群論 (第7回)の解答

問題 7-1 の解答

I を S_3 の単位元とし, $\tau = (1\ 3)$, $\rho = (2\ 3)$ と置く. S_3/H の元は次の 3 つである.

$$IH = \left\{ I = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \ \sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \right\},$$

$$\tau H = \left\{ \tau = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array} \right), \ \tau \sigma = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array} \right) \right\},$$

$$\rho H = \left\{ \rho = \left(\begin{array}{cc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array} \right), \ \rho \sigma = \left(\begin{array}{cc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array} \right) \right\}.$$

従って $(S_3: H) = 3$ である.

問題 7-2 の解答

(1) $P+V\in\mathbb{R}^2/V$ を取る. $P=(x,y)\;(x,y\in\mathbb{R})$ と表す. ここで, $P_1=(x-y,0)$ と置くと, $P_1\in R$ であり, $P-P_1=(y,y)\in V$. よって $P+V=P_1+V\in\{Q+V\mid Q\in R\}$ となる.

(2) P+V=Q+V $(P,Q\in R)$ とする. $P=(t,0),\ Q=(s,0)$ $(t,s\in\mathbb{R})$ と表す. このとき, $(t-s,0)=P-Q\in V$ より t-s=0. よって s=t であり, P=Q が成り立つ.

(1), (2) より, R は \mathbb{R}^2/V の完全代表系である.

問題 7-3 の解答

|G| = 2n - 1 (n: 自然数) と表す. $1_G = x^{2n-1}$ より, 両辺に x をかけて

$$x = (x^2)^n = (1_G)^n = 1_G.$$

問題 7-4 の解答

ラグランジュの定理より、(G:H)=q、(G:K)=p が分かる. 定理 7-5 (4) より

$$(G:H\cap K) = (G:H)(H:H\cap K) = q(H:H\cap K),$$

$$(G: H \cap K) = (G: K)(K: H \cap K) = p(K: H \cap K).$$

従って $(G:H\cap K)$ は p,q 両方の倍数で, p,q は異なる素数なので, $(G:H\cap K)$ は pq の倍数である. よって

$$|H \cap K|pq < |H \cap K|(G: H \cap K) = |G| = pq.$$

これより $|H \cap K| = 1$. よって $H \cap K = \{1_G\}$.

copyright ⓒ 大学数学の授業ノート