

#### Information Retrieval

#### Advanced methods

Danilo Montesi Stefano Giovanni Rizzo



### Synonymy

- In most collections, the same concept may be referred to using different words
- This issue, known as synonymy, has an impact on the recall of most information retrieval systems
- For example, you would want a search for aircraft to also match the word airplane



### Query expansion (1/2)

 Idea: we augment the query with keywords synonyms.

**User Query:** 

"car"

**Expanded Query:** 

"car cars automobile automobiles auto"



### Query expansion (2/2)

- Idea: we augment the query with keywords synonyms and related terms.
- A variety of automatic or semi-automatic query expansion techniques have been developed
  - goal is to improve effectiveness by matching related terms
  - semi-automatic techniques require user interaction to select best expansion terms
- Query suggestion is a related technique
  - alternative queries, not necessarily more terms



#### Related terms

- Where to find terms related to a query, in order to expand it?
  - Controlled vocabularies
    - Wordnet
  - Text collection
    - Co-occuring terms
    - Terms from relevant documents
    - Terms from retrieved documents
    - Terms in an adjacent window (of relevant or retrieved documents)



### Thesaurus query expansion

- Automatic expansion based on general controlled vocabulary (thesaurus) is not much effective
  - It does not take context into account:



Query: "tropical fish tanks"

Expanded query: "tropical fish tanks aquariums"



Query: "armor for tanks"

Expanded query: "armor for tanks aquariums"



### Co-occurence query expansion

- Instead of using a thesaurus, related keyword can be extracted from text collections.
- Different measures of co-occurrence can be used to find related keywords:
  - Dice's coefficient
  - Mutual information
  - Expected mutual information
  - Pearson's Chi-squared (χ²)
- Measure are based on entire documents or smaller parts of documents (sentences, paragraphs, windows.). We will consider entire documents now, for simplicity.



#### Dice's coefficient 1/2

- Suppose we want to find words related to "fish"
- How to measure the "relatedness" of a second term to the word fish?
- A measure of co-occurrence:

How many times they appear together

How many times they appear singularly

 Idea: the higher this score, the more related should be the two words!



#### Dice's coefficient 2/2

- Term association measure used since the earliest studies of term similarity and automatic thesaurus construction in the 1960s and 1970s.
- Given two words a and b, it is formally defined as:

$$2n_{ab}/(n_a + n_b)$$

- n<sub>a</sub> is the number of documents containing word a.
- n<sub>b</sub> is the number of documents containing word b.
- n<sub>ab</sub> is the number of documents containing both words a and b.



#### Mutual information

- It has been used in a number of studies of word collocation.
- Similar to Dice, based on probabilities.
- For two words a and b, it is defined as

$$log \frac{P(a,b)}{P(a)P(b)}$$

- P(a) is the probability that word a occurs in a text window.
- P(b) is the probability that word b occurs in a text window.
- P(a, b) is the probability that a and b occur in the same text window.

# STATE OF THE STATE

#### Mutual information: problem

- A problem with mutual information is that it tends to favor low-frequency terms.
- For example:
  - Consider two words a and b:
    - $n_a = n_b = 10$
    - $c\ddot{o}$ -occur half the time  $(n_{ab} = 5)$ .
    - Mutual information for these two terms is 5.10-2.
  - Consider two words c and d:
    - $n_c = n_d = 1000$
    - co-occur half the time  $(n_{cd} = 500)$ .
    - Mutual information for these two terms is 5.10⁴.
- Both pairs co-occur half of the time they occur. However they have different mutual information: 0.05 vs 0.0005



### Expected mutual information

- The expected mutual information addresses the low-frequency problem by weighting the mutual information value using the probability P(a,b).
- We are primarily interested in the case where both terms occur, giving the formula:

$$P(a,b) \cdot log \frac{P(a,b)}{P(a)P(b)}$$



## Pearson's Chi-squared ( $\chi^2$ )

#### This measure

- compares the number of co-occurrences of two words with the expected number of co-occurrences if the two words were independent
- normalizes this comparison by the expected number.

$$\frac{(n_{ab} - N \cdot \frac{n_a}{N} \cdot \frac{n_b}{N})^2}{N \cdot \frac{n_a}{N} \cdot \frac{n_b}{N}}$$

•  $N \cdot \frac{n_a}{N} \cdot \frac{n_b}{N}$  is the expected number of co-occurrences if the two terms occur independently.



### Query expansion example

- Using a TREC news collection the four co-occurrence measures are applied on a document level
- Top-5 related words are shown.
- Word for which we are searching related terms is

#### fish



#### Query expansion results

| Dice's<br>coefficient | Mutual information | Expected mutual information | Pearson's<br>Chi-squared |
|-----------------------|--------------------|-----------------------------|--------------------------|
| species               | zoologico          | water                       | arslq                    |
| wildlife              | zapanta            | species                     | happyman                 |
| fishery               | wrint              | wildlife                    | outerlimit               |
| water                 | wpfmc              | fishery                     | sportk                   |
| fisherman             | wighout            | sea                         | lingcod                  |

- Mutual information favors very rare words (sometimes mistyped words!).
- Chi-squared also capture unusual words.
- Dice's coefficient and expected mutual information are more suitable for IR query expansion.



#### Query expansion with relevance feedback (RF)

 Relevance feedback is a query expansion and refinement technique based on user feedback.

