THE RATE OF PASSAGE OF FEED THROUGH THE DIGESTIVE TRACT OF THE MINK¹

I. R. SIBBALD, D. G. SINCLAIR, E. V. EVANS, AND D. L. T. SMITH

Abstract

The time required for carmine-dyed rations to pass through the digestive tracts of mink in the late stages of growth was observed in four separate experiments with the same nine groups of animals, all of which were involved in a nutritional study. Each group received a different ration; five of the rations were based on conventional moist ingredients and four were composed of dry ingredients. In a total of 502 observations the mean time of passage was 142 minutes with a range from 62 minutes to 215 minutes. No consistent sex or diet differences in passage time were demonstrated.

Introduction

Although it is generally recognized by those who raise mink in captivity that feed passes through the relatively short digestive tracts of these animals rather rapidly, there is little published information on the subject. Wood (1) has reported mean passage times of 106, 123, and 109 minutes for a normal diet marked with Sudan III, charcoal, and chromium oxide, respectively; with unmarked feed the mean time of passage was found to be 89 minutes. The variability between trials (15 in each instance) was not recorded. Neseni and Piatkowski (2) fed five different rations marked with fuchsin-stained straw to groups of 10 mink and observed the first recovery of the marker in the faeces within the following time interval ranges for the five rations: 3 to $3\frac{1}{2}$ hours, 2 to $2\frac{1}{2}$ hours, 3 hours, 2 to 4 hours, and 2 to 3 hours.

During the course of a nutritional experiment with standard dark mink (3) it became of interest to measure the rate of passage of various experimental rations through the digestive tracts of the animals involved.

Experimental

As has been described (3) the experimental groups were nine in number, five receiving "wet" rations containing conventional moist ingredients of animal origin and four receiving "dry" rations which, although mixed with water before they were fed, were formulated entirely of dry ingredients. Four of the "wet" rations, MB, MC, MD, and ME, corresponded respectively to the four "dry" rations, BA, BB, BC, and BD, in crude protein and gross energy contents and the fifth "wet" ration, C58, was the ranch reference ration of considerably higher protein content than any of the other diets. Detailed composition of these rations has been reported (3).

The studies of rate of passage were conducted in October, 1959, when the

¹Manuscript received May 14, 1962.

Canadian Journal of Biochemistry and Physiology, Volume 40 (1962)

Contribution from the Department of Nutrition, Ontario Agricultural College, and the Department of Pathology and Bacteriology, Ontario Veterinary College, Guelph, Ontario. ²Present address: Department of Physiology, Queen's University, Kingston, Ontario.

mink were in the late stages of growth and at a time when the main nutritional experiment was still in progress; it was, therefore, necessary to choose procedures which would not interfere with the course of that experiment. Initial study with comparable animals not involved in the experiment indicated that radiographic tracing of the passage of barium through the gastrointestinal tract of the mink was both undesirable and impractical; the animals became very excited and were difficult to restrain. The use of chromium sesquioxide as a visual marker (green) was attempted but was rejected because visual differentiation between marked and unmarked faeces was frequently difficult. Carmine, incorporated in the proportions of 1 oz per 10 gal of wet feed, was found to be a satisfactory indicator for visual observations.

Carmine-dyed feed was offered, ad libitum, to all of the surviving mink of the nine diet-treatment groups at the regular daily feeding-time, following withdrawal of any unmarked feed remaining on the feed boards. The times of consumption of the first mouthful of dyed feed and of the appearance of the first marked faeces were recorded for each animal. This procedure was repeated on four separate occasions within a period of 3 weeks when the mean age of the animals ranged from approximately 20 to 23 weeks. A period of at least 3 days, during which the regular unmarked feed was provided, separated successive trials with marked feed.

Results

The resulting data are summarized in Table I.

The gross mean for the 502 observations on the nine carmine-dyed diets indicates a time of passage of 142 minutes with a range from 62 minutes to 215 minutes. Most of the observed times fall within the ranges reported by Neseni and Piatkowski (2). The mean time of 142 minutes is somewhat longer than the mean times reported by Wood (1). This difference, if real, might be the result of differences in the ages of the animals used or of the temporary fasting period employed by Wood.

Statistical evaluation of the data was complicated by the following conditions: (1) the mink were not evenly distributed between ration groups, (2) the number of mink in each diet group varied between trials as some animals failed to consume any feed within 10 minutes and were eliminated, and (3) it was impractical to rerandomize the mink between tests because this would have destroyed the continuity of the primary nutritional experiment. Despite these difficulties certain statistical treatments were applied to the data. Analysis by a method of disproportionate subclass numbers (4) within each test failed to demonstrate consistent sex or diet differences. Analysis of variance of the data for each sex within each trial also demonstrated no consistently significant diet effect. It is possible that differences in food passage rates associated with diet and (or) sex were present but, because of the complexity of the data, they could not be demonstrated statistically. Obviously no major differences in rate of passage existed between the markedly different rations.

TABLE I Time (minutes) required for a feed marker to appear in the faeces of mink on various diets

Trial	Sex	BA		BB		BC		BD		C58		МВ		MC		MD		ME		All diets	
		n*	x†	\overline{n}	x	n	x	n	x	n	x	\overline{n}	x	\overline{n}	<i>x</i>	n	x	n	\overline{x}	\overline{n}	х
1	M F M+F	8 9 17	162 141 151	6 9 15	149 158 154	2 6 8	158 152 154	3 6 9	175 153 161	11 10 21	136 143 139	8 8 16	131 127 129	7 7 14	137 145 141	7 7 14	127 128 128	8 5 13	138 150 143	60 67 127	142 144 143
2	${\rm M} \atop {\rm F} \atop {\rm M} + {\rm F}$	9 9 18	167 129 148	7 7 14	158 160 159	2 5 7	140 150 148	4 7 11	161 155 157	12 8 20	142 131 138	8 8 16	144 132 138	7 5 12	146 145 146	8 4 12	163 127 151	8 4 12	178 142 166	65 57 122	156 141 149
3	${\rm M} \atop {\rm F} \atop {\rm M} + {\rm F}$	9 9 18	151 135 143	7 7 14	163 146 154	2 7 9	145 147 147	4 5 9	163 142 151	12 9 21	112 133 121	7 9 16	133 112 121	7 7 14	108 136 122	6 8 14	145 130 137	7 6 13	160 134 148	61 67 128	139 133 136
4	${\rm M} \atop {\rm F} \atop {\rm M}+{\rm F}$	9 9 18	140 138 139	7 8 15	161 134 146	2 7 9	148 149 149	5 6 11	181 150 164	12 9 21	130 119 125	6 9 15	142 130 135	6 5 11	140 176 156	5 7 12	158 106 128	7 6 13	138 142 140	59 66 125	146 136 140
Four trials	${\rm M} \atop {\rm F} \atop {\rm M} + {\rm F}$	35 36 71	155 136 145	27 31 58	158 149 154	8 25 33	148 150 149	16 24 40	170 150 158	47 36 83	130 132 131	29 34 63	137 125 131	27 24 51	132 149 140	26 26 52	148 123 136	30 21 51	154 141 149	245 257 502	146 138 142

^{*}n: The number of observations. †x: Mean time in minutes.

Acknowledgment

The authors wish to thank Dr. G. C. Ashton and Dr. D. C. Hill for their advice regarding the statistical treatment of the data.

References

- A. J. Wood. The Black Fox Magazine and Modern Mink Breeder, 39 (1), 12 (1956).
 R. Neseni and B. Piatkowski. Arch. Tierernähr. 8, 296 (1958). Quoted in Nutrition Abstr. and Revs. 29, 507 (1959).
- 3. D. G. SINCLAIR, E. V. EVANS, and I. R. SIBBALD. Can. J. Biochem. and Physiol. This issue.
- 4. G. W. SNEDECOR. Statistical methods. The Iowa State College Press, Ames, Iowa. 1956.