Supplemental Information

Identification of Bitter Peptides in Aged Cheddar Cheese by Crossflow Filtration-based Fractionation, Peptidomics, Statistical Screening and Sensory Analysis

R. F. Kuhfeld^{1*}, H. Eshpari¹, B. J. Kim², M. R. Kuhfeld³, Z. Atamer¹, D. C. Dallas^{1,2}

¹Department of Food Science and Technology, Oregon State University, Corvallis, OR, 97333

ORCID: 0000-0002-4065-9729

²Nutrition Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97333

³Northwest Evaluation Association, Portland, OR, 97209

^{*}Corresponding authors: tel: +15417371751 Email address: kuhfeldr@oregonstate.edu

Figure S1. Water-soluble extraction (WSE) and molecular weight fractionation procedure using ultra- and nano-crossflow filtration. MWCO: molecular weight cut-off, ¹vacuum filter systems, Corning 431097, 0.22 μm, polyethersulfone. *Synder sheet filter membrane models for Sterlitech Sepa CF Med/High Foulant Cell, 316 SS, 75 mil. Membrane type: ²ST (polyethersulfone), ³VT (polyethersulfone), ⁴NFW (polyamide).

Figure S2. (A) Scatter plot illustrating peptides normalized instrument abundance compared with samples mean bitterness intensity, (B) Box plot illustrating the magnitude of change in peptide relative abundance between the categorical non-bitter group (threshold and low bitterness groups) and the bitter group (moderate and extreme groups). *Indicates phosphorylation of serine in sequence position 10. Five peptides selected identified as bitter are highlighted with bold labeling and fully opaque shading. For Figure A, cheese mean bitterness was scored on a 0–15-point universal intensity scale (Spectrum method, Meilgaard et al., 1999). For Figure B, categorical bitterness grouping: reference Table 1 for definitions.

TABLE S1. Descriptive sensory analysis of fundamental flavors in the 14 Cheddar samples and correlations with bitterness and age.

Sample ID ¹	Bitter ²	Sour	Salty	Sweet	Umami
T_0.2a	0.7	2.7	3.6	2.4	2.7
T_0.2b	ND	2.4	3.5	2.4	2.5
T_0.2b	ND	2.9	3.3	2.3	2.9
T_0.2d	ND	2.6	3.2	2.5	3.0
L_3.3	1.2	2.8	4.0	2.6	4.0
L_2.9	1.4	2.9	4.3	2.7	3.8
L_6.0	1.4	3.0	4.4	2.8	4.1
M_7.3	2.1	3.1	4.5	2.9	4.5
M_6.2	2.1	2.8	4.7	3.0	4.5
M_5.6	2.4	3.0	4.5	2.7	4.2
E_7.2	2.9	2.9	4.3	2.9	4.4
E_8.7a	2.9	3.4	4.9	2.9	4.0
E_5.7	3.0	3.0	4.3	2.9	4.1
E_8.7b	3.4	3.2	4.8	2.7	4.1
Descriptive statistics					
LSD^3	0.3	0.3	0.3	0.3	0.2
Bitterness (Pearson's r) ⁴	1.00	0.75	0.86	0.78	0.78
Age (Pearson's r) ⁴	0.92	0.82	0.94	0.86	0.88

¹Reference Table 1 for Sample ID definition.

²Data represent average values from seven panelists performing quantitative descriptive analysis on a 0–15-point universal intensity scale in duplicate (Spectrum method, Meilgaard et al., 1999; Drake et al., 2001). ND, non-detected.

 $^{^3}$ LSD, least significant difference (p <0.05). Data were analyzed by a general linear model analysis of variance with Fisher's LSD as a post hoc test.

⁴Pearson's correlation coefficient of mean bitterness intensity and cheese age (see Table 1) to descriptive sensory results. ND values were substituted with 0.5, the panels' limit of quantification for calculating the correlation coefficients.

TABLE S2. Descriptive sensory analysis of aromatics in the 14 Cheddar samples and correlations with bitterness and age.

