

SERVIÇO PÚBLICO FEDERAL MINISTÉRIO DO DESENVOLVIMENTO, INDÚSTRIA, COMÉRCIO E SERVIÇOS INSTITUTO NACIONAL DA PROPRIEDADE INDUSTRIAL

RELATÓRIO DE BUSCA

n. do Pedido:	BK1020200	118959-0	n. de Dep	OSILO PC I:
Data de Depósito:	23/09/2020			
Prioridade Unionista:	-			
Depositante:	UNIVERSID	DADE FEDERAL	L DE MINAS	GERAIS (BRMG)
Inventor:	ANA LUIZA	SILVESTRE A	ASSIS; VINÍ	ÍCIUS GOMIDE DE CASTRO;
Título:	VALENCIA; SILVA @FIC	FELIPE LUIZ (G de obtenção de	QUEIROZ FI	s; JESÚS ANDRÉS NUNCIRA ERREIRA; GLAURA GOULART ais concentrados em polímeros
1 - CLASSIFICAÇÃO	IPC CPC	C08K 3/04, B8 59/50, B82Y 4	•	08G 18/00, C08G 59/40, C08G
DIALOG	E BUSCA ESPACENET USPTO SITE DO INF	SINPI	SCOPE X	Derwent Innovation
3 - REFERÊNCIAS PA	TENTÁRIAS	ı		

Número	Tipo	Data de publicação	Relevância *
CN102286189	Α	21/12/11	Υ
CN103627139	Α	12/03/14	Y
CN106750517	Α	31/05/17	Α
CN103408895	Α	27/11/13	Α
BR102013008296	A2	06/01/15	А
<u>'</u>			

4 - REFERÊNCIAS NÃO-PATENTÁRIAS

Autor/Publicação	Data de publicação	Relevância *
LOPES, Magnovaldo Carvalho <i>et al.</i> "Otimização do processo de dispersão de nanotubos de carbono em poliuretanno termorrígido". Polímeros, vol. 26 (1), pág. 81 a 89.	2016	Υ
FERREIRA, Felipe Luis Queiroz et al. "Evaluation of the dispersion of carbon nanotubes in an elastomeric polyurethane and fatigue test". Polímeros, vol. 29 (1), e2019012.	2019	Α

7	· 1	n	_	\sim	n	a	\sim	$\overline{}$	\sim	$\overline{}$	

Rio de Janeiro, 21 de novembro de 2024.

Vitor Brait Carmona
Pesquisador/ Mat. Nº 2317407
DIRPA / CGPAT I/DIPOL
Deleg. Comp. - Port. INPI/DIRPA Nº 002/18

- * Relevância dos documentos citados:
- A documento que define o estado geral da técnica, mas não é considerado de particular relevância;
- N documento de particular relevância; a invenção reivindicada não pode ser considerada nova quando o documento é considerado isoladamente;
- I documento de particular relevância; a invenção reivindicada não pode ser considerada dotada de atividade inventiva ou de ato inventivo quando o documento é considerado isoladamente
- Y documento de particular relevância; a invenção reivindicada não pode ser considerada dotada de atividade inventiva quando o documento é combinado com um outro documento ou mais de um;
- PN documento patentário, publicado após a data de depósito do pedido em exame, ou da prioridade requerida para o pedido em exame, cuja data de depósito, ou da prioridade reivindicada, é anterior a data de depósito do pedido em exame, ou da prioridade requerida para o pedido em exame; esse documento patentário pertence ao estado da técnica para fins de novidade, se houver correspondente BR, conforme o Art. 11 §2.º e §3.º da LPI.

SERVIÇO PÚBLICO FEDERAL MINISTÉRIO DO DESENVOLVIMENTO, INDÚSTRIA, COMÉRCIO E SERVIÇOS INSTITUTO NACIONAL DA PROPRIEDADE INDUSTRIAL

RELATÓRIO DE EXAME TÉCNICO

N.º do Pedido: BR102020018959-0 N.º de Depósito PCT:

Data de Depósito: 23/09/2020

Prioridade Unionista: -

Depositante: UNIVERSIDADE FEDERAL DE MINAS GERAIS (BRMG)

Inventor: ANA LUIZA SILVESTRE ASSIS; VINÍCIUS GOMIDE DE CASTRO;

TAIZA MARIA CARDOSO DOS REIS; JESÚS ANDRÉS NUNCIRA VALENCIA; FELIPE LUIZ QUEIROZ FERREIRA; GLAURA GOULART

SILVA @FIG

Título: "Processo de obtenção de nanomateriais concentrados em polímeros

via moinho de rolos "

PARECER

O presente pedido refere-se a uma rota de processamento de nanomateriais concentrados diretamente em solventes e sua dispersão na matriz polimérica, envolvendo baixa quantidade de solvente através de uma combinação dos métodos de mistura mecânica e mistura em solução, com o objetivo de otimizar o processo e obter uma condição ótima de dispersão e processamento. Nesse contexto, a tecnologia visa aumentar a facilidade de processamento de compósitos poliméricos com nanomateriais de carbono, reduzindo etapas do processamento/dispersão através do desenvolvimento de um método de processamento com otimização do tempo de preparo e melhoria na qualidade da dispersão.

Quadro 1 – Páginas do pedido examinadas				
Elemento	Páginas	n.º da Petição	Data	
Relatório Descritivo	1 a 15	870200117646	23/09/20	
Quadro Reivindicatório	1 a 3	870200117646	23/09/20	
Desenhos	1	870200117646	23/09/20	
Resumo	1	870200117646	23/09/20	

Quadro 2 – Considerações referentes aos Artigos 10, 18, 22 e maio de 1996 – LPI	32 da Lei n.º 9).279 de 14 de
Artigos da LPI	Sim	Não
A matéria enquadra-se no art. 10 da LPI (não se considera invenção)		x
A matéria enquadra-se no art. 18 da LPI (não é patenteável)		x
O pedido apresenta Unidade de Invenção (art. 22 da LPI)	X	

O pedido está de acordo com disposto no art. 32 da LPI	х	
--	---	--

Comentários/Justificativas

Quadro 3 – Considerações referentes aos Artigos 24 e 25 da LPI			
Artigos da LPI	Sim	Não	
O relatório descritivo está de acordo com disposto no art. 24 da LPI	х		
O quadro reivindicatório está de acordo com disposto no art. 25 da LPI	x		

Comentários/Justificativas

	Quadro 4 – Documentos citados no parecer			
Código	Documento	Data de publicação		
D1	CN102286189	21/12/11		
D2	CN103627139	12/03/14		
D3	Lopes, M. C., Trigueiro, J. P. C., de Castro, V. G., Lavall, R. L., Silva, G. G. "Otimização do processo de dispersão de nanotubos de carbono em poliuretanno termorrígido". Polímeros, vol. 26 (1), pág. 81 a 89.	2016		

Comentários/Justificativas

Quadro 5 - Análise dos Requisitos de Patenteabilidade (Arts. 8.º, 11, 13 e 15 da LPI)			
Requisito de Patenteabilidade	Cumprimento	Reivindicações	
Aplicação Industrial	Sim	1 a 10	
	Não	-	
	Sim	1 a 10	
Novidade	Não	-	
Atividade Inventiva	Sim	-	
	Não	1 a 10	

Comentários/Justificativas

O presente pedido de invenção apresenta aplicação industrial e atende ao Art. 15 da LPI. No entanto, as reivindicações [1] a [10] do presente pedido não atendem aos requisitos de patenteabilidade pelas seguintes razões:

