Notes on NEWUOA

Zaikun Zhang *

June 8, 2021 3:11pm

$\langle \text{Algorithm 0.1} \rangle = \frac{\text{Algorithm 0.1}}{\text{Input } \Delta_{\text{acc}}(0)}$

Input $\Delta_0 \in (0, +\infty)$, $m \in \{n+2, n+3, \dots, (n+1)(n+2)/2\}$, and $\mathcal{X}_0 \subset \mathbb{R}^n$ with $x_0 \in \mathcal{X}_0$ and $|\mathcal{X}_0| = m$. Set $Q_{-1} = 0$ and k = 0.

- 1. $x_k = \operatorname{argmin}\{f(x) : x \in \mathcal{X}_k\}$
- 2. $Q_k = \operatorname{argmin}\{\|\nabla^2 Q \nabla^2 Q_{k-1}\|_F : Q \in \mathcal{Q} \text{ and } Q(x) = f(x) \text{ for } x \in \mathcal{X}_k\}.$
- 3. $x_k^+ \approx \operatorname{argmin}\{Q_k(x) : ||x x_k|| \le \Delta_k\}, x_k^- \approx \operatorname{argmin}\{\kappa(\mathcal{X}_k, x_k^+, x) : x \in \mathcal{X}_k\}$
- 4. $y_k^- = \operatorname{argmax}\{\|y x_k\| : y \in \mathcal{X}_k\}, y_k^+ \approx \operatorname{argmin}\{\kappa(\mathcal{X}_k, y, y_k^-) : \|y x_k\| \le \Delta_k\}$
- 5. If $||x_k^+ x_k|| \ge \eta \Delta_k$ then $\kappa_k = \kappa(\mathcal{X}_k, x_k^+, x_k^-), \ \rho_k = [f(x_k) f(x_k^+)]/[Q_k(x_k) Q_k(x_k^+)],$ else $\kappa_k = +\infty, \ \rho_k = -\infty.$
- 6. If $\rho_k > 0$ or $\kappa_k < \kappa_0$, then set $\mathcal{X}_{k+1} = \mathcal{X}_k \cup \{x_k^+\} \setminus \{x_k^-\}$. Otherwise, set $y_k^- = \operatorname{argmax}\{\|y x_k\| : y \in \mathcal{X}_k\}, \ y_k^+ = \operatorname{argmin}\{\kappa(\mathcal{X}_k, y, y_k^-) : \|y x_k\| \le \Delta_k\},$ and $\mathcal{X}_{k+1} = \mathcal{X}_k \cup \{y_k^+\} \setminus \{y_k^-\}$. Increment k. Go to Step 1.

How to terminate? Is $\|\nabla Q_k(x_k)\| \leq \eta \Delta_k$ attainable? What about $\|\nabla Q_k(x_k)\| \leq \epsilon$? What about $\|x_k^+ - x_k\| \leq \eta \Delta_k$?

^{*}Hong Kong Polytechnic University, zaikun.zhang@polyu.edu.hk