Aufgabe 5.1: Satellit(4 Punk

2 P)

2 P)

Ein Satellit bewegt sich auf einer elliptischen Bahn um die Erde. In der Höhe h über der Erdoberfläche bilden Ortsvektor \vec{r}_1 (Ursprung im Erdmittelpunkt) und Geschwindigkeitsvektor \vec{v}_1 einen rechten Winkel. Gegebene Größen seien $h, v_1 = |\vec{v}_1|, r_2 = |\vec{r}_2|$ und $R_{\rm E}$. Für die potentielle Energie des Satelliten im Gravitationsfeld der Erde gilt $E_{\rm pot}(r) = -\frac{GM_{\rm E}m}{r}$.

Jun Wei Tan Cyprian Long Nicolas Braun

- a) Welches Tempo v_A hat der Satellit in maximaler Entfernung r_A vom Erdmittelpunkt? Bestimmen Sie v_A und r_A .
- b) Welches Tempo v_2 hat er an einer anderen Stelle \vec{r}_2 der Bahn? Welchen Winkel α_2 bildet dort der Geschwindigkeitsvektor \vec{v}_2 mit dem Ortsvektor \vec{r}_2 ? Bestimmen Sie v_2 und α_2 . Nehmen Sie $v_2 = |\vec{r}_2|$ als gegeben an.

Nehmen Sie $r_2 = |\vec{r}_2|$ als gegeben an. (= 10,1 = h 9) Energic E= 1 nv,2 6Mm Beim det of ist Va h or weil (+) | muximum =) 7 (+) . ; (+) = () Echultury wn... May - May Drehimpuls: Emyic: 1 1/2 - 6mx = 1 1/4 - 6mx $0: \frac{1}{C_A} = \frac{V_A}{C_{C_A}}$ () (2): $\frac{1}{2}v_{1}^{2} - \frac{6M}{7} = \frac{1}{2}v_{A}^{2} - \frac{6M}{7}v_{A}^{2}$ TNJ- (N) - TNJ = (1) + \(\frac{\chi_{\sigma}}{\chi_{\sigma}} - \lambda \) \(\frac{\

$$=\frac{C^{m}}{r_{i}v_{i}} \pm \frac{C^{m}-r_{i}v_{i}^{2}}{r_{i}v_{i}} \qquad (\text{wir brown } | cm-r_{i}v_{i}| \text{ order})$$

$$=\frac{(c^{m}\pm c_{m}) \mp r_{i}v_{i}^{2}}{r_{i}v_{i}}$$

$$=\frac{(c^{m}\pm c_{m}) \mp r_{i}v_{i}^{2}}{r_{i}v_{i}}$$

$$\forall_{A}=V_{i} \quad \text{oder} \quad V_{A}=\frac{1}{r_{i}v_{i}}-V_{i}$$

$$=\frac{r_{i}V_{i}}{V_{A}}$$

$$=\frac{r_{i}V_{i}}{r_{i}v_{i}}-V_{i}$$

$$=\frac{r_{i}V_{i}}{r_{i}v_{i}}-V_{i}$$

$$=\frac{r_{i}V_{i}}{r_{i}v_{i}}-V_{i}$$

$$=\frac{r_{i}V_{i}}{r_{i}v_{i}}-V_{i}$$

$$=\frac{r_{i}V_{i}}{r_{i}v_{i}}-V_{i}$$

Falls
$$\frac{26M}{c_1v_1} - v_1 \leq v_1$$

ist $V_A = \frac{26M}{c_1v_1} - v_1$
 $c_A = \frac{c_1v_1}{26M} - v_1 = \frac{hv_1}{hv_1} - v_1$

sonst ist $V_A = v_1 = v_1$

B:
$$\Lambda^{2} = \sqrt{\Lambda_{1}^{2} - \frac{1}{2}} + \frac{1}{2}$$

Expression on $\frac{1}{2} + \frac{1}{2} + \frac{1$

$$\frac{1}{\sqrt{1 + \frac{1}{2}}} = \frac{\sqrt{1 + \frac{1}{2}}}{\sqrt{1 + \frac{1}{2}}} = \frac{\sqrt{1 + \frac{1}{2}}}{\sqrt{1 + \frac{1}{2}}}$$