This is a collection of some the questions a student would have encountered before Pre-Algebra. Do your best to answer each question. You can use additional sheets of paper. If you don't know how to solve a problem then now is a great time to learn.

Is my child ready for Pre-Algebra?

Correct Answers	Ready?
14–15	Oh yeah. They're ready.
12-13	Yes. There might be a few ideas to review.
10-11	Probably. Go over the solutions together. Is your child familiar with the ideas
	and techniques?
5-8	There appear to be some gaps that should be filled. Are you willing to put in
	the necessary time before class starts to fill those gaps?
0-5	Unlikely. That's ok. These were not easy questions. Use this as an opportunity
	to identify things that you can work on to get ready.

Consider Grade 6 Math if Pre-Algebra seems beyond the level of your student.

1. How many 4×4 squares can fit inside a rectangle with a height of 36 and width of 24?

Solution: Divide the height and width each by 4 to see that the squares will form a rectangle consisting of 9 squares by 6 squares for a total of $9 \times 6 = 54$ squares.

2. Write the prime factorization of 360. (I.e. write 360 as a product of prime numbers.)

Solution:
$$360 = 2 \times 2 \times 2 \times 3 \times 3 \times 5 = 2^3 \times 3^2 \times 5$$
.

3. A distance runner ran 4 km in 12 min. What was their speed in km per hour?

Solution: We need to convert the speed $\frac{4 \, \mathrm{km}}{12 \, \mathrm{min}}$ to km/h. $\frac{4 \, \mathrm{km}}{12 \, \mathrm{min}} \times \frac{60 \, \mathrm{min}}{1 \, \mathrm{h}} = \frac{20 \, \mathrm{km}}{\mathrm{h}} = 20 \, \mathrm{km/h}$. There are many other ways to organize the work on this problem.

4. Compute the value of $32.35 \div 0.2$.

Solution: Long division will work. An alternative would be to note that dividing by 0.2 is the same as multiplying by its reciprocal $\frac{1}{0.2} = \frac{1}{1/5} = 5$. $32.35 \div 0.2 = 32.35 \times 5 = 161.75$

5. What is the area of the figure below?

Solution: The unlabeled horizontal edge has a length of 8 cm (to make the total width 16 cm), and the unlabeled vertical edge has a length of 4 cm (to make the total height 10 cm). We can break the whole figure into two rectangles of size $8 \text{ cm} \times 10 \text{ cm}$ and $8 \text{ cm} \times 4 \text{ cm}$, so the total area is $80 \text{ cm}^2 + 32 \text{ cm}^2 = 112 \text{ cm}^2$.

6. What is 65% of 220?

Solution: Multiply 220×0.65 . It might be easier to convert $65\% = \frac{65}{100}$ first, so that

$$\begin{aligned} 220 \times 0.65 &= \frac{220}{1} \times \frac{65}{100} \\ &= \frac{11 \times 20}{1} \times \frac{5 \times 13}{5 \times 20} \\ &= \frac{11 \times \cancel{20}}{1} \times \cancel{\cancel{5} \times \cancel{20}} \\ &= \frac{11 \times 13}{1} \\ &= 143. \end{aligned}$$

7. What is the least common multiple of 24 and 15?

Solution: We could list multiples of each number and find the lowest positive number that is in both lists. Another way is to identify the prime factors.

 $24 = 2 \times 2 \times 2 \times 3$ and $15 = 5 \times 3$. The least common multiple needs all the prime factors (shared or unique), so the least common. multiple of 24 and 15 is $2 \times 2 \times 2 \times 3 \times 5 = 120$.

8. What value of x makes the equation below true?

$$x - 5.7 = 13\frac{1}{2}$$

Solution: The value of x must be 5.7 units bigger than $13\frac{1}{2}$. Thus

$$x = 5.7 + 13\frac{1}{2}$$

$$= 5\frac{7}{10} + 13\frac{5}{10}$$

$$= 18\frac{12}{10}$$

$$= 18 + 1\frac{2}{10}$$

$$= 19\frac{2}{10}$$

$$= 19\frac{1}{5} \quad (= 19.2).$$

9. A 24 ft long board is cut into pieces that are $1\frac{1}{3}$ of a foot in length. How many total pieces are obtained?

Solution: We're dividing a 24 ft board, so we carry out the calculation $\frac{24}{\frac{4}{3}} = \frac{\frac{24}{1}}{\frac{4}{3}} = \frac{24}{1} \times \frac{3}{4} = \frac{72}{4} = 9$. There will be 18 total pieces.

10. A scale shows that 9 bananas weigh the same as 6 apples. How many bananas will weigh the same as 4 apples?

Solution: By weight 9 bananas are the same as 6 apples so 3 bananas weigh the same as 2 apples. If you double the apples, you must double the bananas to keep a matching weight, so 4 apples weigh as much as 6 bananas.

11. Find the mean, median, and mode of the numbers 1, 2, 7, 5, 15, 2, 3.

Solution: The mean is the average: $\frac{1+2+7+5+15+2+3}{7} = 5$.

The median is the middle value of the ordered list 1, 2, 2, 3, 5, 7, 15, so the median is 3.

The mode is the most common value: 2.

12. A rectangular prism has a volume of $36 \,\mathrm{cm}^3$. It's height is $4 \,\mathrm{cm}$ and its base is square? What is the total surface area of all 6 sides of the prism?

Solution: Call the length of the base x. Volume is length times width times height, so $36 = 4 \times x \times x$. Divide both sides of the equation by 4 to get $9 = x^2$. Then x = 3 is the only positive solution. The top and bottom are each $3 \text{ cm} \times 3 \text{ cm}$ and each of the four sides are $3 \text{ cm} \times 4 \text{ cm}$, so the total surface area is $2 \times 9 \text{ cm}^2 + 4 \times 12 \text{ cm}^2 = 66 \text{ cm}^2$.

13. A factory can produce 4 robots in 30 minutes. How many hours will it take to produce 26 robots.

Solution: The production rate is $\frac{30\,\mathrm{min}}{4\,\mathrm{robot}} = \frac{60\,\mathrm{min}}{8\,\mathrm{robot}} = \frac{1}{8}\,\frac{\mathrm{h}}{\mathrm{robot}}$. Multiply by 26 robots to get the total time. $\frac{1}{8}\,\frac{\mathrm{h}}{\mathrm{robot}} \times 26\,\mathrm{robot} = \frac{26}{8}\,\mathrm{h} = 3\frac{1}{4}\,\mathrm{h}$ or 3 hours and 15 minutes.

14. For a fundraiser, a club sold two types of candles: red and green. Three fifths of the candles they sold were green. If they sold 48 green candles, how many red candles did they sell?

Solution: If 48 is $\frac{3}{5}$ of all the candles, then divide 48 by 3 to see that $\frac{1}{5}$ of the candles is $\frac{48}{3} = 16$. The total number of candles is $16 \times 5 = 80$, so the remaining $32 \ (= 80 - 48)$ candles were red.

15. The graph below shows the total cost, c in dollars, for renting a bike for t hours.

Write an equation that relates c and t. Then explain the meaning of the point on the graph using correct units.

Solution: For each hour of time, the cost rises by \$12, so c = 12t. The point (3,36) on the graph shows that it costs \$36 to rent a bike for 3 hours.