535514: Reinforcement Learning Lecture 4 — Value Iteration, Policy Iteration, and Regularized MDPs

Ping-Chun Hsieh

March 4, 2024

This Lecture: We Discuss 3 Surprising Facts of MDPs!

1. Value iteration (VI) can find an optimal policy

(VI → Value-based RL, e.g., Q-learning)

2. Policy iteration (PI) can also find an optimal policy

(PI → Policy-based RL, e.g., Policy Gradient, PPO, ...)

3. "Existence" of an optimal policy for MDPs

2-Minute Review: What We Learned in Lecture 3

• Optimal value function $V^*(s)$:

• Optimal action-value function $Q^*(s, a)$:

• Optimal policy π^* :

Existence of an optimal policy (to be proved):

Review: Bellman Optimality Equations

(1)
$$V^*$$
 written in Q^*

$$V^*(s) = \max_{a \in \mathcal{A}} Q^*(s, a)$$

(2)
$$Q^*$$
 written in V^*

$$Q^*(s, a) = R_{s,a} + \gamma \sum_{s' \in \mathcal{S}} P^a_{ss'} V^*(s')$$

(3)
$$V^*$$
 written in V^*

$$V^*(s) = \max_{a \in \mathcal{A}} R_{s,a} + \gamma \sum_{s' \in \mathcal{S}} P^a_{ss'} V^*(s')$$

(4)
$$Q^*$$
 written in Q^*

(4)
$$Q^*$$
 written in Q^* $Q^*(s,a) = R_{s,a} + \gamma \sum_{s' \in \mathcal{S}} P^a_{ss'} \left(\max_{a \in \mathcal{A}} Q^*(s,a) \right)$

How to Solve the Bellman Optimality Equation?

$$V^*(s) = \max_{a \in \mathcal{A}} \left(R_{s,a} + \gamma \sum_{s' \in \mathcal{S}} P^a_{ss'} V^*(s') \right)$$

- Question: Solve this by linear algebra?
- The "max" operation makes it non-linear
- We need to resort to iterative methods:
 - Value iteration
 - Policy iteration

1. Value Iteration (VI)

From Bellman Optimality Equation to "Bellman Optimality Backup Operator"

Recall: Bellman optimality equation

$$V^*(s) = \max_{a \in \mathcal{A}} \left(R_{s,a} + \gamma \sum_{s' \in \mathcal{S}} P^a_{ss'} V^*(s') \right)$$

▶ Define: Bellman optimality backup operator $T^*: \mathbb{R}^{|\mathcal{S}|} \to \mathbb{R}^{|\mathcal{S}|}$

$$T^*(V) := \max_{a \in \mathcal{A}} R^a + \gamma P^a V$$

(Comparison: IPE operator $T^{\pi}(V) := R^{\pi} + \gamma P^{\pi}V$)

Value Iteration: Pseudo Code

Step 1. Initialize k=0 and set $V_0(s)=0$ for all states

Step 2. Repeat the following until convergence:

$$V_{k+1} \leftarrow T^*(V_k)$$

Equivalently: for each state s

$$V_{k+1}(s) \leftarrow \max_{a \in \mathcal{A}} \left(R_{s,a} + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a V_k(s') \right)$$

- Remark: Complexity per iteration is $O(|\mathcal{S}|^2 |\mathcal{A}|)$
- ightharpoonup Remark: Intermediate value functions V_k 's may not correspond to any policy

Example: Shortest Path

$$V_{k+1}(s) \leftarrow \max_{a \in \mathcal{A}} \left(R_{s,a} + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a V_k(s') \right)$$

٧1

-1

0

-2

-3

$$V_2$$

$$V_3$$

0	-1	-2	ဂု
-1	-2	-3	-3
-2	-3	-3	-3
-3	-3	-3	-3

 V_4

0	-1	2	ဂု
-1	-2	-3	-4
-2	-3	-4	-5
-3	-4	-5	-6

 V_7

(Suppose $\gamma = 1$ in this example)

Example: Shortest Path (Cont.)

$$V_{k+1}(s) \leftarrow \max_{a \in \mathcal{A}} \left(R_{s,a} + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a V_k(s') \right)$$

g		

		_		
D	ro	h	Р	m

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

$$V_1$$

$$V_2$$

Convergence of Value Iteration

▶ Theorem (VI converges on V^*): For any initial $V_0 \in \mathbb{R}^{|\mathcal{S}|}$, Value Iteration achieves that $V_k \to V^*$, as $k \to \infty$.

Question: How to show this?

Convergence of Value Iteration

- ▶ Theorem (VI converges on V^*): For any initial $V_0 \in \mathbb{R}^{|\mathcal{S}|}$, Value Iteration achieves that $V_k \to V^*$, as $k \to \infty$.
- Proof: We prove convergence by the following 3 steps
- (B1): Show that T^* is a *contraction operator*
- (B2): Under a contraction operator, $\{V_k\}$ shall converge to the unique fixed point (why?)
- (B3): Since V^* is a fixed point, then $V_k \to V^*$ due to uniqueness

(B1): T^* is a γ -Contraction Operator on V

Bellman optimality backup operator: $T^*(V) := \max(R^a + \gamma P^a V)$ $||T^*(V) - T^*(\hat{V})||_{\sim}$ $= \max_{s} \left| T^*(V)(s) - T^*(\hat{V})(s) \right|$ $= \max_{s} \left| \max_{a} \left(R_{s,a} + \gamma \sum_{s} P_{ss'}^{a} V(s') \right) - \max_{a'} \left(R_{s,a'} + \gamma \sum_{s} P_{ss'}^{a'} \hat{V}(s') \right) \right|$ $\leq \max_{s} \max_{a} \left| \left(R_{s,a} + \gamma \sum_{s'} P_{ss'}^{a} V(s') \right) - \left(R_{s,a} + \gamma \sum_{s'} P_{ss'}^{a} \hat{V}(s') \right) \right|$

$$\leq \max_{s} \max_{a} \left| \gamma \sum_{s'} P_{ss'}^{a} \left(V(s') - \hat{V}(s') \right) \right|$$

$$\leq \gamma ||(V - \hat{V})||_{\infty}$$

Therefore, T^* is a γ -contraction operator ($\gamma < 1$)

(B2): T^* Converges to the Unique Fixed Point

- T^* is a γ -contraction operator in a complete metric space
- $\,\blacktriangleright\,$ By Banach Fixed Point Theorem, T^* converges to the unique fixed point
- Note that V^* is one fixed point of T^* (why?)

▶ Therefore, V^* is the unique fixed point of T^*

(B3):
$$V_k \to V^*$$
 as $k \to \infty$

Let's put everything together!

Discussion: Issues With Value Iteration

• Question 1: What would happen if T^* has multiple fixed points?

Question 2: In how many iterations will VI converge?

Question 3: By applying VI, could we find an optimal policy?

Question 4: By using VI, could we directly prove the existence of an optimal policy?

Discussion: Asymptotic Convergence vs Convergence Rate

VI enjoys the following types of convergence:

▶ Asymptotic Convergence: $V_k \to V^*$, as $k \to \infty$

▶ Convergence Rate: $||V_k - V^*||_{\infty} \le \gamma^k \cdot ||V_0 - V^*||_{\infty}$

Question: Which one is stronger?

2. Policy Iteration (PI)

Policy Iteration: Generic Procedure

Policy evaluation Estimate v_{π} Iterative policy evaluation

Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

(Slide Credit: David Silver)

Policy Iteration: Pseudo Code

(We focus on deterministic policies)

Step 1. Initialize k=0 and set $\pi_0(s)$ arbitrarily for all states

Step 2. While k is zero or $\pi_k \neq \pi_{k-1}$:

- Derive V^{π_k} via policy evaluation for π_k (iterative/non-iterative)
- Derive π_{k+1} by greedy one-step policy improvement

One-Step Policy Improvement

• Given V^{π_k} , compute $Q^{\pi_k}(s, a)$:

$$Q^{\pi_k}(s, a) = R(s, a) + \gamma \sum_{s} P(s' | s, a) V^{\pi_k}(s')$$

• Derive the new policy π_{k+1} : For all states s,

$$\pi_{k+1}(s) = \arg\max_{a \in \mathcal{A}} Q^{\pi_k}(s, a)$$

Note: We will use R(s, a) and $R_{s,a}$ interchangeably

Why is One-Step Policy Improvement Reasonable?

• Question: Suppose we take $\pi_{k+1}(s)$ for one step and then follow π_k subsequently. Is this better than just following π_k ?

$$Q^{\pi_{k}}(s, a) = R(s, a) + \gamma \sum_{s} P(s'|s, a) V^{\pi_{k}}(s')$$

$$\max_{a \in \mathcal{A}} Q^{\pi_{k}}(s, a) \ge R(s, \pi_{k}(s)) + \gamma \sum_{s} P(s'|s, a) V^{\pi_{k}}(s') = V^{\pi_{k}}(s)$$

$$\pi_{k+1}(s) = \arg\max_{a \in \mathcal{A}} Q^{\pi_{k}}(s, a)$$

• Question: But how about following π_{k+1} all the way?

Monotonic Improvement in Policy

Recall: Partial ordering of policies

$$\pi \geq \pi'$$
 if $V^{\pi}(s) \geq V^{\pi'}(s), \forall s$

▶ Question: Do we have $\pi_{k+1} \ge \pi_k$?

Theorem (Monotonic Policy Improvement): Under the one-step policy improvement step, we have $V^{\pi_{k+1}}(s) \geq V^{\pi_k}(s)$ for all $s \in \mathcal{S}$ and hence $\pi_{k+1} \geq \pi_k$.

Proof Idea: "Peeling off"

Proof: Monotonic Policy Improvement

$$\begin{split} V^{\pi_{k}}(s) &\leq \max_{a \in \mathcal{A}} Q^{\pi_{k}}(s, a) \\ &= \max_{a \in \mathcal{A}} R(s, a) + \gamma \sum_{s'} P(s'|s, a) V^{\pi_{k}}(s') \\ &= R(s, \pi_{k+1}(s)) + \gamma \sum_{s'} P(s'|s, \pi_{k+1}(s)) V^{\pi_{k}}(s') \\ &\leq R(s, \pi_{k+1}(s)) + \gamma \sum_{s'} P(s'|s, \pi_{k+1}(s)) \max_{a' \in \mathcal{A}} Q^{\pi_{k}}(s', a') \\ &= R(s, \pi_{k+1}(s)) + \gamma \sum_{s'} P(s'|s, \pi_{k+1}(s)) \\ &\times \left(R(s', \pi_{k+1}(s)) + \gamma \sum_{s''} P(s''|s', \pi_{k+1}(s')) V^{\pi_{k}}(s'') \right) \end{split}$$

• • •

$$=V^{\pi_{k+1}}(s)$$

Discussions: Policy Iteration

Question 1: Will policy iteration terminate in <u>finitely</u> many iterations?

Yes, in at most $|\mathcal{A}|^{|\mathcal{S}|}$ iterations (assume $|\mathcal{A}|, |\mathcal{S}|$ are finite)

```
(There are |\mathcal{A}|^{|\mathcal{S}|} deterministic policies) (If \pi_{k+1} \neq \pi_k, then they must differ by at least 1 entry) (Monotonic policy improvement: \pi_{k+1} \geq \pi_k)
```

Discussions: Policy Iteration (Cont.)

• Question 2: If we have $\pi_{k+1} = \pi_k$, what shall we expect about π_{k+2} ?

Recall:

$$Q^{\pi_k}(s, a) = R(s, a) + \gamma \sum_{s} P(s'|s, a) V^{\pi_k}(s')$$

$$\pi_{k+1}(s) = \arg\max_{a} Q^{\pi_k}(s, a)$$

$$\pi_{k+2}(s) = \arg\max_{a} Q^{\pi_{k+1}}(s, a)$$

Therefore, policy iteration can terminate when $\pi_{k+1} = \pi_k$

Moreover, $\pi_{k+1} = \pi_k$ implies Bellman optimality equation is satisfied by π_k :

$$V^{\pi_k}(s) = \max_a Q^{\pi_k}(s, a)$$

Therefore, π_k must be a (deterministic) optimal policy (Why?)

Hence, PI proves the existence of an optimal policy

Extension: Generalized Policy Iteration

Policy evaluation Estimate v_{π} Any policy evaluation algorithm

Policy improvement Generate $\pi' \geq \pi$ Any policy improvement algorithm

 Remark: Policy gradient methods can be interpreted as an instance of generalized policy iteration (discussed in Lectures 5-7)

Summary

Problem	Bellman Equation	Algorithm	
Prediction	Bellman Expectation Equation	Iterative	
	Dennan Expectation Equation	Policy Evaluation	
Control	Bellman Expectation Equation	Policy Iteration	
	+ Greedy Policy Improvement		
Control	Bellman Optimality Equation	Value Iteration	

Extension: Regularized MDPs

Motivation: Reward Shaping for Faster Learning

Consider our favorite "shortest path" problem

Suppose the reward function of the environment is

•
$$R((1,0), \leftarrow) = R((0,1), \uparrow) = 1$$

•
$$R(s, a) = 0$$
, otherwise

 $\rightarrow \chi$ Is this problem easy to learn?

Motivation: Reward Shaping for Faster Learning

Consider our favorite "shortest path" problem

Suppose the reward function of the environment is

•
$$R((1,0), \leftarrow) = R((0,1), \uparrow) = 1$$

• R(s, a) = 0, otherwise

 $\rightarrow \chi$ Is this problem easy to learn?

What if we augment the reward function (denoted by \tilde{R}) as follows:

•
$$\tilde{R}((1,0),\leftarrow) = \tilde{R}((0,1),\uparrow) = 1$$

•
$$\tilde{R}(s, a) = ||s - g||_1$$
, otherwise

Question: Does this lead to the same optimal policy?

Question: Is this problem easier to learn?

