Sistemas de Numeração

Números Binários Negativos

Roteiro

- Revisão Números Positivos
- Números Negativos
 - Sinal magnitude
 - Complemento de 1
 - Complemento de 2

Revisão Números Positivos

- Exemplo
 - base 10 (B=10)
 - 3 dígitos (n=3)
- Total de números $T = B^n = 10^3 = 1000$
- Valores representáveis: 000 a 999

Revisão Números Positivos

- Exemplo
 - base 2 (B=2)
 - 4 dígitos (n=4)
- Total de números

$$- T = B^n = 2^4 = 16$$

- Valores representáveis
 - $-0000_2 \text{ a } 1111_2 \rightarrow (0 \text{ a } 15)$

	Inteiros
Número	Positivos
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15

Números Negativos

- Sinal Magnitude
- Complemento de 1
- Complemento de 2

Sinal Magnitude

- Utiliza um dígito para representar o sinal
- Problemas
 - Faixa de representação de números positivos é reduzida pela metade
 - Representação dupla do zero

Sinal Magnitude

- Exemplo base=2 e n=4
 - O dígito mais significativo representa o sinal
 - 0 = positivo
 - 1 = negativo
 - 8 números positivos: $\underline{0}000_2$ a $\underline{0}111_2 \rightarrow (0 \text{ a } 7)$
 - 8 números negativos: $\underline{1}000_2$ a $\underline{1}111_2$ → (-0 a -7)
 - Vantagem → Fácil trocar o sinal de um número
 - Problemas
 - Representação dupla do zero
 - Dificuldade em realizar operações aritméticas

Sinal Magnitude

• Exemplo base=2 e n=4

Número	Positivo	Número	Negativo
0000	0	1000	-0
0001	1	1001	-1
0010	2	1010	-2
0011	3	1011	-3
0100	4	1100	-4
0101	5	1101	-5
0110	6	1110	-6
0111	7	1111	-7

- Faixa de valores é dividida pela metade
 - Metade inferior para números positivos
 - Números positivos são representados na forma normal
 - Metade superior para números negativos
 - Números negativos são representados em complemento
- O complemento 1 de um número "a" é obtido invertendose todos os bits, ou seja, aplicar a operação lógica NÃO (NOT) em todos os bits.
- Problemas
 - Representação dupla do zero
 - Dificuldade em realizar operações aritméticas

- Exemplo Base=2 e n=4
 - O dígito mais significativo representa o sinal
 - 0 = positivo
 - 1 = negativo
 - 8 números positivos: $\underline{0}000_2$ a $\underline{0}111_2 \rightarrow (0 \text{ a } 7)$
 - 8 números negativos: 1000_2 a 1111_2 → (-7 a -0)
 - Vantagem → Fácil trocar o sinal de um número
 - Problemas
 - Representação dupla do zero
 - Dificuldade em realizar operações aritméticas

• Exemplo Complemento de 1 (base=2 e n=4)

Número	Positivo	Núm	ero	Negativo
0000	0	111	.1	-0
0001	1	111	.0	-1
0010	2	110	1	-2
0011	3	110	10	-3
0100	4	101	.1	-4
0101	5	101	.0	-5
0110	6	100	1	-6
0111	7	100	10	-7

- Elimina a representação dupla do zero
- Facilita operações aritméticas
- Três métodos de calcular
 - 1°) Inverter os bits e somar 1
 - 2º) Potência negativa
 - 3°) $V = B^n X$

- 1º Método (inverter e somar 1)
 - Exemplo: como descobrir o 6 negativo?

- 1º Método (inverter e somar 1)
 - Exemplo: como descobrir o 6 negativo?

Pegar o 6 positivo 0110

- 1º Método (inverter e somar 1)
 - Exemplo: como descobrir o 6 negativo?

Pegar o 6 positivo 0110

Inverter todos bits 1001

- 1º Método (inverter e somar 1)
 - Exemplo: como descobrir o 6 negativo?

```
Pegar o 6 positivo 0110

Inverter todos bits 1001

Somar 1 + 1
```

- 1º Método (inverter e somar 1)
 - Exemplo: como descobrir o 6 negativo?

- 1º Método (inverter e somar 1)
 - Exemplo: como descobrir o 6 negativo?

- 1º Método (inverter e somar 1)
 - Exemplo: como descobrir o 6 negativo?

- 1º Método (inverter e somar 1)
 - Exemplo: como descobrir o 6 negativo?

Pegar o 6 positivo	0110
	1
Inverter todos bits	1001
Somar 1	+ 1
	1010

- 1º Método (inverter e somar 1)
 - Exemplo: como descobrir o 6 negativo?

Pegar o 6 positivo	0110
	1
Inverter todos bits	1001
Somar 1	+ 1
Este é o 6 negativo	1010

- 1º Método (inverter e somar 1)
 - Outro exemplo: que número é este 1110?

- 1º Método (inverter e somar 1)
 - Outro exemplo: que número é este 1110?

Pegar o número

- 1º Método (inverter e somar 1)
 - Outro exemplo: que número é este 1110?

Pegar o número >> 13

Inverter todos bits 0001

- 1º Método (inverter e somar 1)
 - Outro exemplo: que número é este 1110?

- 1º Método (inverter e somar 1)
 - Outro exemplo: que número é este 1110?

- 1º Método (inverter e somar 1)
 - Outro exemplo: que número é este 1110?

- 1º Método (inverter e somar 1)
 - Outro exemplo: que número é este 1110?

- 1º Método (inverter e somar 1)
 - Outro exemplo: que número é este 1110?

- 1º Método (inverter e somar 1)
 - Outro exemplo: que número é este 1110?

Pegar o número	1110
Inverter todos bits	1 0001
Somar 1	+ 1
Este é o 2 positivo	0010

- 1º Método (inverter e somar 1)
 - Outro exemplo: que número é este 1110?

Portanto, o número 1110 era o 2 negativo

- 2º Método (Potência negativa)
 - O bit mais significativo representa uma potência negativa.

- (2 ³)	2 ²	2 ¹	2 ⁰
-8	4	2	1

- 2º Método (Potência negativa)
 - O bit mais significativo representa uma potência negativa.

- (2 ³)	2 ²	2 ¹	2 ⁰
-8	4	2	1
0	1	1	0

4	+	2	=	6
•				_

- 2º Método (Potência negativa)
 - O bit mais significativo representa uma potência negativa.

- (2 ³)	2 ²	2 ¹	2 ⁰
-8	4	2	1
1	1	1	0

-8	+	4	+	2	=	-2
----	---	---	---	---	---	----

- 2º Método (Potência negativa)
 - O bit mais significativo representa uma potência negativa.

- (2 ³)	2 ²	2 ¹	2 ⁰
-8	4	2	1
1	0	1	0

- 8	} +	2	=	-6
-----	-----	---	---	----

- 2º Método (Potência negativa)
 - O bit mais significativo representa uma potência negativa.

- (2 ³)	2 ²	2 ¹	2 ⁰
-8	4	2	1
1	1	1	1

-8+4+2+1	= -1
----------	------

- 2º Método (Potência negativa)
 - O bit mais significativo representa uma potência negativa.

- (2 ³)	2 ²	2 ¹	2 ⁰
-8	4	2	1
1	0	0	0

$$-8 = -8$$

- 2º Método (Potência negativa)
 - O bit mais significativo representa uma potência negativa.

- (2 ³)	2 ²	2 ¹	2 ⁰
-8	4	2	1
0	1	1	1

$$4 + 2 + 1 = 7$$

- 3º Método (V = Bⁿ x)
 - O simétrico (V) de um número "x" é obtido subtraindose esse número de Bⁿ

$$V = B^n - X$$

- 3º Método (V = Bⁿ x)
 - Exemplo: Base=2 e n=4
 - $-B^{n}=2^{4}=16$
 - $-1 negativo = 16 1 = 15 = 1111_{2}$
 - -2 negativo = $16 2 = 14 = 1110_{2}$
 - -3 negativo = 16 3 = 13 = 1101₂
 - $-4 \text{ negativo} = 16 4 = 12 = 1100_{2}$
 - **—** ...
 - $-8 \text{ negativo} = 16 8 = 8 = 1000_{2}$

$$v = B^n - a$$

- 3º Método (V = Bⁿ x)
 - 8 números positivos: 0000₂ a 0111₂ (0 a 7)
 - 8 números negativos: 1111₂ a 1000₂ (-1 a -8)
 - Dígito mais significativo representa o sinal
 - 0 = positivo
 - 1 = negativo

• Exemplo complemento de 2 (base=2 e n=4)

Número	Positivo	Número	Negativo
0000	0		
0001	1	1111	-1
0010	2	1110	-2
0011	3	1101	-3
0100	4	1100	-4
0101	5	1011	-5
0110	6	1010	-6
0111	7	1001	-7
	_	1000	-8

Comparação

	Inteiros	Sinal	Complemento	Complemento
Número	Positivos	Magnitude	de 1	de 2
0000	0	0	0	0
0001	1	1	1	1
0010	2	2	2	2
0011	3	3	3	3
0100	4	4	4	4
0101	5	5	5	5
0110	6	6	6	6
0111	7	7	7	7
1000	8	-0	-7	-8
1001	9	-1	-6	-7
1010	10	-2	55 -	-6
1011	11	-3	-4	- 5
1100	12	-4	-3	-4
1101	13	-5	-2	-3
1110	14	-6	-1	-2
1111	15	-7	-0	-1

Referências

- http://wwwusers.rdc.puc-rio.br/rmano/index.html
- http://www.inf.ufsc.br/ine5365/index.html
- http://www.dsc.ufcg.edu.br/~joseana/OAC1-20092.html