

Autodesk Robot Structural Analysis Professional 2020

Calculations of the connection with the gusset plate

NF EN 1993-1-8:2005/NA:2007/AC:2009

Ratio **0.20**

D1 - CAE 100xT D2 - CAE 100xT D3 - CAE 100xT D4 - CAE 100xT

GENERAL

Connection no.: 27

Connection name: Gusset plate: bracing

Structure node: 352

Structure bars: 337, 338, 336, 339,

GEOMETRY

BARS

		Bar 1	Bar 2	Bar 3	Bar 4	
Bar no.:		337	338	336	339	
Section:		CAE 100x7	CAE 100x7	CAE 100x7	CAE 100x7	
	h	100	100	100	100	mm
	bf	100	100	100	100	mm
	tw	7	7	7	7	mm
	tf	7	7	7	7	mm
	r	12	12	12	12	mm
	A	13.66	13.66	13.66	13.66	cm2
Material:		ACIER	ACIER	ACIER	ACIER	
	fy	235.00	235.00	235.00	235.00	MPa
	fu	365.00	365.00	365.00	365.00	MPa
Angle	α	48.4	48.4	48.4	48.4	Deg
Length	1	0.00	0.00	0.00	0.00	m

BOLTS

Bar 1

The shear plane passes through the UNTHREADED portion of the bolt.

```
Class =
            8.8
                              Bolt class
d =
               10
                              Bolt diameter
                     [mm]
d_0 =
               11
                     [mm]
                              Bolt opening diameter
            0.58
                              Effective section area of a bolt
A_s =
                     [cm<sup>2</sup>]
            0.79
A_v =
                     [cm<sup>2</sup>]
                              Area of bolt section
          550.00
                     [MPa]
                              Yield point
f_{yb} =
f_{ub} =
          800.00
                     [MPa]
                              Bolt tensile resistance
                 2
                              Number of bolt columns
n =
Bolt spacing 100 [mm]
       40 [mm] Distance of the center of gravity of first bolt from the member end
        50 [mm] Distance of the axis of bolts from the member edge
e_c = 100 [mm] Distance of the member end from the point of intersection of member axes
```

Bar 2

The shear plane passes through the UNTHREADED portion of the bolt.

Class =	8.8		Bolt class
d =	10	[mm]	Bolt diameter
$d_0 =$	11	[mm]	Bolt opening diameter
$A_s =$	0.58	[cm ²]	Effective section area of a bolt
$A_v =$	0.79	[cm ²]	Area of bolt section
$f_{yb} =$	550.00	[MPa]	Yield point
$f_{ub} =$	800.00	[MPa]	Bolt tensile resistance
n =	2		Number of bolt columns
Bolt sp	acing 100	[mm]	
$e_1 =$	40 [mm]	Distance	of the center of gravity of first bolt from the member end
e ₂ =	50 [mm]	Distance	of the axis of bolts from the member edge

Bar 3

The shear plane passes through the UNTHREADED portion of the bolt.

Class :	= 8.8		Bolt class
d =	10	[mm]	Bolt diameter
$d_0 =$	11	[mm]	Bolt opening diameter
$A_s =$	0.58	[cm ²]	Effective section area of a bolt
$A_{v} =$	0.79	[cm ²]	Area of bolt section
$f_{yb} =$	550.00	[MPa]	Yield point
$f_{ub} =$	800.00	[MPa]	Bolt tensile resistance
n =	2		Number of bolt columns
Bolt sp	acing 100	[mm]	
e ₁ =	40 [mm]	Distance	of the center of gravity of first bolt from the member end
$e_2 =$	50 [mm]	Distance	of the axis of bolts from the member edge
$e_c =$	100 [mm]	Distance	of the member end from the point of intersection of member axes

 $e_c = 100$ [mm] Distance of the member end from the point of intersection of member axes

Bar 4

The shear plane passes through the UNTHREADED portion of the bolt.

