Math 425: Abstract Algebra 1

Section 0.4: Relations

Mckenzie West

Last Updated: September 14, 2022

Last Time.

- Mappings
- Codomain vs Range
- Image and Inverse Image
- One-to-One, Onto, Bijection
- Identity Map
- Inverse Mappings
- Invertibility Theorem

Today.

- Relations
- Equivalence Relations
- Equivalence Classes

If A is a set, any subset of $A \times A$ is called a relation on A.

Note.

We often call this set R and we denote the elements as $a \equiv b$.

Example.

(a)
$$A = \mathbb{Z}$$
, $R = \mathbb{Z} \times \mathbb{Z}$

(b)
$$A = \mathbb{R}$$
, $a \sim b$ exactly when $a > b$

(c)
$$A = \{0, 1, 2\}$$
, $a \equiv b$ exactly when $a = b$

A relation \equiv on a set A is called an equivalence relation if it satisfies all of the following conditions for all $a, b, c \in A$,

- 1. $a \equiv a$ (reflexivity),
- **2.** If $a \equiv b$ then $b \equiv a$ (symmetric),
- **3.** If $a \equiv b$ and $b \equiv c$, then $a \equiv c$ (transitive).

Exercise 1.

For integers m and n, say $m \equiv n$ if and only if m - n is even. Show that \equiv defines and equivalence relation.

Given an equivalence relation \equiv on a set A, we define the equivalence class of a to be the set

$$[a] = \{x \in A \mid x \equiv a\}.$$

Exercise 2.

What are the equivalence classes from the previous exercise? $(m \equiv n \text{ if and only if } m - n \in 2\mathbb{Z})$

Exercise 3.

What are the equivalence classes for each of the following relations?

(a) Equivalence given by equality.

(b) $A = \mathbb{R}$, $a \equiv b$ if and only if $a^2 = b^2$.

Notation.

The book uses A_{\equiv} to be the set of unique equivalence classes of A under the equivalence relation \equiv . We may also call this set the quotient set of A by \equiv .

Exercise 4.

Let $U = \{1, 2, 3\}$ and $A = U \times U$. Define the relation \equiv on A by $(a, b) \equiv (c, d)$ if b = d.

- (a) What is A?
- (b) Show that \equiv defines an equivalence relation on A.
- (c) Determine A_{\equiv} .

Given an equivalence \equiv on a set A, the natural map is the mapping $\phi \colon A \to A_{\equiv}$ given by $\phi(a) = [a]$ for all $a \in A$.

Exercise 5.

Fill in the arrows for the natural map from the previous slide

Α	$\xrightarrow{\phi}$	A_{\equiv}
(1,1)		5/4 4/1
(1,2)		[(1,1)]
(1,3) $(2,1)$		
(2,2)		[(2,2)]
(2,3)		[(/ /]
(3,1)		
(2,3)		[(3,3)]
(3,3)		

Theorem 0.4.1.

Let \equiv be an equivalence on a set A and let a and b denote elements of A. Then

- **1.** $a \in [a]$ for all $a \in A$.
- **2.** [a] = [b] if and only if $a \equiv b$.
- **3.** If $a \in [b]$ then [a] = [b].
- **4.** If $[a] \neq [b]$ then $[a] \cap [b] = \emptyset$.

Brain Break.

What is your preferred wallet style/type?

11

Note.

We say that an equivalence relation partitions a set because every element of that set will appear in *exactly one* equivalence class.

We call the collection of distinct equivalence classes the quotient set of A by \equiv .

Exercise 6.

Explore this property for the equivalence relation given by $a \equiv b$ if and only if $a^2 = b^2$.

Two sets X and Y are disjoint if $X \cap Y = \emptyset$, and a collection of sets is pairwise disjoint if any two distinct sets in the family are disjoint.

Definition.

If A is a nonempty set and \mathcal{P} is a family of subsets of A, we say that \mathcal{P} partitions A if

- (a) $\emptyset \notin \mathcal{P}$
- (b) \mathcal{P} is pairwise disjoint
- (c) The union of the sets in \mathcal{P} is A

13

Exercise 7.

What are all of the partitions of $\{a, b, c\}$?

Theorem 0.4.2.

If \equiv is any equivalence on a nonempty set A, then the collection of all equivalence classes of A under \equiv partitions A.

Exercise 8.

What is the partition of \mathbb{Z} given by $m \equiv n$ if and only if m - n is even?

Exercise 9.

How does this partitioning question change if we use $m \equiv n$ if and only if m - n is divisible by 3?