M005 - Cálculo III

Prof Renan Sthel Duque

8 de Novembro de 2019

Conteúdo

Eq	quações diferenciais ordinárias	
1.1		
1.2		
1.3		
	1.3.1 Classificação quanto ao tipo	
	1.3.2 Classificação quanto à ordem	
	1.3.3 Classificação quanto à linearidade	
1.4		
	1.4.1 Problemas geométricos	
	1.4.2 Problemas físicos	
	1.4.3 Primitivas	
1.5		
	1.5.1 Solução geral de uma equação diferencial	
	1.5.2 Solução particular de uma equação diferencial	
1.6	$5 ext{ } 1^a ext{ série de exercícios } \dots $	
1.7	Equações diferenciais de primeira ordem	
	1.7.1 Problema de valor inicial	
	1.7.2 Forma normal e forma diferencial	
	1.7.3 Solução do problema de valor inicial	
	1.7.4 Formas de equações diferenciais de 1^a ordem	
1.8		
1.9	Equações diferenciais lineares de ordem superior	
	1.9.1 Definição	
	1.9.2 Propriedades do operador diferencial	
	1.9.3 Símbolos	
1.10	10 Equações diferenciais lineares homogêneas de ordem n com coeficientes con	as-
	tantes	
	1.10.1 Definição	
	1.10.2 Equação característica	
	1.10.3 Princípio da superposição	
	1.10.4 Solução da equação diferencial linear homogênea de coeficientes con	
	tantes	
1.1	1 Equações diferenciais não-homogêneas de ordem n com coeficientes consta	
	1111 Dofinicão	

	1.11.2 Solução da equação diferencial não-homogenea de ordem n com coe-
	ficientes constantes
	2^a série de exercícios:
1.13	Aplicações das equações diferenciais homogêneas na análise de circuitos elé-
	tricos
Segi	uências e Séries
2.1	Sequências infinitas (ou sucessões)
2.1	2.1.1 Introdução
	2.1.2 Definição de uma sequência
	2.1.3 Limite de uma sequência
	2.1.4 Propriedades do limite de sequências
2.2	Limites que aparecem com frequência
2.3	Séries numéricas
2.0	2.3.1 Definição e conceitos iniciais
	2.3.2 Séries convergentes e divergentes
	2.3.3 Séries geométricas
	2.3.4 Propriedades das séries infinitas
	2.3.5 Séries- <i>p</i>
2.4	Séries de termos não negativos
2.4	2.4.1 Teste da integral
	2.4.2 Teste da comparação direta (ou critério de Gauss)
	2.4.2 Teste da comparação no limite
	2.4.4 Teste da razão
	2.4.5 Teste da raiz
2.5	Séries alternadas
2.0	2.5.1 Teste para séries alternadas
	2.5.2 convergência absoluta e convergência condicional
2.6	Resumo dos testes de convergência
2.7	3^a série de exercícios
2.8	Respostas da 3^a série de exercícios
2.0	4^a série de exercícios
2.0	Respostas da 4^a série de exercícios
	Séries de potências
2.11	2.11.1 Introdução
	2.11.2 Definição
	2.11.2 Dennição
9 19	Expansão de funções em séries de potências
4.14	2.12.1 Diferenciação e integração de séries de potências
	2.12.1 Diferenciação e integração de series de potencias
2 13	5^a série de exercícios
	Respostas da 5 ^a série de exercícios
4. 4	110 0 11 0 0 11 11 11 11 11 11 11 11 11

Lista de Figuras

1.1	Família de curvas integrais	0
1.2	Circuito RL e RC série	0
1.3	Circuito RLC	3
1.4	Circuito LC	7
2.1	Gráfico da sequência $\{a_n\} = n$	9
2.2	Limite de uma sequência $\{a_n\}$	0
2.3	120 primeiros termos da sequência $\{a_n\} = \frac{1}{n}$	1
2.4	Faixa de convergência da sequência $\{a_n\} = \frac{1}{n}$ para $\varepsilon = 0, 01, \dots, 52$	2
2.5	Faixa de convergência da sequência $\{a_n\} = -$ para $\varepsilon = 0, 01, \dots$ 52 20 primeiros termos da sequência $\{a_n\} = \frac{n}{n+1}, \dots$ 53 Esive de convergência de sequência $\{a_n\} = \frac{n}{n+1}, \dots$ 55	3
2.6	Faixa de convergência da sequência $\{a_n\} = \frac{n+1}{n+1}$ para $\varepsilon = 0, 1, \dots$ 55	3
2.7	Função para demonstração do teste da integral. 64	4
2.8	Função para demonstração do teste da integral	4
2.9	Demonstração do teste da razão	8
2.10	Demonstração do teste da raiz	O
2.11	Demonstração do teste das Séries alternadas	2
2.12	Resumo dos testes de convergência	4
2.13	Gráfico do exemplo 31	4
2.14	Gráfico do exemplo 32 c)	б
2.15	Intervalo de convergência de uma série de potências	7

Capítulo 1

Equações diferenciais ordinárias

1.1 Introdução

Como visto em Cálculo I, dada uma função y = f(x), sua derivada

$$\frac{dy}{dx} = f'(x) \tag{1.1}$$

é também uma função de x e é calculada através de regras apropriadas. Por exemplo, se $y=\mathrm{e}^{x^2},$ então

$$\frac{dy}{dx} = \frac{d}{dx} [e^{x^2}] = 2xe^{x^2} = 2xy \tag{1.2}$$

Exemplo 01: Encontre a derivada da função $y = e^{\text{sen}[\ln(x^3)]}$.

O objetivo do estudo de equações diferenciais não é encontrar uma derivada de uma função e sim, tendo uma equação do tipo $\frac{dy}{dx}=2xy$, encontrar de alguma forma uma função y=f(x) que satisfaça esta equação. Portanto, o objetivo é resolver equações diferenciais.

1.2 Definição de equações diferenciais

Equações diferenciais são equações que relacionam as variáveis independentes a uma função y e uma ou mais de suas derivadas. Em outras palavras, uma equação diferencial é toda equação que contém derivadas ou diferenciais.

Exemplo 02: Sabendo que y = f(x), as equações abaixo são equações diferenciais.

a)
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 2y = 0 \rightarrow \text{derivadas}$$

 $x \to \text{variável independente}$

 $y \to \text{variável dependente}$

b)
$$(x+y)dx + yxdy = 0 \rightarrow \text{diferenciais}$$

c)
$$\frac{dy}{dx} = 2xy$$

De acordo com o exemplo 2c, tem-se:

$$dy = 2xydx (1.3)$$

$$\int \frac{dy}{y} = \int 2x dx \tag{1.4}$$

$$ln(y) + C_1 = x^2 + C_2$$
(1.5)

$$ln(y) = x^2 + C_2 - C_1$$
(1.6)

$$y = e^{x^2 + C_2 - C_1} = e^{x^2} \cdot e^{C_2 - C_1}$$
(1.7)

$$y = Ce^{x^2} (1.8)$$

Substituindo (1.8) na equação diferencial dada:

$$Ce^{x^2}2x = 2xCe^{x^2},$$
 (1.9)

que mostra que (1.8) é uma solução que satisfaz a equação diferencial dada.

1.3 Classificação das equações diferenciais

As equações diferenciais são classificadas de acordo com o tipo, a ordem e a linearidade.

1.3.1 Classificação quanto ao tipo

Equações diferenciais ordinárias

Apresentam derivadas de uma ou mais funções de apenas uma variável independente.

Exemplo 03: são equações diferenciais ordinárias:

a)
$$\frac{dy}{dx} - 5y = 1$$

$$b) (y-x)dx + 6xdy = 0$$

c)
$$\frac{dz}{dx} + \frac{dv}{dx} = 2x$$

$$d) \frac{d^2y}{dx^2} - 3y\frac{dy}{dx} = x$$

Equações diferenciais parciais

Apresentam derivadas parciais de uma ou mais funções de várias variáveis independentes.

Exemplo 04: são equações diferenciais parciais:

a)
$$\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = 0$$

b)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

c)
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$$

1.3.2 Classificação quanto à ordem

A ordem de uma equação diferencial é dada pela derivada ou diferencial de mais alta ordem presente na equação.

Exemplo 05:

a)
$$y' + xy^2 = 2x$$
 1^a ordem

b)
$$\frac{d^2y}{dx^2} - x^3 \left(\frac{dy}{dx}\right)^4 + y = 0 \qquad 2^a \text{ ordem}$$

c)
$$a^3 \frac{\partial^3 u}{\partial x^3} + b \frac{\partial u}{\partial y} = 0$$
 3^a ordem

d)
$$(x^2 + y^2)d^4y - xydx^4 = 0$$
 4^a ordem

Uma equação diferencial ordinária de *n-ésima* ordem é representada simbolicamente por

$$F\left(x, y, \frac{dy}{dx}, \frac{d^2y}{dx^2}, \dots, \frac{d^ny}{dx^n}\right),\tag{1.10}$$

onde y = f(x).

1.3.3 Classificação quanto à linearidade

Equações diferenciais lineares

Uma equação diferencial linear pode ser escrita da forma

$$\frac{d^n y}{dx^n} + a_1(x)\frac{d^{n-1} y}{dx^{n-1}} + a_2(x)\frac{d^{n-2} y}{dx^{n-2}} + \dots + a_{n-1}(x)\frac{dy}{dx} + a_n(x)y = f(x), \tag{1.11}$$

onde f(x) e os coeficientes $a_1(x), a_2(x), \ldots, a_n(x)$ são funções de x.

Para que uma equação diferencial seja linear, ela deve satisfazer dois requisitos:

- (i) A variável dependente y e todas as suas derivadas devem ser do primeiro grau, ou seja, o expoente de cada termo y e suas derivadas deve ser 1.
 - (ii) Cada coeficiente $a_n(x)$ deve ser uma função da variável independente x apenas.

Equações diferenciais não-lineares

são equações diferenciais que não obedecem aos dois requisitos estabelecidos anteriormente.

Exemplo 06: Classifique as equações diferenciais a seguir, quanto à linearidade.

a)
$$(x+y)dx + yxdy = 0$$

b)
$$(x+y)dx + xdy = 0$$

c)
$$y'' + 2y' + 1 = 0$$

d)
$$x^3 \frac{d^3y}{dx^3} + x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} + 2y = e^x$$

$$e) y \frac{d^2y}{dx^2} + \frac{dy}{dx} = x$$

$$f) \frac{d^2y}{dx^2} + xy^2 = 0$$

1.4 Origem das equações diferenciais

Uma equação diferencial pode se originar de um problema geométrico, de um problema físico ou até mesmo de uma primitiva.

1.4.1 Problemas geométricos

O exemplo a seguir mostra como um problema geométrico gera uma equação diferencial.

Exemplo 07:

a) Uma curva é definida pela condição de ter em todos os seus pontos P(x,y) a inclinação igual a média aritmética das coordenadas do ponto. Expressar esta condição usando uma equação diferencial.

$$\frac{dy}{dx} = \frac{x+y}{2}$$

b) Uma curva é definida pela condição de ter em todos os pontos P(x,y) a inclinação igual ao dobro da soma das coordenadas do ponto. Expressar esta condição usando uma equação diferencial.

$$\frac{dy}{dx} = 2(x+y)$$

1.4.2 Problemas físicos

Os exemplos a seguir mostram como problemas físicos podem gerar equações diferenciais.

Exemplo 08: Suponha que T(t) denote a temperatura de um corpo no instante t e que a temperatura do meio ambiente seja constante, igual a T_m . Se $\frac{dT}{dt}$ representa a taxa de variação da temperatura do corpo ao longo do tempo, então a lei de resfriamento de Newton pode ser expressa matematicamente da seguinte forma:

$$\frac{dT}{dt} = k(T - T_m),$$

onde k é uma constante de proporcionalidade. Admitindo que o corpo está esfriando, devese ter $T > T_m$. Logo, k < 0.

Exemplo 09: A diferença de potencial E através de um elemento de circuito de indutância L é igual ao produto de L pela taxa de variação, em relação ao tempo, da corrente i na indutância. Assim,

$$E = L \frac{di}{dt}$$

Exemplo 10: O elemento químico rádio se decompõe numa razão proporcional à quantidade de rádio Q presente. Assim,

$$\frac{dQ}{dt} = kQ$$

Exemplo 11: A população P de uma cidade aumenta numa razão proporcional à população e à diferença entre 200000 e a população. Assim,

$$\frac{dP}{dt} = kP(200000 - P)$$

1.4.3 Primitivas

Uma relação entre as variáveis, encerrando n constantes arbitrárias essenciais, como y=Ax+B, é chamada primitiva. As n constantes são denominadas essenciais se não puderem ser substituídas por um número menor de constantes. Em geral, uma primitiva encerrando n constantes arbitrárias essenciais dará origem a uma equação diferencial de ordem n, livre das constantes. A equação diferencial é obtida pela eliminação das constantes mediante n derivações sucessivas.

Exemplo 12: Obter uma equação diferencial associada às primitivas.

a)
$$y = Ae^{2x} + Be^{x} + C$$

b)
$$x^2y + xy = a$$

c)
$$y = Be^{Ax}$$

d)
$$y = Ax^2 + Bx + C$$

e)
$$y = A + \ln(Bx)$$

f)
$$y = A\cos(ax) + B\sin(ax)$$

1.5 Soluções gerais e particulares de uma equação diferencial

Uma solução f(x) definida num intervalo I é solução de uma equação diferencial se a mesma e suas n derivadas satisfizerem à equação

$$F(x, f(x), f'(x), f''(x), \dots, f^{(n)}(x)) = 0$$
(1.12)

para qualquer valor de x no intervalo I. Este intervalo pode representar um intervalo aberto (a, b), um intervalo fechado [a, b], um intervalo infinito (a, ∞) e assim por diante.

Exemplo 13: Verificar se a função $y(x) = C_1 \operatorname{sen}(2x) + C_2 \cos(2x)$, com C_1 e C_2 sendo constantes arbitrárias, é solução da equação diferencial y'' + 4y = 0.

Exemplo 14: Verificar se $y = x^2 - 1$ é uma solução de $(y')^4 + y^2 = -1$.

É importante notar que algumas equações diferenciais admitem infinitas soluções, enquanto outras não admitem solução. É possível também uma equação diferencial apresentar uma única solução, como por exemplo a equação $(y')^4 + y^2 = 0$, que apresenta apenas a solução trivial y = 0.

1.5.1 Solução geral de uma equação diferencial

A solução geral de uma equação diferencial é dada por uma família de soluções y=f(x,C) tais que, para cada valor da constante C, tem-se uma solução para a equação diferencial dada, cujos gráficos formam uma família de curvas integrais. Pode haver também solução geral com duas ou mais constantes, da forma $y=f(x,C_1,C_2,\ldots)$.

Exemplo 15: Tomando a equação diferencial $y' = \cos(x)$, tem-se

$$\frac{dy}{dx} = \cos(x)$$

$$dy = \cos(x)dx$$

Esta equação diferencial apresenta como solução geral a expressão a seguir.

$$y = \operatorname{sen}(x) + C$$

onde C é uma constante arbitrária que representa a totalidade das soluções da equação diferencial dada. Tomando $C = \ldots, -1, 0, 1, 2, 3, \ldots$, tem-se algumas das curvas que formam a família de curvas integrais, como mostrado na Figura 1.1.

Figura 1.1: Família de curvas integrais.

1.5.2 Solução particular de uma equação diferencial

É a solução obtida para um valor específico de C, mediante condições iniciais. Especificar uma solução particular é equivalente a escolher uma curva integral particular da família de curvas, por exemplo, tomar uma curva apenas do gráfico da Figura 1.1. Isso pode ser feito pré-fixando um ponto (x_0, y_0) através do qual a curva deve passar, isto é, adotando uma condição inicial.

Exemplo 16: Encontre uma solução particular para a equação diferencial $y' - 6x^2 = 0$, sabendo que y(0) = 1.

1.6 1^a série de exercícios

1. Classifique cada uma das seguintes equações diferenciais a seguir quanto à ordem e à linearidade. Indique também a variável independente e a variável dependente.

a)
$$(1-x)y'' - 4xy' + 5y = \cos(x)$$

b)
$$x \frac{d^3y}{dx^3} - 2\left(\frac{dy}{dx}\right)^4 + y = 0$$

c)
$$x^4y^{iv} + xy''' = e^x$$

d)
$$t^2s'' - ts' = 1 - \text{sen}(t)$$

e)
$$\frac{dy}{dx} = \sqrt{1 + \left(\frac{d^2y}{dx^2}\right)^2}$$

$$f) \frac{d^2r}{dt^2} = -\frac{k}{r^2}$$

2. Verifique se a solução dada é uma solução para a equação diferencial dada, sabendo que C_1 e C_2 são constantes arbitrárias.

a)
$$y'' + y' - 12y = 0$$
 $y = C_1 e^{3x} + C_2 e^{-4x}$

b)
$$\frac{dy}{dx} = 4y$$
 $y = C_1 e^{4x}$

c)
$$y'' + y = 0$$
 $y = C_1 \cos(x) + C_2 \sin(x)$

d)
$$(y')^3 + xy' = y$$
 $y = x + 1$

3. Quais das funções a seguir são soluções da equação diferencial y'' - y = 0?

a)
$$e^x$$

- b) sen(x)
- c) $4e^{-x}$
- d) 0
- e) $\frac{1}{2}x^2 + 1$

1.7 Equações diferenciais de primeira ordem

1.7.1 Problema de valor inicial

Um problema de valor inicial consiste em uma equação diferencial, juntamente com as condições iniciais relativas à função incógnita e suas derivadas. O objetivo destes problemas é resolver uma equação diferencial de primeira ordem sujeita à condição inicial $y(x_0) = y_0$, onde x_0 é um número no intervalo I onde a função e suas derivadas existem, e y_0 um número real arbitrário. O problema

$$\frac{dy}{dx} = f(x,y), \quad y(x_0) = y_0$$
 (1.13)

é chamado de problema de valor inicial, que também pode ser escrito na forma

$$f(x)dx + g(y)dy = 0, \quad y(x_0) = y_0,$$
 (1.14)

conforme será mostrado no item a seguir.

1.7.2 Forma normal e forma diferencial

A forma normal de uma equação diferencial de primeira ordem é dada por

$$y' = f(x, y) \tag{1.15}$$

A função f(x,y) em (1.15) pode sempre ser escrita como um quociente de duas outras funções M(x,y) e -N(x,y) (o sinal negativo aparece aqui apenas por conveniência). Dessa forma, lembrando que

$$y' = \frac{dy}{dx},\tag{1.16}$$

a equação (1.15) pode ser reescrita como

$$\frac{dy}{dx} = \frac{M(x,y)}{-N(x,y)},\tag{1.17}$$

que resulta numa equação diferencial na forma diferencial

$$M(x,y)dx + N(x,y)dy = 0 (1.18)$$

1.7.3 Solução do problema de valor inicial

A solução do problema de valor inicial (1.14) pode ser obtida na forma usual, primeiro resolvendo a equação diferencial e, em seguida, aplicando a condição inicial diretamente para determinar a constante de integração C.

Alternativamente, a solução pode ser obtida a partir de

$$\int_{x_0}^x f(x)dx + \int_{y_0}^y g(y)dy = 0.$$
 (1.19)

A equação (1.19) pode, entretanto, não determinar a solução de (1.14) de maneira única, isto é, (1.19) pode ter muitas soluções, das quais uma apenas satisfará o problema de valor inicial.

Exemplo 17: Determine se algumas das funções

- a) $y_1(x) = \text{sen}(2x)$
- b) $y_2(x) = x$

c)
$$y_3(x) = \frac{1}{2} \text{sen}(2x)$$

são soluções do problema de valor inicial

$$y'' + 4y = 0$$
, $y(0) = 0$, $y'(0) = 1$

1.7.4 Formas de equações diferenciais de 1^a ordem

As equações diferenciais de 1^a ordem podem ser encontradas em qualquer uma das 4 formas citadas a seguir:

- Equações diferenciais de variáveis separadas.
- Equações diferenciais homogêneas.
- Equações diferenciais lineares.
- Equações diferenciais redutíveis à linear (ou equações de Bernoulli).

Equações diferenciais de variáveis separadas

Uma equação diferencial possui variáveis separadas quando é possível escrever a equação

$$M(x,y)dx + N(x,y)dy = 0 (1.20)$$

na forma

$$f(x)dx + g(y)dy = 0, (1.21)$$

onde f(x) é uma função somente de x e g(y) é uma função somente de y. A solução desta equação é obtida através da integração dos dois membros da equação (1.21), ou seja,

$$\int f(x)dx + \int g(y)dy = \int 0$$
(1.22)

$$\int f(x)dx + \int g(y)dy = C \tag{1.23}$$

Exemplo 18: Resolva as equações diferenciais a seguir.

a)
$$xdx - y^2dy = 0$$

b)
$$y^4 e^{2x} + \frac{dy}{dx} = 0$$

c)
$$x\sqrt{1+y^2} + yy'\sqrt{1+x^2} = 0$$

d)
$$e^x dx - y dy = 0$$
, $y(0) = 1$

e)
$$(1+x^3)dy - x^2ydx = 0$$
, $y(1) = 2$

f)
$$\frac{dy}{dx} = xy + x - 2y - 2$$
, $y(0) = 2$

g)
$$(3x^2y - xy)dx + (2x^3y^2 + x^3y^4)dy = 0$$

$$h) \frac{dx}{dy} = -\frac{y^2}{x^2}$$

$$i) \frac{dx}{x+1} + \frac{dy}{y+1} = 0$$

j)
$$\frac{dy}{dx} + \frac{2x(1+y^3)}{y^2(1+x^2)} = 0$$

k)
$$\frac{dx}{dy} = e^{x-y}$$

$$1) \frac{dy}{dx} = \frac{1+y}{1+x^2}$$

$$m) \frac{dy}{dx} = \frac{\cos^2(y)}{\sin^2(x)}$$

Exemplo 19: Quando um bolo é retirado do forno, sua temperatura é de 300^0F . Três minutos depois, sua temperatura passa para 200^0F . Quanto tempo levará para sua temperatura chegar a 100^0F , se a temperatura do meio ambiente em que ele foi colocado for de exatamente 70^0F ?

Equações diferenciais homogêneas

Definição de função homogênea

Uma função f(x,y) é homogênea de grau de homogeneidade n se e somente se, para t>0, tem-se

$$f(tx, ty) = t^n f(x, y), \tag{1.24}$$

onde n é um número real.

Exemplo 20: Verifique a homogeneidade das funções a seguir.

a)
$$f(x,y) = x^2y - 4x^3 + 3xy^2$$

b)
$$f(x,y) = xe^{\frac{x}{y}} + y\operatorname{sen}\left(\frac{y}{x}\right)$$

c)
$$f(x,y) = x + y^2$$

d)
$$f(x,y) = \frac{x}{2y} + 4$$

e)
$$f(x,y) = x^2 - 3xy + 5y^2$$

Definição de equação diferencial homogênea

Uma equação diferencial dada na forma diferencial

$$M(x,y)dx + N(x,y)dy = 0 (1.25)$$

é homogênea se M e N são funções homogêneas de mesmo grau.

Se a equação diferencial M(x,y)dx+N(x,y)dy=0 é homogênea, então ela pode ser transformada em uma equação diferencial de variáveis separadas, adotando a mudança de variável

$$y = vx \tag{1.26}$$

$$dy = xdv + vdx (1.27)$$

Isto reduzirá qualquer equação diferencial homogênea à forma

$$P(x, v)dx + Q(x, v)dv = 0, (1.28)$$

onde as variáveis x e v são separáveis. Depois da integração, v é substituído por $\frac{y}{x}$ para voltar às variáveis originais.

Exemplo 21: Encontre a solução geral das equações diferenciais a seguir.

a)
$$2xyy' - y^2 + x^2 = 0$$

b)
$$(x^2 + y^2)dx + (x^2 - xy)dy = 0$$

c)
$$xy^2dy - (x^3 + y^3)dx = 0$$

d)
$$(x^2 - y^2)dx + 3xydy = 0$$

e)
$$y' = \frac{2xy}{x^2 - y^2}$$

f)
$$x \operatorname{sen}\left(\frac{y}{x}\right) (ydx + xdy) + y \cos\left(\frac{y}{x}\right) (xdy - ydx) = 0$$

g)
$$xdy - (y + \sqrt{x^2 - y^2})dx = 0$$

h)
$$(1 + 2e^{\frac{y}{x}})dy + 2e^{\frac{y}{x}}\left(1 - \frac{y}{x}\right)dx = 0$$

Equações diferenciais lineares

são equações diferenciais da forma

$$\frac{dy}{dx} + yP(x) = Q(x), \tag{1.29}$$

onde a derivada $\frac{dy}{dx}$ e a variável dependente y são do primeiro grau e P(x) e Q(x) são funções contínuas de x.

Exemplo 22:

a)
$$\frac{dy}{dx} + y\operatorname{sen}(2x) = x$$
 $P(x) = \operatorname{sen}(2x)$ $Q(x) = x$

b)
$$\frac{dy}{dx} + x^2y = x^3$$
 $P(x) = x^2$ $Q(x) = x^3$

c)
$$tg(x)\frac{dy}{dx} + y = sec(x)$$
 $P(x) = cotg(x)$ $Q(x) = cossec(x)$

d)
$$\frac{dx}{dy} + y^2x = 2$$
 $P(y) = y^2$ $Q(y) = 2$

e)
$$\frac{dy}{dx} + 3xy^2 = \text{sen}(x)$$
 Esta equação não é linear.

Solução da equação diferencial linear

Com a ajuda de um fator de integração apropriado, há uma técnica padrão para resolver uma equação diferencial linear de primeira ordem da forma

$$\frac{dy}{dx} + P(x)y = Q(x) \tag{1.30}$$

em um intervalo onde as funções coeficientes P(x) e Q(x) sejam contínuas. Adotando um fator de integração

$$\rho = e^{\int P(x)dx} \tag{1.31}$$

e multiplicando a equação (1.30) por este fator de integração, obtém-se

$$e^{\int P(x)dx} \frac{dy}{dx} + P(x)e^{\int P(x)dx} y = Q(x)e^{\int P(x)dx}$$
(1.32)

O primeiro membro da equação (1.32) corresponde à derivada do produto

$$y(x)e^{\int P(x)dx},\tag{1.33}$$

de modo que (1.32) é equivalente a

$$\frac{d}{dx}\left[ye^{\int P(x)dx}\right] = Q(x)e^{\int P(x)dx} \tag{1.34}$$

Integrando os dois membros da equação (1.34), resulta

$$y e^{\int P(x)dx} = \int Q(x) e^{\int P(x)dx} dx + C$$
 (1.35)

Finalmente, a solução geral y da equação diferencial linear de primeira ordem é

$$y = e^{-\int P(x)dx} \left[\int Q(x)e^{\int P(x)dx}dx + C \right]$$
 (1.36)

A equação (1.36) não deve ser memorizada. Em um problema mais específico é geralmente mais simples usar o método com que a mesma foi deduzida.

Exemplo 23: Encontre a solução geral das equações diferenciais a seguir.

a)
$$\frac{dy}{dx} - 3y = e^{2x}$$

b)
$$y' - 2xy = x$$

c)
$$\frac{dy}{dx} + \left(\frac{4}{x}\right)y = x^4$$

d)
$$y' + y = \text{sen}(x), \quad y(\pi) = 1$$

e)
$$(x^2+1)\frac{dy}{dx} + 3xy = 6x$$

f)
$$y' = (1 - y)\cos(x), \quad y(\pi) = 2$$

g) $(x + ye^y)y' = 1$ Dica: considere y como sendo a variável independente.

h)
$$\cos^2(x)\sin(x)dy + (y\cos^3(x) - 1)dx = 0$$

i)
$$\frac{dy}{dx} + y = \frac{1 - e^{-2x}}{e^x + e^- x}$$

j)
$$(1+x)y' - xy = x + x^2$$

$$k) \frac{dy}{dx} + y = x^2$$

1)
$$(x-2)\frac{dy}{dx} = y + 2(x-2)^3$$

m)
$$\frac{dy}{dx} + \frac{x}{1 - x^2}y = \frac{2x}{1 - x^2}$$

n)
$$\frac{dy}{dx} + y \cot(x) = 5e^{\cos(x)}$$

Equações diferenciais redutíveis à linear - Equações de Bernoulli

são equações diferenciais da forma

$$\frac{dy}{dx} + P(x)y = Q(x)y^n, (1.37)$$

onde P(x) e Q(x) são funções de x ou constantes.

Exemplo 24:

a)
$$\frac{dy}{dx} + y\operatorname{sen}(x) = y^3 \cos(x)$$
 $P(x) = \operatorname{sen}(x)$ $Q(x) = \cos(x)$

b)
$$xy\frac{dy}{dx} + y^2 = x^2y^4 \quad (\div xy)$$

$$\frac{dy}{dx} + \frac{y}{x} = xy^3 \quad P(x) = \frac{1}{x} \quad Q(x) = x$$

Solução da equação diferencial de Bernoulli

Uma equação diferencial de Bernoulli se reduz à linear, pela multiplicação de ambos os membros da equação (1.37) pelo fator y^{-n} , obtendo

$$y^{-n}\frac{dy}{dx} + P(x)y^{1-n} = Q(x)$$
 (1.38)

Adotando uma substituição de variáveis da forma

$$z = y^{1-n} \Longrightarrow \frac{dz}{dx} = (1-n)y^{-n}\frac{dy}{dx},\tag{1.39}$$

tem-se

$$y^{-n}\frac{dy}{dx} = \frac{1}{1-n}\frac{dz}{dx} \tag{1.40}$$

Substituindo (1.39) e (1.40) em (1.38), obtém-se

$$\frac{1}{1-n}\frac{dz}{dx} + P(x)z = Q(x),$$
(1.41)

logo:

$$\frac{dz}{dx} + (1-n)P(x)z = (1-n)Q(x), \tag{1.42}$$

que é uma equação diferencial linear em z, cuja solução é dada pelo método de resolução de equações diferenciais lineares visto anteriormente. Após a obtenção da solução da equação em z, deve substituir na mesma a relação dada por (1.39) para expressar a solução como uma função y(x).

Exemplo 25: Encontre a solução geral para as equações diferenciais a seguir.

a)
$$y' + 3y = 2y^2$$

b)
$$\frac{dy}{dx} + 2xy + xy^4 = 0$$

c)
$$xdy = \{y + xy^3[1 + \ln(x)]\}dx$$

d)
$$\frac{dy}{dx} + \frac{1}{3}y = \frac{1}{3}(1 - 2x)y^4$$

e)
$$\frac{dy}{dx} + y = y^2 [\cos(x) - \sin(x)]$$
 Dica: na integral $\int e^{-x} \sin(x) dx$ fazer $u = \sin(x)$ e $dv = e^{-x} dx$

1.8 Aplicações dos diversos tipos de equações diferenciais

Os exemplos a seguir mostram aplicações de equações diferenciais originadas de um problema geométrico, problemas físicos, como taxa de crescimento e decrescimento de po-

pulação, tempo de meia vida, etc.

Exemplo 26: O gráfico de y = f(x) passa pelo ponto (9,4). A reta tangente ao gráfico, em qualquer ponto (x,y), apresenta inclinação igual a $3\sqrt{x}$. Determine f(x).

Exemplo 27: Uma partícula desloca-se sobre o eixo OX de modo que, em cada instante t, a velocidade é o dobro da posição. Qual a equação diferencial que rege o movimento? E qual a função da posição x(t)?

Exemplo 28: A taxa de crescimento de uma população de moscas da fruta é proporcional ao tamanho da população em qualquer instante t. Se a população era de 180 moscas ao final do segundo dia de experiência, e de 300 moscas ao final do quarto dia, qual o tamanho da população original?

Exemplo 29: Sabendo que a população de uma cidade dobra em 50 anos, em quantos anos ela será o triplo, admitindo que a razão de crescimento é proporcional ao número de habitantes?

Exemplo 30: A Lei de Resfriamento de Newton diz que a taxa de variação da temperatura de um objeto é proporcional à diferença entre sua temperatura e a temperatura do meio ambiente, isto é,

$$\frac{dT}{dt} = k(T - T_m). (1.43)$$

Suponha que um cômodo seja mantido a uma temperatura constante de $22^{0}C$ e que um objeto neste cômodo leve 45 minutos para resfriar de $150^{0}C$ a $50^{0}C$. Quanto tempo vai levar para este objeto atingir a temperatura de $27^{0}C$?

Exemplo 31: Considere os circuitos simples, contendo um indutor ou um capacitor em série com um resistor, como mostrado na Figura 1.2.

Figura 1.2: Circuito RL e RC série.

Tem-se:

- $R \to \text{resistência dada em ohms } [\Omega].$
- $L \rightarrow \text{indutência dada em henries } [H].$

- $C \to \text{capacitência dada em farads } [F].$
- $E \to \text{tens}$ ão da fonte dada em volts [V].
- $i(t) \rightarrow$ corrente no circuito série em função do tempo, dada em amperes [A].
- $q(t) \rightarrow$ carga em um capacitor em função do tempo, dada em coulombs [C].

A carga q(t) se relaciona com a corrente i(t) através da expressão

$$i(t) = \frac{dq(t)}{dt} \tag{1.44}$$

e a tensão e(t) se relaciona com a corrente i(t) da forma mostrada a seguir para cada elemento de circuito:

- Resistor
$$\rightarrow e(t) = Ri(t) = R\frac{dq(t)}{dt}$$
.

- Indutor
$$\rightarrow e(t) = L \frac{di(i)}{dt} = L \frac{d^2q(t)}{dt^2}$$
.

- Capacitor
$$\rightarrow e(t) = \frac{1}{C}q(t)$$
.

A 2^a lei de Kirchhoff diz que a soma das quedas de tensão em uma malha fechada de um circuito é nula, ou seja,

$$L\frac{di}{dt} + Ri = E \tag{1.45}$$

para o circuito RL e

$$R\frac{dq}{dt} + \frac{1}{C}q = E \tag{1.46}$$

para o circuito RC.

Vale notar que as equações (1.45) e (1.46) são equações diferenciais lineares de 1^a ordem. Baseado nessas informações, pede-se:

- a) Uma bateria de 12 volts é conectada a um circuito em série no qual a indutância é de 1/2 henry e a resistência de 10 ohms. Determine a expressão para a corrente no circuito i(t) sabendo que a corrente no instante inicial é zero.
- b) Encontre a corrente i(t), sabendo que esta corrente satisfaz a equação diferencial $L\frac{di}{dt}+Ri=\sin(2t)$, onde R e L são constantes não nulas.

Exemplo 32: Tempo de duplicação e meia vida

Se uma quantidade y possuir um modelo de crescimento exponencial, então o tempo necessário para a quantidade inicial dobrar é chamado de tempo de duplicação, e se y possuir um modelo de decaimento exponencial, então o tempo requerido para a quantidade inicial se reduzir pela metade é chamado de meia vida. O tempo de duplicação e meia vida dependem somente da taxa de crescimento ou decaimento e não da quantidade presente inicialmente.

Suponha que y = y(t) possui um modelo de crescimento exponencial dado por

$$y = y_0 e^{kt} \tag{1.47}$$

e seja T o tempo requerido para y dobrar seu tamanho. Desta forma, no tempo t=T o valor de y será duas vezes y_0 e portanto

$$2y_0 = y_0 e^{kT} \to e^{kT} = 2 \to \ln(e^{kT}) = \ln(2) \to T = \frac{\ln(2)}{k}$$
 (1.48)

Baseado nestas informações, pede-se:

A taxa de decomposição do elemento rádio é proporcional à quantidade presente em um dado instante. Sabendo que a meia vida do rádio é de 1600 anos, encontre o percentual de rádio que permanece após 25 anos.

1.9 Equações diferenciais lineares de ordem superior

1.9.1 Definição

Uma equação diferencial linear de ordem n tem a forma geral representada por

$$a_0 \frac{d^n y}{dx^n} + a_1 \frac{d^{n-1} y}{dx^{n-1}} + a_2 \frac{d^{n-2} y}{dx^{n-2}} + \dots + a_{n-1} \frac{dy}{dx} + a_n y = f(x), \tag{1.49}$$

onde $a_0 \neq 0, a_1, a_2, \dots, a_n$ são constantes ou funções de x somente.

Por conveniência, a equação (1.49) pode ser representada na forma de um polinômio, através da utilização de um operador diferencial D, onde

$$D = \frac{d}{dx} \tag{1.50}$$

Assim, $\frac{dy}{dx} = Dy$, $\frac{d^2y}{dx^2} = D^2y$, $\frac{d^3y}{dx^3} = D^3y$, $\frac{d^ny}{dx^n} = D^ny$. Portanto, a equação (1.49) pode ser escrita na forma

$$a_0 D^n y + a_1 D^{n-1} y + a_2 D^{n-2} y + \dots + a_{n-1} D y + a_n y = f(x)$$
(1.51)

ou

$$[a_0D^n + a_1D^{n-1} + a_2D^{n-2} + \dots + a_{n-1}D + a_n]y = f(x)$$
(1.52)

A expressão entre colchetes de (1.52) é chamada de operador polinomial e é representada por F(D), ou seja,

$$F(D) = a_0 D^n + a_1 D^{n-1} + a_2 D^{n-2} + \dots + a_{n-1} D + a_n$$
(1.53)

e a equação (1.49) pode ser escrita na forma

$$F(D)y = f(x) \tag{1.54}$$

Exemplo 33: Representar a equação diferencial a seguir utilizando o operador diferencial D.

$$\frac{d^3y}{dx^3} - \frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 0$$

1.9.2 Propriedades do operador diferencial

- **P1)** D[ky(x)] = kD[y(x)]
- **P2)** $D[k_1y_1(x) \pm k_2y_2(x)] = kD[y_1(x)] \pm k_2D[y_2(x)]$
- **P3)** $D^m[D^ny(x)] = D^{m+n}[y(x)]$
- **P4)** $[D^2 (a+b)D + ab]y(x) = (D-a)(D-b)y(x)$

1.9.3 Símbolos

1. O simbolo $D^n[f(x)]$ significa que a função f(x) deve ser derivada n vezes.

Exemplo 34: Obtenha:

- a) $D(x^2 + 2x + 1)$
- b) $(D-2)(D-2)e^x$
- c) $D^2(x^3 + e^{2x})$
- d) $D^{3}[D^{2}(sen(x))]$
- 2. O símbolo $\frac{1}{D^n}f(x) = D^{-n}f(x)$ significa que a função f(x) deve ser integrada n vezes.

