Compte-Rendu TP1 Prototypage virtuel & Prototypage PIBUS

Nom : AIDER Prénom : Smail

N°Etudiant : 3603379

Parcours : SAR

Responsable: M Alain Greiner

C)Automate du composant PibusSimpleRam

Quesion C1:

 $F = \overline{SEL}$ $V' = \overline{GO}$

 $A = SEL \cdot \overline{READ} \cdot DELAY$ $X = SEL \cdot ADRoK$ $B = SEL \cdot \overline{READ} \cdot \overline{DELAY}$ $S = SEL \cdot ADRoK$

 $C = SEL . READ . \overline{DELAY}$ $Z = \overline{SEL}$ D = SEL . READ . DELAY $T = \overline{SEL}$

 $E = SEL. \overline{ADRoK}$ $Y = SEL. \overline{ADRoK}$ G = 1 $R = SEL. \overline{ADRoK}$

 $U' = \overline{GO}$

Quesion C2:

	ACK_EN	ACK_VALUE	DT_EN	MEM_CMD
IDLE	-	-	0	NOP
R_WAIT	1	WAIT	0	READ
R_OK	1	READY	1	READ
W_WAIT	1	WAIT	0	WRITE
W_OK	1	READY	1	WRITE
ERROR	1	ERROR	0	NOP

D)Automate du composant PibusSimpleMaster

Question D1:

A=1 I=1

B = GNT $J = \overline{READY}$

 $B' = \overline{GNT}$ K = READY . LASTC = 1 $L = READY . \overline{LAST}$

D=READY M=GNT $D'=\overline{READY}$ $M'=\overline{GNT}$

E = READY N = 1

 $E' = \overline{READY}$ $O = \overline{READY}$

F = READY $P = READY . \overline{NULL}$ $F' = \overline{READY}$ Q = READY . NULL

G = READY R = GNT $G' = \overline{READY}$ $R' = \overline{GNT}$

H = GNT S = 1

 $H' = \overline{GNT}$ T = READY

 $T' = \overline{READY}$

Question D2:

	REQ	CMD_EN	ADR_VALUE	READ_VALUE	LOCK_VALUE	DT_EN
INIT	-	-	-	-	-	-
RAM_REQ	1	0	-	-	-	0
RAM_A0	0	1	RAM_BASE	1	1	0
RAM_A1_D0	0	1	RAM_BASE+4	1	1	1
RAM_A2_D1	0	1	RAM_BASE+8	1	1	1
RAM_A3_D2	0	1	RAM_BASE+12	1	0	1
RAM_D3	0	0	-	-	-	1
W_REQ	1	0	-	-	-	0
W_AD	0	1	TTY_BASE	0	0	0
W_DT	0	0	-	-	-	1
STS_REQ	1	0	-	-	-	0
STS_AD	0	1	TTY_BASE+4	1	0	0
STS_DT	0	0	-	-	-	1
BUF_REQ	1	0	-	-	-	0
BUF_AD	0	1	TTY_BASE+8	1	0	0
BUF_DT	0	0	-	-	-	1

E) Automate du composant Pibus Simple Master Bcu

Question E1:

ACK	Val	lue
WAIT	0	0
READY	0	1
ERROR	1	0
Ø	1	1

REMARQUE:

ACK = READY / ERROR

 $\overline{ACK} = WAIT$

X = REQ

 $X' = \overline{REQ}$

Y = LOCK

 $Y' = \overline{LOCK}$

 $Z = \overline{LOCK}$

Z' = LOCK

 $J = \overline{ACK}$

L = REQ.ACK

 $K = \overline{REQ}$. ACK

Question E2:

Pour selectionner la cible disignée par les MSB de l'adresse(A), on va utiliser le codage « One Hot » :

Deux Cibles => 2 bits (A31:29)

	M0	M1
S0	0	1
S1	1	0

Décodeur(DEC):

	GNR	SEL0	SEL1
IDLE	0	0	0
AD	1	DEC(A[31:29])	DEC(A[31:29])
DTAD	0	0	0
DT	REQ	REQ.(DEC(A[31:29]))	REQ.(DEC(A[31:29]))

Question E3:

L'allocation est réalisée dans l'état IDLE mais aussi dans l'état DT en raison du pipeline, la phase d'allocation de Pibus pour le maitre (ou l'autre maitre s'il existe) se fait au dernier cycle de réponse de l'ancien maitre.

F) Modélisation de l'architecture matérielle

Question F3:

Fichier : pibus_simple_ram.cpp :

L'initialisation de la chaine de caractere « Hello World! » dans la mémoire se fait dans la fontion « PibusSimpleRam::transition » la premiere fois qu'on charge le 'system' (p_resetn == false).

La chaine de caractere est stockée en « Little Endian » (la plus petite adresse finit le mot). On le voit bien sur la ligne du code 162 : « if(IsBigEndian()){ swap_bytes(...); } ».

G) Simulation

Question G1: