DIALOG(R) File 351: Derwent WPI (c) 2003 Thomson Derwent. All rts. reserv. 014036537 **Image available** WPI Acc No: 2001-520750/200157 Related WPI Acc No: 2001-482218 XRPX Acc No: N01-385686 Developer container for process cartridge, has specified toner stirring strip having largest angular velocity and smallest radius of rotation, is provided close to developing container Patent Assignee: CANON KK (CANO); ABE D (ABED-I); CHADANI K (CHAD-I) Inventor: ABE D; CHADANI K Number of Countries: 002 Number of Patents: 003 Patent Family: Patent No Date Kind Applicat No Kind Date Week US 20010009624 A1 20010726 US 2001758284 Α 20010112 200157 B JP 2001201931 A 20010727 JP 200014215 Α 20000120 200158 US 6473585 B2 20021029 US 2001758284 Α 20010112 200274 Priority Applications (No Type Date): JP 200014215 A 20000120 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes US 20010009624 A1 15 G03G-015/08 JP 2001201931 A 9 G03G-015/08 US 6473585 B2 G03G-015/08 Abstract (Basic): US 20010009624 A1 NOVELTY - A toner accommodating container (16) has several toner stirring strips (20A-20C). A strip (20A) provided at a portion close to developing container (17) for conveying the toner to developing container has largest angular velocity and smallest radius of rotation. DETAILED DESCRIPTION - An INDEPENDENT CLAIM is also included for developing device. USE - For process cartridge, electrophotographic image forming ADVANTAGE - Image quality is improved by improving circulation of developer and preventing degradation of toner. DESCRIPTION OF DRAWING(S) - The figure shows the cross sectional view of process cartridge. Toner accommodating container (16) Developing container (17) Toner stirring strips (20A-20C) pp; 15 DwgNo 1/13 Title Terms: DEVELOP; CONTAINER; PROCESS; CARTRIDGE; SPECIFIED; TONER; STIR ; STRIP; ANGULAR; VELOCITY; RADIUS; ROTATING; CLOSE; DEVELOP; CONTAINER Derwent Class: P84; S06; T04 International Patent Class (Main): G03G-015/08 International Patent Class (Additional): B65D-083/06; G03G-015/00; G03G-021/18

File Segment: EPI; EngPI

Manual Codes (EPI/S-X): S06-A04A1; T04-G04

002 018; ND01; Q9999 Q8639 Q8617 Q8606; K9847-R K9790 *003* 018; B9999 B3587 B3554; B9999 B3678 B3554; K9676-R; K9712 K9676; K9610 K9483; B9999 B3509 B3485 B3372; N9999 N7147 N7034 N7023;

N9999 N7067 N7034 N7023; Q9999 Q7114-R *004* 018; Si 4A; A999 A033

(19)日本国特許 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2001-201931 (P2001-201931A)

(43)公開日 · 平成13年7月27日(2001.7.27)

(51) Int.Cl. ⁷		識別記号	FΙ	テーマコート*(参考)	
G03G	15/08	1 1 2	G 0 3 G 15/08	112 2H071	
		1 1 0		110 2H077	
		5 0 7	B 6 5 D 83/06	Z	
B 6 5 D	83/06		G 0 3 G 15/00	5 5 6	
G 0 3 G		,	15/08	507E	
			審査請求 未請求	請求項の数32 OL (全 9 頁)	
(21)出願番号		特願2000-14215(P2000-14215)	(71)出顧人 000001	007	
			キヤノ	ン株式会社	
(22)出願日		平成12年1月20日(2000.1.20)	東京都	大田区下丸子3丁目30番2号	
			(72)発明者 阿部 大輔 東京都大田区下丸子3丁目30番2号キヤノ		
			ン株式	会社内	
			(72)発明者 茶谷		
,			東京都	大田区下丸子3丁目30番2号キヤノ	
			ン株式	会社内	
-			(74)代理人 100092	853	
			弁理士 山下 亮一		
				071 BA13 DA08 DA26	
			2H	077 AA33 AB03 AB18 AC03 AC04	
				ADO6 BA02 BA08 FA22	

(54) 【発明の名称】 現像剤収納容器、現像装置、プロセスカートリッジ及び電子写真画像形成装置

(57)【要約】

【目的】 大容量化を実現しつつ、現像剤の循環の改 善、劣化防止及び安定した供給によって画質の向上を図 ることができる現像剤収納容器を提供すること。

【構成】 トナー (現像剤)を収納し、画像形成装置本 体に対して着脱可能なトナーを収納するトナー収納容器 (現像剤収納容器) 16において、複数の撹拌翼部材2 2A~22Cによってトナーを撹拌・搬送する複数の撹 拌部材20A~20Cを有し、トナーを担持搬送する現 像スリーブ18に一番近い撹拌部材20Aの回転スピー ドω を最も速く、現像スリーブ18に一番近い撹拌翼 部材22Aの撹拌半径 raを最も小さくする。

【特許請求の範囲】

【請求項1】 現像剤を収納を収納する現像剤収納容器であり、現像容器が現像剤収納容器に対して揺動可能に支持されており、現像容器には現像剤を撹拌・搬送する手段を設けていない現像容器が結合される現像剤収納容器において、

複数の撹拌翼によって現像剤を撹拌・搬送する複数の撹拌部材を有し、現像剤を担持搬送する現像スリーブに一番近い撹拌部材の回転スピードを最も速く、現像スリーブに一番近い撹拌翼の撹拌半径を最も小さくしたことを特徴とする現像剤収納容器。

【請求項2】 前記現像スリーブに一番近い撹拌部材以外の撹拌部材の回転スピードを同一とし、現像スリーブに一番近い撹拌部材以外の撹拌部材の撹拌翼の回転半径を同一としたことを特徴とする請求項1記載の現像剤収納容器。

【請求項3】 前記現像剤収納容器の底面は複数の撹拌部材に対応した凹形状になっており、前記現像スリーブに一番近い現像剤収納容器底面の半径を最も小さくし、それ以外の撹拌部材に対応している現像剤収納容器底面の半径を同一としたことを特徴とする請求項1又は2記載の現像剤収納容器。

【請求項4】 前記撹拌部材を回転棒部材と撹拌翼部材とで構成し、前記撹拌翼部材を弾性的な樹脂製シート部材で構成したことを特徴とする請求項1,2又は3記載の現像剤収納容器。

【請求項5】 前記撹拌翼部材を梯子状の前記回転棒部 材の最も撹拌半径が大きい位置に長手方向に取り付けた ことを特徴とする請求項4記載の現像剤収納容器。

【請求項6】 前記現像スリーブに一番近い撹拌翼の厚みを最も薄くしたことを特徴とする請求項4又は5記載の現像剤収納容器。

【請求項7】 前記現像スリーブに一番近い撹拌翼部材以外の撹拌翼部材の厚みを同一としたことを特徴とする請求項6記載の現像剤収納容器。

【請求項8】 前記現像スリーブに一番近い撹拌部材以外の撹拌部材のそれぞれの位相を互いに異ならせたことを特徴とする請求項1~6又は7記載の現像剤収納容器

【請求項9】 像担持体に形成された静電潜像を現像剤で現像する現像装置であって、前記静電潜像を現像する現像位置に現像剤を担持搬送する現像スリーブを備え、現像剤収納容器に対して揺動可能に支持されており、現像剤を撹拌・搬送する手段を設けていない現像容器と、現像剤を収納する現像剤収納容器を有し、該現像剤収納容器と前記現像容器との間に現像剤を現像剤収納容器から現像容器へ排出する開口部を設けて成る現像装置において、

複数の撹拌翼によって現像剤を撹拌・搬送する撹拌部材 を有し、現像剤を担持搬送する現像スリーブに一番近い 撹拌部材の回転スピードを最も速く、現像スリーブに一番近い撹拌翼の撹拌半径が最も小さくしたことを特徴とする現像装置。

【請求項10】 前記現像スリーブに一番近い撹拌部材以外の撹拌部材の回転スピードを同一とし、現像スリーブに一番近い撹拌部材以外の撹拌部材の撹拌翼の回転半径を同一としたことを特徴とする請求項9記載の現像装置。

【請求項11】 前記現像剤収納容器の底面は複数の撹拌部材に対応した凹形状になっており、前記現像スリーブに一番近い現像剤容器底面の半径を最も小さくし、それ以外の撹拌部材に対応している現像剤容器底面の半径を同一したことを特徴とする請求項9又は10記載の現像装置。

【請求項12】 前記撹拌部材を回転棒部材と撹拌翼部材とで構成し、前記撹拌翼部材を弾性的な樹脂製シート部材で構成したことを特徴とする請求項9,10又は11記載の現像装置。

【請求項13】 前記撹拌翼部材を梯子状の前記回転棒部材の最も撹拌半径が大きい位置に長手方向に取り付けたことを特徴とする請求項12記載現像装置。

【請求項14】 前記現像スリーブに一番近い撹拌翼部 材の厚みを最も薄くしたことを特徴とする請求項12又 は13記載の現像装置。

【請求項15】 前記現像スリーブに一番近い撹拌翼部 材以外の撹拌翼部材の厚みを同一としたことを特徴とす る請求項14記載の現像装置。

【請求項16】 前記現像スリーブに一番近い撹拌部材以外の撹拌部材のそれぞれの位相を互いに異ならせたことを特徴とする請求項9~14又は15記載の現像装置

【請求項17】 画像形成装置本体に対して着脱可能であり、像担持体と、該像担持体に形成された静電潜像を現像剤で現像する現像装置であって、前記静電潜像を現像する現像位置に現像剤を担持搬送する現像スリーブを備え、現像剤収納容器に対して揺動可能に支持されており、現像剤を撹拌・搬送する手段を設けていない現像容器と、現像剤を収納する現像剤収納容器とを有し、該現像剤収納容器と前記現像容器との間に現像剤を現像剤収納容器から現像容器へ排出する開口部を設けて成る現像装置と、を有するプロセスカートリッジにおいて、

複数の撹拌翼によって現像剤を撹拌・搬送する撹拌部材を有し、現像剤を担持搬送する現像スリーブに一番近い撹拌部材の回転スピードを最も速く、現像スリーブに一番近い撹拌翼の撹拌半径を最も小さくしたことを特徴とするプロセスカートリッジ。

【請求項18】 前記現像スリーブに一番近い撹拌部材以外の撹拌部材の回転スピードを同一とし、現像スリーブに一番近い撹拌部材以外の撹拌部材の撹拌翼の回転半径を同一としたことを特徴とする請求項17記載のプロ

セスカートリッジ。

【請求項19】 前記現像剤収納容器の底面は複数の撹拌部材に対応した凹形状になっており、前記現像スリーブに一番近い現像剤収納容器底面の半径を最も小さくし、それ以外の撹拌部材に対応している現像剤収納容器底面の半径を同一したことを特徴とする請求項17又は18記載のプロセスカートリッジ。

【請求項20】 前記撹拌部材を回転棒部材と撹拌翼部材とで構成し、前記撹拌翼部材を弾性的な樹脂製シートで構成したことを特徴とする請求項17,18又は19記載のプロセスカートリッジ。

【請求項21】 前記撹拌翼部材を梯子状の前記回転棒部材の最も撹拌半径が大きい位置に長手方向に取り付けたことを特徴とする請求項20記載のプロセスカートリッジ。

【請求項22】 現像スリーブに一番近い撹拌翼部材の 厚みを最も薄くしたことを特徴とする請求項20又は2 1記載のプロセスカートリッジ。

【請求項23】 前記現像スリーブに一番近い撹拌翼部 材以外の撹拌翼部材の厚みを同一としたことを特徴とす る請求項22記載のプロセスカートリッジ。

【請求項24】 前記現像スリーブに一番近い撹拌部材以外の撹拌部材のそれぞれの位相を互いに異ならせたことを特徴とする請求項17~22又は23記載のプロセスカートリッジ。

【請求項25】 像担持体と、該像担持体に形成された 静電潜像を現像剤で現像する現像装置であって、前記静 電潜像を現像する現像位置に現像剤を担持搬送する現像 スリーブを備え、現像材収納容器に対して揺動可能に支 持されており、現像剤を撹拌・搬送する手段を設けてい ない現像容器と、現像剤を収納する現像剤収納容器と、 を有し、該現像剤収納容器と前記現像容器との間に現像 剤を現像剤収納容器から現像容器へ排出する開口部を設 けて成る現像装置を有するプロセスカートリッジが着脱 可能な電子写真画像形成装置において、

複数の撹拌翼によって現像剤を撹拌・搬送する複数の撹拌部材を有し、現像剤を担持搬送する現像スリーブに一番近い撹拌部材の回転スピードを最も速く、現像スリーブに一番近い撹拌翼の撹拌半径を最も小さくしたことを特徴とする電子写真画像形成装置。

【請求項26】 前記現像スリーブに一番近い撹拌部材以外の撹拌部材の回転スピードを同一とし、現像スリーブに一番近い撹拌部材以外の撹拌部材の撹拌翼の回転半径を同一としたことを特徴とする請求項25記載の電子写真画像形成装置。

【請求項27】 前記現像剤収納容器の底面は複数の撹拌部材に対応した凹形状になっており、前記現像スリーブに一番近い現像剤収納容器底面の半径を最も小さくし、それ以外の撹拌部材に対応している現像剤収納容器底面の半径を同一したことを特徴とする請求項25又は

26記載の電子写真画像形成装置。

【請求項28】 前記撹拌部材を回転棒部材と撹拌翼部材とで構成し、前記撹拌翼部材を弾性的な樹脂製シート部材で構成したことを特徴とする請求項25,26又は27記載の電子写真画像形成装置。

【請求項29】 前記撹拌翼部材を梯子状の前記回転棒部材の最も撹拌半径が大きい位置に長手方向に取り付けたことを特徴とする請求項28記載の電子写真画像形成装置。

【請求項30】 現像スリーブに一番近い撹拌翼部材の 厚みを最も薄くしたことを特徴とする請求項28又は2 9記載の電子写真画像形成装置。

【請求項31】 前記現像スリーブに一番近い撹拌翼部 材以外の撹拌翼部材の厚みを同一としたことを特徴とす る請求項30記載の電子写真画像形成装置。

【請求項32】 前記現像スリーブに一番近い撹拌部材以外の撹拌部材のそれぞれの位相を互いに異ならせたことを特徴とする請求項25~30又は31記載の電子写真画像形成装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、現像剤収納容器、 現像装置、プロセスカートリッジ及び電子写真画像形成 装置に関するものである。

[0002]

【従来の技術】近年、電子写真画像形成プロセスを用いた画像形成装置において、電子写真感光体及びこれに作用するプロセス手段を一体化してカートリッジとし、このカートリッジを画像形成装置本体に着脱可能とするプロセスカートリッジ方式が広く採用されている。

【0003】ところで、従来のプロセスカートリッジは 現像容器とトナー収納容器及びクリーニング容器で構成 されており、トナー収納容器から現像容器へのトナーの 供給は撹拌部材によって崩されたトナーが自重によって 落下することによって行われていた。

[0004]

【発明が解決しようとする課題】しかしながら、従来の プロセスカートリッジにおいては以下のような問題があった

【0005】即ち、トナー収納容器を大容量化する場合、トナーの重量が増してトナー重量によってトナーの循環が悪くなり、現像性の条件が厳しくなる等の弊害が起こることが考えられる。

【0006】本発明は上記問題に鑑みてなされたもので、その目的とする処は、大容量化を実現しつつ、現像 剤の循環の改善、劣化防止及び安定した供給によって画質の向上を図ることができる現像剤収納容器とこれを備える現像装置、プロセスカートリッジ及び電子写真画像 形成装置を提供することにある。

[0007]

【課題を解決するための手段】上記目的を達成するため、本発明は、現像剤を収納を収納する現像剤収納容器であり、現像容器が現像剤収納容器に対して揺動可能に支持されており、現像容器には現像剤を撹拌・搬送する手段を設けていない現像容器が結合される現像剤収納容器において、複数の撹拌翼によって現像剤を撹拌・搬送する複数の撹拌部材を有し、現像剤を担持搬送する現像スリーブに一番近い撹拌部材の回転スピードを最も速く、現像スリーブに一番近い撹拌翼の撹拌半径を最も小さくしたことを特徴とする。

