恒星的距离

❖ 三角视差法

$$d = A/\theta$$

一个例子:

$$\theta = 0.1^{"}$$

$$\theta = 0.1/(3600 \times 57.3) rad = 4.85 \times 10^{-7}$$

$$A = 1.49598 \times 10^8 \, km$$

$$d = A/\theta = 1.49598 \times 10^8 / 4.85 \times 10^{-7} \, km = 3.084 \times 10^{14} \, km = 32.6 \, ly$$

$$1ly = 9.46 \times 10^{12} \, km$$

秒差距:

最近的恒星: 比邻星

$$d = 1/p$$

$$1pc = 3.26ly$$

$$\theta = 0.772^{\circ}$$

d = 1/0.772 pc

 $= 1.295 \, pc$

 $= 1.295 \times 3.26$ light years

= 4.22 light years

恒星的自行

- ❖ 自行对三角视差法测距的影响
- ❖ 自行(角秒/年)的测定
- ❖ 地面测量了几千个恒星视差,d<40pc

巴纳德星的自行 2004-2008: 每年10.3"

- ❖ Hipparcos卫星 (1989.8.8)
 - Hipparcos=High Precision Parallax Collecting Satellite
 - 位置测量精度: ~0.001角秒
 - 3年的观测: 118 000个恒星的视差和自行, d~90pc
 - ●帮助预言彗星Shoemaker-Levy 9何时与木星碰撞;另外还表明几十亿年前,银河系吞并了大量的恒星
- ❖ GAIA卫星 (2013.12.29)
 - 对15等星可达20微角秒位置精度

绝对星等

绝对星等的定义: 10pc处恒星的视星等

$$R = (d/10)^2$$

 $M = m - 2.5 \log_{10} R$

2.512^5=100

参宿七(Rigel): (蓝超巨星)

$$d = 237 pc, m = 0.12$$

$$M = 0.12 - 2.5 \times \log_{10}(237/10)^2 = -6.7$$

太阳:

$$d = 4.86 \times 10^{-6} pc, m = -26.75$$

$$M = -26.75 - 2.5 \times \log_{10} (4.86 \times 10^{-6} / 10)^2 = 4.82$$

参宿七与太阳光度差:

$$\Delta m = [-6.7 - (+4.82)]$$

= 11.52 magnitudes

$$R = 2.512^{11.52}$$
$$= 40 571$$

比邻星与太阳光度差:

$$\Delta m = 15.5 - 4.82$$
 magnitudes = 10.68 magnitudes

$$R = 2.512^{10.68}$$
$$= 18 715$$

比邻星与参宿七光度差:

40 500 X 19 000 = 769 500 000

The peak wavelength of a blackbody spectrum is inversely proportional to temperature:

Wien's Law

Temperatures of stars and planets are measured using Wien's law.

比邻星的温度:

$$L = \sim 4 \times 10^{26}/19\ 000\ W$$
$$= 2.1 \times 10^{22}\ W$$

$$R = 1/7R_{SUN} \approx 1 \times 10^8 cm$$

$$L = \sigma A T^{4}$$

$$= 5.671 \times 10^{-8} \times 4 \times \pi \times (1 \times 10^{8})^{2} \times T^{4}$$

$$T = \{2.1 \times 10^{22} / [5.671 \times 10^{-8} \times 4 \times \pi \times (1 \times 10^{8})^{2}]$$

$$= (2.1 \times 10^{22} / 7.1 \times 10^{9})^{-4}$$

$$= 1300 \text{ K}$$

$$1/4$$

$$T_{\text{PC}}/T_{\text{Sun}} = [(1/19\ 000)/(1/49)]^{-4}$$

$$T_{\text{PC}} = 0.22 \times 5800 \,\text{K}$$

$$= 1300 \,\text{K}$$
1/4

参宿七的温度

$$T_{\text{Rigel}}/T_{\text{Sun}} = (45\ 000/3800)^{-4}$$

 $T_{\text{Rigel}} = 1.85 \times 5800 \,\text{K}$
 $= 10\ 700 \,\text{K}$

色指数 (C: 不同波段星等差)

$$T = \frac{7200}{C + 0.64} K$$

色温度

别的常用双色测光:照相星等 m_{photo} ,仿视星等 m_V

表 2.1 多色测光系统的滤光片参数

滤光片	峰值波长(nm)	滤波宽度(nm)
$\overline{}$	350	70
B	435	100
V	555	80
R	680	150
I	800	150

图 8.3 恒星的色指数 B—V 和 U—B 与有效 温度(光谱型)的关系

$$T = \frac{7090}{(B-V)+0.71} \, \text{K}$$

$$T\sim 4000-10000$$
 K时:
$$T = \frac{8540}{(B-V)+0.865}$$
 K

恒星光谱

谱线记号: HI、HII、HeI、HeII、HeIII

氢原子光谱

氢原子光谱

来曼系列:位于紫外光波段(>1)

