ЗАДАНИЕ на лабораторную работу №5

Тема: Программно- алгоритмическая реализация метода Ньютона применительно к решению больших систем нелинейных уравнений.

Цель работы. Получение навыков разработки алгоритмов решения нелинейных систем уравнений специального вида на примере численной реализации моделей, построенных на квазилинейном уравнении параболического типа.

Исходные данные.

1. Задана система квазилинейных уравнений (разностная схема), аппроксимирующая дифференциальную задачу (ДЗ). ДЗ состоит из дифференциального уравнения для функции u(x), записанного в общем виде

$$\frac{d}{dx}\left(k(u)\frac{du}{dx}\right) - p(u)u + f(u) = 0$$

и краевых условий

$$x = 0$$
, $-k(u(0))\frac{du}{dx} = F_0$,

$$x = l$$
, $-k(u(l))\frac{du}{dx} = \alpha (u(l) - \beta)$

где $k(u), p(u), f(u), \alpha(u)$ - известные функции от u, а величины β, F_0 - заданные числа. Решение ищется на отрезке [0, l] значений аргумента x.

Для численного решения задачи методом конечных разностей в области изменения аргумента вводится множество ω_h узлов, которое называется сеткой, а значения искомой функции в узлах называются сеточной функцией y_n , при этом

$$\omega_h = \{x_n : x_n = nh, n = 0, 1, 2...N, h = l/N\}.$$

Сама разностная схема, подлежащая решению в данной лабораторной работе, в каноническом виде записывается следующим образом

$$A_n y_{n-1} - B_n y_n + C_n y_{n+1} = -D_n, \quad 1 \le n \le N - 1, \tag{1}$$

гле

$$A_n = \frac{\chi_{n-1/2}}{h}, \ C_n = \frac{\chi_{n+1/2}}{h}, \ B_n = A_n + C_n + p_n h, \ D_n = f_n h.$$

Здесь

$$\chi_{n-1/2} = \frac{k_{n-1} + k_n}{2}, \ \chi_{n+1/2} = \frac{k_{n+1} + k_n}{2}.$$

В выписанных формулах обозначено

$$k_n = k(u_n), p_n = p(u_n), f_n = f(u_n),$$
 причем $u_n = u(x_n)$

т.е. k_n , p_n f_n - значения функций k(u), p(u), f(u) в узлах сетки.

Разностные аналоги краевых условий

$$M_{0}y_{0} + K_{0}y_{1} = P_{0}, (2)$$

$$K_{N} y_{N-1} + M_{N} y_{N} = P_{N}$$
 (3)

Здесь
$$M_{_0}=k_{_0},\;K_{_0}=-k_{_1},\;P_{_0}=hF_{_0}, \ M_{_N}=-(k_{_N}+lpha_{_N}\,h),,\;K_{_N}=k_{_N},\;P_{_N}=-lpha_{_N}\,heta$$

Из системы (N+1) - уравнений (1) - (3) надо найти y_n , n = 0,1,2....N,

Конкретный вид уравнения для решения в данной лабораторной работе записывается относительно неизвестной функции T(x)

$$\frac{d}{dx}\left(k(T)\frac{dT}{dx}\right) - \frac{2}{R}\alpha(T)T + \frac{2T_0}{R}\alpha(T) = 0,$$
(4)

С краевыми условиями

$$\begin{cases} x = 0, -k(T(0)) \frac{dT}{dx} = F_0, \\ x = l, -k(T(l)) \frac{dT}{dx} = \alpha_N (T(l) - T_0) \end{cases}$$

Таким образом, в обозначениях уравнения (1)

$$p(u) = \frac{2}{R}\alpha(T), \quad f(u) \equiv \frac{2T_0}{R}\alpha(T).$$

Значения параметров (все размерности согласованы)

$$k(T) = a_1(b_1 + c_1 T^{m_1})$$
, BT/cm K, $a_1 = 0.0134$, $b_1 = 1$, $c_1 = 4.35 \cdot 10^{-4}$, $m_1 = 1$,

$$lpha(T)=lpha_0(rac{T}{\mathcal{S}}-1)^4+\gamma\,,\quad \mathrm{Bt/cm^2~K},$$
 $lpha_0=-1.94\cdot 10^{-2}, \mathcal{S}=1.5\cdot 10^3,\ \gamma=0.20\cdot 10^{-2}$ $l=10~\mathrm{cm},$ $T_0=300\mathrm{K},$ $R=0.5~\mathrm{cm},$ $F(t)=50~\mathrm{Bt/cm^2}$ (для отладки).

Физическое содержание задачи (для понимания получаемых результатов при отладке программы).

Сформулированная математическая модель описывает температурное поле T(x) вдоль цилиндрического стержня радиуса R и длиной l, причем R << l и температуру можно принять постоянной по радиусу цилиндра. Ось x направлена вдоль оси цилиндра и начало координат совпадает с левым торцем стержня. Слева при x=0 цилиндр нагружается тепловым потоком F_0 . Стержень обдувается воздухом, температура которого равна T_0 . В результате происходит съем тепла с цилиндрической поверхности и поверхности правого торца при x=l. Функции $k(T), \alpha(T)$ являются, соответственно, коэффициентами теплопроводности материала стержня и теплоотдачи при обдуве. Эти коэффициенты привязаны к температуре, т.е. k(T) зависит от T.

Результаты работы.

- 1. График зависимости температуры T(x) от координаты x при заданных выше параметрах.
- 2. График зависимости T(x) при $F_0 = -10 \text{ Bt/cm}^2$.

Cnравка. При отрицательном тепловом потоке слева идет съем тепла, поэтому производная $T^{'}(x)$ должна быть положительной.

3. График зависимости T(x) при увеличенных значениях α_0 (например, в 3 раза). Сравнить с п.1.

C при увеличении теплосъема и неизменном потоке F_0 уровень температур T(x) должен снижаться, а градиент увеличиваться.

5. График зависимости T(x) при $F_0 = 0$.

Cправка. В данных условиях тепловое нагружение отсутствует, причин для нагрева нет, температура стержня должна быть равна температуре окружающей среды T_0 (разумеется с некоторой погрешностью, определяемой приближенным характером вычислений).

Методика оценки работы.

Модуль 3, срок - 17-я неделя..

- 1. Задание полностью выполнено, график 1 приведен 11 баллов (минимум).
- 2. В дополнение к п.1 даны исчерпывающие ответы на вопросы до 17 баллов (максимум).