Normalni uvjeti tlaka i temperature (n.u.): p=101 325 Pa T=293,15 K Standardni uvjeti tlaka i temperature(s.u.): p=100 000 Pa T=273,15 K (https://goldbook.iupac.org/html/S/S06036.html preuzeto 24-11-2018)

Avogadrova konstanta $N_A=L=6,022\cdot10^{23}\,\mathrm{mol^{-1}}$ Opća plinska konstanta $R=8,314\,\mathrm{Pa}\,\mathrm{m}^3\,\mathrm{mol^{-1}}\,\mathrm{K}^{-1}$ Molarni volumen pri s.u. $V^\circ_m=22,4\,\mathrm{mol^{-1}}\,\mathrm{dm}^3$

FIZIKALNA VELIČINA		OSNOVNA SI JEDINICA		
NAZIV	SIMBOL	NAZIV	SIMBOL	
Duljina	l	Metar	М	
Masa	m	Kilogram	kg	
Vrijeme	Т	Sekunda	S	
Električna struja	I	Amper	А	
Termodina mička temperatu ra	Т	Kelvin	K	
Množina tvari	Π	Mol	mol	

Fizikalna veličina	Oznaka	Formula	Jedinica
Množina	n(X)	$ \Box = \frac{m(X)}{M(X)} = \frac{N(X)}{L} = \frac{V^{\circ}(X)}{V^{\circ}m(X)} $	mol
Molarna masa	М		g mol ⁻¹
Gustoća	ρ	$\rho \text{ (otopine)} = \frac{m(otopine)}{V(otopine)}$	g cm ⁻³

Molalitet ili molalnost	b(X)	$b(X) = \frac{n(X)}{m(otapala)}$	mol kg ⁻¹
Množinska koncentracij a	c(X)	$C(X) = \frac{n(X)}{V(otopine)}$	mol dm ⁻
Masena koncentracij a	γ (Χ)	$V(x) = \frac{m(x)}{V(otopine)}$	g dm ⁻³
Množinski udio	x(X)	$X(X) = \frac{n(X)}{n(ukupna)}$	1
Maseni udio	w(X)	$W(X) = \frac{m(X)}{m(ukupna)}$	1
Volumni udio	φ(X)	$\varphi(X) = \frac{V(X)}{V(ukupni)}$	1

m(ukupna)=m(otopine)=m(smjese)=m(otopljena tvar)+m(otapalo) m(otapalo)>m(otopljena tvar)

X=otopljena tvar

$$C(X) = \frac{n(X)}{V(otopine)} = \frac{m(X)}{M(X) * V(otopine)} = \frac{w(X) * m(otopine)}{M(X) * V(otopine)} = \frac{w(X) * \rho(otopine)}{M(X)}$$

$$C(X) = \frac{n(X)}{V(otopine)} = \frac{m(X)}{M(X)*V(otopine)} = \frac{\gamma(X)}{M(X)}$$

Opća plinska jednadžba: $p(x) \cdot V(x) = n(x) \cdot R \cdot T$

Osmotski tlak: ∏=i·c(x)·R·T

Tlak para otopine: p(tlak para otapala iznad otopine)=x(otapala u otopini)·p°(tlak para čistog otapala)

Povišenje vrelišta: $\Delta T = T_v(\text{otopine}) - T_v(\text{otapalo}) = K_{eb} \cdot b(X) \cdot i$

Sniženje tališta (ledišta): $\Delta T = T_t(otapalo) - T_t(otopine) = K_{kr} \cdot b(X) \cdot i$

i=1 za organske tvari (neelektroliti=saharoza, glukoza, naftalen)

i≠1 za tvari koje disociraju (elektroliti=anorganske soli, kiseline, lužine)

$$NaOH(aq) -> Na^{+} (aq) + OH (aq) i=2$$
 $H_{3}PO_{4}(aq) -> 3H^{+} (aq) + PO_{4}^{3-} (aq) i=4$
 $Na_{2}SO_{4} (aq) -> Na^{+} (aq) + SO_{4}^{2-} (aq) i=3$

$$\Delta T = K_{kr} \cdot b(X) \cdot i = K_{kr} \cdot \frac{n(X)}{m(otapala)} \cdot i = K_{kr} \cdot \frac{m(X)}{m(otapala)*M(X)} \cdot i$$

$$\Delta T = K_{eb} \cdot b(X) \cdot i = K_{eb} \cdot \frac{n(X)}{m(otapala)} \cdot i = K_{eb} \cdot \frac{m(X)}{m(otapala)*M(X)} \cdot i$$