Lecture 14

Michael Brodskiy

Professor: M. Onabajo

November 4, 2024

- Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET)
 - Extremely high impedance looking into the gate
 - * $I_G \approx 0$
 - Body is often connected to the source or to ground (substrate)
 - Cutoff Region
 - * $V_{GS} < V_{to}$
 - · V_{to} is the threshold voltage (technology-dependent parameter: .3[V] (new) 2[V] (older))
 - $*I_D = 0$
 - Triode Region
 - * $V_{GS} > V_{to}$ and $V_{DS} < V_{GS} V_{to}$
 - * Also called "linear region"
 - · $I_D \propto V_{GS}$ when V_{DS} is small
 - · Voltage-controlled resistance (between drain and source terminals)
 - Saturation Region
 - * $V_{GS} > V_{to}$ and $V_{DS} > V_{GS} V_{to}$
 - * $I_D = K(V_{GS} V_{to})^2$ (desired mode for amplifiers)
 - Drain-Source Current:

$$I_D = \left(\frac{W}{L}\right) \left(\frac{KP}{2}\right) \left[2(V_{GS} - V_{to})V_{DS} - V_{DS}^2\right] \left[1 + \lambda V_{DS}\right]$$

- * Parameters:
 - \cdot L is the channel length, W is the channel width
 - $\cdot KP = \mu_n C_{ox} = \mu_n (\varepsilon_{ox}/t_{ox})$
 - · μ_n is the mobility of the electrons in the channel

- · C_{ox} is the oxide capacitance per unit area
- $\cdot \ K = (W/L)(KP/2)$ has units of ampéres per square volt
- · λ is the channel length modulation parameter ($\lambda=0$ in many hand-based calculation estimates)
- Boundary between triode and saturation regions:

$$I = \left(\frac{W}{L}\right) \left(\frac{KP}{2}\right) V_{DS}^2$$