Monte Carlo: modelowanie struktury fullerenów metodą symulowanego wyżarzania

27 kwietnia 2023

1 Wstęp

Rysunek 1: Struktura przestrzenna fullerenu C60 - widok z przodu, tylnia część przesłonięta. Położenia atomów węgla zaznaczone są kropkami, a wiązania pomiędzy najbliższymi sąsiadami - czarnymi liniami. Skala na osiach xyz w angstremach. Średnica C60 wynosi 7.04Å.

Na zajęciach wykorzystamy metodę symulowanego wyżarzania w celu określenia struktury geometrycznej fullerenów czyli klasterów zbudowanych z atomów węgla. W strukturach 3D (struktura diamentu) orbitale atomowe hybrydyzują w konfiguracji sp^3 (tetraedr - 4 najbliższych sąsiadów) natomiast w strukturach powierzchniowych (grafen, fullereny) w konfiguracji sp^2 (3 najbliższych sąsiadów) - podobnie jak w graficie, gdzie powierzchnie grafenu oddziałują siłami van der Waalsa. Modelowanie wykonamy używając potencjału Brennera, poprawnie opisuje on konfiguracje przestrzenne 2D i 3D atomów węgla. Potencjał i jego parametryzacja przedstawione są w pracy: D.W. Brenner, Phys. Rev. B 42, 9458(1990). Więcej o innych typach potencjałów stosowanych w modelowaniu molekularnym można dowiedzieć się z książki dostępnej w wersji elektronicznej (wyszukiwarka pod adresem springerlink.com): I.A. Solovyov, A.V. Korol, A.V. Solovyov, "Multiscale modelling of complex molecular structure and dynamics with MBN Explorer", Springer

1.1 Potencjal Brennera

Potencjał Brennera generalnie opisuje oddziaływanie dwuciałowe (podobnie jak potencjał Lennarda-Jonesa), ale zawiera także informację o liczbie aktualnie utworzonych wiązań po to aby ich ilość nie przekraczała 4. Całkowitą energię potencjalną układu opisuje wyrażenie

$$V_{tot} = \frac{1}{2} \sum_{i=1}^{n} V_i \tag{1}$$

gdzie V_i to energia oddziaływania i-tego atomu z najbliższymi sąsiadami

$$V_i = \sum_{\substack{j=1\\j\neq i}}^n f_{cut}(r_{ij}) \left[V_R(r_{ij}) - \overline{B}_{ij} V_A(r_{ij}) \right]$$
(2)

Funkcja $f_{cut}(r)$ ogranicza zasięg przestrzenny tylko do lokalnego otoczenia atomu

$$f_{cut}(r) = \begin{cases} 1, & r \leqslant R_1 \\ \frac{1}{2} \left[1 + \cos\left(\frac{r - R_1}{R_2 - R_1} \pi\right) \right], & R_1 < r \leqslant R_2 \\ 0, & r > R_2 \end{cases}$$
 (3)

Uwaga: jeśli liczymy V_i z wzoru (2) to najpierw sprawdzamy warunek czy: $r_{ij} > R_2$? - jeśli jest spełniony to dany wyraz nie daje wkładu do sumy i nie wyznaczamy wartości wyrażenia w nawiasie kwadratowym (wzór 2) - bo jest to czasochłonne i niepotrzebne.

Wyraz $U_R(r)$ określa wielkość potencjału odpychania dwóch atomów, a wyraz $U_A(r)$ to energia ich przyciągania

$$V_R(r) = \frac{D_e}{S - 1} \exp\left[-\sqrt{2S}\lambda(r - R_0)\right]$$
(4)

$$V_A(r) = \frac{D_e S}{S - 1} \exp\left[-\sqrt{\frac{2}{S}}\lambda(r - R_0)\right]$$
 (5)

Czynnik skalujący potencjał przyciągania \overline{B}_{ij} liczymy jako średnią wyrazów opisujących krotność wiązania

$$\overline{B}_{ij} = \frac{B_{ij} + B_{ji}}{2} \tag{6}$$

Wyraz B_{ij} obliczamy następująco

$$B_{ij} = (1 + \zeta_{ij})^{-\delta} \tag{7}$$

$$\zeta_{ij} = \sum_{\substack{k=1\\k\neq i,j}}^{n} f_{cut}(r_{ik})g(\theta_{ijk}) \tag{8}$$

$$g(\theta_{ijk}) = a_0 \left[1 + \frac{c_0^2}{d_0^2} - \frac{c_0^2}{d_0^2 + (1 + \cos \theta_{ijk})^2} \right]$$
(9)

 B_{ji} liczymy identycznie ale odwracamy wskaźniki. θ_{ijk} to kąt pomiędzy wektorami $\vec{r}_{ij} = \vec{r}_j - \vec{r}_i$ oraz $\vec{r}_{ik} = \vec{r}_k - \vec{r}_i$, który liczymy następująco

$$\cos \theta_{ijk} = \frac{\vec{r}_{ij} \cdot \vec{r}_{ik}}{r_{ij} \, r_{ik}} \tag{10}$$

Parametryzacja potencjału Brennera

$$R_0 = 1.315 \,\text{Å}$$

$$R_1 = 1.70 \,\text{Å}$$

$$R_2 = 2.00 \,\text{Å}$$

$$D_e = 6.325 \,eV$$

$$S = 1.29$$

$$\lambda = 1.5 \,\text{Å}^{-1}$$

$$\delta = 0.80469$$

$$a_0 = 0.011304$$

$$c_0 = 19$$

$$d_0 = 2.5$$

1.2 Funkcja korelacji par (Pair Correlation Function)

W modelowaniu molekularnym często stosuje się w przypadku płynów tzw. funkcję korelacji par, która określa gęstość prawdopodobieństwa znalezienia innego atomu w odległości r od atomu położonego w początku układu współrzędnych. Mimo iż nasz problem dotyczy formowania się wieloatomowej cząsteczki, użyjemy tej funkcji do zwizualizowania zmiany korelacji przestrzennych pomiędzy atomami w trakcie symulacji. Wzór opisujący funkcję (PCF)

$$PCF(r) = \frac{\frac{2\Omega}{n^2} \sum_{i=1}^{n} \sum_{j>i}^{n} \delta(r - r_{ij})}{d\Omega}$$
(11)

gdzie: $\delta(r)$ to delta Diraca, Ω to objętość obszaru symulacji. Nasz problem jest w zasadzie dwuwymiarowy więc powierzchnia sfery/fullerenu (r_{sr} - średnia odległość atomów od środka układu)

$$\Omega = 4\pi r_{sr}^2 \tag{12}$$

natomiast element $d\Omega$ wyraża pole powierzchnii w pierścieniu o promieniu r i szerokości dr

$$d\Omega = 2\pi r dr \tag{13}$$

Wzór (11) jest dobry do rozważań teoretycznych, ale w symulacjach musimy pozbyć się delty Diraca i PCF zdefiniować w postaci histogramu. W tym celu określamy średnią odległość atomów od środka

$$r_{sr} = \frac{1}{n} \sum_{i=1}^{n} r_i \tag{14}$$

maksymalny zakres histogramu (odległość między dwoma atomami)

$$r_{max} = 2.5 \cdot r_{sr} \tag{15}$$

ilość podprzedziałów M w histogramie i ich szerokość (niech będzie stała)

$$\Delta r = \frac{r_{max}}{M} \tag{16}$$

Teraz funkcje PCF możemy wyrazić w postaci tablicy 1D, której m-ty element obliczamy następująco

$$pcf[m] = \frac{2\Omega}{n^2} \frac{\sum_{i=1}^n \sum_{j>i}^n \delta_{m,k}}{2\pi r_m \Delta r}$$
(17)

$$\delta_{m,k} = \begin{cases} 1, & gdy \quad k = m \\ 0, & gdy \quad m \neq k \end{cases}$$
 (18)

$$k = floor\left(\frac{r}{\Delta r}\right) \tag{19}$$

$$r_m = \left(m + \frac{1}{2}\right) \Delta r, \qquad m = 0, 1, 2, \dots, M - 1$$
 (20)

(21)

Algorytm wyznaczania funkcji korelacji par

```
\begin{split} &\text{definiujemy: M, pcf[M]} \\ &r_{sr} = \frac{1}{n} \sum_{i} r_{i} \\ &r_{max} = 2.5 \cdot r_{sr} \\ &\Delta r = \frac{r_{max}}{M} \\ &\text{for (i=1; i <= n; i++) } \{ \\ &\text{for (j=i+1; j <= n; j++) } \{ \\ &r = r_{ij} \\ &m = floor \left( \frac{r}{\Delta r} \right) \\ &\text{if (m < M)} &pef[m] = pef[m] + \frac{2 \cdot 4\pi r_{sr}^{2}}{n^{2} 2\pi r \Delta r} \} \\ &\} \end{split}
```

Uwaga: w algorytmie dodajemy zabezpieczenie w postaci instrukcji if(m < M) ponieważ nie zawsze nasz fulleren będzie sferyczny, jeśli jakaś grupa atomów bardziej oddali się od środka układu wówczas może pojawić się wartość m > M co spowoduje wyjście poza tablicę (często określany jako segmentation fault).

1.3 Algorytm symulowanego wyżarzania

1.3.1 Położenia atomów

Interesują nas struktury zbliżone kształtem do sfery, więc położenia atomów (i przesunięcia) wygodniej opisywać używając współrzędnych sferycznych $(r, \phi, \theta$ - kąt θ liczymy od osi z), a do liczenia odległości (potencjał oddziaływania) współrzędnych kartezjańskich (x, y, z). Dane całego układu (klastera) trzymamy w tablicy, aby były łatwo dostępne

Jeśli przesuniemy atom to modyfikujemy cały wiersz. Transformacja: sferyczne \rightarrow kartezjańskie

$$x_i = r_i \sin \theta_i \cos \phi_i \tag{23}$$

$$y_i = r_i \sin \theta_i \sin \phi_i \tag{24}$$

$$z_i = r_i \cos \theta_i \tag{25}$$

1.3.2 Losowe przesunięcia atomów

W metodzie SA jedna iteracja polega na próbie losowej zmiany położeń wszystkich atomów w klasterze. W celu określenia prawdopodobieństwa akceptacji nowego położenia i-tego atomu wykorzystamy algorytm Metropolisa-Hastingsa

```
wybieramy indeks cząstki: i
U_1, U_2, U_3 \sim U(0,1)
\Delta r = r_i \left( 2U_1 - 1 \right) w_r
\Delta \phi = \phi_i \left( 2U_2 - 1 \right) w_\phi
\Delta\theta = \theta_i \left(2U_3 - 1\right) w_\theta
r_i^{new} = r_i + \Delta r
\phi_i^{new} = \phi_i + \Delta \phi
\theta_i^{new} = \theta_i + \Delta \theta
if (\phi_i^{new} < 0) \phi_i^{new} \leftarrow \phi_i^{new} + 2\pi
if (\phi_i^{new} > 2\pi) \phi_i^{new} \leftarrow \phi_i^{new} - 2\pi
\begin{array}{l} \text{if} \ (\theta_i^{new} < 0) \, \theta_i^{new} \leftarrow \theta_i \\ \text{if} \ (\theta_i^{new} > \pi) \, \theta_i^{new} \leftarrow \theta_i \end{array}
\vec{r}^{new} = [x_i^{new}, y_i^{new}, z_i^{new}]
liczymy starą i nową wartość potencjału atomu: V_i^{old}, V_i^{new}
p_{acc} = \min \left\{ 1, \exp \left[ -\beta (V_i^{new} - V_i^{old}) \right] \right\}
U_4 \sim U(0,1)
if (U_4 \le p_{acc}) {
          akceptujemy nowe położenie: r_i \leftarrow \vec{r}_i^{new}
}else{
          nie akceptujemy przesunięcia - atom pozostaje w starym położeniu
}
```

Powyższy algorytm jest znacznym uproszczeniem, ponieważ po zmianie położenia atomu sprawdzamy tylko zmianę jego energii, wiadomo jednak że może to wpłynąć na energie sąsiadów poprzez czynnik \overline{B}_{ij} . Sprawdzanie zmian w energii sąsiadów znacznie wydłużyłoby jednak proces wyżarzania, czego chcemy uniknąć, więc użyjemy algortymu SA w obecnej wersji.

1.3.3 Losowa (globalna) zmiana promienia sfery

Ponieważ nie wiemy jaki promień powinna mieć sfera na której rozłożone będą atomy, więc promień startowy inicjalizujemy małą wartością. Indywidualne zmiany **współrzędnej radialnej** r_i są mało wydajne, lepiej jest w każdej iteracji spróbować zmienić ją dla wszystkich cząstek jednocześnie - jeśli nowa konfiguracja będzie miała mniejszą energię to zostanie ona zaakceptowana. Szybkość zmian kontrolujemy parametrem W_{all} . Tu też skorzystamy z algorytmu Metropolisa

```
\begin{split} &\text{inicjalizacja: } W_{all} << 1 \\ &U_1 \sim U(0,1) \\ &\text{for (i=1; i <= n; i++ )} \{ \\ &r_i^{new} = r_i [1 + W_{all} \cdot (2U_1 - 1)] \\ \} \\ &E_{tot}^{old} = E_{tot}(\vec{r_1}, \vec{r_2}, \ldots, \vec{r_n}) \\ &E_{tot}^{new} = E_{tot}(\vec{r_1}^{new}, \vec{r_2}^{new}, \ldots, \vec{r_n}^{new}) \end{split}
```

```
\begin{aligned} p_{acc} &= \min \left\{ 1, \exp \left[ -\beta (E_{tot}^{new} - E_{tot}^{old}) \right] \right\} \\ U_2 &\sim U(0,1) \\ &\text{if ( } U_2 \leqslant p_{acc}) \, \{ \\ &\quad r_i \leftarrow r_i^{new}, \quad i = 1,2,\ldots,n \text{ - akceptujemy nowe wartości radialne} \, \} \, \text{else} \, \{ \\ &\quad r_i \leftarrow r_i, \quad i = 1,2,\ldots,n \text{ - pozostawiamy stare bez zmian} \, \} \end{aligned}
```

1.3.4 Parametr β

W klasycznej metodzie parametr β jest związany z temperaturą $\beta = 1/(kT)$. Mała wartość β oznacza duże prawdopodobieństwo akceptacji próbnych przesunięć atomów, a duża wartość znacząco je ogranicza. Proces doboru wartości β możemy zautomatyzować wiążąc go z numerem iteracji

$$\beta = \beta_{min} + \left(\frac{it}{it_{max}}\right)^p (\beta_{max} - \beta_{min}) \tag{26}$$

gdzie: it - aktualny numer iteracji, it_{max} - maksymalna liczba iteracji, β_{min} i β_{max} to wartości minimalna i maksymalna parametru, p > 0 - wykładnik określający szybkość zmiany wartości β .

1.3.5 Algorytm SA

Mamy potrzebne informacje dotyczące poszczególnych elementów algorytmu więc możemy teraz zapisać sam algorytm SA

Uwaga: w algorytmie co 100 iteracji (przykładowo) zapisujemy aktualne dane do plików w celu szybkiej weryfikacji struktury przestrzennej. Jeśli w trakcie wykonywania symulacji zauważymy, że konfiguracja położeń atomów zaczyna "znacznie" odbiegać od naszych oczekiwań tj. od kształtu sferycznego, wówczas należy zatrzymać obliczenia, zmienić parametry startowe i wykonać symulację jeszcze raz.

2 Zadania do wykonania

- 1. Zaprogramować metodę symulowanego wyżarzania z potencjałem Brennera.
- 2. Wykonać test sprawdzający poprawność liczenia potencjałów, w tym celu wczytać położenia atomów fullerenu C_{60} (n=60) z pliku "atoms_positions_c60.dat" (format danych: x_i, y_i, z_i) i obliczyć energię układu, powinna wynosić $V_{tot}=-421.6\,eV$ co daje energię wiązania na atom równą $E_b=V_{tot}/n=7.027\,eV$. Odległości wszystkich atomów od środka układu są identyczne i wynoszą $r_i=r_{sr}=3.52$ Å Narysować strukturę przestrzenną fullerenu C_{60} (np. w sposób opisany w sekcji 3)
- 3. Wykonać symulację dla parametrów: n=60, $\beta_{min}=1.0$, $\beta_{max}=100$, wykładnik p=2, $it_{max}=10^5$, $w_r=10^{-4}$, $w_\phi=0.05$, $w_\theta=0.05$, $W_{all}=10^{-4}$. Jako położenia startowe atomów przyjąć: $r_i=3.5$ Å, kąty $\phi_i\in(0,2\pi)$ i $\theta_i\in(0,\pi)$ wylosować z rozkładu jednorodnego. Narysować uzyskaną strukturę oraz histogram pcf dla M=100 podprzedziałów. Ile wiązań może utworzyć atom węgla? Narysować wykres zmian energii w trakcie symulacji wraz ze zmianami parametru β . Jaką uzyskamy energię układu i jaki r_{sr} ?
- 4. W zwykłej postaci potencjał Brennera preferuje tworzenie przez atom 4 wiązań z najbliższymi sąsiadami, tymczasem w C_{60} atomy mają tylko po 3 sąsiadów musimy mu zabronić tworzenia 4 wiązań i pozwolić na tworzenie 3. W tym celu dokonujemy prostej modyfikacji parametru ζ_{ij} w procedurze liczącej współczynnik B_{ij} (wzory 7 i 8)

