例 1.19: 十分統計量 $F_{\overrightarrow{m}}$

$S_{\overrightarrow{m}}$ の定義

- $n \in \mathbb{N}$,
- $oldsymbol{\overrightarrow{m}}=(m_1,m_2,\ldots,m_n)\in \mathbf{N}^n$
- $m = m_1 + m_2 + \cdots + m_n$

とし, S_m の部分集合 $S_{\overrightarrow{m}}$ を

$$S_{\overrightarrow{m}} = \{p(\cdot; \overrightarrow{\eta}) \in S_m \mid \underbrace{\eta_1 = \dots = \eta_{m_1}, \dots, \eta_{m_1 + \dots + m_{n-1} + 1} = \dots = \eta_m}_{(\star)}, \ \overrightarrow{\eta} \in \Xi_m \}$$

で定める.ここで $p(\cdot;\vec{\eta})$ は $p(0;\vec{\eta}):=1-\sum_{i=1}^m\eta_i, 1\leq i\leq m$ に対しては $p(i;\vec{\eta}):=\eta_i$ で定められる Ω_m 上の確率関数である.

$S_{\overrightarrow{m}}$ が Ω_m 上の n 次元統計的モデルであることの証明

各 $ec{\xi}=(\xi_1,\ldots,\xi_n)\in\Xi_n$ に対し,確率関数 $ilde{p}(\cdot;ec{\xi})$ を

$$ilde{p}(\cdot;ec{\xi}) := p\left(\cdot; \underbrace{rac{\xi_1}{m_1}, \ldots, rac{\xi_1}{m_1}}_{m_1, ilde{\mathbb{H}}}, \underbrace{rac{\xi_2}{m_2}, \ldots, rac{\xi_2}{m_2}}_{m_2, ilde{\mathbb{H}}}, \ldots, \underbrace{rac{\xi_n}{m_n}, \ldots, rac{\xi_n}{m_n}}_{m_n, ilde{\mathbb{H}}}
ight)
ight. agenum{\sharp}$$

で定める. $\{ ilde{p}(\cdot;ec{\xi})\midec{\xi}\in\Xi_n\}$ は明らかに Ω_m 上の n 次元統計的モデルであるから,

$$S_{\overrightarrow{m}} = \{ ilde{p}(\cdot;ec{\xi}) \mid ec{\xi} \in \Xi_n\} \qquad \cdots (*)$$

を示せば $S_{\overrightarrow{n}}$ が Ω_m 上の n 次元統計的モデルであることがいえる.

(*) の (\subseteq) の証明

 $S_{\overrightarrow{n}}$ から元 f を勝手にとる. $S_{\overrightarrow{n}}$ の定義より,条件 (\star) をみたす $\overrightarrow{\eta} \in \Xi_m$ が存在して $f = p(\cdot; \overrightarrow{\eta}) \in S_m$ である.ここで,

- $\xi_1 := \eta_1 + \cdots + \eta_{m_1}$
- :
- $\xi_n := \eta_{m_1 + \dots + m_{n-1} + 1} + \dots + \eta_m$

とおく. $\forall j \ \xi_j > 0$, かつ, $\xi_1 + \dots + \xi_n = \eta_1 + \dots + \eta_m < 1 \ (\because \vec{\eta} \in \Xi_m)$ なので, $\vec{\xi} := (\xi_1, \dots, \xi_n) \in \Xi_n$ である. 条件 (*) より

- $\eta_1=\cdots=\eta_{m_1}$ $\therefore \xi_1=m_1\eta_1=\cdots=m_1\eta_{m_1}$ $\therefore \eta_1=\cdots=\eta_{m_1}=\frac{\xi_1}{m_1}$
- . :
- $\bullet \ \eta_{m_1+\cdots+m_{n-1}+1}=\cdots=\eta_m \quad \therefore \xi_n=m_n\eta_{m_1+\cdots+m_{n-1}+1}=\cdots=m_n\eta_m \quad \therefore \eta_{m_1+\cdots+m_{n-1}+1}=\cdots=\eta_m=\frac{\xi_n}{m_n}$

となり,

$$f=p(\cdot;ec{\eta})=p\left(\cdot;rac{\xi_1}{m_1},\ldots,rac{\xi_1}{m_1},rac{\xi_2}{m_2},\ldots,rac{\xi_2}{m_2},\ldots,rac{\xi_n}{m_n},\ldots,rac{\xi_n}{m_n}
ight)= ilde{p}(\cdot;ec{\xi})$$

となる.ある $ec{\xi}\in\Xi_n$ を用いて $f= ilde{p}(\cdot;ec{\xi})$ と表せたので $f\in\{ ilde{p}(\cdot;ec{\xi})\midec{\xi}\in\Xi_n\}$ である.

