Local image co-registration

This local co-registration module of AROSICS has been designed to detect and correct geometric shifts present locally in your input image. The class <code>arosics.coreg_local</code> calculates a grid of spatial shifts with points spread over the whole overlap area of the input images. Based on this grid a correction of local shifts can be performed.

```
>>> from arosics import COREG_LOCAL
>>> im_reference = '/path/to/your/ref_image.bsq'
              = '/path/to/your/tgt_image.bsq'
>>> im_target
>>> kwargs = {
>>>
     'grid_res'
                   : 200,
       'window_size' : (64,64),
>>>
      'path out' : 'auto',
>>>
       'projectDir' : 'my_project',
>>>
       'q'
                   : False,
>>>
>>> }
>>> CRL = COREG_LOCAL(im_reference,im_target,**kwargs)
>>> CRL.correct_shifts()
Calculating actual data corner coordinates for reference image...
Corner coordinates of reference image:
   [[319090.0, 5790510.0], [351800.0, 5899940.0], [409790.0, 5900040.0], [409790.0, 5790250.0],
[319090.0, 5790250.0]]
Calculating actual data corner coordinates for image to be shifted...
Corner coordinates of image to be shifted:
   [[319460.0, 5790510.0], [352270.0, 5900040.0], [409790.0, 5900040.0], [409790.0, 5790250.0],
[319460.0, 5790250.0]]
Matching window position (X,Y): 372220.10753674706/5841066.947109019
Calculating tie point grid (1977 points) in mode 'multiprocessing'...
   progress: |-----| 100.0% [1977/1977] Complete
9.75 sek
Found 1144 valid GCPs.
Correcting geometric shifts...
|-----| 100.0% Complete
Warping progress
Writing GeoArray of size (10979, 10979) to /home/gfz-
fe/scheffler/jupyter/arosics_jupyter/my_project/S2A_OPER_MSI_L1C_TL_SGS__20160608T153121_A005024_T33
OrderedDict([('band', None),
           ('is shifted', True),
           ('is resampled', True),
           ('updated map info',
            ['UTM',
             1,
             1,
             300000.0,
             5900030.0,
             10.0,
             10.0,
             33,
             'North',
             'WGS-84']),
           ('updated geotransform',
            [300000.0, 10.0, 0.0, 5900030.0, 0.0, -10.0]),
           ('updated projection',
             'PROJCS["WGS 84 / UTM zone 33N",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS
```

detect and correct local shifts - without any disk access

All you have to do is to instanciate arosics.coreg_Local with two instances of the geoarray.GeoArray class as described above.

```
>>> from geoarray import GeoArray
>>> CRL = COREG_LOCAL(GeoArray(ref_ndarray, ref_gt, ref_prj),
>>> GeoArray(tgt_ndarray, tgt_gt, tgt_prj),
>>> **kwargs)
>>> CRL.correct_shifts()
```

visualize tie point grid with INITIAL shifts present in your input target image

Use the method <code>CRL.view_CoRegPoints()</code> to visualize the tie point grid with the calculated absolute lenghts of the shift vectors (the unit corresponds to the input projection - UTM in the shown example, thus the unit is 'meters'.).

A Note

A calculation of reliable shifts above cloud covered areas is not possible. In the current version of AROSICS these areas are not masked. A proper masking is planned.

```
>>> CRL.view_CoRegPoints(figsize=(15,15), backgroundIm='ref')
Note: array has been downsampled to 1000 x 1000 for faster visualization.
```


The output figure shows the calculated absolute lenghts of the shift vectors - in this case with shifts up to \sim 25 meters.

visualize tie point grid with shifts present AFTER shift correction

The remaining shifts after local correction can be calculated and visualized by instanciating the arosics.coreg_local with the output path of the above instance of coreg_local.

The output figure shows a significant reduction of geometric shifts.

