# **Heaps: homework 1**

## **Ex. 2**

An iterative version of HEAPIFY is implemented in the source file binheap.c.

### **Ex. 3**



We can see that the extraction of the minimum is much faster on a heap than it is on an array, with differences that are already noticeable for small sizes (the array time is  $10\times$  the heap time for size=1820).

#### **Ex. 4**

In a heap represented with an array, all the nodes of the two lowest levels after the father of the last node are leaves. So, if there are n nodes, since the index of the father of the last node is  $\lfloor \frac{n}{2} \rfloor$ , the leaves have indexes between  $\lfloor \frac{n}{2} \rfloor + 1$  and n.

## **Ex. 5**

The worst-case running time of HEAPIFY is  $\Omega(log_2n)$ . In fact, if the maximum element is on the root of a min-heap, it has to be swapped through the entire heap until it becomes a leaf. HEAPIFY then has to be called recursively  $h=log_2n$  times before the restoration of heap property.

## **Ex. 6**

In an n elements heap the number of nodes at height h is at most  $\lceil \frac{n}{2^{h+1}} \rceil$ .

From exercise 4 we know that there are  $n-\lfloor\frac{n}{2}\rfloor=\lceil\frac{n}{2}\rceil$  leaves (which have h=0), hence the proposition is true for h=0.

Now let's assume that the proposition holds for h=i-1. If the  $\lceil \frac{n}{2} \rceil$  leaves are removed, a new heap with  $\lfloor \frac{n}{2} \rfloor$  nodes is created and the nodes previously at height i are now at height i-1, then their number is at most  $\lceil \frac{\lfloor \frac{n}{2} \rfloor}{2^{(i-1)+1}} \rceil < \lceil \frac{n}{2^i} \rceil = \lceil \frac{n}{2^{i+1}} \rceil$ .