Статистические методы обучения по прецедентам

K.B.Воронцов vokov@forecsys.ru

Полный курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

26 сентября, 3 октября 2012

Содержание

- 1 Статистические (байесовские) методы классификации
 - Оптимальный байесовский классификатор
 - Непараметрические оценки плотности распределения
 - Параметрические оценки плотности распределения
- 2 Линейные методы классификации
 - Линейный классификатор
 - Логистическая регрессия
 - Метод опорных векторов
- Методы кластеризации и тематическое моделирование
 - ЕМ-алгоритм для байесовской классификации
 - ЕМ-алгоритм для кластеризации. Метод k-средних
 - ЕМ-алгоритм для тематического моделирования

Параметрические оценки плотности распределения

Задача обучения по прецедентам

- X множество объектов;
- Y множество *ответов*;
- $y^*: X \to Y$ неизвестная зависимость (target function).

Дано:

$$\{x_1,\ldots,x_\ell\}\subset X$$
 — обучающая выборка (training sample); $y_i=y^*(x_i),\ i=1,\ldots,\ell$ — известные ответы.

Найти:

 $a: X \to Y$ — алгоритм, решающую функцию (decision function), приближающую y^* на всём множестве X.

- ullet $Y = \{1, \ldots, M\}$ задача *классификации* на M классов.
- ullet $Y=\mathbb{R}$ задача восстановления регрессии.
- Y конечное упорядоченное множество задача ранговой регрессии или ранжирования.

«Данные» в задачах обучения по прецедентам

$$f_i \colon X o D_i, \ j=1,\ldots,n$$
 — признаки объектов.

Типы признаков:

- $D_i = \{0,1\}$ бинарный признак f_i ;
- $|D_i|$ < ∞ номинальный признак f_i ;
- ullet $|D_i| < \infty$, D_i упорядочено порядковый признак f_i ;
- ullet $D_i = \mathbb{R}$ количественный признак f_i .

Вектор $(f_1(x), \ldots, f_n(x))$ — признаковое описание объекта x.

Данные — матрица «объекты-признаки» и вектор ответов

$$F = \|f_j(x_i)\|_{\ell \times n} = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_\ell) & \dots & f_n(x_\ell) \end{pmatrix}, \quad y = \|y_i\|_{\ell \times 1} = \begin{pmatrix} y_1 \\ \dots \\ y_\ell \end{pmatrix}.$$

Вероятностная постановка задачи классификации

X — объекты, Y — ответы, $|Y| < \infty$;

 $X \times Y$ — вероятностное пространство с плотностью p(x, y);

Дано:

$$X^{\ell} = (x_i, y_i)_{i=1}^{\ell}$$
 — простая выборка из $p(x, y)$;

Найти:

классификатор $a\colon X\to Y$ с минимальной вероятностью ошибки.

Временное допущение: пусть известна совместная плотность

$$p(x, y) = p(x) P(y|x) = P(y)p(x|y).$$

 $P(y) \equiv P_y$ — априорная вероятность класса y;

 $p(x|y) \equiv p_y(x) - \phi$ ункция правдоподобия класса y;

P(y|x) — апостериорная вероятность класса y;

Байесовский классификатор:

$$a(x) = \arg \max_{y \in Y} P(y|x) = \arg \max_{y \in Y} P_y p_y(x).$$

Итак, есть две подзадачи, причём вторую мы уже решили!

1 Дано:

$$X^\ell = (x_i, y_i)_{i=1}^\ell$$
 — обучающая выборка.

Найти:

эмпирические оценки \hat{P}_y и $\hat{p}_y(x)$, $y \in Y$ (восстановить плотность распределения по выборке).

Дано:

априорные вероятности P_y , функции правдоподобия $p_y(x)$, $y \in Y$.

Найти:

классификатор $a: X \times Y$, минимизирующий вероятность ошибочной классификации.

Ехидное замечание: Когда вместо P_y и $p_y(x)$ подставляются их эмпирические оценки, байесовский классификатор перестаёт быть оптимальным.

Параметрические оценки плотности распределения

Задачи эмпирического оценивания

• Оценивание априорных вероятностей частотами

$$\hat{P}_y = \frac{\ell_y}{\ell}, \quad \ell_y = |X_y|, \quad X_y = \{x_i \in X \colon y_i = y\}, \quad y \in Y.$$

 Оценивание функций правдоподобия: Дано:

$$X^m = \{x_1, \dots, x_m\}$$
 — простая выборка (X_y) без ответов y_i).

Найти:

эмпирическую оценку плотности $\hat{p}(x)$, аппроксимирующую истинную плотность p(x) на всём X:

$$\hat{p}(x) \to p(x)$$
 при $m \to \infty$.

Оценка плотности Парзена-Розенблатта

Если на X задана функция расстояния $\rho(x,x')$:

$$\hat{p}_{y,h}(x) = \frac{1}{\ell_y V(h)} \sum_{i: y_i = y} K\left(\frac{\rho(x, x_i)}{h}\right),$$

где h — ширина окна;

K(r) - ядро, невозрастающая неотрицательная функция;

$$V(h) = \int_X K\left(rac{
ho({\sf x},{\sf x}_i)}{h}
ight) d{\sf x}$$
 — нормирующий множитель,

Метод парзеновского окна (Parzen window):

$$a(x; X^{\ell}, h) = \arg\max_{y \in Y} \frac{P_y}{\ell_y} \sum_{i: y := y} K\left(\frac{\rho(x, x_i)}{h}\right).$$

Чтобы V(h) сократился, он не должен зависеть от x_i и y.

Обоснование оценки Парзена-Розенблатта

$oxed{\mathsf{Teopema}}$ (одномерный случай, $X=\mathbb{R}$)

Пусть выполнены следующие условия:

- 1) X^m простая выборка из распределения p(x);
- 2) ядро K(z) непрерывно и ограничено: $\int_X K^2(z) dz < \infty$;
- 3) последовательность h_m : $\lim_{m \to \infty} h_m = 0$ и $\lim_{m \to \infty} m h_m = \infty$.

Тогда:

- 1) $\hat{p}_{h_m}(x) \to p(x)$ при $m \to \infty$ для почти всех $x \in X$;
- 2) скорость сходимости имеет порядок $O(m^{-2/5})$.

Выбор метрики, ядра, ширины окна

ullet Один из вариантов ho — взвешенная метрика Минковского:

$$\rho(x,x') = \left(\sum_{j=1}^{n} w_{j} |f_{j}(x) - f_{j}(x')|^{p}\right)^{\frac{1}{p}},$$

где w_i — неотрицательные веса признаков, p > 0.

- Ядро K(r) влияет на гладкость границы.
- Ширина окна *h* влияет на качество классификации.

Часто используемые ядра

$$E(r)=rac{3}{4}(1-r^2)ig[|r|\leqslant 1ig]$$
 — оптимальное (Епанечникова); $Q(r)=rac{15}{16}(1-r^2)^2ig[|r|\leqslant 1ig]$ — квартическое; $T(r)=ig(1-|r|ig)ig[|r|\leqslant 1ig]$ — треугольное; $G(r)=(2\pi)^{-1/2}\exp(-rac{1}{2}r^2)$ — гауссовское; $\Pi(r)=rac{1}{2}ig[|r|\leqslant 1ig]$ — прямоугольное.

Выбор ширины окна

Скользящий контроль Leave One Out:

$$LOO(h, X^{\ell}) = \sum_{i=1}^{\ell} \left[a(x_i; X^{\ell} \backslash x_i, h) \neq y_i \right] \to \min_h,$$

Типичный вид зависимости LOO от h:

Окна переменной ширины (метод k ближайших соседей)

Проблема: при наличии локальных сгущений плотности p(x) любое значение ширины окна h не оптимальна.

Идея: задавать не ширину окна h, а число соседей k:

$$h(x) = \rho(x, x^{(k+1)}),$$

где $x^{(i)}-i$ -й сосед объекта x при ранжировании выборки X^ℓ :

$$\rho(x, x^{(1)}) \leqslant \cdots \leqslant \rho(x, x^{(\ell)})$$

Замечание 1:

нормировка V(k) не должна зависеть от y, поэтому выборка ранжируется целиком, а не по классам X_v .

Замечание 2:

Оптимизация k по LOO аналогична оптимизации h.

Замечание 3:

При $K(r) = \Pi(r)$ это обычный метод kNN.

Принцип максимума правдоподобия

Пусть известна параметрическая модель плотности

$$p(x) = \varphi(x; \theta),$$

где θ — параметр, φ — фиксированная функция.

3адача — найти оптимальное θ по простой выборке X^m .

Принцип максимума правдоподобия:

$$L(\theta; X^m) = \sum_{i=1}^m \ln \varphi(x_i; \theta) \to \max_{\theta}.$$

Необходимое условие оптимума:

$$\frac{\partial}{\partial \theta} L(\theta; X^m) = \sum_{i=1}^m \frac{\partial}{\partial \theta} \ln \varphi(x_i; \theta) = 0,$$

где функция $\varphi(x;\theta)$ достаточно гладкая по параметру θ .

Многомерное нормальное распределение

Пусть $X=\mathbb{R}^n$ — объекты описываются n числовыми признаками.

Гипотеза: классы имеют n-мерные гауссовские плотности:

$$p_y(x) = \mathcal{N}(x; \mu_y, \Sigma_y) = \frac{\exp\left(-\frac{1}{2}(x - \mu_y)^\mathsf{T} \Sigma_y^{-1}(x - \mu_y)\right)}{\sqrt{(2\pi)^n \det \Sigma_y}}, \quad y \in Y,$$

где $\mu_y \in \mathbb{R}^n$ — вектор матожидания (центр) класса $y \in Y$, $\Sigma_y \in \mathbb{R}^{n \times n}$ — ковариационная матрица класса $y \in Y$ (симметричная, невырожденная, положительно определённая).

Теорема

- 1. Разделяющая поверхность $\{x \in X \mid P_y p_y(x) = P_s p_s(x)\}$ квадратична для всех $y, s \in Y, \ y \neq s$.
- 2. Если $\Sigma_v = \Sigma_s$, то она вырождается в линейную.

Линейный дискриминант Фишера

Допущение:

ковариационные матрицы классов равны: $\Sigma_v = \Sigma$, $y \in Y$.

Оценки максимума правдоподобия параметров Σ , μ_{ν} :

$$\hat{\mu}_{y} = \frac{1}{\ell_{y}} \sum_{i: \, y_{i} = y} x_{i}; \quad \hat{\Sigma} = \frac{1}{\ell} \sum_{i=1}^{\ell} (x_{i} - \hat{\mu}_{y_{i}}) (x_{i} - \hat{\mu}_{y_{i}})^{\mathsf{T}},$$

Линейный дискриминант (подстановочный алгоритм):

$$\begin{split} a(x) &= \arg\max_{y \in Y} \; \hat{P}_y \hat{p}_y(x) = \\ &= \arg\max_{y \in Y} \; \Big(\underbrace{\ln \hat{P}_y - \frac{1}{2} \hat{\mu}_y^\mathsf{T} \hat{\Sigma}^{-1} \hat{\mu}_y}_{\beta_y} + x^\mathsf{T} \underbrace{\hat{\Sigma}^{-1} \hat{\mu}_y}_{\alpha_y} \Big) = \\ &= \arg\max_{y \in Y} \; \Big(x^\mathsf{T} \alpha_y + \beta_y \Big). \end{split}$$

Наивный байесовский классификатор

Допущение (в самом деле наивное):

Признаки $f_j: X \to D_j$ — независимые случайные величины с плотностями распределения, $p_{v,j}(\xi)$, $y \in Y$, $j = 1, \ldots, n$.

Тогда функции правдоподобия классов представимы в виде произведения одномерных плотностей по признакам:

$$p_{y}(x) = p_{y,1}(\xi_1) \cdots p_{y,n}(\xi_n), \quad x = (\xi_1, \dots, \xi_n), \quad y \in Y.$$

Прологарифмируем (для удобства). Получим классификатор

$$a(x) = \arg\max_{y \in Y} \left(\ln \hat{P}_y + \sum_{j=1}^n \ln \hat{p}_{yj}(\xi_j) \right).$$

Восстановление n одномерных плотностей

— намного более простая задача, чем одной *п*-мерной.

Диагонализация ковариационной матрицы

Идея: пусть признаки некоррелированы: $\sigma_{ij} = 0$, $i \neq j$.

Замечание: для нормального распределения некоррелированность \iff независимость

Получаем наивный байесовский классификатор:

$$\hat{p}_{yj}(\xi) = \frac{1}{\sqrt{2\pi}\hat{\sigma}_{yj}} \exp\left(-\frac{(\xi - \hat{\mu}_{yj})^2}{2\hat{\sigma}_{yj}^2}\right), \quad y \in Y, \quad j = 1, \dots, n;$$

$$a(x) = \arg\max_{y \in Y} \left(\ln \hat{P}_y - \sum_{j=1}^n \ln \hat{\sigma}_{yj} - \sum_{j=1}^n \frac{(\xi_j - \hat{\mu}_{yj})^2}{2\hat{\sigma}_{yj}^2}\right);$$

где $x \equiv (\xi_1, \dots, \xi_n)$; $\hat{\mu}_{yj}$ и $\hat{\sigma}_{yj}$ — оценки среднего и дисперсии j-го признака, вычисленные по X_y — подвыборке класса y.

Задачи, в которых Naïve Bayes иногда неплохо работает

- распознавание спама;
- классификация текстов;
- категоризация текстов;

В этих задачах признаки $f_i(x)$ документа x — это слова:

- $f_j(x) = [$ слово j входит в текст x];
- $f_i(x) = n_{xi}$ число вхождений слова j в текст x;
- $f_i(x) = \text{TF-IDF}(x, j)$

Обычно используется предварительный отсев признаков, слабо коррелирующих с вектором ответов y.

$\mathsf{TF}\mathsf{-}\mathsf{IDF}(d,w)$ — мера релевантности слова w документу d

 n_{dw} (term frequency) — число вхождений слова w в текст d; N_w (document frequency) — число документов, содержащих w; N — число документов в коллекции;

 N_w/N — оценка вероятности встретить слово w в документе; $(N_w/N)^{n_{dw}}$ — оценка вероятности встретить его n_{dw} раз;

$$Q=\{w_1,\ldots,w_k\}$$
 — запрос;

$$P(Q,d) = \prod_{w \in Q} (N_w/N)^{n_{dw}}$$
 — оценка вероятности встретить

в документе d слова запроса Q чисто случайно;

оценка релевантности запроса Q документу d:

$$-\log P(Q,d) = \sum_{w \in Q} \underbrace{n_{dw}}_{TF} \underbrace{\log(N/N_w)}_{IDF} \rightarrow \max.$$

TF-IDF
$$(d, w) = n_{dw} \log(N/N_w)$$
, IDF — inverted document frequency.

Задача построения разделяющей поверхности

- Задача классификации с двумя классами, $Y = \{-1, +1\}$: по обучающей выборке $X^{\ell} = (x_i, y_i)_{i=1}^{\ell}$ построить алгоритм классификации a(x, w) = sign f(x, w), где f(x, w) -дискриминантная функция, w -вектор параметров.
- f(x,w) = 0 разделяющая поверхность; $M_i(w) = y_i f(x_i,w) \mathit{отступ}$ (margin) объекта x_i ; $M_i(w) < 0 \iff$ алгоритм a(x,w) ошибается на x_i .
- Минимизация эмпирического риска:

$$Q(w) = \sum_{i=1}^{\ell} \left[M_i(w) < 0 \right] \leqslant \widetilde{Q}(w) = \sum_{i=1}^{\ell} \mathscr{L}(M_i(w)) \to \min_{w};$$

 ϕ ункция потерь $\mathscr{L}(M)$ невозрастающая, неотрицательная.

