(Super) Capacitors

Faster (dis)charging

Batteries are a good charge-storage solution, but are limited in how quickly they can discharge (safely).

Ultimately, redox processes can only occur so fast...

Faster (dis)charging

Batteries are a good charge-storage solution, but are limited in how quickly they can discharge (safely).

Ultimately, redox processes can only occur so fast...

Why not separate charges directly?

@

This is a Capacitor

An arrangement of electrodes of area A, separated by a distance d.

Two electrodes separated by vacuum have a capacitance C:

$$C=rac{\epsilon_0 A}{d}$$

where ϵ_0 is the permittivity of free space = 8.854 × 10⁻¹² C² J⁻¹ m⁻¹

Charge stored

On charging a capacitor with a constant voltage, current decays with time:

$$I_t = I_0 e^{\left(rac{-t}{RC}
ight)}$$

The charge stored increases with time:

$$Q_t = CV \left[1 - e^{\left(rac{-t}{RC}
ight)}
ight]$$

Increasing the charge stored

 $C=rac{\epsilon_0A}{d}$, so decreasing d or increasing A will increase stored charge. If d gets too small, however, electrons will tunnel from one plate to the other.

Increasing the charge stored

 $C=rac{\epsilon_0 A}{d}$, so decreasing d or increasing A will increase stored charge. If d gets too small, however, electrons will tunnel from one plate to the other.

Alternatively, use a dielectric

 An electrically insulating material in which an applied electric field causes a displacement (but not a flow) of charge.

Dielectric capacitor

Adding a dielectric between the plates increases the charge capacity.

$$C_{
m dielec} = rac{\epsilon_r \epsilon_0 A}{d}$$

where ϵ_r is the relative permittivity of the dielectric (ϵ_r = ϵ / ϵ_0) and ϵ_r > ϵ_0

Example permittivities

Material	Relative Permittivity, ϵ_{r}
Vacuum	
Paper	2.0 - 6.0
Polymers	2.0 - 6.0
Silicon oil	2.7 - 2.8
Quartz	3.8 - 4.4
Glass	4 - 15
Al_2O_3	10
Ta_2O_5	26
TiO ₂	100
CaTiO ₃	130
SrTiO ₃	285
BaTiO ₃	1000 - 10000

Characterising dielectrics

Apply an alternating (sinusoidal) field, and measure the resulting current and phase shift - Impedance spectroscopy

- Applied field, $E_t=E_0\sin(\omega t)$, where $\omega=2\pi f$ Response current, $I_t=I_0\sin(\omega t+\phi)$

Characterising dielectrics

Apply an alternating (sinusoidal) field, and measure the resulting current and phase shift - Impedance spectroscopy

- ullet Applied field, $E_t=E_0\sin(\omega t)$, where $\omega=2\pi f$
 - Response current, $I_t = I_0 \sin(\omega t + \phi)$

The total impedance $(Z(\omega)=rac{E_t}{I_t})$ can be represented as a complex number:

- $Z(\omega) = Z_0(\cos\phi + i\sin\phi)$
- In an ideal dielectric, current and voltage should be 90° out-of-phase ($\phi=90^\circ$).
 - For a resistive material, current and voltage should be in phase (φ = 0°).

Impedance analysis

Two standard ways to display data:

- Nyquist plot: -Z" (90° out-of-phase) against Z' (in phase)
 - phase).
 Bode plot: |Z| and φ plotted against frequency

Impedance analysis

Two standard ways to display data:

- Nyquist plot: -Z" (90° out-of-phase) against Z' (in phase).
 - phase).
 Bode plot: |Z| and φ plotted against frequency

'Real' Impedance

Many real materials exhibit behaviour like a parallel RC circuit:

e.g.

- Ions flowing through a solution and building up a layer on the electrode (see
- Ionic conduction in a ceramic material building up a charge gradient

More complex behaviour is often observed, and can be modelled using equivalent

Real dielectric response

characteristic timescale. This timescale means real dielectrics show a peak in ϕ with Changing the electric field direction causes the dipoles to rearrange with a frequency, corresponding to the maximum energy loss.

Real dielectric response

characteristic timescale. This timescale means real dielectrics show a peak in ϕ with Changing the electric field direction causes the dipoles to rearrange with a frequency, corresponding to the maximum energy loss.

This *dielectric lo*ss is often characterised as $an\delta =$ where $\delta=90^\circ-\phi$

Dielectric breakdown

Dielectrics also break down under high electric fields

- Electrons start to conduct, causing localised heating and breakdown
- This is quantified as the Dielectric Strength (in e.g. V m⁻¹)

How good is a capacitor for energy storage?

Take e.g. a BaTiO₃-based capacitor:

- $\varepsilon_{\rm r} \approx 1000$
- Dielectric strength ≈ 10 MV m⁻¹
- Thickness ≈ 1 µm

Assuming a total volume of 5 cm³ (similar to an AA battery):

How good is a capacitor for energy storage?

Take e.g. a BaTiO₃-based capacitor:

- $\varepsilon_{\rm r} \approx 1000$
- Dielectric strength ≈ 10 MV m⁻¹
 - Thickness ≈ 1 µm

Assuming a total volume of 5 cm³ (similar to an AA battery):

$$A = rac{5 imes 10^{-6}}{1 imes 10^{-6}} = 5 ext{ m}^2$$
 $C = rac{\epsilon_r \epsilon_0 A}{d} = 0.04427 ext{ F}$

How good is a capacitor for energy storage?

