Project 1

 $\mathrm{CS325} - \mathrm{Spring}\ 2015$

by Group 2 Vedanth Narayanan Jonathan Merrill Tracie Lee

1 Theoretical Run-time Analysis

1.1 Algorithm 1

%% ENTER PSEUDO-CODE HERE %%

Asymptotic Analysis

We have $O(n^2)$ pairs * O(n) time to compute each sum = $O(n^3)$.

1.2 Algorithm 2

%% ENTER PSEUDO-CODE HERE %%

Asymptotic Analysis

We have O(n) i-iterations (outer loop) * O(n) j-iterations (inner loop) * O(n) for the time to update = $O(n^2)$.

1.3 Algorithm 3

%% ENTER PSEUDO-CODE HERE %%

Asymptotic Analysis

We have $T(n) = 2T(\frac{n}{2}) + \Theta(n)$. This falls within Case 2 of the Master Method, and therefore yields a solution of $\Theta(nlgn)$.

1.4 Algorithm 4

%% ENTER PSEUDO-CODE HERE %%

Asymptotic Analysis

We have O(n) things to compute, therefore this takes O(n) time.

- 2 Proof of Correctness: Algorithm 3
- 3 Testing
- 4 Experimental Analysis
- 5 Extrapolation and interpretation