Counter-diabatic driving using Floquet engineering

Mohit

January 31, 2018

1 CD driving

$$H_0 = -J\sum_{j} (c_{j+1}^{\dagger} c_j + \text{h.c}) + \sum_{j} V_j(\lambda) c_j^{\dagger} c_j$$

$$\tag{1}$$

For this problem, approximate gauge potential is chosen to be $A_{\lambda}^* = i \sum_j \alpha_j (c_{j+1}^{\dagger} c_j - h.c)$. On minimizing action, we get

$$-3J^{2}(\alpha_{j+1}+\alpha_{j-1})+(6J^{2}+(V_{j+1}-V_{j})^{2})\alpha_{j}=-J\partial_{\lambda}(V_{j+1}-V_{j})$$

Figure 1: a) α_j for linear potential with vanishing boundary condition b) Effective hopping strength

$$H_{CD} = H_0 + \dot{\lambda}A_{\lambda} = \sum_{i} J_{j}^{CD}(c_{i+1}^{\dagger}c_i + h.c) + \sum_{i} U_{j}c_{i}^{\dagger}c_i$$

where

$$J_j^{CD} = J\sqrt{1 + (\dot{\lambda}\alpha_j/J)^2} \quad U_j = V_j(\lambda) - \sum_i^j \frac{J}{J^2 + (\dot{\lambda}\alpha_i/J)^2} (\ddot{\lambda}\alpha_j + \dot{\lambda}^2 \partial_{\lambda}\alpha_j)$$

Over here, I am going to work with $\dot{\lambda} = 1$ and L = 1024.

2 Floquet driving

$$H = H_0 + H_1 = J \sum_{j} (c_{j+1}^{\dagger} c_j + \text{h.c}) + \cos(\omega t) \sum_{j} A_j c_j^{\dagger} c_j$$

We would go to the rotating frame $|\psi_{rot}\rangle = V^{\dagger}|\psi_{lab}\rangle$ where $V = \exp(-i\sin(\omega t)/\omega\sum_{j}A_{j}c_{j}^{\dagger}c_{j})$.

$$H_{rot} = V^{\dagger}HV - iV^{\dagger}\dot{V}$$

$$= V^{\dagger}H_{0}V + \cos(\omega t)\sum_{j}A_{j}c_{j}^{\dagger}c_{j} + i^{2}\cos(\omega t)\sum_{j}A_{j}c_{j}^{\dagger}c_{j}$$

$$= V^{\dagger}H_{0}V = V^{\dagger}c_{j+1}^{\dagger}VV^{\dagger}c_{j}V + \text{h.c}$$

Using $[n_j, c_j] = -c_j$ and $[n_j, c_j^{\dagger}] = c_j^{\dagger}$

$$H_{rot} = J \sum_{j} (g^{j,j+1} c_{j+1}^{\dagger} c_j + \text{h.c})$$

where $g^{j,j+1} = \exp\left(i\sin(\omega t)\frac{A_{j+1} - A_j}{\omega}\right)$

$$H_F^{(0)} = \frac{1}{T} \sum_{j} \int_{t_0}^{T+t_0} (c_{j+1}^{\dagger} c_j \exp\left(i \sin(\omega t) \frac{A_{j+1} - A_j}{\omega}\right) dt + \text{h.c.})$$
$$= \sum_{j} J_j^F (c_{j+1}^{\dagger} c_j + \text{h.c.})$$

where
$$J_j^F = J^F \mathcal{J}_0 \left(\frac{A_{j+1} - A_j}{\omega} \right)$$

3 Linear potential

We choose $V(j,\lambda) = j\lambda$.

Figure 2: a) Driving field amplitude A_j b) Comparison of effective hopping strength from floquet and CD driving

4 Eckart potential

4.1 Inserting potential

 $V(\lambda, j) = \frac{\lambda(t)}{\cosh^2 j/\xi}$ where ξ is the localization length.

Figure 3: Eckart potential with $\lambda = 1$

Figure 4: α_j for Eckart potential with vanishing boundary condition with a) $\xi = 8$ b) $\xi = 50$

A Magnus expansion

For a Hamiltonian which is periodic in time, it's unitary operator over a full driving cycle is given by:

$$U(T+t_0,t_0) = \mathcal{T}_t \exp(-\frac{i}{\hbar} \int_{t_0}^T dt H(t)) = \exp(-\frac{i}{\hbar} H_F[t_0]T)$$
 (2)

 $H_F[t_0] = \sum_n H_F^{(n)}[t_0]$ where

$$H_F^{(0)} = \frac{1}{T} \int_{t_0}^{T+t_0} H(t) dt$$

$$H_F^{(1)} = \frac{1}{2!Ti\hbar} \int_{t_0}^{T+t_0} dt_1 \int_{t_0}^{t_1} dt_2 [H(t_1), H(t_2)]$$

B Bessel's function of first kind

Integral representation of Bessel's function of first kind $\mathcal{J}_n(x)$ is given by:

$$\mathcal{J}_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\tau e^{i(n\tau - x\sin\tau)} = \frac{1}{T} \int_{-T/2}^{T/2} d\tau e^{i(n\omega\tau - x\sin\omega\tau)}$$
(3)

Figure 5: a) Effective hopping strength b) $(A_{j+1}-A_j)/\omega$ c)Driving field's amplitude A_j/ω d) Comparison of effective hopping strength from floquet and CD driving

For
$$x \ll 1$$
, $\mathcal{J}_0(x) = 1 - \frac{x^2}{2}$

Figure 6: Bessel's function