Class =	8.8		Bolt class
d =	10	[mm]	Bolt diameter
$d_0 =$	11	[mm]	Bolt opening diameter
$A_s =$	0.58	[cm ²]	Effective section area of a bolt
$A_v =$	0.79	[cm ²]	Area of bolt section
$f_{yb} =$	550.00	[MPa]	Yield point
$f_{ub} =$	800.00	[MPa]	Bolt tensile resistance

Class = 8.8 Bolt class

n = 2 Number of bolt columns

Bolt spacing 100 [mm]

e₁ = 40 [mm] Distance of the center of gravity of first bolt from the member end

e₂ = 50 [mm] Distance of the axis of bolts from the member edge

 $e_c = 100$ [mm] Distance of the member end from the point of intersection of member axes

GUSSET PLATE

Ip =	660	[mm]	Plate length
h _p =	660	[mm]	Plate height
$t_D =$	10	[mm]	Plate thickness

Parameters

$h_1 =$	0	[mm]	Cut
V1 =	0	[mm]	Cut
$h_2 =$	0	[mm]	Cut
V2 =	0	[mm]	Cut
h ₃ =	0	[mm]	Cut
V3 =	0	[mm]	Cut
h ₄ =	0	[mm]	Cut
V4 =	0	[mm]	Cut

Center of gravity of the plate with respect to the center of gravity of bars (0;0)

 $e_V = 330$ [mm] Vertical distance of the plate edge from the point of intersection of member axes

e_H = 330 [mm] Horizontal distance of the plate edge from the point of intersection of member axes

Material: ACIER

 $f_y = 235.00$ [MPa] Resistance

MATERIAL FACTORS

γмо =	1.00	Partial safety factor	[2.2]
γ _{M2} =	1.25	Partial safety factor	[2.2]

LOADS

Case: 16: ULS /102/ 1*1.35 + 2*1.35 + 3*1.35 + 4*1.35 + 5*1.35 + 6*1.35 + 7*1.05 + 8*1.05 + 9*1.05 +

 $\begin{array}{llll} N_{b1,Ed} = & 7.57 & [kN] & Axial force \\ N_{b2,Ed} = & -10.90 & [kN] & Axial force \\ N_{b3,Ed} = & 7.33 & [kN] & Axial force \\ N_{b4,Ed} = & -11.20 & [kN] & Axial force \end{array}$

RESULTS

BAR 1

BOLT CAPACITIES

 $F_{v,Rd} = 30.16$ [kN] Shear resistance of the shank of a single bolt $F_{v,Rd} = 0.6^* f_{ub}^* A_v^* m / \gamma_{M2}$

Bolt bearing on the bar

Direction x

$k_{1x} =$	2.50	Coefficient for calculation of Fb,Rd	$k_{1x}=min[2.8*(e_2/d_0)-1.7, 2.5]$
$k_{1x} > 0.0$		2.50 > 0.00	verified
$\alpha_{bx} =$	1.00	Coefficient determined by bolt spacing	$\alpha_{bx}=min[e_1/(3*d_0), p_1/(3*d_0)-0.25, f_{ub}/f_u, 1]$

