Digitalna vezja UL, FRI

Predavanje 1

Uvod

- Predavanja gradivo za vaje, kolokvij/izpit
- Vaje:
 - Kviz preverjanje gradiva za vaje
 - Laboratorijske vaje (naloge)
 - Seminar (naloga rešitev poročilo)
 - Orodja: papir, logisim, 'protoboard'
- Spletna učilnica
- Način dela in ocenjevanje

Vsebina predmeta:

- Logične funkcije
- Kombinacijska vezja
- Sekvenčna vezja
- Avtomati: semafor, kavni avtomat, ...

Literatura:

- R.H. Katz, G. Borriello, Contemporary Logic Design, Pearson, 2005
- W. Kleitz: Digital Electronics, A practical approach, Pearson, 2005
- ▶ J.F. Wakerly: Digital Design: Principles and Practices, Prentice-Hall, 2001
- Trebar Mira, Osnove logičnih vezij, 2005

Uvod v računalništvo (1.letnik) - pregled

Številski sistemi

Pozicijski zapis

- Desetiški (D) in dvojiški (B)
- ▶ Pretvorba: D ⇔ B

$$N = \sum_{i=-p}^{n-1} b_i r^i$$

Ponovitev

$$2345,3_{10} = 2*10^3 + 3*10^2 + 4*10^1 + 5*10^0 + 3*10^{-1}$$

Dvojiško število (B):
$$r=2$$
; b: 0, I Pretvorba B => D

$$|1011,1_2| = |1*2^3 + 0*2^2 + 1*2^1 + 1*2^0 + 1*2^{-1} = |1*8 + 0*4 + 1*2 + 1*1 + 1*0.5 = |11,5_{10}|$$

Pretvorba D=>B

$$13:2 = 6 \text{ ost} = 1 \text{ (b}_0)$$

$$6:2 = 3$$
 ost=0 (b₁)

$$3:2 = 1 \text{ ost} = 1 \text{ (b}_2)$$

$$1:2 = 0$$
 ost= 1 (b₃) Rezultat: 1101_2

Nepredznačena števila:

n − število bitov

Območje števil: $0 \le N \le 2^n - 1$

- Predznačena števila:
 - ▶ n število bitov
 - Bit b_{n-1} (najbolj levi bit) predstavlja predznak po pravilu
 - $b_{n-1} = 0 \rightarrow pozitivno število$
 - b_{n-1} = I → negativno število
 - Preostali biti predstavljajo vrednost (velikost) števila
 - Zapis: Dvojiški komplement:

Območje števil: $-(2^{n-1}) \le N \le (2^{n-1} - 1)$

Binarna logika:

True/False, T/F, I/O

$$Izhod = 1$$
, če je $x=0$

Izhod =
$$0$$
, če je x= 1

Konjunkcija: IN (AND):

$$Izhod = 1$$
, če je $x=y=1$

Izhod = 0, sicer

Disjunkcija: ALI (OR):

$$Izhod = 0$$
, če je $x=y=0$

Izhod = 1, sicer

$$X = X = X' = \overline{X}$$

$$x & y = x \land y = x.y = x y x$$

$$x \lor y = x + y$$

- Gradnja digitalnih vezij (računalniških vezij-?)
- Kombinacijska
- Sekvenčna
- Algoritem: vsota produktov
- Vezje za primerjanje
- Seštevalnik
- Kontrolna vezja
- Izbirnik
- Dekodirnik

Računalniški sistem (Von Neumannova arhitektura)

- ▶ CPE
 - ALE
 - Krmilna enota
 - Registri
 - Dekodirnik ukazov
- Pomnilnik
- V/I naprave
- Izvajanje ukazov zbirnik

P1 Vsebina

- Dvojiški številski sistem
 - Predstavitev
 - Računanje
- ▶ Kode:
 - ASCII
 - Grayeva
- Booleova algebra

Dvojiški številski sistem

Zapis števil od 0 – 31 v dvojiškem številskem sistemu: 00000 – 11111

Desetiško	Dvojiškio	Desetiško	Dvojiškio	Desetiško	Dvojiškio	Desetiško	Dvojiškio
0	00000	8	01000	16	10000	24	11000
I	00001	9	01001	17	10001	25	11001
2	00010	10	01010	18	10010	26	11010
3	00011	П	01011	19	10011	27	11011
4	00100	12	01100	20	10100	28	11100
5	00101	13	01101	21	10101	29	11101
6	00110	14	01110	22	10110	30	11110
7	00111	15	01111	23	10111	31	11111

Pretvorba: B => D (n=5, $2^5 = 32$), števila od 0 do 3 l uporabimo zapis: $1*2^4 + 1*2^3 + 1*2^2 + 1*2^1 + 1*2^0 = 16+8+4+2+1$ $01001 = 0*2^4 + 1*2^3 + 0*2^2 + 0*2^1 + 1*2^0 = 8 + 1 = 9$

Nepredznačena števila

- Število bitov: n
- ▶ Območje števil: $0 \le N \le 2^n 1$
- Seštevanje: Z = X + Y, prenos C
- ▶ D: $X=5,Y=3 \rightarrow Z=5+3=8, C=0$
- B: X=0101,Y=0011 Z=1000, C=0

- ▶ D: X=5,Y=3 ->Z=5-3=2, B=0
- > B: X=0101,Y=0011 Z=0010, B=0
- Množenje: P = X *Y

