Časovna zahtevnost

```
Omejena navzgor: f(n) = O(g(n))
Če \exists c > 0, da je \lim_{n \to \infty} \frac{f(n)}{g(n)} \le c
Omejena navzdol: f(n) = \Omega(h(n))
    Če \exists c > 0, da je c \leq \lim_{n \to \infty} \frac{f(n)}{h(n)}
Enaka: f(n) = \Theta(k(n))
    Če \exists c_1, c_2 > 0, da je c_1 \leq \lim_{n \to \infty} \frac{f(n)}{k(n)} \leq c_2
```

Urejanje

Notranje urejanje

Navadni algoritmi, imajo podobno zgradbo (urejeni-U in neurejeni-N del):

Insertion sort - prvi element N vrineš na ustrezno mesto v U

Selection sort - prvi N zamenjaš z najmanjšim N

Bubble sort - primerjaš soseda in jih po potrebi zamenjaš Imajo **časovno zahtevnost** $O(n^2)$

Heapsort - levo poravnana kopica, koren je večji od sinov. Vzameš koren, gor prestaviš zadnji list, popraviš kopico, ponavljaš do konca. Implementacija: seznam, sinovi a[i] so v a[2i] in a[2i+1], oče v $a[\lfloor n/2 \rfloor]$ Časovna zahtevnost: $\Theta(n * log(n))$

Maksimalno število pogrezanj (na i-tem nivoju): $(n-i)2^{i-1}$, kjer je n število nivojev, i pa trenutni nivo.

Quicksort - izbereš pivot, levo manjši, desno večji, to rekurzivno delaš. Naš algoritem:

-Pivot maš nekako podan

-Greš z dvema pointerjema z obeh strani, primerjaš če je sprednji večji od pivota in zadnji manjši.

-Če je element na pravem mestu se s pointerjem prestaviš na naslednjega

-Ko najdeš na levi in na desni po enega napačnega ju zamenjaš.

Časovna zahtevnost: $\Theta(n * log(n))$ če dobro izbiraš pivote, drugače $\Theta(n^2)$

Zunanje urejanje, i think

Mergesort (z zlivanjem) - razdeliš tabelo na podtabele dokler ni samo 0 ali 1 element, potem pa po 2 skupi združuješ tako da primerjaš najmanjši element.

S štetjem - narediš tabelo od 0 do največje številke in v njej beležiš pojavitve. Potem greš čez tabelo in prebereš.

Korensko urejanje - sortiraš po vsaki cifri, enice, desetice itd. To menda ponavadi s counting sortom.

Metoda deli in vladaj

Ideja je da razdeliš nalogo na pod-naloge, in iz njihovih rešitev sestaviš celotno rešitev.

```
procedure A(N);
begin
    if n<2 then resi neposredno else
        R(N); // delitev N na podnaloge N_1,..,N_p
        A(N_1); // resevanje a podnalog
        A(N_a); ...
        S(N) // sestavljanje delnih resitev v koncno
    end
end
```

Master theorem:

- -a je število podnalog,
- -b nek konstat
nten cas >0
- -c je kolikokrat manjše so podnaloge,
- -d je zahtevnost delitve naloge na dele.

$$\begin{split} \mathbf{T}(\mathbf{n}) &= \left\{ \begin{array}{l} b; & n = 1 \\ aT(n/c) + bn^d; & n > 1 \end{array} \right. \\ \mathbf{T}(\mathbf{n}) &= \left\{ \begin{array}{l} \Theta(n^d); & a < c^d \\ \Theta(n^d \log(n)); & a = c^d \\ \Theta(n^{log}c^a); & a > c^d \end{array} \right. \end{split}$$

Množenje števil

Naj bosta $a=a_{n-1}...a_1a_0$ in $b=b_{n-1}...b_1b_0$ dani n-mestni števili zapisani po števkah. Šolski algoritem jih zmnoži v času $\Theta(n^2)$

Karatsubov algoritem

Dano nalogo c=ab razdeli na tri dele, $z_1=x_1y_1,\, z_2=x_2y_2,$ $z_3 = x_3 y_3$. Te dele dobimo tako: $a=a_LB^m+a_D$ kjer je $\underbrace{a_{n-1}...a_m}\underbrace{a_{m-1}...a_0},$ in enako $b=b_LB^m+b_D.$ a_L $a_D^{\mathbf{v}}$ Velja $a_D, b_D < B^m$. Potem je iskani produkt enak: $ab = \underbrace{a_L b_L}_{z_2} B^{2m} + \underbrace{(a_L b_D + a_D b_L)}_{z_1} B^{m} + \underbrace{a_D b_D}_{z_0}$

Torej izračunamo:

