Kapitola IV. Speciální typy konečných automatů

Teorie vs. praxe

a) Konfigurace: pax

Další konfigurace:

 q_1x nebo q_2x nebo q_3ax ?

Teorie: © × Praxe: 8

b) Konfigurace: *pax*

Další konfigurace:

pouze q_1x

Teorie: ⊗ × Praxe: ⓒ

Simulace všech možných přechodů z aktuální konfigurace

Příklad:

KA *M* je definován:

Simulace všech možných přechodů z aktuální konfigurace

Příklad:

KA *M* je definován:

Simulace všech možných přechodů z aktuální konfigurace

Příklad:

KA *M* je definován:

Simulace všech možných přechodů z aktuální konfigurace

Simulace všech možných přechodů z aktuální konfigurace

Příklad:

KA *M* je definován:

Otázka: $ab \in L(M)$?

Odpověď: ANO, $ab \in L(M)$, protože $f \in F$.

Požadavek do praxe: Deterministický KA (DKA): KA, který z každé konfigurace může přejít maximálně do jedné další.

1) Myšlenka: Odstranění ε-přechodů

Požadavek do praxe: Deterministický KA (DKA): KA, který z každé konfigurace může přejít maximálně do jedné další.

1) Myšlenka: Odstranění ε-přechodů

Požadavek do praxe: Deterministický KA (DKA): KA, který z každé konfigurace může přejít maximálně do jedné další.

1) Myšlenka: Odstranění ε-přechodů

Požadavek do praxe: Deterministický KA (DKA): KA, který z každé konfigurace může přejít maximálně do jedné další.

1) Myšlenka: Odstranění ε-přechodů

Definice: Necht' $M = (Q, \Sigma, R, s, F)$ je KA. M je KA bez ε -přechodů, pokud pro každé pravidlo $pa \rightarrow q \in R$, kde $p, q \in Q$, platí: $a \in \Sigma \ (a \neq \varepsilon)$

2) Myšlenka: Odstranění nedeterminismu

Definice: Necht' $M = (Q, \Sigma, R, s, F)$ je **KA bez E-přechodů**. M je *deterministický konečný automat* (DKA), pokud pro každé $pa \rightarrow q \in R$ platí, že množina $R - \{pa \rightarrow q\}$ neobsahuje žádné pravidlo s levou stranou pa.

2) Myšlenka: Odstranění nedeterminismu

Definice: Necht' $M = (Q, \Sigma, R, s, F)$ je **KA bez E-přechodů**. M je *deterministický konečný automat* (DKA), pokud pro každé $pa \rightarrow q \in R$ platí, že množina $R - \{pa \rightarrow q\}$ neobsahuje žádné pravidlo s levou stranou pa.

Tvrzení

• Pro každý KA M, existuje ekvivalentní DKA M_d .

Důkaz je založen na následujících převodech:

ε-uzávěr

Myšlenka: q je v " ϵ -uzávěr(p)", pokud KA může přejít do q z p bez přečtení vstupního symbolu.

Definice: Pro každý stav $p \in Q$ je definován ε -uzávěr(p): ε -uzávěr $(p) = \{q: q \in Q, p \mid -^* q\}$

Příklad:

E-uzávěr

Myšlenka: q je v " ϵ -uzávěr(p)", pokud KA může přejít do q z p bez přečtení vstupního symbolu.

Definice: Pro každý stav $p \in Q$ je definován ε -uzávěr(p): ε -uzávěr $(p) = \{q: q \in Q, p \mid -^* q\}$

ε-uzávěr

Myšlenka: q je v " ϵ -uzávěr(p)", pokud KA může přejít do q z p bez přečtení vstupního symbolu.

Definice: Pro každý stav $p \in Q$ je definován ε -uzávěr(p): ε -uzávěr $(p) = \{q: q \in Q, p \mid -^* q\}$

E-uzávěr

Myšlenka: q je v " ϵ -uzávěr(p)", pokud KA může přejít do q z p bez přečtení vstupního symbolu.

Definice: Pro každý stav $p \in Q$ je definován \mathcal{E} -uzávěr(p): \mathcal{E} -uzávěr $(p) = \{q: q \in Q, p \mid -^* q\}$

E-uzávěr

Myšlenka: q je v " ϵ -uzávěr(p)", pokud KA může přejít do q z p bez přečtení vstupního symbolu.

Definice: Pro každý stav $p \in Q$ je definován ε -uzávěr(p): ε -uzávěr $(p) = \{q: q \in Q, p \mid -^* q\}$

Algoritmus: E-uzávěr

- Vstup: $M = (Q, \Sigma, R, s, F); p \in Q$
- Výstup: \(\mathbf{\text{e}}\)-uzáv\(\mathbf{e}\)r(\(p\))
- Metoda:
- i := 0; $Q_0 := \{p\}$;
- repeat

$$i := i + 1;$$
 $Q_i := Q_{i-1} \cup \{ p' : p' \in Q, q \rightarrow p' \in R, q \in Q_{i-1} \};$

$$\underline{\mathbf{until}}\ Q_i = Q_{i-1};$$

• ε -uzávěr $(p) := Q_i$.

