Tutoriumsblatt 3 zu Mathematik I (Physik)

Aufgabe 1:

Für $n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$ wird n! rekursiv definiert durch: 0! := 1, 1! := 1 und $(n+1)! := (n+1) \cdot (n!)$ für $n \in \mathbb{N}$. Für $n \in \mathbb{N}$ und $k \in \{0, 1, ..., n\}$ definiere

$$\left(\begin{array}{c} n\\ k \end{array}\right) := \frac{n!}{k!(n-k)!}$$

Zeige:

- a) Für jedes $n \in \mathbb{N}$ gilt: $\binom{n}{0} = \binom{n}{n} = 1$
- b) Für $n \in \mathbb{N}$ und $k \in \{1, ..., n\}$ gilt:

$$\left(\begin{array}{c} n+1\\ k \end{array}\right) = \left(\begin{array}{c} n\\ k-1 \end{array}\right) + \left(\begin{array}{c} n\\ k \end{array}\right)$$

c) Sind $a, b \in \mathbb{R}$ und $n \in \mathbb{N}$, dann gilt

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Aufgabe 2: Für welche $n \in \mathbb{N}$ gilt $n^2 + n + 1 < 2^n$?

Aufgabe 3:

Es sei $N : \mathbb{N} \to \mathbb{N} \setminus \{1\}$ die in den Peano-Axiomen beschriebene injektive Funktion ("Nachfolger"). Für jedes $m \in \mathbb{N}$ sei $\varphi_m : \mathbb{N} \to \mathbb{N}$ die nach dem Rekursionssatz durch $\varphi_m(1) = m + 1 = N(m)$ und $\varphi_m \circ N = N \circ \varphi_m$ bestimmte Funktion. Zeige:

- a) Für jedes $n \in \mathbb{N}$ gilt $\varphi_1(n) = n + 1 = N(n)$.
- b) Für alle $m \in \mathbb{N}$ gilt $\varphi_m \circ N = \varphi_{m+1}$.
- c) Für alle $m, n \in \mathbb{N}$ gilt $\varphi_m(n) = \varphi_n(m)$.

Was hat man damit bewiesen?