ş.

	1. Amethod of fabricating a semiconductor device, said method comprising the steps
	of:
٠	forming a hydrogen-containing ayer at a predetermined depth in a single
5	
	bonding the single crystal semi-conductor substrate and a supporting substrate
	to each other;
	separating the single crystal semiconductor substrate by a first heat treatment
	along the hydrogen-containing layer;
10	carrying out a second heat treatment at a temperature of 900 to 1200°C;
	polishing a single crystal semiconductor layer remaining on the supporting
	substrate and having a main surface of a {110} plane; and
	forming a plurality of TFTs each having an active layer of the single crystal
	semiconductor layer.
\	
15	2. A method of fabricating a semiconductor device, said method comprising the steps
	of:
	forming a porous semiconductor layer by anodic oxidation of a single crystal
	semiconductor substrate having a main surface of a {110} plane;
	carrying out a first/heat treatment to the porous semiconductor layer in a
20	reducing atmosphere;
	carrying out an epitaxial growth of a single crystal semiconductor layer having
	a main surface of a {110} plane on the porous semiconductor layer;
	bonding the single crystal semiconductor substrate and a supporting substrate
	to each other;
25	carrying out a second heat treatment at a temperature of 900 to 1200°C;
	polishing the single crystal semiconductor substrate until the porous

of:

10

semiconductor layer is exposed;

removing the porous semiconductor layer to expose the single crystal semiconductor layer; and

forming a plurality of TIV is each having an active layer of the single crystal 5 semiconductor layer on the supporting substrate.

3. A method of fabricating a semiconductor device, said method comprising the steps

forming an oxygen-containing layer at a predetermined depth in a single crystal semiconductor substrate having a main surface of a {110} plane;

converting the oxygen-containing layer into a buried insulating layer by a heat treatment; and

forming a plurality of TFTs each having an active layer of a single crystal semiconductor layer having a main surface of a {110} plane on the buried insulating layer.

- 4. A method according to claim 1, wherein the single crystal semiconductor layer is a single crystal silicon layer.
 - 5. A method according to claim 1, wherein the semiconductor device is one selected from the group consisting of a liquid crystal display device, an EL display device, an EC display device, and a photoelectric conversion device.
- 6. A method according to claim 1, wherein the semiconductor device is one selected from the group consisting of a video camera, a digital camera, a projector, a projection TV, a goggle type display, a car navigation system, a personal computer, and a portable information terminal.

- A method according to claim 2, wherein the single crystal semiconductor layer is a single crystal silicon layer.
- A method according to claim 3, wherein the single crystal semiconductor layer is a single crystal silicon layer.
- 9. A method according to claim 2, wherein the semiconductor device is one selected from the group consisting of a liquid crystal display device, an EL display device. an EC display device, and a photoelectric conversion device.
- 10. A method according to claim 3, wherein the semiconductor device is one selected from the group consisting of a liquid crystal display device, an EL display device, an EC display device, and a photoelectric conversion device.
 - 11. A method according to claim 2, wherein the semiconductor device is one selected from the group consisting of a video camera, a digital camera, a projector, a projection TV, a goggle type display, a car navigation system, a personal computer, and a portable information terminal.
- 15 12. A method according to claim 3, wherein the semiconductor device is one selected from the group consisting of a video camera, a digital camera, a projector, a projection TV, a goggle type display, a car navigation system, a personal computer, and a portable information terminal.

