

Eur päisches
Patentamt

European
Patent Office

Office européen
des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n°

99116533.3

Der Präsident des Europäischen Patentamts;
Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets
p.o.

I.L.C. HATTEN-HECKMAN

DEN HAAG, DEN
THE HAGUE, 19/10/01
LA HAYE, LE

THIS PAGE BLANK (USPTO)

Eur pâisches
Patentamt

European
Patent Office

Office européen
des brevets

**Blatt 2 d r Bescheinigung
Sheet 2 of the certificate
Page 2 de l'attestation**

Anmeldung Nr.:
Application no.: **99116533.3**
Demande n°:

Anmeldetag:
Date of filing: **24/08/99** ✓
Date de dépôt:

Anmelder:
Applicant(s):
Demandeur(s):
Chen, Una, Biochemistry Inst., University of Giessen
35392 Giessen
GERMANY

Bezeichnung der Erfindung:
Title of the invention:
Titre de l'invention:
Method for growing stem cells

In Anspruch genommene Priorität(en) / Priority(ies) claimed / Priorité(s) revendiquée(s)

Staat: Tag: Aktenzeichen:
State: Date: File no.
Pays: Date: Numéro de dépôt:

Internationale Patentklassifikation:
International Patent classification:
Classification internationale des brevets:
C12N5/06, C12N5/08, C12N5/10, C12N15/63, C12N15/85, A61K48/00, A61K35/12

Am Anmeldetag benannte Vertragstaaten:
Contracting states designated at date of filing: AT/BE/CH/CY/DE/DK/ES/FI/FR/GB/GR/IE/IT/LI/LU/MC/NL/PT/SE/TR/
Etats contractants désignés lors du dépôt:

Bemerkungen:
Remarks:
Remarques:

THIS PAGE BLANK (USPTO)

EPO - Munich
51

24. Aug. 1999

Method for growing stem cells

The present invention is related to a method for growing stem cells.

Stem cells are commonly defined as cells which exist for the lifetime of an organism and are able to undergo symmetric and/or asymmetric divisions, to give rise to further stem cells (for preservation of the stem cell pool) and to more differentiated cells with defined life-time (for organ-specific functions). Due to this unique property they are ideal vehicles for somatic gene therapy. They would maintain the transgene for the life-time of the tissue and the organism, and would carry the transgene expression into the differentiated cells. Stem cells may be totipotent (e.g. embryonic stem cells), pluripotent (e.g. hematopoietic stem cells) or unipotent (e.g. keratinocytes, muscle precursor cells).

Although being the aim of many research projects, it has until now been very difficult to grow stem cells, especially lineage-committed stem cells, thereby controlling expansion and differentiation of the stem cells.

The present invention provides a method for growing stem cells comprising the steps of

- providing stem cells with supporters said supporters being genetically modified in order to provide externally regulatable interactions between the supporters and the stem cells;
- applying an external signal for starting or stopping the interactions.

According to the present invention, stem cells are co-incubated with supporters. These supporters are genetically modified to allow a regulatable interaction with the

- 2 -

stem cells. These interactions between the supporters and the stem cells are externally regulatable. "Externally regulatable" defines that the interaction between the supporters and the stem cells is regulated from outside of the supporters.

Preferably, the interactions are based on the secretion or display of substances. These substances, which are secreted or displayed by the supporters control the development of the stem cells. The expansion or differentiation of the stem cells is indirectly controlled by the regulatable interactions of the supporters.

Preferably as external signals may serve the addition or removal of substances, heat, light, sound and/or electromagnetic waves. The only requirement is that these external signals are able to regulate the interactions between the supporters and the stem cells.

Preferably, the supporters are cells. They may be stem cells or non-stem cells. In a preferred embodiment these supporters are forming a micro-environment.

The supporting cells can be further transformed with foreign genes to express a gene product of interest e.g. a protein of the clotting cascade, insulin, enzymes growth factors or the like.

It is believed that the supporters form a micro-environment thus providing cytokines and adhesion molecules as well as direct contact between the stem cells and the supporters. Suitable supporters are skin cells, lung cells, bone marrow stroma cells, or tissue cells.

Suitable secreted or displayed substances are cell based growth factors, protein growth factors, interleukines.

- 3 -

In particular, the supporters are genetically modified with a vector comprising a gene for the substances, e.g. interleukines, protooncogenes, oncogenes, cell cycle control genes, and/or cell based growth factors and a regulatable expression system. A preferred regulatable expression system is the regulatable tetracycline expression system.

Preferred vectors for the transformation of the supporters are the vectors selected from the group consisting of pRetro-tet-off-E6/E7, pRetro-tet-off-U19-tsA58, pUHD15.1- β -gal-NeoR, pUHD10.3-TGF β 3, pUHD10.3-hIL3, pUHD10.3-hIL6, pD12YCVJC-long-CNTF, pD12YCVJC-long-GDNF, pD12YCVJC-short-CNTF and pD12YCVJC-short-GDNF.

Details on these vectors can be found in the examples and the figures.

Cell lines obtainable by genetically modification of cells with the vectors of the present invention form part of the invention.

The present invention further provides a method of curing diseases by gene therapy and/or cell therapy which diseases are related to insufficient, lack or disorder of stem cells, by administering to patients in need thereof, supporters being genetically modified in order to provide externally regulatable interactions between the supporters and the stem cells. Furthermore, any disease related to insufficient expression or activity of a protein or enzyme can be treated by administering supporters and/or stem cells after expansion ex vivo.

Fig. 1 shows the appearance of hIL-3, depending on the addition/removal of doxycycline in vivo.

Fig. 2 shows the shows the appearance of hIL-6 depending on the addition/removal of doxycycline in vivo.

Printed: 19-10-2001

SPEC

- 4 -

Fig. 3 shows the cloning of growth factor genes.

Fig. 4 to 12 show the sequences of vectors.

The method of the present invention is further explained by the following example:

Example

hIL6 containing transgenic-keratinocytic stem cells support the growth of (sister) keratinocytic stem cells in culture: In these sets of experiments, ELISA assays were performed with supernates obtained from one hIL6 of construct teto-hIL6 containing keratinocytic cell clone derived from a CMV-tTA x teto-SV40 T antigen transgenic mouse, either cultured alone, or with doxycycline included in the culture for 0-12h, 25-50h. This experiment is to test whether the secretion of cytokines affects by doxycycline in culture.

hIL6 promotes the growth of CMV-tTA x teto-SV40Tag transgenic keratinocytic stem cell line drastically by increasing cell numbers. At the presence of hIL6, the growth arrest at G1 compartment is abolished, and cells continue to grow in the presence of doxycycline.

The level of hIL6 in the supernates was slightly inhibited at time point of 12h, and increase again at 50h, up to the level of the control cells, i.e., without doxycycline. Thus, hIL6-containing clone continued to secrete hIL6 despite of the fact that doxycycline was included in the culture.

The data are interpreted as follow: Engineered stem cells support the growth of sister stem cells (internally or externally) in vitro by the combination of the following two mechanisms:

- 5 -

- (1) The hIL6 engineered keratinocytic stem cells secrete hIL6 into supernate, target and promote the growth of sister keratinocytic stem cells - an external/heterocrine mechanism.
- (2) The gene product of hIL6 engineered keratinocytic stem cells, acts intracellularly, and promotes the growth of itself - an internal/autocrine mechanism.
1. In both events, hIL6 is able to maintain skin in the keratinocytic stem cells compartment, upon the withdraw of doxycycline.

Cytokine-containing keratinocytic stem cells and tracheal epithelial stem cells secrete cytokines known to support the growth of hematopoietic stem cells (HSC):

Using hIL3, hIL6, flk2/flt3Ligand to support the growth of HSC for several weeks in culture, and in comparing to that of stroma cell lines in supporting HSC, has been performed. In the literature there are many published data showing that hIL3, hIL6, flk2/flt3Ligand are essential to support the growth of HSC. These data show that these cytokines are essential in maintaining HSC in culture, and in increasing the transduction efficiency of retroviruses into HSC in the two chamber culture system where the experiments were performed and described in the literature.

Keratinocytic stem cell lines and tracheal epithelial stem cell lines were established from CMV-tTA x tetoCMVm-SV40Tag double transgenic mice (from H. Bujard and S. Efrat).

Stem cells are supported by cytokine-containing transgenic stem cells: in vivo using immunocompetent mice (nu/nu mice): It is for the purpose of somatic

- 6 -

delivery of growth factors essential for maintenance of human hematopoietic stem cells (HSC) in recipient hosts. The cytokines constructed shown to be functional for HSC are hIL3, hIL6, and flk2/flt3Ligand, and thus are used further for *in vivo* experiments (below).

Teto-hIL6, teto-hIL3 containing transgenic keratinocytic and tracheal epithelial stem cells derived from CMV-tTA x teto-CMVm-SV40Tag double transgenic mice were pre-cultured on DED (denuded dermis from human cosmetic operation) and implanted subcutaneously (flip-in) into immunoincompetent mice (nude mice).

Blood samples from such nude mice were collected from a tail vein of mice periodically. Sera were separated from blood clots. ELISA tests were performed on serum samples collected. After cytokines were demonstrated to appear in blood, such nude mice ingested doxycycline (1mg/ml) included in the drinking water and blood collected at the time points indicated. As indicated in figures 1 (hIL3) and 2 (hIL-6), hIL3 and hIL6 are shown to appear in the blood reaching a significant amount (14.7 pg/ml for hIL3, 15.9 pg/ml for hIL6), and they were decreased when doxycycline was included the drinking water. Upon removal of doxycycline, hIL3 and hIL6 were shown to increase to higher levels again (41.2 pg/ml for hIL3, and 14.5pg/ml for hIL6). Upon reingestion of doxycycline, the levels of cytokines were shown to decrease to zero.

The mice survive over the 5-6months of experiment without any sign of illness due to the implantation of engineered mouse stem cells delivering human cytokines. The pattern can be cyclic. It is predicted that the protocol will work similarly in the SCID-NOD mice. Thus, in nude mice, we show that the secretion of cytokines such as hIL3 and hIL6 into the blood stream is regulated by doxycycline in the drinking water.

- 7 -

In summary, the above protocol of somatic engineering of immuno-incompetent mice with regulatable delivery of growth factors has been tested and shown to be deliverable to high titers in nu/nu mice. The growth of transgenic keratinocytes and lung epithelial cells, and the delivery of cytokines are shown to be subjected to the regulation of doxycycline (in culture of some cells, such as HETA cells but not other cells, such as a hIL6-containing keratinocytic cell line, when doxycycline is included in the medium); and in vivo when included in the drinking water.

The principle of this protocol can also apply to the support of the growth of stem cells of any kind, such as neural and glial stem cells, in immuno-incompetent mice, as a novel diagnostic tool for evaluating the preclinical and clinical protocols.

Establishment and commercialization of SCID-NOD-hu systems as diagnostics for growth and evaluation of self-renewal property of human neuronal and glial stem cells, clinical protocol and for drug targeting:

The keratinocytic stem cell line and tracheal epithelial stem cell line derived from CMV-tTAxtoCMVm-SV40Tag double transgenic mice are used in this type of experiment. These cell lines are inserted with cytokine constructs for the somatic delivery of neurotropic factors essential for the survival and maintenance of human adult brain stem cells in recipient hosts. The cytokines constructed are pD12YCV-JC-driven GDNF and CNTF. The transgenic tracheal epithelial stem cells are pre-cultured on DED (dead de-epidermized dermis) and implanted subcutaneously (flip-in) (in the head region) into SCID-NOD mice. The growth of transgenic lung keratinocytic stem cells and epithelial cells, and the delivery of cytokines have been shown to be subjected to the regulation of doxycycline in culture and in vivo when included in the drinking water. The mice survive over the months of experiment without any sign of illness due to the implantation of engineered mouse cells deliv-

- 8 -

ering human cytokines. The principle of the protocol will work similarly in the SCID-NOD mice for human neurotrophic factors.

Protocol for construction of pD12JCVPLong-CNTF plasmid

Similar strategy and construction protocols held for pD12JCVPLong-GDNF, pD12JCVPshort-CNTF, pD12JCVPshort-GDNF.

1. pD12JCVPLong vector (from E. Beck and J. Henson) was linearized upon NsiI restriction enzyme.
2. The sticky ends of the vector were filled using Klenow fragments of E. coli polymerase I.
3. Digestion of the linearized pD12JCVPLong vector with restriction enzyme Xhol.
4. After digestion, the DNA sample was subjected to gel electrophoresis in 0.8% preparative agarose gel to obtain ca. 6.3 kb DNA fragment (pD12JCVPLong x NsiI/Xhol).
5. pBS-hCNTF-079 vector (from E. Beck) was linearized with restriction enzyme NotI.
6. The termini of the linearized pBS-hCNTF-079 vector was filled with Klenow fragment of E. coli DNA polymerase I in order to obtain the blunt-end.
7. The linearized and blunt-ended (pBS-hCNTF-079 x NotI) was digested with SphI.

- 9 -

8. After digestion, the DNA sample was subjected to gel electrophoresis in 0.8% preparative agarose gel and the 2469 bp DNA fragment containing CNTF gene was isolated.
9. The blunt- and sticky ended (CNTF x NotI/SahI) fragment (from step 8) was ligated with complementary blunt- and sticky-ended (pD12JCVPLong x NsiI/Xhol) (from step 4) vector.
10. VXL1-blue competent bacteria E. coli was transformed with DNA (from step 9), and ampicillin resistant clones were selected, and characterized to be correct.

Protocol for construction of pRetro-OFF-E6E7 plasmid:

1. pLXSNE6E7 vector (from D. Galloway) was linearized upon EcoRI restriction enzyme digestion.
2. The sticky ends of the vector was filled using Klenow fragments of E.coli DNA polymerase I.
3. The termini of the linearized pLXSNE6E7 was ligated with synthetic adaptor (Xhol-NotI-BglII) purchased from Roth, Karlsruhe.
4. The newly adapted-[pLXSNE6E7 x NotI/BamHI] (step 3) was digested with NotI and BamHI.
5. After digestion, the DNA sample was subjected to gel electrophoresis in 1% preparative agarose gel to obtain ca. 830 bp fragment of [E6E7 x NotI/BamHI].
6. pRetro-OFF vector was digested with NotI and BamHI.

- 10 -

7. The fragment of [E6E7 x NotI/BamHI] was then inserted into the [pRetro-OFF vector x NotI/BamHI] (step 6).
8. XL1-blue competent bacteria E.coli were transformed with the construct from step 7. Ampicillin resistant clones were selected and characterized to be correct.

Protocol-2 for construction of pRetro-OFF-U19tsA58 plasmid:

1. pZipNEOSV(x) vector (from P. Jat) was digested with BamHI restriction enzyme.
2. After digestion, the DNA sample was electrophoresed in 0.8 % preparative agarose gel to obtain ca 2.6 kb DNA fragment (U19tsA58 x BamHI).
3. pRetro-OFF vector was linearized with restriction enzyme BamHI.
4. The terminal of the linearized pRetro-OFF vector was dephosphoried with Shrimp Alkaline Phophatase (USB) from Amersham.
5. The fragment of (U19tsA58 x BamHI) (from step 2) was then inserted into the (pRetro-OFF vector x BamHI) (from step 4).
6. The XL1-blue competent bacteria E. coli was transformed with DNA (from step 5), and ampicillin resistant clones were selected, and characterized to be correct.

Protocol for the construction of pUHD-transactivator vectors:

A. Transactivator, pUHD15.1-pCMV-tTA- β -gal-neomycin plasmid:

1. pUHD15.1 (from H. Bujard) was linearized using BamHI restriction enzyme.

- 11 -

2. 5' -end was dephosphorized using phosphatase, and the DNA sample was subjected to gel electrohoresis in 1% preparative agarose gel to obtain ca. 7255 bp fragment of (pUHD15.1BamHI).
3. IRES- β geo fragment which contains lacZ+neo (Ca 3050 bp)) was obtained from another plasmid (ptetotsA58IRES β geo) (from H. Schoeler) using BamHI restriction enzyme digestion.
4. After digestion, the DNA sample was subjected to gel electrohoresis in 1% preparative agarose gel to obtain ca. 3050 bp fragment of (IRES- β geoBamHI).
5. The fragment of (IRES- β geoBamHI) (step 4) was then inserted into the (pUHD15.1BamHI) (step 2).
6. XL1-blue competent bacteria E. coli were transformed with the construct from step 5. Ampicillin resistant clones were selected and characterized to be correct.

Protocol for the construction of pUHD-responder vectors:

B. Responder pUHD10.3 cytokine plasmids:

1. The multiple cloning site (MCS) of responder pUHD10.3 (from H. Bujard) was linearized using EcoRI and SacII (for hIL6), or EcoRI and BamHI (for hIL3), or EcoRI and XbaI (for TGF β 3) restriction enzymes.
2. After digestion, the individual DNA sample was subjected to gel electrohoresis in 1% preparative agarose gel to obtain ca. 3150 bp fragment of DNA.
3. Fragments of cDNA coding for hIL6 (EcoRI-SacII), hIL3 (EcoRI-BamHI), TGF β 3 (EcoRI-XbaI) were obtained from the original supplier (A. Bernad, Ge-

- 12 -

netic Institute, ATCC), and individual restriction enzyme digested as indicated in the original publications.

4. After digestion, the DNA sample was subjected to gel electrophoresis in 1% preparative agarose gel to obtain ca. 600 bp fragment of hIL6 (EcoRI-SacII), ca. 475 bp fragment of hIL3 (EcoRI-BamHI), and ca. 1233 bp fragment of TGF β 3 (EcoRI-XbaI).
5. The fragment coding for the respective cytokine gene (step 4) was then inserted into the responder pUHD10.3 EcoRI-SacII (for hIL6), or EcoRI-BamHI (for hIL3), or EcoRI-XbaI (for TGF β 3) (step 2).
6. XL1-blue competent bacteria E. coli were transformed with the construct from step 5. Ampicillin resistant clones were selected and characterized to be correct.

- 13 -

EPO-Munich
51

Claims

24. Aug. 1999

1. A method for growing stem cells comprising the steps of
 - providing stem cells with supporters said supporters being genetically modified in order to provide externally regulatable interactions between the supporters and the stem cells;
 - applying an external signal for starting or stopping the interactions.
2. The method of claim 1 wherein the interactions are based on secretion or display of substances.
3. The method of any of the claims 1 or 2 wherein the supporters are modified for the secretion or display of substances under control of a promoter.
4. The method of any of claims 1 to 4 wherein the external signal is the addition or removal of substances, heat, light, sound and/or electromagnetic waves.
5. The method of any of claims 1 to 4, wherein the supporters are non-stem cells.
6. The method of any of claims 1 to 4, wherein the supporters are stem cells.
7. The method of any one of claims 1 to 6, wherein the supporters are forming a micro-environment.

