

Reconstitutions paléoclimatiques via des données polliniques de La Grande Pile depuis le LGM Pdfs-crestR & MAT-WA

> Fénisse Gabriel David Bekaert Pierre-Henri Blard

Manuel Chevalier

- → Méthode de crestR : théorie, hypothèses et ses spécificités
 - Résultats paléoclimatiques de La Grande Pile (Guiot et al., 1989)
 - → Méthode d'analogue moderne fittée par WA
 - → Résultats paléoclimatiques
 - → Perspective(s)

Dataset formatage des taxons

Extraction des données de calib. xy+climateWithObs+minGridcells

Relation Proxy-Climat bio+lognormal+geoWeighting

Reconstitution bio+loo()

Haute hétérogénéité de maillage des pollens modernes en Europe Palearctic

gbif4crest_02-5min.sqlite3 v.1.3.0

Plus d'incertitude pour plus de certitude!

Distribution of Plant X

Warm / Dry Cold / Wet

Haute hétérogénéité de maillage des pollens modernes en Europe Palearctic

gbif4crest_02-5min.sqlite3 v.1.3.0

of probability

density

Plus d'incertitude pour plus de certitude!

$$pdf_{pol}(v) = \frac{1}{\sum_{sp_i} \sqrt{n_{sp_i}}} \sum_{sp_1}^{sp_N} \sqrt{n_{sp_i}} pdf_{sp_i}(v)$$

$$pdf_{var}(v,t) = \left(\prod_{pol1}^{polN} pdf_{poli}(v)^{\omega_{poli}(t)}\right)^{\left(\sum_{pol} \omega_{poli}(t)\right)^{-1}}$$

Haute hétérogénéité de maillage des pollens modernes en Europe Palearctic

gbif4crest_02-5min.sqlite3 v.1.3.0

Sample 1

Kühl et al. (2002) Schölzel, 2005

Chevalier et al., 2020 6

- → Méthode de crestR : théorie, hypothèses et ses spécificités
 - → Résultats paléoclimatiques de La Grande Pile (Guiot et al., 1989)
 - → Méthode d'analogue moderne fittée par WA
 - → Résultats paléoclimatiques
 - → Perspective(s)

\$Palaearctic

Biomes disponibles (où nous trouvons les pollens du LGM) -> lequel est le plus représentatif du LGM?

- ✓ Boreal forests / Taiga
- ✓ Deserts and xeric shrublands
- ✓ Flooded grasslands and savannas
- ✓ Mediterranean Forests, woodlands and scrubs
 - ✓ Montane grasslands and shrublands
 - ✓ Temperate broadleaf and mixed forests
 - ✓ Temperate Coniferous Forest
- ✓ Temperate grasslands, savannas and shrublands
- ✓ Tropical and subtropical moist broadleaf forests

✓ Tundra

Forêt de conifère = optimaux climatiques bas !

(>30°N) (-5-150°E) - 18Cas

Realms=Palearctic
climateWithObs=TRUE
minGridCells=5
geoWeighting=TRUE
ClimateSpaceWeighting=TRUE

+ Procéder à des tests de sensibilité des données polliniques modernes (wwf.publications/realms) et les comparer avec les données de calibration gbif_4crest

✓ Temperate broadleaf and mixed forests

(>30°N) (-5-150°E)

Realms=Palearctic
climateWithObs=TRUE
minGridCells=15
geoWeighting=TRUE
ClimateSpaceWeighting=TRUE

✓ Temperate broadleaf and mixed forests

Realms=Palearctic
climateWithObs=TRUE
minGridCells=5
geoWeighting=TRUE
ClimateSpaceWeighting=TRUE

✓ Boreal forests / Taiga

Realms=palearctic climateWithObs=TRUE geoWeighting=TRUE minGridCells=15 climategeoWeighting=TRUE

✓ Boreal forests / Taiga

Realms=palearctic climateWithObs=TRUE geoWeighting=TRUE minGridCells=15 climategeoWeighting=TRUE

- → Méthode de crestR : théorie, hypothèses et ses spécificités
 - Résultats paléoclimatiques de La Grande Pile (Guiot et al., 1989)
 - → Méthode d'analogue moderne fittée par WA
 - → Résultats paléoclimatiques
 - → Perspective(s)

Travaux de Guiot codé WA, bestanal et recon.

Peser le degré de corrélation Proxy-climat -> échantillonnage des associations de pollens modernes

- (i) Génération de la matrice d'autocorrélation linéaire
- (ii) Evaluation de la distance analogue en comparaison et avec les poids des taxons (reste de la division euclidienne)
- (iii) Moyenne pondérée des réponses climatiques par l'inverse des carrés des distances analogues + Calage temporel (Wolliard et al., 1981)

Opérateur Paléobioclimatique (PBO)

Recherches d'analogue (métrique de dissimilarité)

Reconstitution par fonction de transfère

Réponse linéaire individuelle

Overpeck et al., 1985 Guiot et Pons, 1986

Chevalier, Manuel; Davis, Basil A S; Sommer, Philipp S; Zanon, Marco; Carter, Vachel A; Phelps, Leanne N; Mauri, Achille; Finsinger, Walter (2019): Eurasian Modern Pollen Database (former European Modern Pollen Database). PANGAEA, 6 https://doi.org/10.1594/PANGAEA.909130

Fichier ass. Moderne
Fichier var. clim
+ site name

Fichier foss

Dataset de calibration EMPD2 2020 et 2021 (6747 ass. dans 1000 sites différents)

- → Méthode de crestR : théorie, hypothèses et ses spécificités
 - Résultats paléoclimatiques de La Grande Pile (Guiot et al., 1989)
 - → Méthode d'analogue moderne fittée par WA
 - → Résultats paléoclimatiques
 - → Perspective(s)

Guiot et al., 1984
Anomalie de paléo-température et paléoprécipitation

ichd=0 fclim=FALSE Kana=9

Climate Reconstruction based on Pollen record of La Grande Pile Temperature via MAT/ichd-EMPD2/Oxcal

ichd=0 fclim=FALSE Kana=9

Climate Reconstruction based on Pollen record of La Grande Pile Precipitation via MAT/ichd-EMPD2/Oxcal

Mots de la fin ...

→ CrestR = Modélisation par intération pdfs avec combinaisons de taxons via la relation Proxy-Climat

→ MAT = Réponse linéaire selon degré de similitude moderne via transfère WA

→Associer les **2 databases** de LGP < 140 000 ans : Guiot et al., 1989 + De Beaulieu et De Reille, 1990 avec le même modèle d'âge et des profondeurs chevauchantes

→ Chercher à compiler **un Holocène et LGM** avec des biomes différents = Absolue + Relative

→ Enrichir les données polliniques modernes en Europe