$\alpha_{\rm bx} > 0.0$			1.00 > 0.00	verified	
$F_{b,Rd1x} = 51$.10 [kN]	Desig	n capacity in the limit state of plastification of	of the opening wall	$F_{b,Rd1x}=k_{1x}*\alpha_{bx}*f_u*d*t_i/\gamma_{M2}$
Direction z					
$k_{1z} =$	2.50	(Coefficient for calculation of F _{b,Rd}	$k_{1z}=min[2.8*(e_1/d_0)]$)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
$k_{1z} > 0.0$			2.50 > 0.00	verified	
$\alpha_{bz} =$	1.00		Coefficient for calculation of Fb,Rd	($\alpha_{bz} = min[e_2/(3*d_0), f_{ub}/f_u, 1]$
$\alpha_{bz} > 0.0$			1.00 > 0.00	verified	
$F_{b,Rd1z} =$	51.10	[kN]	Bearing resistance of a single bolt		$F_{b,Rd1z} = k_{1z} * \alpha_{bz} * f_u * d * t_i / \gamma_{M2}$
Bolt beari	ng on the	plate			
Direction x					
$k_{1x} =$	2.50		Coefficient for calculation of F _{b,Rd}	k-	$_1$ =min[2.8*(e ₂ /d ₀)-1.7, 2.5]
$k_{1x} > 0.0$			2.50 > 0.00	verified	
$\alpha_{bx} =$	1.00		Coefficient determined by bolt spacing	$\alpha_{bx}=min[e_1/(3*d)]$	0), $p_1/(3*d_0)$ -0.25, f_{ub}/f_u , 1]
$\alpha_{\rm bx} > 0.0$			1.00 > 0.00	verified	
$F_{b,Rd2x} = 73$	3.00 [kN]	Desig	n capacity in the limit state of plastification of	of the opening wall	$F_{b,Rd2x}=k_1*\alpha_b*f_u*d*t_i/\gamma_{M2}$
Direction z					
$k_{1z} =$	2.50	(Coefficient for calculation of F _{b,Rd}	$k_{1z}=min[2.8*(e_1/d_0)]$)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
$k_{1z} > 0.0$			2.50 > 0.00	verified	
$\alpha_{bz} =$	1.00		Coefficient for calculation of Fb,Rd	($\alpha_{bz} = min[e_2/(3*d_0), f_{ub}/f_u, 1]$
$\alpha_{bz} > 0.0$			1.00 > 0.00	verified	
$F_{b,Rd2z} =$	73.00	[kN]	Bearing resistance of a single bolt		$F_{b,Rd2z} = k_{1z} * \alpha_{bz} * f_u * d * t_i / \gamma_{M2}$

VERIFICATION OF A CONNECTION DUE TO FORCES ACTING ON BOLTS

Bolt shear	Bolt shear						
e = 23	[mm]	Axial force eccentricity relative to the bolt axis					
$M_0 = 0.17$	[kN*m]	Real bending moment		$M_0=N_{b1,Ed}^*e$			
$F_{NSd} = 3.78$	[kN]	Component force in a bolt due to influence of the lo	ngitudinal force	$F_{NSd} = N_{b1,Ed}/n$			
$F_{MSd} = 1.75$	[kN]	Component force in a bolt due to influence of the m	noment	$F_{MSd}=M_0*x_{max}/\Sigma x_i^2$			
$F_{x,Ed} = 3.78$	[kN]	Design total force in a bolt on the direction x		$F_{x,Ed} = F_{NSd}$			
$F_{z,Ed} = 1.75$	[kN]	Design total force in a bolt on the direction z		$F_{z,Ed} = F_{MSd}$			
$F_{Ed} = 4.17$	[kN]	Resultant shear force in a bolt		$F_{Ed} = \sqrt{(F_{x,Ed}^2 + F_{z,Ed}^2)}$			
$F_{Rdx} = 51.10$	[kN]	Effective design capacity of a bolt on the direction	<	$F_{Rdx}=min(F_{bRd1x}, F_{bRd2x})$			
$F_{Rdz} = 51.10$	[kN]	Effective design capacity of a bolt on the direction a	<u>z</u>	F_{Rdz} =min(F_{bRd1z} , F_{bRd2z})			
$ F_{x,Ed} \leq F_{Rdx}$		3.78 < 51.10	verified	(0.07)			
$ F_{z,Ed} \leq F_{Rdz}$		1.75 < 51.10	verified	(0.03)			
$F_{Ed} \leq F_{vRd}$		4.17 < 30.16	verified	(0.14)			

VERIFICATION OF A SECTION WEAKENED BY OPENINGS

$\beta_2 =$	0.70		Reduction coefficient		[Table 3.8]
$A_{net} =$	12.89	[cm ²]	Net cross-sectional area		$A_{net} = A - d_0^* t_{f1}$
$N_{u,Rd} =$	263.47	[kN]	Design plastic resistance of the net section		$N_{u,Rd} = (\beta_2 * A_{net} * f_{u1})/\gamma_{M2}$
$N_{pl,Rd} =$	288.91	[kN]	Design plastic resistance of the gross section	n	$N_{pl,Rd} = (0.9*A*f_{y1})/\gamma_{M2}$
$ N_{b1,Ed} \leq$	$N_{\text{u,Rd}}$		7.57 < 263.47	verified	(0.03)
$ N_{b1,Ed} \leq$	$N_{pl,Rd}$		7.57 < 288.91	verified	(0.03)

