Towards 'Verifying' a Water Treatment System

Jingyi Wang

(with Jun Sun, Yifan Jia, Shengcao Qin and Zhiwu Xu) jingyi_wang@sutd.edu.sg

The Secure Water Treatment System (SWaT)

- fully functioning
- supervised experiments
- public dataset
- a wide range of research areas

SWaT process overview

UF system (P3)

Pre-treatment

system (P2)

De-chlorination

system (P4)

Raw water

system (PI)

how can we formally 'verify' the system?

Modelling CPS

Can we learn a probabilistic model instead?

time	sensors	actuators		
t0	а	Z		
tl	а	у		
t2	Ь	у		
t3	Ь	Z		

Probabilistic learning sketch

SWaT dataset

- 26 sensors (float) + 25 actuators
- 7 days system log under normal operation + 4 days system log under attacks
- 28800 + 208800

Predicate abstraction

FIT101	LIT101	MV101	P101	P102	AIT201	AIT202	AIT203	FIT201
2.470294	261.5804	2	2	1	244.3284	8.19008	306.101	2.471278
2.457163	261.1879	2	2	1	244.3284	8.19008	306.101	2.468587
2.439548	260.9131	2	2	1	244.3284	8.19008	306.101	2.467305
2.428338	260.285	2	2	1	244.3284	8.19008	306.101	2.466536
2.424815	259.8925	2	2	1	244.4245	8.19008	306.101	2.466536
2.425456	260.0495	2	2	1	244.5847	8.19008	306.101	2.465127
2.472857	260.2065	2	2	1	244.5847	8.19008	306.101	2.464742

Overall framework

Safety properties

Learning

Learning

Verify a safety property

- 1. compute steady state probability distribution of the learned model
- 2. sum up the probability of unsafe states

Spurious checking

Find spurious transitions

0.52 in testing log

- calculate transition probabilities in the testing log
- compare the differences with the learned probability
- select those inflated transitions

Refinement

Collect labeled data

spurious transition:
$$1 \xrightarrow{1} 1$$

Learn a new predicate by SVM

Summary of result

```
19 never violated
properties
24 verified
4 violations
```

details at https://github.com/wang-jingyi/Ziqian

Observations

- the learned models are precise
- the learned models are small
 - 2 to 208 states
- group behaviors
 - FIT401<1.5, FIT502<1.1, FIT503<0.7, FIT504<0.25
 - FIT501<1, PIT501<20, PIT503<10
- safety violations
 - AIT401>100, PIT501>30, PIT502>0.2, PIT503>20
 - high in the training log, I in learned model and the testing log

Discussions

- safety margin: 20%
- hyper parameter in the learning algorithm
- sub-sampling
- limited data

Ongoing and future work

Our facilities are available!

Take-home points

• experience on automatic verification of a real-world CPS from data

applied an abstraction-based learning algorithm

• the learned models are potentially used for subsequent analysis