Computation of CPA Lyapunov functions

(CPA = \underline{c} ontinuous and piecewise \underline{a} ffine)

Sigurdur Hafstein

Reykjavik University, Iceland

17. July 2013

Workshop on Algorithms for Dynamical Systems and Lyapunov Functions

Motivation

CPA method: Numerical algorithm to compute a Lyapunov function on a compact domain for a systems with a stable equilibrium.

To concretize the method we consider a system:

- $oldsymbol{\dot{x}} = \mathbf{f}(\mathbf{x})$, where $\mathbf{f} \in \mathcal{C}^2(\mathbb{R}^2,\mathbb{R}^2)$
- $oldsymbol{f f}(oldsymbol{0})=oldsymbol{0}$, i.e. equilibrium at the origin
- ullet $\mathcal{D}\subset\mathbb{R}^2$ a compact neighbourhood of the origin

We pursue computing a functional ${\cal V}$ such that

- $lackbox{0} V: \mathcal{D}
 ightarrow \mathbb{R}$ is continuous
- ② $V(\mathbf{0}) = 0$ and $V(\mathbf{x}) \ge \|\mathbf{x}\|_2$ for all $\mathbf{x} \in \mathcal{D}$ (minimum at the origin)
- $D_{\mathbf{f}}^+V(\mathbf{x}) := \limsup_{h \to 0+} \frac{V(\mathbf{x} + h\mathbf{f}(\mathbf{x})) V(\mathbf{x})}{h} \le -\|\mathbf{x}\|_2 \text{ for all } \mathbf{x} \in \mathcal{D}^\circ$ (decreasing along solution trajectories)

Note: Works exactly the same for $\mathbf{f} \in \mathcal{C}^2(\mathbb{R}^n, \mathbb{R}^n)$ for $n \geq 2$.

make LP problem: fix the domain and triangulation

Always start with a simple standard triangulation, where the vertices have integer coordinates. Then map it to the desired triangulation, here with

$$\mathbf{F}(\mathbf{x}) = \rho(\|\mathbf{x}\|_{\infty}) \cdot \frac{\|\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_2} \mathbf{x} = 0.01 \cdot \frac{\|\mathbf{x}\|_{\infty}^2}{\|\mathbf{x}\|_2} \mathbf{x}$$

- FEM: shape regular triangulation; elsewhere: simplicial complex
- ullet The **vertices** are mapped by ${\bf F}$, not the simplices

$$\bullet$$
 co $\{\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2\} \Longrightarrow \operatorname{co}\{\mathbf{F}(\mathbf{x}_0), \mathbf{F}(\mathbf{x}_1), \mathbf{F}(\mathbf{x}_2)\}$

make LP problem: variables

Variables of the LP problem are $V_{\mathbf{x}}$ for every vertex \mathbf{x} of every triangle and $C_{\nu,1}, C_{\nu,2}$ for every triangle \mathfrak{S}_{ν}

 $V_{\mathbf{x}}$ is the value of the to be computed CPA Lyapunov function V at the vertex \mathbf{x} and $C_{\nu,j}$ is an upper bound on the j-th component of its gradient ∇V_{ν} on the triangle \mathfrak{S}_{ν}

make LP problem: enforce $V(\mathbf{x}) \ge \|\mathbf{x}\|_2$

- Every $\mathbf{x} \in \mathfrak{S}_{\nu} := \operatorname{co}\{\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2\}$ can be written uniquely as a convex combination of the vertices $\mathbf{x} = \sum_{i=0}^2 \lambda_i^{\mathbf{x}} \mathbf{x}_i, \ \lambda_i^{\mathbf{x}} \geq 0, \ \sum_{i=0}^2 \lambda_i^{\mathbf{x}} = 1$
- We define the CPA function V at \mathbf{x} as the same convex combination of the values of the variables $V_{\mathbf{x}_0}, V_{\mathbf{x}_1}, V_{\mathbf{x}_2}$: $V(\mathbf{x}) := \sum_i \lambda_i^{\mathbf{x}} V_{\mathbf{x}_i}$
- To enforce V to have a minimum at the origin we include the constraints:

$$V_0 = 0$$
 and $V_{\mathbf{x}} \ge \|\mathbf{x}\|_2$ for all vertices \mathbf{x} of all triangles

