

Objectifs

Être capable:

- 1 de reconnaître des pourcentages d'évolution : augmentations et baisses successives ;
- d'additionner et de comparer des pourcentages : pourcentages relatifs à un même ensemble, comparaison de deux pourcentages relatifs à deux ensembles de référence distincts;
- 3 de déterminer et d'analyser des pourcentages de pourcentages;
- 4 d'analyser des des variations d'un pourcentage;
- d'apprendre à distinguer les pourcentages décrivant le rapport d'une partie au tout des pourcentages d'évolution (augmentation ou baisse).

I. Effectifs et proportions (Activité: TP 1 page 8)

1) Expression d'une proportion à l'aide d'un pourcentage

- 1. a) Proportion des "pratiquants de roller" parmi les personnes interrogées :
 - Sous forme de fraction : $\frac{1192}{13685}$
 - Sous forme d'un nombre décimal arrondi à 10^{-4} : $\approx 0,0871$ ($10^{-4}=0,0001=\frac{1}{10000}=\frac{1}{10^4}$)
 - Sous la forme d'un pourcentage arrondi à $10^{-2}\approx 8,71\%$

Á retenir : Proportion

La proportion ou fréquence d'une partie A d'une population E, est le rapport p des effectifs de A et de E:

$$p = \frac{n_A}{n_E} \, \left(\frac{EffectifdeA}{EffectifdeE} \right)$$

b) Pourcentage de femmes parmi ces "pratiquants du roller"

$$\frac{657}{1192} \times 100 = 55, 117, soit\ environ\ 55, 12\%$$

2. a) Nombre des 16-25 ans interrogés qui pratiquent le roller :

$$\frac{521 \times 19}{100} = 521 \times 0, 19 = 98, 99$$

Soit environ 99 "16-25 ans"

b) Soit N le nombre des "12-24" ans interrogées. On a :

$$N \times \frac{43,15}{100} = 356$$

$$N = \frac{356 \times 100}{43,15} = 825,02$$

Soit environ 825 "12-24 ans".

3. Pourcentage de "porteurs de casque" parmi les "pratiquants de roller" :

 $657 \times 0,088 + 535 \times 0,144 = 134,856 = 135$ porteurs de casque

$$\frac{135}{1192} = 0,11325 \approx 11,33\%$$

Exercices

2, 3, 4, 5 page 21-22

2) Comparaison de deux pourcentages, pourcentages de pourcentages

1. a)

$$\frac{73}{149} \approx 0.4899$$
, soit 48,99 %.

Il y a 48,99 % d'hommes parmi les victimes d'accidents de roller de "35 ans et plus".

b)

$$\frac{343}{2075} \approx 0.1653$$
, soit 16.53 %.

16,53 % des victimes d'accidents de roller ont "9 ans et moins".

c)

$$\frac{312}{745} \approx 0.4188$$
, soit 41,88 %.

Il y a 41,88 % de "10 à 14 ans" parmi l'ensemble des femmes victimes d'un accident de roller.

 \mathbf{d}

$$\frac{1330}{2075} \approx 0.6410$$
, soit 64,10 %.

64,10 % des accidents de roller concernent des hommes.

2. **a**)

$$\frac{174}{1330} \approx 0.1308$$
, soit 13.08 %.

13,08 % des hommes victimes d'accidents de roller ont "de $20 \ \text{à} \ 34 \ \text{ans}$ ".

b)

$$\frac{127}{745} \approx 0.1705$$
, soit 17.05 %.

17,05 % des femmes victimes d'accidents de la route ont "de $20 \ {\rm a} \ 34 \ {\rm ans}$ ".

