Министерство науки и высшего образования Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Методы нахождения производной и численного интегрирования

Отчет по лабораторной работе №2

по дисциплине «Прикладная математика»

Работу выполнили: Перевезенцева Ксения Витальевна, Терентьев Данила Александрович, Трегубович Елизавета Ивановна,

Факультет: ИТиП

Группа: М32006

Лабораторная работа № 2

Численное дифференцирование и интегрирование

Постановка задачи:

Найти минимум унимодальной функции с помощью пяти различных методовНайти минимум унимодальной функции с помощью пяти различных методов

Цели работы:

Изучить работу методов нахождения минимума унимодальной функции, вычислить наилучшие, продемонстрировать их преимущества и недостатки.

Вариант 5

$$e^{\sin(x)} * x^2$$

Методы

Все методы построены по единому принципу: берутся две точки x_1 и x_2 такие, что $a < x_1 < x_2 < b$, находятся значения функции f_1 и f_2 в точках и сравниваются. Так как функция унимодальна на [a,b], то:

- если $f_1 < f_2$, то точка минимума x_{min} обязана быть меньше x_2 , в противном случае унимодальность нарушится
- если $f_1 > f_2$, то x_{min} обязана быть больше x_1

Сравнив f_1 и f_2 , обновим интервал поиска, либо приравняв b к x_2 , либо a к x_1 . Повторяем итерации, пока не сузим интервал поиска до необходимой величины. Некоторые реализации алгоритма позволяют сохранять значение одной из точек x_1 и x_2 и переиспользовать на следующей итерации, таким образом сокращая число подсчетов функции.

import math

```
def func1(x):
    return (math.e ** (math.sin(x))*x*x)
def func2(x):
    return (x - 1.0/6.0 * (x ** 3) + 1.0/200.0 * (x ** 5))
e = 0.01
a = -4 + e
b = 5 - e
```

```
Memoд дихотомии:
def dichotomy(a, b, e, func):
    l, r = a, b
    n = 0
    while r - l > e:
        med = (l + r) / 2
        x1, x2 = med - e / 3, med + e / 3
        f1, f2 = func(x1), func(x2)
        n += 2
        if f1 < f2:
            r = x2
        else:
        l = x1
#print("Dichotomy function calculations: ", n)
    return (l + r) / 2</pre>
```

Описание алгоритма: Берутся две крайние точки l и r, вычисляется значение по x середины между ними. От середины берутся слева и справа значения по x на расстоянии $\frac{\xi}{3}$, вычисляется значение функции в этих двух точках, после чего значения сравниваются. Если левая точка ниже, правая становится новой правой границей, иначе левая становится новой левой границей.

Точность	0.1	0.01	0.001	0.0001	0.00001	0.000001	0.0000001
Количество итераций	6	10	13	16	20	23	26
Количество вычислений функции	12	20	26	32	40	46	52

Как изменяется отрезок при переходе к следующей стадии: В 2 раза

Тестирование на многомодальной функции $x - \frac{1}{6}x^3 + \frac{1}{200}x^5$ дало локальный минимум

```
print(dichotomy(a, b, e, func2))
-1.5012548828125

Memoд золотого сечения:
def golden_ration(a, b, e, func):
    ratio = (3 - math.sqrt(5)) / 2
    l, r = a, b
    prev = func(l + (r - l) * ratio)
    prev_left = True
    n = 1
    while r - l > e:
```

```
x1 = l + (r - l) * ratio
    x2 = r - (r - l) * ratio
    if prev left:
        f1 = prev
        f2 = func(x2)
    else:
        f1 = func(x1)
        f2 = prev
    n += 1
    if f1 < f2:
        r = x2
        prev = f1
        prev_left = False
    else:
        l = x1
        prev = f2
        prev_left = True
#print("Golden ratio function calculations: ", n)
return (l + r) / 2
```

Описание алгоритма: В отличие от метода дихотомии, где на каждой итерации метода функция вычислялась дважды, в методе золотого сечения точки выбираются не в окрестности середины, а так, чтобы они делили отрезок с коэффициентом золотого сечения. Тогда после уменьшения отрезка одна из точек для нового отрезка уже будет вычислена. Несмотря на то, что отрезок уменьшается медленнее, чем в методе дихотомии, значение функции вычисляется реже.

Точность	0.1	0.01	0.001	0.0001	0.00001	0.000001	0.0000001
Количество итераций	7	11	16	21	26	31	35
Количество вычислений функции	8	12	17	22	27	32	36

Как изменяется отрезок при переходе к следующей стадии: В $\frac{\sqrt{5}+1}{2}$ (золотое сечение) раз

Тестирование на многомодальной функции $x - \frac{1}{6}x^3 + \frac{1}{200}x^5$ дало локальный минимум

```
print(golden_ration(a, b, e, func2))
-1.501752992830216
```

```
Метод Фибоначчи:
def fibonacci(a, b, e, func):
    fib0, fib1 = 1, 1
    n = 1
    nn = 2
    while fib1 < (b-a)/e:
        fib0, fib1 = fib1, fib0 + fib1
        n += 1
    fib0, fib1 = 1, 1
    fib = []
    fib.append(1)
    fib.append(1)
    for i in range(n - 1):
        fib0, fib1 = fib1, fib0 + fib1
        fib.append(fib1)
    x1 = a + (b - a) * (fib[n-2] / fib[n])
    x2 = a + (b - a) * fib[n-1] / fib[n]
    l, r = a, b
    f1, f2 = func(x1), func(x2)
    k = 1
    for i in range(n):
        if f1 > f2:
            l, r = x1, r
            x1 = x2
            x2 = l + (r - l) * (fib[n-k-1]/fib[n-k])
            if k == n-2:
                break
            f1, f2 = f2, func(x2)
        else:
            l, r = l, x2
            x2 = x1
            x1 = l + (r - l) * (fib[n-k-2]/fib[n-k])
            if k == n-2:
                break
            f1, f2 = func(x1), f1
        nn = nn+1
        k = k+1
    x2 = x1 + e / 2
    f2 = func(x2)
    if f1 < f2:
        l, r = l, x2
    else:
        l, r = x1, r
    #print("Fibonacci function calculations: ", nn+1)
    return (l + r) / 2
```

Описание алгоритма: Метод похож на золотое сечение, но в отличие от него, мы делим отрезок в соотношении соответствующих чисел Фибоначчи. Это позволяет в некоторых случаях уменьшить количество вычислений значения функции на 1.

Точность	0.1	0.01	0.001	0.0001	0.00001	0.000001	0.0000001
Количество итераций	4	9	14	19	24	28	33
Количество вычислений функции	7	12	17	22	27	31	36

Как изменяется отрезок при переходе к следующей стадии: На k-ой итерации в $\frac{F_{n-k}}{F_{n-k-1}}$ раз

Тестирование на многомодальной функции $x - \frac{1}{6} x^3 + \frac{1}{200} x^5$ дало локальный минимум

```
print(fibonacci(a, b, e, func2))
-1.4991210739614997
Метод парабол:
def parabolic u(x1, x2, x3, f1, f2, f3, sorted):
    arr = [[x1, f1], [x2, f2], [x3, f3]]
    if not sorted:
         arr.sort()
    l, x, r, f_1, f_x, f_r = arr[0][0], arr[1][0], arr[2][0], arr[0]
[1], arr[1][1], arr[2][1]
return x - ((x - l) * (x - l) * (f_x - f_r) - (x - r) * (x - r) * (f_x - f_l)) / 2 / ((x - l) * (f_x - f_r) - (x - r) * (f_x - f_l))
def parabolic(a, b, e, func):
    l, r, x = a, b, a + (b - a) / 2
    f_l, f_r, f_x = func(l), func(r), func(x)
    n = 3
    while r - l > e:
         if f l > f x and f x < f r:
             \overline{u} = parabolic \overline{u}(l, x, r, f l, f x, f r, True)
         elif f_l <= f_x:</pre>
             u = l + e / 2
         else:
             u = r - e / 2
         if l < u < l + e / 2:
             u = 1 + e / 2
         elif r - e / 2 < u < r:
             u = r - e / 2
         f u = func(u)
         n += 1
         if u > x:
             x, u = u, x
```

```
f_x, f_u = f_u, f_x
if f_u < f_x:
    #print((r - l) / (x - l))
    r, f_r, x, f_x = x, f_x, u, f_u
else:
    #print((r - l) / (r - u))
    l, f_l = u, f_u
#print("Parabolic function calculations: ", n)
return (l + r) / 2</pre>
```

Описание алгоритма: В данном методе мы пытаемся аппроксимировать функцию параболой. На начальной итерации принимаем a, b границами отрезка, x — серединой отрезка. Подсчитаем в них значение функции. Затем повторяем следующие итерации до достижения заданной точности:

- Возьмем точки a, b, x и их значения. Построим по этим трем точкам параболу и найдем её точку минимума u. Если $f_a < f_x < f_b$, то u гарантировано будет лежать внутри [a;b]. Если $u < a + \xi$, то приравняем $u = a + \xi$. Если $u > b \xi$, то $u = b \xi$ (чтобы избежать ситуации, когда алгоритм изменяет исключительно левую/правую границу поиска, бесконечно сдвигая её к минимуму и не трогая другую границу)
- Подсчитаем значение функции f_u в точке u. Теперь возьмем u и x (или x и u если x < u) за x_1 и x_2 , сравним f_{x_1} и f_{x_2} и сократим интервал поиска.

