2 Solutions to Exercises

Problem Set 1.1, page 8

- 1 The combinations give (a) a line in \mathbb{R}^3 (b) a plane in \mathbb{R}^3 (c) all of \mathbb{R}^3 .
- **2** v + w = (2,3) and v w = (6,-1) will be the diagonals of the parallelogram with v and w as two sides going out from (0,0).
- **3** This problem gives the diagonals v + w and v w of the parallelogram and asks for the sides: The opposite of Problem 2. In this example v = (3, 3) and w = (2, -2).
- **4** 3v + w = (7, 5) and cv + dw = (2c + d, c + 2d).
- 5 u+v=(-2,3,1) and u+v+w=(0,0,0) and 2u+2v+w=(add first answers)=(-2,3,1). The vectors u,v,w are in the same plane because a combination gives (0,0,0). Stated another way: u=-v-w is in the plane of v and w.
- **6** The components of every cv + dw add to zero because the components of v and of w add to zero. c = 3 and d = 9 give (3, 3, -6). There is no solution to cv + dw = (3, 3, 6) because 3 + 3 + 6 is not zero.
- 7 The nine combinations c(2,1) + d(0,1) with c = 0, 1, 2 and d = (0,1,2) will lie on a lattice. If we took all whole numbers c and d, the lattice would lie over the whole plane.
- **8** The other diagonal is v w (or else w v). Adding diagonals gives 2v (or 2w).
- **9** The fourth corner can be (4,4) or (4,0) or (-2,2). Three possible parallelograms!
- **10** i j = (1, 1, 0) is in the base (x-y plane). i + j + k = (1, 1, 1) is the opposite corner from (0, 0, 0). Points in the cube have $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$.
- **11** Four more corners (1,1,0),(1,0,1),(0,1,1),(1,1,1). The center point is $(\frac{1}{2},\frac{1}{2},\frac{1}{2})$. Centers of faces are $(\frac{1}{2},\frac{1}{2},0),(\frac{1}{2},\frac{1}{2},1)$ and $(0,\frac{1}{2},\frac{1}{2}),(1,\frac{1}{2},\frac{1}{2})$ and $(\frac{1}{2},0,\frac{1}{2}),(\frac{1}{2},1,\frac{1}{2})$.
- **12** The combinations of i = (1,0,0) and i + j = (1,1,0) fill the xy plane in xyz space.
- **13** Sum = zero vector. Sum = -2:00 vector = 8:00 vector. 2:00 is 30° from horizontal = $(\cos \frac{\pi}{6}, \sin \frac{\pi}{6}) = (\sqrt{3}/2, 1/2)$.
- **14** Moving the origin to 6:00 adds j = (0,1) to every vector. So the sum of twelve vectors changes from $\mathbf{0}$ to 12j = (0,12).

Solutions to Exercises 3

15 The point $\frac{3}{4}v + \frac{1}{4}w$ is three-fourths of the way to v starting from w. The vector $\frac{1}{4}v + \frac{1}{4}w$ is halfway to $u = \frac{1}{2}v + \frac{1}{2}w$. The vector v + w is 2u (the far corner of the parallelogram).

