

甲醛模组

(型号: ZE08-CH₂0)

使用说明书

版本号: 1.6

实施日期: 2018.11.30

郑州炜盛电子科技有限公司 Zhengzhou Winsen Electronic Technology Co., Ltd 声明

本说明书版权属郑州炜盛电子科技有限公司(以下称本公司)所有,未经书面许可,本

说明书任何部分不得复制、翻译、存储于数据库或检索系统内,也不可以电子、翻拍、录音

等任何手段进行传播。

感谢您使用炜盛科技的系列产品。为使您更好地使用本公司产品,减少因使用不当造成

的产品故障,使用前请务必仔细阅读本说明书并按照所建议的使用方法进行使用。如果您不

依照本说明书使用或擅自去除、拆解、更换传感器内部组件,本公司不承担由此造成的任何

损失。

您所购买产品的颜色、款式及尺寸以实物为准。

本公司秉承科技进步的理念,不断致力于产品改进和技术创新。因此,本公司保留任何

产品改进而不预先通知的权力。使用本说明书时,请确认其属于有效版本。同时,本公司鼓

励使用者根据其使用情况,探讨本产品更优化的使用方法。

请妥善保管本说明书,以便在您日后需要时能及时查阅并获得帮助。

郑州炜盛电子科技有限公司

电化学甲醛模组 ZE08-CH₂O

产品描述

ZE08-CH20型电化学甲醛模组是一个通用型、小型化模组。利用电化学原理对空气中存在的CH20进行探测,具有良好的选择性,稳定性。内置温度传感器,可进行温度补偿;同时具有数字输出与模拟电压输出,方便使用。ZE08-CH20是将成熟的电化学检测技术与精良的电路设计紧密结合,设计制造出的通用型气体模组。

模组特点

高灵敏度、高分辨率、低功耗、使用寿命长 提供 UART、模拟电压信号等多种输出方式 高稳定性、优秀的抗干扰能力、温度补偿、卓越的线性输出

主要应用

便携式仪表、空气质量监测设备、空气净化机、新风换气系统、空调、智能家居设备等场所。

技术指标

产品型号	ZE08-CH ₂ O
检测气体	甲醛
干扰气体	酒精,一氧化碳等气体
输出数据	DAC (0.4~2V 电压信号对应 浓度:0~满量程) UART 输出(3V TTL 电平)
工作电压	3. 7V∼5. 5V
预热时间	≤3 分钟
响应时间	≤60 秒
恢复时间	≤60 秒
量程	0∼5 ppm
分辨率	≤0.01ppm
工作温度	-20℃~50℃
工作湿度	15%RH-90%RH(无凝结)
存储温度	0~25°C
使用寿命	5年(空气中 18℃~25℃)

表1

图 1: 模组结构图

管脚定义

表 2

管脚名称	管脚说明			
Pin1	预留			
Pin2	DAC (0.4~2V, 对应0-满量程)			
Pin3	GND			
Pin4	Vin (电压输入 3.7V~5.5V)			
Pin5	UART (RXD) 0~3.3V 数据输入			
Pin6	UART (TXD) 0~3.3V 数据输出			
Pin7	预留			

图 2: 模组引脚图

通讯协议

1 通用设置

丰	3
ᅏ	J

波特率	9600
数据位	8位
停止位	1 位
校验位	无

2 通讯命令

通信分为主动上传式和问答式,出厂默认主动上传,每间隔1S发送一次浓度值。如果用户切换到问答模式下,需要重新切换为主动上传时,发送如下命令行格式即可:

表 4

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
起始位	保留	切换命令	主动上传	保留	保留	保留	保留	校验值
0xFF	0x01	0x78	0x40	0x00	0x00	0x00	0x00	0x47

主动上传的数据显示格式如下:

表 5

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
起始位	气体名称	单位	小数位数	气体浓度	气体浓度	满量程	满量程	校验值
	(CH2O)	(ppb)	无	高位	低位	高位	低位	
0xFF	0x17	0x04	0x00	0x00	0x25	0x13	0x88	0x25

注释: 气体浓度值(PPB)=(气体浓度高位*256+气体浓度低位). 当转换为 PPM 时: PPM= PPB/1000. 1PPM×1.25 = 1.25mg/m3.

当用户需要问答模式时,可通过发送如下命令格式来关闭主动上传的数据,再发送读取浓度的命令即可。关闭主动上传的命令行格式如下:

表 6

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
起始位	保留	切换命令	问答	保留	保留	保留	保留	校验值
0xFF	0x01	0x78	0x41	0x00	0x00	0x00	0x00	0x46

问答模式下,读取浓度的命令格式如下:

表 7

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
起始位	保留	命令	保留	保留	保留	保留	保留	校验值
0xFF	0x01	0x86	0x00	0x00	0x00	0x00	0x00	0x79

返回的传感器浓度值显示格式如下:

表 8

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
起始位	命令	气体浓度高位	气体浓度低位	保留	保留	气体浓度	气体浓度	校验值
		(ug/m3)	(ug/m3)			高位(ppb)	低位(ppb)	
0xFF	0x86	0x00	0x2A	0x00	0x00	0x00	0x20	0x30

气体浓度值=气体浓度高位*256+气体浓度低位

3 校验和计算

以诚为本、信守承诺 创造完美、服务社会

交叉干扰特性

表 9

	• • •	
气体	浓度/ppm	HCHO 等同
甲醛	5	5
苯	10	0.1
甲苯	10	0.46
乙酸	200	0.52
酒精	100	40.6
硫化氢	50	3
一氧化碳	200	0.64

包装方法

- 1. 将传感器按照同一方向放入吸塑托盘中。
- 2. 按照包装箱规格,将装好传感器的吸塑托盘摆放相应层数。
- 3. 将打包好的传感器放入纸箱。
- 4. 纸箱封口,打包。
- 5. 单次发货数量小于最小包装箱的订单,不限于此规范。

每个吸塑托盘容纳5×10=50个模组

向上

注意事项

- 1、模组避免接触有机溶剂(包括硅胶及其它胶粘剂)、涂料、药剂、油类及高浓度气体。
- 2、模组不可用树脂材料完全封装,也不可浸没在无氧环境中,否则会损坏传感器的性能;
- 3、模组不能长时间应用于含有腐蚀性气体的环境中,腐蚀性气体会损害传感器;
- 2、模组不可经受过度的撞击或震动。
- 3、模组初次上电使用需预热24-48小时左右,使模组充分稳定后正常测试。
- 4、请勿将该模组应用于涉及人身安全的系统中。
- 5、请勿将模组安装在强对流空气环境下使用,。
- 6、请勿将模组长时间放置于高浓度有机气体中,长期放置会导致传感器零点发生漂移,恢复缓慢。
- 7、 禁止用热熔胶或者固化温度高于80℃以上的密封胶封装模组;
- 8、 禁止长时间在高浓度碱性气体中存放和使用。

附录:结构尺寸图

单位: mm

未注公差尺寸允许偏差±0.2mm

郑州炜盛电子科技有限公司

地址:郑州市高新技术开发区金梭路 299 号 电话:0371-60932955/60932966/60932977

传真:0371-60932988 微信号: winsensor

E-mail:sales@winsensor.com

Http://www.winsensor.com

