DS 4 : Transferts thermiques & Électrostatique Éléments de correction

N°	Elts de rép.	Pts	Note
00-00	Titre de l'exo	0	0
0	éléments de réponse	0	0

01-18	Récupération d'énergie thermique dans la chaussée	18	
01-09	Dimensionnement des aquifères	9	
1	$\vec{j}_Q = -\lambda \overrightarrow{grad}(T), \ \vec{j}_Q = j_Q(r)\vec{e}_r = -\lambda \frac{\partial T}{\partial r}\vec{e}_r$	1	
2	$\Phi(r) = \iint \vec{j}_Q \cdot \vec{e}_r dS = -\lambda \frac{dT}{dr} 4\pi r^2$	1	
3	On applique le 1er principe à la coquille sphérique pendant dt :	1	
	$CdT = [\Phi(r) - \Phi(r + dr)]dt$ en régime permanent $\frac{dT}{dt} = 0$ donc		
	$\Phi(r) = \Phi(r + dr) = \Phi$		
4	On a donc $dT = -\frac{\Phi}{4\pi\lambda_{terre}} \frac{dr}{r^2}$ donc $\int_{T_E}^{T_S} dT = -\frac{\Phi}{4\pi\lambda_{terre}} \int_{R_a}^{+\infty} \frac{dr}{r^2}$	1	
	donc $T_S - T_E = \frac{\Phi}{4\pi\lambda_{terre}} \left(-\frac{1}{R_a}\right)$ soit $\Phi = 4\pi\lambda_{terre} R_a (T_E - T_S)$		
5	On applique maintenant le 1er principe à l'aquifère pendant un	1	
	temps $dt: \rho_{eau} \frac{4}{3}\pi R_a^3 c_{eau} dT_E = -\Phi dt = -4\pi \lambda_{terre} R_a (T_E - T_S) dt$		
	soit $\frac{dT_E}{dt} + \frac{T_E}{\tau} = \frac{T_S}{\tau}$ avec $\tau = \frac{\rho_{eau}c_{eau}R_a^2}{3\lambda_{terre}}$		
6	$T_E = T_S + \alpha e^{-\frac{t}{\tau}}$ or $T_E(0) = T_S + \alpha = T_{E0}$ donc $T_E(t) = T_S + C_{E0}$	1	
	$(T_{E0} - T_S)e^{-\frac{t}{\tau}}$		
7	$T_{E0} - T_E(t) < \Delta T \text{ si } T_{E0} - T_S - (T_{E0} - T_S)e^{-\frac{t_H}{\tau}} < \Delta T \text{ soit}$	1	
	$ au > -rac{t_H}{ln\left(1 - rac{\Delta T}{T_{E0} - T_S} ight)}$		
8	$ au \geq 11, 8.10^7 \text{ s, donc } R_{a,limite} = \sqrt{\frac{3\lambda_{terre}\tau}{\rho_{eau}c_{eau}}} = 9, 2 \text{ m}$	1	
9	il faut remplacer $\rho_{eau}c_{eau}$ par $\rho_{eau}c_{eau} + \rho_{terre}c_{terre}$ soit	1	
	$R'_{a,limite} = 8,2 \text{ m}$		
10-18	Étude thermique de la chaussée durant l'été	9	
10	schéma	1	
11	$R_{th} = \frac{L}{\lambda S}$ et $T_R - T_S = R_{th}\phi_C S = \frac{p}{\lambda S}\phi_C S$ soit $\phi_C = \frac{\lambda}{p}(T_R - T_S)$	1	
12	En régime permanent : $\phi_a^R + \phi_S = \phi_b^R + \phi_{CC} + \phi_C$ soit $\sigma T_A^4 + \phi_S =$	1	
	$\sigma T_R^4 + h(T_R - T_A) + \frac{\lambda}{p}(T_R - T_S)$		
13	si $T_R \simeq T_A$ alors $T_R = T_A + dT$ avec $dT \ll T_A$, donc $\phi_b^R - \phi_a^R = T_A$	1	
	$\sigma(T_R^4 - T_A^4) = \sigma d(T^4) = 4\sigma T^3 dT = A\sigma T_A^3 (T_R - T_A)$		

14	Dans ces conditions $\phi_S = 4\sigma T_A^3(T_R - T_A) + h(T_R - T_A) + \frac{\lambda}{p}(T_R - T_S)$	1	
	d'où $T_R=rac{\phi_S+4\sigma T_A^4+hT_A+rac{\lambda}{p}T_S}{4\sigma T_A^3+h+rac{\lambda}{p}}$		
15	faire les applications numériques remarquer que l'on peut négliger	1	
10	la conduction vers la Terre et donc $T_R = \frac{\phi_S + T_A (4\sigma T_A^3 + h)}{4\sigma T_A^3 + h} = T_A + T_A (4\sigma T_A^3 + h)$	1	
	A		
	$rac{\phi_S}{4\sigma T_A^3 + h}$		
16	$T_R = 324 \text{ K}$	1	
17	Le bilan devient $\phi_a^R + \phi_S = \phi_b^R + \phi_{CC} + \phi_C + \phi_E$ avec les hypothèses	1	
	précédentes on néglige ϕ_C et $\phi_b^R - \phi_a^R = 4\sigma T_A^3 (T_R - T_A)$ alors $\phi_E = \phi_S - 4\sigma T_A^3 (T_R - T_A) - h(T_R - T_A) = 449 \text{ W.m}^{-2}$		
18	à partir de l'équation de diffusion thermique on déduit que D	1	
	s'exprime en m ² .s ⁻¹ . En ordre de grandeur $\tau \simeq \frac{e^2}{D} = 2$ h « 6		
	mois, donc l'hypothèse est valable, le régime permanent a le temps		
	de s'établir.		
19-27	Dissipation thermique dans les systèmes électroniques	11	
19	Comme a et b sont très supérieurs à l, la plaque est très fine et les	1	
	bords de largeur typique l'occupent une très petite petite surface,		
	donc correspondent à un très petit flux thermique qu'on néglige.		
	Comme sur les faces extrêmes on considère dans tous le solide T		
	ne dépend pas y et z et le flux thermique dans ces directions est		
	négligé. T dépend seulement des variables restantes x et t.		
20	On fait un bilan d'énergie (1er principe) sur une tranche d'épais-	1	
	seur dx de solide et de section S, entre les instants t et t+dt.		
	$H(t+dt) = H(t) + \delta Q$ ou $dH = \delta Q$, avec $dH = \mu c S dx T(x,t)$ et		
	$\delta Q = (\Phi_{entrant} - \Phi_{sortant})dt = (\Phi(x) - \Phi(x + dx))dt$ avec Φ orienté		
	vers les x croissant d'où $\mu cSdxT(x,t) = (\Phi(x) - \Phi(x+dx))dt$		
	donc $S\mu c \frac{\partial T}{\partial t} = -\frac{\partial \Phi}{\partial x}$. Or en géométrie 1D cartésienne $\Phi = j_Q S$ et		
	d'après la loi de Fourier $j_Q = -\lambda \frac{\partial T}{\partial x}$. Donc $S\mu c \frac{\partial T}{\partial t} = -S \frac{\partial j_Q}{\partial x} =$		
	$-S(-\lambda)\frac{\partial^2 T}{\partial x^2}$, donc $\frac{\partial T}{\partial t} = D\frac{\partial^2 T}{\partial x^2}$ avec $D = \frac{\lambda}{\mu c}$		
21	En régime stationnaire $\frac{\partial T}{\partial t} = 0$ donc $\frac{\partial^2 T}{\partial x^2} = 0$, donc $T(x) = Ax + B$	1	
	avec $T(0) = B = T_1$ et $T(l) = Al + T_1 = T_0$ donc $T(x) = T_0$		
	$\frac{T_0 - T_1}{l}x + T_1$. Et $\Phi = j_Q S = -\lambda \frac{\partial T}{\partial x}ab = \lambda \frac{ab}{l}(T_1 - T_0)$		
22	Φ, le flux thermique analogue du courant électrique I, est propor-	1	
	tionnel à $(T_1 - T_0)$, la différence de température analogue à la dif-		
	férence de potentiel électrique, donc ici $\Phi = \frac{T_1 - T_0}{R_{th}}$ avec $R_{th} = \frac{l}{\lambda ab}$		
23	$\frac{\delta Q}{\delta t} = h(T_0 - T_a) dy dz$ donc h s'exprime en W.K ⁻¹ .m ⁻² . D'autre	1	
	part $\delta Q_{cc} = hS(T_0 - T_a) dt = \Phi_{cc} dt$ donc $R_h = \frac{T_0 - T_a}{\Phi_{cc}} = \frac{1}{hS}$ $R_{th} = \frac{l}{\lambda ab} = 0{,}011 \text{ K.W}^{-1} \text{ et } R_h = \frac{1}{hab} = 35 \text{ K.W}^{-1}, \text{ ces deux}$		
24	$R_{th} = \frac{\iota}{\lambda ab} = 0.011 \text{ K.W}^{-1} \text{ et } R_h = \frac{1}{hab} = 35 \text{ K.W}^{-1}, \text{ ces deux}$	1	
	résitances étant en série $R_{tot} \simeq R_h$, c'est l'interface solide/air qui		
	limite le transfert thermique, ça ne sert à rien de remplacer le solide, par contre remplacer l'air par un liquide peut-être utile.		

25	Le microprocesseur est composé de fils de cuivre et de puces en silicium majoritairement, sur un support en silicium. On va considéré que le processeur produit une puissance de $P_c=15$ W et qu'il est détruit quand il atteint $T_{junction}=100$ °C On suppose que la plaque est à température uniforme et qu'elle n'échange de transfert thermique qu'avec l'air. Sa surface de contact avec l'air vaut $\sim 2ab$ on néglige les autres faces. A l'aide d'un bilan d'énergie thermique on a $\rho_{Si}ablc_{Si}\frac{dT}{dt}=P_c-hTS+hT_aS$ avec T la température du microprocesseur, donc avec $T(0)=T_a$ on a $T=T_a+\frac{P_c}{2hab}(1-e^{-t/\tau})$ avec $\tau=\frac{\rho_{Si}c_{Si}l}{2h}$. $T(t_{lim})=T_{junction}\Rightarrow t_{lim}=-\tau\ln(1-(T_{junction}-T_a)\frac{2hab}{P_c})=15$ s	3	
26	Schéma, bilan d'énergie en régime stationnaire $0 = \Phi(x)dt - \Phi(x + dx)dt - \delta\Phi_{cc}dt$ donc $0 = -\frac{d\Phi}{dx} - h(T(x) - T_a)(2e + 2l_z)$, de plus $\Phi = j_Q e l_z = -\lambda e l_z \frac{dT}{dx}$ on en déduit l'équation demandée avec $\delta = \sqrt{\frac{\lambda e l_z}{h(2e+2l_z)}}$, on résout $T(x) = T_a + Ae^{-x/\delta} + Be^{x/\delta}$. $H \to +\infty$ implique que $B = 0$ sinon il y a divergence de la température et $T(x_1) = T_R$ permet de déduire $T(x) = T_a + (T_R - T_a)e^{-(x-x_1)/\delta}$	1	
27	On est en régime stationnaire donc pour l'ailette Φ entrant et Φ sortant sont égaux. Donc la puissance évacuée par une ailette est $P_1 = \Phi(x_1) = j_Q(x_1)el_z = -\lambda el_z \frac{dT}{dx} = \frac{\lambda el_z}{\delta}(T_R - T_a)$. Et $P_{radiateur} = 6P_1 = 6\frac{\lambda el_z}{\delta}(T_R - T_a) = 44$ W et $R_{radiateur} = \frac{\delta}{6\lambda el_z} = 1,1$ K.W ⁻¹ .	1	
28-48	Forces d'intéraction et formule de Derjaquin	21	
28-30	Approche qualitative	3	
28	Une force est conservative si son travail est indépendant du chemin suivi, $\vec{F} = -\overrightarrow{grad}(E_p)$	1	
29	Pour $r < r_m$ l'énergie potentielle est décroissante, l'intéraction est donc répulsive. Pour $r > r_m$ l'énergie potentielle est croissante, l'intéraction est donc attractive.	1	
30	Pour éloigner la pointe d'une distance macroscopique il faut lui fournir une énergie $-E_p(r_m)$	1	
31-37	Interaction entre deux dipôles	7	
31	L'approximation dipolaire est vérifiée lorsque la distance d'observation est très grande devant la taille du dipôle.	1	
32	Schéma dipôle + système de coordonnée	1	
33	Un dipôle peut être modélisé par 2 charges ponctuelles q et q placées respectivement en deux points P et N tel que $\vec{p} = q \vec{N} \vec{P}$ et $OP = ON = \frac{a}{2}$. Le principe de superposition donne $V(M) = V_P(M) + V_N(M)$ soit $V(M) = \frac{q}{4\pi\epsilon_0} \left(\frac{1}{PM} - \frac{1}{NM}\right)$.	1	

34	Dans l'approximation dipolaire $r \gg a$ donc $PM =$	1	
	$\sqrt{r^2 - ar\cos(\theta) + \frac{a^2}{4}} \simeq r\left(1 - \frac{a}{2r}\cos(\theta)\right)$ et donc $\frac{1}{PM} \simeq \frac{1}{r}(1 + \frac{a}{r}\cos(\theta))$		
	'		
35		1	
36	L'énergie d'un dipôle \vec{p}' placé en M est donné par $U_{d-d} = \vec{p}' \cdot \vec{E} =$	1	
	$\alpha E^2 \operatorname{car} \vec{p}' = \alpha \vec{E} \operatorname{or} E \operatorname{est} \operatorname{en} \frac{1}{r^3} \operatorname{donc} U_{d-d} = -\frac{C}{r^6}$		
37	Oui car on effectue un produit scalaire entre un dipôle et le champ	1	
	de l'autre dipôle.		
38-40	Interaction dipôle-plan	3	
38	Faire un schéma d'un volume élémentaire en coordonnée sphérique	1	
39	Pour que le point M soit dans le demi-espace contenant les dipôles	1	
	il faut que $z > d$ soit $r\cos(\theta) > d$ d'où la borne supérieure.		
40	$U_{d-e} = -\rho_0 \int_d^{+\infty} \frac{C}{r^6} r^2 \left(\int_0^{\theta_{max}} \sin(\theta) d\theta \left(\int_0^{2\pi} d\phi \right) \right) dr =$	1	
	$-\rho_0 \int_d^{+\infty} \frac{C}{r^6} r^2 \left(\int_0^{\theta_{max}} \sin(\theta) d\theta \times 2\pi \right) dr = 0$		
	$-\rho_0 \int_d^{+\infty} \frac{C}{r^6} r^2 \left(1 - \cos(\theta_{max})\right) \qquad \times \qquad 2\pi dr \qquad = $		
	$-\rho_0 \int_d \frac{1}{r^6} r \left(1 - \cos(\theta_{max})\right) \wedge 2\pi dr = -2\pi\rho_0 C \left(\frac{1}{3d^3} - \frac{d}{4d^4}\right) = -\frac{\pi\rho_0 C}{6d^3}$ Interaction psychologide plan		
41-48	interaction paraboloide-plan	8	
41	$[u_{e-e}] = [\rho_1][U_{d-e}][h] = L^{-3}EL = EL^{-2}$	1	
42	Si la surface est plane alors $R_2 \to +\infty$ et donc $\lambda_1 = \lambda_2 = \lambda =$	1	
	$\frac{1}{2R_1} = \frac{1}{2R}$		
43	$E = \int \int u_{e-e}(h)dS$	1	
44	$h = d + \lambda r^2$ ne dépend pas de θ donc $E = \iint u_{e-e}(h)dS =$	1	
	$\iint u_{e-e}(h)rdrd\theta = 2\pi \int_0^{+\infty} u_{e-e}(h)rdr \text{ et } dh = 2\lambda rdr \text{ donc } E =$		
	$\frac{2\pi}{2\lambda} \int_{d}^{+\infty} u_{e-e}(h) dh = 2\pi R \int_{d}^{+\infty} u_{e-e}(h) dh$		
45	$\frac{\frac{2\pi}{2\lambda} \int_{d}^{+\infty} u_{e-e}(h)dh}{F_{int} = -\frac{\partial E}{\partial d}} = 2\pi R \frac{\partial}{\partial d} \left(\int_{+\infty}^{d} u_{e-e}(h)dh \right) = 2\pi R u_{e-e}(d)$	1	
46	d'après la question précédente $F_{int} = -\frac{\pi^2 \rho_0 \rho_1 CR}{6d^2}$	1	
47	$H = (\pi \rho)^2 C = 1,4.10^{-20} \text{ J}$	1	
48	avec $R=10$ nm et $d\sim R=10$ nm on a $F_{int}\sim 2.10^{-13}$ N	1	
49-56	Mécanisme de déclenchement de l'étincelle	8	
49-50	Effet d'avalanche lors du déplacement d'un électron dans	2	
	un gaz soumis à un champ électrique		
49	Un électron est accéléré entre deux chocs par le champ électrique	1	
	d'après $m_e \vec{a} = -e \vec{E}$ donc sa vitesse avant collision est $\vec{v}_e = -\frac{e \tau_c}{m_e} \vec{E}$		
	soit une énergie cinétique de $E_c = \frac{1}{2}m_e v_e^2 = \frac{e^2 \tau_c^2}{2m_e} E^2$. On atteint		
	le champ disruptif pour $E_c = W$ donc $\frac{e^2 \tau_c^2}{2m_c} E_d^2 = W$ donc $E_d =$		
	$\frac{\sqrt{2m_eW}}{e\tau_c} = 12 \text{ MV.m}^{-1}$		
	1 of	1	

50	entre deux chocs $v_e = \frac{eE_d}{m_e}t$ donc $l = \int_0^{\tau_c} v_e dt = \frac{eE_d}{2m_e}\tau_c^2 = 1,32$ µm. Sur la figure le potentiel varie sur des distances de 0,1 mm, or $l \ll 0,1$ mm donc le champ peut-être considéré comme uniforme entre deux chocs.	1	
51-56	Estimation de la tension inter électrodes nécessaire pour déclencher l'étincelle	6	
51	En coordonnées cylindriques le plan (\vec{e}_r, \vec{e}_z) est un plan de symétrie donc \vec{E} appartient au plan, notamment pour $r=0, \vec{E}$ // \vec{e}_z . Le plan entre les deux électrodes $z=0$ est un plan d'anti-symétrie de \vec{E} et notamment pour $z=0, \vec{E}$ // \vec{e}_z .	1	
52	Les lignes de champ électrique sont perpendiculaire aux équipotentielles, et dirigées des potentiels élevés vers les potentiels faibles, soit ici en suivant les z croissant. L'électrode portée au potentiel positif porte des charges positives, et l'électrode de potentiel négatif des charges négatives. le saut de potentiel entre les équipotentiels est de 0,1 V et celle du milieu est à 0V donc valeurs encadrées de bas en haut sont 0,2 V puis 0 V puis -0,1 V puis -0,2 V.	1	
53	$C = \frac{q}{U} = 0,31 \text{ pF}$	1	
54	D'après les graphes le chemin comportant les plus fortes valeurs de champ sont pour $r=0$. Sur ce chemin le point de plus faible champ est pour $z=0$ car la pente du potentiel est la moins forte. Donc il suffit que $E(r=0,z=0)=E_d$ pour amorcer une étincelle. Or on a $E\sim \frac{U}{d}$ donc $U>E_dd\sim 14$ kV	1	
55	$E = \frac{1}{2}CU^2 = 32 \mu\text{J}$, cette énergie est disspé sous forme d'effet Joule, de rayonnement lumineux et d'émission sonore.	1	
56	D'après le dernier graphe $E(r)>0,9E(r=0)$ pour $r<0,45$ mm, donc la zone parcourue à une largeur radiale de diamètre $0,90$ mm	1	