

Intelligent Classification and Visualization of Network Scans

Chris Muelder,

Lei Chen, Russell Thomason, Kwan-Liu Ma VIDi group at University of California, Davis

Tony Bartoletti
Lawrence Livermore National Laboratory

Motivation

- Counterintelligence efforts
 - Want to learn about attackers
 - Tools/OS/Hardware/Internet location
 - ID them if/when they return
- Commonly source address is used for ID
 - Source does not indicate tool/os/hardware

Motivation

- Sources can be dynamic, spoofed, etc...
- Want to ID an attacker based on unalterable properties
- Timing is fairly unalterable and very difficult to spoof
 - Hardware factors
 - Software factors
 - Routing factors

Network Scans

- Good source of timing information
- Probe every possible address
 - Find out what is there
 - Often followed by more serious attack
 - Could contain an attack (Worms)
 - Could be benign (Web spiders)

Previous Approaches

- Direct visual inspection
 - Class B network (A.B.0.0/16)
 - 3rd and 4th bytes are axes
 - Color is a time based metric
 - We use a deviation from a linear expectation
 - Effectiveness
 - Pattern matching easy for human eye
 - Can not scale well

Previous Approaches

- Wavelet Analysis
 - Reduce 65,536 values to16-dimensional scalogram
 - Captures frequency properties
 - Effectiveness
 - Scalograms can be automatically compared
 - Loses data
 - Can match somewhat dissimilar patterns

Overview

- Extract timing information from scans
- Analyze with an intelligent approach
- Combine with existing visual approach

Scan Data

- Collected by Computer Incident Advisory
 Capability (CIAC) at Lawrence Livermore
 National Laboratory (LLNL)
- Controlled scans generated by running various common tools on an isolated LAN
- Unknown scans collected at LLNL border
- Detected by rate threshold (probes/second)

Associative Memory

- Maps from one pattern space to another
 - Map pattern in layer X to pattern in layer Y
 - Goes through a neural net of some sort
- Good for working with noisy patterns
- Several variants
 - BAM, Hopfield, etc...

Bidirectional Associative Memory

- BAM (Bidirectional Associative Memory) maps patterns in both directions
 - X --> Y and Y-->X
- Neural net is a matrix of weights
- Iterates back and forth until equilibrium
- Discrete, bipolar layers and patterns

BAM Training

- Calculate weight matrix
 - Let:
 - $\bullet \mathbf{W} = \{ \mathbf{W}_{ij} \mid 0 \le i < |\mathbf{X}|, 0 \le j < |\mathbf{Y}| \}$
 - $\mathbf{X}_{k} = \{\mathbf{x}_{ki} \mid 0 \le i < |\mathbf{X}|\}$ for the k^{th} pattern
 - $\mathbf{Y}_{k} = \{y_{kj} \mid 0 \le j < |\mathbf{Y}|\}$ for the k^{th} pattern
 - Then:
 - $W_{ij} = \Sigma_k x_{ki} * y_{kj}$

BAM Iteration

- Each iteration t from X
 layer to Y layer
 - Let

•
$$x_i'(t) = \sum_j y_j(t-1) * w_{ij}$$

Then

$$x_i(t) = +1$$
 if $x_i(t) > 0$

$$x_i(t) = x_i(t-1)$$
 if $x_i(t) = 0$

•
$$x_i(t) = -1$$
 if $x_i'(t) < 0$

- Each iteration t from Y
 layer to X layer
 - Let

$$y_j(t) = \sum_i x_i(t-1) w_{ij}$$

Then

•
$$y_i(t) = +1$$
 if $y_i(t) > 0$

•
$$y_i(t) = y_i(t-1)$$
 if $y_i(t) = 0$

•
$$y_j(t) = -1$$
 if $y_j(t) < 0$

Application to Network Scans

- Map scans to ID patterns
 - Scans are converted to bipolar patterns
 - ID patterns are unique and randomly generated
 - Size of ID's proportional to number of training scans
- Classification
 - Train on known scans
 - Classify unknown scans

Bipolar Encoding

- Reduce float data to bipolar/binary patterns
- User adjustable numbers of bits
 - More bits = more resources

Visualization Integration

- ScanVis
 - VizSec 2005
 - Wavelet analysis
 - Graph overview

Visualization Integration

- BAM results canbe integratedthrough color
 - Nodes colored according to classification
 - Control data results very good

Application

Usefulness

- Discrepancies between BAM and wavelets
 - Wavelets say similar
 - BAM says dissimilar
 - Visual inspection confirms difference

Conclusion

- Visual and intelligent approaches
 - Capture different aspects of the data
 - Complement each other well in combination
- Bidirectional Associative Memory
 - Effectively classifies scans
 - Requires good controlled data

Future Work

- Other intelligent algorithms?
 - Continuous BAM
 - Unsupervised approaches
- Other metrics
- More controlled data
- Tighter visualization integration
 - Select training scans from graph
 - Modify graph layout according to classification

Thanks for listening