- (B) TYPE: nucleic acid(C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

AATGCGGCCA CTCC	CAAGGAG GC	CGGGAGGA '	TTGTGGGAGG	CCAAGACACC	CAGGAAGGAC	60
GCTGGCCGTG GCAG	GTTGGC CT	GTGGTTGA	CCTCAGTGGG	GCATGTATGT	GGGGCTCCC	120
TCATCCACCC ACGC	CTGGGTG CT	CACAGCCG	CCCACTGCTT	CCTGAGGTCT	GAGGATCCCG	180
GGCTCTACCA TGT	FAAAGTC GG	SAGGGCTGA	CACCCTCACT	TTCAGAGCCC	CACTCGGCCT	240
TGGTGGCTGT GAG	GAGGCTC CT	TGGTCCACT	CCTCATACCA	TGGGACCACC	ACCAGCGGGG .	300
ACATTGCCCT GAT	GGAGCTG GA	ACTCCCCT	TGCAGGCCTC	CCAGTTCAGC	CCCATCTGCC	360
TCCCAGGACC CCA	GACCCCC CT	rcgccattg	GGACCGTGTG	CTGGGTAAAC	GGGCTGGGGG	420
TCCACTCAGG AGA	GGCCCTG GC	CGAGTGTCC	TTCAGGAGGT	GGCTGTGCCC	CTCCTGGACT	480
CGAACATGTG TGA	GCTGATG TA	ACCACCTAG	GAGAGCCCAG	CCTGGCTGGC	CAGCGCCTCA	540
TCCAGGACGA CAT	GCTCTGT GO	CTGGCTCTG	TCCAGGGCAA	GAAAGACTCC	TGCCAGGGTG	600
ACTCCGGGGG GCC	GCTGGTC TO	GCCCCATCA	ATGATACGTG	GATCCAGGCC	GGCATTGTGA	660
GCTGGGGATT CGG	CTGTGCC C	GGCCTTTCC	GGCCTGGTGT	CTACACCCAG	GTGCTAAGCT	720
ACACAGACTG GAT	TCAGAGA A	.CCCTGGCTG	AATCTCACTC	AGGCATGTCT	GGGGCCCGCC	780
CAGGTGCCCC AGG	GATCCCAC T	CAGGCACCT	CCAGATCCCA	CCCAGTGCTG	CTGCTTGAGC	840
TGTTGACCGT ATO	GCTTGCTT G	GGTCCCTGT	GAACCATGAG	CCATGGAGTO	CCGGGATCCCC	900
TTTCTGGTAG GA'	ITGATGGA A	ATCTAATAAT	AAA			933

- (2) INFORMATION FOR SEQ ID NO:30:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 980 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

CCTGTGGTCG	CCCCAGGATG	CTGAACCGAA	TGGTGGGCGG	GCAGGACACG	CAGGAGGGCG	60
AGTGGCCCTG	GCAAGTCAGC	ATCCAGCGCA	ACGGAAGCCA	CTTCTGCGGG	GGCAGCCTCA	120
TCGCGGAGCA	GTGGGTCCTG	ACGGCTGCGC	ACTGCTTCCG	CAACACCTCT	GAGACGTCCC	180
TGTACCAGGT	CCTGCTGGGG	GCAAGGCAGC	TAGTGCAGCC	GGGACCACAC	GCTATGTATG	240
CCCGGGTGAG	GCAGGTGGAG	AGCAACCCCC	TGTACCAGGG	CACGGCCTCC	AGCGCTGACG	300
TGGCCCTGGT	GGAGCTGGAG	GCACCAGTGC	CCTTCACCAA	TTACATCCTC	CCCGTGTGCC	360
TGCCTGACCC	CTCGGTGATC	TTTGAGACGG	GCATGAACTG	CTGGGTCACT	GGCTGGGGCA	420
GCCCCAGTGA	GGAAGACCTC	CTGCCCGAAC	CGCGGATCCT	GCAGAAACTC	GCTGTGCCCA	480
TCATCGACAC	ACCCAAGTGC	AACCTGCTCT	ACAGCAAAGA	CACCGAGTTT	GGCTACCAAC	540
CCAAAACCAT	CAAGAATGAC	ATGCTGTGCG	CCGGCTTCGA	GGAGGGCAAG	AAGGATGCCT	600
GCAAGGGCGA	CTCGGGCGGC	CCCCTGGTGT	GCCTCGTGGG	TCAGTCGTGG	CTGCAGGCGG	660
GGGTGATCAG	CTGGGGTGAG	GGCTGTGCCC	GCCAGAACCG	CCCAGGTGTC	TACATCCGTG	720
TCACCGCCCA	CCACAACTGG	ATCCATCGGA	TCATCCCCAA	ACTGCAGTTC	CAGCCAGCGA	780
GGTTGGGCGG	CCAGAAGTGA	GACCCCCGGG	GCCAGGAGCC	CCTTGAGCAG	AGCTCTGCAC	840
CCAGCCTGCC	CGCCCACACC	ATCCTGCTGG	TCCTCCCAGC	GCTGCTGTTG	CACCTGTGAG	900
CCCCACCAGA	CTCATTTGTA	AATAGCGCTC	CTTCCTCCCC	TCTCAAATAC	CCTTATTTTA	960
TTTATGTTTC	TCCCAATAAA					980

CLAIMS:

1. An isolated proteinaceous molecule involved in or associated with regulation of cell activity and/or viability comprising a sequence of amino acids encoded by a nucleotide sequence, at least a portion of which, is capable of being amplified by polymerase chain reaction (PCR) using the following primers:

5' ACAGAATTCTGGGTIGTIACIGCIGCICAYTG3' [SEQ ID NO:1]; and

5'ACAGAATTCAXIGGICCICCIC/GT/AXTCICC3' [SEQ ID NO:2];

- 2. An isolated proteinaceous molecule according to claim 1 wherein said molecule is a serine proteinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:4 or an amino acid sequence having at least 50% similarity thereto.
- 3. An isolated proteinaceous molecule according to claim 1 wherein said molecule is a serine proteinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:6 or an amino acid sequence having at least 50% similarity thereto.
- 4. An isolated proteinase molecule according to claim 1 wherein said molecule is a serine proteinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:8 or an amino acid sequence having at least about 50% similarity thereto.
- 5. An isolated proteinaceous molecule according to claim 1 wherein said molecule is a serine proteinase comprising a sequence of amino acids encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:3 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEO ID NO:3 under low stringency conditions at 42°C.

- 6. An isolated proteinaceous molecule according to claim 1 wherein said molecule is a serine proteinase comprising a sequence of amino acids encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:5 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:5 under low stringency conditions at 42°C.
- 7. An isolated proteinaceous molecule according to claim 1 wherein said molecule is a serine proteinase comprising a sequence of amino acids encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:7 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:7 under low stringency conditions at 42°C.
- 8. An isolated proteinaceous molecule according to claim 1 wherein said molecule is a kinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:10 or having 50% amino acid similarity thereto.
- 9. An isolated proteinaceous molecule according to claim 1 wherein said molecule is a kinase comprising an amino acid sequence encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:9 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the nucleotide sequence set forth in SEQ ID NO:9 under low stringency conditions at 42°C.
- 10. An isolated nucleic acid molecule encoding a polypeptide wherein at least a portion of said nucleic acid molecule is capable of being amplified by polymerase chain reaction (PCR) using the following primers:
 - 5' ACAGAATTCTGGGTIGTIACIGCIGCICAYTG3' [SEQ ID NO:1]; and

5'ACAGAATTCAXIGGICCICCIC/GT/AXTCICC3' [SEQ ID NO:2];

- 11. An isolated nucleic acid molecule according to claim 10 wherein said polypeptide is a serine proteinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:4 or an amino acid sequence having at least 50% similarity thereto.
- 12. An isolated nucleic acid molecule according to claim 10 wherein said polypeptide is a serine proteinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:6 or an amino acid sequence having at least 50% similarity thereto.
- 13. An isolated nucleic acid molecule according to claim 10 wherein said polypeptide is a serine proteinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:8 or an amino acid sequence having at least about 50% similarity thereto.
- 14. An isolated nucleic acid molecule according to claim 10 comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:3 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:3 under low stringency conditions at 42°C.
- 15. An isolated nucleic acid molecule according to claim 10 comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:5 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:5 under low stringency conditions at 42°C.
- 16. An isolated nucleic acid molecule according to claim 10 comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:7 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:7 under low stringency conditions at 42°C.
- 17. An isolated nucleic acid molecule according to claim 10 wherein said polypeptide is a kinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:10 or having 50% amino acid similarity thereto.

- 18. An isolated nucleic acid molecule according to claim 17 comprising a sequence of nucleotides encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:9 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the nucleotide sequence set forth in SEQ ID NO:9 under low stringency conditions at 42°C.
- 19. An isolated serine proteinase encoded by a gene proximal to a cluster of genes of a mammalian chromosome.
- 20. An isolated serine proteinase according to claim 19 wherein the mammalian chromosome is human chromosome 16p13.3 or its equivalent in a non-human species.
- An isolated serine proteinase according to claim 20 wherein the gene cluster includes at least two genes having the nucleotide sequence as set forth in SEQ ID NO:3 or 5 or 28 or 29 or 30 or a nucleotide sequence having at least 50% similarity to any one of SEQ ID NO:3 or 5 or 28 or 29 or 30 or a nucleotide sequence capable of hybridizing to any one of the sequences under low stringency conditions at 42°C.
- 22. An isolated serine proteinase according to claim 20 wherein said serine proteinase is a short form of HELA2 having an amino acid sequence substantially as set forth in SEQ ID NO:4 or an amino acid sequence having at least 50% similarity thereto.
- 23. An isolated serine proteinase according to claim 20 wherein said serine proteinase is a long form of HELA2 having an amino acid sequence substantially as set forth in SEQ ID NO:6 or an amino acid sequence having at least 50% similarity thereto.
- 24. An isolated serine proteinase according to claim 22 encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:3 or a nucleotide sequence having at least 50% similarity thereto or a sequence capable of hybridizing to SEQ I NO:3 under low stringency conditions at 42°C.

- 25. An isolated serine proteinase according to claim 23 encoded by a nucleotide sequence substantially as set forth in SEQ ID NO;5 or a nucleotide sequence having at least 50% similarity thereto or a sequence capable of hybridizing to SEQ ID NO;5 under low stringency conditions at 42°C.
- 26. An isolated nucleic acid molecule comprising a nucleotide sequence encoding a serine proteinase and corresponding to a gene proximal to a cluster of genes encoding serine proteinases.
- An isolated nucleic acid molecule according to claim 26 wherein the gene cluster includes at least two genes having the nucleotide sequence as set forth in SEQ ID NO:3 or 5 or 28 or 29 or 30 or a nucleotide sequence having at least 50% similarity to any one of SEQ ID NO:3 or 5 or 28 or 29 or 30 or a nucleotide sequence capable of hybridizing to any one of the sequences under low stringency conditions at 42°C.
- 28. An isolated nucleic acid molecule according to claim 25 comprising a nucleotide sequence substantially as set forth in SEQ ID NO:3 or SEQ ID NO:5 or a nucleotide sequence having at least about 50% similarity to either of SEQ ID NO:3 or SEQ ID NO:5 or a nucleotide sequence capable of hybridizing to SEQ ID NO:3 or SEQ ID NO:5 under low stringency conditions at 42°C.
- 29. An isolated kinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:10 or an amino acid sequence having at least about 50% similarity thereto.
- 30. An isolated kinase according to claim 29 encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:9 or a nucleotide sequence having at least 50% similarity thereto or capable of hybridizing to SEQ ID NO:9 under low stringency conditions at 42°C.
- 31. A method of regulating cell activity and/or viability said method comprising contacting said cell with an activity and/or viability effective amount of a serine proteinase and/or kinase.

32. A method according to claim 31 wherein the serine proteinase comprises a sequence of amino acids encoded by a nucleotide sequence, at least a portion of which, is capable of being amplified by polymerase chain reaction (PCR) using the following primers:

5' ACAGAATTCTGGGTIGTIACIGCIGCICAYTG3' [SEQ ID NO:1]; and

5'ACAGAATTCAXIGGICCICCIC/GT/AXTCICC3' [SEQ ID NO:2];

- 33. A method according to claim 31 wherein the serine proteinase comprises an amino acid sequence substantially as set forth in SEQ ID NO:4 or an amino acid sequence having at least 50% similarity thereto.
- 34. A method according to claim 31 wherein the serine proteinase comprises an amino acid sequence substantially as set forth in SEQ ID NO:6 or an amino acid sequence having at least 50% similarity thereto.
- 35. A method according to claim 31 wherein the serine proteinase comprises an amino acid sequence substantially as set forth in SEQ ID NO:8 or an amino acid sequence having at least about 50% similarity thereto.
- 36. A method according to claim 31 wherein the serine proteinase comprises a sequence of amino acids encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:3 or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:3 under low stringency conditions at 42°C.
- 37. A method according to claim 31 wherein the serine proteinase comprises a sequence of amino acids encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:5 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:5 under low stringency conditions at 42°C.

