Student Information

Full Name : Adil Kaan Akan

 $Id\ Number:\ 2171155$

Answer 1

Table 1: Truth Table for Question1.1

				V		
p	q	$\neg p$	$\neg q$	$p \rightarrow q$	$\neg q \land (p \to q$	$(\neg q \land (p \to q) \to \neg p$
Τ	Τ	F	F	Т	F	T
\mathbf{T}	F	F	T	F	\mathbf{F}	T
F	\mathbf{T}	Т	F	Т	\mathbf{F}	T
F	F	Τ	Τ	Т	${ m T}$	T

Table 2: Truth Table for Question1.2

p	q	r	$\neg p$	$p \lor q$	$(\neg p \lor r)$	$(q \lor r)$	$(p \lor q) \land (\neg p \lor r)$	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$
T	Т	Т	F	Т	Т	Τ	T	Т
T	$\mid T \mid$	F	F	Т	F	${ m T}$	F	${ m T}$
T	F	$\mid T \mid$	F	Т	T	${ m T}$	m T	${ m T}$
T	F	F	F	T	F	F	F	${ m T}$
F	Т	Γ	Γ	Т	T	${ m T}$	${f T}$	${ m T}$
F	$\mid T \mid$	F	Γ	Т	T	${ m T}$	m T	${ m T}$
F	F	$\mid T \mid$	Γ	Т	T	${ m T}$	F	${ m T}$
F	F	F	T	F	Γ	\mathbf{F}	F	T

Answer 2

$$(p \to q) \lor (p \to r) \equiv (\neg q \land \neg r) \to \neg p \; \textit{Given}$$

$$(p \to q) \lor (p \to r) \equiv (\neg p \lor q) \lor (\neg p \lor r) \; \textbf{Table 7}$$

$$(\neg p \lor q) \lor (\neg p \lor r) \equiv (\neg p \lor \neg p) \lor (q \lor r) \; \textbf{Associative law}$$

$$(\neg p \lor \neg p) \lor (q \lor r) \equiv \neg p \lor (q \lor r) \; \textbf{Idempotent law}$$

$$\neg p \lor (q \lor r) \equiv q \lor r \lor \neg p \; \textbf{Commutative law}$$

$$(\neg q \wedge \neg r) \rightarrow \neg p \equiv \neg (\neg q \wedge \neg r) \vee \neg p$$
 Table 7

$$\neg(\neg q \wedge \neg r) \vee \neg p \equiv q \vee r \vee \neg p$$
 De Morgan law $q \vee r \vee \neg p \equiv q \vee r \vee \neg p$ Result

Answer 3

```
1. a) Every cat has at least one friend which is dog. b) There exists a cat that is friends with all dogs. 2. a) \forall_x \forall_y (Meal(y) \land Eats(x,y) \rightarrow Customer(x)) b) \neg \exists_x (Chef(x) \rightarrow \forall_y (Meal(y) \rightarrow Cooks(x,y)) c) \exists_x \forall_y \exists_z (Customer(x) \land Chef(z) \land Meal(y) \land Cooks(z,y) \land Eats(x,y) \land \forall_t (chef(t) \land Cooks(t,y) \rightarrow t = z)) d) \forall_x \exists_y (Chef(x) \rightarrow Chef(y) \land Knows(x,y) \land \forall_z (Meal(z) \land Cooks(y,z) \rightarrow \neg Cooks(x,z)))
```

Answer 4

Table 3: Truth Table for Deduction rule

p	\mathbf{q}	$\neg p$	$p \rightarrow q$	$\neg q$
Τ	Т	F	Т	F
\mathbf{T}	F	\mathbf{F}	F	T
F	Т	Τ	Т	F
F	F	${ m T}$	Т	Γ

Natural deduction says that if we have premises that are true, then the right hand side proposition will also be true. However, when we build a truth table, in the cases where premises are true, we do not have true right hand side proposition. Therefore, this system cannot be deduction rule.

Answer 5

	Table 4: Answer to	the 5th question
1	$p \to q$	premise
2	$q \rightarrow r$	premise
3	$r \to p$	premise
4	p	assumption
5	q	$\rightarrow_e, 1$
6	r	$\rightarrow_e, 2$
7	$p \rightarrow r$	$\rightarrow_i, 4-6$
8	$p \leftrightarrow r$	$\leftrightarrow_i, 3, 7$
9	q	assumption
10	r	$\rightarrow_e, 2$
11	p	$\rightarrow_e, 3$
12	$q \to p$	$\rightarrow_i, 9-11$
13	$p \leftrightarrow q$	$\leftrightarrow_i, 1, 12$
14	$(p \leftrightarrow r) \land (p$	$\leftrightarrow q) \land_i, 5, 8$

Answer 6

Table	5: Answer to the 6	6th question
1	$\forall (Q(x) \to P(x))$	premise
2	$\exists (P(x) \to Q(x))$	premise
3	$\forall P(x)$	premise
4	$Q(x) \to P(x)$	$\forall_e, 1$
5	$P(c) \to Q(c)$	assumption
6	P(c)	$\forall_e, 3$
7	Q(c)	$\rightarrow_e, 5, 6$
8	R(c)	$\rightarrow_e, 4, 7$
9	$P(c) \wedge R(c)$	$\wedge_i, 5, 8$
10	$\exists (P(x) \land R(x))$	$\exists_i, 9$
11	$\exists (P(x) \land R(x))$	$\exists_e, 2, 6-10$