 $z_0 = a_D b_D$

 $z_2 = a_L b_L$

 $z_1 = (a_L + a_D)(b_L + b_D) - z_2 - z_0$

Časovna zahtevnost: $\Theta(n^{\log_2 3}) = \Theta(n^{1.58})$

Matrično množenje

Direktno zahteva n^3 skalarnih množenj in $n^2*(n-1)$, torej $\Theta(n^3)$ Poskus z metodo deli in vladaj: predpostavimo da so kvadratne matrike dimenzije 2^k . Vsako od matrik A in B razdelimo na 4 enako velike. C = A*B = $\binom{A_{11}A_{12}}{A_{21}A_{22}}$ $\binom{B_{11}B_{12}}{B_{21}B_{22}}$ = $\binom{C_{11}C_{12}}{C_{21}C_{22}}$

 $C_{11} = A_{11}B_{11} + A_{12}B_{21}$

 $C_{12} = A_{11}B_{12} + A_{12}B_{22}$

 $C_{21} = A_{21}B_{11} + A_{22}B_{21}$

 $C_{22} = A_{21}B_{12} + A_{22}B_{22}$

Na koncu ugotovimo da je vse brezveze ker je še vedno $\Theta(n^3)$.

Strassenovo matrično množenje

Enako kot prej razdelimo matrike, ampak jih seštejemo tako, da ni treba poračunati vseh 8 pod-matrik:

 $P_{11} = (A_{11} + A_{22})(B_{11} + B_{22})$

 $P_{21} = (A_{22} + A_{11})(B_{22} + B_{11})$

 $P_{12} = (A_{12} - A_{22})(B_{21} + B_{22})$ $P_{22} = (A_{21} - A_{11})(B_{12} + B_{11})$ $P_{13} = (A_{11} + A_{12})B_{22}$

 $P_{23} = (A_{22} + A_{21})B_{11}$

 $P_{14} = A_{22}(B_{11} - B_{21})$ $P_{24} = A_{11}(B_{22} - B_{12})$

 $C_{11} = P_{11} + P_{12} - P_{13} - P_{14}$

 $C_{12} = P_{13} - P_{24}$ $C_{21} = P_{23} - P_{14}$

 $C_{22} = P_{21} + P_{22} - P_{23} - P_{24}$

Ker sta P11 in P21 enaka, lahko izračunamo samo 7 pod-matrik, zato pride časovna zahtevnost $\Theta(n^{2,80735})$

k-ti največji element

Z metodo deli in vladaj: izberemo delilni element, razdelimo tabelo na t1 < m, t2 = m, t3 > m.

Če je k < |t1| iščemo v t1, če je k > |t1| + |t2| v t3, drugače pa v t2.

Naivni algoritem: $\Theta(n^2)$, ker je m lahko vedno največji element. Izboljšani algoritem:

-tabelo razdelimo v peterke zaporednih elementov.

-v vsaki peterki poiščemo mediano.

-m je mediana vseh teh median.

S tem algoritmom ima problem časovno zahtevnost $\Theta(n)$.

Diskretna Fourierova transformacija

$$\begin{split} \hat{f}_k &= \sum f_j e^{-i2\pi j k/n} \text{ -DFT} \\ \hat{f}_k &= 1/n \sum f_j e^{i2\pi j k/n} \\ \text{DFT matrika} &= \begin{bmatrix} \omega^{0*0} & \dots & \omega^{0*j} & \dots & \omega^{0*n} \\ \omega^{i*0} & \dots & \omega^{i*j} & \dots & \omega^{i*n} \\ \omega^{n*0} & \dots & \omega^{n*j} & \dots & \omega^{n*n} \end{bmatrix} \\ \text{inverzna DFT} &= \frac{1}{N} \begin{bmatrix} \omega^{-0*0} & \dots & \omega^{-0*j} & \dots & \omega^{-0*n} \\ \omega^{-i*0} & \dots & \omega^{-i*j} & \dots & \omega^{-i*n} \\ \omega^{-n*0} & \dots & \omega^{-n*j} & \dots & \omega^{-n*n} \end{bmatrix} \end{split}$$

Fast Fourier transform

Razdelitev problema na dva podproblema:

-polinom p(x) razdelimo na sode in lihe koeficiente in iz njih definiramo $p_S(x)$ in $p_L(x)$

-p(x) lahko potem izrazimo z drugima dvema:

 $p(x) = p_S(x^2) + xp_L(x^2)$ -Torej lahko p(x) zračunamo v dveh korakih: *Izračunamo $p_S(x^2)$ in p_L v d točkah $x^2=(\omega^0)^2,...,(\omega^n)^2$

