Yifeng Xiao

¶ github.com/yifengxiao1 ♦ yifengxiao1.github.io ■ yifengxiao.xjtu@gmail.com

EDUCATION

Xi'an Jiaotong University, Xi'an China

Master of Science - Mathematics Current average score: 85.86

Xi'an Jiaotong University, Xi'an China

Bachelor of Science - Honers Science Program (Mathematics and applied Mathematics)

Average score: 88.55

Georgia Institute of Technology

Jan 2020 - May 2020

Intensive English Program

GPA: 3.95; Statistical Estimation: A; Information Theory: A

INTERNSHIP AND TEACHING EXPERIENCE

Shenzhen Research Institute of Big Data, (SRIBD)

May 2023 - Present

Sep 2021 - June 2024

Sep 2017 - June 2022

Reseach Assistant

Xi'an Jiaotong University (XJTU)

Sep 2021 – Feb 2022

Teaching Assistant: Calculas (XJTU courses for undergraduate students).

SKILLS

Coding: Python (3+ yrs), Matlab (1+ yrs), Large (2+ yrs), Linux (6 mth), HTML/CSS (3 mth)

Fields: Machine learning (3+ yrs), Applied mathematics (3+ yrs), Operations research (2+ yrs), Wireless

communication(1 + yrs)

English: Toefl: 100, GRE: 320 + 3.5

RESEARCH EXPERIENCE

Optimization Solver Development Lab, SRIBD

May 2023 - Nov 2023

• 2-stage Stochastic Programming

Used graph neural networks (GNNs) to approximate the optimal objective of second-stage programming under a given first-stage solution, and made this approximation generalizable between instances with a problem. The approximation networks were used for following step by 1) fixing the networks and directly solving the nonlinear optimization problems 2) or embedding the networks into mixed-integer linear programming problems (MILP).

• Symmetry in Mixed-Integer Linear Programming

Proposed a pre-processing approach to handle the symmetry in MILP when using GNNs to predict solutions. Before using GNNs, use a weak learning model for this task and adjust the dataset labels (solutions) by symmetric permutation meanwhile. After this, datasets become more smooth and suitable for later training of GNNs.

National Engineering Laboratory for Big Data Analytics, XJTU

Sep 2020 - June 2024

• Distributed Algorithms for Computing and Clustering Analysis

Proposed a distributed clustering algorithm based on learning to hash technique. Specifically, distributedly training a hashing network unsupervisedly and mapping massive high-dimensional data to a small amount of fixed-length hash codes. The hash codes are transmitted to a global site and clustered by a spectral method.

• Beamforming in Full-Duplex Wireless Communication System

Used stochastic successive convex approximation to suppress interferences while maintaining power in a target direction.

• Semantic Communication System Based on Transformer

Achieved semantic joint encoding and decoding in the physical layer of communication system based on transformer network.

• A Numerical Approach for eigenvalues of high-oscillating integral equations

Proposed an approach: factorizing the integral equations on the modified Fourier basis so that the analytical problem can be converted into an algebraic one. Then, find a surrogate approximation by the property of high-oscillating and solve the surrogate problem.

Publications

Hashing-Based Distributed Clustering for Massive High-Dimensional Data

• Status: Undergoing review IEEE Transactions on Big Data

arXiv: https://arxiv.org/abs/2306.17417