```
# Import appropriate Libraries.
In [1]:
In [2]:
          | import pandas as pd
            import matplotlib.pyplot as plt
            import numpy as np
            import seaborn as sns
            import warnings
            warnings.filterwarnings('ignore')
            pd.set option('display.max columns', None)
In [3]:
          df test=pd.read csv('test.csv')

    df train.head()

In [4]:
   Out[4]:
                   UID BLOCKID SUMLEVEL COUNTYID STATEID
                                                                                                 type primary zip_code area_code
                                                               state state ab
                                                                                  city
                                                                                          place
                                                                New
             0 267822
                                                          36
                                                                         NY
                                                                                                 City
                           NaN
                                       140
                                                  53
                                                                              Hamilton
                                                                                        Hamilton
                                                                                                                13346
                                                                                                                            315 42.84
                                                                                                         tract
                                                                York
                                                                                 South
                                                                          IN
                                                                                       Roseland
             1 246444
                           NaN
                                      140
                                                 141
                                                          18 Indiana
                                                                                                  City
                                                                                                                46616
                                                                                                                            574 41.70
                                                                                                         tract
                                                                                 Bend
             2 245683
                           NaN
                                      140
                                                  63
                                                          18
                                                             Indiana
                                                                          IN
                                                                               Danville
                                                                                        Danville
                                                                                                 City
                                                                                                                46122
                                                                                                                            317 39.79:
                                                                                                         tract
                                                              Puerto
                                                                              San Juan Guaynabo Urban
             3 279653
                           NaN
                                       140
                                                 127
                                                                                                                  927
                                                                                                                            787 18.39
                                                                                                         tract
                                                                Rico
                                                                                       Manhattan
                                                                                                  City
             4 247218
                           NaN
                                      140
                                                 161
                                                                         KS Manhattan
                                                                                                                66502
                                                                                                                            785 39.19
                                                          20 Kansas
                                                                                                         tract
                                                                                            City
```



```
In [9]: ► df_train.dtypes
```

Out[9]: UID int64 BLOCKID float64 SUMLEVEL int64 int64 COUNTYID STATEID int64 . . . float64 pct_own married float64 married_snp float64 separated float64 divorced float64 Length: 80, dtype: object

Out[10]: <AxesSubplot:>

state state_ab city type primary place 27321 27321 27321 27321 27321 27321 count 52 52 6916 unique 9912 6 1 top California CA Chicago New York City tract 2926 294 490 15237 27321 freq 2926

```
In [12]: ▶ #This flag will help us split the data back later
```

Out[14]:

		UID	BLOCKID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place	type	primary	zip_code	area_code	
-	0	267822	NaN	140	53	36	New York	NY	Hamilton	Hamilton	City	tract	13346	315	42.84
	1	246444	NaN	140	141	18	Indiana	IN	South Bend	Roseland	City	tract	46616	574	41.70
	2	245683	NaN	140	63	18	Indiana	IN	Danville	Danville	City	tract	46122	317	39.79
	3	279653	NaN	140	127	72	Puerto Rico	PR	San Juan	Guaynabo	Urban	tract	927	787	18.39
	4	247218	NaN	140	161	20	Kansas	KS	Manhattan	Manhattan City	City	tract	66502	785	39.19

	U	D BLOCKID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place	type	primary	zip_code	area_co
	39025 23808		140	105	12	Florida	FL		Crystal Springs	City	tract	33810	8
	39026 2428	11 NaN	140	31	17	Illinois	IL	Chicago	Chicago City	Village	tract	60609	7
	39027 25012	27 NaN	140	9	25	Massachusetts	MA	Lawrence	Methuen Town City	City	tract	1841	Ş
	39028 24109	96 NaN	140	27	19	lowa	IA	Carroll	Carroll City	City	tract	51401	7
	39029 28776	3 NaN	140	453	48	Texas	TX	Austin	Sunset Valley City	Town	tract	78745	5
	4												•
n [16]: ▶	df_combined	l.isna().su	m()										
Out[16]:	UID BLOCKID	0 39030											
	SUMLEVEL	9											
	COUNTYID	0											
	STATEID	0											
	J												
	married	275											
	married_snp												
	separated	275											
	divorced	275											
		275 0											

```
▶ 1-df combined.isna().sum()/len(df combined)
In [18]:
   Out[18]: UID
                            1.000000
             BLOCKID
                            0.000000
             SUMLEVEL
                            1.000000
             COUNTYID
                            1.000000
             STATEID
                            1.000000
                              . . .
             married
                            0.992954
             married snp
                           0.992954
             separated
                            0.992954
             divorced
                            0.992954
             split
                            1.000000
             Length: 81, dtype: float64
          # BLOCKID is completly missing or Null in both train and test data. So we will drop BLOCKID feature.
In [19]:
          df combined.drop(columns=['BLOCKID'], axis=1, inplace=True)
In [20]:
          df combined.isna().sum()/len(df combined)*100
In [21]:
   Out[21]: UID
                            0.000000
             SUMLEVEL
                            0.000000
             COUNTYID
                            0.000000
                            0.000000
             STATEID
             state
                            0.000000
                              . . .
             married
                            0.704586
             married snp
                            0.704586
             separated
                            0.704586
             divorced
                            0.704586
                            0.000000
             split
             Length: 80, dtype: float64
```

