Report on

"Offline 2: Solving Latin Square"

Course Code: CSE 318

Course Title: Artificial Intelligence Sessional

Submitted By:

Md. Azizur Rahman Anik

Student ID: 1805115

Date of Submission:

05-01-2023

Value Order Heuristic: Least-Constraining-Value

After a variable has been selected using a Variable-Order-Heuristic, to decide on the order in which to examine its values, "Least-Constraining-Value" heuristic has been chosen. It prefers the value that rules out the fewest choices for the neighboring variables (in this problem, the neighboring variables are the ones that are either in same row or same column) in the constraint graph. As it tries to leave the maximum flexibility for subsequent variable assignments, it is more likely to go through the path which will provide a solution faster. As we need only one solution in this assignment, this heuristic provides better performance than choosing the values from the domain of a variable randomly or serially. If we need to enumerate all solutions rather than just fine one, then value ordering would be irrelevant.

Data Table

Problem	Solver	VAH	#Node	#BT	Time(ms)
d-10-01	BT	VAH1	58	0	0
	BT	VAH2	416178375	416178317	962465
					=16.01 mins
	BT	VAH3	62	4	16
	BT	VAH4	64	6	0
	BT	VAH5	449500996	449500938	531218
	FC	VAH1	58	0	0
	FC	VAH2	6947264	6947206	37371
	FC	VAH3	61	3	0
	FC	VAH4	62	4	16
	FC	VAH5	574134	574076	2172
	BT	VAH1	245	187	15
	BT	VAH2	240377219	240377161	484354
1 10 06					= 8.07 mins
d-10-06	BT	VAH3	58	0	0
	BT	VAH4	59	1	0
	BT	VAH5	1374653	1374595	1460
	FC	VAH1	227	169	0
	FC	VAH2	5266806	5266748	23158
	FC	VAH3	58	0	0
	FC	VAH4	58	0	3
	FC	VAH5	1401353	1401295	3390
d-10-07	BT	VAH1	58	0	0
	BT	VAH2	17948366	17948308	37233
	BT	VAH3	104	46	16
	BT	VAH4	59	1	0
	BT	VAH5	1093722653	1093722595	1223448
					= 20.4 mins
	FC	VAH1	58	0	0
	FC	VAH2	336402	336344	1297
	FC	VAH3	99	41	16

	FC	VAH4	58	0	3
	FC	VAH5	483171	483113	1140
d-10-08	BT	VAH1	73	15	0
	BT	VAH2	*	*	*
	BT	VAH3	388	330	0
	BT	VAH4	795	737	15
	BT	VAH5	167833	167775	161
	FC	VAH1	72	14	0
	FC	VAH2	75343876	75343818	306366
	FC	VAH3	361	303	0
	FC	VAH4	706	648	19
	FC	VAH5	132618	132560	297
d-10-09	BT	VAH1	3275	3217	16
	BT	VAH2	896016	895958	3515
	BT	VAH3	70	12	0
	BT	VAH4	67	9	0
	BT	VAH5	84798141	84798083	94748
	FC	VAH1	2785	2727	16
	FC	VAH2	34063	34005	125
	FC	VAH3	67	9	16
	FC	VAH4	63	5	2
	FC	VAH5	89324717	89324659	240271
d-15-01	BT	VAH1	136196	136089	281
	BT	VAH2	*	*	*
	BT	VAH3	710729	710622	2093
	BT	VAH4	1672762	1672655	6987
	BT	VAH5	*	*	*
	FC	VAH1	123922	123815	297
	FC	VAH2	*	*	*
	FC	VAH3	644132	644025	1999
	FC	VAH4	1480838	1480731	9340
	FC	VAH5	*	*	*

Analysis:

To apply the heuristics given, **a modified Backtrack** is used where the modification is: When a value of a variable is successfully assigned, then the domain of its neighboring variables have been updated.

The difference between the Forward Checking and the modified Backtrack is: in forward checking, after updating the domain of neighboring variables, if any domain becomes empty, then immediately backtracked from that node, whereas no such decision is made based on the size of the domain in the modified backtrack.

Reason to use a Modified Backtrack: If a pure backtrack solver is used, then the heuristics will not get the updated domain. Therefore it will work on the initial domain every time and this will be able to provide the power of the heuristics.

Observations: From the data table, it is clear that the Forward checking scheme performs better than Backtrack for all the test cases as it detects failure earlier and reduces the number of nodes in the search tree by pruning larger parts of the tree earlier. For example, for test case "d-10-09", the BT with heuristic VAH2 searches total 896016 nodes where the FC searches only 34063 nodes (A factor of 26 improvement).

Performance Comparison among the 5 Variable-Order-Heuristics: The "Minimum Remaining Values (MRV)", that is, VAH1 heuristic seems to be the best from the data table as it gives the best performance (considering number of nodes, backtracks and time to find the solution) in most of the test cases. The reason is, it picks a variable that is most likely to cause a failure soon, thereby pruning the search tree- avoiding pointless searches through other variables.

After VAH1, the VAH3 gives better performance, and then VAH4. The VAH3 is a extended version of VAH1, where the tie is broken using the degree heuristic (selecting the variable that is involved in the largest number of constraints on other unassigned variables). Therefore some extra work has to be done to get the degree of the variables that make a tie.

On the other hand, **VAH4** tries to combine heuristic VAH1 and VAH2 by minimizing the ratio. It gives similar performance to VAH3 in some test cases.

The **VAH2** heuristic is mainly used to break tie of VAH1 heuristic. It alone does not provide much improvement in performance which is evident from the data table.

Finally the **VAH5** heuristic picks variables randomly and its performance changes in different runs but on average, it provides poor performance than VAH1, VAH3 and VAH4.

Conclusion:

Forward checking combining with VAH1 seems the best scheme. The reason is, it picks a variable that is most likely to cause a failure soon and checking the size of the domain of neighboring variables, it detects failure early, thereby pruning the search tree- avoiding pointless searches through other variables.