STAT 230: Probability (Sec 02) Spring 2022

Erik Hintz
Department of Statistics and Actuarial Science
erik.hintz@uwaterloo.ca

Lecture 8

Today's Agenda

Last time:

- Venn Diagram
- Fundamental laws of set algebra
- De Morgan Rules
- Inclusion-Exclusion Principle

Today (Lec 8, 05/18):

- Independence
- Conditional Probability

Independent events

Definition

Two events A and B are said to be **independent** if

$$P(A \cap B) = P(A)P(B).$$

A sequence of events A_1 , A_2 , ... are said to be independent if

$$P(A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}) = P(A_{i_1})P(A_{i_2}) \cdots P(A_{i_k}),$$

for all possible subsets of size k for any $k \ge 2$ and all possible i_1, i_2, \ldots, i_k . Events that are not independent are called **dependent**.

This means that, for a sequence of events to be independent, all of their subsets must be independent as well.

Example

Consider rolling two fair six sided dice, and let

 $A = \{\text{the sum is } 10\}, B = \{\text{the first die is a 6}\}\ C = \{\text{the sum is 7}\}.$ Determine:

- a) Are A and B independent?
- b) Are B and C independent?
- c) Are A and C independent?

Definition

Two events A and B are **mutually exclusive** if A and B are disjoint.

A common misconception is that if A and B are mutually exclusive, then A and B are independent.

Proposition

Suppose that not both A and B are trivial events (empty sets). If A and B are independent and mutually exclusive (disjoint), then either P(A)=0 or P(B)=0.

Proposition: If A and B are independent, then \bar{A} and \bar{B} are independent, A and \bar{B} are independent, and \bar{A} and B are independent.

Proof is an exercise.

Our ideas/calculation of probabilities may change upon the attainment of some information.

Example

You roll a die and your friend looks at what number you rolled.

- What's the probability that it's a 6?
- What's the probability that it's a 6 given that your friend tells you that it's an even number?
- What's the probability that it's a 6 given that your friend tells you that it's an odd number?

Conditional Probability of Events

Definition

The conditional probability of A given B is, so long as P(B) > 0,

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Example

Consider again rolling two fair six sided dice, and let

 $A = \{\text{the sum is } 10\}, B = \{\text{the first die is a 6}\}, C = \{\text{the sum is 7}\}.$

- a) Compute P(A|B)
- b) Compute P(B|A)
- c) Compute P(A|C)
- d) Compute P(C|B)

Equivalent definition of independence

Definition (Equivalent definition of independence)

Two events A and B are independent, if

$$P(A|B) = P(A)$$
,

provided P(B) > 0.

Intuition: The probability that A happens is not affected by knowing that B happened.

Some rules for conditional probabilities

Conditional probability behaves the same way as usual probability:

- a) 0 < P(A|B) < 1
- b) $P(\bar{A}|B) = 1 P(A|B)$
- c) If A_1 and A_2 are disjoint: $P(A_1 \cup A_2|B) = P(A_1|B) + P(A_2|B)$
- d) P(S|B) = 1 = P(B|B)

Product Rule

Theorem

For events A and B.

$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

This is known as the **product rule** and follows directly from the definition of conditional probability.

Example

Erik has 12 red pants and 7 green pants. On Monday, Erik picks two pairs of pants for his Monday and Wednesday lectures. He draws one pair of pants at random and then, without replacement, another pair.

- a) What is the probability that both pairs of pants are red?
- b) What is the probability that the second pair of pants is red?

Definition

A sequence of sets $B_1, B_2, ..., B_k$ are said to **partition** the sample space S if $B_i \cap B_j = \emptyset$ for all $i \neq j$, and $\bigcup_{j=1}^k B_j = S$.

Partitioning the sample space

Theorem (Law of total probability)

Suppose that $B_1, B_2, ..., B_k$ partition S. Then for any event A,

$$P(A) = P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + \cdots + P(A|B_k)P(B_k).$$

Remark: A common way to use this is

$$P(A) = P(A|B)P(B) + P(A|\bar{B})P(\bar{B}),$$

since B and \bar{B} partition S.

Proof