

Московский Физико-Технический Институт (национальный исследовательский университет)

Отчет по эксперименту

Спектральный анализ электрических сигналов

Работа №3.6.1; дата: 07.10.22 Семестр: 3

1. Аннотация

Цель работы:

Изучить спектральный состав периодических электрических сигналов.

Схема установки:

Рис. 1: Схема установки

Как правило, для фильтрации сигнала применяется следующая схема. Исследуемый сигнал f(t) и синусоидальный сигнал от вспомогательного генератора, называемого в таких системах гетеродином, подаются на вход смесителя. Смеситель — элемент, преобразующий колебания с частотами ν_1 и ν_2 в колебания на комбинированных частотах: $\nu_1 + \nu_2$ и $\nu_1 - \nu_2$. «Разностный» сигнал смесителя поступает на фильтр — высокодобротный колебательный контур, настроенный на некоторую фиксированную резонансную частоту ν_0 . Таким образом, если f(t) содержит гармонику $\nu = \nu_{\rm ret} - \nu_0$ ($\nu_{\rm ret}$ — частота гетеродина), она будет усилена, а отклик будет пропорционален её амплитуде. Отметим, что смешение частот исследуемого сигнала и частоты гетеродина лежит в основе большинства современных радиоприёмных устройств — супергетеродинов.

В спектральном анализаторе частота гетеродина пропорциональна напряжению, подаваемому на развёртку по оси X встроенного в анализатор осциллографа. Выходной сигнал подаётся на канал Y. На экране анализатора возникает, таким образом, график, изображающий зависимость амплитуды гармоник исходного сигнала от частоты, то есть его спектр (заметим, что информация о фазах гармоник при этом теряется).

В последнее время повсеместное распространение получила цифровая обработка сигналов. Спектральный состав оцифрованного сигнала может быть найден численно. Существуют алгоритмы (быстрое преобразование Фурье, FFT), позволяющие проводить вычисления коэффициентов Фурье в реальном времени для сигналов относительно высокой частоты (до 200 МГц). Гетеродинные схемы по-прежнему применяются для анализа спектров сверхвысоких частот, приближающихся к тактовой частоте современных интегральных схем (≳1 ГГц).

В работе используются:

Генератор сигналов специальной формы, электронный осциллограф с выводом информации на компьютер, компьютер с ПО для анализа поступающего сигнала.

2. Теоретические сведения

В работе изучается спектральный состав периодических электрических сигналов различной формы: последовательности прямоугольных импульсов, последовательности цугов и амплитудно-модулированных гармонических колебаний. Спектры этих сигналов наблюдаются с помощью анализатора спектра и сравниваются с рассчитанными теоретически.

Периодическая функция может быть представлена в виде бесконечного ряда гармонических функций — ряда Фурье:

$$f(t) = \sum_{n=-\infty}^{+\infty} c_n \exp(in\omega_o t) \qquad f(t) = \sum_{n=0}^{+\infty} a_n \cos(n\omega_o t + \varphi_n)$$

Здесь $\omega_0 = \frac{2\pi}{T}$, где T — период функции f(t). Коэффициенты c_n могут быть найдены по формуле:

$$c_n = \frac{1}{T} \int_0^T f(t) \exp(-in\omega_0 t) dt$$

Наборы коэффициентов разложения в комплексной $\{c_n\}$ и действительной $\{a_n, \varphi_n\}$ формах связаны соотношением:

$$a_n = 2|c_n|$$
 $\varphi_n = \arg(c_n)$

В качестве простейшего спектрального анализатора можно использовать высокодобротный колебательный контур с подстраиваемой ёмкостью или индуктивностью:

Рис. 2: Колебательный контур как узкополостный фильтр

Такой контур усиливает те гармоники входного сигнала f(t), частота которых близка к резонансной $\nu_0 = 2\pi/\sqrt{LC}$ и практически не реагирует на частоты, далёкие от ν_0 .

С точки зрения преобразования гармоник колебательный контур является узкополосным фильтром с шириной полосы пропускания порядка $\Delta \nu \sim \frac{\nu_0}{Q}$ где $Q = \frac{1}{R} \sqrt{\frac{L}{C}} \gg 1$ — его добротность. Амплитуда колебаний в контуре пропорциональна амплитуде $|c(\nu_0)|$ гармоники в спектре функции f(t), частота которой совпадает с ν_0 . Таким образом, меняя резонансную частоту контура, можно «просканировать» весь спектр входного сигнала.

У описанной выше схемы есть существенный недостаток: при изменении L или C меняется также и добротность, а значит, и ширина полосы пропускания. Кроме того, проще изготовить высокодобротный контур с фиксированными параметрами, нежели с настраиваемой частотой. В связи с этим, как правило, для фильтрации сигнала применяется применяется схема нашей установки.

3. Проведение эксперимента

Исследование спектра периодической последовательности прямоугольных импульсов

Качественное исследование

Вначале качественно пронаблюдаем за получаемыми спектрами:

Рис. 3: Спектр при $\nu = 1 \text{ kHz}, \tau = 50 \ \mu \text{s}$

Рис. 4: Спектр при $\nu = 1 \text{ kHz}, \tau = 100 \ \mu \text{s}$

Рис. 5: Спектр при $\nu = 2 \text{ kHz}, \tau = 50 \ \mu \text{s}$

Из вида данных спектров можно убедиться в справедливости основных масштабов спектра:

$$\Delta
u_{ au} = rac{1}{ au} \qquad \Delta
u_{T} = rac{1}{T} =
u_{ ext{\tiny PEH}} \qquad \Delta
u_{0} = rac{1}{t_{0}}$$

Количественное исследование

Зафиксируем частоту генерации меандра равной 1 kHz. Снимем зависимость $\Delta \nu (1/\tau)$:

	τ , μ s	40	60	80	100	120	140	160	180	200
Γ	$\Delta \nu \pm 0.5$, kHz	25.0	17.0	13.0	10.0	8.0	7.0	6.0	5.5	5.0

Табл. 1: Зависимость $\nu(\tau)$

По полученным данным построим график зависимости $\nu(1/\tau)$.