In [22]: ▶ # Missing value greater than zero

```
Out[23]: ['rent mean',
           'rent_median',
           'rent_stdev',
           'rent_sample_weight',
           'rent samples',
           'rent gt 10',
           'rent gt 15',
           'rent gt 20',
           'rent gt 25',
           'rent_gt_30',
           'rent gt 35',
           'rent gt 40',
           'rent gt 50',
           'hi mean',
           'hi median',
           'hi stdev',
           'hi_sample_weight',
           'hi samples',
           'family mean',
           'family_median',
           'family stdev',
           'family sample weight',
           'family samples',
           'hc mortgage mean',
           'hc mortgage median',
           'hc mortgage stdev',
           'hc_mortgage_sample_weight',
           'hc mortgage samples',
           'hc mean',
           'hc median',
           'hc stdev',
           'hc samples',
           'hc sample weight',
           'home_equity_second_mortgage',
           'second mortgage',
           'home_equity',
           'debt',
           'second_mortgage_cdf',
           'home equity cdf',
           'debt_cdf',
           'hs_degree',
```

```
'hs_degree_male',
'hs_degree_female',
'male_age_mean',
'male_age_median',
'male_age_stdev',
'male age sample weight',
'male age samples',
'female_age_mean',
'female_age_median',
'female age stdev',
'female age sample weight',
'female_age_samples',
'pct own',
'married',
'married_snp',
'separated',
'divorced']
```

In [24]: ▶ #If the feature have less than 8 unique value then I am consdering as categorical else it will be continuous

```
In [25]:

    for i in null col:

                 print(i)
                 if df_combined[i].nunique()>8:
                     df combined[i].fillna(df_combined[i].median(),inplace=True)
             rent mean
             rent median
             rent stdev
             rent sample weight
             rent samples
             rent_gt_10
             rent_gt_15
             rent_gt_20
             rent_gt_25
             rent_gt_30
             rent_gt_35
             rent_gt_40
             rent_gt_50
             hi mean
             hi_median
             hi stdev
             hi_sample_weight
             hi samples
             family_mean
In [26]:

    df_combined.isna().sum()/len(df_combined)*100

   Out[26]: UID
                            0.0
             SUMLEVEL
                            0.0
             COUNTYID
                            0.0
             STATEID
                            0.0
                            0.0
             state
                            . . .
             married
                            0.0
             married_snp
                            0.0
             separated
                            0.0
             divorced
                            0.0
             split
                            0.0
             Length: 80, dtype: float64
```

```
df combined.shape
In [27]:
  Out[27]: (39030, 80)
        In [28]:
        In [29]:
          df combined.shape
  Out[29]: (38838, 80)
        # As we have seen above we have 123 unique UID which are common in both train and test data. so duplicate UID remo
In [30]:
        df combined.shape
  Out[31]: (38715, 80)
       Exploratory Data Analysis (EDA):

  | top_2500_loc=df_train[(df_train['second_mortgage']<0.50) &</pre>
In [32]:
           (df train['pct own']>0.10) ].sort values(by='second mortgage', ascending=False).head(2500)
```


Out[33]:

	state	city	state_ab	place	lat	Ing	
11980	Massachusetts	assachusetts Worcester		Worcester City	42.254262	-71.800347	
26018	New York	Corona	NY	Harbor Hills	40.751809	-73.853582	
7829	Maryland	nd Glen Burnie		Glen Burnie	39.127273	-76.635265	
2077	Florida	Tampa	FL	Egypt Lake-leto	28.029063	-82.495395	
1701	Illinois	is Chicago		Lincolnwood	41.967289	-87.652434	