S. Barton Same San San

\$45 COMMENT 1985

- 38. A method according to claim 31 wherein the serine proteinase comprises a sequence of amino acids encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:7 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:7 under low stringency conditions at 42°C.
- 39. A method according to claim 31 wherein the kinase comprises an amino acid sequence substantially as set forth in SEQ ID NO:10 or having 50% amino acid similarity thereto.
- 40. A method according to claim 31 wherein the kinase comprises an amino acid sequence encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:9 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the nucleotide sequence set forth in SEQ ID NO:9 under low stringency conditions at 42°C.
- 41. A method of modulating fertility in a mammal said method comprising modulating levels of HELA2 wherein increasing levels of HELA2 facilitates sperm maturation and development.
- 42. A method according to claim 41 wherein fertility is enhanced by introducing recombinant HELA2.
- 43. A method according to claim 41 wherein fertility is reduced by down regulating expression of the HELA2 gene.
- 44. A composition comprising a serine proteinase and/or kinase capable of regulating cell activity and/or viability and one or more pharmaceutically acceptable carriers and/or diluents.
- 45. A composition according to claim 44 wherein the serine proteinase is HELA2 or a functional derivative thereof.
- 46. An isolated antibody capable of interacting with a proteinaceous molecule involved in or associated with regulation of cell activity and/or viability comprising a sequence of amino acids encoded by a nucleotide sequence, at least a portion of which, is capable of being

amplified by polymerase chain reaction (PCR) using the following primers:

5' ACAGAATTCTGGGTIGTIACIGCIGCICAYTG3' [SEQ ID NO:1]; and

5'ACAGAATTCAXIGGICCICCIC/GT/AXTCICC3' [SEQ ID NO:2];

- 47. An isolated antibody according to claim 46 wherein said proteinaceous molecule is a serine proteinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:4 or an amino acid sequence having at least 50% similarity thereto.
- 48. An isolated antibody according to claim 46 wherein said proteinaceous molecule is a serine proteinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:6 or an amino acid sequence having at least 50% similarity thereto.
- 49. An isolated antibody according to claim 46 wherein said proteinaceous molecule is a serine proteinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:8 or an amino acid sequence having at least about 50% similarity thereto.
- 50. An isolated antibody according to claim 46 wherein said proteinaceous molecule is a serine proteinase comprising a sequence of amino acids encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:3 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEO ID NO:3 under low stringency conditions at 42°C.
- 51. An isolated antibody according to claim 46 wherein said proteinaceous molecule is a serine proteinase comprising a sequence of amino acids encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:5 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:5 under low stringency conditions at 42°C.

- An isolated antibody according to claim 46 wherein said proteinaceous said molecule is a serine proteinase comprising a sequence of amino acids encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:7 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:7 under low stringency conditions at 42°C.
- 53. An isolated antibody according to claim 46 wherein said proteinaceous molecule is a kinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:10 or having 50% amino acid similarity thereto.
- An isolated antibody according to claim 46 wherein said proteinaceous molecule is a kinase comprising an amino acid sequence encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:9 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the nucleotide sequence set forth in SEQ ID NO:9 under low stringency conditions at 42°C.
- 55. An antagonist or agonist to the isolated proteinaceous molecule according to any one of claims 1 to 9.
- 56. A method of determining a predisposition for or the presence of a cancer, said method comprising determining the presence of a nucleotide sequence encoding a proteinaceous molecule according to any one of claims 1 to 9.
- 57. A method according to claim 56 wherein the nucleotide sequence encodes a polypeptide wherein at least a portion of said nucleotide sequence is capable of being amplified by polymerase chain reaction (PCR) using the following primers:

5' ACAGAATTCTGGGTIGTIACIGCIGCICAYTG3' [SEQ ID NO:1]; and

5'ACAGAATTCAXIGGICCICCIC/GT/AXTCICC3' [SEQ ID NO:2];

- 58. A method according to claim 57 wherein said nucleotide sequence encodes a serine proteinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:4 or an amino acid sequence having at least 50% similarity thereto.
- 59. A method according to claim 57 wherein said nucleotide sequence encodes a serine proteinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:6 or an amino acid sequence having at least 50% similarity thereto.
- 60. A method according to claim 57 wherein said nucleotide sequence encodes a serine proteinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:8 or an amino acid sequence having at least about 50% similarity thereto.
- 61. A method according to claim 57 wherein said nucleotide sequence is as substantially set forth in SEQ ID NO:3 or is a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:3 under low stringency conditions at 42°C.
- 62. A method according to claim 57 wherein said nucleotide sequence is as substantially set forth in SEQ ID NO:5 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:5 under low stringency conditions at 42°C.
- 63. A method according to claim 57 wherein said nucleotide sequence is as substantially set forth in SEQ ID NO:7 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:7 under low stringency conditions at 42°C.
- 64. A method according to claim 57 wherein said nucleotide sequence is as substantially set forth in SEQ ID NO:10 or having 50% amino acid similarity thereto.

65. A method according to claim 57 wherein said nucleotide sequence is as substantially set forth in SEQ ID NO:9 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the nucleotide sequence set forth in SEQ ID NO:9 under low stringency conditions at 42°C.

BNSDOCID: <WO____9836054A1_I_>

SUBSTITUTE SHEET (RULE 26)

2/62

FIG 2A

FIG 2A(I)

FIG 2A(II)

SUBSTITUTE SHEET (RULE 26)

BNSDOCID: <WO_____9836054A1_I_>

SUBSTITUTE SHEET (RULE 26)

BNSDOCID: <WO 9836054A1 L>

FIG 2B

In vitro transcription / translation of HELA2 (Testisin)

SUBSTITUTE SHEET (RULE 26)

FIG 3

FIG 3(i)

FIG 3(ii)

FIG 3(iii)

HELA2 (Testisin) Short Isoform

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

BNSDOCID: <WO_____9836054A1_I_>

HELA2 (Testisin) Restriction Enzyme Map

F16 3 (ii

SUBSTITUTE SHEET (RULE 26)

10/62

FIG 4

FIG 4(i)

FIG 4(ii)

FIG 4(iii)

F1G 4(i

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG 5

14/62

A. Expression of recombinant Testisin in E. coli.

B. Western blot of recombinant Testisin

SUBSTITUTE SHEET (RULE 26)

15/62

FIG 6(I)

FIG 6(II)

FIG 6(III)

• <u>FIG 6</u>

120

L

 \succ

 α

 \vdash

K

 \bigcirc

Ц

S

 \geq

П

Ŋ

Д

 \succeq

Ŋ

E

Ц

 \bigcirc

 \bigcirc

GCCGCGGGAGAGGAGGCC

	20			40
AAAG	×		ICG	W
AGG	公		ACG	H
CIC	Ц		CCGGAGTCGCAGGAGGCGCCGCTTATCAGGACCATGCGGCCGACGGGTCATCACGTCG	Н
GGA	A L L L A L L L A R A G L R K	-		A A P L S G P C G R R V I T S
GCT	Ø		CGG	K
CGG	K		CGA	K
GCT	A		GGC	U
ATGGGCGCGCGCGCGCGCTGCTGCTGCCTGCTGCTGCTCGGCTCGGGCTGGACTCAGGAAG	J		TGC	U
	H.		CCA	Ъ
CTC	니		GGA	Ŋ
BGCG	K		TCA	ഗ
CTC	니		TTA	П
CTC	Ц		CCG	Д
CTC	Ц		BGCG	Ø
3900	ď,		BGCG	Ø
)GG(U		GAG	闰
CG(只		CAG	Q
CGCC	Ø		TCG	W
3GGC	M G A R G		GAG	P E S Q E
ATG	M	÷		Д

CGCATCGTGGGTGGAGGACGCCGAACTCGGGCGTTGGCCGTGGCAGGGGAGCCTGCGC

139

79

140 GTATCGAATATCTATCTGAGCCCTCGCTACCTGGGGAATTCACCCTATGACATTGCCTTG \Box Þ \Box Д S \mathbb{Z} U \Box \succ α \Box S 口 abla Ω 379

(I)9

FIGURE

 φ

AAACACATCCAGCCCATCTGTCTCCAGGCC

	GTGAAGCTGTCTGCACCTGTCACCTACACTA	E
	TAC	k
	ACC	E
	GTC	۲
	CCT	t
	GCA	f
	GTCTGCA	7
(II)	GCTC	ŀ
<u>+</u>	TGAAG	ļ
ω	IG	,
RE	ਹੋ	•
FIGU	439	

160	180
\$	AAA K
Q A	ATCAAA I K
니	TAC. Y
U	GGGGTAC
Q P I C	BAGAACCGGACAGACTGCTGGGTGCTGGGGGTACAEN R T D C W V T G W G Y
Дı	GGTGACTGGCTG(V T G W
	ACT
Н	GTG V
Ж Н .	GAGAACCGGACAGACTGCTGG E N R T D C W
×	C
\vdash	GAC
V T Y T	ACA T
H	CGG R
\triangleright	AAAC N
Д	\mathbf{O}
K	GTTT
Ω.	GAG E
H	TTT
V K L S	TCCACATTTGAC S T F E
	TCC
) (499

	200
AAAC	Z
ATP	Н
TC	⊢
TCAGGTCGCCA	A
GTC	\triangleright
CAG	Õ
GI	\triangleright
GA	口
ď.	٥
CT	디
\mathcal{O}	
CACA	I
מכככי.	CI)
ATCT	W
\mathcal{C}	
\mathcal{O}	니
GCA	A
GAG	口
GGAT	
GAG	山
559	

	22(
3AC	О
CTTTGGAGA	O
	Ιī
<u>_</u>	
GACA	Ω
AAG	X
Ö	ద
TTC	Ţ
CAGT	W
CAAGTACAG	\succ
CAA(X
CCI	口
CTT	ഥ
5	니
CCAC	H
GTGCAA	Z
	A C
	~ 1
ACTCTAT	⊢
AZ	~
619	

17/62

0

799

314 300 TTTTCCCTCTTCTGGGCTCTCCCACTCCTGGGGCCGGTCTGAGCCTACCTGAGCCCA \Box \geq Ŋ Д \Box Д \bigcirc Ŋ Ξ \bigcirc Ŋ \bigcirc ⋖ \Box \leq O 859 919

TGCAGCCTGGGGCCACTGCCAAGTCAGGCCCTGGTTCTCTTCTGTCTTGGTAATAA 1039 979

Д

 \mathcal{O}

Д

 \Box

Þ

 \geq

 \Box

 \Box

Д

ĹΉ

1099 AAAAAAAAAAAAAAAAAA

(III)

FIGURE 6

Western blot of GST-Testisin using anti-Testisin peptide T175 antibody

FIG 7

20/62

<u>FIG 8</u>

FIG 8(i)

<u>FIG 8(ii)</u>

FIG 8(iii)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG 9

FIG 9(i)	<u>FIG 9(ii)</u>
FIG 9(iii)	<u>FIG 9(iv)</u>

-16 9(i)

BNSDOCID: <WO_____9836054A1_I_>

PCT/AU98/00085

FIG 9(iii)

_9836054A1_I_>

BNSDOCID: <WO__

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG 12

SUBSTITUTE SHEET (FULE 26)

Testisin (HELA2) is located on human chromosome 16p13.3

FG BA

SUBSTITUTE SHEET (RULE 26)

BNSDOCID: <WO____9836054A1_I_>

PCT/AU98/00085

B. Immunohistochemistry

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG 16

FIG 16(i)

FIG 16(ii)

FIG 16(iii)

FIG 16(iv)

FIG 16(v)

FIG 16(vi)

agtgagtctc	tc	ctgcctcagc	ctcccaagta	gctgggactt	caggtgtgtg	20
ccaccatcct	i, t	cagctaattt	ttttttt	ttttttttg	agaaggagtc	100
ttgctctgtc)tc	gcccaggctg	gagtgcagtg	gcgcgatctt	ccaggcccca	150
ccgggccctc	ita	aggaaggcct	tgcctacctg	ctttaagggg	actcctggct	200
cagggcca	ıgg	cccctggtgc	tggaggaggt	ggtgggtgga	gggcaggggg	250
caccaago	gg	gcagccagga	ccccgggct	gcagacaaga	aaaggáctgt	300
			/+1EXON 1	· · · ·		
ggggtccacc	CC	gggtctgggc	CACATCAAGG	CACATCAAGG AATGTGGTTG AAGACCCGCC	AAGACCCGCC	350
CTTAGGAGCT	CT	GAAAGCCAGG	GCGCTACCAG	GCCTGAGAGG	CCCCAAACAG	400
CCCTTGGGCC	\mathcal{C}	TGGTTTGGGA	GGATTAAGCT	GGAGCTCCCA	ACCCGCCCTG	450
CCCCCAGGGG	D D D	GCGACCCCGG	9090990009	AGAGGAGGCA	GAGGGGCGT	200
CAGGCCGCGG	557	GAGAGGAGGC	CATGGGCGCG	2929999292	TGCTGCTGGC	550
				UI/	/INTRON A	
. GCTGCTGCTG	STG	GCTCGGGCTG	GACTCAGGAA	GCCGGgtgag	ctcgggggcgc	009
tgctggcggg	399	atggggaggc	gggggagcgg	tggggaggac	gggaggtgga	650

