

Democratizing innovation in the 5G era

Florian Kaltenberger (Eurecom)

Traditional RAN → Open RAN ♀ RAN

Pre-Defined Functionality

Source: open RAN policy coalition

Open RAN ≠ Open Source

- But combination of both is a powerful tool to build sovereign networks
- OpenAirInterface (OAI) is the most complete, open-source implementation of 3GPP 4G/5G RAN and EPC/5GC
- Other types of open-source software
 - ORAN OSC (partially open-source RAN, 3GPP-friendly licensing)
 - srsLTE/srsRAN (4G/5G RAN, OSI licensing)
 - OMEC (EPC, OSI Licensing)
 - Magma (EPC/5GC, OSI Licensing)
 - Free5gc (5GC, OSI Licensing)
 - Open5gs (EPC/5GC, OSI Licensing)

3

The OpenAirInterface Software Alliance

- Launched in 2014 as an endowment fund (French "Fonds de Dotation")
- Current strategic members

- Many associate members
- Goals:
 - Promote OpenAirInterface and its open-source licensing model
 - Support the community of developers and users
 - Accept donations to maintain engineering support team

OAI Projects

5G RAN

OAI 5G RAN PROJECT GROUP
OpenAirInterface 5G Radio Access Network
Project The scope of the OAI 5G RAN project
is to build...

Read more

5G CORE NETWORK

5G CORE NETWORK The scope of 5G CN project developments is to deliver a 3GPP compliant 5G Core Network under the OAL...

Read more

MOSAIC5G

OAI MOSAIC5G PROJECT GROUP

OpenAirInterface MOSAIC5G Project Group

The newly created MOSAIC5G (M5G) PROJECT

GROUP aims to transform radio access (RAN)

and...

Read more

OAI License

- OAI Public License Components
 - 4G / 5G RAN: eNB/gNB/UE L1/L2 Network functions, RF modeling
 - 5G Core: 3GPP Service-Based Architecture Network **functions**
 - Mosaic5G: RAN and Core Controller functions, Orchestration and Management
- 3-Clause BSD Components
 - Rel16 MME (4G/5G NSA) as part of Magma **Foundation**

OAI cloud native deployment

OAI 5G deployment options

Non-standalone (ENDC)

Standalone

OAI supported hardware platforms

- Tested RRUs
 - USRP B210, X310, and N310 (for LTE and NR)
 - Benetel RRU (NSA bands 7 and n78 only): O-RAN 7.2 split
 - AW2S (LTE and NR): eCPRI
- Tested UEs
 - Oppo Reno 5G
 - Samsung A90 5G
 - Samsung A42 5G
 - Google Pixel 5G
 - Simcom SIMCOM8200EA
 - Quectel RM500Q-GL
 - Huawei Mate 30

NSA only

SA & NSA

Functional splits in OAI 4G/5G

F1-C and F1-U

- Revised implementation under integration
- Interoperability testing with Acceleran ongoing

5G FAPI

- today all L1 procedures compliant with SCF 5G FAPI
- 5G nFAPI

Fronthaul

- O-RAN 7.2 U-plane done (with Benetel)
- Interoperability with other RRUs planned for 2H 2021
- Integration of Xilinx T1 card

T1 LDPC Offload

- Channel coding/decoding consumes most energy/processing time
 - 91% of total RX processing time in OAI
- Xilinx T1 accelerator card
 - Contains ZU19EG MPSoC and ZU21DR RFSoC
 - Offload of forward error correction and fronthaul
 - Bitstream and drivers provided by VVDN
- LDPC channel decoding integrated in OAI
 - Works with nr_ulsim and nr-softmodem

T1 LDPC Offload

12

NR-PUSCH, SCS 30kHz, 106PRB, 120FDM symbols, 1 DRMS, SISO, TDL-C channel

Florian Kaltenberger, Hongzhi Wang, Saktivel Velumani, "Performance evaluation of offloading LDPC decoding to an FPGA in 5G baseband processing," Workshop on Smart Antennas (WSA2021), Sophia-Antipolis, France, 10-12.11.2021.

5G CORE

5GC Component Implementation Status

- AMF: https://gitlab.eurecom.fr/oai/oai-cn5g-amf
- SMF: https://gitlab.eurecom.fr/oai/oai-cn5g-smf
- UPF: https://github.com/OPENAIRINTERFACE/openair-spgwu-tiny
- Docker containers and deployment: https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-fed
- Support basic call flows:
 - Connection and registration procedures: UE registration/de-registration, service request
 - Session management procedures: PDU session establishment, modification, release
- Validated with
 - a professional tester (DsTester) (https://youtu.be/ENQiwl2EYI8)
 - Amarisoft gNB + COTS UE (https://youtu.be/N5wuhh-1dxk)
 - OAI gNB + COTS UE or OAI UE (https://youtu.be/ZD4tEgCNv9E)
- CI/CD framework:
 - Deployment of AMF, SMF and UPF in docker containers (Ubuntu bionic)
 - Validation with DsTester

THANK YOU

17

