Public Key Cryptography - Lab4

The Classical Trial-Division Algorithm

<u>Input</u>: $n \in \mathbb{N}$, $n \ge 3$ odd, composite <u>Output</u>: a non-trivial factor d of n

```
Algorithm classic(n)

for i \in \{2, ..., \lfloor \sqrt{n} \rfloor\} do

if n \% i = 0 then

return i

endif

done

return n
```

 $\underline{\mathsf{Input}} : n \in \mathbb{N}, n \geq 3 \text{ odd, composite}$

Output: the factors of n

```
Algorithm factorize(n)

let F = \emptyset be the list of factors

while n \neq 1 do

let d := \underline{classic}(n)

F := F \cup \{d\}

n := \left\lfloor \frac{n}{d} \right\rfloor

done
```

The Pollard p-1 algorithm

<u>Input</u>: $n \in \mathbb{N}$, $n \ge 3$ odd, composite, B - a bound <u>Output</u>: a non-trivial factor d of n

```
Algorithm classic(n)

let k := lcm\{1, ..., B\}

let a be chosen randomly from \{2, ..., n-2\}

a := a^k \mod n

let d := gcd(a-1,n)

if d = 1 or d = n then

return n

endif

return "failure"
```

The Running-Time Analysis

Input n	Pollard $p-1$	Classical
•		
19 122 127 019	0.511000	0.128000
673 542 175 381	0.531000	0.124000
3 172 441 039	0.511000	0.100000
2 534 774 595	0.530000	0.101000
21 518 399 815 424 693	0.545000	0.218000
988 053 892 081	0.549000 [*]	0.117000
17 450 859 840 493	0.543000 [*]	0.127000
338 694 389 826 206 941	0.529000	0.168000
20 660 357 779 398 623 401	0.562000	1.355000
2 086 696 135 791 260 963 501	0.552000	1.136300

The running time of Pollard's p-1 algorithm seems to be higher in comparison to the running time for the classical algorithm for "small" (10-12 digits) numbers. It is probably caused by the difference in implementations of the two algorithms, for pollard, gmplib is used, and for classical, C math library is used.

For larger numbers, the running time of the *classical algorithm* is increasing, while the running time for *pollard's* p-1 algorithm stays at the same level.

Vlad Cîncean / 933 cvie1883@scs.ubbcluj.ro