- 14 -

8. The method of any one of claims 1 to 7, wherein the supporters are skin cells, lung cells, bone marrow stroma cells or tissue cells.
9. The method of any one of claims 1 to 8, wherein the supporters are secreting or displaying cell based growth factors, protein growth factors and/or interleukines.
10. The method of any one of claims 1 to 8, wherein the supporters are transformed by a vector comprising a gene for interleukines, protooncogenes, oncogenes, cell cycle control genes, and/or cell based growth factors as well as a regulatable expression system, such as a tetracycline regulatable expression system.
11. A vector selected from the group consisting of pRetro-tet-off-E6/E7, pRetro-tet-off-U19-tsA58, pUHD15.1-β-gal-NeoR, pUHD10.3-TGFβ3, pUHD10.3-hIL3, pUHD10.3-hIL6, pD12YCVJC-long-CNTF, pD12YCVJC-long-GDNF, pD12YCVJC-short-CNTF and pD12YCVJC-short-GDNF.
12. A supporter cell being genetically modified in order to provide a regulatable secretion and/or a display of substances of the supporters.
13. A method of curing diseases by gene therapy and/or cell therapy which diseases are related to insufficient and/or lack and/or disorders of stem cells, by administering to patients in need thereof, supporters being genetically modified in order to provide externally regulatable interaction between supporter cells and stem cells.

- 15 -

14. Cell lines obtainable by transforming cells with the vector according to claim 11.

Printed: 19-10-2001

SPECEPO-Munich
51

- 16 -

24. Aug. 1999

Abstract

A method for growing stem cells comprising the steps of

- providing stem cells with supporters said supporters being genetically modified in order to provide externally regulatable interactions between the supporters and the stem cells;
- applying an external signal for starting or stopping the interactions.

SPEC

- 1/35 -

EPO - Munich
51

24. Aug. 1999

Fig. 1

SPEC

- 2/35 -

— pg/ml Blut (hIL-6)

Fig. 2

- 3/35 -

Cloning of growth factor genes

Fig. 3

Printed: 19-10-2001

SPEC

- 4/35 -

99116533

p012JCVPlong-hCMTF

L ngth: 7969 July 22, 1999

1 GCTAGCGATT TAGGTGACAC TATAGAATAG ATCtcg cnn ngtCACCCCT
 51 AGAGTCGAGC TGTGACGGTC CTTACAATGA AATGCANCTG GGTTATCTTC
 101 TTCCCTGATGG CAGGGGTTAC AGGTAAAGGGG CTCCCAAGTC CCAAACCTGA
 151 GGGTCCATAA ACTCTGTGAC AGTGGCAATC ACTTTGCCCTT TCTTTCTACA
 201 GGGGTGAATT CGGCTTCAC AGAGCATTCA CCGCTGACCC CTCACCGTCG
 251 GGACCTCTGT AGCCGCTCTA TCTGGCTAGC AAGGAAGATT CGTTCAGACC
 301 TTGACTGCTC TTACGGAATC CTATGTAAGT TGCCCTATTT GCTGTTATCT
 351 GTTTTCCCTT CATCTTTTT GATCCAGCAA CTTACCATCA CGCATCAGCT
 401 CCATTACCAA TTGTGAAAGC TCTAATCATA TAGTCATTCA TATAGGTAT
 451 TTGACATGGG CCCTTCCCTT GAGGAAACCC ATGTGACTTT ATTTTCTTCC
 501 TCTGGGCTGT TTAGGAGATG AAGTTACTTG AATGAGAAAA TATATATGGA
 551 GTTCTAGAAA GGATTGGTTT ATATGTCTTG GAGGCTATTT CAAAATTAT
 601 TTGGCCATAT ATTCTGAATA CTACCTAGAA CAGATTAGCC ATGGGCCCTN
 651 TGGGTTNTTC ATAAGCCATT GTTCTGAANT TTTTAGCTT TGTAAATGAA
 701 AGGTTTATGG GATAAGGAAGA GTNCTATGAA CGTGGGAGGA ATTTGTAAAT
 751 CCTACCAATT TNTNCTATAT AGCATTAGCC CCCACCTTTT ANTATTCTGC
 801 ATCAAAAGTA AGATTGTGTC TAAGAGAAA GGTNAGCTAT CAAAAGGACT
 851 CCTATAANAT TCNTTGGAAA CTINTGGAAN TGTCAAATTY NTTTGAGCTA
 901 ATTNTTGGAG TTCCAAANTT TGTCTTNTNA CAGTNAAGGG GGANCCCCAT
 951 TCAANATTNC CCCCCTNNNG ANAATGCTTG GGGGAAAAAA CCTNCCAACC
 1001 CCNTTGTGGG ANGAAGTTTT TTTAANNTTT TAAGGCTNGN NGAAACNGGN
 1051 TTTTAATTTC TTGGGNCNAN CGCCTNTCCC CGGTACCCAGG AAAATCAGGA
 1101 CCTNTTTTG GGGNNNGNCN CCNACNGGGG GGNAAAANGG GAAATTCTNT
 1151 CANAAAAAAAT CTTTCCGnn nnnngtgaag catcagggcc tgaacaagaa
 1201 catcaacctg gactctgcgg atggatgcc agtggcaagc actgatcagt
 1251 ggagtgagct gaccgaggca gagcgactcc aagagaacct tcaagttat

Fig. 4

SPEC

99116533

1301 cgtacccccc atgtttgtt ggcaggcctt ttagaagacc agcagggtgca
 1351 ttttacccca accgaagggtg actccatca agctatacat acccttcttc
 1401 tccaaagtgc tgcccttgca taccagatag aggagttaat gataactcctg
 1451 gaataacaag tcccccgcaa tgaggctgat gggatgcctt ttaatgttgg
 1501 agatgggtggt ctctttgaga agaagctgtg gggcctaaag gtgctgcagg
 1551 agctttcaca gtggacagta aggtccatcc atgaocttcg ttccatttt
 1601 tctcatcaga ctgggatccc agcacgtggg agccattata ttgctaacaa
 1651 caagaaaaatg tagnnnnnnac ggccTGCGCC GTCTTCCCCG ACGTTAAAGG
 1701 GATGAAACCA CAAGACTTAC CTTCGCTCGG AAGTAAAACG ACAAACACAC
 1751 ACAGTTTGC CCGTTTCAT GAGAAATGGG ACGTCTGCAC ACGAAACGCG
 1801 CCGTC3CTTG AGGAGGACTT GTACAAACAC GATCTATGCA GGTTTCCCCA
 1851 ACTGACACAA ACCGTGCAAC TTGAAACTCC GCCTGGTCTT TCCAGGTCTA
 1901 GAGGGGTAAC ATTTTGTACT GTGTTTGAAT CCACGCTCGA TCCACTAGCG
 1951 AGTGTAGTA GCGGTACTGC TGTCTCGTAG CGGAGCATGT TGGCCGTGGG
 2001 AACACCTCCT TGGTAACAAG GACCCACGGG GCCGAAAGCC ATGTCCTAAC
 2051 GGACCCAACA TGTGTGCAAC CCCAGCACGG CAGCTTTACT GTGAAACCCA
 2101 CTTCAAGGTG ACATTGATAC TGGTACTCAA ACACGGTGA CAGGCTAAGG
 2151 ATGCCCTCA GGTACCCCGA GGTAAACAAGC GACACTCGGG ATCTGAGAAG
 2201 GGGACTGGGA CTTCTTTAAA GTGCCAGTT TAAAAAGCTT CTACGCCCTGA
 2251 ATAGGTGACC GGAGGCCGGC ACCCTTCCTT TTATAACCAC TGAACACATG
 2301 GAAGACGCCA AAAACATAAA GAAAGGCCCG GCGCCATTCT ATCCTCTAGA
 2351 GGATGGAACCG CTCGGAGAGC AACTGCATAA GGCTATGAAG AGATACGCC
 2401 TGGTTCTGG AACAAATTGCT TTTACAGATG CACATATCGA GGTGAACATC
 2451 ACGTACGCCGG AATACTTCGA AATGTCGTT CGGTTGGCAG AAGCTATGAA
 2501 ACGATATGGG CTGAATACAA ATCACAGAAAT CGTCGTATGC AGTGAACACT
 2551 CTCTTCAATT CTTTATGCCG GTGTTGGCG CGTTATTTAT CGGAGTTGCA
 2601 GTTGCGCCCG CGAACGACAT TTATAATGAA CGTGAATTGC TCAACAGTAT
 2651 GAACATTTCG CAGCCTACCG TAGTGTGTTGT TTCCAAAAAG GGGTTGCAAA

Fig. 4

SPEC

2701 AAATTTGAA CGTGCAAAA AAATTACCAA TAATCCAGAA AATTATTATC
2751 ATGGATTCTA AAACGGATT CCAGGGATT CAGTCGATGT ACACGTTCGT
2801 CACATCTCAT CTACCTCCCG GTTTTAATGA ATACGATTTT GTACCAGAGT
2851 CCTTTGATCG TGACAAAAACA ATTGCAGTGA TAATGAATTG CTCTGGATCT
2901 ACTGGGTTAC CTAAGGGTGT GGCCCTTCAG CATAGAACTG CCTGCGTCAG
2951 ATTCTCGCAT GCCAGAGATC CTATTTTGG CAATCAAATC ATTCCGGATA
3001 CTGCGATTAA AAGTGTGTT CCATTCATC ACGGTTTGG AATGTTACT
3051 ACACCTGGAT ATTTGATATG TGGATITCGA GTCGTCTTAA TGTATAGATT
3101 TGAAGAAGAG CTGTTTTAC GATCCCTTCAG GATTACAAA ATTCAAAGTG
3151 CGTTGCTAGT ACCAACCCCTA TTTTCAATTCT TCGCCAAAAG CACTCTGATT
3201 GACAAATACG ATTTATCTAA TTACACGAA ATTGCTTCTG GGGGCCACC
3251 TCCTTCGAAA GAAGTCGGGG AAGCGGTTGC AAAACGCTTC CATCTTCCAG
3301 GGATACGACA AGGATATGGG CTCACTGAGA CTACATCAGC TATTCTGATT
3351 ACACCCGAGG GGGATGATAA ACCGGGCCGG GTCGGTAAAG TTGTTCCATT
3401 TTTTGAAGCG AAGGTTGTGG ATCTGGATAC CGGGAAAACG CTGGGCGTTA
3451 ATCAGAGAGG CGAATTATGT GTCAAGAGGAC CTATGATTAT GTCCGGTTAT
3501 GTAAACAATC CGGAAGCGAC CAACGCCCTG ATTGACAAGG ATGGATGGCT
3551 ACATTCTGGA GACATAGCTT ACTGGGACGA AGACGAACAC TTCTTCATAG
3601 TTGACCGCTT GAAAGTCCTTA ATTAATACA AAGGATATCA GGTGGCCCCC
3651 GCTGAATTGG AATCGATATT GTTACAACAC CCCAACATCT TCGACGCGGG
3701 CGTGGCAGGT CTTCCCGACG ATGACGCCGG TGAACCTCCC GCCGCCGTTG
3751 TTGTTTTGGA GCACGGAAAG ACGATGACGG AAAAGAGAT CGTGGATTAC
3801 GTGCCAGTC AAGTAACAAC CGCGAAAAG TTGCGGGAG GAGTTGTGTT
3851 TGTGGACGAA GTACCGAAAG GTCTTACCGG AAAACTCGAC GCAAGAAAAA
3901 TCAGAGAGAT CCTCATAAAAG GCCAAGAAGG GCGGAAAGTC CAAATTGTAA
3951 AATGTAACTG TATTCAAGCGA TGACGAAATT CTTAGCTATT GTAATGACTC
4001 TAGAGGATCT TTGTTGAAGGA ACCTTACTTC TGTGGTGTGA CATAATTGGA
4051 CAAACTACCT ACAGAGATTT AAGCTCTAA GGTAAATATA AAATTTTAA

Fig. 4

Printed: 19-10-2001

SPEC

99116533

4101 GTGTATAATG TGTTAACTA CTGATTCTAA TTGTTTGTGT ATTTTAGATT
 4151 CCAACCTATG GAACTGATGA ATGGGAGCAG TGGTGAATG CCTTTAATGA
 4201 GGAAAACCTG TTTTGCTCAG AAGAAATGCC ATCTAGTGAT GATGAGGCTA
 4251 CTGCTGACTC TCAACATTCT ACTCCTCCAA AAAAGAAGAG AAAGGTAGAA
 4301 GACCCCCAAGG ACITTCCTTC AGAATTGCTA AGTTTTTGA GTCATGCTGT
 4351 GTTTAGTAAT AGAACTCTTG CTIGCTTTGC TATTACACC ACAAAGGAAA
 4401 AAGCTGCACT GCTATACAAG AAAATTATGG AAAAATATTG TGTAACCTTT
 4451 ATAAGTAGGC ATAACAGTTA TAATCATAAC ATACTGTTT TTCTTACTCC
 4501 ACACAGGCAT AGAGTGTCTG CTATTAATAA CTATGCTCAA AAATTGTGTA
 4551 CCTTTAGCTT TTTAATTGT AAAGGGTTA ATAAGGAATA TTTGATGTAT
 4601 AGTGCCTTGA CTAGAGATCA TAATCAGCCA TACCACATTT GTAGAGGTTT
 4651 TACTTGCTTT AAAAAACCTC CCACACCTCC CCCTGAACCT GAAACATAAA
 4701 ATGAAATGCAA TTGTTGTTGT TAACTTGTTT ATTGCAGCTT ATAATGGTTA
 4751 CAAATAAAGC AATAGCATCA CAAATTTCAC AAATAAAGCA TTTTTTCAC
 4801 TGCATTCTAG TTGTGGTTTG TCCAAACTCA TCAATGTATC TTATCATGTC
 4851 TGGATCCCCG GGTCCCTATA GTGAGTCGTA TTAGCTTGGC GTAATCATGG
 4901 TCATAGCTGT TTCTGTGTG AAATGTTAT CGCTCACAA TTCCACACAA
 4951 CATACTGAGCC GGAAGCATAA AGTGTAAAGC CTGGGGTGCC TAATGAGTGA
 5001 GCTAACTCAC ATTAATTGCG TTGCGCTCAC TGCCCGCTTT CCAGTCGGGA
 5051 AACCTGTCGT GCCAGCTGCA TTAATGAATC GGCCAAACGCG CGGGGAGAGG
 5101 CGGTTTGCCT ATTGGGCCT CTTCCGCTTC CTCGCTCACT QACTCGCTGC
 5151 GCTCGGTGCGT TCGGCTGOGG CGAGCGGTAT CAGCTCACTC AAAGGCCTGTA
 5201 ATACGGTTAT CCACAGAATC AGGGGATAAC GCAGGAAAGA ACATGTGAGC
 5251 AAAAGGCCAG CAAAAGGCCA GGAACCGTAA AAAGGCCGCG TTGCTGGCGT
 5301 TTTCCATAG GCTCCGCCCC CCTGACGAGC ATCACAAAAA TCGACGCTCA
 5351 AGTCAGAGGT GGCGAAACCC GACAGGACTA TAAAGATAAC AGGCCTTCC
 5401 CCCTGGAAAGC TCCCTCGTGC GCTCTCCTGT TCGAACCTG CGCTTACCG
 5451 GATACTGTC CGCCCTTCTC CCTTCGGGAA CGGTGGCGCT TTCTCAATGC

Fig. 4

Printed: 19-10-2001

SPEC

99116533

5501 TCACGCTGTA GGTATCTAG TTGGTGTAG GTCGTCGCT CCAAGCTGGG
 5551 CTGTGTGCAC GAACCCCCCG TTCAGCCGA CGCTCGGCC TTATCCGGTA
 5601 ACTATCGTCT TGAGTCCAAC CCGGTAAGAC AGCAGTTATC GCCACTGGCA
 5651 GCAGCCACTG GTAACAGGAT TAGCAGAGCG AGGTATGTAG GCGGTGCTAC
 5701 AGAGTTCTTG AAGTGGTGGC CTAAC TACGG CTACACTAGA AGGACAGTAT
 5751 TTGGTATCTG CGCTCTGCTG AAGCCAGTTA CCTTCGGAAA AAGAGTTGGT
 5801 AGCTCTTGAT CGGGCAAACA AACCA CCGCT GGTAGCGGTG GTTTTTTGT
 5851 TTGCAAGCAG CAGATTACGC GCAGAAAAAA AGGATCTCAA GAAGATCCTT
 5901 TGATCTTTTC TACGGGGTCT GACGCTCAGT GGAACGAAAAA CTCACGTTAA
 5951 GGGATTTTGG TCATGAGATT ATCAAAAGG ATCTTCACCT AGATCCTTTT
 6001 AAATTAAAAA TGAAGTTTA AATCAATCTA AAGTATATAT GAGTAAACTT
 6051 GGTCTGACAG TTACCAATGC TTAATCAGTG AGGCACCTAT CTCAGCGATC
 6101 TGTCTATTTC GTTCATCCAT AGTGGCTGA CTCCCCGTG TGTAGATAAC
 6151 TACGATAACGG GAGGGCTTAC CATCTGGCCC CAGTGTGCA ATGATAACCGC
 6201 GAGACCCACG CTCACCGGCT CCAGATTTAT CAGCAATAAA CCAGCCAGCC
 6251 GGAAGGGCCG AGCGCAGAAG TGGCCTGCA ACTTTATCCG CCTCCATCCA
 6301 GTCTATTAAAT GTTGGCCGGG AAGCTAGAGT AAGTAGTTCG CCAGTTAATA
 6351 GTTTGCGCAA CGTTGTTGCC ATTGCTACAG GCATCGTGGT GTCACGCTCG
 6401 TCGTTGGTA TGGCTTCATT CAGCTCCGGT TCCCAACGAT CAAGGGGAGT
 6451 TACATGATCC CCCATGTTGT GCAAAAAAAGC GGTTAGCTCC TTGGTCCTC
 6501 CGATCGTTGT CAGAAGTAAG TTGGCCGCAG TGTTATCACT CATGGTTATG
 6551 GCAGCACTGC ATAATTCTCT TACTGTCATG CCATCCGTAA GATGCTTTTC
 6601 TGTGACTGGT GAGTACTCAA CCAAGTCATT CTGAGAATAG TGTATGCGGC
 6651 GACCGAGTTG CTCTTGGCCCG GCGTCATAAC GGGATAATAAC CGCGCCACAT
 6701 AGCAGAACTT TAAAAGTGT CATCATGGAA AAACGTTCTT CGGGGGCGAAA
 6751 ACTCTCAAGG ATCTTACCGC TGTTGAGATC CAGTTGATG TAACCCACTC
 6801 GTGCACCCAA CTGATCTTCA GCATCTTTA CTTCACCCAG CGTTCTGGG
 6851 TGAGCAAAAAA CAGGAAGGCA AAAAGCCGCA AAAAAGGGAA TAAGGGCGAC

