Imperial College London

M<sub>1</sub>S

## BSc, MSci and MSc EXAMINATIONS (MATHEMATICS)

May-June 2019

This paper is also taken for the relevant examination for the Associateship of the Royal College of Science

## **Probability and Statistics 1**

Date: Friday 24 May 2019

Time: 14.00 - 16.00

Time Allowed: 2 Hours

This paper has 4 Questions.

Candidates should start their solutions to each question in a new main answer book.

Supplementary books may only be used after the relevant main book(s) are full.

All required additional material will be provided.

- DO NOT OPEN THIS PAPER UNTIL THE INVIGILATOR TELLS YOU TO.
- Affix one of the labels provided to each answer book that you use, but DO NOT USE THE LABEL WITH YOUR NAME ON IT.
- · Calculators may not be used.

- 1. (a) State the three axioms of probability for events defined on a sample space  $\Omega$ .
  - (b) Prove from the axioms that for events  $E, F \subseteq \Omega$ ,  $P(E \cap F) \leq P(E)$ .
  - (c) The conditional probability mass function of the discrete random variable Y, given that  $\Theta = \theta$  follows a Bernoulli distribution with parameter  $\theta$ . The random variable  $\Theta$  is defined by

$$\Theta = \frac{X+1}{4},$$

where  $X \sim Binomial(2, 0.25)$ .

- (i) Find the probability mass function of  $\Theta$ .
- (ii) Find expressions for the mean and variance of  $\Theta$  in terms of the mean and variance of X respectively.
- (iii) Determine  $\mathsf{E}_{f_{\Theta}}(\Theta)$ .
- (iv) What is  $P(\Theta > 0.5)$ ?
- (v) Determine P(Y=0).
- (vi) Given that Y=0 determine the probability that  $\Theta>0.5$ .
- 2. A die is rolled three times with scores  $X_1, X_2$  and  $X_3$ . Let  $Y_3$  be the maximum score obtained and  $Z_3$  the minimum score obtained.
  - (a) Prove that  $P(Y_3 \le i) = P(X_1 \le i)^3, i = 1, 2, \dots 6$ .
  - (b) Show that the probability mass function of  $Y_3$  is given by

$$f_{Y_3}(i) = \left\{ egin{array}{ll} \left(rac{i}{6}
ight)^3 - \left(rac{i-1}{6}
ight)^3, & i=1,2,\dots 6; \ 0, & ext{otherwise}. \end{array} 
ight.$$

- (c) Find  $\mathsf{E}_{f_{Y_3}}(Y_3)$ .
- (d) Determine the probability mass function of  $Z_3$ .
- (e) Let  $Y_n$  be the maximum score obtained when n dice are rolled. Find the probability mass function of  $Y_n$ .
- (f) Let  $Z_n$  be the minimum score obtained when n dice are rolled and let  $Q=Y_n-Z_n$ . What is  $\mathsf{P}(Q=0)$ ?

- 3. (a) What properties must  $f_X(x)$  have in order to be a valid probability density function (pdf)?
  - (b) Let the continuous random variables  $X_i$ ,  $i=1,2,\ldots,n$ , be a sequence of independent exponential random variables with pdfs

$$f_{X_i}(x) = \lambda e^{-\lambda x}, \quad x > 0.$$

With parameter  $\lambda > 0$ . Let  $Y = \lambda X_1$ .

(i) Show that the moment generating function of  $X_i$  is given by,

$$M_{X_i}(t) = \frac{\lambda}{\lambda - t}, \quad |t| < \lambda.$$

- (ii) Prove that  $\mathsf{E}_{f_{X_i}}(X_i) = \lambda^{-1}, i = 1, \dots, n.$
- (iii) Find the pdf of Y and prove that  $\mathsf{E}_{f_{X_i}}(X_i) = \lambda^{-1} \mathsf{E}_{f_Y}(Y), i = 1, \dots, n.$
- (iv) Prove that  $\mathsf{E}_{f_{X_i}}(X_i^k) = \lambda^{-k}\Gamma(k+1), i=1,\dots,n.$
- (v) Find the pdf of

$$A = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

4. (a) For continuous random variables X and Y, prove that

$$\mathsf{E}_{f_Y}(Y) = \mathsf{E}_{f_X} \left[ \mathsf{E}_{f_{Y\mid X}}(Y\mid X) \right].$$

(b) The continuous random variable X has pdf given by,

$$f_X(x) = \left\{ egin{array}{ll} kx^2(1-x^2), & 0 < x < 1; \ 0, & ext{otherwise}. \end{array} 
ight.$$

- (i) Determine the value of k.
- (ii) Determine  $E_{f_X}(X)$  and  $var_{f_X}(X)$ .

