Data Management & Analysis Final Project

Replication and Extention for Acemoglu, Naidu, Restrepo and Robinson (2019)

(Name:) Shoya Abe (University ID:) 31B24001 (Name:) Honoka Ohtani (University ID:) 31B24002

(Submission Due:) 2025/02/06

Contents

	0.1	Setup		2
1	Abo	out this	s Report	2
	1.1	Projec	t Type	2
	1.2	Summ	ary of the Paper	2
		1.2.1	What the problem is	2
		1.2.2	Why it is important	2
		1.2.3	How you solve the problem	2
		1.2.4	What we find	2
	1.3	Data .		2
	1.4	Empir	ical Methods	3
		1.4.1	Event Study (Figure.1)	3
		1.4.2	Dynamic Liner Panel Model (Table.2)	3
2	Rep	olicatio	${f n}$	3
	2.1	Figure	.1	3
		2.1.1	Preprocessing	3
		2.1.2	Estimation	4
		2.1.3	Plot	5
	2.2	Table.	1	6
		2.2.1	Preprocessing	6
		2.2.2	Caliculation	7
		2.2.3	Tabulation	8
	2.3	Table.	2	9
			Preprocessing	9

3	\mathbf{Ext}	ention	15
	2.7	Table.5	15
	2.6	Table.4	15
	2.5	Table.3	15
	2.4	Figure.2	15
		2.3.3 Tabulation	14
		2.3.2 Estimation	9

0.1 Setup

```
pacman::p_load(
 rmdformats,
 knitr,
 tinytex,
 haven,
 tidyverse,
 kableExtra,
 plm,
  texreg
## Global options
options(max.print="75")
opts_chunk$set(fig.align="center",
               echo=TRUE,
               cache=TRUE,
               prompt=FALSE,
               tidy=FALSE,
               comment=NA,
               message=FALSE,
               warning=FALSE)
opts_knit$set(width=75)
```

1 About this Report

- 1.1 Project Type
- 1.2 Summary of the Paper
- 1.2.1 What the problem is
- 1.2.2 Why it is important
- 1.2.3 How you solve the problem
- 1.2.4 What we find
- 1.3 Data

```
Sample size (number of rows): 9384

Number of variables (columns): 1177

Variable names (first 10 names):

[1] "country_name" "wbcode"

[3] "year" "gdppercapitaconstant2000us"

[5] "lp_bl" "ls_bl"

[7] "lh_bl" "taxratio"

[9] "region" "wbcode2"
```

1.4 Empirical Methods

- 1.4.1 Event Study (Figure.1)
- 1.4.2 Dynamic Liner Panel Model (Table.2)

2 Replication

2.1 Figure.1

2.1.1 Preprocessing

```
data_f1 <- data %>%
  rename(id = "_ID") %>%
  group_by(id) %>%
  arrange(year) %>%
  mutate(
    prev_dem = dplyr::lag(dem, 1),
    transition = case_when(
      dem == 1 & prev_dem == 0 ~ 1,
      dem == 0 & prev_dem == 0 ~ 0,
      TRUE ~ NA_real_
    ),
    lag1 = dplyr::lag(y, 1),
    lag2 = dplyr::lag(y, 2),
   lag3 = dplyr::lag(y, 3),
    lag4 = dplyr::lag(y, 4)
  ) %>%
  filter(
    !is.na(lag1) &
     !is.na(lag2) &
      !is.na(lag3) &
      !is.na(lag4)
 ) %>%
```

```
ungroup()
for (t in -15:-2) {
  col_name <- paste0("gdpDiff_m", abs(t))</pre>
  data_f1 <- data_f1 %>%
    group_by(id) %>%
    arrange(year) %>%
    mutate(!!col_name := dplyr::lag(y, abs(t)) - lag1) %>%
    ungroup()
}
data_f1 <- data_f1 %>%
  mutate(
    gdpDiff_m1 = 0,
    gdpDiff_0 = y - lag1
for (t in 1:30) {
  col_name <- paste0("gdpDiff_p", t)</pre>
  data_f1 <- data_f1 %>%
    group_by(id) %>%
    arrange(year) %>%
    mutate(!!col_name := dplyr::lead(y, t) - lag1) %>%
    ungroup()
}
data_f1 <- data_f1 %>%
 filter(!is.na(transition))
```