Point records where no valid match has been found are filled with -9999.

```
>>> CRL.CoRegPoints_table
```

	POINT_ID	X_IM	Y_IM	X_UTM	Y_UTM	X_WIN_SIZE	Y_WIN_SIZE	X_SHIFT_PX	Y_\$HIFT_PX	X_SHIFT_M	Y_SHIFT_M	ABS_SHIFT	ANGLE
0	81	5200	200	352000.0	5898040.0	76.0	74.0	0.239249	0.146466	3.588731	-2.196988	4.207820	301.474581
2	83	5600	200	356000.0	5898040.0	512.0	388.0	-0.356977	0.373230	-5.354648	-5.598444	7.746923	43.724911
5	86	6200	200	362000.0	5898040.0	512.0	388.0	0.157178	0.404519	2.357663	-6.067784	6.509730	338.766151
7	88	6600	200	366000.0	5898040.0	512.0	388.0	-0.459250	0.331437	-6.888751	-4.971556	8.495367	54.182323
8	89	6800	200	368000.0	5898040.0	512.0	388.0	0.354148	0.451144	5.312223	-6.767153	8.603143	321.868048
10	91	7200	200	372000.0	5898040.0	512.0	388.0	0.349729	0.180863	5.245941	-2.712940	5.905925	297.345759
18	99	8800	200	388000.0	5898040.0	512.0	388.0	-0.372647	0.455296	-5.589699	-6.829444	8.825307	39.299320
24	105	10000	200	400000.0	5898040.0	512.0	388.0	-0.044553	-0.090755	-0.668299	1.361323	1.516517	153.852716
25	106	10200	200	402000.0	5898040.0	512.0	388.0	-4.168502	-0.378703	-62.527525	5.680549	62.785031	95.191001
26	107	10400	200	404000.0	5898040.0	512.0	388.0	-0.111583	0.122994	-1.673744	-1.844907	2.491004	42.215067
27	108	10600	200	406000.0	5898040.0	510.0	388.0	-0.127243	-0.141960	-1.908644	2.129396	2.859589	138.129140
28	109	10800	200	408000.0	5898040.0	376.0	388.0	-0.206990	0.239337	-3.104850	-3.590052	4.746427	40.854831
1975	3013	8600	10800	386000.0	5792040.0	512.0	376.0	-0.744887	1.718145	-11.173299	-25.772176	28.089992	23.438716
1976	3014	8800	10800	388000.0	5792040.0	512.0	376.0	-0.722097	1.730853	-10.831454	-25.962800	28.131608	22.645471
1977	3015	9000	10800	390000.0	5792040.0	512.0	376.0	-0.774061	1.691232	-11.610910	-25.368481	27.899339	24.593115
1978	3016	9200	10800	392000.0	5792040.0	512.0	376.0	-0.709505	1.763357	-10.642570	-26.450359	28.511152	21.917889
1979	3017	9400	10800	394000.0	5792040.0	512.0	376.0	-0.714307	1.828628	-10.714611	-27.429422	29.447853	21.336846
1980	3018	9600	10800	396000.0	5792040.0	512.0	376.0	-0.681368	2.120825	-10.220519	-31.812373	33.413860	17.810912
1981	3019	9800	10800	398000.0	5792040.0	512.0	376.0	-0.454680	1.715511	-6.820207	-25.732666	26.621145	14.844413
1982	3020	10000	10800	400000.0	5792040.0	512.0	376.0	-0.611233	1.779538	-9.168499	-26.693068	28.223771	18.956503
1983	3021	10200	10800	402000.0	5792040.0	512.0	376.0	-0.655737	1.824597	-9.836051	-27.368948	29.082765	19.767790
1984	3022	10400	10800	404000.0	5792040.0	512.0	376.0	-0.608115	1.791172	-9.121724	-26.867574	28.373797	18.752699
1985	3023	10600	10800	406000.0	5792040.0	510.0	376.0	-0.577808	1.752265	-8.667122	-26.283981	27.676103	18.249931
1986	3024	10800	10800	408000.0	5792040.0	376.0	376.0	-0.584037	1.720898	-8.760555	-25.813463	27.259534	18.746150

1398 rows x 19 columns

export tie point grid to an ESRI point shapefile

```
>>> CRL.tiepoint_grid.to_PointShapefile(path_out='/path/to/your/output_shapefile.shp')
```

Using the Shell console

Follow these instructions to run AROSICS from a shell console. For example, the most simple call for a local co-registration would look like this: