Résumé de cours : Semaine 5, du 4 octobre au 8.

Relations binaires (suite et fin)

1 Relations d'ordre (suite et fin)

Définition. Si F est une partie de E et $m \in E$, on dit que m est le maximum de F si et seulement si m majore F et $m \in F$. On le note $\max(F)$. On définit de même le minimum de F.

Définition. La borne supérieure de F est le minimum de l'ensemble des majorants (lorsqu'il existe). On le note $\sup(F)$. La borne inférieure de F est le maximum de l'ensemble des minorants (lorsqu'il existe). On le note $\inf(F)$.

Théorème. (Admis) Toute partie non vide majorée (resp : minorée) de \mathbb{R} possède une borne supérieure (resp : une borne inférieure).

Propriété. Soit (E, \preceq) un ensemble ordonné et $A \subset E$.

Si A possède un maximum, alors A possède une borne supérieure et sup $A = \max A$.

Cependant, il est "fréquent" que A ne possède pas de maximum, mais possède une borne supérieure. Dans ce cas, sup $A \notin A$.

Propriété. Soit (E, <) un ensemble ordonné et soit $A, B \in \mathcal{P}(E)$.

Si A et B possédent des bornes supérieures : si $B \subset A$, alors $\sup(B) \leq \sup(A)$.

Si A et B possédent des bornes inférieures : si $B \subset A$, alors $\inf(B) \geq \inf(A)$.

Démonstration à connaître.

Passage à la borne supérieure (resp : inférieure) : Soit (E, \leq) un ensemble ordonné et soit A une partie de E possédant une borne supérieure.

 \diamond Soit $e \in E$. Alors $\sup(A) \leq e \iff [\forall a \in A, a \leq e]$.

Le fait de passer de la propriété " $\forall a \in A, \ a \leq e$ " à l'affirmation " $\sup(A) \leq e$ " s'appelle le passage à la borne supérieure.

- ♦ Il faut savoir le justifier : si $[\forall a \in A, a \le e]$, alors e est un majorant de A, or sup(A) est le plus petit des majorants, donc sup $(A) \le e$.
- \diamond ATTENTION, en général, $\sup(A) \notin A$, donc le passage à la borne supérieure ne se réduit pas au fait d'appliquer la propriété " $\forall a \in A, \ a \leq e$ " avec $a = \sup(A)$.
- \diamond De même, si B est une partie de E possédant une borne inférieure, le principe du passage à la borne inférieure consiste à passer de la propriété, " $\forall a \in A, \ a \geq e$ " à " $\inf(A) \geq e$ ".

Définition. Soit F une partie de E et m un élément de F.

m est maximal dans F si et seulement si $\forall x \in F(x \succeq m \Longrightarrow x = m)$, i.e $\forall x \in F, \neg (x \succ m)$. m est minimal dans F si et seulement si $\forall x \in F(x \preceq m \Longrightarrow x = m)$, i.e $\forall x \in F, \neg (x \prec m)$.

Propriété. Lorsque la relation d'ordre est totale, toute partie F de E possède au plus un élément maximal et dans ce cas, c'est le maximum de F. Idem avec minimal et minimum.

Exercice. Si E est un ensemble fini et non vide, pour tout ordre défini sur E, montrer que E possède au moins un élément minimal.

A connaître.

2 Ordres dans \mathbb{N}

2.1 L'ordre naturel et la soustraction

L'ordre naturel: Pour tout $n, m \in \mathbb{N}$, on convient que $n \leq m$ si et seulement si $\exists k \in \mathbb{N}, \ m = n + k$. Dans ce cas, k est unique. On le note k = m - n. La relation binaire \leq ainsi définie est un ordre total sur \mathbb{N} .

Définition. On vient de montrer que, si n est un entier naturel, pour tout $h, k \in \mathbb{N}$, n+h=n+k implique h=k. On dit que n est régulier. Il faut savoir le démontrer.

Propriété. Soit $m, n \in \mathbb{N}$. Si m < n, alors $m + 1 \le n$.

2.2 Multiplication dans N et relation de divisibilité

Multiplication entre entiers: Pour tout $m \in \mathbb{N}$, on pose $0 \times m = 0$ et $\forall n \in \mathbb{N}$, $s(n) \times m = n \times m + m$. Ces conditions définissent l'addition entre entiers.

Propriétés de la multiplication :

- 0 est absorbant : $\forall m \in \mathbb{N}, m \times 0 = 0 \times m = 0.$
- 1 est neutre : $\forall m \in \mathbb{N}, \ m \times 1 = 1 \times m = m$.
- Distributivité de la multiplication par rapport à l'addition : $\forall n, m, p \in \mathbb{N}, \ n(m+p) = (nm) + (np) = nm + np$: les dernières parenthèses sont inutiles si l'on convient que la multiplication est prioritaire devant l'addition.
- Associativité : $\forall n, m, k \in \mathbb{N}, (n \times m) \times k = n \times (m \times k).$
- Commutativité : $\forall n, m \in \mathbb{N}, n \times m = m \times n$.

La relation d'ordre est compatible avec la multiplication :

Pour tout $a, b, c, d \in \mathbb{N}$, si $a \leq b$ et $c \leq d$, alors $ac \leq bd$.

```
Propriété. Soit n, k \in \mathbb{N}.
Si nk = 0, alors n = 0 ou k = 0.
Si nk = 1, alors n = k = 1.
```

Définition. Soit $n, m \in \mathbb{N}$. On dit que n divise m, que n est un diviseur de m, ou encore que m est un multiple de n si et seulement si il existe $k \in \mathbb{N}$ tel que m = kn. On note n|m.

Remarque. Tout entier divise 0 mais 0 ne divise que lui-même.

Définition. un nombre premier est un entier n supérieur à 2 dont les seuls diviseurs sont 1 et n.

Propriété. La relation de divisibilité est une relation d'ordre partiel sur \mathbb{N} .

Il faut savoir le démontrer.

2.3 Maximum et minimum dans \mathbb{N}

Propriété. Toute partie non vide et majorée de N possède un maximum.

Il faut savoir le démontrer.

Propriété. Soit $a, b \in \mathbb{N}$ avec $b \neq 0$. Il existe un unique couple $(q, r) \in \mathbb{N}^2$ tel que a = bq + r et $0 \leq r < b$. On dit que q et r sont le quotient et le reste de la division euclidienne de a par b. Il faut savoir le démontrer.

Propriété. Toute partie non vide de N possède un minimum.

Il faut savoir le démontrer.

Remarque. Un ensemble ordonné dont toute partie non vide possède un plus petit élément est appelé un ensemble bien ordonné.

Principe de la descente infinie : pour montrer que " $\forall n \in \mathbb{N}, R(n)$ ", une alternative à la récurrence est de raisonner par l'absurde en supposant qu'il existe $n \in \mathbb{N}$ tel que $\neg[R(n)]$. Ainsi, l'ensemble $F = \{n \in \mathbb{N}/\neg R(n)\}$ possède un minimum n_0 . On peut parfois aboutir à une contradiction en construisant un entier vérifiant $m < n_0$ et $m \in F$.

3 Relations d'équivalence

Définition. Une relation binaire sur un ensemble E est une relation d'équivalence si et seulement si R est réflexive, symétrique et transitive.

Exemple fondamental : Soit E et F deux ensembles et $f: E \longrightarrow F$ une application.

Convenons que, pour tout $x, y \in E$, $x R y \iff f(x) = f(y)$.

Alors R est une relation d'équivalence sur E.

Définition. Soit R une relation d'équivalence sur E.

Si $x \in E$, on note \overline{x} l'ensemble des $y \in E$ tels que xRy.

 \overline{x} s'appelle la classe d'équivalence de x.

On désigne par E/R l'ensemble des classes d'équivalence : $E/R = \{\overline{x}/x \in E\}$.

E/R s'appelle l'ensemble quotient de E par R.

Propriété. pour tout $x, y \in E$, $xRy \iff \overline{x} = \overline{y}$.

Il faut savoir le démontrer.

Définition. Une partition \mathcal{P} de E est une partie de $\mathcal{P}(E)$ telle que :

- pour tout $A, B \in \mathcal{P}, A \neq B \Longrightarrow A \cap B = \emptyset$,
- pour tout $A \in \mathcal{P}$, $A \neq \emptyset$,
- $\text{ et } \bigcup_{A \in \mathcal{P}} A = E.$

Théorème. Si R est une relation d'équivalence sur E, son ensemble quotient E/R est une partition de E. Réciproquement, si \mathcal{P} est une partition de E, il existe une unique relation d'équivalence R sur E telle que $\mathcal{P} = E/R$: Elle est définie par $\forall x,y \in E$, $[xRy \iff (\exists C \in \mathcal{P}, x,y \in C)]$. En résumé, la donnée d'une relation d'équivalence sur E est équivalente à la donnée d'une partition de E.

Il faut savoir démontrer la première phrase.

4 Axiome du choix

En voici deux énoncés équivalents.

- Pour tout ensemble I, pour toute famille $(E_i)_{i\in I}$ d'ensembles tous non vides, il existe une famille $(x_i)_{i\in I}$ telle que, pour tout $i\in I$, $x_i\in E_i$.
- Pour tout ensemble E, pour toute relation d'équivalence sur E, il existe un ensemble R tel que l'intersection de R avec chaque classe d'équivalence est un singleton.