Total No. of Questions: 8]		uestions: 8]	SEAT No.:			
PA-1 3	193		[Total No. of Pages : 4			
[5925] 215						
S.E. (E & TC/Electronics)						
DATASTRUCTURES						
(2019 Pattern) (Semester - III) (204184)						
Time: 2	½ Hou	ors]	[Max. Marks : 70			
Instructi		the candidates:				
1)		npt Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q	2.8.			
2)		diagrams must be drawn wherever necessary.	0-			
3)		res to the right side indicate full marks.				
4)	Assu	me suitable data, if necessary.				
		6.				
Q1) a)	W	hat is ADT? Explain stack as an ADT.	[4]			
b)	Wi	ite a structure for stack using array. Write	PUSH and POP function			
	ofor	stack using array.	[8]			
c)	Ev	Evaluate following postfix expression with the help of stack. [6]				
	5 3	3 + 6 2/*3 5*+				
		OR O				
Q2) a)		hat is Queue? Explain insertion and deletic				
		table diagram.	[6]			
b)	Ex	plain with example:	[6]			
	i)	Linear Queue				
	ii)	Circular Queue				
c)	Wr	rite C functions for :	(6)			
	i)	Enqueue in Linear Queue	5			
	ii)	Dequeue in Circular Queue	9, 3,			
		V*	0, 2.			
Q3) a)		Write structure definition for single Linked list. Differentiate between				
		static memory and dynamic memory allocation. [6]				
b)	Wı	Write following C functions in SLL: [6]				
	i)	Insert a node at the beginning				
	ii)	Delete a node at the end	9			
c)	Sta	ate the limitations of single linked list. Repr	esent following polynomial			

using linked list. $20x^9 + 15x^7 + 10x^5 + 5x + 50$ OR

[5]

<i>Q4</i>)	a)	write structure definition for double Linked list. Differentiate betwee array and linked list.	een [6]	
	b)	State the limitations of array. Draw and explain double linked list.	[5]	
	c)	Write following C functions in circular in SLL.	[6]	
		i) Insert a node at the end		
		ii) Delete all nodes in the list		
Q 5)	a)	Define binary tree. Explain following terms with suitable examples:	[7]	
		i) Root node		
		ii) Left and right sub tree		
		iii) Depth of tree		
	b)	Construct the Binary Search Tree (BST) from the following data:	[5]	
		CAR, BAG, MAN, ADD, SAD, FAN, TAN		
	c)	Write recursive function for in-order, pre-order and post-order traver of Binary tree.	rsal [6]	
Q6)	a)	Define the following terms with suitable example with respect to Bin	arv -	
20)	,	tree:	[6]	
		i) Strictly Binary Tree	7	
		ii) Completely Binary Tree		
		iii) Binary Search Tree		
	b)) Construct the binary search tree (BST) from the following elements:		
		45, 20, 80, 40, 10, 90, 70		
		Also, show pre-order and post-order traversal for the same.		
	c)	What is AVL tree? Explain all the rotations in AVL tree. Construct A tree for the following data:	VL [6]	
		1, 2, 3, 4, 5, 6		

Q7) a) What do you mean by adjacency matrix and adjacency list? Give the adjacency matrix and adjacency list for the graph shown below: [6]

- b) Explain with suitable example, DFS and BFS traversal of a graph. [5]
- c) Define with an example:

[6]

- i) Undirected Graph
- ii) Directed Graph
- iii) Weighted Graph

OR

Q8) a) Define indegree and outdegree of a vertex in graph. Find the indegree and outdegree of following graph. [6]

b) Find out Minimum Spanning Tree of the following graph (figure 3) using Kruskal's algorithm. [6]

[5925]-215

c) Find the shortest path from node 'a' to all nodes in the graph shown in fig.4 using Dijkstra's algorithm. [6]

