTACAAAG	7080
GCAGGTGTAC	CGTAAATTGT	CTGAACCAAG	TTTGGCTTAA	TAGCATCCTT	CAAAATCAAA	7140
GCCAAGGCAC	CCTCAACCTG	CAAATCACCT	ACAGAAACAG	GCGTACGGTC	ATAGCGATAA	7200
CCAATAACGA	TATTCGCCAA	ACGACGTTTC	AAGTCCTCGA	TGTCCGTTGC	CAAGCAAAGA	7260
ATTGCCATGA	TTTCTGAAGC	AACTGTAATA	TCAAAACCAT	CCTCACGTGG	AATACCGTTT	7320
AGAGGACCAC	CAAGACCAAC	AGTCACATGG	CGGAGCGTAC	GGTCGTTCAA	GTCCACAACG	7380
CGTTTCCAGA	GGATACGACG	TTGATCAATT	CCCAGCTCAT	TCCCTTGGTG	CAAGTGGTTG	7440
TCAATCAAGG	CAGAAAGGC	ATTGTTGGCA	GTTGTAATAG	CATGCATATC	TCCAGTAAAG	7500
TGGAGGTTGA	TGTCTTCCAT	TGGCAGAACT	TGTGCATACC	CACCACCAGC	AGCACCACCC	7560
TTGATCCCCA	TGACTGGACC	AAGAGACGGT	TCGCGGATAG	CAATCATGGT	TTTCTTGCCA	7620
ATCTTGTTCA	AGGCATCCGC	AAGACCAATG	GTAAGCGTCG	ACTTTCCTTC	ACCTGCAGGT	7680
GTTGGGTTGA	TGGCAGTAAC	CAAGATCAAT	TTACCGACTG	GATTGCTCTC	AACTGCACGA	7740
ATTTTATCAA	AGCTGAGTTT	AGCCTTGTAC	TTTCCGTACA	ACTCCAAATC	GTCATAAGAA	7800
ATACCAAGTT	TCTCTACAAC	ATCAACAATT	GGCTTCAACT	CAATACTCTG	TGCGATTTCA	7860
ATATCTGTTT	TCATTCAAAA	TTCCTCTAAC	CTCTTATATG	ATAATTCATT	ATATCACAAA	7920
ACAAGATTTT	TAACATCCTA	AAACTCTCTA	AACGTTCGTA	AATATCTCTG	TTTTTAAGAC	7980
TTTTAGAGTC	CTTTCTTAAA	TTTTATATGG	CTTTATAGTT	TGAAACTATA	ATAAATCTTC	8040
GTTTTTACCA	AAAATTTATC	ACTITCATTT	TACTTACCGC	TTATTTTTGT	GTACAATAGT	8100
GCTATGAAAA	TTTTAGTTAC	ATCGGGCGGT	ACCAGTGAAG	CTATCGATAG	CGTCCGCTCT	8160
ATCACTAACC	ATTCTACAGG	TCACTTGGGG	AAAATTATCA	CAGAGACTTT	GCTTTCTGCA	8220
GGGTATGAAG	TTTGTTTAAT	TACGACAAAA	CGAGCTCTGA	AGCCAGAGCC	TCATCCTAAC	8280
CTAAGTATTC	GAGAAATTAC	CAATACCAAG	GACCTTCTAA	TAGAAATGCA	AGAACGTGTT	8340
CAGGATTATC	AGGTCTTGAT	CCACTCAATG	GCTGTTTCTG	ACTACACTCC	TGTTTATATG	8400
ACAGGGCTTG	AGGAAGTTCA	GGCTAGCTCC	AATCTAAAAG	AATTTTTAAG	CAAGCAAAAT	8460
CATCAGGCCA	AGATTTCTTC	AACTGATGAG	GTTCAGGTTT	TGTTCCTTAA	AAAGACACCC	8520
AAAATCATAT	CCCTAGTCAA	GGAATGGAAT	CCTACTATTC	ATCTGATTGG	TTTCAAACTG	8580
CTGGTTGATG	TTACCGAAGA	TCATCTGGTT	GACATTGCAC	GAAAAAGTCT	TATCAAGAAT	8640

CAAGCAGATT	TAATCATCGC	GAATGACCTG	230 ACTCAAATTT	CAGCAGATCA	GCACCGAGCT	8700
ATATTTGTTG	AGAAAAATCA	GCTTCAAACA	GTCCAGACTA	AAGAAGAAAT	TGCAGAACTC	8760
CTCCTTGAAA	AAATTCAAGC	CTATCATTCT	TAGAAAGGAA	AACTATGGCA	AACATTCTCT	8820
	•	GCCTCTTATA				8880
		GTCTTAATGA				8940
			•			
TGACACTACA	GGTACTCTCA	CAGAATCCTG	TCCACTTGGA	TGTCATGAAG	GAACCCTATC	9000
CTGATCAGGT	CAATCATATC	GAACTTGGAA	AAAAAGCAGA	TTTATTTATC	GTGGTACCTG	9060
CAACTGCTAA	CACTATTGCA	AAACTAGCTC	ACGGATTTGC	GGACAACATG	GTAACCAGTA	9120
CAGCTCTAGC	CCTACCAAGT	CATATTCCCA	AACTAATAGC	TCCTGCTATG	AATACAAAAA	9180
TGTATGACCA	TCCAGTAACT	CAGAATAATC	TGAAAACATT	AGAAACTACG	GCTATCAGCT	9240
GATTGCTCCT	AAGGAATCCC	TACTAGCTTG	TGGAGACCAC	GGACGAGGAĢ	CTTTAGCTGA	9300
CCTCACAATT	ATTTTAGAAA	GAATAAAGGA	AACTATCGAT	GAAAAAACGC	TCTAATATTG	9360
CACCCATTGC	TATCTITITT	GCTACCATGC	TCGTGATACA	CTTTCTGAGC	TCACTTATCT	9420
TTAACCTTTT	TCCATTTCCA	ATCAAACCGA	CCATTGTTCA	TATTCCTGTC	ATTATTGCCA	9480
GCATTATTTA	TGGTCCACGA	GTTGGGGTTA	CACTTGGATT	TTTGATGGGA	TTACTTAGCT	9540
TGACGGTTAA	CACGATTACG	ATTCTACCGA	CAAGCTACCT	CTTCTCTCCC	TTCGTACCAA	9600
ACGGAAACAT	CTACTCAGCT	ATCATTGCCA	TCGTCCCACG	TATTTTGATT	GGTTTAACTC	9660
CTTACTTAGT	CTATAAACTG	ATGAAAAACA	AGACTGGTCT	GATTTTAGCT	GGAGCCCTTG	9720
GTTCcTTGAC	AAATACTATC	TTTGTCCTTG	GAGGAATCTT	СТТССТАТТТ	GGAAATGTTT	9780
Ataatggaaa	TATCCAACTT	CTTCTGGCAA	CCGTTATCTC	AACAAATTCA	ATTGCTGAAT	9840
PGGTCATTTC	TGCAATTCTA	ACCCTAGCCA	TTGTTCCACG	ACTACAAACC	TTGAAAAAAT	9900
AAAAACAGG						9909
(2) TYPODY	MITON DOD OF					

(2) INFORMATION FOR SEQ ID NO: 13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1126 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

TAATTTCAT ATAATAGTAA AATAGAATGT GTGATTCAAT AATCACCTCA AATAGAAAGG 60 AAATTCTATG TCAAATCTAT CTGTTAATGC AATTCGTTTT CTAGGTATTG ACGCCATTAA 120

TAA I	AGCCAAC	TCAGGTCATC	CAGGTGTGGT	TATGGGAGCG	GCTCCGATGG	CTTACAGCCT	180
CTTT	TACAAAA	CAACTTCATA	TCAATCCAGC	TCAACCAAAC	TGGATTAACC	GCGACCGCTT	240
TATT	CTTTCA	GCAGGTCATG	GTTCAATGCT	CCTTTATGCT	CTTCTTCACC	TTTCTGGTTT	300
TGA	AGATGTC	AGCATGGATG	AGATTAAGAG	TTTCCGTCAA	TGGGGTTCAA	AAACACCAGG	360
TCAC	CCAGAA	TTTGGTCATA	CGGCAGGGAT	TGATGCTACG	ACAGGTCCTC	TAGGGCAAGG	420
GAT'I	PTCAACT	GCTACTGGTT	TTGCCCAAGC	AGAACGTTTC	TTGGCAGCCA	AATATAACCG	480
TGA	AGGTTAC	AATATCTTTG	ACCACTATAC	TTACGTTATC	TGTGGAGACG	GAGACTTGAT	540
GGAZ	AGGTGTC	TCAAGCGAGG	CAGCTTCATA	CGCAGGCTTG	CAAAAACTTG	ATAAGTTGGT	600
TGT1	TATTTOT	GATTCAAATG	ATATCAACTT	GGATGGTGAG	ACAAAGGATT	CCTTTACAGA	660
AA G1	rgttcgt	GACCGTTACA	ATGCCTACGG	TTGGCATACT	GCCTTGGTTG	AAAATGGAAC	720
AGAC	TTGGAA	GCCATCCATG	CTGCTATCGA	AACAGCAAAA	GCTTCAGGCA	AGCCATCTTT	780
GATI	rgaagtg	AAGACGGTTA	TTGGATACGG	TTCTCCAAAC	AAACAAGGAA	CTAATGCTGT	840
ACAC	GGCGCC	CCTCTTGGAG	CAGATGAAAC	TGCATCAACT	CGTCAAGCCC	TCGGTTGGGA	900
CTAC	GAACCA	TTTGAAATTC	CAGAACAAGT	ATATGCTGAT	TTCAAAGAAC	ATGTTGCAGA	960
CCGI	rggcgca	TCAGCTTATC	AAGCTTGGAC	TAAATTAGTT	GCAGATTATA	AAGAAGCTCA	1020
TCCA	GAACTG	GCTGCAGAAG	TAGAAGCCAT	CATCGACGGA	CGTGATCCAG	TCGAAGTGAC	1080
TCC	AGCAGAC	TTCCCAGCTT	TAGAAAATGG	TTTTtCTCAA	GCAACT		1126

(2) INFORMATION FOR SEQ ID NO: 14:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 2520 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

CC	GGCAACAA	AAAAGAAAAA	ATCAACAGTT	AAAAAAAATC	TAGTCATCGT	GGAGTCGCCT	60
GC	TAAGCCAA	GACGATTGAA	AAATATCTAG	GCAGAAACTA	CAAGGTTTTA	GCCAGTGTCG	120
ĢC	CATATCCG	TGATTTGAAG	AAATCCAGTA	TGTCCGTCGA	TATTGAAAAT	AATTATGAAC	180
CG	СААТАТАТ	TAATATCCGA	GGAAAAGGCC	CTCTTATCAA	TGACTTGAAA	AAAGAAGCTA	240
AA	AAAGCTAA	TAAAGTTTTT	CTCGCGAGTG	ACCCGGACCG	TGAAGGAGAA	GCGATTTCTT	300
GG	CATTTGGC	CCATATTCTC	AACTTGGATG	AAAATGATGC	CAACCGTGTG	GTCTTCAATG	360

			232			
AAATCACCAA	GGATGCAGTC	AAAAATGCTT	TTAAAGAACC	TCGTAAGATC	GATATGGACT	420
TGGTCGATGC	CCAACAAGCT	CGTCGGATCT	TGGATCGCTT	GGTAGGGTAT	TCGATTTCGC	480
CTATTTTGTG	GAAGAAGGTC	AAGAAGGGCT	TGTCAGCAGG	TCGCGTTCAG	TCCATTGCCC	540
ттааастсат	CATTGACCGT	GAAAATGAAA	TCAATGCCTT	CCAGCCAGAA	GAATACTGGA	600
CAGTTGATGC	TGTCTTTAAA	AAGGGAACCA	AACAATTTCA	TGCTTCCTTC	TATGGAGTAG	660
ATGGTAAAAA	GATGAAACTG	ACCAGCAATA	ACGAAGTCAA	GGAAGTCTTG	TCTCGTCTGA	720
CGAGTAAAGA	CTTTTCAGTA	GATCAGGTGG	ATAAGAAAGA	GCGCAAGCGC	AATGCTCCTT	780
TACCCTATAC	CACTTCATCT	ATGCAGATGG	ATGCTGCCAA	TAAAATCAAT	TTCCGTACTC	840
GAAAAACCAT	GATGGTTGCC	CAACAGCTCT	ATGAAGGAAT	TAATATCGGT	TCTGGTGTTC	900
AAGGTTTGAT	TACCTATATG	CGTACCGATT	CGACTCGTAT	CAGTCCTGTA	GCGCAAAATG	960
AGGCGGCAAG	CTTCATTACG	GATCGTTTTG	GTAGCAAGTA	TTCTAAGCAC	GGTAGCAAGG	1020
TCAAAAACGC	ATCAGGTGCT	CAGGATGCCC	ATGAGGCTAT	TCGTCCGTCA	AGTGTCTTTA	1080
ATACACCAGA	AAGCATCGCT	AAGTATCTGG	ACAAGGATCA	GCTTAAGCTA	TATACCCTTA	1140
TCTGGAATCG	TTTTGTGGCT	AGCCAGATGA	CAGCGGCCGT	TTTTGATACC	ATGGCTGTTA	1200
AATTGTCTCA	AAAAGGGGTT	CAATTTGCTG	CCAATGGTAG	TCAGGTTAAG	TTTGATGGTT	1260
ATCTTGCCAT	TTATAATGAT	TCTGACAAGA	ATAAGATGTT	ACCGGACATG	GTTGTTGGAG	1320
ATGTGGTCAA	ACAGGTCAAT	AGCAAACCAG	AGCAACATTT	CACCCAACCG	CCTGCCCGTT	1380
ATTCTGAAGC	AACACTGATT	AAAACCTTAG	AGGAAAATGG	GGTTGGACGT	CCATCAACCT	1440
ACGCGCCAAC	CATTGAAACC	ATTCAGAAAC	GTTATTATGT	TCGCCTGGCA	GCCAAACGTT	1500
TTGAACCGAC	AGAGTTGGGA	GAAATTGTCA	ATAAGCTCAT	CGTTGAATAT	TTCCCAGATA	1560
TCGTAAACGT	GACCTTCACA	GCTGAAATGG	AAGGTAAACT	GGATGATGTC	GAAGTTGGAA	1620
AAGAGCAGTG	GCGACGGGTC	ATTGATGCCT	TTTACAAACC	АТТСТСТААА	GAAGTTGCCA	1680
AGGCTGAAGA	AGAAATGGAA	AAAATCCAGA	TTAAGGATGA	ACCAGCTGGA	TTTGACTGTG	1740
AAGTGTGTGG	CAGTCCAATG	GTCATTAAAC	TTGGTCGTTT	TGGTAAATTC	TACGCTTGTA	1800
GCAATTTCCC	AGATTGCCGT	CATACCCAAG	CAATCGTGAA	AGAGATTGGT	GTTGAGTGTC	1860
CAAGCTGTCA	TCAGGGACAA	ATTATTGAGC	GAAAAACCAA	GCGTAATCGC	CTATTCTATG	1920
GTTGCAATCG	CTATCCAGAA	TGTGAATTTA	CCTCTTGGGA	CAAGCCTGTT	GGTCGTGACT	1980
GTCCAAAATG	TGGCAACTTC	CTCATGGAGA	AAAAAGTCCG	TGGTGGTGGC	AAGCAGGTTG	2040
TTTGTAGCAA	AGGCGACTAC	GAGGAAGAAA	AGATGGCTCT	TTGTCAACTG	TAGTGGGTTG	2100
AAGTCAGCTA	AGCTCGAGAA	AGGACAAATT	TTGTCCTTTC	TTTTTTGATA	TTCAGAGCGA	2160

233

TAAAAATCCG	TTTTTTGAAG	TTTTCAAAGT	TCCGAAAACC	AAAGGCATTG	CGCTTGATAA	2220
GTTTGATGAG	ATTATTGGTC	GCTTCCAATT	TGGCGTTAGA	ATAGTGTAGT	TGAAGGGCGT	2280
TGACGATTTT	CTCTTTGTCC	TTTAGAAAGG	TTTTAAAGAC	AGTCTGAAAA	AGAGGATGAA	- 2340
CCTGCTTTAG	ATTGTCCTCA	ATGAGTCCGA	AAAATTTCTC	CGGTTCCTTA	TTCTGAAAGT	2400
GAAACAGCAA	GAGTTGATAG	AGCTGATAGT	GATGTTTCAA	GTCTTGTGAA	TAGCTCAAAA	2460
GCTTGTTTAA	AATCTCTTTA	TTGGTTAAAT	GCATACGAAA	AGTAGGGCGA	TAAAAATGTT	2520

(2) INFORMATION FOR SEQ ID NO: 15:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10993 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

TTTTCTCGAT AATAACTTCC ACCTTATTAT TTGGGATACC CTCCTCTTCT TCACCACCAC 60 GTTCATAGTA GTCATCGCGA TAGAGAAAAG CTACGATATC AGCGTCCTGC TCAATAGACC 120 CAGATTCACG AATATCAGAC AAGACCGGTC TCTTGTCCTG ACGTTGTTCT ACACCACGAG 180 AAAGCTGACT CAGAGCGATT ACTGGAACCT TCAATTCCTT GGCTAGTATT TTCAACTGAC 240 GAGAAATTTC AGAAACTTCT TGTTGACGAT TTTCTCGACC AGTTCCCGTG ATAAGTTGCA 300 AATAGTCTAT CAAAATCAAA CCAAGATTTC CAGTTTCTTG AGCCAATTTA CGAGAACGAG 360 AACGAATCTC TGTAATCCGA ATACCTGGCG TATCATCGAT ATAGATACTG GCGTTAGCTA 420 GATTACCCTG AGCAATAGTA TATTTTTGCC ACTCCTCATC TGTCAATTGC CCTGTACGGA 480 TAGAATGTGA CTCCACTAAG CCTTCTGCAG CTAACATACG ATCTACCAAG CTTTCCGCAC 540 CCATTTCGAG TGAAAAAATA GCAACCGTTT TGTCCAACTT AGTCCCAATG TTCTGAGCGA 600 TATTCAAGGC AAATGCTGTC TTACCAACTG CTGGACGAGC TGCTAAGATA ATCAACTCCT 660 CCTCATGAAG TCCTGTTGTC ATATGATCCA AATCACGATA ACCTGTCGCA ATACCTGTAA 720 TATCGGTCGT TTGTTGCGAG CGAGCTTCCA GATTTCCAAA GTTGAGATTC AACACATCTC 780 GAATGTTCTT AAACCCGCTT CGATTTGCAT TTTCACTGAC ATCAATCAAC CCTTTTTCTG 840 CCTGAGCAAT AATTTCATCA GCTGGTTGTG ACGCTTCGTA AGCTTGGTTG ACAGACTCTG 900 TCAACTTGGC AATTAAACGA CGTAGCATTG CTTTTTCTGC AACAATCTTA GCATAATACT 960 CCGCATTAGC AGAAGTTGGC ACAGAATTAA CAATCTCAAC CAAGTAAGAC AAGCCACCAA 1020

			234			
TATTCTGTAA	ATCACCTTGA	TTATCAAGGA	TAGTACGAAC	CGTTGTTGCA	TCTATGGCAT	1080
CACCACGATC	GGATAAATCG	ACCATGGCTT	GGAAAATCAA	ACGATGGGCA	TACTTAAAAA	1140
AGTCCCGAGA	CTCAATGTAT	TCTCGCACAA	AAACAAGTTT	ACTCTCATCA	ATAAAGATAG	1200
CCCCTAAAAC	GGATTGCTCA	GCTAAGATAT	CTTGAGGTTG	TACTCGTAAC	TCTTCTACTT	1260
CTGCCATCAG	ACTTCCCTTC	CTTTTACAAT	CTTGTCAAGA	AGGTGTAAAC	TTATCCTTCT	1320
PTCACACGAA	GATTGATTAC	ACTTGTGATA	TCTTGATAGA	TTTTCACTGG	CACATCAATC	1380
AAACCAACCG	CTCGAATCGG	AGCTTGTACT	TGAATATGAC	GTTTATCAAT	CTTAATTCCA	1440
AATTGCTTTT	GCAATTCTTC	TGCAATCTTC	TTATTGGTAA	TAGAACCAAA	GGTACGACCA	1500
PCTGGACCAA	CTTTTTCAAC	AAATTCTACA	ACAGTTTCTT	CTGCTTCAAG	TTGTGCTTTA	1560
ATTGCTTTTC	CTTCTGCAAT	CATCTCAGCG	TGAGCTTTTT	CTTCCGATTT	TTGTTTACCA	1620
CGAAGTTCAC	CTACAGCTTG	AGCAGTCGCT	TCTTTGGCTA	GATTCTTTTT	GATAAGAAAG	1680
rt ttgc gcat	ACCCTGTTGG	TACTTCCTTA	ATTTCGCCTT	TTTTACCTTT	TCCTTTAACA	1740
CTGCTAAAA	AGATTACTTT	CATTCTTCTT	TCTCCTTTTC	CTTCATTTCA	TTTAATACAA	1800
PTTCTGTCAG	TTTTTCACCT	GCTTCTGACA	AGGTTACATC	TTTAATTTGA	GCTGCTGCCA	1860
ATTAAA GTG	GCCTCCACCG	CCTAACTCTT	CCATAATCCG	TTGTACATTC	AGTTTACTAC	1920
GACTTCGAGC	TGAGATAGAG	ATAAATCCTT	GTGTATTCTT	CGCAAGAACA	AAACTCGCTT	1980
CAATACCTGA	CATGGCTAAC	ATGGCATCTG	CTGCCTTACT	AATAACAACT	GTATCATAGC	2040
ATTTCATGTC	CTTAGCCTCT	GCTATTAGTA	CATCTGAACC	TAATTTACGC	CCCTGTAAAA	2100
PAAGTTCATT	GACCTCACGA	TATTCTTCAA	AATCTGTCGC	AGCGATTTCC	TGGATAGCAA	2160
PACTATCACT	TCCGCGCGTT	CTGAGATAGC	TAGCAACATC	AAATGTCCGA	CTAGTTACTC	2220
CGAGGTGAA	ATTTTTAGTA	TCCAACATCA	TACCAGCCAT	CAAGACACTT	GCTTGCATAC	2280
FACTCAAACG	ATTTTTCTTA	GAATTCTGGA	ACTGAATCAA	TTCCGTTACC	AACTCACTGG	2340
ACTACTTGC	ACCACTTTCG	ATATAAGTAA	TAACCGCATT	ATCTGGAAAA	TCCTGATCCC	2400
TCTATGGTG	GTCAATAACA	ATGGTTTGGG	TAAATAAATC	ATAAAATTCT	TTTGATAATG	2460
TAAGGCTGT	CTTTGAATGG	TCTACAAGAA	TCAACAAAGA	ACGATTGGTC	ACCATCCCCA	2520
TGCATCCTT	AACAGACAAC	AACTTCGTAA	CTCCTTCTTT	TTCTATGAAT	GAAACAGCTC	2580
TTCAATATC	TGGAGACATT	TGTTCTTCAT	CATAAAGAGC	ATAGCTATTT	TCAATCACAT	2640
GCTGGCGAA	CAACTGCATA	CCTACAGCAG	AGCCCAAAGC	ATCCATGTCT	AAATTTTTGT	2700
ACCGACTAC	AAAAACCTGA	TCTACACTCC	GAATCTTATC	TGAAATAGCT	GTCATCATAG	2760
GCGCGTACG	AGTCCGTGTA	CGCTTGATTG	AAGCAGCAGA	CCCACCACCA	AAATAAACTG	2820

GATTTTTCGT	TTCGTCGTTT	TCCTTAACAA	CCACCTGGTC	GCCACCACGT	ACTTCAGCCA	2880
AGTTCAAATT	GAGCAAAGCA	ACTTTCCCTA	TCTCATCATG	ATTTCCATCG	CCATAAGAAA	2940
ATCCCATACT	TAAGGTCAAG	GGCAACTGTC	TCTGTTTCGA	CTCTTCTCTG	AAAGCATCAA	3000
TAACAGAAAA	TTTATCATTC	ATCAAGCCCT	CAAGCACCGT	GTAGTCAGTA	AATAGATAAA	3060
ATCGATCCAT	ACTTACCCGA	CGAGAAAACA	TCATGTGTTT	TTCTGAAAAC	TCTGATATAA	3120
AATTAGCTAC	AAAACTATTG	ATTTGACTAA	TATCTGACTC	AGAAGTTTCA	TCCTCCAAAT	3180
CATCATAATT	ATCCACAGAG	ACAATCCCAA	TCACTGGTCT	ACTTGTTACC	AATTCATCTG	3240
PTATGGCTTG	TTCCCTGGAT	ACATCTACAA	AATACAAAAC	ACCGGAAGAA	GCATCCATAT	3300
GAACAGCATA	ACGCTTCTCA	CCAAGCTTGG	CATAAGTAGA	CGGATTTCCT	ACTGAAGCCT	3360
rgat aat cgt	TTGAACAGCT	TCTAAATCAA	AATCACCATC	TTCCTTGGTC	AAAATCAATT	3420
CAGCATAGGG	ATTAAACCAC	TCAACCTCTC	CAGAAGATAA	ATTCAATTTC	ATAACACCTA	3480
CAGGCATCTG	TTCCAATAGA	GCTGTCAAAC	TTTCTTCCGC	TTGGTGGTTT	ACATACTGTA	3540
PCTGTTCTAC	ATCACTCCTT	GTATAATGCA	CTCTCAGTTT	СТТАААТААА	AAAACATAGC	3600
CTCCTACAAA	AAGAAACAAA	ATTAAAACCG	TCAACAGATT	ATTATTAACA	AAAATAATGA	3660
AAGTGGATAA	GACTCCAAAC	GCAATCAATC	CTACTAGAAT	AGGAAAAATT	GGACTTACAT	3720
TTTTTAAAA	CATTCAAAAC	CTCTTCGCAC	CCATTATACC	ATAATACCCC	TCAAAAAGCG	3780
ACTTTTTAAA	AGTGTAATCA	GTAATTCTAT	CAATTATAAG	AAAAAGGTAG	TTTACAATTC	3840
AGTAAACCTA	CCTTTACACA	TATTGAAATT	AAGATTCTTT	AACCTCTAAC	AAACCAATTT	3900
CGCCATCCTC	ACGACGATAA	ATCACATTGG	TTGTCTGATC	TTCAACATCC	ACATAGATAA	3960
AGAAATCATG	CCCCAATAAA	TCCATTTGTA	GAATTGCTTC	TTCCAAATCC	ATTGGTTTTA	4020
AATCAATT TG	TTTTGAACGA	ACAACTTTAG	ACTGGACAAT	ATTTGAATCT	TCCACCAAAG	4080
CATCTGTAAA	TAATTGACCA	GTTGCTACCT	TATTTTTATT	TTTACGCTCG	ATTTTTGTTT	4140
PATTTTACG	AATCTGACGT	TCAATTTTAT	CAGTTACAAG	GTCAATTGAA	CCATACATAT	4200
CTTGAGATAC	ATCTTCTGCG	CGGAGAGTAA	TAGATCCAAG	CGGAATCGTT	ACTTCCACTT	4260
PAGCCGTTTT	TTCACGATAA	ACTTTTAAGT	TAATTCGGGC	ATCCAACTCT	TGTTCTGGTT	4320
GAAGTACTT	TTCGATCTTT	TCGAGTTTAG	AAACTACATA	ATCACGAATT	GCTTCTGTTA	4380
CTTCTAGGTT	TTCACCACGG	ATACTATATT	TAATCATATG	AGTACCTTCT	TTCTAAACAT	4440
rtttgtttt	ATGATTTTAT	TATAACGCTT	TCATTCTATT	TTTGCAAATT	TTTTCCTCAT	4500
CTTACAAGGG	AAAATGTTTT	TACATCCTTA	GCACCAGCTT	CTTCCAACAG	TTTCTTAACA	4560

	•		236			
CGATTTATAG	TTGCTCCTGT	AGTATAGATA	ТСАТСТАТАА	GTAGGATTTT	TTTAGGAATA	4620
GTGACTCCAC	AAATAATTT	GAAAGGAAGT	TCTGTCCCCA	AGCGCTCTGA	ACGATTTTTA	4680
GAAGAACTGG	CTCTCTCTTC	TCTTTTCTCT	AATAAATCCA	GATACTCAAA	GCCTGCTGCC	4740
PCTACCAAGC	CCTCAACCTG	ATTAAATCCT	CTATTAGCAT	ATCTATCAGG	ACTTAGGGGA	4800
ATTACAACAA	ATTGATACTC	TTTGTACTTT	TTCAACTCCT	CACTTAAAAA	TGAAGCGAAA	4860
ACTTTTCTTA	ACAGGAAGTC	TCCATCAAAC	TTATACCGAC	TGAAAAAATC	CTTCATAGCT	4920
rgattgtaag	TAAAAATCGC	TCTATGACTG	ACTTCAACTC	CCTCTTTACA	CCAAAGTTGA	4980
CAATCTTGAC	ACTTTGTTGA	CAACTCTGTT	TTCATACAAT	TTGGACAGTT	CTCTTCCCCA	5040
ATTCTTTCAA	AAGTAGAATC	ACAGTCTGAA	CAAAGACAAG	AGTCATCATT	CCTCAGAAGT	5100
AAGAGACTAC	TAAAAGTTAA	AACAGTCTTC	ATAGTCTGCC	CACATAACAA	GCACTTCATA	5160
GACCAGCCTC	CTTATTCATC	ATCTGAATTT	CCTTAATCGC	CTTCTTGATT	GAAGCATTTA	5220
ACCCATCATG	GAAGAAAAGC	AAATCTCCTG	TCGGTCTATC	CATGCTTCGT	CCAACTCGTC	5280
CACCAATCTG	AATCAAACTA	GACTTGGTAA	ACAAACGATG	ATTGGCCTCT	ACTACGAAAA	5340
CATCCACACA	AGGGAAGGTA	ACTCCGCGCT	CCAAGATTGT	CGTACTGATA	AGTATTGTCA	5400
STTCTCCATC	TCGAAAAGCT	TGTACTTGCT	CTAATCGATC	CTCTGTTACA	GAAGATACAA	5460
AGCCAATTTT	CTCATTTGGA	AATTGCTCCT	GTAAGATTTC	TGCTAACTGC	TCCCCTTTCT	5520
PAATTTCTGA	AGCAAAAATG	AGTAACGGAT	AAGCTGTCTT	TCTCTGCTTC	TCAATATAGG	5580
CTTTAACTT	TGGTGACAAA	CGATTCTTGT	CTAAGTAGCG	ATTAAAATCC	GATAACCAAA	5640
TGGTTTTGG	AATAATCAAC	GGATTTCCAT	GAAACCGTCT	CGGTAAATTC	AGTCTTTTTA	5700
TTCTCCTAA	ACGGACCTTT	TTATCTAACT	CATTGGTCGA	AGTCGCTGTT	AAAAAGATTC	5760
CAATCCATT	СТССТТТАСА	CTATTCTTGA	CAGCGTGGTA	AAGCATGGGA	TTATCAACAT	5820
AGGAAAAGC	ATCTACTTCA	TCCACTATCA	GCAAATCAAA	AGCTTGATAA	AACTTCAATA	5880
CTGATGGGT	TGTTGCAACA	ACTAGTGGTG	TTCGAAAATA	AGGTTCCGAT	TCTCCATGTA	5940
CAAAGCTAT	CCCGCAAGAA	AAATCCTGTT	GCAGGCGCTT	GTACAGCTCC	АААСАААСАТ	6000
TATGCGAGG	ACTAGCCAAA	CACACTGCAC	CACCCGCATT	GATCACTTTA	GCCACTACTT	6060
SATAAATCAT	TTCTGTCTTT	CCAGCTCCTG	TTACCGCATG	AACTAAGGTT	GGCTTTTGCT	6120
GTCTACTAC	TTGAAGCAAT	CCCTCTGACA	CCTTCTCTTG	AAAAGGAGTT	AATTGGCCGC	6180
CCATTTGAG	AACATCTTGC	TTTGGAAAAT	CCTCCTGCGG	AAAATAGTAT	AAAGTTTGAT	6240
ACTTCTGAC	TCGCTTCATC	AGCAAGCACT	CTCGACAATA	GTAAGCACCG	ATGGGCAAAT	6300
CCATTCTTC	TAGAATAGTA	CTATTACAGC	GTTGACAGAA	AAGTTTCCCC	TTCTCCTTTC	6360

PCA	TTGCTGG	AAGTTTCTCC	GCCAACTGAC	GTTCTTCTTC	TGTTAATTCA	TTCTCAGTAA	6420
ATA	AACGACC	GAGATAATCT	AAATTTACTT	TCATACTTCT	TTATTCGTAA	AAACTAGCAC	6480
ГТТ	AGATGAT	TTTTTAGTAC	AATTAAATCA	TGGAATTTAG	GACAATTAAA	GAGGACGGTC	6540
AAG	TCCAAGA	AGAAATCAAA	AAATCTCGCT	TTATCTGCCA	TGCCAAGCGT	GTTTATAGCG	6600
AAG	AAGAGGC	TCGTGACTTC	ATTACTGCCA	TCAAAAAAGA	ACACTACAAA	GCGACACATA	6660
ACT	GCTCTGC	CTTCATTATT	GGAGAACGTA	GTGAAATTAA	ACGTACAAGT	GATGATGGTG	6720
AGC	CTAGTGG	TACTGCTGGT	GTTCCCATGC	TTGGGGTACT	AGAAAATCAC	AATCTCACCA	6780
ATG	TCTGTGT	GGTCGTGACA	CGCTACTTTG	GTGGTATTAA	ACTAGGCGCT	GGAGGACTAA	6840
FTC	GTGCTTA	CGCCGGCAGT	GTCGCCTTAG	CTGTCAAAGA	AATTGGTATT	ATTGAAATAA	6900
٩AG	AACAGGC	TGGCATTGCT	ATTCAAATGT	CTTATGCTCA	GTACCAAGAG	TACAGTAACT	6960
rcc	TTAAAGA	ACATGGTCTC	ATGGAGCTGG	ATACAAACTT	TACAGATCAA	GTCGATACGA	7020
rga	TTTATGT	TGATAAAGAA	GAAAAAGAAA	CTATTAAAGC	TGCACTTGTG	GAGTTTTTTA	7080
ATG	GAAAAGT	CACTTTAACT	GACCAAGGTT	TACGAGAGGT	TGAAGTTCCT	GTAAACTTAG	7140
rgt	AAACAAT	GAATAATACA	GCGTTTCGTT	GACATTCTCA	CAACTACTTT	AGCGAGCAAA	7200
ATA	AAAAGAG	GCGTACCAAA	ATATACTAGA	AAATGAAGCA	ATTCAAACGA	AACCTGATAT	7260
CT	TTTCCTT	CACACCTATT	TACTAGAATT	AGCTGAACGC	AATCACTTGA	AAATTAATGA	7320
TT	TGATCTA	TGATATATAG	AAATGGTATG	GATAGCGTTA	TACTAAAGAT	ATCTTATACA	7380
AAG	AGGTATT	CATATGTCTA	TTTATAACAA	CATTACTGAA	TTAATCGGTC	AAACACCGAT	7440
ľĠŦ	TAAACTT	AACAACATCG	TGCCAGAAGG	TGCTGCAGAC	GTCTATATAA	AGCTTGAAGC	7500
TT	TAATCCT	GGTTCATCTG	TAAAAGACCG	TATTGCCCTT	AGCATGATTG	AAAAAGCTGA	7560
ACA	AGATGGT	ATTCTGAAAC	CTGGTTCTAC	TATTGTTGAA	GCAACAAGTG	GAAACACCGG	7620
TAT	TGGACTT	TCATGGGTAG	GTGCTGCTAA	AGGGTATAAA	GTCGTCATCG	TTATGCCTGA	7680
AAC	TATGAGT	GTAGAACGAC	GTAAAATTAT	CCAAGCTTAT	GGTGCTGAAC	TCGTCCTAAC	7740
rcc	TGGTAGC	GAGGGAATGA	AAGGTGCTAT	TGCTAAGGCT	CAAGAAATCG	CTGCTGAACG	7800
rga:	TGGTTTC	CTTCCTCTTC	AATTTGACAA	TCCAGCTAAT	CCAGAAGTAC	ACGAAAGAAC	7860
AAC	AGGAGCT	GAGATACTAG	CTGCTTTCGG	TAAAGATGGA	TTAGATGCCT	TTGTTGCTGG	7920
AGT.	AGGTACT	GGTGGAACGA	TTTCTGGTGT	TTCTCATGCA	CTCAAATCAG	ААААТТСТАА	7980
TA:	TCAAGTT	TTTGCAGTAG	AAGCAGATGA	ATCTGCTATT	CTATCTGGTG	AAAAACCTGG	8040
rcc	TCACAAA	ATTCAAGGTA	TCTCAGCTGG	ATTTATTCCT	GATACACTTG	ATACTAAAGC	8100

238 CTATGATGGT ATCGTTCGTG TAACATCAGA TGACGCTCTT GCACTCGGAC GTGAAATTGG 8160 TGGAAAAGAA GGCTTCCTTG TAGGGATTTC CTCAGCTGCA GCTATCTACG GAGCCATCGA 8220 GGTTGCCAAA AAATTAGGTA CAGGTAAAAA AGTCCTTGCC CTAGCACCAG ATAACGGTGA 8280 ACGTTATCTC TCTACAGCAC TTTATGAATT GTAACCGTCC AATAACGAAG TCTATTGAAA 8340 AATCTCCAGA CTAGAGAACT CACGGATAGT TCCTAATCTG GAGATTTCTT ATTTGCACTT 8400 TTCTTGTACA ACTTTAGTCC ATGGTAAATA GGCCTCTAAA ACCTCTTTGT TTACGAGAGT 8460 TTCCACGTTT GGAAGACATT CTAGAAGATA GGATAGATAT TTCTCACTAT TTATAATGGA 8520 TTGAAATAAG ATATGAACAA ATCGATTAGA ACATGATGGT AAAGCGTAAT CCCTTGTTTC 8580 TCAGCTTTCC CAGACAAAAA AGTCCAATAG TAAGTCAGCT GACTATCACT CTCTAGCACC CTATAAGAAG TTTCATCCGC ATGAAGTAAG GGCTGAGTCA ATAGTCTCTC TCGCAAGAGG TTATAAAGGG GCTCCAAATA GTATTGACTC GTCTTGATAT GCCAATTAGA GATTTCCTTA 8760 CGTGTGATTG GTAAACCCAT CCTAGCCCAA TCTTCTTCTT GGCGATAATT GGGTACCTTC 8820 AGATTAAACT TCTGATGGAT GGTGTGAGCG ATAATAGAAG CTGAGCCAAA GTTATGCGCT 8880 AAAGGGGCTT TAGGAATAGG AGCTTTCACA AGCTTATCCA GATGATTATC TTTTACTCGT 8940 TATGGACAAT GCTATATGGC ATAAATCAAG TACCTTAAAG ATTCCGACTA ATATTGGCTT 9000 TGCATTTATT CCTCCATACA CACCAGAGAT GAACCCCATT GAACAAGTGT GGAAAGAGAT 9060 TCGTAAACGT GGATTTAAGA ATAAAGCCTT TCGAACTTTG GAAGATGTCA TACAAGGACT 9120 GGAGAAGGAG GTGATAAAGT CCATCGTTAA TCGGAGACGG ACTAGAATGC TTTTTGAAAA 9180 CAGATGAGTA TAAAAAGAAA GTCCTCATTT CAATAGAAAT CACGACTTTC TGATGAATTT 9240 ATAGTAAAAT GAAATAAGAA CAGGATAGTC AAATCGATTT CTAACAATGT TTTAGAAGCA 9300 GAGGTGTACT ATTCTAGTTT AAATCCACTA TATTTGGGGA GTGATAGAAA AGCCCTTCAT 9360 CAGCCAATCT ACTTGTTCAG GTGCGAGAGC TTTGACATCC TTTTCTGTAC TGGACCAAGT 9420 CAGTTTTCCG TTCTCAAAGC GTTTATATAA TATCCAAAAT CCTTGACCAT CCCAGTAAAG 9480 AACTTTAAAG CGGTCTTTAC GTCCACCACA AAAGAGAAAG ACTTGATCGG AGAAAGGATC 9540 CAATTCAAAG TGGGTTTTAA CTACATAGGC TAATGAGTCT ATTCCCTGCC TCATATCTGT 9600 CTTGCCACAA ACAAGGTGAA CTTGACCTAA ATCACTTAGT TGAATTATCA TAGTACAATA 9660 CCTTTCCTCC GATAATTATT TTTTATCTGG TATACTGGAA GTTGGGGAAT TAGGATAGAT 9720 ACCTTGTTAT GACGCGCTTA CTATGAATTT GAAGTATAGT CTCCTAAATG CACTTAGCCC 9780 TTATTATAGG GCTTTTTGTT TTAATTATTC TAATCGAGTG AGACTGGGGA AAAAACAATT 9840 TCAGGAAAAA TCTAAGCCCT ATACAAAAAA GGAAGCAATT TGCTTCCTTT CTATTATTAG 9900

WO 98/18931

239

PCT/US97/19588

r cgaagi	STCGTT TGCAC	SCTTTC 9960
A CCGAAG	AGCGTT AACTC	GATTCA 10020
A CTTGTG	rgcaag aagto	FTGTAA 10080
A TTTTAC	ACCTGG AATAA	ATTTTG 10140
G CTTTGA	SATGTC AGCT	CAGCT 10200
r ACTTCA	CAAGTG TGGAA	AGAGCT 10260
A TAACGI	STGATT CAATT	TGTGCC 10320
G AAAGAA	ACTGT TGGTT	TTCATC 10380
r ctccac	ACCTTC AACAA	ACTGAA 10440
A AGTGTT	rtgtgc gtctg	TTTTT 10500
A TAGTTO	FGCTGT TGCAC	GATACG 10560
G CAAGAG	AGCTTC TTCGT	PTGTTA 10620
A CCAATI	TTCAAC GAATT	rgagcg 10680
A CTGCTG	rgcaac attac	CCGTTA 10740
G CTTTCI	CTTAGC TGCCT	PTAGCC 10800
r caccgi	STCTGT TTCT	ACAAGC 10860
C GCAACI	CTCTTT TACA	AGTTTA 10920
A AAATAG	AGGAGA GCGCC	GCTAA 10980
		10993

(2) INFORMATION FOR SEQ ID NO: 16:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 8411 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

CGACGGGGAG GTTTGGCACC TCGATGTCGG CTCGTCGCAT CCTGGGGCTG TAGTCGGTCC 60 CAAGGGTTGG GCTGTTCGCC CATTAAAGCG GCACGCGAGC TGGGTTCAGA ACGTCGTGAG 120 ACAGTTCGGT CCCTATCCGT CGCGGGCGTA GGAAATTTGA GAGGATCTGC TCCTAGTACG 180 AGAGGACCAG AGTGGACTTA CCGCTGGTGT ACCAGTTGTC TTGCCAAAGG CATCGCTGGG 240

			240			
30	ACCTCAAGAT	TGTGAAACCC	AGCATCTAAG	AAACGCTGAA	GGGAAGGGAT	PAGCTATGTA
36	AGATAGGTTA	ATGATCAGGT	GCCCTGAGAG	ATCAGTAAGA	ATGATTATAT	AGATTTCCC
42	GACTTATCCA	ATAGCTCGAG	АСТААТАСТА	CATGTAGCGG	TGTGGCGACA	GAAGTGGAAG
48	TCAATTTTGA	GAATAGATAT	TTCTTAAATT	GCGAACGGTT	GAATATGAAA	AGTAACTGA
. 54	CCCATGCCGA	TACACCTGTA	GCCTAGGAGA	AGTGACGATA	CTCAGAGTTA	STAGGTATTA
60	GTGAGATAGG	GTTGCCCCCT	GTAGTTGGGG	AACGCCGGAA	TAAGCCCTAG	CACAGAAGT
66	CTGTTAATCA	TAGCGCATGA	CAGTTGGTAG	CGCCATAGCT	AGCTTTAATC	SAAGTCGCTT
72	ACAGCTGTGT	AAAAGGGaAC	AGTAATtGAT	CTACTGGCGG	GGTTCGAGTC	GATGTCGTA
78	GTTATTTCTT	AAGGAAGTCT	GCATTTTCAT	GTATCACCAA	GTATCAATTT	CCTCTTTTT
84	AGTGCATGAG	GACACCAAAA	AAGTTTGGCA	TGTGCAATCC	TTTTTTTCCA	SAGAACTTTC
90	ATAAATCGCT	ATTCAGTTGC	TGGTATTTAG	TCTAATTCAG	GCTACTATAT	TAGATAGAT
96	TGGATTTCTT	TAAGAAATTT	GTTTATTTCG	ATGATATGAA	TGTACTAAGC	TTGTAAATC
102	TATTCAAAAA	TGACTCTAGA	GAAGTGGTTC	AGGGCAGCCA	TTCAGAAAGA	AGTCCCATT
108	TCAAATGTAT	AAAAATATAT	CATGTTTTTG	TTGTGATGAG	AGCGTCTCTT	ттстаааат
114	TGAGTATAGA	ATCCTTATAG	TATCATACTT	TGCTCAATCA	GCTTTGATAG	GAATAGCTT
120	TTATCAAATG	AGTAGAAATT	CTAATTTGAC	GCTTTTTCTA	ACTAATTCCG	GCTGGAACG
126	TTTAAGCGTT	TCGCTTTGTT	TTTCAATAGT	ACCATAGCAT	CAGTAATTGT	CTGTTCCAT
132	TAAAAATAGA	ACTATATGTC	AACAAATTAG	CCTCCTTGTA	TTGCATATTT	GTTACTTTC
. 138	ATTTTAGACA	ТТАТАТСААА	GTATAATCTA	TAATTTTTTA	TGTAATTTAG	TTTTTATCT
144	ААААААССАА	AGCAATTTAA	AAGAATGGAA	ACTAAGTTTA	AAAAGGAGAA	TATGTTTAA
150	ATCATATTTT	TCTGTACAAT	TTATTCCAGA	GGGATTTCTC	TGTCATGATC	CTTTATTAT
156	GTTGTAAATA	ACCTGTGGCA	TGTCTGACTT	TATGGGCAAT	GTGGGATCCA	GTCATCAAT
162	ATGGTGTCCA	AGGAAAAGAC	CTATGGCAAT	AATGGTAATA	GGCTTCCTAT	TGATAAAGA
168	.GGAAAGAAGG	TGAAGAGGAA	ATTTTGTAGA	TTGGATTTTC	AAATAAAACC	TTTAAAAGA
174	TCTGAAAAAA	aagtgattta	TGACTTTACC	TATATGGTAG	TGGCGATTAC	attggaaga
180	AGTGAGCAAC	ATCATTGACA	CAGCTTATCA	CAATCGACAG	ATCCAATATT	AACTACATT
186	TCGGCTCAGT	TAGTATTCAA	ATTCAACTGA	GTATCTCAAA	AAGTGATTCT	AACTGAGAT
192	AATCAATCTT	AAACTTACAA	GAAGTTTAGA	GATTTACAGG	TTTAGTACAA	AATTGTAGC
1980	тстасттстт	ACCTATTACT	ATCAAGTATC	AATCAATCTA	Gactttaaaa	TAATCTTTC
204	AAATTAGTTC	TGTTACTAGC	TACAAGGAGA	TTAACAGAGA	GTCAAGTGGA	GATAGGATT

TGCCAGTCA	GTCGATTGCA	TCAGGTGTAA	ACGCATATAC	TACAGGTGTT	GATAAAGTTT	2100
CTCAGGGCGC	AAGTCAACTA	agtgaaaaaa	ATGCCACCTT	GACAGGTAGT	TTGGATAAAC	2160
PAGTTTCAGG	CTCAAACACC	TTGACACAAA	AATCTTCTAG	ATTGACAGCA	GGAGTTGGTT	2220
ATTACAATC	AGGATCTGGG	CAATTAGCAG	ACAAATCCAG	TCAGTTACTT	TCAGGTGCTT	2280
CTCCATTAGA	GAATAGAGCT	AATAAATTGG	CAGATGGATC	TGGGAAACTA	GCAGAAGGTG	2340
GAACAAAGTT	AACTTCTGGA	TTGGAAGATT	· TACAGACAGG	ACTTGCTTCT	TTAGGACAAG	2400
GACTAGGTAA	TGCTAGTGAT	CAACTCAAAT	CAGTATCAAC	AGAATCTAAA	AATGCAGAGA	2460
TTTTGTCAAA	TCCACTCAAT	СТТТСААААА	CAGACAATGA	TCAAGTTCCT	GTAAATGGAA	2520
CGCAATAGC	TCCTTATATG	ATATCAGTTG	CTCTTTTTT	GCAGCAATAT	CAACAAATAT	2580
SATATTTGCG	AAATTGCCTT	CAGGACGTCA	TCCAGAGAGC	CGTTGGGCTT	GGTTGAAATC	2640
TTGAGCTGAA	ATAAATGGTA	TTATAGCTGT	TTTGGCAGGA	ATTTTGGTAT	ATGGAGGAGT	2700
CAGCTTATT	GGTTTAACTG	CTAATCATGA	GATGAGAATA	ТТТАТТСТСА	TCATCCTAAC	2760
AGTTTAGTA	TTCATGTCTA	TGGTGACCAC	TTTAGCAACG	TGGAATAGCC	GTATAGGAGC	2820
TTTTTCTCA	CTTATTTTGC	TTTTACTACA	GTTAGCATCA	AGTGCAGGTA	CTTATCCACT	.2880
GCTTTGACA	AATGATTTCT	TTAGATCTAT	TAATCCCTGG	TTACCAATGA	GCTATTCAGT	2940
TCGGGATTA	CGACAAACAA	TCTCTATCAA	CAAGTCATTT	TCCTAGCTGT	CATACTAGTT	3000
ТАТТТАСТА	GTTTAGGTAT	GCTAGCCTAT	CAACATAAGA	AAATGGAAGA	AGATTAAAAA	3060
ATCGACCGA	TTAACTGGTC	GATTTTTTAT	GCCTTAGATG	ACTTTCGTCT	GTGATTATAG	3120
ттссалата	GTAAGAGAGA	AGTAAAGGAA	CAGATTGCTC	CAGTAATAAA	ACCATTGGGA	3180
TGAAGGAAA	GTGTAATAGT	TCCTTTCCCC	TTGGGAATGT	CAACTTTCAT	AAATCCAGTT	3240
GAGCTTGTT	TAATTTCTAT	TTTCTTACCA	TCTTGGTAGG	CAGACCAACC	TTTGTCATAA	3300
GAATGGTGA	AGAAAATAGA	TGTATCTTGT	TGGACATCAT	ATGTAGCAAA	AACCTTGTTT	3360
TAGAAGTTG	ATACTGTGAC	AGGTTGTTCT	TTAATTTTTT	GAATTGCCTC	GGTGAAAGTT	3420
TGGTATCTA	AACGATAGAA	GGTAGGAGAT	TCAAATGATA	CTTGTGAATT	TCCAGGGAAA	3480
TAACATTGA	TATTGAAAGT	TTTTTTCTCT	TTAGTATATC	CTAGATTAAA	GAAGGAGAAG	3540
CATTATCAG	TTGTAAAAGT	CTTTTTTCA	CCATTTACAA	GGATGTCAAC	CTTCTTTTGT	3600
TATCGTTAG	AAAAGTGAAG	GTTTATGAAA	GAGAGATAAA	CTTGGCTGTT	TTCTGGAACT	3660
CAATTTGAT	ACTGGATTGC	TGCATCTTCA	TTTGAAGAAC	TTGTGACACT	AATCAAATCA	3720
TAGTATTTT	CTATTTTTC	TGTTTTTCA	TAAGGTATTG	GAGAAAAATA	ATCAAAATTG	3780

			242			
ACGTTAGCAA	GTTGATTTAA	AAATGAGGCC	TGATTATCCA	AGGTATGTTC	ATTGAACTTG	3840
ACATCATTGT	AAACAGATTG	ACTCGCAACT	GCAATCGGAA	GAGAGTATTG	ATTTTCATAT	3900
agggtaagat	TATCTTTTTG	ATAGATATCT	TTAAAGCCAT	ACTTATCAAT	AGGACTGTCT	3960
GAGATATTGT	ACTGGATACC	AAATAAACTA	TCAGCCAAAA	TACTATTATT	TGCATATCGG	4020
agattgagat	TAGTCCCAGA	GGATTTAAAA	CCAAGTTTAT	CTAAAGTAGA	GCTTGATGAA	4080
CGATTTCGAA	CAGATGAAAA	TTGAGAGATT	CCATTGTAGT	TGAATTTCAT	ACTGTCATTT	4140
CCTGTCTGAG	TTTGTAGTTT	TTCAGTACGA	GTAAATTGAT	TTCCAATATA	TGTTGAGAAA	4200
GATTCCATAG	CTGGGATATC	TCGACTATAA	GCACTTCGAG	AAGCAAATCC	CCATTCCTTA	4260
GCAATTCCGT	CCATTTGAGA	TGAAGCATTT	AAACTCATTT	CAACCAGTAT	AAATAAAGAG	4320
ATTAGAATGG	CAAATAGATT	CACAGATATA	AACTTTTTGA	TAACTGCAAG	GAGTAAAAGA	4380
GAATAGACAA	CCAAAAATTC	AAGAGTAAGC	AGAATATTCA	AATCTGTTAA	AAAAGAATAA	4440
IGCGATTTTA	GATAGATGGT	AGCTAAAAAT	CCTGCTACTA	CAAGAAAAAG	CGAAACTAAA	4500
AAATTCCAGA	CTTTAAGTTC	TTTCAGACGC	TTTAAGACTT	CTGCTGCTGT	GTAAATTAAC	4560
aaggtagaga	AAATCCAAGC	ATAGCGATGT	AAAAACATGT	TTGGAGTATG	CATGCCTTGC	4620
CAAAATAAGT	CAAGAGCTTC	TATGTAAAAG	CTTGCAATTA	GAAATGCAAA	GAATATTACA	4680
Patatgagtt	TCACGTGAAA	CTTAATAGAT	TTCAGCGTAA	AAAATAAAAT	GGTCAAAATA	4740
AAGGGAAATA	GTCCAACAAA	AATCATTGGG	ATGGCCCCAT	ACTTTGTTGT	GTCAAAGGAA	4800
CCAATGAATT	GCTTAGCAAA	GAGATCAAGA	TACCAGCTAC	TTTCAGTTTG	AAACTTTGTA	4860
ACTTCAGTCA	ATTTTTCCCC	ATGTGTCTGT	AAATCAAATA	GAGTGGGAAG	AGTCATAATC	4920
AAACTAGCCA	TACCAGCTAA	AAAGGAGATA	ACTATGAAAT	CAAGAACAGA	TGATTTTCGA	4980
GTCTTAAAGT	CCCACGAAAT	TTGACAGAGA	TACCAGAAAA	TAAGAAACAA	TACTGTCATA	5040
PATCCAAAAT	AATAATTTTG	AATAAATAAG	ATTGACAGAC	TTGTAAAGTA	CAATAGGAGT	5100
PTCTTTTCAG	TTATCAGTAG	ATGTAAACCA	GTTATAATTA	AAGGAATCAA	GATAAAAACA	5160
PCTAGCCAGG	TTTTTATCTC	TAATTGACTG	ACAGTGAAAC	TCATCAGAGC	ATAGGAAGTA	5220
GATAAGGCTA	GTTTTAAAAT	CTGAGGGATA	GATTGAAACA	ATTTATTCAA	actaaaaaag	5280
GTTGACAGAC	CAATCAATCC	AAATTTTAAG	AGAGTTGTCA	GATAGATAGC	ATCTGGCATA	5340
TCGTTAGAT	CAAAAAAGTA	AACCAGAGGC	GCGAGAAAAC	TACCCAAGTA	ATAACTAGAT	5400
AGGGCATAGA	AGTTTAGCCC	TAGACCACTT	GTAAAGGTGT	AAAACAGATT	ACTATTTCCA	5460
TGTAGGATAT	TTCGTAAGGC	TACATCAAAA	ATAACGTATT	GATGAAAGCC	АТСТССТААТ	5520
AGAGGAGAGT	TGTCGCTATT	CCAGTAGATA	CTTTGAGATA	GATATACTCC	AGACATAATC	5580

ACTACAGGAA	TGATGAAAGA	AATAAAATAG	GTTCGATATG	TTTTTAAAAA	TGATTTCATG	5640
PTACCTCGTA	GAATGATAGA	AAACTCAGTT	GGTTAACCCA	ACTGAGTTTT	GAAGTTTTAT	5700
PTAGTCTTTC	CAAAGTTCTT	TAACTTTTGC	TTGTACTTCT	GCATTTTCTA	GGAATTCATC	5760
GTAGGTTTCA	TCGATACGGT	CAATGACGCC	ATTTTTAGAT	AAGACAATGA	TATGGTTAGC	5820
CAAAGTTTGA	ATAAATTCGT	GGTCATGGCT	GGCAAAGATG	ATTGATTCTT	TAAAGTTTTT	5880
CAATCCATCA	TTCAAGCTTG	AGATAGATTC	CAAGTCCAAG	TGATTTGTTG	GATCATCAAG	5940
rac a aggaca	TTTGATTTTA	AGAGCATGAG	TTTTGAAAGC	ATGACACGAA	CTTTTTCTCC	6000
CCTGACAAG	ACATTTACAG	GTTTGTTAAC	TTCATCTCCA	GAGAAGAGCA	TACGGCCGAG	6060
GAAGCCACGT	AGGAAAGTAT	TGTCATCTTC	TTCTTTACTT	GCGAATTGAC	GCAACCAGTC	6120
AAGAATT GAT	TCTCCTCCTG	CAAAATCAGC	TGAGTTATCT	TTTGGTAGGT	AAGATTGACT	6180
AGTTGTAACT	CCCCACTTGA	CAGTTCCTTC	ATAGTCAATA	TCTCCCATGA	TTGCACGAAT	6240
PAATGCAGTC	GTTTGAATAT	CATTTTGTCC	AATAAGTGCT	GTCTTATCAT	CTGGACGCAA	6300
GATGAAACTA	ATATTATCCA	AGATAGTTTC	ACCATCAATC	TTTACAGTTA	AATTTTCTAC	6360
TGTCAAGAGA	TCATTACCAA	TCTCACGTTC	CGCTTTAAAG	TTGATAAATG	GATATTTACG	6420
ACTAGATGGC	ACAATCTCTT	CTAGCTCAAT	CTTATCAAGC	ATTCTCTTAC	GTGATGTTGC	6480
CTGCCTTGAC	TTAGAAGCAT	TGGCAGAGAA	ACGAGCAACA	AATTCTTGCA	ATTGTTTAAT	6540
TTTTTCTTCT	GCTTTAGCAT	TACGGTCTGC	TAGCAATTTA	GCAGCAAGCT	CAGAAGATTC	6600
CTTCCAGAAG	TCGTAGTTTC	CGACATAGAG	TTTGATTTTT	CCAAAGTCAA	GGTCGGCCAT	6660
STGAGTACAA	ACTTTGTTTA	AGAAGTGACG	GTCGTGGGAT	ACTACGATAA	CTGTGTTATC	6720
AAGTCAATC	AAGAAGTCTT	CTAACCAAGT	AATCGATTGG	ATATCCAAAC	CGTTAGTAGG	6780
CTCGTCCAAG	AGAAGAACAT	CTGGTTTACC	AAAAAGTGCT	TTGGCGAGGA	GAACCTTTAC	6840
PTTTTCACCG	TTGGCCAATT	CGCTCATGTT	TTGGTAGTGT	AATTCTTCTG	GAATGTTTAG	6900
STTTTGAAGT	AGTTGAGAGG	CTTCACTCTC	TGCTTCCCAA	CCTCCAAGTT	CGGCAAACTC	6960
CCTTCGAGT	TCGGCAGCAC	GAACCCCGTC	CTCGTCTGAG	AAATCTTCCT	TCATGTAGAT	7020
AGCATCTTTC	TCTTTCATGA	TGCTATAAAG	TTTTTCATTT	CCCATGATAA	CGACATCAAT	7080
GCACGTTCA	TCTTCGTAGT	CAAAGTGATT	TTGACGAAGA	ACAGAGAGAC	GTTCATCTGG	7140
CCAAGAGAG	ATGTGACCAG	TAGTAGGTTC	GATATCTCCA	GCTAAAATTT	TTAAAAAGGT	7200
GATTTTCCG	GCACCATTAG	CACCGATTAA	TCCGTAAGTA	TTTCCTTCTG	TAAATTTGAT	7260
TTGACATCA	TCAAAAAGTT	TGCGATCACT	AAAACGTAGT	GAAACATCAG	ATACTGTAAG	7320

CAATGTTTT	СТССТАТАТС	TGTAATATAT	244 TTATTCTACT	AGAAAATACA	GAAATATTCA	7380
AATTTTTATT	TGTCAATTTT	GTGTAAATTA	TATTTACAGT	ATCCTTTACA	CAAATCTGTA	7440
AAAAGCAAGG	CTGATTTATT	TTGATAAATT	ACGGTTATTT	САТТААААА	ATGCTATAAT	7500
TGAAAGGACT	ATATCGAAGG	AGAACAAAAT	GACTAAACCC	ATTATTTTAA	CAGGAGACCG	7560
TCCAACAGGA	AAATTGCATA	TTGGACATTA	TGTTGGAAGT	CTCAAAAATC	GAGTATTATT	7620
ACAGGAAGAG	GATAAGTATG	ATATGTTTGT	GTTCTTGGCT	GACCAACAAG	CCTTGACAGA	7680
TCATGCCAAA	GATCCTCAAA	CCATTGTAGA	GTCTATCGGA	AATGTGGCTT	TGGATTATCT	7740
TGCAGTTGGA	TTGGATCCAA	ATAAGTCAAC	TATTTTTATT	CAAAGCCAGA	TTCCAGAGTT	7800
GGCTGAGTTG	TCTATGTATT	ATATGAATCT	AGTTTCGTTA	GCACGTTTGG	AGCGAAATCC	7860
AACAGTCAAG	ACAGAGATTT	CTCAGAAAGG	ATTTGGAGAA	AGCATTCCGA	CAGGATTCTT	7920
GGTCTATCCA	ATCGCTCAAG	CAGCTGATAT	CACAGCTTTC	AAGGCTAATT	ATGTTCCTGT	7980
TGGGACAGAT	CAGAAACCAA	TGATTGAGCA	AACTCGTGAA	ATTGTTCGTT	CTTTTAACAA	8040
IGCATATAAC	TGTGATGTCT	TGGTAGAGCC	GGAAGGTATT	TATCCAGAAA	ATGAGAGAGC	8100
AGGGCGTTTG	CCTGGTTTAG	ATGGAAATGC	TAAAATGTCT	AAATCACTAA	ATAATGGTAT	8160
PTATTTAGCT	GATGATGCGG	ATACTTTGCG	TAAAAAAGTA	ATGAGTATGT	ATACAGATCC	8220
AGATCATATC	CGCGTTGAGG	ATCCAGGTAA	GATTGAGGGA	AATATGGTTT	TCCATTATCT	8280
AGATGTTTTT	GGTCGTCCAG	AAGATGCTCA	AGAAATTGCT	GATATGAAAG	AACGTTATCA	8340
ACGAGGTGGT	CTTGGTGATG	TGAAGACCAA	GCGTTATCTA	CTTGAAATAT	TAGAACGTGA	8400
ACTGGGTCCG	G .					8411
(2) INFORMA	TON FOR SE	O TO NO. 17	١.			

(2) INFORMATION FOR SEQ ID NO: 17:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 9064 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

TGCCGTACTC	AAGTACAGCC	TGCGCTAAGT	TTCCTAGTTT	GCTCTTTGAT	TTTCATTGAG	60
TATTAGTAAC	CAAAATCCGA	CCACATAGCC	AGCCCCTATG	AATATAGCCA	TTAAAGCTAG	120
CATGGAATTT	AGGAAATTAA	AAACCACCGC	AGATACAAAG	GTTAGCACAA	AAACATTAAA	180
AGCAATGGTG	TCAGAAGCCA	AGACTAGAAT	ATAGGGTGTC	AACCGATCTA	AAGTTTTGGA	240
ATCTAGGAAA	AATAAGTGTT	TATACATGAT	GACCTCCTCT	ATGGCTGAAA	AGCAAGCCTT	300

PETTTTT	ACCCCAAGAC	CCTATGTAGA	AAAGTGAGCA	AAAACGGGAA	GGTCGCTACA	360
ATATTATTGA	TCACATGCAC	CGCATAGGAT	GGATAAATGC	TCTTGGTATA	GCGGGTCAAA	420
CCAGCAAAGA	TGATTCCAAC	TGTTGCAAAG	ACGAAGATAT	CTAACAGACT	AGGCAGGCTT	480
GAAAAATGAG	GGAGAGCAAA	TAAAATAGAA	GGAAGAAGCA	AATCAAGACC	AAATCGCGAA	540
rgcttaaaga	AAGCATGTTG	CAGTAATCCT	СТАТАААТСА	ATTCTTCCAT	CAGTGGAACC	600
AGAAAGAACA	GGGCTATATA	AATACCTAGC	TCTGCAAAGT	TAGTCCCACT	ATAACCAATC	660
AATACAGCCC	AACCTTCCGC	AGTTGACTGA	ACATGTTTAG	CTGTCTGAAC	GTTAAAAGAG	720
ATCTGGAACA	CTAGCACTAA	TACTGTCAAA	ATCGAATACC	AAAGCCATTT	TTTTCTTGGA	780
ATGCGGAAGA	GATAACCATG	GCCTGTCTTA	ACAAGAACCA	CAATCATGAC	TCCAATAAAA	840
AGTAAACTCA	AGATATTTTG	AATCCAGAAT	AAATTGCCTA	TCTGAGAAGA	AAATTGCCAA	900
PAGTTTTGGA	CGATAAGCGT	CAGCTGAGAA	AGACTAAATA	CGAAAAATAA	GTAAGAGAAG	960
ACTGCACTTA	TTTTGAATAG	AAGTTGATAC	TTTTTCATAG	AAATCCTCCC	TACTATGACC	1020
PCACCTTGTC	AGGCTCTACT	GCTGTAAGAT	TAAGAAGACA	GTTTGTTTTT	TTTAAGGCTA	1080
ACCTGACTAC	TAGATAATAG	ATACATTAAG	GCATTAAAGA	CAATGAAAAT	ATGTCCATAG	1140
ААТААААТСА	ACCTCGCATC	CAAACCAAGA	TAAAGTTTGA	ттатсааааа	GATGAGCAAA	1200
AGAATTTGAA	ACCATAAGGT	TTTTCCAAAA	АТАААТТТАА	AGCGATTTCG	AATATCTACT	1260
PCCTTGATTT	TTACCGCCAC	CCCTTTATTA	GCAAGAAGGA	AAACTCCTGC	TTCAAACAAA	1320
CCACTGTAAA	GAACAAGCCA	CCCAATAGAT	ACGATAGAGA	тттсталала	TGTCCCTAAA	1380
AGAATATCCA	ACACACTACT	CAAGAAAATA	АСААААААТА	ATCTGTATTT	CATATTAAAT	1440
ACCTCCATTC	ATTTATTTCA	CTAACAATTT	AATAGAGCCT	TCTACTCAAA	TATCCTGTCA	1500
GAAAAGGATA	GAAAGCTACT	TTTTATAATA	CTTCAAGCCC	CACATGAGCA	GAAGCGTGAT	1560
AAACAAGCAG	AGAATACACC	TATATAAGCG	ATTAGTTGTT	GATAGAATTC	TGTTTCTGAA	1620
ATACCTCTAT	ACAAACAAAT	GACAAACATA	AAATCTGCCA	AGCCGATAAA	CATAAGTTGA	1680
PTGGTTCTAG	GACTAACCAA	ATCATCATTT	ACTTATATTT	AAGAGTATCT	CTTTTATTTT	1740
AATGTATGTT	AGCACTGAAA	AGCAAGACAG	GCCAATAATA	TTTAAAATGA	ACAGTAACGG	1800
GTTAAGTCT	СТАААААААТ	TATCTACTGA	CACTACAAGA	AATACTATAC	ATATTATAGT	1860
CGAAACTATC	TTTTTCTTAT	CCATAATTAT	TTACTCCTTT	CCTAACAAAT	CCAGCTTATC	1920
AATCAAGAGC	GATTTTTAAC	ATAATGTAGC	AGCACCCGTT	GCAACTTTGA	CAAGTTTAGT	1980
ምልጥ <u>ሮ</u> ልጥጥርም	THE PART OF THE PA	TOTAL	አ አጥርጥጥር አ አጥ	መርሞር እመርር እ እ	A C A TO CTT C A A	2040

			240			
TTGTTAAAAA	ATTTAAAAAG	TAAGCATTAA	AAACATACTT	TCCTCTTTAT	ATTGTATTGA	2100
TACCAACTTG	TTTGTAGACT	TTTCATCCTG	СТАТСАСАТА	TCATTTTGAC	AGGCGAAACA	2160
Atattaaaga	AACTCCCCTG	TAAATTAAGC	TAGCAAATAC	AGGGGAGAAA	TTTATTTTT	2220
AGAGAGTACT	ATCCGTATCC	TTTTTGGAAG	ATTTTGAAAA	ТАТТТТТСТА	ATTAAGTCAT	2280
CCATATAAGG	ACCAAATATA	CCAACTACTA	AACCAATAAT	AAAACTTTTA	AAATCCATAA	2340
TTACCACCAA	CATATTGCTG	CATAGGCTAC	ACCTCCAAGT	ATAGCTCCAC	CTGCAGCACC	2400
AGTTACACCT	ATTCCTATAG	CAAATGGTCC	CAATAGAAAT	GTCAAACCGT	TGTTGCACAC	24,60
CCATCAATTG	CGCCATATGC	AACCCCTGCT	GCACAACTAA	TTTTTCTTCC	CCAATCAATA	2520
TCTCCACCTT	CAACGCAAGC	AAGCATTTCA	TTATCCATAA	CTGCAAATTG	TGACATCATT	2580
TTTGTATCCA	TATAGTGTAT	CACTTTTCAG	TTACGGAACA	AGTTTAATAT	AAAAATTATC	2640
АААААААСАТ	AGGCAATAAA	GAGAAAAATT	AATTTATCAT	AGATTAGAAA	TAATATGACA	2700
AAACAATTCA	ATGATGTTAA	TTCAATAGTC	TTTTGTTTT	TATCGGAGAT	ACTTATGGAT	2760
AGATAAATAA	GATAGGTTTG	AAAAGCGAAG	AGAATAATAA	AGAATATAGC	СТТСАТАААА	2820
TTAGCTTTC	ATTTTTATGA	TGTAGCGGTA	TAGGCTAAAT	ATCCACAAAC	CACTGCTCCT	2880
CCAATTCCTC	CTATTGCAGC	GCCCCATGGT	CCTAGAAGTC	TCCCATATTT	CACTCCACCC	2940
GCTGCACAAC	CTAAAGCAGC	AACTACAGCT	GCTCCTCCGG	AATTACCTCC	ATAAACCTCA	3000
CTCAGCATTG	TTTCATTTAT	ATTACAATAA	GTATTCATAC	AAGTCTCCTT	ТТАТТААААТ	3060
CCACCCGTTG	CCCCTGTTAC	TCCTGCCCAA	AGATCCACAC	CAAATTTAGC	TCCTATGTAT	3120
CCACATGCTC	CCATAAATGG	TGCTCCAACA	CCACTCGCAG	CACAAATAGC	TGTCCCTAGC	3180
CCCAGCCAC	CAAAAGCAGC	ACCACCACCT	TCTAAGACAT	TAGTTTGCCÀ	ATTATTCTTG	3240
CTCCTTCAA	TACTAGATAA	CATAGTTATA	TCCATTTCAT	GAAATTGTTC	CATAATTTTT	3300
STATCCATGA	CAAATACTCT	TTTTTATTTT	TAATTTTTGT	CTTGTTGTAA	CTTTGACAAG	3360
TTAGTATAT	CATCGTTTTT	TAAAATTTTT	CATCCAGATT	TTGAATAGTC	ATCGAAACGT	3420
TTGAATTGC	AAAAATTACA	TTAGACTTCC	TGCAAAACTA	GAATCCTAGT	TCATGATTGA	3.480
PAATACCAGC	ACTCAAATTC	ATTCGTAATC	CGAAGCGTTT	ACGATGACTT	CGATAGGTTG	3540
PTGAAAACAT	TTTAAACGTT	TTTACTTTGG	CAAAGATGTT	CTCAACCTTG	CTTCTCTCCT	3600
PAGATAGCGC	ATGGTTACAG	GCTTTATCTT	CAACTGTTAG	CGGTTTGAGT	TTGCTGGATT	3660
PACGTGAAGT	TTGTGCTTGA	GGATATATCT	TCATGAGCCC	TTGATAACCA	CTGTCAGCCA	3720
GATTTTACC	AGCTTGTCCG	ATATTTCTGC	GACTCATTTT	GAACAACTTC	ATATCATGAC	3780
ATAGTTCAC	AGTGATATCC	AAAGAAACAA	TTCTCCCTTG	ACTTGTGACA	ATCGCTTGAG	3840

PCTTCATAGC	GTGAAATTTC	TTTTTACCAG	AATCATTCGC	TAATTCTTTT	TTTAGGGCGA	390
PTGATTTTA	CTTCCGTCGC	ATCAATCATT	ACCGTGTCCT	CAGAACTGAG	AGGAGTTCTT	3966
GAAATCGTAA	CACCACTTTG	AACAAGAGTT	ACTTCAACCC	ATTGGCTCCG	ACGGAGTAAG	, 4020
PTGCTTTCGT	GAACACCAAA	ATCAGCCGCA	ATTTCTTCAT	AAGTGCGGTA	TTCTCGCACA	4080
PATTGAAGAG	TGGCCATAAG	AAGGTCTTCT	AGGCTTAATT	TAGGTTTTCG	TCCACCTTTT	4140
GCGTGTTTAA	GTTGATAAGC	TGTTTTTAAT	ACAGCTAGCA	TCTCTTCAAA	AGTCGTGCGC	4200
rgaacaccaa	CAAGACGCTT	AAATCGTGCA	TCAGTTAGTT	GTTTACTTGC	TTCATAATTC	4260
чтасаастат	AGTAAAATGA	AATAAGAACA	GGATAAATCG	ATCAGGACAG	TCAAATCGAT	4320
гтстаасаат	GTTTTAGAAG	TAGAGGCGTA	CTATTCTAGT	TTCAATCTAC	TATACTATAC	4380
CATATTTTGT	TTCGCAGGGA	ATCTATTATA	AAAGGGTAAG	TATTGCAAAA	ACACTTACCC	4440
TTTTCTTTTA	TACTTCATTA	AGCTCTACTT	ТТТАТААТАС	TTCAAGCCCC	ACATGAGCAG	4500
AGCATGATG	ATTAAGCAGA	GAACAGCGCC	AATATAAGCG	ATTATTTGTT	GGTAGGATTC	4560
CCTGCTGTG	ATACCTCTAT	ACAAACAAAT	AATAGACATA	AAACCTGTCA	AGCCGATGAA	4620
CATAAGTTGA	TTGGTTCTAG	GACTAACCAA	ATCATCATCT	TCAAACTCTC	TTATCCTCAT	4680
TCCCTAGTG	AGATAAACAG	TAACCAAAAT	AGAAGCCAAG	ТТААТААСТА	CTAAAAGAAA	4740
TGGAAAACT	ACGGAAAAAT	TTAAAAACTG	ACGAGATAGA	AATAGATAAG	TAGAAACAAG	4800
CAAGGGCAAC	TGACCTAAGA	ACAATCTCGC	AAGGAAGATG	TTCCGTTTTT	TAGCAAGAAA	4860
GTTTTCATT	TCTTTTCTCC	TTTCTTTTTA	TTGATAGCAA	AATAGATCAT	AACTGCAATC	4920
CATAGGCTA	TGGTATAAAA	TAGCTGATAC	CAAGCACTCT	CCCTAAGCGG	ATATAGAAAG	4980
TGGACATGA	TTAGATACAG	AACGAAAATA	ATCAGTATTT	TTTTCTTCAT	AAGATTTCCT	5040
CTAAATGTG	CGATTTATCT	TAGTTGAGCA	AGAACATTTA	CACTGCTAGT	ATAGCACTTA	5100
TTTGACCTT	GGATCACTCA	AATCATAAAT	GGTCATCAAA	ACCTCTTGAA	TTGTAAAAAT	5160
'AAAAAAGCA	AGCATGAAAA	ACATACTTTC	CTCTTTATAT	TGTATTGATA	CCAACTTGTT	5220
GTAGACTTT	TCATCCTGCT	ATCACATATC	ATTTTGACAG	GCGAAACAAT	ATTAAAGAAA	5280
TCCCCTGTA	AATTAAGCTA	GCAAATACAG	GGGAGAAATT	TATTTTTAG	AGAGTACTAT	5340
CGTATCCTT	TTTGGAAGAT	TTTGAAAATA	TTTTTCTAAT	TAAGTCATCC	ATATAAGGAC	5400
AAATATACC	ААСТАСТААА	CCAATAATAA	AACTTTTAAA	ATCCATAATT	ACCACCAACA	5460
GTTGCTGCA	TAGGCTACAC	CTCCAAGTAT	AGCTCCACCC	GCAGCACCAG	TTGCTGCACC	5520
TGCCATGTT	CCTGTTTTAA	TGCCTAGTTG	AAGACCTCTT	GCTGCTCCTC	CTCCAACACC	5580

			248			
TGCTTTGGCA	AAATCTCCCC	AATTGCATCC	GCCACCTTCA	ACGCAAGCAA	GCATTTCAGT	564
ATCCATAACA	GAAAATTGTG	ACATCATTTT	TGTATCCATG	ACAAATACTC	CTTTTTTAAA	570
АААСТААААТ	AAATCAGAAT	AGAATCCTCA	TAATTTTACT	ATAAGTCTTA	CCAACTTAGT	576
CCCAATTTAT	CACCAACCAT	ACCTCCTAAG	CATGTTAATC	CACCCCCAAT	TGCACCAATG	582
TGTGCTCCAA	CAAATGCACC	AGCAAGTCCA	GCTACTCCTA	AAGTGGCCAA	ACCTGCTCCA	5880
GTTCCACCAG	ттатааттсс	CGTAGTGACT	CCTGTAATCA	GTGCATTTTG	ACAATCAGTG	594
GAGCTATACC	CCCCTTCAAC	TTTCGCAAGC	ATTTCAGTAT	CCATAACCTC	TAACTGTGAC	600
AACATTTTTG	TATTCATGAT	GAATACCTCC	TTTTTATTT	CAATTTGTTA	CCAAAGTCTT	6060
АААТТСААТА	AACAAATAGA	TTTTTTATAG	TATCTTTTTG	ATTTTCTTAA	AAAAGTATAT	6120
ACGTCTACTA	TCTTCTTAAA	GGTAGCAGTA	CCTATTTTTT	AGTCTAAGAT	TTCAATAATC	6180
TTGAGTATCT	AAAATATCTT	AATTTCGTTA	TTCTCCTTGC	AATAAAAAGT	TTTACTATAC	6240
TATTTATTAA	CTTGCAGAAA	GCAAAAAATA	TTAGTAAATA	ATAGTTTATA	GTTAAGTTTT	6300
TTATTCCTAC	CAATCCATCA	ACTAAGTAAA	GCATCAACGA	TTACATAAAC	GATTGATAAT	6360
ааааттаата	TTTTGCTAAC	TATCTTATTC	TCATCATTCT	TAGATAACTT	TGATATTTTG	6420
TAAGTAAGTA	AATAAGACAG	ATAATTAATA	GCGATAATAA	TACTATATTT	AAGAATCATA	6480
ATCTTACAAA	GAGGACATAA	TTCCTGAACC	TACACAAATA	AGTGTTGCTG	CTCCCCCAGT	6540
TATCGGACCA	GTCGCAGCAG	CTAATAGTAC	TGCTCCAATA	CAACCACCGA	TTGCAGATCC	6600
TAAATTGCCT	CTTCCTCCAC	TAACTATTTC	GAGTTCTTCA	TTATCCATAA	CAGAAAATTG	6660
TTCCATCATT	TTTGTATTCA	TGACAAATAC	TCCTTTTTTC	TTTTTTATT	TTTGTCTTGT	6720
TGTAACTTTG	ATAAGTTTAG	TATATCATCG	TTTTTTAAAA	TTTTTCATCC	AGATCTTGAA	6780
TTGTCATCGA	AACGTCTTGA	ATTAGCTTTT	TTATTTCAAG	CCACCTCTAA	ATGTTTAAAA	6840
AAAATAATTT	CTAATCACTT	TTTTACCATT	CAGGAAGTTT	TAATGACTAT	TCAAGATTTC	6900
ATAAAATATG	AACTTAGTTT	TATGACATAA	TAGACCTATC	CACTATATGA	AAGGAATTGC	6960
CAATGACTTC	TTATAAACGT	ACATTTGTTC	CTCAAATAGA	TGCGAGAGAC	TGTGGTGTCG	7020
CTGCCTTAGC	CTCGATTGCT	AAATTCTATG	GTTCAGATTT	TTCTCTAGCT	CACTTGAGAG	7080
AACTTGCAAA	GACCAATAAA	GAAGGGACGA	CTGCTCTTGG	CATTGTAAAA	GCCGCTGATG	7140
AAATGGGCTT	TGAAACAAGA	CCTGTTCAAG	CAGATAAAAC	GCTCTTTGAC	ATGAGTGATG	7200
TCCCCTATCC	ATTTATCGTT	CACGTTAACA	AAGAAGGAAA	ACTCCAACAT	TACTATGTTG	7260
PCTATCAAAC	AAAGAAAGAC	TATCTGATTA	TTGGTGATCC	TGACCCTTCT	GTAAAAATCA	7320
CTAAAATGTC	AAAAGAACGC	TTTTTCTATG	AATGGACTGG	AGTAGCTATT	TTTCTAGCTA	7380

CCAAACCCAG	CTATCAACCC	CATAAAGATA	AAAAGAATGG	TCTACTAAGC	AAGCTTCCTT	7440
CCTCTGATTT	TCAAACAAAA	ATCTCTCATT	GCTTACATTG	TTCTCTCAAG	CTTATTGGTC	7500
ACTATTATCA	ATATAGGTGG	TTCTTACTAT	CTCCAAGGAA	TCTTGGATGA	ATACATTCCA	7560
AATCAGATGA	AATCAACTTT	AGGAATCATC	TCAGTTGGTC	TGGTTATCAC	CTATATCCTC	7620
Caacaagtca	TGAGCTTCTC	CAGAGATTAT	CTCCTAACCG	TTCTGAGTCA	GAGATTAAGT	7680
attgatgtga	TTTTATCCTA	TATTCGCCAT	ATTTTTGAAC	TTCCCATGTC	TTTCTTTGCG	7740
ACACGTCGTA	CAGGAGAAAT	CATTTCACGA	TTCACAGATG	CTAACTCTAT	TATAGATGCC	7800
TTGGCTTCTA	CCATTCTTTC	TCTTTTTCTG	GATGTTTCTA	TTCTGATTCT	TGTAGGAGGC	7860
GTCTTACTGG	CACAAAACCC	TAATCTCTTC	CTTCTTTCTC	TTATTTCCAT	TCCTATATAC	7920
ATGTTCATCA	TCTTTTCTTT	TATGAAACCT	TTCGAAAAAA	TGAACCATGA	TGTCATGCAA	7980
AGTAATTCTA	TGGTTAGCTC	TGCCATTATC	GAAGATATCA	ACGGGATTGA	AACTATAAAG	8040
TCGCTCACGA	GTGAAGAAAA	TCGCTATCAA	AATATAGACA	GCGAATTTGT	AGATTATTTG	8100
GAAAAATCCT	TTAAGCTCAG	ТАААТАТТСТ	ATTTTACAAA	CGAGTTTAAA	GCAGGGAACA	8160
AAATTAGTTC	TGAATATCCT	TATCCTATGG	TTTGGCGCTC	AATTAGTCAT	GTCAAGTAAA	8220
ATTTCTATCG	GTCAGCTGAT	TACCTTTAAC	ACACTTTTTT	CTTACTTTAC	AACTCCTATG	8280
GAAAATATTA	TCAACCTCCA	AACCAAACTC	CAATCTGCGA	AGGTCGCTAA	TAACCGTTTG	8340
AACGAAGTCT	ATCTAGTCGA	ATCTGAATTT	CAAGTTCAAG	AAAACCCTGT	TCATTCACAT	8400
PTTTTGATGG	GCGATATTGA	ATTTGATGAC	CTTTCTTATA	AGTATGGTTT	TGGATGAGAT	8460
ACCTTAACAG	ATATTAATCT	CACGATTAAA	CAAGGAGATA	AGGTTAGCCT	AGTTGGAGTT	8520
AGTGGTTCTG	GTAAAACAAC	TTTAGCCAAA	ATGATTGTCA	ATTTCTTTGA	ACCCTACAAA	8580
GGCATATTT	CCATCAATCA	TCAGGATATT	AAAAACATTG	ATAAAAAAGT	CTTGCGCCGT	8640
CATATTAATT	ACCTACCCCA	ACAAGCCTAT	ATCTTTAATG	GCTCTATTTT	GGAAAACTTA	8700
ACCTTGGGCG	GTAATCATAT	GATTAGTCAA	GAAGATATTC	TAAAAGCTTG	TGAAGTAGCT	8760
SAAATCCGTC	AAGACATTGA	AAGAATGCCT	ATGGGCTATC	AAACTCAGCT	CTCTGATGGA	8820
GCTGGTCTAT	CAGGAGGACA	GAAGCAACGA	ATCGCTCTCG	CTCGTGCTCT	ТТТААСТААА	8880
CTCCTGTTT	TAATACTAGA	TGAAGCTACT	AGCGGTCTTG	ATGTCTTGAC	TGAGAAAAG	8940
STTATAGATA	ATCTTATGTC	TCTAACTGAT	AAAACCATTC	TCTTTGTAGC	CCATCGTCTC	9000
AGTATAGCCG	AACGAACCAA	CCGTGTCATT	GTTCTTGACC	AGGGGAAAAT	CATTGAAGTT	9060
GTA						9064

250

(2) INFORMATION FOR SEQ ID NO: 18:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 7780 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

CTCCATTTTT	TTGATTTCAT	AAATAAACAA	CCTCTCTGTT	AATTTTGTAT	AATTATAACG	60
ATATCCAAGT	TACTTGTCAA	GTGTTTTTTA	AATTTTTATC	TCAAAAATAT	TTTTTCGTTC	120
AAAAAAAGGA	GCCATCAGTT	GATTTCAAGC	TCCCTTTTAT	ACAGAATTAA	ACTATTTTAT	180
AGTTCGACAA	TCTTACCTGT	TTCAAAGTAG	ACAACCCATT	CACAGATATT	TTTAGCATAG	240
TCACCGATAC	GCTCCAAGTA	GGAAATAACT	TGGAAATAAT	CACGACCCGT	AACAATGGCT	300
TCTGGATTTT	TCTTAATCTC	TTCAGTCGCA	AGGTCACGGA	TAGTTTCAAA	ATAGTGGTTA	360
ATTTGCTCAT	CCATGGAGGC	CACCCGGTAT	GCGTCGTCAA	CAGAACCATT	AAGATAAAGA	420
TCAAGTGCTG	CTTCCACAAC	GCTTTTAACT	TCACGTCCCA	TTTTTTTAAT	TTCTTCCTCT	480
ACAGCTGGAA	TGCGCTCTTC	CCCCTTCATA	CGGATGGTTG	CCTGGGCAAT	GGCTACAGCG	540
TGATCCCCCA	TACGCTCCAC	ATCTGATACA	GCCTTAAGGA	CAGTCAAGAC	TGTACGCAAA	600
TCTTGAGAGA	CTGGTTGTTG	GAGTGCGATC	ATTTCAAATG	ATTTCTTTTC	CAGTTTCACT	660
TCGTATTCAT	TTACTTCTGC	ATCATCTTCG	ATGACCTCTT	TTGCCAGGTC	ACGGTCATGC	720
GTGACAAAAG	CACGTACCGT	ACGATTGATT	TGTGAGAGCA	CTTCTTGTCC	CATAGCGTAG	780
AACTGGTTAT	GTAATTTCTC	TAAATCTTCT	TCAAATTGAG	ATCGTAACAT	CTTTCATCTC	840
CTTATCCAAA	TTTTCCTGTA	ATATAGTCTT	CCGTTTCCTT	GTGTTGGGGA	TCAAGGAACA	900
TCTGCTTGGT	ATCATTAAAT	TCAATCAAAT	CTCCATCTAG	GAAAAATCCT	GTCTTATCAG	960
AGATACGŤGA	AGCTTGCTGC	ATGGAACGGG	TTACCAGAAG	CATGGTGTAC	TTGTCTTTTA	1020
GACCATACAA	GGTTTCCTCA	ATTTTACCAG	CTGAAATCGG	ATCCAAAGCC	GAAGTTGGCT	1080
CATCCAAGAG	GATGATTTTA	GGACTAGTTG	CCAAGACACG	GGCCACGCAG	ACACGCTGCT	1140
GTTGACCACC	TGACAATCCA	ATAGCTGAAT	CATATAGACG	ATCCTTGACC	TCATCCCAGA	1200
TAGAGGCACC	TTGCAAGGCT	TTTTCTACGG	CTTCATCCAG	AACCTGCTTA	TCCTTAATŤC	1260
CATTGATACG	AAGCCCGTAG	ACAACATTCT	CATAGATAGT	CATAGGGAAA	GGATTAGGTT	1320
GTTGGAAAAC	CATTCCGATT	TCCTTACGTA	ATTCAACCGT	ATCTGTACGC	GGACTGTAGA	1380
TGTTGTGACC	ATTGTACACC	ACGGATCCAG	TTGTGGTCAC	CTCTGGATTG	AGATCTCCCA	1440

GCGGTTGAG	AGACTTGAGG	AGGGTTGACT	TCCCTGATCC	AGATGGACCA	ATCAAGGCTG	1500
AATTTCCTT	AGGTTGGAAA	GATAGGGAAA	CACTATTCAA	AGCCTTCTTT	TTATTATAAT	1560
AACGGACAG	GTCTGATACC	TGTAAAATCG	CATCTGTCAT	ACGGTTTCCT	TTCTAACCAA	1620
GTGACCAGA	TACATAGTCA	TTGGTGGACT	GTAGCTTGGC	ATTTTGGAAA	ATAGTTGCAG	1680
CTTGTCATA	CTCAATCAAA	TCACCCAAGT	AAAAGAAGCC	TGTATAGTCA	CTTGCACGAG	1740
AGCCTGCTG	CATATTATGC	GTTACAATGA	TGATGGTAAA	GTTTTTCTTG	AGCTCAAACA	1800
GGTCTCTTC	TAGTTGCATG	GTCGCAATCG	GATCCAAGGC	TGAGGCTGGC	TCATCCATTA	1860
GAGGATATC	TGGCTTAACA	GAGATGGCAC	GAGCGATACA	GAGACGTTGT	TGCTGACCAC	1920
TGATAAGGT	CAAGGCTGAC	TTGTGGAGAT	CGTCTTTAAC	CTGATCCCAG	AGGGCAGCCT	1980
ACGAAGGGA	GGTTTCTACG	ATTTCATCTA	GGACTTGCTT	ATCCTTAACT	CCAGCACGTT	2040
ATGCGCAAA	GGTAATATTA	CGGTAAATTG	ACTTAGCAAA	TGGATTGGGA	CGTTGAAAAA	2100
CATTCCAAT	GTGTTTACGC	ATTTCATAAA	CGTTGATTTC	TGGACGGTTG	ACATCAATTC	2160
ACGATAGAG	AATCTGCCCA	GTTACTTTAG	CAATATCAAT	AGTATCATTC	ATGCGATTGA	2220
ACTGCGTAA	GTAGGTAGAT	TTCCCCGATC	CCGACGGGCC	AATCAAAGCT	GTAATTTTAT	2280
TCTTTCAAA	TTGCATATCA	ATCCCCTTAA	TGGATTCATT	TTTACCATAG	TAAACATGGA	2340
ATCCTTAGT	AGAAAGGGCT	ACTTTTTCTT	CAGGAAAGGT	AAGGATATGC	TTCTCATCCC	2400
GTTATATGT	TGACATGGCT	TCTCCTTTAG	GCAGCGGTTA	ATTTCTTGTG	TAGATAGCTT	2460
CGAACTTAC	GAGCTCCAAA	GTTAAAAATC	AGGATAAAGA	TCAGGAGCAC	AGCGGCAGAA	2520
CTGCTGATA	CAATGGTTCC	ATCTGGAATA	GTGCCTTCAC	TATTGACTTT	CCAGATATGG	2580
CAGCCAAGG	TTTCTGCTTG	ACGGAAGATA	GAGATGGGGC	TAGTCACACT	GAGGATATTC	2640
AGTTAGACC	AGTCAAGAGC	TGGCGCCGAT	TGCCCTGCTG	TATAGATCAG	AGCTGCAGCT	2700
CGCCAAAGA	TACGACCAGA	TGCCAAGACG	ACACCCGTTA	CAATACCTGG	AAGCGCTTCC	2760
GAATAACAA	CATGAACCAC	TGTCTCCCAG	CGAGAAATCC	CAAGAGCCAG	ACCAGCCTCA	2820
GTTGGGTAT	GGTGAACGTG	TTTCAAACTA	TCCTCTACAT	TACGCGTCAT	CTGAGGCAAG	2880
TAAAGACTG	TCAAGGCCAA	GGCACCTGAA	ATGATTGAAA	ATCCATACTC	AAACTGGACT	2940
CAAAGATCA	AGTAACCAAA	GAGACCCACC	ACCACTGATG	GTAAAGAGGA	СААААТТТСА	3000
TACAAGTCC	GCACAAAGTT	GGTAACAGGA	CCTTTTTTAG	CATATTCAGC	CAAGTAAATC	3060
CAGCTCCCA	TAGAAAGAGG	TACAGAAATA	ATCAAGGTAA	TGACCAATAG	GAAAAAGGAA	3120
TGTAAAGCT	GAATGCCAAT	CCCACCACCT	GCTTGAAAAG	CAGAAGACCT	TCCAGTCAAG	3180

			252			
AAAGACCAAG	AGATATGGGG	CAAGCCCCGA	ACCAAGATAT	AGAGAATCAA	GGAAGCCAAG	3240
ATTGTCACAA	TGATGCTAGC	AATCGTATAG	AGGACAGCTG	TTGCAAGTTT	ATCTAATTTC	3300
TTAGCGCGCA	TAATTTTCT	TTCCTCTTTC	TTTCGTAATC	AATTTAATCA	CACTGTTAAA	3360
AACTAAGCTC	ATCAAGAGCA	GTACCAAGGC	CAGTGACCAG	AGAACATTAT	TATTTACAGT	3420
TCCCATGACA	GTGTTCCCAA	TTCCCATAGT	TAATATAGAA	GTTAAAGTTG	CAGCTGGTGT	3480
GGTCAAGGAA	GTTGGGATAA	CAGCTGAGTT	TCCGACAACC	ATCTGGATAG	CTAGAGCCTC	3540
ACCAAAGGCA	CGCGCCATCC	CAAAGACCAC	TGCAGTGAAA	ATACCAGAAC	GGCCGCCTT	3600
CAAGATCACA	CGCCAGATAG	TCTGCCAGCG	AGTGGCTCCC	ATAGCGAAAC	TGGCTTCACG	3660
ATAATAACGA	GGAACCGCAC	GCAAGCTATC	CGTTGTCATA	AAGGTTACGG	TCGGCAAAAT	3720
CATGACAAAG	AGGACGGAAA	TCCCTGACAA	AATCCCAAAA	CCAGTCCCAC	CAAAGACACT	3780
GCGAACAAAG	GGAACGACGA	CTTGCAAGCC	AATAAATCCG	TACACTACTG	AAGGAATCCC	3840
AACCAGGAGT	TCAATAGCTG	GTTGCAAAAT	CTTCGCCCCT	TTTGGTGATA	CTTCGGTCAT	3900
AAAAACTGCT	GCACCAATAG	CAAAGGGTGT	TGCGÄTAAGG	GCTGAGAGAA	TGGTAACGAT	3960
AAAGGAACCC	AAAATCATAG	GAAGGGCACC	AAATTCTTTA	CTAGAAGGAT	TCCAAGTTCC	4020
PCCCAAAAGA	AAGTCAAAGA	TATTCACACC	ATTGACAAAG	AAGGTCGACA	AGCCTTTTTG	4080
CGCTACGAAA	ACCAAAATCA	TGGCCACAAG	GATGACTATC	AAAGAAAGAC	AGGCAAAGGT	4140
CAAACCTTTT	CCTAATTTCT	CCAGACGAGA	ATTCTTTGAT	GGAAGCAACA	TTTTCTTAGC	4200
PAATTCTTCT	TGATTCATTA	TTGTCTCCCT	TCCAACACTG	TCACAGTTCC	GGCAGCATCT	4260
TTTCAACCT	TCATTTCCTT	AATCGGAATA	TACTTCAATC	CTTTGACAAT	CCCTTCTTGG	4320
GTCTCATCCG	AGAGAACAAA	ATTGAGAAAT	TCTGCAGCCA	ACTCATTGGG	CTGCCCCAAT	4380
GTATACATAT	GCTCATAAGA	CCACAAGGGC	CAATTATTGC	TACTTATATT	TTCTGGACTT	4440
AAGTCATAGC	CATTCAACTT	CATGCTTTTG	ACCGAATCAT	CTATATAGGT	AAGAGATAAA	4500
raagagatag	CTCCTGGACT	TTTTGATACG	ATTGATTTTA	CCGCTCCATT	TGAATCCTGC	4560
PCCTGACTTT	GCATGGCAGA	CTGACCTTCC	ATAATGACAG	TATCAAAGGT	AGCACGAGAG	4620
CCAGAGCCGG	CTGCCCGATT	GATAACAGAG	ATGGGTAAGT	CCTTACCACC	AACCTCTTTC	4680
CAATTGGTTA	CCTCACCTAT	GAAGATTTGA	CGAAGTTGCT	CTGTCGTTAG	GTTATCAACA	4740
PCAACCTCCT	TATTGACAAT	CAGAGCCAAG	CCAGCTACCG	CGACCTTGTG	GTCAACAAGA	4800
GCAGAAGCAT	CAATTCCGTC	TTTTTCCTCA	GCAAATACAT	CTGAGTTTCC	тататсааст	4860
GCCCCAGACT	GAACCTGGGA	CAAGCCTGTA	CCAGAACCTC	CCCCTTGGAC	ATTGACCGTT	4920
PTTÇCAACAT	GGATCGTGCC	AAATTCATCT	GCCGCTACTT	CAACCAAGGG.	TTGCAAGGCA	4980

GTTGAGCCAA	CAGCCGTTAT	GGATTCTCCA	CGATCAATCC	AGCTAGCACA	GCCTACTAAA .	5040
CAAGCCGTCA	GCCAAAAAGC	GATAAGAGAC	AGAGCAAGCT	TTTTTCTTT	TTTCACTGTT	5100
TTTCTCCTCG	ATTAATAAA	TGAATACTGT	GAATTTTTTA	AGTAGTTCTT	TATGAGTTGA	5160
CGCATGAATT	CTTACCAAAT	TTCTGCGCAA	TTGATTATTT	ATATAATATA	GGCTATATTA	5220
CTCTTTCCTA	ACCTCCTTTT	TTCATATGTG	GATAAAATCT	CTTGTCTATC	CCTTCCCCCA	5280
TTGTCACCCA	TTATAGTCAT	TTCGTGTCTC	TTTTTCCCCT	TTTTAATGCA	AGGGAAATTA	5340
CTCTCCTTAG	ATGATAATCC	AAAAGCTAGA	AAGGTATCTC	AAACCTCTCT	ACTCTCCCAG	5400
ACTAGTTTAC	AACTAAAAGG	AAAAGATTCT	ATTTTATGAG	AAATCTAGTT	TACAAGCGGT	5460
AAGAACGCTA	ATAACTAAAC	TTCTTGTACT	CTTTGAAAAT	CTCTTCAAAC	CAGTGTTTTG	5520
AGCTATCTAT	GGCTAGCTTC	CTAGTTTGCT	CTTTGATTTT	CATTGAGTAG	TAAAACTACA	5580
TGTAATGGCA	ATCAAGATAT	CAAGAATCAT	CCTACTAAAA	AAATCCATAC	TTTCACTATA	5640
ACATAGAATA	AGATATTTGA	CTAGCATTTT	CATTTGAATC	TGAGGCCTTT	TGGAAAATAA	5700
TTTTTCAAAA	CATTTCCAGT	AACCTTTGCA	AAGCCCAAGC	CATTGCCTTT	AACCAAAACT	5760
TGGTACCAAC	CATTTGGCAG	ACTTTCTGCC	AGCTGAACGG	TTTCTCCAGC	CGCATACTTG .	5820
ACAAACGCTT	CTTGGCCAAT	TTCAACCGAC	TGTTCGACCT	GACTCGGTTT	CAAGGCTAAA	5880
CCAAGAGCGA	AACTGGGCTC	AAAGCGTTTC	TTCTTAAAAG	TACCCAGATG	CAGTCCATTG	5940
CGAGCAATCT	TGAGCTTCCA	TAAATCTGGC	AAAAGTTCTG	GCAAGAGATA	AAGCTGGTCT	6000
CCAAAAATCT	GCAAGATACC	CGGTAGATTG	ACCTTCAAAT	GGTTTTGGGC	AAATTCCTGC	6060
CACAAGGCAA	CTTGTTCACG	GCTGAGGTTA	CTCTTACTTG	CCTTAAATTT	AGGAGCTGGA	6120
PTGTTACCCT	TAAACTGTAG	ATGGGCAACA	AACTGACCCT	CTCCCTTAAA	CTGATGAGGA	6180
TACATCCGAG	CCGTTTCTGG	CAGGTCAATA	CCAGCTACCA	TTCCATTGAT	ATGCTCTACT	6240
GGCAACAAGT	CAAAATCATA	CTCTTCCAGC	AACCAATTGA	CAATCTCTTC	GTTTTCCTCG	6300
GGTGCCCAGG	TACAGGTCGA	ATAAACCAGA	TGACCACCTT	CAGCTAACAT	GGTCACTGCA	6360
PCCTCCAGAÀ	TTTCTCTTTG	CAAGCTAGCA	CATTGACTCG	GATAATCTAA	GCTCCAATAG	6420
FCCATAGCAT	CAGGTTGCTT	ACGAAACATT	CCTTCACCAG	AGCAAGGGGC	ATCAAGAACG	6480
ATTAAGTCAA	AATAGCCTTT	AAAGACCTTG	ACCAAGCGGT	CGGCAGATTC	ATTGGTCACC	6540
ACGACATTTG	TCGCTCCAAA	ACGCTCCATG	TTTTCAACCA	AAATCTTAGC	CCGTTTGCTT	6600
GAAATTTCAT	TGGAAnCAAG	TAGCCCCTCC	CCTGCTAGAT	AGGCTGCCAG	TTGAGTTGAT	6660
TTGCCCCCCG	GTGCAGCAGC	CAAGTCCAAG	ACCTTCATAC	CAGGACTGGG	TTGGGCTACT	6720

TGAGCCACCA	TTTGAGCAGC	AGGTTCTTGC	254 GAATAAACTA	AACCTGTAGC	ATGCTCAGGC	6780
GATTTCCCTG	AAACCTTCCC	ATAGTGGCCC	CAAGGGGTTT	GAGTAATGGC	ATCAGAAAAG	6840
GAAAGTTGCT	СТТСТТТТАА	GGGATTGACC	CGAAAGGCCG	AAACCGCTTC	CTCCTCAAAA	6900
GAGGCAAGAA	AATCTCTTGC	CTCATCTCCT	AGTATCTCTT	ТАТАТТТТС	AACAAATCCT	6960
PCTGGAAATT	GCATTTAAGT	TCTTTTCCTT	TCGTAAATAT	AGGACTGAAT	TTCCTCCTGC	7020
ATCTCAAGAG	GCACCATCAT	GACCGGCTGT	CTGGTTTGAA	AATCAGGAGC	TTCACCAAAA	7080
AGGGTCACAA	CCCGATAGCC	CAGACTTTCC	CCTAAAATAC	TAGCTGCGGC	ATAATCCCAT	7140
GGTTGCAGAT	AAGTGAGATA	GGTCAACAAA	CGCCCTGACA	AAATCTTGGC	AAAACTAATG	7200
GCCGCACTTC	CATAGACACG	AACACCAAGA	ACCGCTCGGC	TCAAATCAGC	CAGCCCCCAT	7260
CATTGGTTT	CCAGCATACC	ACTATTCCCT	GCAATGAGAA	AATCTCCAAG	TGGTTTAGTT	7320
TAAAAGGAG	CTAGGGACCT	ATCATTTAGA	CAAACTGGAA	ATTCCCCACC	ACCGTGGTAA	7380
CAATCCCCTT	TGACCACATC	ATAAATCAGA	CCAAACTGTC	CCTGACCATT	ТТСААААТАА	7440
GCCATCATAA	CAGCAAAATC	TTCCTGCTGG	GCTACAAAAT	TATTGGTACC	ATCAATGGGA	7500
PCAATGACCC	AAACCTTGCC	CTCTTGAACC	GAGGCTCGCA	GACAACCTTC	TTCAGCACAA	7560
ATCTTATCCT	CAGGATAACG	GGACAAAATC	TCACCAACCA	AGAGTTCCTG	AACTTCTTTG	7620
CCAGTCTGG	TCACCAAATC	TGTTGGAGAG	GACTTGGTTT	CAACACGCAA	GTCTTCCTGC	7680
ATATGGTCAA	GAATGTACTG	ACCTGCTTTC	TTAACAAGCT	CTTTAGCAAA	TTCAAATTTA	7740
	GAAATCTTTC					7780
(2) INFORMA	TION FOR SE	O ID NO: 19) <u>:</u>			

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 4820 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

G	TAATGATAT	AGGAACACCA	GGTGACCTGA	TGGGACGTCG	TAAGCCTATG	AACTACTAGC	60
1	GCTAAAGGC	TTTAAAGATG	GTATGGTACC	ATATATCTCA	AACCAATACG	AAGAAGAAGC	120
c	AAACAAAAG	GGCAAGACAA	TCAATCTCTA	CGGTAAAACA	AGAGGTTTGG	TTACAGATGA	180
c	TTGGTTTTG	GAAAAGGTAT	TTAATAACCA	ATATCATACT	TGGAGTGAGT	TTAAGAAAGC	240
1	'ATGTATCAA	GAACGACAAG	ATCAGTTTGA	TAGATTGAAC	AAAGTTACTT	TTAATGATAC	300
P	ACACAGCCT	TGGCAAACAT	TTGCCAAGAA	AACTACAAGC	AGTGTAGATG	AATTACAGAA	360

420	GGAATAACTA	TACTACCATT	AGAACACAAT	GTAAGGATGC	GTTGCTGTTC	ATTAATGGAC
480	AAGCCTATCT	GCAATCTTTA	GCTCAAGAGA	AAGTCCACAA	ATAGATAGTG	CAATCCAGAC
540	GTCTACTATT	AAAAAATAGT	TTTTGAGAAT	GAAGTTCAAT	AATGATTTTA	rgaccaaaca
600	GAATTCCTAC	ATTCAAGCAG	ACAAACCAAG	GTGATGAAGA	GTTTAAAAAG	AGGAAATAAA
660	CAACAGGTTC	ACTCTTCCTG	TCAGCAGGAA	ATCTTATTTA	GTAAGTTATG	rgataatgaa
720	TTCTTTTGGT	GGTAGTTTAG	ATTAGCTGTT	CTTTAGGCCT	GAGCTTACAG	ATCAACTTCT
780	GATGGCTTTT	GTCATCATTT	CCTCTGAAAA	TTTTTTGCTC	ACGGGAACAG	rcataatatg
840	AGAAGGCATG	GACAAAATAA	GCTATCATCG	AGGGTAAAAG	GGTAAAAGAT	FTCTATATAG
900	TCATTCATTT	TGTTTGGACA	AAACAAGAAC	CTATGTCATA	AAGTAGATTT	АТАТААТАТ А
960	CCTTGCTATG	GGATCTAAAT	ATAAAATAGG	CAATAGTAAA	TATGTTCAAA	BAAAACTCTC
1020	TAAAGCTCGT	GTCACATGTC	TGGTTTCCTG	TACTATTCAA	ACTCAATGGC	AAAGGAAAA
1080	AGATGCACGC	CGATTTTAGT	GATTTTGTGA	AAAATTTGTT	AGGAGAATTT	CGACAGGTGC
1140	ACCAAAACTC	TTGGTGATAA	ACCAAGATTG	TCCTATGTTG	CTAGTCAAAA	TTGCCTCTAT
1200	GCGTCAGTAT	CCAAGGAATG	CCAGCAATGA	CTTGGCTGAT	ACAAGGCCGA	TGATTTTAA
1260	GACTGTAAAA	AAGAGCAAGT	ATCAACTCCA	GACGCTAGCT	AAGGAATCCA	TTGAATCAC
1320	GAAAGAACGT	TTGCTCGCCA	GCTGATAAGA	GAAGCTCATG	ATGCGGCCAA	STTGTAACAG
1380	TGGTAAATCA	TTCCAAACGC	ATTATCGGGA	GCGTACTATG	TTGAAACCTT	GGATTCAGA
1440	GCCAGGGGTC	TTGGAAACAA	ATTGCTGTTG	TGGTAAAAAG	ACCGTTTGGC	CTCTGATGA
1500	TACACCGGGG	Aaatcttgga	AAAGACCTGG	TAAAACCAAT	AACAATGGCT	CAAAAGGTC
1560	GACTGGAGCT	AGTTGGCATT	GTTGCACTTA	GGATGAAACT	CTAAGTTTGA	TTCTCTGGC
1620	TTATTTCAAA	TTGGTATCAA	GTTACCATTT	TATGGATGAG	AGTTGCTTCC	TCAAAGACC
1680	AGAAGAAGCG	TGAAAATTGA	TTCAAACAAA	GGCTGAACGC	CAGAAAAGCT	AACATTATC
1740	TGACCGTTTT	GTGATGACTA	CTCGGTTTCC	GACCCGCGCC	TTATGGATAT	CTGTGATTA
1800	CTTAGATACA	GTAACTATAC	GGCAAACTCG	AGTCCGTGAT	TCGTGAAGGA	ACAGTCTCT
1860	CAGTCAAGGA	TTCCTTGTGA	AATCAAAGAA	CGATTAAAGA	TCGATGGCAA	TGGAAGACC
1920	TTCAAAAGGA	CGCTCAGGAG	AAAGGATAAT	TAGAGCTTGA	CCTATTTTT	TTAGAAAGC
1980	GCTTGGAATC	GAAAATTTGC	TGAATTAGAT	CCATTCAAGC	CGTAAAAGAG	ATCAGCAAG
2040	CAGGTATTGA	ACCTTAATTG	GCAAGGATTG	AACTTTATAA	TATGAAAAAG	ATGCTTTCT
2100	ТТТТАТСТАА	GCGGCCGTTA	TGTAGTCGCT	TTGCTGGTCC	CCTCCTC	GAGGTTGGT

			256			
AAATTGTAAG	ATTAAAGGTC	TCAACGACAG	CAAGAAAATT	CCTAAAAAGA	AACATCTGGA	216
GATTTTCCAA	GCCGTTCAAG	ACCAAGCCTT	GTCGATTGGA	ATTGGTATCA	TAGATAATCA	222
GGTCATCGAC	CAAGTCAACA	TCTATGAAGC	AACCAAACTA	GCCATGCAAG	AAGCAATCTC	228
CCAGCTCAGC	CCTCAACCAG	AGCACCTTTT	GATTGATGCC	ATGAAACTGG	ACTTGCCCAT	234
TTCACAAACC	TCCATTATCA	AAGGAGATGC	CAACTCCCTC	TCTATCGCAG	CAGCATCTAT	240
AGTAGCCAAG	GTAACACGTG	ATGAATTGCT	GAAAGAATAC	GATCAGCAGT	TCCCTGGCTA	246
TGATTTCGCT	ACTAATGCAG	GATATGGCAC	AGCTAAACAT	CTGGAAGGCC	TCACAAAACT	2520
AGGAGTTACC	CCAATTCACC	GAACCAGCTT	TGAACCCGTT	AAATCACTGG	TTTTAGGTAA	2580
AAAAGAAAGT	TAATTGAAAG	GÄAATAACAT	GGAGGAACAG	TCGGAAATAG	TCCGTTCTAA	2640
GAAAGAATTC	GCCTTTGCAT	CCAGCACTAT	ACTATCCCAA	GTTGGTCGAG	GAATCATTGT	2700
CGGCCTCATC	GTTGGAATTA	TCGTCGGATC	CTTTCGTTTC	TTAATTGAAA	AGGGCTTCCA	2760
CCTGATACAA	GGAGTTTATC	AAGATCAAGG	GTACTTAGTG	CGCAATCTTT	TTGTACTGGT	2820
TTTGTTTTAT	ATACTCATCT	GTTGGCTCAG	TGCCAAACTA	ACACGGTCAG	AAAAAGATAT	2880
TAAAGGCTCA	GGAATTCCTC	AAGTCGAAGC	CGAACTGAAA	GGCCTCATGT	CCCTCAACTG	2940
GTGGGGCATT	CTTTGGAAAA	AATATGTGCT	AGGTATTCTT	GCTATTGCCA	GTGGACTCAT	3000
GCTGGGTCGA	GAGGGACCCA	GCATTCAACT	TGGAGCAGTT	GGTGGTAAAG	GAATTGCCAA	3060
GTGGCTCAAA	TCCAGTCCAG	TAGAGGAACG	TTCCTTGATT	GCCAGTGGAG	CTGCAGCAGG	3120
TTTAGCCGCA	GCCTTTAATG	CTCCTATTGC	AGCACTTCTC	TTTGTTGTAG	AAGAAGTCTA	3180
TCACCATTTT	TCGCGCTTTT	TCTGGGTCTC	AACTCTAGCA	GCCAGCATCG	TAGCAAACTT	3240
TGTGTCTCTA	CTCATGTTCG	GTTTGACACC	AGTATTGGAT	ATGCCAGATA	ACATTCCTCC	3300
CATGACCCTA	GATCAGTATT	GGATATATCT	CGTCATGGGA	ATTTTCCTTG	GATTTTCAGG	3360
TTTTCTCTAT	GAGAAAGCTG	TATTAAACGT	TGGAAGAGTT	TATGACTTGA	TTGGTCAAAA	3420
AATCCATTTG	GATAGGGCTT	ATTATCCCAT	CTTGGCTTTT	ATCCTTATCA	TACCAGTCGG	3480
AATCTTCTTA	CCTCAAATCA	TTGGTGGCGG	AAATCAGCTT	GTCCTTTCTT	TAACTGAACA	3540
AAATTTTAGT	TTCCAAGTTT	TATTAGCTTA	CTTTTTAATC	CGCTTTATTT	GGAGTATGAT	3600
TAGCTATGGA	AGTGGACTGC	CAGGAGGAAT	TTTCCTCCCC	ATTTTAGCTC	TTGGTTCTTT	3660
GCTTGGTGCC	TTAGTTGGTG	TTATCTGTGT	CAATCTTGGA	CTTGTCAGTC	AAGAGCAATT	3720
CCCTATATTT	GTCATTCTAG	GAATGAGTGG	CTATTTTGGA	GCCATATCAA	AAGCTCCCTT	3780
AACCGCTATG	ATCCTCGTAA	CTGAGATGGT	AGGAGATATT	CGCAACCTTA	TGCCACTTGG	3840
TCTTGTCACT	CTTGTTTCTT	ATATTATCAT	GGATTTGCTC	AAAGGTACGC	CAGTCTATGA	3900

