0.1 Růst a pokles funkce

O funkci řekneme, že je

- rostoucí na intervalu I, jestliže pro všechna $x, y \in I$ splňující x < y platí f(x) < f(y),
- **klesající** na intervalu I, jestliže pro všechna $x, y \in I$ splňující x < y platí f(x) < f(y),
- **neklesající** na intervalu I, jestliže pro všechna $x, y \in I$ splňující x < y platí $f(x) \le f(y)$,
- nerostoucí na intervalu I, jestliže pro všechna $x,y \in I$ splňující x < y platí $f(x) \ge f(y)$,
- monotónní na intervalu *I*, jestliže je na něm neklesající, anebo nerostoucí,
- **konstantní** na intervalu I, jestliže pro všechna $x, y \in I$ splňující x < y platí f(x) = f(y).

Obrázek 1: Ilustrace pojmu rostoucí a klesající funkce. Na oranžové oblasti je f(x) rostoucí, na žluté oblasti je f(x) klesající.

Poznámka 1. Pokud mluvíme o růstu nebo poklesu funkce, je vždy nutné uvést, na jakém intervalu se pohybujeme. Důležitost je vidět na následujícím příkladu, viz obrázek 2.

Obrázek 2: Příklad funkce, která je klesající na každém intervalu $I_p=(2p-1,2p+1)$, kde $p\in\mathbb{Z}$. Na celém \mathbb{R} ale není ani rostoucí, ani klesající. Porovnáme-li dva body $x_1< x_2$ v témže intervalu I_p , splňují $f(x_1)>f(x_2)$. Porovnáme-li však body v různých intervalech, dostaneme $f(x_1)< f(x_2)$. Není tedy splněna ani jedna z podmínek pro růst nebo pokles na \mathbb{R} . Všimněme si, že funkce je v krajních bodech intervalů nespojitá, má v nich skoky.

Verze: 1. listopadu 2021

Poznámka 2. V některé literatuře se o různých křivkách mluví jako o "rostoucích zleva doprava" nebo "klesajících zprava doleva" a podobně. Matematická terminologie vždy pracuje s tím, co se děje s hodnotami f(x) <u>při rostoucích x</u> - tedy vždy "zleva doprava", chcete-li. Podobně se někdy říká o klesajících funkcích y(x), že "y je nepřímo úměrné x". Ale matematická terminologie říká, že pouze funkce y(x) = C/x je nepřímá úměrnost, žádná jiná funkce toto nesplňuje.

Obrázek 3: Ilustrace často nesprávně použitého termínu "nepřímá úměrnost". Pouze funkce typu C/x jsou nepřímé úměrnosti.

0.2 Další charakteristiky funkce

O funkci f(x) říkáme, že je

- **prostá** na intervalu I, jestliže pro všechna $x, y \in I$ splňující $x \neq y$ platí $f(x) \neq f(y)$ ("každému x přísluší jiná hodnota f(x)"),
- omezená shora, jestliže existuje konečné číslo K takové, že pro všechna $x \in D(f)$ platí $f(x) \leq K$,
- omezená zdola, jestliže existuje konečné číslo K takové, že pro všechna $x \in D(f)$ platí $f(x) \ge K$,
- omezená, jestliže je omezená shora i zdola.