Semaine n° 20 : du 12 février au 16 février

Lundi 12 février

- Cours à préparer : Chapitre XIX Espaces vectoriels
 - Parties 2.1 et 2.2 : Caractérisations des sous-espaces vectoriels et exemples de sous-espaces vectoriels.
 - Partie 2.3a: Intersections de sous-espaces vectoriels.
 - Partie 2.3b : Sous-espace vectoriel engendré par une partie d'un espace vectoriel, par une famille de vecteurs.

Mardi 13 février

- Cours à préparer : Chapitre XIX Espaces vectoriels
 - Partie 2.3c : Somme de deux sous-espaces vectoriels.
 - Partie 2.4 : Sous-espaces en somme directe; sous-espaces supplémentaires.
- Exercices à corriger en classe
 - Feuille d'exercices n° 18 : exercices 1 et 3.

Jeudi 15 février

- Cours à préparer : Chapitre XIX Espaces vectoriels
 - Partie 3 : Translation; sous-espaces affines, direction d'un sous-espace affine; égalité de deux sous-espaces affines; sous-espaces affines paralèlles; intersection de sous-espaces affines.
- Exercices à corriger en classe
 - Feuille d'exercices nº 18 : exercices 4, 7, 8.

Vendredi 16 février

- Cours à préparer : Chapitre XX Analyse asymptotique
 - Partie 1 : Comparaison asymptotique de suites : notations de Landau; propriétés des o, des O, des \sim ; équivalents classiques; formule de Stirling.

Échauffements

Mardi 13 février

• En utilisant la formule de Taylor, décomposer en éléments simples la fraction rationnelle

$$R = \frac{X^4 - 2X^2 + 6X - 5}{(X - 2)^5}$$

- Cocher toutes les assertions vraies : Soit $E = \{(x, y) \in \mathbb{R}^2; x + y = 1\}$, muni des opérations usuelles. Quelles sont les assertions vraies ?
 - \square E est un espace vectoriel, car E est un sous-ensemble de l'espace vectoriel \mathbb{R}^2 .
 - \square E n'est pas un espace vectoriel, car $(0,0) \notin E$.
 - \Box E n'est pas un espace vectoriel, car $(1,0) \in E$, mais $(-1,0) \notin E$.
 - \Box E n'est pas un espace vectoriel, car $(1,0) \in E$ et $(0,1) \in E$, mais $(1,1) \notin E$.

Jeudi 15 février

- Calculer $\int_0^1 \frac{1}{2t^2 2t + 1} dt$
- Cocher toutes les assertions vraies : Soit $E = \{(x, y) \in \mathbb{R}^2 ; e^x e^y = 0\}$, muni des opérations usuelles.
 - $\Box E = \{(0,0)\}.$
 - $\Box E = \{(x, y) \in \mathbb{R}^2 ; \ x = y \ge 0\}.$
 - $\square E = \{(x, x) ; x \in \mathbb{R}\}.$
 - \square E est un espace vectoriel.

Vendredi 16 février

• Cocher toutes les assertions vraies :

Soit $E = \left\{ f : [0,1] \to \mathbb{R} ; f \text{ est continue sur } [0,1] \text{ et } \int_0^1 f(t) dt = 0 \right\}.$

- \square La fonction nulle appartient à E
- \square E est stable par addition.
- \square E n'est pas stable par multiplication par un scalaire.
- \square E est un espace vectoriel.
- Cocher toutes les assertions vraies :

Soit f une fonction définie sur [0,1] telle que $\forall x \in]0,1], 0 \leq f(x) \leq 1$.

- \square Alors f admet un point fixe.
- \square Alors f est bornée sur]0,1].
- \square Alors $\forall x \in]0,1], |f'(x)| \leq 1$
- \square Si f admet une limite en 0, alors f est prolongeable par continuité en 0.
- Cocher toutes les assertions vraies :
 - \square pour tout $x \in [0,1]$, $\arccos(\cos(x)) = x$.
 - \square pour tout $x \in \mathbb{R}$, $\arccos(\cos(x)) = x$.
 - \square pour tout $x \in [0, \pi]$, $\arccos(\cos(x)) = x$.
 - \square pour tout $x \in [-1,1]$, $\cos(\arccos(x)) = x$.
 - \square pour tout $x \in \mathbb{R}$, $\cos(\arccos(x)) = x$.
 - \square pour tout $x \in [0, \pi]$, $\cos(\arccos(x)) = x$.