The conditional pdf of Y given X=x is given by

$$f_{Y|X}(y|x) = \left\{ egin{array}{ll} rac{3}{x^3}(2y-3x)^2, & y \in (x,2x); \ 0, & ext{otherwise.} \end{array} 
ight.$$

- (iii) Determine  $E_{f_{Y|X}}(Y \mid X = x)$ .
- (iv) Determine  $E_{f_Y}(Y)$ .
- (v) Find  $f_{X,Y}(x,y)$ .
- (vi) Write 1 P(X + Y < 2) as an integral of the form

$$\int_{x_1}^{x_2} \int_{y_1}^{y_2} f_{X,Y}(x,y) \ \mathrm{d} y \ \mathrm{d} x,$$

where  $x_1, x_2, y_1$  and  $y_2$  are to be determined and the limits  $y_1$  and  $y_2$  may depend on x.

|                                      |                | IO                                     | DISCRETE DISTRIBUTIONS                     | SNO             |                              |                                |                                                        |
|--------------------------------------|----------------|----------------------------------------|--------------------------------------------|-----------------|------------------------------|--------------------------------|--------------------------------------------------------|
|                                      | RANGE          | PARAMETERS                             | MASS<br>FUNCTION                           | CDF             | $E_{f_X}[X]$                 | $Var_{f_X}\left[X ight]$       | MGF                                                    |
|                                      |                |                                        | $f_X$                                      | $F_X$           |                              |                                | $M_X$                                                  |
| Bernoulli(	heta)                     | $\{0,1\}$      | $\theta \in (0,1)$                     | $\theta^x (1-\theta)^{1-x}$                |                 | θ                            | $\theta(1-\theta)$             | $1-	heta+	heta \mathrm{e}^t$                           |
| $Binomial(n, \theta)$                | $\{0,1,,n\}$   | $n \in \mathbb{Z}^+, \theta \in (0,1)$ | $\binom{n}{x}\theta^x(1-\theta)^{n-x}$     |                 | ви                           | $n\theta(1-\theta)$            | $(1 - \theta + \theta e^t)^n$                          |
|                                      |                |                                        |                                            |                 |                              |                                |                                                        |
| $Poisson(\lambda)$                   | $\{0, 1, 2,\}$ | λ∈ℝ+                                   | $\frac{e^{-\lambda}\lambda^x}{x!}$         |                 | ~                            | ~                              | $\exp\left\{\lambda\left(e^{t}-1\right)\right\}$       |
| Geometric(	heta)                     | {1, 2,}        | $\theta \in (0,1)$                     | $(1-	heta)^{x-1}	heta$                     | $1-(1-	heta)^x$ | $\frac{1}{\theta}$           | $\frac{(1-\theta)}{\theta^2}$  | $\frac{\theta \mathrm{e}^t}{1-\mathrm{e}^t(1-\theta)}$ |
| $NegBinomial(n,\theta)$ $\{n,n+1,\}$ | $\{n, n+1,\}$  | $n \in \mathbb{Z}^+, \theta \in (0,1)$ | $\binom{x-1}{n-1}\theta^n(1-\theta)^{x-n}$ |                 | $\frac{u}{\theta}$           | $\frac{n(1-\theta)}{\theta^2}$ | $\left(\frac{\theta e^t}{1-e^t(1-\theta)}\right)^n$    |
| or                                   | {0, 1, 2,}     | $n \in \mathbb{Z}^+, \theta \in (0,1)$ | $\binom{n+x-1}{x} 	heta^n (1-	heta)^x$     |                 | $\frac{n(1-\theta)}{\theta}$ | $\frac{n(1-\theta)}{\theta^2}$ | $\left(rac{	heta}{1-{ m e}^t(1-	heta)} ight)^n$       |

For CONTINUOUS distributions (see over), define the GAMMA FUNCTION

$$\Gamma(\alpha)=\int_0^\infty x^{\alpha-1}{\rm e}^{-x}\,dx\qquad \Gamma(\alpha)$$
 and the LOCATION/SCALE transformation  $Y=\mu+\sigma X$  gives 
$$f_Y(\mu)=f_Y\left(y-\mu\right)\frac{1}{1}\qquad \qquad \Gamma(y-\mu)$$

