

COMPUTER NETWORK

Presented by: Group 3

FLOORS

- 3rd Floor
- 5th Floor
- 6th Floor

- In each room, we connect the computer to a switch.
- In each floor, we connect all the switch using a router.
- To connect each floor, we use a router.

Wifi

Switch

Router

Router connecting

between floors

3RD FLOOR LAYOUT

KELAS BESAR B0301 (1 COMPUTER)

- 1X Switch
- Cable

B0302 (1 COMPUTER)

- 1X Switch
- Cable

C0308(1 COMPUTER)

- 1X Switch
- Cable

C0309(1 COMPUTER)

- 1X Switch
- Cable

C0310(1 COMPUTER)

- 1X Switch
- Cable

REKTORAT (1 COMPUTER)

- 1X Switch
- Cable

LIBRARY (2 COMPUTERS)

• 1X Switch

1X Switch

• 1X Switch

• 1X Switch

C0305(1 COMPUTER)

Cable

Cable

Cable

Cable

iko)

• 1X Switch

C0302(1 COMPUTER)

Cable

C0307(1 COMPUTER) C0303(1 COMPUTER)

- 1X Switch
- Cable

C0306(1 COMPUTER) C0302(1 COMPUTER)

- 1X Switch
- Cable

CO301(1 COMPUTER)

- 1X Switch
- Cable

C0304(1 COMPUTER) FLOOR

- 1X Switch
- Cable

FINANCE (2 COMPUTERS)

- 1X Switch
- Cable

• 1X Router

TOTAL

- 17X Switch
- 4X Router
- `200 M UTP Cable

SADC (2 COMPUTER)

- 1X Switch
- Cable

5TH FLOOR LAYOUT

AUDITORIUM (1 COMPUTER)

- 1X Switch
- Cable

ASA0501 (1 COMPUTER)

- 1X Switch
- Cable

ASA0503 (1 COMPUTER)

- 1X Switch
- Cable

ASA0504 (1 COMPUTER)

- 1X Switch
- Cable

ASA0504-05 (1 COMPUTER)

- 1X Switch
- Cable

B0503 (1 COMPUTER)

- 1X Switch
- Cable

1X Switch

COS11 (1 COMPUTER)

Cable

B0504 (1 COMPUTER)

- 1X Switch
- Cable

FLOOR

• 1X Router

C0507 (1 COMPUTER)

- 1X Switch

- Cable

C0508 (1 COMPUTER)

- 1X Switch
- Cable

C0509 (1 COMPUTER)

- 1X Switch
- Cable

TOTAL

- 11X Switch
- 3X Router
- `150 M UTP Cable

6TH FLOOR LAYOUT

CLASSROOM A0601 (1 COMPUTER)

- 1X Switch
- Cable

CLASSROOM A0603 (1 COMPUTER)

- 1X Switch
- UTP Cable

CLASSROOM A0608 (1 COMPUTER)

- 1X Switch
- UTP Cable

DRAWING ROOM A0605-06 (1 COMPUTER)

- 1X Switch
- UTP Cable

FLOOR

• 1X Router

TOTAL

- 4X Switch
- 1X Router
- `100 M UTP Cable

PRICE LISTING

Below are the price for the cables, switch, and router:

LAYER 1 - PHYSICAL LAYER

3RD FLOOR

TOTAL ROOMS

- 13 Classrooms
- 1 Finance room
- 1 Library room
- 1 Rektorat room
- 1SADC

UTP CABLE

Cable length: 200 m

Price:

200 m X Rp39.000/20 m = **Rp390.000**

5TH FLOOR

TOTAL ROOMS

- 10 classrooms
- 1 Auditorium

UTP CABLE

Cable length: 150 m

Price:

160 m X Rp39.000/20 m = **Rp312.000**

6TH FLOOR

TOTAL ROOMS X

- 3 Classrooms
- 1 Drawing Room

UTP CABLE

Cable length: 100 m

Price:

100 m X Rp39.000/20 m = **Rp195.000**

- Type of cable: UTP Cable Cat6E
 - Accessible, affordable, reliable twisted pair cable
- Total Cable Length: 450m
- Total Price: Rp 877.500

LAYER 2 - DATA LINK LAYER

- Each room has only 1 switch
- 4-port switch (each room has max. 2 PCs)
- Rp 350.000

FLOOR DETAILS

17 rooms
|
17 switches

Total Price:
Rp 5.590.000

11 rooms
|
11 switches

Total Price:
Rp 3.850.000

4 rooms
|
4 switches

Total Price:
Rp 1.400.000

Total Switch & Price

Total Switch: 32 4-Port Switch
Total Price: Rp 11.200.000

LAYER 3 - NETWORK LAYER

FLOOR DETAILS

3rd Floor

We use 4 routers on the 3rd floor. 3 routers are divided based on the proximity of each router to the classes, and these 3 routers are connected to 1 main router for the 3rd floor, which will be used to connect to other floors. By dividing the entire floor using 3 routers, we can reduce delays and waiting times when passing or delivering messages between devices and increase efficiency.

Total Price for 4 Routers: **Rp 679.996**

5th Floor

There are 3 routers on the fifth floor, with two of them divided based on the proximity to the classes and 1 main router to connect the 2 routers.

This main router is used for communication between floors

Total Price for 3 Routers: **Rp 509.997**

6th Floor

On the sixth floor, there are only four classes close to each other. We use just one router for these classes and also to connect between floors.

