

Algorithmische Graphentheorie

Sommersemester 2021

1. Vorlesung

Rundreiseprobleme: Teil II – Hamiltonkreise

Übersicht

I) Eulerkreise

II) Hamiltonkreise

II) Hamiltonkreise

Def. Sei G ein (un-)gerichteter Graph. Ein Hamiltonkreis (-weg) in G ist ein Kreis (Weg), der jeden Knoten genau einmal durchläuft.

Ein Graph heißt *hamiltonsch*, falls er einen Hamiltonkreis enthält.

Sir William Rowan Hamilton

1805 Dublin – 1865 Dunsink

Icosian Game / Traveller's Dodecahedron

(c) 2002 James Dalgety, The Puzzle Museum

A Voyage Round the World

Frage: Ist das Skelett des Dodekaeders hamiltonsch?

Antwort: Ja!

Die Skelette der vier anderen platonischen Körper auch.

Bad News

Satz. [Karp, 1972]

(Un)gerichteter Hamiltonkreis und -weg sind NP-schwer.

Beweis. SAT ist NP-schwer [Cook, 1971]

 $SAT \underset{\frown}{\subseteq}_p CLIQUE \underset{\frown}{\preceq}_p VC \underset{\frown}{\preceq}_p gerHK \underset{\frown}{\preceq}_p HK$

- "ist höchstens so schwer wie"

Was nun?

- Finde Graphenklassen, in denen *alle* Graphen hamiltonsch sind.
- Finde möglichst *große* Graphenklassen, in denen das Hamiltonkreis-Problem *polynomiell* lösbar ist.
- Finde notwendige *oder* hinreichende *Bedingungen* dafür, dass ein Graph hamiltonsch ist.

Satz von Bondy und Chvátal [1976]

Satz.

Sei G = (V, E) ein ungerichteter Graph mit $|V| \ge 3$. Seien u und v nicht-adjazente Knoten von G mit $\deg(u) + \deg(v) \ge n := |V|$. Dann gilt: $\gcd(v, E \cup \{uv\})$ G hamiltonsch $\Leftrightarrow G + uv$ hamiltonsch.

Beweis.

,,⇒"

Jeder HK in G ist auch ein HK in G + uv.

,, ←"

Annahme: Jeder HK in G + uv benutzt die Kante uv.

Sei $K = \langle u = v_1, v_2, \dots, v_n = v, u \rangle$ ein solcher HK. $N(v) := \{v_i \in V : vv_i \in E\}$ sind die Nachbarn von v. $F(v) := \{v_i \in V : v_{i-1} \in N(v)\}$ sind deren Nachfolger. Es gilt $\deg(v) = |N(v)| = |F(v)|$.

 $N(u) := \{v_i \in V : uv_i \in E\} \text{ sind die Nachbarn von } u.$

 $u \notin N(u) \cup F(v) \Rightarrow |N(u) \cup F(v)| \le n - 1.$

Aber $|N(u)| + |F(v)| = \deg(u) + \deg(v) \ge n$.

Es gilt immer $|A \cap B| = |A| + |B| - |A \cup B| \Rightarrow |N(u) \cap F(v)| \ge 1 \Rightarrow K'$

Satz von Dirac

Satz.

[Chvátal & Bondy]

Sei G = (V, E) ein ungerichteter Graph mit $|V| \ge 3$. Seien u und v nicht-adjazente Knoten von G mit $\deg u + \deg v \ge |V|$. Dann gilt:

G hamiltonsch $\Leftrightarrow G + uv$ hamiltonsch.

Kor.

Sei G = (V, E) ein ungerichteter Graph mit $|V| \ge 3$. Falls jeder Knoten von G Grad $\ge |V|/2$ hat, so ist G hamiltonsch.

Beweis. Probieren Sie's!