YUAN CHEN

CONTACT INFORMATION

ADDRESS: MW 330, 231 West 18th Avenue, Columbus, OH

EMAIL: chen.11050@osu.edu WEB-PAGE: iamyuanchen.xyz

EDUCATION

Expected 2026	The Ohio State University Ph.D. in Mathematics
June 2021	The George Washington University M.S. in Statistics, GPA: 4.0/4.0
June 2019	Hohai University B.E. in Environmental Science, GPA Rank: 1st/82

RESEARCH INTERESTS

- 1. Data-driven modeling of systems driven by (stochastic) differential equations
- 2. Numerical simulation of Stochastic Differential Equations and Rare Events
- 3. Finite Element Method, discontinuous Galerkin Method, Virtual Element Method
- 4. Interface problems and Coupling Mathematical Models Arising from Applications

PUBLICATIONS

- 9. Y. Chen, and D. XIU. Learning Stochastic Dynamical System via Flow Map Operator., (2023+), submitted.
- 8. Y. Chen, and Y. Xing. Optimal Error Estimates of Ultra-weak Discontinuous Galerkin Methods with Generalized Numerical Fluxes for Multi-dimensional Convection-Diffusion and Biharmonic Equations., (2023+), submitted.
- 7. V. Churchill, <u>Y. Chen</u>, Z. Xu, and D. Xiu. *DNN Modeling of Partial Differential Equations with Incomplete Data*, (2023+), submitted.
- 6. Y. Chen, and X. Zhang. A High-Order Immersed C^0 Interior Penalty Method for Biharmonic Interface Problems., (2023+), preprint.
- 5. Y. Chen, and X. Zhang. Solving Navier-Stokes Interface Problems with Fixed/Moving Interfaces on Unfitted Meshes, (2023+), submitted.
- 4. Y. Chen, S. Hou, and X. Zhang. Semi and Fully Discrete Analysis for An Immersed Finite Element Method for Elastodynamic Interface Problems, Comput. Math. with Appl., 147(2023), 92-110.
- 3. Y. Chen and X. Zhang. A \mathcal{P}_2 - \mathcal{P}_1 Partially Penalized Immersed Finite Element Method for Stokes Interface Problems, Int. J. Numer. Anal. Mod., 18(2021), no. 1, 120-141.
- 2. Y. Chen, S. Hou, and X. Zhang. A Bilinear Partially Penalized Immersed Finite Element Method for Elliptic Interface Problems with Multi-domains and Triple Junction Points, Results Appl. Math., 8(2020), 100100.
- 1. Y. Chen, S. Hou, and X. Zhang. *An Immersed Finite Element Method for Elliptic Interface Problems with Multi-domain and Triple Junction Points*, Adv. Appl. Math. Mech., 11(2019), no. 5, 1005-1021.

TALKS AND CONFERENCES

6. Data Driven Modeling of Unknown Stochastic Systems. 17th U. S. National Congress on Computational Mechanics, Albuquerque. (July 2023).

- 5. Learning Stochastic Dynamical System via Flow Map Operator. **University of California San Diego CCoM Seminar**, UCSD. (May 2023, Online).
- 4. Finite Element Computation using Python. **Oklahoma State University Numerical Analysis Seminar**, Oklahoma State University. (October 2022).
- 3. A High-Order Immersed C^0 Interior Penalty Method for Biharmonic Interface Problems. The 7th Annual Meeting of SIAM Central States Section, Oklahoma State University. (October 2022).
- 2. A High-Order Immersed C^0 Interior Penalty Method for Biharmonic Interface Problems. **2022 SIAM** Annual Meeting, Pittsburgh. (July 2022).
- 1. An Immersed \mathcal{P}_2 - \mathcal{P}_1 Finite Element Method for Stokes Interface Problems. The 6th Annual Meeting of SIAM Central States Section, University of Kansas. (October 2021, Online).

TEACHING EXPERIENCES

Ohio State University

Spring 2023 Recitation MATH 1151 (Calculus I) Fall 2022 Recitation MATH 1151 (Calculus I)

George Washington University

Fall 2020 Recitation MATH 1051 (Finite Math for the Social and Management Sciences)

PROFESSIONAL SERVICE

Seminar Series Organized

1. OSU Student Computational Mathematics Seminar, 2022-present (co-organized with Qifan Chen).

SCHOLARSHIPS & CERTIFICATES

SIAM Travel Award	2022
OSU Distinguished University Fellowship	2021
GWU Award of Graduate Assistantship	2020

SKILLS

Programming	C/C++, Python, R, MySQL, ETEX, VB, MATLAB
Vectorization	Python(NumPy), MATLAB
Data Analysis	Python (pandas, matplotlib, geopy), R (ggplot, dplyr, tidyr), QGIS, ECHARTS, D3, sas
Sci. Computing	Python (NumPy, SciPy, SymPy, multiprocessing), MATLAB, Mathematica
Deep Learning	Python (Numpy, PyTorch, TensorFlow)