Diborane: Preparation - Diborane is prepared by the reduction of B trihalide with a suitable reducing agent.

Industrially, B₂H₆ is prepared by reduction of BF₃ with LiH.

$$2BF_3 + 6LiH \xrightarrow{450K\Delta} B_2H_6 + 6LiF$$

By reduction of BCl₃ with LiAlH₄.

$$4BCl_3 + 3LiAlH_4 \rightarrow 2B_2H_6 + 3LiCl + 3AlCl_3$$

By subjecting BCl₃ and H₂ to silent electric discharge.

$$2BCl_3 + 6H_2 \rightarrow B_2H_6 + 6HCl$$

Physical properties: It is a colourless gas.

It is unstable and change to other boranes easily. It is stable in the absence of greases and moisture.

Reactions:

With air – It burns in air to give B_2O_3 . This reaction is highly exothermic and more heat is released than that of C_2H_6 .

∴ B₂H₆ is used as potential rocket fuel.

$$B_2H_6 + 3O_2 \rightarrow B_2O_3 + 3H_2O$$

With water:

 $B_2H_6 + 6HOH \rightarrow 2B(OH)_3 + 6H_2$

With base:

 $B_2H_6 + 2KOH + 2H_2O \rightarrow 2KBO_2 + 6H_2$

With HCI:

$$B_2H_6 + HCI \xrightarrow{AICI_3} B_2H_5CI + H_2$$

With Cl₂:

$$B_2H_6 + CI_2 \xrightarrow{25^0} 2BCI_3 + 6HCI$$

With Br:

$$B_2H_6 + Br_2 \xrightarrow{100^{\circ}C} B_2H_5Br + HBr$$

B₂H₆ dost not react with I₂

With Na amalgam: It forms addition compund of disodium diborane

$$B_2H_6 + 2Na-Hg \rightarrow Na_2B_2H_6 + 2Hg$$

With CO: At 20 atm pressure and 100° C B_2H_6 combines with CO to form diborane carbonyl complex

$$B_2H_6 + 2CO \rightarrow 2BH_3CO$$

With ammonia: B_2H_6 with NH_3 at 120^0 C to form diammoniate of diborane. This on further heating above 200^0 C it decomposes to give borazole or borazine i.e., $B_3N_3H_6$.

$$B_2H_6 + 2NH_3 \xrightarrow{120^0} B_2H_6 2NH_3 \xrightarrow{200^0C} B_3N_3H_6$$

Borazole resembles C₆H₆ in structure and properties.

∴ It is called inorganic benzene.

C₆H₆ and borazole are isosters because they contain same number of atoms and electrons.

STRUCTURE OF DIBORANE:

- It is electron deficient.
- It has two electrons less than that of required to have C₂H₆ like structure.
- Electron diffraction studies, NMR and Raman spectra have conform that diborane consists of two coplanar BH₂ groups and two bridge hydrogens.
- Out of the six hydrogens of diborane molecule four hydrogens are one type and the other two are of another type. It is conform by methylation of diborane.
- Diborane on methylation gives Me₄B₂H₂. These two hydrogens which can not be methylated are bridge hydrogens.
- Both boron atoms are sp³ hybridised.
- Out of 4 sp³ hybrid orbitals of each boron three contain one electron each and fourth is empty.
- Four terminal hydrogens are bonded to borons by sp³ s overlapping. These are normal covalent bonds.
- The B-H-B bridges involve sp³-s-sp³ overlapping.
- The B–H–B bridges are three centred electron pair bonds.
- The B–H–B bridges are banana bonds or tau bonds.