特許協力条約

発信人 日本国特許庁 (国際予備審査機関)

代理人

前田 弘

前田 106, 3, 22 特許

様

あて名

〒541-0053

日本国大阪府大阪市中央区本町2丁目5番7号 大阪丸紅ビル PCT.

特許性に関する国際予備報告(特許協力条約第二章)の 送付の通知書

> (法施行規則第 57 条) [PCT規則 71.1]

発送日

(日.月.年)

20. 03. 2006

出願人又は代理人

の書類記号

M04-Y-399CT1

重要な通知

国際出願番号

PCT/JP2005/002159

国際出願日

(日.月.年) 14.02.2005

優先日

(日.月.年) 16.04.2004

出願人(氏名又は名称) 松下電器産業株式会社

- 1. 国際予備審査機関は、この国際出願に関して特許性に関する国際予備報告及び付属書類が作成されている場合には、それらをこの送付書とともに送付することを、出願人に通知する。
- 2. 国際予備報告及び付属書類が作成されている場合には、すべての選択官庁に通知するために、それらの写しを国際事務局に送付する。
- 3. 選択官庁から要求があったときは、国際事務局は国際予備報告(付属書類を除く)の英語の翻訳文を作成し、それをその選択官庁に送付する。

4. 注 意

出願人は、各選択官庁に対し優先日から30月以内に(官庁によってはもっと遅く)所定の手続(翻訳文の提出及び国内手数料の支払い)をしなければならない(PCT39条(1))(様式PCT/IB/301とともに国際事務局から送付された注を参照)。

国際出願の翻訳文が選択官庁に提出された場合には、その翻訳文は、特許性に関する国際予備報告の付属書類の翻訳文を含まなければならない。この翻訳文を作成し、関係する選択官庁に直接送付するのは出願人の責任である。

選択官庁が適用する期間及び要件の詳細については、PCT出願人の手引き第Ⅱ巻を参照すること。

出願人はPCT第 33 条(5)に注意する。すなわち、PCT第 33 条(2)から(4)までに規定する新規性、進歩性及び産業上利用可能性の基準は国際予備審査にのみ用いるものであり、締約国は、請求の範囲に記載されている発明が自国において特許を受けることができる発明であるかどうかを決定するに当たっては、追加の又は異なる基準を適用することができる(PCT第 27 条(5)も併せて参照)。そのような追加の基準は、例えば、実施可能要件や特許請求の範囲の明確性又は裏付け要件を、特許要件から免除することも含む。

名称及びあて名

日本国特許庁 (IPEA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 権限のある職員

3736

特許庁長官

電話番号 03-3581-1101 内線 3358

3 V

注 意

1. 文献の写しの請求について

国際予備審査報告に記載された文献であって国際調査報告に記載されていない文献の複写

特許庁にこれらの引用文献の写しを請求することもできますが、独立行政法人工業所有権情報・研修館(特許庁庁舎2階)で公報類の閲覧・複写および公報以外の文献複写等の取り扱いをしています。

[担当及び照会先]

〒100-0013 東京都千代田区霞が関3丁目4番3号(特許庁庁舎2階) 独立行政法人工業所有権情報・研修館

【公 報 類】 閲覧部 TEL 03-3581-1101 内線3811~2 【公報以外】 資料部 TEL 03-3581-1101 内線3831~3

また、(財)日本特許情報機構でも取り扱いをしています。 これらの引用文献の複写を請求する場合は下記の点に注意してください。

[申込方法]

- (1) 特許 (実用新案・意匠) 公報については、下記の点を明記してください。
 - ○特許・実用新案及び意匠の種類
 - ○出願公告又は出願公開の年次及び番号(又は特許番号、登録番号)
 - ○必要部数
- (2) 公報以外の文献の場合は、下記の点に注意してください。
 - ○国際予備審査報告の写しを添付してください(返却します)。

[申込み及び照会先]

〒135-0016 東京都江東区東陽4-1-7 佐藤ビル 財団法人 日本特許情報機構 情報処理部業務課 TEL 03-3508-2313

- 注) 特許庁に対して文献の写しの請求をすることができる期間は、国際出願日から7年です。
- 2. 各選択官庁に対し、国際出願の写し(既に国際事務局から送達されている場合は除く)及びその所定の翻訳文を提出し、国内手数料を支払うことが必要となります。 その期限については各国ごとに異なりますので注意してください。(条約第22条、第39条及び第64条(2)(a)(i)参照)

