C언어 멘토링 1주차

헤더파일

도서관속 각자의 역할이 있는 책들

- 헤더파일 (header file)
- 표준함수를 사용하기 위해 해당 함수의 원형이 선언되어야 한다.
- 사용하고자 하는 함수를 쓰기전에 미리 헤더파일을 불러온다고 선언해줘야 한다.

헤더파일의종류

<stdio.h>

<stdlib.h>

<string.h>

<math.h>

<time.h>

주석 코드 속 포스트잇

주석

기억 보단 기록을 (유명한 블로그 이름)

주석을 써야 하는 이유

- 1. 코딩을 쓰는 중간 중간에 내 생각을 정리할줄 알아야 한다.
- 2. 아무리 코딩을 잘 했더라도 남이 보거나, 나중에 시간이 흘러 보면 내가 쓴 코도 한번에 이해가 가지 않는다. 따라서 포스트 잇으로 메모를 남기듯 주석을 다는게 좋다.
- 3. (교수님께서 해주신말) 프로그래밍은 내가 쓰는것 보다 남이 쓴 코드를 읽을 날이 많아질 것이다

자료형(DATA TYPE)

데이터를 표현하는 방법

자료형이 필요한 이유

컴퓨터 메모리에게 미리 크기와 저장방식(자료형 마다 다름)을 알려주는게 효율적이다.

(자료를 저장하는 방식이 10100110... 일지라도 각 숫자의 위치에 따라 의미하는 바가 다르다.)

자료형 종류를 먼저 한 이유 : 미리 자료형들의 종류를 알아두면 서식문자와 연산자 공부에서 조금 더 잘 알아 들을 수 있어서

Data type

정수형

name	bytes	min~max
char	1	-128~127
short	2	-32768~32767
int	4	-2147483648~ 2147483647
long	4	-2147483648~ 2147483647
long long	8	

실수형

name	bytes	소수점 이하 정밀도						
float	4	6						
double	8	15						
long double	more than 8	more than 15						

```
Telemetry Consent
                         week2_01.c
                                            size of char is 1
    #include <stdio.h>
                                            size of short is 2
                                            size of int is 4
    int main (void){
                                            size of long is 4
                                            size of long long is 8
      float numf = 1.0;
                                            size of float is 4
      double numd = 1.0;
                                            size of double is 8
                                            size of long double is 16
      long double numld = 1.0;
      printf("size of %s is %lu\n","char" ,sizeof(char));
      printf("size of %s is %lu\n","short" ,sizeof(short));
10
      printf("size of %s is %lu\n","int" ,sizeof(int));
      printf("size of %s is %lu\n","long" ,sizeof(long));
      //이 컴파일러에서만 8로 나온다.
      printf("size of %s is %lu\n","long long" ,sizeof(long long));
14
      printf("size of %s is %lu\n","float" ,sizeof(numf));
      printf("size of %s is %lu\n","double" ,sizeof(numd));
      printf("size of %s is %lu\n","long double" ,sizeof(numld));
      return 0;
18
```

Unsigned Integer

name	bytes	min~max	unsigned	bytes	min~max		
char	1	-128~127	unsigned char	1	0~(128+127)		
short	2	-32768~32767	unsigned short	2	0~(32768+32767)		
int	4	-2147483648~ 2147483647	unsigned int	4	0~(2147483648+ 2147483647)		
long	4	-2147483648~ 2147483647	unsigned long	4	0~(2147483648+ 2147483647)		
long long	8		unsigned long long	8			

ASCII 코드와 문자 그리고 정수

ASCII 코드는 10000001 은 무슨 '문자'를 표현하는 가에 대한 약속

$$65 = 'A', 90 = 'Z'$$

$$97 = 'a', 122 = 'z'$$

이것만큼은 꼭 외우자

i i	士;	FS	O -		<u>-</u> ノトひ	1 L	-H ⁷		<u> </u>	Ě	<u>'</u>						
이진법	팔진법	십진법	십육진법	모양	85진법 (아스키 85)	이진법	팔진법	십진법	십육진법	모양	85진법 (아스키 85)	이진법	팔진법	십진법	십육진법	모양	85진법 (아스키85)
0100000	040	32	20	S _p		1000000	100	64	40	@	31	1100000	140	96	60	`	63
0100001	041	33	21	!	0	1000001	101	65	41	Α	32	1100001	141	97	61	a	64
0100010	042	34	22	"	1	1000010	102	66	42	В	33	1100010	142	98	62	b	65
0100011	043	35	23	#	2	1000011	103	67	43	С	34	1100011	143	99	63	С	66
0100100	044	36	24	\$	3	1000100	104	68	44	D	35	1100100	144	100	64	d	67
0100101	045	37	25	%	4	1000101	105	69	45	Е	36	1100101	145	101	65	e	68
0100110	046	38	26	&	5	1000110	106	70	46	F	37	1100110	146	102	66	f	69
0100111	047	39	27	'	6	1000111	107	71	47	G	38	1100111	147	103	67	g	70
0101000	050	40	28	(7	1001000	110	72	48	Н	39	1101000	150	104	68	h	71
0101001	051	41	29)	8	1001001	111	73	49	-1	40	1101001	151	105	69	i	72
0101010	052	42	2A	*	9	1001010	112	74	4A	J	41	1101010	152	106	6A	j	73
0101011	053	43	2B	+	10	1001011	113	75	4B	K	42	1101011	153	107	6B	k	74
0101100	054	44	2C	,	11	1001100	114	76	4C	L	43	1101100	154	108	6C	l	75
0101101	055	45	2D	-	12	1001101	115	77	4D	М	44	1101101	155	109	6D	m	76
0101110	056	46	2E		13	1001110	116	78	4E	N	45	1101110	156	110	6E	n	77
0101111	057	47	2F	/	14	1001111	117	79	4F	0	46	1101111	157	111	6F	0	78
0110000	060	48	30	0	15	1010000	120	80	50	Р	47	1110000	160	112	70	р	79
0110001	061	49	31	1	16	1010001	121	81	51	Q	48	1110001	161	113	71	q	80
0110010	062	50	32	2	17	1010010	122	82	52	R	49	1110010	162	114	72	r	81
0110011	063	51	33	3	18	1010011	123	83	53	S	50	1110011	163	115	73	s	82
0110100	064	52	34	4	19	1010100	124	84	54	Т	51	1110100	164	116	74	t	83
0110101	065	53	35	5	20	1010101	125	85	55	U	52	1110101	165	117	75	u	84
0110110	066	54	36	6	21	1010110	126	86	56	V	53	1110110	166	118	76	V	
0110111	067	55	37	7	22	1010111	127	87	57	W	54	1110111	167	119	77	w	
0111000	070	56	38	8	23	1011000	130	88	58	Х	55	1111000	170	120	78	х	
0111001	071	57	39	9	24	1011001	131	89	59	Υ	56	1111001	171	121	79	у	
0111010	072	58	3A	:	25	1011010	132	90	5A	Z	57	1111010	172	122	7A	Z	
0111011	073	59	3B	;	26	1011011	133	91	5B	[58	1111011	173	123	7B	{	
0111100	074	60	3C	<	27	1011100	134	92	5C	\	59	1111100	174	124	7C		
0111101	075	61	3D	=	28	1011101	135	93	5D]	60	1111101	175	125	7D	}	
0111110	076	62	3E	>	29	1011110	136	94	5E	٨	61	1111110	176	126	7E	~	
0111111	077	63	3F	?	30	1011111	137	95	5F	_	62						

리터럴 상수 (Literal Constant)

상수에 대한 이해

정수는 기본적으로 int 형 실수는 기본적으로 double 형 문자는 기본적으로 int 형

CPU 연산은 변수에 저장된 <mark>상수</mark>가 CPU의 연산장치로 이동하고 연산장치에서 연산이 이루어진 뒤 결과 값이 지정된 변수에 저장된다.


```
#include <stdio.h>
   int main (void){
     int num1 = 30;
    int num2 = 40;
 int result = num1 + num2;
     printf("num1 + num2 = %d\n",result);
8
   return 0;
```

접미사를 통해서 float임을 명시해주는 방법

```
#include <stdio.h>
    int main(void){
4
      float numf1 = 2.34;
      float numf2 = 3.423 + 5.233;
      float numf3 = 3.532f;
8
      float numf4 = 7.323f + 8.323f;
9
10
      return 0;
```

접미사를 이용한 다양한 상수의 표현

접미사	자료형	사용예				
U	unsigned int	unsigned n = 523U				
L	long	Long n = 523L				
UL	unsigned long	unsigned long n = 523UL				
LL	long long	long long n = 523LL				
ULL	unsigned long long	unsigned long long n = 523ULL				
Forf	float	float $f = 5.23f$				
Lorl	long double	long double d = 5.23L				

직접 상수를 만들기

대문자만 사용 & 띄어쓰기는 '_' 로 표현해주기

```
#include <stdio.h>
    int main (void){
4
      const int MAX = 100;
      const double PI = 3.1415;
      const double E = 2.7182;
      const int HELLO_WORLD = 1;
10
      return 0;
```

형변환

자동 형변환과 강제 형변환

대입연산자에서 발생하는 자동형변환

```
#include <stdio.h>
                          정 수 245를 실 수 로 : 245.000000
                          실 수 3.1415를 정 수 로 : 3
                          큰 정수 129를 작은 정수로: -127
   int main(void) {
                          자료 형 불일치로 인한 자동 형변환: 24.150000
4
      double num1 = 245;
                          자료형 불일치로 인한 자동 형변환: 247
      int num2 = 3.1415;
      int num3 = 129; char ch = num3;
      int num6 = 3.424 + 244;
      printf("정수 245를 실수로: %f\n", num1);
      printf("실수 3.1415를 정수로: %d\n", num2);
10
      printf("큰 정수 129를 작은 정수로: %d\n", ch);
      printf("자료형 불일치로 인한 자동 형변환: %f\n", num5);
      printf("자료형 불일치로 인한 자동 형변환: %d\n", num6);
14
      return 0;
15 }
```

자동형변환

정수를 실수로 형 변환 3은 3.0으로 5.는 5.0으로 (오차 발생 가능) 실수를 정수로 형 변환 소수점 이하의 값이 소멸됨 큰 정수를 작은 정수로 형 변환 작은 정수의 크기에 맞춰 상위 바이트 소멸

정수승격에 의한 자동 형변환 short, char 보다 int가 CPU의 연산(+-/*%) 을 수행할때 더욱 적합해서 정수의 승격이 일어난다

강제형변환

```
#include <stdio.h>
                           나 눗 셈 결 과 : 0.00000
                           나 눗 셈 결 과 : 0.750000
int main(void) {
   int num1 = 3, num2 = 4;
  double divResult, divResult2;
  divResult = num1 / num2;
   printf("나눗셈 결과: %f\n", divResult);
  divResult2 = (double)num1 / num2;
   printf("나눗셈 결과: %f\n", divResult2);
   return 0;
```

비트 정수 표현(2, 8,10,16 진수, MSB), (비트, 바이트) , 실수 표현 , 연산자 (&, |, ^, ~, >>, <<)