

Durante and halo Committee Comment

High-Speed ($A_{VCL} \ge 10$) Programmable Micropower Operational Amplifier

0P-32

FEATURES

•	Programmable Supply Current	500nA to 2mA
•	Single Supply Operation	+3V to +30V
•	Dual Supply Operation	±1.5V to ±15V
•	Low Input Offset Voltage	100μV
•	Low Input Offset Voltage Drift	0.5μV/°C
•	High Common-Mode Input Range	V– to V+ (–1.5V)
•	High CMRR and PSRR	115dB
•	High Open-Loop Gain	2000V/mV
•	±30V Input Overvoltage Protection	
•	Fast	1V/μs @ I _{SY} = 300μA

- LM4250 Pinout
- Compensated for Minimum Gain of 10
- Available in Die Form

ORDERING INFORMATION [†]

T _A = 25°C	PAC	KAGE	OPERATING
ν _{os} ΜΑΧ (μV)	CERDIP 8-PIN	PLASTIC 8-PIN	TEMPERATURE RANGE
300	_	OP32AZ*	MIL
300	OP32EP	OP32EZ	IND
500	OP32FP	OP32FZ	IND
1000	OP32GP	OP32GZ	IND

- For devices processed in total compliance to MIL-STD-883, add /883 after part number. Consult factory for 883 data sheet.
- Burn-in is available on commercial and industrial temperature range parts in CerDIP, plastic DIP, and TO-can packages.

GENERAL DESCRIPTION

The OP-32 is a high-speed, high-gain programmable operational amplifier. Both offset voltage and offset current are low, and both are stable with changes in temperature, supply voltage, and set current. High CMRR and PSRR ensure

precision performance when the OP-32 is used with an unregulated battery or vehicular electrical system.

The wide input voltage range, including the negative supply or ground, allows use in single-battery applications. The OP-32 is characterized over a wide supply range of $\pm 1.5V$ to $\pm 15V$. This guarantees predictable performance with any commonly available supply.

The ability to operate at relatively high speed with low power consumption makes this amplifier ideal for remote applications where power is limited. The programmability allows each amplifier in a system to be set for the minimum power consumption necessary for each specific application. Programmability also makes it possible to adjust the bandwidth and phase shift.

The OP-32 pinout is identical to the LM4250 and many other micropower operational amplifiers. This allows easy upgrading of system performance.

PIN CONNECTIONS

SIMPLIFIED SCHEMATIC

ABSOLUTE MAXIMUM RATINGS (Note 1)

±18V
±30
Supply Voltage
-65°C to +150°C
-55°C to +125°C
-55°C to +125°C
25°C to +85°C

_ead Temperature Ran Junction Temperature .			
PACKAGE TYPE	⊖ _{j≜} (Note 2)	e _{jc}	UNITS
8-Pin Hermetic DIP (Z)	148	16	.c\M
8-Pin Plastic DIP (P)	103	43	.cw

NOTES:

- Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted
- Θ_{jA} is specified for worst case mounting conditions, i.e., Θ_{jA} is specified for device in socket for CerDIP and P-DIP packages.

ELECTRICAL CHARACTERISTICS at $V_S = \pm 1.5 V$ to $\pm 15 V$, $15 \mu A \le I_{SY} \le 450 \mu A$, $T_A = +25 ^{\circ} C$, unless otherwise noted.

