Business, Economic and Financial Data

2022 - 2023

Effects of CO₂ Emissions on Car Sales

Danmeng Yang Maria Aba Matteo Posenato

Context

In a world increasingly affected by climate change, machines are an important factor.

It is estimated that the number of cars in the world is around 1.2 billion.

Car manufacturers have to be ready for a change in the production of more and more sustainable cars, given the increasing number of emission-conscious consumers.

Tasks

Analyze and forecast time series sales

Understand the relationship between CO2 emissions and sales of different types of vehicles

Data Sources

We considered two datasets, both retrieved from **ourworldata**. The first dataset consists of the sales of different types of vehicles, including, petroleum, diesel, full hybrid, plug-in electric hybrids, and fully electric battery vehicles for some European countries(Italy, France, Spain, Belgium,...).

The second one represents the average emission of CO₂ (in grams) per kilometer of each of the previously mentioned vehicle types in each country.

For convenience we merged the two into one dataset, aligning them by country and year from 2001 to 2019.

Dataset

	Year	Entity	battery_electric_number	plugin_hybrid_number	full_mild_hybrid_number	petrol_number	diesel_gas_number	co2_per_km
4	2001	France	407.000000	0.0	84.000000	986491.000	1.267750e+06	160.096853
5	2001	Germany	56.000050	0.0	606.000544	2185246.962	1.155300e+06	178.923476
8	2001	Italy	147.000000	0.0	23.000000	1557121.000	8.880280e+05	158.485545
10	2001	Netherlands	13.000711	0.0	383.020946	408614.346	1.212766e+05	173.746087
14	2001	United Kingdom	29.000000	0.0	719.000000	2019996.000	4.376280e+05	177.881718

The merged dataset now contains 309 observations and 8 variables.

The variables are as follow:

- **Year :** from 2001 to 2019
- Entity: the different countries
- The number of sales of the different types of cars
 - Batery_electric_number
 - Plugin_hybrid_number
 - Full_mild_hybrid_number
 - > Petrol number
 - Diesel gas number
- **Co2_per_km**: the emission of carbon in grams per kilometer

Pre-Processing

- Remove the column with the country code
- Remove countries with fewer data
- Remove NA values
- Scale data with the MinMax scaler

EDA

Countries

we chose five countries for which we have data for each type of car since 2001:

- France
- Netherlands
- Germany
- United Kingdom
- Italy

TYPES OF CARS: France

TYPE OF CARS AND CO2 EMISSION THROUGH TIME: FRANCE

- → All the new types of vehicles follows similar behaviour
- → Diesel and Petrol cars have different trend

→ CO2 emissions decrease until 2016, after which, in contrast to other countries, they seem to stabilise

TYPES OF CARS: Netherlands

TYPE OF CARS AND CO2 EMISSION THROUGH TIME: NETHERLANDS

→ CO2 emissions have a decreasing trend, but after 2015 until 2017 the trend changed and then went down again

TYPES OF CARS: Germany

Distribution

Histogram of battery(Germany)

Histogram of diesel(Germany)

TYPE OF CARS AND CO2 EMISSION THROUGH TIME: GERMANY

→ After dieselgate (2015/16) we have another collapse in diesel car purchases

→ CO2 emissions fall until 2016 where they start to rise again

Types of cars: United Kingdom

Distribution

Histogram of battery(United Kingdom)

Histogram of plugin hybrid(United Kingdom)

Histogram of full mild hybrid(United Kingdom)

Histogram of petrol(United Kingdom)

Histogram of diesel(United Kingdom)

TYPE OF CARS AND CO2 EMISSION THROUGH TIME: UNITED KINGDOM

- → The new types of cars have similar behaviour
- → After 2011 the trend of petrol purchasing changed
- → Diesel cars grows until the dieselgate, after that drop definitely down

→ CO2 emissions fall until 2016 where they start to rise again, in the last three years seems to have stabilised

Types of cars: Italy

Distribution

Types of cars and CO2 emission through times: Italy

- → The new types of cars have similarly behaviour
- → Diesel have two main pick, the first decrease around 2007 and the second one around 2017

→ Like other countries, CO2 emissions decrease until 2016/2017 and then start to increase again

CONCLUSIONS OF THE EDA

- → All the variables in every country have non-linear trend
- → We do not have a seasonality phenomenon
- → CO2 emissions for all countries have the same trend except for the last three years
- → The two phenomena that had the greatest impact on car purchases were the global crisis of 2008 and the dieselgate of 2015

MODELS

- Bass Model
- ❖ GGM
- ARIMA
- GAM

Bass Model & GGM

We developed a diffusion model for each car type for different European countries. Approximate parameter values for the BASS models (m, p, q) can be observed in the table below.

	m	р	q
ВМ	4.753751e+00	3.864789e-05	5.571326e-01

To get better results, we also developed a GGM model and approximate parameter values can be observed in the table below

	k	рс	qc	ps	qs
GGM	1.180291e+01	6.478135e-06	4.795843e-01	2.374147e-04	5.794605e-01

All parameters resulted significant for the simple BASS model.

