Computer Architecture Lec 5a

Dr. Esti Stein

(Partly taken from Dr. Alon Scholar slides)

Based on slides by:

Prof. Myung-Eui Lee

Korea University of Technology & Education Department of Information & Communication

Taken from: M.
Mano/Computer Design and
Architecture 3rd Ed.

MRI - BUN

• 2

Conditional & Unconditional Jumps

conditional unconditional

MRI - BSA

Branch to subroutine and save the return address

BSA: M[AR] \leftarrow PC, PC \leftarrow AR \leftarrow

 $T_0: AR \leftarrow PC$

 $T_1: IR \leftarrow M[AR],$

 $PC \leftarrow PC + 1$

 $T_2: D_0,...,D_7 \leftarrow Decode\ IR(12-14)$

 $AR \leftarrow IR(0-11), I \leftarrow IR(15)$

 D_7 ' IT_3 : AR \leftarrow M[AR]

 $O_5T_4: M[AR] \leftarrow PC, AR \leftarrow AR + 1$

 $D_5T_5: PC \leftarrow AR, SC \leftarrow 0$

AR = 231PC = 231

IR = BSA 230

150: BSA 230 //subroutine call

151: INC

main

230: 151

routine begins here

231:...

232:...

255: 1 BUN 230 Dsubroutine ends here

MRI – BUN (cont. BSA)

Branch to subroutine and save the return address

BSA: M[AR] \leftarrow PC, PC \leftarrow AR + 1

 $T_0: AR \leftarrow PC$

 $T_1: IR \leftarrow M[AR],$

 $PC \leftarrow PC + 1$

 $T_2: D_0,...,D_7 \leftarrow Decode IR(12-14)$

 $AR \leftarrow IR(0-11), I \leftarrow IR(15)$

 D_7 'I T_3 : AR \leftarrow M[AR]

 $D_4T_4: PC \leftarrow AR, SC \leftarrow 0$

main

150: BSA 230 //subroutine call

151 : INC

• • •

230: 151

proutine begins here

231:...

232:...

255: 1 BUN 230 subroutine ends here

PC = 151

AR = 151

IR = 1 BUN 230

I = 1

Increment memory word specified by the effective address

if the incremented value is equal to 0, PC is incremented by 1.

Useful for loop indices:

- Place a negative number in memory word
- Increment with each loop iteration
- eventually reaches the value of zero
- At that time PC is incremented by one in order to skip the next instruction in the program.

No single microoperation to increment a word inside the memory

- First read the word into DR,
- increment DR,
- store the word back into memory

```
// set CTR to -100
LOP, ...
...
ISZ CTR
BUN LOP
```

Increment memory word and skip next instruction if memory word equals to zero.

 D_6T_4 $OR \leftarrow M[AR]$

 $D_6T_5: DR \leftarrow DR + 1$

 $D_6T_6: M[AR] \leftarrow DR$

if (DR = 0) then PC \leftarrow PC + 1,

 $SC \leftarrow 0$

106 : ISZ 202 107 : BUN 150 108 : BUN 090

Increment memory word and skip next instruction if memory word equals to zero.

 $\begin{aligned} D_6T_4: DR &\leftarrow M[AR] \\ D_6T_5: DR &\leftarrow DR + 1 \\ D_6T_6: M[AR] &\leftarrow DR, \\ &\quad \text{if } (DR = 0) \text{ then } PC \leftarrow PC + 1, \\ &\quad SC \leftarrow 0 \end{aligned}$

Increment memory word and skip next instruction if memory word equals to zero.

 $D_6T_4: DR \leftarrow M[AR]$

 $D_6T_5: DR \leftarrow DR + 1$

 $D_6T_6: M[AR] \leftarrow DR$

if (DR = 0) then PC \leftarrow PC + 1,

 $SC \leftarrow 0$

106 : ISZ 202 107 : BUN 150 108 : BUN 090

MRI – ISZ (another example)

Increment memory word and skip next instruction if memory word equals to zero.

 D_6T_4 $OR \leftarrow M[AR]$

 $D_6T_5: DR \leftarrow DR + 1$

 $D_6T_6: M[AR] \leftarrow DR$

if (DR = 0) then PC \leftarrow PC + 1,

 $SC \leftarrow 0$

Increment memory word and skip next instruction if memory word equals to zero.

 $D_6T_4: DR \leftarrow M[AR]$ $D_6T_5: DR \leftarrow DR + 1$ $D_6T_6: M[AR] \leftarrow DR,$ if (DR = 0) then $PC \leftarrow PC + 1$, $SC \leftarrow 0$

Increment memory word and skip next instruction if memory word equals to zero.

 $D_6T_4: DR \leftarrow M[AR]$

 $D_6T_5: DR \leftarrow DR + 1$

 $D_6T_6: M[AR] \leftarrow DR$,

if (DR = 0) then PC \leftarrow PC + 1,

 $SC \leftarrow 0$

106 : ISZ 202 107 : BUN 150 108 : BUN 090

Memory Reference Flowchart

QUIZ7

 $T_1: IR \leftarrow M[AR], PC \leftarrow PC + 1$

 $T_2: D_0,...,D_7 \leftarrow Decode\ IR(12-14)$ $AR \leftarrow IR(0-11),\ I \leftarrow IR(15)$

 D_7 ' IT_3 : $AR \leftarrow M[AR]$

083: B8F2

For every instruction start from initial row

						$M[AR] \leftarrow DR$
AC	E	PC	DR	AR	IR	instruction
A9:	37 1	021	-	-	-	initial
						021: ADD 083
						021: LDA 083
						021: BSA 083

 D_6T_6

What is the next instruction to be performed?

Fill the table.

 $T_0: AR \leftarrow PC$

 $T_1: IR \leftarrow M[AR], PC \leftarrow PC + 1$

 $T_2: D_0,..,D_7 \leftarrow Decode IR(12-14)$ $AR \leftarrow IR(0-11), I \leftarrow IR(15)$

 D_7 ' IT_3 : $AR \leftarrow M[AR]$

32E:09AC

3AF: 932E

9AC: 8B9F

Figure 5-11 Flowchart for memory-reference instructions.

AC	E	PC	DR	AR	IR	I	SC	
7EC3	1	3AF	-	-	-	-	-	
								1.7
								15