Sample ID ¹	Cooked ²	Caramel	Whey	Diacetyl	Milkfat	Fruity	Sulfur	Brothy	Nutty	Catty	Cowy barny
T 0.2a	3.6	ND	2.3	1.2	3.5	ND	ND	0.7	ND	ND	ND
T_0.2b	3.7	ND	1.9	ND	3.6	ND	ND	0.7	ND	ND	ND
T_0.2c	3.7	ND	2.8	0.9	3.6	ND	ND	ND	ND	ND	ND
T_0.2d	3.8	ND	2.4	1.0	3.5	ND	ND	ND	ND	ND	ND
L_3.3	3.5	1.7	ND	ND	3.5	0.8	3.0	3.7	2.0	ND	0.8
L_2.9	3.4	1.0	ND	ND	3.5	0.6	2.4	3.4	1.1	ND	ND
L_6.0	3.0	2.5	ND	ND	3.5	1.8	2.9	3.7	2.2	1.3	ND
M_7.3	3.2	1.7	ND	ND	3.5	1.5	3.0	3.8	2.7	1.7	ND
M_6.2	3.4	1.2	ND	ND	3.5	1.5	3.2	3.9	2.2	1.0	ND
M_5.6	3.3	2.9	ND	ND	3.5	1.2	3.0	3.7	2.9	1.1	0.6
E_7.2	3.4	2.4	ND	ND	3.5	1.1	3.2	4.0	2.6	0.8	ND
E_8.7a	3.4	3.2	ND	ND	3.5	1.3	3.2	3.8	2.3	1.2	0.6
R_5.7	3.3	2.1	ND	ND	3.5	0.9	2.7	3.5	2.3	1.1	1.2
E_8.7b	3.2	3.2	ND	ND	3.5	1.0	3.2	4.0	2.4	1.3	0.6
Descriptive statistics	S										
LSD^3	0.3	0.3	0.2	0.3	0.2	0.3	0.3	0.3	0.3	0.2	0.3
Bitterness (Pearson's r) ⁴	-0.66	0.86	-0.77	-0.61	-0.53	0.54	0.82	0.81	0.85	0.69	0.39
Age (Pearson's r) ⁴	-0.80	0.89	-0.85	-0.69	-0.56	0.79	0.92	0.90	0.92	0.83	0.18

¹Reference Table 1. for Sample ID definition.

²Data represent average values from seven panelists performing quantitative descriptive analysis on a 0–15-point universal intensity scale in duplicate (Spectrum method, Meilgaard et al., 1999; Drake et al., 2001). ND, non-detected. Flavors not listed were not detected in cheeses.

³LSD, least significant difference (p <0.05). Data were analyzed by a general linear model analysis of variance with Fisher's LSD as a post hoc test.

⁴Pearson's correlation coefficient of mean bitterness intensity and cheese age (see Table 1) to descriptive sensory results. ND values were substituted with 0.5, the panels' limit of quantification for calculating the correlation coefficients.

TABLE S3. Compositional data for the 14 Cheddar samples

C1- ID	112	%, W/W							
Sample ID ¹	pH^2	Moisture ³	Salt ⁴	Fat ⁵	FDB^6	Protein ⁷			
T_0.2a	5.10	35.3	1.86	34.7	53.6	24.0			
T_0.2b	5.06	35.5	1.72	33.5	52.0	24.2			
T_0.2c	5.10	35.6	1.75	32.4	50.3	24.3			
T_0.2d	5.10	35.4	1.74	32.5	50.4	24.1			
L_3.3	5.06	32.8	1.70	37.2	55.4	25.2			
L_2.9	5.14	32.8	1.59	36.5	54.3	24.7			
L_6.0	4.99	33.6	1.72	34.8	52.4	24.3			
M_7.3	5.24	32.7	1.66	37.6	55.9	24.5			
M_6.2	5.03	33.0	1.79	38.2	57.0	24.4			
M_5.6	5.10	35.4	1.75	37.3	57.7	24.3			
E_7.2	5.12	33.3	1.63	35.1	52.6	24.5			
E_8.7a	4.98	32.2	1.80	34.5	50.9	24.5			
E_5.7	5.10	35.5	1.82	37.4	58.1	24.7			
E_8.7b	4.98	32.3	1.67	32.4	47.9	24.1			

¹Reference Table 1 for Sample ID definition.

²Duplicate analysis, pH at 25 °C

³Triplicate analysis by forced air oven method (Hooi et al., 2004)

⁴Duplicate analysis by Volhard (titratable chloride) method (Hooi et al., 2004)

⁵Duplicate analysis by Mojonnier method (Barbano et al., 1988)

⁶Fat dry basis (FDB), duplicate analysis by Mojonnier method (Barbano et al., 1988)

⁷Triplicate analysis by Kjeldahl method (Barbano and Clark, 1990)

TABLE S4. Peptides identified in the 14 cheeses that were documented as bitter in previous literature, their standard mean difference in abundance between bitter and non-bitter groups, their linear correlation with cheese bitterness intensity, their bitterness threshold value, mean bitterness intensity and literature source (*continue on next page*).

