Master 1 – Data Engineering – S2 – 2024/2025

Projet

DAP: Data Analytics Pipeline

Présentation générale

Le projet vise à concevoir et implémenter une plateforme **DAP (Data Analytics Pipeline)** permettant la mise en place d'un pipeline de traitement de données de bout en bout (end-to-end). Ce pipeline doit permettre de :

- Collecter et ingérer des données structurées à partir d'une source (CSV, API ou base SQL),
- Les transformer et les nettoyer progressivement selon le modèle Bronze → Silver → Gold,
- Les charger dans une base analytique (locale ou cloud),
- Et de les visualiser via un tableau de bord interactif.

Vous pouvez choisir d'implémenter ce pipeline :

- Soit en local, en s'appuyant sur des outils open-source,
- Soit en **cloud**, principalement à travers les services **Azure**.

Le projet peut inclure (sans s'y limiter) les fonctionnalités suivantes :

- Ingestion automatisée des données à partir d'une ou plusieurs sources (API, fichiers, SQL, etc.),
- Stockage multi-niveaux (Bronze, Silver, Gold) en fichiers ou base de données,
- Nettoyage et transformation des données via un moteur de traitement (Pandas ou PySpark),
- Chargement des données finales dans une base SQL ou analytique,
- Création d'un tableau de bord interactif (Power BI, Streamlit, Tableau Public...),
- Sécurisation des accès et configuration (fichiers .env, Azure Key Vault...),
- **Déclenchement automatique** du pipeline via un orchestrateur (ex: Airflow ou Azure Data Factory),
- **Documentation** du pipeline (diagramme de flux, README, etc.).

Spécifications

Les étapes à suivre sont les suivantes :

- Définir le périmètre fonctionnel du pipeline (choix du dataset, fréquence, outils, etc.)
- Proposer une architecture claire du pipeline (composants, interactions, stockage),
- Choisir les outils technologiques adaptés selon les contraintes de votre projet,
- Développer les scripts d'ingestion, de transformation et de chargement (ETL),

- Stocker les données transformées selon la logique Bronze / Silver / Gold,
- Créer une visualisation interactive et dynamique des données finales,
- Tester chaque étape du pipeline (unitaires et bout-en-bout),
- **Documenter** le travail réalisé dans un rapport clair.

Technologies

Les étudiants sont libres de choisir les outils adaptés à leur contexte, en les justifiant :

Domaine	En local	Sur Azure Cloud
Ingestion	Python (requests, pandas)	Azure Data Factory
Traitement	Pandas ou PySpark local	Azure Databricks
Stockage	CSV / Parquet / SQLite / PostgreSQL	Azure Data Lake Gen2
Chargement final	SQL / NoSQI (Mongodb, Cassandra)	Azure SQL / Synapse
BI / Visualisation	Power BI Desktop, Streamlit, Dash	Power BI (service)
Orchestration	Apache Airflow	ADF, Logic Apps
Sécurité	.env + Git	Azure Key Vault, Azure AD

- Travail en binômes (max. 2 étudiants)
- Livrables:
 - Code du projet (GitHub ou archive),
 - o Rapport synthétique (4–8 pages) avec architecture, outils, tests,
 - o Présentation orale en fin de semestre (20 min max, démo incluse).

Exemples de projets:

1. Data Pipeline pour l'Analyse des Arnaques en Ligne

Objectif: Collecter, nettoyer, et analyser des données sur les escroqueries signalées (SMS, emails, achats en ligne) pour visualiser les tendances par type, région, et période.

Sources possibles : data.gouv.fr, Kaggle

Innovations:

- Classification automatique des arnaques (via NLP simple)
- Détection d'anomalies dans les zones géographiques

2. Observatoire des Changements Climatiques

Objectif: Mettre en place un pipeline qui suit l'évolution du climat (températures, précipitations, incendies...) dans différentes régions du monde.

Sources: API Météo

Innovations:

- Visualisation interactive des anomalies climatiques
- Analyse prédictive de tendances saisonnières

3. Analyse de Sentiments des Restaurants Locaux

Objectif: Ingestion de commentaires Google/TripAdvisor et classification des restaurants selon les avis clients.

Innovations:

- Scoring des établissements par catégorie (propreté, goût, service...)
- Visualisation des quartiers à fort potentiel gastronomique

4. Pipeline de Prévision de la Circulation Urbaine

Objectif : Traiter des données de trafic en temps réel pour prévoir les congestions et incidents routiers.

Sources: OpenTraffic, HERE API, City data

Innovations:

- Modèle prédictif de congestion
- Affichage dynamique des itinéraires alternatifs

5. Tableau de Bord Éthique de l'IA

Objectif: Collecter des incidents liés à l'usage biaisé de l'IA (recrutement, justice, sécurité) et en dégager des tendances.

Sources: News, GitHub Issues, Al Incident Database

Innovations:

- Analyse textuelle des incidents
- Recommandations pour la régulation éthique