Algoritmo Mergesort Estrutura de Dados — QXD0010

Prof. Roberto Cabral

Universidade Federal do Ceará

 2° semestre/2022

Vimos três algoritmos de ordenação $O(n^2)$:

- selectionsort
- bubblesort
- insertionsort

Vimos três algoritmos de ordenação $O(n^2)$:

- selectionsort
- bubblesort
- insertionsort

Nessa aula veremos um algoritmo de ordenação $O(n \log n)$

Vimos três algoritmos de ordenação $O(n^2)$:

- selectionsort
- bubblesort
- insertionsort

Nessa aula veremos um algoritmo de ordenação $O(n \log n)$

Ele é baseado em uma técnica de projeto de algoritmos chamada Divisão e Conquista ou Dividir para Conquistar

Um problema subjacente: Intercalação de dois subvetores ordenados

Antes de tratar o problema da ordenação propriamente dito, vamos resolver um problema auxiliar:

Problema: Dados subvetores crescentes A[p..q] e A[q+1..r], como rearranjar A[p..r] em ordem crescente?

 Podemos dizer que o problema consiste em "intercalar" os dois subvetores dados.

Antes de tratar o problema da ordenação propriamente dito, vamos resolver um problema auxiliar:

Problema: Dados subvetores crescentes A[p..q] e A[q+1..r], como rearranjar A[p..r] em ordem crescente?

 Podemos dizer que o problema consiste em "intercalar" os dois subvetores dados.

É fácil resolver o problema em tempo proporcional ao quadrado do tamanho do vetor A:

Antes de tratar o problema da ordenação propriamente dito, vamos resolver um problema auxiliar:

Problema: Dados subvetores crescentes A[p..q] e A[q+1..r], como rearranjar A[p..r] em ordem crescente?

 Podemos dizer que o problema consiste em "intercalar" os dois subvetores dados.

É fácil resolver o problema em tempo proporcional ao quadrado do tamanho do vetor A:

- Basta aplicar um dos algoritmos de ordenação da aula anterior.
- Mas com isso ignoramos o fato de que as duas "metades" do vetor original A já estão ordenadas.
- Podemos ser mais eficientes?

Percorremos os dois subvetores

- Percorremos os dois subvetores
- Pegamos o mínimo e inserimos em um vetor auxiliar

- Percorremos os dois subvetores
- Pegamos o mínimo e inserimos em um vetor auxiliar

- Percorremos os dois subvetores
- Pegamos o mínimo e inserimos em um vetor auxiliar

- Percorremos os dois subvetores
- Pegamos o mínimo e inserimos em um vetor auxiliar

- Percorremos os dois subvetores
- Pegamos o mínimo e inserimos em um vetor auxiliar

- Percorremos os dois subvetores
- Pegamos o mínimo e inserimos em um vetor auxiliar

- Percorremos os dois subvetores
- Pegamos o mínimo e inserimos em um vetor auxiliar

- Percorremos os dois subvetores
- Pegamos o mínimo e inserimos em um vetor auxiliar

- Percorremos os dois subvetores
- Pegamos o mínimo e inserimos em um vetor auxiliar
- Depois copiamos o restante

- Percorremos os dois subvetores
- Pegamos o mínimo e inserimos em um vetor auxiliar
- Depois copiamos o restante

- Percorremos os dois subvetores
- Pegamos o mínimo e inserimos em um vetor auxiliar
- Depois copiamos o restante

- Percorremos os dois subvetores
- Pegamos o mínimo e inserimos em um vetor auxiliar
- Depois copiamos o restante
- No final, copiamos do vetor auxiliar para o original

- Percorremos os dois subvetores
- Pegamos o mínimo e inserimos em um vetor auxiliar
- Depois copiamos o restante
- No final, copiamos do vetor auxiliar para o original


```
1 /* A funcao recebe vetores crescentes A[p..q] e A[q+1..r]
2 * e rearranja A[p..r] em ordem crescente */
3 void Intercala (int A[], int p, int q, int r) {
    int *W = new int[r-p+1]; // Vetor auxiliar
   int i = p;
5
   int j = q+1;
6
7
    int k = 0;
8
    // Intercala A[p..q] e A[q+1..r]
9
    while (i <= q && j <= r) {
10
    if (A[i] <= A[i])</pre>
11
       W[k++] = A[i++];
12
    else
13
        W[k++] = A[j++];
14
15
16
    while (i \le q) W[k++] = A[i++];
    while (i \le r) W[k++] = A[i++]:
17
18
    // Copia vetor ordenado W para o vetor A
19
    for (i = p; i <= r; i++)</pre>
20
      A[i] = W[i-p];
21
22
    delete[] W; // libera memoria alocada
23
24 }
```


 A função Intercala consome tempo proporcional ao número de comparações entre elementos do vetor.

