Relational Algebra

CISC637, Lecture #8

Ben Carterette

Copyright © Ben Carterette

8

Formal Query Languages

- SQL is a query language for relational databases
- The relational model admits *formal* query languages based on mathematical principles:
 - Relational algebra, based on operators over relations
 - Relational calculus, based on declarative statements about data
- The algebra more directly supports computation
 - A relational algebra query implies a sequence of steps that can be taken to execute it
 - It is a procedural language
- SQL is an implementation of relational algebra

Copyright © Ben Carterette

Relational Algebra

- Basic operators:
 - Selection: $\sigma_p(R)$

select a subset of records from relation instance R matching condition P

- Projection: $\pi_x(R)$

select a subset of fields X from relation instance R

– Cross-product: R1 × R2

concatenate each record in R1 with each record in R2

- Set-difference: R1 - R2

return records in R1 that are not in R2

– Union: R1 ∪ R2

return records in either R1 or R2

Copyright © Ben Carterette

11

Relational Algebra

- Derived and advanced operators:
 - Intersection: R1 ∩ R2

return records in both R1 and R2

– **Join**: R1 ⋈ R2

combine information from relations R1 and R2

– Division: R1/R2

return records in R1 that "match" every record in R2 in a subset of

fields

- Renaming: $\rho(R2(M), R1)$

relation instance R1 is named R2 and its fields are renamed according to mapping M

– Aggregate functions: _xG_f(R)

calculate aggregating function f on relation instance R grouped by

fields X

Copyright © Ben Carterette

Preliminaries

- Operations are applied to relation instances, and the result of an operation is a relation instance
 - Schemas of input relations are fixed
 - Schemas of output relations are also fixed, though may be different from input relation schemas
- Algebra is all about composing operators
 - Every operator takes relation instances as input and returns relation instances
 - Algebra is **closed** under these operators

Copyright © Ben Carterette

13

Selection & Projection

- Selection returns a relation consisting of all records matching a logical selection condition P
 - We use Greek letter sigma (σ) for the selection function
 - $-\sigma_P(R)$ consists only of records in R for which P is true
 - Schema of $\sigma_p(R)$ is the same as schema of R
- Projection returns a relation with only the fields indicated
 - We use Greek letter pi (π) for the projection function
 - $-\pi_{v}(R)$ has only the fields of R specified in the list X
 - Schema of $\pi_x(R)$ is a subset of the schema of R
 - Records in $\pi_{\chi}(R)$ same as records in R, but duplicates are dropped

Copyright © Ben Carterette

Projection & Selection

- Generalized projection selecting arithmetic functions of fields
 - $-\pi_F(R)$, where F is an arithmetic function of one or more fields and constant values
- Selection and projection operators can be composed
 - $-\pi_X(\sigma_P(R))$ returns records in R for which P is true, and with only fields specified in X
 - Equivalent to SQL query
 SELECT X FROM R WHERE P

Copyright © Ben Carterette

15

Set Operators

- · Union, intersection, and set-difference
- These take two relation instances R1 and R2 and return a new instance
- R1 and R2 must be union-compatible
 - Same number of fields
 - Corresponding fields must have same domain
- The schema of the new relation is defined to be the schema of R1

Copyright © Ben Carterette

Cross-Product

- Cross-product R1 × R2 pairs each record in R1 with each record in R2 to create a new relation of concatenated records
- Schema is defined to be the concatenation of R1 and R2's schemas
 - If both have a field with the same name, refer to that field by number
 - Or rename it using the ρ operator

Copyright © Ben Carterette

17

Joins

- Combine two relations R1 and R2 on records matching some logical condition p
 - $R1 \bowtie_{p} R2 \equiv \sigma_{p}(R1 \times R2)$
- Schema is the same as the cross-product schema (except in special cases)
 - Equijoin: P is an equality condition relating fields in R1 and R2
 - Most joins are equijoins
 - Natural join: P is an equality condition relating fields with the same name in R1 and R2
 - Most joins are natural joins
 - For natural joins, we don't have to write P
 - Just write R1 ⋈ R2

Copyright © Ben Carterette

Outer Joins

- Outer joins preserve records even if they do not match the condition p
 - Missing values filled in with nulls
- Left outer join R1 → R2 preserves every record in R1 and uses nulls for R2 fields when there is no record in R2 that satisfies P
- Right outer join R1 ⋈_P R2 preserves every record in R2 and uses nulls for R1 fields when there is no record in R1 that satisfies P
- Full outer join R1 ⋈_p R2 combines left and right outer joins, preserving all records in both

Copyright © Ben Carterette

21

Aggregation Functions

- Calculate a function of a set of values, returning a single value
 - G_f(R), where f is a function of a field in R, returns a relation consisting of the value returned by f
 - E.g. G_{avg(salary)} (instructors) calculates the average salary of all instructors
- Aggregate values by group:
 - $-\ _{\rm X}{\rm G_f}({\rm R})$ calculates f for distinct groups defined by values of field X
 - E.g. $_{\rm dept_name}G_{\rm avg(salary)}(instructors)$ calculates average salaries for instructors in each department

Copyright © Ben Carterette

Relational Algebra Summary

- Most important operators:
 - Selection: $\sigma_p(R)$

select a subset of records from relation instance R matching condition P

- Projection: $\pi_{x}(R)$

select a subset of fields X from relation instance R

– Join: R1 ⋈ R2

combine information from relations R1 and R2

- Aggregate functions: $_{x}G_{f}(R)$

calculate aggregating function f on relation instance R grouped by fields X

Copyright © Ben Carterette