Calculating Solubilities

Once known, the solubility product constant can be used to determine the solubility of a sparingly soluble salt. Suppose you wish to know how many moles of barium carbonate, BaCO₃, can be dissolved in 1 L of water at 25°C. From **Table 3**, K_{sp} for BaCO₃ has the numerical value 5.1×10^{-9} . The equilibrium equation is written as follows.

$$BaCO_3(s) \Longrightarrow Ba^{2+}(aq) + CO_3^{2-}(aq)$$

Given the value for K_{sp} , we can write the solubility equilibrium expression as follows.

$$K_{sp} = [Ba^{2+}][CO_3^{2-}] = 5.1 \times 10^{-9}$$

Therefore, BaCO₃ dissolves until the product of the molar concentrations of Ba²⁺ ions and CO₃²⁻ ions equals 5.1×10^{-9} . The solubility equilibrium equation shows that Ba²⁺ ions and CO₃²⁻ ions enter the solution in equal numbers as the salt dissolves. Thus, they have the same concentration. Let [Ba²⁺] = x. Then [CO₃²⁻] = x also.

[Ba²⁺][CO₃²⁻] =
$$K_{sp}$$
 = 5.1 × 10⁻⁹
(x)(x) = x^2 = 5.1 × 10⁻⁹
 $x = \sqrt{5.1 \times 10^{-9}}$

The molar solubility of BaCO₃ is 7.1×10^{-5} mol/L.

Thus, the solution concentration is 7.1 \times 10^{-5} M for Ba^{2+} ions and 7.1 \times 10^{-5} M for CO $_3^{2-}$ ions.

SAMPLE PROBLEM C

Calculate the solubility of silver bromide, AgBr, in mol/L, using the K_{sp} value for this compound listed in Table 3.

SOLUTION

1 ANALYZE

Given:
$$K_{sp} = 5.0 \times 10^{-13}$$

Unknown: solubility of AgBr

2 PLAN

AgBr
$$\rightleftharpoons$$
 Ag⁺(aq) + Br⁻(aq)
 $K_{sp} = [Ag^+][Br^-]$

$$[Ag^+] = [Br^-]$$
, so let $[Ag^+] = x$ and $[Br^-] = x$

3 COMPUTE

$$K_{sp} = [\mathrm{Ag^+}][\mathrm{Br^-}]$$

$$K_{sp} = x^2$$

$$x^2 = 5.0 \times 10^{-13}$$

$$x = \sqrt{5.0 \times 10^{-13}}$$
 Solubility of AgBr = $\sqrt{5.0 \times 10^{-13}}$ = 7.1×10^{-7} mol/L