COMPLÉMENTS SUR LES FONCTIONS

I - Parité

Définitions: Fonction paire, fonction impaire

Soit f une fonction définie sur un ensemble $\mathcal{D} \subset \mathbb{R}$.

Si pour tout x de \mathcal{D} , $-x \in \mathcal{D}$ et f(-x) = f(x) alors f est paire.

Si pour tout x de \mathcal{D} , $-x \in \mathcal{D}$ et f(-x) = -f(x) alors f est **impaire**.

Exemples

Nous avons déjà vu que la fonction carré est paire et que la fonction cube est impaire.

Remarques

- Notons bien que l'ensemble de définition d'une fonction à parité doit être symétrique par rapport à 0!
- Si une fonction est paire alors sa courbe représentative dans un repère orthogonal est symétrique par rapport à l'axe des ordonnées.
- Si une fonction est impaire, il y a une symétrie centrale par rapport au point (0;0).
- Une fonction peut être ni paire ni impaire. C'est le cas de la fonction racine carrée.

Exemples

• Soit f définie sur $\mathcal{D} =]-\infty; 0[\cup]0; +\infty[$ par $f(x) = \frac{1}{x^2}$.

Soit $x \in \mathcal{D}$. Tout d'abord, $-x \in \mathcal{D}$ car \mathcal{D} est symétrique par rapport à 0.

Enfin, $f(-x) = \frac{1}{(-x)^2} = \frac{1}{x^2} = f(x)$. Ainsi, f est **paire** comme on peut le voir ci-dessous.

• Soit f définie sur \mathbb{R} par $f(x) = x^2 + 3x - 1$.

Si $x \in \mathbb{R}$, $-x \in \mathbb{R}$ et $f(-x) = (-x)^2 + 3(-x) - 1 = x^2 - 3x - 1$.

Pour x=2, $f(-2)=2^2-3\times 2-1=-3$ mais $f(2)=2^2+3\times 2-1=9$. Ainsi, $f(-2)\neq f(2)\neq -f(2)$ et f est ni paire ni impaire. On donne sa représentation graphique :

Exercice

Pour chaque fonction f définie par son expression, déterminer f(-x) puis en déduire la parité de la fonction f.

1)
$$f(x) = 3x^2 - 10 \text{ sur } \mathbb{R}$$

3)
$$f(x) = \frac{4}{x^3} \operatorname{sur} \mathbb{R}^*$$

2)
$$f(x) = x^3 - 2x + 7 \text{ sur } \mathbb{R}$$

4)
$$f(x) = \frac{3}{x^2 - 4} \text{ sur } [-1;1]$$

II - Variations

Définitions : Fonction croissante, fonction strictement croissante

Soit f une fonction définie sur un intervalle I.

- On dit que f est croissante sur I si : pour tout $x \le y$ ($x \in I$ et $y \in I$), alors $f(x) \le f(y)$.
- On dit que f est strictement croissante sur I si : pour tout x < y ($x \in I$ et $y \in I$), alors f(x) < f(y).

Exemple

La fonction affine définie sur \mathbb{R} par f(x) = 5x - 1 est strictement croissante sur \mathbb{R} .

Définitions: Fonction décroissante, fonction strictement décroissante

Soit f une fonction définie sur un intervalle I.

• On dit que f est décroissante sur I si :

pour tout $x \le y$ ($x \in I$ et $y \in I$), alors $f(x) \ge f(y)$.

• On dit que f est strictement décroissante sur I si : pour tout x < y ($x \in I$ et $y \in I$), alors f(x) > f(y).

Exemple

La fonction affine définie sur $\mathbb R$ par f(x)=-x-2 est strictement décroissante sur $\mathbb R.$

Remarque

Une fonction constante sur I est à la fois croissante et décroissante sur I (pas strictement).

Définitions: Fonction monotone, fonction strictement monotone

Une fonction est dite **monotone** sur un intervalle I si elle est croissante sur I ou si elle est décroissante sur I.

Une fonction est **strictement monotone** sur un intervalle I si elle est strictement croissante sur I ou si elle est strictement décroissante sur I.

Remarque

On résume usuellement les variations d'une fonction dans un tableau de variations. La tableau de la fonction carré a déjà été vu (strictement décroissante sur $]-\infty;0]$ et strictement croissante sur $]0;+\infty]$).

Les tableaux rappellent aussi quand la fonction n'est pas définie, comme en 0 pour la fonction inverse.

III - Extremums d'une fonction sur un intervalle

Soient f une fonction définie sur un intervalle I et $m \in \mathbb{R}$.

Définition: Maximum

m est le **maximum de** f **sur** I si m est le plus petit des réels k tels que pour tout $x \in I$, $f(x) \leq k$. En particulier, si m est l'image d'un élément a de I (m = f(a)), on dit que le maximum m est **atteint en** a.

Exemple

Le maximum de la fonction cube sur l'intervalle [-2;2] est 8. En effet, la fonction cube est strictement croissante sur cet intervalle donc le maximum sera l'image du plus grand élément de [-2;2].

Remarque

La fonction carré n'admet pas de maximum sur \mathbb{R} mais en admet sur des intervalles comme [-1;1] ou [5;16].

Définition: Minimum

m est le **minimum de** f **sur** I si m est le plus grand des réels k tels que pour tout $x \in I$, $f(x) \ge k$. En particulier, si m est l'image d'un élément a de I (m = f(a)), on dit que le minimum m est **atteint en** a.

Exemple

0 est le minimum de la fonction carré sur \mathbb{R} . En effet, f(0) = 0 et pour tout $x \in \mathbb{R}$, $x^2 \ge 0$.

Définition: Extremum

On appelle un **extremum** de f sur I le maximum sur I ou le minimum sur I.

Remarque

On peut visualiser et noter les extremums sur des tableaux de variations. On suppose I = [A; B] et qu'on a les tableaux suivants.

Ici, m est le maximum de f sur [A;B]. On dit qu'il est atteint en a.

Cette fois, m est le minimum de f sur [A;B]. Il est aussi atteint en a.