Week 6

Modules Intro

6.1 Module Tools

- 2/6: A fifth week summary has been posted.
 - Week 5 content is not in the midterm syllabus.
 - In particular, Gauss's Lemma is not on the midterm.
 - Lecture 5.3 won't even be on the final syllabus.
 - The techniques are applicable to a variety of problems, though, so it is good to know them.
 - Today: Modules.
 - We depart from commutative rings and return to simple rings with identity to start.
 - Notation: What kinds of sets different letters denote.
 - -A, B: Rings.
 - R: Commutative ring.
 - -F,K: Fields.
 - D: Division ring.
 - Linear algebra is the study of division rings but only over fields.
 - Definition of a division ring.
 - The only ideals of a division ring are 0, D, just like with fields.
 - Linear independence, spanning, basis, etc. all hold in a general division ring; you only need fields for things like JCF.
 - Left A-module: An abelian group (M, +) equipped with a binary operation $\cdot : A \times M \to M$ defined by $(a, m) \mapsto am$ (or $a \cdot m$ in the case of potential ambiguity) satisfying the following. Constraints

 For all $a, b \in A$ and $v, v_1, v_2 \in M \dots$
 - (1) $a(v_1 + v_2) = av_1 + av_2$;
 - (2) (a+b)v = av + bv;
 - (3) a(bv) = (ab)v;
 - (4) $1_A v = v$.
 - We need the last one so that multiplication is nontrivial.
 - A right A-module puts the scalar on the right. Will we ever consider these??

- Notation: For all $a \in A$, define the function $\rho(a): M \to M$ by $\rho(a)v = av$ for all $v \in M$. Constraints
 - (1) $\rho(a)$ is a group homomorphism from $M \to M$.
 - (2) $\rho(a+b) = \rho(a) + \rho(b)$.
 - (3) $\rho(a)\rho(b) = \rho(ab)$.
 - (4) $\rho(1_A) = 1_{\text{End}(M)}$
- Conditions 2-4 imply that $\rho: A \to \operatorname{End}(M)$ is a ring homomorphism.
 - Recall HW1 Q1.14, which led up to the result that

$$\operatorname{End}(M) = \{ f : M \to M \mid f \text{ is a group homomorphism} \}$$

is a ring with identity under componentwise addition and composition (i.e., $g \cdot f = g \circ f$).

- Going forward, in-class definitions will always match those in the book.
 - It's been this way for a while??
- Examples.
 - 1. Let M = A. Then $\rho(a)b = ab$ for all $a \in A$, $b \in M = A$.
 - 2. If M_i ($i \in I$ an indexing set) is a (left) A-module, then the product $\prod_{i \in I} M_i$ is also an A-module.
 - 3. Denote an element of $\prod_{i \in I} M_i$ by $\prod_{i \in I} m_i$. An arbitrary choice of $m_i \in M_i$ for all $i \in I$ is allowed (do we need the Axiom of Choice??). We define \cdot by

$$a\left(\prod_{i\in I}m_i\right) = \prod_{i\in I}(am_i)$$

4. The collection

$$\bigoplus_{i \in I} M_i = \left\{ \prod_{i \in I} m_i \mid \{i \in I : m_i \neq 0\} \text{ is a finite set} \right\}$$

is an A-module.

- This is a submodule of something??
- Under the same binary operation as Example 3??
- 5. In particular, A^m is an A-module with $a(b_1, \ldots, b_n) = (ab_1, \ldots, ab_n)$.
- A-submodule: A subgroup (N, +) of (M, +) such that for all $a \in A$ and $\omega \in N$, $a\omega \in N$.
- Observation: If N_1, N_2 are submodules of M, then $N_1 + N_2$ and $N_1 \cap N_2$ are submodules.
- Question (base case): What are the submodules of A, itself?
 - Left ideals.
- Module homomorphism: A function $T: M \to N$ such that T is a homomorphism of abelian groups and commutes with scalar multiplication (i.e., T(av) = aT(v) for all $a \in A, v \in M$). In full, we have

$$T(a_1v_1 + a_2v_2) = a_1T(v_1) + a_2T(v_2)$$

for all $a_1, a_2 \in A$ and $v_1, v_2 \in M$.

- Question: What are all of the module homomorphisms $T: A \to M$?
 - If T(1) = v, then $T(a \cdot 1) = aT(1) = av$ for all $a \in A$.
 - For all $v \in M$, there exists a unique $T: A \to M$ such that T(1) = v. This is more linear algebra.