			01	OP-32A/E			OP-32	F	OP-32G			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	Vos		_	100	300	_	200	500		400	1000	μ۷
Input Offset current	Ios	V _{CM} = 0		_	2	_	_	2	_	_	3	nA
Input Bigg Current		$I_{SY} = 15\mu A$	_	3	5	_	5	7.5	_	5	10	
Input Bias Current (Note 1)	I _B	$I_{SY} = 150 \mu A$	_	20	35	_	24	35	_	30	50	nA
(14010-17)		I _{SY} = 450μA		60	90		70	100		80	125	
Input Voltage Range	IVR	V _S = ±15V	-15.0/13.5	. –		-15.0/13.5			-15.0/13.5	_	_	V
Common-Mode Rejection Ratio (Note 2)	CMRR	$V_S = \pm 15V$ -15V $\leq V_{CM} \leq +13.5V$	100	115	_	95	110	_	85	100	_	dB
Power Supply Rejection Ratio (Note 2)	PSRR	$V_S = \pm 1.5V \text{ to } \pm 15V;$ and $V = 0V,$ V + 3V to 30V.	_	1	6	_	3	12	-	10	25	μV/V
Large-Signal Voltage Gain	Avo	$V_S = \pm 15V$, $R_L = 100k\Omega$, $I_{SY} = 15\mu$ A $R_L = 10k\Omega$, 150μ A $\leq I_{SY} \leq 450\mu$ A	1000	2000	_	750	1500	_	500	1000	_	V/mV
Output Voltage	v _o	$V_S = \pm 1.5V$ $R_L = 100k\Omega, I_{SY} = 15\mu A$ $R_L = 10k\Omega, 150\mu A \le I_{SY} \le 450\mu A$	±0.8	±0.88	_	±0.8	±0.88		±0.75	±0.85	_	V
Swing	v o —	$V_S \pm 15V$ $R_L = 100k\Omega, I_{SY} = 15\mu A$ $R_L = 10k\Omega, 150\mu A \le I_{SY} \le 450\mu A$	± 14	±14.2	_	±14	±14.2	_	±13.8	±14.2	_	V
Gain-Bandwidth Product		$I_{SY} = 15\mu A, R_L = 100k\Omega$ $I_{SY} = 450\mu A, R_L = 10k\Omega$	_	100 4500	_	_	100 4500	_	_	100 4500	_	kHz
Slew Rate	SR	$V_S = \pm 15V$, $I_{SY} = 450 \mu A$, $R_L = 10k\Omega$	_	1.5	_	_	1.5	_	_	1.5	_	V/μs
• •		$V_S = \pm 15V$, $I_{SET} = 1\mu A$	_	15	17	_	15	19	_	15	21	
Supply Current		$I_{SET} = 10\mu A$	_	150	170	_	150	190	_	150	200	μΑ
No Load	I _{SY} —	$I_{SET} = 30 \mu A$		450	525		450	600		450	650	
(Note 3)	31	$V_S = \pm 1.5 V$, $I_{SET} = 1 \mu A$	_	10.5	12.5	_	11	15	_	11	18	
		$I_{SET} = 10\mu A$	_	105	125	_	110	150	_	110	180	μА
		$I_{SET} = 30\mu A$		350	400		350	450		350	500	

NOTES:

- 1. I_B and I_{OS} are measured at $V_{CM} = 0$.
- 2. PSRR and CMRR measured with V_{OS} unnulled and I_{SET} held constant.
- 3. The supply current (I $_{SY}$) is dependent on the set current (I $_{SET}$) and supply voltage as follows:

$$\frac{I_{SY}}{I_{SET}} \simeq 10 + \frac{(V+) - (V-)}{6}$$

The range of I_{SY}/I_{SET} is approximately 10.5 to 15 over the specified operating range of $V_S=\pm\,1.5V$ to $V_S=\pm\,15V.$

ELECTRICAL CHARACTERISTICS at $V_S = \pm 1.5 V$ to $\pm 15 V$, $15 \mu A \le I_{SY} \le 450 \mu A$, $-55 ^{\circ}C \le T_A \le +125 ^{\circ}C$, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	MIN	OP-32A TYP	MAX	UNITS
Average Input Offset Voltage Drift (Note 1)	TCVos	Unnulled	_	0.5	2.0	μV/°C
Input Offset Voltage	v _{os}		_	175	400	μV
Input Offset Current	Ios	V _{C M} = 0	-	_	2	nA
Average Input Offset Current Drift	TCI _{OS}	(Notes 1, 2)	-	1	10	pA/°C
Input Bias Current (Note 2)	I _B	Ι _{S Y} = 15μΑ Ι _{S Y} = 150μΑ Ι _{S Y} = 450μΑ	- - -	3 20 60	5 35 90	nA
Input Voltage Range	IVR	V _S = ±15V	-15.0/13.5	-	-	٧
Common-Mode Rejection Ratio (Note 3)	CMRR	$V_S = \pm 15V$ -15V $\leq V_{CM} \leq +13.5$ $I_{SET} = 10\mu A$ $I_{SET} = 1\mu A$	90 80	110 90	- -	dB
Power Supply Rejection Ratio (Note 3)	PSRR	$V_S = \pm 1.5V$ to $\pm 15V$ & V = 0V, $V + = 3V$ to $30V$ ($V_{CM} = 1.5V$)	_	2	10	μV/V
Large-Signal Voltage Gain	A _{vo}	$V_S = \pm 15V$, $R_L = 100k\Omega$, $I_{SY} = 15\mu A$ $R_L = 10k\Omega$, $150\mu A \le I_{SY} \le 450\mu A$	200 500	400 1000	- -	V/mV
Output Voltage	v _o	$V_S = \pm 1.5V$ $R_L = 100k\Omega, I_{SY} = 15\mu A$ $R_L = 10k\Omega, 150\mu A \le I_{SY} \le 450\mu A$	±0.65	±0.75	-	v
Swing	-0	$V_S = \pm 15V$ $R_L = 100kΩ, I_{SY} = 15μA$ $R_L = 10kΩ, 150μA \le I_{SY} \le 450μA$	±13.6	±14.0	_	v
Supply Current No Load	1	V _S = ±15V I _{SET} = 1μA I _{SET} = 10μA I _{SET} = 30μA	- - -	16 160 450	18 180 550	μА
(Note 4)	I _{SY}	$V_S = \pm 1.5V$ $I_{SET} = 1 \mu A$ $I_{SET} = 10 \mu A$ $I_{SET} = 30 \mu A$	- - -	12 120 360	14 140 450	μА

NOTES:

- 1. Sample tested.

- I_B and I_{OS} are measured at V_{CM} = 0.
 PSRR and CMRR measured with V_{OS} unnulled and I_{SET} held constant.
 The supply current (I_{SY}) is dependent on the set current (I_{SET}) and supply

$$\frac{I_{SY}}{I_{SET}} \simeq 10 + \frac{(V+) - (V-)}{6}$$

BURN-IN CIRCUIT*

*Other circuits may apply at ADI's discretion.

OP-32

ELECTRICAL CHARACTERISTICS at $V_S = \pm 1.5 V$ to $\pm 15 V$, $15 \mu A \le I_{SY} \le 450 \mu A$, $-25 ^{\circ} C \le T_A \le +85 ^{\circ} C$, unless

			C	P-32	E	C	P-32	F	O	P-32	G	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Average Input Offset Voltage Drift (Note 1)	TCVos	Unnulled	_	0.5	1.5	_	1.0	2.0		1.5	3.0	μV/°C
Input Offset Voltage	Vos			100	400	_	200	600	_	500	1200	μ۷
Input Offset Current	Ios	V _{CM} = 0	_		2	_	_	2		_	3	nA
Average Input Offset Current Drift	TCIOS	(Notes 1, 2)		2	10	_	3	15	_	5	25	pA/°C
Input Bias Current		I _{SY} = 15μA	_	3	5	_	5	7.5	_	5	10	
(Note 2)	I _B	$I_{SY} = 150 \mu A$	_	20	35	_	24	35	_	30	50	nA
		I _{SY} = 450μA		60	90		70	100		80	125	
Input Voltage Range	IVR	V _S = ±15V	-15.0/13.5	_		-15.0/13.5	_	_	-15.0/13.5			v
Common-Mode Rejection Ratio (Note 3)	CMRR	$V_S = \pm 15V \& -15V \le V_{CM} \le +13.5V$	95	110	_	90	105	_	80	100	-	dB
Power Supply Rejection Ratio (Note 3)	PSRR	$V_S = \pm 1.5 V \text{ to } \pm 15 V \&$ $V = 0V,$ $V + 3V \text{ to } 30V$	_	3.2	10	_	10	32	_	32	56	μ V /V
Large-Signal Voltage Gain	A _{vo}	$V_S = \pm 15V$, $R_L = 100k\Omega$, $I_{SY} = 15\mu A$ $R_L = 10k\Omega$, $150\mu A \le I_{SY} \le 450\mu A$	750 750	1000 1000	_	500 500	1000 1000	_	400 400	1000 1000	_	V/mV
Output Voltage		$V_S = \pm 1.5V$ $R_L = 100k\Omega, I_{SY} = 15\mu A$ $R_L = 10k\Omega, 150\mu A \le I_{SY} \le 450\mu A$	±0.70	±0.75	_	±0.65	±0.75	_	±0.6	±0.7	_	V
Swing	v _o —	$V_S = \pm 15V$ $R_L = 100k\Omega, I_{SY} = 15\mu A$ $R_L = 10k\Omega, 150\mu A \le I_{SY} \le 450\mu A$	± 13.8	± 14.1	_	± 13.6	± 14.1	_	±13.0	±14.0	_	V
		$V_S = \pm 15 V$, $I_{SET} = 1 \mu A$		16	18		16		_	16		
Supply Current		$I_{SET} = 10\mu A$	_	160 450	180	_	160 450		_	160		μΑ
No Load	I _{SY} —	I _{SET} = 30μA			550					450		
(Note 4)		$V_S = \pm 1.5 V$, $I_{SET} = 1 \mu A$ $I_{SET} = 10 \mu A$	_	12 120	14 140	_	12 120		_	12 120		μΑ
		I _{SET} = 30μA	_	360	450	_	360		_	360		μ-

