

讲课内容

- 整除性和除法
- Euclid算法
- 模运算
- 群、环和域
- 有限域G(p)
- 多项式运算
- 有限域GF(2ⁿ)

简介

- 有限域(finite fields)
- 在密码领域的重要性日益突出
 ➤AES, Elliptic Curve, IDEA, Public Key
- 对"数"的操作
- 概念: 群(group)、环(ring)和域(field)

群

- Group,定义了二元运算的集合,记为{G,·}
- 集合上的二元运算结果仍在该集合中(封闭性)
- 遵循:
 - ▶封闭性: a,b属于G, 则a.b属于G
 - ▶结合律: (a.b).c = a.(b.c)
 - ▶单位元 e: e.a = a.e = a
 - \blacktriangleright 逆元 a^{-1} : $a.a^{-1} = e$
- 有限群、无限群
- 如果满足交换律 a.b = b.a
 则构成阿贝尔群(Abelian group)

循环群

- 定义求幂运算为重复运用群中的运算 \rightarrow 如: $a^3 = a.a.a$
- 定义: e=a⁰
- 称一个群为循环群,如果:群中每个元素都是一个固定元素a的幂,即 b = a^k (for some a and every b in group)
- a 称为群的一个生成元(generator)

环

- Ring, 一个集合,记为{R, +, ×}
- 定义了两种运算: 加法和乘法
- 对加法,构成阿贝尔群
- 对乘法满足:
 - ▶封闭性
 - ▶ 结合律: a×(b×c) = (a×b)×c
 - → 分配律: a×(b+c) = a×b + a×c
- 如果乘法满足交换律,则称交换环commutative ring
- 如过乘法有单位元且无零因子,则称整环integral domain

域

- Field, 集合,记为{F,+,×}
- 两种运算:
 - ▶对加法,构成阿贝尔群
 - ▶对乘法,构成阿贝尔群(除0外)
 - ➤环
- 作加、减、乘和除法(除0外)运算,结果 仍在集合中
- 继承关系: 群 -> 环 -> 域 P69图4.1

If a and b belong to S, then a + b is also in S a + (b + c) = (a + b) + c for all a, b, c in SThere is an element 0 in R such that a + 0 = 0 + a = a for all a in S For each a in S there is an element -a in S such that a + (-a) = (-a) + a = 0a + b = b + a for all a, b in S If a and b belong to S, then ab is also in S a(bc) = (ab)c for all a, b, c in Sa(b+c) = ab + ac for all a, b, c in S (a+b)c = ac + bc for all a, b, c in S ab = ba for all a, b in S There is an element 1 in S such that a1 = 1a = a for all a in S If a, b in S and ab = 0, then either If a belongs to S and a 0, there is an

模运算

- 定义: 模运算 "a mod n" 表示用n去除a所得的 余数
- 术语"同余": a = b mod n
 - ▶用*n*去除a和b,他们有相同的余数
 - ➤如: 100 = 34 mod 11
- b 称作a模n的余数
 - ▶整数总可以写作: a = qn + b
 - ▶通常选择最小的非负整数作为余数,即
 0 <= b <= n-1</p>

因子

- 整除: a=mb (a,b,m 都是整数)
- b是一个因子(没有余数)
- 记作: b|a
- b是a的一个因子
- 如: 1,2,3,4,6,8,12,24 都是24 的因子

模算术运算

• 是一种"时钟运算"(clock arithmetic)

• 一些性质:

- \triangleright [(a mod n)+(b mod n)] mod n = (a+b) mod n
- \triangleright [(a mod n) (b mod n)] mod n = (a-b) mod n
- \geq [(a mod n) \times (b mod n)] mod n = (a \times b) mod n

可为大整数求余提供便利

模算术运算

- 剩余集 $Z_n = \{0, 1, ..., n-1\}$
- 剩余类 [0]、[1]、...、[n-1]
- if (a+b)=(a+c) mod n
 then b=c mod n
- if (a.b)=(a.c) mod n
 then b=c mod n only if (a,n)=1

模8加法

例: $Z_8=\{0,1,...,7\}$ 上的模加法。

• 模加法十: 对每一a,都有一b,使得 a+b≡0 mod 8

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

模8乘法

例: $Z_8=\{0,1,...,7\}$ 上的模乘法。

模乘法×: 并非每一a都有乘法逆元b, 使得a×b≡1 mod 8 🔭

×	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

1、3、5、7 有逆元

与8互素的有逆元? YES!

