习题课

一、选择题

1. 设f(x,y)连续,且 $f(x,y)=xy+\iint_{\Sigma}f(u,v)dudv$,其中D是由y=0, $y=x^2$,

x=1所围成区域,则 f(x,y)等于()

- (A) xy; (B) 2xy; (C) $xy + \frac{1}{8}$; (D) xy + 1.

2. 二次积分 $\int_0^{\frac{\pi}{2}} d\varphi \int_0^{\cos\varphi} f(\rho\cos\varphi, \rho\sin\varphi) \rho d\rho$ 可以写成()

- (A) $\int_{0}^{1} dy \int_{0}^{\sqrt{y-y^{2}}} f(x,y)dx$; (B) $\int_{0}^{1} dy \int_{0}^{\sqrt{1-y^{2}}} f(x,y)dx$;
- (C) $\int_{0}^{1} dx \int_{0}^{1} f(x,y) dy$; (D) $\int_{0}^{1} dx \int_{0}^{\sqrt{x-x^2}} f(x,y) dy$.

3. 设 f(u) 为连续函数, $D=\{(x,y)|x^3 \le y \le 1, -1 \le x\}$,

 $I = \iint_{\mathcal{D}} x[x + f(x^2 + y^2)\sin y] dxdy, \quad \text{If } I = ($

- (A) $-\frac{2}{3}$; (B) $\frac{2}{3}$; (C) 0; (D) $\frac{3}{2}$.

二、填空题

1. 计算下列积分

(1)
$$\iint_{|x|+|y| \le 1} (x^2 + y) dx dy = \underline{\hspace{1cm}}_{\circ}$$

(2)
$$\int_0^1 dy \int_{\sqrt[3]{y}}^1 y^{\frac{1}{3}} \cos^5 x^5 dx = \underline{\qquad}$$

(3)
$$\int_{1}^{2} dy \int_{2}^{y} \frac{\sin x}{x-1} dx = \underline{\qquad}_{\circ}$$

2. $I = \int_0^1 dx \int_0^{\sqrt{3}x} f(x, y) dy + \int_1^2 dx \int_0^{\sqrt{4-x^2}} f(x, y) dy$ 在极坐标系下的二次积分为 I =______。

三、解答题

- 1. 设区域D为 $x^2 + y^2 \le R^2$,求 $\iint_D (\frac{x^2}{a^2} + \frac{y^2}{b^2}) dx dy$ 。
- 2. 计算 $I = \iint_{D} |\cos(x+y)| dxdy$, $D: 0 \le x \le \frac{\pi}{2}$, $0 \le y \le \frac{\pi}{2}$ 。
- 3. 设函数 f(x) 在区间 [a,b] 上连续,并设 $\int_0^1 f(x)dx = A$,求 $\int_0^1 dx \int_x^1 f(x)f(y)dy$ 。
- 4. 计算二重积分 $\iint_D y dx dy$,其中 D 是由直线 x=-2 , y=0 , y=2 以及曲线 $x=-\sqrt{2y-y^2}$ 所围成的平面区域。
- 5. 求由曲面 $z=8-x^2-y^2$, $z=x^2+y^2$ 所围立体的体积。
- 6. 设 $I = \iiint_{\Omega} f(x,y,z) dV$, 其中 Ω 是由 $x^2 + y^2 + z^2 \le 4$ 和 $x^2 + y^2 \le 3z$ 围成的区域,试

在直角坐标系、柱面坐标系和球面坐标系下分别将1化为三次积分。

7.
$$\bar{x}I = \iiint_{\Omega} (x+y+z)^2 dx dy dz$$
, $\bar{x} + \Omega : (x-1)^2 + (y-1)^2 + (z-1)^2 \le R^2$.

8. 利用广义球面坐标变换计算曲面 $(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2})^2 = ax$ (a>0,b>0,c>0) 所围成的体积 V。