Table of Contents

Learning Group

calciumPotential = 120e-3;

```
% Members: Meghan, Raymond
% DISCUSSION DATE: <05/13, Monday>, DURATION: <2h>
```

% DISCUSSION SUMMARY: We reviewed the approach for simulating T-type Ca2+ currents and post-inhibitory rebound bursting in a conductance-based neuron model. This included parameter setup and generating applied currents for different baseline and step values. We also examined the Connor-Stevens Type-I neuron model, discussing its parameters and simulation process.

% CLARIFICATIONS RECEIVED: Clarifications were obtained on specific parameters and their roles for both T-type Ca2+ currents simulation and the Connor-Stevens neuron model, including conductance values and reversal potentials. We also reviewed the steps for setting up the time vector and storing simulation results.

% CONTRIBUTIONS: I contributed by clarifying the implementation details of the simulation code, including parameter definition, time vector creation, and result storage. Additionally, I explained the role of gating variables and their influence on neuron model behavior during simulations.

1. Complete Tutorial 4.2 to simulate T-type Ca2+ currents and post-inhibitory rebound bursting in a conductance-based neuron model.

```
% Define parameters.
global leakageConductance sodiumConductance potassiumConductance
calciumConductance sodiumPotential potassiumPotential calciumPotential
leakagePotential membraneCapacitance

leakageConductance = 10e-9;
sodiumConductance = 3.6e-6;
potassiumConductance = 1.6e-6;
calciumConductance = 0.22e-6;
sodiumPotential = 55e-3;
potassiumPotential = -90e-3;
```

```
leakagePotential = -70e-3;
membraneCapacitance = 100e-12;
% Setup time vector.
global timeStep
timeStep = 0.01e-3;
timeVector = 0:timeStep:0.75;
% Create matrices for storing data.
spikeCount = zeros(21,21);
interspikeIntervals = zeros(21,21);
for row=1:21
    for col=1:21
        appliedCurrent = generateAppliedCurrent(-200e-12 + (col-1)*20e-12,
(row-1)*5e-12, timeVector);
        [voltage, sodiumGate, potassiumGate, calciumGate, spikeTimes] =
simulatePIR(timeVector, appliedCurrent);
        totalSpikes = sum(spikeTimes);
        spikeIndices = find(spikeTimes);
        minimumISI = 10.0;
        for idx=1:length(spikeIndices)-1
            isi = (spikeIndices(idx+1) - spikeIndices(idx)) * timeStep;
            if isi < minimumISI</pre>
                minimumISI = isi;
            end
        end
        if minimumISI == 10.0
            minimumISI = 0;
        end
        spikeCount(22-row, col) = totalSpikes;
        interspikeIntervals(22-row, col) = minimumISI;
    end
end
spikeCount
interspikeIntervals
figure1 = figure;
figure(figure1);
imagesc(spikeCount);
colorbarLabel = colorbar;
colorbarLabel.Label.String = 'Total Number of Spikes';
xlabel("Baseline Current (pA)");
ylabel("Current Step (pA)");
xticks([1:2:21]);
xticklabels({'-200','-160','-120','-80','-40','0','40','80','120','160','200'}
);
yticks([1:2:21]);
yticklabels({'100','90','80','70','60','50','40','30','20','10','0'});
title("Total Number of Spikes");
```

```
saveas(figure1, "spikeCount.png");
figure2 = figure;
figure(figure2);
imagesc(interspikeIntervals);
colorbarLabel = colorbar;
colorbarLabel.Label.String = 'Minimum ISI (seconds)';
xlabel("Baseline Current (pA)");
ylabel("Current Step (pA)");
xticks([1:2:21]);
xticklabels({'-200','-160','-120','-80','-40','0','40','80','120','160','200'}
yticks([1:2:21]);
yticklabels({'100','90','80','70','60','50','40','30','20','10','0'});
title("Minimum ISIs");
saveas(figure2, "interspikeIntervals.png");
% Plot qualitatively distinct behaviors.
% Plot A: baseline=-150, step=15.
appliedCurrent = generateAppliedCurrent(-150e-12, 15e-12, timeVector);
[voltage, sodiumGate, potassiumGate, calciumGate, spikeTimes] =
simulatePIR(timeVector, appliedCurrent);
totalSpikes = sum(spikeTimes);
spikeIndices = find(spikeTimes);
minimumISI = 10.0;
for idx=1:length(spikeIndices)-1
    isi = (spikeIndices(idx+1) - spikeIndices(idx)) * timeStep;
    if isi < minimumISI</pre>
        minimumISI = isi;
    end
end
if minimumISI == 10.0
    minimumISI = 0;
end
figureA = figure;
figure(figureA);
subplot(2,1,1);
plot(timeVector, appliedCurrent);
xlabel("Time (seconds)");
ylabel("Applied Current");
title("Applied Current vs. Time");
subplot(2,1,2);
plot(timeVector, voltage);
xlabel("Time (seconds)");
ylabel("Membrane Potential");
title(sprintf("Plot A. Spikes = %d, Min ISI = %f", totalSpikes, minimumISI));
saveas(figureA, "PlotA.png");
% Plot B: baseline=-80, step=90.
appliedCurrent = generateAppliedCurrent(-80e-12, 90e-12, timeVector);
```

```
[voltage, sodiumGate, potassiumGate, calciumGate, spikeTimes] =
simulatePIR(timeVector, appliedCurrent);
totalSpikes = sum(spikeTimes);
spikeIndices = find(spikeTimes);
minimumISI = 10.0;
for idx=1:length(spikeIndices)-1
    isi = (spikeIndices(idx+1) - spikeIndices(idx)) * timeStep;
    if isi < minimumISI</pre>
        minimumISI = isi;
    end
end
if minimumISI == 10.0
    minimumISI = 0;
end
figureB = figure;
figure(figureB);
subplot(2,1,1);
plot(timeVector, appliedCurrent);
xlabel("Time (seconds)");
ylabel("Applied Current");
title("Applied Current vs. Time");
subplot(2,1,2);
plot(timeVector, voltage);
xlabel("Time (seconds)");
ylabel("Membrane Potential");
title(sprintf("Plot B. Spikes = %d, Min ISI = %f", totalSpikes, minimumISI));
saveas(figureB, "PlotB.png");
% Plot C: baseline=-20, step=45.
appliedCurrent = generateAppliedCurrent(-20e-12, 45e-12, timeVector);
[voltage, sodiumGate, potassiumGate, calciumGate, spikeTimes] =
simulatePIR(timeVector, appliedCurrent);
totalSpikes = sum(spikeTimes);
spikeIndices = find(spikeTimes);
minimumISI = 10.0;
for idx=1:length(spikeIndices)-1
    isi = (spikeIndices(idx+1) - spikeIndices(idx)) * timeStep;
    if isi < minimumISI</pre>
        minimumISI = isi;
    end
end
if minimumISI == 10.0
    minimumISI = 0;
end
figureC = figure;
figure(figureC);
subplot(2,1,1);
plot(timeVector, appliedCurrent);
```

```
xlabel("Time (seconds)");
ylabel("Applied Current");
title("Applied Current vs. Time");
subplot(2,1,2);
plot(timeVector, voltage);
xlabel("Time (seconds)");
ylabel("Membrane Potential");
title(sprintf("Plot C. Spikes = %d, Min ISI = %f", totalSpikes, minimumISI));
saveas(figureC, "PlotC.png");
% Plot D: baseline=100, step=45.
appliedCurrent = generateAppliedCurrent(100e-12, 45e-12, timeVector);
[voltage, sodiumGate, potassiumGate, calciumGate, spikeTimes] =
simulatePIR(timeVector, appliedCurrent);
totalSpikes = sum(spikeTimes);
spikeIndices = find(spikeTimes);
minimumISI = 10.0;
for idx=1:length(spikeIndices)-1
    isi = (spikeIndices(idx+1) - spikeIndices(idx)) * timeStep;
    if isi < minimumISI</pre>
        minimumISI = isi;
    end
end
if minimumISI == 10.0
    minimumISI = 0;
end
figureD = figure;
figure(figureD);
subplot(2,1,1);
plot(timeVector, appliedCurrent);
xlabel("Time (seconds)");
ylabel("Applied Current");
title("Applied Current vs. Time");
subplot(2,1,2);
plot(timeVector, voltage);
xlabel("Time (seconds)");
ylabel("Membrane Potential");
title(sprintf("Plot D. Spikes = %d, Min ISI = %f", totalSpikes, minimumISI));
saveas(figureD, "PlotD.png");
% Plot E: baseline=180, step=45.
appliedCurrent = generateAppliedCurrent(180e-12, 45e-12, timeVector);
[voltage, sodiumGate, potassiumGate, calciumGate, spikeTimes] =
simulatePIR(timeVector, appliedCurrent);
totalSpikes = sum(spikeTimes);
spikeIndices = find(spikeTimes);
minimumISI = 10.0;
for idx=1:length(spikeIndices)-1
    isi = (spikeIndices(idx+1) - spikeIndices(idx)) * timeStep;
    if isi < minimumISI</pre>
```

```
minimumISI = isi;
    end
end
if minimumISI == 10.0
    minimumISI = 0;
end
figureE = figure;
figure(figureE);
subplot(2,1,1);
plot(timeVector, appliedCurrent);
xlabel("Time (seconds)");
ylabel("Applied Current");
title("Applied Current vs. Time");
subplot(2,1,2);
plot(timeVector, voltage);
xlabel("Time (seconds)");
ylabel("Membrane Potential");
title(sprintf("Plot E. Spikes = %d, Min ISI = %f", totalSpikes, minimumISI));
saveas(figureE, "PlotE.png");
% Function Definitions:
function [voltage, sodiumGate, potassiumGate, calciumGate, spikeTimes] =
simulatePIR(timeVector, appliedCurrent, initialVoltage, initialSodiumGate,
initialPotassiumGate, initialCalciumGate)
% Simulates the thalamocortical neuron model with a T-type calcium current
given the input time vector and
% applied current.
global timeStep leakageConductance sodiumConductance potassiumConductance
calciumConductance sodiumPotential potassiumPotential calciumPotential
leakagePotential membraneCapacitance
% Default parameters if not inputted.
if (~exist('initialVoltage'))
    initialVoltage = leakagePotential;
end
if (~exist('initialSodiumGate'))
    initialSodiumGate = 0;
end
if (~exist('initialPotassiumGate'))
    initialPotassiumGate = 0;
if (~exist('initialCalciumGate'))
    initialCalciumGate = 0;
end
% Setup vectors.
voltage = zeros(1, length(timeVector));
sodiumGate = zeros(1, length(timeVector));
potassiumGate = zeros(1, length(timeVector));
calciumGate = zeros(1, length(timeVector));
```

```
spikeTimes = zeros(1, length(timeVector));
voltage(1) = initialVoltage;
sodiumGate(1) = initialSodiumGate;
potassiumGate(1) = initialPotassiumGate;
calciumGate(1) = initialCalciumGate;
% Spike detection parameters.
spikeDetection = 0;
spikeThreshold = 0.0;
spikeResetThreshold = -0.06;
% Simulation loop.
for idx = 1:(length(timeVector)-1)
    if voltage(idx) > spikeThreshold
        if spikeDetection == 0
            spikeTimes(idx) = 1;
            spikeDetection = 1;
        end
    end
    if voltage(idx) < spikeResetThreshold</pre>
        spikeDetection = 0;
    end
    % Update voltage.
    alpha = ((10^5)*(voltage(idx) + 0.035))/(1 - exp(-100*(voltage(idx)))
+0.035)));
   beta = 4000*\exp((-(voltage(idx)+0.06))/(0.018));
    sodiumActivation = alpha/(alpha+beta);
    calciumActivation = 1/(1 + \exp((-(voltage(idx)+0.052))/(0.0074)));
    leakageTerm = leakageConductance*(leakagePotential-voltage(idx));
    sodiumTerm =
sodiumConductance*(sodiumActivation^3)*sodiumGate(idx)*(sodiumPotential-
voltage(idx));
    potassiumTerm =
potassiumConductance*(potassiumGate(idx)^4)*(potassiumPotential-voltage(idx));
    calciumTerm =
calciumConductance*(calciumActivation^2)*calciumGate(idx)*(calciumPotential-
voltage(idx));
    voltage(idx+1) = voltage(idx) + (timeStep/
membraneCapacitance)*(leakageTerm+sodiumTerm+potassiumTerm+calciumTerm+applied
Current(idx));
    % Update sodium gate.
    alpha = 350*exp(-50*(voltage(idx)+0.058));
    beta = 5000/(1 + \exp(-100*(voltage(idx)+0.028)));
    sodiumGate(idx+1) = sodiumGate(idx) + timeStep*(alpha*(1-sodiumGate(idx))
- beta*sodiumGate(idx));
    % Update potassium gate.
    alpha = ((5*(10^4))*(voltage(idx)+0.034))/(1 - exp(-100*(voltage(idx))))
+0.034)));
    beta = 625*exp(-12.5*(voltage(idx)+0.044));
```

```
potassiumGate(idx+1) = potassiumGate(idx) + timeStep*(alpha*(1-
potassiumGate(idx)) - beta*potassiumGate(idx));
    % Update calcium gate.
    calciumSteadyState = 1/(1 + \exp(500*(voltage(idx)+0.076)));
    if voltage(idx) < -0.080</pre>
         calciumTimeConstant = 0.001*exp(15*(voltage(idx)+0.467));
    else
         calciumTimeConstant = 0.028 + 0.001*exp((-(voltage(idx)+0.022)))
(0.0105));
    end
    calciumGate(idx+1) = calciumGate(idx) + timeStep*((calciumSteadyState-
calciumGate(idx))/calciumTimeConstant);
end
end
function [appliedCurrent] = generateAppliedCurrent(baseline, step, timeVector)
% Returns a vector for applied current given input baseline and step
% currents.
global timeStep
    appliedCurrent = zeros(1, length(timeVector));
    firstThird = floor(length(timeVector)/3);
    secondThird = 2*firstThird;
    appliedCurrent(1:firstThird) = baseline;
    appliedCurrent(firstThird+1:secondThird) = baseline+step;
    appliedCurrent(secondThird+1:end) = baseline;
end
spikeCount =
  Columns 1 through 13
     0
            2
                   5
                          7
                               10
                                      12
                                             13
                                                    12
                                                                         10
                                                           11
                                                                  10
                                                                               12
                                                                                      13
     0
            1
                   4
                          7
                                9
                                      12
                                             12
                                                    11
                                                           10
                                                                  10
                                                                         10
                                                                               11
                                                                                      13
     0
            1
                   3
                          6
                                 8
                                      11
                                             11
                                                    10
                                                           10
                                                                   9
                                                                          9
                                                                               10
                                                                                      12
     0
            0
                   2
                          5
                                 8
                                      10
                                             11
                                                    10
                                                            9
                                                                   8
                                                                          9
                                                                               10
                                                                                      12
                   2
                                 7
                                                            8
     0
            0
                          4
                                      10
                                             10
                                                     9
                                                                   8
                                                                          8
                                                                                9
                                                                                      11
                                                                                9
     0
            0
                   1
                          4
                                 6
                                       9
                                             10
                                                     9
                                                            8
                                                                   7
                                                                                      11
                                                            7
                                                                          7
            0
                   1
                          3
                                 5
                                       8
                                                     8
                                                                                8
                                                                                      10
     0
                                              9
                                                                   6
     0
            0
                   0
                          2
                                 5
                                       8
                                              8
                                                     8
                                                            6
                                                                   5
                                                                          6
                                                                                7
                                                                                       9
                                       7
                                                     7
                                                                                       9
     0
            0
                   0
                          1
                                 4
                                              8
                                                            6
                                                                   4
                                                                          5
                                                                                6
     0
            0
                   0
                          1
                                 3
                                       6
                                              7
                                                     6
                                                            5
                                                                   3
                                                                          4
                                                                                6
                                                                                       8
     0
            0
                   0
                          0
                                 2
                                       5
                                              6
                                                     5
                                                            4
                                                                   3
                                                                          2
                                                                                 5
                                                                                       7
            0
                          0
                                 2
                                       5
                                                     5
                                                            3
                                                                   2
     0
                   0
                                              6
                                                                          1
                                                                                 3
                                                                                       6
     0
            0
                   0
                          0
                                 1
                                        4
                                              5
                                                     4
                                                            2
                                                                   1
                                                                          0
                                                                                 1
                                                                                       6
     0
            0
                   0
                          0
                                       3
                                              4
                                                     3
                                                            2
                                                                          Ω
                                                                                 0
                                                                                       5
                                 1
                                                                   1
     0
            0
                   0
                          0
                                 0
                                       2
                                              3
                                                     2
                                                            1
                                                                   0
                                                                          0
                                                                                 0
                                                                                       3
                                       2
                                              3
                                                     2
                                                                                       0
     0
            0
                   0
                          0
                                 0
                                                            1
                                                                          0
                                                                                 0
                                                                   0
                                       1
                                              2
                                                            0
     0
            0
                   0
                          0
                                 0
                                                     1
                                                                   0
                                                                          0
                                                                                 0
                                                                                       0
     0
            0
                   0
                          0
                                 0
                                       0
                                              1
                                                     1
                                                            0
                                                                   0
                                                                          0
                                                                                0
                                                                                       0
     0
            0
                   0
                          0
                                 0
                                       0
                                              1
                                                     0
                                                            0
                                                                   0
                                                                          0
                                                                                0
                                                                                       0
     0
            0
                   0
                          0
                                 0
                                       0
                                              0
                                                     0
                                                            0
                                                                   0
                                                                          0
                                                                                 0
                                                                                       0
     0
            0
                   Ω
                          0
                                 Ω
                                       0
                                                     0
                                                            0
                                                                   0
                                                                          Ω
                                                                                       0
```

Columns	14	through	21				
17	29	37	43	49	54	59	64
18	29	36	43	48	54	59	64
16	28	36	42	48	53	58	63
17	28	35	42	48	53	58	63
15	27	35	41	47	52	58	63
16	27	34	41	47	52	57	62
14	26	34	40	46	52	57	62
14	26	33	40	46	51	57	62
13	25	33	40	45	51	56	61
13	25	33	39	45	51	56	61
12	24	32	39	45	50	55	60
11	24	32	38	44	50	55	60
11	23	31	38	44	49	55	60
10	23	31	37	43	49	54	59
8	22	30	37	43	49	54	59
7	21	30	36	42	48	53	59
6	21	29	36	42	48	53	58
4	20	28	35	42	47	53	58
2	19	28	35	41	47	5 <i>2</i>	57
0	18	27	34	41	46	5 <i>2</i>	57
0	18	27	34	40	46	51	57

interspikeIntervals =

Columns 1 through 7

_						
0	0.0436	0.0189	0.0149	0.0136	0.0114	0.0133
0	0	0.0219	0.0162	0.0143	0.0119	0.0138
0	0	0.0265	0.0177	0.0152	0.0125	0.0144
0	0	0.0351	0.0196	0.0163	0.0131	0.0151
0	0	0.0622	0.0223	0.0176	0.0138	0.0158
0	0	0	0.0262	0.0192	0.0146	0.0167
0	0	0	0.0326	0.0212	0.0155	0.0176
0	0	0	0.0458	0.0239	0.0166	0.0188
0	0	0	0	0.0277	0.0180	0.0201
0	0	0	0	0.0334	0.0197	0.0216
0	0	0	0	0.0438	0.0219	0.0235
0	0	0	0	0.0717	0.0248	0.0259
0	0	0	0	0	0.0289	0.0290
0	0	0	0	0	0.0353	0.0331
0	0	0	0	0	0.0473	0.0391
0	0	0	0	0	0.0866	0.0490
0	0	0	0	0	0	0.0708
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Columns 8 through 14

0.0160	0.0185	0.0210	0.0227	0.0214	0.0184	0.0161
0.0166	0.0194	0.0221	0.0238	0.0224	0.0191	0.0167
0.0174	0.0203	0.0232	0.0252	0.0236	0.0199	0.0172
0.0182	0.0213	0.0246	0.0267	0.0249	0.0208	0.0178
0.0191	0.0225	0.0261	0.0286	0.0266	0.0217	0.0184
0.0202	0.0239	0.0279	0.0308	0.0286	0.0229	0.0192
0.0214	0.0255	0.0301	0.0335	0.0309	0.0241	0.0199
0.0228	0.0273	0.0329	0.0370	0.0339	0.0256	0.0209
0.0245	0.0296	0.0364	0.0419	0.0380	0.0275	0.0218
0.0265	0.0324	0.0413	0.0496	0.0435	0.0295	0.0230
0.0289	0.0361	0.0489	0.0660	0.0512	0.0323	0.0242
0.0320	0.0412	0.0662	0	0.0664	0.0360	0.0258
0.0361	0.0492	0	0	0	0.0412	0.0278
0.0419	0.0665	0	0	0	0.0496	0.0298
0.0512	0	0	0	0	0.0672	0.0327
0.0723	0	0	0	0	0	0.0366
0	0	0	0	0	0	0.0422
0	0	0	0	0	0	0.0515
0	0	0	0	0	0	0.0848
0	0	0	0	0	0	0
0	0	0	0	0	0	0
Columns 15	through 2	1				
0.0143	0.0130	0.0120	0.0112	0.0105	0.0099	0.0093
0.0147	0.0133	0.0122	0.0114	0.0106	0.0100	0.0095
0.0151	0.0136	0.0125	0.0116	0.0108	0.0101	0.0096
0.0155	0.0139	0.0127	0.0118	0.0110	0.0103	0.0097
0.0160	0.0143	0.0130	0.0120	0.0112	0.0105	0.0099
0.0165	0.0147	0.0133	0.0122	0.0114	0.0106	0.0100
0.0170	0.0151	0.0136	0.0125	0.0116	0.0108	0.0101
0.0176	0.0155	0.0139	0.0127	0.0118	0.0110	0.0103
0.0182	0.0159	0.0143	0.0130	0.0120	0.0112	0.0104
0.0189	0.0164	0.0146	0.0133	0.0122	0.0113	0.0106
0.0197	0.0169	0.0150	0.0136	0.0125	0.0115	0.0108
0.0205	0.0175	0.0155	0.0139	0.0127	0.0118	0.0110
0.0215	0.0181	0.0159	0.0143	0.0130	0.0120	0.0111
0.0225	0.0188	0.0164	0.0146	0.0133	0.0122	0.0113
0.0237	0.0195	0.0169	0.0150	0.0136	0.0125	0.0115
0.0252	0.0204	0.0175	0.0154	0.0139	0.0127	0.0118
0.0268	0.0213	0.0181	0.0159	0.0143	0.0130	0.0120
0.0288	0.0223	0.0188	0.0163	0.0146	0.0133	0.0122
0.0312	0.0235	0.0195	0.0169	0.0150	0.0136	0.0125
0.0343	0.0249	0.0203	0.0174	0.0154	0.0139	0.0127
0.0379	0.0263	0.0211	0.0180	0.0158	0.0142	0.0130

2. Implement the Connor-Stevens Type-I neuron model and examine its properties.

```
% Parameters for plotting
set(0,'DefaultLineLineWidth',2,...
    'DefaultLineMarkerSize',8, ...
    'DefaultAxesLineWidth',2, ...
    'DefaultAxesFontSize',14,...
    'DefaultAxesFontWeight', 'Bold');
% Basic cell properties for the model
leakReversalPotential = -0.017;
                                  % leak reversal potential
sodiumReversalPotential = 0.055;
                                  % reversal for sodium channels
potassiumReversalPotential = -0.072; % reversal for potassium channels
AReversalPotential = -0.075;
                             % reversal for A-type current
leakConductance = 3e-8;
                            % specific leak conductance
sodiumConductance = 1.2e-5; % specific sodium conductance
potassiumConductance = 2e-6; % specific potassium conductance
AConductance = 4.77e-6; % specific A-type potassium conductance
                                 % specific membrane capacitance
membraneCapacitance = 0.1e-9;
timeStep = 0.000005; % time-step for the simulation
```

```
spikeOnsetThreshold = 0.0; % value for spike onset detection
spikeOffsetThreshold = -0.020; % value for spike offset detection
% Part 1 for current step (A, C in figure), Part 2 for f-I curve
for plotPart = 1:2
   if (plotPart == 1)
                         % current step
                         % start time of simulation
       timeMin = -0.1;
                         % end time of simulation
       timeMax = 0.7;
       appliedCurrentValues = 0.85e-9; % applied current is fixed
       currentStart = 0.1; % time applied current starts
       currentDuration = 0.5; % duration of applied current pulse
   else % f-I curve
       timeMin = 0; % start time of simulation
       timeMax = 5; % end time of simulation
       currentStart = timeMin; % time applied current starts
       currentDuration = timeMax - timeMin; % duration of applied current
pulse
       timeVector = 0:timeStep:timeMax; % time vector
       appliedCurrentValues = 0e-9:0.05e-9:3e-9; % set of applied current
values
   end
   % Indices for current onset and offset
   startIndex = floor((currentStart-timeMin)/timeStep)+1;
   stopIndex = floor((currentStart+currentDuration-timeMin)/timeStep)+1;
   baseCurrent = 0e-9; % base current outside of step
   trialCount = length(appliedCurrentValues); % Number of points in f-I
curve (1 in part 1)
   firingRate = zeros(1, trialCount); % initialize for f-I curve
   timeVector = timeMin:timeStep:timeMax; % time vector
   for trial = 1:trialCount % loop through trials (only once in part 1)
       appliedCurrent = appliedCurrentValues(trial); % applied current
value for this trial
       currentVector(startIndex:stopIndex) = appliedCurrent; % make non-
zero for duration of current pulse
       spikeVector = zeros(size(timeVector)); % vector to store spike times
       inSpike = 0; % flag to indicate if in a spike
       membranePotential = zeros(size(timeVector)); % voltage vector
       membranePotential(1) = leakReversalPotential; % set the initial
value of voltage
```

```
potassiumActivation = zeros(size(timeVector));  % n: potassium
activation gating variable
       potassiumActivation(1) = 0.0; % start off at zero
       sodiumActivation = zeros(size(timeVector));  % m: sodium activation
gating variable
       sodiumActivation(1) = 0.0; % start off at zero
       sodiumInactivation = zeros(size(timeVector));  % h: sodium
inactivation gating variable
       sodiumInactivation(1) = 0.0; % start off at zero
       ACurrentActivation = zeros(size(timeVector)); % A-current activation
gating variable
       ACurrentActivation(1) = 0.0; % start off at zero
       ACurrentInactivation = zeros(size(timeVector)); % A-current
inactivation gating variable
       ACurrentInactivation(1) = 0.0; % start off at zero
       sodiumCurrent = zeros(size(timeVector));  % sodium current
       ACurrent = zeros(size(timeVector)); % A-type current
       leakCurrent = zeros(size(timeVector));  % leak current
       for idx = 2:length(timeVector) % simulation loop
           membraneVoltage = membranePotential(idx-1); % convert voltage to
mV
           % find steady state and time constant of all gating variables
           % given the membrane potential
           [sodiumActivationInf, sodiumActivationTau, sodiumInactivationInf,
sodiumInactivationTau, potassiumActivationInf, potassiumActivationTau,
ACurrentActivationInf, ACurrentActivationTau, ...
               ACurrentInactivationInf, ACurrentInactivationTau] =
gating(membraneVoltage);
           sodiumActivation(idx) = sodiumActivation(idx-1) +
(sodiumActivationInf-sodiumActivation(idx-1))*timeStep/sodiumActivationTau;
% Update sodium activation
           sodiumInactivation(idx) = sodiumInactivation(idx-1) +
(sodiumInactivationInf-sodiumInactivation(idx-1))*timeStep/
sodiumInactivationTau; % Update sodium inactivation
           potassiumActivation(idx) = potassiumActivation(idx-1) +
(potassiumActivationInf-potassiumActivation(idx-1))*timeStep/
potassiumActivationTau; % Update potassium activation
           ACurrentActivation(idx) = ACurrentActivation(idx-1) +
(ACurrentActivationInf-ACurrentActivation(idx-1))*timeStep/
ACurrentActivationTau; % Update A-current activation
           ACurrentInactivation(idx) = ACurrentInactivation(idx-1) +
(ACurrentInactivationInf-ACurrentInactivation(idx-1))*timeStep/
ACurrentInactivationTau; % Update A-current inactivation
```

16

```
leakCurrent(idx) = leakConductance*(leakReversalPotential-
sodiumCurrent(idx) =
sodiumConductance*sodiumActivation(idx)^3*sodiumInactivation(idx)*(sodiumRever
salPotential-membranePotential(idx-1)); % sodium current
           potassiumCurrent(idx) =
potassiumConductance*potassiumActivation(idx)^4*(potassiumReversalPotential-
ACurrent(idx) =
AConductance * ACurrent Activation (idx) ^ 3 * ACurrent Inactivation (idx) * (AReversal Pot
ential-membranePotential(idx-1));  % A-type current
           totalCurrent(idx) = leakCurrent(idx) + sodiumCurrent(idx) +
potassiumCurrent(idx) + ACurrent(idx) + currentVector(idx); % total current
           membranePotential(idx) = membranePotential(idx-1) +
totalCurrent(idx)*timeStep/membraneCapacitance; % Update membrane potential
           % Record spike time on the upswing.
           if (inSpike == 0) && (membranePotential(idx) >
spikeOnsetThreshold)
               inSpike = 1; % Now "in a spike"
               spikeVector(idx) = 1; % Record spike time
           elseif (inSpike == 1) && (membranePotential(idx) <</pre>
spikeOffsetThreshold)
               inSpike = 0; % Reset for next spike detection
           end
       end
       % Find spike times in seconds
       spikeTimes = timeStep * find(spikeVector);
       if length(spikeTimes) > 1 % if more than 1 spike
           isiValues = diff(spikeTimes); % find inter-spike intervals
           firingRate(trial) = 1 / isiValues(end); % final rate is 1/ISI
       end
   end % end of trial loop
   % Plot results
   if (plotPart == 1) % single trial with current step
       figure(1)
       clf
       % Plot V vs time for current step
       subplot('Position', [0.12 0.6 0.36 0.36])
       plot(timeVector, membranePotential, 'k');
       xlabel('time (sec)')
       ylabel('Membrane potential (V)')
       axis([0 0.7 -0.075 0.06])
       % Zoom in on potassium currents around a spike
```

```
subplot('Position', [0.12 0.12 0.36 0.36])
       plot(timeVector, potassiumCurrent*1e9, 'k-');
       hold on
       plot(timeVector, ACurrent*1e9, 'k:')
       axis([0.2 0.24 -48 0])
       xlabel('Time (sec)')
       ylabel('Current (nA)')
        legend('I_{K}', 'I_{A}')
    else % Many trials with different Iapp
        subplot('Position', [0.6 0.6 0.36 0.36])
       plot(appliedCurrentValues*1e9, firingRate, 'k');
       xlabel('Applied current (nA)')
       ylabel('Firing rate (Hz)')
    end
end % end of plot loop
% Show V-dependence of I_A gating variables
voltageRange = -0.100:0.001:0.040; % Range of values for V
[sodiumActivationInf, sodiumActivationTau, sodiumInactivationInf,
sodiumInactivationTau, potassiumActivationInf, potassiumActivationTau,
ACurrentActivationInf, ACurrentActivationTau, ...
    ACurrentInactivationInf, ACurrentInactivationTau] = gating(voltageRange);
% Plot gating variables versus V
subplot('Position', [0.6 0.12 0.36 0.36])
plot(voltageRange*1000, ACurrentActivationInf, 'k--');
xlabel('Membrane potential (mV)')
ylabel('Gating variable steady state')
hold on
plot(voltageRange*1000, ACurrentInactivationInf, 'k:');
plot(voltageRange*1000, potassiumActivationInf, 'k');
axis([-100 40 0 1])
legend('a_{\infty} ', 'b_{\infty} ', 'n_{\infty} ')
annotation('textbox', [0 0.98 0.02 0.02], 'LineStyle', 'none', 'FontSize',
16, 'FontWeight', 'Bold', 'String', 'A')
annotation('textbox', [0.5 0.98 0.02 0.02], 'LineStyle', 'none', 'FontSize',
16, 'FontWeight', 'Bold', 'String', 'B')
annotation('textbox', [0.0 0.52 0.02 0.02], 'LineStyle', 'none', 'FontSize',
16, 'FontWeight', 'Bold', 'String', 'C')
annotation('textbox', [0.5 0.52 0.02 0.02], 'LineStyle', 'none', 'FontSize',
16, 'FontWeight', 'Bold', 'String', 'D')
function[sodiumActivationInf, sodiumActivationTau, sodiumInactivationInf,
sodiumInactivationTau, potassiumActivationInf, potassiumActivationTau,
ACurrentActivationInf, ACurrentActivationTau, ...
    ACurrentInactivationInf, ACurrentInactivationTau] = gating(voltage)
% Returns the steady states and time constants of the gating variables for
the Connor-Stevens model.
% Input: membrane potential (voltage) in Volts.
```

