CONVEX OPTIMIZATION

ONE-DIMENSIONAL

MULTI-DIMENSIONAL CASE

Consider a smooth function $f: \Omega \to \mathbb{R}$, where Ω is a nonempty open subset of \mathbb{R}^n . We focus on the problem of finding $\mathbf{x}_0 \in \Omega$ so that $f(\mathbf{x}_0) = \max_{\mathbf{x} \in \Omega} f(\mathbf{x})$ or $f(\mathbf{x}_0) = \min_{\mathbf{x} \in \Omega} f(\mathbf{x})$, denoted by

$$\mathbf{x}_0 = \mathop{\mathsf{arg\,max}} f\left(\mathbf{x}\right) \ \mathsf{or} \ \mathbf{x}_0 = \mathop{\mathsf{arg\,min}} f\left(\mathbf{x}\right)$$

Such an \mathbf{x}_0 is called a **global maximum** or **global minimum** of f on Ω . When f is a differentiable function, we only have the necessary condition for \mathbf{x}_0 : $\nabla f(\mathbf{x}_0) = 0$. This condition is also sufficient in convex optimization.

Outlines

ONE-DIMENSIONAL

2 MULTI-DIMENSIONAL CASE

Let $f:(a,b) \to \mathbb{R}$, $-\infty \le a < b \le \infty$.

Definition 1. The function $f:(a,b)\to\mathbb{R}$ is **convex** if for all $x,y\in(a,b)$ and $0\leq\theta\leq1$, we have

$$f(\theta x + (1 - \theta) y) \le \theta f(x) + (1 - \theta) f(y). \tag{1}$$

The function f is **concave** if -f is convex.

Geometrically, the inequality (1) means that the line segment between (x, f(x)) and (y, f(y)), which is a **chord** from x to y, lies above the graph of f.

Theorem 2. Let $f:(a,b) \to \mathbb{R}$, where $-\infty \le a < b \le \infty$, be of class C^2 , i.e. the second derivative f'' exists and is a continuous function. The following statements are equivalent

- (i) f is a convex function.
- (ii) $f(y) \ge f(x) + f'(x)(y x)$, for all $x, y \in (a, b)$.
- (iii) $f''(x) \ge 0$, for all $x \in (a, b)$.

In order to prove it, we need the following result, which is a particular case of Taylor's formula.

Proposition 3. Let $f:(a,b)\to\mathbb{R}$ be of class C^2 . For each $x,y\in(a,b),\ x< y$, there exists $x\leq z\leq y$ such that

$$f(y) = f(x) + f'(x)(y - x) + f''(z)\frac{(y - x)^2}{2!}$$

Proof of Theorem 2. We shall prove $(i) \Leftrightarrow (ii)$ and $(ii) \Leftrightarrow (iii)$. When (i) satisfies, with $x, y \in (a, b)$ and $0 < \theta < 1$, (1) gives

$$f(y + \theta(x - y)) < f(y) + \theta(f(x) - f(y))$$

so with $0 < \theta \le 1$, since

$$f(x) - f(y) \ge \frac{f(y + \theta(x - y)) - f(y)}{\theta} \rightarrow f'(y)(x - y)$$

whenever $\theta \downarrow 0$, (ii) is satisfied. Conversely, when (ii) holds, then with $z = \theta x + (1 - \theta) y$, we have

$$f(x) \ge f(z) + f'(z)(x - z), \qquad (2)$$

and

$$f(y) \ge f(z) + f'(z)(y - z).$$
 (3)

Multiply both sides of (2) by θ , (3) by $1-\theta$, and add, side by side, we get

$$\theta f(x) + (1 - \theta) f(y) \ge f(z) = f(\theta x + (1 - \theta) y),$$

and (i) is proved.

Now, when (ii) holds, we have, with $x, y \in (a, b)$, x < y, $f(y) \ge f(x) + f'(x)(y - x)$ and $f(x) \ge f(y) + f'(y)(x - y)$. Therefore

$$f'(x)(y-x) \le f(y) - f(x) \le f'(y)(y-x)$$
.

Divide both sides by $(y - x)^2$, we get

$$\frac{f'(y)-f'(x)}{y-x}\geq 0,$$

for all $x, y \in (a, b)$, x < y. Letting $y \to x$, we get (iii). Conversely, by proposition 3, there exists $z \in [x, y]$ so that

$$f(y) = f(x) + f'(x)(y - x) + \frac{1}{2}f''(z)(y - x)^{2}$$
.

Since $f''(z) \ge 0$, we must have $f(y) \ge f(x) + f'(x)(y - x)$, i.e., (ii) holds.

Using Theorem 2 with -f when f is a concave function, we have

Corollary 4. Let $f:(a,b) \to \mathbb{R}$, where $-\infty \le a < b \le \infty$, be of class C^2 . The following statements are equivalent

- (i) f is a concave function.
- (ii) $f(y) \le f(x) + f'(x)(y x)$, for all $x, y \in (a, b)$.
- (iii) $f''(x) \leq 0$, for all $x \in (a, b)$.

