PHASE 3

- 1. **Assessing Reach**: Measure the extent of the public health awareness campaigns' penetration into the target audience by analyzing the distribution of campaign materials and messages across various channels.
- 2. **Evaluating Awareness Levels:** Determine the effectiveness of the campaigns in conveying the intended health messages by assessing the changes in public awareness levels before and after the campaigns.
- 3. **Measuring Impact:** Evaluate the impact of the public health campaigns on the audience's perception and behavior concerning the specific health issues targeted by the campaigns, aiming to identify any positive shifts in attitudes or actions.
- 4. **Identifying Target Audience Segments:** Segment the audience based on demographic data to identify specific groups that responded positively to the campaign, enabling the customization of future strategies to effectively target these segments.
- 5. **Analyzing Engagement Metrics:** Assess the level of engagement generated by the campaigns across different platforms, such as social media, websites, and community events, to understand the audience's active participation and interaction with the campaign materials.
- 6. **Determining Effectiveness of Communication Channels:** Analyze the effectiveness of different communication channels used in the campaigns, including social media, traditional media, and direct outreach, to identify the most impactful channels for disseminating public health messages.
- 7. **Assessing Long-Term Impact:** Evaluate the long-term impact of the campaigns on public health outcomes, such as changes in behavior, increased health-seeking actions, and a reduction in negative health indicators within the targeted communities.
- 8. **Comparative Analysis with Similar Campaigns:** Compare the outcomes of the current public health campaigns with those of similar past campaigns to identify best practices and areas for improvement, enabling the formulation of more effective future strategies.

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
data = pd.read_csv('/content/survey.csv')
data.head()
```

	Timestamp	Age	Gender	Country	state	self_employed	<pre>family_history</pre>	treatment	work_interfere	no_employees	•••	leave	mer
0	27-08- 2014 11:29	37	Female	United States	IL	NaN	No	Yes	Often	Jun-25		Somewhat easy	
1	27-08- 2014 11:29	44	М	United States	IN	NaN	No	No	Rarely	More than 1000		Don't know	
2	27-08- 2014 11:29	32	Male	Canada	NaN	NaN	No	No	Rarely	Jun-25		Somewhat difficult	
3	27-08- 2014 11:29	31	Male	United Kingdom	NaN	NaN	Yes	Yes	Often	26-100		Somewhat difficult	
4	27-08- 2014 11:30	31	Male	United States	TX	NaN	No	No	Never	100-500		Don't know	

5 rows × 27 columns

```
#check missing data
if data.isnull().sum().sum() == 0 :
    print ('There is no missing data in our dataset')
else:
    print('There is {} missing data in our dataset '.format(data.isnull().sum().sum()))
    There is 1892 missing data in our dataset

#Check our missing data from which columns and how many unique features they have.
frame = pd.concat([data.isnull().sum(), data.nunique(), data.dtypes], axis = 1, sort= False)
frame
```

	0	1	2
Timestamp	0	884	object
Age	0	53	int64
Gender	0	49	object
Country	0	48	object
state	515	45	object
self_employed	18	2	object
family_history	0	2	object
treatment	0	2	object
work_interfere	264	4	object
no_employees	0	6	object
remote_work	0	2	object
tech_company	0	2	object
benefits	0	3	object
care_options	0	3	object
wellness_program	0	3	object
seek_help	0	3	object
anonymity	0	3	object
leave	0	5	object
mental_health_consequence	0	3	object
phys_health_consequence	0	3	object
coworkers	0	3	object
supervisor	0	3	object

#Look at what is in the 'Work_interfere' column to choose a suitable method to fill nan values.
data['work_interfere'].unique()


```
from sklearn.impute import SimpleImputer
import numpy as np
columns_to_drop = ['state', 'comments', 'Timestamp']
for column in columns_to_drop:
    if column in data.columns:
        data = data.drop(columns=[column])
```

Fill in missing values in work_interfere column

```
data['work_interfere'] = np.ravel(SimpleImputer(strategy = 'most_frequent').fit_transform(data['work_interfere'].values.reshape(-1,1)))
data['self_employed'] = np.ravel(SimpleImputer(strategy = 'most_frequent').fit_transform(data['self_employed'].values.reshape(-1,1)))
```

data.head()

	Age	Gender	Country	self_employed	family_history	treatment	work_interfere	no_employees	remote_work	tech_company	• • •	anon
0	37	Female	United States	No	No	Yes	Often	Jun-25	No	Yes		
1	44	М	United States	No	No	No	Rarely	More than 1000	No	No		Don'
2	32	Male	Canada	No	No	No	Rarely	Jun-25	No	Yes		Don'
3	31	Male	United Kingdom	No	Yes	Yes	Often	26-100	No	Yes		
4	31	Male	United States	No	No	No	Never	100-500	Yes	Yes		Don'

5 rows × 24 columns

```
ax = sns.countplot(data=data, x='work_interfere');
ax.bar_label(ax.containers[0]);
```



