Comparison Tables: CEC BBOB 2015 Testbed in 5-D

The BBOBies

May 27, 2015

Abstract

This document provides tabular results of the special session on Black-Box Optimization Benchmarking at CEC 2015, see http://coco.gforge.inria.fr/doku.php?id=cec-bbob-2015. Overall, eight algorithms have been tested on 24 benchmark functions in dimensions between 2 and 20. A description of the used objective functions can be found in [6, 4]. The experimental set-up is described in [5].

The performance measure provided in the following tables is the expected number of objective function evaluations to reach a given target function value (ERT, expected running time), divided by the respective value for the best algorithm in BBOB-2009 (see [1]) if an algorithm from BBOB-2009 reached the given target function value. The ERT value is given otherwise (ERT_{best} is noted as infinite). See [5] for details on how ERT is obtained. Bold entries in the table correspond to values below 3 or the top-three best values. Table 1 gives an overview on all algorithms submitted to the noise-free testbed at CEC 2015.

Table 1: Names and references of all algorithms submitted for the noise-free testbed

algorithm short	paper	reference
name		
MATSuMoTo	Comparison of the MATSuMoTo Library for Expensive Optimization on the Noiseless Black-Box Optimization Benchmarking Testbed	[2]
R-DE-10e2	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
R-DE-10e5	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
R-SHADE-10e2	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
R-SHADE-10e5	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
RL-SHADE-10e2	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
RL-SHADE-10e5	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
SOO	Simultaneous Optimistic Optimization on the Noiseless BBOB Testbed	[3]

Table 2: 05-D, running time excess ERT/ERT_{best 2009} on f_1 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
11	12	12	12	12	12	12	15/15
1.5 (0.2)	2.8(1)*	3.9 ₍₁₎ *4	$9.1(7)^{*2}$	55(42)	∞	∞ 250	0/15
2.8(2)	8.2(3)	14(6)	20(5)	27 (8)	49(32)	612(359)	1/15
3.0(2)	8.5(3)	14(3)	22(11)	28(10)	42(7)	55 (8)	15/15
2.4(2)	9.2(3)	14(5)	19 (7)	25 (7)	40 (3)	202(144)	3/15
4.7(5)	35(24)	112(29)	186(15)	265(29)	417(39)	552(52)	15/15
3.2(3)	8.9(4)	15(4)	24(4)	34(4)	614(492)	$\infty 500$	0/15
4.1(2)	13(4)	25(2)	36(4)	47(7)	71(7)	95(12)	15/15
1.3 (0.3)	5.3 (3)	13 (3)	26(0.9)	43(6)	86(10)	156(9)	15/15
	11 -1.5(0.2) 2.8(2) 3.0(2) 2.4(2) 4.7(5) 3.2(3) 4.1(2)	$ \begin{array}{c cccc} 1e1 & 1e0 \\ \hline 11 & 12 \\ \hline -1.5(0.2) & 2.8(1)^* \\ 2.8(2) & 8.2(3) \\ 3.0(2) & 8.5(3) \\ 2.4(2) & 9.2(3) \\ 4.7(5) & 35(24) \\ 3.2(3) & 8.9(4) \\ 4.1(2) & 13(4) \\ \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c } \hline 1e1 & 1e0 & 1e-1 & 1e-2 & 1e-3 \\ \hline 11 & 12 & 12 & 12 & 12 \\ \hline 1.5(0.2) & 2.8(1)^* & 3.9(1)^{*4} & 9.1(7)^{*2} & 55(42) \\ \hline 2.8(2) & 8.2(3) & 14(6) & 20(5) & 27(8) \\ \hline 3.0(2) & 8.5(3) & 14(3) & 22(11) & 28(10) \\ \hline 2.4(2) & 9.2(3) & 14(5) & 19(7) & 25(7) \\ \hline 4.7(5) & 35(24) & 112(29) & 186(15) & 265(29) \\ \hline 3.2(3) & 8.9(4) & 15(4) & 24(4) & 34(4) \\ 4.1(2) & 13(4) & 25(2) & 36(4) & 47(7) \\ \hline \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 3: 05-D, running time excess ERT/ERT_{best 2009} on f_2 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