18

```
% Sodium and potassium gating variables are defined by the voltage-dependent
transition rates between states (alpha and beta).
alpha_sodiumActivation = 3.80e5 * (voltage + 0.0297) ./ (1 - exp(-100 * 0.0297)) ./ 
(voltage + 0.0297)));
beta_sodiumActivation = 1.52e4 * exp(-55.6 * (voltage + 0.0547));
alpha_sodiumInactivation = 266 * exp(-50 * (voltage + 0.048));
beta_sodiumInactivation = 3800 \cdot (1 + \exp(-100 * (voltage + 0.018)));
alpha_potassiumActivation = 2e4 * (voltage + 0.0457) ./ (1 - exp(-100 * 0.0457)) ./ 
(voltage + 0.0457)));
beta_potassiumActivation = 250 * exp(-12.5 * (voltage + 0.0557));
% Steady state values and time constants for m, h, and n gating variables.
sodiumActivationTau = 1 ./ (alpha_sodiumActivation + beta_sodiumActivation);
% time constant (s)
sodiumActivationInf = alpha_sodiumActivation ./ (alpha_sodiumActivation +
beta_sodiumActivation);
sodiumInactivationTau = 1 ./ (alpha_sodiumInactivation +
sodiumInactivationInf = alpha_sodiumInactivation ./ (alpha_sodiumInactivation
+ beta_sodiumInactivation);
potassiumActivationTau = 1 ./ (alpha_potassiumActivation +
beta_potassiumActivation); % time constant (s)
potassiumActivationInf = alpha_potassiumActivation ./
(alpha_potassiumActivation + beta_potassiumActivation);
% A-type current gating variables: steady-state values and time constants
found empirically.
ACurrentActivationInf = (0.0761 * exp(31.4 * (voltage + 0.09422)))./ (1 +
\exp(34.6 * (voltage + 0.00117))).^{(1/3)};
ACurrentActivationTau = 0.3632e-3 + 1.158e-3 ./ (1 + exp(49.7 * (voltage + exp(49.7 * 
0.05596)));
ACurrentInactivationInf = (1 ./ (1 + exp(68.8 * (voltage + 0.0533)))).^4;
ACurrentInactivationTau = 1.24e-3 + 2.678e-3 ./ (1 + exp(62.4 * (voltage +
0.050));
```

end

Published with MATLAB® R2024a