Coalescent inference of HIV transmission history

Raymond Heil
T-6: Theoretical Biology and Biophysics
Emma Goldberg, Thomas Leitner

20 July 2022

Why this project?

Wowie!

- * Prevalence of HIV
- * Supplementing existing tracing methods
 - Interviews
 - Contact tracing
- * Finding signal in genome sequences

This text sure

does exist...

How can we know what we're looking for?

- * Tips represent individual viral sequences
- * Shows the evolutionary distance between individuals
- * What can we infer about a single transmission time?

Node times as a function of population

- * Constant, linear, and exponential population change
- * Neutral evolution

Large N causes node times to be further apart, stretching the tree

Main findings:

- * First
- * Second

Need a good example of text on here...

Predictions on a changing population

This is where I plan to put my stuff about expanding everything up to a linear model, and how it should allow us to make inferences based on how the times are changing.

Results

What I did...

Conclusion

Parting thoughts...