Seja a equação diferencial

$$\frac{dy}{dx} = f(x) \to dy = f(x)dx \tag{1.55}$$

$$\int dy = \int f(x)dx \tag{1.56}$$

$$y = \int f(x)dx \tag{1.57}$$

Escrevendo a equação (1.55) utilizando o operador diferencial D e comparando o resultado com a equação (1.57), tem-se:

$$\frac{dy}{dx} = f(x) \to Dy = f(x) \tag{1.58}$$

$$y = \frac{1}{D}f(x) \tag{1.59}$$

$$\frac{1}{D}f(x) = \int f(x)dx \tag{1.60}$$

$$\frac{1}{D^2}f(x) = \int \int f(x)dx^2$$
 (1.61)

$$\frac{1}{D^3}f(x) = \int \int \int f(x)dx^3 \tag{1.62}$$

Generalizando:

$$\frac{1}{D^n}f(x) = \int \int \int \dots \int f(x)dx^n$$
 (1.63)

Exemplo 35: Obtenha:

a)
$$\frac{1}{D}[\operatorname{tg}(x)]$$

b)
$$\frac{1}{D}[x + e^{-x}]$$

c)
$$\frac{1}{D}[\operatorname{sen}(x)]$$

d)
$$\frac{1}{D}[x^2 + xe^x]$$

3. O símbolo $\frac{1}{(D-r_1)(D-r_2)\dots(D-r_n)}f(x)$ significa que deve-se operar com $\frac{1}{D-r_1}$ em f(x), em seguida com $\frac{1}{D-r_2}$ no resultado encontrado e assim sucessivamente, até operar $\frac{1}{D-r_n}$ no último resultado.

Exemplo 36: Seja a equação diferencial linear

$$\frac{dy}{dx} - r_1 y = f(x)$$
 $P(x) = -r_1$ $Q(x) = f(x)$ (1.64)

A solução geral desta equação é

$$y = e^{-\int P(x)dx} \int f(x)e^{\int P(x)dx}dx$$
 (1.65)

$$y = e^{\int r_1 dx} \int f(x) e^{-\int r_1 dx} dx$$
 (1.66)

Escrevendo (1.64) em função do operador diferencial D, tem-se

$$Dy - r_1 y = f(x) (1.67)$$

$$(D - r_1)y = f(x) \tag{1.68}$$

$$y = \frac{1}{D - r_1} f(x) \tag{1.69}$$

Comparando (1.66) e (1.69) conclui-se que

$$\frac{1}{D - r_1} f(x) = e^{\int r_1 dx} \int f(x) e^{-\int r_1 dx} dx$$
 (1.70)

Exemplo 37: Obtenha:

a)
$$\frac{1}{D-2}e^{x}$$

b)
$$\frac{1}{D+4}(0)$$

c)
$$\frac{1}{(D+1)(D+2)}e^x$$

1.10 Equações diferenciais lineares homogêneas de ordem n com coeficientes constantes

1.10.1 Definição

são equações diferenciais da forma

$$\frac{d^n y}{dx^n} + a_1 \frac{d^{n-1} y}{dx^{n-1}} + a_2 \frac{d^{n-2} y}{dx^{n-2}} + \dots + a_{n-1} \frac{dy}{dx} + a_n y = 0$$
(1.71)

$$D^{n}y + a_{1}D^{n-1}y + a_{2}D^{n-2}y + \dots + a_{n-1}Dy + a_{n}y = 0$$
(1.72)

$$F(D)y = 0, (1.73)$$

onde os coeficientes a_1, a_2, \ldots, a_n são constantes.

Observação: A equação

$$\frac{d^n y}{dx^n} + a_1 \frac{d^{n-1} y}{dx^{n-1}} + a_2 \frac{d^{n-2} y}{dx^{n-2}} + \dots + a_{n-1} \frac{dy}{dx} + a_n y = g(x), \tag{1.74}$$

onde $g(x) \neq 0$ é chamada não-homogênea.

Tomando o polinômio F(D) e fatorando-o, obtém-se

$$F(D) = (D - r_1)(D - r_2)(D - r_3)\dots(D - r_n)$$
(1.75)

Dessa forma, a equação (1.73) fica

$$(D - r_1)(D - r_2)(D - r_3)\dots(D - r_n)y = 0$$
(1.76)

1.10.2 Equação característica

é a equação

$$F(D) = (D - r_1)(D - r_2)(D - r_3)\dots(D - r_n) = 0,$$
(1.77)

onde $r_1, r_2, r_3, \dots, r_n$ são chamadas raízes características.

Exemplo 38: Encontre a equação característica e as raízes características das equações diferenciais a seguir.

a)
$$y''' - y'' - 4y' + 4y = 0$$

b)
$$y'' + y' - 12y = 0$$

c)
$$y'' + 2y' - 3y = 0$$

d)
$$2y'' - 3y' + y = 0$$

1.10.3 Princípio da superposição

Se as funções $y_1(x), y_2(x), y_3(x), \dots, y_n(x)$ são soluções de uma equação diferencial homogênea, então a combinação linear

$$y(x) = C_1 y_1 + C_2 y_2 + C_3 y_3 + \ldots + C_n y_n \tag{1.78}$$

também é uma solução, onde $y_1, y_2, y_3, \ldots, y_n$ são funções linearmente independentes. Dessa forma, a equação (1.78) representa a solução geral ou completa da equação diferencial linear homogênea.

Dependência linear

As funções $y_1(x), y_2(x), y_3(x), \dots, y_n(x)$ possuem dependência linear quando uma expressão pode ser escrita na forma

$$C_1 y_1(x) + C_2 y_2(x) + C_3 y_3(x) + \ldots + C_n y_n(x) = \sum_{i=1}^n C_i y_i(x),$$
 (1.79)

onde $C_1, C_2, C_3, \ldots, C_n$ são constantes arbitrárias.

As funções $y_1(x), y_2(x), y_3(x), \dots, y_n(x)$ são linearmente independentes se a equação

$$C_1 y_1(x) + C_2 y_2(x) + C_3 y_3(x) + \ldots + C_n y_n(x) = 0$$
(1.80)

é satisfeita somente quando $C_1=C_2=C_3=\ldots=C_n=0$. Caso contrário, as n funções são ditas linearmente dependentes.

Exemplo 39: As funções $y_1 = e^x$ e $y_2 = e^{-x}$ são linearmente independentes, pois $C_1e^x + C_2e^{-x} = 0$ somente quando $C_1 = C_2 = 0$.

Exemplo 40: As funções $y_1 = e^x$, $y_2 = 2e^x$ e $y_3 = e^{-x}$ são linearmente dependentes, pois $C_1e^x + 2C_2e^x + C_3e^{-x} = 0$ não somente quando $C_1 = C_2 = C_3 = 0$, e sim para uma infinidade de valores, como $C_1 = 2$, $C_2 = -1$ e $C_3 = 0$; $C_1 = -2$, $C_2 = 1$ e $C_3 = 0$; etc.

Assim, é interessante usar um método mais prático para estabelecer uma condição necessária e suficiente para a confirmação da dependência linear entre funções. Isto pode ser realizado através do determinante de Wronski (ou Wronskiano), que é formado na sua primeira linha pelas funções em estudo, e da segunda linha em diante por suas funções derivadas de primeira ordem até a de ordem (n-1), como mostrado a seguir.

$$W = \begin{vmatrix} y_1(x) & y_2(x) & y_3(x) & \dots & y_n(x) \\ y'_1(x) & y'_2(x) & y'_3(x) & \dots & y'_n(x) \\ y''_1(x) & y''_2(x) & y''_3(x) & \dots & y''_n(x) \\ \vdots & \vdots & \vdots & \dots & \vdots \\ y_1^{(n-1)}(x) & y_2^{(n-1)}(x) & y_3^{(n-1)}(x) & \dots & y_n^{(n-1)}(x) \end{vmatrix}$$
(1.81)

Da teoria dos determinantes, pode-se concluir que

- Se W=0, as funções são linearmente dependentes.
- Se $W \neq 0$, as funções são linearmente independentes.

Exemplo 41: Estudar a dependência linear das funções a seguir:

a)
$$y_1 = e^{-x}$$
, $y_2 = e^{2x}$

b)
$$y_1 = e^x$$
, $y_2 = 2e^{-2x}$

c)
$$y_1 = x$$
, $y_2 = x + 1$, $y_3 = x + 2$

d)
$$y_1 = \text{sen}(ax), \quad y_2 = \cos(ax)$$

e)
$$y_1 \ln(x)$$
, $y_2 = x \ln(x)$, $y_3 = x^2 \ln(x)$

1.10.4 Solução da equação diferencial linear homogênea de coeficientes constantes

A solução geral de uma equação diferencial linear homogênea de coeficientes constantes é dada de acordo com a forma assumida pelas raízes da equação característica. Existem 4 casos de raízes da equação característica.

1^0 Caso: raízes da equação característica reais e distintas

Considerando a equação

$$\frac{dy}{dx} - r_1 y = 0 \quad \to \quad (D - r_1) y = 0, \tag{1.82}$$

sua solução é dada por

$$y = C_1 e^{r_1 x} (1.83)$$

Considerando a equação

$$(D - r_1)(D - r_2)y = 0, (1.84)$$

onde $r_1 \neq r_2$, sua solução é dada por

$$y = C_1 e^{r_1 x} + C_2 e^{r_2 x} (1.85)$$

Generalizando para uma equação diferencial de ordem n, tem-se como solução

$$y = C_1 e^{r_1 x} + C_2 e^{r_2 x} + C_3 e^{r_3 x} + \dots + C_{n-1} e^{r_{n-1} x} + C_n e^{r_n x},$$
(1.86)

onde as funções e^{r_1x} , e^{r_2x} , e^{r_3x} , ..., $e^{r_{n-1}x}$, e^{r_nx} são linearmente independentes.

Exemplo 42: Encontre a solução geral das seguintes equações diferenciais:

a)
$$\frac{d^3y}{dx^3} - \frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 0$$

b)
$$(D^3 + 2D^2 - 5D - 6)y = 0$$

c)
$$(D^2 + D - 6)y = 0$$

2º Caso: raízes da equação característica reais e iguais

Considerando a equação

$$(D-r_1)(D-r_2)(D-r_3)\dots(D-r_k)(D-r_{k+1})(D-r_{k+2})\dots(D-r_n)y=0, \quad (1.87)$$

e supondo que a equação característica possui k raízes reais iguais e as raízes restantes reais distintas, ou seja,

$$r_1 = r_2 = r_3 = \dots = r_k \tag{1.88}$$

е

$$r_k \neq r_{k+1} \neq r_{k+2} \neq \dots \neq r_n$$
 (1.89)

No caso da equação característica admitir raízes reais múltiplas, ou seja, raízes de multiplicidade k e $k \leq n$, onde n é a ordem da equação diferencial, a solução geral da mesma assume a forma

$$y = (C_1 + C_2 x + C_3 x^2 + \dots + C_k x^{k-1}) e^{r_k x} + C_{k+1} e^{r_{k+1} x} + \dots + C_n e^{r_n x},$$
(1.90)

onde as funções $e^{r_k x}$, $xe^{r_k x}$, $x^2e^{r_k x}$, ..., $x^{k-1}e^{r_k x}$, $e^{r_{k+1} x}$, ..., $e^{r_n x}$ são linearmente independentes.

Exemplo 43: Encontre a solução geral das seguintes equações diferenciais:

a)
$$(D^3 - 3D^2 + 3D - 1)y = 0$$

b)
$$(D^2 + 6D + 9)y = 0$$

c)
$$(D-2)^3(D+3)(D-1)^2y=0$$

3º Caso: raízes da equação característica complexas e distintas

Sabe-se que se a equação característica F(D)=0 possui uma raiz complexa da forma $\alpha+j\beta$, o conjugado $\alpha-j\beta$ também é raiz da mesma.

Supondo que a equação característica apresenta n raízes, onde duas raízes são $\alpha + j\beta$, $\alpha - j\beta$ e as raízes restantes são reais e distintas, a equação diferencial linear homogênea apresentará como solução geral:

$$y = K_1 e^{(\alpha + j\beta)x} + K_2 e^{(\alpha - j\beta)x} + C_3 e^{r_3 x} + C_4 e^{r_4 x} + \dots + C_n e^{r_n x}, \tag{1.91}$$

onde através da utilização das relações de Euler

$$e^{j\beta x} = \cos(\beta x) + j\operatorname{sen}(\beta x) \tag{1.92}$$

e

$$e^{-j\beta x} = \cos(\beta x) - j\operatorname{sen}(\beta x) \tag{1.93}$$

e após algumas manipulações algébricas, a equação (1.91) fica

$$y = [C_1 \cos(\beta x) + C_2 \sin(\beta x)]e^{\alpha x} + C_3 e^{r_3 x} + C_4 e^{r_4 x} + \dots + C_n e^{r_n x}$$
(1.94)

Novamente, as funções presentes na solução da equação diferencial são linearmente independentes.

Exemplo 44: Encontre a solução geral das seguintes equações diferenciais:

a)
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 10y = 0$$

b)
$$(D^3 + 4D)y = 0$$

4º Caso: raízes da equação característica complexas e iguais

Neste caso, basta fazer a combinação do 2^0 e 3^0 casos. Supondo que a equação característica F(D)=0 de uma equação diferencial apresenta n raízes, onde 4 delas correspondem a 2 pares de raízes conjugadas e as demais raízes são reais e distintas. Assim:

$$r_1 = r_3 = \alpha + j\beta \tag{1.95}$$

$$r_2 = r_4 = \alpha - j\beta \tag{1.96}$$

$$r_1 \neq r_2 \neq r_5 \neq r_6 \neq \dots \neq r_n$$
 (1.97)

A solução geral para esta equação diferencial é dada por

$$y = [(C_1 + C_2 x)\cos(\beta x) + (C_3 + C_4 x)\sin(\beta x)]e^{\alpha x} + C_5 e^{r_5 x} + C_6 e^{r_6 x} + \dots + C_n e^{r_n x}$$
(1.98)

Novamente, as funções presentes na solução da equação diferencial são linearmente independentes.

Exemplo 45: Encontre a solução geral das seguintes equações diferenciais:

a)
$$y'' - 4y = 0$$

b)
$$y''' - 16y' = 0$$

c)
$$\frac{d^4y}{dx^4} - 4\frac{d^2y}{dx^2} = 0$$

d)
$$y'' - 2y' + 10y = 0$$

e)
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 4y = 0$$

f)
$$\frac{d^4y}{dx^4} + 2\frac{d^2y}{dx^2} + y = 0$$

g)
$$y^{iv} + 4y'' + 4y = 0$$

h)
$$y^{iv} - 8y''' + 16y'' = 0$$

i)
$$(D^2 + D + 1)^3 (D^2 + 9)^2 (D + 4)^2 (D - 7)y = 0$$

Exemplo 46: Encontre a solução das equações diferenciais a seguir, levando em conta as condições iniciais dadas:

a)
$$y'' - 4y' + 3y = 0$$
 $y(0) = 7$ $y'(0) = 11$

b)
$$9y'' + 6y' + 4y = 0$$
 $y(0) = 3$ $y'(0) = 4$

c)
$$3y''' + 2y'' = 0$$
 $y(0) = -1$ $y'(0) = 0$ $y''(0) = 1$

1.11 Equações diferenciais não-homogêneas de ordem n com coeficientes constantes

1.11.1 Definição

são equações diferenciais da forma

$$\frac{d^n y}{dx^n} + a_1 \frac{d^{n-1} y}{dx^{n-1}} + a_2 \frac{d^{n-2} y}{dx^{n-2}} + \dots + a_{n-1} \frac{dy}{dx} + a_n y = f(x)$$
(1.99)

Usando o operador diferencial, esta equação fica:

$$(D^{n} + a_{1}D^{n-1} + a_{2}D^{n-2} + \ldots + a_{n-1}D + a_{n})y = f(x)$$
(1.100)

$$F(D)y = f(x) \tag{1.101}$$

Escrevendo F(D) na forma fatorada, obtém-se

$$F(D) = (D - r_1)(D - r_2)(D - r_3)\dots(D - r_n)$$
(1.102)

Assim, (1.100) fica:

$$(D - r_1)(D - r_2)(D - r_3)\dots(D - r_n)y = f(x)$$
(1.103)

1.11.2 Solução da equação diferencial não-homogênea de ordem n com coeficientes constantes

Considerando a equação diferencial homogênea

$$(D - r_1)(D - r_2)(D - r_3)\dots(D - r_n)y = 0$$
(1.104)

associada é equação (1.103).

A equação (1.104) possui uma solução $y_h(x)$, chamada de solução homogênea, que possui constantes arbitrárias. A equação diferencial não-homogênea dada por (1.103) possui também uma solução $y_p(x)$, chamada de solução particular, livre de constantes arbitrárias.

Dessa forma, a solução geral da equação diferencial não-homogênea com coeficientes constantes é dada por

$$y(x) = y_h(x) + y_p(x), (1.105)$$

onde

- $y_h(x) \to \text{solução homogênea ou função complementar, que no estudo de circuitos corresponde ao regime transitório.}$
- $y_p(x) \to \text{solução particular ou integral particular, que no estudo de circuitos corresponde ao regime permanente.}$
- $y(x) \rightarrow \text{solução geral}$, que no estudo de circuitos corresponde é resposta completa do mesmo.

Sabe-se que a solução geral possui n constantes arbitrárias devido à presença da solução homogênea. Assim,

$$F(D)y = F(D)[y_h + y_p] = F(D)y_h + F(D)y_p = 0 + f(x)$$
(1.106)

A equação (1.106) indica que a solução homogênea da equação diferencial (1.103) é aquela que se substituída na equação, o resultado será nulo; e a solução particular é aquela que se substituída na equação, irá gerar a função f(x). Foi visto anteriormente como proceder no cálculo da solução homogênea. Para o cálculo da solução particular existem dois métodos principais:

- Método abreviado
- Método dos coeficientes a determinar

Método abreviado

A solução particular de uma equação diferencial F(D)y = f(x) com coeficientes constantes é dada por

$$y_p(x) = \frac{1}{F(D)}f(x)$$
 (1.107)

Sabe-se que para uma equação diferencial de primeira ordem, tem-se:

$$y_p(x) = \frac{1}{F(D)}f(x) = \frac{1}{D-r_1}f(x) = e^{r_1x} \int f(x)e^{-r_1x}dx$$
 (1.108)

Para uma equação diferencial de ordem n tem-se:

$$y_p(x) = \frac{1}{F(D)}f(x) = \frac{1}{(D - r_1)(D - r_2)\dots(D - r_n)}f(x)$$
 (1.109)

$$y_p(x) = e^{r_1 x} \int e^{(r_2 - r_1)x} \int e^{(r_3 - r_2)x} \dots \int e^{(r_n - r_{n-1})x} \int f(x) e^{-r_n x} dx^n$$
 (1.110)

É fácil notar em (1.110) que o cálculo da solução particular é uma tarefa trabalhosa, porém, este cálculo facilita bastante quando a função f(x) assume formas conhecidas como

-
$$f(x) = K$$

-
$$f(x) = e^{\alpha x}$$

-
$$f(x) = x^n$$

-
$$f(x) = x^n e^{\alpha x}$$

-
$$f(x) = e^{\alpha x} \cos(\beta x)$$

-
$$f(x) = e^{\alpha x} \operatorname{sen}(\beta x)$$

onde $n \in \mathbb{Z}$ e $\alpha, \beta \in \mathbb{R}$.

1º Caso: $f(x) = \alpha e^{\beta x} \rightarrow F(D)y_p = \alpha e^{\beta x}$, onde α e β são constantes arbitrárias.

Neste caso a solução particular é dada por

$$y_p(x) = \frac{1}{F(D)} f(x) = \frac{1}{F(D)} \alpha e^{\beta x} \Big|_{D=\beta}, \quad F(\beta) \neq 0$$
 (1.111)

Exemplo 47: Encontre a solução geral das equações diferenciais a seguir:

a)
$$(D-1)(D-3)(D+2)y = e^{4x}$$

b)
$$(D-1)(D-3)(D+2)y = (e^{2x}+3)^2$$

c)
$$(D-1)(D-3)(D+2)y = e^{3x}$$

d)
$$y'' - 3y' + 2y = 3e^{2x}$$

e)
$$(D-1)^2(D-2)y = 3e^x + 2e - x$$

2º Caso: $f(x) = k \operatorname{sen}(ax + b)$ ou $f(x) = k \cos(ax + b)$, onde $k, a, b \in \mathbb{R}$.

A equação diferencial terá a forma

$$F(D)y_p = k\mathrm{sen}(ax+b) \tag{1.112}$$

ou

$$F(D)y_p = k\cos(ax+b) \tag{1.113}$$

Neste caso a solução particular é dada por

$$y_p(x) = \frac{1}{F(D)} k \operatorname{sen}(ax + b) \Big|_{D^2 = -a^2}$$
 (1.114)

ou

$$y_p(x) = \frac{1}{F(D)} k \cos(ax+b) \bigg|_{D^2=-a^2},$$
 (1.115)

onde $F(-a^2) \neq 0$.

Exemplo 48: Determinar a solução geral das equações diferenciais a seguir:

a)
$$y''' - y' = 2 sen(x)$$

b)
$$(D^2 + 4)y = \cos(3x)$$

c)
$$y^{iv} + y''' = \text{sen}(2x)$$

d)
$$y'' - 3y' + 2y = 2 \operatorname{sen} 2x$$

e)
$$y'' + 3y' - 4y = \sin 2x$$

Observação: Se no cálculo da solução particular para este caso F(D) = 0 para $D^2 = -a^2$, deve-se resolver a equação diferencial pelo método dos coeficientes a determinar, que será visto posteriormente.

3º Caso:
$$f(x) = x^m \rightarrow F(D)y_p = x^m$$
, onde $m \in \mathbb{Z}_+^*$.

Neste caso a solução particular é dada por

$$y_p(x) = \frac{1}{F(D)}x^m = (a_0 + a_1D + a_2D^2 + a_3D^3 + \dots + a_mD^m)x^m, \quad a_0 \neq 0,$$
 (1.116)

onde o polinômio $(a_0 + a_1D + a_2D^2 + a_3D^3 + \ldots + a_mD^m)$ é obtido ao fazer a divisão $\frac{1}{F(D)}$, desprezando-se todos os termos além de D^m , pois $D^{(m+1)}[x^m] = 0$.

Exemplo 49: Encontrar a solução geral das equações diferenciais a seguir:

a)
$$y''' + 4y' = x$$

b)
$$y'' - 4y = x - 1$$

c)
$$(D^2 - 4D + 3)y = x^2 + 2x + 1$$

d)
$$(D^3 - 4D^2 + 3D)y = x^2$$

 4^0 Caso: $f(x) = e^{zx}Q(x) \rightarrow F(D)y_p = e^{zx}Q(x)$, onde $z \in \mathbb{R}$ e Q(x) é uma das funções estudadas nos casos 2 e 3, ou seja,

$$Q(x) = x^m (1.117)$$

ou

$$Q(x) = k \operatorname{sen}(ax + b) \tag{1.118}$$

ou

$$Q(x) = k\cos(ax + b) \tag{1.119}$$

Neste caso, a solução particular da equação diferencial é dada por

$$y_p(x) = \frac{1}{F(D)} e^{zx} Q(x) = e^{zx} \frac{1}{F(D+z)} Q(x)$$
 (1.120)

Exemplo 50: Encontre a solução geral para as equações diferenciais a seguir:

a)
$$(D^2 - 4)y = x^2 e^x$$

b)
$$(D^2 + D - 6)y = e^{5x} \operatorname{sen}(x)$$

c)
$$(D^2 - D + 4)y = xe^{3x}$$

Método dos coeficientes a determinar

Semelhante ao método abreviado, a aplicação deste método se limita às equações diferenciais lineares não-homogêneas com coeficientes constantes da forma

$$F(D)y = f(x), (1.121)$$

onde f(x) apresenta uma das formas mostradas abaixo ou é uma combinação linear das mesmas:

$$f(x) = \begin{cases} k & k \in \mathbb{R} \\ x^m & m \in \mathbb{Z}_+^* \\ e^{\beta x} & \beta \in \mathbb{R} \\ \sec(ax) & a \in \mathbb{R} \\ \cos(ax) & a \in \mathbb{R} \end{cases}$$
(1.122)

Exemplo 51: A função f(x) poderia assumir as formas:

a)
$$f(x) = 10$$

b)
$$f(x) = x^2 + 5x$$

c)
$$f(x) = 8x - 6e^{-2x}$$

d)
$$f(x) = \text{sen}(2x) - 5x\text{sen}(3x) + 3x^2e^x$$

O método dos coeficientes a determinar não se aplica às equações diferenciais cujas funções f(x) são diferentes das formas citadas, como por exemplo, $f(x) = \ln(x)$, $f(x) = x^{-1}$, $f(x) = \operatorname{tg}(x)$ ou $f(x) = \operatorname{sec}(x)$.

As famílias de funções conhecidas (constantes, exponenciais, polinômios, senos e cossenos) possuem a seguinte propriedade:

 \Rightarrow Se as somas e os produtos destas funções forem derivadas sucessivas vezes, o resultado obtido continuará sendo somas e produtos destas mesmas funções.

Exemplo 52: Seja
$$f(x) = (x^3 + 3x^2)e^{-4x} + e^{2x}sen(x)$$

Nota-se que f(x) possui um produto de um polinômio por uma exponencial e um produto de um seno por uma exponencial. Derivando esta função em relação a x, obtém-se:

$$f'(x) = (3x^{2} + 6x)e^{-4x} + (x^{3} + 3x^{2})(-4e^{-4x}) + 2e^{2x}\operatorname{sen}(x) + e^{2x}\operatorname{cos}(x)$$

Como dito na propriedade, o resultado f'(x) consiste em somas de produtos das mesmas funções, ou seja, ao produto de exponenciais por polinômios e ao produto de exponenciais por funções senoidais.

Tomando esta propriedade e sabendo que uma equação diferencial linear não-homogênea de coeficientes constantes é uma combinação linear entre a função y(x) e suas derivadas, pode-se concluir que a solução particular $y_p(x)$ que gera a função f(x) possui a mesma forma de f(x).

Exemplo 53: Encontrar a solução geral de

$$y'' + 4y' - 2y = 2x^2 - 3x + 6 (1.123)$$

A solução homogênea é determinada a partir das raízes da equação característica. Assim:

$$(D^2 + 4D - 2) = 0 (1.124)$$

As raízes da equação característica são $r_1=-2+\sqrt{6}$ e $r_2=-2-\sqrt{6}$. Logo, a solução homogênea é

$$y_h = C_1 e^{(-2+\sqrt{6})x} + C_2 e^{(-2-\sqrt{6})x}$$
(1.125)

Para determinar a solução particular, uma vez que f(x) assume a forma de um polinômio do segundo grau, admite-se que y_p também assume a forma de um polinômio do segundo grau. Assim:

$$y_p = Ax^2 + Bx + C \tag{1.126}$$

Para encontrar a solução particular, os valores de A, B e C devem ser calculados, derivando a equação (1.126) duas vezes e substituindo os resultados em (1.123). Assim:

$$y_p' = 2Ax + B \tag{1.127}$$

$$y_p'' = 2A \tag{1.128}$$

Substituindo estes resultados em $y'' + 4y' - 2y = 2x^2 - 3x + 6$, vem:

$$2A + 8Ax + 4B - 2Ax^{2} - 2Bx - 2C = 2x^{2} - 3x + 6$$
(1.129)

$$-2Ax^{2} + (8A - 2B)x + 2A + 4B - 2C = 2x^{2} - 3x + 6$$
(1.130)

Comparando os dois membros de (1.130), conclui-se que

$$-2A = 2 \rightarrow A = -1$$
 (1.131)

$$8A - 2B = -3 \quad \to \quad B = -\frac{5}{2} \tag{1.132}$$

$$2A + 4B - 2C = 6 \rightarrow C = -9$$
 (1.133)

Assim, a solução geral da equação diferencial dada é

$$y = y_h + y_p = C_1 e^{(-2+\sqrt{6})x} + C_2 e^{(-2-\sqrt{6})x} - x^2 - \frac{5}{2}x - 9$$
 (1.134)

Exemplo 54: Encontre a solução da equação diferencial y'' - y' + y = 2sen(3x)

Dica: Sabendo que derivações sucessivas de sen(3x) geram termos com sen(3x) e cos(3x), uma escolha sensata para a solução particular é:

$$y_p = A \operatorname{sen}(3x) + B \cos(3x)$$

Exemplo 55: Encontre a solução da equação diferencial $y'' - 2y' - 3y = 4x - 5 + 6xe^{2x}$

Dica: Sabendo que f(x) é composta por uma função polinomial do primeiro grau somada com o produto de um polinômio do primeiro grau com uma exponencial, a solução particular assume a mesma forma:

$$y_p = Ax + B + (Cx + D)e^{2x}$$

Exemplo 56: A tabela a seguir traz alguns exemplos de f(x). Complete esta tabela com as escolhas apropriadas para a solução particular $y_p(x)$:

f(x)	Solução particular	$y_p(x)$
1		
5x + 7		
$3x^2 - 2$		
x^3		
sen(4x)		
e^{5x}		
$(9x-2)e^{5x}$		
$x^2 e^{5x}$		
$e^{3x}\cos(4x)$		
$5x^2 \operatorname{sen}(4x)$		
$xe^{3x}\cos(4x)$		

O exemplo a seguir mostra que algumas vezes o método dos coeficientes a determinar deve sofrer uma pequena modificação no momento de adotar a solução particular, ao observar a forma de f(x).

Exemplo 57: Encontre a solução geral para a equação diferencial $y' - 2y = 4e^{2x}$.

A solução homogênea obtida a partir da raiz da equação característica (D-2)=0 é

$$y_h = C_1 e^{2x}$$
 (1.135)

Observando a função $f(x) = 4e^{2x}$, uma escolha inicial para a solução particular é:

$$y_p = Ae^{2x} (1.136)$$

Derivando (1.136), vem:

$$y_p' = 2Ae^{2x} (1.137)$$

Substituindo estes resultados na equação diferencial dada, vem:

$$2Ae^{2x} - 2Ae^{2x} = 4e^{2x} (1.138)$$

$$0 = 4e^{2x} (1.139)$$

Isto ocorre devido ao fato da solução particular adotada $y_p = Ae^{2x}$ estar presente na solução homogênea. Sabe-se que a solução homogênea é aquela que zera a equação diferencial. O objetivo da solução particular é gerar a função f(x) e não anular a equação diferencial, como ocorreu neste exemplo. Voltando à equação diferencial dada:

$$(D-2)y = 4e^{2x} (1.140)$$

$$y_p = \frac{1}{D-2} 4e^{2x} \tag{1.141}$$

Mas,

$$\frac{1}{D-r}f(x) = e^{rx} \int f(x)e^{-rx}dx \qquad (1.142)$$

Logo,

$$y_p = e^{2x} \int 4e^{2x} e^{-2x} dx \tag{1.143}$$

$$y_p = 4xe^{2x} (1.144)$$

Assim, pode-se concluir que quando a função f(x) presente na equação diferencial fizer parte da solução homogênea, a solução particular adotada deve ser multiplicada por x.

Exemplo 58: Encontre a solução geral para a equação diferencial $y''-10y'+25y=2e^{5x}$.

Dica: A equação característica desta equação diferencial é dada por $(D-5)^2 = 0$, e sabendo que a mesma possui duas raízes iguais a 5, a solução homogênea fica:

$$y_h = (C_1 + C_2 x)e^{5x} (1.145)$$

Para determinar a solução particular, tem-se $f(x) = 2e^{5x}$ e observa-se que a solução particular inicialmente adotada $y_p = Ae^{5x}$ está presente na solução homogênea. Multiplicando esta solução adotada por x, obtém-se $y_p = Axe^{5x}$, que também está presente na solução homogênea. Portanto, deve-se multiplicar novamente esta solução adotada por x até resultar numa função que não coincida com y_h . Portanto, deverá ser adotada a solução particular:

$$y_p = Ax^2 e^{5x} (1.146)$$

Exemplo 59: Encontre a solução geral para as equações diferenciais a seguir, usando o método dos coeficientes a determinar.

a)
$$y'' - 5y' + 4y = 8e^x$$

b)
$$y'' - 8y' + 25y = 5x^3e^{-x} - e^{-x}$$

c)
$$y'' + 4y = x\cos(x)$$

d)
$$y'' - 9y' + 14y = 3x^2 - 5\operatorname{sen}(2x) + 7xe^{6x}$$

e)
$$y'' - 2y' + y = e^x$$

f)
$$y'' + 4y = 8t^2$$

g)
$$y'' - 3y' + 2y = e^t$$

h)
$$y'' + 2y' + 5y = 1,25e^{0.5t} + 40\cos(4t) - 55\sin(4t)$$

Exemplo 60: Resolva os problemas de valores iniciais a seguir:

a)
$$y'' + y = 4x + 10\operatorname{sen}(x)$$
 $y(\pi) = 0$ $y'(\pi) = 2$

b)
$$y'' + 2y' + y = e^{-t}$$
 $y(0) = -1$ $y'(0) = 1$

1.12 2^a série de exercícios:

1. Resolva as equações diferenciais a seguir pelo método abreviado.

a)
$$y'' - 9y = 54$$

b)
$$2y'' - 7y' + 5y = -29$$

c)
$$y'' + y' = 3$$

d)
$$y'' + 3y' = 4x - 5$$

e)
$$y'' + 4y' + 4y = 2x + 6$$

f)
$$y'' - 2y' + y = x^3 + 4x$$

g)
$$y''' + y'' = 8x^2$$

h)
$$y'' + 6y' + 8y = 3e^{-2x} + 2x$$

i)
$$y'' - 2y' - 3y = 4e^x - 9$$

j)
$$y'' + 2y' = x^2 e^{-x}$$

$$k) y'' - 2y + 5y = e^x sen(x)$$

1)
$$y'' + y = 4\cos(2x) - \sin(2x)$$

2. Resolva as equações diferenciais a seguir pelo método dos coeficientes a determinar:

a)
$$y'' + 3y' + 2y = 6$$

b)
$$y'' + y' - 6y = 2x$$

c)
$$y'' - 10y' + 25y = 30x + 3$$

d)
$$4y'' - 4y' - 3y = \cos(2x)$$

e)
$$y'' + 4y' + 4y = 4x^2 - 8x$$

f)
$$y'' + 2y' = 2x + 5 - e^{-2x}$$

g)
$$y'' + y = 2x\operatorname{sen}(x)$$

h)
$$y'' + 4y = (x^2 - 3)\operatorname{sen}(2x)$$

i)
$$y'' + y = 8 \operatorname{sen}^2(x)$$

$$j) y'' + y = sen(x)cos(x)$$

3. Resolva as equações diferenciais a seguir observando as condições iniciais dadas.

a)
$$y'' + 4y = -2$$
 $y\left(\frac{\pi}{8}\right) = \frac{1}{2}$ $y'\left(\frac{\pi}{8}\right) = 2$

b)
$$5y'' + y' = -6x$$
 $y(0) = 0$ $y'(0) = -10$

c)
$$\frac{d^2x}{dt^2} + \omega^2 x = F_0 \operatorname{sen}(\omega t)$$
 $x(0) = 0$ $x'(0) = 0$

1.13 Aplicações das equações diferenciais homogêneas na análise de circuitos elétricos

Seja um circuito RLC (composto por uma fonte de tensão em série com um capacitor, um indutor e um resistor), como mostrado na Figura 1.3.

Figura 1.3: Circuito RLC.

A partir do instante que a chave fecha t > 0 e a corrente começa a circular no circuito, sabe-se que a soma de todas as quedas de tensão em uma malha fechada é nula. Assim,

$$e_L(t) + e_R(t) + e_C(t) = E(t),$$
 (1.147)

onde

- $e_L(t) \rightarrow$ queda de tensão no indutor.
- $e_C(t) \rightarrow$ queda de tensão no capacitor.
- $e_R(t) \rightarrow$ queda de tensão no resistor.
- $E(t) \rightarrow \text{tensão da fonte.}$

Para os elementos de circuito citados, a tensão e(t) se relaciona com a corrente i(t) da seguinte forma:

Indutor

$$e_L(t) = L\frac{di(i)}{dt},\tag{1.148}$$

onde L é a indutância, dada em henries [H].

Capacitor

$$e_C(t) = \frac{1}{C} \int i(t)dt, \qquad (1.149)$$

onde C é a capacitância, dada em farads [F].

Resistor

$$e_R(t) = Ri(t), \tag{1.150}$$

onde R é a resistência, dada em ohms $[\Omega]$.

Assim, a equação (1.147) fica

$$L\frac{di(t)}{dt} + Ri(t) + \frac{1}{C} \int i(t)dt = E(t)$$
(1.151)

Derivando a equação (1.151) em relação ao tempo, obtém-se

$$L\frac{d^{2}i(t)}{dt^{2}} + R\frac{di(t)}{dt} + \frac{1}{C}i(t) = \frac{dE(t)}{dt}$$
(1.152)

$$\frac{d^{2}i(t)}{dt^{2}} + \frac{R}{L}\frac{di(t)}{dt} + \frac{1}{LC}i(t) = \frac{1}{L}\frac{dE(t)}{dt}$$
 (1.153)

Escrevendo (1.153) utilizando o operador diferencial D, tem-se

$$\left(D^{2} + \frac{R}{L}D + \frac{1}{LC}\right)i(t) = \frac{1}{L}DE(t)$$
(1.154)

Para o cálculo da solução homogênea, equação característica deste circuito é

$$D^2 + \frac{R}{L}D + \frac{1}{LC} = 0 ag{1.155}$$

$$\Delta = \frac{R^2}{L^2} - \frac{4}{LC} \tag{1.156}$$

Se $\Delta > 0$,

$$\frac{R^2}{L^2} - \frac{4}{LC} > 0 ag{1.157}$$

$$\frac{R^2}{L^2} > \frac{4}{LC} \tag{1.158}$$

e o circuito é dito superamortecido. A equação característica apresenta raízes reais distintas, que faz com que a corrente apresente a forma:

$$i(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t} (1.159)$$

Se $\Delta = 0$,

$$\frac{R^2}{L^2} - \frac{4}{LC} = 0 ag{1.160}$$

$$\frac{R^2}{L^2} = \frac{4}{LC} \tag{1.161}$$

e o circuito é dito criticamente amortecido. A equação característica apresenta raízes reais iguais, que faz com que a corrente apresente a forma:

$$i(t) = (C_1 + C_2 t)e^{rt} (1.162)$$

Se $\Delta < 0$,

$$\frac{R^2}{L^2} - \frac{4}{LC} < 0 ag{1.163}$$

$$\frac{R^2}{L^2} < \frac{4}{LC} \tag{1.164}$$

e o circuito é dito subamortecido. A equação característica apresenta raízes complexas, que faz com que a corrente apresente a forma:

$$i(t) = [C_1 \cos(\beta t) + C_2 \sin(\beta t)]e^{\alpha t}$$
(1.165)

Uma outra abordagem pode ser feita para este circuito, bastando para isto equacioná-lo em relação à carga q, dada em Coulombs [C] ao invés de utilizar a corrente. Neste caso, sabe-se que a corrente que circula no circuito corresponde à variação da carga ao longo do tempo, ou seja,

$$i(t) = \frac{dq(t)}{dt} \tag{1.166}$$

Assim, a relação entre tensão e carga para cada elemento de circuito é estabelecida utilizando a relação (1.166). Assim:

Indutor

$$e_L(t) = L\frac{di(i)}{dt} = L\frac{d^2q(t)}{dt^2}$$
(1.167)

Capacitor

$$e_C(t) = \frac{1}{C}q(t) \tag{1.168}$$

Resistor

$$e_R(t) = Ri(t) = R\frac{dq(t)}{dt}$$
(1.169)

Assim, a equação (1.147) fica

$$L\frac{d^2q(t)}{dt^2} + R\frac{dq(t)}{dt} + \frac{1}{C}q(t) = E(t)$$
 (1.170)

$$\frac{d^2q(t)}{dt^2} + \frac{R}{L}\frac{dq(t)}{dt} + \frac{1}{LC}q(t) = E(t)$$
 (1.171)

Escrevendo (1.171) utilizando o operador diferencial D, tem-se

$$\left(D^2 + \frac{R}{L}D + \frac{1}{LC}\right)q(t) = \frac{1}{L}E(t)$$
(1.172)

Para o cálculo da solução homogênea, equação característica deste circuito é

$$D^2 + \frac{R}{L}D + \frac{1}{LC} = 0 ag{1.173}$$

$$\Delta = \frac{R^2}{L^2} - \frac{4}{LC} \tag{1.174}$$

Se $\Delta > 0$,

$$\frac{R^2}{L^2} - \frac{4}{LC} > 0 ag{1.175}$$

$$\frac{R^2}{L^2} > \frac{4}{LC} \tag{1.176}$$

e o circuito é dito superamortecido. A equação característica apresenta raízes reais distintas, que faz com que a carga apresente a forma:

$$q(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t} (1.177)$$

Se $\Delta = 0$,

$$\frac{R^2}{L^2} - \frac{4}{LC} = 0 ag{1.178}$$

$$\frac{R^2}{L^2} = \frac{4}{LC} \tag{1.179}$$

e o circuito é dito criticamente amortecido. A equação característica apresenta raízes reais iguais, que faz com que a carga apresente a forma:

$$q(t) = (C_1 + C_2 t)e^{rt} (1.180)$$

Se $\Delta < 0$,

$$\frac{R^2}{L^2} - \frac{4}{LC} < 0 ag{1.181}$$

$$\frac{R^2}{L^2} < \frac{4}{LC} \tag{1.182}$$

e o circuito é dito subamortecido. A equação característica apresenta raízes complexas, que faz com que a carga apresente a forma:

$$q(t) = [C_1 \cos(\beta t) + C_2 \sin(\beta t)]e^{\alpha t}$$
(1.183)

Exemplo 61:Para o circuito LC da Figura 1.4, encontre a carga no capacitor e a corrente no circuito, sabendo que q(0) = 0 e i(0) = 0.

