NIS2312-1 2022-2023 Fall

信息安全的数学基础 (1)

Assignment 2

2022 年 9 月 20 日

Problem 1

RSA 公钥密码方案:

(1) 密钥生成:

随机选取两个大素数 p,q, 计算 $n = pq, \varphi(n) = (p-1)(q-1)$; 任意选取一个大整数 e 满足 $1 \le e \le \varphi(n)$ 且满足 $(e,\varphi(n)) = 1$; 计算 d, 满足 $de \equiv 1 \pmod{\varphi(n)}$. 以 $\{e,n\}$ 为公钥, $\{d,n\}$ 为私钥.

(2) 加密运算:

对明文 m < n 进行加密: $c = E(m) \equiv m^e \pmod{n}$.

(3) 解密运算:

接收方对 c 进行解密: $m = D(c) \equiv c^d \pmod{n}$.

那么:

- (1) 试证明解密运算的正确性;
- (2) 取素数 p = 3, q = 11, 则 $n = 33, \varphi(n) = 20$. 取 e = 7. 尝试计算密文 c = 29 对应的明文.

Problem 2

Rabin 数字签名方案:

随机选取两个大素数 p,q 且 $p \equiv q \equiv 3 \pmod{4}$, 令 n = pq. 以 $\{n\}$ 为公钥, $\{p,q\}$ 为私钥. 加密运算是将明文 m 加密为 $c \equiv m^2 \pmod{n}$. 那么:

- (1) 尝试设计一种 Rabin 密码算法的解密运算;
- (2) 证明你所设计的解密运算的正确性;
- (3) 取素数 p = 7, q = 11, 则 n = 77, 对明文 m = 20 进行加密得到 $c \equiv m^2 \pmod{n} = 15$, 尝试计算密文 c = 15 对应的明文.

Problem 3

本原根: 当 a 是满足 (a,n)=1 且 $a^{\varphi(n)}\equiv 1\pmod n$ 的最小正整数时, 称 a 是 n 的本原根.

ElGamal 公钥密码方案:

(1) 密钥生成:

随机选择一个大素数 p, 且要求 p-1 有大素数因子. 再选择一个模 p 的本原元 g. 随机取整数 x 满足 $2 \le x \le p-2$ 作为私钥, 计算出 $h \equiv g^x \pmod{p}$, 则公钥为 $\{p,g,h\}$.

(2) 加密运算:

随机选取 $1 \le y \le p-2$, 然后计算 $s \equiv h^y \pmod{p}$, 计算 $c_1 \equiv g^y \pmod{p}$, 同时明文 m < p 进行加密计算得到 $c_2 \equiv m \cdot s \pmod{p}$, 发送的密文为 (c_1, c_2) .

(3) 解密运算:

接收方接收到密文 (c_1, c_2) 后, 计算 $s \equiv c_1^x \pmod{p}$, 然后计算出 $s^{-1} \pmod{p}$ 的 值, 其中 $s \cdot s^{-1} \equiv 1 \pmod{p}$, 则明文 $m \equiv c_2 \cdot s^{-1} \pmod{p}$;

那么:

- (1) 证明上述解密运算的正确性.
- (2) 当 p = 2539, g = 2, x = 51, y = 15 时, 给出明文 m = 804 对应的密文 (c_1, c_2) 和 $(c_1 = 2300, c_2 = 224)$ 对应的明文 m.