Точность	0.1	0.01	0.001	0.0001	0.00001	0.000001	0.0000001
Количество итераций	4	6	8	10	11	13	15
Количество вычислений функции	7	9	11	13	14	16	18

Как изменяется отрезок при переходе к следующей стадии: Первые n-1 итерацию отрезок уменьшается с коэффициентом, стремящимся от 1.5 к 1. На последней итерации – в k раз, где $k=\frac{2}{\varsigma}$

Тестирование на многомодальной функции $x - \frac{1}{6}x^3 + \frac{1}{200}x^5$ не дало результата

```
print(parabolic(a, b, e, func2))
```

4.213451695397955

```
Комбинированный метод Брента:
def brents(a, c, e, func):
    ratio = (3 - math.sqrt(5)) / 2
    l, r, x = a, c, a + (c - a) * ratio
    w, v = x, x
    f x = func(x)
    f_w, f_v = f_x, f_x
    n = 1
    d = r - l
    d prev = d
    while r - l > e:
        g, d prev = d prev, d
        accepted = False
        if x != w and x != v and v != w and f x != f w and f x != f v
and f v != f w:
            u = parabolic_u(x, w, v, f_x, f_w, f_v, False)
            if u - l > e / 2 and r - u > e / 2 and math.fabs(x - u) <=
g / 2:
                accepted = True
                d = math.fabs(u - x)
        if not accepted:
            delta = r - l
            if l + delta / 2 < x:
                u = l + delta * ratio
                d = r - x
            else:
                u = r - delta * ratio
                d = x - 1
        if math.fabs(x - u) < e / 2:
            u = x + math.copysign(e / 2, u - x)
        f u = func(u)
        n += 1
        if u > x:
            x, u = u, x
            f_x, f_u = f_u, f_x
        if f_u < f_x:
            #print((r - l) / (x - l))
            r, x, f_x, w, f_w, v, f_v = x, u, f_u, x, f_x, w, f w
        else:
            \#print((r - l) / (r - u))
            l, x, w, f w, v, f v = u, x, u, f u, w, f w
```

Описание алгоритма: В данном методе мы пытаемся аппроксимировать функцию параболой, однако в случае слишком больших/маленьких шагов вместо этого делим золотым сечением. На начальной итерации принимаем k=0, 381966, a и b- границами отрезка, x=a+(b-a)*k, w=v=x— вторым минимумом и вторым минимумом предыдущие итерации соответственно. Подсчитаем в x значения функции (соответственно и в

#print("Brent's function calculations: ", n)

return (l + r) / 2

w,c,v). Затем повторяем следующие итерации до достижения заданной точности:

- Проверим, различаются ли точки x,w,v и значения функции в них. Если да:
 - Построим параболу по этим трем точкам и найдем её точку минимума *u*. Затем проверим:
 - Если u отстоит от l и r хотя бы на ξ , а также длина получившегося шага |x-u| не больше двух длин предпредыдущего шага, то принимаем точку u
 - Если длина получившегося шага |x-u| меньше ξ , поставим её равной ξ
 - Если точка *и* минимума параболы не принята, то найдем *и* методом золотого сечения
 - Посмотрим, с какой стороны от середины отрезка лежит x, и поставим u с обратной стороны на расстоянии k*(b-a) от границы.
 - Далее, как и в остальных алгоритмах, возьмем x_1 и x_2 , обновим границы поиска, а также x, w, v и все значения функции в них

Точность	0.1	0.01	0.001	0.0001	0.00001	0.000001	0.0000001
Количество итераций	6	13	11	12	22	17	22
Количество вычислений функции	7	14	12	13	23	18	23

Как изменяется отрезок при переходе к следующей стадии: При неприменимости параболического метода (принятии метода золотого сечения) для следующей операции – в $\frac{\sqrt{5}+1}{2}$ (золотое сечение) раз. При применимости метода парабол – в около случайное число раз.

Тестирование на многомодальной функции $x - \frac{1}{6}x^3 + \frac{1}{200}x^5$ не дало результата (так как не дал результата метод парабол) print(brents(a, b, e, func2))

-1.5021391876828134

```
Поиск локального минимума e^{\sin(x)}*x^2 print('Метод дихотомии:', dichotomy(a, b, e, func1)) print('Метод золотого сечения:', golden_ration(a, b, e, func1)) print('Метод Фибоначчи:', fibonacci(a, b, e, func1)) print('Метод парабол:', parabolic(a, b, e, func1)) print('Комбинированный метод Брента:', brents(a, b, e, func1))
```

Метод дихотомии: -0.0005875651041667305

Метод золотого сечения: -0.00043824820755406163

Метод Фибоначчи: 0.0020947315096249332 Метод парабол: 0.0012398646514612719

Комбинированный метод Брента: -0.0003155111868283801

Сравнение

		Дихотомия	Золотое сечение	Фиббоначи	Парабол	Брента
Количество	10^-5	40	27	27	14	23
вычислений функции	10^-10	72	51	50	24	32
T) MAIN	10^-15	106	75	74	33	16

Вывод

В течение работы были изучены методы дихотомии, золотого сечения, Фибоначчи, парабол, Брента. В случае данной функции при небольшой точности метод парабол оказывался самым эффективным, при большой точности самым эффективным является комбинированный метод Брента.