		•						
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f2	83	87	88	89	90	92	94	15/15
MATSUMOTO-	$-\infty$	∞	∞	∞	∞	∞	∞ 250	0/15
R-DE-10e2-	4.0(3)	5.3 (3)	8.6(6)	17(20)	83(125)	∞	$\infty 500$	0/15
R-DE-10e5-	3.3 (0.3)	4.1(0.6)	4.9(0.6)	5.6 (0.3)	6.6(0.7)	8.2(0.8)	10(0.5)	15/15
RL-SHADE-1	4.9(2)	6.9(6)	11(12)	27(35)	83(92)	∞	$\infty 500$	0/15
RL-SHADE-1	34(5)	45(3)	54(4)	63(3)	74(3)	90(5)	105(5)	15/15
R-SHADE-10	4.3(0.6)	6.4(3)	16(7)	∞	∞	∞	$\infty 500$	0/15
R-SHADE-10	7.4(1)	8.7(2)	10(0.8)	12 (1)	14 (2)	17 (1)	21 (2)	15/15
SOO-Derbel	10(3)	14(2)	18(2)	23(4)	425(1393)	874(5)	867(1331)	13/15

Table 4: 05-D, running time excess ERT/ERT_{best 2009} on f_3 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f3	716	1622	1637	1642	1646	1650	1654	15/15
MATSUMOTO-	1.1 (2)	∞	∞	∞	∞	∞	∞ 250	0/15
R-DE-10e2-	0.41(0.1)	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e5-	0.36(0.2)	3.2(4)	11(10)	14(10)	14(17)	14(8)	14(9)	15/15
RL-SHADE-1	0.33(0.1)	2.3 (5)	4.5(2)	∞	∞	∞	$\infty 500$	0/15
RL-SHADE-1	3.1(1)	5.2(0.5)	6.4(0.4)	7.3 (0.8)	7.9 (0.4)	8.9(0.4)	10 (0.6)	15/15
R-SHADE-10	0.33(0.1)	2.3 (3)	∞	∞	∞	∞	$\infty 500$	0/15
R-SHADE-10	1.1(0.4)	1.7(0.8)	4.5(4)	4.7 (5)	4.8(4)	5.1 (2)	5.3 (3)	15/15
SOO-Derbel	1.2 (2)	185(199)	698(555)	696 (1956)	695(698)	694(606)	693(605)	5/15

೮

Table 5: 05-D, running time excess ERT/ERT_{best 2009} on f_4 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f4	809	1633	1688	1758	1817	1886	1903	15/15
MATSUMOTO-	$-\infty$	∞	∞	∞	∞	∞	∞ 250	0/15
R-DE-10e2-	0.79(1)	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e5-	0.88(1)	8.7(7)	63(77)	64(111)	62(80)	60(85)	59(59)	15/15
RL-SHADE-1	0.41(0.3)	2.2 (0.8)	4.3(3)	4.2(7)	∞	∞	$\infty 500$	0/15
RL-SHADE-1	3.6(0.6)	5.9(0.5)	7.1(0.8)	7.8 (0.6)	8.2(0.4)	8.9(0.5)	10(0.5)	15/15
R-SHADE-10	0.37(0.1)	$\downarrow 2$ 4.5(5)	∞	∞	∞	∞	$\infty 500$	0/15
R-SHADE-10	1.4 (0.3)	4.4 (4)	8.7(18)	8.5(16)	8.3 (15)	8.3 (14)	8.4(2)	15/15
SOO-Derbel	4.9(8)	1358(1378)	4424(4740)	∞	∞	∞	$\infty~5e5$	0/15

