

多媒體程式設計音訊資料處理

Instructor: 馬豪尚

Librosa

- › Librosa是專門用來分析聲音訊號的 Python 模組
- > 提供音訊處理、時頻轉換處理、特徵擷取、繪製聲波圖形等 等功能
- > 安裝套件
 - pip install librosa
- > 為了使 audioread 可以支援更多的聲音檔案格式,建議同時 安裝 ffmpeg
 - apt install ffmpeg

Librosa讀取音訊

- > data, sr = librosa.load(filename, sr, mono, offset, duration, dtype)
 - filename為檔案名稱
 - sr為指定的sample rate,預設是22050
 - mono為一個boolean值,True/False代表單/雙聲道,預設為True
 - offset表示要開始讀入的音訊位置,預設0.0
 - duration表示讀入的長度,預設None,表示全部音訊
 - dtype為指定回傳值音訊資料data的資料型態,預設為float32
 - 會回傳兩個值
 - > 第一個為音訊本體資料(numpy array)
 - › 第二個為音訊的sample rate

Librosa讀取音訊

- › 儲存音訊的Numpy array為ndarray型態
- > ndarray維度為(n,) 或 (..., n)
- > 元素的值代表取樣點的振幅
 - 經過量化後的值

data單聲道(n,)

float32 | float32 | .. | ..

data雙聲道 (..., n)

float32 float32

Librosa範例音訊

- > librosa 模組中有附帶範例的聲音檔案,可以做為開發與測 試使用
- > librosa.util.list_examples()
 - 可以列出所有範例聲音檔案的資訊
- > librosa.example('brahms')
 - 下載檔名為brahms的音訊

```
AVAILABLE EXAMPLES

brahms Brahms - Hungarian Dance #5
choice Admiral Bob - Choice (drum+bass)
fishin Karissa Hobbs - Let's Go Fishin'
nutcracker Tchaikovsky - Dance of the Sugar Plum Fairy
trumpet Mihai Sorohan - Trumpet loop
vibeace Kevin MacLeod - Vibe Ace
```


Librosa 繪製聲波圖

- > 載入模組
 - import librosa.display
 - import matplotlib.pyplot as plt
- ,用plt產生一個圖的物件
 - plt.figure()
- > 搭配librosa.display將聲波輸入到物件上
 - librosa.display.waveshow(data, sr=sr)
- > 顯示圖形
 - plt.show()

音訊特徵

- > 音高(Pitch):代表聲音的高低,可由基本頻率來類比
- > 在音訊資料裡,量化(quantization)是把震幅類比值變成離 散值,儲存的都是震幅的資訊
- > 想分辨不同的音,需要靠音高和音色來分辨
 - 訊號的頻率,也就是聲音震動的頻率
 - 其代表的是音調的高低,頻率越高,音調就越高
 - 使用音訊在不同頻率的能量分布,來代表音色

音訊特徵

觀察聲音頻率和音高

$$fp = (226-7)/6 = 36.50 \text{ points}$$

 $ff = 16000/fp = 438.36 \text{ Hz}$
 $pitch = 69 + 12 * \log_2 \left(\frac{ff}{440}\right) = 68.94 \text{ semitone}$

將震幅轉成頻率

SamplingRate:22.05kHz Lch:10000/div Rch:10000/div Time:200ms/div Delay:0ms

SamplingRate:44.1kHz Lch:5000/div Rch:5000/div Time:200ms/div Delay:0ms

訊號處理

- > 傅立葉轉換
 - 傅立葉告訴我們,任何週期函數,都可以看作是不同振幅,不同相位弦波的疊加。
 - 傅立葉轉換可以將時域上的週期函數,轉成頻域上的能量函數
 - 在時域上處理訊號很困難

Librosa傳立葉轉換

- > dataFFT = librosa.stft(data, n_fft=2048)
 - 用來計算短時距傅立葉轉換(STFT,Short-time Fourier transform
 - 輸入要計算的音訊資料物件data
 - n_fft為傅立葉轉換的音訊框長度
 - 回傳一個計算完的音訊資料物件

Librosa傳立葉轉換

- >每一個變換之後的值是一個複數,為a+bj的形式
- > FFT得到的複數的絕對值就是對應的頻譜震幅
 - dataFFTAbs = np.abs(dataFFT)
 - 用這個dataFFTAbs即可畫出來聲音的頻譜圖
- ,FFT得到的複數的角度值就是對應的相位
 - dataFFTAng = np.angle(dataFFT)
- > 取出譜震幅和相位的函數
 - S, phase = librosa.magphase(librosa.stft(y=y))
 - > 第一個回傳值是譜震幅
 - > 第二個回傳值是相位

Librosa繪製頻譜圖(spectrogram)

- > 頻譜圖的意義就表示這個聲音在不同時間時候的頻率分佈是三維 的資訊
- > 先將頻譜震幅轉成dB
 - librosa.amplitude_to_db(dataFFTAbs)
- 〉繪製頻譜
 - librosa.display.specshow(data, sr, x_axis, y_axis)
 - › data為要繪製的聲音頻譜資料
 - > sr為sample rate
 - > x_axis為圖上的x軸名稱
 - > y_axis為圖上的y軸名稱
- ,可以加入一個顏色對照表,提醒顏色代表不同的值
 - plt.colorbar()

聲音在頻域上的表現

- > 很多音訊的特徵都會表現在頻域上
- > 例如鋼琴上的音,不同的音會有著不同的頻率和譜振幅

- › 音框 (Frame) 化
 - 在做特徵擷取前,將 N 個取樣點集合成一個觀測單位,稱為音框
 - 為了避免相鄰兩音框的變化過大,會**讓兩相鄰音框之間有一段重疊**
 - 假設所用的音訊的 sample rate 為 16 KHz 且音框長度為 256, 對
 應的時間長度就是 256/16000*1000 = 16 ms