WO 98/18931

257

AGCCATGCTG	GAAAAAATGC	TTCCAGAAGA	AGTATCTAGC	GAAGGAGAAG	TTACACTTAT	3960
CGAAATACCA	GTTTCTGATA	AAATTGCTGG	GAAACAAGTT	CATGAACTCA	ACTTACCACA	4020
CAACGTCCTC	ATCACAACTC	AAGTCCATAA	TGGCAAGAGC	CAAACAGTTA	ACGGCTCAAC	4080
CAGAATGTAT	CTGGGTGATA	TGATTCACCT	GGTTATTCCA	AAAAGTGAAA	TTGGAAAAGT	4140
CAAAGATTTG	TTGTTGTAGT	ATGAGTATTT	ACATAATTTA	TGTTATGTAA	ATGATCAGTT	4200
TGATTTATTT	AGAAAACCGA	TTCTCAGGAA	TGAGATCGGT	TATTTTTAC	TGATGAGGAA	4260
TTTTACATAT	Aaataattga	ACTTTATTAA	AAATAAGACT	ATAATTAAGT	TAGAAATGAT	4320
Aaagtataaa	GCTAGAAAGG	AGTTTACTGT	ATCAAATCTG	TACAGTAAGA	TTAAAATCAT	4380
GAAAAAGAAA	ACAATAGCAA	TTATATAGAG	AAATGAAATA	GAAATAGGAT	AAAACAATCA	4440
GGACAATCAA	ATCAATTTCT	AGCAATGTTT	TAGAAGTCCA	GATGTACTAT	TCTAGTTTCA	4500
АТСТАТТАТА	CAATGTGTTT	TGTATCTCAT	AGCTCCTTAT	ATAGCTCTTC	AGTTATGTAG	4560
PATTAACAGA	AGTTTAGTGG	GTGAGATTTT	TATTATTTTC	CTTATTCTGT	TTTGTTTGTA	4620
GGTCTAAGTC	TTTTTATCAC	TTTGAAAAAC	TCCTATAACA	TCTTTCCGAA	АААСТАТААТ	4680
PTTCTTGAAA	AATATACAA G	TCTATGCTAT	ACTACTAGTA	TACTTACTTA	TGGAGAAAAT	4740
ACATGAAACG	TGAGATTTTA	CTGGAACGAA	TCGACAAACT	AAAACAACTC	ATGCCCTGGT	4800
aagttctgga	ATACTACCAA					4820

(2) INFORMATION FOR SEQ ID NO: 20:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21338 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

CTACGACATC	ATGATTAACA	GTCATGCGCT	ACTACCAACT	GAGCTATGGC	GGATAAAATA	60
GTCCGTACGG	GATTCGAACC	CGTGTTACCG	CCGTGAAAAG	GCGGTGTCTT	AACCCCTTGA	120
CCAACGGACC	TTCTATCTGT	AGCAGATATA	ACCATTATAT	CAATTTCTTG	CTAATTGTCA	180
ATCACTTTTG	AGATTTTTTC	TCTAAAATAT	CTTTTAATTT	TCTAATTTTT	AATCTTGAAA	240
TAGGACAACG	ATGGTCTTCA	TAGAAAACAA	TTTCTAAGTT	TTTTCGATCA	ATTTCTCTGA	300
TATTACCTAT	ATTTACCAAA	AATGACTTGT	GAGGAGAATA	AAATCGCTGA	GTATGTTTGT	360
CCTTTTCCTG	AATATCTGTC	ATGGTACCAT	AAAACTCTTT	TGCAAAATTC	TTACCAATAA	420

TGCGCAATT	ATGAGATACC	CCTGTTGTTT	CAATATACAA	AATATCATGG	TAAGGAATTT	486
TTAAATCATT	TCCCTTGTAA	TTGTAGTCGA	AATAATCTAC	AACATCTTCA	TTTTCAAGTA	540
ACATACTCTT	CGTGTAGAAG	ATATTTTGCT	CAATTCTCTT	CTTAAACATC	TCATCATTGA	600
TATCCTTATC	AACAAAATCT	AGGGCTGATA	CCTGGTATTT	ATAGGTTAGA	GTCGCAAACT	660
CTGATCGACT	AGTGATAAAG	ACGATAATAG	CGTAAGGATT	GTAATGACGA	ATGAGCTGAG	720
CCACTTCAAA	TCCCTTTTTC	TCAATTCCAT	GAATATCGAT	ATCTAGGAAA	TAAAGCTGAT	780
TTACTTCATC	ATTTTCAATG	TATTCTTCAA	ATTCACGGAC	TTTTCCCGTT	GTCTTGTATG	840
ATATTGGAAT	ATTCGATTCT	TTCGAAATTT	CATCCAATAT	TCTCTCTAGT	CTCACTTGAT	900
GTTCAATAAC	АТСТТСТААА	ATTAAAACTT	TCATTCAAAT	TCCCTCTTAA	ATCTAATGAT	960
гтстстааат	GTACTGCCTT	CCATCTCTGT	ттстаааата	ATATTGTTGT	ACTTATCTAG	1020
PAGTTCTTTC	ACATTATTTA	ATCCGACTCC	GCGATTTCTT	CCCTTAGTGG	AGAATCCTAA	1080
GCAAATAGA	TCTCCTGAAG	GAGTCATCGT	CATTTTACAT	GAATTCTGAA	TCACAATAAC	1140
rgtttcagtt	TCCATCTTAA	TAACTGCTAC	TTCCATCTGC	TTTTTATAGC	TATCAGCCGA	1200
rccttcgaca	GCATTATTCA	ATAAAACGCT	CATGATACGA	ACCAAATCCA	ATAGTTCAAT	1260
PGGAAGCTTG	GTAATCGTAT	CTTTTACTTC	CAGTGTAAAC	TCTACACCAT	TATTTCGAGC	1320
ATAGACAATT	GACTGAGCAA	CCAAACTTCG	TAAAGCTGAG	TCTTCTATGT	TGTTCAAATC	1380
AAGTAAGTG	TACTTATCTG	AACGCAATTT	ATGATTTGCT	TTGACTAAAA	CTTCATTGTA	1440
ATTCTGTCA	ATTTCCTGTA	AATTACCACT	GTCAATTGCC	ATCTGCATGC	TGACAAGCAT	1500
CCAGCATAA	TCATGTCGAA	AACCACGGAT	TTCATTATAC	AGACCAACAA	TTTCATCTGT	1560
TAATTCTGT	AAATGTTTCT	GTTCAAATTT,	CTTCTGCTTC	AAAGCAATCT	CTTTCTCCAT	1620
TGAACTTTA	TGAGAATTCA	TTGCAAAGAA	GGTCAAAAGG	AGAGAGATAA	AGACAATAGA	1680
GACAAAATA	CTTCCAAAAC	TATTCAAATG	TTTAATCGTA	CTTACCATAT	CTGAAACGAA	1740
GATACAATA	TGTAGCAATA	GTAAAGCAAA	AAATACTTTT	TTCAAGAAAG	GATAAAGGTA	1800
TCCTTGTCA	AAATAGGCTA	GTTCCAAATG	GAAATAGTAA	ATGATTTTA	ATGTAACAAA	1860
TAGGTTAAC	ACCGTCACAA	CGAAAAAGAA	TGGGAAATGA	TATTGTAAAA	CAAAATTATC	1920
CCTGTTATA	GAGGAGAAAA	TTACGGACAG	Aaagttatga	GTGCTCTCAT	ATAAAAGAGA	1980
'AGTAGTAAA	CTTAGGAATA	GTCCTCTATC	CCTCTCATAC	TGTTTCATCC	ATCGAAAATA	2040
GAATATAAG	CCCAAAGGAA	АТАААААТСТ	TTCAATCCCT	АТТТТАТСТА	AATATAGAAG	2100
TAAAAGGAA	AATTCAAGTA	CTATTTCAGT	TAGTAATGTA	TAAGCACCAA	AAACGTATAA	2160
TCTTTTCTA	TTTATTCGAC	CTTTACAAAT	TAAACGGTAA	CTGTGACTAA	TAATTAAAAA	2220

ATGAACAATA	ACTGTCCCAA	ATCCAAGTAA	ATCCATTACT	CTTTCTCCTT	ATTTCATTAC	228
TTTTTTCGTA	GGAAAAGAAA	ATCAAGGATG	ATTCTTGAAA	TCCTCATCTC	CCCACCTTTA	2340
ATCTTTTGTA	AGTCTTTTTC	CTTCAAAGCT	ACAAACTGTT	CCAATTTAAC	TGTGTTTTTC	2400
ТААДАТААТ	СТССТААААТ	GTTTTTTCTT	GTAAGCTAAC	TTACAAAAAC	CATTATACAA	2460
Aatggaattt	CGTTTTAGAT	AAAATTCTCT	CAACTGTCAT	TTTTTTCTCC	CAAAGTGTAC	2520
TTTTTTAAGA	AAAAAGCCGG	GAAAATTCCC	AGCTTTGCTA	TTATATTGAT	CCCAGCAGGA	2580
PTCGAACCTG	CGACCGTTCG	CTTAGAAGGC	GAATGCTCTA	TCCAGCTGAG	CTATGAGACC	2640
Paatacaatt	ATTCTACCAA	AAATTCAATT	AAAAGTCAAT	TTTCTATTTA	TGGTAGGGGA	2700
ATCCCTGCTG	AATCGTAAAA	GCGCGATAGA	TTTGTTCAAC	AAGAACTAGT	CTCATTAACT	2760
GATGGGGTAA	GGTTAGGCGA	CCAAAACTGA	CAGAAAGATT	GGCTCTATTT	TTTACAGATG	2820
ATGATAATCC	TAAACTTCCC	CCAATAATAA	AAGTAAGAGT	AGAAAATCCT	TTTATAGAAG	2880
PTTCTTCTAA	CTGCTTACTA	AATTCTTCTG	AGAAGAAAGT	TTTCCCTTCA	ATGGCTAACA	2940
CAATAACGAA	ATCACGGTCA	GCAATTTTTG	ATAAAATTCT	CTGACCTTCT	ATTTCTAAAA	3000
PCTTTTGATT	TTCTGATTCA	CTGGCCTTAT	CTGGTGTTTT	TTCATCTGAT	AACTCAATCA	3060
TTCAAACTT	AGCAAATCTA	GAAATTCGTT	TTGAATACTC	TGCGATACCA	TCTTTTAAAT	3120
ACTTTTCTTT	CAGTTTCCCA	ACTGTTACAA	CTTTAATTTT	CATGACTCTA	TTCTAACATA	3180
TTCTCTATTT	TTTCACATCT	TATTCACAAA	АТААААААТА	GATTTCAATT	AAGAAAATCA	3240
CAATTTCAAA	AGAGTTATCC	ACAGTTTGTG	TAAAACTTTT	GTGTTTAAGT	TATAATTAAG	3300
TAGTCAGTT	TATACTTTCA	GTAATTCAAA	CATATGGAGG	CAAATATGAA	ACATCTAAAA	3360
CATTTTACA	AAAAATGGTT	TCAATTATTA	GTCGTTATCG	TCATTAGCTT	TTTTAGTGGA	3420
CCTTGGGTA	GTTTTTCAAT	AACTCAACTA	ACTCAAAAAA	GTAGTGTAAA	CAACTCTAAC	3480
ACAATAGTA	CTATTACACA	AACTGCCTAT	AAGAACGAAA	ATTCAACAAC	ACAGGCTGTT	3540
ACAAAGTAA	AAGATGCTGT	TGTTTCTGTT	ATTACTTATT	CGGCAAACAG	ACAAAATAGC	3600
TATTTGGCA	ATGATGATAC	TGACACAGAT	TCTCAGCGAA	TCTCTAGTGA	AGGATCTGGA	3660
ATATTTATT	AAAAGAATGA	TAAAGAAGCT	TACATCGTCA	CCAACAATCA	CGTTATTAAT	3720
GCGCCAgCA	AAGTAGATAT	TCGATTGTCA	GATGGGACTA	AAGTACCTGG	AGAAATTGTC	3780
GAGCTGACA	CTTTCTCTGA	TATTGCTGTC	GTCAAAATCT	CTTCAGAAAA	AGTGACAACA	3840
TAGCTGAGT	TTGGTGATTC	TAGTAAGTTA	ACTGTAGGAG	AAACTGCTAT	TGCCATCGGT	3900
GCCCGTTAG	GTTCTGAATA	TGCAAATACT	GTCACTCAAG	GTATCGTATC	CAGTCTCAAT	3960

			260			
AGAAATGTAT	CCTTAAAATC	GGAAGATGGA	CAAGCTATTT	CTACAAAAGC	CATCCAAACT	402
GATACTGCTA	TTAACCCAGG	TAACTCTGGC	GGCCCACTGA	TCAATATTCA	AGGGCAGGTT	408
ATCGGAATTA	CCTCAAGTAA	AATTGCTACA	AATGGAGGAA	CATCTGTAGA	AGGTCTTGGT	414
TTCGCAATTC	CTGCAAATGA	TGCTATCAAT	ATTATTGAAC	AGTTAGAAAA	AAACGGAAAA	420
GTGACGCGTC	CAGCTTTGGG	AATCCAGATG	GTTAATTTAT	CTAATGTGAG	TACAAGCGAC	426
ATCAGAAGAC	TCAATATTCC	AAGTAATGTT	ACATCTGGTG	TAATTGTTCG	TTCGGTACAA	4320
AGTAATATGC	CTGCCAATGG	TCACCTTGAA	AAATACGATG	ТААТТАСААА	AGTAGATGAC	4380
AAAGAGATTG	CTTCATCAAC	AGACTTACAA	AGTGCTCTTT	ACAACCATTC	TATCGGAGAC	4440
ACCATTAAGA	ТААССТАСТА	TCGTAACGGG	AAAGAAGAAA	СТАССТСТАТ	CAAACTTAAC	4500
AAGAGTTCAG	GTGATTTAGA	ATCTTAATTG	ACATCTATGT	AAAGAAAGCT	TTACATAAGA	4560
GAAAAGATGT	GTTAGTGTAG	AATCATGGAA	AAATTTGAAA	TGATTTCTAT	CACAGATATA	4620
СААААААТС	CCTATCAACC	CCGAAAAGAA	TTTGATAGAG	AAAAACTAGA	TGAACTAGCA	4680
CAGTCTATCA	AAGAAAATGG	GGTCATTCAA	CCGATTATTG	TTCGTCAATC	TCCTGTTATT	4740
GGTTATÇAAA	TCcTTGCAGG	AGAGAGACGC	TATCGGGCTT	CACTTTTAGC	TGGTCTACGG	4800
TCTATCCCAG	CTGTTGTTAA	ACAGATTTCA	GACCAAGAGA	TGATGGTCCA	GTCCATTATT	4860
GAAAATTTAC	AGAGAGAAAA	TTTAAACCCA	ATAGAAGAAG	CACGCGCCTA	TGAATCTCTC	4920
GTAGAGAAAG	GATTCACCCA	TGCTGAAATT	GCAGATAAGA	TGGGCAAGTC	TCGTCCATAT	4980
ATCAGCAACT	CCATTCGTTT	ACTTTCCTTG	CCAGAACAGA	TTCTTTCAGA	AGTAGAAAAT	5040
GGCAAACTAT	CACAAGCCCA	TGCGCGTTCC	CTAGTTGGGT	TAAATAAGGA	ACAACAAGAC	5100
TATTTCTTTC	AACGGATTAT	AGAAGAAGAT	ATTTCTGTAA	GGAAATTAGA	AGCTCTTCTG	5160
ACAGAGAAAA	AACAAAAGAA	ACAGCAAAAA	ACTAATCATT	TCATACAAAA	TGAAGAAAAA	5220
CAGTTAAGAA	AACTACTCGG	ATTAGATGTA	GAAATTAAAC	TATCTAAAAA	AGACAGTGGA	5280
AAAATCATTA	TTTCTTTTTC	AAATĊAAGAA	GAATATAGTA	GAATTATCAA	CAGCCTGAAA	5340
TAAGGCTGTT	CTTTTATTTT	TTTATCTCAC	AAGGTTATCC	ACTATGTTTT	TCGATAAAAA	5400
GCTTAATAAA	TCAATAATTT	CTTCTTTTAT	CCCCAACCTG	TGGATAAAGT	TTGGTAACAT	5460
TGTGGATTAT	TTTTCACAGC	TTGTGGAAAA	TTCTTGCTAT	CTATGGTAAA	ATATCTCTAG	5520
TATTAAACTT	TTAAATAGTA	AAGGAGGAGA	AAGGATTGAA	AGAAAAACAA	TTTTGGAATC	5580
GTATATTAGA	ATTTGCACAA	GAAAGACTGA	CTCGATCCAT	GTATGATTTC	TATGCTATTC	5640
AAGCTGAACT	CATCAAGGTA	GAGGAAAATG	TTGCCACTAT	ATTTCTACCT	CGCTCTGAAA	5700
TGGAAATGGT	CTGGGAAAAA	CAACTAAAAG	ATATTATTGT	AGTAGCTGGT	TTTGAAATTT	5760

ATC	ACGCTGA	AATAACTCCC	CACTATATTT	TCACCAAACC	TCAAGATACG	ACTAGCTCAC	5820
AAC	STTGAAGA	AGCTACAAAT	TTAACTCTTT	ATAACTATAG	TCCAAAGTTA	GTATCTATTC	5880
CTI	TATTCAGA	TACGGGATTA	AAAGAAAAGT	ATACCTTTGA	TAACTTTATT	CAAGGGGATG	5940
GA#	\atg ttt g	GGCTGTATCA	GCCGCTTTAG	CTGTCTCTGA	AGATTTGGCT	CTGACCTATA	6000
ACC	CTCTTTT	TATCTATGGA	GGACCAGGCC	TTGGTAAGAC	TCACTTATTA	AACGCTATTG	6060
GA#	ATGAAAT	TCTAAAAAAT	ATTCCTAATG	CGCGTGTTAA	ATATATCCCT	GCCGAAAGCT	6120
ГТA	TTAATGA	CTTTCTTGAT	CACCTAAGAC	TTGGGGAAAT	GGAAAAGTTT	AAAAAGACCT	6180
ATC	GTAGTCT	TGATCTTTTG	TTAATCGATG	ATATCCAGTC	ACTCAGCGGA	AAAAAAGTCG	6240
CAA	CTCAGGA	AGAATTTTTC	AATACCTTTA	ACGCCCTTCA	TGACAAGCAA	AAACAGATTG	6300
rcc	TAACGAG	TGATCGTAGT	CCAAAACATC	TAGAAGGGCT	CGAGGAGAGG	CTTGTCACGC	6360
377	TTAGTTG	GGGATTGACA	CAAACTATCA	CCCCCCTGA	CTTTGAAACA	CGTATTGCCA	6420
ľľī	TACAAAG	TAAGACGGAA	CATTTAGGCT	ACAATTTCCA	AAGTGATĄCT	CTAGAATACC	6480
PAC	CTGGGCA	ATTTGATTCA	AATGTTCGAG	ATCTTGAGGG	AGCCATCAAC	GACATCACTT	6540
raa	TTGCCAG	AGTAAAAAA	ATCAAGGATA	TCACTATTGA	TATTGCTGCA	GAAGCCATTA	6600
GAG	CCCGCAA	ACAAGATGTT	AGCCAAATGC	TCGTCATCCC	AATTGATAAA	ATCCAAACTG	6660
AAG	TTGGTAA	CTTTTATGGT	GTTAGTATCA	AAGAAATGAA	GGGAAGTAGA	CGCCTTCAAA	6720
\TA	TTGTTT	GGCCCGTCAA	GTAGCCATGT	ATTTATCTAG	AGAACTAACA	GATAATAGTC	6780
TC	САААААТ	TGGGAAGGAA	TTTGGGGGAA	AAGATCATAC	CACAGTCATT	CATGCCCATG	6840
CA	AAATAAA	ATCTTTGATT	GATCAAGACG	$\underset{(}{\mathbf{ATAATTTACG}}$	TTTAGAAATT	GAATCAATCA	6900
A.A.	AGAAAAT	CAAATAATTT	GTGGATAACT	TTTAGTTTTT	TATCTTTTTT	ATCCACATTT	6960
TT	'AAACAAG	СТААААААСТ	TGATATGACT	TGTTTAAAGG	CTGTTTTCCA	CAGATTTCAC	7020
AGA	CTCTATT	ATTACTATTA	TCTTTCTAAT	ACTAAAAATA	AATAAAGGAG	AATCCATGAT	7080
CA	TTTTTCA	ATTAATAAAA	ATTTATTTCT	ACAAGCATTA	ААТАСТАСТА	AGAGAGCTAT	7140
'AG	TTCTAAA	AATGCCATTC	CTATTTTATC	ĀACAGTAAAA	ATTGACGTGA	CCAATGAAGG	7200
'AT	TACTTTA	ATTGGTTCAA	ATGGTCAAAT	TTCAATTGAA	AATTTTTATTT	CTCAAAAAAA	7260
GA	AGATGCT	GGTTTGTTAA	TTACTTCTTT	AGGTTCGATC	CTTCTTGAAG	CTTCTTTCTT	7320
TA.	CAATGTA	GTATCTAGTT	TACCTGATGT	AACTCTTGAT	TTTAAAGAAA	TTGAACAAAA	7380
'CA	AATTGTT	TTAACCAGTG	GCAAATCAGA	AATTACCCTA	AAAGGAAAAG	ATAGCGAACA	7440
TA	TCCACGA	ATCCAAGAAA	TTTCAGCAAG	CACTCCTTTA	ATACTTGAAA	CAAAATTACT	7500

			262			
CAAGAAAATT	ATTAATGAAA	CAGCCTTTGC		CAAGAGAGTC	GTCCGATTTT	7560
AACAGGTGTC	CACTTCGTAT	TGAGTCAACA	CAAAGAGTTA	AAAACAGTTG	CAACAGACTC	7620
TCATCGCCTA	AGCCAGAAAA	AATTGACTCT	TGAAAAAAT	AGTGATGATT	TTGATGTCGT	7680
AATTCCTAGC	CGTTCTCTAC	GCGAATTTTC	AGCGGTATTT	ACAGATGATA	TCGAAACTGT	7740
AGAGATTTTC	TTTGCCAATA	ACCAAATCCT	CTTTAGAAGC	GAAAATATTA	GCTTCTATAC	7800
TCGTCTCCTA	GAAGGAAACT	ATCCTGATAC	AGATCGCTTG	ATTCCAACAG	ACTTTAACAC	7860
TACTATTACT	TTTAATGTGG	TAAACTTACG	CCAGTCAATG	GAGCGTGCCC	GTCTTTTATC	7920
AAGTGCGACT	CAAAATGGTA	CTGTGAAACT	TGAAATTAAG	GATGGGGTTG	TTAGCGCCCA	7980
TGTTCACTCT	CCAGAAGTTG	GTAAAGTAAA	CGAAGAAATC	GATACTGATC	AGGTTACTGG	8040
TGAAGATTTG	ACCATTAGTT	TCAACCCAAC	TTACTTGATT	GATTCTCTTA	AAGCTTTAAA	8100
TAGCGAAAAG	GTGACTATTA	GCTTTATCTC	AGCTGTTCGT	CCATTTACTC	TTGTGCCAGC	8160
AGATACTGAC	GAAGACTTCA	TGCAGCTCAT	TACACCAGTT	CGTACAAATT	AAGTGAAAGA	8220
GGTTGAGCCT	GGCTCGCCTC	TTTTATGATA	TAATCGAAAA	AGAAAAGGAG	AGTAGTATGT	8280
ATCAAGTTGG	AAATTTTGTT	GAGATGAAAA	AATCACACGC	TTGTACAATC	AAGTCGACTG	8340
GTAAAAAGGC	TAATCGTTGG	GAAATTACAC	GTGTAGGAGC	AGATATCAAA	ATAAAATGTA	8400
GTAATTGTGA	GCATGTTGTC	ATGATGGGGC	GATATGATTT	TGAGCGAAAA	ATGAATAAAA	8460
TTATTGACTG	AGAACCCTTA	GTTAGAGGGT	TAGCACTTTA	TCCCTTTTTG	TGTTATAATA	8520
TTAGGGATTG	AAATGAAAAC	GGAGAATGAG	AAATATGGCT	TTGACAGCAG	GTATCGTTGG	8580
TTTGCCAAAC	GTTGGTAAAT	CAACACTATT	TAATGCAATT	ACAAAAGCAG	GAGCAGAGGC	8640
AGCAAACTAC	CCATTTGCGA	CGATTGATCC	AAATGTTGGA	ATGGTGGAAG	TTCCAGATGA	8700
ACGCCTACAA	AAACTAACTG	AAATGATAAC	TCCTAAAAAG	ACAGTTCCCA	CAACATTTGA	8760
ATTTACAGAT	ATTGCAGGGA	TTGTAAAAGG	AGCTTCAAAA	GGAGAGGGGC	TAGGGAATAA	8820
ATTCTTGGCC	AATATTCGTG	AAGTAGATGC	GATTGTTCAC	GTAGTTCGTG	CTTTTGATGA	8880
TGAAAATGTA	ATGCGCGAGC	AAGGACGTGA	AGACGCCTTT	GTAGATCCAC	TTGCAGATAT-	8940
TGATACCATT	AATCTGGAAT	TGATTCTTGC	TGACTTAGAA	TCAGTGAACA	AACGATATGC	9000
GCGTGTAGAA	AAGATGGCAC	GTACGCAAAA	AGATAAAGAA	TCAGTAGCAG	AATTCAATGT	9060
TCTTCAAAAG	ATTAAACCAG	TCCTAGAAGA	CGGGAAATCA	GCTCGTACCA	TTGAATTTAC	9120
AGATGAGGAA	CAAAAGGTTG	TCAAAGGTCT	TTTCCTTTTG	ACGACTAAAC	CAGTTCTTTA	9180
TGTAGCTAAT	GTGGACGAGG	ATGTGGTTTC	AGAACCTGAC	TCTATCGACT	ATGTCAAACA	9240
AATTCGTGAA	TTTGCAGCGA	CAGAAAATGC	TGAAGTAGTC	GTTATTTCTG	CGCGTGCTGA	9300

9360	CCATTGGTTT	TTTCTTGAAG	TAAAAAAGAG	ATGATGAAGA	TCTGAATTGA	GGAAGAAATT
9420	GATTGGGAAC	CACTTGCTTG	TGCAGCTTAC	AGTTGACGCG	GGTGTAGATA	GACAGAATCA
9480	GTATGAAGGC	TTCAAACGTG	CGCTTGGACT	AAGAAGTTCG	GCTGGTGAAA	TTACTTCACA
9540	GTGCAGTAAC	GGCTTTATTC	CTTTGAAAAA	TCCACTCAGA	GCTGGTATTA	TCCTCAAGCA
9600	AAGCTGGACG	GCCGTAAAAG	ATCTGAAAAG	TGAAATACGG	GAAGATCTAG	CATGTCATAT
9660	AATTCCGCTT	GATATCATGG	TCAAGATGGC	AATATATCGT	GAAGGAAAAG	CTTGCGTGAA
9720	AACCCTTTTG	AAAAAATTCC	TTAGGTTGGA	ATGGTGTCAA	AATTAATAA	TAATGTCTAA
9780	CCAGGGGATA	CTTGGGAAAT	TACTTGTAGG	ATGACCAAAT	GGAAAAATAA	GCTTTTGAAA
9840	GCGAAGAAAC	TGATCAACTA	TTATGTTGAT	AATGTTGGTT	AACAAAACAC	Aatattttga
9900	TTTTTCCTAA	CCTAGCATCC	TTCAAGCTGA	GATAAGATAT	TTTTACACAC	AGAATGTCAC
9960	GGAAAAGCAG	GAATGAAAGT	CGACCTTTAT	GTTAAACCAA	AATTTATCTG	ATGGAGAAAA
10020	ATTTACGATG	TTTACTTATC	ATATTGACGA	TATGGTTTGG	ATTAACTTAC	TTCATGCTTT
10080	GGTGGTCATA	AGGCTCAGCA	TAAGAGCAAA	AAAATTCGTT	GGAAGTTGGG	ATCTTGACAT
10140	GTTAAGATTG	CTTTAACCGT	GAACTCAGGT	CAACATATAG	GTCTATTATT	ATGGTATCAA
10200	AAGTTTGACA	TGTTTTGAGT	TTGTTCATCA	GGTATGTCAG	ACCTAAAAAT	GAATTGGAAG
10260	GTAAACTACT	TGACGATTCT	TTGACAAAGT	TTACAGTCTG	TATCGGTATT	GGGATGATTA
10320	ATGGTGACCT	TAACGGATAA	TGCAGAGGTA	GAGAAAACAA	GAAAAATTTT	ATTTACAAGA
10380	TTAACAGATA	GCATCAAAAT	TTAAAAAATG	AATGATCAGA	ATTCTCAGAA	TATTAGATTT
10440	ATTGCAAGCA	GGCTCTTGCA	CATCTACTAA	GGTTTATCAA	ACTAATACTT	AGAAAAGACA
10500	GCAGAAGGAC	TTATGGAGAA	TGACGTCAAC	ATTGTGTTAT	AGAAGATAGG	GTTTAGAAAA
10560	TTGGTAGATG	CTATCCATTT	AGGAACTCGT	ATCTTGGGTG	TCTTATTTCT	TTGTTAGTGA
10620	CGGGTTGAAG	AATTATTTCA	CACAGGAAAA	TTGATGTCTT	GGTGGAGTTT	ATGCTCCTAT
10680	ATCGCAGCAA	AGTTTGTAAT	AAGGGATTTT	TCATCTAAGA	TTTGACTGAT	CCTTGCGTTT
10740	ATCTCAGTTG	TATTGTAAAA	TCAAAGATAG	CCCAATGCAT	TTTACCGTCT	GTCGATTGAT
10800	TATCGAAAAG	GGAAAATGGC	ATCAGTTAAA	GCGTTTATCC	TGATCAACAC	GTGAAGAATA
10860	GATATTTTTG	AGATATTTTA	GTCTTCGAGG	GGCGAATTTA	ACAAACTCAG	TTACTCAAGT
10920	GATGGTATCA	TGATGAAATT	AGTTTTTTGG	TGTCGAATTG	GTTAGAACCT	AAATATCCCA
10980	ACTATCTTTC	GACAGAACTC	AAGAAAATAA	CAATTATCGA	AGTAGAAACA	GGTCATTTGA
11040	GCTTTAGAAA	AGGACAGTCA	ATTATCAACG	AGAGAAAAGG	TATGCTTTTG	CAGCTAGTGA

			264			
AACAAATTTC	AAAAACTTTA	TCACCTATTT	TGAAATCATA	CCTAGAAGAA	ATTCTTTCAA	11100
GTTTTCACCA	AAAACAAAGT	CATGCAGACT	CTCGGAAGTT	TTTATCTTTG	TGCTATGATA	11160
AGACATGGAC	TGTCTTTGAT	TATATTGAAA	AAGATACTCC	AATATTCTTT	GATGATTATC	11220
Aaaaattgat	GAATCAGTAT	GAAGTCTTTG	AAAGAGACTT	AGCGCAGTAC	TTTACAGAAG	11280
AATTACAGAA	TAGTAAAGCA	TTTTCTGATA	TGCAGTATTT	TTCTGATATT	GAACAAATCT	11340
АТААААААСА	AAGTCCAGTG	ACCTTTTTCT	CTAATCTTCA	AAAGGGTTTA	GGAAATCTCA	11400
AATTTGACAA	AATTTATCAA	TTCAATCAAT	ATCCTATGCA	GGAATTTTTC	AATCAGTTTT	11460
CTTTTCTAAA	AGAAGAAATT	GAACGATATA	AAAAAATGGA	TTACACCATT	ATTCTGCAGT	11520
CTAGCAATTC	AATGGGAAGT	AAAACATTGG	AGGATATGTT	AGAGGAATAT	CAGATTAAAT	11580
TGGATTCTAG	AGATAAGACA	AATATCTGTA	AAGAATCTGT	AAACTTAATA	GAGGGTAATC	11640
TCAGACATGG	TTTTCATTTT	GTAGATGAAA	AGATTTTATT	GATAACTGAA	CATGAGATTT	11700
TTCAAAAGAA	ATTAAAGCGT	CGTTTTCGAA	GACAACATGT	TTCAAATGCA	GAGAGATTAA	11760
AAGATTACAA	TGAACTTGAA	AAAGGGGACT	ATGTTGTCCA	TCATATCCAT	GGGATTGGTC	11820
AATATCTAGG	AATTGAAACC	ATTGAAATCA	AGGGAATTCA	TCGCGATTAT	GTCAGTGTCC	11880
AATACCAAAA	TGGTGATCAA	ATTTCTATCC	CCGTGGAACA	GATTCATCTA	CTGTCCAAAT	11940
ATATTTCAAG	TGATGGTAAA	GCTCCAAAAC	TCAATAAATT	AAATGACGGT	САТТТТАААА	12000
AGGCCAAGCA	AAAGGTTAAG	AACCAGGTAG	AGGATATAGC	TGATGATTTA	ATCAAACTCT	12060
ACTCTGAACG	TAGTCAGTTG	AAGGGTTTTG	CTTTCTCAGC	TGATGATGAT	GATCAAGATG	12120
CCTTTGATGA	TGCTTTCCCT	TATGTTGAAA	CGGATGATCA	ACTTCGTAGT	ATTGAGGAAA	12180
TCAAGAGGGA	TATGCAGGCT	TCTCAGCCAA	TGGATCGACT	TTTAGTTGGG	GATGTTGGTT	12240
TTGGAAAGAC	TGAAGTTGCT	ATGCGTGCAG	CCTTTAAAGC	AGTCAATGAT	CACAAACAGG	12300
TTGTCATTCT	AGTTCCGACG	ACGGTTTTAG	CGCAACAGCA	CTATACGAAT	TTTAAGGAAC	12360
GATTCCAAAA	TTTTGCAGTT	AATATTGATG	TGTTGAGTCG	CTTTAGAAGT	AAAAAAGAGC	12420
AGACTGCAAC	ACTTGAAAAA	TTGAAAAACG	GTCAAGTCGA	TATTTTGATT	GGAACACATC	12480.
GTGTTTTGTC	AAAAGATGTT	GTGTTTGCTG	ATTTGGGCTT	GATGATTATT	GATGAGGAAC	12540
AGCGATTTGG	TGTCAAGCAT	AAGGAAACTT	TGAAAGAACT	GAAGAAACAA	GTGGATGTCC	12600
TAACCTTGAC	CGCTACGCCA	ATCCCTCGTA	CCCTCCATAT	GTCTATGCTG	GGAATCAGAG	12660
ATTTATCTGT	TATTGAAACT	CCGCCGACTA	ATCGCTATCC	TGTTCAGACC	TATGTTTTGG	12720
AAAAGAATGA	TAGTGTCATT	CGTGATGCTG	TCTTGCGTGA	AATGGAGCGT	GGAGGTCAAG	12780
тттаттатст	ттасаасааа	GTTGACACAA	TTGTTCAGAA	GGTTTCAGAA	TTACAGGAGT	12840

IGATTCCGGA	GGCTTCGATT	GGATATGTTC	ATGGTCGAAT	GAGTGAAGTC	CAGTTGGAAA	1290
АТАСТСТАТТ	AGACTTTATT	GAGGGACAAT	ACGATATCTT	GGTGACGACT	ACTATTATTG	1296
AGACAGGGGT	GGACATTCCA	AATGCTAATA	CTTTATTTAT	TGAAAATGCG	GACCATATGG	13020
GCTTGTCAAC	CTTATATCAG	TTAAGAGGAA	GAGTCGGTCG	TAGTAATCGT	ATTGCTTATG	13080
СТТАТСТСАТ	GTATCGTCCA	GAAAAATCAA	TCAGTGAAGT	CTCTGAAAAG	AGATTAGAAG	13140
CGATTAAAGG	ATTTACAGAA	TTGGGCTCTG	GCTTTAAGAT	TGCAATGCGA	GATCTTTCGA	13200
PTCGTGGAGC	AGGAAATCTT	TTAGGAAAAT	CCCAGTCTGG	TTTCATTGAT	TCTGTTGGTT	13260
PTGAATTGTA	TTCGCAGTTA	TTAGAGGAAG	CTATTGCTAA	ACGAAACGGT	AATGCTAACG	13320
CTAACACAAG	AACCAAAGGG	AATGCTGAGT	TGATTTTGCA	AATTGATGCC	TATCTTCCTG	13380
ЧТАСТТАТАТ	TTCTGATCAA	CGACATAAGA	TTGAAATTTA	CAAGAAAATT	CGTCAAATTG	13440
ACAACCGTGT	CAATTATGAA	GAGTTACAAG	AGGAGTTGAT	AGACCGTTTT	GGAGAATACC	13500
CAGATGTAGT	AGCCTATCTG	TTAGAGATTG	GTTTGGTCAA	ATCATACTTG	GACAAGGTCT	13560
TTGTTCAACG	TGTGGAAAGA	AAAGATAATA	AAATTACAAT	TCAATTTGAA	AAAGTCACTC	13620
AACGACTGTT	TTTAGCTCAA	GATTATTTA	AAGCTTTATC	CGTAACGAAC	TTAAAAGCAG	13680
SCATCGCTGA	GAATAAGGGA	TTAATGGAGC	TTGTATTTGA	TGTCCAAAAT	AAGAAAGATT	13740
\TGAAATTTT	AGAAGGTTTG	CTGATTTTTG	GAGAAAGTTT	ATTAGAGATA	AAAGAGTCTA	13800
AGGAAGAAAA	TTCCATTTGA	TATTTTTCTT	СТАТААААТА	GATAAAAATG	GTACAATAAT	13860
VAATTGAGGT	AATAAGGATG	AGATTAGATA	AATATTTAAA	AGTATCGCGA	ATTATCAAGC	13920
STCGTACAGT	CGCAAAGGAA	GTAGCAGATA	AAGGTAGAAT	CAAGGTTAAT	GGAATCTTGG	. 13980
CAAAAGTTC	AACGGACTTG	AAAGTTAATG	ACCAAGTTGA	AATTCGCTTT	GGCAATAAGT	14040
PGCTGCTTGT	AAAAGTACTA	GAGATGAAAG	ATAGTACAAA	AAAAGAAGAT	GCAGCAGGAA	14100
GTATGAAAT	TATCAGTGAA	ACACGGGTAG	AAGAAAATGT	СТАААААТАТ	TGTACAATTG	14160
ATAATTCTT	TTATTCAAAA	TGAATACCAA	CGTCGTCGCT	ACCTGATGAA	AGAACGACAA	14220
LAACGGAATC	GTTTTATGGG	AGGGGTATTG	ATTTTGATTA	TGCTATTATT	TATCTTGCCA	14280
CTTTTAATT	TAGCGCAGAG	TTATCAGCAA	TTACTCCAAA	GACGTCAGCA	ATTAGCAGAC	14340
TGCAAACTC	AGTATCAAAC	TTTGAGTGAT	GAAAAGGATA	AGGAGACAGC	ATTTGCTACC	14400
agttgaaag	atgaagatta	TGCTGCTAAA	TATACACGAG	CGAAGTACTA	TTATTCTAAG	14460
CGAGGGAAA	AAGTTTATAC	GATTCCTGAC	TTGCTTCAAA	GGTGATAAAA	TGGAAAATTT	14520
TTAGACGTA	ATAGAGCAAT	TTTTGAGTTT	GTCAGATGAA	AAGCTGGAAG	AATTGGCTGA	14580

			266			
ТАААААТСАА	TTATTGCGTT	TACAAGAAGA	AAAGGAAAGG	AAGAATGCGT	AAATTCTTAA	14640
TTATTTTGTT	GCTACCAAGT	TTTTTGACCA	TTTCAAAAGT	CGTTAGCACA	GAAAAAGAAG	14700
TCGTCTATAC	TTCGAAAGAA	ATTTATTACC	TTTCACAATC	TGACTTTGGT	ATTTATTTTA	14760
GAGAAAAATT	AAGTTCTCCC	ATGGTTTATG	GAGAGGTTCC	TGTTTATGCG	AATGAAGATT	14820
TAGTAGTGGA	ATCTGGGAAA	TTGACTCCCA	AAACAAGTTT	TCAAATAACC	GAGTGGCGCT	14880
TAAATAAACA	AGGAATTCCA	GTATTTAAGC	TATCAAATCA	TCAATTTATA	GCTGCGGACA	14940
AACGATTTTT	ATATGATCAA	TCAGAGGTAA	CTCCAACAAT	AAAAAAAGTA	TGGTTAGAAT	15000
CTGACTTTAA	ACTGTACAAT	AGTCCTTATG	ATTTAAAAGA	AGTGAAATCA	TCCTTATCAG	15060
CTTATTCGCA	AGTATCAATC	GACAAGACCA	TGTTTGTAGA	. AGGAAGAGAA	TTTCTACATA	15120
TTGATCAGGC	TGGATGGGTA	GCTAAAGAAT	CAACTTCTGA	AGAAGATAAT	CGGATGAGTA	15180
AAGTTCAAGA	AATGTTATCT	GAAAAATATC	AGAAAGATTC	TTTCTCTATT	TATGTTAAGC	15240
AACTGACTAC	TGGAAAAGAA	GCTGGTATCA	ATCAAGATGA	AAAGATGTAT	GCAGCCAGCG	15300
TTTTGAAACT	CTCTTATCTC	TATTATACGC	AAGAAAAAAT	AAATGAGGGT	CTTTATCAGT	15360
TAGATACGAC	TGTAAAATAC	GTATCTGCAG	TCAATGATTT	TCCAGGTTCT	TATAAACCAG	15420
AGGGAAGTGG	TAGTCTTCCT	AAAAAAGAAG	ATAATAAAGA	ATATTCTTTA	AAGGATTTAA	15480
TTACGAAAGT	ATCAAAAGAA	TCTGATAATG	TAGCTCATAA	TCTATTGGGA	TATTACATTT	15540
CAAACCAATC	TGATGCCACA	TTCAAATCCA	AGATGTCTGC	CATTATGGGA	GATGATTGGG	15600
ATCCAAAAGA	AAAATTGATT	TCTTCTAAGA	TGGCCGGGAA	GTTTATGGAA	GCTATTTATA	15660
ATCAAAATGG	ATTTGTGCTA	GAGTCTTTGA	CTAAAACAGA	TTTTGATAGT	CAGCGAATTG	15720
CCAAAGGTGT	TTCTGTTAAA	GTAGCTCATA	AAATTGGAGA	TGCGGATGAA	TTTAAGCATG	15780
ATACGGGTGT	TGTCTATGCA	GATTCTCCAT	TTATTCTTTC	TATTTTCACT	AAGAATTCTG	15840
ATTATGATAC	GATTTCTAAG	ATAGCCAAGG	ATGTTTATGA	GGTTCTAAAA	TGAGGGAACC	15900
AGATTTTTTA	AATCATTTTC	TCAAGAAGGG	ATATTTCAAA	AAGCATGCTA	AGGCGGTTCT	15960
AGCTCTTTCT	GGTGGATTAG	ATTCCATGTT	TCTATTTAAG	GTATTGTCTA.	CTTATCAAAA	16020
AGAGTTAGAG	attgaattga	TTCTAGCTCA	TGTGAATCAT	AAGCAGAGAA	TTGAATCAGA	16080
TTGGGAAGAA	aaggaattaa	GGAAGTTGGC	TGCTGAAGCA	GAGCTTCCTA	TTTATATCAG	16140
CAATTTTTCA	GGAGAATTTT	CAGAAGCGCG	TGCACGAAAT	TTTCGTTATG	ATTTTTTCA	16200
AGAGGTCATG	AAAAAGACAG	GTGCGACAGC	TTTAGTCACT	GCCCACCATG	CTGATGATCA	16260
GGTGGAAACG	ATTTTTATGC	GCTTGATTCG	AGGAACTCGC	TTGCGCTATC	TATCAGGAAT	16320
TAAGGAGAAG	CAAGTAGTCG	GAGAGATAGA	AATCATTCGT	CCCTTCTTGC	ATTTTCAGAA	16380

AAAAGACTTT	CCATCAATTT	TTCACTTTGA	AGATACATCA	AATCAGGAGA	ATCATTATTT	16440
TCGAAATCGT	ATTCGAAATT	CTTACTTACC	AGAATTGGAA	AAAGAAAATC	CTCGATTTAG	16500
GGATGCAATC	TTAGGCATTG	GCAATGAAAT	TTTAGATTAT	GATTTGGCAA	TAGCTGAATT	16560
ATCTAACAAT	ATTAATGTGG	AAGATTTACA	GCAGTTATTT	TCTTACTCTG	AGTCTACACA	16620
AAGAGTTTTA	CTTCAAACTT	ATCTGAATCG	TTTTCCAGAT	TTGAATCTTA	CAAAAGCTCA	16680
GTTTGCTGAA	GTTCAGCAGA	TTTTAAAATC	TAAAAGCCAG	TATCGTCATC	CGATTAAAAA	16740
TGGCTATGAA	TTGATAAAAG	AGTACCAACA	GTTTCAGATT	TGTAAAATCA	GTCCGCAGgC	16800
TGATGAAAAG	GAAGATGAAC	TTGTGTTACA	CTATCAAAAT	CAGGTAGCTT	ATCAAGGATA	16860
TTTATTTTCT	TTTGGACTTC	CATTAGAAGG	TGAATTAATT	CAACAAATAC	CTGTTTCACG	16920
TGAAACATCC	ATACACATTC	GTCATCGAAA	AACAGGAGAT	GTTTTGATTA	AAAATGGGCA	16980
TAGAAAAAA	CTCAGACGTT	TATTTATTGA	TTTGAAAATC	CCTATGGAAA	AGAGAAACTC	17040
TGCTCTTATT	ATTGAGCAAT	TTGGTGAAAT	TGTCTCAATT	TTGGGAATTG	CGACCAATAA	17100
TTTGAGTAAA	AAAACGAAAA	ATGATATAAT	GAACACTGTA	CTTTATATAG	AAAAAATAGA	17160
TAGGTAAAAA	ATGTTAGAAA	ACGATATTAA	AAAAGTCCTC	GTTTCACACG	ATGAAATTAC	17220
AGAAGCAGCT	AAAAAACTAG	GTGCTCAATT	AACTAAAGAC	TATGCAGGAA	AAAATCCAAT	17280
CTTAGTTGGG	ATTTTAAAAG	GATCTATTCC	TTTTATGGCT	GAATTGGTCA	AACATATTGA	17340
TACACATATT	GAAATGGACT	TCATGATGGT	TTCTAGCTAC	CATGGTGGAA	CAGCAAGTAG	17400
TGGTGTTATC	AATATTAAAC	AAGATGTGAC	TCAAGATATC	AAAGGAAGAC	ATGTTCTATT	17460
TGTAGAAGAT	ATCATTGATA	CAGGTCAAAC	TTTGAAGAAT	TTGCGAGATA	TGTTTAAAGA	17520
AAGAGAAGCA	GCTTCTGTTA	AAATTGCAAC	CTTGTTGGAT	AAACCAGAAG	GACGTGTTGT	17580
AGAAATTGAG	GCAGACTATA	CTTGCTTTAC	TATCCCAAAT	GAGTTTGTAG	TAGGTTATGG	17640
TTTAGACTAC	AAAGAAAATT	ATCGTAATCT	TCCTTATATT	GGAGTATTGA	AAGAGGAAGT	17700
GTATTCAAAT	TAGAAAGAAT	AATCTTTAAT	GAAAAAACAA	AATAATGGTT	TAATTAAAA	17760
TCCTTTTCTA	TGGTTATTAT	TTATCTTTTT	CCTTGTGACA	GGATTCCAGT	ATTTCTATTC	17820
TGGGAATAAC	TCAGGAGGAA	GTCAGCAAAT	CAACTATACT	GAGTTGGTAC	AAGAAATTAC	17880
CGATGGTAAT	GTAAAAGAAT	TAACTTACCA	ACCAAATGGT	AGTGTTATCG	AAGTTTCTGG	17940
TGTCTATAAA	AATCCTAAAA	CAAGTAAAGA	AGAAACAGGT	ATTCAGTTTT	TCACGCCATC	18000
TGTTACTAAG	GTAGAGAAAT	TTACCAGCAC	TATTCTTCCT	GCAGATACTA	CCGTATCAGA	18060
ATTGCAAAAA	CTTGCTACTG	ACCATAAAGC	AGAAGTAACT	GTTAAGCATG	AAAGTTCAAG	18120

			200			
TGGTATATGG	ATTAATCTAC	TCGTATCCAT	TGTGCCATTT	GGAATTCTAT	TCTTCTTCCT	18180
ATTCTCTATG	ATGGGAAATA	TGGGAGGAGG	CAATGGCCGT	AATCCAATGA	GTTTTGGACG	18240
TAGTAAGGCT	AAAGCAGCAA	ATAAAGAAGA	TATTAAAGTA	AGATTTTCAG	ATGTTGCTGG	18300
AGCTGAGGAA	GAAAAACAAG	AACTAGTTGA	AGTTGTTGAG	TTCTTAAÂAG	ATCCAAAACG	18360
ATTCACAAAA	CTTGGAGCCC	GTATTCCAGC	AGGTGTTCTT	TTGGAGGGAC	CTCCGGGGAC	18420
AGGTAAAACT	TTGCTTGCTA	AGGCAGTCGC	TGGAGAAGCA	GGTGTTCCAT	TCTTTAGTAT	18480
CTCAGGTTCT	GACTTTGTAG	AAATGTTTGT	CGGAGTTGGA	GCTAGTCGTG	TTCGCTCTCT	18540
TTTTGAGGAT	GCCAAAAAAG	CAGCACCAGC	TATCATCTTT	ATCGATGAAA	TTGATGCTGT	18600
TGGACGTCAA	CGTGGAGTCG	GTCTCGGCGG	AGGTAATGAC	GAACGTGAAC	AAACCTTGAA	18660
CCAACTTTTG	ATTGAGATGG	ATGGTTTTGA	GGGAAATGAA	GGGATTATCG	TCATCGCTGC	18720
GACAAACCGT	TCAGATGTAC	TTGACCCTGC	CCTTTTGCGT	CCAGGACGTT	TTGATAGAAA	18780
AGTATTGGTT	GGTCGTCCTG	ATGTTAAAGG	TCGTGAAGCA	ATCTTGAAAG	TTCACGCTAA	18840
GAATAAGCCT	TTAGCAGAAG	ATGTTGATTT	GAAATTAGTG	GCTCAACAAA	CTCCAGGCTT	18900
TGTTGGTGCT	GATTTAGAGA	ATGTCTTGAA	TGAAGCAGCT	TTAGTTGCTG	CTCGTCGCAA	18960
TAAATCGATA	ATTGATGCTT	CAGATATTGA	TGAAGCAGAA	GATAGAGTTA	TTGCTGGACC	19020
TTCTAAGAAA	GATAAGACAG	TTTCACAAAA	AGAACGAGAA	TTGGTTGCTT	ACCATGAGGC	19080
AGGACATACC	ATTGTTGGTC	TAGTCTTGTC	GAATGCTCGC	GTTGTCCATA	AGGTTACAAT	19140
TGTACCACGC	GGCCGTGCAG	GCGGATACAT	GATTGCACTT	CCTAAAGAGG	ATCAAATGCT	19200
TCTATCTAAA	GAAGATATGA	AAGAGCAATT	GGCTGGCTTA	ATGGGTGGAC	GTGTAGCTGA	19260
AGAAATTATC	TTTAATGTCC	AAACCACAGG	AGCTTCAAAC	GACTTTGAAC	AAGCGACACA	19320
AATGGCACGT	GCAATGGTTA	CAGAGTACGG	TATGAGTGAA	AAACTTGGCC	CAGTACAATA	19380
TGAAGGAAAC	CATGCTATGC	TTGGTGCACA	GAGTCCTCAA	AAATCAATTT	CAGAACAAAC	19440
AGCTTATGAA	ATTGATGAAG	AGGTTCGTTC	ATTATTAAAT	GAGGCACGAA	ATAAAGCTGC	19500
TGAAATTATT	CAGTCAAATC	GTGAAACTCA	CAAGTTAATT	GCAGAAGCAT	TATTGAAATA	19560
CGAAACATTG	GATAGTACAC	AAATTAAAGC	TCTTTACGAA	ACAGGAAAGA	TGCCTGAAGC	19620
AGTAGAAGAG	GAATCTCATG	CACTATCCTA	TGATGAAGTA	AAGTCAAAAA	TGAATGACGA	19680
AAAATAACCC	TGAGAGAGGC	TGGAGCCTCT	CTTTTTTGTG	CAGTTTAGGA	GCTAAAGGGA	19740
ACAGAATGGA	GAAAATGGAA	CAAATGTGTT	TTCTAATCTG	TTAGACTGTA	TCTAGAAAGG	19800
GGAAAATTAT	GATTAAAGAA	TTGTATGAAG	AAGTCCAAGG	GACTGTGTAT	AAGTGTAGAA	19860
ATGAATATTA	CCTTCATTTA	TGGGAATTGT	CGGATTGGGA	GCAAGAAGGC	ATGCTCTGCT	19920

TACATGAATT	GATTAGTAGA	GAAGAAGGAC	TGGTAGACGA	TATTCCACGT	TTAAGGAAAT	19980
ATTTCAAGAC	CAAGTTTCGA	AATCGAATTT	TAGACTATAT	CCGTAAACAG	GAAAGTCAGA	20040
AGCGTAGATA	CGATAAAGAA	CCCTATGAAG	AAGTGGGTGA	GATCAGTCAT	CGTATAAGTG	20100
AGGGGGGTCT	CTGGCTAGAT	GATTATTATC	TCTTTCATGA	AACACTAAGA	GATTATAGAA	20160
ACAAACAAAG	TAAAGAGAAA	CAAGAAGAAC	TAGAACGCGT	CTTAAGCAAT	GAACGATTTC	20220
GAGGGCGTCA	AAGAGTATTA	AGAGACTTAC	GCATTGTGTT	TAAGGAGTTT	ACTATCCGTA	20280
CCCACTAGTA	AGTCATGCAA	AAAAAATGAA	AAAAATTAGA	AAAAGTAGTT	GACAAAGTTT	20340
GAAAAGGCTG	TATAATAGTA	AGAGTTGAAA	ATAACAACTC	AGGTCCGTTG	GTCAAGGGGT	20400
TAAGACACCG	CCTTTTCACG	GCGGTAACAC	GGGTTCGAAT	CCCGTACGGA	CTATGGTATG	20460
TTGCGTCAGG	ACCACTTGAT	GAAAAAAGT	TTAAAAAAAC	TTAAAAATCT	TCAAAAAAGT	20520
GTTGACAAGC	GAAAGCAGTT	GTGATATACT	AATATAGTTG	TCGCTTGAGA	GAAGCAAGTG	20580
ACAAAGACCT	TTGAAAACTG	AACAAGACGA	ACCAATGTGC	AGGCCCTAC	AACGTAAGTT	20640
GTAGTACTGA	ACAATGAAAA	AAACAATAAA	TCTGTCAGTG	ACAGAAATGA	GTAAGAACTC	20700
AAACTTTTŢA	ATGAGAGTTT	GATCCTGGCT	CAGGACGAAC	GCTGGCGGCG	TGCCTAATAC	20760
ATGCAAGTAG	AACGCTGAAG	GAGGAGCTTG	CTTCTCTGGA	TGAGTTGCGA	ACGGGTGAGT	20820
AACGCGTAGG	TAACCTGCCT	GGTAGCGGGG	GATAACTATT	GGAAACGATA	GCTAATACCG	20880
CATAAGAGTA	GATGTTGCAT	GACATTTGCT	TAAAAGGTGC	ACTTGCATCA	CTACCAGATG	20940
GACCTGCGTT	GTATTAGCTA	GTTGGTGGGG	TAACGGCTCA	CCAAGGCGAC	GATACATAGC	21000
CGACCTGAGA	GGGTGATCGG	CCACACTGGG	ACTGAGACAC	GGCCCAGACT	CCTACGGGAG	21060
GCAGCAGTAG	GGAATCTTCG	GCAATGGACG	GAAGTCTGAC	CGAGCAACGC	CGCGTGAGTG	21120
AAGAAGGTTT	TCGGATCGTA	AAGCTCTGTT	GTAAGAGAAG	AACGAGTGTG	AGAGTGGAAA	21180
GTTCACACTG	TGACGGTATC	TTACCAGAAA	GGGACGGCTA	ACTACGTGCC	AGCAGCCGCG	21240
GTAATACGTA	GGTCCCGAGC	GTTGTCCGGA	TTTATTGGGC	GTAAAGCGAG	CGCAGGCGGT	21300
TAGATAAGTC	TGAAGTTAAA	GGCTGTGGCT	TAACCATA			21338

(2) INFORMATION FOR SEQ ID NO: 21:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 6273 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

TGTTTTTAAA GAGCCGTGTC TGGATAGACT TTCGGACGCA ACGCTCTATT AGATAATGAA 60 CTGCCTATAC ACAAGATTTC TAACCTTAGT CGACATGAGC TGAAACCTCT TATTTGTTAA 120 GTAGTTCACA AAATATTATA CACCTATTTT ATGAATAGTC AACTGTCTTT ACAGTAAAAT 180 TTTAGAAAAT CATGAAAATT TTCTCTTTCT TTCCATTTTA AGTGACATTC AGTCATTCTC 240 ACATCAAAAA AGCCCAGACG AAATTGTCTG AGCATTCTTT TATCTAGTCG TTTAAGGAAG 300 TTGAGTTCAG TATGTTTAAA GTCTCTGTCC CATCATTTCT TCAACAAACC TTGTTCTTGG 360 AGAAACTCCT TGGCTACTTG CTTTGCTGAC TTGCCTTCAA CACCGACTTG GTAGTTGAGC 420 TGGCTCATCT GGCTTTCTGT AATCTTACCA GCCAATGTAT TAAGAACTCT TTCCAACTCT 480 GGGTGTTTCT TGAGAAGAGC TTCTTTCATG AGTGGAGCCC CTTGATAAGG TGGGAAGAGT 540 TGCTTGTCAT CTTCCAAGAC CTGTAAATCA TAACGCTCCA ATTCCGCATC AGTCGAATAG 600 GCATCCGTGA TTTGAATATC CCCTGACTGA ATAGCCTGAT AGCGAAGGGC TGGCTCAATG 660 GTCGCTACAT TGAGATTGAG ACCATACATT GATTGCAAGC CCTTATTTCC ATCTTCACGG 720 TCGTTAAACT CGAGTGTAAA ACCTGCCTTC AACTGCCCTT CCACTTTTTT CAAGTCTGAA 780 ATGGTCTTCA AGCCATATTC TTGAGCAATC TTTTTCGGAA CAGCTACAGC ATAGGTGTTT 840 TGATAAGACA TGGGTTTGAG ATAGGCTAGA TGATCCTGCT TAGCAATGCC ATCACGCGCC 900 ACCTGATAAA CCTGTTCTGG TTCATGACTC ACCTTGGGTG ATGGTTGAAG CAAACTTTCA 960 GTCACCGTAC CAGTAAATTC AGGATAGATG TCAATATCGC CTTTTTTCAG AGCTTCATAA 1020 AGGAAGCTTG TCTTCCCAAA ATTCGGTTTA ACAGTCGCAG TCATGCTGGT ATTTTCTTCA 1080 ATCAGCAACT TATACATATT GGCCAAAATT TCTGGTTCTG GACCTATTTT CCCAGCAATA 1140 ACCAAGTTTT CCTTCTCTTT TTGAACCAAA AGAGCTGGAC TATAAGACAG ACCCAGTAAT 1200 AAAGCCACCA AGGCAAAACC TGAGAAAATC GTCCGTAATT TTGCTTTTTC CATCACTTTT 1260 AGTAGGAAGT TAAAGGCAAT GGCTAGCACT GCAGAAGAAA GTGCCCCAAT CAAAATCAAA 1320 CTGGCATTAT TACGGTCAAT TCCCAAAAGA ATAAAGGAAC CTAGTCCCCC TGCACCAATC 1380 AAGGCCGCCA AGGTTGCCGT ACCGATAATC AAAACAGCTG CCGTCCGAAT CCCAGACATG 1440 ATAACAGGCA TGGCGAGTGG AATTTCAAAT TTCTTGAGAC GTTCCCATCT GGTCATCCCA 1500 AAGGCAATCC CAGCCTCTTG CAGGTTCGGA TCAATTCCCT TCAGCCCAGT GATAGTATTT 1560 TGCAAAATAG GGAAAATCGC ATAAATCACT AGAGCTGTCA AAGCCGGCAA GGTCCCAATT 1620 CCCATCAAAG GGATAAAGAG CCCCAACAAG GCCAGAGACG GGATGGTCTG GAAAATACCT 1680 GCAATCTGCA AGACCCAGTC GGCCAGCTTC TCATGATAGC GAAGAAAAAC AGCCAAGGGA 1740

ATCGCAAGC	A AAATAGCTAG	TAACAAGGTC	AAAAGCGACA	ACTGCAAATG	TTGAGATAGA	1800
GCTGTCAAC	С ААТСАСТААА	ACGATCCTGA	AAAGTTGCAA	TTAAATTAGT	CATGAACACT	1860
ACCTCCAAA	C AAGTCTGCTA	CAAAGTCTGT	TGCAGGCGCT	TTTAAAATTG	TCTCGGGATT	1920
CGCTACCTG	G CGAATTTCTC	CATCCTGCAA	GACAGCAATA	CGGTCCGCCA	ACTTCAAGGC	1980
TTCATCCGT.	A TCATGGGTTA	CAAAAATCGT	TGTCATCCCA	AACTCTTTAT	GCAATTCTTT	2040
TGTCAGAAC	C TGCAACTGTT	TTCTCGAAAT	AGCATCCAAG	GCCGAAAAGG	GTTCATCCAT	2100
GAGGAAAAT	C TTGGGCTGAC	CAATCATAGC	TCGGACAATA	CCGACCCGTT	GCTGTTCTCC	2160
ACCAGATAA	T TCACTAGGTA	AGCGATGCCC	ATACTCGGCT	ACTGGTAAAC	CAACCTTAGC	2220
CAAAAGCTC	T TCTGTTTCT	TCGTAATTTC	TTCCTTGCTC	CACCCCTTCA	TTTCAGGAAT	2280
GAGAGCAAT.	A TTTTCCGCAA	CTGTTAGATT	TGGAAAAAGA	GCAATAGCCT	GTAAAACATA	2340
ACCAGTAGA.	A AGACGAAGTT	CACGCTCATC	ATAGTCTTTG	ATGCGCTTCC	CATCCATATA	2400
AATATTTCC.	A TCAGTTGGTT	CCAAAAGACG	GTTAATCATC	TTGAGCATGG	TCGTCTTACC	2460
rgacccaga.	A GGCCCTACTA	AAACCATAAA	TTCCCCATCC	TCAATCTGTA	AGTTGACATC	2520
rctcaagac.	A TCCTTTTCTG	TGTAGCGCAG	TGCTACATTT	TTGTATTCAA	TCATTCTTTG	2580
rcctcaatt"	I AAAACTTCCC	TCGATTGGTC	AAGTCTTCTA	CCTTAGGCAT	AACTTCCTTA	2640
TTATCCCAA!	r gctccacaat	TTTCCCGTTC	TCTAAACGGA	AGATATCGTA	CTGGGCATAA	2700
GCAACGCCA:	r caatctgagt	CTGACCATAG	CTAACCACAT	AGTTTCCTTG	TCCTAAGAGT	2760
rggaaaaca.	A AGTCAAAAGT	GACACTATAT	TCAGCCACAT	AGTTTTTATA	AGCAGCACTT	2820
CCTTGTCCA	TATCATGATT	ATGCTGAATC	AAATCGTCTG	CCACATAATC	ACTCCACTGC	2880
TCTAGCTCC(C CATTTTGGAA	AATTTCTGTC	AAGAAACGGC	GAACCAGCTT	TTTATTTTCT	2940
GCTTTCTTA:	r ccaaatcctt	GATTTCAAAA	ТСТССААААА	TTTGATCTAG	TTGGTCATTT	3000
PCAGGTGTT(C GATAGTAGTC	AATGACATCC	CAATGCTCAA	CAATACAACC	ATTCTCATCC	3060
rcacggaaa(G TATCCGTCGT	CACCCATTGA	GCTTCTCCAC	CATTCAGATA	TTGATGAACA	3120
rgaacaaag/	A CCAGATTGCC	ATCCTCAATG	GTGCGGACAA	TCTTAATCTG	ACGCTCTGGA	3180
rgacgetea <i>i</i>	A AGAAATCTGC	AAAGAAGGCT	GCAAATCCTT	CTTTCCCGTC	AGGAACACCT	3240
GTCGAATGT:	r ggatataggt	ATCCCCTACA	GACTGGGCTT	GAGCCTCAGC	AACTCGTCCG	3300
PCTTGAATG(G CATGGATGTA	TAGGTTGTGA	GCATTTTTCA	CTTGTTGTGA	CATATTCTAA	3360
ACCTCATTT	C CCTTCTCTTT	CAGATTCGCC	AAAATTCTTT	CTTGAAAACC	TTCAAATTGG	3420
™>√₽₽₽₩₩₩	ר ככייכיים אא	ውር ርመመመር ው ል ል '	ДАСАТАСТА Т	ርር እ አጥጥጥርጥ ር	ACTGACACGA	3490

			272			
TGCCCCACTT	CTTTCTGGGA	CTTGCCTAAC	TCCGTTAAAA	СТАААТАСТТ	CTTACGCTTG	3540
TCTTTTCCAC	ACGGACTAAC	AATTACAAGC	TTTTGTTCCT	CTAGCTTTTT	TATCATAGTC	3600
GTCAGCGTAT	TATTCGCAAG	TCCAGTCGCA	AGCGCGATAT	CTGTCGCAGT	TGCGCAGCCA	3660
GTTTCACTAT	TCCATAAAAC	CGCTAAAATC	TTGCCCTGTT	CACCCCTATA	AAGAGCCTCA	3720
GGATCTTGAC	TCAGTAACTT	TTGAAAAATC	CGCCCATTCA	ACAAACGAAT	ATGATGGGCT	3780
AGCAAATGAC	CATCTTTCAT	AACACCTCCA	ATTTATTTCG	ATATCGAAAT	GAATAAAACA	3840
ATTGTAACAC	TCATCGTTCT	AACTGTCAAC	TATTTCGATT	TAGAAATAAT	TTTTGATAAT	3900
TATCCACACC	ACCATACTCC	GGCTCAACTA	ACTTTTAACG	AGAGTTTCTA	AACTCCTTCG	3960
TCCTCCAGTC	TACAAAAGCC	TTCCATTCGT	ACTATCCTAT	ATTTTATGAG	GGGACACATT	4020
TTTCCTATCA	GACCATTTAT	TTTAAAGATA	GAAGTAAATC	ATAATTGCTT	CCATCTGTTC	4080
TTTTATAGTA	TATTGAAGTT	AGACTAGAGC	ACTGTATCTT	CTAAAACATT	GATAGAAAGC	4140
GATTTGAATT	TCCCAATCAA	TTTGTTCGTA	TTTATAGCAT	TTCGAAACTG	GAATAGGACA	4200
CCATGACTGC	TAAAAGATTT	CTATAAATTC	ATTTAATTTC	CTCAATCAAT	TTGTTCATAT	4260
CTTATTTCAT	TCCGCTATAA	TTTCACCTTA	CCCTATCTTT	TTCGTAGCAC	CCTTCAAACA	4320
GCCTATCCCC	TACCGTTTGA	CGATTCCTCA	CTTCGCTCCA	CTTCCATTAC	AGAAGTTTCT	4380
TCACTACTAT	GGCTCGGCT	GACTTCTCAT	GATTCCTTGT	TACTACTATT	TGAACGCTCA	4440
CGAGATAGAT	CTTACAAAAA	ATGCTTTGAT	CCACAATGGA	ATCAAAGCAT	TTTAAAGAGT	4500
TCCTCATACA	TAAGCGCAGA	AGTCGCAGTT	CCTCTGTACT	TGGCTTCTTC	TCTTTTGACA	4560
AAGCGAGCCA	AGTTGAGCAA	CTCAGGTGCT	GGATGTTTGG	GATTTAGGAG	CAATTCACGA	4620
TTGACCAGGC	CTGAGAGACG	AACTGCCTGC	AATTGCTCAT	TTGTAGTAGG	CAGTTTTTTA	4680
GTAGTCTCTA	GGAGAGCAGC	AACTAAATCT	ТСАСТСАААТ	CATGTCGAGC	ATGATTGTAA	4740
AGATCTTTTA	TAAGGCTTTC	TAGGTTTGGT	TCTACCATCC	CTACCACCTC	CCTTATGGTT	4800
TAATAATGTT	TAATCAAATC	AACCGTTGAA	CGATCCAATT	TCTTCACCAA	GGCTTGTAAG	4860
AAAGCTTGCG	CTTCTAGGAA	GTCATCCATT	GCATAGAGGG	TTTGGTGAGA	ATGGATATAA	4920
CGAGCGCAGA	CACCGATAGT	TGTTGATGGG	ACACCACCAT	TTTTCAGATG	AGCTGCACCT	4980
GCATCTGTTC	CGCCTTTACC	ACAGTAGTAT	TGGTACTTGA	TACCAGCTTC	TTCAGCCGTT	5040
GTCAAAAGGA	AATCCTTCAT	CCCTGGGAGA	AGCAAGTGAC	CTGGATCATA	GAAACGAATC	5100
AAGGTTCCAT	CTCCAATCTT	GCCTTGACCA	CCGTAGACAT	CACCTGCTGG	TGAGCAATCA	5160
ACTGCGAGGA	AGACTTCTGG	GTCAAACTTG	GTTGTAGAGG	TATGAGCGCC	ACGCAGACCA	5220
ACTTCTTCTT	GGACGTTAGA	ACCCAGATAG	AGTTCATTGC	CGAGTTTTTG	ACCCGATAAA	5280

WO 98/18931

273

GCTTCAGCTA	GCTCGCTTAC	CATGAGGACA	CCGTAGCGGT	TATCCCAAGC	TTTTGAGATG	5340
ATATTTTTT	CATTGGCTGT	CAAAATTGCA	GAACTATCTG	GTACAATGGT	ATCACCAGGA	5400
CGGATGCCAA	AACTTTCTGC	CTCAGCCTTG	TCCGCAAAAC	CACCATCAAA	AACGATATCG	5460
GCAATGGCTG	GCATGGTTGG	TCCCCCCTTT	CCACGAGTCA	AATGCGGAGG	AACAGAACCT	5520
GAAATCACAG	GAATTTCATG	ACCATCACGA	GTCAAGAGTT	TGAAACGTTG	GCTGCTAACC	5580
ACCATGGGGT	TCCAGCCACC	GATTTCTACG	ACACGGAAGG	TACCATCTGG	CTTGATTTCG	5640
CTGACCATAA	AACCAACTTC	GTCCATATGA	GAAGCGACCA	AGACGCGCGG	TGCATCCACA	5700
GCTTCTGAAT	GTTTGATACC	AAAAATACCA	CCCAAGCCAT	CTGTCACCAC	TTCATCCACA	5760
TGCGGTGTCA	ACTTTTCACG	AAGATAAGCA	CGGACAGGCG	CTTCATGACC	TGAGACTGCA	5820
GCAAGTTCTG	TTACTTCTTT	AATTTTTGAA	AATAATGTTG	TCATTTCAGT	TCCTTCTTTC	5880
TTTCATCCAT	TTTACCACTT	TTTATAGGAG	AAGGATAGTG	GGAAGGTGGA	TTTCTAAGTT	5940
AGTATCTTAG	TCCTGCTCTA	TCTTAGAAAA	GGATAGTATT	CTCTTGCATG	TAGTGCAAAA	6000
тстасталас	ATTCCAAAAT	TAACTCGAAT	ATTTATTTCC	АААСААААА	ACAATACACC	6060
ATCAAAGTTG	TTTGGATTTT	TCATGAAATT	TACAGAAAAT	AGTTGACTTC	CCTTTCTTCT	6120
TTCTTTAAAT	atatagttgg	TTGAGTTTGG	AATAGTACGC	TGTAGCTGCT	AAAACATTTC	6180
TAGAAATTAA	TTTGACTTTC	CTAATAGAGT	TGTTCATATC	TTATTTCAAT	TTACTATAGT	6240
ACAAAACTAG	AAAAGGAAAA	AATCATGACC	AGG			6273
(2) INFORM	ATION FOR SE	EQ ID NO: 22	2:			

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 28171 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

A	CAACCTTTT	TCAAAAACTC	ACCTTGGTAC	GGAGATGTTT	TGCTTTCTGC	TATTATTTTC	60
G	GTTATATTC	ATATCAATTT	TGCTTTAACT	CCTCTTGCTT	TTTTCATTTA	TGCTAGTGGA	120
G	GTCTTATTT	TAGCTCTATT	GTATCGCATG	ACTAAAAATC	TCTACTATCC	AATACTAGTT	180
С	ATATTCTCA	TTAATATCAC	TGCCTTCTGG	GATGTGTGGT	TGCTCCTATT	TTCAGGAAGT	240
T	AGCTTACTA	AAATAATGTC	GGAACTTTCC	GGCATTTTCT	TTTTTCACAA	ATAGTCAACG	300
т	TTTTCTTTT	CGATATTGTA	GTGGTGTGTA	TCCAGTTATT	TTTTTGAATT	GATTTTGAAA	360

ATAAGGTTGA	CTTGAGAAAG	GCAGATAGTG	274 AAGATAGTTA	AGAAGAATAG	GATGTTCTTT	420
TTTCCTTTTT	GGAAAACTTC	TAAAATATGG	TATAATGAAA	AGATAAAGAA	GTTGGGGGTA	480
GAAGATGAAC	ATTCAACAAT	TACGCTATGT	TGTGGCTATT	GCCAATAGTG	GTACTTTTCG	540
TGAAGCTGCT	GAAAAGATGT	ATGTTAGTCA	GCCGAGTCTG	TCTATTTCTG	TTCGTGATTT	. 600
GGAAAAAGAG	TTGGGCTTTA	AGATTTTCCG	TCGGACCAGC	TCAGGGACTT	TCTTGACCCG	660
TCGTGGGATG	GAATTTTATG	AAAAATCGCA	AGAATTGGTT	AAAGGATTTG	АТАТТТТСА	720
AAATCAGTAT	GCCAATCCTG	AAGAAGAAAA	AGATGAATTT	TCTGTTGCTA	GCCAGCACTA	780
TGACTTCTTG	CCACCAACTA	TTACGGCCTT	TTCAGAGCGC	TATCCTGACT	ATAAGAACTT	840
CCGTATTTT	GAATCAACTA	CTGTTCAAAT	ATTAGATGAA	GTGGCGCAAG	GGCATAGTGA	900
GATTGGGATT	ATCTACCTCA	АСААТСАААА	TAAAAAGGGG	ATTATGCAAC	GGGTTGAAAA	960
ATTAGGTCTG	GAGGTCATCG	AATTGATTCC	TTTCCATACC	CATATTTATC	TCCGTGAGGG	1020
TCATCCTTTA	GCCCAGAAAG	AGGAATTAGT	CATGGAGGAT	TTAGCGGATT	TACCAACGGT	1080
TCGTTTCACT	CAAGAGAAAG	ACGAGTACCT	TTATTATTCA	GAGAACTTTG	TCGATACCAG	1140
CGCTAGCTCA	CAGATGTTTA	ATGTGACAGA	CCGTGCCACC	TTGAATGGTA	TTTTGGAGCG	1200
GACGGACGCC	TATGCGACAG	GTTCTGGATT	TTTAGATAGT	GACAGTGTTA	ATGGCATTAC	1260
AGTTATTCGT	CTCAAGGATA	ACCTAGATAA	CCGCATGGTC	TATGTTAAAC	GTGAAGAAGT	1320
GGAGCTTAGT	CAAGCTGGGA	CTCTCTTCGT	AGAAGTCATG	CAAGAATATT	TTGATCAAAA	1380
GAGGAAATCA	TGAAAAAAAG	AGCAATAGTG	GCAGTCATTG	TACTGCTTTT	GATTGGGCTG	1440
GATCAGTTGG	TCAAATCCTA	TATCGTCCAG	CAGATTCCAC	TGGGTGAAGT	GCGCTCCTGG	1500
ATCCCCAATT	TCGTTAGCTT	GACCTACCTG	CAAAATCGAG	GTGCAGCCTT	TTCTATCTTA	1560
CAAGATCAGC	AGCTGTTATT	CGCTGTCATT	ACTCTGGTTG	TCGTGATAGG	TGCCATTTGG	1620
ТАТТТАСАТА	AACACATGGA	GGACTCATTC	TGGATGGTCT	TGGGTTTGAC	TCTAATAATC	1680
GCGGGTGGTC	TTGGAAACTT	TATTGACAGG	GTCAGTCAGG	GCTTTGTTGT	GGATATGTTC	1740
CACCTTGACT	TTATCAACTT	TGCAATTTTC	AATGTGGCAG	ATAGCTATCT	GACGGTTGGA	1800
GTGATTATTT	TATTGATTGC	AATGCTAAAA	GAGGAAATAA	ATGGAAATTA	AAATTGAAAC	1860
TGGTGGTCTG	CGTTTGGATA	AGGCTTTGTC	AGATTTGTCA	GAATTATCAC	GTAGTCTCGC	1920
GAATGAACAA	ATTAAATCAG	GCCAGGTCTT	GGTCAATGGT	CAAGTCAAGA	AAGCTAAATA	1980
CACAGTCCAA	GAGGGTGATG	TCGTCACTTA	CCATGTGCCA	GAACCAGAGG	TATTAGAGTA	2040
TGTGGCTGAG	GATCTTCCGC	TAGAAATAGT	CTACCAAGAT	GAGGATGTGG	CTGTCGTTAA	2100

CAAACCTCAG GGAATGGTTG TGCACCCGAG TGCTGGTCAT ACCAGTGGAA CCCTAGTAAA

TGCCCTCATG	TATCATATTA	AGGACTTGTC	GGGTATCAAT	GGGGTTCTGC	GTCCAGGGAT	2220
TGTTCACCGT	ATTGATAAGG	ATACGTCAGG	TCTTCTCATG	ATTGCTAAAA	ACGATGATGC	2280
GCATCTAGCA	CTTGCCCAAG	AACTCAAGGA	TAAAAAGTCT	CTCCGCAAAT	ATTGGGCGAT	2340
TGTTCATGGA	AATCTACCTA	ATGATCGTGG	TGTAATTGAA	GCGCCGATTG	GCCGGAGTGA	2400
AAAAGACCGT	AAGAAACAGG	CTGTAACTGC	TAAAGGGAAG	CCTGCAGTGA	CGCGTTTTCA	2460
CGTCTTGGAA	CGCTTTGGCG	ATTATAGCTT	AGTAGAGTTG	CAACTGGAGA	CAGGGCGCAC	2520
TCATCAAATC	CGTGTCCACA	TGGCTTATAT	CGGCCATCCA	GTCGCTGGTG	ATGAGGTCTA	2580
TGGTCCTCGC	AAGACTTTGA	AAGGACATGG	ACAATTTCTT	CATGCCAAGA	CTTTAGGTTT	2640
TACTCATCCG	AGAACAGGTA	AGACCTTGGA	ATTTAAAGCA	GATATCCCAG	AGATTTTTAA	2700
GGAAACCTTG	GAGAGATTGA	GAAAGTAAGA	ATGAAAAAGA	AATTAACTAG	TTTAGCACTT	2760
GTAGGCGCTT	TTTTAGGTTT	GTCATGGTAT	GGGAATGTTC	AGGCTCAAGA	AAGTTCAGGA	2820
AATAAAATCC	ACTTTATCAA	TGTTCAAGAA	GGTGGCAGTG	ATGCGATTAT	TCTTGAAAGC	2880
AATGGACATT	TTGCCATGGT	GGATACAGGA	GAAGATTATG	ATTTCCCAGA	TGGAAGTGAT	2940
TCTCGCTATC	CATGGAGAGA	AGGAATTGAA	ACGTCTTATA	AGCATGTTCT	AACAGACCGT	3000
GTCTTTCGTC	GTTTGAAGGA	ATTGGGTGTC	CAAAAACTTG	ATTTTATTTT	GGTGACCCAT	3060
ACCCACAGTG	ATCATATTGG	AAATGTTGAT	GAATTACTGT	CTACCTATCC	AGTTGACCGA	3120
GTCTATCTTA	AGAAATATAG	TGATAGTCGT	ATTACTAATT	CTGAACGTCT	ATGGGATAAT	3180
CTGTATGGCT	ATGATAAGGT	TTTACAGACT	GCTGCAGAAA	AAGGTGTTTC	AGTTATTCAA	3240
AATATCACAC	AAGGGGATGC	TCATTTTCAG	TTTGGGGACA	TGGATATTCA	GCTCTATAAT	3300
TATGAAAATG	AAACTGATTC	ATCGGGTGAA	TTAAAGAAAA	TTTGGGATGA	CAATTCCAAT	3360
TCCTTGATTA	GCGTGGTGAA	AGTCAATGGC	AAGAAAATTT	ACCTTGGGGG	CGATTTAGAT	3420
AATGTTCATG	GAGCAGAAGA	CAAGTATGGT	CCTCTCATTG	GAAAAGTTGA	TTTGATGAAG	3480
TTTAATCATC	ACCATGATAC	CAACAAATCA	AATACCAAGG	ATTTCATTAA	AAATTTGAGT	3540
CCGAGTTTGA	TTGTTCAAAC	TTCGGATAGT	CTACCTTGGA	AAAATGGTGT	TGATAGTGAG	3600
TATGTTAATT	GGCTCAAAGA	ACGAGGAATT	GAGAGAATCA	ACGCAGCCAG	CAAAGACTAT	3660
GATGCAACAG	TTTTTGATAT	TCGAAAAGAC	GGTTTTGTCA	ATATTTCAAC	ATCCTACAAG	3720
CCGATTCCAA	GTTTTCAAGC	TGGTTGGCAT	AAGAGTGCAT	ATGGGAACTG	GTGGTATCAA	3780
GCGCCTGATT	CTACAGGAGA	GTATGCTGTC	GGTTGGAATG	AAATCGAAGG	TGAATGGTAT	3840
TACTTTAACC	AAACGGGTAT	CTTGTTACAG	AATCAATGGA	AAAAATGGAA	CAATCATTGG	3900

PCT/US97/19588

			276			
TTCTATTTGA	CAGACTCTGG	TGCTTCTGCT	AAAAATTGGA	AGAAAATCGC	TGGAATCTGG	396
ATTTATTAT	ACAAAGAAAA	CCAGATGGAA	ATTGGTTGGA	TTCAAGATAA	AGAGCAGTGG	402
TATTATTTGG	ATGTTGATGG	TTCTATGAAG	ACAGGATGGC	TTCAATATAT	GGGGCAATGG	408
PATTACTTTG	CTCCATCAGG	GGAAATGAAA	ATGGGCTGGG	TAAAAGATAA	AGAAACCTGG	4140
TACTATATGG	ATTCTACTGG	TGTCATGAAG	ACAGGTGAGA	TAGAAGTTGC	TGGTCAACAT	420
TATTATCTGG	AAGATTCAGG	AGCTATGAAG	CAAGGCTGGC	ATAAAAAGGC	AAATGATTGG	426
ГАТТТСТАСА	AGACAGACGG	TTCACGAGCT	GTGGGTTGGA	TCAAGGACAA	GGATAAATGG	4320
PACTTCTTGA	AAGAAAATGG	TCAATTACTT	GTGAACGGTA	AGACACCAGA	AGGTTATACT	4380
GTGGATTCAA	GTGGTGCCTG	GTTAGTGGAT	GTTTCGATCG	AGAAATCTGC	TACAATTAAA,	4440
ACTACAAGTC	ATTCAGAAAT	AAAAGAATCC	AAAGAAGTAG	TGAAAAAGGA	TCTTGAAAAT	4500
AAAGAAACGA	GTCAACATGA	AAGTGTTACA	AATTTTTCAA	CTAGTCAAGA	TTTGACATCC	4560
TCAACTTCAC	AAAGCTCTGA	AACGAGTGTA	AACAAATCGG	AATCAGAACA	GTAGTAGAAA	4620
AGAAGGTTTT	AGGGCCTTCT	TTTTCCTATC	AACTCTTTTC	TATTTCCTGT	TATTCATGTT	4680
ATAATGGATA	AATATGAATA	ATCGGAGTGA	GACTATGAAA	TACAAACGGA	TTGTCTTTAA	4740
GGTGGGTACT	TCTTCTCTGA	CAAATGAGGA	TGGAAGTTTA	TCACGTAGTA	AGGTAAAGGA	4800
PATTACCCAG	CAGTTGGCTA	TGCTGCACGA	GGCTGGTCAT	GAGTTGATTT	TGGTGTCTTC	4860
AGGTGCCATT	GCGGCTGGTT	TTGGAGCCTT	AGGATTTAAA	AAGCGTCCGA	CTAAGATTGC	4920
IGATAAACAG	GCTTCAGCAG	CGGTAGGGCA	GGGGCTTTTG	TTGGAAGAAT	ATACAACCAA	4980
CTTCTCTTG	CGTCAAATCG	TTTCTGCACA	AATCTTGCTG	ACCCAAGATG	ACTTTGTGGA	5040
PAAGCGTCGT	TATAAAAATG	CCCATCAGGC	TTTGTCGGTT	TTGCTCAACC	GTGGGGCAAT	5100
PCCTATCATC.	AATGAGAATG	ATAGTGTCGT	TATTGATGAG	CTCAAGGTTG	GGGACAATGA	5160
CACTCTAAGT	GCTCAAGTAG	CGGCGATGGT	CCAAGCAGAC	CTTTTAGTTT	TCTTGACAGA	5220
TGTGGACGGT	CTCTATACTG	GAAATCCTAA	TTCAGATCCA	AGAGCCAAAC	GCTTGGAGAG	5280
ATCGAGACC	ATCAATCGTG	AGATTATTGA	TATGGCTGGT	GGAGCTGGTT	CGTCAAACGG	5340
VACTGGGGGT	ATGTTAACCA	AAATCAAGGC	TGCAACTATC	GCGACGGAAT	CAGGAGTTCC	5400
GTTTATATC	TGCTCATCCT	TGAAATCAGA	TTCCATGATT	GAGGCGGCAG	AGGAGACCGA	5460
GATGGTTCT	TACTTTGTTG	CTCAAGAGAA	GGGGCTTCGT	ACCCAGAAAC	AATGGCTTGC	5520
TTCTATGCT	CAGAGTCAAG	GTTCTATTTG	GGTTGATAAA	GGGGCTGCGG	AAGCTCTCTC	5580
CAATATGGA	AAGAGTCTTC	TCTTATCTGG	TATCGTTGAA	GCAGAAGGAG	TCTTTTCTTA	5640
GGTGATATC	GTGACAGTAT	TTGACAAGGA	aagtggaaaa	TCACTTGGAA	AAGGACGCGT	5700

GCA	ATTTGGA	GCATCTGCTT	TGGAGGATAT	GTTGCGTTCT	CAAAAAGCCA	AGGGTGTCTT	5760
GAT	TTACCGT	GACGACTGGA	TTTCCATTAC	TCCTGAAATC	CAACTACTTT	TTACAGAATT	5820
ГТA	GAGGTAA	ACTATGGTGA	GTAGACAAGA	ACAATTTGAA	CAGGTACAGG	CTGTTAAAAA	5880
ATC	GATTAAC	ACAGCTAGTG	AAGAAGTGAA	AAACCAAGCC	TTGCTAGCCA	TGGCTGATCA	5940
CTT	AGTGGCT	GCTACTGAGG	AAATTTTAGC	GGCTAATGCC	CTCGATATGG	CAGCGGCTAA	6000
GGG	GAAAATC	TCAGATGTGA	TGTTGGATCG	TCTTTATTTG	GATGCAGATC	GTATAGAAGC	6060
GAT	GGCAAGA	GGAATTCGTG	AAGTGGTTGC	CTTACCAGAT	CCAATCGGTG	AAGTTTTAGA	6120
AAC	AAGTCAG	CTTGAAAATG	GTTTGGTTAT	САСАААААА	CGTGTAGCTA	TGGGTGTCAT	6180
CGG	TATTATC	TATGAAAGCC	GTCCAAATGT	GACGTCTGAT	GCGGCTGCTT	TGACTCTTAA	6240
GAG	TGGAAAT	GCGGTTGTTC	TTCGTAGTGG	TAAGGATGCC	TATCAAACAA	CCCATGCCAT	6300
rgt	CACAGCC	TTGAAGAAGG	GCTTGGAGAC	GACTACTATT	CATCCAAATG	TGATTCAACT	6360
GT	GGAGGAT	ACTAGCCGTG	AAAGTAGTTĄ	TGCTATGATG	AAGGCCAAGG	GCTATCTAGA	6420
CT	TCTCATT	CCTCGTGGAG	GAGCTGGCTT	GATCAATGCA	GTGGTTGAGA	ATGCGATTGT	6480
ACC	TGTTATC	GAGACAGGGA	CTGGGATTGT	CCATGTCTAT	GTGGATAAGG	ATGCAGACGA	6540
AGA	CAAGGCG	CTGTCTATCA	TCAACAATGC	TAAAACCAGT	CGTCCTTCTG	TTTGTAATGC	6600
CAT	GGAGGTT	CTGCTGGTTC	ATGAAAACAA	GGCAGCAAGC	TTCCTTCCTC	GCTTGGAGCA	6660
AGT	GTTGGTT	GCAGAGCGTA	AGGAAGCTGG	ACTGGAACCA	ATTCAATTCC	GCCTAGATAG	6720
CAA	AGCAAGC	CAGTTTGTTT	CAGGTCAAGC	AGCTGAGACC	CAAGACTTTG	ACACCGAGTT	6780
ГТT	AGACTAT	GTCCTTGCTG	TTAAGGTTGT	GAGCAGTTTA	GAAGAAGCGG	TTGCGCACAT	6840
ΓGA	ATCCCAC	AGCACCCATC	ATTCGGATGC	TATTGTGACG	GAAAATGCTG	AAGCTGCAGC	6900
ATA	CTTTACA	GATCAAGTGG	ACTCTGCAGC	GGTGTATGTT	AATGCCTCAA	CTCGTTTCAC	6960
AGA	TGGAGGA	CAATTTGGTC	TTGGTTGTGA	AATGGGGATT	TCTACTCAGA	AATTGCACGC	7020
GCG	TGGTCCC	ATGGGCTTGA	AAGAGTTGAC	CAGCTACAAG	TATGTGGTTG	CCGGTGATGG	7080
CA	GATAAGG	GAGTAAGAGA	TGAAGATTGG	ATTTATCGGT	TTGGGGAATA	TGGGTGCTAG	7140
TT	GGCAAAA	TCTGTCTTGC	AGACTAGGAC	GTCAGATGAG	ATTCTCCTTG	CCAATCGTAG	7200
CA	AGCTAAG	GTAGATGCTT	TCATTGCAGA	CTTTGGTGGT	CAGGCTTCCA	GCAATGAAGA	7260
\AT	GTTTGCA	GAAGCAGATG	TGATTTTTCT	aggagttaag	CCTGCTCAGT	TTTCTGAACT	7320
CT	TTCTCAA	TACCAGACCA	TCCTTGAAAA	AAGAGAAAGT	CTTCTTTTGA	TTTCGATGGC	7380
AGC	TGGATTG	ACCTTAGAAA	AACTAGCAAG	TCTTATCCCA	AGTCAACACC	GAATTATTCG	7440

•			278			
TATGATGCCT	AATACCCCTG	CTTCTATCGG	GCAAGGAGTG	ATTAGTTATG	CCTTGTCTCC	7500
TAATTGCAGG	GCTGAGGACA	GTGAGCTCTT	TTATCAGCTT	TTAGCCAAGG	CTGGTCTCTT	7560
GGTTGAACTA	GGAGAAAGTT	TAATCGATGC	AGCGACAGGT	CTTGCAGGTT	GTGGACCAGC	7620
CTTTGTCTAT	CTTTTTATCG	AGGCCTTGGC	AGATGCAGGT	GTTCAGACAG	GATTACCACG	7680
AGAAATAGCA	TTGAAAATGG	CAGCACAAAC	TGTGGTAGGA	GCTGGGCAAT	TGGTCCTTGA	7740
AAGTCAGCAA	CATCCTGGAG	TATTGAAAGA	CCAAGTCTGT	AGCCCAGGCG	GTTCGACTAT	7800
CGCTGGTGTA	GCAAGCCTAG	AAGCGCATGC	TTTCCGAGGA	ACAGTCATGG	ATGCAGTTCA	7860
TCAAGCCTAC	AAACGAACAC	AAGAACTAGG	TAAATAAGAG	GTAGTTTTGA	CTGCCTCTTT	7920
TATGGTGGCT	GAAATGAGAA	GACACAAAAA	GATTGTCACA	AACCCCTATT	TTTTTGATAG	7980
AATAGAAGTA	GTAAAAAAGA	AATGAGTTAG	ACATGTCAAA	AGGATTTTTA	GTCTCTCTTG	8040
AGGGACCAGA	GGGAGCAGGC	AAGACCAGTG	TTTTAGAGGC	TCTGCTACCA	ATTTTAGAGG	8100
AAAAAGGAGT	AGAGGTGTTG	ACGACCCGTG	AACCTGGCGG	AGTCTTGATT	GGGGAGAAGA	8160
TTCGGGAAGT	GATTTTGGAT	CCAAGTCATA	CTCAGATGGA	TGCTAAAACA	GAGCTACTTC	8220
TCTATATTGC	CAGTCGCAGA	CAGCATTTGG	TGGAAAAAGT	TCTTCCAGCC	CTTGAAGCTG	8280
GCAAGTTGGT	CATCATGGAT	CGTTTTATCG	ATAGTTCTGT	TGCCTATCAG	GGATTTGGTC	8340
GTGGCTTAGA	TATTGAAGCC	ATTGACTGGC	TCAATCAGTT	TGCGACAGAT	GGCCTCAAAC	8400
CCGATTTGAC	ACTCTATTTT	GACATCGAGG	TGGAAGAAGG	GCTGGCTCGT	ATTGCTGCTA	8460
ATAGTGACCG	CGAGGTTAAT	CGTTTGGATT	TGGAAGGGTT	GGACTTGCAT	AAAAAGTTC	8520
GTCAAGGCTA	CCTTTCTCTT	CTGGATAAAG	AGGGAAATCG	CATTGTCAAG	ATTGATGCTA	8580
GTCTCCCTTT	GGAGCAAGTT	GTGGAAACTA	CCAAGGCTGT	CTTGTTTGAC	GGAATGGGCT	8640
TGGCCAAATG	AAACAAGATC	AACTAAAGGC	TTGGCAACCA	GCTCAGTTTG	ACCGTTTTGT	8700
CCGTATCTTA	GAACAAGACC	AGCTCAATCA	CGCCTATCTC	TTTTCAGGTT	TCTTTGAAAG	8760
CTTGGAAATG	GCGCAATTTT	TAGCTAAGAG	CCTCTTTTGT	ACGGATAAAG	TTGGCGTCTT	8820
ACCATGTGAG	AAATGCCGAA.	GTTGCAAGCT	GATTGAACAG	GGAGAATTTC	CCGATGTCAC	8880
CTTGATTAAA	CCAGTTAATC	AGGTCATTAA	GACGGAACGC	ATTCGAGAAT	TGGTGGGTCA	8940
GTTTTCTCAA	GCAGGGATTG	AAAGCCAGCA	ACAGGTCTTT	ATCATCGAGC	AAGCGGATAA	9000
AATGCATCCC	AACGCAGCCA	ATTCTCTGCT	CAAGGTCATC	GAAGAACCCC	AGAGTGAAGT	9060
TTATATTTC	TTCTTGACTA	GCGATGAGGA	AAAGATGTTA	CCGACAATCC	GAAGTCGGAC	9120
TCAGATCTTC	CACTTTAAAA	AGCAAGAAGA	AAAACTTATC	TTACTCTTAG	AACAAATGGG	9180
ACTTGTTAAG	AAAAAAGCGA	CTCTTTTAGC	TAAGTTTAGT	CAATCGCGAG	CTGAAGCAGA	9240

AAAGTTGGCT	AATCAGGCAA	GTTTTTGGAC	CTTGGTCGAT	GAAAGTGAAC	GCCTGCTGAC	9300
TTGGTTAGTA	GCTAAGAAAA	AAGAAAGTTA	TCTACAGGTT	GCCAAATTAG	CCAACTTGGC	9360
AGATGATAAG	GAAAAACAGG	ATCAGGTTTT	ACGGATTCTT	GAAGTTCTCT	GTGGGCAGGA	9420
CCTCTTGCAG	GTAAGAGTAA	GAGTGATTCT	ACAAGATTTA	CTAGAAGCTA	GAAAAATGTG	9480
GCAAGCTAAT	GTCAGCTTTC	AAAATGCCAT	GGAATATCTG	GTCTTGAAAG	AAATATAAAC	9540
TCAAAAATGA	ATGATAAAGA	AAGGAAAGGG	CTGTTTTATG	GACAAAAAAG	AATTATTTGA	9600
CGCGCTGGAT	GATTTTTCCC	AACAATTATT	GGTAACCTTA	GCCGATGTGG	AAGCCATCAA	9660
GAAAAATCTC	AAGAGCCTGG	TAGAGGAAAA	TACAGCTCTT	CGCTTGGAAA	ATAGTAAGTT	9720
GCGAGAACGC	TTGGGTGAGG	TGGAAGCAGA	TGCTCCTGTC	AAGGCCAAGC	ATGTTCGTGA	9780
AAGTGTCCGT	CGCATTTACC	GTGATGGATT	TCACGTATGT	AATGATTTT	ATGGACAACG	9840
TCGAGAGCAG	GACGAGGAAT	GTATGTTTTG	TGACGAGTTG	CTATACAGGG	AGTAGGCATG	9900
CAGATTCAAA	AAAGTTTTAA	GGGGCAGTCT	ÇCCTATGGCA	AGCTGTATCT	AGTGGCAACG	9960
CCGATTGGCA	ATCTAGATGA	TATGACTTTT	CGTGCTATCC	AGACCTTGAA	AGAAGTGGAC	10020
TGGATTGCTG	CTGAGGATAC	GCGCAATACA	GGGCTTTTGC	TCAAGCATTT	TGACATTTCC	10080
ACCAAGCAGA	TCAGTTTTCA	TGAGCACAAT	GCCAAGGAAA	AAATTCCTGA	TTTGATTGGT	10140
TTCTTGAAAG	CAGGGCAAAG	TATTGCTCAG	GTCTCTGATG	CCGGTTTGCC	TAGCATTTCA	10200
GACCCTGGTC	ATGATTTAGT	TAAGGCAGCT	ATTGAGGAAG	AAATTGCAGT	TGTGACAGTT	10260
CCAGGTGCCT	CTGCAGGAAT	TTCTGCCTTG	ATTGCCAGTG	GTTTAGCGCC	ACAGCCACAT	10320
ATCTTTTACG	GTTTTTTACC	GAGAAAATCA	GGTCAGCAGA	AGCAATTTTT	TGGCTTGAAA	10380
AAAGATTATC	CTGAAACACA	GATTTTTAT	GAATCACCTC	ATCGTGTAGC	AGACACGTTG	10440
GAAAATATGT	TAGAAGTCTA	CGGTGACCGC	TCCGTTGTCT	TGGTCAGGGA	ATTGACCAAA	10500
ATCTATGAAG	AATACCAACG	AGGTACTATC	TCTGAGTTAT	TAGAAAGCAT	TGCTGAAACG	10560
CCACTCAAGG	GCGAATGTCT	TCTCATTGTT	GAGGGTGCCA	GTCAGGGTGT	GGAGGAAAAG	10620
GACGAGGAAG	ACTTGTTCGT	AGAAATTCAA	ACCCGCATCC	AGCAAGGTGT	GAAGAAAAAC	10680
CAAGCTATCA	AGGAAGTCGC	TAAGATTTAC	CAGTGGAATA	AAAGTCAGCT	CTACGCTGCC	10740
TACCACGACT	GGGAAGAAAA	ACAATAAAGG	GAGACAGGAT	GTAATAATTC	TGTCTGTTTC	10800
TGTTTAACTT	AATTAGTGAT	GATAATATAA	AGATGTATCA	CTTGGTATAG	AAGCTTTGGT	10860
ATTAAGTTTT	TTATTAAGCC	CATACGGAAT	ACCGATGGTT	GGAGCAGCAG	TTATAGCGTT	10920
CTTAGAAGGT	ATAAATAGAA	AAATAAGGTC	ATTTTAAATC	AAAGGATTGA	TAAATCAGAA	10980

280 AGAAGGTGAT TTTTTGCGAA CATACGAAAA TAAAGAAGAA CTAAAAGCTG AGATAGAGAA 11040 AACATTTGAG AAATATATTT TAGAATTTGA TAATATTCCA GAAAATTTAA AAGATAAGAG 11100 AGCTGATGAA GTTGACAGAA CTCCAGCAGA AAACCTTGCT TATCAGGTTG GTTGGACCAA 11160 CTTGGTTCTT AAATGGGAAG AAGATGAAAG AAAGGGGCTT CAAGTAAAAA CACCATCGGA 11220 TAAATTTAAA TGGAATCAAC TTGGTGAATT ATATCAGTGG TTCACAGATA CCTACGCTCA 11280 TTTATCTCTG CAAGAGTTGA AAGCAAAATT AAATGAAAAT ATTAATTCTA TCTCTGCAAT 11340 GATTGATTCG TTGAGTGAGG AAGAATTATT TGAACCGCAT ATGAGAAAGT GGGCTGATGA 11400 AGCGACTAAA ACAGCGACTT GGGAAGTGTA TAAGTTTATT.CATGTAAATA CGGTTGCACC 11460 TTTTGGAACT TTCAGAACTA AAATCAGAAA ATGGAAGAAG ATAGTATTAT AAATTATATT 11520 TTTAACTTTA AAAAATTTCA TAAAAATGGT TACCAAAGGC GATAGAAGAA AAACTATCGT 11580 CTTTTCTTT GCAAATTTTT AAGAAGGGAG GTGATCTTGC ATGGACTTTG AATATTTTTA 11640 TAACAGAGAA GCGGAAAGAT TTAACTTCTT AAAAGTACCG GAGATATTAG TTGATAGAGA 11700 AGAATTTCGG GGCTTATCAG CAGAAGCAAT TATCCTTTAT TCCATACTTC TTAAACAGAC 11760 AGGAATGTCA TTTAAGAATA ACTGGATAGA CAAGGAAGGC AGAGTATTTA TCTATTTTAC 11820 TGTCGAAGAA ATTATGAAAA GAAGAAATAT CTCAAAGCCA ACTGCCATAA AAACATTAGA 11880 TGAGCTTGAT GTAAAAAAGG AATAGGACTG ATCGAAAGAG TAAGGCTTGG ACTTGGTAAG 11940 CCGAACATCA TTTATGTTAA AGACTTTATG AGTATATTTC AGGTAAAAGA AAATGACTTA 12000 CAGAAGTCAA AAAACTTAAC TTCAGAAGTA AAAGATTTTA ACCTCAGAAG TAAAGAAAAT 12060 GAACTTCAAG AGGTTAAGAA CCTTGACTCT AACTATATAG AGAATAATAA GAGTAAGTAT 12120 AGTAAGAGAG AATATAGTTT TGGTGAAAAC GGACTTGGAA CATTTCAAAA TGTGTTTTTA 12180 GCTGCTGAAG ATATATCGGA TTTACAAATC ATAATGAACT CACAGCTTGA GAATTACATT 12240 AGACTTCCTG CAAAACTAGA ATCCTAGTTC ATGATTGATA ATGCCAGCAA TCAAATTCAT 12300 TCGTAATCCG AAGCGTTTAC GATGATTTCG ATAGATTGTT GAAAACATTT TAAACGTTTT 12360 TACTTTGGCA AAGATGTTCT CAATCTTGCT TCTCTCCTTG GATAGCGCAT GGTTACAGGC 12420 TTTATCTTCA GCTGTTAGCG GCTTGAGTTT GCTGGATTTA CGTGGAGTTT GTACTTGAGG 12480 ATATATCTTC ATGAGCCCTT GATAACCACT GTCAGACAAG ATTTTACCAG CTTGTCCGAT 12540 ATTTCTGCGA CTCATTTTGA ACAACTTCAT ATCACGACAA TAGTTCACAG CGATATCCAA 12600 AGAAACAATT CTCCCTTGAC TTGTGACAAT CGCTTGAGCC TTCATAGCGT GAAATTTCTT 12660 TTTACCAGAA TGATTCGCTA ATTCTTTTTT TAGGGCGATT GATTTTACT TCCGTCGCAT 12720 CAATCATTAC CGTGTCCTCA GAACTGAGAG GAGTTCTTGA AATCGTAACA CCACTTTGAA 12780

CAAGAGTTAC	TTCAACCCAT	TGGCTCCGAC	GGATTAAGTT	GCTTTCGTGA	ATACCAAAAT	12840
CAGCCGCAAT	TTGTTCATAA	GTTCGATATT	CTCGCACATA	TTGAAGAGTG	GCCATAAGAA	12900
GGTCTTCTAG	GCTTAATTTA	GGTTTTCGTC	CACCTTTTGC	GTGTTTAAGT	TGATAAGCTG	12960
TTTTTAATAC	AGCTAATATC	TCTTCAAAAG	TCGTGCGCTG	AACACCAACA	AGACGCTTAA	13020
ATCGTGCATC	AGTTAGTTGT	TTACTTGCTT	CATCATTCAT	AGAACTACTA	TACCATATTT	13080
TGTTTCGCAG	GAAGTCTATT	GGAAAGTAAG	AAATATTGAA	GCTGAGGCTA	TTAGAAGAAA	13140
TTGTGAGCGT	GGTGCTATTT	TTTCAGGTAA	AATAAAATAT	CACGAAGATT	CACAGTTTAA	13200
AGGAGATCAC	TATGTTGAAT	GTTATGCTGT	TTTAGATAAT	ACGGTTATAG	CAAGAGATAG	13260
AATAACAGTC	CCTATCGATC	CGTTATGTGG	AAAAGATTTT	ATAGAGTAGC	ATATAATTGA	13320
TTCTTAACTG	GAATACTCAC	TATCTCTTTA	CATCAAGAAA	ATGACTAAAC	AGGGAAGTTT	13380
GCCTTCTTCC	CTTTTTTTGT	TATACTAGTA	GAAGAAAAA	TTAGAAAGAT	TTGTGGGTGT	13440
CAAACAGCCC	AGTGGGGTGT	TTTAATATGG	ACTTAGGTCC	CACCCAAAGA	GGTATTAGTG	13500
TCGTGTCTCA	ATCTTATATC	AATGTTATCG	GTGCTGGTTT	GGCAGGTTCT	GAAGCAGCTT	13560
ACCAAATCGC	AGAGCGTGGT	ATTCCAGTTA	AACTATATGA	AATGCGTGGT	GTCAAGTCTA	13620
CACCCCAGCA	TAAAACAGAC	AATTTTGCTG	agttggtttg	TTCCAATTCT	TTGCGTGGGG	13680
ATGCTTTGAC	AAATGCAGTT	GGTCTTCTCA	AGGAAGAAAT	GCGTCGCTTG	GGTTCTGTTA	13740
TCTTGGAATC	TGCTGAGGCT	ACACGTGTTC	CTGCAGGTGG	TGCCCTTGCA	GTGGACCGTG	13800
ATGGTTTCTC	TCAAATGGTG	ACCGAAAAAG	TTGCCAACCA	CCCCTTGATT	GAAGTGGTTC	13860
GTGATGAAAT	TACAGAATTG	CCGACAGATG	TTATTACGGT	TATCGCTACT	GGTCCTTTGA	13920
CAAGTGATGC	CTTGGCTGAA	AAGATTCATG	CTCTTAATGA	CGGTGCTGGT	TTTTATTTCT	13980
ACGATGCGGC	AGCGCCTATT	ATCGATGTCA	ACACTATCGA	TATGAGCAAG	GTCTACCTCA	14040
AATCACGTTA	TGATAAGGGA	GAAGCGGCCT	ACCTCAATGC	CCCTATGACC	AAGCAAGAAT	14100
TTATGGATTT	CCATGAAGCT	TTGGTCAATG	CAGAAGAAGC	ACCGCTTAGT	TCTTTTGAAA	14160
AAGAAAAGTA	CTTTGAAGGA	TGTATGCCTA	TCGAAGTCAT	GGCCAAACGT	GGCATTAAAA	14220
CTATGCTTTA	TGGCCCTATG	AAGCCAGTCG	GTCTTGAGTA	CCCAGACGAC	TATACAGGAC	14280
CTCGTGATGG	AGAATTTAAA	ACACCTTATG	CGGTTGTGCA	ACTTCGTCAG	GATAATGCAG	14340
CTGGTAGCCT	CTACAATATT	GTTGGTTTCC	AGACCCACCT	CAAATGGGGA	GAACAAAAGC	14400
GTGTCTTCCA	AATGATTCCG	GGTCTTGAAA	ATGCGGAGTŢ	TGTCCGTTAT	GGTGTGATGC	14460
ATCGCAATTC	TTACATGGAT	TCACCAAATC	TTCTTGAGCA	GACTTACCGT	TCTAAGAAAC	14520

AACCAAATCT	CTTCTTTGCT	GGTCAAATGA	282 CGGGTGTGGA	AGGCTATGTT	GAGTCGGCGG	14580
CTTCAGGCTT	AGTTGCGGGA	ATTAACGCAG	CTCGTCTCTT	CAAGGAAGAA	AGCGAGGCTA	14640
TTTTCCCCGA	GACGACAGCG	ATTGGAAGCT	TAGCTCATTA	CATTACCCAT	GCCGACAGCA	14700
AACATTTCCA	ACCAATGAAT	GTCAATTTTG	GGATCATCAA	GGAGTTGGAA	GGCGAGCGTA	14760
TCCGTGATAA	GAAGGCTCGT	TATGAAAAAA	TTGCAGAGCG	TGCCCTTGCC	GACTTAGAGG	14820
AATTTTTGAC	TGTCTAATTT	TTTTGAAAGA	ATTGCTCATG	АТАСТАТААА	AATCTTAGAA	14880
ATTGTGATAA	AATAGGTAGG	ATGAAAGAAG	GAGAGTGAAA	ATGGCGAATC	CCAAGTATAA	14940
ACGTATTTTA	ATCAAGTTAT	CAGGTGAAGC	CCTTGCCGGT	GAACGTGGCG	TAGGGATTGA	15000
TATCCAAACA	GTTCAAACAA	TCGCAAAAGA	GATTCAAGAA	GTTCATAGCT	TAGGTATCGA	15060
AATTGCCCTT	GTTATCGGTG	GAGGAAATCT	CTGGCGTGGA	GAACCTGCAG	CAGAAGCAGG	15120
TATGGACCGT	GTTCAGGCAG	ATTACACAGG	AATGCTTGGG	ACTGTTATGA	ATGCTCTTGT	15180
GATGGCAGAT	TCATTGCAAC	AAGTTGGGGT	TGATACGCGT	GTACAAACAG	CTATTGCCAT	15240
GCAACAAGTG	GCAGAGCCTT	ATGTCCGTGG	ACGTGCCCTT	CGTCACCTTG	AAAAAGGCCG	15300
TATCGTTATC	TTTGGTGCTG	GAATTGGTTC	ACCTTACTTC	TCGACAGATA	CAACAGCGGC	15360
CCTTCGTGCA	GCTGAAATCG	AAGCAGATGC	CATCCTCATG	GCTAAAAATG	GTGTCGATGG	15420
TGTTTACAAT	GCCGATCCTA	AGAAAGATAA	GACAGCTGTT	AAGTTTGAAG	AATTGACCCA	15480
CCGTGACGTT	ATCAATAAAG	GTCTTCGTAT	CATGGACTCA	ACAGCTTCAA	CCCTCTCAAT	15540
GGACAACGAC	ATTGACTTGG	TTGTATTCAA	CATGAACCAA	CCAGGCAACA	TCAAACGTGT	15600
CGTATITGGT	GAAAATATCG	GAACAACAGT	TTCAAATAAT	ATCGAAGAAA	AGGAATAAGA	15660
AAGAATATGG	CTAACGCAAT	TATTGAAAAA	GCTAAAGAGA	GAATGACCCA	GTCTCACCAA	15720
TCACTTGCTC	GTGAATTTGG	TGGTATCCGT	GCTGGTCGTG	CCAATGCAAG	CTTGCTTGAC	15780
CGTGTACATG	TAGAATACTA	TGGAGTCGAA	ACTCCTCTTA	ACCAAATCGC	TTCAATTACG	15840
ATTCCAGAAG	CGCGTGTTTT	GTTGGTAACA	CCATTTGACA	AGTCTTCATT	GAAAGACATC	15900
GAACGTGCCT	TGAACGCTTC	TGATATTGGT	ATCACACCGG	CTAATGACGG	TTCTGTGATT	15960
CGCTTGGTTA	TCCCAGCTCT	TACAGAAGAA	ACTCGTCGTG	ACCTTGCTAA	AGAAGTGAAG	16020
AAGGTCGGCG	AAAATGCTAA	AGTGGCTGTC	CGCAATATCC	GTCGCGATGC	TATGGACGAA	16080
GCTAAGAAAC	GAGAAAAAGC	AAAAGAAATC	ACTGAAGACG	AATTGAAGAC	TCTTGAAAAA	16140
GACATTCAAA	AAGTAACAGA	CGATGCTGTT	AAACACATCG	ACGACATGAC	TGCTAACAAA	16200
GAGAAAGAAC	TTTTGGAAGT	СТАААААТАА	ACAGAAAAAC	TCAGTTGGCA	TTGCTGGCTG	16260
AGTTTTATTC	GAAAGAAGGA	AATATGAATA	CAAATCTTGC	AAGTTTTATC	GTTGGACTGA	16320

