

FusionEnsemble-Net: An Attention-Based Ensemble of Spatiotemporal Networks for Multimodal Sign Language Recognition

Md. Milon Islam¹*, Md Rezwanul Haque¹*, S M Taslim Uddin Raju¹, Fakhri Karray^{1,2}
¹University of Waterloo, ²Mohammad bin Zayed University of Artificial Intelligence

Introduction

- Sign Languages (SLs) are multimodal (manual & non-manual components).
- Crucial for deaf communities, especially in healthcare to bridge communication gaps.
- Existing SLR systems face challenges:
- ✓ Difficulty capturing complex multimodal gestures.
- ✓ Limited dataset diversity (signer demographics, environment, sensor modalities).
- ✓ Privacy concerns with camera-based systems in healthcare.
- ✓ Need for robust models that generalize across real-world scenarios.

Our Proposed Solution: FusionEnsemble-Net

Multimodal Data and Preprocessing

- Input: RGB video (visual info: handshapes, facial expressions, body posture) and Range-Doppler Map (RDM) radar data (motion info, privacy-preserving).
- Data synchronized, resized (224×224), and normalized.

Parallel Spatiotemporal Feature Extraction

- Utilizes an ensemble of four diverse spatiotemporal networks for robust feature learning.
- 3D ResNet-18
- MC3-18
- R(2+1)D-18
- Swin-B (transformer-based)
- Temporal modeling layers (LSTMs, transformer encoders, linear projections) capture dynamic sequences.

Attention-Based Feature Fusion

- Modality-specific temporal features are concatenated.
- A self-attention module dynamically re-weights visual and motion features to generate a single fused representation.

Ensemble Classification Head

- Each fused feature vector is passed to an independent classifier.
- Final prediction is an average of probabilities from all classifiers, enhancing robustness.

System Architecture

Dataset and Experiments

Dataset

- MultiMeDaLIS: A large-scale, multimodal dataset for isolated Italian Sign Language recognition in a medical context.
- Content: Contains 126 unique signs, including 100 medical terms and 26 alphabet letters.
- Modalities Used: We utilize the synchronized RGB video and RDM radar data.

Implementation Details:

- Framework: PyTorch.
- Hardware: Trained on two NVIDIA A6000 GPUs.
- Optimization: Used the AdamW optimizer with pre-trained weights from Kinetics-400 and ImageNet to leverage transfer learning.
- **Training:** The model was trained for 25 epochs, requiring approximately 44 hours.

Evaluation Metric

Top-1 Accuracy on validation and test sets.

Results and Analysis

Modality	Valid	Test
RGB	_	97.98
	-	96.33
	-	56.31
	-	97.29
Depth	-	88.04
RDM	-	88.3
$3\times RDM$	-	91.7
MTI	-	84.9
$3\times MTI$	-	86.1
RDM+MTI	-	91.4
$3\times RDM + 3\times MTI$	-	93.6
RGB+3×RDM	96.58	96.58
	98.96	99.06
	96.94	97.34
	94.24	94.42
	99.37	99.44
	RGB Depth RDM 3×RDM MTI 3×MTI RDM+MTI 3×RDM+3×MTI	RGB

^{*} HHA=Height, Horizontal disparity, Angle, and MTI=Moving Target Indications.

Conclusion and Future Work

Conclusion

- Our FusionEnsemble-Net sets a new SOTA accuracy of 99.44% on the MultiMeDaLIS dataset.
- Our diverse ensemble effectively fuses RGB and radar data for sign language recognition.

Future Directions:

- Extend to continuous, conversational sign language.
- Develop a lightweight version for real-time deployment.

Models and codes are publicly available

Link: https://github.com/rezwanh001/Multimodal-Isolated-ItalianSign-Language-Recognition.

- [1] Caligiore et al., "Multisource approaches to Italian Sign Language recognition," CLiC-it 2024, Pisa, pp. 132–140.
- [2] Mineo et al., "Sign language recognition for patient-doctor communication," IEEE RTSI 2024, pp. 202–207.