- **16** All combinations with c+d=1 are on the line that passes through ${\boldsymbol v}$ and ${\boldsymbol w}$. The point ${\boldsymbol V}=-{\boldsymbol v}+2{\boldsymbol w}$ is on that line but it is beyond ${\boldsymbol w}$.
- 17 All vectors cv + cw are on the line passing through (0,0) and $u = \frac{1}{2}v + \frac{1}{2}w$. That line continues out beyond v + w and back beyond (0,0). With $c \ge 0$, half of this line is removed, leaving a ray that starts at (0,0).
- 18 The combinations $c \boldsymbol{v} + d \boldsymbol{w}$ with $0 \le c \le 1$ and $0 \le d \le 1$ fill the parallelogram with sides \boldsymbol{v} and \boldsymbol{w} . For example, if $\boldsymbol{v} = (1,0)$ and $\boldsymbol{w} = (0,1)$ then $c \boldsymbol{v} + d \boldsymbol{w}$ fills the unit square. But when $\boldsymbol{v} = (a,0)$ and $\boldsymbol{w} = (b,0)$ these combinations only fill a segment of a line.
- **19** With $c \ge 0$ and $d \ge 0$ we get the infinite "cone" or "wedge" between \boldsymbol{v} and \boldsymbol{w} . For example, if $\boldsymbol{v} = (1,0)$ and $\boldsymbol{w} = (0,1)$, then the cone is the whole quadrant $x \ge 0$, $y \ge 0$. *Question*: What if $\boldsymbol{w} = -\boldsymbol{v}$? The cone opens to a half-space. But the combinations of $\boldsymbol{v} = (1,0)$ and $\boldsymbol{w} = (-1,0)$ only fill a line.
- **20** (a) $\frac{1}{3}u + \frac{1}{3}v + \frac{1}{3}w$ is the center of the triangle between u, v and w; $\frac{1}{2}u + \frac{1}{2}w$ lies between u and w (b) To fill the triangle keep $c \ge 0$, $d \ge 0$, $e \ge 0$, and c + d + e = 1.
- 21 The sum is (v-u)+(w-v)+(u-w)= zero vector. Those three sides of a triangle are in the same plane!
- **22** The vector $\frac{1}{2}(u+v+w)$ is *outside* the pyramid because $c+d+e=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}>1$.
- 23 All vectors are combinations of u, v, w as drawn (not in the same plane). Start by seeing that cu + dv fills a plane, then adding ew fills all of \mathbf{R}^3 .
- **24** The combinations of u and v fill one plane. The combinations of v and w fill another plane. Those planes meet in a *line*: only the vectors cv are in both planes.
- **25** (a) For a line, choose u = v = w = any nonzero vector (b) For a plane, choose u and v in different directions. A combination like w = u + v is in the same plane.

4 Solutions to Exercises

26 Two equations come from the two components: c+3d=14 and 2c+d=8. The solution is c=2 and d=4. Then 2(1,2)+4(3,1)=(14,8).

- **27** A four-dimensional cube has $2^4 = 16$ corners and $2 \cdot 4 = 8$ three-dimensional faces and 24 two-dimensional faces and 32 edges in Worked Example **2.4** A.
- **28** There are **6** unknown numbers $v_1, v_2, v_3, w_1, w_2, w_3$. The six equations come from the components of $\boldsymbol{v} + \boldsymbol{w} = (4, 5, 6)$ and $\boldsymbol{v} \boldsymbol{w} = (2, 5, 8)$. Add to find $2\boldsymbol{v} = (6, 10, 14)$ so $\boldsymbol{v} = (3, 5, 7)$ and $\boldsymbol{w} = (1, 0, -1)$.
- **29** Fact: For any three vectors u, v, w in the plane, some combination cu + dv + ew is the zero vector (beyond the obvious c = d = e = 0). So if there is one combination Cu + Dv + Ew that produces b, there will be many more—just add c, d, e or 2c, 2d, 2e to the particular solution C, D, E.

The example has $3\boldsymbol{u} - 2\boldsymbol{v} + \boldsymbol{w} = 3(1,3) - 2(2,7) + 1(1,5) = (0,0)$. It also has $-2\boldsymbol{u} + 1\boldsymbol{v} + 0\boldsymbol{w} = \boldsymbol{b} = (0,1)$. Adding gives $\boldsymbol{u} - \boldsymbol{v} + \boldsymbol{w} = (0,1)$. In this case c,d,e equal 3,-2,1 and C,D,E=-2,1,0.

Could another example have u, v, w that could NOT combine to produce b? Yes. The vectors (1,1), (2,2), (3,3) are on a line and no combination produces b. We can easily solve cu + dv + ew = 0 but not Cu + Dv + Ew = b.

- **30** The combinations of v and w fill the plane unless v and w lie on the same line through (0,0). Four vectors whose combinations fill 4-dimensional space: one example is the "standard basis" (1,0,0,0), (0,1,0,0), (0,0,1,0), and (0,0,0,1).
- **31** The equations $c\mathbf{u} + d\mathbf{v} + e\mathbf{w} = \mathbf{b}$ are