【〇〇〇8】又、本発明は、像担持体に形成された静電 潜像を現像剤で現像する現像装置であって、前記静電潜 像を現像する現像位置に現像剤を担持搬送する現像スリ ーブを備え、現像剤収納容器に対して揺動可能に支持さ れており、現像剤を撹拌・搬送する手段を設けていない 現像容器と、現像剤を収納する現像剤収納容器を有し、 該現像剤収納容器と前記現像容器との間に現像剤を現像 剤収納容器から現像容器へ排出する開口部を設けて成る 現像装置において、複数の撹拌翼によって現像剤を撹拌 ・搬送する撹拌部材を有し、現像剤を担持搬送する現像 スリーブに一番近い撹拌部材の回転スピードを最も速 く、現像スリーブに一番近い撹拌翼の撹拌半径が最も小 さくしたことを特徴とする。

【〇〇〇9】更に、本発明は、画像形成装置本体に対して着脱可能であり、像担持体と、該像担持体に形成された静電潜像を現像剤で現像する現像装置であって、前記静電潜像を現像する現像位置に現像剤を担持搬送する現像スリーブを備え、現像剤収納容器に対して揺動可能に支持されており、現像剤を撹拌・搬送する手段を設けていない現像容器と、現像剤を収納する現像剤収納容器とを有し、該現像剤収納容器と前記現像容器との間に現像剤を現像剤収納容器から現像容器へ排出する開口部を設けて成る現像装置と、を有するプロセスカートリッジにおいて、複数の撹拌翼によって現像剤を撹拌・搬送する撹拌部材を有し、現像剤を担持搬送する現像スリーブに一番近い撹拌部材の回転スピードを最も速く、現像スリーブに一番近い撹拌翼の撹拌半径を最も小さくしたこと、を特徴とする。

【 0 0 1 0 】更に又、本発明は、像担持体と、該像担持体に形成された静電潜像を現像剤で現像する現像装置であって、前記静電潜像を現像する現像位置に現像剤を担持搬送する現像スリーブを備え、現像材収納容器に対して揺動可能に支持されており、現像剤を撹拌・搬送する手段を設けていない現像容器と、現像剤を収納する現像剤収納容器と、を有し、該現像剤収納容器と前記現像容器との間に現像剤を現像剤収納容器から現像容器へ排出する開口部を設けて成る現像装置を有するプロセスカートリッジが着脱可能な電子写真画像形成装置において、複数の撹拌翼によって現像剤を撹拌・搬送する複数の撹拌部材を有し、現像剤を担持搬送する現像スリーブに一

番近い撹拌部材の回転スピードを最も速く、現像スリー ブに一番近い撹拌翼の撹拌半径を最も小さくしたことを 特徴とする。

[0011]

【発明の実施の形態】以下に本発明の実施の形態を添付 図面に基づいて説明する。

(プロセスカートリッジ及び画像形成装置本体の説明)図1は本発明に係るプロセスカートリッジの主断面図、図2は本発明に係る電子写真画像形成装置の主断面図である。

【0012】図1に示すプロセスカートリッジ15は、画像形成装置本体に対して着脱可能であって、電子写真感光体である感光ドラム11とこれに作用する各種プロセス手段を備えている。ここで、プロセス手段としては、例えば感光ドラム11の表面を帯電させる帯電ローラ12、現像剤担持体である現像スリーブ18によってトナー像を形成する現像装置、感光ドラム11の表面に残留したトナーを除去するためのクリーニング装置がある。尚、プロセスカートリッジ15は感光ドラム11とプロセス手段のうち少なくとも1つを備えていれば良い

【0013】先ず、画像形成の手順を図1及び図2に基づいて以下に説明する。

【0014】本実施の形態に係るプロセスカートリッジ 15は、図1に示すように、電子写真感光ドラム11の 周囲に帯電手段である帯電ローラ12、現像装置として 現像スリーブ18、現像ブレード26、現像剤であるトナーTを収納したトナー収納容器16、該トナー収納容器16のトナーを撹拌して搬送する撹拌部材20A~20C及びクリーニング手段としてのクリーニングブレード14を配置し、これらをハウジングで覆って一体化して構成され、これは画像形成装置本体27(図2参照)に対して着脱自在である。

【0015】このプロセスカートリッジ15は、図2に示すような電子写真画像形成装置Pに装着されて画像形成に供される。画像形成は、装置下部に装着されたシートカセット6から搬送ローラ7によってシートSを搬送し、このシートSの搬送と同期して感光ドラム11に露光装置8から選択的な露光を行って感光ドラム11上に静電潜像を形成する。その後、トナー収納容器16に収納されたトナーTを現像容器17側に送り、このトナーTを現像ブレード26により現像スリーブ18表面に薄層担持せしめ、現像スリーブ18に現像バイアスを印加することによって、静電潜像に応じて現像スリーブ18から感光ドラム11へトナーTを供給して感光ドラム11上の静電潜像を現像してこれをトナー像として顕像化する

【0016】その後、感光ドラム11上に形成されたトナー像を転写位置で転写ローラ9へのバイアス電圧印加によってシートSに転写し、トナー像が転写されたシー

トSを定着装置10へ搬送してトナー像をシートS上に 定着し、トナー像が定着されたシートSを排紙ローラ1 によって装置上部の排出部2に排出する。尚、トナー像 の転写後に感光ドラム11上に残留したトナーはクリー ニングブレード14で除去され、除去されたトナーは送 り部材によってクリーニング容器13の奥側へ移動される。

(プロセスカートリッジの枠体構成)図3に従来のプロセスカートリッジ45の断面を示すが、従来のプロセスカートリッジ45も現像容器43、トナー収納容器46、クリーニング容器47等から構成されており、このプロセスカートリッジ45が画像形成装置本体に対して着脱される。

【0017】そして、トナー収納容器46には現像スリーブ18を保持している現像容器43が固定されており、又、トナーの撹拌部材50が回転可能に固定されており、現像スリーブ18と撹拌部材50は画像形成装置本体からの駆動によって回転駆動される。ここで、トナー収納容器46の底面は傾斜しており、現像でトナーTが消費されることによってトナーTがその自重で落下し、現像容器43内に供給される。撹拌部材50によってトナー収納容器46下部のトナーを崩すことによって、更にトナーTが落下し易くなる。

【0018】このようなタイプのトナー収納容器構成で 更にトナー容量を増やそうとすると、トナーTの重量が 増加した分だけ現像容器43にトナーTが強く押し込ま れてしまう。すると、トナーTの重量によってフェーディングやトナーT自体の劣化、タッピング時等のトルク の増大等、現像性の条件が厳しくなったり、部品の強度 を上げる必要がある等の弊害が起こることが考えられ

【0019】図4に本発明に係るトナー収納容器16の 断面を示す。

【0020】本発明に係るトナー収納容器16は、その内部にトナー搬送と撹拌を行う撹拌部材20A~20CとトナーTを収納している。撹拌部材20A~20Cは、回転棒部材21A~21Cに撹拌翼部材22A~22Cを固定して構成され、撹拌部材20A~20Cが回転することによってトナーTの搬送と撹拌が行われる。尚、本実施の形態では3本の撹拌部材20A~20Cを設けたが、トナー収納容器16のサイズによっては更に増やしても良い。又、回転棒部材21A~21Cはトナー収納容器16に回転可能に支持されており、これらの回転棒部材21A~21Cはこれらに結合された不図示のギヤ部材を介して本体から駆動を受けることによって回転する。

【0021】現像容器17はトナー収納容器16には固定されていない。現像容器17は揺動支点24を中心として、感光ドラム11と現像スリーブ18の中心を結ぶ方向Eに不図示の弾性部材で加圧される。現像容器17

は感光ドラム11に追従するように揺動可能に支持されているため、トナー収納容器16の重量変化は感光ドラム11と現像スリーブ18の加圧に影響しない。従って、トナー重量による画像への弊害はない。その際、トナー収納容器16と現像容器17の隙間をシールする部材としてシート部材23を用いる。シート部材23は蛇腹形状を形成してトナー収納容器16と現像容器17を結合しており、現像容器17の揺動を妨げることがない。

