

Diabetes Technology & Therapeutics: http://mc.manuscriptcentral.com/diabetestechnology

R Functions for Analysis of Continuous Glucose Monitor Data

Journal:	Diabetes Technology and Therapeutics
Manuscript ID	DIA-2019-0042
Manuscript Type:	Original Articles
Date Submitted by the Author:	01-Feb-2019
Complete List of Authors:	Vigers, Tim; Anschutz Medical Campus, Chan, Christine; University of Colorado, Pediatrics Snell-Bergeon, Janet; University of Colorado Denver, Barbara Davis Center for Childhood Diabetes Bjornstad, Peter; University of Colorado School of Medicine, Barbara Davis Center for Diabetes Zeitler, Philip; University of Colorado, Pediatrics Forlenza, Gregory; University of Colorado Denver, Barbara Davis Center for Childhood Diabetes Pyle, Laura; Children's Hospital Colorado, Pediatrics
Keyword:	Continuous glucose monitoring, Sensors, Continuous home monitoring
Manuscript Keywords (Search Terms):	

SCHOLARONE™ Manuscripts

R Functions for Analysis of Continuous Glucose Monitor Data¹

Tim Vigers^{1,2,3}, B.A., Christine L. Chan¹, M.D., Janet Snell-Bergeon², Ph.D., Petter Bjornstad¹, M.D., Philip S. Zeitler¹, M.D., Ph.D., Gregory Forlenza², M.D., Laura Pyle^{1,2,3}, Ph.D.

Author Affiliations: ¹Department of Pediatric Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, United States; ²Barbara Davis Center, Aurora, Colorado, United States; ³Department of Biostatistics and Informatics, Colorado School of Public Health

Tim Vigers
Anschutz Medical Campus
13001 E 17th Place, Mail Stop C243
Aurora, CO 80045
720-394-5769
timothy.vigers@ucdenver.edu

Abbreviations: (ADA) American Diabetes Association, (BG) blood glucose, (CGM) continuous glucose monitor, (CONGA) continuous overall net glycemic action, (CRAN) Comprehensive R Archive Network, (CSV) comma-separated values, (GRADE) glycemic risk assessment diabetes equation, (MAGE) mean amplitude of glycemic excursion, (REDCap) Research Electronic Data Capture

Key words: blood glucose, continuous glucose monitor, cgm, data management, diabetes

Corresponding author: Tim Vigers, Anschutz Medical Campus, 13001 E. 17th Pl. C243, Aurora, CO 80045; email address: timothy.vigers@ucdenver.edu

Funding source: NIH grants DK094712-04, UL1 TR001082 (REDCap), and Cystic Fibrosis Foundation Therapeutics grants CHAN16A0 and CHAN16GE0.

Acknowledgements: None

Conflict-of-Interest Disclosure: None

Figures and table count: 2 tables, 4 figures

¹ Presented at the 2019 Advanced Technologies & Treatments for Diabetes (ATTD) conference.

Abstract:

Background: Continuous glucose monitoring (CGM) is an essential part of diabetes care. Realtime CGM data are beneficial to patients for daily glucose management, and aggregate summary statistics of CGM measures are valuable to direct insulin dosing and as a tool for researchers in clinical trials. Yet, the various commercial systems still report CGM data in disparate, nonstandard ways. Accordingly, there is a need for a standardized, free, open-source approach to CGM data management and analysis.

Methods: Functions were developed in the free programming language R to provide a rapid, easy, and consistent methodology for CGM data management and analysis.

Results: Summary variables calculated by our package compare well to those generated by various CGM software, and our functions provide a more comprehensive list of summary measures available to clinicians and researchers.

Conclusions: Consistent handling of CGM data using our R package may facilitate collaboration erstanding of the. between research groups and contribute to a better understanding of free-living glucose patterns.

