

96-kHz, 24-Bit Stereo ADC

PRODUCT DESCRIPTION

The MS5358 is a stereo A/D converter, with sample rate ranging from 8kHz to 96kHz.

The MS5358 has high-accuracy feature achieved by using enhanced dual-bit delta-sigma technology. The MS5358 is single-ended analog input, thus requiring no external devices.

The audio interface has two modes (MSB Justified, I²S) and is suitable for DTV, DVR and AV receiver systems.

FEATURES

- Linear Phase Anti-alias Digital Filter
- Single-ended Input
- Digital HPF with Offset Voltage Cancellation
- High Performance:

S/(N+D): -92dB

DR: 102dB

S/N: 102dB

● Sample Rate: 8kHz ~ 96kHz

Master Clock:

256fs/384fs/512fs/768fs (8kHz~48kHz) 256fs/384fs (48kHz~96kHz)

Input Level: CMOS

Master or Slave Mode

Audio Interface: 24bit MSB Justified or I²S

Analog Power Supply: 4.5V~5.5V
Digital Power Supply: 2.7V~3.6V

Operating Temperature: -40°C~105°C

TSSOP16 Package

APPLICATIONS

Audio Interface

DTV, DVR and AV Receiver

PRODUCT SPECIFICATION

Part Number	Package	Marking
MS5358	TSSOP16	MS5358

PIN CONFIGURATION

PIN DESCRIPTION

Pin	Name	Туре	Description
1	AINR	I	Rch Analog Input Pin
2	AINL	I	Lch Analog Input Pin
3	CKS1	ı	Mode Select 1 Pin
4	VCOM	О	Common Voltage Output Pin, VA/2 Bias Voltage of ADC Input.
5	AGND	-	Analog Ground Pin
6	VA	-	Analog Power Supply Pin, 4.5V ~ 5.5V
7	VD	-	Digital Power Supply Pin, 2.7V ~ 3.6V
8	DGND	-	Digital Ground Pin
9	SDTO	0	Audio Serial Data Output Pin. Low Output at Power Down Mode
10	LRCK	1/0	Output Channel Clock Pin. Low Output at Power Down Mode in Master Mode
11	MCLK	ı	Master Clock Input Pin
12	SCLK	1/0	Audio Serial Data Clock Pin. Low Output at Power Down Mode in Master Mode
			Power Down Mode & Reset Mode
13	PDN	ı	"H": Power Up, "L": Power Down & Reset
			The MS5358 must be reset once after power-up.
			Audio Interface Type Select Pin
14	DIF	I	"H": 24bit I ² S Compatible, "L": 24bit MSB Justified
15	CKS2	I	Mode Select 2 Pin
16	CKS0	I	Mode Select 0 Pin

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Any exceeding absolute maximum rating application causes permanent damage to device. Because long-time absolute operation state affects device reliability. Absolute ratings just conclude from a series of extreme tests. It doesn't represent chip can operate normally in these extreme conditions.

GNDA, GNDD = 0V (1)

Parameter	Symbol	Range	Unit
Analog Power Supply	VA	-0.3 ~ 6.0	V
Digital Power Suppl	VD	-0.3 ~ 4.6	V
AGND – DGND (2)	ΔGND	0.3	V
Any Input Current Except Power Supply	IIN	±10	mA
Analog Input Voltage			110.4
(AINL, AINR, CKS1 pin)	VINA	-0.3 ~ VA+0.3	V
Digital Input Voltage (3)	VIND	-0.3 ∼ VD+0.3	V
			°C
Operating Temperature	Tata	-40 ~ 105	
Storage Temperature	Tstg	-65 ~ 150	°C

Note:

- (1) All voltages are relative to ground.
- (2) AGND and DGND must be connected to the same analog ground plane.
- (3) PDN, DIF, MCLK, SCLK, LRCK, CKSO, CKS2 pin

RECOMMENDED OPERATING CONDITIONS

Recommended Operation Voltage

AGND, DGND = 0V

Parameter	Symbol	Min	Тур	Max	Unit
Analog Power Supply	VA	4.5		5.5	V
Digital Power Supply	VD	2.7		3.6	V

There are no specified demands for VA and VD power-up sequences.

Unused Pin

Classification	Pin	Setting
	AINR	Pin should be open
Analog	AINL	Pin should be open

ELECTRICAL CHARACTERISTICS

Analog Characteristics

Unless otherwise specified, Ta= 25° C; VA=5.0V, VD=3.3V; AGND=DGND=0V; fs=48kHz, 96kHz; SCLK = 64fs; signal frequency = 1kHz; 24bit data; measurement frequency=20Hz at fs=48kHz, 40Hz at fs=96kHz.

	Parameter		Min	Тур	Max	Unit
ADC Analog Input Ch	naracteristics					
Resolution					24	Bits
Input Voltage ⁽¹⁾			2.7	3.0	3.3	Vpp
	fs = 48kHz	-1dBFS	82	92		dB
5 ((A) - B)	BW = 20kHz	-60dBFS		39		dB
S/(N+D)	fs = 96kHz	-1dBFS		90		dB
	BW = 40kHz	-60dBFS		38		dB
DR (-60dBFS, A-weig	hted)		90	102		dB
S/N (A-weighted)			94	102		dB
	fs = 48kHz	fs = 48kHz		20		kΩ
Input Resistance	fs = 96kHz	fs = 96kHz		14		kΩ
Inter-channel Isolation	on		89	95		dB
Inter-channel Gain M	1ismatch			0.1	0.5	dB
Gain Drift				100		ppm/°C
Power Supply Reject	ion ⁽²⁾			50		dB
Power Supply						
Power Supply Currer	nt					
Normal Operation (P	DN= "H")					
VA				10	16	mA
VD (fs = 48kHz)				2	5	mA
VD (fs = 96kHz)				4	9	mA
Power Down Mode (PDN = "L") ⁽³⁾					
VA+VD				10	100	uA

Note:

(1) The value is full scale (0dB) of input voltage. Input voltage is in proportional to VA,Vin=0.6×VA (Vpp).

- (2) PSRR is applied to VA and VD with 1kHz, 50mVpp.
- (3) All digital input pins and CKS1 pin are held VD or DGND.

Filter Characteristics (fs=48kHz)

Ta = -40° C \sim 105 $^{\circ}$ C; VA = 4.5V \sim 5.5V; VD = 2.7V \sim 3.6V.

Parameter	Symbol	Min	Тур	Max	Unit				
ADC Digital Filter (Decimation LPF)									
	±0.1dB		0		18.9	kHz			
Passband ⁽¹⁾	-0.2dB	РВ	-	20.0	-	kHz			
	-3.0dB		-	23.0	-	kHz			
Stopband	SB	28			kHz				
Passband Ripple	Passband Ripple				±0.04	dB			
Stopband Attenuation	Stopband Attenuation		68			dB			
Group Delay Distortion	Group Delay Distortion			0		us			
Group Delay		GD		16		1/fs			
ADC Digital Filter (HPF)									
(0)	-3dB			1.0		Hz			
Frequency Response (2)	-0.1dB	FR		6.5		Hz			

Filter Characteristics (fs=96kHz)

Ta = -40°C \sim 105°C; VA = 4.5V \sim 5.5V; VD = 2.7V \sim 3.6V.

Parameter	Symbol	Min	Тур	Max	Unit				
ADC Digital Filter (Decimation LPF)									
	±0.1dB		0		37.8	kHz			
Passband ⁽¹⁾	-0.2dB	PB	-	40.0	-	kHz			
	-3.0dB		-	46.0		kHz			
Stopband	SB	56			kHz				
Passband Ripple	Passband Ripple				±0.04	dB			
Stopband Attenuation		SA	68			dB			
Group Delay Distortion	Group Delay Distortion			0		us			
Group Delay	GD		16		1/fs				
ADC Digital Filter (HPF)									
	-3dB			2.0		Hz			
Frequency Response (2)	-0.1dB	FR		13.0		Hz			

Note:

(1) The passband and stopband frequencies change with fs. For example, PB=18.9kHz@ \pm 0.1dB is 0.39375×fs

VERSION: V1.3

(2) The calculated delay time induced by digital filtering.

DC Characteristics (CMOS Level Mode)

Ta = -40° C \sim 105 $^{\circ}$ C; VA = 4.5V \sim 5.5V; VD = 2.7V \sim 3.6V.

Parameter	Symbol	Min	Тур	Max	Unit
High-Level Input Voltage	VIH	70%VD	-	-	V
Low-Level Input Voltage	VIL	-	-	30%VD	V
High-Level Output Voltage (Iout=-1mA)	VOH	VD - 0.5	-	-	V
Low-Level Output Voltage (lout=1mA)	VOL	-	-	0.5	V
Input Leakage Current	lin	-	-	±10	uA

Switching Characteristics

Ta = -40° C \sim 105 °C; VA = 4.5V \sim 5.5V; VD = 2.7V \sim 3.6V; CL=20pF.

Parameter	Symbol	Min	Тур	Max	Unit
Master Clock Timing					
512fs,256fs Frequency	fCLK	2.048		24.576	MHz
Duty	dCLK	40		60	%
768fs,384fs Frequency	fCLK	3.072		36.864	MHz
Duty	dCLK	40		60	%
LRCK Frequency	fs	8		96	kHz
Duty Slave Mode		45		55	%
Master Mode			50		%
Audio Interface Timing					
Slave Mode					
SCLK Period	tSCK	160			ns
SCLK Pulse Width Low	tSCKL	65			ns
Pulse Width High	tSCKH	65			ns
LRCK Edge to SCLK"↑" (1)	tLRSH	30			ns
SCLK"†" to LRCK Edge (1)	tSHLR	30			ns
LRCK to SDTO(MSB) (Except I ² S Mode)	tLRS			35	ns
SCLK"↓" to SDTO	tSSD			35	ns
Master Mode					
SCLK Frequency	fsCK		64fs		Hz
SCLK Duty	dSCK		50		%
SCLK"↓" to LRCK	tMSLR	-40		20	ns
SCLK"↓" to SDTO	tSSD	-40		35	ns
Reset Timing					
PDN Pulse Width ⁽²⁾	tPD	150			ns
PDN"†" to SDTO Valid in Slave Mode (3)	tPDV		4132		1/fs
PDN"†" to SDTO Valid in Master Mode (3)	tPDV		4129		1/fs

VERSION: V1.3

Note: (1) SCLK rising edge must not occur on the LRCK rising and falling edges.

- (2) The MS5358 can be reset with PDN="L".
- (3) The period is the number of LRCK rising edges from PDN = "H".

TIMING DIAGRAMS

Audio Interface Timing (Slave Mode)

N/A

FUNCTIONAL DESCRIPTION

System Clock

In slave mode, MCLK, SCLK and LRCK(fs) are required. LRCK input must synchronize with MCLK, but phase is not critical. Table 1 shows typical relationship between sample rate and MCLK. Table 2 shows MCLK, SCLK and master/slave mode controlled by CKS2-0 pins.

All external clocks (MCLK, SCLK and LRCK) must exist unless PDN="L". If without these clocks, the MS5358 would absorb excess current due to using internal dynamically refreshed logic. If external clocks aren't present, the MS5358 needs to be set as power-down mode (PDN="L"). In master mode, MCLK must be provided unless PDN="L".

MCLK fs 256fs 384fs 512fs 768fs 32kHz 8.192MHz 12.288 MHz 16.384 MHz 24.576 MHz 44.1kHz 11.2896 MHz 16.9344 MHz 22.5792 MHz 33.8688 MHz 48 kHz 12.288 MHz 18.432 MHz 24.576 MHz 36.864 MHz

Table 1. System Clock Example

Table 2. Operation Mo	de	Se	elec	t
-----------------------	----	----	------	---

36.864 MHz

N/A

					- peration in oue oc	i -	
Mode	CKS2	CKS1	CKS0	Input Level	Master/Slave	MCLK	SCLK
0	L	L	L	CMOS	Slave	256/384fs(8k≤fs≤96k) 512/768fs(8k≤fs≤48k)	≥ 48fs or 32fs ⁽¹⁾
1	L	L	Н			Reserved	
2	L	Н	L	CMOS	Master	256fs(8k≤fs≤96k)	64fs
3	L	Н	Н	CMOS	Master	512fs(8k≤fs≤48k)	64fs
4	Н	L	L			Reserved	
5	Н	L	Н			Reserved	
6	Н	Н	L	CMOS	Master	384fs(8k≤fs≤96k)	64fs
7	Н	Н	Н	CMOS	Master	768fs(8k≤fs≤48k)	64fs

Note: (1) SDTO outputs 16bit data at SCLK=32fs

24.576 MHz

Audio Interface Format

96 kHz

The two different data formats are selected by DIF pin (Table 3). In both modes, the serial data format is MSB first and two's complement. SDTO clock outputs when the falling edge of the SCLK clock occurs. The audio interface supports two modes (master and slave mode). In master mode, SCLK and LRCK are output with SCLK frequency 64fs, LRCK frequency 1fs.

Table 3. Audio Interface Format

Mode	DIF	SDTO	LRCK	SCLK	Figure	
0	L	24bit, MSB Justified	H/L	≥ 48fs or 32fs	Figure 1	
1	Н	24bit, I ² S Compatible	L/H	≥ 48fs or 32fs	Figure 2	

Figure 1. Mode 0 Timing

Figure 2. Mode 1 Timing

Digital High-Pass Filter

The MS5358 has a digital high-pass filter to eliminate DC offset. The HPF cut-off frequency is 1.0Hz(@fs = 48kHz), and changes with sample rate (fs).