Out[34]:

	state	city	state_ab	place	lat	Ing	geometry
11980	Massachusetts	Worcester	MA	Worcester City	42.254262	-71.800347	POINT (-71.80035 42.25426)
26018	New York	Corona	NY	Harbor Hills	40.751809	-73.853582	POINT (-73.85358 40.75181)
7829	Maryland	Glen Burnie	MD	Glen Burnie	39.127273	-76.635265	POINT (-76.63526 39.12727)
2077	Florida	Tampa	FL	Egypt Lake-leto	28.029063	-82.495395	POINT (-82.49540 28.02906)
1701	Illinois	Chicago	IL	Lincolnwood	41.967289	-87.652434	POINT (-87.65243 41.96729)
17914	North Carolina	Raleigh	NC	Raleigh City	35.757135	-78.704288	POINT (-78.70429 35.75713)
5478	California	Marina Del Rey	CA	Marina Del Rey	33.983204	-118.466139	POINT (-118.46614 33.98320)
25642	Maryland	Baltimore	MD	Lochearn	39.353095	-76.733315	POINT (-76.73331 39.35310)
26671	Pennsylvania	Philadelphia	PA	Philadelphia City	40.039070	-75.125135	POINT (-75.12514 40.03907)
24443	California	Manteca	CA	Manteca City	37.732143	-121.242902	POINT (-121.24290 37.73214)

2500 rows × 7 columns

In [35]: ▶ #Bad Debt = second mortgage + home equity - home equity second mortgage In [36]: df combined.head() Out[36]: UID SUMLEVEL COUNTYID STATEID city type primary zip_code area_code state state ab lat place New 0 267822 140 53 36 NY Hamilton Hamilton City 13346 315 42.840812 -75.50 tract York South Roseland **1** 246444 140 141 18 Indiana IN City 46616 574 41.701441 -86.20 tract Bend Danville **2** 245683 140 63 18 Indiana Danville City 46122 317 39.792202 -86.5⁻¹ IN tract Puerto **3** 279653 140 127 San Juan Guaynabo Urban 927 787 18.396103 -66.10 tract Rico Manhattan City 4 247218 140 161 20 Kansas KS Manhattan City 66502 785 39.195573 -96.50 tract

In [37]: ▶ # Create pie charts to show overall debt and bad debt

```
In [38]: N labels='Debt', 'Bad_debt'
sizes=[df_combined['debt'].mean()*100, df_combined['bad_debt'].mean()*100]
colors=['lightskyblue', 'green']
explode=(0.1, 0) # explode 1st slice
# Plot
plt.pie(sizes,explode=explode, labels=labels, colors=colors,
autopct='%1.1f%%', shadow=True, startangle=140)
plt.axis('equal')
plt.show()
```


In [39]: 📕 # Create Box and whisker plot and analyze the distribution for 2nd mortgage, home equity, good debt, and bad debt

Out[40]:

		UID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place	type	primary	zip_code	area_code	lat	
•	0	267822	140	53	36	New York	NY	Hamilton	Hamilton	City	tract	13346	315	42.840812	-75.50
	1	246444	140	141	18	Indiana	IN	South Bend	Roseland	City	tract	46616	574	41.701441	-86.20
	2	245683	140	63	18	Indiana	IN	Danville	Danville	City	tract	46122	317	39.792202	-86.5
	3	279653	140	127	72	Puerto Rico	PR	San Juan	Guaynabo	Urban	tract	927	787	18.396103	-66.10
	4	247218	140	161	20	Kansas	KS	Manhattan	Manhattan City	City	tract	66502	785	39.195573	-96.50
	4														

Out[41]: Index(['UID', 'SUMLEVEL', 'COUNTYID', 'STATEID', 'state', 'state_ab', 'city', 'place', 'type', 'primary', 'zip code', 'area code', 'lat', 'lng', 'ALand', 'AWater', 'pop', 'male pop', 'female pop', 'rent mean', 'rent median', 'rent stdev', 'rent sample weight', 'rent samples', 'rent gt 10', 'rent gt 15', 'rent gt 20', 'rent gt 25', 'rent gt 30', 'rent gt 35', 'rent gt 40', 'rent gt 50', 'universe samples', 'used samples', 'hi mean', 'hi median', 'hi stdev', 'hi sample weight', 'hi samples', 'family mean', 'family median', 'family stdev', 'family_sample_weight', 'family_samples', 'hc mortgage mean', 'hc mortgage median', 'hc mortgage stdev', 'hc mortgage sample weight', 'hc mortgage samples', 'hc mean', 'hc median', 'hc stdev', 'hc samples', 'hc sample weight', 'home equity second mortgage', 'second mortgage', 'home equity', 'debt', 'second mortgage cdf', 'home equity cdf', 'debt cdf', 'hs degree', 'hs degree male', 'hs degree female', 'male age mean', 'male age median', 'male age stdev', 'male age sample weight', 'male age samples', 'female age mean', 'female age median', 'female age stdev', 'female age sample weight', 'female age samples', 'pct own', 'married', 'married snp', 'separated', 'divorced', 'split', 'bad debt', 'good debt'], dtvpe='object')

In [44]: Manhattan=df_combined[df_combined['city']=='Manhattan']
 Manhattan=Manhattan[['home_equity', 'second_mortgage', 'bad_debt', 'good_debt']]
 Manhattan.plot.box(figsize=(12,8),grid=True)
 plt.show()

Create a collated income distribution chart for family income, house hold income, and remaining income In [45]: ▶ plt.figure(figsize=(15,10)) In [46]: plt.subplot(2,3,1) sns.distplot(df train['family mean']) plt.title('Family Income') plt.subplot(2,3,2) sns.distplot(df train['hi mean']) plt.title('Household Income') plt.subplot(2,3,3) sns.distplot(df_train['family_mean']-df_train['hi_mean']) plt.title('Remaining income distribution chart') plt.show() Family Income Household Income 1e Remaining income distribution chart 1e-5 1e-5

Project Task Exploratory Data Analysis (EDA):

```
In [47]:
In [48]:

    df combined.head()

   Out[48]:
                   UID SUMLEVEL COUNTYID STATEID
                                                     state state_ab
                                                                       city
                                                                               place
                                                                                      type primary zip_code area_code
                                                                                                                          lat
                                                      New
              0 267822
                             140
                                                36
                                                                                      City
                                                                                                                315 42.840812 -75.50
                                        53
                                                               NY
                                                                    Hamilton
                                                                             Hamilton
                                                                                                     13346
                                                                                              tract
                                                      York
                                                                      South
              1 246444
                             140
                                       141
                                                18 Indiana
                                                                IN
                                                                             Roseland
                                                                                      City
                                                                                                     46616
                                                                                                                574 41.701441 -86.20
                                                                                              tract
                                                                       Bend
              2 245683
                             140
                                        63
                                                18 Indiana
                                                                     Danville
                                                                              Danville
                                                                                      City
                                                                                                     46122
                                                                                                                317 39.792202 -86.5
                                                                                              tract
                                                     Puerto
              3 279653
                             140
                                       127
                                                                    San Juan Guaynabo Urban
                                                                                              tract
                                                                                                      927
                                                                                                                787 18.396103 -66.10
                                                      Rico
                                                                            Manhattan
                                                                                      City
              4 247218
                             140
                                       161
                                                20 Kansas
                                                               KS Manhattan
                                                                                              tract
                                                                                                     66502
                                                                                                                785 39.195573 -96.50
                                                                                 City
          # Use male age median, female age median, male pop, and female pop to create a new field called median age
In [49]:
In [50]:
             # Weighted average
             # median age=((male age median * male pop)+(female age median*female pop))/(male pop+female pop)
             # = ((40*10)+(50*30))/40
             # =(400+1500)/40
             # =190/4
             # = 47.5
In [51]:
          df combined['median age']=((df combined['male age median']*df combined['male pop'])+(df combined['female age media
```

In [52]: M df_combined.head()

Out[52]:

UID SUMLEVEL COUNTYID STATEID state state_ab city place type primary zip_code area_code lat

