

GenX3[™] 1200V IGBT w/ Diode

MMIX1G120N120A3V1

(Electrically Isolated Tab)

Ultra-Low-Vsat PT IGBT for 3kHz Switching

Symbol	Test Conditions	Maximum	Ratings
V _{CES}	T _J = 25°C to 150°C	1200	V
V _{CGR}	$T_{_J}$ = 25°C to 150°C, $R_{_{GE}}$ = 1M Ω	1200	V
V _{GES}	Continuous	±20	V
V _{GEM}	Transient	±30	V
I _{C25}	T _C = 25°C	220	A
I _{C110}	$T_{\rm C} = 110^{\circ} C$	105	Α
I _{CM}	$T_{c} = 25^{\circ}C$, 1ms	700	A
SSOA (RBSOA)	$V_{GE} = 15V$, $T_{VJ} = 125^{\circ}C$, $R_{G} = 1\Omega$ Clamped Inductive Load	I _{CM} = 240 @ 0.8 • V _{CES}	A
P _c	$T_{c} = 25^{\circ}C$	400	W
T _J		-55 +150	°C
T_{JM}		150	°C
T _{stg}		-55 +150	°C
T _L T _{SOLD}	Maximum Lead Temperature for Soldering 1.6 mm (0.062 in.) from Case for 10	300 260	°C
V _{ISOL}	50/60Hz, 1 minute	2500	V~
F _c	Mounting Force	50200/1145	N/lb.
Weight		8	g

Symbol $(T_J = 25^{\circ}C, U)$	Test Conditions Unless Otherwise Specified)	Chara Min.	cteristic Typ.	Values Max.	
BV _{CES}	$I_{C} = 250 \mu A, V_{GE} = 0 V$	1200			V
$V_{GE(th)}$	$I_{C} = 1 \text{mA}, V_{CE} = V_{GE}$	3.0		5.0	V
I _{CES}	$V_{CE} = V_{CES}, V_{GE} = 0V$			50	μΑ
	Note 2, $T_J = 12$	25°C		5	mΑ
I _{GES}	$V_{CE} = 0V, V_{GE} = \pm 20V$			±100	nA
V _{CE(sat)}	$I_{\rm C} = 100A, V_{\rm GE} = 15V, \text{ Note 1}$		1.85	2.20	V
	$T_{J} = 125$	°C	1.95		V

 $V_{CES} = 1200V$ $I_{C110} = 105A$ $V_{CE(cot)} \le 2.2V$

G = Gate E = Emitter C = Collector

Features

- Silicon Chip on Direct-Copper Bond (DCB) Substrate
- Isolated Mounting Surface
- 2500V~ Electrical Isolation
- Optimized for Low Conduction losses
- Square RBSOA
- Anti-Parallel Ultra Fast Diode
- High Current Handling Capability

Advantages

- High Power Density
- Low Gate Drive Requirement

Applications

- Power Inverters
- UPS
- Motor Drives
- SMPS
- PFC Circuits
- Battery Chargers
- Welding Machines
- Lamp Ballasts
- Inrush Current Protection Circuits

Symbol Test ConditionsChara $(T_J = 25^{\circ}\text{C Unless Otherwise Specified})$ Min.		acteristic Typ.	Values Max.	
g _{fs}	I _C = 60A, V _{CE} = 10V, Note 1	45	73	S
C _{ies}			9900	pF
C _{oes}	$V_{CE} = 25V, V_{GE} = 0V, f = 1MHz$		655	pF
C _{res}			240	pF
Q _a			420	nC
Q _{ge}	$I_{\rm C}$ = 120A, $V_{\rm GE}$ = 15V, $V_{\rm CE}$ = 0.5 • $V_{\rm CES}$		70	nC
Q _{gc}			180	nC
t _{d(on)}			40	ns
t _{ri}	Inductive load, T _J = 25°C		67	ns
E _{on}	$I_{\rm C} = 100 {\rm A}, V_{\rm GE} = 15 {\rm V}$		10	mJ
t _{d(off)}	$V_{CE} = 960V, R_{G} = 1\Omega$		490	ns
t _{fi}	Note 3		325	ns
E _{off}			33	mJ
t _{d(on)}			30	ns
t _{ri}	Inductive load, T _J = 125°C		75	ns
E _{on}	$I_{\rm C} = 100 {\rm A}, V_{\rm GE} = 15 {\rm V}$		15	mJ
t _{d(off)}	$V_{CE} = 960V, R_{G} = 1\Omega$		685	ns
t _{fi}	Note 3		680	ns
E _{off}			58	mJ
R _{thJC}				0.31 °C/W
R _{thCS}			0.05	°C/W
R _{thJA}			30	°C/W

Reverse Diode (FRED)

Symbol Test Conditions		Characteristic Values			
(TJ = 2)	5°C Unless Otherwise Specified)	Min.	Тур.	Max.	
V _F	$I_{\rm F} = 100 {\rm A}, \ V_{\rm GE} = 0 {\rm V}, \ {\rm Note} \ 1$			1.8	٧
I _{RM}	$\begin{cases} I_{F} = 50A, V_{GE} = 0V, \\ -di_{F}/dt = 200A/\mu s, V_{R} = 300V \end{cases}$		20		Α
t _{rr}	$\int -di_{F}/dt = 200A/\mu s, V_{R} = 300V$		700	r	าร
R_{thJC}				0.50 °C/	W

Notes:

- 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.
- 2. Part must be heatsunk for high-temp Ices measurement.
- 3. Switching times & energy losses may increase for higher $V_{CF}(Clamp)$, T_{J} or R_{G} .

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Package Outline

SYM	INC	HES	MILLIM	ETERS
2114	MIN	MAX	MIN	MAX
Α	.209	.224	5.30	5.70
A1	.154	.161	3.90	4.10
A2	.055	.063	1.40	1.60
b	.035	.045	0.90	1.15
С	.018	.026	0.45	0.65
D	.976	.994	24.80	25.25
E	.898	.915	22.80	23,25
E1	.543	.559	13.80	14.20
е	.07	.079 BSC		BSC
e1	.315 BSC		8.00 BSC	
Н	1.272	1.311	32.30	33,30
L	.181	.209	4.60	5.30
L1	.051	.067	1.30	1.70
L2	.000	.006	0.00	0.15
S	.736	.760	18.70	19.30
Т	.815	.839	20.70	21.30
X	0	4*	0	4*

PIN: 1 = Gate 5-12 = Emitter 13-24 = Collector

Fig. 1. Output Characteristics @ $T_J = 25^{\circ}C$

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 125°C

Fig. 4. Dependence of $V_{\text{CE(sat)}}$ on Junction Temperature

Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage

Fig. 6. Input Admittance

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

MMIX1G120N120A3V1

MMIX1G120N120A3V1

Fig. 12. Inductive Switching Energy Loss vs.

Gate Resistance

Fig. 13. Inductive Switching Energy Loss vs.
Collector Current

Fig. 14. Inductive Switching Energy Loss vs.

Junction Temperature

Fig. 15. Inductive Turn-off Switching Times vs.

Fig. 16. Inductive Turn-off Switching Times vs.
Collector Current

Fig. 17. Inductive Turn-off Switching Times vs.
Junction Temperature

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

MMIX1G120N120A3V1

Fig. 18. Inductive Turn-on Switching Times vs.

Gate Resistance

Fig. 19. Inductive Turn-on Switching Times vs.

Collector Current

Fig. 20. Inductive Turn-on Switching Times vs.
Junction Temperature

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IXYS:

MMIX1G120N120A3V1