Univariate Gaussian MLE (7 pts)

Problem Statement

I have n=100 pieces of independent and identicially distributed (i.i.d) data related to some measurement that is drawn from a **normal distribution**.

Your task is to write code that computes μ_{MLE} and σ_{MLE} , which represent the mean and standard deviation computed via MLE, respectively, of the underlying normal distribution for the dataset "MLE_dataset.npy"

Variable Definitions

- 1. x =collection of data points (x_1, x_2, \dots, x_n) . Loaded in as a numpy array of shape (100,)
- 2. μ = mean of the normal distribution
- 3. σ = standard deviation of the normal distribution

Useful Numpy functions

 x.shape: returns a tuple that contains the dimension(s) of the numpy array variable name "x"

Starting information

- You are given "MLE_dataset.npy" which contains the aforementioned data in the form of a numpy array.
- 2. You are also given a "load" function which, given the path to "MLE_dataset.npy", will load the values into a numpy array variable and return said variable.
- 3. For a single piece of data, x_i , if the data is drawn from a normal distribution, the likelihood of that data given a normal distribution with parameterized by μ and σ^2 can be represented as:

$$p(x_i|\mu,\sigma^2) = \mathcal{N}(x_i;\mu,\sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}} * \exp{[-rac{1}{2}(rac{x_i-\mu}{\sigma})^2]}$$

1. In our case, we aren't dealing with a single observation, but n=100 observations. Because our observations are **independent**, we can represent our likelihood function for all observations as the product of the individual observations:

$$p(x|\mu,\sigma^2) = \Pi_{i=1}^N \mathcal{N}(x_i;\mu,\sigma^2) = (rac{1}{2\pi\sigma^2})^{n/2} * \exp{[-rac{1}{2}\sum_{i=1}^N (rac{x_i-\mu}{\sigma})^2]}$$

MLE estimates for μ and σ^2 . See also Prob 1.3

$$\mu_{MLE} = rac{1}{n} \sum_{i=1}^n x_i$$

$$\sigma_{MLE}^2 = rac{1}{n}\sum_{i=1}^n (x_i - \mu_{MLE})^2$$

Task

Using the starting information, your task is to:

1. Write code that correctly finds μ_{MLE} and σ_{MLE} for the data set "MLE_dataset.npy"

Restrictions:

Failure to meet any of these conditions will result in point deductions

- 1. I will only be looking at the code in the function "MLE" below. Please make sure any computations done are within the comment bounds of the function "MLE".
- 2. Do not add any helper functions
- 3. Do not change the input and output of "load" or "MLE" in the cell below
- 4. If you are copying the code over to a .py file, the restrictions above still apply!! Please make sure to copy over the comment bounds as well

```
In [36]: import scipy.stats
         import numpy as np
         def load(path):
             loads "MLE_dataset.npy" given its path into variable 'dataset'. returns
             dataset = np.load(path)
             return dataset
         def MLE(dataset):
             1.1.1
             Input:
                  dataset - numpy array of shape (100,) - containing the data drawn fr
             Output:
                 mu - float - MLE estimate of mu based on data
                 sigma - float - MLE estimate of sigma based on data
             mu = 0
             sigma = 0
             ''' YOUR CODE HERE '''
             data_length = len(dataset)
             for x in dataset:
                 mu += x
             mu = mu/data length
             for x in dataset:
                 value = x - mu
                 value = value**2
                 sigma += value
             sigma = sigma/data length
              ''' END YOUR CODE'''
             return mu, sigma
          '''YOUR TEST CODE BELOW HERE'''
         #load dataset. assumes data file is in same directory as code file
         dataset = load("./MLE dataset.npy")
         mu sigma = MLE(dataset)
```

Univariate Gaussian EM (18 pts)

Problem statement

Let us add a layer of difficulty to the problem of estimating the underlying distribution(s) of our data. Previously, we knew that all of our data came from a single underlying normal distribution.

For this problem, I have gone out and collected a brand new data set consisting of n=200 data points. These data points are drawn from **one of two unknown gaussian distributions**.

To keep the notation consistent, I will use the subscript ID $k=\{0,1\}$ to represent which gaussian a parameter/variable is referring to.

