

PROPERTIES OF THE INTEGERS

- (1) (Well Ordering of \mathbb{Z}) If A is any nonempty subset of \mathbb{Z}^+ , there is some element $m \in A$ such that $m \leq a$, for all $a \in A$ (m is called a minimal element of A).
- (2) If $a, b \in \mathbb{Z}$ with $a \neq 0$, we say a divides b if there is an element $c \in \mathbb{Z}$ such that b = ac. In this case we write $a \mid b$; if a does not divide b we write $a \nmid b$.
- (3) If $a, b \in \mathbb{Z} \{0\}$, there is a unique positive integer d, called the greatest common divisor of a and b (or g.c.d. of a and b), satisfying:
 - (a) $d \mid a$ and $d \mid b$ (so d is a common divisor of a and b), and
 - (b) if $e \mid a$ and $e \mid b$, then $e \mid d$ (so d is the greatest such divisor).

The g.c.d. of a and b will be denoted by (a, b). If (a, b) = 1, we say that a and b are relatively prime.

- (4) If $a, b \in \mathbb{Z} \{0\}$, there is a unique positive integer l, called the *least common multiple of a and b* (or l.c.m. of a and b), satisfying:
 - (a) $a \mid l$ and $b \mid l$ (so l is a common multiple of a and b), and
 - (b) if $a \mid m$ and $b \mid m$, then $l \mid m$ (so l is the least such multiple).

The connection between the greatest common divisor d and the least common multiple l of two integers a and b is given by dl = ab.

(5) The Division Algorithm: if $a, b \in \mathbb{Z} - \{0\}$, then there exist unique $q, r \in \mathbb{Z}$ such that

$$a = qb + r$$
 and $0 \le r < |b|$,

where q is the *quotient* and r the *remainder*. This is the usual "long division" familiar from elementary arithmetic.

(6) The Euclidean Algorithm is an important procedure which produces a greatest common divisor of two integers a and b by iterating the Division Algorithm: if $a, b \in \mathbb{Z} - \{0\}$, then we obtain a sequence of quotients and remainders

$$a = q_0 b + r_0 \tag{0}$$

$$b = q_1 r_0 + r_1 \tag{1}$$

$$r_0 = q_2 r_1 + r_2 \tag{2}$$

$$r_1 = q_3 r_2 + r_3 \tag{3}$$

:

$$r_{n-2} = q_n r_{n-1} + r_n (n)$$

$$r_{n-1} = q_{n+1}r_n (n+1)$$

where r_n is the last nonzero remainder. Such an r_n exists since $|b| > |r_0| > |r_1| > \cdots > |r_n|$ is a decreasing sequence of strictly positive integers if the remainders are nonzero and such a sequence cannot continue indefinitely. Then r_n is the g.c.d. (a, b) of a and b.

Example

Suppose a = 57970 and b = 10353. Then applying the Euclidean Algorithm we obtain:

$$62.5 = 1 \times 620.5 + 4 \cdot 148$$

$$62.05 = 1 \times 4/48 + 2057$$

$$4148 = 2 \times 2057 + 14$$

$$2057 = 60 \times 14 + 17$$

$$34 = 2 \times 17$$

(7) One consequence of the Euclidean Algorithm which we shall use regularly is the following: if $a, b \in \mathbb{Z} - \{0\}$, then there exist $x, y \in \mathbb{Z}$ such that

$$(a,b) = ax + by$$

that is, the g.c.d. of a and b is a \mathbb{Z} -linear combination of a and b. This follows by recursively writing the element r_n in the Euclidean Algorithm in terms of the previous remainders (namely, use equation (n) above to solve for $r_n = r_{n-2} - q_n r_{n-1}$ in terms of the remainders r_{n-1} and r_{n-2} , then use equation (n-1) to write r_n in terms of the remainders r_{n-2} and r_{n-3} , etc., eventually writing r_n in terms of a and b).

- (8) An element p of \mathbb{Z}^+ is called a *prime* if p > 1 and the only positive divisors of p are 1 and p (initially, the word prime will refer only to positive integers). An integer n > 1 which is not prime is called *composite*. For example, 2,3,5,7,11,13,17,19,... are primes and 4,6,8,9,10,12,14,15,16,18,... are composite.
 - An important property of primes (which in fact can be used to *define* the primes (cf. Exercise 3)) is the following: if p is a prime and $p \mid ab$, for some $a, b \in \mathbb{Z}$, then either $p \mid a$ or $p \mid b$.
- (9) The Fundamental Theorem of Arithmetic says: if $n \in \mathbb{Z}$, n > 1, then n can be factored uniquely into the product of primes, i.e., there are distinct primes p_1, p_2, \ldots, p_s and positive integers $\alpha_1, \alpha_2, \ldots, \alpha_s$ such that

$$n=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_s^{\alpha_s}.$$

This factorization is unique in the sense that if q_1, q_2, \ldots, q_t are any distinct primes and $\beta_1, \beta_2, \ldots, \beta_t$ positive integers such that

$$n = q_1^{\beta_1} q_2^{\beta_2} \dots q_t^{\beta_t},$$

then s = t and if we arrange the two sets of primes in increasing order, then $q_i = p_i$ and $\alpha_i = \beta_i$, $1 \le i \le s$. For example, $n = 1852423848 = 2^33^211^219^331$ and this decomposition into the product of primes is unique.

Suppose the positive integers a and b are expressed as products of prime powers:

$$a = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_s^{\alpha_s}, \quad b = p_1^{\beta_1} p_2^{\beta_2} \dots p_s^{\beta_s}$$

where p_1, p_2, \ldots, p_s are distinct and the exponents are ≥ 0 (we allow the exponents to be 0 here so that the products are taken over the same set of primes — the exponent will be 0 if that prime is not actually a divisor). Then the greatest common divisor of a and b is

$$(a,b)=p_1^{\min(\alpha_1,\beta_1)}p_2^{\min(\alpha_2,\beta_2)}\dots p_s^{\min(\alpha_s,\beta_s)}$$

(10) The Euler φ -function is defined as follows: for $n \in \mathbb{Z}^+$ let $\varphi(n)$ be the number of positive integers $a \le n$ with a relatively prime to n, i.e., (a, n) = 1. For example, $\varphi(12) = 4$ since 1, 5, 7 and 11 are the only positive integers less than or equal to 12 which have no factors in common with 12. Similarly, $\varphi(1) = 1$, $\varphi(2) = 1$, $\varphi(3) = 2$, $\varphi(4) = 2$, $\varphi(5) = 4$, $\varphi(6) = 2$, etc. For primes p, $\varphi(p) = p - 1$, and, more generally, for all $a \ge 1$ we have the formula

$$\varphi(p^a) = p^a - p^{a-1} = p^{a-1}(p-1).$$

The function φ is *multiplicative* in the sense that

$$\varphi(ab) = \varphi(a)\varphi(b)$$
 if $(a, b) = 1$

(note that it is important here that a and b be relatively prime). Together with the formula above this gives a general formula for the values of φ : if $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_s^{\alpha_s}$, then

$$\varphi(n) = \varphi(p_1^{\alpha_1})\varphi(p_2^{\alpha_2})\dots\varphi(p_s^{\alpha_s})$$

= $p_1^{\alpha_1-1}(p_1-1)p_2^{\alpha_2-1}(p_2-1)\dots p_s^{\alpha_s-1}(p_s-1).$

For example, $\varphi(12) = \varphi(2^2)\varphi(3) = 2^1(2-1)3^0(3-1) = 4$. The reader should note that we shall use the letter φ for many different functions throughout the text so when we want this letter to denote Euler's function we shall be careful to indicate this explicitly.