

Introduction to Deep Learning

Lecture 14 – HCCDA-AI

Dr. Muhammad Sajjad

R.A: Imran Nawar

Generating Images from Natural Language

"A photo of an astronaut riding a horse."

Generating Language from Natural Language

"Write code in TensorFlow to train a neural network"

Deep Fake Video

Deep Learning in 2025:

Multimodal Foundation Models

 Modern AI systems can understand and generate text, images, audio, and video, enabling more natural and human-like interactions across formats.

• Examples:

- GPT-4o (OpenAI)
- Claude Sonnet 4 (Anthropic)
- Gemini 2.5 (Google DeepMind)
- Grok3 (xAI)

Where are Deep Learning and AI Headed?

Deep Learning is revolutionizing so many fields.

Healthcare, education, entertainment and beyond.

What is Deep Learning?

Teaching computers how to learn a task directly from raw data

Why Deep Learning and Why Now?

Why Deep Learning?

Hand engineered features are time consuming, brittle, and not scalable in practice.

Can we learn the **underlying features** directly from data?

Low Level Features

Lines & Edges

Mid Level Features

Eyes & Nose & Ears

High Level Features

Facial Structure

Why Now?

Neural Networks date back decades, so why the dominance?

1952 1958 • •	Stochastic Gradient Descent Perceptron • Learnable weights	 1) Big Data Larger Datasets Easier Collection & Storage 	• Graphics Processing Units (GPUs)	 3) Software Improved Techniques New Models Toolboxes
1986 1995	Backpropagation • Multi-Layer Perceptron Deep Convolutional NN	IM GENET WIKIPEDIA The Free Baryelapedki	9	TensorFlow
	Digit Recognition			

The Perceptron The structural building block of deep learning

The Perceptron Forward Propagation

Inputs Weights Sum Non-Linearity Output

The Perceptron Forward Propagation

where:
$$\boldsymbol{X} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$
 and $\boldsymbol{W} = \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix}$

Inputs Weights Sum Non-Linearity Output

The Perceptron Forward Propagation

Activation Functions

$$\hat{y} = g (w_0 + X^T W)$$

· Example: sigmoid function

$$g(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$$

Inputs Weights

Sum

Non-Linearity

Output

Neural Networks Training Process - Overview

• To train a neural network, we optimize its parameters using backpropagation and gradient descent.

Steps:

- 1. Initialize weights & biases
- 2. Forward pass (compute predictions)
- 3. Compute loss Measure how far predictions are from actual values.
- 4. **Backpropagation** Calculate gradients to adjust parameters.
- 5. Update weights using gradient descent
- **6. Repeat** until convergence
- 7. Evaluate and adjust hyperparameters

Neural Networks Training – Visual Summary

Forward Propagation

• Forward propagation refers to the process of feeding input through the network to generate predictions.

Steps:

- 1) Input data is provided to the input layer.
- 2) Weighted sum of inputs is calculated at each neuron.
- 3) Activation function is applied.
- 4) The output of each layer serves as input to the next layer.
- 5) The final layer produces predictions.

Python Code: Forward Propagation (Simple Example)

```
import numpy as np
def sigmoid(z):
    return 1 / (1 + np.exp(-z))
# Input values
x = np.array([0.5, 0.8])
# Initialize weights and bias
w = np.array([0.2, 0.4])
# Compute weighted sum
z = np.dot(x, w) + b
# Apply activation function
output = sigmoid(z)
print("Final Output:", output)
```

Activation Functions

 Activation functions introduce non-linearity into the neural network, enabling it to learn and model complex patterns beyond linear relationships.

Common activation functions:

- · Sigmoid:
 - **Output range:** (0, 1)
 - · Good for probability based outputs (e.g., binary classification)
 - · Can suffer from vanishing gradients, especially in deep networks

Tanh (Hyperbolic Tangent):

- Output range: (-1, 1)
- Centered around zero \rightarrow better for optimization than sigmoid
- Still prone to vanishing gradient issues.

• ReLU: (Rectified Linear Unit):

- Output: max(0, x)
- Most widely used due to computational efficiency
- Helps reduce vanishing gradient problem
- · Can lead to "dead neurons" (zero gradients) if inputs are always negative

Activation Functions

 $\max(0,x)$

Leaky ReLU $\max(0.1x,x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

Importance Activation Functions

The purpose of activation functions is to introduce non-linearity into the network

What if we wanted to build a neural network to distinguish green vs red points?

Importance Activation Functions

The purpose of activation functions is **to introduce non-linearity** into the network

Linear activation functions produce linear decisions no matter the network size

Non-linearities allow us to approximate arbitrarily complex functions

Multi Output Perceptron

Because all inputs are densely connected to all outputs, these layers are called **Dense** layers.