Table 6: 05-D, running time excess ERT/ERT_{best 2009} on f_5 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f5	10	10	10	10	10	10	10	15/15
MATSUMOTO-	1.6 (0.3)	4 1.9 (0.5)	*4 1.9 (0.5)	*4 1.9 (0.5)*	⁴ 1.9 (0.5)	⁴ 1.9 (0.3)	*4 1.9 (0.6)*	15/15
R-DE-10e2-	8.4(3)	18(4)	27(4)	37(7)	57(25)	∞	$\infty 500$	0/15
R-DE-10e5-	10(3)	33(14)	45(44)	70(11)	83(64)	125(36)	160(28)	15/15
RL-SHADE-1	10(3)	18 (4)	25(4)	31 (6)	36 (3)	57 (40)	147(86)	5/15
RL-SHADE-1	55(14)	137(17)	205(17)	270(21)	339(7)	454(22)	562(28)	15/15
R-SHADE-10	11(4)	21(3)	30(4)	37(5)	47(16)	749(1338)	$\infty 500$	0/15
R-SHADE-10	21(8)	43(7)	62(9)	84(11)	106(14)	151(20)	198(24)	15/15
SOO-Derbel	14(0.1)	45(0.1)	95(0.1)	172(0.1)	263(0.1)	505(0.1)	843(0.1)	15/15

~1

Table 7: 05-D, running time excess ERT/ERT_{best 2009} on f_6 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

	orr orres core	·	G 0, GIIII	TIOTOTI.					
	$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
	f6	114	214	281	404	580	1038	1332	15/15
N	IATSUMOTO-	33(30)	∞	∞	∞	∞	∞	∞ 250	0/15
1	R-DE-10e2-	1.9(0.8)	3.5 (4)	8.7 (6)	∞	∞	∞	$\infty 500$	0/15
]	R-DE-10e5-	2.3 (0.9)	7.1(4)	28(11)	33(20)	34(21)	87(144)	119(205)	13/15
I	RL-SHADE-1	2.3(2)	4.5(6)	26(23)	∞	∞	∞	$\infty 500$	0/15
I	RL-SHADE-1	6.4(2)	11(1)	14(2)	13(0.9)	11(0.7)	8.5(0.4)	8.2 (0.8)	15/15
I	R-SHADE-10	2.1 (0.9)	3.6(1)	∞	∞	∞	∞	$\infty 500$	0/15
I	R-SHADE-10	2.1 (0.8)	2.5 (1.0)	2.8 (0.6)	2.6 (0.5)	2.3 (0.2)	1.8(0.2)	1.9 (0.1)	15/15
S	SOO-Derbel	52(176)	1740(2499)	1.2e4(2e4)) ∞	∞	∞	$\infty~5e5$	0/15

Table 8: 05-D, running time excess ERT/ERT_{best 2009} on f_7 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f7	24	324	1171	1451	1572	1572	1597	15/15
MATSUMOTO-	5.1 (10)	5.4(5)	∞	∞	∞	∞	∞ 250	0/15
R-DE-10e2-	5.8(7)	5.3(5)	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e5-	6.3(3)	2.7 (0.9)	4.3(2)	12(5)	15(14)	15(25)	15(21)	15/15
RL-SHADE-1	5.6(5)	2.8 (6)	6.3(5)	∞	∞	∞	$\infty 500$	0/15
RL-SHADE-1	14(6)	5.5(2)	3.2(0.4)	3.6(0.1)	3.4(0.5)	3.4(0.2)	3.7 (0.3)	15/15
R-SHADE-10	6.0(3)	1.9 (1)	∞	∞	∞	∞	$\infty 500$	0/15
R-SHADE-10	4.4(1)	1.3(2)	0.72 (0.8)	0.75 (0.1)	0.73 (0.4)	0.73 (0.3)	0.79 (0.5)	15/15
SOO-Derbel	5.7(2)	2.1 (2)	2.0 (3)	7.8(3)	18(17)	18(35)	27(29)	15/15

9

Table 9: 05-D, running time excess ERT/ERT_{best 2009} on f_8 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f8	73	273	336	372	391	410	422	15/15
MATSUMOTO-	17(11)	∞	∞	∞	∞	∞	∞ 250	0/15
R-DE-10e2-	3.1 (0.7)	13(14)	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e5-	3.4(1)	24(53)	86(148)	250(269)	393(362)	1.7e4(1e4)	$\infty~5e5$	0/15
RL-SHADE-1	4.4(4)	13(11)	∞	∞	∞	∞	$\infty 500$	0/15
RL-SHADE-1	25(7)	18(3)	20 (2)	20 (2)	21 (3)	25(4)	28 (2)	15/15
R-SHADE-10	4.9(4)	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-SHADE-10	4.9(0.8)	4.6 (5)	5.3 (2)	5.8 (3)	6.1 (5)	6.7 (3)	7.5 (3)	15/15
SOO-Derbel	3.1 (0.7)	32(49)	71(102)	133(76)	150(97)	220(130)	255(178)	15/15

Table 10: 05-D, running time excess ERT/ERT_{best 2009} on f_9 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f9	35	127	214	263	300	335	369	15/15
MATSUMOTO-	-35(38)	∞	∞	∞	∞	∞	∞ 250	0/15
R-DE-10e2-	8.1(3)	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e5-	11(14)	133(145)	223(215)	574(558)	1366(1267)	3077(3701)	6218(5879)	3/15
RL-SHADE-1	10(9)	28(39)	∞	∞	∞	∞	$\infty 500$	0/15
RL-SHADE-1	46(13)	39(2)	30 (3)	27 (2)	27 (2)	29 (1)	31 (2)	15/15
R-SHADE-10	10(6)	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-SHADE-10	8.1(3)	11 (15)	9.4(3)	9.0(8)	8.7 (3)	9.0(3)	9.3(1)	15/15
SOO-Derbel	5.7 (2)	19 (24)	81(164)	242(224)	297(335)	326(178)	413(441)	15/15

11

Table 11: 05-D, running time excess ERT/ERT_{best 2009} on f_{10} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

	COLL CLIED FORECE	0 41,1400	,	LIDIOII.					
	$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
_	f10	349	500	574	607	626	829	880	15/15
1	MATSUMOTO-	$-\infty$	∞	∞	∞	∞	∞	∞ 250	0/15
	R-DE-10e2-	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
	R-DE-10e5-	430(566)	2397(2088)	5742(9563)	∞	∞	∞	$\infty~5e5$	0/15
	RL-SHADE-1	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
	RL-SHADE-1	14 (1)	12(0.8)	12(0.6)	13 (1)	14(1.0)	13(0.5)	14(0.4)	15/15
	R-SHADE-10	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
	R-SHADE-10	2.2 (0.8)	2.3 (0.9)	2.4 (0.7)	2.6 (1)	2.9 (0.5)	2.9 (0.7)	3.2 (0.5)	15/15
	SOO-Derbel	136(67)	1507(1446)	3125(4613)	1.2e4(762	1)∞	∞	$\infty~5e5$	0/15

Table 12: 05-D, running time excess ERT/ERT_{best 2009} on f_{11} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f11	143	202	763	977	1177	1467	1673	15/15
MATSUMOTO-	$-\infty$	∞	∞	∞	∞	∞	∞ 250	0/15
R-DE-10e2-	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e5-	145(153)	1775(1346)	4826(3277)	∞	∞	∞	$\infty~5e5$	0/15
RL-SHADE-1	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RL-SHADE-1	16 (6)	20 (4)	6.7 (1)	6.2(0.7)	6.1(0.9)	6.2(0.6)	6.5(0.5)	15/15
R-SHADE-10	25(17)	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-SHADE-10	3.1(0.8)	3.5(2)	1.3(1)	1.3(0.8)	1.2(0.6)	1.3(0.2)	1.4(0.2)	15/15
SOO-Derbel	54(8)	1762(3058)	∞	∞	∞	∞	$\infty~5e5$	0/15

