Review Exercise 3

2. Write each of the following sets in tabular forms:

(i)
$$\{x \mid x = 2n, n \in N\}$$

 $\{x \mid x = 2n, n \in N\}$
 $= \{2,4,6,8,...\}$

(ii)
$$\{x \mid x = 2m + 1, m \in N\}$$

 $\{x \mid x = 2m + 1, m \in N\}$
 $= \{3,5,7,9,11, ...\}$

(iii)
$$\{x \mid x = 11n, n \in W \land n < 11\}$$

 $\{x \mid x = 11n, n \in W \land n < 11\}$
 $= \{0,11,22,33,44,55,66,77,88,99,110\}$

(iv)
$$\{x \mid x \in E \land 4 < x < 6\}$$

 $\{x \mid x \in E \land 4 < x < 6\}$
 $= \{\}$

(v)
$$\{x \mid x \in Q \land 5 < x < 7\}$$

 $\{x \mid x \in Q \land 5 < x < 7\}$
 $= \{\}$ (book answer)

Note: This set includes all rational numbers between 5 and 7. Since there are infinitely many, we cannot list them all.

(vi)
$$\{x \mid x \in Q \land x^2 = 2\}$$

 $\{x \mid x \in Q \land x^2 = 2\}$
 $= \{x \mid x \in Q \land x^2 = 2\}$

Note: There are no rational numbers whose square is 2.

(vii)
$$\{x \mid x \in Q \land x = -x\}$$

 $\{x \mid x \in Q \land x = -x\}$
 $= \{0\}$

(viii)
$$\{x \mid x \in R \land x \notin Q'\}$$

 $\{x \mid x \in R \land x \notin Q'\}$
 $= Q$

3.Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
, $A = \{2, 4, 6, 8, 10\}$, $B = \{1, 2, 3, 4, 5\}$, $C = \{1, 3, 5, 7, 9\}$ List the members of each of the following sets:

(i)
$$A'$$

$$A' = U - A$$

$$= \{1,2,3,4,5,6,7,8,9,10\} - \{2,4,6,8,10\}$$

$$= \{1,3,5,7,9\}$$

(ii)
$$B'$$

$$B' = U - A$$

$$B' = \{1,2,3,4,5,6,7,8,9,10\} - \{1,2,3,4,5\}$$

= \{6,7,8,9,10\}

(iii)
$$A \cup B$$

 $A \cup B = \{2,4,6,8,10\} \cup \{1,2,3,4,5\}$
 $= \{1,2,3,4,5,6,8,10\}$

(iv)
$$A - B$$

 $A \cup B = \{2,4,6,8,10\} - \{1,2,3,4,5\}$
 $= \{6,8,10\}$

(v)
$$A \cap C$$

 $A \cup C = \{2,4,6,8,10\} \cap \{1,3,5,7,9\}$
 $= \{ \}$

(vi)
$$A' \cup C'$$

 $A' = U - A$
 $= \{1,2,3,4,5,6,7,8,9,10\} - \{2,4,6,8,10\}$
 $= \{1,3,5,7,9\}$
 $C' = U - C$
 $= \{1,2,3,4,5,6,7,8,9,10\} - \{1,3,5,7,9\}$

 $= \{2,4,6,8,10\}$

 $= \{1,3,5,7,9\}$

$$A' \cup C' = \{1,3,5,7,9\} \cup \{2,4,6,8,10\}$$

= $\{1,2,3,4,5,6,7,8,9,10\}$

(vii) $A' \cup C$ A' = U - Aristian Daska $= \{1,2,3,4,5,6,7,8,9,10\} - \{2,4,6,8,10\}$

$$A' \cup C = \{1,3,5,7,9\} \cup \{1,3,5,7,9\}$$

= \{1,3,5,7,9\}

(viii)
$$U'$$

 $U' = U - A$
 $= \{1,2,3,4,5,6,7,8,9,10\} - \{1,2,3,4,5,6,7,8,9,10\}$
 $= \{ \}$

4. Using the Venn diagrams, if necessary, find the single sets equal to the following:

$(v) \emptyset \cup \emptyset$

The intersection of the empty set Ø with itself is the set of elements common to both sets. Since the empty set contains no elements, its intersection with itself also results in the empty set.

5. Use Venn diagrams to verify the following:

(i)
$$A - B = A \cap B'$$

$$L.H.S = A - B$$

$$A - B = \frac{1}{2} \dots (i)$$

$$R.H.S = A \cap B'$$

$$A \cap B' =$$
 (ii)

From (i) and (ii)

15 Chr.ifest = R.H.s Daska)

(ii)
$$(A - B)' \cap B = B$$

$$L.H.S = (A - B)' \cap B$$

Venn diagram of A - B

$$A - B =$$

Now for

$$(A-B)'=U-(A-B)$$

$$(A-B)' \cap B = \iiint \dots (i)$$

$$R. H. S = B$$

$$B = \iiint \dots (ii)$$

From (i) and (ii)

$$L.H.S = R.H.S$$

- 6. Verify the properties for the sets *A*, *B*, and *C* given below:
- (i) Associativity of union.
- (ii) Associativity of intersection.
- (iii) Distributivity of union over intersection.
- (iv) Distributivity of intersection over union.

(a)
$$A = \{1, 2, 3, 4\}$$
, $B = \{3, 4, 5, 6, 7, 8\}$, $C = \{5, 6, 7, 9, 10\}$

Associativity of union:

$$(A \cup B) \cup C = A \cup (B \cup C)$$

 $A \cup B = \{1,2,3,4\} \cup \{3,4,5,6,7,8\}$
 $= \{1,2,3,4,5,6,7,8\}$

$$B \cup C = \{3,4,5,6,7,8\} \cup \{5,6,7,9,10\}$$

$$B \cup C = \{3,4,5,6,7,8,9,10\}$$

$$L.H.S = (A \cup B) \cup C$$

= $\{1,2,3,4,5,6,7,8\} \cup \{5,6,7,9,10\}$
= $\{1,2,3,4,5,6,7,8,9,10\}$

$$R.H.S = A \cup (B \cup C)$$

$$= \{1,2,3,4\} \cup \{3,4,5,6,7,8,9,10\}$$

$$= \{1,2,3,4,5,6,7,8,9,10\}$$

Hence

$$L.H.S = R.H.S$$

Associativity of intersection:

$$(A \cap B) \cap C = A \cap (B \cap C)$$

 $A \cap B = \{1,2,3,4\} \cap \{3,4,5,6,7,8\}$
 $= \{3,4\}$

$$B \cap C = \{3,4,5,6,7,8\} \cap \{5,6,7,9,10\}$$

 $B \cap C = \{5,6,7\}$

$$L.H.S = (A \cap B) \cap C$$

= $\{3,4\} \cap \{5,6,7,9,10\}$
= $\{$

$$R.H.S = A \cap (B \cap C)$$

= {1,2,3,4} \cap {5,6,7}
Chr\dagger

Hence

$$L.H.S = R.H.S$$

Distributivity of union over intersection:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

 $B \cap C = \{3,4,5,6,7,8\} \cap \{5,6,7,9,10\}$
 $= \{5,6,7\}$

$$A \cup B = \{1,2,3,4\} \cup \{3,4,5,6,7,8\}$$

= \{1,2,3,4,5,6,7,8\}

$$A \cup C = \{1,2,3,4\} \cup \{5,6,7,9,10\}$$

= $\{1,2,3,4,5,6,7,9,10\}$

$$L.H.S = A \cup (B \cap C)$$

= {1,2,3,4} \cup {5,6,7}
= {1,2,3,4,5,6,7}

$$R.H.S = (A \cup B) \cap (A \cup C)$$

= $\{1,2,3,4,5,6,7,8\} \cap \{1,2,3,4,5,6,7,9,10\}$
= $\{1,2,3,4,5,6,7\}$

Hence

$$L.H.S = R.H.S$$

Distributivity of intersection over union:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

 $B \cup C = \{3,4,5,6,7,8\} \cup \{5,6,7,9,10\}$

Prepared By: M. Tayyab, SSE(Math) Govt Christian High School, Daska.

Page **3** of **9**

$$= \{3,4,5,6,7,8,9,10\}$$

$$A \cap B = \{1,2,3,4\} \cap \{3,4,5,6,7,8\}$$

$$= \{3,4\}$$

$$A \cap C = \{1,2,3,4\} \cap \{5,6,7,9,10\}$$

$$= \{ \}$$

$$L.H.S = A \cap (B \cup C)$$

$$= \{1,2,3,4\} \cap \{3,4,5,6,7,8,9,10\}$$

$$= \{3,4\}$$

$$R.H.S = (A \cap B) \cup (A \cap C)$$

$$= \{3,4\} \cup \{ \}$$

$$= \{3,4\}$$

Hence

$$L.H.S = R.H.S$$

(b) $A = \emptyset = \{ \}, B = \{0\}, C = \{0, 1, 2\}$

Associativity of union:

$$(\mathbf{A} \cup \mathbf{B}) \cup \mathbf{C} = \mathbf{A} \cup (\mathbf{B} \cup \mathbf{C})$$
$$A \cup B = \{ \} \cup \{0\}$$
$$= \{0\}$$

$$B \cup C = \{0\} \cup \{0,1,2\}$$
$$= \{0,1,2\}$$

$L.H.S = (A \cup B) \cup C$ Muhamm={0}0 {0,1,2}y $= \{0,1,2\}$

$$R.H.S = A \cup (B \cup C)$$

= $\{ \} \cup \{0,1,2\}$
= $\{0,1,2\}$

Hence

$$L.H.S = R.H.S$$

Associativity of intersection:

$$(A \cap B) \cap C = A \cap (B \cap C)$$
$$A \cap B = \{ \} \cap \{0\}$$
$$= \{ \}$$

$$B \cap C = \{0\} \cap \{0,1,2\}$$

 $B \cap C = \{0\}$

$$L.H.S = (A \cap B) \cap C$$

= $\{ \} \cap \{0,1,2\}$
= $\{ \}$

$$R.H.S = A \cap (B \cap C)$$
$$= \{ \} \cap \{0\}$$
$$= \{ \}$$

Hence

$$L.H.S = R.H.S$$

Distributivity of union over intersection:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$B \cap C = \{0\} \cap \{0,1,2\}$$

$$= \{0\}$$

$$A \cup B = \{\} \cup \{0\}$$

$$= \{0\}$$

$$A \cup C = \{\} \cup \{0,1,2\}$$

$$= \{0,1,2\}$$

$$L.H.S = A \cup (B \cap C)$$

$$= \{\} \cup \{0\}$$

$$= \{0\}$$

$$R.H.S = (A \cup B) \cap (A \cup C)$$

$$= \{0\} \cap \{0,1,2\}$$

$$= \{0,1,2\}$$

Hence

$$L.H.S = R.H.S$$

Distributivity of intersection over union:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$B \cup C = \{0\} \cup \{0,1,2\}$$
$$= \{0,1,2\}$$

$$A \cap B = \{ \} \cap \{0\}$$
$$= \{ \}$$

nrestiano,1,2)aska) = { }

$$L.H.S = A \cap (B \cup C)$$

= { } \cap \{0,1,2\}
= { }

$$R.H.S = (A \cap B) \cup (A \cap C)$$
$$= \{ \} \cup \{ \}$$
$$= \{ \}$$

Hence

$$L.H.S = R.H.S$$

(c)
$$A = N, B = Z, C = Q$$

Note: $N \subset Z \subset O$

Associativity of union:

$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$A \cup B = N \cup Z$$

$$= Z$$

$$B \cup C = Z \cup Q$$

$$B \cup C = Q$$

$$L.H.S = (A \cup B) \cup C$$

$$= Z \cup Q$$

$$= Q$$

$$R.H.S = A \cup (B \cup C)$$

$$= N \cup Q$$
$$= Q$$

Hence

$$L.H.S = R.H.S$$

Associativity of intersection:

$$(A \cap B) \cap C = A \cap (B \cap C)$$

$$A \cap B = N \cap Z$$

$$= N$$

$$B \cap C = Z \cap Q$$

$$= Z$$

$$L.H.S = (A \cap B) \cap C$$

$$= N \cap Q$$

$$= N$$

$$R.H.S = A \cap (B \cap C)$$

$$= N \cap Z$$

Hence

$$L,H,S=R,H,S$$

= N

Distributivity of union over intersection:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

 $B \cap C = Z \cap Q$
hammad Tayya

$$A \cup B = N \cup Z$$
$$= Z$$
$$A \cup C = N \cup O$$

= Q $L.H.S = A \cup (B \cap C)$ $= N \cup Z$ = Z

$$R.H.S = (A \cup B) \cap (A \cup C)$$
$$= Z \cap Q$$
$$= Z$$

Hence

$$L.H.S = R.H.S$$

Distributivity of intersection over union:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$B \cup C = Q \cup Z$$

$$= Q$$

$$A \cap B = N \cap Q$$

$$= N$$

$$A \cap C = N \cap Q$$

$$= N$$

$$L.H.S = A \cap (B \cup C)$$

$$= N \cap Q$$

$$= N$$

 $R.H.S = (A \cap B) \cup (A \cap C)$ GHS Chr<u>i</u>∜tian Daska)

Hence

$$L.H.S = R.H.S$$

7. Verify De Morgan's Laws for the following sets: $U = \{1, 2, 3, ..., 20\}$, $A = \{2, 4, 6, ..., 20\}$ and $B = \{1, 3, 5, ..., 19\}$

De Morgan's Laws: (i) $(A \cup B)' = A' \cap B'$ (ii) $(A \cap B)' = A' \cup B'$ (i) $(A \cup B)' = A' \cap B'$

$$A \cup B = \{2,4,6, ...,20\} \cup \{1,3,5, ...,19\}$$

$$= \{1,2,3, ...,20\}$$

$$A' = U - A$$

$$A' = \{1,2,3, ...,20\} - \{2,4,6, ...,20\}$$

$$A' = \{1,3,5, ...,19\}$$

$$B' = U - B$$

$$B' = \{1,2,3, ...,20\} - \{1,3,5, ...,19\}$$

$$B' = \{2,4,6, ...,20\}$$

$$L.H.S = (A \cup B)'$$

$$= \{U - (A \cup B)$$

$$= \{1,2,3, ...,20\} - \{1,2,3, ...,20\}$$

$$L.H.S = \{\}$$

$$R.H.S = A' \cap B'$$

$$= \{1,3,5, ...,19\} \cap \{2,4,6, ...,20\}$$

Prepared By: M. Tayyab, SSE(Math) Govt Christian High School, Daska. Mobile: 03338114798 Website: https://hira-science-academy.github.io

Page **5** of **9**

$$R.H.S = \{ \}$$

Hence Proved

$$L,H,S=R,H,S$$

(i)
$$(A \cap B)' = A' \cup B'$$

$$A \cap B = \{2,4,6,...,20\} \cap \{1,3,5,...,19\}$$

$$= \{ \}$$

$$A' = U - A$$

$$A' = \{1,2,3,...,20\} - \{2,4,6,...,20\}$$

$$A' = \{1,3,5,...,19\}$$

$$B' = U - B$$

$$B' = \{1,2,3,...,20\} - \{1,3,5,...,19\}$$

$$B' = \{2,4,6,...,20\}$$

$$L. H. S = (A \cap B)'$$

$$= U - (A \cap B)$$

$$= \{1,2,3,...,20\} - \{ \}$$

$$L. H. S = \{1,2,3,...,20\}$$

$$R. H. S = A' \cup B'$$

$$= \{1,3,5,...,19\} \cup \{2,4,6,...,20\}$$

$$R. H. S = \{1,2,3,...,20\}$$

Hence Proved

$$L.H.S = R.H.S$$

8. Consider the set $P = \{x \mid x = 5m, m \in N\}$ and $Q = \{x \mid x = 2m, m \in N\}$. Find $P \cap Q$.

$$P = \{x \mid x = 5m, m \in N\}$$

$$P = \{5,10,15,20, ...\}$$

$$Q = \{x \mid x = 2m, m \in N\}$$

$$Q = \{2,4,6,8, ...\}$$

$$P \cap Q = \{5,10,15,20, ...\} \cap \{2,4,6,8, ...\}$$

$$= \{10,20,30, ...\}$$

9. From suitable properties of union and intersection, deduce the following results:

(i) $A \cap (A \cup B) = A \cup (A \cap B)$

$$L.H.S = A \cap (A \cup B)$$

$$= (A \cap A) \cup (A \cap B)$$

$$= A \cup (A \cap B) \qquad \because A \cap A = A$$

$$= R.H.S$$

(ii)
$$A \cup (A \cap B) = A \cap (A \cup B)$$

$$L.H.S = A \cup (A \cap B)$$

$$= (A \cup A) \cap (A \cup B)$$

$$= A \cap (A \cup B) \qquad \because A \cup A = A$$

$$= R.H.S$$

10. If g(x) = 7x - 2 and $s(x) = 8x^2 - 3$, then find:

(i) g(0)