•		UID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place	type	primary	zip_code	area_code	lat	
	0	267822	140	53	36	New York	NY	Hamilton	Hamilton	City	tract	13346	315	42.840812	-75.50
	1	246444	140	141	18	Indiana	IN	South Bend	Roseland	City	tract	46616	574	41.701441	-86.20
	2	245683	140	63	18	Indiana	IN	Danville	Danville	City	tract	46122	317	39.792202	-86.5
	3	279653	140	127	72	Puerto Rico	PR	San Juan	Guaynabo	Urban	tract	927	787	18.396103	-66.10
	4	247218	140	161	20	Kansas	KS	Manhattan	Manhattan City	City	tract	66502	785	39.195573	-96.50
	4														

In [53]: ▶ # Visualize the findings using appropriate chart type

In [54]: sns.histplot(df_combined['population_density'], bins=50)

Out[54]: <AxesSubplot:xlabel='population_density', ylabel='Count'>


```
In [55]: In plt.figure(figsize=(15,10))
    plt.subplot(2,2,1)
    sns.distplot(df_combined['median_age'])
    plt.title('Median Age')
    plt.subplot(2,2,2)
    sns.boxplot(df_combined['median_age'])
    plt.title('population Density')
    plt.show()
```


In [56]: ▶ # Create bins for population into a new variable by selecting appropriate class interval so that the number of cat

```
M df_combined['pop_bins']=pd.cut(df_combined['pop'],bins=5, labels=['very low', 'low', 'medium', 'high', 'very high
In [57]:
             df_combined['pop_bins'].value_counts()
   Out[57]: very low
                          38350
             low
                            348
             medium
                             12
             high
                              4
             very high
                              1
             Name: pop bins, dtype: int64
          # Analyze the married, separated, and divorced population for these population brackets
In [58]:
          df combined.groupby(by='pop bins')[['married','separated','divorced']].count()
In [59]:
   Out[59]:
                      married separated divorced
              pop_bins
                        38350
                                 38350
                                         38350
              very low
```

348

12

4

1

low

high

medium

very high

348

12

4

1

348

12

4

1

```
In [60]: M df_combined.groupby(by='pop_bins')[['married','separated','divorced']].agg(['mean', 'median'])

Out[60]:

married separated divorced

mean median mean median mean median

pop_bins

very low 0.508000 0.526210 0.019127 0.013580 0.100325 0.09510

low 0.589247 0.601815 0.014929 0.010255 0.075192 0.06934
```

In [61]: ▶ # Visualize using appropriate chart type

medium 0.617047 0.605765 0.011203 0.007745 0.071870 0.06909

very high 0.734740 0.734740 0.004050 0.004050 0.030360 0.03036

high 0.629132 0.675095 0.012372 0.007340 0.060562 0.05987

<Figure size 1200x800 with 0 Axes>

In [64]: 📕 # Please detail your observations for rent as a percentage of income at an overall level, and for different states

```
In [65]:
              rent_state_mean=df_combined.groupby(by='state')['rent_mean'].agg(['mean'])
              rent_state_mean.head()
    Out[65]:
                        mean
                   state
               Alabama
                        765.872557
                 Alaska 1190.093590
                Arizona 1084.510940
                        716.544987
               Arkansas
               California 1466.020465

    income_state_mean=df_combined.groupby(by='state')['family_mean'].agg(['mean'])

In [66]:
              income_state_mean.head()
    Out[66]:
                        mean
                  state
```

Alabama65311.510962Alaska91911.137520Arizona73014.068487Arkansas64234.705963California87711.550734

```
rent perc_of_income=rent_state_mean['mean']/income_state_mean['mean']*100
In [67]:
             rent_perc_of_income.head(10)
   Out[67]: state
             Alabama
                                     1.172646
             Alaska
                                     1.294831
             Arizona
                                    1.485345
             Arkansas
                                     1.115511
             California
                                    1.671411
             Colorado
                                    1.359697
             Connecticut
                                    1.272141
             Delaware
                                    1.311538
             District of Columbia
                                    1.357450
             Florida
                                     1.576101
             Name: mean, dtype: float64

    | sum(df combined['rent mean'])/sum(df combined['family mean'])

In [68]:
   Out[68]: 0.013351543786573208
In [69]:
          # Perform correlation analysis for all the relevant variables by creating a heatmap. Describe your findings.
```


- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

rent_mean, hi_mean, hc_mean, family_mean has a good correlation with the target i.e-hc_mortagage_mean

In [72]: ▶ train.head()

Out[72]:

