DIGITÁLIS TECHNIKA I

Dr. Lovassy Rita Dr. Pődör Bálint

Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet

11. ELŐADÁS

1

FUNKCIONÁLIS ELEMEK I

funkcionális elemek funkcionális elemek funkcionális elemek multiplexer dekóder komparátor osszeadó ALU BCD/7szegmenses dekóder

Funkcionális elemek – a digitális rendszerek építőkövei

3 állapotú meghaitó

FUNKCIONÁLIS ELEMEK

- Kombinációs funkcionális elemek
- Sorrendi funkcionális elemek
- Memória elemek

Kombinációs funkcionális elemek

XOR

Kódoló (encoder)

Dekódoló (decoder)

Multiplexer (MUX)

Demultiplexer (DÉMUX)

Komparátor

Aritmetikai elemek (fél-és teljes összeadó, stb.)

4

TERVEZÉS KAPUÁRAMKÖRÖKKEL

A logikai hálózatok tervezésének és realizálásának hagyományos módszere a kapuáramkörök alkalmazásán alapul.

Korszerűbb változata a programozható logikai elemeken (PLD) alapul, de ma már egyre inkább alkalmazzák az ún. FPGA (Field Programmable Gate Array) eszközöket. Ezek kapu- illetve tranzisztor szintű elemeket tartalmaznak, a chip felületén többnyire egyenletes elhelyezett konfigurálható logikai blokkokban, melyet hierarchikus huzalozási erőforrások egészítenek ki.

Sokszor azonban előnyösen alkalmazható a funkcionális elemek felhasználását is alapul vevő tervezési eljárás. ⁵

FUNKCIONÁLIS ELEMEK: INTEGRÁLT ÁRAMKÖRÖK OSZTÁLYOZÁSA

A legfontosabb funkcionális áramkörök készen rendelkezésre állnak mint ún. közepes integráltságú áramkörök (medium scale integrated (MSI) circuits).

Integrált áramkörök osztályozása komplexitás (integráltsági fok) szerint:

SSI Small Scale Integration: kb. 10 alacsony szintű elem (kapu)

MSI Medium Scale Integration: 10-100

LSI Large Scale Integration: 100-1.000

VLSI Very Large Scale Integration: > 1.000

ULSI Ultra Large Scale Integration: > 10.000

GLSI Giga Large Scale Integration: > 100.000

RLSI Ridiculously (?) Large Scale Integration: > 1.000.000

DEKÓDOLÓ (DECODER) ÁRAMKÖR

Kódolt információ dekódolása (konverzió)

Egyidőben-egyszerre csak egy logikai kimeneti változó (tehát a dekódolt) lehet igaz, a többi hamis!

2^N kimenet dekódolásához N bemenet kell!

Gyakran alkalmazott eszköz, kapható 2-, 3-, 4-,... bemenetű IC formájában

7

"1 AZ N KÖZÜL" DEKÓDOLÓK

Kombinációs áramkör: n bemenete és m kimenete van. A bemeneti kombinációk lehetséges száma 2^n , a kimenetek száma pedig m $\leq 2^n$. A kimenetek közül mindig csak az egyik 1 és az összes többi 0, vagy fordítva, az egyik 0 és a többi 1.

Az n-bites bináris bemeneti kóddal kiválaszt egyet az m kimeneti vonal közül, mely csak az adott bemeneti kód megjelenése esetén lesz aktív.

Természetesen a legtöbbször MSI integrált áramkörként megvalósított hálózat tartalmazhat egyéb "kényelmi" vezérlő bemeneteket (pl. engedélyező) is.

BINÁRIS/OKTÁLIS DEKÓDÓLÓ Oktális rendszerben három bites kódot kell nyolc vezetékre átkódolni. Megoldható BCD/DEC dekódolóval! A bemenet első három bitjét használjuk a negyediket (MSB) 0 logikai szintre (gyakorlatban 0 volt) kötjük. Ez a bemenet engedélyező bemenetként is használható.

LOGIKAI FÜGGVÉNYEK REALIZÁLÁSA DEKÓDERREL

- Tetszőleges kombinációs hálózat realizálható dekóder(ek) és VAGY kapuk felhasználásával!
- Példa: Telies összeadó (TÖ) megyaló:

Teljes összeadó (TÖ) megvalósítása egy dekóderrel és két VAGY kapuval.

29

- A TÖ logikai összefüggései (a bemenetek X, Y, és Z):
 - $S(X,Y,Z) = \Sigma 3(1, 2, 4, 7)$
 - $-C(X,Y,Z) = \Sigma 3(3, 5, 6, 7).$

 Mivel 3 bemenet és összesen 8 minterm van, egy 3-to-8 dekóderre van szükség.

TIPIKUS FELADATOK, TIPIKUS ÁRAMKÖRÖK

Bemeneti kód Kimeneti kód

n-bites bináris kódszó "1 a 2ⁿ-ből"

BCD (számjegy) "tiszta" decimális számjegy

(1 a 10-ből)

3-többletes "tiszta" decimális számjegy

(1 a 10-ből)

BCD 7-szegmenses kijelző

"tiszta" bináris (szám) BCD

BCD "tiszta" bináris

MULTIPLEXEREK ÉS DEMULTIPLEXEREK

FUNKCIÓK

A multiplexerek és demultiplexerek olyan kiválasztó áramkörök, amelyek alkalmasak mind a bemenet, mind a kimenet kiválasztására.

Kétfajta kiválasztó áramkör

- több bemenet közül egyet kapcsol a közös kimenetre (multiplexer)
- egy bemenetet kapcsol több kimenet valamelyikére (demultiplexer);

33

MULTIPLEXER Feladata több bemenő jel közül egy kiválasztása 2º adatbemenet, egy adatkimenet, n db vezérlőbemenet, melyek kiválasztanak egy adatbemenetet. Felhasználható még: párhuzamos – soros adatkonverter.

MULTIPLEXER MINT KOMBINÁCIÓS LOGIKAI HÁLÓZAT

A kimenet szempontjából a multiplexer egyszintű kombinációs hálózatnak tekinthető.

Jó tulajdonság: gyors működés.

A kiválasztott bement szempontjából a késleltetés egységnyi.

45

MULTIPLEXER: PROGRAMOZHATÓ UNIVERZÁLIS ÁRAMKÖR

Multiplexer alkalmazás:

"minterm generátor" vagy "univerzális kapu" funkció!

Pl. 8/1-es multiplexerrel (MSI, 1 tok) bármely 3-változós logikai függvény realizálható 1 db IC tokkal.

Ez a megoldás egyben programozható!

FULL ADDER: 4/2/1 MUX IMPLEMENTATION						
Ai	Bi	Ci-1	Si	Ci	Si	Ci
0	0	0	0	0	Ci-1	0
0	1	0	1 0	0	 Ci-1	Ci-1
1	0	0	1 0	0	 Ci-1	Ci-1
1	1	0	0	1	Ci-1	1 54

Demultiplexer

- Feladata egy jel kapcsolása választható kimenetre
- Egy adatbemenet,
 - 2ⁿ adatkimenet,
- n db vezérlőbemenet, melyek kiválasztanak egy adatkimenetet

56

DEMULTIPLEXEREK

Funkciójuk nagyon hasonló az "1 az N-ből" dekódolóéhoz (gyakran helyettesíthetők is egymással).

A bementi (bináris) kombináció a demultiplexereben is egy adott kimenetet jelöl ki a többi közül, de ezen felül vannak adatbementei.

