Assignment 2 - Solutions

Exercise 1. Let $B = S^1$, $C = D^2$ and denote by $\partial C = S^1$ the circle contained in C. For a fixed integer $k \geq 1$ we define the map $\phi_k : \partial C \to B$ via $\phi_k(e^{2\pi i s}) = e^{2\pi i k s}$. We then define the following space

$$X_k = (B \prod C)/_{\sim},$$

where $z \sim \varphi_k(z)$ for $z \in \partial C$.

- (a) Show that the space X_k is path-connected.
- (b) Use the van Kampen theorem to determine $\pi_1(X_k)$.

Hint: The calculation is easier with the choice of a basepoint in $C \setminus \partial C$.

Solutions: Denote by π the quotient map from $B \coprod C$ to X_k . Note that π restricted to $C \setminus \partial C$ is a homeomorphism and π restricted to B is a homeomorphism.

(a) Let $x, y \in X_k$. If $x, y \in \pi(B)$ respectively $x, y \in \pi(C)$ then we can take a path f from $x' \in \pi^{-1}(x)$ and $y' \in \pi^{-1}(y)$ in B respectively C, and $\pi \circ f$ is a path in X_k from x to y. Thus we can assume that $x \in \pi(B)$ and $y \in \pi(C)$. Note that the map ϕ_k is surjective, hence there is $z \in \partial C$ such that $\phi_k(z) = x$ in X_k , hence by the previous discussion y is path connected to z which gets identified with x, hence X_k is path-connected.

(b) Fix
$$1 > \varepsilon' > \varepsilon > 0$$
.

Define $U' = \{x \in C \mid |x| > \varepsilon\}$, which is open in C and path-connected as the image of a path-connected space. Set $U = \pi(U')$. Then $\pi^{-1}(U) = U' \coprod B$, which is open, hence U is open in X_k by definition of the quotient topology.

Define $V' = \{x \in C \mid |x| < \varepsilon'\}$, which is open in C as well. Set $V = \pi(V')$. Since $V' \subset C \setminus \partial C$ and π is a homeomorphism when restricted to $C \setminus \partial C$, V is open in X_k . Note that $V \cap \pi(B) = \emptyset$ and it is path-connected as the image of a path-connected space.

By construction $U \cup V = X_k$ and $U \cap V \cong \{x \in C \mid \varepsilon' > |x| > \varepsilon\}$, since the intersection is contained in $\pi(C \setminus \partial C)$, where π is a homeomorphism. Especially $U \cap V$ is path-connected.

Fix $x_0 \in V \cap U$. Then the open cover $\{U, V\}$ satisfies the assumption of the van Kampen theorem, both sets are open, path-connected and contain x_0 . Since the intersection $U \cap V$ is also path-connected we know that the map given in the van Kampen theorem is surjective and we can deduce the kernel.

By definition V is contractible, as an open ball. For U, extend the retraction $r:(D^2\setminus\{(0,0)\})\to S^1$ (from the course) to B by using the identity on B. In this way we obtain a retraction $r':(C\setminus\{(0,0)\})\coprod B\to \partial C\coprod B$. This descents to a retraction \overline{r} on the quotient and so U deformation retracts to $(\partial C\coprod B)/_{\sim}\cong S^1$ via \overline{r} . Finally $U\cap V$ deformation retracts to a circle with radius τ for $\tau=|x_0'|$. Hence $\pi_1(U\cap V,x_0)\cong \mathbb{Z}=\langle[\omega]\rangle$, where we denote by ω a loop around the circle of radius τ based at x_0 . Applying the van Kampen theorem we obtain

$$\pi_1(X_k, x_0) \cong (\pi_1(U, x_0) * \pi_1(V, x_0)) / \langle \varphi_{UV}([\omega]) \rangle \cong \pi_1(V, x_0)) / \langle \varphi_{UV}([\omega]) \rangle$$

where $\varphi_{UV}: \pi_1(U \cap V, x_0) \to \pi_1(U, x_0)$ is induced by the inclusion. We omit the term $\varphi_{VU}([\omega])^{-1}$ since $\pi_1(V, x_0)$ is trivial since V is contractible, hence the image is trivial anyway.

Note that in the quotient

$$\overline{r} \circ \pi(e^{(2\pi i l)/k} x_0') \sim \overline{r}(x_0) \text{ for } 0 \le l < k.$$

Thus $\overline{r} \circ \omega$ is a loop at $\overline{r}(x_0)$ that passes $\overline{r}(x_0)$ a total of k+1 times. Hence generates the subgroup $k\mathbb{Z}$ inside $\pi_1(U, x_0) \cong \pi_1(S^1) \cong \mathbb{Z}$. Hence we obtain $\pi_1(X_k, x_0) \cong \mathbb{Z}/k\mathbb{Z}$.

