PROJET SEMAINE THÉMATIQUE

Projet: Matrices et ACP

Consignes:

- Résoudre les différents exercices à l'aide du logiciel R sous R-studio
- Écrire les scripts pour chaque traitement
- Présenter les résultats dans un **pdf** avec tous les tracés et tableaux de calcul
- Commenter et interpréter les résultats lors de la soutenance

Exercice 1

Voici la méthode de la puissance pour évaluer une valeur propre strictement dominante :

- 1. Choisir un vecteur initial x_0 dont la plus grande composante est 1
- 2. Pour k = 0, 1, ...
 - a. Calculer Ax_k
 - b. Appeler μ_k une composante de Ax_k dont la valeur absolue est la plus grande possible
 - c. Calculer $x_{k+1} = \frac{1}{\mu_k} A x_k$
- 3. La suite (μ_k) s'approche de la valeur propre dominante et la suite (x_k) s'approche d'un vecteur propre associé, à peu près quel que soit le choix de x_0

Calculer μ_k pour k = 1, ..., 4 dans les cas suivants

1.
$$A = \begin{pmatrix} 5 & 2 \\ 2 & 2 \end{pmatrix}, x_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

2.
$$A = \begin{pmatrix} -3 & 2 \\ 2 & 2 \end{pmatrix}$$
, $x_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

3. Faire le test pour une matrice symétrique d'ordre 8 et x_0 à composantes positives dont la plus grande est 1.

Exercice 2

On considère le modèle d'emploi suivant. Chaque personne dans la population est soit employé soit sans emploi. Les deux états de ce modèle sont "être employé" et "être sans emploi". Soit $x_k = (a_k, b_k)$, avec a_k la fraction de population qui est employée à la fin de la période n et b_k la fraction sans-emploi. Supposons qu'une personne employée a une probabilité de 90% de rester employée à la période suivante et qu'une personne sans-emploi a une probabilité de 60% de rester sans-emploi a la période suivante.

- 1. Donner le taux de chômage à long terme.
- 2. Pour $x_0 = (20, 16)$, tracer x_k , pour les 15 premières années.

Exercice 3

Soit le système

$$(S): \left\{ \begin{array}{c} x' = 2y \\ y' = -2x - 4x^3 - \varepsilon y \end{array} \right.$$

1. Cas $\varepsilon = 4$

On suppose qu'autour du point d'équilibre (0,0) le système est approché par

$$(S_1): \left\{ \begin{array}{c} x' = 2y \\ y' = -2x - 4y \end{array} \right.$$

- a. Écrire le système en utilisant une matrice A et montrer qu'elle est diagonalisable
- b. Résoudre ce système localement à (0,0) avec comme condition initiale x(0) = 1, y(0) = 1. Tracer les solutions de (S_1)
- c. A l'aide des fonctionnalités de R, résoudre directement (S), tracer les solutions et comparer avec la question 1.b
- 2. Cas $\varepsilon = 8$

On suppose qu'autour du point d'équilibre (0,0) le système est approché par

$$(S_2): \begin{cases} x' = 2y \\ y' = -2x - 8y \end{cases}$$

- a. Écrire le système en utilisant une matrice A et montrer qu'elle est diagonalisable
- b. Résoudre ce système localement à (0,0) avec comme condition initiale x(0) = 1, y(0) = 1. Tracer les solutions de (S_2)
- c. A l'aide des fonctionnalités de R, résoudre directement (S), tracer les solutions et comparer avec la question 2.b

Exercice 3 : véhicules vendus en France

On dispose de données techniques sur 52 véhicules vendus en France (année modèle 1994). Les variables sont : Puiss (puissance, en chevaux fiscaux), Cyl (cylindrée, en cm³), Long (longueur), Larg (largeur), Surf (surface) Poids (poids total en kg), Vites (vitesse maximum en km/h), DepArr (temps, en secondes, pour parcourir 1000m, départ arrêté), Conso (consommation moyenne aux 100km, en litres d'essence ou gazole). Les marques des véhicules sont abrégées Al (Alfa-Romeo), BM (BMW), Ci (Citroën), Fi (Fiat), Pe (Peugeot) et Re (Renault). Les données sont reproduites ci-dessous