Example 1. The functions $y = x^n$, for even $n \in \mathbb{N}$, and $y = e^x$ are convex. The function $y = \ln x$ is concave.

Let f be a convex/concave function on (a,b) and let $x_0 \in (a,b)$ that satisfies $f'(x_0) = 0$. The inequality (ii) of Theorem 2 or Corollary 3, with $x = x_0$, yields $f(x) \ge f(x_0)$ or $f(x) \le f(x_0)$, for all $x \in (a,b)$. Hence, x_0 is a global minimum or a global maximum of f on (a,b) which shows that $f'(x_0) = 0$ is also a sufficient condition for global extremum.

Corollary 5. Let $f:(a,b) \to \mathbb{R}$, where $-\infty \le a < b \le \infty$, be of class C^1 , i.e., the first derivative f' exists and is continuous and let $x_0 \in (a,b)$ such that $f'(x_0) = 0$.

- (i) If f is convex then $x_0 = \arg \min_{x \in (x,h)} f(x)$.
 - $x \in (a,b)$
- (ii) If f is concave then $x_0 = \underset{x \in (a,b)}{\operatorname{arg max}} f(x)$.

Example 2. (i) The function $y = x^4 + 6x^2$, defined on \mathbb{R} , has $y' = 4x^3 + 12x$, $y'' = 12x^2$. Since $y'' \ge 0$, for all $x \in \mathbb{R}$, $y = x^4 + 6x^2$ is convex on \mathbb{R} . Now, $y' = 0 \Leftrightarrow x = 3$ implies that $\arg\min(x^4 + 6x^2) = 3$.

 $x \in \mathbb{R}$

(ii) The function $y=-x\ln x$, defined on $(0,+\infty)$, has $y'=-\ln x+1$, $y''=-\frac{1}{x}$. Since y''<0, for all $x\in(0,+\infty)$, $y=-x\ln x$ is concave on $(0,+\infty)$. Now, $y'=0\Leftrightarrow x=e$ implies that $\arg\max_{x\in(0,+\infty)}(-x\ln x)=e$.

Outlines

ONE-DIMENSIONAL

MULTI-DIMENSIONAL CASE

MULTI-DIMENSIONAL CASE

Let $f: \Omega \to \mathbb{R}$, where Ω is a nonempty subset of \mathbb{R}^n .

First, we set some notations and terminologies.

Definition 6. A nonempty subset $\Omega \subset \mathbb{R}^n$ is said to be an **open** convex set in \mathbb{R}^n if for all $\mathbf{x} \in \Omega$ and $\mathbf{h} \in \mathbb{R}^n$, $\{t \in \mathbb{R} | \mathbf{x} + t\mathbf{h} \in \Omega\}$ is an open interval (a, b) in \mathbb{R} , for some $-\infty \le a < b \le \infty$.

Example 3. Any open convex set Ω in \mathbb{R} must be an open interval. \mathbb{R}^n is itself an open convex subset.

 $\mathbb{R} \times (0,\infty) = \{(x,y) \in \mathbb{R}^2 | y > 0\}$ and $(0,\infty) \times (0,\infty) = \{(x,y) \in \mathbb{R}^2 | x,y > 0\}$ are two convex open sets in \mathbb{R}^2 .

Definition 7. A square matrix $A \in \mathbb{R}^{n \times n}$ is said to be **positive** semidefinite (negative semidefinite, resp), noted $A \ge 0$ ($A \le 0$, resp.), if $\mathbf{h}^T A \mathbf{h} \ge 0$ ($\mathbf{h}^T A \mathbf{h} \le 0$, resp.) for all $\mathbf{h} \in \mathbb{R}^n$.

Example 4. Let

$$A = \left[\begin{array}{cc} 1 & 2 \\ 2 & 5 \end{array} \right].$$

For all $\mathbf{h}=(h,k)\in\mathbb{R}^2$,

$$\mathbf{h}^{T} A \mathbf{h} = \begin{bmatrix} h & k \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} h \\ k \end{bmatrix} = \begin{bmatrix} h & k \end{bmatrix} \begin{bmatrix} h+2k \\ 2h+5k \end{bmatrix}$$
$$= h(h+2k) + k(2h+5k) = h^{2} + 4hk + 5k^{2}$$

By writing $h^2 + 4hk = (h + 2k)^2 - 4k^2$, we have

$$h^2 + 4hk + 5k^2 = (h + 2k)^2 - 4k^2 + 5k^2 = (h + 2k)^2 + k^2 \ge 0,$$

for all $\mathbf{h}=(h,k)\in\mathbb{R}^2$. Therefore, A is positive semidefinite. Let $A\in\mathbb{R}^{n\times n}$ be a symmetric matrix with (repeated) eigenvalues λ_i , $i=1,\cdots,n$. We have

Theorem 8. The symmetric matrix A is positive semidefinite if $\lambda_i \geq 0$, for all $i = 1, \dots, n$, and is negative semidefinite if $\lambda_i \leq 0$, for all $i = 1, \dots, n$.

Proof. Let Q be an orthogonal matrix that orthogonally diagonalizes A, $Q^TAQ = D$ with $D = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$. Since and $QDQ^T = A$, it follows that $Q^T = Q^{-1}$ and for each $\mathbf{h} \in \mathbb{R}^n$, we have

$$\mathbf{h}^{\mathsf{T}} A \mathbf{h} = \mathbf{h}^{\mathsf{T}} (Q D Q^{\mathsf{T}}) \mathbf{h} = (Q^{\mathsf{T}} \mathbf{h})^{\mathsf{T}} D (Q^{\mathsf{T}} \mathbf{h}).$$

Let $Q^T \mathbf{h} = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$, the right hand side becomes

$$(Q^{T}\mathbf{h})^{T} D (Q^{T}\mathbf{h}) = \begin{bmatrix} y_{1} & y_{2} & \cdots & y_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix}$$

$$=\sum_{i=1}^n \lambda_i y_i^2$$

which shows that $\mathbf{h}^T A \mathbf{h} \geq 0$ when $\lambda_i \geq 0$, for all $i = 1, \dots, n$, and it is ≤ 0 when $\lambda_i \leq 0$, for all $i = 1, \dots, n$.

Example 5. Consider again the matrix A of example 4. The characteristic equation

$$\det\left(A-\lambda I_2\right) = \left|\begin{array}{cc} 1-\lambda & 2\\ 2 & 5-\lambda \end{array}\right| = (1-\lambda)\left(5-\lambda\right) - 4 = \lambda^2 - 6\lambda + 5 = 0$$

shows that A has two positive eigenvalues, 1 and 5. Therefore, A is positive semidefinite.

Definition 9. Let $f: \Omega \to \mathbb{R}$, where Ω is a nonempty open convex set in \mathbb{R}^n .

(i) f is said to be a **convex function** if for all $x,y\in\Omega$ and $0\leq\theta\leq1$, we have

$$f(\theta \mathbf{x} + (1 - \theta) \mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta) f(\mathbf{y}).$$

(ii) f is said to be a **concave function** if -f is a convex function.

$$f(\theta \mathbf{x} + (1 - \theta) \mathbf{y}) \leq \theta f(\mathbf{x}) + (1 - \theta) f(\mathbf{y}).$$

Given a function $f:\Omega\to\mathbb{R}$, where Ω is a nonempty open convex set in \mathbb{R}^n , for each $\mathbf{x}\in\Omega$ and $\mathbf{h}\in\mathbb{R}^n$, let $I=\{\,t\in\mathbb{R}\,|\,\mathbf{x}+t\mathbf{h}\in\Omega\}$ which is an open interval in \mathbb{R} , and let $g_{\mathbf{x},\mathbf{h}}:I\to\mathbb{R}$ be defined by $g_{\mathbf{x},\mathbf{h}}(t)=f(\mathbf{x}+t\mathbf{h})$, for each $t\in I$.

It is easy to have the following important connection between the multivariate function f and the one-dimensional function $g_{x,h}$ as follows.

Proposition 10. Let $f: \Omega \to \mathbb{R}$ be a function defined on an open convex set Ω in \mathbb{R}^n and let $\{g_{\mathbf{x},\mathbf{h}}\}$ be the family of functions of one variable, defined by $(\ref{eq:condition})$. Then

f is a convex function if and only if $g_{\mathbf{x},\mathbf{h}}$ are convex functions, for all $\mathbf{x} \in \Omega$ and $\mathbf{h} \in \mathbb{R}^n$.

and

f is a concave function if and only if $g_{\mathbf{x},\mathbf{h}}$ are concave functions, for all $\mathbf{x} \in \Omega$ and $\mathbf{h} \in \mathbb{R}^n$.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be of class C^2 . The gradient and the Hessian of f at $\mathbf{x} = (x_1, x_2, \cdots, x_n) \in \mathbb{R}^n$, noted $\nabla f(\mathbf{x})$ and $\nabla^2 f(\mathbf{x})$, respectively,

are defined by
$$\nabla f(\mathbf{x}) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(\mathbf{x}) \\ \frac{\partial f}{\partial x_2}(\mathbf{x}) \\ \vdots \\ \frac{\partial f}{\partial x_n}(\mathbf{x}) \end{pmatrix}$$
 and

$$\nabla^{2}f\left(\mathbf{x}\right) = \begin{pmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}}\left(\mathbf{x}\right) & \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}}\left(\mathbf{x}\right) & \cdots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}}\left(\mathbf{x}\right) \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{2}}\left(\mathbf{x}\right) & \frac{\partial^{2}f}{\partial x_{2}^{2}}\left(\mathbf{x}\right) & \cdots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{2}}\left(\mathbf{x}\right) \\ \vdots & \vdots & & \vdots \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}}\left(\mathbf{x}\right) & \frac{\partial^{2}f}{\partial x_{2}\partial x_{n}}\left(\mathbf{x}\right) & \cdots & \frac{\partial^{2}f}{\partial x_{n}^{2}}\left(\mathbf{x}\right) \end{pmatrix}. \text{ When f is of } \\ \text{class } C^{2}, \ \frac{\partial^{2}f}{\partial x_{j}\partial x_{j}}\left(\mathbf{x}\right) = \frac{\partial^{2}f}{\partial x_{i}\partial x_{j}}\left(\mathbf{x}\right), \text{ for all } i, j = 1, \cdots, n. \text{ It follows that } \\ T$$