O documento **D1** pode ser considerado o mais próximo do estado da técnica e revela um processo de obtenção de nanocompósitos a partir de uma resina epóxi e óxido de grafeno (GO)

funcionalizado (*l.* 14 e 15). O documento **D1** revela que o processo é compreendido pelas etapas de obter o GO diretamente no solvente em concentrações entre 0,01 a 20 g/L em etanol via banho de ultrassom em uma potência entre 300 a 1000 W por 0,5 a 5 horas; adicionar a resina epóxi (resina epóxi de bisfenol-A ou bisfenol-F) à solução de GO e misturá-la sob ultrassom entre 300 a 1000 W por 0,5 a 5 horas; secar e degaseificar a mistura à vácuo com temperatura entre 50 a 80 °C por 10 a 48 horas; adicionar o endurecedor (aminas ou anidridos) em proporções entre 100:23,6 a 100:60 (resina endurecedor), misturar mecanicamente a mistura; moldar o material obtido e realizar cura por 3 a 12 horas a temperaturas entre 50 a 80 °C e a pós-cura do material por 2 a 20 horas a temperaturas entre 130 a 150 °C (*l.* 52 a 77; Exemplos 6 a 8). O documento **D1** ainda revela a possibilidade de utilização de outros solventes além do etanol, como acetona, DMF e THF e áqua (*l.* 33 a 36; *l.* 87 a 89).

Desta forma, o documento **D1** diferencia-se do presente documento por não revelar a mistura entre o GO e a resina epóxi em um moinho de rolos. E portanto, as reivindicações [1] a [10] do presente pedido podem ser consideradas novas, de acordo com o Art. 11 da LPI.

No entanto, o documento **D2**, o qual refere-se a um processo de obtenção de nanocompósitos a partir de uma resina epóxi e GO assim como o presente pedido (*l. 11 a 13; l. 77 a 82; l. 95 a l. 160*); revela a utilização de moinhos de rolos para misturar uniformemente a resina de epóxi e o GO (*l. 87 a 90*).

O documento **D3** revela um processo de obtenção de nanocompósitos a partir de nanomateriais de carbono (nanotubos de carbono – MWCNTs) e uma matriz polimérica de poliuretano (*Resumo*). O documento **D3** revela que o processo é compreendido pela dispersão dos NWCNT em um poliol, primeiramente em um dispersor de alto cisalhamento, seguido de uma etapa de 10 passadas em um moinho de 3 rolos com separação de rolos de 10 e 5 μm, velocidade de 100 rpm a 60 °C (*2.2.1 Dispersão de MWCNTs em poliol; Figuras 1 e 2*). Com o processamento em moinho de rolos, o documento **D3** relatou que houve uma melhor dispersão dos NWCNTs na matriz de poliol (*3º parág. da 3.1 Dispersão dos MWCNTs em poliol*) e revelou sua maior viabilidade para utilização na indústria e aumento de escala, garantindo um processamento homogêneo (*20º parág. da 3.2 Caracterização dos nanocompósitos (pág. 89*)).

Dessa forma, a partir da combinação dos ensinamentos de **D1 com D2 ou com D3**, seria óbvio para um técnico no assunto fornecer um processo de obtenção de nanomateriais como o descrito em **D1** alterando a etapa de dispersão dos nanomateriais de carbono na matriz polimérica para a passagem em um moinho de rolo como revelado por **D2 ou D3**. E assim, as reivindicações [1] a [10] do presente pedido não podem ser consideradas dotadas de atividade inventiva, de acordo com o disposto no Art. 8º combinado com o Art. 13 da LPI.

Conclusão

Diante do exposto, conclui-se que o pedido em análise não atende ao Art. 8º combinado com o Art. 13 da LPI.

BR102020018959-0

O depositante poderá fazer alterações no pedido diante do comentado nos quadros 2 e 3, desde que respeite a não inclusão de matéria nova no pedido, de acordo com o Art. 32 da LPI.

O depositante deve se manifestar quanto ao contido neste parecer em até 90 (noventa) dias, a partir da data de publicação na RPI, de acordo com o Art. 36 da LPI.

Publique-se a ciência de parecer (7.1).

Rio de Janeiro, 21 de novembro de 2024.

Vitor Brait Carmona
Pesquisador/ Mat. Nº 2317407
DIRPA / CGPAT I/DIPOL
Deleg. Comp. - Port. INPI/DIRPA Nº 002/18