$$A_Y(t) = e^{\mu t} M_X(\sigma t)$$

$$\mathsf{E}_{f_Y}\left[Y\right] = \mu + \sigma \mathsf{E}_{f_X}\left[X\right]$$

$$\mu + \sigma \mathsf{E}_{f_X} [X]$$
 Var $_{f_Y}$ 

$$=\mu+\sigma\mathsf{E}_{f_X}\left[X
ight]$$

$$\mathsf{Var}_{f_Y}\left[Y
ight] = \sigma^2 \mathsf{Var}_{f_S}$$

|                                                            |                 |                                   | CONTINUOUS DISTRIBUTIONS                                                                                 | TRIBUTIONS                                            |                                                          |                                                                                                            |                                                        |
|------------------------------------------------------------|-----------------|-----------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
|                                                            |                 | PARAMS.                           | PDF                                                                                                      | CDF                                                   | $E_{f_X}[X]$                                             | $Var_{f_X}\left[X ight]$                                                                                   | MGF                                                    |
|                                                            | ×               |                                   | $f_X$                                                                                                    | $F_X$                                                 |                                                          |                                                                                                            | Mx                                                     |
| $Uniform(\alpha,\beta)$ (stand. model $\alpha=0,\beta=1$ ) | $(\alpha, eta)$ | $\alpha < \beta \in \mathbb{R}$   | $\frac{1}{\beta - \alpha}$                                                                               | $\frac{x}{\beta - \alpha}$                            | $\frac{(\alpha+\beta)}{2}$                               | $\frac{(\beta - \alpha)^2}{12}$                                                                            | $\frac{e^{\beta t} - e^{\alpha t}}{t(\beta - \alpha)}$ |
| $Exponential(\lambda)$ (stand. model $\lambda=1$ )         | +               | λ∈照 <sup>+</sup>                  | $\lambda e^{-\lambda x}$                                                                                 | 1 e <sup>- \lambda x</sup>                            | -1<                                                      | $\frac{1}{\lambda^2}$                                                                                      | $\left(\frac{\lambda}{\lambda-t}\right)$               |
| Gamma(lpha,eta) (stand. model $eta=1$ )                    | + #             | $\alpha, \beta \in \mathbb{R}^+$  | $rac{eta^{lpha}}{\Gamma(lpha)}x^{lpha-1}$ e- $eta x$                                                    |                                                       | 210                                                      | $\frac{\alpha}{\beta^2}$                                                                                   | $\left(\frac{\beta}{\beta-t}\right)^{\alpha}$          |
| Weibull(lpha,eta) (stand. model $eta=1)$                   | +               | $lpha,eta\in\mathbb{R}^+$         | $lphaeta x^{lpha-1}$ e - $eta x^lpha$                                                                    | $1-\mathrm{e}^{-eta x^{lpha}}$                        | $\frac{\Gamma\left(1+1/\alpha\right)}{\beta^{1/\alpha}}$ | $\frac{\Gamma\left(1+\frac{2}{\alpha}\right)-\Gamma\left(1+\frac{1}{\alpha}\right)^{2}}{\beta^{2/\alpha}}$ |                                                        |
| $Normal(\mu,\sigma^2)$ (stand. model $\mu=0,\sigma=1)$     | 凶               | μ ∈ R<br>σ ∈ R +                  | $\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$                          |                                                       | η                                                        | σ2                                                                                                         | $e^{\{\mu t + \sigma^2 t^2/2\}}$                       |
| Student( u)                                                | 践               | 7 ← R +                           | $\Gamma\left(\frac{\nu}{2}\right) \left\{1 + \frac{x^2}{\nu}\right\} \left\{1 + \frac{x^2}{\nu}\right\}$ |                                                       | 0 (if $\nu > 1$ )                                        | $\frac{\nu}{\nu-2}  (\text{if } \nu > 2)$                                                                  |                                                        |
| Pareto(	heta, lpha)                                        | +               | $\theta, \alpha \in \mathbb{R}^+$ | $\frac{lpha 	heta^{lpha}}{(	heta + x)^{lpha + 1}}$                                                       | $1 - \left(\frac{\theta}{\theta + x}\right)^{\alpha}$ | $\frac{\theta}{\alpha - 1}$ (if $\alpha > 1$ )           | $\frac{\alpha\theta^2}{(\alpha-1)(\alpha-2)}$ (if $\alpha>2$ )                                             |                                                        |
| Beta(lpha,eta)                                             | (0,1)           | $\alpha, \beta \in \mathbb{R}^+$  | $\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$                    |                                                       | $\frac{\alpha}{\alpha + \beta}$                          | $\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$                                                     |                                                        |
|                                                            |                 |                                   |                                                                                                          |                                                       |                                                          |                                                                                                            |                                                        |

## M1S SOLUTIONS

seen  $\Downarrow$ 

1. Axioms of Probability (a)

> Given a  $\sigma$ -field,  $\mathcal F$  (a set of subsets of the sample space  $\Omega$ .) For events  $E, E_1, E_2, \ldots \in$  $\mathcal{F}$ , then the probability function,  $P(\cdot)$ , must satisfy:

- $P(E) \geq 0$ . (1)
- $P(\Omega) = 1$ . (2)
- (3)If  $E_1, E_2, \ldots$ , are pairwise disjoint then  $P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$  (Countable additivity).

(Do not need to specify  $\sigma$ -field, could instead say: for events  $E, E_1, \ldots \subseteq \Omega$ . Lose 1 mark if finite rather than countable additivity specified, but they do need to specify the meaning of finite/countable additivity).

3(A)

sim. seen ↓

Let  $E_i = \phi$  in axiom (3), then  $P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(\phi)$  and for axiom (2) to hold we must have  $P(\bigcup_{i=1}^n E_i) \leq 1$ , hence  $P(\phi) = 0$ . We can then show that finite additivity:  $(P(\bigcup_{i=1}^n E_i) = \sum_{i=1}^n P(E_i))$  follows from axiom (3) by setting  $E_i = \phi, \forall i > n$ .

$$\begin{split} E &= (E \cap F) \cup (E \cap F^C) \\ \Rightarrow \mathsf{P}(E) &= \mathsf{P}(E \cap F) + \mathsf{P}(E \cap F^C) \quad \text{axiom 3 as } (E \cap F) \text{ and } (E \cap F^C) \text{ disjoint} \\ \Rightarrow \mathsf{P}(E) &\geq \mathsf{P}(E \cap F) \quad \text{axiom 1, as } \mathsf{P}(E \cap F^C) \geq 0 \\ \Rightarrow \mathsf{P}(E \cap F) &\leq \mathsf{P}(E), \end{split}$$

as required.

3(A)

1(A)

unseen  $\downarrow$ 

(c) (i) We have  $\Theta = \frac{X+1}{4}$  and  $X \sim Binomial(2, 0.25)$ , so the range of X is  $\{0, 1, 2\}$  $\Rightarrow$  range of  $\Theta$  is  $\left\{\frac{1}{4}, \frac{2}{4}, \frac{3}{4}\right\}$ .

> $f_{\Theta}(\theta) = P(\Theta = \theta) = P\left(\frac{X+1}{A} = \theta\right)$  $= P(X = 4\theta - 1) = f_X(4\theta - 1)$  $= \begin{pmatrix} 2 \\ 4\theta-1 \end{pmatrix} \left(\frac{1}{4}\right)^{4\theta-1} \left(\frac{3}{4}\right)^{3-4\theta}, \quad \theta \in \left\{\frac{1}{4},\frac{2}{4},\frac{3}{4}\right\}.$

meth seen  $\downarrow$ 

3(B)

Given  $\Theta = \frac{X+1}{4}$ ,

$$\begin{split} \mathsf{E}_{f_{\Theta}}(\Theta) &= \mathsf{E}_{f_X}\left(\frac{X+1}{4}\right) = \frac{1}{4}\left[\mathsf{E}_{f_X}(X) + 1\right],\\ \mathsf{var}_{f_{\Theta}}(\Theta) &= \mathsf{var}_{f_X}\left(\frac{X+1}{4}\right) = \frac{1}{16}\mathsf{var}_{f_X}(X). \end{split}$$

2(A)

(iii)  $X \sim Binomial(2,0.25)$  so, from formula sheet  $\mathsf{E}_{f_X}(X) = 2 imes 0.25 = 0.5$ . And,

$$\mathsf{E}_{f_{\Theta}}(\Theta) = \mathsf{E}_{f_X}\left(\frac{X+1}{4}\right) = \frac{1}{4}\left[\mathsf{E}_{f_X}(X) + 1\right] = \frac{3}{8}.$$

Could also determine from  $\sum_{\theta} \theta f_{\Theta}(\theta)$ .

2(A)

(iv)

$$P(\Theta > 0.5) = P(\Theta = 3/4) = (0.25)^2 = \frac{1}{16}.$$

1(B)

(v)

$$P(Y = 0) = \sum_{\theta} P(Y = 0 \mid \Theta = \theta) P(\Theta = \theta) = \sum_{\theta} (1 - \theta) f_{\Theta}(\theta)$$
$$= \frac{3}{4} \left(\frac{3}{4}\right)^{2} + 2 \cdot \frac{2}{4} \left(\frac{1}{4}\right) \left(\frac{3}{4}\right) + \frac{1}{4} \left(\frac{1}{4}\right)^{2} = \frac{40}{64} = \frac{5}{8}.$$

2(B)

