A New Multiple Change-Point Detection Algorithm (Smallest Valid Partitioning - SVP)

Alexandre Combeau, Vincent Runge, Gaetano Romano, Anica Kostic

Université Évry Paris-Saclay, LSE, Lancaster University

JDSE 2025

Problem & Idea

Goal: Detect structural changes in time series.

Accelerometer data

SVP Algorithm

- Apply local test (FOCuS) on each segment
- Keep only valid segments (no change detected)
- Combine results with Dynamic Programming

Key novelty

Lexicographic optimization:

 \rightarrow Minimize #segments first, then cost

Results & Impact

 $\mathsf{SVP} \approx \mathsf{PELT} \mathsf{\ in\ accuracy}$

Linear complexity when many changes

Takeaways

- Adaptive segmentation (no penalty tuning)
- Coherent aggregation of local tests
- Promising results on accelerometer data