

## Cheat Sheet

## 1. Chemische Grundlagen

### 1.1. Formelzeichen

| Dichte                   | ρ |
|--------------------------|---|
| Masse                    | m |
| molare Masse             | M |
| Stoffmenge               | n |
| Stoffmengenkonzentration | c |
| Volumen                  | V |
| Liter                    | l |

### 1.2. Dichte

 $Dichte = \frac{Masse}{Volumen} \rho = \frac{m}{V}$ 

### 1.3. Mol und Molare Masse Definition atomare Masseneinheit

 $1u = \frac{1}{12} {12 \choose 6} = 1,66 \cdot 10^{-24} g$ 

Definition Mol

1 Mol eines Stoffes sind  $6,02 \cdot 10^23$  Teilchen dieses Stoffes. Im PSDE ist die relative Atomasse gleich der Masse eines Mols in g. Beispiel für Molare Masse eines Moleküls:

Molare Masse von  $H_2O$ :  $M(H_2O) = 2 \cdot M(H) + M(O) =$  $2 \cdot 1, 0 \frac{g}{mol} + 16, 0 \frac{g}{mol} = 18 \frac{g}{mol}$ 

## 1.4. Stoffmenge und Konzentration

Stoffmenge:  $n = \frac{m}{M}$ 

Stoffemengenkonzentration :  $c = \frac{n}{V}$ 

## 1.5. Atommodell nach Bohr

Hauptschalen entweder 1...8 oder K...R.

Nebenschalen mit maximaler Elektronenanzahl: s(2), p(6), d(10), f(14)

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p 8s 

### 1.6. Quantenmechanisches Atommodell

- Hauptquantenzahl (Hauptschale 1 8) $\rightarrow n$
- Nebenquantenzahl (Unterschalen 1 4 bzw. s f)ightarrow l
- Magnetische Quantenzahl (für 2  $e^-$ ) -l bis  $+l \rightarrow m_l$
- Magnetische Spinnquantenzahl  $m_s \to \pm \frac{1}{2}$

| $n$ \ $^{l}$ | $0 = \mathbf{s}$     | 1 = p                                                            | $2 = \mathbf{d}$                                                                           |
|--------------|----------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|              | m = 0                | m = -1, 0, 1                                                     | m = -2, -1, 0, 1, 2                                                                        |
| 1:K          | $\uparrow\downarrow$ |                                                                  |                                                                                            |
| 2:L          | $\uparrow\downarrow$ | $\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\downarrow$ |                                                                                            |
| 3:M          | $\uparrow\downarrow$ | $\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow$           | $\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\downarrow$ |

| SI-Präfixe |         |           |        |         |            |
|------------|---------|-----------|--------|---------|------------|
| Symbol     | Vorsatz | Faktor    | Symbol | Vorsatz | Faktor     |
| Y          | Yotta   | $10^{24}$ | d      | Dezi    | $10^{-1}$  |
| Z          | Zetta   | $10^{21}$ | С      | Zenti   | $10^{-2}$  |
| E          | Exa     | $10^{18}$ | m      | Milli   | $10^{-3}$  |
| P          | Peta    | $10^{15}$ | $\mu$  | Mikro   | $10^{-6}$  |
| Т          | Tera    | $10^{12}$ | n      | Nano    | $10^{-9}$  |
| G          | Giga    | $10^{9}$  | р      | Piko    | $10^{-12}$ |
| M          | Mega    | $10^{6}$  | f      | Femto   | $10^{-15}$ |
| k          | Kilo    | $10^{3}$  | a      | Atto    | $10^{-18}$ |
| h          | Hekto   | $10^{2}$  | z      | Zepto   | $10^{-21}$ |
| da         | Deka    | $10^{1}$  | у      | Yokto   | $10^{-24}$ |
|            |         |           |        |         |            |

### 2. Korrosion

- Ausgangsstoff für chemische Reaktion = Edukt.
- Resultierende Verbindung aus Reaktion = Produkt.
- Gibbs-Helmholtz-Beziehung:  $\Delta G = \Delta H T\Delta S$ 
  - Wird Energie frei  $\Delta G < 0$  exergonischer Vorgang.
  - Wird Energie verbraucht  $\Delta G > 0$ , endergonischer Vorgang.