Since the distance is short, even with only one router, there will be minimal interference

Total Price for 1 Router: **Rp 169.999**

Total Router & Price

Total Router: 8 Routers
Total Price: **Rp 1.359.992**

IP ADDRESSES

- Class B
 - Hosts a big amount of devices.
 - Allocate extra IP addresses.
- Private addresses
 - Safer for sharing information among devices and PCs

OBTAINING IP ADDRESS

Starting IP Address of each floor (FLSM)
Floor with most devices: Floor 5, 1400 devices

$$2^n - 3 >= 1400$$

 $2^1 - 3 >= 1400$
 $n = 11$
 $32 - 11 = 21$
 $2^n - 3 \rightarrow -3$: NA, BA, Default Gateway

The subnet mask is /21.

STARTING IP ADDRESS

Third floor: 172.16.0.0/21

Fifth floor: 172.16.8.0/21

Sixth floor: 172.16.16.0/21

STATIC ROUTING

USAGE

Static routing is done to connect all devices between different floors.

Third Floor:

Destination	Next Hop		
Fifth floor	172.23.0.1		
Sixth floor	172.24.0.2		

Fifth Floor:

Destination	Next Hop		
Third floor	172.23.0.2		
Sixth floor	172.25.0.2		

Sixth Floor:

Destination	Next Hop			
Third floor	172.24.0.1			
Fifth floor	172.25.0.1			

LAYER 4 - TRANSPORT LAYER

BENEFITS OF 4TH LAYER

The 4th layer is the transport layer, it is responsible for providing communication means between the network layer and the application layer. Besides that, the 4th layer also provides several services such as:

- Error Control
- Sequence Control
- Loss control
- Duplication control
- Flow control
- Multiplexing
- Many more

TCP AND UDP PROTOCOLS

The two main protocols we will use for our transportation layer will be TCP and UDP. Two of these protocols will establish communication between application layer and network layer, each with different methods.

TCP

- Connection based
- Guaranteed complete delivery
- Able to retransmit lost data
- Uses 3 way handshake
- Slower than UDP

UDP

- Connectionless based
- Cannot retransmit lost data
- Does not establish connection first
- Faster than TCP
- Prioritizes sending data real time over complete data

PORTS

TCP and UDP both provides a connection from the network layer to the application layer. To do this, they also need to track activities in case several web pages are opened in one host. We can achieve this using ports.

Ports are divided into three ranges:

- Well known ports (0 1023)
- Registered ports (1024 49515)
- Dynamic or private ports (49152 65535)

For Binusmaya specific activities like authentication, etc. We can register our own ports to the registered ports range, we will automatically use the well known ports for common protocols like https, ftp, smtp, etc. And we will use dynamic ports for the rest

SOCKET ADDRESS

After deciding the port number, we now have two identifiers, the IP Address, and the socket number. We can combine both the IP Address and the Port number to beome a socket address

IP Address: 127.67.55.12

Port Number: 64

Socket Addres: 127.67.55.12

64

LAYER 5 - APPLICATION LAYER

DOMAIN NAME SERVER (DNS)

DNS translates domain names to readable IP addresses for the computer. We have established a DNS server for our AOL on the third floor, linked to the library room's switch.

DYNAMIC HOST CONFIGURATION PROTOCOL (DHCP)

Dynamic Host Configuration Protocol (DHCP) is a network protocol that automatically assigns IP addresses and other network settings to devices on a network.

In our Cisco Packet Tracer, we can see a successful DHCP implementation in the image on the right, where the PC in the Finance room has been assigned the correct IP address.

While the image above provides a visual example, it's important to note that DHCP has been successfully implemented throughout the entire topology, not just for the PC in the Finance room.

• •	Physical	Config	Desktop	NCE1 Programming	Attributes		
P Configuration							Х
Interface	FastEthernet0						0
IP Configuration							
ODHCP		Static	Static		DHCP request successful.		
IPv4 Address		172.16.4	172.16.4.99				
Subnet Mask			255.255.255.240				
Default Gateway		172.16.4.	172.16.4.97				
DNS Server		172.16.1.4					
IPv6 Configuration							
Automatic		O Static					
IPv6 Address						1	
Link Local Address		FE80::2D	FE80::2D0:97FF:FE73:9689				
Default Gateway							
DNS Server							
802.1X							
Use 802.1X Se	counity						
Authentication	MD5						٥
Usemame							
Password							
Тор							

HYPERTEXT TRANSFER PROTOCOL (HTTP)

Hypertext Transfer Protocol (HTTP) is an application protocol that loads web pages using hypertext links.

We turned on access to both HTTP and HTTPS in Server1 in the library room.

SIMPLE MAIL TRANSFER PROTOCOL (SMTP)

Simple Mail Transfer Protocol (SMTP) can be defined as a transport protocol used by mail servers to send, receive, and relay outgoing emails between senders and receivers.

We placed the SMTP server on the third floor linked to the library and configured it for five users.

SIMPLE MAIL TRANSFER PROTOCOL (SMTP)

Physical Config Desktop Programming Attributes	Physical Config Desktop Programming Attributes
Configure Mail User Information Your Name: vio Email Address vio@gmail.com Server Information Incoming Mail Server 172.16.1.4 Outgoing Mail Server 172.16.1.4 Logon Information User Name: vio Password: •••	Configure Mail User Information Your Name: nicole Email Address nicole@gmail.com Server Information Incoming Mail Server 172.16.1.4 Outgoing Mail Server 172.16.1.4 Logon Information User Name: nicole Password:
	Save Remove Clear Reset nd receiver's rmation

CISCO PACKET TRACER SIMULATION

Thank You!