Types of Headache

Migraine

Stress

Tuning Hyperparameters

Tunability: Importance of Hyperparameters of Machine Learning Algorithms

Philipp Probst

PROBST@IBE.MED.UNI-MUENCHEN.DE

Institute for Medical Information Processing, Biometry and Epidemiology, LMU Munich Marchioninistr. 15, 81377 München, Germany

Anne-Laure Boulesteix

BOULESTEIX@IBE.MED.UNI-MUENCHEN.DE

Institute for Medical Information Processing, Biometry and Epidemiology, LMU Munich Marchioninistr. 15, 81377 München, Germany

Bernd Bischl

BERND.BISCHL@STAT.UNI-MUENCHEN

Department of Statistics, LMU Munich Ludwigstraße 33, 80539 München, Germany

Editor: Ryan Adams

Abstract

Modern supervised machine learning algorithms involve hyperparameters that have to be set before running them. Options for setting hyperparameters are default values from the software package, manual configuration by the user or configuring them for optimal predictive performance by a tuning procedure. The goal of this paper is two-fold. Firstly, we formalize the problem of tuning from a statistical point of view, define data-based defaults and suggest general measures quantifying the tunability of hyperparameters of algorithms. Secondly, we conduct a large-scale benchmarking study based on 38 datasets from the OpenML platform and six common machine learning algorithms. We apply our measures to assess the tunability of their parameters. Our results yield default values for hyperparameters and enable users to decide whether it is worth conducting a possibly time consuming tuning strategy, to focus on the most important hyperparameters and to choose adequate hyperparameter spaces for tuning.

Problem:

- hyperparameters have to be set before running them,
 - default values
 - manual configuration
 - tuning procedure

- 1. ML users—Which hyperparameters should be tuned and in which ranges?
- 2. Designers of ML algorithms—How do I define robust defaults?

Problem:

- hyperparameters have to be set before running them,
 - default values
 - manual configuration
 - tuning procedure

Solution (goal of paper):

- yield default values for hyperparameters
 - formalization of the problem of tuning
 - define data-based defaults
 - suggest general measures quantifying the tunability of algorithm and hyperparameters
 - conduct a "large-scale" benchmark study

Problem:

- hyperparameters have to be set before running them,
 - default values
 - manual configuration
 - tuning procedure

Solution (goal of paper):

- yield default values for hyperparameters
 - formalization of the problem of tuning
 - define data-based defaults
 - suggest general measures quantifying the tunability of algorithm and hyperparameters
 - conduct a "large-scale" benchmark study

How:

- surrogate models (empirical performance models), which estimate the performance of arbitrary hyperparameter configurations based on a limited number of prior experiments

OpenML Benchmarking Suites and the OpenML100

Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Frank Hutter, Michel Lang, Rafael G. Mantovani, Jan N. van Rijn, Joaquin Vanschoren https://arxiv.org/abs/1708.03731

OpenML Benchmarking Suites and the OpenML100

Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Frank Hutter, Michel Lang, Rafael G. Mantovani, Jan N. van Rijn, Joaquin Vanschoren https://arxiv.org/abs/1708.03731

We provide a new standard benchmark suite of 100 high-quality datasets carefully curated from the many thousands available on OpenML.

OpenML Benchmarking Suites and the OpenML100

Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Frank Hutter, Michel Lang, Rafael G. Mantovani, Jan N. van Rijn, Joaquin Vanschoren https://arxiv.org/abs/1708.03731

A new standard benchmark suite of 100 high-quality datasets carefully curated from the many thousands available on OpenML.

- a) the number of observations are between 500 and 100 000 to focus on medium-sized datasets,
- b) the number of features does not exceed 5000 features to keep the runtime of algorithms low,
- c) the target attribute has at least two classes,
- d) the ratio of the minority class and the majority class is above 0.05 (to eliminate highly imbalanced datasets).

OpenML Benchmarking Suites and the OpenML100

Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Frank Hutter, Michel Lang, Rafael G. Mantovani, Jan N. van Rijn, Joaquin Vanschoren https://arxiv.org/abs/1708.03731

A new standard benchmark suite of 100 high-quality datasets carefully curated from the many thousands available on OpenML.

- a) the number of observations are between 500 and 100 000 to focus on medium-sized datasets,
- b) the number of features does not exceed 5000 features to keep the runtime of algorithms low,
- c) the target attribute has at least two classes,
- d) the ratio of the minority class and the majority class is above 0.05 (to eliminate highly imbalanced datasets).

