Diff Eq Notes

10 March 2012

Contents

1	Initial Definitions			
2	Operator Notation Linear Diff Equations			
3				
4	Initial Value Problems			
5	Seperable DE5.1 Definition5.2 Homogenous Equations	4		
6	Exact Equations			
7 First Order Linear Eq				
	7.1 Integration Factors	,		
	7.2 Bernoulli's equations	;		
	7.3 Existence and Uniqueess Theorem	;		
	7.3.1 Picard Iteration	,		
	7.3.2 Lipsichitz Condition	;		
	7.3.3 Uniform Convergence			
	7.3.4 Existence Theorem			
	7.3.5 Uniqueness Theorm			
8	Autonomous Equations	2		

9	Second Order Linear Eq			
	9.1	Theorm: The general solution to Second Order Linear Eq	4	
		9.1.1 Proof:	4	
	9.2	Second Order Homogenous Eq	5	
	9.3	Complex Number Review	5	

1 Initial Definitions

- Definition:
 - DE is an equation that describes the properties of an unkown
- Ordinary DE:
 - describes functions of 1 variable
- Partial DE:
 - describes multivariable functions
- Notation:
 - independent variable: y
 - dependent variable: t

2 Operator Notation

Definition: $\frac{d^n}{dt^n} = D^n \to f^{(n)} = D^n(f)$

3 Linear Diff Equations

Definition: For an operator, L, the DE: L(y) = 0 is linear iff:

- $L(y_1+y_1) = L(y_1)+L(y_2)$
- L(cy) = cL(y)

4 Initial Value Problems

$$IVP = \begin{cases} DE \\ y_0 = C \end{cases}$$

5 Seperable DE

5.1 Definition

- Can be written as f(y)dy = g(t)dt
- Technique for Solving: $\int f(y)dy = \int g(t)dt$

5.2 Homogenous Equations

6 Exact Equations

- $\Psi(x,y) = \Psi(f(x), y(x))$
- $\bullet \ \Psi_x = \Psi_f \ \mathrm{f}_x + \Psi_y \ \mathrm{y}_x$
- Technique for Solving:
 - Suppose DE is of the form: $M(x,y) + N(x,y) y_x = 0$
 - If $\mathcal{M}_y = \mathcal{N}_x$, then DE is an Exact Eq, solve for Ψ

7 First Order Linear Eq

- 7.1 Integration Factors
- 7.2 Bernoulli's equations
- 7.3 Existence and Uniqueess Theorem
- 7.3.1 Picard Iteration
- 7.3.2 Lipsichitz Condition
- 7.3.3 Uniform Convergence
 - Weirstress M Test

7.3.4 Existence Theorem

7.3.5 Uniqueness Theorm

8 Autonomous Equations

9 Second Order Linear Eq

Definition:

9.1 Theorm: The general solution to Second Order Linear Eq

Claim: The general soln of eq1 $\equiv [y'' + p(t)y' + g(t)y = 0]$ is $y = c_1 y_1 + c_2 y_2$

9.1.1 **Proof:**

• Q1:

Given y_1 and y_2 are solutions, why is $c_1 y_1 + c_2 y_2$ a solution

$$- Eq1 = D^{2}(y) + p(t)D(y)+q(t)y = 0$$

$$- \ Eq1 = [D^2 + p(t)D + q(t)]y = 0$$

– Let L = [D² + p(t)D + q(t)]
$$\rightarrow$$
 eq1 \equiv L(y)=0

- Notice the L is a linear operator and thus obeys the superposition principle
- Thus $y = c_1y_1 + c_2y_2$ is a solution \square

• Q2:

Given 2 indepent solutions y_1 and y_2 for the DE, \forall IVP and its unique solution y, $\exists (c_1, c_2) \in \mathbb{C}^2$ s.t. $y = c_1 y_1 + c_2 y_2$

- The Wronskian:

$$\mathrm{W}(\mathrm{f,g})(\mathrm{t}) = \left| egin{array}{cccc} f_1(x) & f_2(x) & \cdots & f_n(x) \\ f_1'(x) & f_2'(x) & \cdots & f_n'(x) \\ dots & dots & \ddots & dots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \cdots & f_n^{(n-1)}(x) \end{array}
ight|, \qquad x \in I$$

- Sub Proof of Q2

Consider IVP: y'' + py' + qy = 0

- * Take c_1 and c_2 s.t.: $\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{pmatrix}_{t=t_0} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$
- * Notice this is only solvable iff $W(y_1, y_2)_{t=t_0} \neq 0$
- * Theorm: If u and v solve y'' + p(t)y' + g(t)y = 0 then W(u,v)=0 for all t or W is never 0

9.2 Second Order Homogenous Eq

9.3 Complex Number Review