Formation DS-IML PROJET 4: OLIST Customers Segmentation

MISSION

Conseil marketing

Analyse et Segmentation de la clientèle Olist.

Résultats utilisables et opérationnels

SOMMAIRE

- 1 Data : Réunion Exploration Mise en forme
- 2 Segmentation "RFM"
- 3 Plus loin dans la segmentation...
- 4 Conclusion et proposition de collaboration

Données à disposition

9 fichiers *.csv

- Clients
- Statut Com.
- Compo. Com.
- Paiements
- Reviews
- Produits
- Revendeurs
- Traduction
- Géo localisation

Après réunion des données

116 581 individus

<u></u>	customer_unique_id	customer_city	customer_state	order_status	order_purchase_timestamp
0	861eff4711a542e4b93843c6dd7febb0	franca	SP	delivered	2017-05-16 15:05:35
1	9eae34bbd3a474ec5d07949ca7de67c0	santarem	PA	delivered	2017-11-09 00:50:13
2	9eae34bbd3a474ec5d07949ca7de67c0	santarem	PA	delivered	2017-11-09 00:50:13

Client Commande

Produits Commandés

116581 object customer_unique_id customer state 116581 object order id 116581 object 116581 object order_purchase_timestamp 116581 object payment type payment_installments 116581 int64 payment_value 116581 float64 review score 116581 int64 product category name english 116581 object

Date d'achat

- Mois
- Semaine du mois
- Jour de la semaine
- Créneau Horaire

Réduction catégorielles

Catégories de Produits : xx à 18

Province des clients

Algorithme Isolation Forest

Hyper-paramètre de CONTAMINATION

Proportion d'individus les plus "anormaux" devant être considérés comme "outliers"

SOMMAIRE

- 1 Data : Réunion Exploration Mise en forme
- 2 Segmentation "RFM"
- 3 Plus loin dans la segmentation...
- 4 Conclusion et proposition de collaboration

Pourquoi segmenter des clients?

Segmentation RFM?

Une clientèle est variée, identifier des groupes permet de cibler ses actions commerciales.

Procédé classique en marketing. 1er niveau de segmentation sur des critères fondamentaux.

On note les clients sur les critères suivants :

Classe RFM

RECENCY - Date du dernier achat

111 333 etc...

- FREQUENCY Nombre de commandes passées
- MONETARY VALUE Montant total dépensé

On part d'une Table RFM

Opération sur le dataset

customer_unique_id	recency	frequency	monetary_value
8d50f5eadf50201ccdcedfb9e2ac8455	14	15	820.15
3e43e6105506432c953e165fb2acf44c	188	9	1963.58
ca77025e7201e3b30c44b472ff346268	94	7	2126.44

M et F très "étalées à droite"

Chantier prioritaire: FIDÉLISATION CLIENT

Changement de plan

RFM "ad-hoc" sur 3 groupes

Montant dépensé:

Quantiles 2/3 et 1/3.

Fréquence:

3+ commandes

2 commandes

1 commande

Récence:

- de 90 jours

90 à 365 jours

+ de 365 jours

27 classes en tout. La majorité peu représentée **Machine Learning**

Supervisé

Renforcé

Non Supervisé

K-Means

Segmente des données numériques en K groupes

Choix basé que plusieurs éléments...

Méthode du coude

cost = somme des variances des clusters

Silhouette Score

Note de "qualité" de la segmentation

Observation des clusters

Sens, interprétation...

K = 5

2ème essai avec F et M "passées au log"

Cela nous aide-t-il?

NON

- 1 Un cluster regroupe les clients à au moins deux achats.
- 2 Les autres sont partagés sur R et M

Objectif: augmentez fréquence/fidélité

95% de clients à 1 commande

Segmentation

Objectif - Fréquence

Récence pour les clients "one shot"

Gold

F > 2

Silver

F = 2

B new

F = 1 & R < 90

B reg

F = 1 & 90< R < 365

B old

F = 1 & 365 < R

Segmentation "RF"

Snake Plot

Objectif: augmentez fréquence/fidélité

95% de clients à 1 commande

Gold

F > 2

Silver

F = 2

B new

F = 1 & R < 90

B reg

F = 1 & 90< R < 365

B old

F = 1 & 365 < R

Globale:

Mécanisme de fidélisation

Ciblée:

Communiquer avec le client en fonction de leur classe "RF".

Stacked Area Plot

Percentage Stacked Area Plot

Diagramme Sankey | Flux entre classes sur une période données

Nous fournirons les listes des clients changeant de classe...

SOMMAIRE

- 1 Data : Réunion Exploration Mise en forme
- 2 Segmentation "RFM"
- 3 Plus loin dans la segmentation...
- 4 Conclusion et proposition de collaboration

Utilisation du ML non-supervisé

Infos, tendances, "persona"

1 - Cadre de recherche

2 - Algo.

DBSCAN

k-means

3 - Observation

Algorithmes

Data numériques **K-Means**

Data catégorielles K-Modes

Mixed data **K-Prototypes**

Densité de points

Principe Simple

DBSCAN

Pas d'assurance de résultat

K-modes: M_class / états / paiement / month / product_cat

que des variables catégorielles!

Choix de K

45 minutes

Qualité médiocre

K = 6

Analyse de segmentation K-Modes

K-modes: M_class

K-modes: M_class

Annexe : proposition de suivi / maintenance	marc.lefevre@noos.fr - DPENCLASSROOMS