Oct. (M,g), (N,h) Riem mt.
a) A diffeo $\varphi: M \to N$ is called on isometry if $\varphi^*h = \varphi$, ie $g_p(v,\omega) = h_{\psi(p)}(d\Psi_p v, d\Psi_p \omega)$ $\forall p \in M$; $v,\omega \in T_p M$.
If there exists such an isometry, then M and N are culled isometric.
b) A smooth map 4:M→N is called a local isometry if every point pem has an open nod U st 41u:U → 4(U) is an isometry. (In particular, 4(U) open).
c) The set of call isometries of (M,g) lso $(M,g) = \{Q: M \rightarrow M \mid Q \text{ isometry}\}$ is a group, the so-called isometry group.
Remark.
· If $\varphi:(M,g) \to (N,h)$ is a local isometry, then
$dQ_p: T_pM \to T_pN$
is a linear isometry.
7
Example. IR v/ Eudideun inner product g.
$S^1 \subset \mathbb{R}^2 \subset \mathbb{C}^1$ w/ the induced Riem metric.
-1
Claim: exp: IR -> S1, 1 + eit is a local isometry.
(dexp),(=) = dt(eit) = i.eit =1 → dexp, ≠0
10.1
$ \vec{x} =1$ \Rightarrow exp local isometry, but not an isometry: Nom: $R \neq S^1$, not even homeo.
Nom. R ≠ S1, not even homeo.
Def. Let G a gp, M a smooth mf. A (smooth) action of G on M is a homomorphism
Φ: G→ Diff(M), a H D(a) = Φa;

ie.. Φαιας (x) = (Φαι · Φας) (x) Ha, az ε G, x εM, Op = idm, e & G neutral elt. We sometimes denote such an action as GaM, and write $\Phi_a(x)$ as ax. If (M,g) is a Riem mf, and $\Phi(G) \subset Iso(M,g)$, then we call this action isometric. Example. 150(M, g) ~M isometric. For an action GAM we would like to look at M/G=M/~, where xmy iff JgEG: gx=y with the quotient topology := the finest topology (ie with the most open sets) s.th. TC: M > M/G is continuous, i.e. UCM/G is open (TT'(U) is open in M. A group action GRM is called free, if gx=x for some gEG, XEM, then g=e. Example. · ZMR ax := a+x is a free action. 214 · Z ~ St C C, QZ: eniva. Z If az: ezriga. ger, free itt g & D. 2142 Z.1 + Z.C For q=12, S'/R is not Hausdorth. not separatole in the quotient Det a smooth action [DM ot a group [on by open sets. a smooth mf M is called a covering space action it the tollawing holds:

a homeomorphism \Rightarrow M/ Γ top mfld (T projects a countable base of the topology of M to a of M/ Γ .
To construct the smooth structure, we choose an atlas $4_{M} = \{(U_{\alpha}, X_{\alpha})\}_{\alpha \in I}$ of M s.th.
TUanua= Ø Y XEI, TET/[e].
⇒ π/ua: Ua → π(ua) is a homeomorphism.
If T: M -> M/T is supposed to be a local diffeo, then the smooth structure on M/T has to contain
AMM = {(TT/Ua), Xa°(TT/Ua) JacI
It remains to verity than AMIT is a smooth atlas.
(- exercise sesh wext week). (TT
Examples.
1) For the antipodal action $\mathbb{Z}_2 \cap S^n \sim S^n/\mathbb{Z}_2 \cong \mathbb{RP}^n$
2) Zhalk, ax := a+x is a covering space action,
$\mathbb{R}^n/\mathbb{Z}^n \cong \mathbb{S}^1 \times \cdots \times \mathbb{S}^1 = \mathbb{T}^n \times -\text{tonus}.$
Beinath.
· One can show (~) Topology I Wise 25/26) that for any smooth manifold M, there exists another simply-connected (smooth) manifold in (the so-called universal cover of M) together with a covering space action 17 ~ M s.t. M/T=M.
In particular, if (M, g) Riem mt then we can pull back g to a Riem metric g on M s.t. T: (F1,g) = (M,g) is a local isometry.

Wonversely, we have
Prop let $\Gamma \cap (M, g)$ be a covering space cotton by isometries on a Riem manifold (M, g) . Then there exists a unique Riem metric g on M/Γ 5.th. $TE:(M,g) \rightarrow (M/\Gamma, g)$ is a local isometry.
Proof: For T:M > M/T to be a local isometry,
the differential of Te dTp: TpM > TT(p) (M/r) needs to be a linear sometry.
As deep is an isomorphism, this condition determines (for PEM) an inner product group on Trap (M/T)
Claim: grup is well-detired. P. J.
For $p_1, p_2 \in M$ with $TL(p_1) = TL(p_2) = q$,
~ 38€T: 8P1 = P2.
Because of TOT=TO the following diagram commutes.
(TP, M, SP1) dop, (TP2M, SP2)
Tg(M/r)
dop bonetry
dttp2 o(dttp1). D
Examples.
or classified (Wolf, spaces of constant curvature). In this CUSE P is always finite.
p, g coprime, $\mathbb{Z}_p \cap S^3$,

