对于生物体内 ATP 合成反应的系统生物学建模

生信 2001 张子栋 2023 年 6 月 9 日

目录

1	生物	学背景													1
2	模型	的建立													1
	2.1	ATP {	合成的相关反	应	 						 				1
		2.1.1	各反应反应	速率常数	 						 				1
	2.2	建立常	微分方程组		 						 				2
		2.2.1	模型需要满	足的假设	 						 				2
		2.2.2	常微分方程	组的建立	 						 				2
	2.3	模型中	各物质初始》	衣度											3

1 生物学背景 1

1 生物学背景

ATP 合成是细胞代谢中一个非常重要的过程,它可以利用电子传递链产生的质子驱动力,将 ADP 和无机磷酸合成为 ATP,从而提供细胞所需的能量。ATP 合成反应是一个氧化磷酸化的过程,发生在真核细胞的线粒体内膜或原核生物的细胞质中;ATP 合成反应是一个偶联反应,即有机物在体内氧化时释放的能量通过呼吸链供给 ADP 与无机磷酸合成 ATP。氧化磷酸化过程中 ATP 的合成与电子传递链上的几种复合体密切相关。电子传递链(ETC)上有五种酶复合物支持 OXPHOS 系统运转:复合物 I(也称 CI 或 NADH:泛醌氧化还原酶),复合物 II(也称 CII 或琥珀酸脱氢酶 SDH),二聚体复合物 III2(也称 CIII2 或细胞色素 bc1 氧化还原酶),复合物 IV(也称 CIV 或细胞色素 c 氧化酶)。由复合物 I-IV 生成的质子梯度随后被复合物 V,也就是 ATP 合酶所利用,将 ADP 磷酸化为 ATP。本文从系统生物学的角度对ATP 合成过程进行建模和求解,基于已知的实验数据和资料,建立一个可计算的数学模型,通过模拟和求解此模型,获得有关 ATP 合成过程的定量信息,以探究 ATP 合成的机制。

2 模型的建立

2.1 ATP 合成的相关反应

ATP 合成包括以下反应:

$$\begin{array}{l} {\rm ADP + Pi} \xrightarrow{\rm ATP \; Synthase} {\rm ATP} \\ {\rm ATP} \xrightarrow{\rm ATP \; ase} {\rm ADP + Pi} \\ {\rm NADH + H} \xrightarrow{\rm Complex \; II} {\rm FADH_2} \\ {\rm FADH_2 + H} \xrightarrow{\rm Complex \; II} {\rm NADH} \\ {\rm NADH + H + \frac{1}{2} \; O_2} \xrightarrow{\rm Complex \; IV} {\rm NAD^+ + H_2O} \end{array}$$

其中,第一个反应是由复合物 V(ATP 合酶)催化的,产物是 ATP,这个反应被称为磷酸化;第二个反应是由复合物 V(ATP 酶)催化的,产物是 ADP 和 Pi,这个反应被称为解磷酸化。第三个反应是由复合物 I(NADH-辅酶 Q 氧化还原酶)和复合物 III(细胞色素 bc1 复合体)催化的,产物是 ATP,这个反应被称为氧化磷酸化。第三个是由复合物 I 催化,产物是 NAD^+ 和 H^+ ,第四个反应是由复合物 II(脂肪酰辅酶 Q 还原酶)催化,产物是 FAD 和 H^+ 。这两个反应都是电子传递链中的反应。

2.1.1 各反应反应速率常数

各反应反应速率常数如下表, k_1-k_6 分别对应五个反应, K_m 是酶促反应的 Michaelis 常数。

2 模型的建立 2

反应速率平衡常数	数值	单位
k_1	200.0	$mM^{-2}\cdot s^{-1}$
k_2	10.0	s^{-1}
k_3	0.1	s^{-1}
k_4	0.01	s^{-1}
k_5	2.0	$mM^{-1}\cdot s^{-1}$
k_6	0.1	$mM^{-1}\cdot s^{-1}$
K_M	0.1	mM

表 1: 模型中各物质初始浓度

2.2 建立常微分方程组

2.2.1 模型需要满足的假设

采用常微分方程组的方法,建立 ATP 合成的机制动态数学模型。该模型包括以下假设:

- 1. ATP 合成过程中,存在着多个反应步骤,其中一些反应需要能量输入,一些产生能量。
- 2. ATP 合成过程中,各个分子组分之间及其反应关系是相互联系的。
- 3. ATP 合成反应的速率与当时反应物的浓度有关,可以用速率方程来描述。
- 4. ATP 合成反应的速率方程可以用微积分方法来求解,得到一个积分反应速率方程。

2.2.2 常微分方程组的建立

基于 2.2.1 中的假设,建立一个包含五个动态变量(ATP, ADP, Pi, NADH, H)的微分方程组:

$$\begin{split} \frac{\mathrm{d}[\mathrm{ATP}]}{\mathrm{d}\mathrm{d}t} &= k_1[\mathrm{ADP}][\mathrm{Pi}] - k_2[\mathrm{ATP}] \\ \frac{\mathrm{d}[\mathrm{ADP}]}{\mathrm{d}t} &= k_2[\mathrm{ATP}] - k_1[\mathrm{ADP}][\mathrm{Pi}] \\ \frac{\mathrm{d}[\mathrm{Pi}]}{\mathrm{d}t} &= k_1[\mathrm{ADP}][\mathrm{Pi}] - k_2[\mathrm{ATP}] \\ \frac{\mathrm{d}[\mathrm{NADH}]}{\mathrm{d}t} &= -k_3[\mathrm{NADH}][\mathrm{H}] + k_4[\mathrm{FADH}_2][\mathrm{H}] \\ \frac{\mathrm{d}[\mathrm{H}]}{\mathrm{d}t} &= -k_5[\mathrm{NADH}][\mathrm{H}] + k_6[\mathrm{O}_2] \frac{[\mathrm{H}_2\mathrm{O}]}{K_m + [\mathrm{H}_2\mathrm{O}]} \end{split}$$

其中,[ATP]、[ADP]、[Pi]、[NADH] 和 [H] 分别表示三磷酸腺苷、二磷酸腺苷、无机磷酸盐、辅酶 NADH 和氢离子的浓度; k_{1-6} 表示各反应的速率常数; K_m 是酶促反应的 Michaelis 常数。

2 模型的建立 3

2.3 模型中各物质初始浓度

模型中各物质初始浓度如下表:

物质	浓度	单位					
ATP	2.0	mM					
ADP	0.5	mM					
Pi	1.0	mM					
NADH	0.01	mM					
Н	0.001	mM					
FADH_2	0.01	mM					
O_2	0.01	mM					

表 2: 模型中各物质初始浓度