Unit II

- Statistical Inference of Data Statistical Methods for Evaluation- Hypothesis testing, mean, mode, median, random variables (discrete and continuous), expected value, correlation, variance, standard deviation, limit theorem, difference of means
- (Plz Refer PPT, web resources. Also refer Unit III ppts)

Measures of Central Tendency

(Reference: 2002 Thomson / South-Western)

- Measures of central tendency yield information about "particular places or locations in a group of numbers."
- Common Measures of Location
 - -Mode
 - Median
 - Mean
 - Percentiles
 - Quartiles

Mode

- The most frequently occurring value in a data set
- Applicable to all levels of data measurement (nominal, ordinal, interval, and ratio)
- Bimodal -- Data sets that have two modes
- Multimodal -- Data sets that contain more than two modes

Mode -- Example

- The mode is 44.
- There are more 44s than any other value.

35	41	44	45
37	41	44	46
37	43	44	46
39	43	44	46
40	43	44	46
40	43	45	48

Median (ΔΙΑΜΕΣΟΣ)

- Middle value in an ordered array of numbers.
- Applicable for ordinal, interval, and ratio data
- Not applicable for nominal data
- Unaffected by extremely large and extremely small values.

Median: Computational Procedure

First Procedure

- Arrange observations in an ordered array.
- If number of terms is odd, the median is the middle term of the ordered array.
- If number of terms is even, the median is the average of the middle two terms.

Second Procedure

 The median's position in an ordered array is given by (n+1)/2.

Median: Example with an Odd Number of Terms

Ordered Array includes: 3 4 5 7 8 9 11 14 15 16 16 17 19 19 20 21 22

- There are 17 terms in the ordered array.
- Position of median = (n+1)/2 = (17+1)/2 = 9
- The median is the 9th term, 15.
- If the 22 is replaced by 100, the median remains at 15.
- If the 3 is replaced by -103, the median remains at 15.

Mean (ME Σ O Σ)

- Is the average of a group of numbers
- Applicable for interval and ratio data, not applicable for nominal or ordinal data
- Affected by each value in the data set, including extreme values
- Computed by summing all values in the data set and dividing the sum by the number of values in the data set

Population Mean

$$\mu = \frac{\sum X}{N} = \frac{X_1 + X_2 + X_3 + \dots + X_N}{N}$$

$$= \frac{24 + 13 + 19 + 26 + 11}{5}$$

$$= \frac{93}{5}$$

$$= 186$$

Sample Mean

$$\overline{X} = \frac{\sum X}{n} = \frac{X_1 + X_2 + X_3 + \dots + X_n}{n}$$

$$= \frac{57 + 86 + 42 + 38 + 90 + 66}{6}$$

$$= \frac{379}{6}$$

$$= 63167$$

Quartiles

Measures of central tendency that divide a group of data into four subgroups

- Q₁: 25% of the data set is below the first quartile
- Q₂: 50% of the data set is below the second quartile
- Q₃: 75% of the data set is below the third quartile

Quartiles, continued

- Q₁ is equal to the 25th percentile
- Q₂ is located at 50th percentile and equals the median
- Q₃ is equal to the 75th percentile

Quartile values are not necessarily members of the data set

Quartiles

Quartiles: Example

Ordered array: 106, 109, 114, 116, 121, 122, 125, 129

•
$$Q_1$$
: $i = \frac{25}{100}(8) = 2$ $Q_1 = \frac{109 + 114}{2} = 1115$

•
$$Q_2$$
: $i = \frac{50}{100}(8) = 4$ $Q_2 = \frac{116+121}{2} = 1185$

$$i = \frac{75}{100}(8) = 6$$
 $Q_3 = \frac{122 + 125}{2} = 1235$

Measures of Variability

- Measures of variability describe the spread or the dispersion of a set of data.
- Common Measures of Variability
 - -Range
 - –Interquartile Range
 - Mean Absolute Deviation
 - -Variance
 - Standard Deviation
 - Z scores
 - Coefficient of Variation

Variability

No Variability in Cash Flow

Mean

Variability in Cash Flow

Mean

Variability

No Variability

Range

- The difference between the largest and the smallest values in a set of data
- Simple to compute
- Ignores all data points except the two extremes
- Example: Range = Larg = 48 35 = 13

35	41	44	45
37	41	44	46
37	43	44	46
39	43	44	46
40	43	44	46
40	43	45	48

Interquartile Range

- Range of values between the first and third quartiles
- Range of the "middle half"
- Less influenced by extremes

Interquarti**Re**ang**∉** Q₃–Q₁

Deviation from the Mean

• Data set: 5, 9, 16, 17, 18

Mean:

$$\mu = \frac{\sum X}{N} = \frac{65}{5} = 13$$

• Deviations from the mean: -8, -4, 3, 4, 5

Mean Absolute Deviation

 Average of the <u>absolute</u> deviations from the mean

X	$X-\mu$	$ X - \mu $
5	-8	+8
5 9	-4	+4
16	+3	+3
17	+4	+4
18	<u>+5</u>	+ <u>5</u> 24
	0	24

$$M.A.D. = rac{\sum |X - \mu|}{N}$$

$$= rac{24}{5}$$

$$= 4.8$$

Population Variance

 Average of the <u>squared</u> deviations from the arithmetic mean

X	$X - \mu$	$(X-\mu)^2$
5	-8	64
5 9	-4	16
16	+3	9
17	+4	16
18	<u>+5</u>	<u>25</u>
	0	130

