Distributed Model Predictive Control

Oliver Gäfvert

August 29, 2014

Solution Methods

Outline

- Introduction
 - Model Predictive Control
 - Distributed Model Predictive Control
- Implementation in Matlab
 - Distributed System Representation
- Solution Methods
 - Solution Method Representation

Model Predictive Control

Given a discrete linear time-invariant state space model

$$x(k+t+1|k) = Ax(k+t|k) + Bu(k+t|k)$$
$$y(k+t|k) = Cx(k+t|k)$$

we can predict future states of the system as a function of the input signals, $u(k+t|k), t \in \mathbb{N}$.

0000000000

Define A Cost Function

By defining a prediction horizon $N \in \mathbb{Z}$ and a cost function

$$J(\mathbf{u}) = x(k+N|k)^T Q_f x(k+N|k) +$$

$$\sum_{i=0}^{N-1} x(k+i|k)^{T} Q x(k+i|k) + u(k+i|k)^{T} R u(k+i|k)$$

where

$$\mathbf{u} = \begin{bmatrix} u(k|k) \\ u(k+1|k) \\ \vdots \\ u(k+N-1|k) \end{bmatrix}$$

we can find the "cheapest" next input signal to control the system by minimizing $J(\mathbf{u})$.

Model Predictive Control

Introduction

000000000

Receding Horizon

Figure: Image from www.eng.ox.ac.uk/ conmrc/ mpc

Forming a Quadratic Programming Problem

By collecting the terms for x(k+i|k), $i \in [0, N]$ we can express $J(\mathbf{u})$ in the form

$$J(\mathbf{u}) = \mathbf{u}^T H \mathbf{u} + 2x(k|k)^T F^T \mathbf{u}$$

and hence we get the quadratic programming problem

minimize
$$\mathbf{u}^T H \mathbf{u} + 2x(k|k)^T F^T \mathbf{u}$$

subject to $u_{min} \le u(k+i|k) \le u_{max}$, for $i \in [0, N-1]$
 $y_{min} \le y(k+i|k) \le y_{max}$, for $i \in [0, N-1]$

where we can incorporate constraints on the input and output signals.

Distributed Model Predictive Control

Consider a finite collection $\mathcal{T} \subset \mathbb{N}$ of indices describing discrete time-invariant linear systems such that system $i \in \mathcal{T}$ is described by

$$x_{i}(k+t+1|k) = A_{i}x_{i}(k+t|k) + B_{i}u_{i}(k+t|k)$$

$$y_{i}(k+t|k) = C_{i}x_{i}(k+t|k)$$
(1)

where $x_i \in \mathbb{R}^{p_i}$, $u_i \in \mathbb{R}^{q_i}$, $y_i \in \mathbb{R}^{n_i}$, and system i is coupled to system $j \in \mathcal{T}$ with the constraints

$$E_{ij}y_i(k+t|k)=E_{ji}y_j(k+t|k)$$

for some $E_{ii} \in \mathbb{R}^{m_{ij} \times n_i}$, $E_{ii} \in \mathbb{R}^{m_{ij} \times n_j}$.

The Local Quadratic Programming Problems

By formulating the MPC problem for each system $i \in \mathcal{T}$ we get the quadratic programming problem

Solution Methods

minimize
$$J(\mathbf{u}_i)$$

subject to $u_{min} \le u(k+t|k) \le u_{max}$, for $t \in [0, N-1]$
 $y_{min} \le y(k+t|k) \le y_{max}$, for $t \in [0, N-1]$
 $E_i y_i(k+t|k) = z_i(k+t|k)$, for $t \in [0, N-1]$

Distributed Model Predictive Control

Example

Introduction

0000000000

Distributed Model Predictive Control

Example

Introduction

000000000

Then we have the global problem

$$x(k+t+1|k) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1(k+t|k) \\ x_2(k+t|k) \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1(k+t|k) \\ u_2(k+t|k) \end{bmatrix}$$
$$y(k+t|k) = x(k+t|k)$$

Distributed Model Predictive Control

Example cont.

