

Eletrónica Aplicada

Fonte de Tensão com Regulador Comutado de Sobrelevação

Ano Letivo 2022/23

P2 Grupo:

Daniel Galhano, 59752 Daniela Marques, 59939 Rui Filipe, 60461

Docente responsável: Professor Dawei Liang

Índice

ı	0	Objetivo3				
II	F	Primeiro estágio: Amplificação	4			
	1	Circuito	4			
	2	Otimização Experimental da Frequência	5			
Ш		Segundo estágio – Oscilador de onda quadrada com <i>Timer</i> 555	6			
	1	Circuito	6			
	2	Duty Cycle	7			
	3	Verificação da maximização de $Uout$	7			
IV		Terceiro estágio – Comparador	8			
	1	Circuito	8			
	2	Dimensionamento de Resistências	9			
	3	Verificação do Funcionamento do Comparador	9			
٧	(Quarto estágio – Feedback	9			
	1	União de Circuitos	9			
	2	Dimensionamento de Resistências	10			
	3	Verificação da Estabilidade de $Uout$	11			
	4	Filtros	11			
VI		Tabela de Material Utilizado	13			
VII	l	Conclusão	13			
VII		Referências	14			

I Objetivo

Os objetivos da elaboração de uma fonte de tensão com regulador comutado de sobrelevação são:

- Fornecer uma tensão DC de saída superior à tensão DC de entrada;
- Regular a tensão de saída independentemente das flutuações de entrada.

Figura 1 – Esquema da montagem de uma fonte de tensão com regulador comutado de sobrelevação.

II Primeiro estágio: Amplificação

1 Circuito

O circuito representado na **Figura 2** e exemplificado na **Figura 3** permite amplificar um sinal de entrada de 5V através de um indutor e de um MOSFET. A variação de corrente no indutor gera uma diferença de potencial, que é tanto maior quanto maior a variação temporal de corrente no mesmo. Para atingir esta variação de corrente, o MOSFET funciona como um interruptor, estando aberto se a tensão na *gate* for negativa e fechado se for positiva, sendo esta uma onda quadrada. O condensador armazena a energia depositada pelo indutor, e o díodo D4 impede a corrente de fluir do condensador para o MOSFET. Assim, é possível ter uma tensão de saída superior à de entrada.

Figura 2 - Esquema do regulador de sobrelevação.

Figura 3 — Circuito do regulador de sobrelevação.

Com a alimentação do circuito a 5V, a tensão de saída era bastante pequena, cerca de 12V. Ao ler a datasheet deste MOSFET, percebeu-se que o valor de V_{GS} para o qual o MOSFET conduz melhor é de 2,9V, sendo que o V_{GS} que estava a ser obtido era de apenas 1,18V. Ao aumentar a tensão de alimentação para 5,58V, V_{GS} atingiu 2,81V, valor bastante próximo do ideal. Deste modo, foram obtidas tensões de saída muito superiores, chegando mesmo a atingir 120V. Outra forma de polarizar melhor o MOSFET era retirar a resistência de entrada, para que toda a tensão de entada fosse usada para a polarização.

2 Otimização Experimental da Frequência

A frequência da onda quadrada determina a frequência de abertura e fecho da porta lógica (MOSFET). Teoricamente, quando maior a frequência, maior a variação da corrente do indutor, logo maior a tensão de saída. Na prática, observa-se que, a partir de um determinado valor de frequência, a tensão de saída começa a diminuir.

De modo a encontrar a frequência da onda quadrada para a qual se obtinha a maior amplificação, registaram-se os valores da tensão de saída para diferentes valores de frequência, obtendo um máximo para 39,73kHz.

U_{Out} (V)
46.0
99.8
121.3
112.1
105.1
84.8

Figura 4 – Tensão em função de frequência: gráfico (cima) e tabela de pontos (baixo).

Figura 5 - Tensão de saída para uma onda quadrada com 39,73kHz.

III Segundo estágio – Oscilador de onda quadrada com Timer 555

1 Circuito

Determinada a frequência ótima para o sinal de entrada na *gate* do MOSFET, o circuito da **Figura 6** utiliza o *Timer* 555 para gerar ondas quadradas com a frequência e *duty cycle* desejados, através do ajuste das resistências e do condensador C2. O pino de controlo é ligado a um condensador, que é ligado a *ground*, para diminuir o ruído no circuito.

Figura 6 – Esquema (esquerda) e circuito (direita) do oscilador de onda quadrada com *Timer* 555.

2 Duty Cycle

Para obter um *duty cycle* de 50% para a onda quadrada, escolheu-se $R_4=4.4k\Omega$, $R_5=120k\Omega$:

$$Duty\ cycle = \frac{R_5}{R_4 + 2R_5} = \frac{120}{244.4} \approx 0.491$$

De modo que a onda tenha a frequência desejada (39.79kHz):

$$f = \frac{1.44}{(R_4 + 2R_5)C} \Rightarrow 39.79 \times 10^3 = \frac{1.44}{(4.4 \times 10^3 + 120 \times 10^3)C} \Rightarrow C \approx 290.92 \ pF$$

O que se verificou experimentalmente, aquando da implementação desta montagem, foi uma onda quadrada com o *duty cycle* de exatamente 50%, e uma frequência de 33kHz, ligeiramente abaixo do projetado.

Figura 7 - Duty cycle de 50%, frequência de 33kHz.

3 Verificação da maximização de U_{out}

Feito o dimensionamento teórico, procedeu-se à confirmação experimental, de modo a verificar se o circuito dimensionado realmente maximiza a tensão de saída. Para o efeito, foram testados vários valores para o condensador C2, obtendo o máximo da tensão de saída para um valor de capacidade igual a 150pF, diferente do valor obtido teoricamente.

Condensador (pF)	U_{Out} (V)
6,8	79,50
68	116,20
100	118,48
150	120,80
180	117,84
330	109,95
470	70,09

IV Terceiro estágio – Comparador

1 Circuito

De modo a preparar o circuito gerador de onda quadrada para a posterior adição do *feedback*, procedeu-se à montagem do circuito da **Figura 8** e **Figura 9**, que controla a saída do *Timer* 555 através de um comparador ligado ao seu pino *Reset*. Se a tensão na entrada inversora do comparador for maior que na entrada não-inversora, o comparador irá fornecer tensão nula ao pino *Reset*, que, por sua vez, fará com que o output do *Timer* seja um sinal de tensão nula.

Figura 8 - Esquema de regulação do oscilador.

Figura 9 – Circuito de regulação do oscilador.

2 Dimensionamento de Resistências

Partindo dos valores $R_7=8k\Omega~e~R_8=5k\Omega$ (potenciómetro), dimensionou-se R_9 de modo a obter um valor de 2,2V na entrada não-inversora do comparador:

$$2.2V = \frac{R_9}{R_9 + 8k + 5k} \times 5.5V \Rightarrow R_9 \approx 9k\Omega$$

Assim, a entrada não-inversora está sempre a 2,2V, sendo possível variar a tensão na entrada inversora de modo a observar o funcionamento do *Timer* 555.

3 Verificação do Funcionamento do Comparador

Quando a entrada inversora está a menos de 2,2V, o comparador dá 1 no *output*, não ativando o *Reset*, fazendo com que o output do *Timer* seja a onda quadrada projetada. Quando a entrada inversora está a mais de 2,2V, o comparador dá 0 no *output*, ativando o *Reset* do *Timer* e fazendo com que a sua saída seja nula.

Figura 10 - Funcionamento do *Timer* 555 consoante a tensão aplicada na entrada não-inversora do comparador.

V Quarto estágio – Feedback

1 União de Circuitos

O primeiro estágio do projeto já realizava a tarefa de amplificação, mas a tensão de saída não era estável, aumentando progressivamente. Para a estabilizar, juntaram-se o segundo e terceiro estágios, anteriormente projetados, de modo a ter *feedback* negativo. Assim, quando a tensão de saída aumenta além do ponto desejado, a tensão na entrada inversora do comparador também aumenta, ficando superior à tensão de

referência (na entrada não-inversora), ativando o pino *Reset* do *Timer* 555, e fazendo com que a sua saída seja nula. Consequentemente, o MOSFET fica ao corte, parando a variação de corrente aos terminais do indutor, diminuindo a tensão de saída até ao ponto desejado, a partir do qual o *Timer* 555 volta a fornecer a onda quadrada ao MOSFET. O *feedback* negativo permite, deste modo, contrariar aumentos indesejados na tensão de saída.