Fig. 4

6901 ACGGAAATGT TGAATACTCA TACTCTTCCT TTTCAATAT TATTGAAGCA
 6951 TTTATCAGGG TTATTGTCTC ATGAGCGGAT ACATATTGA ATGTATTTAG
 7001 AAAAATAAAC AAATAGGGT TCCGCGCACA TTTCCCCGAA AAGTGCCACC
 7051 TGACGTCTAA GAAACCATTAA TTATCATGAC ATTAAACCTAT AAAAATAGGC
 7101 GTATCACGAG GCCCTTTCGT CTCGCGCGTT TCGGTGATGA CGGTGAAAAC
 7151 CTCTGACACA TGCAGCTCCC GGAGACGGTC ACAGCTTGTC TGTAAAGCGGA
 7201 TGCCGGGAGC AGACAAGCCC GTCAGGGCGC GTCAGGGGT GTTGGCGGGT
 7251 GTCGGGGCTG GCCTAACTAT GCGGCATCAG ACCAGATTGT ACTGAGAGTG
 7301 CACCATATGC GGTGTGAAAT ACCGCACAGA TGOGTAAAGGA GAAAATACCG
 7351 CATCAGGCCGC CATTGCCAT TCAGGCTGCG CAACTGTTGG GAAGGGCGAT
 7401 CGGTGCGGGC CTCTTCGCTA TTACGCCAGC TGGCGAAAGG GGGATGTGCT
 7451 GCAAGGCAT TAAGTTGGT AACGCCAGGG TTTTCCAGT CACGACGTTG
 7501 TAAAACGACG GCCAGTGAAT TTCGACCTGC AGTCGACAGA AGCCTTACGT
 7551 GACAGCTGGC GAAGAACCAT GGCCAGCTGG TGACAAGCCA AAACAGCTCT
 7601 GGCTGGCAAACATGTTCCC TTGGCTGCTT TCCACTTCCC CTGGTGCTTT
 7651 GTTTACTTGT GTCAGCTGGT TGGCTCCCTA GGTATGAGCT CATGCTTGGC
 7701 TGGCAGCCAT CCAGTTTAG CCAGCTCTGC TTTGTTTACT TGTGTCAGCT
 7751 GGTTGGCTCC CTAGGTATGA GCTCATGCTT GGCTGGCAGC CATCCAGTTT
 7801 TAGCCAGCTC CTCCCTACCT TCCCTTTTT TTATATATAC AGGAGGCCGA
 7851 GGCCGGCTCC GCCTCCAAGC TTACTCAGAA GTAGTAAGGG CGTGGAGGCT
 7901 TTTTAGGAGG CCAGGGAAAT TCCCTTGTTT TTCCCTTTT TGCAGTAATT
 7951 TTTTGCTGCA AAAAGCTAA

Fig. 4

- 10/35 -

JCVPlong-gdnf Length: 6971 June 8, 1999 16:42 Type: N Check: 3588 ..

1 GCTAGCGATT TAGGTGACAC TATAGAAATAG ATCCCCATGA AGTTATGGGA
 51 TGTCTGGCT GTCTGCCTGG TGCTGCTCCA CACCGCGTC GCCTTCCCGC
 101 TGGCCGCCGG TAAGAGGCCT CCCGAGGCGC CCGCCGAAGA CCGCTCCCTC
 151 GGCCGCCGCC GCGGCCCTT CGCGCTGAGC AGTGACTCAA ATATGCCAGA
 201 GGATTATCCT GATCAGTTCG ATGATGTCAT GGATTATT CAAGGCCACCA
 251 TTAAAAGACT CAAAAGGTCA CCAGATAAAC AAATGGCAGT GC1TCCTAGA
 301 AGAGAGCGGA ATCGGCCAGGC TGCGAGCTGCC AACCCAGAGA ATTCCAGAGG
 351 AAAAGCTCGG AGAGGCCAGA GGGGCAAAA CGGGGGTTGT GTCTTAACTG
 401 CAATACATTT AAATGTCACT GACTTGGTC TGGGCTATGA AACCAAGGAG
 451 GAACTGATTG TTAGGTACTG CAGCGGCTCT TGCAGTCAG CTGAGACAAAC
 501 GTACGACAAA ATATTGAAAA ACTTATCCAG AAATAGAAGG CTGGTGAGTG
 551 ACAAAAGTAGG CCAGGCATGT TGCGAGACCA TCGCCTTGTGA TGATGACCTG
 601 TCGTTTTAG ATGATAACCT GGTTTACCAT ATTCTAAGAA AGCATTCCGC
 651 TAAAAGGTCT GGATGTATCT GACTGGTGC CGCTCTTCC CGACCTTAAA
 701 GGGATGAAAC CACAAGACCT ACCTTCGCTC GGAAGTAAA CGACAAACAC
 751 ACACAGTTT GCCCGTTTC ATGAGAAATG GGACGTCCTGC GCACGAAACG
 801 CGCCGTCGCT TGAGGAGGAC TTGTACAAAC ACGATCTATG CAGGTTTCCC
 851 CAACTGACAC AAACCGTGCA ACTTGAAACT CGCCTGGTC TTTCCAGGTC
 901 TAGAGGGGTA ACATTTGTA CTGTGTTGA CTCCACGCTC GATCCACTAG
 951 CGAGTGTAG TAGCGGTACT GCTGTCTCGT AGCGGAGCAT GTTGGCCGTG
 1001 GGAACACCTC CTGGTAACA AGGACCCACG GGGCGGAAG CGATGTCCTA
 1051 ACGGACCCAA CATGTGTGCA ACCCCAGCAC GGCAGCTTA CTGTGAAACC
 1101 CACTTCAAGC TGACATTGAT ACTGGTACTC AAACACTGGT GACAGGCTAA
 1151 GGATGCCCTT CAGGTACCCC GAGGTAAACAA GCGACACTCG GGATCTGAGA
 1201 ACGGGACTGG GACTTCTTA AAGTGCCAG TTTAAAAAGC TTCTACGCC
 1251 GAATAGGTGA CCGGAGGGCC GCACCTTCC TTTTATAACC ACTGAACACA
 1301 TGGAGAGACG CAAAACATA AAGAAAGGCC CGGCGCCATT CTATCCTCTA
 1351 GAGGATGGAA CGCGCTGGAGA GCAACTGCAT AAGGCTATGA AGAGATACGC
 1401 CCTGTTCTC GGAACAATTG CTTTACAGA TGCACATATC GAGGTGAACA
 1451 TCACGTACGC GGAATACCTC GAAATGTCCG TCGGTTGGC AGAAGCTATG
 1501 AAACGATATG GGCTGAATAC AAATCACAGA ATCGTCGTAT GCAGTGAAGA
 1551 CTCTTCAAA TTCTTATGC CGGTGTTGGG CGCGTTATT ATCGGAGTTG
 1601 CAGTGGGCC CGCGAACGAC ATTATAATG AACGTGAATT GCTAACAGT
 1651 ATGAACATTG CGCAGCTAC CGTACTGTTT GTTCCAAA AGGGGTTGCA
 1701 AAAAATTTTG AACGTGCAAA AAAAATTACG AATAATCCAG AAAATTATTA
 1751 TCATGGATT TAAAACGGAT TACCAAGGGAT TTCAGTCGAT GTACACGTTC
 1801 GTCACATCTC ATCTACCTCC CGGTTTAAAT GAATACGATT TTGTACAGA
 1851 GTCTTTGAT CGTGACAAAA CAATTGCACT GATAATGAAT TCCCTGGAT
 1901 CTACTGGTT ACCTAAGGGT GTGGCCCTTC CGCATAGAAC TGCCTGCGTC
 1951 AGATTCTCGC ATGCCAGAGA TCCATTTCGGT GGCATACAAA TCATTCCGGA
 2001 TACTGCGATT TAAAGTGTG TTCCATTCCA TCACCGTTT GGAATGTTA
 2051 CTACACTCGG ATATTGATA TGCGATTTC GAGTCGTCTT AATGTATAGA
 2101 TTTGAAGAAG AGCTGTTTT ACGATCCCTT CAGGATTACA AAATTCAAAG
 2151 TGCCTTGCTA CTACCAACCC TATTTTCATT CTTCGCACAA AGCACTCTGA
 2201 TTGACAAATA CGATTTATCT AATTACACG AAATTGCTC TGGGGGCCA
 2251 CCTCTTTCGA AAGAAGTCGG GGAAGCGGTT GCAAAACGCT TCCATCTTCC
 2301 AGGGATACGA CAAGGATATG GGTCACTGA GACTACATCA GCTATTCTGA
 2351 TTACACCGA GGGGGATGAT AAACCGGGCG CGGTGTTAA AGTTGTTCCA
 2401 TTTTTGAG CGAAGGTGTG GGATCTGGAT ACCGGGAAAA CGCTGGCGT
 2451 TAATCAGAGA GGCAGATTAT GTGTCAGAGG ACCTATGATT ATGTCGGTT
 2501 ATGTAACAA TCCGGAAGCG ACCAACGCGCT TGATTGACAA GGATGGATGG
 2551 CTACATTCTG GAGACATAGC TTACTGGAC GAAGACGAAC ACTTCTTCAT
 2601 AGTTGACCGC TTGAAGTCTT TAATTAAATA CAAAGGATAT CAGGTGGCCC
 2651 CCGCTGAATT GGAATCGATA TTGTTACAAC ACCCCAAACAT CTTCGACGCC
 2701 GGCCTGGCAG GTCTTCCCGA CGATGACGCC GGTGAACCTC CGGCCGCCGT
 2751 TGTGTTTTG GAGCACGGAA AGACGATGAC GGAAAAGAG ATCGTGGATT
 2801 ACGTCGCCAG TCAAGTAACA ACCCGAAGAA AGTTGCGCGG AGGAGTTGT
 2851 TTTGTGGACG AAGTACCGAA AGGTCTTACCG CGAAAACCTC AGGCAAGAAA
 2901 AATCAGAGAG ATCCTCATAA AGGCCAAGAA GGGCGGAAAG TCCAAATTGT
 2951 AAAATGTAAC TGTATTCTC GATGACGAAA TTCTTAGCTA TTGTAATGAC
 3001 TCTAGAGGAT CTTTGTGAGG GAACCTTACT TCTGTGGTGT GACATAATTG
 3051 GACAAACTAC CTACAGAGAT TAAAGCTCT AAGGTAATA TAAAATTTC
 3101 AAGTGTATAA TGTGTTAAC TACTGATTCT AATTGTTGT GTATTTAGA
 3151 TTCCAACCTA TGGAACTGAT GAATGGGAGC AGTGGTGGAA TGCCTTAAAT
 3201 GAGGAAAACC TGTTTGCTC AGAAGAATG CCATCTAGTG ATGATGAGGC

Fig. 5

- 11/35 -

3251 TACTGCTGAC TCTCAACATT CTACTCCTCC AAAAAAGAAG AGAAAGGTAG
 3301 AAGACCCCAA CGACTTCCT TCAGAATTGC TAAGTTTT GAGTCATGCT
 3351 GTGTTTAGTA ATAGAACCTCT TGCTTGCTT GCTATTACA CCACAAAGGA
 3401 AAAAGCTGCA CTGCTATACA AGAAAATTAT GGAAAATAT TCTGTAACCT
 3451 TTATAAGTAGC GCATAACAGT TATAATCATA ACATACTGTT TTTTCTTA
 3501 CCACACAGGC ATAGAGCTC TGCTTAAAT AACTATGCTC AAAAATTGTG
 3551 TACCTTACG TTTTTAATT GTAAAGGGGT TAATAAGGA TATTTGATGT
 3601 ATAGTGCCTT GACTAGAGAT CATAATCAGC CATACCACAT TTGTAGAGGT
 3651 TTTACTTGCT TTAAAAAACCC TCCACACCT CCCCTGAAAC CTGAAACATA
 3701 AAATGAATGC AATTGTGTT GTAAACTTGT TTATTGCAGC TTATAATGGT
 3751 TACAAATAAA GCAATAGCAT CACAAATTTC ACAAAATAAG CATTTTTTC
 3801 ACTGCATTCT AGTTGTGGTT TGTCCTAAACT CATCAATGTA TCTTATCATG
 3851 TCTGGATCCC CGGGTCCCTA TAGTGAGTCG TATTAGCTT GCGTAATCAT
 3901 GGTCTAGCT CTTTCCGTG TGAAATTGTT ATCCGCTCAC AATTCCACAC
 3951 AACATACGGAG CGGGAAGCAT AAAGTGTAAA GCCTGGGGT CCTAATGAGT
 4001 GAGCTAATC ACATTAATTG CGTTGCGCTC ACTGCCGCT TTCCAGTCGG
 4051 GAAACCTGTC GTGCCAGCTG CATTAAATGAA TCGGCCAACG CGCGGGGAGA
 4101 GGCGGTTGCG TATTTGGCG CTCTTCGCT TCCTCGCTCA CTGACTCGCT
 4151 GCGCTCGGTC GTTCGGCTGC GGCAGCGGT ATCAGCTCAC TCAAAGGC
 4201 TAATACGGTT ATCCACAGAA TCAGGGATA ACAGCAGGAA GAACATGTGA
 4251 GCAAAAGGCC AGCAAAAGGC CAGGAAACGT AAAAGGCC CGTTGCTGGC
 4301 GTTTTCCAT AGGCTCCGCC CCCCTGACGA GCATCACAAA ATCAGACGCT
 4351 CAAGTCAGAG GTGGCGAAAC CCGACAGGAC TATAAAGATA CCAGGC
 4401 CCCCTGGAA GCTCCCTCGT GCGCTCTCCT GTTCCGACCC TGCCGCTTAC
 4451 CGGATACCTG TCCGCCTT TCCCTCGGG AAGCGTGGCG CTTTCTCAAT
 4501 GCTCACGCTG TAGGTATCTC AGTTGGTGT AGGTGTTG CTCCAAGCTG
 4551 GGCTGTGTGC ACCAACCCCC CGTCAGGCC GACCGCTGCG CCTTATCCGG
 4601 TAACTATCGT CTTGAGTCCA ACCCGGTAAAG ACACGACTTA TCGCCACTGG
 4651 CAGCAGCCAC TGGTAACAGG ATTAGCAGAG CGAGGTATGT AGGC
 4701 ACAGAGTTCT TGAAGTGGT GCCTAACTAC GGCTACACTA GAAGGACAGT
 4751 ATTTGGTATC TGCCTCTGC TGAAGCCAGT TACCTTCGGA AAAAGAGTTG
 4801 GTAGCTCTG ATCCGGCAAA CAAACCACCG CTGGTAGCGG TGGTTTTTT
 4851 GTTTGCAAGC AGCAGATAC GCGCAGAAAA AAAGGATCTC AAGAAGATCC
 4901 TTTGATCTT TCTACGGGT CTGACGCTA GTGGAACGAA AACTCACGTT
 4951 AAGGGATTT GGTCA1GAGA TTATCAAAA GGATCTTCAC CTAGATCCTT
 5001 TTAAATTAAA AATGAAGTT TAAATCAATC TAAAGTATAT ATGAGTAAAC
 5051 TTGGTCTGAC AGTTACCAAT GCTTAATCAG TGAGGCACCT ATCTCAGCGA
 5101 TCTGTCATT TCGTTCATCC ATAGTTGCCT GACTCCCCGT CGTGTAGATA
 5151 ACTACGATAC GGGAGGGCTT ACCATCTGGC CCCAGTGCTG CAATGATACC
 5201 GCGAGACCA CGCTCACCGG CTCCAGATTG ATCAGCAATA AACCA
 5251 CGGAAAGGGC CGAGCGCAGA AGTGGTCTG CAACTTATC CGCCTCCATC
 5301 CAGCTATTA ATTTGTCGGG GGAAGCTAGA GTAAAGTAGT CGCCAGTTAA
 5351 TAGTTGCGC AACGTTGGT CCATTGCTAC AGGCATCGTG GTGTCACGCT
 5401 CGTCGTTGG TATGGCTTCA TTCAAGCTCG GTTCCCAACG ATCAAGGG
 5451 GTTACATGAT CCCCCATGTT GTGAAAAAA GGGGTTAGCT CCTTCGGTCC
 5501 TCCGATCGTT GTCAGAAGTA AGTTGGCCGC AGTGTATCA CTCATGGTAA
 5551 TGGCAGCACT GCATAATTCT CTTACTGTC TGCCATCCGT AAGATGCTT
 5601 TCTGTGACTG GTGAGTACTC AACCAAGTC TTCTGAGAAT AGTGTATGCC
 5651 GCGACCGAGT TGCTCTGCC CGGCGTCAAT ACGGGATAAT ACGCG
 5701 ATAGCAGAAC TTAAAAGTG CTCATCATTG GAAAACGTT TTCGGGGCGA
 5751 AAACTCTCAA GGATCTTAC GCTGTTGAGA TCCAGTTCGA TGTAACCCAC
 5801 TCGTGCACCC AACTGATCTT CAGCATCTT TACTTCACC AGCGTTCTG
 5851 GGTGAGCAAA AACAGGAAGG CAAAATGCCG CAAAAAAGGG AATAAGGG
 5901 ACACGGAAAT GTTGAATACT CATACTCTC CTTTTCAAT ATTATTGAAG
 5951 CATTATCAG GTTATTGTC TCATGAGCGG ATACATATT GAAIGTATT
 6001 AGAAAAATAA ACAAAATAGGG GTTCCCGCA CATTTCCTCG AAAAGTGCCA
 6051 CCTGACGTCT AAGAAACCAT TATTATCATG ACATTAACCT ATAAAAAATAG
 6101 GCGTATCAGC AGGCCCTTC GTCTCGCGC TTTCGGTGT GACGGTGAAA
 6151 ACCTCTGACA CATGCAGCTC CGGAGACGG TCACAGCTG TCTGTAAGCG
 6201 GATGCCGGGA CGAGACAAGC CGTCAGGGC GCGTCAGCGG GTGGTGGCG
 6251 GTGTCGGGGC TGGCTTAACG ATGCGGCATC AGAGCAGATT GTACTGAGAG
 6301 TGCACCATAT CGGGTGTGAA ATACCGCACA GATGCGTAAG GAGAAAATAC
 6351 CCCATCAGGC CCCATTGCC ATTCAAGCTG CGCAACTGT GGGAAAGGGCG
 6401 ATCGGTGCGG GCCTCTTCGC TATTACGCCA GCTGGCGAAA GGGGGATGTG
 6451 CTGCAAGGGC ATTAAGTTGG GTAACGCCAG GGTGTTCCA GTCAACGACGT
 6501 TGTAAAACGA CGGCCAGTGA ATTCGACCT GCAGTCGACA GAAGCCTTAC
 6551 GTGACAGCTG GCGAAGAACC ATGGCCAGCT GGTGACAAGC CAAAACAGCT

