ABSOLUTE VALUE INEQUALITIES

Reminder: The absolute value of the real number x is the distance on the number line from the origin to the number x.

There are two cases:

a) Case 1:
$$|x| < k$$

Let k > 0, then |x| < k means the distance from the origin to the number x is less than k.

Thus |x| < k is equivalent to -k < x < k.

Property 1-On absolute value inequalities

For any real number k > 0,

$$|x| < k$$
 is equivalent to $-k < x < k$

and

$$|x| \le k$$
 is equivalent to $-k \le x \le k$

EXAMPLE 1

Solve:

i.
$$|2x + 1| < 5$$

ii.
$$|6x - 1| \le 3$$

Solutions:

i.
$$|2x + 1| < 5$$
 is equivalent to

$$-5 < 2x + 1 < 5$$

$$\Rightarrow$$
 $-5-1 < 2x+1-1 < 5-1$

$$\Rightarrow$$
 $-6 < 2x < 4$

$$\Rightarrow \quad \frac{-6}{2} < \frac{2x}{2} < \frac{4}{2}$$

$$\Rightarrow$$
 $-3 < x < 2$

 \therefore Solution set = (-3,2) in interval notation.

ii.
$$|6x - 1| \le 3$$
 is equivalent to

$$\Rightarrow$$
 $-3 \le 6x - 1 \le 3$

$$\Rightarrow$$
 $-3 + 1 \le 6x - 1 + 1 \le 3 + 1$

$$\Rightarrow$$
 $-2 \le 6x \le 4$

$$\Rightarrow \frac{-2}{6} \le \frac{6x}{6} \le \frac{4}{6}$$

$$\Rightarrow -\frac{1}{3} \le x \le \frac{2}{3}$$

- \therefore Solution set = $\left[-\frac{1}{3}, \frac{2}{3}\right]$ in interval notation.
- b) Case 2: |x| > 0

Let k > 0, then |x| > k means the distance from origin to the number x is greater than k.

Hence, |x| > k is equivalent to double disjoint sets x < -k or x > k.

Property 2- On absolute value inequalities

For any real number k > 0,

$$|x| > k$$
 is equivalent to $x < -k$ or $x > k$

and

$$|x| \ge k$$
 is equivalent to $x \le -k$ or $x \ge k$

EXAMPLE 2

Solve |5x - 10| > 20.

Solution:

We write the inequality as two separate inequalities

$$5x - 10 < -20$$
 or $5x - 10 > 20$

and solve each one for x:

either 5x - 10 < -20

- \Rightarrow 5x < -20 + 10
- \Rightarrow 5x < -10
- $\Rightarrow \frac{5x}{5} < \frac{-10}{5}$
- $\Rightarrow x < -2$

Or 5x - 10 > 20

- \Rightarrow 5x > 20 + 10
- $\Rightarrow 5x > 30$
- $\Rightarrow \frac{5x}{5} > \frac{30}{5}$
- $\Rightarrow x > 6$

Hence, the solution set of the inequality |5x - 10| > 20 is:

$$x < -2$$
 or $x > 6$ or

$$(-\infty, -2) \cup (6, \infty)$$
.

EXAMPLE 3

Solve the inequality:

$$\left|\frac{x-2}{x+3}\right| \ge 4.$$