CLASIFICACIÓN MULTIPLE - POPULARIDAD

Integrantes de equipo:

- Julio César Choquehuayta Quenta 2018-119025
- Carlos Enrique Yufra Loza 2019-119051
- Pablo Moisés Aro Galindo 2019-119034
- Carlos Manuel Azañero Otoya 2015-119026
- Jose Angel Castro Caceres 2017-119054

DESCRIPCION DEL PROBLEMA

La industria de la música es bastante popular en la actualidad, lo que escuchan las personas cambia con el tiempo, ya sea por tendencias o moda, mucho de lo que determina su popularidad suele ser subjetivo o circunstancial. Sin embargo tomando en cuenta datos técnicos o variables presentes en la musica, se tendrá como objetivo el determinar si es popular o no.

Este proyecto se enfocará en un problema de clasificacion múltiple, el cual hara uso de una dataset de Spotify de pistas en un rango de 125 géneros diferentes. Cada pista tiene algunas funciones de audio asociadas. Los datos están en formato CSV, que es tabular y se puede cargar rápidamente.

Link del Dataset: https://www.kaggle.com/datasets/maharshipandya/-spotify-tracks-dataset?resource=download

ANALISIS EXPLORATORIO

Primero, nosotros necesitamos tener la dataset descargada y almacenada en una carpeta en drive para su próximo uso, ademas de importar las librerías necesarias.

```
1 import numpy as np
```

- 2 import pandas as pd
- 3 from keras import layers, models, optimizers
- 4 from sklearn.model_selection import train_test_split
- 5 from sklearn.metrics import accuracy score, confusion matrix
- 6 import matplotlib.pyplot as plt

Nosotros cargamos la dataset usando pandas read_csv, junto con el link de donde esta nuestra data en drive

```
1 # Obtenemos el dataset de las Canciones de Spotify y lo almacenamos en un DataFrame
2 df = pd.read_csv("https://drive.google.com/uc?id=1gAkvuBkYAEKCdf9CYqePni8TacqkwWt3")
3 df
```

Unnamed:		track_id	artists	album_name	track_name	popularity	dur
0	0	5SuOikwiRyPMVoIQDJUgSV	Gen Hoshino	Comedy	Comedy	73	
1	1	4qPNDBW1i3p13qLCt0Ki3A	Ben Woodward	Ghost (Acoustic)	Ghost - Acoustic	55	
2	2	1iJBSr7s7jYXzM8EGcbK5b	Ingrid Michaelson;ZAYN	To Begin Again	To Begin Again	57	
3	3	6lfxq3CG4xtTiEg7opyCyx	Kina Grannis	Crazy Rich Asians (Original Motion Picture Sou	Can't Help Falling In Love	71	
4	4	5vjLSffimiIP26QG5WcN2K	Chord Overstreet	Hold On	Hold On	82	
113995	113995	2C3TZjDRiAzdyViavDJ217	Rainy Lullaby	#mindfulness - Soft Rain for Mindful Meditatio	Sleep My Little Boy	21	
113996	113996	1hlz5L4lB9hN3WRYPOCGPw	Rainy Lullaby	#mindfulness - Soft Rain for Mindful Meditatio	Water Into Light	22	
113997	113997	6x8ZfSoqDjuNa5SVP5QjvX	Cesária Evora	Best Of	Miss Perfumado	22	
113998	113998	2e6sXL2bYv4bSz6VTdnfLs	Michael W. Smith	Change Your World	Friends	41	
113999	113999	2hETkH7cOfqmz3LqZDHZf5	Cesária Evora	Miss Perfumado	Barbincor	22	

114000 rows × 21 columns

Exploramos un poco la dataframe a usar, usando algunas sentencias para visualizar mejor las columnas, tipos de datos y datos únicos

1 # Visualizamos las primeras 12 columnas
2 df.iloc[:,:12]

	Unnamed:	track_id	artists	album_name	track_name	popula
0	0	5SuOikwiRyPMVoIQDJUgSV	Gen Hoshino	Comedy	Comedy	
1	1	4qPNDBW1i3p13qLCt0Ki3A	Ben Woodward	Ghost (Acoustic)	Ghost - Acoustic	
2	2	1iJBSr7s7jYXzM8EGcbK5b	Ingrid Michaelson;ZAYN	To Begin Again	To Begin Again	
3	3	6lfxq3CG4xtTiEg7opyCyx	Kina Grannis	Crazy Rich Asians (Original Motion Picture Sou	Can't Help Falling In Love	
4	4	5vjLSffimiIP26QG5WcN2K	Chord Overstreet	Hold On	Hold On	
113995	113995	2C3TZjDRiAzdyViavDJ217	Rainy Lullaby	#mindfulness - Soft Rain for Mindful Meditatio	Sleep My Little Boy	
113996	113996	1hlz5L4lB9hN3WRYPOCGPw	Rainy Lullaby	#mindfulness - Soft Rain for Mindful Meditatio	Water Into Light	
113997	113997	6x8ZfSoqDjuNa5SVP5QjvX	Cesária Evora	Best Of	Miss Perfumado	
113998	113998	2e6sXL2bYv4bSz6VTdnfLs	Michael W. Smith	Change Your World	Friends	
113999	113999	2hETkH7cOfqmz3LqZDHZf5	Cesária Evora	Miss Perfumado	Barbincor	

