18 In the 17th century, Kepler proposed his 'law of harmonies' for planetary motion. This law suggested that the ratio of the square of the orbital period T to the cube of the mean radius R has the same value for all the planets that orbit the Sun.

Mathematically his 'law of harmonies' can be written

$$T^2 = KR^3$$

where K is a constant.

(a) The table shows data for Earth and Mars.

Planet	T/s	<i>R</i> /m
Earth	3.16×10^{7}	1.50×10^{11}
Mars	5.93×10^{7}	2.28 × 10 ¹¹

Show that, for Earth and for Mars, K has a value of about $3.0 \times 10^{-19} \mathrm{s}^2 \mathrm{m}^{-3}$.	(3)

(b)	Kepler's law of harmonies was derived later by Newton. Newton applied his law of	
	gravitation to a planet moving in an approximately circular orbit around the Sun. Determine a value for <i>K</i> by applying Newton's law of gravitation to a planet of mass <i>m</i> moving in a circular orbit about the Sun.	
	mass of Sun = 1.99×10^{30} kg	
	mass of Sun – 1.33 ^ 10 kg	(3)
	$K = \dots$	s ² m ⁻¹
(c)	Jupiter is the most massive planet in the solar system and has many moons. Kepler's law of harmonies applies to the orbiting moons. However, the value of <i>K</i> for the moons is not the same as the value that applies to planets orbiting the Sun.	
(c)	law of harmonies applies to the orbiting moons. However, the value of K for the	
(c)	law of harmonies applies to the orbiting moons. However, the value of K for the moons is not the same as the value that applies to planets orbiting the Sun. Ganymede is Jupiter's largest moon. Ganymede has an orbital radius of 1.07×10^9 m	
(c)	law of harmonies applies to the orbiting moons. However, the value of K for the moons is not the same as the value that applies to planets orbiting the Sun. Ganymede is Jupiter's largest moon. Ganymede has an orbital radius of $1.07 \times 10^9 \mathrm{m}$ and an orbital period of 172 hours. Another moon, Io, has an orbital radius of $4.22 \times 10^8 \mathrm{m}$.	
(c)	law of harmonies applies to the orbiting moons. However, the value of K for the moons is not the same as the value that applies to planets orbiting the Sun. Ganymede is Jupiter's largest moon. Ganymede has an orbital radius of 1.07×10^9 m and an orbital period of 172 hours.	(2)
(c)	law of harmonies applies to the orbiting moons. However, the value of K for the moons is not the same as the value that applies to planets orbiting the Sun. Ganymede is Jupiter's largest moon. Ganymede has an orbital radius of $1.07 \times 10^9 \mathrm{m}$ and an orbital period of 172 hours. Another moon, Io, has an orbital radius of $4.22 \times 10^8 \mathrm{m}$.	(2)
(c)	law of harmonies applies to the orbiting moons. However, the value of K for the moons is not the same as the value that applies to planets orbiting the Sun. Ganymede is Jupiter's largest moon. Ganymede has an orbital radius of $1.07 \times 10^9 \mathrm{m}$ and an orbital period of 172 hours. Another moon, Io, has an orbital radius of $4.22 \times 10^8 \mathrm{m}$.	(2)
(c)	law of harmonies applies to the orbiting moons. However, the value of K for the moons is not the same as the value that applies to planets orbiting the Sun. Ganymede is Jupiter's largest moon. Ganymede has an orbital radius of $1.07 \times 10^9 \mathrm{m}$ and an orbital period of 172 hours. Another moon, Io, has an orbital radius of $4.22 \times 10^8 \mathrm{m}$.	(2)
(c)	law of harmonies applies to the orbiting moons. However, the value of K for the moons is not the same as the value that applies to planets orbiting the Sun. Ganymede is Jupiter's largest moon. Ganymede has an orbital radius of $1.07 \times 10^9 \mathrm{m}$ and an orbital period of 172 hours. Another moon, Io, has an orbital radius of $4.22 \times 10^8 \mathrm{m}$.	(2)
(c)	law of harmonies applies to the orbiting moons. However, the value of K for the moons is not the same as the value that applies to planets orbiting the Sun. Ganymede is Jupiter's largest moon. Ganymede has an orbital radius of $1.07 \times 10^9 \mathrm{m}$ and an orbital period of 172 hours. Another moon, Io, has an orbital radius of $4.22 \times 10^8 \mathrm{m}$.	(2)
(c)	law of harmonies applies to the orbiting moons. However, the value of K for the moons is not the same as the value that applies to planets orbiting the Sun. Ganymede is Jupiter's largest moon. Ganymede has an orbital radius of $1.07 \times 10^9 \mathrm{m}$ and an orbital period of 172 hours. Another moon, Io, has an orbital radius of $4.22 \times 10^8 \mathrm{m}$.	(2)
(c)	law of harmonies applies to the orbiting moons. However, the value of K for the moons is not the same as the value that applies to planets orbiting the Sun. Ganymede is Jupiter's largest moon. Ganymede has an orbital radius of $1.07 \times 10^9 \mathrm{m}$ and an orbital period of 172 hours. Another moon, Io, has an orbital radius of $4.22 \times 10^8 \mathrm{m}$.	(2)

(Total for Question 18 = 8 marks)