Agenda

- 1. Multinomial distribution
- 2. Categorical outcome variables
- 3. Softmax link function
- 4. Interpreting coefficients
- 5. Multinomial logistic in R

Income and marital status

The problem Outcome variable has multiple (>2) categories. Binomial and Poisson models won't work.
 The solution Use a multinomial outcome distribution (and a new link function) to account for the data.

Multinomial distribution

Multinom $(n, (p_1, \ldots, p_k))$

Multinomial distribution

Result of n trials, each of which can result in one of k outcomes with probability p_1 , p_2 , ..., p_k .

Multinomial distribution

Multinom (8, (0.20, 0.10, 0.45, 0.25))

Multinomial distribution

Binomial, Bernoulli, and categorical distributions are special cases of the multinomial.

$$Bin(n, p) = Multinom(n, (p-1,p))$$

Bernoulli(p) = Multinom(1, (p–1,p))

Categorical
$$Cat(p_1, p_2, ..., p_k) =$$
 $Multinom(1, (p_1, p_2, ..., p_k))$

	One trial	Multiple trials
Two categories	Bernoulli	Binomial
Multiple categories	Categorical	Multinomial

Categorical distribution

Cat (p_1, \ldots, p_k)

distribution

Categorical | Multinomial distribution with just one trial

Categorical outcome

Softmax link function

$M_i \in \{\text{Single, Married, Divorced, Widowed}\}$

$$M_i \sim ext{Cat} \left(ext{softmax}(s_m, s_s, s_d, s_w)
ight)$$
 $s_m = 0$
 $s_s = a_s + \beta_s E_i$
 $s_d = a_d + \beta_d E_i$

 $s_w = a_w + \beta_w E_i$

Softmax is a multivariate generalization of inverse logit.

$$p_s = \operatorname{softmax}(s_s) = \frac{\exp(s_s)}{\exp(s_s) + \exp(s_m) + \exp(s_d) + \exp(s_w)}$$

Multinomial logistic regression

Multinomial logistic (or categorical) regression model.

$$M_i \sim ext{Cat}\left(ext{softmax}(s_{mi}, s_{si}, s_{di}, s_{wi})
ight)$$
 $s_{mi} = 0$
 $s_{si} = a_s + \beta_s E_i$
 $s_{di} = a_d + \beta_d E_i$
 $s_{wi} = a_w + \beta_w E_i$
 $a_s, a_d, a_w \sim ext{Norm}(0, 2)$
 $eta_s, eta_d, eta_w \sim ext{Norm}(0, 3)$

Multinomial logistic regression

With two categories, the multinomial logistic model is the standard (binomial) logistic model.

$$egin{aligned} M_i &\sim ext{Cat}\left(ext{softmax}(s_{1i},s_{2i})
ight) \ s_{1i} &= 0 \ s_{2i} &= lpha + eta E_i \ lpha &\sim ext{Norm}(0,1) \ eta &\sim ext{Norm}(0,3) \end{aligned}$$

$$p_{2i} = \frac{\exp(s_{2i})}{1 + \exp(s_{2i})} = \log_{10}^{-1}(s_{2i})$$

Interpreting estimates

$$M_i \sim ext{Cat} \left(ext{softmax}(ext{s}_{mi}, ext{s}_{si}, ext{s}_{di}, ext{s}_{wi})
ight) \ s_{mi} = 0 \ s_{si} = a_s + eta_s E_i \ s_{di} = a_d + eta_d E_i \ s_{wi} = a_w + eta_w E_i \ a_s, a_d, a_w \sim ext{Norm}(0, 2) \ eta_s, eta_d, eta_w \sim ext{Norm}(0, 3) \ eta_s$$

		90% credible
<u>Mean</u>		interval
as	5.35	4.73 5.98
βs	-0.59	-0.65 -0.53
a_d	0.57	-0.24 1.37
$oldsymbol{eta}_d$	-0.18	-0.25 -0.10
a_w	1.94	0.89 2.98
β_{w}	-0.40	-0.50 -0.30

Interpreting estimates

		90% credible
	Mean	interval
as	5.35	4.73 5.98
$oldsymbol{eta}_{s}$	-0.59	-0.65 -0.53
a_d	0.57	-0.24 1.37
$oldsymbol{eta}_d$	-0.18	-0.25 -0.10
a_w	1.94	0.89 2.98
β_{w}	-0.40	-0.50 -0.30