NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Lau Tze Siong, Teo Wei Hao

MA1102R Calculus

AY 2006/2007 Sem 2

Question 1

(a) Since
$$\lim_{n \to \infty} \left(\frac{2}{3}\right)^n = 0$$
, we have $\lim_{n \to \infty} 3 \cdot \left(\frac{2}{3}\right)^n + 2 = 2$ and $\lim_{n \to \infty} 2 \cdot \left(\frac{2}{3}\right)^n + 3 = 3$. Hence,
$$\lim_{n \to \infty} \frac{3 \cdot 2^n + 2 \cdot 3^n}{2 \cdot 2^n + 3 \cdot 3^n} = \lim_{n \to \infty} \frac{3 \cdot \left(\frac{2}{3}\right)^n + 2}{2 \cdot \left(\frac{2}{3}\right)^n + 3} = \frac{\lim_{n \to \infty} 3 \cdot \left(\frac{2}{3}\right)^n + 2}{\lim_{n \to \infty} 2 \cdot \left(\frac{2}{3}\right)^n + 3} = \frac{2}{3}.$$

(b) Consider $f(x) = \ln(e^x + 2x^2)^{\frac{1}{x}} = \frac{\ln(e^x + 2x^2)}{x}$. Since $\lim_{x \to 0} \ln(e^x + 2x^2) = 0$ and $\lim_{x \to 0} x = 0$, we can apply L'Hôpital's Rule to get $\lim_{x \to 0} \frac{\ln(e^x + 2x^2)}{x} = \lim_{x \to 0} \frac{e^x + 4x}{e^x + 2x^2} = \frac{1}{1} = 1$. Since e^x is a continuous function, we have $\lim_{x \to 0} (e^x + 2x^2)^{\frac{1}{x}} = \lim_{x \to 0} e^{f(x)} = e^{\left(\lim_{x \to 0} f(x)\right)} = e^1 = e$.

Question 2

(a) Integrating by parts, we have

$$\int_0^{\pi} e^x \cos x \, dx = [e^x \cos x]_0^{\pi} - \int_0^{\pi} e^x (-\sin x) \, dx$$

$$= [e^x \cos x]_0^{\pi} - \left([e^x (-\sin x)]_0^{\pi} - \int_0^{\pi} e^x (-\cos x) \, dx \right)$$

$$= [e^x \cos x]_0^{\pi} + [e^x \sin x]_0^{\pi} - \int_0^{\pi} e^x \cos x \, dx.$$

Rearranging, we have

$$2\int_0^{\pi} e^x \cos x \, dx = [e^x \cos x]_0^{\pi} + [e^x \sin x]_0^{\pi}$$
$$= -e^{\pi} - 1.$$

Therefore $\int_0^{\pi} e^x \cos x \ dx = -\left(\frac{1+e^{\pi}}{2}\right).$

(b) We have, from partial fraction.

$$\int_0^2 \frac{3x^2 + 5x + 6}{(x+2)(x^2+4)} dx = \int_0^2 \frac{2x}{x^2+4} + \frac{1}{x^2+4} + \frac{1}{x+2} dx$$

$$= \left[\ln|x^2+4| + \frac{1}{2} \tan^{-1} \frac{x}{2} + \ln|x+2| \right]_0^2$$

$$= (\ln 8 + \frac{\pi}{8} + \ln 4) - (\ln 4 + \ln 2) = 2 \ln 2 + \frac{\pi}{8}.$$

Firstly, by doing implicit differentiation, we obtain $2x + 2(y-2)\frac{dy}{dx} = 0$, i.e. $\frac{dy}{dx} = \frac{-x}{y-2}$. Since the equation of circle can be split into 2 equations, $y = 2 + \sqrt{1 - x^2}$ and $y = 2 - \sqrt{1 - x^2}$, we have

Surface area
$$= 2\pi \int_{-1}^{1} (2 + \sqrt{1 - x^2}) \sqrt{1 + (\frac{dy}{dx})^2} + (2 - \sqrt{1 - x^2}) \sqrt{1 + (\frac{dy}{dx})^2} dx$$

$$= 2\pi \int_{-1}^{1} (2 + \sqrt{1 - x^2}) \sqrt{\frac{1}{1 - x^2}} + (2 - \sqrt{1 - x^2}) \sqrt{\frac{1}{1 - x^2}} dx$$

$$= 2\pi \int_{-1}^{1} 4\sqrt{\frac{1}{1 - x^2}} dx$$

$$= 2\pi \int_{0}^{1} 8\sqrt{\frac{1}{1 - x^2}} dx$$
 (by symmetry)
$$= 16\pi \int_{0}^{\frac{\pi}{2}} \sqrt{\frac{1}{1 - (\sin y)^2}} \cos y dy$$
 (sub $x = \sin y$)
$$= 16\pi \int_{0}^{\frac{\pi}{2}} 1 dy = 8\pi^2.$$

Question 4

(a) For all $n \in \mathbb{Z}_{\geq 2}$, we have

$$\frac{1}{n^2-1} = \frac{1}{(n-1)^2+2n-2} \le \frac{1}{(n-1)^2}.$$
 Since $\sum_{n=0}^{\infty} \frac{1}{(n-1)^2} = \sum_{n=0}^{\infty} \frac{1}{m^2}$ is convergent, by Comparison Test, $\sum_{n=0}^{\infty} \frac{1}{n^2-1}$ is convergent.

- (b) Let $a_n = \frac{1}{b_n}$, where $b_n = n \ln n$, $n \in \mathbb{Z}^+$. This give us $b_{n+1} - b_n = (n+1) \ln(n+1) - n \ln n \ge n \ln(n+1) - n \ln n = n \ln(\frac{n+1}{n}) \ge 0$. Hence we have $b_{n+1} \ge b_n$ and therefore $a_{n+1} \le a_n$. Together with $\lim_{n \to \infty} a_n = 0$, by Alternating Series Test, this series converges.
- (c) Since $\lim_{x\to\infty}\int_2^x \frac{1}{x\ln x}\,dx = \lim_{x\to\infty}[\ln(\ln x)]_2^x = \lim_{x\to\infty}\ln(\ln x) \ln(\ln 2) = \infty$, we have the sum $\sum_{n=2}^\infty \frac{1}{n\ln n}$ to diverges by using the Integral Test. We also have,

$$\lim_{n \to \infty} \frac{\frac{1}{\ln n} \sin \frac{1}{n}}{\frac{1}{n \ln n}} = \lim_{n \to \infty} n \sin \frac{1}{n}$$
$$= \lim_{n \to 0} \frac{1}{n} \sin n$$
$$= 1$$

Page: 2 of 5

Thus by Limit Comparison Test, we have $\sum_{n=2}^{\infty} \frac{1}{\ln n} \sin \frac{1}{n}$ to diverges.

(a) Consider Maclarin's expansion for e^x

$$e^{x} = \sum_{r=0}^{\infty} \frac{x^{r}}{r!}$$

$$e^{x^{2}} = \sum_{r=0}^{\infty} \frac{(x^{2})^{r}}{r!} = \sum_{r=0}^{\infty} \frac{x^{2r}}{r!}$$

$$x^{5}e^{x^{2}} = \sum_{r=0}^{\infty} \frac{x^{2r+5}}{r!}.$$

Hence the coefficient of $x^{2007} = x^{2(1001)+5}$ is $\frac{1}{1001!}$ which is also $\frac{f^{(2007)}(0)}{2007!}$, i.e. $f^{(2007)}(0) = \frac{2007!}{1001!}$

(b) Since $\lim_{x\to 0}\int_0^x \frac{t^2}{\sqrt{a+3t}}\ dt=0$ and $\lim_{x\to 0}x-\sin x=0$, we apply L'Hôpital's Rule to get

$$1 = \lim_{x \to 0} \frac{\int_0^x \frac{t^2}{\sqrt{a+3t}} dt}{x - \sin x} = \lim_{x \to 0} \frac{\frac{x^2}{\sqrt{a+3x}}}{1 - \cos x}$$
$$= \lim_{x \to 0} \frac{1}{\sqrt{a+3x}} \cdot \lim_{x \to 0} \frac{x^2}{1 - \cos x}$$
$$= \frac{1}{\sqrt{a}} \cdot \lim_{x \to 0} \frac{2x}{\sin x}$$
$$= \frac{1}{\sqrt{a}} \cdot 2 = \frac{2}{\sqrt{a}}.$$

Page: 3 of 5

Hence we have a=4.

(a) Using trigonometric ratios we have $\tan \alpha = \frac{50}{h}$ and $\tan \beta = \frac{32}{h}$. Hence

$$\tan \theta = \tan(\alpha - \beta)$$

$$= \frac{\tan \alpha - \tan \beta}{1 - \tan \alpha \tan \beta}$$

$$= \frac{\frac{50}{h} - \frac{32}{h}}{1 + \frac{1600}{h^2}}$$

$$= \frac{18h}{h^2 + 1600}.$$

(b) For $0 \le \theta \le \frac{\pi}{2}$, $\tan \theta$ is a increasing function. To maximize θ , it suffices to maximize $\tan \theta$. Differentiating $\frac{18h}{1600+h^2}$ with respect to h,

$$\frac{d}{dh}\left(\frac{18h}{1600+h^2}\right) = \frac{-18(h^2-1600)}{(h^2+1600)^2} = \frac{-18(h-40)(h+40)}{(h^2+1600)^2}.$$

Since $h \in \mathbb{R}^+$, when $\frac{d}{dh}(\tan \theta) = 0$, we have h - 40 = 0, i.e. h = 40. Since $\frac{d}{dh}(\tan \theta)\big|_{h=40^-} > 0$ and $\frac{d}{dh}(\tan \theta)\big|_{h=40^+} < 0$, by first derivative test, h = 40 is a local maximum. Checking the end points $\frac{18h}{h^2 + 1600}\Big|_{h=0} = 0$, $\lim_{x \to \infty} \frac{18h}{h^2 + 1600}\Big|_{h=x} = 0$. Hence $\tan \theta$, and thus also θ , is maximum when h = 40.