Exercise 2. Let X be a space with $X = U \cup V$ for U, V, and $U \cap V$ all open, non-empty and path-connected.

- (a) Show that X is path-connected.
- (b) Assume that $V \cap U$ is simply-connected and show that $\pi(X) \cong \pi_1(U) * \pi_1(V)$.

Solutions: (a) Since $U \cap V \neq \emptyset$ we can choose $x_0 \in U \cap V$. By assumption x_0 is path-connected to any point in U and to any point in V, since U and V are both path-connected. Hence x_0 is path-connected to any point in X and so X is path-connected.

(b) We already know that X is path-connected. Assume now that also $V \cap U$ is simply-connected and let x_0 be as in part (a). We can apply the van Kampen theorem to the open subsets U and V, since they are both open, path-connected, contain x_0 and $V \cap U$ is path-connected. Hence by the van Kampen theorem

$$\pi_1(X, x_0) \cong (\pi_1(U, x_0) * \pi_1(V, x_0))/N,$$

where N is given as in the van Kampen theorem. But by assumption $\pi_1(U \cap V, x_0) = \{0\}$, hence the maps induced from the embedding of $U \cap V$ into U respectively V are both trivial and thus $N = \{0\}$. Hence the claim follows.

Exercise 3.

- (a) Let $[v_0, v_1, v_2, v_3]$ be a 3-simplex. Define $X = [v_0, v_1, v_2, v_3]/_{\sim}$ with the equivalence relation given by $v_0 \sim v_1 \sim v_2 \sim v_3$. Compute the simplicial homology of X.
- (b) Let $[v_0, v_1, \ldots, v_n]$ be an *n*-simplex. For $1 \le k \le n$ and $\underline{i} = (0 \le i_1 < i_2 < \ldots < i_k \le n)$ denote by $\varphi_{\underline{i}} : \Delta^k \to [v_{i_1}, v_{i_2}, \ldots, v_{i_k}]$ the canonical homeomorphism from the standard (k-1)-simplex to $[v_{i_1}, v_{i_2}, \ldots, v_{i_k}]$ (as defined in the course).

Now define $X = [v_0, v_1, \ldots, v_n]/_{\sim}$ where for any $\underline{i} = (0 \le i_1 < i_2 < \ldots < i_k \le n)$, $\underline{j} = (0 \le j_1 < j_2 < \ldots < j_k \le n)$, and $x \in [v_{i_1}, v_{i_2}, \ldots, v_{i_k}]$ we set $x \sim \varphi_{\underline{j}} \circ \varphi_{\underline{i}}^{-1}(x)$, i.e. we identify all (k-1)-simplices contained as iterative faces in $[v_0, v_1, \ldots, v_n]$ via the canonical homeomorphisms. Compute the simplicial homology of X.

Solutions: For any simplex $[v_0, \ldots, v_n]$ and $1 \le k \le n$, we denote by $\sigma_{[v_{i_1}, \ldots, v_{i_k}]}$ the canonical homeomorphism from the standard (k-1)-simplex to the simplex $[v_{i_1}, \ldots, v_{i_k}] \subset [v_0, \ldots, v_n]$. (a) As the Δ -complex structure on $[v_0, v_1, v_2, v_3]$, we choose

$$\begin{split} \Sigma = & \{\sigma_{[v_0,v_1,v_2,v_3]},\sigma_{[v_0,v_1,v_2]},\sigma_{[v_0,v_1,v_3]},\sigma_{[v_0,v_2,v_3]},\sigma_{[v_1,v_2,v_3]},\\ & \sigma_{[v_0,v_1]},\sigma_{[v_0,v_2]},\sigma_{[v_0,v_3]},\sigma_{[v_1,v_2]},\sigma_{[v_1,v_3]},\sigma_{[v_2,v_3]},\\ & \sigma_{[v_0]},\sigma_{[v_1]},\sigma_{[v_2]},\sigma_{[v_3]}\}. \end{split}$$

For the Δ -complex structure on X we use $\widetilde{\Sigma} = \{\pi \circ \sigma \mid \sigma \in \Sigma\}$ where $\pi : [v_0, v_1, v_2, v_3] \to X$ is the natural quotient map. Note that $\widetilde{\sigma}_{[v_0]} = \widetilde{\sigma}_{[v_1]} = \widetilde{\sigma}_{[v_2]} = \widetilde{\sigma}_{[v_3]}$, hence there is only a single generator for the 0-chains. To see that this is a Δ -complex structure, we need to check part (1), (2) and (3) from the definition:

- (1) Since π is a homeomorphism outside of $\{v_0, v_1, v_2, v_3\}$, any $\widetilde{\sigma} \in \widetilde{\Sigma}$ is injective when restricted to the interior of the standard simplex.
- (2) For (2) we only need to check when we restrict a $\widetilde{\sigma}_{[v_i,v_j]}$ (i < j) to one of the faces of the standard 1-simplex. But such a face is a 0-simplex, for which we have a unique map in our Δ -complex structure, hence (2) is automatically full-filled.
- (3) Since our Δ -complex structure is obtained from the one of $[v_0, v_1, v_2, v_3]$ via a quotient map, part (3) is automatic.

We now have the following non-trivial chain groups

$$\Delta_{3}(X) = \mathbb{Z}\widetilde{\sigma}_{[v_{0},v_{1},v_{2},v_{3}]},$$

$$\Delta_{2}(X) = \mathbb{Z}\widetilde{\sigma}_{[v_{0},v_{1},v_{2}]} \oplus \mathbb{Z}\widetilde{\sigma}_{[v_{0},v_{1},v_{3}]} \oplus \mathbb{Z}\widetilde{\sigma}_{[v_{0},v_{2},v_{3}]} \oplus \mathbb{Z}\widetilde{\sigma}_{[v_{1},v_{2},v_{3}]},$$

$$\Delta_{1}(X) = \mathbb{Z}\widetilde{\sigma}_{[v_{0},v_{1}]} \oplus \mathbb{Z}\widetilde{\sigma}_{[v_{0},v_{2}]} \oplus \mathbb{Z}\widetilde{\sigma}_{[v_{0},v_{3}]} \oplus \mathbb{Z}\widetilde{\sigma}_{[v_{1},v_{2}]} \oplus \mathbb{Z}\widetilde{\sigma}_{[v_{1},v_{3}]} \oplus \mathbb{Z}\widetilde{\sigma}_{[v_{2},v_{3}]}, \text{ and }$$

$$\Delta_{0}(X) = \mathbb{Z}\widetilde{\sigma}_{[v_{0}]}.$$

To compute simplicial homology we proceed as follows:

• It holds $\partial_3(\widetilde{\sigma}_{[v_0,v_1,v_2,v_3]}) = \widetilde{\sigma}_{[v_1,v_2,v_3]} - \widetilde{\sigma}_{[v_0,v_2,v_3]} + \widetilde{\sigma}_{[v_0,v_1,v_3]} - \widetilde{\sigma}_{[v_0,v_1,v_2]}$. Since ∂_3 is injective and ∂_4 is the zero map, we have $H_3^{\Delta}(X) = 0$.

• The most complicated map is ∂_2 . We need to deduce the kernel and the image of it. We first note that the images of the generators are as follows

$$\begin{split} &\partial_{2}(\widetilde{\sigma}_{[v_{0},v_{1},v_{2}]}) = \widetilde{\sigma}_{[v_{1},v_{2}]} - \widetilde{\sigma}_{[v_{0},v_{2}]} + \widetilde{\sigma}_{[v_{0},v_{1}]}, \\ &\partial_{2}(\widetilde{\sigma}_{[v_{0},v_{1},v_{3}]}) = \widetilde{\sigma}_{[v_{1},v_{3}]} - \widetilde{\sigma}_{[v_{0},v_{3}]} + \widetilde{\sigma}_{[v_{0},v_{1}]}, \\ &\partial_{2}(\widetilde{\sigma}_{[v_{0},v_{2},v_{3}]}) = \widetilde{\sigma}_{[v_{2},v_{3}]} - \widetilde{\sigma}_{[v_{0},v_{3}]} + \widetilde{\sigma}_{[v_{0},v_{2}]}, \text{and} \\ &\partial_{2}(\widetilde{\sigma}_{[v_{1},v_{2},v_{3}]}) = \widetilde{\sigma}_{[v_{2},v_{3}]} - \widetilde{\sigma}_{[v_{1},v_{3}]} + \widetilde{\sigma}_{[v_{1},v_{2}]}. \end{split}$$

Note that each of the six generators of $\Delta_1(X)$ appears as a summand in the images of exactly two generators of $\Delta_2(X)$ and each pair of images has exactly one summand in common. Hence any subset of three images is linearly independent. But $\partial_2(\widetilde{\sigma}_{[v_0,v_1,v_2]}) - \partial_2(\widetilde{\sigma}_{[v_0,v_1,v_3]}) + \partial_2(\widetilde{\sigma}_{[v_0,v_2,v_3]}) = \partial_2(\widetilde{\sigma}_{[v_1,v_2,v_3]})$, hence the kernel of ∂_2 is equal to

$$\left\langle \widetilde{\sigma}_{[v_0,v_1,v_2]} - \widetilde{\sigma}_{[v_0,v_1,v_3]} + \widetilde{\sigma}_{[v_0,v_2,v_3]} - \widetilde{\sigma}_{[v_1,v_2,v_3]} \right\rangle,$$

which we calculated in the previous point is equal to the image of ∂_3 and so $H_2^{\Delta}(X) = \{0\}$.

