关系的闭包、等价关系

离散数学一集合论

南京大学计算机科学与技术系

回顾

NANCIA O UNIVERSITY OF THE PROPERTY OF THE PRO

- 关系: 笛卡尔积的子集
- 关系的运算
 - 集合运算;复合运算;逆
- 0-1矩阵运算
- 关系的性质
 - 自反,反自反,对称,反对称,传递
 - 图特征;矩阵特征

- 函数的定义
- 子集的像
- 单射与满射
- 反函数
- 函数的复合
- 函数加法与乘法

- 闭包的定义
- 闭包的计算公式
- 传递闭包的Warshall算法
- 等价关系
- 等价类
- 划分

"闭包"

橘黄色圈满足:

- 1. 是圆的(性质)
- 2. 包含所给对象
- 3. 如果有个绿色圆也能 包含该对象,就一定 也能包含这个橘黄圈

青色框满足:

- 1. 是正方形的(性质)
- 2. 包含所给对象
- 3. 如果有个红色正方形 也能包含该对象,就 一定也能包含这个青 色框

关系的闭包:一般概念

- 设R是集合A上的关系,P是给定的某种性质(如:自反、对称、传递),满足下列所有条件的关系 R_1 称为R的关于P的闭包:
 - $R \subseteq R_1$
 - R_1 满足性质P
 - 如果存在集合A上的关系R', R'满足性质P 并包含R, 则 $R_1 \subseteq R'$
- 自反闭包r(R)、对称闭包s(R)、传递闭包t(R)

自反闭包的定义

- 设 R的是集合A上的关系,其<mark>自反闭包r(R)也是A上的关系,且满足:</mark>
 - *r*(*R*)满足自反性;
 - $R \subseteq r(R)$;
 - 对A上的任意关系R',若R'也满足自反性,且也包含R,则 $r(R)\subseteq R'$
- 例子
 - \diamondsuit A={1,2,3}, R={(1,1), (1,3), (2,3), (3,2)}。 \square r(R)={(1,1), (1,3), (2,3), (3,2), (2,2), (3,3)}。

自反闭包的计算公式

• $r(R) = R \cup I_A$, I_A 是集合A上的恒等关系

(证明所给表达式满足自反闭包定义中的三条性质)

- 1. 对任意 $x \in A$, $(x,x) \in I_A$, 因此, $(x,x) \in R \cup I_A$
- 2. $R \subseteq R \cup I_A$
- 3. 设 R' 集合A 上的自反关系,且 $R \subseteq R'$,则对任意 $(x,y) \in R \cup I_A$,有 $(x,y) \in R$,或者 $(x,y) \in I_A$ 。对两种情况,均有 $(x,y) \in R'$,因此, $R \cup I_A \subseteq R'$

对称闭包的计算公式

- $s(R) = R \cup R^{-1}$, 这里 R^{-1} 是R的逆关系
 - s(R)是对称的。对任意 $x,y \in A$, 如果 $(x,y) \in s(R)$, 则 $(x,y) \in R$ 或者 $(x,y) \in R^{-1}$, 即 $(y,x) \in R^{-1}$, 或者 $(y,x) \in R$, $\therefore (y,x) \in s(R)$
 - $R \subseteq S(R)$
 - 设R'是集合A上的对称关系, 并且R $\subseteq R$ ', 则对任意 $(x,y) \in S(R)$, 有 $(x,y) \in R$, 或者 $(x,y) \in R^{-1}$.
 - 情况 $1: (x,y) \in R$, 则 $(x,y) \in R$
 - 情况2: $(x,y) \in R^{-1}$, 则 $(y,x) \in R$, 于是 $(y,x) \in R'$ 。 根据R'的对称性: $(x,y) \in R'$

因此, $s(R) \subseteq R$

连通关系

- R是集合A上的关系
- 定义集合A上的"R连通"关系 R^* 如下:
 - 对任意 $a,b \in A$, $a R^*b$ **当且仅当**:存在 $t_1,t_2...t_k \in A(k$ 是正整数),满足 $(a,t_1) \in R$; $(t_1,t_2) \in R$;...; $(t_k,b) \in R$ 。(可以表述为:从a到b之间存在长度至少为1的通路)
 - 显然:对任意 $a,b \in A$, a R*b 当且仅当存在某个正整数k, 使得 aR^kb 。
 - 于是: $R^* = R^1 \cup R^2 \cup R^3 \cup \dots R^i \cup \dots = Y^k$

传递闭包

$$t(R) = R *$$

- 1. 若 $(x, y) \in R^*$, $(y, z) \in R^*$, 则有 $s_1, s_2, ..., s_j$ 以及 $t_1, t_2, ..., t_k$, 满足: (x, s_1) , Λ , (s_j, y) , (y, t_1) , Λ , $(t_k, z) \in R$, 因此, $(x, z) \in R^*$.
- $2.R \subseteq R^*$
- 3. 设 R' 是集合A上的传递关系, 且包含R。若 $(x,y) \in R^*$,则有 $t_1, t_2, ..., t_k$,满足: $(x, t_1), \Lambda$, $(t_k, y) \in R$,于是 $(x, t_1), (t_1, t_2), \Lambda$, $(t_k, y) \in R'$ 根据R'的传递性, $(x, y) \in R'$.

利用公式证明闭包相等

• 证明: r(s(R)) = s(r(R))

•
$$r(s(R)) = r(R \cup R^{-1})$$

 $= (R \cup R^{-1}) \cup I_A$
 $= (R \cup I_A) \cup (R^{-1} \cup I_A^{-1})$ (注意: $I_A = I_A^{-1}$, 并用等幂率)
 $= (R \cup I_A) \cup (R \cup I_A)^{-1}$
 $= s(R \cup I_A)$
 $= s(r(R))$

注意: r(s(R))一般省略为rs(R)

用定义证明有关闭包的性质

证明: $st(R) \subseteq ts(R)$

注意:左边是t(R)的对称闭包,根据定义,我们只需证明:

(1) ts(R)满足对称性; (2) $t(R) \subseteq ts(R)$

证明(2),考虑到左边是R的传递闭包,我们只需要证明:

(i) $R \subseteq ts(R)$ (显然), (ii) ts(R)满足传递性(显然)。

证明(1):对任意 $(x,y) \in ts(R), \exists t_1, t_2, ..., t_k$,满足

 $(x,t_1) \in s(R), (t_1,t_2) \in s(R), ..., (t_k,y) \in s(R)$,而s(R)满足

对称性,:. $(y,t_k) \in s(R),...,(t_2,t_1) \in s(R),(t_1,x) \in s(R),$

于是: $(y,x) \in ts(R)$, :. ts(R)满足对称性。

注意:传递关系的对称闭包不一定是传递的。比如: {(1,3)}

关于P的闭包是否存在性?

- 令R是A上的关系
 - 若存在,则必是唯一的。
 - 存在性:
 - **令:** $R' = I \{X \mid R \subseteq X \land X$ 具有性质P}
 - $A \times A$ (自反、对称、传递)保证了R 存在
 - 易证: R' 具有性质 P
- 闭包计算可行性尚待讨论
 - 自反闭包和对称闭包显然存在
 - 传递闭包理论上存在

有限集合上的传递闭包

假如|A|=n,则A上的关系R的传递闭包是:

$$t(\mathbf{R}) = \sum_{i=1}^{n} R^{i} = R \cup R^{2} \cup \Lambda \cup R^{n}$$

上述公式和:
$$t(R) = R^* = \overset{\circ}{\mathbf{Y}} R^i$$
有何差别?

A 中只有 n 个不同的元素,如果在R中存在一条从a到b的长度至少为1的通路,那么存在一条长度不超过n的从a到b的通路。

若 xR^*y ,则存在某个自然数 k, $1 \le k \le n$,满足 xR^ky .

用矩阵乘法计算传递闭包

传递闭包:
$$t(R) = \overset{\text{in}}{\mathbf{Y}} R^i = R \cup R^2 \cup \Lambda \cup R^n$$

$$M_{t(R)} = M_R \vee M_R^2 \vee M_R^3 \vee ... \vee M_R^n$$

算法Tranclosure

 $A := M_R$

B := A

For $i = 2 t \delta n$

Begin

 $A := A \odot M_{\mathbb{R}}$

 $B := B \vee A$

End. $(B \not\supset M_{R^*})$

n×n矩阵相乘,结果中每1项,要做(2n-1次)布尔运算(积与和),总共需要计算n²项。

n×n矩阵相加,要做n²次布尔运算(和)

本算法共进行n-1次矩阵乘和加。

总运算量 $(n^2(2n-1)+n^2)(n-1)=2n^3(n-1)$

Warshall算法

■ 算法实例:

 \circ (a) 为关系图,(b) 为关系矩阵A,(c) 为t(A)的关系矩阵

$$A = \begin{array}{c} a & b & c & d \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ d & 1 & 0 & 1 & 0 \end{array}$$
(b)

$$T = \begin{bmatrix} a & b & c & d \\ 1 & 1 & 1 & 1 \\ b & 1 & 1 & 1 & 1 \\ c & 0 & 0 & 0 & 0 \\ d & 1 & 1 & 1 & 1 \end{bmatrix}$$
(c)

求传递闭包的Warshall算法

- Warshall算法通过关系图模型更容易理解:
 - 要确定传递闭包的关系矩阵中的每一项,对应于确定关系 图中任意两顶点之间是否存在路径
 - 这实际上就是把传递闭包运算通过图模型转换为找路径的运算

求传递闭包的Warshall算法 17

求传递闭包的Warshall算法(续)

- Warshall算法高效的根源在于可以直接利用上一步 计算结果中的有效信息简化当前步的计算过程
- 如图,上一轮计算已经产生了 $a_i \rightarrow a_k$ 以及 $a_k \rightarrow a_j$ 的路径,当新一轮计算加入 a_k 点作为中间点时,立即可知道存在 $a_i \rightarrow a_k \rightarrow a_j$ 的路径 a_k

中间点,在集合{a₁,...,a a_{k-1}}中

求传递闭包的Warshall算法(续)

不直接计算 M_R 的乘幂,Warshall算法迭代式地用 W_{i-1} 计算 W_i

- 这里: $1.W_0$ 即为R的关系矩阵, M_{R°
 - 2. 对 $k = 1,2,\Lambda$, $n,W_k[i,j] = 1$ 当且仅当 从 a_i 到 a_j 存在中间节点均在集合 $\{a_1,a_2,\Lambda,a_k\}$ 内的通路。
 - $3.W_n$ 即 $M_{t(R)}$, 也就是所需的结果。

all interior vertices in $\{a_1,...,a\ a_{k-1}\}$

 $W_{k}[i,j]=1$ if and only if: $W_{k-1}[i,j]=1$, or $W_{k-1}[i,k]=1$ and $W_{k-1}[k,j]=1$

Warshall算法的过程

- $R^{(0)}$ 是原关系的关系矩阵
- R⁽¹⁾包含可以用第一个顶点作为中间点的路径信息

:

- $R^{(n)}$ 即为可所有的顶点作为中间点寻找有向路径, 所以 $R^{(n)}$ 就待求的传递闭包
- Warshall算法的中心是可以通过 $R^{(k-1)}$ 来计算 $R^{(k)}$

Warshall算法的过程(续)

■ 递推关系式:

该矩阵反映了不包含中间顶点的路径,框起来的行和列用来计算
$$R^{(1)}$$

$$R^{(1)} = \begin{array}{c|cccc} a & 0 & 1 & 0 & 0 \\ b & 0 & 0 & 0 & 1 \\ c & 0 & 0 & 0 & 0 \\ d & 1 & 1 & 1 & 0 \end{array}$$

该矩阵反映了包含编号 不大于1的中间顶点(也 就是a)的路径(有一条 从d到b的新路径)框起来 的行和列用来计算 $R^{(2)}$ 包含编号不大于3的中间顶点a,b,c)的路径, 没有新路径

$$R^{(2)} = \begin{bmatrix} a & b & c & d \\ 0 & 1 & 0 & 1 \\ b & 0 & 0 & 0 & 1 \\ \hline c & 0 & 0 & 0 & 0 \\ d & 1 & 1 & 1 & 1 \end{bmatrix}$$

包含编号不大于2的中间顶点(也就是a,b)

$$R^{(4)} = \begin{bmatrix} a & b & c & d \\ 1 & 1 & 1 & 1 \\ b & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ d & 1 & 1 & 1 & 1 \end{bmatrix}$$

包含编号不大于4的中间 顶点(a,b,c,d)的路径.有 五条新路径

点鲁岛

Warshall算法过程

- ALGORITHM WARSHALL (M_R: n×n的0-1矩阵)
- 1. W := M_R
- 2. FOR k := 1 to n
- FOR i := 1 to n
- FOR j := 1 to n

这个语句在三重循环内, 执行n³次,每次执行2个 布尔运算(和与积)

总运算量: 2n³

- $W[i,j] \leftarrow W[i,j] \lor (W[i,k] \land W[k,j])$
- 3. Output W
- END OF ALGORITHM WARSHALL

等价关系的定义

- 满足性质: 自反、对称、传递。
- "等于"关系的推广
- 例子
 - 对3同余关系: $R \subseteq Z \times Z$, xRy 当且仅当 $\frac{|x-y|}{3}$ 是整数。
 - $R \subseteq N \times N$, xRy iff 存在正整数k,l, 使得 $x^k = y^l$ 。
 - 自反: 若x是任意自然数, 当然x^k=x^k;
 - 对称: 若有k,l, 使x^k=y^l; 也就有l,k, 使y^l=x^k;
 - 传递: 若有k,l, 使 $x^k=y^l$; 并有m, n, 使 $y^n=z^m$; 则有 $x^{kn}=z^{ml}$

等价类

● R是非空集合A上的等价关系, $\forall x \in A$,等价类 $[x]_R = \{y \mid y \in A \land xRy\}$

 $[2] = \{..., -4, -1, 2, 5, 8, 11, ...\}$

- 每个等价类是A的一个非空子集。
- - 3个等价类: [0]={..., -6, -3, 0, 3, 6, 9, ...};[1]={..., -5, -2, 1, 4, 7, ...};

等价类的代表元素

- 对于等价类 $[x]_R = \{ y \mid y \in A \land xRy \}$, x称为这个等价类的代表元素.
- - 证明: 对任意元素t, 若 $t \in [x]$, 则xRt, 根据R的对称性与传递性,且xRy, 可得yRt, 因此 $t \in [y]$, ∴ $[x] \subseteq [y]$; 同理可得 $[y] \subseteq [x]$ 。

商集

- R是非空集合A上的等价关系, $\forall x \in A$,则其所有等价类的集合称为<mark>商集</mark>,A/R
- 集合 $A=\{a_1,a_2, ..., a_n\}$ 上的恒等关系 I_A 是等价关系, 商集 $A/I_A=\{\{a_1\}, \{a_2\}, ..., \{a_n\}\}$
- 定义自然数集的笛卡儿乘积上的关系R:

(a, b)R(c,d) 当且仅当 a+d=b+c

证明这是等价关系,并给出其商集.