- (a) Let $f(x) = \ln(x+1)$. Since f'(x) is decreasing on the interval -1 < x < 1, we have $\frac{f(x)-f(0)}{x-0} \le f'(0)$ as a consequence of Mean Value Theorem, i.e. $\ln(x+1) \le x$. Let $x_1 = -x$, then for the interval $-1 < x_1 < 1$, we get $\ln(1-x_1) \le -x_1$, i.e. $x_1 \le -\ln(1-x_1)$. Hence for -1 < x < 1, we have $\ln(x+1) \le x \le -\ln(1-x)$.
- (b) For any integer k > 1, we have $-1 < \frac{1}{k} < 1$. Hence $\ln \left(1 + \frac{1}{k}\right) \le \frac{1}{k} \le -\ln \left(1 \frac{1}{k}\right)$. Simplifying which, we will have $\ln \left(\frac{k+1}{k}\right) \le \frac{1}{k} \le \ln \left(\frac{k}{k-1}\right)$.
- (c) Hence from (7b.), for all integer n > 1,

$$\sum_{k=n}^{2n} \ln\left(\frac{k+1}{k}\right) \le \sum_{k=n}^{2n} \frac{1}{k} \le \sum_{k=n}^{2n} \ln\left(\frac{k}{k-1}\right)$$
$$\ln\left(\frac{2n+1}{n}\right) \le \sum_{k=n}^{2n} \frac{1}{k} \le \ln\left(\frac{2n}{n-1}\right).$$

Since $\lim_{n\to\infty} \ln\left(\frac{2n+1}{n}\right) = \lim_{n\to\infty} \ln\left(\frac{2n}{n-1}\right) = \ln 2$, by Squeeze Theorem, $\lim_{n\to\infty} \sum_{k=n}^{2n} \frac{1}{k} = \ln 2$.

Question 8

(a) We have,

$$\begin{split} \int_0^x \frac{\cos x}{1+x} \; dx + 2 \int_0^x \frac{\cos x}{(1+x)^3} \; dx &= \left[\frac{\sin x}{1+x} \right]_0^x + \int_0^x \frac{\sin x}{(1+x)^2} + 2 \int_0^x \frac{\cos x}{(1+x)^3} \; dx \\ &= \frac{\sin x}{1+x} - \left[\frac{\cos x}{(1+x)^2} \right]_0^x - 2 \int_0^x \frac{\cos x}{(1+x)^3} \; dx + 2 \int_0^x \frac{\cos x}{(1+x)^3} \; dx \\ &= \frac{\sin x}{1+x} - \frac{\cos x}{(1+x)^2} + \frac{1}{1^2}. \end{split}$$

For all $x \in \mathbb{R}$, we have $\frac{-1}{1+x} \le \frac{\sin x}{1+x} \le \frac{1}{1+x}$ and $\frac{-1}{(1+x)^2} \le \frac{\cos x}{(1+x)^2} \le \frac{1}{(1+x)^2}$, and so by Squeeze Theorem, $\lim_{x \to \infty} \frac{\sin x}{1+x} = \lim_{x \to \infty} \frac{\cos x}{(1+x)^2} = 0$. Hence taking limits, we get $\int_0^\infty \frac{\cos x}{1+x} \, dx + 2 \int_0^\infty \frac{\cos x}{(1+x)^3} \, dx = \lim_{x \to \infty} \left(\frac{\sin x}{1+x} - \frac{\cos x}{(1+x)^2} + 1 \right) = 1$.

(b) Consider the function $h(x) = \left(\int_a^x f(x) \ dx\right) \left(\int_b^x g(x) \ dx\right)$. Since $\int_a^x f(x) \ dx$ and $\int_b^x g(x) \ dx$ are both differentiable on [a,b], h(x) is continuous. Since h(a) = 0 = h(b), applying Rolle's Theorem, there exists $c \in (a,b)$ such that h'(c) = 0. Hence $f(c) \int_b^c g(x) \ dx + g(c) \int_a^c f(x) \ dx = 0$.

Page: 5 of 5

Therefore there exist $c \in (a,b)$ such that $g(c) \int_a^c f(x) dx = f(c) \int_c^b g(x) dx$.