Since

$$g(x) = 7x - 2$$

Put x = 0

Prepared By: M. Tayyab, SSE(Math) Govt Christian High School, Daska.

Website: https://hira-science-academy.github.io

$$g(0) = 7(0) - 2$$

= 0 - 2
= -2

(ii) g(-1)

Since

Put
$$x = -1$$

$$g(x) = 7x - 2$$

$$g(-1) = 7(-1) - 2$$

= -7 - 2
= -9

(iii) $g\left(-\frac{5}{3}\right)$

Since

Put
$$x = -\frac{5}{3}$$

$$g(x) = 7x - 2$$

$$g\left(-\frac{5}{3}\right) = 7\left(-\frac{5}{3}\right) - 2$$
$$= \frac{-35 - 6}{3}$$
$$= \frac{-41}{3}$$

(iv) s(1)

Since

Muhammad Tayya^(x) (8 HS Christian Daska)

$$s(1) = 8(1)^2 - 3$$

= 8 - 3
= 5

(v) s(-4)

Since

$$s(x) = 8x^2 - 3$$

Put x = -9

$$s(-9) = 8(-9)^{2} - 3$$

$$= 8(81) + 1$$

$$= 648 - 3$$

$$= 645$$

(v) $s\left(\frac{7}{2}\right)$

Since

Put
$$x = \frac{7}{2}$$

$$s(x) = 8x^2 - 3$$

$$s\left(\frac{7}{2}\right) = 8\left(\frac{7}{2}\right)^2 - 3$$
$$= 8\left(\frac{49}{4}\right) - 3$$
$$= \frac{392}{4} - 3$$

Prepared By: M. Tayyab, SSE(Math) Govt Christian High School, Daska.

Website: https://hira-science-academy.github.io

$$= \frac{392 - 12}{4}$$
$$= \frac{380}{4}$$
$$= 95$$

11. Given that f(x) = ax + b, where a and b are constant numbers. If f(-2) = 3 and f(4) = 10, then find the values of a and b.

Since

$$f(x) = ax + b$$

Put x = -2

$$f(-2) = a(-2) + b$$

 $3 = -2a + b$... (i) $f(-2) = 3$

Now

$$f(x) = ax + b$$

Put x = 4

$$f(4) = a(4) + b + 1$$

 $10 = 4a + b$... (ii) $f(4) = 10$

Subtract equation (i) from equation (ii)

$$10 = 4a + b$$

$$\pm 3 = \mp 2a \pm b$$

$$7 = 6a$$

$$\frac{7}{6} = a$$

Putting $a = \frac{7}{6}$ in equation (i)

Muhammad Tayyab₃ (G_2 G_3 G_4 G_5 G_6 G_6 G_6 G_6 G_6 G_8 $G_$

$$3 = \frac{-14}{6} + b$$

$$3 + \frac{14}{6} = b$$

$$\frac{18 + 14}{6} = b$$

$$\frac{32}{6} = b$$

$$\frac{16}{3} = b$$

12. Consider the function defined by k(x) = 7x - 5. If k(x) = 100, find the value of x.

Since

$$k(x) = 7x - 5$$

Put k(x) = 100

$$100 = 7x - 5$$

$$100 + 5 = 7x$$

$$105 = 7x$$

$$\frac{105}{7} = x$$

$$15 = x$$

$$x = 15$$

Prepared By: M. Tayyab, SSE (Math) Govt Christian High School, Daska. Mobile: 03338114798

Prepared By: M. Tayyab, SSE(Math) Govt Christian High School, Daska.

Mobile: 03338114798

Website: https://hira-science-academy.github.io

Page 9 of 9