Example 2 – two independent variables

Deviance

Deviance and Pearson Goodness-of-Fit Statistics								
Criterion	Value	DF	Value/DF	Pr > ChiSq				
Deviance	29.7723	35	0.8506	0.7184				
Pearson	39.0106	35	1.1146	0.2942				

Parameter estimates with confidence interval

Analysis of Maximum Likelihood Estimates								
Parameter	DF	Estimate		Wald Chi-Square	Pr > ChiSq			
Intercept	1	-9.5293	3.2331	8.6873	0.0032			
volume	1	3.8820	1.4286	7.3844	0.0066			
rate	1	2.6490	0.9142	8.3966	0.0038			

Covariance matrix

Estimated Covariance Matrix							
Parameter	Intercept	volume	rate				
Intercept	10.45283	-4.32469	-2.729				
volume	-4.32469	2.040791	0.99885				
rate	-2.729	0.99885	0.835746				

- a) Write down the fitted line.
- b) Find the 95% confidence interval of unknown parameters.
- c) Estimate the odds ratio for one unit increase in volume with its 95% confidence interval.
- d) Estimate the odds ratio for one unit increase in rate with its 95% confidence interval.
- e) Estimate the odds ratio for one unit increase in volume & one unit increase in rate with its 95% confidence interval.
- f) Estimate the probability of success when volume=1 & rate=1 with its 95% confidence interval.