(*)の(⊃)の証明

 $\{ ilde{p}(\cdot;ec{\xi})\midec{\xi}\in\Xi_n\}$ から元 f を勝手にとる.ある $ec{\xi}\in\Xi_n$ を用いて $f= ilde{p}(\cdot;ec{\xi})$ と表されている.まず,定義より

である. ここで

- $\eta_1=\cdots=\eta_{m_1}=rac{\xi_1}{m_1}$
- $\eta_{m_1+\cdots+m_{n-1}+1}=\cdots=\eta_m=rac{\xi_n}{m_n}$

とおけば

$$f = \tilde{p}(\cdot; \vec{\xi}) = p(\cdot; \vec{\eta})$$

であり, $\forall i \eta_i > 0$, かつ,

$$\sum_{i=1}^m \eta_i = \underbrace{\frac{\xi_1}{m_1} + \dots + \frac{\xi_1}{m_1}}_{m_1 \text{ (i) }} + \dots + \underbrace{\frac{\xi_n}{m_n} + \dots + \frac{\xi_n}{m_n}}_{m_2 \text{ (ii) }} = \xi_1 + \dots + \xi_n < 1 \quad \text{(i) } \vec{\xi} \in \Xi_n \text{)}$$

なので $ec{\eta} \in \Xi_m$ であり, (\star) の条件も満たされる. よって $f \in S_{\overrightarrow{m}}$ である.

$F_{\overrightarrow{n}}$ の定義

写像 $F_{\overrightarrow{m}} \colon \Omega_m \to \Omega_n$ を

- $F_{\overrightarrow{m}}(0) := 0$
- $F_{\overrightarrow{m}}(i) := j \quad (ext{if } m_1 + \cdots + m_{j-1} + 1 \leq i \leq m_1 + \cdots + m_i)$

で定める (テキストでは j=1 を分離しているが、j=1 のとき $m_1+\cdots+m_{j-1}=0$ と解釈すれば上二本の式で表せる). 全 射性は明らかである。

$F_{\overrightarrow{m}}$ が $S_{\overrightarrow{m}}$ に関する十分統計量であることの証明

 $r(\cdot;ec{\xi}):=rac{ ilde{p}(\cdot;ec{\xi})}{g(F_{
ightarrow}(\cdot);ec{\xi})}$ が $ec{\xi}(\in\Xi_n)$ に依存しないことを示せばよい.

まず, $j=0,1,\ldots,n$ に対して $q(j;\vec{\xi})$ を計算しておく.

- j=0 のとき. $q(0;\vec{\xi})=\sum_{i\in F_{\overrightarrow{m}}^{-1}(\{0\})}\tilde{p}(i;\vec{\xi})=\sum_{i\in \{0\}}\tilde{p}(i;\vec{\xi})=\tilde{p}(0;\vec{\xi})=1-\sum_{i=1}^{n}\xi_{i}$ $1\leq j\leq n$ のとき. $q(j;\vec{\xi})=\sum_{i\in F_{\overrightarrow{m}}^{-1}(\{j\})}\tilde{p}(i;\vec{\xi})=\sum_{i\in \{\underbrace{m_{1}+\cdots+m_{j-1}+1,\cdots,m_{1}+\cdots+m_{j}}_{m:\overleftarrow{m}}\}}\tilde{p}(i;\vec{\xi})=m_{j}\times\frac{\xi_{j}}{m_{j}}=\xi_{j}$

ここで $i\in\{m_1+\cdots+m_{j-1}+1,\cdots,m_1+\cdots+m_j\}$ に対し $ilde p(i;ec\xi)=rac{\xi_j}{m_j}$ であることは ilde p の定義 (‡) および p の定義よ り従う.

