中国石油大学(北京) 2023-2024 学年春季学期

《大学物理(I)》刚体、相对论大作业

姓名:_____

学号:_____

题号	_	11	总分
得分			

- (A) $\beta_A = \beta_B$.
- (B) $\beta_A > \beta_B$.
- (C) $\beta_A < \beta_B$.
- (D) 开始时 $\beta_A = \beta_B$, 以后 $\beta_A < \beta_B$.

2、一轻绳跨过一具有水平光滑轴、质量为M的定滑轮,绳的两 端分别悬有质量为 m_1 和 m_2 的物体($m_1 < m_2$), 如图所示. 绳与轮之 间无相对滑动. 若某时刻滑轮沿逆时针方向转动,则绳中的张力

- (A) 处处相等.
- (B) 左边大于右边.
- (C) 右边大于左边. (D) 哪边大无法判断.

3、有一半径为R的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动 惯量为J, 开始时转台以匀角速度 ω 的转动, 此时有一质量为m的人站在转台中 心. 随后人沿半径向外跑去, 当人到达转台边缘时, 转台的角速度为

(A)
$$\frac{J}{J+mR^2}\omega_0$$
. (B) $\frac{J}{(J+m)R^2}\omega_0$.

(B)
$$\frac{J}{(J+m)R^2}\omega_0.$$

(C)
$$\frac{J}{mR^2}\omega_0$$
.

(D)
$$\omega_0$$
.

7

4、如图所示,一水平刚性轻杆,质量不计,杆长 l=20 cm, 其上穿有两个小球. 初始时,两小球相对杆中心0对称放

置,与 O 的距离 d=5 cm,二者之间用细线拉紧. 现在让细杆绕通过中心 O 的竖 直固定轴作匀角速的转动,转速为 ω_0 ,再烧断细线让两球向杆的两端滑动。不考 虑转轴的和空气的摩擦,当两球都滑至杆端时,杆的角速度为

- (A) $2\omega_0$.
- $(B)\omega_0$.

(C)
$$\frac{1}{2} \omega_0$$
. (D) $\frac{1}{4} \omega_0$.

(D)
$$\frac{1}{4}\omega_0$$
.

Γ

7

5、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴 O 旋转, 初始状态为静止悬挂. 现有一个小球自左方水平打击细 杆. 设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小 球这一系统

- (A) 只有机械能守恒.
- (B) 只有动量守恒.
- (C) 只有对转轴 O 的角动量守恒.
- (D) 机械能、动量和角动量均守恒.

6、一圆盘正绕垂直于盘面的水平光滑固定轴 0 转动,如图射来两个质量相同,速度大小相同, 方向相反并在一条直线上的子弹,子弹射入圆 盘并且留在盘内,则子弹射入后的瞬间,圆盘 的角速度 ω

- (A) 增大.(B) 不变.(C) 减小.(D) 不能确定.

7 Γ

7、质量为m的小孩站在半径为R的水平平台边缘上。平台可以绕通过其中心的 竖直光滑固定轴自由转动,转动惯量为J. 平台和小孩开始时均静止. 当小孩突 然以相对于地面为v的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋 转的角速度和旋转方向分别为

(A)
$$\omega = \frac{mR^2}{J} \left(\frac{v}{R} \right)$$
,顺时针. (B) $\omega = \frac{mR^2}{J} \left(\frac{v}{R} \right)$,逆时针.

(B)
$$\omega = \frac{mR^2}{J} \left(\frac{v}{R} \right)$$
, 逆时针.

(C)
$$\omega = \frac{mR^2}{J + mR^2} \left(\frac{v}{R}\right)$$
,顺时针

(C)
$$\omega = \frac{mR^2}{J + mR^2} \left(\frac{v}{R}\right)$$
,顺时针. (D) $\omega = \frac{mR^2}{J + mR^2} \left(\frac{v}{R}\right)$,逆时针. [

- 8、在狭义相对论中,下列说法中哪些是正确的?
 - (1) 一切运动物体相对于观察者的速度都不能大于真空中的光速.
- (2) 质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改 变的.
- (3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系 中也是同时发生的.
- (4)惯性系中的观察者观察一个与他作匀速相对运动的时钟时, 会看到这时钟 比与他相对静止的相同的时钟走得慢些.
 - (A) (1), (3), (4). (B) (1), (2), (4).
 - (C) (1), (2), (3). (D) (2), (3), (4).

Γ

9、在某地发生两件事,静止位于该地的甲测得时间间隔为 4 s, 若相对于甲作匀 速直线运动的乙测得时间间隔为5s,则乙相对于甲的运动速度是(c表示真空中光 速)

- (A) (4/5) c. (B) (3/5) c.
- (C) (2/5) c. (D) (1/5) c.

Γ

10、边长为 a 的正方形薄板静止于惯性系 K 的 Oxv 平面内,且两边分别与 x, v轴平行. 今有惯性系 K' 以 0.8c (c 为真空中光速)的速度相对于 K 系沿 x 轴作 匀速直线运动,则从K'系测得薄板的面积为

- (A) $0.6a^2$.
- (B) $0.8 a^2$.

(C) a^2 .

(D) $a^2 / 0.6$.

Γ

11、设某微观粒子的总能量是它的静止能量的 K 倍,则其运动速度的大小 为(以 c 表示真空中的光速)

- (A) $\frac{c}{K-1}$.
- (B) $\frac{c}{K}\sqrt{1-K^2}$.
- (C) $\frac{c}{\kappa}\sqrt{K^2-1}$.
- (D) $\frac{c}{K+1}\sqrt{K(K+2)}$.

7

12、已知电子的静能为 0.51 MeV, 若电子的动能为 0.25 MeV, 则它所增加的质 $\pm \Delta m$ 与静止质量 m_0 的比值近似为

- (A) 0.1 . (B) 0.2 . (C) 0.5 . (D) 0.9 .

13、一长为 *l*、质量可以忽略的直杆,两端分别固定有质量为 2m 和 m 的小球,杆可绕通过其中心 O 且与杆垂直的水平光滑固定 轴在铅直平面内转动. 开始杆与水平方向成某一角度 θ , 处于静 止状态,如图所示.释放后,杆绕 O 轴转动.则当杆

转到水平位置时,该系统所受到的合外力矩的大小 *M*=

此时该系统角加速度的大小 $\beta =$ ______

14、如图所示,一质量为m、半径为R的薄圆盘,可绕通 过其一直径的光滑固定轴 AA' 转动,转动惯量 $J=mR^2$ / 4. 该圆盘从静止开始在恒力矩 M 作用下转动,t 秒后位 于圆盘边缘上与轴 AA'的

垂直距离为R的B点的切向加速度 $a_t = _____$,

法向加速度 a_n = .

15、一定滑轮质量为 M、半径为 R,对水平轴的转动惯量 $J = \frac{1}{2}MR^2$. 在滑轮的边 缘绕一细绳,绳的下端挂一物体.绳的质量可以忽略且不能伸长,滑轮与轴承

间无摩擦. 物体下落的加速度为 a,则绳中的张力 T=

16、如图所示, 滑块 A、重物 B 和滑轮 C 的质量分别为 m_A 、 m_B 和 m_C ,滑轮的半径为 R,滑轮对轴的转动惯量 J $=\frac{1}{2}m_{C}R^{2}$. 滑块 A 与桌面间、滑轮与轴承之间均无摩擦, 绳的质量可不计,绳与滑轮之间无相对滑

动. 滑块 A 的加速度 a=

17 、 π^+ 介子是不稳定的粒子,在它自己的参照系中测得平均寿命是 $2.6\times10^{\circ}$ s,如果它相对于实验室以 $0.8~c~(c~$ 为真空中光速)的速率运动,那么实验室坐标。	
中 测得的 π^+ 介子的寿命是s.	
18、两个惯性系中的观察者 O 和 O' 以 $0.6 c$ (c 表示真空中光速)的相对速 互相接近. 如果 O 测得两者的初始距离是 20m ,则 O' 测得两者经过时间	度

A # 1	=		。后相遇

- 20、设电子静止质量为 m_e ,将一个电子从静止加速到速率为 0.6 c (c 为真空中光速),需作功______.
- 21、有一半径为 R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为 μ ,若平板绕通过其中心且垂直板面的固定轴以角速度 ω_0 开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量 $J=\frac{1}{2}mR^2$,其中 m 为圆形平板的质量)

22、一轻绳跨过两个质量均为m、半径均为r的均匀圆盘状定滑轮,绳的两端分别挂着质量为m和 2m的重物,如图所示. 绳与滑轮间无相对滑动,滑轮轴光滑. 两个定滑轮的转动惯量均为 $\frac{1}{2}mr^2$. 将由两个定滑轮以及质量为

m 和 2m 的重物组成的系统从静止释放,求两滑轮之间绳内的张力.

23、质量分别为 m 和 2m、半径分别为 r 和 2r 的两个均匀圆盘,同轴地粘在一起,可以绕通过盘心且垂直盘面的水平光滑固定轴转动,对转轴的转动惯量为 $9mr^2/2$,大小圆盘边缘都绕有绳子,绳子下端都挂一质量为 m 的重物,如图所示. 求盘的角加速度的大小.

24、一匀质细棒长为 2L,质量为 m,以与棒长方向相垂直的速度 v_0 在光滑水平面内平动时,与前方一固定的光滑支点 O 发生完全非弹性碰撞. 碰撞点位于棒中心的一侧 $\frac{1}{2}L$ 处,如图所示. 求棒在碰撞后的瞬时绕 O 点转动的角速度

m

ω. (细棒绕通过其端点且与其垂直的轴转动时的转动惯量为 $\frac{1}{3}ml^2$, 式中的 m 和 l 分别为棒的质量和长度.)