- c) Dans les effectifs, il y a plus d'hommes que de femmes de 20 à 34 ans, mais en pourcentage il y a plus de femmes. Il y a moins de femmes pratiquantes du roller que d'hommes mais en proportion elles ont plus d'accidents.
- a) Proportion p_1 de femmes parmi les accidentés de "15 à 19 ans" : 3.

$$p_1 = \frac{47}{276} \approx 0.1703$$
, soit 17,03 %.

b) Proportion p_2 des "15 à 19 ans" parmi les accidentés :

$$p_2 = \frac{276}{2075} \approx 0.1330$$
, soit 13,30 %.

c) Proportion p_3 des femmes de "15 à 19 ans" parmi les accidentés :

$$p_3 = \frac{47}{2075} \approx 0.0227$$
, soit 2.27 %.

Remarque

Remarque : $\frac{47}{276} \times \frac{276}{2075} = \frac{47}{2075}$, donc $p_1 \times p_2 = p_3$. On peut faire : 17,03 % de 13,30 %

$$\frac{17,03}{100} \times \frac{13,30}{100} = 0,022649$$
, soit environ 2,26 %.

Exercices

9, 10, 11 p 23-24

3) Additionner et comparer des pourcentages

1. Pourcentage d'enfants en surpoids dans les zones rurales :

$$100 - 87.2 = 12.8$$
 soit 12.8% .

2. Pourcentage d'enfants obèses :

$$12.8 - 9.2 = 3.6$$
 soit 3.6% .

- 3. a) Dans l'agglomération parisienne, il y a 5 % d'enfants obèses et 16,6 % en surpoids; la proportion d'enfants obèses parmi ceux en surpoids est donc égale à $\frac{5}{16,6} = 0,301\%$, soit environ un peu plus de 3 enfants souffrant d'obésité pour 10 en surpoids. L'affirmation est donc juste.
 - b) Les effectifs pour les différents types d'agglomération ne sont pas connus. On ne peut donc rien affirmer concernant le nombre d'enfants en surpoids.

II. Pourcentage d'évolution, coefficient multiplicateur

TP2 page 10

1) Variation relative (taux d'évolution)

1. a) Variation absolue du nombre de médecins généralistes en France entre 1990 et 2009 :

$$107667 - 93380 = 8287$$

- \rightarrow Soit une hausse de 8287 médecins.
- **b)** Variation relative (ou taux d'évolution) du nombre de généralistes entre 1990 et 2009 :

en 1990 + 8,87 % en 2009
$$93\,380 \,\, \text{médecins} \qquad \rightarrow \qquad \qquad 101\,667 \,\, \text{médecins}$$

$$\frac{(101\,667 - 93\,380)}{93\,380} \times 100 = 8,874...$$

- \rightarrow Soit une hausse d'environ 8,87 %.
- c) Entre 1990 et 2009 le nombre de médecins généralistes en France à augmenté de 8.87~%.

Remarque

$$\begin{array}{rcl}
1,0887 & = & 1 + 0,0887 \\
 & = & 1 + \frac{8,87}{100}
\end{array}$$

Ainsi pour augmenter une grandeur de 8,87~% il suffit de multiplier cette grandeur par $1 + \frac{8.87}{100}$ soit 1,0887. Ce nombre s'appelle le coefficient multiplicateur associé à une augmentation de 8,87 %.

a) Variation absolue du nombre de médecins généralistes : 2.

$$99670 - 101667 = -1997$$

Soit une baisse de 1997 médecins.

b) Taux d'évolution correspondant

$$\frac{(99\,670 - 101\,667)}{101\,667} \times 100 \approx --1{,}96$$

Soit une baisse d'environ -1.96 %.

c) Entre 2009 et 2015, le nombre de médecins généralistes en France devrait baisser d'environ 1,96 %.

Remarque

en 2009 - 1,96 % en 2015
$$\longrightarrow$$
 101 667 médecins $\times 0,9804$ 99 670 médecins

On a :
$$\frac{99670}{101667} \approx 0,9804$$
. Et $1 - \frac{1,96}{100} = 0,9804$

On a : $\frac{99670}{101667} \approx 0,9804$. Et $1-\frac{1,96}{100}=0,9804$ Pour diminuer une grandeur de 1,96 %, il suffit de multiplier cette grandeur par $1 - \frac{1,96}{100}$, soit 0,9804. 0,9804 est le coefficient multiplicateur associé à une baisse de 1.96 %.

