ynt/global//global/global 5D0D039BF84E4F45A7144D280F172F5D

Per meglio comprendere i capitoli seguenti andremo ora ad analizzare i principali fenomeni fisici che influenzano la bicicletta durante il moto.

Figure 1:

1.1 Dinamica Longitudinale

La dinamica longitudinale riguarda tutte quelle forze che consentono l'avanzamento della bicicletta. Affinché questa acceleri le deve essere applicata una forza

$$\vec{F} = m_{sus} \cdot a_{bike}$$

dove m_{sys} è la massa del sistema ovvero la somma della massa del ciclista e quella della bicicletta.

$$m_{sys} = m_{bike} + M_{ciclista}$$

Possiamo quindi scomporre il vettore \vec{F} nelle due componenti \vec{F}_P e \vec{F}_R

$$\vec{F}_P - \vec{F}_R = m_{sus} \cdot a_{bike}$$

dove la prima è la forza propulsiva, ovvero la forza che tende a far accelerare la bicicletta, mentre la seconda è la forza resistente, cioè la forza che si oppone al movimento della stessa.

Abbiamo quindi che:

- se $\vec{F}_P > \vec{F}_R \rightarrow a_{sys} > 0$ la bicicletta accelera
- se $\vec{F}_P < \vec{F}_R \rightarrow a_{sys} < 0$ la bicicletta decelera
- se $\vec{F}_P = \vec{F}_R \rightarrow a_{sus} = 0$ la bicicletta si muove a velocità costante.

Per semplificare le cose consideriamo di trovarci in quest'ultimo caso, supponiamo quindi che il ciclista stia avanzando mantenendo la velocità della bicicletta (v_{bike}) costante.

$$a_{bike} = 0 \rightarrow \vec{F}_P = \vec{F}_R$$

Moltiplicando ora \vec{F}_R per v_{bike} possiamo convertire la forza resistente in potenza resistente

$$P_P = P_R = \vec{F}_R \cdot v_{bike}$$

dove

$$P_P = P_{in} \cdot \eta$$

con η il rapporto di trasmissione tra pedali e ruota e

$$P_{in} = \vec{F}_{in} \cdot cos(\theta) \cdot l_{crank} \cdot \omega_{crank}$$

dove l_{crank} e ω_{crank} sono, rispettivamente, la lunghezza e la velocità angolare della pedivella e θ è angolo compreso tra la direzione del vettore \vec{F}_{in} (la forza che il ciclista applica sui pedali) e l'asse perpendicolare alla pedivella. Abbiamo quindi che, in funzione della posizione in cui si trova la pedivella, il ciclista sarà in grado di imprimere una forza maggiore o minore alla bicicletta. In particolare la forza propulsiva risulta massima quando le pedivelle sono parallele al terreno e minima quando sono perpendicolari allo stesso. L'accelerazione della bicicletta risulta quindi oscillante.

Applicando quanto scritto nei passaggi precedenti otteniamo

$$\vec{F}_{in} \cdot cos(\theta) \cdot l_{crank} \cdot \omega_{crank} \cdot \eta = \vec{F}_R \cdot v_{bike}$$

Passiamo ora alla forza resistente \vec{F}_R . Come detto questa è la forza che si oppone al movimento della bicicletta ed è composta dalle seguenti componenti

$$\vec{F}_R = \vec{F}_{air} + \vec{F}_{volv} - \vec{F}_{slope}$$

dove

• \vec{F}_{air} è la forza di attrito dell'aria

Fisica della Bicicletta