Лекция 2. Сортировки

Горденко М.К.

Задача сортировки

• Сортировка — это упорядочивание набора однотипных данных по возрастанию или убыванию.

Критерии оценки алгоритмов сортировки

- Время сортировки
- Требуемая память
- Устойчивость

- Сортировка выбором является одним из простейших алгоритмов сортировки
- Может быть как устойчивой, так и не устойчивой
- Шаги алгоритма:
 - находим минимальное значение в текущей части массива;
 - производим обмен этого значения со значением на первой неотсортированной позиции;
 - далее сортируем хвост массива, исключив из рассмотрения уже отсортированные элементы

- Асимптотическая сложность $O(n^2)$
- Время работы в худшем и среднем случае $O(n^2)$
- Дополнительная память O(1)

Устойчивость

• Устойчива или нет?

Пример

Сортировка вставками (Insertion sort)

• Сортировка вставками — алгоритм сортировки, в котором элементы входной последовательности просматриваются по одному, и каждый новый поступивший элемент размещается в подходящее место среди ранее упорядоченных элементов

Начальные ключи	44	55	12.	42	94	18	06	67
<i>i</i> == 2	44	35	12	42	94	18	06	67
<i>l</i> = 3	12	44	55	42	94	18	06	67
1 = 4	12	42	44	55	94	18	06	67
i = 5	12	42	44	55	94	1,8	06	67
<i>i</i> = 6	12	18	42	44	55	94	06	67
<i>j</i> = 7	0 6	12	18	42	44	55	94	67
i = 8	06	12	18	42	44	55	67	9-7

Сортировка вставками (Insertion sort)

- Время работы в худшем и среднем случае $O(n^2)$
- Время работы в лучшем случае
 - -O(n)
- Дополнительная память O(1)
- Устойчивость?

Сортировка вставками (Insertion sort)

- Время работы в худшем и среднем случае $O(n^2)$
- Время работы в лучшем случае O(n)
- Дополнительная память O(1)
- Устойчивость?

```
def insertion_sort(arr):
    n = len(arr)
    for i in range(1, n):
        current_value = arr[i]
        j = i - 1
        while j >= 0:
            if current_value < arr[j]:</pre>
                 arr[j+1] = arr[j]
                 arr[j] = current_value
                 j = j - 1
            else:
                 break
    return arr
```

Еще пример

Сортировка пузырьком (bubble sort)

• Алгоритм состоит из повторяющихся проходов по сортируемому массиву. За каждый проход элементы последовательно сравниваются попарно и, если порядок в паре неверный, выполняется обмен элементов. Проходы по массиву повторяются N-1 раз или до тех пор, пока на очередном проходе не окажется, что обмены больше не нужны, что означает — массив отсортирован. При каждом проходе алгоритма по внутреннему циклу, очередной наибольший элемент массива ставится на своё место в конце массива рядом с предыдущим «наибольшим элементом», а наименьший элемент перемещается на одну позицию к началу массива («всплывает» до нужной позиции как пузырёк в воде, отсюда и название алгоритма).

Сортировка пузырьком (bubble sort)

Сортировка пузырьком

- Асимптотическая сложность $O(n^2)$
- Время работы в худшем и среднем случае $O(n^2)$
- Дополнительная память O(1)

Сортировка пузырьком

- Асимптотическая сложность $O(n^2)$
- Время работы в худшем и среднем случае $O(n^2)$
- Дополнительная память O(1)

Пример

	1							
i	j		1	2	3	4	5	6
1	1		4	5	9	1	3	6
	2		4	5	9	1	3	6
	3	обмен	4	5	9	1	3	6
	4	обмен	4	5	1	9	3	6
	5	обмен	4	5	1	3	9	6
2	1		4	5	1	3	6	9
	2	обмен	4	5	1	3	6	9
	3	обмен	4	1	5	3	6	9
	4		4	1	3	5	6	9
3	1	обмен	4	1	3	5	6	9
	2	обмен	1	4	3	5	6	9
	3		1	3	4	5	6	9
4	1		1	3	4	5	6	9
	2		1	3	4	5	6	9
5	1		1	3	4	5	6	9

Сортировка подсчетом (Counting sort)

- Алгоритм сортировки, в котором используется диапазон чисел сортируемого массива (списка) для подсчёта совпадающих элементов
- Применение сортировки подсчётом целесообразно лишь тогда, когда сортируемые числа имеют (или их можно отобразить в) диапазон возможных значений, который достаточно мал по сравнению с сортируемым множеством
- Есть устойчивый и неустойчивый вариант сортировки