 $\nabla^2 f(\mathbf{x})$ is a symmetric matrix, $\nabla^2 f(\mathbf{x})^T = \nabla^2 f(\mathbf{x})$.

Example 6. (a) Let $f: \mathbb{R}^3 \to \mathbb{R}$ be defined by

$$f(x_1, x_2, x_3) = 2x_1 - x_2 + 3x_3$$
. We have

$$\nabla f(x_1, x_2, x_3) = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$
 and $\nabla^2 f(x_1, x_2, x_3) = \mathbf{0}$, the zero matrix in

 $\mathbb{R}^{3\times3}$

(b) Let
$$f: \mathbb{R}^3 \to \mathbb{R}$$
 be defined by $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 - x_1x_2 + x_1x_3$. We have

$$abla f\left(x_1, x_2, x_3\right) = egin{pmatrix} 2x_1 - x_2 + x_3 \ 2x_2 - x_1 \ 2x_3 + x_1 \end{pmatrix} \text{ and }
onumber$$
 $abla^2 f\left(x_1, x_2, x_3\right) = egin{pmatrix} 2 & -1 & 1 \ -1 & 2 & 0 \ 1 & 0 & 2 \end{pmatrix}.$

Proposition 11. Let $f: \Omega \to \mathbb{R}$ be of class C^2 , where Ω is a nonempty open convex set in \mathbb{R}^n . For each $\mathbf{x} \in \Omega$ and $\mathbf{h} = (h_1, h_2, \cdots, h_n) \in \mathbb{R}^n$, let $I = \{t \in \mathbb{R} | \mathbf{x} + t\mathbf{h} \in \Omega\}$ and let $g_{\mathbf{x},\mathbf{h}}: I \to \mathbb{R}$ be defined. We have $g'_{\mathbf{x},\mathbf{h}}(t) = \nabla f(\mathbf{x} + t\mathbf{h}) \mathbf{h}$ và $g''_{\mathbf{x},\mathbf{h}}(t) = \mathbf{h}^T \nabla^2 f(\mathbf{x} + t\mathbf{h}) \mathbf{h}$. **Proof**. The differentability of f gives the existence of a function

 ε (h), defined on $\|\mathbf{h}\| < r$, such that ε (h) \to 0 as $\mathbf{h} \to 0$, and

$$f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) = \nabla f(\mathbf{x}) \mathbf{h} + ||\mathbf{h}|| \varepsilon(\mathbf{h}).$$

Now, let $t \in I$ be fixed. For all $k \in \mathbb{R}$ so that $t + k \in I$, we have

$$g_{\mathbf{x},\mathbf{h}}(t+k) - g_{\mathbf{x},\mathbf{h}}(t) = f(\mathbf{x} + (t+k)\mathbf{h}) - f(\mathbf{x} + t\mathbf{h}) = \nabla f(\mathbf{x} + t\mathbf{h})$$

= $k\nabla f(\mathbf{x} + t\mathbf{h})\mathbf{h} + |k| \|\mathbf{h}\| \varepsilon(k\mathbf{h})$

and then

$$\frac{g_{\mathbf{x},\mathbf{h}}(t+k)-g_{\mathbf{x},\mathbf{h}}(t)}{k} = \nabla f(\mathbf{x}+t\mathbf{h})\mathbf{h} + \frac{|k|}{k} \|\mathbf{h}\| \varepsilon(k\mathbf{h}).$$

Letting $k \to 0$, we have $||k\mathbf{h}|| \to 0$ which gives

$$\left| \frac{|k|}{k} \|\mathbf{h}\| \, \varepsilon(k\mathbf{h}) \right| = \|\mathbf{h}\| \, |\varepsilon(k\mathbf{h})| \to 0.$$

Therefore

$$egin{aligned} g_{\mathbf{x},\mathbf{h}}'\left(t
ight) &= \lim_{k o 0} rac{g_{\mathbf{x},\mathbf{h}}\left(t+k
ight) - g_{\mathbf{x},\mathbf{h}}\left(t
ight)}{k} \ &=
abla f\left(\mathbf{x} + t\mathbf{h}\right)\mathbf{h} = \sum_{i=1}^{n} rac{\partial f}{\partial x_{i}}\left(\mathbf{x} + t\mathbf{h}\right)h_{i} \end{aligned}$$