模8的加法、乘法逆元

w	-w	w^{-1}
0	0	_
1	7	1
2	6	_
3	5	3
4	4	_
5	3	5
6	2	_
7	1	7

Table 4.2 Properties of Modular Arithmetic for Integers in \mathbb{Z}_n

Property	Expression
Commutative laws 文体体	$(w+x) \bmod n = (x+w) \bmod n$
Commutative laws 交換律	$(w \times x) \bmod n = (x \times w) \bmod n$
A i - 4 i 1 / - t - A / - t	$[(w+x)+y] \bmod n = [w+(x+y)] \bmod n$
Associative laws 结合律	$[(w \times x) \times y] \bmod n = [w \times (x \times y)] \bmod n$
	$[w \times (x + y)] \bmod n = [(w \times x) + (w \times y)] \bmod n$
Distributive laws 分配律	$[w + (x \times y)] \mod n = [(w + x) \times (w + y)] \mod n$
Identities 恒等式	$(0+w) \bmod n = w \bmod n$
Identities 恒等式	$(1 \times w) \bmod n = w \bmod n$
Additive inverse (-w) 加法	For each $w \in \mathbb{Z}_n$, there exists a z such that $w + z \equiv 0 \mod n$

最大公因子(GCD)

- GCD (a,b) = GCD(|a|,|b|)
- 如: GCD(60,24) = GCD(-60,24) = GCD(60,-24) = 12
- 如果GCD(a,b) = 1,则称a和b互素

 \rightarrow 如: GCD(8,15) = 1

• 注意: GCD(a,0) = |a|

欧几里得算法

Euclidean Algorithm

- 求最大公因子的一个有效方法: 欧几里得算法
- 算法基于:

```
\triangleright GCD(a,b) = GCD(b, a mod b)
```

• 计算GCD(a,b)的欧几里得算法:

EUCLID(a,b)

1.
$$A = a; B = b$$

2. if
$$B = 0$$
 return $A = gcd(a, b)$

3.
$$R = A \mod B$$

$$4. A = B$$

$$5. B = R$$

6. goto 2

求GCD(1970,1066)

```
1970 = 1 \times 1066 + 904 \gcd(1066, 904)
1066 = 1 \times 904 + 162
                          gcd(904, 162)
904 = 5 \times 162 + 94 gcd(162, 94)
162 = 1 \times 94 + 68
                          gcd(94, 68)
94 = 1 \times 68 + 26
                          gcd(68, 26)
68 = 2 \times 26 + 16
                          gcd(26, 16)
26 = 1 \times 16 + 10
                          gcd(16, 10)
16 = 1 \times 10 + 6
                          gcd(10, 6)
10 = 1 \times 6 + 4
                          gcd(6, 4)
6 = 1 \times 4 + 2
                          gcd(4, 2)
4 = 2 \times 2 + 0
                          gcd(2, 0)
```


有限域

- 一个元素个数有限的域称为有限域或伽罗华域(Galois field)
- 有限域中元素的个数为一个素数或者一个素数的幂,记为 GF(p)或 $GF(p^n)$,其中p为素数。
- 有限域中运算满足交换律、结合律和分配律。
- 加法的单位元是0,乘法的单位元是1,每个非零元素都有一个唯一的乘法逆元。
- 密码学中用到很多有限域中的运算,因为可以保持数在有限的范围内,且不会有取整的误差。
- 常用的有限域:
 - ightharpoonup GF(p)
 - $ightharpoonup GF(2^n)$

伽罗华域GF(p)

- GF(p) 是整数集合Z_p={0,1,...,p-1}具有模素数p的代数运算
- **Z**_p中的整数模运算的性质(表**4.2**, **P73**):交换律、结合律、分配律、恒等式、加法逆元
 - ➤ Z_n中的任一整数有乘法逆元,当且仅当该整数与n互素。
 - ▶ p为素数, Zn中所有的非零整数都与p互素, 因此Zn中所有 非零整数都有乘法逆元。
- 乘法逆元(w⁻¹): 任意w∈ Z_n中,w≠0,存在z∈ Zn,使
 得w×z ≡ 1 mod p, z就是w的乘法逆元w⁻¹

GF(7) 乘法

×	0	1	2	3	4	5	6
				0			
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
				2			
4	0	4	1	5	2	6	3
				1			
6	0	6	5	4	3	2	1

求逆算法

```
EXTENDED EUCLID(m, b)
1. (A1, A2, A3) = (1, 0, m);
  (B1, B2, B3) = (0, 1, b)
2. if B3 = 0
  return A3 = qcd(m, b); no inverse
3. if B3 = 1
  return B3 = gcd(m, b); B2 = b^{-1} mod m
4. Q = A3 \ div \ B3
5. (T1, T2, T3) = (A1 - Q B1, A2 - Q B2, A3 - Q B3)
6. (A1, A2, A3) = (B1, B2, B3)
7. (B1, B2, B3) = (T1, T2, T3)
8. goto 2
```