- > 乘上窗函數
 - 原本完整的聲音波形,被框(frame)截斷,若截斷的地方不是完整的一個週期的音訊,對傅立葉轉換會造成影響
 - 將框內的音訊乘上一個窗函數(中間高兩側低,數值從0-1之間)
 - 將框的兩端的訊號漸漸減弱,減少影響

- > 過零率(zero crossing rate, ZCR)
 - ZCR是指在每幀(frame)資料中,信號通過零點(正變成負或負變成正)的次數,此特徵在語音辨識和音訊信息檢索領域廣泛應用,是金屬聲音和搖滾樂的關鍵特徵

- > 頻譜中心(spectral centroid)
 - 期譜中心代表聲音的"質心",又可稱為頻譜一階距,其數值越小, 代表越多的頻譜能量集中在低頻範圍內

- > 人類聽覺天生對不同頻率有不同的反應,簡單以頻率變化敏感度來說,低頻>高頻,但響度(聽覺上的大小聲)的敏感度卻反過來是高頻>低頻
 - 1kHz以下,越低的頻率要越大聲才能聽起來有同等響度。
 - 1kHz~2 KHz間人耳對音量的敏感度會稍 差些
 - 2kHz~5kHz之間為人耳最敏感的區域, 而且人耳在低音量時比起高音量時對此區 域敏感
 - 6kHz以上,人耳的敏感度會逐步下降,但 比起低頻率來說,音量大小對人耳低頻的 敏感度影響高於5kHz以上頻率。

Equal-loudness contours (red) (from ISO 226:2003 revision Original ISO standard shown (blue) for 40-phons

- › 梅爾頻率倒譜系數(MFCC)
 - 梅爾頻率代表一般人耳對於頻率的感受度
- › 取得MFCC的分析流程可以大致分為
 - 先對語音進行預處理,切割成frame和設定window
 - 對每一個window,透過傅立葉轉換得到對應的頻譜
 - 將上面的頻譜透過梅爾濾波器組得到梅爾頻譜
 - 在梅爾頻譜上面進行倒譜分析
 - > 取對數,做逆變換,實際逆變換一般是做 DCT離散餘弦變換,然後取DCT後的第2個 到第13個係數作為MFCC係數

- › Librosa直接提供許多特徵擷取的函式
-) 計算過零率
 - librosa.feature.zero_crossing_rate(data, frame_length=2048, hop_length=512)
 - › data為輸入的音訊資料(聲波震幅)
 - › frame_length為frame的長度,會以設定的長度為單位切割音訊成frame
 - › hop_length為每個frame之間移動的距離(樣本數),一般設定1/4個frame
 - > 回傳值為一個numpy,儲存每個frame的過零率

- > 計算頻譜中心
 - librosa.feature.spectral_centroid(y, sr, S, n_fft=2048, hop_length=512)
 - > 可以輸入原始的聲波震幅資料,也可以輸入轉成頻率的頻譜震度資料
 - > y為音訊資料、sr為sample rate
 - > S為頻譜音訊資料

Example

輸入為一般震幅的音訊

y, sr = librosa.load('trumpet.wav'))

librosa.feature.spectral_centroid(y=y, sr=sr)

輸入為頻譜震度的音訊

S, phase = librosa.magphase(librosa.stft(y=y))

librosa.feature.spectral_centroid(S=S)

- > 將音訊做MFCC特徵擷取
 - –librosa.feature.mfcc(y, sr, S, n_mfcc, n_fft, hop_length)
 - ,可以輸入原始的聲波震幅資料,也可以輸入轉成頻率的頻譜震度 資料
 - › y為音訊資料 · sr為sample rate
 - › S為頻譜音訊資料
 - › n_mfcc為回傳的mfcc特徵數量
 - › n_fft為傅立葉轉換的frame長度
 - > hop_length為相鄰frame移動的長度

- > MFCC 特徵擷取 Example
 - 使用預設值且輸入為音訊波形震幅資料
 - > y, sr = librosa.load(librosa.example('libri1'))
 - > librosa.feature.mfcc(y=y, sr=sr)
 - -設定不同的hop length,得到不同數量的frame的MFCC 特徵
 - > librosa.feature.mfcc(y=y, sr=sr, hop_length=1024)
 - -設定不同數量的回傳特徵,得到不同數量的MFCC特徵
 - > librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40)

Librosa 節奏特徵擷取

- ›取得音訊節奏(tempo)
 - -tempo, beat_frames = librosa.beat.beat_track(y=y, sr=sr, hop_length=512)
 - › y為音訊資料 · sr為sample rate
 - › 會回傳節奏頻率(tempo)和節拍出現的 frame 編號(beat_frames)
 - > 每一個 frame 的長度是由hop_length所指定
- >將節拍出現的frame編號轉成時間
 - -librosa.frames_to_time(beat_frames, sr=sr)
 - › 根據sample rate和去計算的秒數
 - > 回傳節拍出現的秒數np array

練習

- ,使用自己輸入的音訊或下載Librosa的範例音訊
- > 將音訊的波形和頻譜繪製出來
- > 取出音訊的特徵
 - zero crossing rate
 - spectral centroid
 - MFCC(13個特徵)
- > 根據每一個音框去儲存這些特徵, 存成一個文字檔
 - 一個音框的特徵[zero crossing rate, spectral centroid, MFCC1, ..., MFCC13]總共15個維度
 - 一個音訊的特徵為[15]*frame數量的維度