Kasus 2: Bagaimana jika diketahui Observed data from the past sebagai berikut:

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
· ·	· ·	75	75	75	· ·

Menggunakan HMM via Viterbi Algoritme

Pada kasus sebelumnya kita sudah memiliki diagram transisi sebagai berikut:

Dengan demikian kita dapat Menyusun matrik transisi dan matrik emisi sebagai berikut :

1. Matrik transisi (matriks yang menyatakan probabilitas perpindahan antara status tersembunyi dari satu keadaan ke keadaan lainnya). Notasi untuk matrik transisi ditulis dengan A

	Sunny (S)	Rainy (R)
Sunny (S)	0.8	0.2
Rainy (R)	0.4	0.6

2. Matrik emisi (matriks yang menyatakan probabilitas dari observasi yang mungkin terjadi pada setiap status tersembunyi). Notasi untuk matrik emisi biasanya ditulis dengan B

	Нарру (Н)	Grumpy (G)
Sunny (S)	0.8	0.2
Rainy (R)	0.4	0.6

3. Diketahui, nilai phi (π) sebagai berikut :

S	unny (S)	0.67
R	ainy (R)	0.33

Langkah berikutnya, kita hitung nilai likelihood untuk setiap state tersembunyi

1. Likelihood pada saat t1 : Happy untuk mencari nilai V1

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
		··	75		70	· ·	
	0.8						•
0.4		P (H	A,S) = P(H S) = 0.8 x 0		\rightarrow	P(S) = π untu	kS
	0.67		= 0.536				
		P(H	H,R) = P(H R) = 0.4 x 0		\rightarrow	P(R) = π untu	ık R
	0.33		= 0.132				
	V1						

Sehingga kita memiliki likelihood untuk t=1 sebagai berikut :

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		· ·	1	S.		\odot
0.4	0.8	.67*0.8 = 0.536				
		.33*0.4 = 0.132				

2. Likelihood pada saat t = 2 berdasarkan t=1 untuk mencari nilai V2

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
·		75	2	75		
V1 V2						

Isikan nilai-nilai yang tersedia ke dalam diagram, sehingga diperoleh diagram baru dengan nilai sebagai berikut:

Monday	Tuesday	Wednesday	Thursday	F
···	<u></u>	75	75	
0.533 P(H,		P(H,S) ₍₁₎ = P(P(H,R) ₍₁₎ = P(
	PH SP	$P(H,S)_{(2)} = P(P(H,R)_{(2)} = P(P(H,$	H S) x P(S R) H R) x P(R R)	
P(H	,R) ₍₂₎	Matrik	Transisi:	

	Sunny (S)	Rainy (R)
Sunny (S)	0.8	0.2
Rainy (R)	0.4	0.6

riday

Saturday

Gunakan Matrik transisi dan matrik emisi untuk mengisikan nilai-nilainya

Matrik Emisi:

	Happy (H)	Grumpy (G)
Sunny (S)	0.8	0.2
Rainy (R)	0.4	0.6

P(H,S) ₍₁₎	$= P(H S) \times P(S S)$
	$= 0.8 \times 0.8 = 0.64$

0.133 V1

$$P(H,R)_{(1)} = P(H|R) \times P(R|S)$$

= 0.4 x 0.2 = 0.08

$$P(H,S)_{(2)} = P(H|S) \times P(S|R)$$

$$= 0.8 \times 0.4 = 0.32$$

$$P(H,R)_{(2)} = P(H|R) \times P(R|R)$$

= 0.4 x 0.6 = 0.24

Selanjutnya hitung nilai V2 untuk S dan R sebagai berikut :

V2

V2 untuk Sunny (S)

 $V2_{(1)}$ $= P(H,S)_{(1)} \times P(H,S)$ $= 0.64 \times 0.533 = 0.34112$ V2₍₂₎ $= P(H,S)_{(2)} \times P(H,R)$

 $= 0.32 \times 0.133 = 0.04256$

V2 untuk Rainy (R)

 $= P(H,R)_{(1)} \times P(H,S)$ $V2_{(1)}$

 $= 0.08 \times 0.533 = 0.04264$

 $= P(H,R)_{(2)} \times P(H,R)$ $V2_{(2)}$ $= 0.24 \times 0.133 = 0.03192$

Hitung nilai maksimum untuk V2 (S) dan V2 (R) sebagai berikut :

V2 (S) = max [0.34112; 0.04256] = 0.34112V2 (R) = max [0.04264; 0.03192] = 0.04264

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
·	<u>.</u>	7.5	<u> </u>	75	•
0.533 0.6 0.2 0.133	0.34112	0.4			
V1	V2				

3. Hitung Likelihood pada saat t = 3 berdasarkan t= 2 untuk mencari nilai V3

 $P(G,S)_{(1)} = P(G|S) \times P(S|S)$ = 0.2 x 0.8 = 0.16

V1

= P(GIR) v P(RIS)

 $P(G,R)_{(1)} = P(G|R) \times P(R|S)$ = 0.6 x 0.2 = 0.12

 $P(G,S)_{(2)} = P(G|S) \times P(S|R)$ = 0.2 x 0.4 = 0.08

 $P(G,R)_{(2)} = P(G|R) \times P(R|R)$ = 0.6 x 0.6 = 0.36

Matrik Transisi:

V2.. ?

