最急降下法に関する疑問

疑問:

1. なぜ値が大きいと大きく修正するのか

2. なぜ逆方向に修正するのか

最急降下法は、

微分係数の絶対値が大きいほど正解から離れていると判断して、より大胆に修正する 微分係数が傾きを表す性質から、微分係数の符号とは逆の方向に修正する

最急降下法の手順は「1. 導関数を求めて(微分して)」、「2. 勾配関数を求める」

1. 導関数を求める

導関数の定義			
f"(x) =	lim h → 0	$\underline{f(x + h) - f(x)}$	
	$h \rightarrow 0$	h	
つまり、微分する			

道閏数	盟 数	道閏数
41/212/2	12132	703
	$f(x) = x^2 + x$	f'(x) = 2x + 1

	微分係数(x)	導関数	出力値
	2	2 * 2 + 1	5
	5	2 * 5 + 1	11
	-2	2 * -2 + 1	-3
-	-5	2 * -5 + 1	-9

結果、値が大きい方が出力も大きい

2. 勾配を求める

勾配関数の定義			
$x^{(k+1)} = x^{(k)} - \eta$ $\frac{\partial}{\partial x^{(k)}}$ $f(x^{(k)})$			
つまり、微分係数 - 導関数の出力値			

	微分係数(x)	導関数出力値	勾配関数	出力値
	2	5	2 - (5)	-3
	5	11	5 - (11)	-6
	-2	-3	-2 - (-3)	1
_	− 5	-9	-5 - (-9)	4

結果、符号が逆転する

結果:

- 1. 値が大きいと大きく修正する
- 2. 逆方向に修正する

微分係数(x)	勾配関数出力値	結果1	結果2
2	-3	小さく修正	マイナスに修正
5	-6	大きく修正	マイナスに修正
-2	1	小さく修正	プラスに修正
-5	4	大きく修正	プラスに修正