Рис. 6: График зависимости $\nu(1/\tau)$

Из графика видно, что точки хорошо ложатся на прямую. Представив прмяую в виде $\nu=k(1/\tau)+b$, получаем методом линейной аппроксимации $k=(1016\pm13)\,\mathrm{kHz}\cdot\mu s$, $b=(-0.16\pm0.17)$. При этом величина b лежит в рамках стандартного отклонения, что свидетельствует о справедливости соотношения неопределенностей $\Delta\nu\sim1/\tau$.

Исследование спектра периодической последовательности цугов

Качественное исследование

Вначале качественно пронаблюдаем за получаемыми спектрами в зависимости от длины цуга:

Рис. 8: Спектр при $\nu_0 = 25 \text{ kHz}, \, \tau = 100 \, \mu \text{s}$

Главный пик спектрограммы попадает своим центром на несущую частоту. Можно при этом пронаблюдать эффект, аналогичный случаю меандра: уменьшение в два раза ширины пиков при увеличении длины импульса.

Теперь попробуем изменять несущую частоту при постоянной длине импульса.

Рис. 9: Спектр $\nu_0 = 10 \text{ kHz}, \ \tau = 50 \ \mu \text{s}$

Рис. 10: Спектр $\nu_0 = 25 \text{ kHz}, \, \tau = 50 \, \mu \text{s}$

Рис. 11: Спектр $\nu_0 = 40 \text{ kHz}, \, \tau = 50 \, \mu \text{s}$

При смещении несущей частоты при постоянной длительности импульса не изменяется ширина пиков, но центр главного пика следует за частотой.

Количественное исследование

Зафиксируем длину цуга равной $\tau=50~\mu \mathrm{s}.$ Снимем зависимость $\delta \nu(1/T)=\delta \nu(\nu_0)$:

ν_0 , kHz	0.5	1	2	4	5
$\delta \nu$, kHz	0.5	1.0	2.0	4.0	5.0

Табл. 2: Зависимость $\delta \nu (1/T)$

По полученным данным построим график зависимости $\delta \nu(1/T)$.

Рис. 12: График зависимости $\delta \nu (1/T)$

Из графика видно, что точки хорошо ложатся на прямую. Представив прмяую в виде $\delta \nu = k(1/T) + b$, получаем методом линейной аппроксимации $k=1,\ b=0$, что свидетельствует о справедливости соотношения неопределенностей.

Исследование спектра гармонических сигналов, модулированных по амплитуде

Исследуем зависимость отношения амплитуд спектральных линий синусоидального сигнала, модулированного низкочастотными гармоническими колебаниями, от коэффициента модуляции, который определяется с помощью осциллографа.

Изменяя глубину модуляции, исследуем зависимость отношения амплитуды боковой линии спектра к амплитуде основной линии $a_{\rm fok}/a_{\rm och}$ от глубины модуляции m; для расчёта глубины модуляции m измерим максимальную $2A_{max}$ и минимальную $2A_{min}$ амплитуды сигнала на экране осциллографа.

A_{max} , V	$A_{min}/A_{\rm och}, V$	A, V	m
0.555	0.450	0.2	0.104
0.602	0.402	0.4	0.199
0.659	0.349	0.6	0.307
0.716	0.294	0.8	0.417
0.756	0.255	1.0	0.495
0.806	0.202	1.2	0.599
0.864	0.149	1.4	0.705
0.916	0.098	1.6	0.806
0.991	0.056	1.8	0.893
1.000	0.017	2.0	0.966

Табл. 3: Зависимость m(A)

Рис. 13: График зависимости m(A)

Исследуем, теперь отношение $A_{\text{бок}}/A_{\text{осн}}$ от $m.~A_{\text{осн}}=0.323~{
m V}$

$A_{60\kappa}$, V	$A_{\text{бок}}/A_{\text{осн}}$	A, V	m
0.0016	0.048	0.2	0.104
0.0032	0.097	0.4	0.199
0.0048	0.149	0.6	0.307
0.0064	0.197	0.8	0.417
0.0078	0.246	1.0	0.495
0.0094	0.289	1.2	0.599
0.0110	0.341	1.4	0.705
0.0128	0.396	1.6	0.806
0.0142	0.440	1.8	0.893
0.0162	0.500	2.0	0.966

Табл. 4: Зависимость $m(A_{\text{бок}}/A_{\text{осн}})$

Рис. 14: График зависимости $m(A_{\text{бок}}/A_{\text{осн}})$

Из графика видно, что точки хорошо ложатся на прямую. Представив прмяую в виде $m = k(A_{60\kappa}/A_{och}) + b$, получаем методом линейной аппроксимации $k = (1.96 \pm 0.04), b = (0.02 \pm 0.01).$

4. Выводы

Исследования зависимости ширины спектра периодической последовательности прямоугольных импульсов от длительности отдельного импульса в первой части работы полностью совпали с теоретическими рассчетами. По наклону графика из этой части получилось убедиться в соотношении неопределенностей.

Исследования зависимости расстояния между ближайшими спектральными компонентами от частоты повторения цугов дали аналогичные резкльтаты.

В последней части коэффициенты, получаемые в результате исследования зависимости отношения амплитуд спектральных линий синусоидального сигнала, модулированного низкочастотными гармоническими колебаниями, от коэффициента модуляции полностью совпали с теоретически рассчитаными.