Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Кафедра Информатики и прикладной математики

Дисциплина: Алгоритмы и структуры данных

Лабораторная работа №3 Нахождение минимального остова графа Вариант №5

Выполнил Григорьев Г.Г, гр. Р3217

Преподаватель: Зинчик А.А.

Постановка задачи

Пусть G = (V, E, W) – неориентированный граф без петель со взвешенными ребрами и пусть множество вершин $V=\{1, ..., n\}$, множество ребер $E \subseteq V \times V$, |E|=m и весовая функция W(u, v) каждому ребру $(u, v) \in E$ ставит в соответствие неотрицательное число – его вес.

Требуется найти минимальный остов графа, то есть минимальное по весу поддерево графа G, содержащее все его вершины.

Решением задачи будем считать массив ET[1..n-1, 1..2], в котором пара (ET[i, 1], ET[i, 2]) является i-м ребром построенного минимального остовного дерева.

Задания для лабораторной работы № 3

Предлагается попарное сравнение различных алгоритмов нахождения минимального по весу остовного дерева в графе G = (V, E), имеющего п вершин и m peбер.

Варианты выбора пары алгоритмов А и В для сравнения:

Вариант 1

- А алгоритм Борувки,
- В алгоритм Краскала;

Вариант 2

- А алгоритм Борувки,
- В алгоритм Прима;

Вариант 3

- А алгоритм Прима,
- В алгоритм Краскала;

Задание.

- 1. Написать программу, реализующую алгоритм А и алгоритм В.
- 2. Написать программу, реализующую алгоритм А и алгоритм В, для проведения экспериментов, в которых можно выбирать:
 - число п вершин и число т ребер графа,
 - натуральные числа q и r, являющиеся соответственно нижней и верхней границей для весов ребер графа.

Выходом данной программы должно быть время работы T_A алгоритма A и время работы T_B алгоритма B в секундах.

- 3. Провести эксперименты на основе следующих данных:
 - 3.1. $n=100,\ldots,10^4$ с шагом 100, $q=1,\ r=10^6,$ количество ребер: а) $m\approx n^2/10,$ б) $m\approx n^2$ (нарисовать графики функций $T_A(n)$ и $T_B(n)$ для обоих случаев);
 - 3.2. $n=10^3,\ldots,10^5$ с шагом 1000, $q=1,\ r=10^6,$ количество ребер: а) $m\approx 100\cdot n,$ б) $m\approx 1000\cdot n$ (нарисовать графики функций $T_A(n)$ и $T_B(n)$ для обоих случаев);

- 3.3. $n=10^4$, a) $m=10^5$, ... , 10^7 с шагом 10^5 , a) $m=10^3$, ... , 10^5 с шагом 10^3 , q=1, $r=10^6$ (нарисовать графики функций $T_A(m)$ и $T_B(m)$ для обоих случаев);
- 3.4. $n=10^2,\ldots,10^4$ с шагом 100, $q=1,\ r=10^6,$ количество ребер: а) $m\approx n^2/100,\ б)\ m\approx n^2/1000$ (нарисовать графики функций $T_A(n)$ и $T_B(n)$ для обоих случаев);
- 4. Сформулировать и обосновать вывод о том, в каких случаях целесообразно применять алгоритм A, а в каких алгоритм B.

Вариант 5 – пара алгоритмов 2, вариант сравнения 3.1

- А алгоритм Борувки,
- В алгоритм Прима;

•

• n = 100, ... ,104 с шагом 100, q = 1, r =106, количество ребер: а) m \approx n²/10, б) m \approx n² (нарисовать графики функций $T_A(n)$ и $T_B(n)$ для обоих случаев);