Fig. 5

- 12/35 -

6601 CTGGCTCGCA AAACATGTTC CCTTGGCTGC TTTCCACTTC CCCTTGTGCT
6651 TTGTTTACTT GTGTCAGCTG GTTGGCTCCC TAGGTATGAG CTCATGCTTG
6701 GCTGGCAGGCC ATCCAGTTT AGCCAGCTCT GCTT1GTTTA CTTGTGTCA
6751 CTCGTTGGCT CCCTAGGTAT GAGCTCATGC TTGGCTGGCA GCCATCCAGT
6801 TTTAGCCAGG TCCTCCCTAC CTTCCCTTT TTTTATATAT ACAGGAGGCC
6851 GAGGCCGGCT CCGCCCTCCAA GCTTACTCAG AAGTAGTAAG GGCGTGGAGG
6901 CTTTTTAGGA GGCCAGGGAA ATTCCCTTGT TTTTCCCTTT TTTCCAGTAA
6951 TTTTTGCTG CAAAAAGCTA A

Fig. 5

pD12JCVPshort-hCNP

Length: 7558

1 GCTAGCGATT TAGGTGACAC TATAGAATCt cgacacGTCA CCCCTAGAGT
 51 CGAGCTGTGA CGGTCCCTAC AATGAAATGC ANCTGGGTTA TCTTCTTCCT
 101 GATGGCAGGG GTTACAGGTA AGGGGCTCCC AAGTCCAAA CTTGAGGGTC
 151 CATAAACTCT GTGACAGTGG CAATCACTTT GCCTTTCTTT CTACAGGGGT
 201 GAATTGGCT TTCACAGAGC ATTACCGCT GACCCCTCAC CGTCGGGACC
 251 TCTGTAGCCG CTCTATCTGG CTAGCAAGGA AGATTCGTTA AGACCTTGAC
 301 TGCTCTTACG GAATCCTATG TAAGTTGCCT ATTTCGCTGT TATCTGTTTT
 351 CCCTTCATCT TTTTGATCC AGCAACTTAC CATCACGCAT CAGCTCCATT
 401 ACCAAITGTG AAAGCTCTAA TCATATAGTC ATTCAATATAG GTTATTGAC
 451 ATGGGCCCTT CCCTTGAGGA AACCCATGTG ACTTTATTTT CTTCCCTGG
 501 GCTGTTTAGG AGATGAAGTT ACTTGAATGA GAAAATATAT ATGGAGTTCT
 551 AGAAAGGATT GGTTTATATG TCTGGGAGGC TATTCAAAA TTTATTGGC
 601 CATATATTCT GAATACTACC TAGAACAGAT TAGCCATGGG CCCTNTGGGT
 651 TNITCATAAG CCATTGTCT GAANTTTTT AGCTTGTAA ATGAAAGGTT
 701 TATGGATAG GAAGAGTNC ATGAACGTGG GAGGAATTG TAAATCCTAC
 751 CAATTNTNC TATATAGCAT TAGCCCCAC CTTTANTAT TCTGCATCAA
 801 AAGTAAGATT GTGTCTAAAG AGAAAGGTNA GCTATCAAAA GGACTCCTAT
 851 AANATTCTTT GGAAACTTNT GGAAAGTCA AATTNTTTG AGCTAATTNT
 901 TGGAGTTCCA AANTTGTCT TNMACAGTN AAGGGGGANC CCCATTANA
 951 TTNNCCCCC TNNGANAAT GCTTGGGGGA AAAAACCTNC CAACCCNTT
 1001 GTGGGANGAA GTTTTTTAA NNTTTAAGG CTNGNGAAA CNGGNTTTA
 1051 ATTTTTGGG NCNANCCT NTCCCCGGTA CCAGGAAAAT CAGGACCTNT
 1101 TTTGGGGGN GNGCNCCNAC NGGGGGGNA AANGGGAAAT TTCNTCANAA
 1151 AAAATCTTTT CCGnnnnnnng tgaagcatca gggcctgaac aagaacatca
 1201 acctggactc tgccgatgg atgccagtgg caagcactga tcagtggagt
 1251 gagctg ccg aggcagagcg actccaagag aaccttcaag cttatcgta

Fig. 6

Printed:19-10-2001

SPEC

99116533

1301 cttccatgtt ttgtggcca ggctttaga aga cagcag gtgcattta
 1351 ccccaa cga aggtgacttc catcaagcta tacataaccct tcttctccaa
 1401 gtcgctgcct ttgcat cca gatagaggag ttaatgtat c tcctggaata
 1451 caag tcccc cgcaatgagg ctgatggat gcctattaat gttgg gatg
 1501 gtggctcttt tgagaagaag ctgtgggccc taaagggtct gcaggagtt
 1551 tcacagtgga cagtaaggc catccatgac cttcgtttca ttttttctca
 1601 tcagactggg atcccagcac gtgggagcca ttatattgtt aacaacaaga
 1651 aaatgtagnn nnnngggcct GCGCCGTCTT TCCCGACGTT AAAGGGATGA
 1701 AACCACAAGA CTTACCTTCG CTCGGAAGTA AAACGACAAA CACACACAGT
 1751 TTGCCCCGTT TTCATGAGAA ATGGGACGTC TGCGCACGAA ACGCGCCGTC
 1801 GCTTGAGGAG GACTTGTACA AACACGATCT ATGCAGGTTT CCCCAACTGA
 1851 CACAAACCGT GCAACTTGAA ACTCCGCCCTG GTCTTCCAG GTCTAGAGGG
 1901 GTAACATTTT GTACTGTGTT TGACTCCACG CTOGATCCAC TAGCGAGTGT
 1951 TAGTAGCGGT ACTGCTGTCT CGTAGCGGAG CATGTTGGCC GTGGGAACAC
 2001 CTCCCTGGTA ACAAGGACCC ACGGGGCCGA AAGCCATGTC CTAACGGACC
 2051 CAACATGTGT GCAACCCCAG CACGGCAGCT TTACTGTGAA ACCCACTTCA
 2101 AGGTGACATT GATACTGGTA CTCAAACACT GGTGACAGGC TAAGGATGCC
 2151 CTTCAGGTAC CCCGAGGTAA CAAGCGACAC TCGGGATCTG AGAAGGGAC
 2201 TGGGACTTCT TTAAAGTGCC CAGTTAAAAA AGCTTCTACG CCTGAATAGG
 2251 TGACCGGAGG CCGGCACCTT TCCTTTATA ACCACTGAAC ACATGGAAGA
 2301 CGCCAAAAAC ATAAGAAAG GCCCGGCGCC ATTCTATCCT CTAGAGGATG
 2351 GAACCGCTGG AGAGCAACTG CATAAGGCTA TGAAGAGATA CGCCCTGGTT
 2401 CCTGGAACAA TTGCTTTAC AGATGCACAT ATCGAGGTGA ACATCACGTA
 2451 CGGGAAATAC TTCGAAATGT CCGTTGGTT GGCAGAAGCT ATGAAACGAT
 2501 ATGGGCTGAA TACAAATCAC AGAATCGTCG TATGCAGTGA AAACTCTCTT
 2551 CAATTCTTAA TGCCGGTGT GGGCGCGTTA TTTATCGGAG TTGCAGTTGC
 2601 GCCCCGCGAAC GACATTATA ATGAACGTGA ATTGCTAAC AGTATGAACA
 2651 TTTCGAGGCC TACCGTAGTG TTTGTTCCA AAAAGGGTT GCAAAAAATT

Fig. 6

2701 TTGAAACGTGC AAAAAAATT ACCAATAATC CAGAAAATTA TTATCATGGA
 2751 TTCTAAAACG GATTACCAAGG GATTCAGTC GATGTACACG TTCTGCACAT
 2801 CTCATCTACC TCCCGGTTTT AATGAATAACG ATTTGTACC AGAGTCCTTT
 2851 GATCGTGACA AAACAAATTGC ACTGATAATG AATTCTCTG GATCTACTGG
 2901 GTTACCTAAG GGTGTGGCCC TTCCGCATAG AACTGCCGC GTCAGATTCT
 2951 CGCATGCCAG AGATCCTATT TTTGGCAATC AAATCATTCC GGATACTGCG
 3001 ATTTTAAGTG TTGTTCCATT CCATCACGGT TTTGGAATGT TTACTACACT
 3051 CGGATATTTG ATATGTGGAT TTGAGTCGT CTAAATGTAT AGATTTGAAG
 3101 AAGAGCTGTT TTTACGATCC CTTCAAGGATT ACAAAATTCA AAGTGCCTTG
 3151 CTAGTACCAA CCCTATTTTC ATTCTTCGCC AAAAGCACTC TGATTGACAA
 3201 ATACGATTTA TCTAATTTAC ACGAAATTGC TTCTGGGGGC GCACCTCTTT
 3251 CGAAAGAAGT CGGGGAAGCG GTTGCAAAAC GCTTCCATCT TCCAGGGATA
 3301 CGACAAGGAT ATGGGCTCAC TGAGACTACA TCAGCTATTC TGATTACACC
 3351 CGAGGGGGAT GATAAACCGG GCQCGGTGG TAAAGTTGTT CCATTTTTG
 3401 AAGCGAAGGT TGTGGATCTG GATACCGGGA AAACGCTGGG CGTTAATCAG
 3451 AQAGGCGAAT TATGTGTCAAG AGGACCTATG ATTATGTCCG GTTATGTAAA
 3501 CAATCCGGAA GCGACCAACG CCTTGATTGA CAAGGATGGA TGGCTACATT
 3551 CTGGAGACAT AGCTTACTGG GACGAAGACG AACACTTCCT CATACTTGAC
 3601 CGCTTGAAGT CTTTAATTAA ATACAAAGGA TATCAGGTGG CCCCCGGCTGA
 3651 ATTGGAATCG ATATTGTAC AACACCCCAA CATCTTCGAC GCGGGCGTGG
 3701 CAGGTCTTCC CGACGATGAC GCCGGTGAAC TTCCCCGCC CGTTGTTGTT
 3751 TTGGAGCACG GAAAGACGAT GACGGAAAAA GAGATGTGG ATTACGTCGC
 3801 CAGTCAGTA ACAACCGCGA AAAAGTTGCG CGGAGGAGTT GTGTTGTGG
 3851 ACGAAGTACC GAAAGGTCTT ACCGGAAAAC TCGACCGAAG AAAAATCAGA
 3901 GAGATCCTCA TAAAGGCCAA GAAGGGCGGA AAGTCCAAT TGAAAAATGT
 3951 AACTGTATTC AGCGATGACG AAATTCTTAG CTATTGTAAT GACTCTAGAG
 4001 GATCTTGTG AAGGAACCTT ACTCTGTGG TGTGACATAA TTGGACAAAC
 4051 TACCTACAGA GATTTAAAGC TCTAAGGTAA ATATAAAATT TTTAAGTGTAA

Fig. 6

Printed: 19-10-2001

SPEC

4101 TAATGTGTTA AACTACTGAT TCTAATTGTT TGTGTATTT AGATTCCAAC
 4151 CTATGGAACG GATGAATGGG AGCAGTGGTG GAATGCCPTT AATGAGGAAA
 4201 ACCTGTTTG CTCAGAAGAA ATGCCATCTA GTGATGATGA GGCTACTGCT
 4251 GACTCTAAC ATTCTACTCC TCCAAAAAAG AAGAGAAAGG TAGAAGACCC
 4301 CAAGGACTTT CCTTCAGAAT TGCTAAGTTT TTTGAGTCAT GCTGTGTTA
 4351 GTAATAGAAC TCTTGCTTGC TTTGCTATTT ACACCCACAAA GGAAAAAGCT
 4401 GCACTGCTAT ACAAGAAAAT TATGAAAAA TATTCTGTAACCTTTATAAAG
 4451 TAGGCATAAC AGTTATAATC ATAACATACT GTTTTTCTT ACTCCACACCA
 4501 GGCATAGAGT GTCTGCTATT AATAACTATG CTCAAAAATT GTGTACCTT
 4551 AGCTTTTAA TTGTAAGG GGTTAATAAG GAATATTGTA TGTATAGTGC
 4601 CTTGACTAGA GATCATAATC AGCCATACCA CATTGAGA GGTTTACTT
 4651 GCTTTAAAAA ACCTCCCACA CCTCCCCCTG AACCTGAAAC ATAAAATGAA
 4701 TGCAATTGTT GTGTTAACT TGTTTATTGC AGCTTATAAT GGTTACAAAT
 4751 AAAGCAATAG CATCACAAAT TTCACAAATA AAGCATTGTT TTCACTGGCAT
 4801 TCTAGTTGTG GTTGTCAAAC ACTCATCAAT GTCATTTATC ATGTCGGAT
 4851 CCCCCGGTCC CTATAGTGAG TCGTATTAGC TTGGCGTAAT CATGGTCATA
 4901 GCTGTTCTCT GTGTGAAATT GTTATCCGCT CACAATTCCA CACAACATAC
 4951 GAGCCGGAAG CATAAAGTGT AAAGCTGGG GTGCCTAATG AGTGAGCTAA
 5001 CTCACATTAA TTGCGTTGCG CTCACTGCC GCTTTCCAGT CGGGAAACCT
 5051 GTCGTGCCAG CTGCATTAAAT GAATCGGCCA ACGCGGGGG AGAGGGCGTT
 5101 TGCCTATTGG GCGCTCTTCC GCTTCCCGCG TCAGTACTC GCTGCGCTCG
 5151 GTCGTTCCGC TGGGGCGAGC GGTATCAGCT CACTCAAAGG CGGTAATACG
 5201 GTTATCCACA GAATCAGGGG ATAACCGAGG AAAGAACATG TGAGCAAAAG
 5251 GCCAGCAAAA GGCCAGGAAC CGTAAAAGG CCGCGTTGCT GGCGTTTTC
 5301 CATAGGCTCC GCCCCCTGA CGAGCATCAC AAAATCGAC GCTCAAGTCA
 5351 GAGGTGGCGA AACCCGACAG GACTATAAG ATACCAGGGG TTTCCTCTG
 5401 GAAGCTCCCT CGTGCCTCTC CCTGTTCCGA CCCTGCCGCT TACCGGATAC
 5451 CTGTCGGCCT TTCTCCCTTC GGGAAAGCGTG GCGCTTCTC AATGCTCACG

Fig. 6

Printed: 19-10-2001

SPEC

99116533

5501 CTGTAGGTAT CTCAGTTCGG TGTAGGTGCT TCGCTCCAAG CTGGGCTGTG
 5551 TGCACGAACC CCCCGTTCAAG CCCGACCGCT CGGCCCTATC CGGTAACATAT
 5601 CGTCTTGAGT CCAACCCGGT AAGACACGAC TTATGCCAC TGGCAGCAGC
 5651 CACTGGTAAC AGGATTAGCA GAGCGAGGTA TGTAGGCGGT GCTACAGAGT
 5701 TCTTGAAGTG GTGGCCTAAC TACGGCTACA CTAGAAGGAC AGTATTTGGT
 5751 ATCTGCGCTC TGCTGAAGCC AGTTACCTTC GGAAAAAGAG TTGGTAGCTC
 5801 TTGATCCGGC AAACAAACCA CGGCTGGTAG CGGTGGTTT TTTGTTGCA
 5851 AGCAGCAGAT TACGGCGAGA AAAAAAGGAT CTCAAGAAGA TCCTTGATC
 5901 TTTTCTACGG GGTCTGACGC TCAGTGGAAC GAAAATCAC GTTAAGGGAT
 5951 TTTGGTCATG AGATTATCAA AAAGGATCTT CACCTAGATC CTTTTAAATT
 6001 AAAAATGARG TTTTAAATCA ATCTAAAGTA TATATGAGTA AACCTGGTCT
 6051 GACAGTTACC AATGCTTAAT CAGTGAGGCA CCTATCTCAG CGATCTGTCT
 6101 ATTTCGTTCA TCCATAGTTG CCTGACTCCC CGTCGTGTAG ATAACCTACGA
 6151 TACGGGAGGG CTTACCATCT GGCCCCAGTG CTGCAATGAT ACCGCGAGAC
 6201 CCACGCTCAC CGGCTCCAGA TTTATCAGCA ATAAACCCAGC CAGCCGGARG
 6251 GGCCGAGCGC AGAAGTGGTC CTGCAACTTT ATCCGCCCTCC ATCCAGTCTA
 6301 TTAATTGTTG CGGGGAAGCT AGAGTAAGTA GTTOGCCAGT TAATAGTTG
 6351 CGCAACGTTG TTGCCATTGC TACAGGCATC GTGGTGTAC GCTCGTCGT
 6401 TGGTATGGCT TCATTCAAGCT CCGGTTCCCA ACGATCAAGG CGAGTTACAT
 6451 GATCCCCCAT GTTGTGCAAA AAAGCGGTTA GCTCCTTCGG TCCTCCGATC
 6501 GTTGTCAAGAA GTAAGTTGGC CGCAGTGTAA TCACTCATGG TTATGGCAGC
 6551 ACTGCATAAT TCTCTTACTG TCATGCCATC CGTAAGATGC TTTTCGTGA
 6601 CTGGTGAGTA CTCAACCAAG TCATTCTGAG AATAGTGTAT GCGGCGACCG
 6651 AGTTGCTCTT GCCCGGGGTC AATACGGGAT AATACCGCGC CACATAGCAG
 6701 AACTTTAAAA GTGCTCATCA TTGGAAAAGG TTCTTGGGG CGAAAATCT
 6751 CAAGGATCTT ACCGCTGTGAG AGATCCAGTT CGATGTAACC CACTCGTGCA
 6801 CCCAACTGAT CTTCAGGCATC TTTACTTTC ACCAGCGTTT CTGGGTGAGC
 6851 AAAAACAGGA AGGCATAATG CGCAAAAAA GGGATAAGG GCGACACGGA

