$ au_1^{\#2}$	0	0	0	2 i kr5+2 k ³ r5	$\frac{i\sqrt{2}(3k^2r_5+2t_3)}{k(1+2k^2)^2r_5t_3}$	0	2.2
${\mathfrak r}_{1^-}^{\#1}{}_{lpha}$	0	0	0	0	$0 \qquad \frac{\sqrt{k}}{k}$	0	
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{\sqrt{2}}{k^2 r_5 + 2k^4 r_5}$	$\frac{3k^2r_5+2t_3}{(k+2k^3)^2r_5t_3}$	0	(
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 r_5}$	$\frac{\sqrt{2}}{k^2 r_5 + 2k^4 r_5}$	0	
${\mathfrak r}_1^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}}{kr_5+k^3r_5}$	$\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$	$\frac{3k^2r_5+2t_2}{(1+k^2)^2r_5t_2}$	0	0	0	
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$	$\frac{3k^2r_5+2t_2}{(k+k^3)^2r_5t_2}$	$-\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$	0	0	0	
$\sigma_{1}^{\#1}{}_{\alpha\beta}$		$\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$	$\frac{i\sqrt{2}}{kr_5+k^3r_5}$	0	0	0	
	$J_1^{#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	

$f_{1}^{\#2}$	0	0	0	$-\frac{2}{3}$ Ikt $_3$	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_1^{\#2}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	<u>t3</u> 3	0	$-\frac{1}{3}\bar{I}\sqrt{2}kt_3$
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	$k^2 r_5 + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	<u>2 i kt3</u> 3
$f_{1}^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2} t_2}{3}$	2 2 3	$2 \left -\frac{1}{3} \overline{l} k t_2 \right $	0	0	0	0
$\omega_{1}^{\#1}_{\alpha\beta}$	$k^2 r_5 + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{I}\sqrt{2}kt_2$	0	0	0	0
	$\omega_1^{\#1} + ^{lphaeta}$	$\omega_{1}^{\#2} + \alpha^{eta}$	$f_{1}^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_{1}^{#2} +^{\alpha}$

$\sigma_{2}^{\#1}_{\alpha\beta}$	$\tau_{2}^{\#1}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
	0	0
0	0	0
0	0	0
	$ \sigma_{2}^{\#1}{}_{\alpha\beta} $ 0 0 0	

	$\omega_{0^+}^{\sharp 1}$	$f_{0+}^{\#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^+}^{\sharp 1}$ †	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0^{+}}^{#1}\dagger$	$i \sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	$k^2 r_2 + t_2$

D))	k ² r.
$\tau_0^{\#2}$	0	0	0	0
$\tau_0^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\sigma_{0^+}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
	r#1 +	r#1 +	r ₀ ^{#2} †	$r_{0}^{\#1}$ \dagger

 $\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$

 $\omega_2^{#1} \dagger^{\alpha\beta\chi}$

	#	1	1	3	3	3	2	2	2	26
Source constraints	SO(3) irreps	$t_0^{#2} == 0$	$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	$t_1^{\#2}{}^{\alpha} + 2 i k \sigma_1^{\#2}{}^{\alpha} == 0$	0 =:	$\tau_{1+}^{\#1}\alpha\beta + ik \sigma_{1+}^{\#2}\alpha\beta == 0$	$\sigma_{2^{-1}}^{\#1}\alpha\beta\chi == 0$	$\tau_{2+}^{\#1}\alpha\beta==0$	$\sigma_{2+}^{\#1}\alpha\beta==0$	Total #:

	Massive particl	icle	
?	Pole residue:	$-\frac{1}{r_2} > 0$	
$J^P = 0^-$	Polarisations:	1	
$\frac{1}{k^{\mu}}$	Square mass:	$-\frac{t_2}{r_2} > 0$	
?	Spin:	0	
	Parity:	Odd	

(No massless particles)