Estructuras Discretas

Relaciones

Liliana Reyes

Universidad Nacional Autónoma de México Facultad de Ciencias

18 de mayo de 2023

Introducción

- En la mundo real existen relaciones entre elementos, entre conjuntos y entre elementos y conjuntos.
- Por ejemplo: entre personas: relaciones de parentesco, de amistad, etc., entre personas; diplomáticas, económicas, etc., entre países; relaciones de paralelismo o de perpendicularidad entre rectas de un plano; relaciones de inclusión entre conjuntos; relaciones como "mayor que" o "menor o igual que" entre números, relaciones de implicación y equivalencia, entre proposiciones.
- Sin embargo, sin una definición formal es difícil responder preguntas sobre relaciones. ¿Qué se quiere dar a entender, por ejemplo, cuando se dice que dos relaciones aparentemente diferentes son iguales?
- La matemática intenta, como ahora veremos, hacerse eco de tales sucesos y, mediante un proceso de abstracción, expresarlas y estudiarlas científicamente.

Definición (Relación)

Sean $A_1, A_2, ..., A_n$ conjuntos. Una relación \mathcal{R} sobre $A_1 \times A_2 \times ... \times A_n$ es cualquier subconjunto de este producto cartesiano, es decir,

$$\mathcal{R} \subseteq A_1 \times A_2 \times \ldots \times A_n$$

- Si $\mathcal{R} = \emptyset$, llamaremos a \mathcal{R} , la relación vacía.
- Si $\mathcal{R} = A_1 \times A_2 \times ... \times A_n$, llamaremos a \mathcal{R} la relación universal.
- Si $A_i = A$, $\forall i = 1, 2, ..., n$, entonces \mathcal{R} es una relación n-aria sobre A.
- Si n = 2, diremos que \mathcal{R} es una relación binaria y si n = 3, una relación ternaria.

- La clase más importante de relaciones es la de las relaciones binarias, por ser las más frecuentes, el término "relación" denota generalmente una relación binaria;
- Adoptaremos este criterio cuando no haya confusión y especificaremos las que no sean binarias con términos tales como "ternaria" o "n-aria".
- Notación:
 - Si $(a,b) \in \mathcal{R}$ diremos que a está relacionado con b y lo notaremos por $a\mathcal{R}b$.
 - Si $(a,b) \notin \mathcal{R}$ diremos que a no está relacionado con b y lo notaremos por a $\mathcal{R}b$.

Sea $A = \{huevos, leche, maíz\}$ y $B = \{vacas, cabras, gallinas\}$. La relación \mathcal{R} de A a B definida por:

$$(a,b) \in \mathcal{R} \iff a$$
 es producido por b

Sería

$$\mathcal{R} = \{(huevos, gallinas), (leche, vacas), (leche, cabras)\}$$

2 Sea $\mathcal R$ la relación "menor que" definida en el conjunto $\mathbb Z$ de los números enteros. Escribiremos 3 < 5 para indicar que $(3,5) \in \mathcal R$ y $5 \not< 3$ para indicar que $(5,3) \notin \mathcal R$

Dominio e Imagen

Definición (Dominio e Imagen)

Llamaremos dominio de una relación $\mathcal R$ al conjunto formado por todos los primeros elementos de los pares ordenados que pertenecen a $\mathcal R$, e imagen o rango al conjunto formado por los segundos elementos. Es decir, si $\mathcal R$ es una relación de A a B, entonces

$$Dom(R) = \{a \in A \mid \exists b : b \in B \land (a,b) \in \mathcal{R}\}$$

$$Img(R) = \{b \in B \mid \exists a : a \in A \land (a,b) \in \mathcal{R}\}\$$

Representaciones

Definición (Matriz de una relación)

Dados dos conjuntos finitos, no vacíos, $A = \{a_1, a_2, ..., a_m\}$ y $B = \{b_1, b_2, ..., b_n\}$ y una relación $\mathcal R$ cualquiera de A a B, llamaremos matriz de $\mathcal R$ a la matriz booleana siguiente:

$$M_{\mathcal{R}} = (r_{ij}) : r_{ij} = \begin{cases} 1 & si \quad (a_i, b_j) \in \mathcal{R} \\ 0 & si \quad (a_i, b_j) \notin \mathcal{R} \end{cases}$$

donde i = 1, 2, ..., m; j = 1, 2, ..., n.

Notas

- Una matriz caracteriza a una relación, es decir, conociendo la relación se conoce la matriz y conociendo la matriz, puede establecerse la relación.
- Si la relación es sobre *A* entonces la matriz es cuadrada.

Liliana Reyes (UNAM) LPROP 18 de mayo de 2023 7/14

Representaciones

Definición (Gráfica de una relación)

Una gráfica dirigida o digráfica es un par ordenado $D=(A,\mathcal{R})$ donde A es un conjunto finito y \mathcal{R} es una relación binaria definida sobre A. Al conjunto A lo llamaremos conjunto de nodos o vértices de D. A los elementos de \mathcal{R} los llamaremos arcos o aristas de la digráfica D.

Notas:

- Una digráfica caracteriza a una relación, es decir, conociendo la relación se conoce la digráfica y conociendo la digráfica, puede establecerse la relación.
- Si G_R es el grafo dirigido de una relación en un conjunto finito A, entonces el dominio y la imagen de R están formados por los puntos que son, respectivamente, extremo inicial y final de algún arco.

Representaciones

- Tomaremos los elementos de A como puntos del plano y cuando dos elementos x e y de A estén relacionados, es decir, $x\mathcal{R}y$, trazaremos un arco dirigido desde x hasta y.
- \blacksquare A x lo llamaremos vértice inicial y a y vértice final de la arista (x,y).
- A una arista que una un punto consigo mismo, la llamaremos bucle.
- A un vértice que no sea inicial ni final de ninguna arista, lo llamaremos aislado.
- Grado de entrada de un vértice es el número de aristas que llegan hasta él. Representaremos por $gr_e(a)$ al del vértice a.
- Grado de salida de un vértice es el número de aristas que salen de él. Representaremos por $gr_s(a)$ al del vértice a.

Propiedades

Definición (Reflexividad)

Una relación binaria $\mathcal R$ sobre un conjunto A se dice que es reflexiva, cuando cada elemento de A está relacionado consigo mismo. Es decir,

$$\mathcal{R}$$
 es reflexiva $\longleftrightarrow \forall a (a \in A \to a\mathcal{R}a)$

Notas:

- La digráfica de una relación reflexiva se caracteriza por tener un bucle (ciclo de longitud uno) en cada uno de los vértices.
- La matriz de una relación reflexiva se caracteriza por tener todos los elementos de su diagonal principal iguales a uno.

 \mathcal{R} es reflexiva $\longleftrightarrow r_{ii} = 1, \forall i$

Propiedades

Definición (Simetría)

Una relación binaria $\mathcal R$ sobre un conjunto A es simétrica si cada vez que a está relacionado con b se sigue que b está relacionado con a. Es decir,

$$\mathcal{R}$$
 es simétrica $\longleftrightarrow \forall a,b \ (a\mathcal{R}b \to b\mathcal{R}a)$

Notas:

- Si D es la digráfica de una relación simétrica, entonces entre cada dos vértices distintos de D existen dos aristas en dirección contraria o no existe ninguna.
- La matriz $M_{\mathcal{R}} = (r_i j)$ de una relación simétrica, satisface la propiedad de que todo par de elementos colocados simétricamente respecto de la diagonal principal son iguales. Luego si $M_{\mathcal{R}} = (r_i j)$ es la matriz de \mathbf{R} , entonces

$$\mathcal{R}$$
 es simétrica $\longleftrightarrow r_{ij} = r_{ji}, \ \forall i,j$

Propiedades

Definición (Asimetría)

Una relación binaria $\mathcal R$ sobre un conjunto A es asimétrica si cada vez que a está relacionado con b se sigue que b no está relacionado con a. Es decir,

$$\mathcal{R}$$
 es asimétrica $\longleftrightarrow \forall a, b \ (a\mathcal{R}b \to b \ Ra)$

Notas:

- Si D es la digráfica de una relación asimétrica, entonces entre cada dos vértices distintos de D existen a lo más un arco.
- La matriz $M_{\mathcal{R}} = (r_{ij})$ de una relación asimétrica, satisface la propiedad de que si $i \neq j$ entonces $r_{ij} = 0$ o $r_{ji} = 0$

Propiedades

Definición (Antisimetría)

Una relación binaria \mathcal{R} sobre un conjunto A es antisimétrica si cuando a está relacionado con b y b está relacionado con a se sigue que a = b. Es decir,

$$\mathcal{R}$$
 es antisimétrica $\longleftrightarrow \forall a,b \ (a\mathcal{R}b \land b\mathcal{R}a \to b = a)$

Notas:

- Si D es la digráfica de una relación antisimétrica, entonces entre cada dos vértices distintos de D existen un arco o no existe ninguno
- La matriz $M_{\mathcal{R}} = (r_{ij})$ de una relación asimétrica, satisface la propiedad de que si $i \neq j$ entonces $r_{ij} = 0$ o $r_{ji} = 0$

Propiedades

Definición (Transitividad)

Una relación binaria $\mathcal R$ sobre un conjunto A es transitiva si cuando a está relacionado con b y b está relacionado con c se sigue que a está relacionado con c. Es decir,

 \mathcal{R} es transitiva $\longleftrightarrow \forall a, b, c (a\mathcal{R}b \land b\mathcal{R}c \to a\mathcal{R}c)$

Notas:

- Si D es la digráfica de una relación transitiva y existen arcos desde a hasta b y desde b hasta c, entonces existirá un arco desde a hasta c.
- La matriz $M_R = (r_i j)$ de una relación transitiva cumple:

 \mathcal{R} es transitiva $\longleftrightarrow r_{ij} = 1 \land r_{jk} = 1 \rightarrow r_{ik} = 1$