Decision Tree Algorithm

Comp328 tutorial 1 Kai Zhang

Outline

- Introduction
- Example
- Principles
 - Entropy
 - Information gain
- Evaluations
- Demo

The problem

- Given a set of training cases/objects and their attribute values, try to determine the target attribute value of new examples.
 - Classification
 - Prediction

Why decision tree?

- Decision trees are powerful and popular tools for classification and prediction.
- Decision trees represent rules, which can be understood by humans and used in knowledge system such as database.

key requirements

- Attribute-value description: object or case must be expressible in terms of a fixed collection of properties or attributes (e.g., hot, mild, cold).
- Predefined classes (target values): the target function has discrete output values (bollean or multiclass)
- Sufficient data: enough training cases should be provided to learn the model.

A simple example

- You want to guess the outcome of next week's game between the <u>MallRats</u> and the <u>Chinooks</u>.
- Available knowledge / Attribute
 - was the game at Home or Away
 - was the starting time 5pm, 7pm or 9pm.
 - Did Joe play center, or forward.
 - whether that opponent's center was tall or not.
 -

Basket ball data

Where	When	Fred Starts	Joe offense	Joe defense	Opp C	OutCome
Home	7pm	Yes	Center	Forward	Tall	Won
Home	7pm	Yes	Forward	Center	Short	Won
Away	7pm	Yes	Forward	Forward	Tall	Won
Home	5pm	No	Forward	Center	Tall	Lost
Away	9pm	Yes	Forward	Forward	Short	Lost
Away	7pm	No	Center	Forward	Tall	Won
Home	7pm	No	Forward	Center	Tall	Lost
Home	7pm	Yes	Center	Center	Talls	Won
Away	7pm	Yes	Center	Center	Short	Won
Home	9pm	No	Forward	Center	Short	Lost

•

•

•

What we know

 The game will be away, at 9pm, and that Joe will play center on offense...

Where	When	Fred Starts	Joe offense	Joe defense	Opp C	Outcome
Away	9pm	No	Center	Forward	Tall	??

- A classification problem
- Generalizing the learned rule to new examples

Definition

- Decision tree is a classifier in the form of a tree structure
 - Decision node: specifies a test on a single attribute
 - Leaf node: indicates the value of the target attribute
 - Arc/edge: split of one attribute
 - Path: a disjunction of test to make the final decision
- Decision trees classify instances or examples by starting at the root of the tree and moving through it until a leaf node.

Illustration

(3) When to stop/ come to conclusion?

Random split

- The tree can grow huge
- These trees are hard to understand.

Larger trees are typically less accurate than smaller

trees.

Principled Criterion

- Selection of an attribute to test at each node choosing the most useful attribute for classifying examples.
- information gain
 - measures how well a given attribute separates the training examples according to their target classification
 - This measure is used to select among the candidate attributes at each step while growing the tree

Entropy

- A measure of homogeneity of the set of examples.
- Given a set S of positive and negative examples of some target concept (a 2-class problem), the entropy of set S relative to this binary classification is

$$E(S) = -p(P)\log 2 p(P) - p(N)\log 2 p(N)$$

 Suppose S has 25 examples, 15 positive and 10 negatives [15+, 10-]. Then the entropy of S relative to this classification is

 $E(S)=-(15/25) \log 2(15/25) - (10/25) \log 2 (10/25)$

Some Intuitions

- The entropy is 0 if the outcome is ``certain".
- The entropy is maximum if we have no knowledge of the system (or any outcome is equally possible).

Entropy of a 2-class problem with regard to the portion of one of the two groups

Information Gain

Information gain measures the expected reduction in entropy, or uncertainty.

$$Gain(S,A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$
- Values(A) is the set of all possible values for attribute

- Values(A) is the set of all possible values for attribute
 A, and Sv the subset of S for which attribute A has
 value v Sv = {s in S | A(s) = v}.
- the first term in the equation for Gain is just the entropy of the original collection S
- the second term is the expected value of the entropy after S is partitioned using attribute A

- It is simply the expected reduction in entropy caused by partitioning the examples according to this attribute.
- It is the number of bits saved when encoding the target value of an arbitrary member of S, by knowing the value of attribute A.

Examples

- Before partitioning, the entropy is
 - $-H(10/20, 10/20) = -10/20 \log(10/20) 10/20 \log(10/20) = 1$
- Using the ``where" attribute, divide into 2 subsets
 - Entropy of the first set $H(home) = -6/12 \log(6/12) 6/12 \log(6/12) = 1$
 - Entropy of the second set $H(away) = -4/8 \log(6/8) 4/8 \log(4/8) = 1$
- Expected entropy after partitioning
 - 12/20 * H(home) + 8/20 * H(away) = 1

- Using the ``when" attribute, divide into 3 subsets

 Entropy of the first set H(5pm) = 1/4 log(1/4) 3/4 log(3/4);

 Entropy of the second set H(7pm) = 9/12 log(9/12) 3/12 log(3/12);

 Entropy of the second set H(9pm) = 0/4 log(0/4) 4/4 log(4/4) = 0
- Expected entropy after partitioning
 4/20 * H(1/4, 3/4) + 12/20 * H(9/12, 3/12) + 4/20 * H(0/4, 4/4) = 0.65
- Information gain 1-0.65 = 0.35

Decision

- Knowing the ``when" attribute values provides larger information gain than ``where".
- Therefore the ``when' attribute should be chosen for testing prior to the ``where' attribute.
- Similarly, we can compute the information gain for other attributes.
- At each node, choose the attribute with the largest information gain.

Stopping rule

- Every attribute has already been included along this path through the tree, or
- The training examples associated with this leaf node all have the same target attribute value (i.e., their entropy is zero).

<u>Demo</u>

Continuous Attribute?

- Each non-leaf node is a test, its edge partitioning the attribute into subsets (easy for discrete attribute).
- For continuous attribute
 - Partition the continuous value of attribute A into a discrete set of intervals
 - Create a new boolean attribute A_c , looking for a threshold c,

$$A_c = \begin{cases} true & \text{if } A_c < c \\ false & \text{otherwise} \end{cases}$$

How to choose c?

Evaluation

Training accuracy

- How many training instances can be correctly classify based on the available data?
- Is high when the tree is deep/large, or when there is less confliction in the training instances.
- however, higher training accuracy does not mean good generalization

Testing accuracy

- Given a number of new instances, how many of them can we correctly classify?
- Cross validation

Strengths

- can generate understandable rules
- perform classification without much computation
- can handle continuous and categorical variables
- provide a clear indication of which fields are most important for prediction or classification

Weakness

- Not suitable for prediction of continuous attribute.
- Perform poorly with many class and small data.
- Computationally expensive to train.
 - At each node, each candidate splitting field must be sorted before its best split can be found.
 - In some algorithms, combinations of fields are used and a search must be made for optimal combining weights.
 - Pruning algorithms can also be expensive since many candidate sub-trees must be formed and compared.
- Do not treat well non-rectangular regions.