Quiz 3

Problem 0 (10 pts). You will submit the MATLAB Onramp certificate for 10 points.

Problem 1 (8 pts). Find a basis for span $\{u_1, \ldots, u_5\}$ from among the vectors u_1, \ldots, u_5 , where

$$oldsymbol{u}_1 = egin{bmatrix} 1 \ 2 \ 2 \end{bmatrix} \qquad oldsymbol{u}_2 = egin{bmatrix} 2 \ 5 \ 4 \end{bmatrix} \qquad oldsymbol{u}_3 = egin{bmatrix} 1 \ 3 \ 2 \end{bmatrix} \qquad oldsymbol{u}_4 = egin{bmatrix} 2 \ 7 \ 4 \end{bmatrix} \qquad oldsymbol{u}_5 = egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix}$$

Make sure to show all work and explain your reasoning.

Problem 2 (8 pts). Suppose U and W are subspaces of \mathbb{R}^6 , $\dim(U) = 4 = \dim(V)$ and $U + V = \mathbb{R}^6$. What is the dimension of $U \cap V$? You must explain your answer completely.

Problem 3 (8 pts). Let c_1, c_2, \ldots, c_3 be n distinct real numbers. Let $p_i = \prod_{\substack{j=1 \ j \neq i}}^n (x - c_j)/(c_i - c_j)$. Show that $\mathcal{B} = \{p_1, p_2, \ldots, p_n\}$ is a basis for P_{n-1} . Hint: Consider $p_i(c_j)$.