Analisi dei fenomeni transitori su circuiti combinatori

Ritardo di una porta logica

- Una porta logica standard non risponde ai suoi ingressi in maniera simultanea
- Di conseguenza, esiste un <u>ritardo</u> tra un <u>cambiamento di un</u> <u>ingresso</u> e il <u>corrispondente cambiamento sull'uscita</u>

Due casi di propagazione del ritardo

- tPLH = Ritardo per un'uscita che passa da LOW a HIGH
- tpнL = Ritardo per un'uscita che passa da HIGH a LOW
 - di solito t_{PLH} è maggiore che t_{PHL}

Ritardo di una porta logica

Ritardo porte logiche

Utile per determinare:

- In che misura le uscite sono valide (o rappresentano situazioni di transitorio)
- La <u>velocità massima</u> di un circuito combinatorio
- La <u>frequenza massima</u> di un circuito sequenziale

Analisi di temporizzazione (semplificata)

- · Input: circuito con più ingressi e singola uscita
- Evento: transizione di stato su un'ingresso (da HIGH a LOW o viceversa)
- Determinare: la propagazione di tale transizione di stato sull'uscita
- Identificare il <u>cammino</u> tra il punto in cui la transizione è avvenuta e l'uscita
- Calcolare il ritardo di propagazione usando il ritardo stimato
 per ciascun gate sul cammino
- · Il ritardo stimato è disponibile sul datasheet del gate

Analisi di temporizzazione (accurata)

- Problema: potrebbero esserci più cammini tra un ingresso e l'uscita
- · Soluzioni possibili:
 - Analizzare ciascun cammino e le varie combinazioni di ritardi
 - 2. Usare la "Worst Case Analysis" (analisi del caso peggiore)

Sum of Worst Case (SWC)

- Annotare il worst case delay accanto a ciascun gate
 - massimo tra tplн е tpнг
- Identificare tutti i cammini ingresso/uscita
- Calcolare il <u>ritardo nel caso peggiore per ciascun</u> <u>cammino</u>
 - Riassumere in una tabella
- Selezionare il caso peggiore

Sum of Worst Case (SWC): Esempio

Determinare il worst case delay per il circuito XOR

	t _{PLH} (ns)			t _{PHL} (ns)		
	min	typ	max	min	typ	max
74LS04	0	9	15	0	10	14
74F04	2.4	3.7	6.0	1.5	3.2	5.4
74LS08	0	8	18	0	10	20
74F08	2.4	3.7	6.2	2.0	3.2	5.3
74F32	2.4	3.7	6.1	1.8	3.2	5.5

Esempio - Sommario

Input	Output	Delay (ns)
A (1)	F	26.1
A (2)	F	27.3
B (1)	F	32.1
B (2)	F	12.3

Delay di propagazione caso peggiore (Worst Case Propagation Delay) = 32.1 ns

Hazard

Hazard

- Quando gli ingressi di un circuito combinatorio cambiano, è possibile che si verifichino dei transitori indesiderati in corrispondenza delle uscite
 - Noti come "Hazard"
- Tali transitori si verificano quando diversi cammini ingresso/uscita hanno ritardi differenti

1-Hazard statico

- Nell'analisi di possibili hazard per un circuito combinatorio, considereremo il caso in cui possa cambiare un solo ingresso alla volta
- Un hazard statico (1) si verifica quando un ingresso causa la transizione di un termine di prodotto (in una espressione SOP) da 1 a 0 e di un altro termine da 0 a 1
- Entrambi i termini potrebbero temporaneamente assumere il valore transitorio di 0

Individuazione di 1-Hazard statici

Procedura per circuiti AND-OR (SOP) a 2 livelli:

- Scrivere l'espressione SOP
- Rappresentare ciascun termine nella mappa e evidenziare il gruppo corrispondente
- · Se due 1 adiacenti nella mappa non sono parte dello stesso gruppo, può verificarsi un 1-Hazard
- Per una mappa a n-variabili, la transizione si verifica quando una variabile cambia e le altre n-1 restano fisse

0-Hazard statico

- In maniera simile uno 0-Hazard si verifica quando il cambiamento di un ingresso causa la transizione di un termine somma (in un'espressione POS) da 0 a 1 e un altro termine somma da 1 a 0
- Entrambi i termini assumono transitoriamente il valore 1, causando un 0-Hazard statico

Identificazione di 0-Hazard statici

Procedura per circuiti OR-AND (POS) a due livelli:

- Scrivere l'espressione POS
- Rappresentare ciascun termine nella mappa e evidenziare il gruppo corrispondente
- Se due 0 adiacenti nella mappa non sono parte dello stesso gruppo, può verificarsi uno 0-Hazard
- Per una mappa a n-variabili, la transizione si verifica quando una variabile cambia e le altre n-1 restano fisse

Domande

- E' possibile che si verifichino 0-Hazard statici in circuiti AND-OR (SOP) a due livelli?
- E' possibile che si verifichino 1-Hazard statici in circuiti OR-AND (POS) a due livelli?

Esercizio

Implementare un circuito privo di Hazard per la seguente espressione:

$$F(A,B,C,D) = (A'+C')(A+D)(B+C+D')$$

Esercizio

Implementare un circuito privo di Hazard per la seguente espressione:

F(A,B,C,D) = A'C' + AD + BCD'