Непрерывные аппроксимации пороговой функции потерь

Связь с принципом максимума правдоподобия

Пусть $X \times Y$ — в.п. с плотностью p(x,y|w). Пусть X^{ℓ} — простая выборка (i.i.d.)

• Максимизация правдоподобия:

$$L(w; X^{\ell}) = \ln \prod_{i=1}^{\ell} p(x_i, y_i | w) = \sum_{i=1}^{\ell} \ln p(x_i, y_i | w) \rightarrow \max_{w}.$$

• Минимизация аппроксимированного эмпирического риска:

$$\widetilde{Q}(w; X^{\ell}) = \sum_{i=1}^{\ell} \mathscr{L}(y_i f(x_i, w)) \to \min_{w};$$

• Эти два принципа эквивалентны, если положить

$$-\ln p(x_i,y_i|w) = \mathcal{L}(y_i f(x_i,w)).$$

модель $p \rightleftarrows$ модель f и функция потерь $\mathscr L$.

Линейный классификатор

 $f_j \colon X \to \mathbb{R}, \ j = 1, \dots, n$ — числовые признаки; Линейный алгоритм классификации:

$$a(x,w) = \operatorname{sign}\left(\sum_{j=1}^{n} w_j f_j(x) - w_0\right),\,$$

где $w_0, w_1, \ldots, w_n \in \mathbb{R}$ — коэффициенты (веса признаков); Введём константный признак $f_0 \equiv -1$.

Векторная запись:

$$a(x, w) = sign(\langle w, x \rangle).$$

Отступы объектов x_i :

$$M_i(w) = \langle w, x_i \rangle y_i$$

Похож ли нейрон на линейный классификатор?

Математическая модель нейрона

Линейная модель нейрона МакКаллока-Питтса [1943]:

$$a(x, w) = \sigma(\langle w, x \rangle) = \sigma\left(\sum_{j=1}^{n} w_j f_j(x) - w_0\right),$$

где $\sigma(s)$ — функция активации (в частности, sign).

Градиентный метод численной минимизации

Минимизация аппроксимированного эмпирического риска:

$$Q(w;X^{\ell}) = \sum_{i=1}^{\ell} \mathscr{L}(\langle w, x_i \rangle y_i) \to \min_{w}.$$

Численная минимизация методом градиентного спуска:

 $w^{(0)} :=$ начальное приближение;

$$w^{(t+1)} := w^{(t)} - \eta \cdot \nabla Q(w^{(t)}), \qquad \nabla Q(w) = \left(\frac{\partial Q(w)}{\partial w_j}\right)_{j=0}^n,$$

где η — градиентный шаг, называемый также темпом обучения.

$$w^{(t+1)} := w^{(t)} - \eta \sum_{i=1}^{\ell} \mathcal{L}'(\langle w^{(t)}, x_i \rangle y_i) x_i y_i.$$

Идея ускорения сходимости: брать (x_i, y_i) по одному и сразу обновлять вектор весов.

Алгоритм SG (Stochastic Gradient)

Вход:

выборка X^{ℓ} ; темп обучения η ; параметр λ ;

Выход:

веса w_0, w_1, \ldots, w_n ;

- 1: инициализировать веса w_i , j = 0, ..., n;
- 2: инициализировать текущую оценку функционала:

$$Q := \sum_{i=1}^{\ell} \mathscr{L}(\langle w, x_i \rangle y_i);$$

- 3: повторять
- 4: выбрать объект x_i из X^{ℓ} (например, случайно);
- 5: вычислить потерю: $\varepsilon_i := \mathcal{L}(\langle w, x_i \rangle y_i)$;
- 6: градиентный шаг: $w := w \eta \mathcal{L}'(\langle w, x_i \rangle y_i) x_i y_i;$
- 7: оценить значение функционала: $Q := (1 \lambda)Q + \lambda \varepsilon_i$;
- 8: **пока** значение Q и/или веса w не стабилизируются;

Логистическая регрессия: базовые предположения

- ullet $X=\mathbb{R}^n$, $Y=\pm 1$, выборка $X^\ell=(x_i,y_i)_{i=1}^\ell$ i.i.d. из $p(x,y)=P_vp_v(x)=\mathsf{P}(y|x)p(x)$
- ullet Функции правдоподобия $p_y(x)$ экспонентные:

$$p_y(x) = \expig(c_y(\delta)\langle heta_y, x
angle + b_y(\delta, heta_y) + d(x, \delta)ig),$$
 где $heta_y \in \mathbb{R}^n$ — параметр *сдвига*; δ — параметр *разброса*; b_y, c_y, d — произвольные числовые функции; причём параметры $d(\cdot)$ и δ не зависят от y .

Класс экспонентных распределений очень широк: равномерное, нормальное, гипергеометрическое, пуассоновское, биномиальное, Г-распределение, и др.

Пример: гауссовская плотность — экспонентная

Многомерное нормальное распределение, $\mu \in \mathbb{R}^n$, $\Sigma \in \mathbb{R}^{n \times n}$, является экспонентным:

параметр сдвига $\theta = \Sigma^{-1}\mu$; параметр разброса $\delta = \Sigma$.

$$\mathcal{N}(x; \mu, \Sigma) = (2\pi)^{-\frac{n}{2}} |\Sigma|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x - \mu)^{\mathsf{T}} \Sigma^{-1}(x - \mu)\right) =$$

$$= \exp\left(\underbrace{\mu^{\mathsf{T}} \Sigma^{-1} x}_{\langle \theta, x \rangle} - \underbrace{\frac{1}{2} \mu^{\mathsf{T}} \Sigma^{-1} \Sigma \Sigma^{-1} \mu}_{b(\delta, \theta)} - \underbrace{\frac{1}{2} x^{\mathsf{T}} \Sigma^{-1} x - \frac{n}{2} \ln(2\pi) - \frac{1}{2} \ln|\Sigma|}_{d(x, \delta)}\right).$$

Основная теорема

Оптимальный байесовский классификатор для двух классов:

$$\mathsf{a}(x) = \mathsf{sign}\big(\mathsf{P}(+1|x) - \mathsf{P}(-1|x)\big) = \mathsf{sign}\left(\frac{p_+(x)}{p_-(x)} - \frac{P_-}{P_+}\right).$$

Теорема

Если p_y экспонентны, параметры $d(\cdot)$ и δ не зависят от y, и среди признаков $f_1(x), \ldots, f_n(x)$ есть константа, то байесовский классификатор линеен:

$$a(x) = \operatorname{sign}\langle w, x \rangle,$$

апостериорные вероятности классов:

$$P(y|x) = \sigma(\langle w, x \rangle y),$$

где $\sigma(z)=rac{1}{1+e^{-z}}$ — логистическая (сигмоидная) функция.