TCATCGATGA	AAACGACCGT	TTTTACTTTG	TGCAAAAGGA	TGGTCAAACC	TATGCTCTTG	16380
CTAAGGAAGA	AGGCCAACAT	ACAGTAGGGG	ATACGGTCAA	AGGTTTTGCA	TACACGGATA	16440
TGAAGCAAAA	ACTCCGCCTG	ACAACCTTAG	AAGTGACTGC	CACTCAGGAC	CAATTTGGTT	16500
GGGGACGTGT	CACAGAGGTT	CGTAAGGACT	TGGGTGTCTT	TGTGGATACA	GCCTTCCTG	16560
ACAAGGAAAT	CGTTGTGTCA	CTCGATATTC	TCCCTGAGCT	CAAGGAACTC	TGGCCTAAGA	16620
AGGGCGACCA	ACTCTACATC	CGTCTTGAAG	TGGATAAGAA	AGACCGTATC	TGGGGCCTCT	16680
TGGCTTATCA	AGAAGACTTC	CAACGTCTTG	CTCGTCCTGC	CTACAACAAC	ATGCAGAACC	16740
AAAACTGGCC	AGCCATTGTT	TACCGTCTCA	AGCTGTCAGG	AACTTTTGTT	TACCTACCAG	16800
ААААТААТАТ	GCTTGGTTTT	ATTCATCCTA	GCGAGCGTTA	CGCAGAGCCA	CGTTTGGGGC	16860
Aagtattaga	TGCGCGCGTT	ATTGGTTTCC	GTGAAGTGGA	CCGCACTCTG	AACCTCTCCC	16920
TCAAACCACG	CTCCTTTGAA	ATGTTGGAAA	ACGATGCTCA	GATGATTTTG	ACTTATTTGG	16980
AAAGCAATGG	CGGTTTCATG	ACCTTAAATG	ACAAGTCATC	TCCAGACGAC	ATCAAGGCAA	17040
CCTTTGGCAT	TTCTAAAGGT	CAGTTCAAGA	AAGCTTTAGG	TGGTCTTATG	AAGGCTGGTA	17100
AAATCAAGCA	GGACCAGTTT	GGGACAGAGT	TGATTTAGGG	AGGCTTATGA	GAAAATCATT	17160
TTACACTTGG	CTCATGACCG	AGCGCAATCC	TAAAAGTAAC	AGTCCCAAAG	CAATTTTGGC	17220
AGACCTCGCT	TTTGAAGAGT	CAGCCTTTCC	AAAACACACA	GATGATTTTG	ATGAGGTCAG	17280
TCGCTTTTTG	GAGGAGCATG	CCAGTTTCTC	TTTTAACCTA	GGAGATTTTG	ACAGCATTTG	17340
GCAGGAATAT	CTAGAACACT	AGCATTTATT	CATTGGGTTT	GGGCTAGTAA	TTTCTCCATC	17400
CCTCTGCTAT	AATAAAAAGA	aataaaagga	TTAGAGAGGT	TCTTTATTTG	AAGGAACATT	17460
CAATAGACAT	TCAACTGAGT	CATCCAGATG	ACCTGTTTCA	TCTTTTTGGT	TCCAATGAAC	17520
GCCATCTTCG	TTTGATGGAA	GAAGAGCTTG	ATGTTGTGAT	TCATGCTCGT	ACGGAGATTG	17580
TCCAGGTTTT	GGGAGAAGAG	TCTGCCTGTG	AGGAAGCCCG	TCAAGTTATT	CAGGCTTTGA	17640
TGGTCTTGGT	AAATCGTGGG	ATGACCGTTG	GTACGCCAGA	TGTAGTCACT	GCGATTAGCA	17700
TGGTCAAAAA	TGATGAAATT	GACAAGTTTG	TCGCCCTTTA	CGAAGAAGAA	ATTATCAAGG	17760
ATAATACTGG	GAAACCTATC	CGTGTCAAAA	CCCTAGGGCA	AAAGCTTTAT	GTGGACAGTG	17820
TCAAACAGCA	TGATGTGACC	TTTGGAATTG	GGCCAGCAGG	TACAGGGAAG	ACCTTCCTTG	17880
CAGTGACCTT	GGCAGTGACT	GCCCTTAAAC	GTGGGCAAGT	CAAGCGAATT	ATCCTAACTC	17940
GTCCAGCGGT	GGAAGCGGGA	GAGAGTCTTG	GATTTCTTCC	GGGTGATCTT	AAGGAGAAGG	18000
TGGATCCTTA	CCTTCGTCCT	GTTTACGATG	CCTTGTATCA	AATTCTTGGG	AAAGACCAAA	18060

CGACTCGTCT	CATGGAGCGT	GAAATTATCG	AAATTGCGCC	CCTTGCCTAT	ATGCGTGGCC	18120
GGACCTTGGA	TGATGCCTTT	GTCATTCTCG	ATGAGGCGCA	AAACACGACC	ATCATGCAGA	18180
TGAAGATGTT	CTTGACGCGT	TTAGGTTTTC	ATTCTAAGAT	GATTGTCAAT	GGAGATATTA	18240
GTCAGATTGA	CCTGCCACGT	AATGTCAAGT	CCGGTTTGAT	TGATGCTCAA	GAGAAACTCA	18300
AGAACATCCA	TCAGATTGAC	TTTGTTCATT	TTTCAGCCAA	GGATGTGGTT	CGCCATCCTG	18360
TTGTCGCTCA	GATTATCCGA	GCCTATGAAT	ATTCTACTGA	AGTTGCACAC	GACTGATTTT	18420
GAGGAAGTTC	GCCTGCAAAA	GAATAGACTT	GTTCGGTAAC	TGTAAAAAGT	GTTATACTAT	18480
TTTTATGGAA	ACAGTATACG	ACAAAGCACA	AAAACTTAAC	ТСААААААСТ	TCAAACTATT	18540
GATTGGTGTC	AAAAAGGAAA	CCTTTCAACT	CATGCTAGAA	CACCTGAATT	CAGCCTATCA	18600
GATTCAGCAC	CGAAAAGGTG	GACGTCCACG	TAGTCTGCCC	ATGGAAGACC	AGCTCATTAT	18660
GACCCTCCGT	TACTTGCGAT	ATTATCCCAC	TCAGCGTCTG	CTGGCCTTTG	ATTTTGGCGT	18720
CGGTGTAGCT	ACGGTAAATG	CCATCATCAC	TTGGGTGGAG	GATACACTTC	GTGCGTCAGG	1878 0
TAGCTTTGAT	TTGGACCATT	TAGAAGCCCC	GAGTGCTGCT	GTGGCTATTG	ACGTGACCGA	18840
AAGTCCGATT	CAGCGTCCAA	ACAAAACCAA	AGCAAAAATT	ATTCTGGTAA	AAAGAAACGA	18900
CACACCTTAA	AAACTCAAAT	TATGCTGGAT	TTGACGACAC	ATAAAGTCTG	TCAAATGGCC	18960
TTTTCTGACG	GACATACGCA	TGATTTTACT	CTCTTCAAAG	AAAGTATTGG	ACAAAGTTTG	19020
CCTGAAACGA	CGCTTGCCTT	TGTTGACCTA	GGTTATTTAG	GCATCTTGAA	ATTTCATGAG	19080
AATACTTTCA	TTCCTGCTAA	AAATTCCAAA	AATCGCCGCC	TGAGTGAGGA	TGATAAGCAG	19140
TTAAATAAAG	AGATGTCAGC	GATACGAATT	GAAATTGAAC	ATTTTAACGC	TAAATTCAAG	19200
ACCTTCCAAA	TCATGTCAGT	CCCTTATCGT	AACCGCAGAA	AACGTTTCGA	GTTACGGGCG	19260
GAATTAATTT	GTGCCATCAT	CAATTATGAA	GTGAACTAGA	TTCCGAACAA	GTCTAATATA	19320
CTTTTGAGAG	AGGAAAATCC	AGTTGTATAG	GCTAAAGGTT	TTATCCAAAG	GTCTGAGACA	19380
ACGATTAGGC	ACGATGGAAA	GAACTTTTAT	GTGGCTGATG	ACGATCAGTG	CATCTTCCTG	19440
TGTCATAATC	ACAGGGCACA	AGAAAGTAGG	AATTTGAAAA	GATGATTGAC	CAACTATCTA.	19500
AGTATTACAG	TTGTAGGATA	CTAACTGAAA	AGGATATTCC	AAGTATTTTA	TCTTTATATG	19560
AAAGTAATCC	TCTGTATTTT	CAGCATTGTC	CACCAGAGCC	AAATTTTGCA	ACTGTAAAAG	19620
AGGACATGCT	TTGTCTACCT	GAAGGTAAAG	CTAAGGCTGA	TAAGTTTTTT	GTTGGATTTT	19680
GGAATGGATC	TGACCTTGTG	GCTGTTATGG	ATTTTGTCTA	TGCATATCCT	GATGAGGAGA	19740
CTGTTTTTAT	TGGTTTGTTT	ATGGTTGATC	AAGCCTATCA	GAGAAAAGGG	ATTGGTAGTC	19800
ATATTGTGAC	AGAAGCACTA	GCTTATTTTG	CTAAGAACTT	TCGAAAGGCA	CGTTTGGCTT	19860

ATGTTAAGGG	AAATCCGCAA	TCTCAGCATT	TTTGGGAAAA	GCAGGGCTTT	AAATCAATTG	19920
GATGCGAGGT	TAAGCAAGAA	CTCTATACGG	TTGTTATCGC	TGAACAGAGC	CTAGAAGATT	19980
AGAAATGGCA	TCAAGTAAGA	ACTATTTGGA	ATTTGTTTTG	GAACAATTAT	CAGGATTAGA	20040
TGATGTGACT	TACCGTTCCA	TGATGGGGGA	GTATATTCTT	TACTTCCGCG	GCAAGATTAT	20100
TGGCGGCATT	TATGACGATC	GCTTTTTAGT	TAAACCCGTG	CAAGCAGTCT	TAGATAAGAT	20160
TGACCAATCT	TCTTTTGAGT	TTCCATACAA	AGGTGCCAAA	GAAATGATTT	GAGTGGAAGA	20220
ACTTGATAAT	AAGATGTTTC	TATAAGACCT	AATTTTAGCT	ATGTATAACC	AACTGCCAAC	20280
GCCCAAACCT	AAAAAGAAAA	AGCAAGGGTG	AACGAAGTAA	AAAAGAAGTC	TGCTAAGGCC	20340
CTGTCTTTGC	ACGGGTAAAA	TTTTATATAT	AAAAAGAAGC	TGGGACTAAA	GAGCTCAGCT	20400
TCCTTTGGTT	TATATAATTG	TCATTACAAG	ACGAAGTGGT	TGGGCGAAAC	TCTGTTGACT	20460
ТТАТТСААТТ	TAGAGTTTCT	TATGCACAAT	TGAGTCTGGA	ACGAAAGTCT	CCAGTTGCAA	20520
AGTATACAGT	ACAATAAACC	AACGATGTAA	TAGCTGATGA	CACAAAGCAC	AGTGGGTAGG	20580
ACTTGCGAAG	TCACCCTTTT	CTTTTCAAAA	ТТТАТАСТАА	ATCATTGATA	TCAGTGTAGT	20640
CACGATTAAG	TCCTTGAGCA	ACTGGTAGGT	TAGTCAAGTA	ACCTTGATAA	GTAGTCACAC	20700
CTTGACGCAA	GCCTTCATCT	TCAGAGATTG	CTTGTGCGAA	TCCTTTGCCA	GCCAAAGCTT	20760
CGATATAAGG	AAGAGTGACA	TTGGTTAGGG	CGATGGTTGA	AGTGCGAGCA	ACCGCACCAG	20820
GGATATTGGC	AACGGCATAG	TGGAGAACAC	CGTGTTTTTC	ATAGACGGGT	TCATCGTGCG	20880
TTGTCACACG	GTCAGCTGTT	TCGATAACGC	CACCTTGGTC	AACAGCAACG	TCAACGATAC	20940
AGAGCCTGGA	CGCATTTGTT	TGACCATCTC	ATCTGTCACC	AATTCCGGTG	CTTTTGCACC	21000
AGGGATGAGA	ATGGCTCCAA	TCACCACATC	AGCATCTCTC	ACACTTGCTT	CAATGTTGAA	21060
TGAATTAGAC	ATAAGAGTTT	GAATTTGACT	TCCAAAGACT	TCTTCTAGAA	CTGAGAGACG	21120
CTTGGAACTA	АТАТСТАААА	TAGTCACTTG	AGCACCAAGA	CCAAGGGCGA	TGCGGGCAGC	21180
ATGTGTACCG	ACGACACCAC	CACCGATGAT	AGTTACTTTT	CCTTTTGGAA	CACCTGGTAC	21240
ACCACCAAGT	AGAACACCAG	AGCCACCAGC	TTGCTTAGTA	AGGAAGTGAG	CTCCGATTTG	21300
AACAGCCATA	CGACCTGCAA	CCTCACTCAT	AGGAACGAGG	AGCGGTAGTT	GTCCTTGATT	21360
GTCACGAACA	GTTTCAGTTG	TTTTTGCTGT	TAACATAGCA	TCTGCTAATT	CTGGAGCAGC	21420
GGCCATGTGC	AAGTAGGTGA	AGAGAAGAAG	ATCGTCGCGC	AAGTAACCGT	ATTCAGAACT	21480
TAAAGATTCT	TTTACTTTCA	CAACCAACTC	TGCTGCCCAA	GCTTCACCAG	CAGTAGCGAC	21540
AATCTCAGCT	CCTTGCTTTT	GATAGTCAGC	ATCAGTAAAG	CCAGAACCGA	GACCAGCATT	21600

286 TGTTTCGATA AGGACACGAT GACCACGACT AACTAAGCTA TGAACACCTG CAGGTGTGAG 21660 GGCGACACGG TTTTCGTTAT TTTTAATTTC TTTTGGGATT CCGATTAACA TTGAGATAAC 21720 CTACCTTTCA ATTGACGGTC TTGTTTTGGT TGTCACATTC CAGTTCATAA ATCAAAAATG 21780 TGACGGTTTC ATTGTATATG AAACCGCTTC AAAAATCAAG AAAAACTTGT CATCCAAATT 21840 TTTTTATGCT AGACTAGTGA AAATCAAGCT CTAATGGAGG GAAAAGTATG GAATCAATAT 21900 TTGTGAAATT TGCCCAGTAT CCGTCTATAG AAACGGAGCG TTTATTGCTC AGACCTGTAA 21960 CTTTGGATGA TGCGGAACAA TGTTTGACTA TGCCTCGGAC AAGGGTAATA CACGTTACAC 22020 TTTTCCAACC AATCAAAGCT TGGAAGAAAC CAAGAATAAC ATTGCTCAGT TCTACTTGGC 22080 TAATCCCTTG GGACGTTGGG GAATAGAACT AAAAAGCAAT GGTCAGTTTA TTGGAACCAT 22140 TGACTTGCAC AAGATTGATT CTGTTCTTAA GAAGGCAGCT ATTGGCTACA TTATCAATAA 22200 AAAGTATTGG AATCAAGGAT TAACGACAGA AGCCAATCGT GCTGTGATTG AGCTAGCTTT 22260 TGAGAAGATA GGGATGAATA AGTTGACTGC CCTTCACGAT AAGGCTAATC CCGCGTCAGG 22320 AAAGGTCATG GAGAAATCAG GCATGCGTTT TTCCCATGCA GAACCATATG CTTGTATGGA 22380 CCAGCATGAA AAAGGCCGAA TCGTGACAAG AGTTCATTAT GTCTTGACCA AGGAAGACTA 22440 TTTTGCAAAT AAATAAGCAG TTGAAAAGAA ATTTTTCGAC TGTTTTTTCT TCCTCTTACG 22500 AATAATCTAA GAGAGGAGAA AATATGGAAG CAATTATCGA GAAAATCAAA GAGTATAAAA 22560 TCATCGTCAT CTGTACTGGT CTGGGCTTGC TTGTAGGAGG ATTTTTCCTG CTAAAACCAG 22620 CTCCACAAAC ACCTGTCAAA GAGACGAATT TGCAGGCTGA AGTTGCAGCT GTTTCCAAGG 22680 ACTCATCGAC CGAAAAGGAA GTGAAGAAGG AAGAAAAGGA AGAACCCCTT GAACAAGATC 22740 TAATCACAGT AGATGTCAAA GGTGCTGTCA AATCGCCAGG GATTTATGAC TTGCCTGTAG 22800 GTAGTCGAGT CAATGATGCT GTTCAGAAGG CTGGTGGCTT GACAGAGCAA GCAGACAGCA 22860 AGTCGCTCAA TCTAGCTCAG AAAGTTAGTG ATGAGGCTCT GGTTTACGTT CCTACTAAGG 22920 GAGAAGAAGC AGTTAGTCAA CAGACTGGTT CGGGGACAGC TTCTTCAACA AGCAAGGAAA 22980 AGAAGGTCAA TCTCAACAAG GCCAGTCTGG AAGAACTCAA GCAGGTCAAG GGACTGGGAG 23040. GAAAACGAGC TCAGGACATT ATTGACCATC GTGAGGCAAA TGGCAAGTTC AAGTCAGTAG 23100 ACGAGCTCAA GAAGGTCTCT GGCATTGGTG GCAAAACAAT AGAAAAGCTT AAAGACTATG 23160 TTACAGTGGA TTAAGAATTT CTCTATTCCC CTAATTTACC TGAGTTTTCT ATTACTTTGG 23220 CTTTATTACG CTATTTCTC AGCATCTTAT CTTGCTTTGT TGGGCTTTGT TTTTCTGCTA 23280 GTCTGTCTCT TTATCCAATT TCCGTGGAAA TCTGCTGGTA AAGTTCTAAT AATTTGCGGA 23340 ATCTTTGGAT TTTGGTTTGT TTTTCAAAAT TGGCAACAGA GTCAAGCGAG TCAAAATCTG 23400

287

GCGGATTCTG	TTGAAAGGGT	ACGGATTTTG	CCTGATACTA	TTAAGGTTAA	TGGTGATAGT	23460
CTATCCTTTC	GTGGCAAGTC	TAACGGTCGT	GCTTTCCAAG	TCTATTATAA	ACTCCAGTCC	23520
GAGGAGGAGA	AAGAAGCCTT	TCAAGCTTTA	ACTGACCTGC	ATGAGATAGG	ACTAGAAGGG	23580
AAGCTTTCGG	AGCCAGAAGG	GCAGAGAAAT	TTTGGTGGCT	TTAATTACCA	AGCCTATCTG	23640
AAGACTCAGG	GAATTTACCA	GACTCTCAAT	ATCAAAACAA	TCCAGTCACT	TCAAAAGATT	23700
GGCAGTTGGG	ATATAGGAGA	AAACTTGTCC	AGTTTACGTC	GAAAGGCTGT	GGTTTGGATT	23760
AAGACGCACT	TTCCAGACCC	TATGGGCAAT	TACATGACAG	GACTCTTGCT	GGGACATCTG	23820
GACACCGACT	TTGAGGAGAT	GAATGAGCTT	TATTCCAGTC	TAGGAATTAT	CCACCTCTTT	23880
GCCCTATCTG	GCATGCAGGT	AGGTTTTTTC	ATGAATGGAT	TTAAGAAACT	TCTCTTGCGA	23940
TTGGGCTTGA	CCCAAGAAAA	GTTGAAATGG	CTGACTTATC	CCTTTTCCCT	TATCTATGCG	24000
GGACTAACTG	GATTTTCAGC	ATCGGTTATT	CGCAGTCTCT	TGCAAAAGCT	ACTGGCTCAA	24060
CATGGGGTTA	AGGGCTTGGA	TAATTTTGCC	TTGACGGTGC	TTGTCCTCTT	TATTGTCATG	24120
CCAAACTTTT	TCTTGACAGC	AGGAGGAGTC	TTGTCCTGCG	CTTATGCTTT	TATCCTGACC	24180
ATGACCAGCA	AAGAAGGGGA	GGGGCTCAAG	GCTGTTACTA	GTGAAAGTCT	AGTCATCTCC	24240
TTGGGCATAT	TGCCCATTCT	ATCCTTCTAT	TTTGCGGAAT	TTCAACCTTG	GTCTATCCTT	24300
TTGACCTTTG	TCTTTTCCTT	TCTTTTTGAC	TTGGTCTTCT	TACCGCTCTT	GTCTATCTTA	24360
TTTGTCCTTT	CCTTTCTCTA	TCCAGTCATT	CAGCTGAACT	TTATCTTTGA	ATGGTTAGAG	24420
GGCATTATTC	GCTTGGTCTC	GCAGGTGGCA	AGGAGACCAC	TTGTCTTTGG	TCAACCCAAC	24480
GCATGGCTTT	TAATCTTATT	GTTAATTTCC	TTGGCTTTGG	TCTATGATTT	GAGGAAAAAC	24540
ATTAAAGGAT	TAACAGTATT	GAGTTTATTG	ATTACAGGTC	TCTTTTTCCT	TACCAAGTAT	24600
CCACTGGAAA	ATGAAATCAC	CATGCTGGAT	GTGGGGCAAG	GAGAAAGTAT	TTTCTACGGG	24660
ATGTAACTGG	GAAAACCATT	CTCATAGATG	TAGGTGGTAA	GGCAGAATCT	TATAAGAAAA	24720
TCAAAAAATG	GCAAGAAAAG	ATGACGACCA	GCAATGCCCA	GCGAACCTTG	ATTCCCTATC	24780
TCAAAAGTCG	AGGAGTAGCT	AAGATTGACC	AGCTAATTTT	GACTAACACG	GACAAGGAGC	24840
ATGTTGGAGA	TTTGTCAGAG	ATGACCAAGG	CTTTCCATGT	AGGGGAGATT	CTAGTATCAA	24900
AAGACAGTCT	GAAACAGAAG	GAATTTGTGG	CAGAACTACA	GGCGACTCAA	ACAAAGGTGC	24960
GTAGTATGAT	AGTAGGGGAG	AACTTGCCCA	TTTTTGGAAG	TCAGTTAGAA	GTTCTATCTC	25020
CAAGGAAAAT	GGGAGATGGA	GGACACGATG	ATACCCTAGT	TCTGTATGGG	AAATTCTTGG	25080
ATAAGCAATT	TCTCTTCACG	GGAAATTTGG	AGGAGAAAGG	AGAGAAGGAC	TTGCTGAAGC	25140

			288			
ACTATCCAGA	CTTGAAAGTA	AATGTTTTGA	AAGCTAGCCA	ACATGGCAAT	AAAAAATCAT	25200
CAAGTCCAGC	CTTTCTAGAA	AAACTCAAAC	CAGAGCTTAC	TCTTATCTCA	GTTGGAAAGA	25260
GCAATCGAAT	GAAACTCCCC	CATCAGGAAA	CATTGACACG	ACTGGAAGGT	ATCAATAGCA	25320
AAGTTTATCG	AACTGACCAG	CAAGGAGCTA	TACGTTTTAA	GGGGTTGGAT	AGTTGGAAAA	25380
TCGAAAGTGT	TCGATAGGAA	GGATAAATGT	TGTAGATTAG	TGAAATAAAC	TAAAAATTTG	25440
TTGCATAATA	ATGATAAAA	TGGTATAATG	AAAACGTATT	CAATATTGAG	GATATAAAAT	25500
САТТАЛАЛАТ	CAGCAAAAGT	TGTTTTATTA	GTTAGTTTAT	AATCTATTGG	TCTTCTTCAG	25560
TCCAGTGTAT	CTGCTGTGAC	AGTCACTAAA	AGTTACAAGT	ATGATTGGAA	TACGGTTTGG	25620
GAATATAGTA	CCAACTATCA	CGACCATCAG	TATGCTTGGA	TTCCGTCATG	GTCTCGTTAT	25680
GACAGCTATT	CTGAGTATAA	AGTTGGCGGA	GGCTGGAACT	ACGCTCGTTA	TGAGGTCATA	25740
AACTATTACA	GCGGAGGCTA	TTAATTCTTA	AAGAGTGAGA	AAAAGGAGGG	CTAGATATGT	25800
TGCAGCTTAC	TCATGTGACC	TTAAAAACGC	GACAAGTCAT	CTTGCAAGAT	GTGGATTTCA	25860
CCTTTAAAAA	GGGTAGGGTT	TATGGTCTTC	TTGCTATCAA	TGGCTCTGGA	AAGACGACCC	25920
TGTTCCGTGC	CATTAGCAAT	TTAATTCCCA	TAAGTAGTGG	AAATATCGCA	GCCCCTCCTT	25980
CTTTATTTTA	TTATGAGAGT	ATTGAATGGC	TGGATGGAAA	CTTAAGTGGG	ATGGACTACC	26040
TTCGTCTTAT	CAAAAACATC	TGGAAGTCAG	GTCTGAACTT	GAGGGATGAA	ATCGCCTATT	26100
GGGAAATGTC	TGACTATATC	AGTCTTCCCA	TTCGCAAGTA	TTCCTTAGGC	ATGAAGCAAC	26160
GCTTGGTGAT	TGCCATGTAT	TTCCTCAGTC	AGGCCAAATG	CTGGCTCATG	GATGAGATTA	26220
CAAATGGCTT	AGATGAGTAT	TATCGACAGA	AGTTTTTGA	TAGGCTAGCA	CAAATCGATA	26280
GACAAGAACA	GCTGGTTCTT	TTAAGTTCCC	ACTATAAGGA	AGAGTTGGTT	GATGTCTGCG	26340
atagagtagt	AACCATTCAT	CAGGGGCAGA	TAGAAGAGGT	TTAGTTTATG	AAAGATGTTA	26400
GTCTATTTTT	ATTGAAAAAA	GTTTTCAAAA	GCCGCTTAAA	CTGGATTGTC	TTAGCTTTAT	26460
TTGTATCTGT	ACTCGGTGTT	ACCTTTTATT	TAAATAGTCA	GACTGCAAAC	TCACACAGCT	26520
TGGAGAGCAG	GTTGGAAAGT	CGCATTGCAG	CCAACGAGAG	GGCTATCAAT	GAAAATGAAG.	26580.
AGAAACTCTC	CCAAATGTCT	GATACCAGCT	CGGAGGAATA	CCAGTTTGCT	AAAAATAATT	26640
TAGACGTGCA	AAAAAATCTT	TTGACGCGAA	AGACAGAAAT	TCTGACTTTA	TTAAAAGAAG	26700
GGCGCTGGAA	AGAAGCCTAC	TATTTGCAGT	GGCAAGATGA	AGAGAAGAAT	TATGAATTTG	26760
TATCAAATGA	CCCGACTGCT	AGCCCTGGCT	TAAAAATGGG	GGTTGACCGC	GAACGGAAGA	26820
TTTACCAAGC	CCTGTATCCC	TTGAACATAA	AAGCACATAC	TTTGGAGTTT	CCGACCCACG	26880
GGATTGATCA	GATTGTCTGG	ATTTTAGAGG	TTATCATCCC	AAGTTTGTTT	GTGGTTGCTA	26940

289

TTATTTTAT	GCTAACACAA	CTATTTGCAG	AAAGATATCA	AAATCATCTG	GACACAGCTC	27000
ACTTATATCC	TGTTTCAAAA	GTGACATTTG	CAATATCCTC	TCTTGGAGTT	GGAGTGGGAT	27060
ATGTAACTGT	GCTGTTTATC	GGAATCTGTG	GCTTTTCTTT	TCTAGTGGGA	AGTCTGATAA	27120
GTGGTTTTGG	ACAGTTAGAT	TATCCCTACC	CAATTTATAG	CTTAGTGAAT	CAAGAAGTAA	27180
CTATTGGGAA	AATACAAGAT	GTATTATTTC	CTGGCTTGCT	CTTAGCTTTC	TTAGCCTTTA	27240
TCGTCATTGT	GGAAGTTGTG	TACTTGATTG	CTTACTTTTT	CAAGCAAAAA	ATGCCTGTCC	27300
TCTTTCTTTC	ACTCATTGGG	ATTGTTGGCT	TATTGTTTGG	TATCCAAACC	ATTCAGCCTC	27360
TTCAAAGGAT	TGCACATCTG	ATTCCCTTTA	CTTACTTGCG	TTCAGTGGAG	ATTTTATCTG	27420
GAAGATTACC	TAAGCAGATT	GATAATGTCG	ATCTAAATTG	GAGCATGGGA	ATGGTCTTAC	27480
TTCCTTGCCT	GATTATCTTT	TTGCTATTGG	GAATTCTATT	TATTGAAAGA	TGGGGAAGTT	27540
CACAGAAAAA	AGAATTTTTT	AATAGATTCT	AGCTTTCCTA	TAGGTAGGGA	AAATAAGTAA	27600
AAACTAACAT	AGAGAGGGAA	TCAACTTGAT	TCTCTCTTTT	TGATTCGAAA	ACCAAACCAA	27660
AATACAAACA	CAAACTTTTC	AAAAAATAAC	TTTTTATCTT	GACAAGAGCT	AGAAAACTTG	27720
GTATCATATA	AAAGTTGAGA	AAAGCAGAAG	TGAGAGCTTC	TCGCCTTGTG	ACATTAAGTT	27780
GCCTGGCCCT	ACGGATGAAA	AGTTTCGAAG	AAACGCTATC	ATAACGTGCG	GGCTTGTATA	27840
TTTACAAGTC	CGCTATTGTT	TTTCTCTAAT	AAAACAAAAG	AGGTGAAAAC	CATAGCAAAG	27900
CAAGACTTAT	TCATCAATGA	TGAGATTCGT	GTACGTGAAG	TTCGCTTGAT	TGGTCTTGAA	27960
GGAGAACAGC	TAGGTATCAA	GCCACTCAGT	GAAGCGCAAG	CTTTGGCTGA	TAACGCTAAT	28020
GTTGACCTAG	TATTGATTCA	ACCCCAAGCC	AAACCGCCTG	TTGCAAAAAT	TATGGACTAC	28080
GGTAAGTTCA	AATTTGAGTA	CCAGAAGAAG	CAAAAAGAAC	AACGTAAAAA	ACAAAGCGTT	28140
GTTACTGTGA	AAGAAGTTCG	TCTAAGTCCG	G			28171

(2) INFORMATION FOR SEQ ID NO: 23:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 7147 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

CCGCTCAACT TTTGCAATCA AGGCTAAGTA GACAGCAGCA AATTTCATAT TGTATAATTT 60 CTGACTCATA CTTCTCTCT TCTATGTGTA CTAGTATAAA TAAGAAAAAG AAGGCCGTCA

			290			
180	GTACAAGTCA	ATTGACTATT	TCTTCTGTAA	TTCTGCTTCA	TGATTTATTC	AGCCTTCTTT
240	GATATTTCCA	CTTGCTCGAT	TCATAGTTGC	CATCAGTTCC	CACCTTGCGC	GCGTAGAAGC
300	GGCAATGACA	ACAAGCGGTG	CGGATGGTTG	GTCTGCATTT	CCAAGATCAA	TCTTTCATGA
360	CTCTGTCCGT	GGATCAATTC	ATGGCTTTTT	CAAACGGTCC	GTCCTTCCAT	AAGGATGTGC
420	AAGAAGGGCA	GTGCATCCTT	ATCAAAAGCG	CTCATCCAAA	AAGAAGTCGC	GTGTCAACAG
480	ATCCAAGATG	TCACGGTGTC	ACAGACAAGG	TTTTTGTCTT	TCAATAGTTG	CGAGCAATAG
540	CTTACTAGCT	TTCCCACAGC	AAGTGGTGAA	GGTCATAATA	CATCTGGCAA	GTATCATAGC
600	TCGAATAGTT	TGAGATTGTC	TGATTATAGA	AATCCCTATT	GTTCATCACT	TCCATCATTC
660	TTCTGAACGC	CATCATGCAC	ATTGAAAAGG	CTGCAAGACC	GCCAGGTATC	CCTTCAAAGA
720	CTCATAGAAT	CCTTATCAAT	CGAATACTTC	ACCATCAATG	TGGTATCCAC	GTCATAGCCT
780	AATGGCAACC	TCGGCCCAAC	CCAGCCCCAG	GGTTGTCTTA	GATTGACAAT	TTCATCAAAA
840	ACCGTCCACC	GAACATTGAC	TCATAGTCTT	CGCAGAGAAG	CATGAGCTGT	TTTTGACCAG
900	AGTTGATTTA	GATTGACCAG	CGTGGAATCA	GTCGTAGAAA	CTGCTGACAC	AGAATTTCTC
960	AAAGCTAACA	TTTCTGCTTT	GTTTGACCAG	AAAGGCCACT	TTGACCCAAT	CCAGAACCTG
1020	AAACTCGACC	TCACATCCTT	TAGCGgAAGG	ATTTGCCGCA	CTGCCTCCGA	TGTTCAATAA
1080	AGAAGAATGC	GGTTTTGGAT	ACTTGAACAG	AGTCAGCTGC	AGTTTTCATC	TGACCTTTGA
1140	AACGATGAAG	TTCGGGGAAG	GAGACCATAG	CCGCTTAGCA	CTTGATTAAT	ааатстаааа
1200	GAAAACAATC	CATAAGACAT	ACCTACATGG	GCCCATGACA	TGAGAAGGAA	AGTGCTCCCA
1260	ATAGGCCCCA	CGTTAATCAC	GGAGCAGCGT	ACGCGCTATC	AGAGAGGCAG	ATGTCACTAA
1320	ATTCAAAATA	TCATGATAGG	GAAATCCCCA	CAAACCACTT	TCGCCACACT	ATCCAGTAAA
1380	TGCTGCAAAT	CATCATTAC	CGGGTCAATT	CAAATTCAAA	GGTTGACAAA	GCCATAAGAC
1440	TGTTAAACTC	CACGAATACC	GCACGAACGA	TGCATTGTAG	GATAATCCTC	TTTTCATTTT
1500	TTTTGGAAAG	TCAAGGACTG	AGCCCCTGAA	TTTATCTGTC	TACTGTTCAG	TCACGAGTGA
1560	AAGTACGGCC	TCACTGCCAC	ACGTTGATAA	CGTCATCAGG	TCAAAACGGT	GCTAGCGTCA
1620	CATAATTGAA	CCCAGATAGC	TTCCCAATAG	ACCTAAAATC	ATTCTGAATG	CAGAGCCAGT
1680	AATGTCATTG	GAACTTGAGT	ATCAACATTT	GCCCATAGTA	CCACTTGCAA	CCACGCGTTA
1740	CGAGTAATCC	TCTCTGTCTG	AATTTCTTAA	AGGAATTGAA	TCAAGAGGCT	GTAGTACGCG
1800	CACTCGGGAT	AAGAAGCCGC	CTACTAGTAT	ACTTCTCAGC	TAAAAATATC	AAAACTCGGT
1860	CATCATCATG	AGGACATTCC	AAGGCAAGAA	TACGGACAAG	CAACTGCAAC	GCAAAAAATC
1920	ATCCGTAATT	TACCTAGCAA	GTTTCTTGAC	АТСТАВАТТА	GCCACAACTC	CTTGCCGACT

rrc	GAGATAT	AGGTCGGCAC	TTCCAACTCT	AGATAGACCG	AAAAGCAAGT	AAAGAGAATG	1980
GCT	'AGTAAAA	TCATCCCCCA	TTCTTTTCTA	CTAATTCTTT	TGGCTAATTT	CTTTATTCTC	2040
rcc	TCCTATT	CCCTTGATAT	TTTGCCTGTA	GTTGACCGAG	AACCTTCTCA	AAAATCAGTA	2100
rta	CATCTTC	ATCAATGTCT	TCCATCAACT	GCTTGTCTAT	GCGTTCAAAA	AAAGCCTTAA	2160
CCI	GTTGCAT	CTGAGAACGT	GCTTTGTCCG	TCAGACGAAC	AAACTTAGCC	CGCTTATCAA	222 0
CAG	GACTCGC	CTCCAATTCC	ACCAAACCAT	TTTGCACTAT	ACGCTTAACC	AGATTACTAG	2280
CAA	CAGGCTT	GGTAATATTG	AGTTCCTGCT	CGATATCTTT	AATCAAGACC	AAGTCTTGGT	2340
ГТI	TCTCGCG	ATTATCCAAA	AAACGCACAA	CCTGACCTTG	CGGCCCACCC	АТАААТТСАА	2400
rgc	CCGCAACG	TTTGGCTTCC	TTTTGCACCA	TCAGGTGAAT	TTGATGACCA	AAACGCTTAA	2460
AGA	CTAACAT	CGGTTTATCC	ATAATCTCCC	CCTTCTAAAT	AAAAATAGTT	CTCTGGAGAA	2520
TAA	TTAAATT	TCTATGAGAA	CTATTTTCTT	GATTAAAAAA	ATCCCAAGTG	ATTTTCTCAC	2580
ГТA	AGGATCAT	GTTCTATAGG	ТТАААТТААА	ACCCATCTAC	GTTCGTATAA	ATCTTTTGGA	2640
CG1	CTTCGTC	GTCTTCAAGA	ACGCTGTAAA	GTTTTTCAAA	GGTTTCAAGG	TCTTCGCCTG	2700
ACA	ATTCCAC	TTCTGACTGA	GGAATCATTT	CCAATTCAGT	CACTTGGAAT	TCTTCAATAC	2760
CAC	SACTCACG	GAGGGCAACG	ATAGCCTTGT	GAAGGTCAGT	TGGCGCTGTG	TAAACTGTGA	2820
TTC	TACCTTC	TTGTGCTTCT	ACGTCATCCA	CATCCACATC	CGCTTCGAGC	AATTGCTCAA	2880
AGA	ACTGCGTC	CGCATCTTCA	CCTCCAAATA	CAATAACACC	TTTGTTGTCA	AAGAGGTAAG	2940
AAA	ACAGAACC	TGAAGCGCCC	ATGTTTCCGC	CGTTTTTACC	AAAGGCTGCA	CGGACATTGG	3000
CTC	CTGTACG	GTTGACGTTA	GAAGTCAAAG	TATCCACAAT	TAGCATAGAG	CCATTTGGCC	3060
CAA	AACCTTC	GTAACGTCCT	TCTGTAAAGG	TTTCGTCTGT	GTTTCCTTTG	GCTTTATCAA	3120
rcc	CTTTATC	GATAATGTGT	TTTGGCACTT	GGGCTTGTTT	AGCACGGTCG	ATAACGAATT	3180
rca	ÁAAGCTGA	GTTTGATTCT	GGATCTGGAT	CACCTTTTTT	AGCTGCTACA	TAGATTTCTA	3240
CAC	CAAATTT	TGCATATACT	TTAGAGTTAG	CTCCATCTTT	AGCCGTTTTC	TTGGCTACGA	3300
rat	TGGCCCA	TTTACGTCCC	ATTAGGAATC	TCCTTTTTTC	ACATTTTAAT	CTTTCTTATT	3360
ATA	ACACAAG	TTTTTTTGAT	TTTCACTAGA	GGAAATGGAT	TTTATTAGCA	AATCAAGCTA	3420
GGA	TAGCACT	TTACCTGCTA	AGATGGTCTT	GCCTTTCTAT	CTTTATCAAC	AGGCACTCAT	3480
CCA	CATTCAA	AAAACAAACT	AGACCATTAT	CTGCAAATAG	AAAGTTTCAG	CCAAGTTTGA	3540
CAA	AGTCAGC	TCAAATTACT	GTTTGAAGTT	TGTAGATATA	AGCGACAAAA	ACAATCATAC	3600
rgc	CACCTTTT	GTTGACAGTC	TACTCCAGAC	ATATCATAGT	TCAAGTAAAT	ACTTTGAAAT	3660

292 TCAACAGTTC TTATAGGCGC TATTGTATTC TAAGAAATCA ATAGAAGAGT TTCTAAGCAA 3720 ACCTCTAATA CTCAATAAAA ATCAAAGAGC AAACTAGAAA GCTAGCCTCA GGTTGCTCAA 3780 AACACTGTTT TGAGGTTGCG GATGGGGCTG ACATGGTTTG AAGAGATTTT CGAAGAGTAT 3840 AATTTACGTG TTCCCAAGAT GGAGAAGTTA GACTAGTACA CTGGCACTTC TAAAACATTG 3900 CTAGCAATTG ATTTGTTCAT ATTTAATTTC ATTTTTTCCA TAAATGGGTA TTAGATATAA 3960 ACAGCAAAAT ATTTCCGATA CGTGTCGTTC TTGAATTTCC AATCATCTAA AACAAGTAAA 4020 GGATAATCAA TCCCCTGTAT ATCAAGGAAT TGGCTACCCT TTTTACTTTT TTACACATTC 4080 TGTTTGATAG ATTCATTTTA ACATCACGAG CATACTCCAA TGGAAATCGC TAGGCAAGAG 4140 ATAAACTTTC AGATATCCGC AGAGAGATCA TCGCCTCTTT TTGTCGCAAG CATTCTCCTC 4200 TCCTAGTCAT TTTCTACCTT ATCTTCTACC TGAGGATAGA GAGTTGTTCC CCAAATAGAA 4260 · ATCGTCCGCT TACGCACTAG TGGCAAATCG GTTTTTCAT AAACCGTACG CCACCATTCC 4320 CAGGCAAGCC CGGTACACTC TCTAATTTTG ACAGAGAGAT TACGAACATT CCCTTTTAAA 4380 GGAATACTAG TGGTAAAGTG AGCCGTTAAA TCCTGCCCAT TTCTGTCCCA AGCCTTAGGA 4440 GTCAAGACTT CCTTACCTTG ATGATCATAG GATAATTCAT TCCAAGTAAT ATAATATTGG 4500 GCAACATAGG CACCACTATG ATCCAGCAGT AAATCTCCGT TTCTGTAAGC TGTAACCTTA 4560 GTCTCAACAT AGTCTGTACT ATTTTGAAAG GTCGCAACTA CATTGTCACG TAAAAAAGAA 4620 GTTGTATAGG AAATCGGCAA GCCTGGATGA TCTGCTGTAA AGCGACTGCC TTCTTGAATC 4680 AAGTCCTCTA CCATATCCAC CTTGCCTGTT ACAACTCGGG CACCCGAACT TGGGTCGCCC 4740 CCTAAAATAA CCGCCTTCAC TTCTGTATTG TCCAAAATCT GTTTCCACTC TGTCTGAGGA 4800 GCTACCTTGA CTCCTTTTAT CAAAGCTTCA AAAGCAGCCT CTACTTCATC ACTCTTACTC 4860 GTGGTTTCCA ACTTGAGATA GACTTGGCGC CCATAAGCAA CACTCGAAAT ATAGACCAAA 4920 GGACGCTCTG CAGAAATTCC TCTCTGTTTT AAATCCTCTA CCGTTACAGT ATCTTGAAAC 4980 ACATCTCCTG GATTTTTAAC AGCATCTACG CTGACTGTAT AATAAATCTG CTTAAAATTA 5040 ACAATCTGAA TCTGCTTTTC GCCTGAATGG ACAGAGTTAA AATCAATATC AAGAGAATTC 5100 CCTGTCTTTT CAAAGTCAGA ACCAAACTTG ACCTTGAGTT GTTCCATGCT GTGAGCCGTG 5160 ATTTTTCAT ACTGCATTCT AGCTGGGACA TTATTGACCT GACCATAATC TTGATGCCAC 5220 TTAGCCAACA AATCGTTTAC CGCTCCGCGA ACACTTGAAT TGCTGGGGTC TTCCACTTGG 5280 AGAAAGCTAT CGCTACTTGC CAAACCAGGC AAATCAATAC TATAAGTCAT CGGAGCACGA 5340 TCGACCGCAA GAAGAGTGGG ATTATTCTCT AACAAGGTCT CATCCACTAC GAGAAGTGCT 5400 CCAGGATAGA GGCGACTGTC GTTGGTAGCT GTTACAGAAA TATCACTTGT ATTTGTCGAC 5460

AGCTCCGCT	TCTTTCTTTC	GATAACAACA	AACTCATCGG	GTAGCTGATT	ACCCTCTTTG	5520
atg aaa cgat	TTTCAATACT	TTCTCCCTGA	TGGGTCAAGA	GTTTCTTTTT	ATCGTAATTC	5580
TAGCTAGTA	TAAAGTCATT	TACTGCTTTA	TTTGCCATCT	TCTACCTCCT	AATAAGTTCC	5640
GGATTGAGT	TGCATAAACT	CAGACTTGTT	CAGCGAAATC	AGCCGTGGTT	GGACTAAGTA	5700
TCCAAAATT	TCCTCGTACA	ATTCTTCTGA	GACATTGCGT	CGCCGTCTGG	CTAAATAAGA	5760
GTCGGAATG	ACCGTATTAT	CCAACATAAA	TACCTTATCT	AAGTCAATCA	AGGTTGGTCT	5820
GTAAAAGGA	TTACGAGCTA	GATCCGGCTC	TTCTATCATA	AAGTTCTTGA	CCAAACGTCT	5880
GTCAAGAGA	GCTGGTTTGA	AGGTCTGATT	TTTAACCAAC	TCTTTGTTTT	TAGTCATGCT	5940
TTGTCAATA	CAGATATACA	TATGATTCTT	CACAGCCAAA	TCGCTACTAA	TAGTCGGAAA	6000
GGCAAATAA	AGAGCTACAA	CATCTCCTCT	CTTAATCAAG	CAAGAGCACC	CCCTTTTCTC	6060
TAATGTAAC	ATAGACAGGA	TTGACCAAGT	CTTCTGATTG	ACTCAGAATT	TCCAAAGTTT	6120
AGTTTGGCG	CGCTGTCAAT	TTAGTAGCAT	CTTGTCTCTT	СААТАСАААА	TGCTTGTCGC	6180
AATAACCTT	GACAATATAA	TCCTTCTCCA	AAGCTGACTG	GTAAATCCAC	ATCAGATGTT	6240
TCTGTCCTG	AGAACTCAAG	AGAGAAGGAT	TTTCAAGCCT	CCCGATAGTC	ТСАТААААТ	6300
AAAAACAGG	AGCTAACTCC	TGCCAATCTG	ATTGGCTAGT	TGTCAAGGCT	AGAAAAAGGG	6360
TTTGCGAGC	TGATACTTCT	TGGTTAGCCT	TGAGAGTTAC	TTTCCCCTCC	AAGTTTTTTA	6420
AAATCGGGA	AACTCCAGAA	AGCAAATTTT	TCTCTAACTG	CGAGAAATAA	AAACCTTTCG	6480
TCCCAGACA	TAAGTCTTTC	ATGTCGCTTT	CTCTAGCAAA	TAAGAGCTCA	AACATTTGAT	6540
GTAAAAGAA	AAATATCTGG	CACTGGGTCG	CGCTCATCTT	TTCCTTATCG	GCTTCTTTTT	6600
TAACCAGAG	CAAGGGCGAC	AGGTAGCTGG	ATTGAGACAT	TTCCTCTACC	TCCTACTCTT	6660
TTTAACTGG	AGCATCTGCA	CTAGCTGCCA	CTTCTTTTGA	CTGGATACTT	TCCCACTGGT	6720
'AATCTCCTC	TGAGATAAGA	CCTTCGCATG	TCTTGACAAA	TAGGGCAAAA	GCCTTGGTCT	6780
TCCTGCATA	TTTCTCCGTT	TGGCATTGAT	agaggaattt	TTCTTTCTCC	AGGAGTTGCG	6840
AGTTTTTTG	GTAAGAAATC	CAATTTTCCT	TTGCATTATA	CAAATTGATA	ATCCCCTCAC	6900
CAGCAAGCC	GAGACTGGAT	AAGGCAACCG	AAATCAAACG	GTAGCGATCA	CCTGGCATAG	6960
AATAGCACA	AAAGACAGCT	ATGAGGAAAC	CTGCCACGAT	TTCTGTTATT	TTTAATACCT	7020
'ATAGCGCCT	ACGATGTTGA	ACGCTTTTCT	TTAAAAAATG	AGCTATCTGT	ACGTCTAATC	7080
CTCTGTCAG	GTACATTTCT	TCTGGCGTCA	TATTCGTAAC	TCCTTTCATT	TACTTTGATA	7140
TCAGGG						7147

(2)	INFORMATION	FOR	SEQ	ID	NO:	24:

(i)	SEQUENCE	CHARACT	ERISTICS:

(A) LENGTH: 755 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

CCGCATGGGA	TTGGTGTCCT	TTTGGGCAAT	CTCTTTGACC	AAACTGGAAA	CATGTTTTAT	60
GCGCCTGCCT	TTACTGCCCT	TGTCGGCGGT	ACGTCTATAT	GATCCTAGTC	GCAAAAGTTC	120
CGCGCTTTGG	AGCCATTACC	ACTATCGGCC	TTGTCATTGC	CCTCTTTTTC	TTGGGAACTA	180
AACACGGTGC	TGGTTCCTTC	CTTCCTGGAA	TTATCTGTGG	CCTCCTAGCA	GATGGAGTAG	240
CTCATTTAGG	AAAATACAAG	GACAAAACAA	AGAACTTCCT	TTCTTTCATT	ATTTTCGCCT	300
TTAGTACAAC	AGGACCAATC	TTGCTTATGT	GGATTGCGCC	CAAAGCCTAT	ATGGCTACTC	360
TTCTGGCAAG	AGGAAAATCC	CAAGAATATA	TCGACCGTAT	CATGGTCGCT	CCAAACCCTG	420
GAACTGTCCT	TCTATTTATC	GCAAGTATTG	TCATCGGAGC	CCTAGTGGGT	GCCTTGATTG	480
GACAAGCCTT	GAGTAAAAA	TTTGCCCAGA	AAATCTGATC	AGTTAAAAAG	AGCCACGCGG	540
CTCTTTTTTA	TTTATGGCTC	AATTTCTTAG	TCAAGAAATC	TCCCAAGAAT	TGGATTGCAA	600
AGATAATCAA	aatgataata	ATGGTTGCCA	AGATGGTCAC	ATCGTGATTG	TAGCGGTTAA	660
ATCCATAAGC	GATGGCTACG	TTACCGATAC	CACCAGCTCC	AACCGCACCG	GCCATAGCTG	720
TTtcCCAACA	AGGGaAtCAA	GGTCACAGTC	GTCAC			755

(2) INFORMATION FOR SEQ ID NO: 25:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3010 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

TTCAATTGGT	ATCTCAATCA	ACGGTCTTCA	CATGGTTTCA	ACTGGTTTGA	CTCTTGAAAA	60
AGCGAAAGCT	GCTGGTTACA	ACGCAACTGA	AACAGGCTTT	AACGATCTTC	AAAAACCAGA	120
ATTCATGAAA	CATGACAACC	ATGAAGTAGC	AATTAAGATT	GTCTTTGACA	AAGATAGCCG	180
TGAAATTCTT	GGTGCCCAAA	TGGTTTCACA	TGATATTGCA	ATTAGCATGG	GAATCCACAT	240
GTTCTCACTT	GCTATCCAAG	AGCATGTGAC	AATTGATAAA	TTGGCATTGA	CAGACCTCTT	300

360	TTACGGCTGA	ATGGCTGCCC	CTACATCACA	AACCATACAA	CACTTCAACA	TTCTTGCCA
420	TTAGCTAATT	CAGATAGTTT	AAGTTAAGGT	ATCTGGCCTT	TGAATGAGCT	AAATTAAAA
480	CTTAAAATGA	TCTGTTCTGA	TGTGCTTCAT	TTTTTTATCT	CAATTATAGT	GTCCCCATA
540	CGTTATGAAC	GACTGAAAAT	TAAAACAAAT	ATGATGAGGA	ACCAATACAA	AAGGTAGCT
600	CAGAATCCTG	TATGGATGTG	GTGGTGTTAT	ATGCTCAAGG	CTTGGCACAG	'AAATAAAA
660	GAACGAATTC	GATGGCCTTG	CGGCAGCTGT	GCTGCTGGTG	TATCGCAGAA	ACAGGCTCG
720	ATGATTAAGG	CGACCCAAAG	CCCGCATGAG	GGAGGAGTTT	TCGTGCAGCT	GGCTGATAT
780	CATTTTGTTG	CAGAATCGGG	TGGCTAAGGT	ATTCCAGTAA	AGCGGTTAGT	AATCCAAGA
840	GTTCTATCTC	CGAGAGTGAA	ATTATATCGA	ATTGAAATTG	TTTAGAGGCT	AGCTCAGAT
900	GTCTGTGGTG	AGTTCCTTTT	AAGAATTCCA	GTGGACAAGA	CCGTTTCCAT	AGCTGATGA
960	ATTCGTACCA	TGCTTCCATG	TCGCTGAAGG	TTGCGTCGTA	GGGTGAAGCC	TAAGGATTT
1020	ATGATGAATC	TCATATGCGT	AAGCTGTTCG	GATATCGTCC	AGGGACAGGG	AGGAGAACC
1080	GCCAAGGATT	TTATGTTGCT	AGGACGAGCT	AACTTACGTG	CCGCATTCAA	GGAAATTCG
1140	CCAGTTGTAA	TGGAAAATTG	TTCATGAACA	GTCCAATATG	TGTAGAATTG	GCAAGTCCC
1200	CAATTAGGGG	GTTAATGATG	CAGATGCTGC	GCAACGCCAG	TGGAGGTGTT	TTTCGCTGC
1260	AAACGAGCGA	AGATCCTGTT	TCAAGTCAGG	TCAGGTATTT	CTTTGTCGGT	AGAGGGGGT
1320	CAAATCTCTG	AATCCTAGCT	GTAATCCTCA	ACTAACTTCC	TAAGGCTGTG	TGCCATTGT
1380	CTCATGGCTG	AATCCAAATT	ATGAAAATGA	GTTGGTATTA	AGAAGCCATG	AGATTTAGG
1440	GCAGAACATG	AGGGGCCTTT	TGGCCTTGCA	ATCGGAATAT	ATAGATGAAA	ACGAGGAAA
1500	GATGATTTTC	CAGAAATCTA	GTGTAGAACT	GGTGTCGAGA	AGATCAATTA	AAAAGTGCT
1560	ACAACCATGG	TGGTGAGTCT	TTTTGCCTGG	TCGGGTTTGA	GAGTGACTTG	GCAAGATCA
1620	CTATCTGGCT	AGAAGCCATT	TTCCCATCCG	AACATGCTAC	ACGTGACCAG	CAAGCTCTT
1680	ACTTCTCAGA	TAAGGAAATC	TTTTGCTGGC	GCGGGCTTAA	TGGGACCTGT	ACCAGTGTT
1740	GGCCCCAAT	TAATGCŤTAT	TGGTCGAGCG	ATGGATATGG	TCTAGGAACT	AGAGAGTCA
1800	ATGACCTTTA	CAAGATTCCA	AGGGAGTTGG	GCAGAATGTA	CTACACGGAA	AGGAAGTTT
1860	ACAGTGAACA	AATTTTAGCA	AGGGTGTAGA	AGTGTTGGTG	GATTATCAGT	CCGTGGTCC
1920	CCAGAATTGA	TTCTTTTCAT	TGTTGGTAAG	GAAAAAAATA	TGCAGCCCAA	TCAAATTGT
1980	AGTTGAGATT	TAAAGAAAAA	TCAATATGTG	CAGTACTTTA	GCGCTTGCAC	TGATGATGT
2040	GCGGACGCAG	GTATTGAAGT	CAATAGCGAT	ATGTAATAAA	ACTITITAC	AATTTCTCA

				296			
CTAGG	ATAAA	GAGATGCCAA	ATCATGTGGA	AATAAGGTTT	TTTCTTGGCA	TAAAATCCAG	2100
CTCCA	ACTGT	ATAACAGAGT	CCGCCAGTTA	CCATGAGACT	CCAGAAAACG	GGTGTCGTTT	2160
GACTO	ATAAT	GGCAGGAATG	ATAGCCAGAA	CCAACCAGCC	CATAATCAGG	TAAAGAGCAA	2220
GGCTA	TTTAA	CTCATTGACC	TTTTTAGCAA	AGATTTTATA	GAGAATACCA	AAGATGGTCG	2280
TTCCC	CATTG	GATGACAATA	ATCAGATAGC	CAAACCAGTT	ATTCATCAAG	GTCAAGACAA	2340
CGGGG	GTGTA	TGAGCCGGCA	ATGGCAACGT	AAATCATAGA	ATGGTCAATG	ATTCGCAAAA	2400
CATAI	TTGTG	GGTCGAACCA	TAGGCCATAG	AGTGATAAAT	GGTGGATGAT	AGGAACATGA	2460
GAAAG	AGACT	GATGACGAAA	ATGGAAACGC	CGATAGAGGA	TAAAAATCCG	TGTGCTTCAT	2520
AACTA	TAGAT	GGATGAAATA	GGCAGCAAGA	TAAGCATGAT	GACTGCACCC	ACAGCATGGG	2580
TCACC	СТАТТ	AGCAATCTCC	TCTCCAAAAC	TGAGTTGTTT	GCTGAGTTTA	AGACTAGTGT	2640
TCATI	'GGATT	ACCTCCTCTT	GAGTATGATC	GATTAAGTCT	AGAGTTTGAT	GATAGAGTTT	2700
AACGG	TTTGG	CAGCTGGTTT	GGATAATAGG	GTTAGCTGGG	TCAATTCCTT	GGTTCATGTA	2760
GTCCA	CAAAA	GCATCGTAGA	GTTGGTCTGA	ACTTGCTTGA	GTTTGTAGAG	TATTAAGTGT	2820
CTGGG	CTATT	TCTTGAATAG	AAAATACAGA	CTTGAGGGTT	GTGATAGCAA	TCAAACGGGC	2880
ААТСТ	GTTGG	CGTTGGTATT	TTTTTTTGTC	AGGCTTTGTC	AGGTAACCAT	TTTTCACATA	2940
attgi	TGACC	ATAGATGCTG	TTAGGCCCTT	GTCTTTATTA	GGAGAGATAG	GGGCGCAGAC	3000
CTGAT	TGACA						3010
				_			

(2) INFORMATION FOR SEQ ID NO: 26:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15213 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

CATAAATCGG	TGCAAATAAC	TTAATAGTGA	AGTAGCCATT	TCTTTCGTAT	TTACCTGAGG	60
CATATTCCCT	AGACGAAAGA	ATATTATTAT	CAATCAAATC	ATTGAATGAA	CGTAGTCTTT	120
CAACTTCTTC	TACTGTTAGA	TTTCTGACAA	CATTTGTTGC	ATAGACCTTA	TTTCCATCAG	180
GATCAGGATG	GTACTCATTT	GTAACTTTTC	TAAGAAGTTG	TTGTTTTTGA	TTCGTATCCA	240
ATTTAAGAAT	TGAATTTCCT	TCGAGATATT	CCAACATATA	AACAACGTCA	AACATGTTGT	300
GGACATATTG	CTTCAAATCA	TCTGCATTAT	TAAATCTTGT	AGTTGGATCA	AGTACTTGTA	360
ATCGTCGACT	TTCTGTACTA	TCAGATTTTG	AATGTTTCAA	GATGGAGTTG	ATGGTAATGG	420

ICGCATC ATC	TGGATGGTCT	GGTGCTTGTA	ATAATCCTTT	AGCAAAGAAC	TCTGGTCCCA	480
AGCCACTTCT	TCGACCATAT	CCTCCAAGAT	AAATGTCCTG	ATCTGAGTCA	TGTGTCATCT	540
CATGCGTATA	AGTAATAGCT	CCATCCTTAT	CCAACATTCG	ATAACCCATA	TAATAAACTG	600
CATCACCTGT	AGCATAAGCA	CCGTGTTGAT	TATGCCCAAC	TTTATTTCCA	ACAGGTCCAA	660
AGAAATGTTG	CATTGCAGGA	TTTGGATTAT	CAAAATCTGC	CACTTCTGTA	GCTTTCCCTA	720
CGGTATTATC	ATCGCCAAAT	TTATAAGCAT	CGTAAAGCAA	ААТАТТТСТА	TAAAGTTTTT	780
CACGTGCATT	GTCGTCTAAA	ATACGATACC	AATAATCGTA	GTGATCTCGC	TGACGTTTGG	840
CTGTTTCACG	CGCATTTTCT	TCAACAAAAT	CATTGAGAGC	CTTGCCCGCT	TTATGGTCAC	` 900
PACTGCGGTA	GCGATCATAA	GCTCCAAATC	CTAGACTAGA	CATGGTCGAG	ATGACAAATA	960
CGGATCTCTC	TGGCAAGGTC	AGGAGAGGCA	AGACCATATT	GCGGTATTTC	CATGTGGCAC	1020
ICGTGATACG	АТСАТАЛАСА	CCGATAGAAT	ACTTGGTGCC	AGCTAACCCT	TGCTTCGTTT	1080
PCACCTCTTC	GATAGTGGAT	TTTTCTTCGA	CAATGTAAGC	CTTAGTCTCT	GATTTAAACC	1140
AGTCATTATT	GCTTGTATTT	GCTAAAAAGA	CTTTTCGGTA	ATGTTCCAGC	GTGCTAAACA	1200
AATCTGTCGT	TCCATGTTGA	CTGGCAAGAC	TGATACCATA	AGTATCGACA	TTATTCTTAG	1260
CTAGAAGATT	GTTAAAGCCA	GATTTACCCA	ACTCAATCAG	AGTATCTAAT	GGTGAAGCAT	1320
PCCCCTTACC	AAAGAAGTCC	AAATGGTACA	GAACTAGGTC	TTTGACATTC	ACCTGACCAT	1380
AGCTAAAGTT	ATACCACCGT	TCCAGATAGG	TCAAGCCAAG	TAGCAAGGCT	TCCTTGTTGC	1440
GTTTGATTTT	ATCTACAAGA	TAACCTTCAG	TGACGGGGTT	AGCACTAGCC	AGTCCAGCAT	1500
CCGCTGACAA	GAGTTTTTTC	AAACTGTCTT	CCAGTTGTTG	TTTTGTTTTG	GCGAACTGGT	1560
CTTCTAGATA	GAGCTCAGTT	TGCTTGACGT	TTGGAGAAAT	ACCCAGCGTC	TTTCTGATGG	1620
CTTCTGAATG	ATAGTCAACC	TTTTGTAAGT	CAGGTAAGAC	TTGCTTGATG	ATAGAGGTTT	1680
GGTCATACAG	GAATTGGTTT	GGCGTATAGA	GAAGTCCAGT	ATTGCCCAGA	CTATATTCTG	1740
CTAATTTGGC	GAAATCATTC	TGGTATTTGA	GATCCAGCTT	CTCAGATAAA	TCATCCTTGT	1800
AGTGAAGCAA	GAGTTTGTTT	GCAGTCTGTT	TGTTAGAAAC	AATGTCTGTG	ATGACTTGGT	1860
PGTCCTTCAT	CATGACTGCT	GACAAGAGTT	CTTTTTGATA	TAAAAGACTG	TTCTCATTGA	1920
CCAGGTTTCC	GTATTTGACG	ATGGTTGCCT	TGTTGTAGAA	AGGTAGCAAT	TTTTCAATGT	1980
PTTTATAAGT	CAAGTTGCGC	TTAGCTTGAT	AATAGGCCAC	CTTAGAAAAA	TCACTGTCTT	2040
TTTGCCACT	TGTTGAAAGT	GGCTCCACTG	TTGGTAAAAT	GAGAGGATTG	ATTTCTGCTT	2100
Pulminite Culture C.	AATTTCACAA	GCATCTAGCA	ብብረ፣ ብካተር ርላኮር ጥ	ምምርምምር አ አልር	CATTCCTTCC	2160

			. 298			
TGACGACCTC	ATCCTTGACC	AAGGTGACAT	TGTAGACTCT	GTTGGCCTTG	CTGCTGAATG	2220
IGTCCTTTAC	CTTCATTTCG	TTATAGTGGT	AACCAGTGAT	GGCATTŤCCG	TTGGTTACAT	2280
TAACATCGCT	GAGAACATTG	GTCAAACTTC	CAGCATGCCT	AACATCACCA	GAAGTTCGAT	2340
CCCACAAATT	GCCTGCCACT	CCAGCGACTC	TACCAAAGTG	CTTGACATTG	TTGATATCAC	2400
CTTCAGCATA	GCTATCTTGG	ATCTGTGCAT	CTCGGTCTAC	TAGGCCTGCA	AGTCCACCCA	2460
CAGTCTGATC	TGAAGTATTT	GTGTTAGATG	AAATGGCTAC	TGTCGCTTTT	GACTTAGTAA	2520
GTAAAGCCTT	GTCACCTGTC	AAATGACCGA	CCATACCACC	GATATTGTAG	GCAGCAGTCG	2580
TTTCATAAGT	GTTGATAATT	CTTCCCTTGA	AACTGCTCTC	TGTGATGCTT	GATTGCTCAG	2640
CCTTAGCCAG	CAAACCACCG	ATACCACGTT	CACCAGCCAG	AACACCATCG	ACGTGAACTT	2700
GCTTAATTTT	TGTGTTATTC	TGAGCTTCAT	TTGCCAGTGA	ACCGATATCA	TCTTTCCCTG	2760
AAATAGCAAC	ATTTTTTAGA	CTCAGTTTTT	CTACTGTAGC	ACCACTCAAG	TTTTCAAACA	2820
GAGGTTTTTT	CAAATTATAG	ATAGCATAAT	TCTTGCCATC	TTTTTCACCG	ATTAAACGAC	2880
CAGTAAAGGT	GTCCTTGATA	TAGGATCTTT	CATCAGGACC	AAGCTCCACT	TCGTTAGCAT	2940
TCAGGCTGGC	CGCTAAATGA	TAGGTTCCAG	AGGGATTTTG	GTTTATAGCT	TTGACCAGAT	3000
TACTAAAGGA	AGTAAAGTTT	GTTGTTTCTT	CTGTTCCCTT	CTTAGCTAGA	TAGAAGGTAA	3060
AATTATCTTT ·	ATATCTGCTT	TCTATCTCCT	GCTGAAGCTT	CTCTACTTTT	GCTGTGATTT	3120
TATAAAGGAT	TTTATCATTT	TTTCTTTCCT	CTGATATTGA	TGCTACTGGT	AGGTATACAT	3180
CTTTGAATGA	AGAAGATTTC	ACTTTAACAA	AGTAGCTATT	TGGATTGCTT	GGAACTTGCT	3240
CTAACGAAAT	GTGTTGTTTA	TAAGTACCAT	TTGACAAACT	GTATAACTCT	AGGTCGGAAA	3300
CATTTCTTAA	TTCAAGTGTT	TTCTCTGGTT	CTTCTACCTT	TTTATCAGGG	TCTAGTTCAT	3360
TTTCTTGTTT	AATTTCTTCG	TTTCCATTTG	AATTGGATGT	GTTTGATTCG	GTTGAAACAT	3420
CCTCAGTTGA	ATTTCCGTTT	GATGGTTCTG	GTTCTGTTTG	TCCATTCTCT	GATGTTGTAT	3480
TACCTGAATT	TTCTGGTTTT	GTTGCAGTTC	CGTTTTTTTC	TGGTTGATTT	GATTCTTCAA	3540
CTGGTGGTTT	TGAATCACTA	GGTTTATTGG	ATACTTCTCC	AGTATTTTCG	TTAGCTATTT	3600
TCCCAGAGTT	TGTTTGTGTT	TCTTCTGCAG	GTTGAACTGG	TTTTTCTGTT	TCTTGATTTG	3660
AGGTACCTTC	TACTGTGCCT	TCATTTGGAT	TTACTGGAAC	TTCTTCTACA	GTTTTTTCTG	3720
AATTTTCATT	TTTAGAGTCA	TTATGTTCTG	GTTTATTTGA	TTCTCCAACT	GAGGTTGTCG	3780
AATCACTAGG	ATTACTGGAC	ACTTCCCCAG	TATTTTTGCT	AGATGTATCT	GGTGATACTT	3840
TCTCTGAATT	CGTTGTTGAT	TCTTCTGCAG	GTTGAACTGG	ATTTTCTGCT	TCTTGAATTG	3900
AGGTTCCTTC	TGTAGTACCT	TCATTTGGAT	TTACTGGTGT	TTCTTCTGTT	GGTTTTACTG	3960

GAA	CTTCTTC	AGTTTTTTCT	GGACCTTGTT	CTTTGGTCTT	CTCAACCGGA	GTTTCAGGTT	4020
гта	CTTGCTC	AATATTACCC	TTATATTCTG	GAAGCGGTGC	TACCTGCTCT	GGTTCACCTT	4080
FAT	CACTTAC	CACAGTATCT	GGCGACTCTG	GTTGAACCTC	AGTCTCACCT	TTGTCGGTCA	4140
CAA	CTGCTTC	GGGTAATGTA	GGTTGAACTT	CTGGTTCGCC	TTTGTCACTT	ACTACAGCTT	4200
CGG	GCAACTC	AGGCTGAATT	GCGGGTTCAA	CAATAGCTCC	AGACTGTACG	TCCTTATGTT	4260
CTA	CACCAGT	CTCAGGTTGT	TCCTTTATAA	CTTGAGTTTT	TTTAGTACCT	TTTTCGACTA	4320
rtc	TTGGACT	AGGCGCAGTC	GTTGAAGTTG	AAACAATTTC	TCGCGAAACT	TCTTCCTTGT	4380
PTA:	CAGAGAA	TATTCTGACG	ATTTCAACTT	TCTTACCTAA	TTTACCTTCT	TGTTTTACTC	4440
rta:	CAGTTCC	TTCAGCTAAA	TCAGGATTTT	CTTGAATTTC	TTCTTGAAAA	TCTATTTTTG	4500
rct	CCATAGT	TTCCTCACGA	TATAAGAGTT	CAGGTTTGTT	CAATTGACCT	GATAAAACTT	4560
CAT	CCTGTGG	ATTTAATGTA	TTTACCCCAG	TCTTTTCTTT	TGGAGAAATC	TTCTCCTCTT	4620
FCT	TCGTTTC	TAGATTCTTA	TGTTCGGCTA	ATTGTTCTTG	AGAATCTGAA	GATTGTTTCT	4680
тт	CTTTTCT	TGGATTGATT	AATTCAGTAG	AGAAAGGTTT	TTCAACTACT	TGAACTTCTG	4740
rcg	GCTTAGT	TGAAGAAACA	GCTCTTTCTT	CCTGAATAGC	TTGTACTGTT	GATGGATGGT	4800
TA	CAAAATT	CGGTGTAACA	TTATAATCCA	CCTTTTGTTG	TTTTGTAGGA	GTGGCAACTG	4860
\AC	TCTTTTG	ATTACTTACT	TCAGACTCAG	AAGTCGTTTT	TCCCTCTTTG	ATATATCCAA	4920
rat.	aagtgta	ACCTGAAATC	TCTTTAGGAA	GAGGTAATTT	TTCTCCAGAG	GTCAATTCAT	4980
AGT	CCGTATT	GTAATTTAGC	AAAAGATGAT	TTTCTAAAGC	ATGGACTGAA	ACTAAGACAC	5040
CAT"	TTCCTAT	CCCTGCAACC	AATACTAAAT	GTAATACCGT	TTTATTCTTA	ACCTTTTTCT	5100
rgg.	AAACAGC	AAAATTAAA	ATTCCCATAG	CAGCTAAGCT	AGCACCAGCA	ACTAGGGCTT	5160
GCC'	TCTCATT	CTTGCTTCCA	GTATTTGGCA	ATTCCGCCAG	TTGATTTTGA	GAATTTAACT	5220
TAT.	AAACAAG	ATAATAAGTT	TCATCATCAT	TCTCCACGTA	TGTCGGAATA	TCATAGACAA	5280
CT	GCTTCTT	TTCTTCTGAT	GATAGCTCTG	AATCTGCCAC	ATATTTATAG	TGAACTCCCG	5340
CAG	TTTCTTG	AGCATCCACA	GATGAACTAG	CTAATACAGA	CATAAAAAAT	AAACTTGAAA	5400
rcg'	TTGCAGA	TACAAGTCCT	ACTGATAATT	TTCTAAATGA	AAAACGCTCT	TGTTTTTCAC	5460
`AA	AATACTT	TTCCATTATT	CCTCCTTGAA	ATAAAATTTA	TATATGTTAC	AAAGACCTTT	5520
\TT	ATATTAG	TGTATTATCT	ATTATCTATA	GAAAAGGCAG	TATACCTTAA	TTATACTCTT	5580
\AT	TTACAAA	AAAGTCTTAA	AATTGAGATG	CGCTTTCATA	CTTTGTTTTA	TATTATTTGG	5640
\GG'	TACAATA	ACACCTACCA	ТСАВАТТТАС	ACGGTAGGTG	ттастсатат	САСТААТССТ	5700

			300	*		
TCTAAAAATG	GTTTGAGGCA	GTTGAGGAGA	ATTCCTTCTA	TCCAGCTTCC	TTGTGCTGAT	5760
GAGCGATGGT	CTTCCTGCAG	GCTTTTTTT	AGAAAATCTC	GGACTTGTTC	TGGTGCGATT	5820
TCAAATTCAA	AGGCTTTCAT	TTTATAGAAA	AAGTCGATGA	GATGATCTGA	CAGGTATTCA	5880
GTTGAAAAGG	GTACTTCACC	ACTTTTTCTA	TATTCTAATA	AGAGTCTAGA	AAATCGAGCT	5940
TTTTCTTCAG	GAAGCTCACG	AAAATAGGAA	TTGAGGATCC	AAGTCTGCTT	CTGTTTTCTT	6000
TCAATTGGAT	CCTGACTGGC	AATTCGTTGG	TCTTTTTCCA	GCTCTTTTTG	GTATTGTTTG	6060
GCCTTGATAG	CTCGTTCTGC	TCTATTTTTA	CCAAAAAGAA	TTTTTTCCCA	CTTGCGTTCT	6120
TCTTGAGTCA	GGGTCTCTGT	AAAGCCAAAG	TAATCTTGAT	AAGCACGCTC	TGCGGGTCCC	6180
atggctagaa	CCAGATTGTC	TGCATATTGC	TTGGCGATTT	TATCCCTCTT	CTTGCGTTCT	6240
TTCTCTGCCT	GGATACGGAG	TTCTTGTTCG	TAGTCAATTT	TCTCCTTGCC	TAGCTTGACA	6300
AGGTAGAGTT	GGTCATCCGA	TTTCCCAAGT	AAAAAGGGTT	TGATACACTT	TTCAAGGACT	6360
TCTTCCATCC	GAGCCTTTTT	CTTTGGTTCC	GCCTTGGTCC	AACTTCCTCC	CTGAAAGACT	6420
TCTAGGAAAA	GCTGGTAGTC	TCTCTCAGGC	GCAAATTGAT	TGCCACGATT	GGGTTTGAAA	6480
ACACCTTTTT	CCCAGAGCCA	TTTTAGAAGT	CGCTCGTCAA	AGTTACTTTT	ATTGACCTTG	6540
ATTTTTTCCT	TTTTCTGAGC	TTTTCTGGTT	AGATTTTCAA	CCTTTCTGAG	CAGTTTTTCT	6600
TCCTCTTCCA	ATTGCTGGTC	AAGGGACAAT	CGATGAAAAT	GACGÁACACA	GTCGCTACCA	6660
ATTGGAAAGA	GCCTTGCCC	TGTGACACCG	TTAAAGAGTT	CATAAGCGTA	TTTGATGGCA	6720
TTTCCACAGA	CACAATTGCT	ACGGCCGATA	CCGTTAAAAA	TAAAGGAAAC	TTCATTCCAT	6780
TCCTTGGTAG	CTTGTTCCCA	AGTATCCGCT	TTCGAAGCCT	GTAAAACTGC	ATCGTGCAGG	6840
GATTTTCTAA	CTGGAAGTGT	CATGAGGTCT	CCTTTCTAAT	ACTCAATAAA	AATCAAAGAG	6900
CAAACTAGAA	AGCTAGCCGC	AATCAGCTCA	AAACACTGTT	TTGAGGTTGT	AGATAGAACT	6960
GACGAAGTCA	GCtCAAAACA	CTGTTTTGAG	GTTGTGGATA	GAACTGACGA	AGTCAgTAAC	7020
CATATATACA	GCAAGGCGAA	GCTGACGTGG	TTTGAAGAGA	TTTTCAAAGA	GTATAAGTTA	7080
TACTTTTACA	ACTTGAACCT	CGTCTTTACC	GAGTAAAATC	AAGTATTTT	CAATATTTTC	7140
AATCGAATAG	GCTCGTGATA	AAGCCTCTTC	GTATAGAGCT	AACTGACCAC	GATAGCGGTC	7200
TACGAGTTGA	CTTGGTTCAT	CATAGCGGTC	TGTCTTGTAG	TCGAACAGAA	CAATTTTGTT	7260
TTCGTAAAGC	AGATAGCCAT	CAAGGATACC	ACGGACAACA	AAGTCTTCCT	GACTCTTTTG	7320
GTCTCGTTTG	AGCATGGAGA	AAGGTTGCTC	GCGATAAAGA	TGGTCGGTAT	TAGCAAGAAT	7380
TTCCTGACCG	AGTACTGTGT	CAAAGAAAGC	AAGAATTTTA	TCAAGATTGA	TCTTGTCTCT	7440
GACAGCTTGG	CTAGTTTGAA	CTTGTTTGAG	TGTTTCTGTT	AGGCTAGCAA	GGGTTAGTTG	7500

CTGGCTGAGG	TCAATTCTCT	GCATGAGTTC	GTGAGTAGCA	CTACCAATCT	CAGCTCCAGT	7560
TACCTTTTCT	TTGGTTGAAA	AATCTGGCAA	ATCGAAGCTG	ATTTTCTTGC	CTACTGACTG	7620
ACCTTGACCA	GCAATCTCGA	CACCTTCCAT	ATCCATAACT	GGTTCGTAGA	ATTTCTTGAT	7680
TTGACTTGGG	GTTTGAACAC	TAGGAAGTTC	AATAGCTGCG	CGGTGAAGAG	TATTATAAAC	7740
TTCCACCTCC	TTCAGCATTT	CCAGAGCTTC	TTTGATGGTA	TCTGACTGAC	GATTGTCTGC	7800
TTGGGAGCTA	TCTTGGAGAG	GACTCTTGGT	TTCCAACTCT	CCGATAGCTT	CTCTGGTCAA.	7860
CTGATCTTCG	CCAATAAAAC	GATAACTAAA	GTTGAGCTTG	TCCTTAGTAA	ACACTTTACT	7920
GATAGCCCAA	AGCCAATCTT	GGAAATTCCG	TGCTTGCAGT	CTAGTATTGC	TATTTAGTTT	7980
CCCATTTTTG	GCTGCTGGGT.	ATTCCTTGGA	TTCCAGCTTT	TCACGAGAAC	CCTTGCCGAC	8040
AAGATAGAGC	TTTTTCTCAG	CCCGCGTCAT	AGCAACATAC	AGCAAACGCA	TCTGCTCAGA	8100
ATAGCTTGCT	AGCTGTAATT	CCTCTTCGTT	CTGCCTATAG	GTCAGACTAG	GAATGGAGAG	8160
TTTGATGGTT	TTAGGATAGT	GGTCTTCTAC	TGCCCCTGTC	TCCATCTTGG	CAATATATTT	8220
GACACCAAGA	CCATTCTGAC	GACTGAGAAT	GACTTCTGAC	ATAGAGTCTT	GCTTGTTGAA	8280
ATCTTGATCC	ATATTGAGGA	TAAAGACGTA	AGGAAACTCC	AGCCCTTTAC	TCTTGTGGAT	8340
GGTCATGAGC	TCTACTGCAT	CTTTTGGCGG	TGCGACGGCC	ACGCTTGCCA	AATCGTGCTG	8400
GGCTTCTAAG	ACTTGGTCAA	TCATACGAAT	AAAACGCGAC	AAACCTTTGA	AATTGCTCTT	8460
TTCAAATTGA	TCAGCACGCA	GTGCTAGGGC	ATAGAGATTG	GCCTGCCTAG	CAGGACCATT	8520
CGGCAAAGCC	CCAACATAGT	САТААТАААА	ACGGTCGTTG	TAAATCTTCC	AAATCAAGTC	8580
ATAGAGAGAG	TGGGTTTTGG	CATACAAGCG	CCAAGAAGCT	AGGATATCCA	TGAATTGCTT	8640
TAGTTTTTCA	GCTAGAGCTG	TGTGAATCAA	GCCTTTTTGA	CTACTTGCCA	TTTTTTGTGC	8700
ATTGACCAGT	TTCTCATAGA	GATTTTCGTG	GACTTTATCC	TCTGCTTTCT	GAAGGGACAA	8760
ACGTGCTAGC	TCATCCTCAT	CAAAACCAAA	CATTGGAGAC	TTCATAAGGG	CAACCAAGGC	8820
GTAGTCTTGC	AGGGGATTGT	GAATGACACG	AAGAGTGTCT	AGCATGACTT	GCACTTCTAG	8880
GGATTGGAGA	TAATTGTTTT	GCTCTCCGTC	AGTTTTGACA	GGAATTCCGT	ACTCAGACAG	8940
GGCGAGGAGA	ATCTGGTCAT	TACGACTGCG	GCTGGAGGTC	AGAAGGGCAA	TTTCCTTAAA	9000
GGCAACACCT	TTTTCTTGAT	GAAGTTTCAG	AATCTCCTTG	ATAACTAAGC	GCATTTCGCC	9060
TGTTAGTTTC	GTTTCTGTTT	GACTCTCTTC	TTCCTCACCT	GTATCGTCCT	TGTCGTAGAG	9120
GAGAAATGCT	GCCTTGTTGT	CTGGATTGGG	AGTCAGTTTG	GTATTGGCAA	AAACAAGCTG	9180
GTGCTTGTTA	TCATAGTTGA	TTTCGCCGAC	CTCTTGGTCC	ATGAGACGTT	CAAAGACATC	9240

			302			
ATTGGTTGCT	GACAGCACTT	CTGAACTACT	ACGGAAATTT	TCCTTGAGGA	TAATGAGCCT	9300
GCCTTCTTGG	GGATTTTGCG	CATAGCGTTG	GAATTTCTCA	TTGAAAATCT	GCGGGTCTGC	9360
CTGACGGAAA	CGATAGATGG	ATTGCTTGAT	ATCTCCCACC	ATAAAGCGAT	TGTGGCCATT	9420
AGACAACAAT	TCCAGCATCC	GTTCTTGAAT	ATGGTTGGTA	TCCTGATACT	CATCGACCAT	9480
GACTTCATGG	AAGCGCTCCT	GATAAGACTC	ACGAACTTGT	GGGAAATTCT	СТААААТСТС	9540
aatggtgtaa	TGGCTGATAT	CAGCGAATTC	GAAGGCATTT	TCCTGTCGTT	TTCTCTGACG	9600
ATAAGCCTCT	ACAAAATCGC	TCATGAAAGA	TTGGAAGGTT	TTAGCTAGTT	TCCAAGTGTC	9660
TCCATGATAA	CGTTCTTGAT	AGTCGAGAAT	CGCTATCTGG	TCTGATAATT	GTCCTAGTTT	9720
AGCAAACTGG	GTCTTTCTCT	CTTCGTTGTA	GGCATCAGCC	AGGGGCTTCA	AATCAGCCTA	9780
CGGCTGGCAT	TAGTCAGAGC	TCGACCGTTT	TTCTCCTTAG	AGATGGCGAC	AACACGCGCA	9840
AGCACTGCCT	GATAAGCCTG	ACTATCGGAC	TCCTGATTTA	GGGAGCCAAT	TTCATCCAGA	9900
ATTAACTGAA	CATTTTCTAA	ATAGGCAGCC	TTTGCAAACT	CCTTGGCATC	GTTATCCAGA	9960
TGGTAACGGA	AAAAGCTTTC	CAAATCCCAA	AGGGCTTGTT	TGATTTGCTC	GGTCAGTTTT	10020
тсттттсас	TGGTAAAATC	AGCTTTCTCA	AATCCTTTGA	GGAAAGATTC	ACTCAGCCAC	10080
TTTTGAGGAT	TACTGGTGGA	TTGGAGGAAG	TCATAGATTT	TATAGACCTG	CTGGCGCAGA	10140
CCCCGTTCGT	CCTTGCCACG	CCCAGCAAAG	TTTTTCAGCA	AATGACTAAA	GGTCTCTTTC	10200
TGTTTACCTT	GGTAATGCGC	TTCAAAGACC	TCATGAAAGA	CTTCGTTTTC	GAGAATAAGT	10260
TGCTCGCTTT	GGTTTTGTAA	AATACGGAAA	TTAGGTGCAA	TATCAAGCAG	ATAACCATGT	10320
TTGCCAAGGA	ATTTTTGTGT	GAAAGAATCC	ATGGTTCCAA	TGGCAGCGTT	GGGTAGGTCT	10380
GCCAACTGGC	GACCCAAGTG	TTGTTTGAGG	TCGACATCAT	CTGTTTCTTG	GATTTTCTTG	10440
CTGATTTTTT	TCTCTAAACG	TTCTTTAAGT	TCAGTTGCAG	CCTTGACGGT	AAAGGTTGAG	10500
ATAAAGAGTT	GAGAAATTTC	GACACCACGC	GCCAATTGGT	CCAGAATGCG	CTCTGCCATG	10560
ACAAAGGTCT	TTCCAGAACC	AGCCGATGCT	GAGACCAGGA	TATTCTGGGC	AGAAGTGTAG	10620
ATAGCTTCGA	TTTGCTCGGC	AGTTTTCTTC	TGTTCCTTGC	TCGAATTTGC	TTCTGCTTCT	10680
TGCAGTTTTT	GAATCTCCTC	CTCACTTAAA	AAGGGAATAA	GCTTCATCGA	TTCAACTCCT	10740
CTCTTATTTT	TTCAAGCCAA	GCTTGCTTGA	GTTTTTCTCC	GACCAGACGC	TTGCCATCAG	10800
CTAGGTCCAA	CTTTTCTAGG	AAACGGGCTT	GGCCCAGATG	GTAATTGGCT	ŤCAAAGCCTG	10860
TAATAGCCTG	ATGTTGCTGG	ACGTATGGGG	CAATGCTTCT	GCCATTTTCA	GTATAAGGAT	10920
TGATGGCGAA	CCGGCCTGCT	AAAATCTTCT	CAGCAGCTTT	CTTGTAAAGA	TAGGCATTGT	10980
AGTCCAGTAG	GAGCTGAAAT	TCCTCATCTG	TCAGTTGATT	AGCCTTGTTT	TTGTTATAAA	11040

303

ATTCGCCTAA	ATAACTGCTT	TCTTTTTCCA	AGAAGAGCCC	TTGGTATTTC	ATAGATTTGC	11100
TGGCTTCTAC	CACTGCTCCT	GCCAGACTTT	TTACCGCCAT	CAGAGATTGG	ACAGGTTCAG	11160
CCATTTCCAA	GTACATGGCG	CCGAAAAAGT	TCTGCTCCCC	TTCTCTTTTT	AGGGCAGCAA	11220
GATAGGTTGG	TAACTGAGAA	TTGAGCCCAT	TAAAGAAATG	AGGAAACTGG	AACTGAGTCA	11280
GACTGGATTT	GTAGTCTACT	ACTCCTATCG	CTCCATTAGC	TTTCAAACGG	TCAATCCGGT	11340
CCACCTTGCC	TCGTACAAAG	ACACTGCGTC	CATTGTCTAA	TTGAATAAAG	GCTTGGTCTT	11400
TTCCACCAAA	ATTTGCTTCT	TCTTTGATGG	TTTCGATGGC	TGGATTGTGT	CGGAGAATAT	11460
GTCCAGTTGT	CCGTGCAACA	TCAAGCAAAA	CTTCCTTGGT	AAACTGGGCT	TCCAAACTTT	11520
CTTGATAAAT	AGCTTCAAAT	TCGCGTTCTT	GACTGGTTTC	TTGAATAGCT	TGTTCTAGAC	11580
GTTGGTCAAA	GGAATCTTCA	TTAGGCAACT	GTAAGGCGCG	TTCAAAGATA	CGATGCAAGA	11640
AATTCCCGTG	ACTACGGGCA	TCAGGATGCA	AACGTAATTC	CTCCTGCAAG	CCTAAAACGT	11700
AGCGTAGGAA	ATAACTGTAT	TCATTGCGAT	AAAACTCTGT	CAAACCCGAC	GTAGACAGGT	11760
AAAACTCCTG	TTTGGCAGGA	TAGAGAGCTT	GCAAGGTGTC	CTTGGCTAAG	GTCTTGCTGC	11820
TTGGACTGGT	TGGGATAGCT	GGATTTTCCA	GACCTTGCTG	ATCTAGTTTT	TTACCTATGA	11880
CACGCGACAG	AACCTTGACA	AAAGTCAAAT	CTTGCTCAGT	ATCGCTCATC	TCACCCTGCT	11940
GGTGATAGGC	AACCAGACTA	GACAAAAGAC	TGTGATAGGA	CCCCATATCC	TCCTTAGACA	12000
GTCCTTTGTG	ATTCATCCTC	TTCTCTCTCC	GCCTAAATCC	AAAATGGATC	AACTCTTGAA	12060
GATAGGCAGA	TTCCTTACTT	TCACTTTCGT	TAAAAAGGCT	TGGAGCCGAC	AAGAACAACT	12120
GCTTACGAGC	AGAATTGACC	AAGGAAAGCA	TAGTGTAGCG	ATTTTTCTTG	AGATTTTCAC	12180
TGCTGGCAAT	CAGTAATTGA	ACGCCTTCTT	CGGTCGCTTG	GTTTAGGTTT	TGCCTTTCTT	12240
CATCTGTCAG	AAGACTGGTG	TTTTGAGAAA	TTTTTGGTAA	ATTGTCCTGA	GTTAGTCCAA	12300
TAGCATAGAC	AAAGTCAGCA	GTCAATGGTG	CAATCAAATC	GTAACTCTGC	ACCAGAACAG	12360
TGTCCACTGT	TGCTGGAATG	GTACGGTATT	GGGACAAACT	CATTCCAGAA	TGGAGCAAGG	12420
CTAGGAAGTC	TTCCAGACTA	ACCTGTGAAC	CAGCAAAAAC	AGTCGCAAAT	TGTTCTAAAA	12480
CATGGCAGAA	AGCCTTCCAA	ACTTCGGCTT	GTCTTTCCTG	TTCTACAGCT	TCCAAAGTGG	12540
TTGTCAAATC	TTGTAACTGC	TTGGTCACAG	CTCCTTCTTT	TAGAAAGACA	CTCCATTTTT	12600
GTAGGAGTTT	TTCAGCCTTT	TGTTTTCGGC	TGGCAAAGAG	GGTTTCAAGA	GGTGCTAAAA	12660
TTCTCAGGCG	GAGGACATTC	AAACGCTCAA	GATTAAATTT	TCCATGGTGG	GATTTGGTGA	12720
AGGTTTGCTG	AAAGGCTGGC	AAGCCATTGA	TACCAAGATA	GCGGATATAT	TGCTCAAAAG	12780

CATCAATATC	AGACTGACTG	AGGTCAGTAT		TCTAAGAAGA	ТТААТСАААТ	12840
CCTCCTGACG	AAAACGGTAA	CGTTTTAAAG	CTAAAATAGA	CTCGACAAAC	TGAGTCAAGG	1,2900
GATGATGAGC	CATGGCTTCG	CTTCTACCAA	GATAAAAAGG	AATCTGATAC	TGGTCAAAAA	12960
TGGTTTTGAG	AGATAACTGG	TAAGAAGCTA	CATCCCCCAA	GAGAATACGA	AAATGCTTGT	13020
AGCTCAGGTC	TGAGTTCTCA	TGTAATTTCT	GACGAATACT	ACGGGCTACT	AGCTCCAACT	13080
CCTCCTTTTG	CGTCAAACAA	GACCAGATTT	GTAAATTTTC	ACGGTCTTTC	TCATCGACAT	13140
CCAAAGCGAG	TTCTGAAAAG	TCATAAGAAG	ACTCCAACAA	ACGAGAGGCC	TTGTCAAAAC	13200
TATCCATCTT	CTCATGAGTT	TGAGAACAGT	CCTGAGCAGG	CGTTTGGTAT	TTAGAAGCCA	13260
GATGATGGAG	AAATTTTACG	CTGGCTTGGT	AGAGATTGCC	CTCGCTAAAA	GGACTGGTAT	13320
AGGCTTTCTT	ACTAGCATAA	GCCCCGATAA	CAATCTCAAC	ACCTTTGCCG	TGAAGTAAGT	13380
CCACAACCCG	CTCTTCCTCA	GCAGAAAAAC	GAGTAAAGCC	GTCAATGACC	AAGGCGATTT	13440
GATTAAAATC	ACTACTTACC	TTGTCATTCT	CAATAGCCTC	AATCAAATGG	GACAACTGAC	13500
TTTCCTGGGC	TAACTGACCT	TGATTAAGAT	AGGCTGTTAC	TTTCTCAAAA	ATCAAGAGTA	13560
AATCCGCCCT	CTTATCCTCA	TCTGTTAAAT	TCTCCAAGTC	CAAAAAACTC	ATCTGAGATT	13620
TGGTCATCTC	ATGGTAAAGC	TCAATTAACT	GCTGGATCAA	TTGAGGATCC	TGCTTAATAG	13680
CGCCATAAAC	ACGCAAGTCC	TTGGGATCGA	GTTCGGCAAG	GCATTTGTAA	AAGGCCAACC	13740
CAAGACCGAT	ATCATCAAGA	GTAGTTTTAG	CTGGTAAATC	ATTCAAGACC	AGATAGCGAG	13800
CCATTTGAGC	AAAGCGCGTG	ACGGTAATCG	AAAAAGAAGC	CTGCTGGGAC	AAGTATTCCA	13860
GCACGGCGCG	TTCCTTTTCA	AAAGAAAGAG	AGTTGGGGGC	AATGTAGAAG	ACCCGCTTGC	13920
CAGCTGCAAC	TAGCTCTTCT	GCCTCTCTTG	TTAGAATTTC	TGTCAAAGAA	GTCCGAATAT	13980
CAGTATAAAG	TAATTTCATC	TCAGCCTCGT	TGGAATTTTT	CATCACCCTA	TATTATACCA	14040
TGATTAGCCT	CGTAAATCTG	TTAAAATATT	TAGGCCATCC	TTTCTTTTCT	TCATCATCTG	14100
СТАААТСТТА	AATACTTAGC	TTTACTTGTA	TTAGATAGAA	TAAGTCTGGC	TACTGAAAAAT	14160
CACATAATAA	AAAAGCCTCG	GTAACAAGGC	TTTGAGTTTT	ATGATTGTTT	CTTAGGTACG	14220
GAATACACTT	CAATGTGTTG	TCCCAGTATC	TTAATGTCGA	CTGGTAGATT	GTCTGATTTA	14280
TCGCCATCAA	CATCGGACTC	TAATTCGATA	TCAGAAGAAG	TTAATATTT	ACGTGCCTTT	14340
АТАТАТТСАА	TATTCTTGAT	agaatgattg	AACTATAGTA	AATTGAAACT	ATAATAGTAC	14400
ACCGTGGATG	СТААААТАТТ	TCTAGAAATT	AATTTGATTT	CCCTAATCAA	GCTATTCGTA	14460
TCTTATTTCA	ATCTACTATA	ataaaatgaa	CCAAAAATAG	TACACAATGT	GGTATAATCT	14520
TCTTATGGCA	TAȚTCAATAG	ATTTTCGTAA	AAAAGTTCTC	TCTTATTGTG	AGCGAACAGG	14580

305

TAGTATAAC	A GAAGCATCAC	ACGTTTTCCA	AATCTCACGT	AATACCATTT	ATGGCTGGTT	14640
AAAGCTAAA	A GAGAAAACAG	GAGAGCTAAA	CCACCAAGTA	AAAGGAACAA	AACCAAGAAA	14700
AGTTGATAG/	A GATAGACTTA	AAAACTATCT	TACTGACAAT	CCAGATGCTT	ATTTGACTGA	14760
AATAGCTTC:	GACTTTGGCT	GTCATCCAAC	TACCATCCAC	TATGCGCTCA	AAGCTATGGG	14820
CTACACTCG	A AAAAAAGAAC	CACACCTACT	ATGAACAAGA	CCCAGAAAAA	GTAGCCTTAT	14880
TTCTTAAGA	TTTTAATAGT	TTAAAGCACC	TAGCACCTGT	TTAGATTGAC	GAAACAGGAT	14940
TCGATACTT	A TTTTTATCGA	GAATATGGTC	GCTCATTAAA	AGGTCAGTTA	ATAAGAGGCA	15000
AAGTATCTG	AAGAAGATAT	CAGAGGATTT	CTTTGGTTGC	AGGTCTAACA	AATGGTGAAT	15060
TAATCGCTC	CAATGACTTAC	GAAGAGACGA	TGACGAGCGA	CTTTTTTGAA	GCTTGGTTTC	15120
AGAAGTTTC	CTTACCAACA	TTAACCACAC	CATCGGTTAT	TATAGTAAAA	TGAAATAAGA	15180
ATAGGGGGG	G GGGGGGAGGG	GGGGGGAGGG	AGA			15213

(2) INFORMATION FOR SEQ ID NO: 27:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 6004 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

TTATTACCTG	AAACATTAAA	TTTAATTGGA	CATCCCGTTA	TCAATTTTAT	AATATCATCA	60
AGATTTTTAT	TATCTGATTC	AGGAATTTTA	TCTGATATAA	CAACACCATT	TTCAAGATAG	120
ТТСАТТАААТ	TATTTGATTC	ACTAACATTA	GTGTTTTGAT	CTCCATCAAG	ССАААААТАА	180
TGGTTATCGG	AATCTAAATA	CGATGAGTTT	AAAATATTAT	TACAAATTAT	TTGATTTGCT	240
CCACCAGGAA	TATATCTCAC	TACTAAATTC	TGTTTAAGAT	TCTCACTACC	TGAATGAGTG	300
АТААСАААСТ	CTAGAATATA	TTTAGCTAGT	CTATCTTCAA	CATAAATCAT	CTTCCTAGAA	360
TGATACACAT	CACCTAATTC	AAAAAATGCA	TCCTGATAAT	CAATATTTTC	AATAACATCT	420
ACCTTTTCTC	CGTTTTTCAC	TAAAAGTTTC	ACGGCTTCTC	TAGGAAAATC	TTTTATAAGT	480
TGTGTAGAAT	GTGTAGTGAT	AATAATTTGA	TGTTTTTTAT	TTAAACACTC	TTGAAGTAAA	540
ААСТСТТТАА	ATTTATAGAT	TGCACTCGGA	TGAAGTGAGA	TTTCAGGTTC	АТСТАТТААТ	600
attaatgaat	TTGATTGCGC	ATTTACTATA	TCATTTACTA	ACAAAATAAT	TCTAGCCTCA	660
CCTGTTCCTG	CAAAAGCCTC	GGAATATTCT	TTTCCAGATT	TTTTCATCCA	AATAGTTTTG	720

			306	•		
GAAGCTTTTA	TATCATCACC	TTTTGAATAC	AACTTATGTG	TTAAAATTTG	AATGTCTGTA	780
PAAGATTCAT	CCATTATTTC	ACTAATAATT	TCACAAACTT	TATCATCAAC	TTTAACATTA	840
ICTATAACCA	TTTCCTTTTT	ATAACGCGTA	TAGCTACTTG	TATTATTCTT	TAAAATATCA	900
GCAACTGGCT	TAGATCGTAA	ТСТТАТАААА	TCTTGTTTAC	TACGTTGAGT	AGAAATTTTT	960
TATAAAATT	agtgatagaa	AAATAAATCA	AAAGCAGAAA	CATATTCTTT	ACAATCACAA	1020
AAGACAACAT	TTTTTTCAAT	GCCATCCCAT	CTGTCTGTCG	AAGAACTTCC	AATATATTTA	1080
PTTTTGGGTA	ATCTTTCCAT	CTCATATTGT	TTTTGAGGAG	CATATGGTTC	CCAATAATCT	1140
AATCCTTTTT	TTGTTCCAGA	ACGGCCTTTA	AGAACTTCTA	CATTTCTAGA	AGCTTTAATG	1200
PTATAATATG	AATAGATTAA	ACATTGTTTC	CCATCCACTT	CATCTATTTG	ATCAACATTT	1260
CTACTAAACC	AATATTCAGA	CACACTTTTA	TTGGCTGGAG	AACCATATAA	AGCTTGTAAA	1320
ATTGAAGTTT	TATTTACTCC	ATATCTATTA	CAGACACCTC	AGGATTATTT	AACTTATAAG	1380
TTTAACAGC	TACGGAATCA	ATTTCAACAG	CAACTTGAAC	ATCTATGCCT	GATTTTTTAA	. 1440
GCCACTTGT	AGTGCCACCT	GCACCGTTAA	ATAAATCAAT	AGCAACAATT	TTCCCCATAG	1500
PATTCTCCTA	AAGTTTCTCC	TTTTTATTAT	AACATTATCA	AATGTAAAAC	CCAACCCGAT	1560
AGGGTTAGGT	TTTTAACATC	ATTTCACCAA	CTTCTTCATC	TCATCAATAC	GTGCGACGGT	1620
CGCGTCATAT	TTAGCTTGGT	AGTCAGCTTG	TTTGTCGCAT	TCTTTTTGGA	CGACTTCTGG	1680
ITTGGCGTTG	GCTACGAAGC	GTTCGTTAGA	GAGȚTTCTTA	CCAACCATGT	CCAGTTCTTT	1740
ITGCCATTTA	GCAAGTTCCT	TGTCGAGACG	GGCCAGTTCT	TCTTCAACAT	TGAGGAGATC	1800
GCCAGTGGC	AGGTAGATTT	CTGCTCCTGT	GATGACACTT	GACATAGCCA	GTTCAGGTGC	1860
AGGGATGGTT	GATGCGATTT	CCAAGTGTTC	TGGATTTGTA	AAGCGTTTGA	TATAGTTGAC	1920
ATTGCTGTTA	AAGAAGGCTT	CCAAGTCGCT	ATCGCTTGTC	TTAACAAGGA	TGGTGATAGG	1980
CTTGCTTGGT	GCTACATTTA	CTTCCGCACG	CGCATTCCGA	ACAGCACGAA	TCAAGTCTTT	2040
GAGACTTTCC	ACACCAGTGT	GAGCCGCAAG	GTCTTCAAAG	GCTAGATTAA	CAGTTGGGTA	2100
rgcagctgtc	ACGATAGAAC	CTTCTGAGAT	TTGTCCAAAG.	ATTTCCTCTG	TCACGAATGG	. 2160
CATGATTGGG	TGAAGGAGAC	GAAGGATCTT	GTCCAGCGTA	TAGAGGAGAA	CAGATCGAGT	2220
AATGACCTTA	TCGTCTTCAT	TGTCGCTGTA	TAGAACTTCC	TTGGTCAACT	CAACATACCA	2280
STTGGCAAAT	TCTTCCCAGA	TGAAGTTGTA	AAGGATATGA	CCAGCCACAC	CAAACTCGAA	2340
CTTATCAAAG	TTTTCAGTAA	CTTTTGCAAT	GGTTTCGTTG	AGATTGTGGA	GAATCCAGCG	2400
GTCCGTCACA	TTACCAGCCT	CACCTGTTGC	AACTTTTGTG	ACATTGTCAT	GCGCCACATC	2460
CAGCGTCAAA	CCTTCATTGT	TCATGAGGAT	ATAGCGAGAA	ATGTTCCAAA	TTTTGTTAAT	2520

AAAGTTCCAT	GAAGCATCCA	TTTTCTCGTA	AGAGAAACGA	ACGTCTTGAC	CTGGTGCGGA	2580
ACCGTTTGAA	AGGAACCAAC	GAAGGCCATC	AGCACCGTAT	TTCTCGATGA	CATCCATTGG	2640
GTCAATCCCG	TTACCGAGAG	ATTTAGACAT	CTTGCGTCCT	TGCTCGTCAC	GGATGAGACC	2700
GTGGATAAGC	ACGTTTTGGA	ATGGCTGACG	ACCAGTAAAT	TCCAAGGACT	GGAAGATCAT	2760
ACGAGACACC	CAGAAGAAGA	TGATGTCGTA	ACCTGTTACC	AAGGTTGAAG	TTGGGAAATA	2820
ACGTTTAAAG	TCTTCTGAGT	CGACTTCAGG	CCAGCCCATG	GTTGAAAATG	GCCAGAGGGC	2880
AGAACTGAAC	CAAGTATCCA	AGACGTCTTC	GTCCTGAGTC	CATCCGTCAC	CTTCTGGAGC	2940
TTCTTCGCCG	ACATACATTT	CACCATCAGC	ATTGTACCAG	GCAGGGATTT	GGTGACCCCA	3000
CCAAAGCTGA	CGAGAGATAA	CCCAGTCGTG	GACATTTTCC	ATCCATTGAA	GGAAGGTATC	3060
GTTGAAACGA	GCTGGGTAGA	ATTCGACCTT	GTCCTCTGTG	TCTTGGTTAG	CAATGGCGTT	3120
CTTAGCCAAT	TGGTCCATCT	TGACGAACCA	TTGAGTAGAC	AAGCGTGGCT	CAACTACGAC	3180
ACCTGTACGT	TCTGAGTGAC	CAACACTGTG	GACACGTTTT	TCGATTTTGA	CAAGGCCACC	3240
GATTTCTTCC	AACTTAGCAA	CGACTGCCTT	ACGÄGCTTCA	AAACGATCCA	TGCCTGAAAA	3300
TTCAAAGGCA	AGCTCATTCA	TAGTTCCGTC	GTCGTTCATG	ACGTTGACTT	GTGGCAAGTT	3360
ATGACGTTGG	CCAACCAAGA	AGTCATTTGG	ATCGTGGGCA	GGTGTGATTT	TCACGACACC	3420
AGTACCAAGC	TCAGGATCTG	CGTGCTCATC	TCCAACGATT	GGGATGAGTT	TATTAGCGAT	3480
TGGAAGGATG	ACGTTTTTAC	CAATCAAGTC	CTTGTAGCGC	GGGTCTTCTG	GATTAÁCCGC	3540
AACCGCAACG	TCCCCAAACA	TAGTCTCAGG	ACGAGTTGTA	GCAACTTÇAA	GGGCGCGTGA	3600
ACCATCTTCC	AGCATGTAAT	TCATGTGGTA	GAAGGCACCT	TCTACATCCT	TGTGAATCAC	3660
CTCAATATCA	GAAAGGGCTG	TGCGAGCTGC	TGGGTCCCAG	TTGATGATAA	ACTCACCACG	3720
ATAGATCCAG	CCTTTCTTGT	AAAGGTTCAC	AAAGACCTTA	CGAACAGCTT	TTGACAAACC	3780
TTCATCAAGA	GTGAAACGCT	CACGAGAATA	GTCTACAGAA	AGCCCCATCT	TGCCCCATTG	3840
TTCCTTGATG	GTAGTGGCAT	ATTCGTCTTT	CCATTCCCAG	ACCTTCGTCA	AGAAAGACTC	3900
ACGACCTAGG	TCATAACGCG	TAATACCCTC	ACCACGTAAG	CGCTCCTCAA	CCTTAGCCTG	3960
AGTCGCAATA	CCAGCGTGGT	CCATACCTGG	AAGCCAAAGG	GTATCAAAGC	CTTGCATGCG	4020
TTTTTGACGG	ATGATGATAT	CCTGCAAAGT	CGTATCCCAA	GCGTGACCAA	GGTGAAGTTT	4080
CCCAGTTACG	TTTGGTGGTG	GAATCACGAT	TGAATAAGGC	TTAGCCTTTT	GATCGCCTGA	4140
AGGCTTGAAA	ACATCCGCAT	CAAGCCATTT	TTGGTAACGA	CCAGCCTCAA	CCTCGGCTGG	4200
ATTGTATTTA	GGTGAAAGTT	CTTTAGACAT	GTGTGTGTCC	TTTCTCTATT	TTGTTTATTT	4260

			308			
TATTTTGAAT	TTGCTTAGCA	GCTTCTTCTG	CAGACAAATT	CGTATTATTT	ATTTTAAAGT	4320
AGTGGTGCAA	CTCATTCGGT	TGATGTTGGG	AATTTAATTG	AAGTGTTTCA	GCGGTCTCTA	4380
AAATTTCTCT	TTCAGATACC	TCAATATGTC	GTTTTAAGGG	TTTGTGCTTT	AATCGATTCT	4440
CCGTTCGATT	TCGACGTATG	CACTCTTCAA	GACTTGTTTC	CAATTCAACA	AACAGAATCT	4500
CTTGATGAAA	GTTATCCAAT	AAATCCTGAA	TTTGCTTTAA	ATACATCAGC	TGGTACTGAT	4560
ТТСАААААТС	AATTACGTCT	GTTAAAATTA	CTGATCGCTG	ATTTCTTGCA	CTTGCTCCAA	4620
GGAAAGAAAA	GGTAATTCCA	CGAACAAATT	CCCACATCTC	CTCGGTATAA	TCCTGATAGA	4680
TCTCTAGTGC	AAAATCAATG	GCTTGATGGT	TATAAAATAG	GGTAGCATCC	GTCAGTCGAG	4740
ATAATTCTTG	ACCAATGGTC	ATTTTTCCTG	ATGCTGGAGC	ACCAATGATG	AAAAGATGCA	4800
TCAAATCACC	TCCCACTCAC	TCCTCAGCAA	GCCATATCTC	AAATCATCAC	AGCAGTTGCC	4860
TTGAGCATCT	TTGCGGTCTC	TTATGCGAGC	TTCGAGGGTA	AAGCCAAGCT	TTTCCGAGAC	4920
TCGTTGACTT	TGAAGGTTAT	ATCCAAAGCA	AGTTAGTTCA	ATCTTGTGAA	GACCAAGTTC	4980
TTTAAAAGCT	AGATCAATCA	AGGAACACGC	TGCTTCTGGA	ACATAACCTC	GACCCCAATA	5040
GTCTGGGTGC	AAGGTATAGC	CAAGCTCTAG	CACATCATCC	GCATGAAGAT	GGTTGAAGTC	5100
AACAGAACCA	ATGACTTTAT	CGGTTCCTTT	GACGACAATC	CCATAGCCAG	CTGGGAGATT	5160
TTCCTTTTGA	GTACGCTCCG	GAAGAATGTG	CTCCAGATAA	TAAATCTCAT	CTTCCAAGAT	5220
CTTGACTGGA	GGAAAACCTG	CTGGATAGGC	GACCTCTGGC	AAACTAGCGT	AGGTATGGAT	5280
ATCCTCAGCA	TCCACCACTG	TGCGGACTCG	TAAAACGAGA	CGTTCTGTTT	CGATTTTATC	5340
TGGCAGCTCA	GTTCTTGCCA	TCCTTCTTCC	TCGCTTTTTT	GATGAAACTG	CCCTTCATAT	5400
CTACACGCTT	GTCCAGATAG	CGATAAACGC	GCTGATATCC	ATCTCCCATG	AAATAGGTTG	5460
GGGCAAACAG	TTGATTTTTA	AAATGTCCCT	TTTCATCCAG	GAGTTCTGGG	GCAACAAGTC	5520
GCTCAAGAAT	CTTGGCAAAG	ATGTGGCAAA	TACCGTCTTC	CTCAACAATC	CTATCTACCC	5580
GACAATCTAA	AACAAGTGGA	CAGGCGTCTA	AAATAGGAGT	CTGAGTTCGT	TCAGAAATIT	5640
CATAATGCAC	TCCCAAACGT	TCCAATTTCT	CCTGATGACT	GATAAAACCA	GCCTGCTCCA	5700
TCGCAAGCAT	AGAAGTTTCA	TCAGAAATAT	TCACAGTAAA	TTTTTGATAC	TGTTTGATCT	5760
GCTCTGCGGC	ATTCTCTCTC	GCAACGACTC	CAATCACAAC	CCAATCTCCT	AGACTATAAG	5820
AGGAACTACA	GGTCGTGATG	TTATAGCCAA	AATTCTAATC	TTGATATCCT	ААААТАААА	5880
CAGGAAAACC	ATAATATAGT	TTACTTGTGT	TAAAAGATTG	CTTCATAACA	ACCCCCTTTG	5940
ACTAAGACGT	AAAAGAAAAG	CCCTGCCATC	TACATGACAG	GGACGAATGT	GTTTATCCGC	6000
GGGG			•			6004

309

(2) INFORMATION FOR SEQ ID NO: 28:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5857 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

60	TTCTGGCAAG	TTTCGTCGCG	TCTGGGTTGA	TTCGTTGATT	ACGACAATGC	TGTAGAATTC
120	CATATTCAAT	CCTTTTATGG	GTĠGTATAAT	AGTACACAAT	AACCAAAAAT	CGAGTCAATG
180	CAGAAGCATC	GGTAGTATAA	TGAGCGAACA	TCTCTTATTG	AAAAAAGTTC	AGATTTTCGT
240	AAGAGAAAAC	TTAAAGCTAA	TTATGGCTGG	GTAATACCAT	CAAATCTCAC	ACACGTTTTC
300	GAGATAGACT	AAAGTTGATA	AAAACCAAGA	TAAAAGGAAC	AACCACCAAG	AGGAGAGCTA
360	CTGACTTTGG	GAAATAGCTT	TTATTTGACT	ATCCAGATGC	CTTACTGACA	ТАААААСТАТ
420	GAAAAAAGAA	GGCTACÀCTC	CAAAGCTATG	ACTATGCGCT	ACTACCATCC	CTGTCATCCA
480	ATTTTAATAG	TTTCTTAAGA	AGTAGCCTTA	ACCCAGAAAA	TATGAACAAG	CCACACCTAC
540	ATTTTTATCG	TTCGATACTT	CGAAACAGGA	TTTAGATTGA	CTAACACCTG	TTTAAAGCAC
600	GAAGAAGATA	AAAGTATCTG	AATAAGAGGC	AAGGTCAGTT	CGCTCATTAA	AGAATATGGT
660	CAATGACTTA	TTAATCGCTC	AAATGGTGAG	CAGGTCTAAC	TCTTTGGTTG	TCAGAGGATT
720	TCTTACCAAC	CAGAAGTTTC	AGCTTGGTTT	ACTITITIGA	ATGACGAGCG	CGAAGAGACG
780	TGGGGAAGCT	TTCCATAGAA	TAATGCAAGA	TTATTATGGA	CCATCGGTTA	ATTAACCACA
840	ACTCACCTGA	CTTCCTCCCT	ACTTTTACCT	TTGGGTATAA	TGTGAAGAGT	AGAACTCTTG
900	AGGTATTACC	CACCTCAAAA	TATCAAAAAG	CATGGGCTCA	ATTGAGAAAA	GTACAATCCT
960	GACTATATAA	TGTTTCAATT	GTCTTGTTCT	AGGCTTTTTT	ACCTTTTATG	aagttgcäat
1020	TTTGTTACCA	CGACCGTATT	GGCACAAAAG	GATAAGAATT	CGAAACAACC	ATTGTCTAAG
1080	GCAAACGAAC	TCTCCAGCGA	TGAGCAAGTC	AGTTCTATCT	AACAGTTCAT	ATACAGGAAA
1140	ACCACTATTA	CTTCAGACAC	CCCCTCACAT	AAACATCTGT	ACCAATTCCC	GCCTTAAAAA
1200	GGTCATCCCG	GGACAGGGTT	AAACAATCAC	ATTCCTTTAA	AGAAAATAAA	GCATCTTATC
1260	GATGAAGCAA	GAACATGAAA	ACGTCACAAA	ATCTACACCC	CACTACTTCC	ACTCTGAAGT
1320	CTTTTTTGCC	AGTTTTGTCC	ТТТТТАААА	ATGAAAAAGA	GGATAAAGTT	TCAATGTACT
1380	TTGTTAAATC	GCTAGAAACG	AATCCGAGGG	CTTCGGATAA	AAAAATAGCC	CTCTAAATAC