Take e.g. a BaTiO₃-based capacitor:

- $\varepsilon_{\rm r} \approx 1000$
- Dielectric strength ≈ 10 MV m⁻¹
 - Thickness ≈ 1 µm

Assuming a total volume of 5 cm³ (similar to an AA battery):

$$A = \frac{5 \times 10^{-6}}{1 \times 10^{-6}} = 5 \text{ m}^2$$

$$C = rac{\epsilon_r \epsilon_0 A}{d} = 0.04427 \ \mathrm{F}$$

Maximum voltage = $10 imes 10^6/1 imes 10^-6 = 10$ V, therefore:

$$Q = CV = 0.4427 \text{ Coulombs} = 0.1229 \text{ mAh}$$

This is a volumetric capacity of 24.6 mAh L^{-1} , Energy capacity = 0.245 Wh L^{-1} This is a higher than realistic estimate due to ignoring electrodes, packaging etc. but is still less than a battery!

Why are they useful then?

Although energy capacity is worse than for batteries (often by a lot), capacitors can discharge the charge very rapidly

A discharge current of 100 Amps can be easily achieved.

This gives a high specfic power. For the BaTiO₃ capacitor considered before, this gives power density approximately 1000 W L⁻¹!

Why are they useful then?

Although energy capacity is worse than for batteries (often by a lot), capacitors can discharge the charge very rapidly

A discharge current of 100 Amps can be easily achieved.

This gives a high specfic power. For the BaTiO₃ capacitor considered before, this gives power density approximately 1000 W L⁻¹!

7

Supercapacitors

- Higher capacitance (but lower voltage limits) than other capacitors
- Sometimes known as ultracapacitors or electrostatic double layer capacitors (EDLCs)

Supercapacitors

- Higher capacitance (but lower voltage limits) than other capacitors
- Sometimes known as ultracapacitors or electrostatic double layer capacitors (EDLCs)

Rather than a ceramic dielectric, supercapacitors rely on an ionic electrolyte solution, and an ion-permeable membrane to prevent electronic conduction.

0

Supercapacitor operation

Charge is stored in a **Helmholtz double layer** at each electrode:

This separation of +ve and -ve charges occurs over a few angstroms

This is effectively a capacitor with very small d

Capacitance

Because there are two double-layers, a supercapacitor behaves as two capacitors connected in series:

Capacitance

Because there are two double-layers, a supercapacitor behaves as two capacitors connected in series:

For a symmetric supercapacitor (commonly called ultracapacitor, where anode and $rac{1}{C}=rac{1}{C_a}+rac{1}{C_c}$

cathode are the same material):

$$C=rac{C_A}{2}$$

Capacitance

Because there are two double-layers, a supercapacitor behaves as two capacitors connected in series:

$$rac{1}{C}=rac{1}{C_a}+rac{1}{C_c}$$

For a symmetric supercapacitor (commonly called ultracapacitor, where anode and cathode are the same material):

$$C = \frac{C_A}{2}$$

The total energy stored is:

$$E\!=\!rac{QV^2}{2}$$

Charging voltages are typically 1-3 V (depending on electrolyte).

Electrolytes Aqueous

- Acids (e.g. H₂SO₄)
- Alkalis (KOH)
 NaClO₄ or LiClO₄
 - LiAsF₆

Organic

carbonate, tetrahydrofuran with: e.g. acetonitrile, propylene

- tetrafluoroborate, N(Et)₄BF₄ Tetraethylammonium
 - tetrafluoroborate, Triethyl(methyl) NMe(Et)₃BF₄

Electrode materials

C \propto amount of double-layer \propto A \rightarrow electrodes are designed to have maximum area

Porous (activated) carbon

- Surface area exceeding 3000 m² g⁻¹
- Trade-off between surface area and pore size
- Smaller pores limit maximum current (power density) but increase energy capacity

Electrode materials

C α amount of double-layer α A \rightarrow electrodes are designed to have maximum area

Porous (activated) carbon

- Surface area exceeding 3000 m² g⁻¹
- Trade-off between surface area and pore size
- Smaller pores limit maximum current (power density) but increase energy capacity
- Activated carbon is relatively expensive and potentially unsustainable
- High temperatures and aggressive chemical activation required
 - Biochar (a by-product of biofuel production) is one alternative

Pseudocapacitance

One way to increase energy storage in supercapacitors is to add redox-active species.

Pseudocapacitance

One way to increase energy storage in supercapacitors is to add redox-active species.

- Must be fast, reversible redox processes (so that power density remains high)
- Pseudocapacitance can contribute 100 times the double-layer capacitance

NOTE: In order to be considered pseudocapacitance, charge stored must depend inearly on the applied voltage (otherwise it is behaving like a battery)

Hybrid technologies

One of the main drawbacks of supercapacitors is that their voltage drops with time

Not ideal for powering devices

Hybrid technologies

One of the main drawbacks of supercapacitors is that their voltage drops with time

Not ideal for powering devices

Hybrid capacitors combine a battery-electrode with a supercapacitor electrode

- e.g. replace carbon cathode with NiOOH
- Cbattery ≈ 10 × C_{supercap}

$$\circ \frac{1}{C} = \frac{1}{C_A} + \frac{1}{10C_A} \approx \frac{1}{C_A}$$

 In some cases (e.g. thin-film Li electrodes) fast redox kinetics still allow high power applications

Discharge Time ⇒

Regenerative braking

- Recovers kinetic energy lost when braking
 - Large currents generated; supercapacitors required to store charge

Regenerative braking

- Recovers kinetic energy lost when braking
 Large currents generated; supercapacitors
 - required to store charge

Medical devices i.e. pacemakers

 Takes advantage of their lowmaintenance / long life

Regenerative braking

- Recovers kinetic energy lost when braking
 Large currents generated; supercapacitors
 - required to store charge

Medical devices i.e. pacemakers

 Takes advantage of their lowmaintenance / long life

