SVKM's NMIMS MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT & ENGINE

Programme: B.Tech (Computer)

Year: III

Semester: V

Academic Year: 2015-16

Batch: 2014-15 / 2015-16

Subject: Theoretical Computer Science

Date: 08 June 2016

Marks:60

Time: 2.00 pm - 5.00 pm

Durations: 3 (hrs)

Re-Examination

Instruction: Candidates should read carefully the instructions printed on the question paper and on the cover of the Answer Book, which is provided for their use.

NB:

- 1) Question No. **ONE** is compulsory.
- 2) Out of remaining questions, attempt any FOUR questions.
- 3) In all **FIVE** questions to be attempted.
- 4) All questions carry equal marks.
- 5) Answer to each new question to be started on a fresh page.
- 6) Figures in brackets on the right hand side indicate full marks.
- 7) Assume Suitable data if necessary
- Q.1 Answer the following and justify in short.

12

- a Construct the grammar for the language $a^n\,c^i\,b^n,\,\text{where }n>0\text{ and }i\geq 0.$
- b Find the highest type of the following grammar
 - S → a/aAS, A →SS/SbA/ba.
- c Find the languages generated by the following grammar.

$$S \to aSa \; , S {\to} bSb, \; S {\to} c.$$

d Describe the following REs in English language.

$$(00)^* (11)^* 1.$$

e Find the RE for the following

{w| w contains an even number of 0s, or contains exactly two 1s}

- Which one of the following regular expressions is not equivalent to the regular expression $(a + b + c)^*$?
 - i) $(a^*+b^*+c^*)^*$ ii) $(a^*b^*c^*)^*$ iii) $((ab)^*+c^*)^*$ iv) $(a^*b^*+c^*)$

Q.2 a Construct a DFA from the given NFA.

06

Present State	Next State	
	a=0	a=1
->p	p, q	r
q	r	r
r	S	q
*S	S	S

b Construct a minimum state automaton equivalent to an automaton whose transition 06 table is defined by Table

State	а	b
>q ₀	q ₁	q ₂
q ₁	Q ₄	q ₃
q ₂	Q ₄	q ₃
q ₃	q ₅	q ₆
Q ₄	q ₇	q ₆
q ₅	qз	q ₆
q ₆	q ₆	q ₆
q ₇	Q ₄	q ₆

Q.3 a Convert the given right linear grammar to equivalent left linear grammar form.

06

$$S \rightarrow aA \mid bB$$

 $A \rightarrow bC$

 $B \rightarrow aC$

 $C \rightarrow aC \mid bC \mid a \mid b$

b Convert following grammer into GNF

06

 $S \rightarrow AA/a$

 $A \rightarrow SS/b$

Q.4 a. Convert the following Mealy machine into an equivalent Moore machine by the 06 transitional format.

b Check whether the following grammar is ambiguous or not Justify.

06

 $S \rightarrow SS/a/b$

- Q.5 a Design a non-deterministic PDA accepting string { WW^R where W € (a,b)+ and W^R is 0000 the reverse of W} by the empty stack and by the final state.
 - b Design a PDA for the language L={ aⁿb^mc^m dⁿ, where m, n≥1 } by empty stack and by 06 final stack.
- Q.6 a Design the TM to accept the language L=aⁿbⁿcⁿ, where n>=1.
 - b Construct a TM for the regular Expression (a+b)* (aa+bb) (a+b)*
- Q.7 a Explain Post Correspondence Problem (PCP) problem. 04
 - b Convert the following NFA with €- moves to equivalent DFA. 08

