NUMERICAL/MOISTAIR

(1) Moist air

RÉPONSES INTÉGRÉES pénalité 0.10

The dry thermometer of a meteorological station indicates a temperature $\theta = 25$. °C

The moist sensor indicates a relative humidity $\psi = 78.\%$

Atmospheric pressure is $p_{\rm atm} = 101325$. Pa

Compute the quantities below

In your answers, use scientific notations if needed. $(6.3410^{-5} \text{ writes } 6.34\text{e-}5 \text{ and } 10^3 \text{ writes } 1\text{e3})$.

Your answer is considered correct within a relative error of 10.0 %

Indicative ranges are proposed in front of each answer. This are orders of magnitude to help you to check your results.

Absolute humidity: w =

Numérique noté sur 1

 $1.5559237183e + 01 \pm 1.5559237183e + 00$ \checkmark

 $g kg^{-1}$ (6. \to 15.)

Volume per dry air mass unit : v =

Numérique noté sur 1

 $8.6573585636e-01 \pm 8.6573585636e-02$ \checkmark

 $m^3 kg^{-1}$ (8.28 $10^{-1} \rightarrow 8.75 10^{-1}$)

Enthalpy per dry air mass unit : h =

Numérique noté sur 2

 $6.4751265258e + 01 \pm 6.4751265258e + 00$ \checkmark

 $kJ kg^{-1}$ (32. \rightarrow 65.)

(2) Moist air

RÉPONSES INTÉGRÉES pénalité 0.10

The dry thermometer of a meteorological station indicates a temperature $\theta = 22.$ °C

The moist sensor indicates a relative humidity $\psi = 48.\%$

Atmospheric pressure is $p_{\rm atm} = 101325$. Pa

Compute the quantities below

In your answers, use scientific notations if needed. $(6.3410^{-5} \text{ writes } 6.34\text{e-}5 \text{ and } 10^3 \text{ writes } 1\text{e3})$.

Your answer is considered correct within a relative error of $10.0\,\%$

Indicative ranges are proposed in front of each answer. This are orders of magnitude to help you to check your results.

Absolute humidity: w =

Numérique noté sur 1

 $7.8936363385e + 00 \pm 7.8936363385e - 01$ \checkmark

 $g kg^{-1}$ (6. \rightarrow 15.)

Volume per dry air mass unit : v =

Numérique noté sur 1

 $8.4671993647e-01 \pm 8.4671993647e-02$ \checkmark

 $m^3 kg^{-1}$ (8.28 $10^{-1} \rightarrow 8.75 10^{-1}$)

Enthalpy per dry air mass unit : h =

Numérique noté sur 2

 $4.2170413773e+01 \pm 4.2170413773e+00$

 $kJ kg^{-1}$ (32. \rightarrow 65.)

(3) Moist air

RÉPONSES INTÉGRÉES pénalité 0.10

The dry thermometer of a meteorological station indicates a temperature $\theta = 22.$ °C

The moist sensor indicates a relative humidity $\psi = 70.\%$

Atmospheric pressure is $p_{\rm atm} = 101325$. Pa

Compute the quantities below

In your answers, use scientific notations if needed. $(6.3410^{-5} \text{ writes } 6.34\text{e-}5 \text{ and } 10^3 \text{ writes } 1\text{e3})$.

Your answer is considered correct within a relative error of $10.0\,\%$

Indicative ranges are proposed in front of each answer. This are orders of magnitude to help you to check your results.

Absolute humidity: w =

Numérique

noté sur 1

 $1.1578906252e + 01 \pm 1.1578906252e + 00$ \checkmark

 $g kg^{-1}$ (6. \rightarrow 15.)

Volume per dry air mass unit : v =

Numérique noté sur 1

 $8.5167403318e-01 \pm 8.5167403318e-02$ \checkmark

 $m^3 kg^{-1}$ (8.28 $10^{-1} \rightarrow 8.75 \, 10^{-1}$)

Enthalpy per dry air mass unit : h =

Numérique noté sur 2

 $5.1535937615e+01 \pm 5.1535937615e+00$ \checkmark

 $kJ kg^{-1}$ (32. \rightarrow 65.)

(4) Moist air

Réponses intégrées

pénalité 0.10

The dry thermometer of a meteorological station indicates a temperature $\theta = 22.$ °C

The moist sensor indicates a relative humidity $\psi = 63.\%$

Atmospheric pressure is $p_{\text{atm}} = 101325$. Pa

Compute the quantities below

In your answers, use scientific notations if needed. $(6.3410^{-5} \text{ writes } 6.34\text{e-}5 \text{ and } 10^3 \text{ writes } 1\text{e3})$.