Introduction

000000000

Example cont.

Can be decomposed into the two subsystems

$$x_1(k+t+1|k) = x_1(k+t|k) + \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} u_1(k+t|k) \\ u_2(k+t|k) \end{bmatrix}$$
$$y_1(k+t|k) = x_1(k+t|k)$$

and

$$x_2(k+t+1|k) = x_2(k+t|k) + u_2(k+t|k)$$

 $y_2(k+t|k) = x_2(k+t|k)$

where we have the constraint

$$u_2^{(1)}(k+t|k) = u_2^{(2)}(k+t|k)$$

between the two subsystems.

Distributed System Representation

Introduction

Distributed System Representation

DmpcSubsystem describes an MPC controller within a distributed system and DmpcGroup represents an abstract connection between two subsystems.

Example

Introduction

```
sys = DmpcSys(10, 10);
LTI1 = ss(1, [1 -1], 1, [], 1);
params.Q = 1; params.R = 0.1*eye(2);
params.umax = [10; 10];
params.umin = [-10; -10;];
params.ymax = 10; params.ymin = -10;
params.x_0 = -5;
[sys, id1] = sys.addSubsystem(LTI1, params);
```

then add subsystem 2 in a similar way...

Example cont.

Introduction

```
sys = sys.connect(id1, 2, 'input', id2, 1,
'input');
sys.print();
```

Now we have a representation of our distributed system in a DmpcSys object.

Solution Methods

Introduction

The solution methods implemented in the toolbox are

- Nesterov's Accelerated Gradient Method [2]
- a Multi-step Gradient Method [1]
- the Alternating Direction Method of Multipliers (ADMM) [3]

Dual Decomposition

Introduction

In the dual formulation of the local quadratic programming problem for each subsystem we get

maximize minimize
$$J(\mathbf{u}_i) + \lambda_i^T (\tilde{E}_i \mathbf{y}_i - \mathbf{z}_i)$$

The Gradient Ascent Method

 $\forall i \in \mathcal{T}$ in parallell

repeat

Introduction

$$\mathbf{u}_{i}^{+} = \arg\min_{\mathbf{u}_{i} \in \mathcal{U}_{i}} J(\mathbf{u}_{i}) + \lambda_{i}^{T} (\tilde{E}_{i} \mathbf{y}_{i} - \mathbf{z}_{i})$$

send $\tilde{E}_{ij}\mathbf{y}_{i}^{+}$ to all neighbors $j \in \mathcal{N}_{i}$ and receive \mathbf{z}_{i}^{+} $\lambda_{i}^{+} = \lambda_{i} + \alpha \nabla d(\lambda_{i})$

until convergence;

Algorithm 1: Gradient ascent algorithm for dual formulation of distributed MPC.

Nesterov's Accelerated Gradient Method

Initialize
$$\alpha = \frac{\sqrt{5}-1}{2}, \ \gamma = \lambda = 0$$
 $\forall i \in \mathcal{T}$ in parallell

repeat

Introduction

$$\begin{aligned} \mathbf{u}_{i}^{+} &= \arg\min_{\mathbf{u}_{i} \in \mathcal{U}_{i}} \mathbf{J}(\mathbf{u}_{i}) + \lambda_{i}^{T} (\tilde{E}_{i} \mathbf{y}_{i} - \mathbf{z}_{i}) \\ \text{send } \tilde{E}_{ij} \mathbf{y}_{i}^{+} \text{ to all neighbors } j \in \mathcal{N}_{i} \text{ and receive } \mathbf{z}_{i}^{+} \\ \gamma_{i}^{+} &= \lambda_{i} + \frac{1}{L} (\tilde{E}_{i} \mathbf{y}_{i} - \mathbf{z}_{i}) \\ \alpha^{+} &= \frac{\alpha}{2} (\sqrt{\alpha^{2} + 4} - \alpha) \\ \beta &= \frac{\alpha(1 - \alpha)}{\alpha^{2} + \alpha^{+}} \\ \lambda_{i}^{+} &= \gamma_{i} + \beta (\gamma_{i}^{+} - \gamma_{i}) \end{aligned}$$

until convergence:

Algorithm 2: Accelerated gradient ascent algorithm for dual formulation of distributed MPC.

