S-CHEMR

Scholarship 2016 Chemistry

2.00 p.m. Monday 14 November 2016

RESOURCE BOOKLET

Refer to this booklet to answer the questions for Scholarship Chemistry 93102.

Check that this booklet has pages 2–7 in the correct order and that none of these pages is blank.

YOU MAY KEEP THIS BOOKLET AT THE END OF THE EXAMINATION.

PERIODIC TABLE OF THE ELEMENTS

18		e H	4.0		Ne	20.2		Ā	40.0		궃	83.8		Xe	131		Ru	222			
,_	7		_	10	_		18			36			54		_	98	_	N			
			17	6	ш	19.0	17	5	35.5	35	Ŗ	79.9	53	_	127	85	¥	210			
			16	_∞	0	16.0	16	တ	32.1	34	Se	79.0	52	Тe	128	84	Ро	210	116	۲	292
			15	7	z	14.0	15	_	31.0	33	As	74.9	51	Sb	122	83	Ξ	209			
			41	9	ပ	12.0	14	Si	28.1	32	Ge	72.6	50	Sn	119	82	Pb	207	114	Œ	289
			13	5	В	10.8	13	₹	27.0	31	Ga	69.7	49	드	115	81	F	204			
									12	30	Zn	65.4	48	Cq	112	80	Ξ	201	112	C	277
									11	29	Cn	63.5	47	Ag	108	62	Αn	197	111	Rg	272
			nol⁻¹						10	28	Ë	58.7	46	Pd	106	78	ĭ	195	110	Ds	271
			Molar mass/g mol-1						6	27	ပိ	58.9	45	몺	103	77	<u>-</u>	192	109	Μţ	268
			Molar n						00	26	Ьe	55.9	44	Ru	101	92	Os	190	108	Hs	265
	-	I	1.0						_	25	Mn	54.9	43	ဍ	98.9	75	Re	186	107	Bh	264
	number			•					9	24	ပ်	52.0	42	Mo	95.9	74	>	184	106	Sg	263
	Atomic number								2	23	>	6.03	41	Q	92.9	73	Та	181	105	Dp	262
									4	22	F	47.9	40	Zr	91.2	72	Ξ	179	104	<u>7</u> 2	261
									ო	21	Sc	45.0	39	>	88.9	71	Ľ	175	103	בֿ	262
			7	4	Be	9.0	12	Mg	24.3	20	Ca	40.1	38	S	87.6	56	Ва	137	88	Ra	226
			1	3	=	6.9	7	Na	23.0	19	¥	39.1	37	Rb	85.5	55	Cs	133	87	ቷ	223

	22	28	29	09	61	62	63	64	92	99	29	89	69	20
Lanthanide	La	Ce	P	PN	Pm	Sm	En	P9	Tp	Dy	유	ш	T	Yb
Series	139	140	141	144	147	150	152	157	159	163	165	167	169	173
	89	06	91	92	93	94	92	96	97	86	66	100		102
Actinide	Ac	드	Ра	-	М	'n	Am	Cm	Bk	ర్	Es	Fm	Md	°
Series	227	232	231	238	237		241		249	251	252	257		259

STANDARD ELECTRODE POTENTIALS, E°

	E°/V
$Au^{+}(aq) + e^{-} \rightleftharpoons Au(s)$	+1.69
$\boxed{\operatorname{MnO}_{4}^{-}(aq) + 8\operatorname{H}^{+}(aq) + 5\operatorname{e}^{-} \rightleftharpoons \operatorname{Mn}^{2+}(aq) + 4\operatorname{H}_{2}\operatorname{O}(\ell)}$	+1.51
$Au^{3+}(aq) + 3e^{-} \Longrightarrow Au(s)$	+1.41
$Cl_2(aq) + 2e^- \rightleftharpoons 2Cl^-(aq)$	+1.40
$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \rightleftharpoons 2Cr^{3+}(aq) + 7H_2O(\ell)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightleftharpoons 2H_2O(\ell)$	+1.23
$NO_3^-(aq) + 4H^+(aq) + 3e^- \rightleftharpoons NO(g) + 2H_2O(\ell)$	+0.94
$Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s)$	+0.80
$O_2(g) + 2H_2O(\ell) + 4e^- \rightleftharpoons 4OH^-(aq)$	+0.40
$[\operatorname{Au(CN)}_{2}]^{-}(aq) + e^{-} \rightleftharpoons \operatorname{Au}(s) + 2\operatorname{CN}^{-}(aq)$	-0.60
$\left[\operatorname{Zn(CN)}_{4}\right]^{2-}(aq) + 2e^{-} \rightleftharpoons \operatorname{Zn}(s) + 4\operatorname{CN}^{-}(aq)$	-1.26

SPECTROSCOPY DATA FOR QUESTION TWO (a)

 ^{13}C NMR Spectrum for Compound \mathbf{A}

 ^{13}C NMR Spectrum for Compound **B**

IR Spectrum for Compound B

 ^{13}C NMR Spectrum for Compound C

 13 C NMR Spectrum for Compound ${\bf D}$

SPECTROSCOPY DATA SHEET

INFRARED SPECTROSCOPY

Functional group	Vibration	Wavenumber/ cm ⁻¹	Functional group	Vibration	Wave number/ cm ⁻¹
Alkane	C–H stretch	2950-2800 (s)	Aldehyde	C=O stretch	1725 (s)
A Ilyana	C=C-H stretch	3100-3010 (s)	Ketone	C=O stretch	1715 (s)
Alkene	C=C stretch	1690-1630 (m)		O–H stretch	3400 (s)
	C–F stretch	1400-1000 (s)	Carboxylic acid	C=O stretch	1730-1700 (s)
Alkyl	C–Cl stretch	785-540 (m-w)	acia	C–O stretch	1320-1210 (s)
halide	C–Br stretch	650-510 (s-m)	Acid	C=O stretch	1810–1775 (s)
	C–I stretch	600-485 (s-m)	chloride	C-Cl stretch	730-550 (s-m)
Alaahal	O–H stretch	3600-3300 (s)	Estan	C=O stretch	1750-1735 (s)
Alcohol	C–O stretch	1260-1000 (s)	Ester	C–O stretch	1260-1160 (s)
	N–H stretch (1 per bond)	3500-3300 (s-w)	Amide	N–H stretch	3500-3200 (s)
Amine	N–H bend	1640-1500 (s)		C=O stretch	1680-1630 (s)
	C–N stretch	1200-1025 (s)			

¹³C NMR RESONANCE SHIFTS

ISOTOPIC DISTRIBUTION OF POLYHALOGENATED MOLECULES FOR MASS SPECTROSCOPY