(vi)

sim. seen 
$$\downarrow$$

$$\begin{split} \mathsf{P}(\Theta > 0.5 \mid Y = 0) &= \frac{\mathsf{P}(Y = 0 \mid \Theta > 0.5) \mathsf{P}(\Theta > 0.5)}{\mathsf{P}(Y = 0)} \\ &= \frac{\mathsf{P}(Y = 0 \mid \Theta = 0.75) \mathsf{P}(\Theta = 0.75)}{\mathsf{P}(Y = 0)} \\ &= \frac{\frac{1}{4} \times \frac{1}{16}}{\frac{5}{8}} = \frac{1}{40}. \end{split}$$

3(B)

Commentary: (a) and (b) are bookwork; developing the pmf in (c)(i) is straightforward, but may prove a little more challenging as it requires more abstraction. The rest of the question is relatively straightforward for those that have engaged with the material.

meth seen \$\psi\$

2. (a) Prove that  $P(Y_3 \le i) = P(X_1 \le i)^3, i = 1, 2, \dots 6.$ 

$$\begin{split} \mathsf{P}(Y_3 \leq i) &= \mathsf{P}(\max\{X_1, X_2, X_3\} \leq i) = \mathsf{P}((X_1 \leq i) \cap (X_2 \leq i) \cap (X_3 \leq i)) \\ &= \mathsf{P}(X_1 \leq i) \mathsf{P}(X_2 \leq i) \mathsf{P}(X_3 \leq i) \quad \text{from independence} \\ &= \mathsf{P}(X_1 \leq i)^3 \quad i = 1, 2, \dots, 6 \text{ as } X_1, X_2 \text{ and } X_3 \text{ are identically distributed.} \end{split}$$

4(A)

unseen  $\downarrow$ 

(b) Determine the probability mass function of  $Y_3$ . From (a) we have

$$\begin{split} \mathsf{P}(Y_3 \leq i) &= \mathsf{P}(X_1 \leq i)^3 \\ \Rightarrow \mathsf{P}(Y_3 \leq 1) &= \mathsf{P}(X_1 \leq 1)^3 = \mathsf{P}(X_1 = 1)^3 = \frac{1}{6^3} \\ \mathsf{P}(Y_3 = i) &= \mathsf{P}(Y_3 \leq i) - \mathsf{P}(Y_3 \leq i - 1), \ i = 2, \dots, 6 \\ &= \mathsf{P}(X_1 \leq i)^3 - \mathsf{P}(X_1 \leq i - 1)^3 = \left(\frac{i}{6}\right)^3 - \left(\frac{i - 1}{6}\right)^3. \end{split}$$

So the pmf of  $Y_3$  is

$$f_{Y_3}(i) = \left\{ egin{array}{ll} \left(rac{i}{6}
ight)^3 - \left(rac{i-1}{6}
ight)^3, & i=1,2,\dots 6; \\ 0, & ext{otherwise}. \end{array} 
ight.$$

5(C)

meth seen  $\downarrow$ 

(c) Find  $\mathsf{E}_{f_{Y_3}}(Y_3)$ .

$$\begin{split} \mathsf{E}_{f_{Y_3}}(Y_3) &= \sum_{i=1}^6 i f_{Y_3}(i) \\ &= \left(\frac{1}{6}\right)^3 + 2\left[\left(\frac{2}{6}\right)^3 - \left(\frac{1}{6}\right)^3\right] + 3\left[\left(\frac{3}{6}\right)^3 - \left(\frac{2}{6}\right)^3\right] + 4\left[\left(\frac{4}{6}\right)^3 - \left(\frac{3}{6}\right)^3\right] \\ &+ 5\left[\left(\frac{5}{6}\right)^3 - \left(\frac{4}{6}\right)^3\right] + 6\left[\left(\frac{6}{6}\right)^3 - \left(\frac{5}{6}\right)^3\right] \\ &= -\left(\frac{1}{6}\right)^3 - \left(\frac{2}{6}\right)^3 - \left(\frac{3}{6}\right)^3 - \left(\frac{4}{6}\right)^3 - \left(\frac{5}{6}\right)^3 + 6 \\ &= 6 - \frac{1 + 2^3 + 3^3 + 4^3 + 5^3}{6^3} = 6 - \frac{225}{6^3} = 6 - \frac{225}{216} \\ &= 6 - \frac{25}{24} = \frac{119}{24}. \end{split}$$

3(B)

