SC-DNN

Deep Neural Network using Stochastic Computing

PR144 B04901112 錢柏均 B04901113 吳翊玄 B04901122 何榮晟

Deep Learning

High computation effort

Mat-Vec Multiply

Stochastic Computation

Unipolar

Multiplier → a single AND gate!!

Bit-stream Correlation

Non-ideal characteristic

Pros and Cons

- Smaller LE usage
- Low power consumption
- Higher error (bit-flip) tolerance

- Longer latency
- Not accurate
- Need conversion

SC-Multiplier

DAC 2017

Reference:

Sim, Hyeonuk, and Jongeun Lee. "A New Stochastic Computing Multiplier with Application to Deep Convolutional Neural Networks." *Proceedings of the 54th Annual Design Automation Conference 2017*. ACM, 2017.

Serial MUX

A deterministic way to generate bit stream:

 x_{N-i} first appears at cycle 2^{i-1} , and thereafter in every 2^i cycles, yields a theoretical maximum error: $N/2^{N+1}$ for wx

SC-Multiplier

Soft/Hard-ware partition

Workflow

Error Surface

Convectional SC (1024-bit stream)

DAC 2017 SC (128-bit stream)

Reference:

Kim, Kyounghoon, et al. "Dynamic energy-accuracy trade-off using stochastic computing in deep neural networks." *Proceedings of the 53rd Annual Design Automation Conference*. ACM, 2016.

Experiment

mnist DNN model (tensorflow):

$$784 \rightarrow 50 \rightarrow 50 \rightarrow 50 \rightarrow 10$$

8-bit fixed point precision, range -1~1

$$\frac{-128}{128}$$
, $\frac{-127}{128}$... 0 ... $\frac{126}{128}$, $\frac{127}{128}$

Overall testing accuracy: 94.41%

Results

Platform	Accuracy			
FPGA	9,107/10,000 (91.07%)			
software	9,441/10,000 (94.41%)			

a significant 3% accuracy drop!!→ longer bit stream might be able to fix it

Timing Analysis

Theoretical (simplified, other cpu operation not included)

Transmission (32-bit AXI bridge, 50MHz)

```
HPS to FPGA: (784 + 50 + 50 + 50) \times 13 = 12142 (c. c.)

FPGS to HPS: (784 + 50 + 50 + 50) \times (50 + 51) = 94334 (c. c.)

\rightarrow 106476 c. c. = 2.13ms
```

Calculation

Recall:

SC-Multiplier

DAC 2017

Reference:

Sim, Hyeonuk, and Jongeun Lee. "A New Stochastic Computing Multiplier with Application to Deep Convolutional Neural Networks." *Proceedings of the 54th Annual Design Automation Conference 2017*. ACM, 2017.

Timing Analysis

Theoretical (simplified, other cpu operation not included)

• Transmission (32-bit AXI bridge, 50MHz)

HPS to FPGA:
$$(784 + 50 + 50 + 50) \times 13 = 12142$$
 (c. c.)
FPGS to HPS: $(784 + 50 + 50 + 50) \times (50 + 51) = 94334$ (c. c.)

$$\rightarrow$$
 106476 c.c. = 2.13ms

Calculation

$$784 \times 16.85 + 50$$

 $\times (86.56 + 63.40 + 88.49)$
 $= 25132.9 (c. c.) = 0.50ms$

$$latency = 2.63ms$$

Timing Analysis

Experimental value

Operation	load	Layer1		Layer2		Layer3		Layer4		other	total
Operation		write	read	write	read	write	read	write	read	otner	total
Time (ms)	0.34	12.0	0.056	0.84	0.052	0.81	0.051	0.84	0.051	0.21	15.22
(%)	2.23	78.8	0.37	5.52	0.34	5.32	0.34	5.52	0.34	1.38	100

Performance bottleneck

Possible solutions:

- Wider AXI bridge
- Better data reuse (Conv.)

Demo

Future plan

Convolution layer

Convolution

x_0	x_1	x_2	x_3
x_4	x_5	x_6	x_7
<i>x</i> ₈	<i>X</i> ₉	<i>x</i> ₁₀	<i>x</i> ₁₁
<i>x</i> ₁₂	<i>x</i> ₁₃	x ₁₄	<i>x</i> ₁₅

$$w_0$$
 w_1 w_2 w_3

$$\begin{bmatrix} x_0 & x_1 & \dots & x_5 \\ x_1 & x_2 & \dots & x_6 \\ \vdots & \ddots & \vdots \\ x_{10} & x_{11} & \dots & x_{15} \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_3 \\ w_4 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_8 \end{bmatrix}$$

Convolution

Data reuse scheme

Reference:

Y.-H. Chen, J. Emer, V. Sze, "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks," International Symposium on Computer Architecture (ISCA), pp. 367-379, June 2016.

Future plan

- Convolution layer
- Memory hierarchy

Memory hierarchy

Future plan

- Convolution layer
- Memory hierarchy
- Integrate embedded multiplier and DSP
- OpenCL HLS

Conclusion

- 1. SC-based Mat-Vec multiplier
- 2. Performance:
 - 3% accuracy drop
 - Latency on par with CPU
- 3. We are new to the field of SoC/FPGA design. There many more possibilities that we're willing to try.

The End

Thanks for listening.