spectral clustering

spectral Graph theory

- · Consider a graph G=(U,E) with IVI=n Vertices
 - Ais= 1 if node i and node is are connected . Adjacency matrix A: = 0 Otherwise
 - · Degree matrix Dij = number of nodes connected to node i (Diagonal matrix) Dij - & Ais
 - The aplacian matrix associated with a graph G . Laplacian matrix is defined as Lq = D-A

$$\angle G(i,j) = \begin{cases} deg(V;) & i=j \\ -1 & (i,j) \in E \end{cases}$$

$$\begin{array}{c} (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

Example.

adjacency matrix:

Laplacian matrix

properties of Laplacian matrix

- 1 Lis symmetric
- 1 L is positive semi_definite

①
$$L1 = 0$$
 $L1 = 0$ $\Lambda = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
④ $Lv = \underbrace{2}_{(i,j) \in E}$ $V(i) - V(j)$

Property 4

YEIR" LEIR"

$$\begin{pmatrix} \lambda! \\ \lambda' \\ 2! \end{pmatrix} = \begin{pmatrix} & \times \\ & \end{pmatrix} \begin{pmatrix} & \times \\ & & \end{pmatrix}$$

$$y = L \times \begin{pmatrix} y_{i} \\ y_{i} \end{pmatrix} = \begin{pmatrix} y_{i} \\ y_{i}$$

$$= \underbrace{\xi}_{i} \chi_{i} - \underbrace{\xi}_{i} \chi_{j} \qquad ?$$

$$(i,j) \in \underbrace{(i,j) \in E}_{i}$$

Example

$$y_1 = (x_1 - x_5) + (x_1 - x_6) + (x_1 - x_2)$$

$$y_2 = (\chi_2 - \chi_6) + (\chi_2 - \chi_1) + (\chi_1 - \chi_3) + (\chi_2 - \chi_4)$$

$$\chi^{\dagger} L \times = \chi^{\dagger} (L \times)$$

$$= \begin{cases} \chi_{i}^{\dagger} (L \times)_{i} \\ \vdots \\ \chi_{i}^{\dagger} (L \times)_{i} \end{cases}$$

$$= \begin{cases} \chi_{i} \left[\chi_{i} - \alpha_{5} \right] \\ \vdots \\ \chi_{i}^{\dagger} (\chi_{i} - \alpha_{5}) \right]$$

$$= \chi \chi_{i} (\chi_{i} - \alpha_{5})$$

$$= \chi \chi_{i} (\chi_{i} - \alpha_{5}) + \chi_{5} (V_{5} - V_{i})$$

$$= \chi \chi_{i} (\chi_{i} - \chi_{5}) + \chi_{5} (V_{5} - V_{i})$$

$$= \chi \chi_{i} (\chi_{i} - \chi_{5}) + \chi_{5} (V_{5} - V_{i})$$

$$= \chi \chi_{i} (\chi_{i} - \chi_{5}) + \chi_{5} (V_{5} - V_{i})$$

$$= \chi \chi_{i} (\chi_{i} - \chi_{5}) + \chi_{5} (V_{5} - V_{i})$$

$$= \chi \chi_{i} (\chi_{i} - \chi_{5}) + \chi_{5} (V_{5} - V_{i})$$

Example

$$V^{T}LU = (V_{1} - V_{6})^{2} + (V_{1} - V_{5})^{2} + (V_{1} - V_{2})^{2} + (V_{2} - V_{3})^{2} + (V_{2} - V_{4})^{2} + (V_{2} - V_{6})^{2}$$

· Quadratic Form

For any $x \in \mathbb{R}^n$, $x^T L \times 70 \Rightarrow L$ is positive semi-definite $\Rightarrow L^T = (D - A)^T = D^T - A^T = D - A = L \ (D/A \text{ is symmetric})$ $\Rightarrow all \ \lambda \text{ are non-negative}$

. eigenvalues and eigenvectors of the aplacian matrix

Theorem: The dimension of E_0 (eigenspace corresponding to $\lambda=0$) equals number of Connected components of a graph (a way to find how many connection in the graph)

Prove: The graph Laplacian has at least one zero eigenvalue.

-) Assume we have k connected (imporpacts

$$G = [G_1, G_2, \dots, G_K], G$$
 has N vertex
$$V_1 = \begin{bmatrix} x \\ 0 \\ 0 \end{bmatrix} \quad V_2 = \begin{bmatrix} y \\ 0 \\ 0 \end{bmatrix} \quad V_3 = 0$$

Eigenvectors corresponding to 2000 eigenvalue

$$V_1 = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$V_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

beneral setup

Indicator function: f

Question:

If
$$i \in A$$
 and $j \in A$. $f_i - f_j = 0$

Minimization Problem:

Assumption:

* Balanced graph

The clusters have the same size

of nodes labels 1 = # of nodes labeled -1

Graph cuts and spectral clustering

·GNen graph G, the goal is to partition the nodes into two clustered a you from two clusters A and B as follows:

$$f = \begin{pmatrix} f_i \\ f_i \end{pmatrix}$$
 $f_i = cluster \circ f$ label node i
 $f_i = l$ if if B

Example.

one example of
$$f = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

2' ways to partition the graph

Graph Cut

Using f, graph is clustered into two disjoint sets A and B

When is cut(A,B) (arge? \rightarrow There are many edges from A t B small? \rightarrow few edges

Definition of Graph: cut problem

Ghen a graph G = (V, E), find a partition of Vinto two disjoint subsets A and B such that (ut(A,B) is minimized

Ruestion: what is the expensive way to do this?

A: () Find all possible partitions

@ compute cut for each partition

3 choose the minimum cut

Continuous relaxation Discrete problem -> continuous Problem

A: 0 cut = 3

Balanced Partition

him
$$\leq (f_1 - f_5)^2$$

 $ft = (f_1 - f_5)^2$
 $\int c_1 dt$ before $\int c_1 dt$ $\int c_2 dt$ $\int c_3 dt$ $\int c_4 dt$ $\int c_4 dt$ $\int c_5 dt$ \int

sexual assumption:

Number of nodes (abelled 1 = number of nodes labelled of

$$\Rightarrow \hat{\xi} f_{i=0} \Rightarrow (f_{i} f_{i} f_{j} \cdots f_{n}) \left(\begin{cases} \\ \\ \\ \end{cases} \right) = 0$$

First Step
argmin
$$f^{\dagger}Lf$$

 f II $f/I_2 = n$
 $f^{\dagger}1 = 0$ Convent-Fischer
 $f = Second$ eigenvector of the Caplacian corresspond

fz second eigenvector of the Caplacian corressponding to the second Snallest eigenvalue

= fiedler vector of a graph.

sevend step

$$f \rightarrow sign(f)$$

Fiedler vector

Sign (f) =
$$\begin{pmatrix} \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac$$

Apply spectral clustering to real data

x1, x2, Xn u data points in Rd

Goal: Cluster the points (Different similarity graph)

0 & - neighbourhood graph

9 = parameter

X; and X's once connected if [[X:-X;[] < &

① K-nearest Neighbour graph connect X_i ; to X_j if X_d is among the K-nearest Neighbours of X_i

3 Fully connected graph

$$S(x_i, x_i) = exp \left(\frac{-(|x_i - x_i|)^2}{6^2} \right)$$

Similarity function

- What happens when Xi and X3 are far away? ≤(X1, X5) ≈ 0
- (1) What happen when x: and x; are close? (Lx:, x;) x)

Redefine Laplacian as L=0-W

All observations we had so far about L=D-A also works in this setting.

$$x_1 \Gamma x = 7 \quad \text{(i.3) (x:-x2)}_2$$

	Spectral clustering Algor	rithm
Input:	Weighted groph	
	compute L	
	L= D-W	
2	compute first k eigen	vectors of L
	VI, Uz,, VK of L	
	V = (1	VETRAXK
		KEIK
3	Let yo be the ith row o	f V
(4)	couster 41, 42,, yn.	
-	abel of Ji = Label of Xi	(3)

Unnormalized spectral clustering

Input: Similarity matrix $S \in \mathbb{R}^{n \times n}$, number k of clusters to construct

- Construct a similarity graph by one of the ways described in Section 2. Let W be its weighted adjacency matrix.
- ullet Compute the unnormalized Laplacian L.
- Compute the first k eigenvectors v_1, \ldots, v_k of L.
- Let $V \in \mathbb{R}^{n \times k}$ be the matrix containing the vectors v_1, \ldots, v_k as columns. For $i=1,\ldots,n$, let $y_i \in \mathbb{R}^k$ be the vector corresponding to the i-th row of V.
- ullet Cluster the points $(y_i)_{i=1,\dots,n}$ in \mathbb{R}^k with the k-means algorithm into clusters C_1,\ldots,C_k .

Output: Clusters A_1, \ldots, A_k with $A_i = \{j | y_j \in C_i\}$.