# Pair-based likelihood approximations for stochastic epidemic models

Stockdale et al. (Biostatistics, 2019)

## **Seth D Temple**

Research Preliminary Exam Seattle, WA, USA June 2021



# **Problem framing**

- Epidemic models afford insight into the incidence, spread, and control of contagions that threaten human welfare
  - How do mitigation efforts affect disease spread?
  - How do diseases spread between subpopulations?
- Partially observed process
  - ► Removal<sup>1</sup> times  $r_1, \ldots, r_n$  ✓
  - ▶ Infection times  $i_1, \ldots, i_n$  ×
- Analyses with partial data
  - ▶ Integrate over  $i_1, \ldots, i_n$
  - ightharpoonup Or, augment  $i_1, \ldots, i_n$  in Bayesian framework
- Independence between pairs of individuals provides likelihood approximations as fast frequentist methods.

<sup>&</sup>lt;sup>1</sup> Removal means an individual can no longer infect others.

Infection rates  $\beta_{kj}$  and removals after  $r_j - i_j \sim \mathsf{Gamma}(m_j, \gamma_j)$ 



At time t, S(t) susceptibles, I(t) infecteds, and R(t) removeds, with N = S(t) + I(t) + R(t).



Epidemic ends when I(t) = 0.



To simulate an epidemic, we exploit **Poisson processes (PPs)**. Define a *race* as the minimum of (exponential) rvs.

Algorithm (Epidemic Simulator)

- 1. S(0) = N 1, I(0) = 1
- 2. Until I(t) = 0:
  - 2.1 Race S(t)I(t) PPs with rate  $\beta$  and I(t) PPs with rate  $\gamma$ , where  $t_1$  is the winning race time.
  - 2.2 If a  $\gamma$ -PP wins,  $I(t_1) = I(t) 1$  and  $R(t_1) = R(t) + 1$ .
  - 2.3 If a  $\beta$ -PP wins,  $S(t_1) = S(t) 1$  and  $I(t_1) = I(t) + 1$ .
  - 2.4 Update  $t = t_1$ .

## Stochastic epidemic model

 $\{S(t),I(t)\}$  is a continuous-time Markov chain (CTMC) with "jumps" based on an underlying Poisson process.

- $\tau_{kj} := r_k \wedge i_j i_k \wedge i_j$ 
  - ► Time *k* tries to infect *j*
- $\psi_j = \exp(-\sum_{k \neq j}^n \beta_{kj} \tau_{kj})$ 
  - ightharpoonup Probability j not infected before  $i_i$
  - $\psi_{kj} = \exp(-\beta_{kj}\tau_{kj})$  is marginal term
- $\chi_j = \sum_{k \neq j}^n \beta_{kj} \mathbb{1}_{\{i_k < i_j < r_k\}}$ 
  - ightharpoonup Probability j infected at  $i_j$
- $\phi_j = \exp(-\sum_{k=n+1}^N \beta_{jk}(r_j i_j))$ 
  - ▶ Probability *j* doesn't infect never-infecteds

## Stochastic epidemic model

With  $i_1, \ldots, i_n$  known, the *augmented model likelihood* is

$$\pi(\mathbf{i}_{-1}, \mathbf{r}|\boldsymbol{\beta}, \boldsymbol{\theta}, i_1) = \left\{ \prod_{j=2}^n \psi_j \chi_j \phi_j f_j(\boldsymbol{r}_j - \boldsymbol{i}_j|\boldsymbol{\theta}_j) \right\} \phi_1 f_1(\boldsymbol{r}_1 - \boldsymbol{i}_1|\boldsymbol{\theta}_1) \quad (1)$$

MLE is easy with complete data. For common  $(\beta, \gamma)$  and m = 1:

$$\hat{\beta} = \frac{N(n-1)}{\sum_{j=2}^{n} \sum_{k \neq j} \tau_{kj} + (N-n) \sum_{j=1}^{n} r_j - i_j}$$

$$\hat{\gamma} = \frac{1}{n} \sum_{i=1}^{n} r_j - i_j$$

 $<sup>^{\</sup>mathrm{0}}$  We can generalize to unknown patient zero, i.e.  $\alpha$  unknown.