For instance, μ_k represents the mean of the gaussian with ID k. μ_0 represents the mean of the first gaussian, and μ_1 represents the mean of the second gaussian

Variable definitions

- 1. k: id of the gaussian distributions. {0,1}
- 2. n: number of data points. 200 in this case
- 3. μ_k : the mean of normal distribution k
- 4. σ_k : the std of normal distribution k
- 5. π_k : the prior probability of normal distribution k
- 6. t: current step number
- 7. $z_i=k$: represents the idea that i-th data point was drawn from gaussian k
- 8. x_i : i-th data point

Task Description:

To make things clear, here is a list of things we do and don't know.

Do know:

- 1. Our data points, $X=x_1,x_2,\ldots,x_n$ for n=1 to n=200
- 2. $\mu_0^{t=0}, \sigma_0^{t=0}, \pi_0^{t=0}$ which represent an initial guess for the mean, std, and prior of the first gaussian with ID k=0
- 3. $\mu_1^{t=0},\sigma_1^{t=0},\pi_1^{t=0}$ which represent an initial guess for the mean, std, and prior of the second gaussian with ID k=1
- 4. $\pi_0^{t=0}$ and $\pi_1^{t=0}$ which represent an initial guess for the prior probabilities of gaussian

- 0 and gaussian 1, respectively
- 5. The number of iterations your EM algorithm should run for. Do not worry about early stopping, just let it run the full number of iterations
- 6. Let us define the variable θ_k^t to be the set $(\hat{\mu}_k^t, \hat{\sigma}_k^t, \hat{\pi}_k^t)$, which is our current estimate at time step t for the three unknown parameters of gaussian k.

Don't know:

- 1. The true means, μ_0 and μ_1 for both gaussian distributions
- 2. The true standard deviations, σ_0 and σ_1 for both gaussian distributions
- 3. Which gaussian distribution, k=0 or k=1, a point, x_i , came from.
- 4. The true fraction of our points that came from gaussian k=0 and the true fraction of our points that came from gaussian k=1 (the prior probabilities)

Note: The lecture example of EM had known priors and you were not asked to estimate the prior with EM. For this reason, the update rule for the priors, π_k , has been supplied, and you will only need to implement it correctly to find the correct priors.

Your end goal is to implement an algorithm that implements EM and returns the following:

- 1. $\hat{\mu_0},\hat{\sigma_0},\hat{\pi_0}$ which represent the final EM estimate the mean, standard deviation (std), and prior of the first gaussian with ID k=0
- 2. $\hat{\mu_0},\hat{\sigma_0},\hat{\pi_0}$ which represent the final EM estimate of the mean, standard deviation (std), and prior of the first gaussian with ID k=1

Useful functions

- 1. array.shape returns the shape as a tuple of a numpy array
- 2. scipy.stats.norm(mean, std).pdf(value) returns the value pdf(val) of a gaussian distribution paramaterized by (mean, std)

Restrictions

Failure to meet any of these conditions will result in point deductions

- 1. I will only be looking at the code in the function "em" below. Please make sure any computations you want to submit as your final answer are done within "em".
- 2. Please make a clear separation between code that computes the E step and code that computes the M step.

- This is done by putting all E-step related code within the E-step comment bounds, and all M-step related code within the M-step comment bounds
- Do not change the values of any variables marked with the comment "DO NOT CHANGE"
- 4. Your final answer must not use any libraries other than the ones already imported (numpy and scipy.stats)
- 5. Your final answer must not use any functions in scipy.stats besides scipy.stats.norm(mean, std).pdf(value) which is defined above
- 6. If you are copying the code over to a .py file, the restrictions above still apply!!

 Please make sure to copy over the comment bounds as well
- 7. do not change the input and output of "load" or "em" in the cell below
- 8. Please do not have any calls to helper functions in your final answer

Task Order

- 1. Determine the update rules for μ_k^{t+1} and σ_k^{t+1} and write them in the cell below
- 2. Code the E and M step
- 3. Run and test your code on "EM_dataset.py"

E - Step (8 pts)

 $P(z_i = k | x_i, heta_k^t)$ reflects the responsibility the k-th gaussian has for the i-th data point

$$P(z_i = k | x_i, heta_k^t) = rac{P(x_i | z_i = k, heta_k^t) * \pi_k^t}{P(x_i | heta_k^t)}$$

\

$$=rac{P(x_i|z_i=k, heta_k^t)*\pi_k^t}{\sum_{k=0}^1P(x_i|z_i=k, heta_k^t)*\pi_k^t}$$

