Classification problems and models of arithmetic

Fredrik Engström

2010-10-08

Introduction

- How hard is it to decide $M \cong N$ for $M, N \models T$?
- Finite M and $N \Rightarrow$ coded as natural numbers $\Rightarrow \cong$ relation on ω .
- Models with domain ω in a relational language L is a point in the logic space X_L :

Definition

For a relational language L the logic space is

$$X_L = \prod_{R \in I} 2^{\omega^{a(R)}}.$$

• \cong is an equivalence relation on X_I .

Reductions

Definition

Given equivalence relations E, F on X, Y respectievly we define $E \leq Y$ iff there is a function $f: X \to Y$ such that

$$x E x'$$
 iff $f(x) F f(x')$.

Not very interesting: $E \le F$ iff $|X/E| \le |Y/F|$. Need to put restrictions on the function f.

Topology

Definition

Topology: (X, τ) where τ is the set of open subsets of X:

- $\emptyset, X \in \tau$
- $U, V \in \tau$ then $U \cap V \in \tau$
- $A \subseteq \tau$ then $\bigcup A \in \tau$.

Definition

X is Polish if separable and completely metrizable.

Examples:

- Countable spaces with the discrete topology.
- The Baire space $\mathcal{N} = \omega^{\omega}$. { $f \mid f(n) = k$ }
- The Cantor space $\mathscr{C} = 2^{\omega}$. $\{ f \mid f(n) = k \}$
- The logic space X_L . $\{M \mid (\neg)R^M(\bar{a})\}$
- ℝⁿ

Borel sets

Definition

Let X be a Polish space. A σ -algebra over X is a boolean algebra over X closed under countable unions. The least σ -algebra over X containing the open sets is the collection of Borel sets.

Definition

 $f: X \to Y$ is **continuous** if $f^{-1}(U)$ is open for every open U. f is **Borel** if $f^{-1}(U)$ is Borel for every open U.

Theorem (Luzin-Suslin)

If f is Borel and 1-to-1 then f(A) is Borel for every Borel A.

The standard Borel space

Definition

 $X \cong_B Y$ if there is a Borel bijection from X to Y.

$\mathsf{Theorem}$

If X and Y are Polish uncountable spaces then $X \cong_B Y$.

Thus, all uncountable Polish spaces give rise to the same Borel space: the standard Borel space. (Observe that any uncountable Polish space is of size 2^{\aleph_0} .)

Borel and language

Theorem

A set $A \subseteq X_L$ is Borel iff there is an $L_{\omega_1\omega}$ -formula φ with natural number parameters in the signature L such that

$$M \models \varphi \text{ iff } M \in A.$$

Theorem

A set $X\subseteq \mathcal{N}$ is Borel iff there is a Σ^1_1 -formula σ and a Π^1_1 -formula π with function parameters in the signature of arithmetic with one function symbol added such that

$$\mathbb{N} \models \forall f(\sigma \leftrightarrow \pi) \text{ and } (\mathbb{N}, f) \models \sigma \text{ iff } f \in X.$$

Fact: WO $\subseteq 2^{\omega^2}$ is not Borel.

Borel reductions

Definition

Let X, Y be Polish spaces and E, F equivalence relations on X, Y respectively.

• $E \leq_B F$ iff $E \leq F$ by a Borel function $f: X \to Y$.

Examples of equivalence relations:

- id(ω)
- id(2^ω)
- $f E_0 g$ if f = g almost everywhere.
- $f = {}^+ g$ if rg(f) = rg(g).
- $M \cong N$ over X_L .

$$\operatorname{id}(\omega) <_B \operatorname{id}(2^\omega) <_B E_0(\mathscr{C}) \equiv_B E_0(\mathscr{N}) <_B =^+ <_B \cong$$

Smooth relations

Definition

E is completely classifiable or smooth if $E \leq_B id(2^\omega)$.

Theorem (Silver)

If E is smooth then either $E \equiv_B id(2^{\omega})$ or $E \leq_B id(\omega)$.

Theorem (Harrington-Kechris-Louveau)

If E is Borel and non-smooth then $E_0 \leq_B E$.

Countable relations

Definition

E is said to be essentially countable if there is E' with only countable equivalence classes such that $E \equiv_B E'$.

Theorem

There is a universal countable Borel relation E_{∞} , i.e., E is essentially countable iff $E \leq_B E_{\infty}$.

Theorem

$$E_{\infty} <_B =^+$$

Not known if there exists E such that $E_{\infty} <_B E <_B =^+$.

The isomorphism relation

Given Θ $L_{\omega_1\omega}$ -sentence let \cong_{Θ} be the isomorphism relation on the class of countable models of Θ .

Definition

 $Mod(\Theta)$ is Borel complete if for any Θ' in any $L' \cong_{\Theta'} \leq_B \cong_{\Theta}$.

Examples of Borel complete classes:

- The class of linear orders.
- The class of groups.
- The class of connected graphs.

Observe that the isomorphism relation on a Borel complete class is **not** Borel.

Models of arithmetic

Let T be a completion of PA.

Theorem

Mod(T) is Borel complete.

Theorem (Gaifman)

For linear orders I we can build a (Gaifman) model $M_T(I) \models T$ such that $I \cong J$ iff $M_T(I) \cong M_T(J)$.

Proof. Let p(x) be a minimal type over T and let $M_T(I)$ be the Skolem closure of some sequence $c_i, i \in I$ satisfying

$$\bigcup_{i \in I} p(c_i) \cup \bigcup_{i < j \in I} c_i < c_j.$$

p(x) can be constructed arithmetically in T. Thus, for countable linear orders $M_T(I)$ is arithmetical in T and I. Therefore Borel.

Finitely generated models of arithmetic

M, N finitely generated then $M \cong N$ iff there are generators a, b of M, N respectively such that tp(a) = tp(b).

Theorem

Every countable model M has a finitely generated (superminimal) elementary end-extension.

Theorem (Schmerl)

The isomorphism relation \cong^{fg} of finitely generated models of T is

- Borel,
- · essentially countable, and
- non-smooth.

Conjecture: $\cong^{fg} \equiv_B E_{\infty}$

Recursively saturated models of arithmetic

Theorem

Countable recursively saturated models of arithmetic are precisely characterized by their standardsystem.

There is a Borel function $f: X_L \to (2^\omega)^\omega$ taking M to an ordered sequence of the standard system of M.

Theorem

$$\cong_T^{rs} \equiv_B =^+$$
.

f above proves $\cong_T^{rs} \leq_B =^+$.

Thanks