aglaia norza

Logica Matematica

appunti delle lezioni libro del corso: tbd

Contents

1	Logi	ica Proposizio	nal	е	.																											
	1.1	Introduzione																														3

1. Logica Proposizionale

1.1. Introduzione

La logica proposizionale è un linguaggio formale con una semplice struttura sintattica basata su proposizioni elementari (atomiche) e sui seguenti connettivi logici:

- *Negazione* (¬): inverte il valore di verità di un enunciato: se un enunciato è vero, la sua negazione è falsa, e viceversa.
- Congiunzione (∧): il risultato è vero se e solo se entrambi i componenti sono veri.
- *Disgiunzione* (∨): il risultato è vero se almeno uno dei componenti è vero.
- Implicazione (→): rappresenta l'enunciato logico "se ... allora". Il risultato è falso solo se il primo componente è vero e il secondo è falso.
- Equivalenza (↔): rappresenta l'enunciato logico "se e solo se". Il risultato è vero quando entrambi i componenti hanno lo stesso valore di verità, cioè sono entrambi veri o entrambi falsi.

def. 1: Linguaggio proposizionale

Un linguaggio proposizionale è un insieme infinito \mathcal{L} di simboli detti **variabili proposizionali**, tipicamente denotato come $\{p_i: i \in I\}$ (con I "insieme di indici").

def. 2: Proposizione

Una **proposizione** in un linguaggio proposizionale è un elemento dell'insieme PROP così definito:

- 1. tutte le variabili appartengono a PROP
- 2. se $A \in PROP$, allora $\neg A \in PROP$
- 3. se $A, B \in \mathsf{PROP}$, allora $(A \land B), (A \lor B), (A \to B) \in \mathsf{PROP}$
- 4. nient'altro appartiene a PROP (PROP è il più piccolo insieme che contiene le variabili e soddisfa le proprietà di chiusura sui connettivi 1 e 2)

Per facilitare la leggibilità delle formule, definiamo le seguenti regole di precedenza: \neg ha precedenza su \land , \lor , e questi ultimi hanno precedenza su \rightarrow .

Per formalizzare le tavole di verità, introduciamo anche il concetto di assegnamento. Ogni riga di una tavola di verità corrisponde ad un assegnamento diverso. Per un linguaggio \mathcal{L} , un **assegnamento** è una funzione

$$\alpha: \mathcal{L} \to \{0,1\}$$

Estendiamo α ad $\hat{\alpha} : \mathsf{PROP} \to \{0,1\}$ in questo modo:

•
$$\hat{\alpha}(\neg A) = \begin{cases} 1 & A = 0 \\ 0 & A = 1 \end{cases}$$

•
$$\hat{\alpha}(A \wedge B) = \begin{cases} 1 & \hat{\alpha}(A) = \hat{\alpha}(B) = 1\\ 0 & altrimenti \end{cases}$$

•
$$\hat{\alpha}(A \vee B) = \begin{cases} 0 & \hat{\alpha}(A) = \hat{\alpha}(B) = 0\\ 1 & altrimenti \end{cases}$$

•
$$\hat{\alpha}(A \to B) = \begin{cases} 0 & \hat{\alpha}(A) = 1 \land \hat{\alpha}(B) = 0 \\ 1 & altrimenti \end{cases}$$

Si noti che dalla definizione segue che un'implicazione può essere vera senza che ci sia connessione causale o di significato tra antecedente e conseguente (per esempio, "se tutti i quadrati sono pari allora π è irrazionale").

In secondo luogo, segue anche che una proposizione è sempre vera se il suo antecedente è falso (il che rispecchia la pratica matematica di considerare vera a vuoto una proposizione ipotetica la cui premessa non si applica).

Questo è giustificabile come segue:

- vogliamo che $(A \wedge B) \rightarrow B$ sia sempre vera
- il caso $1 \rightarrow 1$ deve essere vero, perché corrisponde al caso in cui A e B sono vere; il caso $0 \to 0$ deve essere vero, perché corrisponde al caso in cui $A \wedge B$ è falso perché B è falso; il caso $0 \rightarrow 0$ deve essere vero perché corrisponde al caso in cui $A \wedge B$ è falso perché B è falso; il caso $0 \rightarrow 1$ deve essere vero perché corrisponde al caso in cui $A \wedge B$ è falso perché A è falso ma B è vero. Resta dunque soltanto il caso $1 \to 0$, che non corrisponde a nessun caso di $A \land B \to B$.

notazione

Utilizzeremo α al posto di $\hat{\alpha}$ per comodità di notazione.

Osserviamo che, data $A = p_1, p_2, \dots, p_k$ e due assegnamenti α e β t.c.:

$$\alpha(p_1) = \beta(p_1)$$

$$\alpha(p_k) = \beta(p_k)$$

allora necessariamente $\alpha(A) = \alpha(B)$.

soddisfacibilità

Se per una formula A e un assegnamento α si ha $\alpha(A)=1$, si dice che "A soddisfa α " (o "A è vera sotto α ").

- Se A ha almeno un assegnamento che la soddisfa, si dice **soddisfacibile** $(A \in SAT)$.
- Se non esiste un assegnamento che la soddisfa, A si dice **insoddisfacibile** ($A \in \mathtt{UNSAT}$).
- Se A è soddisfatta da tutti i possibili assegnamenti, si dice **tautologia** (o "verità logica") ($A \in TAUT$).

def. 3: conseguenza logica