Your answer is considered correct within a relative error of $10.0\,\%$

Indicative ranges are proposed in front of each answer. This are orders of magnitude to help you to check your results.

Absolute humidity: w =

$1.0401651303e + 01 \pm 1.0401651303e + 00$ \checkmark

$$g kg^{-1}$$
 (6. \rightarrow 15.)

Volume per dry air mass unit : v =

Numérique noté sur 1

$8.5009145307e-01 \pm 8.5009145307e-02$ \checkmark

$$m^3 kg^{-1}$$
 (8.28 $10^{-1} \rightarrow 8.75 10^{-1}$)

Enthalpy per dry air mass unit : h =

Numérique noté sur 2

$4.8544132522e+01 \pm 4.8544132522e+00$ \checkmark

$$kJ kg^{-1}$$
 (32. \rightarrow 65.)

(5) Moist air

RÉPONSES INTÉGRÉES pénalité 0.10

The dry thermometer of a meteorological station indicates a temperature $\theta = 29$. °C

The moist sensor indicates a relative humidity $\psi = 56.\%$

Atmospheric pressure is $p_{\rm atm}=101325.\,{\rm Pa}$

Compute the quantities below

In your answers, use scientific notations if needed. $(6.34 \, 10^{-5} \text{ writes } 6.34\text{e-}5 \text{ and } 10^3 \text{ writes } 1\text{e}3)$.

Your answer is considered correct within a relative error of 10.0 %

Indicative ranges are proposed in front of each answer. This are orders of magnitude to help you to check your results.

Absolute humidity: w =

Numérique noté sur 1

$1.4096769526e + 01 \pm 1.4096769526e + 00$ \checkmark

$$g kg^{-1}$$
 (6. \rightarrow 15.)

Volume per dry air mass unit : v =

Numérique noté sur 1

$8.7533800795e-01 \pm 8.7533800795e-02$ \checkmark

$$m^3 kg^{-1}$$
 (8.28 $10^{-1} \rightarrow 8.75 \, 10^{-1}$)

Enthalpy per dry air mass unit : h =

Numérique noté sur 2

$6.5149277110e + 01 \pm 6.5149277110e + 00$ \checkmark

$$kJ kg^{-1}$$
 (32. \rightarrow 65.)

(6) Moist air

RÉPONSES INTÉGRÉES pénalité 0.10

The dry thermometer of a meteorological station indicates a temperature $\theta = 20.$ °C

The moist sensor indicates a relative humidity $\psi = 60.\%$

Atmospheric pressure is $p_{\rm atm} = 101325$. Pa

Compute the quantities below

In your answers, use scientific notations if needed. $(6.3410^{-5} \text{ writes } 6.34\text{e-}5 \text{ and } 10^3 \text{ writes } 1\text{e3})$.

Your answer is considered correct within a relative error of $10.0\,\%$

Indicative ranges are proposed in front of each answer. This are orders of magnitude to help you to check your results.

Absolute humidity: w =

Numérique noté sur 1

$8.7366105036e + 00 \pm 8.7366105036e - 01$ \checkmark

$$g kg^{-1}$$
 (6. \rightarrow 15.)

Volume per dry air mass unit : v =

Numérique noté sur 1

$8.4210790838e-01 \pm 8.4210790838e-02$ \checkmark

$$m^3 kg^{-1} \quad (8.28 \, 10^{-1} \, \to \, 8.75 \, 10^{-1})$$

Enthalpy per dry air mass unit : h =

Numérique noté sur 2

$4.2270896475e + 01 \pm 4.2270896475e + 00$ \checkmark

$$kJ kg^{-1}$$
 (32. \rightarrow 65.)

(7) Moist air

RÉPONSES INTÉGRÉES pénalité 0.10

The dry thermometer of a meteorological station indicates a temperature $\theta=16.\,^{\circ}\mathrm{C}$

The moist sensor indicates a relative humidity $\psi = 59.\%$

Atmospheric pressure is $p_{\rm atm}=101325.\,{\rm Pa}$

Compute the quantities below

In your answers, use scientific notations if needed. $(6.3410^{-5} \text{ writes } 6.34\text{e-}5 \text{ and } 10^3 \text{ writes } 1\text{e}3)$.

Your answer is considered correct within a relative error of $10.0\,\%$

Indicative ranges are proposed in front of each answer. This are orders of magnitude to help you to check your results.

Absolute humidity: w =

Numérique noté sur 1

 $6.6561524837e + 00 \pm 6.6561524837e - 01$

$$g kg^{-1}$$
 (6. \rightarrow 15.)

