Homework 6

D. Zack Garza

October 24, 2019

Contents

1	Hon	nework Problems	1
	1.1	Problem 1	1
	1.2	Problem 2	5
	1.3	Problem 3	5
		1.3.1 Part 1	5
		1.3.2 Part 2	5
	1.4	Problem 4	6
	1.5	Problem 5	6
	1.6	Problem 6	7
		1.6.1 Part 2	7
		1.6.2 Part 3	7
2	Qua	l Problems	7
	2.1	Problem 1	7
		2.1.1 Part 1	7
		2.1.2 Part 2	7
		2.1.3 Part 3	7
	2.2	Problem 2	7
		2.2.1 Part 1	7
		2.2.2 Part 2	8
		2.2.3 Part 3	8
	2.3	Problem 3	8
		2.3.1 Part 1	8
		2.3.2 Part 2	8

1 Homework Problems

1.1 Problem 1

The splitting field of this polynomial is $\mathbb{Q}(\sqrt[3]{2},\sqrt{3},\zeta_3)$ where ζ_3 is a primitive third root of unity.

To get the degree of this extension, we extend fields in the indicated order. Since $\mathbb{Q}(\sqrt[3]{2}, \sqrt{3})$ is totally real, the minimal polynomial of ζ over it still has degree $\phi(3) = 2$. A quick check also shows that $\sqrt{3}$ is not contained in $\mathbb{Q}(\sqrt[3]{2})$, yielding another degree 2 extension, and finally a degree 3 extension.

Thus we have an extension of degree 12, and since we've constructed a Galois extension L (a separable splitting field), if we define $G := \operatorname{Gal}(\mathbb{Q}/L)$, we have |G| = 12. Since we know that the splitting field of $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ has Galois group D_3 , we must have $D_3 \leq G$. This reduces the possibilities just $D_3 \times \mathbb{Z}_2 \cong D_6$.

We have the following subgroup diagram (Figure 1).

where we can simplify things by only considering conjugacy classes of subgroups, since these will cor-

respond to conjugate field extensions (Figure 2).

We can explicitly identify the relevant automorphisms:

$$\sigma: \sqrt[3]{2} \mapsto \zeta_3 \sqrt[3]{2}$$
$$\tau: \zeta_3 \mapsto \zeta_3^2$$
$$\gamma: \sqrt{3} \mapsto -\sqrt{3}.$$

We can then present $G = \langle \sigma, \gamma, \tau \mid \sigma^3 = \tau^2 = \gamma^2 = (\sigma \tau)^2 = [\sigma, \gamma] = [\tau, \gamma] = e \rangle$, and obtain the following lattice:

which, up to conjugacy, fix the following intermediate field extensions (Figure 3).

1.2 Problem 2

We can note that since f has 4 roots, the Galois group G of its splitting field will be a subgroup of S_4 . Moreover, G must be a transitive subgroup of S_4 , i.e. the action of G on the roots of f should be transitive. This reduces the possibilities to $G \cong S^4$, A^4 , D^4 , \mathbb{Z}_4 , \mathbb{Z}_2^2 .

Since f has exactly 2 real roots and thus a pair of roots that are complex conjugates, the automorphism given by complex conjugation is an element of G. But this corresponds to a 2-cycle $\tau = (ab)$, and we can then make the following conclusions:

- Not A_4 : A_4 contains only even cycles, and τ is odd.
- Not Z_4 : This subgroup is generated by a single 4-cycle σ , which up to conjugacy is (1234), and σ^n is not a 2-cycle for any n.
- Not \mathbb{Z}_2^2 : In order to be transitive, this subgroup must be $\{e, (12)(34), (13)(24), (14)(23)\}$, which does not contain τ .

The only remaining possibilities are S^4 and D^4 . \square

1.3 Problem 3

1.3.1 Part 1

To see that $\phi(n)$ is even for all n > 2, we can take a prime factorization of n and write

$$\phi(n) = \phi\left(\prod_{i=1}^{m} p_i^{k_i}\right) = \prod_{i=1}^{m} \phi(p_i^{k_i}) = \prod_{i=1}^{m} p^{k_i - 1} (p - 1) = \prod_{i=1}^{m} p^{k_i - 1} \prod_{i=1}^{m} (p - 1)$$

where each $k_i \geq 1 \implies k_i - 1 \geq 0$. But every prime power is odd, and a product of odd numbers is odd, so the first product is odd. It is also true that p-1 is even for every prime p, and the second term is a product of even terms and thus even. So $\phi(n)$ is the product of an even and an odd number, which is always even.

1.3.2 Part 2

Suppose $\phi(n) = 2$. Take a prime factorization of n, so we have

$$2 = \phi(n) = \prod_{i=1}^{m} \phi(p_i^{k_i})$$

Since the only factors of 2 are 1 and 2, we must have $\phi(p_i^{k_i}) = 2$ for exactly one i, and the rest must be equal to 1.

Consider the term that equals 2. We have $\phi(p_i^{k_i}) = p^{k_i-1}(p-1) = 2$, so we must have either

- Case 1: p-1=2 and $p^{k_i-1}=1$, so p=3 and $k_i=1$. So $3\mid n$, but 3^ℓ does not divide n for any $\ell>1$.
- Case 2: $p^{k_i-1}=2$ and (p-1)=1, so p=2 and $k_i=2$. Thus 2^2 divides n but 2^ℓ does not for any $\ell>2$.

In either case, it remains to check are whether the other factors where $\phi(p_j^{k_j}) = 1$ can contribute any other distinct divisors to n. We can note that $\phi(p_j^{k_j})$ iff $p^{k_j-1}(p-1) = 1$, so this forces p=2 and $k_j=1$. So n may or may not contain a single factor of 2, but by uniqueness of prime factorization, this can only happen in case 1. Note that this also forces $2 \mid n$ but 2^2 does not divide n.

In summary, we've found that $\phi(n) = 2$ implies that

3 | n, 9 does not divide n, and
2 | n, 4 does not divide n
2 does not divide n
2² | n, 2³ does not divide n.

This reduces the possibilities to the finite set $n \in \{6, 3, 4\}$, and $\phi(6) = \phi(3) = \phi(4) = 2$.

1.4 Problem 4

Note that since $\zeta(\zeta + \zeta^{-1}) = \zeta^2 + 1$, we have the relation $\zeta^2 - (\zeta + \zeta^{-1})\zeta + 1 = 0$. But then

$$f(x) = x^2 - (\zeta + \zeta^{-1})x + 1$$

is a polynomial in $\mathbb{Q}(\zeta + \zeta^{-1})$ for which $f(\zeta) = 0$. Thus $g = \min(\zeta, \mathbb{Q}(\zeta + \zeta^{-1}))$ divides f, but since $\deg f = 2$ and $\mathbb{Q}(\zeta + \zeta^{-1})$ is totally real, $\zeta \notin \mathbb{Q}(\zeta + \zeta^{-1})$. This means that g can not be linear and must have degree at least 2, but the above argument shows that g has degree at most 2, so it must be 2. Letting $m = [\mathbb{Q}(\zeta + \zeta^{-1}) : \mathbb{Q}]$, we have

$$[\mathbb{Q}(\zeta):\mathbb{Q}] = [\mathbb{Q}(\zeta):\mathbb{Q}(\zeta+\zeta^{-1})][\mathbb{Q}(\zeta+\zeta^{-1}):\mathbb{Q}]$$

$$\implies \phi(n) = 2m,$$

and so $m = \phi(n)/2$ as desired.

1.5 Problem 5

Suppose $F = K[\alpha_1, \dots, \alpha_n]$ where $\alpha_1^{n_1} \in K$ for some n_1 and β or each i we have $\alpha_i^{n_i} \in K[\alpha_1, \dots, \alpha_{i-1}]$ for some powers n_i . We want to show that $F = E[\beta_1, \dots, \beta_m]$ where each β_i satisfy a similar condition

Let $A = \{\alpha_i \ni \alpha_i \notin E\}$, then it is since $E \hookrightarrow F$, adjoining all elements of A to E will yield exactly F. Using the order of α_i given by the definition of F as a radical extension, let β_1 be the $\alpha_i \in A$ with the smallest index i. Then by assumption, there is some m_1 such that $\beta^{m_1} \in K[\alpha_1, \dots, \alpha_{i-1} \subset F]$, so we can construct $F_1 := E[\beta_1]$ which will be a radical extension.

Inductively letting $A_2 = A \setminus \{\beta_1\}$ and repeating this process to construct L_2 will yield radical extensions at every step, and since A is finite, there is some n such that $L_n = L$. But then L is a radical extension over E as desired.

1.6 Problem 6

1.6.1 Part 2

The normal closure L of K is defined as the smallest extension of K such that if α is a root of any irreducible polynomial in K[x] and $\alpha \in L$, then all of its conjugates are in L as well. But this means any such polynomial splits in L. In particular, if $u \in L$, then f splits in L, and so L contains the splitting field F.

1.6.2 Part 3

2 Qual Problems

2.1 Problem 1

2.1.1 Part 1

If L/K is a finite field extension which is both separable and a splitting field of some polynomial in K[x], then [L:K] = |Gal|L/K.

2.1.2 Part 2

The extension $\mathbb{Q}(\zeta_{43})$ is the splitting field of the cyclotomic polynomial $\Phi_{43}(x) = \sum_{i=1}^{4} 2x^i$, which is degree $\phi(43) = 42$ since 43 is prime.

Moreover, the Galois group is isomorphic to $\mathbb{Z}_{43}^{\times} \cong \mathbb{Z}_{42}$.

2.1.3 Part 3

Since proper subfields will correspond to intermediate extensions which will correspond to subgroups of the Galois group, this problem is reduced to counting the number of distinct subgroups of \mathbb{Z}_{42} . This is a cyclic group, so there is exactly one subgroup of order d for each d dividing 42. Since 42 = 2 * 3 * 7, we have

- A subgroup of order 2, corresponding to a field extension of degree 21,
- A subgroup of order 3, corresponding to a field extension of degree 14,
- A subgroup of order 6, corresponding to a field extension of degree 7,
- A subgroup of order 7, corresponding to a field extension of degree 6,
- A subgroup of order 14, corresponding to a field extension of degree 3,
- A subgroup of order 21, corresponding to a field extension of degree 2.

2.2 Problem 2

2.2.1 Part 1

A splitting field of f over F is an extension $L \ge F$ that contains every root of f, so that f can be decomposed as a product of linear factors i.e. $f(x) = \prod_{i=1}^{\deg f} (x - \alpha_i)^{m_i}$ in L[x].

2.2.2 Part 2

If $E \geq F$ is a finite extension, then it is algebraic and $E = F[\alpha_1, \dots, \alpha_n]$. So we can let $g(x) = \prod_{i=1}^n (x - \alpha_i)$. By construction, each α_i is a root, and so E is a splitting field for g.

2.2.3 Part 3

Since E was shown to be a splitting field, it only remains to show that it is separable. But this follows from the fact that each α_i is a separable *element*, since their minimal polynomial over F is g. So E is a Galois extension.

2.3 Problem 3

2.3.1 Part 1

False: take $K \leq L \leq M$ as $\mathbb{Q} \leq \mathbb{Q}(\sqrt[3]{2}) \leq \mathbb{Q}(\sqrt[3]{2}, \zeta_3)$. Then M is the splitting field of $x_3 - 2$, and in characteristic zero is thus Galois. But L is not the splitting field of any irreducible polynomial in $\mathbb{Q}[x]$, so it is *not* Galois.

2.3.2 Part 2

This is true. By the Galois correspondence, it suffices to show that $H := \operatorname{Gal}(M/L)$ is a normal subgroup of $G := \operatorname{Gal}(M/K)$. To that end, let $\phi \in G$, so $\phi : M \to M$ is a lift of id_K . Then $H \subseteq G$ iff $\phi H \phi^{-1} = H$. Letting $\sigma \in H$, we need to show that

$$(\phi^{-1} \circ \sigma \circ \phi)(L) = L,$$

i.e. that this composition is some automorphism of M that fixes L.

Consider how this acts on elements of L. If $\ell \in L$, then $\ell = \sum k_i \ell_i$ since L is a finite-degree extension, thus algebraic, thus spanned by some basis $\ell_i \in L$ as a vector space over K.

In particular, since ϕ is some M-automorphism, it restricts to an L-automorphism, which must send each ℓ_i to some conjugate ℓ'_i . Similarly, $\phi^{-1}(\ell'_i) = \ell_i$.

We thus have

$$(\phi^{-1}\sigma\phi)(a) = (\phi^{-1}\sigma\phi)(\sum k_i\ell_i)$$

$$= (\phi^{-1}\sigma)(\sum k_i\phi(\ell_i))$$

$$= (\phi^{-1}\sigma)(\sum k_i\ell'_i)$$

$$= (\phi^{-1})(\sum k_i\sigma(\ell'_i))$$

$$= (\phi^{-1})(\sum k_i\ell'_i) \text{ since } \sigma \text{ fixes } L$$

$$= \sum k_i\phi^{-1}(\ell'_i)$$

$$= \sum k_i\ell_i$$

and so this composite fixes L as desired. This $H \subseteq G$, which is what we wanted to show.