			310			
AACGGCCGAA	CTTTTGAATT	TCATGGTTCG	GGATAAAATA	GTTCACTGAA	CTATTTTATT	1440
TTTTAAGGTT	ATCATAATAT	CAAATAGTTC	AATTAAATAC	GCTAAATTAC	TAATATACTT	1500
TTTACCTTTT	TCATTCTAAA	ATGTAAAGTA	CAAACAATTA	CAATATACTA	GAGGGGGAGT	1560
AAAAAAGGTA	TTAAATCGAT	GAGTTCAGCA	GGCAAGAAAA	TAGCACCTTT	ACGGGTGCTA	1620
TTTTTTAATT	AACGCCACGT	TAACTTTTGA	TTGATGAATT	TTATTGTTTG	GCACTTCTTT	1680
CATTTCACGG	TAAACATCGA	TGAAATTCTT	TCCAACATTA	TTTTTGGAGT	TAACTGCATT	1740
TATTTTTGTA	ТТААТААСТТ	TTTTAGTATC	GAAAGAATGG	TTTAAGAAAT	CCATAACTAA	1800
CTCTCCTTTC	TCATCCTGTA	ATCAAGATTT	TTATCAATGT	CAAAATAGTA	TTTTCTATCA	1860
ATCCAAATTG	GTCCTTCTCC	TTTAGAAATA	GCAAGTACAT	CTACCGGACC	TCCTACTGTT	1920
TCAAGAGTGT	TGACAATTTT	TCTCTTAAAT	GAAGTTAATT	CAATAAATGT	TTTAGCTGTA	1980
CTCGCCATTT	CATTAAGTGG	TTGCATTCCA	ATAAGGTCTA	TTATAGGATT	TATATAATAT	2040
TTTTGCTGTA	TAGATGATAT	ATTTTCAAAT	ATATTCTCAA	TTTCATCACC	CAATCCATTT	2100
ттстссатаа	CTGATGATAC	TTGCTCTGCG	ATATATACAT	TTAAGTTAGG	ATCTATACCA	2160
TTCATAATCG	TCTCAACCAT	CTCTGACTGT	GCAAAAGGGA	TTATATGACA	AGTTTTATGA	2220
TGATTTATCA	CACTTTCATT	AATAACTTTC	CAAATTAATC	GTTTAGAAAA	AATTCCATAT	2280
AATTCAATTT	GTCTTATAGA	TGGAAATATC	TCGTCTGTAC	CATAACCTGC	TATAACTAAT	2340
CCAGTTATGT	TTGTTGAGTC	ATATCCAATG	AAAATCGCTT	TATATAAAGA	TTTAGCAATA	2400
ACTTCAACCT	CATCATCAGT	ATGAGGAAAG	GATTTAAAAA	CATCGTCTAC	AATGCTTTTT	2460
ATTAACTCTA	ACTCAGCTTC	AAAAAATTCA	AAATTACTTT	CAGCTTCTAC	TTTTGAAATT	2520
тсталастаа	AATTAGTTAT	AGCATTTAAT	TATTTTAAAA	TAAAATCATC	TAGAGTGATG	2580
GTTTCACCAT	TAGAAACTCT	TAAATCAGCT	GTTTCTTGCG	CTTCATAGGC	AATGCTGTCC	2640
AAAATACTTC	TTGTACTTCT	GACAATATAA	TTTCTTAATA	AATCCTCAAC	TTGTAGATGT	2700
TTAAAGGAAA	TTAAAAATTC	TATTAGCTTT	TCAACGTATT	GGGCAGTATT	АТСТААТААА	2760
TCTGTGCCAA	TAGCCTGCTT	AAACTCATTT	AAAATTACCT	CCCACGGAAT	TTCCATAAAC	.2820
GAAGCGTTCC	CATATATCAT	GATCCCCACG	GAATGTTCTT	TTGATAAAGT	GAATAATTTT	2880
CGGGCGCTAT	TAAAAACTTT	TGAATTTTTC	CCGTCTGATA	AGGTTACAGC	GCTATCAGAA	2940
GCCAATACAA	CACCATTTT	ATTTAATATT	CCAATTTCTG	CTGTCAAAAT	ATCACCTAAA	3000
CTTTCTAAAC	CTGCTCATGC	TCTAATGGTA	CAACAGCTAA	GGTCTTACCA	AGACTTGCCA	3060
ACACTTTTAA	TACTGTATCA	AGTTGTGGGC	TTGTCTTTCC	TGTTTCCATT	CTAGCGATAA	3120
CTGGCTGACT	AACACCGCTC	ATCTCCTCTA	GTTTCTTCTG	ACTAATACCC	TTTTCATTTC	3180

PAGCCTCGAT	AAGCTCACTC	ATGATAGCCA	CGCGCATATC	ACTTTCCAAA	ATTTCCTCTT	3240
rgctgaataa	TTCAGCTCTT	ACATCTTTCC	AGTTACTACC	AATAGCATTA	TTTTTCATTG	3300
CTAAACCTC	TTTCTTTTAA	ATCTGCAAGT	TCACGTTTAG	CTTGCTCAAT	CTCTCTTTTG	3360
GTGTTTTCT	GTGTCCTTTT	CATAAAATGA	TGCAGTAAAA	CAAAACTACC	ATCCATCCAA	3420
GCAACAAATA	AAATTCTATC	TCTAAGTGGT	CTCAGCTCCC	AAATTTCAGC	ATCTAAATGC	3480
PTARTATATG	GTTCGCCTGC	GCGTGTTCCA	TGTTGGCTTA	ACAACTCAAT	ATAATCATTA	3540
AATTATTTT/	GCTTAATTCT	GCTATCTTTC	CCTTTTTTAC	TGGTAAGCTC	TCGCATATAA	3600
CAAAAACAG	GCTCATTGCC	GTTTTTATCC	TTGTAAAAAT	AGATATTATG	CACTATTAAC	3660
ACCTCTTCCT	AATAACAATT	ATAACCTAAA	AGTTATTGTT	TGTAAATACT	TTTAAGTTAT	3720
AAAATAAAA	AGCACCTAGT	TTCCTAGATG	CTAGCACAAT	GACACGGATT	CGCACCGTGG	3780
CTACCTCTAT	CAAGGTGTAC	TCCTTCTATA	CTATCCCTTG	TGCTTTAGAA	TATTATACCA	3840
CACAATCAAC	TAGATACCTA	CCATCTCATG	ATATACCCCC	ATTTTGGGCA	AGGGTACAAC	3900
CTAAAATAC	AAATCAGAAT	AGATATTAAA	CCACTTATTT	AACTTATCAT	AAGCTGGTGA	3960
TTGACTGATA	AATAATATCC	GCTGACAAGC	TCCGATAACA	TTCATGTGAT	TGTACACATA	4020
ACCTCTTTT	ACAGCCTCTA	AAATGTCAGC	CTCACTTGTT	TGTACCCTAA	TATCTGTTAT	4080
CTGCTTGATA	GTTGCGTATT	TTTGATAAGC	TAGCATATCT	TGATTTTAG	CAGCATCAAA	4140
CATTTTACGC	TCAAGGACAC	TATACTTAGG	TTGTTCTTTA	TCTCGCATGA	AATACCACTT	4200
GAGCCATAAA	ATCTTTTCTC	GGTGTATTAC	AGAAATACGC	TCAATTTTCT	TCTTTGTCAT	4260
GCTACCTCC	TAAATCATCA	ATTTAACAAT	TCTAACCACT	CACTTTTAGA	AATAGTTGCA	4320
PAGATCTTGT	TCGATGTATG	ATACAAAGGT	TCTAAATCTT	TTTCCACCCT	AATATAGTTC	4380
TCTTATCCT	CATGAGTAGG	AAAGTATAGT	ATTTCCGTTT	CATCCTCGTT	TAGGATACGA	4440
TTGCACCAAT	CATCAATAAT	AACTGGCACT	TCCCACTCAC	GCCATTTTTT	AAGGTTTTCT	4500
AAAGTTCAT	TATCACTAAA	TAGCTCGCCA	TCTATTTGGA	AAAATTCCCC	TAAGTCATTG	4560
TTCCTTCAA	СААТААТААА	CTCTGGCATA	TTTCTATTAC	TTAATAACTC	CTTGAGTTCT	4620
CTAACTCTT	TGATTTCCTT	TAGATACTTC	CTCAATTTCC	AACCTCAATT	CTTCAATCTG	4680
CTTACTACT	CCAAAAATTT	CATGGGTCTT	ATAAGATTGT	TCAAGTATAG	CCTTTGCTGC	4740
TGAGTTCTT	ATAAACGGGT	TGACCTTACT	GTCCATCATA	ATATCATTGA	GTACAGAAAC	4800
AGCGTTAGAT	GATGCTAAAT	AAAGCATTTG	AGTTGTTTTA	TCCATCATCT	CATCTTGCTT	4860
መ <i>ለ ል</i> ጋምጋጋጥ ልባ	Сфффффф	CCCCTCCAAC	TADADAD V C VALVO	THE PROPERTY OF THE PROPERTY O	TOTAL CONTROL A	4020

			312						
PACCCCTGCT	TTTTGACATG	CTTTGTCTAT	CGTTGGCTCG	GTAAGCATGG	CATCTATGAA	4980			
ITTAATTTGC	TTGGACGTAA	GGTTATCATT	TTCATTTCCT	GCCATCTATT	ACCTCCTCAT	5040			
PATCAAAATA	AAGGGTTGCC	CCTTTATTTC	CCTATGCTAG	ATAATTCTGC	AATTCTGCAT	5100			
CCATTGCCTC	TGAATTGCCC	TCAACAATCA	TTTCATGCTG	TACTAAATCA	ATCTTATCTC	5160			
CGTTAATAAG	TAAACCACCG	TGGAAATAAT	CAATTTTTCT	ATCAAGGAAA	TGTACTAGCT	5220			
PTTCAAGGCG	TTGCTGTTGG	CTGAATTGCT	CCATGTCAAT	TTCGATATAA	GCAAGGGTAG	5280			
PATCATTATC	CATAATATCT	TCTAATTTTC	TAAGAGCTAG	AGGTTTATTT	TTATATTTT	5340			
CTAGGTATTC	TCTCATTTCT	GCCACTGTTA	ATTTGATACT	AGATAATAAA	CTTAGTTCAG	5400			
CTGCATCATC	TGCTGTAATA	GCCTCTTCTT	TTGATTCATG	GTTTGCTAGT	TCAGCATTTT	5460			
PCTCTTTTTC	TAGTTGCTGA	TACAATAGCT	GAGCAGTATT	TTGGGAATAG	TTTTCGCCCT	5520			
CTTTTTTATA	TTTTAAAAGT	TCTTGCTCTG	CATACACTTT	CCCGATAATC	ACTTCCTTAT	5580			
AAACTAATTG	CCCATCTTGA	GCTTTTAGCT	TAATACTCCC	ATGCTCTGGA	ATTTCAATAT	5640			
ACTTAATTAT	ACCATTTTT	GAGTATAAAA	CAAAGCCTTT	CTCCATCATT	TTTAATAATT	5700			
PATCATCCTT	GTTTTCAGTC	ATGCTTTTCT	CCTTTATTTC	ATTTTATTAT	AATCTGAATA	5760			
CCCTAGTCT	ATTTATTTCA	CTAGGTTTTT	AGGGTTCGTA	TGCTAAAATA	CTACCCTTTT	5820			
PGTGTACCTT	ATGGCTGACT	TTTCAAATTG	GTTAGTT			5857			
2) INFORMATION FOR SEQ ID NO: 29:									
(i) S	(i) SEQUENCE CHARACTERISTICS:								
(A) LENGTH: 10254 base pairs									
	(B) TYPE: nu	cleic acid							

- (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

AA	aatgatag	CAGGAGAGTT	TTCCCGTCCA	TCAGACCCAG	AACTGAGAGC	CTTAGCTCAG	60
GC	TTCTCGCC	AAAAACAGGC	CGCCTTTAAC	AAGGAAGAGA	ACCCCTTGAA	GGGAGCCGAA	120
ΓA	CATCAAGA	CTTGGTTTGC	CTCAACCGGG	AAAAATCTTT	ACATCAACAC	TCGCTTGATG	180
GI	GGACTACG	GTGTCAACAT	CCATCTAGGG	GAAAATTTTT	ATTCTAATTG	GAACTTGACC	240
ΡA	GCTGGATA	TCTGTCCCAT	TCGTATCGGG	GACAATGCTA	TGATTGGTCC	TAATTGTCAG	300
тт	TTTGACAC	CCCTCCATCC	ACTAGATCCA	CAGGAACGCA	ATTCAGGTAT	CGAGTACGGA	360
AA	GCCTATCA	CAATCGGAGA	TAATTTCTGG	ACTGGTGGTG	GCGTCATTGT	CCTTCCTGGA	420
GI	GACACTGG	GAAATAATGT	CGTTGCAGGA	GCAGGGGCAG	TAATTACCAA	ATCTTTTGGC	480

SACAACGTTG	TCCTAGCTGG	CAATCCTGCG	CGCGTGATTA	AGGAAATACC	TGTTAAATAG	54
AAGTAAAAAG	GAACAGCTGG	GGTTGTTTCT	TTTTTGTAGG	TTTCATCATT	TTTTACCCAG	60
ГТСАСАТТТА	CCTACTCTAT	CTCTTAGCAA	GTCTGTTTCA	TTAAGCAAGT	TCAAAGCATC	666
CCTAACTCC	GATGTTTTC	TCCTCAGTTC	ATCAGCTTCC	TCCTTGACAC	TCGGTCAGAT	72
TTGATACAA	TAGTACAAAA	TTAGAGGAGG	CAGGCTATGA	TTCAGAAACA	TGCGATTCCT	786
\TTTTAGAGT	TTGATGACAA	TCCTCAGGCG	GTTATCATGC	CCAATCACGA	GGGGCTGGAC	840
PTGCAGTTGC	CAAAGAAGTG	TGTTTATGCA	TTTTTAGGTG	AGGAGATTGA	CCCCTATGCG	900
AGGGAAGTAG	GGGCGAACTG	TGTTGGCGAA	TTTGTTTCTG	CCACCAAGAC	CTATCCAGTT	960
PATGTCGTGA	ACTACAAGGA	CGAGGAGGTC	TGTCTGGCTC	AGGCTCCTGT	TGGCTCCGCT	1020
CAGCAGCCC	AGTTTATGGA	TTGGTTGATT	GGCTATGGTG	TGGAGCAGAT	TATCTCTACT	1080
GGACCTGTG	GTGTCCTAGC	TGATATAGAG	GAAAATGCCT	TTCTAGTCCC	TGTTCGCGCT	1140
TGCGAGATG	AAGGAGCCAG	TTACCACTAT	GTGGCACCTT	GTCGTTATAT	GGAAATGCAG	1200
CAGAGGCTA	TTGCTGCTAT	TGAGGAAGTT	TTGGAAGACA	GAGGGATTCC	TTATGAAGAA	1260
FTCATGACCT	GGACGACAGA	CGGTTTTTAC	CGAGAAACGG	CTGAAAAGGT	GGCTTATCGT	1320
AGGAAGAAG	GCTGTGCTGT	TGTGGAGATG	GAGTGTTCTG	CTCTTGCGGC	AGTAGCTCAA	1380
TGCGTGGGG	TTCTCTGGGG	TGAATTGTTG	TTCACAGCAG	ATTCTCTAGC	GGACTTGGAC	1440
AGTACGACA	GTCGTGACTG	GGGCTCGGAA	GCTTTTAATA	AGGCGCTAGA	ACTGAGTTTA	1500
CAAGTGTTC	ACCACCTTTA	GTTGTACTGG	CAAAGGATTT	GTTTTATCAT	AAAATGTCTA	1560
CTCATACTT	TTCAAAAATA	TGTTTAAACG	AGGTCACCTT	CCTCTTGTCC	TAGGCATGTT	1620
AGGTTGGGA	AAAATCTTTA	AAATCAGAAA	AACGTATCAT	ATCAGGTGAT	GAAAACTTTG	1680
CACTATGCG	TTTTATGTCG	ATAAGATTTA	GAGTGAGATG	AAATGATACT	CTTCGAAAAT	1740
TCTTCAAAC	CAGGTCAGCT	TCACCTTGCC	GTAGGTATAT	GTTACTGACT	TCGTCAGTCT	1800
ATCCGGCAA	CCTCAAAACG	GTGTTTTGAG	CTGACTTCGT	CAGTTCTATT	TGCAACCTCA	1860
AACAGTGTT	TTGAGCAACC	TGTGACTAGC	TTTCTAATCG	ATGCCTTGGT	TTTCATTGCC	1920
ATAATCAAA	AAGAGAAATT	TTCTCCTGAA	AAGCATATAG	AGTAGCTGGC	GTTAAAAGCT	1980
CTGTCTTGC	TTTTTTGACC	TATAGTCACA	TCTATCAAGT	ATTGTTCTTG	CCTAAGCTAT	2040
AATAAAA G	GTGGCATTTT	TTAGGCTTGG	TGTTAGTAGA	TTTTGCCTTA	TCCTATCTAA	2100
TCATTTCGA	ACTITITATG	GTACAATGGA	AACATGTTAT	TCAAATTATC	TAAGGAAAAA	2160
TAGAGCTAG	GCTTATCTCG	TTTATCGCCA	GCCCGTCGTA	TTTTTTGAG	TTTTGCCTTG	2220

			314			
GTCATTTTAC	TAGGCTCTCT	TCTTTTGAGC	TTGCCCTTTG	TCCAAGTTGA	AAGCTCACGA	2280
GCGACTTATT	TTGATCATCT	TTTCACTGCT	GTCTCTGCAG	TCTGTGTGAC	GGGTCTCTCA	2340
ACCCTTCCAG	TAGCTCACAC	CTATAATATC	TGGGGTCAAA	TAATCTGTTT	GCTCTTGATT	2400
CAGATCGGTG	GTCTAGGGCT	CATGACCTTT	ATTGGGGTTT	TCTATATCCA	GAGCAAGCAA	2460
AAGCTTAGTC	TTCGTAGCCG	TGCAACTATT	CAGGATAGTT	TTAGTTATGG	AGAAACTCGA	2520
TCTTTGAGAA	AGTTTGTCTA	TTCTATTTTT	CTCACGACCT	TTTTGGTTGA	GAGCTTGGGA	2580
GCTATTTTGC	TTAGTTTTCG	CCTTATTCCT	CAACTTGGCT	GGGGACGTGG	TCTTTTTAGT	2640
TCCATTTTTC	TAGCGATCTC	AGCCTTCTGT	AATGCCGGTT	TTGATAATTT	AGGGAGCACC	2700
AGTTTATTTG	CTTTTCAGAC	CGATTTACTG	GTCAATCTGG	TGATTGCAGG	CTTGATTATT	2760
ACAGGCGGCC	TTGGTTTTAT	GGTCTGGTTT	GATTTGGCTG	GTCATGTAGG	AAGAAAGAAA	2820
AAAGGACGTC	TGCACTTTCA	TACGAAGCTT	GTACTATTAT	TGACTATAGG	TTTGTTGTTA	2880
TTTGGAACAG	CAACTACTCT	CTTTCTTGAG	TGGAACAATG	CTGGAACGAT	TGGCAATCTC	2940
CCTGTTGCCG	ATAAGGTTTT	AGTTAGCTTT	TTTCAAACAG	TGACGATGCG	AACAGCTGGC	3000
TTTTCTACGA	TAGATTATAC	TCAGGCTCAT	CCTGTGACTC	TTTTGATTTA	TATCTTACAG	3060
ATGTTTCTAG	GTGGGGCACC	TGGAGGAACA	GCTGGGGGAC	TCAAGATTAC	GACATTTTT	3120
GTCCTCTTGG	TCTTTGCACG	AAGTGAGCTŢ	CTAGGCTTGC	CTCATGCCAA	TGTTGCGAGA	3180
CGAACGATCG	CGCCGCGAAC	GGTTCAAAAA	TCCTTTAGTG	TCTTTATTAT	CTTTTTGATG	3240
AGCTTCTTGA	TAGGATTGAT	TCTGCTAGGG	ATAACAGCCA	AAGGCAATCC	TCCCTTTATC	3300
CACCTCGTAT	TTGAAACCAT	TTCAGCTCTT	AGTACAGTTG	GTGTAACGGC	AAATCTGACT	3360
CCTGACCTTG	GGAAATTGGC	TCTCAGTGTT	ATCATGCCAC	TTATGTTTAT	GGGACGAATT	3420
GGTCCCTTGA	CCTTGTTTGT	TAGCTTGGCA	GATTACCATC	CAGAAAAGAA	AGATATGATT	3480
CACTATATGA	AAGCAGATAT	TAGTATTGGT	TAAGAAAGGA	AAGAGCATGT	CAGATCGTAC	3540
CATTGGAATT	TTGGGCTTGG	GAATTTTTGG	GAGCAGTGTC	CTAGCTGCCC	TAGCCAAGCA	3600
GGATATGAAT	ATTATCGCTA	TTGATGACCA	CGCAGAGCGC	ATCAATCAGT	TTGAGCCAGT	3660
PTTGGCGCGT.	GGAGTGATTG	GTGACATCAC	agatgaagaa	TTATTGAGAT	CAGCAGGGAT	3720
rgatacctgc	GATACCGTTG	TAGTCGCGAC	AGGTGAAAAT	CTGGAGTCGA	GTGTGCTTGC	3780
GGTTATGCAC	TGTAAGAGTT	TGGGGGTACC	GACTGTTATT	GCTAAGGTCA	AAAGTCAGAC	3840
CGCTAAGAAA	GTGCTAGAAA	AGATTGGAGC	TGACTCGGTT	ATCTCGCCAG	AGTATGAAAT	3900
GGGCAGTCT	CTAGCACAGA	CCATTCTTTT	CCATAATAGT	GTTGATGTCT	TTCAGTTGGA	3960
PAAAAATGTG	TCTATCGTGG	AGATGAAAAT	TCCTCAGTCT	TGGGCAGGTC	AAAGTCTGAG	4020

PAAATTAGAC	CTCCGTGGCA	AATACAATCT	GAATATTTTG	GGTTTCCGAG	AGCAGGAAAA	4080
PTCCCCATTG	GATGTTGAAT	TTGGACCAGA	TGACCTCTTG	AAAGCAGATA	CCTATATTTT	4140
GCAGTCATC	AACAACCAGT	ATTTGGATAC	CCTAGTAGCA	TTGAATTCGT	AAAGAGGGAT	4200
CACCCCTCTT	TTTTGATGCC	TAAGATGGCA	AATAGAGACA	GAAGCCCCTT	GTCTTCTAGT	4260
AAAAGTTCTT	CAAAGGCTGG	ACTTTATGGT	AAAATAGAAA	GAAGTGACAA	GAGAGAGTAA	4320
FACTCAATGA	AAATCAAAGA	TCAAACTAGG	AAACTAGCTA	CGGGCTGCTC	AAAACACTGT	4380
PTTGAGGTTG	CAGATAGAAC	TGACGAAGTC	AGTAACATCT	ATACGGCAAG	GCGACGTTGA	4440
CGCGGTTTGA	AGAGATTTTC	GAAGAGTATA	AGAAAAAATC	AGTCCCCTAA	AGGAGTAGAT	4500
PATGAAGTTA	TTGTCTATCG	CAATTTCTAG	CTATAATGCA	GCAGCCTATC	TTCATTACTG	4560
rgtggagtcg	CTAGTGATTG	GTGGTGAGCA	AGTTGGGATT	TTGATTATCA	ATGACGGGTC	4620
rcagga tca g	ACTCAGGAAA	TCGCTGAGTG	TTTAGCTAGC	AAGTATCCTA	ATATCGTTAG	4680
AGCCATCTAT	CAGGAAAATA	AATGCCATGG	CGGTGCGGTC	AATCGTGGCT	TGGTAGAGGC	4740
TTCTGGGCGC	TATTTTAAAG	TAGTTGACAG	тсатсастсс	GTGGATCCTC	GTGCCTACTT	4800
SAAAATTCTT	GAAACCTTGC	AGGAACTTGA	GAGCAAAGGT	CAAGAGGTGG	ATGTCTTTGT	4860
GACCAATTTT	GTCTATGAAA	AGGAAGGGCA	GTCTCGTAAG	AAGAGTATGA	GTTACGATTC	4920
\G T CTTGCCT	GTTCGGCAGA	TTTTTGGCTG	GGACCAGGTC	GGAAATTTCT	CCAAAGGCCA	4980
STATACCATG	ATGCACTCGC	TGATTTATCG	GACAGATTTG	TTGCGTGCTA	GCCAGTTCTA	5040
CTGCCTGAA	CATACTTTTT	ATGTCGATAA	TCTCTTTGTC	TTTACGCCCC	TTCAGCAGGT	5100
CAAGACCATG	TACTATCTCC	CTGTCGATTT	CTATCGTTAT	TTGATTGGGC	GTGAGGACCA	5160
STCTGTCAAT	GAGCAAGTGA	TGATTAAGTG	CATTGACCAG	CAACTCAAGG	TCAATCGACT	5220
TTGATAGAC	CAACTTGATT	TGTCCCAAGT	GAGTCATCCC	AAAATGCGAG	AATATCTGCT	5280
SAATCATATT	GAACTCACGA	CGGTGATTTC	CAGTACCCTG	CTCAACCGAT	CTGGAACAGC	5340
GAGCATCTG	GCAAAAAAAC	GCCAATTGTG	GACCTATATT	CAGCAGAAAA	ATCCAGAAGT	5400
TTTCAGGCT	ATTCGTAAGA	CCATGTTGAG	CCGTTTGACC	AAACATTCTG	TCTTGCCAGA	5460
CGCAAACTG	TCCAATGTCG	TCTATCAAAT	CACCAAATCT	GTTTATGGAT	TTAATTAATA	5520
PAAGTGTTTT	ATAAGAGGGA	TTTAAGAAAA	ATTTTAACTT	TTTCTTAGTC	СТТТТТААТТ	5580
CAGGAGATT	ATACTAGAGT	CATCAAATAA	AGAAAGACTC	TAAGGAGAAT	CCTATGAAAT	5640
CAATCCAAA	TCAAAGATAT	ACTCGTTGGT	CTATTCGCCG	TCTCAGTGTC	GGTGTTGCCT	5700
AGTTGTTGT	GGCTAGTGGC	TTCTTTGTCC	TAGTTGGTCA	GCCAAGTTCT	GTACGTGCCG	5760

			316			
ATGGGCTCAA	TCCAACCCCA	GGTCAAGTCT	TACCTGAAGA	GACATCGGGA	ACGAAAGAGG	5820
GTGACTTATC	AGAAAAACCA	GGAGACACCG	TTCTCACTCA	AGCGAAACCT	GAGGGCGTTA	5880
CTGGAAATAC	GAATTCACTT	CCGACACCTA	CAGAAAGAAC	TGAAGTGAGC	GAGGAAACAA	5940
GCCCTTCTAG	TCTGGATACA	CTTTTTGAAA	AAGATGAAGA	AGCTCAAAAA	AATCCAGAGC	6000
PAACAGATGT	CTTAAAAGAA	ACTGTAGATA	CAGCTGATGT	GGATGGGACA	CAAGCAAGTC	6060
CAGCAGAAAC	TACTCCTGAA	CAAGTAAAAG	GTGGAGTGAA	AGAAAATACA	AAAGACAGCA	6120
PCGATGTTCC	TGCTGCTTAT	CTTGAAAAAG	CTGAAGGGAA	AGGTCCTTTC	ACTGCCGGTG	6180
PAAACCAAGT	AATTCCTTAT	GAACTATTCG	CTGGTGATGG	TATGTTAACT	CGTCTATTAC	6240
PAAAAGCTTC	GGATAATGCT	CCTTGGTCTG	ACAATGGTAC	TGCTAAAAAT	CCTGCTTTAC	6300
CTCCTCTTGA	AGGATTAACA	AAAGGGAAAT	ACTTCTATGA	AGTAGACTTA	AATGGCAATA	6360
CTGTTGGTAA	ACAAGGTCAA	GCTTTAATTG	ATCAACTTCG	CGCTAATGGT	ACTCAAACTT	6420
ATAAAGCTAC	TGTTAAAGTT	TACGGAAATA	AAGACGGTAA	AGCTGACTTG	ACTAATCTAG	6480
TGCTACTAA	AAATGTAGAC	ATCAACATCA	ATGGATTAGT	TGCTAAAGAA	ACAGTTCAAA	6540
AAGCCGTTGC	AGACAACGTT	AAAGACAGTA	TCGATGTTCC	AGCAGCCTAC	CTAGAAAAAG	6600
CCAAGGGTGA	AGGTCCATTC	ACAGCAGGTG	TCAACCATGT	GATTCCATAC	GAACTCTTCG	6660
CAGGTGATGG	CATGTTGACT	CGTCTCTTGC	TCAAGGCATC	TGACAAGGCA	CCATGGTCAG	6720
ATAACGGCGA	CGCTAAAAAC	CCAGCCCTAT	CTCCACTAGG	CGAAAACGTG	AAGACCAAAG	6780
GTCAATACTT	CTATCAAGTA	GCCTTGGACG	GAAATGTAGC	TGGCAAAGAA	AAACAAGCGC	6840
FCATTGACCA	GTTCCGAGCA	AAyGGTACTC	AAACTTACAG	CGCTACAGTC	AATGTCTATG	6900
GTAACAAAGA	CGGTAAACCA	GACTTGGACA	ACATCGTAGC	AACTAAAAA	GTCACTATTA	6960
ACATAAACGG	TTTAATTTCT	AAAGAAACAG	TTCAAAAAGC	CGTTGCAGAC	AACGTTAAAG	7020
ACAGTATCGA	TGTTCCAGCA	GCCTACCTAG	AAAAAGCCAA	GGGTGAAGGT	CCATTCACAG	7080
CAGGTGTCAA	CCATGTGATT	CCATACGAAC	TCTTCGCAGG	TGATGGTATG	TTGACTCGTC	7140
PCTTGCTCAA	GGCATCTGAC	AAGGCACCAT	GGTCAGATAA	CGGTGACGCT	AAAAACCCAG	7200
CCTATCTCC	ACTAGGTGAA	AACGTGAAGA	CCAAAGGTCA	ATACTTCTAT	CAATTAGCCT	7260
rggacggaaa	TGTAGCTGGC	AAAGAAAAAC	AAGCGCTCAT	TGACCAGTTC	CGAGCAAACG	7320
STACTCAAAC	TTACAGCGCT	ACAGTCAATG	TCTATGGTAA	CAAAGACGGT	AAACCAGACT	7380
rggacaacat	CGTAGCAACT	AAAAAAGTCA	CTATTAACAT	AAACGGTTTA	ATTTCTAAAG	7440
AAACAGTTCA	AAAAGCCGTT	GCAGACAACG	TTAAGGACAG	TATCGATGTT	CCAGCAGCCT	7500
ACCTAGAAAA	GGCCAAGGGT	GAAGGTCCAT	TCACAGCAGG	TGTCAACCAT	GTGATTCCAT	7560

ACGAACTCTT	CGCAGGTGAT	GGCATGTTGA	CTCGTCTCTT	GCTCAAGGCA	TCTGACAAGG	7620
CACCATGGTC	AGATAACGGC	GACGCTAAAA	ACCCAGCTCT	ATCTCCACTA	GGTGAAAACG	7680
TGAAGACCAA	AGGTCAATAC	TTCTATCAAG	TAGCCTTGGA	CGGAAATGTA	GCTGGCAAAG	7740
AAAAACAAGC	GCTCATTGAC	CAGTTCCGAG	CAAACGGTAC	TCAAACTTAC	AGCGCTACAG	7800
TCAATGTCTA	TGGTAACAAA	GACGGTAAAC	CAGACTTGGA	CAACATCGTA	GCAACTAAAA	7860
AAGTCACTAT	TAAGATAAAT	GTTAAAGAAA	CATCAGACAC	AGCAAATGGT	TCATTATCAC	7920
CTTCTAACTC	TGGTTCTGGC	GTGACTCCGA	TGAATCACAA	TCATGCTACA	GGTACTACAG	7980
ATAGCATGCC	TGCTGACACC	ATGACAAGTT	CTACCAACAC	GATGGCAGGT	GAAAACATGG	8040
CTGCTTCTGC	TAACAAGATG	TCTGATACGA	TGATGTCAGA	GGATAAAGCT	ATGCTACCAA	8100
ATACTGGTGA	GACTCAAACA	TCAATGGCAA	GTATTGGTTT	CCTTGGGCTT	GCGCTTGCAG	8160
GTTTACTCGG	TGGTCTAGGT	TTGAAAAACA	AAAAAGAAGA	AAACTAATCA	GCTAAGGAAA	8220
TAAATGATGG	ATAGTGGGCT	GACTAAGATT	AGTTTAACAA	CTCAATCAGC	AATCAGGACT	8280
ттстттсаат	AGCAGATTAA	AATCATCGTA	AAACAATAAA	AATAGTGTTA	TACTTAAAGC	8340
AGTATAGCAC	TGTTTTTATC	AAAGGAGAGA	CAGATGGGAA	AGACAATTT	ACTCGTTGAC	8400
GACGAGGTAG	AAATCACAGA	TATTCATCAG	AGATACTTAA	TTCAGGCAGG	TTATCAGGTC	8460
TTGGTAGCCC	ATGATGGACT	GGAAGCGCTA	GAGCTGTTCA	AGAAAAAACC	GATTGATTTG	8520
ATTATCACAG	ATGTCATGAT	GCCTCGGATG	GATGGTTATG	ATTTAATCAG	TGAGGTTCAA	8580
ТАСТТАТСАС	CAGAGCAGCC	TTTCCTATTT	ATTACTGCTA	AGACCAGTGA	ACAGGACAAG	8640
ATTTACGGCC	TGAGCTTGGG	AGCAGATGAT	TTTATTGCTA	AGCCTTTTAG	CCCACGTGAG	8700
CTGGTTTTGC	GTGTCCACAA	TATTTTGCGC	CGCCTTCATC	GTGGGGGCGA	AACAGAGCTG	8760
ATTTCCCTTG	GCAATCTAAA	AATGAATCAT	AGTAGTCATG	AAGTTCAAAT	AGGAGAAGAA	8820
ATGCTGGATT	TAACTGTTAA	ATCATTTGAA	TTGCTGTGGA	TTTTAGCTAG	TAATCCAGAG	8880
CGAGTTTTCT	CCAAGACAGA	CCTCTATGAA	AAGATCTGGA	AAGAAGACTA	CGTGGATGAC	8940
ACCAATACCT	TGAATGTGCA	TATCCATGCT	CTTCGACAGG	AGCTGGCAAA	ATATAGTAGT	9000
GACCAAACTC	CCACTATTAA	GACAGTTTGG	GGGTTGGGAT	ATAAGATAGA	GAAACCGAGA	9060
GGACAAACAT	GAAACTAAAA	AGTTATATTT	TGGTTGGATA	TATTATTTCA	ACCCTCTTAA	9120
CCATTTTGGT	TGTTTTTTGG	GCTGTTCAAA	AAATGCTGAT	TGCGAAAGGC	GAGATTTACT	9180
TTTTGCTTGG	GATGACCATC	GTTGCCAGCC	TTGTCGGTGC	TGGGATTAGT	CTCTTTCTCC	9240
TATTGCCAGT	CTTTACGTCG	TTGGGCAAAC	TCAAGGAGCA	TGCCAAGCGG	GTAGCGGCCA	9300

			318			
AGGATTTTCC	TTCAAATTTG	GAGGTTCAAG	GTCCTGTAGA	ATTTCAGCAA	TTAGGGCAAA	9360
CTTTTA ['] ATGA	GATGTCCCAT	GATTTGCAGG	TAAGCTTTGA	TTCCTTGGAA	GAAAGCGAAC	9420
GAGAAAAGGG	CTTGATGATT	GCCCAGTTGT	CGCATGATAT	TAAGACTCCT	ATCACTTCGA	9480
TCCAAGCGAC	GGTAGAAGGG	ATTTTGGATG	GGATTATCAA	GGAGTCGGAG	CAAGCTCATT	9540
ATCTAGCAAC	CATTGGACGC	CAGACGGAGA	GGCTCAATAA	ACTGGTTGAG	GAGTTGAATT	9600
TTTTGACCCT	AAACACAGCT	AGAAATCAGG	TGGAAACTAC	CAGTAAAGAC	AGTATTTTTC	9660
TGGACAAGCT	CTTAATTGAG	TGCATGAGTG	AATTTCAGTT	TTTGATTGAG	CAGGAGAGAA	9720
GAGATGTCCA	CTTGCAGGTA	ATCCCAGAGT	CTGCCCGGAT	TGAGGGAGAT	TATGCTAAGC	9780
TTTCTCGTAT	CTTGGTGAAT	CTGGTCGATA	ACGCTTTTAA	ATATTCTGCT	CCAGGAACCA	9840
AGCTGGAAGT	GGTGGCTAAG	CTGGAGAAGG	ACCAGCTTTC	AATCAGTGTG	ACCGATGAAG	9900
GGCAGGGTAT	TGCCCCAGAG	GATTTGGAAA	ATATTTTCAA	ACGCCTTTAT	CGTGTCGAAA	9960
CTTCGCGTAA	CATGAAGACA	GGTGGTCATG	GATTAGGACT	TGCGATTGCG	CGTGAATTGG .	10020
CCCATCAATT	GGGTGGGGAA	ATCACAGTCA	GCAGCCAGTA	CGGTCTAGGA	AGTACCTTTA	10080
CCCTCGTTCT	CAACCTCTCT	GGTAGTGAAA	ATAAAGCCTA	AAACCCCTTT	ACAAATCCAG	10140
CTATTCATGG	TAGAATAGAT	TTTGTGTGAA	ATATCAGCAG	GAAAGCATGA	AGCTCGTCAA	10200
CAGGTGTCTT	ATGACAAGTA	ACCTTGGCTG	TTTAGGCGAA	GGGCATCTGC	ACGG	10254
(2) INFORM	ATION FOR SE	O ID NO: 30) :			

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 9769 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

CCGGCGACTA	TCGATAACAC	TTGACTTGGT	AGCCCCACAT	TTTGGACAAC	GCATCCTTTC	60
CCTCCTTATC	GTTTTCTTT	CATTATACCA	TTTTTTAAGC	GATTCCCAAA	ACAATTCTTC	120
TTTTTGCTTG	ACAAGTTTTT	TGTTTTGTTG	TATTATTTAA	TTAAGACAAC	AAGGTAAAAG	180
AAAGGAGACT	AAGATGTCCT	GGACATTTGA	CAACAAAAAA	CCCATCTATT	TACAGATTAT	240
GGAGAAAATC	AAGCTTCAGA	TTGTTTCCCA	TACACTGGAA	CCCAATCAAC	AACTTCCAAC	300
CGTGAGGAGC	TAGCTAGCGA	GGCTGGTGTC	AATCCCAATA	CCATCCAAAG	AGCCTTATCA	360
GACCTTGAAC	GAGAAGGATT	TGTCTACAGC	AAGCGAACAA	CTGGACGATT	TGTGACTAAG	420
GATAAGGAGC	TAATCGCCCA	GTCACGCAAA	CAATTATCAG	AAGAAGAATT	GGAACACTTC	480

319

					•		
GTTTCC	TCCA	TGACCCATTT	TGGCTATGAA	AAAGAAGAAC	TACCAGGCGT	AGTCAGTGAT	540
TATATT	AAAG	GAGTTTAAGC	CTATGTCATT	ACTAGTATTT	GAAAATGTAT	CCAAATCATA	600
TGGAGC	AACA	CCAGCCCTTG	AAAATGTTTC	TCTTGACATT	CCAGCTGGAA	AAATTGTCGG	660
CCTTCT	TGGG	CCAAACGGCT	CAGGAAAAAC	AACCCTGATT	AAACTAATTA	ATGGCCTCTT	720
ACAACC	AGAT	CAAGGACGTG	TCCTCATCAA	CGACATGGAC	CCAAGCCCAG	CAACCAAGGC	780
CGTTGT	AGCT	TATTTGCCTG	ATACGACCTA	TCTCAATGAG	CAAATGAAGG	TCAAAGAAGC	840
CCTAAC	CTAC	TTCAAGACCT	TCTATAAAGA	TTGTCAGATC	TTGAACGCGC	ССАТСАТСТА	900
CTTGCA	GACC	TGGGCATTGA	TGAAAATAGT	CGTCTCAAGA	ААСТАТСААА	AGGAAACAAA	960
GAAAAG	GTTC	AACTGATTTT	GGTTATGAGC	CGTGATGCTC	GTCTCTATGT	TTTGGACGAA	1020
CCCATT	GGTG	GGGTGGATCC	AGCAGCCCGT	GCTTATATCC	TCAATACCAT	TATCAACAAC	1080
TACTCA	CCAA	CTTCTACCGT	TTTGATTTCT	ACCCACTTGA	TTTCTGATAT	CGAGCCAATC	1140
TTGGAT	GAAA	TTGTCTTCCT	AAAAGACGGA	AAAGTCGTCC	GTCAAGGAAA	TGTAGATGAT	1200
ATTCGC	TACG	AGTCAGGTGA	ATCCATTGAC	CAACTCTTCC	GTCAGaATTT	AAGGCCTAAG	1260
CAAAGG	AGAT	TATTTATGTT	TTGGAATTTA	GTTCGCTACG	AAATTTAAAA	TGTTAACAAG	1320
TGGTAT	TTAG	CCCTCTACGC	AGCCGTGCTA	GTCCTTTCTG	CCCTCATCGG	AATACAGACA	1380
CAAGGC	TTTA	AAAATCTACC	TTACCAAGAA	AGTCAGÇCTA	CTATGCTACT	TTTTCTAGCT	1440
ACAGTC	TTTG	GTGGCTTGAT	GCTTACACTT	GGGATTTCAA	CCATTTTCTT	GATTATTAAA	1500
CGCTTC	AAAG	GTAGTGTCTA	CGACCGACAA	GGCTATCTGA	CTTTGACCTT	GCCAGTTTCT	1560
GAACAC	CATA	TCATCACAGC	CAAACTAATC	GGTGCCTTTA	TCTGGTCATT	GATTAGCACC	1620
GCTGTA	TTGG	CTCTAAGTGC	TGTTATTATT	CTGGCTTTAA	CAGCTCCAGA	ATGGATTCCT	1680
CTTTCT	TATG	TGATTACATT	TGTAGAAACA	CATCTCCCTC	AGATCTTTCT	TACAGGTATA	1740
TCCTTC	CTAC	TAAATACTAT	TTCAGGAATC	CTCTGCATCT	ACCTGGCTAT	TTCCATTGGA	1800
CAGCTT	TTCA	ATGAATACCG	TACAGCACTC	GCTGTTGCAG	TCTACATTGG	TATCCAAATC	1860
GTCATT	GGAT	TTATTGAACT	TTTCTTCAAT	CTTAGTTCTA	ATTTCTATGT	CAATTCACTG	1920
GTAGGA	CTCA	ATGACCATTT	CTATATGGGA	GCAGGTATAG	CCATTGTTGA	AGAACTCATA	1980
TTCATA	GCTA	TCTTTTATCT	CGGAACCTAC	TACATCTTGA	GAAATAAGGT	TAATTTGCTT	2040
TAAATA	АТТТ	TTACCTAGAT	ATGTAACATA	CTCATAGAAC	AAAAGAGACC	AGGCAAAAAG	2100
TCTTTA	AAAT	TAGAAAACGC	ATAGTATCAG	GTGTTGAATA	TGTACTGCcC	CCCAAAAGTT	2160
AGATTT	TTTC	TGTCTAACTT	TTGGGGGCAG	TTCATAAGAA	CCTTGGTAAT	ATGCGTTTTT	2220

320 TGTGAGCTGA CTTATTTCCT TTCACTATAT CGCAAAATGA AATAAGAACG GAACGATGGG 2280 ATTTTGGAAT TCAAATCAAT TTATAAGAAT GTTTTAGAAG TAATATTATC CTATTCCAGA TTCAGTTCAC TATACAATTG AGTTTTCAAG CAACCTGTTT ACATAATGTG TACATAATTA 2400 GGTTCGTGAT TCCACCCTTT TCACCTTTAA AAACCTCGCT TTCGCAAGGC TCTTCTATTT 2460 ATAAGATAAG GCACGTTTAA AGGTTTTCCA AATCCCTAAA TCATCCGTTT GAAGAACGAG 2520 ACTAGCATAC ATGCGTCCGA TAAATCCTGT TGCTACCACC GCAAAAATCA CTGTAATAGC 2580 AAGTGAAATC CATGCTTCTG CTCCCCCGC ATAGTCATTA ATCGTTCGAA ACGGCATAAA 2640 GAAGGTCGAA ATAAAGGGAA TATAAGAACC AATCTTCAAG AGGAGATTGT CACCAGCTGC 2700 ACCTAGAGCT GTCACTCCAA AAAAACCACC CATAATCAAA ATCATCAAAG GCGACAAGGC 2760 TTTCCCTGAG TCCTCAGGAC GAGAAACCAT AGATCCTAGG AAGGCTGCCA AGACTACGTA 2820 CATGAAAAGA CTGATCAAAA TAAAGAGCAA GGTATTCAGT GAGATAGCAT CTCCCAAGTG 2880 ATCCAAAATA CCAGACTGAG CCAAGAATGG CAAATCTTTA AAGAGCAAAA CGGCAGCCAG 2940 ACCACCTACA ACATAGATCC CAATATGCGT TAAAATCACT AGAAACAGAG CCATCATCCG 3000 CGCATAGAAA TAGTGACTTG CCCTTATGCT AGAAAAAACG ACTTCCATAA TTTTGGTGCC 3060 TTTTCACTG GCAACTTCCT GAGCTGTTAC ACCCGCATAG GTAATCAGAA TCATATAAAG 3120 AAAGAATCCT AAGGCACCTG CTGCAATTGT TTGAATAAAC TTTTTATTTT CCTTGGCTTC 3180 ATCAATCTTT TCTGTGAATT GAATTGTCTG CGCTAAGCGT TTTTCCTGCT CTTGAGACAA 3240 GGAAGCAGTT GAACGATTAA GCTGATTTTG CAGTTCATTG AGTGTACCTG TAACCTCAAA 3300 TTTAATTCCA TTTTCAAGCG ATGTTTCGCC ATGATAAACT GCCTTTAGAA CACTATCTTC 3360 TTGATCAATG GTCAAATAAC CTTTTAATTT TTCTTCTTTA ATTGCTTCTT TGGCACTTGC 3420 TTCGTCTTTA TAGTCGAAGT TAACACCATT TACATTCTTC AGTCCTTCTG CTACAGATGG 3480 CACTGTTGTC ACTACTGCCA CTTTATTATT TTTAGCCATA GAAGAACCTT GGAGATGCCC 3540 AATTCCTACA GAGATTCCTA AAAAGAGGAA CGGCGAAATC ACCATAAAGA AGAAACTCCA 3600 TGACTCGACA TGTCGAAGAT AGGTTTCCTT GATTACAACC CACATATTTC TCATACTTCC 3660 ACTCCTGATT CTAGTTTAAA GATTTCATCG ATAGTTGGCG CTTGTTGGTC AAATGTTGCG 3720 ATATATTGAC CTTGAGTCAA GATTGAGAAG AGTTCCCTTC CAGCGCTCTC ATCCTCCAAA 3780 ATCAATTTCC AACTGCCTTG TTTGGTCAAG CTCACCTGTT TGACATGAGG AAGATTTTCC 3840 AATTCTTCCT TGCTTCGTTC ACTTGAAACA AAGAGACGCG TTTTCCCGTA TTGATTGCGG 3900 ACATCCTGAA CTGGTCCGTG CAAGACCACA CGGCCATCTC GGATCATCAG AATATCGTCA 3960 CAAAGTTCCT CAACATTGGT CATGACATGG TCAGAAAAGA TAATGGTTGT CCGCGCTCTT 4020

321

TTT	CCTGAAA	AATGACTTGT	TTGAGCAATT	CTGTATTAAC	TGGGTCCAAT	CCACTAAAAG	4080
GCT	CATCCAA	GATAATCAGG	TCTGGTTCAT	GAATCAGAGT	AATAATGAGC	TGAATCTTCT	4140
GCT	GATTTCC	TTTTGACAGA	CTCTTGATTT	TATCTGTCAG	CTTTCCTTTC	ACTTCCAACC	4200
TCT?	гсатсса	TTGAGGGAGT	TTTTCTTTGA	CTTCTTTGGC	ATCCATGCCT	TTTAGAGTCG	4260
CCA	AGTAGCG	AACTTGTTCA	AGAACTGTCA	ATTTAGGCAT	GAGATGCGTT	CTTCAGGCAG	4320
ATA!	ACCAATC	CGAGCATAGG	TCTCCTGACG	AATATCCTGA	CCATCCAGAC	CGATTTCTCC	4380
CTG/	ATATTCT	AGGAATTTCA	AAATACTATG	GAAAATCGTT	GTTTTTCCAG	CACCATTTTT	4440
TCC	GACTAGT	CCCAAAATAC	GACCTGGTCG	CGCTTGAAAG	TCAATACCAA	ACAAAACTTG	4500
CTT	GGATCCA	AAACTTTTCT	CTAGACTTCT	TACTTCTAGC	ATCTTTCACC	TCCGAAATTT	4560
CTT	GCACTCA	TTATACTCCT	TTTTGATAGC	CTTTACAATG	TTTTTTGTCC	ATTTTTAGAA	4620
GAC!	PATTGCT	GTGTAAAATA	TGGCCTGGAG	CACTTTTATA	CTCAATGAAA	ATCAAAGAGC	4680
AAA	CTAGGAA	GCTAGCCGTA	GACTGCTCAA	AGTACAGCTT	TGAGGTTGCA	GATAAAACTG	4740
ACG/	AAGTC gA	CTCAAAACAC	TGTTTTGAGG	TTGTGGATAG	AACTGACGAA	kCrTAaCTAT	4800
ATC:	PACGGCA	AGGCGAAcTG	ACGTGGTTTG	AAGAGATTTT	CGAAGAGTAT	TAGTGATAAA	4860
TCC	ATTATAC	AGCAGCAAAC	TTAATTTATA	CCTTCCGCTC	CTCAACTGTC	TATTTTTAAT	4920
CCT	GAATTGT	TATTTGAGTA	ACTCCTTTTT	CCTCGTAAAG	TTTTCTTCCT	CTAAAACTTC	4980
TGG/	AAAAAGG	CTAATAGTTT	CAGACAACAT	TTTTATAAGA	AACAAGTTCA	TCTGTCATTT	5040
CAAC	GAAGGAG	TAATCCTTTA	TCTACTAATG	GACGGAACAG	AATTCAACCG	CTTGTCCGAT	5100
ATG	PTTTCTA	AGGATTATAT	AGTAAAATGA	AATAAGAACA	GGACAAATTG	ATCAGGACAG	5160
TCA	AATTGAT	TTCTAACAAT	GTTTTAGAAG	TAGATGTATA	CTATTCTAGT	TTCAATCTGC	5220
TAT	АТСТАТТ	ATGCACACCC	CTATAGGATC	TAATGAAAAT	CACAACAGGC	TCATTCATAG	5280
ATG	STTACCT	AAGCCTAAGG	GAACTAAGAA	AACGACTACC	AAGGAAGTCG	CATTCATCGA	5340
AAAC	STAGATT	AACAACTATC	CTAAAAAATG	CTTGAACTAC	AAGTCCCCCA	GAGAAGACTT	5400
CTG	GATGACT	AACTTGAACT	TGAAATTTAG	СААТААТТАА	TTCACTATCT	AACTATATTT	5460
AGT!	TTATTA	TCAGAACTGA	TTAATATTAA	AATTAACTAA	CAATTCAAAG	GATTCATACT	5520
AGC(CATAAAT	TACGTCCATC	AGAGAGAGAC	TCTTACTACT	TTTAGATTTT	AGTCTTTCTA	5580
GCTT	ICAGAAT	ACATCTAAAC	TTTAGGGAAA	ATGACTATTC	GAAAGCGCGA	ATGCCTCAAA	5640
ATT	ATCTCAG	ATAAGCTATT	CGAAACTTAG	AATGCTTTTA	AATTTATGGA	ATTGCGATTA	5700
mm~/	משטעעעני	NCN NECCNEN	MA A COMMUNIC	mmcacacacc	መአመመርመን አርው	CECCAACCC	5760

			322			
TATTTACTTT	CTATTCCTTA	TCAAAAAAGA	CTCATTCCCC	CTTTCTCCTC	CAAAATATGG	5820
TATAGTAGAA	ATATACTATC	TATGAGGAGT	TTACATGTCA	CAGGATAAAC	AAATGAAAGC	5880
TGTTTCTCCC	CTTCTGCAGC	GAGTTATCAA	TATCTCATCG	ATTGTCGGTG	GGGTTGGGAG	5940
TTTGATTTTC	TGTATTTGGG	CTTATCAGGC	TGGGATTTTA	CAATCCAAGG	AAACCCTCTC	6000
TGCCTTTATC	CAGCAGGCAG	GCATCTGGGG	TCCACCTCTC	TTTATCTTTT	TACAGATTTT	6060
ACAGACTGTC	GTCCCTATCA	TTCCAGGGGC	CTTGACCTCG	GTGGCTGGGG	ТСТТТАТСТА	6120
CGGGCACATC	ATCGGGACTA	TCTACAACTA	TATCGGCATC	GTGATTGGCT	GTGCCATTAT	6180
СТТТТАТСТА	GTGCGCCTAT	ACGGAGCTGC	CTTTGTCCAG	TCTGTCGTCA	GCAAGCGCAC	6240
CTACGACAAG	TACATCGACT	GGCTAGATAA	GGGCAATCGT	TTTGACCGCT	TCTTTATTTT	6300
TATGATGATT	TGGCCCATTA	GCCCAGCTGA	CTTTCTCTGT	ATGCTGGCTG	CCCTGACCAA	6360
GATGAGCTTC	AAGCGCTACA	TGACCATCAT	CATTCTGACC	AAACCCTTTA	CCCTCGTGGT	6420
TTATACCTAC	GGTCTGACCT	ATATTATTGA	CTTTTTCTGG	CAAATGCTTT	GACACGTAAA	6480
AAATCCGTTT	GGTTTCCCAA	GTGGATTTTT	AAAGCGTAGA	TTAACTATAG	CTTGATACTA	6540
AATATACTTT	GGTATGGAAA	TCATGCATAT	TTTTCGATAG	TGAGGCGAGG	ACTTACCTAG	6600
CCTTTCCGCC	GTGATAGAAA	CACCTGAAAT	CTAATGGTTT	CAGGTATTCG	GAAACTTTGA	6660
GCCTAGTGTC	TCAAAGTTTA	GGTATGGAAT	TTTGAAGAAA	GTCGCTACCG	TCCGTAATCA	6720
CTTAAGGAAA	GGCTCAAAAA	TATTGTTTTC	AACCACAAAA	TCCGTTTGGT	TTCCCAAGCG	6780
GATTTTGTGC	TTTATTTTGA	AACTTCTTTT	GCAAGAACAA	AGTTCCCAAG	TGTGGCAGAA	6840
CCATTTCCTG	CGACTGCTGG	CGTCACGATA	TAGTCACGCA	CATCTGGTAC	TGGTAGGTAA	6900
CCATTAAGAA	GAGATGTAAA	TTTCTCACGG	ACACGGTCCA	GCATATGTTG	TTGAGCCATG	6960
ACCCCTCCAC	CAAAGACAAT	CACGTCTGGG	CGGAAAGTCA	CTGTCGCATT	AACCGCAGCT	7020
TGAGCGATAT	AGTAGGCTTG	AACATCCCAA	ACAGGGTTGT	TGAGTTCAAŢ	AGTTTCCCCA	7080
CGTACACCTG	TACGAGCTTC	CAAACTTGGA	CCAGCTGCAT	AACCTTCTAG	ACATCCCTTA	7140
TGGAAAGGAC	AAACACCCTT	AAACTCTTTT	TCAATATCCA	TTGGGTGTCT	AGCAACATAA	7200
TAATGACCCA	TTTCAGGGTG	ACCCACACCA	CCGATAAACT	CACCACGTTG	GATGACGCCT	7260
GCACCGATAC	CTGTACCGAT	TGTGTAGTAA	ACCAAGTTTT	CGATACGACC	ACCAGCATTG	7320
TTACGGGCAA	CCATTTCACC	GTAAGCAGAG	CTGTTTACGT	CTGTTGTGAA	GTACATTGGC	7380
ACGTTTAGGG	CGCGACGAAG	GGCACCAAGC	AAGTCTACAT	TTGCCCAGTT	TGGTTTTGGA	7440
GTCGTCGTGA	TAAAGCCATA	AGTTTTTGAG	TTTTTGTCAA	TATCAATCGG	CCCAAATGAA	7500
CCAACTGCAA	GACCAGCAAG	GTTATCGAAT	TTTGAGAAGA	ACTCAATGGT	TTTATCGATT	7560

STTTCGATTC	GAGTTGTTGT	TGGAAATTGT	GTTTTTTCTA	CAACGTTAAA	GTTTTCATCA	7620
CCGACAGCA	AGACAAACTT	TGTACCGCCC	GCTTCCAAGC	TTCCATATAA	TTTTGTCATG	7680
TAAACCTC	TGTTTTTATT	TTCTTTATTA	TAGCATACTT	CGAAAGTCTA	AATGTCTCTA	7740
TTTTTAGA:	TTTCCTCTGT	AAATCTTACT	АТСТААТААА	AACGAACAAA	CATGTCATTT	7800
STTCGTTTTC	CACATTAGAGA	GGATTGATTA	GATTTTCACT	TCGATCACAG	CATCCCCCTT	7860
AGCAACTGA	CCTGTTGCGA	CTGGAGCTAC	TGAAGCGTAG	TCACCTGTAT	TTGTAACGAT	7920
ACCATTGT	GTATCATCAA	GTCCAGCTGC	AGCGATTTTG	TTTGAGTCAA	ATGTTCCAAG	7980
AACATCGCC/	GCTTTCACCT	TATTACCTTG	AGCAACTTTT	GTTTCAAAAC	CGTCACCGTT	8040
CATAGATAC	GTATCAATAC	CAACATGAAT	CAAAACTTCA	GCACCATTTC	TTGTTTTCAA	8100
ACCAAAAGC	TGCCCTGTTG	GAAAGGCAAT	TGAAACTTCA	GCATCAGCTG	GTGCATAGAC	8160
CACGCCTTG	CTTGGTTTCA	CAACGATACC	TTGTCCCATA	GCTCCACTTG	AGAAGACTGG	8220
STCATTGAC/	TCAGCAAGAG	CGACAACATC	ACCGACGATA	GGAGTTACAA	GTGTTTCATT	8280
PTGAAGAGC!	GCTGGCGCAA	CTTCTTCTTT	TTCTTCAGCC	ACTTCAGCTC	GTTTTGCAGC	8340
rgcagttgc(TCTACTTCAT	CTTCGTAACC	AAACATGTAA	GTAAGAGCAA	AACCAAGGC	8400
AATGATAC/	GCTACCATAA	GAAGGTATTG	TGGAAGTTGT	CCGTTACCAA	CATAAAGCAT	8460
GTACCAGG	ATGATGGTGA	TACCATTACC	AGTACCAGCA	AGTCCAAGGA	TAGAAGCCAA	8520
CCACCACC	ATTGCACCAG	CAATCAATGA	AAGGAAGAAT	GGTTTACGGA	AGCGCAAGTT	8580
CACCCGAAC	ATAGCAGGCT	CTGTAATACC	TAGGAAGGCA	GAAAGAGCAG	CCGGGAAAGC	8640
\AGTGTTTTC	AGTTTTGGAT	TTTTTG TTTT	AACACCAACC	GCAACAGTAG	CAGCACCTTG	8700
AGCTGTCAT?	GCAGCTGTGA	TGATAGCGTT	GAATGGGTTA	GCATGGTCAG	CAGCAAGTAA	8760
TTGCACTTC!	AGCAAGTTGA	AGATGTGGTG	CACACCTGAC	ACGACGATCA	ATTGGTGAAC	8820
CCACCAAT	AAGAAACCAC	CAAGACCAAA	TGGCATGCTA	AGAATCGCTT	TTGTAGCAAT	8880
AGGATGTAC	TTTTCAACAA	CGTGGAAAAC	TGGTCCAATG	ACAAAGAGTC	CAAGGATAGA	8940
CATGACCAA	AGTGTCACGA	ATGGTGTTAC	CAAGAGGTCA	ATGACATCTG	GAACAACTTG	9000
GGACAGCT	TTTCAAATTT	AGCTCCGACA	ACCCCGATGA	TGAAGGCTGG	AAGAACGGAA	9060
CTTGCAAA	CAACAACAGG	GATGAAACCA	AAGAAGTTCA	TCGCTGTTAC	TTCACCACCT	9120
GAGCAACTC	CCCAAGCGTT	TGGAAGTGAG	CCAGAGACAA	GCATCATACC	AAGAACGATA	9180
CAACGGCAC	GATTTCCACC	AAATACACGG	AAGGTTGACC	ACACAACCAA	ACCTGGCAAG	9240
.ምርኔምር ኔ አ <i>ርር</i>	· Carcan a arcancan	CAACAMMMCM	· COCORA A COSTO	CNARCOCACC	TOCA ACTICOC	0200

PCT/US97/19588 WO 98/18931

			324				
ATTTCAAGAG	CGTTGAAAAG	ACCACGCACA	CCCATGAAGA	GACCTGTCGC	TACGATAACT	9360	
GGGATGATTG	GAACGAAAAC	ATCACCAAAA	GTACGGATAG	CACGTTGGAA	CCAGTTCCCT	9420	
TGTTTAGCAA	CTTCTGCTTT	CATGTCATCC	TTAGATGATG	TTGGTAATCC	AAGTACAACA	9480	
			GTACCAAAGA			9540	
			TTCTCAATCA			9600	
TCATCTTTGA	CCATGACACG	TAGACGAGTC	GCACAGTGGG	CAACACTATT	GACATTTTCA	9660	
CGTCCGCCCA	AGGCATCGAT	GACTTTTTTT	GCAATTTCCT	GATTGTTCAT	TTGCAAAAAT	9720	
CTCCTTATAT	AACATTTTGT	TCTTGTTTGA	AAGCGATTTT	ATTCGCCGG		9769	
(2) INFORMATION FOR SEQ ID NO: 31:							

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3149 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

CGCTTGAGTG	CTAATTCATA	GTTCTATTGT	ATCACTTGGT	CAGAAATAAT	CAAGAAAAA	, 60
GTCTGACTTT	CTCAAGATAA	AAAGCCTGAG	ACCAACTCAG	ACTTTTTAAT	TCTTAAAATG	120
GCAATTCTTC	CTCTTCCAAG	ACCAAATCTG	CCAAATCTTG	GCCTGCATTA	TTTTCACGCA	180
TAGCACGTTG	GGCACGACTT	TCCAAGAGTT	GGAATCCTGT	GACAAGTACT	TCGGTCACGT	240
AGTTCATTTG	GCCATTTTTC	TCAAAGCGAC	GGGTACGCAA	TTCTCCATCA	ACGGAAATGA	300
GACTACCTTT	GGTTGCGTAC	TTGCCAAAGT	TTCTGCTAGT	CTGCCCCATA	GGACCATATT	360
GACAAAATCA	GCTTCACGTT	CACCGTTTTG	GTCTTTGTAA	CGACGGTTCA	CAGCGATAGT	420
TGCTCGCGCT	ACCGACTTGT	CATTGTTGGT	TTTGTGCAAT	TCTGGTGTAG	ACGTTAAACG	480
TCCAATCAAG	ATAACTTTAT	TATACATATT	TTCTTCCTCC	TACTTATCTA	TTCGTAGGAA	540
АТСАААААА	GTTACAGAAA	TTTGTAACTT	TTCGAGAAAA	TTTTTTATTT	TTTATGAACC.	600
ATGAAACCTG	TCGCCTGTTG	ATTGGCCATA	ATGGTCATAT	CTGTAATCTG	AACACGACGA	660
GGTTGACTAG	TCACATAGAC	TACTGTATCT	GCAATATCCT	GAGCTTGCAA	AGCTTCTATT	720
CCTTGGTAAA	CGGACGCAGC	TCGTTCTTTA	TCACCATGAA	AACGCACTGT	AGAAAAATCT	780
GTTTCGACAA	TTCCAGGCTG	AATGGTCGTC	ACCTTGATAT	CCGTTGCGAT	GGTATCAATT	840
CGCAGTCCAT	CTGAAAAGGT	CTTAACTGCC	GCCTTGGTGG	CTGAGTAAAC	AGCTGCACCA	900
GCATAGGCAT	AAATTCCTGC	GGTTGACCCC	ATATTGATAA	TATGACCTTG	ATTGGCTTTT	960

ACC.	ATTGCTG	GCAAGAAACA	GCGAGTGACT	GCCATCAAAC	CTTTGACATT	GGTATCCAAC	1020
ATG	GTCAGCA	TATCCAACTC	TTCATAGTCT	TGATAGGGAG	CTAAGCCAAG	AGCCAGTCCT	1080
GCG	TTATTGA	CCAGGATGTC	AATCTGACCT	ATCGTTTCTA	AAATATCAGA	GCAGACAGTC	1140
TTT.	ACCATTG	TCATATCCGT	GACATCTAGG	AGAAAAGTCC	AAACTGTTTG	ATTTGGAAAA	1200
GTT'	TCTGCAA	ACTCCGCCTT	AAGAGCTTCT	AGTCTGTCTA	TCCGTCGTCC	TGTTAGAACG	1260
ACA'	TCCTCAC	CCTGCTCCAG	ATAAGCACGC	GCAATCGCTT	CACCGATTCC	TGATGTCGCT	1320
CCT	GTAATCA	CAACATTTTT	TGCCATCTTA	TTTCCTTCTA	GCTGGTCTAT	CAGATATTAA	1380
CAA	CTTCTTA	GGCAGTCCAG	TGTTTCGCTG	GGTCGAACGG	TGTTCCGACA	ACTTGGTCTT	1440
CTG	ATAATTC	AAGCACCCCA	CGTTTTTGTG	GAGCATTTGG	CAGATGCAAT	TCACGAGGAC	1500
TGC	ACATCAT	ACCAAAACTC	TTTTCACCAC	GAAGTTCACC	TGGGAAAATG	AGATTCCCTT	1560
TTG	GCATCAT	AGCTCCAGGA	AGCGCGACAA	TGGTTTTCAA	CCCCACACGC	GCATTGGGAG	1620
CTC	CTGCAAC	GATTTGTACA	GTCTTATCAC	TTGCGACTGC	AACTTGGCAG	ATGTTGAGGT	1680
GGT	CACTATC	TGGATGGGCT	ACCATCTCAA	CAATTTCACC	TACAACAAAC	TTAGGTTCCT	1740
rat(CATTAAC	AATTTCTTCT	GTAAAACCTT	CCGCCTGCAA	CTCTTGGTTC	AAACGAGCGA	1800
CTT	GCTCATC	TGTCAAAAAG	ACTTGACCGC	GCTCTGCAAT	ТТСАААТААА	CTTGAAACTT	1860
CGA	AAA TATT	CCAAGCCACT	GTTTCCCCAT	TATCTTTGAG	AAAAACACGG	GCTACCTTGC	1920
CTT:	PGCGCTC	CACATCCAGT	TTGGCATCTC	CGCTATTTTT	CACGATGACC	ATAAGGACAT	1980
CAC	CGACATG	TTCTTTATTA	TATGTAAAAA	TCATTGTTTC	CTTTTTCTCC	TATTTCAGTC	2040
CTG	CTAAAAA	GTCATTGATT	TGTTGCTTGC	TTTTACGGTC	GCGATTGACA	AAACGACCGA	2100
rtt	CCTTGTC	CTTTTCTAGA	ACAACAAGGC	TAGGAATTCC	GTAAACATCC	CAGAGTTTGG	2160
CA	AATCCAT	ATACTGATCT	CGGTCCATTC	GAATAAAGGT	GAACTCTGGA	TTGGTCTCCT	2220
CAA	r ctct gg	TAAGGCAGGA	TAAATATAAC	GACAATCGCT	ACACCAGTCT	GCCACAAAAA	2280
rgaj	AGACCTT	CTTGCCCGCT	TTTTCCACTA	AAGATGCTAA	TTCTTCTAAA	CTTGCTGGCT	2340
STA1	rcataag	ACTTCCTCCT	CATAGACTAG	GTCTTCATTT	TCATAGACAA	AGGTATAATG	2400
ACGO	GCCATCC	TCAAAAATGA	CGCCACCAAC	CAAGCTCTCC	AGACTGCTTT	CGTAAACTTG	2460
AAC#	ATAAAGG	GTCGCAATTT	CCCCCATGTC	GGAAAAATGG	TCTCGCACAA	TCTCTGTCAA	2520
TC?	PTCCTGA	GTCTTCATGA	GCTTACGGTC	ATCTGCAACT	TTTTTCGTAG	CAAGAGCAAG	2580
3CT1	CCGATA	CCTAGCAGAG	CCAAGCCTGC	CATCCACATT	TTTTTAGCTT	TCATACCATT	2640
ייתאב	ттааса	CAAAAAAGGC	TTCAGGACAA	ATGAGGAAGC	AGCAGAAAAG	CAACTAAAA	2700

PCT/US97/19588 WO 98/18931

			326				
GCCTCTTCCT	TTAAGGAAAA	GGACTTCTTA	TACTCAATGA	AAATCAAAGA	CCAAACTAGG	2760	
AAGCTAGCCG	CAGGCTGCTC	AAAGCACTGC	TTTGAGGTTG	TAGATAGAAC	TGACGAgTCa	2820	
CTCAAAACAC	TGTTTTGAGG	TTGTGGATGA	AGCTGACGTG	GTTTGAAGAG	ATTTTCGAAG	2880	
AGTATTATTC	TTATTGCCAG	GCACCTAAGT	TGCCAACGTA	GTAACTATCA	GGTGTGTAGG	2940	
TATTGCGAGC	ATCTTACCTG	ATGAAGCCAG	ATAATACTAC	TTGCCATTGT	CTTTGACCCA	3000	
ATCATTCGCA	ATCATGGAAC	CAGAAGAACT	TACATAATAC	CATTCTCCCT	TGTCATAAAC	3060	
CCAAGTACTG	ACTTTCATGG	TTCCTGAGCA	ATTAAAGGCA	AAAAAACTGT	CCAATAACAT	3120	
TCGTTTTTTA	AAAGCATTTG	ACACTACAT				3149	
(2) INFORMATION FOR SEQ ID NO: 32:							

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10240 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

60	ATAAAAGAAT	AAGGTGTCAG	AGAGACTCAC	GGGAGTCCAG	AACCTTTAAG	CCAAAAATTC
120	GATTTTAACT	TGTGTTGTAC	TGTGCTCTCT	ACTTTTTGAG	TCTAGAGGAG	GGTGCAATTT
180	AAGGAGGAAA	CTTAAAATTT	ATCTGGTCCC	TCTTTTCTTT	ACTAGCAAGG	GAGGCCTTGC
240	CCATGAAGGT	CGGTTGGAAA	GGGTGTCATT	AGAAGCGTTT	CCCACATGTA	agttatgaat
300	agaaatggtt	TCCTAGAAGG	TTTGAATTAG	CGCCACAATC	GAGGAAATCG	GGTTGCACAA
360	ССАТСТСТТА	CGGACGATGC	CTGCGTGTAC	ATTTCTTCAT	GAGCAGGCCA	GAAGCCATGC
420	CCTCATTTAT	AGCAGTGTCA	AAGGCAAACA	GTCTATTGAC	TTTCAATTTC	CGTCGTCCTA
480	CACTCTTGAT	GTCAGGGAGA	TCAACCTTAA	TGCAATTTTT	GAGCTGGGAC	CGGATTGACG
540	GAATCAGGTT	TTGATGAGCA	TTGTCTGACC	TGGTTTTGAC	CTCAGGGAAA	GTGATGGGC
600	GGAATTGCAT	AGGTGGCCAA	CCCTTCCTTG	TGGTGTTCCA	GTGGTGGGAT	CTCCTTGTTG
660	TGTTATTTTG	ATAAGGATGC	GGTTTTGCTA	GACAGTCCTC	TGAAAGTAGT	GAACGTGGAG
720	TTCTTATGGC	CAGATGATGG	TTTGTAACGA	TGGTCAGGTC	TGGCTCAGTA	AAAACGGAAT
780	TGCTGTTTAC	GTCAGTTTGA	GATTTAGACA	TGTTATCAAT	ATGTTTCCGT	ATCAAGGGAA
840	TCACCCAAGA	CCTTTGATGA	АТСААТСААА	GATGAAGTAT	CTCCAGGAAT	TCGTGTGGGG
900	TGCCTGTGTT	GAGCTTGCTA	TGTGGGATGG	TCGTATGGCT	CTCTGGAATC	GCCTATTTAT
960	TCCTGTTTTC	GTGAAGATGG	CAACGCGTCT	GACGGTCAGC	CAGAAAACGA	CTAAAAGTAC

CGCACAGGAA	CAGTTGTATT	ATAAGGAGAA	AATTATGACT	ACAAATCGAT	TACAAGTTTC	1020
TCTACCTGGT	TTGGATTTGA	AAAATCCGAT	TATTCCAGCA	TCAGGCTGTT	TTGGCTTTGG	1080
ACAAGAGTAT	GCCAAGTACT	ATGATTTAGA	CCTTTTAGGT	TCTATTATGA	TCAAGGCGAC	1140
AACCCTTGAA	CCACGTTTTG	GGAATCCAAC	TCCAAGAGTG	GCAGAGACGC	CTGCTGGTAT	1200
GCTCAATGCA	ATTGGCTTGC	AAAATCCTGG	TTTAGAGGTT	GTTTTGGCTG	AAAAGCTACC	1260
TTGGCTGGAA	AGAGAATATC	CAAATCTTCC	TATTATTGCC	AATGTAGCTG	GTTTTTCAAA	1320
ACAAGAGTAT	GCAGCTGTTT	CTCATGGGAT	TTCCAAGGCA	ACTAATGTAA	AAGCTATCGA	1380
GCTCAATATT	TCTTGTCCCA	ATGTTGACCA	CTGTAATCAT	GGACTTTTGA	TTGGTCAAGA	1440
TCCAGATTTG	GCTTATGATG	TGGTGAAAGC	AGCTGTGGAA	GCCTCAGAAG	TGCCAGTTTA	1500
TGTCAAATTA	ACCCCGAGTG	TGACCGATAT	CGTTACTGTC	GCAAAAGCTG	CAGAAGATGC	1560
GGGAGCAAGT	GGCTTGACCA	TGATCAATAC	TCTGGTTGGA	ATGCGCTTTG	ACCTCAAAAC	1620
TAGAAAACCA	ATCTTGGCCA	ATGGAACAGG	TGGAATGTCT	GGTCCAGCAG	TCTTTCCAGT	1680
AGCCCTCAAA	CTCATCCGCC	AAGTTGCCCA	AACAACAGAC	CTGCCTATCA	TTGGAATGGG	1740
AGGAGTGGAT	TCGGCTGAAG	CTGCCCTAGA	AATGTATCTG	GCTGGGGCAT	CTGCTATCGG	1800
AGTTGGAACA	GCTAACTTTA	CCAATCCTTA	TGCCTGCCCT	GACATCATCG	AAAATTTACC	1860
AAAAGTCATG	GATAAATACG	GTATTAGCAG	TCTGGAAGAA	CTCCGTCAGG	AAGTAAAAGA	1920
GTCTCTGAGG	TAAACTGCAA	TCAATCTGTT	CTTGATTTTT	TATTAGTTTG	TAATATGAAT	1980
TTAGGAGAAT	TTTGGTACAA	TAAAATAAAT	AAGAACAGAG	GAAGAAGGTT	AATGAAGAAA	2040
GTAAGATTTA	TTTTTTAGC	TCTGCTATTT	TTCTTAGCTA	GTCCAGAGGG	TGCAATGGCT	2100
AGTGATGGTA	CTTGGCAAGG	AAAACAGTAT	CTGAAAGAAG	ATGGCAGTCA	AGCAGCAAAT	2160
GAGTGGGTTT	TTGATACTCA	TTATCAATCT	TGGTTCTATA	TAAAAGCAGA	TGCTAACTAT	2220
GCTGAAAATG	AATGGCTAAA	GCAAGGTGAC	GACTATTTT	ACCTCAAATC	TGGTGGCTAT	2280
ATGGCCAAAT	CAGAATGGGT	AGAAGACAAG	GGAGCCTTTT	ATTATCTTGA	CCAAGATGGA	2340
aagatgaaaa	GAAATGCTTG	GGTAGGAACT	TCCTATGTTG	GTGCAACAGG	TGCCAAAGTA	2400
ATAGAAGACT	GGGTCTATGA	TTCTCAATAC	GATGCTTGGT	TTTATATCAA	AGCAGATGGA	2460
CAGCACGCAG	AGAAAGAATG	GCTCCAAATT	AAAGGGAAGG	ACTATTATTT	CAAATCCGGT	2520
GGTTATCTAC	TGACAAGTCA	GTGGATTAAT	CAAGCTTATG	TGAATGCTAG	TGGTGCCAAA	2580
GTACAGCAAG	GTTGGCTTTT	TGACAAACAA	TACCAATCTT	GGTTTTACAT	CAAAGAAAAT	2640
GGAAACTATG	CTGATAAAGA	ATGGATTTTC	GAGAATGGTC	ACTATTATTA	TCTAAAATCC	2700

			328			
GGTGGYTACA	TGGCAGCCAA	TGAATGGATT	TGGGATAAGG	AATCTTGGTT	TTATCTCAAA	276
Tytgatggga	AAATrGCTGA	AAAAGAATGG	GTCTACGATT	CTCATAGTCA	AGCTTGGTAC	282
TACTTCAAAT	CCGGTGGTTA	CATGACAGCC	AATGAATGGA	TTTGGGATAA	GGAATCTTGG	2880
TTTTACCTCA	AATCTGATGG	GAAAATAGCT	GAAAAAGAAT	GGGTCTACGA	TTCTCATAGT	2940
CAAGCTTGGT	ACTACTTCAA	ATCTGGTGGC	TACATGGCGA	AAAATGAGAC	AGTAGATGGT	3000
TATCAGCTTG	GAAGCGATGG	TAAATGGCTT	GGAGGAAAAA	CTACAAATGA	AAATGCTGCT	3060
TACTATCAAG	TAGTGCCTGT	TACAGCCAAT	GTTTATGATT	CAGATGGTGA	AAAGCTTTCC	3120
TATATATCGC	AAGGTAGTGT	CGTATGGCTA	GATAAGGATA	GAAAAAGTGA	TGACAAGCGC	3180
TTGGCTATTA	CTATTTCTGG	TTTGTCAGGC	TATATGAAAA	CAGAAGATTT	ACAAGCGCTA	3240
GATGCTAGTA	AGGACTTTAT	CCCTTATTAT	GAGAGTGATG	GCCACCGTTT	TTATCACTAT	3300
GTGGCTCAGA	ATGCTAGTAT	CCCAGTAGCT	TCTCATCTTT	CTGATATGGA	AGTAGGCAAG	3360
TTATTATAAA	CGGCAGATGG	CCTGCATTTT	GATGGTTTTA	AGCTTGAGAA	TCCCTTCCTT	3420
TTCAAAGATT	TAACAGAGGC	TACAAACTAC	AGTGCTGAAG	AATTGGATAA	GGTATTTAGT	3480
ITGCTAAACA	TTAACAATAG	CCTTTTGGAG	AACAAGGGCG	CTACTTTTAA	GGAAGCCGAA	3540
GAACATTACC	ATATCAATGC	TCTTTATCTC	CTTGCCCATA	GTGCCCTAGA	AAGTAACTGG	3600
GGAAGAAGTA	AAATTGCCAA	AGATAAGAAT	AATTTCTTTG	GCATTACAGC	CTATGATACG	3660
ACCCCTTACC	TTTCTGCTAA	GACATTTGAT	GATGTGGATA	AGGGAATTTT	AGGTGCAACC	3720
AAGTGGATTA	AGGAAAATTA	TATCGATAGG	GGAAGAACTT	TCCTTGGAAA	CAAGGCTTCT	3780
GGTATGAATG	TGGAATATGC	TTCAGACCCT	TATTGGGGCG	AAAAAATTGC	TAGTGTGATG	3840
ATGAAAATCA	ATGAGAAGCT	AGGTGGCAAA	GATTAGTACT	ATAAGTGAAT	ATGATTTGAG	3900
rgaatagtaa	GTTAAAAATC	CTGATTTCAA	GTAAAATCAG	GATTTTTCA	TGGATGCAAT	3960
PTTTTTGGAG	TCTGGTGTGA	CGCGGAGGGT	CTTTTGTCCT	GTGTAAGTGA	CAAAGCCGGG	4020
PTTTCCACCA	GTTGGTTTAT	TGAGTTTTTT	GACTTCAATC	ATATCTACCT	GCACCAGATT	4080
CGACAGGCGC	CCTTGAGAGA	AGTAGGCAGC	TAACTCTGCT	GCGTCTGTCT	TGACTGCATC	4140
AGATGGGTCA	AGATTTCCTG	AGATGACAAC	ATGGCTTCCA	GGAATGTCCT	TAGCATGGAA	4200
CAAAGTTCC	TCCTTGCGGG	CCATTTTAAA	GGTCAATTCC	TCATTTTGAA	GATTGTTTCG	4260
rccgacatag	ATGATGGTTT	TGCCATCGCT	TGCTAGATAT	TGTTCTAGTT	TTTTGCGTTT	4320
CTGGATTTTC	TCCCGTTGTC	TTCTGCGGAT	AAAACCTGTT	TGAATCAATT	CTTCACGGAT	4380
TCAGCGATT	TCTTCCAGTC	CAGCTTGGTT	GAGGACGGTT	TCTACACTTT	CCAGATAGAG	4440
AATAGTGGCT	TTGGTTTCTT	CAATCAAATC	AGTCAAGTAT	TTGACAGCTT	CTTTGAGTTT	4500

CTGATACCO	TTAAAATAGC	GTTGGGCATT	CTGGTTGGGA	GTCAGAGCCT	TATCAAGCGC	4560
AATCATGAT	A GGTTGGTTGG	TATAGTAGTT	GTCTAGGATA	ACCTGGTCTT	GGTCGTTAGG	4620
CACTTGGTG	G AGGAAGGTTG	TCAGCAATTC	TCCTTTTTGA	CGAAATTCTT	CAGCGTTGTC	4680
PGTCGCCAG	T AACTCTTTTT	CCTGTTTTT	GAGTTTGTGT	CGGTTTTTCT	GAAGTTCATT	4740
PTCAACAC	A CGAATCAGTT	CACTGGCCTG	CTGTTTGACG	CGGTCGCGCT	CAGCCTTATC	4800
CTTATAGTA	G GTGTCCAACA	AATCAGAAAG	ATTTGCAAAA	GGCTCTCCCA	CCTGATTTGC	4860
AAAAGGAAC	T GGACTGAAGG	AAGTCTCAGT	CAAGCATGGC	TTGGTTTCTT	GATTGAAAAA	4920
ATTTCGGA#	A GCGGAAAGTT	TTTCACTAAC	CAGTATCCTT	TCCAATTCAT	TTGCCGTATC	4980
GCGTCCCAG	A CCTTGAAAGA	GGCTTTGAAG	ATTTTTTGCT	GTTAGTTCTT	GGGTTTGCAG	5040
GATTTCAAA	G AGCTTTTCAT	CCTTGATAGT	AAAAGGATTG	AGAGATTTTG	TACTTGGCGG	5100
AGCGATATA	G GTCGATCCTG	GAAGTAAGGT	GCGGTAGCTA	TTTTGTGAAA	AGCCGACGTG	5160
PTTGATAA C	T TCGAGGATTT	TATGACTGCT	TTTATCGACC	AGTAGAATAT	TACTGTGTTT	5220
CCCCATAAT	т тссатаатса	AGGTAGCCTG	GATATGGTCT	CCAATCTCGT	TTTTATTGGA	5280
aactgtaat	T TCCACAATAC	GGTCATTTTC	CACTTGCTCA	ATCGACTCAA	TCAGGGCCCC	5340
CTGCAAATA	C TTTCTCAAAA	CCATGATAAA	GGTAGAAGGT	TGAGCTGGAT	TTTCAAAAGT	5400
CGTTTGGGT	C AGCTGAATGC	GTCCAAAAAC	TGGATGGGCA	GAAAGGAGCA	GGCGATGGCT	5460
PTGGCGATT	G CTGCGGATTT	GCAAGACCAA	CTCTTGTTCA	AAAGGCTGAT	TGATTTTCTG	5520
GATGCGACC	A TTCACTAATT	CGCTTCGCAA	TTCCTCAACT	ATGTGGTGTA	AAAAAATCC	5580
GTCAAATGA	C ATCGTTCTCT	CCTTGTGATT	GTATTCCATA	GTATTATATC	AAAAAGGTAG	5640
AATAAAATC	A TGGAAATGTG	GTATAATAAA	GCCAAGTAAA	GAGAAACGAG	AAGCACATGT	5700
ATATTGAAA	T GGTAGATGAA	ACTGGTCAAG	TTTCAAAAGA	AATGTTGCAA	CAAACCCAAG	5760
AAATTTTGG	A ATTTGCAGCC	CAAAAATTAG	GAAAAGAAGA	CAAGGAGATG	GCAGTCACTT	5820
PTGTGACCA	A TGAGCGTAGT	CATGAACTTA	ATCTGGAGTA	CCGTAACACC	GACCGTCCGA	5880
CAGATGTCA	T CAGCCTTGAG	TATAAACCAG	AATTGGAAAT	TGCCTTTGAC	GAAGAGGATT	5940
rgcttgaaa	A TTCAGAATTG	GCAGAGATGA	TGTCTGAGTT	TGATGCCTAT	ATTGGGGAAT	6000
IGTTCATC T	C TATCGATAAG	GCTCATGAGC	AGGCCGAAGA	ATATGGTCAC	AGCTTTGAGC	6060
STGAGATGG	G CTTCTTGGCA	GTACACGGCT	TTTTACATAT	TAACGGCTAT	GATCACTACA	6120
CTCCGGAAG	A AGAAGCGGAG	ATGTTCGGTT	TACAAGAAGA	AATTTTGACA	GCCTATGGAC	6180
TCACAAGAC	A ATABACCASA	አጥርር አልአአንም	ССПСАСППСА	ጥልጥ ር ርስርጥጥ	አር አ አጥጥጥር ርጥ	6245

			330			
TTGACAGGTA	TTTTTACTGC	TATCAAGGAA		TGCGAAAACA	CGCAGTGACG	6300
GCTCTAGTGG	TCATCCTTGC	AGGTTTTGTT	TTTCAGGTGT	CACGAATCGA	ATGGCTCTTT	6360
CTCCTATTGA	GTATTTTCTT	GGTAGTAGCC	TTTGAGATTA	TCAACTCTGC	TATTGAAAAT	6420
GTGGTGGATT	TGGCCAGTCA	CTATCACTTT	TCCATGCTGG	CTAAAAATGC	CAAGGATATG	6480
GCGGCCGGCG	CGGTATTAGT	GGTTTCTCTT	TTCGCAGCCT	TAACAGGCGC	ATTGATTTT	6540
CTCCCACGAA	TCTGGGATTT	ATTATTTTAA	ACAGTAAGAG	GAAATTATGA	СТТТТАААТС	6600
AGGCTTTGTA	GCCATTTTAG	GACGTCCCAA	TGTTGGGAAG	TCAACCTTTT	TAAATCACGT	6660
TATGGGGCAA	AAGATTGCCA	TCATGAGTGA	CAAGGCGCAG	ACAACGCGCA	АТААААТСАТ	6720
GGGAATTTAC	ACGACTGATA	AGGAGCAAAT	TGTCTTTATC	GACACACCAG	GGATTCACAA	6780
GCCTAAAACA	GCTCTCGGAG	ATTTCATGGT	TGAGTCTGCC	TACAGTACCC	TTCGCGAAGT	6840
GGACACTGTT	CTTTTCATGG	TGCCTGCTGA	TGAAGCGCGT	GGTAAGGGGG	ACGATATGAT	6900
TATCGAGCGT	CTCAAGGCTG	CCAAGGTTCC	TGTGATTTTG	GTGGTGAATA	AAATCGATAA	6960
GGTCCATCCA	GACCAGCTCT	TGTCTCAGAT	TGATGACTTC	CGTAATCAAA	TGGACTTTAA	7020
GGAAATTGTT	CCAATCTCAG	CCCTTCAGGG	AAATAACGTG	TCTCGTCTAG	TGGATATTTT	7080
GAGTGAAAAT	CTGGATGAAG	GTTTCCAATA	TTTCCCGTCT	GATCAAATCA	CAGACCATCC	7140
AGAACGTTTC	TTGGTTTCAG	AAATGGTTCG	CGAGAAAGTC	TTGCACCTAA	CTCGTGAAGA	7200
GATTCCGCAT	TCTGTAGCAG	TAGTTGTTGA	CTCTATGAAA	CGAGACGAAG	AGACAGACAA	7260
GGTTCACATC	CGTGCAACCA	TCATGGTCGA	GCGCGATAGC	CAAAAAGGGA	TTATCATCGG	7320
TAAAGGTGGC	GCTATGCTTA	AGAAAATCGG	TAGCATGGCC	CGTCGTGATA	TCGAACTCAT	7380
GCTAGGAGAC	AAGGTCTTCC	TAGAAACCTG	GGTCAAGGTC	AAGAAAAACT	GGCGCGATAA	7440
AAAGCTAGAT	TTGGCTGACT	TTGGCTATAA	TGAAAGAGAA	TACTAAGTAG	AGGTAGGCTC	7500
ATGCCTGCTT	CTTGTTTTTA	CAGAAGGAGG	ACTTATGCCT	GAATTACCTG	AGGTTGAAAC	7560
CGTTTGTCGT	GGCTTAGAAA	AATTGATTAT	AGGAAAGAAG	ATTTCGAGTA	TAGAAATTCG	7620
CTACCCCAAG	atgattaaga	CGGATTTGGA	AGAGTTTCAA	AGGGAATTGC	CTAGTCAGAT	7680
TATCGAGTCA	ATGGGACGTC	GTGGAAAATA	TTTGCTTTTT	TATCTGACAG	ACAAGGTCTT	7740
GATTTCCCAT	TTGCGGATGG	AGGGCAAGTA	TTTTTACTAT	CCAGACCAAG	GACCTGAACG	7800
CAAGCATGCC	CATGTTTTCT	TTCATTTTGA	AGATGGTGGC	ACGCTTGTTT	ATGAGGATGT	7860
TCGCAAGTTT	GGAACCATGG	AACTCTTGGT	GCCTGACCTT	TTAGACGTCT	ACTTTATTTC	7920
TAAAAAATTA	GGTCCTGAAC	CAAGCGAACA	AGACTTTGAT	TTACAGGTCT	TTCAATCTGC	7980
CCTTGCCAAG	TCCAAAAAGC	СТАТСАААТС	CCATCTCCTA	GACCAGACCT	TGGTAGCTGG	8040

\CTTGG(CAAT	ATCTATGTGG	ATGAGGTTCT	CTGGCGAGCT	CAGGTTCATC	CAGCTAGACC	8100
TCCCAC	GACT	TTGACAGCAG	AAGAAGCGAC	TGCCATTCAT	GACCAGACCA	TTGCTGTTTT	8160
GGCCAC	GCT	GTTGAAAAAG	GTGGCTCCAC	CATTCGGACT	TATACCAATG	CCTTTGGGGA	8220
AGATGG#	AAGC	ATGCAGGACT	TTCATCAGGT	CTATGATAAG	ACTGGTCAAG	AATGTGTACG	8280
TGTGG	PACC	ATCATTGAGA	AAATTCAACT	AGGCGGACGT	GGAACCCACT	TTTGTCCAAA	8340
TGTCA	AAGG	AGGGACTGAT	GGGAAAAATC	ÄTCGGAATCA	CTGGGGGAAT	TGCCTCTGGT	8400
VAGTCA	ACTG	TGACAAATTT	TCTAAGACAG	CAAGGCTTTC	AAGTAGTGGA	TGCCGACGCA	8460
STEGTE	CACC	AACTACAGAA	ACCTGGTGGT	CGTCTGTTTG	AGGCTCTAGT	ACAGCACTTT	8520
GGCAAC	GAAA	TCATTCTTGA	AAACGGAGAA	CTCAATCGCC	CTCTCCTAGC	TAGTCTCATC	8580
TTTTCA	AATC	CTGATGAACG	AGAATGGTCT	AAGCAAATTC	AAGGGGAGAT	TATCCGTGAG	8640
SAACTGO	CTA	CTTTGAGAGA	ACAGTTGGCT	CAGACAGAAG	AGATTTTCTT	CATGGATATT	8700
CCCTAC	TTT	TTGAGCAGGA	CTACAGCGAT	TGGTTTGCTG	AGACTTGGTT	GGTCTATGTG	8760
ACCGAC	GATG	CCCAAGTGGA	ACGCTTAATG	AAAAGGGACC	AGTTGTCCAA	AGATGAAGCT	8820
SAGTCTO	CGTC	TGGCAGCCCA	GTGGCCTTTA	GAAAAAAAGA	AAGATTTGGC	CAGCCAGGTT	8880
TTGAT	LATA	ATGGCAATCA	GAACCAGCTT	CTTAATCAAG	TGCATATCCT	TCTTGAGGGA	8940
GTAGGC	CAAG	ATGACAGAGA	TTAACTGGAA	GGATAATCTG	CGCATTGCCT	GGTTTGGTAA	9000
TTTCTC	GACA	GGAGCCAGTA	TTTCTTTGGT	TGTACCTTTT	ATGCCCATCT	TCGTGGAAAA	9060
CTAGGI	rgta	GGGAGTCAGC	AAGTCGCTTT	TTATGCAGGC	TTAGCAATTT	CTGTCTCTGC	9120
ATTTCC	CGCG	GCGCTCTTTT	CTCCTATTTG	GGGTATTCTT	GCTGACAAAT	ACGGCCGAAA	9180
CCCATC	SATG	ATTCGGGCAG	GTCTTGCTAT	GACTATCACT	ATGGGAGGCT	TGGCCTTTGT	9240
CCAAAT	PATC	TATTGGTTAA	TCTTTCTTCG	TTTACTAAAC	GGTGTATTTG	CAGGTTTTGT	9300
CCTAAT	rgca	ACGGCACTGA	TAGCCAGTCA	GGTTCCAAAG	GAGAAATCAG	GCTCTGCCTT	9360
GGTACT	TTG	TCTACAGGCG	TAGTTGCAGG	TACTCTAACT	GGTCCCTTTA	TTGGTGGCTT	9420
ATCGCA	AGAA	TTATTTGGCA	TTCGTACAGT	TTTCTTACTG	GTTGGTAGTT	TTCTATTTTT	9480
GCTGCI	TTAT	TTGACTATTT	GCTTTATCAA	GGAAGATTTT	CAACCAGTAG	CCAAGGAAAA	9540
GCTATI	CCA	ACAAAGGAAT	TATTTACCTC	GGTTAAATAT	CCCTATCTTT	TGCTCAATCT	9600
ATTTTP:	ACC	AGTTTTGTCA	TCCAATTTTC	AGCTCAATCG	ATTGGCCCTA	TTTTGGCTCT	9660
TATGTA	CGC	GACTTAGGGC	AGACAGAGAA	TCTTCTTTTT	GTCTCTGGTT	TGATTGTGTC	9720
AGTATG	GGC	TTTTCCAGCA	TGATGAGTGC	AGGAGTCATG	GGCAAGCTAG	GTGACAAGGT	9780

			332				
GGGCAATCAT	CCTCTCTTGG	TTGTCGCCCA	GTTTTATTCA	GTCATCATCT	ATCTCCTCTG	9840	
TGCCAATGCC	TCTAGCCCCC	TTCAACTAGG	ACTCTATCGT	TTCCTCTTTG	GATTGGGAAC	9900	
CGGTGCCTTG	ATTCCCGGGG	TTAATGCCCT	ACTCAGCAAA	ATGACTCCCA	AAGCCGGCAT	9960	
TTCGAGGGTC	TTTGCCTTCA	ATCAGGTATT	CTTTTATCTG	GGAGGTGTTG	TTGGTCCCAT	10020	
GGCAGGTTCT	GCAGTAGCAG	GTCAATTTGG	CTACCATGCT	GTCTTTTATG	CGACAAGCCT	10080	
TTGTGTTGCC	TTTAGTTGTC	TCTTTAACCT	GATTCAATTT	CGAACATTAT	TAAAAGTAAA	10140	
GGAAATCTAG	TGCGAGTAAA	AATCAATCTC	AAATGCTCCT	CTTGTGGCAG	TATCAATTAC	10200	
CTAACCAGTA	AAAATTCAAA	AACCCATCCA	GACAGATTGA			10240	
(2) INFORMATION FOR SEQ ID NO: 33:							

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 13206 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

60	GAGGGATTTT	GGAGATGAAG	ATTTCATCAA	CAAGCCGAGA	TGGACGTGGT	CGCTTTATCG
120	ATGATGAGCT	AGTTCGTATG	TCAAAAACGA	TCAACCTTAA	AACGGATAGT	TTGGCGATAA
180	TTCCAAACTT	TGGAGGTGAC	AACATCTAGC	CTTTTTCTCA	CAATCTCTAT	GTATCGCCTA
240	GTTCGAACAG	GGGAAAATGT	TTCACGTGGT	CATCTTTTTC	ACGCTTCCGC	TAACAATCAA
300	TTTTCAGCAC	TTCCGAATTG	TCTATGCCTA	TTGTCTAGTC	GCTCCTCAAA	GACGCAAGCA
360	CCACCTAGAA	TCCTTATGAA	ATCTTCCTGT	GTCAACCTGA	GATTAGAAAA	TTTATTCTAG
420	TGTGACGCAC	GAAAAAATCG	CAGTCGAGAT	CATTAAAGAA	GTTAATGATG	GAAAAGCGTC
480	TGGAACAGCA	AAAACGATAC	CTAGCGAGGA	TTGAGGAAAT	GTCTGCCCTT	CAAGGGAGGA
540	GGGTTTTGTA	ATGAGGTCAG	AAAGTGGCTC	GAGGAGGAAG	CTGACCTCAT	GAAAGTAAAA
600	TGTTTTAAAT	AATCATTTCT	ATTTGGGATT	GGTATGAATG	AGTTGAGAGA	AGTTACATCT
660	CGATCAATCA	TATTCCGTAA	TGACGAACTC	TTTCCTTTTT	GTAACGATTT	CAGGAGAATA
720	AGCTTCTCTA	TTTATTTGAA	TTATCCCAAA	TTAGAATTGT	GTACCTAATA	ATTTAATCAT
780	GTTAGTTTCA	ATCATCATAA	TCTGAACTTT	AGTTCATAGA	TTGTTTTCTA	AGCTATATCC
840	CAGTTCATTC	TTTTGGGGG	TCTGTCTAAC	TTAGATTTTT	ACCCCAAAAG	TAATAAAAAC
900	TCTTTATACT	TTACTCAACC	GAAATACTTT	TTTCTTATTT	ACTATGCGTT	AACACCTGAT
960	CAGTGTTTTG	CTGCTCAAAA	TAGCCTCAGG	ACTAGAAAGC	CAAAGTGCAA	CAATGAAAAT

GGTTGCAGA	TGGAAGCTGA	CGTGGTTTGA	AGAGATTTTC	GAAGAGTATT	ACTTAATCTT	1020
TTGATACTT	TGACTAAGAA	ТАААТССТАС	AATCATCCCT	ACCATATTTT	GCATAAAATT	1080
GGTAGAATT	TCTGGGAGGG	CTGCTGCCCA	GCCATTCATC	AAAGCAGAAC	CCAAGGCGTA	1140
CCTCCTACC	ATGGCAATAG	TTGCTAAAAT	AAGGCCTAAC	CACTGACTTT	TTCCTTTAAA	1200
CCTGCGAAA	AATCCCTGCA	AGCCATGGTT	GACCAAGCTA	AAGAACATCC	ACTGAGGGTA	1260
CCTGATAAG	AGGTCAATCA	AGAAACTTGC	TAGTCCTCCG	ACTACCGCTC	CTTCACGACT	1320
CCAAAGTAA	AAGGCCGCAA	AGAAGACACC	AGCATCTAAA	AGAGTTAGAA	TTCCTGTAGG	1380
GTTGGGATT	TTTAAGAAAT	AACCTAGAAC	CACAGAAAGG	GCGGTTAATA	GGGATACAAG	1440
GCGATTTTA	GTTGTTTTTG	TTTGCTTCAT	ATTGTCTTAC	TCCATACTGA	TCTGCTTGTG	1500
AATAGCACG	ATAAACGAAA	GCCTTAGAGC	TTTCTACTGC	TGGCÄAAAGT	TTATCACCTT	1560
AACCAGGTG	ACTGGCAATG	CTAGAGSCAA	AGGTACAACs	TGCACCAGCA	TTTTGGCCTT	1620
GATAACTGG	ATTTTCTAGG	ATAGTAAAGG	TCTGTCCATC	ATAAAAGACA	TCCACAGCCT	1680
GTCCTGACT	AAGACGATTG	CCTCCCTTGA	TAATGACTGt	GGCGCTCCTA	AATCATGCAA	1740
TTCTGCGCT	GCAGTTTTCA	TGTCTTCCAA	GGTTTTAATT	TCCTGACCGG	ATAATAATTC	1800
GCTTCTGGG	AGATTAGGCG	TAATCACACT	GACATAAGGG	AAAAAGCGAA	TCAACTCTTG	1860
CAGAGCTCA	CTGACAGCTA	CATCATGCGT	TTCCTTGCAG	ACCAAGACAG	GATCCAACAC	1920
ACAGGTACT	CCTGGGCGTT	GTTTGATAAA	GTCCAAGGCC	TTCTCAGCCA	CGCTGACAGT	1980
GGGAGAAGA	CCAATCTTAA	TTCCCCCAAA	TTCCACATCA	CGCAAGCTAT	CTAATTCATG	2040
TGAAAAATG	GTATCATCAG	TTGGAAAGAC	TTCAAATCCT	TTTTCTGTCA	AGGCTGT-CAA	2100
CAAGTCACT	GCTACAAACC	CATGCAAGCC	GTTCAAGGTA	TAGGTAGCCA	AATCAGCTGA	2160
AGTCCACCA	CCACTAAAAA	TATCATTTCC	AGAAAGTGCT	AAAATACGAT	TATTCTTCAT	2220
ACGAATCTC	CTTTAAATAC	AAACCATTTG	GTGCTGCAGT	GGGACCTGCA	AGTTGCCTGT	2280
СТТСТТСТС	CAAGATGAGA	TCAATCTGCT	CTACTGGCAT	GCGGTTGTTA	CCGATTTTGA	2340
AAGAGTCCC	CACCATATTG	CGAATCTGTT	TATACAAGAA	ACCATTTCCT	GAAAAGGTAA	2400
GGTCAAAAA	TTGTCCTGTC	TCATCGACTA	TTAAACTAGC	TTCTGTGATG	GTGCGAACCT	2460
ATCCTCTAC	ACTAGTCCCA	GAGGCTGTAA	AACCGGTAAA	ATCATGGGTT	CCCTCTAGCT	2520
TTTGATTGC	AATCTGCATT	CGTTCCACAT	CGAGTGGGTA	GGGAAAGTGG	GTGGCATAGT	2580
ACGGCGCAT	CGGATTTTTG	GGACGTCCTC	TATCCACAGT	AAACTCATAG	GTCTTGCTAT	2640
CTTGGCATA	ACCCCAATCA	AAATCATCTG	CCACAAGCTC	ААТССВАВАТС	АСАТСААТАТ	2200

			334			
CTTCAGGAGA	CTGGGTATCC	AAGGCAAAAC	GGAGTTTCTC	CTCATCCATC	TGATAAGGCA	2760
GGTCAAAATG	AATCACCTGT	CCCAGGGCAT	GAACCCCACT	ATCTGTCCTA	CCAGCACCGT	2820
GAACAGTAAT	GGCTTGCCCT	TTATTTAATC	TGGTCAAGGT	TTTTTCAATT	TCTTCCTGAA	2880
CGCTACGCGC	ATGAGGCTGG	CGCTGAAAGC	CAGCAAAGGC	ATAACCATCA	TAGGAAATAG	2940
TTGCTTTATA	TCTCGTCATA	GCCTCTATTT	TATCAAGAAA	TTAGTCTGTA	AACAAGGACC	3000
ТААААСАААТ	ATTGTATGGG	TATAAAAATC	TCATACTCTT	CGAAAATCTC	TTCAAACCAC	3060
GTCAGTTTCC	ATCTGCAACC	TCAACACACT	ATTTTGAGCA	ACCTGCGGCT	AGCTTTCTAT	3120
AGTAGATTGA	AATAAGATAT	GAACAACTCT	ATTAGGAAAG	TCAAATTAAT	TTCTAGAAAT	3180
ATTTTAGCAG	CTACAGCGTA	СТАТТССААА	CTCAATCAAC	TATAGTTTGC	TCTTTGATTT	3240
TCATTGAGTA	TCAAAAGAAA	AACTTAGGAA	TCAATCCTAA	GCTCTCTTCT	GAAGTAGGTA	3300
CATGACAAAG	ATAGAGATTA	CAATCAACCA	ACCTCCTAAG	ATACTAAAGA	CCAACATCCC	3360
attgtgagtt	AGTAAGCCAA	TTGCACCTAG	AACGAATGGG	GTCGTAAAGG	CTCCGAAACT	3420
ACAGCCTAAT	ACAGCAAATG	AAGTTGCTTG	ATTGAGGAGT	TTAGCTGGAA	TTCGTTCAGA	3480
GACAAGTTGA	AAGACCGTCG	TCAAGACTAC	ACTATAGGCA	AATCCAGCCA	GAACACTTCC	3540
TGCTACTACC	ACCCACAAGG	ATGAAGACAA	GGCAATCACG	ATTTGCCCCA	AGCCAAAGGT	3600
AATACCAGAC	CAGAGGAGCA	GTTTCTCTTT	AAAGATAGAA	ATCAAGAAAG	AAAAACTCAC	3660
CCCAGCCACA	ATCCCGATCA	ACTGCATGAT	ACTAAGAACA	AAACTAGATA	ACTGGGCATC	3720
CCCCAATCCT	CTTTCCACCA	TCAAACTTGG	AATACGGATG	GTAATAGCTG	TATTGGTACA	3780
ААСТАСААСТ	GCCGCTTCGA	TAGCTAAGGT	AAAAATCAAG	CCTTTCATTT	CTCGAGTTAA	3840
ACGACTTGCT	TCCTTCGCTC	TTTTCTTGAC	TTCTTTCTTT	GATTTTCCAT	AAGGGACAAA	3900
GAGCAGATAA	AGGGGCAGCA	CCAAAAATCC	AGCACTATAG	GCTAGAAAGA	TAGCTGTCCA	3960
ACCAAAGGCC	AACAACTGAC	CGACGGCCAA	GGTAATGAGA	GAAGCTCCAA	CGACCTCTGC	4020
AGAAGCGCGT	AGCCCTAACA	TCTGAATTCG	CCTTTTTCCT	TGGTAGCGTT	CACTGATAAT	4080
AGAAATGGCC	TTGGCATTGA	TCATCCCAAG	ACCCAAACCA	AAGAGAAGCC	GTGTTCCAAA	4140
GACAAAGGGA	TAGGCTTGGT	ACCAGAAGGG	AGCTGTACCG	CTCAATGATA	AAATCAGCAA	4200
GCCCAAACTA	ATCTGTAAGC	GCTCAGGAAA	TATTTTTTCT	AAGAAACCAT	TTAGCAGTAA	4260
CATCATCATG	ATTCCAAAGG	AAGGCAAGCT	CACCAAGAGC	TCAATTTGTT	CCTTAGAATA	4320
ACCCTGATAA	TAGTCAAACA	TGGCTGGTAG	GGCACTCGAA	ATGGAAAAGG	AGGTAATCAA	4380
AACGAGGGAG	AGAGCCAAAA	TGCTGGCCCG	TTCTAAAAAT	TGTTTCATGA	AATCTCTTTC	4440
ГАТАТТТСТС	TTAATCTTCT	ACTTTTTTGA	TAGTTATCAA	ATAAGCAAGA	AAAGAAGAAG	4500

CCTCATTGGT	TTGTAGACTC	CTTCTTAAAT	TCGAAAATGA	ATCCCTTGTA	TCTTATACTC	4560
aatgaaaatc	AAAGAGCAAA	CTAGGAAGCT	AGCCGCAGGT	TGTTCAAAAC	AGTGTTTTGA	4620
GGTTGCAGAT	GGAAACTGAC	GTGGTTTGAA	GAGATTTTCG	AAGAGTATTA	GGATGACTTT	4680
CTCTTGATTT	GCTTGATAAA	GTAGAAAATA	AATCCTGCTA	CCATATAGGC	AACAAAGATA	4740
ATCAGACACC	ACTTAAACAC	AACATTCCAA	CCCTTCTTCA	CATTCAAAAA	GAAGTAAGGG	4800
AAA GGATTAT	CCTTGGCATT	TGGAATATTG	AGTTTTAGAA	CCAAGCCATT	AAAAAGAGCA	4860
ААСАТСАТАТ	ACAGAAAGGG	TAAAATGGTC	CACACTGCTG	GATCCCAAAT	CTTGTATTGA	4920
CCCTGTTTGT	CAAAAAAGAG	GGTATCCGCT	AAAAACCAGA	TGGGAACGAT	ATAGTGGCAA	4980
AGGAAATTTT	CTAGGGTATA	GAAATTAGTC	GCAATGGGCG	CCAAGAGGAA	ATGGTAAATC	5040
ACACAGGTAA	TCATGATACT	CATGGTGACC	CCACCTTTTA	AGCGCAAGAG	ACTTGGCCTT	5100
rgccaatttt	CACCTACACG	GCTCATAACC	TTTAGAAGAT	AAAGGGTAAA	AATAGTTACC	5160
aagaggttgg	ACAGAACCGT	GTAATAGAGA	AGCATCCCAA	AACCACCATG	CTTAGTAATT	5220
PCAAGATAAA	CTCCCGTAAA	AGCCGCTAGA	AACAAGAAGA	TACGGCTATA	AAATACAAGT	5280
PTATA GTGTT	TTGACATGCT	TAAATCTTCC	TCACAAACTC	TGATTTAAGT	TTCATGGCAC	5340
CAAAACCATC	AATCTTACAG	TCGATATTGT	GGTCGCCTTC	TACGATGCGG	ATATTTTCA	5400
CGCGCGTCCC	TTGTTTCAAA	TCTTTTGGCG	CACCTTTTAC	TTTCAAGTCC	TTGATGAGAG	5460
PTACTGTATC	ACCATCAGCC	AATTTATTTC	CGTTGGCATC	GATAGCGACA	AGACCTTCTT	5520
CTACTTCTGC	AACTTCAGCA	GGATTCCACT	CATGAGCACA	CTCTGGGCAA	ACCAGTAGGG	5580
CACCGTCTTC	GTAGACATAC	TCTGAGTTAC	ATTTTGGACA	ATTTGGTAAA	TTGTTCATGG	5640
PTTCTCCTTA	TCATCATTCA	CTATTCTTTG	AAAATCAAAA	TTTCTCGAAC	AGCAACTATT	. 5700
ATACCCTAAA	ATCAGCATTT	TGACAAATTT	AGAAAAAAAC	CGATATCAAT	CTATCGGCTT	5760
PTCTACATTT	ACATTCTTTT	TTCAGCTTCT	GCTTTGATTT	TTTCAACTAC	TTCTTGAATG	5820
PTCAAACCAG	TTGTATCAAG	GTAGACAGCA	TCCTCTGCTT	GTTTGAGAGG	AGAAGTCTCA	5880
CGATGACTAT	CCTTGTAGTC	ACGCGCAGCA	ATTTCCTTTT	TTAGGGTTTC	AAGGTCTGTT	5940
PCAATTCCCT	TGGCAATATT	TTCCTTGTAA	CGACGCTCTG	CTCTCTCATC	AACAGAAGCT	6000
ACTAGGAAAA	TTTTCAATTC	TGCTTGTGGC	AATACAACAG	TTCCAATATC	GCGACCATCC	6060
ATGACAATCC	CGCCTTGCTG	GGCAATTTCT	TGTTGGAGAG	AAACCAGTTT	CTCACGCACT	6120
rgaggaattg	CTGCAATAGC	AGAAACATGA	TTGGTCACTT	CATTTTCACG	GATAGGATGG	6180
STAA'IATCCA	CATCTCCTAC	AAAAACAAGC	TGGTCTCCAG	TTTCTGAACG	TCCAAAGCTG	6240

