Math 257/316 Assignment 1, 2024

Due Monday January 22, Submit online in a PDF document on Canvas by 11:59 pm of the due date

Problem 1 (Submit): (ODE Review) Find the general solutions of the following equations:

a.
$$y'' - 2y' + 2y = e^x \cos x$$

b.
$$(1-x)y' = y \ln y$$

c.
$$y'' - 4y' + 4y = \sin x + x^2$$

d.
$$(1+x^2)y' + 2xy = 1$$

a.
$$2x^2y'' - xy' + y = x^{1/2}$$

b.
$$x^2y'' - xy' + y = 0$$

c.
$$x^2y'' - xy' + 5y = x^2$$

Problem 2 (Submit): (Power series solution): Consider the following linear ODEs:

$$y' + (1+x)y = 0 (1)$$

$$y'' + 4y = 0 (2)$$

- a. Use the methods you learned for solving ODEs to solve equations (1) and (2).
- b. Expand the solutions to (1) and (2) as Taylor series about the point $x_0 = 0$.
- c. Now for each of equations (1) and (2) assume a power series solution of the form

$$y(x) = \sum_{n=0}^{\infty} a_n x^n \tag{3}$$

obtain a recursion for the coefficients a_n . Use these recursions to determine the series representation of each solution. Compare these results to the series obtained in part b above.

Problem 3 (Do not submit): (**Power series solution**): Consider the following first order linear ODEs:

$$y' + (1 - 2x)y = 0 (4)$$

$$xy' + (2 - x)y = 0 (5)$$

- a. Solve the differential equations (4) and (5) using the appropriate integrating factors.
- b. Expand the solution to (4) as Taylor series about the point $x_0 = 0$. Expand the exponential in the solution to (5) as a power series.
 - c. Now for (4) assume a power series solution of the form

$$y(x) = \sum_{n=0}^{\infty} a_n x^n \tag{6}$$

obtain a recursion for the coefficients a_n . Use these recursions to determine the series representation of the solution. Compare this result to the series obtained in part b above.

- d. Try using the same power series expansion (6) to solve (5). What happens?
- e. Consider the following recursive strategy to generate an approximate solution to (5). Rewrite (5) as

$$xy' + 2y = xy \tag{7}$$

Now assuming $x \to 0$ and discarding the right hand side of (7), find a first order approximation y_0 as the solution to

$$xy_0' + 2y_0 = 0$$

Now substitute y_0 on the right side of (7) and solve for y_1

$$xy_1' + 2y_1 = xy_0$$

Continue this process till you obtain y_2 . How does y_2 compare with the series solution to (5) obtained in b? Can you use this series to motivate a modification to the series expansion (6) that would be appropriate to use to obtain a series solution to (5)?