SE 380

Feedback Control

Day 1

Example

There are two cars on a linear track. There is a follower and a leader. There are the following constraints:

- ullet The distinace from the beginning of the track to the follower's center is x_f
- The distinace from the beginning of the track to the leader's center is x_1
- The distance between the follower and the leader is $x_l x_f$
- leader is driven by a human
- follower is driven by a computer which is able to assign the velocity of the vehicle

Objective: Write a program that decides the appropriate speed of the follower in order to maintain a given (safe) inter-vehicle disance

Assumptions:

- 1-d motion only
- $\frac{dx_f(t)}{dt} u(t)$ where u is the follower's velocity which we pick
- The leader's speed is unknown and beyond our control but they don't drive too wildly, ie $\frac{dx_l(t)}{dt} \approx C$ for some constant C

Option 1: Open-Loop

- don't equip the follower with sensors (save money!)
- algorithm to decide velocity only has access to the desired inter-vehicle (denoted by r(t)

Control Diagram:

$$r(t) \Longrightarrow \text{control algo} \Longrightarrow u(t) \Longrightarrow \text{follower's dynamics} \Longrightarrow x_f \Longrightarrow \text{node}$$
 $\Longrightarrow y(t) = x_l(t) - x_f(t)$
 $x_t \Longrightarrow \text{node}$

Problem:

- since the controller has no idea what y(t) is, it cannot make a ood decision
- open-loop will not work well in practice

Option 2: Closed-Loop

- equip the follower with a stereo camera or LIDAR sensors to measure $y(t) = x_l(t) x_f(t)$
- same control diagram as before but hte control algo now receives y(t)

Control Diagram:

$$r(t) \Longrightarrow \operatorname{control\ algo} \Longrightarrow u(t) \Longrightarrow \operatorname{follower's\ dynamics} \Longrightarrow x_f \Longrightarrow \operatorname{node}$$
 $\Longrightarrow y(t) = x_l(t) - x_f(t)$ $x_l \Longrightarrow \operatorname{node}$ $\Longrightarrow \operatorname{control\ algo}$

Now we choose a control algo!

Choice 1: simplest control algorithm is "on-off" control

$$u(t) = \begin{cases} \bar{u}, & r(t) - y(t) < 0\\ u, & r(t) - y(t) > 0 \end{cases}$$

This algorithm has problems

- 1. \bar{u} must be picked to be greater than the leader's velocity, same with u
- 2. the resulting motion is uncomfortable

Choice 2: proportional error feedback

We pick some K_p such that $K_p > 0$ and have,

$$u(t) = -K_p(r(t) - y(t))$$

We'll learn that an even better controller is proportional-integral error feedback.

$$u(t) = -K_p(r(t) - y(t)) - K_i \int_0^t r(\tau) - y(\tau)d\tau$$