Метрическая классификация

Метод ближайших соседей

Метод k ближайших соседей (kNN — k nearest neighbours)

Классифицируемый объект относится к тому классу, которому принадлежат ближайшие к нему объекты обучающей выборки.

Метод k ближайших соседей (kNN — k nearest neighbours)

Алгоритм:

- вычислить расстояние до каждого из объектов обучающей выборки
- отобрать k объектов обучающей выборки, расстояние до которых минимально
- класс классифицируемого объекта это класс, наиболее часто встречающийся среди k ближайших соседей

Номер объекта	Вес детали	Диаметр детали	Класс
1	7	7	брак
2	6	4	брак
3	3	4	не брак
4	1	4	не брак
5	4	5	брак

Пусть есть новый объект — деталь весом = 3, диаметром = 5. Наша задача — определить, к какому классу он относится.

Номер объекта	Вес детали	Диаметр детали	p
1	7	7	$\sqrt{(7-3)^2 + (7-5)^2} = \sqrt{20} = 4,47$
2	6	4	$\sqrt{(6-3)^2 + (4-5)^2} = \sqrt{10} = 3,16$
3	3	4	$\sqrt{(3-3)^2 + (4-5)^2} = \sqrt{1} = 1,0$
4	1	4	$\sqrt{(1-3)^2 + (4-5)^2} = \sqrt{5} = 2,24$
5	4	5	$\sqrt{(4-3)^2 + (5-5)^2} = \sqrt{1} = 1,00$

Номер объекта	Вес детали	Диаметр детали	p	Порядковый номер при сортировке
1	7	7	4,47	5
2	6	4	3,16	4
3	3	4	1,00	1
4	1	4	2,24	3
5	4	5	1,00	2

Номер объекта	Вес детали	Диаметр детали	p	Порядковый номер при сортировке	Входит в 3 ближайших соседа?
1	7	7	4,47	5	нет
2	6	4	3,16	4	нет
3	3	4	1,00	1	да
4	1	4	2,24	3	да
5	4	5	1,00	2	да

Номер объекта	Вес детали	Диаметр детали	p	Порядковый номер при сортировке	Входит в 3 ближайших соседа?	Класс объекта
1	7	7	4,47	5	нет	-
2	6	4	3,16	4	нет	-
3	3	4	1,00	1	да	не брак
4	1	4	2,24	3	да	не брак
5	4	5	1,00	1	да	брак

Объект (3,7) принадлежит классу «не брак»

Номер объекта	Вес детали	Диаметр детали	р	Порядковый номер при сортировке	Класс
1	7	7	4,47	5	брак
2	6	4	3,16	4	брак
3	3	4	1,00	1	не брак
4	1	4	2,24	3	не брак
5	4	5	1,00	2	брак

Пример классификации

Пример регрессии

leave-one-out

Контроль leave-one-out — это проверка обобщающей способности алгоритма.

Модель, качество

Исходные данные

Обучающая выборка

Тестовая выборка

60-70 % 40-30 %

Модель Качество

Исходные данные N объектов

Обучающая выборка

Тестовая выборка

N-1 объект

1 объект

Модель

Качество

Исходные данные N объектов При n = 5 Объект 1 Объект 2 Объект 3 Объект 4 Объект 5

Алгоритмы

- BallTree
- 2 KDTree
- 3 Алгоритм полного перебора

Алгоритм полного перебора

ball tree

ball tree

ball tree

Преимущества:

- простота реализации
- интерпретируемость

Недостатки:

- неустойчивость к погрешностям (шуму, выбросам)
- отсутствие настраиваемых параметров
- приходится хранить всю выборку целиком