

HIGHER CERTIFICATE IN SCIENCE IN COMPUTING IN INFORMATION TECHNOLOGY – BN002 Year 2

BACHELOR OF SCIENCE IN COMPUTING IN INFORMATION TECHNOLOGY – BN013 Year 2

BACHELOR OF SCIENCE (HONOURS) IN COMPUTING - BN104 Year 2

Operating Systems (Client) COMP H2028

Stage 2
Semester 1

Internal Examiner(s): Dr. Kevin Farrell

External Examiner(s): Mr. John Dunnion Dr. Richard Studdert

Wednesday 16th January 2008 3.30pm – 5.30pm

Instructions to candidates:

- 1. Question One in Section A is COMPULSORY.
- 2. Candidates should attempt ALL parts of Question One in Section A
- 3. Candidates should attempt ONE question from Section B, and ONE question from Section C
- 4. This paper is worth 100 marks.
- 5. Question One is worth 40 marks, and all other questions are worth 30 marks each.

DO NOT TURN OVER THIS PAGE UNTIL YOU ARE TOLD TO DO SO

SECTION A: COMPULSORY QUESTION

Ouestion 1: Answer ALL parts of this question (4 marks each part)

- a) Describe the sequence of steps required, (which does not involve re-installing the operating system), to re-install the *LILO boot loader* into the *MBR* on a *Mandriva Linux* operating system that no longer boots.
- b) With reference to memory management, consider a paging system with the page table stored in memory.
 - i. If a memory reference takes **200 ns**, how long does a paged memory reference take?
 - ii. Consider the addition of a *translation look-aside buffer (TLB)*. If **75**% of all page-table references are found in the *TLB*, and if finding a page-table entry in the *TLB* takes **zero time** (if the entry is there), what is the *effective access time (EAT)*?
- c) Briefly explain two mechanisms, by which different programs in a Linux operating system specify the log files to which they write. Give an example of one program in each case.
- d) List **two** possible rules of thumb when determining the *time quantum* in a *round robin* scheduling scheme.
- e) List **four** objectives of a good *process scheduling policy* for an operating system?
- f) Describe the difference between a *process* and a *thread*. What advantages do threads have over processes?

Question 1 is continued on the next page

- g) Why is it considered bad practice to log directly into a Linux GUI-based system as *root*? What command must an ordinary user type in a *terminal* window, in order to become *root*?
- h) Consider the situation where a user downloads the source-code tarball of an application they wish to install on their Linux system. The user has extracted, using the **tar** command, the files from the tarball into their home directory, and now wishes to install the application. List the steps that the user must type to *configure*, *compile* and *install* the software on their system. For each step, provide the command prompt symbol to indicate whether an ordinary user or root should type the command.
- i) With reference to the Linux Operating System, describe the /etc/passwd file under the following headings:
 - What is its purpose?
 - What does it contain?
- j) Explain the relationship between *sectors* and *clusters*; and explain why files stored on disk are often fragmented.

(40 Marks Total)

SECTION B: ANSWER QUESTION 2 or QUESTION 3

Question 2

a)		Briefly explain the concept of a <i>Process Control Block (PCB)</i> , and how it is used in a <i>context change</i> .		
			(3 marks)	
b)	(i)	Explain the concept of a <i>kernel</i> in operating systems design.		
			(6 marks)	
	(ii)	Describe one advantage and one disadvantage of implemention operating systems function as part of the kernel rather than as	_	
		mode function.	(4 marks)	
c)		Describe, with the aid of a diagram, the <i>UNIX System V Release</i> Process State Model, indicating the transitions between states reasons for those transitions.		
			(13 marks)	
d)		Briefly explain why the UNIX System V Release 4 operating s suitable for real-time processing	sytem is not	
			(4 marks)	
		(3	30 Marks Total	

Question 3

a)		In relation to memory management, explain the following terms:
		logical address, physical address, process loading, swapping
		(4 marks)
b)		Describe a simple method which allows memory to be addressed as a set of
		pages each containing a fixed number of displacements.
		(4 marks)
c)		In relation to the methods of simple-paging and simple segmentation,
		distinguish between pages, page-frames and segments.
		(6 marks)
d)		In relation to the method of simple paging, describe three tables used by the
		memory manager to keep track of processes and their associated pages.
		(6 marks)
e)	(i)	In relation to <i>virtual memory</i> based on paging, explain the constraints regarding
		storing the page table of every process in real memory.
		(6 marks)
	(ii)	In relation to virtual memory based on paging, briefly explain how the location
		of the <i>page table</i> of the currently running process is located.
		(4 marks)
		(30 Marks Total)
		i co manto rotar

SECTION C: ANSWER QUESTION 4 or QUESTION 5

Question 4

- a) Give a description of the *Filesystem Hierarchy Standard (FHS)* under the following headings:
 - i. What is the FHS?
 - ii. What are its advantages?
 - iii. What is its purpose?
 - iv. How is it achieved?
 - v. Who is its target audience?

(10 marks)

- b) Describe in detail the **two** independent categorisations of files in the *Filesystem Hierarchy Standard* under the following headings:
 - i. What are the two categorisations?
 - ii. Features
 - iii. Rationale
 - iv. Historical problem(s) overcome by the categorisations

Provide examples for each categorisation to illustrate your answer.

(8 marks)

- c) According to the Filesystem Hierarchy Standard
 - i. what is the purpose of the *root filesystem*?
 - ii. What are the subdirectories, or symbolic links to subdirectories, which are required to exist in the *root directory*?

(8 marks)

d) Besides the root filesystem, what is the second major hierarchical section in an *FHS*-compliant filesystem?

(4 marks)

(30 Marks Total)

Question 5

a)		Distinguish between automatic and manual booting in Linux.	(2 marks)
b)		List and describe the six distinct phases involved in bootstrap Operating System.	ping a Linux
			(12 marks)
c)		Briefly describe six tasks, which are generally performed scripts during the bootstrapping of a Linux Operating System	by start-up
			(6 marks)
d)	(i)	With reference to Linux, explain the concept of a run-level.	(2 marks)
	(ii)	How many <i>run-levels</i> are supported in Linux, and how many defined?	are actually
			(2 marks)
	(iii)	Describe each of the defined <i>run-levels</i> .	(6 marks)
		(;	30 Marks Total)