课程名称:	数值线性代数	指导教师:	刘兰冬	

小组: ____第 10 组_______ **姓名:** _________ **签字:** _______

实验项目名称: 追赶法

实验目的及要求:

了解使用追赶法求解三对角方程组的原理和相关步骤,根据算法编写程序去求解一个具体的三对角方程组的解,再与之前的求解方法如列主元 Gauss 消去法比较二者求解结果的相关性质。

实验原理:

给定方程组
$$A\vec{x} = \vec{f}$$
,其中 $A = \begin{pmatrix} b_1 & c_1 & & & \\ a_1 & b_2 & c_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & a_{n-1} & b_{n-1} & c_{n-1} \\ & & & a_n & b_n \end{pmatrix}$, $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$, $\vec{f} = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix}$.

对矩阵 A 作 LU 分解, 使 A=LU , 其中 $L=\begin{pmatrix}1&&&&\\\alpha_2&1&&&\\&\alpha_3&\ddots&&\\&&\ddots&1&\\&&&\alpha_n&1\end{pmatrix}$,

$$U = \begin{pmatrix} \beta_1 & \gamma_1 & & & \\ & \beta_2 & \gamma_2 & & \\ & & \ddots & \ddots & \\ & & & \beta_{n-1} & \gamma_{n-1} \\ & & & & \beta_n \end{pmatrix}, 比较两边元素得: \begin{cases} b1 = \beta_1 \\ a_2 = \alpha_2 \beta_1 \\ b_2 = \alpha_2 c_1 + \beta_2 \\ a_3 = \alpha_3 \beta_2 \\ b_3 = \alpha_3 c_2 + \beta_3 \end{cases}$$

$$\begin{cases} \beta_1 = b_1 \\ \alpha_2 = \frac{a_2}{\beta_1} \\ \beta_2 = b_2 - \alpha_2 c_1 \text{ 。 最后总结公式为:} \end{cases} \begin{cases} \beta_1 = b_1 \\ \alpha_i = \frac{a_i}{\beta_{i-1}} \\ \beta_i = b_i - \alpha_i c_{i-1} \end{cases}$$
 $(i = 2, 3, ...n)$ 。 确定了矩阵 L,U 的元
$$\beta_3 = b_3 - \alpha_3 c_2$$

素之后,开始解下三角方程组 $L\vec{v} = \vec{f}$,再解上三角方程组 $U\vec{x} = \vec{v}$,即可解出目标方程组

的解
$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
。

实验内容(方法和步骤):

利用列主元 Gauss 消去法和追赶法求解下列方程组,右端项自己构造。对 n=3,10,100,1000(到你们所能求解的极限)进行求解,比较两种方法的存储量、计算时间和 精度,,谈谈你们小组的感想。

$$\begin{pmatrix}
-5 & 1 & & & \\
1 & -5 & 1 & & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & -5 & 1 \\
& & & 1 & -5
\end{pmatrix}
\begin{pmatrix}
x_1 \\ x_2 \\ \vdots \\ x_n
\end{pmatrix} = \begin{pmatrix}
b_1 \\ b_2 \\ \vdots \\ b_{n-1} \\ b_n
\end{pmatrix}$$

① 使用列主元 Gauss 消去法求解

```
end
    if(A(q,k)==0)
           return ;
    end
    if(q\sim=k)
          for j=k:1:n
               temp = A(k,j);
               A(k,j) = A(q,j);
               A(q,j) = temp;
         end
         temp = b(k);
         b(k)
               = b(q);
         b(q) = temp;
         detA = -1*detA;
    end
     for i=k+1:1:n
                    A(i,k) = A(i,k) / A(k,k);
                     for j=k+1:1:n
                             A(i,j) = A(i,j) - A(i,k) *A(k,j);
                  b(i) = b(i) - A(i, k) * b(k);
     end
 detA = detA*A(k,k);
end
 if(A(n,n) == 0)
     return ;
 else
     detA = detA *A(n,n);
 end
x(n) = b(n) / A(n, n);
  for i=n-1:-1:1
      sum=0;
      for j=i+1:1:n
         sum=sum+A(i,j)*x(j);
      end
      x(i) = (b(i) - sum) / A(i, i);
  end
  wucha=norm(x-z);
Time=toc;%计时结束
Time=vpa(Time);
```

