Sammanfattning av SK1104

Yashar Honarmandi 26 januari 2018

Sammanfattning

Detta är en sammanfatning av SK1104, med viktigt skit.

Innehåll

1	Notation	1
2	Harmoniska vågor	1
3	Klassiska vågor 3.1 Ekvationer	
4	Modellering av systemer 4.1 Vätskor och gaser	3
5	Elektromagnetism5.1 Ekvationer	
6	Teckenkonvention i optik	7

1 Notation

Om inte annat specifieras, kommer alla ekvationer använda notationen som ges i denna tabellen.

Storhet	Symbol
Position	\mathbf{r}
Tid	t
Period	T
Frekvens	f
Vinkelfrekvens	ω
Våglängd	λ
Vågvektor	k
Vågtal	k
Amplitud	A
Vågfart	c
Tryck	p

2 Harmoniska vågor

Harmoniska vågor, även kallad plana vågor, är periodiska störningar i ett medium, och beskrivs typisk av en funktion på formen $e^{i\phi}$. För dessa kan man identifiera vissa storheter, somm vi kommer göra här.

Perioden Perioden är tiden det tar för en harmonisk våg att gå genom en cykel.

Frekvens och vinkelfrekvens Av större intresse är frekvens, som ges av

$$f = \frac{1}{T},$$

som då är antalet cykler vågen går genom per enhet tid. Av ännu större intresse är vinkelfrekvensen, som ges av

$$\omega = 2\pi f = \frac{2\pi}{T},$$

och ger antalet radianer vågen går genom per enhet tid.

Våglängde Våglängden är det minsta avståndet mellan två punkter som är i fas.

Vågvektor och vågtal För vågor i flera dimensioner är det smartare att använda en vågvektor. Denna har riktning motsvarande riktningen vågen propagerar i och längd

$$k = \frac{2\pi}{\lambda}.$$

k kallas även vågtalet. Anledningen till att man heller använder vågvektorn är exakt den samma som att man heller använder frekvens än period.

Amplitud Harmoniska vågor representerar periodiska störningar. Denna störningen uppnår vid vissa tider ett maxvärde. Detta är vågens amplitud.

3 Klassiska vågor

3.1 Ekvationer

Vågekvationen

$$\nabla^2 s = \frac{1}{c^2} \frac{\mathrm{d}^2 s}{\mathrm{d}t^2}$$

Vågekvationen är fellesnämnaren för alla klassiska vågfenomen. Denna ekvation beskriver hur vågor med en väldefinierad fart c propagerar i rymden över tid. s är storheten som propagerar, t.ex. en tryckskillnad eller ett elektromagnetiskt fält.

Härledning Låt störningen vara någon $f(\mathbf{n} \cdot \mathbf{r} - ct)$, der \mathbf{n} är en enhetsvektor i samma riktning som vågens utbredning. f har denna formen eftersom vågen efter en tid t ser likadan ut om man beveger sig ett avstånd ct i riktning av vågens utbredning. Med $u = \mathbf{n} \cdot \mathbf{r} - ct$ får man

$$\frac{\mathrm{d}^2 s}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}f}{\mathrm{d}u} \frac{\mathrm{d}u}{\mathrm{d}x} = n_x^2 \frac{\mathrm{d}^2 f}{\mathrm{d}u^2},$$

:

$$\frac{\mathrm{d}^2 s}{\mathrm{d}t^2} = \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}f}{\mathrm{d}u} \frac{\mathrm{d}u}{\mathrm{d}t} = c^2 \frac{\mathrm{d}^2 f}{\mathrm{d}x^2}.$$

Om man adderar derivatorna med avseende på rymdliga koordinater får man

$$\nabla^2 s = \sum \frac{\mathrm{d}^2 s}{\mathrm{d} x_i^2} = \sum n_i^2 \frac{\mathrm{d}^2 f}{\mathrm{d} u^2} = \frac{\mathrm{d}^2 f}{\mathrm{d} u^2} \sum n_i^2 = \frac{\mathrm{d}^2 f}{\mathrm{d} u^2}$$

då ${\bf n}$ är en enhetsvektor. Detta ger då

$$\nabla^2 s = \frac{1}{c^2} \frac{\mathrm{d}^2 s}{\mathrm{d}t^2}.$$

Dispersionsrelation för harmoniska vågor

$$\omega = ck$$

Härledning Ta en harmonisk våg i en dimension, på formen $Ae^{i(kx-\omega t)}$, och testa om den uppfyller vågekvationen. Då ser du att detta uppfylls under förutsättningen att dispersionsrelationen är uppfylld.

Harmoniska vågor En lösning till vågekvationen är

$$s = Ae^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)},$$

och detta kommer vara basisen för vidare analys av vågfenomen. Merk att A kan vara komplex och innehålla information om fasförskjutningen till vågen.

 $\mathbf{H\ddot{a}rledning}$ s tillfredsställar vågekvationen om dispersionsrelationen är uppfylld. Under denna förutsettning, skriv

$$s = Ae^{i(\mathbf{k}\cdot\mathbf{r} - \omega t)} = Ae^{ik(\mathbf{n}\cdot\mathbf{r} - ct)},$$

vilket är en funktion av $\mathbf{n} \cdot \mathbf{r} - ct$, som vi ville.

3.2 Principer

Superposition Eftersom vågekvationen är linjär, interagerar vågor vid att man adderar störningarna.

4 Modellering av systemer

Syftet i denna delen är att diskutera systemer som kan modelleras med teorin bak klassiska vågor.

4.1 Vätskor och gaser

Vi tänker oss att vi trycker på vätskan eller gasen i en behållare med tvärsnittsarea A och volym V. Detta får mediet att komprimeras. För $\mathrm{d} p << p_0$ har man

$$\mathrm{d}p = -B\frac{\mathrm{d}V}{V},$$

där B är mediets bulkmodul. Kompressionen kan tänkas få oändligt tunna volymelementer i mediet att förflytta sig ett avstånd s(x), där x är en koordinat som indikerar hur djupt i behållaren volymelementet är.

Betrakta nu vätskan eller gasen mellan två punkter x och x + dx. Tryckskillnaden mellan dessa två punkterna ges av

$$dp = -B\frac{dV}{V} = -B\frac{A(s(x+dx) - s(x))}{A dx} \rightarrow -B\frac{ds}{dx},$$

där vi förutsätter att s(x), s(x + dx) << dx. Newtons andra lag ger då

$$ma = A\Delta p$$
.

Om vi stoppar in för p, m, a får vi

$$\rho A \, \mathrm{d}x \, \frac{\partial^2 s}{\partial t^2} = AB\Delta \frac{\partial s}{\partial x}$$
$$\frac{\partial^2 s}{\partial t^2} = \frac{B}{\rho} \frac{\frac{\partial s}{\partial x} - \frac{\partial s}{\partial x}}{\mathrm{d}x} = \frac{B}{\rho} \frac{\partial^2 s}{\partial x^2},$$

och vågfarten är $c = \sqrt{\frac{B}{\rho}}$.

Om vi även antar att vågen propagerar via adiabatiska kompressioner, har vi

$$\begin{split} pV^{\gamma} &= C \\ \ln p + \gamma \ln V &= c \\ \frac{\mathrm{d}p}{p} + \gamma \frac{\mathrm{d}V}{V} &= 0, \end{split}$$

vilket ger

$$B = -\frac{\mathrm{d}p}{\left(\frac{\mathrm{d}V}{V}\right)} = \gamma p.$$

Om man använder ideala gaslagen på detta, får man

$$c = \sqrt{\frac{\gamma RT}{M}},$$

där M är gasens molära massa.

Fasta materialer i bulk Betrakta ett material som sträcks mellan x, x + dx. Materialet sträcks då en längd s(x,t). Om s(x,t) är litet jämfört med dx upplevs samma kraft i båda punkter. Spänningen i materialet är då

$$\sigma = \frac{F}{A} = \frac{E(s(x + dx)s(x))}{dx} \to E\frac{\partial s}{\partial x},$$

där vi har användt Hookes lag för fasta materialer, som ger $\frac{F}{A} = E \frac{\Delta l}{l_0}$, där E är materialets elasticitetsmodul.

Materialet mellan $x, x + \mathrm{d}x$ har enligt ovan en position som ges av s. Då ger Newtons andra lag

$$\begin{split} \rho A \, \mathrm{d}x \, \frac{\partial^2 s}{\partial t^2} &= \Delta F \\ \rho A \frac{\partial^2 s}{\partial t^2} &= \frac{\partial F}{\partial x} = A E \frac{\partial^2 s}{\partial x^2} \\ \frac{\partial^2 s}{\partial x^2} &= \frac{\rho}{E} \frac{\partial^2 s}{\partial t^2} \end{split}$$

och vågfarten är

$$c = \sqrt{\frac{E}{\rho}}.$$

Märk att resonnemanget ovan är för longitudinella vågor. För transversella vågor ges farten av

$$c = \sqrt{\frac{G}{\rho}}$$

där G är materialets skjuvmodul.

Transversella vågor i snören Av någon magisk årsak ges vågfarten av

$$c = \sqrt{\frac{T}{\mu}}$$

där T är snörets spänning och μ är massan per längdenhet.

5 Elektromagnetism

5.1 Ekvationer

Coulombs lag

$$\mathbf{F} = \frac{q_1 q_2}{4\pi\varepsilon_0 r^2} \mathbf{\bar{r}}$$

Coulombs lag ger den elektriska kraften mellan två laddningar. $\overline{\bf r}$ är en enhetsvektor mellan laddningarna.

Härledning Ursprungligt ett experimentellt resultat, fås alternativt via Maxwells ekvationer.

Elektriskt fält

$$\mathbf{E} = \frac{1}{q_1} \mathbf{F}$$

Detta definierar det elektriska fältet som upplevs av en testladdning q_1 .

Elektriskt potensiale Om en kropp påverkas av en kraft medan den förflyttar sig längs en bana C, gör den arbetet

$$W = -\int_C \mathbf{F} \cdot \mathbf{ds}$$

mot kraften. Om man definierar potensialet $V=\frac{1}{q_1}W$ får man

$$V = -\frac{1}{q_1} \int_C \mathbf{F} \cdot d\mathbf{s} = \int_C \mathbf{E} \cdot d\mathbf{s},$$

vilket vi tar som vår definition på potensialet.

Man måste alltdi välja någon referens för potensialet. Om man väljer denna i oändligheten, ges potensialet från en punktladdning av

$$V = \frac{q}{4\pi\varepsilon_0 r}.$$

Enligt superpositionsprincipet ges potensialet från en laddningstäthet ρ av

$$V = \int \mathrm{d}V \, \frac{\rho}{4\pi\varepsilon_0 r}.$$

Kraftmoment på dipol

$$\tau = \mathbf{p} \times \mathbf{E}$$

Detta är ekvationen för kraftmomentet på en dipol. \mathbf{p} pekar från den negativa till den positiva laddningen, medan dens längd beror på hur stora laddningarna i dipolen är.

Härledning

Gauss' lag

$$\oint_{\partial V} \mathbf{E} \cdot d\mathbf{A} = \frac{1}{\varepsilon_0} \int_V dV \, \rho$$

Gauss' lag relaterar flödet av det elektriska fältet genom en yta till mängden laddning innanför ytan.

I ett dielektrikum blir Gauss' lag

$$\oint_{\partial V} \varepsilon \mathbf{E} \cdot d\mathbf{A} = \int_{V} dV \, \rho,$$

där vi nu integrerar över den fria laddningstätheten.

Härledning

Elektrisk energitäthet

$$u = \frac{1}{2}\varepsilon_0 E^2$$

Härledning

5.2 Principer

Metaller I metaller är laddningar fria, vilket ger att det elektriska fältet inuti metallet alltid är noll. Då är potensialet inuti metallet konstant. Om det finns någon laddningstäthet i metallet, inducerad eller ej, kommer den vara lokaliserad på metallets yta. Detta utnyttjas i t.ex. Faradaybur, som är behållare av metall som även har noll elektriskt fält inuti sig.

Superpositionsprincipet Potensialet från flera laddningar kan adderas.

Dielektrikas påverkan av elektriska fältet Dielektrika består av massa dipoler. När ett dielektrikum placeras i ett elektriskt fält, kommer dipolerna orienteras med fältet, vilket kommer skapa en laddningstäthet på ytan. Eftersom elektriska fält får de positiva änderna av dipolerna att peka bort, kommer de inducerade laddningstätheterna att skapa ett elektriskt fält riktad mot det yttra fältet.

6 Elektricitet

6.1 Ekvationer

Definitionen av kapacitans

$$C = \frac{Q}{V}$$

Q är beloppet av laddningen som lagras i kondensatorn (endast den positiva eller endast den negativa), och V är spänningen som upprätthållas av kondensatorn.

Seriekoppling av kondensatorer

$$\frac{1}{C_{\rm t}} = \frac{1}{C_1} + \frac{1}{C_2}$$

Härledning

Parallellkoppling av kondensatorer

$$C_{\rm t} = C_1 + C_2$$

Dielektrisk konstant

$$K = \frac{C}{C_0}$$

 C_0 betecknar kondensatorns kapacitans utan dielektrikum mellan plattarna. För en parallellplattkondensator har vi $K = \varepsilon_r$.

6.2 Principer

7 Teckenkonvention i optik

Utseendet till ekvationerna vi användar i optik ska beror på teckenkonventionen man användar. En möjlighet är att använda kartesisk teckenkonvention. Denna baseras på att

- allt ljus kommer från höger mot vänster.
- Koordinatsystemet definieras med origo i centrum av den optiska komponenten, x-axeln med positiv riktning mot höger och y-axeln med positiv riktning uppåt.

Detta implicerar följande konvention:

	+	-
Objektavstånd	Objekt till höger om optisk objekt	Objekt till vänster om optisk objekt
Bildavstånd	Bild till höger om optisk objekt	Bild till bänster om optisk objekt
Fokallängd för lins	Samlar ljus till höger (konvex)	Samlar ljus till vänster (konkav)
Fokallängd för spegel	Centrum till höger (konvex)	Centrum till vänster (konkav)

Alternativt kan man använda den så kallade Real Is Positive- konventionen (R.I.P) som används i kurslitteraturen. Denna definieras av följande tabell:

Varför en konvention är klart överlegen är triviellt och lämnas som en övning till läsaren.

	+	-
Objektavstånd för linser	Objekt till vänster om lins	Objekt till höger om lins
Bildavstånd för linser	Bild till höger om lins	Bild till vänster om lins
Fokallängd för lins	Samlar ljus till höger (konvex)	Samlar ljus till vänster (konkav)
Objektavstånd för speglar	Objekt till vänster om spegel	Objekt till höger om spegel
Bildavstånd för speglar	Bild till vänster om spegel	Bild till höger om spegel
Fokallängd för spegel	Centrum till vänster (konkav)	Centrum till höger (konvex)
Objektavstånd för sfärisk yta	Objekt till vänster om yta	Objekt till höger om yta
Bildavstånd för sfärisk yta	Bild till höger om spegel	Bild till vänster om yta
Krökningsradie för sfärisk yta	Centrum till höger	Centrum till vänster