	Sunny (S)	Rainy (R)
Sunny (S)	0.8	0.2
Rainy (R)	0.4	0.6

Matrik Emisi:

	Нарру (Н)	Grumpy (G)
Sunny (S)	0.8	0.2
Rainy (R)	0.4	0.6

Selanjutnya hitung nilai V3 untuk S dan R sebagai berikut :

• V3 untuk Sunny (S)

 $V3_{(1)}$ = P(G,S) $_{(1)}$ x P(H,S) $_{(t-1)}$ = 0.16 x 0.34112= 0.05457 $V3_{(2)}$ = P(G,S) $_{(2)}$ x P(H,R) $_{(t-1)}$ = 0.08 x 0.04264 = 0.0034

V3 untuk Rainy (R)

 $V3_{(1)}$ = P(G,R) $_{(1)}$ x P(H,S) $_{(t-1)}$ = 0.12 x 0.34112 = 0.0409 Diketahui (berdasarkan perhitungan t=2):

 $P(H,S)_{(t-1)} = 0.34112$ $P(H,R)_{(t-1)} = 0.04264$

$$V3_{(2)}$$
 = P(G,R) $_{(2)}$ x P(H,R) $_{(t-1)}$
= 0.36 x 0.04264 = 0.01535

Hitung nilai maksimum untuk V2 (S) dan V2 (R) sebagai berikut :

V3(S) = max[0.05457; 0.0034] = 0.05457

V3 (R) = max [0.0409; 0.01535] = 0.0409

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
<u> </u>	0.8	10.2	20	7,1	···
0.533					
0.24	0.	36			
0.133	0.04264	0.0409			
V1	V2	V3			

4. Hitung Likelihood pada saat t = 4 berdasarkan t= 3 untuk mencari nilai V4

$$P(G,S)_{(1)} = P(G|S) \times P(S|S)$$

= 0.2 x 0.8 = 0.16

$$P(G,R)_{(1)} = P(G|R) \times P(R|S)$$

= 0.6 x 0.2 = 0.12

$$P(G,S)_{(2)} = P(G|S) \times P(S|R)$$

= 0.2 x 0.4 = 0.08

$$P(G,R)_{(2)} = P(G|R) \times P(R|R)$$

= 0.6 x 0.6 = 0.36

Matrik Transisi:

	Sunny (S)	Rainy (R)
Sunny (S)	0.8	0.2
Rainy (R)	0.4	0.6

Matrik Emisi:

	Happy (H)	Grumpy (G)
Sunny (S)	0.8	0.2
Rainy (R)	0.4	0.6

Diketahui (berdasarkan perhitungan t=3):

P(G,S)_(t-1)= **0.05457**

P(G,R)_(t-1)= **0.0409**

Selanjutnya hitung nilai V4 untuk S dan R sebagai berikut :

V4 untuk Sunny (S)

 $V4_{(1)} = P(G,S)_{(1)} \times P(G,S)_{(t-1)}$

= 0.16 x 0.05457= 0.00873

 $V4_{(2)} = P(G,S)_{(2)} x P(G,R)_{(t-1)}$

 $= 0.08 \times 0.0409 = 0.00327$

V4 untuk Rainy (R)

 $V4_{(1)} = P(G,R)_{(1)} \times P(G,S)_{(t-1)}$

 $= 0.12 \times 0.05457 = 0.00654$

 $V4_{(2)} = P(G,R)_{(2)} \times P(G,R)_{(t-1)}$

 $= 0.36 \times 0.0409 = 0.01472$

Hitung nilai maksimum untuk V4 (S) dan V4 (R) sebagai berikut :

V4 (S) = max [0.00873; 0.00327] = 0.00873

V4 (R) = max [0.00654; 0.01472] = 0.01472

5. Hitung Likelihood pada saat t = 5 berdasarkan t= 4 untuk mencari nilai V5

 $P(G,S)_{(1)} = P(G|S) \times P(S|S)$

 $= 0.2 \times 0.8 = 0.16$

 $P(G,R)_{(1)} = P(G|R) \times P(R|S)$ = 0.6 x 0.2 = 0.12 Matrik Transisi:

	Sunny (S)	Rainy (R)
Sunny (S)	0.8	0.2
Rainy (R)	0.4	0.6

Matrik Emisi:

	Нарру (Н)	Grumpy (G)	
Sunny (S)	0.8	0.2	
Rainy (R)	0.4	0.6	

 $P(G,S)_{(2)} = P(G|S) \times P(S|R)$ = 0.2 x 0.4 = 0.08

Diketahui (berdasarkan perhitungan t=4):

P(G,S)_(t-1)= **0.00873**

 $P(G,R)_{(2)} = P(G|R) \times P(R|R)$ = 0.6 x 0.6 = 0.36 P(G,R)_(t-1)= **0.01472**

Selanjutnya hitung nilai V5 untuk S dan R sebagai berikut :

• V5 untuk Sunny (S)

 $V5_{(1)} = P(G,S)_{(1)} \times P(G,S)_{(t-1)}$

= 0.16 x 0.00873= 0.00139

 $V5_{(2)} = P(G,S)_{(2)} \times P(G,R)_{(t-1)}$

 $= 0.08 \times 0.01472 = 0.00117$

V5 untuk Rainy (R)

 $V5_{(1)} = P(G,R)_{(1)} \times P(G,S)_{(t-1)}$

 $= 0.12 \times 0.00873 = 0.001047$

 $V5_{(2)} = P(G,R)_{(2)} x P(G,R)_{(t-1)}$

 $= 0.36 \times 0.01472 = 0.00529$

Hitung nilai maksimum untuk V5 (S) dan V5 (R) sebagai berikut :

V5 (S) = max [**0.00139**; 0.00117] = **0.00139**

V5(R) = max[= 0.001047; 0.00529] = 0.00529

6. Hitung Likelihood pada saat t = 6 berdasarkan t= 5 untuk mencari nilai V6

$$P(H,S)_{(1)} = P(H|S) \times P(S|S)$$

= 0.8 x 0.8 = 0.64

$$P(H,R)_{(1)} = P(H|R) \times P(R|S)$$

= 0.4 x 0.2 = 0.08

$$P(H,S)_{(2)} = P(H|S) \times P(S|R)$$

= 0.8 × 0.4 = 0.32

$$P(H,R)_{(2)} = P(H|R) \times P(R|R)$$

= 0.4 x 0.6 = 0.24

Matrik Transisi:

	Sunny (S)	Rainy (R)
Sunny (S)	0.8	0.2
Rainy (R)	0.4	0.6

Matrik Emisi:

	Happy (H)	Grumpy (G)
Sunny (S)	0.8	0.2
Rainy (R)	0.4	0.6

Selanjutnya hitung nilai V6 untuk S dan R sebagai berikut :

• V6 untuk Sunny (S)

$$V6_{(1)} = P(H,S)_{(1)} \times P(G,S)_{(t-1)}$$

$$= 0.64 \times 0.00139 = 0.000889$$

$$V6_{(2)} = P(H,S)_{(2)} \times P(G,R)_{(t-1)}$$

$$= 0.32 \times 0.00529 = 0.00169$$

Diketahui (berdasarkan perhitungan t=5):

$$P(G,S)_{(t-1)} = 0.00139$$

 $P(G,R)_{(t-1)} = 0.00529$

• V6 untuk Rainy (R)

$$V6_{(1)} = P(H,R)_{(1)} \times P(G,S)_{(t-1)}$$

$$= 0.08 \times 0.00139 = 0.0001112$$

$$V6_{(2)} = P(H,R)_{(2)} \times P(G,R)_{(t-1)}$$

$$= 0.24 \times 0.00529 = 0.001269$$

Hitung nilai maksimum untuk V6 (S) dan V6 (R) sebagai berikut :

V6 (S) = max [0.000889; **0.00169**] = **0.00169** V6 (R) = max [0.0001112; **0.001269**] = **0.001269**

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
0.4	0.8	10.2	0.2	0.2 0.6	0.8
0.533	0.34112		0.00873	0.00139	0.00169
298	032	098	000	3000	2032
0.24	4	0.3	36 0	.36	24
0.133	0.04264	0.0409	0.01472	0.00529	0.001269
V1	V2	V3	V4	V5	V6

7. Dengan demikian kita memiliki informasi nilai setiap cuaca (sebagai hidden state) berdasarkan masing-masing suasana hati tiap hari (observed state) secara lengkap sebagai berikut:

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
···	<u> </u>	7.5	75	75	· ·
0.533	0.34112	0.05457	0.00873	0.00139	0.00169
0.133	0.04264	0.0409	0.01472	0.00529	0.001269

8. Untuk menentukan kondisi cuaca yang tepat berdasarkan informasi susanan hati, ambil nilai cuaca dengan probabilitas tertinggi untuk setiap observed state. Dengan demikian kita memiliki urutan cuaca Sunny (0.533) → Sunny (0.34112) → Sunny (0.05457) → Rainy (0.01472) → Sunny (0.0139) → Sunny (0.00167).