Maths: DM NX

Il est important avant de commencer lire ce DM d'avoir bien compris le tableau et les exemples suivants

1 1	1 1 1	
symbole usuel		prononciation
	DM	
0	۴	fé
1	Ŋ	ur
2	Þ	tur
3	F	an
4	R	rai
5	<	kau
6	Χ	gèb
7	P	wun
8	H	hag
9	+	nau
10	\$	je
11	1	ei
=	X	ing/i ng
+	1	ti
_	Y	al
×	M	dag
÷	1	lag
€	\$	so
A	K	per
3	₿	ber
∃!	!₿	\
>	M	man
> <	M	e
<u> </u>	MX	maning
≤ ≠ ⊂	MX	ehwing
	*	naing
C	þ	suz
D	4	zus

 $\mathsf{XP} \uparrow \mathrel{<<} \mathsf{XNFF}$ ce qui est équivalant à 79+65=144

$$e^{\mathbf{3}}\underset{\mathbf{3}}{\overset{}{\otimes}}\underset{\rightarrow\mathbb{M}}{\overset{}{\wedge}}\mathbb{N}\uparrow\mathbf{3}\uparrow\frac{\mathbf{3}^{\,\flat}}{\,\flat\,!}\uparrow\dots\uparrow\frac{\mathbf{3}^{\,\mathbf{18}}}{\,\mathbf{18}!}\uparrow o\Big(\mathbf{3}^{\,\mathbf{18}}\Big)$$

est équivalant à

$$e^x \underset{x \to 0}{=} 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{x!} + o(x^n)$$

Problème : nombres algébrique et extensions de corps

Partie I. extensions de corps

N=° ↑. Premiers exemples a.

il est évidant que $\mathbb R$ est un sous-corps de $\mathbb C$ et de plus $\mathbb C$ est de dimension finis, donc $\mathbb C$ est une extention finie de $\mathbb R$

de plus soit $\maltese \in \mathbb{C}$ alors

Ainsi comme \mathbb{N} et i ne sont pas colinéaire dans \mathbb{R} , $\mathrm{Vect}(\mathbb{N},i)$ forme une base de \mathbb{C} Ainsi $[\mathbb{C}:\mathbb{R}]$

soit igoplus un sous-corps qui contient $\Bbb R$

comme $[\mathbb{R} : \mathbb{R}] \$ et que l'on vient de prouver que $[\mathbb{C} : \mathbb{R}] \$

il apparait donc comme condition que, $\mathbb{N} M \times [m : \mathbb{R}] M \times \mathbb{R}$

Ainsi $[\oplus : \mathbb{R}] \times \cap \text{ ou } [\oplus : \mathbb{R}] \times \triangleright$

Et ansi \oplus $X \mathbb{R}$ ou \oplus $X \mathbb{C}$

b.

Soit $9 \in \mathbb{Q}(\sqrt{\triangleright})$, alors $\triangleright \mathbb{B}, 4 \in \mathbb{Q}, 9 \times \mathbb{B} \uparrow 4 \sqrt{\triangleright}$, alors prenons $4 \times \mathbb{P}$ ainsi $\mathfrak{G} \times \mathfrak{A} \in \mathbb{Q}$, donc $\mathbb{Q} \models \mathbb{Q}(\sqrt{\triangleright})$ et comme \mathbb{Q} est un corps $\operatorname{de} \mathbb{Q}(\sqrt{})$

de plus, soit $\mathfrak{G} \in \mathbb{Q}(\sqrt{\triangleright})$ alors \mathfrak{B} \mathfrak{A} , $\mathfrak{A} \in \mathbb{Q}$, $\mathfrak{G} \times \mathbb{R} \cap \mathbb{R}$, soit un telle \mathfrak{A} , \mathfrak{A} donc $9 \times 4 \uparrow \exists \sqrt{\triangleright} \in \text{Vect}(\lceil 1, \sqrt{\triangleright} \rceil)$

et supposons par l'absurde $\triangleright 4$, $\bowtie 2 \mathbb{Z} \mathbb{Q} \bowtie \mathbb{Q}^*$, $\bowtie 4 \mathbb{Z} \bowtie 4 \mathbb{Z} \bowtie 4 \mathbb{Z}$

alors $\frac{9}{11}$ $\stackrel{\checkmark}{X}$ $\stackrel{\checkmark}{Y}$ $\stackrel{\checkmark}{V}$ ce qui est absurde car $\frac{9}{11}$ $\stackrel{\checkmark}{E}$ \mathbb{Q} , donc $\stackrel{\checkmark}{Y}$ $\stackrel{\checkmark}{X}$ $\stackrel{\checkmark}{F}$ Ainsi $(\mathbb{N}, \sqrt{ \mathbb{P}})$ est une base de $\mathbb{Q} (\sqrt{ \mathbb{P}})$

Donc $\left[\mathbb{Q}\left(\sqrt{\mathbb{P}}\right):\mathbb{Q}\right]$ \mathbb{X}

c. i.

