Transpose Matrix:

 $Aij = (A^T)i$

Symmetric Matrix

Aij=Aji, A=AT

A·AT是一个对称矩阵。Why?

eg= $A: m \times n$ $A^T n \times m$ $B = A \cdot A^T : m \times m$

(A·AT) T = A·AT, so A·AT is symmetric

Chapter 3 Vector space

$$R^2$$
: 2-dim vectors $8-y$ plane $eg:[z][o]$ R^3 : 3-dim vectors. 新科切,数束、线性组合 化存在 R^2 内

a subspace of R²

Walk add and mulciply

(0,0) must be in the space

(0,0)

Subspace of R²

(0,0)

(0,0)

Subspa