- Question: What are all linear transformations $T: A^n \to M$?
 - Suppose $e_1 = (1, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0),$ etc. Then

$$(a_1, \dots, a_n) = \sum_{i=1}^n a_i e_i$$

- Therefore,

$$T(a_1, \dots, a_n) = \sum_{i=1}^n a_i Te_i$$

- Take any ordered *n*-tuple of elements in M; then given $v_1, \ldots, v_n \in M$, there is a unique A-module homomorphism $T: A^n \to M$ such that $T(e_i) = v_i$ $(i = 1, \ldots, n)$.
- Isomorphism (of A-modules): A bijective module homomorphism $T:M\to N,$ where M,N are A-modules.
- It follows that $T^{-1}: N \to M$ is also a homomorphism.
- Proposition: Let N be a submodule of M. Then the quotient group M/N has a unique structure of an A-module such that $\pi: M \to M/N$ (defined with groups) is an A-module homomorphism.

Proof.

Existence: For all $a \in A$, we have that $\rho(a): M \to M$ take $\rho(a)N \subset N$. It induces $\overline{\rho(a)}: M/N \to M/N$. Take $\overline{\rho(a)}$, which is scalar multiplication by a on M/N.

• FIT: Let $\phi: M \to N$ be a module homomorphism. Then $\ker(\phi)$ is a submodule M and $\operatorname{im}(\phi)$ is a submodule of N.

Figure 6.1: First isomorphism theorem of modules.

- Example: $A = \mathbb{Z}$ and $M = \mathbb{Z}/(27)$.
- Theorem: Let R be a PID. Then every R-submodule of \mathbb{R}^n is isomorphic to \mathbb{R}^m for some $0 \leq m \leq n$.
- Think in terms of fields! If Nori had been couching all of this in terms of vector spaces, we would all get all of this immediately.
- Let $n=1, (2) \subsetneq \mathbb{Z}$. Then m=n does not imply $M=\mathbb{R}^n$.
- \bullet Submodules of R are ideals. Thus, in a PID, they're principal ideals.

Proof. Case 1 (base case): Let n=1. We know that M=(b) for some $b \in R$. If b=0, then we're done. Thus, assume $b \neq 0$. Then $T: R \to (b)$ given by T(a) = ab for all $a \in A$. It follows that T is onto. From the fact that R is an integral domain, we have that T is 1-1.

Case 2 (general case): We induct on n. Suppose that $i: \mathbb{R}^{n-1} \hookrightarrow \mathbb{R}^n$ is given by

$$i(a_1,\ldots,a_{n-1})=(a_1,\ldots,a_{n-1},0)$$

Let M be a submodule of R^n . Then $R^{n-1} \times \{0\} \hookrightarrow R^n$ and $M \cap (R^{n-1} \times \{0\}) \cong R^\ell$ for $0 \le \ell \le n-1$. Suppose that you define the ideal $\pi(a_1, \ldots, a_n) = a_n$. Let $\pi(M) = I$. Then you have some ideal I. It follows that $\pi: M \to I \subset R$. Let $M' = \ker \phi$. $M/M' \cong I$. At this point, there are only two cases (a = 0 and a = M).

- Next time: We will wrap up this proof with the following proposition.
- Proposition: If M' is a submodule of M and $M/M' \cong R$ as an R-module, then $M \cong M' \oplus R$.

6.2 Office Hours (Nori)

- Is the final cumulative? Will we ever be responsible for the Week 5 material?
 - Stuff from Week 5 and this lecture may show up in terms of thought processes you need to go through again, but the exact stuff won't show up. And certainly not on Wednesday's midterm.
 - The midterm will test who is thinking correctly and who can write proper proofs; there will only be one proof problem, most likely.
 - Several T/F questions.
 - If R[X] is a UFD, prove that R is a UFD.
 - The two Lecture 5.2 methods are important to know (e.g., for the final).
- Review questions email?
 - Looking at the fourth week summary and the problems in there will help you prepare for your midterm.
 - That may be too strong a statement, but it might be nice.
 - The gcd of two elements in a PID is just found by looking for a generator. Study this!! Nori wants to put a problem on it.
- Lecture 3.1: What is \bar{X} in a quotient ring with a degree 1 or 0 polynomial divisors?
 - It is an abrupt and jumpy transition from degree 1 to 0.
 - For degree n=0, we have a natural homomorphism from $\mathbb{Z}/2\mathbb{Z}[X]$ to $\mathbb{Z}[X]/(2)$.
 - For degree $n \geq 2$ in the ideal, we have a new polynomial that's solvable.
 - For degree n = 1, we get dyadics or something like that.
 - What about (2X)? It's kind of in between the n=1 and n=0 cases. We have an injection

$$\mathbb{Z}[X]/(2X) \hookrightarrow \mathbb{Z}[X]/(2) \times \mathbb{Z}[X]/(X) \cong \mathbb{F}_2[X] \times \mathbb{Z}$$

