NSI Terminale - Structure de données

Les graphes - TD. notions élémentaires.

qkzk

2020/04/30

Exercices sur les graphes

Exercice 1

On considère le graphe suivant :

1. Est-ce un graphe simple ? orient'e ?

corrige

Pas de flêches sur les arêtes c'est un graphe simple.

fin corrige

 $2.\,$ Quels sont les voisins de 1 ?

corrige

Les voisins de 1 sont $\{2,3,4\}$

fin corrige

3. Construire sa matrice d'adjacence.

corrige

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

fin corrige

4. Combien peut-on ajouter d'arêtes à ce graphe?

Exercice 2

Un graphe simple est dit complet si tous ses sommets sont reliés.

Ci-dessous les graphes complets K_2 , K_3 et K_4 .

- 1. Construire K_5 et K_6 .
- 2. Construire les matrices d'adjacence de K_2 , K_3 , K_4 .
- 3. Combient d'arêtes comportent-ils ?
- 4. En examinant les matrices d'adjacence, déterminer le nombre maximum d'arêtes d'un graphe comportant n sommets.

corrige

La matrice d'adjacence d'un graphe comportant n sommets est de taille $n \times n$. Si le graphe est simple, les sommets ne sont pas reliés entre eux (pas de boucle).

Elle comporte au plus $n^2 - n$ (un par case moins la diagonale). Généralement on l'écrit n(n-1). Chaque arête est comptée deux fois dans la matrice d'adjacence donc :

Le nombre maximum d'arêtes d'un graphe simple à n sommets est $\frac{n(n-1)}{2}$

fin corrige

Exercice 3

- 1. Déterminer tous les chemins élémentaires reliant A à D
 - Un chemin d'origine A et d'extremité D est une suite d'arcs consécutifs reliant A à D.
 - Un chemin est élémentaire s'il ne passe pas deux fois par le même sommet.

corrige

fin corrige

- 2. Déterminer tous les chemins simples reliant A à D
 - Un chemin est simple s'il ne passe pas deux fois par le même arc.

corrige

Cette fois on peut passer plusieurs fois par C.

$$(A, B, C, D), (A, C, D), (A, C, E, F, C, D), (A, B, C, E, F, C, D)$$

fin corrige

3. Pour chaque sommet y, déterminer les autres sommets x dont on peut partir pour atteindre y.

corrige

- $A:\varnothing$,
- $B: \{A\},$
- Pour C, D, E, F on peut partir de n'importe quel sommet pour les rejoindre.

fin corrige

4. Quelles arêtes peut-on ajouter pour pouvoir relier n'importe quelle couple de sommets par un chemin ?

corrige

Il faut rejoindre A qui est le plus isolé. Rejoindre A permet de joindre B en suivant (A, B)

On peut ajouter une arête partant de C, D, E, F vers A.

Alors on pourra relier tous les couples de sommets.

fin corrige

Exercice 3

Parmi les graphes ci-dessus lesquels représentent le même graphe?

corrige

Les deux premiers dessins représentent le même graphe. Il s'agit d'un pentagone où tous les sommets sont reliés à trois autres (pour former un cycle), sauf un sommet qui lui est relié à tous les autres. Les troisième et quatrième dessins ne représentent pas le même graphe. Par exemple, le troisième admet un cycle d'ordre 3, ce qui n'est pas le cas du quatrième.

fin corrige