Introduction

Continuous glucose monitoring (CGM) technology has transformed diabetes care over the past 15 years by allowing clinicians to measure free-living glucose patterns. During this period, CGM use has increased from < 5% of patients to almost 50% in some age groups.[1] With recent reports detailing the benefits of CGM time in range metrics as predictive of long-term vascular outcomes[2] and as an indicator of glucose management or estimated hemoglobin A1c (HbA1c) [3], CGM use will likely continue to increase in both research and clinical settings. Despite the increasing use of CGM for treatment and research, a standardized, free, open-source approach to data management and analysis is lacking.[4]

CGM manufacturers use proprietary algorithms to create reports and calculate summary measures for patients and clinicians. As a result, it may be difficult to compare results obtained using different CGM devices and to understand the sources of variability that could influence CGM outcomes. In addition, research questions may require summary measures that are not available in accompanying reports (e.g., use of a different cut-point for hyperglycemia). Furthermore, use of the summary values provided by each CGM platform sometimes requires that data be entered by hand into a database or spreadsheet prior to analysis. This is a time-consuming and error prone process that will benefit from automation. The use of a free and open source program to analyze raw sensor glucose values will enable researchers to define their own variables of interest and standardize calculation of summary measures across different CGM devices.

There have already been a few attempts to develop such systems, including the EasyGV macro-enabled Excel workbook[5], AGP Report (agpreport.org), and Tidepool (tidepool.org). However, there are reports suggesting that EasyGV poorly matches other calculations of mean

amplitude of glycemic excursion (MAGE),[6] and it does not permit the various definitions of a significant excursion (i.e. greater than 1 standard deviation (SD), 2 SDs, etc.). Although Tidepool appears to be an excellent option for patients and clinicians, it is not free for use in research, and many smaller investigator-initiated studies cannot afford the additional expense. Also, their open source code requires significant coding knowledge in multiple programming languages which limits accessibility and widespread use.

To address this need, we have developed a package written entirely in the statistical programming language R (R Foundation for Statistical Computing, Vienna, Austria). The package currently works with data from Diasend (www.diasend.com), Dexcom (www.dexcom.com), iPro 2 (http://professional.medtronicdiabetes.com/ipro2-professional-cgm), Libre (www.freestylelibre.us), and Carelink (<a href="www.medtronicdiabetes.com/products/carelink-personal-diabetes-software), with plans to add support for other platforms as CGM technology advances. Additionally, data can be manually formatted to work with these functions if necessary. The package is available on The Comprehensive R Archive Network (CRAN) under the name 'cgmanalysis' and the source code can be found at https://github.com/childhealthbiostatscore/R-Packages, which allows for version control and forking if users need to alter functionality, and includes a short user guide for those with limited R experience.

Summary Measures of Glycemia

Although CGM is not a new technology, there is still debate regarding the advantages and disadvantages of various CGM metrics for use in clinical care and as research outcomes. The American Diabetes Association (ADA) recently proposed a set of key metrics for CGM

analysis[7], all of which are calculated by our code, in addition to the glucose management index (GMI)[3], time in range[2], and other variables proposed by Hernandez et al.[8] An easy method to calculate these important summary variables from a variety of sources of CGM data has the potential to contribute to the standardization of the use of these metrics. A list of summary variables produced by our default code is available in **Table 1**, and **Table 2** provides comparisons between the package and proprietary software. The code can be easily modified to include further variables of interest, to be released in future version updates. Further, because the package is open source, individual users can create their own modifications.

Methods

Package Design

Our package consists of three simple functions: cleandata(), cgmvariables(), and cgmreport(). The data cleaning function iterates through a directory of CGM data exports and produces new files that then serve as input to the CGM variable calculator and the CGM report generator. The initial directory can contain files from different sources, as the function identifies the relevant timestamp and glucose values for each file format. By default, the cleaning function will fill in gaps in glucose data less than 20 minutes long using linear interpolation. It will also remove 24-hour periods containing gaps larger than 20 minutes, so that there will be an equal number of daytime and nighttime values, important for calculating some variables, such as AUC. The user can specify a different maximum gap to fill by interpolation and can also choose whether to remove days with larger gaps. Ideally, the CGM data should be exported and then cleaned using this package, and not manually edited. However, if a file does require manual data

editing, these functions will work on the three-column format detailed in the package documentation.