Обоснование логарифмической функции потерь

Максимизация логарифма правдоподобия выборки:

$$L(w, X^{\ell}) = \log \prod_{i=1}^{\ell} p(x_i, y_i) \rightarrow \max_{w}.$$

Подставим: $p(x,y) = P(y|x) \cdot p(x) = \sigma(\langle w, x \rangle y) \cdot \mathsf{const}(w)$

$$L(w, X^{\ell}) = \sum_{i=1}^{\ell} \log \sigma(\langle w, x_i \rangle y_i) + \operatorname{const}(w) \to \max_{w}.$$

Максимизация L(w) эквивалентна минимизации $\widetilde{Q}(w)$:

$$\widetilde{Q}(w,X^{\ell}) = \sum_{i=1}^{\ell} \log (1 + \exp(-\underbrace{\langle w, x_i \rangle y_i}_{M_i(w)})) o \min_{w}.$$

Логарифмическая функция потерь

Логарифмическая функция потерь $\mathscr{L}(M_i) = \log_2(1 + e^{-M_i})$:

Градиентный метод

Производная сигмоидной функции: $\sigma'(z)=\sigma(z)\sigma(-z)$. Вектор градиента функционала $\widetilde{Q}(w)$:

$$\nabla \widetilde{Q}(w) = -\sum_{i=1}^{\ell} y_i x_i \sigma(-\langle w, x_i \rangle y_i).$$

Градиентный шаг в методе стохастического градиента:

$$w := w + \eta y_i x_i \sigma(-\langle w, x_i \rangle y_i),$$

где (x_i, y_i) — предъявляемый прецедент, η — темп обучения.

Интерпретация:

чем меньше отступ, тем сильнее надо изменить w.

Бинаризация признаков и скоринговая карта

Возраст	до 25	5
	25 - 40	10
	40 - 50	15
	50 и больше	10
Собственность	владелец	20
	совладелец	15
	съемщик	10
	другое	5
Работа	руководитель	15
	менеджер среднего звена	10
	служащий	5
	другое	0
Стаж	1/безработный	0
	13	5
	310	10
	10 и больше	15
Работа_мужа /жены	нет/домохозяйка	0
	руководитель	10
	менеджер среднего звена	5
	служащий	1

Оценивание рисков

Оценка риска (математического ожидания) потерь объекта x:

$$R(x) = \sum_{y \in Y} D_{xy} P(y|x) = \sum_{y \in Y} D_{xy} \sigma(\langle w, x \rangle y),$$

где D_{xy} — величина потери для (x, y).

Преимущество бинаризации признаков:

биномиальное распределение является экспонентным.

Методика VaR (Value at Risk):

- 1000 раз: для каждого x разыгрывается исход y с вероятностью $P(y|x) = \sigma(\langle w, x \rangle y);$
- строится эмпирическое распределение величины $V = \sum_{i=1}^{\ell} D_{xy};$
- определяется lpha-квантиль распределения.

Принцип максимума ширины разделяющей полосы

Линейный классификатор:

$$a(x) = \operatorname{sign}(\langle w, x \rangle - w_0), \quad w, x \in \mathbb{R}^n, \ w_0 \in \mathbb{R}.$$

Пусть выборка $X^{\ell} = (x_i, y_i)_{i=1}^{\ell}$ линейно разделима:

$$\exists w, w_0 : M_i(w, w_0) = y_i(\langle w, x_i \rangle - w_0) > 0, \quad i = 1, \dots, \ell$$

Нормировка: $\min_{i=1,...,\ell} M_i(w, w_0) = 1$.

Разделяющая полоса:

$$\{x: -1 \leqslant \langle w, x \rangle - w_0 \leqslant 1\}.$$

Ширина полосы:

$$\frac{\langle x_+ - x_-, w \rangle}{\|w\|} = \frac{2}{\|w\|} \to \max.$$

Обоснование кусочно-линейной функции потерь

Линейно разделимая выборка

$$\begin{cases} \|w\|^2 \to \min_{w,w_0}; \\ M_i(w,w_0) \geqslant 1, \quad i = 1,\ldots,\ell. \end{cases}$$

Переход к линейно неразделимой выборке (эвристика)

$$\begin{cases} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{\ell} \xi_i \to \min_{w, w_0, \xi}; \\ M_i(w, w_0) \geqslant 1 - \xi_i, & i = 1, \dots, \ell; \\ \xi_i \geqslant 0, & i = 1, \dots, \ell. \end{cases}$$

Эквивалентная задача безусловной минимизации:

$$Q(w, w_0) = \sum_{i=1}^{\ell} (1 - M_i(w, w_0))_+ + \frac{1}{2C} ||w||^2 \rightarrow \min_{w, w_0}.$$

Задача поиска седловой точки функции Лагранжа

Функция Лагранжа: $\mathscr{L}(w,w_0,\xi;\lambda,\eta)=$

$$= \frac{1}{2} \|w\|^2 - \sum_{i=1}^{\ell} \lambda_i (M_i(w, w_0) - 1) - \sum_{i=1}^{\ell} \xi_i (\lambda_i + \eta_i - C),$$

 λ_i — переменные, двойственные к ограничениям $M_i\geqslant 1-\xi_i$; η_i — переменные, двойственные к ограничениям $\xi_i\geqslant 0$.

$$\begin{cases} \mathscr{L}(w,w_0,\xi;\lambda,\eta) \to \min_{w,w_0,\xi} \max_{\lambda,\eta} \\ \xi_i \geqslant 0, \quad \lambda_i \geqslant 0, \quad \eta_i \geqslant 0, \quad i=1,\dots,\ell; \\ \lambda_i = 0 \quad \text{либо} \quad M_i(w,w_0) = 1-\xi_i, \quad i=1,\dots,\ell; \\ \eta_i = 0 \quad \text{либо} \quad \xi_i = 0, \quad i=1,\dots,\ell; \end{cases}$$

Необходимые условия седловой точки функции Лагранжа

Функция Лагранжа: $\mathscr{L}(w,w_0,\xi;\lambda,\eta)=$

$$= \frac{1}{2} ||w||^2 - \sum_{i=1}^{\ell} \lambda_i (M_i(w, w_0) - 1) - \sum_{i=1}^{\ell} \xi_i (\lambda_i + \eta_i - C),$$

Необходимые условия седловой точки функции Лагранжа:

$$\frac{\partial \mathcal{L}}{\partial w} = w - \sum_{i=1}^{\ell} \lambda_i y_i x_i = 0 \quad \Longrightarrow \quad w = \sum_{i=1}^{\ell} \lambda_i y_i x_i;$$

$$\frac{\partial \mathcal{L}}{\partial w_0} = -\sum_{i=1}^{\ell} \lambda_i y_i = 0 \quad \Longrightarrow \quad \sum_{i=1}^{\ell} \lambda_i y_i = 0;$$

$$\frac{\partial \mathcal{L}}{\partial \varepsilon_i} = -\lambda_i - \eta_i + C = 0 \quad \Longrightarrow \quad \eta_i + \lambda_i = C, \quad i = 1, \dots, \ell.$$

Понятие опорного вектора

Типизация объектов:

- 1. $\lambda_i = 0$; $\eta_i = C$; $\xi_i = 0$; $M_i \geqslant 1$.
 периферийные (неинформативные) объекты.
- 2. $0 < \lambda_i < C$; $0 < \eta_i < C$; $\xi_i = 0$; $M_i = 1$. опорные граничные объекты.
- 3. $\lambda_i = C$; $\eta_i = 0$; $\xi_i > 0$; $M_i < 1$. опорные-нарушители.

Определение

Объект x_i называется *опорным*, если $\lambda_i \neq 0$.

Двойственная задача

$$\begin{cases}
-\mathcal{L}(\lambda) = -\sum_{i=1}^{\ell} \lambda_i + \frac{1}{2} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \lambda_i \lambda_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle & \to & \min; \\
0 \leqslant \lambda_i \leqslant C, \quad i = 1, \dots, \ell; \\
\sum_{i=1}^{\ell} \lambda_i y_i = 0.
\end{cases}$$

Решение прямой задачи выражается через решение двойственной:

$$egin{cases} w = \sum\limits_{i=1}^\ell \lambda_i y_i x_i; \ w_0 = \langle w, x_i
angle - y_i, \quad$$
 для любого i : $\lambda_i > 0$, $M_i = 1$.

Линейный классификатор:

$$a(x) = \operatorname{sign}\left(\sum_{i=1}^{\ell} \lambda_i y_i \langle x_i, x \rangle - w_0\right).$$

Нелинейное обобщение SVM

Переход к спрямляющему пространству более высокой размерности: $\psi \colon X \to H$.