## Regeln zur Bestimmung der Oxidationszahl

- Im Element ist die Oxidationszahl immer ±0.
- Bei einfachen Ionen entspricht die Oxidationszahl immer der Ionenla-
- Die Summe der Oxidationszahlen aller Atome einer Verbindung ergibt die Gesamtladung der Verbindung.
- Fluor besitzt in Verbindungen immer die Oxidationszahl -1.
- Sauerstoff besitzt in den meisten Fällen die Oxidationszahl -2.
- Wasserstoff besitzt in der Regel die Oxidationszahl +1 (Ausnahme:
- Metalle besitzen in der Regel positive Oxidationszahlen.
- Oxidationszahlen anderer Atome in einer Verbindung werden durch Differenzbildung zur Gesamtladung ermittelt.
- Bei kovalenten Verbindungen werden die Elektronenpaare dem elektronegativeren Partner zugeordnet.

### 3. Kunststoffe

Bestehen im wesentlichen aus C,H,N und O

Polymerisation: Reaktion von Manomeren mit Doppelbindungen zu makromolekularen Ketten

Polykondensation: Reaktion von Monomere mit reaktiven Endguppen unter Abspaltung von z.B  $H_2\mathcal{O}$  oder HCL

Polyaddition: Venetzung von Epoxiden mit Aminen oder Alkoholen ohne weiteres Reaktionsprodukt

 $Polymerisationsgrad = \frac{MolareMassederMakromolekuele}{MolareMassederMonomere}$ 

| Тур          | Kunststoff            | Verwendung              |
|--------------|-----------------------|-------------------------|
| Thermoplaste | PE(Polyethen)         | Schläuche               |
|              |                       | Eimer                   |
|              |                       | Bierkasten              |
|              | PP(Polypropen)        | Einwegbecher            |
|              |                       | Schuhabsätze            |
|              |                       | Flaschen                |
|              | PS(Polystrol)         | Styropor                |
|              |                       | Einwegbecher            |
|              |                       | Tonbandkassetten        |
|              | PVC(Polyvinylchlorid) | Kabelummantelungen      |
|              |                       | Duschvorhänge           |
|              |                       | Abflussrohre            |
|              | PA(Polyamid)          | Nylonstrümpfe           |
|              |                       | Angelschnur             |
|              |                       | Brillengestelle         |
| Duroplaste   | MF(Phenoplaste)       | Kochlöffel              |
|              |                       | Bakelit                 |
|              |                       | Küchenmöbeloberflächen  |
|              | UF(Aminoplaste)       | Elektr. Isoliermaterial |
|              |                       | Elektroinstallationen   |
| Elastomere   | PUR(Polyuretan)       | Matratzen               |
|              |                       | Wärmedämmung            |
|              |                       | Kabelummantelungen      |

## 4. Moleküle Bindungstypen

| Bindung                                 | Eigenschaften                   | Energie          |
|-----------------------------------------|---------------------------------|------------------|
| Ionisch                                 | Elektronaustausch, stark, starr | $3.4\mathrm{eV}$ |
| Kovalent                                | Gemeinsame Elektronen           |                  |
| Metallisch                              | "Elektronensee"                 |                  |
| Dipol Coulombkräfte von Partialladungen |                                 |                  |

4.0.1. lonenbindung Voraussetzung: unterschiedliche Atome,leicht zu ionisieren Je größer die Differenz der Elektronegativitätswerte der beteiligten Atome ist, desto stärker ist der ionische Charakter einer Verbindung ausgeprägt.

