

CS 329P: Practical Machine Learning (2021 Fall)

4.2 Underfiting & Overfitting

Qingqing Huang, Mu Li, Alex Smola

https://c.d2l.ai/stanford-cs329p

Who will Repay Their Loans?

- A lender hires you to investigate who will repay their loans
 - You are given all information about the 100 applicants
 - 5 defaulted within 3 years
- A Surprising Finding?!
 - All 5 people who defaulted wore blue shirts during interviews
 - Your model leverages this strong signal as well

Underfitting and Overfitting

- Training error: model error on the training data
- Generalization error: model error on new data

Training error

Generalization error

	Low	High	
Low	Good	Bug?	
High	Overfitting	Underfitting	

Data and Model Complexity

Data complexity

Model complexity Low

Model Complexity

The capacity of a set of function to fit data points

- In ML, model complexity usually refers to:
 - The number of learnable parameters
 - The value range for those parameters
- It's hard to compare between different types of ML models

- E.g. trees vs neural network
- More precisely measure of complexity: VC dimension

 VC dim for classification model: the maximum number of examples the model can shatter

Model Complexity

Model Complexity Example: Decision Tree

- The tree size can be controlled by the number of levels
- Use scikit-learn

DecisionTreeRegressor(max_depth)

=n) on house sales data

Data Complexity

- Multiple factors matters
 - # of examples

- # of features in each example
- the separability of the classes
- Again, hard to compare among very different data
 - E.g a char vs a pixel

- More precisely, Kolmogorov complexity
 - A data is simple if it can be generated by a short program

Model Complexity vs Data Complexity

Generalization error

Generalization error bound (an informal statement)

$$\left| \text{errror on unseen data - training error} \right| \leq \sqrt{\frac{D}{N} \left(\log \left(\frac{2N}{D} \right) + 1 \right)}$$
• D: VC-dim, M. Tumber of training examples

- Generalization error also depends on the training algorithm
 - Adding regularization can penalize complex models
 - Model trained with stochastic gradient methods generalizes better

Model Selection

Pick a model with a proper complexity for your data

- Minimize the generalization error
- Also consider business metrics

- Pick up a model family, then select proper hyper-parameters
 - Trees: #trees, maximal depths
 - Neural networks: architecture, depth (#layers), width (#hidden units), regularizations

Summary

- We care about generalization error
- Model complexity: the ability to fit various functions
- Data complexity: the richness of information
- Model selection: match model and data complexities