Tunability: Importance of Hyperparameters of Machine Learning Algorithms

Only use the 38 binary classification tasks that do not contain any missing values.

38 datasets (binary classification)

38 datasets (binary classification) 6 models

Models:

- elastic net (glmnet)
- decision tree (rpart)
- k-nearest neighbours (kknn)
- support vector machines (svm)
- random forest (ranger)
- gradient boosting (xgboost)

38 datasets (binary classification) 6 models hyperparameters

Models:

- elastic net (glmnet)
- decision tree (rpart)
- k-nearest neighbours (kknn)
- support vector machines (svm)
- random forest (ranger)
- gradient boosting (xgboost)

Algorithm	Type	Lower	Upper	Trafo	
glmnet					
(Elastic net)	alpha	numeric	0	1	
	lambda	numeric	-10	10	2
rpart					
(Decision tree)	ср	numeric	0	1	
	maxdepth	integer	1	30	
	minbucket	integer	1	60	
	minsplit	integer	1	60	
kknn	-	-			
(k-nearest neighbor)	k	integer	1	30	
svm					
(Support vector machine)	kernel	discrete	-	-	
	cost	numeric	-10	10	2
	gamma	numeric	-10	10	2
	degree	integer	2	5	
ranger					
(Random forest)	num.trees	integer	1	2000	
	replace	logical	-	-	
	sample.fraction	numeric	0.1	1	
	mtry	numeric	0	1	$x \cdot y$
	respect.unordered.factors	logical	-	_	
	min.node.size	numeric	0	1	n^{\cdot}
xgboost					
(Gradient boosting)	nrounds	integer	1	5000	
	eta	numeric	-10	0	2
	subsample	numeric	0.1	1	
	booster	discrete	-	-	
	\max_{depth}	integer	1	15	
	min_child_weight	numeric	0	7	2
	colsample_bytree	numeric	0	1	
	colsample_bylevel	numeric	0	1	
	lambda	numeric	-10	10	2
	alpha	numeric	-10	10	2

38 datasets (binary classification)

6 models

hyperparameters

3 performance measures (separate CVs)

Considered performance measures:

- AUC
- Accuracy
- Brier Score

38 datasets (binary classification)

6 models

hyperparameters

3 performance measures (separate CVs)

Considered performance measures:

- AUC
- Accuracy
- Brier Score

Brier Score - the accuracy of probabilistic predictions

$$BS = rac{1}{N} \sum_{t=1}^N (f_t - o_t)^2$$

in which f_t is the probability that was forecast, o_t the actual outcome of the event at instance t (0 if it does not happen and 1 if it does happen) and N is the number of forecasting instances.

Automatic Exploration of Machine Learning Experiments on OpenML

Daniel Kühn, Philipp Probst, Janek Thomas, Bernd Bischl https://arxiv.org/abs/1806.10961

Automatic Exploration of Machine Learning Experiments on OpenML

Daniel Kühn, Philipp Probst, Janek Thomas, Bernd Bischl https://arxiv.org/abs/1806.10961

Each iteration:

- random dataset (38 data sets from OpenML)
- random classification algorithm (6 algorithms)
- random hyperparameters configuration (uniform distribution)
- 10-fold cross-validation

Automatic Exploration of Machine Learning Experiments on OpenML

Daniel Kühn, Philipp Probst, Janek Thomas, Bernd Bischl https://arxiv.org/abs/1806.10961

Each iteration:

- random dataset (38 data sets from OpenML)
- random classification algorithm (6 algorithms)
- random hyperparameters configuration (uniform distribution)
- 10-fold cross-validation

A subset of 500000 experiments for each algorithm and all datasets are used for our analysis here (except of kknn for which only 1140 results are available).

Automatic Exploration of Machine Learning Experiments on OpenML

Daniel Kühn, Philipp Probst, Janek Thomas, Bernd Bischl https://arxiv.org/abs/1806.10961

Each iteration:

- random dataset (38 data sets from OpenML)
- random classification algorithm (6 algorithms)
- random hyperparameters configuration (uniform distribution)
- 10-fold cross-validation

A subset of 500000 experiments for each algorithm and all datasets are used for our analysis here (except of kknn for which only 1140 results are available).

