

A Physics-Informed Neural Network for the Calibration of Electromagnetic Navigation Systems

P. Ernst¹, S. Gervasoni^{1,2}, D. Sivakumaran^{1,2}, E. Masina¹, D. Sargent^{1,2}, B. J. Nelson², Q. Boehler²

¹MagnebotiX AG, Zurich Switzerland ²ETH Zurich, Multi-Scale Robotics Lab, Zurich Switzerland

Electromagnetic Navigation Systems

Used to navigate Microrobots & Surgical Tools

Precise Torque & Force Control requires Field and Gradient models

- Additional Output:
 Analytical derivation of magnetic gradient
- Dataset:Forward Model is fitted to a system with dataset

- Physics Consistency:
 Inverse of the fitted Forward Model
- Control:

 Can be used for control tasks

Existing Methods

Classical Methods

Multipole Electromagnet Model (MPEM) ¹

Fails under Magnetic Saturation

Guaranteed Maxwell consistency $\nabla \cdot \mathbf{B} = 0$ and $\nabla \times \mathbf{B} = 0$

¹ Petruska, Andrew J., et al. "Model-based calibration for magnetic manipulation." IEEE Transactions on Magnetics 53.7 (2017): 1-6.

Existing Methods

Machine Learning Methods

Artificial Neural Network (ANN)²
Convolutional Neural Network (CNN)²

Models Nonlinearity

Violates Maxwell Equations

²Charreyron, Samuel L., et al. "Modeling electromagnetic navigation systems." IEEE Transactions on Robotics 37.4 (2021): 1009-1021.

Existing Methods

Classical Methods

Multipole Electromagnet Model (MPEM) ¹

Fails under Magnetic Saturation

Guaranteed Maxwell consistency $\nabla \cdot \mathbf{B} = 0$ and $\nabla \times \mathbf{B} = 0$.

Artificial Neural Network (ANN)²
Convolutional Neural Network (CNN)²

Models Nonlinearity

Violates Maxwell Equations

²Charreyron, Samuel L., et al. "Modeling electromagnetic navigation systems." IEEE Transactions on Robotics 37.4 (2021): 1009-1021.

¹ Petruska, Andrew J., et al. "Model-based calibration for magnetic manipulation." IEEE Transactions on Magnetics 53.7 (2017): 1-6.

Approach – Forward Model

Approach – Forward Model

Approach – Backward Model

Without Magnetic Gradient:

With Magnetic Gradient:

Unsupervised Learning

Supervised Learning

Results – Open-loop Control

Results – Open-loop Control

Implications

Balance:

PINN balances accuracy & physics consistency

Inverse Solution:

- PINN leads to better inverse solution
- Inverse solution improves open-loop control

A Physics-Informed Neural Network for the Calibration of Electromagnetic Navigation Systems

P. Ernst¹, S. Gervasoni^{1,2}, D. Sivakumaran^{1,2}, E. Masina¹, D. Sargent^{1,2}, B. J. Nelson², Q. Boehler²

¹ MagnebotiX AG, Zurich Switzerland

²ETH Zurich, Multi-Scale Robotics Lab, Zurich Switzerland

Introduction

Electromagnetic Navigation Systems enable precise control of microrobots and magnetic tools in biomedicine

- · Accurate field and gradient models are critical for force and torque control.
- · Conventional linear models (e.g. Multipole Electromagnet Model)
- respect physics but do not capture saturation

 Data-driven models (e.g. ANN, CNN)
- Data-driven models (e.g. ANN, CNN)
 capture nonlinearities but violate Maxwell's equations, impeding accurate estimation of magnetic gradients.

We introduce a Physics-Informed Neural Network (PINN) that

- Embeds Maxwell's constraints,
- · Predicts fields & gradients consistently,
- Enables reliable inverse models,
- · Improves open-loop control performance

Methods

- Forward Model (PINN): promotes ∇ · B = 0 and ∇ × B = 0.
- Backward Models: w/o ∇B; efficient current sets (low norm), w/ ∇B: precise force control.
- Consistency: backward models use the trained PINN, ensuring physics compliance

Results

Prediction Accuracies					Open-loop Control Experiment			
					Trained on ANN data	Trained on PINN data	Trained on ANN data	Trained on PINN data
Model	RMSE	R ²	Curl (T/m)	Div. (T/m)	2 mm	2 mm	2 mm	2 mm
Forward Model					0.		and a	- Land
ANN	1.88	0.993	20.9	33.9		Service .		
PINN	3.24	0.981	12.5	6.1		3		
Вас	kward Mo	odel w/	о ⊽В					
ANN	0.7	0.999			Trained on ANN data	Trained on PINN data	Trained on ANN data	Trained on PINN data
PINN	0.6	0.999			2 mm	2 mm	2 mm	2 mm
Bad	ckward M	odel w	VB		No.		-	_
ABINI	0.785	0.884			-	4	*	1
ANN								

Conclusion

- · PINN balances accuracy and physics consistency
- PINN-trained backward model lead to better inverse solution
- · Introduced model leads to improved open-loop control.