Table 13: 05-D, running time excess ERT/ERT_{best 2009} on f_{12} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f12	108	268	371	413	461	1303	1494	15/15
MATSUMOTO-	37(39)	∞	∞	∞	∞	∞	∞ 250	0/15
R-DE-10e2-	69(103)	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e5-	91(211)	112(234)	684(576)	2567(2738)	1.6e4(2e4)	∞	$\infty~5e5$	0/15
RL-SHADE-1	11(12)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RL-SHADE-1	57(7)	29(2)	27(5)	28 (6)	29 (6)	13 (2)	13 (3)	15/15
R-SHADE-10	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-SHADE-10	10 (2)	7.1 (11)	8.0(11)	8.9(11)	10 (4)	5.0 (3)	5.3 (3)	15/15
SOO-Derbel	11 (2)	6.8(1)	21 (43)	39(33)	153(220)	220(211)	587(471)	7/15

Table 14: 05-D, running time excess ERT/ERT_{best 2009} on f_{13} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f13	132	195	250	319	1310	1752	2255	15/15
MATSUMOTO-	5.3(6)	∞	∞	∞	∞	∞	∞ 250	0/15
R-DE-10e2-	5.4(2)	38(41)	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e5-	24(39)	119(165)	522(786)	4593(6365)	1590(2508)	∞	$\infty~5e5$	0/15
RL-SHADE-1	4.6(2)	38(30)	∞	∞	∞	∞	$\infty 500$	0/15
RL-SHADE-1	24(6)	27(2)	28(2)	27 (1)	7.9 (0.3)	7.8 (0.5)	7.5 (0.1)	15/15
R-SHADE-10	11(14)	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-SHADE-10	3.6 (1)	4.2(1)	4.7(1)	4.9(0.9)	1.5(0.2)	1.5(0.2)	1.5(0.1)	15/15
SOO-Derbel	6.3(1)	14 (12)	28(25)	43(29)	27(19)	105(238)	298(186)	8/15

Table 15: 05-D, running time excess ERT/ERT_{best 2009} on f_{14} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f14	10	41	58	90	139	251	476	15/15
MATSUMOTO	-1.4 (0.9)	1.6(0.4)	8.6(11)	∞	∞	∞	∞ 250	0/15
R-DE-10e2-	1.7(2)	2.8 (1)	4.1(2)	5.2 (2)	∞	∞	$\infty 500$	0/15
R-DE-10e5-	2.1(2)	3.0(0.7)	4.0(2)	5.2(5)	19 (8)	579(454)	$\infty \ 5e5$	0/15
RL-SHADE-1	2.2 (2)	3.4(2)	4.0 (1)	10(6)	∞	∞	$\infty 500$	0/15
RL-SHADE-1	3.1(4)	13(4)	25(8)	32(7)	33(4)	29 (2)	20 (0.7)	15/15
R-SHADE-10	1.6(2)	3.3(1)	4.5(0.9)	5.6(2)	∞	∞	$\infty 500$	0/15
R-SHADE-10	1.3(0.8)	3.4(2)	5.2(0.8)	5.7(1)	5.4 (1)	5.3 (0.9)	4.0(0.8)	15/15
SOO-Derbel	0.59(0.3)	2.2 (0.4)	4.5(2)	10(4)	22(19)	1342(1662)	7484(8936)	2/15

Table 16: 05-D, running time excess ERT/ERT_{best 2009} on f_{15} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f15	511	9310	19369	19743	20073	20769	21359	14/15
MATSUMOTO	-2.0 (3)	∞	∞	∞	∞	∞	∞ 250	0/15
R-DE-10e2-	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e5-	3.3(1)	80(106)	373(484)	∞	∞	∞	$\infty~5e5$	0/15
RL-SHADE-1	2.8(4)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RL-SHADE-1	6.9(4)	2.8 (2)	6.1 (8)	6.3 (5)	6.4 (5)	7.4 (16)	7.3(14)	14/15
R-SHADE-10	4.8(2)	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-SHADE-10	1.9 (1)	2.3 (2)	6.3 (5)	6.2 (9)	8.3 (11)	9.0(23)	8.7(8)	14/15
SOO-Derbel	1.4 (0.8)	3.5(4)	40(44)	46(43)	46(35)	44(25)	43(81)	6/15

