```
B module serialadder(clk,rst,pload,adata,bdata,enable,pout);
   input clk, rst, pload, enable;
   input [7:0] adata, bdata;
   output [7:0] pout;
   wire shiftrega_lab, shiftregb_lab;
   reg [7:0] shiftrega, shiftregb, shiftregc;
   wire sum, cout;
   reg holde:
 // instantiated the full adder
 full_adder_lbit bit_adder_inst(shiftrega[0],shiftregb[0],holdc,sum,cout);
 assign pout-shiftrego;
 always@(posedge clk or rst)
  begin
   if (rst) begin
      shiftrega<=8'd0;
     shiftregb<=8'd0;
      shiftrego<=8'd0;
    end else
```

if(pload) begin
shiftrega<=adata;
shiftregb<=bdata;
shiftrego<=8'b0;
end else if(enable) begin</pre>

```
assign co = (asb) | (bsci) | (ci|a);
endmodule
module serialadder th;
   reg clk, rst, pload, enable;
   reg [7:0] adata,bdata;
   wire [7:0]pout;
   // DUT serial adder instance
   serial adder (clk, rst, pload, adata, bdata, enable, pout);
   // clock generation 100 Mhz frequency
   always
     #S clk=-clk:
   initial
   begin
   clk=1'b0;
   rst=1'bl;
   pload=1'b0;
    enable = 1'b0;
    #10
    rst=1'b0;
    #10
    pload=1'bl; enable=1'b0;
    Sdispley (Stime, " On Reset : adata=%0h, bdata=%0h, pout=%0h", adata, bdata, pout):
    adata=8'd1:bdata=8'd2:
```

#10

Shiftrega		Shiftregb		Shiftingc	
0000 0001	01	0000 0010	02	0000 0000	
0000 0000	80	0000 0001	01	1000 0000	80
0100 0000	40	1000 0000	80	1100 0000	CO
0000 0100	20	0000 0000	40	0110 0000	60
0000 1000	10	0000 0100	20	0001 0000	30
0000 1000	D8	0000 1000	10	0001 1000	18
0000 0100	04	0001 0000	8	0000 1100	oc
0000 0010	ರಿನ	0000 0100	4	0110 0000	06
1000 0000	01	0000 0010	a	0000 0011	03