CS 131 Compilers: Discussion 4: Syntax-Derivative Tree Scheme

杨易为 季杨彪 尤存翰

{yangyw,jiyb,youch}@shanghaitech.edu.cn

2021年3月23日

1 LL Parsing Ambiguities

An LL(k) grammar is a CFG used by a parser that scans input left-to-right ("L"), leftmost derivation ("L"), and uses k tokens of lookahead to predict the correct production. We' ve previously seen that a grammar is ambiguous if it has a parse tree that is not unique. A more formal definition of LL conflicts uses FIRST and FOLLOW sets.

- 1. **FIRST(A)** the set of all terminals that could occur first in an expansion of the terminal or nonterminal A (include ϵ if A can expand to ϵ)
- 2. **FOLLOW(A)** the set of all terminals that could follow an occurrence of the terminal or nonterminal A in a (partial) derivation.

There are two main types of LL(1) conflicts:

- 1. FIRST/FIRST The FIRST sets of two different productions for same nonterminal intersect.
- 2. **FIRST/FOLLOW**: The FIRST set of a grammar rule contains an epsilon and the intersection with its FOLLOW set is not empty.

Is the following grammar LL(1)? Justify your answer using FIRST and FOLLOW sets.

 $S \rightarrow Xd$

 $X \rightarrow C|Ba$

 $C \rightarrow \epsilon$

 $B \rightarrow d$

Answer:

2 Resolving Conflicts

Consider the following grammar for numerical expressions with division, addition, and unary minus:

$$E \rightarrow Num|E/E|E+E|-E$$

- 1. Rewrite the grammar so that it is LL(1), so that '/' has higher precedence than '+', and so that '-' has highest precedence. '+' and '/' should be parsed in a right-associative way.
- 2. Compute the FIRST and FOLLOW sets for your re-written LL(1) grammar.
- 3. Draw the LL(1) parsing table for the grammar. You may need the following rules:
 - (a) For each production $X \to A_1 \dots A_n$:
 - (b) For each $1 \le i \le n$, and for each b in First (A_i) : Set $T[X, b] = X \to A_1 \dots A_n$. Stop when ϵ is not in First (A_i) .
 - (c) If $A_1 \dots A_n \to^* \epsilon$, then for each b in Follow (X): Set $T[X,b] = \epsilon$

Answer:

3 Earley's Algorithm

Consider the following CFG with terminals $\{(,),+,*,a,b\}$ (+ represents union) that is used to represent regular expressions over alphabet $\{a,b\}$:

$$R \to R + R|RR|(R)|R^*|a|b$$

- 1. Using the above CFG, provide a derivation for the following input string $(a + (ba)^*b)^*$.
- 2. For the derivation in above solution, provide the corresponding parse tree.

Answer: