Exercises Set 6

Paul Dubois

September 29, 2023

Abstract

Only the questions with a * are compulsory (but do all of them!).

1 Lagrangian multiplier technique

1.1 Unconstrained optimization

Let $f(x,y) = 2x^2 - 3x + 4y^2 + 4y + 20$. Find $(x^*, y^*) \in \mathbb{R}^2$ such that f reaches its minimum (i.e. $f(x^*, y^*) \leq f(x, y) \quad \forall (x, y) \in \mathbb{R}^2$).

1.2 Constrained optimization

Let $f(x,y) = 2x^2 - 3x + 4y^2 + 4y + 20$. Suppose further that we want 3x + 5y = 2. Find $(x^*, y^*) \in \mathbb{R}^2$ such that $3x^* + 5y^* = 2$ and f reaches its minimum (i.e. $f(x^*, y^*) \leq f(x, y) \quad \forall (x, y) \in \mathbb{R}^2$, 3x + 5y = 2).

1.3 Lagrange multiplier

Let $f(x,y) = 2x^2 - 3x + 4y^2 + 4y + 20$. Suppose further that we want 3x + 5y = 2. Let $\mathcal{L}(x,y,\lambda) = f(x,y) - \lambda(3x + 5y - 2)$. Find the point where $\nabla f = 0$