멀티미디어

2024.

무단배포 금지 : 저작권 : 한빛아카데미(주)

목차

- 1. 디지털 시대의 변화
- 2. 멀티미디어 시스템
- 3. 멀티미디어 표준
- 4. 지식 재산권

멀티미디어 과제

- 자유 주제 선정
- 멀티미디어 제작, 발표
- 팀: 2~4명으로 구성
- 발표: 기말고사 전 2주간
- 예: 2023 가야역사문화 멀티미디어 공모전
 - https://youtu.be/R2VceP0v6Ps?si=eOK6ywp--8fvxb-G
 - 최우수상: https://youtu.be/003S8vvQ8EA?si=1QtbnrY1VQ5lyJZU
 - 공모전 찾아서 참여

01. 디지털 전환 시대의 새로운 변화

■ 디지털 전환 시대

- 디지털 전환
 - 최근의 ICT 환경 에서 나타나는 변화는 정보화라는 용어로 표현하기 불가능함
 - 과거의 아날로그 시대에 정보화는 컴퓨터로 사무 처리를 하던 전산화를 의미했으나 현재에는 구시대적 용어
 - 현시대는 빅데이터를 기반으로 하여 컴퓨터가 스스로 학습하고 사람들에게 필요한 것을 알아서 찾아내는 시대

그림 2-1 디지털 기술을 이용한 디지털 전환

• 4차 산업혁명: 디지털 혁명이 우리의 삶에 접목되면서 나타나는 산업 구조의 변화

<u>산업혁명: https://youtu.be/srVkjW9kOwo?si=TIP8vyk2i5oW3WeX</u>

01. 디지털 전환 시대의 새로운 변화

■ 디지털 개념의 특징

- 디지털 개념
 - 통합성: 텍스트, 이미지, 사운드, 그래픽, 애니메이션, 동영상 등 다양한 아날로그 미디어가 디지털로 통합
 - 복제성 : 디지털 복제만들어진 결과물은 정보의 손실·변형·손상 없이 무한정으로 저장· 복제·변환할 수 있음
 - 전파성: 디지털 콘텐츠 유통 방식, 인터넷상에서 추가 비용 없이 무한대로 복제 및 전파가 가능
 - 저장성 : 디지털 정보는 독립적으로 존재할 수 없고 하드디스크, 메모리 등의 디바이스에 저장
 - 연결성: 디지털의 통합성, 복제성, 전파성, 저장성은 연결성이라는 네트워크 특성으로 수렴
 - 비경합성 : 다수가 제한을 받지 않고 동시에 서비스를 사용할 수 있음
 - 공유성 : 인터넷 환경에서 수월한 공유, 연결, 유통을 극대화하기 위해서 표준화된 플랫폼으로 발전
 - 유동성 :인터넷 연결, 단절, 재연결의 용이성으로 상호 결합과 분리가 쉬워짐
 - 지능화 : 빅데이터와 프로세스가 결합되어 자동화로 발전 →인공지능과 로봇으로 대표되는 지능화 형태로 완성

■ 디지털 기술과 소비자의 변화

- 개인의 역량 강화
 - 전문성 대중화와 지식 생산 참여로 소비자들이 지식과 지혜를 공유하고 영향력을 행사하기가 쉬워짐
 - 크라우드 소싱: 'crowd(대중)'와 'outsourcing(아웃소싱)'의 합성어 기업의 생산과 서비스 과정에 대중을 참여시켜 아이디어를 얻는 것
 - 집단 지성: 다수가 서로 협동하거나 경쟁하여 쌓은 지적 능력의 결과로 얻은 집단적 능력

■ 개인의 영향력 행사

- 전문성을 쉽게 획득한 사람들은 온라인 환경을 효과적으로 활용 (SNS, 유튜브, 아프리카TV 등 개인 미디어)
- 인플루언서 마케팅: 소비자들이 연예인보다 인터넷을 통해 접한 셀렙,인플루언서의 영향을 많이 받는 데 기인

■ 소셜 러닝

- 학습에 SNS를 결합한 교육 방식
- SNS와 디지털 생태계에서 수많은 콘텐츠를 접하며 필요한 것을 수집하며 소셜러닝을 반복적으로 경험
- 인간은 타인의 행동을 관찰하고 모방하면서 학습하기 때문에 SNS는 지식을 습득하는 새로운 사회적 공간

■ Z세대의 등장

- Z세대의 개념 (디지털 네이티브)
 - 1995~2005년에 출생한 10대와 20대 초반을 말함
 - 전 세계 인구(77억 명)의 32%, 우리나라 인구의 12.5%를 차지

■ Z세대의 특징

- 인터넷이 보편화된 환경에서 태어나 10대 때 스마트폰을 접함
- 유튜브, 트위치, 넷플릭스 등의 동영상 콘텐츠 소비 비중이 높음
- 모든 정보의 공개·공유와 자유로운 검색을 보장하는 투명성을 신봉
- SNS로 소통하며 유행에 민감

표 2-1 세대 분류와 특징

• 간결함과 신속함을 선호

https://youtu.be/hpY38gG1A4E?si=zQjO403HS4oWCG-w

세대 범위 특징 소비 대신 저축을 중시함 베이비붐 세대 1955~1964년 출생 XM대 1965~1979년 출생 중간적인 성향 Y세대 1981~1995년 출생 다른 세대보다 ICT 활용력이 탁월함 밀레니얼 세대 1980년대 초~2000년대 초 출생 자기중심적 소비, 가치 소비 1995~2004년 출생 Z세대 SNS와 동영상을 선호하는 디지털 네이티브

■ 디지털 시대의 비즈니스와 마케팅

- 세대별 소비 패턴
 - 베이비붐 세대
 - 우리나라의 경제 성장을 이끌어 절대적 빈곤에서 벗어 나는 데 일조
 - 성장 과정에서 가난과 IMF 경제 위기 등을 경험하여 소비보다 저축을 중시
 - 재테크를 통해 자산을 늘려 보유 자산 중 부동산이 차지하는 비중이 높음
 - 밀레니얼 세대
 - 장시간 노동보다 일과 삶의 균형을 맞추는 워라밸 문화
 - 가격 대비 마음의 만족을 추구 하는 소비 형태인 가심비, 맞춤형 소비, 혼술, 혼밥, 혼행 등의 나홀로 소비
 - 조직보다 개인의 자유를 중시하고, 내 집 마련과 미래를 위한 저축보다는 현재를 즐기는 욜로족이 많음
 - 파이(P.I.E) 세대
 - 개성, 자기 계발 투자, 경험에 중점을 두고 소비하는 20~30대 청년층
 - 현재의 행복을 위해 소비하는 욜로족과 유사
 - 명품, 여행, 수입차 등의 소비로 자존감을 높이고, 이러한 비용을 마련하기 위해 연애와 결혼도 하지 않으려 함
 - 소유보다 합리적인 공유를 지향하고 즉흥적인 소비에 집중

■ 디지털 시대의 비즈니스와 마케팅

- 세대별 소비 패턴
 - 뉴트로
 - 레트로: 중장년층이 과거에 경험했던 것을 그리워하여 나타난 복고 문화 현상
 - 뉴트로: 현대적인 감성으로 복고 문화를 새롭게 즐기는 경향
 - 뉴트로의 주체는 10~20대로 자신이 경험하지 못한 옛 것에서 신선함을 느껴 새로운 방식으로 재해석하고 소비

베이비붐 세대

X세대

밀레니엄 세대

Z세대

그림 2-5 세대별 변화

■ 디지털 시대의 비즈니스와 마케팅

- 디지털 시대의 마케팅
 - 스타벅스의 마케팅
 - 스타벅스는 블록체인 기술로 원두의 이력을 관리
 - 전 세계 매장의 커피 머신을 사물 인터넷과 클라우드로 연결하여 실시간으로 레시피를 공유
 - 소비자의 취향을 분석하여 인공지능으로 특정 시간대에 개인에게 맞는 메뉴를 추천
 - 바이럴 마케팅
 - 소비자의 관심을 끄는 애니메이션이나 동영상과 같은 콘텐츠를 제작하여 유튜브 등 온라인 플랫폼에 게재
 - 콘텐츠에 기업명이나 제품을 자연스럽게 삽입하여 간접 광고를 하고, 소비자들이 이를 공유하고 전달
 - TV, 잡지 등을 통한 기존의 광고보다 비용이 저렴하면서도 효과가 크기 때문에 빠르게 확산
 - 인플루언서 마케팅
 - 인플루언서
 - 소셜 미디어에서 수많은 팔로워를 확보하여 대중에게 영향력을 행사 하는 사람 (펭수, 백종원)
 - 패션, 여행, 스포츠 등 다방면에서 막강한 영향력을 과시
 - 인플루언서는 한 걸음 더 나아가 자신의 브랜드를 단 제품을 직접 제작하여 판매
 - 팔로워는 인플루언서에게 강한 동질감을 느끼는 만큼 제품,서비스에 문제가 생기면 바로 배신감과 불만을 가짐
 - 명확한 광고 표시 없이 제품이나 서비스를 홍보하기 때문에 팔로워를 기만하는 행위가 될 소지가 있음

- 스마트 미디어와 소통 방식의 변화
 - SNS와 스마트 폰이 결합된 새로운 소통 방식
 - SNS의 기술적 장점인 관계 맺기와 인터넷을 통한 개방적 소통의 효율성을 배경으로 이루어짐
 - 소통 미디어는 단순한 기술이 아니라 타인과의 소통 도구이자 의사 표현의 매개체
 - 일부에 나타나는 비도덕성, 방종, 무책임 등이 사이버 공론장의 정당성을 파괴
 - 새로운 소통방식의 특징
 - 유무선 인터넷의 통합으로 소통의 접근성이 강화
 - 이용자가 급증하여 정보 공유의 공간이 확장
 - 언제 어디서나 개방과 참여를 통한 상호작용이 가능
 - 새로운 소통방식의 단점
 - 급격한 기술 변화로부터 소외된 사람들에게 스마트폰은 불안감과 두려움을 주는 디지털 스트레스로 작용
 - 집단화와 패거리 의식의 확산으로 사이버 공론장이 양분
 - 같은 생각을 가진 사람들끼리의 왜곡된 소통이 활성화됨으로써 사회 발전에 악영향을 끼침
 - 스마트폰과 SNS 사용자의 개인 정보 보안 문제가 새롭게 대두

- 스마트 미디어 이용 형태의 변화
 - 1단계: 기술이 지배하는 시기
 - 모바일 기기의 기술 자체에 대한 신선함이 작용하는 시기
 - 이 시기에는 기술을 홍보하기 위한 콘텐츠가 많이 생산
 - 2단계: 사용자가 지배하는 시기
 - 모바일 기기가 어느 정도 확산되면 신선함이 사라지고 본격적으로 모바일 기기가 제공하는 기술을 이용
 - 사용자는 기술보다 서비스와 콘텐츠에 관심을 갖고 재미와 흥미를 찾음
 - 사용자가 중심이기 때문에 사용자들의 취향과 요구에 부응하는 콘텐츠가 생산, 사용성에 대한 평가가 이루어짐
 - 3단계: 사용자가 지배당하는 시기
 - 모바일 기기가 중심이 되는 시기
 - 모바일 기기에 종속되어 심리적으로 몰입 상태에 빠지는 시기, 심각해지면 중독 상태에 이르게 됨
 - 사용자의 몰입 상태를 유지하기 위한 콘텐츠가 지속적으로 제공
 - 현재 우리 사회는 2단계에서 3단계로 진입한 상태

- 스마트 미디어 환경의 순기능
 - 빠른 정보 수집
 - 영향력과 여론 형성
 - 개인의 콘텐츠 생산 및 배포
 - 개인과 사회의 융합 촉진
- 스마트 미디어 환경의 역기능
 - 정보의 신뢰 하락
 - 개인 정보 노출
 - 정보 격차 현상
 - 사이버 명예훼손과 모욕
 - 관심병 환자의 급증
 - 스마트폰 과의존

- 스마트폰 증후군
 - 노모포비아
 - 스마트폰을 내려놓는 순간부터 발생하는 심리적 불안과 공포감을 의미
 - 스마트폰 사용이 보편화되면서 스마트폰 의존성은 전 연령대에서 고르게 나타남
 - 스마트폰 과의존의 속성
 - 현저성: 스마트폰 사용이 일상에서 가장 우선시되고 중요한 활동이 됨
 - 조절 실패: 스마트폰 이용 수준을 스스로 조절하기 어렵다.
 - 문제적 결과: 주변 사람과의 갈등, 신체적 불편, 가정·학교·직장 생활의 어려움이 있는 상태

표 2-2 스마트폰 과의존에 따른 증상

증상	개념	
거북목 증후군	나쁜 자세로 모니터를 오랫동안 들여다보는 경우에 목이 거북 목처럼 앞으로 구부러지는 증상	-
VDT 증후군	전자기파가 인체에 일으키는 육체적 · 심리적 각종 장해	-
안구 건조증	눈 질환, 시력 저하	
스몸비	스마트폰을 보기 위해 고개를 숙이고 걷는 사람, 스마트폰 좀비(smart phone zombie)의 줄임말	- ttps://youtu.be/k4DeaAr0VsE?si=32DoLG8Pmcs58
정신적 질환	주의력 장애, 불안 증세	-
카페인 우울증	카카오스토리, 페이스북, 인스타그램 등에서 타인의 행복한 일상을 보며 상 대적인 박탈감과 상실감을 느낌	
사이버 불링	사이버상에서 특정인을 집단적으로 따돌리거나 괴롭히는 행위	
손목터널 증후군	잦은 클릭으로 손목이 찌릿찌릿하고 뻐근한 증상	-
유아 스마트폰 증후군	아이가 엄마 품보다 스마트 기기를 가지고 놀 때 더 편하게 느끼는 현상	

- 스마트폰 증후군
 - 디지털 디톡스
 - 트렌드에 예민한 예능 프로그램에서도 핸드폰, 인터넷, TV 없이 생활하기에 도전하는 모습을 보여줌
 - 스마트폰에 대한 의존도를 줄이기 위해 도와주는 다양한 어플도 등장
 - 디지털 디톡스를 위한 온라인 명상 영상과 관련 어플도 인기가 있음
 - 기업: 디지털 디톡스를 위한 제품을 출시하고 이를 마케팅에 이용
 - 통신 업체: 데이터를 차단하는 요금제, 통화와 문자만 가능한 제품, 최소한의 기능만 탑재한 제품 등을 판매

멀티미디어 시스템

- 1. 멀티미디어 시스템
- 2. 2. 멀티미디어 시스템의 하드웨어
- 3. 3. 멀티미디어 시스템의 소프트웨어
- 4. 4. 멀티미디어 환경을 변화시킨 스마트 기기

1.1 멀티미디어 시스템

■멀티미디어 시스템의 개요

- 멀티미디어 정보는 더욱 다양하고 복잡해지고 대용량화 되고 있음
- 정보를 빠르고 효율적으로 처리하고 전달하는 작업을 처리하는 컴퓨터 또는 디지털 기기를 통칭하는 말
- 예전에는 컴퓨터를 멀티미디어 시스템이라고 정의했지만, 최근에는 스마트폰과 태블릿 PC 같은 스마트 미디어들도 포함시킴

그림 3-1 멀티미디어 시스템 환경

1.1 멀티미디어 시스템

** 여기서 잠깐 개인용 컴퓨터(PC)가 사라진다?

많은 사람들이 향후 멀티미디어 환경에서 데스크톱 컴퓨터는 사라지고 노트북에 키보드와 모니터를 연결해서 사용할 것이라고 전망한다. 데스크톱 컴퓨터는 특정 목적을 가진 사람들이 전문적으로 사용하거나 업무 용도로만 사용할 거라는 예상이다. 2013년 세계 1위 PC 메이커인 중국 레노버의 PC 판매량이 스마트폰과 태블릿 PC 판매량에 추월당한 사례와 휴렛 페커 드사(HP)가 PC 판매 부진으로 허덕이고 있는 상황을 보면 맞는 예상인 듯 보인다. 실제 PC 판매가 부진한 이유는 소비자들이 새로운 PC를 구매하거나 부품을 교체하는 대신 저렴한 태블릿이나 스마트폰을 구입하면서 나타난 현상이다.

