1 Hodnost matice

Obsah

Obsah

Řádkový podprostor matice

Definice 7.1

 \check{R} ádkovým podprostorem matice $A \in \mathcal{M}_{m \times n}(T)$ rozumíme podprostor v aritmetickém VP T^n , který je generovaný řádkovými vektory matice A.

Příklad 7.1

Řádkovým podprostorem matice
$$A=\left(\begin{array}{cccc}2&-1&3,1&5\\-3&1,8&-2&4\\0&0&4,5&0\end{array}\right)\in\mathcal{M}_{3\times 4}(\mathbf{R})$$

je tedy prostor $[\{(2;-1;3,1;5),(-3;1,8;-2;4),(0;0;4,5;0)\}]\subseteq\subseteq \mathbf{R}^4.$

Elementární řádkové transformace

Definice 7.2

Elementárními řádkovými transformacemi (EŘT) matice $A \in \mathcal{M}_{m \times n}(T)$ nazýváme tyto úpravy:

- 1. vzájemnou záměnu dvou řádků v A;
- 2. vynásobení některého řádku nenulovým číslem z T;
- 3. přičtení nenulového násobku některého řádku k jinému řádku v A.

Definice 7.3

Nechť $A, B \in \mathcal{M}_{m \times n}(T)$. Říkáme, že matice A je řádkově ekvivalentní s maticí B, jestliže můžeme matici B získat z A pomocí konečného počtu EŘT. Pak píšeme $A \sim B$.

Elementární řádkové transformace

- $A, B \in \mathcal{M}_{m \times n}(T)$
- Pokud $A \sim B$, pak taky $B \sim A$, což nás opravňuje k tomu, že dále budeme pouze říkat, že matice A a B jsou řádkově ekvivalentní místo toho, že A je řádkově ekvivalentní s B.
- Dokonce můžeme ukázat, že binární relace " \sim " je relace ekvivalence na množině $\mathcal{M}_{m\times n}(T)$.

Příklad 7.2

Platí
$$A = \begin{pmatrix} 1 & 2 \\ -1 & 0 \\ 3 & 2 \end{pmatrix} \sim \begin{pmatrix} -6 & -4 \\ -1 & 0 \\ 0 & 2 \end{pmatrix} = B$$
, protože B můžeme z A získat

1. zaměníme 1. a 3. řádek;

- 2. 1. řádek získané matice vynásobíme (-2);
- 3. ke 3. řádku této matice přičteme její 2. řádek.

Elementární řádkové transformace

Věta 7.1

Nechť $A, B \in \mathcal{M}_{m \times n}(T)$. Jestliže $A \sim B$, pak matice A i B určují stejné řádkové podprostory.

Definice 7.4

Vedoucím prvkem řádku (řádkového vektoru) matice $A \in \mathcal{M}_{m \times n}(T)$ rozumíme první nenulový prvek zleva v tomto řádku.

Gaussův tvar matice

Definice 7.5

O matici $A \in \mathcal{M}_{m \times n}(T)$ řekneme, že je v Gaussově tvaru (GT), pokud všechny její nulové řádky jsou až za nenulovými a navíc pro každé její dva nenulové řádky $\vec{a_i}, \vec{a_j}$ musí být splněno, že pokud i < j, pak vedoucí prvek i-tého řádku leží ve sloupci, jehož index je menší než index sloupce, ve kterém leží vedoucí prvek j-tého řádku.

Gaussův tvar matice

Příklad 7.3

$$\text{Matice } A = \left(\begin{array}{cccc} 1 & 2 & -5 & 0 & 1 \\ 0 & 0 & 2 & 0 & 5 \\ 0 & 0 & 0 & -5 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right) je \text{ v GT}.$$

$$\text{Matice } B = \left(\begin{array}{cccc} 0 & 2 & -5 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & -2 & 8 \\ 0 & 0 & 0 & -8 \end{array} \right) \ \textit{nen\'{i}} \neq \text{GT}.$$

Gaussův tvar matice

Věta 7.2

Každá matice $A \in \mathcal{M}_{m \times n}(T)$ je řádkově ekvivalentní s některou maticí v Gaussově tvaru.

Příklad 7.4

Platí, že
$$A = \begin{pmatrix} 4 & -1 & 3 & 0 \\ -1 & 2 & 0 & 1 \\ 2 & 2 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & 0 & 1 \\ 0 & 7 & 3 & 4 \\ 0 & 0 & 11 & 10 \end{pmatrix} = B.$$

Nejdříve v A zaměníme 1. a 2. řádek, tedy:

$$A = \begin{pmatrix} 4 & -1 & 3 & 0 \\ -1 & 2 & 0 & 1 \\ 2 & 2 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & 0 & 1 \\ 4 & -1 & 3 & 0 \\ 2 & 2 & 1 & 0 \end{pmatrix} = C_1$$

Gaussův tvar matice

Věta 7.2

Každá matice $A \in \mathcal{M}_{m \times n}(T)$ je řádkově ekvivalentní s některou maticí v Gaussově tvaru.

Příklad 7.4

$$\text{Platí, } \check{\text{ze}} \ A = \left(\begin{array}{cccc} 4 & -1 & 3 & 0 \\ -1 & 2 & 0 & 1 \\ 2 & 2 & 1 & 0 \end{array} \right) \sim \left(\begin{array}{ccccc} -1 & 2 & 0 & 1 \\ 0 & 7 & 3 & 4 \\ 0 & 0 & 11 & 10 \end{array} \right) = B.$$

Dále v C_1 přičteme ke 2. řádku čtyřnásobek 1. řádku a ke 3. řádku pak dvojnásobek 1., tzn.

$$C_1 = \begin{pmatrix} -1 & 2 & 0 & 1 \\ 4 & -1 & 3 & 0 \\ 2 & 2 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & 0 & 1 \\ 0 & 7 & 3 & 4 \\ 0 & 6 & 1 & 2 \end{pmatrix} = C_2$$

Gaussův tvar matice

Věta 7.2

Každá matice $A \in \mathcal{M}_{m \times n}(T)$ je řádkově ekvivalentní s některou maticí v Gaussově tvaru.

Příklad 7.4

Platí, že
$$A = \begin{pmatrix} 4 & -1 & 3 & 0 \\ -1 & 2 & 0 & 1 \\ 2 & 2 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & 0 & 1 \\ 0 & 7 & 3 & 4 \\ 0 & 0 & 11 & 10 \end{pmatrix} = B.$$

V C_2 vynásobíme 3. řádek číslem -7, pak

$$C_2 = \begin{pmatrix} -1 & 2 & 0 & 1 \\ 0 & 7 & 3 & 4 \\ 0 & 6 & 1 & 2 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & 0 & 1 \\ 0 & 7 & 3 & 4 \\ 0 & -42 & -7 & -14 \end{pmatrix} = C_3$$

Gaussův tvar matice

Věta 7.2

Každá matice $A \in \mathcal{M}_{m \times n}(T)$ je řádkově ekvivalentní s některou maticí v Gaussově tvaru.

Příklad 7.4

Platí, že
$$A = \begin{pmatrix} 4 & -1 & 3 & 0 \\ -1 & 2 & 0 & 1 \\ 2 & 2 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & 0 & 1 \\ 0 & 7 & 3 & 4 \\ 0 & 0 & 11 & 10 \end{pmatrix} = B.$$

A konečně v C_3 přičteme ke 3. řádku šestinásobek 2. řádku:

$$C_3 = \begin{pmatrix} -1 & 2 & 0 & 1 \\ 0 & 7 & 3 & 4 \\ 0 & -42 & -7 & -14 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & 0 & 1 \\ 0 & 7 & 3 & 4 \\ 0 & 0 & -11 & -10 \end{pmatrix} = B$$

Gaussův tvar matice

Věta 7.3

Nenulové řádky matice $A \in \mathcal{M}_{m \times n}(T)$, která je v Gaussově tvaru, jsou lineárně nezávislé.

Věta 7.4

Je-li $A \sim B$ pro některé matice $A, B \in \mathcal{M}_{m \times n}(T)$, pak nenulové řádky matice B tvoří bázi řádkového podprostoru matice A.

Hodnost matice

Definice 7.6

Hodnosti matice $A \in \mathcal{M}_{m \times n}(T)$ rozumíme dimenzi řádkového podprostoru matice A a značíme ji h(A).

- Podle Def. 7.1 se h(A) musí rovnat počtu LNZ řádků matice $A \in \mathcal{M}_{m \times n}(T)$, tedy $h(A) \leq m$.
- Jestliže $A \sim B$, pak h(A) = h(B).
- h(A) je rovna počtu nenulových řádků libovolné matice B v GT takové, že $A \sim B$.

Věta 7.5

Hodnost matice $A \in \mathcal{M}_{m \times n}(T)$ je rovna maximálnímu počtu jejích LNZ sloupců.

2 Řešení soustav lineárních rovnic

Obsah