(d) Consider  $P(Z_3 \geq i)$ ,

$$\begin{split} \mathsf{P}(Z_3 \geq i) &= \mathsf{P}(\min\{X_1, X_2, X_3\} \geq i\} = \mathsf{P}((X_1 \geq i) \cap (X_2 \geq i) \cap (X_3 \geq i)) \\ &= \mathsf{P}(X_1 \geq i) \mathsf{P}(X_2 \geq i) \mathsf{P}(X_3 \geq i) \quad \text{from independence} \\ &= \mathsf{P}(X_1 \geq i)^3 \quad i = 1, 2, \dots, 6 \text{ as } X_1, X_2 \text{ and } X_3 \text{ are identically distributed.} \\ \Rightarrow \mathsf{P}(Z_3 \geq 6) &= \mathsf{P}(X_1 \geq 6)^3 = \mathsf{P}(X_1 = 6)^3 = \frac{1}{6^3} \\ &= \mathsf{P}(Z_3 = i) = \mathsf{P}(Z_3 \geq i) - \mathsf{P}(Z_3 \geq i + 1), \ i = 1, 2, \dots, 5 \\ &= \mathsf{P}(X_1 \geq i)^3 - \mathsf{P}(X_1 \geq i + 1)^3 = \left(\frac{7 - i}{6}\right)^3 - \left(\frac{6 - i}{6}\right)^3. \end{split}$$

So the pmf of  $\mathbb{Z}_3$  is

$$f_{Z_3}(i) = \begin{cases} \left(\frac{7-i}{6}\right)^3 - \left(\frac{6-i}{6}\right)^3, & i = 1, \dots, 6; \\ 0, & \text{otherwise.} \end{cases}$$

Note, by symmetry that this is the same as  $f_{Y_n}(7-i)$ .

(e) Direct extension of (a) gives  $\mathsf{P}(Y_n \leq i) = \mathsf{P}(X_1 \leq i)^n$ , and pmf is given by

$$f_{Y_n}(i) = \begin{cases} \left(\frac{i}{6}\right)^n - \left(\frac{i-1}{6}\right)^n, & i = 1, 2, \dots 6; \\ 0, & \text{otherwise.} \end{cases}$$
 unseen  $\downarrow$ 

(f)

$$\begin{split} \mathsf{P}(Q = 0) &= \mathsf{P}(Y_n - Z_n = 0) = \mathsf{P}(Y_n = Z_n) = \mathsf{P}(\max\{X_1, \dots, X_n\} = \min\{X_1, \dots, X_n\}) \\ &= \sum_{i=1}^6 \mathsf{P}((\max\{X_1, \dots, X_n\} = i) \cap (\min\{X_1, \dots, X_n\} = i)) \\ &= \sum_{i=1}^6 \mathsf{P}((X_1 = i) \cap (X_2 = i) \cap \dots \cap (X_n = i)) \\ &= \sum_{i=1}^6 \left(\frac{1}{6}\right)^n = \left(\frac{1}{6}\right)^{n-1}. \end{split}$$

Commentary: (a) they have seen the continuous version of this, so this should be straightforward. The question requires a good understanding of the concepts and (f) in particular is more challenging.

seen  $\downarrow$ 

- 3. (a) Properties of a valid pdf are:
  - 1.  $f_X(x) \ge 0$  for all x in the range of X.
  - $2. \int_{-\infty}^{\infty} f_X(x) \, \mathrm{d}x = 1.$

2(A)

(b) (i) Let  $X = X_i$ , i = 1, 2, ..., n,

$$\begin{split} M_X(t) &= \mathsf{E}_{f_X}(\mathsf{e}^{tX}) = \int_{-\infty}^\infty \mathsf{e}^{tx} f_X(x) \; \mathrm{d}x \\ &= \int_0^\infty \mathsf{e}^{tx} \lambda \mathsf{e}^{-\lambda x} \; \mathrm{d}x = \int_0^\infty \lambda \mathsf{e}^{-x(\lambda - t)} \; \mathrm{d}x \\ &= \left[\frac{\lambda \mathsf{e}^{-x(\lambda - t)}}{-(\lambda - t)}\right]_0^\infty = \frac{\lambda}{\lambda - t}, \quad |t| < \lambda, \end{split}$$

as required.

3(A)

(ii)

$$\begin{split} \mathsf{E}_{f_{X_i}}(X_i) &= \int_{-\infty}^\infty x f_X(x) \; \mathrm{d}x = \int_0^\infty \lambda x \mathrm{e}^{-\lambda x} \; \mathrm{d}x \\ &= \left[ -x \mathrm{e}^{-\lambda x} \right]_0^\infty + \int_0^\infty \mathrm{e}^{-\lambda x} \; \mathrm{d}x = \left[ \frac{-\mathrm{e}^{-\lambda x}}{\lambda} \right]_0^\infty = \lambda^{-1}, i = 1, \dots, n. \end{split}$$

3(A)

(iii) Range of Y is  $(0, \infty)$ .

sim. seen ↓

$$\begin{split} F_Y(y) &= \mathsf{P}(Y \le y) = \mathsf{P}(\lambda X_1 \le y) = \mathsf{P}\left(X_1 \le \frac{y}{\lambda}\right) \\ &= F_{X_1}\left(\frac{y}{\lambda}\right) \\ \Rightarrow f_Y(y) &= \frac{1}{\lambda} f_{X_1}\left(\frac{y}{\lambda}\right) = \mathsf{e}^{-y}, \ y > 0. \end{split}$$

3(A)

So  $Y \sim Exponential(1)$  and  $\mathsf{E}_{f_Y}(Y) = 1 (= \int_0^\infty y \mathrm{e}^{-y} \; \mathrm{d}y)$ . We have already shown that  $\mathsf{E}_{f_{X_i}}(X_i) = \frac{1}{\lambda} = \lambda^{-1} \mathsf{E}_{f_Y}(Y)$  as required.

2(A)

(iv) Note  $Y=\lambda X_i$ , as the  $X_i$  are identically distributed.

unseen  $\downarrow$ 

$$\begin{split} \mathsf{E}_{f_{X_i}}(X_i^k) &= \mathsf{E}_{f_Y}\left(\frac{Y^k}{\lambda^k}\right) = \frac{1}{\lambda^k} \mathsf{E}_{f_Y}(Y^k) \\ &= \frac{1}{\lambda^k} \int_0^\infty y^k f_Y(y) \; \mathrm{d}y = \frac{1}{\lambda^k} \int_0^\infty y^k \mathrm{e}^{-\lambda} \; \mathrm{d}y \\ &= \lambda^{-k} \Gamma(k+1), i = 1, \dots, n. \end{split}$$

as required.

3(D)

meth seen  $\downarrow$ 

(v)  $A=rac{1}{n}\sum_{i=1}^n X_i$ , so the range of A is  $(0,\infty)$ . Let  $S=\sum_{i=1}^n X_i$ , and the  $X_i$  are independent, we have that

$$M_S(t) = \prod_{i=1}^n M_{X_i}(X_i) = \left(\frac{\lambda}{\lambda - t}\right)^n$$

Which, from the uniqueness of the MGF we identify from the formula sheet as a  $Gamma(n, \lambda)$  distribution.

Now  $A = \frac{1}{n}S$ , so, for x > 0,

$$F_A(x) = P(A \le x) = P\left(\frac{1}{n}S \le x\right) = P(S \le nx) = F_S(nx)$$

$$\Rightarrow f_A(x) = nf_S(nx) = \frac{n\lambda^n}{\Gamma(n)}(xn)^{n-1}e^{-\lambda nx} = \frac{(\lambda n)^n}{\Gamma(n)}x^{n-1}e^{-\lambda nx}, \quad x > 0.$$

4(D)

Which we identify as a  $Gamma(n, n\lambda)$  distribution.

Commentary: (a) and (b)(i), (ii) and (iii) are basic and should be easy for those that have engaged with the course; (b)(iv) and (v) require a deeper understanding.

## 4. (a) For continuous random variables X and Y, we have,

$$\begin{split} \mathsf{E}_{f_X} \left[ \mathsf{E}_{f_{Y|X}}(Y \mid X) \right] &= \int_{-\infty}^\infty \mathsf{E}_{f_{Y|X}}(Y \mid X = x) f_X(x) \; \mathrm{d}x \\ &= \int_{-\infty}^\infty \int_{-\infty}^\infty y f_{Y|X}(y | x) f_X(x) \; \mathrm{d}y \; \mathrm{d}x \\ &= \int_{-\infty}^\infty y \int_{-\infty}^\infty \frac{f_{X,Y}(x,y)}{f_X(x)} f_X(x) \; \mathrm{d}x \; \mathrm{d}y \\ &= \int_{-\infty}^\infty y \int_{-\infty}^\infty f_{X,Y}(x,y) \; \mathrm{d}x \; \mathrm{d}y \\ &= \int_{-\infty}^\infty y f_Y(y) \; \mathrm{d}y = \mathsf{E}_{f_Y}(Y). \end{split}$$

3(A)

sim. seen ↓

(b) (i) 
$$\int_{\infty}^{\infty} f_X(x) \, dx = 1 \Rightarrow \int_{0}^{1} kx^2 (1 - x^2) \, dx = 1 \Rightarrow k \int_{0}^{1} (x^2 - x^4) \, dx = 1$$
$$\Rightarrow k \left[ \frac{x^3}{3} - \frac{x^5}{5} \right]_{0}^{1} = 1 \Rightarrow k \frac{2}{15} = 1 \Rightarrow k = \frac{15}{2}.$$