- We also have a ring homomorphism from $F_2[X] \times \mathbb{Z} \to \mathbb{F}_2 \times \mathbb{F}_2$ defined by evaluation in the first slot and then f(0) in the next.
- But $(\mathbb{F}_2[X] \times \mathbb{Z})/(\mathbb{Z}[X]/(2X)) \cong \mathbb{F}_2$. This conjugacy only happens as groups, though.
- To get down to one element, you can prove that $\mathbb{Z}[X]/(2X) \cong \Delta^{-1}(\mathbb{F}_2)$ where Δ is the diagonal.
- Lecture 4.1: Showing $r \in I$ in this way would not be acceptable in the HW?
 - Probably a misstatement.
- Lecture 4.2: Incomplete statement on what's all important to prove that something is a UFD.
 - It's all important to prove that irreducibles are prime. This is equivalent to R being a UFD.
- Lecture 4.2: The whole essay thing and the greatest common divisors being well-defined.

- This is just talking about the algorithm for finding the gcd via factorization.
- Section 8.3: Using the Axiom of Choice in the construction of the infinite chain?
 - Nori never gives much thought to such matters lol.
 - You're doing something infinitely many times, but via induction so countably so. Thus, use a countable Axiom of Choice. So it is an Axiom of Choice, but a limited one, too.
- Lecture 5.1: Conversely statement.
 - Statement (*) provides a "factorization." But for us to know that it actually is a factorization, we need to know that each $\pi \in \mathcal{P}(R)$ is, in fact, irreducible. We do that as follows.
 - Suppose that $\pi = ab$ is a factorization of an irreducible element. By statement (*), write $a = u\pi^{m_0}\pi_1^{m_1}\cdots\pi_h^{m_h}$ and $b = v\pi^{n_0}\pi_1^{n_1}\cdots\pi_h^{n_h}$. It follows that

$$\pi^1 \pi_1^0 \cdots \pi_h^0 = \pi = ab = \pi^{m_0 + n_0} \pi_1^{m_1 + n_1} \cdots \pi_h^{m_h + n_h}$$

Thus, $m_i + n_i = 0$ (i = 1, ..., h), so $m_i, n_i = 0$ for these i. Additionally, $m_0 + n_0 = 1$, so WLOG let $m_0 = 1$. Then $n_0 = 0$ and b is a unit. Therefore, π is irreducible.

- Lecture 5.2: Why do we assume that $a_n \neq 0$?
- Lecture 5.2: Clarification on the end of Method 1.
 - See Week 5 notes.
 - Key takeaway: You want to get a bound; it doesn't matter if it's the best possible bound, but a bound on the coefficients of a monic polynomial implies a bound on the roots.
- Lecture 5.2: What is going on at the end of Method 2?
- Lecture 5.2: What was the thing about reducing polynomials modulo primes?
- Lecture 6.1: Will we ever consider right A-modules?
 - No and going forward, **A-module** means "left A-module."
- Lecture 6.1: How long have in-class definitions matched those in the book?
 - Practically any book has a different definition of EDs. The book has the weakest definition (i.e., that with the Dedekind-Hasse norm). This definition is basically used nowhere, though.
 - The **class group** is a measure of the failure of unique factorizations. This is an example of something that's actually useful.
 - Rings, ring homomorphisms, etc. But basically stopped in second week.
 - We need the $\phi(1) = 1$ property for instance because otherwise the image of 1 might not act like 1 in the product.
- Lecture 6.1: Axiom of Choice needed to pick an element out of each set?
- Lecture 6.1: What is the direct product a submodule of?
- Lecture 6.1: Is the submodule under the same binary operation as Example?
 - The direct sum is a submodule of the product.

6.3 Office Hours (Ray)

- Q5.2(i).
 - Do it by hand; $X^4 1$ and $X^2 1$ is an instructive example.
 - We have that $X^4 1 = (X^2 1)(X^2 + 1)$.
- Do we need proofs for Q5.4?
 - No.
- What additionally does Q5.1(iii) want us to do?
 - You can include a pointer to the previous part and reiterate your proof.
- Q5.6.
 - Commutative rings of characteristic p: The "raise to the power p" function is a ring homomorphism. This is the **Frobenius map**.

