```
Na JKP^3, um circuito sequencial síncrono,
chamado de mef, foi projetado de maneira
estrutural, utilizando como componente flip-flops
do tipo D:
entity mef is
  port(
    x, reset, clock: in bit;
                       out bit
    z:
  );
end mef;
architecture estrutural of mef i
component flipflopd IS
  port(
    D, reset, clock, EN: in bit
                            out bit
    Q:
  );
end component;
signal q1, q0, d1, d0: bit;
begin
    FFO: flipflopd port map(d0,
    FF1: flipflopd port map(d1,
    d0 \le x \times (not \ q0);
    d1 \le x xor q1;
    z \ll q1 or q0;
end estrutural;
      ------
```

```
Os flip-flops do tipo D são do lote utilizado no
projeto Jokempô++, com a descrição em VHDL
abaixo:
entity flipflopd IS
  port(
    D, reset, clock, EN: in bit
    Q:
                            out bit
end flipflopd;
architecture behavior of flipflo
begin
  process (reset, clock)
  begin
    if reset='0' then
      Q \le '0';
    elsif clock'EVENT and clock=
      Q \leq D;
    end if;
  end process ;
end behavior;
```

Agora a \$JKP^3\$ já dispõe de outras maneiras de implementar circuitos sequenciais, sem necessariamente usar este flip-flop. Então, sua tarefa é descrever de modo comportamental o circuito sequencial síncrono **mef**, numa arquitetura que leve a exatamente o mesmo comportamento da arquitetura estrutural acima. Para isso, complete os trechos de código abaixo, considerando a seguinte designação de estados: A para q1q0=00, B para q1q0=01, C para q1q0=11 e D para q1q0=10.

Da projuitetura de flip e escrevemos o, valor de	flep, ter	nos um RE	SET Bitivo em O')
a da mandetura de 1	les, temos	EN cenable) sembre ature.
pelo 4 da declaração importo do (= x D (not 90)	licita. Po	tt time.	
5' do (= x 1 (not gt))	Q1Q0 = estado	11 · do	X=1 Z
2 da (= x + 90)	00 = A	0: 1 = 8 0: 0 = A	1 :0 =D 0+0=0 1 :4 = C 0+1=1
0	11 = C	1 0 = D	0:1=8 1+1=1
De RESET = 0, temos Q100=00,	1 - 1	1 1 = C	1 = 0+1 A= 0:0
on estado A.	atual	vai y	
1 0	1 .	^ '	=0 e atual = 3
11 11 11 3	com X=1 e	0	=0 e 11 = A
11 11 11 11 C	com 11 e	0	^
n 11 11 1)	com 11 e	11 = A;	1 2 11 = 0

Deseja-se construir um circuito digital sequencial síncrono para controlar a pontuação de um jogo de simulação de instrumentos: o jogador começa com uma pontuação de 3; toda vez que ele erra uma nota (entrada = '0'), ele perde 1 ponto, até o limite inferior de 0; toda vez que ele acerta uma nota (entrada = '1'), sua pontuação é incrementada de 1, até o limite superior de 3; se o jogador chegar a 0 pontos, o circuito emite '1' como saída, indicando para ativar um circuito externo que emite o som de vaias. O exemplo abaixo ilustra o comportamento desejado (onde "R" representa "reset"):

Pontos: 3210001001212121012333323321000121012100

Estad o Atual	Próximo	Saída	
	0	1	Salua
Α	В	A ▼	~ 0 ▼
В	C▼	A ▼	○▼
С	D•	B▼	○▼
D	D•	C▼ ✓	1 🕶

Problema:

É fornecida uma cadeia de bits **x** de entrada. Deve-se obter uma saída **z** que forneça **dois bits zero** em sequência, e posteriormente, reproduza a cadeia **x**, tal como foi recebida.

Exemplo:

x = 1101010011000111...

z = 001101010011000111...

Tem-se que realizar a síntese da FSM que resolve este problema, a partir de sua Tabela de Transição de Estados/Saída (Figura1). Na Figura aparece a determinação do código binário que deve ser adotado para representar cada um dos Estados.

Figura1			
	y ₂ y ₁		
A			
	01		
	10		
D	11		

	ParaE		
Estado	x=0	x=1	
S t	S t+1	S t+1	Saída
Α	Α	В	0
В	С	D	0
С	Α	В	1
D	С	D	1

O circuito sequencial da FSM deverá utilizar *Flipflops* tipo **D**, sensíveis à borda de subida do *clock* (Figura 2). Esta etapa do processo de síntese consistirá na obtenção das expressões de chaveamento de **D**₁, **D**₂ e **z**.

Pede-se que sejam assinaladas, na Tabela que segue, as expressões de chaveamento correspondentes às variáveis de excitação D_1 e D_2 e também a da variável de saída z.

D ₁	D ₂	Z
Jr.		
O_{y_2}	$ig {\sf O} y_2$	$lackbox{O}_{y_2}\!\!\checkmark$
O_{y_1}	$ig oldsymbol{\circ}_{y_1}\!\!\checkmark$	Oy_1
$igcap_{y_2} XOR y_1$	$egin{array}{c} {\sf O} y_2 \ XOR y_1 \end{array}$	$egin{array}{c} {\sf O}_{y_2} \ XOR y_1 \end{array}$
$igcap_{XORy_2}$	$egin{array}{c} {\sf O}_x \ XOR y_2 \end{array}$	$egin{array}{c} {\sf O}_x \ XOR y_2 \end{array}$
$igcap_{XORy_1}$	$egin{array}{c} O_x \ XORy_1 \end{array}$	$egin{array}{c} O_x \ XORy_1 \end{array}$
$ \mathbf{o}_x \mathbf{v} $	$ O_x $	O_x

Conve	rtendo in	a tabela	•	(Lemb	rar que as duas ultimas s trocam de ligar (código de Grau	3)
29111	X=0	X = 1	00	_ for k	arnaugh em Da, Da	
St	Stall	15t+1	Saída	e dépois	na Saida, temos:	
A = 00	A= 00	B= 0,1	70	Da = Y1	o lactude	
B = 01	C= 10	D= 11	0	$D_4 = \chi$	8 Dig2:0	
C = 10 *	A= 00	B= 01	1	Saida	=42 -	
D = 1/1	C = 10	D= MM	1	Latte ox	dianto to	
42.4	D2 D1	D, D1	Edes fl	ipflops	o downers de &	
1			0	1		