M - Step (10 pts)

$$egin{aligned} \mu_k^{t+1} &= ?? \ & \sigma_k^{t+1} &= ?? \ & \pi_k^{t+1} &= rac{\sum_{i=1}^n P(z_i = k | x_i, heta_k^t)}{n} \end{aligned}$$

hint 1: You will need to use the result of your E-step, $P(z_i=k|x_i,\theta_k^t)$, in your update rules for μ_k^{t+1} and σ_k^{t+1}

(Double click to edit cell)

Please write your update rule for:

$$\mu_k^{t+1} = rac{\sum_{i=1}^n P(z_i = k | x_i, heta_k^t) * x_i}{\sum_{i=1}^n P(z_i = k | x_i, heta_k^t)}$$

Please write your update rule for:

$$\sigma_k^{t+1} = \sqrt{rac{\sum_{i=1}^n P(z_i = k | x_i, heta_k^t) * (x_i - \mu_k^t)^2}{\sum_{i=1}^n P(z_i = k | x_i, heta_k^t)}}$$

```
In [43]:
         import scipy.stats
         import numpy as np
         def load(path):
             dataset = np.load(path)
             return dataset
         def em(dataset, k, n_iterations):
             Input:
                 dataset - np array - containing the data
                 k - int - representing the number of underlying gaussian distribution
                 n iterations - int - representing number of iterations EM should run
             output:
                 mus - np array shape (2,) - mus[k] is the EM estimate of the mean of
                 sigmas - np array shape (2,) - sigmas[k] is the EM estimate of the s
                 pi - np array shape (2,) - pis[j] is the EM estimate of the prior of
             n samples = dataset.shape[0]
             # Initial guesses for the parameters DO NOT CHANGE
             FINAL INITIAL MUS = np.asarray([90, 210]) #DO NOT CHANGE
             FINAL INITIAL SIGMAS = np.asarray([28,19]) #DO NOT CHANGE
             FINAL_INITIAL_PIS = np.asarray([0.3,.7]) #DO NOT CHANGE
             pis = FINAL_INITIAL_PIS #DO NOT CHANGE
             mus = FINAL INITIAL MUS #DO NOT CHANGE
             sigmas = FINAL INITIAL SIGMAS #DO NOT CHANGE
             for em iter in (range(n iterations)):
                     #E Step
```

```
'''YOUR E STEP CODE GOES HERE'''
scipy.stats.norm(mean, std).pdf(value) - returns the value pdf(v
p_one = []
p_two = []
for x in dataset:
    data_one = pis[0]*scipy.stats.norm(mus[0],sigmas[0]).pdf(x)
    data_two = pis[1]*scipy.stats.norm(mus[1],sigmas[1]).pdf(x)
    total = data_one + data_two
    p_one.append(data_one/total)
    p_two.append(data_two/total)
'''E STEP CODE END'''
#M step
'''YOUR M STEP CODE GOES HERE'''
new_mu_one = 0
new_mu_two = 0
new_sigma_one = 0
new sigma two = 0
p one sum = 0
p_two_sum = 0
for x in range(n_samples):
    new_mu_one += p_one[x]*dataset[x]
    new_mu_two += p_two[x]*dataset[x]
    new_sigma_one += p_one[x] * (dataset[x] - mus[0])**2
    new_sigma_two += p_two[x] * (dataset[x] - mus[1])**2
    p_one_sum += p_one[x]
    p two sum += p two[x]
new_mu_one = new_mu_one / p_one_sum
new_mu_two = new_mu_two / p_two_sum
new_sigma_one = np.sqrt(new_sigma_one / p_one_sum)
new_sigma_two = np.sqrt(new_sigma_two / p_two_sum)
new_pi_one = p_one_sum / n_samples
new_pi_two = p_two_sum / n_samples
mus = [new_mu_one, new_mu_two]
```

```
sigmas = [new_sigma_one, new_sigma_two]
pis = [new_pi_one, new_pi_two]

'''M STEP CODE END'''

return pis, mus, sigmas

def main():

n_iterations = 20 #DO NOT CHANGE
k = 2 #DO NOT CHANGE

'''YOUR TEST CODE HERE'''
#load dataset. assumes data file is in same directory as code file dataset = np.load("EM_dataset.npy")
pis, mus, sigmas = em(dataset, k, n_iterations)
main()
```

In []: