TP 8: Les filtres analogiques du premier ordre

Préparation : Les questions « Préparation » de la Partie 1 et de la Partie 2

Partie 1 – Filtre passe-bas

Préparation

- a- Montrer que la fonction de transfert est H(j* ω) = 1/(1+j* ω/ω_0) avec $\omega_0 = \frac{1}{R_1C_1}$
- b- En observant les limites de ω , vérifier qu'il s'agit bien d'un filtre passe-bas.
- c- En déduire le module et l'argument du filtre.
- d- Calculer la fréquence de coupure à -3dB théorique du filtre. Quel est le module pour cette fréquence ?
- e- Tracez ainsi le diagramme asymptotique du filtre.
- f- Tracer le diagramme de Bode expérimental pour ce circuit à l'aide du simulateur LTSpice.

Pour cela, éditer la source de tension, aller dans le menu « Advanced ».

Dans la box « Small signal AC analysis (.AC) », mettre 1V en amplitude et 0° en phase.

Lancer la simulation, aller dans l'onglet « AC analysis ».

Choisir un balayage par « Decade », la fréquence de début et celle de fin ainsi que le nombre de points par décade (par exemple 1000).

g- Vérifier que la fréquence de coupure précédemment calculée.

Manipulations

Réaliser le circuit passe-bas avec R = $2.2k\Omega$ et C = 15nF. On place en entrée un signal sinusoïdal d'amplitude $3V_{pp}$ centré en 0V.

a- Tracer le diagramme de Bode expérimental en multipliant les points dans les zones proches de la fréquence de coupure.

Pour mesurer le déphasage, utilisez la méthode de Lissajous

(Source: http://www.webphysique.fr/Signaux-sinusoidaux.html)

b- Comparer les résultats obtenus avec la courbe théorique.

Info : Attention, les valeurs des composants de la partie préparation et manipulations sont différentes !

Pour aller plus loin...

Placer en entrée du circuit un signal carré d'amplitude 2V_{pp}. Observer l'effet du filtre sur le signal. Placez-vous maintenant à une fréquence cent fois supérieure à la fréquence de coupure. Caractériser le signal de sortie.

Quelle fonction mathématique est maintenant réalisée par ce circuit ? Trouver une explication théorique.

Partie 2 – Le filtre passe-haut

Préparation

Inverser R et C dans le circuit ci-dessus.

- a- Tracer le diagramme asymptotique de ce nouveau filtre.
- b- Réaliser à nouveau la simulation pour obtenir un nouveau diagramme de Bode.
- c- En déduir la fréquence de coupure, la pente de l'atténuation sur l'amplitude (en dB / décade de fréquence).
- d- Vérifier la correspondance entre simulation et théorie.

Manipulation

Réaliser le circuit passe-haut avec R = $4.7k\Omega$ et C=15nF. On place en entrée un signal sinusoïdal d'amplitude $3V_{pp}$ centré en 0V.

a- Caractériser le filtre comme précédemment.
Vous pouvez utiliser ici une méthode plus moderne pour mesurer le déphasage.

Pour aller plus loin...

Placer en entrée du circuit un signal carré d'amplitude $2V_{pp}$. Observer l'effet du filtre sur le signal.

Placez-vous maintenant à une fréquence cent fois inférieur à la fréquence de coupure.

Caractériser le signal de sortie.

Quelle fonction mathématique est maintenant réalisée par ce circuit ?

Trouver une explication théorique.

Info: Les parties « Pour aller plus loins » **NE SONT PAS** des questions bonus. Elles ne sont donc pas facultatives.