

معماری و سازمان کامپیوتر

دانشگاه صنعتی اصفهان

دانشکده مهندسی برق و کامپیوتر

امیر خورسندی

بهار ۱۴۰۰

ساختار حافظه

سلسله مراتب حافظه

خاصیت محلی بودن

• زمانی: داده ای که الان در حال پردازش است به زودی نیز مورد پردازش قرار خواهد گرفت.

• مکانی: داده ای که الان در حال پردازش است، داده های اطراف آن نیز مورد پردازش قرار خواهند گرفت.

امیر خورسندی ۴

حافظه اصلي

- استاتیک ✓ دائمی ✓سرعت زیاد
- حجم زیاد سخت افزار بر روی تراشه
 - دینامیک
 - √حجم سخت افزار کم
 - نیاز به شارژ مجدد

انواع دسترسی به حافظه

- دستیابی تصادفی (RAM)
 - خواندنی/نوشتنی (RWM)
 - فقط خواندنی (ROM)

• دستیابی ترتیبی

نگاشت آدرس حافظه

• یک سیستم با ۵۱۲ بایت حافظه RAM و ۵۱۲ بایت حافظه ۳

• المان هاى يايه حافظه:

۷ امیر خورسندی

	Hexadecimal	Address bus									
Component	address	10	9	8	7	6	5	4	3	2	1
RAM 1	0000-007F	0	0	0.	х	x	х	х	х	х	x
RAM 2	0080-00FF	0	0	1	X	X	x	х	X	X	X
RAM 3	0100-017F	0	1	0	x	X	x	x	X	X	X
RAM 4	0180-01FF	0	1	1	x	X	x	x	x	X	X
ROM	0200-03FF	1	x	X	х	X	x	x	X	X	X

امير خورسندي الميادي ا

یک سیستم با ۱۲۸ بایت حافظه RAM و ۵۱۲ بایت حافظه

Component	Hex Address	Address Bus			
RAM	0000-007F	000xxxxxxx			
ROM	0080-00FF 0100-017F 0180-01FF 0200-027F	001xxxxxxx 010xxxxxxx 011xxxxxxx 100xxxxxxx			

• آدرس درون تراشه باید از تمام صفر شروع و به تمام یک ختم شود.

• آدرس بیرون تراشه باید از ابتدا تا انتها ثابت بماند.

امير خورسندي امير خورسندي

Component	Hex Address	Address Bus			
ROM	0000-01FF	Oxxxxxxxx			
RAM	0200-027F	100xxxxxxx			

ابتدا حافظه با حجم بیشتر را نگاشت می کنیم.

Associative حافظه

- ذخيره و استخراج اطلاعات يک جدول
 - پایگاه داده، دیکشنری، ...

• روش نرم افزاری تاخیر زیادی دارد.

حافظه Associative حافظه

• ساختار سخت افزاری

حافظه Associative حافظه

• ساختار هر بیت

امير خورسندي المير خورسندي

Output

حافظه Associative حافظه

• ساختار هر کلمه

حافظه نهان

• ابتدا آدرس در حافظه نهان بررسی می شود که آیا وجود دارد یا نه.

• اگر وجود داشته باشد: اصابت رخ می دهد و نیازی به دسترسی به حافظه اصلی نیست.

• اگر وجود نداشته باشد: عدم اصابت رخ می دهد و بایستی به حافظه اصلی رجوع شود.

تعداد اصابت
$$=\frac{}{}$$
 نرخ اصابت تعداد کل دسترسی ها

دلایل عدم اصابت

• مدل 3Cs:

- Cold •
- Conflict •
- Capacity •

زمان دسترسی به حافظه

زمان دسترسی به حافظه اصلی X (نرخ اصابت - ۱) + زمان دسترسی به حافظه نهان = زمان دسترسی

موارد مهم در رابطه با حافظه نهان

- سیاست جای دهی اطلاعات
- سياست تشخيص وجود اطلاعات
 - سیاست جایگزینی اطلاعات
 - سیاست به روزرسانی اطلاعات

امير خورسندي امير خورسندي

سیاست های جای دهی اطلاعات

- آدرس دهی مستقیم
- آدرس دهی تماماً شرکت پذیر
- آدرس دهی شرکت پذیر مجموعه ای

آدرس دهی مستقیم

• حافظه نهان از بلوک های هم اندازه با حافظه اصلی تشکیل شده است.

100		
Valid	Tag	
		Block 0
// <u></u>		
Valid	Tag	
Valid	Tag	
		Block N-1

باقیمانده آدرس بلوک در حافظه اصلی بر تعداد بلوک حافظه نهان = شماره بلوک در حافظه نهان

Tag Block No. Word Offset

آدرس دهی تماماً شرکت پذیر

• با استفاده از حافظه شرکت پذیر پیاده سازی می شود.

• هر بلوک حافظه اصلی می تواند بدون محدودیت در هر بلوک از حافظه نهان قرار گیرد.

Tag Word Offset

آدرس دهی شرکت پذیر مجموعه ای

N/M-Way Set Associative Cache

V	Т	Block 0	
V	Т		Set1
V	Т	Block M-1	
V	Т	Block 0	
V	Т		
V	Т	Block M-1	
V	Т	Block 0	
V	Т		Set N/M
V	Т	Block M-1	

• آدرس مجموعه از روش مستقیم و آدرس بلوک درون مجموعه به صورت تماماً شرکت پذیر به دست می آید.

Tag Set No. Word Offset

مقایسه انواع سیاست های جای دهی

	Direct Map	Set Associative	Fully Associative
Cold	✓	\checkmark	✓
Conflict	✓	\checkmark	×
Capacity	×	✓	✓

سیاست های جایگزینی اطلاعات

- LRU: در گذشته دور ارجاع داشته است.
 - FIFO: به ترتیب ورود
- LFU: کمترین دفعات ارجاع را داشته است.
 - MIN: در آینده کمترین ارجاع را دارد.

•

سیاست های به روزرسانی اطلاعات

• Write Through: با هر تغییر هم حافظه نهان و هم حافظه اصلی را به روزرسانی می کند.

• Write Back: فقط در زمان خروج از حافظه نهان، حافظه اصلی را به روزرسانی می کند.

حافظه مجازي

- کاربر احساس می کند که حافظه زیادی در اختیار دارد.
- از حافظه جانبی برای ذخیره اطلاعات مازاد استفاده می شود.
- محتوای حافظه مجازی به صورت صفحه به صفحه و قطعه به قطعه به حافظه اصلی انتقال می یابد.

ترجمه آدرس مجازی به آدرس فیزیکی

ترجمه آدرس مجازی به آدرس فیزیکی (ادامه)

ترجمه آدرس مجازی به آدرس فیزیکی (ادامه)