BAR VERIFICATION - BLOCK TEARING

$A_{nt} =$	3.11	[cm ²]	Net area of the section in tension	
$A_{nv} =$	8.64	[cm ²]	Area of the section in shear	
$V_{effRd} =$	162.77	[kN]	Design capacity of a section weakened by openings V _{effRd} =0.5*f _u *A _{nt} /γ _{M2}	+ $(1/\sqrt{3})^* f_y^* A_{nv} / \gamma_{M0}$
$ N_{b1,Ed} \le$	≤ V _{effRd}		7.57 < 162.77 verified	(0.05)

BAR 2

BOLT CAPACITIES

$F_{v,Rd} =$	30.16	[kN]	Shear resistance of the shank of a single b	polt $F_{v,Rd} = 0.6 f_{ub} A_v m/\gamma_{M2}$
Bolt beari	ng on the	bar		
Direction x				
$k_{1x} =$	2.50		Coefficient for calculation of Fb,Rd	$k_{1x}=min[2.8*(e_2/d_0)-1.7, 2.5]$
$k_{1x} > 0.0$			2.50 > 0.00	verified
$\alpha_{bx} =$	1.00		Coefficient determined by bolt spacing	α_{bx} =min[e ₁ /(3*d ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
$\alpha_{\rm bx} > 0.0$			1.00 > 0.00	verified
$F_{b,Rd1x} = 51$.10 [kN]	Des	ign capacity in the limit state of plastification of	of the opening wall $F_{b,Rd1x}=k_{1x}*\alpha_{bx}*f_u*d*t_i/\gamma_{M2}$
Direction z				
$k_{1z} =$	2.50		Coefficient for calculation of Fb,Rd	k_{1z} =min[2.8*(e ₁ /d ₀)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
$k_{1z} > 0.0$			2.50 > 0.00	verified
$\alpha_{bz} =$	1.00		Coefficient for calculation of Fb,Rd	$\alpha_{bz}=min[e_2/(3*d_0), f_{ub}/f_u, 1]$
$\alpha_{bz} > 0.0$			1.00 > 0.00	verified
$F_{b,Rd1z} =$	51.10	[kN]	Bearing resistance of a single bolt	$F_{b,Rd1z}=k_{1z}*\alpha_{bz}*f_u*d*t_i/\gamma_{M2}$
Bolt beari	ng on the	plate		
Direction x				
$k_{1x} =$	2.50		Coefficient for calculation of F _{b,Rd}	$k_1=min[2.8*(e_2/d_0)-1.7, 2.5]$
$k_{1x} > 0.0$			2.50 > 0.00	verified
α_{bx} =	1.00		Coefficient determined by bolt spacing	α_{bx} =min[e ₁ /(3*d ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
$\alpha_{\rm bx} > 0.0$			1.00 > 0.00	verified
$F_{b,Rd2x} = 73$	3.00 [kN]	Des	ign capacity in the limit state of plastification of	of the opening wall $F_{b,Rd2x}=k_1*\alpha_b*f_u*d*t_i/\gamma_{M2}$
Direction z				
$k_{1z} =$	2.50		Coefficient for calculation of F _{b,Rd}	k_{1z} =min[2.8*(e ₁ /d ₀)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
$k_{1z} > 0.0$			2.50 > 0.00	verified
$\alpha_{bz} =$	1.00		Coefficient for calculation of F _{b,Rd}	$\alpha_{bz} = min[e_2/(3*d_0), f_{ub}/f_u, 1]$
$\alpha_{bz} > 0.0$			1.00 > 0.00	verified
$F_{b,Rd2z} =$	73.00	[kN]	Bearing resistance of a single bolt	$F_{b,Rd2z} = k_{1z} * \alpha_{bz} * f_u * d * t_i / \gamma_{M2}$