Dense layer from scratch

```
class MyDenseLayer (nn.Module):
  def init (self, input dim, output dim):
    super(MyDenseLayer, self) __init ()
            nn.Parameter(torch.randn(input dim,
    self W
        output dim, requires grad=True)
    self b
            nn.Parameter(torch.randn(1, output dim,
        requires grad=True)
  def forward(self, inputs):
        torch.matmul(inputs, self W) self b
    output = torch.sigmoid(z)
    return output
```


Dense layer from scratch

```
import torch.nn as nn
layer = nn.Linear(in_features=m, out_features=2)

import tensorflow as tf
layer = nn.keras.layers.Dense( units=2 )
```

Deep Neural Network


```
import tensorflow as tf

model = tf.keras.Sequential([
   tf.keras.layers.Dense(n1),
   tf.keras.layers.Dense(n2),

tf.keras.layers.Dense(2)
])
```

```
from torch import nn

model = nn Sequential(
    nn.Linear(m, n1),
    nn.ReLU(),

inn.ReLU(),
    nn.Linear(nK, 2)
)
```

Loss Function / Cost Function in Deep Learning

Loss Function:

- A loss function measures the difference between the predicted output and the actual target.
- It helps the neural network adjust weights during training to minimize errors.

Cost Function:

loss = torch.nn.functional mse_loss(predicted, y

- The cost function is the average of the loss function over the entire dataset.
- It provides a single scalar value to optimize the model.

Types of Loss Functions in Neural Networks

Loss Function	Type	Use Case	
Mean Squared Error (MSE)	Regression	Penalizes large errors, used for continuous values	
Mean Absolute Error (MAE)	Regression	More robust to outliers than MSE	
Binary Cross-Entropy	Classification	For binary classification (e.g., Yes/No, 0/1)	
Categorical Cross-Entropy	Classification	For multi-class classification (e.g., Image Recognition)	
Huber Loss	Regression	Combines MSE and MAE, handles outliers well	

Training Neural Networks

Loss Optimization

We want to find the network weights that achieve the lowest loss

Backpropagation – Intuition

Backpropagation is an algorithm used to minimize the cost function by updating weights based on the error obtained at the output layer.

Key Steps:

- Perform forward pass
- Compute error/loss
- Compute gradients of loss with respect to weights using chain rule.
- Propagate gradients backward layer by layer
- Update weights using gradient descent
- Repeat

Important Notes:

- Backpropagation adjusts weights using partial derivatives.
- It enables efficient training by distributing errors backward.

Optimization Algorithms for Training Neural Networks Optimization Algorithms:

- · Optimization algorithms adjust model parameters (weights) to minimize the loss function.
- Efficient optimization ensures faster convergence and better model performance.

Popular Optimization Algorithms

Algorithm	Type	Characteristics	
Stochastic Gradient Descent (SGD)	First-order	Updates weights using a single data point, faster but noisy	
Momentum-based SGD	First-order	Adds momentum to reduce oscillations and speed up convergence	
Adam (Adaptive Moment Estimation)	Adaptive	Combines momentum and adaptive learning rates, widely used	
RMSprop	Adaptive	Adjusts learning rates for each parameter, effective for deep networks	
Adagrad	Adaptive	Adapts learning rate based on past gradients, suitable for sparse data	

Neural Networks in Practice: Overfitting

The Problem of Overfitting

Under fitting

Model does not have capacity to fully learn the data

Overfitting

Too complex, extra parameters, does not generalize well

Overfitting

- Overfitting occurs when a model learns noise and patterns specific to the training data but fails to generalize to new data.
- · It leads to high accuracy on training data but poor performance on test data.

Causes of Overfitting

- Too complex a model with excessive parameters.
- Insufficient training data.
- · Lack of regularization techniques.

Techniques to Prevent Overfitting

Method	Description
L1 Regularization (Lasso)	Adds absolute values of weights to the loss function, promotes sparsity by reducing less important weights to zero.
L2 Regularization (Ridge)	Adds squared values of weights to the loss function, prevents large weights and improves generalization.
Dropout	Randomly disables a fraction of neurons during training to reduce reliance on specific features.
Early Stopping	Stops training when validation performance starts to degrade, preventing overfitting.
Data Augmentation	Expands training data by applying transformations (rotation, flipping, scaling) to improve generalization.

Regularization

What is it?

Technique that constraint our optimization problem to discourage complex models

Why do need it?

Improve generalization of our model on unseen data

Regularization I: Dropout

During training, randomly set some activations to 0

Regularization 2: Early Stopping

• Stop training before we have a chance to overfit

Modern Deep Learning Architectures

Modern Deep Learning Architectures

Deep learning has evolved into powerful, specialized architectures:

Architecture	Purpose	Example Use
CNNs (Convolutional Neural Networks)	Extract patterns from images using filters	Image classification, object detection
RNNs (Recurrent Neural Networks)	Handle sequential data with memory	Language modeling, time series
Transformers	Attention-based, parallelized learning for sequences	ChatGPT, translation, summarization
GANs (Generative Adversarial Networks)	Learn to generate realistic data by competition	Deepfakes, image synthesis
Multimodal Models	Process multiple input types (text, image, audio) together	Text-to-image, video Q&A, agents

Core Foundation Review

The Perceptron

- Structural building blocks
- Nonlinear activation functions

Neural Networks

- Stacking Perceptrons to form neural network
- Optimization through backpropagation

Training in Practice

- Adaptive learning
- Batching
- Regularization

Thank You