Question	Scheme	Marks
10(a)	$\overrightarrow{BC} = -\overrightarrow{AB} + \overrightarrow{AC} = -(3\mathbf{a} + 4\mathbf{b}) + 7\mathbf{a} + 9\mathbf{b} = 4\mathbf{a} + 5\mathbf{b}$	B1
	$\overrightarrow{DC} = -\overrightarrow{DA} + \overrightarrow{DC} = -(4\mathbf{a} + 5\mathbf{b}) + 7\mathbf{a} + 9\mathbf{b} = 3\mathbf{a} + 4\mathbf{b}$	B1
	$AB \parallel DC$ and $BC \parallel AD$ hence the quadrilateral is a parallelogram	B1ft [3]
(b)	$\overrightarrow{CF} = -\frac{1}{3}(3\mathbf{a} + 4\mathbf{b})$	B1
	$\overrightarrow{AF} = \overrightarrow{AC} + \overrightarrow{CF} = 7\mathbf{a} + 9\mathbf{b} - \frac{1}{3}(3\mathbf{a} + 4\mathbf{b}) = \left[6\mathbf{a} + \frac{23}{3}\mathbf{b}\right]$	B1
	$\overrightarrow{AE} = \mu \overrightarrow{AF} = \mu \left(6\mathbf{a} + \frac{23}{3}\mathbf{b} \right)$	M1
	$\overrightarrow{AE} = \overrightarrow{AB} + \overrightarrow{BE} = 3\mathbf{a} + 4\mathbf{b} + \lambda(4\mathbf{a} + 5\mathbf{b}) = [(3 + 4\lambda)\mathbf{a} + (4 + 5\lambda)\mathbf{b}]$	M1
	$\mu \left(6\mathbf{a} + \frac{23}{3} \mathbf{b} \right) = (3 + 4\lambda)\mathbf{a} + (4 + 5\lambda)\mathbf{b}$ $\Rightarrow 6\mu = 3 + 4\lambda \frac{23}{3}\mu = 4 + 5\lambda$	ddM1
	$\Rightarrow \lambda = \frac{3}{2} \qquad \left(\mu = \frac{3}{2}\right)$	M1A1
	$\overrightarrow{AE} = \frac{3}{2} \left(6\mathbf{a} + \frac{23}{3} \mathbf{b} \right) = 9\mathbf{a} + \frac{23}{2} \mathbf{b}$	B1ft [8]
	Tota	 11 marks

Part	Mark	Notes
(a)	B1	For the correct vector for \overrightarrow{BC} or \overrightarrow{CB}
	B1	For the correct vector for \overrightarrow{DC} or \overrightarrow{CD}
	B1ft	For the correct complete conclusion including stating that the quadrilateral is a parallelogram. Ft their vectors for reverse directions.
	ALT	It then vectors for reverse directions.
	B1	For the correct lengths of \overrightarrow{AD} AND \overrightarrow{BC} $ AD = BC = \sqrt{41}$
	B1	For the correct lengths of \overrightarrow{AB} AND \overrightarrow{DC} $ AB = DC = 5$
4.	B1ft	Opposite sides are of equal length so the quadrilateral is a parallelogram.
(b)	B1	For the correct vector for \overrightarrow{CF} or \overrightarrow{DF} or correct reverse directions $\begin{bmatrix} \overrightarrow{CF} = -\frac{1}{3}(3\mathbf{a} + 4\mathbf{b}) \end{bmatrix} \begin{bmatrix} \overrightarrow{DF} = \frac{2}{3}(3\mathbf{a} + 4\mathbf{b}) \end{bmatrix} \text{ this may be embedded in } \overrightarrow{AF}$
	В1	For the correct vector for \overrightarrow{AF} using their \overrightarrow{CF} or \overrightarrow{DF} e.g., $\overrightarrow{AF} = \overrightarrow{AC} + \overrightarrow{CF} = 7\mathbf{a} + 9\mathbf{b} - \frac{1}{3}(3\mathbf{a} + 4\mathbf{b}) = \left[6\mathbf{a} + \frac{23}{3}\mathbf{b}\right]$
	M1	For one correct vector for \overrightarrow{AE} using their \overrightarrow{AF} and a parameter For example: $\overrightarrow{AE} = \mu \overrightarrow{AF} = \mu \left(6\mathbf{a} + \frac{23}{3}\mathbf{b} \right)$
	M1	For a second vector for \overrightarrow{AE} using their vectors and a second unique parameter For example; $\overrightarrow{AE} = \overrightarrow{AB} + \overrightarrow{BE} = 3\mathbf{a} + 4\mathbf{b} + \lambda(4\mathbf{a} + 5\mathbf{b}) = \left[(3 + 4\lambda)\mathbf{a} + (4 + 5\lambda)\mathbf{b} \right]$ $\overrightarrow{AE} = AB + BE = 3\mathbf{a} + 4\mathbf{b} + \lambda(4\mathbf{a} + 5\mathbf{b}) = \left[(3 + 4\lambda)\mathbf{a} + (4 + 5\lambda)\mathbf{b} \right]$
	ddM1	For setting their two vectors for \overrightarrow{BF} equal and setting up two equations involving two different parameters. $\mu \left(6\mathbf{a} + \frac{23}{3} \mathbf{b} \right) = (3 + 4\lambda)\mathbf{a} + (4 + 5\lambda)\mathbf{b}$ $\Rightarrow 6\mu = 3 + 4\lambda \frac{23}{3}\mu = 4 + 5\lambda$ This mark is dependent on the previous two M marks
	dddM1	For solving their two simultaneous equations by any method to find a value for λ This mark is dependent on the previous three M marks
	A1	For $\mu = \frac{3}{2}$ or $\lambda = \frac{3}{2}$
	B1ft	For writing down a vector for \overrightarrow{AE} using their \overrightarrow{AF} and their λ in the required form, provided $1 < \lambda < 2$

ALT	
B1	For the correct vector for \overrightarrow{CF} or \overrightarrow{DF} $\begin{bmatrix} \overrightarrow{OF} = -\frac{1}{3}(3\mathbf{a} + 4\mathbf{b}) \end{bmatrix} \qquad \begin{bmatrix} \overrightarrow{OF} = \frac{2}{3}(3\mathbf{a} + 4\mathbf{b}) \end{bmatrix}$
B1	For the correct vector for \overrightarrow{AF} using their \overrightarrow{CF} or \overrightarrow{DF} e.g., $\overrightarrow{AF} = \overrightarrow{AC} + \overrightarrow{CF} = 7\mathbf{a} + 9\mathbf{b} - \frac{1}{3}(3\mathbf{a} + 4\mathbf{b}) = \left[6\mathbf{a} + \frac{23}{3}\mathbf{b}\right]$
M1	For one correct vector for \overrightarrow{AE} using their \overrightarrow{AF} and a parameter For example: $\overrightarrow{AE} = \mu \overrightarrow{AF} = \mu \left(6\mathbf{a} + \frac{23}{3}\mathbf{b} \right)$ For a correct vector for \overrightarrow{BE} using their \overrightarrow{AE}
M1	For a correct vector for \overrightarrow{BE} using their \overrightarrow{AE} $\overrightarrow{BE} = -3\mathbf{a} - 4\mathbf{b} + \mu \left(6\mathbf{a} + \frac{23}{3}\mathbf{b} \right) = \left[(6\mu - 3)\mathbf{a} + \left(\frac{23}{3}\mu - 4 \right)\mathbf{b} \right]$
ddM1	For forming the correct ratio using the vector \overrightarrow{BC} $\frac{(6\mu-3)}{\left(\frac{23}{3}\mu-4\right)} = \frac{4}{5}$
dddM1	For solving the equation to find a value for μ
A1	For $\mu = \frac{3}{2}$
B1ft	For writing down a vector for \overrightarrow{AE} using their \overrightarrow{AF} and their λ in the required form \rightarrow For writing down a vector for \overrightarrow{AE} using their \overrightarrow{AF} and their λ in the required form, provided $1 < \lambda < 2$

Question	Scheme	Marks
11(a)(i)	$\cos 2A = \cos^2 A - \sin^2 A$, $= \cos^2 A - (1 - \cos^2 A)$	M1,M1
	$\cos 2A = 2\cos^2 A - 1 *$	A1
	200211	cso
(ii)	$\sin 2A = \sin A \cos A + \sin A \cos A = 2 \sin A \cos A *$	[3] B1
(11)	$\sin 2A = \sin A \cos A + \sin A \cos A = 2 \sin A \cos A$	cso
(h.)		[1]
(b)	$\cos 3A = \cos \left(2A + A\right)$	M1
	$= \cos 2A \cos A - \sin A \sin 2A$	
	$= (2\cos^2 A - 1)\cos A - 2\sin A\sin A\cos A$	M1
	$= 2\cos^3 A - \cos A - 2\left(1 - \cos^2 A\right)\cos A$	1711
	$= 2\cos^{3} A - \cos A + 2\cos^{3} A - 2\cos A$	
	$=4\cos^3 A - 3\cos A$	M1
	$\Rightarrow \cos^3 A = \frac{\cos 3A + 3\cos A}{4} *$	A1 Cso
	4	[4]
	ALT	
	$\cos^3 A = \frac{\cos 3A + 3\cos A}{4}$	
	$= \frac{\cos 2A \cos A - \sin 2A \sin A + 3 \cos A}{\cos A + \sin 2A \sin A + 3 \cos A}$	[M1
	$=\frac{\frac{\cos 271\cos 77}{\sin 271\sin 77}+3\cos 77}{4}$	
	$= \frac{\left(2\cos^2 A - 1\right)\cos A - 2\sin A\sin A\cos A + 3\cos A}{4}$	
	= 4	M1
	$2\cos^3 A - \cos A - 2\left(1 - \cos^2 A\right)\cos A + 3\cos A$	
	= 4	
	$= \frac{2\cos^3 A - \cos A + 2\cos^3 A - 2\cos A + 3\cos A}{\cos^2 A + \cos^2 A + \cos^2 A + \cos^2 A}$	M1
	4	A1]
	$= \frac{4\cos^3 A}{4} = \cos^3 A [LHS = RHS]$,
	·	
(c)	$\left[\cos 3A = 4\cos^3 A - 3\cos A \Rightarrow 2\cos 3A = 8\cos^3 A - 6\cos A\right]$	
	$8\cos^{3}\left(\frac{\theta}{2}\right) - 6\cos\left(\frac{\theta}{2}\right) - 1 = 0 \Rightarrow 2\cos 3\left(\frac{\theta}{2}\right) - 1 = 0$	M1
	$\cos 3\left(\frac{\theta}{2}\right) = \frac{1}{2} \Rightarrow 3\left(\frac{\theta}{2}\right) = \frac{\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}, \left(\frac{11\pi}{3}\right)$	M1
	$\theta = \frac{2\pi}{9}, \frac{10\pi}{9}, \frac{14\pi}{9}$	M1A1
	9 ' 9 ' 9	[4]

(d)
$$I = \int_0^{\frac{\pi}{6}} (4\cos^3\theta - \sin 2\theta) \, d\theta = \int_0^{\frac{\pi}{6}} (\cos 3\theta + 3\cos\theta - \sin 2\theta) \, d\theta$$

$$I = \left[\frac{\sin 3\theta}{3} + 3\sin\theta + \frac{\cos 2\theta}{2} \right]_0^{\frac{\pi}{6}}$$

$$M1$$

$$= \left[\frac{\sin 3\left(\frac{\pi}{6}\right)}{3} + 3\sin\left(\frac{\pi}{6}\right) + \frac{\cos 2\left(\frac{\pi}{6}\right)}{2} \right] - \left[\frac{\sin 3(0)}{3} + 3\sin(0) + \frac{\cos 2(0)}{2} \right]$$

$$= \left[\frac{1}{3} + \frac{3}{2} + \frac{1}{4} \right] - \left[0 - 0 + \frac{1}{2} \right] = \frac{19}{12}$$

$$A1$$

$$[4]$$
Total 16 marks

Total To marks

Part	Mark	Notes	
(a)(i)	M1	For the correct use of the addition formula for cos 2A	
	M1	For using the Pythagorean identity correctly	
	A1	For the correct identity with no errors.	
	cso		
(a)(ii)	B1	$\lceil \sin(A+A) \rceil = \sin 2A = \sin A \cos A + \cos A \sin A = 2 \sin A \cos A$	
	cso		
(b)	Method	thod 1 – Starting with cos 3A	
	M1	For using the correct addition formula for cos 3A to obtain the correct expansion.	
	M1	For applying at least TWO of the following seen anywhere in this part of the question: • cos 2A identity from (a) correctly	
		• the sin 2A identity from (a) applied correctly	
		• the identity $\sin^2 A = 1 - \cos^2 A$ applied correctly	
	M1	For simplifying the expression to be in terms of	
	IVI I	$\cos^3 A, \cos 3A$ and $\cos A$ only	
	A1	For the correct identity with no errors	
	cso		
	ALT –	Method 2 – starting with the RHS to show = LHS	
	M1	For using the correct addition formula for cos 3A to obtain the correct expansion. You can ignore everything else for this and the next mark.	
	M1	For applying at least TWO of the following seen anywhere in this part of the question: [again, ignore anything other than the cos 3A here] • cos 2A identity from (a) correctly • the sin 2A identity form (a) applied correctly the identity sin² $A = 1 - \cos^2 A$ applied correctly	
	M1	Collects up like terms and simplifies to obtain $\frac{4\cos^3 A}{4}$	
	A1	For showing LHS = RHS with no errors	

(c)	M1	Substitutes $2\cos 3\left(\frac{\theta}{2}\right)$ in place of $8\cos^3\left(\frac{\theta}{2}\right) - 6\cos\left(\frac{\theta}{2}\right)$ correctly to
		obtain at least $k \cos 3\left(\frac{\theta}{2}\right) - 1 = 0$ where k is a constant
	M1	Rearranges to obtain $\cos 3\left(\frac{\theta}{2}\right) = \frac{1}{k}$ and takes the inverse cosine to
		find at least any one correct value for $3\left(\frac{\theta}{2}\right)$
	M1	Finds at least one correct value for θ
	A 1	Finds all three values with no extra values within range.
	A1	Ignore any values given outside of the range.
(d)	N (1	For a correct substitution as shown.
	M1	$4\cos^3\theta = \cos 3\theta + 3\cos \theta$
	M1	For an acceptable attempt to integrate either $\cos 3\theta \to \pm \frac{\sin 3\theta}{3}$ or $-\sin 2\theta \to \pm \frac{\cos 2\theta}{2}$
	M1	For substituting both given values the correct way around. This mark can be awarded for a complete substitution SEEN into any changed expression. Award this mark for correct integration and a value of $\frac{19}{12}$ seen without explicit substitution.
	A1	For $\frac{19}{12}$