

Database Systems

Lecture 6 Cont. - Getting to Know Your Data

Dr. T. Akilan

takilan@lakeheadu.ca

This Session

Measuring Data Similarity and Dissimilarity

Data Similarity and Dissimilarity

- Similarity
 - o Numerical measure of how alike two data objects are
 - O Value is higher when objects are more alike
 - o Often falls in the range [0,1]
- Dissimilarity (e.g., distance)
 - o Numerical measure of how different two data objects are
 - O Value is lower when objects are more alike
 - O Minimum dissimilarity is often 0
 - o Upper limit varies
- "Proximity" can refer to similarity or dissimilarity

Data Matrix vs Dissimilarity Matrix

- Assume a set of *n* samples
 - \circ Each sample has a set of p attributes or features
- Two data structures:
 - o Data matrix (object-by-attribute structure)
 - o Dissimilarity matrix (object-by-object structure)
- Data matrix: *n*-by-*p* matrix o form of a relational table with n objects $\times p$ attributes
- Dissimilarity matrix: *n*-by-*n* table
 - o Difference between samples i and j, d(i,j)
 - ✓ We need to define a way to compute it
 - \circ Similarity = 1 d(i,j)

```
feature vectors
X = \{x_1, x_2, \dots, x_N\}
           x_1 = (x_{11}, x_{12}, \dots, x_{1p})

x_2 = (x_{21}, x_{22}, \dots, x_{2p})
                                                             two-mode matrix
X = \begin{bmatrix} x_{1,0} & \cdots & x_{1,p} \\ \vdots & \ddots & \vdots \\ x_{n,0} & \cdots & x_{n,p} \end{bmatrix}
                                                             one-mode matrix
```

Dissimilarity of Nominal Attributes

- Descriptive (qualitative) attribute with no inherent quantitative value
 - o No order in the values, no way to measure the level of difference between them
 - o Only measure is "are they the same or not?"
 - Can be computed based on the ratio of mismatches:

$$d(i,j) = \frac{p-m}{p}$$

- Binary dissimilarity matrix:
 - Only one nominal attribute (e.g., test-1)
 - 1 objects' attributes are different
 - 0 0 Objects' attributes are the same

Object Identifier	test-l (nominal)	test-2 (ordinal)	test-3 (numeric)		
1	code A	excellent	45		
2	code B	fair	22		
3	code C	good	64		
4	code A	excellent	28		

A Sample Data Table Containing Attributes of Mixed Type

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ d(4,1) & d(4,2) & d(4,3) & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 \\ 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Dissimilarity of Nominal Attributes Cont.

• Dissimilarity matrix for objects with more than one **multi-level nominal** attribute

Car	Maker	Model	Colour
Car 0	Acura	TSX	Silver
Car 1	VW	Beetle	White
Car 2	Ford	Model T	Silver
Car 3	Acura	TSX	Black

$$d(i,j) = \frac{P - m_{i,j}}{P}$$

Example:

$$d(car_0, car_1) = \frac{3-0}{3} = 1,$$

$$d(car_0, car_2) = \frac{3-(0+0+1)}{3} = \frac{2}{3} = 0.67$$

$$d = \begin{bmatrix} 0 & & & \\ 1 & 0 & & \\ 0.67 & 1 & 0 & \\ 0.33 & 1 & 1 & 0 \end{bmatrix}$$

• Alternatively, similarity can be computed as: $sim(i, j) = 1 - d(i, j) = \frac{m}{p}$

Dissimilarity of Binary Attributes

- Recall that a binary attribute has only one of two states: 0 and 1, where 0 means that the attribute is absent, and 1 means that it is present
 - o E.g., the attribute smoker describing a patient, for instance, 1 indicates that the patient smokes, while 0 indicates that the patient does not.
- Use 2×2 contingency table:

•		Object j					
		1	0				
Object i	1	PP	PN				
Object i	0	NP	NN				

- \circ PP # of attributes that equal 1 for both objects i and j,
- \circ PN # of attributes that equal 1 for object i but equal 0 for object j,
- \circ NP # of attributes that equal 0 for object i but equal 1 for object j,
- \circ NN # of attributes that equal 0 for both objects i and j.

Dissimilarity of Binary Attributes Cont.

- Symmetric attributes dissimilarity:
 - O Both states are equally important

$$d(i, j) = \frac{PN + NP}{PP + PN + NP + NN}$$

		Object j				
		1	0			
Object <i>i</i>	1	PP	PN			
	0	NP	NN			

- Asymmetric attributes dissimilarity:
 - o Positives are much more important
 - We don't really care for 0-0 matches

$$d(i, j) = \frac{PN + NP}{PP + PN + NP}$$

• Jaccard coefficient is asymmetric similarity

$$sim(i, j) = 1 - d(i, j) = \frac{PP}{PP + PN + NP}$$

Dissimilarity of Binary Attributes – Example

• A relational table, where patients are described by a set of binary attributes: name, gender, fever, cough, test-1, test-2, test-3, and test-4

Dissimilarity of Binary Attributes – Example

• Compute patients' dissimilarity based only on the asymmetric attributes.

$$d(i, j) = \frac{PN + NP}{PP + PN + NP}$$

$$d(Jack, Jim) = \frac{1+1}{1+1+1} = 0.67,$$

$$d(Jack, Mary) = \frac{0+1}{2+0+1} = 0.33,$$

$$d(Jim, Mary) = \frac{1+2}{1+1+2} = 0.75.$$

Object
$$j$$

1 0

Object i
 $\frac{1}{0}$ PP PN

NN

• What can you suggest from these measures?

Dissimilarity of Numeric Attributes

- Attributes have quantitative values
 - o We are not limited to "are they the same"
 - O We can meaningfully talk about "how different are they"

Let
$$i = (x_{i1}, x_{i2}, ..., x_{ip})$$
 and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ be two objects

- Euclidian (straight-line) distance: $d(i, j) = \sqrt{(x_{i1} x_{j1})^2 + (x_{i2} x_{j2})^2 + \dots + (x_{ip} x_{jp})^2}$
- Manhattan (city-block) distance: $d(i, j) = |x_{i1} x_{j1}| + |x_{i2} x_{j2}| + \dots + |x_{ip} x_{jp}|$
- Minkowski distance: $d(i,j) = \sqrt[h]{|x_{i1} x_{j1}|^h + |x_{i2} x_{j2}|^h + \dots + |x_{ip} x_{jp}|^h}$
- Supremum (L_{max}, L_{\infty} norm, Chebyshev) distance: $d(i,j) = \lim_{h \to \infty} \left(\sum_{f=1}^p |x_{if} x_{jf}|^h \right)^{\frac{1}{h}} = \max_f^p |x_{if} x_{jf}|$

Dissimilarity of Numeric Attributes - Working Example 2:

• E.g., two objects represented by two attributes: $x_1 = (1,2)$ and $x_2 = (3,5)$

Euclidean distance:
$$d(i, j) = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{ip} - x_{jp})^2}$$

$$d(i,j) = \sqrt{(1-3)^2 + (2-5)^2} = 3.61$$

Manhattan distance:
$$d(i, j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

$$d(i,j) = |1 - 3| + |2 - 5| = 5$$

Supremum distance:
$$d(i, j) = \max_{f} |x_{if} - x_{jf}|$$

 $d(i, j) = \max(|1 - 3|, |2 - 5|) = 3$

Attribute 1

Dissimilarity of Ordinal Attributes

- Ranked & ordered categories
 - o {"cold", "warm", "hot"}
 - o "cold" is more similar to "warm" than to "hot"
- Magnitude between successive ranks is unknown
 - o How many degrees of difference between "cold" and "warm"?
- Solution: Number the ranks
 - \circ {"cold", "warm", "hot"} = {0, 0.5, 1}
 - ✓ Using normalized numbers in [0.0, 1.0] avoids the problem of more detailed sets looking more significant
 - > {"cold", "lukewarm", "warm", "hot", "crazy hot"} as {0.0, 0.25, 0.5, 0.75, 1.0} puts in in the same range as the other set
 - > {0, 1, 2, 3, 4} makes the top value look 4 times as important as the top of the other set, which is wrong
 - O Then use one of the distance measures from numeric attributes

Dissimilarity of Ordinal Attributes – Example

- Build the dissimilarity matrix
 - o User rating scale: {fair, good, excellent}
 - o CAA rating scale: {*, **, ***, ****}
 - O Use Euclidian distance

Car	User rating	CAA rating
Car 0	excellent	**
Car 1	fair	**
Car 2	good	***
Car 3	excellent	***

• Step 2 – Use a numeric attribute's dissimilarity measure. In this case, Euclidian distance.

• **Step 1** - Replace each attribute values by rank and normalize the rank.

