Quick start keyboard control

Note: The ROS_DOMAIN_ID of the Raspberry Pi and the microROS control board need to be consistent. You can check [MicroROS Control Board Parameter Configuration] to set the microROS control board ROS_DOMAIN_ID. Check the tutorial [Connect MicroROS Agent] to determine whether the IDs are consistent.

1. Program function description

After the car is connected to the agent, it will publish sensor data such as radar and imu. You can run commands in the supporting virtual machine/Raspberry Pi 5 to query this information. You can also publish control data of sensors such as speed and buzzer.

2. Query car information

2.1. Start and connect to the agent

After the Raspberry Pi is successfully powered on, open the terminal and enter the following command to open the agent.

```
sh ~/start_agent_rpi5.sh

pi@raspb@rrypi:~ $ sh ~/start_agent_rpi5.sh
[1705911763.838436] info | TermiosAgentLinux.cpp | init | running... | fd: 3
[1705911763.839055] info | Root.cpp | set_verbose_level | logger setup | verbose_level: 4
```

Press the reset button on the microROS control board and wait for the car to connect to the agent. The connection is successful as shown in the figure below.

```
create_participant
key: 0x6BB64C97, participant_id: 0x000(1)
                                                   | create_topic
key: 0x6BB64C97, topic_id: 0x000(2), participant_id: 0x000(1)
                                                   | create_publisher
                                                                                                         | client
key: 0x6BB64C97, publisher_id:\(\frac{1}{2}\)0x000(3), participant_id:\(0x000(1)\)
                                                   I create datawriter
                                                                                                         | client
key: 0x6BB64C97, datawriter_id: 0x000(5), publisher_id: 0x000(3)
                                                   | create_topic
key: 0x6BB64C97, topic_id: 0x001(2), participant_id: 0x000(1)
                                                   | create_publisher
key: 0x6BB64C97, publisher_id: 0x001(3), participant_id: 0x000(1)
                                                   | create datawriter
key: 0x6BB64C97, datawriter_id: 0x001(5), publisher_id: 0x001(3)
                                                                                                         | client
                                                   I create topic
key: 0x6BB64C97, topic_id: 0x002(2), participant_id: 0x000(1)
                                                  | create_publisher
key: 0x6BB64C97, publisher_id: 0x002(3), participant_id: 0x000(1)
key: 0x6BB64C97, datawriter_id: 0x002(5), publisher_id: 0x002(3)
                                                                                                         | client
                                                   | create_topic
key: 0x6BB64C97, topic_id: 0x003(2), participant_id: 0x000(1)
                                                   | create_subscriber
                                                                                                         I client
key: 0x6BB64C97, subscriber_id: 0x000(4), participant_id: 0x000(1)
```

2.2. Enter the car docker

Open another terminal and enter the following command to enter docker:

```
sh ros2_humble.sh
```

When the following interface appears, you have successfully entered docker. Now you can control the car through commands.

```
pi@raspberrypi:~ $ ./ros2_humble.sh
access control disabled, clients can connect from any host
MY_DOMAIN_ID: 20
root@raspberrypi:/# ■
```

Enter the following command in the terminal to query the agent node:

```
ros2 node list
root@raspberrypi:~# ros2 node list
```

3. Start the keyboard control program

YB Car Node

Enter the following command in the docker terminal to control the car using the keyboard.

```
ros2 run yahboomcar_ctrl yahboom_keyboard
```

```
Control Your SLAM-Bot!

Moving around:

u i o
j k l
m , .

q/z : increase/decrease max speeds by 10%

w/x : increase/decrease only linear speed by 10%

e/c : increase/decrease only angular speed by 10%

t/T : x and y speed switch

s/S : stop keyboard control

f space key, k : force stop
anything else : stop smoothly

CTRL-C to quit

currently: speed 0.2 turn 1.0
```

Enter the following command in the docker terminal to control the car using the keyboard.

keyboard keys	Key Function
[i]	Go forward

keyboard keys	Key Function
[,]	move back
[1]	Right rotation
[j]	left rotation
[u]	Turn left
[0]	Turn right
[m]	Reverse left
[.]	Reverse to the right