•		UID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place	type	primary	zip_code	area_code	lat	
	0	267822	140	53	36	New York	NY	Hamilton	Hamilton	City	tract	13346	315	42.840812	-75.50
	1	246444	140	141	18	Indiana	IN	South Bend	Roseland	City	tract	46616	574	41.701441	-86.20
	2	245683	140	63	18	Indiana	IN	Danville	Danville	City	tract	46122	317	39.792202	-86.5
	3	279653	140	127	72	Puerto Rico	PR	San Juan	Guaynabo	Urban	tract	927	787	18.396103	-66.10
	4	247218	140	161	20	Kansas	KS	Manhattan	Manhattan City	City	tract	66502	785	39.195573	-96.50
	4														

In [73]:

▶ test.head()

Out[73]:

-														
•		UID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place	type	primary	zip_code	area_code	
	27321	255504	140	163	26	Michigan	MI	Detroit	Dearborn Heights City	CDP	tract	48239	313	42.34(
	27322	252676	140	1	23	Maine	ME	Auburn	Auburn City	City	tract	4210	207	44.100
	27323	276314	140	15	42	Pennsylvania	PA	Pine City	Millerton	Borough	tract	14871	607	41.94{
	27324	248614	140	231	21	Kentucky	KY	Monticello	Monticello City	City	tract	42633	606	36.746
	27325	286865	140	355	48	Texas	TX	Corpus Christi	Edroy	Town	tract	78410	361	27.882
	4	_												

Project Task: Week 3

Data Pre-processing:

- 1. The economic multivariate data has a significant number of measured variables. The goal is to find where the measured variables depend on a number of smaller unobserved common factors or latent variables.
- 2. Each variable is assumed to be dependent upon a linear combination of the common factors, and the coefficients are known as loadings. Each measured variable also includes a component due to independent random variability, known as "specific variance" because it is specific to one variable. Obtain the common factors and then plot the loadings. Use factor analysis to find latent variables in our dataset and gain insight into the linear relationships in the data. Following are the list of latent variables:
 - . Highschool graduation rates
 - . Median population age
 - . Second mortgage statistics
 - . Percent own
 - . Bad debt expense

In [75]: ▶ df_train.describe().T

Out[75]:

	count	mean	std	min	25%	50%	75%	max
UID	27321.0	257331.996303	21343.859725	220342.0	238816.000000	257220.000000	275818.000000	294334.00000
BLOCKID	0.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
SUMLEVEL	27321.0	140.000000	0.000000	140.0	140.000000	140.000000	140.000000	140.00000
COUNTYID	27321.0	85.646426	98.333097	1.0	29.000000	63.000000	109.000000	840.00000
STATEID	27321.0	28.271806	16.392846	1.0	13.000000	28.000000	42.000000	72.00000
pct_own	27053.0	0.640434	0.226640	0.0	0.502780	0.690840	0.817460	1.00000
married	27130.0	0.508300	0.136860	0.0	0.425102	0.526665	0.605760	1.00000
married_snp	27130.0	0.047537	0.037640	0.0	0.020810	0.038840	0.065100	0.71429
separated	27130.0	0.019089	0.020796	0.0	0.004530	0.013460	0.027488	0.71429
divorced	27130.0	0.100248	0.049055	0.0	0.065800	0.095205	0.129000	1.00000

74 rows × 8 columns

. .