Battery Sales in France

Bass Model & GGM

All parameters resulted significant for the simple BASS model.

	m	р	q
ВМ	2.859422e+00	1.630577e-08	1.055894e+00

	k	рс	qc	ps	qs
GGM	7.772111e+00	1.234704e-06	5.957730e-01	3.646618e-08	1.094724e+00

Plugin Sales in France

Bass Model & GGM

All parameters resulted significant for the simple BASS model.

	m	р	q
вм	8.8522320272	0.0007085541	0.3363436357

	k	рс	qc	ps	qs	L
GGM	91.43147770	0.002681304	0.415894221	0.000332252	0.187997569	

Full Mild Sales in France

ARIMA: Time Series

FRANCE : Battery

ACF

-0.5 0.0

ARIMA: Model Selection

FRANCE : Battery

Arima with d = 2: looking for best p and q.

Model	AICc
ARIMA(0,2,0)	-47.49646
ARIMA(1,2,0)	-49.17481
ARIMA(0,2,1)	-48.27529
ARIMA(2,2,0)	-45.88223
ARIMA(1,2,1)	-45.87817

We compared some handpicked ARIMA models to those suggested by auto.arima in R on the basis of the AIC.

ARIMA: Residuals

FRANCE : Battery

→ Residuals are completely white noise

Forecast with the selected model

Forecasts from ARIMA(1,2,0)

ARIMA: Accuracy Comparision

FRANCE: Battery

Comparison of accuracy on training and test set: We considered 16 years forms 2001 to 2016 as our training dataset and the last three years as a test set.

	RMSE	MAE
Train Set	0.03215906	0.01789065
Test Set	0.08881124	0.06797979

ARIMA: Time Series

Italy : Petrol

ACF

ARIMA: Model Selection

Arima with d = 1: looking for best p and q.

Model	AICc	
ARIMA(0,1,0)	-11.15857	
ARIMA(1,1,0)	-10.14887	
ARIMA(0,1,1)	-9.695889	
ARIMA(1,1,1)	-6.334253	

We compared some handpicked ARIMA models to those suggested by auto.arima in R on the basis of the AIC.

ARIMA: Residuals

ITALY: Petrol

→ Residuals are completely white noise

Forecast with the selected model

Forecasts from ARIMA(0,1,0)

ARIMA: Accuracy Comparison

Italy: Petrol

Comparison of accuracy on training and test set:

	RMSE	MAE
Train Set	0.1467028	0.1190060
Test Set	0.1734884	0.1423246

Further Analysis: CO₂ Emission

GAM

GAM: with spline

France

FRANCE

	GAM with Spline on Test Set				
Car Type	DEV	RMSE			
Battery Electric	0.221	0.271			
Plugin Hybrid	0.221	0.227			
Full Mild Hybrid	0.181	0.246			
Petrol	0.101	0.183			
Diesel Gas	0.057	0.138			

GAM: with spline

Germany

GERMANY

	GAM with Spline on Test Set			
Car Type	DEV RMSE			
Battery Electric	0.906	0.550		
Plugin Hybrid	1.098	0.605		
Full Mild Hybrid	0.864	0.537		
Petrol	0.122	0.202		
Diesel Gas	0.112	0.193		

GAM: with spline

ITALY

	GAM with Spline on Test Set				
Car Type	DEV	RMSE			
Battery Electric	0.026	0.092			
Plugin Hybrid	0.026	0.094			
Full Mild Hybrid	0.335	0.334			
Petrol	0.034	0.107			
Diesel Gas	0.007	0.050			

GAM: with spline

Netherlands

NETHERLANDS

Full Mild Pred

2018.0

Year

Year

	Test	
Car Type	DEV	RMSE
Battery Electric	0.862	0.536
Plugin Hybrid	0.764	0.505
Full Mild Hybrid	0.009	0.055
Petrol	0.002	0.028
Diesel Gas	0.004	0.370

Year

2019.0

2018.5

GAM: with spline

United Kingdom

UNITED KINGDOM

2018.0

Year

2018.5

2019.0

	Test	
Car Type	DEV	RMSE
Battery Electric	0.282	0.307
Plugin Hybrid	1.062	0.595
Full Mild Hybrid	0.773	0.508
Petrol	0.042	0.118
Diesel Gas	0.220	0.271

Year

Year

ARIMA

ARIMA: THE PROCESS

- First, we analysed the time series to understand the possible relationships.
- We used the auto.arima model to find the best p, d and q parameters.
- We applied the arima model to see how co2 emissions affect car purchases, using emissions as an external regressor via the xreg parameter.
- Once the model was trained, we analysed the residuals to observe its behaviour.
- Finally, We tested the model with the test set to evaluate its performance.

