

Lecture 5 Database Architecture

- Data Models and Their Categories
- Schemas, Instances, and States
- Three-Schema Architecture
- Data Independence
- DBMS Languages and Interfaces

Ref.: Chapter 2

Data Model:

 A set of concepts to describe the structure of a database, the operations for manipulating these structures, and certain constraints that the database should obey.

Data Model Structure and Constraints:

- Constructs are used to define the database structure
- Constructs typically include elements (and their data types) as well as groups of elements (e.g. entity, record, table), and relationships among such groups
- Constraints specify some restrictions on valid data

Data Model Operations:

- These operations are used for specifying database retrievals and updates by referring to the constructs of the data model.
- Operations on the data model may include basic model operations (e.g. generic insert, delete, update) and user-defined operations (e.g. compute_student_gpa, update_inventory)

Categories of Data Models

- Conceptual (high-level, semantic) data models:
 - Provide concepts that are close to the way many users perceive data.
 - (Also called entity-based or object-based data models.)
- Implementation (representational) data models:
 - Provide concepts that fall between the above two, used by many commercial DBMS implementations (e.g. relational data models used in many commercial systems).
- Physical (low-level, internal) data models:
 - Provide concepts that describe details of how data is stored in the computer. These are usually specified in an ad-hoc manner through DBMS design and administration manuals

DAIHOC Schemas versus Instances

- Database Schema:
 - The description of a database.
 - Includes descriptions of the database structure, data types, and the constraints on the database.
- Schema Diagram:
 - An illustrative display of (most aspects of) a database schema.
- Schema Construct:
 - A *component* of the schema or an object within the schema, e.g., STUDENT, COURSE.

BAIHOC HOASEN Schemas versus Instances (2)

- Database State:
 - The actual data stored in a database at a particular moment in time. This includes the collection of all the data in the database.
 - Also called database instance (or occurrence or snapshot).
 - The term *instance* is also applied to individual database components, e.g. *record instance, table instance, entity instance*

Database Schema vs. Database State

- Database State:
 - Refers to the content of a database at a moment in time.
- Initial Database State:
 - Refers to the database state when it is initially loaded into the system.
- Valid State:
 - A state that satisfies the structure and constraints of the database.
- Distinction
 - The database schema changes very infrequently.
 - The database state changes every time the database is updated.

Example of a Database Schema

STUDENT

Name Student_number C	lass Major
-----------------------	------------

COURSE

I	Course_name	Course_number	Credit_hours	Department

PREREQUISITE

Course_number	Prerequisite_number
---------------	---------------------

SECTION

Section_identifier Course_number Semester	Year	Instructor
---	------	------------

GRADE_REPORT

Student_number Section_identifier Grade	Student_number	Section_identifier	Grade
---	----------------	--------------------	-------

GRADE REPORT

Student_number	Section_identifier	Grade
17	112	В
17	119	С
8	85	А
8	92	Α
8	102	В
8	135	Α

STUDENT

Name	Student_number	Class	Major
Smith	17	1	CS
Brown	8	2	CS

COURSE

Course_name	Course_number	Credit_hours	Department
Intro to Computer Science	CS1310	4	CS
Data Structures	CS3320	4	CS
Discrete Mathematics	MATH2410	3	MATH
Database	CS3380	3	CS

PREREQUISITE

Course_number	Prerequisite_number
CS3380	CS3320
CS3380	MATH2410
CS3320	CS1310

SECTION

Section_identifier	Course_number	Semester	Year	Instructor
85	MATH2410	Fall	04	King
92	CS1310	Fall	04	Anderson
102	CS3320	Spring	05	Knuth
112	MATH2410	Fall	05	Chang
119	CS1310	Fall	05	Anderson
135	CS3380	Fall	05	Stone

Schema is also called intension.

State is also called extension.

Three-Schema Architecture

- Proposed to support DBMS characteristics of:
 - Program-data independence.
 - Support of multiple views of the data.
- Not explicitly used in commercial DBMS products, but has been useful in explaining database system organization

Three-Schema Architecture (2)

- Defines DBMS schemas at three levels:
 - External schemas at the external level to describe the various user views.
 - Usually uses the same data model as the conceptual schema.
 - Conceptual schema at the conceptual level to describe the structure and constraints for the whole database for a community of users.
 - Uses a conceptual or an implementation data model.
 - Internal schema at the internal level to describe physical storage structures and access paths (e.g indexes).
 - Typically uses a physical data model.

