

1 Decay Scheme

Co-57 disintegrates by 100% electron capture to the excited levels of 706.42 keV (0.18%), and 136.47 keV (99.82%) in Fe-57.

Le cobalt 57 se désintègre à 100 % par capture électronique principalement vers les niveaux excités de 706 et 136 keV du fer 57.

2 Nuclear Data

 $T_{1/2}(^{57}\text{Co})$: 271,80 (5) d $Q^{+}(^{57}\text{Co})$: 836,0 (4) keV

2.1 Electron Capture Transitions

	Energy keV	Probability × 100	Nature	$\lg ft$	P_K	P_L	P_M
$\epsilon_{0,4}$ $\epsilon_{0,3}$	129,6 (4) 469,2 (4)	0.183 (7) < 0.002	Allowed 2nd forbidden	7,69 > 10,8	0,8789 (17)	0,1035 (14)	0,0168 (6)
$\epsilon_{0,2}$ $\epsilon_{0,1}$	699,5 (4) 821,6 (4)	99,82 (20) < 0,003	Allowed 2nd forbidden	6,45 > 11,1	0,8875 (16)	0,0963 (13)	0,0154 (5)
$\epsilon_{0,0}$	836,0 (4)	< 0,00035	2nd forbidden unique	> 12,9			

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$\begin{array}{c} \mathrm{P}_{\gamma+\mathrm{ce}} \\ \times \ 100 \end{array}$	Multipolarity	$lpha_K$	$lpha_L$	$\begin{array}{c} \alpha_M \\ (10^{-3}) \end{array}$	$lpha_T$
$\gamma_{1,0}(\text{Fe})$	14,41295 (31)	87,69 (7)	M1+0,0005%E2	7,69 (16)	0,782 (16)	113 (3)	8,58 (18)
$\gamma_{2,1}(\text{Fe})$	122,06079 (12)	87,53 (8)	M1+1,4%E2	0,0212(5)	0,00208(5)	0,303(7)	0,0236(5)
$\gamma_{2,0}(\text{Fe})$	136,47374 (29)	12,30 (18)	E2	0,133(3)	0,0136(3)	1,96(4)	0,148(3)
$\gamma_{3,2}(\text{Fe})$	230,27(3)	0,0004 (4)	M1+0.04%E2	0,00374 (8)	0,000356 (8)	0,0524 (11)	0,00415(9)

	Energy keV	$\begin{array}{c} \mathrm{P}_{\gamma+\mathrm{ce}} \\ \times \ 100 \end{array}$	Multipolarity	$lpha_K$	$lpha_L$	$\binom{\alpha_M}{(10^{-3})}$	$lpha_T$
$\gamma_{4,3}(\text{Fe})$	339,67 (3)	0,0039 (4)	M1+0.7%E2	0,00149 (3)	0,000142 (3)	0,0208 (5)	0,00165 (4)
$\gamma_{3,1}(\mathrm{Fe})$	352,34 (2)	0,0032 (4)	M1+0.06%E2	0,00135(3)	0,000129 (3)	0,0188 (4)	0,00150(3)
$\gamma_{3,0}(\text{Fe})$	366,74 (3)	0,0013(4)	M1+17%E2	0,00160(5)	0,000153(5)	0,0223(7)	0,00178 (6)
$\gamma_{4,2}(\text{Fe})$	569,94 (4)	0,015(2)	M1+0.94%E2	0,000458 (10)	0,0000434 (9)	0,00631 (14)	0,000508 (12)
$\gamma_{4,1}(\text{Fe})$	692,01 (2)	0.159(6)	M1+17.8%E2	0,000328 (10)	0,000031 (1)	0,00452 (14)	0,000364 (12)
$\gamma_{4,0}(\mathrm{Fe})$	706,42 (2)	0,0050(5)	(E2)	, , ,	, , , ,	, , ,	, , ,

3 Atomic Data

3.1 Fe

 $\begin{array}{lllll} \omega_K & : & 0.352 & (4) \\ \bar{\omega}_L & : & 0.0061 & (5) \\ n_{KL} & : & 1.456 & (12) \end{array}$