그러나 현재 PC는 어느 기기보다 가정용으로 꾸준히 사용되고 있으며 진화하고 있다. PC는 노트북이나 태블릿보다 속도가 훨씬 빠르다. 크기가 작아져서 공간을 많이 차지하는 단점도 개선되었고, 애플의 아이맥처럼 본체와 모니터가 통합된 PC도 출시되었다. 2013년 미국에서 발간된 포브스 인터넷판에 따르면 적어도 향후 10년 안에 개인용 컴퓨터(PC)가 집 안에서 사라지는 일은 없을 것이라고 한다. 빌 게이츠는 "데스크톱 컴퓨터가 한물갔다고 하지만, 다른 형태의 컴퓨팅 기기는 여전히 최상의 잠재력을 지닌 채 발전하고 있다. PC의 시대는 이제부터 시작이다"라고 한 바도 있다.

■물리적 관점의 멀티미디어 시스템

• 하드웨어, 소프트웨어, 멀티미디어 콘텐츠 영역으로 구성

1.2 멀티미디어 시스템의 구성 요소 - 물리적 관점

■하드웨어

• 프로세서(Processor)와 메모리(Memory), 입력장치, 출력장치, 저장장치, 미디어 처리장치, 통신장치 등으로 구성

■ 소프트웨어

- 시스템 소프트웨어와 응용 소프트웨어로 구분
- 시스템 소프트웨어
 - ▶ 운영체제 : 시스템 소프트웨어 중 가장 핵심이 되는 프로그램, 사용자가 쉽게 사용할 수 있도록 인터페이스 제공
 - ▶ 데이터베이스 시스템: 데이터를 검색하거나 갱신, 삽입, 삭제할 수 있음
 - ▶ I/O 장치 드라이버 : 다양한 종류의 하드웨어를 제어
 - ▶ 통신 프로토콜 : 컴퓨터끼리 통신할 수 있도록 정의한 양식 또는 규칙
- 응용 소프트웨어
 - ▶ 사용자가 원하는 목적에 따라 시스템에게 작업을 지시하기 위한 프로그램
 - ▶ 미디어 편집 소프트웨어, 저작도구, 응용 프로그램 등으로 구성

1.2 멀티미디어 시스템의 구성 요소 - 물리적 관점

■멀티미디어 콘텐츠

• 소프트웨어를 사용하여 원하는 콘텐츠를 생성하거나 멀티미디어 시스템에 설치된 콘텐츠를 실행하는 영역

그림 3-2 멀티미디어 시스템의 구성 요소 - 물리적 관점

1.3 멀티미디어 시스템의 구성 요소 – 작업 특성별 관점

- ■작업 특성별 관점의 멀티미디어 시스템
 - 디바이스 영역, 시스템 영역, 어플리케이션 영역으로 구성

■디바이스 영역

- 이미지, 사운드, 비디오 같은 정보를 처리하기 위한 영역
- 각종 디바이스에서 들어오는 신호를 디지털 데이터로 처리하고, 디지털 신호는 아날로그 신호로 변조함

■시스템 영역

- 운영체제
- 데이터베이스
- 통신 시스템

1.3 멀티미디어 시스템의 구성 요소 – 작업 특성별 관점

■어플리케이션 영역

- 멀티미디어 데이터를 다루기 위한 각종 프로그램들이 속해 있는 영역
- 저작도구, 컴파일러, 사용자 측면의 응용 프로그램들이 이 영역에 속함

그림 3-3 멀티미디어 시스템의 구성 요소 – 작업 특성별 관점

■시스템 구성 요소

• 프로세서, 기억장치, 저장장치, 입출력장치, 저장장치, 미디어 처리장치

■프로세서(Processors, CPU)

• 컴퓨터에서 가장 중요한 부분으로 컴퓨터에서 실행되는 모든 작업을 처리

■프로세서의 구성

- 제어장치(CU, Control Unit) : 명령어의 해독과 처리에 관련된 순서를 제어
- 연산장치(ALU, Arithmetic and Logical Unit) : 각종 산술 연산과 논리 연산을 담당
- 버스(Bus) : 데이터 전송을 담당
- 레지스터(Register)와 캐시 메모리(Cache Memory): 처리할 데이터를 임시로 기억

■프로세서의 발전 과정

- 1세대: 클럭 속도가 프로세서의 성능을 나타내는 절대적인 기준
- 2세대: 하나의 프로세서에 두 개 이상의 코어를 넣은 다중 코어(Multi Core) 프로세서
 - ▶ 2005년 인텔은 두 개의 코어를 가진 듀얼 코어 CPU(코드명 린필드)를 장착한 '펜티엄 D(Pentium D)' 출시
- 3세대 : 칩의 집적도 향상과 함께 코어의 개수를 증가시켜 한층 더 강력한 연산능력을 발휘
- 4세대: 수치적인 연산능력보다 그래픽 부분의 구동 능력을 향상시킴
 - ▶ 하스웰을 토대로 고성능 태블릿 PC의 가능성을 열게 됨
- 5세대 : 모바일용 프로세서 중 저전력에 특화된 제품 출시
 - ▶ 인텔은 IDF2013에서 차세대 모바일용 프로세서인 브로드웰 Y를 공개

■ 인텔 제품군 (참조 : 나무위키)

공식 홈페이지 설명(2023년 9월 기준)				
인텔 코어 i9 프 원활한 4K 울트라 HD 및 360도 비디오, 강력한 게임 플레이 로세서 멀티태스킹 성능을 위해 최대 24개의 코어를 제공합니다.				
인텔 코어 i7 프	이 CPU는 하이엔드 게이밍, 연결성, 보안을 지원하는 가속 컴퓨			
로세서	팅을 위해 최대 20개의 코어를 제공합니다.			
인텔 코어 i5 프	게이밍, 창의성, 멀티태스킹을 위한 최대 14개의 코어로 가정 및			
로세서	비즈니스 PC에서 뛰어난 성능을 경험하십시오.			
인텔 코어 i3 프	가치가 집약된 이 프로세서는 일상 작업을 위한 뛰어난 성능을			
로세서	제공합니다.			
인텔 코어 X-시	최대 18개의 코어를 제공하는 언락 CPU로 최고의 익스트림 게			
리즈 프로세서	임, 창의적인 제작 및 멀티태스킹이 가능합니다.			

