Learning Agents

Chapter 18

Supervised Learning and Decision Trees

Jim Rehg Georgia Tech

Example of Decision Tree Learning

Example

Learn decision tree from dataset D:

Example	A_{I}	A_2	A_3	A_4	A_5	Output
1	1	1	0	0	0	1
2	0	0	1	1	0	1
3	1	0	0	1	0	1
4	1	0	1	0	1	1
5	0	1	0	0	0	0
6	1	1	0	1	1	0
7	0	1	1	1	1	0

How does the resulting tree classify:

8	1	1	1	0	1	???

Example	A_1	A_2	A_3	A_4	A_5	(Outpu	t
1	1	1	0	0	0		1	
2	0	0	1	1	0		1	
3	1	0	0	1	0		1	
4	1	0	1	0	1		1	
5	0	1	0	0	0		0	
6	1	1	0	1	1		0	
7	0	1	1	1	1		0	

$$H(P(y | D_0)) = B(\frac{4}{4+3})$$

= 0.985

Example	A_1	A_2	A_3	A_4	A_5	Output
1	1	1	0	0	0	1
2	0	0	1	1	0	1
3	1	0	0	1	0	1
4	1	0	1	0	1	1
5	0	1	0	0	0	0
6	1	1	0	1	1	0
7	0	1	1	1	1	0

Split on A_1 :

$$H(y \mid A_1) = \frac{4}{7}B(\frac{3}{3+1})$$

H(Goal)=0.985

Example	A_1	A_2	A_3	A_4	A_5	Output
1	1	1	0	0	0	1
2	0	0	1	1	0	1
3	1	0	0	1	0	1
4	1	0	1	0	1	1
5	0	1	0	0	0	0
6	1	1	0	1	1	0
7	0	1	1	1	1	0

Split on A_1 :

$$H(y \mid A_1) = \frac{4}{7}B(\frac{3}{3+1}) + \frac{3}{7}B(\frac{1}{1+2})$$

H(Goal)=0.985

Example	A_1	A_2	A_3	A_4	A_5	Output
1	1	1	0	0	0	1
2	0	0	1	1	0	1
3	1	0	0	1	0	1
4	1	0	1	0	1	1
5	0	1	0	0	0	0
6	1	1	0	1	1	0
7	0	1	1	1	1	0

Split on A_1 :

$$H(y | A_1) = \frac{4}{7}B(\frac{3}{3+1}) + \frac{3}{7}B(\frac{1}{1+2})$$
$$= \frac{4}{7}(0.811) + \frac{3}{7}(0.918)$$
$$= 0.857$$

$$H(Goal)=0.985$$

 $H(y|A_1)=0.857$

Example	A_1	A_2	A_3	A_4	A_5	Output
1	1	1	0	0	0	1
2	0	0	1	1	0	1
3	1	0	0	1	0	1
4	1	0	1	0	1	1
5	0	1	0	0	0	0
6	1	1	0	1	1	0
7	0	1	1	1	1	0

Split on A_2 :

$$H(y | A_2) = \frac{4}{7} B(\frac{1}{1+3})$$

$$H(Goal)=0.985$$

 $H(y|A_1)=0.857$

Example	A_1	A_2	A_3	A_4	A_5	Output
1	1	1	0	0	0	1
2	0	0	1	1	0	1
3	1	0	0	1	0	1
4	1	0	1	0	1	1
5	0	1	0	0	0	0
6	1	1	0	1	1	0
7	0	1	1	1	1	0

Split on A_2 :

$$H(y | A_2) = \frac{4}{7}B(\frac{1}{1+3}) + \frac{3}{7}B(\frac{3}{3+0})$$

$$H(Goal)=0.985$$

 $H(y|A_1)=0.857$

Example	A_1	A_2	A_3	A_4	A_5	Output
1	1	1	0	0	0	1
2	0	0	1	1	0	1
3	1	0	0	1	0	1
4	1	0	1	0	1	1
5	0	1	0	0	0	0
6	1	1	0	1	1	0
7	0	1	1	1	1	0

Split on A_2 :

$$H(y | A_2) = \frac{4}{7}B(\frac{1}{1+3}) + \frac{3}{7}B(\frac{3}{3+0})$$
$$= \frac{4}{7}(0.811) + \frac{3}{7}(0)$$
$$= 0.463$$

$$H(Goal)=0.985$$

 $H(y|A_1)=0.857$
 $H(y|A_2)=0.463$

Example	A_1	A_2	A_3	A_4	A_5	Output
1	1	1	0	0	0	1
2	0	0	1	1	0	1
3	1	0	0	1	0	1
4	1	0	1	0	1	1
5	0	1	0	0	0	0
6	1	1	0	1	1	0
7	0	1	1	1	1	0

Split on A_3 :

Remainder(
$$A_3$$
) = $\frac{3}{7}B(\frac{2}{2+1})$

$$H(Goal)=0.985$$

 $H(y|A_1)=0.857$
 $H(y|A_2)=0.463$

Example	A_1	A_2	A_3	A_4	A_5	Output
1	1	1	0	0	0	1
2	0	0	1	1	0	1
3	1	0	0	1	0	1
4	1	0	1	0	1	1
5	0	1	0	0	0	0
6	1	1	0	1	1	0
7	0	1	1	1	1	0

Split on A_3 :

Remainder(
$$A_3$$
) = $\frac{3}{7}B(\frac{2}{2+1}) + \frac{4}{7}B(\frac{2}{2+2})$
= 0.965

$$H(Goal)=0.985$$

 $H(y|A_1)=0.857$
 $H(y|A_2)=0.463$
 $H(y|A_3)=0.965$

Example	A_1	A_2	A_3	A_4	A_5	Output
1	1	1	0	0	0	1
2	0	0	1	1	0	1
3	1	0	0	1	0	1
4	1	0	1	0	1	1
5	0	1	0	0	0	0
6	1	1	0	1	1	0
7	0	1	1	1	1	0

Split on A_4 :

Remainder(
$$A_4$$
) = $\frac{4}{7}B(\frac{2}{2+2})$

H(Goal)=0.985 $H(y|A_1)=0.857$ $H(y|A_2)=0.463$ $H(y|A_3)=0.965$

Example	A_1	A_2	A_3	A_4	A_5	Output
1	1	1	0	0	0	1
2	0	0	1	1	0	1
3	1	0	0	1	0	1
4	1	0	1	0	1	1
5	0	1	0	0	0	0
6	1	1	0	1	1	0
7	0	1	1	1	1	0

Split on A_4 :

Remainder(
$$A_4$$
) = $\frac{4}{7}B(\frac{2}{2+2}) + \frac{3}{7}B(\frac{2}{2+1})$
= 0.965

$$H(Goal)=0.985$$

 $H(y|A_1)=0.857$
 $H(y|A_2)=0.463$
 $H(y|A_3)=0.965$
 $H(y|A_4)=0.965$

Example	A_1	A_2	A_3	A_4	A_5	Output
1	1	1	0	0	0	1
2	0	0	1	1	0	1
3	1	0	0	1	0	1
4	1	0	1	0	1	1
5	0	1	0	0	0	0
6	1	1	0	1	1	0
7	0	1	1	1	1	0

Split on A_5 :

$$H(y | A_5) = \frac{3}{7} B(\frac{1}{1+2})$$

H(Goal)=0.985 $H(y|A_1)=0.857$ $H(y|A_2)=0.463$ $H(y|A_3)=0.965$ $H(y|A_4)=0.965$

Example	A_1	A_2	A_3	A_4	A_5	Output
1	1	1	0	0	0	1
2	0	0	1	1	0	1
3	1	0	0	1	0	1
4	1	0	1	0	1	1
5	0	1	0	0	0	0
6	1	1	0	1	1	0
7	0	1	1	1	1	0

Split on A_5 :

$$H(y \mid A_5) = \frac{3}{7}B(\frac{1}{1+2}) + \frac{4}{7}B(\frac{3}{3+1})$$
$$= 0.857$$

H(Goal)=0.985 H(y|A₁) =0.857 H(y|A₂)=0.463 H(y|A₃)=0.965 H(y|A₄)=0.965 H(y|A₅)=0.857

Example	A_1	A_2	A_3	A_4	A_5	Output
1	1	1	0	0	0	1
2	0	0	1	1	0	1
3	1	0	0	1	0	1
4	1	0	1	0	1	1
5	0	1	0	0	0	0
6	1	1	0	1	1	0
7	0	1	1	1	1	0

$$H(Goal)=0.985$$

 $H(y|A_1)=0.857$
 $H(y|A_2)=0.463$
 $H(y|A_3)=0.965$
 $H(y|A_4)=0.965$
 $H(y|A_5)=0.857$

Now identify the best attribute:

Attribute 2 is the best!

Example	A_1	A_2	A_3	A_4	A_5	Output
1	1	1	0	0	0	1
2	0	0	1	1	0	1
3	1	0	0	1	0	1
4	1	0	1	0	1	1
5	0	1	0	0	0	0
6	1	1	0	1	1	0
7	0	1	1	1	1	0

Example	A_1	A_2	A_3	A_4	A_5	Output
1	1	1	0	0	0	1
2	0	0	1	1	0	1
3	1	0	0	1	0	1
4	1	0	1	0	1	1
5	0	1	0	0	0	0
6	1	1	0	1	1	0
7	0	1	1	1	1	0

Attributes A1, A4, A5 equally good. Produce homogeneous set of 2 0's. Choose by attribute no. to break tie.

Example	A_1	A_2	A_3	A_4	A_5	Output
1	1	1	0	0	0	1
2	0	0	1	1	0	1
3	1	0	0	1	0	1
4	1	0	1	0	1	1
5	0	1	0	0	0	0
6	1	1	0	1	1	0
7	0	1	1	1	1	0

A4 and A5 are equally good

Example	A_1	A_2	A_3	A_4	A_5	Output
1	1	1	0	0	0	1
2	0	0	1	1	0	1
3	1	0	0	1	0	1
4	1	0	1	0	1	1
5	0	1	0	0	0	0
6	1	1	0	1	1	0
7	0	1	1	1	1	0

Example	A_1	A_2	A_3	A_4	A_5	Output
1	1	1	0	0	0	1
2	0	0	1	1	0	1
3	1	0	0	1	0	1
4	1	0	1	0	1	1
5	0	1	0	0	0	0
6	1	1	0	1	1	0
7	0	1	1	1	1	0

How does the resulting tree classify:

Example	A_1	A_2	A_3	A_4	A_5	Output
8	1	1	1	0	1	???

Decision Trees: Overfitting and Pruning

Decision Tree Overfitting

A "fully trained" Decision Tree with homogeneous leaves is unlikely to generalize well

This is because the last few tests before the leaves are based on a very small number of examples (e.g. 2-3)

These tests are fitting the noise in the training dataset, not real patterns in f(x)

Combatting Overfitting

There are two standard solutions:

- Early Stopping: Stop splitting before you reach the point of splitting on noise
- Tree Pruning: Once the tree is fully-trained, go back and remove nodes which are not relevant (i.e. due to noise)

We will focus on Decision Tree Pruning

Pruning

Pick a split whose children are leaves Test whether the attribute is irrelevant: Can the leaf distributions be predicted from the parent? E1-E7 If yes, prune the test and make it into a leaf A_2 $\neg A_2$ E1, E5, E6, E7 2 E2, E3, E4 0 0 0 $\neg A_1$ A_1 E5, E7 E1, E6 $\neg A_4$ A_4 5 E1 E6 6 0

Pruning

After pruning, the leaves are gone and the base node becomes the new leaf.

Pruning

Pick a split whose children are leaves
Test whether the attribute is irrelevant:
Can the leaf distributions be
predicted from the parent?
If yes, prune the test and make it
into a leaf

Pruning can be continued iteratively, as new leaves are created

$$h_2(x) = \arg\max\{\frac{3}{3+1}, \frac{1}{1+3}\} = 0$$

Test whether the data distribution in the leaves can be predicted from the parent

Use Chi-Squared test

Predict the distribution at leaf k

$$\hat{p}_k = p_0 \frac{p_k + n_k}{p_0 + n_0}$$
 $\hat{n}_k = n_0 \frac{p_k + n_k}{p_0 + n_0}$

Test whether the data distribution in the leaves can be predicted from the parent

Use Chi-Squared test

Predict the distribution at leaf k

$$\hat{p}_k = p_0 \frac{p_k + n_k}{p_0 + n_0} \quad \hat{n}_k = n_0 \frac{p_k + n_k}{p_0 + n_0}$$

 \setminus Proportion of examples in parent node which follow branch k

Test whether the data distribution in the leaves can be predicted from the parent

Use Chi-Squared test

Predict the distribution at leaf k

$$\hat{p}_{k} \neq p_{0} \frac{p_{k} + n_{k}}{p_{0} + n_{0}} \quad \hat{n}_{k} = n_{0} \frac{p_{k} + n_{k}}{p_{0} + n_{0}}$$

Proportion of examples in parent node which follow branch k

Number of positive examples in parent node

Test whether the data distribution in the leaves can be predicted from the parent

Use Chi-Squared test

Predict the distribution at leaf k

$$\hat{p}_k \neq p_0 \frac{p_k + n_k}{p_0 + n_0}$$

Predicted number of positive examples in leaf k

Proportion of examples in parent node which follow branch k

Number of positive examples in parent node

Test whether the data distribution in the leaves can be predicted from the parent

Use Chi-Squared test

Predict the distribution at leaf k

$$\hat{p}_k = p_0 \frac{p_k + n_k}{p_0 + n_0} \quad \hat{n}_k = n_0 \frac{p_k + n_k}{p_0 + n_0}$$

- Calculate error statistic

$$\Delta = \sum_{k=1}^{d_i} \frac{(p_k - \hat{p}_k)^2}{\hat{p}_k} + \frac{(n_k - \hat{n}_k)^2}{\hat{n}_k}$$

 Accept or reject the null hypothesis at a desired significance level (e.g. 5%)

Chi-Squared Test

Use a Chi-Square distribution with d_i -1 degrees of freedom (one less than # of attribute values)

Based on desired significance level (e.g. 5%) look-up threshold T on the statistic

Test for pruning:

If $\Delta \leq T$, accept null hypothesis and prune the test