1. The motion of a continuous medium is defined by the equations (You may want to use hyperbolic functions)

$$x_{1} = \frac{1}{2}(X_{1} + X_{2})e^{t} + \frac{1}{2}(X_{1} - X_{2})e^{-t}$$

$$x_{2} = \frac{1}{2}(X_{1} + X_{2})e^{t} - \frac{1}{2}(X_{1} - X_{2})e^{-t}$$

$$x_{3} = X_{3}$$

Let the bases \mathbf{e}_{i} and \mathbf{E}_{A} coincide for all time.

- (a) Express the velocity components in terms of the material coordinates and time.
- (b) Express the velocity components in terms of the spatial coordinates, i.e., show that $v_1 = x_2, v_2 = x_1, v_3 = 0$.
- (c) Determine the components of L, d, and W.
- (d) Determine \mathbf{F} , \mathbf{J} and \mathbf{E} . Take a time derivative to obtain the components of $\dot{\mathbf{F}}$, $\dot{\mathbf{J}}$ and $\dot{\mathbf{E}}$.
- (e) Show that the equations $\dot{F} = L \cdot F$, $\dot{E} = F^T \cdot d \cdot F$ and $\dot{J} = J(v \cdot \nabla)$ are satisfied.
- 2. If the intensity of illumination of a fluid particle at (x_1, x_2, x_3) at time t is given by $I = Ae^{-3t} / (x_1^2 + x_2^2 + x_3^2)$ and the fluid velocity field is given by $v_1 = B(x_2 + 2x_3)$, $v_2 = B(x_2 + 3x_3)$, $v_3 = B(2x_1 + 3x_2 + 2x_3)$ where A and B are known constants, determine the rate of change of the illumination experienced at time t by the fluid particle which is at point (1, 2, -2) at time t.
- 3. A velocity vector field v satisfying $\mathbf{v} \cdot \overline{\mathbf{V}} = 0$ is called solenoidal. A volume-preserving motion is called isochoric. (The flow of an incompressible fluid is necessarily isochoric, but there may be isochoric flows of compressible fluids.)
- (a) Show that for isochoric motion the velocity field is solenoidal, and conversely.
- (b) Show that any velocity field **v** given in terms of a vector potential function Q by $\mathbf{v} = -\mathbf{Q} \times \bar{\nabla}$ is solenoidal and the flow isochoric.
- (c) For incompressible (or isochoric) plane flow in the x_1 - x_2 plane, $Q = Qe_3$ where the component $Q(x_1, x_2)$ is called a stream function. Show that the volume flux

$$F_V = \int_A^B \mathbf{v} \cdot \mathbf{n} \, da \text{ across any plane curve joining points } (\mathbf{x}_1, \mathbf{x}_2)^A \text{ and } (\mathbf{x}_1, \mathbf{x}_2)^B \text{ equals}$$

$$[Q(x_1, x_2)^B - Q(x_1, x_2)^A].$$

- 4. The circulation around a closed curve C is defined to be $\Gamma = \oint_{C} v \cdot dr$.
- (i) Show that $\frac{d\Gamma}{dt} = \oint_{C} \mathbf{a} \cdot d\mathbf{r} + \oint_{C} \mathbf{v} \cdot \mathbf{L} \cdot d\mathbf{r}$
- (ii) Show that $\oint_{C} \mathbf{v} \cdot \mathbf{L} \cdot d\mathbf{r} = \oint_{C} \mathbf{v} \cdot d\mathbf{v} = 0$
- (iii) Show that if $\Gamma = 0$ for all curves (irrotational flow) then $v = \phi \bar{V}$ where ϕ is a potential function.
- (iv) Show that if $v = \phi \overline{V}$ then $\dot{v} = \dot{\phi} \overline{V} v \cdot L$
- 5. Show that (i) $\frac{d}{dt}(\mathbf{n}da) = (\mathbf{v} \cdot \overline{\mathbf{V}})\mathbf{n}da \mathbf{L}^T \cdot \mathbf{n}da$
 - (ii) $\frac{d}{dt} \int f \boldsymbol{n} \, da = \int \left[\frac{df}{dt} \boldsymbol{n} + f \left(\boldsymbol{v} \cdot \tilde{\boldsymbol{V}} \right) \boldsymbol{n} f \boldsymbol{L}^T \cdot \boldsymbol{n} \right] da$