

BIOS 6612 Lecture 3

Logistic Regression II Maximum Likelihood Estimation

KKMN Chapters 20,21
Vittinghoff. Regression Methods in Biostatistics. Chapter 6
Agretsi (2002) Catgorical Data Analysis, 2nd Edition. Section 4.2, Chapter 5 up to 5.1.3, Section 6.6

Review (Lecture 2) / Current (Lecture 3)/ Preview (Lecture 4)

- Lecture 2: Introduction of Logistic Regression
 - o Introduction to logistic regression

- Lecture 3: Maximum Likelihood Estimation
 - Maximum Likelihood Estimation (MLE)
 - Analytic solution for intercept only model
- Lecture 4: Wald, Score, & Likelihood Ratio Tests
 - When to use each
 - o Issues with Wald

Maximum Likelihood Estimation (MLE)

- The MLE of θ is the value, $\hat{\theta}$ which maximizes the likelihood $L(\theta)$ or the log –likelihood $\log L(\theta)$
 - The value of $\hat{\theta}$ that maximizes the likelihood also maximizes the log-likelihood since the log-likelihood is a monotone function of the likelihood
 - Usually easier to maximize the log-likelihood, $\log L(\theta)$
- Want to solve $\frac{\partial \log L(\theta)}{\partial \theta} = 0$
- Technically, need to verify that it is a maximum rather than a minimum

• i.e.
$$\left[\frac{\partial^2 \log L(\theta)}{\partial \theta^2}\right]_{\theta=\hat{\theta}} < 0$$

• The negative of the second derivative is called the information

$$-\frac{-\partial^2 \log L(\theta)}{\partial \theta^2}$$

o Plays an important role in likelihood theory

Maximum Likelihood Estimation (Bernoulli Example)

Simple Case: Bernoulli ($Y_i = 0$ or 1)

- Suppose in a population from which we are sampling, each individual has the **same** probability, p, that an event occurs
 - where an event can be a disease, trait, etc
- We want to estimate p=P(Y=1), from a random sample of n individuals
- For each individual in our sample of size *n*,
 - $Y_i = 1$ indicates that an event occurs for the *i*th subject
 - otherwise, $Y_i = 0$
- Recall The probability mass function (p.m.f.) of *Y* can be written as

$$P(Y=y|p) = p^{y}(1-p)^{1-y}, y = 0,1, 0 \le p \le 1$$

$$P(Y=1) = p^{1}(1-p)^{1-1} = p$$

$$P(Y=0) = p^{0}(1-p)^{1-0} = 1-p$$

$$P(Y=1) + P(Y=0) = p+1-p=1$$

$$E(Y) = 0*P(Y=0) + 1*P(y=1) = p$$

$$E(Y^{2}) = 0^{2*}P(Y=0) + 1^{2*}P(y=1) = p$$

$$Var(Y) = E(Y^{2}) - E(Y)^{2} = p-p^{2} = p(1-p)$$

Maximum Likelihood Estimation (Bernoulli Example)

• The probability mass function (p.m.f.) of Y can be written as

$$P(Y=y|p) = p^{y}(1-p)^{1-y}, y = 0,1, 0 \le p \le 1$$

- The observed data are $Y_1, ..., Y_n$.
- The joint probability of the data (the likelihood of the data) is a function of p, and is given by

$$L = \prod_{i=1}^{n} p^{Y_i} (1-p)^{1-Y_i} = p^{\sum_{i=1}^{n} y_i} (1-p)^{n-\sum_{i=1}^{n} y_i}$$

this is the probability that $Y_1=y_1, Y_2=y_2,..., Y_n=y_n$.

- p does not depend on subject i
 - Intercept only model
 - Same probability for all subjects

Intercept only model:

$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_0$$

$$p_i = \frac{\exp(\beta_0)}{1 + \exp(\beta_0)}$$

BIOS 6612: Lecture 3 p. 6

Maximum Likelihood Estimation (Bernoulli Example)

• For estimation, it is easier work with the log-likelihood

$$\begin{aligned} &\operatorname{Log}(\operatorname{Likelihood}) := LL = \ln(L) = \ln \left(\prod_{i=1}^{n} p^{Y_i} (1-p)^{1-Y_i} \right) \\ &= \sum_{i=1}^{n} \ln \left(p^{Y_i} (1-p)^{1-Y_i} \right) \\ &= \sum_{i=1}^{n} \left(\ln \left(p^{Y_i} \right) + \ln \left((1-p)^{1-Y_i} \right) \right) \\ &= \sum_{i=1}^{n} \left(Y_i \ln(p) + (1-Y_i) \ln(1-p) \right) \\ &= \left(\sum_{i=1}^{n} Y_i \right) \ln(p) + \left(n - \sum_{i=1}^{n} Y_i \right) \ln(1-p) \\ &= \left(\sum_{i=1}^{n} Y_i \right) \ln(p) + \left(n - \sum_{i=1}^{n} Y_i \right) \ln(1-p) \\ &= \left(\sum_{i=1}^{n} Y_i \right) \ln(p) + \left(n - \sum_{i=1}^{n} Y_i \right) \ln(1-p) \\ &= \left(\sum_{i=1}^{n} Y_i \right) \ln(p) + \left(n - \sum_{i=1}^{n} Y_i \right) \ln(1-p) \\ &= \left(\sum_{i=1}^{n} Y_i \right) \ln(p) + \left(n - \sum_{i=1}^{n} Y_i \right) \ln(1-p) \\ &= \left(\sum_{i=1}^{n} Y_i \right) \ln(p) + \left(n - \sum_{i=1}^{n} Y_i \right) \ln(1-p) \\ &= \left(\sum_{i=1}^{n} Y_i \right) \ln(p) + \left(n - \sum_{i=1}^{n} Y_i \right) \ln(1-p) \\ &= \left(\sum_{i=1}^{n} Y_i \right) \ln(p) + \left(n - \sum_{i=1}^{n} Y_i \right) \ln(1-p) \\ &= \left(\sum_{i=1}^{n} Y_i \right) \ln(p) + \left(n - \sum_{i=1}^{n} Y_i \right) \ln(1-p) \\ &= \left(\sum_{i=1}^{n} Y_i \right) \ln(p) + \left(n - \sum_{i=1}^{n} Y_i \right) \ln(1-p) \\ &= \left(\sum_{i=1}^{n} Y_i \right) \ln(p) + \left(n - \sum_{i=1}^{n} Y_i \right) \ln(1-p) \\ &= \left(\sum_{i=1}^{n} Y_i \right) \ln(p) + \left(n - \sum_{i=1}^{n} Y_i \right) \ln(1-p) \\ &= \left(\sum_{i=1}^{n} Y_i \right) \ln(p) + \left(n - \sum_{i=1}^{n} Y_i \right) \ln(1-p) \\ &= \left(\sum_{i=1}^{n} Y_i \right) \ln(p) + \left(n - \sum_{i=1}^{n} Y_i \right) \ln(1-p) \\ &= \left(\sum_{i=1}^{n} Y_i \right) \ln(p) + \left(n - \sum_{i=1}^{n} Y_i \right) \ln(1-p) \\ &= \left(\sum_{i=1}^{n} Y_i \right) \ln(p) + \left(n - \sum_{i=1}^{n} Y_i \right) \ln(p) \\ &= \left(\sum_{i=1}^{n} Y_i \right) \ln(p) + \left(n - \sum_{i=1}^{n} Y_i \right) \ln(p) \\ &= \left(\sum_{i=1}^{n} Y_i \right) \ln(p) + \left(n - \sum_{i=1}^{n} Y_i \right) \ln(p) \\ &= \left(\sum_{i=1}^{n} Y_i \right) \ln(p)$$

• The maximum likelihood estimate (MLE) of p is that value that maximizes LL (equivalent to maximizing L), which can be obtained numerically, or by setting the first derivative equal to 0.

Solving for the MLE of *p* **(Bernoulli Example)**

$$LL = \left(\sum_{i=1}^{n} Y_{i}\right) \ln(p) + \left(n - \sum_{i=1}^{n} Y_{i}\right) \ln(1-p)$$

• The first derivative of *LL* with respect to *p* is $U(p) = \frac{\partial LL}{\partial p} = \frac{\sum_{i=1}^{n} Y_i}{p} - \frac{n - \sum_{i=1}^{n} Y_i}{1 - p}$

And is referred to as the **score function**.

• To calculate the MLE of p, we set the score function, U(p) equal to 0 and solve for p. In this case, we get an MLE of p that is:

$$\frac{\sum_{i=1}^{n} Y_{i}}{p} - \frac{n - \sum_{i=1}^{n} Y_{i}}{1 - p} = \frac{(1 - p)\sum_{i=1}^{n} Y_{i}}{p(1 - p)} - \frac{p\left(n - \sum_{i=1}^{n} Y_{i}\right)}{p(1 - p)} = \frac{\sum_{i=1}^{n} Y_{i}}{p(1 - p)} - \frac{np}{p(1 - p)} = 0$$

$$\frac{\sum_{i=1}^{n} Y_{i}}{p(1 - p)} - \frac{np}{p(1 - p)} = 0 \implies \sum_{i=1}^{n} Y_{i} - np = 0 \implies np = \sum_{i=1}^{n} Y_{i}$$

$$\Rightarrow \hat{p} = \frac{\sum_{i=1}^{n} Y_{i}}{\sum_{i=1}^{n} Y_{i}} = \overline{Y}$$

BIOS 6612: Lecture 3 p. 8

Minimum or Maximum? (Bernoulli Example)

$$\frac{\partial^2 LL}{\partial p^2} = \frac{\left[\frac{\sum_{i=1}^n Y_i}{p} - \frac{n - \sum_{i=1}^n Y_i}{1 - p}\right]}{\partial p} = \frac{-\sum_{i=1}^n Y_i}{p^2} - \frac{\left(n - \sum_{i=1}^n Y_i\right)}{\left(1 - p\right)^2}$$

• Evaluating at the MLE

$$\left(\frac{\partial^{2} LL}{\partial p^{2}}\right)_{p=\hat{p}} = \frac{-\sum_{i=1}^{n} Y_{i}}{\left(\sum_{i=1}^{n} Y_{i}\right)^{2}} - \frac{\left(n - \sum_{i=1}^{n} Y_{i}\right)}{\left(1 - \left(\sum_{i=1}^{n} Y_{i}\right)\right)^{2}} = \frac{-n^{2}}{\sum_{i=1}^{n} Y_{i}} - \frac{n^{2}}{\left(n - \sum_{i=1}^{n} Y_{i}\right)}$$

- When $0 < \sum_{i=1}^{n} Y_i < n$, the 2nd derivative at the MLE is negative
 - So the MLE is the maximum
- When $\sum_{i=1}^{n} Y_i = 0$ or $\sum_{i=1}^{n} Y_i = n \Rightarrow \hat{p} = 0$ or $\hat{p} = 1$ is said to be on the "boundary"

Maximum Likelihood Estimation (Bernoulli Example)

Example: Among 10 randomly selected individuals, 3 have a disease.

What is the MLE for *p*, the proportion in the population with the disease?

$$L = \prod_{i=1}^{n} p^{Yi} (1-p)^{1-Yi}$$

$$LL = \left(\sum_{i=1}^{n} Y_{i}\right) \ln(p) + \left(n - \sum_{i=1}^{n} Y_{i}\right) \ln(1-p)$$

p	L	ln(L) = LL	-2LL
0	$0^31^7 = 0.0$	-∞	-∞
0.1	$0.1^30.9^7 = 0.00047$	-7.64527	15.2906
0.2	$0.2^30.8^7 = 0.001677$	-6.39032	12.7806
0.29	$0.29^{3}0.71^{7} = 0.002218$	-6.11106	12.2221
0.3 =(# diseased)/n	$0.3^30.7^7 = 0.0022236$	-6.10864	12.2173
0.33	0.0022183	-6.12933	12.2587
0.4	0.00179159	-6.32465	12.6493
•••			
1.0	0.0		-∞

Asymptotic Properties of MLEs

- The exact distribution of MLEs can be very complicated
 Often have to rely on large sample methods instead
- Using a Taylor series expansion and the Delta Method, the following properties can be shown as $n \to \infty$

 - 2. $\hat{\theta}$ is consistent

-i.e.
$$\Pr\{|\hat{\theta} - \theta| > \varepsilon\} \rightarrow 0$$

- 3. $\hat{\theta}$ is asymptotically efficient
 - -It achieves the minimum variance among all asymptotically unbiased estimators
- Using the central limit theorem, $\hat{\theta}$ is asymptotically normally distributed -i.e. $\hat{\theta} \sim N \Big[\theta, Var \Big(\hat{\theta} \Big) \Big]$
- How to calculate $V\hat{a}r(\hat{\theta})$?

Observed vs Expected Information

- How to calculate $Var(\hat{\theta})$?
- Use the information function
 - \circ The negative of the curvature in LL = log L.
 - 1. The inverse of the expected information (Fisher Information)

$$Var(\hat{\theta}) = -\left\{ E\left(\frac{\partial^2 \log L(\theta)}{\partial \theta^2}\right) \right\}_{\theta = \hat{\theta}}^{-1}$$

2. The inverse of the observed information

$$V\hat{a}r(\hat{\theta}) = -\left\{\left(\frac{\partial^2 \log L(\theta)}{\partial \theta^2}\right)\right\}_{\theta=\hat{\theta}}^{-1}$$

• In either case estimates of variance are obtained by evaluating the variance at the MLE

Observed vs Expected Information

- Estimates of variance calculated using either observed or expected information are similar for sufficiently large sample sizes
 - o Cox DR and Snell EJ (1989) Analysis of Binary Data
- For the models we have considered (i.e. linear and logistic), the variance estimates constructed using either observed or expected information are identical
 - This equivalence occurs because all of these models are special cases of a broader family of generalized linear models
 - McCullagh P and Medler JA. (1989) Generalized Linear Models
- Efron and Hinkley (Biometrika, 1978; 65:457-487) have argued that, in general, better estimates of variance are obtained using observed rather than expected information
- As information increases (i.e. smaller variances) the log-likelihood becomes more peaked

Fisher Information (Bernoulli Example)

• Using the above MLE theory, for large n

$$\hat{\mathbf{p}} \sim N[\mathbf{p}, Var(\hat{p})]$$

• For the likelihood considered previously, the expected information is:

$$I(\mathbf{p}) = E\left[-\left(\frac{\partial^2 LL}{\partial p^2}\right)\right] = E\left[-\frac{\partial}{\partial p}\left(\frac{\sum_{i=1}^n Y_i}{p} - \frac{n - \sum_{i=1}^n Y_i}{(1-p)}\right)\right] = E\left[\frac{\sum_{i=1}^n Y_i}{p^2} + \frac{n - \sum_{i=1}^n Y_i}{(1-p)^2}\right] = \left[\frac{\sum_{i=1}^n E[Y_i]}{p^2} + \frac{n - \sum_{i=1}^n E[Y_i]}{(1-p)^2}\right]$$

$$= \frac{np}{p^2} + \frac{n(1-p)}{(1-p)^2} = \frac{n}{p} + \frac{n}{(1-p)} = \frac{n(1-p)}{p(1-p)} + \frac{np}{p(1-p)} = \frac{n}{p(1-p)}$$

• To get the asymptotic variance, take the inverse

$$Var(\hat{p}) = \left(\frac{n}{p(1-p)}\right)^{-1} = \frac{p(1-p)}{n} \Rightarrow \hat{p} \sim N\left(p, \frac{p(1-p)}{n}\right)$$

Bernoulli Example: Observed vs Expected Information

• The inverse of the expected information (Fisher Information)

$$V\hat{a}r(\hat{p}) = -\left\{E\left(\frac{\partial^2 \log L(p)}{\partial p^2}\right)\right\}_{p=\hat{p}}^{-1} = \left\{\frac{n}{p(1-p)}\right\}_{p=\hat{p}}^{-1} = \frac{\hat{p}(1-\hat{p})}{n}$$

• The inverse of the observed information

$$V\hat{a}r(\hat{p}) = -\left\{ \left(\frac{\partial^{2} \log L(p)}{\partial p^{2}} \right) \right\}_{p=\hat{p}}^{-1} = \left\{ \frac{\sum_{i=1}^{n} Y_{i}}{p^{2}} + \frac{\left(n - \sum_{i=1}^{n} Y_{i} \right)}{\left(1 - p \right)^{2}} \right\}_{p=\hat{p}}^{-1} = \left\{ \frac{n\hat{p}}{\hat{p}^{2}} + \frac{\left(n - n\hat{p} \right)}{\left(1 - \hat{p} \right)^{2}} \right\}^{-1} = \left\{ \frac{n\hat{p}}{\hat{p}^{2}} + \frac{n(1-\hat{p})}{\left(1 - \hat{p} \right)^{2}} \right\}^{-1} = \left\{ \frac{n\hat{p}}{\hat{p}^{2}} + \frac{n(1-\hat{p})}{\left(1 - \hat{p} \right)^{2}} \right\}^{-1} = \left\{ \frac{n\hat{p}}{\hat{p}^{2}} + \frac{n(1-\hat{p})}{\left(1 - \hat{p} \right)^{2}} \right\}^{-1} = \left\{ \frac{n\hat{p}}{\hat{p}^{2}} + \frac{n(1-\hat{p})}{\left(1 - \hat{p} \right)^{2}} \right\}^{-1} = \left\{ \frac{n\hat{p}}{\hat{p}^{2}} + \frac{n(1-\hat{p})}{\left(1 - \hat{p} \right)^{2}} \right\}^{-1} = \left\{ \frac{n\hat{p}}{\hat{p}^{2}} + \frac{n(1-\hat{p})}{\left(1 - \hat{p} \right)^{2}} \right\}^{-1} = \left\{ \frac{n\hat{p}}{\hat{p}^{2}} + \frac{n(1-\hat{p})}{\left(1 - \hat{p} \right)^{2}} \right\}^{-1} = \left\{ \frac{n\hat{p}}{\hat{p}^{2}} + \frac{n(1-\hat{p})}{\left(1 - \hat{p} \right)^{2}} \right\}^{-1} = \left\{ \frac{n\hat{p}}{\hat{p}^{2}} + \frac{n(1-\hat{p})}{\left(1 - \hat{p} \right)^{2}} \right\}^{-1} = \left\{ \frac{n\hat{p}}{\hat{p}^{2}} + \frac{n(1-\hat{p})}{\left(1 - \hat{p} \right)^{2}} \right\}^{-1} = \left\{ \frac{n\hat{p}}{\hat{p}^{2}} + \frac{n(1-\hat{p})}{\left(1 - \hat{p} \right)^{2}} \right\}^{-1} = \left\{ \frac{n\hat{p}}{\hat{p}^{2}} + \frac{n(1-\hat{p})}{\left(1 - \hat{p} \right)^{2}} \right\}^{-1} = \left\{ \frac{n\hat{p}}{\hat{p}^{2}} + \frac{n(1-\hat{p})}{\left(1 - \hat{p} \right)^{2}} \right\}^{-1} = \left\{ \frac{n\hat{p}}{\hat{p}^{2}} + \frac{n(1-\hat{p})\hat{p}}{\left(1 - \hat{p} \right)^{2}} \right\}^{-1} = \left\{ \frac{n\hat{p}}{\hat{p}^{2}} + \frac{n(1-\hat{p})}{\left(1 - \hat{p} \right)^{2}} \right\}^{-1} = \left\{ \frac{n\hat{p}}{\hat{p}^{2}} + \frac{n(1-\hat{p})\hat{p}}{\left(1 - \hat{p} \right)^{2}} \right\}^{-1} = \left\{ \frac{n\hat{p}}{\hat{p}^{2}} + \frac{n(1-\hat{p})\hat{p}}{\left(1 - \hat{p} \right)^{2}} \right\}^{-1} = \left\{ \frac{n\hat{p}}{\hat{p}^{2}} + \frac{n(1-\hat{p})\hat{p}}{\left(1 - \hat{p} \right)^{2}} \right\}^{-1} = \left\{ \frac{n\hat{p}}{\hat{p}^{2}} + \frac{n(1-\hat{p})\hat{p}}{\left(1 - \hat{p} \right)^{2}} \right\}^{-1} = \left\{ \frac{n\hat{p}}{\hat{p}^{2}} + \frac{n(1-\hat{p})\hat{p}}{\left(1 - \hat{p} \right)^{2}} \right\}^{-1} = \left\{ \frac{n\hat{p}}{\hat{p}^{2}} + \frac{n(1-\hat{p})\hat{p}}{\left(1 - \hat{p} \right)^{2}} \right\}^{-1} = \left\{ \frac{n\hat{p}}{\hat{p}^{2}} + \frac{n(1-\hat{p})\hat{p}}{\left(1 - \hat{p} \right)^{2}} \right\}^{-1} = \left\{ \frac{n\hat{p}}{\hat{p}^{2}} + \frac{n(1-\hat{p})\hat{p}}{\left(1 - \hat{p} \right)^{2}} \right\}^{-1} = \left\{ \frac{n\hat{p}}{\hat{p}^{2}} + \frac{n(1-\hat{p})\hat{p}}{\left(1 - \hat{p} \right)^{2}} \right\}^{-1} = \left\{ \frac{n\hat{p}}{\hat{p}^{2}} + \frac{n(1-\hat{p})\hat{p}}{\left(1 - \hat{p} \right)^{2}} \right\}^{-1} = \left\{ \frac{n\hat{p}}{\hat{p}^{2}} + \frac{n(1-\hat{p})\hat{p}}{\left(1 - \hat{p} \right)^{2}} \right\}^{-1} = \left\{ \frac{n\hat{p}}{$$

