Proof of trigonometric formulas

Augustin ROLET

December 20, 2022

Contents

1	Fundamentals 1.1 Trigonometric circle 1.2 Basic relations 1.3 Periodic properties	2
2	Duplication2.1 Proof of duplication formulas	4 4
3	Addition	8
4	Equation	9
5	Table of Formulas	10

1 Fundamentals

1.1 Trigonometric circle

Figure 1: The unit circle with cosine and sine values for some common angles.

12 Basic relations

According to the trigonometric circle (cf. Figure 1) and the theorem of Pythagore:

$$\cos(x)^2 + \sin(x)^2 = 1 \tag{1}$$

Here are the fundamental relations between the trigonometric functions :

$$\tan(x) = \frac{\sin(x)}{\cos(x)} \tag{2}$$

$$\cot(x) = \frac{1}{\tan(x)}$$

$$\csc(x) = \frac{1}{\sin(x)} \implies \csc(x)^2 = \frac{\cos(x)^2 + \sin(x)^2}{\sin(x)^2} = \cot(x)^2 + 1$$

$$\sec(x) = \frac{1}{\cos(x)} \implies \sec(x)^2 = \frac{\cos(x)^2 + \sin(x)^2}{\cos(x)^2} = \tan(x)^2 + 1$$

1.3 Periodic properties

$$\begin{cases}
\sin(x+2k\pi) &= \sin(x) \\
\cos(x+2k\pi) &= \cos(x) \\
\tan(x+k\pi) &= \tan(x) \\
\cot(x+k\pi) &= \cot(x)
\end{cases}$$

$$\begin{cases}
\sin(-x) &= -\sin(x) \\
\cos(-x) &= \cos(x) \\
\tan(-x) &= -\tan(x) \\
\cot(-x) &= -\cot(x)
\end{cases}$$

2 Duplication

2.1 Proof of duplication formulas

Let $(a,b) \in \mathbb{R}^2$:

$$\begin{cases} e^{ia} = \cos(a) + i \cdot \sin(a) \\ e^{ib} = \cos(b) + i \cdot \sin(b) \end{cases}$$

$$e^{i(a+b)} = e^{ia} \times e^{ib}$$

$$= (\cos(a) + i \cdot \sin(a)) \times (\cos(b) + i \cdot \sin(b))$$

$$= \cos(a) \cos(b) + i \cdot \cos(a) \sin(b) + i \cdot \sin(a) \cos(b) + i^2 \cdot \sin(a) \sin(b)$$

$$\cos(a+b) + i \cdot \sin(a+b) = \cos(a) \cos(b) - \sin(a) \sin(b) + i \cdot (\sin(a) \cos(b) + \cos(a) \sin(b))$$

So, in \mathbb{R} and \mathbb{C} we get the formulas :

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$
(3)

$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b) \tag{4}$$

According to the relations 2, 3 and 4, we get:

$$\tan(a+b) = \frac{\sin(a+b)}{\cos(a+b)}$$

$$\tan(a+b) = \frac{\sin(a)\cos(b) + \cos(a)\sin(b)}{\cos(a)\cos(b) - \sin(a)\sin(b)} = \frac{\sin(a)\cos(b) + \cos(a)\sin(b)}{\cos(a)\cos(b) - \sin(a)\sin(b)}$$

We finally get:

$$\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}$$
(5)

2.2 Proof of periodic identities

$$\sin\left(\frac{\pi}{2} - x\right) = \sin\left(\frac{\pi}{2}\right)\cos(x) - \cos\left(\frac{\pi}{2}\right)\sin(x)$$

$$= 1 \cdot \cos(x) - 0 \cdot \sin(x)$$

$$= \cos(x)$$

$$\cos\left(\frac{\pi}{2} - x\right) = \cos\left(\frac{\pi}{2}\right)\cos(x) + \sin\left(\frac{\pi}{2}\right)\sin(x)$$

$$= 0 \cdot \cos(x) + 1 \cdot \sin(x)$$

$$= \sin(x)$$

$$\tan\left(\frac{\pi}{2} - x\right) = \tan\left(\frac{\sin(\frac{\pi}{2} - x)}{\cos(\frac{\pi}{2} - x)}\right)$$

$$= \cot(x)$$

$$\cot\left(\frac{\pi}{2} - x\right) = \cot\left(\frac{\cos(\frac{\pi}{2} - x)}{\sin(\frac{\pi}{2} - x)}\right)$$

$$= \tan(x)$$

$$\sin(\pi + x) = \sin(\pi)\cos(x) + \cos(\pi)\sin(x)$$

$$= 0\cos(x) + -1\sin(x)$$

$$= -\sin(x)$$

$$\cos(\pi + x) = \cos(\pi)\cos(x) - \sin(\pi)\sin(x)$$

$$= -1\cos(x) - 0\sin(x)$$

$$= -\cos(x)$$

$$\tan(\pi + x) = \frac{\sin(\pi + x)}{\cos(\pi + x)}$$

$$= \tan(x)$$

$$\cot(\pi + x) = \frac{\cos(\pi + x)}{\sin(\pi + x)}$$

$$= \cot(x)$$

$$\sin(\pi - x) = \sin(\pi)\cos(x) - \cos(\pi)\sin(x)$$

$$= 0\cos(x) - (-1)\sin(x)$$

$$= \sin(x)$$

$$\cos(\pi - x) = \cos(\pi)\cos(x) + \sin(\pi)\sin(x)$$

$$= -1\cos(x) + 0\sin(x)$$

$$= -\cos(x)$$

$$\tan(\pi - x) = \frac{\sin(\pi - x)}{\cos(\pi - x)}$$

$$= -\tan(x)$$

$$\cot(\pi - x) = \frac{\cos(\pi - x)}{\sin(\pi - x)}$$

$$= -\cot(x)$$

$$\sin(2x) = \sin(x + x)$$

$$= \sin(x)\cos(x) + \cos(x)\sin(x)$$

$$= 2\sin(x)\cos(x)$$

$$= \frac{2\sin(x)\cos(x)^{2}}{\cos(x)}$$

$$= 2\tan(x)\cos(x)^{2}$$

$$= \frac{2\tan(x)}{\frac{1}{\cos(x)^{2}}} (Calculation\ trick)$$

$$= \frac{2\tan(x)}{\frac{\sin(x)^{2} + \cos(x)^{2}}{\cos(x)^{2}}}$$

$$\sin(2x) = \frac{2\tan(x)}{\tan(x)^{2} + 1}$$
(6)

$$\cos(2x) = \cos(x + x)$$

$$= \cos(x)\cos(x) - \sin(x)\sin(x)$$

$$= \cos(x)^2 - \sin(x)^2$$

$$= \frac{\cos(x)^2 - \sin(x)^2}{\cos(x)^2}$$

$$= \frac{1}{\cos(x)^2}$$

$$= \frac{\cos(x)^2 - \sin(x)^2}{\cos(x)^2}$$

$$= \frac{\cos(x)^2 - \sin(x)^2}{\cos(x)^2}$$

$$= \frac{\sin(x)^2 + \cos(x)^2}{\cos(x)^2}$$

$$\cos(2x) = \frac{1 - \tan(x)^2}{\tan(x)^2 + 1}$$
 (7)

$$\tan(2x) = \frac{2\sin(x)\cos(x)}{\cos(x)^2 - \sin(x)^2}$$

$$= \frac{\frac{2\sin(x)\cos(x)}{\cos(x)^2}}{\frac{\cos(x)^2 - \sin(x)^2}{\cos(x)^2}}$$
 (Calculation trick)

$$\tan(2x) = \frac{2\tan(x)}{1 - \tan(x)^2}$$
 (8)

$$\cos(2x) = 1 - 2\sin(x)^2$$

$$\Leftrightarrow \boxed{\sin(x)^2 = \frac{1}{2} \Big(1 - \cos(2x) \Big)} \tag{9}$$

 $\Leftrightarrow \cos(2x) = 1 - 2(1 - \cos(x)^2)$ (cf. equation n°1)

$$\Leftrightarrow \left| \cos(x)^2 = \frac{1}{2} \left(1 + \cos(2x) \right) \right| \tag{10}$$

$$\implies \boxed{\tan(x)^2 = \frac{1 - \cos(2x)}{1 + \cos(2x)}} \tag{11}$$

 $\cos(a - b) - \cos(a + b) = \cos(a)\cos(b) + \sin(a)\sin(b) - (\cos(a)\cos(b) - \sin(a)\sin(b))$ = $2\sin(a)\sin(b)$

$$\Leftrightarrow \boxed{\sin(a)\sin(b) = \frac{1}{2}\left(\cos(a-b) - \cos(a+b)\right)}$$
 (12)

 $\cos(a-b) + \cos(a+b) = \cos(a)\cos(b) + \sin(a)\sin(b) + \cos(a)\cos(b) - \sin(a)\sin(b)$ $= 2\cos(a)\cos(b)$

$$\Leftrightarrow \left[\cos(a)\cos(b) = \frac{1}{2}\left(\cos(a-b) + \cos(a+b)\right)\right]$$
 (13)

 $\sin(a-b) + \sin(a+b) = \sin(a)\cos(b) - \cos(a)\sin(b) + \sin(a)\cos(b) + \cos(a)\sin(b)$

$$\Leftrightarrow \boxed{\sin(a)\cos(b) = \frac{1}{2}\Big(\sin(a-b) + \sin(a+b)\Big)}$$
 (14)