Soit $P \leq \mathbb{Q}[X]$ tel que $P(\sqrt[|h|]{P}) \times \mathbb{M}$

prenons la divisions euclidienne de $X^{\dagger} \Upsilon \triangleright par P$

ce qui nous donne X^{\upharpoonright} Υ \trianglerighteq Υ PQ \uparrow R avec $Q \in \mathbb{Q}_{\upharpoonright}[X]$ et $R \in \mathbb{Q}[X]$ tel que deg R \sqcap \trianglerighteq

En évaluant notre expression précédente en $\sqrt[h]{\triangleright}$ on obtient :

donc R $\$ et donc deg R $\$ ainsi P divise X[↑] ↑ ▶

Ainsi Comme P divise $X^{\dagger} \uparrow \flat$ et que deg P $\flat ,$

alors P et $X^{\dagger} \not\vdash \mathsf{poss\`ede}$ deux racines en commun dont $\!\!\!\sqrt[4]{\mathsf{P}}$

et comme $X^{\dagger} \uparrow \flat \ \ (X \uparrow \sqrt[k]{\flat}) (X \uparrow \sqrt[k]{\flat} e^{i\frac{\pi}{\flat}}) (X \uparrow \sqrt[k]{\flat} e^{i\frac{\nu}{\hbar}})$ donc P à en plus une racine complexe or un polynôme dans $\mathbb R$ qui possède une racine complexe possède sont conjugée

ce qui n'est pas le cas pour P donc P
 $\mathbb{Q}[X]$ ce qui est absurde Donc $\mathbb{X}P \stackrel{<}{\times} \mathbb{Q}[X], P(\sqrt[l]{\mathbb{P}}) \ \mathbb{X} \ \mathbb{P}$

i.

Par un résonnement annaloge à la question \mathbb{N} .b on montre que $\mathbb{Q} \models \mathbb{Q} \left(\sqrt[k]{\mathbb{P}} \right)$, De plus soit $\mathbf{9} \in \mathbb{Q} \left(\sqrt[k]{\mathbb{P}} \right)$ alors soient $\mathbf{1}, \mathbf{4}, \mathbf{7} \in \mathbb{Q}, \mathbf{9} \times \mathbf{1} \uparrow \mathbf{4} \sqrt[k]{\mathbb{P}} \uparrow \mathbf{7} \left(\sqrt[k]{\mathbb{P}} \right)^{\triangleright}$ donc $\mathbf{9} \in \mathrm{Vect} \left(\mathbb{N}, \sqrt[k]{\mathbb{P}}, \sqrt[k]{\mathbb{P}} \right)$ est une extensions finis et $\left[Q \left(\sqrt[k]{\mathbb{P}} \right) : \mathbb{Q} \right] \times \mathbb{P}$

d.

Soient $\mathbf{H}_{\mathbb{N}}, \cdots, \mathbf{H}_{n} \in \mathbb{Q}$ tels que $\sum_{\mathbf{Z} \otimes \mathbb{N}}^{n} \mathbf{H}_{\mathbf{Z}} \ln(p_{\mathbf{Z}}) \otimes \mathbb{N}$, alors

$$\ln\left(\prod_{{\mathcal{I}}}^n p_{{\mathcal{I}}}^{{\mathsf{H}}_{{\mathcal{I}}}}\right) \mathsf{XF} \ \mathrm{Donc} \ \prod_{{\mathcal{I}}}^n p_{{\mathcal{I}}}^{{\mathsf{H}}_{{\mathcal{I}}}} \mathsf{X} \mathsf{N}$$

$$\left(\prod_{\gamma \in \mathbb{N}}^n p_{\gamma}^{\mathbf{x}_{\gamma}}\right)^{\frac{1}{\gamma}} \otimes \mathbb{N} \Leftrightarrow \prod_{\gamma \in \mathbb{N}}^n p_{\gamma}^{\mathbf{x}_{\gamma}} \otimes \mathbb{N}$$

Ainsi $(\ln(p_{\mathbb{N}}), \dots, \ln(p_n))$ est libre

Et donc la dimmension de $\mathbb R$ n'est pas finis, donc $\mathbb R$ n'est pas une extention finis de $\mathbb Q$

N=° ****.

$$\text{soit } \mathbf{9} \stackrel{\textstyle <}{\stackrel{\textstyle <}{}} \mathbf{L} \text{, alors } ! \mathbb{B} \, \mathbf{B}_{\mathbb{N}}, \cdots, \mathbf{B}_n \stackrel{\textstyle <}{\stackrel{\textstyle <}{}} \mathbf{K} \text{ tel que, } \mathbf{9} \stackrel{\textstyle \times}{\stackrel{\textstyle \times}{\stackrel{\textstyle \times}{}}} \sum_{n=1}^n \alpha_{\mathbf{x}} \, \mathbf{B}_{\mathbf{x}}$$

Ainsi
$$! \exists \, \mathbf{H}_{\mathbb{N}}, \cdots, \mathbf{H}_{n} \leq \mathbf{K} \leq k, ! \exists \, \mathbf{\mathcal{Y}}_{\mathbb{N}}, \cdots, \mathbf{\mathcal{Y}}_{p} \leq k, \mathbf{9} \, \mathbf{X} \sum_{\substack{\mathbb{N} \ \mathbb{N} \leq \mathbf{X} \ \mathbb{N} \leq n \\ \mathbb{N} \ \mathbb{N} \leq \mathbf{X} \ \mathbb{N} \leq p}} \alpha_{\mathbf{X}} \beta_{\mathbf{X}} \mathbf{H}_{\mathbf{X}} \mathbf{\mathcal{Y}}_{\mathbf{X}}$$

Donc ${\bf 9}$ s'écrit d'une manière unique comme des élément de k, donc la famille $(\alpha_i\beta_j)_{\begin{subarray}{c} {\mathbb N} \ {\mathbb$

De plus la famille $(\alpha_i \beta_j)_{\substack{\mathbb{N} \text{ MX } i \text{ MX } p \\ \mathbb{N} \text{ MX } j \text{ MX } p}}$ comporte exactement np éléments

Donc $[\mathbf{L}:k] \, \check{\times} \, [\mathbf{L}:\mathbf{K}] [\mathbf{K}:k]$

Partie II. Éléments algébriques