NOTES:

1. Sample tested.

2. I_B and I_{OS} are measured at V_{CM} = 0. 3. PSRR and CMRR measured with V_{OS} unnulled and I_{SET} held constant.

4. The supply current (I $_{\rm S\,Y}$) is dependent on the set current (I $_{\rm S\,E\,T}$) and supply voltage as follows:

$$\frac{I_{SY}}{I_{SET}} \simeq 10 + \frac{(V+) - (V-)}{6}$$

DICE CHARACTERISTICS

DIE SIZE 0.070 X 0.050 inch, 3500 sq. mils (1.78 X 1.27 mm, 2.26 sq. mm)

- 1. BALANCE
- 2. INVERTING INPUT
- 3. NONINVERTING INPUT
- 4. V-
- 5. BALANCE
- 6. OUTPUT
- 7. V+
- 8. I_{SET}

WAFER TEST LIMITS at $V_S = \pm 1.5 V$ to $\pm 15 V$, $15 \mu A \le I_{SY} \le 450 \mu A$, $T_A = 25 ^{\circ} C$, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	OP-32N	OP-32G	OP-32GR	UNITS
Input Offset Voltage	V _{os}		300	500	1000	μV MAX
Input Offset Current	'os	V _{C M} = 0	2	2	3	n A MAX
Input Bias Current		I _{SY} = 15μ A	5	7.5	10	
(Note 1)	1 ^B	Ι _{S Υ} = 150μΑ Ι _{S Υ} = 450μΑ	35 90	35 100	50 125	n A MA X
Input Voltage Range	IVR	V _S = ±15V	-15/13.5	-15/13.5	-15/13.5	V MIN
Common-Mode		8				
Rejection Ratio (Note 2)	CMRR	V _S = ±15V -15V ≤ V _{CM} ≤ +13.5V	100	95	85	dB MIN
Power Supply Rejection Ratio (Note 2)	PSRR	$V_S = \pm 1.5V \text{ to } \pm 15V \text{ &}$ $V_{-} = 0V, V_{+} = 3V \text{ to } 30V$	6	12	25	μV/V MAX
Large-Signal Voltage Gain	A _{VO}	$V_S = \pm 15V$, $R_L = 100kΩ$, $I_{SY} = 15μΑ$ $R_L = 10kΩ$, $150μΑ ≤ I_{SY} ≤ 450μΑ$	1000 1000	750 750	500 500	V/mV MIN
Output Voltage	v _o	$V_S = \pm 1.5V$ $R_L = 100kΩ, I_{SY} = 15μA$ $R_L = 100kΩ, 150μA ≤ I_{SY} ≤ 450μA$	±0.8	±0.8	±0.75	V MIN
Swing	•0	$V_S = \pm 15V$ $R_L = 100k\Omega, I_{SY} = 15\mu A$ $R_L = 10k\Omega, 150\mu A \le I_{SY} \le 450\mu A$	±14	±14	±13.8	V MIN
		V _S = ±1.5V, I _{SET} = 1μA	12.5	15	18	
Supply Current		I _{SET} = 10μA	125	150	180	μ Α ΜΑΧ
No Load	Isy	I _{SET} = 30μA	400	450	500	
(Note 3)	5 ,	$V_S = \pm 15V$, $I_{SET} = 1\mu A$	17	19	21	
		I _{SFT} = 10μ A	170	190	200	μΑ ΜΑΧ
		$I_{SET} = 30\mu A$	525	600	650	

NOTES:

 I_B and I_{OS} are measured at V_{CM} = 0.
 PSRR and CMRR measured with V_{OS} unnulled and I_{SET} held constant.
 The supply current (I_{SY}) is dependent on the set current (I_{SET}) and supply voltage as follows:

$$\frac{I_{SY}}{I_{SET}} \simeq 10 + \frac{(V+) - (V-)}{6}$$

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

TYPICAL DC PERFORMANCE CHARACTERISTICS

TYPICAL DC PERFORMANCE CHARACTERISTICS

MAXIMUM OUTPUT CURRENT

TYPICAL DC OPEN-LOOP INPUT-OUTPUT CHARACTERISTICS

TYPICAL AC PERFORMANCE CHARACTERISTICS

SLEW RATE vs SUPPLY CURRENT

POWER SUPPLY REJECTION vs SUPPLY CURRENT

COMMON-MODE REJECTION vs FREQUENCY

COMMON-MODE REJECTION vs TEMPERATURE

COMMON-MODE REJECTION vs SUPPLY CURRENT

TOTAL HARMONIC
DISTORTION VS FREQUENCY

TOTAL HARMONIC DISTORTION vs FREQUENCY

VOLTAGE NOISE vs FREQUENCY

TYPICAL AC PERFORMANCE CHARACTERISTICS SMALL-SIGNAL TRANSIENT RESPONSE VS SUPPLY CURRENT

 $I_{SY} = 1.5 \mu A$

 $I_{SY} = 7.5 \mu A$

 $I_{SY} = 15 \mu A$

 $I_{SY} = 150 \mu A$

 $I_{SY} = 450 \mu A$

 $I_{SY} = 750 \mu A$

I_{SY} = 1.5mA

TEST CIRCUIT

TYPICAL AC PERFORMANCE CHARACTERISTICS LARGE-SIGNAL TRANSIENT RESPONSE VS SUPPLY CURRENT

 $I_{SY} = 1.5 \mu A$ ov $I_{SY} = 1.5 \mu A$ $I_{SY} = 1.5 \mu A$

APPLICATIONS INFORMATION

SETTING SUPPLY CURRENT

The op amp power supply current is determined by the current flowing out of pin 8. Pin 8 is at the V+ voltage less two diode drops, which is approximately V+ minus 1.1V. Do not connect pin 8 to ground or V- without a set resistor in series or excessive supply current will be drawn which may damage the OP-32.

The set resistor value is selected to make the power supply current optimum for the specific application. Adjusting the OP-32 power supply current determines the slew-rate, bandwidth, and the output current limits (see Performance Characteristics). The supply current is nominally 15 times the set current and the set resistor value is calculated from:

$$R_S = \frac{(V_{SUPPLY} - 1.1V)}{I_{SET}}, \text{ where } I_{SY} \approx 15 \ I_{SET}$$
 (See graph below)

Note that the set resistor can go to either negative supply or to ground. If the set resistor goes to negative supply, then $V_{SUPPLY} = (V+)-(V-)$. For a single-supply circuit, V_{SUPPLY} is simply (V+). If the supply voltage varies widely, set current can be stabilized with circuits (a), (b), or (c).

The relationship between supply voltage, supply current and set current can be approximated by:

$$\frac{I_{SY}}{I_{SET}} \ \, \simeq 10 + \frac{(V^+)^- \, (V^-)}{6} \quad (T_A = 25^\circ \, C)$$

The ratio $\frac{I_{SY}}{I_{SET}}$ increases with temperature by approximately 0.05%/° C.