Figura 1.4: Circuito LC.

a)
$$L = 1 \ [H], \quad C = \frac{1}{6} \ [F] \quad E(t) = 60 \ [V]$$

b)
$$L = 5$$
 [H], $C = 0.01$ [F] $E(t) = 20t$ [V]

Capítulo 2

Sequências e Séries

2.1 Sequências infinitas (ou sucessões)

2.1.1 Introdução

Quando dizemos que uma coleção de objetos forma uma sequência, significa que esta coleção está ordenada de forma que possui um primeiro elemento, um segundo elemento e assim por diante. Do ponto de vista da matemática, uma sequência é uma função cujo domínio é o conjunto dos números inteiros positivos e a imagem é dada por um conjunto de valores que seguem uma lei de formação. Utilizamos a notação:

2.1.2 Definição de uma sequência

Uma sequência de números reais é uma função $f: \mathbb{N} \to \mathbb{R}$, que associa a cada número natural n um número real $\{a_n\}$ ou f(n).

Exemplo 01: A sequência f(n) = n ou $\{a_n\} = n$, mostrada no gráfico da Figura 2.1, é dada por $a_0 = 0, a_1 = 1, a_2 = 2, a_3 = 3, \ldots, a_n = n, \ldots$

Observações:

- 1) Os termos $a_0, a_1, a_2, \ldots, a_n$ são chamados de termos da sequência.
- 2) Em alguns casos é conveniente considerar o primeiro termo da sequência como a_0 . Neste caso, a sequência assume a forma

$$a_0, a_1, a_2, a_3, \dots, a_n, \dots$$
 (2.1)

3) Conhecendo os primeiros termos da sequência, é possível representá-la pelo seu termo geral.

Figura 2.1: Gráfico da sequência $\{a_n\} = n$.

Exemplo 02:

a) $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$

O termo geral desta sequência é dado por $a_n = \frac{1}{n}, \forall n \geq 1.$

b) $-1, 1-1, 1, -1, \dots$

O termo geral desta sequência é dado por $a_n = (-1)^n$, $\forall n \geq 1$.

 $4) {\rm Uma}$ regra de formação ou equação para o $n\text{-}\acute{e}simo$ termo de uma sequência é suficiente para especificá-la.

Exemplo 03: Indique os quatro primeiros termos e o décimo termo das sequências a seguir, considerando a_1 como sendo o primeiro termo da sequência:

$$a) \{a_n\} = \frac{n}{n+1}$$

b)
$$\{b_n\} = \frac{n^2}{2^n - 1}$$

c)
$$\{c_n\} = (-1)^{n+1} \frac{n^2}{3n-1}$$

$$d) \{a_n\} = 4$$

2.1.3 Limite de uma sequência

Um número real L é limite de uma sequência $\{a_n\}$, ou a sequência $\{a_n\}$ converge para o valor L se a seguinte condição for satisfeita: $\forall \varepsilon > 0$, existe um índice $M \in \mathbb{N}$ tal que

$$|a_n - L| < \varepsilon, \ \forall n > M. \tag{2.2}$$

Isto significa que

$$-\varepsilon < a_n - L < \varepsilon, \qquad (+L)$$

$$L - \varepsilon < a_n < L + \varepsilon. \qquad (2.3)$$

Este resultado é mostrado no gráfico da Figura 2.2.

Figura 2.2: Limite de uma sequência $\{a_n\}$.

A definição dada na equação (2.2) diz que a partir de um determinado índice M (n > M), todos os termos da uma sequência que converge para o valor L se encontram dentro da faixa mostrada no gráfico. É importante notar que:

- 1. Se a sequência $\{a_n\}$ converge para um valor L, apenas uma quantidade finita de termos (M termos) ficará fora da faixa compreendida entre as retas $y = L + \varepsilon$ e $y = L \varepsilon$.
- 2. O índice M para o qual a sequência $\{a_n\}$ começa a convergir depende do valor de ε .
- 3. Todos os termos da sequência $\{a_n\}$ a partir do termo de ordem M estão dentro do intervalo aberto $(L \varepsilon, L + \varepsilon)$.

Exemplo 04:

1) Sabemos que $\lim_{n\to\infty}\frac{1}{n}=0$. Neste caso, a sequência cujo termo geral é dado por $a_n=\frac{1}{n}$ converge para o valor L=0. Utilizando a definição dada na equação (2.2), vamos considerar $\varepsilon=0,01$. A definição diz que

$$|a_n - L| < \varepsilon \qquad \forall n > M,$$
 (2.4)

ou seja,

$$\left|\frac{1}{n} - 0\right| < 0,01 \tag{2.5}$$

Sendo n um inteiro positivo, temos

$$\frac{1}{n} < 0.01 \tag{2.6}$$

Para que isto ocorra devemos ter n > 100. Logo, M = 101 satisfaz a definição (2.2), que indica que todos os termos da sequência $\{a_n\}$, $\forall n > 100$ se encontram dentro do intervalo aberto (-0,01;0,01).

O gráfico da Figura 2.3 mostra os 120 primeiros termos desta sequência e o gráfico da Figura 2.4 mostra a mesma sequência, porém com uma visualização que permite observar que a partir do 101° , todos os termos da sequência se encontram dentro da faixa (-0,01;0,01).

Figura 2.3: 120 primeiros termos da sequência $\{a_n\} = \frac{1}{n}$.

Figura 2.4: Faixa de convergência da sequência $\{a_n\} = \frac{1}{n}$ para $\varepsilon = 0,01$.

2) Dada uma sequência de termo geral $a_n = \frac{n}{n+1}$, verificamos que

$$\lim_{n \to \infty} \frac{n}{n+1} = 1 \tag{2.7}$$

Adotando um valor $\varepsilon > 0$, observamos que

$$|a_n - L| < \varepsilon \qquad \forall n > M,$$
 (2.8)

ou seja,

$$\left| \frac{n}{n+1} - 1 \right| < \varepsilon, \tag{2.9}$$

$$\left| \frac{n - n - 1}{n + 1} \right| < \varepsilon, \tag{2.10}$$

$$\frac{1}{n+1} < \varepsilon, \tag{2.11}$$

$$n+1 > \frac{1}{\varepsilon} \tag{2.12}$$

e finalmente

$$n > \frac{1}{\varepsilon} - 1 \tag{2.13}$$

Esta desigualdade nos sugere que, dado um valor ε , devemos escolher M como sendo o primeiro número natural maior que $\frac{1}{\varepsilon}-1$. Qualquer valor de índice n>M atende à definição de convergência da sequência. Por exemplo, para $\varepsilon=0,1$, temos $\frac{1}{\varepsilon}-1=\frac{1}{0,1}-1=9$ e M=10 é o primeiro índice a partir do qual os termos da sequência se encontram dentro da faixa de convergência (0,9;1,1). Fora deste intervalo existem exatamente 9 termos da sequência.

O gráfico da Figura 2.5 mostra os 20 primeiros termos desta sequência e o gráfico da Figura 2.6 mostra a mesma sequência, porém com uma visualização que permite observar que a partir do 10°, todos os termos da sequência se encontram dentro da faixa (0, 9; 1, 1).

Figura 2.5: 20 primeiros termos da sequência $\{a_n\} = \frac{n}{n+1}$.

Figura 2.6: Faixa de convergência da sequência $\{a_n\} = \frac{n}{n+1}$ para $\varepsilon = 0, 1$.

Teorema 01: Limite de uma sequência.

Se os termos de uma sequência coincidem com os valores de uma função f(x) que possui limite quando $x\to\infty$, então esta sequência converge para este mesmo limite. Em outras palavras:

"Seja f(x) uma função de variável real tal que $\lim_{x\to\infty} f(x) = L$. Se a sequência $\{a_n\}$ é tal que $f(n) = \{a_n\} \ \forall n$ inteiro positivo, então $\lim_{n\to\infty} a_n = L$."

sequências que possuem limites L finitos (para $n \to \infty$) são chamadas de convergentes, ao passo que sequências que não possuem limites são chamadas de divergentes. O teorema 01 permite a utilização da Regra de L'Hopital para calcularmos limites de sequências.

Exemplo 05: Determine o limite da sequência $\{a_n\} = \left(1 + \frac{1}{n}\right)^n$.

Teorema 02: Teste da razão para sequências.

Para uma sequência $\{a_n\}$ de termos positivos, se $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$, esta sequência tende para zero.

Exemplo 06: Verifique se o teorema 02 é satisfeito para as sequências a seguir:

a)
$$\{a_n\} = \frac{n!}{n^n}$$

b)
$$\{b_n\} = \frac{r^n}{n!}, r > 0$$

c)
$$\{c_n\} = \frac{n!}{1 \times 3 \times 5 \times \ldots \times (2n-1)}$$
.

$$\mathbf{d})\{a_n\} = \frac{n^p}{2^n}$$

2.1.4 Propriedades do limite de sequências

Se $\lim_{n\to\infty} a_n = A$, $\lim_{n\to\infty} b_n = B$ e $c \in \mathbb{R}$, então:

1.
$$\lim_{n \to \infty} (a_n \pm b_n) = A \pm B.$$

$$2. \lim_{n \to \infty} c \times a_n = c \times A.$$

3.
$$\lim_{n \to \infty} a_n \times b_n = A \times B.$$

4.
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{A}{B}, \forall b_n \neq 0 \text{ e } B \neq 0.$$

5. Se
$$|a| < 1$$
, então $\lim_{n \to \infty} a^n = 0$.

6. Se
$$|a| > 1$$
, então $\lim_{n \to \infty} a^n = \infty$ e $\{a_n\}$ diverge.

2.2 Limites que aparecem com frequência

$$1. \lim_{n \to \infty} \frac{\ln(n)}{n} = 0.$$

$$2. \lim_{n \to \infty} \sqrt[n]{n} = 1.$$

3.
$$\lim_{n \to \infty} x^{\frac{1}{n}} = 1$$
, $(x > 0)$.

4.
$$\lim_{n \to \infty} x^n = 0$$
, $(|x| < 1)$.

5.
$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x, \quad \forall x \in \mathbb{R}.$$

6.
$$\lim_{n \to \infty} \frac{x^n}{n!} = 0, \quad \forall x \in \mathbb{R}.$$

Exemplo 07: Determine se as sequências a seguir convergem ou divergem:

a)
$$\{a_n\} = [3 + (-1)^n]$$

b)
$$\{b_n\} = \left(\frac{n}{1-2n}\right)$$

c)
$$\{c_n\} = \left(\frac{2n}{5n-3}\right)$$

$$d) \{a_n\} = \left(\frac{5n}{e^{2n}}\right)$$

e)
$$\{a_n\} = \left(\frac{n^2}{2^n - 1}\right)$$

Exemplo 08: Encontre o n- $\acute{e}simo$ termo das sequências a seguir e verifique se as mesmas convergem ou divergem.

a)
$$0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots$$

b)
$$0, 2, 0, 2, 0, 2, \dots$$

c)
$$2, \frac{5}{2}, \frac{10}{3}, \frac{17}{4}, \dots$$

d)
$$\frac{2}{3}$$
, $\frac{3}{6}$, $\frac{4}{9}$, $\frac{5}{12}$, ...

- e) $1, 9, 25, 49, 81, 121, \dots$
- f) $2, \frac{4}{3}, \frac{8}{5}, \frac{16}{7}, \frac{32}{9}, \dots$
- g) $\frac{1}{3}$, $\frac{8}{9}$, $\frac{27}{27}$, $\frac{64}{81}$, ...

De acordo com os exemplos anteriores, é preciso conhecer a lei de formação de uma sequência para identificarmos sua convergência ou sua divergência.

Exemplo 09: Determine se as sequências a seguir convergem ou divergem. Se convergem, calcule o limite das mesmas.

- a) $\left\{ \frac{n^2 + 2n 1}{n^2 + 3n + 4} \right\}$
- $b) \left\{ \frac{2^n}{3^{n+1}} \right\}$
- c) $\left\{ \operatorname{sen}\left(\frac{n\pi}{2}\right) \right\}$
- d) $\left\{ \frac{n^3 + 5n}{7n^2 + 1} \right\}$
- e) $\left\{ \frac{n^3 + 3n + 1}{4n^2 + 2} \right\}$
- f) $\left\{ n \operatorname{sen}\left(\frac{\pi}{2n}\right) \right\}$
- g) $\left\{\frac{1}{n}\operatorname{sen}(\pi n)\right\}$
- h) $\left\{\sqrt{n+1} \sqrt{n}\right\}$

2.3 Séries numéricas

2.3.1 Definição e conceitos iniciais

Uma série infinita é definida como sendo a soma dos termos de uma sequência infinita, ou seja,

$$\{a_n\} = a_1, a_2, a_3, a_4, a_5, \dots \to \text{sequência}$$
 (2.14)

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + a_4 + a_5 + \dots \to \text{série}$$
 (2.15)

Embora não possamos somar um número infinito de termos, como proposto na equação (2.15), é necessário definir o significado de uma soma infinita. Para tal, iremos definir inicialmente uma sequência de somas parciais.

Dada uma série $\sum a_n$, a sequência de somas parciais é definida por

$${S_n} = S_1, S_2, S_3, S_4, \dots, S_n, \dots$$
 (2.16)

onde

$$S_{1} = a_{1}$$

$$S_{2} = a_{1} + a_{2} = S_{1} + a_{2}$$

$$S_{3} = a_{1} + a_{2} + a_{3} = S_{2} + a_{3}$$

$$S_{4} = a_{1} + a_{2} + a_{3} + a_{4} = S_{3} + a_{4}$$

$$\vdots$$

$$S_{n} = a_{1} + a_{2} + a_{3} + a_{4} + \dots + a_{n} = S_{n-1} + a_{n}$$

$$(2.17)$$

2.3.2 Séries convergentes e divergentes

Dada uma série infinita $\sum a_n$, a sua *n-ésima* soma parcial é dada por

$$S_n = a_1 + a_2 + a_3 + a_4 + \ldots + a_n \tag{2.18}$$

Se a sequência $\{S_n\}$ diverge, isto significa que a série $\sum a_n$ diverge. Se $\{S_n\}$ converge para um valor L, isto significa que a série $\sum a_n$ converge para o mesmo valor.

Exemplo 10:

a) A série
$$\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$$
 possui as somas parciais

$$S_{1} = \frac{1}{2}$$

$$S_{2} = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$$

$$S_{3} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{7}{8}$$

$$S_{4} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} = \frac{15}{16}$$

$$\vdots$$

$$S_{n} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{n}} = \frac{2^{n} - 1}{2^{n}}$$

Como $\lim_{n\to\infty} \frac{2^n-1}{2^n} = \lim_{n\to\infty} \frac{2^n \ln(2)}{2^n \ln(2)} = 1$, concluímos que esta série converge e sua soma é igual a 1.

Observação: Do exemplo acima, concluímos que determinar a soma S de uma série significa achar o limite da sequência de somas parciais $\{S_n\}$, ou seja,

$$S = \lim_{n \to \infty} S_n \tag{2.19}$$

b)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

Expandindo o termo geral desta série em uma soma de frações parciais, encontramos

$$S = \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right) = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots$$
 (2.20)

Observamos que

$$S_n = 1 - \frac{1}{n+1}$$

e

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1} \right) = 1$$

Logo, a série converge e sua soma é igual a 1.

Observação: a série do último exemplo dado é chamada série telescópica, pois assume a forma:

$$S = (b_1 - b_2) + (b_2 - b_3) + (b_3 - b_4) + \dots + (b_{n-1} - b_n) + \dots$$
 (2.21)

Sua *n-ésima* soma parcial é dada por

$$S_n = b_1 - b_n \tag{2.22}$$

Uma série telescópica converge se, e somente se b_n possui limite finito quando $n \to \infty$, e sua soma é dada por

$$S = \lim_{n \to \infty} S_n = b_1 - \lim_{n \to \infty} b_n \tag{2.23}$$

Exemplo 11: Calcule a soma da série telescópica $\sum_{n=1}^{\infty} \frac{2}{4n^2-1}$

2.3.3 Séries geométricas

Se a sequência $\{a_n\}$ é uma progressão geométrica (PG) cuja razão é dada por r e primeiro termo é dado por $a_k = cr^k \neq 0$, a soma dada pela equação (2.24) a seguir é uma série geométrica.

$$\sum_{n=k}^{\infty} a_n = \sum_{n=k}^{\infty} cr^n = cr^k + cr^{k+1} + cr^{k+2} + cr^{k+3} + \dots + cr^{k+n-1} + cr^{k+n} + \dots$$
 (2.24)

onde c é uma constante real.

Teorema 03: convergência de uma série geométrica.

Uma série geométrica de razão r diverge se $|r| \ge 1$.

Se |r| < 1, a série converge e sua soma é igual a

$$S = \sum_{n=k}^{\infty} a_n = \sum_{n=k}^{\infty} cr^n = \frac{a_k}{1-r} = \frac{cr^k}{1-r}$$
 (2.25)

onde $a_k = cr^k$ corresponde ao primeiro termo da série geométrica.