VERIFICATION OF A CONNECTION DUE TO FORCES ACTING ON BOLTS

Bolt shear

e = 23	[mm]	Axial force eccentricity relative to the bolt axis	
$M_0 = -0.25$	[kN*m]	Real bending moment	$M_0=N_{b2,Ed}^*e$
$F_{NSd} = -5.45$	[kN]	Component force in a bolt due to influence of the longitudinal force	orce $F_{NSd} = N_{b2,Ed}/n$
$F_{MSd} = -2.52$	[kN]	Component force in a bolt due to influence of the moment	$F_{MSd}=M_0*x_{max}/\Sigma x_i^2$
$F_{x,Ed} = -5.45$	[kN]	Design total force in a bolt on the direction x	$F_{x,Ed} = F_{NSd}$
$F_{z,Ed} = -2.52$	[kN]	Design total force in a bolt on the direction z	$F_{z,Ed} = F_{MSd}$
$F_{Ed} = 6.00$	[kN]	Resultant shear force in a bolt	$F_{Ed} = \sqrt{(F_{x,Ed}^2 + F_{z,Ed}^2)}$
$F_{Rdx} = 51.10$	[kN]	Effective design capacity of a bolt on the direction x	$F_{Rdx}=min(F_{bRd1x}, F_{bRd2x})$
$F_{Rdz} = 51.10$	[kN]	Effective design capacity of a bolt on the direction z	$F_{Rdz}=min(F_{bRd1z}, F_{bRd2z})$
$ F_{x,Ed} \leq F_{Rdx}$		-5.45 < 51.10 verified	(0.11)
$ F_{z,Ed} \leq F_{Rdz}$		-2.52 < 51.10 verified	(0.05)
$F_{Ed} \leq F_{vRd}$		6.00 < 30.16 verified	(0.20)

VERIFICATION OF A SECTION WEAKENED BY OPENINGS

$\beta_2 =$	0.70		Reduction coefficient	[Table 3.8]
$A_{net} =$	12.89	[cm ²]	Net cross-sectional area	$A_{net} = A - d_0^* t_{f2}$

$\beta_2 =$	0.70		Reduction coefficient	[Table 3.8]
$N_{u,Rd} =$	263.47	[kN]	Design plastic resistance of the net section	$N_{u,Rd} = (\beta_2 * A_{net} * f_{u2})/\gamma_{M2}$
$N_{pl,Rd} =$	288.91	[kN]	Design plastic resistance of the gross section	$N_{pl,Rd} = (0.9*A*f_{y2})/\gamma_{M2}$
$ N_{b2,Ed} \leq$	$N_{\text{u,Rd}}$		-10.90 < 263.47 verified	(0.04)
$ N_{b2,Ed} \leq$	$N_{\text{pl},Rd}$		-10.90 < 288.91 verified	(0.04)

BAR VERIFICATION - BLOCK TEARING

$A_{nt} =$	3.11	[cm ²]	Net area of the section in tension	
$A_{nv} =$	8.64	[cm ²]	Area of the section in shear	
$V_{effRd} = 1$	162.77	[kN]	Design capacity of a section weakened by openings $V_{effRd}=0.5*f_u*A_{nt}/\gamma_{M2}+(1/\sqrt{3})*$	f _y *A _{nv} /γ _{M0}
Nb2 Ed ≤	VeffRd		-10.90 < 162.77 verified	(0.07)

