Theoretical Constructions of Pseudorandom Objects

Yu Zhang

Harbin Institute of Technology

Cryptography, Autumn, 2018

Outline

1 One-Way Functions

2 From OWF to PRP (FYI)

Content

1 One-Way Functions

2 From OWF to PRP (FYI)

Overview

One of contributions of modern cryptography

The existence of one-way functions is equivalent to the existence of all (non-trivial) private-key cryptography.

One-Way Functions (OWF)

The inverting experiment Invert_{A,f}(n):

- $\textbf{1} \ \text{Choose input } x \leftarrow \{0,1\}^n. \ \text{Compute } y := f(x).$
- ${\bf 2}$ ${\cal A}$ is given 1^n and y as input, and outputs x'.
- Invert_{A,f}(n) = 1 if f(x') = y, otherwise 0.

Definitions of OWF/OWP [Yao]

For polynomial-time algorithm M_f and \mathcal{A} .

Definition 1

A function $f: \{0,1\}^* \to \{0,1\}^*$ is **one-way** if:

- **1** (Easy to compute): $\exists M_f: \forall x, M_f(x) = f(x)$.
- **2** (Hard to invert): $\forall A, \exists \text{ negl such that}$

$$\Pr[\mathsf{Invert}_{\mathcal{A},f}(n) = 1] \leq \mathsf{negl}(n).$$

or

$$\Pr_{x \leftarrow \{0,1\}^n}[\mathcal{A}(f(x)) \in f^{-1}(f(x))] \le \mathsf{negl}(n).$$

Definition 2

Let $f: \{0,1\}^* \to \{0,1\}^*$ be length-preserving, and f_n be the restriction of f to the domain $\{0,1\}^n$. A OWP f is a **one-way permutation** if $\forall n, f_n$ is a bijection.

Candidate One-Way Function

■ Multiplication and factoring: $f_{\text{mult}}(x, y) = (xy, ||x||, ||y||), x$ and y are equal-length primes.

■ Modular squaring and square roots: $f_{\text{square}}(x) = x^2 \mod N$.

■ Discrete exponential and logarithm: $f_{q,p}(x) = g^x \mod p$.

Subset sum problem: $f(x_1, \ldots, x_n, J) = (x_1, \ldots, x_n, \sum_{j \in J} x_j).$

Cryptographically secure hash functions: Practical solutions for one-way computation.

Examples

$$f: \{0,1\}^{128} \to \{0,1\}^{128}$$
 is a OWF. Is f' OWF?

- f'(x) = f(x) ||x|
- $f'(x) = f(x) \oplus 1^{|x|}$
- f'(x||x') = f(x)||x'|
- $f'(x) = f(x) \oplus f(x)$
- $f'(x) = \begin{cases} f(x) & \text{if } x[0,1,2,3] \neq 1010 \\ x & \text{otherwise} \end{cases}$
- $f'(x) = \begin{cases} f(x) & \text{if } x \neq 1010 || 0^{124} \\ x & \text{otherwise} \end{cases}$
- more examples in homework

Hard-Core Predicates (HCP) [Blum-Micali]

Definition 3

A function hc : $\{0,1\}^* \to \{0,1\}$ is a **hard-core predicate of a** function f if (1) hc can be computed in polynomial time, and (2) $\forall \ \mathrm{PPT} \ \mathcal{A}$, $\exists \ \mathrm{negl}$ such that

$$\Pr_{x \leftarrow \{0,1\}^n}[\mathcal{A}(f(x)) = \mathsf{hc}(x)] \le \frac{1}{2} + \mathsf{negl}(n).$$

A HCP for Any OWF

Theorem 4

f is OWF. Then \exists an OWF g along with an HCP gl for g. If f is a permutation then so is g.

Q: is $gl(x) = \bigoplus_{i=1}^{n} x_i$ the HCP of any OWF?

Proof.

$$g(x,r)\stackrel{\mathrm{def}}{=}(f(x),r)$$
, for $|x|=|r|$, and define

$$\operatorname{gl}(x,r) \stackrel{\mathsf{def}}{=} \bigoplus_{i=1}^{n} x_i \cdot r_i.$$

r is a random subset of $\{1, \ldots, n\}$. [Goldreich and Levin]

Content

1 One-Way Functions

2 From OWF to PRP (FYI)

PRG from OWP: Blum-Micali Generator

Theorem 5

f is an OWP and hc is an HCP of f. Then $G(s) \stackrel{def}{=} (f(s), \text{hc}(s))$ constitutes a PRG with expansion factor $\ell(n) = n+1$, then \forall polynomial p(n) > n, \exists a PRG with expansion factor $\ell(n) = p(n)$.

PRF from PRG [Goldreich, Goldwasser, Micali]

Theorem 6

If \exists a PRG with expansion factor $\ell(n) = 2n$, then \exists a PRF.

$$G(k) = G_0(k) ||G_1(k)$$

$$F_k(x_1x_2\cdots x_n) = G_{x_n}(\cdots (G_{x_2}(G_{x_1}(k)))\cdots), G(s) = (G_0(s), G_1(s)).$$

PRP from PRF [Lucy, Rackoff]

 $F^{(r)}$ is an r-round Feistel network with the mangler function F.

Theorem 7

If F is a length-preserving PRF, then $F^{(3)}$ is a PRP that maps 2n-bit strings to 2n-bit strings (and uses a key of length 3n).

Theorem 8

If F is a length-preserving PRF, then $F^{(4)}$ is a strong PRP that maps 2n-bit strings to 2n-bit strings (and uses a key of length 4n).

Necessary Assumptions

Theorem 9

Assume that \exists OWP. Then \exists PRG, PRF, strong PRP, and CCA-secure private-key encryption schemes.

Proposition 10

If \exists a private-key encryption scheme that has indistinguishable encryptions in the presence of an eavesdropper, then \exists an OWF.

Proof.

$$f(k, m, r) \stackrel{\mathsf{def}}{=} (\mathsf{Enc}_k(m, r), m).$$

Summary

- OWF implies secure private-key encryption scheme
- Secure private-key encryption scheme implies OWF