Demonstração do teorema: Tomando os n primeiros termos da série geométrica dada pela equação (2.24), temos:

$$S_n = cr^k + cr^{k+1} + cr^{k+2} + cr^{k+3} + \dots + cr^{k+n-1}$$
(2.26)

Multiplicando (2.26) pela razão r, obtemos

$$rS_n = cr^{k+1} + cr^{k+2} + cr^{k+3} + \dots + cr^{k+n-1} + cr^{k+n}$$
(2.27)

Subtraindo a equação (2.27) da equação (2.26), obtemos

$$S_n - rS_n = cr^k - cr^{k+n} (2.28)$$

$$S_n(1-r) = cr^k(1-r^n) (2.29)$$

$$S_n = \frac{cr^k(1-r^n)}{1-r} = \frac{a_k(1-r^n)}{1-r}$$
 (2.30)

A equação (2.30) representa a n-ésima soma parcial de uma série geométrica, independente da mesma ser convergente ou divergente, uma vez que S_n é o resultado da soma de uma quantidade finita de termos. Observando esta equação, para |r| > 1, temos $r^n \to \infty$ quando $n \to \infty$ e por consequência a série geométrica diverge. Para |r| < 1, temos $r^n \to 0$ quando $n \to \infty$ e então

$$S = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left[\frac{a_k (1 - r^n)}{1 - r} \right] = \frac{a_k}{1 - r} \lim_{n \to \infty} (1 - r^n) = \frac{a_k}{1 - r}$$
 (2.31)

Exemplo 12: Analise a convergência das Séries geométricas a seguir:

$$a) \sum_{n=0}^{\infty} \frac{3}{2^n}$$

b)
$$\sum_{n=0}^{\infty} \left(\frac{3}{2}\right)^n$$

Observação: Uma dízima periódica pode ser expressa como uma série geométrica.

Exemplo 13: Expresse cada uma das dízimas periódicas a seguir como a razão de dois inteiros.

- a) 0,080808080808...
- b) 1,414414414...
- c) 1, 24123123123...

2.3.4 Propriedades das séries infinitas

As propriedades a seguir são derivadas das propriedades dos limites de sequências. Se $\sum a_n = A$, $\sum b_n = B$ e c é uma constante real, as Séries a seguir convergem para as somas indicadas:

- 1. $\sum (a_n \pm b_n) = A \pm B$
- $2. \sum ca_n = cA$
- 3. Se retirarmos um número finito de termos de uma série, sua convergência ou divergência não é alterada, ou seja, as Séries

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots e$$

$$\sum_{n=k}^{\infty} a_n = a_k + a_{k+1} + a_{k+2} + a_{k+3} + \dots$$

ambas convergem ou ambas divergem.

Exemplo 14: Encontre a soma da série
$$\sum_{n=1}^{\infty} \left[\frac{1}{8^n} + \frac{1}{n(n+1)} \right].$$

Teorema 04: Limite do *n-ésimo* termo de uma série convergente.

"Se uma série infinita
$$\sum_{n=1}^{\infty} a_n$$
 converge, então $\lim_{n\to\infty} a_n = 0$."

Observação: A recíproca não é verdadeira, ou seja, não podemos afirmar que uma série converge se $\lim_{n\to\infty}a_n=0$. Isto ocorre com a série harmônica divergente $\sum_{n=1}^{\infty}\frac{1}{n}$, que será estudada a seguir. Do teorema 04 podemos enunciar o teorema 05 a seguir.

Teorema 05: Critério do termo geral para a divergência de Séries.

- 1. Se $\lim_{n\to\infty} a_n$ não existe ou se $\lim_{n\to\infty} a_n$ existe e é diferente de zero, então a série $\sum a_n$ é divergente.
- 2. Se $\lim_{n\to\infty} a_n = 0$, a princípio nada pode ser afirmado a respeito da convergência da série $\sum a_n$.

Exemplo 15: Analise o n- $\acute{e}simo$ termo das Séries a seguir para determinar se as mesmas divergem.

a)
$$\sum_{n=0}^{\infty} 2^n$$

$$b) \sum_{n=1}^{\infty} \frac{n}{n+1}$$

c)
$$\sum_{n=1}^{\infty} \frac{n!}{2n!+1}$$

Exemplo 16: Sabendo que
$$\sum_{n=1}^{\infty} \frac{2^n}{n!}$$
 converge, encontre $\lim_{n\to\infty} \frac{2^n}{n!}$.

Exemplo 17: Uma bola, jogada de uma altura de 6 metros, começa a quicar ao atingir o solo. A altura máxima atingida pela bola a cada batida no solo é igual a 3/4 da altura da queda correspondente. Calcule a distência vertical total percorrida pela bola.

61

Exemplo 18: Encontre a série infinita que produz as sequências de somas parciais dadas. Analise a natureza destas Séries.

$$a) \{S_n\} = \frac{n}{n+1}$$

b)
$$\{S_n\} = 2 - \frac{1}{2^{n-1}}$$

2.3.5 Séries-p

Uma série-p é uma série que assume a forma

$$\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \dots + \frac{1}{n^p} + \dots,$$
 (2.32)

onde p é uma constante real.

No caso p = 1, a série é chamada série harmônica e é dada pela equação (2.33).

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$
 (2.33)

Teorema 06: convergência das Séries-*p*.

Uma série-p converge se p>1 e diverge se $p\leq 1$. A prova deste teorema será dada mais adiante.

Exemplo 19: De acordo com o teorema 06,

a) A série
$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots, (p=1)$$
 é divergente.

b) A série
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots, (p=2)$$
 é convergente.

2.4 Séries de termos não negativos

Dada uma série $\sum a_n$, temos duas perguntas:

- 1. A série converge?
- 2. Se ela converge, qual é a sua soma?

Estudamos até então algumas Séries conhecidas, como a série telescópica, a série geométrica e a série-p, que possuem características próprias que permitem a aplicação de determinados testes de convergência. porém, se estas características sofrerem pequenas alterações, os testes vistos deixam de ser válidos. Isto pode ser observado no exemplo a seguir.

Exemplo 20:

a)
$$\sum_{n=0}^{\infty} \frac{1}{2^n}$$
 é uma série geométrica, mas $\sum_{n=0}^{\infty} \frac{n}{2^n}$ não é.

b)
$$\sum_{n=1}^{\infty} \frac{1}{n^3}$$
 é uma série- p , mas $\sum_{n=1}^{\infty} \frac{1}{n^3+1}$ não é.

Veremos a seguir alguns critérios para o estudo da natureza das Séries.

2.4.1 Teste da integral

Seja $\{a_n\}$ uma sequência de termos não negativos. Suponha que $\{a_n\}=f(n)$, onde f é uma função de x contínua, positiva e decrescente para todo $x\geq M$, onde $M\in\mathbb{N}$.

então, tanto a série $\sum_{n=M}^{\infty} a_n$ quanto a integral $\int_{M}^{\infty} f(x)dx$ convergem ou tanto uma quanto a outra divergem.

Demonstração: Supondo uma função f decrescente com $f(n) = a_n \, \forall \, n$, como mostrado na Figura 2.7. Os retângulos da Figura 2.7, de áreas $a_1, a_2, a_3, \ldots, a_n$ englobam coletivamente uma área maior que a área sob a curva y = f(x) de x = 1 a x = n + 1, isto é.

$$\int_{1}^{n+1} f(x)dx \le a_1 + a_2 + a_3 + \dots + a_n \tag{2.34}$$

A Figura 2.8 traz o gráfico da mesma função f(x), porém com os retângulos voltados para a esquerda. Desconsiderando o primeiro retângulo na Figura 2.8, vemos que a soma das áreas dos retângulos restantes é menor que a área sob a curva f(x) para x = 1 até x = n, ou seja,

$$a_2 + a_3 + a_4 + \ldots + a_n \le \int_1^n f(x)dx$$
 (2.35)

Somando a_1 nos dois membros da equação (2.35), temos

$$a_1 + a_2 + a_3 + a_4 + \ldots + a_n \le a_1 + \int_1^n f(x)dx$$
 (2.36)

Combinando as equações (2.34) e (2.36), encontramos

Figura 2.7: Função para demonstração do teste da integral.

Figura 2.8: Função para demonstração do teste da integral.

$$\int_{1}^{n+1} f(x)dx \le a_1 + a_2 + a_3 + a_4 + \dots + a_n \le a_1 + \int_{1}^{n} f(x)dx \tag{2.37}$$

Fazendo $n \to \infty$, concluímos que:

- (i) Se $\int_1^\infty f(x)dx$ é finita, o lado direito da desigualdade (2.37) mostra que $\sum a_n$ é finita.
- (ii) Se $\int_1^\infty f(x)dx$ é infinita, o lado esquerdo da desigualdade (2.37) mostra que $\sum a_n$ é infinita.

Consequentemente, a série $\sum_{n=M}^{\infty} a_n$ e a integral $\int_M^{\infty} f(x)dx$ são ambas convergentes ou ambas divergentes.

Exemplo 21: Estude a natureza das Séries-p utilizando o teste da integral.

Exemplo 22: Estude a natureza das Séries a seguir utilizando o teste da integral.

a)
$$\sum_{n=1}^{\infty} n e^{-n^2}$$

b)
$$\sum_{n=1}^{\infty} \frac{3}{4n+3}$$

c)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$

d)
$$\sum_{n=2}^{\infty} \frac{1}{n[\ln(n)]^{\frac{1}{4}}}$$

e)
$$\sum_{n=1}^{\infty} n e^{-n}$$

2.4.2 Teste da comparação direta (ou critério de Gauss)

Este teste consiste em comparar uma série com outra de natureza conhecida. Seja $\sum a_n$ uma série de termos não negativos.

- (i) $\sum a_n$ converge se existe uma série convergente $\sum b_n$, com $a_n \leq b_n$ para todo n > M, $M \in \mathbb{N}$.
- (ii) $\sum a_n$ diverge se existe uma série divergente $\sum b_n$, com $a_n \geq b_n$ para todo n > M, $M \in \mathbb{N}$.

Observações:

- 1. Como a natureza de uma série não é afetada pela remoção de um número finito de termos, as condições $a_n \leq b_n$ e $a_n \geq b_n$ são exigidas somente a partir de um termo qualquer de ordem M.
- 2. Uma série $\sum d_n$ domina uma série $\sum c_n$ se $0 < c_n < d_n$, $\forall n \in \mathbb{N}$. Logo, de acordo com a condição (i), uma série dominada por uma série convergente é também convergente, e de acordo com a condição (ii), uma série que domina uma série divergente é também divergente.

Exemplo 23: Estude a natureza das Séries a seguir, utilizando o teste da comparação direta.

$$a) \sum_{n=2}^{\infty} \frac{1}{n-1}$$

b)
$$\sum_{n=1}^{\infty} \frac{1}{3^n + 1}$$

c)
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

$$d) \sum_{n=2}^{\infty} \frac{3}{\sqrt{n} - 1}$$

$$e) \sum_{n=2}^{\infty} \frac{1}{\ln(n)}$$

Pelo exemplo 23, concluímos que devemos ter em mãos uma lista de Séries conhecidas, para que possamos utilizar o teste da comparação direta.

2.4.3 Teste da comparação no limite

Este teste também consiste na utilização de uma série de natureza conhecida para o estudo da natureza de outra série. Seja duas Séries $\sum a_n$ e $\sum b_n$, cujos termos gerais são dados por $a_n > 0$ e $b_n > 0$, respectivamente, para todo $n \geq M$, onde $M \in \mathbb{N}$.

(i) Se $\lim_{n\to\infty} \frac{a_n}{b_n} = c$, $0 < c < \infty$, então ambas as Séries $\sum a_n$ e $\sum b_n$ convergem ou ambas divergem.

(ii) Se
$$\lim_{n\to\infty} \frac{a_n}{b_n} = 0$$
 e $\sum b_n$ converge, então $\sum a_n$ converge.

(iii) Se
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$$
 e $\sum b_n$ diverge, então $\sum a_n$ diverge.

Demonstração: Como c/2 > 0, pela definição dada na equação (2.2), existe um número inteiro M tal que para todo n > M,

$$\left| \frac{a_n}{b_n} - c \right| < \frac{c}{2} \tag{2.38}$$

então, para n > M, temos

$$-\frac{c}{2} < \frac{a_n}{b_n} - c < \frac{c}{2} \tag{2.39}$$

Somando c nos três membros da desigualdade (2.39), obtemos

$$\frac{c}{2} < \frac{a_n}{b_n} < \frac{3c}{2} \tag{2.40}$$

Multiplicando a desigualdade (2.40) por b_n , obtemos

$$\left(\frac{c}{2}\right)b_n < a_n < \left(\frac{3c}{2}\right)b_n \tag{2.41}$$

Analisando o resultado encontrado em (2.41), concluímos que se $\sum b_n$ converge, então $\sum \left(\frac{3c}{2}\right)b_n$ converge e consequentemente $\sum a_n$ converge pelo teste da comparação direta. Por outro lado, se $\sum b_n$ diverge, então $\sum \left(\frac{c}{2}\right)b_n$ diverge e consequentemente $\sum a_n$ diverge pelo teste da comparação direta.

Exemplo 24: Estude a natureza das Séries a seguir, utilizando o teste da comparação no limite.

a)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2+1}}$$

b)
$$\sum_{k=1}^{\infty} \frac{\ln(k)}{k^4}$$

$$c) \sum_{n=1}^{\infty} \frac{1}{\sqrt{2n+1}}$$

d)
$$\sum_{k=1}^{\infty} \frac{3k^2 + 5k}{2^k(k^2 + 1)}$$

e)
$$\sum_{k=1}^{\infty} \operatorname{sen}\left(\frac{1}{k^2}\right)$$

2.4.4 Teste da razão

Seja $\sum a_n$ uma série de termos positivos e suponha que $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$. então,

- (i) A série converge se L < 1.
- (ii) A série diverge se L > 1 ou se $L \to \infty$.
- (iii) Se L=1, nada pode ser afirmado a respeito da natureza da série.

Demonstração: Suponha que $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=L<1$. Escolhamos um número r, com L< r<1. Seja $\varepsilon=r-L$, observando que $\varepsilon>0$, como mostrado no esquema da Figura 2.9.

Figura 2.9: Demonstração do teste da razão.

Uma vez que $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=L$, pela definição dada pela equação (2.2), existe um inteiro positivo $M\in\mathbb{N}$ tal que

$$\left| \frac{a_{n+1}}{a_n} - L \right| < \varepsilon \quad \forall n > M, \tag{2.42}$$

isto é,

$$-\varepsilon < \frac{a_{n+1}}{a_n} - L < \varepsilon \qquad \forall n > M, \tag{2.43}$$

ou

$$L - \varepsilon < \frac{a_{n+1}}{a_n} < L + \varepsilon \quad \forall n > M$$
 (2.44)

Já que $L+\varepsilon=L+(r-L)=r,$ observando o lado direito da inequação (2.44), concluímos que

$$\frac{a_{n+1}}{a_n} < r \qquad \forall n > M, \tag{2.45}$$

ou

$$a_{n+1} < a_n r \qquad \forall n > M \tag{2.46}$$

Portanto,

$$a_{M+1} < a_M r$$

$$a_{M+2} < a_{M+1} r < a_M r^2$$

$$a_{M+3} < a_{M+2} r < a_M r^3$$
(2.47)

e assim por diante. De fato, $a_{M+k} < a_M r^k$ se verifica para todo inteiro positivo k. Portanto, a série geométrica $\sum_{k=1}^{\infty} a_M r^k$ domina a série $\sum_{k=1}^{\infty} a_{M+k}$. Sabendo que 0 < r < 1, a série geométrica converge, daí,

$$\sum_{k=1}^{\infty} a_{M+k} = \sum_{n=M+1}^{\infty} a_n \tag{2.48}$$

converge pelo teste da comparação direta. Pela propriedade 3 da Seção 2.3.4, concluímos que $\sum_{n=1}^{\infty} a_n$ converge, quando o resultado do teste da razão for L < 1.

Exemplo 25: Estude a natureza das Séries a seguir, utilizando o teste da razão. Caso o teste seja insuficiente para determinar a natureza da série, utilize outro teste.

a)
$$\sum_{n=1}^{\infty} \frac{n+1}{2^n}$$

b)
$$\sum_{n=1}^{\infty} \frac{2}{5n+1}$$

c)
$$\sum_{n=1}^{\infty} n^4 e^{-n^2}$$

$$d) \sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$$

$$e) \sum_{n=1}^{\infty} \frac{1}{n!}$$

f)
$$\sum_{n=1}^{\infty} \frac{2^n + 1}{3^n + n}$$

2.4.5 Teste da raiz

Seja $\sum a_n$ uma série de termos positivos e suponha que $\lim_{n\to\infty} \sqrt[n]{a_n} = L$. então,

- (i) A série converge se L < 1.
- (ii) A série diverge se L > 1 ou se $L \to \infty$.
- (iii) Se L=1, nada pode ser afirmado a respeito da natureza da série.

Demonstração: Suponha que $\lim_{n\to\infty} \sqrt[n]{a_n}=L<1$. Escolhamos um número r, com L< r<1. Seja $\varepsilon=r-L$, observando que $\varepsilon>0$, como mostrado no esquema da Figura 2.10.

Figura 2.10: Demonstração do teste da raiz.

Uma vez que $\lim_{n\to\infty} \sqrt[n]{a_n} = L$, pela definição dada pela equação (2.2), existe um inteiro positivo $M \in \mathbb{N}$ tal que

$$|\sqrt[n]{a_n} - L| < \varepsilon \qquad \forall n > M, \tag{2.49}$$

isto é,

$$-\varepsilon < \sqrt[n]{a_n} - L < \varepsilon \qquad \forall n > M, \tag{2.50}$$

ou

$$L - \varepsilon < \sqrt[n]{a_n} < L + \varepsilon \qquad \forall n > M$$
 (2.51)

Mas $\varepsilon = r - L$, de forma que $r = L + \varepsilon$. Observando o lado direito da inequação (2.51), concluímos que

$$\sqrt[n]{a_n} < r \qquad \forall n > M, \tag{2.52}$$

ou

$$a_n < r^n \qquad \forall n > M \tag{2.53}$$

Como r < 1, observamos que a série geométrica convergente $\sum r^n$ domina a série $\sum a_n$. Logo, pelo teste da comparação direta, a série $\sum a_n$ é convergente quando $\lim_{n\to\infty} \sqrt[n]{a_n} < 1$. **Exemplo 26:** Estude a natureza das Séries a seguir, utilizando o teste da raiz. Caso o teste seja insuficiente para determinar a natureza da série, utilize outro teste.

a)
$$\sum_{n=1}^{\infty} \frac{2^{3n+1}}{n^n}$$

b)
$$\sum_{n=1}^{\infty} \frac{[\ln(n)]^n}{n^{\frac{n}{2}}}$$

c)
$$\sum_{n=1}^{\infty} \frac{1}{n^n}$$

$$d) \sum_{n=1}^{\infty} \left(\frac{n}{n+1} \right)^{n^2}$$

$$e) \sum_{n=1}^{\infty} \frac{n}{2^n}$$

2.5 Séries alternadas

Toda série na qual os termos são alternadamente positivos e negativos é uma série alternada.

Exemplo 27: A série $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots$ é uma série alternada (série harmônica alternada).

2.5.1 Teste para séries alternadas

A série alternada $\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \dots$ converge se

- (i) Os termos a_n forem todos positivos $(a_n > 0)$.
- (ii) $a_{n+1} \le a_n$, $\forall n \ge M$, onde $M \in \mathbb{N}$.
- (iii) $\lim_{n\to\infty} a_n = 0$.