Predznačena števila

- Območje: $-(2^{n-1}) \le N \le (2^{n-1} 1)$
- Pretvorba v Dvojiški komplement:
 - X Dvojiško število
 - X'- eniški komplement
 - Y= X' + I
- ▶ Primer: $X=6 \rightarrow Y=-6$
 - X = 0110
 - > X'= 1001
 - Y = 1001 + 1 = 1010
- ▶ Primer: $X=-3 \rightarrow Y=3$
 - X = 1101
 - > X'= 0010
 - Y = 0010 + 1 = 0011

Desetiško število	Dvojiški zapis	Desetiško število	Dvojiški zapis
0	0000	-8	1000
1	0001	-7	1001
2	0010	-6	1010
3	0011	-5	1011
4	0100	-4	1100
5	0101	-3	1101
6	0110	-2	1110
7	0111	-1	1111

Preliv (V-overflow) = I, če je

- rezultat vsote števil z enakim predznakom nasprotnega predznaka:

$$(+,+) \rightarrow -$$
 ali $(-,-) \rightarrow +$ ali

 $C_n \neq C_{n-1}$ - zadnja dva prenosa sta različna

▶ Seštevanje: Z=X+Y, prenos C, preliv V

D:
$$X=5,Y=3 \rightarrow Z=5+3=-8,V=1$$

Odštevanje: D = X-Y =

Seštevanje:
$$= X + (-Y)$$

D:
$$X=5,Y=-3 -> Z=5+(-3)=2,V=0$$

B:
$$X=0101,Y=1101$$

 $Z=0010,V=0$

Naloge

Kode

I. ASCII

- A) Bit 7 = 0 osnovna oblika
- B) Bit 7 = I razširjena ASCII koda, definiranih je dodatnih 128 znakov

b7	b6	b5	b4	b3	b2	b1	b0
0	1	0	0	0	0	0	1
27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	20

Zapis:

Znak A: $0100\ 0001 = 41(hex)$

2. Grayeva koda

Vsaka koda v naslednji vrstici se od prejšnje razlikuje samo na enem bitu.

	В			3
0	0	0	0	0 1
I	0	Ι	0 ↑	→
2	Ι	0	→	I
3	I	I	I	0

Booleova algebra

- George Boole, 1815-1864
- Matematično orodje za analizo in sintezo digitalnih logičnih vezij
- Operacije: not, and, or
- Postulati, zakoni:
 - Množica X vsebuje vsaj dva elementa $x y \in X$, tako da velja $x \neq y$.
 - ▶ Zaprtost: Za vsak $x; y \in X$ velja: $xvy \in X$, $x.y \in X$
 - Komutativnost
 - Distributivnost
 - Obstoj nevtralnih elementov. 0, l
 - Komplementarnost: x, x'
- Izreki:
 - Asociativnost
 - Dvojna negacija
 - DeMorganov izrek
 - ...

Komutativni zakon

$$x.y = y.x$$

 $x \lor y = y \lor x$

Distributivni zakon

$$x.(y \lor z) = (x.y) \lor (x.z) = x.y \lor x.z$$

 $x \lor (y.z) = (x \lor y).(x \lor z)$

Nevtralni element - Konstanta (0,1):

$$x.0 = 0$$
$$x \lor 0 = x$$

$$x.1 = x$$
$$x \lor 1 = 1$$

Х	0	x.0=0	x∨0=x
0	0	0	0
1	0	0	1

Х	1	x.1=x	xv1=1
0	1	0	1
1	1	1	1

► Komplement (negirana x):
$$x' = \bar{x}$$

$$x.x' = 0$$

$$x \vee x' = 1$$

X	x'	x.x'=0	x∨x'=1
0	1	0	1
1	0	0	1

• Dvojna negacija (x): x'' = x

$$x'' = (x')' = x$$

D:
$$x=0$$
: $(0')'=(1)'=0$

$$x=1: (1')'=(0)'=1$$

X	х'	х",
0	1	0
1	0	1

Vsebovanost:

$$x.(x \lor y) = x$$

$$x \lor (x.y) = x$$

X	у	xvy	x.(xvy)=x
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

Enakost

$$X.X = X$$

 $X \lor X = X$

Asociativni zakon

$$(x.y).z = x.(y.z)$$

 $(x \lor y) \lor z = x \lor (y \lor z)$

- velja za n členov
- DeMorganov izrek

$$\overline{X.y} = \overline{X} \vee \overline{y}$$

$$\overline{X.y.z} = \overline{X} \vee \overline{y} \vee \overline{z}$$

$$\overline{X} \vee \overline{y} = \overline{X.y}$$

$$\overline{X} \vee \overline{y} \vee \overline{z} = \overline{X.y.z}$$
- velja za n členov

Priprava za laboratorijske vaje

List A4:

- Tabela logičnih operacij:
 - not
 - and
 - oor
- Booleova algebra:
 - Postulati
 - Izreki

Zapiske obvezno prinesete na 1. laboratorijske vaje.

Naloge

Pretvorba števil

$$52_{10} = 110100_{2}$$
 $116_{10} = 01110100_{2}$
 $110010_{2} = 50_{10}$
 $10110_{2} = 22_{10}$

Dvojiški komplement:

$$25_{10} = 011001_2 = > 100110 + 1 = 100111_2 = -25_{10}$$

 $01011_2 = 11_{10} = > 10100 + 1 = 10101_2 = -11_{10}$

Seštejte števili X in Y in določite prenos C in preliv V.

Ali je rezultat pravilen, če sta X in Y:

- a) nepredznačeni števili?
- b) predznačeni števili?

Poenostavite izraze z uporabo Booleove algebre

- **B)** $x \lor 1 = 1$ $(x \lor 1).1 = (x \lor 1).(x \lor x) = x \lor 1.x = x \lor x = 1$