The image of ∂_2 is generated by the images of any three generators of $\Delta_2(X)$ as seen above, we will just take the first three from the list above.

• Since $\partial_1(\widetilde{\sigma}_{[v_i,v_j]}) = 0$ for all i < j, the kernel of ∂_1 is all of $\Delta_1(X)$ and so

$$H_1^{\Delta}(X) = \Delta_1(X) / \left\langle \partial_2(\widetilde{\sigma}_{[v_0, v_1, v_2]}), \partial_2(\widetilde{\sigma}_{[v_0, v_1, v_3]}), \partial_2(\widetilde{\sigma}_{[v_0, v_2, v_3]}) \right\rangle \cong \mathbb{Z}^3.$$

The most obvious choice for the isomorphism to \mathbb{Z}^3 is to record the coefficients of $\widetilde{\sigma}_{[v_0,v_2]}$, $\widetilde{\sigma}_{[v_0,v_1]}$, and $\widetilde{\sigma}_{[v_0,v_3]}$. The coefficients of the other three are then determined in the quotient.

- As seen above the image of ∂_1 is trivial, hence $H_0^{\Delta}(X) = \Delta_0(X) \cong \mathbb{Z}$.
- (b) As a Δ -complex structure on X we use

$$\widetilde{\Sigma} = \{\pi \circ \sigma_{[v_0,\dots,v_k]} \mid 0 \leq k \leq n\},\$$

with π being the quotient map. This forms a Δ -complex structure

- (1) For property (1), we note that for every $0 \le k \le n$, no two points in the interior of $[v_{i_1}, \ldots, v_{i_k}]$ get identified in the quotient. Via the equivalence relation, they are only equivalent to a unique point in every other (k-1)-simplex. Hence we still have injectivity.
- (2) For (2) we note that all (k-1)-simplices get identified, hence the face of a k-simplex is always the unique (k-1)-simplex. Since they are all identified via the canonical homeomorphism, the triangle in the definition part (2) commutes as well.
- (3) As before, since we are going to a quotient, part (3) is automatic.

BIT, FALL 2021

As chain groups we thus get $\Delta_k(X) = \mathbb{Z}\widetilde{\sigma}_{[v_0,\dots,v_k]}$ for $0 \leq k \leq n$, all others are trivial. For the image ∂_k we just check

$$\partial_k(\widetilde{\sigma}_{[v_0,\dots,v_k]}) = \sum_{i=0}^k (-1)^i \widetilde{\sigma}_{[v_0,\dots,v_{k-1}]} = \begin{cases} 0 & \text{if } k \text{ is odd} \\ \widetilde{\sigma}_{[v_0,\dots,v_{k-1}]} & \text{if } k \text{ is even.} \end{cases}$$

Hence we see that ∂_k is an isomorphism when k is even and the zero map if k is odd. Hence we obtain for 0 < k < n we get

$$H_k^{\Delta}(X) \cong \begin{cases} \{0\}/\{0\} \cong \{0\} & \text{ for } k \text{ even} \\ \mathbb{Z}/\mathbb{Z} \cong \{0\} & \text{ for } k \text{ odd.} \end{cases}$$

In the two extreme cases we get $H_0^{\Delta}(X) = \mathbb{Z}$, since the image of ∂_1 is trivial, and finally, since there are no n + 1-simplices

$$H_n^{\Delta}(X) = \operatorname{Ker}(\partial_n) \cong \begin{cases} \{0\} & \text{for } n \text{ even.} \\ \mathbb{Z} & \text{for } n \text{ odd.} \end{cases}$$

BIT, Fall 2021

Exercise 4. Let $r: X \to A$ be a retraction of a space X to a subspace A and $i: A \to X$ the inclusion. Show that $i_*: H_n(A) \to H_n(X)$ is injective and $r_*: H_n(X) \to H_n(A)$ is surjective for all $n \ge 0$.

Solutions: By definition of a retraction we have $r \circ i = \mathrm{id}_A$. Applying now homology to this we get, for any n,

$$r_* \circ i_* = (r \circ i)_* = (\mathrm{id}_A)_* = \mathrm{id}_{H_n(A)}.$$

Hence the map r_* needs to be surjective as it has a right inverse and the map i_* needs to be injective, since it has a left inverse.