4	(a)	State the conditions required for the formation of stationary waves.	
			[0]

(b) One end of a string is attached to a vibrator. The string is stretched by passing the other end over a pulley and attaching a load, as illustrated in Fig. 4.1.

Fig. 4.1

The frequency of vibration of the vibrator is adjusted to $250\,\text{Hz}$ and a transverse wave travels along the string with a speed of $12\,\text{m}\,\text{s}^{-1}$. The wave is reflected at the pulley and a stationary wave forms on the string.

Fig. 4.2 shows the string between points A and B at time $t = t_1$.

At time $t = t_1$ the string has maximum displacement.

(i) Calculate the distance AB.

- (ii) On Fig. 4.2, sketch the position of the string between A and B at times
 - **1.** $t = t_1 + 2.0 \,\text{ms}$ (label this line P),
 - **2.** $t = t_1 + 5.0 \,\text{ms}$ (label this line Q).

[3]

[Total: 7]