Aula 15 Cálculo 3B Aula 24 Calculo 3A $y_{y}^{"} = u_{y}^{1}y_{y}^{1} + u_{y}y_{y}^{"} + u_{z}y_{z}^{1} + u_{z}y_{z}^{"}$ Aula passada (u, y, + u, y, + u, y, + u, y,) + p(+) (u, y, + u, y,) Eq. lineaus não homogênea Lo conjecientes a determinas $+ q(t) \left(u_{L} y_{1} + u_{2} y_{3} \right) = C_{1}(t)$ $\frac{2exo}{2exo}$ $u_{1} \left(y_{L}^{"} + p(t) y_{1}^{"} + q(t) y_{L} \right) + u_{2} \left(y_{2}^{"} + p(t) y_{2}^{"} + q(t) y_{2} \right)$ Lo cutro mitodo para achar Yp: Varração das constantes 3.7 Variação das Constantes + "" " + " " " " = G(+) commente and about a = u'y' + u'z y' = G(+) Equação 2 diam esapange ana para a Temps $\begin{cases} u_1' y_1 + u_2' y_2 = 0 \\ u_1' y_1' + u_2' y_2' = G(t) \end{cases}$ Auga y"+ p(+) y + q(+) = G(+) (*) laisintam atucial serispomod son obsause some $a y(t) = C_1 y_1(t) + C_2 y_2(t)$ sendais o abreedase solução geral de $\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} u_1 & v_2 \\ v_1 & v_2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 & v_3 \end{pmatrix}$ y't p(t)y'+q(t) = 0 (homogênea) Nossa canditata a solução particulas de (*) yp(+) = M1(+) M1(+) + M2(+) M2(+) portanto $u_1^2 = -y_2 \cdot G(t)$ $u_2^2 = y_1 G(t)$ $w(y_1, y_2)$ variação das constantes Lo para deter minas u, u, tem que integras as jungões Objetivo: Paracterizar as funções u i v Para usso vamos derivas e substituis Co Lembre - se yp(t) = u_y + uz vz $y_{\rho}^{2} = u_{1}^{2}y_{1} + u_{1}y_{1}^{2} + u_{2}^{2}y_{2}^{2} + u_{2}y_{3}^{2}$ a solução geral. $= u_{3}v_{1} + u_{2}v_{2} + u_{3}v_{3} + u_{3}v_{5}$ Vamas supor u'y + u'y = 0 (quação 1 Los Mitodo bom para qualque EDO (não so coexicientes constantes) Lo Ruim porque tem que resores entegral Assim y' = u, y, + u, y' derivando

Exempl	o Resol	va t	$(y^{2})^{2} - 2y = 3t^{2}$.1	Ea so	lução qual e	
Solução				3	N(+) =	$C_1 + C_2 + 2 + 2 + 4$	Int + 1 2
Passo			equação homo	ogînea		$= C_1 + K_2 + t + t + t$	
	x²- x -	2 = 0 , x = 2					
		C ₃ 1 + (
			ao na forma	qui			
		$\frac{2}{t^2} = \frac{3}{3}$	t ² -1				
Passo 3		ção post	(q(t)				
			+ u ₂ (+) t ²				
ande	t2. (3t-	1)	$au_2^2 = \frac{1}{t} \cdot \left(\frac{3}{t}\right)^2$	1-1			
	w (1,		w(1				
w(t	, t ¹) =	det (t	$\begin{pmatrix} t^2 \\ 2t \end{pmatrix} = 3$				
Então uj(+):	3 - 3f1T	=-12+1	$u_{2}(t) = \frac{3}{t} - \frac{1}{t^{2}}$	$=\frac{1}{1}-\frac{3t^3}{1}$			
	$-\frac{t^3}{3} + 1t$		3 M ₂ (+) = Int +	1_6t2			
poton	y (+) =		$\frac{1}{t}$ + $\left(\ln t + \frac{1}{6t^2} \right)$				
	=	$-\frac{1^{2}}{3} + \frac{1}{3}$	$+$ t^2 lnt $+$ $\frac{1}{6}$ $=$ $\frac{t^2}{2}$	+ t 1nt + 1 2			