Supondo que as três condições acima sejam satisfeitas, a demonstração da convergência para Séries alternadas pode ser facilmente observada na Figura 2.11.

Figura 2.11: Demonstração do teste das Séries alternadas.

Exemplo 28: Estude a natureza das Séries alternadas a seguir.

a)
$$\sum_{n=1}^{\infty} \frac{n}{(-2)^{n-1}}$$

$$b) \sum_{n=1}^{\infty} (-1)^n \frac{n}{\ln(2n)}$$

c)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{3n+2}{4n^2-3} \right)$$

d)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$

e)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{(n+1)^3}$$

f)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2n}{4n-3}$$

2.5.2 convergência absoluta e convergência condicional

Uma série alternada $\sum a_n$ é absolutamente convergente se a série $\sum |a_n|$ é convergente. Uma série alternada $\sum a_n$ é condicionalmente convergente se a série $\sum a_n$ converge, mas a série $\sum |a_n|$ diverge.

Exemplo 29:

- a) A série geométrica $1 \frac{1}{2} + \frac{1}{4} \frac{1}{8} + \dots$ converge absolutamente, pois a série de valores absolutos correspondente $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$ converge.
- b) A série harmônica alternada $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\dots$ converge condicionalmente, pois a série de valores absolutos correspondente $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\dots$ diverge.

Exemplo 30: Estude a natureza das Séries a seguir. Verifique se as Séries convergentes são absolutamente ou condicionalmente convergentes.

a)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^2}$$

b)
$$\sum_{n=1}^{\infty} \frac{(-1)^{\frac{n(n+1)}{2}}}{3^n}$$

c)
$$\sum_{n=0}^{\infty} (-1)^n \frac{n!}{2^n}$$

$$d) \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

e)
$$\sum_{n=1}^{\infty} \frac{\operatorname{sen}(n)}{n^2}$$

2.6 Resumo dos testes de convergência

A Figura 2.12 e a Tabela 2.1 trazem um resumo dos testes de convergência para Séries.

Figura 2.12: Resumo dos testes de convergência.

TESTE	série	convergência OU divergência
n-ésimo termo	$\sum a_n$	Diverge se $\lim_{n\to\infty} a_n \neq 0$.
série geométrica	$\sum_{n=k}^{\infty} a_n = \sum_{n=k}^{\infty} c \cdot r^n$	(i) Converge para $S = \frac{a_k}{1-r}$ se $ r < 1$.
		(ii) Diverge se $ r \ge 1$.
série- p	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	(i) Converge se $p > 1$.
		(ii) Diverge se $p \leq 1$.
Integral	$\sum_{n=k}^{\infty} a_n$	(i) Converge se $\int_{k}^{\infty} f(x)dx$ converge.
	$a_n = f(n)$	(i) Converge se $\int_{k}^{\infty} f(x)dx$ converge· (ii) Diverge se $\int_{k}^{\infty} f(x)dx$ diverge·
comparação	$\sum a_n$	(i) Se $\sum b_n$ converge e $a_n \leq b_n$ para todo n ,
		então $\sum a_n$ converge·
	$\sum b_n$	(ii) Se $\sum b_n$ diverge e $a_n \ge b_n$ para todo n ,
	onde	então $\sum a_n$ diverge-
	$a_n > 0 e$ $b_n > 0$	(iii) Se $\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = c > 0$, ambas as Séries
		convergem ou ambas divergem·
razão	$\sum a_n$	$\operatorname{Se}\lim_{n\to\infty}\left \frac{a_{n+1}}{a_n}\right =L, \text{ a s\'erie}$
		(i) Converge se $L < 1$.
		(ii) Diverge se $L > 1$.
		(iii) Se $L = 1$, nada pode ser afirmado.
Raiz	$\sum a_n$	Se $\lim_{n \to \infty} \sqrt[n]{ a_n } = L$, a série
		(i) Converge se $L < 1$.
		(ii) Diverge se $L > 1$.
		(iii) Se $L = 1$, nada pode ser afirmado.
Séries Alternadas	$\sum (-1)^n a_n$	Converge se $a_k \geq a_{k+1}$ para todo k e $\lim_{n \to \infty} a_n = 0$.
	$a_n > 0$	
$\sum a_n $	$\sum a_n$	Se $\sum a_n $ converge, então $\sum a_n$ converge absolutamente.

Tabela 2.1: Resumo dos testes de convergência.

2.7 3^a série de exercícios

1. A sequência cujo n-ésimo termo é

$$a_n = \left(\frac{n+1}{n-1}\right)^n$$

converge? Em caso afirmativo, encontre $\lim_{n\to\infty}a_n$

2. Mostre utilizando a Regra de L'Hopital que a sequência a seguir converge para o valor e^x

$$\{a_n\} = \left(1 + \frac{x}{n}\right)^n$$

3. Encontre uma fórmula para o n-ésimo termo das sequências.

4. Quais das sequências $\{a_n\}$ a seguir convergem e quais divergem? Encontre o limite de cada sequência convergente.

a)
$$a_n = 2 + (0,1)^n$$

b)
$$a_n = 1 + (-1)^n$$

$$\mathbf{c)} \ a_n = \frac{n}{2^n}$$

$$\mathbf{d)} \ a_n = \operatorname{sen}\left(\frac{\pi}{2} + \frac{1}{n}\right)$$

$$\mathbf{e)} \ a_n = \frac{\ln(n+1)}{\sqrt{n}}$$

f)
$$a_n = \ln(n) - \ln(n+1)$$

g)
$$a_n = \frac{n!}{10^{6n}}$$

$$\mathbf{h)} \ a_n = \left(\frac{1}{n}\right)^{\frac{1}{\ln(n)}}$$

i)
$$a_n = \frac{3^n \cdot 6^n}{2^{-n} \cdot n!}$$

$$\mathbf{j)} \ a_n = \arctan(n)$$

5. Diga se cada série converge ou diverge. Se converge, calcule a soma dela.

76

a)
$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \ldots + \left(-\frac{1}{2}\right)^{n-1} + \ldots$$

b)
$$\frac{\pi}{2} + \frac{\pi^2}{4} + \frac{\pi^3}{8} + \dots$$

- **6.** Expresse a dízima periódica 5,232323... como razão de dois inteiros, usando uma série geométrica.
- 7. Verifique se cada série a seguir converge ou diverge. Se converge, calcule sua soma.
- a) $\sum_{n=1}^{\infty} (-1)^{n+1}$
- $\mathbf{b)} \sum_{n=1}^{\infty} \frac{-n}{2n+5}$
- c) $\sum_{n=1}^{\infty} \frac{3^{n-1} 1}{6^{n-1}}$
- $\mathbf{d}) \sum_{n=1}^{\infty} \frac{4}{2^{n-1}}$
- $\mathbf{e}) \sum_{n=0}^{\infty} \left(\frac{1}{\sqrt{2}}\right)^n$
- $\mathbf{f}) \sum_{n=0}^{\infty} (\sqrt{2})^n$
- $\mathbf{g}) \sum_{n=0}^{\infty} \frac{\cos(n\pi)}{5^n}$
- $\mathbf{h}) \sum_{n=1}^{\infty} \ln \left(\frac{1}{n} \right)$
- i) $\sum_{n=0}^{\infty} \left(\frac{e}{\pi}\right)^n$
- $\mathbf{j}) \sum_{n=1}^{\infty} \frac{n^n}{n!}$
- 8. Calcule a soma das Séries convergentes a seguir:
- a) $\sum_{n=0}^{\infty} \left(\frac{1}{2^n} + \frac{(-1)^n}{5^n} \right)$
- b) $\sum_{n=0}^{\infty} \left(\frac{2^{n+1}}{5^n} \right)$
- c) $\sum_{n=1}^{\infty}\frac{2n+1}{n^2(n+1)^2}$ (Dica: Expanda o termo geral da série em uma soma de frações parciais.
- d) $\sum_{n=1}^{\infty} \left(\frac{1}{\ln(n+2)} \frac{1}{\ln(n+1)} \right)$
- 9. Encontre uma fórmula para a n-ésima soma parcial de cada série e use-a para encontrar a soma da série, se ela convergir:

a)
$$2 + \frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \ldots + \frac{2}{3^{n-1}} + \ldots$$

b)
$$\frac{9}{100} + \frac{9}{100^2} + \frac{9}{100^3} + \ldots + \frac{9}{100^n} + \ldots$$

c)
$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \ldots + (-1)^{n-1} \frac{1}{2^{n-1}} + \ldots$$

d)
$$\frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \frac{1}{4 \cdot 5} + \ldots + \frac{1}{(n+1) \cdot (n+2)} + \ldots$$

Respostas da 3^a série de exercícios 2.8

- 1. A sequência converge e $\lim_{n\to\infty} a_n = e^2$.
- 2. Fazer $\lim [\ln(a_n)]$ para encontrar uma indeterminação do tipo 0/0 e depois aplicar a regra de L'Hopital. Mesmo procedimento adotado no exercício 1.

a)
$$\{a_n\} = n^2 - 1$$
.
b) $\{a_n\} = 4n - 3$.

b)
$$\{a_n\} = 4n - 3$$
.

a) Converge para
$$L=2$$
.

c) Converge para
$$L=0$$
.

d) Converge para
$$L=1$$
.

e) Converge para
$$L=0$$
.

f) Converge para
$$L=0$$
.

h) Converge para
$$L = e^{-1}$$
.

i) Converge para
$$L = 0$$
.

$$\mathbf{j}$$
) Converge para $L = \frac{\pi}{2}$.

a) Converge e sua soma é igual a
$$S = \frac{2}{3}$$
.

6. 5, 232323... =
$$5 + \sum_{n=0}^{\infty} \frac{23}{10^2} \left(\frac{1}{10^2}\right)^n = 5 + \frac{23}{99} = \frac{518}{99}$$
.

- c) Converge e $S = \frac{4}{5}$.
- d) Converge e S = 8.
- e) Converge e $S = \sqrt{2} + 2$.
- f) Diverge.
- g) Converge e $S = \frac{5}{6}$.
- h) Diverge.
- i) Converge e $S = \frac{\pi}{\pi e}$.
- **j**) Diverge.
- a) $S = \frac{17}{6}$.
- **b)** $S = \frac{10}{3}$.
- c) S = 1. d) $S = \frac{-1}{\ln(2)}$.
- **a**) $S_n = 3 \left[1 \left(\frac{1}{3} \right)^n \right] \in S = 3.$
- **b**) $S_n = \frac{1}{11} \left[1 \left(\frac{1}{100} \right)^n \right] \in S = \frac{1}{11}.$
- **c**) $S_n = \frac{2}{3} \left[1 \left(\frac{-1}{2} \right)^n \right] \in S = \frac{2}{3}.$
- **d**) $S_n = \frac{1}{2} \frac{1}{n+2} \in S = \frac{1}{2}$.

4^a série de exercícios 2.9

1. Séries de termos não negativos - Quais das Séries a seguir convergem e quais divergem? Lembre-se de que pode existir mais de uma forma de determinar a convergência ou a divergência de uma série. Utilize o teste que achar mais adequado.

a)
$$\sum_{n=1}^{\infty} \frac{e^n}{1 + e^{2n}}$$

$$\mathbf{b)} \sum_{n=2}^{\infty} \frac{\ln(n)}{\sqrt{n}}$$

c)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}(\sqrt{n}+1)}$$

d)
$$\sum_{n=1}^{\infty} \frac{1}{n[1 + \ln^2(n)]}$$

$$e) \sum_{n=1}^{\infty} \frac{\sin^2(n)}{2^n}$$

$$\mathbf{f}) \sum_{n=1}^{\infty} \left(\frac{n}{3n+1} \right)^n$$

$$\mathbf{g}) \sum_{n=1}^{\infty} \frac{3}{n + \sqrt{n}}$$

$$\mathbf{h}) \sum_{n=1}^{\infty} \frac{1 + \cos(n)}{n^2}$$

$$\mathbf{i)} \ \sum_{n=2}^{\infty} \frac{1}{\ln^2(n)}$$

$$\mathbf{j)} \sum_{n=1}^{\infty} \frac{\ln^2(n)}{n^3}$$

$$\mathbf{k}) \sum_{n=1}^{\infty} \frac{n^{\sqrt{2}}}{2^n}$$

$$1) \sum_{n=1}^{\infty} n! e^{-n}$$

m)
$$\sum_{n=1}^{\infty} n^2 e^{-n}$$

$$\mathbf{n)} \sum_{n=1}^{\infty} \frac{n^{10}}{10^n}$$

$$\mathbf{o)} \; \sum_{n=1}^{\infty} \frac{[\ln(n)]^n}{n^n}$$

$$\mathbf{p}) \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n^2} \right)^n$$

$$\mathbf{q}) \sum_{n=2}^{\infty} \frac{n}{[\ln(n)]^n}$$

$$\mathbf{r}) \sum_{n=1}^{\infty} \frac{(n!)^n}{(n^n)^2}$$

2. Quais das Séries $\sum_{n=1}^{\infty} a_n$ definidas pelas fórmulas a seguir convergem e quais divergem?

a)
$$a_1 = 2$$
, $a_{n+1} = \frac{1 + \operatorname{sen}(n)}{n} a_n$

b)
$$a_1 = \frac{1}{3}, a_{n+1} = \frac{3n-1}{2n+5}a_n$$

c)
$$a_1 = \frac{1}{3}, \ a_{n+1} = \sqrt[n]{a_n}$$

- 3. Se $\sum_{n=1}^{\infty} a_n$ é uma série convergente de termos não negativos, pode-se dizer algo sobre $\sum_{n=1}^{\infty} \frac{a_n}{n}$? Justifique.
- 4. Séries alternadas Quais das Séries alternadas a seguir convergem e quais divergem?

a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2}$$

b)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{n}{10}\right)^n$$

c)
$$\sum_{n=2}^{\infty} (-1)^{n+1} \frac{1}{\ln(n)}$$

d)
$$\sum_{n=2}^{\infty} (-1)^{n+1} \frac{\ln(n)}{\ln(n^2)}$$

e)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^{\frac{3}{2}}}$$

f)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\ln(n)}{n}$$

5. convergência absoluta x convergência condicional - Quais das Séries a seguir convergem absolutamente, quais convergem condicionalmente e quais divergem?

a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} (0,1)^n$$

b)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n+1}}$$

c)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^3+1}$$

d)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n+3}$$

e)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{3+n}{5+n}$$

$$\mathbf{f)} \sum_{n=1}^{\infty} (-1)^n \frac{\operatorname{sen}(n)}{n^2}$$

$$\mathbf{g}) \sum_{n=1}^{\infty} (-1)^n n^2 \left(\frac{2}{3}\right)^n$$

h)
$$\sum_{n=1}^{\infty} \frac{(-100)^n}{n!}$$

i)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2 + 2n + 1}$$

$$\mathbf{j)} \sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n\sqrt{n}}$$

k)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+1)^n}{(2n)^n}$$

2.10 Respostas da 4^a série de exercícios

- 1.
- a) De acordo com o teste da integral, a série converge.
- b) De acordo com o teste da comparação direta, a série diverge.
- c) De acordo com o teste da integral, a série diverge.
- d) De acordo com o teste da integral, a série converge.
- e) De acordo com o teste da comparação direta, a série converge.
- f) De acordo com o teste da raiz, a série converge.
- g) De acordo com o teste da comparação direta, a série diverge.
- h) De acordo com o teste da comparação direta, a série converge.
- i) De acordo com o teste da comparação no limite, a série diverge.
- j) De acordo com o teste da comparação no limite, a série converge.
- k) De acordo com o teste da razão, a série dada converge.
- 1) De acordo com o teste da razão, a série dada diverge.
- m) De acordo com o teste da razão, a série dada converge.
- n) De acordo com o teste da razão, a série dada converge.
- o) De acordo com o teste da raiz, a série converge.
- p) De acordo com o teste da raiz, a série converge.
- q) De acordo com o teste da raiz, a série converge.
- r) De acordo com o teste da raiz, a série diverge.
- 2.
- a) De acordo com o teste da razão, a série converge.
- b) De acordo com o teste da razão, a série diverge.
- c) De acordo com o teste do n-ésimo termo, a série diverge.
- 3. Pelo teste da comparação direta, a série é convergente.
- 4.
- a) A série converge.

- b) A série diverge.
- c) A série converge.
- d) A série diverge.
- e) A série converge.
- f) A série converge.

5.

- a) A série é absolutamente convergente.
- b) A série é condicionalmente convergente.
- c) Pelo teste da comparação no limite, a série é absolutamente convergente.
- d) A série é condicionalmente convergente.
- e) Pelo teste do n-ésimo termo, a série é divergente.
- f) Pelo teste da comparação direta, a série é absolutamente convergente.
- g) Pelo teste da razão, a série é absolutamente convergente.
- h) Pelo teste da razão, a série é absolutamente convergente.
- i) Pelo teste da comparação direta, a série é absolutamente convergente.
- j) A série é absolutamente convergente.
- k) Pelo teste da raiz, a série é absolutamente convergente.

Observação: Os testes foram mencionados nos exercícios apenas como sugestão, pois mais de um teste pode ser aplicado a uma série para o estudo de sua natureza.

2.11 Séries de potências

2.11.1 Introdução

O objetivo principal deste estudo é representar as funções elementares do cálculo como Séries de potências, que são aquelas cujos termos contém potências de uma variável x.

Exemplo 31: O conhecimento de Séries geométricas nos afirma que

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + x^4 + \dots + x^n + \dots = \frac{1}{1-x} \quad \text{para}|x| < 1$$
 (2.54)

Este resultado é comprovado na Figura 2.13, onde a curva contínua corresponde ao gráfico da função $f(x)=\frac{1}{1-x}$ e a curva tracejada corresponde ao gráfico da soma dos 11 primeiros termos da série $\sum_{n=0}^{\infty} x^n$.

Figura 2.13: Gráfico do exemplo 31.

Pelo gráfico podemos observar que fora do intervalo -1 < x < 1 a série de potências diverge.

2.11.2 Definição

Se x é uma variável, então uma série infinita da forma

$$\sum_{n=0}^{\infty} C_n x^n = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + \dots + C_n x^n + \dots$$
 (2.55)

ou

$$\sum_{n=0}^{\infty} C_n(x-a)^n = C_0 + C_1(x-a) + C_2(x-a)^2 + \dots + C_n(x-a)^n + \dots$$
 (2.56)

é uma série de potências de x ou de (x-a), respectivamente, onde C_0, C_1, C_2, \ldots são os coeficientes da série e a é uma constante chamada centro da série.

Observações:

- 1. A série dada pela equação (2.56) possui centro a e a série dada pela equação (2.55), que é caso particular da série (2.56), possui centro a = 0.
- 2. Nas Séries de potências admitimos $x^0 = 1$ e $(x a)^0 = 1$, mesmo quando x = 0 e x = a, respectivamente. Isto é feito para simplificar o termo geral da série.

Exemplo 32:

a) $\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$ é uma série de potências com centro em a = 0 e coeficientes dados por $C_n = \frac{1}{n!}$.

b) $\sum_{n=1}^{\infty} \frac{1}{n} (x-1)^n = (x-1) + \frac{1}{2} (x-1)^2 + \frac{1}{3} (x-1)^3 + \dots$ é uma série de potências com centro em a=1 e coeficientes dados por $C_n = \frac{1}{n}$.

c) $\sum_{n=0}^{\infty} \left(-\frac{1}{2}\right)^n (x-2)^n = 1 - \frac{1}{2}(x-2) + \frac{1}{4}(x-2)^2 - \frac{1}{8}(x-2)^3 + \dots$ é uma série de potências centrada em a=2 e coeficientes dados por $C_n=\left(-\frac{1}{2}\right)^n$. Esta é uma série geométrica, cujo primeiro termo é dado por $a_0=1$ e razão $r=-\frac{1}{2}(x-2)$. Esta série converge para $\frac{a_0}{1-r}$ se |r|<1, ou seja,

$$\left| \frac{x-2}{2} \right| < 1$$

$$-1 < \frac{x-2}{2} < 1$$

$$-2 < x-2 < 2$$

$$0 < x < 4$$

Dentro deste intervalo obtido, a série de potências dada converge para

$$S = \frac{a_0}{1 - r} = \frac{1}{1 + \frac{x - 2}{2}} = \frac{1}{\frac{2 + x - 2}{2}} = \frac{2}{x}$$

Assim, concluímos que

$$1 - \frac{1}{2}(x-2) + \frac{1}{4}(x-2)^2 - \frac{1}{8}(x-2)^3 + \ldots + \left(-\frac{1}{2}\right)^n (x-2)^n + \ldots = \frac{2}{x}, \quad 0 < x < 4$$

A Figura 2.14 ilustra este exemplo, onde a curva contínua corresponde ao gráfico da função $f(x) = \frac{2}{x}$ e a curva tracejada corresponde ao gráfico da soma dos 11 primeiros termos da série

Figura 2.14: Gráfico do exemplo 32 c).

Pelo gráfico podemos observar que fora do intervalo 0 < x < 4 a série de potências diverge. Podemos observar também que o centro da série a = 2 está localizado no centro deste intervalo de convergência.

No exemplo anterior, vimos que uma série de potências pode ser considerada uma função de x.

$$f(x) = \sum_{n=0}^{\infty} C_n (x - a)^n,$$
 (2.57)

onde o domínio de f(x) é o conjunto de todos os valores de x para os quais a série converge. Observando a equação (2.57), concluímos que toda série de potências converge em seu centro (x = a), para o valor C_0 .

$$f(a) = \sum_{n=0}^{\infty} C_n (a-a)^n = C_0 + 0 + 0 + 0 + \dots = C_0$$
 (2.58)

Todavia, este não é o único valor de x para o qual a série converge. Existem outros valores de x que tornam a série convergente, e estes valores formam um intervalo chamado de intervalo de convergência da série, cujo centro é o ponto x=a (Figura 2.15).

Figura 2.15: Intervalo de convergência de uma série de potências.

2.11.3 Teorema da convergência para séries de potências

Dado que toda série de potências $\sum_{n=0}^{\infty} C_n(x-a)^n$ possui um raio de convergência R, a série converge absolutamente quando |x-a| < R e diverge quando |x-a| > R. Este resultado pode ser observado na Figura 2.15.

Observações:

- 1. A série pode ou não convergir nos extremos do intervalo de convergência x=a-R e x=a+R.
- 2. Se R=0, a série converge somente no ponto x=a (centro).
- 3. Se $R \to \infty$, a série converge para qualquer valor de x.

O intervalo de convergência R pode ser encontrado através do teste da razão ou teste da raiz. Para estudar a convergência da série nas extremidades x = a - R e x = a + R, utilizamos os demais testes vistos (teste da comparação, comparação no limite, integral, etc.).

Exemplo 33: Para quais valores de x as Séries de potência a seguir convergem?

a)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$

b)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1}$$

c)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$d) \sum_{n=0}^{\infty} n! x^n$$

Exemplo 34: Encontre o centro a, o raio de convergência R e o intervalo de convergência das Séries de potências a seguir. Estude a convergência das mesmas nas extremidades do intervalo de convergência.

a)
$$\sum_{n=1}^{\infty} \frac{1}{2^n} x^n$$

b)
$$\sum_{n=0}^{\infty} \frac{(x-5)^{2n}}{n!}$$

c)
$$\sum_{n=1}^{\infty} \frac{3^n (x-4)^{2n}}{n^2}$$

d)
$$\sum_{n=0}^{\infty} n!(x+2)^n$$

e)
$$\sum_{n=1}^{\infty} n^n (x-3)^n$$

f)
$$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(-4)^n}$$

g)
$$\sum_{n=1}^{\infty} \frac{(x+5)^{n-1}}{n^2}$$

2.12 Expansão de funções em séries de potências

2.12.1 Diferenciação e integração de séries de potências

Se $\sum C_n(x-a)^n$ converge para a-R < x < a+R para algum raio de convergência R > 0, isto define uma função f(x).

$$f(x) = \sum_{n=0}^{\infty} C_n(x-a)^n = C_0 + C_1(x-a) + C_2(x-a)^2 + C_3(x-a)^3 + \dots, \quad a - R < x < a + R$$
(2.59)

Esta função possui derivadas de todas as ordens dentro do intervalo de convergência. Estas derivadas são obtidas através da derivação da série dada pela equação (2.59) termo a termo, obtendo as Séries dadas pelas equações (2.60) e (2.61).

$$f'(x) = \sum_{n=0}^{\infty} nC_n(x-a)^{n-1} = C_1 + 2C_2(x-a) + 3C_3(x-a)^2 + \dots, \quad a-R < x < a+R \quad (2.60)$$

$$f''(x) = \sum_{n=0}^{\infty} n(n-1)C_n(x-a)^{n-2} = 2C_2 + 6C_3(x-a) + \dots, \quad a-R < x < a+R \quad (2.61)$$

Por outro lado, esta função também é integrável dentro do intervalo de convergência.

$$\int f(x)dx = \sum_{n=0}^{\infty} \frac{C_n(x-a)^{n+1}}{n+1} + \mathbb{C}, \qquad a - R < x < a + R$$
 (2.62)

Exemplo 35: Encontre as Séries para f'(x) e f''(x) se $f(x) = \frac{1}{1-x} = 1 + x^2 + x^3 + \dots + x^n + \dots = \sum_{n=0}^{\infty} x^n, -1 < x < 1.$

Exemplo 36: Identifique a função f(x) através de sua derivação e posteriormente integração.

$$f(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n-1}}{2n-1}, \quad -1 < x < 1$$

2.12.2 Séries de Taylor e séries de Maclaurin

Seja f(x) uma função com derivadas de todas as ordens em algum intervalo contendo a como um ponto interior. Desta forma, a série de Taylor gerada por f em x=a é dada por

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n,$$
(2.63)

onde $f^{(n)}(a)$ corresponde é derivada de ordem n de f(x) calculada no ponto x = a.

Demonstração: Suponha que a série de potências $\sum C_n(x-a)^n$ tenha um raio de convergência dado por R. então, a n-ésima derivada de f(x) existe para |x-a| < R e, derivando a série de potências sucessivas vezes, obtemos

$$f^{(0)}(x) = C_0 + C_1(x-a) + C_2(x-a)^2 + C_3(x-a)^3 + C_4(x-a)^4 + C_5(x-a)^5 + \dots (2.64)$$

$$f^{(1)}(x) = C_1 + 2C_2(x-a) + 3C_3(x-a)^2 + 4C_4(x-a)^3 + 5C_5(x-a)^4 + \dots$$
 (2.65)

$$f^{(2)}(x) = 2C_2 + 6C_3(x-a) + 12C_4(x-a)^2 + 20C_5(x-a)^3 + \dots$$
 (2.66)

$$f^{(3)}(x) = 6C_3 + 24C_4(x-a) + 60C_5(x-a)^2 + \dots$$
 (2.67)

$$f^{(4)}(x) = 24C_4 + 120C_5(x-a) + \dots (2.68)$$

 $f^{(n)}(x) = n!C_n + \text{uma soma de termos com potências de } (x-a) \text{ como fator comum.}$ (2.69)

Calculando cada uma destas derivadas em x = a, obtemos

$$f^{(0)}(a) = C_0 = 0!C_0 (2.70)$$

$$f^{(1)}(a) = C_1 = 1!C_1 (2.71)$$

$$f^{(2)}(a) = 2C_2 = 2!C_2 (2.72)$$

$$f^{(3)}(a) = 6C_3 = 3!C_3 (2.73)$$

$$f^{(4)}(a) = 24C_4 = 4!C_4 (2.74)$$

$$f^{(n)}(a) = n!C_n (2.75)$$

Desta forma,

$$C_n = \frac{f^{(n)}(a)}{n!} \tag{2.76}$$

e

$$f(x) = \sum_{n=0}^{\infty} C_n (x-a)^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

$$= f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \dots$$
(2.77)

A série encontrada na equação (2.77) é chamada de série de Taylor. No caso especial a=0, a função f(x) assume a forma

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + \dots, \tag{2.78}$$

chamada de série de Maclaurin.

Exemplo 37: Obtenha a série de Taylor para $f(x) = \ln(x)$ centrada em a = 1. Para que valores de x esta série é válida?

Exemplo 38: Ache as Séries de Maclaurin para as funções a seguir. Encontre o intervalo de convergência das Séries obtidas.

a)
$$f(x) = e^x$$

b)
$$f(x) = \operatorname{sen}(x)$$

c)
$$f(x) = \frac{1}{1-x}$$

d)
$$f(x) = e^{-x^2}$$

e)
$$f(x) = \cos(x)$$

2.13 5^a série de exercícios

1. Determine o centro, o raio de convergência e o intervalo de convergência das Séries de potências a seguir.

a)
$$\sum_{n=0}^{\infty} x^n$$

b)
$$\sum_{n=0}^{\infty} (2x)^n$$

c)
$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{10^n}$$

$$\mathbf{d}) \sum_{n=0}^{\infty} \frac{nx^n}{n+2}$$

$$e) \sum_{n=1}^{\infty} \frac{(x-1)^n}{\sqrt{n}}$$

$$\mathbf{f)} \sum_{n=0}^{\infty} \frac{3^n x^n}{n!}$$

g)
$$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{n!}$$

$$\mathbf{h}) \sum_{n=1}^{\infty} \left(1 + \frac{1}{n} \right)^n x^n$$

$$\mathbf{i)} \ \sum_{n=1}^{\infty} \ln(n) x^n$$

j)
$$\sum_{n=0}^{\infty} (-2)^n (n+1)(x-1)^n$$

2. Determine o intervalo de convergência das Séries de potências a seguir e, dentro deste intervalo, a soma das Séries como uma função de x.

a)
$$\sum_{n=0}^{\infty} \frac{(x-1)^{2n}}{4^n}$$

b)
$$\sum_{n=0}^{\infty} \frac{(x+1)^{2n}}{9^n}$$

c)
$$\sum_{n=0}^{\infty} \left(\frac{\sqrt{x}}{2} - 1 \right)^n$$

$$\mathbf{d}) \sum_{n=0}^{\infty} \left(\frac{x^2 + 1}{3} \right)^n$$

$$e) \sum_{n=0}^{\infty} \left(\frac{x^2 - 1}{2}\right)^n$$

3. Para quais valores de x a série

$$1 - \frac{1}{2}(x-3) + \frac{1}{4}(x-3)^2 + \ldots + \left(-\frac{1}{2}\right)^n (x-3)^n + \ldots$$

converge? Qual é a sua soma? Qual série você obtém se derivar a série dada termo a termo? Para quais valores de x a nova série converge? Qual é a sua soma?

- **4.** Dada a série $f(x) = \sum_{n=0}^{\infty} \left(\frac{x}{2}\right)^n$, pede-se:
- a) O intervalo de convergência de f(x) e a soma da série neste intervalo.
- \mathbf{b}' Idem para f'(x).
- c) Idem para f''(x).
- **5.** Encontre os cinco primeiros termos não nulos da série de Maclaurin para as funções a seguir e ache a série em notação de somatório. Qual é o intervalo de convergência para cada série encontrada?

a)
$$f(x) = e^{-x}$$

b)
$$f(x) = e^{ax}$$

c)
$$f(x) = \ln(1+x)$$

$$\mathbf{d)} \ f(x) = \cos(x)$$

- **6.** Encontre os quatro primeiros termos não nulos da série de Taylor em torno de x=a para as funções a seguir e ache a série correspondente em notação de somatério. Qual é o intervalo de convergência para cada série encontrada?
- a) $f(x) = e^x$, a = 1
- **b)** $f(x) = e^{-x}, a = \ln(2)$
- c) $f(x) = \ln(x), a = 1$
- 7. A função $\ln(x)$ admite uma representação em série de Maclaurin? E a função x^{-1} ? Justifique.
- 8. Encontre a série de Maclaurin para as funções a seguir. Defina o intervalo de convergência das mesmas.
- a) $f(x) = e^{4-x}$
- **b)** $f(x) = x^2 sen(x)$
- 9. Desenvolva as funções dadas em Séries de Taylor. Encontre o intervalo de convergência da série obtida para cada item a seguir.
- a) f(x) = sen(kx) em torno de x = a e depois desenvolva para
- **a.1)** $f(x) = sen(2x) \ a = 0$
- **a.2)** $f(x) = \text{sen}(\pi x) \ a = 1/2$
- b) $f(x) = \ln(kx)$ em torno de x = a e depois desenvolva para $f(x) = \ln(x/3), a = e$
- 10. Em estatística a função $E(x)=\frac{2}{\sqrt{\pi}}\int_0^x e^{-t^2}dt$ leva o nome de função Erro. Encontre a série de Maclaurin da função E(x).

2.14 Respostas da 5^a série de exercícios

- 1.
- a) Centro a = 0, raio R = 1 e intervalo de convergência -1 < x < 1.
- b) Centro a=0, raio R=1/2 e intervalo de convergência -1/2 < x < 1/2.
- c) Centro a = 2, raio R = 10 e intervalo de convergência -8 < x < 12.
- d) Centro a = 0, raio R = 1 e intervalo de convergência -1 < x < 1.
- e) Centro a=1, raio R=1 e intervalo de convergência $0 \le x < 2$.
- f) Centro a=0, raio $R=\infty$ e intervalo de convergência $\forall x\in\mathbb{R}$.
- g) Centro a=0, raio $R=\infty$ e intervalo de convergência $\forall x\in\mathbb{R}.$
- h) Centro a = 0, raio R = 1 e intervalo de convergência -1 < x < 1.
- i) Centro a=0, raio R=1 e intervalo de convergência -1 < x < 1.
- j) Centro a = 1, raio R = 1/2 e intervalo de convergência 1/2 < x < 3/2.

a)
$$f(x) = \frac{4}{4 - (x - 1)^2}$$
, intervalo de convergência $-1 < x < 3$.

b)
$$f(x) = \frac{9}{9 - (x+1)^2}$$
, intervalo de convergência $-4 < x < 2$.

c)
$$f(x) = \frac{2}{4 - \sqrt{x}}$$
, intervalo de convergência $0 < x < 16$.

d)
$$f(x) = \frac{3}{2 - x^2}$$
, intervalo de convergência $-\sqrt{2} < x < \sqrt{2}$.

e)
$$f(x) = \frac{2}{3 - x^2}$$
, intervalo de convergência $-\sqrt{3} < x < \sqrt{3}$.

$$f(x) = \frac{2}{x-1} = \sum_{n=0}^{\infty} \left(-\frac{1}{2}\right)^n (x-3)^n, \ 1 < x < 5.$$

$$f'(x) = \frac{-2}{(x-1)^2} = \sum_{n=0}^{\infty} n \left(-\frac{1}{2}\right)^n (x-3)^{n-1}, \ 1 < x < 5.$$

a)
$$f(x) = \frac{2}{2-x} = \sum_{n=0}^{\infty} \left(\frac{x}{2}\right)^n, -2 < x < 2.$$

b)
$$f'(x) = \frac{2}{(2-x)^2} = \sum_{n=0}^{\infty} \frac{n}{2} \left(\frac{x}{2}\right)^{(n-1)}, -2 < x < 2.$$

c)
$$f''(x) = \frac{4}{(2-x)^3} = \sum_{n=0}^{\infty} \frac{n(n-1)}{4} \left(\frac{x}{2}\right)^{(n-2)}, -2 < x < 2.$$

a)
$$f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n!} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \dots, \forall x \in \mathbb{R}.$$

b)
$$f(x) = \sum_{n=0}^{\infty} \frac{(ax)^n}{n!} = 1 + ax + \frac{a^2x^2}{2!} + \frac{a^3x^3}{3!} + \frac{a^4x^4}{4!} + \dots, \forall x \in \mathbb{R}.$$

c)
$$f(x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, -1 < x \le 1.$$

d)
$$f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots, \forall x \in \mathbb{R}.$$

a)
$$f(x) = \sum_{n=0}^{\infty} \frac{e}{n!} (x-1)^n = e + e(x-1) + e \frac{(x-1)^2}{2!} + e \frac{(x-1)^3}{3!} + \dots, \forall x \in \mathbb{R}.$$

b)
$$f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{(x - \ln(2))^n}{2n!} = 1 - \frac{(x - \ln(2))}{2} + \frac{(x - \ln(2))^2}{2 \times 2!} - \frac{(x - \ln(2))^3}{2 \times 3!} \dots, \forall x \in \mathbb{R}.$$

c)
$$f(x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x-1)^n}{n} = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} \dots, 0 < x \le 2.$$

7. não, pois ambas as funções não são definidas para x = 0.

8.

a)
$$f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{e^4}{n!} x^n, \forall x \in \mathbb{R}.$$

b)
$$f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+3}}{(2n+1)!} x^n, \forall x \in \mathbb{R}.$$

9

a)
$$f(x) = \sum_{n=0}^{\infty} (-1)^n \left[\frac{\operatorname{sen}(ka)[k(x-a)]^{2n}}{(2n)!} + \frac{\cos(ka)[k(x-a)]^{2n+1}}{(2n+1)!} \right], \forall x \in \mathbb{R}.$$

b)
$$f(x) = \ln(ka) + \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x-a)^n}{a^n n}, \ 0 < x \le 2a.$$

10.

$$E(x) = \frac{2}{\sqrt{\pi}} \left(x - \frac{x^3}{3} + \frac{x^5}{5 \times 2!} - \frac{x^7}{7 \times 3!} + \frac{x^9}{9 \times 4!} - \ldots \right) = \frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1) \times n!}, \forall x \in \mathbb{R}$$

 \mathbb{R} .

Referências Bibliográficas

ZILL, Dennis G.; CULLEN, Michel R. - Equações diferenciais, Trad. Antonio Zumpano, Volume 1, 3^a Edição, Editora Makron Books Ltda, são Paulo, 2001.

JR., Frank Ayres - Equações Diferenciais, 6^a Edição, McGraw-Hill, Inc, são Paulo, 1973.

EDWARDS, Bruce H.; HOSTETLER, Robert P.; LARSON, Roland E. - Cálculo com Geometria Analítica Volume 2, 5^a Edição, Livros Técnicos e Científicos Editora S.A., Rio de Janeiro, 1997.

GUIDORIZZI, H. Luiz - Um Curso de Cálculo, Volume 4, Livros Técnicos e Científicos Editora S.A., 5^a Edição, Rio de Janeiro, 2002.

DEMIDOVICH, B. - Problemas e exercícios de Análise matemática, Editora Mir Moscou, 2^a Edição, 1978.

THOMAS, George B.; WERT, Maurice D.; GIORDANO, Frank R.; FINNEY, Ross L. - Cálculo, Editora Addison Wesley, são Paulo, 2003.

MUNEM Mustafá A.; FOULIS David J. - Cálculo, Volume 2, Editora Guanabara Dois, Rio de Janeiro, 1982.

ÁVILA, Geraldo - Cálculo, Volume 3, 4^a Edição, Livros Técnicos e Científicos Editora S.A., são Paulo, 1987.