Table 17: 05-D, running time excess ERT/ERT_{best 2009} on f_{16} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f16	120	612	2662	10163	10449	11644	12095	15/15
MATSUMOTO-	1.2(1)	∞	∞	∞	∞	∞	∞ 250	0/15
R-DE-10e2-	0.95 (0.8)	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e5-	1.7(2)	28(19)	102(63)	342(357)	706(550)	∞	$\infty~5e5$	0/15
RL-SHADE-1	1.2(0.8)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RL-SHADE-1	1.6(2)	15(3)	12(6)	30(24)	60(41)	65(92)	63(83)	7/15
R-SHADE-10	1.4 (1)	5.9(5)	∞	∞	∞	∞	$\infty 500$	0/15
R-SHADE-10	1.1(1)	2.7 (0.5)	2.5 (4)	1.4(2)	2.2 (2)	2.4(4)	2.3 (2)	15/15
SOO-Derbel	1.2 (0.6)	1.1(0.5)	1.2(0.4)	0.96 (0.4)	1.6 (1)	3.2 (2)	7.7 (7)	15/15

Table 18: 05-D, running time excess ERT/ERT_{best 2009} on f_{17} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f17	5.2	215	899	2861	3669	6351	7934	15/15
MATSUMOTO	-3.1(5)	8.6(10)	∞	∞	∞	∞	∞ 250	0/15
R-DE-10e2-	4.1(6)	1.4(1)	4.0(3)	∞	∞	∞	$\infty 500$	0/15
R-DE-10e5-	4.2(2)	4.6(2)	8.2(6)	4.7(3)	12(6)	35(37)	127(178)	6/15
RL-SHADE-1	2.4(2)	2.0(1)	∞	∞	∞	∞	$\infty 500$	0/15
RL-SHADE-1	2.8 (3)	6.5(0.6)	5.4(0.8)	2.8 (0.4)	3.0(0.2)	2.7 (0.2)	2.8 (0.1)	15/15
R-SHADE-10	3.3(4)	2.8 (2)	∞	∞	∞	∞	$\infty 500$	0/15
R-SHADE-10	2.8 (3)	1.5(0.3)	1.9(4)	0.81(1)	0.94(2)	1.1(1)	1.1(1)	15/15
SOO-Derbel	1.4(2)	1.2(0.5)	1.7(1)	1.8(2)	4.4(7)	11(13)	19(14)	15/15

Table 19: 05-D, running time excess ERT/ERT_{best 2009} on f_{18} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f18	103	378	3968	8451	9280	10905	12469	15/15
MATSUMOTO-	1.1 (0.8)	∞	∞	∞	∞	∞	∞ 250	0/15
R-DE-10e2-	1.1 (0.3)	6.4(10)	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e5-	1.3(0.7)	4.3(7)	6.7(10)	27(59)	223(212)	∞	$\infty~5e5$	0/15
RL-SHADE-1	1.3(0.5)	10(10)	∞	∞	∞	∞	$\infty 500$	0/15
RL-SHADE-1	3.8(2)	10(3)	1.7(0.1)	1.2(0.1)	1.4(0.1)	1.8(0.1)	2.0(0.1)	15/15
R-SHADE-10	2.0 (1)	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-SHADE-10	1.4 (1)	1.6(0.5)	0.32(0.2)	0.64(1)	1.2(2)	2.6 (4)	4.7 (6)	15/15
SOO-Derbel	0.95(0.6)	1.8(0.6)	0.80 (0.4)	3.6(4)	10(14)	25(34)	50(57)	8/15

Table 20: 05-D, running time excess ERT/ERT_{best 2009} on f_{19} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f19	1	1	242	1.0e5	1.2e5	1.2e5	1.2e5	15/15
MATSUMOTO-	19 (16)	∞	∞	∞	∞	∞	∞ 250	0/15
R-DE-10e2-	26(22)	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e5-	19(15)	2417(3851)	1951(2137)	∞	∞	∞	$\infty~5e5$	0/15
RL-SHADE-1	31(25)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RL-SHADE-1	32(43)	4183(2613)	269(164)	68(119)	∞	∞	$\infty~5e5$	0/15
R-SHADE-10	21(21)	7330(7875)	∞	∞	∞	∞	$\infty 500$	0/15
R-SHADE-10	22(20)	1787 (1144)	111 (81)	21 (16)	∞	∞	$\infty~5e5$	0/15
SOO-Derbel	1(0)*2	$1_{(0)}^{*4}$	10(0.4)	12 (9)	∞	∞	$\infty \ 5e5$	0/15

Table 21: 05-D, running time excess ERT/ERT_{best 2009} on f_{20} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f20	16	851	38111	51362	54470	54861	55313	14/15
MATSUMOTO-	2.1(2)	∞	∞	∞	∞	∞	∞ 250	0/15
R-DE-10e2-	4.0(3)	1.1(2)	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e5-	3.6(2)	0.95(1)	0.82(1)	0.81(0.9)	0.80(1)	0.91(2)	0.95 (0.5)	15/15
RL-SHADE-1	4.4(3)	1.3(2)	∞	∞	∞	∞	$\infty 500$	0/15
RL-SHADE-1	14(7)	5.6(3)	0.64(1)	0.54 (1.0)	0.53 (0.5)	0.56 (0.5)	0.58(0.5)	15/15
R-SHADE-10	4.1(2)	1.4 (1)	∞	∞	∞	∞	$\infty 500$	0/15
R-SHADE-10	3.9(2)	1.9(0.7)	0.33 (0.4)	0.26(0.3)	0.25 (0.3)	0.25 (0.2)	0.26(0.3)	15/15
SOO-Derbel	12(0.0)	1.2(6e-4)	∞	∞	∞	∞	$\infty~5e5$	0/15

Table 22: 05-D, running time excess ERT/ERT_{best 2009} on f_{21} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f21	41	1157	1674	1692	1705	1729	1757	14/15
MATSUMOTO-	0.87(1)	0.79 (0.8)	2.3 (3)	∞	∞	∞	∞ 250	0/15
R-DE-10e2-	1.4 (1)	6.2(8)	4.4(5)	4.3(4)	∞	∞	$\infty 500$	0/15
R-DE-10e5-	1.7 (3)	16(19)	15(13)	15(20)	15(15)	15(16)	17(15)	15/15
RL-SHADE-1	2.0(1)	1.4 (1)	2.1(2)	4.2(6)	4.2(5)	4.3(5)	4.2 (4)	1/15
RL-SHADE-1	3.1(4)	7.3(2)	5.8(0.9)	6.7(30)	7.2(16)	7.9(2)	8.5(28)	15/15
R-SHADE-10	2.3(2)	1.5(2)	2.2 (3)	4.4(3)	∞	∞	$\infty 500$	0/15
R-SHADE-10	2.0(2)	2.6 (3)	3.3(2)	3.3 (3)	3.4 (2)	3.4(2)	3.5 (2)	15/15
SOO-Derbel	0.88(0.6)	0.35 (0.2)	0.70(2)	1.1(0.3)	1.4(2)	6.2(9)	8.5(4)	15/15