Example: Entropy as Intrinsic Reward

Extrinsic Rewards & Intrinsic Rewards

Standard MDP

Extrinsic rewards

MDP with entropy bonus

Entropy as intrinsic rewards for better exploration

More Generally: Regularized MDPs

Regularized MDP = Standard MDP + Regularized rewards!

- A regularized MDP can be specified by $(\mathcal{S}, \mathcal{A}, P, R, \Omega, \gamma)$
 - $\Omega(\,\cdot\,)$: A function that maps an *action distribution* to a *real number*

Value Functions of Regularized MDPs

	Unregularized MDP	Regularized MDP
Return	$G_t := r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots$	
Value function	$V^{\pi}(s) := \mathbb{E}[G_t s_t = s; \pi]$	
Q function	$Q^{\pi}(s,a) := \mathbb{E}[G_t s_t = s, a_t = a; \pi]$	
Bellman expectation equations	$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) Q^{\pi}(s, a)$ $Q^{\pi}(s, a) = R_{s,a} + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^{a} V^{\pi}(s')$	

Next Question: How to find V^π_Ω ?

Regularized Bellman Expectation Operator

Regularized Bellman Expectation Operator

$$[T^\pi_\Omega V](s) := [T^\pi V](s) - \Omega(\pi(\cdot \mid s))$$
 regularization term
$$= R^\pi_s - \Omega(\pi(\cdot \mid s)) + \gamma P^\pi_{ss'} V$$
 regularized immediate reward

- Question: Is T^π_Ω a contraction? Yes! (in L_∞ -norm)
- Therefore, under T^π_Ω , there is a unique fixed point, which is the regularized value function V^π_Ω
- To find V^π_Ω , we can use the regularized IPE method

Next Question: How to define "optimality" for regularized MDPs?

Regularized Bellman Optimality Operator

Recall: Bellman optimality operator for unregularized MDPs

$$[T*V](s) = \max_{a \in \mathcal{A}} R_s^a + \gamma P_s^a V = \max_{\pi} R_s^{\pi} + \gamma P_s^{\pi} V$$

$$= [T^{\pi}V](s)$$

Regularized Bellman optimality equations

$$[T^*_{\Omega}V](s) = \max_{\pi}\{[T^{\pi}_{\Omega}V](s)\} \leftarrow_{\mathbf{a}} \text{ greedy step!}$$

- Useful Facts
 - 1. T_{Ω}^{*} is also a contraction map (in L_{∞} -norm)
 - 2. There is a unique fixed point of T_{Ω}^*
 - 3. We define regularized optimal value function V_{Ω}^* as the fixed point of T_{Ω}^*

Regularized Q-functions and Policy Iteration

Regularized Q-function

$$Q^{\pi}_{\Omega}(s,a) := R^a_s + \gamma E_{s' \sim P(\cdot|s,a)}[V^{\pi}_{\Omega}(s')]$$

Regularized optimal Q-function

$$Q_{\Omega}^{*}(s,a) := R_{s}^{a} + \gamma E_{s' \sim P(\cdot|s,a)}[V_{\Omega}^{*}(s')]$$

Question: Now we are ready for "regularized policy iteration". How?

Regularized Policy Iteration (Regularized PI)

Regularized Policy Iteration

- 1. Initialize k=0 and set $\pi_0(\cdot \mid s)$ arbitrarily for all states
- 2. While \underline{k} is zero or $\underline{\pi_k \neq \pi_{k-1}}$:
 - Derive $V^{\pi_k}_{\Omega}$ and $Q^{\pi_k}_{\Omega}$ via policy evaluation
 - Derive π_{k+1} by greedy policy improvement:

$$\pi_{k+1}(\cdot \mid s) = \arg\max_{\pi} \left\{ \langle \pi(\cdot \mid s), Q_{\Omega}^{\pi_k}(s, \cdot) \rangle - \Omega(\pi(\cdot \mid s)) \right\}$$

Regularized PI + Entropy Regularizer

 Soft Policy Iteration: A special case of regularized PI with negative entropy

$$\Omega(\pi(\cdot \mid s)) := \sum_{a} \pi(a \mid s) \log \pi(a \mid s)$$

Theorem: Under Soft Policy Iteration, we have

$$\pi_{k+1}(\cdot \mid s) = \arg\max_{\pi} \left\{ \langle \pi(\cdot \mid s), Q_{\Omega}^{\pi_{k}}(s, \cdot) \rangle - \Omega(\pi(\cdot \mid s)) \right\}$$
$$= \frac{\exp(Q_{\Omega}^{\pi_{k}}(s, \cdot))}{\sum_{a \in \mathcal{A}} \exp(Q_{\Omega}^{\pi_{k}}(s, a))}$$

Proof: HW1 problem