CODE: 18BST101

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, April-2021

LINEAR ALGEBRA AND CALCULUS (Common to All Branches)

Max Marks: 60 **Time: 3 Hours**

Answer ONE Question from each Unit All Questions Carry Equal Marks

All parts of the Question must be answered at one place

UNIT-I
Test for consistency and solve 2x-3y+7z=5, 3x+y-3z, 2x+19y-47z=32. 1 12M (OR)

2. Find Eigen values and corresponding Eigen vectors for the matrix 12M

0 3 0

Prove that $\frac{\textbf{UNIT-II}}{1+b^2} < \tan^{-1} b - \tan^{-1} a < \frac{b-a}{1+a^2}$, if 0 < a < b < 1. 3. 12M

4 12M Determine the maximum and minimum distances of the point (3,4,12) from the sphere $x^2 + y^2 + z^2 = 4$.

UNIT-III

5. a) 6M Prove that the area of a loop of the curve $x^3 + y^3 = 3axy$ is $\frac{3a^2}{2}$

Find the perimeter of the loop of the curve $3ay^2 = x(x-a)^2$ 6M

(OR)

6. 12M Evaluate $\int_{-x}^{1} \frac{\sin^{-1} x}{x} dx$.

Evaluate $\int_{0}^{1} \int_{e^{x}}^{e} \frac{dydx}{\log y}$ by changing the order of integration. 7. 12M

(OR)

8. 12M Evaluate $\int_{1}^{e} \int_{1}^{\log y} \int_{1}^{e^{x}} \log z dz dy dx$

Show that $div(grad\ r^n) = n(n+1)r^{n-2}$ 9 12M

(OR) Verify Greens theorem for $\int_{C} \left[(3x - 8y^2) dx + (4y - 6xy) dy \right]$ where C is the 10. 12M

boundary of the region bounded by x = 0, y = 0 and x + y = 1

CODE: 16BS1001 SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, April-2021

ENGINEERING MATHEMATICS – I

(Common to All Branches)

Time: 3 Hours Max Marks: 70M

Answer ONE Question from each Unit All Questions Carry Equal Marks

All parts of the question must be answered in one place only

UNIT-I

1. a) Solve $(x^3y^2+x) dy + (x^2y^3-y) dx = 0$ 7M

b) Find the orthogonal trajectories of family of curves $ay^2 = x^3$.

(OR)

2. a) Solve 2ydx+x(2logx-y)dy=0 7M

b) If the air is maintained at 30°C and the temperature of the body cools from 80°C to 60°C in 12 minutes, find the temperature of the body after 24 minutes

UNIT-II

3. Solve $(D-2)^2y = 8(e^{2x} + \sin 2x + x^2)$ 14M

(OR)

4. Solve $(D^4 + 2D^2 + 1)y = x^2 \cos x$ 14M

UNIT-III

5. a) If F = xu + v - y, $G = u^2 + vy + w$, H = zu - v + vw, 7M $compute \frac{\partial(F,G,H)}{\partial(u,v,w)}$

b) Expand $f(x,y) = xy^2 + \cos(xy)$ about the point $(1, \frac{\pi}{2})$ upto 3^{rd} degree terms.

(OR)

Examine the following function for extreme values. 14M $f(x,y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$

UNIT-IV

- Evaluate the integral $\int_{0}^{1} \int_{x}^{\sqrt{2-x^2}} \frac{x \, dy \, dx}{\sqrt{x^2 + y^2}}$ by changing of order of integration.
- 8 Evaluate the integral $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+\log y} e^{x+y+z} dx dy dz$. 14M

UNIT-V

- 9 a) Find the total work done in moving a particle in a force field given by $\vec{F} = 3xy\vec{i} 5z\vec{j} + 10x\vec{k}$ along the curve $x = t^2 + 1$, $y = 2t^2$, $z = t^3$ from t = 1 to t = 2
 - b) Find the angle between the surfaces $x^2+y^2+z^2=9$ and $z=x^2+y^2-3$ at the point (2,-1,2).
- 10. Verify Stoke's theorem for the vector field 14M $\vec{F} = (2x-y)\vec{i} yz^2\vec{j} y^2z\vec{k}$ over the upper half surface of $x^2+y^2+z^2=1$, bounded by its projection on the xy plane.

