Complément sur la dérivation et convexité

1 Compléments de dérivation

1.1 Dérivée de la composée

Propriétés :

• Soit n un entier naturel non nul.

Si u est une fonction dérivable sur un intervalle I, et si lorsque n est strictement négatif, u ne s'annule pas sur I, alors la fonction u^n est dérivable sur I et

$$(u^n)' = nu'u^{n-1}$$

• Si u est une fonction strictement positive et dérivable sur un intervalle I, alors la fonction \sqrt{u} est dérivable sur I et

$$(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$$

• Si u est une fonction dérivable sur un intervalle I, alors la fonction e^u est dérivable sur I et

$$(e^u)' = u'e^u$$

• Applications 1

Calculer les dérivées suivantes :

- 1. $f(x) = (x^2 + x + 1)^3$ définie sur \mathbb{R}
- 2. $f(x) = \sqrt{x^2 + x + 1}$ définie sur \mathbb{R}
- 3. $f(x) = e^{x^2 + x + 1}$ définie sur \mathbb{R}

1.2 Dérivée seconde (ou de la composée)

Propriété :

Soit f est une fonction définie et dérivable sur un intervalle I telle que f' est dérivable sur I.

On appelle **drivée seconde** de, f sur la fonction dérivée de f', que l'on note f'' la fonction u^n est dérivable sur I et

$$f''(x) = f'(f'(x))$$

A faire:

- exercice 9 et 10 page 175 (résolus)
- les exercices 123 et 135 page 183(entrainement ; corrigés en classe)
- exercices 158 à 164 page 187 (en autonomie, réponses en fin de livre)

2 Convexité d'une fonction

2.1 Convexité

Définition 1.

Soit f une fonction dérivable sur un intervalle I, représentée par la courbe \mathscr{C}_f .

- La fonction f est dite **convexe** sur I lorsque sa courbe est située entièrement **au-dessus** de chacune de ses **tangentes**.
- La fonction f est dite **concave** sur I lorsque sa courbe est située entièrement **en dessous** de chacune de ses **tangentes**.

Exemple:

T est la tangente à \mathscr{C}_f au point A. La fonction f est **convexe** sur l'intervalle $]-\infty;a]$. La fonction f est **concave** sur l'intervalle $[a;+\infty[$.

2.2 Avec la dérivée seconde

Théorème 4:

Soit f une fonction définie sur l'intervalle I = a; b telle que la **dérivée seconde** f'' existe sur I.

- Si, pour tout réel x de $I =]a; b[, f''(x) \ge 0$ alors f est **convexe** sur l'intervalle I.
- Si, pour tout réel x de I = a; b[, $f''(x) \le 0$ alors f est **concave** sur l'intervalle I.

2.3 Point d'inflexion

Définition 2.

Un **point d'inflexion** est un point où la représentation graphique d'une fonction **traverse sa tangente** en ce point.

Théorème 5:

Soit f une fonction définie sur l'intervalle I =]a; b[telle que la **dérivée seconde** f'' existe sur I.

Si f'' s'annule en c changeant de signe, le point A(c; f(c)) est un point d'inflexion de la courbe représentative de f.

Exemple: Sur l'exemple du 2.1, le point A(a, f(a)) est un point d'inflexion.

• Applications 2

Soit f une fonction définie sur \mathbb{R} par : $f(x) = x^3 - 6x^2 + 3x + 1$.

- 1. Étudier le sens de variation de f.
- 2. a) Quels sont les intervalles où la fonction f est convexe? concave?
 - b) Préciser les coordonnées des points d'inflexion éventuels.
- 3. Vérifier les résultats à l'aide de votre calculatrice.

A faire:

- exercice 5,6, 7 et 8 pages 207 à 209 (résolus)
- les exercices 68,72, 89 et 95 pages 216 à 219 (entrainement ; corrigés en classe)
 - exercices 102 à 107 page 221 (en autonomie, réponses en fin de livre)

Dérivées

Tableau des dérivées des fonctions usuelles

Fonction f	f^\prime fonction dérivée définie sur	f définie et dérivable sur
f(x) = k(k = constante)	f'(x) = 0	\mathbb{R}
$f(x) = ax + b \ (a, b \in \mathbb{R})$	f'(x) = a	\mathbb{R}
$f(x) = x^2$	f'(x) = 2x	\mathbb{R}
$f(x) = x^n \ (n \in \mathbb{N}, n \neq 0)$	$f'(x) = nx^{n-1}$	\mathbb{R}
$f(x) = \frac{1}{x}$	$f'(x) = -\frac{1}{x^2}$	\mathbb{R}^*
$f(x) = \frac{1}{x^n}$	$f'(x) = \frac{-n}{x^{n+1}}$	\mathbb{R}^*
$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$ définie sur $]0; +\infty[$	$[0;+\infty[$

Tableau récapitulatif des opérations sur les fonctions dérivées

Dans le tableau ci-dessous, u et v sont deux fonctions définies sur un même intervalle I

Opération	Fonction f	Fonction dérivée f'
Produit d'une fonction par un nombre k	ku(k = constante)	ku'
Somme	u + v	u' + v'
Produit	$u \times v$	u'v + uv'
Puissance	u^n	$nu'u^{n-1}$
Racine carrée (avec $u > 0$)	\sqrt{u}	$\frac{u'}{2\sqrt{u}}$
Inverse $(u(x) \neq 0)$	$\frac{1}{u}$	$-\frac{u'}{u^2}$
Quotient $(v(x) \neq 0)$	$\frac{u}{v}$	$\frac{u'v - uv'}{v^2}$
Exponentielle $(e^{u(x)})$	e^u	$u'e^u$

Synthèse sur la convexité et complément sur les dérivées page 220

