Math 112 Chapter 7.3: Trigonometric Substitutions

Previously, we made substitutions of the form $u = g(x)$. We now consider making substitution such as $x = h(\theta)$	ns
In the following examples, h will be a trigonometric function, but there is no reason that requires	it
EXAMPLE:	
Calculate the area of a circle using an integral.	

We will make a choice of substitution based on comparing the integrand to this table.

Form of integrand	Substitution
0 0	
$a^2 - x^2$	$x = a\sin\theta$
$x^2 - a^2$	$x = a \sec \theta$
$x^2 + a^2$	$x = a \tan \theta$

EXAMPLE:

$$\int \frac{1}{x^2 \sqrt{x^2 + 4}} \, dx$$

The steps to follow (which are similar to those used to apply the substitution rule) are:

- 1. Choose $x = \underline{\hspace{1cm}}$ and calculate the corresponding dx.
- 2. Exchange all x for θ .
- 3. Do the integral with trig functions.
- 4. Draw a triangle if needed to help undo the substitution.

EXAMPLES:

$$\int \frac{\sqrt{x^2 - 1}}{x} \, dx$$

$$\int \frac{dx}{[(ax)^2 + b^2]^{3/2}}$$

$$\int \frac{x}{\sqrt{x^2 - 1}} \, dx$$

$$\int \frac{\sqrt{16 - x^2}}{x} \, dx$$

$$\int \frac{dt}{\sqrt{t^2 - 6t + 13}}$$

$$\int \frac{1}{3x^2 + 8} \, dx$$

$$\int_0^2 \frac{e^t}{\sqrt{1+e^{2t}}} \, dt$$