Then $V(0) := V_0 = 0$ and

$$\|\mathbf{x}\|_{2} = \|\sum_{i=0}^{2} \lambda_{i}^{\mathbf{x}} \mathbf{x}_{i}\|_{2} \le \sum_{i=0}^{2} \lambda_{i}^{\mathbf{x}} \|\mathbf{x}_{i}\|_{2} = \sum_{i=0}^{2} \lambda_{i}^{\mathbf{x}} V_{\mathbf{x}_{i}} = V(\mathbf{x})$$

Note: The origin **0** must be a vertex

make LP problem: enforce $\nabla V(\mathbf{x}) \cdot \mathbf{f}(\mathbf{x}) \leq -\|\mathbf{x}\|_2$

Orbital derivative of V along the solutions to $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ is enforced to be decreasing by:

• For every triangle/simplex $\mathfrak{S}_{\nu} := \operatorname{co}\{\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2\}$ and i = 0, 1, 2:

$$-\|\mathbf{x}_i\|_2 \ge \nabla V_{\nu} \cdot \mathbf{f}(\mathbf{x}_i) + E_{\nu,i} \|\nabla V_{\nu}\|_1$$

Here

$$E_{\nu,i} := B_{\nu} \|\mathbf{x}_i - \mathbf{x}_0\|_2 \left(\max_{j=1,2} \|\mathbf{x}_j - \mathbf{x}_0\|_2 + \|\mathbf{x}_i - \mathbf{x}_0\|_2 \right)$$

where B_{ν} is an upper bound

$$B_{\nu} \ge \max_{m,r,s=1,2} \max_{\mathbf{z} \in \mathfrak{S}_{\nu}} \left| \frac{\partial^2 f_m}{\partial x_r \partial x_s} (\mathbf{z}) \right|$$

• These constraints are implemented in two steps

make LP problem: enforce $\|\nabla V_{\nu}\|_1 \leq \sum_j C_{\nu,j}$

Gradient ∇V_{ν} of V on \mathfrak{S}_{ν} :

•
$$V(\mathbf{x}) = \sum_{i=0}^{2} \lambda_i^{\mathbf{x}} V_{\mathbf{x}_i} = \nabla V_{\nu} \cdot (\mathbf{x} - \mathbf{x}_0) + V_{\mathbf{x}_0}$$

$$\bullet \ \nabla V_{\nu} := X_{\nu}^{-1} \begin{pmatrix} V_{\mathbf{x}_1} - V_{\mathbf{x}_0} \\ V_{\mathbf{x}_2} - V_{\mathbf{x}_0} \end{pmatrix}, \text{ where } X_{\nu} := \begin{pmatrix} (\mathbf{x}_1 - \mathbf{x}_0)^T \\ (\mathbf{x}_2 - \mathbf{x}_0)^T \end{pmatrix}$$

Constraints (linear in the variables)

$$-C_{
u,j} \leq (\nabla V_{
u})_j \leq C_{
u,j} \;\; {
m for \; all \; triangles} \; \mathfrak{S}_{
u} \; {
m and} \; j=1,2$$

• Then $\|\nabla V_{\nu}\|_1 \leq \sum_{i=1}^2 C_{\nu,j}$

Note: X_{ν} depends solely on the geometry of the triangle/simplex \mathfrak{S}_{ν} .

make LP problem: enforce $\nabla V(\mathbf{x}) \cdot \mathbf{f}(\mathbf{x}) \leq -\|\mathbf{x}\|_2$

Orbital derivative of V along the solutions to $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ is enforced to be decreasing by:

