ALGEBRA 1, Lista 8

Ćwiczenia 26.11.2019 i Konwersatorium 27.11.2019. Na Kolokwium 2 (3.12.2019) obowiązuje materiał z List 1-8 (czyli cała teoria grup na tym wykładzie).

- 0S. Skończone grupy abelowe jako produkty grup cyklicznych: rozpoznawanie ich izomorficzności. Grupa kwaternionów Q_8 i klasyfikacja grup rzędu co najwyżej 8. Centrum grupy. Automorfizmy wewnętrzne grup: definicja, własności i przykłady. Grupa $\operatorname{Inn}(G)$ automorfizmów wewnętrznych grupy G, związek z centrum grupy Z(G). Relacja sprzężenia w grupie G. Opis relacji sprzężenia w przypadku grup permutacji.
- 18. Znaleźć nietrywialne podgrupy $A, B < \mathbb{Z}_{15}$, takie że funkcja

$$f: A \times B \to \mathbb{Z}_{15}, \quad f(a,b) = a +_{15} b$$

jest izomorfizmem.

- 2S. Wypisać wszystkie grupy abelowe rzędu 12 (z dokładnością do izomorfizmu, bez powtórzeń).
- 3K. Niech $\sigma = (1,2)(3,4,5) \in S_5$.
 - (a) Wypisać wszystkie permutacje τ w grupie S_5 , które są sprzężone z permutacją σ . Za każdym razem wskazać permutację f taką, że $\tau = \varphi_f(\sigma)$ (przypomnienie: $\varphi_q(x) = gxg^{-1}$).
 - (b) Znaleźć zbiór wszystkich permutacji w S_5 , które są przemienne z permutacją σ (wskazówka: τ jest przemienna z $\sigma \iff \tau \sigma \tau^{-1} = \sigma$).
 - (c) Udowodnić, że zbiór z punktu (b) jest podgrupą grupy S_5 .
- 4K. Załóżmy, że grupa G ma jedyną podgrupę H rzędu 25. Udowodnić, że $H \leq G$. (wskazówka: dla $g \in G$, rozważyć podgrupę $\varphi_q(H) \leq G$).
- 5K. W następujących grupach G opisać klasy sprzężenia:
 - (a) $G = Q_8$;
 - (b) $G = D_3$;
 - (c) $G = D_4$.
 - 6. Czy istnieje monomorfizm grup $f: G \to H$? Jesli tak, wskazać przykład i wyznaczyć obraz. (wskazówka: taki monomorfizm istnieje wtedy i tylko wtedy, gdy istnieje podgrupa $S \leq H$, taka że $S \cong G$).
 - (a) $G = \mathbb{Z}_6, H = \mathbb{Z}_{24},$
 - (b) $G = \mathbb{Z}_{10}, H = \mathbb{Z},$
 - (c) $G = \mathbb{Z}_6$, $H = \mathbb{Z}_{100}$,
 - (d) $G = \mathbb{Z}_{15}, \ H = S_8,$
 - (e) $G = (\mathbb{Q}, +), H = (\mathbb{Z}, +)$
 - (f) $G = (\mathbb{R}, +), H = (\mathbb{Q}, +),$
 - (g) $G = S_3, H = \mathbb{Z}_9 \times \mathbb{Z}_{18},$
 - (h) $G = D_4$, $H = S_8$.
 - 7. Sprawdzić, czy następujące grupy są izomorficzne:
 - (a) $\mathbb{Z}_{24} \times \mathbb{Z}_{36} \text{ i } \mathbb{Z}_{48} \times \mathbb{Z}_{18};$
 - (b) $\mathbb{Z}_{21} \times \mathbb{Z}_{40} \text{ i } \mathbb{Z}_{168} \times \mathbb{Z}_5;$
 - (c) $\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \times \mathbb{Z}_7$ i \mathbb{Z}_{315} .
 - 8. Czy istnieją podgrupy właściwe K, H grupy kwaternionów Q_8 , takie że Q_8 jest produktem wewnętrznym K i H?
 - 9. Udowodnić, że każda podgrupa grupy kwaternionów Q_8 jest jej dzielnikiem normalnym.
- 10. Udowodnić, że:

$$Q_8/Z(Q_8) \cong \mathbb{Z}_2 \times \mathbb{Z}_2.$$