

SensorSDI op PDOK

met het Smart Emission Data Platform

Met dank aan

Just van den Broecke

Just Objects B.V.

Geo Gebruikersfestival 2018 en SDI.Next

Amersfoort 31 oktober, 2018

Context

Historie

- 2014/2015 SOSPilot Geonovum en RIVM
 RIVM LML Data via OGC Sensor Observation Service (SOS)
 http://sensors.geonovum.nl
- 2015-2017 Smart Emission Nijmegen Consortium Burgers meten zelf luchtkwaliteit en geluid http://smartemission.ruhosting.nl
- •2017-2018 Consolidatie en Opschaling Smart City Living Lab (meerdere steden), Green Challenge Nijmegen, AirSensEUR (EU JRC) SE Platform Migratie naar PDOK - Kadaster https://data.smartemission.nl

Inclusive Citizen Sensing

- Citizen-sensor-networks for fine-grained measurements, with new low-cost sensing devices
- Transparency and democracy of pollution monitoring, 'making the externalities (e.g. noise, air pollution) visible'
- Cost-effective environmental monitoring with Open Source,
 Open Data, Open Standards (APIs)

The smart residents well-informed residents create solutions themselves

The smart city knows what's happening and where

Case: Environmental health in Nijmegen

The smart residents well-informed residents create solutions themselves

By Carring part in the respect family con-ductive by Radiosus Ornancia, residents. In the Wash complete resourcements in their own neighbourhood over the need. New years pro-three of ways of improving the of sporthy.

PROFESSION PARK extractions and the object Noneger

Radboud Universiteit Nijmegen

Issues and questions

1. Deployment of a local air quality network using low-cost sensors

- What is the quality of low-cost sensors in general?
- Which type of low cost sensors to deploy?
- How to calibrate the low-cost sensors?
- How many and at what locations (spatial pattern) to deploy the sensors?
- What data platform for data collection and distribution?
- Which standards for data acquisition and distribution?
- Which (interpolation) models for further processing air quality data?
- How to visualize the results?

2. Involvement of citizens in the deployment and maintenance of the sensor network

- Which method to use for citizen engagement?
- Do we need to train citizens to deploy and maintain the sensor?

3. Involvement of citizens in the analysis of the results of local air quality monitoring

- How to engage citizens?
- How to preprocess and visualize the data for citizens?
- How to interact with citizens?
- How and when to meetup with citizens?
- What applications will the citizens need?

Which type of low cost sensors to deploy?

Quality and price

National Air Quality stations

Aireas "Airbox"

Smart Emission "Jose"

"Smart Citizen Kit"

Jose Multi-Purpose Sensor Station - Intemo

Interactive process with citizens and experts during the pilot project 2016 – 2017, photos

Smart Emission Platform

Smart Emission Platform Componenten in Functionele Lagen

Smart Emission Docker Deployment

Traefik or K8s Ingress Data/Web Proxy

Viewers

https://data.smartemission.nl (data platform)

National Sensor SDI Thoughts

National SensorSDI Functional Blocks

National SensorSDI Principles

Distributed (Federated)
Architecture follows Organization (and v.v.)
Organizational Specialisms
Common Standards & APIs
Common Open Source
Cloud-Based (e.g. Kubernetes)

OGC SensorThings API

OGC SensorThings API Showcase Modern Standard

odok

(REST) API-based: HTTP Verbs

SOS-Killer?

Pub/Sub via MQTT

Data Model is First Class Citizen

(Geo)JSON Encoding

Multiple Implementations

GOST

Geodan

SensorThings API Entity Mapping

Data records produced by the Refiner are mapped to STA Entities by the STA Publisher.

SE Artefact	STA Entity	Example
Station	Thing	Intemo station AirSensEUR Box
Station point location	Location	AirSensEUR Box location at 4.982, 52.358 lon/lat
Sensor Type/Metadata	Sensor	AlphaSense NO2B43F
Type and unit (uom)	ObservedProperty	NO2 in ug/m3
Value and time	Observation	42 ug/m3 on 1 aug 2018 13:42:45
Combination of above	Datastream	Combines T, S, OP and O
Station time+location	HistoricalLocation	AirSensEUR Box at lat/lon 52.35,4.92 on on 1 aug 2018 13:
Station Area	FeatureOfInterest	Location of Station 11820004

Dank U!

Links

https://data.smartemission.nl (data platform)

https://github.com/smartemission (source code)

<u>https://smartplatform.readthedocs.io</u> (documentation)

https://smartplatform.readthedocs.io/en/latest/evolution.html (SensorSDI)

https://geoforum.nl/c/datasets/sensordata (support and comms)

https://en.wikipedia.org/wiki/SensorThings API (SensorThings API, STA)

https://www.gostserver.xyz/ (Geodan STA Open Source Implementation)

We would like to acknowledge for their valuable input: All partners of the Smart Emission Consortium

