SIGNALS & SYSTEMS

MR. ANKUR JYOTI SARMAH

ASSISTANT PROF., DEPT. OF ELECTRONICS & TELECOM. ENGG.

ASSAM ENGINEERING COLLEGE

Determine the response of the LTI system whose input x(n) and impulse response h(n) are given by,

 $x(n) = \{1, 2, 3, 1\}$ and $h(n) = \{1, 2, 1, -1\}$

Graphical Method of Linear convolution: -

The graphical representation of x(n) and h(n) after replacing n by m are shown below. The sequence h(m) is folded

with respect to m = 0 to obtain h(-m).

Fig 1: Input sequence.

Fig 2: Impulse response.

Fig 3: Folded impulse response.

When
$$n = -1$$
; $y(-1) = \sum_{m = -\infty}^{+\infty} x(m) \cdot h(-1-m) = \sum_{m = -\infty}^{+\infty} x(m) \cdot h_{-1}(m) = \sum_{m = -\infty}^{+\infty} v_{-1}(m)$

The sum of product sequence $v_{-1}(m)$ gives y(-1). : y(-1) = 1

When
$$n = 0$$
; $y(0) = \sum_{m = -\infty}^{+\infty} x(m) h(0-m) = \sum_{m = -\infty}^{+\infty} x(m) h_0(m) = \sum_{m = -\infty}^{+\infty} v_0(m)$

Fig 5: Computation of y(0).

The sum of product sequence $v_0(m)$ gives y(0). y(0) = 2 + 2 = 4

Fig 7: Computation of y(2).

The sum of product sequence $v_2(m)$ gives y(2). $\therefore y(2) = -1 + 2 + 6 + 1 = 8$

When n = 3; y(3) =
$$\sum_{m=-\infty}^{+\infty} x(m) h(3-m) = \sum_{m=-\infty}^{+\infty} x(m) h_3(m) = \sum_{m=-\infty}^{+\infty} v_3(m)$$

Fig 8: Computation of y(3).

The sum of product sequence
$$v_3(m)$$
 gives $y(3)$. $y(3) = -2 + 3 + 2 = 3$

When
$$n = 4$$
; $y(4) = \sum_{m = -\infty}^{+\infty} x(m) h(4-m) = \sum_{m = -\infty}^{+\infty} x(m) h_4(m) = \sum_{m = -\infty}^{+\infty} v_4(m)$

Fig 9: Computation of y(4).

The sum of product sequence
$$v_4(m)$$
 gives $y(4)$. $\therefore y(4) = -3 + 1 = -2$

5 miss Journey

The output sequence, $y(n) = \{1, 4, 8, 8, 3, -2, -1\}$ y(n) **↑**

Fig 11: Graphical representation of y(n).