Multi-step Gradient Method

 $\forall i \in \mathcal{T}$ in parallell

repeat

Introduction

$$\mathbf{u}_{i}^{+} = \arg\min_{\mathbf{u}_{i} \in \mathcal{U}_{i}} J(\mathbf{u}_{i}) + \lambda_{i}^{T} (\tilde{E}_{i} \mathbf{y}_{i} - \mathbf{z}_{i})$$

send $\tilde{E}_{ii} \mathbf{y}_{i}^{+}$ to all neighbors $j \in \mathcal{N}_{i}$ and receive \mathbf{z}_{i}^{+}

send
$$\mathcal{L}_{ij}\mathbf{y}_i^+$$
 to all neighbors $j\in\mathcal{N}_i$ and receive $\mathbf{z}_i^+ = \lambda_i + \alpha\nabla d(\lambda_i) + \beta(\lambda_i - \lambda_i^-)$

until convergence;

Algorithm 3: Multi-step gradient method for dual formulation of distributed MPC.

The Alternating Direction Method of Multipliers (ADMM)

 $\forall i \in \mathcal{T}$ in parallell

repeat

Introduction

$$\begin{aligned} \mathbf{u}_{i}^{+} &= \arg\min_{\mathbf{u}_{i} \in \mathcal{U}_{i}} J(\mathbf{u}_{i}) + \lambda_{i}^{T} (\tilde{E}_{i} \mathbf{y}_{i} - \mathbf{z}_{i}) + \frac{\rho}{2} ||E_{i} \mathbf{y}_{i} - \mathbf{z}_{i}||_{2}^{2} \\ \text{send } E_{ij} \mathbf{y}_{i}^{+} + \lambda_{i} / \rho \text{ to all } j \in \mathcal{N}_{i} \text{ and receive } E_{ji} \mathbf{y}_{j}^{+} + \lambda_{j} / \rho \\ \mathbf{z}_{i}^{+} &= \frac{\sum_{j \in \mathcal{N}_{i}} E_{ij}^{T} (E_{ij} \mathbf{y}_{i}^{+} + \lambda_{i} / \rho + E_{ji} \mathbf{y}_{j}^{+} + \lambda_{j} / \rho)}{2} \\ \lambda_{i}^{+} &= \lambda_{i} + \rho (E_{i} \mathbf{y}_{i}^{+} - \mathbf{z}_{i}^{+}) \end{aligned}$$

until convergence;

Algorithm 4: ADMM for dual formulation of distributed MPC.

Solution Method Representation

Introduction

Solution Method Representation

Solution Methods

Example

Introduction

```
maxIter = 500; tol = 0.001;
n_simulations = 10; iter = [];
sol = FastGradient(sys, maxIter, tol);
sol = sol.sim(n_simulations);
iter = [iter; sol.histIter];
```

Solution Methods

Solution Method Representation

Example

```
sol = MultiStep(sys, maxIter, tol);
sol = sol.sim(n_simulations);
iter = [iter; sol.histIter];

sol = ADMM(sys, maxIter, tol);
sol = sol.sim(n_simulations);
iter = [iter; sol.histIter];
```

Solution Method Representation

Example

```
plot(1:n_simulations, iter)
legend('Fast Gradient', 'Multi-step', 'ADMM')
```


References

Solution Methods

Y. Nesterov.

Introductory lectures on convex optimization.

Springer, 2004.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato and Jonathan Eckstein.

Distributed optimization and statistical learning via the alternating direction method of multipliers.

Foundations and Trends in Machine Learning Vol. 3 No. 1, 2010.