Peptide sequence	Peptide's origin ¹	Rank order mean ²	Standard mean difference ³	Bitterness linear correlation (R value) ⁴	Threshold value (μmol·L ⁻¹) ⁵	Mean bitterness intensity ⁵ (0–15)	Literature Reference ⁶
YPFPGPIPN	βΑ2 [60–68]	4	2.10	0.91	230	-	Toelstede & Hofmann, 2008a
YPFPGPIHNS	βΑ1 [60–69]	12	2.26	0.66	50	-	Toelstede & Hofmann, 2008a
YPFPGPIHN	βΑ1 [60–68]	16	1.45	0.76	100	-	Toelstede & Hofmann, 2008a
KPWIQPK	$\alpha_{s2} [191197]$	19	1.79	0.64	-	-	Lee et al., 1996
RPKHPIK	α_{s1} [1–7]	30	1.94	0.58	-	-	Lee et al., 1996
VLPVPQ	β [170–175]	38	1.52	0.57	310	-	Sebald et al., 2018, 2020
LVYPFPGPIHN	βΑ1 [58–68]	68	1.11	0.50	80	-	Toelstede & Hofmann, 2008a
YPFPGPI	β [60–66]	79	0.73	0.67	160	-	Shinoda et al., 1986a;
							Lemieux & Simard, 1992
EMPFPKYPVEPF	β [108–119]	101	0.74	0.51	-	NB	Karametsi et al., 2014
VYPFPGPIPN	βΑ2 [59–68]	118	1.11	0.40	170	-	Toelstede & Hofmann, 2008a
TDVENLHLPLPL	β [128–139]	129	0.73	0.44	-	-	Visser et al., 1975;
							Lemieux & Simard, 1992
MPFPKYPVEPF	β [109–119]	132	0.54	0.55	-	0.56	Karametsi et al., 2014
HLPLPLLQ	β [134–141]	143	0.60	0.48	440	-	Sebald et al., 2018, 2020
QEPVLGPVRGPF	β [194–208]	144	0.60	0.48	330	-	Sebald et al., 2020
PII							
YPFPGPIPNS	βΑ2 [60–69]	170	1.06	0.32	330	-	Toelstede & Hofmann, 2008a
TPVVVPPFLQPE	β [80–93]	174	0.82	0.35	>1600	-	Sebald et al., 2020
VM							
RDMPIQAFLLY	β [183–193]	199	0.75	0.32	-	-	Monnet et al., 1986; Lemieux & Simard, 1992

YQEPVLGPVRGP FPI	β [193–207]	209	0.45	0.43	-	0.56	Karametsi et al., 2014;
QEPVLGPVRGPF PI	β [194–207]	211	0.31	0.48	-	NB	Monnet et al., 1986; Karametsi et al., 2014; Lemieux & Simard, 1992
YQQKPVAL	κ [43–50]	218	0.75	0.28	500	-	Sebald et al., 2018, 2020
SLVYPFPGPIHNS	βΑ1 [57–69]	241	0.48	0.34	60	-	Toelstede & Hofmann, 2008a
AMAPKHKEMPF PKYPVEPF	β [101–119]	260	0.29	0.37	250	-	Sebald et al., 2020
APKHKEMPFPKY PVEPF	β [103–119]	269	0.28	0.36	-	0.36	Karametsi et al., 2014
LGPVRGPFP	β [198–206]	352	0.02	0.28	-	NB	Karametsi et al., 2014
LHLPLPLLQS	β [133–142]	368	0.13	0.17	160	-	Sebald et al., 2020
VVVPPFL	β [82–88]	373	0.50	-0.05	140	-	Shinoda et al., 1986b; Lemieux & Simard, 1992
TQTPVVVPPFLQ PE	β [78–91]	399	0.13	0.09	280	-	Sebald et al., 2018, 2020
QSKVLPVPQ ⁷	β [167–175]	453	0.04	-0.03	-	-	Monnet et al., 1986; Lemieux & Simard, 1992
IAKYIPI	к [22–28]	457	-0.09	0.01	160	-	Sebald et al., 2020
LHLPLPLL	β [133–140]	477	-0.12	-0.04	110	-	Sebald et al., 2018, 2020
VLPVPQKAVPYP Q	β [170–182]	495	-0.47	0.04	340	-	Sebald et al., 2020
GPVRGPFP	β [199–206]	558	-0.70	-0.05	1180	-	Toelstede & Hofmann, 2008a
FALPQYLK	αs2 [174–181]	561	-0.54	-0.19	-	-	Matoba et al., 1969; Lemieux & Simard, 1992
TQTPVVVPPFL	β [78–88]	566	-0.34	-0.34	200	-	Sebald et al., 2020
VPPFLQPE	β [84–91]	567	-0.75	-0.03	>1730	-	Sebald et al., 2020