3 Addition

Let $(a,b) \in \mathbb{R}^2$:

$$\left\{ \begin{array}{lcl}
a & = & x+y \\
b & = & x-y
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{lcl}
x & = & \frac{a+b}{2} \\
y & = & \frac{a-b}{2}
\end{array} \right.$$

$$\sin(a) + \sin(b) = \sin(x+y) + \sin(x-y)$$

$$= \sin(x)\cos(y) + \cos(x)\sin(y) + \sin(x)\cos(y) - \cos(x)\sin(y)$$

$$= 2\sin(x)\cos(y)$$

$$\left| \sin(a) + \sin(b) = 2\sin\left(\frac{a+b}{2}\right) \times \cos\left(\frac{a-b}{2}\right) \right| \tag{15}$$

$$\sin(a) - \sin(b) = \sin(x+y) - \sin(x-y)$$

$$= \sin(x)\cos(y) + \cos(x)\sin(y) - (\sin(x)\cos(y) - \cos(x)\sin(y))$$

$$= 2\cos(x)\sin(y)$$

$$\sin(a) - \sin(b) = 2\cos\left(\frac{a+b}{2}\right) \times \sin\left(\frac{a-b}{2}\right)$$
 (16)

$$cos(a) + cos(b) = cos(x + y) + cos(x - y)$$

$$= cos(x)cos(y) - sin(x)sin(y) + cos(x)cos(y) + sin(x)sin(y)$$

$$= 2cos(x)cos(y)$$

$$\cos(a) + \cos(b) = 2\cos\left(\frac{a+b}{2}\right) \times \cos\left(\frac{a-b}{2}\right)$$
(17)

$$cos(a) - cos(b) = cos(x + y) - cos(x - y)$$

$$= cos(x)cos(y) - sin(x)sin(y) - (cos(x)cos(y) + sin(x)sin(y))$$

$$= -2sin(x)sin(y)$$

$$\cos(a) - \cos(b) = -2\sin\left(\frac{a+b}{2}\right) \times \sin\left(\frac{a-b}{2}\right)$$
 (18)

4 Equation

To solve trigonometric equations we need to know some properties about the trigonometric functions. Here are the more usefull ones :

$$\forall (x,\alpha) \in \mathbb{R}^2 \text{ and } k \in \mathbb{Z}$$

$$\sin(x) = \sin(\alpha) \Leftrightarrow x = \alpha + 2k\pi$$

$$\Leftrightarrow x = \pi - \alpha + 2k\pi$$

$$\cos(x) = \cos(\alpha) \Leftrightarrow x = \alpha + 2k\pi$$

$$\Leftrightarrow x = -\alpha + 2k\pi$$

$$\tan(x) = \tan(\alpha) \Leftrightarrow x = \alpha + k\pi$$

5 Table of Formulas

Formula	Reference	Page
$\cos(x)^2 + \sin(x)^2 = 1$	1	2
$\tan(x) = \frac{\sin(x)}{\cos(x)}$	2	2
$\cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b)$	3	4
$\sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b)$	4	4
$\tan(a \pm b) = \frac{\tan(a) \pm \tan(b)}{1 \mp \tan(a) \tan(b)}$	5	4
$\sin(2x) = \frac{2\tan(x)}{\tan(x)^2 + 1}$	6	6
$\cos(2x) = \frac{1 - \tan(x)^2}{\tan(x)^2 + 1}$	7	6
$\tan(2x) = \frac{2\tan(x)}{1 - \tan(x)^2}$	8	6
$\sin(x)^2 = \frac{1}{2} \Big(1 - \cos(2x) \Big)$	9	7
$\cos(x)^2 = \frac{1}{2} \Big(1 + \cos(2x) \Big)$	10	7
$\tan(x)^2 = \frac{1 - \cos(2x)}{1 + \cos(2x)}$	11	7
$\sin(a)\sin(b) = \frac{1}{2}\left(\cos(a-b) - \cos(a+b)\right)$	12	7
$\cos(a)\cos(b) = \frac{1}{2}\left(\cos(a-b) + \cos(a+b)\right)$	13	7
$\sin(a)\cos(b) = \frac{1}{2}\left(\sin(a-b) + \sin(a+b)\right)$	14	7
$\sin(a) + \sin(b) = 2\sin\left(\frac{a+b}{2}\right) \times \cos\left(\frac{a-b}{2}\right)$	15	8
$\sin(a) - \sin(b) = 2\cos\left(\frac{a+b}{2}\right) \times \sin\left(\frac{a-b}{2}\right)$	16	8
$\cos(a) + \cos(b) = 2\cos\left(\frac{a+b}{2}\right) \times \cos\left(\frac{a-b}{2}\right)$	17	4
$\cos(a) - \cos(b) = -2\sin\left(\frac{a+b}{2}\right) \times \sin\left(\frac{a-b}{2}\right)$	18	8