Figura 11 - Esquema do circuito final.

Figura 12 - Montagem do circuito final.

2 Dimensionamento de Resistências

Dimensionou-se R_{10} e R_{11} de modo que a tensão na entrada inversora do comparador fosse de aproximadamente 2,2V, para ativar o pino *Reset* do *Timer* sempre que a tensão de saída aumentasse:

$$2.2V = \frac{R_{11}}{R_{10} + R_{11}} \times 121.3V \Rightarrow R_{11} = 54 \times R_{10}.$$

Escolheu-se então $R_{10}=6.8k\Omega$ e $R_{11}=370k\Omega$.

Posteriormente, otimizou-se experimentalmente o valor de R_{11} , até obter o melhor compromisso entre U_{out} elevado e U_{out} estável, resultando em $R_{11}=178k\Omega$.

3 Verificação da Estabilidade de U_{out}

Com a montagem da **Figura 12**, a tensão de saída era constante, não apresentando quaisquer variações ao longo do tempo.

Figura 13 – Tensão de saída com montagem final do circuito, apresentando elevada estabilidade.

Tempo (s)	U_{Out} (V)
0	111,4
10	111,4
20	111,4
30	111,4
40	111,4
50	111,4
60	111,4

Figura 14 – Verificação da estabilidade através do registo da tensão de saída durante 1 minuto, em intervalos de 10 segundos.

4 Filtros

Para diminuir o *kick* de corrente alternada que o indutor produz, introduziram-se dois condensadores (C4 e C5), e observou-se, no osciloscópio, a diminuição do *kick* de 1,5V para apenas 400mV.

Também se experimentou mudar o indutor para um de menor indutância, porém não foram produzidas diferenças significativas.

Figura 15 – Alteração no *kick* do indutor: em cima, sem condensadores C4 e C5, pico máximo de 1,5V; em baixo, com condensadores C4 e C5, pico máximo de 400mV.

VI Tabela de Material Utilizado

Dispositivo	Quantidade	Valor
MOSFET IRF520	1	N.A.
IC NE555	1	N.A.
IC LM2903	1	N.A.
Díodo MUR120	2	N.A.
Condensador Cerâmico	4	1uF, 10nF, 150pF, 470nF
Condensador Eletrolítico	1	100uF
Indutor	1	40uH
Resistência	10	220 Ω , 220k Ω , 50k Ω , 4,4k Ω , 120k Ω ,
Resistericia		9k Ω , 5k Ω , 8k Ω , 178k Ω , 6,8k Ω
Potenciómetro	1	Valor Máximo: 10k Ω
Breadboard	1	N.A.
Fios de Ligação	N.A.	N.A.
Dissipador Térmico para MOSFET	1	N.A.

VII Conclusão

No âmbito da Unidade Curricular, foram aplicados e observados os conceitos teóricos: amplificação de tensão com MOSFET, *Timer* 555, *amp-op* como comparador de nível, circuitos com feedback (negativo).

Para dimensionamento de resistências e condensadores, foram utilizados tanto cálculos teóricos como otimizações experimentais para determinar os valores para os quais se encontrava o melhor balanço entre amplificação e estabilidade elevadas.

Os estágios foram validados individualmente de modo que a montagem final produzisse o resultado esperado.

O circuito foi cuidadosamente montado de modo que seja percetível a divisão entre estágios e facilmente identificável alguma falha na montagem detetada experimentalmente.

Concluindo, foram atingidos os objetivos do trabalho, uma vez que foi obtida a amplificação de uma tensão de entrada DC, tendo o sinal de saída um valor de tensão estável.

VIII Referências

- [1] IRF520 *Datasheet* STMicroelectronics: https://pdf1.alldatasheet.com/datasheet-pdf/view/22389/STMICROELECTRONICS/IRF520.html
- [2] NE555 *Datasheet* NXP Semiconductors: https://pdf1.alldatasheet.com/datasheet-pdf/view/17972/PHILIPS/NE555.html
- [3] LM2903 *Datasheet* NXP Semiconductors: https://pdf1.alldatasheet.com/datasheet-pdf/view/17874/PHILIPS/LM2903.html