if
$$(\cos \theta_{ijk} > 0)$$
 $\zeta_{ij} = 10$

Innymi słowy: wprowadzamy karę do potencjału przyciągania (zmniejszamy jego amplitudę), gdy wykryjemy że atom chce utworzyć dwa wiązania i kąt między nimi jest bliski $\pi/2$ - to dawałoby właśnie możliwość utworzenia 4 takich wiązań. Kara spowoduje odepchnięcie 4 sąsiada. Powtórzyć obliczenia dla n=60 ze zmodyfikowanym potencjałem. Narysować strukturę i pcf oraz określić energię układu i średni promień r_{sr} . Końcowa energia powinna być bliska $V_{tot}\approx -415\,eV$ (lub trochę niższa - przykład na rysunku 2). Narysować wykres zmian energii w trakcie symulacji wraz ze zmianami parametru β . Z wykresu pcf odczytać preferowaną odległość między najbliższymi sąsiadami.

- 5. Powtórzyć symulację (n=60) ze zmodyfikowanym potencjałem startując od $r_i=2.5$ Å. Jaka będzie końcowa średnia odległość atomów od środka układu?
- 6. Przeprowadzić symulacje (n=60) dla innych wartości: β_{min} , β_{max} , p, w_r , w_{ϕ} , w_{θ} . Które kombinacje parametrów dadzą lepszy rezultat końcowy a które gorszy? Najlepiej jest porównywać energie wiązania na jeden atom (np. dla wybranego n=30,40 lub 60), ponieważ dla różnych n zmieniają się w niewielkim zakresie.
- 7. Wykonać serię symulacji dla $n=30,31,\ldots,40$, za każdym razem startując od losowego rozkładu atomów na sferze. Jako promień startowy przyjąć $r_i=2.5$ sfera w trakcie symulacji powinna automatycznie dostosować swoje rozmiary. Dla każdego przypadku obliczyć energię wiązania na jeden atom $E_b=V_{tot}/n$. Wykonać wykres E_b w funkcji n. Energia wiązania jest miarą stabilności układu, czy na podstawie wykresu $E_b(n)$ można określić dla jakich n fullereny będą bardziej stabilne od pozostałych?

Rysunek 2: Przykładowe wyniki: (a) zmiany energii, (b) średni promień klastera dla parametrów $n = 60, r_{init} = 2.5, \beta_{min} = 1.0, \beta_{max} = 100, p = 2, it_{max} = 10^5, w_r = 10^{-2}, w_{\phi} = 0.01, w_{\theta} = 0.01, W_{all} = 10^{-4}.$

3 Wizualizacja struktury przestrzennej fullerenu w Gnuplocie

W Gnuplocie istnieje możliwość rysowania wielokątów w 3D, co jest dla nas bardzo przydatne, gdyż to z nich jest zbudowana powierzchnia fullerenu. Do znalezienia wielokątów można wykorzystać funkcję napisaną w C++

Należy jej przekazać:

- $r_{max} \approx 1.3 \cdot r_{NN}$, gdzie r_{NN} jest odległością do najbliższego sąsiada odczytaną z histogramu PCF (wysokość pierwszego piku)
- n to liczba atomów
- \bullet tablica 2D atomzawiera położenia (x_i,y_i,z_i) wszystkich n atomów
- plik to nazwa pliku do którego zostaną zapisane wielokąty

Do pliku zostaną wpisane bloki danych zawierające położenia wierzchołków wielokątów, bloki oddzielone są dwiema pustymi liniami aby można było z danych wydobyć informacje dotyczące pojedynczego wielokąta. Rysunek klastera w Gnuplocie wykonujemy przy użyciu poniższych instrukcji

```
set xyplane 0
set view equal xyz
set pm3d depthorder border lw 2
set style fill transparent solid 0.3
splot 'plik' u 1:2:3 w polygons fc "gold"
```

Jeśli interesuje nas pojedynczy wielokąt to używamy opcji **index nr** do wyselekcjonowania bloku danych, bloki danych indeksowane są od 0, np.:

```
splot 'plik' index 0 u 1:2:3 w polygons fc "gold"
```