巴耳末系列:位于可见光波段(→2)

- •Hα—656.3nm, 红色(3→2)
- •Hβ—486.1nm, 绿色(4→2)
- •Hγ—434.0nm, 中蓝色(5→2)

帕申系列: 位于红外光波段的谱线(→3)

布拉克系列:位于红外光波段 (→4)

蒲芬德系列: 位于红外光波段(→5)

谱线和温度的关系

- •T~9000K,氢的巴尔末线系Hα、Hβ等 谱线最强
- •温度升高,氢电离,氢原子的谱线减弱,甚至消失
- ·氦的电离能大得多,Hel、Hell的谱线 经常一起出现

哈佛光谱分类

$$S$$
 $O-B-A+F-G+K-M$
 $R-N$

Oh! Be A Fine Girl/Guy! Kiss Me Right Now, Sweetheart! (联想记忆法)

R, **N**: 光谱同**K**和**M**型相似,但增加了很强的碳和氢的分子带。后来把它们合称为碳星. **S型**: 红色。 光谱同**M**型相似,但增加了强的氧化锆分子带,常有氢发射线

每一类又分为0-9子类,太阳: G2型

光谱型	颜色	温度	光谱特征
О	蓝白	$T_e \ge 30,000K$	紫外连续谱强,有弱H _e II,H _e I, HI线
В	蓝白	$10,000K \le T_e \le 30,000K$	H _e I线在B ₂ 型达到最大,B ₀ 之后 H _e II消失,H线逐渐变强
A	白	$7,500K \le T_e \le 10,000K$	H线在A ₀ 达到极大,C _a Ⅱ线增强, 出现弱的中性金属线
F	黄白	$6,000K \le T_e \le 7,500K$	H线变弱但仍明显,C _a Ⅱ线大大增强,电离和中性金属线的强度增加
G	黄	$5,000K \le T_e \le 6,000K$	属太阳谱型,C _a Ⅱ线很强,F _e 及 金属线强,H线弱
K	橙	$3,500K \le T_e \le 5,000K$	金属线主导,连续谱蓝端变弱, 分子带(CN,CH)变强
M	红	$T_e \leq 3,500K$	分子带主导,中性金属线强

Table 6.1 The percentages of stars in the differing spectral classes.

Туре	Colour	Proportion (%)			
0	Blue	0.003			
В	Blue-white	0.13			
Α	White	0.63			
F	White-yellow	3.1			
G	Yellow	8			
K	Orange	13			
M	Red	78			

类型	温度	约定的 颜色	看见的 颜色 <mark>[5][6]</mark>	质量 (<u>太阳质</u> 量)	半径 (<u>太阳半</u> 径)	亮度	氢线	<u>主序星</u> 的比例 %
<u>B</u>	10,000– 30,000 K	蓝到蓝白色	蓝白色	18 <u>M</u> ⊙	7 <u>R</u> ⊙	20,000 <u>L</u> _⊙	一般	0.13%
A	7,500– 10,000 K	白色	白色	3.1 <u>M</u> ⊙	2.1 <u>R</u> _⊙	40 <u>L</u> ⊙	强烈	0.6%
<u>F</u>	6,000– 7,500 K	淡黄的白 色	白色	1.7 <u>M</u> ⊙	1.4 <u>R</u> _⊙	6 <u>L</u>	一般	3%
<u>G</u>	5,000– 6,000 K	黄色	淡黄的白 色	1.1 <u>M</u> ⊙	1.1 <u>R</u> ⊙	1.2 <u>L</u> ⊙	弱	7.6%
K	3,500– 5,000 K	橙色	黄橙色	0.8 <u>M</u> ⊙	0.9 <u>R</u> ⊙	0.4 <u>L</u> ⊙	十分弱	12.1%
<u>M</u>	2,000– 3,500 K	红色	橙红色	0.4 <u>M</u> ⊙	0.5 <u>R</u> _⊙	0.04 <u>L</u> _⊙	十分弱	76.45%
111	3,500 K	×T []		0. ∓ <u>IVI⊙</u>	0.0 <u>IX</u> <u>⊙</u>	0.04 <u>⊏</u> ⊙	1 /1 44	70.4070

距离测量—分光视差法

- •基本假设:同一类型的恒星的绝对光度一致
- •例如:某F0型恒星,比邻近的一F0型恒星暗10 000倍,邻近的恒星通过三角视差法测得距离为8pc,则该远处的F0型恒星的距离为800pc
- •某G2型恒星,视星等为+9.8,太阳的绝对星等为+4.8 (d=10pc),这该恒星的距离为100pc
- •一LMC中的B8恒星,视星等为+11.7,参宿七的绝对星等为-6.7等,

光度差:

 $2.512^{18.4} = 23 \times 10^6$

距离:

 $10 \times (23 \times 10^6)^{1/2} \text{ pc} = 10 \times 4800 \text{ pc} = 48000 \text{ pc}$