■프로세서의 모델을 확인하는 방법

그림 3-5 인텔 코어 i7-4770K 프로세서 모델명의 속성

■기억장치 계층구조

- 임시 기억장치(캐시 메모리, 레지스터), 주기억장치, 보조기억장치로 구분
- 기억장치들을 성능(Performance), 용량(Capacity), 비용(Cost) 등에 따라 적절히 배치하면 시스템 처리 능력 향상
- 하위 기억장치로 내려갈수록 속도는 느려지지만 기억용량은 커지고 비용은 적게 듦

그림 3-6 기억장치 계층구조

■주기억장치

• 메모리의 기능에 따라 램(RAM)과 롬(ROM)으로 구분

▶램

- ✓ 사용자가 기억된 내용을 변경할 수 있음
- ✓ 전원이 꺼지면 저장된 내용이 사라지는 휘발성(Volatility) 메모리
- ✔메모리의 구조에 따라 정적 램(SRAM, Static RAM)과 동적 램(DRAM, Dynamic RAM)으로 구분
- ✓ 정적 램은 전원이 공급되는 동안 기억된 내용이 유지됨
- ✔ 동적 램은 전원이 공급되어도 시간이 지나면 기억된 내용이 소멸되므로 주기적으로 충전(Refresh)해야 함

≽롬

- ✓내용 변경이 불가능
- ✓ 전원이 꺼져도 저장된 내용이 사라지지 않는 비휘발성(Nonvolatile) 메모리

■주기억장치의 성능

• 기억 용량과 동작 속도에 의해서 평가됨

표 3-2 기억 용량 단위와 동작 속도 단위

(a) 기억 용량 단위

단위	크기	저장용량
KB(킬로바이트, Kilo Byte)	10³	$1024^1 = 2^{10}$
MB(메기버이트, Mega Byte)	10 ⁶	$1024^2 = 2^{20}$
GB(기月世)り트、Giga Byte)	10 ⁹	$1024^3 = 2^{30}$
TB(테라비이트, Terra Byte)	10 ¹²	$1024^4 = 2^{40}$
PB(페타비이트, Peta Byte)	10 ¹⁵	$1024^5 = 2^{50}$
EB(엑시비이트, Exa Byte)	10 ¹⁸	1024 ⁶ = 2 ⁶⁰
ZB(제타비이트, Zetta Byte)	10 ²¹	$1024^7 = 2^{70}$
YB(요타바이트, Yotta Byte)	10 ²⁴	$1024^8 = 2^{80}$

(b) 동작 속도 단위

단위	크기
ms(밀리세컨드, milli second)	10 ⁻³
μs(마이크로세컨드, micro second)	10 ⁻⁶
ns(나노세컨드, nano second)	10 ⁻⁹
ps(피코세컨드, pico second)	10 ⁻¹²
fs(펨토세컨드, femto second)	10 ⁻¹⁵
as(아토세컨드, atto second)	10 ⁻¹⁸
zs(젭토세컨드, zepto second)	10 ⁻²¹
ys(욕토세컨드, yocto second)	10 ⁻²⁴

■램

- PC용 DRAM
 - ▶ 1971년에 개발되어 3년 주기로 집적도가 4배씩 향상
 - ▶ 2000년 이후 이전의 SDR-SDRAM보다 성능이 2배씩 향상된 DDR1 → DDR2 → DDR3 → DDR4 출시
 - ▶ DDR4 메모리는 2015년 이후 시장에 등장하여 2016년 이후에 완전한 전환
 - ▶ 2013년 8월말 삼성전자는 서버용으로 20나노급 16Gb DDR4 모듈과 20나노급 32Gb DDR4 모듈 생산을 시작
 - > 2020 ~: DDR5
 - ▶ 2024 : DDR6 표준 → 출시 예상 2025년 말 ~ 2026년
 - ▶ 참고 : GPU용 DRAM : GDDR

(b) 롬(ROM)

참고 : MS OS별 메인메모리 용량

OS 기준 설명표	DOS	Win 1.x~3.x	Win95	Win98~Me	WinNT 3.x~4.0	Win2k~XP	Vista~7	Win8.x	Win10	Win11
~640 kB		0				Х				
~16 MB			C)				Х		
~64 MB		<u>_</u> [12]			0			Х		
~256 MB	[13]	_[14]		0			Х			
~1 GB		Х		[15]		0				Х
~4 GB	X O									
~64 GB			Х			<u>_</u> [16]	0			
~128 GB			Х			[17]	0			
~512 GB			X				<u></u> [18]		0	
~6 TB					Х				()

■램

- 모바일 DRAM
 - ▶ 2009년 256MB LPDDR1을 시작으로 매년 용량이 2배씩 증가된 메모리가 개발됨
 - ▶ 당분간 LPDDR2와 LPDDR3 체계를 유지하다가 2016년 이후 LPDDR3에서 LPDDR4로 전환
 - ▶ 모바일 DRAM은 전력소모량을 최소화하고 배터리 수명을 늘리는 것이 최우선 과제

• 낸드플래시 메모리

- ▶ 전원이 꺼져도 음악, 사진, 동영상 등과 같은 정보가 그대로 저장되는 스마트폰의 핵심 기술
- ▶ SD카드, USB 메모리, SSD 등과 같은 저장 장치에도 탑재
- ▶ 2013년 8월 삼성전자가 128기가비트 3차원 낸드플래스(NAND Flash) 메모리를 업계 최초로 개발
- ▶ 현재 128기가비트가 최대 용량인 낸드플래시 메모리는 1테라비트(Tb, Terabit)로 개발될 것

그림 3-7 3차원 낸드플래시 메모리

■무어 법칙의 종말

여기서 잠깐 무어 법칙의 종말

인텔의 공동설립자 고든 무어(Gordon Moore)는 "반도체 집적회로 기술의 성능이 18개월마다 2배씩 증가한다"고 했다. 2002년 황창규 전 삼성전자 사장은 18개월보다 6개월 앞선 12개월마다 2배씩 반도체 성능이 증가할 것이라는 황의 법칙을 발표하고 이를 입증해오고 있다.

그러나 이러한 예측과 달리 반도체 미세화 기술은 10나노급 공정부터 물리적 한계에 도달한 것으로 알려져 있다. 2013년 삼성전자가 10나노급 128기가비트 제품을 만들었지만 앞으로 7나노급 공정부터는 물리적 한계, 설비투자 문제, 수익성의 불확실성 등으로 인해 무어의 법칙을 이어갈 수 없을 거라는 예상이다. 로버트 콜드웰 DARPA 국장은 2020년까지 7나노 미터를 기술적 한계로 보고 있다.

>> 반도체 기술 발전에 대한 무어의 법칙

2024년 최신 공정 : 3나노 → 1나노

주요 파운드리 공정 로드맵

구	분	SAMSUNG	tsmc	intel
2022	상반기	3나노 1세대(GAA)		인텔 10나노(FinFET)
2022	하반기		3나노 1세대(FinFET)	인텔4 7나노(FinFET)
2023				인텔3 7나노(FinFET)
2024	상반기	3나노 2세대(GAA)		20A 2나노(GAA)
2024	하반기			18A 1.8나노(GAA)
2025		2나노(GAA)	2나노(GAA)	
2026				
2027		1.4나노(GAA)		
2028			1나노(GAA)	

자료_하이투자증권

D랩 적층해 수직연결한 고대역폭메모리(HBM: High Bandwidth Memory)

HBM은 GPU(Graphics Processing Unit)를 보조하는 GDDR(Graphics Double Data Rate) D램을 대체

HBM 세대간 기술비교

구분	HBM (2014)	HBM2 (2018)	HBM2E (2020)	HBM3 (2022)
Density	2Gb	8Gb	16Gb	16Gb
Bandwidth	128GB/S	307GB/S	460GB/S	819GB/S
Stack Heigh	4Hi(4-layer)	4Hi/8Hi	4Hi/8Hi	8Hi/12Hi
I/O speed	1Gbps	1Gbps	1Gbps	1Gbps
Capacity	1GB	1GB	1GB	1GB

