M1 UE2Probabilités

Convergence

Inégalité de Bienaymé-Tchebitchev : $P([|X| > \varepsilon]) \leq \frac{1}{\varepsilon^2} \mathbb{E}(X^2)$

Convergences

- $(X_n)_n$ converge en probabilité vers X si $\lim_{n \to +\infty} P([|X_n X| > \varepsilon]) = 0$ pour tout $\epsilon > 0$. $(X_n)_n$ converge en loi vers X si $\lim_{n \to +\infty} F_{X_n}(x) = F_X(x)$ pour tout x en lequel F_X est continue, ce qui équivaut à $\Phi_{X_n}(t) \xrightarrow[n \to +\infty]{} \Phi_X(t)$ pour tout t lorsque Φ_X est continue en 0 (ou bien à $G_{X_n}(s) \underset{n \to +\infty}{\longrightarrow} G_X(s)$ pour tout $s \in]-1,1[$, mais ceci seulement si X_n et Xsont entières), où l'on a posé $\Phi_X(t) = \mathbb{E}(e^{itX})$ (et $G_X(s) = \mathbb{E}(s^X)$).
- $(X_n)_n$ converge en moyenne quadratique vers X si $\lim_{n \to +\infty} \mathbb{E}((X_n X)^2) = 0$.
- $(X_n)_n$ converge presque sûrement vers X si P(C) = 0 où $C = \{\omega : X_n(\omega) \neq X(\omega)\}.$

Propriété: La convergence p.s. et la convergence m.q. entraînent la convergence en probabilité, qui entraîne la convergence en loi.

La convergence en loi vers une variable aléatoire constante équivaut à la convergence en probabilité vers cette constante.

 $\underline{Propriét\acute{e}}:$ Si $X_n\to X,\,Y_n\to Y$ p.s. (resp. en probabilité) et si $g:\mathbb{R}^2\to\mathbb{R}$ est continue, alors $g(X_n, Y_n) \to g(X, Y)$ p.s. (resp. en probabilité).

<u>Th de Scheffé</u>: Si pour tout n, X_n est absolument continue de densité f_{X_n} , si Q est absolument continue de densité f et si $f_{X_n} \to f$, alors $(X_n)_n$ converge en loi vers une variable X de loi Q.

Loi forte des grands nombres : Si $(X_n)_n$ est une suite de v.a.r. indépendantes de même loi, d'ordre 2 et d'espérance m, si $Z_n = \frac{1}{n}(X_1 + \cdots + X_n)$, alors $(Z_n)_n$ converge p.s. vers m.

<u>Théorème Central Limite</u>: Si $(X_n)_n$ est une suite de v.a.r. indépendantes de même loi d'espérance μ et de variance σ^2 , si $Z_n = \frac{1}{n}(X_1 + \dots + X_n)$, alors $\left(\frac{\sqrt{n}(Z_n - \mu)}{\sigma}\right)_n$ converge en loi vers une variable V de loi Normale $\mathcal{N}(0,1)$.

Approximations

- de la loi hypergéométrique $\mathcal{H}(n, Np, N)$ par la loi binomiale $\mathcal{B}(n, p)$ si $N \geq 10n$.
- de la loi binomiale $\mathcal{B}(n,p)$ par la loi de Poisson $\mathcal{P}(np)$ si p < 0, 1, n > 30 et np < 15.
- de la loi de Poisson $\mathcal{P}(\lambda)$ par la loi normale $\mathcal{N}(\lambda,\lambda)$ si $\lambda \geq 15$.
- de la loi binomiale $\mathcal{B}(n,p)$ par la loi normale $\mathcal{N}(np,np(1-p))$ si $n \geq 30, np \geq 15$ et np(1-p) > 5.

Exercices Chapitre 9

1. * Déterminer la fonction génératrice d'une v.a. Z de loi de Poisson $\mathcal{P}(\lambda)$ et d'une v.a. X_n de loi Binomiale $\mathcal{B}(n, p_n)$.

Montrer que, si $\lim_{n} p_n = 0$ et si $\lim_{n} np_n = \lambda$, la suite $(X_n)_n$ converge en loi vers Z.

Application: Une entreprise fabrique des produits dont 1% sont défectueux ; les produits sont vendus par paquets de 100 et garantis à 98%. Quelle est la probabilité p que cette garantie tombe en défaut ?

2. ** Soit X_n une v.a.r. de loi binomiale négative de paramètres n et p_n définie, pour tout $k \in \mathbb{N}$, par :

$$P([X_n = k]) = C_{n+k}^k p_n^n (1 - p_n)^k$$

On suppose que $\lim_{n\to\infty} n(1-p_n) = \lambda > 0$.

Montrer que la suite $(X_n)_{n\in\mathbb{N}^*}$ converge en loi vers une v.a.r. de loi de Poisson $\mathcal{P}(\lambda)$.

3. ** Déterminer la fonction caractéristique d'une v.a. Z de loi uniforme sur [0,1] et d'une v.a. discrète X_n de loi équiprobable sur $\{0,\frac{1}{n},\cdots,\frac{n-1}{n},1\}$.

Montrer que la suite $(X_n)_n$ converge en loi vers Z.

4. * Soit f la densité d'une v.a.r. absolument continue X et soit f_n la fonction définie sur \mathbb{R} par :

$$f_n(t) = nf(nt)$$

- (a) Montrer que f_n est une densité.
- (b) Soit X_n une v.a.r. absolument continue de densité f_n . Montrer que la suite de v.a.r. $(X_n)_{n\geq 1}$ converge en loi vers la v.a.r. nulle.
 - **5.** ** Soit $\alpha \in]0,1[$ et $(X_n)_{n\geq 1}$ une suite de v.a.r. de lois géométriques $\mathcal{G}(\alpha/n)$.

Montrer que la suite $(\frac{X_n}{n})_{n\geq 1}$ converge en loi vers une v.a.r. dont on précisera la loi.

- **6.** ** Soit $(X_n)_{n\geq 1}$ une suite de v.a.r. indépendantes de même loi de Poisson $\mathcal{P}(\lambda)$.
- (a) Déterminer la loi de $U_n = X_1 + \cdots + X_n$ et calculer $P([U_n \le n])$.
- (b) On pose $Z_n = \frac{U_n \lambda n}{\sqrt{\lambda n}}$. Montrer que la suite $(Z_n)_{n \geq 1}$ converge en loi vers une v.a.r. dont on précisera la loi. En remarquant que l'on a :

$$P([U_n \le n]) = P\left(\left[Z_n \le \frac{(1-\lambda)n}{\sqrt{\lambda n}}\right]\right)$$

en déduire :

$$\lim_{n \to \infty} e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!} = \frac{1}{2}$$

- 7. * Soit X une v.a.r. à valeurs dans $[1, +\infty[$. On suppose qu'il existe un réel λ strictement positif tel que, pour tout $x \ge 1$, on ait $P([X \ge x]) = x^{-\lambda}$.
- (a) Montrer que les v.a.r. X et $Y = \ln X$ sont absolument continues et déterminer leur densité.
- (b) Soit $(X_n)_{n\geq 1}$ une suite de v.a.r. indépendantes de même loi que X et soit $U_n = (X_1X_2\cdots X_n)^{1/n}$. Montrer que les suites $(\ln U_n)_{n\geq 1}$ et $(U_n)_{n\geq 1}$ convergent en loi.
- 8. ** Soit $(X_n)_{n\geq 1}$ une suite de v.a.r. indépendantes de même loi de Bernoulli $\mathcal{B}(1/2)$. On pose:

$$T_n = \sum_{i=1}^n \frac{X_i}{2^i}$$

Montrer que $(T_n)_{n\geq 1}$ converge en loi vers une v.a.r. de loi uniforme sur [0,1].

