Tuesday, December 4, 2018 11:31

$$\mathbb{Z}\left(\frac{1+\sqrt{14}}{2}\right)$$
 is P.I.D. but not Enclidean

1. Z[x] is not a p.i.d but it is a U.f.d. (by Ganss Lemma R:usi => Rcos: uf1)

(2,x) is not principal

(a+bx) for any a,b \in Z

2: R= Z[v=3] + O(v=3) = Z[11=]. Prone Rii not a U.F.D.

 $(1-\sqrt{3})(1+\sqrt{-3})=4=2.2$. Show 2, $1\pm\sqrt{-3}$ are irreducible.

a is irred if a = b·c => be R* or ce R*.

Alternately: 2 is irreducible, (2) = (1-53)(1+53) is not a princided

R is not a U.F.D. (ma UFD, (inex) is prince).

Aside: $N: \mathbb{Z}[\sqrt{s}] \longrightarrow \mathbb{Z}_{>0}$. If $N(\alpha + b\sqrt{s}) = \alpha^2 + 3b^2$ then $N(\alpha \beta) = N(\alpha) N(\beta)$. If $\alpha \neq 0$, $\beta \in \mathbb{R}$, $\frac{\beta}{\alpha} \in \mathbb{Q}[\sqrt{s}]$.

 $\beta = (m + n + 3) \propto + r \propto$ $(> remember has norm < norm (\alpha)$ (> 0 + <)

g: KCXI (Eisenstein Criterion).

f(x)= an x" + an, xn, + ··· + a & R[x] is printing, R is U.F.D.

If I prime ideal PGR sit. and P, ani,..., aveP, at P2 then f(x) is irreducible.

(secal primitive if c/a; +i => c ex (i.e gcd of coeffs 151)).

Pedeotrian's Criterian

 $f(x) \in K(x)$, $J_{eq}(f) = 2 ... 3$ f(x) ined $\Leftrightarrow f(x) \neq 0 \forall x \in K$.

ey x²+x+1 € F2(x) is irrod.

4: $\chi^{P} - \chi \in \mathbb{F}_{P}(\chi)$

The b.e. If (803 17 a mult group

(and sod(x) | P-1. $\chi\left(\chi^{p-1}-1\right) \ \chi^{p-1}-1 = \prod_{\alpha \in \mathbb{F}_p \setminus \{0\}} (\chi_{-\alpha}) \ \xi \cdot S \cdot \chi^{p-1} = 1 \quad \forall \, \alpha \neq \delta.$

> So RHS LHS, but they have he Some degree.

K: Oherk = p pme

K - K

 $f(\alpha) = \alpha \quad \forall \alpha \in F_p \subseteq K.$

Local Rings:

Q[X] is local. (F)

PID - every ideal is asclic

local - only one max's ideal

Local ring:

(1)
$$\mathbb{Q}[x]$$

(2) $\mathbb{R} = \left[\frac{f(x,y)}{g(x,y)}\right] g(x,y) \neq 0$

(3) $\mathbb{R} = \left[\frac{f(x,y)}{g(x,y)}\right] g(x,y) \neq 0$

(4) $\mathbb{R} = \mathbb{R}$

(5) $\mathbb{R}[x,y]$

(6) $\mathbb{R}[x]$

(7) $\mathbb{R}[x]$

(8) $\mathbb{R}[x]$

(9) $\mathbb{R}[x]$

(10) $\mathbb{R}[x]$

(11) $\mathbb{R}[x]$

(12) $\mathbb{R}[x]$

(13) $\mathbb{R}[x]$

(14) $\mathbb{R}[x]$

(15) $\mathbb{R}[x]$

(15) $\mathbb{R}[x]$

(16) $\mathbb{R}[x]$

(17) $\mathbb{R}[x]$

(18) $\mathbb{R}[x]$

(19) $\mathbb{R}[x]$

(10) $\mathbb{R}[x]$

(10) $\mathbb{R}[x]$

(11) $\mathbb{R}[x]$

(12) $\mathbb{R}[x]$

(13) $\mathbb{R}[x]$

(14) $\mathbb{R}[x]$

(15) $\mathbb{R}[x]$

(15) $\mathbb{R}[x]$

(16) $\mathbb{R}[x]$

(17) $\mathbb{R}[x]$

(18) $\mathbb{R}[x]$

(19) $\mathbb{R}[x]$

(19)

Page 3

$$g(J\overline{s}) = 0 \implies g \text{ is div by } \chi^2 - S$$

$$(\text{our } R, g(x) \text{ is div by } \chi - \sqrt{s}, \chi + \sqrt{s})$$

$$g(x) = (x^2 - S) \overline{g}(x) \text{ our } R(x),$$

$$\overline{1.5} \cdot \text{ Coeff of } \overline{g} \text{ our } x \cdot \chi.$$

film burn