GBZ

C57

中华人民共和国国家职业卫生标准 GBZ/T 155-2002

空气中氡浓度的闪烁瓶测定方法

Scintillation flask method for measuring radon concentration in the air

目 次

前言

- 1 范围
- 2 术语和定义
- 3 方法概要
- 4 测量装置
- 5 刻度
- 6 测量步骤
- 7 测量结果

附录 A(资料性附录) 刻度方法 附录 B(资料性附录) 采样和记录

前 言

根据 «中华人民共和国职业病防治法»制定本标准。原标准 GB/T 16147—1995 与本标准 不一致的,以本标准为准。

本标准的附录 A 、附录 B 是资料性附录。

本标准由卫生部提出并归口。

本标准起草单位: 中国疾病预防控制中心辐射防护与核安全医学所卫生部工业卫生实验 所。

本标准主要起草人: 陆扬乔、王作元。

本标准由卫生部负责解释。

中华人民共和国国家职业卫生标准

GBZ/T 155-2002

空气中氡浓度的闪烁瓶测定方法 Scintillation flask method for measuring radon concentration in the air

1 范围

本标准规定了空气中氡(222Rn)浓度的闪烁瓶测量方法。 本标准适用于室内外及地下场所等空气中氡浓度的测量。

2 术语和定义

下列术语和定义适用于本标准。

- 2.1 放射性气溶胶 radioactive aerosol 含有放射性核素的固态或液态微粒在空气或其他气体中形成的分散系。
- 2.2 闪烁瓶 scintillation flask
- 一种氡探测器和采样容器。由不锈钢、铜或有机玻璃等低本底材料制成。外形为圆柱 形或钟形,内层涂以 ZnS(Ag)粉,上部有密封的通气阀门。
- 2.3 瞬时采样 grab sampling 在几秒到几十分钟短时间内,采集空气样品的技术。
- 2.4 氡室 radon chamber

一种用于刻度氡及其短寿命子体探测器的大型标准装置。由氡发生器、温湿度控制仪和氡及其子体监测仪等设备组成。

3 方法概要

4 测量装置

典型的测量装置由探头、高压电源和电子学分析记录单元组成。

- 4.1 探头由闪烁瓶、光电倍加管和前置单元电路组成。
- 4.1.1 典型的闪烁瓶 (2.2 条) 简图见图 1:
- 4.12 必须选择低噪声、高放大倍数的光电倍加管,工作电压低于 1000V。
- 4.13 前置单元电路应是深反馈放大器,输出脉冲幅度为 0.1~10V。
- **4.14** 探头外壳必须具有良好的光密性,材料用铜或铝制成,内表面应氧化涂黑处理,外壳尺寸应适合闪烁瓶的放置。
- **4.2** 高压电源输出电压应在 $0\sim3000$ V 范围连续可调,波纹电压不大于 0.1%,电流应不小于 100mA。
- 4.3 记录和数据处理系统可用定标器和打印机,也可用多道脉冲幅度分析器和 X-Y 绘图仪。

图 1 闪烁瓶简图

- **a**. 通气阀门应经过真空系统检验。接入系统后,在 1×10^{3} **Pa**的真空度下,经过 12h,真空度无明显变化:
- b. 底板用有机玻璃制成。其尺寸与光电倍加管的光阴极一致,接触面平坦,无明显划痕,与 光电倍加管的光阴极有良好的光耦合;
- c. ZnS(Ag)粉必须经去钾提纯处理,使其对本底的贡献保持在最低水平;
- d. 在整个取样测量期间,闪烁瓶的漏气必须小于采样量的 5%;
- e. 测量室外空气中氡浓度时,闪烁瓶容积应大于 0.5×10^{-3} m³。

5 刻度

5.1 刻度源

刻度源采用²²⁶Ra标准源(溶液或固体粉末)。

标准源必须经过法定计量部门或其认可的机构检定。标准源应有检验证书,应清楚表明 参考日期和准确度。

5.2 刻度装置

刻度装置除采用专门的氡室(见 2.4 条)以外,还常用本条描述的玻璃刻度系统(简称刻度系统,见图 2)。

- **5.2.1** 刻度系统应有良好的气密性。系统在 $1\times10^{\circ}$ Pa的真空度下,经过 24h,真空度变化小于 $5\times10^{\circ}$ Pa。
- 5.2.2 压力计的精度应优于 1%。
- 5.2.3 流量计采用浮子流量计,精度应优于 3%,量程为 $0\sim2\times10^{-3}$ m³/min。
- 5.2.4 清洗和充气气体应为无氡气体(如氮气、氩气或放置二个月以上的压缩空气)。
- 5.2.5 真空泵如采用机械真空泵,必须使刻度系统真空优于 5×10°Pa。
- 5.3 刻度曲线
- 5.3.1 按规定程序清洗整个刻度系统。密封装有标准镭源溶液的扩散瓶的二端,累积氡浓度达到刻度范围内所需刻度点的标准氡浓度值。刻度点要覆盖整个刻度范围,一个区间(量级宽)至少3个以上刻度点。详见附录A(资料性附录)。
- 5.3.2 必须先把处于真空状态的闪烁瓶与系统相连接。按规定顺序打开各阀门,用无氡气体把扩散瓶内累积的已知浓度的氡气体赶入闪烁瓶内。在确定的测量条件下,避光 3h,进行计数测量。
- **5.3.3** 由一组标准氡浓度值及其对应的计数值拟合得到刻度曲线即净计数率-氡浓度关系曲线。并导出其函数相关公式。
- 5.3.4 各种不同类型的闪烁瓶和测量装置必须使用不同的刻度曲线。

图 2 玻璃刻度系统示意图

6 测量步骤

- 6.1 在确定的测量条件下,进行本底稳定性测定和本底测量。得出本底分布图和本底值。
- 6.2 将抽成真空的闪烁瓶带到待测点,然后打开阀门(在高温、高尘环境下,须经预处理去湿、去尘),约 10s 后,关闭阀门,带回测量室待测。记录取样点的位置、温度和气压等,详见附录 B(资料性附录)。
- **6.3** 将待测闪烁瓶避光保存 3h,在确定的测量条件下进行计数测量。由要求的测量精度选用测量时间。
- 6.4 测量后,必须及时用无氡气体清洗闪烁瓶,保持本底状态。

7 测量结果

7.1 典型装置刻度曲线在双对数坐标纸上是一条直线,公式为:

式中: Y——空气中氡的浓度, $Bq \cdot m^{-3}$;

X——测定的净计数率, cpm;

a——刻度系数,取决于整个测量装置的性能;

b——刻度系数,取决于整个测量装置的性能。

由式(1),可得:

由净计数率,使用图表或公式可以得到相应样品空气中的氡浓度值。

7.2 结果的误差主要是源误差、刻度误差、取样误差和测量误差。在测量室外空气中氡浓度时,计数统计误差是主要的。按确定的测量程序,报告要列出测量值和计数统计误差。

(资料性附录) 刻 度 方 法

本附录主要规定了玻璃刻度系统的使用方法。

A1 刻度源的制备

- A1.1 将标准的碳酸钡镭粉末溶于用优级纯盐酸和重蒸馏水配制的 2.7mol/L的盐酸溶液,得到 液态²²⁶Ra标准源。体积为液体镭源容器(扩散瓶)的三分之一。
- A1.2 源的准确度优于 5%。
- A1.3 对环境大气中氡浓度,选择液态²²⁶Ra源的活度约为 0.4Bq、4Bq、40Bq、400Bq。

A2 刻度系统的清洗

刻度充气前,须用无氡气体按规定程序对整个系统进行清洗。清洗时间应大于20min。

A3 氡的生长、累积

A3.1 清洗系统后,密封装有标准镭源溶液的扩散瓶二端,按刻度所需的氡浓度,用式(A1) 计算生长时间。

式中: C_{Rn} 一刻度所需 222 Rn浓度, $Bq \cdot m^{-3}$; Q_{Rn} 一液态镭标准源的活度,Bq;

V──刻度系统的体积, m³;

t---生长时间, d;

0.1813——氡的衰变常数。

A3.2 在整个刻度范围,刻度点须均匀分布。一个浓度区间(量级宽度)取3~5个刻度点。

A4 闪烁瓶的充气

- A4.1 必须先把处于真空状态的闪烁瓶与系统相连接。按规定程序打开阀门使大部分生成的氡 进入闪烁瓶,接通气瓶,用无氡气体将其余氡气赶入闪烁瓶。
- A4.2 充气过程确定为 20min, 气流控制约为 100 气泡/min。

按规定测量程序,测量氡浓度-净计数率刻度曲线。上述典型装置的刻度曲线在双对数坐 标纸上是一条直线。

由建立的氡浓度-净计数率关系,即可求出空气中的氡浓度。

附录B (资料性附录)

采样和记录

B1 采样

B1.1 采样点必须有代表性

室内、室外、地下场所,空气中氡的浓度分布是不均匀的。采样点要代表待测空间的最佳取样点。

B1.2 采样条件必须规范化

采样条件必须考虑地面、地域、气象、居住环境、人群特征等,条件的规范化取决于采样的目的。

B2 记录

- B2.1 采样记录取决于采样目的。
- B2.2 记录内容
 - a.采样器编号;
 - b.采样时间;
 - c.采样点的地点、时间、气压、温度、湿度等;
 - d.其他与采样目的有关的有用资料。如风向、风力、雨前、雨后、周围环境等。