 $M = (Q, \Sigma, R, s, F)$, kde: $Q = \{s, p, q, f\}$, $\Sigma = \{a\}$, $R = \{s \rightarrow p, p \rightarrow q, qa \rightarrow f\}$, $F = \{f\}$ **Určeme:** ε -uzávěr(s)

 $M = (Q, \Sigma, R, s, F)$, kde: $Q = \{s, p, q, f\}$, $\Sigma = \{a\}$, $R = \{s \rightarrow p, p \rightarrow q, qa \rightarrow f\}$, $F = \{f\}$ **Určeme:** ε -uzávěr(s)

$$Q_0 = \{\mathbf{s}\}$$

 $M = (Q, \Sigma, R, s, F)$, kde: $Q = \{s, p, q, f\}$, $\Sigma = \{a\}$, $R = \{s \rightarrow p, p \rightarrow q, qa \rightarrow f\}$, $F = \{f\}$ **Určeme:** ε -uzávěr(s)

$$Q_0 = \{ \mathbf{s} \}$$

1)
$$s \rightarrow p'; p' \in Q: s \rightarrow p$$

 $Q_1 = \{s\} \cup \{p\} = \{s, p\}$

```
M = (Q, \Sigma, R, s, F), kde: Q = \{s, p, q, f\}, \Sigma = \{a\}, R = \{s \rightarrow p, p \rightarrow q, qa \rightarrow f\}, F = \{f\}

Určeme: \mathcal{E}-uzávěr(s)

Q_0 = \{s\}
```

1)
$$s \rightarrow p'; p' \in Q: s \rightarrow p$$

 $Q_1 = \{s\} \cup \{p\} = \{s, p\}$

2)
$$s \rightarrow p'; p' \in Q: s \rightarrow p$$

 $p \rightarrow p'; p' \in Q: p \rightarrow q$
 $Q_2 = \{s, p\} \cup \{p, q\} = \{s, p, q\}$

```
M = (Q, \Sigma, R, s, F), \text{ kde: } Q = \{s, p, q, f\}, \Sigma = \{a\},
R = \{s \rightarrow p, p \rightarrow q, qa \rightarrow f\}, F = \{f\}
Určeme: \varepsilon-uzávěr(s)
Q_0 = \{\mathbf{s}\}
1) s \rightarrow p'; p' \in Q: s \rightarrow p
Q_1 = \{s\} \cup \{p\} = \{s, p\}
2) s \rightarrow p'; p' \in Q: s \rightarrow p
p \rightarrow p'; p' \in Q: p \rightarrow q
Q_2 = \{s, p\} \cup \{p, q\} = \{s, p, q\}
3) s \rightarrow p'; p' \in Q: s \rightarrow p

p \rightarrow p'; p' \in Q: p \rightarrow q

q \rightarrow p'; p' \in Q: nic
Q_3 = \{s, p, q\} \cup \{p, q\} = \{s, p, q\} = Q_2 = \varepsilon-uzávěr(s)
```

Algoritmus: Odstranění ε-přechodů

Myšlenka: Odstranit ε-přechody

- Vstup: KA $M = (Q, \Sigma, R, s, F)$
- Výstup: KA bez ε -přechodů $M' = (Q, \Sigma, R', s, F')$
- Metoda:
- $\bullet R' := \emptyset;$
- for each $p \in Q$ do

$$R' := R' \cup \{ pa \rightarrow q: p'a \rightarrow q \in R, a \in \Sigma, p' \in \text{ϵ-uzávěr}(p), q \in Q \};$$

• $F' := \{ p : p \in Q, \varepsilon\text{-uzávěr}(p) \cap F \neq \emptyset \}.$

Algoritmus: Odstranění ε-přechodů

Myšlenka: Odstranit ε-přechody

- Vstup: KA $M = (Q, \Sigma, R, s, F)$
- Výstup: KA bez ε -přechodů $M' = (Q, \Sigma, R', s, F')$
- Metoda:
- $\bullet R' := \emptyset;$
- for each $p \in Q$ do

$$R' := R' \cup \{ pa \rightarrow q: p'a \rightarrow q \in R, a \in \Sigma, p' \in \text{ϵ-uzávěr}(p), q \in Q \};$$

• $F' := \{ p : p \in Q, \varepsilon\text{-uzávěr}(p) \cap F \neq \emptyset \}.$

Algoritmus: Odstranění ε-přechodů

Myšlenka: Odstranit ε-přechody

- Vstup: KA $M = (Q, \Sigma, R, s, F)$
- Výstup: KA bez ε -přechodů $M' = (Q, \Sigma, R', s, F')$
- Metoda:
- $R' := \emptyset$;
- for each $p \in Q$ do

$$R' := R' \cup \{ pa \rightarrow q: p'a \rightarrow q \in R, a \in \Sigma, p' \in \text{ϵ-uzávěr}(p), q \in Q \};$$

• $F' := \{ p : p \in Q, \varepsilon\text{-uzávěr}(p) \cap F \neq \emptyset \}.$

Odstranění ε-přechodů: Příklad 1/3

$$M = (Q, \Sigma, R, s, F), \text{ kde:}$$
 $Q = \{s, q_1, q_2, f\}; \Sigma = \{a, b, c\};$
 $R = \{sa \to s, s \to q_1, q_1b \to q_1, q_1b \to f, s \to q_2, q_2c \to q_2, q_2c \to f, fa \to f\}; F = \{f\}$

Odstranění ε-přechodů: Příklad 1/3

$$M = (Q, \Sigma, R, s, F), \text{ kde:}$$

$$Q = \{s, q_1, q_2, f\}; \Sigma = \{a, b, c\};$$

$$R = \{sa \to s, s \to q_1, q_1b \to q_1, q_1b \to f, s \to q_2, q_2c \to q_2, q_2c \to f, fa \to f\}; F = \{f\}$$

1) pro
$$p = s$$
: ε -uzávěr $(s) = \{s, q_1, q_2\}$

A.
$$sd \rightarrow q', d \in \Sigma, q' \in Q: sa \rightarrow s$$

B.
$$q_1d \rightarrow q', d \in \Sigma, q' \in Q: q_1b \rightarrow q_1, q_1b \rightarrow f$$

C.
$$q_2d \rightarrow q', d \in \Sigma, q' \in Q: q_2c \rightarrow q_2, q_2c \rightarrow f$$

$$R' = \emptyset \cup \{sa \rightarrow s, sb \rightarrow q_1, sb \rightarrow f, sc \rightarrow q_2, sc \rightarrow f\}$$

Odstranění ε-přechodů: Příklad 2/3

```
2) pro p = q_1: \varepsilon-uzávěr(q_1) = \{q_1\}

A. q_1d \rightarrow q'; d \in \Sigma; q' \in Q: q_1b \rightarrow q_1, q_1b \rightarrow f

R' = R' \cup \{q_1b \rightarrow q_1, q_1b \rightarrow f\}
```

- 2) pro $p = q_1$: ε -uzávěr $(q_1) = \{q_1\}$
- A. $q_1d \rightarrow q'; d \in \Sigma; q' \in Q: q_1b \rightarrow q_1, q_1b \rightarrow f$ $R' = R' \cup \{q_1b \rightarrow q_1, q_1b \rightarrow f\}$
- 3) pro $p = q_2$: ϵ -uzávěr $(q_2) = \{q_2\}$
- A. $q_2d \rightarrow q'; d \in \Sigma; q' \in Q: q_2c \rightarrow q_2, q_2c \rightarrow f$ $R' = R' \cup \{q_2c \rightarrow q_2, q_2c \rightarrow f\}$

- 2) pro $p = q_1$: ε -uzávěr $(q_1) = \{q_1\}$
- A. $q_1d \rightarrow q'; d \in \Sigma; q' \in Q: q_1b \rightarrow q_1, q_1b \rightarrow f$ $R' = R' \cup \{q_1b \rightarrow q_1, q_1b \rightarrow f\}$
- 3) pro $p = q_2$: ε -uzávěr $(q_2) = \{q_2\}$
- A. $q_2d \rightarrow q'; d \in \Sigma; q' \in Q: q_2c \rightarrow q_2, q_2c \rightarrow f$ $R' = R' \cup \{q_2c \rightarrow q_2, q_2c \rightarrow f\}$
- 4) pro p = f: ε -uzávěr $(f) = \{f\}$
- A. $fd \rightarrow q'; d \in \Sigma; q' \in Q: fa \rightarrow f$ $R' = R' \cup \{fa \rightarrow f\}$

- 2) pro $p = q_1$: ε -uzávěr $(q_1) = \{q_1\}$
- $R' = R' \cup \{q_1b \rightarrow q_1, q_1b \rightarrow f\}$
- 3) pro $p = q_2$: ε -uzávěr $(q_2) = \{q_2\}$
- A. $q_2d \rightarrow q'; d \in \Sigma; q' \in Q: q_2c \rightarrow q_2, q_2c \rightarrow f$ $R' = R' \cup \{q_2c \rightarrow q_2, q_2c \rightarrow f\}$
- 4) pro p = f: ε -uzávěr $(f) = \{f\}$
- A. $fd \rightarrow q'; d \in \Sigma; q' \in Q: fa \rightarrow f$ $R' = R' \cup \{fa \rightarrow f\}$
- $R' = \{sa \rightarrow s, sb \rightarrow q_1, sb \rightarrow f, sc \rightarrow q_2, sc \rightarrow f, q_1b \rightarrow q_1, q_1b \rightarrow f, q_2c \rightarrow q_2, q_2c \rightarrow f, fa \rightarrow f\}$

```
\begin{array}{ll} \varepsilon\text{-uzávěr}(s) & \cap F = \{s, q_1, q_2\} \cap \{f\} = \varnothing \\ \varepsilon\text{-uzávěr}(q_1) \cap F = \{q_1\} \cap \{f\} & = \varnothing \\ \varepsilon\text{-uzávěr}(q_2) \cap F = \{q_2\} \cap \{f\} & = \varnothing \\ \varepsilon\text{-uzávěr}(f) & \cap F = \{f\} \cap \{f\} = \{f\} \neq \varnothing \end{array} \right\} F' = \{f\}
```

```
\begin{array}{ll} \text{$\epsilon$-uz\'{a}v\'{e}r(s)$} & \cap F = \{s, q_1, q_2\} \cap \{f\} = \varnothing \\ \text{$\epsilon$-uz\'{a}v\'{e}r(q_1)$} \cap F = \{q_1\} \cap \{f\} \\ \text{$\epsilon$-uz\'{a}v\'{e}r(q_2)$} \cap F = \{q_2\} \cap \{f\} \\ \text{$\epsilon$-uz\'{a}v\'{e}r(f)$} & \cap F = \{f\} \cap \{f\} = \{f\} \neq \varnothing \\ \end{array}
```


$$Q_{DKA} = \{\{s\}, \{q_1\}, \{q_2\}, \{f\}, \{s,q_1\}, \{s,q_2\}, \{s,f\}, \{q_1,q_2\}, \{q_1,f\}, \{q_2,f\}, \{s,q_1,q_2\}, \{s,q_1,f\}, \{s,q_2,f\}, \{q_1,q_2,f\}, \{s,q_1,q_2,f\}\}$$

Algoritmus: Odstranění nedeterminismu

- Vstup: KA bez ε -přechodů: $M = (Q, \Sigma, R, s, F)$
- Výstup: DKA: $M_d = (Q_d, \Sigma, R_d, s_d, F_d)$
- Metoda:
- $Q_d := \{Q' : Q' \subseteq Q, Q' \neq \emptyset\}; R_d := \emptyset;$
- for each $Q' \in Q_d$, and $a \in \Sigma$ do begin $Q'' := \{q: p \in Q', pa \rightarrow q \in R\};$ if $Q'' \neq \emptyset$ then $R_d := R_d \cup \{Q'a \rightarrow Q''\};$ end
- $s_d := \{s\};$
- $F_d := \{F' : F' \in Q_d, F' \cap F \neq \emptyset\}.$

```
\begin{split} M &= (Q, \Sigma, R, s, F), \text{ kde:} \\ Q &= \{s, q_1, q_2, f\}; \Sigma = \{a, b, c\}; F = \{f\} \\ R &= \{sa \to s, sb \to q_1, sb \to f, sc \to q_2, sc \to f, \\ q_1b \to q_1, q_1b \to f, q_2c \to q_2, q_2c \to f, fa \to f\}; \\ Q_d &= \{\{s\}, \{s,q_1\}, \{s,q_1,q_2\}, \{s,q_1,f\}, \{s,q_1,q_2,f\}, \{s,q_2\}, \{s,q_2,f\}, \{s,f\}, \{q_1\}, \{q_1,q_2\}, \{q_1,f\}, \{q_1,q_2,f\}, \{q_2\}, \{q_2,f\}, \{f\}\} \end{split}
```



```
\begin{split} M &= (Q, \Sigma, R, s, F), \text{ kde:} \\ Q &= \{s, q_1, q_2, f\}; \Sigma = \{a, b, c\}; F = \{f\} \\ R &= \{sa \to s, sb \to q_1, sb \to f, sc \to q_2, sc \to f, \\ q_1b \to q_1, q_1b \to f, q_2c \to q_2, q_2c \to f, fa \to f\}; \\ Q_d &= \{\{s\}, \{s,q_1\}, \{s,q_1,q_2\}, \{s,q_1,f\}, \{s,q_1,q_2,f\}, \{s,q_2\}, \{s,q_2,f\}, \{s,f\}, \{q_1\}, \{q_1,q_2\}, \{q_1,f\}, \{q_1,q_2,f\}, \{q_2\}, \{q_2,f\}, \{f\}\} \end{split}
```

pro
$$Q' = \{s\}$$
:
$$b, c$$

$$a$$

$$c$$

$$a$$

$$a$$

$$a$$

```
M = (Q, \Sigma, R, s, F), \text{ kde:}
Q = \{s, q_1, q_2, f\}; \Sigma = \{a, b, c\}; F = \{f\}\}
R = \{sa \to s, sb \to q_1, sb \to f, sc \to q_2, sc \to f,
q_1b \to q_1, q_1b \to f, q_2c \to q_2, q_2c \to f, fa \to f\};
Q_d = \{\{s\}, \{s,q_1\}, \{s,q_1,q_2\}, \{s,q_1,f\}, \{s,q_1,q_2,f\}, \{s,q_2\}, \{s,q_2,f\},
\{s,f\}, \{q_1\}, \{q_1,q_2\}, \{q_1,f\}, \{q_1,q_2,f\}, \{q_2\}, \{q_2,f\}, \{f\}\}\}
\text{pro } Q' = \{s\}:
```



```
M = (Q, \Sigma, R, s, F), \text{ kde:}
Q = \{s, q_1, q_2, f\}; \Sigma = \{a, b, c\}; F = \{f\}\}
R = \{sa \to s, sb \to q_1, sb \to f, sc \to q_2, sc \to f,
q_1b \to q_1, q_1b \to f, q_2c \to q_2, q_2c \to f, fa \to f\};
Q_d = \{\{s\}, \{s,q_1\}, \{s,q_1,q_2\}, \{s,q_1,f\}, \{s,q_1,q_2,f\}, \{s,q_2\}, \{s,q_2,f\},
\{s,f\}, \{q_1\}, \{q_1,q_2\}, \{q_1,f\}, \{q_1,q_2,f\}, \{q_2\}, \{q_2,f\}, \{f\}\}
```



```
M = (Q, \Sigma, R, s, F), \text{ kde:}
Q = \{s, q_1, q_2, f\}; \Sigma = \{a, b, c\}; F = \{f\}\}
R = \{sa \to s, sb \to q_1, sb \to f, sc \to q_2, sc \to f,
q_1b \to q_1, q_1b \to f, q_2c \to q_2, q_2c \to f, fa \to f\};
Q_d = \{\{s\}, \{s,q_1\}, \{s,q_1,q_2\}, \{s,q_1,f\}, \{s,q_1,q_2,f\}, \{s,q_2\}, \{s,q_2,f\},
\{s,f\}, \{q_1\}, \{q_1,q_2\}, \{q_1,f\}, \{q_1,q_2,f\}, \{q_2\}, \{q_2,f\}, \{f\}\}
```

pro
$$Q' = \{s\}: b$$

...

 b
 q_1

...

 q_1

...

 q_1

...

 q_2

...

 q_2

...

$$R_d = \varnothing \cup \{\{s\}a \rightarrow \{s\}, \{s\}b \rightarrow \{q_1, f\}, \{s\}c \rightarrow \{q_2, f\}\}\}$$

pro
$$Q' = \{s,q_1\}$$
:

pro
$$Q' = \{s,q_1\}$$
:

pro $Q' = \{s,q_1\}$:

pro $Q' = \{s,q_1\}$:

pro $Q' = \{s,q_1\}$:

$$R_d = R_d \cup \{\{s,q_1\}a \rightarrow \{s\}, \{s,q_1\}b \rightarrow \{q_1,f\}, \{s,q_1\}c \rightarrow \{q_2,f\}\}\}$$

Koncové stavy: $F_d := \{F': F' \in Q_d, F' \cap F \neq \emptyset\}$ pro $F = \{f\}$: $\{s\} \cap \{f\} = \emptyset$ $\{s\} \notin F_d$ $\{s,q_1\} \cap \{f\} = \emptyset$ $\Rightarrow \{s, q_1\} \notin F_d$ $\{s,q_1,q_2\} \cap \{f\} = \emptyset$ $\Rightarrow \{s,q_1,q_2\} \notin F_d$ $\{s,q_1,f\} \cap \{f\} = \{f\} \neq \emptyset$ $\Rightarrow \{s, q_1, f\} \in F_A$ $\{s,q_1,q_2,f\} \cap \{f\} = \{f\} \neq \emptyset \implies \{s,q_1,q_2,f\} \in F_d$

$$F_d = \{\{s,q_1,f\}, \{s,q_1,q_2,f\}, \{s,q_2,f\}, \{s,f\}, \{q_1,f\}, \{q_1,q_2,f\}, \{q_2,f\}, \{f\}\}\}$$

Otázka: Můžeme vytvořit DKA menší?

Otázka: Můžeme vytvořit DKA menší?

Odpověď: Ano

Dostupné stavy

Myšlenka: Stav q je dostupný, pokud pro nějaký řetězec "dostane" DKA z s (počáteční stav) do q.

Definice: Necht' $M = (Q, \Sigma, R, s, F)$ je KA. Stav $q \in Q$ je dostupný, pokud existuje $w \in \Sigma^*$, pro který platí $sw \vdash q$. Jinak q je nedostupný.

Pozn.: Každý nedostupný stav může být odstraněn

Dostupné stavy

Myšlenka: Stav q je dostupný, pokud pro nějaký řetězec "dostane" DKA z s (počáteční stav) do q.

Definice: Necht' $M = (Q, \Sigma, R, s, F)$ je KA.

Stav $q \in Q$ je dostupný, pokud existuje $w \in \Sigma^*$, pro který platí sw $-^*q$. Jinak q je nedostupný.

Pozn.: Každý nedostupný stav může být odstraněn

```
Příklad:
```

Stav s - dostupný: $w = \varepsilon$: $s \vdash 0 s$ Stav q_1 - dostupný: w = a: $sa \vdash q_1$ Stav f - dostupný: w = ab: $sab \vdash q_1b \vdash f$

Stav q_2 - nedostupný (neexistuje žádné $w \in \Sigma^*$ takové, že sw $-^*q_2$

Předchozí příklad: Nedostupné stavy

Předchozí příklad: Nedostupné stavy

Mnoho nedostupných stavů

Myšlenka: Analogie předchozího algoritmu s tím rozdílem, že budeme postupně přidávat pouze stavy, které jsou dostupné

$$Q_{DKA} = \{\{s\}\}\$$
Pro stav $\{s\}$:
 $\{g\}$

Přidej nové stavy $\{q_1,f\}$, $\{q_2,f\}$ do Q_{DKA}

Pro stav $\{q_1, f\}$: ... Pro stav $\{q_2, f\}$: ...

Přidej nové stavy ...