5

Á retenir : Taux d'évolution et coefficient multiplicateur

Le taux d'évolution t (ou variation relative) d'une quantité passant de la valeur y_1 à une valeur y_2 est égal à :

$$t = \frac{y_2 - y_1}{y_1} \left(\frac{V_{arriv\acute{e}} - V_{d\acute{e}part}}{V_{d\acute{e}part}} \right)$$

Remarque: Un taux d'évolution positif traduit une hausse, un taux d'évolution négatif traduit une baisse.

Coefficients multiplicateurs:

- Augmenter une grandeur de t% revient à multiplier cette grandeur par $(1 + \frac{t}{100})$.
- Exemple: $+5\% = \times 1.05$; $+20\% = \times 1.20$
- Diminuer une grandeur de t% revient à multiplier cette grandeur par $(1-\frac{t}{100})$.
- Exemple: $-12\% = \times 0.88$; $-3\% = \times 0.97$
- Dans le cas d'une hausse, le coefficient multiplicateur est supérieur à 1.
- Dans le cas d'une baisse, le coefficient multiplicateur est inférieur à 1.
- 3. Nombre de médecins des spécialités médicales en 2009

en 1990 + 23,63 % en 2009
$$\longrightarrow$$
 48 040 médecins ×1,2363 ? médecins

D'où : $48\,040 \times 1,2363 = 59\,391,8...$, soit environ 52 392 médecins.

4. Nombre de médecins des spécialités chirurgicales en 2015

en 2009 - 8,22 % en 2015
$$\longrightarrow$$
 25 163 médecins $\times 0,9178$? médecins

D'où : $25163 \times 0.9178 = 23094.60...$, soit environ 23095 médecins.

5. Nombre de médecins des spécialités chirurgicales en 1990

en 1990
$$+$$
 17,21 % en 2009 \longrightarrow ? médecins \times 1,1721 \times 25163 médecins \longleftrightarrow 1,1721

D'où : $25163 \div 1{,}1721 = 21468{,}30475...$, soit environ 21468 médecins.

Exercices

Application exerices: 12, 13, 14 et 15 page 25

2) Évolutions successives, évolution réciproque

A. Évolutions successives

1)

$$P_1 + 25 \% P_2$$
 \rightarrow
 $P_2 = 16 \times 1,25 = 20, \text{ soit } 20 \$.$
 $P_3 = 16 \times 1,25 = 20, \text{ soit } 20 \$.$

2)

$$\begin{array}{|c|c|c|c|c|c|}\hline P_2 & +30 \% & P_3 \\ & \longrightarrow & \\ 20 \$ & \times 1{,}30 & ? \$ \end{array} \qquad P_2 = 20 \times 1{,}30 = 26, \text{ soit } 26 \$.$$

3)

Calcul du coefficient multiplicateur :

$$k = \frac{26}{16} = 1,625$$

On peut aussi calculer indépendamment des prix : 1,25 × 1,30 = 1,625, soit une hausse globale de 62,5 %.

Remarque

Le pourcentage de hausse globale 62,5~% n'est pas égal à la somme des deux pourcentages de hausse successives 25~% et 30~%, car ces deux pourcentages ne s'appliquent pas sur le même prix, donc ne s'additionnent pas.

Á retenir : Évolutions successives

Deux évolutions (hausse ou baisse) successives de coefficients multiplicateurs c et c' correspondent une évolution globale (hausse ou baisse) de $c \times c'$ (on multiplie).

B. Évolution réciproque

1) a)

b) On constate que la baisse de 25 % n'annule pas la hausse de 25 %.

Remarque

$$P_3' = 16 \times 1,25 \times 0,75$$

 $P_3' = 16 \times 0,9375$
 $On \ a \qquad 0,9375 \neq 1$

2)

Á retenir : Évolution réciproque

Deux évolutions (hausse et baisse) successives sont réciproques si et seulement si leur coefficients multiplicateurs c et c' sont inverses : $c \times c' = 1$