PROJET PYTHON A4

NGUYEN BINH ARTHUR OULES LOUIS SCELLES ARTHUR

PRÉSENTATION DU DATASET

• Thème : popularité d'articles en ligne (nombre de partages)

- Quelques paramètres: nombre de mots dans le titre, jour de la semaine de publication de l'article, subjectivité du titre et du texte, etc.
- Lien: https://archive.ics.uci.edu/ml/datasets/Online+News+Popularity

DATA PRE-PROCESSING

- Aucun NAN dans le dataset (mais des valeurs nulles)
- Nous avons renommé les colonnes
- Transformation de multiples booléens en une seule variable
- Des variables que nous ne comprenons pas (ex: LDA)

Partages en fonction du nombre d'images et vidéos présents dans l'article

Nombre de partages en fonction de la longueur moyenne des mots dans l'article

train, test = train_test_split(data2, test_size=0.2)

```
X_train = train.drop("popularity", axis=1)
               Y_train = train["popularity"]
               X_test = test.drop("popularity", axis=1)
               Y_test= test["popularity"]
               X test
random_forest.fit(X_train, Y_train)
               pred R = random forest.predict(X test)
               trainpred_R = random_forest.predict(X_train)
               acc R = accuracy score(Y test,pred R)
               f R = fbeta score(Y test,pred R,beta=1)
               AUC R = roc auc score(Y test, pred R)
               trainacc_R = accuracy_score(Y_train,trainpred_R)
               trainf R = fbeta score(Y train, trainpred R, beta=1)
               trainAUC R = roc auc score(Y train, trainpred R)
               print(acc_R,f_R,AUC_R,trainacc_R,trainf_R,trainAUC_R)
               confusion_matrix(Y_test,pred_R)
               confusion matrix(Y train, trainpred R)
               0.6609912977676883 0.6557377049180327 0.6609032089335223 1.0 1.0 1.0
       Out[56]: array([[16072,
                          0, 15643]], dtype=int64)
```

Out[57]:		Model	train Acc Score	train F-Score	train AUC Score	test Acc Score	test F-Score	test AUC Score
	3	Random Forest	1.000000	1.000000	1.000000	0.660991	0.655738	0.660903
	7	Decision Tree	1.000000	1.000000	1.000000	0.579014	0.578748	0.579083
	1	KNN	0.775437	0.770451	0.775285	0.563123	0.556466	0.563025
	2	Logistic Regression	0.591581	0.560781	0.590741	0.592130	0.567994	0.591567
	0	Support Vector Classification.	0.555825	0.337051	0.551462	0.546349	0.330043	0.542715
	4	Gaussienne	0.532240	0.184218	0.526566	0.531971	0.187432	0.527174
	5	Perceptron	0.523695	0.217143	0.518493	0.522386	0.219658	0.518002
	6	Stochastic Gradient Decent	0.516286	0.195247	0.510983	0.514315	0.200540	0.509877

Improvement of AUC 9.21%.

```
rf=RandomForestClassifier(random_state=1)
  params={"n_estimators": [25,30],
                "max_depth": [3,10,15],
                "max_features": [3, 4,6],
                "min_samples_split": [3, 4,6],
                "min_samples_leaf": [3, 4,6],
  rand search rfc=RandomizedSearchCV(rf,param distributions=params,cv=4)
  rand search rfc.fit(X train, Y train)
  print(rand search rfc.best params )
 {'n estimators': 30, 'min samples split': 3, 'min samples leaf': 6, 'max features': 4, 'max depth': 10}

    | rf=RandomForestClassifier(**rand_search_rfc.best_params_)
  rf.fit(X_train,Y_train)
  v pred=rf.predict(X test)
  y_prob=rf.predict_proba(X_test)[:,1]
  from sklearn.metrics import accuracy score, roc curve, roc auc score
  print('Accuracy of random forest test :',accuracy_score(y_pred,Y_test))
  print('AUC of random forest test :',roc auc score(Y test,y prob))
  print('Improvement of Acc {:0.2f}%.'.format( 100 * (accuracy_score(y_pred,Y_test) - accuracy_score(pred_R,Y_test)) / accuracy_score(pred_R,Y_test))
  print('Improvement of AUC {:0.2f}%.'.format( 100 * (roc_auc_score(Y_test,y_prob) - roc_auc_score(pred_R,Y_test)) / roc_auc_s
 Accuracy of random forest test: 0.6626308487829486
 AUC of random forest test: 0.7218144992201813
 Improvement of Acc 0.25%.
```


CONCLUSION