Contents

PR	PREFACE	
1	Introduction	1
	1.1 Examples of Multiconductor Transmission-Line Structures 1.2 Properties of the Transverse ElectroMagnetic (TEM) Mode of	4
	Propagation	7
	1.3 Derivation of the Transmission-Line Equations for	
	Two-Conductor Lines	13
	1.3.1 Derivation from the Integral Form of Maxwell's Equation 1.3.2 Derivation from the Differential Form of Maxwell's	13
	Equations	21
	1.3.3 Derivation from the Per-Unit-Length Equivalent Circuit	22
	1.3.4 Properties of the Per-Unit-Length Parameters	24
	1.4 Classification of Transmission Lines	26
	1.5 Restrictions on the Applicability of the Transmission-Line	
	Equation Formulation	30
	1.5.1 Higher-Order Modes	30
	1.5.1.1 The Infinite Parallel-Plate Transmission Line	30
	1.5.1.2 The Coaxial Transmission Line	36
	1.5.1.3 Two-Wire Lines	37
	1.5.2 Transmission-Line Currents vs. Antenna Currents	37
	References	40
	Problems	42
2	The Multiconductor Transmission-Line Equations	
	2.1 Derivation from the Integral Form of Maxwell's Equations	46
	2.2 Derivation from the Per-Unit-Length Equivalent Circuit	56
		vii

	2.3 Summary of the MTL Equations	57
	2.4 Properties of the Per-Unit-Length Parameter Matrices L, C, G	58
	References	62
	Problems	62
3	The Per-Unit-Length Parameters	64
	3.1 Definitions of the Per-Unit-Length Parameter Matrices	
	L, C, G	65
	3.1.1 The Per-Unit-Length Inductance Matrix, L	65
	3.1.2 The Per-Unit-Length Capacitance Matrix, C	69
	3.1.3 The Per-Unit-Length Conductance Matrix, G	72
	3.1.4 The Generalized Capacitance Matrix, &	73
	3.2 Multiconductor Lines Having Conductors of Circular	
	Cylindrical Cross Section	77
	3.2.1 Fundamental Subproblems for Wires	77
	3.2.1.1 Magnetic Flux Due to a Filament of Current	77
	3.2.1.2 Voltage Due to a Filament of Charge 3.2.1.3 The Method of Images	80 82
	3.2.2 Exact Solutions for Two-Conductor Wire Lines	83
	3.2.2.1 Two Wires	83
	3.2.2.1 Two wires 3.2.2.2 One Wire Above an Infinite, Perfectly Conducting	0.3
	Plane	89
	3.2.2.3 The Coaxial Cable	90
	3.2.3 Wide-Separation Approximations for Wires in	
	Homogeneous Media	92
	3.2.3.1 (n + 1) Wires	93
	3.2.3.2 n Wires Above an Infinite, Perfectly Conducting	
	Plane	93
	3.2.3.3 n Wires Within a Perfectly Conducting Shield	96
	3.2.4 Numerical Methods for the General Case	97
	3.2.4.1 Applications to Inhomogeneous Dielectric Media	103
	3.2.5 Computed Results: Ribbon Cables	109
	3.3 Multiconductor Lines Having Conductors of Rectangular	113
	Cross Section	
	3.3.1 Method of Moments (MOM) Techniques	115
	3.3.1.1 Applications to Printed Circuit Boards	124
	3.3.1.2 Computed Results: Printed Circuit Boards	135
	3.3.2 Finite Difference Techniques	140 146
	3.3.3 Finite Element Techniques	
	3.4 Miscellaneous Additional Techniques	153
	3.4.1 Conformal Mapping Techniques	154

	CONTENTS	ix
	3.4.2 Spectral-Domain Techniques	155
	3.5 Shielded Lines	156
	3.6 Incorporation of Losses; Calculation of R, L _i , and G	157
	3.6.1 Calculation of the Per-Unit-Length Conductance Matrix,	
	G	158
	3.6.2 Representation of Conductor Losses	161
	3.6.2.1 Surface Impedance of Plane Conductors	162
	3.6.2.2 Resistance and Internal Inductance of Wires 3.6.2.3 Internal Impedance of Rectangular Cross Section	164
	Conductors	168
	3.6.2.4 Approximate Representation of Conductor	
	Internal Impedances in the Frequency Domain	177
	References	180
	Problems	182
ļ	Frequency-Domain Analysis	186
	4.1 The MTL Equations for Sinusoidal Steady-State Excitation	186
	4.2 Solutions for Two-Conductor Lines	189
	4.3 General Solution for an $(n + 1)$ -Conductor Line	194
	4.3.1 Analogy of the MTL Equations to the State-Variable	
	Equations	195
	4.3.2 Decoupling the MTL Equations by Similarity	
	Transformations	200
	4.3.3 Characterizing the Line as a 2n Port with the Chain	
	Parameter Matrix	205
	4.3.4 Properties of the Chain Parameter Matrix	206
	4.3.5 Incorporating the Terminal Conditions	209
	4.3.5.1 The Generalized Thévenin Equivalent	210
	4.3.5.2 The Generalized Norton Equivalent	213
	4.3.5.3 Mixed Representations	214
	4.3.6 Approximating Nonuniform Lines	216
	4.4 Solution for Line Categories	219
	4.4.1 Perfect Conductors in Homogeneous Media	220
	4.4.2 Lossy Conductors in Homogeneous Media	222
	4.4.3 Perfect Conductors in Inhomogeneous Media	224
	4.4.4 The General Case: Lossy Conductors in Lossy	
	Inhomogeneous Media	225
	4.4.5 Cyclic Symmetric Structures	225
	4.5 Lumped-Circuit Iterative Approximate Characterizations	231
	4.6 Alternative 2n-Port Characterizations	234
	4.7 Power and the Reflection Coefficient Matrix	236
	4.8 Computed Results	238

x CONTENTS

	4.8.1 Ribbon Cables	239
	4.8.2 Printed Circuit Boards	241
	References	246
	Problems	246
5	Time-Domain Analysis	252
	5.1 Two-Conductor Lossless Lines	253
	5.1.1 Graphical Solutions	257
	5.1.2 The Method of Characteristics (Branin's Method)	266
	5.1.3 The Bergeron Diagram	270
	5.2 Multiconductor Lossless Lines	275
	5.2.1 Decoupling the MTL Equations	277
	5.2.1.1 Lossless Lines in Homogeneous Media	279
	5.2.1.2 Lossless Lines in Inhomogeneous Media	280
	5.2.1.3 Incorporating the Terminal Conditions via the	
	SPICE Program	283
	5.2.2 Extension of Branin's Method to Lossless	
	Multiconductor Lines in Homogeneous Media	288
	5.2.3 Time-Domain to Frequency-Domain Transformations	292
	5.2.4 Lumped-Circuit Iterative Approximate Characterizations	295
	5.2.5 Finite Difference-Time Domain (FDTD) Methods	293 295
	5.2.6 Computed Results	309
	5.2.6.1 Ribbon Cable	311
	5.2.6.2 Printed Circuit Board	317
	5.3 Incorporation of Losses	320
	5.3.1 Two-Conductor Lossy Lines	323
	5.3.1.1 Lumped-Circuit Approximate Characterizations	324
	5.3.1.2 Time-Domain to Frequency-Domain	324
	Transformations	325
	5.3.1.3 Finite Difference-Time Domain (FDTD)	
	Methods	326
	5.3.1.4 Direct Solution via Inversion of the Laplace	
	Transform	334
	5.3.1.5 Time-Domain Characterization of the Line as	225
	a Two Port	337
	5.3.2 Multiconductor Lines	343
	5.3.3 Computed Results	347
	5.3.3.1 Ribbon Cable	348
	5.3.3.2 Printed Circuit Board References	351 351
	Problems	351