10/588191 POT/JP 2005/012159

5 AP20 Rec'd PCT/PTO 02 AUG 2006

プ回路は、前記バンドギャップリファレンス回路の第2のP型トランジスタのドレイン端子と接地電位の間に配置され、前記スタートアップ回路の消費電流は前記第2のP型トランジスタのドレイン端子より供給され、前記第2のP型トランジスタのドレイン電流がほぼ零値のときにそのドレイン電流を増大させることを特徴とする。

- [0016] 本発明は、前記基準電圧発生回路において、前記スタートアップ回路は、ゲート端子が前記基準電圧出力端子に接続されたP型トランジスタであることを特徴とする。
- [0017] 本発明は、前記基準電圧発生回路において、前記スタートアップ回路は、ゲート端子が前記基準電圧出力端子に接続されたP型トランジスタと、前記P型トランジスタのソース端子と前記バンドギャップリファレンス回路の第2のP型トランジスタのドレイン端子との間に配置された電流発生素子とを有することを特徴とする。
- [0018] 本発明は、前記基準電圧発生回路において、前記電流発生素子は、抵抗素子であることを特徴とする。
- [0019] 本発明は、前記基準電圧発生回路において、前記電流発生素子は、ダイオード素子であることを特徴とする。
- [0020] 本発明は、前記基準電圧発生回路において、前記電流発生素子は、ゲート端子がドレイン端子に接続されたトランジスタであることを特徴とする。
- [0021] 本発明は、前記基準電圧発生回路において、前記電流発生素子は、ゲート端子が 一定電圧に固定されたトランジスタであることを特徴とする。
- [0022] 以上により、本発明では、バンドギャップリファレンス回路が異常安定点にある際には、第2のP型トランジスタのドレイン電流はほぼ零値であるが、スタートアップ回路がそのドレイン電流を増大させるので、バンドギャップリファレンス回路では、第1のP型トランジスタのドレイン電流が増大して、基準電圧出力端子の出力電圧も上昇し、これに伴い帰還型制御回路が前記基準電圧出力端子の出力電圧を正常安定点で安定するように制御する。この正常安定点では、第2のP型トランジスタのドレイン電流のほとんどは帰還型制御回路に流れ、スタートアップ回路に流れる電流値は少ないので、電流消費は少ない。
- [0023] 特に、本発明では、基準電圧出力端子が異常安定点にある際には、その基準電圧 出力端子の電圧は接地電位に近い電圧であるが、この時、スタートアップ回路に備

えるP型トランジスタは、ゲートーソース間電圧が大きくなるので、バンドギャップリファ

請求の範囲

[1] (補正後) 基準電圧出力端子から一定電圧の基準電圧を発生する基準電圧発生 回路であって、

陰極が接地電位に接続された第1のダイオード素子、

前記第1のダイオード素子とは電流密度が異なり、且つ陰極が接地電位に接続された第2のダイオード素子、

前記第2のダイオード素子の陽極に一端が接続された第1の抵抗素子、

前記第1の抵抗素子の他端に一端が接続され、他端が前記基準電圧出力端子に接続された第2の抵抗素子、

前記第1のダイオード素子の陽極に一端が接続され、他端が前記基準電圧出力端 子に接続された第3の抵抗素子、

前記基準電圧出力端子に電流を供給する第1のP型トランジスタ、

ゲート端子が自己のドレイン端子及び前記第1のP型トランジスタのゲート端子に接続された第2のP型トランジスタ、及び、

前記第1のダイオード素子の陽極の電圧と前記第1及び第2の抵抗素子同士の接続点の電圧とが等しくなるように前記第2のP型トランジスタのドレイン電流を制御する帰還型制御回路を有するバンドギャップリファレンス回路と、

前記バンドギャップリファレンス回路の基準電圧出力端子の出力電圧が異常安定点にあるとき正常安定点に移行させるスタートアップ回路とを備え、

前記スタートアップ回路は、前記バンドギャップリファレンス回路の第2のP型トランジスタのドレイン端子と接地電位の間に配置され、前記スタートアップ回路の消費電流は前記第2のP型トランジスタのドレイン端子より供給され、前記第2のP型トランジスタのドレイン電流がほぼ零値のときにそのドレイン電流を増大させる

ことを特徴とする基準電圧発生回路。

)

[2] 請求項1記載の基準電圧発生回路において、

前記スタートアップ回路は、ゲート端子が前記基準電圧出力端子に接続されたP型トランジスタである

ことを特徴とする基準電圧発生回路。

[3] 請求項1記載の基準電圧発生回路において、