Probability

Wenxiao Yang*

 $^*\mbox{Department}$ of Mathematics, University of Illinois at Urbana-Champaign

2021

目录

1	Poi	sson Distribution $Pois(\lambda)$: 单位时间发生 k 次事件的概率	2
	1.1	λ : 单位时间发生该时间的平均次数	2
	1.2	$E(X) = Var(X) = \lambda \dots \dots$	2
	1.3	推导	2
2	Exp	ponential distribution $Exp(\lambda)$: 独立随机事件的发生间隔/第一次发生事件的时间	2
	2.1	λ: 单位时间发生该时间的平均次数	2
	2.2	$\mathbb{E}(X) = \frac{1}{\lambda}$: 预期事件的发生间隔; $Var(X) = \frac{1}{\lambda^2}$	3
	2.3	Memorylessness: $\Pr(T > s + t \mid T > s) = \Pr(T > t)$	3
	2.4	推导	3
3	Poi	sson process: A sequence of arrivals in continuous time with rate λ	4
	3.1	Definition	4
		3.1.1 $N(t) \sim Pois(\lambda t)$: Number of arrivals in length t follows Poisson distribution .	4
		3.1.2 The number of arrivals in disjoint time invervals are independent	4
	3.2	T_j : time of j^{th} arrival	4
	3.3	Theorem (Conditional counts): $N(t_1) N(t_2) = n \sim Bin(n, \frac{t_1}{t_2}) \dots \dots \dots \dots$	

1 Poisson Distribution $Pois(\lambda)$: 单位时间发生 k 次事件的概率

1.1 λ : 单位时间发生该时间的平均次数

$$Pr(X=k) = \frac{\lambda^k e^{-\lambda}}{k!}, \ k = 0, 1, 2, 3...$$

1.2
$$E(X) = Var(X) = \lambda$$

1.3 推导

我们考虑一段时间 (讲单位时间微分成 n 等分, $n \to \infty$), 每一刻 (瞬间) 都有一个 event may occur, which follows binomial distribution B(n,p). where $n \to \infty, p \to 0$; $\lambda = n \cdot p$ is the expected number of events in this period of time.

现在我们考虑发生 k 次 event 的概率:

$$\Pr(X = k) = \lim_{n \to \infty} \binom{n}{k} (\frac{\lambda}{n})^k (1 - \frac{\lambda}{n})^{n-k}$$

$$= \lim_{n \to \infty} \frac{n!}{(n-k)!k!} (\frac{\lambda}{n})^k (1 - \frac{\lambda}{n})^n (1 - \frac{\lambda}{n})^{-k}$$

$$= \lim_{n \to \infty} \frac{n!}{(n-k)!k!} (\frac{\lambda}{n})^k e^{-\lambda}$$

$$= \frac{\lambda^k e^{-\lambda}}{k!} \lim_{n \to \infty} \frac{n!}{(n-k)!n^k}$$

$$= \frac{\lambda^k e^{-\lambda}}{k!} \lim_{n \to \infty} \frac{n}{n} \frac{n-1}{n} \cdots \frac{n-k+1}{n}$$

$$= \frac{\lambda^k e^{-\lambda}}{k!}$$

2 Exponential distribution $Exp(\lambda)$: 独立随机事件的发生间隔/第一次 发生事件的时间

2.1 λ : 单位时间发生该时间的平均次数

随机变量 X 服从参数为 λ 或 β 的指数分布,则记作

$$X \sim \operatorname{Exp}(\lambda)$$
 or $X \sim \operatorname{Exp}(\beta)$

两者意义相同,只是 λ 与 β 互为倒数关系.

$$f(x; \lambda) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0. \end{cases}$$

$$f(x;\beta) = \begin{cases} \frac{1}{\beta}e^{-\frac{1}{\beta}x} & x \ge 0\\ 0 & x < 0. \end{cases}$$

累积分布函数为:

$$F(x; \lambda) = \begin{cases} 1 - e^{-\lambda x} & x \ge 0\\ 0 & x < 0. \end{cases}$$

其中 $\lambda > 0$ 是分布的参数,即每单位时间发生该事件的次数; $\beta > 0$ 为尺度参数,即该事件在每单位时间内的发生率。两者常被称为率参数(rate parameter)。指数分布的区间是 $[0,\infty)$ 。

2.2 $\mathbb{E}(X) = \frac{1}{\lambda}$: 预期事件的发生间隔; $Var(X) = \frac{1}{\lambda^2}$

$$\mathbb{E}(X) = \frac{1}{\lambda}; \ Var(X) = \frac{1}{\lambda^2}$$

2.3 Memorylessness: $Pr(T > s + t \mid T > s) = Pr(T > t)$

$$\Pr(T > s + t \mid T > s) = \frac{\Pr(T > s + t \text{ and } T > s)}{\Pr(T > s)}$$

$$= \frac{\Pr(T > s + t)}{\Pr(T > s)}$$

$$= \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}}$$

$$= e^{-\lambda t}$$

$$= \Pr(T > t)$$

2.4 推导

我们考虑一段时间 (讲单位时间微分成 n 等分, $n \to \infty$), 每一刻 (瞬间) 都有一个 event may occur, which follows binomial distribution B(n,p). where $n \to \infty, p \to 0$; $\lambda = n \cdot p$ is the expected number of events in this period of time. (与 Poisson 设定相同)

CDF: 现在我们考虑第一次发生 event 的时间大于 x 的概率:

$$1 - F(x; \lambda) = \lim_{n \to \infty} (1 - \frac{\lambda}{n})^{nx} = e^{-\lambda x} \Rightarrow F(x; \lambda) = 1 - e^{-\lambda x}$$

PDF:

$$f(x;\lambda) = \frac{\partial F(x;\lambda)}{\partial x} = \lambda e^{-\lambda x}$$

- 3 Poisson process: A sequence of arrivals in continuous time with rate λ
- 3.1 Definition
- 3.1.1 $N(t) \sim Pois(\lambda t)$: Number of arrivals in length t follows Poisson distribution

$$N(t) \sim Pois(\lambda t)$$

$$Pr(N(t) = k) = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$$

- 3.1.2 The number of arrivals in disjoint time invervals are independent
- 3.2 T_j : time of j^{th} arrival

$$T_1 > t$$
 is same as $N(t) = 0$: $P(T_1 > t) = P(N(t) = 0) = e^{-\lambda t}$
 $\Rightarrow T_1 \sim Expo(\lambda) \Rightarrow T_j - T_{j-1} \sim Expo(\lambda); T_j \sim Gamma(j, \lambda)$

3.3 Theorem (Conditional counts): $N(t_1)|N(t_2)=n\sim Bin(n,\frac{t_1}{t_2})$

可以理解为 n 个点散落在 $(0,t_2]$ 上的概率每处均等 = $\frac{1}{t_2}$; 所以散落在 $(0,t_1]$ 上的概率为 $\frac{t_1}{t_2}$