The results of the bot are stored in a figshare repository.

https://figshare.com/articles/OpenML R Bot Benchmark Data final subset /5882230/2

 $\hat{f}(X,\theta)$ - prediction model controlled by the hyperparameter configuration $\theta=(\theta_1,...,\theta_k)$ from the hyperparameter search space $\Theta=\Theta_1\times...\times\Theta_k$

 $\hat{f}(X,\theta)$ - prediction model controlled by the hyperparameter configuration $\theta = (\theta_1,...,\theta_k)$ from the hyperparameter search space $\Theta = \Theta_1 \times ... \times \Theta_k$

Given m different datasets (or data distributions) $\mathcal{P}_1, ..., \mathcal{P}_m$, we arrive at m hyperparameter risk mappings

$$R^{(j)}(\theta) := E(L(Y, \hat{f}(X, \theta)) | \mathcal{P}_j), \qquad j = 1, ..., m$$

 $\hat{f}(X,\theta)$ - prediction model controlled by the hyperparameter configuration $\theta=(\theta_1,...,\theta_k)$ from the hyperparameter search space $\Theta=\Theta_1\times...\times\Theta_k$

Given m different datasets (or data distributions) $\mathcal{P}_1, ..., \mathcal{P}_m$, we arrive at m hyperparameter risk mappings

$$R^{(j)}(\theta) := E(L(Y, \hat{f}(X, \theta)) | \mathcal{P}_j), \qquad j = 1, ..., m$$

we estimate $R^{(j)}(\theta)$ by using surrogate models $\hat{R}^{(j)}(\theta)$

The surrogate regression model map a hyperparameter configuration to estimated performance.

 $\hat{f}(X,\theta)$ - prediction model controlled by the hyperparameter configuration $\theta=(\theta_1,...,\theta_k)$ from the hyperparameter search space $\Theta=\Theta_1\times...\times\Theta_k$

Given m different datasets (or data distributions) $\mathcal{P}_1, ..., \mathcal{P}_m$, we arrive at m hyperparameter risk mappings

$$R^{(j)}(\theta) := E(L(Y, \hat{f}(X, \theta)) | \mathcal{P}_j), \qquad j = 1, ..., m$$

we estimate $R^{(j)}(\theta)$ by using surrogate models $\hat{R}^{(j)}(\theta)$

The surrogate regression model map a hyperparameter configuration to estimated performance.

Choice: Random forest

Optimal Default hyperparameters

We define the best hyperparameter configuration for dataset *j* as

$$\theta^{(j)\star} := \underset{\theta \in \Theta}{\operatorname{arg min}} \ R^{(j)}(\theta).$$

Optimal Default hyperparameters

We define the best hyperparameter configuration for dataset *j* as

$$\theta^{(j)\star} := \underset{\theta \in \Theta}{\operatorname{arg min}} R^{(j)}(\theta).$$

An optimal default configuration, based on empirical experiments on m different benchmark datasets:

$$\theta^* := \underset{\theta \in \Theta}{\operatorname{arg min}} \ g(R^{(1)}(\theta), ..., R^{(m)}(\theta)).$$

Here, g is a summary function that has to be specified. Selecting the mean (or median) would imply minimizing the average (or median) risk over all datasets.

Optimal Default hyperparameters

We define the best hyperparameter configuration for dataset *j* as

$$\theta^{(j)\star} := \underset{\theta \in \Theta}{\operatorname{arg min}} R^{(j)}(\theta).$$

An optimal default configuration, based on empirical experiments on m different benchmark datasets:

$$\theta^* := \underset{\theta \in \Theta}{\operatorname{arg min}} \ g(R^{(1)}(\theta), ..., R^{(m)}(\theta)).$$

Here, g is a summary function that has to be specified. Selecting the mean (or median) would imply minimizing the average (or median) risk over all datasets.

For the estimation of the defaults for each algorithm we randomly sample 100000 points in the hyperparameter space and determine the configuration with the minimal average risk.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parameter	Def.P	Def.O	Tun.P	Tun.O	$q_{0.05}$	$q_{0.95}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	glmnet			0.069	0.024		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	alpha	1	0.403	0.038	0.006	0.009	0.981
cp 0.01 0 0.025 0.002 0 0.008 maxdepth 30 21 0.004 0.002 12.1 27 minbucket 7 12 0.005 0.006 3.85 41.6 minsplit 20 24 0.004 0.004 5 49.15 kkmn 0.031 0.006 9.95 30 skmnel radial radial 0.031 0.006 9.95 30 kernel radial radial 0.030 0.024 20.03 30 kernel radial radial 0.030 0.022 0.002 920.582 gamma 1/p 0.005 0.030 0.022 0.003 18.195 degree 3 3 0.006 0.002 0.003 18.195 num.trees 500 983 0.001 0.006 1740.15 replace TRUE FALSE 0.002 0.001	lambda	0	0.004	0.034	0.021	0.001	0.147
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	rpart			0.038	0.012		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ср	0.01	0	0.025	0.002	0	0.008
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	maxdepth	30	21	0.004	0.002	12.1	27
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	minbucket	7	12	0.005	0.006	3.85	41.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	minsplit	20	24	0.004	0.004	5	49.15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	kknn			0.031	0.006		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	k	7	30	0.031	0.006	9.95	30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	svm			0.056	0.042		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	kernel	radial	radial	0.030	0.024		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	cost	1	682.478	0.016	0.006	0.002	920.582
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	gamma	1/p	0.005	0.030	0.022	0.003	18.195
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	degree	3	3	0.008	0.014	2	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ranger			0.010	0.006		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	num.trees	500	983	0.001	0.001	206.35	1740.15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	replace	TRUE	FALSE	0.002	0.001		
respect.unordered.factors TRUE FALSE 0.000 0.000 min.node.size 1 1 0.001 0.001 0.007 0.513 xgboost 0.043 0.014 nrounds 500 4168 0.004 0.002 920.7 4550.95 eta 0.3 0.018 0.006 0.005 0.002 0.355 subsample 1 0.839 0.004 0.002 0.545 0.958 booster gbtree gbtree 0.015 0.008 max_depth 6 13 0.001 0.001 5.6 14 min_child_weight 1 2.06 0.008 0.002 1.295 6.984 colsample_bytree 1 0.752 0.006 0.001 0.419 0.864 colsample_bylevel 1 0.585 0.008 0.001 0.335 0.886 lambda 1 0.982 0.003 0.002 0.008 29.755	sample.fraction	1	0.703	0.004	0.002	0.323	0.974
respect.unordered.factors TRUE FALSE 0.000 0.000 min.node.size 1 1 0.001 0.001 0.007 0.513 xgboost 0.043 0.014 nrounds 500 4168 0.004 0.002 920.7 4550.95 eta 0.3 0.018 0.006 0.005 0.002 0.355 subsample 1 0.839 0.004 0.002 0.545 0.958 booster gbtree gbtree 0.015 0.008 max_depth 6 13 0.001 0.001 5.6 14 min_child_weight 1 2.06 0.008 0.002 1.295 6.984 colsample_bytree 1 0.752 0.006 0.001 0.419 0.864 colsample_bylevel 1 0.585 0.008 0.001 0.335 0.886 lambda 1 0.982 0.003 0.002 0.008 29.755	mtry	\sqrt{p}	$p \cdot 0.257$	0.006	0.003	0.035	0.692