6.4 Midterm Review Sheet

- 2/8: Definitions and alternate definitions.
 - Ring: Abelian group, associative multiplication, distributive laws.
 - Subring: Closed under addition, multiplication, inverses; contains 1_R .
 - Ring homomorphism: Respects addition, multiplication, identites.
 - Field: Commutative, multiplicative inverses for every element save 0_R .
 - A commutative division ring.
 - Commutative, $0_F \neq 1_R$, multiplicative inverses.
 - Polynomial ring: Union of all formal sums of finite length.
 - Power series ring: $R^{\mathbb{Z}_{\geq 0}}$ under

$$\left(\sum_{n=0}^{\infty} a_n X^n\right) + \left(\sum_{n=0}^{\infty} b_n X^n\right) = \sum_{n=0}^{\infty} (a_n + b_n) X^n$$

$$\left(\sum_{p=0}^{\infty} a_p X^p\right) \left(\sum_{q=0}^{\infty} b_q X^q\right) = \sum_{\substack{p \ge 0, \\ q \ge 0}} a_p b_q X^{p+q} = \sum_{r=0}^{\infty} \left(\sum_{p=0}^r a_p b_{r-p}\right) X^r$$

- Division ring: Multiplicative inverses only.
- Trivial ring: Multiplication is the zero function.
- **Zero ring**: The ring $R = \{0\}$.
- **Zero divisor**: A nonzero element $a \in R$ to which there corresponds a nonzero element $b \in R$ such that either ab = 0 or ba = 0.
- Unit: An element $u \in R$ to which there corresponds some $v \in R$ such that uv = 1.
- Integral domain: Commutative, no zero divisors.
 - Commutative, $0_R \neq 1_R$, $a \neq 0$ and ab = 0 implies b = 0.

- Commutative, $0_R \neq 1_R$, $a, b \neq 0$ implies $ab \neq 0$.
- Gaussian integers: $\mathbb{Z}[i]$.
- Ideal: A subset I of a ring R for which $(I,+) \leq (R,+)$ and aI, Ia, or both are subsets of I.
 - Left, right, and two-sided variations.
- Quotient ring: The set of all additive cosets.
- Canonical injection: ι .
- Canonical surjection: i.
- **Isomorphism** (of rings): $f \circ g$ and $g \circ f$ definition formally.
 - Bijectivity isn't always enough.
- Principal ideal: An ideal with a single generator.
- Sum (of ideals): $\{a+b: a \in I, b \in J\}$.
- **Product** (of ideals): $\{a_1b_1 + \cdots + a_nb_n : n \in \mathbb{N}, a_1, \dots, a_n \in I, b_1, \dots, b_n \in J\}$.
- Characteristic (of R): The unique $d \in \mathbb{Z}_{\geq 0}$ such that $\ker(j) = \mathbb{Z}d$, where $j : \mathbb{Z} \to R$ is the homomorphism defined by $m \mapsto m_R$.
- Generated (ideal): The ideal consisting of all R-multiples of some set of elements in R.
- Maximal (ideal): $M \subsetneq R$, no ideal S satisfies $M \subsetneq S \subsetneq R$.
- **Prime** (ideal): $P \subsetneq R$ (for R commutative), $a, b \in R$ and $ab \in P$ implies $a \in P$ or $b \in P$.
- **ED**: Integral domain, has a (positive) norm [induces a division algorithm].
- Reducible (element): Nonzero, a = bc for some $b, c \notin R^{\times}$.
- Irreducible (element): Nonzero, not a unit, not reducible.
 - Equivalently: $\pi = ab$ implies a or b is in R^{\times} .
- Factorization: Product of irreducibles and a unit.
- Equivalent (factorizations): Same length, uniqueness up to associates (don't forget the permutation thing!).
- UFD: Integral domain, all factorizations of a given element are equivalent.
- Greatest common divisor: Divides a, b; all others divide it.
- We now move on to other major/useful results and proof sketches.
- Cancellation law: a, b, c with a not a zero divisor, ab = ac, implies a = 0 or b = c.
- Finite integral domains are fields.
- The property "is a subring of" is transitive.
- Proof that π respects multiplication (review!).
- NIT: The natural extension of the FIT holds.
- The cancellation lemma holds in integral domains.
- Images and kernels are subrings.

- Evaluation is a ring homomorphism.
- I = R iff I contains a unit.
- R is a field iff it's commutative and its only ideals are 0, R.
- F a field implies any nonzero ring homomorphism into another ring is an injection.
- Every proper ideal is contained in a maximal ideal.
- In commutative rings: M is maximal iff R/M is a field.
- In commutative rings: P is prime iff R/P is an integral domain.
- In commutative rings: I maximal implies I prime.
- EDs, PIDs, and UFDs are all integral domains at their most basic level; then they have additional structures corresponding to their names added on top.
- $R \{0\} = \coprod \{\text{units, reducibles, irreducibles}\}.$
- TFAE (in a PID): π irreducible, (π) maximal, π prime.
- R[X] a UFD implies R a UFD.
 - Consider $r \in R$. $r \in R[X]$. Therefore it has a unique factorization. Its factorization must be in terms of degree 0 elements since it's degree 0. Therefore, R is a UFD.
- gcd(a, b) is a generator of Ra + Rb.
 - R is a PID, so Ra + Rb = Rd.
 - $-a, b \in (d)$ implies $d \mid a, b$.
 - $-a, b \in (d')$ implies $d = \alpha a + \beta b \in (d')$, so $d' \mid d$.
- Lastly, a checklist of things from the midterm syllabus.
- All of the material in Chapter 7 excluding...
 - 1. The CRT in the generality stated there (a less general version may still appear).
 - Essentially, for coprime ideals, the quotient of their product equals the quotient of their intersection is congruent to the product of their quotients.
 - 2. Group rings.
 - 3. Monoid rings.
- Special focus on...
 - 1. Polynomial rings and power series rings.
 - Universal property: R a ring, $\alpha: R \to B$, $x \in B$, x commutes with all $\alpha(a) \Rightarrow$ there exists a unique $\beta: R[X] \to B$ such that $\beta(a) = \alpha(a)$ for all $a \in R$ and $\beta(X) = x$.
 - Like change of coordinates and evaluation.
 - 2. Rings of fractions *only* for when the ring is an integral domain (no need to go to the more general Chapter 15 version).
 - Characteristics of D: $1_R \in D$, $0_R \notin D$, D contains no zero divisors, D is a multiplicative subset.
 - Universal property: $\iota: R \to D^{-1}R$ is injective, $\varphi: R \to S$ satisfying $\varphi(D) \subset S^{\times}$ implies a unique $\tilde{\varphi}: D^{-1}R \to S$ such that $\tilde{\varphi} \circ \iota = \varphi$, and φ injective implies $\tilde{\varphi}$ injective.
 - Key step in proof: $\tilde{\varphi}(x/t) = \varphi(x)\varphi(t)^{-1}$.
 - Frac R is isomorphic to the subfield of F generated by R.

- $-R_f \cong R[X]/(fX-1).$
- Chapter 8/9 material.
 - 1. Euclidean algorithm for monic polynomials.
 - Strict less than, uniqueness proof (subtract two possibilities and get constraints), existence (induct and reduce degree).
 - 2. ED implies PID.
 - Take a smallest element under the norm and call it d. Divide an arbitrary $h \in I$ by d to get qd + r. Know that r must have smaller norm and thus be 0. Set I = (q).
 - 3. PID implies UFD.
 - If every irreducible element of R is prime, then any two factorizations are equivalent.
 - Prove via induction.
 - Start with r = 0 which is trivial.
 - Show that $u'\pi'_1 \cdots \pi'_s \in (\pi_1)$.
 - It's not u' that's divisible by π_1 (contradiction; proves π_1 is a unit).
 - It must be one of the others (WLOG π'_1).
 - Relates $\pi_1 = u_1 \pi'_1$. Apply the cancellation lemma to equal factorizations, and then the induction hypothesis. Rigorously extend $\sigma \in S_{r-1}$ in the natural way (function can stay the same).
 - Infinite chain construction.
 - Assume we can keep reducing. Generates an infinite ascending chain of ideals.
 - The infinite union is an ideal; it must have a generator. That generator must belong to an I_n ; the process terminates there.
 - Uniqueness: All irreducibles are prime (π irreducible implies (π) maximal via contradiction that π is reducible, $R/(\pi)$ is a field hence integral domain hence (π) prime hence π prime), then invoke Lemma*.
 - 4. gcd(a, b) can be computed in a PID without factorizing the given a, b (use the Euclidean Algorithm).
 - $-a = q_0b + r_0, b = q_1r_0 + r_1, r_0 = q_2r_1 + r_2, \dots, r_{n-1} = q_{n+1}r_n.$
- Wrap my head around an elementary statement of the Chinese Remainder Theorem!
- Stuff from OH on Monday.

6.5 Sub- and Quotient-Module Structure

- 2/10: On the midterm.
 - All of our midterms have been graded but 2.
 - The midterm was bad.
 - Nori is more depressed than we will be when we get ours back.
 - He wants us to understand all of the stuff that was on it.
 - The first two questions were really important.
 - The last two were on gcd's in PIDs, which is really important for Spring Quarter.
 - Nori was pretty severe on those who didn't know the definition of a ring homomorphism. You need f(1) = 1. You can't have f(1) = 0 because that takes everything to 0. You also need to know that 1_R belongs to subrings.
 - We should have it back on Monday; Wednesday latest.

- On HW5.
 - Q5.2: Proving that $(X^m 1, X^n 1)$ in $\mathbb{Z}[X]$ is $(X^d 1)$ where $d = \gcd(m, n)$.
 - Nori thinks it's nice and hopes we all get it.
 - \blacksquare gcd(X-1,X+1)=1 does not imply that gcd(q-1,q+1)=1 for all $q\in\mathbb{Z}$.
 - Ring homomorphisms do not preserve the gcd.
 - It's all important, though.
- On HW6.
 - It is long and challenging.
 - Assuming that you've never seen modules before Monday, it will take time.
- We now begin lecture in earnest.
- A simplification of the theorem from last time that will lead into it.
- Theorem: Let R be a PID and let $M \subset R^h$ be an R-submodule. Then $M \cong R^m$ for some $0 \le m \le h$.

Proof. Consider the module homomorphism $\varphi:M\to R$ that selects for the last component, i.e., is defined by

$$\varphi(a_1,\ldots,a_h)=a_h$$

for all $m = (a_1, \ldots, a_h) \in M$. We now investigate the image and kernel of φ . These facts may seem disjointed now, but they will be useful later.

Kernel: Let $M' = \ker(\varphi)$. Then $M' = M \cap (R^{h-1} \times \{0\})$.

Image: Since M is an R-submodule, it is an additive subgroup and it is closed under multiplication by elements of R. Therefore, it is an ideal of R^h . It follows that $\operatorname{im}(\varphi)$ is an ideal of R (φ would be surjective were it extended to R^h , and then $\varphi(M)$ would be the image of an ideal under a surjective map; see Q2.3b).

We now divide into two cases $(\operatorname{im}(\varphi) = \{0\})$ and otherwise). Suppose first that $\operatorname{im}(\varphi) = \{0\}$. Then M' = M. Now suppose that $\operatorname{im}(\varphi) \neq \{0\}$. By hypothesis, R is a PID. In particular, the ideal $\operatorname{im}(\varphi)$ is principal, i.e., that there exists $0 \neq b \in R$ such that $\operatorname{im}(\varphi) = Rb$. Choose $e \in M$ such that $\varphi(e) = b$ (in other words, take $e \in M$ to have $e \in M$ to hav

$$T(m', a) = m' + ae$$

We now prove that T is a module homomorphism^[1]. ...

We now prove that T is an A-module iso morphism.

We first check that T is onto. Pick an element $m \in M$ and suppose that a_h is its last element. By definition, $a_h \in \operatorname{im}(\varphi) = Rb$. Thus, there exists $d \in R$ such that $a_h = db = \varphi(de)$. Thus, $\varphi(m) = \varphi(de)$, so $\varphi(m - de) = 0$, i.e., $m' = m - de \in M'$. It follows that m = m' + de, so m = T(m', d), as desired.

We now check that T is injective. Since R is an integral domain, d is unique. Thus, since distinct inputs map to distinct outputs, T is 1-1. It follows that $\ker(T) = 0$.

It follows that $M' \oplus R \cong M$.

The rest of the proof follows by induction on $h \ge 0$. In particular, assume h > 0 and assume that we've proved the claim for h - 1. Then $M' \cong R^{\ell}$ for $0 \le \ell \le h - 1$. Case 1: M' = M and Case 2: $M \cong M' \oplus R \cong R^{\ell} \oplus R = R^{\ell+1}$.

• On sets, \oplus is the same as \times .

 $^{^{1}}$ Nori said A-module homomorphism. What is A??