Ohioat	User rating			CAA rating			
Object		r	nd		r	nd	
Car 0	Е	3	1	**	2	0.33	
Car 1	F	1	0	**	2	0.33	
Car 2	G	2	0.5	***	3	0.67	
Car 3	Е	3	1	****	4	1	

{fair, good, excellent}
$$\rightarrow$$
 {0, 0.5, 1} {*, **, ***, ****} \rightarrow {0, 0.33, 0.67, 1}

Dissimilarity of Mixed Attributes

- Objects can have properties of several different types
- We need to compare and combine the differences in all their values
- Difference between two objects i and j that have P attributes: 1, 2, ..., f, ..., P

$$d(i, j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

- o $d^{(f)}$ dissimilarity value of attribute f
- o $\delta^{(f)}$ determines if attribute f should be counted, i.e., whether it contributes in the distance measure.

Dissimilarity of Mixed Attributes

• $\delta^{(f)}$ determines if attribute f should be counted

$$\delta_{ij}^{(f)} = \begin{cases} 0 & \text{if } x_{if} \text{ or } x_{jf} \text{ is missing} \\ 0 & x_{if} = x_{jf} = 0 \text{ and } f \text{ is asymmetric binary} \\ 1 & \text{otherwise} \end{cases}$$

- $d^{(f)}$ is the dissimilarity value of attribute f
 - o To be fair, all attributes need to be normalized to [0,1]
 - o Already the case for nominal, binary and ordinal
 - o For numeric attributes, normalize by dividing by the maximum distance between two samples:

$$d_{ij}^{(f)} = \frac{|x_{if} - x_{jf}|}{\max_h x_{hf} - \min_h x_{hf}} : h \text{ runs over all non-missing objects for attribute } f.$$

Dissimilarity of Mixed Attributes – Example

- Build the dissimilarity matrix
 - o Price is numeric (use Manhattan), Topic is nominal, Rating is ordinal

Book ID	Price	Topic	Rating
0	45	Arts	Excellent
1	22	Business	Fair
2	64	Engineering	Good
3	28	Arts	Excellent

• Apply specific distance measure for each attribute: d(f)

$$d(i, j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

$$\begin{bmatrix} 0 \\ 0.85 & 0 \\ 0.65 & 0.83 & 0 \\ 0.13 & 0.71 & 0.79 & 0 \end{bmatrix}$$

Document Similarity - Cosine Distance

- Good for dealing with sparse matrix of attributes
 - o Large matrix with a lot of zeros
- Example: term-frequency vector
 - o Typical in Natural Language Processing
 - o Represent text document by counting words

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

Document Vector or Term-Frequency Vector

Cosine Similarity

• Cosine measure as a similarity function:

function:
$$sim(x, y) = \frac{x \cdot y}{||x|| ||y||}$$

$$\sqrt{x_1^2 + x_2^2 + \dots + x_p^2}$$

• E.g.,:

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

$$x^{t} \cdot y = 5 \times 3 + 0 \times 0 + 3 \times 2 + 0 \times 0 + 2 \times 1 + 0 \times 1 + 0 \times 0 + 2 \times 1 + 0 \times 0 + 0 \times 1 = 25$$

$$||x|| = \sqrt{5^{2} + 0^{2} + 3^{2} + 0^{2} + 2^{2} + 0^{2} + 2^{2} + 0^{2} + 2^{2} + 0^{2} + 0^{2}} = 6.48$$

$$||y|| = \sqrt{3^{2} + 0^{2} + 2^{2} + 0^{2} + 1^{2} + 1^{2} + 0^{2} + 1^{2} + 0^{2} + 1^{2}} = 4.12$$

$$sim(x, y) = 0.94$$

O How similar are Doc 1 and Doc2?

 Let x and y represent tf-vector of Doc 1 and Doc2 respectively.

$$x = (5,0,3,0,2,0,0,2,0,0)$$

 $y = (3,0,2,0,1,1,0,1,0,1)$

Summary

- A data object is composed of attributes that have values
- The attributes can be nominal, binary (symmetric or asymmetric), ordinal, numeric (interval-scaled or ratio-scaled)
- We can analyze the data in terms of its attributes' values
 - o Central tendency: mean, median, mode
 - O Dispersion: range, quantiles, variance, standard deviation
 - o Redundancy: χ^2 correlation, correlation, covariance
- We can measure the difference and similarity between pairs of objects based on their attributes' values

References

[1] Jacqueline S. McLaughlin at The Pennsylvania State University. In turn citing: R. A. Fisher and F. Yates, Statistical Tables for Biological Agricultural and Medical Research, 6th ed

[2] Jiawei Han, Micheline Kamber, & Jian Pei, Data Mining: Concepts and Techniques, 3rd Edition, Morgan Kaufmann, ISBN: 978-0-12-381479-1