

TensorFlow Ops

Tensor Flow for Deep Learning Research

Feedback is greatly appreciated!

Overview

- Overfitting
- Dropout
- Data augmentation
- Callbacks
- Word Embeddings (representation of text data)

Overfitting and Good Fitting

Overfitting function can not generalize well to unseen data.

Preventing Overfitting

Standard ways to limit the capacity of a neural net:

- Limit the number of hidden units.
- Limit the size of the weights.
- Stop the learning before it has time to overfit.

Dropout

Training:

- > Each time before updating the parameters
 - Each neuron has p% to dropout

Dropout

Training:

- **Each time before updating the parameters**
 - Each neuron has p% to dropout
 - The structure of the network is changed.
 - Using the new network for training

Dropout - Intuitive Reason

- ➤ When teams up, if everyone expect the partner will do the work, nothing will be done finally.
- ➤ However, if you know your partner will dropout, you will do better.

Let's try it

Data Augmentation (Jittering)

- Create virtual training samples
 - Horizontal flip
 - Random crop
 - Color casting
 - Geometric distortion

Programming

callbacks

- A callback is a set of functions to be applied at given stages of the training procedure
- You can use callbacks to get a view on internal states and statistics of the model during training
- keras.callbacks.Callback()

callbacks

- History
- ModelCheckpoint
- EarlyStopping
- TensorBoard
- ReduceLROnPlateau

History

keras.callbacks.History()

ModelCheckpoint

```
keras.callbacks.ModelCheckpoint(filepath, monitor='val_loss', verbose=0, save_best_only=False, save_weights_only=False, mode='auto')
```


Early Stopping

```
keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=0, verbose=0, mode='auto', baseline=None, restore_best_weights=False)
```


ReduceLROnPlateau

```
keras.callbacks.ReduceLROnPlateau(monitor='val_loss', patience=10, verbose=0, mode='auto', min_delta=0.0001, min_lr=0)
```


Tensorboard

- Tensorflow, the deep learning framework from Google comes with a great tool to debug
- It hosts a website on your local machine in which you can monitor things like accuracy, cost functions
- and visualize the computational graph that Tensorflow is running based on what you defined in Keras
- Pip install tensorboard

Tensorboard

```
tensorboard = TensorBoard(log_dir="logs/{}".format(time())) model.fit(x_train, y_train, verbose=1, callbacks=[tensorboard])
```

- You need to create a new TensorBoard instance and point it to a log directory where data should be collected.
- Next you need to modify the fit call so that it includes the tensorboard callback.

Then the following command in the separate terminal

tensorboard --logdir=logs/

http://localhost:6006/

Tensorboard

Why Word Embeddings: Essential for text processing with DL

• It is an essential part of text processing with Deep Learning because Machine Learning algorithms, and almost all Deep Learning architectures, are incapable of processing strings or plain text in their raw form.

TEXT processing

Types of Word Embeddings

Word embeddings can be broadly classified into two categories

- Frequency based Embedding
 - Count Vector
 - TF-IDF Vector
 - Co-Occurrence Vector
- Prediction based Embedding
 - word2vec
 - CBOW (Continuous Bag of words)
 - Skip-Gram Model
 - GloVe: Global Vectors for Word Representation

References

https://deeplearning4j.org/word2vec.html

https://towardsdatascience.com/tagged/word2vec

https://medium.com/@Aj.Cheng/word2vec-3b2cc79d674

https://medium.com/tag/word2vec

https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-

word2veec/

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

https://becominghuman.ai/how-does-word2vecs-skip-gram-work-f92e0525def4

