실험계획 - 5주차 강의

5장: 분할법

시립대학교 통계학과 2021년 3월 29일 실험의 제약

분할법의 개요

반복이 없는 분할법

반복이 있는 분할법

분할법에서의 분산분석

분할이 불가능한 경우

결론

실험의 제약

예제: 온도와 시간 (교재 예제 5.4)

- 전자제품을 오븐 속에 넣고 몇 분간 고온으로 가열한 다음 부품이 정산적으로 작동하는 시간을 측정
- 온도: 오븐의 온도를 수시로 변경하는 것은 시간이 많이 걸린다. 수준 변경이 어렵다.
- 가열 시간: 제품을 오븐에 넣고 가열하면서 시간에 맟추어 꺼내면 된다. 수준 변경이 쉽다.
- 완전 랜덤화 이원배치 계획법을 적용하면 실험시간이 메우 오래 걸린다.

예제: 관개와 비료

- 관개(irrigation)은 작은 농지에 대하여 랜덤하게 적용하기 어렵다.
- 비료는 농지가 작아도 랜덤하게 적용하기 쉽다.

분할법의 개요

실험의 제약 조건

- 요인이 2개 (A, B)
- 요인 A (Hard-to-change factor)의 수준 변경이 어렵다(비용, 시간)
- 요인 B (Easy-to-change factor)의 수준 변경이 쉽다.

이러한 경우 실용적인 실험설계?

- 먼저 수준 변경이 어려운 A 의 수준을 랜덤하게 결정
- 결정된 요인 A 의 수준을 고정시키고 수준 변경이 용이한 요인
 B 의 수준을 랜덤하게 순차적으로 배치

분할법의 의미

- Split-Plot design (설계의 이름은 농업 실험에서 유래)
- 교과서에서 분할법 II로 부른다.
 - 1. 큰 재배지(**main plot, field, 주구**)에 요인 A 를 랜덤하게 배치하고
 - 2. 주구 안에 작게 나누어진 작은 재배지(sub plot, split plot, **분할구**)에 요인 B 를 랜덤하게 배치

분할법의 특성

■ 실험단위의 내포성 (nested experimental units)

$sub plot \subset main plot$

- 랜덤화의 계층성 (hierachical ramdomization two levels)
 - 1. 먼저 주구를 랜덤하게 배정
 - 2. 선택된 주구 안에서 분할구를 랜던하게 배정
- 랜덤화는 오차를 발생시킨다. 따라서 2개의 서로 다른 오차항이 나타난다.
- 완전 랜덤화 이원배치는 랜덤화의 층이 1개

반복이 없는 분할법

반복이 없는 분할법

Figure 1: 그림출처: 현대실험계획법, 박성현 저

$$x_{ij} = \mu + \alpha_i + e_{1(i)} + \beta_j + (\alpha \beta)_{ij} + e_{2(ij)}$$

- e_{1(i)}: 요인 A의 랜덤화에 따른 주구에 의한 1차 오차항
- *e*_{1(ii)}: 요인 B의 랜덤화에 따른 분할구에 의한 2차 오차항

반복이 없는 분할법

$$x_{ij} = \mu + \underbrace{\alpha_i + e_{1(i)}}_{confounding} + \beta_j + \underbrace{(\alpha \beta)_{ij} + e_{2(ij)}}_{confounding}$$

- e_{1(i)}: 요인 A의 랜덤화에 따른 주구에 의한 1차 오차항
- *e*_{1(*ij*)}: 요인 B의 랜덤화에 따른 분할구에 의한 2차 오차항
- 요인 A 효과 α_i 와 1차 오차항 e_{1(i)} 이 교락
- 상호작용도 2차 오차항 e_{1(ij)} 과 교락
- 쓸모없는 모형!
- 반복이 필요하다.

Figure 2: 그림출처: 현대실험계획법, 박성현 저

■ 반복은 단일 분할법을 여러 번 반복한다.

$$x_{ijk} = \mu + r_k + \alpha_i + e_{1(ik)} + \beta_j + (\alpha\beta)_{ij} + e_{2(ijk)}$$

■ 일반적으로 반복의 효과는 r_k은 임의효과(블럭)로 놓는다.

$$x_{ijk} = \underbrace{\mu + r_k + \alpha_i + e_{1(ik)}}_{\text{1st level}} + \underbrace{\beta_j + (\alpha\beta)_{ij} + e_{2(ijk)}}_{\text{2nd level}}$$

- 모형을 2개의 레벨로 나눌 수 있다.
- 첫 번째 레벨
 - 반복이 없는 이워배치와 같다.
 - 반복 R 과 요인 A 의 상호작용은 서로 교락. 따라서 추론 블가
- 두 번째 레벨
 - 반복이 있는 이원배치와 같다.
 - 요인 A 과 요인 B 의 상호작용 추론 가능

교과서 예제

■ 공업시험 사례:

2가지 방법의 공정(A)과 2가지 온도수준(B)이 제품의 강도에 미치는 영향을 조사하기 위해 반복 3회의 실험. A의 수준변경이 어려움. B의 수준변경 쉬움.

< 그림 5.6> 반복 3회의 분할법Ⅱ의 두 단계의 렌덤화의 과정

교과서 예제

< 그림 5.7 > 분할법Ⅱ의 두 단계의 랜덤화의 과정

반복R	가열시간	온도 A (°F)			
만독 H	B(분)	580	600	620	640
	5	217	158	229	223
'	10	233	138	186	227
	15	175	152	155	156
	5	188	126	160	201
11	10	201	130	170	181
	15	195	147	161	172
III	5	162	122	167	182
	10	170	185	181	201
	15	213	180	182	199

- 반복이 없는 3원배치법과 동일한 자료의 구조. 실험의 랜덤화는 다름

분할법에서의 분산분석

분할법에서의 분산분석

요인 제곱합 자유도 평균제곱합 F_0 A SS_A $a-1$ MS_A MS_A/MS_{E1} R SS_R $r-1$ MS_R E1 SS_{E1} $(a-1)(r-1)$ MS_{E1} B SS_B $b-1$ MS_B MS_B/MS_{E2} A \times B $SS_{A \times B}$ $(a-1)(b-1)$ $MS_{A \times B}$ $MS_{A \times B}/MS_E$ E2 SS_{E2} $a(b-1)(r-1)$ MS_{E2}					
$egin{array}{cccccccccccccccccccccccccccccccccccc$	요인	제곱합	자유도	평균제곱합	F_0
E1 SS_{E1} $(a-1)(r-1)$ MS_{E1} B SS_B $b-1$ MS_B MS_B/MS_{E2} $A \times B$ $SS_{A \times B}$ $(a-1)(b-1)$ $MS_{A \times B}$ $MS_{A \times B}/MS_E$	Α	SS_A	a-1	MS_A	MS_A/MS_{E1}
B SS_B $b-1$ MS_B MS_B/MS_{E2} $A \times B$ $SS_{A \times B}$ $(a-1)(b-1)$ $MS_{A \times B}$ $MS_{A \times B}/MS_E$	R	SS_R	r-1	MS_R	
$A \times B$ $SS_{A \times B}$ $(a-1)(b-1)$ $MS_{A \times B}$ $MS_{A \times B}/MS_{E}$	<i>E</i> 1	SS_{E1}	(a-1)(r-1)	MS_{E1}	
, , , , , , , , , , , , , , , , , , , ,	В	SS_B	b-1	MS_B	MS_B/MS_{E2}
E2 SS_{E2} $a(b-1)(r-1)$ MS_{E2}	$A \times B$	$SS_{A \times B}$	(a-1)(b-1)	$MS_{A \times B}$	$MS_{A \times B}/MS_{E2}$
	<i>E</i> 2	SS_{E2}	a(b-1)(r-1)	MS_{E2}	
$T ext{SS}_{T} ext{abr} - 1$	T	SS_T	abr-1		

주의:

- 요인 A의 효과를 위한 F-통계량은 1차 주구 오차 제곱합 *SS_{E1}* 으로 계산
- 요인 A, 상호작용의 효과를 위한 F-통계량은 2차 분할구 오차 제곱합 *SS*_{E2} 으로 계산

분할이 불가능한 경우

두 인자가 분할이 불가능한 경우

- 두개의 처리 모두 수준의 변경이 어려운 경우: 화로의 온도와 중간원료의 종류(교과서 예제 5.3)
- 1. 이원배치법에서 ab개의 처리를 먼저 1차 랜덤화
- 2. 추출된 처리를 고정시키고 반복 측정 (2차 랜덤화)
- 추출된 처리가 블럭이 되는 경우
- 모형

$$x_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + e_{ijk}$$

여기서

$$\gamma_{ij} \sim N(0, \sigma_1^2), \quad e_{ijk} \sim N(0, \sigma_2^2)$$

두 인자가 분할이 불가능한 경우

■ 모형을 다음과 같이 쓰기도 한다.

$$x_{ijk} = \mu + \alpha_i + \beta_j + e_{1(ij)} + e_{2(ijk)}$$

- 1차 오차항 e_{1(ij)} 와 상호작용 (αβ)_{ij}는 교락!
- 따라서 자료의 구조는 반복이 있는 이원배치이다.
- 하지만 **랜덤화의 절차가 달라서** 상호작용에 대한 추론이 불가능하다.
- 반복이 있는 이원배치에 블럭 효과가 추가된 경우
- 교과서에서 분할법 I

두 인자가 분할이 불가능한 경우

■ 완전 랜덤화 이원배치법

$$x_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + e_{ijk}$$

■ 두 처리의 조합을 먼저 랜덤화

$$x_{ijk} = \mu + \alpha_i + \beta_j + \underbrace{(\alpha\beta)_{ij} + e_{1(ij)}}_{confounding} + e_{2(ijk)}$$

두 인자가 분할이 불가능한 경우 분산분석

요인	제곱합	자유도	평균제곱합	F_0
Α	SS_A	<i>a</i> − 1	MS_A	MS_A/MS_{E1}
В	SS_B	b-1	MS_B	MS_B/MS_{E1}
$E1(+A \times B)$	SS_{E1}	(a-1)(b-1)	MS_{E1}	
<i>E</i> 2	SS_{E2}	ab(r-1)	MS_{E2}	
T	SS_T	abr-1		
	·			

주의:

- 요인 A와 요인 B 의 효과를 위한 F-통계량은 1차 오차 제곱합
 SS_{E1} 으로 계산
- 1차 오차 제곱합 SS_{E1} 에는 1차 오차와 상호작용이 교락

결론

동일한 자료 구조를 가져도 실험의 구조(랜덤화 방법)에 따라서 분석 방법이 변한다!!

	· -	– .	-	
요인 <i>A</i> 요인 <i>B</i>	B_1	B_2		B_b
	x ₁₁₁	x_{121}		x_{1b1}
A_1	x_{112}	x_{122}		x_{1b2}
-	1	:		:
	x_{11r}	$x_{12\tau}$	***	x_{1br}
A_2	x_{211}	x_{221}		x_{2b1}
	x_{212}	x_{222}		x 282
	:	:		:
	x_{21r}	$x_{22\tau}$	•••	x_{2br}
A_a	x_{al1}	x_{d21}		x_{ab1}
	x_{a12}	x_{d22}		x_{ab2}
	i	:		:
	x_{alr}	xazr	•••	x_{abr}