Once the data have been cleaned, the CGM variables described in **Table 1** are calculated using the cgmvariables() function. By default, blood glucose must be above a threshold for at least 35 minutes or below a threshold for at least 10 minutes to count as an excursion, but these parameters can be changed by the user if necessary. Likewise, daytime (e.g. for daytime vs. nighttime AUC or maximum glucose) is defined as 6:00 to 22:00 by default, but these can be set depending on user needs. MAGE is calculated using Baghurst's algorithm[9], which we have coded in R. By default, the function includes blood glucose excursions greater than 1 SD from the mean in calculation of MAGE, but there are options for 1.5 SD and 2 SD as well.

Our code was originally written to produce data tables for upload to a Research Electronic Data Capture (REDCap) database[10], which influenced the selection of variable names in the final output. These names can be changed in the code itself or by simply editing the function's output. These variables are stored in separate columns of a new data frame (the function's output), with each record identified by the patient ID.

In addition to producing calculated variables, our package can also plot CGM data in a few ways. First, the function concatenates all the CGM data in the specified directory into one data table and plots the aggregate data in the style of the standard AGP report (http://www.agpreport.org), the aggregate daily overlay (ADO). This method uses Tukey smoothing after rounding each timepoint to the nearest 10-minute mark, then plots the median, inter-quartile range, and 5 and 95 percentiles at each time of day (with plans to add more options in the future). The package also produces a similar aggregate plot with a Loess-smoothed (locally estimated scatterplot smoothing) average overlaid on points representing every single

glucose value. For smaller data sets, this type of plot gives a meaningful overview of daily glucose trends. Finally, the third type of plot uses a Loess-smoothed average for each patient with glucose values color-coded by participant.

Comparison of cgmanalysis package and proprietary software

Our functions were compared to proprietary CGM software using clinically collected data from iPro 2, Carelink 670G, Dexcom Clarity, and Diasend. The data were exported from each platform, formatted using the cleandata() function, then summarized using the cgmvariables() and cgmreport() functions. The data were not cleaned prior to plotting and summary variable calculation, and summary variable parameters were altered from default (e.g. defining an excursion as 15 minutes above or below threshold for iPro 2 data) in order to better match the CGM results. Because each CGM device provides different and limited summary variables, we were only able to compare a small subset of our package's output and were not able to directly test more complex variables, such as MAGE or CONGA.

Case Examples

Figure 1 is an example of the ADO plot made using approximately 25,000 simulated CGM values, and Figure 2 is the version of the ADO with Loess smoothing, using the same data as in Figure 1. Figure 3 is the patient-specific plot, made with a subset of the simulated data.

Table 2 shows the results of summary variable comparisons between four different proprietary CGM devices and our cgmanalysis package. Most of the differences in these comparisons are small and the result of rounding. Overall the package appears to be capable of reproducing proprietary calculations when run with non-default settings, although in the comparison to the iPro 2, there was a difference of 1 high excursion.

Figures 4a-d show the comparisons of the graphical outputs produced by the proprietary software and the cgmanalysis package. In the graphs produced by the cgmanalysis package, glycemic patterns at each hour of the day are clearly visible and match the CGM device outputs well. However, some of the proprietary software appear to apply different smoothing algorithms, resulting in slightly different patterns across time.

Discussion

The summary variables produced by the cgmanalysis package match those from the proprietary software for all platforms assessed, and differences are mainly due to rounding discrepancies. Compared to the iPro 2, the number of high excursions differed by 1. Without access to the iPro algorithms we are unable to determine why these counts disagree, but the difference is not likely of clinical significance. The graphical outputs from the cgmanalysis package are similar to the CGM device output in terms of the glycemic patterns by hour of day, although there are small differences, likely due different smoothing algorithms.

There are several limitations to our comparison of the cgmanalysis package to the proprietary software output. CGM devices only calculate a few summary variables, and accordingly it is difficult to test this package cohesively. Also, gold standard calculations do not exist for many of these variables, which makes verifying our results difficult. We hope that by making this package freely available and open source, these limitations will be minimized through widespread testing. Perhaps the greatest limitation to the software itself is the lack of an easy to use graphical user interface (GUI), which may prevent its use by clinicians with limited programming experience. We have included detailed documentation in the CRAN package, as well as a new-user guide on GitHub, but using the package still requires enough technical

knowledge that it may be inaccessible to some users. None of the authors are software engineers, and the package is undoubtedly less efficient than it could be. Again, we hope that the free and open source nature will contribute significantly to improving the code over time, both as a result of outside contributions and our own planned updates.