【0022】又、現像容器17には撹拌部材を設けていない。現像容器17の体積を小さくすることによってトナー収容容器16内に設けた撹拌部材20Aが現像容器17内のトナーTに作用するようになっている。

【0023】図5〜図8にトナー消費の様子を示すトナ 一収納容器16の断面を示す。

【0024】図示のようにトナー収納容器16には現像容器17に近い側から3つの凹部A,B,Cが設けられている。ここで、図5はトナーが消費されていない状態を示し、図6はトナーが消費されていって凹部Cのトナーが無くなった状態を示している。又、図7は更にトナーが消費されていって凹部Bのトナーが無くなった状態を示し、図8はトナーが全て消費された状態を示している。

【0025】撹拌部材20A~20Cは図5~図8のそれぞれにおいて矢印D方向に回転しており、撹拌翼部材22A~22CによってトナーTを押し出して搬送している。現像容器17側でトナーTが消費されていき、撹拌部材20A~20CでトナーTが現像容器17側に搬送されるため、トナーTは現像容器17から遠い凹部C側から順次無くなっていくことになる。

【0026】以上のように複数の撹拌部材20A~20 Cを設けることによってトナー収納容器16を偏平形状 にして該トナー収納容器16の表面積を大きくすること が可能になるため、トナーTの重みが分散され、トナー Tの重量によるフェーディングやトナーT自体の劣化、 タッピング時等のトルクの増大を防ぐことができる。

【0027】次に、撹拌部材20A~20Cの構成を図9~図12に基づいて説明する。尚、図9、図11はトナー収納容器16の断面図、図10、図12は撹拌部材20A~20Cの正面図である。

【0028】撹拌部材20A~20Cは前述のように回転棒部材21A~21Cと撹拌翼部材22A~22Cとで構成されており、回転棒部材21A~21Cと撹拌翼部材22A~22Cはそれぞれがビス止め、接着、溶着、熱カシメ等の手段で固定されている。

【0029】図9及び図10においては、撹拌翼部材22A~22Cには例えばボリエチレンテレフタレート等に代表される弾性的な樹脂製シート部材を用いているが、図111及び図12に示すように梯子状の撹拌棒部材21A~21Cの先に弾性的なシート部材から成る撹

拌翼部材22A~22Cを固定して撹拌部材20A~20Cを構成しても良い。この場合、トナーが無いときにも、撹拌翼部材22A~22Cの先端の回転半径がトナー収納容器16の底の半径よりも長くなっているため、トナーが少なくなったときに撹拌翼部材22A~22Cの先端がトナー収納容器16の底に擦れてトナー収納容器16の底部に残ったトナーを掻き出す。

【0030】図13に本実施の形態に係るプロセスカートリッジ15の主断面図を示し、以下、複数の撹拌部材20A~20Cにおける条件と効果について説明する。

【0031】画像形成装置本体の不図示の駆動機構によって撹拌部材20A~20Cは回転駆動されるが、駆動伝達のギヤ配列によって撹拌部材20A~20Cの回転スピードに差を付けている。具体的には、撹拌部材20A~20Cの撹拌スピードを現像スリーブ18に近い側から ω_A , ω_B , ω_C としたとき、 ω_A $>\omega_B$ $=\omega_C$ の関係が成り立つようなスピードとする。このスピードは例えば ω_B と ω_C を同じとし、 ω_A は ω_B , ω_C の約2~10倍にするのが好ましい。これにより、現像スリーブ18近傍のトナーTの循環をし易くし、更に、現像スリーブ18から遠い部分での過剰な撹拌によるトナーTの劣化を防ぐことができる。

【0032】又、トナー収納容器16の底面凹部A,B,Cの半径にも差を付ける。図において、トナー収納容器16の底面半径を現像スリーブ18に近い側から r_A , r_B , r_C としたとき、 r_A $< r_B = r_C$ の関係が成り立つようにし、撹拌翼部材22A~22C先端の回転半径もこれに合わせたものとする。半径 r_A を小さくすることによって必要以上のトナーTが現像スリーブ18に送られることがなく、安定したトナー供給を行うことができる。半径 r_B , r_C に関してはトナー収納容器16の大きさに対して余り小さいと撹拌部材が増えてしまうため、適度な大きさにすることによって撹拌部材の数を減らすことができ、これによってコスト面でのメリットが得られる。

【0033】更に、撹拌翼部材22A~22Cに弾性的なシート部材を用いたときの該シート部材の厚みについても差を付ける。この場合も、シート部材の厚みを現像スリーブ18に近い側から t_A , t_B , t_C としたとき、 t_A く t_B = t_C の関係が成り立つようにする。 t_A は約38~75 μ m、 t_B , t_C は約75~188 μ mの範囲とするのが好ましい。これにより、凹部Aにおいては撹拌翼部材22Aの弾性係数が小さいため、トナーTが多いときは撹拌翼部材22Aが撓んで、トナーTが自重で現像スリーブ18に供給され、トナーTが少なくなったときも小さい反発力でトナーTが送り出される。凹部B、Cにおいては、トナーTを送り出す際に汲み上げる必要があるため、凹部Aに比べて厚めのシート部材を用いてトナーTの搬送力を得ている。

【0034】凹部B, Cの撹拌部材20B, 20Cにつ

いては回転スピード ω_B , ω_C が等しい($\omega_B = \omega_C$)ため、初期状態の位相関係が常に保たれる。凹部B, C の位相関係は同じ位相でなければ良く、撹拌部材22B と22Cの位相差を α とすると、この位相差 α は90° $<\alpha<270$ °の範囲が好ましい。位相差を付けることによってトナー搬送時の撹拌トルクが分散してトルクの増加を防ぐことができるため、部品の小型化等を図ることができる。

[0035]

【発明の効果】以上の説明で明らかなように、本発明によれば、現像剤を収納し、画像形成装置本体に対して着脱可能な現像剤を収納する現像剤収納容器であり、現像容器が現像剤収納容器に対して揺動可能に支持されており、現像容器には現像剤を撹拌・搬送する手段を設けていない現像容器が結合される現像剤収納容器に設けられる複数の撹拌部材のうち、現像剤を担持搬送する現像スリーブに一番近い撹拌部材の回転スピードを最も速く、現像スリーブに一番近い撹拌翼の撹拌半径を最も小さくしたため、現像剤収納容器の大容量化を実現しつつ、現像剤の循環の改善、劣化防止及び安定した供給によって画質の向上を図ることができるという効果が得られる。

【図面の簡単な説明】

【図1】本発明に係るプロセスカートリッジの主断面図である。

【図2】本発明に係る電子写真画像形成装置の主断面図 である。

【図3】従来のプロセスカートリッジの主断面図である。

【図4】本発明に係るトナー収納容器を示すプロセスカートリッジの主断面図である。

【図5】本発明に係るトナー収納容器におけるトナー消費の状態を示すプロセスカートリッジの主断面図である。

【図6】本発明に係るトナー収納容器におけるトナー消費の状態を示すプロセスカートリッジの主断面図である。

【図7】本発明に係るトナー収納容器におけるトナー消費の状態を示すプロセスカートリッジの主断面図である。

【図8】本発明に係るトナー収納容器におけるトナー消費の状態を示すプロセスカートリッジの主断面図である。

【図9】本発明に係るトナー収納容器を示すプロセスカ ートリッジの主断面図である。

【図10】本発明に係るトナー収納容器に設けられる撹拌部材の正面図である。

【図11】本発明に係るトナー収納容器を示すプロセスカートリッジの主断面図である。

【図12】本発明に係るトナー収納容器に設けられる撹拌部材の正面図である。

!(7) 001-201931 (P2001-20JL8

撹拌部材の回転スピード

【図13】本発	明に係るトナー収納容器を示すプロセス	20A~20C	撹拌部材
カートリッジの	主断面図である。	21A~21C	撹拌棒部材
【符号の説明】		22A~22C	撹拌翼部材
11	感光ドラム(像担持体)	27	画像形成装置本体
15	プロセスカートリッジ	Р	電子写真画像形成装置
16	トナー収納容器(現像剤収納容器)	Τ	トナー(現像剤)
17	現像容器	$r_A \sim r_C$	撹拌半径
	7		

【図1】

現像スリーブ

【図4】

【図7】

【図9】

【図6】

【図8】

【図10】

【図13】

