

Stein Variational Gradient Descent main ideas

Gaëtan Serré

École Normale Supérieure Paris-Saclay Master Mathématiques, Vision, Apprentissage gaetan.serre@ens-paris-saclay.fr

1 Goal

Given a smooth density π supported on $\mathcal{X} \subseteq \mathbb{R}^d$, find μ on \mathcal{X} as close as possible to π .

2 Stein framework

Stein identity: Let A_{π} a Stein operator s.t.

$$\mathcal{A}_{\pi}\phi = \nabla \log \pi(\cdot)^{\top}\phi(\cdot) + \nabla \cdot \phi(\cdot)$$

with $\phi(x) = [\phi_1(x), ..., \phi_d(x)]^{\top}$. Then, if ϕ is in the Stein class f π i.e. $\phi(x)\pi(x) = 0$ for all $x \in \partial \mathcal{X}$ if \mathcal{X} is compact or $\lim_{\|x\| \to \infty} \phi(x)\pi(x) = 0$ if $\mathcal{X} = \mathbb{R}^d$, we have:

$$\mathbb{E}_{x \sim \pi}[\mathcal{A}_{\pi}\phi(x)] = 0 \tag{1}$$

Proof.

$$\mathbb{E}_{x \sim \pi}[\mathcal{A}_{\pi}\phi(x)] = \int_{\mathcal{X}} \left(\nabla \log \pi(\cdot)^{\top} \phi(\cdot) + \nabla \cdot \phi(\cdot)\right) \pi(x) dx$$

$$= \int_{\mathcal{X}} \nabla \log \pi(\cdot)^{\top} \phi(\cdot) \pi(x) dx + \int_{\mathcal{X}} \sum_{k=1}^{d} \frac{\partial \phi_{k}}{\partial x_{k}} \pi(x) dx$$

$$= \int_{\mathcal{X}} \nabla \log \pi(\cdot)^{\top} \phi(\cdot) \pi(x) dx + \int_{\mathcal{X}} \sum_{k=1}^{d} \frac{\partial \phi_{k}}{\partial x_{k}} \pi(x) dx$$

$$= \int_{\mathcal{X}} \nabla \log \pi(\cdot)^{\top} \phi(\cdot) \pi(x) dx + \sum_{k=1}^{d} \left([\pi(x) \phi_{k}(x)]_{\mathcal{X}} - \int_{\mathcal{X}} \frac{\partial \pi(x)}{\partial x_{k}} \phi_{k}(x) dx \right)$$

$$= \int_{\mathcal{X}} \nabla \log \pi(\cdot)^{\top} \phi(\cdot) \pi(x) dx - \int_{\mathcal{X}} \sum_{k=1}^{d} \frac{\partial \pi(x)}{\partial x_{k}} \phi_{k}(x) dx$$

$$= \int_{\mathcal{X}} \pi(x) \sum_{k=1}^{d} \frac{\partial \log \pi(x)}{\partial x_{k}} \phi_{k}(x) - \pi(x) \sum_{k=1}^{d} \frac{\partial \log \pi(x)}{\partial x_{k}} \phi_{k}(x) dx \text{ (log trick)}$$

$$= 0$$

Now, let μ a smooth density supported on \mathcal{X} different from π . Now, Eq. 1 do not hold anymore with $x \sim \mu$. However, we can use $\mathbb{E}_{x \sim \mu}[\mathcal{A}_{\pi}\phi(x)]$ as a discrepancy measure between μ and π , as its magnitude relates to how different μ and π are (see Liu and Wang [2016] & Liu [2017]). The objective becomes:

$$\mu^* = \arg\min_{\mu} \, \mathbb{S}(\mu, \pi) = \arg\min_{\mu} \, \max_{\phi \in \mathcal{H}} \{ \mathbb{E}_{x \sim \mu} [\mathcal{A}_{\pi} \phi(x)] \}$$
 (2)

As $\mathbb{S}(\mu, \pi) = 0$ iff $\mu = \pi$ and $\mathbb{S}(\mu, \pi) > 0$ otherwise with \mathcal{H} sufficiently large. The choice of \mathcal{H} is therefore crucial. One way to ensure it is both rich enough and computationally tractable is to let \mathcal{H} be a RKHS.

Bibliography

Qiang Liu. Stein variational gradient descent as gradient flow, 2017. URL https://arxiv.org/abs/1704.07520.

Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose bayesian inference algorithm, 2016. URL https://arxiv.org/abs/1608.04471.