МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

ІКНІ Кафедра **ПЗ**

3BIT

до лабораторної роботи № 2 **на тему**: "Синтез та моделювання шифраторів і дешифраторів та мультиплексорів і демультиплексорів в системі Proteus" **з дисципліни**: "Архітектура комп'ютера"

Лектор: доцент кафедри ПЗ Крук О.Г.

 $\begin{array}{c} \textbf{Виконав:} \\ \textbf{студент групи ПЗ-22} \\ \textbf{Коваленко Д.М.} \end{array}$

Прийняв: доцент кафедри ПЗ Крук О.Г.

Тема. Синтез та моделювання шифраторів і дешифраторів та мультиплексорів і демультиплексорів в системі Proteus.

Мета. Закріпити практичні навики моделювання логічних схем в середовищі системи програм Proteus; поглибити знання про основні типи комбінаційних схем: шифратори, дешифратори, мультиплексори і демультиплексори; опанувати їх синтез; дослідити роботу синтезованих схем в системі програм Proteus.

Індивідуальне завдання

Для П3-22											
	$\mathbf{Z}_0/\mathbf{a}_0$	0	1	0	1	0	1	0	1		
Nº	z_1/a_1	0	0	1	1	0	0	1	1	f ₀ , КГц	Пріоритет
	$\mathbf{Z}_2/\mathbf{a}_2$	0	0	0	0	1	1	1	1	<u>'</u>	
1		0	0	d_2	\mathbf{d}_3	$\mathrm{d}_{\scriptscriptstyle{4}}$	\mathbf{d}_0	\mathbf{d}_1	0	68	F ₂ , F ₇ , F ₁ , F ₄ , F ₅ , F ₃ , F ₆
2		0	0	0	d_2	\mathbf{d}_3	d_4	d_o	d_1	70	F ₇ , F ₁ , F ₄ , F ₅ , F ₃ , F ₆ , F ₂
3		\mathbf{d}_1	0	0	0	d_2	d_3	d_4	$\mathbf{d}_{\scriptscriptstyle{0}}$	72	F_1 , F_4 , F_5 , F_3 , F_6 , F_2 , F_7
4		\mathbf{d}_0	\mathbf{d}_1	d_2	0	\mathbf{d}_3	d_4	0	0	74	F ₄ , F ₅ , F ₃ , F ₆ , F ₂ , F ₇ , F ₁
5		0	$\mathbf{d}_{\scriptscriptstyle{0}}$	\mathbf{d}_1	d_2	0	\mathbf{d}_3	d_4	0	76	F ₅ , F ₃ , F ₆ , F ₂ , F ₇ , F ₁ , F ₄
6		0	0	$\mathbf{d}_{\scriptscriptstyle{0}}$	\mathbf{d}_1	\mathbf{d}_2	0	\mathbf{d}_3	d_4	78	F_6 , F_2 , F_7 , F_1 , F_4 , F_5 , F_3
7		d_4	0	0	$\mathbf{d}_{\scriptscriptstyle{0}}$	\mathbf{d}_1	d_2	0	d₃	80	F_2 , F_1 , F_7 , F_4 , F_5 , F_3 , F_6
8		d₃	d ₄	0	0	\mathbf{d}_0	\mathbf{d}_1	d_2	0	82	F_1 , F_7 , F_4 , F_5 , F_3 , F_6 , F_2
9		0	d₃	d₄	0	0	$\mathbf{d}_{\scriptscriptstyle{0}}$	$\mathbf{d}_{\scriptscriptstyle 1}$	d_2	84	F_7 , F_4 , F_5 , F_3 , F_6 , F_2 , F_1

Теоретичні відомості

Шифратори, дешифратори, мультиплексори і демультиплексори поряд з суматорами та компараторами належать до основних типів комбінаційних цифрових схем (пристроїв). У комбінаційних пристроях (цифрових автоматах без пам'яті) вихідні сигнали в кожний момент часу повністю визначаються комбінацією поточних значень на входах і не залежать від попередніх значень вхідних сигналів.

Шифратор (encoder, coder, CD) m*n - це цифровий пристрій, призначений для перетворення вхідного m-розрядного унітарного коду у вихідний n-розрядний двійковий позиційний код.

Дешифратор (decoder, DC) n*m - це цифровий пристрій, призначений для перетворення вхідного n-розрядного двійкового позиційного коду у вихідний m-розрядний унітарний код.

Мультиплексор (multiplexer, MUX) - це комбінаційний цифровий пристрій, призначений для комутування (перемикання) логічних сигналів від одного з n інформаційних X-входів на єдиний D-вихід.

Демультиплексор (demultiplexer, DMX) - це комбінаційний цифровий пристрій, призначений для комутування (перемикання) логічного сигналу з одного інформаційного D-входу на один з n інформаційних Y-виходів.