- By the definition of module homomorphisms, to give a module homomorphism from $N_1 \oplus N_2 \to M$ is to give one from $N_1 \to M$ and $N_2 \to M$ and add the results.
- Related to the definition of T(1) and $\varphi(e)$ from the proof.
- Why is the image an ideal?
 - $-i: M \hookrightarrow R^n$ is a module homomorphism, and proj: $R^n \to R$ is a module homomorphism.
 - $-I \subset R$ is a submodule, i.e., for all $m \in I$ and $\lambda \in R$, $\lambda m \in I$.
 - Then it's surjection, as discussed in the proof.
- Module homomorphisms are not ring homomorphisms. Modules don't necessarily have a ring structure.
- The collection

$$\{(a_1,\ldots,a_{h-1},0):a_i\in R\}\cong R^{h-1}$$

is an R-module.

- We now return to the theorem from last lecture.
- Theorem: Let A be a ring, let M be an A-module, and let $M' \subset M$ be an A-submodule (all modules are left modules). Suppose that there is an isomorphism of A-modules $\varphi : M/M' \to A^n$. Then $M' \oplus A^n \cong M$ as an A-module.

Proof. You can either do this in one short proof with horrible notation, or you can prove it for n = 1 and say that induction solves the rest. We'll do the latter.

The existence of φ says that there exists a surjection of A-modules $\psi: M \to A$ with $\ker \psi = M'$. "Take $\psi^{-1}(1)$ and set it equal to e. Then repeat the (previous??) proof." Choose $e \in M$ such that $\varphi(e) = 1$. Then $T: M' \oplus A \to M$, T(m', a) = m' + ae for all $m' \in M'$ and $a \in A$. To check that T is onto will proceed symmetrically to in the previous proof. (Let $m \in M$ Put $a = \varphi(m)$. Then $a = \varphi(ae)$. Put m' = m - ae. Then $\varphi(m') = \varphi(m - ae) = \varphi(m) - \varphi(ae) = a - a = 0$. (This φ may be ψ !). Therefore, $m' \in M$ and T(m', a) = m is onto.) How about $\ker(T)$? Let $m' \in M'$. We have $(m', a) \in \ker(T)$ implies m' + ae = 0. Then $\varphi(m' + ae) = 0$, $\varphi(m') + a = 0$, m' = 0.

- Build up to Zorn's Lemma.
 - If $\varphi: \mathbb{Z}^m \to \mathbb{Z}^n$ is an isomorphism of abelian groups, then $\bar{\varphi}: \mathbb{Z}^m/2\mathbb{Z}^m \to \mathbb{Z}^n/2\mathbb{Z}^n$ is still an isomorphism. Hence, $2^m = 2^n$ and thus m = n.
 - Exercise: Suppose V is an infinite dimensional vector space over a field F. Let $A = \operatorname{End}_F(V)$. Then $A^m \cong A^n$ for all m, n > 0 where the isomorphism is of A-modules.
 - On the other hand, we can just resolve this issue axiomatically.
 - Let A be a ring. Consider $\operatorname{End}_A(A^2)$. For a field, it's 2×2 matrices. Here,

$$\operatorname{End}_A(A^2) \cong M_2(A^{\operatorname{opp}})$$

where the opp notation denotes that multiplication has been reversed and addition is still the same, i.e.,

$$a \cdot_{\text{new}} b = b \cdot_{\text{old}} a$$

- Assuming that A is commutative and $A \cong A^2$ as an A-module, this implies that $M_2(A) \cong A$.
- Zorn's lemma allows us to give a proof that $A^m \cong A^n$ iff m = n.
- We will delay this proof, though, until Cayley's theorem.

6.6 Office Hours (Ray)

- Q5.1(ii).
 - We know that $\varphi(1,1)=(1,1)$. We know $\varphi(x,y)\neq(z,t)$. We know that $\varphi(1,0)=(1,0)$.
 - Then φ is the identity function, which is unique.
 - Necessary: If there is a unique isomorphism, then $a \neq b$.
 - Sufficient: If $a \neq b$, then you can't send identities to identities, then the isomorphism is unique.
 - You only need to find conditions here; prove below.
- Q5.1(iii).
 - $-a \neq b$ implies that $(1,1) \mapsto (1,1)$?
 - $-(1,0)\mapsto$?. It better map to an element of order p^a . It also better be idempotent, i.e., equal to its square. $(1,0)\cdot(0,1)=0$. If it maps to (γ,δ) , then $\gamma^2=\gamma$ and $\delta^2=\delta$. Either $p\nmid\gamma$ or $\gamma=0$. Same with δ . This is all if $(1,0)\mapsto(\gamma,\delta)$. We have to solve $X^2-X=0$ in a nonintegral domain, i.e., X(X-1)=0. $\gamma(\gamma-1)=0$ and $\delta(\delta-1)=0$. At least one of these is a unit so has an inverse. Multiply through by the inverse to get $\gamma=0$ or $\gamma-1=0$. Therefore, $\gamma=0,1$.
 - We can prove that in any case, $(1,0) \mapsto (1,0)$ or (0,1). Now we use order $a \neq b$.
 - We can just state the generalization of $a \neq b$ here; do the proof in the other one.
- Q5.2(i).
 - We have that

