

DECLARATION OF YASUMICHI HITOSHI UNDER 37 C.F.R. §1.131	Application Number	09/843,159
	Confirmation Number	8575
	Filing Date	April 25, 2001
	First Named Inventor	Ying Luo
	Examiner	Manjunath Rao
	Group Art	1652
	Attorney Docket No.	RIGL-010CIP2

This Declaration with the attached Exhibits are being submitted in conjunction with the Applicants' Response to the Office Action dated May 26, 2004.

I, Yasumichi Hitoshi, M.D. Ph.D., do hereby declare as follows.

1. I am currently a program director at Rigel Pharmaceuticals, Inc. (hereinafter "Rigel"), and the work described in the above-referenced patent application was performed with my knowledge.
2. I understand that the claimed subject matter of the above-referenced patent application relates to assays for identifying agents that modulate the poly(A) ribose polymerase activity of Tankyrase H.
3. I have been asked to provide factual evidence relating to the activities of Rigel and Rigel's patent counsel with respect to the claimed subject matter, prior to October 25, 1999 (the filing date of the above-referenced patent application).

4. I have reviewed the Exhibits attached hereto and they all relate to the activities of Rigel or Rigel's patent counsel with respect the claimed subject matter, prior to October 25, 1999.
5. Prior to June 11, 1999, the inventors of the above-referenced patent application identified the sequence of the ADP-ribose polymerase domain of Tankyrase H and identified that Tankyrase H had poly(A) ribose polymerase activity. Evidence for this is provided in Exhibit A. All redacted dates are prior to June 11, 1999.
6. Further, between June 11, 1999, and July 21 1999, the inventors worked towards identifying the full length sequence of Tankyrase H for use in the above-referenced screening assays. Evidence for this is provided in Exhibits B and C. The dates have not been redacted in these exhibits.
7. Finally, between July 20, 1999 and October 25, 1999, the above-referenced patent application was drafted at the law firm of Flehr, Hobach, Test, Albritton and Herbert (hereinafter "Flehr), the law firm contracted to draft the above-referenced patent application. Evidence for this is provided in Exhibits D – H. The dates have not been redacted in these exhibits.
8. Exhibit A consists of a print-out of Tankyrase H amino acid and nucleic acid sequences. On pages, 2, 6 and 7 of this Exhibit, Tankyrase H is identified as having a poly(A) ribose polymerase domain. The date of the print-out was prior to June 11, 1999.
9. Exhibit B consists of a presentation that was made by Xiang Xu, an inventor, that identifies Tankyrase H as having poly(A) ribose polymerase activity on page 3. The date of this presentation was June 15, 1999.
10. Exhibit C consists of signed laboratory notebook pages from Simon Yu, a colleague at Rigel Pharmaceuticals, Inc. These notebook pages show results of experiments directed towards identifying the full length sequence of Tankyrase H for use in the above-

referenced screening assays. The notebook pages are dated July 9, July 13, July 15, July 16 and July 21, 1999, respectively.

11. Exhibit D consists of a letter from Nicole Verona of Rigel to Ms. Robin Silva of Flehr, the law firm contracted to draft the above-referenced patent application. The letter references an invention disclosure (i.e., eight packages of information) for use in preparation of the above-referenced patent application. The date of the letter is July 20, 1999.
12. Exhibit E consists of a letter from Nicole Verona of Rigel to Ms. Robin Silva of Flehr. The letter references diskettes for use in preparation of the above-referenced patent application. The date of the letter is July 22, 1999.
13. Exhibit F consists of a file information page from Flehr, indicating that the file for the above-referenced patent application was opened on July 26, 2003.
14. Exhibit G consists of an e-mail dated August 30, 1999, from Nicole Verona of Rigel to Ms. Dolly Vance of Flehr regarding questions about the above referenced invention disclosure. The body of this e-mail contains text of previous e-mails dated August 20, 1999 and August 26, 1999, also relating to the above referenced invention disclosure.
15. Exhibit H consists of a letter from Nicole Verona of Rigel to Ms. Dolly Vance regarding further documents for use in drafting the above-referenced patent application. The date of the letter is September 30, 1999.
16. I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18

of the United States Code and that such willful false statements may jeopardize the validity of the application or any patents issued thereon.

Respectfully submitted,

Date: 9/3/04

A handwritten signature in black ink, appearing to read "Yasumichi Hitoshi".

Yasumichi Hitoshi, M.D. Ph.D.,

Attachments: Exhibits A - G

final

Exhibit A 09/843,159

in XXII common seen fall from 100

►>3rd Assembly

Longest ORE frame 1 of 1060 amino acids

Longest ORF frame 1 of 1060 amino acids

From amino acid position 84 to 1143

1 MVQTPMLEIIGIILSMKLQLKERL MFALCCYFAVLLQHGAEP TILN T D GRT AL D LAD P S
61 AKAVLTGEYKKDELLESARSGNEEKMMALLTPLNVNCHASDGRKSTPLHAA GY N RVK IV
121 QLLQH GADVHAKDKGDLVPLHNACSYGHYEVTELLVKGACVNAMDLWQFTPLHEAASK
181 NRVEVCSLLL SYGADPTLLNCHNKS AIDLAPTPQLKERL AYE FKGH SLLQAAREADVTRI
241 KKHL SLEMVNFKHPQTHETALHCAAASPYPKRKQICELLRLKGANINEKTKEFLTPLHVA
301 SEKAHNDVVVEVVVKHEAKVNALDNLGQTS L HRAAYCGH L QTCRLLS YGCDPNIISLQGF
361 TALQMGNENVQQLLQEGISLGNSEADRLLEAAKAGDVETVKKLCTVQSVNCRDIEGRQS
421 TPLHFAAGYNRVSVEYLLQHGADVHAKDKGGLVPLHNACSYGHYEV AELLVKGAVNV
481 ADLWKFTPLHEAAAGKYEICKLLLQHGADPTKKNRDGNTPLDLVKG DTDIHYLLRGDA
541 ALLDAAKKGCLARVKKLSSPDNVNCRDTQGRHSTPLHAA GYNNLEVAEYLLQHGADVNA
601 QDKGGL I PLHNAAS YGHVDVAALLIKYNACVNATDKW AFTPLHEAAQKGR TQLCALLAH
661 GADPTLK NQEGQTPLD L VSADDVSALLTAAMPPSALPS CYKPQV LNGVRSPGATADALSS
721 GPSSPSSLSAASSLDNLSGSFSELSSLVSSSGTEGASSLEKKEVPGVDFSITQFVRNLGL
781 EHLM DIFEREQITLDVL VEMGHKELKEIGINAYGHRHKLIGV ER L ISGQQQLNPYLTLN
841 TSGSGTILIDLSPDDKEFQSVEEEMQSTVREHRDGGHAGGIFNRYN ILKIQKVCNKKLWE
901 RYTHRRKEVSEENHNHANERMLFHGSPFVN AIIHKGFD ERHAYIGMFGAGIYFAENSSK
961 SNQVYVGIGGGTGPVHKDRSCYI CHRQLLFCRVTLGKSFLQFSAMKMAHSPPGHHSTVG
1021 RPSVNGLALAEYVIYRGEQAYPEYLITYQIMRPEGMVDGZ

1 GAAGTGCAGGGGGTGGATTTCCTGGAATTGCCTTAGTAGTACCAACCAAGGCACGT
61 CTTAGGTACCACTGCTGCTTAGTGGAGAGTCCCTCTGGCTTATCATTAAGGTTGGC
121 GGAAAGACGTAGTTGAATATTCGTTCAAGATGGTCAAATGTCAAGCACGTGATGATG
181 GGGGCCTTATTCTCTTCATAATGCATGCTTTGGCATGCTGAAGTAGTCATCTCC
241 TTTTGCAGACATGGTGCAGACCCAAATGCTCAGAGATAATTGGATTACTCCTCTCC
301 AAGCTGCAATTAAAGGAAAGATTGATGTTGCATTGTTGCTATTGAGCTGTTA
361 CAGCATGGAGCTGAGCCAACCACCTAAATACAGATGGAAGGACAGCATTGGATTAGCA
421 GATCCATCTGCCAAGCAGTCTACTGGTAATATAAGAAAGATGAACTCTTAGAAAGT
481 GCCAGGAGTGGCAATGAAGAAAAATGATGGCTCTACTCACACCATTAATGTCACAGTC
541 CACGCAAGTGTGGCAGAAAGTCACCTCATTACATTGGCAGCAGGATATAACAGAGTA
601 AAGATTGTACAGCTGTTACTGCAACATGGAGCTGATGTCATGCTAAAGATAAAGGTGAT
661 CTGGTACCATACACAAATGCCCTTATGGCATTATGAAAGTAACCTGAACTTTGGTC
721 AAGCATGGTGCCTGTGAAATGCAATGGACTTGTGGCAATTCACTCCTCTTCATGAGGCA
781 GCTCTAAAGAACAGGGTTGAAGTATGTTCTCTCTTAAGTTATGGTGCAGACCCAACA
841 CTGCTCAATTGTCACAAATAAAAGTGTATAGACTGGCTCCCACACCACAGTTAAAGAA
901 AGATTAGCATATGAATTAAAGGCCACTGTTGCTGCAAGCTGCACGAGAAAGCTGATGTT
961 ACTCGAATCAAAAAACATCTCTCTGGAAATGGTAATTCAAGCATCCTCAAACACAT
1021 GAAACAGCATTGCATTGTGCTGTCATCTCCATATCCAAAAGAAAGCAAATATGTGAA
1081 CTGTTGCTAAGAAAAGGAGCAAACATCAATGAAAAGACTAAAGAATTCTGACTCCTCTG
1141 CACGTGGCATCTGAGAAAAGCTCATATGATGTTGTAAGTAGTGGTAAACATGAAGCA
1201 AAGGTTAATGCTCTGGATAATCTGGTCAAGACTCTCTACACAGAGCTGCATATTGTTGGT
1261 CATCTACAAACCTGCCGCCTACTCCTGAGCTATGGGTGATCCTAACATTATCCCTT
1321 CAGGGCTTACTGCTTACAGATGGAAATGAAAATGTACAGCAACTCCTCAAGAGGGT
1381 ATCTCATTAGGTAATTCAAGAGGCAGACAGACAATTGCTGGAAGCTGCAAAGGCTGGAGAT
1441 GTCGAAACTGTAAAAAAACTGTGTAAGTGTCAACTGCAAGAGACATTGAAGGG
1501 CGTCAGTCTACACCACCTCATTGCAAGCTGGGTATAACAGAGTGTCCGGTGGAAATAT
1561 CTGCTACAGCATGGAGCTGATGTCATGCTAAAGATAAAGGAGGCCCTGTACCTTGAC
1621 AATGCATGTTCTTATGGACATTATGAAGTTGCAAGACTCTGTTAAACATGGAGCAGTA
1681 GTTAATGTAAGCTGATTATGGAAATTACACCTTACATGAAGCAGCAGCAAAGGAAAA
1741 TATGAAATTGCAAACCTCTGCTCCAGCAGGGTGCAGACCCCTACCAAAAAACAGGGAT
1801 GGAAATACTCCTTGGATCTGTTAAAGATGGAGATACAGATATTCAATTCTGCTTAGG
1861 GGAGATGCAGCTTGCAGATGCTGCCAAGAAGGGTTGTTAGCCAGAGTGAAGAAGTTG
1921 TCTTCTCCTGATAATGTAATTGCCCGATACCCAAGGCAGACATTCAACACCTTACAT

1981 TTAGCAGCTGGTTATAATAATTAGAAGTTGCAGAGTATTGTTACAACACGGAGCTGAT
 2041 GTGAATGCCAAGACAAAGGAGGACTTATTCCCTTACATAATGCAGCATCTTACGGGCAT
 2101 GTAGATGTAGCAGCTACTAATAAAAGTATAATGCATGTCAATGCCACGGACAAATGG
 2161 GCTTCACACCTTGCACGAAGCAGCCAAAAGGGACGAACACAGCTTGTGCTTGTG
 2221 CTAGCCCATGGAGCTGACCGACTCTTAAACAGGAAGGACAAACACCTTAGATTTA
 2281 GTTTCAGCGGATGATGTCAGCGCTCTGACAGCAGCCATGCCCATCTGCTCTGCC
 2341 TCTTGTACAAGCCTCAAGTGCTCAATGGTGTGAGAAGGCCAGGAGCCACTGCAGATGCT
 2401 CTCTCTTCAGGCCATCTAGCCATCAAGCCTTCTGCAGCCAGCAGTCTGACAACCTTA
 2461 TCTGGGAGTTTCAGAACTGTCTCATTAGTTAGTTCAAGTGGAACAGAGGGTGTCTCC
 2521 AGTTGGAGAAAAGGAGGTTCCAGGAGTAGATTTAGCATAACTCAATTGTAAGGAAT
 2581 CTTGGACTTGACCACTAATGGATATATTGAGAGAGAACAGATCAGTTGGATGTATTA
 2641 GTTGAGATGGGCACAAGGAGCTGAAGGAGATTGGAATCAATGCTTATGGACATAGGCAC
 2701 AAACATAATTAAAGGAGTCGAGAGACTTATCTCCGGACAACAAGGTCTAACCCATATT
 2761 ACTTTGAACACCTCTGGTAGTGGAACATTCTTATAGATCTGTCCTGATGATAAAGAG
 2821 TTTCAGTCTGGAGGAAGAGATGCAAAGTACAGTTGAGAGCACAGAGATGGAGGTCAT
 2881 GCAGGTGGAATCTCAACAGATAACATATTCTCAAGATTCAAAGGTTGTAAACAAGAAA
 2941 CTATGGAAAGATACTACCCGGAGAAAAGAAGTTCTGAAGAAAACCACAACCATGCC
 3001 AATGAACGAATGCTATTTCATGGGTCCTTTGTGAATGCAATTATCCACAAAGGCTT
 3061 GATGAAAGGCATGCGTACATAGGTGGTATTTGGAGCTGGCATTATTTGCTGAAAC
 3121 TCTTCAAAAGCAATCAATATGTATATGAAATTGGAGGAGGTACTGGGTGTCCAGTTCA
 3181 AAAGACAGATCTGTTACATTGCCACAGGCAGCTGCTTTGCCGGTAACCTTGGGA
 3241 AAGTCTTCCTGCAGTTCAGTGCAATGAAATGGCACATTCTCCTCAGGTCACTCA
 3301 GTCACTGGTAGGCCAGTGTAAATGCCCTAGCATAGCTGAATATGTTATTACAGAGGA
 3361 GAACAGGCTTATCCTGAGTATTTAATTACTTACAGATTGAGGCCTGAAGGTATGGTC
 3421 GATGGATAAAATAGTTATTAAAGAAACTAATTCCACTGAACCTAAATCATCAAAGCAGC
 3481 AGTGGCCTTACGTTTACTCCTTGCTGAAAAAA

ref|NP_003738.1|PTNKS| TANKYRASE >gi|3929219 (AF082556) TRF1-interacting ankyrin-related

ADP-ribose polymerase [Homo sapiens] Length = 1327
 Score = 1640 bits (4199), Expect = 0.0
 Identities = 790/1023 (77%), Positives = 871/1023 (84%), Gaps = 11/1023 (1%)
 Query: 35 VLLQHGAEPILNTDGRITALDLADPSAKAVLTGEYKKDELLESARSGNEEKMMALLTPLN 94
 VLLQHGA+P I NTDG++ALDLADPSAKAVLTGEYKKDELLE+ARSGNEEK+MALLTPLN
 Sbjct: 300 VLLQHGADPNIRNTDGKSALDLADPSAKAVLTGEYKKDELLEAARSGNEEKLMMALLTPLN 359
 Query: 95 VNCHASDGRKSTPLHLAAGYNRVKIVQLLQHGADVHAKDKGDLVPLHNACSYGHYEVTE 154
 VNCHASDGRKSTPLHLAAGYNRV+IVQLLQHGADVHAKDKG LVPLHNACSYGHYEVTE
 Sbjct: 360 VNCHASDGRKSTPLHLAAGYNRVIVQLLQHGADVHAKDKGLVPLHNACSYGHYEVTE 419
 Query: 155 LLVKHGACVNAMDLWQFTPPLHEAASKNRVEVCSSLSSYGADPTLLNCHNKSAILDAPTPQ 214
 LL+KHGACVNAMDLWQFTPPLHEAASKNRVEVCSSLSS+GADPTL+NCH KSA+D+APTP+
 Sbjct: 420 LLLKHGACVNAMDLWQFTPPLHEAASKNRVEVCSSLSSHGADPTLVNCHGKSAVDMAPTP 479
 Query: 215 LKERLAYEFKGHSLLQAAREADVTRIKKHLSEMVNFKHPQTHETALHCAAASPYPKRKQ 274
 L+ERL YEFKGHSLLQAAREAD+ ++KK L+LE++NFK PQ+HETALHCA AS +PKRKQ
 Sbjct: 480 LRERLTYEFKGHSLLQAAREADLAKVKKTLALEIINFQQPQSHETALHCAVASLHPKRQ 539
 Query: 275 ICELLRKGANINEKTKFLTPLHVAXXXXXXXXXXXXXXXLDNLGQTS LHRAA 334
 + ELLLRKGAN+NEK K+F+TPLHVA+ LD LGQT+LHRAA
 Sbjct: 540 VTELLLRKGANVNEKNKDFMTPLHVAAERAHNDVMEVLHKHGAKMNALDTLGQTALHRAA 599
 Query: 335 YCGHILQTCRLLLSYGCDPNIISLQGFTALQMGNENVQQLLQEGISLGNSEADRQLEAAK 394
 GHLQTCRLLLSYG DP+IISLQGFTA QMGNE VQQ+L E + S+ D +LLEA+K
 Sbjct: 600 LAGHILQTCRLLLSYGSDFPSIISLQGFTAAQMGNEAVQQILSESTPIRTSDVDYRLLEASK 659

Query: 395 AGDVETVKKLCTVQSVNCRDIEGRQSTPLHFAAGYNRVSVEYLLQHGADVHAKDKGGLV 454
 AGD+ETVK+LC+ Q+VNCRD+EGR STPLHFAAGYNRVSVEYLL HGADVHAKDKGGLV
 Sbjct: 660 AGDLETVKQLCSSQNVNCRDLEGRHSTPLHFAAGYNRVSVEYLLHHGADVHAKDKGGLV 719

Query: 455 PLHNACSYGHYVAELLVKHGAVERNADLWKFTPLHEAAAKGKYEICKLLLQHGADPTKK 514
 PLHNACSYGHYVAELLV+HGA VNVADLWKFTPLHEAAAKGKYEICKLLL+HGADPTKK
 Sbjct: 720 PLHNACSYGHYVAELLVRHGASVNADLWKFTPLHEAAAKGKYEICKLLLKHGADPTKK 779

Query: 515 NRDGNTPLDLVKDGTDIHYXXXXXXXXXXXXXXRVKKLSSPDNVNCRDTQGRHST 574
 NRDGNTPLDLVK+GDTDI RV+KL +P+N+NCRDTQGR+ST
 Sbjct: 780 NRDGNTPLDLVKEGTDIQLLGDAALLDAAKKGCLARVQKLCTPENINCRTQGRNST 839

Query: 575 PLHLAAGYNNLEVAEYLLQHGADVNAQDKGGLIPLHNAASYGHVDVAALLIKYNACVNAT 634
 PLHLAAGYNNLEVAEYLL+HGADVNAQDKGGLIPLHNAASYGHVD+AALLIKYN CVNAT
 Sbjct: 840 PLHLAAGYNNLEVAEYLL+HGADVNAQDKGGLIPLHNAASYGHVDIAALLIKYNTCVNAT 899

Query: 635 DKWAFTPHEAAQKGRQLCALLLAHGADPTLKNGEQTPLDLVSADDVSALLTAAMPPS 694
 DKWAFTPHEAAQKGRQLCALLLAHGADPT+KNQEGQTPLDL +ADD+ ALL AMPP
 Sbjct: 900 DKWAFTPHEAAQKGRQLCALLLAHGADPTMKNQEGQTPLDLATADDIRALLIDAMPPE 959

Query: 695 ALPSCYKPQ---VLNGVRSPGATXXXXXXXXXXXXXXXXXXXXXXXXXXXX 751
 ALP+C+KPQ V + SP +T
 Sbjct: 960 ALPTCFKPQATVVSASLISPAST-----PSCLSAASSIDNLTGPLAELAVGGASNAG 1011

Query: 752 XXXXXXXXXXXXKEVPGVDFSITQFVRNLGLEHLMDFEREQITLDVLVEMGHKELKEIGIN 811
 + EV G+D +I+QF+++LGLEHL DIFE EQITLDVL +MGH+ELKEIGIN
 Sbjct: 1012 DGAAGTERKEGEVAGLDMNISQFLKSLGLEHLRDIFETEQITLDVLADMGEELKEIGIN 1071

Query: 812 AYGHRHKLIKGVVERLISGQQGLNPYLTNLNTSGSGTILIDLSPDDKEFQSVEEEMQSTVRE 871
 AYGHRHKLIKGVVERL+ GQQG NPYLT + GTIL+DL+P+DKE+QSVEEEMQST+RE
 Sbjct: 1072 AYGHRHKLIKGVVERLGGQQGTNPYLTFCVNQGTILLDIAPEDKEYQSVEEEMQSTIRE 1131

Query: 872 HRDGGHAGGIFNRYNLIKQKVCNKKLWERYTHRRKEVSEENHNHANERMLFHGSPFVNA 931
 HRDGG+AGGIFNRYN++IQQV NKKL ER+ HR+KEVSEENHNH NERMLFHGSPF+NA
 Sbjct: 1132 HRDGGNAGGIFNRYNVIRIQQVNNKKLRERFCHRQKEVSEENHNHHNERMLFHGSPFINA 1191

Query: 932 IIHKGFDERHAYIGGMFGAGIYFAENSSKSQNQVYVGIGGGTGPVHKDRSCYICHROQLF 991
 IIHKGFDERHAYIGGMFGAGIYFAENSSKSQNQVYVGIGGGTGPVHKDRSCYICHROQ+LF
 Sbjct: 1192 IIHKGFDERHAYIGGMFGAGIYFAENSSKSQNQVYVGIGGGTGPVHKDRSCYICHROMLF 1251

Query: 992 CRVTLGKSFLQFSAMKMAHSPPGHHSVTGRPSVNGLALAEYVIYRGEQAYPEYLITYQIM 1051
 CRVTLGKSFLQFS MKMAH+PPGHHHSV GRPSVNGLA AEYVIYRGEQAYPEYLITYQIM
 Sbjct: 1252 CRVTLGKSFLQFSTMKMAHAPPGHHSVIGRPSVNGLAYAEYVIYRGEQAYPEYLITYQIM 1311

Query: 1052 RPE 1054
 +PE
 Sbjct: 1312 KPE 1314

#####

GAAGTGCAGCGGGTGGATTCTGGAATTGCCCTAGTAGTAGTACCAACCAAGGCACTG
 CTTAGGTACACTGCTGCTTAGTGGAGAGTCCCTCTGGCTTATCATTAAGGTTTGGG
 CGGAAAGACGTAGTTGAATATTCCTTCAGAATGGTCAAATGTCCAAGCACGTGATGAT
 GGGGGCCTTATTCTCTTCATAATGCATGCTTTGGTCATGCTGAAGTAGTCATCT
 CTTTGCGACATGGTGCAGACCCCAATGCTCGAGATAATTGAAATTACTCCTCTCCAT
 GAAGCTGCAATTAAAGGAAAGATTGATGTTGCATTGCTATTGCAGTGCTGT
 TACAGCATGGAGCTGAGCCAACC
 ATCCTAAATACAGATGGAAGGACAGCATTGGATTAGCAGATCCATCT

121 GCAAAGCAGTCTTACTGGTGAATATAAGAAAGATGAACCTCTAGAAAGTGCCAGGAGT
181 GCAATGAAGAAAAATGATGGCTCTACTCACACCATTAAATGTCAACTGCCACGCAAGT
241 GATGGCAGAAAGTCAACTCCATTACATTGGCAGCAGGATATAACAGAGTAAAGATTGTA
301 CAGCTGTTACTGCAACATGGAGCTGATGTCATGCTAAAGATAAAGGTGATCTGGTACCA
361 TTACACAATGCTGTTATGGCATTATGAAGTAACGACTGAACTTTGGTCAGCATGGT
421 GCCTGTGTAATGCAATGGACTTGTGGCAATTCACTCCTCTCATGAGGAGCTCTAAG
481 AACAGGGTTGAAGTATGTTCTCTTAAGTTATGGTCAGACCCAACACTGCTCAAT
541 TGTCAAAATAAGTGTATAGACTTGGCTCCACACAGTTAAAGAAAGATTAGCA
601 TATGAATTAAAGGCCACTCGTTGTCAGCTGCAAGCTGCAAGAGCTGATGTTACTCGAATC
661 AAAAAACATCTCTCTGGAAATGGTAATTCAAGCATCCTAAACACATGAAACAGCA
721 TTGCAATTGTCGCTGCATCTCCATATCCCCAAAAGAAAGCAAATATGTGAACTGTTGCTA
781 AGAAAAGGAGCAAACATCAATGAAAAGACTAAAGAATTCTGACTCCTCTGCACGTTGCA
841 TCTGAGAAAGCTCATAATGATGTTGTAAGTAGTGGGAAACATGAAAGCAAAGGTTAAT
901 GCTCTGGATAATCTTGTCAAGACTCTACACAGAGCTGCATATTGTGGTCATCTACAA
961 ACCTGCCGCTACTCTGAGCTATGGGTGTGATCTAACATTATATCCCTCAGGGCTT
1021 ACTGCTTTACAGATGGAAATGAAAATGTACAGCAACTCCTCAAGAGGGTATCTCATT
1081 GTAAATTCAAGAGGCAGACAGACAATTGTGGAAGCTGCAAAGGGTGGAGATGTCGAAACT
1141 GTAAAAAAACTGTGTACTGTTCAAGAGTGTCAACTGCAGAGACATTGAAGGGCGTCAGTCT
1201 ACACCACTTCATTGCACTGGGTATAACAGAGTGCCGTGGATATCTGCTACAG
1261 CATGGAGCTGATGTCATGCTAAAGATAAAGGAGGCCATTGACCTTGCACAATGCATGT
1321 TCTTATGGACATTATGAAGTTGCAAGACTCTTGTAAACATGGAGCAGTAGTTAATGTA
1381 GCTGATTTATGGAAATTACACCTTACATGAAGCAGCAGCAAAGGAAATATGAAATT
1441 TGCAAAACTCTGCTCCAGCATGGTCAGACCCCTACCAAAAAAAACAGGGATGGAAATACT
1501 CCTTTGGATCTTGTAAAGATGGAGATAACAGATATTCAATTATCTGCTTAGGGAGATGCA
1561 GCTTGCTAGATGTCGCAAGAAGGGTTGTTAGCCAGAGTGAAGAAGTTGCTCTCCT
1621 GATAATGTAATTGCGCGATAACCAAGGCAGACATCAACACCTTACATTAGCAGCT
1681 GTTATAATAATTAGAAGTTGCAAGAGTATTGTTACAACACGGAGCTGATGTGAATGCC
1741 CAAGACAAAGGAGGACTTATTCTTACATAATGCAGCATCTACGGCATGTAGATGTA
1801 GCAGCTCTACTAATAAAAGTATAATGCATGTCATGCCACGGACAAATGGCTTCACA
1861 CCTTGACGAAAGCAGCCAAAAGGGACGAACACAGCTTGTGTTGCTAGCCAT
1921 GGAGCTGACCCGACTCTAAAAATCAGGAAGGACAACACCTTAGATTTAGTTAGCTCAGCG
1981 GATGATGTCAGCGCTTCTGACAGCAGCCATGCCCATCTGCTCTGCCCTTGTAC
2041 AAGCTCAAGTGTCAATGGTGTGAGAAGGCCAGGAGCCACTGCAGATGCTCTCTCA
2101 GGTCCATCTAGCCCCTCAAGCCTTCTGCAAGCAGCAGCTTGTGACAACATTCTGGGAGT
2161 TTTTCAGAACTGTCATTAGTTAGTTCAAGTGGAACAGAGGGTGTCTCAGTTGGAG
2221 AAAAGGAGGTTCCAGGAGTAGATTTAGCATAACTCAATTGTAAGGAATCTTGGACTT
2281 GAGCACCTAATGGATATATTGAGAGAGAACAGATCACTTGGATGTATTAGTGAGATG
2341 GGGCACAAGGAGCTGAAGGAGATTGAATCAATGCTATGGACATAGGCACAAACTAATT
2401 AAAGGAGTCGAGAGACTTATCTCCGGACAACAAGGTCTAACCATATTTAACCTTGAAC
2461 ACCTCTGGTAGTGGAAACAATTCTTATAGATCT
GTCTCCTGATGATAAAGAGTTTCAGTCGTGGAGGAAGAGATGCAAAGT
ACAGTTGAGAGCACAGAGATGGAGGTCTGCAGGTGGAACTCTTC
AACAGATAACAATTCTCAAGATTCAAGAGGTTGTAACAAGAAACTATGGGA
AAGATAACACTCACCGGAGAAAAGAAGTTCTGAAGAAAACCACAACCAGCCAATGA
ACGAATGCTATTTCATGGGCTCCTTGTGAATGCAATTATCCACAAAGGCTTGATG
AAAGGCATGCGTACATAGGTGGTATGTTGGAGCTGGCATTATTGCTGAAACTCTT
CCAAAAGCAATCAATATGTATATGGAATTGGAGGAGGTACTGGGTGTCAAGTCACAAAG
ACAGATCTGTTACATTGCAACAGGCAGCTGCTTTGCCGGTAACCTGGGAAAG
TCTTCTGCAAGTCAGTCAGTCAGGAAATGGCACATTCTCCTCAGGTCTCACTCAGTC
ACTGGTAGGCCAGTGTAAATGGCCTAGCATTAGCTGAATATGTTATTACAGAGGAGAA
CAGGCTTATCCTGAGTATTTAATTACTTACCAAGATTATGAGGCCAGGATGGTGC
ATGGATAAAATAGTATTGAAACTAATTCCACTGAACCTAAACATCAAAGCAGC
AGTGGCCTCTACGTTTACTCCTTGTGAAAAAA

1 GGCACGAGCTGCAACGAAATGGAAAGATTGATGTTGCATTGTGTTACAGCATGGA
61 GCTGAGCCAACCR10ATCCTAAATACAGATGGAAGGCAGCATTGGR9ATTTAGCAGATCCATCT
121 GCCAAAGCAGTGR8CTTACTGGTGAATATAAGAAAGATGAACCTCTAGAAAGTGCCAGGAGT

181 GGCAATGAAGAAAAATGATGGCTCTACTCACACCATTAAATGTCAACTGCCACGCAAGT
241 GATGGCAGAAAGTCACACTCCATTACATTGGCAGCAGGATATAACAGAGTAAAGAGATTGTA
301 CAGCTGTTACTGCAACATGGAGCTGATGTCCATGCTAAAGATAAAGGTGATCTGGTACCA
361 TTACACAATGCCATTATGGCATTATGAAGTAACGTAACTTGTGCAAGCATGGTACCA
421 GCCTGTGTAATGCAATGGACTTGTGCAATTCACTCCTCTCATGAGGCAGCTTCAAG
481 AACAGGGTTGAAGTATGTTCTCTTAAGTTATGGTGCAGACCCAAACACTGCTCAAT
541 TGTCACAATAAAAGTGTATAGACTTGGCTCCACACCACAGTTAAAGAAAGATTAGCA
601 TATGAATTAAAGGCCACTCGTGCTGCAAGCTGCACGAGAAGCTGATGTTACTCGAATC
661 AAAAAACATCTCTCTGGAAATGGTAATTCAAGCATCCTCAAACACATGAAACAGCA
721 TTGCATTGTGCTGCATCTCCATATCCAAAAGAAAGCAAATATGTGAACTGTTGCTA
781 AGAAAAGGAGCAAACATCAATGAAAAGACTAAAGAATTCTGACTCCTCTGCACGTGGCA
841 TCTGAGAAAGCTCATATGATGTTGAAAGTAGTGTGAAACATGAAGCAAAGGTTAAT
901 GCTCTGGATAATCTGGTCAGACTTCTACACAGAGTCATATTGTGGTCATCTACAA
961 ACCTGCCGCCTACTCCTGAGCTATGGGTGTGATCCTAACATTATATCCCTCAGGGCTT
1021 ACTGCTTACAGATGGAAATGAAAATGTACAGCAACTCCTCAAGAGGGTATCTCATTA
1081 GGTATTTCAGAGGCAGACAGACAATTGCTGAAAGCTGCAAAGGCTGGAGATGTCGAAACT
1141 GTAAAAAAACTGTTACTGTTAGAGTGTCAACTGCAGAGACATTGAAGGGCGTCAGTCT
1201 ACACCACTTCATTTGAGCTGGTATAACAGAGTGTCCGGTGGAAATATCTGCTACAG
1261 CATGGAGCTGATGTGCATGCTAAAGATAAAGGAGGGCTTGTACCTTGCACAATGCATGT
1321 TCTTATGGACATTATGAAGTTGCAAGACTTCTGTTAAACATGGAGCAGTAGTTAATGTA
1381 GCTGATTTATGAAATTACACCTTACATGAAGCAGCAGCAAAGGAAAATATGAAATT
1441 TGCAAACCTCTGCTCCAGCATGGCAGACCCCTACCAAAAAAAACAGGGATGAAATACT
1501 CCTTGGATCTGTTAAAGATGGAGATACAGATATTCAATTCTGCTTAGGGAGATGCA
1561 GCTTGCTAGATGCTGCCAGAAGGGTTGTTAGCCAGAGTGAAGAAGTTGCTTCTCCT
1621 GATAATGTAATTGCCCGATAACCAAGGCAGACATTCAACACCTTACATTAGCAGCT
1681 GGTATAATAATTAGAAGTTGAGCTTACAACACGGAGCTGATGTAATGCC
1741 CAAGACAAAGGAGGACTTATTCTTACATAATGCAGCATCTACGGGATGTAGATGTA
1801 GCAGCTCTACTAATAAGTATAATGCATGTCATGCCACGGACAAATGGCTTCA
1861 CCTTGACGAAGCAGCCAAAAGGGACGAACACAGCTTGTGCTTGTCTAGCCAT
1921 GGAGCTGACCCGACTCTAAAAATCAGGAAGGACAAACACCTTGTAGATTAGTTAGCTCAGCG
1981 GATGATGTCAGCGCTTCTGACAGCAGCCATGCCCATCTGCTCTGCCCTTGTAC
2041 AAGCTCAAGTGTCAATTGGTGTGAGAAGCCCAGGAGCCACTGCAGATGCTCTCTTCA
2101 GGTCCATCTAGCCCATCAAGCCTTCTGACAGCAGCCACTGCAGATGCTCTCTTCA
2161 TTTTCAGAACTGCTTCAATTAGTTAGTCAGTGGAAACAGAGGGTGTCCAGTTGGAG
2221 AAAAAGGAGGTTCCAGGAGTAGATTTCAGATAACTCAATTGTAAGGAATCTGGACTT
2281 GAGCACCTAATGGATATATTGAGAGAGAACAGATCACTTGGATGTTAGTTGAGATG
2341 GGGCACAAGGAGCTGAAGGAGATTGAAATCAATGCTTATGGACATAGGCACAAACTAATT
2401 AAAGGAGTCGAGAGACTTATCTCCGGACAACAAGGCTTAACCCATATTAACTTGAAC
2461 ACCTCTGGTAGTGGAAACAATTCTTATAGF5ATCTGCTCTGTGATAAAGAGTTCACTGCTF6
2521 GTGGAGGAAGAGATGCAAAGTACAGTTGAGAGCACAGAGAF7TGGAGGTGTGAGGTGGA
2581 ATCTCAACAGATAACATTCTCAAGATTCAAGAGTTGTAACA
Plus
3' end

GTCTCCTGATGATAAAGAGTTCACTGTTGAGGAAGAGATGCAAAGT
ACAGTTGAGAGCACAGAGATGGAGGTATGCAGGTGGAATCTTC
AACAGATAACATATTCTCAAGATTCAAGGTTGTAACAAGAAACTATGGGA
AAGATACACTCACCGGAGAAAGAAGTTCTGAAGAAAACCACAACCATGCCAATGA
ACGAATGCTATTCTGGTCTCTTGTGAATGCAATTATCCACAAAGGTTGATG
AAAGGCATGCGTACATAGGTGGTATGTTGAGCTGGCATTATTTGCTGAAACTCTT
CCAAAAGCAATCAATATGTATATGGAATTGGAGGAGGTACTGGGTGTCCAGTTCAACAAAG
ACAGATCTGTTACATTGCCACAGGCAGCTGCTTTGCCGGTAACCTGGGAAAG
TCTTCTGCAAGTCAGTGAATGAAATGGCACATTCTCCTCCAGGTATCACTCAGTC
ACTGGTAGGCCAGTGAAATGGCTAGCATTAGCTGAATATGTTATTACAGAGGAGAA
CAGGCTTATCCTGAGTATTAAATTACTTACAGATTATGAGGCTGAAGGTATGGTCG
ATGGATAAAATAGTTATTAAAGAAACTAATTCAACTGAACCTAAACATCAAAGCAGC
AGTGGCCTCTACGTTTACTCCTTGCTGAAAAAA

