Vector Graphics

Digital Multimedia, 3rd edition Chapter 3

Vector formats

- SVG (Scalable Vector Graphics)
 - W3C standard, starting to be widely used, and gaining popularity fast
- SWF (Flash)
 - Primarily for vector animation, but can be used for still vector graphics
- PDF (Portable Document Format)
 - Mostly used for text documents, but supports vector graphics
 - Adobe Illustrator .ai files are basically PDF files

Vector graphics

- Characteristics:
 - Compact
 - Scalable
 - Resolution-independent

Coordinates

- Each pixel in a rectangular array can be identified by its pixel coordinates (r,c) as whole numbers
 - Whereas in a two-dimensional coordinate space points can be identified by coordinates (x,y) as real numbers

Vector graphics

- Lines, curves, and other mathematical shapes can be represented by the parameters of their defining equations
 - E.g. for a line: y = ax + b
 - Store the two endpoints of the line; a and b can be calculated
 - Or for a circle: $(x-a)^2+(y-b)^2=r^2$
 - Store the center (a,b) and radius (r)
- Rendered by calculating the pixels which must be set in order to draw the lines, circles, rectangles, etc.

Aliasing

 Rendering is limited to the physical pixels of the output device, so despite being modeled in real numbers, some aliasing might be seen

Anti-aliasing

- Aliasing can be reduced (actually only made less visible) by a technique called anti-aliasing
 - Jagged edges can be smoothed out, by adding extra colored pixels, softening the transition between colors
 - E.g. for a black line on a white background pixels of lighter and lighter shades of grey are added

Shapes

- Vector drawing programs (and vector graphics languages) provide a basic set of shapes that can easily be represented mathematically
 - Rectangles and squares (with or without rounded corners)
 - Ellipses and circles
 - Straight lines
 - Polylines and polygons
 - Smooth (Bézier) curves
 - Paths

Bézier curves

- Smooth curves specified by a set of control points (most often four - cubic Bézier curves)
 - 2 endpoints (P1, P4) 2 direction points (P2, P3)
- Shape of curve is determined by the length and direction of lines from endpoints to direction points

Cubic Bézier curve

Quadratic Bézier curves

- Quadratic Bézier curves only have a single direction point
 - The only type of Bézier curves supported by SWF
 - PDF and SVG provide both cubic and quadratic Bézier curves

Quadratic Bézier curve

Paths

- Paths are sets of drawing instructions for making elaborate shapes containing straight lines, curves, etc.
 - Multiple Bézier curves can be combined to make smooth paths
- Closed path joins up on itself, open path doesn't
- Pen tool in vector drawing programs create paths to mimic our drawings

Paths

 If two curves join at a point and their direction lines through that point form a single line, the join will be smooth

Smooth join

Stroke & fill

- Apply stroke to make path visible (or to show the outline of other shapes)
 - Specify width, color, etc. of stroke
- Apply fill to path or shape to "color it in"
 - · Specify color, a gradient (linear, radial) or pattern

Transformations

- Manipulate vector objects in certain ways by changing the stored values that describe them
 - Translation (linear movement)
 - Scaling
 - Rotation
 - Reflection (mirroring)
 - Shearing (skewing)
- Transformations are usually preformed either by direct manipulation (tools) or by entering the numeric values

Grouping/joining of objects

- In most vector drawing programs several objects can be added to groups, and transformed together
- The standard objects can also be joined into more complex objects, using a number of different operations, among others:
 - Union
 - Difference
 - Exclusion
 - Intersection

Joining objects

Intersection

Vector graphics & bitmaps

- Rasterize vectors
 - Convert vector graphics to bitmap image
- Trace bitmaps
 - Analyze bitmap image and find out which equations can represent it => become vector graphics
 - Difficult and can only produce an approximation okay for logos etc, not good for detailed images and photos
- Import bitmaps into vector drawing programs
 - Each bitmap is treated as separate objects inside the vector graphics