Fig. 6

SPEC

99116533

6901 AATGTTGAAT ACTCATACTC TTCCCTTTTC AATATTATTG AAGCATTTAT
6951 CAGGGTTATT GTCTCATGAG CGGATAACATA TTTGAATGTA TTTAGAAAAA
7001 TAAACAAATA GGGGTTCCGC GCACATTTCG CCGAAAAGTG CCACCTGACCG
7051 TCTAAGAAC CATTATTATC ATGACATTAA CCTATAAAAA TAGGCGTATC
7101 ACGAGGCCCT TTCGTCTCGC GCGTTTCGGT GATGACGGTG AAAACCTCTG
7151 ACACATGCAG CTCCCGGAGA CGGTACACAGC TTGTCTGTAA GCGGATGCCG
7201 GGAGCAGACA AGCCCGTCAG GGCGCGTCAG CGGGTGTGG CGGGTGTGG
7251 GGCTGGCTTA ACTATGCGGC ATCAGAGCAG ATTGTACTGA GAGTGCACCA
7301 TATGCGGTGT GAAATACCGC ACAGATGCGT AAGGAGAAAA TACCGCATCA
7351 GGGGCCATTC GCCATTCAAG CTGGCAACT GTGGGAAGG GCGATGGTG
7401 CGGGCCTCTT CGCTATTACG CCAGCTGGCG AAAGGGGGAT GTGCTGCAAG
7451 GCGATTAAGT TGGGTAACGC CAGGGTTTC CCAGTCACGA CGTTGTAAAA
7501 CGACGGCCAG TGAATTCGA CCTGCAGtgc actttttta tatatacagg
7551 aggccgag

Fig. 6

- 19/35 -

JCVPshort-hgdnf Length: 6565 June 8, 1999 16:57 Type: N Check:

1 GCTAGCCATT TAGGTGACAC TATAGAATAG ATCCCCATGA AGTTATGGGA
 51 TGTCTGGCT GTCTGCCCTG TGCTGCTCCA CACCGCGTCC GCCTTCCCGC
 101 'GCCCGCCGG TAAGAGGCCT CCCGAGGCGC CGCCCGAAGA CGCTCCCTC
 151 GGCCGCCGCC CGCGCCCTT CGCGCTGAGC AGTGACTCAA ATATGCCAGA
 201 GGATTATCGT GATCAGTTG ATGATGTCAT GGATTTATT CAAGCCACCA
 251 TTAAAAGACT GAAAAGGTCA CCAGATAAAC AAATGGCAGT GCTTCCTAGA
 301 AGAGAGCGGA ATCGGCAGGC TGAGCTGCC AACCCAGAGA ATTCCAGAGG
 351 AAAAGGTCGG AGAGGCCAGA GGGGAAAAA CGGGGTTGT GTCTTAAC TG
 401 CAATACATT AAATGTCACT GACTTGGGTC TGGGCTATGA AACCAAGGAG
 451 GAATGTATT ITAGGTACTG CAGCGGCTCT TGCAGATGCAG CTGAGACAAC
 501 GTACGACAAA ATATTGAAAA ACTTATCCAG AAATAGAAGG CTGGTGAGTG
 551 ACAAAAGTAGG GCAGGCGATGT TGAGACGCCA TCGCCTTGA TGATGACCTG
 601 TCGTTTTAG ATGATAACCT GGTTCACCAT ATTCTAAGAA AGCATTCCCGC
 651 TAAAAGGTGT GGATGTATCT GACTGGTGC CCGCTTTCC CGACGTTAAA
 701 GGGATGAAAC CACAAGACTT ACCTTCGCTC GGAAGTAAA CGACAAACAC
 751 ACACAGTTT GCCCCTTTC ATGAGAAATG GGACGCTCTG GCACGAAACG
 801 CGCCGTCGCT TGAGGAGGAC TTGTACAAAC ACGATCTATG CAGGTTTCCC
 851 CAACTGACAC AAACCGTGC AACTGAAAAT CCGCCTGGTC TTCCAGGTC
 901 TAGAGGGTA ACATTTGTA CTGTGTTGTA CTCCACGCTC GATCCACTAG
 951 CGAGTGTAG TAGCGGTACT GCTGTCTCGT AGCGGAGCAT GTTGGCCGTG
 1001 GGAACACCTC CTTGGTAACA AGGACCCACG GGGCCGAAAG CCATGTCCTA
 1051 ACGGACCAA CATGTGTGCA ACCCCAGCAC GGCAGCTTTA CTGTGAAACC
 1101 CACTCAAGG TGACATTGAT ACTGGTACTC AAACACTGGT GACAGGCTAA
 1151 GGATGCCCTT CAGGTACCCC GAGGTAAACAA GCGACACTCG GGATCTGAGA
 1201 AGGGGACTGG GACTTCTITA AAGTGCCTAG TTTAAAAGC TTCTACGCCT
 1251 GAATAGGTGA CGGGAGGGCG GCACCTTTCC TTTTATAACCC ACTGAACACA
 1301 TGGAAAGACGC CAAAAACATA AAGAAAGGCC CGGCCTCATT CTATCCTCTA
 1351 GAGGATGGAA CCGCTGGAGA GCAACTGCAT AAGGCTATGA AGAGATACGC
 1401 CCTGGTTCTC GGAACAATTG CTTTACAGA TGACATATC GAGGTGAACA
 1451 TCACGTACGC GGAATACTTC GAAATGTCCG TTCGGITGGC AGAAGCTATG
 1501 AAACGATATG GGCTGAATAC AAATCACAGA ATCGTGTAT GCAGTAAAAA
 1551 CTCTCTTCAA TTCTTTATGC CGGTGTTGGG CGCGTTATTT ATCGGAGTTG
 1601 CAGTTCGCGCC CGCGAACGAC ATTATAATG AACGTGAATT GCTCAACAGT
 1651 ATGAACATT CGCAGCTAC CGTAGTGTGTT GTTTCCAAA AGGGGTTGCA
 1701 AAAAATTTCG AACGTGCAAA AAAAATTACCA AATAATCCAG AAAAATTATTA
 1751 TCATGGATT TAAAACGGAT TACCAAGGAT TTCACTGAT GTACACGTT
 1801 GTCACATCTC ATCTACCTCC CGGTTTAAT GAATACGATT TTGTACCGAGA
 1851 GTCCCTTGT GGTGACAAAA CAATTGCACT GATAATGAAT TCCCTGGAT
 1901 CTACTGGGTT ACCTAAGGGT GTGGCCCTC CGCATAGAAC TGCCCTGGTC
 1951 AGATTCGCG ATGCCAGAGA TCCTATTTC GGCAATCAAA TCATTCCGGA
 2001 TACTGCGATT TTAAGTGTG TTCCATTCCA TCACGGTTTT GGAATGTTTA
 2051 CTACACTCGG ATATTTGATA TGTGGATTTC GAGTCGTCTT AATGTATAGA
 2101 TTTGAAGAAG AGCTGTTTT ACGATCCCTT CAGGATTACA AAATTCAAAG
 2151 TGCCTTGCTA GTACCAACCC TATTTCATT CTTCGCACAA AGCACTCTGA
 2201 TTGACAAATA CGATTTATCT AATTACACG AAATTGCTC TGGGGCGCA
 2251 CCTCTTCGA AAGAAGTCGG GGAAGCGGGT GCAAAACGCT TCCATCTTCC
 2301 AGGGATAACCA CAGGATATG GGCTCACTGA GACTACATCA GCTATTCTGA
 2351 TTACACCGA CGGGGATGAT AARCCCGCG CGGTGGTAA AGTTGTTCCA
 2401 TTTTTGAAAG CGAAGGTGTG GGATCTGGAT ACCGGGAAAA CGCTGGCGT
 2451 TAATCAGAGA GGCAGATTAT GTGTCAGAGG ACCTATGATT ATGTCGGTT
 2501 ATGTAACAA TCCCGAAGCG ACCAACGGCT TGATTGACAA GGATGGATGG
 2551 CTACATTCTG GAGACATAGC TTACTGGGAC GAAGACGAAC ACTTCTTCAT
 2601 AGTTGACCGC TTGAAGTCTT TAATTAATA CAAAGGATAT CAGGTGGCCC
 2651 CCGCTGAATT GGAATCGATA TTGTTACAAC ACCCCAAACAT CTTCGACGCC
 2701 GGCCTGGCAG GTCTTCCCGA CGATGACGCC GGTGAACCTC CGGCCGCCGT
 2751 TGTGTTTTG GAGCACGAA AGACGATGAC GGAAAAAGAG ATCGTGGATT
 2801 ACGTCGCCAG TCAAGTAACA ACCGCAGAAA AGTTGCGCG AGGAGTTGTG
 2851 TTTGTGGACG AAGTACCGAA AGGTCTTACCG GAAAACCTCG ACCGAAGAAA
 2901 AATCAGAGAG ATCCTCATAA AGGCCAAGAA GGGCGGAAAG TCCAAATTGT
 2951 AAAATGTAAAC TGTATTCAAGC GATGACGAAA TTCTTAGCTA TTGTAATGAC
 3001 TCTAGAGGAT CTTTGTGAAG GAACCTTAAC TCTGTGGTGT GACATAATTG
 3051 CACAAACTAC CTACAGAGAT TAAAGCTCT AAGGTAATA TAAAATTTT
 3101 AAGTGTATAR TGTGTTAAC TACTQATTCT AATTGTTGT GTATTTAGA
 3151 TTCCAACCTA TGGAACTGAT GAATGGGAGC AGTGGTGGAA TGCCTTAAT

Fig. 7

- 20/35 -

3201 GAGGAAPACC TGTTTGCTC AGAAGAAATG CCATCTAGTG ATGATGAGGC
 3251 TACTGCTGAC TCTCAACATT CTACTCCTCC AAAAAAGAAG AGAAAGGTAG
 3301 AACACCCCAA GGACTTTCTC TCAGAATTGC TAAGTTTTT GAGTCATGCT
 3351 GTGTTAGTA ATAGAACTCT TGCTGCTTT GCTATTACA CCACAAAGGA
 3401 AAAAGCTGCA CTGCTATAACA AGAAAATTAT GGAAAAATAT TCTGTAACCT
 3451 TTATAAGTAG GCATAACAGT TATAATCATA ACATACTGTT TTTCTTACT
 3501 CCACACAGGC ATAGAGTGTG TGCTATTAAT AACTATGTC AAAAATTGTG
 3551 TACCTTACG TTTTAATTG GTAAGGGGT TAATAAGGAA TATTGATGT
 3601 ATAGTGCCTT GACTAGAGAT CATAATCAGC CATAACCACAT TTGAGAGGT
 3651 TTTACTTGCT TTAACCAACCC TCCCACACCT CCCCTGAAACCTGAAACATA
 3701 AAATGAATGC ATTGTTGTT GTTAACITGT TTATTGAGC TTATAATGGT
 3751 TACAAATAAA CCAATAGCAT CACAAATTTC ACAATAAAG CATTTTTTC
 3801 ACTGCATTCT AGTTGTTGGT TGTCCAAACT CATCAATGTA TCTTATCATG
 3851 TCTGGATCCC CGGGTCCCTA TAGTGAGTCG TATTAGCTTG GCGTAATCAT
 3901 GGTCACTAGCT CTTTCCCTGTG TGAAATTGTT ATCCGCTCAC AATCCACAC
 3951 AACATACCGAG CGGGAAGGCT AAAGTGTAAA CGCTGGGTG CCTAATGAGT
 4001 GAGCTAACCT ACATTAATTG CGTTGCGCTC ACTGCCCGCT TTCCACTCGG
 4051 GAAACCTGTC GTGCCAGCTG CATTAAATGAA TCGGCCAACG CGCGGGGAGA
 4101 GGCGGTTTGC GTATTGGGCG CTCTTCCGCT TCCCTGCTCA CTGACTCGCT
 4151 GCGCTCGGTG GTTGGGCTGC GGCGAGCGGT ATCAGCTCAC TCAAAGGCAG
 4201 TAATACGGTT ATCCACAGAA TCAGGGGATA ACGCAGGAA GAACATGTGA
 4251 GCAAAAGGCC AGCAAAAGGC CAGGAACCGT AAAAGGCCG CGTTGCTGGC
 4301 GTTTTCCAT AGGCTCCGCC CCCCTGACGA GCATCACAAA AATCGACGCT
 4351 CAAGTCAGAG GTGGCGAAC CGCACAGGAC TATAAAGATA CCAGGCCTT
 4401 CCCCCCTGGAA GCTCCCTCGT GCGCTCTCTC GTTCCGACCC TGCCGCTTAC
 4451 CGGTACCTG TCCGCTCTTC TCCCTTCGGG AAGCGTGGCG CTTTCTCAAT
 4501 GCTCACGCTG TAGGTATCTC AGTTGGTGT AGGTGTTGCG CTCCAAGCTG
 4551 GGCTGTGTGC AGGAACCCCC CGTTCAGCCC GACCGCTGCG CCTTATCCGG
 4601 TAACTATCGT CTTGAGTCCA ACCCGTAAAG ACACGACTTA TCGCCACTGG
 4651 CAGCAGCCAC TGGTAACAGG ATTAGCAGAG CGAGGTATGT AGGCGGTGCT
 4701 ACAGAGTTCT TGAAGTGGTG GCCTAACTAC GGCTACACTA GAAGGCAGT
 4751 ATTTGGTATC TGCGCTCTGC TGAAGCCAGT TACCTTCGGA AAAAGAGTTG
 4801 GTAGCTCTG ATCCGGCAAA CAAACCACCG CTGGTAGCGG TGGTTTTTTT
 4851 GTTGCAAGC AGCAGATTAC GCGCAGAAAA AAAGGATCTC AAGAAGATCC
 4901 TTTGATCTT TCTACGGGGT CTGACGCTCA GTGGAACGAA AACTCACGTT
 4951 AAGGGATTTT GGTCAATGAGA TTATCAAAAAA GGATCTTCAC CTAGATCCTT
 5001 TTAATTAAAT AATGAAGTTT TAAATCAATC TAAAGTATAT ATGAGTAAAC
 5051 TTGGTCTGAC AGTTACCAAT GCTTAATCAG TGAGGCACCT ATCTCAGCGA
 5101 TCTGTCTATT CGTGTCTATCC ATAGTTGGCT GACTCCCCGT CGTGTAGATA
 5151 ACTACGATAC GGGAGGGCTT ACCATCTGGC CCCAGTGTG CAATGATACC
 5201 GCGAGACCCA CGCTCACCGG CTCCAGATTG ATCAGCAATA AACCAAGCCAG
 5251 CGGAAAGGGC CGAGCGCAGA AGTGGTCTCG CAACTTATC CGCCTCCATC
 5301 CAGCTTATTAA ATTGTTGCCG GGAAGCTAGA GTAAAGTAGTT CGCCAGTTAA
 5351 TAGTTGCGC AACGTTGGTG CCATTGCTAC AGGCATCGTG GTGTCACGCT
 5401 CGTCGTTGG TATGGCTCTA TTCAGCTCCG GTTCCAACG ATCAAGGCAG
 5451 GTTACATGAT CCCCCATGTT GTGAAAAAA GCGGTTAGCT CCTTCGGTCC
 5501 TCCGATCGTT GTCAGAAGTA AGTGGCCGC AGTGTATCA CTCATGGTTA
 5551 TGGCAGCACT GCATAATTCT CTTACTGTCA TGCCATCCGT AAGATGCTTT
 5601 TCTGTGACTG GTGAGTACTC AACCAAGTCA TTCTGAGAAT AGTGTATGCG
 5651 GCGACCGAGT TGCTCTTGCC CGGGGTCAAT ACGGGATAAT ACCCGGCCAC
 5701 ATAGCAGAAC TTAAAAAGTC CTATCATTTG GAAAAGTTG TTGGGGCGA
 5751 AAACCTCAA GGATCTTAC GCTGTTGAGA TCCAGTCGA TGTAAACCCAC
 5801 TCGTGCACCC AACGTGATCTT CAGCATCTT TACTTTCACC AGCGTTCTG
 5851 GGTGAGCAAA AACAGGAAGG CAAATGCCG CAAAAAAGGG AATAAGGGCG
 5901 ACACGGAAAT GTGAAATACT CATACTCTTC CTTTTCAAT ATATTGAAG
 5951 CATTATTCAG GGTTATTGTC ICATGAGCGG ATACATATTG GAATGTATT
 6001 AGAAAAATAA ACAAAATAGGG CTTCCCGCGCA CATTTCCTCG AAAAGTGCCA
 6051 CCTGACGTCT AAGAAACCA TATTATCATG ACATTAACCT ATAAAAAATAG
 6101 GCGTATCACG AGGCCCTTC GTCTCGCGCG TTTCGGTGAT GACGGTGAAA
 6151 ACCTCTGACA CATGCAGCTC CCGGAGACGG TCACAGCTTG TCTGTAAGCG
 6201 GATGCCGGGA CGAGACAAGC CGTCAGGGC GCGTCAGCGG GTGTTGGCG
 6251 GTGTCGGGGC TGGCTTAACT ATGCGGCATC AGAGCAGATT GTACTGAGAG
 6301 TCCACCATAT GCGGTGTGAA ATACCGCACA GATGCGTAAG GAGAAAATAC
 6351 CGCATCAGGC GCCATTGCGC ATTCAAGGCTG CGCAACTGTT GGGAAAGGGCG
 6401 ATCGGTGCGG GCCTCTTCGC TATTACGCCA GCTGGCGAAA GGGGGATGTG
 6451 CTGCAAGGCG ATTAAGTTGG GTAACGCCAG GGTGTTCCCA GTCACGACGT
 6501 TGTAAAACGA CGGCCAGTGA ATTCGACCT GCAGTcgact ttttttatat

Fig. 7

SPEC

- 21 / 35 -

6551 atacaggagq ccgag

Fig. 7

Printed: 19-10-2001

SPEC

- 22/35 -

pRetroOFF-E6E7 Length: 7840 June 10, 1999 12:21 Type: N Check: 5234

```

1 TCGAGTTTAC CACTCCCTAT CAGTGATAGA GAAAAGTGAAGTCGAGTT
51 ACCACTCCCT ATCACTGATA GAGAAAAGTG AAAGTCGAGTTACCACTCC
101 CTATCAGTCA TAGAGAAAGT GAAAGTCGAG TTTACCACTC CCTATCAGTGC
151 ATAGAGAAAA GTGAAACTCG AGTTTACCACTC CCTATCAGTCA TGATAGAGAA
201 AAGTGAAGT CGAGTTTACCT ACICCCCTACTC AGTGTAGAG AAAAGTGAAG
251 TCGAGTTTAC CACTCCCTAT CAGTGATAGA GAAAAGTGAAGTCGAGCTC
301 GGTACCCGGG TCGAGTAGGC GTGTACGGTG GGAGGCCTAT ATAAGCAGAG
351 CTCGTTAGT GAACCGTCAG ATCGCCTGGA GACGCCATCC ACGCTGTGTT
401 GACCTCCATA GAAGACACCG GGACCGATCC AGCCTgcggc cgcaagatcta
451 attcaccgt tagtataaaa gcagacattt tatgcaccaa aagagaactg
501 caatgttca ggacccacag gagcgaccca gaaagttaac acagttatgc
551 acagagctqc aaacaactat acatgatata atattagaat gtgtgtactg
601 caagcaacag ttactgcac gtgaggtata tgactttgtct ttcgggatt
651 latgcatagt atataagat ggaaatccat atgctgtatg tgataaaatgt
701 ttaaagttt attctaaat tagtgaggat agacattt gttatagtt
751 gtatgaaaca acattagaac agcaatacaa caaaccgttg tggatttt
801 taattaggtg tattaactgt caaaagccac tytgcctgaa agaaaaagcaa
851 agacatctgg acaaaaagca aagattccat aatataaggg gtcgggtggac
901 cggtcgtatgt aiytcttgcgt gcagatccat aagaacacgt agagaaaccc
951 agctgtatc atgcgtatggat atacacctac attgcgtatgaa tataatgttag
1001 atttgcaccc agagacaaact gatctctact gttatgacca attaaatgac
1051 agctcagagg aggaggatga aataagatggc ccagctggac aagcagaacc
1101 ggacagagcc cattacaata ttgttaacctt ttgttgcacatgactcta
1151 egcttcgggtl gtgcgtacaa agcacacacg tagacatctg tactttggaa
1201 gacctgttaa tgggcacact aggaattgtg tgccccatct gtttcagaa
1251 accataalct accatggctg atccctgcagg atcccccggg AACAAACAACA
1301 ATTCGATTCA TTTTATGTT CAGGTTCAGG GGGAGGTGTG GGAGGTTTTT
1351 TAAAGCAAGT AAAACCTCTA CAAATGTGGT ATGGCTGATT ATGATCCTGC
1401 AAGCCTCGTC GTCTGGCCGG ACCACGCTAT CTGTCAGG TCCCCGGACG
1451 CGCGCTCCAT GAGCAGAGCG TCAGCCCGGG TACCCACCGT ACTCGTCAAT
1501 TCCAAGGGCA TCGGTAAACAA GAGCGCCGTA GGGGGCGGAG TCGTGGGGGG
1551 TAAATCCCCTG ACCCGGGGAA TCCCCGTCCC CCAACATGTC CAGATCGAAA
1601 TCGTCTAGCG CGTCGGCATG CGCCATCGCC ACGTCTCGC CGTATAAGTG
1651 GAGCTCGTCC CCCAGGCTGA CATCGGTCGG GGGGGCGTC GACAGTCIGC
1701 GCGTGTGTCC GCGGGGAGAA AGGACAGGGC CGGAGCCGCC AGCCCCGGCCT
1751 CTTGGGGGGC GTCTCGTGC GGGAGATCGA GCAGGCCCTC GATGGTAGAC
1801 CCGTAATTGT TTTTCGTAC CGCGCGGCTG TACCGGGACC CACTTTCACA
1851 TTTAAGTTGT TTTTCTAACCGCATATGAT CAATTCAAGG CCGAATAAGA
1901 AGGCTGGCTC TGCACCTTGG TGATCAAATA ATTTCGATAGC TTGTCGTAAT
1951 AATGGCGGCA TACTATCAGT AGTAGGTGTT TCCCTTCTT CTTAGCGAC
2001 TTGATGCTCT TGATCTTCA ATACGCAACC TAAAGTAAAA TGCCCCACAG
2051 CGCTGAGTGC ATATAATGCA TTCTCTAGTG AAAAACCTTG TTGGCATAAAA
2101 AAGGCTAATT GATTTCGAG AGTTTCATAC TGTGTTCTG TAGGCGGTGT
2151 ACCTAAATGT ACTTTTGTCT CATCGCGATG ACTTAGTAAA GCACATCTAA
2201 AACTTTAGC GTTATTACGT AAAAATCTT GCCAGCTTC CCCTTCTAAA
2251 GGGCAAAAGT GAGTATGGTG CCTATCTAAC ATCTCAATGG CTAAGGCGTC
2301 GAGCAAGGCC CGCTTATTT TTACATGCCA ATACAATGTA GGCTGCTCTA
2351 CACCTAGCTT CTGGCGAGT TTACGGGTG TTAAACCTTC GATTCCGAC
2401 TCATTAAGCA GCTCTAAATGC GCTGTTAATC ACTTTACTTT TATCTAATCT
2451 AGACATGGTG GAAGCTTTT GCAGGAGCCCT AGGCCTCAA AAAAGCCTCC
2501 TCACTACTTC TGGAAATGCT CAGAGGCCGA GGCAGGCCG GCCTCTGCAT
2551 AAAAATTTAA AATTAGTCAG CCATGGGGCG GAGAATGGGC GGAACCTGGG
2601 GGAGTTAGGG CGGGGATGGG CGGAGTTAGG GGCAGGACTA TGGTTGCTGA
2651 CTAATTGAGA TGCATGCTTT GCATACTTCT GCCTGCTGGG GAGCCTGGGG
2701 ACTTCCACA CCTGGTTGCT GACTAATTGA GATGCATGCT TTGCATAACTT
2751 CTGCGCTGCTG GGGAGCCCTGG GGACTTTCCA CACCTAACT GACACACAT
2801 CCACAGGTGCG ACTAGATCGA ATTCTCAATT GTTTTACCGC GCGCGATGCA
2851 TGGGGTCGTG CGCTCCTTTC GGTGCGGCC GCGGGTCGT GGGGGCGGGGG
2901 TCAGGCACCG GGCTTGCGG TCATGCACCA GGTGCGGCCG TCCTTCGGGG
2951 ACTCGACGTC GGGGGTGACG GTGAAGGCCGA GCGCTCGTA GAGGGGAGG
3001 TTGCGGGCCG CGGAGGTCTC CAGGAAGGCC GGCACCCCGG CGCGCTCGGC
3051 CGCCTCCACT CGGGGGAGCA CGACGGCGCT GCCCAGACCC TTGCCCTGGT
3101 GGTGCGGCGA GACGCCGACG GTGGCCAGGA ACCACGCCGGG CTCCCTGGGG
3151 CGGTGCGGCC CGAGGAGGCC TTCCATCTGT TGCTGCGCGG CCAGGCCGGG

```

Fig. 8

- 23/35 -

3201 ACCGCTCAAC TCGGCCATGC GCGGGCCGAT CTCGGCGAAC ACCGCCCCCG
 3251 CTTGACGCT CTCCGGCGTG GTCCAGACCG CCACCGCGC GCCGTGCTCC
 3301 GCGACCCACA CCTTGCCGAT GTCGAGCCCG ACGCGCGTGA GGAAGAGTC
 3351 TTGACGCTCG GTAGTCCGCG AACCGCGCG CGAGGGTGC ACGGTGTGGC
 3401 GCGTGGCGGG GTAGTCCGCG AACCGCGCG CGAGGGTGC ACGGTGTGGC
 3451 GGGACGTCGT CGCGGGTGGC GAGGCGCACCG GAGGGTGC ACGGTGTGGC
 3501 GGTAAGCTGA TCCGGCCGGC GCCTAGAGAA GGAGTGGGG CTGGATAAAG
 3551 GGAGGATTGA GGCGGGTGC AAAGAGGAGG TTCAAGGGGG AGAGACGGCG
 3601 CGGATGGAAG AAGAGGAGG GGAGGCTTAG GGTGTACAAA GGGCTTGACC
 3651 CAGGGAGGGG GGTCAAAAGC CAAGGCTTCC CAGGTACGA TGAGGGGAC
 3701 CTGGTCTGGG TGTCCATGCG GGCAGGTGA AAAGACCTTG ATCTTAACCT
 3751 GGGTGATGAC GTCTCGTTA AAGGTGCCGT CTCGGGCCA TCCGACGTTA
 3801 AAGGTTGGCC ATTCTGCGAGA GCAGAAGGTA ACCAACGTC TCTTCTTGAC
 3851 ATCTACCGAC TGGTTGTGAG CGAGCGCTC GACATCTTC CAGTGTACTA
 3901 AGGTCAAACG TAAGGGAGTG GAAACAGTCT GGCCTTAATT TTCAGACAAA
 3951 TACAGAAACA CAGTCAGACA GAGACAACAC AGAACGATGC TGCAGCAGAC
 4001 AACAGCGCG GCTTCGGTTC CAAACCGAAA GCAAAATTG AGACGGAGGC
 4051 GGGAACTGTC TTAGGTTCTC GTCTCTTACG AGAACCAT ATCCTGACGG
 4101 GGTCGGATTG CACATCGACT CCCTTCTCAGA GGTGGGCGA CAAAAACGGC
 4151 CCCAAAGTC CCTGGGACGT CTCCCAGGGT TGCGGGGGG TTTCAGAAC
 4201 TCGTCAGTTC CACCAAGGGT CGCCAGATA CAGAGCTAGT TAGCTAACTA
 4251 GTACCGACGC AGGCGCATAA AATCAGTCAT AGACACTAGA CAATCGGACA
 4301 GACACAGATA AGTTGCTGGC CAGCTTACCT CCCGGTGGTG GGTGGTGGT
 4351 CCCTGGGCGAG GGGTCTCCCG ATCCCGGACG AGCCCCAAA TGAAAGACCC
 4401 CCGCTGACGG GTAGTCATC ACTCAGAGGA GACCCCTCCA AGAACAGCG
 4451 AGACCACAAAG TCGGATGCAA CTGCAAGAGG GTTTATTGGA TACACGGGTA
 4501 CCCGGGCGAC TCAGTCATC GGAGGACTGG CGCCCGAGT GAGGGGTTGT
 4551 GGGCTCTTT ATTGAGCTCG GGGAGCAGA GCGCGCGAAC AGAACGCGAGA
 4601 AGCGAACTGA TTGGTTAGT CAAATAAGGC ACAGGTCTAT TTCAAGGCTCT
 4651 TGGGGCACCC TGAAACATC TGATGGTTCT CTAGAAACTG CTGAGGGCTG
 4701 GACCGCATCT GGGGACCATC TGTCTTGGC CCTGAGCGG GGCAGGAAC
 4751 GCTTACCAACA GATATCTGT TTGGCCCCATA TTCAGCTGTT CCATCTGTC
 4801 TTGGCCCTGA GCGGGGGCAG GAACTGCTTA CCACAGATAT CCTGTTGGC
 4851 CCATATTCA GCTGCAGGTG GCACCTTCG GGGAAATGTG CGCGGAACCC
 4901 CTATTGTTT ATTTTCTAA ATACATTCAA ATATGTATCC GCTCATGAGA
 4951 CAATAACCT GATAAATGCT TCAATAATAT TGAAAAGGA AGAGTATGAG
 5001 TATTCAACAT TTCCGTGTCG CCCTTATTCC CTTTTTGCG GCATTTGCG
 5051 TTCCGTGTTT TGCTCACCCA GAAACGCTGG TGAAAAGTAA AGATGCTGAA
 5101 GATCAGTTGG GTGCACGAGT GGGTTACATC GAACTGGATC TCAACAGCGG
 5151 TAAGATCCTT GAGAGTTTC GCCCCGAAGA ACGTITCCA ATGATGAGCA
 5201 CTTTAAAGT TCTGCTATGT GGCGCGGTAT TATCCCCTG TGACGCCGGG
 5251 CAAGAGCAAC TCGGTGCCG CATAACTAT TCTCAGAATG ACTTGGTTG
 5301 GTACTCACCA GTCACAGAAA AGCATCTTAC GGATGGCATG ACAGTAAGAG
 5351 AATTATGCAG TGCTGCCATA ACCATGAGTG ATAACACTGC GGCCTAACTA
 5401 CTTCTGACAA CGATCGGAGG ACCGAAGGAG CTAACCGCTT TTTGCACAA
 5451 CATGGGGGAT CATGTAACTC GCCTTGATCG TTGGGAACCG GAGCTGAATG
 5501 AAGCATAACC AAACGACGAG CGTGACACCA CGATGCTGT AGCAATGGCA
 5551 ACAACGTTGC GCAAACATTAA AACTGGCGAA CTACTTACTC TAGCTTCCCG
 5601 GCAACAATTA ATAGACTGGA TGGAGGGCGGA TAAAGTGCA GGACCACTTC
 5651 TGCCTCGGC CCTTCCGGCT GGCTGGTTA TTGCTGATAA ATCTGGAGCC
 5701 GGTGAGCGTG GGTCTCGCG TATCATTGCA GCACTGGGGC CAGATGGTAA
 5751 GCCCTCCGT ATCGTAGTTA TCTACACGAC GGGGAGTCAG GCAACTATGG
 5801 ATGAACGAAA TAGACAGATC GCTGAGATAG GTGCCTCACT GATTAAGCAT
 5851 TGGTAACGTG CAGACCAAGT TTACTCATAT ATACTTTAGA TTGATTTGCG
 5901 GCCGGCCCA AACTTCATTT TTAATTAAA AGGATCTAGG TGAAGATCC
 5951 TTTTGATAAT CTCTGACCA AAATCCCTTA ACGTGAGTTT TCGTTCCACT
 6001 GAGCGTCAGA CCCCGTAGAA AAGATCAAAG GATCTTCTG AGATCCTTTT
 6051 TTTCTGCGCG TAATCTGCTG CTTGCAAACA AAAAACCCAC CGCTACCA
 6101 GGTGGTTTGT TTGCCGGATC AAGAGCTACC AACTCTTTT CCGAAGGTAA
 6151 CTGGCTTCAG CAGAGCGCAG ATACCAAATA CTGCTCTTCT AGTGTAGGCC
 6201 TAGTTAGGCC ACCACTTCAA GAACCTGCTA GCACCGCTA CATACTCGC
 6251 TCTGCTAATC CTGTTACAG TGGCTGCTGC CAGTGGCGAT AAGTCGTGTC
 6301 TTACCGGGTT GGACTCAAGA CGATAGTTAC CGGATAAGGC GCAAGCGGTG
 6351 GGCTGAACGG GGGGTTCGTG CACACAGCCC AGCTTGGAGC GAAACGACCTA
 6401 CACCGAACTG AGATACCTAC AGCGTGAGCT ATGAGAAAGC GCCACCGCTC
 6451 CCGAAGGGAG AAAGCCGGAC AGGTATCCGG TAAGCGCAG GGTGGAAACA
 6501 GGAGAGCGCA CGAGGGAGCT TCCAGGGGAA AACGCCTGGT ATCTTATAG

Fig. 8

Printed: 19-10-2001

SPEC

99116533

- 24/35 -

6551 TCCTGTCGGG TTTGCCACC TCTGACTTGA GCGTCGATT TTGTGATGCT
 6601 CGTCAGGGGG GCGGAGCCTA TGAAAAACG CCAGAACGC GGCTTTTA
 6651 CGGTTCTGG CCTTTGCTG GCCTTTGCT CACATGTTCT TTCTGCGTT
 6701 ATCCCCTGAT TCTGTGGATA ACCGTATTAC CGCCTTGAG TGAGCTGATA
 6751 CGGCTGCCG CAGCCGAACG ACCGAGCGCA GCGAGTCAGT GAGCGAGGAA
 6801 GCGGAAGAGC GCCAATACGC AAACCGCCTC TCCCCGCGCG TTGGCCGATT
 6851 CATTAAATGCA ACTATGGCA TTTAATGTA AIACTTAAGA AAAAAAAACCA
 6901 AATTAATTT GATACATGCT GCATGTGAAG ACCCCCCGCTG ACGGGTAGTC
 6951 AATCACTCAG AGGAGAGCCCT CCCAAGGCAG CGAGACCACA AGTCGGAAAT
 7001 GAAAGACCCC CGCTGACGGG TAGTCATCA CTCAGAGGAG ACCCTCCAA
 7051 GGAACAGCGA GACCACAAAGT CGGATGCAAC TGCAAGAGGG TTTATTGGAT
 7101 ACACGGGTAC CCGGGCGACT CAGTCATCG GAGGACTGGC GCCCCGAGTG
 7151 AGGGGTTGTG GGCTCTTTA TTGAGCTCGG GGAGCAGAAG CGCGCGAAC
 7201 GAAGCGAGAA GCGAACTGAT TGGTTAGTTC AAATAAGCA CAGGGTCATT
 7251 TCAGGTCCCTT GGGGCACCTC GGAAACATCT GATGGTTCTC TAGAAACTGC
 7301 TGAGGGCTGG ACCGCATCTG GGGACCATCT GTTCTTGCC CTGAGCCGGG
 7351 GCAGGAACTG CTTACCACAG ATATCCTGTT TGGCCCATAT TCAGCTGTT
 7401 CATCTGTTCT TGGCCCTGAC CGGGGGCAGG AACTGCTTAC CACAGATATC
 7451 CTGTTGGCC CATATTCACT TGTTCCATCT GTTCTTGACC TTGATCTGAA
 7501 CTTCTCTATT CTCAGTTATG TATTTCCTA TGCCCTTGCAA ATGGCGTTA
 7551 CTTAAGCTAG CAGATCTGCT AGCTTGCCAA ACCTACAGGT GGGGTCTTC
 7601 ATTCCCCCCT TTTCTGGAG ACTAAATAAA ATCTTITATT TTATGCGCAC
 7651 ATTCCCCCGA AAAGTGCCAC CTGACGTCTA AGAAACCATT ATTATCATGA
 7701 CATTAAACCTA TAAAAATAAGG CGTATCACGA GGCCCTTTCG TCCGCACATT
 7751 TCCCCGAAAA CTGCCACCTG ACGTCTAAGA AACCATTATT ATCATGACAT
 7801 TAACCTATAA AAATAGGCCT ATCACGAGGC CCTTCTGTC