In conclusion, our software provides a standardized, free, open-source approach to manage and analyze CGM data, enabling sharing of data across technology platforms, collaboration between research groups, and more effective use of the growing pool of CGM data. ensed st.
e and open source
.nyone can contribute to c
gy advance. The advantage of using R functions rather than licensed statistical software, or a web-based or desktop application, is that R is freely available and open source. Clinicians or investigators can alter the code according to their needs and anyone can contribute to the development of the program, as CGM research and technology advance.

- DeSalvo, D.J., et al., Continuous glucose monitoring and glycemic control among youth with type 1 diabetes: International comparison from the T1D Exchange and DPV *Initiative*. Pediatr Diabetes, 2018. **19**(7): p. 1271-1275.
- 2. Beck, R.W., et al., Validation of Time in Range as an Outcome Measure for Diabetes Clinical Trials. Diabetes Care, 2018.
- Bergenstal, R.M., et al., Glucose Management Indicator (GMI): A New Term for 3. Estimating A1C From Continuous Glucose Monitoring. Diabetes Care, 2018. 41(11): p. 2275-2280.
- 4. Hernandez, T.L. and L.A. Barbour, A Standard Approach to Continuous Glucose Monitor Data in Pregnancy for the Study of Fetal Growth and Infant Outcomes. Diabetes Technology & Therapeutics, 2013. **15**(2): p. 172-179.
- 5. Hill, N.R., et al., Normal reference range for mean tissue glucose and glycemic variability derived from continuous glucose monitoring for subjects without diabetes in different ethnic groups. Diabetes Technol Ther, 2011. 13(9): p. 921-8.
- Sechterberger, M.K., Y.M. Luijf, and J.H. Devries, *Poor agreement of computerized* 6. calculators for mean amplitude of glycemic excursions. Diabetes Technol Ther, 2014. **16**(2): p. 72-5.
- Danne, T., et al., International Consensus on Use of Continuous Glucose Monitoring. 7. Diabetes Care, 2017. **40**(12): p. 1631-1640.
- 8. Hernandez, T.L. and L.A. Barbour, A standard approach to continuous glucose monitor data in pregnancy for the study of fetal growth and infant outcomes. Diabetes Technol Ther, 2013. **15**(2): p. 172-9.
- 9. Baghurst, P.A., Calculating the mean amplitude of glycemic excursion from continuous glucose monitoring data: an automated algorithm. Diabetes Technol Ther, 2011. 13(3): p. 296-302.
- ICa_F, tional re. Harris, P.A., et al., Research electronic data capture (REDCap)--a metadata-driven 10. methodology and workflow process for providing translational research informatics support. J Biomed Inform, 2009. **42**(2): p. 377-81.

CGM Variable	Definition	
percent cgm wear	The number of sensor readings as a	
	percentage of the number of potential	
	readings (given time worn).	
average sensor	Mean of all sensor glucose values	
estimated a1c	Estimated HbA1c based on the equation:	
	(46.7 + average glucose in mg/dL) / 28.7[1]	
gmi	Glucose management indicator based on the	
	equation: $3.31 + (0.02392 \times \text{average glucose})$	
	$in mg/dL)^7$	
q1_sensor	First quartile sensor glucose value	
median_sensor	Median sensor glucose value	
q3 sensor	Third quartile sensor glucose value	
standard deviation	Standard deviation of all sensor glucose	
- `\`,	values	
cv	Coefficient of variation of all sensor glucose	
	values (SD/mean)	
min_sensor	Minimum of all sensor glucose values	
max_sensor	Maximum of all sensor glucose values	
excursions_over_***	The number of local glucose peaks with an	
	amplitude greater than *** mg/dL	
min_spent_over_***	The total length of time that sensor glucose	
	was at or above *** mg/dL	
percent_time_over_***	Minutes spent above *** mg/dL, as a	
	percentage of the total time CGM was worn	
avg_excur_over_***_per_day	The number of glucose peaks above ***	
	mg/dL averaged per 24-hour period of CGM	
	wear	
min_spent_under_**	The total length of time that sensor glucose	
	was at or below ** mg/dL	
percent_time_under_**	Minutes spent below ** mg/dL, as a	
	percentage of the total time CGM was worn	
min_spent_70_180	Minutes spent in the range $70 - 180 \text{ mg/dL}$	
	(inclusive)	
percent_time_70_180	Minutes spent in the range 70 – 180 mg/dL	
	(inclusive), as a percentage of the total time	
	CGM was worn	
daytime_***	*** of all sensor glucose values during	
	specified daytime hours	
nighttime_***	*** of all sensor glucose values during	
	specified nighttime hours	
auc	Approximate area under the sensor glucose	
	curve, calculated using the trapezoidal rule	
r_mage	MAGE calculated according to Baghurst's	
	algorithm	

Diabetes Technology & Therapeutics		
j_index	Calculated based on the equation: 0.324 ×	
	(average glucose in mg/dL + standard	
	deviation of glucose levels)^211	
conga	Continuous overall net glycemic action,	
11	default n = 1 hour11	
modd	Mean of daily differences	
lbgi hbgi	Low blood glucose index High blood glucose index	
Page	2 of 2	
Mary Ann Liebert, Inc., 140 Huguer	not Street, New Rochelle, NY 10801	

A. iPro 2 software (high excursion defined as > 140 mg/dL for 15 minutes, low defined as < 60 mg/dL for 15 minutes)

	cgmanalysis	iPro
# Sensor Values	2000	2000
Highest	282	282
Lowest	70	70
Average	126.874	127
Standard Dev	30.79367223	31
# High Excursions	31	32
# Low Excursions	0	0
% Time Above		
140	24.85	24
% Time Below 60	0	0

B. Carelink 670G

		Carelink
	cgmanalysis	670G
Average	123.6503122	124
Standard Dev	37.5290915	38

C. Dexcom Clarity

		Dexcom
	cgmanalysis	Clarity
Average	175.6790404	176
Standard Dev	67.09674726	68
Time in Range	55.65656566	56

D. Diasend

	cgmanalysis	Diasend	
# Sensor Values	184		184
Highest	411		411
Lowest	54		54
Average	193.2282609		193
Standard Dev	89.66532836		89
		82/184	
Values above 200	44.56521739	(44.57%)	

Page 1 of 1

Figure 1: Aggregate Daily Overlay (Tukey Smoothing) 220x165mm (300 x 300 DPI)

Figure 2: Aggregate Daily Overlay (Loess Smoothing) $221 \times 166 \text{mm } (300 \times 300 \text{ DPI})$

Figure 3: Daily Overlay per Subject (LOESS Smoothing) $214x161mm (300 \times 300 DPI)$

Figure 4a: "cgmanalysis" Package Plots Compared to iPro 2 Daily Overlay

Clockwise from top left: Aggregate Daily Overlay (Tukey Smoothing), Aggregate Daily Overlay (Loess Smoothing), iPro 2 Daily Overlay

232x156mm (300 x 300 DPI)

Figure 4b: "cgmanalysis" Package Plots Compared to Carelink 670G Daily Overlay

Clockwise from top left: Aggregate Daily Overlay (Tukey Smoothing), Aggregate Daily Overlay (Loess Smoothing), Carelink 670G Daily Overlay

249x155mm (300 x 300 DPI)

Figure 4c: "cgmanalysis" Package Plots Compared to Dexcom Clarity Daily Overlay

Clockwise from top left: Aggregate Daily Overlay (Tukey Smoothing), Aggregate Daily Overlay (Loess Smoothing), Dexcom Daily Overlay

244x170mm (300 x 300 DPI)

Figure 4d: "cgmanalysis" Package Plots Compared to Diasend Daily Overlay

Clockwise from top left: Aggregate Daily Overlay (Tukey Smoothing), Aggregate Daily Overlay (Loess Smoothing), Diasend Daily Overlay

239x171mm (300 x 300 DPI)