Vertex of the Quadratic

 $s_1 = -\frac{b}{2a}$ namely $m(s_1) = c - \frac{b^2}{4a}$ Now compute the same quadratic at $\mathsf{s}_{1^+}\mathsf{h}$, namely

Given a quadratic $m(s) = a s^2 + b s + c$ compute its value at

 $m(s_1+h) = -\frac{b^2}{4a} + a h^2 + c$

$$m(s_1+h)=-\frac{b}{4a}+ah^2+c$$

Compute $\triangle=m(s_1+h)-m(s_1)=ah^2$
Since $h^2>0$, therefore if $a>0$ then $\triangle>0$ or vertex is the

global minimum!

Example 1. $m(s) = 2 s^2 - 12 s - 60$

