Architecture des Ordinateurs Série des TD N° 1

Exercice 1:

1. Remplir le tableau suivant en convertissant les chiffres suivants vers les formats indiqués :

Décimal	Binaire	Hexadécimal	Octal	BCD	Binaire réfléchi
123					
	11010				
		13A			
			1765		
				10011001	
					1100011100

2. Remplir le tableau suivant en convertissant les chiffres suivants vers les formats indiqués :

Décimal	Binaire signé	Cà1	Cà2
35			
	11010010		
		10000101	
			01100111
-243			
	01010100		
		01100110	
			11111111

Exercice2:

1. Effectuer les additions suivantes des nombres binaires de 3 chiffres, sachant que l'on utilise la complémentation à 2 pour représenter les nombres négatifs :

000	000	101	111	101	010
001	111	101	110	110	011

2. Indiquer quelles sont les additions dont le résultat est invalide en vérifiant leur validité.

Exercice 3:

1. Effectuer ces additions en binaire, puis vérifier le résultat en décimal

110011001

10111000

1111111

+ 1101101

+ 11000001

+ 111111

2. Effectuez ces soustractions en binaire, puis vérifiez en décimal si vous ne vous êtes pas trompé(e)

110011001

10111000

1111111

- 1101101

- 1001

- 111111

3. Multiplier 10011011 et 11001101 en binaire.

Exercice 4:

1. Effectuer ces additions, puis vérifier le résultat en décimal

a. En octal: 1234+4321; 345+123; 4567+4321.

b. En hexadécimal: 3456+7895; 9AE5+4567; ABCD+1234.

2. Effectuer ces soustractions, puis vérifier le résultat en décimal

a. En octal: 43-34; 345-123; 4567-4321.

b. En hexadécimal: 7895-3453+; 9AE5-4567; ABCD-1234.

3. Effectuer ces multiplications, puis vérifier le résultat en décimal

a. En octal: 43*34; 345*123; 4567*4321.

b. En hexadécimal: 7895*3453+; 9AE5*4567; ABCD*1234.

Exercice 5:

1. Convertir les nombres fractionnaires suivants vers les bases indiquées.

a) (1011,0011)2 vers la base dix.

b) (7,7)8 vers la base dix.

c) (4B,CC)16 vers la base dix.

d) (10,5625)10 vers la base deux.

e) (10,5625)10 vers la base seize.

f) (10,5625)10 vers la base huit

2. Remplir le tableau suivant en convertissant les chiffres suivants vers les formats indiqués :

Binaire naturel	Binaire complément à 2	Binaire signé (S/V)	Décimal	Hexadécimal
(8bits,3bits)	(8bits, 3bits)	(8bits,3bits)		
00100101,111				
				4C,6
	11011011,101			
		11111011,010		
			45,625	

Exercice 6:

- 1. Représenter les nombres suivants (représentées en décimal) en standard IEEE 754 simple précision. Donner le résultat en hexadécimal.
- a) 8,625 b) 10,50 c) -0,75
- 2. Convertir les valeurs suivantes (représentées en décimal) en standard IEEE 754 Simple précision. Donner le résultat en binaire.
- a) 128 b) -32,75 c) 18,125 d) 0,0625
- 3. Quelles sont les valeurs des nombres suivant représentés en virgule flottant en standard IEEE 754 simple précision :
- 4. Donner la valeur décimale du nombre représenté par : **44 DF A4 8A**₁₆ en standard IEEE 754 double précision.

Exercice 7:

- 1. Décoder la séquence de bit **43 4C 45 2D 49 4E 46 4F 52 4D 41 54 49 51 55 45**₁₆ si cette séquence est considérée comme une chaîne de caractères ASCII 7 bits ?
- 2. Décoder la séquence de bits (1010011 1101111 1110101 1101101 1101001 1100001)₂ si cette séquence est considérée comme une chaîne de caractères ASCII 7 bits ?
- 3. Donner sous forme hexadécimal la suite de codes ASCII du message ECN: EleCtronique Numerique, coder l'acronyme en binaire et en décimal .
- 4. Coder vos noms et prénoms sous forme hexadécimal, décimal et binaire en ASCII.

	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9	.A	.B	.C	.D	.E	.F
2.		!	"	#	\$	%	&	,	()	*	+	,	-		/
3.	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4.	@	A	В	C	D	E	F	G	H	I	J	K	L	M	N	O
5.	P	Q	R	S	T	U	V	W	X	Y	Z]	1]	٨	_
6.	4	a	b	c	d	e	f	g	h	i	j	k	1	m	n	0
7.	p	q	r	S	t	u	v	w	X	y	Z	{	1	}	~	