BAR 3

BOLT CAPACITIES

$F_{v,Rd} =$	30.16	[kN]	Shear resistance of the shank of a single	bolt $F_{v,Rd} = 0.6*f_{ub}*A_v*m/\gamma_{M2}$
Bolt beari	ng on the	bar		
Direction x	[
$k_{1x} =$	2.50		Coefficient for calculation of Fb,Rd	$k_{1x}=min[2.8*(e_2/d_0)-1.7, 2.5]$
$k_{1x} > 0.0$			2.50 > 0.00	verified
α_{bx} =	1.00		Coefficient determined by bolt spacing	α_{bx} =min[e ₁ /(3*d ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
$\alpha_{\text{bx}} > 0.0$			1.00 > 0.00	verified
$F_{b,Rd1x} = 5$	1.10 [kN] Desi	ign capacity in the limit state of plastification	of the opening wall $F_{b,Rd1x}=k_{1x}*\alpha_{bx}*f_u*d*t_i/\gamma_{M2}$
Direction z	, -			
$k_{1z} =$	2.50		Coefficient for calculation of F _{b,Rd}	k_{1z} =min[2.8*(e ₁ /d ₀)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
$k_{1z} > 0.0$			2.50 > 0.00	verified
$\alpha_{bz} =$	1.00		Coefficient for calculation of F _{b,Rd}	$\alpha_{bz} = min[e_2/(3*d_0), f_{ub}/f_u, 1]$
$\alpha_{bz} > 0.0$			1.00 > 0.00	verified
$F_{b,Rd1z} =$	51.10	[kN]	Bearing resistance of a single bolt	$F_{b,Rd1z}=k_{1z}*\alpha_{bz}*f_u*d*t_i/\gamma_{M2}$
Bolt beari	ng on the	plate		
Direction x	(
$k_{1x} =$	2.50		Coefficient for calculation of Fb,Rd	$k_1=min[2.8*(e_2/d_0)-1.7, 2.5]$
$k_{1x} > 0.0$			2.50 > 0.00	verified
$\alpha_{bx} =$	1.00		Coefficient determined by bolt spacing	α_{bx} =min[e ₁ /(3*d ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
$\alpha_{\rm bx} > 0.0$			1.00 > 0.00	verified
$F_{b,Rd2x} = 73$	3.00 [kN]] Desi	ign capacity in the limit state of plastification	of the opening wall $F_{b,Rd2x}=k_1*\alpha_b*f_u*d*t_i/\gamma_{M2}$
Direction z	<u>.</u>			
$k_{1z} =$	2.50		Coefficient for calculation of Fb,Rd	k_{1z} =min[2.8*(e_1/d_0)-1.7, 1.4*(p_1/d_0)-1.7, 2.5]
$k_{1z} > 0.0$			2.50 > 0.00	verified
α _{bz} =	1.00		Coefficient for calculation of F _{b,Rd}	$\alpha_{bz} = min[e_2/(3*d_0), f_{ub}/f_u, 1]$
$\alpha_{bz} > 0.0$			1.00 > 0.00	verified
$F_{b,Rd2z} =$	73.00	[kN]	Bearing resistance of a single bolt	$F_{b,Rd2z} = k_{1z} * \alpha_{bz} * f_u * d * t_i / \gamma_{M2}$

VERIFICATION OF A CONNECTION DUE TO FORCES ACTING ON BOLTS

Bolt sh	Bolt shear							
e =	23	[mm]	Axial force eccentricity relative to the bolt axis					
$M_0 =$	0.17	[kN*m]	Real bending moment	$M_0=N_{b3,Ed}^*e$				
$F_{NSd} =$	3.66	[kN]	Component force in a bolt due to influence of the longitudinal force	$F_{NSd} = N_{b3,Ed}/n$				
$F_{MSd} =$	1.69	[kN]	Component force in a bolt due to influence of the moment	$F_{MSd}=M_0*x_{max}/\Sigma x_i^2$				
$F_{x,Ed} =$	3.66	[kN]	Design total force in a bolt on the direction x	$F_{x,Ed} = F_{NSd}$				

e = 23	[mm]	Axial force eccentricity relative to the bolt axis		
$F_{z,Ed} = 1.69$	[kN]	Design total force in a bolt on the direction z		$F_{z,Ed} = F_{MSd}$
$F_{Ed} = 4.04$	[kN]	Resultant shear force in a bolt		$F_{Ed} = \sqrt{(F_{x,Ed}^2 + F_{z,Ed}^2)}$
$F_{Rdx} = 51.10$	[kN]	Effective design capacity of a bolt on the direct	tion x	$F_{Rdx}=min(F_{bRd1x}, F_{bRd2x})$
$F_{Rdz} = 51.10$	[kN]	Effective design capacity of a bolt on the direct	tion z	$F_{Rdz}=min(F_{bRd1z}, F_{bRd2z})$
$ F_{x,Ed} \leq F_{Rdx}$		3.66 < 51.10	verified	(0.07)
$ F_{z,Ed} \leq F_{Rdz}$		1.69 < 51.10	verified	(0.03)
$F_{Ed} \leq F_{vRd}$		4.04 < 30.16	verified	(0.13)

