

МИНИСТЕРСТВО НАУКИИ ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «МИРЭА – Российский технологический университет»

РТУ МИРЭА

Институт информационных технологий Кафедра вычислительной техники (BT)

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ №3

«Графический ввод схемы из библиотеки логических элементов и симуляция в САПР QUARTUS II» по дисциплине «Архитектура вычислительных машин и систем»

Выполнил студент группы ИКБО-15-22	Оганнисян Григор Амбарцумович		
Принял преподаватель кафедры ВТ	Рыжова Анастасия Андреевна		
Практическая работа выполнена	«»2023 г.		
«Зантено»	2023 F		

Содержание

Цель работы	3
Постановка задачи	
Георетический блок	4
Габлица истинности	5
Реализация схемы	7
Вывод	9

Цель работы

Практическое применение навыков по проектированию и настройке логических схем в графическом редакторе САПР QUARTUS II. Исследование работу схемы с использованием сигнального редактора САПР QUARTUS II.

Постановка задачи

Спроектировать логическую схему в графическом редакторе САПР QUARTUS II с использованием компонентов из стандартной библиотеки узлов. Исследовать работу схему с использованием сигнального редактора.

№ варианта: 22 (3xcompare A<B)

Теоретический блок

Компаратор - это комбинационная схема, способная сравнивать два входных сигнала и выдавать результат сравнения. Он обычно имеет два N-битных входа для сравнения, N выходов для сигнализации о результатах сравнения, а также дополнительные управляющие входы для настройки его работы.

Компараторы традиционно применяются:

- Для сравнения двух чисел или данных и выдачи сигнала о том, какое из них больше, меньше или равно.
- В различных цифровых системах для выполнения различных операций, таких как сравнение и управление потоком данных.

Таблица истинности

Таблица 1 — Таблица истинности двухразрядного мультиплексора

A0	A1	A2	В0	B1	B2	A <b< th=""></b<>
0	0	0	0	0	0	0
0	0	0	0	0	1	1
0	0	0	0	1	0	1
0	0	0	0	1	1	1
0	0	0	1	0	0	1
0	0	0	1	0	1	1
0	0	0	1	1	0	1
0	0	0	1	1	1	1
0	0	1	0	0	0	0
0	0	1	0	0	1	0
0	0	1	0	1	0	1
0	0	1	0	1	1	1
0	0	1	1	0	0	1
0	0	1	1	0	1	1
0	0	1	1	1	0	1
0	0	1	1	1	1	1
0	1	0	0	0	0	0
0	1	0	0	0	1	0
0	1	0	0	1	0	0
0	1	0	0	1	1	1
0	1	0	1	0	0	1
0	1	0	1	0	1	1
0	1	0	1	1	0	1
0	1	0	1	1	1	1
0	1	1	0	0	0	0
0	1	1	0	0	1	0
0	1	1	0	1	0	0
0	1	1	0	1	1	0
0	1	1	1	0	0	1
0	1	1	1	0	1	1
0	1	1	1	1	0	1
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	0	0	0	1	0
1	0	0	0	1	0	0
1	0	0	0	1	1	0
1	0	0	1	0	0	0
1	0	0	1	0	1	1
1	0	0	1	1	0	1
1	0	0	1	1	1	1
1	0	1	0	0	0	0

1	0	1	0	0	1	0
1	0	1	0	1	0	0
1	0	1	0	1	1	0
1	0	1	1	0	0	0
1	0	1	1	0	1	0
1	0	1	1	1	0	1
1	0	1	1	1	1	1
1	1	0	0	0	0	0
1	1	0	0	0	1	0
1	1	0	0	1	0	0
1	1	0	0	1	1	0
1	1	0	1	0	0	0
1	1	0	1	0	1	0
1	1	0	1	1	0	0
1	1	0	1	1	1	1
1	1	1	0	0	0	0
1	1	1	0	0	1	0
1	1	1	0	1	0	0
1	1	1	0	1	1	0
1	1	1	1	0	0	0
1	1	1	1	0	1	0
1	1	1	1	1	0	0
1	1	1	1	1	1	0

Реализация схемы

Рисунок 1 — Процесс создания параметрического элемента

Рисунок 2 — Процесс создания параметрического элемента

Рисунок 3 – Логическая схема

Рисунок 4 — Временная диаграмма для логической схемы

Вывод

Были закреплены и применены навыки по работе с графическим редактором САПР QUARTUS II. Изучены принципы работы со стандартной библиотекой логических узлов, их настройки и тестированию спроектированных схем. Реализована логическая схема, произведена симуляция работы, зарисована диаграмма работы и построена таблица истинности.