1(B)

meth seen ↓

$$\begin{split} \mathsf{E}_{f_X}(X) &= \int_{-\infty}^\infty x f_X(x) \ \mathrm{d}x = \frac{15}{2} \int_0^1 x (x^2 - x^4) \ \mathrm{d}x \\ &= \frac{15}{2} \int_0^1 (x^3 - x^5) \ \mathrm{d}x = \frac{15}{2} \left[ \frac{x^4}{4} - \frac{x^6}{6} \right]_0^1 = \frac{15}{2} \cdot \frac{1}{12} = \frac{5}{8}. \end{split}$$

2(B)

$$\begin{split} \operatorname{var}_{f_X}(X) &= \operatorname{E}_{f_X}(X^2) - \operatorname{E}_{f_X}^2(X) \\ \operatorname{E}_{f_X}(X^2) &= \frac{15}{2} \int_{-\infty}^{\infty} x^2 f_X(x) \ \mathrm{d}x = \frac{15}{2} \int_{0}^{1} x^2 (x^2 - x^4) \ \mathrm{d}x \\ &= \frac{15}{2} \int_{0}^{1} (x^4 - x^6) \ \mathrm{d}x = \frac{15}{2} \left[ \frac{x^5}{5} - \frac{x^7}{7} \right]_{0}^{1} = \frac{15}{2} \cdot \frac{2}{35} = \frac{3}{7} \\ \Rightarrow \operatorname{var}_{f_X}(X) &= \frac{3}{7} - \frac{25}{64} = \frac{17}{448}. \end{split}$$

3(B)

(iii)

(ii)

$$\begin{split} \mathsf{E}_{f_{Y|X}}(Y\mid X=x) &= \int_{-\infty}^{\infty} y f_{Y|X}(y|x) \,\,\mathrm{d}y = \int_{x}^{2x} y \frac{3}{x^3} (2y-3x)^2 \,\,\mathrm{d}y \\ &= \frac{3}{x^3} \int_{x}^{2x} (4y^3-12xy^2+9x^2y) \,\,\mathrm{d}y = \frac{3}{x^3} \left[ y^4-4xy^3+\frac{9x^2y^2}{2} \right]_{x}^{2x} \\ &= \frac{3}{x^3} \left[ (16x^4-32x^4+18x^4) - \left( x^4-4x^4+\frac{9}{2}x^4 \right) \right] \\ &= 3x \left( 5-\frac{9}{2} \right) = \frac{3x}{2}. \end{split}$$

As expected as the distribution is symmetric about 3x/2. M1S (Solutions) Probability and Statistics (Solutions) (2019)

4(C)

Page 7

meth seen ↓

(v)

$$\begin{split} \mathsf{E}_{f_Y}(Y) &= \mathsf{E}_{f_X} \left[ \mathsf{E}_{f_{Y|X}}(Y \mid X) \right] = \int_0^1 \mathsf{E}_{f_{Y|X}}(Y \mid X = x) f_X(x) \; \mathrm{d}x \\ &= \int_0^1 \frac{3x}{2} \frac{15}{2} (x^2 - x^4) \; \mathrm{d}x = \frac{45}{4} \int_0^1 (x^3 - x^5) \; \mathrm{d}x = \frac{45}{4} \left[ \frac{x^4}{4} - \frac{x^6}{6} \right]_0^1 \\ &= \frac{45}{4} \left( \frac{1}{4} - \frac{1}{6} \right) = \frac{45}{48} = \frac{15}{16}. \end{split}$$

2(D)

unseen ↓

$$f_{X,Y}(x,y) = f_{Y|X}(y|x)f_X(x) = \frac{15}{2}x^2(1-x^2)\frac{3}{x^3}(2y-3x)^2$$
$$= \frac{45}{2x}(1-x^2)(2y-3x)^2, x \in (0,1), y \in (x,2x).$$

2(B)



(vi)

Shaded area shows  $P(X+Y\geq 2)=P(Y\geq 2-X)$ . Note y=2-x and y=2x intersect at x=2/3.

$$\begin{split} \mathsf{P}(X+Y<2) &= 1 - \mathsf{P}(X+Y\geq 2) = 1 - \int_{2/3}^1 \int_{2-x}^{2x} f_{X,Y}(x,y) \ \mathrm{d}y \ \mathrm{d}x \\ \Rightarrow 1 - \mathsf{P}(X+Y<2) &= \int_{2/3}^1 \int_{2-x}^{2x} f_{X,Y}(x,y) \ \mathrm{d}y \ \mathrm{d}x \end{split}$$

Hence  $x_1 = 2/3, x_2 = 1, y_1 = 2 - x, y_2 = 2x$ .

3(D)

Commentary: (a) is bookwork; (b)(i), (ii) should be relatively straightforward for those that have engaged with the course; (b)(iii), (iv) requires an understanding of non-standard expectations; (b)(v) relies on basic definition; (b)(vi) is more challenging.

ga and A Samuel and A second an

and the control of th