

Paper Reading

黄轩成 2020/07/02

GNN for NMT

Paper Reading #1

• EMNLP 2017

Graph Convolutional Encoders for Syntax-aware Neural Machine Translation

Joost Bastings¹ Ivan Titov^{1,2} Wilker Aziz¹
Diego Marcheggiani¹ Khalil Sima'an¹

¹ILLC, University of Amsterdam ²ILCC, University of Edinburgh

{bastings, titov, w.aziz, marcheggiani, k.simaan}@uva.nl

Goal

• Goal: incorporating syntactic information into NMT.

• Example of a <u>dependency</u> tree:

(Bastings et al., 2017)

Previous Work

- How to incorporate syntactic information?
 - Implicit:
 - Multi-task: learning to parse and translate simultaneously (Eriguchi et al., 2017).

Previous Work

- How to incorporate syntactic information?
 - Implicit:
 - Multi-task: learning to parse and translate simultaneously (Eriguchi et al., 2017).
 - Explicit but too restrictive:
 - Learning representations of linguistic phrases (Eriguchi et al., 2016).

Figure 3: Proposed model: Tree-to-sequence attentional NMT model.

(Eriguchi et al., 2016)

Previous Work

- GNN is already used in other NLP task to incorporate syntactic information.
 - Semantic Role Labeling (Marcheggiani and Titov, 2017).

Figure 1: An example sentence annotated with semantic (top) and syntactic dependencies (bottom).

Syntactic GCN (this work)

• A two-layer syntactic GCN on top of a convolutional encoder.

GCN

• Simple recursive computation:

$$\mathbf{h}_v^{(j+1)} = \rho \left(\sum_{u \in \mathcal{N}(v)} W^{(j)} \mathbf{h}_u^{(j)} + \mathbf{b}^{(j)} \right)$$

where $\mathcal{N}(v)$ is the set of neighbors of v.

Directionality and Labels

• Direction-specific weight matrix.

$$\mathbf{h}_{v}^{(j+1)} = \rho \left(\sum_{u \in \mathcal{N}(v)} W_{\operatorname{dir}(u,v)}^{(j)} \, \mathbf{h}_{u}^{(j)} + \mathbf{b}_{\operatorname{dir}(u,v)}^{(j)} \right)$$

Label-specific weight matrix.

$$\mathbf{h}_{v}^{(j+1)} = \rho \left(\sum_{u \in \mathcal{N}(v)} W_{\text{lab}(u,v)}^{(j)} \, \mathbf{h}_{u}^{(j)} + \mathbf{b}_{\text{lab}(u,v)}^{(j)} \right)$$

Edge-wise Gating

Edge-wise gating:

$$g_{u,v}^{(j)} = \sigma \left(\mathbf{h}_u^{(j)} \cdot \hat{\mathbf{w}}_{\mathrm{dir}(u,v)}^{(j)} + \hat{b}_{\mathrm{lab}(u,v)}^{(j)} \right)$$

$$\mathbf{h}_{v}^{(j+1)} = \rho \left(\sum_{u \in \mathcal{N}(v)} g_{u,v}^{(j)} \left(W_{\operatorname{dir}(u,v)}^{(j)} \mathbf{h}_{u}^{(j)} + \mathbf{b}_{\operatorname{lab}(u,v)}^{(j)} \right) \right)$$

which can down-weight the contribution of individual edges.

Reordering Experiment

- Reordering artificial sequences: provide an intuition for the capabilities of GCNs.
- Randomly permute tokens in sentences, pointing every token to its original <u>predecessor</u> with a label.
- Point every token to an <u>arbitrary</u> position in the sequence with a label from a distinct set of labels.

Figure 3: Mean values of gate bias terms for real (useful) labels and for fake (non useful) labels suggest the GCN learns to distinguish them.

Main Results

• Even though RNN can already capture syntactic information, GCN is effective.

	Kendall	$BLEU_1$	$BLEU_4$
BoW	0.3352	40.6	9.5
+ GCN	0.3520	44.9	12.2
CNN	0.3601	42.8	12.6
+ GCN	0.3777	44.7	13.7
BiRNN	0.3984	45.2	14.9
+ GCN	0.4089	47.5	16.1
BiRNN (full)	0.5440	53.0	23.3
+ GCN	0.5555	54.6	23.9

Table 3: Test results for English-German.

Effect of Sentence Length

• GCN is effective for all sentence lengths.

Figure 4: Validation BLEU per sentence length.

Summary

• Their approach provides the encoder with access to rich <u>syntactic</u> information but let it decide which aspects of syntax are beneficial for MT, without placing rigid constraints on the interaction between syntax and the translation task.

Influence

Citation statistics:

- Why is it so influential?
 - 处于GNN+NLP浪潮的前奏

Follow-up Researches

• NAACL 2018 short

Exploiting Semantics in Neural Machine Translation with Graph Convolutional Networks

Diego Marcheggiani^{1,2} **Joost Bastings**² **Ivan Titov**^{1,2}

¹ILCC, School of Informatics, University of Edinburgh

²ILLC, University of Amsterdam

Follow-up Researches

- GNN + other NLP tasks
 - Text Classification
 - Relation Extraction
 - AMR-to-Text
 - Reading Comprehension
 - Question Answering

• ...

Follow-up Researches

- Other GNN algorithm + NLP
 - Gated Graph Neural Networks (GGNN)
 - Graph Attention Networks (GAT)
 - Graph Transformer
 - Structure-Aware Self-Attention

Thanks for listening