•

- Vstup: KA bez ε -přechodů: $M = (Q, \Sigma, R, s, F)$
- Výstup: DKA: $M_d = (Q_d, \Sigma, R_d, s_d, F_d)$

bez nedostupných stavů

- Metoda:
- $s_d := \{s\}; Q_{new} := \{s_d\}; R_d := \emptyset; Q_d := \emptyset; F_d := \emptyset;$
- repeat

```
necht' Q' \in Q_{new}; Q_{new} := Q_{new} - \{Q'\}; Q_d := Q_d \cup \{Q'\}; for each a \in \Sigma do begin
```

for each $a \in \Sigma$ do begin

$$Q'' := \{q: p \in Q', pa \rightarrow q \in R\};$$

$$\underline{\mathbf{if}} \ Q'' \neq \varnothing \ \underline{\mathbf{then}} \ R_d := R_d \cup \{Q'a \rightarrow Q''\};$$

$$\underline{\mathbf{if}} \ Q'' \notin Q_d \cup \{\varnothing\} \ \underline{\mathbf{then}} \ Q_{new} := Q_{new} \cup \{Q''\}$$

<u>end</u>

$$\underline{\inf \ Q'} \cap F \neq \emptyset \ \underline{then} \ F_d := F_d \cup \{Q'\}$$

$$\underline{until} \ Q_{new} = \emptyset.$$

$$M = (Q, \Sigma, R, s, F), \text{ kde:}$$

 $Q = \{s, q_1, q_2, f\}; \Sigma = \{a, b, c\}; F = \{f\}\}$
 $R = \{sa \to s, sb \to q_1, sb \to f, sc \to q_2, sc \to f, q_1b \to q_1, q_1b \to f, q_2c \to q_2, q_2c \to f, fa \to f\};$

$$Q_{new} = \{\{s\}\}; R_d = \emptyset; Q_d = \emptyset; F_d = \emptyset$$

$$M = (Q, \Sigma, R, s, F), \text{ kde:}$$

 $Q = \{s, q_1, q_2, f\}; \Sigma = \{a, b, c\}; F = \{f\}\}$
 $R = \{sa \to s, sb \to q_1, sb \to f, sc \to q_2, sc \to f, q_1b \to q_1, q_1b \to f, q_2c \to q_2, q_2c \to f, fa \to f\};$

$$Q_{new} = \{\{s\}\}; R_d = \emptyset; Q_d = \emptyset; F_d = \emptyset$$

$$M = (Q, \Sigma, R, s, F), \text{ kde:}$$

$$Q = \{s, q_1, q_2, f\}; \Sigma = \{a, b, c\}; F = \{f\}\}$$

$$R = \{sa \rightarrow s, sb \rightarrow q_1, sb \rightarrow f, sc \rightarrow q_2, sc \rightarrow f,$$

$$q_1b \rightarrow q_1, q_1b \rightarrow f, q_2c \rightarrow q_2, q_2c \rightarrow f, fa \rightarrow f\};$$

$$Q_{new} = \{\{s\}\}; R_d = \emptyset; Q_d = \emptyset; F_d = \emptyset$$

$$\text{for } Q' = \{s\}:$$

$$p_1b \rightarrow q_1 \rightarrow q_1 \rightarrow q_2 \rightarrow q_2$$

$$M = (Q, \Sigma, R, s, F), \text{ kde:}$$

 $Q = \{s, q_1, q_2, f\}; \Sigma = \{a, b, c\}; F = \{f\}\}$
 $R = \{sa \to s, sb \to q_1, sb \to f, sc \to q_2, sc \to f, q_1b \to q_1, q_1b \to f, q_2c \to q_2, q_2c \to f, fa \to f\};$

$$Q_{new} = \{\{s\}\}; R_d = \emptyset; Q_d = \emptyset; F_d = \emptyset$$

$$M = (Q, \Sigma, R, s, F), \text{ kde:}$$

 $Q = \{s, q_1, q_2, f\}; \Sigma = \{a, b, c\}; F = \{f\}\}$
 $R = \{sa \to s, sb \to q_1, sb \to f, sc \to q_2, sc \to f, q_1b \to q_1, q_1b \to f, q_2c \to q_2, q_2c \to f, fa \to f\};$

$$Q_{new} = \{\{s\}\}; R_d = \emptyset; Q_d = \emptyset; F_d = \emptyset$$

$$R_d := \varnothing \cup \{\{s\}a \to \{s\}, \{s\}b \to \{q_1, f\}, \{s\}c \to \{q_2, f\}\}\}$$

$$Q_{new} = \{\{q_1, f\}, \{q_2, f\}\}, Q_d = \varnothing \cup \{\{s\}\}\}, F_d = \varnothing$$

Ukončující stavy

Myšlenka: Stav q je ukončující, pokud pro nějaký řetězec "dostane" DKA z q do koncového stavu

Definice: Necht' $M = (Q, \Sigma, R, s, F)$ je DKA. Stav $q \in Q$ je *ukončující*, pokud existuje řetězec $w \in \Sigma^*$, pro který platí: $qw \vdash f$, $f \in F$. Jinak q je *neukončující*.

Pozn.: Každý neukončující stav může být odstraněn.

Ukončující stavy

Myšlenka: Stav q je ukončující, pokud pro nějaký řetězec "dostane" DKA z q do koncového stavu

Definice: Nechť $M = (Q, \Sigma, R, s, F)$ je DKA. Stav $q \in Q$ je *ukončující*, pokud existuje řetězec $w \in \Sigma^*$, pro který platí: $qw \vdash f$, $f \in F$. Jinak q je *neukončující*.

Pozn.: Každý neukončující stav může být odstraněn.