MAPKHKEMPFP KYPVEPF	β [102–119]	571	-0.55	-0.21	90	0.9	Karametsi et al., 2014; Sebald et al., 2018, 2020
QEPVLGPVRGPF	β [194–209]	582	-0.56	-0.25	_	_	Gordon & Speck, 1965;
PIIV	p [174 207]	302	0.50	0.23			Lemieux & Simard, 1992
ERYLGYLEQ	αs1 [89–97]	610	-0.66	-0.28	460	_	Sebald et al., 2020
IPPLTQTPVVVPP	β [74–86]	632	-0.86	-0.23	>6,000	_	Toelstede & Hofmann, 2008b
RPKHPIKHQGLP	αs1 [1–13]	648	-0.80	-0.22	×0,000	-	Lee et al., 1996
•	usi [1–13]	048	-0.80	-0.34	-	-	Lee et al., 1990
Q APFPEVFG	1 [26, 22]	652	-0.64	-0.42			Matalan at al. 1070.
AFFFEVFG	αs1 [26–33]	032	-0.04	-0.42	-	-	Matoba et al., 1970;
CITD D III	0.522.201	664	0.02	0.20	. (000		Lemieux & Simard, 1992
SITRINK	β [22–28]	664	-0.92	-0.29	>6,000	-	Toelstede & Hofmann, 2008a
RPKHPIKHQ	αs1 [1–9]	669	-0.65	-0.45	-	-	Broadbent et al., 1998, 2002
EPVLGPVRGPFP	β [195–206]	674	-1.06	-0.22	-	NB	Karametsi et al., 2014
PVLGPVRGPFP	β [196–206]	676	-1.06	-0.22	-	NB	Karametsi et al., 2014
PVRGPFPIIV	β [200–209]	685	-0.76	-0.46	4	-	Shinoda et al., 1985
APFPEVF	αs1 [26–32]	700	-0.78	-0.51	-	-	Richard & Creamer, 1973;
							Lemieux & Simard, 1992
NLHLPLPLLQS	β [132–142]	703	-0.88	-0.47	180	-	Sebald et al., 2020
YQEPVLGPVRGP	β [193–206]	730	-1.03	-0.44	-	-	Karametsi et al., 2014;
FP							Visser et al., 1975, 1983;
							Lemieux & Simard, 1992
KAVPYPQ	β [176–182]	766	-0.98	-0.58	-	-	Monnet et al., 1986;
	, ,						Lemieux & Simard, 1992
VAPFPEVFGKE	as1 [25–35]	769	-1.02	-0.57	570	_	Sebald et al., 2018, 2020
KVLPVPQKAVPY	β [169–182]	776	-1.09	-0.56	140	_	Sebald et al., 2018, 2020
PQ	p [103 10 2]	,,,	1109	0.0	1.0		200020 00 020, 2010, 2020
GPVRGPFPIIV	β [199–209]	809	-1.33	-0.55	-	4.56	Karametsi et al., 2014
YLGYLEQLLR	αs1 [91–100]	810	-1.23	-0.58	_	_	Hill and Van Leeuwen, 1974;
	[]		-				Lemieux & Simard, 1992

QEPVLGPVRGPF	β [194–206]	842	-1.82	-0.60	-	NB	Karametsi et al., 2014
P							
VFGKEKVNEL	αs1 [31–40]	862	-1.53	-0.77	110	-	Sebald et al., 2018, 2020

¹Casein variants (bovine origin) are α_{s1} -, α_{s2} -, β - and κ -casein. β A1 is the A1 variant of β -casein in which position 67 is Pro. β A2 is the A2 variant of β -casein in which position 67 is His.

²Ranked mean of the ascending order of average standard mean difference and R-values for the bitterness linear correlation.

³Standard mean difference calculated in accordance with Cohen's d value formula.

⁴R-value, correlation of cheese mean bitterness score (see Table 1) to each peptide's normalized abundance.

⁵Reference literature sources for information on sensory analysis methodology. NB indicates non-bitter, "-" means no data is available.

⁶Full literature references are found in the following article: Kuhfeld, R. F., H. Eshpari, Z. Atamer & D. C. Dallas. 2023. A comprehensive database of cheese-derived bitter peptides and correlation to their physical properties, Critical Reviews in Food Science and Nutrition.

⁷The dotted line distinguishes peptides according to their standard mean difference, with positive values located above the line and negative values situated below it.