Grammaires non-contextuelles

Quentin Fortier

October 1, 2025

Définitions : Grammaire non-contextuelle

Définition : Grammaire non-contextuelle

Une grammaire non-contextuelle (ou : hors-contexte) est un quadruplet $G=(\Sigma,\,V,R,S)$ où :

- ullet V est un ensemble fini de variables
- ullet Σ est un alphabet fini de terminaux
- $R \subset V \times (V \cup \Sigma)^*$ est un ensemble fini de règles de production, chaque règle $(X,\alpha) \in R$ étant notée $X \to \alpha$
- ullet $S \in V$ est le symbole initial

Remarques:

- Par convention, on note les variables en majuscules et les terminaux en minuscules.
- On peut noter $X \to \alpha \mid \beta$ au lieu de $X \to \alpha$, $X \to \beta$.

Définitions : Dérivation

Soit $G = (\Sigma, V, R, S)$ une grammaire non-contextuelle.

Définition : Dérivation

Soient $\alpha, \beta \in (V \cup \Sigma)^*$.

- On note $\alpha \Rightarrow \beta$ s'il existe une règle $X \to \gamma$ telle que $\alpha = \alpha_1 X \alpha_2$ et $\beta = \alpha_1 \gamma \alpha_2$ avec $\alpha_1, \alpha_2 \in (V \cup \Sigma)^*$.
 - On dit alors qu'on a une dérivation immédiate de α en β .
- On note $\alpha \Rightarrow^n \beta$ s'il existe des mots $\gamma_0 = \alpha, \gamma_1, \dots, \gamma_n = \beta$ tels que $\gamma_0 \Rightarrow \gamma_1 \Rightarrow \dots \Rightarrow \gamma_n$.
 On dit alors qu'on a une dérivation de longueur n de α en β .
- On note $\alpha \Rightarrow^* \beta$ si $\alpha \Rightarrow^n \beta$ pour un certain $n \in \mathbb{N}$. On parle alors de dérivation de α en β .

Soit $G = (\Sigma, V, R, S)$ une grammaire non-contextuelle.

Définition : Mot généré

On dit que G génère un mot $w \in \Sigma^*$ si $S \Rightarrow^* w$.

 $\underline{\text{Attention}}$: les mots générés sont des mots de Σ^* , qui ne doivent donc contenir que des symboles terminaux.

Définition : Langage engendré

L'ensemble $L(G) = \{w \in \Sigma^* \mid S \Rightarrow^* w\}$ est le langage engendré par G.

Définition : Langage non-contextuel

Un langage L est dit non-contextuel (ou : algébrique) s'il existe une grammaire non-contextuelle G telle que L=L(G).

Remarque : deux grammaires différentes peuvent engendrer le même langage.

Exemples:

• Soit $G=(\Sigma=\{a,b\},\,V=\{S\},\,R=\{S\to aaS\mid b\},\,S).$ G génère aab car $S\Rightarrow aaS\Rightarrow aab.$ L(G)=

Exemples:

- Soit $G=(\Sigma=\{a,b\}, V=\{S\}, R=\{S\rightarrow aaS\mid b\}, S)$. G génère aab car $S\Rightarrow aaS\Rightarrow aab$. $L(G)=(aa)^*b$.
- Soit $G=(\{a,b\},\{S\},\{S\rightarrow aSb\mid \varepsilon\},S).$ L(G)=

Exemples:

- Soit $G=(\Sigma=\{a,b\}, V=\{S\}, R=\{S \rightarrow aaS \mid b\}, S)$. G génère aab car $S\Rightarrow aaS\Rightarrow aab$. $L(G)=(aa)^*b$.
- Soit $G=(\{a,b\},\{S\},\{S\rightarrow aSb\mid \varepsilon\},S).$ $L(G)=\{a^nb^n\mid n\in \mathbb{N}\}.$
- Soit $G=(\{x,y,\top,\bot,\lor,\land,\neg\},\{S\},R,S)$ avec P contenant les règles suivantes : $S\to \top\mid\bot\mid x\mid y\mid\neg S\mid S\lor S\mid S\land S.$ L(G) est