- **9.** * Soit $(X_n)_{n\geq 1}$ une suite de v.a.r. telles que $X_n(\Omega)=[1,n]$ et $P([X_n=k])=\lambda_n k$.
- (a) Déterminer λ_n .
- (b) Quelle est la limite en loi de la suite $(Y_n)_{n\geq 1}$ où $Y_n=\frac{X_n}{n}$?
- 10. ** Un sac contient 100 billes dont 36 sont rouges et les autres sont bleues. Une épreuve consiste à tirer 16 fois de suite une bille avec remise. Soit X la v.a.r. égale au nombre de boules rouges tirées.

Estimer
$$P([|X - \mathbb{E}(X)| \ge 2\sqrt{V(X)}])$$
.

11. ** Une urne contient 3 boules numérotées 1, 2, 3. On effectue une suite de 100 tirages indépendants avec remise. On note X_i le numéro de la boule tirée au *i*-ème tirage et on pose $S = \sum_{i=1}^{100} X_i$.

Indiquer le plus petit nombre s que l'on peut trouver au moyen du théorème de la limite centrale tel que:

$$P([200 - s \le S \le 200 + s]) \ge 0,9$$

12. * Une enquète statistique portant sur 100 000 automobilistes débutants a révélé que 10 d'entre eux avaient provoqué un accident mortel dans leur première année de conduite.

On choisit 100 débutants au hasard et on désigne par X le nombre d'entre eux qui ont provoqué un accident mortel au cours de leur première année de conduite.

Calculer
$$P([X=0])$$
 et $P([X=2])$.

13. ** Un joueur lance une pièce équilibrée. Lorsqu'il obtient "pile", il gagne 1euro et lorsqu'il obtient "face", il perd 1euro.

Quel est le nombre maximal de lancers à effectuer pour que le joueur ait 95% de chances de perdre au plus $20 \mathrm{euros}$?

- 14. *** À la veille d'une élection, 49% de la population votent pour A et 51% votent pour B. On effectue une enquète sur 2n + 1 personnes afin de pouvoir faire un pronostic sur le résultat des élections.
- (a) Quelle est la probabilité p_n pour que le pronostic soit faux?
- (b) Montrer que pour n assez grand, il existe a_n tel que $p_n \simeq \Phi(a_n)$.
- (c) Déterminer n pour que $p_n \ge 0, 1$.
 - 15. * Un dé régulier est lancé 9000 fois.

Déterminer la probabilité d'obtenir entre 1400 et 1600 fois la face 6.

16. * On dispose de 1000 pots de peinture. La probabilité qu'un pot soit défectueux est de 0.2%.

Donner la probabilité qu'au moins 4 pots soient défectueux.

17. * On fait n parties de "pile ou face".

A l'aide de l'approximation Normale de la loi Binomiale, déterminer n pour que l'on puisse affirmer que la fréquence d'apparition de "pile" soit comprise entre 0,45 et 0,55 avec une probabilité au moins égale à 0,9.

 ${\bf 18.}\,$ ** Une entreprise compte 300 employés. Chacun d'eux téléphone en moyenne 6 minutes par heure.

Quelle est le nombre de lignes que l'entreprise doit installer pour que la probabilité que toutes les lignes soient utilisées au même instant soit au plus égale à 0,025 ?

19. *** On procède à des lancers successifs d'une paire de dés non pipés. Soit X_i la v.a.r. égale à la somme des 2 numéros obtenus à la suite du i-ème lancer.

Combien de lancers sont nécessaires pour obtenir avec une probabilité supérieure à 0.95 une moyenne des résultats X_i différant de 7 de moins de 0.1?

20. * Dans un programme de calcul, on décide d'utiliser k chiffres significatifs après la virgule et d'arrondir tous les résultats à $\frac{1}{2}10^{-k}$ près. On suppose que l'on effectue 10^6 opérations successives, que les erreurs commises pour chacune sont indépendantes, de loi uniforme sur [-a,a], où $a=\frac{1}{2}10^{-k}$. On note S l'erreur commise sur le résultat final et on veut calculer $P([|S| \le 10^3 a])$.

Soit X_i l'erreur commise à la *i*-ème opération (donc $S = \sum_{i=1}^{10^6} X_i$).

En considérant 10^6 comme "grand", montrer que $\frac{\sqrt{3}S}{10^3a}$ suit approximativement la loi Normale $\mathcal{N}(0,1)$ et conclure.

- 21. ** Soit f définie sur [a,b], à valeurs dans $[m,M]\subset \mathbb{R}_+$. On note $D=[a,b]\times [m,M], \ A=\{(x,y)\in D\ ;\ f(x)\geq y\}$ et $p=\frac{aire\ de\ A}{aire\ de\ D}$. Pour $k\in \mathbb{N}^*$, on considère un couple de v.a. (X_k,Y_k) de loi uniforme sur D, et on définit Z_k par : $Z_k=\left\{ \begin{array}{l} 1\ {\rm si}\ Y_k\leq f(X_k)\\ 0\ {\rm sinon}. \end{array} \right.$ On pose $\overline{Z_n}=\frac{Z_1+\cdots+Z_n}{n}$. Les v.a. $X_1,\cdots,X_n,\cdots,Y_1,\cdots,Y_n,\cdots$ sont supposées indépendantes.
 - (a) Calculer $\mathbb{E}(Z_k)$, $\operatorname{var}(Z_k)$, $\mathbb{E}(\overline{Z_n})$, $\operatorname{var}(\overline{Z_n})$.
- (b) En utilisant la loi des grands nombres, montrer que $\overline{Z_n} \to p$.
- (c) Avec l'inégalité de Bienaymé-Tchebychev, trouver n tel que $P\left(\left[\left|\overline{Z_n}-p\right|>\frac{1}{100}\right]\right)<\frac{5}{100}$.
- (d) Avec le théorème central limite, déterminer pour n "grand" la loi approximative de $\overline{Z_n}$.
- 22. *** Un point matériel se déplace dans \mathbb{R}^2 en effectuant à chaque instant n, un trajet de longueur a fixée dans une direction choisie arbitrairement. Ainsi, si les v.a. X_n et Y_n sont les coordonnées du point à l'instant n, on a $\left\{ \begin{array}{l} X_{n+1} X_n = a\cos\Theta_{n+1} \\ Y_{n+1} Y_n = a\sin\Theta_{n+1} \end{array} \right.$, où les v.a. Θ_n sont indépendantes de loi uniforme sur $[0,2\pi[$. On suppose que $X_0 = Y_0 = 0$.
- (a) Calculer $\mathbb{E}(\cos \Theta_k)$, $\mathbb{E}(\sin \Theta_k)$, $\mathbb{E}(\cos^2 \Theta_k)$, $\operatorname{var}(\cos \Theta_k)$. En déduire $\mathbb{E}(X_n)$, $\mathbb{E}(Y_n)$, $\operatorname{var}(X_n)$, $\operatorname{var}(Y_n)$, $\operatorname{cov}(X_n, Y_n)$.
- (b) On suppose maintenant n "grand", et on pose $\left\{ \begin{array}{l} X_n = R_n \cos T_n \\ Y_n = R_n \sin T_n \end{array} \right. \text{ Déterminer la} \\ \text{loi approximative de } (X_n, Y_n) \text{ [On généralisera le Théorème Central Limite]. En} \\ \text{déduire celle de } (R_n, T_n), \text{ celle de } R_n \text{ et celle de } T_n. \text{ Calculer } \mathbb{E}(R_n), \text{ } \text{var}(R_n) \text{ et} \\ P([R_n > r]). \end{array}$