CHAPITRE

15

ARITHMÉTIQUE DANS L'ANNEAU $(\mathbb{Z}, +, \cdot)$

15.1 DIVISIBILITÉ

§1 La relation « divise » dans \mathbb{Z}

Définition 1

Soit $(a, b) \in \mathbb{Z}^2$. On dit que a divise b, et l'on note $a \mid b$ lorsqu'il existe $q \in \mathbb{Z}$ tel que b = aq.

Dans ce cas, on dit aussi que a est un **diviseur** de b ou que b est un **multiple** de a.

Notation

- On note par $a\mathbb{Z} = \{ aq \mid q \in \mathbb{Z} \}$ l'ensemble des multiples de a.
- On note $D(b) = \left\{ a \in \mathbb{N} \mid a \mid b \right\}$ l'ensemble des diviseurs positifs de b.

Exemples 2

- **1.** 5 | 210, 3 | 18.
- **2.** $D(6) = \{1, 2, 3, 6\}.$
- **3.** $4\mathbb{Z} = \{ \dots, -16, -12, -8, -4, 0, 4, 8, 12, 16, \dots \}.$
- **4.** 0 est divisible par n'importe quel entier et le seul entier divisible par 0 est 0.

$$\forall a \in \mathbb{Z}, a \mid 0 \text{ et } \left(0 \mid a \iff a = 0\right).$$

5. Le seul diviseurs de 1 est 1, mais 1 divise tout entier relatif.

$$\forall b \in \mathbb{Z}, 1 \mid b.$$

Proposition 3

Lien avec la relation \leq

La divisibilité est liée à l'ordre naturel sur Z par

$$\forall b \in \mathbb{Z}, \forall a \in \mathbb{Z}, a \mid b \implies (b = 0 \ ou \ |a| \le |b|).$$

La réciproque est fausse.

Démonstration. Pour tout $k \ge 1$, on a $k|a| \ge |a|$.

Proposition 4

Propriétés de la relation $\Big| \sup \mathbb{Z} \Big|$

La relation $| sur \mathbb{Z} est$

1. réflexive : $\forall a \in \mathbb{Z}, a \mid a$;

2. transitive: $\forall (a, b, c) \in \mathbb{Z}^3, (a \mid b \text{ et } b \mid c) \implies a \mid c$;

Démonstration.

1. Soit $a \in \mathbb{Z}$. On a $a = a \times 1$ et $1 \in \mathbb{Z}$, donc $a \mid a$.

2. Soient $a, b, c \in \mathbb{Z}$ tels que $a \mid b$ et $b \mid c$. Il existe donc $p, q \in \mathbb{Z}$ tels que b = qa et c = pb, d'où

$$c = (qp)a$$
 et $qp \in \mathbb{Z}$,

c'est-à-dire, $a \mid c$.

Corollaire 5

Soit $(a, b) \in \mathbb{Z}^2$.

$$a \mid b \iff b \in a\mathbb{Z} \iff b\mathbb{Z} \subset a\mathbb{Z}.$$

Définition 6

Soit $(a, b) \in \mathbb{Z}^2$. On dit que les entiers a et b sont **associés** si $(a \mid b \text{ et } b \mid a)$.

Proposition 7

Caractérisation des couples d'entiers associés

Soit $(a,b) \in \mathbb{Z}^2$. Les assertions suivantes sont équivalentes

1. a et b sont associés.

2.
$$a\mathbb{Z} = b\mathbb{Z}$$
.

3. a = b ou a = -b.

§2 Compatibilité avec les opérations algébriques

Proposition 8

Compatibilité avec les opérations algèbriques

Soit $(a, b, c, d) \in \mathbb{Z}^4$.

1. Combinaison linéaire à coefficients entiers : si a | b et a | c, alors

$$\forall (u,v) \in \mathbb{Z}^2 \ a \ \Big| \ ub + vc.$$

En particulier, si $a \mid b$ et $a \mid c$, alors $a \mid b + c$ et $a \mid b - c$.

2. Produit: Si $a \mid b$ et $c \mid d$, alors $ac \mid bd$.

En particulier, si $a \mid b$ alors pour tout $k \in \mathbb{N}$, $a^k \mid b^k$.

3. Multiplication/division par un entier : si $c \neq 0$, alors $a \mid b \iff ac \mid bc$.

Démonstration. 1. Supposons $a \mid b$ et $a \mid c$, alors il existe $p, q \in \mathbb{Z}$ tels que b = pa et c = qa. Pour tout $u, v \in \mathbb{Z}$, on a

$$ub + vc = upa + vqa = (up + vq)a$$
 et $up + vq \in \mathbb{Z}$,

c'est-à-dire, $a \mid ub + vc$.

2. Supposons $a \mid b$ et $c \mid d$, alors il existe $p, q \in \mathbb{Z}$ tels que b = pa et d = cq. Alors

$$bd = (pa)(cq) = (pq)(ac)$$
 et $pq \in \mathbb{Z}$,

c'est-à-dire, ac | bd.

3. (\Longrightarrow) On a toujours $c \mid c$, donc si $a \mid b$, on a $ac \mid bc$.

(\iff) Si $ac \mid bc$ et $c \neq 0$, alors il existe $q \in \mathbb{Z}$ tel que bc = acq, en divisant cette égalité par $c \neq 0$, on obtient

$$b = aq$$
 et $q \in \mathbb{Z}$,

c'est-à-dire, $a \mid b$.

15.2 DIVISION EUCLIDIENNE

§1 Division euclidienne

Définition 9

Division euclidienne dans \mathbb{Z}

Soient $a \in \mathbb{Z}$ et $b \in \mathbb{N}^*$. Alors il existe un unique couple d'entiers $(q, r) \in \mathbb{Z} \times \mathbb{N}$ vérifiant

et

0 < r < b.

$$a = bq + r$$

- q est le **quotient** de la division euclidienne de a par b.
- r est le **reste** de la division euclidienne de a par b et on le note $a \mod b$..

L'opération qui remplace a par r s'appelle la **réduction modulo** b.

Démonstration. • Commençons prouver l'unicité d'un couple $(q,r) \in \mathbb{Z} \times \mathbb{N}$ tel que a = bq + r et $0 \le r < b$. Supposons l'existence de deux couples (q,r) et (q',r') vérifiant ces conditions. Alors a = qb + r = q'b + r', d'où r - r' = b(q - q'); ainsi b divise |r - r'|. Puisque $0 \le r < b$ et $0 \le r' < b$, on en déduit -b < r - r' < b, c'est-à-dire $0 \le |r - r'| < b$. Or le seul multiple de b dans [0, b[est 0, on a donc $0 \le r'$ et $0 \le r'$

Soit E = { k ∈ Z | kb ≤ a }. Cet ensemble est une partie non vide et majorée de Z. En effet, si a ≥ 0, 0 ∈ E et a majore E (car b ≥ 1). Si a < 0, alors 0 majore E.
L'ensemble E admet donc un plus grand élément q. On a donc qb ≤ a < (q + 1)b (sinon q + 1 ∈ E) et en posant r = a - bq, on a bien 0 ≤ r < b.

Exemple 10

543 17 Ici
$$a = 543, b = 17, q = 31, r = 16.$$
33 31

Proposition 11

Soit r le reste de la division euclidienne de a par b. On a

$$b \mid a \iff r = 0.$$

§2 Sous-groupes de $(\mathbb{Z}, +)$

Définition 12

Une partie A de \mathbb{Z} est appelée **sous-groupe** (additif) de \mathbb{Z} si elle vérifie les conditions ci-dessous:

- **1.** $0 \in A$.
- 2. A est stable pour l'addition:

$$\forall (x, y) \in A^2, x + y \in A.$$

3. A est stable par passage à l'opposé:

$$\forall x \in A, -x \in A.$$

Théorème 13

- 1. Pour tout entier $a \in \mathbb{Z}$, $a\mathbb{Z}$ est un sous-groupe de \mathbb{Z} .
- 2. Réciproquement, soit A un sous-groupe de \mathbb{Z} , il existe un unique entier $a \geq 0$ tel que

$$A = a\mathbb{Z}$$
.

Proposition 14

Soient A et B deux sous-groupes de \mathbb{Z} , alors l'intersection $A \cap B$ de ces deux sous-groupes est un sous-groupe de \mathbb{Z} .

Proposition 15

Soient A et B deux sous-groupes de \mathbb{Z} , alors la somme de ces deux sous-groupes

$$A + B = \{ x + y \mid x \in A \text{ et } y \in B \}$$

est un sous-groupe de \mathbb{Z} .

15.3 LES NOMBRES PREMIERS

§1 Définition

Définition 16

Un **nombre premier** est un entier naturel $p \ge 2$ dont les seuls diviseurs strictement positifs sont 1 et p. On note \mathbb{P} l'ensemble des nombres premiers.

Avec des quantificateurs, cela s'écrit

$$\forall (a, b) \in \mathbb{N}, p = ab \implies a = 1 \text{ ou } b = 1.$$

Proposition 17

Pour qu'un entier p > 1 soit premier, il faut et il suffit qu'il ne soit pas produit de deux entiers strictement plus grand que 1.

Théorème 18

(Euclide)

Tout entier n > 1 est un produit (fini) de nombres premiers. En particulier, n possède au moins un diviseur premier.

§2 Crible d'Erathosthène

Proposition 19

Soit n > 1. Si n n'est pas premier, il possède un facteur premier p tel que $p^2 \le n$.

Algorithme 20

Crible d'Erathosthène

Si l'entier n n'est divisible par aucun nombre premier p tel que $p^2 \le n$, alors n est un nombre premier.

						7			
11	12	13	14	15	16	<u>17</u>	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
						87			
91	92	93	94	95	96	97	98	99	100

§3 Ensemble des nombres premiers

Théorème 21

L'ensemble \mathbb{P} *des nombres premiers est infini.*

De très nombreuses preuves de ce résultat existent. Proposons ici la démonstration d'Euclide, sans doute la plus connue, en raisonnant par l'absurde.

Démonstration. Supposons que l'ensemble des nombres premiers $\mathbb P$ soit fini. On peut alors écrire $\mathbb P=\left\{p_1,\ldots,p_k\right\}$. On introduit l'entier $n=p_1p_2\ldots p_k+1\geq 2$. Cet entier a un diviseur premier p. Ce nombre premier p est donc l'un des p_i . Or p divise n et divise $p_1p_2\ldots p_k=n-1$, donc p divise (n-1)-n=1, ce qui est absurde.

15.4 PLUS GRAND COMMUN DIVISEUR, ALGORITHME D'EUCLIDE

§1 Plus grand commun diviseur de deux entiers

Définition 22

Soient a et b deux entiers relatifs quelconques. On appelle **plus grand commun diviseur** (ou pgcd) de a et b l'unique entier $d \ge 0$ tel que

$$a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$$
.

on note cet entier pgcd(a, b) ou $a \wedge b$.

Théorème 23

Soient a et b deux entiers relatifs quelconques et d = pgcd(a, b).

- 1. L'entier d divise a et b.
- 2. Réciproquement, tout diviseur commun à a et b divise d.
- 3. On a la relation de Bézout:

$$\exists (u, v) \in \mathbb{Z}^2, ua + vb = d.$$

4. Si a et b sont deux entiers relatifs non nuls, alors

$$pgcd(a, b) = max \left\{ n \in \mathbb{N} \mid n \mid a \ et \ n \mid b \right\}.$$

Test 24

Déterminer le pgcd de 105 et 48.

Remarque

- On a toujours pgcd(0, 0) = 0.
- On a toujours pgcd(a, 0) = |a|.
- Si $a, b \in \mathbb{Z}$, pgcd(a, b) = pgcd(|a|, |b|).
- a divise b si, et seulement si, pgcd(a, b) = |a|.

Remarque

 \cong La relation divise est une relation d'ordre dans \mathbb{N} (mais pas dans \mathbb{Z}). Pour tous $a, b \in \mathbb{N}$, le pgcd de a et b est le plus grand (pour la relation divise) des minorants (c'est-à-dire les diviseurs) de $\{a, b\}$. Autrement dit, pgcd(a, b) est la borne inférieure de $\{a, b\}$ pour la relation divise dans \mathbb{N} .