VERIFICATION OF A SECTION WEAKENED BY OPENINGS

$\beta_2 =$	0.70		Reduction coefficient		[Table 3.8]
$A_{net} =$	12.89	[cm ²]	Net cross-sectional area		$A_{net} = A - d_0^* t_{f3}$
$N_{u,Rd} =$	263.47	[kN]	Design plastic resistance of the net section	า	$N_{u,Rd} = (\beta_2 * A_{net} * f_{u3}) / \gamma_{M2}$
$N_{pl,Rd} =$	288.91	[kN]	Design plastic resistance of the gross sect	ion	$N_{pl,Rd} = (0.9*A*f_{y3})/\gamma_{M2}$
$ N_{b3,Ed} \leq$	$N_{\text{u,Rd}}$		7.33 < 263.47	verified	(0.03)
$ N_{b3,Ed} \leq$	$N_{\text{pl},Rd}$		7.33 < 288.91	verified	(0.03)

BAR VERIFICATION - BLOCK TEARING

$A_{nt} =$	3.11	[cm ²]	Net area of the section in tension	
$A_{nv} =$	8.64	[cm ²]	Area of the section in shear	
$V_{effRd} =$	162.77	[kN]	Design capacity of a section weakened by openings V _{effRd} =0.5*f _u *A _{nt} /γ _{M2} + (1/γ	/3)*f _y *A _{nv} /γ _{M0}
N _{b3,Ed} ≤	≤ V _{effRd}		7.33 < 162.77 verified	(0.05)

BAR 4

BOLT CAPACITIES

$F_{v,Rd} =$	30.16	[kN]	Shear resistance of the shank of a single	bolt $F_{v,Rd}=0.6*f_{ub}*A_v*m/\gamma_{M2}$
Bolt beari	ng on the	bar		
Direction x	[
$k_{1x} =$	2.50		Coefficient for calculation of F _{b,Rd}	$k_{1x}=min[2.8*(e_2/d_0)-1.7, 2.5]$
$k_{1x} > 0.0$			2.50 > 0.00	verified
$\alpha_{bx} =$	1.00		Coefficient determined by bolt spacing	α_{bx} =min[e ₁ /(3*d ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
$\alpha_{\text{bx}} > 0.0$			1.00 > 0.00	verified
$F_{b,Rd1x} = 52$	1.10 [kN]	Desig	n capacity in the limit state of plastification	of the opening wall $F_{b,Rd1x}=k_{1x}*\alpha_{bx}*f_u*d*t_i/\gamma_{M2}$
Direction z	, -			
$k_{1z} =$	2.50	(Coefficient for calculation of Fb,Rd	$k_{1z}=min[2.8*(e_1/d_0)-1.7, 1.4*(p_1/d_0)-1.7, 2.5]$
$k_{1z} > 0.0$			2.50 > 0.00	verified
α_{bz} =	1.00		Coefficient for calculation of F _{b,Rd}	$\alpha_{bz}=min[e_2/(3*d_0), f_{ub}/f_u, 1]$
$\alpha_{bz} > 0.0$			1.00 > 0.00	verified
$F_{b,Rd1z} =$	51.10	[kN]	Bearing resistance of a single bolt	$F_{b,Rd1z}=k_{1z}*\alpha_{bz}*f_u*d*t_i/\gamma_{M2}$
Bolt beari	ng on the	plate		
Direction x				
$k_{1x} =$	2.50		Coefficient for calculation of F _{b,Rd}	$k_1=min[2.8*(e_2/d_0)-1.7, 2.5]$
$k_{1x} > 0.0$			2.50 > 0.00	verified
$\alpha_{bx} =$	1.00		Coefficient determined by bolt spacing	$\alpha_{bx}=min[e_1/(3*d_0), p_1/(3*d_0)-0.25, f_{ub}/f_u, 1]$
$\alpha_{\rm bx} > 0.0$			1.00 > 0.00	verified
$F_{b,Rd2x} = 73$	3.00 [kN]	Desig	n capacity in the limit state of plastification	of the opening wall $F_{b,Rd2x}=k_1*\alpha_b*f_u*d*t_i/\gamma_{M2}$
Direction z	·			
$k_{1z} =$	2.50	(Coefficient for calculation of F _{b,Rd}	k_{1z} =min[2.8*(e ₁ /d ₀)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
$k_{1z} > 0.0$			2.50 > 0.00	verified