• For every triangle/simplex $\mathfrak{S}_{\nu} := \operatorname{co}\{\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2\}$ and i = 0, 1, 2:

$$-\|\mathbf{x}_i\|_2 \ge \nabla V_{\nu} \cdot \mathbf{f}(\mathbf{x}_i) + E_{\nu,i} \sum_{j=1}^2 C_{\nu,j}$$

Here

$$E_{\nu,i} := B_{\nu} \|\mathbf{x}_i - \mathbf{x}_0\|_2 \left(\max_{j=1,2} \|\mathbf{x}_j - \mathbf{x}_0\|_2 + \|\mathbf{x}_i - \mathbf{x}_0\|_2 \right)$$

where B_{ν} is a constant fulfilling

$$B_{\nu} \ge \max_{m,r,s=1,2} \max_{\mathbf{z} \in \mathfrak{S}_{\nu}} \left| \frac{\partial^2 f_m}{\partial x_r \partial x_s} (\mathbf{z}) \right|$$

- The B_{ν} are the only nontrivial inputs to the CPA method
- The B_{ν} are upper bounds and do not have to be tight

Implications of the constraints

Orbital derivative of V along the solutions to $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ decreasing:

For
$$\mathbf{x}=\sum_{i=1}^2 \lambda_i^{\mathbf{x}} \mathbf{x}_i \in \mathfrak{S}_{\nu}=\operatorname{co}\{\mathbf{x}_0,\mathbf{x}_1,\mathbf{x}_2\}$$
 we have

$$\nabla V_{\nu} \cdot \mathbf{f}(\mathbf{x}) = \sum_{i=1}^{2} \lambda_{i}^{\mathbf{x}} [\nabla V_{\nu} \cdot \mathbf{f}(\mathbf{x}_{i})] + \nabla V_{\nu} \cdot \left(\mathbf{f}(\mathbf{x}) - \sum_{i=1}^{2} \lambda_{i}^{\mathbf{x}} \mathbf{f}(\mathbf{x}_{i}) \right)$$

$$\leq \sum_{i=1}^{2} \lambda_{i}^{\mathbf{x}} [\nabla V_{\nu} \cdot \mathbf{f}(\mathbf{x}_{i})] + \underbrace{\|\nabla V_{\nu}\|_{1}}_{\leq C_{\nu,1} + C_{\nu,2}} \left\| \mathbf{f}(\mathbf{x}) - \sum_{i=0}^{2} \lambda_{i}^{\mathbf{x}} \mathbf{f}(\mathbf{x}_{i}) \right\|_{\infty}$$

Lemma

Let $\mathfrak{S} := \operatorname{co}\{\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_n\} \subset \mathbb{R}^n$ be an n-simplex and $g \in \mathcal{C}^2(\mathfrak{S}, \mathbb{R})$. Then, for every $\mathbf{x} = \sum_{i=0}^n \lambda_i^{\mathbf{x}} \mathbf{x}_i$ (convex combination) we have

$$\left| g(\mathbf{x}) - \sum_{i=0}^{n} \lambda_i^{\mathbf{x}} g(\mathbf{x}_i) \right| \leq \sum_{i=0}^{n} \lambda_i^{\mathbf{x}} E_i^g,$$

where

$$E_i^g := \frac{nB^g}{2} \|\mathbf{x}_i - \mathbf{x}_0\|_2 \left(\max_{j=1,2,\dots,n} \|\mathbf{x}_j - \mathbf{x}_0\|_2 + \|\mathbf{x}_i - \mathbf{x}_0\|_2 \right)$$

and

$$B^g := \max_{r,s=1,2,\dots,n} \max_{\mathbf{z} \in \mathfrak{S}} \left| \frac{\partial^2 g}{\partial x_r \partial x_s}(\mathbf{z}) \right|$$

Implies:

$$\|\mathbf{f}(\mathbf{x}) - \sum_{i=0}^{2} \lambda_{i}^{\mathbf{x}} \mathbf{f}(\mathbf{x}_{i})\|_{\infty} \leq \sum_{i=0}^{2} \lambda_{i}^{\mathbf{x}} E_{\nu,i}$$

Implications of the constraints

Orbital derivative of V along the solutions to $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ decreasing:

For
$$\mathbf{x}=\sum_{i=0}^2 \lambda_i^{\mathbf{x}} \mathbf{x}_i \in \mathfrak{S}_{\nu} = \operatorname{co}\{\mathbf{x}_0,\mathbf{x}_1,\mathbf{x}_2\}$$
 we have

$$\nabla V_{\nu} \cdot \mathbf{f}(\mathbf{x}) \leq \sum_{i=0}^{2} \lambda_{i}^{\mathbf{x}} [\nabla V_{\nu} \cdot \mathbf{f}(\mathbf{x}_{i})] + \|\nabla V_{\nu}\|_{1} \|\mathbf{f}(\mathbf{x}) - \sum_{i=0}^{2} \lambda_{i}^{\mathbf{x}} \mathbf{f}(\mathbf{x}_{i})\|_{\infty}$$

$$\leq \sum_{i=0}^{2} \lambda_{i}^{\mathbf{x}} \left(\nabla V_{\nu} \cdot \mathbf{f}(\mathbf{x}_{i}) + E_{\nu,i} \sum_{j=1}^{2} C_{\nu,j} \right)$$

$$\leq -\sum_{i=0}^{2} \lambda_{i}^{\mathbf{x}} \|\mathbf{x}_{i}\|_{2} \leq -\|\sum_{i=0}^{2} \lambda_{i}^{\mathbf{x}} \mathbf{x}_{i}\|_{2} \leq -\|\mathbf{x}\|_{2}$$

How to select \mathbf{x}_0 in $co\{\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2\}$

For every triange/simplex $\mathfrak{S}_{\nu}=\mathrm{co}\{\mathbf{x}_0,\mathbf{x}_1,\mathbf{x}_2\}$ the vertex \mathbf{x}_0 serves as a kind of a reference point in X_{ν} and

$$E_{\nu,i} := B_{\nu} \|\mathbf{x}_i - \mathbf{x}_0\|_2 \left(\max_{j=1,2} \|\mathbf{x}_j - \mathbf{x}_0\|_2 + \|\mathbf{x}_i - \mathbf{x}_0\|_2 \right)$$

- If $\mathbf{0} \notin \mathfrak{S}_{\nu}$ the vertex \mathbf{x}_0 is arbitrary.
- ullet If $oldsymbol{0}\in \mathfrak{S}_
 u$ we must take $\mathbf{x}_0=oldsymbol{0}$ because for $\mathbf{x}_i=oldsymbol{0}$ the constraints

$$-\|\mathbf{x}_i\|_2 \geq \nabla V_{
u} \cdot \mathbf{f}(\mathbf{x}_i) + E_{
u,i} \sum_{j=1}^2 C_{
u,j}$$
 reduce to
$$0 \geq E_{
u,i} \sum_{j=1}^2 C_{
u,j},$$

which is true if and only if i = 0.

Solution to the LP problem ⇒ CPA Lyapunov function

It now follows that if the LP problem has a solution, then the CPA function V, defined at $\mathbf{x} = \sum_{i=0}^2 \lambda_i^{\mathbf{x}} \mathbf{x}_i \in \mathfrak{S}_{\nu} := \operatorname{co}\{\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2\}$, by

$$V(\mathbf{x}) = \sum_{i=0}^{2} \lambda_i^{\mathbf{x}} V_{\mathbf{x}_i}$$

fufills:

- ullet V is continuous and affine on any triangle/simplex $\mathfrak{S}_
 u$
- $V(\mathbf{0}) = 0$ and $V(\mathbf{x}) \ge \|\mathbf{x}\|_2$ for all $\mathbf{x} \in \cup_{\nu} \mathfrak{S}_{\nu}$
- $D_{\mathbf{f}}^+V(\mathbf{x}) \leq \min_{\mathbf{x} \in \mathfrak{S}_{\nu}} \nabla V_{\nu} \cdot \mathbf{f}(\mathbf{x}) \leq -\|\mathbf{x}\|_2 \text{ for all } \mathbf{x} \in (\cup_{\nu} \mathfrak{S}_{\nu})^{\circ}$