求GF(1759)中550的乘法逆元

Q	A1	A2	A3	B1	B2	B3
_	1	0	1759	0	1	550
3	0	1	550	1	- 3	109
5	1	- 3	109	- 5	16	5
21	- 5	16	5	106	- 339	4
1	106	-339	4	- 111	355	1

 $1 \times 1759 + (-3) \times 550 = 109$

$$(-5) \times 1759 + 16 \times 550 = 5$$

 $106 \times 1759 + (-339) \times 550 = 4$

 $(-111)x 1759 + 355 \times 550 = 1$

所以 550⁻¹ = 355 mod 1759

扩展Euclid算法

- 扩展Euclid算法
- 做欧几里德算法的计算序列

•
$$r_0 = q_1 r_1 + r_2$$
 ($\diamondsuit r_0 = n, r_1 = a$)
• $r_1 = q_2 r_2 + r_3$

•

•
$$r_{m-2} = q_{m-1}r_{m-1} + r_m$$
 (1)

$$r_{m-1} = q_m r_m + r_{m+1} (0)$$

•
$$t_0 = r_{m+1}, t_1 = r_m, \dots$$

• 依
$$t_j = t_{j-2} - q_{i-1} t_{j-1} \mod r_0$$
, ...

逆 r₁的逆

扩展Euclid算法举例

22 × □ ≡ 1 mod 31

• 28×□≡ 1 mod 75

• 269 × □ ≡ 1 mod 349


```
int module_reverse(int a, int m)
  int b, b1=1, b2=0; // 逆元
  int r, r1=a, r2=m; //
  do {
       r = r2 \% r1; // y-kx = r
       b = (b2-(r2/r1)*b1)%m;
       r2 = r1; b2 = b1;
       r1 = r; b1 = b;
  } while (r>1);
  if (r==0) // r1中就是gcd,
       return 0;
  if (b<0)
       b += m;
  return b;
```

扩展的Euclid算法求乘法逆元

• 扩展的Euclid算法 求乘法逆元:

如果gcd(a,n)=1,则 a 在模n下有乘法逆元 (不妨设a<n),即存在 x<n,使得

ax≡1 mod n

即

 $x = a^{-1} \mod n$

~~~ ExtendedEuclid(a,n) ~~~

$$\begin{aligned} g_{-1} &= n, \quad u_{-1} &= 1, \quad v_{-1} &= 0 \\ g_0 &= a, \quad u_0 &= 0, \quad v_0 &= 1 \\ \text{do} \\ q &= \left \lfloor g_{i-2} / g_{i-1} \right \rfloor \\ g_i &= g_{i-2} - q \cdot g_{i-1} = g_{i-2} \bmod g_{i-1} \\ u_i &= u_{i-2} - q \cdot u_{i-1} \\ v_i &= v_{i-2} - q \cdot v_{i-1} \\ \text{until } g_k &= 0 \\ \gcd(n, a) &= g_{k-1} \\ if \quad g_{k-1} &= 1, \quad \text{then} \quad a^{-1} \bmod n = v_{k-1} \end{aligned}$$

扩展的Euclid算法求乘法逆元: 举例

求 15⁻¹ mod 34

$$\begin{aligned} q &= \lfloor g_{i-2} / g_{i-1} \rfloor \\ g_i &= g_{i-2} - q \cdot g_{i-1} \\ u_i &= u_{i-2} - q \cdot u_{i-1}, \quad v_i = v_{i-2} - q \cdot v_{i-1} \end{aligned}$$

循环次数	q	g _i	u _i	Vi	$g_i = u_i \times n + v_i \times a$
-1	-	34	1	0	$34 = 1 \times 34 + 0 \times 15$
0	_	15	0	1	$15 = 0 \times 34 + 1 \times 15$
1	2	4	1	-2	$4 = 1 \times 34 + (-2) \times 15$
2	3	3	-3	7	$3 = (-3) \times 34 + 7 \times 15$
3	1	1	4	-9	$1 = 4 \times 34 + (-9) \times 15$
4	3	Ō	-	-	

gcd(34,15) = 1

 $15^{-1} \mod 34 = -9 = 25^{\circ}$

多项式运算

• n次多项式

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = \sum_i a_i x^i$$

- ai组成的集合称为系数集
- 讨论三种多项式运算
 - ▶使用代数基本规则的普通多项式运算
 - \triangleright 系数运算是模p运算的多项式运算,即系数在 Z_p 中
 - ▶系数在Z_p中,且多项式被定义为模一个n次多项式m(x)的多项式运算

普通多项式运算

- 对应系数相加减(+, -)
- 系数依次相乘(×)
- 如

$$f(x) = x^3 + x^2 + 2$$
, $g(x) = x^2 - x + 1$
 $f(x) + g(x) = x^3 + 2x^2 - x + 3$
 $f(x) - g(x) = x^3 + x + 1$
 $f(x) \times g(x) = x^5 + 3x^2 - 2x + 2$

注意: 定义在整数集上的多项式不支持除 法运算,整数集不是域

系数在模Zp中的多项式运算

- 系数是域F的元素时,构成多项式环(不构成整环,因为有可能有零因子)
- 系数是Zp的元素的多项式
- 最感兴趣的是mod 2
 - ▶所有系数是0或1

$$ightharpoonup$$
例如: $f(x) = x^3 + x^2$ 和 $g(x) = x^2 + x + 1$

$$f(x) + g(x) = x^3 + x + 1$$

$$f(x) \times g(x) = x^5 + x^2$$

多项式的因式

- 对于任何多项式:
 - > f(x) = q(x) g(x) + r(x)
 - ▶ r(x) 称为余式
 - $r(x) = f(x) \mod g(x)$
- 若没有余式,则称g(x)整除f(x)
- 不可约(既约)多项式,也叫素多项式。
- 用一个不可约多项式作为模,则可构成一个域(可以定义除法了)

多项式的最大公因式

- c(x) = GCD(a(x), b(x)),如果c(x) 是能够同时整除 a(x), b(x) 的多项式中次数最高的一个
- 欧几里得算法:

EUCLID[a(x), b(x)]

- **1.** A(x) = a(x); B(x) = b(x)
- **2.** if B(x) = 0 return A(x) = gcd[a(x), b(x)]
- **3.** $R(x) = A(x) \mod B(x)$
- **4.** A(x) "B(x)
- **5.** B(*x*) " R(*x*)
- **6. goto** 2

多项式模运算

- 在GF(2ⁿ)中
 - ▶系数是 mod 2 的多项式
 - ≻次数低于n
 - ▶可用n次素多项式去模约以降次
- 构成一个有限域
- 非零元总有逆元
 - ▶可用扩展的欧几里得算法计算

Example GF(23)

Table 4.6 Polynomial Arithmetic Modulo $(x^3 + x + 1)$

	+	000	001	010 x	$011 \\ x + 1$	100 x ²	$x^2 + 1$	$\frac{110}{x^2 + x}$	$x^2 + x + 1$
000	0	0	1	X	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
001	1	1	0	x + 1	X	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
010	X	x	x + 1	0	1	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$
011	x + 1	x + 1	x	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2
100	x^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	X	x+1
101	$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$	1	0	x + 1	X
110	$x^{2} + x$	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$	x	x + 1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2	x + 1	x	1	0

(a) Addition

	×	000	001 1	010 x	$\begin{array}{c} 011 \\ x + 1 \end{array}$	100 x ²	$x^2 + 1$	$110 \\ x^2 + x$	111 $x^2 + x + 1$
000	0	0	0	0	0	0	0	0	0
001	1	0	1	X	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010	X	0	x	x^2	$x^{2} + x$	x+1	1	$x^2 + x + 1$	$x^2 + 1$
011	x + 1	0	x + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	X
100	χ^2	0	x^2	x + 1	$x^2 + x + 1$	$x^2 + x$	x	$x^2 + 1$	1
101	$x^2 + 1$	0	$x^2 + 1$	1	x^2	x	$x^2 + x + 1$	x + 1	$x^2 + x$
110	$x^{2} + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	x + 1	х	x^2
111	$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	X	1	$x^2 + x$	χ^2	x+1

计算上的考虑

因为系数是0或1, 所以可以用一个比特串来表示任何多项式

• 加法: 比特串的逐位XOR

• 乘法:移位和XOR

例子: GF(2³)

- (X2+1) 表示为1012 , (X2+X+1) 表示为1112
- 加法
 - $(x^2+1) + (x^2+x+1) = x$
 - > 101 XOR 111 = 010₂
- 乘法
 - $(x+1).(x^2+1) = x.(x^2+1) + 1.(x^2+1)$ $= x^3+x+x^2+1 = x^3+x^2+x+1$
 - > 011.101 = (101)<<1 XOR (101)<<0 = 1010 XOR 101 = 1111₂
- 多项式模运算
 - \rightarrow (x^3+x^2+x+1) mod $(x^3+x+1) = 1.(x^3+x+1) + (x^2) = x^2$
 - > 1111 mod 1011 = 1111 XOR 1011 = 01002

生成元

- 有限域的一种定义
- 生成元g
 - ▶在域F中有0, g⁰, g¹, ..., g^{q-2}
- 用不可约多项式的根可以产生生成元
- 生成元的指数相加,就可定义乘法运算

本章小结

- 群、环和域的概念
- 整数的模运送
- 求最大公因数(式)的欧几里得算法
- 有限域 GF(p)
- 在GF(2ⁿ) 中的多项式运算