	Puiss	Cy1	Long	Larg	Surf	Poids	Vites	DepArr	Conso		Puiss	Cy1	Long	Larg	Surf	Poids	Vites	DepArr	Conso
A13315ie	7	1490	4.07	1.61	6.58	970	180	31.4	7.7	FITEMPRATD	6	1929	4.35	1.70	7.38	1190	178	34.0	6.0
A115520	10	1995	4.44	1.70	7.55	1215	205	31.3	8.0	FiCROMA20	10	1995	4.52	1.76	7.95	1250	190	32.1	8.9
A1155TD	6	1929	4.44	1.70	7.55	1250	180	35.0	6.4	FiCROMA25TD	8	2500	4.52	1.76	7.95	1370	192	33.0	7.2
A116425T	7	2500	4.55	1.76	8.02	1490	202	32.2	6.8	Pe106XN	4	954	3.56	1.58	5.62	760	145	39.0	5.9
BM316i	7	1596	4.43	1.70	7.53	1190	191	34.1	7.9	Pe106XTD	4	1360	3.56	1.58	5.62	840	145	40.1	4.8
BM325TD	7	2498	4.43	1.70	7.53	1335	198	33.3	6.9	Pe306XN	6	1360	3.99	1.69	6.75	1020	165	36.2	6.7
BM518i	10	1796	4.72	1.75	8.26	1360	194	33.6	8.6	Pe306XTDT	6	1905	3.99	1.69	6.75	1120	180	34.2	6.0
BM730i	16	2986	4.91	1.85	9.06	1600	222	30.1	11.1	Pe405GL	6	1360	4.41	1.69	7.46	1030	169	36.3	7.1
CiaX10	12	954	3.53	1.55	5.48	706	149	38.3	5.8	Pe405SR	7	1761	4.41	1.69	7.46	1100	185	33.5	7.5
CiAX14i	7	1360	3.53	1.55	5.48	772	176	33.6	6.7	Pe405STD	6	1905	4.41	1.69	7.46	1150	181	34.4	7.2
CiaX14TD	4	1360	3.53	1.55	5.48	720	152	38.3	4.2	Pe605SLi	9	1998	4.72	1.80	8.50	1295	199	33.2	9.5
CiZX11	5	1124	4.07	1.70	6.93	935	161	37.6	6.6	Pe605Sv24	16	2975	4.72	1.80	8.50	1460	235	28.6	9.5
CiZX16	7	1580	4.07	1.70	6.93	995	177	34.9	7.5	Pe605SLD	6	2138	4.72	1.80	8.50	1360	176	36.5	6.6
CiZX19TD	5	1905	4.07	1.70	6.93	1050	185	34.0	5.9	ReTwingo	5	1239	3.43	1.63	5.59	790	150	35.9	6.5
Cixantia161	7	1580	4.44	1.75	7.80	1124	175	36.4	7.9	ReClio12RN			3.71				155	38.8	6.2
Cixantia18I	9	1761	4.44	1.75	7.80	1176	187	34.3	7.9	ReClio14RN	6	1390	3.71	1.62	6.02	850	175	33.0	6.4
CiXANTIA20i	11	1998	4.44	1.75	7.80	1238	198	33.3	8.3	ReClio19D	6	1870	3.71	1.62	6.02	905	161	36.0	5.5
CIXANTIATD	6	1905	4.44	1.75	7.80	1252	180	35.5	6.5	Re1914RN	7	1390	4.16	1.70	7.08	965	173	34.0	6.6
CiXM20i	11	1998	4.71	1.79	8.45	1310	201	33.3	9.5	Re1918RN	7	1794	4.16	1.70	7.08	1045	176	33.6	7.7
CiXMV6	16	2963	4.71	1.79	8.45	1420	222	33.3	9.5	Re1919dT	5	1870	4.16	1.70	7.08	1080	183	32.9	5.9
CiXMTD12	6	2088	4.71	1.79	8.45	1396	192	34.6	6.4	Re21PrimaTS	7	1721	4.53	1.73	7.82	1010	185	32.1	7.5
FiUN014ie	6	1372	3.69	1.56	5.75	860	165	34.0	7.4	Re21PrimaTD	6	2068	4.53	1.73	7.82	1130	177	33.5	6.1
FiUNOTD	5	1367	3.69	1.56	5.75	910	165	34.0	5.3	ReSafrane20i	9	1995	4.73	1.82	8.61	1370	189	33.8	8.8
FiTIPO18ie	9	1756	3.96	1.70	6.73	1180	183	33.0	8.8	ReSafrane25d	6	2499	4.73	1.82	8.61	1565	195	34.3	7.6
FiTIPOTD	6	1929	3.96	1.70	6.73	1150	175	34.0	5.9	ReEspace22i	11	2165	4.43	2.06	9.13	1320	175	33.9	9.7
FiTEMPRA18ie	9	1756	4.35	1.70	7.38	1190	188	32.7	8.5	ReEspace21dT	6	2068	4.43	2.06	9.13	1350	162	36.5	7.5

A. Analyse rapide des variables

On donne ci-dessous la matrice des corrélations des variables

```
Cyl
                                                           Vites
                                                                  DepArr
Puiss
        1.0000
                0.5911
                        0.5073
                                 0.4098
                                         0.5093
                                                 0.5236
                                                          0.7239
                                                                 -0.5722
                                                                          0.8005
Cy1
        0.5911
                1.0000
                        0.7566
                                 0.6417
                                         0.7611
                                                 0.8853
                                                          0.8385 -0.6379
                                                                          0.5412
        0.5073
                0.7566
                        1.0000
                                0.7436
                                         0.9574
                                                                          0.6646
Long
                                                 0.9078
                                                          0.7853
                                                                 -0.5388
        0.4098
                0.6417
                        0.7436
                                 1.0000
                                         0.9039
                                                 0.7799
                                                          0.4700
                                                                 -0.3064
                                                                           0.6091
Larg
Surf
        0.5093
                0.7611
                        0.9574
                                 0.9039
                                         1.0000
                                                 0.9154
                                                          0.7048 -0.4713
Poids
        0.5236
                0.8853
                        0.9078
                                 0.7799
                                         0.9154
                                                 1.0000
                                                         0.8031 -0.5558
                                                                          0.6366
Vites
        0.7239
                0.8385
                        0.7853
                                0.4700
                                         0.7048
                                                 0.8031
                                                          1.0000 -0.8306
                                                                          0.7136
DepArr
        0.5722
                0.6379
                        -0.5388
                                 0.3064
                                         0.4713
                                                 0.5558
                                                         -0.8306
        0.8005
                0.5412
                        0.6646
                                0.6091
                                         0.6897
                                                 0.6366
                                                         0.7136 -0.6171
```

- 1. Quelles sont les couples de variables particulièrement peu corrélées entre elles?
- 2. Pour chacune des 4 premières composantes principales, donner la liste des individus qui contribuent à l'axe de manière significative.

B. Analyse des composantes principales

On procède à une analyse en composantes principales sur variables centrées-réduites de ces données. On donne ci-dessous les écarts types des 5 premières composantes principales.

3. Expliquez leur lien avec les valeurs propres des axes principaux et déduisez-en le nombre d'axes principaux que l'on doit garder pour l'analyse. Quelle part d'inertie totale sera alors représentée?

On donne ci-dessous, pour les deux premiers axes seulement, les corrélations des variables (ainsi que le cercle des corrélations), les coordonnées des individus, leurs contributions aux axes (en 10000e) et leur qualités de représentation par les axes (en 10000e encore). Les tableaux concernant les individus sont coupés en deux pour des raisons de hauteur.

- 4. Quelles variables déterminent les deux premières composantes principales (précisez les critères utilisés)?
- 5. Que peut-on dire d'un éventuel effet de taille? Expliquez ce qui se passe (et comment arranger les choses).
- 6. Comment peut-on interpréter la première composante principale? Et la seconde?
- 7. Quels sont les individus qui déterminent les deux premiers axes principaux? (précisez les critères utilisés).
- 8. Quels sont les 5 individus les moins bien représentés par le sous espace qu'on a déterminé en question 3?

C. Influence du type de moteur

On s'intéresse aux véhicules à moteur diesel (les autres ont un moteur à essence). On en détermine la liste en regardant les modèles de voitures dont le nom contient la lettre "D" ou "d". Les coordonnées du barycentre des véhicules diesel sur les deux premiers axes principaux sont respectivement 0.4451 et -0.6599.

- 9. Combien de véhicules correspondent à ce critère? Expliquez comment ce critère définit une variable supplémentaire, et comment on l'utilise.
- 10. Calculer les valeurs test de la modalité "diesel" sur les deux premiers axes. Peut-on en déduire une nouvelle interprétation des axes principaux? On supposera le nombre d'individus suffisant.