FIG 16(i

	700		750	800	820	006	950	1000	1050		1100	1150	1200
	GAGGCGCGC		gggccgttgg	ctttactgct	ggaaagtaac	cgtgggagga	gaccctgggt	aagggagagg	ctgaccatcc	•	GGGTGGAGAG	GCCTGTGGGA	GCACTCACGG
/EXON Z.	agagtcgcag gaggcggcgc		attcctgcca	agagggggc	ctgttggcgt	ctgcagagca	cacgcgaggg	gaaggggaga	agcagttcct		GICATCACGI CGCGCATCGI	GCCGTGGCAG GGGAGCCTGC	CCACCGCTGG
			aggacgcgcg	gtgagggggt	atcgagaact	tgggcgggcc	ctgctgcaca	ggacggggtt	cccgcggctc		GTCATCACGT	GCCGTGGCAG	TGCGGAGTGA GCCTGCTCAG CCACCGCTGG
	agtcacttct tgtctcccgc	INTRON B	tagggcgccc	acggggggcg	cgcccccggg	tggaggggga	cacctacttc	gtgatttaa	ggggctgcct	3	CGGCCGACGG	TCGGGCGTTG	TGCGGAGTGA
			CGTTATCAGG	gccgaggtgg	ctctcgcccc	taacggacgc	tctccagtgt	qqqcaaaaac	tegggettgg	/EXON 3	gagGACCATG	GACGCCGAAC	TTCCCACGTA

F1G 16(ii

CGGCGCACTG	CTTTGAAACg	tgagtggggg	tgcgaacgga	ggggtgcggg	1250
gggcagg	aacagggctg	gagggagtgc	caccgaactt	tacctctggt	1300
gatgccag	acttgggcgt	gaaagttgtg	cgtggatgcg	gcctggtgtt	1350
ctcctgagcc	ccaggctgtg	ctgcagccgg	ttacacccac	tccagttccc	1400
tttgggtctç	ctggagggaa	ccctgttcag	gttattccag	aatgttcttc	1450
gaacattt	ccacacactt	ttgggtattc	tctccctttt	tctttcaacc	1500
aagttcac	cactgaccat	cccacctca	tececettee	tggtggacgg	1550
tgcggtacag	tgtggggcac	tgagccaagg	ccagcacccc	cgggccgctg	1600
tgtggactcc	atcctgccaa	tcccacattg	gcgtggtgca	tctccccatt	1650
cctccttggg	ctgcatgggg	gtgcccctgg	aggccttggc	tcaatgcaag	1700
gctccttggg	acagctctgg	gaggtgacaa	gaccccaccc	ttctgctgca	1750
ggagcaggtc	ctaggacttt	ggttgtggtc	tgtctgggct	ccttcatttc	1800
a gc	cctgggtgtt	agcaagtagc	agcaacacca	cagtttcccc	1850
ש	gaccccagtt	gtgctcaggt	agccagccct	ccatccaggg	1900

F1G 16(ii

			/EAOIN 4	4	
ccctgactg	ctctcttctc	ttctgcc <u>ag</u> c	tatagTGACC	TTAGTGATCC	1950
CTCCGGGTGG	ATGGTCCAGT	TTGGCCAGCT	GACTTCCATG	CCATCCTTCT	2000
GGAGCCTGCA	GGCCTACTAC	ACCCGTTACT	TCGTATCGAA	TATCTATCTG	2050
AGCCCTCGCT	ACCTGGGGAA	TTCACCCTAT	GACATTGCCT	TGGTGAAGCT	2100
GTCTGCACCT	GTCACCTACA	CTAAACACAT	CCAGCCCATC	TGTCTCCAGG	2150
CCTCCACATT	TGAGTTTGAG	TGAGTTTGAG AACCGGACAG ACTGCTGGGT	ACTGCTGGGT	GACTGGCTGG	2200
		/INTRON	D		
GGGTACATCA	AAGAGGATGA	AAGAGGATGA GGgtgaggct	gggacaggc	gggtcaggga	2250
ggaactgtct	ttgttcacct	gttcccctgc	ataggcacaa	tagccccctg	2300
cttagtctgg	gggtgcaggc	tatgcccctc	ttgcttgcag	tctctcctca	2350
cctdccaggg	cagggaccaa	acacccagtt	ctctcccttc	caggggctgt	2400
adadaccada	aggagagtgt	gagagggagg	ccagtttggc	gcaagcctgt	2450
gagtagtacg	gtggtggagg	ggttctggag	ggcttggcga	cataaacctc	2500
atacttggat	ttattcctgc	atctttccac	ctcccccagt	gctcaccaat	2550
)					

gccccaggca	tca	approx	x 1000 bp		3563
ccaggttgcc	ccttccccca	aggtctggct	ttggatgctt	atgtgaacac	≈3613
cgttttaagt	tgccttggcc	ccttcctcgg	ttaatttttg	gctgaggaat	≈3663
ctctccatgg	ctgcaggcag	ggccattgtt	gccattctac	agatagggaa	≈3713
agtgcggctg	ggggagctct	gacagctgtc	ceteceeggg	gccttctgtg	≈3763
atgetgetga	gggcctctgt	tgtgctgggg	tctgggttgg	agctgggggt	≈3813
aatggagatg	aacctgccag	gcacagtggg	tgccccaggg	ccccacccc	×3863
cgcagcctat	gccatccctc	catagagggg	cctcaggttg	ctgtctctct	≈3913
		/EXON 5.			
ccttcccact	atcgtccgca	CAGCACTGCC	ATCTCCCCAC	ACCCTCCAGG	≈3963
AAGTTCAGGT	CGCCATCATA	AACAACTCTA	TGTGCAACCA	CCICIICCIC	≈4013
AAGTACAGTT	TCCGCAAGGA	CATCTTTGGA	GACATGGTTT	GTGCTGGCAA	≈4063
			/INTRON E		
TGCCCAAGGC	GGGAAGGATG	CCTGCTTCgt	gagtgtcctt	gccaccactc	≈4113
ccagcccagg	aaagcatcct	gtgtccctgt	gccttatttg	accctcatgc	~4163
caaccccggg	aggtggagac	tgttgcccca	ctctgcagat	gcagaaacgg	≈4213