 A função Intercala consome tempo proporcional ao número de comparações entre elementos do vetor.

Quantas comparações são feitas?

• a cada passo, aumentamos um em i ou em j

 A função Intercala consome tempo proporcional ao número de comparações entre elementos do vetor.

- a cada passo, aumentamos um em i ou em j
- no máximo n = r p + 1

 A função Intercala consome tempo proporcional ao número de comparações entre elementos do vetor.

- a cada passo, aumentamos um em i ou em j
- no máximo n = r p + 1
- Logo, o consumo de tempo no pior caso é proporcional ao número de elementos do vetor, ou seja, ${\cal O}(n).$

 A função Intercala consome tempo proporcional ao número de comparações entre elementos do vetor.

- a cada passo, aumentamos um em i ou em j
- no máximo n = r p + 1
- Logo, o consumo de tempo no pior caso é proporcional ao número de elementos do vetor, ou seja, O(n).
- O algoritmo de intercalação é, portanto, muito eficiente.

Observação:

- A recursão parte do princípio que é mais fácil resolver problemas menores.
- Para certos problemas, podemos dividi-los em duas ou mais partes.

Observação:

- A recursão parte do princípio que é mais fácil resolver problemas menores.
- Para certos problemas, podemos dividi-los em duas ou mais partes.

Etapas do paradigma de Divisão e Conquista:

- o Dividir: Quebramos o problema em vários subproblemas menores.
 - ex: quebramos um vetor a ser ordenado em dois.

Observação:

- A recursão parte do princípio que é mais fácil resolver problemas menores.
- Para certos problemas, podemos dividi-los em duas ou mais partes.

Etapas do paradigma de Divisão e Conquista:

- o Dividir: Quebramos o problema em vários subproblemas menores.
 - ex: quebramos um vetor a ser ordenado em dois.
- Conquistar: Os subproblemas são resolvidos recursivamente. Se eles forem pequenos o bastante, eles são resolvidos usando o próprio algoritmo que está sendo definido.
 - ex: um subvetor com um único elemento já está ordenado.

Observação:

- A recursão parte do princípio que é mais fácil resolver problemas menores.
- Para certos problemas, podemos dividi-los em duas ou mais partes.

Etapas do paradigma de Divisão e Conquista:

- o Dividir: Quebramos o problema em vários subproblemas menores.
 - ex: quebramos um vetor a ser ordenado em dois.
- Conquistar: Os subproblemas são resolvidos recursivamente. Se eles forem pequenos o bastante, eles são resolvidos usando o próprio algoritmo que está sendo definido.
 - ex: um subvetor com um único elemento já está ordenado.
- Combinar: Combinamos a solução dos problemas menores a fim de obter a solução para o problema maior.
 - ex: intercalamos os dois vetores ordenados.

Ordenação por intercalação (MergeSort)

• Algoritmo criado por John Von Neumann em 1945.

Ordenação por intercalação (MergeSort)

O algoritmo MergeSort segue de perto o paradigma de Divisão e Conquista. Intuitivamente, ele opera da seguinte maneira:

O algoritmo MergeSort segue de perto o paradigma de Divisão e Conquista. Intuitivamente, ele opera da seguinte maneira:

• Dividir: Dado um vetor com n=r-p+1 inteiros $A[p\dots r]$, que se deseja ordenar, divida esse vetor em dois subvetores de elementos subsequentes $A[p\dots q]$ e $A[q+1\dots r]$, de modo que cada um dos subvetores tenha tamanho aproximadamente n/2.