V is a Lyapunov function for the system $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$

CPA method: Example n=2

$$\mathsf{System}\,\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ -x_1 + x_1^3/3 - x_2 \end{pmatrix}, \quad B_\nu = 2\max_{\mathbf{x} \in \mathfrak{S}_\nu} |x_1|$$

solution to the LP problem, the $V_{\mathbf{x}}$ same triangulation as before

CPA method: Example n=2

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ -x_1 + x_1^3/3 - x_2 \end{pmatrix}, \quad B_{\nu} = 2 \max_{\mathbf{x} \in \mathfrak{S}_{\nu}} |x_1|$$

convex interpolation of the values of the $V_{\mathbf{x}}$ delivers a CPA Lyapunov function

CPA method: Example n=3

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{pmatrix} = \begin{pmatrix} -1.125x_1^2 + 0.3x_1x_2 - 6.7305x_1 - 0.801x_2 \\ 0.1x_2x_3 - 0.04x_2 + 0.541x_3 \\ -1.1429x_3^2 - 0.1x_2x_3 - 0.02x_2 - 0.2281x_3 \end{pmatrix}, \quad B_{\nu} = 2.29$$

level set of a computed CPA Lyapunov function

Sufficiency of the CPA method

CPA method without the error term, i.e.

$$-\|\mathbf{x}_i\|_2 \ge \nabla V_{\nu} \cdot \mathbf{f}(\mathbf{x}_i)$$

delivers an approximation to a Lyapunov function (Julian 1999; Julian, Guivant, Desages 1999). Might be a Lyapunov function but a posteriori analysis needed.

 CPA method with the error term delivers a true Lyapunov function and not an approximation (Marinosson=Hafstein 2002).

$$-\|\mathbf{x}_i\|_2 \ge \nabla V_{\nu} \cdot \mathbf{f}(\mathbf{x}_i) + E_{\nu,i} \sum_{j} C_{\nu,j}$$

- Unusual of numerical methods to deliver exact results, usually deliver approximations
- Takes advantage of $\nabla V(\mathbf{x}) \cdot \mathbf{f}(\mathbf{x}) < 0$ being an inequality (first order partial differential inequality)

Does the CPA method always work? (1)

What about necessity, i.e. if there exists a Lyapunov function can the CPA method always compute one?

Previous results:

• If an arbitrary small neighbourhood of the origin is excluded from the domain and the equilibrium is exponentially stable (Hafstein 2004) or asymptotically stable (Hafstein 2005) then the LP problem has a feasible solution if the triangles/simplices are regularly shaped and small enough $(\operatorname{diam}(\mathfrak{S}_{\nu}) \cdot \|X_{\nu}^{-1}\|_1$ is bounded and $\operatorname{diam}(\mathfrak{S}_{\nu}) \to 0$).

Does the CPA method always work? (2)

Proof: Assign values to $V_{\mathbf{x}}$, $C_{\nu,i}$ such that the constraints are fulfilled, algorithms find feasible solutions if there are any.

- Let $\mathcal D$ be a compact subset of the basin of attraction and let $\mathcal N\subset \mathcal D$ be a (small) open neighbourhood of the origin.
- There exists a Lyapunov function $W \in \mathcal{C}^{\infty}(\mathcal{D}, \mathbb{R})$ such that $W(\mathbf{x}) \geq \|\mathbf{x}\|_2$ and $\nabla W(\mathbf{x}) \cdot \mathbf{f}(\mathbf{x}) \leq -2\|\mathbf{x}\|_2$ on $\mathcal{D} \setminus \mathcal{N}$.
- Assign $V_{\mathbf{x}} := W(\mathbf{x})$ and $C_{\nu,j} = \mathbf{e}_j^T X_{\nu}^{-1} \begin{pmatrix} V_{\mathbf{x}_1} V_{\mathbf{x}_0} \\ V_{\mathbf{x}_2} V_{\mathbf{x}_0} \end{pmatrix}$
- $V_{\mathbf{x}} \geq \|\mathbf{x}\|_2$ and $-C_{\nu,j} \leq (\nabla V_{\nu})_j \leq C_{\nu,j}$ are trivially fulfilled.
- $-\|\mathbf{x}_i\|_2 \ge \nabla V_{\nu} \cdot \mathbf{f}(\mathbf{x}_i) + E_{\nu,i} \sum_j C_{\nu,j}$ are fulfilled because

$$\|\nabla V_{\nu} - \nabla W(\mathbf{x}_0)\|_1 \le A \cdot \|X_{\nu}^{-1}\|_1 \cdot \operatorname{diam}(\mathfrak{S}_{\nu})^2,$$

 $A = \text{bound on the second order derivatives of } W \text{ on } \mathcal{D} \setminus \mathcal{N} \text{ (compact)}$ $\|X_{\nu}^{-1}\|_{1} \cdot \operatorname{diam}(\mathfrak{S}_{\nu}) \text{ bounded and } \operatorname{diam}(\mathfrak{S}_{\nu}) \to 0$

The CPA method always works

Newer and better results (Giesl, Hafstein 2010, 2012, 2013?):

- An arbitrary neighbourhood does not have to be excluded if one uses more advanced triangulations
- Idea of proof: There exists a Lyapunov function W similar to before, but $W(\mathbf{x}) = \|Q^{\frac{1}{2}}\mathbf{x}\|_2$ close to the origin, where Q>0 is the solution to the Lyapunov equation

$$J^TQ + QJ = -I, \quad J := D\mathbf{f}(\mathbf{0})$$

Lyapunov functions can be agglutinated in a certain way (Giesl 2007)

- Use W to assign values to the variables $V_{\mathbf{x}}$, $C_{\nu,i}$ of LP problems made for a sequence of ever refined triangulations
- Several challenges: second order derivatives of W diverge at the origin, $\operatorname{diam}(\mathfrak{S}_{\nu}) \cdot \|X_{\nu}^{-1}\|_{1}$ is not bounded close to the origin, etc.
- Much more difficult to prove

More advanced triangulations

More advanced triangulations means fan like triangulations at the origin schematic figures for n=2 and n=3

CPA method: constructive and decidable?

- If a system possesses a Lyapunov function $V:\mathcal{D}\to\mathbb{R},\ \mathcal{D}\subset\mathbb{R}^n$ compact, then the CPA method can compute one in a finite number of steps (constructive)
- What if there does not exist a Lyapunov function $V: \mathcal{D} \to \mathbb{R}$?
- LP problem has no feasible solution
 ⇔ triangulation has to little structure to support a CPA Lyapunov function
- CPA is not decidable but:
 - CPA Lyapunov function exists ⇒ exponential stability
 - ullet $\mathcal D$ compact \Rightarrow exponential stability is a local property
 - local exponential stability can be checked directly (eigenvalues)
 - use CPA method to compute Lyapunov functions with larger domains than the standard quadratic ones
- Given $\mathcal D$ and $\alpha, M>0$, there is a simpler LP problem that can foreclose $\|\phi(t,\boldsymbol\xi)\|\leq Me^{-\alpha t}\|\boldsymbol\xi\|$ for all $\boldsymbol\xi\in\mathcal D$, t>0 (Marinosson=Hafstein 2002)

CPA method: Evaluation

Pros:

- True Lyapunov functions are computed (exact method)
- No a posteriori analysis needed
- ullet Works in n dimensions and for general nonlinear systems
- Low demands on regularity of f in $\dot{x} = f(x)$ (piecewise C^2)
- Constructive, i.e. always works
- Flexible and extendable to different types of systems

Neutral:

• Speed ca. $O([\sharp \text{variables}]^4)$ with simplex method

Contras:

- Triangulation somewhat cumbersome, particularly local refinements
- CPA Lyapunov functions not smooth
- No usual formula for the computed Lyapunov function

CPA method: Extensions

Published:

- (nonautonomous) Arbitrary switched systems (Hafstein 2007)
- Differential inclusions (Baier*, Grüne, Hafstein 2012)
- Contraction metrics for periodic orbits (Giesl*, Hafstein 2012)
 - semidefinite optimization problem

In progress:

- ISS Lyapunov functions (Baier, Grüne, Hafstein, Li*, Wirth)
 - quadratic optimization problem
- Discrete systems and difference inclusions (Giesl, Hafstein)
- Finite time systems (Giesl, Hafstein).
 - theoretic preparation for CPA method published 2013.
 - * talk on this subject in the workshop

CPA method: Future work

- Publish basic C++ code for the CPA method (Hafstein, est. end 2013)
 - implemented in Visual Studio Express (Windows), GLPK used to solve the LP problems, use of Scilab and Gnuplot (all freeware)
- Publish more advanced and user friendly C++/Matlab/Scilab code for the CPA method (Björnsson, Hafstein)
- Verify computed approximations of complete Lyapunov functions (Björnsson, Giesl, Grüne, Hafstein)
- Combine the advantages of the CPA method and the RBF* method to compute CPA Lyapunov functions fast(er) (Giesl, Hafstein)
 - * talk on this subject in the workshop

References

- Julian, A high level canonical piecewise linear representation: Theory and applications, Ph.D. Thesis: Universidad Nacional del Sur, Bahia Blanca, Argentina, 1999.
- Julian, Guivant, and Desages, A parametrization of piecewise linear Lyapunov function via linear programming, Int. Journal of Control, 72 (1999), 702–715.
- Marinosson, Stability analysis of nonlinear systems with linear programming: A Lyapunov functions based approach, Ph.D. Thesis: Gerhard-Mercator-University, Duisburg, Germany, 2002.
- Marinosson, Lyapunov function construction for ordinary differential equations with linear programming. Dynamical Systems, 17 (2002), 137–150.
- Hafstein: A constructive converse Lyapunov theorem on exponential stability. Discrete Contin. Dyn. Syst. 10 (2004), 657–678.
- Hafstein, A constructive converse Lyapunov theorem on asymptotic stability for nonlinear autonomous ordinary differential equations. Dynamical Systems, 20 (2005), 281–299
- Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions, Lecture Notes in Mathematics 1904, Springer, 2007.
- Hafstein, An algorithm for constructing Lyapunov functions, Electron. J. Differential Equ. Monogr., 8 (2007).
- Giesl and Hafstein, Existence of piecewise affine Lyapunov functions in two dimensions. J. Math. Anal. Appl., 371
 (2010), 233–248.
- Baier, Grüne, and Hafstein, Linear programming based Lyapunov function computation for differential inclusions, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 33–56.
- Giesl and Hafstein, Construction of Lyapunov functions for nonlinear planar systems by linear programming, J. Math. Anal. Appl., 388 (2012), 463–479.
- Giesl and Hafstein, Existence of piecewise linear Lyapunov functions in arbitary dimensions, Discrete Contin. Dyn. Syst., 32 (2012), 3539–3565.
- Giesl and Hafstein: Revised CPA method to compute Lyapunov functions for nonlinear systems, submitted 2013.
- Giesl and Hafstein: Construction of a CPA contraction metric for periodic orbits using semidefinite optimization, Nonlinear Analysis 86, (2013), 114-134.
- Giesl and Hafstein. Local Lyapunov Functions for periodic and finite-time ODEs. In: Recent Trends in Dynamical Systems, eds. A. Johann, H.Kruse, F. Rupp, and S. Schmitz, Springer 2013.

RBF-CPA: Fast approximation, fast verification (1)

RBF-CPA: Fast approximation, fast verification (2)