Table 23: 05-D, running time excess ERT/ERT_{best 2009} on f_{22} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f22	71	386	938	980	1008	1040	1068	14/15
MATSUMOTO	-1.1 (1)	5.8(9)	∞	∞	∞	∞	∞ 250	0/15
R-DE-10e2-	1.3 (1.0)	2.2 (0.8)	7.7(11)	7.4 (8)	∞	∞	$\infty 500$	0/15
R-DE-10e5-	2.1(2)	16(25)	25(43)	26(9)	27 (68)	36 (15)	41 (48)	15/15
RL-SHADE-1	1.6(0.9)	2.6 (4)	3.7 (4)	∞	∞	∞	$\infty 500$	0/15
RL-SHADE-1	3.7(3)	4.5(3)	65(81)	64(2)	63(175)	62(145)	62(94)	14/15
R-SHADE-10	1.6(2)	5.7(5)	3.7 (7)	∞	∞	∞	$\infty 500$	0/15
R-SHADE-10	1.5 ₍₁₎	3.2(9)	5.5(7)	5.5 (5)	5.5 (3)	5.5 (7)	5.6 (6)	15/15
SOO-Derbel	1.0(0.8)	0.98 (0.9)	14(31)	37(28)	50(64)	92(128)	205(214)	13/15

Table 24: 05-D, running time excess ERT/ERT_{best 2009} on f_{23} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f23	3.0	518	14249	27890	31654	33030	34256	15/15
MATSUMOTO	-1.8 (2)	∞	∞	∞	∞	∞	∞ 250	0/15
R-DE-10e2-	1.6(2)	14(13)	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e5-	2.0(2)	34(35)	∞	∞	∞	∞	$\infty~5e5$	0/15
RL-SHADE-1	2.8 (3)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RL-SHADE-1	2.2 (2)	18(9)	11(7)	7.4(7)	6.8(7)	6.6(5)	6.4 (5)	14/15
R-SHADE-10	3.1(2)	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-SHADE-10	2.9 (0.5)	6.2 (7)	1.7(3)	0.93(1)	0.83 (0.6)	0.82(1)	0.82(2)	15/15
SOO-Derbel	1.7 (0.3)	1.4(0.3)	0.71 (0.6)	1.9 (3)	3.3 (1)	6.5(8)	10(7)	12/15

Table 25: 05-D, running time excess ERT/ERT_{best 2009} on f_{24} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f24	1622	2.2e5	6.4e6	9.6e6	9.6e6	1.3e7	1.3e7	3/15
MATSUMOTO-	∞	∞	∞	∞	∞	∞	∞ 250	0/15
R-DE-10e2-	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e5-	5.0(3)	16(15)	∞	∞	∞	∞	$\infty~5e5$	0/15
RL-SHADE-1	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RL-SHADE-1	6.9(4)	16(17)	∞	∞	∞	∞	$\infty~5e5$	0/15
R-SHADE-10	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-SHADE-10	1.7(2)	2.6 (3)	∞	∞	∞	∞	$\infty~5e5$	0/15
SOO-Derbel	3.0 (3)	1.2(2)	∞	∞	∞	∞	$\infty~5e5$	0/15

References

- Anne Auger, Steffen Finck, Nikolaus Hansen, and Raymond Ros. BBOB 2009: Comparison tables of all algorithms on all noiseless functions. Technical Report RT-0383, INRIA, April 2010.
- [2] Dimo Brockhoff. Comparison of the matsumoto library for expensive optimization on the noiseless black-box optimization benchmarking testbed. In *Proceedings of the IEEE Congress on Evolutionary Computation, CEC* 2015, 25-28 May, Sendai, Japan, 2015.
- [3] Bilel Derbel and Philippe Preux. Simultaneous optimistic optimization on the noiseless bbob testbed. In *Proceedings of the IEEE Congress on Evolu*tionary Computation, CEC 2015, 25-28 May, Sendai, Japan, 2015.
- [4] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009. Updated February 2010
- [5] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2012: Experimental setup. Technical report, INRIA, 2012.
- [6] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009. Updated February 2010.
- [7] Ryoji Tanabe and Alex Fukunaga. Parameter tuning for differential evolution for cheap, medium, and expensive computational budgets. In *Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2015, 25-28 May, Sendai, Japan, 2015.*