EXERCÍCIOS - SALA DE AULA

- 2.) X n.º de pontos obtidos.
 - Y nº de pontes obtidos no dado de José.

$$P(X=1) = P(X=2) = ... = P(X=6) = \frac{1}{6}$$

Y apresenta a mesma distribuics, ou

Sya:
$$P(Y=1) = P(Y=2) = \dots = P(Y=6) = \frac{1}{6}$$

a)
$$H(x) = 6 \times \left[\frac{1}{6}, \log_2 \frac{1}{6}\right] = 2,58 \text{ lito}$$

	37	1	2	3	4	5	6	P(Z=2)=P(Z=12)=1
P	1	2		4		6	7	P(2=3) = P(2=11) = 2
	2	3	4	5	6	7	8	36
	3	4	5	6	7	8	9	$P(z=4)=P(z=10)=\frac{3}{36}$
	4	5	6	7	8	9	10	P(z=5)=P(z=9)=4
	5	6	7	8	9	10	11	36
	6	7	8	9	10	11	12	$P(z=6)=P(z=8)=\frac{5}{36}$
								$P(2=7) = \frac{6}{36}$

$$| (2) = 2 \times \left[\frac{1}{36} \cdot \log \right] + 2 \times \left[\frac{2}{36} \times \log \right] + \frac{1}{36} + 2 \times \left[\frac{3}{36} \times \log \right] + 2 \times \left[\frac{3}{36} \times \log \right] + 2 \times \left[\frac{4}{36} \times \log \right] + 2 \times \left[\frac{4}{36} \times \log \right] + 2 \times \left[\frac{4}{36} \times \log \right] + \frac{1}{36} + 2 \times \left[\frac{5}{36} \times \log \right] + \frac{1}{36} + \frac{6}{36} \times \log \left[\frac{1}{36} \right] + \frac{6$$

EXERCÍCIOS - SALA DE AULA

2°) d)
$$H(X,Y) = H(X) + H(Y/X)$$

 $X = Y \times \tilde{a} \tilde{b} \text{ v. a. independents, logo:}$
 $H(X,Y) = H(X) + H(Y)$
 $H(X,Y) = 2,585 + 2,585 = 15,17 \text{ hils}$

e)
$$H(X/Y) = H(X) = 2,585 lita$$

3°)
$$[x_{1}, x_{2}, x_{3}]$$

 $[0, 0, 0] \rightarrow 4/4$
 $[0, 1, 0] \rightarrow 4/4$
 $[0, 1, 0] \rightarrow 4/4$
 $[0, 0, 1] \rightarrow 4/4$

a)
$$H(x_1) = P(x_1=0) \cdot \log_2 \frac{1}{P(x_1=0)} + P(x_1=1) \cdot \log_2 \frac{1}{P(x_1=1)} + P(x_1=1) \cdot \log_2 \frac{1}{P(x_1=1)} + \log_2$$

$$|\log_{2} \circ | + \frac{1}{4} \times \log_{2} \frac{1}{4} + \frac{1}{4} \times \log_{2} \frac{1}{4}$$

$$|H(x_{1}) = \frac{3}{4} \times \log_{2} \frac{1}{4} + \frac{1}{4} \times \log_{2} \frac{1}{4}$$

$$|H(x_{1}) = 0.811 \text{ bits}$$

$$|P(x_{2} = \Delta) = P(x_{1} = 0, x_{2} = 1, x_{3} = 0) = \frac{1}{4}$$

$$|P(x_{2} = \Delta) = 1 - \frac{1}{4} = \frac{3}{4}$$

$$|P(x_{3} = \Delta) = P(x_{1} = 0, x_{2} = 0, x_{3} = 1) = \frac{1}{4}$$

$$|P(x_{3} = \Delta) = 1 - \frac{1}{4} = \frac{3}{4}$$

$$|P(x_{3} = \Delta) = 1 - \frac{1}{4} = \frac{3}{4}$$

$$|P(x_{3} = \Delta) = 1 - \frac{1}{4} = \frac{3}{4}$$

$$|P(x_{3} = \Delta) = 1 - \frac{1}{4} = \frac{3}{4}$$

$$|P(x_{3} = \Delta) = 1 - \frac{1}{4} = \frac{3}{4}$$