以上より,

$$\bullet \ r(0;\vec{\xi}) = \frac{\tilde{p}(0;\vec{\xi})}{q(F_{\overrightarrow{m}}(0);\vec{\xi})} = \frac{\tilde{p}(0;\vec{\xi})}{q(0;\vec{\xi})} = \frac{\tilde{p}(0;\vec{\xi})}{q(0;\vec{\xi})} = \frac{1 - \left(\frac{\xi_1}{m_1} + \dots + \frac{\xi_1}{m_1} + \dots + \frac{\xi_n}{m_n} + \dots + \frac{\xi_n}{m_n}\right)}{1 - \sum_{j=1}^n \xi_j} = \frac{1 - \sum_{j=1}^n \xi_j}{1 - \sum_{j=1}^n \xi_j} = 1.$$

$$\bullet \ m_1 + \dots + m_{j-1} + 1 \le i \le m_1 + \dots + m_j \ \mathcal{O} \succeq \stackrel{\Rightarrow}{\Rightarrow}, \ r(i;\vec{\xi}) = \frac{\tilde{p}(i;\vec{\xi})}{q(F_{\overrightarrow{\rightarrow}}(i);\vec{\xi})} = \frac{\tilde{p}(i;\vec{\xi})}{q(i;\vec{\xi})} = \frac{\xi_j/m_j}{\xi_j} = \frac{1}{m_j}$$

よって $r(\cdot; \vec{\xi})$ は $\vec{\xi}$ に依存せず, $F_{\overrightarrow{m}}$ は $S_{\overrightarrow{m}}$ に関する十分統計量である.

具体例

```
 \begin{aligned} \bullet & n = 4 \\ \bullet & \overrightarrow{m} = (2, 4, 1, 3) \\ & \circ & m_1 = 2 \\ & \circ & m_2 = 4 \\ & \circ & m_3 = 1 \\ & \circ & m_4 = 3 \\ & \circ & m = 2 + 4 + 1 + 3 = 10 \end{aligned}
```

とする.

- $\vec{\eta} = (0.15, 0.15, 0.05, 0.05, 0.05, 0.05, 0.12, 0.10, 0.10, 0.10)$ とおく.
 - 。 $\vec{\eta}$ の成分はすべて正で総和は 0.92~(<1) なので $\vec{\eta} \in \Xi_{10}$
 - 。 さらに,
 - $\eta_1 = \eta_2$
 - $\eta_3 = \eta_4 = \eta_5 = \eta_6$
 - (η₇ に関しては条件なし)
 - $\eta_8 = \eta_9 = \eta_{10}$
 - 。 よって $p(\cdot; \vec{\eta}) \in S_{\overrightarrow{m}}$ である.
- $\vec{\xi} = (0.30, 0.20, 0.12, 0.30)$ とおく.
 - 。 $ec{\xi}$ の成分はすべて正で総和は 0.92~(<1) なので $ec{\xi} \in \Xi_4$
- \tilde{p} の定めかた (式(1.132)) より
 - $\circ \; ilde{p}(\cdot;ec{\xi}) = p(\cdot;ec{\eta}) \in S_{\overrightarrow{m}}$
 - 。 もっと明示的に書けば $ilde{p}(\cdot; (0.30, 0.20, 0.12, 0.30)) =$

 $p(\cdot; (0.15, 0.15, 0.05, 0.05, 0.05, 0.05, 0.12, 0.10, 0.10, 0.10))$

• $ilde{p}(\cdot; \vec{\xi})$ は次のような姿をした Ω_{10} 上の確率関数である.

• 式(1.134)(1.135) にしたがって写像 $F_{\overrightarrow{m}}\colon \Omega_{10}\to\Omega_4$ を求めると次の通りとなる.要するに, $F_{\overrightarrow{m}}$ は "同じグループ" をまとめるはたらきをもつ:

$$\vec{\xi} = (0.30, 0.20, 0.12, 0.30)$$

• $q(\cdot; \vec{\xi})$ は次のような姿となる:

$$\vec{\xi} = (0.30, 0.20, 0.12, 0.30)$$

- $r(5; \vec{\xi})$ を考えよう. 図より $r(5; \vec{\xi}) = 1/4$ である.
- このようにして $r(\cdot;\vec{\xi})$ を計算すると、図から明らかなように次のようになる:

i	$r(i;ec{\xi})$
0	1
1	1/2
2	1/2
3	1/4
4	1/4
5	1/4
6	1/4
7	1
8	1/3
9	1/3
10	1/3

• 別の $\vec{\xi'}\in\Xi_4$ を取っても $r(\cdot;\vec{\xi'})$ を計算すると必ず上の表と同等になるから, $r(\cdot;\vec{\xi})$ は $\vec{\xi}$ に依存しないことがわかる.したがって, $F_{\overrightarrow{m}}$ は $S_{\overrightarrow{m}}$ に関する十分統計量である.

• $F_{\overrightarrow{n}}$ は Ω_{10} に対する「良いグルーピング」「良い同一視」を与えている!