```
#Check unique data in gender columns
print(data['Gender'].unique())
print('')
print('-'*75)
print('')
#Check number of unique data too.
print('number of unique Gender in our dataset is :', data['Gender'].nunique())
     ['Female' 'M' 'Male' 'male' 'female' 'm' 'Male-ish' 'maile' 'Trans-female'
       'Cis Female' 'F' 'something kinda male?' 'Cis Male' 'Woman' 'f' 'Mal'
       'Male (CIS)' 'queer/she/they' 'non-binary' 'Femake' 'woman' 'Make' 'Nah'
       'All' 'Fluid' 'Genderqueer' 'Female ' 'Androgyne' 'Agender' 'cis-female/femme' 'Guy (-ish) ^^' 'male leaning androgynous' 'Male ' 'Man' 'Trans woman' 'msle' 'Neuter' 'Female (trans)' 'queer' 'Female (cis)' 'Mail' 'cis male' 'A little about you' 'Malr' 'p' 'femail'
       'Cis Man' 'ostensibly male, unsure what that really means']
     number of unique Gender in our dataset is : 49
#Gender data contains dictation problems, nonsense answers, and too unique Genders.
#_So Let's clean it and organize it into Male, Female, and other categories
'Cis Man', 'msle', 'Malr', 'Mal', 'maile', 'Make',], 'Male', inplace = True)
data['Gender'].replace(['Female ', 'female', 'F', 'f', 'Woman', 'Female',
```

'femail', 'Cis Female', 'cis-female/femme', 'Femake', 'Female (cis)',


```
#Our data is clean now ? let's see.
if data.isnull().sum().sum() == 0:
   print('There is no missing data')
   print('There is {} missing data'.format(data.isnull().sum().sum()))
     There is no missing data
#Let's check duplicated data.
if data.duplicated().sum() == 0:
    print('There is no duplicated data:')
   print('Tehre is {} duplicated data:'.format(data.duplicated().sum()))
    #If there is duplicated data drop it.
   data.drop_duplicates(inplace=True)
print('-'*50)
print(data.duplicated().sum())
     Tehre is 4 duplicated data:
     0
#Look unique data in Age column
data['Age'].unique()
     array([
                      37,
                                   44,
                                                 32,
                                                              31,
                                                                            33,
                     35,
                                   39,
                                                 42,
                                                              23,
                                                                            29,
                      36,
                                   27,
                                                 46,
                                                              41,
                                                                            34,
                      30,
                                   40,
                                                 38,
                                                              50,
                                                                            24,
                     18,
                                   28,
                                                 26,
                                                              22,
                                                                            19,
                     25,
                                   45,
                                                21,
                                                             -29,
                                                                            43,
                     56,
                                   60,
                                                 54,
                                                             329,
                                                                            55,
            99999999999,
                                   48,
                                                 20,
                                                              57,
                                                                            58,
                     47,
                                                              65,
                                                                            49.
                                   62,
                                                 51,
                   -1726,
                                    5,
                                                 53.
                                                              61,
                                                                             8,
                                                 72])
                     11,
                                   -1,
```


#In this plot moreover on Age distribution we can see treatment distribution by age
plt.figure(figsize=(10, 6));
sns.displot(data['Age'], kde = 'treatment');
plt.title('Distribution treatment by age');

→ <Figure size 1000x600 with 0 Axes>

#In this plot We can see Total number of individuals who received treatment or not.
plt.figure(figsize = (10,6));

```
treat = sns.countplot(data = data, x = 'treatment');
treat.bar_label(treat.containers[0]);
plt.title('Total number of individuals who received treatment or not');
```

Total number of individuals who received treatment or not

#Check Dtypes data.info()

data.info()

```
<class 'pandas.core.frame.DataFrame'>
     Int64Index: 1250 entries, 0 to 1258
     Data columns (total 24 columns):
          Column
                                      Non-Null Count Dtype
     #
                                      1250 non-null
     a
          Age
                                                       int64
     1
          Gender
                                      1250 non-null
                                                       obiect
      2
          Country
                                      1250 non-null
                                                       object
      3
          self_employed
                                      1250 non-null
                                                       object
      4
          family_history
                                      1250 non-null
      5
          treatment
                                      1250 non-null
          work_interfere
                                      1250 non-null
                                                       object
                                      1250 non-null
          no_employees
                                                       object
      8
          remote_work
                                      1250 non-null
                                                       object
      9
          tech company
                                      1250 non-null
                                                       object
      10 benefits
                                      1250 non-null
                                                       object
          care_options
                                      1250 non-null
      11
                                                       object
      12
          wellness_program
                                      1250 non-null
                                                       object
      13
          seek_help
                                      1250 non-null
                                                       object
      14
          anonymity
                                      1250 non-null
                                                       object
                                      1250 non-null
                                                       object
      16
          mental_health_consequence 1250 non-null
          phys_health_consequence
                                      1250 non-null
                                                       object
      18
          coworkers
                                      1250 non-null
                                                       object
                                      1250 non-null
      19 supervisor
                                                       object
          mental_health_interview
                                      1250 non-null
      20
                                                       object
      21
          phys health interview
                                      1250 non-null
                                                       object
          mental_vs_physical
                                      1250 non-null
      22
                                                       object
     23 obs_consequence
                                      1250 non-null
                                                       object
     dtypes: int64(1), object(23)
     memory usage: 244.1+ KB
#Use LabelEncoder to change the Dtypes to 'int'
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
#Make the dataset include all the columns we need to change their dtypes
columns_to_encode = ['Gender', 'Country', 'self_employed','family_history', 'treatment', 'work_interfere','no_employees',
                              'remote_work', 'tech_company', 'benefits', 'care_options', 'wellness_program',
                              'seek_help', 'anonymity', 'leave', 'mental_health_consequence', 'phys_health_consequence', 'coworkers', 'supervisor', 'mental_health_interview','phys_health_interview',
                              'mental_vs_physical', 'obs_consequence']
#Write a Loop for fitting LabelEncoder on columns_to_encode
for columns in columns_to_encode:
   data[columns] = le.fit_transform(data[columns])
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1250 entries, 0 to 1258
Data columns (total 24 columns):
    Column
                               Non-Null Count Dtype
0
    Age
    Gender
1
```

int64 1250 non-null 1250 non-null int64 1 Gender 1250 non-null int64
2 Country 1250 non-null int64
3 self_employed 1250 non-null int64
4 family_history 1250 non-null int64
5 treatment 1250 non-null int64
6 work_interfere 1250 non-null int64
7 no_employees 1250 non-null int64
8 remote_work 1250 non-null int64
9 tech_company 1250 non-null int64
10 benefits 1250 non-null int64
11 care_options 1250 non-null int64
12 wellness_program 1250 non-null int64
13 seek_help 1250 non-null int64
14 anonymity 1250 non-null int64 1250 non-null int64 14 anonymity 1250 non-null int64 15 leave 16 mental_health_consequence 1250 non-null int64 phys_health_consequence 1250 non-null 17 int64 18 coworkers 1250 non-null int64 19 supervisor 1250 non-null int64 20 mental_health_interview 1250 non-null int64 23 obs_consequence

dtypes: int64(24) memory usage: 244.1 KB

#Let's check Standard deviation data.describe()

	Age	Gender	Country	self_employed	family_history	treatment	work_interfere	no_employees	remote_work	tecl
count	1250.00000	1250.00000	1250.000000	1250.000000	1250.000000	1250.000000	1250.000000	1250.000000	1250.000000	12
mean	32.02400	0.81760	37.792800	0.114400	0.390400	0.504800	2.128000	2.786400	0.298400	
std	7.38408	0.42388	13.334981	0.318424	0.488035	0.500177	1.165806	1.738733	0.457739	
min	5.00000	0.00000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	27.00000	1.00000	42.000000	0.000000	0.000000	0.000000	1.000000	1.000000	0.000000	
50%	31.00000	1.00000	45.000000	0.000000	0.000000	1.000000	3.000000	3.000000	0.000000	
75%	36.00000	1.00000	45.000000	0.000000	1.000000	1.000000	3.000000	4.000000	1.000000	
max	72.00000	2.00000	46.000000	1.000000	1.000000	1.000000	3.000000	5.000000	1.000000	

8 rows × 24 columns

from sklearn.preprocessing import MaxAbsScaler, StandardScaler

```
data['Age'] = MaxAbsScaler().fit_transform(data[['Age']])
data['Country'] = StandardScaler().fit_transform(data[['Country']])
data['work_interfere'] = StandardScaler().fit_transform(data[['work_interfere']])
data['no_employees'] = StandardScaler().fit_transform(data[['no_employees']])
data['leave'] = StandardScaler().fit_transform(data[['leave']])
```

data.describe()

	Age	Gender	Country	self_employed	family_history	treatment	work_interfere	no_employees	remote_work	1
mean	0.444778	0.81760	3.979039e-17	0.114400	0.390400	0.504800	-1.193712e-16	-1.705303e-17	0.298400	
std	0.102557	0.42388	1.000400e+00	0.318424	0.488035	0.500177	1.000400e+00	1.000400e+00	0.457739	
min	0.069444	0.00000	-2.835244e+00	0.000000	0.000000	0.000000	-1.826077e+00	-1.603187e+00	0.000000	
25%	0.375000	1.00000	3.156273e-01	0.000000	0.000000	0.000000	-9.679583e-01	-1.027826e+00	0.000000	
50%	0.430556	1.00000	5.406895e-01	0.000000	0.000000	1.000000	7.482798e-01	1.228972e-01	0.000000	
75%	0.500000	1.00000	5.406895e-01	0.000000	1.000000	1.000000	7.482798e-01	6.982587e-01	1.000000	
max	1.000000	2.00000	6.157103e-01	1.000000	1.000000	1.000000	7.482798e-01	1.273620e+00	1.000000	