Homework: 7.21, 7.23

Tutorial Problems: 7.25, 7.37, 7.40

Chapter 7: Sampling

Department of Electrical & Electronic Engineering Southern University of Science & Technology

2022 - Fall Last Update on: Tuesday 10th May, 2022

Introduction

Sampling: to facilitate digital processing via computers or chips

Any lossless conversion?

Process CT signals with DT systems?

Interpolation: to present the output of digital processing

Video Recording

- Signal to be sampled: real scene (continuous-time signals)
- Sampling: record by camera with a rate of 24, 25 or 30 frames per second
- Sampled signal: video tapes, mp4 files, avi files and etc. (discrete-time signals)
- Reconstruction: watch via eyes and interpret in the brain
- In our consciousness, the real scene can be reconstructed without information loss

Outline

- Sampling is a general procedure to generate DT signals from CT signals, where information of the original signals can be kept
- Core sampling theory:
 - Impulse train, zero-order hold, first-order hold and etc
 - Analysis in frequency domain
 - Nyquist rate
- Undersampling: Aliasing
- Application: process continuous-time signals discretely
- More sampling techniques: decimation, downsampling and upsampling

Impulse-Train Sampling

Mathematically, sampling can be represented by multiplication

- Sampling function: $p(t) = \sum_{n=-\infty}^{\infty} \delta(t nT)$
- Sampling period: T
- Sampling:

$$x_p(t) = x(t) \times p(t) = x(t) \times \sum_{n=-\infty}^{\infty} \delta(t - nT) = \sum_{n=-\infty}^{\infty} x(nT)\delta(t - nT)$$

Sampling discards most of points in the original signals. Is there any information loss in sampling?

Observation (1/2)

Observation (2/2)

- Sampling: the frequency should be high enough
- Reconstruction: the interpolation should be smooth enough

4 D > 4 B > 4 B > 4 B > 9 Q P

Frequency Analysis (1/2)

- Theoretical tool: continuous-time Fourier transform
- Principle:

$$x(t) \times p(t) \rightleftarrows \frac{1}{2\pi} X(j\omega) * P(j\omega)$$

• Fourier series of p(t):

$$a_k = \frac{1}{T} \int_{-T/2}^{T/2} \sum_{n=-\infty}^{\infty} \delta(t - nT) e^{-jk\omega_s t} dt \quad \text{where} \quad \omega_s = \frac{2\pi}{T}$$
$$= \frac{1}{T} \int_{-T/2}^{T/2} \delta(t) e^{-jk\omega_s t} dt = \frac{1}{T}$$

• Fourier Transform of p(t):

$$P(j\omega) = 2\pi a_k \sum_{k=-\infty}^{+\infty} \delta(\omega - k\omega_s) = \frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta(\omega - k\omega_s)$$

4 D > 4 B > 4 B > 4 B > 9 Q P

Frequency Analysis (2/2)

• Fourier transform of sampled signal $x_p(t)$:

$$X_{p}(j\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\theta) P(j(\omega - \theta)) d\theta$$
$$= \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_{s}))$$

ullet Sampling: the Fourier transform of input signal is repeated with period ω_s

Reconstruction Problem

 Given the sampled signal, can we perfectly reconstruct the signal before sampling?

Reconstruction (1/2)

• Scenario of $\omega_s>2\omega_M$

Remark: We use LPF with bandwidth $\frac{\omega_s}{2}$ here. In fact, the choice of bandwidth is not unique, i.e., $(\omega_M, \omega_s - \omega_M)$.

Reconstruction (2/2)

• Scenario of $\omega_s \leq 2\omega_M$

Since $\omega_s \leq 2\omega_M$, we don't know the frequency range of the desired signal Sampling on the following signals can generate the same result:

Observation: the original signal x(t) can be Uniquely and perfectly reconstructed from x(nT) only when $\omega_s>2\omega_M$

Sampling Theorem

Let x(t) be a band-limited signal with

$$X(j\omega) = 0$$
 for $|\omega| > \omega_M$.

Then, x(t) is uniquely determined by its samples x(nT) or $x_p(t)$ if

$$\omega_{s} = \frac{2\pi}{T} > 2\omega_{M},$$

where $2\omega_M$ is referred to as the Nyquist rate.

- Questions:
 - ▶ How about $\omega_s = 2\omega_M$?
 - Sampling on band-pass signals

Signal Reconstruction: Interpolation

- If $\omega_s>2\omega_M$, original signal can be perfectly reconstructed by ideal low-pass filter.
- Time domain interpretation of lowpass filtering

$$x_r(t) = x_p(t) * h(t) = \sum_{n=-\infty}^{+\infty} x(nT)h(t-nT)$$

$$= \sum_{n=-\infty}^{+\infty} x(nT) \frac{\sin \frac{\omega_s}{2}(t-nT)}{\frac{\omega_s}{2}(t-nT)} = \sum_{n=-\infty}^{+\infty} x(nT) \operatorname{sinc}(\frac{t-nT}{T}),$$

where $sinc(x) = sin(\pi x)/x$ and LPF with bandwidth $\frac{\omega_s}{2}$ is used.

• Ideal lowpass filtering: interpolation with sinc function

Problem 1

Problem (7.5)

Let x(t) be a signal with Nyquist rate ω_0 . Also, let

$$y(t) = x(t)p(t-1),$$

where

$$p(t) = \sum_{n=-\infty}^{\infty} \delta(t-nT), \;\; ext{and} \;\; T < rac{2\pi}{\omega_0}.$$

Specify the constraints on the magnitude and phase of the frequency response of a filter that gives x(t) as its output when y(t) is the input.

Problem 2

Problem (7.36)

Let x(t) be a band-limited signal such that $X(j\omega)=0$ for $|\omega|\geq \pi/T$. (a) If x(t) is sampled using a sampling period T, determine an interpolating function g(t) such that

$$\frac{dx(t)}{dt} = \sum_{n=-\infty}^{\infty} x(nT)g(t-nT).$$

(b) Is the function g(t) unique?