Сортировка подсчетом (Counting sort)

```
def counting sort(alist, largest):
    c = [0]*(largest + 1)
    for i in range(len(alist)):
        c[alist[i]] = c[alist[i]] + 1
    # Find the last index for each element
    c[0] = c[0] - 1 # to decrement each element for zero-based indexing
    for i in range(1, largest + 1):
        c[i] = c[i] + c[i - 1]
    result = [None] *len(alist)
    # Though it is not required here,
    # it becomes necessary to reverse the list
    # when this function needs to be a stable sort
    for x in reversed(alist):
        result[c[x]] = x
        c[x] = c[x] - 1
```

return result

Достоинства и недостатки

- Асимптотическая сложность O(n+k)
- Сортировка выполняется только для целых чисел
- Целесообразно применять, когда диапазон чисел небольшой по сравнению с размером сортируемого массива
- Требуется дополнительная память O(k) в случае неустойчивой сортировки и O(n+k) в случае устойчивой

Рекурсивная функция

- Базовый случай
- Шаг рекурсии

• Количество вызовов подпрограммы самой себя называется глубиной рекурсии или глубиной рекурсивных вызовов.

Прямая и косвенная рекурсия

- В случае прямой рекурсии вызов функцией самой себя делается непосредственно в этой же функции.
- Косвенная рекурсия создаётся за счёт вызова данной функции из какой-либо другой функции, которая сама вызывалась из данной функции.

Вычисление факториала

```
def fac(n):
    if n == 0:
        return 1
    return fac(n-1) * n

print(fac(5))
```

Достоинства и недостатки рекурсии

- + Для составления функции используется постановка задачи, поэтому ряд задач легче запрограммировать в виде рекурсии
- Расходы памяти
- Медленная работа при большой глубине

Быстрая сортировка

- Алгоритм сортировки, разработанный английским информатиком Тони Хоаром во время его работы в МГУ в 1960 году.
- Один из самых быстрых известных универсальных алгоритмов сортировки массивов.
- Алгоритм основан на принципе «разделяй и властвуй».

Быстрая сортировка. Алгоритм

- 1) В исходном несортированном массиве некоторым образом выбирается разделительный элемент х (барьерный элемент, опорный элемент, pivot).
- 2) Массив разбивается на две части. Элементы массива переставляются таким образом, чтобы
- в левой части массива оказались элементы <=x,
- в правой элементы массива, большие или равные >=x.

В итоге все элементы левой части меньше любого элементов правой части, за исключением элементов, равных барьерному (они могут быть как слева, так и справа).

3) Рекурсивно обрабатываются левый и правый подмассивы

Быстрая сортировка. Алгоритм

```
import random

def quick_sort(arr):
    n = len(arr)
    if n <= 1:
        return arr
    else:
        pivot = random.choice(arr)
        less = [x for x in arr if x < pivot]
        greater_or_equal = [x for x in arr if x >= pivot]
        return quick_sort(less) + quick_sort(greater_or_equal)
```

Разделительный элемент

- 1. Первый (последний) элемент рассматриваемой части массива (разбиение Ломуто).
- 2. Второй (предпоследний) элемент рассматриваемой части массива.
- 3. Элемент, находящийся в середине рассматриваемой части массива.
- 4. Среднее арифметическое всех элементов рассматриваемой части массива.
- 5. Среднее арифметическое из трех элементов в начале, в конце и в середине рассматриваемой части массива.
- 6. Медиана трех элементов в начале, в конце и в середине рассматриваемой части массива.
- 7. Медиана подмассива.
- 8. Случайным образом.

Достоинства и недостатки

- Прост в реализации
- Возможно распараллеливание
- Один из самых быстрых на практике
- Асимптотическая сложность $O(n \log n)$ в среднем случае
- Деградация до квадратичной сложности в худшем случае
- Рекурсивная реализация может привести к переполнению стека
- Не устойчивая

Сортировка слиянием

Алгоритм

- Сортируемый массив разбивается на две части примерно одинакового размера;
- Каждая из получившихся частей сортируется отдельно, например тем же самым алгоритмом;
- Два упорядоченных массива половинного размера соединяются в один.

```
mergeSort(A, I, r)
if (I < r) then
m = I + (r - I) / 2;
mergeSort(A, I, m)
mergeSort(A, m+1, r);
merge(A, I, m, r)
```

Алгоритм

```
def merge_sort(arr):
    n = len(arr)
    if n <= 1:
        return arr
    else:
        middle = int(len(arr) / 2)
        left = merge_sort(arr[:middle])
        right = merge_sort(arr[middle:])
        return merge(left, right)
def merge(left, right):
    result = []
    while len(left) > 0 and len(right) > 0:
        if left[0] <= right[0]:</pre>
            result.append(left[0])
            left = left[1:]
        else:
            result.append(right[0])
            right = right[1:]
    if len(left) > 0:
        result += left
    if len(right) > 0:
        result += right
    return result
```