$$X^{m} - 1 = X^{m-n}(X^{n} - 1) + (X^{m-n} - 1)$$

so we can induct to some extent.

- Induct on n + m??
- The three things in the picture give us what we need.
 - 1. Suppose (f,g)=(h). Then $h\mid f,g$, i.e., $f,g\in (h)$. This implies that there exist $\alpha,\beta\in R$ such that $f=\alpha h$ and $g=\beta h$. Furthermore, equality implies that there exist $\gamma,\delta\in R$ such that $h=\gamma f+\delta g$. With this, a supposition that $d\mid f,g$ implies that $d\mid h$.
 - 2. Proving that $X^{d} 1 \mid X^{m} 1, X^{n} 1$:

$$X^{n} - 1 = (X^{d} - 1)(1 + X^{d} + X^{2d} + \dots + X^{n-d})$$

3. Suppose n < m. Then

$$X^{m} - 1 = X^{m-n}(X^{n} - 1) + (X^{m-n} - 1)$$

It follows that $X^m - 1 \in (X^n - 1, X^{m-n} - 1)$.

- Q5.2(ii).
 - Use the evaluation homomorphism, which is surjective so it sends ideals to ideals. Thus, $(X^m 1, X^n 1) \mapsto (q^n 1, q^m 1)$ and likewise for $(X^d 1)$.
 - We could quotient by (X-q) to make that surjection an isomorphism, but we don't need to.
- Q5.4(i).
 - Example of a UFD that is not a PID. $\mathbb{Z}[\sqrt{5}]$ has $(1+\sqrt{5})(1-\sqrt{5})=2\cdot 3$?
 - -R is a UFD implies that R[X] is a UFD; it follows pretty quickly to the field of fractions via Gauss's lemma?
 - $-\mathbb{C}[X,Y] \in \text{UFD} \text{PID. } \mathbb{C}[X] \text{ as well.}$

• Q5.4(ii).

- Primes are irreducible. We know this. In \mathbb{Z}_2 , the only units are the powers of 2 in both numerators and denominators. Importantly, 2 is no longer a prime. Everything else may not be either. For instance, $3 = 6 \cdot 1/2 = 3 \cdot 2 \cdot 1/2$. Now 1/2 is a unit Take an element in $D^{-1}R$. Then the numerator is reducible to a product of primes.
- Think about the example of rings R such that $\mathbb{Z} \subsetneq R \subsetneq \mathbb{Q}$. Such rings have a certain subset of primes in the denominators. It's true in the integers, strongly hinting that the answer is true. 3/5 implies 1/5 in R.
- -r, s are relatively prime, hence generate 1. Bezout's identity would be helpful.
- Ray all but said it's true.
- Q5.4(iv).
 - Don't assume that there's a unique way to write a fraction.
- Q5.5.
 - A natural thing is contradiction.
 - Suppose for the sake of contradiction that f is reducible in $\mathbb{Z}[X]$. Let f = qh. We sent f to $\mathbb{Z}/p\mathbb{Z}[X]$. We reduce the coefficients by p and then our homomorphism implies that $\bar{f} = \bar{q}h$. Let $d = \deg(f)$. We know by the irreducibility of \bar{f} that either \bar{q} or \bar{h} is a unit. WLOG, let \bar{h} be a unit. We know that $\deg(\bar{f}) = \deg(f)$. We know that $\deg(h) \geq \deg(\bar{h})$ and $\deg(g) = d \geq \deg(\bar{g})$. It follows that $\deg(\bar{h}) = 0$. Thus, $\deg(h) = 0$, so h is an integer. Finally, use that c(f) = 1, i.e., that gives us that $h = \pm 1$, i.e., is a unit. Proposition 9.12. Set p = 3?