자료_SK하이닉스

■롬

- 롬 메모리의 종류에는 마스크롬, PROM, EPROM, EEPROM 등이 있음
- 최근 롬 메모리 대신 기존의 RAM과 비슷한 특성을 가지면서 비휘발성인 차세대 메모리 NVRAM이 각광받고 있음
- NVRAM은 2가지 형태가 존재함
 - ▶ 비휘발성 SRAM 방식
 - ✓ RAM이 발전한 형태로 전원이 차단되어도 별도의 외부 배터리를 통해 데이터를 계속 유지함
 - ✓속도는 빠르지만 복잡한 구조로 인해 직접도가 떨어지고 용량이 작음
 - ▶ 플래시 메모리 방식
 - ✓ EEPROM에서 내부 구조가 조금 변경된 형태의 메모리
 - ✓ 빠른 속도와 블록단위의 읽고/쓰기 방식
 - ✓ 일반적인 USB 메모리(Universal Serial Bus Memory)에 사용됨
 - ✓ 플래시 메모리는 'NAND 플래시 메모리'로 발전하여 SSD 방식으로 하드디스크 등에도 사용되고 있음
 - ✓ 메모리 카드도 플래시 메모리를 기반으로 계속 발전 중

■스토리지(Storage)

- 데이터를 저장하는 장소
- 1차 스토리지, 2차 스토리지, 3차 스토리지로 구분됨
 - ▶ 1차 스토리지 : 램과 같은 내부 저장 장치
 - ▶ 2차 스토리지: 하드디스크, USB 메모리, 테이프 등과 같은 보조기억장치
 - ▶ 3차 스토리지 : 클라우드, 데이터 센터와 같은 대용량 저장 장치

■2차 스토리지

- 하드디스크
 - ▶ 플로피디스크를 대체할 목적으로 개발됨
 - ▶ 비휘발성이며 임의접근이 가능
- 광디스크(Optical Disk)
 - ▶ 레이저를 이용하여 정보를 기록 · 재생하는 대용량 기억장치
 - ▶ 레이저로 아주 작은 구멍을 뚫거나 표면을 변질시켜 반사광 강약으로 정보를 읽음
 - ▶ 액세스 속도가 빠르고 기록밀도가 높아 대용량 정보 저장이
 - ▶ 데이터를 반영구적으로 저장하기 때문에 신뢰도가 높고 저렴한 비용으로 정보를 분배할 수 있음
 - ▶ 이동도 편리함

그림 3-10 블루레이 디스크(BD)의 구조

■ 광디스크의 종류

표 3-4 광디스크의 종류

	용량	특징
CD-ROM	• 650∼700MB	CD-R은 데이터를 한 번만 기록할 수 있으며 가격이 저렴하고 기존 CD 드라이브와 호환이 잘되서 널리 쓰임 CD-RW는 약 1,000번 이상 기록 및 삭제가 가능하여 백업 매체로 많이 사용됨
DVD	• 싱글 레이어 : 4.7GB • 듀얼 레이어 : 8.5GB	• CD와 다른 포맷으로 저장되며 저장 용량도 더 많음 • 종류 : DVD-R, DVD+R, DVD-RW 등
HD-DVD	• 싱글 레이어 : 15GB • 듀얼 레이어 : 30GB • 트리플 레이어 : 45GB	 블루레이 저장용량의 60∼70% 블루레이와 차세대 DVD 자리를 놓고 경쟁했으나 2008년 2월 도시바가 HD-DVD 포기 선언을 하고 같은 해 3월 HD-DVD 프로모션 그룹이 해산되어 시장에서 완전히 밀림
블루레이 디 <u>스크</u>	• 싱글 레이어 : 25GB • 듀얼 레이어 : 50GB • 쿼드 레이어 : 100GB	 고화질(HD) 비디오 데이터를 저장하기 위한 매체 DVD보다 훨씬 짧은 파장(405nm)의 레이저를 사용하여 더 많은 데이터를 저장 비디오 데이터의 무단 복제를 막기 위해 강력한 복제 방지 기술이 구현되어 있음. 복제 방지 기술은 디스크별로 각각 다르게 적용할 수 있어 1개의 기술만 풀려도 다른 디스크에 접근이 불가능함 워터마킹 기술도 적용되어 있어 BD-ROM 제작 업체의 확인이 가능하고 인증되지 않은 업체의 디스크 무단 제작을 방지할 수 있음 종류: BD-ROM(데이터용), BD-R(기록 가능), BD-RE(재기록 가능) 등

■2차 스토리지

- 플래시 메모리
 - ▶ EEPROM과 유사한 구조이지만, 여러 구역으로 구성된 블록 안에 정보를 저장한다는 점이 다름
 - ▶ 읽기 속도가 빠르며 전기적으로 데이터를 지우고 다시 기록할 수 있음
 - ✔NOR 플래시: 데이터를 지우고 쓰는 시간이 긴 대신 메모리의 임의 접근이 가능
 - ✔NAND 플래시: 정보를 지우고 쓰는 시간이 NOR 플래시보다 빠르고 집적도가 높음

제작비용이 낮고, 내구성이 10배 정도 강함

입출력을 순차 접근만을 지원하여 컴퓨터 메모리로는 부적절함

휴대용 기기의 외장형 메모리로 많이 사용됨

■SSD(Solid State Drive)

- 하드디스크의 한계를 극복하기 위해 개발된 차세대 저장 장치로 플래시 메모리 기반 저장 장치
- SSD는 반도체 기반 장치라 CPU, RAM과 속도 차이가 없고, 디스크 헤더가 없어 속도가 빠름
- 모터가 제거되어 소음, 발열이 없고 전력 소모도 낮음
- 소형화, 경량화, 컴퓨터 부팅 시간 감소 등의 장점이 있음
- HDD보다 비싼 단점이 있지만 가격을 점차 하락시키고 SSD를 활용한 기술들도 꾸준히 개발되고 있음
 - → HDD보다 속도는 빠르지만 동일한 가격 대비 저장용량은 1/10 정도이기 때문에 완전히 대체는 못하고 있음

그림 3-12 하드디스크와 SSD 메모리의 구조

■UFS(Universal Flash Storage)

- eMMC(내장형 멀티미디어 카드) 형태의 차세대 모바일 저장 장치
- 빠른 성능과 저전력으로 스마트폰의 한계 속도를 해결하기 때문에 하이엔드급 스마트폰부터 UFS 로 대체
- microSD 90MB/s (UHS-I 기준), 하드디스크 300MB/s, <u>eMMC</u> 250 ~ 400MB/s, UFS 1세대 **800MB/s**, 외장 카드일 경우 **500MB/s** == <u>SATA</u> 인터페이스 <u>SSD</u> 속도 → UFS 4.0 : 4200 MB/s (Read), 2800 MB/s (Write)
- UFS의 저전력 기술은 인텔의 4세대 프로세서인 하스웰의 원리와 유사
 - ▶ 구동시에는 eMMC보다 많은 전력을 사용해 성능을 극대화, 대기 상태에는 더 낮은 전력을 사용해 배터리 수명 연장

그림 3-14 UFS 2.0: 유니버설 플래시 스토리지 2.0

■3차 스토리지

- 폭발적인 정보의 양에 따라 처리 속도, 자원의 효율적 사용, 성능 향상, 저비용을 위해 등장한 개념
- 내부·외부, 전용·공유, 지역·원격, 클라우드 등과 같이 거리를 두고 데이터를 저장하는 장치
- 계층화와 자동화 기능으로 데이터의 접근(읽기, 쓰기) 속도를 향상시킴
 - ▶ 데이터의 계층화 : 데이터 중요도와 접근 빈도에 따라 다양한 저장 장치에 데이터를 분산 저장하는 기술
 - ▶ 자동화 : 스토리지 계층화의 대안으로 나온 기술