② 使用追赶法求解

function [n,Time,wucha]=zg(n)%输入想求的阶数,输出,阶数,时间,误差(默认小数点后六位)

```
digits(6);%括号里的数字就是小数点后保留几位
tic;%计时开始
[A,z,f]=matrix(n);%调用函数 matrix
[a,b,c]=transform(A,n);%调用函数 transform
%step 1追
beta(1) = b(1);
for i=2:n
   alpha(i) = a(i) / beta(i-1);
   beta(i)=b(i)-alpha(i)*c(i-1);
end
%step 2追
y=0;
y(1) = f(1);
for i=2:n
   y(i) = f(i) - alpha(i) * y(i-1);
end
%step 3 赶
x=0;
x(n) = y(n) / beta(n);
for i=n-1:-1:1
   x(i) = (y(i+1)-c(i)*x(i+1))/beta(i);
end
wucha=norm(x-z)
Time=toc%计时结束
Time=vpa(Time)
※ 以上 2 个程序均会调用以下 2 个打包好的程序:
(1)
function [A,z,f]=matrix(n)
for i=1:n
   z(i) = 1;
end
for i=1:n
   A(i,i) = -5;
end
for i=2:n
   A(i,i-1)=1;
end
for i=2:n-1
   A(i-1,i)=1;
end
f(1) = A(1,1) *z(1) + A(1,2) *z(2);
for i=2:n-1
   f(i) = A(i, i-1) *z(i-1) + A(i, i) *z(i) + A(i, i+1) *z(i+1);
```

```
end
f(n) = A(n, n-1) *z(n-1) + A(n, n) *z(n);
function [a,b,c]=transform(A,n)
b(1) = A(1,1);
c(1) = A(2,1);
for i=2:n-1
    a(i) = A(i, i-1);
    b(i) = A(i, i);
    c(i) = A(i, i+1);
end
a(n) = A(n, n-1);
b(n) = A(n, n);
附:一维存储方式的追赶法程序
function [Time,wucha,n]=jqzg(n)
digits(6);
tic;
for i=1:n
    a(i)=1;
    b(i)=-5;
    c(i)=1;
    r(i)=1;
end
f(1)=b(1)*r(1)+c(1)*r(2);
for i=2:n-1
    f(i)=a(i)*r(i-1)+b(i)*r(i)+c(i)*r(i+1);
end
f(n)=a(n)*r(n-1)+b(n)*r(n);
s(1)=b(1);
for i=2:n
    t(i)=a(i)/s(i-1);
    s(i)=b(i)-t(i)*c(i-1);
end
y(1)=f(1);
for i=2:n
    y(i)=f(i)-t(i)*y(i-1);
end
x(n)=y(n)/s(n);
for i=n-1:-1:1
    x(i)=(y(i)-c(i)*x(i+1))/s(i);
end
Time=toc;
wucha=norm(x-r);
```

Time=vpa(Time);

实验结果与分析:

依次增大n的阶数,运行得出2种方法解方程组所用时间及计算精度,并整理成如下表格: 表1

₩±					
n	计算时间	计算时间	精度	精度	
	(追赶法)	(列主元)	(追赶法)	(列主元)	
10	0.000922075	0.0000920495	3.8459e-16	3.8459e-16	
100	0.00112237	0.0071925	3.8459e-16	2.1065e-15	
500	0.0230779	1.0617	4.9202e-15	4.9152e-15	
1000	0.178419	9.40801	6.9900e-15	6.9865e-15	
3000	10.2816	357.422	1.2144e-14	1.2142e-14	
5000	49.6849	1762.15	1.5687e-14	1.5685e-14	
7000	141.489	5500.84	1.8566e-14	1.8564e-14	
9000	303.893		2.1054e-14		
10000	416.328		2.2194e-14		

两种方法的各项比较:

表 2

方法	存储量	计算时间(s)		误差	
	$n^2 + 2n$	3 阶	0. 0322	3 阶	0
列主元 Gauss 消去法 (二维)		10 阶	0.0788831	10 阶	3.8459e-16
		100 阶	0.0090714	100 阶	2.1065e-15
		1000 阶	9.3313	1000 阶	6.9865e-15
		10000 阶		10000 阶	
	5 <i>n</i> – 2	3 阶	0. 0000940246	3 阶	0
追赶法(一维)		10 阶	0.0267607	10 阶	3.8459e-16

		100 阶	0.0157321	100 阶	2.1182e-15
		1000 阶	0.0230795	1000 阶	6.9900e-15
		10^8 阶	96.9558	10^8 阶	2.2204e-12
		3 阶	0.0000940246	3 阶	0
		10 阶	0.000922075	10 阶	3.8459e-16
追赶法(二维)	$n^2 + 2n$	100 阶	0.00112237	100 阶	3.8459e-16
		1000 阶	0.178419	1000 阶	6.9900e-15
		10^8 阶		10^8 阶	

实验感想:

对于本次实验来讲,由于解方程的算法并无区别,所以精度方面基本无差别。在相同存储结构下来讲,追赶法比列主元法运行速度更快。对于追赶法,不同的存储结构导致运行时间差别在高阶情况下很明显。总体来说,在相同存储结构下,追赶法比列主元法要快,精度不相上下。

成绩:

批阅教师签名:

2017年 10 月 17 日