^{1 #} Visualizamos el resto de columnas

² df.iloc[:,12:]

	mode	speechiness	acousticness	instrumentalness	liveness	valence	tempo	time_signature
0	0	0.1430	0.0322	0.000001	0.3580	0.7150	87.917	4
1	1	0.0763	0.9240	0.000006	0.1010	0.2670	77.489	4
2	1	0.0557	0.2100	0.000000	0.1170	0.1200	76.332	4
3	1	0.0363	0.9050	0.000071	0.1320	0.1430	181.740	3
4	1	0.0526	0.4690	0.000000	0.0829	0.1670	119.949	4
113995	1	0.0422	0.6400	0.928000	0.0863	0.0339	125.995	5
113996	0	0.0401	0.9940	0.976000	0.1050	0.0350	85.239	4
113997	0	0.0420	0.8670	0.000000	0.0839	0.7430	132.378	4
113998	1	0.0297	0.3810	0.000000	0.2700	0.4130	135.960	4
113999	0	0.0725	0.6810	0.000000	0.0893	0.7080	79.198	4

¹¹⁴⁰⁰⁰ rows × 9 columns

1 # Visualizamos el tipo de dato de columna
2 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 114000 entries, 0 to 113999
Data columns (total 21 columns):

Dara	COTUMNS (LOCAL ZI	COTUMNS):					
#	Column	Non-Null Count	Dtype				
0	Unnamed: 0	114000 non-null	int64				
1	track_id	114000 non-null	object				
2	artists	113999 non-null	object				
3	album_name	113999 non-null	object				
4	track_name	113999 non-null	object				
5	popularity	114000 non-null	int64				
6	duration_ms	114000 non-null	int64				
7	explicit	114000 non-null	bool				
8	danceability	114000 non-null	float64				
9	energy	114000 non-null	float64				
10	key	114000 non-null	int64				
11	loudness	114000 non-null	float64				
12	mode	114000 non-null	int64				
13	speechiness	114000 non-null	float64				
14	acousticness	114000 non-null	float64				
15	instrumentalness	114000 non-null	float64				
16	liveness	114000 non-null	float64				
17	valence	114000 non-null	float64				
18	tempo	114000 non-null	float64				
19	time_signature	114000 non-null	int64				
20	track_genre	114000 non-null	object				
dtype	es: bool(1), floate	54(9), int64(6),	object(5)				
memory usage: 17.5+ MB							

Cuando se hace el llamado a df.info, este imprimira la siguiente informacion:

- El numero de filas y columnas en la dataframe
- El nombre de cada columna, su tipo de dato, y el numero de non-null values en la columna
- El numero total de non.null values en la dataframe
- La memoria de uso en la dataframe

```
1 # number of unique values in our data set.
```

2 df.nunique()

Unnamed: 0	114000
track_id	89741
artists	31437
album_name	46589
track_name	73608
popularity	101
duration_ms	50697
explicit	2
danceability	1174
energy	2083
key	12
loudness	19480
mode	2
speechiness	1489
acousticness	5061
instrumentalness	5346
liveness	1722

valence 1790
tempo 45653
time_signature 5
track_genre 114
dtype: int64

PRE-PROCESAMIENTO DE LOS DATOS

```
1 # Convertimos la columna 'popularity' en 'popularity_class'(0:baja, 1:media, 2:alta)
2 df['popularity class'] = 0
3 df.loc[df['popularity'] > 30, 'popularity_class'] = 1
4 df.loc[df['popularity'] > 70, 'popularity_class'] = 2
1 # Extraemos una muestra de 100 000 registros aleatorios
2 df sample = df.sample(100000)
3
4 # Filtramos las entradas y la salida que usaremos para el modelo
5 columns = ['danceability','energy','loudness','speechiness','acousticness','instrumentalness','valence'
6 df columns = df sample[columns]
7 df columns.nunique() # visualizamos la cantidad de valores únicos de las columnas
   danceability
                       1146
   energy
                       2028
   loudness
                     18771
   speechiness
                       1475
   acousticness
                       4987
                       5322
   instrumentalness
   valence
                       1766
                       42506
   popularity_class
                           3
   dtype: int64
1 # Visualizamos algunos registros filtrados por el valor de 'popularity class'
2 df_columns.query('popularity_class == 2')
```

	danceability	energy	loudness	speechiness	acousticness	instrumentalness	valence	tempo
106005	0.713	0.452	-9.638	0.0295	0.841000	0.003800	0.235	102.963
91518	0.338	0.340	-12.049	0.0339	0.580000	0.003200	0.197	82.433

