## EECS545 - Homework 5

## March 15th, 2018

## Instructions

- This homework is Due Tuesday, March the 27th at 5pm. No late submissions will be accepted.
- As always, submit a write-up and your code for this homework.
- You are expected to use Python for the programming questions in this homework. Use of Python 3 is recommended.
- Submit your write-up to Gradescope under the assignment titled Homework 5. Make sure to tag the pages with the corresponding problems numbers.
- Submit all your python code to Canvas in a compressed zip file named uniqname\_hw5\_code.zip. Your zip file should contain prob4.py.
- 1. Let  $\{A, B, C, D\}$  be binary random variables. Consider the following independence assumptions.
  - $\bullet$   $A \perp B$
  - $A \not \perp D|B$
  - $A \perp D|C$
  - A ∠ C
  - B ∠ C
  - A ∠ B|D
  - $B \perp D|A, C$

where  $\perp$  represents conditionally independent and  $\angle$  means not conditionally independent.

- (a) Draw a Bayes net over the variables  $\{A, B, C, D\}$  where the above independence assumptions hold (You are expected to draw a single Bayes net).
- (b) How many parameters are needed to define the Conditional Probability Distributions (CPD's) for this Bayes Net?
- 2. Consider the following Bayesian network where A, B, C, D are Boolean random variables.



- (a) Write down all the conditional independencies in the above Bayes Net.
- (b) Construct the probability table for  $P(B, C, D|\neg A)$ .
- 3. Consider the following probability table over binary random variables A, B, C. Draw all possible Bayes nets which could represent the distribution over these variables.

| A | В | С | P(A,B,C) |
|---|---|---|----------|
| 0 | 0 | 0 | 0.03     |
| 0 | 0 | 1 | 0.045    |
| 0 | 1 | 0 | 0.12     |
| 0 | 1 | 1 | 0.105    |
| 1 | 0 | 0 | 0.035    |
| 1 | 0 | 1 | 0.14     |
| 1 | 1 | 0 | 0.315    |
| 1 | 1 | 1 | 0.21     |

- 4. Gaussian Mixture Models. In this problem you will fit GMMs to a synthetic dataset. The data is provided in a  $N \times 2$  number array (N data-points) named gmm\_data.npy.
  - (a) Implement the EM algorithm to fit a GMM to the given data. Initialize the model parameters appropriately. For each of the following values of  $K \in \{2, 3, 5, 10\}$  (the number of Gaussians) provide a plot consisting of the following:
    - A scatter plot of the data
    - The learned Gaussian components in the mixture

Note: The learned parameters can be sensitive to the parameter initialization. So you may have to try different initialization schemes to obtain acceptable results.

- (b) Now fit a GMM with K=3 using the parameter initialization provided in the starter code prob4.py. The initialization parameters are provided in three lists pi,means, covs whose elements correspond to  $\pi_k, \mu_k, \Sigma_k$  respectively (assuming the standard notation). Perform 50 steps of EM. Report the following:
  - Provide a sequence of plots similar to the one you provided above after 1, 5, 10, 20, 50 steps of the algorithm (Optionally, color code the points by the responsibility scores).

- $\bullet$  Report the model parameters learned by EM after 50 steps.
- (c) (Ungraded) Explore the effect of different parameter initializations on the behavior of the learning algorithm.