정보의 가치 변화를 자동으로 분석해 미리 설정된 정책에 따라 데이터를 계층화하여 저장

그림 3-15 3차 스토리지 시스템의 내부 구조

■입력장치

- 멀티미디어 정보를 컴퓨터가 인식할 수 있는 디지털 형태로 변환시켜 주기억장치로 읽어 들이는 장치
- 대표적인 장치는 키보드

■입력장치의 종류

- 화면에 위치를 지정하는 포인팅 장치
 - ▶ 마우스, 트랙볼, 조이스틱, 디지타이저, 라이트펜, 터치스크린
- 스캔 방식을 사용하는 장치
 - ▶ 스캐너, 바코드와 QR코드 인식기, RFID와 NFC
- 기타
 - ▶ 음성입력장치, 모션 캡처, 카드판독기, 광학마크판독기, 광학문자판독기, 자기잉크문자인식기

그림 3-16 기본적인 입력장치

■기본적인 입력장치

- 라이트펜
 - ▶ 펜의 끝 부분을 화면에 대고 스위치를 동작시키면 빛이 화면에 전송되어 정보가 입력됨
- 터치스크린
 - ▶ 모바일 기기에 사용하는 대표적인 입력장치
 - ▶ 특정 위치를 손끝이나 기타 물체로 접촉하면 그 위치의 좌표를 파악하여 사용자가 원하는 작업 처리
 - ▶ 터치 패널은 감압(저항막) 방식, 광학 방식, 정전용량 방식, 초음파 방식, 압력 방식으로 구분됨

◀ 터치스크린의 동작 원리와 활용

■기본적인 입력장치

- 바코드
 - ▶ 숫자나 문자를 굵은 선과 가는 선, 그리고 흑과 백의 막대 기호를 조합하여 만든 코드
 - ▶ 상품의 종류와 가격, 분류, 신분증명 등과 같이 다양하게 사용됨
 - ▶ 바코드 스캐너로 레이저 광선을 쏘아 반사 정도를 측정하여 13자리 숫자를 판독하여 식별
 - ✔ 1차원 바코드: 정보의 형태를 선 모양으로 표시하는 방식
 - ✓ 2차원 바코드: 점자식 또는 모자이크 형태의 2차원 사각형 내에 표시하는 장식

1차원 바코드보다 100배 이상의 많은 정보를 저장함으로 데이터베이스와 연동 불필요

코드가 상당 부분 훼손되어도 판독하는 데 문제가 없음

(a) QR 코드

(b) 데이터 매트릭스

(c) 맥시코드

■ 기본적인 입력장치

- QR 코드
 - ▶ 정사각형 모양의 불규칙한 특수기호나 상형문자 마크 형태
 - ▶ Quick Response의 약자로 빠른 응답을 얻는다는 의미
 - ▶ 기존의 바코드와 기능은 비슷하지만, 활용성과 정보성 측면에서 훨씬 우수함
 - ▶ 가로/세로 조합으로 최대 7,089자의 숫자, 4,296자의 문자, 1817자의 한자를 기록할 수 있음
 - ▶ 인터넷 주소, 사진, 동영상, 지도, 명함 등을 저장하는 데 손색이 없음
 - ▶ 온오프라인을 걸쳐 마케팅 수단으로 폭넓게 활용되고 있음

표 3-5 QR 코드의 장단점

장점	 작은 형태(2cm² 또는 기존 코드의 1/4)를 유지하면서 기존 바코드에 비해 많은 양의 데이터를 저장할 수 있음 오류복원 기능이 있어 코드 일부가 손상되어도 복원할 수 있음 QR 코드는 배경 그림과 무관하여 다양한 홍보물에 추가 가능 QR 코드를 회전시켜도 정확한 인식이 가능 제작이 쉽고 간단해 누구나 쉽게 사용할 수 있음
단점	 많은 데이터를 저장할 수 있는 특징을 악용하여 악성코드 또는 유해 웹사이트 주소 등을 전파시키는 매체가 될 수 있음 제작과 배포가 쉬워 원하지 않는 정보에 노출될 수 있으므로 검증된 기업 또는 기관 등에서 제공하는 QR 코드가 아니라면 무턱대고 스마트폰을 들이대지 않도록 세심한 주의가 필요함

- ■기본적인 입력장치
 - 바코드와 QR 코드

■기본적인 입력장치

• RFID

활용 분야 ▶

▶ 동영상 보기 : 미래의 RFID 상점와 RFID 기술

▶ 동영상 보기 : RFID 기술

- ▶ 전파를 이용해 원거리에서 정보를 인식하는 기술
- ▶ 극소형 칩에 정보를 기록하고 안테나를 이용해 판독기로 정보를 송신함
- ▶ 전파를 이용하기 때문에 멀리 떨어져 있어도 태그를 읽을 수 있고 물체를 통과해 정보를 판독할 수도 있음
- ▶ 하이패스, 제품의 이력 추적, 동물 관리, 헬스케어 등 다양한 분야에 활용

■기본적인 입력장치

• NFC ► 동영상 보기 : NFC, 생활이 편리해진다

▶ 비접촉식 통신 기술 ► 동영상 보기 : NFC 광고

- ▶ 통신거리가 10cm 정도로 짧기 때문에 보안이 뛰어나고 가격도 저렴함
- ▶ NFC 기기 자체에서 데이터의 읽기/쓰기가 가능해서 리더기가 별도로 필요하지 않음
- ▶ 스마트폰의 전자지갑 결제, 마트에서 물품정보열람, 방문객을 위한 여행정보전송 등에 활용

■출력장치

- 모니터
 - ▶ 출력된 데이터를 확인하거나 새로운 정보를 입력하기 위해 사용됨
 - ▶ CRT, LCD평판 패널이 있으며 최근에는 LED 광원을 장착한 차세대 LCD도 생산되고 있음
 - > CRT > LCD > OLED
 - ▶ 당분간 LCD와 OLED가 공존할 예정

그림 3-26 OLED 디스플레이

■출력장치

- 프린터
 - ▶ 컴퓨터에서 처리된 결과를 인쇄하는 출력장치
 - ▶ 현재는 대부분 비충격식 프린터인 레이저 프린터를 많이 사용함
 - ▶ DPI(Dot Per Inch) : 프린터의 해상도를 나타내며, 1인치당 몇 개의 도트(점)가 들어가는지를 의미
 - ➤ CPS(character Per Second) : 인쇄 속도를 나타내며 초당 인쇄되는 문자 수를 의미

표 3-6 충격식 프린터와 비충격식 프린터

충격식 프린터	• 활자나 인쇄 핀(pin)을 사용하여 잉크가 묻은 리본에 물리적 충격을 가해 인쇄하는 방식 • 정교성은 부족하나 비용이 저렴함 • 도트(dot) 프린터라고도 함
비충격식 프린터	 열이나 레이저 광선을 이용하여 인쇄하는 방식 충격식보다 소음이 적고 속도가 빠르며 인쇄품질이 높음 열전사 프린터, 잉크젯 프린터, 레이저 프린터 등 열전사 프린터 : 열을 가하면 색깔이 변하는 특수용지를 이용하는 방식 잉크젯 프린터 : 액체 잉크를 미세한 노즐로 분사하여 용지에 정착시키는 방식 레이저 프린터 : 레이저 광선을 이용하여 원하는 정보를 드럼에 쓴 후 토너의 카본가루를 드럼에 나타난 정보에만 달라붙게 하는 방식, 종이에 뜨거운 룰러를 통과시켜 가루가 떨어지지 않게 압착시킴

- ■출력장치
 - 플로터(Plotter)
 - ▶ 그래프나 도형, CAD, 도면 등을 출력하기 위한 대형 출력장치

그림 3-27 프린터와 플로터

■출력장치

- 스피커
 - ▶ 앰프에서 출력된 전기신호를 진동으로 바꾸어 공기 중에 파장을 발생시켜 음파를 생성하는 기기
- 헤드폰
 - ▶ 머리나 귀에 착용하는 형태에 따라 헤드셋(Head Set)과 이어폰(Earphone)으로 구별됨
 - ▶ 헤드폰은 모바일 기술의 발전과 길거리 문화를 상징하는 기기

