Neptun kód: EBYPPB Név: Pőcze Máté

Beadás verziószáma: 1.

Feladat

Programozási tételek – Maximumkiválasztás

Legvastagabb jég a Balatonon

Az elmúlt N napon megmértük a Balatonon a jég vastagságát.

Készíts programot, amely megadja azt a napot, amikor a legvastagabb volt a jég!

Bemenet

A standard bemenet első sorában a mérések száma van ($1 \le N \le 100$), alatta soronként egyegy mérés található ($0 \le K_i \le 20$).

Kimenet

A standard kimenet első sorába egyetlen egész számot kell írni, az első olyan napnak a sorszámát, amikor a legvastagabb volt a jég!

Példa

Bemenet	Kimenet
4	2
4	
6	
5	
0	

Korlátok

Időlimit: 0.1 mp. Memórialimit: 32 MB

Pontozás: A tesztek 40%-ában a bemenet hossza≤20

Specifikáció

Be: $n \in N$, $k \in N[1..n]$

Ki: maxInd \in N

Ef: $1 \le n \le 100$ and $\forall i \in [1..n]: (0 \le k[i] \le 20)$

Uf: (maxInd,) = **MAX**(i=1..n, k[i])

Sablon

Maximumkiválasztás sablon

Feladat

Adott az egész számok egy [e..u] intervalluma és egy f:[e..u]—H függvény. A H halmaz elemein értelmezett egy teljes rendezési reláció. Határozzuk meg, hogy az f függvény hol veszi fel az [e..u] nem üres intervallumon a legnagyobb értéket, és mondjuk meg, mekkora ez a maximális érték!

Specifikáció

```
Be: e∈Z, u∈Z
Ki: maxind∈Z, maxért∈H
Ef: e<=u
Uf: maxind∈[e..u] és
   ∀i∈[e..u]:(f(maxind)>=f(i)) és
   maxért=f(maxind)
```

Algoritmus

Rövidítve:

Uf: (maxind, maxért) = MAX(i = e..u, f(i))

-

Visszavezetés

maxind ~ maxInd

e..u ~ 1..n

 $f(i) \sim k[i]$

Algoritmus


```
Kód (C#)
Pőcze Máté
EBYPPB
ebyppb@inf.elte.hu
Feladat: Legvastagabb jég a Balatonon - Maximumkiválasztás
using System;
namespace beadando1
  internal class Program
    static void Main(string[] args)
      // Deklacárió
      int n;
      string bemenet;
      // Beolvasás
      bemenet = Console.ReadLine();
      n = int.Parse(bemenet);
      int[] k = new int[n + 1];
      for (int i = 1; i \le n; i++)
        bemenet = Console.ReadLine();
        k[i] = int.Parse(bemenet);
      }
      // Feldolgozás
      int maxInd, maxErt;
      maxErt = k[1];
      maxInd = 1;
      for (int i = 2; i \le n; i++)
        if (k[i] > maxErt)
           maxErt = k[i];
           maxInd = i;
```

```
}

// Kiírás
Console.WriteLine(maxInd);
}
}
```

Bíró pontszám és képernyőkép

Utolsó beadás eredménye

Összpont: 100/

Teszt#	Pont	Verdikt	futási idő
1.1	3/3	Helyes	0.030 sec
2.1	3/3	Helyes	0.027 sec
3.1	3/3	Helyes	0.030 sec
4.1	3/3	Helyes	0.029 sec
5.1	3/3	Helyes	0.029 sec
6.1	3/3	Helyes	0.030 sec
7.1	3/3	Helyes	0.036 sec
8.1	3/3	Helyes	0.030 sec
9.1	4/4	Helyes	0.030 sec
10.1	4/4	Helyes	0.029 sec
11.1	4/4	Helyes	0.031 sec
12.1	4/4	Helyes	0.029 sec
13.1	4/4	Helyes	0.031 sec
14.1	4/4	Helyes	0.031 sec
15.1	4/4	Helyes	0.029 sec
16.1	4/4	Helyes	0.029 sec
17.1	4/4	Helyes	0.030 sec
18.1	4/4	Helyes	0.030 sec
19.1	4/4	Helyes	0.030 sec
20.1	4/4	Helyes	0.029 sec
21.1	4/4	Helyes	0.029 sec
22.1	4/4	Helyes	0.030 sec
23.1	4/4	Helyes	0.030 sec
24.1	4/4	Helyes	0.029 sec
25.1	4/4	Helyes	0.029 sec
26.1	4/4	Helyes	0.030 sec
27.1	4/4	Helyes	0.029 sec

Beadva: 2024-10-23 18:24:26.0

Saját tesztfájlok

be1.txt: