

Internet of Things

Dalam Prespektif Sains, Teknik dan Teknologi Informasi

Isa albanna

Fisika, robotika, IoT dan Sistem Sensor

Pengajar J.Sistem Informasi – Itats & AlkhawarizLab

isaalbanna@itats.ac.id

+62 85815683477

Referensi

1. Definisi IoT

Dokumentasi dan perkembangan IoT

Ilustrasi Sistem IoT

Istilah Umum*

THE "INTERNET" OF "THINGS"

Internet : komunikasi elektronik yang menghubungkan jaringan komputer dan fasilitas komputer yang terorganisasi di seluruh dunia

Things: Objek atau Benda

Racikan Internet Of Things

Objek +

Sensor, Komputer, Aktuator

Data, Jaringan Internet

Perangkat dan Data

85% Konsumsi Data Internet

Internet service providers

Target Pengguna IoT

Bidang Keilmuan IoT

Jurusan apa yang mempelajari atau berkontribusi pada IoT?

Kebutuhan Kajian IoT

2. Arsitektut dan Instrumentasi Pendukung IoT

Rekayasa kebutuhan Teknologi Informasi

Sensor

Sensor : Perangkat yang mengubah nilai parameter fisika menjadi parameter listrik

Aktuator

Aktuator: Alat untuk pengeluaran atau alat yang mengubah sinyal listrik menjadi parameter fisika

Implementasi Sensor dan Aktuator

KARAKTERISTIK AKUISISI DATA SENSOR INTERDIGITAL CAPACITOR UNTUK PENGUKURAN KADAR AIR PADA BATU BATA BERBASIS NON-DESTRUCTIVE TESTING

Isa Albanna Sistem Komputer-Institut Teknologi Adhi Tama Surabaya Jl. Arief Rahman Hakim No.100 Surabaya Email : isaalbanna@itats.ac.id

ABSTRACT

Interdigital sensor capacitor (IDC-S) is a sensor-based non-destructive testing (NDT), which is able to change the value of physical parameters into electrical quantity (capacitance). The design of the sensor

IDC-S in i DDC-S in i objective o measureme material a change the using softy. In the sim conducted to variation instrument 45.5 pF (to utilizing a obtained le

oduction. The general implementation of the theraction of dielectric IDC-S will be able to del simulations IDC-S d cover the electrodes. es. Process of testing nent capacitance value is done by standard ulue of about 8.2 pF-capacitance values by sasured signal outputs the dynamic method is

Implementasi Sensor dan Aktuator

SISTEM SERVER CERDAS INTERNET OF THING (IoT) UNTUK PROTEKSI KEGAGALAN FUNGSI INSTRUMENTASI PADA KONSEP KENDARAAN HIBRID

Isa Albanna¹, Amalia Anjani²

Jurusan Sistem Komputer-Institut Teknologi Adhi Tama Surabaya¹, Jurusan Sistem Informasi-Institut Teknologi Adhi Tama Surabaya²

e-mail: isaalbanna@itats.ac.id

ABSTRACT

The concept of a hybrid vehicle seeks to create a vehicle system with little energy efficiency and be able to replace fuel oil. Batteries are used as energy storage for hybrid-electric vehicles. The role of sensors in hybrid-electric vehicle instrumentation monitoring is used to avoid malfunctioning of instrumentation. In this study focused on sensing physical parameters in Battery Management System (BMS). The design of sensing system consists of temperature sensor, voltage-current sensor, rotation speed sensor and IoT-based data transmission system. MQTT method is used for data transmission which will be processed by smart server. Smart Server is designed using Single Board Computer (SBC-Raspberry Pi). Sensor data is sent over TCP / IP network with packet data format. The server computer will record, analyze and notifications. System testing performed four stages of sensor calibration, data transmition delay and intelligence algorithm intelligent system. The test results of the error rate of the three sensors (temperature, current and

Teknologi Komunikasi Internet

Internet???

Konsep Komunikasi

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

OSI Model

Application Layer

Transport Layer

Internet Layer

Host-To-Network (Network Access Layer)

TCP/IP Model

Perangkat IoT - Node MCU

Embedded System

PERANGKAT

Mini PC, Mikrokontroler, Mikroprosesor

PEMROGRAMAN KOMPUTER

Perangkat Komputasi

- 1.Mini PC
- 2. Mikrokontroler
- 3. Mikroprosesor

Mini PC

- 1. Raspberry Pi
- 2. beaglebone
- 3. Orange Pi
- 4. Lattepanda

Mikrokontroler

- 1. ATMEGA
- 2. Arduino
- 3. ARM-STM32

Mikroprosesor

- 1. Nuvuton Board
- 2. Butterfly STM-32

Pemrograman

3. Implementasi IoT

Contoh mudah IoT

Project 1. Menyalakan LED via Internet dan BLYNK

Project 1. Menyalakan LED via Internet dan BLYNK

Project 1. Menyalakan LED via Internet dan BLYNK

```
#define BLYNK PRINT Serial
    #include <ESP8266WiFi.h>
    #include <BlynkSimpleEsp8266.h>
    char auth[] = "EcHwndAuAkKng79dvIF9d Xr5ZuK7dfq";
    char ssid[] = "mylab";
     char pass[] = "surabaya1945";
    void setup(void)
10 ₽{
11
       Serial.begin (9600);
       Blynk.begin(auth, ssid, pass);
12
13
14
    void loop(void)
16
    Blynk.run();
18
```


esp8266 Arduino 1.8.9			
File Edi	t Sketch	Tools Help	
		Auto Format	Ctrl+T
		Archive Sketch	
kelembaban_e		Fix Encoding & Reload	
22	di	Manage Libraries	Ctrl+Shift+I
		Serial Monitor	Ctrl+Shift+M
23	}	Serial Plotter	Ctrl+Shift+L
24		WiFi101 / WiFiNINA Firmware Updater	
25	void	Board: "NodeMCU 1.0 (ESP-12E Module)"	
26□	{ B 1	Upload Speed: "115200"	
27	in	CPU Frequency: "80 MHz"	
28	Bl	Flash Size: "4MB (FS:2MB OTA:~1019KB)" Builtin Led: "2"	
29	de	Debug port: "Disabled"	
30	Se	Debug Level: "None"	
		IwIP Variant: "v2 Lower Memory"	

```
#define BLYNK PRINT Serial
    #include <ESP8266WiFi.h>
    #include <BlynkSimpleEsp8266.h>
     char auth[] = "EcHwndAuAkKng79dvIF9d Xr5ZuK7dfg";
    char ssid[] = "mylab";
     char pass[] = "surabaya1945";
    int tombol;
    BLYNK WRITE(V1) // button
10
       tombol = param.asInt();
       Serial.println(tombol);
13
14
    void setup(void)
16 □{
17
       Serial.begin (9600);
18
      Blynk.begin(auth, ssid, pass);
19
      pinMode (14, OUTPUT);
20
       digitalWrite(14, LOW);
```

```
22
23
    void loop(void)
24
   □{ Blynk.run();
25
       int kelembaban = analogRead(0);
26
       Blynk.virtualWrite(V0, kelembaban);
27
       delay(1000);
28
       Serial.println(kelembaban);
29
       if (tombol == 1) {
30
         digitalWrite(14, HIGH);
31
       } else {
32
         digitalWrite(14, LOW);
33
34
```


"BACALAH ATAS KESEMPURNAAN - NYA"

fatwa kesempurnaan

Sistem organ & kecerdasan ilmiah

Isa Albanna

AL-KHAWARIZLAB

embedded systems consultant

Email: isaalbanna@itats.ac.id

Phone: 085815683477