#### General idea:

- 1. The user issues a (short, simple) query.
- The system returns an initial set of results.
- The user marks some returned documents as relevant (or non relevant).
- The system computes a better representation of the information need based on the user feedback.
- 5. The system displays a revised set of retrieval results.



### RF example (1/2)

#### Query: New space satellite applications

| Rank | Document Title                                                                   | User<br>Feedback |
|------|----------------------------------------------------------------------------------|------------------|
| 1    | NASA Hasn't Scrapped Imaging Spectrometer                                        | YES              |
| 2    | NASA Scratches Environment Gear From Satellite Plan                              | YES              |
| 3    | Science Panel Backs NASA Satellite Plan, But Urges Launches of Smaller Probes    | NO               |
| 4    | A NASA Satellite Project Accomplishes Incredible Feat: Staying Within Budget     | NO               |
| 5    | Scientist Who Exposed Global Warming Proposes Satellites for Climate Research    | NO               |
| 6    | Report Provides Support for the Critics Of Using Big Satellites to Study Climate | NO               |
| 7    | Arianespace Receives Satellite Launch Pact From Telesat Canada                   | NO               |
| 8    | Telecommunications Tale of Two Companies                                         | YES              |



### RF example (2/2)

#### Query: New space satellite applications

Documents relevant from the user feedback

| #1 | NASA Hasn't Scrapped<br>Imaging Spectrometer           |
|----|--------------------------------------------------------|
| #2 | NASA Scratches Environment<br>Gear From Satellite Plan |
| #8 | Telecommunications Tale of<br>Two Companies            |



Recurring keywords in relevant documents

new, space, satellite, application, nasa, eos, launch, aster, instrument, arianespace, bundespost, ss, rocket, scientist, broadcast, earth, oil, measure

Expanded query: new space satellite application nasa eos launch aster instrument arianespace bundespost ss rocket scientist broadcast earth oil measure



#### Pseudo RF

- Pseudo relevance feedback, also known as blind relevance feedback, provide a method for automatic relevance feedback.
- It automates the manual part of RF, so that the user gets improved retrieval performance without an extended interaction.
- The method involves the following:
  - 1. normal retrieval to find an initial set of most relevant documents
  - 2. assume that the **top k** ranked documents are **relevant**
  - compute RF as before under this assumption.



### Machine Learning and IR: Why?

- Suppose we want to consider (combining) at the same time:
  - term frequency in the document body
  - term frequency in the document title
  - document length
  - document popularity (e.g. PageRank)
- ...as "features" to estimate the relevance, how we should weight each feature?
- A learning to rank model learn the weights from a training set of features and relevance judgements.



### Machine Learning and IR

- Idea: using machine learning (ML) to build a classifier that classify documents into relevant and non-relevant classes
- Although ML has been around for a long time, this good idea has been researched only recently
  - Limited training data: it was very hard to gather test collection queries and relevance judgments that are representative of real user needs
  - Traditional ranking functions in IR used a very small number of features:
    - Term frequency
    - Inverse document frequency
    - Document length



#### Learning to rank

- In the last 10 years things have changed:
- Modern systems especially on the Web use a great number of features
  - Log frequency of query word in anchor text
  - Query word color on page
  - # of images on page
  - # of (out) links on page
  - PageRank of page
  - URL length
  - URL contains query terms
  - Page edit recency
  - Page length
  - ...
- Lot of training data is available from huge query logs that are collected from user interactions



#### Example: features

- Suppose we are considering two features in each document:
  - Term frequency tf: how many times the query terms are found in the document
  - Pagerank pr: popularity of the document
- Training set is made of (tf,pr) vectors each with a correspondent relevance judgment
- A learning to rank model given the document features as input (tf,pr), should output the estimated relevance.



## Example: training data

| Query: "fish tank price" |        | INPUT             |          | OUTPUT          |
|--------------------------|--------|-------------------|----------|-----------------|
| Training sample          | Doc ID | Term<br>frequency | PageRank | judgement       |
| 001                      | 37     | 11                | 3        | 1 (relevant)    |
| 002                      | 37     | 0                 | 8        | 0 (nonrelevant) |
| 003                      | 238    | 8                 | 2        | 1 (relevant)    |
| 004                      | 238    | 1                 | 2        | 0 (nonrelevant) |
| 005                      | 1741   | 5                 | 6        | 1 (relevant)    |
| 006                      | 2094   | 18                | 1        | 1 (relevant)    |
| 007                      | 3191   | 3                 | 2        | 0 (nonrelevant) |



#### Example: classifier



- The learned weights are the coefficients of a linear function.
- The function represent the learned model that separates relevant (output 1) from non relevant (output 0) documents based on the two input variables.



#### Relevance feedback and learning

- RF is a simple example of using supervised machine learning in information retrieval: training data (i.e. the identified relevant and non-relevant documents) is used to improve the system's performance.
- In the last example we have used the relevance judgements of a test collection to train a classifier: this is called offline learning.
- Using relevance feedback to tune the classifier weights and improve its accuracy is an example of online learning.



#### References

Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze Introduction to Information Retrieval Cambridge University Press.

2008

The book is also online for free:

- HTML edition (2009.04.07)
- PDF of the book for online viewing (with nice hyperlink features, 2009.04.01)
- PDF of the book for printing (2009.04.01)

