- (a) If we believe that the case is an outlier because of a blunder, then we might delote the ordier and analyze the remaining cases without the suspected case. Otherwise, we can try to find out why a particular case is nothern.
- (b) False.
- (c) It is easy to interpret the transformation.
- (d) The responses are constrained in (0,1), and difficult to observe
- (e) Yes. All weights are equal to one.
- The plots well tell us more information about the fitting model, such as a few relatively large residuals and so on
- 2. (a) nonlinearity trend and suspected outlier.
 - (b) non constant variance.
 - 10 suspected outlier and influential point.
 - (d) normality is in doubt and suspected outher

3. (a)
$$\beta_1 = \frac{5 \times \gamma}{5 \times x} = \frac{15924.51}{4168.62} \approx 3.8199$$
, $\beta_2 = \overline{\gamma} - \widehat{\beta}_1 \overline{\lambda} \approx 10.2026$

$$RSS = SYY - \frac{SXY^2}{SXX} \approx 118.2180$$
, $\delta^2 = \frac{RSS}{N-2} \approx 13.1353$

Sefit
$$(y|x) = \sqrt{3^2 (\frac{1}{11} + \frac{(4p-3)^2}{5xx})^2} \approx 1.4242$$

(255.241, 245.552)

: 95% confidence orderval is: \(\frac{236.1779}{242.6153}\)

(0)	Source	df	55	MS	F
	Regression	1	60830.17	60 830. 17	4631.045
	Residual	9	118.2180	13. 1353	
	Total	lo	60 948.39		

[:] Reject Ho: $E(Y|X=a) = \beta$.

- 4. (a) Because when $K \rightarrow \infty$, the regression model will become perfectly fitted.

 Suggested method: choose some values of K, and use AIC, BIC and so on to do model unparison.

 - (C) $\frac{\partial}{\partial w} = \frac{5}{4} \left[\frac{1}{4} 3 2 \ln(wt) \right]^{2}$ = $+2 \frac{5}{4} \left(\frac{1}{4} - 3 - 2 \ln(wt) \right) 2t \sin(wt)$ = $4 \frac{5}{4} \left(\frac{1}{4} - 3 - 2 \ln(wt) \right) t \cdot \sin(wt)$
 - The OLS estimator for w doesn't have a closed form. We should not some numerical methods, such as Newton's method and 50 on.

5. Define $U=(u_1, u_2, u_3, \dots, u_n)$ where $u_4=1$ and $u_7=2$ others are all zero. We woulder the following model. $E(\Upsilon|X=x)=-\beta_0+\beta_1X+\delta U$

and we use 015 to get the estimate of δ , denoted as $\hat{\delta}$ and calculate the s.e. of $\hat{\delta}$, denoted as $5e(\hat{\delta})$

Ho. 8=0 2.5. Hi. 8+0

 $|t| = \frac{\hat{s}}{|se(\hat{s})|}$ and we compare |t| with $t_{0.025}(n-3)$ to

determine whether reject or accept Ho.

6. (a)
$$Var(\hat{\theta}) = Var(2\hat{\beta}_1 - \hat{\beta}_2) = Var(2\hat{\beta}_1) + Var(\hat{\beta}_2) + 2Gv(2\hat{\beta}_1, \hat{\beta}_2)$$

$$= 0.4766^2 \times [4 \times 0.13820855 + 0.045229535 + 4 \times 0.06215878]$$

$$\approx 0.1923$$

$$t = \frac{2\hat{\beta}_1 - \hat{\beta}_0}{\mathcal{L}(\hat{\theta})} = -0.1146963,$$

: Itl < 1.96 , : Don not reject Ho.

(b)
$$g = \frac{\hat{\beta}_1}{\hat{\beta}_2}$$
 $(\frac{\partial g}{\partial \hat{\beta}_2})' = (0, \frac{1}{\hat{\beta}_2}, -\frac{\hat{\beta}_1}{\hat{\beta}_2^2})$

$$: Var(g(\delta)) = \left(0 \quad \frac{1}{\beta_2} \quad -\frac{\beta_1}{\beta_2^2}\right) \left(\partial^2(\chi^1\chi)^{-1}\right) \begin{pmatrix} 0 \\ \frac{1}{\beta_2} \\ \frac{-\beta_1}{\beta_2^2} \end{pmatrix} \approx 0.06021$$

- (C) There is no problem in Figures 216) to 2(d)
- (d) No. LOF test can tell us whether the model fit the data, but can not tell us whether the currature easists.
- (e) Because the p-value for x_1^2 is 0.02564 < 0.05. Ho. $\beta_3=0$ is rejected, x_1^2 should be included in the model.