			336			
ATTGGATGCT	GGTCCAACAA	GGCTAGAAGG	GCTTCGACTT	CTTCAACTCC	TAATTGGTTC	6300
PTAAGAGCCA	TATAGGTCGC	TGCACGATAC	ATAGCTCCTG	TATCAAGGTA	GGTGAATCCA	6360
AAATCCTTAG	CAATAATCTT	TGCGACCGTA	CTCTTACCGC	TGGAAGCAGG	ACCATCAATA	6420
GCAATTTGAA	TTGTTTTCAT	ATCGGCTCCT	ATTTTATTTT	TATAACATCA	CCTGGATTAG	6480
CAAACCAAGA	TCCTGTAGCC	ATGTGCCCAG	GATTCAAGGC	CTCTAACTGA	GCAATGGAGA	6540
TTCCTGCACG	AGCGGCAATA	GCTGCTTCCC	CTTCTCCTGC	GAGAACTTTA	ATCGTTCCTT	6600
CAGGATTAGC	AGCTTCTTCT	GAACTACTAG	AAGTAGATTC	TGGCTCTGAA	CTCTGCTCAG	6660
GCTGAGAACT	ACTTGAAGAT	GAGATTTGTA	CTACACTGGC	ATCAGAATCA	TGAAAGCCTT	6720
TAAGGCTGC	TGTGCGATTA	CTCCCCCCG	ATGATAGATA	GATGAGAACG	ATGACCATCA	6780
CCACCACAAT	TACAAAGAAA	ATACTAGCTA	GGATCGTCAA	AATACGATTA	GCCATCCTAT	6840
CAGCCCCTCC	GTGGTTTCGA	TGCCGACGCT	CTGCTCTTGA	TTCTTCTTGA	TCATAGATAT	6900
CTTCTTGCCA	CGGTTCTTTT	GCCATACCTT	ACTCCTTGTT	TTTTTTTACT	TTTCTTATTA	6960
CAATATAAAT	ATGAACATGA	AAATCACACT	TATACCTGAA	CGATGTATCG	CCTGTGGGCT	7020
PTGCCAAACT	TATTCTGATT	TATTTGATTA	CCACGATAAT	GGAATCGTGC	GTTTTTACGA	7080
TGACCCTGAC	CAACTGGAAA	AAGAAATTTC	TCCTAGTCAG	GATATCTTAG	AGGCTGTTAA	7140
AAATTGCCCA	ACTCGCGCCC	TGATTGGAAA	CCAGGAAGCC	TAAATCAATG	GCGATAATCC	7200
ACTCCCTCTA	GTTTAGCACA	TTTCCATGTA	AAATTATAGT	CTTTTCACTT	TATTTTTTC	7260
rgtaaaatca	GGAAGGTCAC	TTTTTTCTTT	GATAAGATAA	AGTGGTCTTT	TTTTAGTCTC	7320
PAAATAAATC	TTACTGATAT	ACTTGCCGAG	AATCCCAATG	GTCAAGAGTT	GAATGCCTCC	7380
AAGAAAGAGA	ATAACAGCCA	TCAGAGAGGT	CCAACCAGAT	GTCGGATTGC	CCAAAATGAG	7440
GTCCGAACC	ACAACAAAAA	AGGTCATCAG	CAGAGAAAGA	AAACAAGATA	GGAGACCAGC	7500
FACAAAGGCT	ATAATCAAGG	GAAAATCTGA	ATAATTAAAA	ATCCCTTCAA	TGGAGTAGAA	7560
AAAGAGTTGC	CTAAAACTCC	AACTTGTCTT	GCCAGCCTGC	CTTTCGACAT	TTGGATAGTC	7620
CAAATAGTAG	GTTTTGAAAC	CCACCCAGGC	GAAGAGCCCC	TTTGAAAAAC	GATTGGACTC	7680
GGTCAAGCTT	AAAATGGCAT	CGACTACAGA	CCTTCTCATC	ATACGAAAAT	CACGGACACC	7740
CGACGGCAGA	GCTACTGGGC	TGATTTTTTG	CATGAGGCGA	TAAAAGAGAA	CAGCACAGAA	7800
ACTGCGAAAG	AAGGGTTCTC	CCTCCCGACT	AGTTCTCCGT	GTCCCAACGC	AGTCCAAGTC	7860
PACATTTTTG	TCTAATACAT	TTTTCATCTC	AAACAACATA	CTAGGAGGAT	CTTGGAGGTC	7920
TGCATCCATC	ACCACCACCA	AATCTCCTGT	CGCATATTGC	AAGCCTGCAT	AAAGGGCTGC	7980
TTTTTGCCA	AAATTTCGAG	AGAAAGAAAT	ATAATGGACT	GCCGGATTTT	GCTCCCGATA	8040

GCCTTTAAG	AGTTCCAAGG	TCCCATCACT	TGATCCATCA	TCGACAAAGA	CATACTCGAT	8100
PTCTGTTTCC	AAATCTGGAA	GTAAAGCTTC	CAGAGCCTGA	TAAAAAAGAG	GAAGTACTTC	8160
CTCTTCGTTT	AAACAAGGGA	CGATGAŤTGA	AATCATCATC	TTAGTCTTCA	AATCCATTTG	8220
GATGCTTGCT	TTGCCAACGC	CATGCGTCTT	CACACATTTG	GGTGATGTCG	AGTTCTGCTT	8280
CCCAACCGAG	TTCTGCTTTA	GCTTTTGCCG	GGTCTGAGTA	GCAGGCAGCG	ATATCACCTG	8340
GCCGACGTTC	TACGATGCGG	TAAGGAATAG	GACGGCCCAC	CGCTTTTTCC	ATGTTTTGGA	8400
FAATTTCAAG	AACTGAGTAA	CCTTTACCAG	TTCCAAGGTT	ATAAACGTTT	AGTCCTGAAC	8460
CTTTTTGGAT	TTTTTTCAAA	GCTGCAACGT	GACCCTTAGC	CAAATCGACA	ACGTGGATAT	8520
AGTCACGAAC	ACCTGTTCCA	TCTTCCGTAT	CGTAATCGTC	TCCAAACACT	TGCACTTGCT	8580
CTAATTTTCC	AACGGCTACT	TGAGTCACAT	ATGGCAAGAG	ATTGTTTGGA	ATACCGTTTG	8640
GATTTTCTCC	CAAATCACCA	CTCTCATGGG	CTCCGATTGG	GTTAAAGTAA	CGAAGCAAGA	8700
CAACATTCCA	TTCTGAGTCT	GCTTTGTAAA	TATCAGTCAA	AATTTCCTCT	AGCATGAGCT	8760
FAGTACGACC	GTATGGGTTG	GTCACTGAAA	GTGGGAAATC	TTCCAAGATG	GGCACTGTGT	8820
GCGGATCCCC	GTAAACTGTC	GCAGAAGAAC	TGAAGATGAT	GTTTTTACAG	TTGTTTTCTT	8880
CATGGCTTT	CAAAAGGCTG	ACAGTTCCAG	CGATATTGTT	GTCATAGTAG	GCAAGAGGGA	8940
PACGTGTTGA	TTCGCCAACA	GCCTTCAAAC	CAGCAAAGTG	AATGACACCA	GTCGGTTCTT	9000
CTGCTTGAA	AATATCTCTG	AGGGTATCTG	TGTCACGAAT	ATCTGCCTCA	TAGAAAGGAA	9060
CTCAACTCC	TGTGATTCCT	TCAACAACTT	CTAAACTCTT	ACGATTGCTA	TTGACAAGAT	9120
PATCCACCAC	AACAACTTGA	TGACCTGCTT	GGATCAATTC	AATAACAGTG	TGGGTTCCAA	9180
PAAAACCGGC	ACCACCAGTT	ACCAAAATCT	TTTCTTGCAT	CTTTTTTCCT	CGATTCTCAG	9240
TTATTTTTT	CTTATTTTAC	CATTTTTGAC	AGGGAATGTC	ATTTGCCATC	CTAAACTACC	9300
rgataaaatt	TCAGTAAAAT	GCTTATACTC	TTCGAAAATC	CAATTCAAAC	TACGTCAACG	9360
CGCCTTGCC	ATGGGTATGG	TTACTGACTT	CGTCAGTTCT	ATCCACAACC	TCAAAACAGT	9420
TTTTGAGCT	GACTTCGTCA	GTTCTATCCA	CAÄCCTCAAA	GCAGTGCTTT	GAGTAACCCG	9480
GGCTAGTTT	CCTAGTTTGT	TCTTTGATTT	TTATTGAGTA	TTATTCGCTT	TTTACTCGTT	9540
GACATAGTT	TTCAATTGGG	TAATTTAGAG	GGTCCAAGGT	CAACTCCTTG	TCTTGGATCA	9600
TTGGGCTAG	ATGGTAACCA	ATGATAGGAC	CAGTTGTGAG	GCCTGATGAA	CCTAGTCCAC	9660
GGCTGCATA	GACACCAGTT	AAGTCAGGCA	CCTGCCCAAA	GAAAGGAGAG	AAATCACTGG	9720
GTAGGCACG	GATTCCAACA	CGCTCAGATT	TTGAAGTAGC	TTCAGCCAAA	ATCAGATAGT	9780

338 9840 CCATGTCATT TTCGTGGGTA GCGCCTAAGG ATAATTTCCC ACCTGCAAAG GGAATCAAAT 9900 CCCACTCCCC TTCTGGCATG ACAACAGGGT AATCTTCCAT GTCTTGGGCA AGCTGATAAT 9960 CTCGTAGTTG TCCTTTTTGA GGACGGACAT CCACTTCATA ACCTAAAGGC TCTAACATGT 10020 CCCCCAACCA AGCTCCCGTC GCCAAAATAA CCTGCTCAAA CTCCTCTTCA CCAATCTGGT 10080 AGCCTGATGC TAACGGTGTC AGAGTCACTT TTTCTTTGAC CAGCTTGACA TGACTGACTT 10140 CCAGCAAACG AGTCACTAAA AGTTGGCCAT CTACTCTCGC TCCACCAGAA GCATAGAGCA 10200 GGCGGTCAAA TCCCTGCAAA CCAGGGAATA ATTCATTAGC TGAGGCTTGG TTCAGAATGG 10260 CTAATTGCCC TATCAAGGGA GATTCTTCTC TGCGCTGGAG GGCCAGTTGA TAAAGTTCTT 10320 CCAAATTGGA TTCATCCTTT TTCAAGAGAA AGACTCCCGA ACGCTGGTAA AAGTCGATTT 10380 CTTGTCCTGA TTTCTCTAAA TCAGCTAATA AATCCACATA AAAATCAGCC CCCAAGCGCG 10440 CCATCTTGTA CCAGGCTTTA TTACGGCGTT TGGAAAACCA AGGACTGATA ATTCCTGCTG 10500 CGGCCTTGGT GGCTTGACCT TGCTCATGGT CAAAAACGGT CACCTCTAGG TCACTTTCTC 10560 TCGAGAGGTA GTAGGCAGCT GTTGCTCCCA CAATTCCTGC TCCAATAATG GCAACTTTTT 10620 TCATTGTCTT CACTTTCTAA CTAGATATGA TGGAAAGGAT TGGTTGATGC CTGACTAGGC 10680 AAGATATCAA TAGACCACCC CTTATCTTCC TTCCATTGAC TAAGAAGTGC TGCGATTTTT 10740 TCTACAAAAA TCACTTCGAT ATAGTGACCT GGGTCCAATG CAAGCAACCC ATCAGATAGC 10800 ATATCCTGAG CAGTATGGTA GTAGATATCA CCAGTGATAT AGACATCTGC CCCCTTTGCC 10860 AAAGCATCCT TATAGAAAGA CTGCCCGCTT CCACCACAAA TTGCTACTCT TGAAATAGGC 10920 TTCTGCAAAT CATCCTCTTG ATAATGCACC ATTCGAAGGC TATCTAGGTC AAAGACTTGC 10980 TTGACCTGTT GGGCCAATTC CCAAAATGTC TGAGGCTGAA TATTCCCAAT ACGTCCAATT 11040 CCACGTTCTG GACCTGTTTC CTGCAGATAA GTCGTCTCCT CGATTCCTAG CATCTGACAA 11100 AACCAGTCAT TGAGCCCATT TTCAACGATA TCAATATTGG TATGGCTGAC ATAAACTGCG 11160 ATATCATGCT TAATCAGGTC GATGTAAATC TGATTTTGCG GACGGCTGGC AAGCAAGTCC 11220 TTGATAGGAC GAAAGATAGG CGCGTGCTTG ACGATAATCA AGTCCACACC CTTTTCAATG 11280 GCCTCTGCCA CTGTCTCTTC ACGAATATCG AGGGCAACCA TGACCCTTTG GATACCCTTG 11340 TCTAAAGTGC CAATTTGCAG ACCACGGCTG TCTCCCTCCA TAGAAAATTC CTGAGGGCAA 11400 AAGGCTTCAT AAGCTTGGAT CACTTCACTT GCTAACATGG AGCACCTCCT TGATAGCTTG 11460 AATCTTATCT ACTAGAACTT GACGTTCTTC CAGATTTTTT TCTGGGATTT GTCCGAGGGC 11520 GAACTCTAGC TTCTCAGCTT CTTTTTGCCA TTTTTGGACA AATACTGGAC TGACTTCTTT 11580

GGACAAGAAG	GGACCAAAGC	GAACATCACT	GGCTGATAGC	TTCATTTGTC	CTGCTTCCAC	11640
CACCAAAATC	TCATAAAACT	TTCCAGCTTC	TTCTAAGATG	CTTTCTGCTA	CAATCTGGAA	11700
TCCATGATCC	TGTAGCCAGA	TACGCAAGTC	GTCTTCACGA	TTATTGGGCT	GGAGGATCAA	11760
ACGCTCTACA	TTAGCTAACT	TCCCCAAACC	ТТСТТСТААА	ATCCTAGCAA	TCAAACGACC	11820
ACCCATGCCA	GCAATGGTAA	TGACAGACAC	TTGGTCAGTC	TCTTCAAAAG	CTGCCAAGCC	11880
ATTGGCTAAA	CGGACTTGGA	TTTTCTCCTT	TAGGCCGTGA	GCCTCAACAT	TTTTAACCGC	11940
AGACTGATAG	GGACCTTCCA	CCACCTCACC	TGCAATAGCG	CTTTTGATTT	GCCTCTCTC	12000
AACCAACTCG	ATAGGCAGAT	AAGCATGGTC	ACTTCCCACA	TCTAGTAAAA	TAGCCCCCTG	12060
TGACACAAAG	GAAGCTACCA	ATTCTAATCT	CTTTGAAATC	ATCTTCTCTC	ACTTTCCAAA	12120
ACTCTATTAC	CTCTTATTAT	ACCACATTTC	AATCTTCAAC	TTCCCAGTAA	TATAAGCACC	12180
TCTGGCGAAA	GAAGTTTCAA	TGTCCTAAAG	TAATAAGTGA	ATCCAATTGA	AAGATTTTAA	12240
ACAATTTGCA	AAAATGTCAA	AAAATAAAA	ATAAACAGTT	TATTCAGAAA	ATTCTTGACA	12300
татаааааса	CATGGTAGAA	TATAATTAGA	AAGTTAGAAA	AAATAAAAGT	TTGACTAAAA	12360
TTTGTATTTG	AAGGTGGTGT	TCAGATAAGA	AATTTAGTCA	GACGAACCAC	GAATTTGCTC	12420
TATGCTTTCT	GGAATTTATC	ATAACAGGAG	GATACAGTCA	TGGAACAAAC	ATTGTTTGAA	12480
TTAGAACTAC	TTCCAGAGGA	AGATATCATT	GTCACAGGTC	TCCCTAAGTA	TTGTTCTTTT	12540
ACTTGTTTAA	TTACAGGTCG	СТАСТТАТАТ	ТТТАТАТАА	ATAAGTAGCT	TTACTTACGG	12600
AATAGGCTAG	TGCTGTGTCT	CTAGCCTATT	ТТААТААТТА	GGAGTTTGTT	ATGGATTTAT	12660
TAGAGAAAGA	ATGTTTAAAA	TGTGATAAAA	ATTTCCAACA	GGGTGATATT	TGGAATTACT	12720
ATTATTTATC	AGATAAGATG	CCTGCACAAG	GGTGGAAAAT	ACACATAAGC	тсссааатаа	12780
AAGACGCTGT	TTTTATAAA	AAGATTGTGT	ATAAACTATC	CCAACTAAAT	A ATTGTAGCT	12840
TTAAAGTTGT	TAAAAATTTA	GAGGAATTAA	AATTAAAAA	TTCCCCTAGG	GAAATGAGCC	12900
СТАСТССТАА	CAAATTTATA	ACTCTATATC	CTAAGTCAGA	ATCTGAAGCT	AAGAGTATGA	12960
TTTGTAATCT	TACGAATAGA	CTGTCAGAAT	TTAAGGCTCC	АААААТАСТА	TCTGACTATC	13020
AATGTGGAAT	GCATTCTCCA	GTTCATTATA	GATATGGGGC	TTTTTTAAAA	AAACAAGCTT	13080
ATGATGAAAA	AAATAAAAA	GTCATCTATT	TATTGCTAGA	TGAAAAAAGG	AAGAACTATG	13140
TAGAAGATAA	GAGACAAAAT	TTCCCTAGTC	TTCCTAGCTG	GAAAATGGAT	TTATTTTCAG	13200
AAGAAG						13206

⁽²⁾ INFORMATION FOR SEQ ID NO: 34:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 13104 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

CCGGATCCAG	CGAAAAATAT	GCTCTTTGAT	GCTGTAAGTG	GTCAAAAAGA	TGCTAAAACA	60
GCTGCTAACG	ATGCTGTAAC	ATTGATCAAA	GAAACAATCA	AACAAAAATT	TGGTGAATAA	120
AAAATTTGTT	CAAGGGGGGT	GGAAATCAAA	TCCCCCTTTG	AATTTATCAA	TAGAGACACA	180
AATAATTTAG	CTTTCTTATA	AAAAAGTAGT	ATCCTATGAA	AGGAGTTAAT	ATGGAAAAGC	240
AACAACCTAG	TAAAGCAGCC	CTGCTGTCTA	TCATTCCTGG	GTTAGGACAG	ATTTACAATA	300
AACAAAAAGC	CAAAGGTTTT	ATCTTCCTTG	GTGTAACCAT	CGTATTTGTC	CTTTACTTCC	360
TAGCACTTGC	AACCCCTGAA	TTGAGCAACC	TCATCACTCT	TGGTGACAAA	CCAGGTCGTG	420
ATAATTCCCT	CTTTATGCTG	ATTCGTGGTG	CCTTCCATCT	AATCTTTGTA	ATCGTTTATG	480
TACTCTTTTA	TTTCTCAAAT	ATCAAAGATG	CACATACGAT	TGCAAAACGC	ATTAACAATG	540
GAATTCCAGT	TCCACGCACA	CTCAAAGACA	TGATCAAAGG	GATTTATGAA	AATGGCTTCC	600
CTTACCTCTT	GATCATTCCA	TCTTATGTTG	CCATGACCTT	CGCGATTATC	TTCCCAGTTA	660
TCGTAACCTT	GATGATCGCC	TTTACCAACT	ACGACTTCCA	ACACTTGCCA	CCAAACAAGT	720
TGTTGGACTG	GGTTGGTTTG	ACCAACTTTA	CAAACATTTG	GAGCTTGAGT	ACCTTCCGTT	780
CTGCCTTTGG	TTCTGTTCTT	TCTTGGACTA	TCATTTGGGC	TTTGGCAGCT	TCTACTTTAC	840
AAATCGTAAT	TGGTATCTTC	ACAGCTATCA	TTGCCAACCA	ACCATTTATC	AAAGGAAAAC	900
GTATCTTTGG	TGTTATTTTC	CTTCTTCCTT	GGGCTGTCCC	AGCCTTCATC	ACTATCTTGA	960
CATTCTCAAA	CATGTTTAAC	GATAGTGTCG	GTGCTATCAA	CACTCAAGTA	TTGCCAATCT	1020
TGGCTAAATT	CCTTCCTTTC	CTTGATGGAG	CTCTTATTCC	TTGGAAAACA	GACCCAACIT	1080
GGACTAAGAT	TGCCTTGATT	ATGATGCAAG	GTTGGCTCGG	ATTCCCATAC	ATCTACGTTC	1140
TGACCTTGGG	TATCTTGCAA	TCTATTCCTA	ACGACCTTTA	CGAAGCAGCT	TATATTGACG	1200
GTGCCAACGC	TTGGCAAAAA	TTCCGCAACA	TCACTTTCCC	AATGATTTTG	GCTGTTGCGG	1260
CACCTACTTT	GATTAGCCAA	TACACCTTCA	ACTTTAACAA	CTTCTCTATC	ATGTACCTCT	1320
TCAATGGTGG	AGGACCTGGT	AGTGTCGGAG	GTGGAGCTGG	TTCAACCGAT	ATCTTGATCT	1380
CATGGATCTA	CCGTTTGACA	ACAGGTACAT	CTCCTCAATA	CTCAATGGCG	GCAGCTGTTA	1440
CCTTGATTAT	CTCTATCATT	GTCATCTCAA	TCTCTATGAT	CGCATTCAAG	AAACTACACG	1500

CATTTGATAT	GGAGGACGTC	TAAGATGAAT	AACTCAATTA	AACTCAAACG	TAGACTGACT	1560
CAAAGCCTTA	CTTACCTTTA	CCTGATTGGT	CTATCAATTG	ТААТТАТСТА	TCCACTGTTG	1620
ATTACCATTA	TGTCAGCCTT	TAAAGCAGGT	AACGTCTCAG	CCTTTAAACT	AGATACTAAT	1680
ATCGACCTCA	ATTTTGATAA	CTTTAAAGGC	CTCTTCACTG	AAACCTTGTA	CGGTACTTGG	1740
TACCTCAACA	CTTTGATTAT	CGCCTTAATT	ACCATGGCTG	TTCAAACAAG	TATCATCGTA	1800
CTTGCTGGTT	ATGCTTACAG	CCGTTACAAC	TTCTTGGCTC	GTAAACAAAG	TTTGGTCTTC	1860
TTCTTGATCA	TCCAAATGGT	GCCAACTATG	GCCGCTTTGA	CAGCCTTCTT	CGTTATGGCG	1920
CTTATGTTGA	ACGCCCTTAA	CCACAACTGG	TTCCTCATCT	TCCTCTACGT	TGGTGGTGGT	1980
ATCCCGATGA	ATGCTTGGCT	CATGAAAGGC	TACTTCGATA	CAGTGCCAAT	GTCTTTAGAC	2040
GAATCTGCAA	AACTAGACGG	TGCAGGACAC	TTCCGCCGCT	TCTGGCAAAT	TGTTCTACCA	2100
CTTGTTCGCC	CAATGGTTGC	CGTACAAGCT	CTCTGGGCCT	TCATGGGACC	TTTCGGGGAC	2160
TACATCCTCT	CTAGTTTCTT	GCTTCGTGAG	AAAGAATACT	TTACTGTTGC	CGTAGGTCTC	2220
CAAACCTTCG	TTAACAATGC	GAAAAACTTG	AAGATTGCCT	ACTTCTCAGC	AGGTGCTATC	2280
CTCATCGCCC	TTCCAATCTG	TATTCTCTTC	TTCTTCCTAC	AAAAGAACTT	TGTTTCAGGA	2340
CTTACAAGTG	GTGGCGACAA	GGGATAATTT	ATCCCCGCCA	CCCTTTTTCA	TTTTATACTC	2400
TTCGAAAATC	TCTTCAAACC	ACGTCAGCTT	TATCTCCAAC	CTCAAAGTTG	TGCTTTGAGC	2460
AACCTGTGGC	TAGTTTGCAC	TTTGATTTTC	ATTGATTATT	AGCAATTGTC	ACTGTAAATA	2520
ATATCCTTGT	AGCAAGCAAT	TTTTCTCCTA	GACTTGAAAT	AAAGCGCATT	TCTCTATATA	2580
ATAATACTCA	TATAGAAAAC	ACCTTTTAGA	AAGATACCTA	TGCTTCCATA	TCCATTTTCC	2640
TATTTTCAA	GTATTTGGGG	GGTTCGTAAG	CCCCTGTCCA	AACGTTTCGA	GCTCAACTGG	2700
TTTCAACTTC	TCTTTACCAG	TATCTTCCTT	ATCAGCTTGT	CTATGGTACC	CATTGCTATC	2760
CAAAACAGCT	CCCAGGAGAC	CTATCCGCTA	GAAACTTTTA	TCGATAATGT	CTATGAACCT	2820
CTGACAGATA	AGGTTGTCCA	GGATCTCTCT	GAACATGCTA	CAATTGTCGA	TGGCACATTA	2880
ACTTATACTG	GAACAGCTAG	TCAAGCCCCT	TCTGTTGTGA	TTGGTCCAAG	TCAAATCAAG	2940
GAATTACCTA	AGGACTTGCA	ACTGCATTTC	GATACAAATG	AGCTAGTCAT	CAGCAAGGAA	3000
AGCAAGGAAC	TGACCCGCAT	CTCTTACCGA	GCCATTCAGA	CTGAGAGTTT	CAAAAGCAAA	3060
GACAGCTTGA	CCCAAGCAAT	TTCTAAAGAC	TGGTACCAAC	AAAATCGTGT	CTATATCAGC	3120
CTCTTCCTAG	TTCTCGGTGC	GAGCTTCCTC	TTTGGTTTGA	ATTTCTTTAT	CGTCTCTCTT	3180
GGAGCTAGCT	TTCTCCTTTA	TATCACCAAA	AGATCACGCC	TCTTTTCATT	TAATACCTTT	3240

			342			
AAAGAGTGCT	ACCATTTTAT	CTTGAACTGT	TTAGGATTGC	CGACTCTGAT	TACACTTATT	3300
TTGGGATTAT	TTGGCCAAAA	TATGACAACC	CTGATTACTG	TACAAAATAT	TCTTTTTGTT	3360
CTGTATCTGG	TCACTATCTT	ттатааааса	CATTTCCGTG	ATCCAAATTA	CCATAAATAG	3420
GAGATTTTTA	TGCCCGTTAC	GATTAAAGAC	GTGGCCAAGG	CTGCTGGTGT	TTCGCCTTCA	3480
ACCGTAACCC	GTGTTATTCA	АААТАААТСА	ACCATTAGCG	ACGAAACAAA	AAAACGTGTT	3540
CGCAAAGCTA	TGAAGGAACT	CAACTACCAC	CCAAACCTCA	ACGCTCGTAG	CTTGGTAAGC	3600
AGCTATACTC	AGGTTATCGG	ATTAGTTCTT	CCTGATGACT	CAGACGCCTT	CTACCAGAAT	3660
CCTTTCTTTC	CATCGGTTCT	ACGTGGCATC	TCTCAAGTCG	CATCTGAAAA	CCACTATGCC	3720
ATTCAGATAG	CAACAGGGAA	AGATGAGAAG	GAGCGTCTCA	ACCCTATTTC	ACAAATGGTC	3780
TACGGCAAGC	GTGTAGATGG	GCTAATTTTT	CTCTATGCCC	AAGAAGAAGA	CCCTCTCGTA	3840
AAACTCGTCG	CAGAAGAACA	GTTCCCCTTC	CTTATCTTAG	GTAAATCTCT	ATCTCCTTTC	3900
ATCCCACTTG	TCGACAACGA	CAATGTTCAA	GCTGGTTTTG	ATGCGACTGA	ATATTTCATC	3960
AAAAAAGGCT	GCAAACGCAT	TGCCTTTATC	GGAGGAAGTA	AAAAGCTCTT	CGTGACCAAA	4020
GACCGTTTAA	CAGGCTATGA	ACAGGCGCTT	AAACATTACA	AACTTACCAC	TGACAACAAT	4080
CGCATCTACT	TTGCCGACGA	GTTTCTGGAA	GAAAAGGGCT	ATAAATTTAG	CAAGCGATTA	4140
TTCAAGCACG	ATCCACAAAT	TGATGCTATC	ATCACAACCG	ATAGCCTCCT	AGCTGAAGGT	4200
GTTTGTAACT	ATATTGCCAA	ACACCAGCTG	GATGTCCCTG	TTCTCAGCTT	TGACTCGGTT	4260
AATCCCAAGC	TCAACTTGGC	AGCCTATGTC	GATATCAATA	GTTTAGAGCT	TGGTCGTGTT	4320
TCCCTTGAAA	CTATTCTCCA	GATTATTAAT	GATAATAAAA	ACAATAAACA	AATTTGTTAC	4380
CGTCAATTGA	TCGCCCACAA	AATTATCGAA	AAATAAGAGA	CTGGGCAAAA	AGTCGTTAAA	4440
AGCAAAAACG	CATACTATCA	GGTATTGAAA	AAACTTGATA	CTATGCGTTT	TATTGTGGGA	4500
AGATTTACTT	CCTTTTCTAC	TGAAATTGAG	TCTTTTCCCA	AGATCTTTTT	ATACTCAATG	4560
AAAATCAAAG	TGCAAACTAG	GAAGCTAGCC	GCAGGTTGCT	CAAAACACTG	TTTTGAGGTT	4620
GTAGATGAAA	CTGACGAAGT	CAGTAACCAT	ACCTACGGCA	AGGTGAAGCT	GACGTGGTTT	4680
GAAGAGATTT	TCGAAGAGTA	TTAATCACTA	ATTATCTATC	TCAACAAATC	TTCCTAGAAT	4740
ATGAACATTT	TCCGAGACAG	AGACAAAGGA	GCTTGGATCC	ACTTGTGTCA	TAATCTGTTT	4800
AAATTCATTA	AACTCTGCAC	GTGTAATGAC	agtgattaaa	ACTGCCTTTC	TCTCGTGATT	4860
ATAGGTTCCT	TCTGCATCGT	GGATCATGGT	TGCTCCGCGG	TGCAATTTTT	TATGGATTTT	4920
TTCAATTACC	TTCTCTGGAT	GATTTGTCAC	AATCATGGCC	TGCATACGCT	TTTGCTTAGT	4980
AAAGACTGCG	TCTGTCACAC	GGCTAGAGAC	AAAGATGGTA	ATCATAGAAT	AAAGAGCGTA	5040

TTTCCAACCA	AAGGTCAAAC	CTGCTATCAG	CATGATAGTT	CCATTTACCA	AGAAAGAAAT	5100
ACTACCGACA	TTCTTACCCG	TTTTCTTACG	AATAGTCAGG	CTGACGATAT	CCGTCCCACC	5160
ACTGGAGATA	TTGTTTCGAA	GAGCAAAACC	AATCCCCAAA	CCCATAACAA	CACCCCCAAA	5220
AAGGGAATTG	ATAATGGGAT	CCTCTGTCAA	GGTTGCCACA	GGGACAAACT	GGATAAAGAA	5280
GGAACTCATA	GATACCGTGA	TAAAGGTAAA	GACGGTGAAC	TTATGGCCAA	TCTGATACCA	5340
AGCTAAGACC	ATCAAAGGGA	AGTTAATGGC	GTAGAAGCTT	AGCGAAATCG	GAATATGAAA	5400
ACCAAACCAG	TGATTACTCA	AGGCAGAGAT	AATCTGTGCC	AGACCTGTTG	CACCACTCGA	5460
ATACACATGC	CCTGGTTGGA	AAAAGAAATT	AACTGCTACT	GCTGATAAAA	AACCATAGAC	5520
CAGAGAGGCC	GAAATCTTCT	CATCATACTT	TTCTCGAGAG	ATACTTTGTA	AGACACGTAA	5580
AATTTTTATC	TGATAAGCAA	AGCGGCGCAG	ATAATAGCGC	CACCGCTTAA	TTCGTTTTGT	5640
TTGTTTCATC	TTCTTCTACT	TGTAAGCTGA	GTTCCTCTAG	TTGTTTGAGA	GCGACTGTTG	5700
ATGGAGCTTG	TGTCATTGGG	TCAGTTGCCT	TGTTGTTCTT	AGGAAAGGCA	ATGACTTCAC	5760
GGATATTTTC	TTCTCCAGCA	AGCAACATGA	CAAAACGGTC	AAGCCCGATA	GCCAAACCAC	5820
CGTGTGGTGG	GAAACCATAG	TCCATGGCTT	CAAGAAGGAA	ACCAAACTGG	TCATTGGCTT	5880
CTTCAGTTGA	GAAACCAAGA	GCCTTGAACA	TGCGTTCTTG	AAGGTCTTTT	TGGTTGATAC	5940
GAAGGCTACC	ACCACCAAGC	TCATAACCGT	TCAAGACGAT	ATCGTAAGCA	ATGGCACGAA	6000
CCTTAGCCAA	ATCACCTTCT	AATTCATGAG	CAGTCTCTTC	CTGTGGAAGT	GTGAAAGGAT	6060
GCTGGGCGCT	CATGTAGCGG	CCTTCTTCTT	CAGACCATTC	AAACATCGGC	CAGTCAACCA	6120
CCCAAAGGAA	GTTGAACTTA	TCATTATCAA	TCAAGCCAAG	CTCTTTAGCA	ATACGTCCAC	6180
GAAGGGCACC	CAGTGTTGCA	TTAGCCACTT	CAAGCGTATC	CGCCACAAAG	AGAACCAAGT	6240
CCTTATCTTC	AAGAACAAGC	GCTGTTGTCA	ATTCTTCTTG	GATACCAGTC	AAGAACTTGG	6300
CAACTGGTCC	GTTTAATTCT	CCATCAACCA	CCTTGACCCA	AGCAAGACCT	TTGGCACCAT	6360
ACTGTTTGGC	TACTTCCGTC	ATCTTGTCGA	TGTCTTTACG	TGAATAGTTG	TCCGCAGCTC	6420
CTGTGACCAC	AATCGCTTTT	ACAGCAGGTG	CTTCTGAAAA	GACTTTAAAG	TCTACACCTC	6480
GGACCACTTC	TGTCAAGTCC	TGAAGCAACA	TGTCAAAACG	AGTATCTGGC	TTGTCAGAAC	6540
CGTAAAGAGC	CATAGCATCA	TCGTATTTCA	TACGAGGGAA	TGGTAGCGTT	ACTTCGATGC	6600
CTTTTGTTTC	CTTCATCACG	CGCGCGATCA	AGCTTTCTGT	AATATCTTGG	ATTTCTTGCT	6660
CAGTAAGGAA	GGACGTTTCC	AAGTCGACCT	GAGTAAATTC	AGGCTGGCGG	TCTCCACGCA	6720
AGTCCTCGTC	ACGGAAACAT	TTAACGATTT	GGTAGTAACG	GTCAAAACCA	GCATTCATCA	6780

			244			
AGAGCTGTTT	CGTGATTTGT	GGACTTTGAG	GAAGAGCGTA	AAAATGCCCC	TTATTAACAC	6840
GAGACGGCAC	TAAATAATCA	CGCGCCCCTT	CAGGCGTTGA	CTTAGAAAGG	AATGGTGTCT	6900
CCACGTCGAT	AAACTCCAAC	TCATCCAAGT	AGTTGCGGAT	AGAGTGGGTC	ACCTTGGCAC	6960
gaagtttaag	ATTTTCCAAC	ATTTCTGGAC	GACGAAGGTC	AAGGTAACGG	TAACGCAAAC	7020
GTGTATCGTC	ATTTGCCTCA	ATGCCATCCT	TAATCTCAAA	TGGTGTTGTC	TTAGCTGTGT	7080
TAAGCACAAT	AAGAGCTGTC	ACGTTTAACT	CAACCGCACC	AGTTGGCAAC	TTATCATTGG	7140
CTTGTCACGC	GCAGCGACCT	GACCAGTCAC	CTCAATAACA	AATTCGCTAC	GAAGGCTTTC	7200
AGCTGTTGCC	ATAACCTCTG	CAGATACTTT	TTCAGGGTTG	ATAACCAACT	GCATGATTCC	7260
TTCACGGTCA	CGAAGATCGA	TAAAGATCAA	ACCACCAAGG	TCACGACGAC	GGCCAACCCA	7320
TCCTTTCAAG	GTTATTTCTT	GTCCGATGTG	TTCCTCACGA	ACACGACCAG	CATACATACT	7380
ACGTTTCATT	ATTTCTCTCC	TCTTTTATTC	TGTTACTATT	TTACCATAAA	AGCGCAGCTC	7440
TTCATGAAAA	TCATCAGAAA	AGTTTGCCAG	TCTTTAAAAG	TCAGGTGAAA	GCCCTAAAAA	7500
TTAGCGCTAA	TACTCTTCGA	AAATCTCTTC	AAACCACGTC	AGCGTCGCCT	TACCGTATGT	7560
ATGGTTACTG	ACTTCGTCAG	TTTCATCTAC	AACCTCAAAA	CCATGTTTTG	AGCTGACTTC	7620
GTCAGTTCTA	TCCACAACCT	CAAAACAGTG	TTTTGAGCAA	CCTGCGGCTA	GCTTCCTAGT	7680
PTGCTCTTTG	ATTTTCATTG	AGTATAATAC	AAAAATCCGA	TGAACTTCAC	CGGACTCTTT	7740
PATTTTGAAT	TTTTGCCTGC	TTTACGCTTT	TCAGCGATTT	CGGCTGCCTT	TCGAGGCAAG	7800
ACAATTTCCG	TTATGTAAGC	CGTCCCAAAA	CGCAGTACAC	CTGCAATAGG	AGCAAAGACA	7860
ACTGCTAGAT	AGTTATAGAA	GAAATCGCCT	TTGAAGGCAT	AAGCTAGCGC	TCCAATGATG	7920
AAAAATAGAA	CGACTGCCTG	AATCACTGCT	AATAAAATTA	CTCGTTTCAT	GTGACCTCCT	7980
GACTCTATTA	TAGCATGAGA	ATCATCAAAA	AGCCGACTAA	ATTATTCAAA	GCGTGAAGAG	8040
AAATACTGTA	GACCAGACCT	TTTCTGCTAA	TGTAAGCCAA	ACCCAAACTA	AAACCAAGGC	8100
PAAAATAGAC	AAAAAATTGT	TGCACATCAC	CTGGAAAATG	AATCAAGGCA	AATAGAAGAC	8160
PAGATACCAG	AAGAAAAATC	AGGGTTCGTT	TACTATTGTC	CTGCTTAGGA	AAGAGATAGC	3220
STGCTAACAT	CCCTCTAAAA	ACAATCTCTT	CCGTCAAAGG	AGCAAAAATA	ACCACAGCAA	8280
AGAATGAGAA	AAGTGGTTGA	GACAAGGTCA	AGTCTGTCGC	TATTTGCTGA	TTTACTGAAG	8340
GATCATCTGG	CAAGAAGAAT	TGAACGACCA	GAGATAAGAA	CCAAACCAAG	ACAGGAAGCC	8400
AAATAAATCG	ATTAAAGCCG	CTCTTCTCAA	TATGAACAGG	AGCCTTCTGA	TACCATTTGT	8460
AAATGCCGTA	CACATATACT	CCAGCCAAGG	CCACATAGAG	TAGAGTAACA	GCATAGGGTG	8520
AAGCGCCTAA	AGCAAGCGAC	GCAGTCGCGA	GCCCCTGAAT	AAAGCCATAG	AAAATAAATA	8580

8640	GATAACTCCT	TAATTTCATA	GGTTTTTAAG	ATCCAGCCAA	GGCTAGAAGA	AGGATAGAAG
8700	CATGGATGGC	TTGATATAAA	CTGCATCACA	CCATAGGTAA	TAACGTTTTA	PTATTTGAAA
8760	TGATAATAAG	AAGAAAGAAA	CTCTCCTGTC	GTAACTGAAT	AAGAAAGCTA	PCCTACAAGC
8820	GAAAACTCTG	AATAAAATTC	GTGTAATTGG	AGACATATTG	AAGGCTGGTA	ТАТАТАААА
8880	AGACATCCTT	ATATAGTTCA	ATAAGAATTT	CCCCTTCATC	GCCTGACGCT	ГТССАААТТА
8940	TAAAAAGAGA	GCAATGGTTT	ACGAACAATC	AATCAAACTG	AAAAATTCCA	rggtgtagcg
9000	TTTGAGGGTT	AGGAAAAATG	TAAGAAAGAA	CCACAAAGAG	ACTAAGAATA	TTTTGAGCG
9060	TCGCTACACC	GCCAATGGAA	ААТАААААТА	CACTTAATGA	ATAATCACCT	rgtatgcaat
9120	CATAATAGGT	TACATTTGCA	AAGATTCCGA	TTCCAAACTC	AAAGCAATGG	rgtaatatta
9180	TGCTTTTCTT	TGAAATTTTC	ATACAAAGAA	TTTCCTCTTG	TCGTCATCCA	TCATTCAGA
9240	TAGCTGATAT	AGTAAACAAA	GAAACCTATC	ACATACTAAT	AAAGTCAAAA	PAAGAAATTG
9300	GTGCCTTAAA	GATTCGACAC	AATTTCGTGG	CATCTAAAAT	AAGGCTTTTA	CATGGCATC
9360	TAACAATCTA	ACATCAAAAA	AAGACAATAG	AGAACCCCCC	AACATGCCCA	CATCCCTACA
9420	TTCTTTTCAA	ATTTTTGGAT	CACTTGCTAG	TCTCCTTTTT	TCATATTCAT	CGTTTCTTTT
9480	CTTTGATAGG	AAATTGGTCG	AGACCCAAAC	AGAGCAAAGT	TACTGGGATG	rccattcaat
9540	AAAGCTATGA	GCTGACTAAT	GTAGAAATAC	ATCCCAATCA	GCTTAGGTCC	GATTAAACCA
9600	AACGAAATAC	TCCTCCTCCA	TCATCACTCG	TTATACTTGT	ATAAATCACT	CCACTACATA
9660	TGGATGGGGT	GCAATGATAA	TATTTTCAGG	AAATTTGAGA	GTTTCGTTGA	CGATTCGACT
9720	GTTTGGCTAG	ACCCCTGCCA	CTGTCTGGAA	GGCTAATGGT	CGTTCTAGTA	GTACTCATCC
9780	TTAGTTGCAT	AGACGATTTT	AAGCTCTTTT	CGCGAGCTCG	TTGAGACCAT	etcgg ttt ga
9840	GTTGCAACTT	TCCTCAATAC	GGTTTGGATA	CAAATTCAAC	TACTCTCCGT	STTACACACC
9900	CATCAACATC	ACCCATTCCT	TCGTAGCTTT	TATCTACACG	TTTCCCGTAT	EAATTTTTCT
9960	CCTTTCCAAT	ATAATTGGTT	CACTCCCGTT	GCCCAATATA	CAGTTATCTG	CACAACTTCC
10020	CAAGTCTTTT	TCTTTTCGCT	GTTTCCTTTC	ACATTTCTGC	AATAATCTCG	CATTTCTTGT
10080	AAATCATAAA	GAATAAAAGA	AGAATTATTA	TGATTTTTT	TCTAGTTTCT	GATTTTATTC
10140	TTAACTTGAA	TTCCTATTTC	TCCTTTCTGC	ACATTATAAC	CCTAGTACCC	PAGTATAAAT
10200	TTATGATTTT	GTCAAAAAAA	AAGTATAGTT	TCTTTTTGAC	CATATCTTTT	TCATTGTAA
10260	СТАТСАТТАА	ACCACTTTAT	TAGGTTCCTG	AGGTCAGGAG	CAAAAGAAAA	GTCATTTTG
10320	ATGGTTACTG	TGCCGTAGGT	AGCTTCACCT	AAACCACGTC	AAATCTCTTC	PACTCTTCTA

ACTTCGTCAG TTTCATCTAC AACCTCAAAA CCATGTTTTG AGCTGACTTC GTCAGTTCTA 10380 TCCACAACCT CAAAACCATG TTTTGAGCTG ACTTCGTCAG TTCTATCCAC AACCTCAAAA 10440 CCATGTTTTG AGCTGACTTC GTCAGTTCTA TCCACAACCT CAAAACAGTG TTTTGAGCAA 10500 CCTGCGGCTA GCTTCCTAGT TTGCTCTTTG ATTTTTATTG AGTATAAAAT CCTAGTTTTT 10560 CAAAGATTTC TGAGAAGTTT TGGCTGATTG TCTCAAGTGA CACTTGCACT TCTTCTCGGG 10620 TTTGGTTGTT CTTGACCGTC ACTTGTCCGC TTTCGACTTC GCTCTCTCCT AGGGTGATGA 10680 GGGTCTTAGC CGCAAAGACA TCGGCTGACT TGAACTGAGC TTTTAGTTTA CGGTTGAGGT 10740 AATCACGCTC TGCTTTGAAA CCTTGTTGGC GAAGAGCCTG TACCAATTCC AAGGCCTTGA 10800 TATTTGCCCC TTCGCCCAAG ACTGCGATAT AGACATCTAG GGCGTTTTCG ATAGGGAGGG 10860 TCACACCTTG CTTTTCAAGG ATGAGAAGCA GGCGCTCTAC ACCAAGTCCA AAACCAAATC 10920 CAGCAGTTTC AGGGCCTCCA AAGTAAGCAA CCAAACCATC GTAGCGACCA CCCGCACAGA 10980 CGGTCAGGTC ATTGCCCTCA ATCTCTGTGA TAAACTCGAA AATGGTGTGG TTGTAGTAGT 11040 CCAGACCACG CACCATATTG GTATCGATGA TGTAATCTAC TCCAAGATTT TCCAACATCT 11100 GACGCACAGC ATCAAAATGA GCTTGGCTTT CTTCATCAAG AAAGTCCAAG ATAGACGGCG 11160 CATTCTCTAC TGCCACCTTG TCTTCTTTTT CCTTAGAGTC CAAGACACGA AGAGGATTTT 11220 CCTCCAAGCG ACGTTGGCTA TCCTTAGACA AGGTCTCCTT GAGCGGTGTC AAATAGTCAA 11280 TCAAGGCTTG GCGCTAGGCT GCACGGCTCT CAGGATTTCC AAGAGTGTTG AGGTGCAATT 11340 TGACACCTTG AATACCGATT TCCTTCAAAA AATGGGCTGC CATAGCGATT GTTTCCACAT 11400 CGGTAGCTGG ATTGCTAGAG CCAAAACACT CAACACCAAT CTGGTGGAAT TGGCGCAAGC 11460 GCCCTGCCTG TGGACGCTCA TAACGGAACA TAGGTCCCAT GTAGTAGAAC TTGCTTGGCT 11520 TTTGCACTTC TGGGGCGAAA AGTTTATTTT CCACATAGGA ACGGACAACG GGTGCAGTTC 11580 CTTCTGGACG GAGGGTAATA TGACGGTCAC CCTTGTCATA AAAATCGTAC ATTTCCTTGG 11640 TTACGATATC CGTTGTATCT CCGACAGAGC GACTGATAAC CTCGTAATGC TCAAAAATAG 11700 GCGTGCGCAC TTCTGCATAG TTGTAGCGTT TGAAAATCTC ACGGCCAAAG CCCTCAACGT 11760 ACTGCCACTT AGCAGACTCA GCAGGTAAAA TATCCTGCGT TCCTTTTGGT TTTTGTAATT 11820 TCATAGGGAA TCCTCTTTAA ACTTAATAGT CTTATTTTAC CATAAATAGA GGGATTAAAA 11880 CAGTAAGAAA AAAATTAGGA TTTAGATATC ATTTTTGAGA TTAAGAATTG TCAAAAAAAT 11940 AGCTAGCAAG GAAAGACCAA CAAATAGCAT CCAAGTCAAC TGTATATTCC ATACGGCTAC 12000 TAGTGAAAAA CAAGCTGTTC CCACAGGTAT GGATAAGGTA AACAATAGAC CTAAAAAATT 12060 ACTAGTACGA GCTAGAACCT CTGGAGCTAG ATTTTTCATG AGCATGGCAC TAATCTTTGG 12120

347

TTGAACTTTA	CCAGACACAT	ACAGAGTAAA	GAAGAGAAAT	AGCAAACCAA	GCACGACTTG	12180
АТТGAAТAAA	TTAGCCAAAC	CAACTAGACT	AAGTCCTACG	GTCTCCCACA	TCATCAATCT	12240
AGGCAAGGAC	TGCTTCCCAA	AATAATCATT	GCCCGTAAGG	CTACTGATGA	TGACTGATAC	12300
TAAAACACAG	AATTGATTGA	TAAATAGTGC	CTCTGTATAA	GAAAAATTCA	AGAGAGAATG	12360
GCTCAAAAAG	AAGATATTAT	AAATTCCACC	CAAAGCGCCA	CCCAAGGAAT	TAATAAGCAA	12420
GACAGCAAAG	AGCATAAAAC	CAAAGTTTTT	CTGTCCACTT	TTAAGAAAAA	CGAGACGTAA	12480
ATTTCGGTAA	ATTGTTAGGA	ACTGGTCTTT	GATAGAAAGC	ТТСТСАТТТТ	TTAAGTTTTC	12540
ACCATCAGCA	GATGACATTG	ACAGGCTCAA	TTTGCTTTTT	CCTAAAAAGA	GGATAGTGGC	12600
TGATACTAGG	AAAAAGCAGG	CATTGATTCC	CGCAACGAGA	GAAAAATTGT	TGACCGATAG	12660
AGCTAAGAGC	CAGACTCCGA	AAGCTTGACC	ACCAATAGCT	GAAATATAGG	TGATGAACTG	12720
TGAAAAAGAA	TAAGCCTCCA	TCAGATCATC	TTCAGCTACT	TTTTCCTTAA	TAAGAGGCAT	12780
ACGCAGGCCA	CCTGCAAAAT	CACTGATGAT	ATCACTAATG	ACATTGATCA	AACACAGGCT	12840
AGAAAAGGCA	AAGAGACTAG	CTTGCTGAAC	AACTAGGGCT	GCTAGAAAAA	ATAGAACCGC	12900
CTGAAACAAA	CCGCTATAGA	CCATCCATTT	GACCTTGTCC	CTCGTGTAAT	CTGCCCGAAT	12960
CCCTGCAAAA	ACTGTAAAGA	GGGTCGGAAG	AATCATGACA	ATATTCGCCA	TAGCAACAGC	13020
AAAAGATGCT	TGTGACAAGG	TCGATGCATA	GACGATAAAG	ACCAGGTTGA	AAATCGAAAC	13080
ACCAAAAGCA	TTGAAGAAGC	GTGG				13104

(2) INFORMATION FOR SEQ ID NO: 35:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19250 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:

CCGGGCAAAT	AGTTTTGAAC	TTTTCATCAT	TTTCTCCTTT	AAAACTTTCT	CTCCATTATA	60
GACTCTTTTC	AGAAAGTTGT	CAACAGAATT	TTCAGAATTT	TTGAAAATTA	TTTTTCAAAC	120
AACATCTTTG	CAAAAAATAT	GAATATCGTA	AGCGCGTCAT	AACAAGGTAT	CTATCATTCA	180
TGGAGCTCCT	CCTGTATACT	ATTAGTAAAG	TAAATATTGG	AGGATATTTT	AATGCCACAA	240
CCTATTGTTC	CTGTAGAGAT	TCCACAATCT	CGTCGTTTTG	АТТСТААААА	GAGAAATGAT	300
ATTCTrCTTA	AAATTCGTAT	TGGCAAGCTT	GAAGTAAGTT	TTTTTCAATC	TCTCAATCTC	360

			348			
GAAATGATAG	AACAGCTTTT	GGATAAGGTG	TTGCTCTATG	ACAATTCATC	TATCTAGCCT	420
AGGGCAGGTC	TATCTCGTGT	GTGGGAAAAC	TGATATGAGA	CAAGGAATCG	ATTCACTGGC	480
TTATCTCGTT	AAAACCCACT	TTGAATTGGA	TCCTTTCTCC	GGTCAAATCT	TTCTCTTTTG	540
TGGTGGACGT	AAAGACCGCT	TTAAAGTCCT	TTACTGGGAT	GGTCAAGGAT	TTTGGCTACT	600
ATATAAACGC	TTTGAGAACG	GCAGACTGAC	TTGGCCCAGT	ACAGAAAAGG	ATGTCAAAGC	660
TCTCGCACCT	GAACAAGTAG	ATTGGCTGAT	GAAAGGCTTT	TCTATCACTC	САААААТАТА	720
GTAGATTGAA	ACTAGAATAG	TACACCTCTG	CTTCTAAAAC	ATTGTTAGAA	ATCGATTTTA	780
CTGTCCTGAT	CGATTTGTCC	TGTTATTATT	TCATTTTACT	ATAAATCCAT	CAGAAAGTCG	840
TGATTTCTAT	TGAAATGAGG	ACTTTCTTTT	TATACTCATC	TGCTTTCAAA	AAGCACTCTA	900
GTCCATCTCC	GATTAACGAT	GGACTTTATC	ACCTCCTTCT	CCAGTCCTTG	TATAACATCT	960
TGAAGTTGAT	TCATGACATC	TTCCAAAGTT	CGAAAGGCTT	ТАТТСТТААА	TCCACGTTTA	1020
CGAATCTCTT	TCCACACTTG	TTCAATGGGG	TTCATCTCTG	GTGTGTATGG	AGGAATAAAT	1080
GCAAAGCCAA	TATTAGTCGG	AATCTTTAAG	GTACTTGATT	TATGCCATAT	AGCATTGTCC	1140
ATAACGAGTA	AAAGATAATC	ATCTGGATAA	GCTTGTGAAA	GCTCCTATTC	CTAAAGCCCC	1200
TTTATAACCT	CTTGCGAGAG	AGACTATTGA	CTCAGCCCTT	ACTTCATGCG	GATGAAACCT	1260
CCTATCGGGT	TCTAGAGAGT	GATAGCCATC	TGACCTACTA	TTGGACTTTT	TTGTCAGGTA	1320
AAGCAGAGAA	ACAAGGGATT	ACGCTTTACC	ACCATGATCA	GTGTCGAAGT	GGTTCAGTAG	1380
TACAAGAATT	CCTAGGAGAT	TATTCTGGCT	ATGTTCATTG	TGATATGTTG	CGGCAGTAAC	1440
TTAGGACTTT	AGTCCTCTAG	TTCTGCCTAT	GCGATAGCAG	TCCAAGGTTT	AGGAGTAAGG	1500
CGACGCTAAG	CTTGGTAAAC	TGCGAACAGC	TAGAAGCTTA	TCGTCAACTG	GAAGAAGCTG	1560
CACTTGTTGG	ATGTTGGGCG	CATGTGAGAA	GGAAGTTTTT	TGAAGTGCCC	CCCAAGCAAG	1620
CAGATAAATC	ATCCTTAGGA	GCTAAAGGTT	TAGCCTATTG	TGATCAGTTA	TTTTCCTTGG	1680
AAAGAGACTG	GGAGGCTTTG	CCAGCTGATG	AACGGCTACA	GAAACGTCAA	GAACATCTCC	1740
AACCCCTACT	GGAAGACTTC	TTTGCTTGGT	GCCGTCGTCA	GTCAGTTTTA	TCGGGTTCAA	1800
AACTAGGAAG	GGCAATTGAA	TACAGCCTCA	AGTATGAAGA	AACCTTTAAG	ACCATTTTAA	1860
AAGACGGACA	TCTGGTCCTT	TCCAATAATC	TAGCTGAACG	CGCCATTAAA	TCATTGGTTA	1920
TGGGACGGAG	TAAAAGAGTC	CAGTGGACTC	TTTTAGCCTA	AGCTCAGTTT	AAAAAAACGA	1980
GGGTGGTTAT	TTTTAAAAAA	GCGAGGGTGG	TTATTTTCTC	AAAGTTTTGA	AGGAGCTAAA	2040
GCAAGAGCTA	TTATTATGAG	TTTGTTGGAA	ACAGCTAAAC	GTCATCAATT	ATAGTGCGTT	2100
GAATCTATAA	CAGTACGCAT	CGACTGCTAA	AATATTTCTA	TAAATCAATT	TTCCTTTCCT	2160

AATCGATTTG	TTCATATCTT	ATTACAATCC	ATAAATA	GCGAGAAATA	TCTATCCTAT	2220
CTTCTAGAAT	GTCTTCCAAA	CGAGGAAACT	CTCGTAAACA	AAGAGGTTTT	AGAGGCCTAT	2280
TTACCGTGGA	CTAAAGTTGT	ACAAGAAAAG	TGCAAATAAG	AAATCTCCAG	ATTAGGAACT	2340
ATATATGAGT	TCTCTAGTCT	GGAGATTTTT	CAATAGACTT	CGTTATTGGG	CGGTTACTTT	2400
CGAAACTTTG	AAAACTTCAA	AAAACGGATT	TTTATCGCTC	TGAACATCAA	AAAAGAAAGG	2460
ACGAAATTTG	TCCTTTCTCA	AGCTTAGCTT	TTCTTCAACC	CACTACAGTT	GACAAAGAGC	2520
CCTTTATTCT	ATCAAACATG	AAGCGCAAAA	ACAAGCCAAA	AATCCGATAG	AATGGCTATC	2580
CCTCGACTAT	CAAGTAAGAC	ATTTCCATCA	AATACGTTCA	ATTTTACTCT	TGTTCTACTA	2640
AGAATTAATC	ATCTCGTTTT	GATTTATTAA	AAATATACAA	TTCAGCTTTT	CCTCCAAACT	2700
ATTTTATCCA	CTATCCCTGT	ATAGCTCTGT	ATTATCTTAA	CAACTTTAGT	AGAGACATTT	2760
TCCTCAACAT	AATCCGGAAC	CGGTAATCCA	AAATCCTCAT	CTTGTGCCAA	GCTAACAGCA	2820
GTTTCAACTG	CTTGAAGAAG	AGAATTTTCA	TCAATGCCTG	CCAAAATAAA	TCCTGCCTTA	2880
TCTAAGGACT	CAGGACGTTC	TGTACTTGTA	CGAATACATA	CAGCGGGAAA	AGGATAACCT	2940
TGACTAGTAA	AGAAACTACT	TTCTTCCGGT	AAAGTTCCCG	AATCAGATAC	TACAACAAAT	3000
GCATTCATCT	GTAAACAATT	ATAGTCATGG	AATCCTAGTG	GCTCATGCTG	AATCACACGT	3060
TTATCTAGTT	TAAAACCGCT	CTCTTGTAGC	CTTTTCTTTG	ATCTAGGATG	GCAAGAATAT	3120
AAGATTGGCA	TATTATACTT	TTCAGCTAAT	TGATTAATTG	CTGTAAAGAG	AGAAATAAAA	3180
TTTTTATCTG	TATCAATATT	TTCCTCACGG	TGAGCTGAAA	GTAAGATATA	ACCTCCTTTT	3240
TTCAATCCCA	AACGTTCATG	GATATCTGAA	GACTCAATAG	CAGATAAATT	TTTATGTAAC	3300
ACTTCTGCCA	TAGGAGAACC	AGTTACATAT	GTGCGCTCTT	TAGGTAAACC	ACACTCATGT	3360
AAATACTTAC	GTGCATGTTC	AGAGTATGCT	AAGTTAACAT	CTGAAATAAC	ATCAACAATC	3420
CGACGATTAG	TCTCTTCCGG	TAGGCACTCA	TCTTTACAGC	GATTGCCAGC	CTCCATATGA	3480
AAAATTGGAA	TATGTAAACG	CTTGGCAGCA	ATAGCTGATA	AACAAGAATT	TGTATCCCCT	3540
AAAATCAATA	AAGCATCTGG	TTTAATTTGA	TTCATCAATT	TGTATGAAGT	ATTAATAATA	3600
TTCCCTACAG	TAGCACCAAG	ATCATCTCCA	ACAGCATCCA	TGTATACGTC	CGGAGTGTCT	3660
AACCCTAAAT	TATCAAAGAA	AATACCATTT	AAATTGTAAT	CATAGTTTTG	TCCAGTATGT	3720
GCCAAAATAA	CATCAAAATA	CTTTCGACAT	TTAGTGATAA	CACTACTTAG	ACGTATAATC	3780
TCTGGACGTG	TTCCCACAAT	AATCAATAAC	TTAAGTTTGC	CATTATCTTT	AAAGTGAATA	3840
TCACTATAAT	CTGTCTTAAT	TTTCATTTAT	TTCTCCACTT	GTTCAAAAAA	AGTATCTGGA	3900

			350			
TGTCTAGGAT	CAAATGACTC	ATTAGCCCAC	ATGACAGTAA	TTAGATTTTC	TGTATCAGAA	396
AGATTAATAA	TATTATGTGC	ATAGCCCGGT	ATCATATGTA	TTGCTTCAAT	CTTATCGCCC	402
GACACTTCAA	AGTTCAGAAT	AGGATACTCT	TGACCGTTTT	CATCCAGCCC	TATCCTACGC	408
тсттстатта	AAGCACGACC	AGAAACAACC	ATGAAAAATT	CCCACTTAGA	ATGATGCCAA	414
TGTTGCCCTT	TGGTAATGCC	AGGTTTAGAA	ATATTAACAG	AAAATTGACC	CGTATTTCT	420
GTTTTTAATA	ATTCCGTAAA	ACTACCTCGT	TCATCTATAT	TCATTTTTAG	AGGAAACTTA	426
AACTTATCTA	CTGGTAAATA	AGATAGGTAG	GTAGAATACA	ATTTCTTTTT	AAACGATCCC	432
TGAGGAATTT	CAGGCATAAC	TAAACTATCA	GGCTGTTTTT	TAAATGTTTC	TAATAGAGAG	438
ACAATCTCTC	CTAAGGTTGC	ACGATGAGTC	GTTGGTACGT	AGCAGTAGTT	TCCTGATGGG	444
CTAGGTAAGA	TTTGTAATCC	ATCTAGATTA	CAACGATGAG	GATTTCCTTC	CAATGCAGTT	450
AGACACTCTT	GTATCAAATC	ATCAATATAC	AGCAACTCCA	ATTCTACACT	TGGATCATTT	456
ACTTGAATAG	GTAAATCGTG	AGCTAGATTA	TAACAGAAAG	TTGCTACAGC	AGAATTGTAG	462
TTAGGACGGC	ACCACTTCCC	ATAAAGATTC	GGGAAACGGT	AAACTAAGAC	AGGTGCTCCC	468
GTTTTCTTTC	CATATTCAAA	GAAGAGTTCT	TCCCCTGCTA	GCTTAGATTG	TCCATATATA	474
GAGTTTGAAA	ATCGGCCTTC	TAAACTAGCT	TGAGTAGAAC	TTGAGAGTAG	AACAGGACAA	480
GTGTTTTCAT	ACTTTTCTAA	AATCTCCAAT	AATCTACTTG	AAAAACCGTA	ATTTCCCTCC	486
ATGAATTCAT	CAGGATTCTG	TGGACGATTG	ACACCAGCTA	AATGGAATAC	GAAATCGGCC	4920
TTCTTACAAT	ATTCATCTAA	TAAAATCGGA	TCTGTATCAC	GATCATACTG	AAAAATCTCT	4980
CCAATCTCTA	AATTAGGACG	AGTCCTATCT	CGTCCATCTT	TCAAAGCTTC	CAGAGTACAG	5040
ATAAGATTTT	TTCCTACAAA	TCCTTTCGCT	CCTGTGATTA	AAATATTTTT	AATCATGCCC	5100
CCTCCTTATT	TTATATGCTG	TTTTAATAGT	TAACTCTCTC	GACAATACAT	GATACATTAT	5160
ATATCCTTGA	TAATTTTAAT	GTATCTTAAA	AGATTTTACA	TCTCTTCGTC	TGCTACCATA	5220
TCACGAATTG	CTGTCTGTAT	TTCATCTAAT	TCTAGCAACT	TTCTTTTAAC	TTGCTCTACA	5280
TCCATCAAAT	CGGTATTATT	ACTATTGAAT	TCTGTCAACA	AATTTCŢATT	CGTACTACCA	5340
TCTTTGAAAT	ACTTATCATA	GTTAAGATTA	CGATTATCAC	TAGGAACTCT	ATAAAAATCA	5400
CCCAAATCAA	TTGCATTTGC	GCACTCTTCG	TTAGTTAATA	GTGTTTCATA	CCTTTTTTCT	5460
CCGTGTCTAA	TACCTATAAT	CTTAATATCT	TGTTCTGAGG	CAAAAATTTC	TGATACAGCC	5520
PTAGCCAACA	CTTCAATCGT	ACATGCTGGT	GCTTTCTGAA	CTAGTATATC	TCCAGATTTC	5580
CCTTCTTCAA	ATGCAAATAA	AACCAAGTCT	ACTGCTTCTT	CCAATGTCAT	CACAAAACGT	5640
GTCATGCTAG	GTTCAGTAAT	TGTAAGAGCA	TTTCCTTGCT	TAATTTGCTC	AATCCAAAGA	5700

GGAACGACAG	ATCCACGGCT	ACACAGAACA	TTCCCATAGC	GAGTCACACA	TATCTTTGTA	5760
TGCTCAGGAT	TTACCGTCCT	GGACTTAGCA	ACAGCAATCT	TTTCCATCAT	AGCCTTGGAT	5820
GTTCCCATAG	CATTGACAGG	ATAAGCCGCC	TTATCTGTAG	AAAGACAGAT	AACTTGCTTT	5880
ACACCAGCTT	CGATAGCCGC	AGTGAGGACA	TTCTCCGTTC	CCAAAATGTT	AGTTTTTACC	5940
GCTTCTACAG	GGAAAAATTC	ACAAGAAGGT	ACTTGTTTAA	GAGCAGCAGC	GTGAAAAACA	6000
TAATCCACAC	CATGCATAGC	ATTTTTTACC	GAAGCTAAGT	CACGCACATC	TCCAAGGTAA	6060
AAACGGATTT	TCCCAGCCAC	TTCTGGTACT	TTTACCTGAA	ACTCATGACG	CATATCATCT	6120
TGTTTCTTT	CATCTCGCGA	AAATATACGA	ATCTCTGAGA	CATCTGTTTC	TAAAAAACGC	6180
TTGAGAACCG	CATTCCCAAA	TGAACCTGTC	CCTCCTGTAA	TTAGGAGAGT	TTTTCCTGTA	6240
AATTGTGACA	TATATTACAC	TTCTCCTTCT	AGTATGTCTG	CAATTTTCTT	ACAAGCCGTT	6300
CCATCTCCAT	ATGGATTTGA	AGCTTGACTC	ATTGCTTGAT	AAACTGAATC	ATTTTCTAAT	6360
AATTCTTTAA	AATGCCTATA	AATATTATTT	TCATCAGCAC	CTACAAGTTT	CAAAGTCCCT	6420
GCTTCAATTC	CCTCTGGACG	TTCAGTTGTA	TCTCTCATAA	CCAAAACAGG	TTTTCCTAAA	6480
CTTGGAGCCT	CTTCCTGAAT	ACCACCACTA	TCTGTTAAAA	ттааатааст	TCTTGATAAA	6540
Aaattgtgaa	AATCTAATAC	TTCTAAAGGT	TCGATCATCT	TGATACGTTC	ACAGCCACTT	6600
AGTTCTTCCT	CAGCAATTTG	GCGAACACGA	GGATTCATAT	GGATAGGATA	AATAGCCTTG	6660
ACATCTGAAT	ATTCTTCAAT	AATCCTTCTA	ATTGCTCTAA	ACATATGTCT	CATCGGTTCA	6720
CCAAGATTTT	CACGACGATG	AGCTGTAATT	AGAATAAACC	TGCTTTCTCC	TATCCATTCT	6780
AACTCAGGAT	GCGTATAGTC	CTCTTGAATT	GTAGTTTGTA	AAGCATCAAT	CGCCGTATTA	6840
CCTGTCACAA	ATATGCTCTC	TGGAGTTTTT	CCTTCTCTTA	AAAGATTATC	TTTTGAAAGT	6900
rgtgttggtg	TAAAATGATA	CTGAGCCAAA	ACCCCAACTG	CTTGACGATT	AAACTCTTCA	6960
ggatatggtg	AATAGATATC	GTAAGTGCGC	AAACCAGCTT	CAACATGACC	AATTGGAATC	7020
rgtaaataaa	AGGCCGCCAG	TGAACTAGCG	AAGGTCGTAC	TTGTATCCCC	ATGAACTAAC	7080
ACCAAATCAG	GTTTTTCTGA	СТСТАВАВТА	GCCTTCATTC	CTTCCAAAAT	GCCAATGGTC	7140
АСАТСАААТА	AAGTTTGTTT	ATCTTTCATA	ATAGACAAAT	CAAAATCGGG	AATAATCCCA	7200
AATGTGTCCA	AGACCTGATC	CAACATTTGA	CGGTGTTGGC	CCGTAACGCA	AACTAATGTT	7260
PCAATATTCT	TACGTGTTCT	TAACTCTTTG	ACCAAAGGAC	ACATCTTGAT	GGCTTCTGGA	7320
CGAGTTCCAA	ATACTACAAC	TACTTTTTTC	ATATATTTAC	ттастсстаа	CAAATAATGA	7380
አርርር ጥ ጥርጥጥል	ATTA A ATT A A	CATAACCCCT	AATCCATAAC	ACCACCTCAC	እ <i>ር</i> እጥ እ <i>ር</i> ጥጥር እ	7440

			352			
ACAAATAGCT	AATGTTACTA	AACTAAAATT	ATCAGACAAG	ATAAATATTC	СТААТСССАА	7500
AGTTTGGACA	ATCGAAGCTA	ATATAGTTGT	CATTGTAGTT	TCTTTCACTT	TATCAATAGC	7560
rcctaagaca	GGCCATCCGT	AAATCATAGA	ATAAAAACTA	GCAACAAAAG	CGGGTAATAA	7620
GTACTTAAGA	AAATCTGCTG	AAACGGTATA	TTTTTCACCA	CCAATTATAG	AAAGAATTTG	7680
atttgaaaag	AATAAAACTA	TCAAAACTCC	AAAGATAATA	GGAATAAACA	TAATCCGATT	7740
AATACTCTTA	ACCGATTGTA	TATCTTTAGT	ACGTATCATA	TGCGGATATA	AACTATTCGC	7800
PATAGGATTA	TACAATGATT	TTGCTGCTGA	AAGCAGTTGC	ATTGCTATCC	CCCAAAAGGC	7860
PATCTCTTGA	CTTTGTAAAT	ÄÄÄÄÄÄCCCGÄ	AATGACTGTC	GTAAAGACGC	CAAAAATAGT	7920
AGTTGCAAAA	TTGGATAAAA	AATAAATAGA	GGATTCCTTT	AAATCTTTAA	CCCAAACAGA	7980
CAGATAAGAA	AATGATAATT	TAATTCCATA	ATAATGAAGG	AATCTATAAG	AAACTACTGC	8040
AGCAACTAAA	TTCCCAATTC	CTTCCAATAT	AGGAATCCAT	AAAATAGAAG	AATCATCTTT	8100
ГАСТАСААТА	AATGTCAAAA	TTGTAATGAT	AGTTTTAGAA	ATAATATAAG	GAATTGCAAC	8160
IGCATGCATC	TTTTCAATTC	CACGAAATAA	AAAGTCAAAG	TATAAAATAT	TGGTCACTGT	8220
AGCTAACAAA	TAAAAAACTG	AAAAAAGAAT	ATTCTCTCTC	ATTATTGGGA	TTTGCCACAT	8280
CAATATGGTG	TAAATTAGAA	TCGAAATGAT	AGATAAAAAT	ATTTTTTCAA	CTAGAGTATC	8340
r ccaac tatc	CTTCCAATCT	TTGAGGGAGT	AGTACAAGCA	TTTACAATAT	TTTTTGTAGC	8400
IGATATCATG	AAACCAAAAT	CAATCACCAG	ттсаасатаа	GCTATTAACG	CTTTAACATA	8460
AATAACCATT	CCATACGCGT	CTAGCGAAAG	CACCCTTGTC	AAATACGGGA	GTGTTAATAA	8520
AGGAAATAGT	AATTTAACAA	TATTCAGAAT	ATAGAGAGAA	CTTGTATTTT	TTATAAATGA	8580
AATTCTATCA	ACTTTCACGA	ACTAGTCCTT	CCAAAAAAAG	ATCTAAATAG	TCCAAACTAC	8640
PTCTCGCTTT	CAACACCAAT	TCTGAAGGTA	TTGTTATCGG	TTTTAGATGA	AAAGTTTCAA	8700
STTTCTTTAC	AATACTATTA	ACACTTGAAT	CAAATAAAGA	TTCACAACGT	TGTAACTCTC	8760
CAATTGCTCC	ATAATAACGT	GCTGTTTTTT	CTGGATGGCA	TGCAATGGCA	ATCACAGATI	8820
PATTAAAACA	TGTTGCCACT	ACCCCAACAT	GTAATTTACA	AGTTAAAACC	ACATCTACCA	8880
TTTCAACAA	TGATGTCATT	TCTGCAGGAG	AATGATACTT	GAATTGAAAA	CAATCCTCAG	8940
ГТСТААСТАА	TTTTCTAAAT	TCCTGATAAT	AAGCATCTTC	ATAAGGTAGA	ATGGAATCCG	9000
AAGTTACTAC	AACATAATAG	TTAGGATTGT	TTTCTAGAAA	AAGACTAATT	GATTCCGCAA	9060
ATTTTTCAA G	AGCTTTTTTG	GAATGATTAT	AGTGAACAAG	AATTATCTTC	TTATCTTTAG	9120
CTTCTCTTTT	CAATTGACAC	AGCTGCTCTG	TTTTTTCTTC	TCTTAATTTA	CTTGAAATAA	9180
ТАААТСААА	GGTTTCATGC	ACTGGAGCCG	AAGGCGACAA	ATGCTTCAAA	GAATCAAATG	9240

9300	ATACCATAAT	AATTCTCTTT	CATGATTAAT	ATAAATTGAG	ACGAACTGTA	ATTCTCGATC
9360	GGCTTTTTAA	тастсстата	СААТАССТАА	GGCCCTGCAC	ATCGTTATTA	TCATCAAAGA
9420	TTATCACGAA	TTGGATTAAA	ATCGTTTAAA	AAAGGTAAAA	CCAAATTCCC	AATATGAAGC
9480	GCATCTGCTT	ATACAAAATA	CTCCCGGGAT	CCAAAATATC	ATGCCCTTCC	AACGTGCATT
9540	AAGAAATCTG	GTACATTTGA	ATTCTTTCAA	TTTTGGCGAT	AAAACTTTGT	GTTTTTTAGT
9600	ACAATCTCAC	TAAATCATAG	TAGATTCTAA	TCATATCCTT	AAAAGAAACT	atggattata
9660	AACATAATTT	TGCACCATGT	CATAATCCGT	TTACTTGAAC	ATCACCGTAA	CGTAAAGATA
9720	TATACATAAT	ATAATCAAAC	AATAAATATC	ACCTCCTAAA	TATTTTTCA	TTTTCACCAC
9780	AAATTACCGA	AATAGTTGAG	CACTAAAAGC	AACTACTTCT	ACATCTATTG	AGGACGATAA
9840	ATCGCCATCC	CTGAAATTTA	TTGAAAAGCT	TTTTACTTGT	ACTTTTGAGA	Aaaataaata
9900	AGTTCCAAAA	TAGTAACCAA	AACACCACCA	AACTCCAAAA	CCCAAAACAA	ACTAAATATT
9960	TAACAACCGT	AATTTATTAA	TAACCCCAAA	AGCCTACAGG	ACAAAAGAAG	PAATTCTTCC
10020	TTGATAGGAT	ATAGGAAAAA	TAACCATCCA	AATCACCAAC	ТТАТСААААА	CGCTGATGCT
10080	CAGTTACAGC	CTAGGCACAA	TGGAATGCTA	CATATTCATA	AATGTCATCC	AGTGCGTAGA
10140	GTATATTCTT	ACTTCCCCTA	CTCTGAAAAT	TCAGTCCCGA	GTTAGGCTGG	AGAAGCTACT
10200	TCAAGTCGAA	CCTATAGTAT	TAAGTATATA	AGGAATCAAA	AATGAAGAAA	PACAAAATCT
10260	TTAAAAATAC	ACAGTTACTA	TAATAGAAAT	CTAATACATT	CTAATAACAA	ACGGTGCCCC
10320	AAACCAACGC	GTGTATACTA	TAAAGATTGT	AAGTAATCCC	TTCTTCGAAA	AAGTACTCTT
10380	AAATTAGGTA	ATCATTATCA	TCCTGTTAGG	TTTTACGACT	AACACCTGGA	CAAGATTGAA
10440	CTGAATAAAA	GACAGCTTAT	TATAACTCGG	TAGTACGCTT	ACCCAAAAAA	AAACAACATT
10500	CTGAACTAGC	TCTATTATTC	TCCTAAATCA	GCATAAGTAC	ACACCAGGAA	CAAGGAGAAC
10560	TTTTAGAATC	GCTAGTACTG	CGCTCTAACT	AGCTATTCGC	TATGCTGAAT	rcctctgaa
10620	TGTACAAAAT	CTACCCGCAT	TGTTAAAATC	AGCCCACTCC	CTAGAAATAA	AGTTATTACC
10680	TTCCATCACT	TAATGTACCT	TTCTGAATGA	AATTTTGTAC	TTTTCCTGAT	PTTCTCTTCA
10740	AAATATATGA	САААТТАТАА	AAACAAAATC	CAGAATAACA	AAATAGCCTA	TAAAAAAT
10800	TTGTTTGAAA	CACAGCAGAG	ACTAGGGCTC	TATAGAAGTT	TCTTCATTAT	ATGAAATAAT
10860	TCAGATACCA	TAAGATAAAA	САТАААААА	TTAATCCAAA	TCATTGAAAA	CCCATATAC
10920	GAAAAATA AT	CCAGTAATTT	TAAAATAAAA	TAACTTTTTG	TCATATATAC	PACAGAAAAA
10980	AACCATTATT	GATATAAGAA	AACATAATTA	ATATAGACGG	ACCCATATAA	PAGAAAGCAA

				354			
С	CAATTATCG	AGAGTCCAGA	ACAAGTAACA	GAAAGCAAAT	ATAAAACTTA	ATGTCACTAG	1104
Т	GTCACTCTA	CAAATATACT	TTGTCTGCAT	CTATATCTCC	TTTATTACAC	ACATTTCTTG	1110
A	TAACGATTC	AATAATTTAC	TAGCTTGATA	ACAAATATCA	TAGAGTCCAT	CTGTCATACT	1116
G	TTATTTATT	TCAAAACGAT	TGCATTCCTC	AGATGTTAAA	GACAGTACTT	TATCTTTCCA	1122
T.	AGCAACACA	GACTCTTCGT	TGATAGGTAA	GTAACTAATG	TTTTTGGTCA	CATCTACTTC	1128
T	TGCGTCACT	GTATCTGACG	ATAAAATTTG	TAATCCCGAT	GCCTGAGCCT	CTACTAGAGA	1134
A.	ACAGGCAAC	CCCTCATATT	TAGACGGAAG	САААААААСА	TCCATCGCAG	ATAATAAATC	1140
A	GAAATATCA	GTCCTTCTCC	CTAAAAATAG	CACATATGGG	GTCAGATTTA	GTTCTAAAGC	1146
T'	TTCTGTTTT	AATTTCTGCT	CATCCTCACC	ATTACCAACT	AGGAGTAAAA	TAACATTTGG	1152
T	PTGATTAAA	ATGAGTTCTT	TTAAAACGTT	AAATAAATAA	CTTTGGTTTT	TTTGATCTGA	1158
T	AGGCGAGCT	ATATTTCCTA	ATACGAACTT	ATTTGACACA	TCTAATTCTC	TACGACATTT	1164
T	PCTCTAACA	TCTGACAAAA	ATTGATACTT	TTTCAAATCA	ATTGCATTAA	AAATAATTTC	1170
A	ATTTTTCCG	TCTTTATACG	CTTTCTCTCC	ATATAACCAC	TTAGCCGAAT	CTTCCCCACA	1176
T	GCAAACCAA	TGAGTTGCTA	AGATTTTTAC	CAAAATTGTT	ACTAATTTAC	GCAATACTTT	1182
T'	PGAAAACT G	TTTTCTGTTA	CATAAGCCAT	ATGACTATGA	ATAATTCTAA	TTTTACAACC	1188
A	ATTATTTA	GATAAGATCA	GACCAATTGC	AGATTTATAG	CCATGGCAAT	GAACTATATC	1194
A'	PAATCTCCT	TTCTTTATTA	TTCTAGCAAG	AGAGAGAAAC	TGATGTAGAG	GCTTTTTCCT	1200
T	AATAGAGGC	ACATGATAAA	CCTTTGCACC	CAATTCTTTC	ATTTTATCCT	CTAAAAATCC	1206
T	IGTTCTTT T	CCAGGCACAA	TAAAATCAAA	TTGAATTTTT	TTTCTATCAA	TGTGAGAATA	12120
A7	PAGTTGAAT	AGAAAACTTT	CTACTCCACC	ACTATCTAGT	GTTGTAAATA	GATGTAATAC	12180
T	ГТААТСАТТ	CTTCTTCCTT	AAGCTTAAGA	TTCGCTTCTC	TAATTCTATT	TCTGTTTTTT	12240
G	TTTTCTAA	ACTAATTCTG	TCCATGAAGT	TATCACAATT	CTTAATTAGC	TGTTTCCTGT	12300
C	\AGGTTTTG	AATATACAAA	GCCAAACAAT	CTTTTTCCGA	TTCATCCTTC	ATAGGTAAAA	12360
cc	BAAACCAAA	ACCATTCTCT	ATTGACACTT	TTTCCATATA	AGTATCTTCA	САААСТАААА	12420
T	AGGTTTATA	CAACAATGCA	GCAAAGTAGA	GTTTATTAGA	CAAAGCATAG	TCTAGTAAGG	12480
G	GTGTGATT	CCCGTATAAA	ттсалалсал	CATCTGTATT	СТТАТААААА	GACATGGTAT	12540
CI	TTAGGCTG	GAATGTGTCC	ACCAAGTTAA	CATTGCTGAT	ATTTTTTTCT	TGACAAAATT	12600
CC	CTTAATTC	TCCTGCATTA	GTACCTATAA	AATTCAACTG	AAATCGACTG	TCATTTGCAA	12660
AA	AAATCGAT	TATTTTTTA	TTTTGTTCTT	GAAAACGAAT	TAAACCAATG	TAGGAAAGTT	12720
GA	ATTGGAAA	CGTACTATTA	TTTTTTAACT	GCTTTACCTC	GTTTAATTCT	ATCATATTGG	12780

GTAGGTTATG	GGTAGTAAAA	TACTCTCCCA	TTGGTAAAAA	AAATTTATAG	CCGTCTGAAG	12840
AAACGATATT	CATTAAAGAA	TTTTTCACCA	ATTGTTTCTG	AACCAAACGA	TAAACCAAAA	12900
ATTTTTCATA	ACTGTAATCA	CGAATATCAT	AAATATATCT	ATTTTTAAAT	GAAAAGAGAA	12960
GAAAATCTAC	TAAAATGAAA	GACACAATAC	TATGTAACGG	CAATATCATA	TCATAATCAT	13020
TTTCTTTTAG	CTTCTTTTTA	ATTTCTTTTC	TGAATTTTAC	ATAACCTAAT	ATCTTACTTA	13080
ATTTTCCTTT	ACCAGAAAAA	GAAATACGAT	AGTAGTTTTG	TTTTGTAATA	ATCTCGTTAA	13140
TATTCTTATC	ССААТАТАТА	ACATCGTAAC	TAATAGACAG	TTTCTTCAAT	AATTCTTTAT	13200
AAAAATTGAA	GTAAGGAGTT	AGATATATAT	TATCAGATAG	TATAAACAGT	ACTCTCATTA	13260
AATTATTCTT	TCTTACTTTC	CCTCTCTAAA	CATGTCTCCA	GTTCGAGCAT	AAACTGCTCT	13320
TTTGAAAAGT	GATTTTCATA	GTAACAACGA	GCTTTCTTTC	CTAACTCTCT	TTGTCTCTTA	(13380
ATAGATAACA	TACTAAATTT	ACAAATATTT	TTTGCCAATT	GTTTTACATC	TCGTTCGGGA	13440
CTAACATATC	CACAATTTGC	TTCTTCTACA	ATTATTTTAG	CATCTCCTGA	AATTGCACCT	13500
ATAATTGGTT	TGCCTGCCGC	CATATAAGAk	TGTACCTTCC	CAGGTATAGT	ACGAGAAACT	13560
ATCGAGTCTC	CTATTAAAGA	AACTAACATA	GCATCTGATT	TTTTATAGAA	GGATGGCATT	13620
TCCTCCAAAG	AACGTCTTCC	ATAGAAGGAA	ATATTCTTTA	ACTCCAATTC	ATGAGCTAAT	13680
GCTTTCATGC	TTAACAATTC	CGTACCATCT	CCAACAAAAT	GAAAATGAAT	TTTCTTGGGT	13740
AAATTGGTAT	TCTTCTCTAT	CAAACTGGCA	GCTTTCAAAA	TAGTTTCCAA	ATTTTGTGCT	13800
TTGCCAATAT	TACCAGCAAA	AGTTAGGTCA	ACACTTTCTT	TATTAACTAT	AGATTCATCA	13860
GGGATAAAAA	GATCTTCTGC	ATATTGTGGC	AAATATGTAA	TCTTTTGTTC	GGATATGTCA	13920
AATTGCTTCA	СААААТААТТ	TTTAAATGAT	GGACTAGTGA	CAAATATATA	ATCACTAGCT	13980
CGGTAAACTT	TTTTTGAGAT	AAATTTAAAC	AGCTTGAAAA	TCAAGCCATC	TTGTTTCACT	14040
CCACCTACGG	TTAAACTATC	TGGCCAAACA	TCCATACAAT	ATAGAAACAT	CGGTTTCTTA	14100
TATTTTTTT	TATAAGCCAT	ACCAGCCCAT	GCCATCATAA	CTGGAGACAA	TTGGTTAACG	14160
AATACACAGT	CAAAATTCGA	TCCATCTTTC	GTTTTATACC	TCCCCAATAA	AACTCCTAAA	14220
GTAGAACTAA	TTGCAAAGCT	AAAATAATTC	AACAATCGAA	ATACAACACT	ТТТТТТТСТА	14280
GGGATTGTAT	AAGAACGATA	TATCGTAACA	CCTTCTATAA	TCTCACGTCT	TTTTTTATTA	14340
TGACGATAAT	CTGCATATAT	CTTCCCTTCA	GGGTAATTAG	GAATCCCAGC	CAAAACAGAG	14400
ACTTCATGCC	CTTTTCGAAC	TAAATCTTCA	CAAATATCTG	ACAACCTGAA	TGGTTCTGGC	14460
TTATAATGTT	GGCAAACAAA	TAGTATTTTC	ATTGTCCAAT	TTAACTTTCT	TTCTTACCAC	14520

356 TACCCTCTAC AATACCTTTT CGTTTCAGTA CGTAAGGTAT TGTCTTAACT ATACATCTAA 14580 TATCCATTAT CAAAGACAGA TGTTTAACAT AGTAGCCATC TAACTCCGTC TTCATCTCAA 14640 CAGACAAAGT ATCACGCCCG TTAATTTGTG CCCATCCAGT TAACCCTGGC AAGATATCAT 14700 TTGCTCCATA CTTATCTCTC TCTGCAATCA AATCTAGTTC ATTTATACCC GCTGGTCTAG 14760 GACCTACAAT ACTCATATTA CCAACAAGAA TATTAAACAA TTGTGGTAGT TCATCCAAAG 14820 ATGTTTTCG CAAGAAAGCC CCTACTTTTG TAATCYATTG CTCTGGATTA TATAAGTTTC 14880 GAGGCGCCAC ATTTTTAGGT GCATCTATTT TCATAGACCT AAATTTCAAA ATATAGAAGT 14940 ATTCTTTATG AATACCAAAG CGTTTTTGCT TAAATATAAC CGGACCTTCT GAATCAAGTT 15000 TAATCGCAAT TGCAATTATC ATAAAAACCG GACACAATAT TATTATCCCT ATTAAAGATA 15060 ATAATATATC ACCTAATCGT TTTATTATAC CGTACATAAA CAACCTCCAA CTATAAATTC 15120 TATTTCCATT TTTCATTCTA TTTCCATTTG ACAAATTAAA TCAGGCAGTA CATGCAACTA 15180 CAGAAACTCA ATATATATT GGTCACTCAA TGATTTTCAG AAATATAATT CTTTTATCCT 15240 CTACGTCAGA TAAAACTTTT CTCCATCTAA ACAAAATTTA TTTGTTTCAG TAATATATGA 15300 GTTCTCAATA ATGAATTAGA AGGTCCAGTT CAATTATTCT TCCAAATAGA CCGAATATTA 15360 TTTGAAGACA TATCGGTTTC TGAAATTGCA ATCAGTACAT AAGCTAATAA ACTGATAAGT 15420 ATGCTCTGTA AGAATGCCAG AGTTATATTG TAGTCCCCTT CCATACTATA TTCATTTTAT 15480 TTTTTACCAT AATTTCCATA GGAACCGTAA ACTCCATACT TATTAACCGA GATATCCAAT 15540 TTATTTAAAA CAACTCCTAG GAACAGTTTC CCTGTTTGTT TTAATTGTTG TTTCGCTTTT 15600 TGGATATCAC GTTTATTCGC CTCACCTGTT GCTGTTACCA AGATGGACGC ATCACACTTT 15660 TGAGTGATAA TTGCCGCATC AATAACAATT CCAATAGGCG GTGTATCAAT AATGATATAA 15720 TCAAAATATT TACGCAATGT TTCAATCATA TCATTAAAAT TTTTACTTTG TAACAAGGCT 15780 GTAGGGTTTG GTGATACAGA TCCCGATTGA ACTACAAATA AATTTTCAAT ATTTGTATCA 15840 CATAAACCGT GAGATAAATC AGCTGTCCCA GATAAAAATT CTGTTAGCCC TGTAATTTTT 15900 TCACGAGATT TAAAAACTCC TAACATAACT GAATTTCGAG TATCGCCATC GATCAAAAGA 15960 GTTTTATAGC CTGCACGCGC AAACGACCAT GCTATATTTA TGGAAGTAGT TGTTTTTCCT 16020 TCCCCAGGGT TAACAGAAGT AACGGAAATT ACTTTTAGTT TATCTCCGCT CAACTGTATA 16080 16140 GCTATTTCTA ATGTCGGCAT CCTTCTCTCC TATTTCAACT TACCCAAGTT TGGCACAACT 16200 CCCAAAAGTG TCATCTGCAA TGTATTTTCG ATATCTTCCG GACGTTTCAC ACGAGTATCC 16260 AAAAGTTCAA GATGAAGAAC TATAACACTA GTTCCAATCA CCCCTGCCAA AAAACCAATT 16320

AGTGTATTGC	GTTTAATATT	TGGCGAAGAC	GGGGATATCG	CCGGCCTTGC	CTCCTCCAGT	16380
GTTGTCACGT	CAGAAACACG	AGTAATACTG	ATAATTTTTT	GAGCAGCTAC	TTCTCTCAAA	16440
GAGTTAGCGA	TACGGCTTGC	CTCTTCAGGA	ACTCGATCAT	TAACTGAAAT	AGAGACAATA	16500
CGGGTATCAA	CTGGTACTGT	CACTTTAATT	TTATTAGCCA	AACCTTTTGG	CGTCAAATCT	16560
AGTTTCAAAT	CAGAAACAAC	TTCCTCCAAA	ACATCCTGCG	AAAGGATAAT	CTCACGGTAG	16620
TCTTTTACCA	GATAAGTTCC	TGCCTGCAAA	TCCTGATTTG	TCAACCCCGG	CTTGTCTCCT	16680
TGATTGCGAT	TCACTACGTA	AATTCGCGTG	GTACTCGTAT	ATTCTGGCTT	AACAATAAAA	16740
GTGCTATATG	CAAAAGCCCC	CGCACCTGTC	ACAAGTGCCA	CTATTAAAAT	CATTAGCTTG	16800
CGTTTCCACA	AGCTTTTAAC	TAATTGAAAT	ACATCGATTT	CTATCGTATT	TTGTTCTTTC	16860
ATCATTTCTC	CTAAATTAGT	TGATCCATTA	CAATTTTTCG	AGGATTGTCT	ATAAAAAGTT	16920
CCTGAGCCTT	CGCTTCTCCG	TATTTTTGGG	TAACAAGGTC	ATATGCTTCT	GCCATATGAG	16980
GAGGTCTACC	GTCTAGATTG	TGCATATCAC	TTGCAATGAC	ATGAACCAAA	TCCTGCTCTA	17040
AAAAATACTG	AGCTCTTTTT	TTCATGAATT	TATAACGTTC	GCCAAAAAGT	TTGGGTTTGA	17100
GGACATGTGA	ACTATTTACT	TGCGTGTAAC	AGCCCATATC	GATCAGTTCT	CGAACGCGTT	17160
TTTCATTATT	TTCAAGAGCA	TCATAGCGCT	CAATGTGGGC	AATGACTGGA	GTAATTCCCA	17220
ACATCAAGAT	CTTGCTCAAG	GCGCTATGAA	TATCGCGATA	AGGAGTGTTC	АТАСТАААСТ	17280
CTATCAAGGC	ATAACGACTA	TCATTGAGGG	TCGGAATCCG	CTTTTTTTCC	AGCTTATCCA	17340
GAACATCTGG	TGTGTAATAA	ATTTCAGCCC	CGTAAGCAAT	GACCAAGTCA	CTCGCCACTT	17400
CCTTAGCTAT	TTCCCGAACC	TGAAGAAAGT	TTTCTGCTAT	CTTCTCTTCC	GGAGTTTCAA	17460
ACATGCCCTT	GCGACGGTGA	GAGGTAGAAA	CAATGGTTCG	CACCCCCTGT	CTGTAGGATT	17520
CTGCCAAGAG	AGCCTTGCTT	TCCTCTCTTG	ACTTGGGACC	GTCATCTACA	TCAAAAACGA	17580
TATGCGAATG	GATGTCTATC	ATTTCATCTA	CCCTCCATCA	CATCCTGTAT	AGCTGCTTTA	17640
ACTACAGCTA	AACTACTATC	ATCTATTTCC	ATCACATAGA	GGTTACTGTC	TGGCATTGCA	17700
TAAGAAGGAA	GATCCATCCG	ACCTGTCCCT	TTTAAATCTT	GAGAATTTAC	ТТТАТААТТС	17760
CCTCCACTTT	CTAACTGAGC	ATTGACCAAA	TTTATCATGG	TCTCAAGTGG	CATATTTGTT	17820
TGGATAGAAT	CTTGCAAGCT	ATTAATGATC	GTACTATAAT	TTTTCAGCAC	TTCGGTTGAC	17880
GTTAATTTTT	GAAGGATAGC	CACAATCACC	TTTTGTTGAT	GGCGCCCGCG	GTCACGATCG	17940
CCATCTGCTA	GGGAGTAGCG	CTCACGAACA	AAACCGAGAG	CCTGTTCTGA	ATCAAGATGA	18000
ACATTGCCTG	CAGGGTAATA	CTTTCCATTC	GTATGGGCAG	TAAATTCTTG	АТСАТТАТАА	18060

			358					
ACATCAATTC	CACCCAACAA	ATCAATCAAT	TTCAAAAACG	AAGTGAAGTT	CAATCGCACA	18120		
TAGTAATTGA	TATCCACTCC	ATAGAGATTT	TCTAAGGTGT	GAATGGACGA	ATCAACTCCA	18180		
TAAATGCCCG	CATGAGTCAA	TTTATCTTTT	TGATTATTTC	CACCATCTGC	GATTGGTACA	18240		
TAGGCATCAC	GTGGCGTTGT	GGTCAAGAGG	ATTTTCTTGG	TATCTCGATT	GACAGTCATC	18300		
AGGATGTTGA	CATCTGATCG	CGACACCGAA	CTAATAGGAC	CATAGGTGTC	AATTCCACTA	18360		
ACATAGATAT	TGAAAGACTG	ACTCTTAGAC	GTCTTAGGAG	CTTCTACTTT	TTTAGTGAAT	18420		
CCCTTAGTAT	AAATCTTTTT	TATCTTCGAT	GCGTAGTCTG	GATACTCTGA	CTCGATGATG	18480		
TTTTCAAAGA	CACTATTTAG	GACAATGGCC	TTAGTCTCCC	CTGCAATCAA	ACTCTTGTAA	18540		
GCTGCCAAGT	AAGACGAACT	CTGGTTGACC	GTCAAATCGG	TATTCTGACT	TGACTTGATA	18600		
TCAGCTAGTA	ATTTCTGAAT	ATTTTCATTA	TTAGTCCCAG	TCGGTGCTGT	CACACTCGTC	18660		
AGTTGCGTAA	CATTTTCGAT	CTCACTATCT	GCTAAAACAG	CGACACTGAT	TGAATATTCT	18720		
GAGTAATTAG	AAGTCGCATT	TAAACGATTG	GTCAGTCCAA	CAAACTGCTG	TACTGCAAAG	18780		
AGCGACACAG	AGCTGACAAG	GATAGAGAAC	ACCAACAGAA	AAATAGTAAA	CTTTTCAGCT	18840		
TTTTTATAGA	TAATCAAGAG	TAGCCCTACC	AAGGCAACTA	GTAGGACTAA	CGCAGTTACC	18900		
ACTAGATTAA	GATATCTAAA	AGCAAGGATA	TTGTACTTAA	AGATTAAGAA	СААТААААА	18960		
CAAACTAACA	TAAATAAAT	AGTCAGCAAA	ACTATATTAA	CACTTCGCTT	CACTTTCTGT	19020		
GAACGTGATT	TTTTAAAACG	TCTACTCATG	ATTAATACCT	ATACATTGAA	CATTATACGA	19080		
ттататсаст	TTTTTACGGT	AATGTCTACA	CCTTTATTTT	TACTATCTGC	ATCTTTAAGT	19140		
ATCTTAGTAG	ACTTCCCGCG	AAACAAAAAT	ATAGTAAAAT	GAAATAAGAA	CAGAACAAAT	19200		
CGTTCAGGAC	AGTCAAATCG	ATTTCTAACA	ATGTTTTAGA	AGCAGAGGTG		19250		
(2) INFORMATION FOR SEQ ID NO: 36:								

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 21706 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

AAAGTTGAAA	GACTGCTAGC	TGTTTTTGAT	ACCAATCGTT	TCCAACTACA	GAGCAAACAG	60
TATACAAAGT	TTGTTTTTGG	ATGTAAGCTT	CTTGATGGAC	AATTCCAAGA	AAATCAAGAA	120
ATTGCTGACC	TTCAATTTTT	TGCCATTGAC	CAACTGCCGA	ACTTATCTGA	AAAACGCATT	180
ACCAAGGAGC	AAATAGAGCT	TCTTTGGCAG	GTTTATCAAG	GTCATAGGGG	GCAATATCTT	240

GACTAAGAAG	ATGATTATCG	ТАТТТСТААА	TCCATTTTTA	ACAACTAGCA	TGGTATAATA	300
ATATGCAGGA	AAATTTTGAA	TTATGAGGAA	GACTAGATGA	ATTTATGGGA	TATTTTCTTT	360
ACGACTCAGG	CAACCGAGCC	GCCCAAATTT	GACCTTTTTT	GGTATGTTAG	CCTATTTACG	420
CTCTTAGCCT	TAACCTTTTA	TACAGCCCAT	CGCTATCGTG	AAAAGAAGGT	TTACCAACGA	480
TTTTTCCAAA	TCTTGCAGAC	TGTTCAGTTA	ATCCTTCTTT	ATGGTTGGTA	CTGGGTCAAT	540
CATATGCCAC	TGTCAGAAAG	CCTACCCTTT	TACCATTGCC	GTATGGCTAT	GTTTGTGGTA	600
CTCTTGCTTC	CTGGTCAATC	САААТАТААА	CAATACTTTG	CATTATTGGG	AACATTTGGG	660
ACATTAGCAG	CCTTTGTTTA	TCCAGTGCCA	GATGCTTACC	CTTTTCCACA	TATCACCATT	720
CTATCCTTTA	TCTTTGGTCA	TTTAGCACTC	TTGGGGAACT	CTCTAGTTTA	TCTATTGAGA	780
CAGTATAATG	CGCGATTGCT	GGATGTGAAG	GGAATTTTTC	TCATGACCTT	TGCCCTAAAT	840
GCCTTGATTT	TTGTGGTCAA	TTTGGTGACA	GGTGGCGATT	ACGGATTTTT	GACAAAACCG	900
CCATTGGTTG	GGGATCACGG	TCTAGTAGCT	AATTATTTAC	TTGTTTCAAT	TGTGCTGGTA	960
GCTACTATCA	GTTTGACTAA	GAAAATCTTA	GAATTCTTTT	TAGCTCAAGA	AGCAGAAAAA	1020
ATGATTGCAA	AGGAAGCTTA	ACACAGAGCT	TTCTTTTTTG	CTCTTAGAGA	GTTTTTACAA	1080
GCAGCTTATA	AAATAAGAAT	TTCTGAATAG	ACAAACTCAA	AAAATGGCTG	GGAAATTTAG	1140
GAAAAAAGCA	AGCACGATTA	AATTTTTTGT	GTTATAATAT	TTTGTGAATA	GCTATGCCTA	1200
TGTTTAGCTA	TGGAATAATA	CGAAGTGCGA	AACTTGGAAG	ATAGAGAGGA	AGCGATGTAA	1260
TGGCTAGAGA	AGGCTTTTTT	ACAGGTCTAG	ATATTGGAAC	AAGCTCTGTC	AAGGTGCTTG	1320
TGGCCGAGCA	GAGAAATGGT	GAATTAAATG	TAATTGGCGT	GAGTAATGCC	AAAAGTAAAG	1380
GTGTAAAGGA	TGGAATTATT	GTTGATATTG	ATGCAGCAGC	AACTGCTATC	AAGTCAGCCA	1440
TTTCCCAAGC	GGAAGAAAAG	GCAGGCATTT	CGATTAAATC	AGTGAATGTC	GGCTTGCCTG	1500
GTAATCTTTT	GCAGGTAGAA	CCAACTCAGG	GGATGATTCC	AGTAACATCT	GATACTAAGG	1560
AAATTACGGA	TCAAGATGTT	GAAAATGTTG	TCAAATCAGC	TTTGACAAAG	AGTATGACAC	1620
CTGACCGTGA	AGTCATTACC	TTTATTCCTG	AAGAATTTAT	TGTGGATGGT	TTCCAAGGGA	1680
TTCGTGACCC	ACGTGGCATG	ATGGGGGTTC	GCCTTGAAAT	GCGTGGTTTG	CTTTATACAG	1740
GACCTCGTAC	TATCTTGCAC	AATTTGCGTA	AGACGGTTGA	GCGTGCAGGT	GTTCAGGTTG	1800
AAAATGTTAT	CATTTCACCA	CTAGCAATGG	TTCAGTCTGT	TTTGAACGAA	GGGGAACGTG	1860
AATTTGGTGC	TACAGTGATT	GATATGGGGG	CAGGTCAAAC	GACTGTCGCT	ACAATCCGTA	1920
ATCAAGAACT	CCAGTTCACA	CATATTCTCC	AAGAAGGTGG	AGATTATGTA	ACTAAAGATA	1980

				360			
	TCTCCAAGGT	TTTGAAAACC	TCTCGCAAAT	TAGCGGAAGG	CTTGAAACTG	AATTACGGGG	2040
	AAGCCTATCC	GCCTCTTGCA	AGCAAAGAAA	CCTTCCAAGT	AGAGGTTATT	GGAGAAGTAG	2100
	AAGCAGTCGA	AGTGACGGAA	GCCTACTTGT	CAGAAATTAT	TTCTGCACGA	ATCAAGCACA	2160
	TCCTTGAACA	AATCAAGCAA	GAATTAGATA	GAAGGCGTCT	ATTGGACCTC	CCTGGTGGTA	2220
	TTGTCTTAAT	CGGTGGGAAT	GCCATTTTAC	CAGGTATGGT	TGAGCTTGCT	CAGGAAGTCT	2280
	TTGGCGTCCG	TGTCAAGCTT	TATGTTCCAA	ATCAAGTTGG	TATCCGTAAT	CCAGCCTTTG	2340
	CGCATGTGAT	TAGTTTATCA	GAATTTGCGG	GTCAATTAAC	AGAAGTTAAT	CTTTTGGCTC	2400
	AGGGAGCGAT	AAAAGGTGAG	AATGACTTAA	GTCATCAGCC	AATTAGTTTT	GGTGGGATGC	2460
	TGCAAAAAAC	AGCTCAGTTT	GTACAATCAA	CGCCTGTTCA	ACCAGCTCCT	GCTCCAGAAG	2520
	TAGAGCCGGT	GGCGCCTACA	GAACCAATGG	CGGATTTCCA	ACAAGCTTCA	СААААТАААС	2580
	CGAAATTAGC	AGATCGTTTC	CGTGGATTGA	TCGGAAGCAT	GTTTGACGAA	TAAAGAGGAA	2640
	ATTAAATTA	TGACATTTTC	ATTTGATACA	GCTGCTGCTC	AAGGGGCAGT	GATTAAAGTA	2700
	ATTGGTGTCG	GTGGAGGTGG	TGGCAATGCC	ATCAACCGTA	TGGTCGACGA	AGGTGTTACA	2760
	GCCGTAGAAT	TTATCGCAGC	AAACACAGAT	GTACAAGCAT	TGAGTAGTAC	ÄAAAGCTGAG	2820
	ACTGTTATTC	AGTTGGGACC	TAAATTGACT	CGTGGTTTGG	GTGCAGGAGG	TCAACCTGAG	2880
	GTTGGTCGTA	AAGCCGCTGA	AGAAAGCGAA	GAAACACTGA	CGGAAGCTAT	TAGTGGTGCC	2940
	GATATGGTCT	TCATCACTGC	TGGTATGGGA	GGAGGCTCTG	GAACTGGAGC	TGCTCCTGTT	3000
	ATTGCTCGTA	TCGCCAAAGA	TTTAGGTGCG	CTTACAGTTG	GTGTTGTAAC	ACGTCCCTTT	3060
,	GGTTTTGAAG	GAAGTAAGCG	TGGACAATTT	GCTGTAGAAG	GAATCAATCA	ACTTCGTGAG	3120
,	CATGTAGACA	CTCTATTGAT	TATCTCAAAC	AACAATTTGC	TTGAAATTGT	TGATAAGAA	3180
	ACACCGCTTT	TGGAGGCTCT	TAGCGAAGCG	GATAACGTTC	TTCGTCAAGG	TGTTCAAGGG	3240
	ATTACCGATT	TGATTACCAA	TCCAGGATTG	ATTAACCTTG	ACTTTGCCGA	TGTGAAAACG	3300
(GTAATGGCAA	ACAAAGGGAA	TGCTCTTATG	GGTATTGGTA	TCGGTAGTGG	AGAAGAACGT	3360
(GTGGTAGAAG	CGGCACGTAA	GGCAATCTAT	TCACCACTTC	TTGAAACAAC	TATTGACGGT	3420
(GCTGAGGATG	TTATCGTCAA	CGTTACTGGT	GGTCTTGACT	TAACCTTGAT	TGAGGCAGAA	3480
(GAGGCTTCAC	AAATTGTGAA	CCAGGCAGCA	GGTCAAGGAG	TGAACATCTG	GCTCGGTACT	3540
•	PCAATTGATG	AAAGTATGCG	TGATGAAATT	CGTGTAACAG	TTGTTGCAAC	GGGTGTTCGT	3600
(CAAGACCGCG	TAGAAAAGGT	TGTGGCTCCA	CAAGCTAGAT	CTGCTACTAA	CTACCGTGAG	3660
i	ACAGTGAAAC	CAGCTCATTC	ACATGGCTTT	GATCGTCATT	TTGATATGGC	AGAAACAGTT	3720
(GAATTGCCAA	AACAAAATCC	ACGTCGTTTG	GAACCAACTC	AGGCATCTGC	TTTTGGTGAT	3780

IGGGATCITC	GCCGTGAATC	GATTGTTCGT	ACAACAGATT	CAGTCGTTTC	TCCAGTCGAG	3840
CGCTTTGAAG	CCCCAATTTC	ACAAGATGAA	GATGAATTGG	ATACACCTCC	ATTTTTCAAA	3900
aatcgttaag	TAAATGAATG	TAAAAGAAAA	TACAGAACTT	GTTTTTCGAG	AAGTTGCAGA	3960
GCTAGTCTG	AGTGCTCATC	GAGAGAGTGG	TTCGGTCTCT	GTCATTGCAG	TTACCAAGTA	4020
rgtagatgta	CCGACAGCGG	AAGCCTTGCT	TCCGCTAGGT	GTCCATCATA	TCGGTGAAAA	4080
PCGTGTAGAT	AAGTTTCTGG	AAAAATATGA	AGCTTTAAAA	GATCGAGATG	TGACTTGGCA	4140
ITTGATTGGT	ACCTTGCAAA	GACGTAAGGT	GAAAGATGTC	ATTCAATACG	TTGATTATTT	4200
CCATGCATTG	GACTCAGTAA	AGCTAGCAGG	GGAAATTCAA	AAAAGAAGTG	ACCGAGTCAT	4260
CAAGTGTTTC	CTTCAAGTAA	ATATTTCTAA	AGAAGAAAGC	AAACACGGTT	TTTCGAGAGA	4320
GGAACTGCTG	GAAATCTTGC	CAGAGTTAGC	CAÇACTAGAT	AAGATTGAAT	ATGTTGGTTT	4380
AATGACGAT G	GCACCTTTTG	AGGCTAGCAG	TGAGCAGTTG	AAAGAGATTT	TCAAGGCGGC	4440
CCAAGATTTA	CAAAGAGAAA	TTCAAGAGAA	ACAAATTCCA	AATATGCCTA	TGACCGAGTT	4500
AAGTATGGGA	ATGAGTCGTG	ATTATAAAGA	AGCGATTCAA	TTCGGTTCCA	CTTTTGTTCG	4560
PATAGGTACA	TCATTTTTA	AGTAGGAGAG	AACCATGTCT	TTAAAAGATA	GATTCGATAG	4620
Attatagat	TATTTTACGG	AGGATGAGGA	TTCAAGTCTC	CCTTATGAAA	AAAGAGATGA	4680
CCTGTGTTT	ACTTCAGTAA	ATTCTTCACA	GGAACCGGCT	CTCCCAATGA	ATCAACCTTC	4740
ACAGTCGGCT	GGCACAAAAG	AGAACAATAT	CACCAGACTT	CATGCAAGAC	AACAGGAATT	4800
GCAAATCAG	AGTCAGCGTG	CAACGGATAA	GGTCATTATA	GATGTTCGTT	ATCCTAGAAA	4860
ATATGAGGAT	GCAACAGAAA	TTGTTGATTT	ATTGGCAGGA	AACGAAAGTA	TCTTGATTGA	4920
PTTTCAGTAT	ATGACAGAGG	TGCAGGCTCG	TCGTTGTTTG	GACTATTTGG	ATGGAGCTTG	4980
CATGTTTTA	GCTGGAAATT	TGAAAAAGGT	AGCTTCTACC	ATGTATTTGT	TGACACCAGT	5040
GAACGTTATT	GTAAATGTTG	AAGATATCCG	TTTACCAGAT	GAAGATCAAC	AGGGTGAGTT	5100
GGTTTTGAT	ATGAAGCGAA	ATAGAGTACG	ATAATGATTT	TTTTAATTCG	TATGATTTAT	5160
ATGCAGTGG	ATATTTACTC	CCTGATTTTG	GTAGCCTTCG	CTGTCATGTC	TTGGTTTCCA	5220
GTGCCTACG	AATCCAGTTT	AGGTCGTTGG	ATTGTAGCGT	TGGTGAAACC	AGTGCTTGCT	5280
CCTTGCAAC	GCCTGCCTTT	ACAGATAGCG	GGTCTTGATT	TATCTGTTTG	GGTTGCGATT	5340
STTTTGGTTC	GATTTTTAGG	AGAAAACCTA	GTGCGTTTTC	TGGCGATGAT	AGGATGAATA	5400
AGGGATTTA	TCAGCATTTC	TCCATAGAAG	ATCGTCCATT	TCTTGACAAG	GGAATGGAAT	5460
GATAAAGAA	GGTAGAAGAT	АССТАТССТС	Եսիփախարար » Ե	ጥርርጥተጥተልጥር	ል አጥርርጥር ልጥር	5520

			362			
AGGAGAAGCT	ATTAAAGATT	TTGGCCAAAA	CCTATGGTCT	TGCTTGTAGC	AGTAGTGGGG	5580
AATTCGTCTC	GAGTGAGTAT	GTTCGAGTTT	TATTATACCC	AGATTATTTC	CAACCAGAGT	5640
TTTCAGATTT	TGAAATATCT	CTCCAGGAAA	TTGTGTATTC	CAATAAATTT	GAACATTTAA	5700
CGCATGCTAA	GATTTTAGGG	ACAGTCATCA	ATCAATTAGG	GATTGAACGG	AAACTTTTTG	5760
GAGATATCCT	AGTAGATGAA	GAACGGGCGC	AGATTATGAT	TAATCAGCAG	TTTCTTCTTC	5820
TCTTTCAAGA	TGGACTAAAG	AAAATTGGTC	GTATACCTGT	TTCGCTGGAG	GAACGTCCTT	5880
TCACCGAGAA	AATAGATAAG	CTAGAACAGT	ATCGAGAACT	GGATTTATCT	GTGTCTAGTT	5940
TTCGATTAGA	TGTTCTTTTA	TCAAATGTTT	TGAAACTATC	TAGGAATCAA	GCAAACCAGT	6000
TGATTGAAAA	GAAACTTGTC	CAAGTAAATT	ATCATGTGGT	AGACAAATCA	GATTACACTG	6060
TTCAAGTTGG	AGACTTGATT	AGTGTGAGAA	AATTTGGTCG	CTTGAGATTA	CTTCAAGATA	6120
AGGGACAAAC	GAAAAAAGAG	AAGAAAAAA	TAACCGTCCA	GTTATTATTA	AGTAAGTGAG	6180
GAATAGAATG	CCAATTACAT	CATTAGAAAT	AAAGGACAAG	ACTTTTGGAA	CTCGATTCAG	6240
AGGTTTTGAT	CCAGAAGAAG	TCGATGAATT	TTTAGATATT	GTGGTTCGTG	ATTACGAAGA	6300
TCTTGTGCGT	GCGAATCATG	ATAAAAATT	GCGTATTAAG	AGTTTAGAAG	AGCGTTTGTC	6360
TTACTTTGAT	GAAATAAAAG	ATTCATTGAG	CCAGTCTGTA	TTGATTGCTC	AGGATACAGC	6420
TGAGAGAGTG	AAACAGGCGG	CGCATGAACG	TTCAAACAAT	ATCATTCATC	AAGCAGAGCA	6480
AGATGCGCAA	CGCTTGTTGG	AAGAAGCTAA	ATATAAGGCA	AACGAGATTC	TTCGTCAAGC	6540
AACTGATAAT	GCTAAGAAAG	TCGCTGTTGA	AACAGAAGAA	TTGAAGAACA	AGAGCCGTGT	6600
CTTCCACCAA	CGTCTCAAAT	CTACAATTGA	GAGTCAGTTG	GCTATTGTTG	AATCTTCAGA	6660
TTGGGAAGAT	ATTCTCCGTC	CAACAGCTAC	TTATCTTCAA	ACCAGTGATG	AAGCCTTTAA	6720
AGAAGTGGTT	AGCGAAGTAC	TTGGAGAACC	GATTCCAGCT	CCAATTGAAG	AAGAACCAAT	6780
TGATATGACA	CGTCAGTTCT	CTCAAGCAGA	AATGGCAGAA	TTACAAGCTC	GTATTGAGGT	6840
AGCCGATAAA	GAATTGTCTG	AATTTGAAGC	TCAGATTAAA	CAGGAAGTGG	AAGCTCCAAC	6900
TCCTGTAGTG	ACTCCTCAAG	TTGAAGAAGA	GCCTCTGCTC	ATCCAGTTGG	CCCAATGTAT	6960
GAAGAACCAG	AAGTAGCTCC	AATGCATCCG	ATAGGTCCAA	CACCAGCTAC	AGAAACTGTT	7020
GATTCAATAC	CGGGATTTGA	AGCACCGCAA	GAATCTGTTA	CAATTTTATA	AGAAATATTC	7080
TGAGAACAAT	ATCTTATCCT	TATATTTCCA	GCGAGCAGGA	GATGGTGTGA	GTCCTGTAAT	7140
CCCTATTGAT	AAGATTATCC	TCTCAAAAAC	TCAAGTCTGA	AGCTAGTAAG	ATTTGACGTT	7200
TCCCACGTTA	CGGGATAAGA	GGGAGAAAGA	CTAAATCTTT	TTCCGAATAA	AGGTGGTACC	7260
ACGATTTTCG	TCCTTTTTGG	AAGTCGTGGT	TTTTAATTTG	TTATTATTTA	TAAAGGAGAT	7320

ACC	ATGAAAC	TCAAAGACAC	CCTTAATCTT	GGGAAAACTG	AATTCCCAAT	GCGTGCAGGC	7380
CTI	CCTACCA	AAGAGCCAGT	TTGGCAAAAG	GAATGGGAAG	ATGCAAAACT	TTATCAACGT	7440
CGT	CAAGAAT	TGAACCAAGG	AAAACCTCAT	TTCACCTTGC	ATGATGGCCC	TCCATACGCT .	7500
AAC	GGAAATA	TCCACGTTGG	ACATGCTATG	AACAAGATTT	CAAAAGATAT	CATTGTTCGT	7560
rct	'AAGTCTA	TGTCAGGATT	TTACGCACCA	TTTATTCCTG	GTTGGGATAC	TCATGGTCTG	7620
CCA	ATCGAGC	AAGTCTTGTC	AAAACAAGGT	GTCAAACGTA	AAGAAATGGA	CTTGGTTGAG	7680
PAC	TTGAAAC	TTTGCCGTGA	GTACGCTCTT	TCTCAAGTAG	ATAAACAACG	TGAAGATTTT	7740
AAA	CGTTTGG	GTGTTTCTGG	TGACTGGGAA	AATCCATATG	TGACCTTGAC	TCCTGACTAT	7800
GAA	GCAGCTC	AAATTCGTGT	ATTTGGTGAG	ATGGCTAATA	AGGGTTATAT	CTACCGTGGT	7860
3CT	AAGCCAG	TTTACTGGTC	ATGGTCATCT	GAGTCAGCAC	TTGCTGAAGC	AGAGATTGAA	7920
PAC	CATGACT	TGGTTTCAAC	TTCCCTTTAC	TATGCCAACA	AGGTAAAAGA	TGGCAAAGGA	7980
3TT	'CTAGATA	CAGATACTTA	TATCGTTGTC	TGGACAACGA	CTCCATTTAC	CATCACAGCT	8040
rct	CGTGGTT	TGACGGTTGG	TGCAGATATT	GATTACGTTT	TGGTTCAACC	TGCTGGTGAA	8100
3CI	CGTAAGT	TTGTCGTTGC	TGCTGAATTA	TTGACTAGCT	TGTCTGAGAA	ATTTGGCTGG	8160
GCT	GATGTTC	AAGTTTTGGA	AACTTACCGT	GGCCAAGAAC	TCAACCACAT	CGTAACAGAA	8220
CAC	CCATGGG	ATACAGCTGT	AGAAGAGTTG	GTAATTCTTG	GTGACCACGT	TACGACTGAC	8280
rcī	GGTACAG	GTATTGTCCA	TACAGCCCCT	GGTTTTGGTG	AGGACGATTA	CAATGTTGGT	8340
ATT	GCTAATA	ATCTTGAAGT	CGCAGTGACT	GTTGATGAAC	GTGGTATCAT	GATGAAGAAT	8400
GCT	GGTCCTG	AATTTGAAGG	TCAATTCTAT	GAAAAGGTAG	TTCCAACTGT	TATTGAAAAA	8460
TT	GGTAACC	TCCTTCTTGC	CCAAGAAGAA	ATCTCTCACT	CATATCCATT	TGACTGGCGT	8520
ACT	AAGAAAC	CAATCATCTG	GCGTGCAGTT	CCACAATGGT	TTGCCTCAGT	TTCTAAATTC	8580
CGT	CAAGAAA	TCTTGGACGA	AATTGAAAAA	GTGAAATTCC	ACTCAGAATG	GGGTAAAGTC	8640
CGT	CTTTACA	ATATGATCCG	TGACCGTGGT	GACTGGGTTA	TCTCTCGTCA	ACGTGCTTGG	8700
GT	GTTCCAC	TTCCTATCTT	CTACGCTGAA	GATGGTACAG	CTATCATGGT	AGCTGAAACT	8760
ATT	GAACACG	TAGCTCAACT	TTTTGAAGAA	TATGGTTCAA	GCATTTGGTG	GGAACGTGAT	8820
GCC	AAAGACC	TCTTGCCAGA	AGGATTTACT	CATCCAGGTT	CACCAAACGG	CGAGTTCAAA	8880
AA A	GAAACTG	ATATCATGGA	CGTTTGGTTT	GACTCAGGTT	CATCATGGAA	TGGAGTGGTG	8940
STA	AACCGTC	CTGAATTGAC	TTACCCAGCC	GACCTTTACC	TAGAAGGTTC	TGACCAATAC	9000
יייטר	CCTTCCT	ጥጥልልርጥርልጥር	ΔΟΨΤΑΨΌΔΟΑ	ጥርጥርጥጥርርርርል	АССАТЕССЕТ	ልርርልርርምዋልር	9060

			364			
9120	GTCTAAATCT	GTGAGAAGAT		TTTTGCCCTT	TGTCACAAGG	AAACAAATCT
9180	AATCTTGCGT	TCGGTGCTGA	GAAAAACAAT	AAGCGATGTT	CTATTGCTCC	CTTGGAAATA
. 9240	TATCTTGAGC	TCTCTATGGA	GACGTGCGTA	CTCAAGCAAT	CAAGTGTTGA	CTCTGGGTAA
9300	TGCCAATACA	GTTTCTTGAT	AACACTCTTC	TAAGATTCGT	AAACTTACCG	CAAGTTTCTG
9360	AGTTGATAAG	AGCTTCGTTC	GCTTACGATG	AGATACAGTC	ACCCAGCTCA	TCTGACTTTA
9420	TGCAGACTTT	GTGATGCCTA	AAGACCATTC	CCAGCTTGTC	TTCGCTTTAA	TACATGACGA
9480	GTCAGCCTTC	ACGTTGACTT	AACTTTATCA	GGCCTTGGTG	CGATCTACAA	GAATTCTTGA
9540	GGAACGCCGT	CCAAATCACT	ATTGAAGGTG	TGTTGTTTAC	TTGCCAAAGA	TACCTTGATT
9600	GACACCAATC	CCAAACTCTT	GTCAAAATCA	TGACATTCTT	CTGTCTTCTA	CAAATGCAGA
9660	AGACTTCGTC	TTGAAACAGA	TATCTTGAGT	AATCTGGTCA	CTGCGGAAGA	CTTCCTCACA
9720	CTTGGATACA	AAGAAGAAAT	TTTGCTAACC	AGTTCAAACT	AATTACCAGA	CAATTGTCAG
9780	AGCTCGTAAT	CCTTGGAAGA	GCACAAAAAG	TCGTGGACAA	TCATGGACTT	TGGGCAGCCT
9840	TGAAGTTGTG	ТТТАТССААА	CACTTGACAG	ACTTGAAGCA	TCGGTAAATC	GCAAAAGTTA
9900	GTCTGAGTTG	TTTTGATCGT	GTAGCACAAC	AAACAGCAAT	TCGAAGCAGT	AAAACTCTAC
9960	AGCCTTCACA	TCGAAGATGT	GCCCTTAGCT	TCCGGAAGCT	AAGGACCAGC	ACCATCGCAG
10020	AACAACAGCA	GTATCGACCC	CGTTGCCGTC	AGTATGTGAC	CTACTGGTGA	GTTGAACGTG
10080	AGAAAACTTT	GCATCGTAGA	CACTGTGCAA	TATCTGTGAC	ACCAGGCAGT	GAACGCAGCT
10140	GGCAAAATTC	GAAAAGTCTA	AAATAAGATT	ATTTGAAGAG	TCGCAGAAGG	GCGGAAGCAG
10200	TCACGTTTTT	ACGCATTGTA	AGTCTATTAA	CTAATTTTAT	GAAAAGACAA	AATTTGAGAA
10260	TGACTTTTTA	TTGCGAGGTA	TTTTAAAAAT	TTTTTATTTA	TATGATGCGT	GAATACCTGA
10320	AAATAGGAAT	TAGTAAGATA	AAGCTAACAG	GAAACTTAGC	GAATCAAAGA	TACTCAACAA
10380	AATTTATATA	TACAACAATA	GTAATATTTT	GGTAAATAGT	GGATAAGATT	TTGATATTAG
10440	TTTTTATTTT	АТТАТАСААА	TTTATTTCAT	AGTATTATAT	GTTTCTGAAA	GTTATTTCT G
10500	TGAAAAAAAT	CAATTTTATT	AAATATGATA	TTTTAAAAGC	AACATACTŢŢ	ATAATATCAG
10560	TATCGTCGGT	TAATTAGTGG	AGACTTGCTT	AAAATTAAAA	ATTTTATTAT	AAAAAAGGAG
10620	AGCGGTAAAC	TGTTGGGAAT	CCTTTTGTCT	TCTTATTGGT	GAATTTTACT	CTTGTGGGAG
10680	TGTAGCCTTA	CTTTTTCAGG	ACTGCAGGGG	TGGAGGAGCT	СААСТСТТАА	ACAGCTGCTA
10740	TGTTTACTAT	TCATTGCTAT	GTTCTTGGTA	TGCAAATCTT	CCTTGAAGAT	CTCTTGAATG
10800	TGGTGGAGTT	TGATTGTTTC	TCTGTACTAA	TGCAGCTCCG	AGCGTGTAGG	AAAGGAGATA
10860	ATCGGAGGAT	TTTTGCTATT	TTGGGGGGAT	TTAGGATGGG	TATTCCGTTC	AGTCTCATTC

CTCTATTCCT	TTCAACATTG	AAGAAATTCA	AATCAGAAGA	ATAAAAGGTA	TTTTAGCATG	10920
AAAAGAACAA	AAAAGTTTAT	CGGTATAGGA	GTAGCTCTAT	TATCTCTTTC	TCTTCTAGTT	10980
GCATGTGGAA	CATAAAGTTC	AAAGAATACT	TCAACAAGTA	ATGATGAGAA	GACAGTAGCA	11040
ACATCCAATA	GTTCAAAAGA	AACAATCACT	TTCGATACAC	CGGTTGTAAC	AGACGATGCG	11100
ATTGAATCAA	TACGCACTTA	TGCAGATTAT	ATAGATCTTT	ТАТААААТА	TTTTGATGAT	11160
TATTTTACTA	AAGCTGAGGA	AGGTTTCAAA	GGCATAGCTA	TGGAAAATAA	TGACTCGTTT	11220
АСТАВАСТВА	AAGAGTCAAC	TCAAAAATTA	TTCGATGCGC	AGAAAAAAAG	GTTAAATAAT	11280
GAAGATAGAA	TAGAAACAAC	CAAAAACAAT	GTGATTGCCA	AACATTGTCA	AACAGTCCTT	11340
TCCTTTTTGG	TTTTGACTAG	CTTTTTTGTG	AAAAATTGTG	TAAAATAGAA	TAGATAAACG	11400
AGGGGAAACC	TCGGAAAATT	TAAAGGAGAA	TCCATCTAAT	GGTAAAATTG	GTTTTTGCTC	11460
GCCACGGTGA	GTCTGAATGG	AACAAAGCTA	ACCTTTTCAC	TGGTTGGGCT	GATGTTGATT	11520
TGTCTGAAAA	AGGTACACAA	CAAGCGATTG	ACGCTGGTAA	ATTGATCAAA	GAAGCTGGTA	11580
TCGAATTTGA	CCAAGCTTAC	ACTTCAGTAT	TGAAACGTGC	TATCAAAACA	ACTAACTTGG	11640
CTCTTGAAGC	TTCTGACCAA	TTGTGGGTTC	CAGTTGAAAA	ATCATGGCGC	TTGAACGAAC	11700
GTCACTACGG	TGGTTTGACT	GGTAAAAACA	AAGCTGAAGC	TGCTGAACAA	TTTGGTGATG	11760
AGCAAGTTCA	CATCTGGCGT	CGTTCATACG	ATGTATTGCC	TCCAAACATG	GACCGTGATG	11820
ATGAGCACTC	AGCTCACACA	GACCGTCGTT	ACGCTTCACT	TGACGACTCA	GTTATCCCAG	11880
atgetgaaaa	CTTGAAAGTG	ACTTTGGAAC	GTGCTCTTCC	ATTCTGGGAA	GATAAAATCG	11940
CTCCAGCTCT	TAAAGATGGT	AAAAACGTAT	TCGTAGGAGC	TCACGGTAAC	TCAATCCGTG	12000
CCCTTGTAAA	ACACATCAAA	GGTTTGTCAG	ATGACGAGAT	CATGGACGTG	GAAATCCCTA	12060
ACTTCCCACC	ATTGGTATTC	GAATTCGACG	AAAAATTGAA	CGTCGTTTCT	GAATACTACC	12120
TTGGAAAATA	AAAAATTGTA	AGTCTAGAAT	TGATTTCTAG	GCTTTTTATG	TTAGTATGGA	12180
AGTATGATAA	GGAATAAAAA	ACAAGATTAT	GTACTGGCCT	ACAAGCAACC	AGCTTCAACC	12240
ACTTACATGG	GTTGGGAAGA	AGAAGCTTTA	CCGATAGGCA	ATGGTTCTTT	AGGAGCAAAA	12300
GTATTTGGCC	TTATAGGGGC	TGAACGGATT	CAATTTAATG	AAAAAAGTCT	CTGGTCTGGA	12360
GGTCCACTTC	CTGATAGTTC	AGATTATCAG	GGTGGAAATC	TTCAGGATCA	GTATGTTTTT	12420
TTAGCTGAGA	TTCGGCAGGC	TTTGGAGAAG	AGAGATTACA	ATCTGGCTAA	GGAACTGGCT	12480
GAGCAGCACC.	TAATTGGGCC	AAAAACGAGT	CAATATGGGA	CCTATCTGTC	TTTTGGGGAT	12540
ATTCACATTG	AGTTCAGCCA	GCAAGGTACG	ACTITGTCTC	AGGTGACGGA	CTATCAGAGA	12600

			366			
CAGCTGAATA	TTAGTAAGGC	ACTTGCGACG	ACTTCTTATG	TCTATAAGGG	AACGCGATTT	1266
GAACGTAAAG	CTTTTGCGAG	TTTTCCAGAT	GATCTCTTGG	TTCAATGTTT	TACTAAGGAA	1272
GGGTTGGAAA	CTCTAGATTT	TACTATAGAA	CTATCCTTGA	CCTGTGATTT	GGCTTCTGAT	1278
GGAAAGTATG	AGCAGGAAAA	ATCTGATTAC	AAGGAGTGTA	AGTTGGATAT	TACTGATTCT	12840
CATATCTTGA	TGAAGGGAAG	AGTTAAGGAT	AATGATCTGC	GGTTTGCTAG	TTATCTAGCT	1290
TGGGAAACGG	ATGGAGATAT	TAGAGTTTGG	TCAGATAGGG	TTCAGATATC	AGGAGCCAGT	12960
TATGCCAATC	TCTTCTTGGC	CGCTAAGACG	GATTTTGCCC	AAAATCCTGC	TAGCAATTAT	13020
CGCAAGAAAC	TAGATTTAGA	GCAACAGGTG	ATAGACTTGG	TGGACACAGC	TAAAGAAAAG	13080
GGCTATACCC	AATTGAAATC	AAGGCATATC	GAGGACTACC	AAGCCTTATT	CCAGCGTGTT	13140
CAATTGGATT	TGGAAGCTGA	TGTTGACGCA	TCCACTACAG	ATGATTTGTT	AAAAAATTAT	13200
AAGCCACAAG	AAGGGCAGGC	TTTGGAGGAG	CTGTTCTTCC	AGTATGGACG	GTATTTATTG	13260
ATTAGTTCGT	CCAGAGACTG	CCCAGATGCT	CTACCAGCTA	ACCTACAGGG	AGTCTGGAAT	13320
GCGGTCGACA	ATCCTCCTTG	GAATTCGGAC	TATCACTTAA	ATGTCAATCT	GCAGCTGAAT	13380
PATTGGCCAG	CCTATGTTAC	CAATCTCCTA	GAGACGCTCT	TTCCAGTCAT	CAACTATGTA	13440
GATGATTTGC	GTGTCTATGG	TCGTCTAGCG	GCTGTAAAGT	ATGCAGGAAT	CGTCTCTCAG	13500
AAAGGTGAGG	AGAATGGTTG	GTTGGTTCAT	ACTCAAGCGA	CTCCCTTTGG	TTGGACGGCA	13560
CCTGGTTGGG	ATTACTATTG	GGGTTGGTCA	CCAGCTGCCA	ATGCGTGGAT	GATGCAAACC	13620
STTTATGAAG	CCTATTTATT	TTATAGGGAC	CAAGACTATC	TCAGGGAGAA	AATTTATCCC	13680
ATGTTGAGGG	AAACGGTTCG	TTTTTGGAAT	GCCTTTTTAC	ATAAGGATCA	GCAGGCGCAG	13740
CCTTGGGTGT	CTTCTCCGTC	TTATTCCCCA	GAACATGGGC	CGATTTCGAT	TGGCAATACC	13800
FATGACCAAT	CTCTGATTTG	GCAGTTATTT	CATGATTTTA	TTCAGGCTGC	TCAGGAATTG	13860
GACTGGATG	AGGACTTGTT	GACTGAGGTT	AAGGAGAAGT	CTGATTTACT	AAATCCTTTG	13920
CAAATCACTC	AATCTGGTCG	AATCAGGGAG	TGGTATGAGG	AGGAAGAGCA	GTATTTTCAA	13980
ATGAGAAAG	TGGAGGCCCA	GCATCGGCAC	GCTTCCCATC	TAGTGGGACT	CTATCCTGGC	14040
ATCTCTTTA	GCTACAAGGG	ACAAGAGTAT	ATTGAAGCGG	CGCGTGCTAG	CCTCAATGAT	14100
CGTGGAGATG	GCGGCACAGG	CTGGTCCAAG	GCTAATAAGA	TCAATCTCTG	GGCGCGTTTG	14160
GGAGATGGCA	ATCGAGCCCA	TAAATTATTG	GCAGAGCAGT	TAAAGACATC	CACCTTGCAA	14220
ATCTTTGGT	GTAGCCATCC	TCCTTTTCAG	ATAGATGGTA	ATTTTGGTGC	TACTAGTGGC	14280
ATGGCAGAAA	TGTTACTCCA	GTCTCATGCA	GCTTATCTGG	TACCTCTAGC	TGCCCTACCT	14340
SATGCTTGGT	CAACAGGTTC	TGTTTCAGGC	TTAATGGCAC	GTGGACATTT	TGAAGTGAGC	14400

ATGAGCTGGG	AAGATAAAA	ACTCTTACAG	TTGACCATTT	TATCAAGGAG	TGGAGGAGAT	14460
TTGCGAGTTT	CTTATCCAGA	TATTGAGAAG	AGTGTGATTA	AAATGAATÇA	AGAAAAAATA	14520
AAAGCGAAAT	GCATGGGGAA	AGATTGTATT	TCGGTGGCAA	CAGCAGAAGG	TGATCTTGTT	14580
CAATTTTATT	TTTAAGAAGA	TGTTATAAGG	CAGTAATTTG	AAACTGCCTT	TTAATAAGGA	14640
TTTAAGAATA	TAAGCAGTTT	TCAACTAGTT	GAAAAAACGT	TATAATGATA	ATAGGAAGTA	14700
ATACTCAATG	AAAATCAAAG	AGCACAAACT	AGGAAGCTAG	CCGCAGGTTG	CTCAAAACAG	14760
TGTTTTGAGG	TTGCAGATGG	AAGCTGACGT	GGTTTGAAGA	GAGATTTTCG	AGGAGTATAA	14820
TTTGTTTGAT	AGAGGGTGGG	TCTGATGGCT	TATATTGAGA	TGAAACACTG	TTACAAGCGT	14880
TATCAGGTTG	GGGACACGGA	GATTGTGGCC	AATTGTGATG	TGAATTTTGA	GATTGAAAAG	14940
GGGGAGCTGG	TTATTATCCT	TGGTGCTTCA	GGTGCAGGCA	AGTCAACAGT	TCTTAACCTT	15000
CTTGGGGGAA	TGGATACCAA	TGATGAAGGG	GAAATCTGGA	TTGATGGTGT	TAATATTGCG	15060
GATTATAGTT	CCCACCAGCG	CACCAATTAC	CGTAGAAATG	ATGTGGGGTT	TGTTTTTCAG	15120
TTTTATAATC	TAGTTTCTAA	TCTGACAGCT	AAGGAAAATG	TGGAACTGGC	TTCTGAAATT	15180
GTGACAGATG	CCTTGAATCC	TGATCAGGCC	TTGACAGATG	TAGGTCTGGC	TCATCGTCTC	15240
AATAACTTTC	CAGCCCAGCT	TTCTGGAGGG	GAGCAACAGC	GAGTCTCCAT	TGCACGCGCG	15300
GTAGCCAAAA	ATCCTAAAAT	TCTCCTTTGT	GATGAACCGA	CTGGAGCCTT	GGATTATCAG	15360
ACGGGCAAGC	AGGTTTTGAA	AATTCTCCAA	GACATGTCTC	GTCAAAAGGG	AGCGACGGTG	15420
ATCATCGTGA	CTCATAATGG	AGCTTTGGCG	CCCATTGCTG	ATCGCGTGAT	TCAAATGCAC	15480
GATGCCAGTG	TCAAGGATGT	GGTGCTCAAC	CAGCATCCTC	aggatattga	CAGTTTGGAG	15540
TACTAGCATG	ATCAAGCGAA	AAACTTATTG	GAAGGACTTA	GTTCAGTCCT	TCACAGGCTC	15600
CAAGGGGCGT	TTTTTATCCA	TCTTGATCCT	GATGATGTTG	GGATCTCTAG	CCTTAGTAGG	15660
CCTCAAAGTA	ACCAGTCCCA	ACATGGAGGC	GACAGCTAAT	GCTTATTTAA	CAACTGCTCA	15720
AACCTTGGAT	TTGGCAGTCA	TGTCTAACTA	TGGCTTGGAT	CAAGCAGACC	AAGAAGAACT	15780
AAAACAGACG	GAGGGCĞCAG	AGGTCGAGTT	TGGCTATTTG	ACAGATGTGA	CTATGGATAA	15840
TGGGCAGGAT	GCCATTCGGC	TGTACTCCAA	ACCAGAGCGA	ATTTCAACCT	TTCAGCTAAG	15900
AAAGGGACGA	CTTCCTCAGT	CAGACAAGGA	AATCGCTTTG	GCCACTCATT	TGCAAGGCCA	15960
ATACAGCGTG	GGACAGGAGA	TTAGTTTTAA	AGAAAAGAA	GAGGGTCATT	CCTCTTTAAA	16020
AGACCATACT	TATACCATTA	CTGGTTTTGT	GGATTCGGCT	GAAATCCTCT	CCCAGCGAGA	16080
FATGGGCTAC	GCAGGAAGTG	GAAGTGGGAC	TCTGACAGCC	TATGGGGTGA	TTTTACCTAG	16140

368 TCAATTTGAT CAGAAAGTCT ACAATATAGC TCGTTTGAAA TATCAAGATT TAGCGGGTTT 16200 AAATGCCTTT TCATCAGCTT ATGAAGAAAA ATCCAAGCAA CATCAAGAAG AGCTTGAACA 16260 AATTTTATCA GATAATGGCA AGGTACGTCT GCAACTTTTG AAAAAAGAAG GACAAGAGTC 16320 TCTAGACAAG GGGCAAGAGA CCCTTGACAA GGCTCAGACT AATTTGCAGG AAGGCAAGCG 16380 TCGTTTAGCA GCTGCTCAAG CTCGTATACA GGCTCAAGAA AGTCAACTAG CCTTGTTTCC 16440 TCAAGTTCAG AGAGAGCAGG CTAGTGCTCA ACTTACCCAA GCCAAGCAGG AATTGGGCAA 16500 GGAAGAGGAC AAACTAAAGC AAGCTGAACA AAATCTAGCC CAAGAAAAGG AAAAATTAGA 16560 AAAACATCAG CAAGTCTTGG ATGATTTGGC GGAGCCAAGG TATCAGGTTT ATAATCGTCA 16620 GACCATGCCA GGTGGTCAGG GCTATCTTAT GTATAGCAAT GCTTCATCCA GTATTCGAGC 16680 AGTGGGCAAT ATCTTTCCTG TGGTACTTTA TGCCGTAGCA GCCATGGTGA CCTTTACGAC 16740 CATGACTCGC TTTGTAGACG AAGAGCGAAC TCATGCAGGG ATTTTTAAGG CCTTGGGTTA 16800 TCGTAGTAAG GATATTATCG CCAAGTTTCT CCTTTATGGA CTAGTAGCTG GGACTGTCGG 16860 AACGGCTCTA GGTAGTATAC TTGGTCATTA TTTGCTAGCC AGTGTAATTT CAAGTGTCAT 16920 TACAAAAGGC ATGGTGGTGG GAGAAACTCA GATTCAGTTC TATTGGACCT ATAGCTTACT 16980 AGCTTTTGTC TTGAGCTTGT TGGCGAGTGT GTTACCAGCC TATCTGGTGG CTTGGAGGGA 17040 ACTTCATGAC GAAGCAGCCC AGCTTCTACT TCCTAAACCT CCTGTCAAAG GAGCTAAAAT 17100 CTTATTGGAG CGTATCGGTT TTATCTGGCG TCGTCTCAGT TTTACTCATA AGGTAACAGC 17160 CCGCAACATC TTTCGTTATA AGCAGAGAAT GTTGATGACA ATCTTTGGTG TGGCAGGTTC 17220 TGTAGCTCTG CTCTTTGCAG GTTTGGGAAT CCAATCTTCT GTAGCAGGAG TTCCGTCTAA 17280 ACAGTTTCAA CAAATCCAAC AGTATCAGAT GCTTGTCTCT GAAAATCCTA GTGCGACCAA 17340 TCAGGACAAG GTAGAGCTAG CAGAAGTGTT GAAAGGGCAG GAGATACTAG CCTACCAGAA 17400 AATCTATTCT AAAGCGCTAT ACAAGGATTT CAAAGGCAAA GCTGGTCTTC AAAACATTAC 17460 TCTTATGATG ATAGAGAAGG AAGATTTGAC TCCCTTTATC CATCTTCAAC ATCATCAGCA 17520 GGAGCTGACA TTAAAAGATG GCATCGTTAT TACAGCTAAA CTCGCCCAGC TGGCAGGTGT 17580 CAAGGTTGGG CAGACTTTAG AAATTGAAGG TAAGGAACTA AAGGTCGTTG CTATTACTGA 17640 GAACTACGTT GGTCACTTTA TTTATATGAG TCAGGCTAGC TATGAGCAAC TTTACGGACA 17700 GCTACCCCAA GCCAACACTT ATCTGGTCTC ATTAAGGGAT ACCAGTGCAA CTAGTATCGA 17760 AAGTCAGGCG GGCTTGCTTA TGAATCAATC TGCGGTGTCC AGCGTTGTCC AAAATGCTTC 17820 AGCCATTCGA CTCTTCGACT CTATCGCTAG CTCACTCAAT CAGACCATGA CCATCTTGGT 17880 CATCGTATCG GTTCTATTAG CTATTGTCAT CCTTTACAAT CTGACCAATA TCAACGTAGC 17940

TGAGAGAATC	CGTGAACTCT	CCACTATCAA	GGTTCTTGGT	тттсатаата	ATGAAGTCAC	18000
CCTCTACATT	TACCGTGAGA	CGATTGTGCT	GTCCCTTGTG	GGAATCGTAC	TTGGTCTGAT	18060
AGCTGGTTTC	TATTTACACC	AATTTTTGAT	TCAAATGATT	TCGCCTGCGA	CTATTCTCTT	18120
TTATCCGCAG	GTAGGCTGGG	AAGTCTATGT	AATCĆCAGTG	GCAGCAGTAA	GCATCATTTT	18180
GACCTTGCTT	GGTTTCTTCG	TCAATTATTA	TCTGAGAAAG	GTTGATATGT	TAGAAGCCCT	18240
GAAATCTGTA	GAĞTAAGGTA	GTTATTTTTA	GCTGATTGAA	CTTCTATTTA	CTAATATTCA	18300
AAAATCCTCC	GTTTCAAAGA	GCAGGGAACT	CTTTGTGACA	GAGGATTTTT	TCTATAGGGC	18360
TTTAGCAGCT	GCAATTGCGG	CTTCGAAGTT	TGGCTCAGAA	TTGATATTAT	CCACGTATTC	18420
AACGTAGCGA	ATCGTATTGT	CAGTATCGAG	GACAAAGACT	GCGCGTGCTA	ATAGGTGCCA	18480
TTCGTTGATC	AAGAGGGCAT	AATCGCGCCC	GAAAGAATGG	TCAAAGTAGT	CTGAAAGCAT	18540
AATGGCATTG	TCAAGGCCTT	CAGCACCGCA	CCAACGTTTT	TGAGCAAAAG	GTAGGTCCAT	18600
TGAAACAGTC	AATACGACCG	TGTTGTCCAG	TCCAGCCAAT	TCTTCATTAA	AACGACGTGT	18660
TTGAGTTGAG	CAGATGCCTG	TATCGATAGA	AGGAACGACA	CTCAAGACTT	TTTTCTTGCC	18720
ATCAAAATCA	GCCAGAGATT	TTTTAGAAAG	ATCTGTTGTA	GTAAGAGAAA	AATCAAGCGC	18780
CTTGTCGCCG	ACTTGTAGTT	GTTTACCTGT	AAAGCTCACA	GGATTTCCGA	GAAAAGTTAC	18840
CATAGGATAC	TCCAATCTTT	TTTCTTCCAT	TTTAGCTGAA	ACAGTCGGAA	TTTTCCAATG	18900
ATTTGACCGG	AAATATGGGC	ATAGAAAAAA	CGCCAGCTCA	TGTGAGAATG	ACGTTTTTCA	18960
TAGGTTTATT	TTGCCAATCC	TTCAGCAATC	TTGTCAAGGT	TGTATTTCAT	CATGCTGTAG	19020
TAGCTGTCGC	CTTCTTTACC	TTGTTCTGCG	ATAGAGTCAG	TAAAGATTTG	AGCGTAGATT	19080
GGGATGTTTG	TGTCTTGAGA	AACAGTTTTC	ATTGGACGGT	CATCCACACT	TGATTCTACA	19140
AAGAGTGATG	GAACTTTTGT	TTGGCGAAGT	TTTTCAACCA	AGGTCTTGAT	TTGTTCAGGA	19200
GTTCCTTCTT	CTTCAGTATT	GATTTCCCAG	ATGTAAGCAC	TTGGGACACC	ATAGGCTTTA	19260
GAGAAGTATT	TGAATGCTCC	TTCGCTGGTT	ACAATGAGTT	TCTTTTCAGC	AGGGATCTTA	19320
TAAAATTTAT	CCTTACTTTC	TTTATCAAGT	TTGTCTAACT	TATCAGTĀTA	TTCTTTGAGA	19380
TTTTTTTCAT	AGAATTCTTT	ATTGTTAGGG	TCTTTGGCGC	TCAATTGTTT	GGCGATATTT	19440
TTAGCAAAAA	TAATACCGTT	TTCAAGGTTA	AGCCAAGCGT	GTGGGTCTTC	TTTTCCTTTT	19500
TCATTTTGAC	CTTCAAGGTA	GATAACATCA	ACGCCGTCGC	TGACTGCGAA	GTAGTCTTTG	19560
TTTTCAGTTT	TCTTGGCATT	TTCTACCAAT	TTTGTAAACC	AAGCATTGCC	ACCTGTTTCA	19620
AGGTTGATAC	CGTTATAGAA	AATCAAATTA	GCCTCAGAAG	TTTTCTTAAC	GTCTTCAGGA	19680

370 AGTGGTTCGT ATTCGTGTGG GTCTTGCCCA ATCGGAACGA TACTATGAAG GTCAATTTTG . 19740 TCACCAGCAA TATTTTTAGT AATATCAGCG ATGATTGAGT TTGTAGCAAC AACTTTTAGT 19800 TTTTGACCAG AAGTTGTATC TTTTTTCCG CTAGCACATG CTACAAGAAT GATTGCAGAA 19860 AGAAAGAGAA CGAGTAATGT ACCTAATTTT TTCATTAGAT CCTCCAATTT ATTAGGGCTT 19920 TGCCCCTTAT TTTAACAAAT GTTTATTTTT CAGTTTCAAA TATCGTTGTT TGGGAGCGAT 19980 AAAGAAGCTA ATGAGAAAGA AACTAGCAGC TGTAAGCACG ATACTAGAAC CTGCCGCAAC 20040 ATTAAAACTA TAGCCAATAA AGAGTCCCAA AACTGAAGCA GTAGCTCCGA AGGTTGAGGA 20100 AAGGAAAATC ATACTTTTCA GACTATTAGC ATACAGATAA GCAGTTGCAG CTGGGGTAAT 20160 CAGCATGGCT ACAATCAGGA TAGTTCCGAC ACTTTGCATG GCTGTCACAG ACACGAGAGT 20220 CAGGAGTACC ATGAGAAGGT AGTGATAGAA ATTGACAGGC ATTCCCATGG CTTTAGCCAA 20280 GAGTTCATCA AAGGAAGTTA TCAAGAGTTG CTTGAAGAAA ATCCAGATTA ACAAGAGGAT 20340 AGCTGCCCC ACACCCATAG TAATAAACAT ATCCGTATCT TGGACGGCCA GGATATTACC 20400 AAAAAGGATA TGGAAAAGGT CAGTTGAACT TTTAGCGACA CCAATCAAGA TGATACCGAG 20460 GGCTAAGAAA GAAGAAAAGG TAATGCCGAT GGCGGTATCG CTTTTGATAA TCGAGTTTCC 20520 TTTGATGTAG GTAATGATGA TGGCAGCTAG CAATCCAAAG ACAATGGCTC CGATAAAGAA 20580 GTCAAGGCCC AAGATGAAGG ATAGGGCTAC ACCTGGTAAG ACAGCATGTG AAATGGCATC 20640 TCCCATGAGT GACATCCCGC GTAGAATAAT GAAACATCCC ACAGCTCCAG CTACAATCCC 20700 GACGACAATA GCTGTTATCA AGGCATTTTG TAGGAAATGG AATTTTTGCA ATCCATCGAT 20760 AAATTCTGCA ATCATAGGTC ACCTCCATTG AAAAAGAGTT GATTACCGTA AGCTTCTTTT 20820 AGATTGGTTT CGGTAAAAGT TTCTTTTGTT GGACCAAAGG CAATCACTTC TCGATTGACA 20880 AGTAAGACTT GATCGAAGTA GTGGGGAATC TTGCTGAGGT CGTGGTGAAC GATGAGAACC 20940 GTCTTCCCAG CTTTTTCAA ATCTCTCAGC GTATTCATGA TGATTTCCTC ACTGACAGAG 21000 TCAATCCCAG CAAAGGGTTC ATCCAAGAGG ATATAGTCGG CTTCCTGCAC CAAACATCTG 21060 GCAATCAAGA CCCGCTGGAA TTGACCTCCA GACAGTTGAC TAATTTGACG TTCAGCGTAG 21120 TCAGCTAGGC CGACGATTTC AAGGGCCTCT TGCACTTTCT TCCAATGTTT AGCCTTTAAA 21180 CTTCGAAAGA GAGGAATAGA GGGAAATAGT CCTAACGAGA CGCATTCCTT GACCTTGATG 21240 GGAAAGTTGT AGTCGATATT GATTTTTGT TCGACATAGG CAATTCGGTG TAAGGATTTT 21300 TTAACTTCCT TGTCATCGAG AAATGCCTGA CCTTGATGTG GGATAATTCC CAACATACCT 21360 TTTAATAGTG TTGATTTCCC AGCGCCGTTT GGACCAATGA TGCCGGTAAT TGTTGGTCCA 21420 TGGAGCACTA GTGAAATATC CTTAAGTGCC AACGTTTCTT TGTAGGAGAC ACTGAGGTTT 21480

TCGATACGTA TCATAAACTT GTATTCCTCC TGTCTCTTAA TATACATTAA AAAAAAAATT 21540
AAGTCAAGTT AATTTTGAA AAAATTAAAA TAATAACTGA AAAATAGATT CTAAAGATAA 21600
CTTTCAGGAT AAATTCTAA ATTATAAAAC GCATAGTATC AAGTGTAAAA AACTTGGAAT 21660
TATGCGTTTT ATCATGGAAA GATTTTTAT AATAGCTAAA AAATAA 21706

(2) INFORMATION FOR SEQ ID NO: 37:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6171 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

GATCCCCAGG AAAAACCGAG GTTTTCCCAA TCAATCGTTA CTGTCATATT CCACTCCTTA 60 TTCTAAAAAC CTATTTCTTA TATTCTACAC TATTTTTCTA AAATAGCAAG TATATTTTGT 120 AATTTTCAGA AAATTTCTCC AATAAAAACC AACTCTTAGA ACTGATTCTT CATTTCACTT 180 ATTTATCTTC AGTAACTACT TCCTGAAGAT AAGCGTCAAA AACTTCTTCA TCTGAAATCG 240 TGTCAGAAAT GAAGCTTCCA TTGCTAGTGC GTTCTGACAA GTTCAAGTCT TGCAATCGGC 300 TTTCATAGAT TGTTCCTTTA TTGGATTGGA CAAGCAGAGT TTGGTCGTTC ACATCCACTT 360 CCGTACTGAA GAAATCGCCA ACAAATCCTT GCTCTGCAAC TGCTCCTGCC AAGAAGACAC 420 GATGCGGTTT GTTTTTCAAC TCACGCAAGA CTTGTAATCC TCGTTTGGCA CGGCTGGTTG 480 CTAGAATTTC CTCAATGGAA ACACGTTTCA AGCTTCCACG CTGGGTCAAG AGGTAGAAGG 540 ACGAAGTATT ACAGATAAAG CCAGATTGGA GGACATCATC TTCTTTCAAA TTCATAGCCT 600 TGACACCTGC TGCCTTAGCA CCGACAACCG GAACCTCTTC GATATTGAAA CGCAGGGCAT 660 AACCATTTG ACTAACCAAG ACAACATCAT CTAGTTTAAT CGGAGCCACT GCTACAATCT 720 GATCTGTATC GTCTTTGAGC TTAGCATACT TGACAGACTT AGATCTATAG GTCCGCCATG 780 GAGTGAATTC TTTTCGCTCT ACCCGTTTGA TTTGACCAAG GCGAGTCACT GCAAAGTAGG 840 TTGTCGCATC GTCAAACTGA TCCAGTACTT CCACATAAAG GATTTCTTCA TTCGTTTCAA 900 AGTTTGTGAT GGTTTGGCTC AGATGCTCTC CGATGTCCTT CCAACGAATA TCTGCCAACT 960 CATGGATTGG TCTGTAGATG ACATTTCCAA GACTTGTGAA CATCAAGAGG TGCTGGGTTG 1020 TCTTGGCAGA TTGAACAAAA ATCAAACGGT CATCATCACG CTTGCCAATT TCTTCCAAGG 1080 TGGAAGCCGC AAAGGAACGT GGACTGGTAC GCTTGATGTA ACCTGCCTTG GTCACGCTGA 1140

			372			
CGTAGGTATC	TTCCTCAGCG	ATAAGACTAG	CTGTATCAAT	CTCAATTGCT	TTCGCAGTGT	120
CTTCTAAAGA	ACTCAAACGA	GGAGTTGCAA	ATTTCTTCTT	GACCTCACGA	AGTTCTTTCT	126
TCATGAGATT	GTACATAGTC	CTTTCATCAC	CGATAATAGC	CGCCAGCATA	GCAATCTTCT	132
CACGAAGCTC	TGCTTCTTCT	TCCTGCAAGA	CAACCACATC	GGTATTGGTC	AAACGGTACA	138
GTTGCAAAGT	TACGATAGCC	TCAGCCTGTT	CTTCCGTAAA	ATCATAGCTA	ACTTTGAGGT	144
TTTCCTTGGC	GTCCGCCTTA	TTCTCAGAAG	CACGGATAAG	AGCAATGACT	ТСАТССАААА	150
TCGAAATCAC	ACGAATCAAA	CCTTCGACGA	TATGGAGACG	TTTCTCAGCC	TTTTCTTTGT	1560
CAAAGCGTGA	ACGCGCCAAA	ATCACTTCTC	GACGGTGAGC	GATATAGCTA	GACAGGATTG	1620
GAACAATCCC	AACCTGACGA	GGTGTGAAAT	TGTCAATCGC	САССАТАТТА	AAGTTGTAGT	1680
TGATTTGTAG	GTCGGTGTAC	TTAAATAAGT	AGTTGAGAAC	AAGCTCAGTA	TTAGCGTCTT	1740
TCTTAAGTTC	GATAGCGATA	CGAAGACCAT	CACGGTCAGA	CTCATCACGA	ACCTCAGCAA	1800
TCCCAGCTAC	CTTGTTATTA	ACACGAACAT	CATCGATTTT	CTTGACTAGA	TTGGCCTTAT	1860
TGATTTCATA	AGGAATCTCA	ATAATAACGA	TTTGTTCCTT	ACCACCTTTT	AGCTTTTCAA	1920
TTTCAGTCTT	GGAACGAACA	ACCACGCGCC	CTTTCCCAGT	CTCATAAGCT	TTCTTGATTT	1980
CATCACGACC	CTGAATAATA	GCCCCTGTAG	GGAAGTCTGG	TCCAGGCAAG	AATTCCATGA	2040
GTTTATCAAT	CTTTGCAGTT	GGGTGGTCAA	TCATGTAAAC	TGCAGCATCT	ATGACCTCAG	2100
CTAAATTATG	GGGAGGAATG	TCTGTGGCAT	AACCAGCCGA	AATCCCAGTC	GAACCATTGA	2160
CCAAGAGGTT	TGGAAAGGCT	GCTGGCAAGA	CCGTTGGTTC	TTTCTCCGTA	TCGTCAAAGT	2220
rccatgcaaa	AGGAACTGTC	TTTTTCTCGA	TATCCTGAAG	AAGGTAGCCT	GCAATTTCAG	2280
ACAAACGTGC	CTCAGTATAA	CGCATAGCCG	CAGGAGGATC	TCCGTCCATA	GAACCGTTAT	2340
PACCGTGCAT	TTCAACTAGA	ATCTCACGAT	TTTTCCAGTT	CTGTGACATA	CGAACCATGG	2400
CATCATAGAT	AGAAGAATCC	CCGTGTGGGT	GGAAATTCCC	CATGATGTTC	CCGACTGACT	2460
rggccgactt	ACGGTAGCTC	TTGTCAAAAG	TATTGCTATC	CTTATTCATA	GAATAAAGAA	2520
PACGGCGCTG	AACCGGCTTC	AACCCATCAC	GAATATCTGG	CAAAGCCCGG	TCTTGAATAA	2580
rgtacttgga	GTAGCGACCA	AAGCGCTCTC	CCATGATGTC	CTCCAGGGAC	ATGTTTTGAA	2640
TGTTAGACAT	AAGATACAAA	GCCCATAAAA	TACCAAGTGA	aaatagaaaa	TTCTTGAAGT	2700
AGCAAACTC	ACAAGAGAAT	TTATCTTTTT	CACACAGTAT	CTAGGGCGTG	TTCAACTCCT	2760
TTCAAAGAAT	GTAGAGTAGG	TTTTTATGCA	GTAAAAGATA	TTTTACGGGA	ATTCCTCCCG	2820
GTTCAGTTA	CGATAAGTAA	CCAAACTATC	CTGTTTGTAT	TTTTCAATAT	GAAAATCTGG	2880
TTTCCAAAA	TTAGTCTTAG	TTTGTGTCTT	AGCCGCTCCC	TTAAGCGCCT	CTTTGAGATA	2940

AGCACTCAT	A GCAGATTCTT	CATTAATAAT	CCTGCAATTT	TTTCAAACCA	AGATTTTCAA	3000
ACTGCTTTT	r cacatagtca	TTCACATCCG	ACTCTAATTT	CCAGTTTACT	AACATATTAT	3060
ттсттск	г таааасастс	TCGTTTCTTC	TAGCGTAAAC	TTGACATTAT	CTTCAATCCA	3120
TTTACGGCG	r ggttctacct	TATCTCCCAT	GAGAACATTG	ACGCGGCGTT	CGGCGCGCGC	3180
TAAATCTTC:	A ATTGTGACAC	GGATGAGGGT	ACGTGTTTCT	GGGTTCATGG	TTGTTTCCCA	3240
GAGCTGGTC	GCATTCATCT	CACCAAGTCC	TTTGTATCGT	TGGAGGGTAG	CGCCTTTACC	3300
SAACTGTTT	CGGAGTTCTT	CTAGTTCTCC	GTCCGTCCAA	GCGTAGGCCA	CTTCTTCTTT	3360
CTTGCCTTT	A CCTTTGGACA	TCTTGTAAAG	AGGTGGGAGG	GCAATATAGA	CATGACCTGC	3420
TCGACTAG	GGACGCATGT	AACGGTAGAA	AAATGTCAAG	AGCAAGGTCT	GGATATGGGC	3480
CCGTCGGT	A TCCGCATCGG	TCATGATAAT	GATCTTATCA	TAGTTGGCAT	CTTCAATAGA	3540
SAAGTCTGC	CCAACACCCG	CACCAATGGT	ATAAATCATG	GTATTGATCT	CTTCATTTTT	3600
SAGGATATC	GCCATCTTGG	CCTTGGCTGT	ATTGACAACC	TTACCACGAA	GAGGTAGAAT	3660
GCCTGGAA	TTGCGGTCAC	GACCTTGTTT	GGCAGAACCA	CCGGCAGAGT	CCCCCTCAAC	3720
AGATAGAG	TCATTCTTAG	CAGGATTCTT	AGATTGGGCT	GGGGTCAATT	TCCCAGACAA	3780
AAGCCCTT	TCTTTCTTGT	TTTTCTTCCC	ATTTCGGCTC	TCATCACGCG	CCTTACGTGC	3840
GCTTCACG	GCATCACGGG	CCTTGATAGC	CTTGCGGATG	AGGTTAGAAG	CTAATTCCCC	3900
TTTTCCAT	AGGAAAAAGG	TCAACTTATC	AGCCACTATT	CCATCCACAA	CTGGGCGAGC	3960
AGGGGGCT	CCTAGTTTAT	CCTTGGTCTG	TCCTTCAAAC	TGCAAGTGTT	CTTCAGGAAC	4020
AAGATAGA	AGAACGGCCG	CTAGTCCCTC	ACGATAGTCT	GAACCTTCAA	GGTTTTTATC	4080
TTTTCCTTC	AGAAGACCTG	TTTTACGTGC	ATAGTCATTC	ATGACCTTGG	TAATGGCAGA	4140
TTGAGTCCT	GTCTCGTGCG	TTCCACCGTC	CTTGGTGCGA	ACGTTATTGA	CAAAAGATAG	4200
ATGTTATCT	GAGAATCCGT	CATTGTACTG	GAGGGCTACT	TCCACTTGAA	AACCATTGTC	4260
TCCCCTTC	AAGTAAAGAA	CTGGCGTCAA	GATTTCCTTA	TCTTCGTTGA	GATAAGAAAC	4320
AAATCTTGT	ACTCCATTCT	CATAGTGGAA	CTCAATCGCT	TCATTTGTTC	GCTTGTCCGT	4380
'AAAGACAAC	GTCACATTTT	TCAAGAGAAA	GGCTGATTCA	TTAAGGCGCT	CTGAAATGGT	4440
TTGTACTTC	AAATCTGTCG	TAGAAAATAT	AGTCGCGTCA	GGCATAAAAG	TAACTTTGGT	4500
CCTGTTTT;	GACTTGGGTG	CTGTACCGAT	TTTCTTCAAA	GTCGTGACAG	GTTTTCCACC	4560
TTTTCGAA	CGTTGCTTGT	AAACTGCGCC	ATCACGGGTA	ATTTCAACTT	CTAACCAGCT	4620
GAAAGGGCC	TTAACAACGG	AAGAACCCAC	TCCGTGAAGT	CCACCTGATG	тсттатассс	4680

•						
ACCTTGACCG	AATTTCCCTC	CGGCATGAAG	374 AATGGTAAAG	ATAACCTCAA	CAGTTGGAAT	4740
TCCCATAGCG	TGCATACcTG	TCGGCATCCC	ACGTCCATGG	TCTTGAACCG	TTAGACTACC	4800
GTCTTTATTG	ATAGTTACAT	CAATACGATC	ACCAAACCCA	GACAAGGCTT	CATCGACTGC	4860
ATTATCAACG	ATTTCCCAAA	CTAGGTGATG	AAGACCAGCG	CCATCGGTCG	АТССААТАТА	4920
CATCCCTGGA	CGTTTTCGGA	CCGCATCCAA	CCCTTCTAGC	ACCTGAATAG	CATCATCATT	4980
ATAATTGTTA	ATATTGATTT	CCTTTTTTGA	CACAAGGAAC	CTCCTATTCG	TTCATCTTTA	5040
CTATTCTACA	GGTTTTCCAA	GGATTTTGCA	AAATTTTTCT	TTCTCCGATG	TGACAATTTC	5100
AGCAGAGATT	CTCTGCTTTT	CTTTCCCAAT	TCATGATATA	ATAGGAGTAT	GATTACAATA	5160
GTTTTATTAA	TCCTAGCCTA	TCTGCTGGGT	TCGATTCCAT	CTGGTCTCTG	GATTGGACAA	5220
GTATTCTTTC	AAATCAATCT	ACGCGAGCAT	GGTTCTGGTA	ACACTGGAAC	GACCAACACC	5280
TTCCGCATTT	TAGGTAAGAA	AGCTGGTATG	GCAACCTTTG	TGATTGACTT	TTTCAAAGGA	5340
ACCCTAGCAA	CGCTGCTTCC	GATTATTTTT	CATCTACAAG	GCGTTTCTCC	TCTCATCTTT	5400
GGACTTTTGG	CTGTTATCGG	CCATACCTTC	CCTATCTTTG	CAGGATTTAA	AGGTGGTAAG	54,60
GCTGTCGCAA	CCAGTGCTGG	AGTGATTTTC	GGATTTGCGC	CTATCTTCTG	TCTCTACCTT	5520
GCGATTATCT	TCTTTGGAGC	TCTCTATCTT	GGCAGTATGA	TTTCACTGTC	TAGTGTCACA	5580
GCATCGATTG	CGGCTGTTAT	CGGGGTTCTG	CTCTTTCCAC	TTTTTGGTTT	TATCCTGAGT	5640
AACTATGACT	CTCTCTTCAT	CGCTATTATC	TTAGCACTTG	CTAGTTTGAT	TATCATTCGT	5700
CATAAGGACA	ATATAGCTCG	TATCAAAAAT	AAAACTGAAA	ATTTGGTCCC	TTGGGGATTG	5760
AACCTAACCC	ATCAAGATCC	ТАААААТАА	AATGCCAGTT	CTGTACTGCC	CCCAAACAGT	5820
PAGACAAATA	АТТТАТССАА	AGGATTTAGT	TCTGTACTGC	ACAGGACTAA	GTCCTTTTAG	5880
ГТТТАССТТА	ATTCGTTTGT	TGTTGTAGTA	ATCAATATAG	TCTATAATGG	CTTGTTCCAA	5940
TTGATTAAGT	GATTTAAATG	TTTTCTCATA	GCCATAAAAC	ATTTCGGATT	TTAAAATGCC	6000
AAAGAAAGAT	TCCATCCTAC	CGTTGTCTTG	GCTGTTGCCC	TTACGTGACA	TGGATGCTTG	6060
ATTCCCTTA	CTCTCTAGGA	ACCGATGATA	AGAATCGTGT	TGGTATTGCC	AGCCTTGGTC	6120
ACTATGGAGA	ATCGTATTCT	CGTAGTGCTT	CTCTGTGAAT	GCCTGTTCCA	A	6171

(2) INFORMATION FOR SEQ ID NO: 38:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 18475 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:

60	TTAAACCAGG	TATACTTATG	TATGAAAGCC	AGGAGTGCTT	AAAAAAACGG	ТАТТАСАААТ
120	ACGCTATTGT	AAGCCAACAG	AGTTATTCGC	TAGACAAACC	TTTGTTGATG	ACTTGCTTCT
180	GGGATGTTCC	ATTATCAAAG	AGACCTCCAT	TTTGTGGAAC	ААААССАСТА	GCGTATTGTA
240	AAGAAGTTGG	GGGATTGTTG	CGAAGGGATT	TTCTTGGCCA	AGTGGTACCA	TACTTGCCAA
300	TCTGTGCCTG	ATTTCTTGCG	CAAGGTCTTG	AAAAAGGTGA	TCCAACTTCA	ggaaggagtt
360	AAGGGGGCTG	TGTGAAGACG	TTATGCTCAC	AAAAAGGAAT	TACTACTGTA	TGGTAAATGC
420	CTCATGCAGA	CTACGTGTCC	GGCTGAATAT	ATGGTATGCA	CACTTGATTG	GATTTTCGGT
480	TGCTGTCAGA	GCTTTGGTTA	GTCAGATGAA	CAGAAGACTT	TACCATACTC	TAATACTCTT
540	CTGGTTGCAG	AAAGTAGAAC	CTTAAAAGGG	AAATTGGTGT	ACTGGATATG	CATTCTGCCT
600	CCCAATTCTA	CTTTTAACAG	ATTGGCTGCT	GTCCAGTTGG	ATTGGTTCAG	CGTAGCCATT
660	CTGCCCTATC	CGCTTGGAAA	AGACGATAAC	TGGTAGACCT	AAATTGATTA	TTCACCAGCT
720	AAGAAATTTA	AAAGCCATTA	AGACCCTGAA	TTAATTCTTC	ACTCATAAGG	ATTCGGTGCG
780	TTCCTGCAAC	GCTGTTGGTA	CGCTATCGAA	GTGTGGATGT	GATGGTCGTG	TGATTTGACA
840	GTGGTGTGCA	GTTGCCAACT	AGACGGAACG	TTATCGGTGT	TGTCAAAAGA	ATTTGATTTC
900	ATGTAACAAC	CGCAACATCA	ACTTTGGATT	ATTTAGATAA	GTTGAATTCG	TGGTAAACCA
960	GTCATAAGAT	GCACTTGAAA	ATTGTTGAAA	CGACTCCACA	тстасааата	TGGTTTGGTA
1020	AAGCCTACGA	GAAATTGAAA	CAAACTCAGT	CTCACTATTT	AAATTGGTAA	TGAACCGGAA
1080	ACGATATCTC	ATTATCGAAA	CATTAAGGTC	ACCACCATGC	AAGGCAGCAG	AGTCTTCAGT
1140	GTCATCCATC	TAGAAATTCA	CATAAGTAAA	TATTTTTGTA	GTAGTAAAAA	AGAAGCCTAA
1200	CTTGTCTGGC	TATTTCTTTC	GAAATGAGCA	аааааааттаа	ATTTTTTATC	AGATGGCTGG
1260	TTATAGAAAT	ATGTATCGTG	ATGAATGAAT	GTACAAAGGA	ATAATATACG	GGAATTGGTT
1320	TTGTAGCAAG	GAAGAAGATA	AGAAGGTTGG	GGTGGTTCTT	TTTGAACCGT	GTACGGAGAT
1380	GGTTTAGATT	AAAACTTGCT	CAAATACTAC	ATGATGCTCT	GACCAGTATT	TAGAAAATTT
1440	TTTGGGACCC	ATGACCATTT	AAGCGACTTG	ATAAAAGTAG	TCGCCTCTTT	GGAACAAGAA
1500	ATTCTTTGGC	CAACAATACC	TGAGTATTTA	ATGAATGTGA	CGCTGGTGTG	GGAAGACCAA
1560	ATGAAAAACA	CGCTCAGGCT	CGAAAAACTA	TTATCCCAGA	GATGAGCAGG	TCTTTTGCAG
1620	AAGTAACTTT	AAATAGAGAA	TATGAAATTA	GTTCTTGCCG	GAAAGGAATC	AACCAGTCAG
1680	AGGAGGTAAG	AGTATAGGTG	CTTTGCGAAT	TTTTCTAACT	CTTTTTTAT	PTTGGAGTTG

			376			
TATGGTTCAA	GAAATTGCAC	AAGAAATCAT	TCGTTCAGCT	CGGAAAAAAG	GGACGCAGGA	1740
TATCTATTTT	GTCCCTAAGT	TAGACGCCTA	TGAGCTTCAT	ATGAGGGTAG	GAGACGAGCG	1800
СТСТААААТТ	GGTAGCTATG	ATTTTGAAAA	GTTTGCAGCC	GTTATCAGTC	ACTTTAAGTT	1860
TGTGGCGGGT	ATGAATGTGG	GAGAAAAAG	ACGTAGTCAA	CTGGGTTCCT	GTGATTATGC	1920
CTATGACCAT	AAGATAGCGT	CTCTACGTTT	ATCTACTGTA	GGCGATTATC	GGGGCATGA	1980
GAGTTTGGTT	ATCCGTTTGT	TGCACGATGA	GGAGCAGGAC	CTGCATTTTT	GGTTTCAGGA	2040
таттбаасаа	TTAGGCAAGC	AGTACAGGCA	ACGGGGACTC	TATCTTTTTG	CTGGTCCGGT	2100
TGGGAGTGGT	AAGACGACCT	TGATGCATGA	ATTGTCCAAG	TCACTCTTTA	AAGGACAGCA	2160
AGTTATGTCC	ATCGAAGATC	CTGTCGAAAT	CAAGCAGGAC	GACATGCTTC	AGTTGCAGTT	2220
GAACGAAGCA	ATCGGCCTAA	CCTATGAAAA	ТСТААТСААА	CTTTCCTTGC	GTCATCGACC	2280
AGATCTCTTG	ATTATCGGAG	AAATTCGTGA	CAGCGAGACG	GCGCGTGCAG	TGGTCAGAGC	2340
TAGTTTGACA	GGTGCGACAG	TCTTTTCAAC	CATTCACGCC	AAGAGTATCC	GAGGTGTTTA	2400
TGAGCGTCTG	CTGGAGTTGG	GTGTGAGTGA	AGAAGAATTG	GCAGTTGTTC	TGCAAGGAGT	2460
CTGCTACCAG	AGATTAATCG	GGGGAGGAGG	AATCGTTGAC	TTTGCAAGCA	GAGATTATCA	2520
AGAACACCAA	GCAGCCAAGT	GGAATGAGCA	AATTGACCAG	CTTCTTAAAG	ATGGACATAT	2580
CACAAGTCTT	CAGGCTGAGA	CGGAAAAAAT	TAGCTACAGC	TAAGCAAAAA	AATATCATCA	2640
CCCTATTTAA	CAATCTCTTT	TCTAGCGGTT	TTCATCTGGT	GGAGACTATC	TCCTTTTTAG	2700
ATAGGAGTGC	TTTGTTGGAC	AAGCAGTGTG	TGACCCAGAT	GCGTGTGGGC	TTGTCTCAGG	2760
GGAAATCATT	CTCAGAAATG	ATGGAAAGTT	TGGGATGTTC	AAGTGCTATT	GTCACTCAGT	2820
TATCCCTAGC	TGAAGTTCAT	GGCAATCTCC	ACCTGAGTTT	GGGAAAGATA	GAAGAATATC	2880
TGGACAATCT	GGCTAAGGTC	AAGAAAAAT	TGATTGAAGT	AGCGACCTAT	CCCTTGATTT	2940
TGCTGGGTTT	TCTTCTCTTA	ATTATGCTGG	GGCTACGGAA	TTACCTGCTC	CCACAACTGG	3000
ATAGTAGCAA	TATTGCCACC	CAAATTATCG	GTAATCTGCC	CCAAATTTTT	CTAGGCATGG	3060
TAGGGCTTGT	TTCCGTGCTT	GCCCTTTTAG	CACTCACTTT	TTATAAAAGA	AGTTCTAAGA	3120
TGAGTGTCTT	TTCTATCTTA	GCACGCCTTC	CCTTTATTGG	AATCTTTGTG	CAGACCTACT	3180
TGACAGCCTA	TTATGCACGT	GAATGGGGGA	ATATGATTTC	ACAGGGAATG	GAGTTGACGC	3240
AGATTTTTCA	AATGATGCAG	GAACAAGGTT	CCCAGCTCTT	TAAAGAAGTC	GGTCAAGATC	3300
TGGCTCAAAC	CCTGAAAAAT	GGCCGTGAAT	TTTCTCAGAC	GATAGGAACC	TATCCTTTCT	3360
TTAGGAAGGA	ATTGAGTCTC	ATCATAGAGT	ATGGGGAAGT	TAAGTCCAAG	CTGGGTAGTG	3420
AGTTGGAAAT	CTATGCTGAA	AAAACTTGGG	AAGCCTTTTT	TACCCGAGTC	AACCGCACCA	3480

rgaatttggt	GCAGCCACTG	GTTTTTATCT	TTGTGGCACT	GATTATCGTT	TTACTTTATG	3540
CGGCAATGCT	CATGCCCATG	ТАТСААААТА	TGGAGGTAAA	TTTTTAAAAT	GAAAAAATG	3600
ATGACATTCT	TGAAAAAAGC	TAAGGTTAAA	GCTTTTACAT	TGGTGGAGAT	GTTGGTGGTC	3660
PTGCTGATTA	TCAGCGTGCT	TTTCTTGCTC	TTTGTACCTA	ATCTGACCAA	GCAAAAAGAA	3720
GCAGTCAATG	ACAAAGGAAA	AGCAGCTGTT	GTTAAGGTGG	TGGAAAGCCA	GGCAGAACTT	3780
PATAGCTTAG	AAAAGAATGA	AGATGCTAGC	CTAAGAAAGT	TACAAGCAGA	TGGACGCATC	3840
ACGGAAGAAC	AGGCTAAAGC	TTATAAAGAA	TACAATGATA	AAAATGGAGG	AGCAAATCGT	3900
AAAGTCAATG	ATTAAGGCCT	TTACCATGCT	GGAAAGTCTC	TTGGTTTTGG	GACTTGTGAG	3960
PATCCTTGCC	TTGGGCTTGT	CCGGCTCTGT	CCAGTCCACT	TTTTCAGCGG	TAGAGGAACA	4020
GATTTTCTTT	ATGGAGTTTG	AAGAACTCTA	TCGGGAAACC	CAAAAACGCA	GTGTAGCCAG	4080
rcagcaaaag	ACTAGTCTGA	ACTTAGATGG	GCAGACGCTT	AGCAATGGCA	GTCAAAAGTT	4140
GCCAGTCCCT	AAAGGAATTC	AGGCCCCATC	AGGCCAAAGT	ATTACATTTG	ACCGAGCTGG	4200
GGCAATTCG	TCCCTGGCTA	AGGTTGAATT	TCAGACCAGT	AAAGGAGCGA	TTCGCTATCA	4260
ATTATATCTA	GGAAATGGAA	AAATTAAACG	CATTAAGGAA	ACAAAAAATT	AGGCAGTGA	4320
TTTTACTGGA	AGCAGTAGTC	GCTCTAGCTA	TCTTTGCCAG	CATTGCGACC	CTCCTTTTGG	4380
GACAAATTCA	AAAAAATAGG	CAAGAGGAAG	CAAAAATCTT	GCAAAAGGAA	GAAGTCTTGA	4440
GGTAGCTAA	GATGGCCCTG	CAGACGGGGC	AAAATCAGGT	AAGCATCAAC	GGAGTTGAGA	4500
TTCAGGTATT	TTCTAGTGAA	AAAGGATTGG	AGGTCTACCA	TGGTTCAGAA	CAGTTGTTGG	4560
CAATCAAAGA	GCCATAAGGT	CAAGGCTTTT	ACCTTGTTAG	AATCCCTGCT	TGCCCTCATT	4620
STCATCAGTG	GGGGATTACT	CCTTTTTCAA	GCTATGAGTC	AGCTCCTCAT	TTCAGAAGTT	4680
CGCTACCAGC	AACAAAGCGA	GCAAAAGGAG	TGGCTCTTGT	TTGTGGACCA	ACTTGAGGTA	4740
SAATTAGACC	GTTCGCAGTT	CGAAAAAGTA	GAAGGCAATC	GCCTATACAT	GAAGCAAGAT	4800
GCAAGGACA	TCGCCATCGG	TAAGTCAAAG	TCAGATGATT	TCCGTAAAAC	GAATGCTCGT	4860
GTCGAGGTT	ATCAGCCTAT	GGTTTATGGA	CTCAAATCTG	TACGGATTAC	AGAGGACAAT	4920
AACTGGTTC	GCTTTCATTT	CCAGTTCCAA	AAAGGCTTAG	AAAGGGAGTT	CATCTATCGT	4980
STGGAAAAAG	AAAAAGTTA	AGGCAGGTGT	TCTCCTCTAC	GCAGTCACCA	TAGCAGCCAT	5040
TTTAGTCTT	TTGTTGCAAT	TTTATTTGAA	CCGACAAGTC	GCCCACTATC	AAGACTATGC	5100
TTGAATAAA	GAAAAATTGG	TTGCTTTTGC	TATGGCTAAA	CGAACCAAAG	ATAAGGTTGA	5160
CAAGAAAGT	GGGGAACAGT	TTTTTAATCT	AGGTCAGGTA	AGCTATCAAA	ACAAGAAAAC	5220

			378			
TGGCTTAGTG	ACGAGGGTTC	GTACGGATAA	GAGCCAATAT	GAGTTTCTGT	TTCCTTCAGT	5280
СААААТСААА	GAAGAGAAAA	GAGATAAAAA	GGAAGAGGTA	GCGACCGATT	CAAGCGAAAA	5340
agtggagaag	AAAAAATCAG	AAGAGAAGCC	TGAAAAGAAA	GAGAATTCAT	AGTCAATTCA	5400
ACTATAATGC	GTTGAATCCA	GAATAGTCCA	CTGTAGTTTC	TAGAAAATTG	CTGGAAATGG	5460
ATGTTAAGCT	CCAATTCATT	TGTTTATATC	TTATTTCAGT	TTACTATACT	TTGTGCTAAA	5520
TTAAAGATAT	GAAACATGAT	TTTAACCACA	AAGCAGAAAC	TTTCGATTCC	CCTAAAAATA	5580
TCTTCCTCGC	AAACTTGGTA	TGTCAAGCAG	CCGAGAAACA	GATTGATCTT	CTATCAGACA	5640
AAGAAATTTT	AGATTTCGGT	GGTGGCACGG	GTCTATTAGC	CTTGCCCCTA	ACCCCTAGCC	5700
AAGCAGGCTA	AGTCAGTCAC	TCTTGTAGAC	ATTTCTGAGA	AAATGTTGGA	GCAAGCTCGT	5760
TTGAAAGTGG	AGCAGCAAGC	AATCAAGAAT	ATCCAGTTTT	TGGAGCAAGA	TTTACCGAAA	5820
AATCCCTTGG	AGAAAGAGTT	TGATTGCCTT	GCTGTTAGTC	GGGTTCTTCA	TCATATGCCT	5880
GATTTGGATG	CGGCTCTCTC	ACTGTTTCAT	CAACATTTGA	AGGAAGATGG	GAAACTCATC	5940
ATTGCTGATT	TTACCAAGAC	AGAAGCTAAT	CATCATGGAT	TTGATTTAGC	TGAACTGGAA	6000
AACAAGCTAA	TTGAGCATGG	TTTTTCATCT	GTGCATAGTC	AGATTCTCTA	TAGTGCTGAA	6060
GACCTGTTTC	AAGGAAATCA	CTCAGAATTC	TTTTTAATAG	TAGCCCAAAA	ATCACTCGCC	612
TAGTCAGGGA	GTGATTTTTC	TATAAGGATG	GAAAAAAGAA	GGGAAATTTG	GTAAGATAGG	6180
AATATGGATT	TTGAAAAAAT	TGAACAAGCT	TATACCTATT	TACTAGAGAA	TGTCCAAGTC	6240
ATCCAAAGTG	ATTTGGCGAC	CAACTTTTAT	GACGCCTTGG	TGGAGCAAAA	TAGCATCTAT	6300
CTGGATGGTG	AAACTGAGCT	AAACCAGGTC	AAGGAGAACA	ATCAAACCCT	TAAGCGTTTA	6360
GCACTACGCA	AAGAAGAATG	GCTCAAGACC	TACCAGTTTC	TCTTGATGAA	GGCTGGGCAA	6420
ACAGAACCCT	TGCAGGCCAA	TCACCAGTTT	ACACCGGATG	CTATTGCTTT	GCTTTTGGTG	6480
TTTATTGTGG	AAGAGTTGTT	TAAAGAGGAG	GAAATTACTA	TCCTCGAAAT	GGGTTCTGGG	6540
ATGGGAATTC	TAGGCGCTAT	TTTCTTGACC	TCGCTTACTA	AAAAGGTGGA	TTACTTGGGA	6600
ATGGAAGTGG	ATGATTTGCT	GATTGATCTG	GCAGCTAGCA	TGGCAGATGT	AATTGGTTTG	6660
CAGGCTGGCT	TTGTCCAAGG	AGATGCCGTT	CGCCCACAAA	TGCTCAAAGA	AAGCGATGTG	6720
GTCATCAGTG	ACTTGCCTGT	CGGCTATTAT	CCTGATGATG	CCGTTGCGTC	GCGCCATCAA	6780
GTTGCTTCTA	GCCAAGAACA	TACTTACGCC	CATCACTTGC	TCATGGAACA	AGGGCTTAAG	6840
PACCTCAAGT	CAGACGGATA	CGCTATTTTT	CTAGCTCCGA	GTGATTTGTT	GACCAGTCCT	6900
CAAAGTGATT	TGTTAAAAGA	ATGGCTGAAA	GAAGAGGCGA	GTCTGGTTGC	TATGATTAGT	6960
CTGCCTGAAA	ATCTCTTTGC	TAATGCCAAA	CAATCTAAGA	CTATTTTAT	CTTACAGAAG	7020

AAAAATGAAA	TAGCAGTAGA	GCCTTTTGTT	TATCCACTTG	CTAGCTTGCA	AGATGCAAGT	7080
GTTTTAATGA	AATTTAAAGA	AAATTTTCAA	AAATGGACTC	AAGGTACTGA	AATATAAAAT	. 7140
AGATTTTGTT	ATAATAGTTG	AAAACGCTTA	AAAAGGGGTA	TCATGTTATG	АСАААААСАА	7200
TTGCAATCAA	TGCAGGAAGT	TCAAGTTTGA	AATGGCAATT	ATACTTAATG	CCAGAAGAAA	7260
AAGTATTGGC	GAAAGGTTTG	ATTGAACGTA	TCGGTTTGAA	AGATTCAATT	TCAACTGTAA	7320
AATTTGACGG	CCGTTCTGAA	CAACAAATTT	TGGATATTGA	АААТСАТАТА	CAAGCCGTTA	7380
AAATTTTATT	GGATGACTTG	ATTCGTTTCG	АТАТТАТСАА	GGCTTATGAC	GAGATTACAG	7440
GTGTTGGACA	TCGTGTTGTT	GCTGGTGGAG	AATATTTCAA	AGAATCAACA	GTTGTTGAGG	7500
GAGATGTTTT	AGAAAAAGTT	GAAGAGTTGA	GTTTGTTGGC	TCCTCTACAC	AACCCGGCCA	7560
ATGCAGCAGG	TGTTCGTGCC	TTCAAGGAAT	TGTTGCCAGA	CATTACCAGT	GTAGTTGTTT	7620
PTGATACTTC	CTTCCACACA	AGTATGCCAG	AGAAAGCTTA	TCGCTACCCT	CTACCAACAA	7680
AATATTACAC	AGAAAACAAG	GTTCGTAAAT	ACGGTGCTCA	TGGTACAAGT	CACCAGTTTG	7740
PAGCAGGAGA	AGCTGCAAAA	CTCTTGGGAC	GTCCATTAGA	AGACTTGAAG	ттааттасст	7800
STCATATTGG	TAACGGAGGC	TCAATTACAG	CTGTGAAAGC	CGGCAAATCT	GTAGACACTT	7860
TATGGGGTT	CACTCCTCTT	GGTGGTATTA	TGATGGGAAC	GCGTACAGGG	GATATTGATC	7920
CAGCTATCAT	TCCTTATTTA	ATGCAATATA	CAGAGGATTT	TAACACACCA	GAAGATATCA	7980
STCGTGTTCT	TAACCGTGAA	TCAGGTCTTT	TGGGAGTTTC	TGCTAATTCT	AGCGATATGC	8040
CGATATAGA	AGCAGCTGTA	GCAGAAGGGA	ATCACGAGGC	TAGCTTGGCT	TATGAAATGT	8100
ATGTTGACCG	TATCCAAAAA	CATATCGGTC	AGTACCTTGC	AGTGCTAAAT	GGAGCAGATG	8160
CATTGTTTT	CACAGCAGGT	GTCGGTGAAA	ATGCAGAGAG	TTTCCGTCGT	GATGTAATCT	8220
CAGGGATTTC	GTGGTTTGGT	TGTGATGTTG	ATGATGAAAA	GAATGTCTTT	GGCGTTACAG	8280
SAGACATCTC	AACAGAGGCA	GCTAAAATCC	GTGTCTTGGT	TATTCCAACA	GATGAAGAAT	8340
AGTCATTGC	CCGTGACGTT	GAACGCTTGA	AAAAATAAGT	GAAACTAAAA	AAATATTCAA	8400
ACAAGGAGT	TGGGAAAGTT	ATTTTTCCAG	CTTCTTTTTC	TGATGAAATT	GTCCAAAACC	8460
TGCTATGAT	TGGCTTTTTT	GAAAAATATG	GTATAATAGT	AGTAATTTAA	TAGATGGAGT	8520
GAGTTTTGA	AGAAAAACTT	TCGTGTAAAA	AGAGAGAAAG	ATTTTAAGGC	GATTTTCAAG	8580
BAGGGGACAA	GTTTTGCTAA	TCGCAAATTT	GTGGTCTACC	AATTAGAAAA	CCAGAAAAAC	8640
CGTTTTCGAG	TAGGTCTATC	AGTTAGCAAA	AAACTGGGGA	ATGCCGTCAC	TAGAAATCAA	8700
TOTOTOTOTO	CCAPTCCCCA	TATTATCC AC	******	CCXCMCMCCM	A C A A C A MOREO	0760

			380			
GACTTTGTTG	TCATTGCTCG	AAAAGGAGTC	GAAACCTTGG	GATACGCAGA	GATGGAGAAA	882
AATCTACTCC	ATGTATTAAA	ATTATCAAAG	ATTTACCGGG	AAGGAAATGG	GAGTGAAAAA	888
GAAACTAAAG	TTGACTAGTT	TGCTAGGACT	GTCTCTGTTA	ATCATGACAG	CCTGTGCGAC	894
TAATGGGGTA	ACTAGCGATA	TTACAGCCGA	ATCGGCTGAT	TTTTGGAGTA	AATTGGTTTA	900
CTTCTTTGCG	GAAATCATTC	GCTTTTTATC	GTTTGATATT	AGTATCGGAG	TGGGGATTAT	906
TCTCTTTACG	GTCTTGATTC	GTACAGTCCT	CTTGCCAGTC	TTTCAGGTGC	AAATGGTGGC	912
TTCTAGGAAA	ATGCAGGAAG	CTCAGCCACG	CATTAAGGCG	CTTCGAGAAC	AATATCCAGG	918
TCGAGATATG	GAAAGCAGAA	CCAAACTAGA	GCAGGAAATG	CGTAAAGTAT	TTAAAGAAAT	9240
GGGTGTCAGA	CAGTCAGACT	CTCTTTGGCC	GATTTTGATT	CAGATGCCGG	TTATTTTGGC	930
CCTGTTCCAA	GCCCTATCAA	GAGTTGACTT	TTTAAAGACA	GGTCATTTCT	TATGGATTAA	9360
CCTTGGTAGT	GTGGATACAA	CCCTTGTTCT	TCCGATTTTA	GCAGCAGTAT	TCACCTTTTT	9420
AAGTACTTGG	TTGTCCAACA	AAGCTTTGTC	TGAGCGAAAT	GGCGCTACGA	CTGCGATGAT	9480
GTATGGGATT	CCAGTCTTGA	TTTTTATCTT	TGCAGTTTAT	GCGCCAGGTG	GAGTCGCCCT	9540
ATACTGGACA	GTGTCTAATG	CTTATCAAGT	CTTGCAAACC	TATTTCTTGA	ATAATCCATT	9600
CAAGATTATC	GCAGAGCGCG	AGGCCGTAGT	ACAGGCACAA	AAAGATTTGG	AAAATAGAAA	9660
AAGAAAAGCC	AAGAAAAAGG	CTCAGAAAAC	GAAATAAATA	AGGAGGAATC	TGGTAGTGGT	9720
AGTATTTACA	GGTTCAACTG	TTGAAGAAGC	AATCCAGAAA	GGATTGAAAG	AATTAGATAT	9780
TCCAAGAATG	AAGGCTCATA	TCAAAGTCAT	TTCTAGGGAG	AAAAAAGGCT	TTCTTGGTCT	9840
atttggtaaa	AAACCAGCCC	AAGTGGATAT	TGAAGCGATT	AGTGAAACGA	CTGTTGTCAA	9900
AGCAAATCAA	CAGGTAGTAA	AAGGCGTTCC	GAAAAAAATC	AATGATTTGA	ACGAGCCTGT	9960
GAAGACGGTT	agtgaagaaa	CCGTTGACCT	TGGTCATGTG	GTTGATGCTA	TTAAAAAAAT	10026
AGAGGAAGAA	GGTCAAGGTA	TTTCTGATGA	AGTCAAGGCT	GAAATCTTAA	AACATGAAAG	10080
ACATGCCAGC	ACTATCTTAG	AAGAAACTGG	TCACATTGAG	ATTTTAAATG	AACTTCAAAT	10140
CGAGGAAGCG	ATGAGGGAAG	AAGCAGGCGC	TGATGACCTT	GAAACTGAGC	AAGACCAAGC	10200
TGAAAGTCAA	GAACTAGAAG	ACTTGGGCTT	GAAAGTTGAA	ACGAACTTTG	ATATTGAACA	10260
AGTAGCTACG	GAAGTAATGG	CTTATGTTCA	AACGATTATT	GATGACATGG	ATGTTGAGGC	10320
PACACTTTCA	AATGATTATA	ACCGTCGTAG	CATCAATCTA	CAAATTGACA	CCAACGAACC	10380
AGGTCGTATT	ATCGGCTACC	ATGGTAAAGT	CTTGAAGGCC	TTGCAACTGT	TGGCTCAAAA	10440
PTATCTTTAC	AACCGCTATT	CCAGAACCTT	CTACGTTACA	ATCAATGTCA	ATGATTATGT	10500
CGAACACCGT	GCAGAAGTCT	TGCAGACCTA	TGCGCAAAAA	TTGGCGACTC	GTGTTTTGGA	10560

AGAAGGGCGC	AGTCATAAAA	CAGATCCAAT	GTCAAATAGC	GAACGCAAGA	TTATCCATCG	10620
TATTATTTCA	CGTATGGATG	GCGTGACTAG	TTACTCTGAA	GGTGATGAGC	CAAATCGCTA	10680
TGTTGTTGTA	GATACAGAAT	AAGTAAAATC	AGGTTTATCC	TGATTTTTTG	CTAGTTAGAG	10740
GAGGTTAAAC	TGATGTTGAA	TAAGATAAGA	GACTATTTAG	ACTTTGCTGG	TTTGCAGTAC	10800
CGTAATCCTG	ATAAAGCGGG	AGCAGAGCGA	GAGAAGATGC	TGGCATTCCG	CCACAAAGGA	10860
CAAGAGGCCC	GAAAGGTTTT	TACAGAACTG	GCCAAAGCCT	TTCAAGCAAG	CCATCCAGAA	10920
TGGCAACTCC	AACAGACTAG	CCAGTGGATG	AATCAGGCCC	AGCGTTTGAG	ACCACATTTT	10980
TGGGTTTATC	TACAGAGAGA	CGGACAAGTG	ACAGAACCTA	TGATGGCCTT	ACGTTTGTAT	11040
GGGACATCTA	CTGACTTTGG	AATTTCTTTG	GAAGTCAGTT	TCATCGAACG	TAAGAAGGAT	11100
GAGCAAACAC	TGGGCAAGCA	GGCCAAAGTT	TTAGACATTC	CAACCGTTAA	AGGGATTTAT	11160
TATCTAACCT	ACTCTAATGG	TCAAAGTCAA	CGGTGGGAGG	CGAATGAAGA	AAAGCGTCGT	11220
ACTTTACGCG	AGAAGGTGAG	AAGTCAAGAA	GTTCGAAAAG	TTTTAGTGAA	GGTAGATGTT	11280
CCTATGACAG	AAAATTCGTC	TGAAGAAGAA	ATCGTAGAAG	GCTTATTGAA	GTCTTATTCT	11340
AAAATTCTTC	CCTATTATCT	AGCTACGAGA	AAATAAGATA	ATTTGTAAAA	CATCATAAAT	11400
CATACAGTCC	AAGAGTGAAC	AGTCCGCTGT	GTAATTCTTG	GTCTTTTTGT	TTGCGCTTTC	11460
GCATTATATA	ATAAACTTAC	AAAAACAATT	CAAAAGGAGA	ACAATTATGG	AAGTCGTTTC	11520
AAGTGTTCTA	AATTGGTTTT	CTAGCAATAT	TTTGCAGAAT	CCCGCATTTT	TCGTAGGTTT	11580
ATTGGTGTTG	ATAGGATATG	CACTTTTGAA	AAAACCTGCC	CATGACGTTT	TTTCAGGGTT	11640
TGTTAAAGCA	ACAGTAGGGT	ATATGTTGCT	TAACGTGGGT	GCTGGTGGTT	TGGTTACAAC	11700
CTTTCGTCCA	ATCTTAGCAG	CTCTTAACTA	CAAATTCCAA	ATTGGTGCAG	CGGTTATCGA	11760
CCCTTACTTT	GGACTTGCTG	CAGCAAACAA	CAAAATTGTA	GCAGAGTTTC	CAGATTTTGT	11820
TGGAACTGCA	ACTACAGCTC	TATTGATTGG	TTTTGGAATA	AATATCTTGC	TCGTAGCTCT	11880
TCGAAAGATT	ACGAAGGTAA	GAACCCTCTT	TATTACTGGT	CACATCATGG	TACAACAAGC	11940
TGCAACAGTA	TCTCTTATGG	TTCTATTCTT	AGTACCACAA	TTGCGCAATG	CTTACGGTAC	12000
AGCAGCGATT	GGTATCATCT	GTGGACTTTA	CTGGGCAGTT	AGTTCAAATA	TGACTGTTGA	12060
GGCAACTCAA	CGCTTGACTG	GTGGTGGCGG	ATTTGCGATT	GGTCACCAAC	AGCAATTTGC	12120
AATCTGGTTT	GTAGATAAAG	TAGCAGGACG	CTTTGGTAAG	AAAGAAGAAA	GTTTAGACAA	12180
ICTTAAATTA	CCTAAGTTCC	TCTCAATCTT	CCACGATACA	GTTGTTGCAT	CTGCTACCTT	12240
GATGCTCGTA	TTCTTCGGAG	CCATTCTTTT	AATCTTGGGT	CCAGACATTA	TGTCTAATAA	12300

382 AGAAGTCATC ACTTCAGGAA CTCTATTCAA TCCTGCTAAA CAAGATTTCT TTATGTACAT 12360 TATCCAAACA GCCTTTACCT TCTCAGTTTA CTTGTTCGTT TTGATGCAAG GTGTCCGAAT 12420 GTTCGTATCT GAGTTGACAA ACGCCTTCCA AGGTATTTCA AACAAATTGT TGCCAGGTTC 12480 ATTCCCAGCG GTTGACGTTG CAGCTTCTTA TGGATTTGGT TCTCCAAATG CTGTCTTGTC 12540 AGGATTTACC TTTGGTTTGA TTGGTCAATT GATTACAATT GTTTTGCTCA TCGTCTTTAA 12600 AAATCCGATT CTTATTATTA CAGGATTTGT ACCAGTGTTC TTTGACAATG CAGCCATTGC 12660 GGTCTACGCT GATAAACGCG GCGGATGGAA AGCGGCTGTT ATCCTTTCCT TTATATCAGG 12720 TGTCCTTCAA GTTGCTCTAG GAGCTCTTTG TGTGGCCCTT CTCGATTTGG CATCTTATGG 12780 TGGCTACCAT GGAAATATCG ACTTTGAATT CCCATGGCTT GGATTTGGAT ATATCTTCAA 12840 ATACCTTGGT ATTGTTGGTT ATGTACTTGT GTGTCTCTTC TTGCTTGTTA TTCCTCAACT 12900 TCAATTTGCC AAAGCAAAAG ATAAAGAGAA ATATTACAAC GGTGAAGTTC AAGAAGAAGC 12960 TTAGTATCTA GAAAAGGAGA AATAAAATGG TTAAAGTATT AGCAGCGTGC GGAAATGGAA 13020 TGGGTTCATC AATGGTTATC AAGATGAAGG TTGAAAATGC TCTCCGTAAG CTTAATCAAA 13080 CAGATTTTAC AGTCAATTCA TGCAGTGTCG GTGAAGCTAA AGGTTTAGCA GTAGGATATG 13140 ACATCGTAAT CGCTTCTCTT CATTGATTC AAGAATTGGA AGGGCGAACT AATGGGAAGT 13200 TAATTGGGCT TGATAACTTG ATGGATGATA AAGAAATCAC CGAAAAACTC AGTCAAGCAC 13260 TACAGTAAAA GGTTGGAGGG GGCTGGACAG AAACTGAGAG TTATCGTTTC TGTCCTTCTC 13320 CCTCTTTAAA TAAAGGAGGC AGATATGAAT TTAAAACAAG CTTTAATTGA CAATGACTCG 13380 ATCCGACTAG GTTTAGAGGC TAACAATTGG AAAGAAGCAG TCAAGGTAGC AGTAGATCCC 13440 TTAATTGAAA GTGGGGCAAT TTTGCCAGAG TATTACGATG CTATCATTGA ATCGACTGAA 13500 GAGTATGGGC CTTACTATAT CTTGATGCCA GGTATGGCTA TGCCCCACGC TAGACCTGAA 13560 GCAGGTGTGC AAAGTGATGC CTTTTCATTG ATTACCTTAC AAAATCCTGT TGTATTTTCA 13620 GATGGGAAAG AGGTATCTGT TTTGTTGGCA CTAGCAGCAA CAAGTTCAAA AATTCACACA 13680 AGTGTAGCCA TTCCACAAAT TATTGCCCTA TTTGAATTAG AAGATTCTAT TGCACGTTTA 13740 CAGGCTTGCC AGACTAAAGA AGATGTCTTG GCTATGATTG AAGAATCTAA GGATAGCCCT 13800 TATCTCGAAG GATTGGATTT GGAAAGTTAG AAAGAGGAAT AAAGAAATGA CAAAAAGAAT 13860 ACCTAATTTA CAAGTTGCAT TAGACCATTC AGACTTGCAA GGAGCGATTA AAGCAGCTGT 13920 TTCTGTTGGT CAGGAAGTAG ATATTATCGA AGCTGGAACT GTTTGCTTGC TTCAAGTTGG 13980 AAGTGAACTG GCTGAAGTCT TGCGTAGCCT TTTCCCAGAT AAGATTATTG TGGCAGACAC 14040 AAAATGTGCT GATGCTGGTG GAACAGTTGC TAAAAATAAT GCGGTTCGTG GAGCAGACTG 14100

GATGACTTGT	ATCTGTTGTG	CAACCATCCC	TACTATGGAA	GCAGCTCTAA	AGGCTATCAA	14160
GACTGAACGA	GGAGAACGAG	GCGAAATCCA	GATCGAGCTT	TATGGCGATT	GGACTTTTGA	14220
ACAAGCTCAG	CTTTGGCTAG	ATGCAGGTAT	CTCACAAGCT	ATTTATCACC	AATCTCGTGA	14280
TGCTCTTCTT	GCTGGTGAAA	CTTGGGGTGA	AAAAGACCTT	AATAAGGTTA	AAAAACTCAT	14340
TGACATGGGC	TTCCGTGTAT	CTGTAACAGG	TGGTCTAGAT	GTAGATACTC	TCAAACTCTT	14400
TGAAGGTATT	GATGTCTTTA	CCTTTATCGC	AGGTCGTGGA	ATTACAGAGG	CTGTGGATCC	14460
AGCAGGAGCA	GCGCGTGCCT	TCAAGGATGA	AATCAAACGA	ATTTGGGGGT	AAATCATGGT	14520
ACGTCCAATT	GGAATTTATG	AAAAGGCAAC	CCCAACACAC	TGTACTTGGC	TAGAACGTTT	14580
AAATTTTGCC	AAGGAGTTAG	GCTTTGATTT	TGTCGAGATG	TCTATTGACG	AACGTGACGA	14640
GCGTTTAGCA	AGACTTGACT	GGAGTAAGGA	AGAACGCTTG	GAAGTTGTCA	AAGCAATCTA	14700
TGAAACTGGT	GTTCGTATTC	CTTCTATCTG	TTTTTCAGGC	CATCGTCGCT	ACCCATTGGG	14760
TTCAAAAGAT	CCAGTTCTAG	AGGAAAAATC	TCTAGAACTC	ATGAAAAAAT	GTATCGAATT	14820
AGCTCAAGAC	TTGGGAGTTC	GTACGATTCA	ATTAGCTGGT	TACGATGTTT	ACTATGAGGA	14880
AAAGTCAĆCC	CAGACACGCC	AACGTTTTAT	CAAAAATTTG	AGAAAAGCCT	GTGACTGGGC	14940
TGAAGAAGCT	CAGGTGGTAC	TTGCTATTGA	AATTATGGAT	GATCCTTTCA	TCAGTAGCAT	15000
CGAAAAATAT	TTGGCTATAG	AAAAAGAGAT	TGACTCTCCC	TTCCTCTTTG	TATATCCAGA	15060
TATTGGTAAT	GTGTCTGCAT	GGCATAATGA	TATCTATAGT	GAGTTTTATC	TTGGTCATCA	15120
TGCCATCGCA	GCTCTCCATC	TCAAGGATAC	TTATGCAGTG	ACAGAAAGTT	CAAAGGGCCA	15180
GTTCCGAGAT	GTACCTTTCG	GGCAAGGTTG	TGŤCAAATGG	GAAGAAGCTT	TCGATATTTT	15240
AAAGGAAACC	AATTATAATG	GACCTTTCCT	AATCGAAATG	TGGTCTGAAA	ATTGTGAAAC	15300
AGTAGAAGAA	ACACGCGCAG	CCATTCAAGA	GGCGCAAGCT	TTTCTCTATC	CACTCATTAA	15360
GAAAGCAGGT	TTGATGTAAG	ATGAATCAAG	TAATCAATGC	TATGCGTAAA	CGAGTCTGTG	15420
ATGCCAATCA	ATCATTGCCA	AAACATGGAC	TTGTCAAATT	TACCTGGGGG	AATGTATCTG	15480
AAGTTAATCG	CGAACTCGGT	GTCATTGTTA	TCAAACCATC	AGGCGTGGAT	TATGACGAAT	15540
TGACACCTGA	AAACATGGTA	GTGACTGATC	TAGATGGTAA	GATCCTAGAA	GGGGATTTAA	15600
GACCATCTTC	CGACCTCCCA	ACTCATGTGC	AATTATATAA	GACTTGGTCA	GAAATTGGTA	15660
GTGTGGTTCA	CACCCATTCG	ACAGAAGCTG	TTGGTTGGGC	TCAGGCAGGT	CGTGATATTC	15720
CTTTCTACGG	AACAACCCAT	GCAGATTATT	TCTACGGTTC	AATCCCTTGC	GCCCGTAGTT	15780
TGACCAAGGA	CGAAGTAGAA	GTGGCCTATG	AAAAAGATAC	TGGCCTGGTT	ATCGTAGAAG	15840

			384			
AGTTTGAACA	TCGCGGACTT	AACCCGGTTG	AAGTACCAGG	AATTGTTGTA	CGCAATCACG	1590
GTCCATTCAC	CTGGGGCAAA	AATCCAGAGA	ATGCTGTTTA	TCACTCTGTC	GTACTAGAGG	15960
AAGTATCAAA	GATGAATCGC	TTTACAGAAC	AAATCAATCC	AAGAGTTGGA	CCTGCTCCCC	16020
AGTACATACT	AGAAAAACAC	TACCAACGTA	AACATGGACC	AAATGCTTAT	TATGGTCAAA	16080
AGTAAGAACG	ATGAAGGAGG	AGAAAAAGAT	AAATTTAGCT	CCTCTTTTTA	CATTTGATTT	16140
TTATTGAGAG	TAAAGTTGGA	GTTGAAGTAA	TTTTAAAAGA	TTTTTTAGAA	ATAGCGCTTG	16200
ТАТАТАТАТА	GGTAAAATAA	AAAGAATTGC	TGTGATATCA	ATAGATTTGG	GGGATTTTTT	16260
AATATGGTAC	TGGATAAGGC	AAGTTGTGAT	TTGCTTCAAT	ATTTGATGGA	TCAAGAAACG	16320
TCCAAAACGA	TTATGGCGAT	TTCGAAAGAT	TTGAAAGAGT	CAAGAAGGAA	AATTTATTAT	16380
CACATTGACA	AAATCAATGC	TGCTCTGGGT	GACGAGGCGC	TTCACATCAT	TAGTATTCCA	16440
CGAATTGGTA	TTCACTTAAC	GGAAGAGCAG	AGAGATGCTT	GTTGTAAACT	ATTATCGGAA	16500
GTAGATTCGT	ACGATTATAT	CATGAGTGCG	CATGAACGTA	TGATGATAAT	GTTACTATGG	16560
ATAGGTATTT	CTAAAGAACG	TATTACGATT	GAAAAATTGA	TAGAGTTAAC	AGAGGTATCT	16620
AGGAATACTG	TTCTCAATGA	TTTGAATAGT	ATTCGTTATC	AACTAACTTT	GGAACAATAT	16680
CAGGTGATCT	TGCAAGTGAG	CAAGTCACAG	GGATACAACC	TTCATGCCCA	CCCTCTTAAT	16740
AAAATTC AGT	ATCTTCAATC	GCTTCTATAT	CATATTTTTA	TGGAAGAAAA	TGCCACTTTT	16800
STATCTATTT	TAGAAGATAA	GATGAAAGAG	AGGTTAGATG	ATGAGTGTTT	GCTTTCTGTT	16860
GAAATGAACC	AATTTTTTAA	GGAACAGGTT	CCTTTAGTTG	AACAAGATTT	AGGGAAGAAA	16920
ATAAACCATC	ATGAAATAAC	TTTTATGTTG	CAGGTTCTAC	CTTATTTGCT	GTTAAGCTGT	16980
CATAATGTTG	AACAGTATCA	AGAAAGACAT	CAGGATATAG	AGAAAGAATT	TTCTTTGATA	17040
AGAAAAAGAA	TAGAGTATCA	GGTGTCTAAG	AAATTAGGAG	AACGGTTGTT	TCAAAAGTTT	17100
SAAATTTCTT	TGTCAGGACT	TGAAGTTTCT	CTTGTAGCTG	TTCTCCTCCT	CTCCTATCGT	17160
AAGATTTGG	ATATTCATGC	AGAAAGTGAT	GATTTTCGGC	ААТТААААСТ	TGCTTTAGAA	17220
SAATTTATCT	GGTATTTTGA	ATCACAAATC	CGAATGGAGA	TTGAGAACAA	GGATGATTTG	17280
TACGAAATT	TGATGATCCA	CTGTAAAGCC	TTGTTATTTA	GAAAGACTTA	CGGTATTTTT	17340
СТАААААТС	CTCTAACAAA	ACAAATTCGA	TCCAAGTATG	GAGAATTATT	TTTAGTCACT	17400
GAAAATCTG	CGGAAATTTT	AGAAGGAGCA	TGGTTTATTC	GGCTAACAGA	CGATGATATT	17460
CCTATTTGA	CGATTCATAT	TGGAGGATTT	ТТААААТАТА	CACCATCATC	ТСАААААА	17520
TGAAAAAAG	TTTATCTCGT	TTGTGATGAA	GGTGTTGCGG	TTTCGAGACT	TTTGCTGAAA	17580
AATGCAAAC	TTTATTTTCC	AAATGAGCAA	ATTGACACTG	TATTTACAAC	AGAACAATTT	17640

385

AAGAGTGTGG	AAGATATTGC	ACAAGTTGAT	GTAGTGATTA	CTACTAATGA	TGATTTGGAT	17700
AGCAGATTTC	CGATTTTAAG	GGTTAATCCT	ATCCTTGAAG	CAGAAGATAT	TTTGAAAATG	17760
CTAGACTATC	TTAAACACAA	TATATTTCGT	AATAAGAGCA	AAAGTTTCAG	TGAAAATCTT	17820
TCTAGTCTTA	TTTCGTCTTA	TATTGTAGAC	AGCAAGTTGG	CTAGTAAGTT	CCAAGAAGAG	17880
GTTCAAACAC	TTATAAATCA	AGAAATAGTA	GTTCAAGCTT	TTTTGGAAGr	TATTTGAAGG	17940
ACAGTCCAAT	GATGAACACA	AACCTGTGTk	TTTCsTGGTC	TTTTTTAGTG	TTTTGAAGGG	18000
TGGkatacta	ATCTCAAAGA	TAACAATTAT	ATCCAAAGGA	GGCAACATAT	GCCAAACGTC	18060
AAAGAAATTA	CAAGAGAGTC	ATGGATTTTA	GCCACTTTCC	CAGAGTGGGG	AACATGGTTG	18120
AACGAAGAAA	TCGAAGAAGA	AGTCGTACCT	GAAGGCAACT	TTGCCATGTG	GTGGCTAGGC	18180
AACTGTGGTA	CTTGGATTAA	GACACCAGCT	GGTGCTAACG	TTGTCATGGA	CCTTTGGTCA	18240
AACCGTGGAA	AATCAACCAA	aaaagtgaaa	GATATGGTTC	GTGGGCACCA	AATGGCAAAT	18300
ATGGCAGGTG	TTCGTAAGCT	GCAACCAAAC	TTGCGTGTTC	AGCCAATGGT	TATCGATCCA	18360
TTTGCTATCA	ACGAACTAGA	CTATTACTTA	GTTTCACACT	TCCACAGTGA	TCATATCGAC	18420
CCATACACAG	CTGCAGCAAT	TCTCAATAAT	CCTAAGTTAG	AGCATGTTAA	GTTGG	18475
(2) TNPODM	MTON POD CI	O TO NO. 30	٠.			

