► DAVID FERNÁNDEZ-DUQUE, Noetherian Gödel Logics.

ICS of the Czech Academy of Sciences and Department of Mathematics WE16, Ghent University.

$E ext{-}mail$: fernandez@cs.cas.cz.

Noetherian Gödel logics are many-valued logics where the set of truth values is a closed subset of [0,1] without infinite ascending sequences. These logics are parametrized by countable ordinals, so that $\mathsf{G}_{\alpha}^{\downarrow}$ is the logic with truth values inversely isomorphic to $\alpha+1$. In this talk we discuss the complexity of satisfiability and validity for each Noetherian Gödel logic, strengthening and generalizing results of Baaz-Leitsch-Zach and Hájek. Specifically, we show that the complexity of satisfiability and validity in $\mathsf{G}_{\alpha}^{\downarrow}$ are related to Σ_1^1 and Π_1^1 formulas, respectively, over $(\mathbb{L}_{\beta})_{\beta \leq \alpha}$.

This is joint work with Juan P. Aguilera and Jan Bydzovsky