Определение

Функция $K: X \times X \to \mathbb{R}$ — ядро, если $K(x,x') = \langle \psi(x), \psi(x') \rangle$ при некотором $\psi: X \to H$, где H — гильбертово пространство.

Теорема

Функция K(x,x') является ядром тогда и только тогда, когда она симметрична: K(x,x')=K(x',x);

и неотрицательно определена:

$$\int_X \int_X K(x,x')g(x)g(x')dxdx'\geqslant 0$$
 для любой $g\colon X o \mathbb{R}.$

Конструктивные методы синтеза ядер

- \bullet $K(x,x') = \langle x,x' \rangle$ ядро;
- ② константа K(x, x') = 1 ядро;
- ullet произведение ядер $K(x,x') = K_1(x,x')K_2(x,x')$ ядро;
- ullet $\forall \psi: X
 ightarrow \mathbb{R}$ произведение $K(x,x') = \psi(x)\psi(x')$ ядро;
- $(x,x') = \alpha_1 K_1(x,x') + \alpha_2 K_2(x,x')$ при $\alpha_1,\alpha_2 > 0$ ядро;
- $m{\circ}$ если $s\colon X imes X o \mathbb{R}$ симметричная интегрируемая функция, то $K(x,x')=\int_X s(x,z)s(x',z)\,dz$ ядро;
- если K_0 ядро и функция $f: \mathbb{R} \to \mathbb{R}$ представима в виде сходящегося степенного ряда с неотрицательными коэффициентами, то $K(x,x')=f(K_0(x,x'))$ ядро;

Пример: спрямляющее пространство для квадратичного ядра

Пусть
$$X=\mathbb{R}^2$$
, $K(u,v)=\langle u,v\rangle^2$, где $u=(u_1,u_2)$, $v=(v_1,v_2)$.

Задача: найти пространство H и преобразование $\psi\colon X\to H$, при которых $K(x,x')=\langle \psi(x),\psi(x')\rangle_H.$

Разложим квадрат скалярного произведения:

$$K(u,v) = \langle u,v \rangle^2 = \langle (u_1,u_2), (v_1,v_2) \rangle^2 =$$

$$= (u_1v_1 + u_2v_2)^2 = u_1^2v_1^2 + u_2^2v_2^2 + 2u_1v_1u_2v_2 =$$

$$= \langle (u_1^2, u_2^2, \sqrt{2}u_1u_2), (v_1^2, v_2^2, \sqrt{2}v_1v_2) \rangle.$$

Таким образом,

$$H = \mathbb{R}^3, \quad \psi \colon (u_1, u_2) \mapsto (u_1^2, u_2^2, \sqrt{2}u_1u_2).$$

Линейной поверхности в пространстве H соответствует квадратичная поверхность в исходном пространстве X.

Примеры ядер

- $K(x,x') = \langle x,x' \rangle^2$ — квадратичное ядро;
- ② $K(x,x') = \langle x,x' \rangle^d$ полиномиальное ядро с мономами степени d;
- **③** $K(x,x') = (\langle x,x'\rangle + 1)^d$ полиномиальное ядро с мономами степени ≤ d;
- $K(x,x') = \operatorname{th}(k_0 + k_1\langle x,x'\rangle)$ — нейросеть с сигмоидными функциями активации;
- $K(x, x') = \exp(-\beta ||x x'||^2)$ — сеть радиальных базисных функций;

SVM как двухслойная нейронная сеть

Перенумеруем объекты так, чтобы x_1, \dots, x_h были опорными.

Преимущества и недостатки SVM

Преимущества SVM перед SG:

- Задача выпуклого квадратичного программирования имеет единственное решение.
- Число нейронов скрытого слоя определяется автоматически — это число опорных векторов.

Недостатки SVM:

- Неустойчивость к шуму.
- Нет общих подходов к оптимизации K(x, x') под задачу.
- Приходится подбирать константу С.

EM-алгоритм для байесовской классификации EM-алгоритм для кластеризации. Метод k-средних EM-алгоритм для тематического моделирования

Модель смеси распределений

Модель плотности:

$$p(x) = \sum_{j=1}^{k} w_j p_j(x), \qquad \sum_{j=1}^{k} w_j = 1, \qquad w_j \geqslant 0,$$

 $p_j(x) = \varphi(x; \theta_j)$ — функция правдоподобия j-й компоненты смеси; w_j — её априорная вероятность; k — число компонент смеси.

Задача: имея простую выборку $X^m \sim p(x)$, зная число k и функцию φ , оценить вектор параметров $\Theta = (w_1, \dots, w_k, \theta_1, \dots, \theta_k)$.

Общая схема ЕМ-алгоритма

Проблема:

попытка применить принцип максимума правдоподобия «в лоб» приводит к очень сложной многоэкстремальной задаче оптимизации

Идея: вводятся *скрытые переменные G*.

Итерационный алгоритм Expectation-Maximization:

- 1: начальное приближение вектора параметров Θ ;
- 2: повторять
- 3: $G := \mathsf{E}\text{-шаг}(\Theta)$;
- 4: $\Theta := M$ -шаг (Θ, G) ;
- 5: **пока** Θ и G не стабилизируются.

Задача Е-шага

По формуле условной вероятности

$$p(x, \theta_j) = p(x) P(\theta_j | x) = w_j p_j(x).$$

Скрытые переменные $G=(g_{ij})_{m\times k}=(g_1,\ldots,g_j)$:

$$g_{ij} \equiv P(\theta_j|x_i), \quad i=1,\ldots,m, \ j=1,\ldots,k.$$

Зная параметры компонент w_j , θ_j , по формуле Байеса легко вычислить g_{ij} , $i=1,\ldots,m,\ j=1,\ldots,k$:

$$g_{ij} = \frac{w_j p_j(x_i)}{p(x_i)} = \frac{w_j p_j(x_i)}{\sum_{i=1}^k w_i p_i(x_i)}.$$

Очевидно, выполнено условие нормировки: $\sum_{i=1}^k g_{ij} = 1$.

Задача М-шага

Задача: максимизировать логарифм правдоподобия

$$Q(\Theta) = \ln \prod_{i=1}^m p(x_i) = \sum_{i=1}^m \ln \sum_{j=1}^k w_j p_j(x_i) \to \max_{\Theta}.$$

при ограничениях $\sum_{j=1}^k w_j = 1; \;\; w_j \geqslant 0.$

Если скрытые переменные известны, то задача максимизации $Q(\Theta)$ распадается на k независимых подзадач:

$$heta_j := rg \max_{ heta} \sum_{i=1}^m g_{ij} \ln arphi(x_i; heta), \quad j = 1, \dots, k.$$

а оптимальные веса компонент вычисляются аналитически:

$$w_j := \frac{1}{m} \sum_{i=1}^m g_{ij}, \quad j = 1, \dots, k.$$

Вывод формул М-шага (основные шаги)

Лагранжиан оптимизационной задачи « $Q(\Theta) o \max$ »:

$$L(\Theta; X^m) = \sum_{i=1}^m \ln \left(\underbrace{\sum_{j=1}^k w_j p_j(x_i)}_{p(x_i)} \right) - \lambda \left(\sum_{j=1}^k w_j - 1 \right).$$

Приравниваем нулю производные:

$$\frac{\partial L}{\partial w_j} p_j(x_i) = 0 \quad \Rightarrow \quad \lambda = m; \quad w_j = \frac{1}{m} \sum_{i=1}^m \underbrace{\frac{w_j p_j(x_i)}{p(x_i)}}_{g_{ij}} = \frac{1}{m} \sum_{i=1}^m g_{ij},$$

$$\frac{\partial L}{\partial \theta_j} = \sum_{i=1}^m \frac{w_j p_j(x_i)}{p(x_i)} \frac{\partial}{\partial \theta_j} \ln p_j(x_i) = \frac{\partial}{\partial \theta_j} \sum_{i=1}^m g_{ij} \ln p_j(x_i) = 0.$$

ЕМ-алгоритм

Вход:

$$X^m = \{x_1, \dots, x_m\}$$
, k , δ — параметр критерия останова, $\Theta = (w_j, \theta_j)_{j=1}^k$ — начальное приближение параметров;

Выход:

$$\Theta = (w_j, heta_j)_{i=1}^k$$
 — оптимизированный вектор параметров.