Exemples:

- Soit $G = (\Sigma = \{a, b\}, V = \{S\}, R = \{S \rightarrow aaS \mid b\}, S)$. G génère aab car $S \Rightarrow aaS \Rightarrow aab$. $L(G) = (aa)^*b$.
- Soit $G=(\{a,b\},\{S\},\{S\rightarrow aSb\mid \varepsilon\},S).$ $L(G)=\{a^nb^n\mid n\in\mathbb{N}\}.$
- Soit $G = (\{x,y,\top,\bot,\lor,\land,\neg\},\{S\},R,S)$ avec P contenant les règles suivantes : $S \to \top \mid \bot \mid x \mid y \mid \neg S \mid S \lor S \mid S \land S$. L(G) est l'ensemble des formules logiques bien formées, avec x et y comme variables propositionnelles.

On peut décrire un langage de programmation à l'aide d'une grammaire (BNF) : en C et en OCaml .

Exercice

Donner des grammaires engendrant les langages suivants sur $\{a,b\}$:

- 2 L_2 = ensemble des mots dont la taille est un multiple de 3.
- **3** $L_3 = \text{ensemble des mots ayant } bbb \text{ comme facteur.}$
- $L_4=$ ensemble des expressions arithmétiques bien formées, comme $4+3\times 2.$
- \bullet $L_5=$ ensembles des palindromes, c'est-à-dire des mots qui se lisent de la même façon de gauche à droite et de droite à gauche.
- \bullet $L_6 =$ ensembles des mots qui ne sont pas des palindromes.

On peut montrer rigoureusement L(G)=L par double inclusion.

- $L(G) \subset L$: montrer que si $S \Rightarrow^n u$ alors $u \in L$, par récurrence sur n.
- $L \subset L(G)$: montrer que si $u \in L$ alors $u \in L(G)$, par récurrence sur |u|.

On utilise alors souvent le théorème « évident » suivant :

Théorème

Soit $G = (\Sigma, V, R, S)$ une grammaire, $\alpha_1, \alpha_2, \beta \in (V \cup \Sigma)^*$ et $n \in \mathbb{N}$.

Si $\alpha_1\alpha_2\Rightarrow^n\beta$ alors il existe $\beta_1,\beta_2\in (V\cup\Sigma)^*$, $k,p\in\mathbb{N}$ tels que :

- $\beta = \beta_1 \beta_2$ $\alpha_1 \Rightarrow^k \beta_1$
- $\alpha_1 \Rightarrow^n \beta_1$
- $\alpha_2 \Rightarrow^p \beta_2$
- $\bullet \ n = k + p$

Exercice

Soit G la grammaire définie par les règles $S \to aSbS \mid bSaS \mid \varepsilon$. Déterminer L(G), en le démontrant.

Théorème

L'ensemble des langages non-contextuels est stable par union, concaténation et étoile.

C'est-à-dire : si L_1 et L_2 sont des langages non-contextuels alors $L_1 \cup L_2$, L_1L_2 et L_1^* sont des langages non-contextuels.

Théorème

Tout langage régulier est non-contextuel.

Théorème

Tout langage régulier est non-contextuel.

Remarque : la réciproque est fausse car $\{a^nb^n\mid n\in\mathbb{N}\}$ est non-contextuel mais n'est pas régulier.

Définition : Grammaire régulière (HP)

Une grammaire est dite régulière (à droite) si chaque règle est de la forme $X\to aY$, $X\to a$ ou $X\to \varepsilon.$

Exercice

Donner des grammaires régulières engendrant les langages suivants sur $\{a,b\}$:

- $oldsymbol{0}$ Ensemble des mots finissant par a.
- 2 Ensemble des mots de taille un multiple de 3.
- a^*ba^* .

Théorème

Un langage est régulier si et seulement s'il est engendré par une grammaire régulière.