SET-1 **CODE: 13BS1001**

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, April-2021

ENGINEERING MATHEMATICS - I (Common to All Branches)

Time: 3 Hours Max Marks: 70

PART-A

ANSWER ALL QUESTIONS

 $[1 \times 10 = 10 \text{ M}]$

1.	a)	Is $(y^2 - 2xy)dx = (x^2 - 2xy)dy$ exact?	1M
	b)	Solve xdy+ydx=0	1M
	c)	Solve $y' + y = e^{e^x}$.	1M

d) If
$$f(D) = (D^2 + 4D + 4)$$
, then find $\frac{1}{f(D)} \sin 2x$.

e) If
$$x = r\cos\theta$$
, $y = r\sin\theta$ then find $\frac{\partial(x,y)}{\partial(r,\theta)}$.

g) Solve
$$\int_{\theta=0}^{\pi} \int_{0}^{\theta} r \, dr d\theta$$
. 1M

h) Evaluate
$$\int_0^2 \int_0^x e^{x+y} dy dx$$
. 1M

i) Show that
$$\operatorname{grad} \bar{r} = \bar{r}/|\bar{r}|$$
. 1M

Prove that $\nabla f \times \nabla g$ is solenoidal.

1M

PART-B

Answer one question from each unit

[5x12=60M]

UNIT-I

- 2. a) A body kept in air with temperature 25^{0} C cools from 140^{0} C to 80^{0} C in 20 minutes. **6M** Find when the body cools down to 35° C.
 - b) Solve $\frac{dy}{dx} + y \tan x = y^2 \sec x$ **6M**

(OR)

3. a) Solve $xdx + ydy = \frac{xdy - ydx}{x^2 + y^2}$. **6M**

b) The number N of bacteria in a culture grew at a rate proportional to N. The value of **6M** N was initially 100 and increased to 332 in one hour. What was the value of N after $1\frac{1}{2}$ hours.

UNIT-II

4. Solve $\frac{d^2y}{dx^2} + \frac{3dy}{dx} + 2y = x e^x \sin x$ **12M**

(OR)

CODE: 13BS1001

SET-1

5. Solve $(D^3 - 7D^2 + 14D - 8)y = e^x \cos 2x$ 12M

UNIT-III

- 6. a) Expand tan⁻¹x about the origin using Taylor's theorem. **6M**
 - b) If $u = x^2 y^2$, v = 2xy where $x = r\cos\theta$, $y = r\sin\theta$, show that $\frac{\partial(u,v)}{\partial(r,\theta)} = 4r^3$ 6M

(OR)

7. Examine the function for extreme values $f(x,y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2 \ (x > 0, y > 0).$

UNIT-IV

8. By change of order of integration evaluate $\int_0^a \int_{\frac{x^2}{a}}^{2a-x} xy^2 dy dx$ 12M

(OR)

- 9. a) Evaluate $\iint r \, dr \, d\theta$ over the cardioids $r = a \, (1 \cos \theta)$ about the initial line. 6M
 - b) Find the area enclosed by curves $y^2 = ax$ and $x^2 = ay$.

UNIT-V

- 10. a) If $\bar{f} = xy^2\bar{i} + 2x^2yz\bar{j} 3yz^2\bar{k}$, find div \bar{f} at the point (1, -1, 1).
 - b) Prove that $\nabla^2(\mathbf{r}^n) = \mathbf{n}(\mathbf{n}+1)\mathbf{r}^{n-2}$ 6M

(OR)

11. Verify Stoke's theorem for $\overline{F} = (y - z + 2)\mathbf{i} + (yz + 4)\mathbf{j} - xz\mathbf{k}$ where S is the surface of the cube x = y = z = 0, x = y = z = 2 above the xy-plane.

2 of 2