- Variables should have significant impact on predicting Monthly mortgage and owner costs
 - Utilize all predictor variable to start with initial hypothesis
 - R square of 60 percent and above should be achieved
 - Ensure Multi-collinearity does not exist in dependent variables

```
In [77]: ► train.columns
   Out[77]: Index(['UID', 'SUMLEVEL', 'COUNTYID', 'STATEID', 'state', 'state_ab', 'city',
                    'place', 'type', 'primary', 'zip code', 'area code', 'lat', 'lng',
                    'ALand', 'AWater', 'pop', 'male pop', 'female pop', 'rent mean',
                    'rent median', 'rent stdev', 'rent sample weight', 'rent samples',
                    'rent gt 10', 'rent gt 15', 'rent gt 20', 'rent gt 25', 'rent gt 30',
                    'rent gt 35', 'rent gt 40', 'rent gt 50', 'universe samples',
                    'used samples', 'hi mean', 'hi median', 'hi stdev', 'hi sample weight',
                    'hi samples', 'family mean', 'family median', 'family stdev',
                    'family sample weight', 'family samples', 'hc mortgage mean',
                    'hc mortgage median', 'hc mortgage_stdev', 'hc_mortgage_sample_weight',
                    'hc mortgage samples', 'hc mean', 'hc median', 'hc stdev', 'hc samples',
                    'hc sample weight', 'home equity second mortgage', 'second mortgage',
                    'home equity', 'debt', 'second mortgage cdf', 'home equity cdf',
                    'debt_cdf', 'hs_degree', 'hs_degree_male', 'hs degree female',
                    'male age mean', 'male age median', 'male age stdev',
                    'male age sample weight', 'male age samples', 'female age mean',
                    'female age median', 'female age stdev', 'female age sample weight',
                    'female_age_samples', 'pct_own', 'married', 'married snp', 'separated',
                    'divorced', 'split', 'bad debt', 'good debt', 'population density',
                    'median age', 'pop bins'],
                   dtvpe='object')

    | train['type'].unique()
In [78]:
   Out[78]: array(['City', 'Urban', 'Town', 'CDP', 'Village', 'Borough'], dtype=object)
          type dict={'type':{'City':1, 'Urban':2, 'Town':3, 'CDP':4, 'Village':5, 'Borough':6}}
In [79]:
             train.replace(type dict,inplace=True)

★ test.replace(type_dict,inplace=True)

In [80]:
```

```
h train['type'].unique()
In [81]:
    Out[81]: array([1, 2, 3, 4, 5, 6], dtype=int64)
           ▶ | feature cols=['COUNTYID', 'STATEID', 'zip code', 'type', 'pop', 'family mean', 'second mortgage', 'home equity', 'debt
In [82]:
               'pct own', 'married', 'separated', 'divorced']

■ xtrain=train[feature cols]
In [83]:
              vtrain=train['hc mortgage mean']
In [84]:
           xtest=test[feature cols]
              vtest=test['hc mortgage mean']
           ▶ from sklearn.preprocessing import StandardScaler
In [85]:
              from sklearn.linear model import LinearRegression
              from sklearn.metrics import r2 score, mean absolute error, mean squared error, accuracy score
           xtrain.head()
In [86]:
    Out[86]:
                 COUNTYID STATEID zip_code type
                                                   pop family mean second mortgage home equity
                                                                                                   debt hs_degree pct_own married separate
                        53
                                 36
                                       13346
                                                1 5230
                                                        67994.14790
                                                                             0.02077
                                                                                         0.08919 0.52963
                                                                                                                   0.79046 0.57851
               0
                                                                                                           0.89288
                                                                                                                                     0.012
               1
                        141
                                 18
                                       46616
                                                1 2633
                                                        50670.10337
                                                                             0.02222
                                                                                         0.04274 0.60855
                                                                                                           0.90487
                                                                                                                   0.52483 0.34886
                                                                                                                                     0.014
               2
                        63
                                 18
                                       46122
                                                1 6881
                                                        95262.51431
                                                                             0.00000
                                                                                         0.09512 0.73484
                                                                                                           0.94288
                                                                                                                   0.85331 0.64745
                                                                                                                                     0.016
                        127
                                 72
                                         927
                                                2 2700
                                                        56401.68133
                                                                             0.01086
                                                                                         0.01086 0.52714
                                                                                                                   0.65037 0.47257
                                                                                                                                     0.020
               3
                                                                                                           0.91500
                        161
                                 20
                                       66502
                                                1 5637
                                                        54053.42396
                                                                             0.05426
                                                                                         0.05426 0.51938
                                                                                                           1.00000
                                                                                                                   0.13046 0.12356
                                                                                                                                     0.000
```

