Compared MR methods 16 representative Summary-level data-based MR methods IVW (fixed) IVW (random) Egger dIVW RAPS MR-PRESSO CAUSE cML-MA MR-APSS MR-Lasso MRMix MR-Robust. MR-ConMix Weighted-median MRCUE

Weighted-mode

Steps of run MR methods

Input: GWAS summary-level data of exposure and outcome

Step 1: Conduct quality control

Keep Hapmap3 SNPs

Remove duplicates/missing/MHC /ambiguous /poor imputed / MAF <0.01 SNPs

Step 2: Harmonise SNP effects

Ensure SNP-exposure and SNP-outcome effect estimates refer to the same allele

Step 3: IV selection and extract IV effects

 SNPs associated with exposure (p-value < IV threshold) • Plink LD clumping: $r^2 < 0.001$, 1Mb

Step 4: Run MR methods

Change IV threshold from 5×10^{-8} , 5×10^{-7} , 5×10^{-6} to 5×10^{-5}

Performance evaluation

B

1. Type I error control

Confounding scenario (a) Population stratification

Confounding scenario (b) Pleiotropy

Confounding scenario (c) Family-level confounders

Three datasets

1130 trait pairs from GWASATLAS 970 trait pairs from Neal Lab 88 trait pairs from Pan UKBB No causal effect

Dataset

77 trait pairs No causal effect

Dataset

82 trait pairs No causal effect

2. Accuracy of causal effect estimates

Dataset

Six pairs True casual effect = 1 3. Replicability & power

Case study

LDL-C (six GWASs) and CAD