Le Gohebel Lorys, Mechineau Alexandre

Sommaire

Etude de l'équation de la chaleur par la méthode des différences finies	
Etude des graphes de la solution approchée Uh(x,T) pour x [0,1] à t=T	
T=0.0004:	3
T=0,0016:	4
T=0,0024:	5
T=0,016:	6
Conclusion	7
Etude de l'erreur max des deux schémas	8
Erreur du schéma explicite :	8
Erreur du schéma implicite :	9
Conclusion : Convergence	10
Annexe ·	10

Etude de l'équation de la chaleur par la méthode des différences finies

On rappel l'équation de la chaleur :

$$\begin{cases} \frac{\partial u}{\partial t}(x,t) - \frac{\partial^2 u}{\partial x^2}(x,t) = f(x,t), \ \forall x \in]0,1[, \ \forall t \in]0,T[\\ u(0,t) = u_g, \ \forall t \in [0,T]\\ u(1,t) = u_d, \ \forall t \in [0,T]\\ u(x,0) = u_0(x), \ \forall x \in [0,1] \end{cases}$$

Et on étudie cette équation avec les conditions suivantes :

$$\begin{cases} f(x,t) = 0, \\ u_0(x) = \sin(\pi x) + \frac{1}{4}\sin(10\pi x), \\ u_g = 0, \ u_d = 0. \end{cases}$$

Etude des graphes de la solution approchée Uh(x,T) pour x dans [0,1] à t=T

On fixe N à 100 et dt à 0.00001, ce qui nous donne les différents graphes en prenants des T différents

T=0.0004:

T=0,0016:

T=0,0024:

T=0,016:

Conclusion

Etude de l'erreur max des deux schémas

Soit T=0.016, on fait varier h et dt et regarde l'évolution de l'erreur max.

Erreur du schéma explicite :

On fixe dt=0.0001 et on fait varier h :

h	0.1	0.05	0.015	0.013	0.01
erreur	1.03507e-3	1.55059e-2	2.58991e-2	1.94493e+17	4.55092e+59

On fixe maintenant h=0.01 et on fait varier dt :

dt	0.00001	0.00004	0.00005	0.00006	0.0001
erreur	3.05385e-4	1.07464e-3	1.54246e-3	1.34328e+22	4.55092

Erreur du schéma implicite :

On fixe dt=0.0001 et on fait varier h :

h	0.1	0.05	0.015	0.013	0.01
erreur	1.16546e-3	2.28277e-2	2.58545e-2	3.15007e-2	5.08564e-3

On fixe maintenant h=0.01 et on fait varier dt :

dt	0.00001	0.00004	0.00005	0.00006	0.0001
erreur	1.20663e-3	2.53140e-3	2.96574e-3	3.39728e-3	5.08564e-3

Conclusion : Convergence

Annexe: