1. Explain Switch

46 46

- * A **switch** is a networking device that connects devices within a local area network (LAN). It operates at Layer 2 (Data Link Layer) of the OSI model, forwarding data packets based on MAC addresses. Switches create a network by connecting multiple devices and using MAC addresses to efficiently send data only to the intended recipient, reducing network congestion.
- * ### 2. Explain Switch Boot Sequence
- ❖ The **switch boot sequence ** typically involves the following steps:
- ❖ 1. **Power On Self Test (POST):** The switch performs hardware diagnostics to ensure all components are functioning correctly.
- 2. **Load Bootstrap Program:** The switch loads a small program from ROM that initializes the system.
- 3. **Locate and Load the IOS:** The switch searches for the Cisco IOS (Internetwork Operating System) in flash memory, TFTP server, or another source and loads it into RAM.
- ❖ 4. **Initialize the Switch:** The switch initializes the hardware and interfaces.
- 5. **Load the Configuration File:** The switch loads the configuration file from NVRAM, which contains settings and parameters for the switch operation.
- * ### 3. Explain Three Methods to Access Switch Command Line Interface
- 1. **Console Access: ** Connect a computer to the switch's console port using a serial cable. Use terminal emulation software (like PuTTY or Tera Term) to access the CII.
- ❖ 2. **Telnet:** Access the switch remotely over a network using Telnet. This requires the switch to be configured for remote access and have an IP address assigned.
- ❖ 3. **SSH (Secure Shell):** A more secure method than Telnet, SSH allows encrypted remote access to the switch's CLI over the network.
- * ### 4. Explain and Configuring the Cisco Internet Operating System

- The **Cisco IOS** is the operating system used on Cisco routers and switches. It provides a command-line interface (CLI) for configuring and managing network devices. Configuration typically involves:
- ❖ **Accessing the CLI:** Using console, Telnet, or SSH.
- * **Entering Configuration Mode: ** Using the command 'configure terminal'.
- * **Setting Parameters: ** Configuring interfaces, routing protocols, security settings, etc.
- **Saving Configuration:** Using the command 'write memory' or 'copy running-config startup-config' to save changes.
- ### 5. Neighbor Relationships in Routers
- * Assuming all four routers (R1, R2, R3, R4) have their Fast Ethernet 0/0 interfaces in the same VLAN and can ping each other, the routers that will be able to form a neighbor relationship with the other routers are:
- . **A. B1**

- * **B. R2** (or any combination of two routers that are configured correctly)
- ### 6. 3-enable Secret Password Hashing Algorithm
- The hashing algorithm used for the command 'enable secret [password]' is:
- ❖ **A. MD5**
- ### 7. OSPF Neighbor Status Meaning
- ❖ If the status of neighbor 2.2.2.2 shows **FULL/BDR**, it means:
- ❖ **B. R1 is a backup designated router. **
- * ### 8. Command to View Neighbor Discovery Table on a PC
- * The command used to view the neighbor discovery table on a PC is:
- ❖ **C. netsh interface ipv6 show neighbor**
- * ### 9. Type of Variable Shown
- The variable 'Routers = [R1,R2,R3]' is:
- * **A. List**
- * ### 10. Identify the Fields in an IPv4 Header (Choose Three)

- The fields in an IPv4 header include:
- ❖ **B. Time to Live**
- ❖ **C. Source address**
- ❖ **D. Destination address**