그림 3-29 헤드폰, 이어폰, 블루투스 이어폰, 고가의 이어폰

■출력장치

- 프로젝터
 - ▶ 컴퓨터, DVD 플레이어, 캠코더, VRC 등의 자료를 화면에 영상으로 비추는 장치

▲ 프로젝터의 종류

2.5 미디어 처리장치

■사운드 카드

- 외부 스피커를 통해 다양하고 깨끗한 음향을 출력하는 장치
- PC용 사운드 카드는 1987년 애드립(AdLib) 사운드 카드가 발표되면서 본격적으로 보급되기 시작

표 3-7 PC용 사운드 카드의 발전

1987년	애드립 (AdLib)	 미리 저장된 여러 형태의 음향을 조합해 음악을 출력하는 방식으로 게임과 결합하여 널리 보급됨 FM 음원을 사용하기 때문에 악기 소리를 재생할 수 있지만 녹음된 사람의 음성, 각종 효과음을 재생하지 못하는 단점이 있음
1989년	사운드블라스터 (Sound Blaster)	 애드립의 단점을 보완하여 FM 음원, PCM(Pulse Code Modulation) 음원 등을 사용할 수 있게 개발됨 PCM 음원은 데이터의 용량이 크고 CPU의 처리 속도도 빨라야 하는 것이 단점이지만, 거의 모든 종류의 음성을 재생할 수 있어 활용도가 높음 게임에 대한 배려도 커 게이머들에게 인기를 끌면서 1990년대에는 표준 규격으로 자리 잡음
1995년 윈도우 95 출시 이후	크리에이티브사에서 출시한 사운드 카드	• 단순 음향 재생 기능뿐만 아니라 5.1채널 입체음향, 디지털 입출력(MIDI), 여러 스피커에 음의 분배 조정, 음의 지연(거리감 생성) 등과 같은 각종 음장 효과 등의 고급 기능을 갖춘 사운드 카드가 출시됨
2000년 이후	사운드 카드를 내장한 메인보드	• 초기 내장 사운드 카드는 음질이 떨어지고 CPU 자원을 많이 차지하였지만 시간이 지나면서 성능이 향상되어 고음질의 내장형 메인보드가 나타남

2.5 미디어 처리장치

■그래픽 카드

- 데이터를 모니터에 전달해주는 장치
- 최초의 그래픽 카드는 1981년에 출시된 CGA(color Graphics Adapter)
 - ➤ CGA는 해상도 320 × 200으로 그림을 네 가지 색상으로 표현

■그래픽 카드가 모니터에 데이터를 전달하는 과정

- CPU가 그래픽 카드의 비디오 메모리에 데이터를 저장
- GPU가 저장된 정보를 아날로그 영상 신호로 바꾸어서 모니터에 전달
 - → GPU와 비디오 메모리는 컴퓨터의 그래픽 성능을 좌우

2.5 미디어 처리장치

■ 장치 드라이버(Device Driver)

• 다양한 종류의 하드웨어를 응용 프로그램이 원활히 제어할 수 있도록 구동방식 및 특성, 기능 등에 대한 정보를 가지고 있는 특별한 프로그램

그림 3-33 장치 드라이버의 역할

3.1 멀티미디어 시스템의 소프트웨어

■운영체제(Operating System)

- 시스템 소프트웨어 중에서 가장 핵심이 되는 프로그램으로 슈퍼바이저(Supervisor)라고도 함
- 프로그램을 효율적으로 실행하기 위해서 하드웨어와의 연결, 사용자들 간의 하드웨어 공유, 데이터의 공유, 자원의 할당과 회수, 오류 검출, 입출력 보조 역할을 함
- 오디오, 비디오와 같은 연속적인 미디어 데이터의 처리를 위해 추가적인 서비스를 제공함

3.1 멀티미디어 시스템의 소프트웨어

■멀티미디어 시스템 운영체제의 특징

- 실시간 처리 : 데이터를 특정시간 안에 처리함
- 대용량 데이터 처리 : 압축 기법을 사용하여 데이터의 용량을 감소시킴
- 데이터의 관계성에 따라 처리 : 시간적(Temporal), 공간적(Spatial) 연관성을 가지고 처리
- 데이터 품질의 가변성에 따라 처리 : 데이터 용량을 통신회선의 전송 능력에 맞추어 조정

3.2 모바일 기기와 스마트폰을 위한 운영체제

■모바일 운영체제

- 모바일 기기에서 요구되는 각종 기능들을 효과적으로 실행하기 위해 개발된 OS
- 음성 서비스, 데이터 통신, 멀티미디어, 인터넷, M-커머스(Mobile Commerce)등과 같은 다양한 서비스를 지원
- 이동통신 기술의 발전($3G \rightarrow 4G$), 모바일 프로세서의 성능 향상, 메모리 용량 증가 등에 힘입어 다양하게 개발

그림 3-35 다양한 모바일 운영체제

스마트폰 운영 체제

<u>심비안 OS, 안드로이드, iOS, 블랙베리 OS, 윈도우 폰 7 / 8, 팜 웹OS, 삼성 바다, 윈도우 모바일, 미고, 타이젠, 리모</u>

3.2 모바일 기기와 스마트폰을 위한 운영체제

■대표적인 모바일 운영체제

- 심비안
 - ▶ 모바일용 32비트 멀티태스킹 운영체제
 - ▶ iOS(iPhone OS)와 안드로이드에 밀려 스마트폰 시장에서 사라지고 있음
- 팜
 - ▶ PDA로 유명한 팜(Palm)사에서 1996년에 개발한 PDA 및 스마트폰 운영체제
- 임베디드 리눅스
 - ▶ 임베디드 컴퓨터 시스템에서 리눅스를 이용하는 것
 - ▶ 소프트웨어 개발 및 공급 업체가 많아 유지보수가 용이하고, 별도의 로열티나 라이선스 비용이 없음
 - ▶ 장점: 시스템 신뢰도가 높고 소스코드를 이해하기 쉬우며 변경 및 재배포가 용이함
 - ▶ 단점: 많은 메모리를 차지하고, 메모리 접근이 복잡하며 디바이스 드라이버 구조가 복잡함

3.2 모바일 기기와 스마트폰을 위한 운영체제

■대표적인 모바일 운영체제

- 윈도우폰7,8
 - ▶ 마이크로소프트사에서 개발한 스마트폰을 위한 모바일 운영체제
 - ▶ 윈도우와 호환성이 탁월하고, 아이폰의 아이튠즈 같은 별도의 연결 프로그램이 필요하지 않음
 - ▶ 실행 가능한 앱이 적은 것이 단점

• 안드로이드

- ▶ 구글이 만든 모바일 전용 운영체제로 구글 안드로이드라고도 함
- ▶ 스마트폰에서 프로그램을 실행할 수 있고, 안드로이드 마켓에서 콘텐츠를 내려받을 수도 있음
- ▶ 운영체제를 공개해 다양한 모델의 안드로이드 스마트폰을 출시하고 있음

iOS

- ▶ 애플의 아이폰, 아이팟 터치, 아이패드 등에 사용하는 모바일 운영체제(아이폰 4부터 iOS로 명칭 변경)
- ▶ 스마트폰 바람을 일으킨 주역으로, 직관적이고 유연한 인터페이스 환경과 엄청난 수의 앱 보유

4.1 멀티미디어 환경을 변화시킨 스마트 기기

- ■스마트 시대 IT 기술의 특징
 - 기존 IT 기술의 지속적인 발전
 - 스마트 기기의 대중화
 - 수동적 소비자에서 능동적 소비자로 변화
 - 사용자 중심의 IT 서비스 구축
 - 산업 분야 패러다임의 변화

