EE 5301 – VLSI Design Automation I

Part IV: Floorplanning

Kia Bazargan

University of Minnesota

Fall 2002

EE 5301 - VLSI Design Automation I

References and Copyright

- Textbooks referred (none required)
 - [Mic94] G. De Micheli "Synthesis and Optimization of Digital Circuits" McGraw-Hill, 1994.
 - [CLR90] T. H. Cormen, C. E. Leiserson, R. L. Rivest "Introduction to Algorithms"
 MIT Press, 1990.
 - [Sar96] M. Sarrafzadeh, C. K. Wong "An Introduction to VLSI Physical Design" McGraw-Hill, 1996.
 - [She99] N. Sherwani
 "Algorithms For VLSI Physical Design Automation"
 Kluwer Academic Publishers, 3rd edition, 1999.

Fall 2002

EE 5301 - VLSI Design Automation I

References and Copyright (cont.)

- Slides used: (Modified by Kia when necessary)
 - [©Sarrafzadeh] © Majid Sarrafzadeh, 2001;
 Department of Computer Science, UCLA
 - [©Sherwani] © Naveed A. Sherwani, 1992 (companion slides to [She99])
 - [©Keutzer] © Kurt Keutzer, Dept. of EECS, UC-Berekeley
 - http://www-cad.eecs.berkeley.edu/~niraj/ee244/index.htm
 - [©Gupta] © Rajesh Gupta UC-Irvine

http://www.ics.uci.edu/~rgupta/ics280.html

• [©Kang] © Steve Kang UIUC

http://www.ece.uiuc.edu/ece482/

Fall 2002

EE 5301 - VLSI Design Automation I

Floorplanning

- Problem
 - Given circuit modules (or cells) and their connections, determine the approximate location of circuit elements
 - Consistent with a hierarchical / building block design methodology
 - Modules (result of partitioning):
 - o Fixed area, generally rectangular
 - o Fixed aspect ratio → hard macro (aka fixed-shaped blocks) fixed / floating terminals (pins) Rotation might be allowed / denied
 - Flexible shape → soft macro (aka soft modules)

Fall 2002 EE 5301 - VLSI Design Automation I

Floorplanning (cont.) Objectives: Minimize area Determine best shape of soft modules Minimize total wire length o to make subsequent routing phase easy (short wire length roughly translates into routability) • Additional cost components: Wire congestion (exact routability measure) Wire delays O Power consumption Possible additional constraints: Fixed location for some modules Fixed die, or range of die aspect ratio NP-hard (what did vou expect? ☺) Fall 2002 EE 5301 - VLSI Design Automation I

Slicing Floorplan Sizing Algorithm Procedure Vertical_Node_Sizing Input: Two sorted lists $L = \{ (a_1, b_1), \dots, (a_s, b_s) \},$ $\begin{array}{c} R = \{ \, (x_1, y_1), \, \dots, \, (x_t, y_t) \, \} \\ \text{where } a_i < a_i, \, b_i > b_i, \, x_i < x_j, \, y_i > y_j \text{ for all } i < j \\ \text{Output: A sorted list } H = \{ \, (c_1, \, d_1), \, \dots, \, (c_u, d_u) \, \} \\ \text{where } u \leq s + t - 1, \, c_i < c_j, \, d_i > d_j \text{ for all } i < j \\ \end{array}$ begin-1 H := 0i := 1, j := 1, k = 1while $(i \le s)$ and $(j \le t)$ do begin-2 $(c_k, d_k) := (a_i + x_i, max(b_i, y_i))$ $\mathsf{H} := \mathsf{H} \cup \{\,(\mathsf{c}_k,\,\mathsf{d}_k^{\,\underline{\,}})\,\}$ k := k + 1if $max(b_i, y_j) = b_i$ then i := i + 1if $max(b_i, y_j) = y_j$ then j := j + 1end-2 end-1 [©Sarrafzadeh] Fall 2002 EE 5301 - VLSI Design Automation I

Slicing Floorplan Sizing

- Input: floorplan tree, modules shapes
- Start with sorted shapes lists of modules
- In a bottom-up fashion, perform:
 - Vertical_Node_Sizing AND Horizontal Node Sizing
- When get to the root node, we have a list of shapes. Select the one that is best in terms of
- In a top-down fashion, traverse the floorplan tree and set module locations

Fall 2002 EE 5301 - VLSI Design Automation I

Simulated Annealing

- Idea originated from observations of crystal formations (e.g., in lava)
 - A crystal is in a low energy state
 - Materials tend to form crystals (global minimum)
 - If at the right temperature (i.e., right speed), a molecule will adhere to a crystal formation
- Very slowly decrease temperature
 - When very hot, molecules move freely
 - When a molecule gets to a chunk of crystal, it *might* move away due to its high speed
 - When colder, molecules slow down
 - The probability of moving away from a local optimum decreases
 - When the material "freezes", all molecules are fixed and the material is in minimum energy state

Fall 2002

Fall 2002

EE 5301 - VLSI Design Automation I

129

Simulated Annealing Algorithm

- Components:
 - Solution space (e.g., slicing floorplans)
 - Cost function (e.g., the area of a floorplan)
 - o Determines how "good" a particular solution is
 - Perturbation rules (e.g., transforming a floorplan to a new one)
 - Simulated annealing engine
 - o A variable T, analogous to temperature
 - o An initial temperature T_0 (e.g., $T_0 = 40,000$)
 - o A freezing temperature T_{freez} (e.g., T_{freez}=0.1)
 - o A cooling schedule (e.g., T = 0.95 * T)

Fall 2002 EE 5301 - VLSI Design Automation I

139

Simulated Annealing Algorithm

```
Procedure SimulatedAnnealing
   curSolution = random initial solution
   while (T > T_{freez}) do
       for i=1 to NUM_MOVES_PER_TEMP_STEP do
           nextSol = perturb (curSolution)
           \Delta cost = cost(nextSol) - cost(curSolution)
           if acceptMove (∆cost, T) then
               curSolution = nextSol
                                         // accept the move
       T = coolDown (T)
Procedure acceptMove (\Deltacost, T)
   if \Delta \cos t < 0 then return TRUE
                                      // always accept a good move
       boltz = e^{-\Delta cost \ / \ k \ T}
                                      // Boltzmann probability function
       r = random(0,1)
                                      // uniform rand # between 0&1
       if r < boltz then return TRUE
       else return FALSE
```

EE 5301 - VLSI Design Automation I

Simulated Annealing: Move Acceptance

- Good moves are always accepted
- Accepting bad moves:
 - When $T = T_0$, bad move acceptance probability ≈ 1
 - When T = T_{freez}, Bad move acceptance probability = 0
- Boltzmann probability function?!?
 - boltz = $e^{-\Delta \cos t / k T}$.
 - k is the Boltzmann constant, chosen so that all moves at the initial temperature are accepted

Fall 2002

EE 5301 - VLSI Design Automation I

Wong-Liu Floorplanning Algorithm Uses simulated annealing Normalized Polish expressions represent floorplans Cost function: cost = area + λ totalWireLength Floorplan sizing is used to determine area After floorplan sizing, the exact location of each module is known, hence wire-length can be calculated Perturbation?....

Other Floorplanning Methods

- · Rectangular dual graph
- Linear programming (floorplan sizing)
- Non-slicing methods
 - Sequence-pair
 - Bounded slice line grid
 - O-tree
 - Corner block list

Fall 2002

EE 5301 - VLSI Design Automation I

To Probe Further...

- X. Hong, G. Huang, Y. Cai, et. al.,
 "Corner Block List: an Effective and Efficient Topological
 Representation of Non-slicing Floorplan",
 Int'l Conference on Computer Aided Design (ICCAD), pp. 8-12, 2000.
 (non-slicing floorplan representation)
- Yingxin Pang , Chung-Kuan Cheng , Koen Lampaert , Weize Xie, "Rectilinear block packing using O-tree representation", Int'l Symposium on Physical Design (ISPD), pp. 156-161, 2001. (extension of the non-slicing floorplan representation "O-tree" to handle L-shaped modules)

Fall 2002

EE 5301 - VLSI Design Automation I

To Probe Further...

- Andrew B. Kahng, "Classical Floorplanning Harmful?", Int'l Symposium on Physical Design (ISPD), pp. 207-213, 2000. (survey + future directions)
- F. Y. Young and D. F. Wong, "Slicing Floorplans With Range Constraint", Int'l Symposium on Physical Design (ISPD), pp. 97-102, 1999. (extension of Wong-Liu, some modules restrained to some regions)
- K. Bazargan, S. Kim and M. Sarrafzadeh, "Nostradamus: A Floorplanner of Uncertain Designs", Int'l Symposium on Physical Design (ISPD), pp. 18-23, 1998. (extension of Wong-Liu, notion of flexibility of a floorplan)

Fall 2002

EE 5301 - VLSI Design Automation I

VLSI Design Automation I - © Kia Bazargan