#### **DAMCMC for SEM**

Construct a Metropolis-within-Gibbs sampling routine. Assume common  $\beta$  and  $\theta = (m, \gamma)$  for infectious periods.

$$eta \mid \gamma, \alpha, i_{lpha}, i_{-lpha}, r \sim \mathsf{Gamma}(m_{eta} + n - 1, \nu_{eta} + A_{\mathsf{i}})$$
 $\gamma \mid eta, \alpha, i_{lpha}, i_{-lpha}, r \sim \mathsf{Gamma}(m_{\gamma} + n, \nu_{\gamma} + C_{\mathsf{i}})$ 
 $A_{\mathsf{i}} = \sum_{j=1}^{n} \sum_{k=1}^{N} \tau_{jk}$ 
 $C_{\mathsf{i}} = \sum_{j=1}^{n} r_{j} - i_{j}$ 
 $i_{1}, \dots, i_{n} \sim f(\cdot)$  (Metropolis-Hastings)

Scheme suffers from **high posterior correlations**. Either fix this issue (Kypraios, 2007; Neal and Roberts, 2005), or evade it.

# Pair-based likelihood approximations

First, Stockdale et al. (2019) derive partial data likelihood:

- 1. Integrate over  $i_1, \ldots, i_n$
- 2. Change of variable  $a(\theta_j, -B_j)g_j = \phi_j f_j$ 
  - Absorbs info on never-infecteds into density
  - ▶ Permanence of  $g_j \sim \text{Gamma}(m_j, \delta_j)$
  - ► New rate  $\delta_j = \gamma_j + B_j = \gamma_j + \sum_{k=n+1}^N \beta_{jk}$
  - $ightharpoonup a(\theta_j,\cdot)$  is mgf of  $r_j-i_j$

$$\pi(\mathbf{r}|\boldsymbol{\beta},\boldsymbol{\theta}) = \int \pi(\mathbf{i}_{-1},\mathbf{r}|\boldsymbol{\beta},\boldsymbol{\theta},i_1)\pi(i_1)\,d(i_1,\ldots,i_n)$$

$$= \left\{\prod_{j=1}^n a(\theta_j,-B_j)\right\} \mathbb{E}_{\mathbf{g}}[\pi(i_1)] \underbrace{\mathbb{E}_{\mathbf{g}}\left[\left\{\prod_{j=2}^n \psi_j \chi_j\right\}\right]}_{\text{approximate}}$$
(2)

# Pair-based likelihood approximations

Second, they approximate the expected product.

$$\mathbb{E}_{g}\left[\left\{\prod_{j=2}^{n}\psi_{j}\chi_{j}\right\}\right] \approx \prod_{j=2}^{n}\mathbb{E}_{g}[\psi_{j}] \cdot \mathbb{E}_{g}[\chi_{j}]$$

$$\mathbb{E}_{g}\left[\left\{\prod_{j=2}^{n}\psi_{j}\chi_{j}\right\}\right] \approx \left\{\prod_{j=2}^{n}\mathbb{E}_{g}[\chi_{j}]\right\} \left\{\mathbb{E}_{g}\left[\prod_{j=2}^{n}\psi_{j}\right]\right\}$$

$$= \left\{\prod_{j=2}^{n}\mathbb{E}_{g}[\chi_{j}]\right\} \mathbb{E}_{g}\left[\exp\left(-\sum_{j=2}^{n}\sum_{k\neq j}^{n}\beta_{kj}\tau_{kj}\right)\right]$$

$$= \left\{\prod_{j=2}^{n}\mathbb{E}_{g}[\chi_{j}]\right\} \mathbb{E}_{g}\left[\exp\left(-\frac{\beta}{N}\sum_{j=2}^{n}\sum_{k\neq j}^{n}\tau_{kj}\right)\right]$$

$$= \left\{\inf_{j=2}^{n}\mathbb{E}_{g}[\chi_{j}]\right\} \mathbb{E}_{g}\left[\exp\left(-\frac{\beta}{N}\sum_{j=2}^{n}\sum_{k\neq j}^{n}\tau_{kj}\right)\right]$$

<sup>&</sup>lt;sup>0</sup> *W* is cumulative time that infecteds try to infect susceptibles.

# Pair-based likelihood approximations

The standard pair-based likelihood approximation (PBLA) assumes marginal pairwise independence.

$$\mathbb{E}_{\mathbf{g}}[\psi_{j}]\mathbb{E}_{\mathbf{g}}[\chi_{j}] = \mathbb{E}_{\mathbf{g}}\left[\prod_{l\neq j}^{n}\psi_{lj}\right]\mathbb{E}_{\mathbf{g}}\left[\sum_{k\neq j}^{n}\beta_{kj}\mathbf{1}_{\{i_{k}< i_{j}< r_{k}\}}\right]$$

$$\approx \left\{\prod_{l\neq j}^{n}\mathbb{E}_{g_{l},g_{j}}[\psi_{lj}]\right\}\left\{\sum_{k\neq j}^{n}\beta_{kj}\mathbb{E}_{g_{k},g_{j}}\left[\mathbf{1}_{\{i_{k}< i_{j}< r_{k}\}}\frac{\psi_{kj}}{\psi_{kj}}\right]\right\}$$

$$\approx \left\{\prod_{l\neq j}^{n}\mathbb{E}[\psi_{lj}]\right\}\sum_{k\neq j}^{n}\beta_{kj}\mathbb{E}[\psi_{kj}\mathbf{1}_{\{i_{k}< i_{j}< r_{k}\}}](\mathbb{E}[\psi_{kj}])^{-1}$$
(5)

\* Two similarly derived PBLAs are proposed.

#### Lemma (1)

Let  $1 \le j, k \le n$  with  $j \ne k$ , and  $\beta_{kj} > 0$ . For each j, suppose  $r_j - i_j \sim \text{Exponential}(\delta_j)$ . Then,

$$\mathbb{E}[\psi_{kj}] = \mathbb{E}[\exp(-\beta_{kj}\tau_{kj})]$$

$$= \begin{cases} 1 - \frac{\beta_{kj}\delta_{j}}{(\delta_{j} + \delta_{k})(\beta_{jk} + \delta_{k})} \exp(-\delta_{k}(r_{k} - r_{j})), & r_{j} < r_{k} \\ \frac{\delta_{k}}{\beta_{kj} + \delta_{k}} + \frac{\beta_{kj}\delta_{k}}{(\delta_{j} + \delta_{k})(\beta_{kj} + \delta_{k})} \exp(-\delta_{j}(r_{j} - r_{k})), & r_{j} > r_{k} \end{cases}$$

$$(6)$$

$$\mathbb{E}[1_{\{i_k < i_j < r_k\}} \exp(-\beta_{kj} \tau_{kj})]$$

$$= \begin{cases} \frac{\delta_j \delta_k}{(\delta_j + \delta_k)(\beta_{kj} + \delta_k)} \exp(-\delta_k (r_k - r_j)), & r_j < r_k \\ \frac{\delta_j \delta_k}{(\delta_j + \delta_k)(\beta_{kj} + \delta_k)} \exp(-\delta_j (r_j - r_k)), & r_j > r_k \end{cases}$$

(7)

*Proof.* Based on cases of  $au_{kj}$ , partition  $\mathbb{E}:=\mathbb{E}_{g_k,g_j}$ .

$$\tau_{kj} := r_k \wedge i_j - i_k \wedge i_j = \begin{cases} 0, & i_j < i_k \\ i_j - i_k, & i_k < i_j < r_k \\ r_k - i_k, & i_j > r_k \end{cases}$$

$$\mathbb{E}[\exp(-\beta_{kj}\tau_{kj})] 
= \mathbb{E}[e^{-\beta_{kj}\tau_{kj}}1_{\{i_{j}< i_{k}\}}] + \mathbb{E}[e^{-\beta_{kj}\tau_{kj}}1_{\{i_{j}> r_{k}\}}] + \mathbb{E}[e^{-\beta_{kj}\tau_{kj}}1_{\{i_{k}< i_{j}< r_{k}\}}] 
= \mathbb{E}[1_{\{i_{j}< i_{k}\}}] + \mathbb{E}[e^{-\beta_{kj}(r_{k}-i_{k})}1_{\{i_{j}> r_{k}\}}] + \mathbb{E}[e^{-\beta_{kj}(i_{j}-i_{k})}1_{\{i_{k}< i_{j}< r_{k}\}}] 
(8)$$

Evaluate terms in (8) separately. Direct integration is possible, but an argument using Poisson processes is more illuminating.

- 1. Assume  $r_k < r_j$
- 2. Traverse process backwards from  $r_j$
- 3.  $\delta_j$ -PP between  $(r_k, r_j)$ 
  - 3.1  $\exp(-\delta_j(r_j r_k))$  is probability of no renewal
  - 3.2 If renewed, renewal time is  $i_j$
- 4. At  $r_k$ ,  $\delta_k$ -PP begins
  - 4.1 Compound  $(\delta_j + \delta_k)$ -PP if  $i_j < r_k$ .
  - 4.2 For  $(\delta_j + \delta_k)$ -PP, we have an **exponential race** with probabilities for renewals  $\frac{\delta_j}{\delta_j + \delta_k}$ ,  $\frac{\delta_k}{\delta_j + \delta_k}$

Races may also be set up with a  $\beta_{kj}$ -PP. With such probabilistic arguments, we derive expressions for terms in (8).

Likewise, we can derive formulas for Erlang infectious periods. Draw line graphs to support combinatorial extension.



<sup>&</sup>lt;sup>0</sup> Schematics based on Stockdale (2019)

# **Product expectation**

## Lemma (2)

Let  $\mathcal{K}$  be any subset of  $\{1,\ldots,n\}$  with  $K=|\mathcal{K}|\geq 2$ . Suppose  $\{r_{\mathbf{k}}-i_{\mathbf{k}}:k\in\mathcal{K}\}\stackrel{\mathrm{iid}}{\sim}\mathsf{Exponential}(\delta)$ . Then

$$V = \sum_{\substack{j,k \in \mathcal{K} \\ j < k}} (\tau_{jk} + \tau_{kj}) = \sum_{\substack{j,k \in \mathcal{K} \\ j < k}} \omega_{jk} \sim \sum_{j=1}^{K-1} j \cdot Y_j$$

where  $Y_1, \ldots, Y_{K-1} \sim \text{Exponential}(\delta)$ .

*Proof.* Again, traverse process in reverse and make a convenient change of variable.

- <sup>0</sup> If  $\mathcal{K} = \{1, \dots, n\}$ , we have W.
- $^{0}$  Recall W is cumulative time that infecteds try to infect susceptibles.
- <sup>0</sup> We require its moment-generating function at  $-\beta/N$ .

# **Methods recap**

Stockdale et al. (2019) propose 2 (6) PBLAs.

- MLE now possible despite partial observance
- Utilize properties of Poisson processes
- Expected product as product of expecteds
- Considering all pairs is  $O(n^2)$

#### Simulation studies

## I conducted additional<sup>2</sup> simulation studies<sup>3</sup> to ask:

- How fast are PBLAs?
- Behavior of PBLA-based MLEs
  - When is pairwise independence inappropriate?
  - ▶ Does PBLA inference offer consistent estimators?
- How does underreporting impact inference?
  - ▶ Undercounts result in lower  $R_0$
  - Ad hoc adjustments assuming MCAR

<sup>&</sup>lt;sup>2</sup> Stockdale et al. (2019) suggest that PBLAs can learn  $(\beta, \gamma)$  (Appendix B).

<sup>&</sup>lt;sup>3</sup> To simulate epidemics, I used algorithm on slide 6 with inputs  $\beta, \gamma, N$ .

### **Runtime comparisons**

Table: Time in seconds to compute likelihood for standard, product, and weak PBLAs, and Eichner-Dietz approximation (2003).

| n      | N      | Std    | Prod       | Weak   | E+D   |
|--------|--------|--------|------------|--------|-------|
| 95     | 200    | 0.01   | $0.00^{*}$ | 0.00*  | 0.19  |
| 185    | 500    | 0.02   | 0.01       | 0.01   | 0.49  |
| 428    | 1,000  | 0.13   | 0.03       | 0.01   | 2.03  |
| 1,483  | 2,500  | 1.58   | 0.33       | 0.29   | 20.83 |
| 2,830  | 5,000  | 5.66   | 1.12       | 1.12   | 82.56 |
| 5,927  | 10,000 | 25.61  | 4.67       | 4.67   |       |
| 11,819 | 20,000 | 106.81 | 19.81      | 21.24  |       |
| 29,024 | 50,000 | 633.27 | 126.47     | 119.12 |       |
|        |        |        |            |        |       |

<sup>\*</sup> denotes very small, nonzero times.

# Infected proportion



Figure: Inferences on  $(\beta, \gamma)$  for increasing infected proportion n/N. 2000 simulated epidemics with  $(\beta, \gamma) = (1.5, 1)$ . Plots for  $\gamma$  similar.



Figure: Inference on  $R_0 := \beta/\gamma$  for increasing infected proportion. 2000 simulated epidemics with  $(\beta, \gamma) = (1.5, 1)$ .



Figure: Inference on  $R_0 := \beta/\gamma$  for increasing infected proportion. 2000 simulated epidemics with  $(\beta, \gamma) = (1.5, 1)$ .



Figure: Inference on  $\gamma$  based on complete versus partial data. 2000 simulated epidemics with  $(\beta, \gamma) = (1.5, 1)$ .

- Infected proportion n/N calibrates  $\hat{R}_{0,PBLA}$ 
  - ► Conditional on  $R_0$ , n/N is approximately normal (Andersson and Britton, 2012, Theorems 4.1-2)
- $(\hat{\beta}_{PBLA}, \hat{\gamma}_{PBLA})$  do not estimate true  $(\beta, \gamma)$ 
  - In fact, even with fixed true  $\beta, \gamma$ , PBLA inference cannot consistently estimate the other
- Partial data appears inadequate for inferring adversarial dynamics of infection and removal processes

# Real data analyses

- Ebola virus in West Africa
  - $n \in (2000, 5000)$
  - SEIR with fixed exposed period c
  - Time-varying infections
- Dog rabies in Central African Republic
  - Cases underreported
- Common cold on a remote island
  - ightharpoonup N = 254, split into age groups
  - Accommodates multitype infections
- Foot-and-mouth disease in UK
  - Rich covariate set
  - $\triangleright$   $\beta$  depend on distance

#### **Ebola virus in West Africa**

- Replace r<sub>j</sub> with r<sub>j</sub> c for fixed exposed period c = 5.3 days
- Fixed  $\gamma^{-1}$  = 5.61 days
- $\beta_{kj} = \beta_0 \exp(-k_0(T_{kj}))$ where  $T_{kj}$  is expected midpoint
- Compare Poisson model with deterministic SEIR fit (Althaus, 2014)



Figure: Suchard et al. (2018)

#### **Ebola virus in West Africa: Estimates**

Table: Parameter estimates from SEIR model of Ebola virus in West Africa. Temple and Stockdale et al. (2019) use PBLA whereas Althaus (2014) uses a deterministic model.

| Country      | Method | $eta_{0}$ | $k_0$   | $R_0$ |
|--------------|--------|-----------|---------|-------|
| Guinea       | PBLA   | 0.243     | 0.00105 | 1.36  |
|              | ODE    | 0.231     | 0.00071 | 1.30  |
| Sierra Leone | PBLA   | 0.335     | 0.00289 | 1.88  |
|              | ODE    | 0.277     | 0.00180 | 1.55  |
| Liberia      | PBLA   | 0.266     | 0.00180 | 1.49  |
|              | ODE    | 0.303     | 0.00251 | 1.70  |

### Stockdale et al. (2019) contributions

- 1. Propose likelihood approximations
  - MLE for partially observed epidemic
  - Faster than existing methods
- 2. Promote flexible framework for epidemiology
  - ▶ Specify formulas for  $\beta_{ki}$  and  $\gamma_i$
  - Copious simulated and real examples
- 3. Address partial observance without data augmentation
  - Motivated by transmission dynamics

# My contributions

- 1. R package sdtemple/pblas
  - ► Highly scriptable; documented; no dependencies
  - Reproduces all simulation studies and data analyses
- 2. Additional simulation studies
  - ▶ PBLA MLEs for  $(\beta, \gamma)$  are **not consistent**
  - ▶ Pairwise independence fails for n/N > 0.5
  - ▶ Weak PBLA <</p>
  - Underreporting biases estimation
- 3. Some corrections
  - Methods scale with n, not N
  - Ebola analysis takes longer than reported
  - Minor typos:  $\pm$ , constants

#### **Future work**

#### Consistency

- Are methods consistent with varying  $\beta_{kj}$ ,  $\gamma_j$ ?
- Can a partially observed SEM achieve consistency?
- If so, develop consistent estimators.
- Compare to count-based models
  - Usually have aggregate counts
  - (Irons and Raftery, 2021; Fintzi et al., 2021)
- Relax various model assumptions
  - Set some  $\beta_{kj} = 0$  (faster computations)
  - Adjust for underreporting
  - Study epidemics in progress (online inference)
  - Models with demography

#### References I

- J. Besag. Statistical analysis of non-lattice data. *Journal of the Royal Statistical Society: Series D (The Statistician)*, 24(3):179–195, 1975.
- D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. *The journal of physical chemistry*, 81(25):2340–2361, 1977.
- A. D. Barbour and G. Eagleson. Multiple comparisons and sums of dissociated random variables. *Advances in applied probability*:147–162, 1985.
- R. Durrett. *Essentials of stochastic processes*. Volume 1. Springer, 1999.

#### References II



158(2):110–117, 2003.

Y. Hayakawa, P. D. O'Neill, D. Upton, and P. S. Yip. Bayesian inference for a stochastic epidemic model with uncertain numbers of susceptibles of several types. Australian & New Zealand Journal of Statistics, 45(4):491–502, 2003.

P. J. Neal and G. O. Roberts. Statistical inference and model selection for the 1861 hagelloch measles epidemic. *Biostatistics*, 5(2):249–261, 2004.