Stav s - ukončující: w = ab: sab $|-q_1b|-f$ Stav q_1 - ukončující: w = b: q_1b |-f

Stav f - ukončující: $w = \varepsilon$: $f \vdash 0 f$

Stav q_2 - neukončující (neexistuje žádné $w \in \Sigma^*$

takové že: $q_2 w \vdash^* q, q \in F$

Algoritmus: Odstranění neukončujících stavů

- Vstup: DKA: $M = (Q, \Sigma, R, s, F)$
- Výstup: DKA: $M_t = (Q_t, \Sigma, R_t, s, F)$
- Metoda:
- $Q_0 := F$; i := 0;
- repeat

$$i:=i+1;$$

$$Q_i := Q_{i-1} \cup \{q: qa \to p \in R, a \in \Sigma, p \in Q_{i-1}\};$$

$$\underline{\mathbf{until}}\ Q_i = Q_{i-1};$$

- $Q_t := Q_i$;
- $R_t := \{qa \rightarrow p: qa \rightarrow p \in R, p, q \in Q_t, a \in \Sigma\}.$

$$M = (Q, \Sigma, R, s, F), \text{ kde: } Q = \{s, q_1, q_2, f\}, \Sigma = \{a, b\}, R = \{sa \rightarrow q_1, sb \rightarrow q_2, q_1a \rightarrow q_2, q_1b \rightarrow f\}, F = \{f\}$$

$$M = (Q, \Sigma, R, s, F), \text{ kde: } Q = \{s, q_1, q_2, f\}, \Sigma = \{a, b\}, \\ R = \{sa \to q_1, sb \to q_2, q_1a \to q_2, q_1b \to f\}, F = \{f\} \\ \overline{Q_0} = \{f\}$$

$$M = (Q, \Sigma, R, s, F), \text{ kde: } Q = \{s, q_1, q_2, f\}, \Sigma = \{a, b\}, R = \{sa \rightarrow q_1, sb \rightarrow q_2, q_1a \rightarrow q_2, q_1b \rightarrow f\}, F = \{f\}$$

$$Q_0 = \{f\}$$

$$Q_0 = \{f\}$$

$$Q_1 = \{f\} \cup \{q_1\} = \{f, q_1\}$$

```
M = (Q, \Sigma, R, s, F), \text{ kde: } Q = \{s, q_1, q_2, f\}, \Sigma = \{a, b\}, R = \{sa \to q_1, sb \to q_2, q_1a \to q_2, q_1b \to f\}, F = \{f\}
Q_0 = \{f\}
1) \ qd \to f; \ q \in Q; \ d \in \Sigma: \qquad q_1b \to f
Q_1 = \{f\} \cup \{q_1\} = \{f, q_1\}
2) \ qd \to f; \ q \in Q; \ d \in \Sigma: \qquad q_1b \to f
qd \to q_1; \ q \in Q; \ d \in \Sigma: \qquad sa \to q_1
Q_2 = \{f, q_1\} \cup \{q_1, s\} = \{f, q_1, s\}
```

```
M = (Q, \Sigma, R, s, F), \text{ kde: } Q = \{s, q_1, q_2, f\}, \Sigma = \{a, b\},\
R = \{sa \rightarrow q_1, sb \rightarrow q_2, q_1a \rightarrow q_2, q_1b \rightarrow f\}, F = \{f\}
Q_0 = \{f\}
1) qd \rightarrow f; q \in Q; d \in \Sigma:
                                                       q_1b \rightarrow f
Q_1 = \{f\} \cup \{g_1\} = \{f, g_1\}
2) qd \rightarrow f; q \in Q; d \in \Sigma:
                                                       q_1b \rightarrow f
    qd \rightarrow q_1; q \in \overline{Q}; d \in \Sigma:
                                                       sa \rightarrow q_1
Q_2 = \{f, q_1\} \cup \{q_1, s\} = \{f, q_1, s\}
3) qd \rightarrow f; q \in Q; d \in \Sigma:
                                                       q_1b \rightarrow f
    qd \rightarrow q_1; \bar{q} \in Q; d \in \Sigma:
                                                       sa \rightarrow q_1
    qd \rightarrow s; q \in Q; d \in \Sigma:
                                                       nic
Q_3 = \{f, q_1, s\} \cup \{q_1, s\} = \{f, q_1, s\} = Q_2 = Q_t
```

```
M = (Q, \Sigma, R, s, F), \text{ kde: } Q = \{s, q_1, q_2, f\}, \Sigma = \{a, b\},\
R = \{sa \rightarrow q_1, sb \rightarrow q_2, q_1a \rightarrow q_2, q_1b \rightarrow f\}, F = \{f\}
Q_0 = \{f\}
1) qd \rightarrow f; q \in Q; d \in \Sigma:
                                                       q_1b \rightarrow f
Q_1 = \{f\} \cup \{g_1\} = \{f, g_1\}
2) qd \rightarrow f; q \in Q; d \in \Sigma:
                                                       q_1b \rightarrow f
    qd \rightarrow q_1; q \in \overline{Q}; d \in \Sigma:
                                                       sa \rightarrow q_1
Q_2 = \{f, q_1\} \cup \{q_1, s\} = \{f, q_1, s\}
3) qd \rightarrow f; q \in Q; d \in \Sigma:
                                                       q_1b \rightarrow f
    qd \rightarrow q_1; \bar{q} \in Q; d \in \Sigma:
                                                       sa \rightarrow q_1
    qd \rightarrow s; q \in Q; d \in \Sigma:
                                                       nic
Q_3 = \{f, q_1, s\} \cup \{q_1, s\} = \{f, q_1, s\} = Q_2 = Q_t
R_t = \{sa \rightarrow q_1, sb \neq q_2, q_1a \neq q_2, q_1b \rightarrow f\}
```

Celkem: Stavy k odstranění

1) Nedostupné stavy (q_2) :

stavu do koncového stavu

2) Neukončující stavy (q₂):

Neexistuje posloupnost
přechodů z neukončujícího

Myšlenka: Úplný DKA se nemůže zaseknout.