Three-Schema architecture (3)

Three-Schema Architecture (4)

- Mappings among schema levels are needed to transform requests and data.
 - Programs refer to an external schema, and are mapped by the DBMS to the internal schema for execution.
 - Data extracted from the internal DBMS level is reformatted to match the user's external view (e.g. formatting the results of an SQL query for display in a Web page)

Logical Data Independence:

• The capacity to change the conceptual schema without having to change the external schemas and their associated application programs.

Physical Data Independence:

- The capacity to change the internal schema without having to change the conceptual schema.
 - For example, the internal schema may be changed when certain file structures are reorganized or new indexes are created to improve database performance

Data Independence (2)

- When a schema at a lower level is changed, only the **mappings** between this schema and higher-level schemas need to be changed in a DBMS that fully supports data independence.
- The higher-level schemas themselves are unchanged.
 - Hence, the application programs need not be changed since they refer to the external schemas.

- Data Definition Language (DDL)
- Data Manipulation Language (DML)
 - High-Level or Non-procedural Languages: These include the relational language SQL
 - May be used in a standalone way or may be embedded in a programming language
 - Ex.: Java, C++, C#, SQL, ...
 - Low Level or Procedural Languages:
 - These must be embedded in a programming language
 - Ex.: Cobol, C, Basic, ...

Data Definition Language (DDL):

- Used by the DBA and database designers to specify the conceptual schema of a database.
- In many DBMSs, the DDL is also used to define internal and external schemas (views).
- In some DBMSs, separate storage definition language (SDL) and view definition language (VDL) are used to define internal and external schemas.
 - SDL is typically realized via DBMS commands provided to the DBA and database designers

Data Manipulation Language (DML):

- Used to specify database retrievals and updates
- DML commands (data sublanguage) can be embedded in a general-purpose programming language (host language), such as COBOL, C, C++, or Java.
 - A library of functions can also be provided to access the DBMS from a programming language
- Alternatively, stand-alone DML commands can be applied directly (called a *query language*).

High Level or Non-procedural Language:

- For example, the SQL relational language
- Are "set"-oriented and specify what data to retrieve rather than how to retrieve it.
- Also called declarative languages.
- Prolog, LISP, SQL

Low Level or Procedural Language:

- Retrieve data one record-at-a-time;
- Constructs such as looping are needed to retrieve multiple records, along with positioning pointers.
- Fortran, C, Cobol, Basic

- Stand-alone query language interfaces
 - Example: Entering SQL queries at the DBMS interactive SQL interface (e.g. SQL*Plus in ORACLE)
 - Sqlcmd (SQL server)

```
Connected to:
Oracle Database 10g Enterprise Edition Release 10.2.0.1.0 - Production With the Partitioning, OLAP and Data Mining options

SQL>
```


- Programmer interfaces for embedding DML in programming languages
- User-friendly interfaces
 - Menu-based, forms-based, graphics-based, etc.

DBMS Programming Language Interfaces

- Programmer interfaces for embedding DML in a programming languages:
 - Embedded Approach: e.g embedded SQL (for C, C++, etc.), SQLJ (for Java)
 - Procedure Call Approach: e.g. JDBC for Java,
 ODBC for other programming languages
 - Database Programming Language Approach:
 e.g. ORACLE has PL/SQL, a programming
 language based on SQL; language incorporates
 SQL and its data types as integral components

DAI HOC HOA SEN User-Friendly DBMS Interfaces

- Menu-based, popular for browsing on the web
- Forms-based, designed for naïve users
- Graphics-based
 - (Point and Click, Drag and Drop, etc.)
- Natural language: requests in written English
- Combinations of the above:
 - For example, both menus and forms used extensively in Web database interfaces

Faculty of

- Speech as Input and Output
- Web Browser as an interface
- Parametric interfaces, e.g., bank tellers using function keys.
- Interfaces for the DBA:
 - Creating user accounts, granting authorizations
 - Setting system parameters
 - Changing schemas or access paths

Database System Utilities

- To perform certain functions such as:
 - Loading data stored in files into a database.
 Includes data conversion tools.
 - Backing up the database periodically on tape.
 - Reorganizing database file structures.
 - Report generation utilities.
 - Performance monitoring utilities.
 - Other functions, such as sorting, user monitoring, data compression, etc.