4.2 웨어러블 기기

■웨어러블 기기(Wearable Device)

- 시계, 안경, 반지, 의류 등과 같이 사람들이 착용하는 생활필수품에 IT 기술을 융합한 제품
- 삼성의 갤럭시 기어, 애플 아이워치, 구글 글래스 등과 같은 제품이 대표적
- 포화 상태인 스마트폰 시장의 새로운 성장 동력으로 휴대성과 기능성을 강조
- 스마트폰의 보조적인 디바이스가 될 가능성이 크다는 전망이 많음

그림 3-37 웨어러블 기기 [04]

4.2 웨어러블 기기

■웨어러블 컴퓨터의 문제점

- 플렉서블 디스플레이 기술 문제 : 착용성을 강조하기 위해서 휘어지는 화면(Flexible Display)의 진화 필요
- 전력 문제: 배터리 용량의 한계를 해결해야 하며, 기기의 발열 문제도 고려사항임
- 입력 방법: 음성, 동작 인식이 아직 미흡하며, 낮은 해상도로 인해 정보의 가독성이 떨어지는 단점이 있음
- 디자인 문제: 기존에 사용하던 안경, 시계, 옷, 신발 등과 디자인이 조화로워야 함
- 사생활 침해 : 상대방이 모르게 사진을 찍거나 녹화를 할 경우 사생활 침해의 우려가 있음 착용하는 기기들이 네트워크에 연결돼 있기 때문에 해커들에게 쉽게 노출될 수 있음
- → 웨어러블 기기 개발에 전력을 다하는 이유는 스마트폰 보급으로 확산된 휴대성이 착용성으로 변화하고 있기 때문

4.3 스마트 가전 기기

■스마트 가전 기기

- LG 유플러스의 집전화인 홈보이(HomeBoy): 집전화가 스마트 기능을 장착한 인터넷 전화로 변화
- 스마트 프린터: NFC(근거리 통신기술)를 적용하여 프린터에 스마트폰을 꽂으면 스마트폰에 있는 콘텐츠 출력
- 구글의 크롬캐스트(Chromecast): 스마트폰이나 노트북의 인터넷 동영상을 TV 화면으로 전송하는 스트리밍 기기

▶ 동영상 보기 : <u>홈보이</u>

▶ 동영상 보기 : <u>크롬캐스트</u>

멀티미디어 표준

■ 다양한 미디어를 플렛폼에 독립적 제작 → 호환성

■ 표준화 기구

- ISO (International Standard Organization) / IEC (International Electrotechnical Commission) / ITU-T (International Telecommunication Union-Telecommunication Standardization Sector)
- KS (한국) / ANSI, IEEE (미국) / BSI (영국) / JIS (일본)

■ 컨소시엄

- IMA (International Multimedia Association), W3C (World Wide Web Consortium)
- ISO/IEC JTC1 (멀티미디어 국제표준화) 산하 분과위원회
 - SC23 광디스크 관련 표준 (CD, DVD)
 - SC24 컴퓨터 그래픽 관련 표준 (GKS, PHIGS, X3D)
 - SC29 멀티미디어 정보의 코딩 (JPEG, MPEG)
 - SC34 문서처리 관련 표준 (SGML, ODF, TopicMaps)

압축 및 저장에 관한 표준

- JPEG (Joint Photographic Experts Group : 정지화상 압축 표준) : 손실 압축 기술
- GIF (산업체 표준), BMP, TIFF, PCX
- PNG (Portable Network Graphics) : 무손실 압축 기술
- MPEG (Moving Picture Experts Group) 동영상 압축 표준
 - MPEG-1, -2, -4, -7, -21
 - MPDG-1 : CD-ROM (1.5Mbps)
 - MPEG-2 : DVD, 디지털TV (2 ~ 45Mbps)
 - MPEG-4 : 전화, 무선인터넷 망에서 비디오, 오디오 압축 표준
 - MPEG-7 : 정보 검색을 효율적으로 수행하기 위한 내용
 - MPEG-21 : 전자 상거래에서 멀티미디어 컨텐츠의 전송, 이용, 결제 용도
 - 기타 : AVI, MOV

■ 사운드

MPEG, WAV, AIFF, MIDI (Musical Instrument Digital Interface)

■ 문서

- SGML (Standard Generalization Markup Language): 전자문서 표준안, 미국방성, 미출판협회에서 사용
- HTML (HyperText Markup Language) : 웹 표준 문서
- XML : SGML의 각종 규칙을 제거, 크기 축소 → HTML5 (2004)

압축 및 저장에 관한 표준

■ 오피스 문서

- ODF (Open Document Format): IBM & SUN Microsystems
- OOXML (Office Open XML) : Microsoft

■ 그래픽

- OpenGL : OS나 Platform에 독립적 3D Graphc 표준 (실리콘 그래픽스 → SGI, IBM, Intel, Microsoft)
- VRML (Virtual Reality Modeling Language / X3D (Extended 3 Dimension)
 - 3차원 가상 세계를 텍스트로 표현하는 모델링 언어
 - 웹상에서 가상세계를 구현

■ 미디어 플레이어와 플러그인

- 플러그인 : 미디어 데이터를 처리하여 재생함으로써, 브라우즈 기능을 확장시켜주는 프로그램
- Animation : Adobe 사의 Flash 가 대표적, 웹상에서 2차원 애니메이션 지원
- Video : QuickTime Movie, Real Player
- Image, Graphic : Adobe 사의 SVG Viewer, QuickTime 3D
- Sound : Real Audio, Windows Media Player
- Document : Adobe 사의 pdf Reader
- VRML : Cosmo Player, QuickTime VR

지식재산권 (참고 : 위키백과)

- 지식재산권(知識財産權, <u>영어</u>: intellectual property, **IP**) 또는 지적재산권(知的財産權)은 인간의 창조적 활동 또는 경험 등을 통해 창출하거나 발견한 지식·정보·기술이나 표현, 표시 그 밖에 무형적인 것으로서 재산적 가치가 실현될 수 있는 지적창작물에 부여된 재산에 관한 권리를 말한다.[□] 지적 소유권이라고도 한다. (유효기간 2013~: 70년)
 - •어문물: <u>소설, 시</u>. <u>논문, 강연, 연술(</u>演述) 등
 - •음악물: 악곡 등
 - •연극물: 연극, 무용, 무언극
 - •미술물; <u>회화, 서예, 도안, 조각, 공예, 응용미술</u>저작물 등
 - •건축물: 건축물, 건축위한 모형 및 설계도서 등
 - •사진물: 사진 등
 - •영상물: 영화, 비디오 게임, 애니메이션 등
 - •도형물: <u>지도, 도표, 약도, 모형, 건축설계도</u>
 - •컴퓨터프로그램물: 컴퓨터프로그램보호법에 의거 별도 보호
 - •2차적 저작물: 원 저작물의 번역, 편곡, 각색, 영상제작한 창작물
 - •편집 저작물: 소재의 선택 또는 배열이 창작성이 있는 것 (창작성 있는 데이터베이스포함)

지식 재산권의 국제 기구

- 세계지식재산권기구(WIPO: World Interllectual Property Organization), 세계무역기구(WTO: World Trade Organization), 국제산업재산권보호협회(AIPPI), 국제상업회의소(ICC: Interational Chamber of Commerce) 및 위조상품정보국(CIB: Counterfeiting Interlligence Bureau), 국제상품위조방지협회, 국제재산권연맹, 국제라이선싱협회 등

참고 : 저작물을 자유롭게 이용하도록 허락하는 표준 약관

- GNU 일반 공중 사용 허가서(GPL)
- GNU 자유 문서 사용 허가서(FDL)
- 크리에이티브 커먼즈 이용 허락(CCL)
- 정보 공유 라이선스
- 자유 문서(Free Contents)