§2 Entiers premiers entre eux

Définition 25

Soient $a, b \in \mathbb{Z}$. On dit que a et b sont **premiers entre eux** lorsque leur seuls diviseurs communs sont -1 et 1:

$$\forall d \in \mathbb{Z}, (d \mid a \text{ et } d \mid b \implies d = \pm 1).$$

Théorème 26

Égalité de Bézout

Soient a et b deux entiers. Les assertions suivantes sont équivalentes

- 1. Les entiers a et b sont premiers entre eux.
- **2.** pgcd(a, b) = 1
- 3. $\exists (u, v) \in \mathbb{Z}^2, ua + vb = 1.$

Définition 27

Le nombre des entiers k vérifiant

$$1 \le k \le n$$
 et $pgcd(k, n) = 1$

est noté $\varphi(n)$. L'application $\varphi: \mathbb{N}^* \to \mathbb{N}^*$ ainsi définie s'appelle **indicateur d'Euler**.

Définition 28

Soient $a_1, a_2, \dots, a_r \in \mathbb{Z}$.

- On dit que a_1, \ldots, a_r sont **premiers entre eux dans leur ensemble** si leurs seuls diviseurs communs sont ± 1 .
- On dit que a_1, \ldots, a_r sont **premiers entre eux deux à deux** a_i et a_j sont premiers entre eux pour tous $i, j \in [1, r]$ distincts.

§3 Lemme de Gauß, lemme d'Euclide

Théorème 29

Lemme de Gauß

Si a est premier avec b et a divise bc, alors a divise c.

Démonstration. Il existe des entier u, v, w tel que ua + vb = 1 et bc = aw. On peut donc écrire

$$c = uac + vbc = uac + vaw = a(uc + vw).$$

Théorème 30

Lemme d'Euclide

Un entier $p \ge 2$ *est un nombre premier si et seulement si il vérifie la condition*

$$\forall (a,b) \in \mathbb{Z}^2, p \mid ab \implies (p \mid a \ ou \ p \mid b);$$

appelée lemme d'Euclide.

Démonstration. C'est un cas particulier du lemme de Gauß. Ou bien p divise a, ou bien il est premier avec a et il divise alors b.

Une démonstration directe, sans utiliser le lemme de Gauß.

Soit p premier divisant ab mais pas a. Nous devons donc montrer que p divise b.

L'ensemble A des entiers n > 0 tels que p divise an contient p, b et $m = \min A > 0$, mais pas 1, donc m > 1.

Pour tout $n \in A$, effectuons la division euclidienne n = mq + r, avec $0 \le r < m$; alors p divise an - (am)q = ar. Comme r < m, on a $r \notin A$, d'où r = 0, ce qui montre que m divise n. En particulier, m divise p et p. Or p est premier et p = p 1, donc p = p qui divise ainsi p .

Corollaire 31

- 1. Si p premier divise $a_1 a_2 \cdots a_n$, il divise au moins l'un des facteurs.
- **2.** Si p premier divise a^n , $(n \in \mathbb{N}^*)$, alors il divise a.

Théorème 32

- 1. Si a est premier avec b et c, alors a est premier avec bc.
- 2. Si a et b sont premiers entre eux, et que $a \mid c$ et $b \mid c$, alors $ab \mid c$.

Démonstration. À faire (exercice!).

§4 Algorithme d'Euclide

Théorème 33

Soient des entiers a et b.

- 1. Soit k un entier, alors pgcd(a, b) = pgcd(a kb, b).
- 2. $Si \ b > 0$, pgcd(a, b) = pgcd(b, r) avec $r = a \mod b$.
- 3. Soit un entier m > 0, alors $pgcd(ma, mb) = m \times pgcd(a, b)$.
- **4.** Soit un entier d > 0; si d divise a et b, soient a' et b' les entiers tels que a = da' et b = db'. Alors d est le pgcd de a et b si, et seulement si, a' et b' sont premiers entre eux.

Algorithme 34 Algorithme d'Euclide

On pose $r_0 = a$, $r_1 = b$, puis pour tout k jusqu'à avoir $r_N = 0$,

$$r_{k+2} = r_k \mod r_{k+1},$$

c'est-à-dire r_{k+2} est le reste dans la division euclidienne de r_k par r_{k+1} . Alors $\operatorname{pgcd}(a,b)=r_{N-1}$.

Exemple 35

On a pgcd(105, 48) = 3.

En «remontant les calculs», cela permet de trouver des entiers $u, v \in \mathbb{Z}$ tels que

$$105u + 48v = 3$$
.

Algorithme 36 Algorithme d'Euclide étendu

On peut supposer que $0 \le b \le a$ et on note $r_0 = a$ et $r_1 = b$. Tant que $r_{k+1} > 0$, on effectue la division euclidienne de r_k par r_{k+1} :

$$r_k = q_{k+2}r_{k+1} + r_{k+2}.$$

La suite ainsi construite est finie, de rang final N pour lequel $R_N = 0$.

On définit alors deux nouvelles suite finies $(u_k)_{0 \le k \le N}$ et $(v_k)_{0 \le k \le N}$ par les relations

$$\begin{split} (u_0,v_0) &= (1,0) \\ (u_1,v_1) &= (0,1) \\ \forall k \in [\![0,N-2]\!], \left(u_{k+2},v_{k+2}\right) &= \left(u_k-q_{k+2}u_{k+1},v_k-q_{k+2}v_{k+1}\right). \end{split}$$

On vérifie alors par récurrence que pour tout $k \in [0, N]$,

$$H(k)$$
: $r_k = au_k + bv_k$.

En effet, on on a

$$r_0 = a = a \times 1 + b \times 0 = au_0 + bv_0$$

et $r_1 = b = a \times 0 + b \times 0 = au_1 + bv_1$.

D'où H(0) et H(1). Soit $k \in [0, N-2]$. On suppose H(k) et H(k+1), c'est-à-dire

$$r_k = au_k + bv_k$$
 et $r_{k+1} = au_{k+1} + bv_{k+1}$.

Alors

$$\begin{aligned} r_{k+2} &= r_k - q_{k+2} r_{k+1} \\ &= (a u_k + b v_k) - q_{k+2} \left(a u_{k+1} + b v_{k+1} \right) \\ &= a \left(u_k - q_{k+2} u_{k+1} \right) + b \left(v_k - q_{k+2} v_{k+1} \right) \\ &= a u_{k+2} + b v_{k+2}. \end{aligned}$$
 $\therefore H(k) \ et \ H(k+1)$

d'où H(k) et $H(k+1) \implies H(k+2)$.

D'après le principe de récurrence, la relation H(k) est donc vérifiée pour tout $k \in [0, N]$, en particulier

$$pgcd(a, b) = R_{N-1} = au_{N-1} + bv_{N-1}.$$

§5 Plus petit commun multiple de deux entiers

Définition 37 Soient a et b deux entiers relatifs quelconques. On appelle **plus petit commun multiple** (ou ppcm) de a et b l'unique entier $m \ge 0$ tel que

$$a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$$
,

on note cet entier ppcm(a, b) ou $a \lor b$.

Théorème 38

Soient a et b deux entiers relatifs quelconques et m = ppcm(a, b).

- 1. L'entier m est un multiple de a et de b.
- 2. Réciproquement, tout multiple commun à a et b est multiple de m.
- 3. Si a et b sont deux entiers relatifs non nuls, alors

$$ppcm(a, b) = \min (a\mathbb{Z} \cap b\mathbb{Z} \cap \mathbb{N}^*).$$

§6 Généralisation

Définition 39

Soient $a_1, a_2, \dots, a_r \in \mathbb{Z}$.

• On appelle **plus grand commun diviseur** de a_1, \ldots, a_r l'unique entier naturel d pour lequel

$$a_1 \mathbb{Z} + a_2 \mathbb{Z} + \dots + a_r \mathbb{Z} = d \mathbb{Z}.$$

• On appelle **plus petit commun multiple** de a_1, \ldots, a_r l'unique entier naturel m pour lequel

$$a_1\mathbb{Z} \cap a_2\mathbb{Z} \cap \cdots \cap a_r\mathbb{Z} = m\mathbb{Z}.$$

15.5 DÉCOMPOSITION EN FACTEURS PREMIERS

§1 Facteurs premiers d'un entier. Le théorème de décomposition

Théorème 40

Décomposition en facteurs premiers

Soit $n \in \mathbb{N}$ tel que $n \ge 2$. Alors n admet une factorisation unique en facteurs premiers, à l'ordre des facteurs près, c'est-à-dire

$$\exists ! m \in \mathbb{N}^{\star}, \exists ! (p_1, \dots, p_m) \in \mathbb{P}^m, p_1 \leq p_2 \leq \dots \leq p_m \ et \ n = p_1 p_2 \cdots p_m.$$

Exemple 41

$$90 = 9 \times 10 = 3 \times 3 \times 2 \times 5 = 2 \times 3 \times 3 \times 5 = 2 \times 3^2 \times 5.$$

§2 Valuation *p*-adique

Définition 42

La décomposition de $n \ge 2$ en facteurs premiers peut également s'écrire sous la forme

$$n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \cdots \cdot p_r^{\alpha_r}$$

où

- les p_i sont des nombres premiers deux à deux distincts,
- $\alpha_i \geq 1$.

Cette écriture est unique, à l'ordre des facteurs près.

- L'entier α_i est appelé **exposant** du nombre premier p_i dans la décomposition de n en facteur premier et noté $v_{p_i}(n)$.
- Si p est un nombre premier distinct de p_1, \dots, p_r , on pose $v_p(n) = 0$.

On dit que $v_p(n)$ est la **valuation** *p***-adique** de *n*, on a donc

$$v_p(n) = \max \left\{ k \in \mathbb{N} \mid p^k \mid n \right\}.$$

Proposition 43

Soit $a, b \in \mathbb{N}^*$, et $p \in \mathbb{P}$. On a

$$v_p(ab) = v_p(a) + v_p(b).$$

Proposition 44

Soit $a, b \in \mathbb{N}^*$, alors $a \mid b$ si, et seulement si

$$\forall p \in \mathbb{P}, v_p(a) \le v_p(b).$$

Proposition 45

Soit n un entier non nul qui se décompose en produit de facteurs premiers (distincts) de la façon suivante

$$n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_r^{\alpha_r}$$

Alors, les diviseurs de n dans \mathbb{N}^* sont les entiers naturels de la forme

$$d=p_1^{\gamma_1}\cdot p_2^{\gamma_2}\cdot \cdots \cdot p_r^{\gamma_r}, \quad avec \ 0\leq \gamma_i\leq \alpha_i \ pour \ i=1\dots r.$$

Test 46

Quels sont les diviseurs de 90?

§3 Applications

Proposition 47

Soit a et b deux entiers non nuls qui se décomposent en produits de facteurs premiers (distincts) de la façon suivante

$$a = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_r^{\alpha_r} \qquad b = p_1^{\beta_1} \cdot p_2^{\beta_2} \cdot \dots \cdot p_r^{\beta_r}$$

où les α_i et β_i sont des entiers éventuellement nuls. Alors

$$\operatorname{pgcd}(a,b) = p_1^{\min(\alpha_1,\beta_1)} \times p_2^{\min(\alpha_2,\beta_2)} \times \cdots \times p_r^{\min(\alpha_r,\beta_r)}$$

Test 48

Retrouver le pgcd de 105 et 48.

Proposition 49

Soit a et b deux entiers non nuls qui se décomposent en produits de facteurs premiers (distincts) de la façon suivante

$$a = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_r^{\alpha_r} \qquad \qquad b = p_1^{\beta_1} \cdot p_2^{\beta_2} \cdot \dots \cdot p_r^{\beta_r}$$

où les α_i et β_i sont des entiers éventuellement nuls. Alors

$$\mathrm{ppcm}(a,b) = p_1^{\max(\alpha_1,\beta_1)} \times p_2^{\max(\alpha_2,\beta_2)} \times \cdots \times p_r^{\max(\alpha_r,\beta_r)}$$

Proposition 50

Soit de entiers a > 0 et b > 0. Si d = pgcd(a, b) et m = ppcm(a, b), alors ab = dm.

Démonstration. On remarque que pour $x, y \in \mathbb{N}$, on a $x + y = \max(x, y) + \min(x, y)$. Il suffit alors de comparer les exposants de p dans ab et dm: ils sont égaux.