1 # Visualizamos algunas estadísticas de nuestros datos

2 df_columns.describe()

	danceability	energy	loudness	speechiness	acousticness	instrumentalness	
count	100000.000000	100000.000000	100000.000000	100000.000000	100000.000000	100000.000000	100
mean	0.566870	0.641210	-8.265175	0.084553	0.315162	0.156101	
std	0.173493	0.251575	5.028899	0.105449	0.332646	0.309659	
min	0.000000	0.000000	-49.531000	0.000000	0.000000	0.000000	
25%	0.456000	0.472000	-10.019000	0.035900	0.017000	0.000000	
50%	0.580000	0.685000	-7.013000	0.048900	0.169000	0.000041	
75%	0.694000	0.853000	-5.010000	0.084500	0.598000	0.049000	
max	0.985000	1.000000	4.532000	0.965000	0.996000	1.000000	

```
1 # Pasamos los datos del DF a un arreglo
 2 data = df columns.values
4 # Separamos las características de las etiquetas
 5 x data = data[:, :-1]
 6 y_data = data[:, -1]
 8 print("X:")
 9 print(x_data)
10 print("y:")
11 print(y_data)
    [ 7.68000e-02 1.31000e-01 -2.31530e+01 ... 7.97000e-01 3.56000e-02
       8.07650e+01]
     [ 3.73000e-01 8.57000e-01 -3.54600e+00 ... 1.38000e-03 2.35000e-01
       1.37084e+02]
     [ 7.37000e-01 7.05000e-01 -6.23100e+00 ... 0.00000e+00 5.57000e-01
       8.64010e+01]
     [ 6.29000e-01 8.37000e-01 -5.67700e+00 ... 4.39000e-01 7.72000e-01
       1.25013e+02]
     [ 2.78000e-01 1.94000e-01 -1.77770e+01 ... 9.20000e-01 2.21000e-01
       6.93680e+01]
     [ 7.20000e-01 7.38000e-01 -1.10840e+01 ... 9.27000e-01 5.48000e-01
       9.59950e+01]]
    [0. 1. 0. ... 0. 1. 0.]
```

^{1 #} Verificamos las dimensiones de los arreglos

² print("X:")

```
3 print(x data.shape)
4 print("y:")
 5 print(y_data.shape)
    (100000, 8)
    V:
     (100000,)
 1 # Obtenemos la media y la desviación estándar de cada característica
 2 \times mean = x \cdot data.mean(axis = 0)
 3 \times std = x_data.std(axis = 0)
 5 # Normalizamos las características del modelo y convertimos a float32
 6 \times data = (x data - x mean) / x std
 7 x_data= x_data.astype(np.float32)
 9 # Verificamos los datos normalizados
10 x data
    array([[-2.82474 , -2.0280714 , -2.960469 , ..., 2.0697055 ,
             -1.6917396 , -1.3791927 ],
            [-1.1174587, 0.8577615, 0.93841594, ..., -0.49965143,
            -0.92200196, 0.5002919],
            [0.9806183, 0.2535651, 0.40449914, ..., -0.50410795,
              0.32100457, -1.1911074 ],
            [ 0.35811195, 0.77826196, 0.514663 , ..., 0.9135886 ,
             1.1509624 , 0.097457 ],
            [-1.6650337 , -1.7776479 , -1.8914424 , ..., 2.466919 ,
            -0.9760457 , -1.7595347 ],
            [ 0.8826312 , 0.3847393 , -0.5605281 , ..., 2.4895246 ,
              0.28626215, -0.87093526]], dtype=float32)
```

DISEÑO DE LA ARQUITECTURA Y ENTRENAMIENTO DEL MODELO DE RED NEURONAL MULTICAPA

```
1 # Separamos aleatoriamente los datos de entrenamiento(80%) y de prueba(20%)
2 X_train, X_test, y_train, y_test = train_test_split(x_data, y_data, test_size=0.2, random_state=20)

1 # Definimos el modelo
2 model = models.Sequential()
3 model.add(layers.Dense(512, activation='relu', input_shape=(8,)))
4 model.add(layers.Dropout(0.125))
5 model.add(layers.Dense(512, activation='relu'))
6 # model.add(layers.Dense(512, activation='relu'))
8 # model.add(layers.Dense(512, activation='relu'))
9 model.add(layers.Dense(512, activation='relu'))
10 model.add(layers.Dense(3, activation='relu'))
11
12 # Compilamos el modelo
13 model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics='accuracy')
14
15 # Entrenamos el modelo
```

16 history = model.fit(X_train, y_train, validation_split=0.2, epochs=100, batch_size=1024)

```
h 73/100
3 [========== ] - 0s 5ms/step - loss: 0.2766 - accuracy: 0.8836 - val loss: 1.13
h 74/100
3 [==========: 0.8863 - val_loss: 1.14
h 75/100
h 77/100
3 [============ ] - 0s 5ms/step - loss: 0.2597 - accuracy: 0.8910 - val loss: 1.199
h 78/100
h 80/100
h 81/100
3 [============== ] - 0s 7ms/step - loss: 0.2404 - accuracy: 0.9010 - val loss: 1.25
3 [=========== ] - 0s 7ms/step - loss: 0.2376 - accuracy: 0.9019 - val loss: 1.286
h 83/100
3 [========================== ] - 0s 7ms/step - loss: 0.2357 - accuracy: 0.9027 - val_loss: 1.269
h 84/100
h 86/100
h 87/100
3 [============ ] - 0s 6ms/step - loss: 0.2221 - accuracy: 0.9098 - val loss: 1.309
h 88/100
h 89/100
h 90/100
h 92/100
h 93/100
h 94/100
h 95/100
3 [================== ] - 0s 5ms/step - loss: 0.2008 - accuracy: 0.9206 - val loss: 1.374
h 96/100
3 [================== ] - 0s 5ms/step - loss: 0.1975 - accuracy: 0.9203 - val loss: 1.404
h 97/100
3 [================== ] - 0s 5ms/step - loss: 0.1940 - accuracy: 0.9235 - val_loss: 1.40
h 98/100
3 [===========] - 0s 5ms/step - loss: 0.1919 - accuracy: 0.9240 - val loss: 1.40
h 99/100
h 100/100
```

EVALUACIÓN Y METRICAS

- 1 # Guardamos los datos del entrenamiento
- 2 history_dict = history.history
- 3 history_dict

```
1 # Guardamos los valores de perdida en dos arreglos para entrenamiento y validacion
2 i=0
3 loss_values = history_dict["loss"][i:]
4 val_loss_values = history_dict["val_loss"][i:]
5
6 # Graficamos los valores de perdida
7 epoch = range(1, len(loss_values) + 1)
8 plt.plot(epoch, loss_values, 'o', label = 'training')
9 plt.plot(epoch, val_loss_values, '--', label = 'validation')
10 plt.legend()
11 plt.show()
```



```
1 # Guardamos los valores de precisión en dos arreglos para entrenamiento y validacion
2 i=0
3 loss_values = history_dict["accuracy"][i:]
4 val_loss_values = history_dict["val_accuracy"][i:]
5
6 # Graficamos los valores de precisión
7 epoch = range(1, len(loss_values) + 1)
8 plt.plot(epoch, loss_values, 'o', label = 'training')
9 plt.plot(epoch, val_loss_values, '--', label = 'validation')
10 plt.legend()
11 plt.show()
```

```
training
               validation
    0.90
    0.85
    0.80
    0.75
    0.70
1 # evaluamos el modelo
2 model.evaluate(X test, y test)
   [1.4346693754196167, 0.6849499940872192]
1 # Predecimos en base a los datos de prueba
2 y_predict_prob = model.predict(X_test)
4 # Convertimos las probabilidades en clases
5 y_predict = np.argmax(y_predict_prob, axis=1)
   625/625 [=========== ] - 1s 2ms/step
1 y predict prob
   array([[9.4015235e-01, 5.8574248e-02, 1.2733884e-03],
          [2.8551903e-01, 7.0787954e-01, 6.6014226e-03],
          [9.5051593e-01, 4.9483873e-02, 1.8077527e-07],
          [1.4084031e-01, 8.0928218e-01, 4.9877524e-02],
          [7.8382927e-01, 2.1617073e-01, 3.4380732e-12],
          [2.4227962e-01, 6.0271271e-02, 6.9744909e-01]], dtype=float32)
1 # Verificamos algunos casos individuales
2 pos = 31
3 print("y: " , y_test[pos])
4 print("y predict:", y_predict[pos])
   y: 1.0
   y predict: 1
1 # Matriz de Confusion
2 print("Accuracy: {:.2f}%".format(accuracy_score(y_test, y_predict) * 100))
3 print("Confusion Matrix:")
4 print(confusion_matrix(y_test, y_predict))
   Accuracy: 68.49%
   Confusion Matrix:
   [[6067 2864 194]
    [2526 7226 261]
    [ 224 232 406]]
```

Productos de pago de Colab - Cancelar contratos

✓ 0 s completado a las 13:41