Fig. 8

- 25/35 -

pRetroOFF-U19t.sa58 Length: 8852

1 TCGAGTTTAC CACTCCCTAT CAGTGATAGA GAAAAGTGAA AGTCGAGTT
 51 ACCACTCCCT ATCAGTGATA GAGAAAAGTG AAAGTCGAGT TTACCACTCC
 101 CTATCAGTGA TAGAGAAAAGT GAAAGTCGAG TTTACCACTC CCTATCAGTG
 151 ATAGAGAAAA GTGAARGTCG AGTTTACCAAC TCCCTATCAG TGATAGAGAAA
 201 AAGTGAAGT CGAGTTTAC ACTCCCTATC AGTGATAGAG AAAAGTGAAAG
 251 TCGAGTTTAC CACTCCCTAT CAGTGATAGA GAAAAGTGAA AGTCGAGCTC
 301 GGTACCCGGG TCGAGTAGGC GTGTACGGTG GGAGGCCTAT ATAAGCAGAG
 351 CTCGTTTAGT GAACCGTCAG ATCGCCTGGA GACGCCATCC ACGCTGTTT
 401 GACCTCCATA GAAGACACCG GGACCGATCC AGCCTGCGGC CGCTTAATT
 451 AGTTAACG GATCCXXXXX XXXXXatgc catctagtga tgatgaggct
 501 actgctgact ctcacacatt tactcctcca aaaaagaaga gaaaggtaga
 551 agaccccaag gactttccct cagaattgct aagtttttg agtcatgctg
 601 tgtttagtaa tagaacttctt gcttgcctt ctatttacac cacaaaggaa
 651 aaqctgeac tgcatacataa gaaaattatg gaaaatatt ctgtaacctt
 701 tataagttagg cataacatgg ataatcataa catactgtt ttcttactc
 751 cacacaggca tagagtgtt gcttataact actatgtca aaaattgtgt
 801 accttttagct tttaatttg taaagggtt aataaggaat atttgcgt
 851 tagtgcctt actagagatc cattttctgt tatttgcgtt aataaggaa agtttgcct
 901 gtgggttaaa ggagcatgt tttatccag aagaagcaga gaaaactaaa
 951 caagtgcct ggaagctgt aacagagat acaatgaa gcaatgaaa caaaatgtga
 1001 tgatgtgtt tttatgcctt ggtgtactt ggaatttcag tacagtttgc
 1051 aaatgtgtt aaaaatgtt aaaaaagaac agcccagcca ctataagtac
 1101 catggaaagc attatgcataa tgctgtata tttgcgtaca gcaaaaaacc
 1151 aaaaaccata tgccaaacagg ctgttgatc tgtttagct aaaaagcggg
 1201 tgatagcct acaatataact agagaacaaa tgttacaaa cagatttat
 1251 gatctttgg ataggatgg tataatgttt gtttctacag gctctgcgt
 1301 Catagaagaa tggatggctg gagttgcctt gctacactgt ttgttgc
 1351 aaatggatc aqrggtgtat gactttttaa aatgcgttgtt gtaacacatt
 1401 cctaaaaaaaaa gatactgtct gttaaagga ccaattgtata gttttaaac
 1451 tacattagca gctgccttgc ttgatattatg tggggggaaa gctttaat
 1501 ttaatttgcctt gttggacagg ctgaaacttgc agcttaggtt agtatttgc
 1551 cagtttttag tagttttgtt ggtgttaaag ggcactggag gggagtcc
 1601 agatttgct tcaggtcagg gaattaataa cttggacaat ttaaggatt
 1651 attrggatgg cagtgtaaag gtaaaacttag aaaaagaaaca cctaaataaa
 1701 agaactcaaa tatttcccc tggaaatgtc accatgaatg agtacagtgt
 1751 gcttaaaaaaca ctgcaggcca gatttgtaaa acaaataatgat tttaggccc
 1801 aagattttt aaaaatgtc ctggaaacgca gtgagttttt gtttagaaaag
 1851 agaataatic aaagtggcat tgcttgcctt ctatgttaa tttggtacag
 1901 acctgtggct gagtttgcctt aaaaatgtca gggcagaatt gtggagtgg
 1951 aagagagatt ggacaaagag tttatgttgc cagtgtatca aaaaatgtca
 2001 ttaatgttgg ctatggaaat tggattttgc gatggctaa gaaacagtga
 2051 tgatgatgtt gaaagacagcc aggaaaatgtc tgataaaaat gaaatgggt
 2101 gggagaagaa catggaaagac tcagggcatg aacacggcat tgattcacag
 2151 tcccaaggct catttcaggc ccctcagtc tCACAGTCTG ttcatgtatca
 2201 taatcagcca taccacattt gtagaggctt tactgtt aaaaaaccc
 2251 ccacacctcc ccctgaaacct gaaacataax XXXXXXXXXXXX ggatccccc
 2301 GGAACACCAA CAATTGCATT CATTATGTG TTCAGGTCA GGGGGAGGTG
 2351 TGGGAGGTGTT TTAAAGCAA GTAAACCTC TACAAATGTG GTATGGCTGA
 2401 TTATGATCCT GCAAGCCTCG TCGTCTGGCC GGACCACGCT ATCTGTGCAA
 2451 GGTCCCCGGGA CGCCGCCCTCC ATGAGCAGAG CGTCGCGCCC CCTACCCACC
 2501 GTACTCGTCA ATTCCAAGGG CATCGGTAAA CAGAGCGCCG TAGGGGGCGG
 2551 AGTCGTGGGG GTAAATCCC GGACCCGGGG AATCCCCGTC CCCAACATG
 2601 TCCAGATCGA ATCGTCTAG CGCGTCGGCA TGCGCCATCG CCACGTCTC
 2651 GCCGTATAAG TGGAGCTCGT CCCCCCAGGCT GACATCGGTC GGGGGGGCCG
 2701 TCGACAGTCT GCGCGTGTG CCGCGGGGAG AAAGGACAGG CGGGGAGCG
 2751 CCAGCCCCGC CTCTTCGGGG CGTGTGCGT CGGGGAGATC GAGCAGGCC
 2801 TCGATGGTAG ACCCGTAATT GTTTTCGTA CGCGCGGGC TGACCGGGA
 2851 CCCACTTCAT CATTAAAGTT GTTTTCTAA TCCGCATATG ATCAATTCAA
 2901 GGCGGAATAA GAAGGCTGGC TCTGCACCTT GGTGATCAA TAATTCGATA
 2951 GCTTGTGCTA ATAATGGCGG CATACTATCA GTAGTAGGTG TTTCCCTTTC
 3001 TTCTTAGCG ACTTGATGCT CTGATCTTC CAATACGAA CCTAAAGTAA
 3051 AATGCCCAAC AGCGCTGAGT GCATATAATG CATTCTCTAG TGAAAAACCT
 3101 TGTTGGCAT AAAAAAGCTAA TTGATTTCG AGAGTTTCAT ACTGTTTTC
 3151 TGTAGGCCGT GTACCTAAAT GTACTTTGC TCCATCGCGA TGACTTAGTA
 3201 AAGCACATCT AAAACTTTA CGTATTAC GTAAAAAATC TTGCCAGCTT

Fig. 9

- 26/35 -

3251 TCCCCTTCTA AAGGGCAAAA GTGAGTATGG TGCCCTATCTA ACATCTCAAT
 3301 GGCTAAGGCG TCGAGCAAAG CCCGCTTAIT TTTTACATGC CAATACAATG
 3351 TAGGCTGCTC TACACCTAGC TTCTGGGCGA GTTTACGGGT TGTAAACCT
 3401 TCGATTCGA CCTCATTAAC CAGCTCTAAT GCGCTGTAA TCACTTACT
 3451 TTTATCTAAT CTAGACATGG TGGAAGCTTT TGCAAAAGC CTAGGCCCTC
 3501 AAAAAGCCT CCTCACTACT TCTGGAATAG CTCAGAGGCC GAGGCCGGCT
 3551 CGGCCCTCTGC ATAAATAAAA AAAATTAGTC AGCCATGGG CGGAGAATGG
 3601 CGGGAACCTGG CGGGAGTTAG GGGCGGGATG GGCGGAGTTA GGGCGGGGAC
 3651 TATGGTTGCT GACTAATTGA GATGCATGCT TTGCATACTT CTGCTGCTG
 3701 GGGAGCTCTGG GGACTTTCCA CACCTGGGTTG CTGACTAATT CAGATGCATG
 3751 CTTGCATAC TTCTGCCTCC TGGGAGGCT GGGGACTTTC CACACCTAA
 3801 CTGACACACA TTCCACAGGT CGAACATAGTC GAATTCTCAA TTGTTTACG
 3851 CGGCCCGATG CAIAGGGGTCG TGCGCTCCTT CGGTGCGGC GCTGCGGGTC
 3901 GTGGGGCGGG CGTCAGGCAC CGGGCTTGC CGGTAGAGCC CAGTCGCGC
 3951 GGTCCCTCGG GCACTCGAGC TCGGGGGTGA CGGTGAAGCC GAGCCGCTCG
 4001 TAGAAGGGGA GTTGGGGGG CGGGAGGTC TCCAGGAAGG CGGGCACCCCC
 4051 GGCAGCGCTCG CGCCGCTCCA CTCCGGGGAG CACGACGGG CTGCCAGAC
 4101 CCTTGCCCTG GTGGTGGGGC GAGACGCCGA CGGTGGCCAG GAACCACGCG
 4151 GGCTCCTTGG GCGGGTGGGG CGCCAGGAGG CCTTCCATCT GTTGTGCGC
 4201 GGCCAGCCGG GAACCGCTCA ACTCGGCCAT GCGCGGGCCG ATCTCGGCAG
 4251 ACACCGCCCC CGCTTCGAGC CTCTCCGGCG TGGTCCAGAC CGCACCCGCG
 4301 GCGCCGTCGT CCGCGACCCA CACCTTGCGG ATGTCGAGCC CGACCGCGCGT
 4351 GAGGAAGAGT TCTTGCAGCT CGGTGACCCG CTCGATGTGG CGGTCCGGAT
 4401 CGACGGTGTG CGCGTGGCG GGGTAGTGTGG CGAACGGGGC CGGGAGGGTGG
 4451 CGTACGGCCC TGGGAGCTC GTCCGGGGTC GCGAGGGCAGA CGGTGGGCTT
 4501 GTACTCGGTC ATGGTAAGCT GATCCGGGG GCGCTAGAG AAGGAGTGAG
 4551 GGCTGATAAA AGGGAGGATT GAGGGGGGCG CGAAAGAGGA GTTCAAGGG
 4601 GGAGAGACGG CGGGGATGGA AGAAGAGGAG CGGGAGGCTT AGGGTGTACA
 4651 AAGGGCTTGA CCCAGGGAGG GGGGTAAAAA GCGAAGGCTT CCCAGGTAC
 4701 GATGTAGGGG ACCTGGTC TGTTGTCATG CGGGCCAGGT GAAAAGACCT
 4751 TGATCTAAC CTGGGTGATG AGGTCTCGGT TAAAGGTGCC GTCTCGCGGC
 4801 CATCCGACGT TAAAGGTTGG CCATTCTGCA GAGCAGAAGG TAAACCAACG
 4851 TCTCTTCTTG ACATCTACCG ACTGGTTGTG AGCGAGCCGC TCGACATCTT
 4901 TCCAGTGTAC TAAGGTCAAA CTTAAGGGAG TGGTAAACAGT CTGGCCCTAA
 4951 TTTTCAGACA AATACAGAAA CACAGTCAGA CAGAGACAAAC ACAGAACGAT
 5001 GCTGCAGCAG ACAAGACCGC CGGCTTCGGT TCCAAACCGA AAGCAAAAT
 5051 TCAGACGGAG CGGGGAACCTG TTTAGGTTG TCGTCTCTA CCAGAACAC
 5101 ATATCCTGAC GGGGTGCGAT TCCACATCGA CTCCCTTCCT CAGGTGGGCG
 5151 CACAAAAACG GCCCCCAAAAG TCCCTGGGAC GTCTCCCAGG GTTGGGGCCG
 5201 GGTGTCAGA ACTCGTCAGT TCCACACCGG GTCCGCCAGA TACAGAGCTA
 5251 GTTAGCTAAC TAGTACCGAC GCAGGCGCAT AAAATCAGTC ATAGACACTA
 5301 GACAATCGGA CAGACACAGA TAAGTTGCTG GCCAGCTTAC CTCCCGGTGG
 5351 TGGGTGGGTG GTCCCTGGGC AGGGGTCTCC CGATCCCCGA CGAGCCCCA
 5401 AATGAAAGAC CCCCGCTGAC GGGTAGTCAGA TCACTCAGAG GAGACCCCTCC
 5451 CAAGGAACAG CGAGACCACA AGTCGGATGC AACTGCAAGA GGTTTATTG
 5501 GATACACGGG TACCCGGGCG ACTCAGTC TCGGAGGACT GCGGCCCGA
 5551 GTGAGGGGTT GTGGGCTCTT TTATTGAGCT CGGGGAGCAG AAGGCGCGA
 5601 ACAGAACCGA GAAGCGAACT GATGGGTTAG TCAAATAAG GCACAGGGTC
 5651 ATTCAGGTC CTTGGGGCAC CCTGGAAAC TCTGATGGTT CTCTAGAAAC
 5701 TGCTGAGGGC TGGACCGCAT CTGGGGACCA TCTGTCTTIG GCCCTGAGCC
 5751 GGGGAGGAA CGCTTACCA CAGATATCTT GTTTGGGCA TATTCAAGCTG
 5801 TTCCATCTGT TCTTGGCCCT GAGCCGGGGC AGGAACGT TACCAACAGAT
 5851 ATCCTGTTTG GCCCATATTC AGGCTGCAGG TGGCACCTT CGGGAAATG
 5901 TGCGCGAAC CCCTATTGT TTATTTTCT AAATACATT AAATATGTAT
 5951 CGGCTCATGA GACAATAACC CTGATAAATG CTTCAATAAT ATTGAAAAAG
 6001 GAAGAGTATG AGTATTCAAC ATTCCGTGT CGCCCTTATT CCCTTTTTG
 6051 CGGCATTTTG CCTTCCCTGTT TTTGCTCACC CAGAAACGCT GGTGAAAGTA
 6101 AAAGATGCTG AAGATCACTT GGGTGCACGA GTGGGTACCA TCGAACTGGG
 6151 TCTCAACACC GGTAAAGATCC TTGAGAGTT TCGCCCCGAA GAACGTTTTC
 6201 CAATGATGAG CACTTTAAA GTTCTGCTAT GTGGCCGGT ATTATCCGT
 6251 GTTGCACGCCG GGCAAGAGCA ACTCGGTGCG CGCATACACT ATTCTCAGAA
 6301 TGACTTGGTT GAGTACTCAC CAGTCACAGA AAAGCATCTT ACGGATGGCA
 6351 TGACAGTAAG AGAATTATGC AGTGCTGCCA TAACCATGAG TGATAACACT
 6401 CGGGCCAAT TACTTCTGAC AACGATCGGA GGACCGAAGG AGCTAACCGC
 6451 TTTTTGCAAC AACATGGGGG ATCATGTAAC TCGCCTGAT CGTTGGGAAAC
 6501 CGGAGCTGAA TGAAGCCATA CCAAAACGACG AGCGTGACAC CACGATGCCT
 6551 GTAGCAATGG CAACAAACGTT GCGCAAACTA TAAACTGGCG AACTACTTAC