SUPPLY CURRENT VS TEMPERATURE

INPUT BIAS CURRENT

Input bias current varies directly with set current. The set current required for a given supply current ranges from $I_{SY}/10.5$ at $\pm\,1.5$ V supply voltage to $I_{SY}/15$ at $\pm\,15$ V. Therefore, I_B will be highest at the minimum supply voltage condition of $\pm\,1.5$ V (or 3V) for any given supply current.

CURRENT SETTING CIRCUITS

0P-32

OFFSET NULLING CIRCUIT

OFFSET VOLTAGE ADJUSTMENT

The offset voltage can be trimmed to zero using a 100k Ω potentiometer (see offset nulling circuit). Adjusting the pot wiper towards pin 5 causes the output to go positive. Adjustment range is approximately $\pm 5\,\text{mV}$ at $V_S = \pm\,15V$. The V_{OS} adjust range is proportional to supply voltage. Resolution of the nulling can be increased by using a smaller pot in conjunction with fixed resistors.

If power supply voltages vary widely and the set current is established by a resistor, the op amp supply currents will vary in proportion to the supply voltage changes. V_{OS} will remain almost constant with supply current changes if the null pins (1 and 5) are not used. If a V_{OS} adjust pot is used, current variations may flow through the offset pot causing an apparent V_{OS} change. If a V_{OS} adjust pot is used in combination with widely-varying supply voltages, a set-current stabilizer circuit as shown in (a), (b), or (c) is recommended.

APPLICATIONS EXAMPLE

BATTERY-POWERED, GAIN-OF-100 AMPLIFIER

The simple noninverting amplifier circuit shown in Figure 1 provides an accurate gain-of-100 while operating from a pair of 9V batteries. The circuit requires only $15\mu\text{A}$ of supply current. Slew-rate is approximately $0.06\text{V}/\mu\text{sec}$ and output swing is $\pm 8\text{V}$.

A value of $500 k\Omega$ was chosen for R2. For a gain of 100, R1 is calculated as:

$$A_{VCL} = 1 + \frac{R_2}{R_1}$$

$$100 = 1 + \frac{500k\Omega}{R_1}$$

$$\therefore R_1 = 5.05k\Omega$$

BATTERY-POWERED, GAIN-OF-100 AMPLIFIER

Using an OP-32B/F, we can expect an $I_B+I_{OS}/2$ of less than 8.5nA when operating at I_{SY} of $15\mu A$, so the input offset caused by I_BR_1 will be negligible $(8.5nA\times5.05k\Omega\sim43\mu V)$.

The set resistor R_S needed for a supply current of $15\mu A$ is calculated from:

$$R_{S} = \frac{V_{SUPPLY} - 1.1V}{I_{SY}/15} = \frac{18V - 1.1V}{1\mu A}$$

$$\therefore R_{S} = 16.9M\Omega$$

Offset voltage adjustment is optional. An OP-32B/F has maximum input offset voltage of $500\mu\text{V}$ which would cause an output offset voltage of 50mV. Drift over temperature is very low, typically less than $1.0\mu\text{V/°C}$, and is guaranteed to be less than $2.0\mu\text{V/°C}$. PSRR is also low, only $6\mu\text{V/V}$, so battery voltage change has negligible effect on offset.

Most micropower programmable op amps lose open-loop gain and CMRR at low supply currents. The OP-32 design overcomes these limitations so accuracy is maintained at supply currents of only a few microamps. The OP-32B/F used in this example has a minimum open-loop gain of over 117dB. Gain error due to finite open-loop gain will be less than 100/750,000, which is only 133 PPM. CMRR will typically be 110dB, an error of 3 PPM. Gain accuracy of the circuit is almost entirely dependent on the accuracy of the R₁/R₂ ratio; the op amp contributes less than 0.015% gain error.

Considering all error sources, this simple $\times 100$ battery-powered circuit using an OP-32B/F is capable of achieving excellent accuracy. Without external adjustments of any kind, output offset will be less than 54mV and gain accuracy will be better than $\pm 0.015\%$ (exclusive of R_2/R_1 error). Gain linearity, slew-rate symmetry, and stability over temperature are all excellent with the OP-32, making circuit performance very predictable.