1 Plattengrenzschicht:

Bild VII - 1: Grenzschicht an einer längsangeströmten ebenen Platte (schematisch)

Bild VII - 2: Grenzschichtarten (laminar – turbulent)

<u>Umschlagpunkt:</u> $Re_{krit} = 5.10^5$ $(3.10^5 ... 3.10^2)$

Laminare Grenzschicht:

Grenzschichtdicke	$\frac{\delta}{x} = \frac{5}{\sqrt{\text{Re}_x}}$
Verdrängungsdicke	$\frac{\delta_1}{x} = \frac{1,72}{\sqrt{\text{Re}_x}}$
Impulsverlustdicke	$\frac{\delta_2}{x} = \frac{0,665}{\sqrt{\text{Re}_x}}$
Wandschubspannung	$\frac{\tau_w}{\rho \cdot u_\infty^2} = \frac{0.332}{\sqrt{\text{Re}_x}}$
Widerstandsbeiwert	$c_w = \frac{1,328}{\sqrt{\text{Re}_l}}$

Turbulente Grenzschicht:

Grenzschichtdicke	$\frac{\delta}{x} = \frac{0.37}{\sqrt[5]{\text{Re}_x}}$
Verdrängungsdicke	$\frac{\delta_1}{x} = \frac{0.046}{\sqrt[5]{\text{Re}_x}}$
Impulsverlustdicke	$\frac{\delta_2}{x} = \frac{0.036}{\sqrt[5]{\text{Re}_x}}$
Wandschubspannung	$\frac{\tau_w}{\rho \cdot u_\infty^2} = \frac{0,0296}{\sqrt[5]{\text{Re}_x}}$
Widerstandsbeiwert	$c_w = \frac{0,074}{\sqrt[5]{\text{Re}_I}}$

$$\delta_{lu} = 680 \frac{\ln^2 Re_x}{Re_x}$$

$$\frac{\delta_1}{\delta} = 0,124$$

$$\frac{\delta_2}{\delta} = 0,097$$

hydraulisch glatt:

$$\frac{k}{L} \operatorname{Re}_{x} < 100$$

$$c_{w} = \frac{0,074}{\sqrt[5]{\operatorname{Re}_{I}}}$$

hydraulisch rauh:

$$c_w = 0.024 \left(\frac{k}{L}\right)^{1/6}$$

$$c_w = \left(1.89 - 1.62 \cdot \lg \frac{k_s}{L}\right)^{-2.5}$$

 $10^{-6} \le k/L \le 10^{-2}$

Bild VII - 3: Widerstandsbeiwert c_w längsangeströmter ebener Flächen (einseitig benetzt) nach [10].

2 Kugelumströmung:

$$F_W = c_W \cdot \frac{\pi}{4} \cdot d^2 \cdot \frac{\rho}{2} \cdot w_\infty^2$$

$$c_W = \frac{24}{Re}$$

$$c_W = \frac{24}{Re} + \frac{4}{\sqrt{Re}} + 0.4$$

für: Re < 0,1 (... 1)

Näherung nach KASKAS

Bild VII - 4: Widerstandsbeiwert c_w und $(c_w \text{Re}_K^2)$ von Kugeln nach [12]

$$w_{s} = \sqrt{\frac{4}{3} \cdot \frac{g \cdot d_{K}}{c_{W}} \cdot \frac{\rho_{M} - \rho_{F}}{\rho_{F}}}$$

$$c_{W} \operatorname{Re} = \frac{4}{3} \cdot \operatorname{Ar}$$

$$\operatorname{Ar} = \frac{g \cdot d_{K}^{3}}{v_{F}^{2}} \cdot \frac{\rho_{M} - \rho_{F}}{\rho_{F}}$$

$$w_{s} = \frac{g \cdot d_{K}^{2}}{18v_{F}} \cdot \frac{\rho_{M} - \rho_{F}}{\rho_{F}}$$

für: Re < 1

$$w_s = 1.74 \sqrt{\rho \cdot d_K \frac{\rho_M - \rho_F}{\rho_F}}$$

für: 500 < Re < Re_{krit}

3 Sinkgeschwindigkeit nicht kugelförmiger Teilchen:

$$w_s = k \cdot w_{s,Kugel}$$

$$d_K \text{ gemäß Siebdurchgang}$$

$$k = \textit{f(f_0; Re)}$$

Bild VII - 5: Sphärizitätseinfluß auf die Sinkgeschwindigkeit nach [12]

Sphärizität von Körnerkollektiven nach [12]:

$$f_o = \frac{\text{Oberfläche der volumengleichen Kugel}}{\text{reale Oberfläche des Teilchens}}$$

Stoff	Formfaktor f ₀
Zement	0,57
Kohlenstaub	0,61
Tetraeder	0,670
Sand (rundlich)	0,70
Kali	0,70
Würfel	0,806
Flugstaub (rundlich)	0,82
Zylinder (h = 2d)	0,832
Zylinder (h = d)	0,874
Kugel	1

Weitere Korrekturfaktoren:

Korrekturfaktoren k zur Sinkgeschwindigkeit (Bezugnahme auf volumengleiche Kugel) nach [12]

$c_W \operatorname{Re}_K^2$	Teilchenform			
	abgerundet	eckig	länglich	flach
20400	0,805	0,680	0,610	0,450
25500	0,800	0,678	0,595	0,441
51000	0,790	0,672	0,590	0,437
127000	0,755	0,650	0,564	0,420
255000	0,753	0,647	0,562	0,408
510000	0,740	0,635	0,560	0,392

Korrekturfaktoren k zur Sinkgeschwindigkeit nach [12] k_{f1} im Bereich $Re_K < 0.25$; k_{f2} im Bereich $10^3 < Re_K < 10^5$

Teilchenform	d	k _{f1}	k _{f2}
Kugel	d	1	1
Würfel	1,241 <i>a</i>	0,92	0,56
Parallelepiped			
a x a x 2a a x 2a x 2a a x 2a x 3a	1,563 <i>a</i> 1,970 <i>a</i> 2,253 <i>a</i>	0,90 0,89 0,88	0,52 0,51 0,48
Zylinder			
h = 0,5d h = d h = 2d	0,909 <i>d</i> 1,145 <i>d</i> 1,442 <i>d</i>	0,93 0,95 0,93	0,58 0,64 0,58

Bild VII - 6: Größenbereiche luftgetragener Verunreinigungen sowie vorhandene Filter- und Abscheidesysteme:

4 Widerstandsbeiwerte cw:

Körperform	Abmessungen / Anströmrichtung	Widerstandsbeiwert c _w	
Kreisscheibe quer angeströmt Re > 10³		1,11 (1,1 bis 1,5)	
Kreisringplatte		d/D = 0,5 : 1,22	
2 Kreisplatten hin- tereinander	W _c d	I/d 1 1,5 2 3 cw 0,93 0,78 1,04 1,52	
Rechteckplatte quer angeströmt		h/b 1 4 10 20 ∞ c _w 0,91 0,85 0,87 0,99 2,0	
Rotationsellipsoid	w _∞ a/b = 1 / 0,75	Re $< 5 \cdot 10^5 : 0,6$ Re $> 5 \cdot 10^5 : 0,21$	
	w _∞ a/b = 1 / 1,80	Re > $5 \cdot 10^5$: 0,05 bis 0,1	
Halbkugel Kugelseite angestr.		mit Boden: 0,42 ohne Boden: 0,34	
Halbkugel Flachseite ange- strömt		mit Boden: 1,17 ohne Boden: 1,34	
Kegel Spitze angeströmt (ohne Boden)	W∞ d	$\alpha = 30^{\circ}$: 0,35 $\alpha = 60^{\circ}$: 0,52	
Kegel Flachseite ange- strömt	α = 15°: 0,58		
Würfel	0,9 bis 1,0		

Körperform	Abmessungen / Anströmrichtung	Widerstandsbeiwert c _w
Prisma, quadratisch	W _o , b	d/b = 1/5: 1,56 d/b = 1/ ∞ : 2,0 bis 2,03
Prisma längs angeströmt	W _o b	d/b = 1/2,5: 0,81
Prisma schräg angeströmt	W _∞ a	α = 90°: I/d = 5 : 1,65 ∞ : 2,03 α = 45°: I/d = 5 : 0,92 ∞ : 1,54
Walze längs angeströmt		I/d
Walze quer angeströmt	W _o	Re < 9.10^4 :
Profilstab	W _∞ d d t	t/d 2 3 5 10 20 c _w 0,2 0,1 0,06 0,083 0,094
Doppel - T - Profil		2,05
	W _∞ → d d	0,87

5 Tragflügelpolaren - Aerodynamische Beiwerte von Profilen nach [16]

a) **Profil N 60:** d/t = 0.12; f/t = 0.04

b) Ebene Platte: d/t = 0,03

ahrzeugart		Stirnfläche [m²]	Widerstandsbeiwert
I. PKW:			
1.1. Ältere Form:			0,45 bis 0,6
VW Käfer		1,80	0,48
1.2. Ponton - Form	(Mittelklasse):		0,40 bis 0,48
1.3. Stromlinien - Fo	orm:		0,24 bis 0,35
VW	Polo Golf Passat	1,90 1,98 1,89	0,32 0,32 0,29
OPEL	Corsa Astra Vectra Calibra	1,88 1,97 2,01 1,90	0,35 0,32 0,28 0,26
AUDI	A 4 A 6	2,03 2,05	0,29 0,30
MERCEDES	C-Klasse E-Klasse S-Klasse	2,05 2,17 2,40	0,31 0,27 0,31
FORD	Fiesta Scorpio	1,70 2,04	0,35 0,32
BMW	316 525 740	1,88 2,12 2,21	0,32 0,28 0,30
SAAB	9000 E	2,05	0,34
1.4. Offene Form (C	abriolet):	0,6 bis 0,3	
OPEL-Astra	geschlossen offen	1,94 1,86	0,33 0,42
VW-Golf	geschlossen offen	2,06 2,01	0,36 0,42
1.5. Sport - Form:			0,22 bis 0,35
Porsche	959 968	1,92 1,88	0,31 0,34
Ferrari	F 40	1,90	0,34
1.6. Kombi - Form (ca. 10 bis 15 % höher):	1,8 bis 2,2	0,30 bis 0,40
2. Motarräder:			
Ohne Fahrer			0,35 bis 0,45
Mit Fahrer			bis ca. 2,5 mal größer
3. LKW und Bus: LKW ohne Anhän-	ohne Luftleitbleche		0,6 bis 0,8
ger	office Editions of Control		0,0 510 0,0
	mit Luftleitblechen		0,45 bis 0,65
LKW mit Anhänger			0,7 bis 1,0
Sattelzug			0,65 bis 0,9
Omnibus			0,5 bis 0,6
4. Lokomotiven:			
Diesel			0,5 bis 0,6
Elektro			0,4 bis 0,5
Zug ICE	(Triebkopf)		0,23

Bild VII - 7: Entwicklung des Widerstandsbeiwertes $c_{\rm w}$ bei Kraftfahrzeugen im Laufe der Jahre nach [15].

Bild VII - 8: Widerstandsbeiwert c_w von Kugel, Kreiszylinder und Kreisscheibe (quer angeströmt), abhängig von der auf den Durchmesser d und die ungestörte Anströmgeschwindigkeit w_∞ bezogene Re-Zahl nach [9].

7 Wirbelablösefrequenz unsymmetrischer Wirbelstraßen: STROUHAL - Zahl:

STROUHAL - Zahlen für Wirbelstraßen hinter verschiedenen Körpern in ebener Strömung nach [6]. Mit steigendem Re wird Sr = Sr_{∞} = const.

Körper	Abmessungen	Experimenteller Befund
Zylinder		Sr _∞ = 0,180 0,207
		Re ₁ = 30 48 (Beginn der Wirbelablösung)
	d d	Sr = 0,198 [1-(19,7/Re)] von Re ₁ bis Re = 5.10^5
Platte		$Sr_{\infty} = 0.144 \dots 0.180$ für Anströmwinkel
	d	von 0° bis 60°
Quader		$Sr_{\infty} = 0,156 \text{ für B/d} = 3$
	d	$Sr_{\infty} = 0,130 \text{ für B/d} = 1$
Quader mit		Sr _∞ = 0,235
Prisma	W d d	
Prisma	W B d	Sr _∞ = 0,255 für B/d = 3
Keil	w _ d↑	Sr _∞ ≈ 0,238
Kurzgeschoß	w _ d↑	Sr _∞ ≈ 0,271
Langgeschoß	d ↑	Sr _∞ ≈ 0,254
Tragflügel,		Sr _∞ = 0,15 0,21
symmetrisch	d 1	Si _∞ = 0,13 0,21
Düsenschlitz		$Sr_{\infty} = 0.32$ $Sr = \frac{1}{2\sqrt{1.50 + 2000 / \text{Re}}} \text{ für } 50 \le \text{Re} \le 2000$

Strouhal (Sr) hängt von der Körperform und von der Reynolds-Zahl ab. Für Kreiszylinder kann die Funktion Sr = f(Re) aus folgender Abbildung nach [7] entnommen werden. Für den in der Praxis oft vorkommenden Bereich $10^2 < Re < 2*10^5$ kann näherungsweise Sr = 0,2 gesetzt werden.

Bild VII - 9: STROUHAL - Zahl eines Kreiszylinders als Funktion von Reynolds nach [7].