*S temi vrednostmi izračunamo p(x) v d točkah $x = \omega^0, \omega^1, ..., \omega^n$ -Ugotovimo da je treba izračunati le pol toliko točk ker se ponavljajo? Sestavljanje delnih rešitev v končno:

-računanje vrednosti v prvi polovici gre po enačbi

 $p(\omega^k) = p_S(\omega^{2k}) + \omega^k p_L(\omega^{2k}) = p_S(\psi^k) (= A) + \omega^k p_L(\psi^k) (= B)$

A in B se bosta že prej izračunala, torej bomo samo enkrat množili in seštevali. Za izračun vseh r vrednosti $p(\omega^k)$ iz prve polovice bo potrebnih r množenj in seštevanj. -računanje druge polovice $p(\omega^{r+k})$ je le odštevanje:

 $p(\omega^{r+k})=p_S(\psi^k)-\omega^kp_L(\psi^k)(=C).$ Takrat bo C že izračunan (v prejšnjem koraku), tako da računanje vseh r vrednsti druge polovice zahteva le r odštevanj.

Časovna zahtevnost FFT: $T(n) = \Theta(nlog(n))$

Največji pretok

Imamo usmerjen grafG(V,A,c).V je množica vozlišč, $A\subseteq V\times V$ množica povezav, $c: A \to R_0^+$ funkcija ki povezavam priredi kapaciteto. Naivni algoritem preskočimo.

Ford-Fulkersonov algoritem

Ideja je, da izbiramo nezasičene poti od začetka do konca in jih zasičimo. Če to naredimo za vse poti, dobimo maksimalni pretok.

- Oznaka vozlišča. Če je i označeno j pa neoznačeno vozlišče, potem j označimo z $(+i, \delta_i)$ če je povezava od i do j, in $(-i, \delta_i)$ če je povezava obrniena.
- -Pomen oznake. s prvim delom lahko rekonstruiramo pot. Drugi pa pove za koliko se lahko poveča pretok, in je definiran kot:

 $\delta_j = \begin{pmatrix} \min(\delta_i, c_{i,j} - v_{i,j}) & :(i,j) \in A \\ \min(\delta_i, v_{j,i}) & :(j,i) \in A \end{pmatrix}$

- -Potek označevanja. Če ima vozlišče vse sosede označene, je pregledano. Označevanje bo potekalo tako: izberi nepregledano vozlišče i, označi soseda j, ga razglasi kot označenega in nepregledanega, razglasi i za pregledanega če so vsi sosedi označeni.
- -Izsleditev poti. Ko pridemo do ponora je njegova oznaka $(\pm i, \delta_n)$. Če je $\delta_n > 0$ potem lahko pretok povečamo za δ_n in po prvem delu oznake backtrackamo do izvira.
- -Zasičenje poti. Ko odkrijemo pot moramo zasičenost vsake povezave popraviti.
- -Ponovitev. Pobrišemo oznake in gremo še enkrat.

 $\check{\mathbf{C}}$ asovna zahtevnost: ko računamo v' (največji pretok) moramo vsaj v' krat povečati pretok za 1. Vsaka pot je sestavljena iz največ A povezav, torej je časovna zahtevnost O(v'A)

Metoda dinamičnega programiranja

Ideja je, da problem rešimo pri trivialni velikosti, potem pa rešitev večjega problema sestavimo iz rešitev manjših, torej "od spodaj

Načelo optimalnosti: če je zaporedje odločitev optimalno (nas privede do optimalne rešitve) potem je tudi vsako podzaporedje optimalno.

Nahrbtnik

Problem je NP-težek, zato ne bomo našli rešitve v polinomskem času. Ideja z dinamičnim programiranjem:

- -Imamo množico N_i . -Ko $i=1, N_i=\{\emptyset, \{R_1\}\}$, torej ali vzamemo prvi predmet R_1 ali pa ne.
- -Za vsak korak vsaki množici v N_{i-1} dodamo ali pa ne dodamo predmet R_i
- -Če je množica ko ji dodamo R_i pretežka ali pa obstaja lažja z enako/večjo vrednostjo jo odstranimo

Časovna zahtevnost: $O(n2^d)$?? $\rightarrow d = \lceil log(V) \rceil$, V je velikost vhodnih podatkov

Najcenejše poti iz izbranega izhodišča

Imamo graf G(V, A, c), V so vozlišča, A usmerjene povezave, c pa povezavam priredi cene. Problem: za vsako vozlišče $i \in V$ poišči najcenejšo pot iz 1 v i. Predpostavimo da v G obstaja usmerjena pot do vsakega vozlišča in da G nima negativnih ciklov.

Bellmanove enačbe:

Definition we effective:
$$u_i = \begin{cases} 0 & ; i = 1 \\ \min_{k,(k,i) \in A} (u_k + c_{k,i}) & ; i \geq 2 \end{cases}$$

Torej u_i je minimalna vsota poti do soseda in povezave od soseda do vozlišča i.

Topološko urejanje grafov

Graf je topološko urejen, če velja $(i,j) \in A \Rightarrow \tau(i) < \tau(j)$, torej da povezave vedno kažejo od manjšega k večjemu vozlišču. Topološko uredimo lahko vse aciklične grafe.

Algoritem:

```
G, = G;
s = 0;
while (G' ima vozlišče z vhodno stopnjo 0){
   vozlisce = vozlisce z vhodno stopnjo 0;
   vozlisce.poVrsti = s; #ga preimenujemo
                        #odstranimo vozlisce in povezave
   G' = G'-vozlisce:
```

```
if (G'.prazen()) {
   print("G je acikličen, urejen");
} else {
   print("G je cikličen");}
```

Časovna zahtevnost: $O(|V|^2)$, kjer je |V| število vozlišč.

Najcenejše poti iz izhodišča v acikličnem

Ko topološko uredimo graf lahko rešimo Bellmanove enačbe. Začnemo z $u_1 = 0, u_2 = u_1 + c_{1,2}, u_3 = min(u_1 + c_{1,3}, u_2 + c_{2,3})$ itd. **Časovna** zahtevnost: $O(|V|^2)$, |V| je število vozlišč v grafu.

Najcenejše poti iz izhodišča v grafu s pozitivnimi cenami (Dijkstra)

Spet graf G(V, A, c). Ideja algoritma:

- -Cene u_i so bodisi začasne bodisi dokončne. Na začetku vemo le $u_1 = 0$, ostale cene moramo izračunati.
- -Cene hočemo narediti dokončne. Če vzamemo u_k ki ima najmanjšo začasno ceno, jo lahko naredimo dokončno, ker ni več krajše poti do tega vozlišča (ker so cene povezav vedno pozitivne).
- -Ko ceno u_k naredimo dokončno, moramo posodobiti začasne cene. Časovna zahtevnost: $O(|V|^2)$, |V| je število vozlišč.

Najcenejše poti iz izhodišča v splošnem grafu (Bellman-Ford)

Spet graf G(V, A, c). Še vedno ne sme biti negativnih ciklov. Pomembne misli:

-Največ n-1 povezav.

- $-u_{i}^{(p)}=$ cena najcenejše poti iz 1 v i, ki vsebuje kvečjemu p povezav. -Najcenejša pot P iz 1 v i, ki vsebuje največ p povezav, vsebuje bodisi največ p-1 povezav, bodisi natanko p povezav.
- -cena $u_i^{(p)}$ je enaka ali $u_i^{(p-1)},$ ali pa $\min(u_k^{(p-1)+c_{k,i}})$

Iz tega dobimo sistem enačb:

$$\begin{aligned} \text{Iz tega dobimo sistem enačb:} \\ u_i^{(p)} = \begin{cases} 0 & ; & i=1 \\ c_{1,i} & ; & i>1, p=1 \\ \min(u_i^{(p-1)}, \min(u_i^{(p-1)} + c_{k,i})) & ; & i>1, p>1 \end{cases} \end{aligned}$$

Časovna zahtevnost: $O(|V|^3)$, |V| je število vozlišč.

Najcenejše poti med vsemi pari

Razširjen prejšnji problem. Lahko bi torej gnali prejšnje algoritme za vsako vozlišče. Nočemo samo gnati prejšnjih algoritmov v vsakem

Floyd-Warshallov algoritem

- -Naj bo $u_{i,j}^{(m)}$ cena najcenejše poti od i do j
, na kateri imajo vsa vozlišča oznake največ m.
- -Velja $u_{i,j}=u_{i,j}^{(n)}$. -Najcenejša pot P iz i v j z oznakami največ m ali ne gre čez vozlišče m ali pa gre.
- -Cena $u_{i,j}^{(m)}$ je bodisi enaka $u_{i,j}^{(m-1)}$, ali pa $u_{i,m}^{(m-1)} + u_{m,j}^{(m-1)}$ -Izberemo manjšo od teh dveh in dobimo sistem enačb:

$$u_{i,j}^{(m)} = \begin{cases} c_{i,j} &; & m = 1 \\ \min(u_{i,j}^{(m-1)}, u_{i,m}^{(m-1)} + u_{m,j}^{(m-1)}) &; & 1 \leq m \leq n \end{cases}$$
 Torej m-to generacijo izračunamo i (m-1)-te. Gremo od spodaj

Časovna zahtevnost: $O(|V|^3)$, |V| je število vozlišč.

Algoritem je mogoče izvesti na mestu, sam se mi ne da več brt.

Srečno vsem!