xgboost 0.043 0.014 nrounds 500 4168 0.004 0.002 920.7 4550.95 eta 0.3 0.018 0.006 0.005 0.002 0.355 subsample 1 0.839 0.004 0.002 0.545 0.958 booster gbtree gbtree 0.015 0.008 max_depth 6 13 0.001 0.001 5.6 14 min_child_weight 1 2.06 0.008 0.002 1.295 6.984 colsample_bytree 1 0.752 0.006 0.001 0.419 0.864 colsample_bylevel 1 0.585 0.008 0.001 0.335 0.886 lambda 1 0.982 0.003 0.002 0.008 29.755	respect.unordered.factors		FALSE	0.000	0.000		
nrounds 500 4168 0.004 0.002 920.7 4550.95 eta 0.3 0.018 0.006 0.005 0.002 0.355 subsample 1 0.839 0.004 0.002 0.545 0.958 booster gbtree gbtree 0.015 0.008 0.008 0.001 0.001 5.6 14 min_child_weight 1 2.06 0.008 0.002 1.295 6.984 colsample_bytree 1 0.752 0.006 0.001 0.419 0.864 colsample_bylevel 1 0.585 0.008 0.001 0.335 0.886 lambda 1 0.982 0.003 0.002 0.008 29.755	min.node.size	1	1	0.001	0.001	0.007	0.513
eta 0.3 0.018 0.006 0.005 0.002 0.355 subsample 1 0.839 0.004 0.002 0.545 0.958 booster gbtree gbtree 0.015 0.008 0.008 0.001 0.001 5.6 14 min_child_weight 1 2.06 0.008 0.002 1.295 6.984 colsample_bytree 1 0.752 0.006 0.001 0.419 0.864 colsample_bylevel 1 0.585 0.008 0.001 0.335 0.886 lambda 1 0.982 0.003 0.002 0.008 29.755	xgboost			0.043	0.014		
subsample 1 0.839 0.004 0.002 0.545 0.958 booster gbtree gbtree 0.015 0.008 0.008 max_depth 6 13 0.001 0.001 5.6 14 min_child_weight 1 2.06 0.008 0.002 1.295 6.984 colsample_bytree 1 0.752 0.006 0.001 0.419 0.864 colsample_bylevel 1 0.585 0.008 0.001 0.335 0.886 lambda 1 0.982 0.003 0.002 0.008 29.755	nrounds	500	4168	0.004	0.002	920.7	4550.95
booster gbtree gbtree 0.015 0.008 max_depth 6 13 0.001 0.001 5.6 14 min_child_weight 1 2.06 0.008 0.002 1.295 6.984 colsample_bytree 1 0.752 0.006 0.001 0.419 0.864 colsample_bylevel 1 0.585 0.008 0.001 0.335 0.886 lambda 1 0.982 0.003 0.002 0.008 29.755	eta	0.3	0.018	0.006	0.005	0.002	0.355
max_depth 6 13 0.001 0.001 5.6 14 min_child_weight 1 2.06 0.008 0.002 1.295 6.984 colsample_bytree 1 0.752 0.006 0.001 0.419 0.864 colsample_bylevel 1 0.585 0.008 0.001 0.335 0.886 lambda 1 0.982 0.003 0.002 0.008 29.755	subsample	1	0.839	0.004	0.002	0.545	0.958
max_depth 6 13 0.001 0.001 5.6 14 min_child_weight 1 2.06 0.008 0.002 1.295 6.984 colsample_bytree 1 0.752 0.006 0.001 0.419 0.864 colsample_bylevel 1 0.585 0.008 0.001 0.335 0.886 lambda 1 0.982 0.003 0.002 0.008 29.755	booster	gbtree	gbtree	0.015	0.008		
min_child_weight 1 2.06 0.008 0.002 1.295 6.984 colsample_bytree 1 0.752 0.006 0.001 0.419 0.864 colsample_bylevel 1 0.585 0.008 0.001 0.335 0.886 lambda 1 0.982 0.003 0.002 0.008 29.755	max_depth	6	13	0.001	0.001	5.6	14
colsample_bytree 1 0.752 0.006 0.001 0.419 0.864 colsample_bylevel 1 0.585 0.008 0.001 0.335 0.886 lambda 1 0.982 0.003 0.002 0.008 29.755		1	2.06	0.008	0.002	1.295	6.984
colsample_bylevel 1 0.585 0.008 0.001 0.335 0.886 lambda 1 0.982 0.003 0.002 0.008 29.755		1	0.752	0.006	0.001	0.419	0.864
lambda 1 0.982 0.003 0.002 0.008 29.755			0.585	0.008	0.001	0.335	0.886
alpha 1 1.113 0.003 0.002 0.002 6.105		1	0.982	0.003	0.002	0.008	29.755
	alpha	1	1.113	0.003	0.002	0.002	6.105