分光视差法的缺点:

- •同一类型的恒星本征光度不一定一致,还依赖于恒星的金属丰度
- •光谱型和光度之间的相关性不是很好,主序带并不是一个窄线,例如,F0型,差+/-一个星等,所以距离差+/-(2.512)^{1/2}
- •星际消光、红化的影响

Hertzsprung-Russell 图

- ❖ 1900s早期, Ejnar Hertzsprung (丹麦)与 Henry Russell (美国)
- ❖ 横坐标:温度(高←低)或光谱型
- ❖ 纵坐标: 光度或绝对星等
- ❖H-R图,或颜色-星等图

赫罗图 (Hertzsprung – Russell Diagram)

罗素1913年得到的最早的绝对 星等一光谱型图

Henry Norris Russell, reprinted with permission)

恒星大小

直接测量

参宿四

(红超巨星)

Figure 6.8 Hubble Space Telescope image of Betelgeuse. Image: A. Dupree (CfA), NASA, ESA.

$$\theta \sim 0.05$$
", $D = 131pc$

$$d = D\theta = 131 \times 3.1 \times 10^{13} \times [0.05/(3600 \times 57.3)]km$$

$$= 4.1 \times 10^{15} \times 2.4 \times 10^{-7} km = 9.84 \times 10^{8} km$$

$$\approx 700R_{SUN}$$

光学干涉

比邻星的观测: 2002年, VLT, 2x8.2m, 基 线长度: ~102.4米, 等效口径: ~100m

$$\theta \sim 1.02 \pm 0.08 marc \sec, D = 1.3 pc$$

$$d = 1.3 \times 3.1 \times 10^{16} \times 1.02 / (1000 \times 3600 \times 57.3)]m$$

$$= 2 \times 10^8 m$$

$$\approx 1/7 R_{SUN}$$

双星掩食法测量恒星大小

英仙β星

小掩食大: ~10h

周期:~68.8h

两星相距: ~0.062AU

Figure 6.10 The light curve of the eclipsing binary star Algol.

$$A = 0.062AU \approx 9.275 \times 10^6 km$$

 $d = 3.1415926 \times 9.275 \times 10^6 \times 10/68.8$
 $= 4.2 \times 10^6 km \approx 3D_{SUN}$ (小恒星的大小)

用Stephan-Boltzman公式估算恒星的大小

参宿七:

$$M = -6.7(SUN : +4.83)$$
 $L/L_{SUN} = 2.512^{11.53} = 41000$
 $T = 10700 = 1.84T_{SUN}$
 $A/A_{SUN} = 41000/1.84^4 = 41000/11.5 = 3500$
 $D/D_{SUN} = 3500^{1/2} \approx 59$

参宿四:

$$L/L_{SUN} \approx 60000$$
 $T = 0.6T_{SUN}$
 $A/A_{SUN} = 60000/0.6^4 = 60000/0.13 = 460000$
 $D/D_{SUN} = 460000^{1/2} \approx 679$

用Stephan-Boltzman公式估算恒星的大小

天狼星A:

$$L/L_{SUN} \approx 26$$

$$T = 9900K = 1.72T_{SUN}$$

$$A/A_{SUN} = 26/1.72^4 = 26/8.7 \approx 3$$

$$D/D_{SUN} = 3^{1/2} \approx 1.7$$

天狼星B:

$$L/L_{SUN} \approx 1/416$$
 $T = 15000K = 2.59T_{SUN}$ $A/A_{SUN} = 1/416/2.59^4 = 1/416/45 \approx 5.3 \times 10^{-5}$ $D/D_{SUN} = (5.3 \times 10^{-5})^{1/2} \approx 0.007$ 与地球半径相仿

恒星的质量和密度

双星系统中:

$$P^2 = [4\pi^2/G(M_1 + M_2)] a^3$$

- •G2+A0双星系统: M=4太阳质量,则: A0型恒星的质量为3太阳质量
- •A0+F2: M=4.5太阳质量, F2型=1.5太阳质量
- •恒星的质量范围: 1/15~50倍太阳质量
- •恒星的大小、质量→密度

恒星的质量-光度关系

Figure 6.13 The mass-luminosity relationship.

 $L \propto M^4$, 低质量恒星

 $L \propto M^3$, 高质量恒星

恒星的寿命

- •恒星内部温度越高,热核反应率越快
- •恒星的质量越大,寿命越短
- •参宿七: M=17M_{SUN},L=41000L_{SUN}
- →t=17/41000t_{SUN}=1/2600 t_{SUN}~4百万年

热光度: L~66000L_{SUN}→t~2.7百万年

- •红矮星: M=1/5M_{SUN},L=1/10000L_{SUN}
- →t~2000 t_{SUN}

内部对流,更多的H燃烧(太阳只燃烧 10%的氢),寿命更长,比宇宙年龄长!