#### **References III**



- T. Kypraios. Efficient Bayesian inference for partially observed stochastic epidemics and a new class of semi-parametric time series models. PhD thesis, Lancaster University, 2007.
- L. J. Allen. An introduction to stochastic epidemic models. In *Mathematical epidemiology*, pages 81–130. Springer, 2008.
- C. Varin, N. Reid, and D. Firth. An overview of composite likelihood methods. *Statistica Sinica*:5–42, 2011.

#### **References IV**



- C. L. Althaus. Estimating the reproduction number of ebola virus (ebov) during the 2014 outbreak in west africa. PLoS currents, 6, 2014.
- M. A. Suchard, P. Lemey, G. Baele, D. L. Ayres, A. J. Drummond, and A. Rambaut. Bayesian phylogenetic and phylodynamic data integration using beast 1.10. *Virus evolution*, 4(1), 2018.
- J. E. Stockdale. *Bayesian computational methods for stochastic epidemics*. PhD thesis, University of Nottingham, 2019.

#### **References V**

- J. E. Stockdale, T. Kypraios, and P. D. O'Neill. Pair-based likelihood approximations for stochastic epidemic models. *Biostatistics*, 2019.
- J. Fintzi, J. Wakefield, and V. N. Minin. A linear noise approximation for stochastic epidemic models fit to partially observed incidence counts. 2021. arXiv: 2001.05099.
- N. J. Irons and A. E. Raftery. Estimating sars-cov-2 infections from deaths, confirmed cases, tests, and random surveys. *arXiv*: 2102.10741, 2021.

#### **Color scheme**

- Orange: times
- Violet: before infection probabilities
- Blue: infection rates
- Purple: removal rates

#### Glossary

- N total individuals and n infected individuals
- $r_j$  and  $i_j$  are removal and infection times for j
- $\beta_{kj}$  is infection rate k applies to j
- $\theta_j$  parameterizes infectious period  $r_j i_j \sim P_{\theta_j}$ 
  - $ightharpoonup heta_j = (m_j, \gamma_j)$  for Erlang periods
- $\tau_{kj}$  is time k applies pressure to j
  - $ightharpoonup \omega_{jk} = au_{jk} + au_{kj}$  is joint time
- $\psi_j$  is  $P(j \text{ evades infection until time } i_j)$ 
  - $\psi_{jk}$  is  $P(j \text{ evades infection from } k \text{ until time } i_j)$
- $\chi_j$  is infective pressure on j at  $i_j$
- $\phi_i$  is P(j fails to infect the N n never-infecteds)

#### **Paper corrections**

- Major
  - Methods scale with n, not N
  - Ebola virus epidemic analyses take 12, 31, and 51 minutes
    - Standard laptop with Intel i7 core
- Minor
  - $ightharpoonup -\frac{3}{4}$  instead of  $+\frac{3}{4}$  in  $\mathbb{E}[T_{kj}]$  (Ebola virus epidemic)
    - Correct in code at jessicastockdale/PBLA
    - No impact on results
  - (4n 5) instead of (2n 1) (Lemma (3))
    - ► No impact on results
  - Subscript  $_j$  instead of  $_k$  for an Erlang case (Lemma (4))

#### Proof of Lemma (2)

- 1. Define infection and removal transitions in reverse time
  - $(S(t), I(t)) \rightarrow (S(t) + 1, I(t) 1)$  with rate  $\delta \cdot I(t)$
  - $\blacktriangleright (S(t), I(t)) \rightarrow (S(t), I(t) + 1)$
- 2. Express  $\int S(t)I(t) dt$  as a piecewise linear function

$$T(i_1) = \sum_{k=2}^{2K} S(\tilde{t}_k) \cdot I(\tilde{t}_k) \cdot (\tilde{t}_k - \tilde{t}_{k-1})$$

- 3. In each interval, make change of variable  $t' = t \cdot I(t)^{-1}$
- 4. Consider weighted sum of renewal times

$$T(i_1) = \sum_{k=2}^K S(\bar{t}_k)(\bar{t}_k - \bar{t}_{k-1})$$

• 
$$Y_k := \bar{t}_k - \bar{t}_{k-1} \sim \mathsf{Exponential}(\delta)$$

### A weak limit for multiple comparisons

#### Lemma (3)

Suppose  $r_1 - i_1, \dots, r_n - i_n \stackrel{\text{iid}}{\sim} \text{Exponential}(\delta)$ . If  $\{\omega_{jk} : j, k \in \{1, \dots, n\}\}$  are **dissociated**, then

- Central limit theorem for class of *U*-statistics
- Dissociation is independence assumption
- Appeal to Barbour and Eagleson (1985, Theorem 2.1)

<sup>&</sup>lt;sup>0</sup> Recall *W* is cumulative time that infecteds try to infect susceptibles.

<sup>&</sup>lt;sup>0</sup> We require its moment-generating function at  $-\beta/N$ .

#### Theorem 2.1 of Barbour and Eagleson (1985)

#### Theorem

Let  $D_n = \{(i,j) : 1 \le i < j \le n\}$ , and consider  $\{X_{ij} : (i,j) \in D_n\}$  to be a collection of mean-zero *dissociated* random variables such that  $\mathbb{E}[|X_{ij}|^3] < \infty$  for all  $(i,j) \in D_n$ . Define  $\sigma_n^2 := \sum_{(i,j),(k,l) \in D_n} \mathbb{E}[X_{ij}X_{kl}]$ . Then

$$\sigma_n^{-3} \sum_{(i,j) \in D_n} (\mathbb{E}[|X_{ij}|^3])^{1/3} \left( \sum_{(k,l): |(i,j) \cap (k,l)| = 0} (\mathbb{E}[|X_{kl}|^3])^{1/3}) \right)^2 \to 0$$

implies 
$$\sigma_n^{-1} \sum_{(i,j) \in D_n} X_{ij} = Z_n \rightsquigarrow N(0,1)$$
.

Pairwise comparisons are dependent if they share any indices.

#### **Ebola virus in West Africa: Likelihood Surface**



Figure: Log likelihood contours for Ebola virus epidemic in Guinea. Ellipses denote level set perimeter and dots denote MLEs. PBLA in black and Althaus (2014) in red.

#### Tristan da Cunha: A mutitype SEM

- N = 254 individuals split into three age groups
- 36% infants, 17% kids, and 13% adults
- $\beta_{kj} = \beta_{G(j)}$  depend on age group of susceptible
- Random walk MCMC vs. gold standard DAMCMC



Figure: Remote island community

<sup>&</sup>lt;sup>0</sup> Compared against Hayakawa et al. (2003)

#### **Tristan da Cunha: Trace plots**



Figure: Trace plots of  $(\beta_1, \beta_2, \beta_3, \gamma)$  for Tristan da Cunha common cold epidemic using PBLA MCMC.

45/31

#### **Tristan da Cunha: Posterior Samples**



Figure: Histograms of  $(\beta_1,\beta_2,\beta_3,\gamma)$  posterior samples for Tristan da Cunha common cold epidemic using PBLA MCMC. DAMCMC posterior mean (blue), E+D MLE (orange), and PBLA MLE (green).

#### Tristan da Cunha: Summary

Table: Posterior means from PBLA MCMC and DAMCMC methods, and MLEs using the E+D approximation and standard PBLA, for Tristan da Cunha common cold epidemic.

|           | PBLA MCMC | DAMCMC  | E+D MLE | PBLA MLE |
|-----------|-----------|---------|---------|----------|
| $\beta_1$ | 0.00648   | 0.00451 | 0.00568 | 0.00584  |
| $\beta_2$ | 0.00244   | 0.00181 | 0.00224 | 0.00219  |
| $\beta_3$ | 0.00171   | 0.00131 | 0.00166 | 0.00156  |
| $\gamma$  | 0.50565   | 0.37100 | 0.48273 | 0.45562  |
| $R_0$     | 1.17580   | 1.16102 | 1.12396 | 1.15301  |

### Dog rabies in CAR

- n = 123 infecteds between 2006 and 2012
- N unknown
- Undercounts likely
- $\beta_{kj} = \beta_0 \exp(-\theta \cdot \rho(i,j))$ where  $\rho$  is distance
  - ightharpoonup Vanishingly small  $\theta$



Figure: Spread of dog rabies

### Dog rabies in CAR: Underreporting

Table: Inferences on  $(\beta, \gamma, R_0)$  using product PBLA, psuedo-removals adjustment, and total population size N=10,000 for rabies epidemic in Bangui, Central African Republic.

| $\eta$ | β     | $\gamma$ | $R_0$ | Interval <i>R</i> <sub>0</sub> |
|--------|-------|----------|-------|--------------------------------|
| 1.000  | 0.172 | 0.172    | 1.001 | (0.656, 1.527)                 |
| 0.500  | 0.203 | 0.200    | 1.015 | (0.752, 1.368)                 |
| 0.200  | 0.294 | 0.281    | 1.045 | (0.884, 1.235)                 |
| 0.100  | 0.424 | 0.385    | 1.099 | (0.974, 1.240)                 |

## Dog rabies in CAR: Sensitivity analysis for N

Table: Inferences on  $(\beta, \gamma, R_0)$  with increasing total population size N.

| N       | $\eta$ | β     | $\gamma$ | $R_0$ | Interval R <sub>0</sub> |
|---------|--------|-------|----------|-------|-------------------------|
| 25,000  | 1.000  | 0.171 | 0.171    | 0.996 | (0.652, 1.518)          |
|         | 0.500  | 0.209 | 0.208    | 1.003 | (0.747, 1.347)          |
|         | 0.200  | 0.399 | 0.392    | 1.017 | (0.766, 1.348)          |
|         | 0.100  | 0.447 | 0.431    | 1.037 | (0.916, 1.173)          |
| 50,000  | 1.000  | 0.170 | 0.171    | 0.994 | (0.651, 1.516)          |
|         | 0.500  | 0.312 | 0.312    | 1.000 | (0.733, 1.363)          |
|         | 0.200  | 0.263 | 0.261    | 1.007 | (0.841, 1.207)          |
|         | 0.100  | 0.384 | 0.377    | 1.017 | (0.901 1.149)           |
| 100,000 | 1.000  | 0.170 | 0.171    | 0.993 | (0.650, 1.514)          |
|         | 0.500  | 0.189 | 0.189    | 0.998 | (0.757, 1.315)          |
|         | 0.200  | 0.263 | 0.262    | 1.003 | (0.847, 1.187)          |
|         | 0.100  | 0.331 | 0.329    | 1.008 | (0.894, 1.136)          |

### **Underreporting**

- Undercount of size n biases estimation of  $R_0$ 
  - ► Theorems 4.1-2 (Andersson and Britton, 2000) say that n/N is asymptotically normally distributed conditional on  $R_0$
- Given reporting rate  $\eta$ , I propose bias corrections:
  - 1. Draw pseudo-removal times from KDE
  - 2. Scale  $N^* = N \cdot \eta$
- I suggest that  $\eta$  is not identifiable from removal times only.

## **Underreporting**



Figure: Scaled ratio of PBLA MLEs with full partial data versus underreported partial data.  $\beta$  (top) and  $\gamma$  (bottom).

## **Underreporting**



Figure: Difference in  $R_0$  from PBLA MLEs with full partial data versus underreport partial data.

# Varying $(\beta, \gamma)$



Figure: Varying parameters  $(\beta,\gamma)$ : (0.3, 0.2) (top) and (3, 2) (bottom). MLEs from 1000 simulations with exponential infectious periods, N=100, and  $R_0=\beta/\gamma=1.5$ .

#### **PBLAs comparison**



Figure: Comparison of pair-based likelihood approximations. MLEs from 1000 simulations with  $(\beta, \gamma) = (1.5, 1)$ , N = 250.

#### Partial data likelihood

$$\pi(\mathbf{r}|\boldsymbol{\beta},\boldsymbol{\theta}) = \int \pi(\mathbf{i}_{-\alpha},\mathbf{r}|\boldsymbol{\beta},\boldsymbol{\theta},\alpha,i_{\alpha})\pi(i_{\alpha},\alpha) \, d\mathbf{i}_{-\alpha} d \, i_{\alpha} \, d\alpha$$

$$= \sum_{j=1}^{n} \pi(\alpha) \int \left\{ \prod_{j\neq\alpha}^{n} \psi_{j}\chi_{j} \right\} \pi(i_{\alpha}|\alpha) \left\{ \prod_{j=1}^{n} \phi_{j}f_{j}(r_{j}-i_{j}|\theta_{j}) \right\} d\mathbf{i}$$

$$= \left\{ \prod_{j=1}^{n} a(\theta_{j},-B_{j}) \right\} \sum_{j=1}^{n} \pi(\alpha) \, \mathbb{E}_{\mathbf{g}} \left[ \pi(i_{\alpha}|\alpha) \left\{ \prod_{j\neq\alpha}^{n} \psi_{j}\chi_{j} \right\} \right]$$

$$\approx \left\{ \prod_{j=1}^{n} a(\theta_{j},-B_{j}) \right\} \sum_{j=1}^{n} \pi(\alpha) \, \mathbb{E}_{\mathbf{g}} [\pi(i_{\alpha}|\alpha)] \, \mathbb{E}_{\mathbf{g}} \left[ \left\{ \prod_{j\neq\alpha}^{n} \psi_{j}\chi_{j} \right\} \right]$$
(9)