CHAPTER 18: CONCURRENCY CONTROL TECHNIQUES

18.20 Prove that the basic two-phase locking protocol guarantees conflict serializability of schedules. (Hint: Show that, if a serializability graph for a schedule has a cycle, then at least one of the transactions participating in the schedule does not obey the two-phase locking protocol.)

- 18.22 Prove that strict two-phase locking guarantees strict schedules.
- 18.24 Prove that cautious waiting avoids deadlock.

(a)

(b)

- 18.25 Apply the timestamp ordering algorithm to the schedules of Figure 17.8(b) and (c), and determine whether the algorithm will allow the execution of the schedules.
- 18.26 Repeat Exercise 18.25, but use the multiversion timestamp ordering method.

Figure 17.8
Another example of
serializability testing.
(a) The read and write
operations of three
transactions T_1 , T_2 ,
and T_3 . (b) Schedule
E. (c) Schedule F.

Transaction T_1
read_item(X);
write_item(X);
read_item(Y);
write_item(Y);

Transaction T ₂
read_item(Z);
read_item(Y);
write_item(Y);
read_item(X);
write_item(X);

Transaction T_3
read_item(Y);
read_item(Z);
write_item(Y);
write_item(Z);

•	
	Time

	Transaction T ₁	Transaction T ₂	Transaction T ₃
	read_item(X); write_item(X);	read_item(Z); read_item(Y); write_item(Y);	read_item(Y); read_item(Z);
			write_item(Y); write_item(Z);
		read_item(X);	
V	read_item(Y); write_item(Y);	write_item(X);	

Schedule E

(C	,

Time

Transaction T ₁	Transaction T ₂	Transaction T_3
read_item(X);		<pre>read_item(Y); read_item(Z);</pre>
write_item(X);		write_item(Y); write_item(Z);
	read_item(Z);	
read_item(Y); write_item(Y);	<pre>read_item(Y); write_item(Y); read_item(X); write_item(X);</pre>	

Schedule F