Now, for each $i=1,2,\cdots,n$, let $g_i(t)=\frac{\partial f}{\partial x_i}(\mathbf{x}+t\mathbf{h})$. Apply the above result for $\frac{\partial f}{\partial x_i}$ in place of f, we get

$$g_i'(t) = \sum_{j=1}^n \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right) (\mathbf{x} + t\mathbf{h}) h_j = \sum_{j=1}^n \frac{\partial^2}{\partial x_j \partial x_i} (\mathbf{x} + t\mathbf{h}) h_j$$

and then

$$g_{\mathbf{x},\mathbf{h}}''(t) = \sum_{i=1}^{n} h_{i}g_{i}'(t) = \sum_{i=1}^{n} h_{i}\sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{j}\partial x_{i}}(\mathbf{x} + t\mathbf{h}) h_{j}$$

$$= \begin{bmatrix} h_{1} & h_{2} & \cdots & h_{n} \end{bmatrix} \begin{bmatrix} \sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{j}\partial x_{1}}(\mathbf{x} + t\mathbf{h}) h_{j} \\ \sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{j}\partial x_{2}}(\mathbf{x} + t\mathbf{h}) h_{j} \\ \vdots \\ \sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{j}\partial x_{n}}(\mathbf{x} + t\mathbf{h}) h_{j} \end{bmatrix}$$

as desired.

$$= \begin{bmatrix} h_1 & h_2 & \cdots & h_n \end{bmatrix} \begin{bmatrix} \frac{\partial^2}{\partial x_1^2} (\mathbf{x} + t\mathbf{h}) & \frac{\partial^2}{\partial x_2 \partial x_1} (\mathbf{x} + t\mathbf{h}) & \cdots & \frac{\partial^2}{\partial x_n \partial x_1} \\ \frac{\partial^2}{\partial x_1 \partial x_2} (\mathbf{x} + t\mathbf{h}) & \frac{\partial^2}{\partial x_2^2} (\mathbf{x} + t\mathbf{h}) & \cdots & \frac{\partial^2}{\partial x_n \partial x_2} \\ \vdots & & \vdots & & \vdots \\ \frac{\partial^2}{\partial x_1 \partial x_n} (\mathbf{x} + t\mathbf{h}) & \frac{\partial^2}{\partial x_2 \partial x_n} (\mathbf{x} + t\mathbf{h}) & \cdots & \frac{\partial^2}{\partial x_n^2} (\mathbf{x} + t\mathbf{h}) \end{bmatrix}$$

$$= \mathbf{h}^T \nabla^2 f (\mathbf{x} + t\mathbf{h}) \mathbf{h}.$$

as desired.

We have the following multidimensional version of Theorem 2.

Theorem 12. Let $f: \Omega \to \mathbb{R}$ be a function of class C^2 on an open convex set Ω in \mathbb{R}^n . The following statements are equivalent.

- (i) f is a convex function.
- (ii) $f(\mathbf{y}) > f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} \mathbf{x})$, for all $\mathbf{x}, \mathbf{y} \in \Omega$.
- (iii) $\nabla^2 f(\mathbf{x}) > 0$, for all $\mathbf{x} \in \Omega$.

Proof. For each $\mathbf{z} \in \Omega$ and $\mathbf{h} \in \mathbb{R}^n$, $I = \{t \in \mathbb{R} | \mathbf{z} + t\mathbf{h} \in \Omega\}$, and let $g_{\mathbf{z},\mathbf{h}}: I \to \mathbb{R}$ be defined by $g_{\mathbf{z},\mathbf{h}}(t) = f(\mathbf{z} + t\mathbf{h})$, for all $t \in I$. By proposition 10, (i) is satisfied if and only if all functions $g_{\mathbf{z},\mathbf{h}}$ are convex. Using Theorem 2, the statement that $g_{\mathbf{z},\mathbf{h}}$ is convex is equivalent with the two following statements

(a)
$$g_{\mathbf{z},\mathbf{h}}(s) \geq g_{\mathbf{z},\mathbf{h}}(t) + g'_{\mathbf{z},\mathbf{h}}(t)(s-t)$$
, for all $s,t \in I$.

(b)
$$g_{\mathbf{z},\mathbf{h}}''(t) \geq 0$$
, for all $t \in I$.

By proposition 11,

$$g'_{\mathbf{z},\mathbf{h}}(t) = \nabla f(\mathbf{z} + t\mathbf{h}) \mathbf{h}$$
 và $g''_{\mathbf{z},\mathbf{h}}(t) = \mathbf{h}^T \nabla^2 f(\mathbf{z} + t\mathbf{h}) \mathbf{h}$.
Letting $\mathbf{z} = \mathbf{x}$, $\mathbf{h} = \mathbf{y} - \mathbf{x}$, $s = 1$, and $t = 0$ in (a), we have

$$f\left(\mathbf{y}\right) = g_{\mathbf{z},\mathbf{h}}\left(1\right) \ge g_{\mathbf{z},\mathbf{h}}\left(0\right) + g'_{\mathbf{z},\mathbf{h}}\left(0\right) = f\left(\mathbf{x}\right) + \nabla f\left(\mathbf{x}\right)\mathbf{h}$$

which is (ii). Letting $\mathbf{z} = \mathbf{x}$, we have $\mathbf{h}^T \nabla^2 f(\mathbf{x}) \mathbf{h} = g''_{\mathbf{x},\mathbf{h}}(0) \geq 0$, for all $\mathbf{h} \in \mathbb{R}^n$,

which implies that $\nabla^2 f(\mathbf{x}) \geq 0$, i.e., (ii) is proved. Conversely, consider the function $g_{\mathbf{z},\mathbf{h}}(t) = f(\mathbf{z} + t\mathbf{h})$, $\mathbf{z} \in \Omega$ and $\mathbf{h} \in \mathbb{R}^n$. For $s,t \in I$ by letting $\mathbf{x} = \mathbf{z} + t\mathbf{h}$ and $\mathbf{y} = \mathbf{z} + s\mathbf{h}$, we get

$$g_{\mathbf{z},\mathbf{h}}\left(s
ight) = f\left(\mathbf{z} + s\mathbf{h}
ight) \geq f\left(\mathbf{z} + t\mathbf{h}
ight) +
abla f\left(\mathbf{z} + t\mathbf{h}
ight)^{T}\left(\left(s - t
ight)\mathbf{h}
ight) = g_{\mathbf{z},\mathbf{h}}\left(t
ight)$$

whenever (ii) holds, and $g_{\mathbf{z},\mathbf{h}}''(t) = \mathbf{h}^T \nabla^2 f(\mathbf{z} + t\mathbf{h}) \mathbf{h} \ge 0$ whenever (iii) holds. Therefore, if (ii) or (iii) hold, then, by Theorem 2, $g_{\mathbf{z},\mathbf{h}}$ is a convex function and the Theorem is proved.

Conditions (iii) is used to check if f is a convex function and condition (ii) shows that a solution of the equation $\nabla f(\mathbf{x}) = \mathbf{0}$ is a global minimum of f on Ω .

As in the one-dimensional case, letting -f in Theorem 12, we get the following result for concave functions.

Corollary 13. Let $f: \Omega \to \mathbb{R}$ be a function of class C^2 on an open convex set Ω in \mathbb{R}^n . The following statements are equivalent.

- (i) f is a concave function.
- (ii) $f(\mathbf{y}) \leq f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} \mathbf{x})$, for all $\mathbf{x}, \mathbf{y} \in \Omega$.
- (iii) $\nabla^2 f(\mathbf{x}) \leq 0$, for all $\mathbf{x} \in \Omega$.

By combining these results, we have the following important result for applications.

Corollary 14. Let Ω be an open convex set of \mathbb{R}^n , let $f:\Omega\to\mathbb{R}$ be of class C^1 , i.e., all partial derivatives of f exist and are continuous continuous functions, and let $\mathbf{x}_0\in\Omega$ such that $\nabla f(\mathbf{x}_0)=\mathbf{0}$.

- (i) If f is a convex function then $x_0 = arg min f(x)$.
- (ii) If f is a concave function then $\mathbf{x}_0 = \operatorname*{arg\,max} f(\mathbf{x})$.

Example 7. Consider the quadratic form of example 6 (b), with

$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 - x_1x_2 + x_1x_3, (x_1, x_2, x_3) \in \mathbb{R}^3,$$

$$abla f(x_1, x_2, x_3) = \begin{pmatrix} 2x_1 - x_2 + x_3 \\ 2x_2 - x_1 \\ 2x_3 + x_1 \end{pmatrix} \text{ and }$$

$$abla^2 f(x_1, x_2, x_3) = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}.$$

The matrix $\nabla^2 f(x_1, x_2, x_3)$ has positive eigenvalues 2, $2 + \sqrt{2}$, and $2 - \sqrt{2}$ which shows that $\nabla^2 f(x_1, x_2, x_3) \ge 0$ and then f is a convex function. Therefore, the unique solution of the equation $\nabla f(x_1, x_2, x_3) = (0, 0, 0)$ is the global minimum of f on \mathbb{R}^3 .

Definition 15. Let $\mathbf{q} = (q_1, q_2, \dots, q_n) \in \mathbb{R}^n$ and let $A = [a_{ij}] \in \mathbb{R}^{n \times n}$.

(i) The function $f: \mathbb{R}^n \to \mathbb{R}$ defined by

$$f_{\mathbf{q}}(\mathbf{x}) = \langle \mathbf{q}, \mathbf{x} \rangle = \sum_{i=1}^{n} q_{i} x_{i} \equiv \mathbf{q}^{T} \mathbf{x},$$

for $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, is called a **linear map**.