等价关系的一个例子

- R_1, R_2 分别是集合 X_1, X_2 上的等价关系。定义 $X_1 \times X_2$ 上的关系S: $(x_1, x_2)S(y_1, y_2)$ 当且仅当 $x_1R_1y_1$ 且 $x_2R_2y_2$
- 证明: $S = X_1 \times X_2$ 上的等价关系
 - [自反性] 对任意 $(x,y) \in X_1 \times X_2$,由 R_1, R_2 满足自反性可知, $(x,x) \in R_1$, $(y,y) \in R_2$; $\therefore (x,y)S(x,y)$; S自反。
 - [对称性] 假设(x_1,x_2) $S(y_1,y_2)$, 由S的定义以及 R_1,R_2 满足对称性可知: $(y_1,y_2)S(x_1,x_2)$; S对称。
 - [传递性] 假设 $(x_1,x_2)S(y_1,y_2)$, 且 $(y_1,y_2)S(z_1,z_2)$, 则 $x_1R_1y_1$, $y_1R_1z_1$, $x_2R_2y_2$, $y_2R_2z_2$, 由 R_1 , R_2 满足传递性可知: $x_1R_1z_1$, 且 $x_2R_2z_2$, 于是: $(x_1,x_2)S(z_1,z_2)$; S传递。

集合的划分

集合A的 划分, π , 是A的一组非空子集的集合,即 $\pi \subseteq \rho(A)$, 且满足: 1. 对任意 $x \in A$, 存在某个 $A_i \in \pi$, 使得 $x \in A_i$.

i.e.
$$YA_i = A$$

2. 对任意 A_i , A_i ∈ π , 如果 $i\neq j$, 则:

$$A_i \cap A_j = \phi$$

由等价关系定义的划分

- 假设R是集合A上的等价关系,给定 $a \in A$,R(a)是由R 所诱导的等价类。
- $Q=\{R(x)|x\in A\}$ 是相应的商集。
- 容易证明,这样的商集即是A的一个划分:
 - 对任意 $a \in A$, $a \in R(a)$ (R 是自反的)
 - 对任意 $a,b \in A$
 - $(a,b) \in R$ 当且仅当 R(a)=R(b), 同时
 - $(a,b) \notin R$ 当且仅当 $R(a) \cap R(b) = \emptyset$

商集即划分-证明

- 不相等的等价类必然不相交。换句话说,有公共元素的任意两个等价类必然相等。
- 证明:
 - 假设 $R(a) \cap R(b) \neq \emptyset$,设c是一个公共元素。
 - 根据等价类的定义, $(a,c) \in \mathbb{R}, (b,c) \in \mathbb{R}$
 - 对任意 $x \in R(a)$, $(a,x) \in R$, 由R的传递性和对称性,可得 $(c,x) \in R$, 由此可知 $(b,x) \in R$, 即 $x \in R(b)$, $\therefore R(a) \subseteq R(b)$
 - 同理可得: $R(b)\subseteq R(a)$ 。 因此: R(a)=R(b)

根据一个划分定义等价关系

给定 A 上一个划分,可以如下定 义 A 上的等价关系 R:

 $\forall x,y \in A, (x,y) \in R$ 当且仅当: x,y 属于该划分中的同一块。

显然,关系 R 满足自反性、对称性、传递性。因此: R 是等价关系。

• 证明:

从1,2,...,2000中任取1001个数,其中必有两个数x,y,满足 $x/y=2^k$ 。

(k为整数)。

想起鸽笼原理没?

等价关系与划分:一个例子-解

- 建立1000个集合,每个集合包括1至2000之间的一个奇数以及该奇数与2的k次幂的乘积,但最大不超过2000。可以证明这1000个集合的集合是集合{1,2,3,...,2000}上的一个划分。注意任意两个1到2000之间的正整数x,y在同一划分块中当且仅当x/y=2^k。(k为整数)。
- 定义集合{1,2,3,...,2000}上的一个关系R,任意x,y,xRy当且仅当x/y=2^k。易证这是一个等价关系。其商集即上面的划分。

小结

- 闭包的定义
- 闭包的计算公式
- 传递闭包的Warshall算法
- 等价关系,等价类
- 商集,划分

作业

• 见课程QQ群

