

09481: Inteligencia Artificial

Profesor del curso: Breyner Posso, Ing. M.Sc. e-mail: breyner.posso1@u.icesi.edu.co

Programa de Ingeniería de Sistemas.

Departamento TIC.

Facultad de Ingeniería.

Universidad Icesi.

Cali, Colombia.

Agenda

- Introducción
- Aprendizaje Supervisado.
 - Técnicas de regularización.
 - ¿Qué son? ¿para qué sirven? ¿cómo usarlas?
 - Regularización L2 (regresión Ridge).
 - Regularización L1 (regresión Lasso).

Introducción

- Árboles de decisión
- Máquinas de soporte vectorial (SVM)
- Redes neuronales

- Regresión Ridge
- Regresión Lasso

Técnicas de Regularización

Errores de sesgo (bias) y varianza (variance)

Al evaluar un modelo de aprendizaje supervisado puede presentarse una de las siguientes situaciones:

- Sub aprendizaje (underfitting)
- Ajuste óptimo.
- Sobre aprendizaje (overfitting)

Errores de sesgo (bias) y varianza (variance)

Errores de sesgo (bias) y varianza (variance)

Se pueden adoptar varios métodos para combatir el sobre aprendizaje:

- Validación cruzada (cross-validation)
- Reducción del número de atributos.
- Reducción de la complejidad del modelo.
- Regularización.
- Etc.

Antes de comenzar, ¿qué es la norma p de un vector?

Sea $\mathbf{w} = (w_1, w_2, w_3, ..., w_n)$ un vector en \mathbf{R}^{n} .

Para un número real $p \ge 1$, la norma p, o norma L_p del vector \mathbf{w} está definida por:

$$\|\mathbf{w}\|_{p} = (|w_{1}|^{p} + |w_{2}|^{p} + \dots + |w_{n}|^{p})^{1/p}$$

La norma L_{∞} (también conocida como norma máxima, o norma uniforme), es el límite de las normas p cuando $p \to \infty$. Este límite corresponde con la siguiente definición:

$$\|\mathbf{w}\|_{\infty} = \max(|w_1|, |w_2|, ..., |w_n|)$$

• En un modelo de regresión lineal, los parámetros w_i se estiman teniendo como objetivo la minimización de la suma de los residuos al cuadrado. Donde los residuos son las diferencias entre los los valores reales (y) y las predicciones (\hat{y}) :

Predicción en un modelo de regresión lineal múltiple

$$\widehat{y}^{(j)} = w_0 + w_1 x_1^{(j)} + w_2 x_2^{(j)} + \dots + w_i x_i^{(j)} + \dots + w_n x_n^{(j)}$$

• En un modelo de regresión lineal, los parámetros w_i se estiman teniendo como objetivo la minimización de la suma de los residuos al cuadrado. Donde los residuos son las diferencias entre los los valores reales (y) y las predicciones (\hat{y}) :

Predicción en un modelo de regresión lineal múltiple

$$\widehat{y}^{(j)} = w_0 + w_1 x_1^{(j)} + w_2 x_2^{(j)} + \dots + w_i x_i^{(j)} + \dots + w_n x_n^{(j)}$$

Función de costo J sin regularización

$$J(\omega) = \sum_{j=1}^{m} [y^{(j)} - \widehat{y}^{(j)}]^2 = \sum_{j=1}^{m} [y^{(j)} - (w_0 + w_1 x_1^{(j)} + w_2 x_2^{(j)} + \dots + w_i x_i^{(j)} + \dots + w_n x_n^{(j)})]^2$$

• En un modelo de regresión lineal, los parámetros w_i se estiman teniendo como objetivo la minimización de la suma de los residuos al cuadrado. Donde los residuos son las diferencias entre los los valores reales (y) y las predicciones (\hat{y}) :

Predicción en un modelo de regresión lineal múltiple

$$\hat{y}^{(j)} = w_0 + w_1 x_1^{(j)} + w_2 x_2^{(j)} + \dots + w_i x_i^{(j)} + \dots + w_n x_n^{(j)}$$

Función de costo J sin regularización

$$J(\omega) = \sum_{j=1}^{m} [y^{(j)} - \widehat{y}^{(j)}]^2 = \sum_{j=1}^{m} [y^{(j)} - (w_0 + w_1 x_1^{(j)} + w_2 x_2^{(j)} + \dots + w_i x_i^{(j)} + \dots + w_n x_n^{(j)})]^2$$

$$\arg\min \sum_{j=1}^{m} [y^{(j)} - (w_0 + w_1 x_1^{(j)} + w_2 x_2^{(j)} + w_i x_i^{(j)} \dots + w_n x_n^{(j)})]^2$$

Residual Sum of Squares (RSS)

donde $x_i^{(j)}$ se interpreta como el valor de la i-ésima variable independiente de la la j-ésima observación, ejemplo, o instancia. Se asume que el conjunto de datos de entrenamiento tiene m observaciones.

15

- Las técnicas de regularización modifican la función de costo de forma tal que además de penalizar los errores de predicción, se penalicen <u>magnitudes grandes</u> de los <u>coeficientes</u> w_j (para j≠0) que caracterizan al modelo.
- Algunos tipos de regularización como la L_1 (que da origen a la regresión Lasso: *least absolute shrinkage and selection operator*), permiten reducir el número de variables, y con ello, los requerimientos computacionales para entrenar los modelos y generar nuevas predicciones.

- Las técnicas de regularización modifican la función de costo de forma tal que además de penalizar los errores de predicción, se penalicen <u>magnitudes grandes</u> de los <u>coeficientes</u> w_j (para j≠0) que caracterizan al modelo.
- Algunos tipos de regularización como la L_1 (que da origen a la regresión Lasso: *least absolute shrinkage and selection operator*), permiten reducir el número de variables, y con ello, los requerimientos computacionales para entrenar los modelos y generar nuevas predicciones.

J sin regularización (se usa en la regresión lineal múltiple):

$$J(\mathbf{w}) = \left[\sum_{i=1}^{m} \left(y^{(i)} - \tilde{y}^{(i)}\right)^{2}\right] = \left[\sum_{i=1}^{m} \left(y^{(i)} - w_{0} - w_{1}x_{1}^{(i)} - \dots - w_{n}x_{n}^{(i)}\right)^{2}\right]$$

J con regularización L₂ (se usa en la regresión Ridge):

$$J(\mathbf{w}) = \left[\sum_{i=1}^{m} \left(y^{(i)} - \tilde{y}^{(i)}\right)^{2}\right] + \frac{\lambda}{2} \sum_{j=0}^{n} w_{j}^{2}$$

No se penaliza w_0

J con regularización L₁ (se usa en la regresión Lasso):

$$J(\mathbf{w}) = \left[\sum_{i=1}^{m} \left(y^{(i)} - \tilde{y}^{(i)}\right)^{2}\right] + \frac{\lambda}{2} \sum_{j=0}^{n} \left|w_{j}\right|$$

n: número de variables independientes. *m*: número de observaciones.

λ: factor de regularización.

- El parámetro de regularización λ sirve para controlar el impacto relativo de los dos términos en la función de costo (el que minimiza el error de predicción, y el que limita la complejidad del modelo para evitar el sobre aprendizaje).
 - Cuando $\lambda = 0$, la penalidad no tiene efecto.
 - Entre más grande λ , los coeficientes estimados van a ser más pequeños.
 - Seleccionar un valor adecuado de λ es crítico. Se puede usar validación cruzada para optimizar este *hiperparámetro*.
 - Al introducir el término de regularización en la función de costo, se cambia la expresión para el gradiente, y por ende se debe actualizar el código que encuentra los coeficientes usando el gradiente descendente.
 - Obtener el nuevo gradiente es fácil para el caso de regresión Ridge, no tanto en el caso de regresión Lasso.
- La red elástica (*ElasticNet*) es un modelo de regresión que combina las regularizaciones L₁ y L₂. En este caso se requieren dos parámetros de regularización.

Regularización en la regresión: consideraciones [1]

- Regresión Ridge obtiene coeficientes pequeños.
 - √ Todos los atributos predictores están presentes en el modelo.
 - ✓ El modelo resultante es difícil de interpretar si hay muchas variables predictivas.
- Regresión Lasso hace desaparecer los coeficientes menos importantes.
 - ✓ Sirve como método de selección de atributos, forzando los coeficientes de los atributos eliminados a 0, si λ es suficientemente grande.

Regularización en la regresión: consideraciones [2]

Regresión Ridge:

- ✓ En caso de correlación de las variables independientes: funciona bien, pues aunque incluya todas las variables sus coeficientes van a distribuirse considerando sus correlaciones.
- √ Se usa para prevenir el sobre entrenamiento (overfitting).

Regresión Lasso:

- ✓ En caso de correlación de las variables independientes:
 - Escoge arbitrariamente cualquiera de las variables altamente correlacionadas, poniendo en 0 los coeficientes de las demás.
 - Puede haber problemas en caso de términos polinomiales que puedan desaparecer al estar correlacionados entre ellos.
- ✓ Produce modelos más simples, robustos con respecto al sobre entrenamiento, y fáciles de interpretar.
- ✓ Se usa como método de selección de atributos cuando hay muchas variables independientes. Produce modelos "poco densos" (*sparse*).

¿Cómo usar la regresión Ridge, Lasso, o la red elástica desde Scikit-learn en Python?

from sklearn import linear_model

linear_model.Ridge
linear_model.Lasso
linear_model.ElasticNet

- Para mayor información, consulte:
 - ✓ https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge
 - ✓ https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
 - ✓ <a href="https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html#sklearn.linear_model.El

Veamos un ejemplo para entender la importancia de la regularización

Ejemplo: regresión polinomial de una variable

: Variable de entrada real.

t: Variable de salida real.

 $t = \sin(2\pi x) + \mathcal{N}(\mu, \sigma^2)$: Modelo que se usó para generar los datos artificiales.

N: Número de observaciones de x y t.

$$\boldsymbol{x} = \left[x_1, x_2, \dots, x_N\right]^T$$

$$\boldsymbol{t} = \begin{bmatrix} t_1, t_2, \dots, t_N \end{bmatrix}^T$$

Figure 1.2 Plot of a training data set of N=10 points, shown as blue circles, each comprising an observation of the input variable x along with the corresponding target variable t. The green curve shows the function $\sin(2\pi x)$ used to generate the data. Our goal is to predict the value of t for some new value of t, without knowledge of the green curve.

Regresión

> Regresión polinomial en una variable (predicción):

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

➤ Donde:

M : orden del polinomio.

 $w_0, w_1, w_2, w_3, \dots, w_M$: coeficientes del polinomio.

w : vector de coeficientes.

- y(x, w) es una función no lineal de x, pero es una función lineal de los coeficientes w.
- Cuando las funciones son lineales en los coeficientes o parámetros desconocidos, estas se conocen como modelos lineales.

Figure 1.4 Plots of polynomials having various orders M, shown as red curves, fitted to the data set shown in Figure 1.2.

Coeficientes w del polinomio para diferentes valores de M

Table 1.1 Table of the coefficients w* for polynomials of various order. Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	M = 0	M = 1	M = 3	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

Efecto de usar más datos

Figure 1.6 Plots of the solutions obtained by minimizing the sum-of-squares error function using the M=9 polynomial for N=15 data points (left plot) and N=100 data points (right plot). We see that increasing the size of the data set reduces the over-fitting problem.

Efecto de usar regularización L₂

➤En las siguientes gráficas se usaron 10 datos de entrenamiento, y M=9.

Figure 1.7 Plots of M=9 polynomials fitted to the data set shown in Figure 1.2 using the regularized error function (1.4) for two values of the regularization parameter λ corresponding to $\ln \lambda = -18$ and $\ln \lambda = 0$. The case of no regularizer, i.e., $\lambda = 0$, corresponding to $\ln \lambda = -\infty$, is shown at the bottom right of Figure 1.4.

Coeficientes w del polinomio para diferentes valores de λ , con M=9

Table 1.2 Table of the coefficients \mathbf{w}^{\star} for M=9 polynomials with various values for the regularization parameter λ . Note that $\ln \lambda = -\infty$ corresponds to a model with no regularization, i.e., to the graph at the bottom right in Figure 1.4. We see that, as the value of λ increases, the typical magnitude of the coefficients gets smaller.

" " " " " " " " " " " " " " " " " " "						
	J	\downarrow				
	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$			
w_0^{\star}	0.35	0.35	0.13			
w_1^{\star}	232.37	4.74	-0.05			
w_2^{\star}	-5321.83	-0.77	-0.06			
w_3^{\star}	48568.31	-31.97	-0.05			
w_4^{\star}	-231639.30	-3.89	-0.03			
w_5^{\star}	640042.26	55.28	-0.02			
w_6^{\star}	-1061800.52	41.32	-0.01			
w_7^{\star}	1042400.18	-45.95	-0.00			
w_8^{\star}	-557682.99	-91.53	0.00			
w_9^{\star}	125201.43	72.68	0.01			

 $\lambda = 0$ $\lambda = 1.5230 \times 10^{-8}$ $\lambda = 1$

 \triangleright A medida que aumenta λ , disminuye la magnitud de los coeficientes.

Efecto del parámetro de regularización en el aprendizaje

Figure 1.8 Graph of the root-mean-square error (1.3) versus $\ln \lambda$ for the M=9 polynomial.

λ aumenta en esta dirección