aggettgget	gctgccaggg	ggaggaggag	gatgtgcacc	cagtctaccc	≈4263
agccccatag	cccttcccac	tctcagcccc	tacactgaaa	cactcactct	≈4313
			/EXON		
gccccaggct	gacctcagcc	ccgctgctcc	ccagGGTGAC	TCAGGTGGAC	≈4363
CCTTGGCCTG	TAACAAGAAT	GGACTGTGGT	ATCAGATTGG	AGTCGTGAGC	≈4413
TGGGGAGTGG	GCTGTGGTCG	GCCCAATCGG	CCCGGTGTCT	ACACCAATAT	≈4463
CAGCCACCAC	TTTGAGTGGA	TCCAGAAGCT	GATGGCCCAG	AGTGGCATGT	≈4513
CCCAGCCAGA	CCCCTCCTGG	CCGCTACTCT	TTTTCCCTCT	TCTCTGGGCT	≈4563
CTCCCACTCC	TGGGGCCGGT	CTGAGCCTAC	CTGAGCCCAT	GCAGCCTGGG	≈4613
GCCACTGCCA	AGTCAGGCCC	TGGTTCTCTT	CTGTCTTGTT	TGGTAATAAA	×4663
	TTGATGCCTT	GCAGGGCATT	CTTCAaaagc	agtggcttca	≈4713
tggacagctc	attctctctt	gtgcagacag	cctgtctgtg	cccctggctc	≈4763
acacccacat	ctgttctgca	ccatagaacc	atctggttat	ttcgatcaga	≈4813
aagagaattg	tgtgttgccc	aggctggtct	tgaacgccta	gggtgtctcg	≈4863
atc					×4866

FIG 16(vi

..... INTRON C (716 BP)......

SUBSTITUTE SHEET (RULE 26)

FIG 18 (AI)

FIG 18 (AII)

FIG 18(A)

40 20 TGATGCTGAGCTTGGCCGCTGGCCGTGGCAAGGGAGCCTGCGTGTATGGGGGCAACCACTT \mathcal{O} 口 U abla \Box Z \gt K S α \Box S \mathcal{O} \bigcirc 吖 \geq 口 U Д \Box \geq α \Box C S \Box (AI) 口 FIGURE 18 61

09 \bowtie ATGTGGCGCAACCTTGCTCAACCGCCGCTGGGTGCTTACAGCTGCCCACTGCTTCCAAAA Ø ΓL \mathcal{O} 二 K Þ \Box \gt 3 α α \geq Ы 니 \vdash N. Ω K 121

08 GGATAACGATCCTTTTGACTGGACAGTCCAGTTTGGTGAGCTGACTTCCAGGCCATCTCT S S 口 Ω ш \tilde{O} \vdash 3 [I А \mathbb{Z} 181

X CTGGAACCTACAGGCCTATTCCAACCGTTACCAAATAGAAGATATTTTCCTGAGCCCCAA Д S \Box 14 [T] \bigcirc α \mathbb{Z} Ω K \bigcirc \Box Z 3 241

100

120 GTACTCGGAGCAGTATCCCÀATGACATAGCCCTGCTGAAGCTGTCATCTCCAGTCACCTA Д Ω \Box X K \Box Z 口 Ŋ 301

140 \vdash CAATAACTTCATCCAGCCCATCTGCCTCCTGAACTCCACGTACAAGTTTGAGAACCGAAC α Z 띠 S \mathbb{Z} \Box \Box Д Ø ഥ Z \mathbb{Z} 61

09 TGACTGCTGGTGACCGGCTGGGGGGCTATTGGAGAGATGAGAGTCTGCCATCTCCCAA ablaД Ŋ Д Ы S 团 \Box 口 U Ø U 3 U \vdash 3 \bigcirc 421

240

 \Box

180 X CACTCTCCAGGAAGTGCAGGTAGCTATTATCAACAACAGCATGTGTAACCATATGTACAA \mathbf{z} 二 Z Σ S Z Z Õ 디 (AII) 口 FIGURE 18 481

200 \mathcal{C} AAAGCCAGACTTCCGCACGAACATCTGGGGAGACATGGTTTGCGCTGGCACTCCTGAAGG \bigcirc Þ Ξ \Box U 3 \mathbb{Z} 召 Д 541

220 \triangleright TGGCAAGGATGCCTGCTTTGGTGACTCGGGAGGACCCTTGGCCTGCGACCAGGATACGGT O Ø \Box Д U \Box Ŋ \Box 屲 \bigcirc K X

GTGGTATCAGGTTGGAGTTGTGAGCTGGGGAATAGGCTGTGGTCGCCCCAATCGCCCTGG Д 召 Z Д α U \mathcal{C} \mathcal{O} Н U 3 W \triangleright Ü

260 U AGTCTATACCAACATCAGTCACTACAACTGGATCCAGTCAACCATGATCCGCAATGG Z α Ξ Ŋ \bigcirc 3 \geq 工 Η Ŋ Z

285 280 S GCTGCTCAGGCCTGACCCAGTCCCCTTGCTACTGTTTCTTACTCTGGCCTGGGCTTCCTC വ Þ TTTGCTGAGGCCTGCCTGAGCC Þ П 781 841

901

721

Ø

3

661

601

FIG 18B

SUBSTITUTE SHEET (RULE 26)

BNSDOCID: <WO_____9836054A1_l_>

FIG 20A(AI)

FIG 20A(AII)

FIG 20A (AIII)

FIG 20A(A)

		50/	62			
09	120	180	240	300	360	420
CTGAACCGGGTTGTGGGCGGCGACGACTGACAGCGAGTGGCCCTGGATCGTGAGCLL N R $\overline{ abla}$ V V G G E D S T D S E W P W I V S	ATCCAGAAGAATGGGACCCACCACTGCGCAGGTTCTCTGCTCACCAGCCGCTGGGTGATC $f I$ $f I$ $f Q$ $f K$ $f N$ $f G$ $f T$ $f H$ $f H$ $f Cf I$ $f A$ $f G$ $f S$ $f L$ $f L$ $f T$ $f S$ $f R$ $f W$ $f V$ $f I$	ACTGCTGCCCACTGTTTCAAGGACAACCTGAACAAACCATACCTGTTCTCTGTGCTGCTG 1 T Å A (H) (\Box) F K D N L N K P Y L F S V L L		GAGCCCCACCCTGTATTCCTGGAAGGAAGGTGCCTGTGCAGACATTGCCCTGGTGCGT 81 E P H P V Y S W K E G A C A 🔘 I A L V R	CTCGAGCGCTCCATACAGTTCTCAGAGCGGGTCCTGCCCATCTGCCTACCTGATGCCTCT	ATCCACCTCCCTCCAAACACCCCACTGCTGGATCTCAGGCTGGGGGGGG
_	21	41	61	∞	7—	7-1

SUBSTITUTE SHEET (RULE 26)

FIGURE 20A (AI)

480		540	
~1	141 V P L P H P Q T L Q K L K V P I I D S E	GTCTGCAGCCATCTGTACTGGCGGGGAGCAGGACAGGGACCCCATCACTGAGGACATGCTG 540	161 V C S H L Y W R G A G Q G P I T E D M L

009 TGTGCCGGCTAACTTGGAGGGGGAGCGGGATGCTTGTCTGGGCGACTCCGGGGGGCCCCTC $^{\circ}$ (Z) $^{\circ}$ Ø \Box K 口 \bigcirc 口 \Box <u>ٿ</u> Þ \Box 8

099 ATGTGCCAGGTGGACGGCGCCTGCTGCTGGCCGGCATCATCAGCTGGGGCGAGGGCTGT \bigcirc ш \Box ഗ $^{\circ}$ A. \Box 3 Þ \bigcirc \Box \Box \succeq 201

720 GCCGAGCGCAACAGGCCCGGGGGTCTACATCAGCCTCTCTGCGCACCGCTCCTGGGTGGAG S 召 田 Ø S Ω U Д 又 \mathbb{Z} α 口 K 221 780 AAGATCGTGCAAGGGGTGCAGCTCCGCGGGCGCGCTCAGGGGGGGTGGGGCCCTCAGGGGCA Ø K Þ C \bigcirc U \bigcirc K \bigcirc α \bigcirc \bigcirc \bigcirc 241 840 CCGAGCCAGGGCTCTGGGGCCGCCGCGCGCTCCTAGGGGCCCCAGCGGGACGCGGGGCTCGG W α Q, K Þ \Box Ω \bigcirc S Д 261 900 ATCTGAAAGGCGGCCAGATCCACATCTGGATCTGGATCTGCGGCGGCCTCGGGCGGTTTTC CCCCGCCGTAAATAGGCTCATCTACCTCTACCTCTGGGGGCCCCGGACGGCTGCTGCGGAA

1080 1020 CCGCCCLAACGGCCTCATGTCCCCCCCCCCACGACTTCCGGCCCCCGGGGCCCCAGCG CTTTTGTGTATATAAATGTTAATGATTTTTTATAGGTATTTGTAACCCTGCCACATATCT TATTTATTCCTCCAATTTCAATAAA 20A FIGURE

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26).

FIG 20B(AI)

FIG 20B(AII)

FIG 20B(A)

09 \Box 国 Ø O Ç $^{\circ}$ α C Ø 口 X S (AI 口 20B FIGURE

180 TCATCCACCCACGCTGGGTGCTCACAGCCGCCCACTGCTTCCTGAGGTCTGAGGATCCCG U 口 Ü \Box Ŋ α 冮 \Box \Box [I] \Box \boxplus Ŋ K K \Box 3 E \Box \Box C \geq \bigcirc K 3 Д 耳 召 27

240 CTCTACCATGTTAAAGTCGGAGGGCTGACACCCTCACTTTCAGAGCCCCACTCGGCCT K S 口 Д 口 S \Box S Д 口 U \mathcal{O} \geq × 出 61

300 TGGTGGCTGTGAGGAGGCTCCTGGTCCACTCCTCATACCATGGGACCACCACCAGCGGGG S \vdash E U 口 Ω 二 \Box 니 K α Þ 87

360 ACATTGCCCTGATGGAGCTGGACTCCCCTTGCAGGCCTCCCAGTTCAGCCCCATCTGCC \Box S \bigcirc S K Ø Д S \Box 口 Þ 101 420 TCCCAGGACCCCAGACCCCCCCCTCGCCATTGGGACCGTGTGCTGGGTAAACGGGCTGGGGG Ü Z 3 \Box \Box K $\tilde{\mu}$ Д 0 U 121

480 TCCACTCAGGAGGCCCTGGCGAGTGTCCTTCAGGAGGTGGCTGTGCCCCTCCTGGACT K 口 \bigcirc Ω Ø П Þ 口 U S 二 141

540 Ü \Box O U K \Box X Ω \bigcirc [1] \bigcirc П \mathbb{H} \Box \Box Ξ 口 \Box 口 Ξ (AII) \Box Σ 20B FIGURE S 161 181

099 ACTCCGGGGGGCCGCTGGTCTGCCCCATCAATGATACGTGGATCCAGGCCGGCATTGTGA K \bigcirc \mathbb{Z} 201

GCTGGGGATTCGGCTGTGCCCGGCCTTTCCGGCCTGGTGTCTACACCCCAGGTGCTAAGCT Ω \vdash U α K \Box G U 3

780 α Þ U W \succeq U Ŋ 江 W 口 K \vdash 241

840 口 江 Ŋ 召 W \vdash U S 口 Ŋ U Д K 261

TGTTGACCGTATGCTTGGGTCCCTGTGAACCATGAGCCATGGAGTCCGGGATCCCC \Box \Box 281

HTCTGGTAGGATTGATGGAATCTAATAAAA

SUBSTITUTE SHEET (RULE 26)

FIG 20C(AI)

FIG 20C(AII)

FIG 20C(A)

09 AGTGGCCCTGGCAAGTC.AGCATCCAGCGCAACGGAAGCCACTTCTGCGGGGGGCAGCCTCA S \mathcal{C} C \Box \bigcirc Ç Ξ U ഗ U \bigvee_{M} Z K α \mathbb{Z} П K Д α

180 TCGCGGAGCAGTGGGTCCTGACGGCTGCGCACTGCTTCCGCAACACCTCTGAGACGTCCC \bigcirc Ω Ø \geq 3 口 21

 Ω 口 S abla α ſΉ \Box K, Ø \Box 3 \bigcirc 口 Ø

240 Ξ Ø 耳 \mathcal{O} Ö \bigcirc α Ø $^{\circ}$ 口 Ø 61

300 CCCGGGTGAGGCAGGTGGAGCAACCCCCTGTACCAGGGCACGGCCTCCAGCGCTGACG Ø S S Ø \mathcal{O} \bigcirc \Box Д \mathbb{Z} Ŋ 口 Õ 召 \simeq ď 81

360 TGGCCCTGGTGGAGCTGGAGCACCAGTGCCCTTCACCAATTACATCCTCCCCGTGTGCC \Box Ø I 口 101

420 $^{\circ}$ 3 U 3 \Box \mathbb{Z} Σ \mathcal{O} 口 Ω 121

480 GCCCCAGTGAGGAACCTCCTGCCCGAACCGGGATCCTGCAGAAACTCGCTGTGCCCA K 口 X \bigcirc \Box 4 [r] Д 口 Ŋ Д Ŋ 141

FIGURE 20C (AI)

540 TCATCGACACCCCAAGTGCAACCTGCTCTACAGCAAAGACACCGAGTTTGGCTACCAAC 又 S \mathcal{O} X FIGURE 61

009 CCAAAACCATCAAGAATGACATGCTGTGCGCCCGGCTTCGAGGAGGGCAAGAAGGATGCCT Ø K \bigcirc [1] 口 ഥ K $\mathbf{\Xi}$ \mathbb{Z} 又 181

099 GCAAGGGCGACTCGGGCCGCCCCCTGGTGTGCCTCGTGGGTCAGTCGTGGCTGCAGGCCGG Ω O \Box Д \bigcirc \Box (Ω) 201 GGGTGATCAGCTGGGGGTGAGGGCTGTGCCCGCCAGAACCGCCCAGGTGTCTACATCCGTG α 221

Ø ď \mathcal{O} U 띠 C Z S

780 α 口 二 Þ 840 GGTTGGGCCGCCAGAAGTGAGACCCCCGGGGCCCAGGAGCCCCTTGAGCAGAGCTCTGCAC K \bigcirc K \bowtie 61 900 CCAGCCTGCCCCCCACACCATCCTGCTCGTCCTCCCAGCGCTGCTGTTGCACCTGTGAG K 口 Ы S

096 CCCCACCAGACTCATTTGTAAATAGCGCTCCTTCCTCCCCTCTCAAATACCCTTATTTA

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG 21

International Application No.-PCT/AU 98/00085

Α.	CLASSIFICATION OF SUBJECT MATTER		
Int Cl ⁶ :	C12N 009/12, 009/64, 015/54, 015/57; C07K 016	/40; A61K 038/45, 038/48; C12Q 0	01/68
According to	International Patent Classification (IPC) or to both	national classification and IPC	
	FIELDS SEARCHED	And one of the original of the	
	mentation searched (classification system followed by c IE) (see below)	lassification symbols)	
	searched other than minimum documentation to the ext DATABASES (see below) MEDLINE (see be		he fields searched
(as online, STN [GC] [ACT] GC	base consulted during the international search (name of I (DGENE): TGGG[AC] [AGT] [GC] T [AGT] AC [AGT] [ACT] CC [ACT] [CT] T and SWISSPROT, GENBA p13.3 AND "serine protease"	e] GC [AGT] GC [AGT] CA [CT] TG AN	D GG [AGT] CA [CT] [AT]
C,	DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.
х	Proc. Natl. Acad. Sci. USA 87, pages 960-3 cluster of hematopoetic serine protease genes chromosomal band as the human α/S T-cell r See whole document, especially page 961 col	is found on the same ecceptor locus."	1,4,7,10,13,16,19,26, 27,31,32,35,38,46,49, 52,56,57,60,63
X	Further documents are listed in the continuation of Box C	See patent family an	inex
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document published prior to the international filing date but later than the priority date and not in conflict with the application understand the principle or theory underlying the invenders and not in conflict with the application understand the principle or theory underlying the invenders and not in conflict with the application understand the principle or theory underlying the invenders and not in conflict with the application understand the principle or theory underlying the invenders and not in conflict with the application understand the principle or theory underlying the invenders and not in conflict with the application understand the principle or theory underlying the invenders and not in conflict with the application understand the principle or theory underlying the invenders and not in conflict with the application understand the principle or theory underlying the invenders and not in conflict with the application understand the principle or theory underlying the invenders and not in conflict with the application understand the principle or theory underlying the invenders and not in conflict with the application understand the priority date and not in conflict with the application understand the principle or theory underlying the in with a document of particular relevance; the claimed invenders and not in conflict with the application understand the priority date and not in conflict with the application understand the priority date and not in conflict with the application understand the priority date and not in conflict with the application understand the priority date and not in conflict with the applicatio			
Date of the act	ual completion of the international search	Date of mailing of the international sear 03 APR 1998	rch report
	ling address of the ISA/AU I PATENT OFFICE I 2606	Authorized officer JIM CHAN	
	(02) 6285 3929	Telephone No.: (02) 6283 2340	

INTERNATIONAL SEARCH REPORT

International Application No. PCT/AU 98/00085

Box 1	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Intereasons:	rnational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	X Claims Nos.: 19, 20, 26, 31, 44
	because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
	the breadth of the claims was such that it was uneconomical to conduct a search that encompassed the full scope of the claims.
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)
Вох П	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	ernational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remarl	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1992) copbko

BNSDOCID: <WO_____9836054A1_I_>

International Application No.

		98/00085
C (Continuat	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	Proc. Natl. Acad. Sci. USA 87, pages 3811-5 (1990) Vanderslice, P. et al. "Human mast cell tryptase: multiple cDNAs and genes reveal a multigene serine protease family." See whole document	1-4,5-7,10-13,14-16,26 28,31,32-38,44,46- 52,55-59,60-63
X	J. Reprod. Fertil. 100, pages 567-75 (1994) Bermudez, D. et al. "Proacrosin as a marker of meiotic and post-meiotic germ cell differentiation: quantitative assessment of human spermatogenesis with a monoclonal antibody." See whole document, in particular Introduction.	46-48, 50, 51, 55
X	J. Biol. Chem. 269(29) pages 18843-8 (1994) Yu, J.X. et al. "Prostasin is a novel human serine protease from seminal fluid." See whole document, in particular discussion.	1-3,5,6,10- 12,14,15,27,28,31- 34,37,44,46- 48,50,51,55-59,61,62
X	J. Biol. Chem. 269 (31) pages 19976-82 (1994) Matsushima, M. et al. "Structural characterisation of porcine enteropeptidase." See whole document, especially figure 4.	1-3,5,6,10- 12,14,15,27,28,31- 34,37,44,46- 48,50,51,55-59,61,62
X	J. Biol. Chem. 270 (22) pages 13483-89 (1995) Yu, J.X. et al. "Molecular cloning, tissue-specific expression, and cellular localisation of human prostasin mRNA." See whole document, especially figure 2, Introduction and Discussion.	1-3,5,6,10- 12,14,15,27,28,31- 34,36,37,41-43,44,46 48,50,51,55-59,61,62
X	Mol. Reprod. Dev. 43, pages 236-47 (1996) O'Brien, D.A. et al. "Boar proacrosin" expressed in spermatids of transgenic mice does not reach the acrosome and disrupts spermatogenesis." See whole document.	1-3,5,6,10- 12,14,15,27,28,31- 34,36,37,41-43,44,46 48,50,51,55-59,61,62