	CONIENIS	XI
6	Literal (Symbolic) Solutions for Three-Conductor Lines	359
	6.1 Frequency-Domain Solution	363
	6.1.1 Inductive and Capacitive Coupling	367
	6.1.2 Common-Impedance Coupling	369
	6.2 Time-Domain Solution	371
	6.2.1 Explicit Solution	373
	6.2.2 Weakly Coupled Lines	375
	6.2.3 Inductive and Capacitive Coupling	378
	6.2.4 Common-Impedance Coupling	382
	6.3 Computed Results	383
	6.3.1 A Three-Wire Ribbon Cable	383
	6.3.2 A Three-Conductor Printed Circuit Board References	388 393
	Problems	393 394
	110000115	374
7	Incident-Field Excitation of the Line	395
	7.1 Derivation of the MTL Equations for Incident-Field	
	Excitation	395
	7.1.1 Equivalence of Source Representations	402
	7.2 Frequency-Domain Solutions	405
	7.2.1 Solution of the MTL Equations	406
	7.2.1.1 Simplified Forms of the Excitations	407
	7.2.2 Incorporation of the Terminal Conditions	410
	7.2.2.1 Lossless Lines in Homogeneous Media	413
	7.2.3 Lumped-Circuit Iterative Approximate	
	Characterizations	415
	7.2.4 Uniform Plane-Wave Excitation of the Line	416
	7.2.5 Two-Conductor Lines	423
	7.2.5.1 Uniform Plane-Wave Excitation of the Line	425
	7.2.5.2 Special Cases 7.2.5.3 One Conductor Above a Ground Plane	426 429
	7.2.5.4 Electrically Short Lines	433
	7.2.6 Computed Results	435
	7.2.6.1 Comparison with Predictions of the Method of	455
	Moments Codes	435
	7.2.6.2 A Three-Wire Line in an Incident Uniform	
	Plane Wave	440
	7.3 Time-Domain Solutions	444
	7.3.1 Two-Conductor Lossless Lines	446
	7.3.1.1 The General Solution via the Method of	
	Characteristics	446

		7.3.1.2 The General Solution via the Frequency	
		Domain	448
		7.3.1.3 Uniform Plane-Wave Excitation of the Line	453
		7.3.1.4 Electrically Short Lines	459
		7.3.1.5 A SPICE Equivalent Circuit	460
		7.3.1.6 Computed Results	463
	7.3.2	Multiconductor Lines	466
		7.3.2.1 Decoupling the MTL Equations	467
		7.3.2.2 A SPICE Equivalent Circuit	470
		7.3.2.3 Lumped-Circuit Iterative Approximate	
		Characterizations	475
		7.3.2.4 Time-Domain to Frequency-Domain	
		Transformations	475
		7.3.2.5 Finite Difference-Time Domain Methods	477
		7.3.2.6 Computed Results	480
		References	486
		Problems	487
8	Transmis	sion-Line Networks	489
	8.1 Repr	esentation with the SPICE Model	492
		esentation with Lumped-Circuit Iterative Models	492
		esentation via the Admittance or Impedance Parameters	494
	-	esentation with the BLT Equations	508
		ct Time-Domain Solutions in terms of Traveling Waves	517
		rences	522
	Prob	lems	523
Pu	blications	by the Author Concerning Transmission Lines	525
Аp	pendix A	Description of Computer Software	531
		A.1 Programs for Calculation of the Per-Unit-Length	
		Parameters	532
		A.1.1 Wide-Separation Approximations for Wires:	
		WIDESEP.FOR	533
		A.1.2 Ribbon Cables: RIBBON.FOR	536
		A.1.3 Printed Circuit Boards: PCB.FOR,	
		PCBGAL.FOR	539
		A.1.4 Coupled Microstrip Structures: MSTRP.FOR,	
		MSTRPGAL.FOR	541
		A.2 Frequency-Domain Analysis	542
		A.2.1 General: MTL.FOR	542
		A.3 Time-Domain Analysis	543

	A.3.1 Time-Domain to Frequency-Domain	
	Transformation: TIMEFREQ.FOR	543
	A.3.2 Branin's Method Extended to Multiconductor	
	Lines: BRANIN.FOR	544
	A.3.3 Finite Difference-Time Domain Method:	
	FINDIF.FOR	544
	A.3.4 Finite Difference-Time Domain Method:	
	FDTDLOSS.FOR	544
	A.4 SPICE/PSPICE Subcircuit Generation Programs	545
	A.4.1 General Solution, Lossless Lines:	
	SPICEMTL.FOR	545
	A.4.2 Lumped-pi Circuit, Lossless Lines:	
	SPICELPI.FOR	545
	A.4.3 Inductive-Capacitive Coupling Model:	
	SPICELC.FOR	547
	A.5 Incident Field Excitation	547
	A.5.1 Frequency-Domain Program: INCIDENT.FOR	547
	A.5.2 SPICE/PSPICE Subcircuit Model:	
	SPICEINC.FOR	548
	A.5.3 Finite Difference-Time Domain (FDTD)	
	Model: FDTDINC.FOR	550
	References	551
INDEX		553

CONTENTS

xiii