TIME SERIES

ITALY: Battery

→ The two time series are co2 emissions and purchases of electric cars

MODEL SELECTION

MODEL	AICc
ARIMA(1,0,0)	-67,921260
ARIMA(0,0,0)	-65,290870
ARIMA(0,0,1)	-65,653510
ARIMA(2,0,0)	-63,779640

→ The best model is with p=1, d=0 and q=0

RESIDUALS

→ The residual is completely white noise

PERFORMANCES ON TRAINING AND TEST SET

We used Root Mean Square Error and Mean Absolute Error values to evaluate performance in the training and test set.

	RMSE	MAE
Training Set	0,019883	0,015924
Test Set	0,644481	0,549354

OTHER RESULTS: FRANCE

VARIABLES	MODEL	AICc	RMSE training set	RMSE test set	MAE training set	MAE test set
Electric battery	ARIMA(2,0,0)	-43,027640	0.0347278	0.607405	0.020603	0.579018
Plugin hybrid	ARIMA(1,0,0)	-31,186100	0.61179	0.704783	0.043007	0.686985
Full mild hybrid	ARIMA(0,0,1)	-39,720710	0.047494	0.882553	0,037607	0,874089
Petrol	ARIMA(1,0,0)	-9,677453	0,132587	0,241916	0,109864	0,218217
Diesel	ARIMA(2,0,0)	-18,973320	0,083481	0,566007	0,062650	0,561493

OTHER RESULTS: NETHERLANDS

VARIABLES	MODEL	AICc	RMSE training set	RMSE test set	MAE training set	MAE test set
Electric battery	ARIMA(0,0,0)	-30,461870	0,072739	0,636299	0,040811	0,516937
Plugin hybrid	ARIMA(0,0,1)	2,172297	0,176123	0,229892	0,115489	0,222016
Full mild hybrid	ARIMA(1,0,0)	-9,781617	0,121634	0,842795	0,084614	0,832427
Petrol	ARIMA(0,0,0)	-0,286537	0,205617	0,388654	0,158554	0,380093
Diesel	ARIMA(0,0,0)	-2,088918	0,176538	0,553477	0,138877	0,536718

OTHER RESULTS: UNITED KINGDOM

VARIABLES	MODEL	AICc	RMSE training set	RMSE test set	MAE training set	MAE test set
Electric battery	ARIMA(2,0,0)	-58,399710	0,021785	0,665337	0,014762	0,582284
Plugin hybrid	ARIMA(1,0,1)	-23,069610	0,062417	0,583190	0,046476	0,579584
Full mild hybrid	ARIMA(0,0,1)	-66,754450	0,020508	0,704948	0,016775	0,664023
Petrol	ARIMA(2,0,0)	-22,702930	0,076185	0,536578	0,062663	0,516520
Diesel	ARIMA(1,0,0)	-20,513070	0,086338	0,305006	0,068497	0,227025

OTHER RESULTS: GERMANY

VARIABLES	MODEL	AICc	RMSE training set	RMSE test set	MAE training set	MAE test set
Electric battery	ARIMA(2,0,0)	-73,898560	0,013614	0,724602	0,010090	0,673741
Plugin hybrid	ARIMA(1,0,0)	-40,781990	0,045519	0,752507	0,032307	0,734197
Full mild hybrid	ARIMA(0,0,0)	-71,045820	0,020463	0,670305	0,015447	0,605565
Petrol	ARIMA(0,0,0)	-1,810891	0,219545	0,123738	0,135715	0,100861
Diesel	ARIMA(0,0,1)	9,412217	0,220612	0,292694	0,147396	0,243226

CONCLUSIONS

→ We can see that the best model for understanding sales is the GGM model, this is especially true for new technologies as we are still in a phase of information dissemination, which pushes imitator customers to follow innovator consumers, thus not following the values of the past making the arima model less performing

→ CO2 emissions influence purchasing trends, this is due to the fact that the higher the emissions, the more information reaches the public, thus prompting consumers to choose less polluting cars

END