

A Review of Word Alignment Techniques

— Presenters

Guo Xuechun 2819****
Ke Huishu 2819****

Southeast University-Monash University Joint Graduate School(Suzhou) 5/26/2017

Objectives

- There is no review about word alignment(CNKI, ACM Digital Library, Monash Library)
- Introduce the word alignment to you
- Show different models of word alignment techniques

Contents

Introduction

Background, Applications, Difficulties

Models Explanation 2

IBM model, Neural model

3 Evaluation Rules

AER, F-measure, CPER, ASAER

Conclusions

Conclusion, challenges and future work

Ke Huishu

1 Background

✓ Word alignment refers to identifying correspondences between the words/phrases in source language and in target language (Nguyen and Dinh, 2012)

□ 文化 是 维系 中华民族 生生不息、蔓延不断 精神纽带.
□ Culture is the spiritual bond that ensures the continuity of our Chinese nation.

What Is Word Alignment

1 Applications

Machine Translation

The translation of text by a computer automatically, without human involvement.

Word Sense Disambiguation

Word is used in different conditions and has multiple meaning.

Dictionary Construction

Construct bilingual dictionary automatically and greatly improve the efficiency.

Text Retrieval

Text retrieval is defined as the matching of some stated user query against a set of free-text records

1 Difficulties

Incompatibility

Complexity and Diversity

Different languages have much divergence on part of speech, lexicon table, semantics, syntax structure, etc.

Various type

One-to-many

中国 —— China 食品业 —— food industry

Non-contiguous words

对外开放 Opening...to the outside

Cross Alignment

Word order and part of speech change

Guo Xuechun

Different Approaches

- Statistical-based method

 IBM model
 - Syntactical-based method
- Innovative methodNeural model, Monte Carlo model

IBM model

Nature

A series of five statistical models of the translation process (Brown et al., 1993)

Prerequisite

A pair of sentences that are translations of one another

Thought

- Assign a probability to each of the possible word-by-word alignments
- Seek the most probable of these alignments

Figure 1. A general alignment (Brown et al., 1993)

2 IBM model

$$Pr(t \mid s) = \frac{Pr(t) Pr(s|t)}{Pr(s)}$$

$$\hat{t}_i = \underset{t_i}{\operatorname{argmax}} P(t_i|s_j) = \underset{t_i}{\operatorname{argmax}} (P(t_i)P(s_j|t_i))$$

- Shortcomings
 - Sensible to the training data
 - > Hapax logomania

Neural model

Nature

A neural network for word alignment is to compute alignment scores for sentence pairs (Legrand et al., 2016)

Prerequisite

A pairs of sentences that are translations of one another

Thought

- Unsupervised training
- A soft-margin objective

2 Neural model

Figure 2. Illustration of the neural model (Legrand et al., 2016)

Denote the sentence pair <e, f>
Source sentence $\mathbf{f} = (f_1, \dots, f_{|\mathbf{f}|})$ Target sentence $\mathbf{e} = (e_1, \dots, e_{|\mathbf{e}|})$ $\operatorname{net}_e([\mathbf{e}]_i^{d_{win}^e}) \in \Box^{d_{emb}}$ $\operatorname{net}_f([\mathbf{e}]_j^{d_{win}^f}) \in \Box^{d_{emb}}$

$$s(i, j) = \operatorname{net}_{e}([e]_{i}^{d_{win}^{e}}) \operatorname{Inet}_{f}([e]_{j}^{d_{win}^{f}})$$

Recall and Precision

Parameters

Sure link—— S

Possible link—— P

Word Alignment Result—— A

Recall

$$recall = \frac{|A \cap S|}{|S|}$$

Precision

$$precision = \frac{|A \cap P|}{|A|}$$

Evaluation Rules

Bilingual Evaluation Understudy Papineni et al.,2002

Och,2003 Alignment Error Rate

Consistent Phrase Error Rate

Zhang and Gildea, 2004

Huang et al.,2009

Error-Sensitive Alignment Error Rate

Ke Huishu

Result of Some Experiments

Alignment		AER	ESAER	ESAER/50	BLEU	
Modell	E2F	0.4705	10.5809	0.2116	16.53	
	F2E	0.4417	21.325 5	0.426.5	13.94	
	Union	0.471.2	18.0103	0.3602	15.10	
	GDF	0.3445	13.275 6	0.265 5	17.63	
НММ	E2F	0.4304	10.7179	0.2144	18.66	
	F2E	0.3917	19. 797 6	0.3960	16.71	
	Union	0.3968	16.795 8	0.3359	17.40	
	GDF	0.3379	13.6103	0.2722	18.92	
Model4	E2F	0.3687	8.967 3	0.1793	20.16	
	F2E	0.3528	17. 582 9	0.3517	16.08	
	Union	0.3617	14.750 9	0.2950	17.64	
	GDF	0.3023	11.651 3	0.2330	19.35	

Figure 3. Comparing a hybrid model with other model (Chen et al., 2009)

Table 1. Using AER, ESAER, BLEU to compare IBM Model-1、HMM、Model-4(Huang et al.,2009)

	English-French		Romanian-English			English-Czech			
	En-Fr	Fr-En	sym	Ro-En	En-Ro	sym	En-Cz	Cz-En	sym
words	22.2	24.2	15.7	47.0	45.5	40.3	36.9	36.3	29.5
+ POS	20.9	23.9	15.3	45.3	42.9	36.9	35.6	33.7	28.2
+ diag	15.1	15.8	12.8	37.6	35.7	32.2	24.8	24.5	21.0
+ POS + diag	13.2	12.1	10.2	33.1	32.2	27.8	24.6	22.9	19.9

Challenges and Future Work

Three Difficulties

Finding better method to overcome three problems

Evaluation System

To construct a evaluation system to measure the quality of word alignment

Other Techniques

Looking for the probability to combine other techniques with word alignment

Take-home Message

Three Difficulties

Two Model for Word Alignment

Evaluation Rules

Future Work

- Brown, P. F., Pietra, V. J. D., Pietra, S. A. D., & Mercer, R. L. (1993). The mathematics of statistical machine translation: parameter estimation. *Computational Linguistics*, 19(2), 263-311.
- Chen, L., Xu, J., & Zhang, Y. (2012). A hybrid model for word alignment with bilingual corpus. *IEEE International Conference on Computer Science and Automation Engineering*, 3, 99-103.
- Huang, S., Ning, X. I., Zhao, Y., Dai, X., & Chen, J. (2009). An error-sensitive evaluation metric for word alignment. *Journal of Chinese Information Processing*.
- Legrand, J., Auli, M., & Collobert, R. (2016). Neural network-based word alignment through score aggregation, 66-73.
- Nguyen, G. T., & Dinh, D. (2012). Improving English-Vietnamese Word Alignment Using Translation Model. *IEEE Rivf International Conference on Computing and Communication Technologies, Research, Innovation, and Vision for the Future,* 1-4.
- Och, F. J. (2003). Minimum error rate training in statistical machine translation. *Meeting on Association for Computational Linguistics*, 32, 160-167.
- Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002). BLEU: a method for automatic evaluation of machine translation. *Meeting on Association for Computational Linguistics*, 4, 311-318.
- Zhang, H., & Gildea, D. (2004). Syntax-based alignment: supervised or unsupervised?. *International Conference on Computational Linguistics*, 418.