3.1.1 X Radiations

		Energy keV		Relative probability
X_{K}	$egin{array}{c} Klpha_2 \ Klpha_1 \end{array}$	6,39084 6,40384		50,7 100
v	$K\beta_3 K\beta_5''$	7,05798 7,1081	}	21,4
X_{L}	$egin{array}{c} \mathrm{L}\ell \ \mathrm{L}eta \end{array}$	$0,61 \\ -0,79$		

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL KLX KXY	$5,37-5,64 \ 6,16-6,40 \ 6,91-7,10$	100 23,9 2,2
Auger L	0.6 - 0.7	302

4 Electron Emissions

		Energy keV	Electrons per 100 disint.
${ m e_{AL}}$	(Fe)	0,6 - 0,7	252 (3)
${ m e}_{ m AK}$	(Fe) KLL KLX KXY	5,37 - 5,64 6,16 - 6,40 6,91 - 7,10	105,2 (13) } } }
$\begin{array}{c} {\rm ec_{1,0}\;K} \\ {\rm ec_{1,0}\;L} \\ {\rm ec_{1,0}\;K} \\ {\rm ec_{2,1}\;K} \\ {\rm ec_{2,1}\;L} \\ {\rm ec_{2,1}\;M} \\ {\rm ec_{2,0}\;K} \\ {\rm ec_{2,0}\;L} \\ {\rm ec_{2,0}\;M} \end{array}$	(Fe) (Fe) (Fe) (Fe) (Fe) (Fe) (Fe) (Fe)	7,3009 (3) 13,567 - 13,705 14,312 - 14,409 114,9486 (1) 121,215 - 121,353 121,968 - 122,057 129,3616 (3) 135,628 - 135,766 136,381 - 136,470	70,4 (20) 7,16 (20) 1,03 (3) 1,81 (4) 0,178 (4) 0,0259 (6) 1,42 (4) 0,146 (4) 0,0210 (5)

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL $XK\alpha_2$ $XK\alpha_1$	(Fe) (Fe) (Fe)	0.61 - 0.79 6.39084 6.40384		1,55 (13) 16,8 (3) 33,2 (5)	$K\alpha$
$\begin{array}{c} XK\beta_3 \\ XK\beta_1 \\ XK\beta_5^{"} \\ XK\beta_4 \end{array}$	(Fe) (Fe) (Fe) (Fe)	7,05798 7,1081	<pre>} } }</pre>	7,1 (2)	$K'\beta_1$ $K'\beta_2$

5.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
$\begin{array}{c} \gamma_{1,0}(\text{Fe}) \\ \gamma_{2,1}(\text{Fe}) \\ \gamma_{2,0}(\text{Fe}) \end{array}$	14,41295 (31) 122,06065 (12) 136,47356 (29)	9,15 (17) 85,51 (6) 10,71 (15)

	Energy keV	Photons per 100 disint.
$ \gamma_{3,2}(\text{Fe}) $ $ \gamma_{4,3}(\text{Fe}) $ $ \gamma_{3,1}(\text{Fe}) $ $ \gamma_{3,0}(\text{Fe}) $ $ \gamma_{4,2}(\text{Fe}) $ $ \gamma_{4,1}(\text{Fe}) $ $ \gamma_{4,0}(\text{Fe}) $	230,27 (3) 339,67 (3) 352,34 (2) 366,74 (3) 569,94 (4) 692,01 (2) 706,42 (2)	0,0004 (4) 0,0038 (4) 0,0032 (4) 0,0013 (4) 0,015 (2) 0,159 (6) 0,0050 (5)

6 Main Production Modes

```
\begin{cases} \text{Ni} - 60(p,\alpha)\text{Co} - 57\\ \text{Possible impurities}: \text{Co} - 56, \text{Co} - 58 \end{cases}
\begin{cases} \text{Ni} - 58(p,2p)\text{Co} - 57\\ \text{Possible impurities}: \text{Co} - 56, \text{Co} - 58 \end{cases}
\begin{cases} \text{Fe} - 56(d,n)\text{Co} - 57\\ \text{Possible impurities}: \text{Co} - 56, \text{Co} - 58 \end{cases}
```