gi|3929219 (AF082556) TRF1-interacting ankyrin-related ADP-ribose polymerase
 [Homo sapiens] Length = 1327
 Score = 464 bits (1181), Expect = e-130
 Identities = 223/309 (72%), Positives = 249/309 (80%) Frame = +2
 Query: 2 LEMVNFKHPQTETALHCAAASPYPKRKQICELLRLKGANINEKTFELTPLHVASXXXX 181
 LE++NFK PQ+HETALHCA AS +PKRKQ+ ELLLRKGAN+NEK K+F+TPLHVA+
 Sbjct: 511 LEIINFQPKQSHETALHCAVASLHPKRKVTELLLRKGANVNEKNKDFMTPLHVAAERAH 570
 Query: 182 XXXXXXXXXXXXXXXXXLDNLGQTSLHRAAYCGHLQTCRLLSYGCDPNIISLQGFTALQM 361
 LD LGQT+LHRAA GHLQTCRLLSYG DP+IISLQGFTA QM
 Sbjct: 571 NDVMEVLHKHGAKMNALDTLGQTALHRAALAGHLQTCRLLSYGSDPSIISLQGFTAAQM 630
 Query: 362 GNENVQQLLQEGISLGNSEADRQLLEAAKAGDVETVKKLCTVQSVNCRDIEGRQSTPLHF 541
 GNE VQQ+L E + S+ D +LLEA+KAGD+ETVK+LC+ Q+VNCRD+EGR STPLHF
 Sbjct: 631 GNEAVQQILSESTPIRTSDVDYRLLEASKAGDLETVKQLCSSQNVNCRDLEGRHSTPLHF 690
 Query: 542 AAGYNRVSVVEYLLQHGADVHAKDKGGLVPLHNACSYGHYEVAELLVKGAVVNVALWK 721
 AAGYNRVSVVEYLL HGADVHAKDKGGLVPLHNACSYGHYEVAELLV+HGA VNVALWK
 Sbjct: 691 AAGYNRVSVVEYLLHHGADVHAKDKGGLVPLHNACSYGHYEVAELLVRHGASVNVALWK 750
 Query: 722 FTPLHEAAAKGKYEICKLLLQHGADPTKKNRDGNTPLDLVKDGDTXIQXXXXXXXXX 901
 FTPLHEAAAKGKYEICKLLL+HGADPTKKNRDGNTPLDLVK+GDT IQ
 Sbjct: 751 FTPLHEAAAKGKYEICKLLLKGADPTKKNRDGNTPLDLVKEGDTDIQDLLKGDAALLDA 810
 Query: 902 XXKGCFXQI 928
 KGC ++
 Sbjct: 811 AKKGCLARV 819

Longest ORF frame 2 of 310 amino acids

From amino acid position 1 to 311

1 LEMVNFKHPQTETALHCAAASPYPKRKQICELLRLKGANINEKTFELTPLHVASEKAH
 61 NDVVEVVVKHEAKVNALDNLGQTSLHRAAYCGHLQTCRLLSYGCDPNIISLQGFTALQM
 121 GNENVQQLLQEGISLGNSEADRQLLEAAKAGDVETVKKLCTVQSVNCRDIEGRQSTPLHF
 181 AAGYNRVSVVEYLLQHGADVHAKDKGGLVPLHNACSYGHYEVAELLVKGAVVNVALWK
 241 FTPLHEAAAKGKYEICKLLLQHGADPTKKNRDGNTPLDLVKDGDTXIQDLLRGDAXXLD
 301 AXKGCFXQIX

1 GCTGGAAATGGTGAATTCAAGCATCCTCAAAR7CACATGAAACAGCATTGCATTGTGCTGC
 61 TGCATCTCCATATCCAAAAGAAAGCAA6TATGTGAACTGTTGCTAAGAAAAGGAGCAA
 121 R5CATCAATGAAAAGACTAAAGAATTCTGACTCCTCTGCACGTGGCATCTGAGAAAAGCTCA
 181 TAATGATGTTGTTGAAAGTAGTGGTAAACATGAAGCAAAGGTTAATGCTCTGGATAATCT
 241 TGGTCAGACTTCTACACAGAGCTGCATATTGTTGCTCATCTACAAACCTGCCGCTACT
 301 CCTGAGCTATGGGTGTGATCCTAACATTATATCCTTCAGGGCTTACTGCTTACAGAT
 361 GGGAAATGAAAATGTACAGCAACTCCTCAAGAGGGTATCTCATTAGGTAATTAGGAC
 421 AGACAGACAATTGCTGGAAGCTGCAAAGGCTGGAGATGTCGAAACTGTAAAAAAACTGTG
 481 TACTGTTCAGAGTGTCAACTGCAGAGACATTGAAGGGCGTCAGTCTACACCACTTCATT
 541 TGCAGCTGGTATAACAGAGTGTCCGTGGTGAATATCTGCTACAGCATGGAGCTGATGT
 601 GCATGCTAAAGATAAAGGAGGCCTTGTACCTTGCAACATGCATGTTATGGACATTA
 661 TGAAGTTGAGAACTTCTGTTAACATGGAGCAGTAGTTAATGTTAGCTGATTTATGGAA
 721 ATTTACACCTTACATGAAGCAGCAGCAAAGGAAATATGAAATTGCAAACCTCTGCT
 781 CCAGCATGGTGCAGACCCCTACCAAAAAAAACAGGGATGGAATACTCCTTGGATCTGT
 841 TAAAGATGGAGATACANATATTCAAGATCTGCTTAGGGAGATGCANNTTNCTAGATGC
 901 TGCCNANAAGGGTTTTTANCCAGATTNA

>EST assembled

Good protein homology to

gi|3929221 (AF082557) TRF1-interacting ankyrin-related
ADP-ribose polymerase [Homo sapiens]

TITLE Tankyrase, a poly(ADP-ribose) polymerase at human telomeres
JOURNAL Science 282, 1484-1487 (1998)

Longest ORF frame 3 of 258 amino acids

HVASEKAHNDVVEVVVKHEAKVNALDNLGQTSRHLQTCRLLLSYGCDPNIISL
QGFTALQMGNENVQQLLQEGISLGNSEADROLLEAAKAGDVETVKKLCTVQSVNCRDIEG
RQSTPLHFAAGYNRVSVEYLLQHGADVAKDKGGLVPLHNACSYGHYEVAELLVKHGAV
VNVAIDLWKFPLHEAAAKGKYEICKLLLQHGADPTKKNRDGNTPLDLVKDGDXTIQDLLR
GDAXXLDAAXKGCFXQIX

TGCACGTGGCATCTGAGAAAGCTCATAATGATGTTGTAAGTAGTGGTAAACATGAAG
R2CAAAGGTTAATGCTCTGGATAATCTGGTCAGACTCTCTACACAGAGCTGCATNTTGTG
GNCATCTACAAACCR1TGCGCCTACTCCTGAGCTATGGGTGTGATCCTAACATTATATCCC
TTCAGGGCTTACTGCTTACAGATGF4GGAATGAAAATGTACAGCAACTCCTCCAAGAGG
GTATCTCATTAGGTAATTCAAGGGCAGACAGAR4CAATTGCTGGAAGCTGCAAAGGCTGGAG
ATGTCGAAACTGTAAAAAAACTGTGTACTGTR3CAGAGTGTCAACTGCAGAGACATTGAAG
GGCGTCAGTCTACACCACTTCATTGCAAGCTGGGTATAACAGAGTGTCCGTGGTGAAT
ATCTGCTACAGCATGGAGCTGATGTCATGCTAAAGATAAAGGAGGCCCTGTACCTTTGC
ACAATGCATGTTCTTATGGACATTATGAAGTTGCAAGACTTCTGTTAAACATGGAGCAGF3
TAGTTAATGTAGCTGATTATGAAATTTACACCTTACATGAAGCAGCAGCAAAGGAA
AATATGAAATTGCAAACCTCTGCTCCAGCATGGTF1CAGACCCCTACCAAAAAACAGGG
ATGGAATACTCCTTGGATCTGTTAAAF2AGATGGAGATACANATATTCAAGATCTGCTTA
GGGGAGATGCANNTTNCTAGATGCTGCCNANAAGGGTTGTTANCCAGATTNA

