SMUO 2024

wykład 9: Konstrukcja systemów spinowych

Dla $x \in V$ oraz $\eta \in \{0,1\}^V$ definiujemy $\eta^{(x)} \in \{0,1\}^V$ wzorem

$$\eta^{(x)}(y) = \left\{ \begin{array}{ll} \eta(y), & y \neq x \\ 1 - \eta(x), & y = x \end{array} \right..$$

Dla fpochodzącego z odpowiedniego podzbioru $C_0(\{0,1\}^V)$ chcemy położyć

$$Lf(\eta) = \sum_{x \in V} c(x, \eta) \left[f\left(\eta^{(x)}\right) - f(\eta) \right]. \tag{0.1}$$

Okazuje się, że dokładne napisanie dziedziny jest problematyczne. Aby obejść tę trudność rozważmy

$$D = \left\{ f \in C(\{0,1\}^V) : ||f||_o := \sup_{\eta} \sum_{x} \left| f(\eta^{(x)}) - f(\eta) \right| < \infty \right\}.$$
 (0.2)

Konstrukcja systemów spinowych cd.

Aby sprawdzić (GI4) musimy wyprowadzić ograniczenie dla rozwiązań równania $f - \lambda L f = q$. Niech

$$\epsilon = \inf_{u,\eta} [c(u,\eta) + c(u,\eta_u)] \quad \text{oraz} \quad \gamma(x,u) = \sup_{\eta} |c(x,\eta_u) - c(x,\eta)|.$$

Zauważmy, że $\gamma(x,u)$ mierzy stopień, w jakim intensywność zmiany w miejscu x zależy od konfiguracji w miejscu u. Niech $\ell_1(V)$ będzie przestrzenią Banacha funkcji $\alpha:V\to\mathbb{R}$, które spełniają

$$||\alpha|| := \sum_{x} |\alpha(x)| < \infty.$$

Macierz γ definiuje operator Γ na $\ell_1(S)$ przez

$$\Gamma \alpha(u) = \sum_{x: x \neq u} \alpha(x) \gamma(x, u).$$

Operator ten jest dobrze zdefiniowany i ograniczony, pod warunkiem że

$$M := \sup_{x} \sum_{u: u \neq x} \gamma(x, u) < \infty,$$

a wtedy $||\Gamma|| = M$.

Dla $f \in C(\{0,1\}^V)$ i $x \in S$, niech

$$\Delta f(x) = \sup_{\eta} \left| f\left(\eta^{(x)}\right) - f(\eta) \right|.$$

Wtedy $||f||_o = ||\Delta f||_{l_1(V)}$. Oto oszacowanie, którego potrzebujemy.

Fakt 0.1. Załóżmy, że spełniony jest jeden z warunków

- (a) $f \in D$,
- (b) f jest ciagła i

$$c(x,\cdot) \equiv 0$$
 dla wszystkich oprócz skończonej liczby $x \in V$. (0.3)

Wówczas jeśli $f - \lambda L f = g \in D, \ \lambda > 0, \text{ oraz } \lambda M < 1 + \lambda \epsilon, \text{ to}$

$$\Delta f \le \left[(1 + \lambda \epsilon)I - \lambda \Gamma \right]^{-1} \Delta g,\tag{0.4}$$

gdzie nierówność zachodzi współrzędna po współrzędnej, a odwrotność jest zdefiniowana przez nieskończony szereg

$$[(1 + \lambda \epsilon)I - \lambda \Gamma]^{-1} \alpha = \frac{1}{1 + \lambda \epsilon} \sum_{k=0}^{\infty} \left(\frac{\lambda}{1 + \lambda \epsilon}\right)^k \Gamma^k \alpha. \tag{0.5}$$

Dowód. Zauważmy, że szereg w (??) jest zbieżny dla $\alpha \in \ell_1(V)$ na mocy założenia $\lambda M < 1 + \lambda \epsilon$. Pisząc $f - \lambda L f = g$ w punktach η oraz $\eta^{(u)}$, odejmując i zauważając że $(\eta^{(u)})^{(u)} = \eta$, otrzymujemy

$$[f(\eta^{(u)}) - f(\eta)][1 + \lambda c(u, \eta) + \lambda c(u, \eta^{(u)})] = [g(\eta^{(u)}) - g(\eta)] + \lambda \sum_{x:x \neq u} \left\{ c(x, \eta^{(u)})[f((\eta^{(u)})^{(x)}) - f(\eta^{(u)})] - c(x, \eta)[f(\eta^{(x)}) - f(\eta)] \right\}. \quad (0.6)$$

Ponieważ wartości $f(\eta^{(u)}) - f(\eta)$, gdy η zmienia się a u jest ustalone, tworzą zbiór symetryczny, a ta różnica jest funkcją ciągłą η , dla każdego u istnieje takie η , że

$$f(\eta^{(u)}) - f(\eta) = \sup_{\zeta} |f(\zeta^{(u)}) - f(\zeta)| = \Delta f(u).$$

Stad,

$$f(\zeta^{(u)}) - f(\zeta) \le f(\eta^{(u)}) - f(\eta)$$

dla każdej ζ . Stosując to dla $\zeta = \eta^{(x)}$ i przekształcając, otrzymujemy

$$f((\eta^{(u)})^{(x)}) - f(\eta^{(u)}) = f((\eta^{(x)})^{(u)}) - f(\eta^{(u)}) \le f(\eta^{(x)}) - f(\eta),$$

Używając tej nierówności w (??).

$$\Delta f(u)(1+\lambda\epsilon) \leq \Delta f(u)[1+\lambda c(u,\eta)+\lambda c(u,\eta^{(u)})]$$

$$\leq \Delta g(u)+\lambda \sum_{x:x\neq u} \left[c(x,\eta^{(u)})-c(x,\eta)\right] \left[f(\eta^{(x)})-f(\eta)\right]$$

$$\leq \Delta g(u)+\lambda \sum_{x:x\neq u} \gamma(x,u)\Delta f(x). \quad (0.7)$$

Jeśli (??) zachodzi, to tylko skończona liczba wyrazów po prawej stronie jest niezerowa, więc przy któregokolwiek z założeń faktu $\Gamma\Delta_f$ jest dobrze określona. Dlatego (??) można zapisać jako

$$(1 + \lambda \epsilon) \Delta f \le \Delta g + \lambda \Gamma \Delta f.$$

Iteracja tej nierówności prowadzi to do

$$\Delta f \le \frac{1}{1 + \lambda \epsilon} \sum_{k=0}^{n} \left(\frac{\lambda}{1 + \lambda \epsilon} \right)^{k} \Gamma^{k} \Delta g + \left(\frac{\lambda}{1 + \lambda \epsilon} \right)^{n+1} \Gamma^{n+1} \Delta f.$$

Jeżeli rozważymy teraz $n \to \infty$, dostaniemy (??).

Twierdzenie 0.2. Załóżmy, że $M < \infty$. Wtedy \overline{L} jest generatorem infinitezymalnym półgrupy Fellera $T = (T(t))_{t \in \mathbb{R}_+}$. Ponadto,

$$\Delta T(t)f \le e^{-t\epsilon}e^{t\Gamma}\Delta f. \tag{0.8}$$

W szczególności, jeśli $f \in D$, to $T_t f \in D$ oraz

$$||T(t)f||_o \le e^{(M-\epsilon)t} ||f||_o.$$
 (0.9)

Dowód. Własności (GI1), (GI2), (GI3) i (GI5) z Definicji ?? zachodzą dla (L, D) są i są dziedziczone przez \overline{L} z Faktu ??. Aby sprawdzić warunek (GI4) weźmy wstępujący ciąg $V_n \subseteq V$ taki, że $\bigcup_n V_n = V$. Niech

$$L_n f(\eta) = \sum_{x \in V_n} c(x, \eta) \left[f\left(\eta^{(x)}\right) - f(\eta) \right], \quad f \in C\left(\{0, 1\}^V\right).$$
 (0.10)

To jest generator dla systemu spinowego, w którym współrzędne

$$(\eta(x):x\notin V_n)$$

są stałe w czasie. Ponieważ L_n jest ograniczonym generatorem, spełnia

$$\mathcal{R}(I - \lambda L_n) = C(\{0, 1\}^V)$$

dla dostatecznie małych $\lambda > 0$. Dla $g \in D$, możemy zdefiniować $f_n \in C(\{0,1\}^V)$ przez $f_n - \lambda L_n f_n = g$. Ponieważ L_n spełnia (??), jeśli λ jest wystarczająco małe, tak że $\lambda M < 1 + \lambda \epsilon$, wtedy $f_n \in D$ zgodnie z Faktem ??. W związku z tym możemy położyć

$$g_n = f_n - \lambda L f_n \in \mathcal{R}(I - \lambda L).$$

Niech $K = \sup_{x,\eta} c(x,\eta) < \infty$, wtedy z Faktu ??,

$$||g_n - g|| = \lambda ||(L - L_n)f_n|| \le \lambda K \sum_{x \notin V_n} \Delta f_n(x)$$

$$\le \lambda K \sum_{x \notin V_n} \left[(1 + \lambda \epsilon)I - \lambda \Gamma \right]^{-1} \Delta g(x). \quad (0.11)$$

Ponieważ $\Delta g \in \ell_1(V)$, prawa strona (??) dąży do zera, gdy $n \to \infty$, więc $g_n \to g$. Stąd $g \in \operatorname{cl}(\mathcal{R}(I - \lambda L))$, więc wnioskujemy, że $D \subseteq \operatorname{cl}(\mathcal{R}(I - \lambda L))$. Ponieważ D jest gęste w $C(\{0,1\}^V)$, widzimy, że $\mathcal{R}(I - \lambda L)$ jest również gęste. Zgodnie z Faktem ??, $\mathcal{R}(I - \lambda \overline{L})$ musi być domkniętym podzbiorem $C(\{0,1\}^V)$. Zatem

$$\mathcal{R}(I - \lambda \overline{L}) = C(\{0, 1\}^V)$$

To kończy weryfikację, że \overline{L} jest generatorem infinitezymalnym. Przechodząc do drugiego stwierdzenia, zapiszmy $(\ref{eq:property})$ jako

$$\Delta_{(I-\lambda L)^{-1}}g \le \left[(1+\lambda\epsilon)I - \lambda\Gamma\right]^{-1}\Delta g,$$

a następnie iterujmy, aby uzyskać

$$\Delta_{(I-\frac{t}{n}L)^{-1}g} \leq \left[\left(1 + \frac{t}{n}\epsilon\right)I - \frac{t}{n}\Gamma \right]^{-n}\Delta g.$$

Przechodząc do granicy otrzymujemy (??).