Année universitaire: 2017/2018

TD4

Formation Initiale / 1ère Année CI

« MMC » Prof. – B. KISSI

EXERCICE 1:

Soit l'état de contraintes schématisé ci-contre sur le cube élémentaire d'arête parallèles aux axes choisis.

1- Ecrire le tenseur de contrainte correspondant $\overline{\overline{\sigma}}_{ij}$.

2- décomposer ce tenseur en la somme d'une partie hydrostatique $\overline{\sigma}_m$ et d'une partie déviatoire \overline{S}_{ij} .

3- En diagonalisant la matrice $\overline{\sigma}_{ij}$, calculer les trois contraintes principales de cet état de contrainte.

4- \vec{x}_3 est l'une des directions principales car la facette de normale \vec{x}_3 ne subit aucune cission. Dans le plan de Mohr (σ, τ) , tracer le centre de Mohr lieu des vecteurs contraintes sur les facettes dont les normales sont dans le plan (\vec{x}_1, \vec{x}_2)

5- Tracer les deux autres cercles de Mohr.

EXERCICE 2:

En un point M d'un milieu continu, la matrice du tenseur des contraintes de Cauchy dans une base cartésienne orthonormée $B = (\vec{e}_1, \vec{e}_2, \vec{e}_3)$ est donnée par :

$$\sigma = \begin{bmatrix} 0.7\alpha & 3.6\alpha & 0 \\ 3.6\alpha & 2.8\alpha & 0 \\ 0 & 0 & 7.6 \end{bmatrix}$$

Avec : α une constante

1- Calculer les contraintes principales.

2- Déterminer les valeurs de α correspondant à un état de contrainte de révolution.

3- On pose $\alpha = 1$.

a- Déterminer les vecteurs propres en M.

b- Dessiner les cercles de Mohr.

- c- Calculer la contrainte pour la direction $\vec{n} = \frac{\sqrt{3}}{2}\vec{e}_1 + \frac{1}{2}\vec{e}_2$.
- d-Déterminer la valeur de la contrainte de cisaillement maximum T_{lm} .

EXERCICE 3:

- 1- A l'aide des équations de Lamé, reconstituer l'expression de la matrice 6×6 des constantes élastiques d'un matériau isotrope en fonction des deux coefficients de Lamé λ et μ .
- 2- A l'aide des relations de Young, reconstituer l'expression de la matrice 6×6 des souplesses d'un matériau isotrope en fonction des deux coefficients E et ν .

Sachant que:

$$E = \frac{\mu(3\lambda + 2\mu)}{\lambda + \mu} \; ; \; \nu = \frac{\lambda}{2(\lambda + \mu)} \; ; \; \lambda = \frac{E. \, \nu}{(1 + \nu)(1 - 2\nu)} \; ; \; \mu = \frac{E}{2(1 + \nu)}$$

EXERCICE 4:

En un point M d'un solide, dans le repère orthonormé $\{\vec{i}, \vec{j}, \vec{k}\}$, le tenseur des contraintes a pour valeur :

$$[\sigma(M)] = \begin{bmatrix} 80 & -40 & 0 \\ -40 & 120 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ MPa}$$

- 1. Faire un dessin qui montre la signification physique des composantes du tenseur des contraintes.
- 2. Calculer les contraintes principales et les directions principales.
- 3. Faire un dessin qui montre la signification physique des contraintes et des directions principales.
- 4. Calculer les contraintes équivalentes de Von Mises et Tresca.