In [87]:	M	xtest.	head()												
Out[8	7]:		COUNTYID	STATEID	zip_code	type	рор	family_mean	second_mortgage	home_equity	debt	hs_degree	pct_own	married	se
		27321	163	26	48239	4	3417	53802.87122	0.06443	0.07651	0.63624	0.91047	0.70252	0.28217	
		27322	1	23	4210	1	3796	85642.22095	0.01175	0.14375	0.64755	0.94290	0.85128	0.64221	
		27323	15	42	14871	6	3944	65694.06582	0.01316	0.06497	0.45395	0.89238	0.81897	0.59961	
		27324	231	21	42633	1	2508	44156.38709	0.00995	0.01741	0.41915	0.60908	0.84609	0.56953	
		27325	355	48	78410	3	6230	123527.02420	0.00000	0.03440	0.63188	0.86297	0.79077	0.57620	
		4													
In [88]:	M	xtrain	ndardScale _scaled=sc. scaled=sc.	.fit_tra	•		1)								
In [89]:	M	# Run	a model at	t a Natio	on level.	If t	the ac	curacy leve	ls and R square	are not sat	tisfacto	ory procee	d to bel	ow step	•
In [90]:	M	<pre>lr =LinearRegression() lr.fit(xtrain_scaled, ytrain)</pre>													
Out[9	0]:	Linear	Regression	n()											
In [91]:	K	ypred	=lr.predio	t(xtest_	_scaled)										
	R so	quare of	60 percent	and above	should be	e achie	eved								
In [94]:	M	r2_sco	re(ytest,)	/pred)											
Out[9	4]:	0.7381	.8829341344	152											

```
mean absolute error(ytest,ypred)
In [95]:
    Out[95]: 233.86965694140093
          mean_squared_error(ytest,ypred)
In [96]:
    Out[96]: 103818.40486733473
In [97]:  np.sqrt(mean squared error(ytest,ypred))
    Out[97]: 322.20863561880947
          r2 score(ytrain, lr.predict(xtrain scaled))
In [98]:
    Out[98]: 0.734344756627955
          ▶ lr.coef
In [99]:
    Out[99]: array([ -28.50842455, -21.7100607, -22.98370175, -57.43101333,
                      -4.78426374, 558.7402445,
                                                  -0.55955638,
                                                                 70.89657588,
                      12.81271881, -113.18431746, -176.51983734, 8.10645154,
                       5.24214879, -55.79637445])
In [100]:
           ▶ xtrain.columns
   Out[100]: Index(['COUNTYID', 'STATEID', 'zip_code', 'type', 'pop', 'family_mean',
                    'second mortgage', 'home equity', 'debt', 'hs degree', 'pct own',
                    'married', 'separated', 'divorced'],
                   dtype='object')
```

```
Out[101]: array([36, 18, 72, 20, 1, 48, 45, 6, 5, 24, 17, 19, 47, 32, 22, 8, 44, 28, 34, 41, 4, 12, 55, 42, 37, 51, 26, 39, 40, 13, 16, 46, 27, 29, 53, 56, 9, 54, 21, 25, 11, 15, 30, 2, 33, 49, 50, 31, 38, 35, 23, 10], dtype=int64)
```

```
In [102]:
           H for i in [11,1,29]:
              print("State ID-",i)
              X train nation = train[train['COUNTYID'] == i][feature cols]
              v train nation = train[train['COUNTYID'] == i]['hc mortgage mean']
              X test nation = test[test['COUNTYID'] == i][feature cols]
              v test nation = test[test['COUNTYID'] == i]['hc mortgage mean']
              X train scaled nation = sc.fit transform(X train nation)
              X test scaled nation = sc.fit transform(X test nation)
              lr.fit(X train scaled nation,y train nation)
              v pred nation = lr.predict(X test scaled nation)
              print("Overall R2 score of linear regression model for state,",i,":-" ,r2_score(y_test_nation,y_pred_nation))
              print("Overall RMSE of linear regression model for state,",i,":-" ,np.sqrt(mean_squared_error(y_test_nation,y_pre
              print("\n")
              State ID- 11
              Overall R2 score of linear regression model for state, 11 :- 0.7458953509562302
              Overall RMSE of linear regression model for state, 11:- 238.52276788095128
              State ID- 1
```

Overall R2 score of linear regression model for state, 1 :- 0.8086161640279985 Overall RMSE of linear regression model for state, 1 :- 311.53290720356193

Overall R2 score of linear regression model for state, 29 :- 0.7090032526359475 Overall RMSE of linear regression model for state, 29 :- 270.0684126427754

State ID- 29

Data Reporting:

Create a dashboard in tableau by choosing appropriate chart types and metrics useful for the business. The dashboard must entail the following: a. Box plot of distribution of average rent by type of place (village, urban, town, etc.). b. Pie charts to show overall debt and bad debt. c. Explore the top 2,500 locations where the percentage of households with a second mortgage is the highest and percent ownership is above 10 percent. Visualize using geo-map. d. Heat map for correlation matrix. e. Pie chart to show the population distribution across different types of places (village, urban, town etc.)

In []: 🕨	