

Algorithms and Data Structures 2 CS 1501

Fall 2022

Sherif Khattab

ksm73@pitt.edu

(Slides are adapted from Dr. Ramirez's and Dr. Farnan's CS1501 slides.)

Announcements

- Upcoming Deadlines
 - Lab 9 and Homework 9:
 - reopened till this Friday @ 11:59 pm
 - Homework 10: this Friday 12/2 @ 11:59 pm
 - Lab 11: Monday 12/5 @ 11:59 pm
 - Homework 11: Friday 12/9 @ 11:59 pm
 - Assignment 3: Monday 11/28 Friday 12/9 @ 11:59 pm
 - Assignment 4: Friday 12/9 @ 11:59 pm

Previous Lecture

- Dynamic Programming Examples
 - Subset Sum
 - Edit Distance
 - Longest Common Subsequence

This Lecture

- Back to Graph Algorithms
- Network Flow Problem

Muddiest Points

- Q: I would like another example of the edit distance algorithm. I did not quite understand what was going on too well
- Sure!

Muddiest Points

- Q: Subset Sum Problem
- Let's have another example!

Muddiest Points

- Q: LCS
- Let's have another example!

Problem of the Day: Finding Bottlenecks

- Let's assume that we want to send a large file from point A to point B over a computer network as fast as possible over multiple network links if needed
- Input:
 - A computer network
 - Network nodes and links
 - Links are labeled by link capacity in Mbps
 - Starting node and destination node
- Output:
 - The maximum network speed possible for sending a file from source to destination

Defining network flow

- Consider a directed, weighted graph G(V, E)
 - O Weights are applied to edges to state their *capacity*
 - c(u, w) is the capacity of edge (u, w)
 - if there is no edge from u to w, c(u, w) = 0
- Consider two vertices, a source s and a sink t
 - O Let's determine the maximum flow that can run from s to t in the graph G

Flow

- Let the f(u, w) be the amount of flow being carried along the edge
 (u, w)
- Some rules on the flow running through an edge:
 - $\bigcirc \forall (u, w) \in E f(u, w) <= c(u, w)$
 - \bigcirc $\forall u \in (V \{s,t\}) (\Sigma_{w \in V} f(w, u) \Sigma_{w \in V} f(u, w)) = 0$

Ford Fulkerson

- Let all edges in G have an allocated flow of 0
- While there is path p from s to t in G s.t. all edges in p have some residual capacity (i.e., \forall (u, w) \in p f(u, w) < c(u, w)):
 - (Such a path is called an *augmenting path*)
 - O Compute the residual capacity of each edge in p
 - Residual capacity of edge (u, w) is c(u, w) f(u, w)
 - O Find the edge with the minimum residual capacity in p
 - We'll call this residual capacity *new_flow*
 - Increment the flow on all edges in p by new_flow

Ford Fulkerson example

Ford Fulkerson example

Another Ford Fulkerson example

Expanding on residual capacity

- To find the max flow we will have to consider re-routing flow we had previously allocated
 - This means, when finding an augmenting path, we will need to look not only at the edges of G, but also at backwards edges that allow such re-routing
 - For each edge $(u, w) \in E$, a backwards edge (w, u) must be considered during pathfinding if f(u, w) > 0
 - The capacity of a backwards edge (w, u) is equal to f(u, w)

The residual graph

- We will perform searches for an augmenting path not on G, but on a residual graph built using the current state of flow allocation on G
- The residual graph is made up of:
 - OV
 - An edge for each $(u, w) \in E$ where f(u, w) < c(u, w)
 - (u, w)'s mirror in the residual graph will have 0 flow and a capacity of c(u, w) - f(u, w)
 - \bigcirc A backwards edge for each (u, w) \in E where f(u, w) > 0
 - (u, w)'s backwards edge has a capacity of f(u, w)
 - All backwards edges have 0 flow

Residual graph example

2nd Tophat Question

Backwards edges

Adding flow to a backwards edge means rerouting flow from the corresponding forward edge

