1) Image Captioning with Deep Bidirectional LSTMs and Multi-Task Learning

- Authors: CHENG WANG, HAOJIN YANG, and CHRISTOPH MEINEL, Hasso Plattner Institute, University of Potsdam
- Dataset used Flickr8K, Flickr3OK, MSCOCO, and Pascal1K datasets.
- Done using by combining a deep convolutional neural network (CNN) and two separate LSTM networks

	Flickr8K			Flickr30K				
Models	B-1	B-2	B-3	B-4	B-1	B-2	B-3	B-4
NIC (Vinyals et al. 2015) ^{G,‡}	63	41	27.2	-	66.3	42.3	27.7	18.3
X. Chen et al. (Chen and Zitnick 2014)	-	-	-	14.1	-	-	-	12.6
LRCN (Donahue et al. 2015) ^{A,‡}	-	-	-	-	58.8	39.1	25.1	16.5
DeepVS (Karpathy and Li 2015) ^V	57.9	38.3	24.5	16	57.3	36.9	24.0	15.7
m-RNN (Mao et al. 2015) ^{A,‡}	56.5	38.6	25.6	17.0	54	36	23	15
m-RNN (Mao et al. 2015) ^{V,‡}	-	-	-	-	60	41	28	19
Hard-Attention (Xu et al. 2015) V	67	45.7	31.4	21.3	66.9	43.9	29.6	19.9
ATT-FCN (You et al. 2016) ^G	-	-	-	-	64.7	46.0	32.4	23.0
C. Wang et al. (Wang et al. $2016d$) ^V	65.5	46.8	32.0	21.5	62.1	42.6	28.1	19.3
Bi-LSTM ^A	63.7	44.7	31	20.9	61.0	40.9	27.1	18.1
Bi-S-LSTM ^A	65.1	45.0	29.3	18.4	60.0	40.3	27.1	18.2
Bi-F-LSTM ^A	63.9	44.6	30.2	19.9	60.7	41.0	27.5	18.5
Bi-LSTM ^V	66.7	48.3	33.7	23	63.3	44.1	29.6	20.1
Bi-S-LSTM ^V	66.9	48.8	33.3	22.8	63.6	44.8	30.4	20.5
Bi-F-LSTM ^V	66.5	48.4	32.8	22.4	63.4	44.3	30.1	20.4
Bi-LSTM ^{A,+M}	58.4	42.1	28.6	18.2	61.0	41.4	27.8	18.5
Bi-S-LSTM ^{A,-D}	55.4	38.0	24.6	15.3	58.2	39.0	25.1	16.3

2) An Overview of Image Caption Generation Methods

- Authors: Haoran Wang , Yue Zhang, and Xiaosheng Yu
- Dataset used MSCOCO, Flickr8k, Flickr30k, PASCAL 1K, AI Challenger Dataset
- Done using Image Caption Generation with Attention Mechanism(ENCODER: CONVOLUTIONAL FEATURES), (DECODER: LONG SHORT-TERM MEMORY NETWORK)
- BLEU Score:

Ref.	Attention model	BLEU-4
[69]	Soft attention	24.3
[69]	Hard attention	25.0
[70]	Multihead/scaled dot-product	28.4
[71]	Global/local attention	25.9
[75]	Adaptive attention	33.2
[76]	Semantic attention	30.4
[77]	Spatial and channel-wise	31.1
[4]	Areas of attention	31.9
[79]	Deliberate attention	37.5

3)Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

- Authors: Kelvin Xu ,Ryan Kiros, Kyunghyun Cho, Aaron Courville, ,Ruslan Salakhutdinov, Richard S. Zemel, ,Yoshua Bengio
- Dataset used Flickr9k, Flickr30k and MS COCO.
- Done using conditional random field (CRF) prediction image tag to generate a natural language description, Attention mechanism techniques

•

Dataset	Model	BLEU-1	BLEU-2	BLEU-3	BLEU-4	METEOR
	Google NIC(Vinyals et al., 2014) ^{†Σ}	63	41	27	_	_
Flickr8k	Log Bilinear (Kiros et al., 2014a)°	65.6	42.4	27.7	17.7	17.31
	Soft-Attention	67	44.8	29.9	19.5	18.93
	Hard-Attention	67	45.7	31.4	21.3	20.30
Flickr30k	Google NIC $^{\dagger \circ \Sigma}$	66.3	42.3	27.7	18.3	_
	Log Bilinear	60.0	38	25.4	17.1	16.88
	Soft-Attention	66.7	43.4	28.8	19.1	18.49
	Hard-Attention	66.9	43.9	29.6	19.9	18.46

4) A Deep Neural Framework for Image Caption Generation Using GRU-Based Attention Mechanism

- Authors: Rashid khana, M Shujah Islama, Khadija Kanwala, Mansoor Iqbal, Md. Imran Hossaina & Zhongfu Ye
- Dataset used MS COCO.
- combined the Bahdanau attention model with GRU to allow learning to be focused on a specific portion of the image in order to improve the performance.
- The model's performance was compared to that of four pre-trained CNNs: InceptionV3, DenseNet169, ResNet101, and VGG16.

Experimental Results of state-of-the-art methods on MS-COCO								
MODEL	BLEU-1	BLEU-2	BLEU-3	BLEU-4	Rouge	CIDER	METEOR	
Google NIC [36]	0.67	0.45	0.30	0.20				
Soft Attention [31]	0.71	0.49	0.34	0.24			0.24	
MSM [2]	0.73	0.57	.043	0.33	0.54	1.02	0.25	
Attribute-driven Attention [37]	0.74	0.56	0.44		0.55	1.104		
NBT [38]	0.75		0.34			1.107	0.27	
Context-aware attention [39]	0.76	0.60	0.46	0.36	0.56	1.103	0.28	
GCN-LSTM [40]	0.77			0.36	0.57	1.107	0.28	
Performance of our proposed GRU attention-based models								
MODEL	BLEU-1	BLEU-2	BLEU-3	BLEU-4	Rouge	CIDER	METEOR	
Inception V3	0.78	0.57	0.44	0.36	0.59	1.105	0.27	
VGG16	0.74	0.57	0.44	0.33	0.56	1.109	0.26	
DenseNet169	0.74	0.56	0.43	0.36	0.58	1.103	0.27	
ResNet101	0.75	0.56	0.44	0.37	0.59	1.104	0.29	

5) Deep Visual-Semantic Alignments for Generating Image Descriptions

- Authors: Andrej Karpathy Li Fei-Fei
- **Dataset used** Flickr8K, Flickr30K and MSCOCO datasets.
- combination of Convolutional Neural Networks over image regions, bidirectional Recurrent Neural Networks over sentences, and a structured objective that aligns the two modalities through a multimodal embedding. We then describe a Multimodal Recurrent Neural Network architecture that uses the inferred alignments to learn to generate novel descriptions of image regions.

Model	B-1	B-2	B-3	B-4
Human agreement	61.5	45.2	30.1	22.0
Nearest Neighbor	22.9	10.5	0.0	0.0
RNN: Fullframe model	14.2	6.0	2.2	0.0
RNN: Region level model	35.2	23.0	16.1	14.8