15.6 LA RELATION DE CONGRUENCE

§1 La notion de congruence dans \mathbb{Z}

Définition 51

Soit $a, b, n \in \mathbb{Z}$ trois entiers. On défini la relation de congruence par

$$(a \equiv b \pmod{n}) \iff (\exists k \in \mathbb{Z}, a = b + kn).$$

On dit que «a est **congru** à b **modulo** n». Les réels a et b diffèrent donc d'un multiple entier de n c'est-à-dire $x - y \in n\mathbb{Z}$.

Proposition 52

Soit $n \in \mathbb{Z}$. La relation de congruence modulo n est une relation d'équivalence sur \mathbb{Z} .

La classe d'équivalence de $a \in \mathbb{Z}$ modulo n est

$$a + n\mathbb{Z} = \{ a + kn \mid k \in \mathbb{Z} \}.$$

Exemple 53

- $230897 \equiv 7 \pmod{10}$.
- $17 \equiv 2 \pmod{3}$, mais aussi $17 \equiv -1 \pmod{3}$.

§2 Lien avec la division euclidienne

Proposition 54

Soit $a, b, r \in \mathbb{Z}$. Le reste de la division euclidienne de a par b est r si, et seulement si

$$a \equiv r \pmod{b}$$
 et $0 \le r < b$.

On a donc

$$b \mid a \iff a \equiv 0 \pmod{b}.$$

§3 Compatibilité avec les opérations algébriques

Proposition 55

Soient $n \in \mathbb{Z}^*$, $a, b, c, d, k \in \mathbb{Z}$ et $p \in \mathbb{N}$.

1. Si $a \equiv b \pmod{n}$ et $c \equiv d \pmod{n}$, alors

$$a + c \equiv b + d \pmod{n}$$
; $a - c \equiv b - d \pmod{n}$; $ac \equiv bd \pmod{n}$.

2. Si $a \equiv b \pmod{n}$, alors

$$ka \equiv kb \pmod{kn}$$
; $ka \equiv kb \pmod{n}$; $a^p \equiv b^p \pmod{n}$

Test 56

Démontrer la proposition précédente.

§4 Équations du premier degré en congruence

Soit un entier n > 0, et $a, b \in \mathbb{Z}$. On cherche les entiers $x \in \mathbb{Z}$ tels que

$$ax \equiv b \pmod{n}$$
.

Tout revient à chercher $x \in \mathbb{Z}$ pour lequel il existe $y \in \mathbb{Z}$ tel que ax + ny = b. Ce problème a déjà été étudié et il admet des solutions si, et seulement si b est un multiple de pgcd(a, n).

On se limite désormais au cas où a est premier avec n. L'égalité de Bézout permet d'introduire $(u,v)\in\mathbb{Z}^2$ tel que

$$au + nv = 1$$
.

On a $au \equiv 1 \pmod{n}$ et on dit que u est **un inverse modulo** n de a. Il y a unicité de u si l'on décide que $0 \le u < n$.

Pour résoudre $ax \equiv b \pmod{n}$, multiplions par u:

$$aux \equiv ub \pmod{n}$$
, c'est-à-dire $x \equiv ub \pmod{n}$.

Inversement, et en remultipliant par n, on trouve comme solution du problème tout entier congru à $ub \pmod{n}$.

Exemple 57

Résoudre $5x \equiv 9 \pmod{17}$.

§5 Théorème Chinois

Théorème 58

Théorème Chinois

Soient m_1, \ldots, m_r des entiers premiers entre eux deux à deux $(m_i \ge 2$ et $r \ge 2)$ et M leur produit. Étant donnée des entiers a_1, \ldots, a_r , considérons le système de congruences

$$\forall i \in \{1, \dots, r\}, x \equiv a_i \pmod{m_i}. \tag{S}$$

Ce système possède une solution $x \in \mathbb{Z}$, qui est unique modulo M.

Démonstration. Commençons par l'unicité. Soient $x, y \in \mathbb{Z}$ deux solutions de (S). Pour tout $i, x \equiv a_i \equiv y \pmod{m_i}$, donc x - y est multiple de m_i . Ainsi, x - y est multiple du ppcm des m_i qui vaut M puisque les m_i sont premiers entre eux deux à deux. D'où $x \equiv y \pmod{M}$.