Power Down

When PDN="L", the MS5358 is set as power down mode, and the digital filter is reset at the same time. Reset should be done after power up. In power down mode, VCOM is set to AGND level. Once power down mode occurs, one analog initialization period starts. Output data SDTO is valid after 4129 LRCK cycles in master mode or 4132 LRCK cycles in slave mode. During initialization, the ADC outputs of two channels are set as two's complement "0". After the end of initiation, the ADC outputs gradually accord with corresponding input signals (Settling needs about group delay time).

Note:

- (1) 4132/fs in slave mode, 4129/fs in master mode.
- (2) Digital output corresponding to analog input has the group delay (GD).
- (3) A/D outputs "0" in power down state.
- (4) When external clocks (MCLK, SCLK, LRCK) stop, the MS5358 should be in power down state.

System Reset

After power up, PDN= "L" and the MS5358 will be reset immediately. In slave mode, the internal timing starts to work through the rising edge of LRCK (falling edge in Mode 1) after MCLK exits reset and power down states. The MS5358 would remain in power down state unless LRCK is input. In master mode, the internal timing starts when MCLK is input.

System Design

Figure 3 shows the system typical connection diagram.

Figure 3. Typical Connection Diagram

- 1. The AGND, DGND of the MS5358 should be separately arranged with the ground of external digital devices (MPU,SDP and so on).
- 2. All digital input pins should not be floated.
- 3. CKS1 pin should be connected to VA or AGND.

Ground and Power Supply Decouple

The MS5358 requires special careful power and ground arrangements. And if VA and VD are separated, the power up sequence is not the key. AGND and DGND must be connected on the same ground plane. The system analog ground and digital ground should be connected together close to PCB ground. De-coupling capacitance should be placed as close to the MS5358 as possible, and the small ceramic capacitor should be the nearest.

Voltage Reference

The analog voltage input range is set by VA and VCOM is 50% VA. A 2.2uF capacitor is attached to VCOM pin. In order to avoid needless coupling into the MS5358, all signals especially clock signals should be separate from VCOM pin.

Analog Input

The ADC input is single-ended and internally biased to common-mode voltage (50%VA)) with $20k\Omega$ (typ@fs=48kHz). The input signal range changes with power supply, normally $0.6\times VA$ Vpp (typ). The ADC output data format is two's complement. The internal high-pass filter eliminates DC offset.

PACKAGE OUTLINE DIMENSIONS

TSSOP16

Symbol	Dimensions in Millimeters					
Symbol	Min	Тур	Max			
A	-	-	1.20			
A1	0.05	-	0.15			
A2	0.90	1.00	1.05			
А3	0.39	0.44	0.49			
b	0.20	-	0.29			
b1	0.19	0.22	0.25			
С	0.13	-	0.18			
c1	0.12	0.13	0.14			
D	4.86	4.96	5.06			
E	6.20	6.40	6.60			
E1	4.30	4.40	4.50			
e	0.65BSC					
L	0.45	0.60	0.75			
L1	L1 1.00BSC					
θ	0	-	8°			

MARKING and PACKAGING SPECIFICATIONS

1. Marking Drawing Description

Product Name : MS5358 Product Code : XXXXXX

2. Marking Drawing Demand

Laser printing, contents in the middle, font type Arial.

3. Packaging Specifications

Device	Package	Piece/Reel	Reel/Box	Piece/Box	Box/Carton	Piece/Carton
MS5358	TSSOP16	3000	1	3000	8	24000

STATEMENT

- All Revision Rights of Datasheets Reserved for Ruimeng. Don't release additional notice.
 Customer should get latest version information and verify the integrity before placing order.
- When using Ruimeng products to design and produce, purchaser has the responsibility to observe safety standard and adopt corresponding precautions, in order to avoid personal injury and property loss caused by potential failure risk.
- The process of improving product is endless. And our company would sincerely provide more excellent product for customer.

MOS CIRCUIT OPERATION PRECAUTIONS

Static electricity can be generated in many places. The following precautions can be taken to effectively prevent the damage of MOS circuit caused by electrostatic discharge:

- 1. The operator shall ground through the anti-static wristband.
- 2. The equipment shell must be grounded.
- 3. The tools used in the assembly process must be grounded.
- 4. Must use conductor packaging or anti-static materials packaging or transportation.