$$\sigma^{2} = \frac{\sum (X - \mu)^{2}}{N}$$

$$= \frac{130}{5}$$

$$= 26.0$$

Population Standard Deviation

 Square root of the variance

X	$X - \mu$	$(X-\mu)^2$
5	-8	64
5 9	-4	16
16	+3	9
17	+4	16
18	<u>+5</u>	<u>25</u>
	0	130

$$\sigma^{2} = \frac{\sum (X - \mu)^{2}}{N}$$

$$= \frac{130}{5}$$

$$= 26.0$$

$$\sigma = \sqrt{\sigma^{2}}$$

$$= \sqrt{26.0}$$

$$= 5.1$$

Empirical Rule

Data are normally distributed (or approximately normal)

Distance from the Mean	Percentage of Values Falling Within Distance
$\mu \pm 1\sigma$	68
$\mu \pm 2\sigma$	95
$\mu \pm 3\sigma$	99.7

Sample Variance

 Average of the <u>squared</u> deviations from the arithmetic mean

X	$X - \overline{X}$	$(X - \overline{X})^2$
2,398	625	390,625
1,844 1,539	71 -234	5,041 54,756
<u>1,311</u> 7,092	<u>-462</u> 0	213,444 663,866

$$S^{2} = \frac{\sum (X - \overline{X})^{2}}{n-1}$$

$$= \frac{663,866}{3}$$

$$= 221,288.67$$

Sample Standard Deviation

Square root of the sample variance

X	$X - \overline{X}$	$(X - \overline{X})^2$
2,398	625	390,625
1,844	71	5,041
1,539	-234	54,756
<u>1,311</u>	<u>-462</u>	<u>213,444</u>
7,092	0	663,866

$$S^{2} = \frac{\sum (X - \overline{X})^{2}}{n-1}$$

$$= \frac{663,866}{3}$$

$$= 221,288.67$$

$$S = \sqrt{S^{2}}$$

$$= \sqrt{221,288.67}$$

$$= 470.41$$

Coefficient of Variation

- Ratio of the standard deviation to the mean, expressed as a percentage
- Measurement of <u>relative</u> dispersion

$$C.V. = \frac{\sigma}{\mu}(100)$$

Coefficient of Variation

$$\mu_{1} = 29$$

$$\sigma_{1} = 4.6$$

$$C.V._{1} = \frac{\sigma_{1}}{\mu_{1}}(100)$$

$$= \frac{4.6}{29}(100)$$

$$= 15.86$$

$$\mu_{2} = 84$$

$$\sigma_{2} = 10$$

$$C.V._{2} = \frac{\sigma_{2}}{\mu_{2}}(100)$$

$$= \frac{10}{84}(100)$$

$$= 11.90$$

Measures of Shape

Skewness

- Absence of symmetry
- Extreme values in one side of a distribution

Kurtosis

- Peakedness of a distribution
- Box and Whisker Plots
 - Graphic display of a distribution
 - Reveals skewness

Skewness

Skewness

Coefficient of Skewness

Summary measure for skewness

$$S = \frac{3(\mu - M_d)}{\sigma}$$

- If S < u, the distribution is negatively skewed (skewed to the left).
- If S = 0, the distribution is <u>symmetric</u> (not skewed).
- If S > 0, the distribution is <u>positively</u> skewed (skewed to the right).

Coefficient of Skewness

$$\mu_{1} = 23$$

$$M_{d_{1}} = 26$$

$$\sigma_{1} = 12.3$$

$$S_{1} = \frac{3(\mu_{1} - M_{d_{1}})}{\sigma_{1}}$$

$$= \frac{3(23 - 26)}{12.3}$$

$$= -0.73$$

$$\mu_{2} = 26$$

$$M_{d_{2}} = 26$$

$$\sigma_{2} = 12.3$$

$$S_{2} = \frac{3(\mu_{2} - M_{d_{2}})}{\sigma_{2}}$$

$$= \frac{3(26 - 26)}{12.3}$$

$$= 0$$

$$\mu_{3} = 29$$

$$M_{d_{3}} = 26$$

$$\sigma_{3} = 12.3$$

$$S_{3} = \frac{3(\mu_{3} - M_{d_{3}})}{\sigma_{3}}$$

$$= \frac{3(29 - 26)}{12.3}$$

$$= +0.73$$

Kurtosis

- Peakedness of a distribution
 - Leptokurtic: high and thin
 - Mesokurtic: normal in shape
 - Platykurtic: flat and spread out

Box and Whisker Plot

- Five specific values are used:
 - Median, Q_2
 - First quartile, Q₁
 - Third quartile, Q₃
 - Minimum value in the data set
 - Maximum value in the data set

Box and Whisker Plot, continued

Inner Fences

- $-IQR = Q_3 Q_1$
- Lower inner fence = Q₁ 1.5 IQR
- Upper inner fence = Q_3^2 + 1.5 IQR

Outer Fences

- Lower outer fence = Q_1 3.0 IQR
- Upper outer fence = Q_3^+ + 3.0 IQR

Box and Whisker Plot

Skewness: Box and Whisker Plots, and Coefficient of Skewness