(2) INFORMATION FOR SEQ ID NO: 39:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 7186 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:

CCAGGATTTG	GTACCGTTGC	AAGTGGTGTG	CCTTTCCTCC	TAAAGGAAAA	TGGAGGAAAA	60
ATCAATCAAT	CAGCACATTC	AGATATCAAA	GTTGCTAAGG	TATTGGTCAA	GGATGAAGAT	120
GAAAAAATC	GCTTGCTTGC	AGCAGGGAAT	GACTTTAACT	TTGTAACCAA	TGTGGATGAT	180
ATTTTATCAG	ACCAGGATAT	TACTÁTCGTA	GTGGAATTGA	TGGGGCGTAT	TGAGCCTĞCT	240
AAAACCTTTA	TCACTCGTGC	CTTGGAAGCT	GGAAAACACG	TTGTTACTGC	TAACAAGGAC	300
CTTTTAGCTG	TCCATGGCGC	AGAATTGCTA	GAAATCGCTC	AAGCTAACAA	GGTAGCACTT	360
TACTACGAAG	CAGCAGTTGC	TGGTGGGATT	CCAATTCTTC	GTACTTTAGC	AAATTCCTTG	420
GCTTCTGATA	AAATTACGCG	CGTGCTTGGA	GTAGTCAACG	GAACTTCCAA	CTTCATGGTG	480
ACCAAGATGG	TGGAAGAAGG	CTGGTCTTAC	GATGATGCTC	TTGCGGAAGC	ACAACGTCTA	540

			386			
GGATTTGCAG	AAAGCGATCC	GACGAATGAC	GTAGATGGGA	TTGATGCAGC	CTACAAGATG	60
GTTATTTTGA	GCCAATTTGC	CTTTGGCATG	AAGATTGCCT	TTGATGATGT	AGCCCACAAG	66
GGAATCCGCA	ATATCACACC	AGAAGACGTA	GCTGTAGCTC	AAGAGCTTGG	TTACGTAGTG	72
AAATTGGTTG	GTTCTATTGA	GGAAACTTCT	TCAGGTATTG	CTGCAGAAGT	GACTCCAACC	78
TTCCTACCTA	AAGCGCACCC	ACTTGCTAGT	GTGAATGGCG	TAATGAACGC	TGTCTTTGTA	84
GAATCTATCG	GTATTGGTGA	GTCTATGTAC	TACGGACCAG	GTGCGGGTCA	AAAACCAACT	90
GCAACAAGTG	TTGTAGCTGA	TATTGTCCGT	ATCGTTCGTC	GTTTGAATGA	TGGTACTATT	96
GGCAAAGACT	TCAACGAATA	TAGCCGTGAC	TTGGTCTTGG	CAAATCCTGA	AGATGTCAAA	102
GCAAACTACT	ATTTCTCAAT	CTTGGCTCTA	GACTCAAAAG	GTCAGGTCTT	GAAGTTGGCT	108
GAAATCTTCA	ATGCTCAAGA	TATTTCCTTT	AAGCAAATCC	TTCAAGATGG	CAAAGAGGGT	114
GACAAGGCGC	GTGTCGTTAT	CATCACACAC	AAGATTAATA	AAGCCCAGCT	TGAAAATGTC	120
TCAGCTGAAT	TGAAGAAGGT	TTCAGAATTC	GACCTCTTGA	ATACCTTCAA	GGTGCTAGGA	126
GAATAAGATG	AAGATTATTG	TACCTGCAAC	CAGTGCCAAT	ATCGGGCCAG	GTTTTGACTC	1320
GGTCGGTGTA	GCTGTAACCA	AGTATCTTCA	AATTGAGGTC	TGCGAAGAAC	GAGATGAGTG	1380
GCTGATTGAA	CACCAGATTG	GCAAATGGAT	TCCACATGAC	GAGCGTAATC	TCTTGCTCAA	1440
AATCGCTTTG	CAAATTGTAC	CAGACTTGCA	ACCAAGACGC	TTGAAAATGA	CCAGTGATGT	1500
CCCTTTGGCG	CGCGGTTTGG	GTTCTTCCAG	CTCGGTTATC	GTTGCTGGGA	TTGAACTAGC	1560
CAACCAACTG	GGTCAACTCA	ACTTATCAGA	CCATGAAAAA	TTGCAGTTAG	CGACCAAGAT	1620
TGAAGGGCAT	CCTGACAATG	TGGCTCCAGC	CATTTATGGT	AATCTCGTTA	TTGCAAGTTC	1680
TGTTGAAGGG	CAAGTCTCTG	CTATCGTAGC	AGACTTTCCA	GAGTGTGATT	TTCTAGCTTA	1740
CATTCCAAAC	TATGAATTAC	GTACTCGCGA	CAGCCGTAGT	GTCTTGCCTA	AAAAATTGTC	1800
TTATAAGGAA	GCTGTTGCTG	CAAGTTCTAT	CGCCAATGTA	GCGGTTGCTG	CCTTGTTGGC	1860
AGGAGACATG	GTGACCGCTG	GGCAAGCAAT	CGAGGGAGAC	CTCTTCCATG	AGCGCTATCG	1920
TCAGGACTTG	GTAAGAGAAT	TTGCGATGAT	TAAGCAAGTG	ACCAAAGAAA	ATGGGGCCTA	1980
TGCAACCTAC	CTTTCTGGTG	CTGGGCCGAC	AGTTATGGTT	CTGGCTTCTC	ATGACAAGAT	2040
GCCAACAATT	AAGGCAGAAT	TGGAAAAGCA	ACCTTTCAAA	GGAAAACTGC	ATGACTTGAG	2100
AGTTGATACC	CAAGGTGTCC	GTGTAGAAGC	AAAATAAAGA	ATAGAAGATA	GGATGGGGAA	2160
ACTCTTGACC	AGAGGGGTTC	ATATCCTTTT	TGTGAAAAGA	AGTTTATACT	CAATGAAAAT	2220
CAAAGAGCAA	ACTAGGAAGC	TAGCCGCAGG	CTGCTCAAAA	CAGTGTTTTG	AGGTTGCAGA	2280
TAGAACTGAC	GAAGTCAGCT	CAAGACACTG	TTTTGAGGTT	GCAGATAGAA	CTGACGAAGT	2340

CAGTAACCAT	ACTACGGTAA	GGTGACGCTG	ACGTGGTTTG	AAGAGATTTT	CGAAGAGTAT	2400
TAGTTAAAAA	CGTGATAAAG	GAGAAATAAA	GATGGCAGAA	ATTTATCTAG	CAGGTGGTTG	2460
TTTTTGGGGC	CTAGAGGAAT	ATTTTTCACG	CATTTCTGGA	GTGCTAGAAA	CCAGTGTTGG	2520
CTACGCTAAT	GGTCAAGTCG	AAACGACCAA	TTACCAGTTG	CTCAAGGAAA	CAGACCATGC	2580
AGAAACGGTC	CAAGTGATTT	ACGATGAGAA	GGAAGTGTCA	CTCAGAGAGA	TTTTACTTTA	2640
TTATTTCCGA	GTTATCGATC	СТСТАТСТАТ	CAATCAACAA	GGGAATGACC	GTGGTCGCCA	2700
ATATCGAACT	GGGATTTATT	ATCAGGATGA	AGCAGATTTG	CCAGCTATCT	ACACAGTGGT	2760
GCAGGAGCAG	GAACGCATGC	TGGGTCGAAA	GATTGCAGTA	GAAGTGGAGC	AATTACGCCA	2820
CTACATTCTG	GCTGAAGACT	ACCACCAAGA	CTATCTCAGG	AAGAATCCTT	CAGGTTACTG	2880
TCATATCGAT	GTGACCGATG	CTGATAAGCC	ATTGATTGAT	GCAGCAAACT	ATGAAAAGCC	2940
TAGTCAAGAG	GTGTTGAAGG	CCAGTCTATC	TGAAGAGTCT	TATCGTGTCA	CACAAGAAGC	3000
TGCTACAGAG	GCTCCATTTA	CCAATGCCTA	TGACCAAACC	TTTGAAGAGG	GGATTTATGT	3060
AGATATTACG	ACAGGTGAGC	CACTCTTTTT	TGCCAAGGAT	AAGTTTGCTT	CAGGTTGTGG	3120
TTGGCCAAGT	TTTAGCCGTC	CGATTTCCAA	AGAGTTGATT	CATTATTACA	AGGATCTGAG	3180
CCATGGAATG	GAGCGAATTG	AAGTTCGTTC	TCGTTCAGGC	AGTGCTCACT	TGGGTCATGT	3240
TTTCACAGAT	GGACCGCGGG	AGTTAGGCGG	CCTCCGTTAC	TGTATCAATT	CTGCTTCTTT	3300
ACGCTTTGTG	GCCAAGGATG	AGATGGAAAA	AGCAGGATAT	GGCTATCTAT	TGCCTTACTT	3360
AAACAAATAA	AACAGAGAGT	GGGGCTTCCC	ACTTTCTTCA	TTTCTAGAAT	ATGAATAGAA	3420
GGGATTTATG	AAACACCTAT	TATCTTACTT	CAAACCCTAC	ATCAAGGAAT	CAATTTTAGC	3480
CCCCTTGTTC	AAGCTGTTAG	AAGCTGTTTT	TGAGCTCTTG	GTTCCCATGG	TGATTGCTGG	3540
GATTGTTGAC	CAATCTTTAC	CTCAGGGAGA	TCAAGGTCAT	CTCTGGATGC	AGATTGGCCT	3600
GCTCCTTATC	TTTGCAGTAA	TTGGCGTTTT	AGTGGCCTTG	ATAGCTCAAT	TTTACTCAGC	3660
AAAGGCAGCA	GTAGGTTCTG	CTAAGGAATT	GACAAACGAT	CTTTATCGTC	ATATTCTTTC	3720
CTTGCCCAAG	GACAGCAGAG	ACCGTCTGAC	AACTTCTAGT	TTGGTCACTC	GCTTGACTTC	3780
GGATACCTAC	CAGATTCAGA	CTGGTATCAA	TCAATTCCTG	CGTCTCTTTT	TACGAGCGCC	3840
CATTATCGTT	TTTGGTGCCA	TTTTTATGGC	TTATCGAATC	TCAGCTGAGT	TGACTTTCTG	3900
GTTCTTAGTC	TTGGTTGCCA	TTTTGACCAT	TGTCATTGTA	GGGTTATCTC	GATTGGTCAA	3960
TCCTTTCTAC	AGTAGTCTCA	GAAAGAAAAC	GGACCAACTG	GTTCAGGAAA	CGCGCCAGCA	4020
ATTGCAAGGG	ATGCGGGTTA	TTCGTGCTTT	TGGTCAAGAA	AAACGAGAGT	TACAGATTTT	4080

			388			
TCAAACCCTT	AACCAAGTTT	ATGCTAGATT	ACAAGAAAAG	ACAGGTTTCT	GGTCTAGTTT	4140
ATTAACACCT	CTGACCTATC	TGATTGTCAA	TGGAACTCTT	CTCGTTATTA	TCTGGCAAGG	4200
CTATATTTCA	ATTCAAGGAG	GAGTGCTCAG	TCAAGGTGCT	CTCATTGCTC	TTATCAATTA	4260
CCTCTTACAG	ATTTTGGTGG	AATTGGTCAA	GCTAGCCATG	TTGATCAATT	CCCTCAACCA	4320
GTCCTATATC	TCAGTCAAGC	GAATCGAGGA	AGTCTTTGTT	GAGGCTCCAG	AGGATATCCA	4380
TTCAGAGTTA	GAACAAAAGC	AAGCTACCAG	AGATAAGGTT	TTACAAGTCC	AAGAATTGAC	4440
CTTTACCTAT	CCTGATGCGG	CCCAGCCTTC	TCTGAGATAC	ATTTCCTTTG	ATATGACTCA	4500
AGGACAAATT	CTAGGTATCA	TCGGGGGAAC	TGGTTCTGGT	AAATCAAGCT	TGGTGCAACT	4560
CTTACTTGGA	CTTTATCCAG	TAGACAAGGG	GAACATTGAC	СТТТАТСААА	ATGGACGTAG	4620
TCCTCTTAAT	TTGGAGCAGT	GGCGGTCTTG	GATTGCCTAT	GTACCTCAAA	AGGTCGAACT	4680
CTTTAAAGGA	ACCATTCGTT	CCAACTTGAC	TCTAGGTTTC	AATCAAGAAG	TATCTGACCA	4740
GGAACTCTGG	CAGGCCTTGG	AGATTGCGCA	AGCTAAGGAT	TTTGTCAGTG	AAAAGGAAGG	4800
ACTCTTGGAT	GCTCTAGTTG	AGGCAGGGG	GCGAAATTTC	TCAGGTGGAC	AAAAACAAAG	4860
ATTGTCTATC	GCCCGAGCAG	TCTTGCGCCA	GGCTCCGTTT	CTCATCCTAG	ATGATGCAAC	4920
CTCGGCACTG	GATACCATTA	CAGAGTCCAA	GCTCTTGAAA	GCTATTAGAG	AAAATTTTCC	4980
AAACACGAGC	TTAATTTTGA	TCTCTCAACG	AACCTCAACT	TTACAGATGG	CGGACCAGAT	5040
TCTCCTCTTG	GAAAAAGGTG	AGTTGCTAGC	TGTTGGCAAG	CACGATGACT	TGATGAAATC	5100
CAGCCAAGTC	TATTGTGAAA	TCAATGCATC	CCAACATGGA	AAGGAGGACT	AGAATGAAAC	5160
GACAAACTGT	AAACCAGACG	CTCAAACGTT	TAGCCGTAGA	TTTAGCAAGC	CATCCTTTCC	5220
TCCTTTTCCT	AGCCTTTCTA	GGAACTATTG	CCCAAGTTGG	CTTATCAATT	TACCTACCTA	5280
TTCTGATTGG	GCAGGTCATT	GACCAAGTCC	TAGTGGCTGG	TTCATCACCA	GTTTTTTGGC	5340
AGATTTTTCT	CCAGATGCTC	TTGGTGGTAA	TAGGAAATAC	TCTGGTACAA	TGGGCCAATC	5400
СТСТССТСТА	TAATCGTCTA	ATCTTCTCTT	ATACCAGAGA	TTTACGGGAG	CGAATCATCC	5460
ATAAGCTCCA	TCGTTTACCG	ATTGCCTTTG	TAGATAGGCA	AGGTAGTGGA	GAGATGGTTA	5520
GTCGTGTAAC	CACGGACATC	GAACAGTTGG	CAGCTGGCTT	GACCATGATT	TTTAACCAAT	5580
TTTTCATTGG	TGTTTTGATG	ATTTTGGTCA	GTATTCTAGC	CATGCTCCAA	ATTCATCTCC	5640
TCATGACTCT	CTTAGTCTTG	CTGTTGACGC	CACTGTCCAT	GGTGATTTCA	CGCTTTATTG	5700
CCAAGAAATC	CTATCATCTC	TTCCAGAAGC	AAACAGAGAC	GAGGGGAATT	CAGACTCAGT	5760
TGATTGAAGA	ATCGCTTAGT	CAGCAGACTA	TAATCCAGTC	CTTCAATGCT	CAAACAGAAT	5820
ጥልጥር ርልልልር	ATTCCCTCAC	CCTCATGACA	ACTACTORGO	СФАФФСФСАС	TC ACCC ATTCT	5990

389

AACGGTCAAT	CCTTCGACTC	GCTTTGTAAA	TGCACTCATT	TATGCCCTTT	5940
AGGAGCTTAT	CGTATCATGA	TGGGTTCAGC	CTTGACCGTC	GGTCGTTTAG	6000
GAACTATGTT	CAGCAATACA	CCAAGCCCTT	TAACGATATT	TCTTCAGTGC	6060
GCAAAGTGCT	CTGGCTTGCG	TAGAGCGTAT	CTATGGAGTC	TTAGATAGCC	6120
TGAAACAGGT	AAGGAAGTCT	TGACGACCAG	TGACCAAGTT	AAGGGAGCTA	6180
ACATGTCTCT	TTTGGCTACC	ATCCTGAAAA	AATTTTGATT	AAGGACTTGT	6240
TCCAGCTGGT	AGTAAGGTAG	CCATCGTTGG	TCCGACAGGT	GCTGGAAAAT	6300
CAATCTCCTT	ATGCGTTTTT	ATCCCATTAG	CTCGGGAGAT	ATCTTGCTGG	6360
CATTTATGAT	TATACACGAG	TATCATTGAG	ACAGCAGTTT	GGTATGGTGC	6420
CTGGCTCACA	CAAGGGACCA	TTCATGATAA	TATTGCCTTT	GGCAATCCTG	6480
AGAGCAAGTA	ATTGCTGCTG	CCAAAGCAGC	TAATGCAGAC	TTTTTCATCC	6540
ACAGGGATAC	GATACCAAGT	TGGAAAATGC	TGGAGAATCT	CTCTCTGTCG	6600
GCTCTTGACC	ATAGCCCGAG	TCTTTCTGGC	TATTCCAAAG	ATTCTTATCT	6660
AACTTCTTCC	ATTGATACAC	GGACAGAAGT	GCTGGTACAG	GATGCCTTTG	6720
GAAGGCCGC	ACAAGTTTCA	TCATTGCTCA	CCGTTTGTCA	ACCATTCAGG	6780
AATTCTTGTC	TTAGTAGATG	GTGATATTGT	TGAATATGGT	AACCATCAAG	6840
TAGAAAGGGT	AAGTATTACC	AAATGCAAAA	AGCTGCGGCT	TTTAGTTCTG	6900
TCTCTTTTGA	AAGTTTATGG	ACGAAAAAAG	TTGCCTTCGA	GTGACTTTTT	6960
GCTAGAAAAA	TTGTTCACTG	TAATACTCAA	TGAAAATCAA	AGAGCAAACT	7020
CCGTAGGTTG	CTCAAAGCAC	AGCTTTGAGG	TTGTAGATAA	GACTGACGAA	7080
AACACTGTTT	TGAGGTTGCA	GATAGAACTG	ACGAAGTCAG	CTCAAAACAC	7140
TTGCAGATAG	AACTGACGAA	GTCAGCTCAA	AACAGG		7186
	AGGAGCTTAT GAACTATGTT GCAAAGTGCT TGAAACAGGT ACATGTCTCT TCCAGCTGGT CAATCTCCTT CATTTATGAT CTGGCTCACA AGAGCAAGTA ACAGGGATAC GCTCTTGACC GAACTCTTCC GAAGGGCCGC AATTCTTCTC TAGAAAGGGT TCTCTTTTGA GCTAGAAAAA CCGTAGGTTG AACACTGTTT	AGGAGCTTAT CGTATCATGA GAACTATGTT CAGCAATACA GCAAAGTGCT CTGGCTTGCG TGAAACAGGT AAGGAAGTCT ACATGTCTCT TTTGGCTACC TCCAGCTGGT AGTAAGGTAG CAATCTCCTT ATGCGTTTTT CATTTATGAT TATACACGAG CTGGCTCACA CAAGGGACCA AGAGCAAGTA ATTGCTGCTG ACAGGGATAC ATTGATACAC GAAGGGCCGC ACAAGTTTCA CAATCTCTCC TTAGTAGATG TAGAAAGGGT AAGTTTACC TCTCTTTTGA AAGTTTATCG GCTAGAAAAA TTGTTCACTG CCGTAGGATAC CTCAAAGCAC AACACTGTTT TGAGGTTGCA	AGGAGCTTAT CGTATCATGA TGGGTTCAGC GAACTATGTT CAGCAATACA CCAAGCCCTT GCAAAGTGCT CTGGCTTGCG TAGAGCGTAT TGAAACAGGT AAGGAAGTCT TGACGACCAG ACATGTCTCT TTTGGCTACC ATCCTGAAAA TCCAGCTGGT AGTAAGGTAG CCATCGTTGG CAATCTCCTT ATGCGTTTT ATCCCATTAG CATTTATGAT TATACACGAG TATCATTGAG CTGGCTCACA CAAGGGACCA TTCATGATAA AGAGCAAGTA ATTGCTGCTG CCAAAGCAGC ACAGGGATAC GATACCAAGT TGGAAAATGC GCTCTTGACC ATAGCCCGAG TCTTTCTGGC AACTTCTTC ATTGATACAC GGACAGAAGT GAAGGGCCGC ACAAGTTCA TCATTGCTCA AATTCTTGTC TTAGTAGATG GTGATATTGT TAGAAAGGGT AAGTATTACC AAATGCAAAA TCTCTTTTGA AAGTTTATCG ACGAAAAAAG GCTAGAAAAA TTGTTCACTG TAATACTCAA CCGTAGGTTG CTCAAAGCAC AGCTTTGAGG AACACTGTTT TGAGGTTGCA GATAGAACTG	AGGAGCTTAT CGTATCATGA TGGGTTCAGC CTTGACCGTC GAACTATGTT CAGCAATACA CCAAGCCCTT TAACGATATT GCAAAGTGCT CTGGCTTGCG TAGAGCGTAT CTATGGAGTC TGAAACAGGT AAGGAAGTCT TGACGACCAG TGACCAAGTT ACATGTCTCT TTTGGCTACC ATCCTGAAAA AATTTTGATT TCCAGCTGGT AGTAAGGTAG CCATCGTTGG TCCGACAGGT CAATCTCCTT ATGCGTTTTT ATCCCATTAG CTCGGGAGAT CATTTATGAT TATACACGAG TATCATTGAG ACAGCAGTT CTGGCTCACA CAAGGGACCA TTCATGATAA TATTGCCTTT AGAGGAAGTA ATTGCTGCTG CCAAAGCAGC TAATGCAGAC ACAGGGATAC GATACCAAGT TGGAAAAATGC TGGAGAATCT GCTCTTGACC ATAGCCCGAG TCTTTCTGGC TATTCCAAAG AACTTCTTCC ATTGATACAC GGACAGAAGT GCTGGTACAG GAAGGGCCGC ACAAGTTTCA TCATTGCTCA CCGTTTGTCA AATTCTTGTC TTAGTAGATG GTGATATTGT TGAATATGGT TAGAAAGGGT AAGTTTATGG ACGAAAAAAG TTGCCTTCGA GCTAGAAAAA TTGTTCACTG TAATACTCAA TGAAAAATCAA CCGTAGGTTG CTCAAAGCAC AGCTTTGAGG TTGTAGATAA	AACGGTCAAT CCTTCGACTC GCTTTGTAAA TGCACTCATT TATGCCCTTT AGGAGCTTAT CGTATCATGA TGGGTTCAGC CTTGACCGTC GGTCGTTTAG GAACTATGTT CAGCAATACA CCAAGCCCTT TAACGATATT TCTTCAGTGC GCAAAGTGCT CTGGCTTGCG TAGAGCGTAT CTATGGAGTC TTAGATAGCC TGAAACAGGT AAGGAAGTCT TGACGACCAG TGACCAAGTT AAGGGAGCTA ACATGTCTCT TTTGGCTACC ATCCTGAAAA AATTTTGATT AAGGACTTGT TCCAGCTGGT AGTAAGGTAG CCATCGTTGG TCCGACAGGT GCTGGAAAAT CAATCTCCTT ATGCGTTTTT ATCCCATTAG CTCGGGAGAT ATCTTGCTGG CATTTATGAT TATACACGAG TATCATTGAG ACAGCAGTT GGTATGGTGC CTGGCTCACA CAAGGGACCA TTCATGATAA TATTGCCTTT GGCAATCCTG AGAGCAAGTA ATTGCTGCTG CCAAAGCAGC TAATGCAGAC TTTTTCATCC ACAGGGATAC GATACCAAGT TGGAAAATCC TGGAGAAATC CTCTCTGTCG GCTCTTGACC ATAGCCCGAG TCTTTCTGGC TATTCCAAAG ATTCTTATCT AACTTCTTC ATTGATACAC GGACAGAAGT GCTGGTACAG GATGCCTTTG GAAGGGCCGC ACAAGTTTCA TCATTGCTCA CCGTTTGTCA ACCATCAAG AATTCTTGTC TTAGTAGATG GTGATATTGT TGAATATGGT AACCATCAAG TAGAAAAGGGT AAGTATTACC AAATGCAAAA AGCTGCGGCT TTTAGTTCTG TCTCTTTTGA AAGTTTATG ACGAAAAAAG TTGCCTTCGA GTGACTTTTT GCTAGAAAAAA TTGTTCACTG TAATACTCAA TGAAAATCAA AGAGCAAACT CCGTAGGTTG CTCAAAGCAC AGCTTTGAGG TTGTAGATAA AGCACTTTTT CCCTAGGTTG CTCAAAGCAC AGCTTTGAGG TTGTAGATAA AGCACTTTTT CCCTAGGTTG CTCAAAGCAC AGCTTTGAGG TTGTAGATAA AGCACTACAC AACACTGTTT TGAGGTTGCA GATAGAACTG ACGAAGTCAG CTCAAAACAC TTGCAGATAG AACTGACGAA GCTTTGAGG TTGTAGATAA AGCACTGAAACAC TTGCAGGATAG AACTGACGAA GCCTTTGAGG TTGTAGATAA AGCACTGAAACAC TTGCAGGATAG AACTGACGAA GCTCTGAAACACAC TTGCAGGATAG AACCACGAAAAACAC ACCATCAAACAC TTGCAGGATAG AACTGACGAA GCTCAGCACAA AACACGG

(2) INFORMATION FOR SEQ ID NO: 40:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 14273 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:

CTGAAAATTC TAAAAAATTT ATAAGTAAGG AATTAATTAG TTATTTTTGT GATAAAGTTT

			390			
ATGATGAAAT	ATTTGTTGAA	GAGGTAGTTC	CGCACGTTTT	TCTGCCATAT	GAATCTGACT	120
TACTTCTTAT	TTTACCAGCT	ACGGCAAATG	TGATTGGCAA	AATTGCTAAT	GGTATTGCTG	180
ATGATTTAGT	TACAGCAACT	GTTTTAAACT	ТТААТАААА	AATAATTTTT	TGTCCCAATA	240
TGAACTCTAC	TATGTGGGAC	AATCACATAG	TTCAAAGAAA	TGTATCAATT	CTAAAGGAGT	300
TGGGACATAT	ATTTTTATTT	GAGTCTAAAA	AAACATATGA	GGTAGGATTG	CGTAAAGCAA	360
TAGATTCAAC	ATGTTCAATG	TTACAACCAC	AGTCGTTAGT	AAAAGAACTT	ATCAAATTAG	420
AAAATATTGT	CCTTGAAGAG	GGACATTAAA	AACTACTGAG	AATATTAATG	AGGGGAAAAA	480
ATGGAAAATT	CATCAATCGA	TGTAGATATG	CTGTTGGAAG	AATTGACACA	AGAAGCAATG	540
GTCGTTGTTG	CTGTTGATAA	GGACTGTTAA	TTTAAACTTA	TGGCAATATA	TGAAAGGTTA	600
CTGGATGTTT	TAAATTATGC	AGGCAGTAGC	CTTTTATTAT	ATACAAATGG	ATAAAGTAAG	660
GATAATACAA	TGATTAATAA	AAAAATACAA	CAAGTTGTTT	TGGAATCATT	ACAGAATTTT	720
TTGAATGGGA	ACTTCATTTC	GCCTTGTGTA	GTCTATGATT	TTGGCTTGCT	GGAAACTGTA	780
CTTGATGAAT	TTAAAAATCA	AATTCCTGTA	ACATTCAATT	ACCAACTTTT	TTATGCCGTT	840
AAAGCAAATT	CAAATGAGAA	GATACTTGAA	TTCTTAGTAG	ATAAAATTGA	TGGAGTTGAT	900
GTGGCGTCAT	TATCTGAATT	AGATGTGGCT	AAAAAATTTT	TCCCACCAAC	TCAAATTTCT	960
GTTAATGGTC	CCGCATTTTC	TTATGAAACT	TTATATAATC	TGATTAAAAA	ACAATATAAA	1020
GTTGATATTA	ACTTTTTGGA	ACATCTTCAA	CAATTTTCCC	CAAAAGAATC	TGTTGGAATA	1080
AGAGTAACGG	AGCCAGATGA	ACTTAATAAT	CGTATGAGTC	GATTTGGAAT	AAATATTTGC	1140
AGTGATAATT	GGACTAGTAA	TTTACAAAAT	CCTTTAATTA	CACGACTGCA	TTTTCATTTT	1200
GGAGAAAAAG	ATGATAAATT	TATTGTTAAG	TTAGATAAAA	TATTATTTAA	GTTACAAGAA	1260
ATTAATAAAC	TTAGAGAGGT	TAGAGAAATA	AATCTTGGAG	GCGGTTTTAT	GAAATTATTT	1320
ATGGAAAATC	GTTTGAAAGA	ATTTTTTCTA	TCACTTATGG	AAATCTATAA	AAAGTACGAT	1380
ATTGATAGTA	CTGTGACTAC	AATAATAGAA	CCAGGTAGTG	CAATTACTTC	ATTTTCTGCC	1440
PATATGATTA	CTAGCCCAGT	TAATGTTAGT	GAGGTGAATG	AGCAGCAGGT	TATCACGTTA	1500
GACACATCAA	TATACACCAA	TACATTATGG	TTTGTTCCGC	ATATTATTAC	AACGTTAAAT	1560
PCAAGTAGTA	AAGAGCGTTA	TAGTACTATT	CTCTATGGTA	ATACCTGTTA	TGAACATGAC	1620
AAGTATAAAA	TGAAAGTTTC	GCTTCCAAGG	TTAACTCAAA	ATAGCAGTAT	AGTGTTTTTT	1680
CCTGTAGGAG	СТТАТАТААА	AAGCAATCAT	TCAAATTTAC	ATCGTAATGA	TTTTATGCGG	1740
GAGGTATATT	TGTGGACAAA	AAACTTGACA	TATTAGATAA	agttaaggaa	TATTTAGGAA	1800
ATAAAACTAC	TCAAATTCTG	GATAATCAAT	ataaagaatt	TTTGAAACTT	AATGATATAA	1860

GGC	GAGCGTT	TGGTATTTCA	GAAAAAGTAT	TAAACAATTC	TTTTAATTTT	ACGAGTAAAG	1920
AAT	TTAATGA	TAATTAATT	AACGAAAATT	ATTTATTCGA	ATATGCATGT	AGAATTAGAG	1980
AGG	Aatggag	AAAAAAATGC	TTTAATCATT	CTTATCGTTT	TCTATGCTCA	ССТАТААТТА	2040
CAG	ATGATTT	TCTTAACACG	AAGACATTGA	GAAGTAGCCA	AATTGAATAT	AAATATGAGC	2100
GAT	ATTTATC	GAAAAGTTCG	ATAGGCGATA	GAGCGGTTGA	TGGCTTTGTT	TCCTTCAATA	2160
CTT'	TAACAGC	TAATGGTATG	TCTGCTATTA	AACTATGTCT	TGAGATATTA	AACTCTATTT	2220
TCT	TCAAGAA	GAAGATTGAT	TTATTATATT	CAACCGGATA	TTATGAAACA	AGATTTTTAT	2280
TAA	ATAATCT	TGCTAAATCA	GGTATTAGTT	GCTATGAGGT	AAGTAATTGT	GAATTGGATA	2340
AAG	АТАААТТ	TTATAATGTA	TTCATGATGG	AACCCAATCG	AGCCGATTTA	ACATTACAAA	2400
AAA	CTGATTT	CAAGATAGTA	GAATATTTTG	TTAAGTATAA	AAATAATTCA	ATAAAAGTCG	2460
TTA'	TTTTAGA	TATTTCATAT	CAAGGTTCTA	ATTTTAAATT	AGTAGAATTT	TTAGAGAAAT	2520
PTA	AATTTGC	GAATGTAATT	ATTTTTGTGG	TACGATCTTT	GATAAAATTA	GATCAAATGG	2580
GAT.	TAGAATT	GACAAATGGG	GGAATAATAG	AAGTGTTTAT	TCCTAATCAT	TTGAGAAAGT	2640
ľGA	TTTAAAA	TATTGAAGAG	GAATTCAATA	AATTTAGAAA	TTCTCACGGA	GCTAATCTAA	2700
GCC.	TCTATGA	ATACTGTTTG	CTTGATAATT	CTTTAACTTT	AAAAAATGAT	TGGAACTATT	2760
CTG	ATTTAGT	TATGAAATTT	ACGAGTAATT	TTTATGCTGA	TATAAAAGAC	TTGTTCATGG	2820
AAA	ATTCTGA	TATTGAAATC	ATCCATGAAG	AGGGAGTACC	TTTTGTATTT	TTAGATTTAA	2880
FAG	GTGAAGG	TAAAAAAGAA	TATGAAATGT	TTTTTCAATG	GTTAAACTTC	TTTTACAAAC	2940
AGC	TTGGAAT	CACATTGTAT	GCTAGAAATA	GTTTTGGGTT	TCGGAATCTA	ACAGTAGAGT	3000
ATT	TTGGAAT	TATTGGGACA	GAAAGATATA	TATTTAAGAT	TTGTCCAGGT	GTTTATAAAG .	3060
GT.	Paagtta	TTATTTGATG	AAATTTTTAT	TAAAATCTTT	TTCAAATGAA	TATTTAAAAA	3120
CTAC	CTGATGA	GGTTAATAGA	TGAAAAATTT	GATAAAGTTG	CTAATAATTA	GATTGATTGT	3180
raa(CTTAGCA	GACAGTGTAT	TTTATATAGT	AGCATTGTGG	CACGTTAGCA	ATAATTATTC	3240
PTC	GAGCATG	TTCTTAGGAA	TATTTATTGC	AGTÄAATTAT	CTACCGGÄTT	TGTTACTAAT	3300
CTT	PTTTGGA	CCAGTTATTG	ACAGAGTAAA	TCCGCAAAAA	ATTCTTATAA	TATCAATTTT	3360
GT?	PCAATTA	GCAGTGGCTG	TAATATTTT	ATTATTATTA	AACCAAATAT	CATTTTGGGT	3420
GAT?	aatgagt	CTAGTGTTTA	TTTCAGTAAT	GGCTAGCTCC	ATAAGTTACG	TGATAGAAGA	3480
rgto	GTTGATT	CCTCAAGTGG	TAGAATATGA	TAAGATTGTA	TTTGCAAATT	CTCTTTTTAG	3540
rati	TTCGTAT	AAAGTATTAG	ATTCTATTTT	TAATTCATTC	GCATCATTT	TACAGGTGGC	3600

			392			
AGTAGGATTT	ATTTTATTGG	TTAAGATAGA	TATAGGCATA	TTTTTACTTG	CTCTATTTAT	3660
ATTGTTGTTG	TTAAAATTTA	GAACTAGCAA	TGCGAATATA	GAAAACTTCT	CTTTCAAATA	3720
TTACAAGAGA	GAAGTGTTGC	AAGGTACAAA	GTTTATTTTA	TAAATAATAA	TATTATTTAA	3780
AACCAGTATT	TCTTTAACGC	ТТАТАААСТТ	TTTTTATTCA	TTTCAGACAG	TAGTTGTACC	3840
GATTTTTTCT	ATTCGATATT	TTGATGGTCC	GATTTTTAT	GGTATTTTT	TAACTATTGC	3900
TGGTTTGGGT	GGTATATTGG	GAAATATGCT	AGCGCCAATC	GTAATAAAAT	ATTTAAAATC	3960
GAATCAAATT	GTTGGTGTAT	TTCTTTTTT	GAACGGCTCA	AGTTGGTTAG	TAGCAATTGT	4020
TATAAAAGAC	TATACTTTAT	CACTTATTTT	ATTTTTCGTT	TGTTTTATGT	CTAAAGGAGT	4080
CTTCAATATT	ATTTTTAATT	CGTTGTACCA	ACAAATACCT	CCACATCAAC	TTCTTGGTAG	4140
GGTAAATACT	ACCATTGATT	CTATTATTTC	TTTTGGAATG	CCAATTGGTA	GTTTAGTTGC	4200
AGGAACGCTT	ATTGATTTGA	ATATTGAATT	AGTGTTAATT	GCTATTAGCA	TACCTTATTT	4260
TTTGTTTTCT	TATATTTTŢ	ATACGGATAA	TGGATTGAAA	GAATTTAGTA	TATATTAGAA	4320
ATGTTTATGT	TCATTCAAAA	GCATAATGAC	TATAACTGAA	AAAGAAAAGT	GATATCTTTA	4380
AGGTTGTTCT	TCTTGGTGGT	GAGATTCGTG	AGACAACCCA	AGCTTTTGTC	GGAAAGATTA	4440
CCAATGCTTT	GATGGATAGG	ATGTACTTTA	GCAAGATĠTT	TTTAGTGGTA	ACGGTATCGT	4500
GGATGGACGT	GTAATAACCT	CTTCTTTCGA	GGAGTATTTT	ACTAAAAAAC	TAGCCTTGGA	4560
GCGTTCCCCA	GAAACGGACT	TACTCATTGA	CTCTTCAAAG	ATTTGGGGAG	AAGATTTTGC	4620
TTCATCTGTT	CCTTGAAAAA	AGTCACAGCA	GTCATCACAG	ACGATAGTAC	TGAACAAAAC	4680
TATGAAGAGT	TAGAAATTTA	TACGCAGGTG	ATTGTATAAA	GGATCTGGAA	ATAGATAAGA	4740
AGTTGATTAG	TATTGACCTA	GGTGGTACAA	ATATTAAGAT	TACTGTTCTT	TCAAATGACG	4800
GTGAGATTGA	AACTTTGTGG	AGTATTACAA	CAGATACAAG	TGAGAAAGGT	TCTCAAATTA	4860
TATCGGACAT	CATCAGTTCT	ATAAAAATTA	AATTGACCGA	ACGGAATATT	CCTGATAGCG	. 4920
ACCTTCTTGG	AATCGGTATG	GGAAGTTGCT	CATCATACTT	TCCTTGTAAA	TCATAGGGGC	4980
TATAAACTCT	CCGTCTACTT	GTCCTGCAAC	AATTGAAGTC	TGCTCAAAAC	GCCGTCCGCT	5040
AATCTTTTCA	TAGACTTTCT	CCCTTTTAGG	AGCCTAGCTT	TCTAGTTTGT	TCTTTGATTT	5100
TTATTGAGTA	TACCACTATT	TTACTCCCTC	TGGCAAGGGA	CTTTGTCTAT	GTGGAGGGAT	5160
TGGGCTCCTA	TGTGGTGGAG	CTTTTCTGTT	CTTTCTGAAA	TATGGTATAA	TAGCACTAAT	5220
CAATTTCTAG	GAAAATAGAT	ACAGAAAGGG	GCTGAAAGAT	GTCTCATATT	ATTGAATTGC	5280
CAGAGATGCT	GGCAAACCAA	ATCGCGGCTG	GAGAGGTCAT	TGAACGTCCT	GCCAGTGTGG	5340
TCAAAGAGTT	GGTAGAAAAT	GCCATTGACG	CGGGCTCTAG	TCAGATTATC	ATTGAGATTG	5400

AGGAAGCTGG	TCTCAAGAAG	GTTCAAATCA	CGGATAACGG	TCATGGAATT	GCCCACGATG	5460
AGGTGGAGTT	GGCCCTGCGT	CGCCATGCGA	CCAGTAAGAT	AAAAAATCAA	GCAGATCTCT	5520
TTCGGATTCG	GACGCTTGGT	TTTCGTGGTG	AAGCCTTGCC	TTCTATTGCG	TCTGTTAGTG	5580
TCTTGACTCT	GTTAACGGCG	GTGGATGGTG	CTAGTCATGG	AACCAAGTTA	GTCGCGCGTG	5640
GGGGTGAAGT	TGAGGAAGTC	ATCCCAGCGA	CTAGTCCTGT	GGGAACCAAG	GTTTGTGTGG	5700
AGGATCTCTT	TTTCAACACG	CCTGCCCGTC	TCAAGTATAT	GAAGAGCCAG	CAAGCGGAGT	5760
TGTCTCATAT	CATTGATATT	GTCAACCGTC	TGGGCTTGGC	CCATCCTGAG	ATTTCTTTTA	5820
GCTTGATTAG	TGATGGCAAG	GAAATGACGC	GGACAGCAGG	GACTGGTCAA	TTGCGCCAAG	5880
CAATCGCAGG	GATTTACGGT	TTGGTCAGTG	CCAAGAAGAT	GATTGAAATT	GAGAACTCTG	5940
ACCTAGATTT	CGAAATTTCA	GGTTTTGTGT	CCTTGCCTGA	GTTGACTCGG	GCTAACCGCA	6000
ATTATATCAG	CCTCTTCATC	AATGGCCGTT	ATATTAAGAA	CTTCCTGCTC	AATCGTGCTA	6060
TTTTGGATGG	TTTTGGAAGC	AAGCTTATGG	TTGGACGTTT	TCCACTGGCT	GTCATTCACA	6120
TCCATATCGA	CCCTTATCTA	GCGGATGTCA	ATGTGCATCC	AACTAAGCAA	GAGGTGCGGA	6180
TTTCCAAGGA	AAAAGAACTG	ATGACTCTGG	TTTCAGAAGC	TATTGCAAAT	AGTCTCAAGG	6240
AACAAACCTT	GATTCCAGAT	GCCTTGGAAA	ATCTTGCCAA	ATCGACCGTG	CGCAATCGTG	6300
AGAAGGTGGA	GCAAACTATT	CTCCCACTCA	AAGAAAATAC	GCTCTACTAT	GAGAAAACTG	6360
AGCCGTCAAG	ACCTAGTCAA	ACTGAAGTAG	CTGATTATCA	GGTAGAATTG	ACTGATGAAG	6420
GGCAGGATTT	GACCCTGTTT	GCCAAGGAAA	CCTTGGACCG	ATTGACCAAG	CCAGCAAAAC	6480
TGCATTTTGC	AGAGAGAAAG	CCTGCTAACT	ACGACCAGCT	AGACCATCCA	GAGTTAGATC	6540
TTGCTAGCAT	CGATAAGGCT	TATGACAAAC	TGGAGCGAGA	AGAAGCATCC	AGCTTCCCAG	6600
AGTTGGAGTT	TTTCGGACAA	ATGCACGGGA	CTTATCTCTT	TGCCCAAGGG	CGAGATGGAC	6660
TTTACATCAT	AGATCAGCAC	GCTGCTCAGG	AACGGGTCAA	GTACGAGGAG	TACCGTGAAA	6720
GCATTGGCAA	TGTTGACCAA	AGCCAGCAGC	AACTCCTAGT	GCCCTATATC	TTTGAATTTC	6780
CTGCGGATGA	TGCCCTGCGT	CTCAAGGAAA	GAATGCCTCT	CTTAGAGGAA	GTGGGCGTCT	6840
TTCTAGCAGA	GTACGGAGAA	AATCAATTTA	TTCTACGTGA	ACATCCTATT	TGGATGGCAG	6900
AAGAAGAGAT	TGAATCAGGC	ATCTATGAGA	TGTGCGACAT	GCTCCTTTTG	ACCAAGGAAG	6960
TTTCTATCAA	GAAATACCGA	GCAGAGCTGG	CTATCATGAT	GTCTTGCAAG	CGATCTATCA	7020
AGGCCAATCA	TCGTATTGAT	GATCATTCAG	CTAGACAACT	CCTCTATCAG	CTTTCTCAAT	7080
GTGACAATCC	CTATAACTGT	CCTCACGGAC	GTCCTGTTTT	GGTGCATTTT	ACCAAGTCGG	7140

			394			
ATATGGAAAA	GATGTTCCGA	CGTATTCAGG	AAAATCACAC	CAGTCTCCGT	GAGTTGGGGA	7200
AAAATTAAAA	GTATAAAAAA	GTCTGGGAAA	AATTTTCAAA	ATCAAAAAAA	CGCATAAAAT	7260
CAGGTGTTCA	AAAACCTTGA	TTTTATGCGT	TTTATCATGG	AAATAGTTAC	TTCATTTTTT	7320
CCTAATTCTT	TTCGAAACTC	TTTTTAAACG	ACGTCAGTTT	TATCAGTAAT	CTCAAAACAG	7380
TGTTTTGAGC	TAATTTTGCC	AGTTTTGTCT	GTAACATCGA	AGTTGTGTTT	TACCACTCTG	7440
CGACTGGTTT	CCTAGTTTGC	TCTATGATTT	TCACAGAGCA	TTAAATTGCG	ATTTTGCCAA	7500
GTTTCTTTAT	TCGTCTAAAA	GTAGAGTCTG	TTCTATGCGT	CTAATGTACG	AATCAGGTTG	7560
ACCATTTCAA	TAGCTCCTTG	TGCACACTCA	GAACCCTTAT	TTCCTGCTTT	AGTACCAGCT	7620
CGTTCTATGG	CTTGTTCAAT	TGTATCTGTC	GTTAGCACAC	CAAACATAAC	AGGAATTTCG	7680
CTATTTAAAC	TGATTTGGGC	GATTCCCTTA	GATACCTCGC	TACATACATA	ATCATAATGA	7740
CTTGTATTCC	CTCTAATGAC	AGCTCCCAAG	CAGATAATTG	CATCATATTT	TTTACTTTTT	7800
GCCATTTTTG	ATGCAATCAG	TGGTATTTCA	AAAGCTCCTG	GAACCCAGGC	TACCTCTATA	7860
TCTTTCTCGT	TTACATTCTC	TCTTTTGAGA	TTATCTAGTG	CTCCAGATAA	TAATTTTGAA	7920
GTTATAAATT	CATTAAATCT	CGCTACAACA	ATACCTATTT	TAATATTGTT	TGCTACTAAA	7980
TTACCTTCAT	AAGTGTTCAT	TTATTTTTCC	TCCATATTTA	AAATGTGACC	CATTCGATTT	8040
ТТСТТТСТТТ	СТАААТАААА	ACTATCGTAA	GGATTGGCTT	CTATTTCGAT	TGATATTCTA	8100
CTGGAAATGG	TAATTCCATA	TTTTTCTAAC	TGTTCAACCT	TGTCAGGATT	ATTTGTCAGT	8160
AAATGAAGTG	ACTGAAGTCC	CAGATCTTTA	AGCATTTTTG	CTCCAATATG	ATATTCTCTT	8220
AAATCACCTT	CAAAGCCTAA	TGCAAGATTG	GCATCAAGCG	TATCCATGCC	TTGATCTTGT	8280
AAATGATAGG	CTTTTAATTT	ATTGATAAGT	CCAATTCCTC	GTCCCTCCTG	TCGCAAGTAA	8340
AGTAAGACAC	CCGAACCATT	CTCAACAATC	ATTTTCATAG	CCTTATCGAA	TTGCTGTCCA	8400
CAATCGCAAC	GTAAAGAGCC	TAAAACATCT	CCTGTTAAAC	ATTCGGAGTG	GACCCGACAT	8460
AATACATTGG	CTTCATCCTC	TATATTTCCC	ATAATAAGAG	CAAGATGATG	TTCCCCATTT	8520
AGTTTATCTA	TATAGCTAAT	TGCTTTGAAA	TTACCGTATC	TAGTAGGCAT	ATTGACAGTT	8580
GAAACTCGTT	CTACCAGCTG	ATCATATACT	TTTCTATATT	CTTGTAATTC	ŢŢŢĠĀŢĠĠŢĀ	8640
attagtggaa	TGTTGTGTTT	TTTCGAGAAC	TGAATTAAAT	CATCTGTTCT	CATCATTTTG	8700
CCATCATGAT	TCATTATTTC	ACAACATAGG	CCACACTCTT	TTAGTCCAGC	TAATTTTAAT	8760
AAATCAACAG	TTGCTTCTGT	GTGTCCATTT	CTTTCTAGGA	CACCACCTTT	TTTTGCAATT	8820
AAAGGAAACA	TGTGTCCTGG	CCTGCGAAAA	TCAGAGGGTG	TTATATCTTC	AGCTACACAC	8880
ATACGTGCGG	TCAGTCCTCT	TTCCTCGGCA	GAAATACCTG	TGGTCGTTTC	TTTATAATCA	8940

ATTGAAACTG	TAAAAGCAGT	CTTATGATTA	TCTGTATTGT	TTTCAACCAT	AGGTGAAAGC	9000
ATTAATTGAT	TAGCTAAACT	TTCGCTCATA	GGCATACAAA	TTAATCCTTT	GGCATAAGTA	9060
GCCATAAAAT	TAACATTTTC	TGTTGTAGCT	GCTTGTGCAG	AACAAATTAA	GTCTCCTTCA	9120
TTTTCTCTAT	CCTTGTCGTC	TATAACAAGA	ACAAGTCGTC	CCTTCTGCAA	TGCTTCTAAT	9180
GCTTCTTGTA	TTTTTCGATA	TTCCATTGAC	TGATTATCCT	TTCTGCTAAA	ATCCATTTTG	9240
ATATAATAGT	TCCTTAGATA	TTTCTGATTT	TGGAGAGTTA	TCCATCAGTT	TTTGCACATA	9300
TTTACCTAAG	ATATCATTTT	CAAGATTTAC	TGTACTCCCG	ACTTGTTTAC	TCTTAAGAAT	9360
GGTTTGTTCC	AAGGTATGAG	GGATAACAGA	TACTGAAAAG	TTTACTTTGG	AGACTTTAGC	9420
GACAGTCAGA	CTAATGCCGT	CAATTGTAAT	AGATCCTTTT	ТСААСТАТТА	AATCTAAAAT	9480
TTCTTTTTGT	GTGTTGATTT	GATACCATAC	AGCATTATCA	ТСТТТТТТТА	TTGACGAGAT	9540
TTTTCCTGTA	CCATCAATGT	GTCCTGTAAC	GACGTGACCC	CCAAGTCGAC	CGTTGACAGA	9600
TAAGGCTCTT	TCTAGATTCA	CCTCACTTCC	ATGTTTTAAT	AGAGTAAGAG	CTGTTCGACT	9660
CCATGTTTCA	TTCATTACAT	CAACTGTAAA	GGATTGATGA	TTGAAATGAG	TAACTGTAAG	9720
ACAGATACCA	TTTACTGCTA	TACTATCGCC	TAAATGGATA	TCCGTTAATA	TTTTTGAGGC	9780
TTTAATTGAT	ACTITACAAT	TACGAGAGTC	TTTCTGTATT	CTTTCAACTT	TTCCGATTTC	9840
TTCAATTATT	CCTGTGAACA	TGGATAAATC	ACTTCACTTT	CTATGAGATA	GTCATTTCCT	9900
ATTTGAGAAA	ATGCATAAGG	TTTCAATCTA	ATAGCGTCAT	TTGGCAAAGA	AATACCTTCA	9960
CCTCCGACAG	GAAACTTGGC	ACTACCTCCA	AAAACTTTTG	GTGCAATATA	TATTTTCAGC	10020
TCATCAACAA	TTTGTTGTTC	CAAAGCACTC	CAATTCATTA	GACTGCCCCC	TTCTAGAACT	10080
AGGCTATCAA	TCTGCATGTT	TCCTAGATGT	TGCATTAAAC	TCGATAAGTC	TATATGATTG	10140
CCTTTTTTCT	TTATGGAAAG	TATTTCACAG	CCATGATTTT	GATATAGCTT	CATTTTATTT	10200
TTGTCTTCAG	AGGAAGTGGC	AATGTAAGTT	TTAATATCAT	TTGCTGTTTT	TACGATTTTA	10260
GAGGTAAGAG	GAGTTCGTAA	ATGTGTATCG	CATATGATAC	GGATAGGATT	TTTCCCTTCC	10320
TCCAATCTAC	ATGTCAGCAA	AGGATCGTCT	TGAATAACAG	TATTGACTCC	CACCATAATT	10380
GCACTAACAT	GGTGTCGTAA	CTGATGCACA	TGCTTTCTTG	CTTCTTCTTC	AGTAATCCAT	10440
TTGGATTGAT	TTGTTTTAGT	GGCTATTTTT	CCATCCATTG	ACATTGCATA	TTTCATAAAA	10500
ACATAGGGTA	CATGCTGGGT	AATATACTTT	CTAAAACTTT	TTATTAAGTT	AAGACACTCA	10560
TTTTCTAAAA	TTCCAACAGT	AACTTGAAGA	TTATTTTCCT	CAAGTATCTT	TACTCCTTTT	10620
CCAGATACAA	TAGGATTACA	GTCTAGGCTT	CCAATGACTA	CTCTTGTAAT	ACCACTATCG	10680

			396			
ATTATAGCAT	CTATACAGGG	AGGTGTTTTC	CCGAAGTGAC	AACAGGGTTC	AAGTGTTACA	10740
TAAAGCGTCG	CTCCGACAGG	GGATTCTCTA	CAGTTTTTAA	GAGCATTTCT	CTCAGCATGT	10800
GGGCCACCAA	AAAACTCATG	ATAACCTTGT	CCGATAATGT	GATTATCTTT	TACAATAACT	10860
GCGCCGACCA	TAGGATTGGG	ATTGACGTAA	CCAGCCCCTT	TTTGTGCCAG	TTTTATTGCT	10920
AATTTCATAT	ATTTTGAATC	GCTCATCTCG	CTACCTCCAA	AAAAATATAC	CTTGAATAGG	10980
GGACTACTCA	AGGCATACAA	AAGAAAACTT	ATGCGATTAA	CAAAAATGCT	CTGAAATGAC	11040
AAGTAATCAT	TTCAGAGCAC	GCAAAAAGCA	САААТАТАСТ	TTTATCTTCT	TTCATCCAGA	11100
CTATACTGTC	GGCTTTGGAA	TTTCACCAAA	TCATGCCTTT	CGGCTCGTGG	GCTATACCAC	11160
CGGTAGGGAA	TTTCACCCTG	CCCTGAAGAT	AGTTATTCAA	TTACAGATGA	TTATAGTACT	11220
TAATTTTGAA	TATGTCAACA	GATAAATACC	GATTGTTTTT	GATATACTGT	ATTTGTGATA	11280
ATCGATTCTC	GCTCCTCGGA	TAAAGAAAAT	ATGATATACT	AGATAAACGA	AATAAGAGAG	11340
AAGGAATACT	ATGTACGCAT	ATTTAAAAGG	AATCATTACC	AAAATTACTG	ССАААТАСАТ	11400
TGTTCTTGAA	ACCAATGGTA	TTGGTTATAT	CCTGCATGTG	GCCAATCCTT	ATGCCTATTC	11460
AGGTCAGGTT	AATCAGGAGG	CTCAGATTTA	TGTGCATCAG	GTTGTGCGTG	AGGACGCCCA	11520
TTTGCTTTAT	GGATTTCGCT	CAGAGGATGA	GAAAAAGCTC	TTTCTTAGTC	TGATTTCGGT	11580
CTCTGGGATT	GGTCCTGTAT	CAGCTCTTGC	TATTATCGCT	GCTGATGACA	ATGCTGGCTT	11640
GGTTCAAGCC	ATTGAAACCA	AGAACATCAC	CTACTTGACC	AAGTTCCCTA	AAATTGGCAA	11700
GAAAACAGCC	CAGCAGATGG	TGCTGGACTT	GGAAGGCAAG	GTAGTAGTTG	CAGGAGATGA	11760
CCTTCCTGCC	AAGGTCGCAG	TGCAAGCAAG	TGCTGAAAAC	CAAGAATTGG	AAGAAGCTAT	11820
GGAAGCCATG	TTGGCTCTGG	GCTACAAGGC	AACAGAGCTC	AAGAAAATCA	AGAAATTCTT	11880
TGAAGGAACG	ACAGATACAG	CTGAGAACTA	TATCAAGTCG	GCCCTTAAAA	TGTTGGTCAA	11940
ATAGGAGCAG	AGAATGACAA	AACGTTGTTC	GTGGGTCAAG	ATGACCAACC	CGCTCTACAT	12000
CGCCTATCAT	GATGAGGAGT	GGGGCCAGCC	CCTCCATGAT	GACCAAGTAT	TGTTTGAGTT	12060
GTTGTGTATG	GAAACCTATC	AGGCAGGCCT	GTCTTGGGAA	ACGGTACTCA	ACAAACGCCA	12120
AGCTTTCCGA	GAAGTCTTTC	ATAGCTATCA	AATTCACTCA	GTCGCAGAGA	TGACTGACAC	12180
TGAATTGGAA	GCCATGCTGG	AGAATCCAGC	TATCATTCGA	AATAGAGCCA	AGCTTTTTGC	12240
TACACGCGCT	AACGCCCAAG	CCTTTCTACA	GTTACAGGCA	GAGTACGGCT	CTTTTGATGC	12300
CTATCTTTGG	TCTTTTGTTG	AGGGGAAAAC	TGTCGTTAAC	GATGTTCCTG	ATTATCGCCA	12360
AGCGCCAGCT	AAAACACCCT	TATCTGAGAA	ATTAGCCAAA	GATCTCAAAA	AACGAGGCTT	12420
CAAGTTCACA	GGCCCAGTCG	CCGTATTGTC	TTTTCTACAG	GCTGCAGGGC	TAGTTGATGA	12480

CCACGAGAAT	GATTGTGAGT	GGAAAGGTCT	TAAATGATGT	СТААСААААА	TAAGGAAATT	12540
CTGATTTTTG	CGATTCTCTA	TACAGTCCTC	TTTATGTTTG	ATGGCGTTAA	ATTGCTGGCT	12600
TCTTTAATGC	CATCTGCCAT	TGCAAATTAT	CTTGTTTATG	TAGTTTTAGC	TCTATATGGC	12660
TCCTTCTTGT	TCAAGGATAG	ATTGATCCAA	CAATGGAAGG	AGATTAGAAA	GACTAAAAGA	12720
AAATTCTTCT	TTGGAGTCTT	AACAGGATGG	CTCTTTCTCA	TTCTGATGAC	TGTTGTCTTT	12780
GAATTTGTAT	CAGAGATGTT	GAAGCAGTTT	GTGGGACTAG	ATGGACAAGG	TCTAAATCAG	12840
TCTAATATTC	AAAGTACCTT	TCAAGAACAA	CCACTACTGA	TAGCTGTTTT	TGCTTGTGTC	12900
ATTGGACCTC	TGGTAGAAGA	ATTATTTTC	CGTCAGGTCT	TATTGCATTA	CTTGCAGGAA	12960
CGGTTGTCAG	GTTTACTAAG	CATTATTCTG	GTAGGACTTG	TTTTTGCTCT	GACTCATATG	13020
CACAGTTTGG	CTCTATCAGA	GTGGATTGGT	GCAGTTGGTT	ACTTAGGTGG	AGGCCTTGCC	13080
TTTTCTATTA	TTTATGTGAA	AGAAAAAGAG	AATATCTACT	ATCCCCTACT	TGTTCACATG	13140
TTAAGCAACA	GCCTCTCCTT	AATCATTTTA	GCTATCAGTA	TAGTAAAATG	AAATGAGAAC	13200
AGGACAAATC	GATTTCTAAC	AATGTTTTAG	AAGTAGAGGT	GTACTATTCT	AGTTTCAATA	13260
TACTGTAATA	TGTGATGAAA	ATGCCAGTAA	TGATACCGAG	AAAAAAGCTG	AGAAACTTTT	13320
CCCAGCTTTA	TTTGTTATAG	TCAAAGAGAA	TGACTTGTTC	CTGTGCATCT	ACATGAGCAT	13380
GGACCCCAAA	GGGTACAATT	GCTCTTGGAG	TTGCGTGGCC	GACATTCAGA	TTATAGACAA	13440
TCGGGATATT	GCTGTCAATG	ATATCCAATA	GTGCCTCTTT	ATAGTCGTCA	TGGAAAGTTT	13500
CATCCATAGG	TTTTCCGACC	AAGAGTCCAT	TGATGACCGC	GAATATGCCA	GTGTCCTTTA	13560
AAGTTAGCAA	CATCTTTTTG	AAGTCTTCTG	GCTTAGGCTT	TTCTTCGCTT	GTTTCGAGCA	13620
AGAGGATTTT	CCCTTCCCAG	TCTGACAAGT	CAGGGAAAAG	TTTGTATTTT	TGGCAGAGTT	13680
CCGTGCTATC	TGCGTATCGA	GAGTTGTCAA	AGATATCGTA	GAGGGATTCG	AGGCAACCAC	13740
CGAGGATTTT	CCCCTCGAAC	TGGGCACTTC	CTTGCAACAA	GTCAAAACCT	GTATTTGTAT	13800
GACTGACACG	AGGTGTTCCC	AGGGCCGTGG	GACTAAAATC	AGTTCGTTCC	TCATACCAAA	13860
CGTCACTAGG	GCGGATTTCT	GAAATTCTTC	CCGTCTCAAT	CAATTCTTTA	AAGTAGTGAA	13920
GGCTATAGGC	TAGCATTTCT	TTGTCTAATT	CACAAATGTC	TGCTAAAAAG	GATTGACCAT	13980
AAAAAGTCTT	GATTCCTAAT	TTATGCAACA	TGAGGTGGTT	CATGGTTGTA	TCCGAGAAGC	14040
CAAGAAAAAT	TTTTTGCTTG	ATAACCTTTT	GGAGTTGGTC	ATTTTCAAAA	AGATAAGGTA	14100
GCAAGCGATA	GGTATCGTCT	CCACCGATGG	CACATAGGAT	CATGTCGATG	CTATCATCAG	14160
AAAAGGCATG	AATCAAATCC	TCTGCACGAG	CTTCAGGATG	GTCCTTGATA	AAGTCTAATC	14220

14273

398 CTTTTAACGA ATGGGGCAAA AAGATGGGAT TGGTCCCAGA TCCTTGAGAC GTT

(2) INFORMATION FOR SEQ ID NO: 41:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9828 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:

GTGAAGTGCG	GCAAAAGGTG	CAAGTGATGA	GCTCAGGTTC	TTTAGCTCTT	GACATTGCCC	60
TTGGCTCAGG	TGGTTATCCT	AAGGGACGTA	TCATCGAAAT	CTATGGCCCA	GAGTCATCTG	120
GTAAGACAAC	GGTTGCCCTT	CATGCAGTTG	CACAAGCGCA	AAAAGAAGGT	GGGATTGCTG	180
CCTTTATCGA	TGCGGAACAT	GCCCTTGATC	CAGCTTATGC	TGCGGCCCTT	GGTGTCAATA	240
TTGACGAATT	GCTCTTGTCT	CAACCAGACT	CAGGAGAGCA	AGGTCTTGAG	ATTGCGGGAA	300
AATTGATTGA	CTCAGGTGCA	GTTGATCTTG	TCGTAGTCGA	CTCAGTTGCT	GCCCTTGTTC	360
CTCGTGCGGA	AATTGATGGA	GATATCGGAG	ATAGCCATGT	TGGTTTGCAG	GCTCGTATGA	420
TGAGCCAGGC	CATGCGTAAA	CTTGGCGCCT	CTATCAATAA	AACCAAAACA	ATTGCCATTT	.480
TTATCAACCA	ATTGCGTGAA	AAAGTTGGAG	TGATGTTTGG	AAATCCAGAA	ACAACACCGG	540
GCGGACGTGC	TTTGAAATTC	TATGCTTCAG	TCCGCTTGGA	TGTTCGTGGT	AATACACAAA	600
TTAAGGGAAC	TGGTGACCAA	AAAGAAACCA	ATGTCGGTAA	AGAAACTAAG	ATTAAGGTTG	660
таааааатаа	GGTAGCTCCA	CCGTTTAAGG	AAGCCGTAGT	TGAAATTATG	TACGGAGAAG	720
GAATTTCTAA	GACTGGTGAG	CTTTTGAAGA	TTGCAAGCGA	TTTGGATATT	ATCAAAAAAG	780
CAGGGGCTTG	GTATTCTTAC	AAAGATGAAA	AAATTGGGCA	AGGTTCTGAG	AATGCTAAGA	840
AATACTTGGC	AGAGCACCCA	GAAATCTTTG	ATGAAATTGA	TAAGCAAGTC	CGTTCTAAAT	900
TTGGCTTGAT	TGATGGAGAA	GAAGTTTCAG	AACAAGATAC	TGAAAACAAA	AAAGATGAGC	960
CAAAGAAAGA	AGAAGCAGTG	AATGAAGAAG	TTCCGCTTGA	CTTAGGCGAT	GAACTTGAAA	1020
TCGAAATTGA	AGAATAAGCT	GTTAAAGCAG	TGGAGAAATC	CGCTACTTTT	TCGATTTTTG	1080
ATTCAAGTTT	TTAGATTATA	TATAGTAGCT	TGAAATAAGA	TATGAACAAC	TCTATTAGGA	1140
AAGTCAAATT	AATTTCTAGA	AATGTTTTAG	CAGCTACAGC	GTACTATTCC	AAACTCAACC	1200
AACTATAATA	GATCGAAACT	AGAATAGTAC	ATATCTACTT	CTAAAACATT	GTTAAAAATC	1260
GATTTGACTT	TCCTTATTTC	ATTCCGCTAT	ATATAGTTTG	CTGTTTCTTG	TCGCTCCTCT	1320
GGAAAGCTGA	TATAATAGCT	TTATGAATAA	AAAACGAACA	GTGGACCTGA	TACATGGTCC	1380
	•					

GATTCTTCCC	TCGCTCTTAA	GCTTCACCTT	TCCAATTTTG	СТАТСАЛАТА	TTTTTCAACA	1440
GCTCTATAAC	ACTGCTGATG	TCTTGATTGT	TGGACGATTT	CTTGGTCAAG	AATCCTTGGC	1500
TGCAGTAGGA	GCGACGACAG	CGATTTTTGA	CCTGATTGTA	GGTTTTACAC	TTGGTGTTGG	1560
CAATGGCATG	GGGATTGTCA	TTGCTCGTTA	TTATGGGGCT	CGGAATTTCA	CTAAAATCAA	1620
GGAAGCAGTA	GCAGCCACCT	GGATTTTAGG	TGCTCTTTTG	AGCATTCTAG	TTATGTTGCT	1680
GGGCTTTCTT	GGCTTGTATC	CTCTCTTGCA	ATACTTAGAT	ACTCCTGCAG	AAATTCTTCC	1740
TCAATCTTAT	CAATATATTT	CTATGATTGT	GACCTGTGTA	GGTGTCAGCT	TTGCTTATAA	1800
TCTTTTTGCA	GGCTTGTTGC	GGTCTATTGG	TGACAGTCTA	GCAGCCCTGG	GATTTCTGAT	1860
TTTCTCTGCC	TTGGTTAATG	TGGTTCTGGA	TCTCTATTTT	ATTACGCAAT	TGCATCTGGG	1920
AGTTCAATCC	GCAGGACTTG	СТАССАТТАТ	TTCGCAAGGT	TTATCAGCGG	TTCTCTGCTT	1980
TTATTATATT	CGTAAAAGTG	TGCCAGAACT	CTTGCCACAG	TTTAAACATT	TCAAATGGGA	2040
CAAAAGCTTG	TACGCGGATC	TCTTGGAGCA	AGGTTTGGCT	ATGGGCTTGA	TGAGTTCAAT	2100
TGTATCTATC	GGCAGTGTGA	TTTTACAGTT	TTCTGTTAAT	ACATTTGGTG	CAGTGATTAT	2160
TAGTGCCCAG	ACGGCAGCTC	GACGCATTAT	GACCTTTGCC	СТТСТТССТА	TGACCGCTAT	2220
TTCTGCATCA	ATGACGACCT	TTGCTTCTCA	GAATCTAGGA	GCTAAGCGAC	CTGACCGTAT	2280
TGTTCAAGGT	CTTCGAATCG	GCAGTCGTTT	AAGTATATCC	TGGGCAGTTT	TTGTTTGTAT	2340
TTTCCTCTTT	TTTGCCAGTC	CAGCTTTGGT	TTCCTTCTTG	GCTAGTTCGA	CAGATGGTTA	2400
CTTGATAGAA	AATGGAAGTC	TCTATCTGCA	AATCAGTTCA	ACCTTTTATC	CCATTTTGAG	2460
CCTCTTGTTG	ATTTATCGCA	ATTGCTTGCA	GGGCTTGGGG	CAAAAGATCC	TTCCTCTAGT	2520
TTCTAGCTTT	ATTGAACTAA	TCGGAAAAAT	CGTTTTTGTG	GTTTTGATTA	TTCCTTGGGC	2580
AGGATATAAG	GGTGTTATCC	TTTGTGAACC	TCTTATCTGG	GTTGCCATGA	CAGTTCAACT	2640
GTACTTCTCA	TTATTCCGTC	ATCCCTTGAT	ÄAAAGAAGGC	AAGGCAATCT	TGGCAACCAA	2700
AGTGCAATCC	TAGTTGGATT	TACTGAATAA	AATCCATTTC	CTCTAGTGAA	AATCGAAAAA	2760
ACTTGTGTTC	TCTTCTTTAG	TTTGGTGTTG	AAAATAGTTT	AACAGACTTT	TGACTTCTTT	2820
TATATGATAT	AATAAAGTAT	AGTATTTATG	AAAAGGACAT	ATAGAGACTG	ТААААТАТА	2880
CTTTTGAAAA	TCTTTTTAGT	CTGGGGTGTT	ATTGTAGATA	GAATGCAGAC	CTTGTCAGTC	2940
CTATTTACAG	TGTCAAAATA	GTGCGTTTTG	AAGTTCTATC	TACAAGCCTA	ATCGTGACTA	3000
AGATTGTCTT	CTTTGTAAGG	TAGAAATAAA	GGAGTTTCTG	GTTCTGGATT	GTAAAAAATG	3060
AGTTGTTTTA	ATTGATAAGG	AGTAGAATAT	GGAAATTAAT	GTGAGTAAAT	TAAGAACAGA	3120

			400			
TTTGCCTCAA	GTCGGCGTGC	AACCATATAG	GCAAGTACAC	GCACACTCAA	CTGGGAATCC	3180
GCATTCAACC	GTACAGAATG	AAGCGGATTA	TCACTGGCGG	AAAGACCCAG	AATTAGGTTT	3240
TTTCTCGCAC	ATTGTTGGGA	ACGGTTGCAT	CATGCAGGTA	GGACCTGTTG	ATAATGGTGC	3300
CTGGGACGTT	GGGGGCGGTT	GGAATGCTGA	GACCTATGCA	GCGGTTGAAC	TGATTGAAAG	3360
CCATTCAACC	AAAGAAGAGT	TCATGACGGA	CTACCGCCTT	TATATCGAAC	TCTTACGCAA	3420
TCTAGCAGAT	GAAGCAGGTT	TGCCGAAAAC	GCTTGATACA	GGGAGTTTAG	CTGGAATTAA	3480
AACGCACGAG	TATTGCACGA	ATAACCAACC	AAACAACCAC	TCAGACCACG	TTGACCCTTA	3540
TCCATATCTT	GCTAAATGGG	GCATTAGCCG	TGAGCAGTTT	AAGCATGATA	TTGAGAACGG	3600
CTTGACGATT	GAAACAGGCT	GGCAGAAGAA	TGACACTGGC	TACTGGTACG	TACATTCAGA	3660
CGGCTCTTAT	CCAAAAGACA	AGTTTGAGAA	AATCAATGGC	ACTTGGTACT	ACTTTGACAG	3720
TTCAGGCTAT	ATGCTTGCAG	ACCGCTGGAG	GAAGCACACA	GACGGCAACT	GGTACTGGTT	3780
CGACAACTCA	GGCGAAATGG	CTACAGGCTG	GAAGAAAATC	GCTGATAAGT	GGTACTATTT	3840
CAACGAAGAA	GGTGCCATGA	AGACAGGCTG	GGTCAAGTAC	AAGGACACTT	GGTACTACTT	3900
AGACGCTAAA	GAAGGCGCCA	TGGTATCAAA	TGCCTTTATC	CAGTCAGCGG	ACGGAACAGG	3960
CTGGTACTAC	CTCAAACCAG	ACGGAACACT	GGCAGACAAG	CCAGAATTCA	CAGTAGAGCC	4020
AGATGGCTTG	ATTACAGTAA	AATAATAATG	GAATGTCTTT	CAAATCAGAA	CAGCGCATAT	4080
TATTAGGTCT	TGAAAAAGCT	TAATAGTATG	CGTTTTCTTG	TGGAGATATT	TCCTTCAATT	4140
TTGCTACTAT	ATTAAACAAA	AATCAAAAAG	CAAACTAGAA	AGTTATGCTC	AAATAAAATC	4200
TAAATTTGAC	AATGTAAACC	GAGTCGGATA	GCTTTAAGTA	CTGTTTTGAG	GTTGAAGATA	4260
CGATTTTTGA	TAGGAACTCA	TCAATTTTAG	ATTTTTAAGC	AGCATCAATA	AATTGCTTCC	4320
TTGTTTTGTC	ATAATTTTTT	TATTTAAAAA	ATTATGACma	GAGTGTGCTA	TTCTTTTTAT	4380
GAGAGGTGTA	TGAATATGAT	AAATGTATGT	GATAAATGTA	TGTGATGTTG	GAAAAAGAAT	4440
AAAAGAACTT	AGAATATCTT	CAAATCTTAC	TCAAGATAAG	ATTGCTGAGT	ATTTGTCTTT	4500
GAAȚCAAAGC	ATGATTGCCA	AAATGGAAAA	AGGTGAAAGG	AATATCACGA	ATGGATTTAA	4560
GTAATAAAGC	TTCAAATCTT	AGAAAAAGT	TGGGAGCTGA	TGGTGAATCG	CCGATAGATA	4620
TTTAAATT	GGTACAAAAG	ATAGAAAATT	TGACGCTGGT	ATTTTATGGA	CTCGGAAAGA	4680
ATATTAGCGG	AGTCTGTTAT	AAAGGAACTC	AGTTCAGTCT	CATTGCAGTC	AATTCAGACA	4740
TGCCATTAGG	AAGGTAAAGA	TTTTCTTTAG	CACATGGACT	GTATCATCTT	TATTATGATG	4800
AGGTGAAGAA	GAGTTCAGTC	AGTCTTATCT	TGATTGGTGA	AGGAGATGAA	ACTGAAAGAA	4860
AAGCGGATCA	GTTTGCTTCT	ТАТТТТТАА	TTTTCCCATC	TTCACTGTAT	AGGATGGTTG	4920

AGGAAATCAG	AGAAAATGCC	AATAGAACTC	ATCTTGAAGT	AGAAGATATT	ATAAAATTGG	4980
GTCAGTTTTA	TGGTATCAGT	CATAAAGCTA	TGTTATATAG	ATTGAGGAAT	GATGGATACC	5040
TTGATGCAGA	AGAAATTAAA	AATATGGATA	TTAGTGTTAT	AGAGACAGCT	TCAAGATTAG	5100
GCTATGATAC	AAGTTTATAT	CGTCCTTTGT	CAGAAAGTAA	AAAAGAAATG	GCATTAGGAT	5160
AATATATTAA	TTCAACTGAA	CAACTTTTAG	AAAATAACAG	AATTTCGCAA	GGGAAGTATG	5220
AGGAACTGTT	ACTAGATGCT	TTCAGATATG	ATATTGTATA	TGGGCTAGAT	GAAGAGGGGG	5280
GAGTTGTCGT	TTGACTAGTC	GTGTATTTAT	TGATGCAGAT	TGTATTTCAG	TATTTTTATG	5340
GGTTGGCACT	GAACATCTTT	TAGAAAAGCT	CTATTTGGGT	AAAATTGTTA	TTCCACAAGA	5400
GGTGTATGAT	GAAATCAATA	TACCTACAAT	TCCCCATTTA	AAATCTAGGA	TAGATCAGTT	5460
GGTAGCTAAG	GGTTCAGCTG	AGATTGTGAG	CATAGACATT	GGAACTGAAG	AATACGCATT	5520
ATATAGAGAT	TTAACAAGAA	ATCATGATAG	TAACAAGATT	ATTGGTAAGG	GAGAAGGGC	5580
ATCTATTTCC	TTAGCGAAAA	AGCATAATGG	GATATTAGGA	AGTAATAACC	TAAGAGATGT	5640
ТАААТСАТАТ	GTAGAAGAAT	TTTCTTTAGA	ATATATGACA	ACAGGAGATA	TACTGATTGA	5700
AGCGTTTAAA	GCGTAATTTA	TTACTGAATA	AGAGGGCAAT	CATATCTGGA	ATAATATGCT	5760
TAAAAAGAGA	AGGAAAATTG	GTGCAAATTC	ATTTTCAGAC	TATCTTCGTG	GAAGTATTCA	5820
TCAAAATAGA	САААААТААА	TTTGGATAAA	TCGAACTCAC	TATTCAGGAG	GCATATGAGC	5880
AATTCGAAAA	AGAAAAGTGT	CAAATTGAGC	CTATAGGAGT	AGAAGTGAAA	TAGTAAGTCC	5940
TGCATAGTGG	ATGAGAGAAA	AGTTCTCCTT	GAAGTTTTCC	TGAACTATCA	GTCGCATGTC	6000
AAACGATATG	TAGGGTAATG	TGAGAGGGGA	TAGCGAGTAG	TTTTTGGTTA	TTTTATCAAA	6060
AAACTTATAT	TTTATTATAC	CGAATGATAA	AATATAATAA	AAATGATAGA	ATAAGGAAAA	6120
AACATGAATG	TCAAAAAGAT	AATGTÇAATT	TTTCAATCCT	TTTATGTTGA	TGTCAGTATT	6180
GAGGAACTGA	CTTTGACTTT	ACCAATCAGT	TTTGTAAAAA	GGTTTGAGTA	TACTCAAATG	6240
ACTTTTCATA	AGGAATCATT	TTTATTGATT	AAAGAAAAGA	GAAGGGGGAG	TTTGAGTTCA	6300
TTTGTTACTC	AGGCTCGCAC	TATGGGTGAA	AAAGCCAATA	TGGATGTTGT	TTTGGTGTTT	6360
TCGAAGTTAT	CAGACAGTGA	AAAAAAGCAA	TTACTTCAAG	CTAGAGTTCC	GTTTGTAGAC	6420
TTTAAGGGAA	ACCTCTTCTT	CCCTCCATTG	GGACTAGTAC	TCAATGCGAA	TGATACTGAA	6480
GTCCCTAAGG	AATTAACACC	TAGCGAACAA	TTAACGTGGA	TTGCCTTTTT	ATTGACAAAA	6540
GGTCAAAAAG	TAGTAGATGT	TGATTTGCTT	TCACAAGTCA	CTGGACTTCC	AAACTCAACA	6600
ATTTATAGGT	GTTTGAGGAC	TTTTAAAGCT	TTATATTGGT	TAAACAAGCA	AAATAAGCTT	6660

			402			
ТАСАСАТАТА	CGGTGTCAAA	GAAAGAATTA	TTCTTAAAAT	CCGTGTCATG	TTTATTTAAT	6720
CCCATCAAAA	AACGGATTTT	ATTGCCAGAT	GGCGATATAA	AGCAGATAAA	ATCTGTTTCT	6780
AACCTTCTAT	ATGGTGGTGC	TTATGCTTTG	TCGCATTCAA	CTTTTTTAGC	TGAAACGGAT	6840
GAAAATATTA	GCTATGTCAT	ATGGCAGAGA	AAATTCAATC	AGTTATCCTT	GCCACTTTCT	6900
CAGCATGTTT	TAAAATGAAA	GATGCTAGAG	ATATGGAAAT	ATCGTCCTTT	TGTATCTGAG	6960
TTTTGGAATG	ATTTTAAAAA	TAATCATGAT	AAACAATTTG	TAGATCCGAT	TTCTCTTTAT	7020
TTGACCTTAA	AAGATGATGA	TGACCCACGT	ATAGAGGAAG	AGAGTGAAGC	ACTAGAAAAT	7080
ATGATATTAC	AGTATCTGGG	AGAAGATGAT	GCCAGCTAAT	ACGAAAGTTA	TTTTTCAAGA	7140
AATGTTTGCG	GATTTTCAGA	ACTATTATGT	TCTGATTGGG	GGAACTGCTA	CCTCTATCGT	7200
ATTGGATTCG	CAAGGATTTA	AAAGTCGCAC	AACAAAAGAT	TATGATATGG	TCATCATTGA	7260
TGAAGTAAAA	AATAAGGAAT	TTTATACTAC	CTTGAATCAT	TTTTTAGAAT	TGGGAGAGTA	7320
TCAAGGAAGT	CAGAAAGATG	AGAAAGCGCA	GCTTTTTCGA	TTTACAACAA	CTAATCCTGA	7380
GTTTCCTTCT	ATGATTGAAC	TATTTAGTAT	CTTACCAGAA	TATCCATTAA	AGAAGGACGG	7440
TCGAGAAATT	CCCTTACATT	TTGACCAAGA	TGCTAGTTTA	TCAGCCTTAT	TATTGGATGA	7500
AGATTATTAT	AATATATTGG	TGCATGAAAA	AGAAACCATT	CAGGGGTATT	CGGTATTGAG	7560
TAATTGTGGT	ТТАТАСТСТТ	CGAAAATCTC	TTCAAACCAC	GTCAGCTTCC	ATCTACAACC	7620
TCAAAACAGT	GTTTTGAGCA	GCCTGCAGCT	AGCTTCCTAG	TTTGCTCTTT	GATTTTCATT	7680
GAGTATTAAT	TATTTTTAAG	GCTAAAGCTT	GGCTGGATAT	GAGGGAGCGC	TCTGCCACAG	7740
GTGCTCAAGG	TTTAAGTAAG	TCCATTAAAA	AGCATTTGAA	TGACCTTACC	CGTTTGACAG	7800
CTTCCTTGCT	AGGAGATGAA	AAGTTATCGG	CTATAACATC	AAGTAGTGCG	GTAAAAGCAG	7860
ACATGCACCG	CTTTGTGATA	GAATTAGAGC	CTGTGAAGTC	AACTATTCTT	CAAAATAATG	7920
ACATTTCATT	GGATCAAAAT	GAAATTTTTG	AAATTCTGAA	AAATTTTCTC	GATGGTTAAA	7980
ATAATTGTAG	CGAGATGGCT	ATATTGAATT	CGTCTATATC	TGGAAACTAG	AAAAAACTTC	8040
AATTTCAGGA	GAAAATGAAG	TCAATCTTCC	CACAATCAAA	CGTATAGTAT	CAAGGTTTTT	8100
CAAGACCTGA	TATTATGCGT	TTTTTGCTTT	TCAAAACTTT	TTGCCCAGTC	TTCGTTTTTA	8160
PCCTCTAGTC	ACTTGATTTG	TTTCAGGTGG	TTTTTTAGTA	TAGTAGAATG	AAACGAGAAC	8220
AGGACAAATT	GATCAGGACA	GTCAAATCGA	TTTCTAACAA	TGTTTTAGAA	GCAGAAGTGT	8280
ACTATTCTAG	TTTCAATCTA	CTATAGTTAA	ATCTGCGGTC	AAGTCTACTG	GTGAATCTAT	8340
GATTGTAATA	CTCTTCCAAA	ATCTCATCAA	CCACGTCAGT	CTTGCCTTGC	AGTCTGTATC	8400
PTACTGACCA	AGCTAGTGAT	GGATTTAGAA	TAGGTGATTT	GGAGCGTCCT	ATTAGCTAGG	8460

AAATGCTGCT	CATAGTCCTT	TGCTGAGGCT	AGGGTGTTTC	AACATTCAAC	ACTCAACTGG	8520
TTGATCTAGT	TGATAGGAAG	GGAGTTACTA	TAAAATACTC	AGGCTTCCAT	CATATTTTTT	8580
GAAACGATTG	TGTAATCAAA	ATGTACCAAT	ATTGTAGTAT	TGGTACAGAA	GATGTTGTGA	8640
ATGGATAAAT	ATATCATAAC	TGCTATCTCA	AAAAGATTTC	ATATGTCTGT	GCATATATAA)	8700
TAGACTTCCT	GCAAAACTAG	AATCCTAGTT	CATGATTGAT	AATACCAGCA	ATCAAATTCA	8760
TTCGTAATCC	AAAGCGTTTA	CGATGATTTC	GATAGGTTGT	TGAAAACATT	TTÄAACGTTT	8820
CTACTTTGGC	AAAGATGTTC	TCAACCTTGC	TTCTCTCCTT	AGATAGCGCA	TGGTTATAGG	888
СТТТАТСТТС	AGCTGTTAGC	GGCTTGAGTT	TGCTGGATTT	ACGTGGAGTT	TGTGCTTGAG	8940
GACATATCTT	CATGAGCCCT	TGATAACCAC	TGTCAGCCAA	GATTTTACCA	GCTTGTCCGA	9000
PATTTCTGCA	ACTCATTTTG	AACAACTTCA	TATCATGACA	ATAGTTCACA	GTGATATCCA	9060
AAGAAACAAT	TCTCCCTTGA	CTTGTGACAA	TCGCTTGAGC	CTTCATAGCG	TGAAATTTCT	9120
PTTTACCAGA	ATCATTCGCT	AATTCTTTTT	TTAGGGCGAT	TGATTTTTAC	TTCCGTCGCA	9180
PCAATCATTA	CCGTGTCCTC	AGAACTAAGA	GGAGTTCTTG	AAATCGTAAC	ACCACTTTGA	9240
ACAAGAGTTA	CTTCAACCCA	TTGGCTCCGA	CGGATTAAGT	TGCTTTCGTG	AATACCAAAA	9300
PCAGCCGCAA	TTTCTTCATA	AGTGCGGTAT	TCTAGGCTTA	ATTTAGGTTT	TCGTCCACCT	9360
TTTGCGTGTT	TAAGTTGATA	AGCTGTTTTT	AATACAGCTA	ACATCTCTTT	AAAAGTCGTG	9420
CGCTGAACAC	CAACAAGACG	CTTAAATCGT	GTATCAGTTA	ATTGTTTACT	TGCTTCATAA	9480
PTTCGCAGGG	AGTCTATTGA	CTCTTTGGTA	GGTGTCAATG	TTTTTTCAT	CTATCCCGAG	9540
ATTATTTC	CCGCCATTTG	TATTTGCAAA	TGCTGAGTAG	GTTTCCCAGA	AAGACTCTGG	9600
AGATTGTTT	TTAGCTTTTT	TGTATTCTAA	ATCAACCCCT	TCAAATTTTA	AGTCCATATT	9660
TTCCTTTAC	ATCTGTTTTT	TGTGGTTCTG	GTATTTGTTC	aagttgagtg	ATAATATAGC	9720
Gaattgaatt	TCGAGAGTTT	TTACTCAGTT	AATTTCTTTT	TTAACCCACT	TTAATTGCTT	9780
TTTAACACG	GGTTAAAAAA	GAAATTAAAG	TGGGTTAATT	TTTCTTGA	•	9828

(2) INFORMATION FOR SEQ ID NO: 42:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 3369 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:

			404			
60	AATAAAGTAG	CCGTGGCTAT		CAAGAGTTTG	TATTTTTGAA	CCGCGAAAGA
120	GCCTTGGTCA	AACCTATGCT	AGGACTATGA	GATGTCATCA	GTTTTTAGAC	AAGTTGACGA
180	CCGAAACCTT	AACTCGTAAA	AGGAAGAATT	GCGGATTTGA	TCAGGAAATT	AGTCACTTCG
240	AATTTTGATA	TTCTATGACG	CAATTACAAG	CTTGAAGCGG	AGCAGAACCC	CACCAGTTCA
300	TTAGATAACT	TAAACAAATT	AAGTTTTTGG	TTGGAAAAAG	CCTGAATAGA	TTTTGAAACG
360	AGGAGAATTG	TAATCGCGTG	AATTTTTGGA	TGAGATGTGC	AGTAGTTATT	CAGATTTTTA
420	TTGTGCTAGG	CCTGTAGTGT	GGCTGTGATG	TGCTAGCACA	GGAAAGTCCA	TTTCTCATGA
480	AAGTCCTTGG	TGAAATGGCT	TTACGGCAGT	CGAGAAATCG	AGCCTAGGGA	CGAAACCATA
540	ACAGAGAGAG	CTTTCTGGAA	GTGACGGAGT	AAGTGCCACA	GTAGGCTTGA	ATAGGCCAGA
600	TGGAGTACGC	GGTCGGGGCA	CCCAAATTTT	AAGCTAGCAA	TAAACCCCTC	TGGAACGCGG
660	GACAGATGAT	GTTAGTGGTA	AGCTAGAGCT	GACTGCTATC	GTAGTATTCT	GGAAACGAAC
720	AAAATTGCAT	TGGCTTATAG	GAACAAAACA	GTCACTTCTG	AGTGGTCCTA	TATCGAAGGA
780	ATAGAAAGGT	AAGTGGACAT	TCATTTTTA	TTTCTCAACC	GCTGAGAAAT	ATAGGTTGGG
840	CAGCAGGGCT	GCAACTGTGG	TAATTTAATT	AAAAAGAATT	TGTAACATGA	CTTGCAAGAC
900	TTGAAAATGG	GATTGTCAGG	GTTGGGCTAC	AAGTGCGAGA	GTTGGTCGTG	TGAGGCTGTC
960	GGCTTCGGGC	ACCAACCTTT	TATTATCGAA	ACGTGAGAGC	TTTCAAGGAG	ACGTGTTCGT
1020	AAGAGCTATT	AAGACTTTTG	GTTCCCAGCT	TCGTAGGAAC	АТСААААТТА	AGCAGATCGT
1080	GGTTCCCGAT	CTTGGAGCTC	ттатттасса	ATTGGGAAAA	TTCGCTTTGG	TCAGGGAGTT
1140	AGGCTATTTC	CCCAGTGTTC	TCACAATGAG	AGTCCAAACT	AAATGTGTTA	TTCAAAAGCT
1200	GGGTTCCTCT	CGCCCAGAAG	ACACTATGCT	AATTGCAGAA	GTTGTCAAGA	TAAGAAAGCT
1260	TGGCAACTGT	CTCAAAGATG	GGTCTCTATT	TTAAGATTGA	GGCCCAGAGT	GATGGAGAAT
1320	AAAAAGGTGG	TATCGTACCG	TAAACGTGGT	CTAGCCTCTT	ACGACCGGGT	CATGATTGAT
1380	GGTATCCAGA	CTTTCTAACT	CATTTTACAA	TGGCAGCAGC	AAGGAAAATA	CGCTCCTATC
1440	CAGTTATGAT	TGTATTGAGG	GGGGACTTTC	CCTGTGGTTC	ATTGATCCGA	CAAGCCTTTG
1500	GGAACTGGAT	TTTGAGGAAT	CTCTTTTGCA	GTCTTCGTCG	ATGGCGCCAG	TGCTAGAAAG
1560	ACCGTGAGCT	AAAAAAGTAG	AGAAGCGGCT	AAGTGCGCAC	TTGATTCAAG	CAGCGATCGC
1620	CTAAGGCCAA	GTGGAAATTG	TGCTCGCATG	GTGATATTGA	ATCATGGGCT	TGAGCTGGAT
1680	TGCAGGATTT	CAGATGCGCG	TACTTTTAAG	CAGGAGACAT	GCTGGTGTTG	TGCTCAGGTA
1740	AACGTTTGTC	CCTTATGGTG	TTCCAATCCG	GAGTAATCAT	AAAATCAATG	ACGTTCCGAT
1800	CACCGCTGAA	CAAGTATTTG	TGAGATGGGG	AGCTCTATGC	GGGGTGACCA	AGATGATGCA

AACTTGGAGC	AAATTTATCC	TGACTAGTGA	TGAAGCTTTT	GAAAGCAAGT	ATGGTAGCCA	1860
AGCAGATAAG	AAGCGTAAGT	TATACAACGG	AACCTTGAAA	GTGGATCTAT	ATCAATATTT	1920
TGGTCAGCGT	GTCAAACGGC	aagaggtaaa	ATAGAAAGGG	ATACTCATGA	GTAAAAAAAG	1980
ACGAAATCGT	CATAAAAAAG	AAGGTCAAGA	ACCGCAATTT	GATTTTGATG	AAGCAAAAGA	2040
GCTAACAGTT	GGTCAAGCTA	TTCGTAAAAA	TGAAGAAGTG	GAATCAGGAG	TCTTGCCTGA	2100
GGATTCCATT	TTGGACAAGT	ATGTTAAGCA	ACACAGAGAT	GAAATTGAGG	CGGATAAGTT	2160
TGCGACTCGT	СААТАСАААА	AAGAGGAGTT	CGTTGAAACT	CAGAGTCTGG	ATGATTTAAT	2220
TCAAGAGATG	CCTGAGGCTG	TAGAGAAGTC	AGAAGCTTCT	TCGGAGGAAG	TTCCATCTTC	2280
TGAAGACATC	TTACTACCCT	TGCCTCTGGA	CGATGAGGAG	CAAGGCTTGG	ATCCTCTATT	2340
GCTAGATGAT	GAAAATCCAA	CAGAAATGAC	TGAAGAAGTG	GAAGAGGAGC	AAAACCTTTC	2400
TCGTCTGGAT	CAAGAGGACT	CAGAAAAGAA	aagtaaaaa	GGCTTTATTT	TGACCGTTTT	2460
GGCGCTTGTA	TCAGTAATTA	TTTGTGTCAG	TGCTTATTAT	GTCTACCGTC	AAGTGGCTCG	2520
TTCGACTAAG	GAAATTGAAA	CTTCTCAATC	AACTACAGCC	AATCAATCGG	ATGTGGATGA	2580
TTTTAATACA	CTTTATGACG	CCTTTTACAC	AGATAGCAAT	AAAACGGCTT	TGAAAAATAG	2640
CCAGTTTGAT	AAACTGAGTC	AACTCAAGAC	TTTACTTGAT	AAGCTGGAAG	GTAGTCGTGA	2700
ACATACGCTT	GCCAAATCTA	AATATGATAG	TCTAGCAACG	CAAATCAAGG	CTATTCAAGA	2760
TGTCAATGCT	CAATTTGAGA	AACCAGCTAT	TGTGGATGGT	GTGTTGGATA	CCAATGCCAA	2820
AGCCAAATCG	GATGCTAAAT	TTACGGATAT	TAAAACTGGA	AATACGGAGC	TTGATAAAGT	2880
GCTAGATAAG	GCTATCAGTC	TTGGTAAGAG	CCAGCAAACA	AGTACTTCTA	GCTCAAGTTC	2940
AAGTCAAACT	AGCAGCTCAA	GTTCAAGTCA	AGCAAGTTCA	AATACGACTA	GTGAGCCAAA	3000
ACCAAGTAGT	TCAAATGAGA	CTAGAAGTAG	TCGCAGTGAA	GTCAATATGG	GTCTCTCGAG	3060
TGCAGGGGTT	GCTGTTCAAA	GAAGTGCCAG	TCGTGTTGCC	TATAATCAGT	CTGCTATTGA	3120
TGATAGTAAT	AACTCTGCCT	GGGATTTTGC	GGATGGTGTC	TTGGAACAAA	TTCTAGCGAC	3180
TTCACGTTCA	CGTGGCTATA	TCACTGGAGA	CCAATATATC	CTTGAACGTG	TCAATATCGT	3240
TAACGGCAAT	GGTTATTACA	ACCTCTACAA	GCCAGATGGA	ACCTATCTCT	TTACCCTTAA	3300
CTGTAAGACA	GGCTACTTTG	TCGGAAATGG	CGCTGGTCAT	GCGGATGACT	TAGATTACTA	3360
AGCAGTCGG			•			3369

(2) INFORMATION FOR SEQ ID NO: 43:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 9713 base pairs

406

- (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

AAGTTTACAA	TTTAAATGAA	TTAACAATTT	TCCCAACTAA	AAGCACTCCA	GTTACCGCAA	60
CGTTTGTACT	GAATGTACTA	AATCGCATTC	CATCAACTTC	ATCTGTTTCG	TCAACTTGAA	120
CAGATACTAA	TTGAAGATTT	AATACTTCTG	CTGCCATAGC	TAGCTCCTCC	TATTTAAATT	180
TTTGGGATTA	AGTACTTTAT	CCACCCTCAT	ATACTCTCTC	CACCAGTAAA	ATGCAAGCAA	240
TGATACAAAA	TAGATTTAAC	TATTTTATAT	AGCGAAAACT	TACAAATTTT	TAAGAAATAA	300
TTTTTGCATT	CTTAAAGATA	AAATAGGAAC	TTTTAGTAAT	АААТАТААА	АТАААТАААА	360
TAATAGATAC	TATAAAATTT	GGAAGTATTA	ACCCCAAAAG	ATTCATATCA	TCTATTAAAA	420
TATCCTCTAA	AGAGTAGTAT	ATTAAAGCCA	TAATTTTAAT	GTTAAGTAAA	AATGCAATTA	480
ATGAAGTAAC	AAATGTCAAA	AATATAGCCT	CACCAACTTT	AATCTTAACC	ATCTGGTAAT	540
TAGAAGTTCC	TAAAATTTCA	AATTGCTGAA	TCTCAATCCT	TTCTTGATGC	GATGACAAAA	600
ATGCAATTGA	AATAATATTT	GCAAGTACTA	TCAAAATTGG	TGCTCCTACA	TAGACAATAA	660
ATGCTACTTT	TAGCTCTAAA	TCACTGTCAT	CTTGAAATTG	AGATAGTATA	TTCTGAGAAA	720
TCATTTGAAA	ACTAGAAATT	AGTAATATAG	CTCCTGTAAT	TGCAGCACTG	ATAGATTTTA	780
TATAAGACTT	ACAATATAGT	AAATTCCACT	TCGAAACAAT	GAACATAAAA	TTATTTCTAA	840
АТАТААТТАТ	AGAAAGTAGT	TTGATAAAAC	ATGACTGTAT	AAAAGGAGAT	AATTGATAAA	900
TAATCACAAT	ATCTAAGATT	ACAATATTGA	ATATTATCTG	GGCCTTCGCT	AAAATTGTGC	960
TATCTTGGAA	AATTTGTTGC	AAAGAAAGCA	ACCAGATAAC	ACTAAAACCA	GCCAATAGCA	1020
GTATTCTTTT	TACTATTGAA	AGAACATGCC	TTATTTTAGA	ACTCTTCCTA	TTTCTAATCT	1080
TCTTGAACGT	ATAAAAGCAA	CCACTTAGAA	AGGCTAAAAA	TGAAATCAAC	ACTACTGTAA	1140
TGATACATCC	AACAGCACTC	GTTTGAAATT	GGATATCAGG	TAATATATT	TCCCCGAAAA	1200
agtattgtaa	AATAATAA	TAATTTGACG	TAACAAATAT	AGAGCATAGA	TATGCAATAA	1260
ААСТААТААТ	CGAGGAAATG	ATAAAAATCT	GTCCCCCCAC	AAGAAATGAT	AGTTGAAGGC	1320
GACTTGCTCC	CAACACCTCC	AGAAGTTCGT	AATCATCTCT	AAAAATTTCA	ACCAACATAT	1380
TTATTATGTT	AGAGAGCACA	AAGAATAATG	TTACTCCTCC	GAATACTATC	GGAAACATAA	1440
AAATTGGTTT	AGGATCTGGA	AGTCCGACAA	ATACTTGCGA	ATTATTCTCA	ACATTAATTA	1500
CCCCATTAAC	AGCCAATCCC	ATAACTAAAC	TCGAAACAAA	AATTACTGGT	GAAACGCCTA	1560

ACCA	TTGTTT	CTTATTATGT	AAAAATTGAT	AGTAAACTAA	TCTGAGCATC	TCTATTCCTC	1620
CGTA	GTTGAT	TGTACCTCTA	AGATTTTATA	CAACTCTTCC	CCGCTAGGTC	TATGAAGTTC	1680
PTTC	TTAAAA	TTTCCATCTT	TCAATATTAA	TGCACGATCA	GTTTTCGAGG	CCAATTCTAT	1740
ATCG	TGCGTT	ACCATAATTA	CACACTTACC	CGCCCCTACT	AACTCTCTCA	ATAATTCAAA	1800
LTAA	ACTTCA	CGAGAAACGC	TGTCTAAAGC	CCCAGTTGGC	TCATCAGCAA	ATATTATATC	1860
ACTA	TCAGCA	ATAACCGCTC	TAGCTATAGC	AACCTTCTGT	TGTTCTCCAC	CAGACAGAGT	1920
PCCA	ACAAAA	TCGTTTAAGC	CAGCATTAAA	CTTCATTCTT	TTGAGTAAGT	TTTCTACATT	1980
TTTA	ATAGTT	AATTTTTTT	GTGATAATCG	CAAAGGAAGT	GCTATATTTT	CTATTACCGG	2040
CAGG	GAAGGT	ATTAAATTGT	ATGCTTGAAA	TATAAAAGAT	ACTTCGTTAC	GTCTTATACT	2100
rgac	'AATTTT	GCATTTCTGA	TTTTATAGGG	GTTGATTCCA	ттталалтта	CTTCCCCACT	2160
rgtt	GGTTCA	AGCAAACTAG	AAATACATTT	TAATAAAGTT	GACTTTCCAG	AACCACTAAT	2220
rcct	'AGAATA	CTTATAAATT	CTCCTCTCGA	AGCAGAAAGA	GAAACATTTT	TCAGCACTTG	2280
CAAC	GTTTTA	TTATTTCCTA	GTAAAAATTG	ATGATACAGC	CCTTTCACTT	TTAATATA	2340
ATCT	TTATCC	ATATTCTTGC	CTCCAATCAC	TTAATTTTGA	AAAGTGTTCC	ATTTCCAAT	2400
TAT	ATATAT	CAGTGTATCT	CTTGTCATTT	AAGTCATAAT	GATGTGAAAC	ТТСААТАААТ	2460
GAAA	TACCTA	AATTGAACAG	AATATCATGT	ATGGAATTTG	AATTATCATT	ATCTAAATTA	2520
GCTG	ATATTT	CGTCAAATAA	GTACACTTTA	TTATTTCTAA	TCAGAGCTCT	AGCTAAAGCT	2580
ATTT	TTTGTT	TTTGACCTCC	AGACAAATTA	CTACCATTTT	CACCACATTG	ATAATTTAGT	2640
TAT	CTATCT	TTTCTAATTC	TTCATATAGA	TTTACCTTTT	TTAACACCTC	AATTATCTGA	2700
rcat	CTGAAA	AATATTCATT	TTGAAATAAA	GTTACGTTCT	CACGAATAGT	AGTGTCAAAA	2760
ATAT	ATGGTG	TCTGATCAAC	TGTTGGTATT	GAATCTGAAC	TCTTTTTCCC	ATGTGATAAC	2820
TAAA	TTACAT	AACCTTTTTG	TGGCTTTAAA	GAACCATTAA	TTAAATTTAA	AATCGTTGTT	2880
PTCC	CACTAC	CAGAAGTTCC	TGTTAATAAT	ACCCTAAATG	GTGACTTAAA	TGAGAAGTCA	2940
ATAC	TTAATT	TATTTTCTGG	TGTAATAGAA	TATACAACAT	CTTTCATGTG	TATCTCATCT	3000
ATTG	ATGAAG	TATACAGTCC	GTTATTATCA	TGTTCAGCGT	СТАТААААТТ	CTTCTCTCCA	3060
TTA	AGTATT	TTAAAAACGG	TTTCCTTAAA	TCTTTGGTTG	TATTTATCTT	ATTTAATGAA	3120
PAGG	CAATTG	ATTGTATCGG	CCCTAAAACT	TTATCGTTTG	CTAAGAAAAT	ACCTATCAGT	3180
CAC	TAAAAG	AAAGGCTTTT	ATGATAAATT	ACAAAATAAC	ATCCTACAAC	CAAGGGAACT	3240
GAA	AGCAAA	ДАССТСАДАТ	ТАСТАСТССА	ልሮሮልልሞሞሞሞር	AAAGAACCTC	ጥርልጥርርጥጥጥር	3300

			408			
Aaattaaag	TAGAATCTTC	TAGTTTATCC	AACTTTTTAT	CCGACAAACT	AATTATTTCT	3360
TTAGTAACAG	AATAAGATTT	TAATGTCTTA	AAACCATTAA	AAATTTCTTT	TATTATGTGA	3420
GTATACTCTG	CATTGCTGTT	AGAGTACTCA	TTAGCTGAAT	TAGACAACAT	CTTCTTCATA	3480
AAGACAGGTA	CTATAATCGG	CAATGCTGAT	AATACAATAA	ATATTATTGA	nACTAGGAAG	3540
AAATAATTT	GCATAAAACT	TAGAGAGACG	ATGAACAACA	ATATTGAAGA	AATTATTTCA	3600
AAAATTTGTC	таааатастт	TTCTTCGATT	AATCTCAAAT	CATTTGACAA	AACTGAAATA	3660
atagatgagt	AATCTTTAAC	CATTTCAGAA	GAAAGATACT	GTTCTCTAAA	ATATCCTTGT	3720
ATTTTTAATT	CATTTATATC	TTTAGTTATT	GATGCTTCCG	ТТАСТТСТАА	ATAGTAATTT	3780
GATATATAGA	TTGCTGACCA	ACCCAGAATA	CTTATAGCAC	CAAATCTTAG	AACGTCAGAA	3840
AATGAGGAAG	TCTGATTTAA	ACTACCTGCA	TATACAATAA	TTCCTGAGAG	CAAGACACCA	3900
TTAAACGAAG	ATAGAAATAT	TAAAATCCCC	ATTAATATAA	GTTTAGTCTT	TTTTATAAAT	3960
TAAATAAT	TCATAAGTTA	TTCCTTCCCA	CTTCTTCAAA	GAAATAATTT	AAAGTATCAA	4020
TCATTAAGAG	AACATCTGAT	GGAGTAAAAC	CTCCATGACC	AGCTGCTTTG	ТТТАААТАСА	4080
ACAAACTTTT	AACTCCAATA	GAATTTAATT	TCTTTGACCA	CTCTATCACT	TCGTTATTAT	4140
TAATATATGG	GTCTTTCTCA	CCCAAAATAT	TAACTATAAC	AGTATTTGAG	TCTCGTGCCT	4200
TTTCAATATT.	TTGCATAGGC	GAATATGACT	TTATATAAGC	CTTTACTTCA	GGGTCTCTAA	4260
TATCTCCCCA	CTCTGCTATT	TCGGTCTTAG	AAAGAGGATC	ATTTGGATTC	TGAAGTGTAT	4320
CATAAGGATT	TATAAATGGC	GAAAATAAGA	GAATGCTTTG	CAATAAATTT	TTTTCCTCGT	4380
TCAACACCGC	ACCAGCAATT	ATTCCACCTG	CACTAGAAGT	TATTAAACCT	AATCGCTTAC	4440
TGTCAATTAC	ATCATTTTCC	CTTAAATAAT	TTACTCCCTC	AATAAAATCT	CTGATAGAAT	4500
TCCATTTGTT	TAACGCCTTT	CCTGAGCGAT	ACCATTCACC	ACCCAAATAG	CCTCCACCTC	4560
TTACATGAAC	TATAGCATAA	ATAAAACCTG	CATCTATTAT	AGATAACATA	ATTTCATCTA	4620
AATCAGAATT	ATCATTCTTA	CCATAAGCCC	CATAGACACT	TAGAATACAT	TTTTTTCTTC	4680
TTGGGAGCTC	ATCCGTATCT	TCACTTTTCC	AAAATAAAGA	AATCGGTATG	CTTACATCAT	4740
AACTGTCTTT	TTTAGTCCAA	ATCACCTTAG	TTTATAAAAA	AGTATTATTC	GATTTŢATGA	4800
TGGGTCTTTC	AAATTCAGTT	TTTAATGTAT	TTTCTATTAA	ATCAAAACTA	AGTATTTTT	4860
CGTAAAAAGT	TCTCCTCTCT	AAAAACAGAA	GAACACGATC	AGAAAATGAA	TTTTCATAAA	4920
GTGTTGTCTT	TTCATCAAAT	GTTATCTTAT	TAACACTCAA	CTCCCTCAAA	СТАТТАТТТТ	4980
TAAATGTAGC	AAGATAAAAG	ACGGAATTCG	CTGCGTTTGA	ACAGTCTAAA	AGGATATAAC	5040
GTCCTATACA	GTGAACTCTT	CTAGCCCTAT	CTTGATATGG	TATAGTAATA	GAAACTCTGT	5100

CTCCCGAAGA	AGTTTCCCTT	AGAATTAGTT	GATCTTTCTT	TTCTTCAGTT	GAAGAGAGCC	5160
CAAGAAAGTA	CTGTGCTTTT	TCTGTACTAA	ATAGAGCGAT	ATCTCTAGGT	GTTGGGGCTA	5220
CCGTTTCTGT	GTAAGAGTGT	CTAACAAAAC	CCGTCCGGTC	GAAACTGTAT	AGAAAAATCC	5280
TGCCTTTCTG	AAAGTCTACT	GACTTTACAA	AACAATTATT	GCTATCAATG	TGGACTATTT	5340
TTAATCGAAA	AGAGCATTCG	TTTTCTTCAA	ACAGTTCCTC	TTCTGTAAAG	CTATCAAAAG	5400
ATTTATAGAA	TAACTTACTT	GCCTCCCGT	ACTCTTTGGA	GCGAGTATAC	ATAACACCGA	5460
ATTTACCCAA	ATAGAACGAA	CTTTCTACTG	AAATATCTTC	AATGATAAAT	AACTCTTCCA	5520
TAGTATATT	TTTTATTCCA	ATTAAATTAG	TCGTACGCAG	TGAGGATACA	ACCAAAACTA	5580
TATAACTCTC	ATCAGATGAA	ATCCTAACAT	CCTGTAAGAT	ACTATCATCT	GGCAAAGTAT	5640
ATTTTTCCAC	ATCAAAGACA	ATTTTAAGTG	AATTTGAATT	GTCTAAACTG	GAAGAACTAA	5700
CCTTAGGAAT	CCAGTCATTA	TCTTCGACAT	ACCATTCCTT	TATTACACCA	GTATTGGGTA	5760
TACTCCAATT	ATCAAATTGG	TACCAATATC	GCCCTCTCCT	AAATATCAAA	GAATTCCATT	5820
TTTTTAATTC	CTGAAATGAT	GAAGAGATAG	ACCTCTTATA	GTGTGTTTTT	TCCTGTATTG	5880
AAAAATTTAT	TATTTCATTA	CTCTGATTCA	CAAGTATGAC	CCCTTAATAA	TGGTATCTAA	5940
ATATTATATT	TGAGGAAGAA	TCGTCAATTT	ATTATCCATT	ATTGATACCA	ATCCAATTGC	6000
AACACCCGCA	AATCCCGAAG	CAATATCTGT	TGTTATCTTT	AAACCATTAT	CTCCCGCAAT	6060
ААСАААТССТ	TCTTCAATTA	CACACAAATA	TCTATAAAGT	TGTTCAATTA	ATTTCTTTTG	6120
TCCTGAAAAG	TTATCATCGA	TATCACTATA	TATATTATTA	GCAACTTCAA	GACCACAAAA	6180
TCCGTTAAAT	AAACCTGGTA	ATACACAAAA	AACTACATCA	GTTGCCCTCT	CTAAAGAAGT	6240
Т АААТАТТТТ	AAGTATTTGC	TTGACAAGAT	TTCTTTATTT	CTATTAATAA	GTAAAAGCAG	6300
GCCAGCACTT	CCAGTTGCTA	GATATGGTAG	TAATCTATGA	CCTTGGCTGT	ACTGCAATGA	6360
ATTATTACTA	TCTACTTTAT	AAGCAACTAA	TTCTTTATCT	ACAGCCAATT	CTAGACCATT	6420
TTTATAGATA	CTTTCACCAG	TTAATTTATA	AGCTTCACCG	AAGAGCCAAG	CTACCCCTGC	6480
GTGACCATAT	AGTAATCCAC	CAAAATTCTC	ATAAGGATCG	TTACTCTGAA	CATCACTAGC	6540
GCCAACTTTA	CAAAAAGTTT	CTGGATTTTC	TATATAATTT	AAAGTATATT	CTCTAAGCCT	6600
AATTAGTATT	TCTTCTCCTA	GTTTATTATC	AATTCCCCCT	TTACTAAGAA	AATACAGTCC	6660
AACCAGTAAA	ATTCCAGCCT	GCCCACTATA	TAAATTTTTA	TTTTGTGAAT	тстсааатат	6720
СТСТАТАААА	TGAGTTGTAA	AAAGTTCAAC	TGCCCGATCT	ATCTCCCCAA	ATTCATAAAT	6780
GAGCCAGATT	GTACCAATTT	TACCATCAAA	AAGACCAGAA	AGGGACGATT	TCTTAAAATT	6840

			410			
ATTTACTGCC	TCATTAATAA	CCTGTGTTCG	AATCTCATAA	TAGTCATCAA	ACTTGAAATT	6900
TTTTACTTTC	TTAGCTAGTT	GTTGATAACT	CCAAAGGATA	GCTAAATCTG	AAAACGCAAT	6960
PCCTTGATTA	AAATTCAGAC	CATAATAATG	AACTGGGAAG	AATCTTGATT	GAAATTCTTT	7020
ACGCCACTGT	CCATAAGTTA	GCGTAAACCC	TCTCAATAAT	AATAATAT	AATCTTGTAT	7080
ATCTTGCTCA	CTCTCGATAG	TTCTAATCTC	ATGCATGGGT	TTTAAAACTT	TTTTCCTGGA	714
AATATTCTCA	ATCTGTGGAC	ATTTAGAATC	TAGATATGAC	AATAAACTTT	CTACATAATC	7200
PATATGTTCT	CTTGTATAAC	CCAAAGACTC	AAATAGTTTT	TTTCCTTCTA	TCCTGGTTTG	7260
ACTTACATAG	TTGTATGTCA	AATCCGATGT	AGTTACTAGT	GGCATGTATA	AATAATGAGC	7320
TATTTGTCTA	ATACCATACC	AATCTATCTC	ACTGGGAAGT	GTTTCTCGCC	ATGCTCTAAA	7380
ACCAGGGGCT	GCAACTTTAT	GTACAACTTT	TTCATCATTT	GAAAAGACAG	CCTGTTCCCA	7440
GTCTATTATA	CTAATCTCAT	CTTCATCCTT	AACCAAGATA	TTTCCTAAAT	GTAAATCTTG	7500
ATGATATACA	TTTTCAGAAT	GAAACTTATT	CGTTAAATCG	ATGAGTTTTT	CTACTATCTT	7560
TGAAACTCTC	AATAGATAAT	CTTTGGTCTT	ATCAACAACT	TCATATAAAG	GAAAATTATT	7620
GGTAACCCAT	CTATTTAGTG	GAACGCCCTT	CATATGTTCA	ATTCCTAAGA	AGGTGTGCTC	7680
CCAGATCTTA	CCGTGCCAGT	ATATTTTAGG	CGTCTCACTC	CATTCATTTA	GAATTTTAG	7740
TGCTTTGCAC	TCCGAAGCTA	ATTTCTCTGA	AGAATAAGTA	CCATCAAATC	CTAGACCTGT	7800
ATACGGTCTA	GCCTCTTTTA	TTTTATTAAA	TTTCCCATCT	TCTTTTAGCC	TAGCATTATA	7860
TATCCCACCA	CTGTTTGAAA	ATCTAATTGC	ATTATCTATA	ATAAAGGGAA	AGTCTCCCTG	7920
PTTTTTATCT	TTCTTGTCAA	GCCATTTATT	CAAAAAGTCA	GGGGGCACTA	TACCTTTTGG	7980
TAAATTTTAA	ACTGGTAAAC	GTTCATCTTT	AACAACTTCA	TCGCCAACAA	TTAATTCATC	8040
AATAGCAACC	TTCTTTTCAT	CATCCCTTGA	CGGCCTAAAC	ACACCATACC	TCAGATATAT	8100
PGGTGCTTCA	TCCCAACGTT	TATCGCTTAA	AATATATGGC	CCATTATATT	GCTTTAAGGC	8160
ACTTTCTAAC	CTTTGCAAAA	CCGACTCTAA	TTCATTTTGA	TTTGGATAAC	ATGTAATAAA	8220
TTACCAGAA	AATCCTCGAC	TAACCAATTT	CCCGTTTCGC	ATGATAAATT	TGTCTTCTGT	8280
ACTAAGATGT	TTAAATGGAA	TTCGCATTTC	ATGGCAAATT	TTTGCTACAT	CTTGTAACAA	8340
ITCATGTGAA	CTGTTATACT	CTGAACTAAT	GTGTATTTTC	CACCCTTGTC	TTTCAACAAA	8400
ITTTCCAATA	GGGTATTGAT	AAACCCACTC	ATCATTATTC	ATTACTTCGT	GCCAATTAAA	8460
AGGCAGACTT	ACTTGGTACT	TTATGCTAGT	ATCTGTACTA	TAATCATTAT	TAGTGAAAA	8520
GAAAGGATGC	TCCAAATTGA	AATTATAATC	CATAACAAAA	TCTCCAAGAA	ATTTTATCAA	8580
АСТТААТАТА	TCTATAGCTA	GACAGACTTA	TTTAAATAAA	AAGGGAGAAT	CCTTTGGATT	8640

411

CTCCCCATAT.	AAGCACTAAC	ATTCCAACGT	GCACATATTG	GAACGACATC	CATAACTCCA	8700
GAGAATCTCT	AAAGTTTACA	ATTTAAATGA	ATTAACAATT	ТТСССААСТА	AAAGCACTCC	8760
AGTTACCGCA	ACGATTTGTA	CTGAATGTAC	TAAATCGCAT	TCCATCAACT	TCATCTGTTT	8820
CGTCAACTTG	AACAGATACT	AATTGAAGAT	TTAATACTTC	TTCTGCCATA	GCTAGCTCCT	888
CCTATTTAAA	TTTTTGGGAT	TAAGTACTTT	ATCCACCCTC	ATTATACTCT	CTCCACCAGT	8940
AAAATGCAAG	CAATTATACA	ATGTTGTCAC	ATAGAAAATA	ATGTTTCCGT	AACTTTTCAA	9000
AGTAACTTCC	ATCTCTCTCC	CAAAACTGGA	AGTTAGTTTT	AGAAGTTACC	TAAAAATCAG	9060
GTCACCTATT	TTAAAAAAGC	AGCAAACTAT	AAACTAGTAG	GTTCCACACC	AAATGTAGTC	9120
CCATACTGCC	CCATAAGTCA	GATTTATAGC	GCACCATACC	TAAAAACATC	CCAAGTGAAA	9180
CATACAAACA	CCAAGCTAGA	ATGGTTCCTG	TATGATGTGC	TAAGGCAAAT	AAAACACTTG	9240
TCAAAGCAAC	TCTGATATCT	AATTTTCTGA	CCAAATTCCA	TAAAATTTCT	CGATACAGAA	9300
ATTCTTCAAC	CATACTCGCA	TTGATTAAGA	ACAATAAAAA	TGAAAACCAA	GGAATTTGAT	9360
GTTGAAGGCC	AATTAAGTTT	GCTTGATTCG	TGCTTCCTTG	AGCATGAATC	AGACTAAAAC	9420
ATAGACTTAT	AATCAGTAGG	CTAACAAATT	CAACACCAAG	CCATTTCATC	CTAGATTTCA	948
TATTGACCTT	ATGCGCTTGT	TTGCGTTGGC	CATACATCCA	TAAAAAAGAA	ATGAGTGACG	9540
AACCATAGAG	AATCTGTAGT	ATAGTTMACT	CACCGATACA	AAGAAATTTC	AATAAGTATA	9600
GAGTTACCAA	TASGACATTT	ACTTGTTGGA	ATATATAAAC	TGGAATTATT	CTTTTCATAG	966
TTACCTCCGA	AATAAATCTT	CATAATCTAA	ATCTAATACC	TGCACAATCC	TTT	971
_						

(2) INFORMATION FOR SEQ ID NO: 44:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 8657 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

AAAGAAATTG	TCAGAGAGTG	GCTAGATGAA	GTAGCAGAGC	GGGCTAAGGA	CTATCCAGAG	60
TGGGTGGATG	TTTTCGAGCG	TTGCTACACC	GATACCTTGG	ACAATACGGT	TGAAATCTTA	120
GAAGATGGTT	CAACTTTTGT	CTTGACTGGG	GATATTCCTG	CCATGTGGCT	TCGAGATTCG	180
ACAGCCCAAC	TCAGACCCTA	CCTTCATGTA	GCTAAAAGAG	ATGCCCTCCT	GCGTCAGACC	240
ATTGCAGGTT	TGGTCAAACG	TCAGATGACC	TTGGTACTCA	AGGATCCCTA	TGCTAACTCC	300

			412			
TTCAACATTG	AGGAGAACTG	GAAAGGGCAC	CACGAGACTG	ACCACACAGA	CCTTAACGGC	360
TGGATCTGGG	AGCGCAAGTA	TGAGGTGGAT	TCGCTTTGCT	ATCCTTTGCA	GTTGGCTTAT	420
CTCCTCTGGA	AAGAGACTGG	CGAGACTAGT	CAGTTTGATG	AGATTTTTGT	CGCAGCGACT	480
AAGGAAATTC	TCCATCTGTG	GACGGTGGAA	CAAGACCACA	AGAACTCTCC	TTATCGTTTT	540
GTCCGAGATA	CGGACCGTAA	GGAAGACACC	TTGGTAAATG	ATGGCTTTGG	ACCTGACTTT	600
GCAGTGACAG	GTATGACTTG	GTCAGCTTTT	CGTCCGAGTG	ATGACTGTTG	CCAGTATAGT	660
TACTTGATTC	CGTCAAATAT	GTTTGCTGTA	GTAGTCTTGG	GTTATGTGCA	AGAAATCTTC	720
GCAGCATTAA	ACCTAGCTGA	TAGCCAGAGT	GTTATTGCTG	ATGCCAAGCG	TCTTCAGGAT	780
GAAATCCAAG	AAGGAATCAA	AAACTACGCT	TACACCACCA	ACAGCAAGGG	CGAAAAGATT	840
TACGCTTTTG	AAGTGGATGG	CCTAGGAAAT	GCCAGCATCA	TGGATGATCC	AAATGTACCA	900
AGTCTACTAG	CTGCGCCCTA	TCTGGGCTAC	TGTTCGGTCG	ATGATGAAGT	GTATCAAGCT	960
ACTCGTCGTA	CCATTTTGAG	CTCTGAAAAT	CCATACTTCT	ACCAAGGAGA	ATACGCAAGC	1020
GGTCTCGGCA	GTTCTCATAC	CTTCTATCGC	TATATCTGGC	CAATCGCCCT	TTCTATCCAA	1080
GGCTTGACAA	CAAGAGATAA	GGCAGAGAAA	AAATTCTTGC	TGGATCAGCT	GGTTGCCTGC	1140
GATGGTGGTA	CAGGTGTCAT	GCACGAAAGC	TTTCATGTAG	ATGATCCGAC	CCTCTACTCT	1200
CGTGAATGGT	TCTCCTGGGC	TAACATGATG	TTCTGTGAGT	TGGTCTTGGA	TTACTTGGAT	1260
ATTCGCTAAG	GGGCTCGCTT	TAGCTCAACC	GATTCTTATC	AGAATCACAA	GTTTACATTT	1320
AAAACGTTAA	AATTTAAATT	TAGAATGAGG	TTTTACTTCA	TGGAAAATGT	TGTTGTACAT	1380
ATTATCTCAC	ATAGTCACTG	GGATCGTGAG	TGGTACTTGC	CTTTTGAAAG	CCATCGTATG	1440
CAGTTGGTGG	AATTGTTTGA	CAATCTCTTT	GATCTCTTTG	AAAATGACCC	TGAGTTCAAG	1500
AGTTTCCACT	TGGATGGACA	AACTATTGTC	CTTGATGACT	ACTTACAAAT	TCGCCCTGAA	1560
AATCGCGACA	AGGTCCAACG	CTACATTGAC	GAGGGCAAAC	TTAAAATTGG	TCCCTTTTAC	1620
ATCTTGCAGG	ATGACTACTT	GATCTCCAGT	GAAGCCAATG	TCCGCAATAC	CTTGATTGGT	1686
CAACAAGAAG	CTGCCAAATG	GGGTAAATCA	ACCCAGATTG	GCTACTTTCC	AGATACCTTT	1740
GGAAATATGG	GACAAGCGCC	TCAAATTCTT	CAAAAATCAG	GCATTCACGT	GGCGGCCTTT	1800
GGTCGTGGTG	TGAAGCCGAT	TGGATTTGAC	AACCAAGTCC	TTGAAGATGA	GCAGTTTACG	1860
TCTCAĢTTTT	CAGAAATGTA	CTGGCAGGGT	GTGGATGGTA	GTCGTGTTTT	AGGTATTCTC	1920
TTTGCCAACT	GGTACAGTAA	CGGGAATGAA	ATTCCAGTTG	ACAAAGATGA	GGCCTTGACC	1980
TTCTGGAAAC	AAAAATTGTC	AGATGTGCGT	GCCTACGCTT	CGACCAACCA	ATGGTTGATG	204
ATGAACGGCT	GTGACCACCA	GCCTGTACAG	AAAAATCTGA	GCGAAGCCAT	TCGTGTGGCA	210

ATGAACTCT	TCCCGGATGT	AATCTTTGTT	CATAGTTCTT	TTGATGAATA	TGTTCAAGCT	216
STAGAAGGTG	CGCTTCCTGA	ACACTTATCA	ACTGTTACAG	GCGAGTTGAC	CAGTCAGGAA	2220
CAGATGGCT	GGTACACACT	TGCCAACACT	TCTTCATCCC	GCATTTACCT	AAAACAAGCC	228
TTCCAAGAAA	ATAGCAACCT	CCTAGAGCAA	GTGGTAGAAC	CCTTGACTAT	TATCACTGGT	2340
GACACAACC	ACAAGGACCA	GTTGACCTAT	GCTTGGAAAA	CACTTTTGCA	GAATGCGCCA	2400
CATGATAGTA	TCTGTGGCTG	TAGCGTGGAC	GAAGTTCACC	GCGAGATGGA	AACGCGTTTT	2460
GCCAAGGTCA	ACCAAGTAGG	AAACTTTGTT	AAAAGTAACT	TGCTCAACGA	GTGGAAGGGT	2520
LAAATTGCTA	CGGATAAGGC	TCAAAGTGAC	TATCTCTTTA	CTGTCATTAA	CACAGGCTTG	2580
CATGATAAGG	TCGATACTGT	CAGCACAGTG	ATTGATGTGG	CGACTTGTGA	TTTCAAGGAA	2640
TGCACCCAA	CAGAAGGCTA	CAAAAAGATG	GCTGCTCTTA	TCTTGCCAAG	TTACCGTGTG	2700
BAGGACTTGG	ATGGTCGTCC	TGTAGAGGCT	ACAATCGAAG	ACCTCGGAGC	TAATTTTGAG	2760
DATTTAATTA	CAAAAGACAA	GTTCCGCCAA	GCTCGTATTG	CTCGTCAAGT	GCGCGTGACC	2820
ATTCCAGTTC	ACCTAGCGCC	GCTTTCTTGG	ACAACCTTCC	AATTGCTGGA	AGGAAAACAA	2880
AACACCGTG	AGGGTATTTA	CCAAAACGGA	GTGATTGATA	CACCATTCGT	AACGGTGAGT	2940
STGGATGACA	ACATCACAGT	CTATGACAAG	ACAACTCACG	AAGCCTATGA	AGACTTTATC	3000
GCTTTGAAG	ACCGTGGGGA	CATCGGAAAC	GAGTATATCT	ATTTCCAACC	AAAAGGAACA	3060
SAGCCAATCT	TTGCAGAGCT	TAAGGCCAC	GAGGTCTTGG	AAAACACAGC	TTGCTATGCT	3120
AAATCTTGC	TCAAACATGA	ATTGACCGTG	CCTGTCAGTG	CGGATGAAAA	GCTAGAAGAA	3180
AGCAACAAG	GTATCATCGA	GTTTATGAAG	CGTGAGGCTG	GACGGTCAGA	AGAATTGACA	3240
ACATTCCTC	TGGAAACTGA	GTTGACTGTC	TTCGTTGACA	ATCCACAAAT	CCGCTTCAAG	3300
CTCGCTTTA	CTAACACTGC	CAAGGATCAC	CGTATCCGTC	TCTTGGTCAA	GACTCATAAC	3360
CGCGTCCAA	GCAATGATTC	TGAAAGTATC	TATGAGGTGG	TGACACGACC	AAACAAACCA	3420
CTGCTTCAT	GGGAAAACCC	TGAAAATCCT	CAACACCAAC	AAGCTTTTGT	CAGTCTGTAT	3480
ACGATGAAA	AAGGGGTGAC	TGTATCCAAC	AAGGGATTGA	ATGAATACGA	AATCCTTGGG	3540
ATAACACCA	TTGCCGTGAC	CATTTTGCGT	GCATCAGGTG	AGCTAGGTGA	CTGGGGCTAC	3600
TCCCAACGC	CAGAAGCACA	ATGCTTGCGG	GAGTTTGAAG	TCGAGTTTGC	ACTTGAATGC	3660
ACCAAGCCC	AAGAACGCTT	CTCAGCCTAT	CGTCGTGCCA	AAGCCTTGCA	GACACCGTTT	3720
CCAGCCTTC	AGCTTGCTAG	ACAGGAAGGA	AGCGTGGTTG	CGACTGGTAG	CCTCTTGAGC	3780
יאינייניטינייניעביינייני	телеелтасе	GCAAGTTTCT	ССУУСУСССФ	THEADCOTEC	ПСАЛАВТСА Л	3940

			414			
GAAGGCTATG	TGCTTCGTTA	CTACAATATG	TGTAGTGAAA	ATGTACGTGT	GCCAGAAAGT	3900
CAACATCTCT	TCCTTGACCT	ACTTGAACGA	CCATACCCAG	TTCATTCAGG	ACTATTGGCT	3960
CCACAAGAGA	TTCGTACAGA	ATTCATCAAA	AAAGAAGAAA	TTTAATTTCA	AAAAGTAAAC	4020
ATCAAAAGAA	AGGAGGGGCG	AAAAAGTAAG	AACTAACTGC	TGATTCGCCC	CTTTTATGGT	4080
AAAAACAATG	ACCATTGCAA	CGATTGATAT	CGGAGGGACT	GGGATTAAGT	TTGCCAGTCT	4140
GACTCCTGAT	GGGAAAATAC	TGGATAAGAC	AAGTATTTCA	ACGCCTGAAA	ACTTGGAGGA	4200
PTTACTAGCG	TGGCTAGATC	AACGCTTGTC	AGAACAGGAT	TACAGTGGGA	TTGCTATGAG	4260
CGTTCCAGGT	GCAGTCAATC	AAGAGACAGG	TGTGATTGAT	GGCTTCAGTG	CGGTGCCCTA	4320
CATCCATGGC	TTTTCTTGGT	ATGAGGCGCT	TAGCTCTTAT	CAGCTACCTG	TCCATTTAGA	4380
AAATGATGCC	AACTGCGTTG	GACTCAGTGA	ACTACTAGCT	CATCCAGAGC	TTGAAAATGC	4440
AGCCTGTGTC	GTGATTGGGA	CAGGGATTGG	CGGAGCCATG	ATTATCAATG	GTAGACTTCA	4500
PCGAGGTCGC	CACGGTCTGG	GTGGAGAATT	TGGCTACATG	ACAACCCTTG	CCCCTGCTGA	4560
AAAACTTAAT	AACTGGTCGC	AACTAGCATC	AACTGGGAAT	ATGGTACGAT	ACGTGATTGA	4620
AAAATCTGGT	CATACTGATT	GGGACGGTCG	CAAGATTTAC	CAAGAGGCCG	CAGCTGGTAA	4680
PATCCTTTGT	CAAGAAGCCA	TTGAGCGCAT	GAACCGCAAT	CTGGCGCAAG	GCTTGCTCAA	4740
PATCCAGTAT	CTGATCGATC	CAGGTGTCAT	CAGTCTGGGT	GGCTCTATCA	GTCAAAATCC	4800
AGATTTTATC	CAAGGTGTCA	AGAAGGCTGT	TGAAGACTTT	GTCGATGCCT	ACGAAGAATA	4860
CACGGTCGCA	CCAGTTATCC	AGGCCTGCAC	CTATCACGCA	GATGCCAATC	TCTACGGTGC	4920
CTTGTCAAC	TGGCTACAGG	AGGAAAAGCA	ATGGTAAGAT	TTACAGGACT	TAGTCTCAAA	4980
CAAACGCAAG	CTATTGAGGT	TTTAAAAGGT	CACATTTCTC	TACCAGATGT	GGAAGTGGCT	5040
STCACTCAGT	CTGACCAAGC	ATCTATCTCT	ATCGAGGGTG	AGGAAGGTCA	CTATCAATTG	5100
ACCTACCGCA	AACCTCACCA	ACTTTATCGT	GCCTTGTCCT	TGTTGGTAAC	AGTTCTAGCA	5160
GAAGCTGATA	AAGTAGAGAT	TGAGGAACAA	GCAGCTTACG	AAGATTTGGC	TTACATGGTT	5220
SACTGTTCTC	GAAATGCGGT	GCTGAATGTG	GCTTCTGCCA	AGCAGATGAT	TGAGATATTG	5280
CTCTCATGG	GCTACTCAAC	CTTTGAGCTT	TACATGGAAG	ACACTTACCA	GATTGAAGGG	5340
CAGCCTTACT	TTGGCTATTT	CCGTGGAGCT	TATTCAGCAG	AGGAGTTGCA	GGAAATCGAA	5400
SCCTATGCCC	AACAGTTTGA	CGTGACCTTT	GTACCATGCA	TCCAGACCTT	GGCCCACTTG	5460
CGGCCTTTG	TCAAATGGGG	TGTCAAGGAA	GTGCAGGAGC	TCCGTGATGT	AGAGGACATT	5520
CTTCTCATTG	GCGAAGAAAA	GGTTTATGAC	TTGATTGATG	GCATGTTTGC	CACGTTGTCT	5580
AACTCAACA	CITICOCON NOCEIR	CA AMAMOCOC	******	CCC3 COMOCOM	TOCOMPROCO A	E C 40

CGCTACCTGA	TTCTGAACGG	TGTTGTGGAT	CGTAGTCTCC	TCATGTGCCA	ACACTTGGAG	5700
CGCGTGCTGG	ATATTGCTGA	CAAATATGGT	TTCCACTGCC	AGATGTGGAG	TGATATGTTC	5760
PTCAAACTCA	TGTCAGCGGA	TGGCCAGTAC	GACCGTGATG	TGGAAATTCC	AGAGGAAACT	5820
CGTGTCTACC	TAGACCGTCT	CAAAGACCGT	GTGACTCTGG	TTTACTGGGA	TTATTATCAG	5880
GATAGCGAGG	AAAAATACAA	CCGTAATTTC	CGCAATCATC	ACAAGATTAG	CCATGACCTT	5940
GCATTTGCAG	GGGGAGCTTG	GAAGTGGATT	GGCTTTACAC	CTCACAACCA	TTTTAGCCGT	6000
CTAGTGGCTA	TCGAGGCTAA	TAAAGCCTGC	CGTGCCAATC	AGATTAAAGA	AGTCATCGTA	6060
ACGGGTTGGG	GAGACAATGG	TGGTGAAACT	GCCCAGTTCT	CTATCCTACC	AAGCTTGCAA	6120
ATCTGGGCAG	AACTCAGCTA	TCGCAATGAC	CTAGATGGTT	TGTCTGCGCA	CTTCAAGACC	6180
AATACTGGTC	TAACGGTTGA	GGATTTTATG	CAGATTGACC	TTGCCAACCT	CTTACCAGAC	6240
CTACCAGGCA	ATCTCAGCGG	TATCAATCCC	AACCGCTATG	тттттатса	GGATATTCTT	6300
FGTCCGATTC	TTGATCAACA	CATGACACCT	GAACAGGACA	AACCGCACTT	CGCTCAGGCT	6360
GCTGAGACGC	TTGCTAACAT	TAAAGAAAAA	GCTGGAAACT	ATGCCTATCT	CTTTGAAACT	6420
CAGGCCCAGT	TGAATGCTAT	TTTAAGTAGC	AAAGTAGATG	TGGGACGACG	CATTCGTCAG	6480
CCTACCAAG	CGGATGATAA	AGAAAGTTTA	CAACAAATCG	CCAGACAAGA	ATTACCAGAA	6540
CTTAGAAGCC	AAATTGAAGA	CTTCCATGCC	CTCTTTAGCC	ACCAATGGCT	GAAAGAAAAC	6600
AGGTCTTTG	GTTTGGATAC	AGTTGACATC	CGTATGGGCG	GACTCTTGCA	ACGCATCAAA	6660
CGAGCAGAAA	GCCGTATCGA	GGTTTATCTG	GCTGGTCAGC	TTGACCGCAT	CGACGAGCTG	6720
GAAGTTGAAA	TCCTACCATT	TACTGACTTC	TACGCAGACA	AGGATTTCGC	AGCAACTACA	6780
SCCAACCAGT	GGCATACCAT	TGCGACAGCG	TCGACGATTT	ATACGACTTA	ATATTCTTCG	6840
AAATCTCTT	CAAACCACGT	CAGCTTCCAT	CTGCAACCTC	AAAACAGTGT	TTTGAGCAAC	6900
TGCAGCTAG	CTTCCTAGTT	TGCTCTTTGA	TTTTCATTGA	GTATAAAAAC	AAGAACACCT	6960
'GCTTGGCGC	AGGGTGTTTC	GCGTGAAACA	GAAGAATTAT	CTGGTTTCAA	ATGCTACAGT	7020
AGACAAACT	TATGATAAAA	TAGCAGAAAG	TGAATGTTTC	CTAAGAGCAA	TTGGAGGTAT	7080
PATGCTACAC	TTAAAATTAG	TAAAACAAGA	AATAGAAGCT	GAAAAGCCAG	CATCTGTAGA	7140
AGCTTGGATC	ATTTCCGTCA	AATTTAAAAA	AGGTTGCTAC	CGACATATAT	AGATTCCAAA	7200
ACAAAAACG	TTAGCGGAAC	TAGCAGATGT	GATTTTATGG	AGTTTTGATT	TTGCAAATGA	7260
CATGCTCAC	GCATTTTTCA	TGGATAATGT	TGAGTGGAGT	CATGCAGATT	CTTACTTTCG	7320
AGCTTTGTT	AGTGACGATG	TTGAAGAACG	TTACACAGAA	AATGTCTATC	TGGATAGCCT	7380

AAGTGTCAAA	САААААТТТА	AGTTTATTTT	416 CGACTTCGGT	GATGAATGGC	GTTTTGAATG	7440
CCAAGTGCTG	AGAGAAATCG	AGACAGAGGA	CGAAGAAGCT	TATCTCGTAC	GTTCGGTTGG	7500
AACGTCGCCA	GAACAATATC	CAGATTATGA	TGGTTTTGAC	TATGAAGAAT	GGTAAAATTG	7560
AAATCAGTCT	GTGTAGGCTT	AGTATTTCAA	TAGACTTCCT	GCAAAACTAG	AATCCTAGTT	7620
CATGATTGAT	AATACCAGCA	ATCAAATTCA	TTCGTAATCC	GAAGCGTTTA	CGATGATTTC	7680
GATAGGTTGT	TGAAAACATT	TTAAACGTTT	TTACTTTGGC	AAAGATGTTC	TCAACCTTGC	7740
TTCTCTCCTT	AGATAGCGCA	TGGTTATAGG	CTTTATCTTC	AGCTGTTAGT	GGCTTGAGTT	7800
TGCTGGATTT	ACGTGAAGTT	TGTGCTTGAG	GACATATCTT	CATGAGCCCT	TGATAACCAC	7860
TGTCAGCCAA	GATTTTACCA	GCTTGTCCGA	TATTTCTGCA	ACTCATTTTG	AACAACTTCA	7920
PATCATGACA	ATAGTTCACA	GTGATATCCA	AAGAAACAAT	TCTCCCTTGA	CTTGTGACAA	7980
TCGCTTGAGC	CTTCATAGCG	TGAAATTTCT	TTTTACCAGA	ATCATTCGCT	AATTCTTTTT	8040
TTAGGGCGAT	TGATTTTTAC	TTCCGTCGCA	TCAATCATTA	CCGTGTCCTC	AGAACTAAGA	8100
GGAGTTCTTG	AAATCGTAAC	ACCACTTTGA	ACAAGAGTTA	CTTCAACCCA	TTGGCTCCGA	8160
CGGATTAAGT	TGCTTTCGTG	AATACCAAAA	TCAGCCGCAA	TTTCTTCATA	AGTGCGGTAT	8220
PCTAGGCTTA	ATTTAGGTTT	TCGTCCACCT	TTTGCGTGTT	TAAGTTGATA	AGCTGTTTTT	8280
AATACAGCTA	ACATCTCTTT	AAAAGTCGTG	CGCTGAACAC	CAACAAGACG	CTTAAATCGT	8340
GTATCAGTTA	ATTGTTTACT	TGCTTCATAA	TTTCGCAGGG	AGTCTATTGA	CTCTTTGGTA	8400
GGTGTCAATG	TTTTTTTCAT	CTATCCCGAG	AATTATTTTC	CCGCCATTTG	TATTTGCAAA	8460
rgctgagtag	GTTTCCCAGA	AAGACTCTGG	AAGATTGTTT	TTAGCTTTTT	TGTATTCTAA	8520
ATCAACCCCT	TCAAATTTTA	AGTCCATATT	TTTCCTTTAC	ATCTGTTTTT	TGTGGTTCTG	8580
GTATTTGTTC	AAGTTGAGTG	ATAATATAGC	GAATTGAATT	TCGAGAGTTT	TTACTCAGTT	8640
AATTTCTTTT	TTAACCC					8657

(2) INFORMATION FOR SEQ ID NO: 45:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 11384 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:

TCTATTTGG GTATAGACTT ACCTATAAAG AAAAATATCT ATACACTGCC TTACTAGCTA 60 TACTGAACGA GTCAACAAAA ACGATATATA TTGATGATAT AAATACAGCA AGATTTTTTA 120

180	ATCGCACCTT	AATTGACTAT	CTTTAAAAAA	CCTAATTCGT	CAATGATATT	ACTTCTTTGG
240	CCTAAAATTT	TAAAGTAATT	GACAACGTTC	ACGTACGTTC	TTCATTTAGT	CAGAAATTGT
300	GGTTACACTG	AGATGTTTCT	TAGAGAATAT	AGTTTTTAT	ATTAAAATCA	rggaacatat
360	AAAAACTAAC	CAAAATTAGT	ATAGAACAAT	TTAACAAAAC	AGAAGATCAA	TTTTATAAA?
420	GATGGAAAGA	CTTGCCTGCT	AACCACGCGC	TACCTAACAA	CATGTATAAA	rggttgatct
480	GAGTTTATTA	AATGGCCAAA	AATCAAAAAG	TCAAAGAAAA	TACATGAATA	AGGTACAAA
540	CAACTGTTAC	AAAGCCCGTA	AACGGGCAAA	TTGACCAACT	TATCTAGGCG	TGCTAGTGTT
600	CTTTTGCTGC	GCGATCAATA	AGCGCGTGAT	TTAAAGTAAA	AAAAAGGGCG	AGCAACCACT
660	TTGTAAAAGT	TATAATGAGC	AATTACAACA	ACAAGCCGAC	ACAGTTAAAG	PAATGGCTAT
720	TGGAGGGATT	CGCCAATCCA	GCCAAATACT	ATACAGTTAA	AGTTACAAGA	TTGGTGGGAT
780	TTACTACGCC	CTATCTAAAC	CGATTACAAG	CTGTATTTGG	CATTTATTGC	GTTAGAGTG
840	AAAAAGGGGC	AATAAAGGCG	TGACAAGGCA	ACAAATGGGC	CAGCAAGTAA	PATTCTTCAA
900	ATGGCGTAGC	ATTTTGAAAT	GAATAAGCGT	TCCATAACAT	TACTCTTTGC	ATTTGCTAAC
960	AACAGCAAAA	GTTCCACGCA	TGATGTCATC	ACCCAGCTAA	ATACAATACA	PATCCAGGTA
1020	TTGATTATTT	AAACAGTTTC	CAAAGAATTA	ACTTAGACAA	GCTGTCAAAT	AGAAAAGGCT
1080	ATAAGACTTT	GTTGTTCTGT	CTTATTTGAT	ATTATGAGAA	GATCAATCAA	AGATGCTCTG
1140	ATATTGACCT	GAATGGTCTG	TCTGGCTCTT	TTAGTGAGGC	GGTTGCCGTA	\TTGGCCACT
1200	TAAACTCACC	TATCAGGAAA	ACTAAACCGC	TCAATAAGAC	GTTATCAGCA	AGAAAGCGGT
1260	TTTTACTGAA	GCCACATTAC	AATAGACAAA	GTGATATACC	GCTGGTTATC	TAAATCAAGC
1320	AAACAGTTGT	GGCCGATCTG	TTGGAAATTA	AAATTCAGTC	AACCGTCAAC	ACAATACAAA
1380	GCCTAAATAA	TTACGCAAAC	TGCTTGTAAC	AATATGCTTA	TTTACGGAGA	ATTCTCTGTA
1440	ATACACATAC	GGTTTCCGCC	ATCATTTCAT	TAACTAACGT	GCTGCTGGAG	CATTTTGAT
1500	TAGGCCACTC	CAGTATAGAT	GAAAGATGTT	AGGTTAGCCC	CTCTATGCTC	PACTATGATG
1560	CAAAAAAAGC	CAAGAGAATG	GCATACTAAC	ATACTTACTG	ATCACTGAAA	PAATTTAATG
1620	CCCATTTCCG	ATAAGGGTGA	AAAAATTT	CTATCAACAA	TATGAAACAG	GTCTCAAAT
1680	ТАААТТАТАА	AAAAGGGTAT	AGGGGTAGTA	AAAAATTAGT	TTACTATACC	GCTACCCTC
1740	CCTATAATCA	GGCTTTATAG	TTATTTCAAA	CCCAAAGTGC	GGGAAAGCGC	AAGCACTAA
1800	TCAGCTACTT	TCCACGATAT	ATGATTTCAA	AGGTTGTAGA	TTATTTTTTA	ATAAAGAGA
1000	momoma como	NO CONTROCCO	COMMON A TOWN	0011001100	CECOMOO A TO	***********

•			418			
AAAGTGAACC	AGTCTTGATT	TGTCCTGCGT	TAGTTGCAAC	TGCAATATCA	GCGATTGTTG	1920
AATCTTCAGT	TTCACCTGAA	CGGTGTGATA	CAACAGCAGT	GTAACCAGCT	TCTTTAGCCA	1980
TTTCGATAGC	TTCAAAAGTT	TCAGTAAGAG	TACCGATTTG	GTTAACTTTG	ATAAGGATTG	2040
AGTTAGCAGC	ACCTTCTTGG	ATACCACGTG	CAAGGTAGTC	AGTGTTTGTT	ACGAAGAAGT	2100
CGTCACCAAC	AAGTTGTACT	TTCTTACCAA	GACGTTCAGT	AAGAGCTTTC	CAACCATCCC	2160
AGTCGTTTTC	ATCCATACCA	TCTTCAATAG	TGATGATTGG	GTATTTGTTA	ACCAATTCTT	2220
CAAGGTAGTC	GATTTGTTCT	GCAGATGTAC	GAACAGCAGC	ACCTTCACCT	TCAAATTTAG	2280
TGTAGTCGTA	AACTTTACGT	TCTTTATCGT	AGAATTCTGA	TGAAGCACAG	TCAAATCCGA	2340
TAAATACGTC	TTTACCTGGT	ACATATCCAG	CAGCTTCAAT	CGCAGCAAGG	ATAGTTTCAA	2400
CACCATCTTC	AGTTCCTTCG	AAACGAGGAG	CGAATCCACC	TTCGTCACCT	ACGGCAGTTT	2460
CCAAACCACG	TGATTTAAGG	ATTTTCTTAA	GAGCGTGGAA	GATTTCAGCA	CCGTAACGAA	2520
GGGCTTCTTT	AAATGTTGGC	GCACCAACTG	GCAAGATCAT	GAACTCTTGG	AAAGCGATTG	2580
GAGCGTCAGA	GTGAGAACCA	CCGTTGATGA	TGTTCATCAT	TGGAGTTGGA	AGAACTTTAG	2640
TGTTGAATCC	ACCAAGATAG	CTGTAAAGTG	GGATTTCAAG	GTAGTCAGCA	GCAGCACGAG	2700
CTACAGCGAT	AGACACACCG	AGGATTGCAT	TCGCACCCAA	TTTACCTTTG	TTAGGAGTAC	2760
CGTCAAGTGC	GATCATAGCA	CGGTCAATAG	CTTGTTGATC	ACGTACATCG	TAGCCAATGA	2820
TAGCTTCAGC	AATGATGTTG	TTTACGTTGT	CAACAGCTTT	TTGTGTACCA	AGACCACCGT	2880
AACGAGATTT	GTCACCGTCG	CGAAGTTCAA	CTGCTTCGTG	TTCACCAGTA	GAAGCTCCTG	2940
ATGGAACCAT	ACCACGTCCG	AAAGCACCTG	ATTCAGTGTA	AACTTCTACT	TCAAGTGTTG	3000
GGTTACCGCG	TGAGTCTAGG	ACTTCGCGAG	CGTAAACATC	AGTAATAATT	GACATTTTTT	3060
ACTCTCCTTA	TGAGTTAAAT	TTTTTACACC	TCTATAATAC	CTTAAAACCC	CTCCTTTTTC	3120
AAGAAAAAÇ	GTTATCTTTG	TGCAACTTTT	CCTTAACTTT	ATAAAGTAAT	CGCTTTCTTT	3180
TGTCTGTTTT	ATTCTAACTT	TTATGATATA	CTGTTTTCAT	GACAGATTTA	TCAAAACAAT	3240
TACTTGAAAA	AGCTCATGGT	GGGTTAAAAA	TAAATCCGGA	TGAGCAAAGA	CGCTATCTTG	3300
GTACTTTTGA	GGAAAGAGTT	CTTGGATATG	TAGATATTGA	CACAGCAAAT	AGCCCTCAGT	3360
TAGAAAAAGG	CTTTTTATTT	ATTTTAGAAA	ACCTTCAGGA	AAAAGCAGAG	CCACTATTTG	3420
TGAAGATTTC	ACCAACTATC	GAATTTGATA	AGCAAGTTTT	CTACTTAAAA	GAAGCAAAAG	3480
AAACTGATAG	TCAAGCCACC	ATAGTATCTG	AAGAGCATAT	TACTTCTCCT	TTTGGCCTGG	3540
TTATTCATAG	CAATGCACCA	GTTCAAGTAG	aagaaaaaga	CCTTCGACTT	GCTTTTCCAA	. 3600
AACTTTGGGA	AGTTAAAAAG	GAAGAACCAG	CCAAAACATC	CTTATGGAAG	AAATGGTTTA	3660

GCTAAATCT	T GCACATATTT	AATAAGTGCC	CAATATTGGC	AGCCGTGCGC	TCCAGATAGA	3720
AACTGGCAT	Т ТТТСАААСТА	TCTTCTAAAG	GTTCACTTTT	СТССААААТА	GAAAAGACAG	3780
CTTGGATAT	T TTCAAATGGT	AGGGGAGGTA	AATCTTCAGC	AAGACTACCG	CAAATAGCAA	3840
PAACAGGAA	C TCCAACAGGG	GTTCTTTTTG	CAACACCTAT	AGGCGCTTTC	CCAGCAAAGC	3900
PTTGACTAT	C AAGTCTTCCT	TCTCCAACAA	CAACCAAGTC	AGCATCTGAA	ACTTTCTTAT	3960
CAAAGTTGA	T TAAGTCCAAG	CAGGTATCAA	TTCCAGACAC	GATACTTGCC	TGAGCAAAGG	4020
CACACAAAC	C ACCAGCAAGG	CCTCCACCTG	CTCCTGCTCC	TTTAATTTCT	AATGTTGCAG	4080
GTGAGAATT	т ттсатааааа	TCTTGGATCG	CCTGATCTAC	GACTGCAAAC	ATAGTCGGAT	4140
GTAGACCTT	T TTGATTGCCA	AAAGTGTAAG	TCGCACCTTG	ATGACCACAT	AAGGGACTCA	4200
CGACATCTG	C TAAAATATGA	ATTTGAACAC	CTTCAGGAAT	TTTATAGCAA	TTTTCTGTTG	4260
AAACAGAAG	C TAAGTTTAAT	AAGGATTGAC	CGGAAGCAGG	CAAGACATTT	CCATCCCTAT	4320
САТААААТТ	G АТААССТААА	CCAGCAGCAA	TCCCCAGTCC	TCCATCATTA	CTGGCCGTGC	4380
CACCAACAC	С GАТАТАААТА	TCTTTAATCC	CTTTAGAGAT	GAGATGAAGA	ATCAACTCTC	4440
CAATACCAC	A AGTTTGGATT	TGAAGTGGAT	TTCGTTTCTC	TAGCGGAATT	TTTCCAAGAC	4500
CAACCAAGT	C AGCTACTTCA	AATAGTGCCA	GTTCCCCTTT	TTGAAAATAG	CGCATGGCTT	4560
CTTTTTGTC	C AAAAGGGTCT	GTCACTTGGA	TCCATTTTTC	TTTTAGGTCA	AGAGAATGTC	4620
GGATAGCAT	C TACAGTACCT	TCTCCCCCAT	CACCAACAGG	GCAGAGGAGA	CATTCTACAT	4680
CTGCTATCG	A TTGTTGGAAG	CCTCTTTTTA	TTGCTTCAGC	TACCTGTTGA	GCTGTCAAGC	4740
PTTCCTTAA	A CGAATCCGGT	GCAATTACAA	TCTTCATATT	TTCCCTCATT	CTAAACAGTC	4800
AATCAAAGG	G AGAACTTCTA	AAAAATCCCT	CTTGTCAACA	TGATGTGGTA	TTTCTTTTTT	4860
GAGCACTTC	T TTGGCACAAA	AGGCGATTCC	TAACTTCGCC	GACTTCAACA	TTAATAGATT	4920
ATTAACCCC	A TCACCGATTG	CCACCGTTCT	TTCTTTAGAA	AGTTTTAGTT	TCTTTCTCCA	4980
PTTTTCCAG	A GTCTCTTTTT	TGACCTGGGG	ACTTATAATT	TGTCCAACTA	ATTTTCCTGT	5040
TAAAAGACC	TTCTTTGACTT	CAAGCTAGTT	GGCAGTGAAA	TAGGCAATAC	CAAGGGATTT	5100
PGCTAATCT	C TCCAACTATT	GGTGTAAATC	CACCAGACAC	CAGACCAACT	AGGATGCCAT	5160
PCTTTTGGA	G AATAGAGATG	AACTCTGGGA	CATTTAGCGA	TAGATGAATT	GAGTTGAAGA	5220
CGTTATCAA	A GACCAAAATA	GGAAGACCTT	CCAACAAGGA	CACTCTTTTT	CTTAAACTGC	5280
TTTCAAAGA	C CAACTCTCCT	CGCATTGCTC	GACTTGTAAT	CTGCGAAATT	TCCGCCTCAT	5340
				01 mm 1 1 0 c = =	001 mont or	

			420			
CCAAAACACA	CAAGCCTTTT	ACTTGAGACA	TCAGTTCTCC	TCTCTAAACA	GCCTAAAAAT	5460
CGTATGAAGT	CATCATACGA	TTTTATCTAT	TAATTAACTA	AACTATGGTA	CAAGTCAAGG	5520
TATGACTTGC	AGGCTGTATC	CCATGAGAAG	TCACTCTCCA	TAGCTTGTTT	TTGTAGGTTT	5580
CTCCAAATGT	CTGGATGGTT	TCTATACAAG	TCCAATGCTG	TTTGGAAAGT	CCAATTTAAC	5640
CAATAAGGAG	ATAGATTGTC	AAAGCTAAAG	CCAGTACCGC	TTCCTTCGAT	TGGATTGAAA	5700
GCGCGAACTG	TATCTCGCAA	GCCTCCAACT	TCATGGACCA	ATGGCAAGGT	TCCATAACGC	5760
ATAGCCATCA	TTTGAGACAA	GCCACACGGT	TCAAAACGAC	TTGGCATGAG	GAAGAGGTCA	5820
CAAGCAGCGT	AGATTTCCTG	AGCAAGTTTG	ACATCAAAAG	TGATATTTGT	TGATAGCTTG	5880
TCTGGGTAAA	TCTGAGCAAA	CCATGAGAAA	GCTCCTTCAA	AGGCTGGATC	GCCAGTTCCC	5940
AAAAGAACAA	TCTGAACATC	TTCTTGCAAG	ATATGGTGAA	GACTTTCGAC	CACCACATCA	6000
AAACCTTTTT	GACGTGTCAA	ACGAGAAACA	ATTCCCACCA	GTGGAACGTC	TGCTCTAACA	6060
GGCAAGCCAA	CTCTTTCTTG	CAATTTTGCC	TTATTTTTGG	CTTTCCCAGA	CAAATCTTCC	6120
TGATTGAAAT	GATAGTCTAA	AAGAGCATCC	GTCTGAGGAT	TATAAAGATC	AGCATCAATC	6180
CCATTCACGA	TACCAGATAC	TTTACCAGAC	TCCATTTTAA	GAATCTGATC	CAAATTACAT	6240
CCAAACTGAC	TAGTCATAAT	TTCATGAGCA	TAGCTAGGTG	AAACGGTTGA	AACACGGTTC	6300
GCATAGAGAA	TACCTGCCTT	CATCCAGTTC	AGACAGTTGT	TCCATCGAAG	GGTGCCATCA	6360
GCGTAACGTT	CAAAGCCAAC	TCCAAACAAA	TCACCCAACA	TTCCTTCTGA	AAATTGTCCT	6420
TGGAATTCTA	AATTATGAAT	GGTTAAAACT	GTTTCAATGT	CCTCATAGGC	TTGAATCCAA	6480
CGGTATTTTT	CCTTCAACAA	GAAAGGAATC	ATAGCTGTAT	GGTAGTCATG	AACATGGAGA	6540
AGATCAGGAA	TAAAGTCAAT	CCTTTCCATA	GCCTCAATGG	CAGCCAGTTG	GAAAAAGGCA	6600
AAGCGTTCTC	CGTCATCAAA	ATCACCGTAA	ACATGACCAC	GGAAGAAATA	ATATTGATTG	6660
TCAATAAAGT	AGAAGGTTAC	ACCATTTAAT	ACTGTTTTCT	TAATTCCACA	ATACTGTCTG	6720
CGCCAACCAA	CGCTCACCTC	AAAATGAAGC	ACATCTTCAA	TCTGATTTCC	AAATTTAGCC	6780
TCTACCATAT	CATAGTAGGG	TAAAATCACT	GCAACTTCGT	GCCCAGCTTT	TACCAGTGAT	6840
TTTGGAAGAG	CGCCAATGAC	GTCTCCCAAA	CCACCTGTTT	TTGAAAAGGG	TGCACCCTCT	6900
GCTGCTACAA	АТААААТТТ	CATGAATGAA	TATCCTCTGT	TACTTTAGCA	CCTTTCTTAA	6960
CCACAACTGG	ATGTTCTGCA	GTTCCTCGAA	TCACAACACC	ATGCTCAACT	TCAACCCCTT	7020
TGTCCAAGAT	AGCATATTCG	ACCTGAGCCC	CTTCTCCAAT	AACAACACGA	GGGAAGAGCA	7080
GGCTATCTTT	AACCAAGCTA	TCCTTATGGA	CATGAATATT	ACGTGATAGA	ACAGAATTAG	7140
CTACTTGACC	TTCAATAATA	CTACCAGAGG	CAAACTGAGA	AGTGCTTACC	TTAGATGTAT	7200

TAGCATAGTA	AGTTGGCTCT	TCGTTTTTGA	CCTTTGTATA	AATCTTTTGG	TTTGGTGAGA	7260
AAAGAGAATA	GAATTTTTGT	GATTCAAGCA	TATCGATATT	CGCTTGATAA	TAAGATTTAA	7320
CAGAGTGAAT	ATTGGCTAGA	TAGCCCGTGT	ACTCGTAGGC	GAAAGCTCCC	TCTTTTACAG	7380
CCAAATCCCG	TAAAACATAG	CGCAATTTCT	CTGGATGTTC	TTTTTTAGCT	TCTTCTTCCA	7440
AGTGTTCAAT	CAACCAAGGT	GTATCAACGA	CAAAGATATC	TGTAGACATA	TTGAACGTTT	7500
CAGCTGTTGA	CTTGCTATCA	AAGAGTTTAT	GAGAAAGAAC	ATGGTCTGTT	TCATCTACAT	7560
CCAAGATTGC	ATTTACTTCT	GAAATATCTT	TCTTAGCTAG	ТТТТТТАТАА	ACTACAGTGA	7620
TAGGCTCTTT	TGTTGTACTA	TGTAGGTGGA	AAACTTGGTT	CAAATCAATG	TTAATAAGAA	7680
CATCGCAGTT	GAGGGCAACC	GTTTGGTTTG	AGCCAGAACG	ТТТСАААТАА	GTAAGAAGCT	7740
GTTGGTAGTA	TTCTTTTCCA	ACTGTACTAC	TTTCTACACG	GGTATTGTAA	ATTCCTAGAT	7800
AGTAATGGCT	AAGAAGGGTT	GATAAGCCCC	ACTCGCGTCC	TGAACGAATA	TGGTCAAATA	7860
CTGAGCTGAT	ATTATCCTGC	TGGAAAATAC	CAAAGACACT	ACGAACACCT	GCATTAGCAA	7920
GGCTTGAAAG	TGGGAAGTCA	ATCAAACGAT	ATTTCCCACC	AAATGGCAAA	CTTGCTACTG	7980
GACGGTGGTC	CGTCAATGTC	GACATATTGT	GAAAACCAAC	TGTATTTCCT	AAAATGGCAG	8040
AATATTTATC	AATCTTCATC	TGTTGCTACC	CCCACTACTT	CATTATATCC	TACAACTTGT	8100
ACTTCATCTG	TTCCATCAAT	TTCGACACCG	TCAGAAATAA	TCGCACCTTC	ACCAATAATG	8160
GCACGTTTAA	TCTTAGCTCC	TTGACCAATG	ATAGCTCCAC	TCATGATAAC	TGAATCAAGG	8220
ACTTCCGCTC	CTTCGCGAAC	TTGCGCGCCT	GTTGAAAGGA	TAGAATGTTT	AACAGTTCCA	8280
TCAACGAAAC	ATCCGTCTAC	AACTAATGAG	TCTTCCACAT	GAGCATTTGC	CCCGAGGAAG	8340
TTTGGTGGTG	AAATCAAGTT	TCTTGAGTAA	ATCTTCCATT	GACGGTTACG	ACTATCCAAG	8400
GCATTTTCTG	GAGAAATATA	CTCCATGTTC	GCTTCCCAAA	GTGACTCAAT	AGTACCAACA	8460
TCTTTCCAAT	AACCACTAAA	TTCGTAAGCA	TAAACACTTT	CACCTGACTC	AAGGTAATTT	8520
GGAATGACAT	TTTTACCAAA	GTCTGACATG	CCAACCTTGC	TCTTTTCAGC	AGCGACTAAC	8580
ATATTACGAA	GGCGTTGCCA	ATCAAAAATG	TAGATTCCCA	TAGAAGCTTT	TGTAGATTTA	8640
GGTTGAGCTG	GTTTTTCTTC	AAATTCAACA	ATACGATTGT	TAGCATCTGT	GTTCATGATA	8700
CCAAAACGGC	TTGCTTCTTT	AAGAGGGACG	TCTAAAACTG	CTACTGTCAA	GCTGGCATTA	8760
TTATCCTTAT	GAGACTGGAG	CATATCATCA	TAGTCCATTT	TGTAGATGTG	ATCCCCAGAC	8820
AAAATCAAGA	CATACTCAGG	ATTGACACTG	TCGATATAGT	CGATATTTTG	GTAAATAGCG	8880
TGACTAGTCC	CCTCAAACCA	ACGATTTCCT	TCACTTGCAG	AATAAGGTTG	AAGAATAGAG	8940

422 ACACCTGAAT TAATACCGTC TAGTCCCCAG CTTGAACCAT TCCCAATATG GTTGTTGAGA 9000 GCAAGTGGTT GATACTGTGT AACGACCCCA ACATTGTGAA TCCCTGAGTT GGCACAGTTT 9060 GATAGGGCAA AGTCAATGAT ACGGTAGCGC CCACCAAATT GCACAGCTGG TTTTGCGATG 9120 CTTTGAGTGA GTTTACCGAG ACGAGTTCCT TGCCCACCAG CAAGAATCAA AGCTAACATT 9180 TCATTTTCA TTTTCTACTC CTTTTTGGTT TTTATTTGTG ACGGTTTTAG TAGATTTCAA 9240 GCGACGTTTG ATTTTCCATA CACTTGCTCC CATAGCCGGT AGGGTAAAGG TTAAGGTCTG 9300 CTCATAATCT TTCCATAGTC CTTCTTGCGT TTGAACAGTT TGATTATGTT CTTTCCAAAC 9360 GCCTCCCCAC TCTTCCAACT CAGTATTCCA TACTTCTTCG TAAATTCCTG CAACGGGTAG 9420 TCCGATTGTA AAATCTTTCC GCTCAACAGG TACCATATTA AAGATACAGA CTAACATTTC 9480 TCCCTTTTTA CCCTTACGAA TAAAGGAAAG AACACTCTGG TCTCGATTAT CCGCATCAAT 9540 GATTTCAATA CCATCATAGC TGGTATCAAT TTCCCACAGA CAGCGATGAT CTTTGTAAAA 9600 CTGGTTTAGC TGAGAAGCGA AATACTTCAT CTTAGCATTC ATTGGGTCTT CTAGGTTAGA 9660 CCATTCCAAC TGTTCTTCAG ATTTCCATTC TAGGAATTGA CCGTATTCGC TACCCATGAA 9720 GAGCAATTTC TTACCAGGGT GACAAATTTG GTACGTATAG AGATTGCGCA AGCCTGCGAA 9780 TTGATTGTAA CGATCTCCCC ACATCTTATG CATCATACTC TTCTTGCCAT GAACCACTTC 9840 ATCGTGCGAG AATGGCAAGA GATAATTCTC CTTGAAAACA TACATAAAGC TGAAAGTCAC 9900 CAGGTTAAAG TCATATTTAC GATAGATCGG ATCTTCTTCG TAGAAACGGA GGATATCATT 9960 CATCCAGCCC ATGTTCCATT TGTAGTCAAA TCCTAGACCA CCAATCTCTT TCATTCCCGT 10020 AATCTTGATC GCAGACGAAC TTTCTTCTGC AATCATCATC ACATCTGGAT ATTCTAACTT 10080 AATAACCTCA TTCAAGCGCT GAAGGAAATA ATAACCTTCA TAGTTGAGAT TTCCGCCATC 10140 TTTATTAGGT GTCCATGGAG CATCATCATA GTCCAAATAG AGCATGTTGC TAACAGCATC 10200 CACACGAATA CCATCCAAAT GATAGACATC AATCCAATGC TTAATGCAAG AAATTAAGAA 10260 GGACTGGACT TCATTTTTC CAAGGTCAAA ATTAAGGGCA CCCCAACCAT GGTTATGAGC 10320 CTTATTATGG TCTTGGTATT CAAAAGTCGG TGTCCCATCA TAATAGGCTA AGGCATCATC 10380 GTTGATGGTA AAGTGACTGG TACCCAGTCC ACAATAACCC CAATATTATG GGTATGACAC 10440 TCCTCGACAA AATCTTGAAA CTCCTCTGGT CGGCCATAAG CATGCTCTAA AGCGAAGTAA 10500 CCCATAAGCT GATACCCCCA ACTCAAGCCC AAAGGATGGG ACATCAAGGG CATAAACTCA 10560 ATATGAGTAT AGTTCATTTC AACGAGATAA GGAATGAGTT CATCCTTGAG CTGGGCAAAA 10620 CTATAAGGAC TGCCATCAGA ATTTCTTTTC CATGATCCAG CGTGAACTTC ATAAATATTG 10680 ACAGGACGCT CTTCAAAGCC CCAACGTTTT CTTCGTGCCA GCCAAAGTCC ATCCTTCCAT 10740

PCT/US97/19588

423

TTCTTCTCAG	GAAGCTCTGT	TACGATTGCC	CCTGTTCCTG	GACGAGCCTC	ATACCTGACA	10800
GCAAAAGGGT	CAATCTTCAT	CAGTTGATGA	CCATTTTGAC	GTGTGACATG	ATATTTGTAA	10860
ATATGCCCTT	CTTGAGCCAT	ATTGGTAAAG	ACTTCCCAGA	CCCCAAAATC	ATTTCTTACC	10920
ATTGGAATCT	GATTTTCAAT	CCAGTTGGTA	AAATCACCAA	CCAAGTGAAC	AGCCTGAGCA	10980
TTAGGTGCCC	AAACACGGAA	GGTATAGCCA	TGCTCTCCAT	TTAGTTCTTC	CCTATGTGCT	11040
CCTAGATAAT	GTTGGAGATA	AAAATTTTCA	CCCGTCATAA	AGGTTTTTAA	TGCTTCTCTA	11100
TTATCCATAT	ACTCCCCTTC	TCCTGTAAGC	GTTTTCTATG	ተተ ተተተተተ	ACTACCTTTT	11160
TAGAGAAGAT	TCAAGTAAAT	TACTATACTT	CTTTAATTAT	TTTGAAAATC	TACAACAAGT	11220
TCACTTACTC	GTTCAATTGT	AAATCAATAT	TTTTTCAAAA	AATTGCGAAA	ACGCCTTTCT	11280
TTTTCTACTA	TAGTGAAATG	AAATAAAACA	TGCGCAAATC	GATTAAGGAA	TTTAATCTAA	11340
TTTCTAACAA	TGTCTTAGAA	ATCAAAGTGT	ACTATTTAA	CTCC		11384

(2) INFORMATION FOR SEQ ID NO: 46:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 7577 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:

TGTTGATTTG	TTACTAGACG	TTGACCAACG	TCCTTCGGCT	GGAAAAGGAA	TTCTCCTTAG	60
TTTCCAACAC	GTTTTCGCCA	TGTTTGGTGC	GACCATCTTG	GTACCATTGA	TTTTGGGAAT	120
GCCTGTATCT	GTTGCCCTTT	TTGCTTCAGG	TGTTGGAACA	CTCATCTACA	TGATTGCTAC	180
TGGTTTTAAA	GTTCCAGTTT	ATCTAGGTTC	TTCATTTGCC	TTTATCACAG	CTATGTCACT	240
GGCTATGAAA	GAAATGGGGG	GGGATGTATC	TGCTGCCCAA	ACAGGGGTTA	TCTTGACTGG	300
TTTGGTCTAT	GTCCTTGTTG	CTACCAGCAT	CCGATTTGTA	GGAACAAAAT	GGATTGATAA	360
ACTCTTGCCA	CCAATCATTA	TCGGTCCTAT	GATCATCGTT	ATCGGTCTTG	GACTTGCAGG	420
TTCAGCTGTT	ACCAATGCAG	GTCTTGTAGC	AGACGGAAAT	TGGAAAÄATG	CTCTGGTAGC	480
CGTTGTTACT	TTCCTAATTG	CTGCCTTTAT	CAATACAAAA	GGAAAAGGCT	TCCTACGAAT	540
CATTCCATTC	CTCTTTGCCA	TTATCGGTGG	TTACCTTTTC	GCACTAACTC	TTGGCTTGGT	600
TGACTTTACA	CCAGTTCTTA	AAGCCAACTG	GTTCGAAATT	CCTGGTTTCT	ACTTGCCATT	660
TAGCACAGGT	GGTGCCTTTA	AAGAGTACAA	TCTTTACTTT	GGTCCAGAAG	CCATCGCTAT	720

			424			
CTTGCCAATC	GCTATCGTAA	CAATTTCTGA	ACATATCGGA	GACCATACTG	TTTTGGGTCA	78
AATCTGTGGT	CGTCAATTCT	TAAAAGAACC	AGGTCTTCAC	CGTACTCTTC	TTGGTGACGG	84
TATCGCAACT	TCTGTTTCTG	CCTTCCTTGG	TGGACCAGCC	AATACAACTT	ACGGAGAAAA	90
TACAGGGGTT	ATCGGTATGA	CTCGTATCGC	TTCTGTCTCA	GTTATCCGTA	ACGCTGCCTT	96
CATCGCGATT	GCCCTCAGCT	TCCTTGGTAA	ATTCACTGCC	TTGATTTCAA	CTATTCCAAA	102
CGCTGTACTT	GGTGGTATGT	CAATCCTTCT	CTATGGGGTT	ATCGCCAGCA	ATGGTTTGAA	108
AGTCTTGATT	AAAGAACGTG	TTGATTTCGC	TCAAATGCGA	AACCTCATCA	TCGCAAGTGC	114
TATGTTGGTT	CTTGGACTTG	GAGGAGCTAT	CCTTAAACTT	GGTCCAGTTA	CACTTTCAGG	120
TACTGCCCTT	TCAGCCATGA	CAGGAATCAT	CTTGAACTTG	ATCTTGCCAT	ACGAAAATAA	126
AGACTAAGAG	TCTAAATACA	CCTAATCCAC	TCAGACAGCT	GAGTGGATTT	TTCGTATACC	132
АТААТАААА G	TGTCTTAACA	AATTATTAA	AATCAAAAA.	CGTATAATAT	CAGATATTCT	138
AAAACCTTGA	TACTGTACGT	TTTATCATAG	AAATTTTTAC	TTTATTTTCT	CATCAAATGA	144
GATTTGCATC	AATCTCTTGT	CTTACTTGCG	TTTCTTCTTC	GCTTTCTTCA	TTTTGTTAGC	150
CATACGTTTC	ATGGACTGTT	TCATGGCAAA	TTCACCAATT	TTACCTTTCA	AACCGCCACC	156
AAACATCTGG	CTCATATCTG	GCATTCCTGC	TCCTCCGAGA	GCTGATAAGT	CAGGCATACC	162
GCCTTGTCCC	ATCATTCCTT	CAAGGCAGA	CATATCCATT	CCTCCCATAT	TTGGCATATT	168
TTTAGGAAGG	TTATTTGGAT	TAATCCCCAT	TTGCTTCATC	ATTTTATTCA	TATCCCCAGA	174
CATAACACCC	TGCATGAGCT	GTTTAGCCTG	GTTAAAGTCC	TTGATGAATT	TATTGACTTC	180
GACGAATGTA	TTTCCAGAAC	CAGCAGCAAT	ACGACGGCGA	CGGCTTGGAT	TTAACAAATC	186
TGGGTTTTCA	CGCTCTTCAG	GTGTCATCGA	AGACACAATG	GCACGTTTAC	GAGCAATCTG	192
GCGTTCATCC	ACCTTCATGT	TTTGAAGGGC	TGGATTGTTG	GCCATACCTG	GAATCATCTT	198
GAGCAAGTCT	TCCATCGGCC	CCATATTTTG	CACCTGATCT	AATTGATCGA	TGAAATCATT	204
AAAATCAAAG	GTGTTTTCGC	GCATCTTCTC	AGCCATTTCA	AGGGCTTTTT	GTTCATCGTA	210
TTCCTGAGAA	GCTTTCTCAA	TCAAAGTGAG	CATATCCCCC	ATACCAAGGA	TACGGCTAGA	216
CATGCGGTCT	GGGTGGAAGG	TTTCAATGTC	CGTAATCTTT	TCACCTGTAC	CAGTGAACTT	222
Gattggtttt	CCAGTAATGT	GACGAACAGA	CAGAGCAGCA	CCACCACGAG	TATCGCCATC	228
AATCTTGGTA	AGGATGACCC	CAGTCACTTC	CAACTGAGCA	TTAAACTCAC	GCGCAACATT	234
GGCTGCTTCC	TGACCAATCA	TAGCATCAAC	GACAAGCAAG	ATTTCATTTG	GTTGAGCCAA	240
TGCTTTCACA	TCACGAAGCT	CATTCATGAG	GAGCTCATCA	ATCTGCAAAC	GACCCGCAGT	246
ATCAATCAAG	ACATAGTCGT	TATGATTAGT	TTGGGCTTGC	TCCAAACCTT	GACGTACAAT	252

CTCAACAGCT	GGTACTTCTG	TTCCAAGTGC	AAAGACAGGC	ACATCAATCT	GTTGTCCCAA	2580
GGTCTTAAGC	TGGTCAATGG	CAGCTGGACG	ATAAATATCC	GCCGCAATCA	TCAAAGGACG	2640
AGCATTTTCT	TCTTTCTTGA	GTTTGTTGGC	CAATTTACCA	GCAAAGGTTG	TTTTACCAGC	2700
CCCTTGTAAA	CCAACCATCA	TGATGATGGT	TGGAATCTTA	GGTGACTTGA	TAATTTCTGC	2760
CGTATCAGAA	CCTAAAACGG	CTGTCAATTC	CTCATCAACG	ATTTTAATAA	TCTGTTGCGC	2820
aggattaagt	GTATCAATGA	CCTCATGCCC	GACTGCACGC	TCACGAACTT	TCTTGATAAA	2880
GTCCTTTACA	ACAGGCAAGG	CAACGTCGGC	CTCGAGCAAG	GCCAAGCGAA	TTTCTTTGGT	2940
PGCCTCTTGG	ACATCAGATT	CAGAGATTTT	TCCTTTTTTA	CGTAGATTTT	TAAAGACGTT	3000
CTGCAAACGT	TCTGTTAAAC	TTTCAAATGC	CATTTTTCTT	CCTCTTATTC	TCTATTATCA	3060
ATGCTTGTTA	AAATTTCTAT	CTGCTCCTGC	AGAAAGTCAT	CCTTGGGATA	GCGCTCCAAA	3120
ATCTGATCAA	AAATCTGACT	GCGGACAATA	TAGTCCGAGT	ACATGTGCAA	TTTCATCTCA	3180
PAATCTTCCA	GAATCTTTTC	TGTTCGCTTG	ATATTGTCAT	AGACAGCCTG	ACGACTGACA	3240
CCGAACTCCT	CGGCAATTTC	AGCAAGGCTG	TAATCATCAG	CGTAGTAGAG	CTCGATATAA	3300
PTCATTTGCT	TATCTGTCAA	AAGCGCCGCA	TAAAATTCAA	AGAGCGCATT	CATACGATTG	3360
GTTTTTTCGA	TTTCCATAAC	TTTTATTATA	ССАААААТТА	GCCTAATCTA	CCACACTAGG	3420
AAGCCGATCC	AAGAAGATAG	ATAGCTAAAT	TTGAAAAAGA	CATGAGCCTA	GCCCCAAGTA	3480
ATTTCCAATT	GATAGCTGGC	AAAGGGATGT	CCCTCTTGAT	TTTGTAGTTG	ATAATCTAGT	3540
ГСААТСТТТТ	GCCTATCAAC	TTGATAATGG	CTCGTTTGGA	TGATAAACTC	CTGCATGCCC	3600
ATAGGTGTAG	GAATATAGGC	TAAACTATCG	CTATCCTTTA	GAAAGCGCAT	AATGGTCTTG	3660
GATTAGAAA	ATCGGCTCAT	CACAAGTTCT	TGACCATGAA	ATTTAATCAC	TACTTTTTCC	3720
PTTTCCTCAT	TATAGAAAAG	CAGGTAGCTA	TAATCTCCTT	TTTCATGCAC	TTCCACATCA	3780
PAAAGCTGGT	CAATCACTTC	CAACTGCTCA	TCAAACTGAA	TCGTATTTCG	CATCCGAATC	3840
TCACATCAG	GCCCTCTTTC	TTGTCTCTTG	TCCTACTATT	TTACCAAAAA	GAGCAGGATT	3900
TGCTATAAT	GGTCATATGA	ACGAAAAAGT	ATTCCGTGAC	CCTGTTCACA	ACTACATCCA	3960
GTCAATAAT	CAAATCATCT	ATGACTTGAT	таатасаааа	GAATTTCAGC	GTTTGCGCCG	4020
GATCAAACAA	CTGGGAACTT	CCAGTTATAC	CTTCCACGGT	GGAGAACACA	GTCGCTTCTC	4080
CACTGTCTA	GGAGTCTATG	AAATTGCACG	ACGCATCACA	GAGATTTTCG	AAGAAAATA	4140
CCTGAGGAA	TGGAATCCTG	CCGAGTCTCT	CTTGACCATG	ACCGCTGCTC	TCCTACACGA	4200
CTTGGGCAT	GGTGCCTACT	СССАТАСТТ	ጥርልልሮልጥርጥር	ттсатасас	ACCATGA ACC	4260

			426			
CATTACTCAG	GAGATTATTC	AAAATCCTGA	GACAGAGATT	CACCAAGTCC	TGCTACAAGT	4320
GCACCTGAT	TTCCCAGAAA	AGGTGGCCAG	TGTCATTGAC	CATACCTATC	CTAATAAGCA	4380
GGTCGTGCAG	CTCATTTCTA	GTCAGATTGA	CGCAGATCGC	ATGGACTATC	TCTTGCGCGA	4440
CTCCTATTTT	ACAGGAGCAT	CCTATGGGGA	ATTTGACCTG	ACTCGAATCC	TCCGAGTCAT	4500
PCGTCCTATC	GAAAATGGTA	TCGCCTTTCA	GCGCAATGGC	ATGCACGCCA	TCGAAGACTA	4560
CGTCCTCAGT	CGCTACCAGA	TGTACATGCA	GGTTTATTTC	CACCCCGCAA	CACGCGCCAT	4620
GGAAGTTCTC	CTACAGAATC	TTCTCAAACG	CGCCAAGGAA	CTCTATCCTG	AGGACAAGGA	4680
PTTCTTTGCC	CGAACTTCTC	CACACCTCCT	GCCTTTCTTC	GAAAAAAATG	TGACCTTGAC	4740
rgactatetg	GCTCTGGATG	ATGGCGTGAT	GAATACCTAC	TTCCAGCTTT	GGATGACCAG	4800
rcctgacaag	ATTCTTGCAG	ATTTATCGCA	TCGCTTTGTC	AACCGCAAGG	TCTTTAAATC	4860
CATTACCTTT	TCACAAGAGG	ACCAAGATCA	ACTTACTAGC	ATGAGAAAAT	TGGTTGAGGA	4920
PATCGGCTTT	GATCCCGACT	ACTACACTGC	CATTCATAAG	AACTTTGACC	TCCCTTATGA	4980
PATCTATCGT	CCCGAATCTG	AAAACCCACG	GACACAGATT	GAGATTTTAC	AAAAAAATGG	5040
AGAACTGGCC	GAACTCTCTA	GCCTGTCTCC	TATCGTCCAA	TCCCTTGCTG	GCAGTCGCCA	5100
CGGAGATAAT	CGCTTTTATT	TTCCAAAAGA	AATGTTGGAC	CAAAACAGCA	TCTTTGCAAG	5160
CATTACCCAG	CAATTTTTAC	ACTTGATTGA	GAACGATCAT	TTTACCCCAA	АТАААААСТА	5220
GAAGAGGAAA	TTTATGAGTA	TTAAACTAAT	TGCCGTTGAT	ATCGACGGAA	CCCTTGTCAA	5280
CAGCCAAAAG	GAAATCACTC	CTGAAGTTTT	TTCTGCCATC	CAAGATGCCA	AAGAAGCTGG	5340
GTCAAAGTC	GTGATTGCAA	CTGGCCGCCC	TATCGCAGGC	GTTGCCAAAC	TTCTAGACGA	5400
TTGCAGTTG	AGAGACGAGG	GGGACTATGT	GGTAACCTTC	AACGGTGCCC	TTGTCCAAGA	5460
ACTGCTACA	GGACATGAGA	TTATCAGCGA	ATCCTTGACT	TATGAGGATT	ATCTAGATAT	5520
GAATTCCTC	AGTCGCAAGC	TCGGTGTCCA	CATGCATGCC	ATTACCAAGG	ACGGTATCTA	5580
PACTGCAAAT	CGCAATATCG	GAAAATACAC	TGTACACGAA	TCAACCCTCG	TCAGCATGCC	5640
ATCTTCTAC	CGTACCCCTG	AAGAAATGGC	TGGCAAAGAA	ATTGTTAAAT	GTATGTŢTAT	5700
GATGAACCA	GAAATTCTCG	ATGCTGCGAT	TGAAAAAATT	CCAGCAGAAT	TTTACGAGCG	5760
TACTCCATC	AACAAATCTG	CTCCTTTCTA	CCTCGAACTC	CTTAAAAAGA	ATGTAGACAA	5820
GGTTCAGCC	ATTACTCACT	TGGCTGAAAA	ACTCGGATTG	ACCAAAGATG	AAACCATGGC	5880
ATCGGTGAT	GAAGAAAATG	ACCGTGCCAT	GCTGGAAGTC	GTTGGAAACC	CCGTTGTCAT	5940
gaaaatgga	AATCCAGAAA	TCAAAAAAAT	CGCCAAATAC	ATCACCAAAA	CAAATGACGA	6000
TCCGGCGTT	GCCCATGCCA	TCCGAACATG	GGTACTGTAA	AAGTATCATT	ТТТСААТААG	6060

Aattgattag	CAATAAAATC	CAATGAATTT	TTTTAGCAAA	CTATTTAATT	TAAAACAAAA	6120
ТААТСАТААТ	AGAGACACAA	ATTCTGATTG	TAACAATTTT	TACCTAAACG	AATTAGAATG	6180
TGGCCTTACT	CCTGGGCAAC	TCATACTCAT	AGATTGGACT	CAAAAAACAG	GGAGAAATTA	6240
TAATTTCCCA	AGATATTTTA	AATACTCTCT	TCAAATTGAC	CCTGAATCTA	CACACAATCA	6300
ATTATACAAA	TTAGGATACT	ТСАСТААЛА	TAAGACTTTA	TCATATCTTA	CAGTAGTAGA	6360
атталаласт	ATATTATCTA	AACATAATTT	AGCTACTTCT	GGAAAAAAAG	CAGAATTAAT	6420
TACAAGAATA	ATTAATAATG	TTAACATTGA	CAATTTAGAT	ATTCCGTTCG	AATTTAAACT	6480
AACAAAAGAA	GCACAAAATC	TTATTATCGA	ACATAGTGAC	TATATCAAAG	CATACTATGA	6540
TAAAGACATA	ACTATGGAAG	ATTATTGTAA	AGAAAAAAAC	AATATCTCTT	TTAAAGCAAC	6600
TTTTGGTGAT	ATAAAATGGA	GTCTCTTAAA	TAAACAAGCT	CATAGGAATA	CTGTATCAGG	6660
A GATTTTGGA	TGCTTATCTA	ACACACGAAA	GGCTCAGGGA	AGACATTTGG	AACAAGAAGG	6720
TAATATTAAA	CATGCTTTAA	TATATTACAT	AGAATCTTTG	ATAATTACTA	TTTCAGGATT	6780
AGAAAACAAT	TTTTCAGCCA	CTGATTATCC	AGTATATTAT	CCCGATTCGA	TACCTGACTA	6840
СТСАСТАААА	CATATTCAAA	CATTAATGGA	ATCATTATCT	GATGACGATT	ATGATTTTGC	6900
TTTTGATGAA	GCATTATTTC	GCTTCTCAAT	TTTGAATGCA	AATCATTTTT	TATCTAAGGA	6960
AGATATTGAC	TATTTAAGAG	TTAATTTACC	TCGTTCCACT	GCTGAAGAAA	TAAACAATTA	7020
CTTAAAGAAA	TATGAATGTT	ATAGTCCTTT	AAATAATTTA	GAACTTGACG	ATTTTGAATA	7080
AATTGACTAT	ACAAACATTT	ATATACTCGA	TATAGTCTCA	ATTTTATCTG	ATGATTGCCC	7140
AAATTTTTCA	ATAATAAAAC	GCATAATATT	ATGGAGACAA	TCCCCTATAT	TATGCGTTCT	7200
TTTAATATCA	AAGACTTTTT	GACAAACTTC	TTTGATATCT	AATTACATGC	CCCCTGCAGG	7260
AATCGAACCT	GCAACTACTC	CTTAGGAGGG	AGTTGTTATA	TCCATTGAAC	TAAGGGAGCT	7320
AGATAAAAAC	TCTGCTAAAT	GAGCAGAGTT	TTTTAGTCGA	ATTAACGACG	GATTTCTTTG	7380
ATACGAGCTG	CTTTACCTTG	AAGAGCACGC	AAGTAGTACA	ATTTCGCACG	ACGTACTTTA	7440
CCGTAACGAA	CAACTTCGAT	TTTTTCAACA	CGTGGAGTGT	GGATTGGGAA	GATACGCTCA	7500
ACACCTACAC	CGTTAGAGAT	TTTACGAACT	GTGTAGTTTT	CTGAGATTCC	AGCACCTTTA	7560
CGTGCGATAA	CAACACG					7577

(2) INFORMATION FOR SEQ ID NO: 47:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 4945 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

428

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

60	GAAACTGCAG	CTTGGCTGAA	CTGGTCCAGC	GTTTTATTTG	GATTGGTGCT	CCTCGCTGAT
120	CATTCGACCA	AGAGAGTGAG	TTGTTTCAGG	AATACAGAGC	TAGCGGAnCT	TTCCTGAAAA
180	GAAAAGGCAG	AAACAAGCTA	ATGCTAGAGA	GAAGGGGAAC	TAAGCAGAAT	ATGAAGCTGA
240	GCAACTACTG	CAATGAAGCT	CGCCAGCAAG	GAAACTGCTT	GATAGCATCT	AAGGAGTAGC
300	GTGGTTGCAG	AGCAAGTGAG	CAGAGGAAAA	GCAGCTAAAC	AGCAGCTAGC	AAACTGCAGA
360	AAGCCCGAAG	AACAGAAGCA	CTGACAAGGA	AAACCTAAGT	TGCAGAAGCA	AAACACCATC
420	GAAAAAGAAG	TAATAAGACT	CAGCAGAAGC	TCTAAACCAG	AGGGGATGAG	CAACTAACCA
480	ATCAAATTTA	ACCAAAGGAA	АААСАТТААА	AATACAGAAA	TGTCCCTAAA	TCCAGCCAGA
540	GCTATTAACC	TGAAGATGAT	CAGGTGCTCG	AAATGGGAAC	AGAATTGTTA	ATTCTTGGGA
600	AAAGCTAGCA	AGTCAATGAA	CAGGTCATTT	TCACGTCGGA	TGTCCTCGCT	GCGGATCTGT
660	CATGCTTCTG	AGCAAAAGAC	CCAATTCTAA	TTATCAAACA	AGTTCAAGCC	AGGAAGCAAA
720	GATTCAATGG	GCAATATCTA	TTGACTATTG	GCCTATGCTT	AGAGTTCAAG	TTGGTGGAGA
780	CGTAACGGGG	TGCAGGTCAC	ACGTTATTGA	CCAACTCCTG	AGGTCTCGTA	TCTTCTGGGA
840	CAAGAAAGAT	TATTGCAGAT	GGTCTAATAG	TTCTTCAACT	CGGTACACTC	TTCCTGTATA
900	AAATTGGTAG	AATTGCCCGT	GTAGCTTCCC	GACGCAGATG	TTTGAAGCAA	TTGCTGAAGC
960	ACTGGAGATT	CCAAGAAACA	ATTTCATCAA	TATGATGGCT	GTATTATGGC	ACATGGCCAA
1020	GAATATGCTG	CTATAGCAAG	AGTTTATGCT	AAGATGCGCC	TCTTGGAGAA	TGGTTAAACC
1080	AACTATGGAC	CATGACCTAT	GGTACGATGC	AAGTATTCTT	CCATCCAATC	CTAAGGTAAA
1140	GAAGGAGATA	CATGCAACCA	ACTACCAATT	GGAGAATACA	AGATGGTTTG	GTTATCATCA
1200	AATGATTACA	TAAGGCTAAA	TTAACTGGGA	TTTGCTAACT	AGATAACTTC	AGGTTCCGGC
1260	GGTTTGGAAT	TGTATTTGCA	ATCCTTATGA	ATTGGTCGTA	TGCCAACTGG	CTATTGCAAC
1320	GACGAAAATG	TGACATTTTA	TTAAGTGGAA	AAGACAAAGG	TGGTTCCTAC	TGCAACAGGG
1380	TTAGGAAAAA	CATTACAAGT	CCCCAGATAC	GGTTTATTTG	CCTTTCTCTT	GGAAATTGCG
1440	GGAGACCCTA	AGGTTATCAA	TCTTCTTTAC	AATGAAGATA	TTATCATAAA	CTGGTGAAGA
1500	GCGGACCGTA	TAACCTAGTT	ATGGTATTGC	AAAGATTGGT	ACCAGGTGAC	CTGGCCAAAA
1560	AAAAAATGGT	AGGTCATGGT	CTTTTAATAC	TTTACTACTT	AGGTAATACT	CGCCAGCGGT
1620	TCAGGTGTTC	TCGTTCAGTA	AGTGGAATTA	AAGGATTCTG	TAAGGTTTCT	TCGTAGATGG

TTCCAACATG	GCGCTGGTGG	CAGACTTCAA	CAGGGGAAAA	ACTTCGTGCA	GAATATGATT	1680
TTACAGATGC	CTATAATGGC	GGAAATTCCC	TTAAATTCTC	TGGTGATGTA	GCCGGTAAGA	1740
CAGATCAGGA	TGTGAGACTT	ТАТТСТАСТА	AGTTAGAAGT	AACTGAGAAG	ACCAAACTTC	1800
GTGTTGCCCA	CAAGGGAGGA	AAAGGTTCTA	AAGTTTATAT	GGCATTCTCT	ACAACTCCAG	1860
ACTACAAATT	CGATGATGCA	GATGCATGGA	AAGAGCTAAC	CCTTTCTGAC	AACTGGACAA	1920
ATGAAGAATT	TGATCTTAGC	TCACTAGCGG	GTAAAACCAT	CTATGCAGTC	AAACTATTTT	1980
TCGAGCATGA	AGGTGCTGTA	AAAGATTATC	AGTTTAACCT	AGGACAATTA	ACTATCTCGG	2040
ACAATCACCA	AGAGCCACAA	TCGCCGACAA	GCTTTTCTGT	AGTGAAACAA	TCTCTTAAAA	2100
ATGCCCAAGA	AGCGGAAGCA	GTTGTGCAAT	TTAAAGGCAA	CAAGGATGCA	GATTTCTATG	2160
AAGTTTATGA	AAAAGATGGA	GACAGCTGGA	AATTACTAAC	TGGCTCATCT	TCTACAACTA	2220
TTTATCTACC	AAAAGTTAGC	CGCTCAGCAA	GTGCTCAGGG	TACAACTCAA	GAACTGAAGG	2280
TTGTAGCAGT	CGGTAAAAAT	GGAGTTCGTT	CAGAAGCTGC	AACCACAACC	TTTGATTGGG	2340
GTATGACTGT	AAAAGATACC	AGCCTACCAA	AACCACTAGC	TGAAAATATC	GTTCCAGGTG	2400
CAACAGTTAT	TGATAGTACT	TTCCCTAAGA	CTGAAGGTGG	AGAAGGTATT	GAAGGTATGT	2460
TGAACGGTAC	CATTACTAGC	TTGTCAGATA	AATGGTCTTC	AGCTCAGTTG	AGTGGTAGTG	2520
TGGATATTCG	TTTGACCAAG	CCACGTACCG	TTGTTAGATG	GGTCATGGAT	CATGCAGGAG	2580
CTGGTGGTGA	GTCTGTTAAC	GATGGCTTGA	TGAACACTAA	AGACTTTGAC	СТТТАТТАТА	2640
AAGATGCAGA	TGGTGAGTGG	AAGCTAGCTA	AGGAAGTCCG	TGGTAACAAA	GCACACGTGA	2700
CAGATATCAC	TCTTGATAAA	CCAATCACTG	CTCAAGACTG	GCGCTTGAAT	GTTGTCACTT	2760
CTGACAATGG	AACTCCATGG	AAGGCTATTC	GTATCTATAA	CTGGAAAATG	TATGAAAAGC	2820
TTGATACTGA	GAGTGTCAAT	ATTCCGATGG	CCAAGGCTGC	AGCCCGTTCT	CTAGGCAATA	2880
ACAAGGTACA	AGTTGGCTTT	GCAGATGTAC	CGGCTGGAGC	AACTATTACC	GTTTATGATA	2940
ATCCAAATTC	TCAAACTCCG	CTCGCAACCT	TGAAGAGCGA	AGTTGGAGGA	GACCTAGCAA	3000
GTGCACCATT	GGATTTGACA	AATCAATCTG	GTCTTCTTTA	TTATCGTACC	CAGTTGCCAG	3060
GCAAGGAAAT	TAGTAATGTC	CTAGCAGTTT	CCGTTCCAAA	AGATGACAGA	AGAATCAAGT	3120
CAGTCAGCCT	AGAAACAGGA	CCTAAGAAAA	CAAGCTACGC	CGAAGGGGAG	GATTTGGACC	3180
TTAGAGGTGG	TGTTCTTCGA	GTTCAGTATG	AAGGAGGAAC	TGAGGACGAA	CTCATTCGCC	3240
TAACTCACGC	AGGTGTATCA	GTATCAGGTT	TTGATACGCA	TCATAAGGGA	GAACAGAATC	3300
TTACTCTCCA	ATATTTGGGA	CAACCGGTAA	ATGCTAATTT	GTCAGTGACT	GTCACTGGCC	3360

AAGACGAAGC	AAGTCCGAAA	ACTATTTGG	430 GAATTGAAGT	AAGTCAGGAA	CCGAAAAAAG	3420
ATTACCTAGT	TGGTGATAGC	TTAGACTTGT	CTGAAGGACG	CTTTGCAGTG	GCTTATAGCA	3480
ATGACACCAT	GGAAGAACAT	TCCTTTACTG	ATGAGGGAGT	TGAAATTTCT	GGTTACGATG	3540
TCAAAAGAC	TGGTCGTCAA	ACCTTGACGC	TTCATTACCA	AGGCCATGAA	GTTAGCTTTG	3600
ATGTTTTGGT	ATCTCCAAAA	GCAGCATTGA	ACGATGAGTA	CCTCAAACAA	AAATTAGCAG	3660
AAGTTGAAGC	TGCTAAGAAC	AAGGTGGTCT	ATAACTTTGC	TTCATCAGAA	GTAAAAGAAG	3720
CCTTCTTGAA	AGCAATTGAA	GCGGCCGAAC	AAGTGTTGAA	AGACCATGAA	ACTAGCACCC	3780
\AGATCAAGT	CAATGACCGA	СТТААТАААТ	TGACAGAAGC	TCATAAAGCT	CTGAATGGTC	3840
A AGAGAAATT	TACGGAAGAA	AAGACAGAGC	TTGATCGCTT	AACAGGTGAG	GTTCAAGAAC	3900
rcttggctgc	CAAACCAAAC	CATCCTTCAG	GTTCTGCCCT	AGCTCCGCTT	CTTGAGAAAA	3960
ACAAGGCCTT	GGTTGAAAAA	GTAGATTTGA	GTCCAGAAGA	GCTTACAACA	GCGAAACAGA	4020
STCTAAAAGA	TCTGGTTGCT	TTATTGAAAG	AAGACAAGCC	AGCAGTCTTT	TCTGATAGTA	4080
AAACAGGTGT	TGAAGTACAC	ттстсалата	AAGAGAAGAC	TGTCATCAAG	GGTTTGAAAG	4140
PAGAGCGTGT	TCAAGCAAGT	GCTGAAGAGA	AGAAATACTT	TGCTGGAGAA	GATGCTCATG	4200
rctttgaaat	AGAAGGTTTG	GATGAAAAAG	GTCAAGATGT	TGATCTCTCT	TATGCTTCTA	4260
PTGTGAAAAT	CCCAATTGAA	AAAGATAAGA	AAGTTAAGAA	AGTATTTTC	TTACCTGAAG	4320
GCAAAGAGGC	AGTAGAATTG	GCTTTTGAAC	AAACGGATAG	TCATGTTATC	TTTACAGCAC	4380
CTCACTTTAC	TCATTATGCC	TTTGTTTATG	AATCTGCTGA	AAAACCACAA	CCTGCTAAAC	4440
CAGCACCACA	AAACACAGTC	CTTCCAAAAC	CTACTTATCA	ACCGACTTCT	GATCAACAAA	4500
AGGCTCCTAA	ATTGGAAGTT	CAAGAGGAAA	AGGTTGCCTT	TCATCGTCAA	GAGCATGAAA	4560
ATACTGAGAT	GCTAGTTGGG	GAACAACGAG	TCATCATACA	GGGACGAGAT	GGACTGTTAA	4620
GACATGTCTT	TGAAGTTGAT	GAAAACGGTC	AGCGTCGTCT	TCGTTCAACA	GAAGTCATCC	4680
AGAAGCGAT	TCCAGAAATT	GTTGAAATTG	GAACAAAAGT	AAAAACAGTA	CCAGCAGTAG	4740
TAGCTACACA	GGAAAAACCA	GCTCAAAATA	CAGCAGTTAA	ATCAGAAGAA	GCAAGCAAAC	4800
AATTGCCAAA	TACAGGAACA	GCTGATGCTA	ATGAAGCCCT	AATAGCAGGC	TTAGCCAGCC	4860
rtggt ctt gc	TAGTTTAGCC	TTGACCTTGA	GACGGAAAAG	AGAAGATAAA	GATTAAATAT	4920
GAAAAATCT	TGTGAAATCT	TTCCG				4945

(2) INFORMATION FOR SEQ ID NO: 48:

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 25002 base pairs
(B) TYPE: nucleic acid

WO 98/18931

431

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:

GACAACTCAA	GTAGCTTTTT	CTTATTTTGA	AAAAGGAGAT	CAGAGTTTAA	CTATGTCAGA	60
AAAATCACAA	TGGGGGTCGA	AACTTGGTTT	TATTCTAGCA	TCTGCTGGCT	GGCCATCGGG	120
CTTGGTTCCG	TTTGGAAGTT	TCCCTACATG	ACTGCTGCTA	ATGGCGGTGG	AGGCTTTTTA	180
CTAATCTTTC	TCATTTCCAC	TATTTTAATC	GGTTTCCCTC	TCCTGCTGGC	TGAGTTTGCC	240
CTTGGCCGTA	GTGCTGGCGT	TTCCGCTATC	AAAACCTTTG	GAAAACTGGG	CAAGAATAAC	300
AAGTACAACT	TTATCGGTTG	GATTGGCGCC	TTTGCCCTCT	TTATCCTCTT	ATCTTTTTAC	360
AGTGTTATCG	GAGGATGGAT	TCTAGTCTAT	CTAGGTATTG	AGTTTGGGAA	ATTGTTCCAA	420
CTTGGTGGAA	CGGGTGATTA	TGCTCAGTTA	TTTACTTCAA	TCATTTCAAA	TCCAGCCATT	480
GCCCTAGGAG	CTCAAGCGGC	CTTTATCCTA	TTGAATATCT	TCATTGTATC	ACGTGGGGTT	540
CAAAAAGGGA	TTGAAAGAGC	TTCGAAAGTC	ATGATGCCCC	TGCTCTTTAT	CGTCTTTGTT	600
TTTATCATCG	GTCGCTCTCT	CAGTTTGCCA	AATGCCATGG	AAGGGGTTCT	TTACTTCCTC	660
AAACCAGACT	TTTCAAAACT	GACTAGCACT	GGTCTCCTCT	ATGCTCTGGG	ACAATCTTTC	720
TTTGCCCTCT	CACTAGGGGT	TACAGTCATG	TTGACCTATG	CTTCTTACTT	AGACAAGAAA	780
ACCAATCTAG	TCCAGTCAGG	AATCTCCATC	GTAGCCATGA	ATATCTCGAT	ATCCATCATG	840
GCAGGTCTAG	CCATTTTCCA	AGCTCGATCC	CCCTTCAATA	TCCAGTCTGA	AGGGGGACCC	900
AGCCTGCTCT	TTATCGTCTT	GCCTCAACTC	TTTGACAAGA	TGCCTTTTGG	AACCATTTTC	960
TACGTCCTCT	TCCTCTTGCT	CTTCCTTTTT	GCGACAGTCA	CTTTTTCTGT	CGTGATGCTG	1020
GAAATCAATG	TAGACAATAT	CACCAACCAG	GATAACAGCA	AACGTGCCAA	ATGGAGTGTT	1080
ATTTTAGGAA	TTTTGACCTT	TGTCTTTGGC	ATTCCTTCAG	CCCTATCTTA	CGGTGTCATG	1140
GCGGATGTTC	ACATTTTTGG	TAAGACCTTC	TTTGACGCTA	TGGACTTCTT	GGTTTCCAAT	1200
CTCCTCATGC	CATTTGGAGC	TCTCTACCTT	TCACTTTTTA	CAGGCTATAT	CTTTAAAAAG	1260
GCTCTTGCAA	TGGAGGAACT	CCATCTCGAT	GAAAGAGCAT	GGAAACAAGG	ACTGTTCCAA	1320
GTCTGGCTCT	TCCTTCTTCG	TTTCTTCGTT	TCGTCATTCC	AATCATCATC	ATTGTGGTCT	1380
TCATTGCCCA	atttatgtaa	TCAAAAAGGA	CTTGAGTAGT	GAACTCAGGC	CCTTTCTTTT	1440
TATGGATGGC	TAACAATCAA	TTCCAAACCT	TGCCCTTCCA	GAGTCCAAGC	TTCAACATCA	1500
CTTGGTAGGA	TAAAGTGGCT	GCCTTTTTGA	ATTGGATAAT	TTTTCCCGTC	AACAGTTAGC	1560

TGACCTTGAC	CAGCCAAGAC	ACTCAATAAG	432 CTGTAGTCAG	CTGTCTTTTC	AAAGTCAACT	1620
TTTCCAGTAA	TTTCCCACTT	GTAAACTGCG	AAGAAATCAT	TAGATACAAG	GAGAGTGGAA	1680
CGCAAATCAT	CTGCTTTAAC	AGTTACAGGA	CGGCTATTTG	CTGGCTCACC	AATGTTCAAG	1740
ACATCGATGG	ATTTTTCAAG	ATGAAGTTCA	CGCAAGTTGC	CTTTGTCATC	CTTGCGGTCA	1800
AAGTCATAGA	CGCGATAGGT	GGTATCGCTA	GACTGCTGGG	TTTCAAGGAT	TAAGATACCC	1860
GCCCCGATAG	CGTGCATAGT	CCCGCTTGGT	ACATAGAAGA	AATCTCCAGC	CTTAACAGGG	1920
ACTTTGGTCA	ACAAGTCATC	CCAGTTCTTG	TCCTCGATTT	GCTGGCGGAG	TTCTTCTTTT	1980
GACTTGGCAT	TGTGACCGTA	GATAATCTCT	GAACCTTCAT	CCGCTGCGAT	AATGTACCAG	2040
CATTCTGTTT	TTCCGAGTTC	GCCTTCATGC	TCGAGTCCAT	AAGCATCGTC	TGGGTGAACT	2100
TGGACACTGA	GCCAGTCGTT	GGCATCGAGG	ATCTTGGTCA	AAAGTGGAAA	TACAGGTTCT	2160
GGACGATTGC	CAAATAATTC	ACGGTGTTCC	GCATACAAAG	TAGCAAGATC	TGTTCCCTCG	2220
TAACGACCAT	TGGCAACTTT	AGAGACTCCA	TTTGGATGGG	CTGAGATGGC	CCAATATTCT	2280
CCGATTTTTT	CACTTGGGAT	GTCGTAGCCA	AACTCATCAC	GTAGCTTGGC	TCCACCCCAG	2340
ATTTTTTCTT	GCATAACTGA	TTGTAAAAAT	AATGGTTCTG	ACATGTCGAT	CTCCTGTCTG	2400
ATTTTTCTCC	CCTCATTATA	GCAAAAAAAG	AGTTCGAATT	GAACTCTTTT	TTACATCTTA	2460
TAAAGCAGGG	AGAAGATTTT	ATAAAAATAG	TAAACAAATG	TGCTCTACCC	GATGCTTGCA	2520
CCATTGCTAT	AAATGACATC	CTTGTACCAA	TAGAAGGACT	TCTTCTTGCT	ACCTTTGAGA	2580
GCTCCGTTTC	CTACATTATC	TCGATCTACA	TAGATAAAGC	CATAGCGCTT	ATTCATTTCC	2640
CCTGTGCCAG	CTGAAACCGG	ATCGATACAG	CCCCAAGTCG	TATAACCAAG	CAAGTCAACC	2700
CCGTCTTGGT	AAATGGCATC	TCGCATGGCC	TTGATGTGGG	CCTCTAAGTA	AGTAATCCGA	2760
TAGTCATCTG	CTACATAACC	ATTCTCATCC	GGTGTATCCA	TAGCACCGAG	TCCATTTTCT	2820
ACGATAATAC	TAAACTAAAA	TCAAAAAGCA	TTATATAATA	GTGATATGAA	ATCAACTAAA	2880
GAAGAAATCC	AAACCATCAA	AACACTTTTA	AAAGACTCTC	GTACAGCTAA	ATATCATAAA	2940
CGCCTTCAAA	TCGTTCTATA	GTAAAATGAA	ATAAGAACAG	TACAAATCGA	TCAGGACAGT	3000
CAAATCGATT	TCTAACAATG	TTTTAGAAGT	AGGGGTGTAC	TATTCTAGTT	TCAATCTACT	3060
ATATTTCGTC	TGATGGGCAA	ATCTTATAAA	GAGATTATAG	AACTTTTATA	GTAGTTTGAA	3120
ATAAGATGTG	AACAACTCTA	TCAGGAAAGT	CAAATTAATT	TATAGAAATA	TTTTAGCAGC	3180
CAAGGTGTAC	TGTTATAGAT	TCAATACACT	ATAGACTGTA	ATCAAACAAC	GATTTGGCGA	3240
AATGTAAAAA	AATATGAGGA	GTTCGGACTC	GACTCTCTCC	TTCAAGAAAC	ACGTGGTGGT	3300
CGTAACCATG	CATATATGAC	AGTTGAGGAA	GAGAAAGCCT	TTCTTGCCCG	CCATTTGAAG	3360

GCTACAGAGG	CAGGAGAATT	TGTTACAATT	GATGCCTTAT	TTCAGGCTTA	TAAAAAGGAG	3420
TTAGGTCGTT	CCTACACACG	TGATGCCTTC	TATCAACTGT	TGAAGCGCCA	TGGTTGGCGA	3480
ATATTACGC	CACGTCCAGA	ACATCCTAAG	AAAGCAGACG	CTCAAACCAT	TGTTGCGTCT	3540
aaaataaaa	TCTCAATCCA	AGAAGGCAAG	AAAGCGTTTT	AAATATAGTA	GACGTTTTCG	3600
PAAGGTTTGC	TTGATGTACC	AAGCTGAAGC	TGGTTTCGGT	AGAATCAGTA	AACTGGGATC	3660
rtgttgggct	CCAATAGGAG	TAGGTCCACA	TATCCATAGT	CACTATATAC	GAGAATTTCG	3720
CTATTGTTAT	GGAGCTGTTG	ATGCCTATAC	AGGCGAATCA	TTTTTCTTAA	TAGCTGGTAG	3780
ATGTAATACT	GAGTGGATGA	ACGCCTTTTT	AGAAGAGCTT	TCACAAGCTT	ATCCTTTTAC	3840
rcgttatgga	CAATGCTATA	TGGCATAAAT	CAAGTACCTT	AAAGATTCCG	ACTAATATTG	3900
TTTTGCATT	TATTCCTCCA	TACACACCAG	AGATGAACCC	CATTGAACAA	GTGTGGAAAG	3960
AGATTCGTAA	ACGTGGATTT	AAGAATAAAG	CCTTTCGAAT	TTTGGAAGAT	GTCATGAATC	4020
AACTCCAAGA	TGTCATACAA	GGATTGGAGA	AGGAGGTGAT	AAAGTCCATC	GTTAATCGGA	4080
GATGGACTAG	AATGCTTTTT	GAAAGCAGAT	GAGTATTATA	TGCAATTTCT	TTATATAAAA ·	4140
AGACCGGATT	GCTCCGATCT	TTCAATAGTT	CATATTCTCA	ATTTCTATTT	TAAAAATAGC	4200
TAAGGTTAAC	GTCAAATGAC	TACGCGACCT	ATTTCATACG	ATAAAAATCA	AGCACTAGAC	4260
CAGCAGGTCC	TTGAACTAAT	AAGGACTCTG	TTCCCCAATC	GGTTACAGTT	GGTCCGTGTA	4320
AACCTTTAT	ACCAAGCTCG	TTCAACCGTT	TGTAGTTCTG	GTCTACATCC	TCAACCTCGA	4380
PATGAATAAT	GATTCCTGAC	TGAAAGTTTT	CCAAAGGAAC	CAAATGATTT	TGTGACAACA	4440
PAAGGCAGTG	ACTACCAATC	GTAAACTGAG	CAAAACCATC	ATTAGCATAA	TCTGCCTTTT	4500
PATCCAAGAT	ATGCTCCAAG	TCAGCACAGA	CTTGGGGAAC	ATTTGAAACG	ATAATATCTA	4560
ATTGATTTAA	ATTCATTTAC	TCTCCTCCAT	AAAAAGACCG	GATTGCTCCG	ATCTTTTAAA	4620
STTCTGCTCT	ATGAAAATCA	AAGAATAAAG	TCTACAAGTT	TCATATTTGA	TTTTCGGCGA	4680
BAGGAATTAT	TTAATTGCGC	GTGATTGCAA	TCCTTCTTCT	TCCAAGAAGA	GACGGAATGG	4740
PACGAGTTCT	TCTGCTTCGT	ATTTTTCCTT	GAAGGCTTTG	ATAGCTTCTT	CTGAGTGAAG	4800
PTTTGGATCC	AATTCAAGTA	CTTCTACTGG	AAGTGGACGG	TGTTGAGTGA	TGCGAGCATC	4860
GATGACAACA	GTTTTACCTT	CTTTGTTCAA	TTTAACAGCT	TCTGCAACAA	CTGCATCGAT	4920
STCTTCGATA	CGGTCAACTG	TGAATCCAAC	AGCTCCTTGA	GCTTCCGCAA	TTTTAGCGTA	4980
STCAGCGTTT	GTGAAGTCTA	CACCAAACAA	GTGTTTGTTT	GTATCTTCGT	ATTTGTTCTT	5040
SATGAAGCCG	TACTCAGCAT	TTGAGAAGAC	AAGGTTG ATA	ACTGGAAGGT	CGTATTGAAC	5100

			434			
GTTTGTGATA	ACGTCTGGGT	AGCACATGTT	GAATGCTCCG	TCACCCATGA	TGTTCCATAC	5160
TTGGCGATCT	GGATTGTCTT	TCTTAGCAGC	GATACCACCA	GGAAGGGCAA	TACCCATTGT	5220
CGCAAAGAGT	GGAGATGTAC	GCCACATGTT	CTTAGGTGTC	ATGTGAAGGT	GACGAGTAGA	5280
TGTTTGAGTA	GTGTTACCTA	CGTCGATTGA	GTAGATAGCG	TCTTGATCAG	CATGTTTGTT	5340
GATTGCATTG	TAAACTTGAT	ACAATTGCAA	TTCACCCTCA	GTTTTACCTT	CGAGTTTGTT	5400
CATGTAATCA	CGCCAGTTTT	GGTTGTTCTT	AACGTTTGCA	CGCCACCATG	GAGTTGATTC	5460
AACTGGGTTT	ACTTTGTCAA	GGATAGCTTT	AGCTGCTTGA	CCAGCATCAC	CAAGGATTGA	5520
AGCGTCAAGG	GCATGACGTT	TACCAAGTTT	GTAAGGGTCG	ATATCGACTT	GGATGAATTT	5580
TTCAGTGTTC	TTGAATGCTT	CGTAAACTTC	AGCAAATGGG	AAGTTTGAAC	CAAGGAAAAG	5640
AACTGTGTCT	GCTTCAAAGA	CCACTTCGTT	GGCTGGTTTC	CAACCAACAC	GGTAAGCAGA	5700
ACCTGTCAAA	CCTTCATAGT	TCCATTCGAA	AGCTTCAAAG	TTTTTACCAG	TTGTGATGAT	5760
TGGTGCTTTG	ATTTTACGTG	ACAATTCAGT	AATCACTTCA	CCAGCTTTAA	CACCACCAAA	5820
TCCAGCATAG	ATAACTGGGC	GTTCAGCATT	GTTCAAGATT	TCAACAGCTT	TGTCGATTTC	5880
AACTTCGTTC	AAAGCAGGAG	CGATGAATGA	GCGTTCGTAT	GAACCTGAAC	CGTAGTATGA	5940
GTTTTCATCG	ATTTCTTGGA	AACCGAAGTT	TACTGGAATT	TCAACAACAG	CTGGACCTTT	6000
TTTAGAAACT	GCAGCACGGC	AGGCTTCGTC	AATTACTTTT	GGCAATTGCT	CAGCGTAAGC	6060
TACACGTTTG	TTGTAAACAG	CGATACCGTT	GTACATTGGG	TTTTGGTTAA	GCTCTTGGAA	6120
AGCATCCATG	TTCAATTCGT	TAACTGGACG	TGATCCAAGG	ATCGCTAGGA	ATGGAGTGTT	6180
ATCCATAGCT	GCATCGTAAA	CACCGTTAAT	CAAGTGAGTC	GCACCTGGAC	CACCTGAACC	6240
AACTGCAACC	CCGATTGAGC	CGCCGAATTT	AGCTTGCATA	ACCGCTGCAA	GAGCACCTGT	6300
CTCTTCGTGG	CGAACTTGTA	AGAAACGGAT	ATCTTTGTCT	TCAGCCAAAG	CGTCCATCAA	6360
TGAGCTGAGT	GTTCCTGATG	GGATACCGTA	GATTGTATCT	ACGCCCCATG	TTTTCAATAC	6420
GTTAAGCATT	GCTGCAGATG	CAGTAATTTT	CCCTTGAGTC	ATAATGATAA	CTCTCCTTCA	6480
ATTTTTTAA	ACTTGGAGAA	TACGATTACA	TAGAATTGGA	AACGTTCTCC	AAATTTTTAC	6540
TATTCCACTG	TATCATATTT	ATGCTGACTT	TTCTAAAAAT	CTGCTCAAAA	CTCTCTATTC	6600
TCTATTCTAA	TACAGTTTTG	AAAGTTCTGT	CATTTCTGTT	TTATAACAAA	GAAATCTAGT	6660
CATTACTTTT	AGTCTATTTT	ACTAAAATTT	AACAGAAGGG	AACTGGTCAG	AACAGATACA	6720
GAACTAAAGG	CCATGGCTAG	ACCTGCCAAT	TCTGGGTTGA	GAGCCAGTCC	AACACCTGAA	6780
AAGACTCCTG	CTGCAATCGG	AATTCCGACA	ACATTGTAGA	TAAAAGCCCA	GAAAAGATTG	6840
AGTAGAATTC	GATGAAAGGT	TTTCTTACTC	ATATCAAAGG	CACGAACCAC	TCCTAAAAGA	6900

TTATTGGTTG	TCAACACCAA	ATCTGCTGAC	TCGATGGCGA	TATCTGTTCC	AGCTCCCATA	6960
GCAATCCCCA	CATCTGCTAC	ACTAAGGGCA	GGAGCGTCAT	TGATACCGTC	CCCAACAAAG	7020
GCTACTTTCC	CTGACTGTTG	CAGTTTATGG	ATTTCATGGG	CTTTTTCTTC	TGGCAAGACG	7080
CCTGCAATGA	CCTCTTCAAT	TCCGATTTGA	TCTGCAATAG	CACGCGCCAC	ACCAGCATTG	7140
TCTCCTGTCA	GCATGACTGT	TCGGAGACCA	CGTTTTTTTA	GCTGACTGAT	GGCTAGCTTA	7200
GCATTTTCCT	TAGGAATATC	TTGCAAAGCA	AGCAAGCCTT	TGATTTCATT	GTCAACAGCT	7260
AAGAACACAA	CTGTCTTAGC	TTCTTTTTCT	AGTTCTTCTA	GTTTATCTTG	ATAAGTATTA	7320
GAAATATCCA	TGCCATCCAG	CATTTTAGCA	TTTCCAAGTA	AAACTTGTTT	TCCATTGATT	7380
CGCCCTGAAA	CACCTTTCCC	GTGCAAGGAC	TGAAAATTTT	CAACAGTTTG	AAACTCAAGT	7440
CCAGCTTCAC	TCGCTCGCTT	AACGATAGCC	TCAGCCAGTG	GGTGTTGAGA	AGCATCTTCC	7500
AAGGAGGCTG	CCAACCCAAA	CACTTCTACT	TCGTCGCCGA	TGACATCTGT	TACCACAGGT	7560
TTCCCTTCCG	TCAAAGTCCC	GGTCTTATCA	AAGACAAGGG	TTTGAACTTT	CTGGATTTCC	7620
TGTAAGACAG	TTCCATTTTT	GAGGAGAACC	CCCATCTTGG	CACTACGTCC	TGTCCCCACC	7680
ATAAGGGCTG	TCGGTGTTGC	AAGTCCCAAG	GCACAAGGAC	AGGCGATAAT	CAAAACCGCC	7740
ACTCCGTAGA	GAAGAGAGGA	CACAAAGCTA	GCTCCAAGCA	CAACCACACT	ATCCCTGAGC	7800
AAGACGAACC	AAACCCAAAA	GGTCATGATT	CCTAAAATGA	CAACTACTGG	GACAAAAATC	7860
CCTGAAATCT	TATCCGTCAA	GTCCTGAATC	GGCGCACGAC	TTGTCTGAGC	TTTCTTCACA	7920
AAATCCACAA	TCTGAGCCAA	AACAGTCTCT	GAGCCAACTT	TTTCTGCTCT	AAAGACAAGC	7980
GTTCCACTAT	GATTGATGGT	TGAGCCAATG	ACAGTATCTC	CAACTGTCTT	GTCCACAGGC	8040
AGACTCTCAC	CTGTCACCAT	GGATTCGTCA	ATACTAGAGA	CACCTTCTAC	TACGACACCA	. 8100
TCAACAGCAA	TCTTTTCACC	GGGACGCACT	CGAATCAGGT	CGCCTACCTT	GACTTGTTCC	8160
AAAGGAACTT	GGACATAACT	ATCATCACTC	AAGACTTCTG	CGGTTTTAGC	TTGCAAGTCC	8220
AGTAATTTCT	CCACAGCTTG	GGACGTATTT	TTTCTCATTT	TTTCCTCAAA	AACTGCTCCC	8280
AAAAGAACGA	AAAAGAGGAT	AAATCCAGCA	CTTTCGAAGT	AAACAGGGAG	ACCAGCAAAG	8340
AGAGCAACTA	GGCTATAGAA	ATAAGCCACT	AGAGTTCCCA	GCGCAACCAA	GGTATCCATG	8400
TTGGCATTGT	GCTTTTTAAA	ACTGGCCCAA	GCACTCTGGA	TATATGGCTT	ACCTGCAACT	8460
AACATAATAG	GCGTTGTTGC	TAGAAAGGTT	CCCCAATGCA	TGACTTGATG	ACTAATGCTA	8520
CCTGTCAACA	TCCCAATCAT	GAGAATCACA	AGAGGCACAG	TAAAGATACT	AGTAATCCAA	8580
AAACGTTGCA	GGAGAGATAG	AGATTTTCGA	GTCTTCTCAA	CGACTGTATA	GCTTCCCTTT	8640

436 TGCATCTTCA TGCCACAAGA AAATTCATGT CGCCCTAATT CTTGAGGCGT AAAACGAATG 8700 ACTITCTCCT CATCTACGCC GATTGGTTCC AAGATACCTT CTTCTTCAAA CAGAATTTCC 8760 TTATAACAGT TTGAAGGAGT AGCACGATGA AAGGTAATCT CAGCTGGAAT TCCCTTTTGA 8820 AGCTGGATAT GGGCTGGATG ATAGCCTTTT TCAGCTCGGA TACGGATTTT TTGAATGCCA 8880 TTTTCTAAGC TTGCTTTCAC AATTTCTGTC ATAGTCTCCA CCTACTCTAC AATCATCTTG 8940 CCGTGCATCA TGTTCATACC ACAAGCAAAG CCAAACTCTC CAGCCTGTTC AGGCGTGATT 9000 TCCACTACAT ACTCTTCCCC CATTGGCAGG TTCGCATGTA CACCAAAATC TGGAAAAACA 9060 ATTTGATCCA GACATGGTGA AGGATCCTTG CGGTCAAAGA CAATGCGTGC TGGCACTGAT 9120 TTCTTGAGGA CAATCAACTC AGGAGTATAG CCTCCCATGA CTTCCACTCG AATCTCTTGG 9180 TATCCGTTTT TTTGCTGGGC TTTTTGTCCA GATTTTTCAG GCTTTTTGAA AAACCAAAAC 9240 AAGATAAACG CGATAAGGGC AATACAAATA ATGGTTACAA TACTATTTAA CATGACGTCT 9300 CCTTTACATA CAATTACATC TTACTTCTGT TACAGCACTT GATTTCTTCT CTGAAATCAC 9360 AGCTTCCAAG TCTTCCAAGT CAGTCTGAGT AAATTCACAT TCTACAATCA AGTCAGCCAA 9420 CAAATTCCTA ATCCTACGGG AACAAACCTT GTCTTTGATA TCTTGGACAA GTAAATCCCG 9480 ACTITIGGTCT AGAGTTAAAA GGGCTGAATA AACAAAGGAC TTGCCTTCTT TTTTCCGAGT 9540 CAAACACTCT TTATCAACCA GACGAGCCAA AAGTGTCTGA ACCGTGGACT TGGACCAGTC 9600 AAACCGCTCT GCCAAAACCC TAATCAAATC TGTACTGGTC TGCTCCCCCT GCATCCAAAT 9660 AATCTTCATG ACCTGCCATT CTGCATCTGA AATCTGCATT ACCATACCTC CAAAATCTAC 9720 ATTTGTCAAT TACACTCATC AGTATACTCT TAAAATCTAC ATTTGTCAAT TATAGAAATA 9780 ATATTTCTT CGAAAAATAG AATTTAATC ATTTGAAAAA CGATTTGCAG TCAAATATTA 9840 CTATATAAAC AATAAAAATA TGCTATACTA AAGAAAAAAG AAAACAACCA CTAGGGGTGC 9900 GTAAAGCTGA GATTAACGAC TGTTAGATCC CTCTGACTCA ATCTAGGTAA TGCTAGCTGA 9960 TGGAAGTGGA AATGATAATG GGGACTAGCA GTCTTCTATT GCCTTTCTAA AACAGACTAG 10020 CTTGTTCTTA AGAATACAAA CTTCAGTTGG TTGGGAGGTT TTAGATGACT TATTTACCCG 10080 TTGCTTTGAC CATTGCAGGG ACTGACCCTA GTGGTGGTGC TGGCATTATG GCAGATTTAA 10140 AGTCATTCCA AGCGAGAGAT GTCTATGGAA TGGCTGTTGT AACCAGTCTT GTCGCTCAAA 10200 ATACCAGAGG TGTTCAGCTA ATCGAGCACG TTTCTCCTCA AATGTTGAAA GCCCAATTGG 10260 AGAGTGTCTT TTCTGATATT CCACCTCAGG CTGTAAAAAC TGGAATGTTG GCTACTACTG 10320 AAATCATGGA AATCATCCAA CCCTATCTTA AAAAACTGGA TTGTCCCTAT GTCCTTGATC 10380 CTGTTATGGT TGCTACAAGT GGAGATGCCT TGATTGACTC AAATGCTAGA GACTATCTCA 10440

AAACAAACTT	ACTACCTCTA	GCAACTATTA	TTACGCCAAA	TCTTCCTGAA	GCAGAAGAGA	10500
TTGTTGGTTT	TTCAATCCAT	GACCCCGAAG	ACATGCAGCG	TGCTGGTCGC	CTGATTTTAA	10560
AAGAATTTGG	TCCTCAGTCT	GTGGTTATCA	AAGGCGGACA	TCTCAAAGGT	GGTGCTAAAG	10620
ATTTCCTCTT	TACCAAGAAT	GAACAATTTG	TCTGGGAAAG	CCCACGAATT	CAAACCTGTC	10680
ACACCCATGG	TACTGGATGT	ACCTTTGCTG	CAGTGATTAC	TGCTGAACTA	GCCAAGGGCA	10740
AGAGTCTTTA	CCAGGCAGTT	GATAAGGCCA	AGGCCTTTAT	CACAAAAGCT	ATTCAAGATG	10800
CCCCTCAACT	CGGTCATGGT	TCTGGTCCAG	TCAACCATAC	AACTTTTAAA	GATTAAGAAA	10860
AAAAACTCTC	TAGTTCCCAC	TTTAAGGGAA	TTAGAGAGTT	TTTATACTCT	TCGAAAATCT	10920
CTTCAAACTA	CGTCAGCTTC	CATCTGCAGC	CTCAAAACAC	TGTTTTGAGC	TGACTTCGTC	10980
AGTCTTATCT	AAAACCTCAA	GGCAGTACTT	TGAGCAACCT	GCGACTAGCT	TTCTAGTTTA	11040
CTCTTTGATT	TTCATTGAGT	ATTAATTAGG	AAAGAATGTT	ATGCAACTTT	TTTAAAAAAGG	11100
CTTGCGTTTT	TGCCTCAATA	TCTTCTGCTT	GCATCAAATC	ACGTACAACA	GCTACACCAG	11160
CTATGCCAGT	GCCCATAAGC	TGATCAATAT	TCTCCGAAGT	CAAGCCTCCA	ATAGCAACTA	11220
CTGGAATGGC	AACCGTTTGG	CAAATTGTTT	TCAAGGTCGA	TATCAGAGTA	ATGGGCGCAT	11280
TTTCCTTGGT	GCTGCTTGGG	AAAATGGCTC	CTGTACCCAA	GTAATCTGCA	CCTGATTTCT	11340
CCGCTTCCAG	AGCTCTTTTA	ACCGTTTTAG	CGGTGACACC	GAGGATTTTT	TCAGGACCCA	11400
AGACTTTGCG	AGCTACCGAA	ACTGGTAATT	CATCATCTCC	GATATGCAGA	CCTGCTGCAT	11460
CAACCGCAAG	ACAAACATCC	AACCGATCAT	CGATTATCAA	GGGTACCTGA	TAAGCATCTG	11520
TTATTTCCTT	GACTTGTTTT	GCCAGTTGAT	AATATTGATT	GGTTGTGAGA	TTTTTTTCTC	11580
GCAATTGGAC	TATGGTAACC	CCTGAACGGC	AGGCCGTCTC	AACTTTTGCA	AGAAAGCTTT	11640
CCACGGAATC	TTGATAGCGA	TTGGTTACCA	GATATAGTCT	AAGTGCTTCT	CTATTCATAA	11700
ACCTCTCCTT	TGATGGTATC	TAGCCAATTT	TCATCTCTTC	TTAGGAGCGA	AAGCTGATTG	11760
AGTACTTGGT	AACGAAATTC	TTCCAATCCC	ATTCCTTGAA	CAACTATTTT	CTCAGCAGCG	11820
ATATTGAGAT	AAGAGACTGC	TAAGCAAGAA	GCTTCAAAAC	CAGTCTTTCC	TTGGCTGAGA	11880
AAAACAGCTG	TTAAGGCTCC	AACCAAGTCT	CCTGTCCCTG	TTATCCAGTC	TAATTCAGTA	11940
CAGCCATTTC	CCAGTACAGC	GACCTGATTT	TTCGAAACGA	CGAGGTCCTT	GGGACCTGTG	12000
ACTAAGAAAG	ACATACCAGG	ATAGGTCTGA	CACCAGTCTT	TCAAGACTTG	AAGCAAATCC	12060
TCCGTTTCTT	GATCTTTAGC	ACTCGCATCG	ACCCCAACGC	CGTGGTGCTT	TAATCCAACA	12120
AGACTTCGAA	TTTCTGACAT	GTTTCCTTTA	AGGACCGTAG	GTCTATAGTC	TAAAAGGTCT	12180

TTAACTAAGC TCTTACGAAT GGATGAAGTC GTTACGCCAA CCGCATCTAC TACCATCGGG 12240 AGAGAAGATT GGTTTGCATA CGAAGCTGCC ATGCGGATTG CTTTTTCCTT CTCAGCTGAC 12300 AAATGCCCCA AATTGATGAA GAGAGCCTGA CTTTGCTTAG TAAAATCAAG AACTTCACGG 12360 GAATCATCTG CCATGACAGG TTTGCATCCC AGAGCCAAAA TCCCATTTGC CAGCATCTCA 12420 CAAGAAATCT CATTGGTAAT GCAGTGAATG AGGGAACTAG AGCCTATAGG AAAGGGATTT 12480 GTAAATTCCT GCATCAGTCT ATCCTTTCAC TAAAGAAATA TCCCTGCACT TTTTTAAAGA 12540 ATTCCTGCTT GATTAAAAAT CGAAAGGCAA TAAAGGAAAT CGCTGTACCA ATCAAGGTTG 12600 CTCCGAAAAA TCGAGGCGTG TAGATAAACC AGCTAAGCTT AGCAGCTGAT CCTGTAAAGA 12660 GTACCATAAC AGGATAGGAA ACAATGGAAC CAATAATACC TGTTCCCAAA ATCTCTCCTA 12720 GAGCAGAATA GTGAAATTTT CGACCGTACT TATAAAAGAG ACCTGCTAGA AGGGCTCCAA 12780 AAGTCGCTCC TGTGAGAGCT AAAGGCGGAA TCCCTTGAGT CGTCATACGG ATAAAGGCTG 12840 TGACTGTAGC CATAGCCAAG GCATAAACAG GTCCCATCAT GATTCCTGCT AGAATATTGA 12900 CTACACTGGA CATCGGTGCC ATTCCCTCAA TTCGAAAGAT AGGTGTAAGG ACTACATCAA 12960 GGGCAATCAT CATAGATAAA ATGGTTAATT TGTGAACTTG TAATTGGTGC TTTCTCATGC 13020 TTCTATTCTT CTCCTTTTTC TAAAGACTGT AAATCGCTCT TCCATGTCTG GTGTTGGTAG 13080 GCCATTTCCC AAAACTTGGC TTCCATATGA ACACTGATGT GGAAGGCATC TAGCATTTTT 13140 TGCTTGTCTG TCTCGTCACT TTCTCGATAG AGCTGATTGA CCAGTGCTCC CTCCTCTCTG 13200 ATCTGTTGCT CTAACTCATC CGTAATATAA GTTTCAATCC ATTGTTGATA GAGAGGATTT 13260 GGTGATGGTT TAAGATTAAG TGATTTGCCT ATATCATGGT ATAACCAAGG ACAAGGAAGC 13320 AAGCTTGCAA AAGCGATGGC TAAGTTCGGT TCTGCAAATT GCCTATAAAT ATGAGAAATG 13380 TAATGATAAC AGGTTGGAGC GATTGGATGT TGCTCCATTT CCTGGTCGCT GATTTCCAAT 13440 TCCTTGAAAA ATTGTTGGCG AATAAATAAC TCACCCTCCA CTAAACCCTG AGCATTTTGT 13500 TTCAAGAGTC TTTTCATCTC TTGGTTTGAA GTCTTATCAG CCAAAAGATG ATAGATTTCT 13560 GAGAAAGCCT TCAGATAGTA GGCATCCTGA ATCAGGTAAT AGCGGAAAAT GGCAGGTTCT 13620 AAATTCCCCT CTTGTAATTG TAAAATAAAG GGATGATGAA AGGAAGCCTG CCAAGCTTTC 13680 TTGGATAATT CCATCGCAAT ATCTGTAAAT TCCATAATAA CTCCTTTATA AAAATAGACT 13740 GGTTTGAAGC AATAAAAAGA AAAGCAGGTA GATTAATTTT GTTTTTTTAG GAATATAAAA 13800 AGTCCGATAG CTATTCTTCA ACTGTGCATG TTCGTCATAT CCGTGAGCAG ATAGAGCTCT 13860 CAGGTAAAGA TGGCGCCACC TAAAGACTGT CATCAGAACC TTACTGTAAA TCAAGGGCGA 13920 CCAAAAATGT AGTTCTTGAC CACGTAATAG GCAAGCTTCT TTGAGGGACT TGATTTCTTG 13980

CTGAATGAGA	GGAAAAGAAT	TGAATACCAC	AATCAAGGCA	TAGGACCAAG	AGCGTGATAG	1404
CCCCTTTTGA	GCCAAGTACA	AGAGAAGCTC	TTTTAGTGAA	ACAGAGGAAA	CAAAGACAAG	1410
GCCGATACAA	ACTGTCACAA	AGGCCCTCGT	TCCAAGCATG	ACTGCCTGTG	AAGCATCTCC	1416
GTGTAACTGA	ACTGCCCAGT	AGTTGGCAAA	AGATGGTAAA	ATGGCAAGTA	TGATCATCCA	1422
AGCTAACATT	TTAAATCGAC	GGTAATAGAG	CATAAAGAGA	ATACAAAATG	CGACTACCGA	1428
AAGAGTCAGA	GCAATCGAAG	GAATGAAAGA	TGTTTCCAAG	GATAAAATCA	GCAAGAAGAG	14340
ACTGATAATC	GGTGTCTGGG	TTGCTACTTT	GACCATACTA	TCTCACCTCC	CCTTGGGTAT	1440
TGCTACTCTG	AGATGTAAGT	GGTTTGGTAA	TGGTCACTTC	TTTCACATGC	CGAAGACCCT	14460
GACTAGTCAT	CTCAATCCAA	TAATCAACCA	CAGAAATCAA	AGGGTCTAAA	CGATGACTAA	14520
TGAGCAGAAA	ACTTCTTCCT	TGATTCCTCT	CCTCCACAAT	CCACTTGCAA	AAATAATGGC	1458
AGGCTCTATC	ATCCAAACCT	GCAAAAGGTT	CATCTAGCAA	GATCACGGAA	GCCTTACTGG	1464
PCAAGATGGT	CAGGAGCTGA	AGAATTTTTT	GCTGACCACC	ACTTAATTGA	TAGGGACTCT	1470
PATCGACTGC	CTGCTCCAAA	TCAAAATATC	GTAAAGCTTG	AAAAATCCGC	TGATTTCTTT	1476
CAGAATCAGG	TCCATCTAAT	TGAAGCTCCT	CTCGCAGACT	GACTCGGATA	AACTGCTTCT	14820
CAGCTTCCTG	AACAACACCA	GTCAGATCAC	GATACAAACT	CTTTTTCTTT	TTCAGGACCG	14880
AACCCTTCCA	AGTAATGCTC	CCCTTATACT	TTTGAAATTG	AAGAATAGAC	CGAAAGAGGG	14940
TTGATTTCCC	GACACCATTG	TCACCCAGGA	TACAGGAAAT	CCCTTGATAG	AATGTGAAAT	15000
CAGCAATTGA	AAAGAGGGGG	CGATTACCAA	GCTCACCAGT	CACACGGTTC	ATATGGAATA	15060
GTTCCGGGCT	AGAAGCAACT	TCCTTTGAAG	CAACCTGTGT	CATCTCATAG	GAAGGGATTT	15120
GAAACACTTC	CCTTAGTTTT	CCGTCTCTTA	GCTCCACCAT	ATGGTCGATA	TAGGCTTTAT	15180
AGTCAGATAA	ATCATGGTCG	CACAAAATAA	CTGTCTTCCC	ATCATAGACC	AACTCTTTTA	15240
GAATCTCCAA	TATCTCGATT	CTGCTCTTGC	GGTCAATGGA	AGCGAAGGGC	TCATCCAAGA	15300
GATAGACCCT	AGGATTCATG	GCAAAGAGGA	CAGCCAGCGC	TGCTTTTTGC	TTTTCCCCAC	15360
TGATAAGTG	ATGGATGAGA	CGGTGCAAGA	TGTCCTTGCA	ACGACATTGC	TGGACAACCT	15420
TGCTATTTT	AGAATCAATT	TCCTGAAGGT	GATAGCCGAT	ATTTTCCATG	GTAAAAACCA	15480
ACTCCTCAAA	CAAGCTCTCC	ATGGTAAATT	GATGATTAGG	ATTTTGCAAG	AGAATACCAA	15540
CCGTCTGGAC	ACGTTCGACG	ATAGAAAGCT	GACTGACCTC	GCTCCCATCT	ATCAGGACTT	15600
GACCGCTATA	GGGAAGAGAA	CTAACTTGGG	CAATCATTTG	AAAGAGGCTG	GATTTTCCAG	15660
CCCACTACT	CCCAACTAAC	AAGGTAAAGG	CTTGCGCATG	AAAAGTAAAA	TCAAACGGCT	15720

CAGAGAAGAT TGGGGACTGA ATCGCTCGTA GTTCCAGACC CATCTATGCT TTTCCTCCAG 15780 TTGCAAACTG ATGATAGAGT TTGACAATGG CACGAACCAA GATGGTACAG AAGAAATAAA 15840 CAGAAATAAA ACGTACCACA AGCAAGGAAA GGACAAACGG AAGGGAAAAG GCGTAGTAAC 15900 CTAACTTAAT GTATTCATAG ACAAAGCTAA CAAGCGTAAT CCCAATACTA TTAGCAGTTA 15960 GAGAGAGCCA ACTITCATAG CGATTCTTAG TTACGATAAA ACCAAATTCA CTTCCCAAAC 16020 CTTGAACAAA GCCAGACAAA AGAGCTCCTA GACCAAATTG GCTACCATAA AGGACTTCAG 16080 CAAGCGCAGC TAGCACTTCT CCAATCGTTG CACTTCCGAC TCTCGGAACA AAGATGGCAG 16140 CAATGGGCGC AGCCATACAC CAGAGACCGA AGAGGATTTC ATTGGCAAAG GCCTGCAAAC 16200 CAAGAGGTGT TAAGAGTAGA CTGAGAATAT TATACACATA TCCTGAACCA ACGAAAACCC 16260 CACCAAAAAA GATAGACAAG AAAGCAAGCA AGATAACATC TTTTAACTGC CATTTTTTCA 16320 ACATAAAAA CTCCTTTTTT TAAAGAAAAG TGAGGCACTC AAGAAGACCG ACCTAAATAC 16380 TTTGTATAGC AGACTGAATT TAGAACAGTA CACAAGAACA CTAAAATATT TCTAGAAATT 16440 AATTTGAATT TTCTAATTGA TTTGTTCGCA TCTTATTTCA ATCTACTATA TCATCTTCAT 16500 CCAGTTTCGT AAAAGAAAAA ACTCTAATTA CAGATACAAA TTAGAGTTCA GCTTACAAGA 16560 TTAGACAGTT CTTTTCGACA TACGAAAAAA ACATTTCACA TTTCCCTTCG CCAGTCTTAA 16620 CTGTATCAGG TTCAATGGGT ATCATCTCAG CCTAAAGCAC CCCAAATGTC TTTATTATTT 16680 AATTATGTGA TTATTATAAC ACACATTTTA TACTAGTTCA AGAAATTGAA CTGGAAATAC 16740 AGCCTTGCAC TCACAAAGAC AGCAGATCTT TCTTTTGCAA AAAACAAATG ACCTGTTTGA 16800 TGAATTAGCC ATTCAAGCTG AATCTGGACA TAGCTTTTTA AAAAAGGAAA ATCCTACTTA 16860 CTTAGAATCC AAGGATAGAT ATCTATTGTT CACTCATTTC CCGAACAGTT TTTTCTATAT 16920 TTTTTGCATA CGATATTGCC GAAATGATTG AAACGCCATC CATATTGGTC TTTATAATGT 16980 CTTTAATATG TTTCGTCTGT ATCCCACCAA TTGCAACTAA AGGCATTTGT GGCAATAGTT 17040 TTCTCATCAA TTCAAGACCT TCATAACCTA TAGTACCACC AGCATCATCC TTTGACTGGG 17100 TACCAAATAC AGGCCCAACA CCTACATAAT CTACATATTC AACTTTTGAT TGTTGAAATT 17160 CTTCTTCGTT TCTTATAGAA AGACCAATTA TTTTATCTGG CATCAATTTT CTAATTTCAT 17220 CAACACCAAT ATCATCTTGA CCTACATGTA CGCCATCGGC GTCAATTTCC ATTGCTAAAT 17280 CTATATCGTC ATTAACGATA AATGGAACAT TGTATTTTTT ACAAAGTTCT TTAATTTGGA 17340 TAGCTAGCTC AAGTTTTCT AAGCCTTCTA AAGCACCCTC ACCTTTTTCT CGAAATTGAA 17400 ATAAGGTTAT ACCACCTTTT AAGGCTTCCT CAACGACTGT ATATAGATTT TTTCCTTGGC 17460 AAGTAGTCGT TCCACAAATA AAATATAGTT TTAGTAATTC TTTATGAAAC ATCTTACTTC 17520