- Data dictionary / repository:
 - Used to store schema descriptions and other information such as design decisions, application program descriptions, user information, usage standards, etc.
 - Active data dictionary is accessed by DBMS software and users/DBA.
 - Passive data dictionary is accessed by users/DBA only.
- Application Development Environments and CASE (computeraided software engineering) tools:
 - PowerBuilder (Sybase)
 - JBuilder (Borland)
 - JDeveloper 10G (Oracle)
 - . . .

Typical DBMS Component Modules

Centralized and Client-Server DBMS Architectures

Centralized DBMS:

- Combines everything into single system including-DBMS software, hardware, application programs, and user interface processing software.
- User can still connect through a remote terminal however, all processing is done at centralized site.

PAI HOC HOA SEN A Physical Centralized Architecture

Basic 2-tier Client-Server Architectures

- Specialized Servers with Specialized functions
 - Print server
 - File server
 - DBMS server
 - Web server
 - Email server
- Clients can access the specialized servers as needed

- Provide appropriate interfaces through a client software module to access and utilize the various server resources.
- Clients may be diskless machines or PCs or Workstations with disks with only the client software installed.
- Connected to the servers via some form of a network.
 - LAN (local area network), wireless network, etc.

- Provides database query and transaction services to the clients
- Relational DBMS servers are often called SQL servers, query servers, or transaction servers
- Applications running on clients utilize an Application Program Interface (API) to access server databases via standard interface such as:
 - ODBC: Open Database Connectivity standard
 - JDBC: for Java programming access
- Client and server must install appropriate client module and server module software for ODBC or JDBC

DAIHOC 2 Tier Client-Server Architecture

- A client program may connect to several DBMSs, sometimes called the data sources.
- In general, data sources can be files or other non-DBMS software that manages data.
- Other variations of clients are possible: e.g., in some object DBMSs, more functionality is transferred to clients including data dictionary functions, optimization and recovery across multiple servers, etc.

3 Tier Client-Server Architecture

- Common for Web applications
- Intermediate Layer called Application Server or Web Server:
 - Stores the web connectivity software and the business logic part of the application used to access the corresponding data from the database server
 - Acts like a conduit for sending partially processed data between the database server and the client.
- Three-tier Architecture Can Enhance Security:
 - Database server only accessible via middle tier
 - Clients cannot directly access database server

DAI HOC HOA SEN 3 Tier Client-Server Architecture

Classification of DBMSs

- Based on the data model used
 - Traditional: Relational, Network, Hierarchical.
 - Emerging: Object-oriented, Object-relational.
- Other classifications
 - Single-user (typically used with personal computers)
 vs. multi-user (most DBMSs).
 - Centralized (uses a single computer with one database)
 vs. distributed (uses multiple computers, multiple databases)

Variations of Distributed DBMSs (DDBMSs)

- Homogeneous DDBMS
- Heterogeneous DDBMS
- Federated or Multidatabase Systems
- Distributed Database Systems have now come to be known as client-server based database systems because:
 - They do not support a totally distributed environment, but rather a set of database servers supporting a set of clients.

Cost considerations for DBMSs

- Cost Range: from free open-source systems to configurations costing millions of dollars
- Examples of free relational DBMSs: MySQL, PostgreSQL, others
- Commercial DBMS offer additional specialized modules, e.g. time-series module, spatial data module, document module, XML module
 - These offer additional specialized functionality when purchased separately
 - Sometimes called cartridges (e.g., in Oracle) or blades
- Different licensing options: site license, maximum number of concurrent users (seat license), single user, etc.

- Network Model
- Hierarchical Model
- Relational Model
- Object-oriented Data Models
- Object-Relational Models

HOASEN Hierarchical Model

Basic Hierarchical Database Diagram

@2006 Scott Macdonald

PAI HOC HOA SEN Relational Model

DAI HOC HOA SENObject-oriented Data Models

DAI HOC HOA SENObject-Relational Models