Pour l'existence, supposons que r=2. Puisque m_1 et m_2 sont premiers entre eux, il existe $u, v \in \mathbb{Z}$ tels que

$$um_1 + vm_2 = 1.$$

Posons $x_1 = vm_2 = 1 - um_1$ et $x_2 = um_1 = 1 - vm_2$. Alors

$$x_1 \equiv 1 \pmod{m_1},$$
 $x_2 \equiv 0 \pmod{m_1},$ $x_1 \equiv 0 \pmod{m_2},$ $x_2 \equiv 1 \pmod{m_2}.$

Posons $x_0 = a_1x_1 + a_2x_2$. Alors x_0 est solution de (S), ainsi que tout $x \equiv x_0 \pmod{M}$. Pour le cas général, on effectue une récurrence sur r.

Exemple 59

La preuve précédente fournit une méthode pratique de résolution du système. Résoudre par exemple

$$x \equiv 5 \pmod{17}$$
 et $x \equiv 3 \pmod{23}$. (S)

Les nombre 17 et 23 étant premiers entre eux, il existe $u, v \in \mathbb{Z}$ tels que 17u + 23v = 1, par exemple (u, v) = (-4, 3) convient. On pose $x_1 = 3 \times 23 = 69$ et $x_2 = 17 \times (-4) = -68$. D'où une solution de (S)

$$x_0 = 5x_1 + 3x_2 = 5 \times 69 + 3 \times (-68) = 141.$$

Ensuite,

$$x \equiv 5 \pmod{17} \quad \text{et} \quad x \equiv 3 \pmod{23}$$

$$\iff x \equiv x_0 \pmod{17} \quad \text{et} \quad x \equiv x_0 \pmod{23}$$

$$\iff 17 \mid (x - x_0) \quad \text{et} \quad 23 \mid (x - x_0)$$

$$\iff 391 \mid (x - x_0) \quad \text{car pgcd}(17, 23) = 1.$$

Les solutions de (S) sont donc les entiers

$$x = 141 + 391k$$
 avec $k \in \mathbb{Z}$.

§6 Petit théorème de Fermat

Théorème 60

Petit théorème de Fermat

Soit p un nombre premier. Si $a \in \mathbb{Z}$ n'est pas multiple de p, on a

$$a^{p-1} \equiv 1 \pmod{p}.$$

Démonstration. Supposons que a n'est pas divisible par p et notons

$$N = a \times 2a \times 3a \times \cdots \times (p-1)a = (p-1)!a^{p-1}.$$

Pour tout entier k, notons r_k le reste de la division euclidienne de ka par p. Alors

$$N \equiv r_1 \times r_2 \times \dots r_{p-1} \pmod{p}.$$

Montrons que r_1, \ldots, r_{p-1} sont tous distincts deux à deux. En effet, si $r_i = r_j$, alors (i - j)a est divisible par p, donc, en utilisant le lemme d'Euclide, (i - j) est aussi divisible par p. Or -p < i - j < p, on a donc nécessairement i = j.

De plus, en utilisant de nouveau le lemme d'Euclide, aucun ka n'est divisible par p, donc aucun r_k n'est nul. On en déduit alors que $(r_1, r_2, \dots, r_{p-1})$ est une permutation de $(1, 2, \dots, p-1)$ et donc

$$r_1 \times r_2 \times r_3 \times \dots r_{n-1} = (p-1)!$$

Finalement, on en déduit

$$(p-1)!a^{p-1} \equiv (p-1)! \pmod{p},$$

autrement dit, $(p-1)!(a^{p-1}-1)$ est divisible par p. Puisque p est premier, p ne divise pas (p-1)! et le lemme d'Euclide assure alors que $a^{p-1}-1$ est divisible par p.

Démonstration. On peut également faire une démonstration par récurrence (voir en exercice).

Un énoncé équivalent est

Théorème 61

Petit théorème de Fermat

Soit p un nombre premier et $a \in \mathbb{Z}$. On a

 $a^p \equiv a \pmod{p}$.