α_{bz} =	1.00		Coefficient for calculation of F _{b,Rd}		$\alpha_{bz} = min[e_2/(3*d_0), f_{ub}/f_u, 1]$
$\alpha_{bz} > 0.0$			1.00 > 0.00	verified	
$F_{b,Rd2z} =$	73.00	[kN]	Bearing resistance of a single bolt		$F_{b,Rd2z}=k_{1z}*\alpha_{bz}*f_u*d*t_i/\gamma_{M2}$

VERIFICATION OF A CONNECTION DUE TO FORCES ACTING ON BOLTS

Bolt shear

e = 23	[mm]	Axial force eccentricity relative to the bolt axis		
$M_0 = -0.26$	[kN*m]	Real bending moment		$M_0=N_{b4,Ed}^*e$
$F_{NSd} = -5.60$	[kN]	Component force in a bolt due to influence of the	$F_{NSd} = N_{b4,Ed}/n$	
$F_{MSd} = -2.59$	[kN]	Component force in a bolt due to influence of the	$F_{MSd}=M_0*x_{max}/\Sigma x_i^2$	
$F_{x,Ed} = -5.60$	[kN]	Design total force in a bolt on the direction x		$F_{x,Ed} = F_{NSd}$
$F_{z,Ed} = -2.59$	[kN]	Design total force in a bolt on the direction z		$F_{z,Ed} = F_{MSd}$
$F_{Ed} = 6.17$	[kN]	Resultant shear force in a bolt		$F_{Ed} = \sqrt{(F_{x,Ed}^2 + F_{z,Ed}^2)}$
$F_{Rdx} = 51.10$	[kN]	Effective design capacity of a bolt on the direction x		$F_{Rdx}=min(F_{bRd1x}, F_{bRd2x})$
$F_{Rdz} = 51.10$	[kN]	Effective design capacity of a bolt on the direction z		F_{Rdz} =min(F_{bRd1z} , F_{bRd2z})
$ F_{x,Ed} \le F_{Rdx}$		-5.60 < 51.10	verified	(0.11)
$ F_{z,Ed} \leq F_{Rdz}$		-2.59 < 51.10	verified	(0.05)
$F_{Ed} \leq F_{vRd}$		6.17 < 30.16	verified	(0.20)

VERIFICATION OF A SECTION WEAKENED BY OPENINGS

$\beta_2 =$	0.70		Reduction coefficient	[Table 3.8]
$A_{net} =$	12.89	[cm ²]	Net cross-sectional area	$A_{net} = A - d_0 * t_{f4}$
$N_{u,Rd} =$	263.47	[kN]	Design plastic resistance of the net section	$N_{u,Rd} = (\beta_2 * A_{net} * f_{u4})/\gamma_{M2}$
$N_{pl,Rd} =$	288.91	[kN]	Design plastic resistance of the gross section	$N_{pl,Rd} = (0.9*A*f_{y4})/\gamma_{M2}$
$ N_{b4,Ed} \leq$	$N_{\text{u,Rd}}$		-11.20 < 263.47 verified	(0.04)
$ N_{b4,Ed} \leq$	$N_{\text{pl},Rd}$		-11.20 < 288.91 verified	(0.04)

BAR VERIFICATION - BLOCK TEARING

$A_{nt} = 3.11$	[cm ²]	Net area of the section in tension	
$A_{nv} = 8.64$	[cm ²]	Area of the section in shear	
$V_{effRd} = 162.77$	[kN]	Design capacity of a section weakened by openings $V_{effRd}=0.5*f_u*A_{nt}/\gamma_{M2}+(1/\sqrt{3})*f_y*A_{nt}$	ιν/γΜο
N _{b4.Ed} ≤ V _{effRd}		-11.20 < 162.77 verified (0.	.07)

Connection conforms to the code	Ratio	0.20	
---------------------------------	-------	------	--