19SE02IT058	SEIT4013

In [1]:

```
import numpy as np # linear algebra
import os
```

In [2]:

import pandas as pd	# File Handling
<pre>import numpy as np</pre>	# Mathematical Computation

In [3]:

<pre>from sklearn.model_selection import train_test_split</pre>	# Splitting Dataset int	
The state of the s	" Specieting December one	

In [4]:

<pre>from sklearn.tree import DecisionTreeClassifier</pre>	# For implementing Deci
--	-------------------------

In [5]:

<pre>from sklearn.metrics import accuracy_score</pre>	# For calculating accur
<pre>from sklearn.metrics import classification_report</pre>	# For evaluating the mo

In [6]:

from sklearn import tree	# Visualizing Decision
--------------------------	------------------------

In [7]:

```
Dataset = pd.read_csv("Iris.csv")
```

In [8]:

```
Dataset = Dataset.dropna() # Dropping empty rows
```

In [9]:

```
Dataset.head()
```

Out[9]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

```
In [10]:
Dataset.shape
Out[10]:
(150, 6)
In [11]:
Dataset["Species"].unique()
                                                  # Unique values of Species
Out[11]:
array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)
In [12]:
Dataset = Dataset.replace(to_replace ="Iris-setosa",
                                                               value ="0")
Dataset = Dataset.replace(to replace ="Iris-versicolor",
                                                               value ="1")
Dataset = Dataset.replace(to_replace ="Iris-virginica",
                                                               value ="2")
In [13]:
X = np.array(Dataset[['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm']])
Y = np.array(Dataset["Species"])
In [14]:
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state = 100
In [15]:
clf gini = DecisionTreeClassifier(criterion = "gini",
                                                                      # Criterion
                                  max_depth = 5,
                                                                      # Max Height of Tree
                                  min_samples_leaf = 3,
                                                                      # Maximum Leaf samples
                                  random_state = 100)
In [16]:
clf_gini.fit(X_train, Y_train)
                                                                      # Training the Model
Out[16]:
DecisionTreeClassifier(max_depth=5, min_samples_leaf=3, random_state=100)
In [17]:
clf_entropy = DecisionTreeClassifier(criterion = "entropy",
                                                                      # Criterion
                                      max depth = 5,
                                                                      # Max Height of Tree
                                      min samples leaf = 3,
                                                                      # Max Leaf samples
                                      random state = 100)
```

In [18]:

```
clf_entropy.fit(X_train, Y_train) # Training the model
```

Out[18]:

In [19]:

<pre>y_pred_gini = clf_gini.predict(X_test) # Performing Pred</pre>

In [20]:

```
print ("Accuracy : ", accuracy_score(Y_test,y_pred_gini)*100)  # Evaulating predicti
print ("Report : ", classification_report(Y_test, y_pred_gini))
```

Accuracy : 96 Report :	.6666666666 pr	667 ecision	recall	f1-score	support
0	1.00	1.00	1.00	11	
1	1.00	0.83	0.91	6	
2	0.93	1.00	0.96	13	
accuracy			0.97	30	
macro avg	0.98	0.94	0.96	30	
weighted avg	0.97	0.97	0.97	30	

In [21]:

```
y_pred_entropy = clf_entropy.predict(X_test) # Performing Pr
```

In [22]:

```
print ("Accuracy : ", accuracy_score(Y_test,y_pred_entropy)*100)  # Evaulating pr
print ("Report : ", classification_report(Y_test, y_pred_entropy))
```

96.666	666666666	67			
	pre	cision	recall	f1-score	support
0	1.00	1.00	1.00	11	
1	1.00	0.83	0.91	6	
2	0.93	1.00	0.96	13	
су			0.97	30	
√g	0.98	0.94	0.96	30	
√g	0.97	0.97	0.97	30	
	0 1	pre 0 1.00 1 1.00 2 0.93 cy vg 0.98	1 1.00 0.83 2 0.93 1.00 cy vg 0.98 0.94	precision recall 0 1.00 1.00 1.00 1 1.00 0.83 0.91 2 0.93 1.00 0.96 cy vg 0.98 0.94 0.96	precision recall f1-score 0 1.00 1.00 1.00 11 1 1.00 0.83 0.91 6 2 0.93 1.00 0.96 13 cy vg 0.98 0.94 0.96 30

In [23]:

```
tree.plot_tree(clf_gini)
```

Out[23]:

```
[Text(0.375, 0.875, 'X[2] <= 2.45\ngini = 0.665\nsamples = 120\nvalue = [39, 44, 37]'),

Text(0.25, 0.625, 'gini = 0.0\nsamples = 39\nvalue = [39, 0, 0]'),

Text(0.5, 0.625, 'X[3] <= 1.65\ngini = 0.496\nsamples = 81\nvalue = [0, 44, 37]'),

Text(0.25, 0.375, 'X[2] <= 4.95\ngini = 0.156\nsamples = 47\nvalue = [0, 4 3, 4]'),

Text(0.125, 0.125, 'gini = 0.0\nsamples = 42\nvalue = [0, 42, 0]'),

Text(0.375, 0.125, 'gini = 0.32\nsamples = 5\nvalue = [0, 1, 4]'),

Text(0.75, 0.375, 'X[2] <= 4.85\ngini = 0.057\nsamples = 34\nvalue = [0, 1, 3]'),

Text(0.625, 0.125, 'gini = 0.375\nsamples = 4\nvalue = [0, 1, 3]'),

Text(0.875, 0.125, 'gini = 0.0\nsamples = 30\nvalue = [0, 0, 30]')]
```


In [24]:

```
tree.plot_tree(clf_entropy)
```

Out[24]:

```
[Text(0.375, 0.875, 'X[2] <= 2.45\nentropy = 1.581\nsamples = 120\nvalue = [39, 44, 37]'),

Text(0.25, 0.625, 'entropy = 0.0\nsamples = 39\nvalue = [39, 0, 0]'),

Text(0.5, 0.625, 'X[3] <= 1.65\nentropy = 0.995\nsamples = 81\nvalue = [0, 44, 37]'),

Text(0.25, 0.375, 'X[2] <= 4.95\nentropy = 0.42\nsamples = 47\nvalue = [0, 43, 4]'),

Text(0.125, 0.125, 'entropy = 0.0\nsamples = 42\nvalue = [0, 42, 0]'),

Text(0.375, 0.125, 'entropy = 0.722\nsamples = 5\nvalue = [0, 1, 4]'),

Text(0.75, 0.375, 'X[2] <= 4.85\nentropy = 0.191\nsamples = 34\nvalue = [0, 1, 3]'),

Text(0.625, 0.125, 'entropy = 0.811\nsamples = 4\nvalue = [0, 1, 3]'),

Text(0.875, 0.125, 'entropy = 0.0\nsamples = 30\nvalue = [0, 0, 30]')]
```

