

Teoria dos Grafos

Digrafos

versão 1.4

Fabiano Oliveira fabiano.oliveira@ime.uerj.br

digrafo representando	vértice	arco
comunicação via e-mail	pessoa	envio
web	página	link
transporte	interseção de estradas	trecho de estrada de sentido único
planejamento	tarefas	precedência
doença infecciosa	pessoa	transmissão
fluxo de execução de programas	comando	próxima instrução
•••	•••	•••

Def.: D = (V, E) é um digrafo se V é um conjunto de elementos (cada elemento é chamado vértice) e E é uma família de pares ordenados de vértices. Cada par é chamado arco ou aresta direcionada ou simplesmente aresta.

 Uma representação usual de digrafos finitos é através de um gráfico onde um vértice v ∈ V(D) é representado por um círculo rotulado como "v" e um arco uv ∈ E(D) por um segmento de linha orientado com origem em u e destino em v

 Def.: O grafo G subjacente a um digrafo D é o grafo tal que:

$$V(G) = V(D) e E(G) = E(D)$$

 Def.: Um digrafo D é chamado uma orientação do grafo subjacente a D.

Exercício:
 Quantas orientações distintas um grafo G possui?

- Muitos dos conceitos de grafos estendem-se a digrafos de forma natural. Por exemplo:
 - subdigrafo / superdigrafo
 - passeio/trilha/caminho/ciclos orientados
 - distância em digrafos

Outros conceitos exigem uma redefinição.

- Contudo, há diferenças substanciais em alguns conceitos. Por exemplo:
 - o não necessariamente d(u,v) = d(v,u) em digrafos
 - existem orientações de P_n que não possuem caminhos direcionados maiores do que um
 - existem orientações de ciclos que não possuem ciclos direcionados

Def.: A vizinhança de saída (resp. de entrada) de um vértice v de um digrafo D, denotado por N⁺(v) (resp. N⁻(v)), é o conjunto de vértices w tais que vw ∈ E(D) (resp. wv ∈ E(D)).

$$N^{+}(a) = \{a, b\}$$

 $N^{-}(a) = \{a\}$
 $N^{+}(c) = \{d, e, f\}$
 $N^{-}(c) = \{b, d\}$

Def.: O grau de saída (resp. de entrada) de um v ∈ V(D), denotado por d⁺(v) (resp. d⁻(v)), é d⁺(v) = |N⁺(v)| (resp. d⁻(v) = |N⁻(v)|)

$$d^{+}(a) = 2, d^{-}(a) = 1$$

 $d^{+}(c) = 3, d^{-}(c) = 2$

Exercício:

Quanto vale

 $\sum \{ d^+(v) : v \in V(D) \}?$

 $\sum \{ d^{-}(v) : v \in V(D) \}$?

- Def.: O grau máximo de saída (resp. de entrada) de G, denotado por Δ⁺(D) (resp. Δ⁻(D)), é Δ⁺(D) = máx { d⁺(v) : v ∈ V(D) } (resp. Δ⁻(D) = máx { d⁻(v) : v ∈ V(D) })
- Def.: O grau mínimo de saída (resp. de entrada) de G, denotado por δ⁺(D) (resp. δ⁻(D)), é δ⁺(D) = min { d⁺(v) : v ∈ V(D) } (resp. δ⁻(D) = min { d⁻(v) : v ∈ V(D) })
- Por definição, $\delta^+(D) \le \Delta^+(D)$, $\delta^-(D) \le \Delta^-(D)$.

$$\delta^{+}(D) = 1, \Delta^{+}(D) = 3$$

 $\delta^{-}(D) = 0, \Delta^{-}(D) = 4$

• Exercícios:

- Mostre que $\delta^+(D) \leq \Delta^-(D)$
- Mostre que $\delta^{-}(D) \leq \Delta^{+}(D)$
- Mostre digrafos onde:

Teorema:

Seja D um digrafo e G o grafo subjacente. Existe um um caminho direcionado em D de tamanho χ (G)-1.

$$\chi(G) = 4$$

Corolário:

Se D é um digrafo que é uma orientação de um grafo completo (D é chamado de *torneio*), então existe um caminho Hamiltoniano direcionado em D.

Exercícios

- 1. Seja D um digrafo acíclico. Mostre que o digrafo obtido pela reversão de todas as orientações das arestas de D também é acíclico.
- Uma orientação D das arestas de um grafo G é chamada de transitiva sempre que for satisfeita a seguinte condição: se ab, bc ∈ E(D), então ac ∈ E(D), para quaisquer vértices a,b,c.
 - a. Existe orientação transitiva dos grafos abaixo?
 - b. Se ab ∈ E(G), argumente que se não existir orientação transitiva D tal que ab ∈ E(D), então também não existe orientação transitiva D tal que ba ∈ E(D).

- 3. Argumente se todos os grafos dentro cada cada classe abaixo, ou apenas uma parte deles, admitem orientação transitiva (ver exercício 2):
 - a. ciclos
 - b. grafos completos
 - c. grafos bipartidos
- 4. Seja D um digrafo acíclico:
 - a. Mostre que $\delta^-(D) = 0$ e $\delta^+(D) = 0$
 - b. Mostre que existe uma ordem $v_1,...,v_n$ de V(D) tal que, para todo $1 \le i$ $\le n$, toda aresta com destino a v_i tem sua origem em algum vértice em $\{v_1, ..., v_{i-1}\}$
- 5. Qual o maior número de arestas que pode existir num digrafo acíclico com n vértices?

6. Mostre que num grupo de N amigos, onde se verifica que a cada par a, b de indivíduos, a conhece b ou b conhece a, podemos enumerar tais amigos tal que " p_1 conhece p_2 que conhece p_3 , que conhece ... que conhece p_N ".