Fig. 9

- 27/35 -

6601 TCTAGCTTCC CGGCAACAAAT TAATAGACTG GATGGAGGCG GATAAAAGTTG
 6651 CAGGACCACT TCTGCCCTCG GCCCTTCCGG CTGGCTGGTT TATTGCTGAT
 6701 AAATCTGGAG CGGGTGAGCG TGCGCTCGC GGTATCATTC CAGCACTGGG
 6751 GCCAGATGGT AAGCCCTCCC GTATCGTAGT TATCTACACG ACGGGGAGTC
 6801 AGGCAACTAT GGATGAACGA AATAGACAGA TCGCTGAGAT AGGTGCCTCA
 6851 CTGATTAAGC ATTGGTAACT GTCAAGACCAA GTTTACTCAT ATATACTTTA
 6901 GATTGATTG CGGCCGGCCG CAAACTTCAT TTTTAATTAA AAAGGATCTA
 6951 GGTGAAGATC CTTTTGATA ATCTCATGAC CAAAATCCCT TAACGTGAGT
 7001 TTTCGTTCCA CTGAGCGTCA GACCCCGTAG AAAAGATCAA AGGATCTTCT
 7051 TGAGATCCTT TTTTCTGCG CGTAATCTGC TGCTTGCAAA CAAAAAAACC
 7101 ACCGCTACCA GCGGTGGTTT GTTTGCCGGA TCAAGAGCTA CCAACTCTT
 7151 TTCCGAAGGT AACTGGCTTC AGCAGAGCGC AGATACCAAA TACTGTCTT
 7201 CTAGTGTAGC CGTAGTTAGG CCACCACTTC AAGAACCTCG TAGCACCGCC
 7251 TACATACCTC GCTCTGCTAA TCTCTGTTACC AGTGGCTGCT GCCAGTGGCG
 7301 ATAAGTCGTG TCTTACCGGG TTGACTCAA GACGATAGTT ACCGGATAAG
 7351 GCGCAGCGGT CGGGCTGAAC GGGGGGTTCG TCCACACAGC CCACCTTGGA
 7401 GCGAACGACC TACACCGAAC TGAGATAACCT ACAGCGTGAG CTATGAGAAA
 7451 GCGCCACGCT TCCCGAAGGG AGAAAAGCGG ACAGGTATCC GGTAAAGCGGC
 7501 AGGGTCGGAA CAGGAGAGCG CACGAGGGAG CTTCCAGGGG GAAACGCCCTG
 7551 GTATCTTTAT AGTCCTGCTCG GTTTTCGCCA CCTCTGACTT GAGCGTGCAT
 7601 TTTTGTGATG CTCGTCAAGGG GGGCGGAGCC TATGGAAAAA CGCCAGCAAC
 7651 GCGGCCTTTT TACGGTTCTC GGCCTTTTGC TGGCCTTTG CTCACATGTT
 7701 CTTTCCTGCG TTATCCCCTG ATTCTGTGGA TAACCGTATT ACCGCCCTTG
 7751 AGTGAAGCTGA TACCGCTCGC CGCAGCCGAA CGACCGAGCG CAGCGAGTCA
 7801 GTGAGCGAGG AAGCGGAAGA GCGCCAATAC GCAAACCGCC TCTCCCCGCG
 7851 CGTTGGCGA TTCATTAATG CAACTATGGC CATTAAATGT AAATACTTAA
 7901 GAAAAAAAC CAAATTAATT TTGATACATG CTGCATGTGA AGACCCCCCGC
 7951 TGACGGGTAG TCAATCACTC AGAGGAGACC CTCCCAAGGC AGCGAGACCA
 8001 CAAGTCGGAA ATGAAAGACC CCCGCTGACG GGTAGTCAT CACTCAGAGG
 8051 AGACCCCTCCC AAGGAACAGC GAGACCACAA GTCGGATGCA ACTGCAAGAG
 8101 GGTTTATTGG ATACACGGGT ACCCGGGCGA CTCAGTCAT CGGAGGACTG
 8151 GCGCCCCGAG TGAGGGGTTG TGGGCTCTT TATTGAGCTC GGGGAGCAGA
 8201 AGCGCGCAGA CAGAAGCGAG AAGCGAACTG ATTGGTAGT TCAAATAAGG
 8251 CACAGGTCA TTTCAGGTCC TTGGGGCACC CTGGAAACAT CTGATGGTTC
 8301 TCTAGAAACT GCTGAGGGCT GGACCGCCTC TGGGGACCAT CTGTTCTTGG
 8351 CCCTGAGCCG GGGCAGGAAC TGCTTACACAC AGATATCCTG TTGGGCCAT
 8401 ATTCAAGCTGT TCCATCTGTT CTTGGCCCTG AGCCGGGCA GGAACCTGCTT
 8451 ACCACAGATA TCCCTGTTGG CCCATATTC A GCTGTTCCAT CTGTTCTG
 8501 CCTTGATCTG AACCTCTCTA TTCTCAGTTA TGTATTTC CATGCCTTG
 8551 AAAATGGCGT TACTTAAGCT AGCAGATCTG CTAGCTGCC AACCTACAG
 8601 GTGGGGTCTT TCATTCCCCC CTTTTCTGG AGACTAAATA AAATCTTTA
 8651 TTTTATGCGC ACATTTCCCC GAAAAGTGCC ACCTGACGTC TAAGAAACCA
 8701 TTATTATCAT GACATTAACC TATAAAAATA GGCATATCAC GAGGCCCTT
 8751 CGTCCGCACA TTCCCCGAA AAGTGCCACC TGACGTCTAA GAAACCATT
 8801 TTATCATGAC ATTAACCTAT AAAAATAGGC GTATCACGAG GCCCTTCGT
 8851 CC

Fig. 9

SPEC

- 28/35 -

puhd10-3-hI7.3 Length: 3621

1 ctcgagttt ccactcccta tcagtatag agaaaagtga aagtcgagtt
51 taccactccc tatcagtgt agagaaaagt gaaagtcgag tttaccactc
101 cctatccatgt atagaga aa gtgaaaagtgc agtttaccac tccctatcaq
151 tgatagagaa aagtggaaagt cgagttacc actccctatc agtgatagag
201 aaaagtggaa gtcgagttt ccactcccta tcagtatag agaaaagtga
251 aagtgcgatg taccactccc tatcagtgt agagaaaagt gaaagtcgag
301 ctcggtagcc qggtcgagta ggcgtgtacg gtggggaggcc tatataagca
351 gagctcggtt agtgcacccgt cagatcgctt ggagacgcca tccacgctgt
401 tttgacccctc atagaagaca cccggaccga tccacgctt gccggccccga
451 attaaacatgt cagatcgatc caacggaaaaaaa taaaatccaa acatgagccg
501 cctggccgtc ctgctccctgc tccaaactcctt ggtccgcccc ggactccaaag
551 ctccccatgac ccagacaaacg tccttgaaga caagctgggt taactgctct
601 aacatgatcg atgaaaattat aacacactta aagcagccac ctttgcctt
651 gctggacttc aacaacctca atggggaaaga ccaagacatt ctgatggaaa
701 ataaccttcg aaggccaaac ctggaggcat tcaacaggc tgtaagagt
751 ttacagaacg catcagcaat tgagagcatt cttaaaatc tcctgcccatt
801 tctggccctg gccacggcccg caccacgcg acatccaatc catatcaagg
851 acgggtgactg gaatgaatc cggaggaaac tgacggttca tctgaaaacc
901 ctggagaatg cgcaggctca acagacgact ttgagctcg cgatctttta
951 qaactcgact cttagacatgt taagatacat ttagatgtt ggacaaacca
1001 caactagaat cagttggaaa aaatgtttt tttgtgaaat ttgtgatgct
1051 attgttttat ttgttaccat tataagctgc aataaaacaa aataacaacaa
1101 caattgcattt cattttatgt ttcagggttca gggggagggtg tgggagggtt
1151 tttaaagccaa gtaaaacccctc tacaatgtg gtagggctga ttatgtatcc
1201 gcaaggctcg tcgtctggcc ggaccacgct atctgtgca ggtccccgg
1251 cgcgcgctcc atgagcagag cccccggccgc cgaggcaaga ctccggccgg
1301 gcccggcccg tccccaccagg tcaacaggcg gtaaccggcc tcttcattcg
1351 qaatgcgcgc gaccttcagc atgcgcggca tggccctgg cggacgggaa
1401 gtatcagctc gaccaagctt ggcgagattt tcaggagctt aggaagctaa
1451 aatggagaaaaaaaatcaatgt gatataccac cgttgcata tcccaatggc
1501 atcgtaaaga acatttttag gcatttcgtt cagttgcata atgtacat
1551 aaccagacccg ttcaqctgca ttaatgtatc ggccaaacgcq cggggaggagg
1601 cggtttgcgtt attggggcgtt ctccgcctt ctcgcctact gactcgctgc
1651 gctcggctgtt cggctgcgg cgagcggat cagtcactc aaatgtggta
1701 atacggttat ccacagaaatc agggttataac gcaggaaaga acatgtgagc
1751 aaaaggccag caaaaggccaa ggaaccgtaa aaggcccg gttgtggcgt
1801 tttccatag gctccgcctt cctgacgagc atcacaaaaaa tcgacgctca
1851 agtcaagaggt ggcgaaaccc gacaggacta taaagatacc aggcgttcc
1901 cccttggaaac tccctcgatc gctctctgtt tccyaccctq ccgttaccc
1951 gataccgtc cgccttttc ccttcgggaa gctgtggcgt ttctcaatgc
2001 tcacgcgtgtt ggtatctcg ttcgggtgtat gtcgttcgtt ccaagctgg
2051 ctgtgtgcac gaaacccccc ttcaaggccga cctgtgcqcc ttatccggta
2101 actatcgatc tgatccaaac cccgttgcgtt acgacttatac gccactggaa
2151 gcaggccactg ttaacatgt gtaacagat tagcagagcg aggtatgtatc
2201 aqaggttcttg aqgtggggc ctaactacgg ctacactaga aggacagtat
2251 ttggatctgtt cgcctctgtt aagccagttt ctttcggaaa aagagttgg
2301 agctttgtat ccggccaaaca aaccacccgtt ggttgcgtt gttttttgt
2351 ttgcacggcag CAGATTACGC gcagaaaaaaa agatctcaa gaagatcc
2401 tgatccattt tacggggctt gacgtcagt ggaacgaaaaa ctcacgtt
2451 gggattttgg tcatgagatt atcaaaaaagg atcttcacccat agatcc
2501 aaataaaaaa tgaagtttta aatcaatcta aagtatatat gataaaaactt
2551 ggtctgacag ttaccaatgc ttaatcgatc aggcacccat ctcagcgatc
2601 tgcttatttc gttcatccat agttgcgtt cttcccttcg ttagataac
2651 tacatgcgg gagggtctac carctggccc cagtgctgc atgataccgc
2701 gagacccatg ctcaccggctt ccagatttat cagcaataaa ccagccagcc
2751 ggaaggcccg aqgcgcgaaag tggctctgc actttatccg cttccatcca
2801 gtcttattat ttttgcggg aqgttagatgt aagtatccg ccagttataa
2851 gtttgcgca ctttgcgttcc atggctacag gcatcggtg gtcacgctcg
2901 tcgtttggta tggcttcat cagtcgggt tcccaacgat caaggccgat
2951 tacatgcgtt cccatgtgtt gcaaaaaaagg ggttaqctcc ttccgttcc
3001 cgatcggtt cagaagtaaq ttggccgcag ttttgcgttact catgggtatg
3051 gcaaggactgc ataatttctt tactgtcatg ccattccgtaa gatgttttcc
3101 tqgtactgtt gactactcaa ccaaggctcat cttggatatac ggttgcggc
3151 gaccggatgtt ctcttgcggc tggtaatac gggataatac cccggccacat
3201 aqcaagactt taaaatgttcatcatttgcgaaacgttcc cggggcgaaa

Fig. 10

SPEC

99116533

- 29/35 -

3251	actctcaagg	atcttaccgc	tgttgagatc	caggtcgatg	taaaccac
3301	gtgcacccaa	ctgatcttca	gcatctttt	ctttcaccag	cgtttctggg
3351	tgagaaaaaa	caggaaggca	aaatgccca	aaaaaggggaa	taaggggcgc
3401	acggaaaatgt	tgaatactca	tactcttct	ttttcaatat	tatgiaagca
3451	titatcaggg	ttatlgctc	atgagcggat	acatatttga	atgtatttag
3501	aaaaataaac	aaataggggt	tcccgcgaca	tttccccgaa	aagtqccacc
3551	tgacgtclaa	gaaaccattt	ttatcatgac	attaacctat	aaaaataggc
3601	gtalcacgag	gcccttctgt	c		

Fig. 10

- 30 / 35 -

pURD10-3-HIL6
Length: 3752 June 22, 1999 10:32 Type: N Check: 8139 ..

Fig. 11

- 31/35 -

3201	tttactgtcat	ggccalccugta	agatgtcttt	ctgtgactgg	tgtagtactca
3251	accaggatcata	tctgagaata	gtgttatgggg	cgacccgagtt	getcttgccc
3301	gtcgtcaata	cgggataata	ccggcgccaca	tagcaqaact	ttaaaaagtgc
3351	tcatcattgg	aaaacgttct	tcggggcgaa	aactctcaag	gatcttacccg
3401	ctgttgagat	ccagggttcgat	gtaaacccact	cgtgcaccca	actgtatcttc
3451	agcatctttttt	actttcacca	gcgttttctgg	gtgaqcaaaa	acaggaaggc
3501	aaaaatggccgc	aaaaaaaggga	ataaggggcga	cacggaaatg	ttgaatactc
3551	atactcttcc	tttttcaata	ttattgaagc	attttacccgg	gttattgtct
3601	catgagccgga	tacatarttg	aatgtatcta	gaaaaataaa	caaataagggg
3651	ttcccgcgcac	atttccccgta	aaagtgcac	ctyacgiccta	agaaaaccatt
3701	attatcatga	cattttaccta	taaaaaatagg	cgtatcacga	ggccctttcg
3751	tc				

Fig. 11

- 32/35 -

puhd10-3-tgf

ctcgagtttaccactccctatcagtgtatagagaaaagtgaaagtgcgagtttaccactccc
 1 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 60
 tatcagtgtatagagaaaagtgaaagtgcgagtttaccactccctatcagtgtatagagaaaa
 61 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 120
 gtgaaagtgcgagtttaccactccctatcagtgtatagagaaaagtgaaagtgcgagttacc
 121 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 180
 actccctatcagtgtatagagaaaagtgaaagtgcgagtttaccactccctatcagtgtatag
 181 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 240
 agaaaaagtgaaagtgcgagtttaccactccctatcagtgtatagagaaaaagtgaaagtgcgag
 241 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 300
 ctcggtaccgggtcgagtggcggtacgggtggaggcctataagcagagctcgat
 301 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 360
 agtgaacctcagatcgccctggagacgccatccacgcgtttgacccatagaagaca
 361 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 420
 ccggggaccqatccagccctccqcgcccccaattctgcagcccATGCACTTGCAAAGGGC
 421 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 480
 TCTGGTAGTCTGGCCCTGCTGAACCTGGCACAAATCAGCCTCTCTGTCCACTTGCAC
 481 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 540
 CACGTTGGACTTCGGCCACATCAAGAAGAAGAGGGTGGAACGCCATTAGGGGACAGATCTT
 541 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 600
 GAGCAAGCTCAGGCTCACCGCCCCCTGAGCCATCGGTGATGACCCACGTCCCCATCA
 601 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 660
 GGTCTGGCACTTACAACAGCACCCGGGAGTTGCTGGAAAGAGATGCACGGGGAGAGGA
 661 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 720
 GGAAGGCTGCACTCAGGAGACCTCGGAGTCTGAGTACTATGCCAAAGAGATCCATAAATT
 721 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 780
 CGACATGATCCAGGGACTGGGGAGCACATGAACTGGCCCTGCCCCAAAGGAATTAC
 781 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 840
 CTCTAAGGTTTCGTTCAATGTGTCCTCAGTGGAGAAAATGGAACCAATCTGTTCCG
 841 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 900
 GCCAGAGTTCCGGTCTTGGGGTGCCARCCCAGCTCCAAGCGCACAGAGCAGAGAAT
 901 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 960
 TGAGCTTCCAGATACTTCGACCGGATGAGCACATGCCAAGCAGCGCTACATAGGTGG
 961 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1020
 CAAGAATCTGCCACAAGGGGACCGCTGAATGGCTGCTTCGATGTCACTGACACTGT
 1021 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1080
 GCGCGAGTGGCTTGGAGAGAGTCCAACCTGGGTCTGGAAATCAGCATCCACTGTCC
 1081 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1140
 ATGTCACACCTTCAGCCAATGGAGACATACTGGAAAATGTCATGAGGTGATGGAAAT
 1141 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1200
 CAAATTCAAAGGAGTGGACAATGAAGATGACCATGCCGTGGAGACCTGGGGCTCAAA
 1201 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1260
 GAAGCAAAAGGATCACCAACCCACACCTGATCCTCATGATGATCCCCCACACCGACT
 1261 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1320

Fig. 12

- 33/35 -

1321 GGACAGCCCAGGCCAGGGCAGTCAGAGGAAGAAGAGGGCCCTGGACACCAATTACTGCTT
 1381 CCGCAACCTGGAGGAGAACTGCTGTACGCCCTTTATATTGACTTCCGGCAGGATCT
 1441 AGGCTGGAAATGGGTCCACGAACCTAACGGTTACTATGCCAACCTCTGCTCAGGCCCTTG
 1501 CCCATACCTCCGCAGCGCAGACACAACCCATAGCACGGTGCTTGGACTATACAACACCC
 1561 GAACCCAGAGGCCTCGCCATGCTGCGTCCCCCAGGACCTGGAGGCCCTGACCAT
 1621 CTTGTAATGTTGGCAGAACCCCCAACGGTGGAGCAGCTGTCACATGGTGGTGAAGTC
 1681 GTGTAAGTCAGCTGAgggggatccactagtttagaggatccagacatgataagataca
 1741 ttgatgagtttggacaaaccacaactagaatgcagtgaaaaaaaaaatgttttatttgtaaa
 1801 tttgtatgctatgttttattgttaaccattataagctqcaataaacaagttaacaaca
 1861 acaattgcattcatttalgtttcagttcagggggaggtgtggaggtttttaaagca
 1921 agtaaaaacctctacaaatgtggtatggctgattatgtatccctgcaaggcctcgctggc
 1981 cggaccacgctatctgtcaaggtccccggacgcgcgcgtccatgagcagagcggccgg
 2041 ccqaggcaagactcgggcggccctgcccgtccaccaggtaacaggcgtaaccggc
 2101 ctcttcatcggaatgcgcgcgacccctcagcatgcggcatgtccccctggcgacggga
 2161 agtatacgctcgaccaagcttggcgagatttcaggagctaaggaagctaaaatggagaa
 2221 aaaaatccactggatataccaccgttgatatatccaatggatcgtaaaaacatttga
 2281 gycatttcagttcagttgctcaatgtacctataaccagaccgttcagctgcattaatgaat
 2341 cggccaaacgcgcggggagaggcggttgcgtattggcgcttccgcttcgcac
 2401 tgactcgctgcgtcggtcggttcggctgcggcgagcggtatcagctcaactcaaagtgcgt
 2461 aatacggttatccacagaatcagggataacgcaggaaagaacatgtgagcaaaaggcca
 2521 gcaaaaaggccaggaaccgtaaaaaggccgcgttgcgtttccataggctccgccc
 2581 ccctgacgagcatcacaaaaatcgacgctcaagtcagagggtggcgaaacccgacaggact

Fig. 12

SPEC

- 34 / 35 -

Fig. 12

SPEC

99116533

- 35/35 -

3961 -----+-----+-----+-----+-----+-----+ 4020
 gatcttaccgctgttyagatccaggcgatgtacccactcgtgcacccaaactgatctc
 4021 -----+-----+-----+-----+-----+-----+-----+-----+ 4080
 agcatctttactttcaccagcgttctgggtgagcaaaaacaggaaggcaaaatgccgc
 4081 -----+-----+-----+-----+-----+-----+-----+-----+ 4140
 aaaaaaggaaataaggcgacacggaaatgttgaatactcatactcttcctttcaata
 4141 -----+-----+-----+-----+-----+-----+-----+-----+ 4200
 ttatlgaagcatttatcagggttattgtctcatgagcgatataatttgaatgtattta
 4201 -----+-----+-----+-----+-----+-----+-----+-----+ 4260
 gaaaaataaaacaaaalaggggttccycgcacattccccgaaaagtgccacctgacgtcta
 4261 -----+-----+-----+-----+-----+-----+-----+-----+ 4320
 agaaaaccattattatcatgacattaacctataaaaataggcgtatcacgaggcccttcg
 4321 -----+-----+-----+-----+-----+-----+-----+-----+ 4380
 tc
 4381 -- 4382

Fig. 12

THIS PAGE BLANK (USPTO)