2.1.2 Estimation

```
estimateATET <- function(outcome_col) {</pre>
  sub_data <- data_f1 %>%
    filter(
      !is.na(.data[[outcome_col]]),
      !is.na(transition)
  if (nrow(sub_data) == 0)
    return(NA)
  year_levels <- sort(unique(sub_data$year))</pre>
  sub_data <- sub_data %>%
    mutate(year_factor = factor(year, levels = year_levels))
  control_data <- sub_data %>%
    filter(transition == 0)
  treated_data <- sub_data %>%
    filter(transition == 1)
  if (nrow(control_data) < 2 ||</pre>
      length(unique(control_data$year)) < 2)</pre>
    return(NA)
```

```
model_formula <- as.formula(</pre>
    paste(outcome_col, "~ year_factor - 1")
  control_model <- tryCatch(</pre>
    lm(model_formula, data = control_data),
    error = function(e) NULL
  if (is.null(control_model))
    return(NA)
  predicted_outcomes <- tryCatch(</pre>
    predict(control_model, newdata = treated_data),
    error = function(e) rep(NA, nrow(treated_data))
  treatment_effects <- treated_data[[outcome_col]] - predicted_outcomes</pre>
  mean(treatment_effects, na.rm = TRUE)
relative_times \leftarrow c(seq(-15, -1), seq(0, 30))
atets <- numeric(length(relative_times))</pre>
for (i in seq_along(relative_times)) {
  t_val <- relative_times[i]</pre>
  if (t_val < 0) {</pre>
    col_name <- paste0("gdpDiff_m", abs(t_val))</pre>
  } else {
    col_name \leftarrow if (t_val == 0)
      "gdpDiff_0" else paste0("gdpDiff_p", t_val)
  }
  atets[i] <- estimateATET(col_name)</pre>
results_df <- data.frame(</pre>
  RelativeTime = relative times,
  ATET
        = atets
)
```

2.1.3 Plot

```
figure_1 <- ggplot(results_df, aes(x = RelativeTime, y = ATET)) +
  geom_line(color = "black") +
  scale_x_continuous(breaks = seq(-15, 30, 5)) +
  labs(
    x = "Years around Democratization",
    y = "Change in GDP per capita (log points)"
) +
  theme_bw()</pre>
```

```
ggsave("output/figure_1.pdf",
    width = 14,
    height = 8,
    units = "cm")
```


Figure 1: Event Study

2.2 Table.1

2.2.1 Preprocessing

```
var_info <- tibble(</pre>
  var = c(
    "gdppercapitaconstant2000us",
    "ginv",
    "tradewb",
    "prienr",
    "secenr",
    "taxratio",
    "mortnew",
    "unrestn",
    "marketref"
  ),
  label = c(
    "GDP per capita",
    "Investment share of GDP",
    "Trade share of GDP",
    "Primary-school enrollment rate",
    "Secondary-school enrollment rate",
    "Tax revenue share of GDP",
```

```
"Child mortality per 1,000 births",
    "Unrest rate",
    "Market reforms index (0-100)"
  )
)
calc_summary <- function(df, var, group_var) {</pre>
  df %>%
    filter(!is.na(.data[[var]])) %>%
    group_by({{ group_var }}) %>%
    summarise(
      Observations = n(),
      Mean
                  = mean(.data[[var]], na.rm = TRUE),
                  = sd(.data[[var]], na.rm = TRUE),
                  = "drop"
      .groups
    ) %>%
    mutate(Variable = var)
}
var_list <- var_info$var</pre>
```

2.2.2 Caliculation

```
summary_table <- lapply(</pre>
 var_list,
 function(x) calc_summary(data, x, dem)
) %>%
 bind_rows() %>%
 pivot_wider(
   names_from = dem,
   values_from = c(Observations, Mean, SD),
   names_glue = "{.value}_dem{dem}"
  ) %>%
 rename(
   Observations_Nondem = Observations_dem0,
   Mean_Nondem
                      = Mean_dem0,
   SD_Nondem
                       = SD_dem0,
   Observations_Dem = Observations_dem1,
   Mean_Dem
                       = Mean_dem1,
   SD_Dem
                       = SD_dem1
  ) %>%
 left_join(
   var_info,
   by = c("Variable" = "var")
  ) %>%
  select(
   label,
   Observations_Nondem,
   Mean_Nondem,
   SD_Nondem,
   Observations_Dem,
   Mean Dem,
```

```
SD_Dem
) %>%
rename(Variable = label)

colnames(summary_table) <- c(
   "Variable",
   "Observations",
   "Mean",
   "SD",
   "Observations",
   "Mean",
   "SD"
)</pre>
```

2.2.3 Tabulation

```
latex_table <- summary_table %>%
kbl(
    caption = "Summary Statistics by Democracy Status",
    format = "latex",
    booktabs = TRUE,
    digits = 2
) %>%
add_header_above(
    c(" " = 1, "Nondemocracies" = 3, "Democracies" = 3)
) %>%
kable_styling(
    latex_options = c("HOLD_position", "striped")
)
save_kable(latex_table, file = "output/table_1.tex")
```

Table 1: Summary Statistics by Democracy Status

	Nondemocracies			Democracies			
Variable	Observations	Mean	SD	Observations	Mean	SD	
GDP per capita	3376	2074.46	3838.65	3558	8149.97	9334.83	
Investment share of GDP	3225	21.82	10.23	3340	23.28	7.41	
Trade share of GDP	3175	71.63	51.06	3485	77.15	41.04	
Primary-school enrollment rate	2861	90.29	29.51	2823	101.60	15.86	
Secondary-school enrollment rate	2424	45.76	31.77	2538	75.40	29.78	
Tax revenue share of GDP	3122	0.16	0.09	2564	0.21	0.10	
Child mortality per 1,000 births	4142	77.29	49.64	3615	33.26	32.65	
Unrest rate	3739	28.70	45.24	3610	21.91	41.37	
Market reforms index $(0-100)$	3476	21.89	23.26	2829	52.11	24.75	

2.3 Table.2

2.3.1 Preprocessing

```
data_t2 <- data %>%
  select(1:30) %>%
  group_by(country_name) %>%
  arrange(year) %>%
  mutate(
    lag1 = dplyr::lag(y, 1),
    lag2 = dplyr::lag(y, 2),
    lag3 = dplyr::lag(y, 3),
    lag4 = dplyr::lag(y, 4),
    lag5 = dplyr::lag(y, 5),
    lag6 = dplyr::lag(y, 6),
    lag7 = dplyr::lag(y, 7),
    lag8 = dplyr::lag(y, 8)
) %>%
  ungroup()
```