O algoritmo MergeSort segue de perto o paradigma de Divisão e Conquista. Intuitivamente, ele opera da seguinte maneira:

- Dividir: Dado um vetor com n=r-p+1 inteiros $A[p\dots r]$, que se deseja ordenar, divida esse vetor em dois subvetores de elementos subsequentes $A[p\dots q]$ e $A[q+1\dots r]$, de modo que cada um dos subvetores tenha tamanho aproximadamente n/2.
- Conquistar: Ordene os dois subvetores $A[p\dots q]$ e $A[q+1\dots r]$ recursivamente, usando o MergeSort.

O algoritmo MergeSort segue de perto o paradigma de Divisão e Conquista. Intuitivamente, ele opera da seguinte maneira:

- Dividir: Dado um vetor com n=r-p+1 inteiros $A[p\dots r]$, que se deseja ordenar, divida esse vetor em dois subvetores de elementos subsequentes $A[p\dots q]$ e $A[q+1\dots r]$, de modo que cada um dos subvetores tenha tamanho aproximadamente n/2.
- Conquistar: Ordene os dois subvetores $A[p\dots q]$ e $A[q+1\dots r]$ recursivamente, usando o MergeSort.
- Combinar: Intercale os dois subvetores ordenados a fim de produzir o vetor com n inteiros ordenados.

- Recebemos um vetor A de tamanho n = r p + 1 com limites:
 - O vetor começa na posição A[p]
 - o O vetor termina na posição A[r]

- Recebemos um vetor A de tamanho n = r p + 1 com limites:
 - O vetor começa na posição A[p]
 - o O vetor termina na posição A[r]
- Dividimos o vetor em dois subvetores de tamanho n/2

- Recebemos um vetor A de tamanho n = r p + 1 com limites:
 - O vetor começa na posição A[p]
 - O vetor termina na posição A[r]
- Dividimos o vetor em dois subvetores de tamanho n/2
- O caso base é um vetor de tamanho 0 ou 1

- Recebemos um vetor A de tamanho n = r p + 1 com limites:
 - O vetor começa na posição A[p]
 - O vetor termina na posição A[r]
- Dividimos o vetor em dois subvetores de tamanho n/2
- O caso base é um vetor de tamanho 0 ou 1

```
1 void mergesort(int A[], int p, int r) {
2     if (p < r) {
3         int q = (p + r) / 2; // Dividir
4         // Conquistar
5         mergesort(A, p, q);
6         mergesort(A, q + 1, r);
7         // Combinar
8         Intercala(A, p, q, r);
9     }
10 }</pre>
```


-	-	-0	11	0.1	10	1 77	0
6	(3	11	31	13	11	0

${\sf Merge\ Sort\ --\ Simulação\ 1}$

	Ę	5	7	7		}	1	1	3	1	1	3	1	7	8	3	
5	,	7	7	:	3	1	1			3	1	1	3	1	7	8	3

	Ę	5	7		3	11	31	13	3	17	8	3			
Ę	<u> </u>	7	7	3	1	1	3	1	1	3 1	17	8	3		
5	7	7		[3	11		3		13				8	٦

	5	7	3	11	31	13	17	8]	
	5 7	7 ;	3 1	1	3	1 1	3 1	7	8	
5	7		3	11		31	13		17	8
5	7		3	11	3	1	13	1	.7	8
5	7		3	11]	13	31		8	17

	5	7	3	11	31	13	17	8]	
	5	7	3 1	1	3	1 1	3 1	7	8	
5	7]	3	11		31	13		17	8
5	7		3	11	3	1	13		.7	8
5	7]	3	11		13	31		8	17
	3	5	7 1	.1	8	3 1	3 1	7 3	31	

• No primeiro nível fazemos um merge com n elementos

- No primeiro nível fazemos um merge com n elementos
- No segundo fazemos dois merge com n/2 elementos

- No primeiro nível fazemos um merge com n elementos
- No segundo fazemos dois merge com n/2 elementos
- No (k+1)-ésimo fazemos 2^k merge com $n/2^k$ elementos

- No primeiro nível fazemos um merge com n elementos
- No segundo fazemos dois merge com n/2 elementos
- No (k+1)-ésimo fazemos 2^k merge com $n/2^k$ elementos
- No último gastamos tempo constante n vezes

• No nível k gastamos tempo $\leq c \cdot n$

- No nível k gastamos tempo $\leq c \cdot n$
- Quantos níveis temos?

- No nível k gastamos tempo $\leq c \cdot n$
- Quantos níveis temos?
 - \circ Dividimos n por 2 até que fique menor ou igual a 1

- No nível k gastamos tempo $\leq c \cdot n$
- Quantos níveis temos?
 - o Dividimos n por 2 até que fique menor ou igual a 1
 - \circ Ou seja, $l = \lg n$

- No nível k gastamos tempo $\leq c \cdot n$
- Quantos níveis temos?
 - \circ Dividimos n por 2 até que fique menor ou igual a 1
 - \circ Ou seja, $l = \lg n$
- Tempo total: $c n \lg n = O(n \lg n)$

Qual o tempo de execução para n que não é potência de 2?

ullet Seja 2^k a próxima potência de 2 depois de n

- ullet Seja 2^k a próxima potência de 2 depois de n
 - \circ Exemplo: Se n=3000, a próxima potência é $4096=2^{12}$

- Seja 2^k a próxima potência de 2 depois de n
 Exemplo: Se n = 3000, a próxima potência é 4096 = 2¹²
- Temos que $2^{k-1} < n < 2^k$. Ou seja, $2^k < 2n$.

- Seja 2^k a próxima potência de 2 depois de n
 Exemplo: Se n = 3000, a próxima potência é 4096 = 2¹²
- Temos que $2^{k-1} < n < 2^k$. Ou seja, $2^k < 2n$.
- ullet O tempo de execução para n é menor do que

- Seja 2^k a próxima potência de 2 depois de n
 Exemplo: Se n = 3000, a próxima potência é 4096 = 2¹²
- Temos que $2^{k-1} < n < 2^k$. Ou seja, $2^k < 2n$.
- ullet O tempo de execução para n é menor do que

$$c \, 2^k \, \lg 2^k$$

- Seja 2^k a próxima potência de 2 depois de n
 Exemplo: Se n = 3000, a próxima potência é 4096 = 2¹²
- Temos que $2^{k-1} < n < 2^k$. Ou seja, $2^k < 2n$.
- ullet O tempo de execução para n é menor do que

$$c 2^k \lg 2^k$$

- Seja 2^k a próxima potência de 2 depois de n
 Exemplo: Se n = 3000, a próxima potência é 4096 = 2¹²
- Temos que $2^{k-1} < n < 2^k$. Ou seja, $2^k < 2n$.
- ullet O tempo de execução para n é menor do que

$$c \, 2^k \, \lg 2^k \le 2cn \, \lg(2n)$$

- Seja 2^k a próxima potência de 2 depois de n
 Exemplo: Se n = 3000, a próxima potência é 4096 = 2¹²
- Temos que $2^{k-1} < n < 2^k$. Ou seja, $2^k < 2n$.
- ullet O tempo de execução para n é menor do que

$$c 2^k \lg 2^k \le 2cn \lg(2n) = 2cn(\lg 2 + \lg n)$$

- Seja 2^k a próxima potência de 2 depois de n
 Exemplo: Se n = 3000, a próxima potência é 4096 = 2¹²
- Temos que $2^{k-1} < n < 2^k$. Ou seja, $2^k < 2n$.
- ullet O tempo de execução para n é menor do que

$$c2^{k} \lg 2^{k} \le 2cn \lg(2n) = 2cn(\lg 2 + \lg n) = 2cn + 2cn \lg n$$

- Seja 2^k a próxima potência de 2 depois de n
 Exemplo: Se n = 3000, a próxima potência é 4096 = 2¹²
- Temos que $2^{k-1} < n < 2^k$. Ou seja, $2^k < 2n$.
- ullet O tempo de execução para n é menor do que

$$c2^k \lg 2^k \le 2cn \lg(2n) = 2cn(\lg 2 + \lg n) = 2cn + 2cn \lg n = O(n \lg n)$$

Exercícios

Exercício

Implemente a função void mergeAB(int *v, int *a, int n, int *b, int m) que dados vetores a e b de tamanho n e m faz a intercalação de a e b e armazena no vetor v. Suponha que v já está alocado e que tem tamanho maior ou igual a n+m.

FIM