Ćwiczenia z ANALIZY NUMERYCZNEJ (L)

Lista nr 6 7 listopada 2018 r.

Zajęcia 13 listopada 2018 r. Zaliczenie listy **od 6 pkt.**

- L6.1. 1 punkt Uzasadnij, że schemat Hornera jest algorytmem numerycznie poprawnym.
- **L6.2.** 1 punkt Opracuj oszczędny algorytm zamiany postaci Newtona wielomianu na jego postać potęgową. Określ złożoność opracowanej metody.
- **L6.3.** | 1 punkt | Sformułuj i udowodnij *algorytm Clenshawa* obliczania wartości wielomianu

$$w(x) = \frac{1}{2}c_0T_0(x) + c_1T_1(x) + c_2T_2(x) + \ldots + c_nT_n(x)$$

w punkcie x, gdzie c_0, c_1, \ldots, c_n są danymi stałymi, a T_n oznacza n-ty wielomiany Cze-byszewa.

- **L6.4.** 2 punkty Niech T_n (n = 0, 1, ...) oznacza n-ty wielomian Czebyszewa.
 - (a) Podaj postać potęgową wielomianu T_6 .
 - (b) Jakimi wzorami wyrażają się współczynniki wielomianu T_n przy \boldsymbol{x}^n i \boldsymbol{x}^{n-1} ?
 - (c) Korzystając z faktu, że dla dowolnego x z przedziału [-1,1] n-ty $(n \ge 0)$ wielomian Czebyszewa wyraża się wzorem $T_n(x) = \cos(n \arccos x)$:
 - i. sprawdź, że $|T_n(x)| \le 1 \quad (-1 \le x \le 1; n \ge 0);$
 - ii. wyznacz wszystkie punkty ekstremalne n-tego wielomianu Czebyszewa, tj. rozwiązania równania $|T_n(x)|=1$;
 - iii. udowodnij, że wielomian Czebyszewa T_{n+1} $(n \ge 0)$ ma n+1 zer rzeczywistych, pojedynczych, leżących w przedziale (-1,1).
- **L6.5.** 1 punkt Udowodnij istnienie i jednoznaczność rozwiązania zadania interpolacyjnego Lagrange'a.
- L6.6. 1 punkt Podaj postać Lagrange'a wielomianu interpolacyjnego dla danych

- **L6.7.** 1 punkt Niech będzie $f(x) = 2018x^6 1977x^5 1410x^3 + 1939x + 966$.
 - (a) Wyznacz wielomian stopnia ≤ 6 interpolujący funkcję f w punktach $-2018, -1410, -966, \ln \pi, 966, 1410, 2018.$
 - (b) Wyznacz wielomian drugiego stopnia, interpolujący funkcję f w punktach -2, 0, 2.
- L6.8. 1 punkt Wykaż, że dla wielomianów

$$\lambda_k(x) := \prod_{j=0, j \neq k}^n \frac{x - x_j}{x_k - x_j}$$
 $(k = 0, 1, ..., n)$

zachodzi

a)
$$\sum_{k=0}^{n} \lambda_k(x) \equiv 1$$
, b) $\sum_{k=0}^{n} \lambda_k(0) x_k^j = \begin{cases} 1 & (j=0), \\ 0 & (j=1,2,\ldots,n). \end{cases}$

(-) Paweł Woźny