2.3.2 Estimation

```
data_m1 <- data_t2 %>%
  drop_na(y, dem, lag1)
data_m1 <- pdata.frame(data_m1,</pre>
                        index = c("country_name", "year"))
model_1 <- plm(</pre>
  y \sim dem + lag1,
 data = data_m1,
 model = "within",
 effect = "twoways"
data_m2 <- data_t2 %>%
  drop_na(y, dem, lag1, lag2)
data_m2 <- pdata.frame(data_m2,</pre>
                        index = c("country_name", "year"))
model_2 <- plm(</pre>
 y ~ dem + lag1 + lag2,
 data = data_m2,
 model = "within",
  effect = "twoways"
data_m3 <- data_t2 %>%
 drop_na(y, dem, lag1, lag2, lag3, lag4)
data_m3 <- pdata.frame(data_m3,</pre>
                        index = c("country_name", "year"))
model_3 <- plm(</pre>
 y ~ dem + lag1 + lag2 + lag3 + lag4,
data = data_m3,
```

```
model = "within",
  effect = "twoways"
data_m4 <- data_t2 %>%
  drop_na(y, dem, lag1, lag2, lag3, lag4,
           lag5, lag6, lag7, lag8)
data_m4 <- pdata.frame(data_m4,</pre>
                         index = c("country_name", "year"))
model_4 <- plm(</pre>
  y ~ dem + lag1 + lag2 + lag3 + lag4 +
    lag5 + lag6 + lag7 + lag8,
  data = data_m4,
  model = "within",
  effect = "twoways"
beta_hat_1 <- coef(model_1)["dem"]</pre>
gamma_hat_1 <- coef(model_1)[c("lag1")]</pre>
long_run_effect_1 <- beta_hat_1 / (1 - sum(gamma_hat_1))</pre>
beta_hat_2 <- coef(model_2)["dem"]</pre>
gamma_hat_2 <- coef(model_2)[c("lag1", "lag2")]</pre>
long_run_effect_2 <- beta_hat_2 / (1 - sum(gamma_hat_2))</pre>
beta_hat_3 <- coef(model_3)["dem"]</pre>
gamma_hat_3 <- coef(model_3)[c("lag1", "lag2", "lag3", "lag4")]</pre>
long_run_effect_3 <- beta_hat_3 / (1 - sum(gamma_hat_3))</pre>
beta_hat_4 <- coef(model_4)["dem"]</pre>
gamma_hat_4 <- coef(model_4)[c("lag1", "lag2", "lag3",</pre>
                                  "lag4", "lag5", "lag6",
                                  "lag7", "lag8")]
long_run_effect_4 <- beta_hat_4 / (1 - sum(gamma_hat_4))</pre>
lre <- round(</pre>
  c(
    long_run_effect_1,
    long_run_effect_2,
    long_run_effect_3,
    long_run_effect_4
  ),
  3
)
print(lre)
   dem
           dem
                  dem
                          dem
35.587 19.599 21.240 22.008
pers1 <- sum(coef(model_1)[2])</pre>
pers2 <- sum(coef(model_2)[2:3])</pre>
pers3 <- sum(coef(model 3)[2:5])</pre>
pers4 <- sum(coef(model_4)[2:9])</pre>
```

```
pers <- round(</pre>
  c(pers1, pers2, pers3, pers4),
print(pers)
[1] 0.973 0.967 0.963 0.960
dem_shortrun <- coef(model_1)["dem"]</pre>
lag1_mod1 <- coef(model_1)[2]</pre>
effect1 <- dem_shortrun</pre>
effect2 <- (effect1 * lag1_mod1) + dem_shortrun</pre>
effects_mod1 <- c(effect1, effect2)</pre>
for (i in 3:30) {
  eff <- (effects_mod1[i-1] * lag1_mod1) + dem_shortrun</pre>
  effects_mod1 <- c(effects_mod1, eff)</pre>
eff_25_1 \leftarrow effects_mod1[25]
dem_shortrun <- coef(model_2)["dem"]</pre>
lag1_mod2 <- coef(model_2)[2]</pre>
lag2_mod2 <- coef(model_2)[3]</pre>
effect1 <- dem_shortrun</pre>
effect2 <- (effect1 * lag1_mod2) + dem_shortrun</pre>
effect3 <- (effect2 * lag1_mod2) +</pre>
  (effect1 * lag2_mod2) +
  dem_shortrun
effects_mod2 <- c(effect1, effect2, effect3)</pre>
for (i in 4:30) {
  eff <- (effects_mod2[i-1] * lag1_mod2) +
    (effects_mod2[i-2] * lag2_mod2) +
    dem shortrun
  effects_mod2 <- c(effects_mod2, eff)</pre>
eff_25_2 <- effects_mod2[25]</pre>
dem_shortrun <- coef(model_3)["dem"]</pre>
lag1_mod3 <- coef(model_3)[2]</pre>
lag2_mod3 <- coef(model_3)[3]</pre>
lag3_mod3 <- coef(model_3)[4]</pre>
lag4_mod3 <- coef(model_3)[5]</pre>
effect1 <- dem_shortrun</pre>
effect2 <- (effect1 * lag1_mod3) + dem_shortrun</pre>
effect3 <- (effect2 * lag1_mod3) +
  (effect1 * lag2_mod3) +
  dem_shortrun
effect4 <- (effect3 * lag1_mod3) +
  (effect2 * lag2_mod3) +
  (effect1 * lag3_mod3) +
  dem_shortrun
effects_mod3 <- c(effect1, effect2, effect3, effect4)</pre>
```

```
for (i in 5:30) {
  eff <- (effects_mod3[i-1] * lag1_mod3) +</pre>
    (effects_mod3[i-2] * lag2_mod3) +
    (effects mod3[i-3] * lag3 mod3) +
    (effects_mod3[i-4] * lag4_mod3) +
    dem shortrun
  effects_mod3 <- c(effects_mod3, eff)</pre>
eff_25_3 <- effects_mod3[25]</pre>
dem_shortrun <- coef(model_4)["dem"]</pre>
lag1_mod4 <- coef(model_4)[2]</pre>
lag2_mod4 <- coef(model_4)[3]</pre>
lag3_mod4 <- coef(model_4)[4]</pre>
lag4_mod4 <- coef(model_4)[5]</pre>
lag5_mod4 <- coef(model_4)[6]</pre>
lag6_mod4 <- coef(model_4)[7]</pre>
lag7_mod4 <- coef(model_4)[8]</pre>
lag8_mod4 <- coef(model_4)[9]</pre>
effect1 <- dem_shortrun</pre>
effect2 <- (effect1 * lag1_mod4) + dem_shortrun</pre>
effect3 <- (effect2 * lag1_mod4) +</pre>
  (effect1 * lag2_mod4) +
  dem_shortrun
effect4 <- (effect3 * lag1_mod4) +
  (effect2 * lag2_mod4) +
  (effect1 * lag3_mod4) +
  dem_shortrun
effect5 <- (effect4 * lag1_mod4) +</pre>
  (effect3 * lag2_mod4) +
  (effect2 * lag3_mod4) +
  (effect1 * lag4_mod4) +
  dem_shortrun
effect6 <- (effect5 * lag1_mod4) +
  (effect4 * lag2_mod4) +
  (effect3 * lag3_mod4) +
  (effect2 * lag4_mod4) +
  (effect1 * lag5_mod4) +
  dem_shortrun
effect7 <- (effect6 * lag1_mod4) +
  (effect5 * lag2_mod4) +
  (effect4 * lag3_mod4) +
  (effect3 * lag4_mod4) +
  (effect2 * lag5_mod4) +
  (effect1 * lag6_mod4) +
  dem_shortrun
effect8 <- (effect7 * lag1_mod4) +
  (effect6 * lag2_mod4) +
  (effect5 * lag3_mod4) +
  (effect4 * lag4_mod4) +
  (effect3 * lag5_mod4) +
  (effect2 * lag6_mod4) +
  (effect1 * lag7_mod4) +
```

```
dem_shortrun
effects_mod4 <- c(effect1, effect2, effect3, effect4,</pre>
                   effect5, effect6, effect7, effect8)
for (i in 9:30) {
  eff <- (effects_mod4[i-1] * lag1_mod4) +
    (effects_mod4[i-2] * lag2_mod4) +
    (effects_mod4[i-3] * lag3_mod4) +
    (effects_mod4[i-4] * lag4_mod4) +
    (effects_mod4[i-5] * lag5_mod4) +
    (effects_mod4[i-6] * lag6_mod4) +
    (effects_mod4[i-7] * lag7_mod4) +
    (effects_mod4[i-8] * lag8_mod4) +
    dem_shortrun
  effects_mod4 <- c(effects_mod4, eff)</pre>
eff_25_4 \leftarrow effects_mod4[25]
eff_25 <- round(
  c(eff_25_1, eff_25_2, eff_25_3, eff_25_4),
print(eff_25)
          dem
                  dem
   dem
                         dem
17.791 13.800 16.895 17.715
se1 <- sqrt(diag(vcov(model_1)))</pre>
se2 <- sqrt(diag(vcov(model_2)))</pre>
se3 <- sqrt(diag(vcov(model_3)))</pre>
se4 <- sqrt(diag(vcov(model_4)))</pre>
override.coef.1 <- c(</pre>
  coef(model_1)["dem"],
  coef(model_1)["lag1"],
  NA, NA, NA, NA, NA, NA
override.se.1 <- c(
  se1["dem"],
  se1["lag1"],
  NA, NA, NA, NA, NA, NA
override.coef.2 <- c(</pre>
  coef(model_2)["dem"],
  coef(model_2)["lag1"],
  coef(model_2)["lag2"],
  NA, NA, NA, NA, NA
override.se.2 <- c(
  se2["dem"],
  se2["lag1"],
  se2["lag2"],
```

```
NA, NA, NA, NA, NA, NA
override.coef.3 <- c(</pre>
  coef(model_3)["dem"],
  coef(model_3)["lag1"],
  coef(model_3)["lag2"],
  coef(model_3)["lag3"],
  coef(model_3)["lag4"],
  NA, NA, NA, NA
override.se.3 <- c(
  se3["dem"],
  se3["lag1"],
  se3["lag2"],
  se3["lag3"],
  se3["lag4"],
 NA, NA, NA, NA
override.coef.4 <- c(</pre>
  coef(model 4)["dem"],
  coef(model_4)["lag1"],
  coef(model_4)["lag2"],
  coef(model_4)["lag3"],
  coef(model_4)["lag4"],
  coef(model_4)["lag5"],
  coef(model_4)["lag6"],
  coef(model_4)["lag7"],
  coef(model_4)["lag8"]
override.se.4 <- c(
  se4["dem"],
  se4["lag1"],
  se4["lag2"],
  se4["lag3"],
  se4["lag4"],
  se4["lag5"],
  se4["lag6"],
  se4["lag7"],
  se4["lag8"]
)
```

2.3.3 Tabulation

```
models <- list(model_1, model_2, model_3, model_4)

texreg(
  models,
  override.coef = list(
    override.coef.1,
    override.coef.2,</pre>
```

```
override.coef.3,
 override.coef.4
override.se = list(
 override.se.1,
 override.se.2,
 override.se.3,
 override.se.4
),
custom.model.names = c(
"(1)", "(2)", "(3)", "(4)"
custom.coef.names = c(
 "Democracy", "Lag 1", "Lag 2",
 "Lag 3", "Lag 4", "Lag 5",
 "Lag 6", "Lag 7", "Lag 8"
custom.gof.rows = list(
 "Persistence"
                       = pers,
 "Long run effect" = lre,
 "Effect after 25 years" = eff_25
file = "output/table_2_FE.tex",
caption = "Effect of Democracy on (Log) GDP per Capita"
```

- 2.4 Figure.2
- 2.5 Table.3
- 2.6 Table.4
- 2.7 Table.5
- 3 Extention

	(1)	(2)	(3)	(4)
Democracy	0.97***	0.65**	0.79***	0.89***
	(0.24)	(0.23)	(0.23)	(0.24)
Lag 1	0.97***	1.27^{***}	1.24***	1.23***
	(0.00)	(0.01)	(0.01)	(0.01)
Lag 2		-0.30***	-0.21***	-0.21***
		(0.01)	(0.02)	(0.02)
Lag 3			-0.03	-0.02
			(0.02)	(0.02)
Lag 4			-0.04***	-0.04
			(0.01)	(0.02)
Lag 5				-0.02
				(0.02)
Lag 6				0.01
				(0.02)
Lag 7				0.02
				(0.02)
Lag 8				-0.01
				(0.01)
Persistence	0.97	0.97	0.96	0.96
Long run effect	35.59	19.60	21.24	22.01
Effect after 25 years	17.79	13.80	16.90	17.72
\mathbb{R}^2	0.96	0.96	0.96	0.96
$Adj. R^2$	0.96	0.96	0.96	0.96
Num. obs.	6790	6642	6336	5688

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 2: Effect of Democracy on (Log) GDP per Capita

	(1)	(2)	(3)	(4)
Democracy	2.79	$\frac{(2)}{2.29}$	$\frac{(3)}{0.05}$	1.51
Democracy	(2.12)	(1.63)	(1.42)	(0.51)
Lag 1	0.96***	0.99***	0.94^{***}	0.93***
Lag 1	(0.03)	(0.03)	(0.03)	(0.01)
Lag 2	(0.03)	-0.02	-0.00	-0.01
Lag 2		-0.02 (0.01)	-0.00 (0.01)	-0.01 (0.00)
Lag 3		(0.01)	0.00	0.00
Lag 5			(0.01)	(0.00)
Lag 4			-0.02^*	-0.01
Lag 4			-0.02 (0.01)	-0.01 (0.00)
Log 5			(0.01)	-0.00
Lag 5				-0.00 (0.00)
Log 6				0.00
Lag 6				(0.00)
Lag 7				-0.00
Lag				-0.00 (0.00)
Lag 8				-0.00
Lag 8				(0.00)
Persistence	0.96	0.97	0.92	0.91
Long run effect	63.18	74.26	0.65	16.40
Effect after 25 years	42.76	40.77	0.59	15.27
n	175	175	175	175
T	50	49	47	43
Num. obs.	6790	6642	6336	5688
Num. obs. used	6542	6311	5824	4779
Sargan Test: chisq	145.66	147.27	140.10	146.09
Sargan Test: df	2398.00	2297.00	2095.00	1691.00
Sargan Test: p-value	1.00	1.00	1.00	1.00
Wald Test Coefficients: chisq	808.19	984.51	1143.95	2227.71
Wald Test Coefficients: df	2	3	5	9
Wald Test Coefficients: p-value	0.00	0.00	0.00	0.00
Wald Test Time Dummies: chisq	533.24	491.67	497.42	453.37
Wald Test Time Dummies: df	48	46	42	34
Wald Test Time Dummies: p-value	0.00	0.00	0.00	0.00
*** n < 0.001 · ** n < 0.01 · * n < 0.05				

***p < 0.001; **p < 0.01; *p < 0.05

Table 3: Effect of Democracy on (Log) GDP per Capita: Arellano–Bond GMM Estimation