

Departamento de Electrónica y Tecnología de Computadores

ANÁLISIS DE CIRCUITOS

Grado en Ingeniería de Tecnologías de Telecomunicación Examen febrero 2011

Duración: 3 horas

Responda a cada pregunta en hojas separadas Lea detenidamente los enunciados antes de contestar

Nombre	D.N.I.	Grupo
Nombre	D.N.I.	Grupo

- 1. En el circuito de la figura:
 - a) Determinar V_A e I_1 (0.5 puntos).
 - b) Calcular el equivalente Norton entre A y B (0.5 puntos).
 - c) Deducir los parámetros Z ($V_1=Z_{11}\ l_1+Z_{12}\ l_2$, $V_2=Z_{21}\ l_1+Z_{22}\ l_2$) (1 punto).
 - d) Hallar la potencia entregada a la carga (R_L) si R=10, 100 y 1000 Ω (1 punto).

- 2. En el circuito siguiente el conmutador J ha permanecido conectado en la posición que se indica en la figura durante un tiempo largo. En t=0s cambia de posición (de manera que se desconecta el condensador y se conecta R4) y permanece en el nuevo estado hasta t→∞.
 - a) Calcule la tensión entre los extremos del condensador y de R4 en t<0 (0.5 puntos).
 - b) Calcule la tensión entre los extremos de R4 en t→∞. (0.5 puntos).
 - c) Calcule la tensión entre los extremos de R4 en t=0+ (justo después del cambio en la posición del conmutador). (1 punto).
 - d) Calcule la constante de tiempo del circuito y represente la evolución de la tensión entre los extremos de R4 en función del tiempo. (1 punto).

- 3. En el circuito de la figura, R_1 =100 Ω , R_2 =200 Ω , L=0.2 mH y C=0.1 μ F. Calcular:
 - a) La tensión de salida si V_{s1} = 5 sen(2 π f·t), con f = 20 kHz y V_{s2} = 2 V y representar gráficamente $V_0(t)$ y $V_{s1}(t)$. (2 puntos)
 - b) Si $V_{s2} = 0 V$:
 - La función de transferencia T(s)=V₀/V_{s1}. Diagrama de Bode en amplitud y fase. (1 punto)
 - La salida V₀(t) cuando V_{s1}(t) = 5 u(t). (1 punto)

