

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University) **Department of Sciences and Humanities**

Course Name:	Elements of Electrical and Electronics Engineering	Semester: I	
Date of Performance:	30/ 10/ 2023	Batch No:	C5_1
Faculty Name:	Mr. Sandeep Hanumante	Roll No:	16010123293
Faculty Sign & Date:		Grade/Marks:	/ 25

Experiment No: 7

Title: Measurement of Power using Two Wattmeter Method

Aim and Objective of the Experiment:

• To measure the power of three phase power using Two Wattmeter Method

COs to be achieved:

CO2: Demonstrate and analyze steady state response of single phase and three phase circuits

EEEE Semester: I Academic Year: 2023-24

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University) **Department of Sciences and Humanities**

a	4	•	D		
	ten	wise-	Pro	CEN	mre.
\sim		* * * * * * * * * * * * * * * * * * * *		ccu	ui c.

- 1. Connect the circuit as shown in circuit diagram
- 2. Increase the load and note down the reading VL,IL,W1 and W2
- 3. Practically you will obtain total power W=W1+W2
- 4. Theoretically power is measured by using formula $P=\sqrt{3}V_LI_L\cos\phi$, using $\cos\phi=1(\text{unity})$ for resistive load.

Observation Table:

Sr.no	V _L (Volts)	IL (Am		W ₁ (KW)	W ₂ (KW)	$\mathbf{P}_{T} = (\mathbf{W}_1 + \mathbf{W}_2)$ $(\mathbf{K}\mathbf{W})$	
		TH	PR				
1	405	0.88	0.80	240	360	600	
2	405	1.75	1.28	480	680	1160	

Theoretical Calculations:

Power= $\sqrt{3} \times V_L \times I_L \times \cos \phi$

cos φ=1

Power = Wattage rating of lamp load x No of lamps (One lamp is of 100W rating)

W1= $V_L \times I_L \times \cos (30+\varphi)$

 $\Phi = 0$

 $W2=V_L \times I_L \times \cos (30-\varphi)$

Total Power=P=W1+W2

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University) **Department of Sciences and Humanities**

Conclusion:	
Measured the power of three phase power u analyzed steady state response of single phase an	sing two wattmeter method. Practically and three phase circuits.
	_
	Signature of faculty in-charge with Date:

EEEE Semester: I Academic Year: 2023-24