CSE 547T - HW3

467261 - Yifu Wang 2018 - 10 - 01

3.38 (c)

	$\sigma(q,a)$	$\sigma(q,b)$
1	{1,2}	{2}
2	{3}	{2}
3	{3}	$\{3,\!4\}$
4	Ø	Ø

3.38 (d)

	$\sigma(q,a)$	$\sigma(q,b)$
1	{2}	Ø
2	Ø	{3}
3	$\{1,4,5\}$	Ø
4	$\{5\}$	Ø
5	{1}	Ø

- **2.22** (a) Assume L is accepted by an FA with m states, where $m \in \mathbb{N}^+$.
 - Consider string $s = a^m b a^{2m}$, since |s| > m, by pumping lemma we should be able to find such a 3-tuple (u, v, w) where s = uvw and $v \neq \Lambda$ that $uv^i w \in L \ \forall \ i \in \mathbb{N}$.
 - Firstly, v couldn't contains b, since all string in L contains only one b. So v should be contained either in a^m part or a^{2m} part. But then the variation of i will break the proportion between this two parts.
 - \bullet Thus L can't be accepted by an FA.
- **2.22** (b) Assume L is accepted by an FA with m states, where $m \in \mathbb{N}^+$.
 - Consider string $s = a^m b^m a^{2m+1}$, since |s| > m, by pumping lemma we should be able to find such a 3-tuple (u, v, w) where s = uvw and $v \neq \Lambda$ that $uv^t w \in L \ \forall \ t \in \mathbb{N}$.
 - Firstly, let's divide s into 3 parts, which are a^m , b^m and a^{2m+1} . Obviously v can only be contained in one part, otherwise the variation of i will destroy this 3-parts pattern. Secondly, v can't be contained in the first two parts, since when t goes up, i+j will exceed k eventually. But again, v can't be contained in part 3 either. Since $|v| \neq 0$, thus when we take t = 0, we will get i+j=k which is not acceptable.
 - \bullet Thus L can't be accepted by an FA.