1: повторять

2: E-шаг (expectation):

$$g_{ij}^{0} := g_{ij}; \quad g_{ij} := \frac{w_{j}\varphi(x_{i}; \theta_{j})}{\sum_{s=1}^{k} w_{s}\varphi(x_{j}; \theta_{s})}, \quad i = 1..m, \quad j = 1..k;$$

3: M-шаг (maximization):

$$\theta_j := \arg\max_{\theta} \sum_{i=1}^m g_{ij} \ln \varphi(x_i; \theta), \quad w_j := \frac{1}{m} \sum_{i=1}^m g_{ij}, \quad j = 1..k$$

- 4: **пока** $\max_{i,j} |g_{ij} g_{ij}^{\bar{0}}| > \delta;$
- 5: **вернуть** $(w_i, \theta_i)_{i=1}^k$;

Гауссовская смесь с диагональными матрицами ковариации

Байесовский классификатор: $a(x) = \arg\max_{y \in Y} P_y p_y(x)$.

Допущения:

- 1. Функции правдоподобия классов $p_y(x)$ представимы в виде смесей k_y компонент, $y \in Y = \{1, \dots, M\}$.
- 2. Компоненты имеют *п*-мерные гауссовские плотности с некоррелированными признаками:

$$\mu_{yj} = (\mu_{yj1}, \dots, \mu_{yjn}), \ \Sigma_{yj} = \operatorname{diag}(\sigma_{yj1}^2, \dots, \sigma_{yjn}^2), \ j = 1, \dots, k_y$$
:

$$egin{align} p_y(x) &= \sum_{j=1}^{k_y} w_{yj} p_{yj}(x), \quad p_{yj}(x) = \mathcal{N}(x; \mu_{yj}, \Sigma_{yj}), \ &\sum_{j=1}^{k_y} w_{yj} = 1, \quad w_{yj} \geqslant 0; \end{aligned}$$

Эмпирические оценки средних и дисперсий

Числовые признаки: $f_d: X \to \mathbb{R}, \ d=1,\ldots,n$.

Решение задачи М-шага:

для всех классов $y \in Y$ и всех компонент $j = 1, \ldots, k_v$,

$$w_{yj} = \frac{1}{\ell_y} \sum_{i: y_i = y} g_{yij}$$

для всех размерностей (признаков) $d=1,\ldots,n$

$$\hat{\mu}_{yjd} = \frac{1}{\ell_y w_{yj}} \sum_{i: y_i = y} g_{yij} f_d(x_i);$$

$$\hat{\sigma}_{yjd}^2 = \frac{1}{\ell_y w_{yj}} \sum_{i: y_i = y} g_{yij} (f_d(x_i) - \hat{\mu}_{yjd})^2;$$

Замечание: компоненты «наивны», но смесь не «наивна».

Алгоритм классификации

Подставим гауссовскую смесь в байесовский классификатор:

$$a(x) = \arg\max_{y \in Y} P_y \sum_{j=1}^{k_y} w_{yj} \underbrace{\mathcal{N}_{yj} \exp\left(-\frac{1}{2}\rho_{yj}^2(x, \mu_{yj})\right)}_{p_{yj}(x)},$$

 $\mathcal{N}_{yj} = (2\pi)^{-\frac{n}{2}} (\sigma_{yj1} \cdots \sigma_{yjn})^{-1}$ — нормировочные множители; $\rho_{yj}(x,\mu_{yj})$ — взвешенная евклидова метрика в $X=\mathbb{R}^n$:

$$\rho_{yj}^{2}(x,\mu_{yj}) = \sum_{d=1}^{n} \frac{1}{\sigma_{vid}^{2}} (f_{d}(x) - \mu_{yjd})^{2}.$$

Плотности очень похожи на гауссовские ядра в SVM:

$$p_{yj}(x) \equiv K(x, \mu_{yj}).$$

Сеть радиальных базисных функций

Radial Basis Functions (RBF) — трёхуровневая суперпозиция:

EM-алгоритм для байесовской классификации EM-алгоритм для кластеризации. Метод k-средних EM-алгоритм для тематического моделирования

Преимущества EM-RBF

ЕМ — один из лучших алгоритмов обучения радиальных сетей.

Преимущества ЕМ-алгоритма:

- ЕМ-алгоритм легко сделать устойчивым к шуму
- 2 ЕМ-алгоритм довольно быстро сходится
- **3** автоматически строится *структурное описание* каждого класса в виде совокупности компонент *кластеров*

Недостатки ЕМ-алгоритма:

ЕМ-алгоритм чувствителен к начальному приближению

Сравнение EM-RBF и SVM с гауссовским ядром:

- **1** в SVM объект *х* сравнивается с опорными объектами
- **2** в EM-RBF объект *х* сравнивается с центрами кластеров

Постановка задачи кластеризации

Дано:

X — пространство объектов; $X^{\ell} = \left\{x_i\right\}_{i=1}^{\ell}$ — обучающая выборка; $\rho \colon X \times X \to [0,\infty)$ — функция расстояния между объектами.

Найти:

- У множество кластеров и
- $a: X \to Y$ алгоритм кластеризации, такие, что:
 - каждый кластер состоит из близких объектов;
 - объекты разных кластеров существенно различны.

Кластеризация — это обучение без учителя.

Mетод k-средних (k-means)

 $X=\mathbb{R}^n$. Упрощённый аналог EM-алгоритма:

- 1: начальное приближение центров $\mu_{v}, y \in Y$;
- 2: повторять
- 3: аналог Е-шага:

отнести каждый x_i к ближайшему центру:

$$y_i := \arg\min_{y \in Y} \rho(x_i, \mu_y), \quad i = 1, \dots, \ell;$$

4: аналог М-шага:

вычислить новые положения центров:

$$\mu_{yj} := \frac{\sum_{i=1}^{\ell} [y_i = y] f_j(x_i)}{\sum_{i=1}^{\ell} [y_i = y]}, \ y \in Y, \ j = 1, \dots, n;$$

5: **пока** y_i не перестанут изменяться;

Модификации и обобщения

Варианты k-means:

- вариант Болла-Холла (на предыдущем слайде);
- вариант МакКина: при каждом переходе объекта из кластера в кластер их центры пересчитываются;

Основные отличия EM и k-means:

- ЕМ: мягкая кластеризация: $g_{iy} = P\{y_i = y\};$ k-m: жёсткая кластеризация: $g_{iy} = [y_i = y];$
- ЕМ: форма кластеров эллиптическая, настраиваемая; k-m: форма кластеров жёстко определяется метрикой ρ ;

Гибридные варианты по пути упрощения ЕМ:

- ЕМ с жёсткой кластеризацией на Е-шаге;
- ЕМ без настройки дисперсий (сферические гауссианы);

Частичное обучение (SSL, semi-supervised learning)

Дано:

$$Y$$
 — множество кластеров; $\left\{x_i
ight\}_{i=1}^\ell$ — обучающая выборка; $\left\{x_i,y_i
ight\}_{i=\ell+1}^{\ell+m}$ — размеченная часть выборки, обычно $m\ll\ell$.

Найти:

$$a: X \to Y$$
 — алгоритм кластеризации.

Как приспособить ЕМ-алгоритм:

Е-шаг:
$$g_{iy}:=\begin{bmatrix} y=y_i\end{bmatrix}$$
, $y\in Y$, $i=\ell+1,\ldots,\ell+m$;

Как приспособить k-means:

Е-шаг:
$$y_i := \arg\min_{y \in Y} \rho(x_i, \mu_y), \quad i = 1, \dots, \ell.$$

Задача тематического моделирования коллекции документов

Дано:

- W словарь, множество слов (терминов);
- D множество (коллекция, корпус) текстовых документов;
- n_{dw} сколько раз термин $w \in W$ встретился в документе $d \in D$.

Найти (задача би-кластеризации):

- к каким темам относится каждый документ
- какими терминами определяется каждая тема
- сколько тем содержится в коллекции

Гипотеза «мешка слов»:

порядок терминов не важен для определения тематики текста.

Гипотеза разреженности:

документ, как правило, относится к небольшому числу тем; тема, как правило, определяется небольшим числом терминов.

Вероятностная формализация постановки задачи

Вероятностные предположения:

- ullet каждое слово в документе связано с некоторой темой $t\in \mathcal{T}$;
- коллекция D это выборка независимых наблюдений (d,w) из дискретного распределения p(d,w,t) на $D \times W \times T$;
- ullet гипотеза условной независимости: p(w|d,t) = p(w|t);

Вероятностная модель порождения документа d:

$$p(w|d) = \sum_{t \in T} p(w|d, t) p(t|d) = \left| \sum_{t \in T} p(w|t) p(t|d) \right|$$

Найти:

- p(w|t) распределение терминов в каждой теме $t \in T$;
- ullet p(t|d) распределение тем в каждом документе $d \in D$.

EM-алгоритм для байесовской классификации EM-алгоритм для кластеризации. Метод k-средних EM-алгоритм для тематического моделирования

Вероятностная тематическая модель порождения документа d

Разработан спектрально-аналитический подход к выявлению размытых протяженных повторов в геномных последовательностях. Метод основан на разномасштабном оценивании сходства нуклеотидных последовательностей в пространстве коэффициентов разложения фрагментов кривых GC- и GA-содержания по классическим ортогональным базисам. Найдены условия оптимальной аппроксимации, обеспечивающие автоматическое распознавание повторов различных видов (прямых и инвертированных, а также тандемных) на спектральной матрице сходства. Метод одинаково хорошо работает на разных масштабах данных. Он позволяет выявлять следы сегментных дупликаций и мегасателлитные участки в геноме, районы синтении при сравнении пары геномов. Его можно использовать для детального изучения фрагментов хромосом (поиска размытых участков с умеренной длиной повторяющегося паттерна).

Частотные оценки условных вероятностей

$$p(w|d) = \sum_{t \in T} p(w|t)p(t|d)$$

Если рассматривать коллекцию как выборку троек (d, w, t), то

$$\hat{p}(w|d) = \frac{n_{dw}}{n_d}, \qquad \hat{p}(w|t) = \frac{n_{wt}}{n_t}, \qquad \hat{p}(t|d) = \frac{n_{dt}}{n_d};$$

 n_{dwt} — число троек (d, w, t) во всей коллекции;

$$n_{dw} = \sum\limits_{t \in \mathcal{T}} n_{dwt}$$
 — число вхождений термина w в документ d ;

$$n_{dt} = \sum_{w \in d} n_{dwt}; \qquad n_d = \sum_{w \in d} \sum_{t \in T} n_{dwt}$$
 — длина документа d ;

$$n_{wt} = \sum_{d \in D} n_{dwt}; \qquad n_t = \sum_{d \in D} \sum_{w \in d} n_{dwt} -$$
«длина темы» t ;

$$n = \sum_{d \in D} \sum_{w \in d} \sum_{t \in T} n_{dwt}$$
 — длина всей коллекции;

Цели тематического моделирования (topic modeling)

- Тематический поиск документов по тексту любой длины
- Категоризация, классификация, аннотирование, суммаризация текстовых документов
- Тематический поиск объектов, связанных с документами: рисунков, авторов, организаций, журналов, конференций
- Выявление трендов и фронта исследований

Типичные приложения:

- Поиск научной информации
- Анализ и агрегирование новостных потоков
- Рекомендательные сервисы (коллаборативная фильтрация)
- Рубрикация коллекций изображений, видео, музыки
- Аннотация генома и другие задачи биоинформатики

Вероятностный латентно-семантический анализ PLSA — Probabilistic Latent Semantic Analysis [Hofmann, 1999]

Максимизация правдоподобия по $\varphi_{wt} = p(w|t)$, $\theta_{td} = p(t|d)$:

$$\mathscr{L}(\Phi,\Theta) = \sum_{d \in D} \sum_{w \in d} n_{dw} \ln p(w|d) = \sum_{d \in D} \sum_{w \in d} n_{dw} \ln \sum_{t \in T} \varphi_{wt} \theta_{td} \rightarrow \max_{\Phi,\Theta},$$

при ограничениях неотрицательности и нормировки

$$\varphi_{wt}\geqslant 0; \quad \sum_{w\in W}\varphi_{wt}=1; \qquad \theta_{td}\geqslant 0; \quad \sum_{d\in D}\theta_{td}=1.$$

Это задача неотрицательного матричного разложения $F pprox \Phi\Theta$,

$$F = \left(\hat{p}(w|d)
ight)_{W imes D}$$
 — известная матрица исходных данных;

$$\Phi = (\varphi_{wt})_{W \times T}$$
 — искомая матрица терминов тем $\varphi_{wt} = p(w|t)$;

$$\Theta = (heta_{td})_{T imes D}$$
 — искомая матрица тем документов $heta_{td} \! = \! p(t|d)$.

ЕМ-алгоритм

Е-шаг: если φ_{wt} , θ_{td} известны, то по формуле Байеса вычисляются условные вероятности тем $t \in T$ для всех (d, w):

$$H_{dwt} \equiv p(t|d, w) = \frac{p(w, t|d)}{p(w|d)} = \frac{\varphi_{wt}\theta_{td}}{\sum_{s} \varphi_{ws}\theta_{sd}}.$$

М-шаг: если H_{dwt} известны, то решение задачи максимизации правдоподобия аналитически выражается через H_{dwt} : (по сути, это частотные оценки условных вероятностей)

$$\varphi_{wt} = \frac{\hat{n}_{wt}}{\hat{n}_t}, \qquad \hat{n}_{wt} = \sum_{d \in D} n_{dw} H_{dwt}, \qquad \hat{n}_t = \sum_{w \in W} \hat{n}_{wt};$$

$$\theta_{td} = \frac{\hat{n}_{dt}}{\hat{n}_d}, \qquad \hat{n}_{dt} = \sum_{w \in d} n_{dw} H_{dwt}, \qquad \hat{n}_d = \sum_{t \in T} \hat{n}_{dt}.$$

ЕМ-алгоритм — это чередование Е и М шагов до сходимости.

Рационализация ЕМ-алгоритма: Е-шаг встроен внутрь М-шага

Идея: не хранить H_{dwt} , а вычислять по мере необходимости. Сложность алгоритма $O(|D|\cdot|W|\cdot|T|)$.

```
Вход: коллекция D, число тем |T|, начальные \Phi и \Theta; Выход: распределения \Phi и \Theta;
```

```
1: повторять
       обнулить \hat{n}_{wt}, \hat{n}_{dt}, \hat{n}_{t} для всех d \in D, w \in W, t \in T;
2:
3:
       для всех d \in D, w \in d
          Z := \sum_{t} \varphi_{wt} \theta_{td};
4:
           для всех t \in T таких, что \varphi_{wt}\theta_{td} > 0
5:
              увеличить \hat{n}_{wt}, \hat{n}_{dt}, \hat{n}_{t} на n_{dw} \cdot \frac{1}{7} \varphi_{wt} \theta_{td};
6:
       \varphi_{wt} := \hat{n}_{wt}/\hat{n}_t для всех w \in W, t \in T;
7:
       \theta_{td} := \hat{n}_{dt}/n_d для всех d \in D, t \in T;
8:
9: пока \Phi и \Theta не стабилизируются.
```

Недостатки PLSA

- PLSA переобучается, т.к. параметров φ_{wt} и θ_{td} слишком много $(|D|\cdot|T|+|W|\cdot|T|)$, и на них не накладывается никаких ограничений регуляризации.
- PLSA неверно оценивает вероятность новых слов: если $n_w = 0$, то $\hat{p}(w|t) = 0$ для всех $t \in \mathcal{T}$.
- PLSA не позволяет управлять *разреженностью* Ф и Θ , т.к. (в начале $\varphi_{wt} = 0$) \Leftrightarrow (в финале $\varphi_{wt} = 0$); (в начале $\theta_{td} = 0$) \Leftrightarrow (в финале $\theta_{td} = 0$)

Гипотеза разреженности матриц Ф и Θ :

каждый документ относится к небольшому числу тем; каждая тема описывается небольшим числом терминов...

т.е. на самом деле параметров должно быть намного меньше.

Латентное размещение Дирихле LDA — Latent Dirichlet Allocation [David Blei, 2003]

Гипотеза об априорных распределениях:

- $\theta_d = (\theta_{td})_{t \in T} \in \mathbb{R}^{|T|}$ случайные векторы из распределения Дирихле с параметром $\alpha \in \mathbb{R}^{|T|}$;
- $\varphi_t = (\varphi_{wt})_{w \in W} \in \mathbb{R}^{|W|}$ случайные векторы из распределения Дирихле с параметром $\beta \in \mathbb{R}^{|W|}$

В результате недостатки PLSA устраняются благодаря сглаживанию частотных оценок условных вероятностей:

$$\varphi_{wt} := \frac{\hat{n}_{wt} + \beta_w}{\hat{n}_t + \sum_w \beta_w}; \qquad \theta_{td} := \frac{\hat{n}_{dt} + \alpha_t}{\hat{n}_d + \sum_t \alpha_t};$$

David Blei, Andrew Ng, Michael Jordan. Latent Dirichlet allocation // Journal of Machine Learning Research, 2003. — No. 3. — Pp. 993–1022.

Робастная вероятностная тематическая модель SWB — Special Words with Background [Steyvers et al. 2006]

Гипотеза: каждое употребление термина в документе объясняется либо темой, либо специфично для данного документа (шум), либо это общеупотребительный термин (фон).

Модель смеси тематической, шумовой и фоновой компонент:

$$p(w|d) = \frac{Z_{dw} + \gamma \pi_{dw} + \varepsilon \pi_{w}}{1 + \gamma + \varepsilon}; \qquad Z_{dw} = \sum_{t \in T} \varphi_{wt} \theta_{td},$$

 $\pi_{dw} \equiv p_{\mathrm{LL}}(w|d)$ — шумовая компонента, γ — параметр; $\pi_w \equiv p_{\mathrm{LL}}(w)$ — фоновая компонента, ε — параметр.

Требуется найти φ_{wt} , θ_{td} , π_{dw} , π_{w} для всех $d \in D$, $w \in W$, $t \in T$.

Chemudugunta C., Smyth P., Steyvers M. Modeling general and specific aspects of documents with a probabilistic topic model // Advances in Neural Information Processing Systems, MIT Press, 2006. — Vol. 19. — Pp. 241–248.

ЕМ-алгоритм для робастной модели

Е-шаг: вероятности тем, фона и шума для каждого (d, w):

$$\begin{split} H_{dwt} &= \frac{\varphi_{wt}\theta_{td}}{Z_{dw} + \gamma\pi_{dw} + \varepsilon\pi_{w}}, \quad t \in T; \\ H_{dw} &= \frac{\gamma\pi_{dw}}{Z_{dw} + \gamma\pi_{dw} + \varepsilon\pi_{w}}; \quad H'_{dw} &= \frac{\varepsilon\pi_{w}}{Z_{dw} + \gamma\pi_{dw} + \varepsilon\pi_{w}}. \end{split}$$

М-шаг— решение задачи максимизации правдоподобия:

$$arphi_{wt}, heta_{td}$$
 — вычисляются по формулам PLSA; $\pi_w = rac{
u_w'}{
u'}; \quad
u_w' = \sum_{d \in D} n_{dw} H_{dw}'; \quad
u' = \sum_{w \in W}
u_w';
\pi_{dw} = \left(rac{n_{dw}}{
u_d} - rac{Z_{dw} + \varepsilon \pi_w}{\gamma}
ight)_+.$

Стандартная методика оценивания тематических моделей

Перплексия тестовой коллекции D' (hold-out perplexity):

$$\mathcal{P}(D') = \exp\left(-\frac{\sum\limits_{d \in D'} \sum\limits_{w \in d''} n_{dw} \ln p(w|d)}{\sum\limits_{d \in D'} \sum\limits_{w \in d''} n_{dw}}\right),$$

 $d = d' \sqcup d''$ — случайное разбиение контрольного документа на две половины равной длины;

параметры φ_{wt} оцениваются по обучающей коллекции D; параметры θ_{td} оцениваются по первой половине d'; перплексия вычисляется по второй половине d''.

Интерпретации перплексии:

- 1) $\mathcal{P}(D') o |W|$ при $n o \infty$, если слова равновероятны;
- 2) насколько хорошо мы можем предсказывать появление слов (чем меньше перплексия, тем лучше).

Другие методики оценивания тематических моделей

- Число ошибок классификации размеченной тестовой коллекции D'.
- Отклонение от *гипотезы условной независимости* p(w|d,t) = p(w|t) на обучающей коллекции D для темы t:

$$\mathsf{KL}\Big(\hat{p}(d,w|t),\ \hat{p}(d|t)\cdot\hat{p}(w|t)\Big) = \sum_{d,w} \frac{n_{dwt}}{n_t} \log \frac{n_{dwt}\cdot n_t}{n_{td}\cdot n_{wt}}$$

D.Mimno, D.Blei. Bayesian checking for topic models // Empirical Methods in Natural Language Processing, 2011.

- Доля случаев, когда эксперт верно определяет:
 - лишнюю тему в списке главных тем документа;
 - лишний термин в списке главных терминов темы.

J.Chang, J.Boyd-Graber, S.Gerrish, C.Wang, D.Blei. Reading tea leaves: how humans interpret topic models // Advances in Neural Information Processing Systems 22, 2009, pp. 288–296.

Методика эксперимента

D — коллекция 2000 авторефератов диссертаций на русском языке суммарной длины $n\approx 8.7\cdot 10^6$, словарь $|W|\approx 3\cdot 10^4$.

Предобработка: лемматизация, удаление стоп-слов.

D' — коллекция 200 авторефератов, не включённых в D.

Строятся графики зависимости перплексии от числа итераций (проходов коллекции); число итераций 40; число тем |T| = 100;

Регуляризация решает проблему новых слов, а не переобучения

PLSA без регуляризации, CVB0 с регуляризацией.

Вывод: регуляризация даёт преимущество только когда в контроле есть новые термины.

Робастная модель не нуждается в регуляризации

Робастность сильнее уменьшает перплексию PLSA, чем регуляризация. Регуляризация не улучает робастную модель.

Вопросы...

Bopoнцов Константин Вячеславович vokov@forecsys.ru

Страницы на www.MachineLearning.ru:

- Участник: Vokov
- Машинное обучение (курс лекций, К.В.Воронцов)
- Тематическое моделирование

Воронцов К. В., Потапенко А. А. Робастные разреженные вероятностные тематические модели // Интеллектуализация обработки информации (ИОИ-2012): Докл. — Москва: Торус Пресс, 2012. С. 605–608.