10/15

	$q_{0.95}$	$q_{0.05}$	Tun.O	Tun.P	Def.O	Def.P	Parameter
			0.024	0.069			glmnet
FICO dot	0.981	0.009	0.006	0.038	0.403	1	alpha
FICO dat	0.147	0.001	0.021	0.034	0.004	0	lambda
			0.012	0.038			rpart
	0.008	0	0.002	0.025	0	0.01	ср
	27	12.1	0.002	0.004	21	30	maxdepth
algorithm	41.6	3.85	0.006	0.005	12	7	minbucket
	49.15	5	0.004	0.004	24	20	minsplit
			0.006	0.031			kknn
	30	9.95	0.006	0.031	30	7	k
glmnet			0.042	0.056			svm
guinet			0.024	0.030	radial	radial	kernel
	920.582	0.002	0.006	0.016	682.478	1	cost
	18.195	0.003	0.022	0.030	0.005	1/p	gamma
rpart	4	2	0.014	0.008	3	3	degree
'			0.006	0.010			ranger
	1740.15	206.35	0.001	0.001	983	500	num.trees
			0.001	0.002	FALSE	TRUE	replace
kknn	0.974	0.323	0.002	0.004	0.703	1	sample.fraction
	0.692	0.035	0.003	0.006	$p \cdot 0.257$	\sqrt{p}	mtry
			0.000	0.000	FALSE	TRUE	respect.unordered.factors
ranger	0.513	0.007	0.001	0.001	1	1	min.node.size
ranger			0.014	0.043			xgboost
	4550.95	920.7	0.002	0.004	4168	500	nrounds
	0.355	0.002	0.005	0.006	0.018	0.3	eta
xgboost	0.958	0.545	0.002	0.004	0.839	1	subsample
782000			0.008	0.015	gbtree	gbtree	booster
	14	5.6	0.001	0.001	13	6	max_depth
	6.984	1.295	0.002	0.008	2.06	1	min_child_weight
	0.864	0.419	0.001	0.006	0.752	1	colsample bytree
	0.886	0.335	0.001	0.008	0.585	1	colsample_bylevel
	29.755	0.008	0.002	0.003	0.982	1	lambda
	6.105	0.002	0.002	0.003	1.113	1	alpha

FICO data set, 5-fold CV

algorithm	package defaults	optimal defaults		
glmnet	0.778	0.780		
rpart	0.707	0.740		
kknn	0.716	0.744		
ranger	0.793	0.792		
xgboost	0.767	0.778		

10/15

Estimation of the tunability of an algorithm

A general measure of the tunability of an algorithm per dataset can then be computed based on the difference between the risk of an overall reference configuration and the risk of the best possible configuration on that dataset:

$$d^{(j)} := R^{(j)}(\theta^\star) - R^{(j)}(\theta^{(j)\star}), \ \text{for} \ j = 1,...,m$$
 risk of an overall risk of the best possible configuration on *j*-th dataset

The strategy 100000 random points is used to obtain the best hyperparameter setting on each dataset that is needed for the estimation of the tunability of an algorithm.

Optimal Defaults and Tunability

Measuring Tunability of a Specific Hyperparameter

The best hyperparameter value for one parameter i on dataset j, when all other parameters are set to defaults from $\theta^* := (\theta_1^*, ..., \theta_k^*)$, is denoted by

$$\theta_i^{(j)\star} := \underset{\theta \in \Theta, \theta_l = \theta_i^{\star} \forall l \neq i}{\operatorname{arg min}} R^{(j)}(\theta).$$

Measuring Tunability of a Specific Hyperparameter

The best hyperparameter value for one parameter i on dataset j, when all other parameters are set to defaults from $\theta^* := (\theta_1^*, ..., \theta_k^*)$, is denoted by

$$\theta_i^{(j)\star} := \underset{\theta \in \Theta, \theta_l = \theta_l^{\star} \forall l \neq i}{\arg \min} R^{(j)}(\theta).$$

A natural measure for tunability of the i-th parameter on dataset j is then the difference in risk between the above and our default reference configuration:

$$d_i^{(j)} := R^{(j)}(\theta^*) - R^{(j)}(\theta_i^{(j)*}), \text{ for } j = 1, ..., m, i = 1, ..., k.$$

What I've liked about the article:

- released code and data
- shiny app :)
 https://philipppro.shinyapps.io/tunability/

What I've liked about the article:

- released code and data
- shiny app:)
 https://philipppro.shinyapps.io/tunability/

Possible improvements:

- application to multiclass classification, regression, survival analysis
- diversity of datasets in benchmark
- data-based hyperparameters
- better sampling (problem for high dimensional spaces)
- explanations of surrogate model

What I've liked about the article:

- released code and data
- shiny app :)
 https://philipppro.shinyapps.io/tunability/

Possible improvements:

- application to multiclass classification, regression, survival analysis
- diversity of datasets in benchmark
- data-based hyperparameters
- better sampling (problem for high dimensional spaces)
- explanations of surrogate model

Hyperparameter Importance Across Datasets

J. N. van Rijn, F. Hutter https://arxiv.org/abs/1710.04725

Meta learning for defaults: symbolic defaults

Jan N. van Rijn, Florian Pfisterer, Janek Thomas, Andreas Muller, Bernd Bischl, J. Vanschoren https://research.tue.nl/en/publications/meta-learning-for-defaults-symbolic-defaults