TGCACGTGGCATCTGAGAAAGCTCATAATGATGTTGTAAGTAGTGGTAAACATGAAG
CAAAGGTTAATGCTCTGGATAATCTGGTCAGACTCTCTACACAGAGCTGCATNTTGTG
GNCATCTACAAACCTGCCGCTACTCCTGAGCTATGGGTGTGATCCTAACATTATATCCC
TTCAGGGCTTACTGCTTACAGATGGAAATGAAAATGTACAGCAACTCCTCCAAGAGG
GTATCTCATTAGGTAATTCAAGGGCAGACAGACAATTGCTGGAAGCTGCAAAGGCTGGAG
ATGTCGAAACTGTAAAAAAACTGTGTACTGTCAGAGTGTCAACTGCAGAGACATTGAAG
GGCGTCAGTCTACACCACTTCATTGCAAGCTGGGTATAACAGAGTGTCCGTGGTGAAT
ATCTGCTACACCATGGAGCTGATGTCATGCTAAAGATAAAGGAGGCCCTGTACCTTTGC
ACAATGCATGTTCTTATGGACATTATGAAGTTGCAAGACTTCTGTTAAACATGGAGCAG
TAGTTAATGTAGCTGATTATGAAATTTACACCTTACATGAAGCAGCAGCAAAGGAA
AATATGAAATTGCAAACCTCTGCTCCAGCATGGTCAGACCCCTACCAAAAAACAGGG
ATGGAATACTCCTTGGATCTGTTAAAGATGGAGATACANATATTCAAGATCTGCTTA
GGGGAGATGCANNTTNCTAGATGCTGCCNANAAGGGTTGTTANCCAGATTNA

>cip6c1p5F2

TCATTATCTGCTTAGGGGAGATGCAGCTTT
GCTAGATGCTGCCAAGAAGGGTTGTTAGCCAGAGCGAAGAAGTTGCTTCCTGATAA
TGTAAATTGCCGCGATAACCAAGCAGACATTCAACACCTTACATTAGCAGCTGGTTA
TAATAATTAGAAGTTGCAAGAGTATTGTTACAACACGGAGCTGATGTGAATGCCAAGA
CAAAGGAGGACTTATTCTTACATAATGCAGCATCTACGGCATGTAGATGTAGCAGC
TCTACTAATAAAAGTATAATGCATGTCATGCCACGGACAAATGGCTTACACCTT
GCACGAAGCAGCCAAAAGGGACAAACAGCTTGTGCTTAGCCATGGAGC
TGACCCGACTCTTAAACATCAGGAAGGACAAACACCTTACATTAGTTAGTTCAAGCAGGATGA
TGTCAAGCGCTCTCTGACAGTAGCCATGCCCATCTGCTCTGCCCTTGTACAAGC
CTCAAGTGTCAATGGGTGTGAGAAGCCCAGGAGCCACTGCAGATGCTCTCCTCAGGT
CCATCTAGCCCATCAAGCCTTCTGCANCCAGCAGTCTGACAACATTCTGGAGTT

>cip6c2p5-F3

GGATGGAAATACTCCTTGGATCTGTTAAAGATG
GAGATACAGATATTCAAGATCTGCTTAGGGGAGATGCAGCTTGCTAGATGCTGCCAAGA
AGGGTTGTTAGCCAGAGTGAAGAAGTTGCTTCTCCTGATAATGTAATTGCCGCGATA
CCCAAGGCAGACATTCAACACCTTACATTAGCAGCTGGTTATAATAATTAGAAGTTG
CAGAGTATTGTTACAACACGGAGCTGATGTGAATGCCAAGACAAAGGAGGACTTATT
CTTACATAATGCAGCATCTACGGCATGTAGATGTAGCAGCTACTAATAAAAGTATA

Exhibit B
09/843,159

6/15/1999 w/ Tank northern
blob
↳ This slide is for Jassey

Chk1 two-hybrid screening

Bait: Chk1

is a protein kinase required for cell cycle arrest in response to DNA damage

Hit: a novel protein homology to ATP-dependent RNA helicase
belongs to the DEAD-box RNA helicase family

The fission yeast *cdc28(+)* encodes a member of the DEAD-box family of putative RNA helicases involved in pre-mRNA splicing and cell cycle progression

a new gene encoding a putative DEAD box helicase have been isolated to suppress uncontrolled mitosis by overexpression *cdc25* in fission yeast
(Chk1 and 14-3-3 proteins also show up in this screening)

It is interesting to characterize the interaction of Chk1 and the novel RNA helicase and its role in cell cycle control

Potential targets for further pursuing

p21 hit:	Tankyrase homolog
Traf4 hit:	Cdk liked kinase
hRad9 hit:	PP5
PNCA hits:	a novel helicase
	a human homolog of SNM1
	a novel endo/exo-ribonuclease
Chk1 hit:	an ATP-dependent RNA helicase homolog

Target validation:

- full length cloning
- examine the RNA expression in tumor verse normal tissues
- peptide binding library screening in YTH---->functional assay
- generate dominant-negative mutant

p21 hit: a Tankyrase homolog

Takyrase (a poly(ADP-ribose) polymerase at human telomeres)

- a protein with homology to ankyrin and to the catalytic domain of ADP-ribose polymerase (PARP)
- is localized to human telomeres
- binds to the telomeric protein TRF1 (telomeric repeat binding factor-1)
- is a positive regulator of telomere length maintenance

SEP 08 2004 JC 32 Project No. _____

124

Book No. _____

Exhibit C 09/843,169

TITLE Smart HB for #2 (CIP5)

From Page 1 TRADEMARKS

See pg. 1.

7/9/99 (5)

SS sym.

HB(1)

HB(2)

polymer HB (1μg)
Smart Oligo II (9040495)

0.5 μg (1)

0.5 μg (1)

Primer
H2O

5CPS

1x

#2(R14)

2.5

1x

2.5

70°C 3' ice

5x

2.5

5x 1°

2

0.1M-DTT

1

dNTP mix

1

RT

1

10x

4°C 15h

+50 μL Tricine-EDTA buffer, 22°C 7' ice.
(10 μg/μL)

upm Nup

R11 R14

PCR

upm R14 upm
R11

HB(1)

HB(2)

Cap30

7/12 (1) PCR (2p)

primers: Nup R11 N R11

X C10B11 IP3 HB(1P14) N R11 R11 N R14 R14

HB(1) IP (4 μg R14) 0.5x

HB(2) IP (4 μg R14) 1.0x

Cap23.

1/10

1/10

1/10

↓ GP X

#2-Cap1 (N R11)

#2-Cap2 "

→

To Page No. _____

Witnessed & Understood by me,

Date

Invented by

Date

JH

8/28/99

Suz

7/9/99

Recorded by

Suz

TITLE _____ **PCMA-140 #4.** _____ **Book No.** _____

Project No. _____

Book No. _____

127.

From Page No. 12

7/12/99 (D) PCR insert screening again (last time the amount clones are not enough, primer mix F5/R8)

mini plant
prep

BB-FBR7 #9-FBR7
11 16 17 19 20 | 16 15 20

#4-FER.7-11	7/3
-19	
-20	to sequence
#4-FER.7-15	

7/15(4) Clones per insert screening

↓ Muni (7/14)

A photograph showing a row of 10 small, white, cylindrical dental implants standing upright in a dark, rectangular container. The implants are evenly spaced and have a smooth, rounded top.

1b② 7/13/11 insert check result: all of them have ^{panel} [REDACTED]

To Page No.

Witnessed & Understood by me.

Date _____

Invented by

5

Date

7/13/99

Recorded by

Project No. _____

128

Book No. _____

TITLE CIPS (#2) Marathon

From Page No. 104

7/1/98 (2) Compare pH of PCR Buffer.

API R14 APV
R14

Template (HB Marathon) 30ng in 1.5 in 25 μl PCR.

+ 0.5 μl 1M HCl + 0.2 μl 1M APV
+ 1.5 μl " + 0.5 μl "
+ 2.1 μl " + 0.8 μl "Capzo
useful.HCl 0 0.2 0.5 0.8
API R14 APV API R14

X

Try New buffer & API.

API R14 APV
R14API R14 APV New Buffer
API R14 APV API R14

X

To Page No. _____

Witnessed & Understood by me,

JH

Date

8/2/99

Invented by

SJD

Date

7/15/98

Recorded by

SJD

7/16/92

(H2-5-1)

(page date)

(charge)

(sequence)

RACE

① { T+B X 6/25, p111 { Both kit X { #2-B4-1 (6kb) X
 H.Liver/pl. ✓ (R14, R11) { clonelch kit ✓ -3
 -4

② { HB(CR) ✓ 6/30, p115-7
 T+B ✓ R14
 H.Mela X
 H.Liver/pl. ✓

{ #2-C1-6 (1kb)
 (HB) -7
 -12
 -14
 #2-C2-1 (0.6kb)
 (HB) -5 ✓
 #2-C3-11 (1.6kb)
 (HB) -12
 -18

③ { HB/pl ✓ 7/12, p126-7 X HB too small 9kb
 H.Leuk/pl ✓ R14 15kb → mini & clones
 4 Zap mix ✓ okas. → but didn't pull F13/R11 clone X
 H.B/ps ✓ x too more colony plate no to sequence
 give pcr gp to FG
 { #2-D3 (H.Liver)
 { #2-D4 (4 Zap mix)
 { #2-D5 (H.B/ps)

④ myself X 7/12, p123, 128
 HB R14 { Normal Buff
 different pH but
 C. Newer buffer

⑤ cloned Marathon Ready cDNA, 7/16, p119

{ H.Fetal Brain X
 H.Fetal Liver X
 H.Leukocyte X

X primer adaptor problem

3. [REDACTED] 7/19, p144-5.

{ HB, primord T ✓
 HB, R14 X

7/20 p137

{ #2-CapA1-3 (1.5kb) ✓ isoform 1
 -11 (0.5kb) ✓ isoform 3

{ #2-CapA2-3 (1kb)
 -10
 -12 (1.2kb) ✓ no seq

(class F13/R11 check)

{ #2-CapA1-29 (1.5kb) ✓
 -33 (1.2kb) ✓
 -34 (2.2kb) ✓
 { #2-CapA2-26 (0.8kb)
 -29 (0.9kb) ✓

Result: got 2 isoform from Smart RACE. * got isoform from Library method.

But Marathon did work.

7/22 finish it.

RIGEL

Exhibit D 09/843,149

H93
FLEHR, HOBACH, TEST
ALBRITTON & HERBERT

1999 JUL 22 AM 9.02

RECEIVED

July 20, 1999

RIGEL, INC.

VIA FEDERAL EXPRESS

Ms. Robin Silva
Flehr, Hobach, Test, Albritton, & Herbert
4 Embarcadero Center, Suite 3400
San Francisco, California 94111-4187

*Per RMS - open
AS utility*

Re: Provisional Patent Applications.

Dear Ms. Silva,

Per Brian Cunningham's request, enclosed with this letter are eight packages of information generated by Dr. Ying Luo in preparation for provisional patent application filings. Each package pertains to a different genetic sequence that Rigel believes may be commercially useful. Each package contains relevant scientific materials, journal references and abstracts of proposed gene functions.

Please file a provisional patent application for each document.

If you have any questions, please call me at 650-624-1106.

Respectfully yours,

Nicole Verona

Nicole A. Verona
Rigel Pharmaceuticals, Inc.

Exhibit D E 09/843,141

FLEHR, HOBACH, TEST
ALBRITTON & HERBERT

1999 JUL 23 AM 10:04

RECEIVED

July 22, 1999

RIGEL, INC.

VIA FEDERAL EXPRESS

Ms. Robin Silva
Flehr, Hobach, Test, Albritton, & Herbert
4 Embarcadero Center, Suite 3400
San Francisco, California 94111-4187

ORIGINAL Diskette in
P-68287

Re: Provisional Patent Applications.

Dear Ms. Silva,

It was a pleasure to meet you today. I'm sorry that I did not see you leave; I had intended to give you these diskettes before the end of our meeting.

On these diskettes are the documents that we reviewed earlier. The new document that Ying gave to me today will be ready on Monday.

If you have any questions, please call me at 650-624-1106.

Respectfully yours,

Nicole Verona

Nicole A. Verona
Rigel Pharmaceuticals, Inc.

Exhibit F 09/843,149

DOCKETING/BILLING SYSTEM FILE INFORMATION (Patent/Design Patent)

Date: July 26, 1999

File No.: A-68292

Client: Rigel Pharmaceuticals

Access Code: 4931

Client

Attorney: DJB/RMS/DAV

Ref. No.:

New

Update

Close

Parent

Div.

CPA

CIP

Subject Description

Title: TANKYRASEH, A Cell Cycle Protein

Inventors: Ying Luo

Serial No.:

Filing Date:

Patent No.:

Issue Date:

Assignee:

Related Files:

If Foreign file, please provide corresponding U.S. Serial Number
or Patent Registration Number.

Misc. (Include any action items and due dates here!):

Submitted by: Gail Clark

Date: July 26, 1999

cc: Accounting

Docketing - Foreign

Docketing - US

Exhibit #G 09/843, 149

From: Nicole Verona <NVerona@rigel.com>
To: "'dvance@flehr-iplaw.com'" <dvance@sfpo.fhtah.fleh...
Date: 8/30/99 4:01pm
Subject: FW: FW: info

Dear Dolly,

I forwarded your questions to Ying Luo and this is the response I received from him. I hope this helps. Also, I've got copies of the TNIK manuscript figures that you need. Would you like me to fax them to you?

Nicole

-----Original Message-----

From: Ying Luo [mailto:yluo@rigel.com]
Sent: Sunday, August 29, 1999 2:44 PM
To: Nicole Verona
Subject: Re: FW: info

PAN is from PCNA screening. tankyraseH is from CIP screening. CIP is also called p21. R0101 has an entry in GenBank with full length sequence with a name called KIAA0101. No functional annotation about R0101. PPS was cloned and published before. The novelty is we can link PPS to RAD9, a cell cycle checkpoint control protein. You should have all figures of TNIK manuscript already. TNIK nucleotide sequences are attached. PAN nucleotide sequence is already in Genbank.

7868

Ying

At 03:21 PM 8/26/99 -0700, you wrote:

>Hi Ying!
>
>Here are some of the questions I need to discuss with you.

>
>Nicole

>-----Original Message-----

>From: Dolly Vance [mailto:dvance@flehr-iplaw.com]
>Sent: Friday, August 20, 1999 1:42 PM
>To: nverona@rigel.com
>Subject: info
>
>
>Dear Nicole,
>Hope you're well. Here's a complete list of what I am missing from the
>initial 9 disclosures.
>
>1) The names of binding partners (if any actual) for CAH and
>tankyraseH.
>2) The nucleic acid and amino acid sequences for PAN and TNIK
>(actually, all figures that go with the manuscript for TNIK).
>3) Please confirm that R0101 and PPS are NOT novel, and that all
>others are novel.

>
>Thanks. Dolly

>P.S. I understand your hours are reduced. Any chance you can give me a
>time frame for providing the above information? Thanks again, Dolly

>

RIGEL

FLEHR, HOHBACH, TEST
ALBRITTON & HERBERT

1999 OCT -1 AM 10:08

RECEIVED

RIGEL, INC.

Exhibit H 09/843 149

September 30, 1999

Ms. Dolly Vance
Flehr, Hohbach, Test, Albritton and Herbert LLP
4 Embarcadero Center, Suite 3400
San Francisco, California 94111-4187

Dear Dolly,

Enclosed are documents pertaining to the cell-cycle patent applications that you requested.

The documents include:

1. TankyraseH abstracts involving TRF, P21, and PARP
2. TankyraseH nucleotide sequence alignment report
3. TankyraseH amino acid sequence alignment report
4. R0101 figures with corrected CDK 2, 3, and 4 labels
5. Mkinase nucleotide and amino acid sequences with its kinase domain and nuclear localization sequence (NLS) highlighted

Additional information will be sent to you next week.

Please call or email me if you have any questions.

Sincerely,

Nicole Verona

Nicole Verona

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.