Напоминание

0.1 Соприкас. парабалоид

«Введем нового героя»

Опр

A - точка на пов-ти

$$\Rightarrow$$
 в окр. A поверхность задается $z=f(x,y)$ $x_0=0$ $y_0=0$ $z_0=f(x_0,\ y_0)=0$

Разложим z=f(x,y) по ф. Тейлора

$$z = f(x,y) = f(x_0, y_0) + f_x(x_0, y_0)x + f_y(x_0, y_0)y +$$

$$\frac{1}{2}(f_{xx}(x_0, y_0)x^2 + 2f_{xy}(x_0, y_0))xy + f_{yy}(x_0, y_0)y^2)$$

$$f_x(0,0) = 0 \qquad f_y(0,0) = 0$$

$$r(v,u) = \begin{cases} x = u \\ y = v \\ z = f(u,v) \end{cases} \qquad r_u = \begin{pmatrix} 1 \\ 0 \\ f_u \end{pmatrix} \qquad r_v = \begin{pmatrix} 0 \\ 1 \\ f_v \end{pmatrix}$$

 r_u и r_v - лежат в кас. плоск, а это OXY

$$z = \underbrace{\frac{1}{2}(f_{xx}(0,0)x^2 + 2f_{xy}(0,0)xy + f_{yy}(0,0)y^2)}_{\text{пов-ть 2 порядка}} + o(x^2 + y^2)$$

$$z = Ax^2 + 2Bxy + Cy^2$$

$$z = Ax^2 + Cy^2$$
 можем поворотом привести к этому

Это может быть:

- эллиптич. параболоид A, C - одного знака - гипербол. параболоид A, C - разных знаков

- параболический цилиндр $A=0, \ C \neq 0$ или наоборот - плоскость $A=0, \ C=0$

Опр

Точка А наз. элиптической, если соприкас. параболоид - элипт.

А - гиперболическая, если соприкас параболоид - гиперб.

А - парабол., если соприкас параб - параб, цилинд или плоскость

Опр

Точка А наз. точкой округления (омбилическая), если сопр. параб. пар. вращения

Опр

Точка А - точка уплощения, если соприкас. параб - плоскость

Теорема

I и II формы в точке A у поверхности и параболоида совпадают

В параметризации
$$\begin{cases} x = u \\ y = v \\ z = f(u, v) \end{cases}$$

Док-во

очевидно

Давайте поймем, от чего зависят E,F,G,...,M,V? от $\overline{r}_u,\ \overline{r}_v,\ \overline{r}_{uu},\ \overline{r}_{uv},\ \overline{r}_{vv}$

Следствие

Норм. кривизны у поверх-ти и соприкас. параб совпадают

Опр

Главные кривизны k_1 и k_2

 \overrightarrow{a} - направление в кас. плоск

 $\overline{k}_{\overrightarrow{a}}$ - нормальная кривизна

 $k_{\overrightarrow{a}}$ - норм. кривизина в напр. \overrightarrow{a}

$$\overline{k}_{\overrightarrow{a}} = k_{\overrightarrow{a}}\overline{n}$$

 $k_1 = \min_{\overrightarrow{d}} k_{\overrightarrow{d}} \qquad k_2 = \max_{\overrightarrow{d}} k_{\overrightarrow{d}}$

Опр

 \overrightarrow{a}_1 и \overrightarrow{a}_2 , соотв k_1 и k_2 наз. главными направлениями

 $\underline{\mathbf{y}_{\mathbf{TB}}}$

 $\overrightarrow{a}_1 \perp \overrightarrow{a}_2$ (докажем позже)

Опр

 $K=k_1\cdot k_2$ - гауссова кривизна

«Главный герой всего нашего курса»

Свойства

 $K>0 \;\Leftrightarrow\; A$ - эллипт типа

 $K < 0 \iff A$ - гиперб. типа

 $K=0 \;\;\Leftrightarrow\;\; A$ - параб. типа

Утв ("Блистательная теорема Гаусса")

K - инвариант относительно изометрии пов-ти

Опр

$$H=rac{k_1+k_2}{2}$$
 - средняя кривизна

<u>Смысл:</u> В мыльных пленках (незамкн.) средняя кривизна = 0

Пример: мыльная плёнка

Теорема (Эйлера)

$$k_{\overrightarrow{\partial}} = k_1 \cos^2 \Theta + k_2 \sin^2 \Theta$$

где k_1,k_2 - гл. кривизны, Θ - угол между напр. \overrightarrow{a} и \overrightarrow{a}_1

Док-во

$$z=Ax^2+Cy^2$$
 - сопр. парабол. $\overrightarrow{a}=(\cos\Theta;\ \sin\Theta)$ - направление

$$\begin{cases} x = t \cos \Theta \\ y = t \sin \Theta \\ z = Ax^2 + Cy^2 = t^2 (A \cos^2 \Theta + C \sin^2 \Theta) \end{cases}$$

$$\overrightarrow{r}'(t) = \begin{cases} \cos\Theta \\ \sin\Theta \\ rt(A\cos^2\Theta + C\sin^2\Theta) \end{cases}$$

$$r''(t) = \begin{cases} 0 \\ 0 \\ r(A\cos^2\Theta + C\sin^2\Theta) \end{cases}$$

$$k = \frac{|r'(t_0) \times r''(t_0)|}{|r'(t_0)|^{3/2}}$$

$$t_0 = 0$$

$$r'(t_0) = \begin{pmatrix} \sin\Theta \\ \cos\Theta \\ 0 \end{pmatrix} \qquad |r'(t)| = 1$$

$$r''(t_0) = \begin{pmatrix} 0 \\ 0 \\ 2(A\cos^2\Theta + C\sin^2\Theta) \end{pmatrix}$$

$$|r''(t_0)| = 2 |A\cos^2\Theta + C\sin^2\Theta|$$

$$r'' \perp r'$$
 В данном случае $k = |r''(t_0)| = 2 |A\cos^2\Theta + C\sin^2\Theta|$
$$k_{\overrightarrow{a}} = \pm k \quad \text{(от сонапр. } c \overrightarrow{n})$$

$$k_{\overrightarrow{a}} = 2(A\cos^2\Theta + C\sin^2\Theta)$$

Хотим теперь найти минимум и максимум этой штуки

$$z = Ax^{2} + 2Bxy + Cy^{2}$$
$$z = Ax^{2} + Cy^{2}$$
$$\frac{dk_{\overrightarrow{d}}}{d\Theta} =$$

Мы не хотим брать произв.

$$k_{\overrightarrow{d}} = 2(A\cos^2\Theta + C(1-\cos\Theta)) = 2C + \cos^2\Theta(2A - 2C)$$

При A=C — A - точка округл.

$$\exists A>C$$
 $\max k_{\overrightarrow{a}}$ достиг при $\Theta=0\pmod{\pi}$ $k_1=2C+2A-2C=2A$ $\min k_{\overrightarrow{a}}$ при $\frac{\pi}{2}\pmod{-\frac{\pi}{2}}$ $k_2=2C$

Следствие (1)

Пов-ть задана ур-ем z = f(x, y)

$$f(0,0) = 0$$
 $f_x(0,0) = 0$ $f_y(0,0) = 0$ $f_{xy}(0,0) = 0$
 $\Rightarrow k_1 = f_{xx}(0,0)$ $k_2 = f_{yy}(0,0)$

(или наоборот мы рассматривали только A>C)

Следствие (2)

Главные напр \bot