- Coulombanziehung nicht gerichtet → positive und negative Ionen lagern so dicht aneinander wie möglich → Ionenkristall (nicht ver-
- Elektronen sind an den Ionen lokalisiert → keine freien Elektronen  $vorhanden \rightarrow Isolator$

### Wichtige Anionen:

| Formel                                | Name                 |
|---------------------------------------|----------------------|
| $SO_4^{2-}$                           | Sulfat               |
| $SO_3^{2-}$                           | Sulfit               |
| $HSO_4^-$                             | Hydrogensulfat       |
| $HSO_3^-$                             | Hydrogensulfit       |
| $CO_3^{2-}$                           | Carbonat             |
| $HCO_3^-$                             | Hydrogencarbonat     |
| $PO_4^{3-}$                           | Phosphat             |
| $HPO_{4}^{2-}$                        | Monohydrogenphosphat |
| $H_2PO_4^{2-}$                        | Dihydrogenphosphat   |
| $NO_3^-$                              | Nitrat               |
| CN-                                   | Cyanid.              |
| Das Verhältnis von Kationen zu Anione |                      |

Das Verhältnis von Kationen zu Anionen ist immer derart, dass das Molekül elektrisch neutral ist.

**4.0.2. Kovalente Bindung (Elektronenpaarbindung)**Spinabsättigung der äußeren Elektronenschale durch gemeinsame Elektro-

- Valenz-Elektronen zwischen den Atomen lokalisiert
- keine Kugelsymmetrische Ladungsverteilung mehr im Atom
- Die Anzahl der Elektronen mit umgepaartem Spin zeigt an wie vielfache kovalente Bindungen eingegangen werden können
- treten bei und zwischen Elementen der IV. bis VII. Hauptgruppe auf
- gerichtete Bindungen → mögliche Kristallstrukturen werden einge-
- ullet Differenz der Elektronegativität meist  $\Delta E < 1.7$
- kovalente gebundene Kristalle sind üblicherweise schlechte Leiter

4.0.3. Metallische Bindung Sonderfall der kovalenten Bindung, bei der die Valenz-Elektronen nicht lokalisiert sind

- Vorwiegend Elemente mit nur wenigen Außenelektronen
- freie Elektronen → hohe elektrische Leitfähigkeit, hohe Wärmeleitfähigkeit
- ullet Bindung nicht gerichtet o hohe Packungsdichte
- Bindungen mit gleich- und ungleichartigen Metallen eingegangen wer-
- Metallische Bindung ist schwächer als die ionische oder kovalente Bindung
- Bindungsstärke hängt von der Zahl der Leitungselektronen ab

- **4.0.4. Dipolbindung** zwischen Molekülen mit permanentem Dipolmoment → Moleküle mit positiver und negativer Ladung
- Dipole ordnen sich im Dipolfeld der Nachbaratome so an, dass möglichst geringe Abstand und durch die Coulombkräfte gebunden werden

- **4.0.5. Van-der-Waals-Bindung:**Atome/Moleküle haben kein permanentes Dipolmoment
- Bindung zwischen Dipolen durch statistische Fluktuationen der Ladungsschwerpunkte.
- Sehr schwache Bindung

## 4.0.6. Wasserstoffbrückenbindung

Vorraussetzung: Äußere Schale > vier Elektronen, zwischen 2 Atomen.

- Bindungen über Wasserstoffbrücken der Form A-H-A
- Das H-Atom geht eine kovalente Bindung mit Atom der Sorte A ein und gibt sein Elektron ab. Das Proton bleibt fest an Reaktionspartner gebunden und bindet nun zusätzlich das andere negative Atom
- Bindungsenergie ist gering (0.1 eV)

## 5. pH-Wert Berechnung

Stärke der Base / Säure:

| Starrie der Base / Saure. |                                           |  |
|---------------------------|-------------------------------------------|--|
| $pK_S/pK_A$               | Stärke                                    |  |
| < -0,35                   | sehr stark                                |  |
| -0,35-0,35                | stark bis mittelstark                     |  |
| > 0,35                    | schwach                                   |  |
| starke Säure:             | $pH = -\log \cdot c_S$                    |  |
| schwache Säure:           | $pH = \frac{1}{2}(pK_S - \log \cdot c_S)$ |  |

starke Base:  $pH = 14 - (-\log \cdot c_B)$  $pH = 14 - \frac{1}{2}(pK_B - \log \cdot c_B)$ schwache Base:

## 6. Physik

### 6.1. Formelzeichen

| Größe                 | Formelzeichen  | Einheit                     |
|-----------------------|----------------|-----------------------------|
|                       | TOTTIEIZEICHEH |                             |
| Geschwindigkeit       | v              | $\frac{m}{s}$               |
| Strecke               | s              | m                           |
| Kraft                 | F              | N(Newton)                   |
| Fläche                | A              | $m^2$                       |
| Beschleunigung        | a              | $\frac{m}{s^2}$ .           |
| Drehzahl              | n              | -                           |
| Winkelgeschwindigkeit | $\omega$       | 1/s                         |
| Frequenz              | f              | Hz                          |
| Periodendauer         | T              | $\frac{1}{f}$               |
| Arbeit                | W              | $\overset{\circ}{J}(Joule)$ |
|                       |                |                             |

# 6.2. Bewegungen Gleichförmige Bewegung

## Gleichmäßig beschleunigte Bewegung und freier Fall

Beschleunigung:  $a = \frac{\Delta v}{\Delta t}$ 

Zurückgelegte s bei gleichmäßiger a: 
$$s(t) = s_0 + v_0 \cdot t + \frac{a}{2} t^2$$

Zurückgelegte Strecke: 
$$s = \frac{1}{2} \cdot v_{end} \cdot t$$
 Endgeschwindigkeit :  $v_{end} = \sqrt{2 \cdot a \cdot s}$  Endgeschwindigkeit:  $v_{end} = v_0 + a \cdot t$ 

Kreisförmige Bewegungen Umfangsgeschwindigkeit:  $v_u = n \cdot 2 \cdot r \cdot \pi$ .

Winkelgeschwindigkeit:  $\omega = \frac{\Delta \phi}{\Delta t}$ 

Radialbeschleunigung:  $a_{rad} = 4 \cdot \pi^2 \cdot r \cdot n^2$ 

## 6.3. Kräfte

## Newtonscher Bewegungssatz:

- 1. Ein Körper verharrt im Zustand der Ruhe oder der gleichförmig geradlinigen Bewegung, sofern er nicht durch einwirkende Kräfte zur Änderung seines Zustands gezwungen wird.
- 2. Kräfte treten immer paarweise auf. Übt ein Körper A auf einen anderen Körper B eine Kraft aus (actio), so wirkt eine gleich große, aber entgegen gerichtete Kraft von Körper B auf Körper A(reactio)
- 3.  $F = m \cdot a$

 $F] = [m] \cdot [a] = 1kg \cdot 1\frac{m}{s^2} = 1\frac{kg \cdot m}{s^2} = 1N.$  Ein Newton ist die Kraft, die eine Masse von 1kg die Beschleunigung

von  $1m/s^2$  verleiht.

 $Drehmonment = Kraft \cdot Hebelarm$ Verhältnis aus Kraft zu Hebelarm:  $\frac{F_1}{F_2}=\frac{l_2}{l_1}$  .

Reibungszahl:  $\mu = \frac{F_R}{F_{ss}}$ 

F = FH - FR

 $\begin{aligned} m \cdot a &= m \cdot g \cdot \sin \alpha - \mu \cdot m \cdot g \cdot \cos \alpha \text{ und mit } a &= \frac{v^2}{2 \cdot} \text{folgt:} \\ \mu &= \tan \alpha - \frac{v^2}{2 \cdot g \cdot \cos \alpha \cdot s} &= \mu \end{aligned}$ 



## 6.4. Arbeit, Leistung, Wirkungsgrad

Ein Joule ist die Arbeit, die aufgebracht werden muss, um eine Kraft von

1 Newton entlang eines Weges von 1 Meter wirken zu lassen.

Arbeit:  $W = F \cdot s$ 

Hubarbeit:  $W = g \cdot h$  bzw.  $W = m \cdot g \cdot h$ 

Reibungsarbeit:  $F_R = \mu \cdot F_N$  Arbeit bei schrägem Kraftantrieb:  $W = F \cdot s \cdot \cos \alpha$ 

Beschleunigungsarbeit:  $W = m \cdot a \cdot s$ ;  $W = m \cdot \frac{a^2 \cdot t^2}{2}$ ;  $W = m \cdot \frac{v^2}{2}$ 

Federkonstante:  $c = \frac{F}{}$ 

Federspannarbeit:  $W=\frac{1}{2}\cdot F\cdot s; W=\frac{1}{2}\cdot c\cdot s^2; W=\frac{F^2}{2\cdot c}$  potenzielle Energie:  $W_{pot}=m\cdot g\cdot h$ 

kinetische Energie:  $W_{kin} = \frac{1}{2} \cdot m \cdot v^2$ 

Leistung:  $P = \frac{W}{t}$ ;  $P = F \cdot v$ 

 $\begin{aligned} & \text{Wirkungsgrad: } \eta = \frac{P_{eff}}{P_{ind}}, \, \eta < 1 \\ & \text{Kraftstoß} = \text{Impuls: } F \cdot \Delta t = \Delta v \cdot m \end{aligned}$ 

Erhaltung des Impulses:  $m_1 \cdot v_1 + m_2 \cdot v_2 = 0$ 

## Zentraler elastischer Stoß

kinetische Energie  $m_1 \cdot u_1^2 + m_2 \cdot u_2^2 = m_1 \cdot v_1^2 + m_2 \cdot v_2^2$ Impuls  $m_1 \cdot u_1 + m_2 \cdot u_2 = m_1 \cdot v_1 + m_2 \cdot v_2$ Geschwindigkeiten  $u_1 + v_1 = u_2 + v_2$ v von  $m_1$  danach  $v_1=2\cdot \frac{m_1\cdot u_1+m_2\cdot u_2}{m_1+m_2}-u_1$  v von  $m_2$  danach  $v_2=2\cdot \frac{m_1\cdot u_1+m_2\cdot u_2}{m_1+m_2}-u_2$ 

Zentraler unelastischer Stoß:  $v=\frac{m_1\cdot v_1+m_2\cdot v_2}{m_1+m_2}$ 

Zentripetalkraft:  $F_z=m\cdot a_r; F_z=m\cdot \omega^2\cdot r; F_z=\frac{m\cdot v_u^2}{r}$  Energie des rotierenden Körpers:  $W_{kin}=\frac{1}{2}\cdot m\cdot r^2\cdot \omega^2;$ 

 $W_{kin} = I \cdot \frac{\omega^2}{2}$ 

 $\textit{Massentr\"{a}gheitsmoment: } I = m \cdot r^2$ 

Massenträgheitsmoment einer rotierenden Scheibe:  $I=\frac{m}{2}\cdot r^2$ 

## 6.5. Anziehungskräfte

Anziehung zweier Massen:  $F = \gamma$ 

Masse eines Himmelskörpers: M=

- M = gesuchte Masse
- r = Abstand der beiden Himmelskörper
- T = Umlaufdauer des umkreisenden Gestirns

## 7. Wärmelehre

## 7.1. Mischen von Flüssigkeiten

7.1.1. Gleiches Material  $\vartheta_m = \frac{m_1 \cdot \vartheta_1 + m_2 \cdot \vartheta_2}{m1 + m2}$ 

7.1.2. Verschiedene Materialien  $\vartheta_m = \frac{C_1 \cdot m_1 \cdot \vartheta_1 + C_2 \cdot m_2 \cdot \vartheta_2}{C_1 \cdot m_1 + C_2 \cdot m_2}$ 