Volume per dry air mass unit : v =

Numérique noté sur 1

 $8.2787753823e-01 \pm 8.2787753823e-02$ \checkmark

$$m^3 kg^{-1}$$
 (8.28 $10^{-1} \rightarrow 8.75 10^{-1}$)

Enthalpy per dry air mass unit : h =

Numérique noté sur 2

 $3.2922861368e+01\pm3.2922861368e+00$ \checkmark

 $kJ kg^{-1}$ (32. \rightarrow 65.)

(8) Moist air

Réponses intégrées pénalité 0.10

The dry thermometer of a meteorological station indicates a temperature $\theta = 18.$ °C

The moist sensor indicates a relative humidity $\psi = 66.\%$

Atmospheric pressure is $p_{\rm atm}=101325$. Pa

Compute the quantities below

In your answers, use scientific notations if needed. $(6.34 \, 10^{-5} \text{ writes } 6.34\text{e-}5 \text{ and } 10^3 \text{ writes } 1\text{e3})$.

Your answer is considered correct within a relative error of $10.0\,\%$

Indicative ranges are proposed in front of each answer. This are orders of magnitude to help you to check your results.

Absolute humidity : w =

Numérique noté sur 1

 $8.4780040261e+00 \pm 8.4780040261e-01$ \checkmark

 $g kg^{-1}$ (6. \rightarrow 15.)

Volume per dry air mass unit : v =

Numérique noté sur 1

$8.3601974032e-01 \pm 8.3601974032e-02$ \checkmark

$$m^3 kg^{-1}$$
 (8.28 $10^{-1} \rightarrow 8.75 \, 10^{-1}$)

Enthalpy per dry air mass unit : h =

Numérique noté sur 2

$3.9573770882e + 01 \pm 3.9573770882e + 00$ \checkmark

$$kJ kg^{-1}$$
 (32. \rightarrow 65.)

(9) Moist air

RÉPONSES INTÉGRÉES pénalité 0.10

The dry thermometer of a meteorological station indicates a temperature $\theta = 25$. °C

The moist sensor indicates a relative humidity $\psi = 69.\%$

Atmospheric pressure is $p_{\rm atm} = 101325$. Pa

Compute the quantities below

In your answers, use scientific notations if needed. $(6.34 \, 10^{-5} \text{ writes } 6.34\text{e-}5 \text{ and } 10^3 \text{ writes } 1\text{e3})$.

Your answer is considered correct within a relative error of $10.0\,\%$

Indicative ranges are proposed in front of each answer. This are orders of magnitude to help you to check your results.

Absolute humidity: w =

Numérique noté sur 1

 $1.3724325578e + 01 \pm 1.3724325578e + 00$

 $g kg^{-1}$ (6. \rightarrow 15.)

Volume per dry air mass unit : v =

Numérique noté sur 1

 $8.6324411849e-01 \pm 8.6324411849e-02$ \checkmark

$$m^3 kg^{-1}$$
 (8.28 $10^{-1} \rightarrow 8.75 10^{-1}$)

Enthalpy per dry air mass unit : h =

Numérique noté sur 2

 $6.0078112382e+01 \pm 6.0078112382e+00$ \checkmark

 $kJ kg^{-1}$ (32. \rightarrow 65.)

(10) Moist air

Réponses intégrées pénalité 0.10

The dry thermometer of a meteorological station indicates a temperature $\theta = 27.$ °C

The moist sensor indicates a relative humidity $\psi = 52.\%$

Atmospheric pressure is $p_{\rm atm}=101325.\,{\rm Pa}$

Compute the quantities below

In your answers, use scientific notations if needed. $(6.3410^{-5} \text{ writes } 6.34\text{e-}5 \text{ and } 10^3 \text{ writes } 1\text{e3})$.

Your answer is considered correct within a relative error of 10.0%

Indicative ranges are proposed in front of each answer. This are orders of magnitude to help you to check your results.

Absolute humidity : w =

Numérique noté sur 1

 $1.1603805322e+01\pm1.1603805322e+00$ \checkmark

 $g kg^{-1}$ (6. \to 15.)

Volume per dry air mass unit : v =

Numérique noté sur 1

 $8.6613588888e-01 \pm 8.6613588888e-02$ \checkmark

 $m^3 kg^{-1}$ (8.28 $10^{-1} \rightarrow 8.75 10^{-1}$)

Enthalpy per dry air mass unit : h =

Numérique noté sur 2

 $5.6729809246e + 01 \pm 5.6729809246e + 00$ \checkmark

 $kJ kg^{-1}$ (32. \rightarrow 65.)

Total des points : 40