7 References

- J. M. CORK, M. K. BRICE, L. C. SCHMID. Phys. Rev. 99 (1955) 703 (Relative conversion electron intensities)
- O. C. KISTNER, A. W. SUNYAR. Phys. Rev. 139 (1965) B295 (Experimental ICC, gamma ray energies and relative emission probabilities)
- J. M. Mathiesen, J. P. Hurley. Nucl. Phys. 72 (1965) 475 (Relative gamma ray emission probabilities)
- G. Moreau, G. Ambrosino. Compte Rend. Ac. Sci. (Paris) 261 (1965) 5438 (Experimental ICC)
- S. C. Anspach, L. M. Cavallo, S. B. Garfinkel, J. M. R. Hutchinson, C. N. Smith. Report NP- 15663 (1965) (Half-life)
- E. H. Spejewski. Nucl. Phys. 82 (1966) 481 (Experimental ICC and gamma ray energies)
- J. A. Bearden. Rev. Mod. Phys. 39 (1967) 78 (X-ray energies)
- D. C. Hall, R. G. Albridge. Nucl. Phys. A91 (1967) 495 (Experimental ICC)
- W. Rubinson, K. P. Gopinathan. Phys. Rev. 170 (1968) 969 (Experimental ICC, PK and PXK values)
- H. E. Bosch, M. A. Fariolli, N. Martin, M. C. Simon. Nucl. Instrum. Methods 73 (1969) 323 (Experimental PK values)
- D. P. Johnson. Phys. Rev. B1 (1970) 3551 (Experimental ICC)
- R. C. Greenwood, R. G. Helmer, R. J. Gehrke. Nucl. Instrum. Methods 77 (1970) 141 (Gamma ray energies)
- F. T. PORTER, M. S. FREEDMAN. Phys. Rev. C3 (1971) 2285 (Relative conversion electron intensities)

- J. Konijn, E. W. A. Lingeman. Nucl. Instrum. Methods 94 (1971) 389 (Gamma ray energies and emission probabilities)
- R. A. Fox, W. D. Hamilton, M. J. Holmes. Phys. Rev. C5 (1972) 853 (Mixing ratios E2/M1 for gamma transitions)
- U. HEIM, O. W. B. SCHULT. Z. Naturforsch 27a (1972) 1861 (14,4 keV gamma ray energy)
- K. S. Krane, W. A. Steyert. Phys. Rev. C6 (1972) 2268 (Mixing ratios E2/M1 for gamma transitions)
- F. LAGOUTINE, J. LEGRAND, C. PERROT, J. P. BRETHON, J. MOREL. Int. J. Appl. Radiat. Isotop. 23 (1972) 219 (Half-life)
- A. Mukerji, Lee Chin. Proc. of the Intern. Conf. on Inner-Shell Ioniz. Phenom. and Future Appl. Apr.17-22, 1972 (1973)

(Experimental PK and PXK values)

- E. Schoeters, R. E. Silverans, L. Vanneste. Z. Physik 260 (1973) 337 (Mixing ratios E2/M1 for gamma transitions)
- R. L. Heath. Report ANCR-1000-2 (1974) (Relative gamma ray emission probabilities)
- K. G. Tirsell, L. G. Multhauf, S. Raman. Phys. Rev. C10 (1974) 785 (Gamma ray energies)
- E. J. Cohen, A. J. Becker, N. K. Cheung, H. E. Henrikson. Hyperfine Interact. 1 (1975) 193 (Mixing ratios E2/M1 for gamma transitions)
- G. I. Borchert. Z. Naturforsch 31a (1976) 387 (Gamma ray energies)
- I. M. BAND, M. B. TRZHASKOVSKAYA, M. A. LISTENGARTEN. At. Data Nuc. Data Tables 18 (1976) 433 (Theoretical ICC)
- F. P. Larkins. At. Data Nuc. Data Tables 20 (1977) 311 (Auger electron emission)
- C. Vylov. Preprint JINR R6-10416, Dubna, 1977 (1978) (Experimental PXK and P(g14,4 keV) values)
- K. S. Krane. At. Data Nuc. Data Tables 22 (1978) 269 (Mixing ratios E2/M1 for gamma transitions)
- H. HOUTERMANS, O. MILOSEVIC, F. REICHEL. Int. J. Appl. Radiat. Isotop. 31 (1980) 153 (Half-life)
- U. Schötzig, K. Debertin, K. F. Walz. Nucl. Instrum. Methods 169 (1980) 43 (Relative gamma ray emission probabilities)
- R. Vennink, J. Kopecky, P. M. Endt, P. W. M. Glaudemans. Nucl. Phys. A344 (1980) 421 (Gamma ray energies)
- R. Vaninbroukx, G. Grosse, W. Zehner. Int. J. Appl. Radiat. Isotop. 32 (1981) 589 (Half-life)
- A. GRUTTER. Int. J. Appl. Radiat. Isotop. 33 (1982) 533 (Relative gamma ray emission probabilities)
- K. F. Walz, K. Debertin, H. Schrader. Int. J. Appl. Radiat. Isotop. 34 (1983) 1191 (Half-life)
- H. H. HANSEN. European App. Res. Rept. Nucl. Sci. Technol. 6,4 (1985) 777 (Compilation of experimental ICC)
- K. Debertin, U. Schötzig. informal IAEA CRP paper GS/55 (1989) (quoted in IAEA-TecDoc-619 (1991), exp. KX and g1,0 (14,4 keV) abs. emis.prob.)
- A. L. NICHOLS. Nucl. Instrum. Methods A286 (1990) 467 (Half-life)
- K. Singh, T. S. Gill, K. Singh. Appl. Rad. Isotopes 41 (1990) 333 (Experimental PK values)
- U. Schötzig, H. Schrader, K. Debertin. Proc. Int. Conf. Nucl. Data for Sci. and Techn., Julich, Germany (1992) 562

(Experimental Pg(14,4 keV) value)

- D. Arnold, G. Ulm. Nucl. Instrum. Methods A339 (1994) 43 (Experimental Ka absolute emission probability)
- G. Audi, A. H. Wapstra. Nucl. Phys. A595 (1995) 409
 (Q value)

- R. YA. METSKHVARISHVILI, Z. N. MIMINOSHVILI, M. A. ELIZBARASHVILI, L. V. NEKRASOVA, I. R. METSKHVARISHVILI, N. G. KHAZARADZE, N. M. MARCHILASHVILI, I. V. ZHORZHOLIANI. Phys. Atomic Nuclei 59 (1996) 737 (Relative conversion electron intensities and experimental ICC)
- E. Schönfeld, H. Janssen. Nucl. Instrum. Methods A369 (1996) 527 (Atomic data)
- M.-C. Lépy, M.-M. Bé, J. Plagnard. CAARI'96 Conference proceedings AIP Press (1997) 1067 (Experimental Kb/Ka.)
- R. H. Martin, K. I. W. Burns, J. G. V. Taylor. Nucl. Instrum. Methods A390 (1997) 267 (Half-life)
- A. KOVALIK, M. RYSAVY, V. M. GOROZHANKIN, TS. VYLOV, D. V. FILOSOFOV, M. A. MAHMOUD, A. MINKOVA, N. COURSOL, P. CASSETTE, CH. BRIANCON. Proc. 47th Ann. Conf. on Nucl. Spectr. Struct. At. Nuclei, Obninsk (1997) 277
 - (Relative low energy electron emission probabilities)
- M.- M. Bé, M.-C. Lépy, J. Plagnard, B. Duchemin. Appl. Rad. Isotopes 49 (1998) 1367 (Experimental Kb/Ka)
- M. R. Bhat. Nucl. Data Sheets 85 (1998) 415 (Mixing ratios E2/M1 for gamma transitions)
- E. Schönfeld. Appl. Rad. Isot. 49 (1998) 1353 (Fractional electron capture probabilities PK, PL, PM)
- R. G. Helmer, C.van der Leun. Nucl. Instrum. Methods A450 (2000) 35 (Gamma ray energies)
- V. P. Chechev, A. G. Egorov. Appl. Rad. Isotopes 52 (2000) 601 (Evaluation technique)

Page number : 1/1