Хід роботи

Період цифрового сигналу

$$T=\frac{1}{f}; \qquad \qquad T=\frac{1}{82 \mathrm{k} \Gamma \mathrm{ij}}=\frac{1}{82000 \Gamma \mathrm{ij}}=0.0000121 \mathrm{c}$$

$$\tau=\frac{T}{8}=0.00000151 \mathrm{c}$$

ДДНФ заданої функції

$$F = \overline{x_2x_1x_0} + \overline{x_2x_1}x_0 + x_2\overline{x_1x_0} + x_2\overline{x_1}x_0 + x_2x_1\overline{x_0}$$

Схема пріоритетного шифратора 8х3

Рис. 1: Схема 1

$$H_1 = F_1$$

$$H_7 = \overline{F_1} \wedge F_7$$

$$H_4 = \overline{F_1} \wedge \overline{F_7} \wedge F_4$$

$$H_5 = \overline{F_1} \wedge \overline{F_7} \wedge \overline{F_4} \wedge F_5$$

$$H_3 = \overline{F_1} \wedge \overline{F_7} \wedge \overline{F_4} \wedge \overline{F_5} \wedge F_3$$

$$H_6 = \overline{F_1} \wedge \overline{F_7} \wedge \overline{F_4} \wedge \overline{F_5} \wedge \overline{F_3} \wedge F_6$$

$$H_2 = \overline{F_1} \wedge \overline{F_7} \wedge \overline{F_4} \wedge \overline{F_5} \wedge \overline{F_3} \wedge \overline{F_6} \wedge F_2$$

$$X_0 = F_1 \vee F_3 \vee F_5 \vee F_6 \vee F_7$$

$$X_0 = F_2 \vee F_3 \vee F_6 \vee F_7$$

$$X_0 = F_4 \vee F_5 \vee F_6 \vee F_7$$

Генератори до схеми приорітетного шифратора 8х3

(д) Генератор F4

(ж) Генератор F6

(и) Генератор F7

Графік до схеми пріоритетного шифратора 8х3

Рис. 2: Графік 1

За отриманим графіком виконання схеми пріоритетного шифратора видно, що заданий пріоритет ε таким: 1, 7, 4, 5, 3, 6, 2, що повністю співпада ε з заданим варіантом, отже, можна зробити виновок, що моделювання виконано правильно.

Рис. 3: Схема 2

$$V_0 = Z_2 \wedge \overline{Z_1} \wedge \overline{Z_0}$$

$$V_1 = Z_2 \wedge \overline{Z_1} \wedge Z_0$$

$$V_2 = Z_2 \wedge Z_1 \wedge \overline{Z_0}$$

$$V_3 = \overline{Z_2} \wedge \overline{Z_1} \wedge Z_0$$

$$V_4 = \overline{Z_2} \wedge \overline{Z_1} \wedge Z_0$$

$$V_5 = Z_2 \wedge Z_1 \wedge Z_0 \wedge 0$$

$$V_6 = Z_2 \wedge Z_1 \wedge Z_0 \wedge 0$$

$$V_7 = Z_2 \wedge Z_1 \wedge Z_0 \wedge 0$$

Генератори до схеми лінійного дешифратора 3х8

(а) Генератор Z0

(б) Генератор Z1

(в) Генератор Z2

Графік до схеми лінійного дешифратора 3х8

Рис. 4: Графік 2

За отриманим графіком виконання схеми лінійного дешифратора видно, що часові діаграми вхідних та вихідних сигналів на кожному з восьми проміжків відповідають заданій таблиці істиності дешифратора, отже, можна зробити виновок, що моделювання виконано правильно.

Рис. 5: Схема 3

$D = (A_0 \wedge \overline{A_1} \wedge \overline{A_2} \wedge D_4) \vee (\overline{A_0} \wedge \overline{A_1} \wedge \overline{A_2} \wedge D_3) \vee (\overline{A_0} \wedge A_1 \wedge A_2 \wedge D_2) \vee (A_0 \wedge \overline{A_1} \wedge A_2 \wedge D_1) \vee (\overline{A_0} \wedge \overline{A_1} \wedge A_2 \wedge D_0)$

Генератори до схеми мультиплексора 5 в 1

(д) Генератор D1

(e) Генератор D2

(ж) Генератор D3

(и) Генератор D4

Графік до схеми мультиплексора 5 в 1

Рис. 6: Графік 3

За отриманим графіком виконання схеми мультиплексора видно, що часові діаграми вхідних та вихідних сигналів на кожному з восьми проміжків відповідають заданій таблиці істиності мультиплексора, отже, можна зробити виновок, що моделювання виконано правильно.

Рис. 7: Схема 4

$$Y_{0} = \overline{A_{0}} \wedge \overline{A_{1}} \wedge A_{2} \wedge D$$

$$Y_{1} = A_{0} \wedge \overline{A_{1}} \wedge A_{2} \wedge D$$

$$Y_{2} = \overline{A_{0}} \wedge A_{1} \wedge A_{2} \wedge D$$

$$Y_{3} = \overline{A_{0}} \wedge \overline{A_{1}} \wedge \overline{A_{2}} \wedge D$$

$$Y_{4} = A_{0} \wedge \overline{A_{1}} \wedge \overline{A_{2}} \wedge D$$

Генератори до схеми демультиплексора 1 в 5

(в) Генератор A2 (г) Генератор D

Графік до схеми демультиплексора 1 в 5

Рис. 8: Графік 4

За отриманим графіком виконання схеми демультиплексора видно, що часові діаграми вхідних та вихідних сигналів на кожному з восьми проміжків відповідають заданій таблиці істиності демультиплексора, отже, можна зробити виновок, що моделювання виконано правильно.

Висновки

Під час виконання лабораторної роботи я закріпив практичні навики моделювання логічних схем в середовищі системи програм Proteus. Поглибив знання про основні типи комбінаційних схем: шифратор, дешифратор, мультиплексор і демультиплексор. Опанував їх синтез.

Дослідив роботу синтезованих схем в системі програм Proteus. Змоделював графіки цих схем за заданим варіантом.