• The observed and expected information are identical for this example

MLEs for coefficients in logistic regression

Recall that the logistic model takes the form:

$$logit(p_i) = ln\left(\frac{p_i}{1 - p_i}\right) = \beta_0 + \beta_1 X_{i1} + ... + \beta_k X_{ik}$$

and solving for *p*:

$$p_{i} = \frac{e^{\beta_{0} + \beta_{1} X_{i1} + \dots + \beta_{k} X_{ik}}}{1 + e^{\beta_{0} + \beta_{1} X_{i1} + \dots + \beta_{k} X_{ik}}} = \frac{e^{z_{i}}}{1 + e^{z_{i}}} \quad \text{where} \quad z_{i} = \beta_{0} + \beta_{1} X_{i1} + \dots + \beta_{k} X_{ik}$$

The likelihood for the *n* observations is:

thous is.
$$p_{i} \qquad 1-p_{i}$$

$$\downarrow \qquad \downarrow$$

$$L = \prod_{i=1}^{n} \left(\frac{e^{z_{i}}}{1+e^{z_{i}}}\right)^{Y_{i}} \left(1-\frac{e^{z_{i}}}{1+e^{z_{i}}}\right)^{1-Y_{i}}$$

$$= \prod_{i=1}^{n} \left(\frac{e^{\beta_0 + \beta_1 X_{i1} + \dots + \beta_k X_{ik}}}{1 + e^{\beta_0 + \beta_1 X_{i1} + \dots + \beta_k X_{ik}}} \right)^{Y_i} \left(\frac{1}{1 + e^{\beta_0 + \beta_1 X_{i1} + \dots + \beta_k X_{ik}}} \right)^{1 - Y_i}$$

$$= \prod_{i=1}^{n} \left(e^{\beta_0 + \beta_1 X_{i1} + \dots + \beta_k X_{ik}} \right)^{Y_i} \left(\frac{1}{1 + e^{\beta_0 + \beta_1 X_{i1} + \dots + \beta_k X_{ik}}} \right)$$

MLEs for coefficients in logistic regression

- The p+1 score functions of β for the logistic regression model cannot by solved analytically.
 - o It is common to use a numerical algorithm, such as the Newton-Raphson algorithm, to obtain the MLEs.
- The information in this case will be a $(p+1) \times (p+1)$ matrix of the partial second derivatives of l with respect to the parameters, β .
 - \circ The inverted information matrix is the covariance matrix for $\hat{\beta}$.

And the log-likelihood is:

$$l = \sum_{i=1}^{n} \left[Y_i \log \left(\frac{e^{z_i}}{1 + e^{z_i}} \right) + (1 - Y_i) \log \left(1 - \frac{e^{z_i}}{1 + e^{z_i}} \right) \right]$$

Newton-Raphson Iteration

- Newton-Raphson iteration is a technique used to find roots of equations
 e.g., any real number r is called a root for the equation f(r) = 0
- Use Newton-Raphson iteration to maximize the log-likelihood by obtaining estimators of regression coefficients (i.e., MLE's) which are roots of the score functions
- Application of Newton-Raphson to obtain MLE's requires inverting the matrix of second derivatives of the log-likelihood
- Alternative numerical methods are available which neither calculate the matrix of second derivatives of the log-likelihood nor its inverse

How does Newton-Raphson iteration find the root of f(r) = 0?

- 1. Select a starting value for r, $X_{(0)}$
- 2. Approximate the point f (r) using a first order Taylor series expansion

$$f(r) \approx f(X_{(0)}) + f'(X_{(0)})(X - X_{(0)})$$

3. Set the linear approximation equal to zero and solve for X

$$X_{(1)}=X_{(0)}-[f(X_{(0)})]/[f'(X_{(0)})]$$

- 4. Iterate until convergence
 - Newton-Raphson iteration will converge very quickly if
 - o f, f', and f" are continuous in a neighborhood of a root r of f
 - o f'(r) does not equal 0
 - And X(0) has been well chosen
 - For more on this topic, please see the following blog

http://thelaziestprogrammer.com/sharrington/math-of-machine-learning/solving-logreg-newtons-method