DATA REPRESENTATION (CONTD)

Problem Solving with Computers-I

https://ucsb-cs16-wi17.github.io/

Recap: Representation of non-negative numbers

- Positional encoding
- External representation
- Internal representation
- Binary representation:
 - Only two symbols: 0 and 1
 - Each position is called a bit
 - 8 bits makes a byte
 - Bits take up space

$$= 16 + 8 + 2 = 26_{10}$$

Converting between binary and decimal

Binary to decimal:
$$10110_2 = ?_{10}$$

$$16+4+2 = 22_{10}$$
Decimal to binary: $34_{10}=?_2$

$$\frac{1}{32} + \frac{0}{8} + \frac{0}{4} = \frac{0}{1}$$

Hex to binary

- Each hex digit corresponds directly to four binary digits
- · Programmers love hex, why? Represent kinge constants in a sout way heavy conversion to knary

25B₁₆ = ? In binary

25B₁₆ = ? In binary

1 Reverse the process
2 by convert back to hex

00	O	0000
01	1	0001
02	2	0010
03	3	0011
04	4	0100
05	5	0101
06	6	0110
07	7	0111
80	8	1000
09	9	1001
10	A	1010
11	B	1011
12	C	1100
13	D	1101
14	E	1110
15	F	1111

Hexadecimal to decimal

$$25B_{16}^{7} = ? Decimal$$

$$256 | 6 | 1$$

$$2 * 256 + 5 * 16 + 11 * 1$$

$$= 603$$

Hexadecimal to decimal

Use polynomial expansion

$$25B_{16} = 2*256 + 5*16 + 11*1 = 512 + 80 + 11$$

= 603

• Decimal to hex: $36_{10}=?_{16}$ $\frac{2}{256}$ $\frac{2}{16}$

OX stands for representation

Decimal vs. Hexadecimal vs. Binary

```
00 0
                                                0000
Examples:
                                        01 1
                                                0001
                                        02 2
                                                0010
1010 1100 0011 (binary)
                                        03 3
                                                0011
= 0xAC3
                                        04 4
                                                0100
                                        05 5
                                                0101
                                        06
                                                0110
10111 (binary)
                                                0111
= 0001 \ 0111 \ (binary)
                                        08 8
                                                1000
= 0x17
                                        09 9
                                                1001
                                                1010
                                                1011
0x3F9
                                        12 C
                                                1100
= 11 1111 1001 (binary)
                                                1101
                                                1110
                                        15 F
```

Binary to hex: 1000111100

A. 8F0

B.) 23C

Adding leading zeros is okay because it doesn't change the value of the number

C. None of the above

BIG IDEA: Bits can represent anything!!
Hond enading scheme
Numbers
Binary Code

Numbers

Numbers Positional enading scheme

Numbers Binan **Binary Code** How many (minimum) bits are required to represent the numbers 0 to 3?

BIG IDEA: Bits can represent anything!!

Abiliting wasping is they have

Colors

Binary code Blue

How many (minimum) bits are required to represent the three colors?

BIG IDEA: Bits can represent anything!!

N bits can represent at most 2^N things

What is the minimum number of bits required to represent all the letters in the English alphabet?

A. 3 B. 4 C. 5 D. 6 E. 26

BIG IDEA: Bits can represent anything!!

- Logical values?
 - $0 \Rightarrow \text{False}, 1 \Rightarrow \text{True}$
- colors ?
- Characters?
 - 26 letters \Rightarrow 5 bits (2⁵ = 32)
 - upper/lower case + punctuation \Rightarrow 7 bits (in 8) ("ASCII")

 - standard code to cover all the world's languages ⇒ 8,16,32 bits ("Unicode") www.unicode.com
- locations / addresses? commands?
- MEMORIZE: N bits ⇔ at most 2^N things

What is the maximum positive value that can be stored

in a byte?

A. 127

B. 128

C. 255

D. 256

unsigned char 25 use I byte to store x = 25%Intend to store only non-negative numbers

In that case, the range of values that can be stored are 0-255Generalize to NI hits BIG IDEA: Bits can represent anything!! Binary Code (alled 215 wmphmed)

Thositive ANGATIVE NOS]
Signed numbers

How many (minimum) bits are required to represent the numbers -3 to 2? (3)

Two's Compliment

Most significant bit represents a large negative weight:

$$\frac{1}{-2^3} \frac{0}{2^2} \frac{0}{2^1} \frac{1}{2^0} = -8 + 1 = -4$$

- To find the 2's complement representation
 - Write unsigned representation of the number saving one bit for sign
 - Flip all the bits
 - Add 1

Two's Complement

Flip all the bits of unsigned representation and add 1

$$2 - 3 = ? 0010 (2)$$

$$+ 1101 (3)$$

$$1111 (4)$$

Two's Complement: $1101_2 = ?_{10}$

- A. -2
- B. -3
 - C. -4
 - D. -5

$$-\frac{1}{2}$$
 $-\frac{1}{2}$
 $-\frac{1}{2}$
 $-\frac{1}{2}$

Addition and Subtraction

- Positive and negative numbers are handled in the same way.
- The carry out from the most significant bit is ignored.
- To perform the subtraction A B, compute A + (two's complement of B)

Data types

Binary numbers in memory are stored using a finite, fixed number of bits typically:

```
8 bits (byte)
16 bits (half word)
32 bits (word)
64 bits (double word or quad)
```

Data type of a variable determines the:

- exact representation of variable in memory
- number of bits used (fixed and finite)
 - range of values that can be correctly represented

Next time

- Under the hood of program compilation
- Separate compilation with makefiles