First Midterm (A)

Please write down your student ID, your name and the letter in the above parentheses on your answer sheets.

- 1. (30%) Solving recurrences:
 - (a) (5%) $T(n) = 7T(\frac{n}{2}) + \Theta(n^2) = \Theta(g(n))$. Solve g(n).
 - (b) (5%) $T(n) = 5T(\frac{n}{5}) + \Theta(n) = \Theta(g(n))$. Solve g(n).
 - (c) (5%) $T(n) = 11T(\frac{n}{4}) + \Theta(n^2) = \Theta(g(n))$. Solve g(n).
 - (d) (5%) $T(n) = \sqrt{n}T(\sqrt{n}) + \Theta(n) = \Theta(g(n))$. Solve g(n).
 - (e) (5%) $T(n) = T(\frac{2n}{3}) + T(\frac{n}{3}) + \Theta(n \log^2 n) = \Theta(g(n))$. Solve g(n).
 - (f) (5%) $T(n) = 1 + \frac{1}{n} \sum_{k=1}^{n-1} T(k) = \Theta(g(n))$. Solve g(n).
- 2. (10%) T(1) = 1 and $T(n) = T(\frac{n}{2}) + T(\frac{n}{4}) + 1$ for n > 1. Prove or disprove that T(n) = o(n).
- 3. (4%) Given $12345 \times 32090 = 396151050$ and $87655 \times 35800 = 3138049000$. Compute $1234587655 \times 3209035800$.
- 4. (10%) Given the preorder traversal $\langle x_1, \ldots, x_n \rangle$ of an *n*-node binary search tree T.
 - (a) (6%) Describe a $O(\log n)$ -time algorithm to compute the number of nodes of the left subtree of T.
 - (b) (4%) Use your algorithm to compute the size of left subtree of the binary search tree whose preorder traversal is $\langle 4, 1, 3, 2, 9, 7, 5, 6, 8 \rangle$.
- 5. (10%) Given an integral sequence $\langle a_1, \dots, a_n \rangle$. Describe a O(n)-time algorithm to compute the minimum value of $f(x) = \sum_{i=1}^{n} |x a_i|$, and prove it is correct.
- 6. (10%) Given an unsorted array A[1..n]. Describe a O(n)-time algorithm to construct a maximum binary heap, and prove it is correct.
- 7. (10%) Rod cutting problem: Suppose cutting a rod of length ℓ costs exactly ℓ dollars and the price of a rod of length ℓ is p_{ℓ} .

ℓ	1	2	3	4	5	6	7	8	9	10
p_{ℓ}	2	25	39	42	59	69	70	89	99	100

- (a) (5%) What is the maximum net profit to buy a rod of length 10 for 100 dollars?
- (b) (5%) How to achieve the maximum net profit? Describe an optimal cutting.
- 8. (10%) Matrix-chain multiplication: Solve the instance $(5, \langle 5, 1, 9, 8, 5, 4 \rangle)$, and give the optimal way to multiply $A_1A_2A_3A_4A_5$.
- 9. (4%) Find all longest common subsequences of (0,K,I,N,A,W,A) and (0,K,A,H,A,N,A).
- 10. (10%) Given an integral sequence $S = \langle s_1, \ldots, s_n \rangle$. Let L[i] denote the length of the longest non-decreasing subsequence of S ending at s_i . Define $\ell = \max_{1 \leq i \leq n} L[i]$ and $b_k = \min_{i:1 \leq i \leq n, L[i] = k} s_i$ for $1 \leq k \leq \ell$. Show that the sequence $\langle b_1, \ldots, b_\ell \rangle$ is non-decreasing. Use this fact to describe a $O(n \log n)$ -time algorithm to compute the longest non-decreasing subsequence.
- 12. (10%) Suppose there are two power plants p_1, p_2 and n houses h_1, \ldots, h_n on an island. In order to supply electricity to every house, we need to connect the power cables properly. A house is properly connected if it is directly connected to a power plant or another house which is properly connected. For $u, v \in \{p_1, p_2\} \cup \{h_1, \ldots, h_n\}$, let w(u, v) be the cost of directly connecting u and v. Give a $O(n^2)$ -time algorithm to compute the minimum total cost to connect all houses properly, and show your algorithm is correct.