通信原理习题课

Assignment No. 3

TA 周梓钦

- 1. A DSBSC-AM signal $x(t) = sinc(1000t) cos(2\pi f_c t)$ is demodulated using the system shown below. The box marked (.)² is a square-law device that produces an output equal to the square of its input. The DC blocking capacitor removes all DC components at its input.
 - (a) Show that the demodulated output contains distortion.
 - (b) How should the lowpass filter (LPF) be designed to minimize this distortion?
 - (c) What is the minimum carrier frequency f_c permitted for this demodulator?

$$[x(t) + A\cos(2\pi f_c t)]^2 = [sinc(1000t)\cos(2\pi f_c t) + A\cos(2\pi f_c t)]^2$$

$$= [sinc(1000t) + A]^2\cos^2(2\pi f_c t)$$

$$= \frac{1}{2}[sinc^2(1000t) + 2Asinc(1000t) + A^2] + \frac{1}{2}\cos(4\pi f_c t)(sinc^2(1000t) + 2Asinc(1000t) + A^2]$$

Amplitude spectrum of $sinc(1000t) = \frac{1}{1000} rect(\frac{1}{1000}f)$

Amplitude spectrum of $sinc^2(1000t) = \frac{1}{1000} rect(\frac{1}{1000}f) \otimes \frac{1}{1000} rect(\frac{1}{1000}f)$

Output = Asinc(1000t)+distortion

$$BW = 500 \text{ HZ}$$

$$\frac{1}{2}[sinc^2(1000t) + 2Asinc(1000t) + A^2] + \frac{1}{2}cos(4\pi f_c t)(sinc^2(1000t) + 2Asinc(1000t) + A^2]$$

Solution of (c)

$$2f_c - 1000 > 500$$

 $f_c > 750Hz$

- 2. A QAM signal with a carrier frequency of 4KHz is formed by modulating a message signal $s_1(t) = 1$ volt onto the in-phase carrier and another message signal $s_2(t) = -1$ volt onto the quadrature-phase carrier.
 - (a) Determine the time-domain expression of the QAM signal. Write your answer as a single cosine term.
 - (b) Demodulate the QAM signal obtained in Part (a) using a coherent detector.

QAM signal =
$$s_1(t)\cos(2\pi f_c t) + s_2(t)\sin(2\pi f_c t)$$

= $\cos(8000\pi t) - \sin(8000\pi t)$
= $\sqrt{2}\cos\left(8000\pi t + \frac{\pi}{4}\right)$

1. In- phase demodulator output:

$$= \left[\sqrt{2} \cos \left(8000\pi t + \frac{\pi}{4} \right) * \cos(8000\pi t) \right]_{LPF}$$

$$= \frac{\sqrt{2}}{2} \left[\cos \left(\frac{\pi}{4} \right) + \cos(16000\pi t + \frac{\pi}{4}) \right]_{LPF}$$

$$= \frac{\sqrt{2}}{2} \cos \left(\frac{\pi}{4} \right) = \frac{1}{2}$$

2. Q- phase demodulator output:

$$= \left[\sqrt{2} \cos \left(8000\pi t + \frac{\pi}{4} \right) * \sin(8000\pi t) \right]_{LPF}$$

$$= \frac{\sqrt{2}}{2} \left[-\sin \left(\frac{\pi}{4} \right) + \sin(16000\pi t + \frac{\pi}{4}) \right]_{LPF}$$

$$= -\frac{\sqrt{2}}{2} \sin \left(\frac{\pi}{4} \right) = -\frac{1}{2}$$

- 3. Given two message signals $m_1(t) = \text{sinc}(200t)$ and $m_2(t) = 2 \cos(2\pi f_0 t)$ where f_0 can range from 0Hz to 120Hz. Compare the minimum amount of bandwidth required to transmit them using
 - (a) DSBSC-AM and frequency division multiplexing (FDM)
 - (b) QAM

Amplitude spectrum of sinc(200t) = 1/200 rect(1/200 f)

Amplitude spectrum of $2\cos(2\pi f_0 t) = \delta(f - f_c) + \delta(f + f_c)$

FDM signal = $m_1(t) \cos(2\pi f_1 t) + m_2(t) \cos(2\pi f_2 t)$

 $BW = 200 + 240 \ge 440 \text{ Hz}$

b) QAM signal = $m_1(t)\cos(2\pi f_c t) + m_2(t)\sin(2\pi f_c t)$)

BW = $240 \ge 240 \text{ Hz}$