Definice: Nechť $M = (Q, \Sigma, R, s, F)$ je **DKA**. M je \acute{uplny} , pokud pro libovolné $p \in Q, a \in \Sigma$ existuje právě jedno pravidlo $pa \rightarrow q \in R$ pro nějaké $q \in Q$. Jinak M je $ne\acute{uplny}$.

Převod: Neúplný DKA:

$$\Sigma = \{a, b, c\}$$

Myšlenka: Úplný DKA se nemůže zaseknout.

Definice: Necht' $M = (Q, \Sigma, R, s, F)$ je **DKA**. M je $\acute{upln}\acute{y}$, pokud pro libovolné $p \in Q, a \in \Sigma$ existuje právě jedno pravidlo $pa \rightarrow q \in R$ pro nějaké $q \in Q$. Jinak M je $ne\acute{upln}\acute{y}$.

Převod: Neúplný DKA:

$$\Sigma = \{a, b, c\}$$

Myšlenka: Úplný DKA se nemůže zaseknout.

Definice: Necht' $M = (Q, \Sigma, R, s, F)$ je **DKA**. M je $\acute{upln\acute{y}}$, pokud pro libovolné $p \in Q, a \in \Sigma$ existuje právě jedno pravidlo $pa \rightarrow q \in R$ pro nějaké $q \in Q$. Jinak M je $ne\acute{upln\acute{y}}$.

Převod: Neúplný DKA:

Úplný DKA:

$$\Sigma = \{a, b, c\}$$

Myšlenka: Úplný DKA se nemůže zaseknout.

Definice: Necht' $M = (Q, \Sigma, R, s, F)$ je **DKA**. M je $\acute{upln\acute{y}}$, pokud pro libovolné $p \in Q, a \in \Sigma$ existuje právě jedno pravidlo $pa \rightarrow q \in R$ pro nějaké $q \in Q$. Jinak M je $ne\acute{upln\acute{y}}$.

Úplný DKA:

Převod: Neúplný DKA:

$$\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\}$$

Myšlenka: Úplný DKA se nemůže zaseknout.

Definice: Necht' $M = (Q, \Sigma, R, s, F)$ je **DKA**. M je \acute{uplny} , pokud pro libovolné $p \in Q, a \in \Sigma$ existuje právě jedno pravidlo $pa \rightarrow q \in R$ pro nějaké $q \in Q$. Jinak M je $ne\acute{uplny}$.

Algoritmus: Z DKA na úplný DKA

Myšlenka: Přidej stav simulující "past"

- Vstup: Neúplný DKA $M = (Q, \Sigma, R, s, F)$
- Výstup: Úplný DKA $M_c = (Q_c, \Sigma, R_c, s, F)$

• Metoda:

- $Q_c := Q \cup \{q_{false}\};$
- $\begin{array}{c} \bullet \; R_c := R \cup \; \{qa \rightarrow q_{false} : a \in \Sigma, \, q \in \; Q_c, \\ qa \rightarrow p \not \in \; R, \; p \in \; Q\}. \end{array}$

Dobře specifikovaný KA

Definice: Necht' $M = (Q, \Sigma, R, s, F)$ je <u>úplný DKA</u>.

Pak M je dobře specifikovaný KA (DSKA), pokud:

- 1) Q nemá nedostupné stavy
- 2) Q má maximálně jeden neukončující stav

Pozn.: Pokud dobře specifikovaný KA má neukončující stav, je to q_{false} z předchozího algoritmu

Tvrzení: Pro každý KAM existuje ekvivalentní dobře specifikovaný KA M_{ds}

Důkaz: Použij následující algoritmus

Algoritmus: Převod KA na DSKA

- Vstup: KA M
- Výstup: DSKA M_{ds}
- Metoda:
- převeď KA *M* na ekvivalentní KA *M*' bez ε-přechodů
- převeď KAM' na ekvivalentní DKA M_d bez nedostupných stavů
- převeď DKA M_d na ekvivalentní DKA M_t bez neukončujících stavů
- převeď DKA M_t na ekvivalentní úplný DKA M_c
- $\bullet M_{ds} := M_c$

Pozn.: V M_{ds} je max. jeden neukončující stav— q_{false}

Typy KA: Shrnutí

	KA	KA bez ε-přech.	DKA	Úplný KA	DSKA
Počet všech pravidel tvaru $p \rightarrow q$, kde $p, q \in Q$	0-n	0	0	0	0
Počet pravidel tvaru $pa \rightarrow q$, pro libovolné $p \in Q$ a libovolné $a \in \Sigma$	0-n	0-n	0-1	1	1
Počet všech nedostupných stavů	0-n	0-n	0-n	0-n	0
Počet všech neukončujících stavů	0-n	0-n	0-n	0-n	0-1
Počet všech možných těchto automatů pro jeden regulární jazyk	8	8	8	8	8