(ii) The function $f: \mathbb{R}^n \to \mathbb{R}$ defined by

$$f_A(\mathbf{x}) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j = \mathbf{x}^T A \mathbf{x},$$

for $\mathbf{x}=(x_1,x_2,\cdots,x_n)\in\mathbb{R}^n$, is called a **quadratic form**.

Example 8. (a) The function $f(x_1, x_2, x_3) = 2x_1 - x_2 + 3x_3$ of example 6 (a) is a linear map, $f = f_{\mathbf{q}}$, with $\mathbf{q} = (2, -1, 3)$. (b) The function $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 - x_1x_2 + x_1x_3$ of example 6 (b) is a quadratic form, $f = f_A$, with

$$A = \left[\begin{array}{rrr} 1 & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & 1 & 0 \\ \frac{1}{2} & 0 & 1 \end{array} \right].$$

Remark. Let $f_A(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ be a quadratic form on \mathbb{R}^n and let $B = \frac{1}{2} (A + A^T)$. Then B is symmetric and

$$\mathbf{x}^T B \mathbf{x} = \frac{1}{2} (\mathbf{x}^T A \mathbf{x} + \mathbf{x}^T A^T \mathbf{x}) = \mathbf{x}^T A \mathbf{x},$$

since $\mathbf{x}^T A^T \mathbf{x} = (\mathbf{x}^T A^T \mathbf{x})^T = \mathbf{x}^T (A^T)^T \mathbf{x} = \mathbf{x}^T A \mathbf{x} \in \mathbb{R}^{1 \times 1}$. So we can assume that the matrix A that defines the quadratic form $f_A(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ is symmetric.

Proposition 16. Let $f_{\mathbf{q}}(\mathbf{x})$ be a linear map with $\mathbf{q} = (q_1, q_2, \cdots, q_n) \in \mathbb{R}^n$ and let $f_A(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ be a quadratic form with symmetric matrix $A = [a_{ij}] \in \mathbb{R}^{n \times n}$. We have

(i)
$$abla f_{\mathbf{q}}(\mathbf{x}) = \mathbf{q}$$
 and $abla^2 f_{\mathbf{q}}(\mathbf{x}) = \mathbf{0}$, for all $\mathbf{x} \in \mathbb{R}^n$.

(ii)
$$\nabla f_A(\mathbf{x}) = 2A\mathbf{x}$$
 and $\nabla^2 f_A(\mathbf{x}) = 2A$, for all $\mathbf{x} \in \mathbb{R}^n$.

Proof. (i) The identity $f_{\mathbf{q}}(\mathbf{x}) = q_1 x_1 + \dots + q_i x_i + \dots + q_n x_n$ gives $\frac{\partial f_{\mathbf{q}}}{\partial x_i}(\mathbf{x}) = q_i$, for all $i = 1, 2, \dots, n$, and $\frac{\partial^2 f_{\mathbf{q}}}{\partial x_j \partial x_i}(\mathbf{x}) = 0$, for all $i, i = 1, 2, \dots, n$.

(ii) Since
$$\frac{\partial}{\partial x_k}(x_i x_j) = 0$$
, when $k \neq i, j$, $\frac{\partial}{\partial x_k}(x_k x_j) = x_j$, when $i = k \neq j$, and $\frac{\partial}{\partial x_k}(x_k x_k) = 2x_k$, it follows from the identity $f_A(\mathbf{x}) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$ that, for each $k = 1, 2, \dots, n$,

$$\frac{\partial f_{A}}{\partial x_{k}}(\mathbf{x}) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \frac{\partial}{\partial x_{k}}(x_{i}x_{j}) = \sum_{i=1}^{n} \left(a_{ik} \frac{\partial}{\partial x_{k}}(x_{i}x_{k}) + \sum_{j\neq k} a_{ij} \frac{\partial}{\partial x_{k}}(x_{i}x_{k}) + \sum_{j\neq k} a_{ij} \frac{\partial}{\partial x_{k}}(x_{i}x_{k}) + \sum_{i=1}^{n} \left(\sum_{j\neq k} a_{ij} \frac{\partial}{\partial x_{k}}(x_{i}x_{j})\right) = 2a_{kk}x_{k} + \sum_{i\neq k} a_{ik}x_{i} + \sum_{j\neq k} a_{kj}x_{j} = 2\sum_{i=1}^{n} a_{ki}x_{i}$$

which is the k-th row of $2A\mathbf{x}$. Hence, $\nabla f_A(\mathbf{x}) = 2A\mathbf{x}$. Now, by (4), $\frac{\partial f_A}{\partial x_k}(\mathbf{x})$ is a linear function with $\mathbf{q} = (2a_{k1}, 2a_{k2}, \cdots, 2a_{kn})$, the k-th row of 2A. By (i), $\frac{\partial^2 f_A}{\partial x_l \partial x_k}(\mathbf{x}) = a_{lk}$, for each $l, k = 1, 2, \cdots, n$, which gives $\nabla^2 f_A(\mathbf{x}) = 2A$ as desired.

Finally, consider a matrix $A \in \mathbb{R}^{N \times n}$, with $n \leq N$, rank A = n, and a vector $\mathbf{b} \in \mathbb{R}^N$. Let the function $f : \mathbb{R}^n \to \mathbb{R}$ be defined by $f(\mathbf{x}) = \|A\mathbf{x} - \mathbf{b}\|^2$. We have

$$f(\mathbf{x}) = \langle A\mathbf{x} - \mathbf{b}, A\mathbf{x} - \mathbf{b} \rangle = (A\mathbf{x} - \mathbf{b})^{T} (A\mathbf{x} - \mathbf{b})$$

$$= (\mathbf{x}^{T} A^{T} - \mathbf{b}^{T}) (A\mathbf{x} - \mathbf{b})$$

$$= \mathbf{x}^{T} A^{T} A\mathbf{x} - \mathbf{b}^{T} A\mathbf{x} - \mathbf{x}^{T} A^{T} \mathbf{b} + \mathbf{b}^{T} \mathbf{b}$$

$$= \mathbf{x}^{T} (A^{T} A) \mathbf{x} - (2\mathbf{b}^{T} A) \mathbf{x} + \mathbf{b}^{T} \mathbf{b},$$

since $\mathbf{b}^T A \mathbf{x} = \mathbf{x}^T A^T \mathbf{b}$. Therefore $\nabla f(\mathbf{x}) = 2 (A^T A) \mathbf{x} - 2A^T \mathbf{b}$ and $\nabla^2 f(\mathbf{x}) = 2 (A^T A)$. Since $\mathbf{h}^T \nabla^2 f(\mathbf{x}) \mathbf{h} = 2 [\mathbf{h}^T (A^T A) \mathbf{h}] = 2 [(\mathbf{h}^T A^T) (A \mathbf{h})] = 2 ||A \mathbf{h}||^2 \ge 0$, for all $\mathbf{h} \in \mathbb{R}^N$, the Hessian $\nabla^2 f(\mathbf{x})$ is a positive semidefinite matrix. Moreover, $rank(A^T A) = n$ implies that the matrix $A^T A$ is invertible.

Hence, the solution $\mathbf{x} = (A^T A)^{-1} A^T \mathbf{b}$ of the equation $\nabla f(\mathbf{x}) = \mathbf{0}$ is the global minimum of f.

We state this result in the following theorem for future applications.

Theorem 17. Let a matrix $A \in \mathbb{R}^{N \times n}$, with $n \leq N$, so that rank $A = n = \min(N, n)$, and let $b \in \mathbb{R}^N$. We have

$$(A^T A)^{-1} A^T \mathbf{b} = \underset{\mathbf{x} \in \mathbb{R}^n}{\operatorname{arg \, min}} \|A\mathbf{x} - \mathbf{b}\|^2.$$

Example 9. Let $\mathbf{b} = (2, 2, 5, 8) \in \mathbb{R}^4$ and let

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix} \in \mathbb{R}^{4 \times 2}.$$

It is easy to see that $\dim(col(A)) = 2 = rank(A) = \min(4, 2)$,

$$A^T A = \begin{bmatrix} 4 & 10 \\ 10 & 30 \end{bmatrix}$$
 is an invertible matrix, and

$$(A^{T}A)^{-1}A^{T}\mathbf{b} = \begin{bmatrix} 4 & 10 \\ 10 & 30 \end{bmatrix}^{-1} \begin{bmatrix} 17 \\ 53 \end{bmatrix} = \begin{bmatrix} -1 \\ 2.1 \end{bmatrix}. \text{ Hence}$$

$$(-1, 2.1) = \underset{\mathbf{x} \in \mathbb{R}^{2}}{\text{arg min }} \|A\mathbf{x} - \mathbf{b}\|^{2}.$$

Now, with

$$A = \begin{bmatrix} 1 & 1 & 1^2 \\ 1 & 2 & 2^2 \\ 1 & 3 & 3^2 \\ 1 & 4 & 4^2 \end{bmatrix} \in \mathbb{R}^{4 \times 3}.$$

We have
$$\dim(col(A)) = 3 = rank(A) = \min(4,3)$$
,
 $A^{T}A = \begin{bmatrix} 4 & 10 & 30 \\ 10 & 30 & 100 \\ 30 & 100 & 354 \end{bmatrix}$ is an invertible matrix, and

$$(A^T A)^{-1} A^T \mathbf{b} = \begin{bmatrix} 4 & 10 & 30 \\ 10 & 30 & 100 \\ 30 & 100 & 354 \end{bmatrix}^{-1} \begin{bmatrix} 17 \\ 53 \\ 183 \end{bmatrix} = \begin{bmatrix} 2.75 \\ -1.65 \\ 0.75 \end{bmatrix}.$$

Hence

$$(2.75, -1.65, 0.75) = \underset{\mathbf{x} \in \mathbb{R}^3}{\operatorname{arg min}} \|A\mathbf{x} - \mathbf{b}\|^2.$$