Zusammenfassung Quantum Computing

Henrik Tscherny

6. September 2023

Inhaltsverzeichnis

1	Basic	1
_	1.1 QBits	1
	1.2 Complex Numbers	2
	1.3 Matrices	
2	Gates	2
	2.1 Phase Kickback	3
3	Deutsch Algorithm	4
4	Deutsch-Jozsa Algorithm	5
5	Grovers Algorithm	6
6	Simons Algorithms	8
7	Shors Algorithm 7.1 RSA	8 9
1	Basic	

QBits 1.1

- state of a single QB: $|s\rangle = a_0|0\rangle + a_1|1\rangle = a_0\begin{bmatrix}1\\0\end{bmatrix} + a_1\begin{bmatrix}0\\1\end{bmatrix} = \begin{bmatrix}a_0\\a_1\end{bmatrix}$
- state of two QBs: $|s\rangle = a_0|00\rangle + a_1|01\rangle + a_2|10\rangle + a_3|11\rangle$

- basis vectors: $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- $P(|0\rangle) = |a_0|^2$, $P(|1\rangle) = |a_1|^2$
- $\sum_{i=0}^{2^n-1} |a_n| = 1$ (for n-qubit system)
- tensor product: $|00\rangle = |0\rangle \otimes |0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
- **entanglement**: non-serperable state (can not be written as the product of qubits, the qubits are statistical dependent)

Example: $|\psi\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$

1.2 Complex Numbers

• z = a + ib= $r \cdot e^{i\varphi}$ = $r \cdot (\cos\varphi + i \cdot \sin\varphi)$

• conjugate: $\bar{z} = a - bi$

with $a, b \in \mathbb{R}$ and $i^2 = -1$

1.3 Matrices

• **Transpose**: A^{T} swap rows and cols

• Conjugate: A^* each entry is the conjugate

• Adjunct: A^{\dagger} transpose + conjugate

• Unitary: $UU^{\dagger} = UU^{-1} = I = U^{\dagger}U$ adjunct is also the inverse

• Note: every unitary operator can be written as its eigenbases

2 Gates

- every gate is reversible (as gates are unitary matrices)
- Hardamard Gate:

$$-H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$- H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

- applying H splits the probabilities in $\frac{1}{2}$ for each (simulate coinflip)

- H is self inverse as it is unitary

- recursive definition for Hardamard:

recursive definition for Hardamard:
$$H^{\bigotimes n} = H \bigotimes H^{\bigotimes n-1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \bigotimes H^{\bigotimes n-1} = \frac{1}{\sqrt{2}} \begin{bmatrix} H^{\bigotimes n-1} & H^{\bigotimes n-1} \\ H^{\bigotimes n-1} & -H^{\bigotimes n-1} \end{bmatrix}$$
$$H^{\bigotimes 1} = H$$

• Pauli Gates:

- **Pauli-X**: Swaps
$$|0\rangle$$
 and $|1\rangle$, $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

- Pauli-Y: Swaps amplitudes, (adds phase ?), negates amplitudes of |1>

$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

- **Pauli-Z**: Negates amplitudes of
$$|1\rangle Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

• CNot:

- negates the target if the controller is active

- permutation matrix

$$- CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

2.1 Phase Kickback

• U: one qubit unitary gate

• $|\phi\rangle$: some base state

• applying U to $|\psi\rangle$ yields $e^{i\phi}|\psi\rangle$

• the global phase factor of a quantum state is not measurable (symmetry)

• using ancilla qubits the global phase can be turned intro a relative phase which is measurable

3 Deutsch Algorithm

- function $f: \{0,1\} \rightarrow \{0,1\}$ that is either balanced or constant
- classical: compute f on every input
- quantum: one call of f is needed
- quantum oracle:

$$- U_f : |x\rangle|y\rangle \xrightarrow{U_f} |x\rangle|y \bigoplus f(x)\rangle$$

- $|x\rangle$ input to function
- $|y\rangle$ qubit to write function result to
- $|y \bigoplus f(x)\rangle$, the XOR ensures that the oracle is reversible (as each image has a unique preimage)
- initializing $y = |0\rangle$ we only get the function value $|x\rangle|f(x)\rangle$ as $0 \bigoplus x = x$
- initializing $y = |-\rangle$ we get phase kickback to $|x\rangle|-\rangle \xrightarrow{U_f} (-1)^{f(x)}|x\rangle|-\rangle$ (a phase is applied to the input qubit)

$$\begin{cases} |x\rangle|-\rangle & f(x) = 0\\ -|x\rangle|-\rangle & f(x) = 1 \end{cases}$$

– Note: this is called a phase oracle $(U_f|x\rangle|-\rangle=(-1)^{f(x)}|x\rangle|-\rangle)$

$$- |\psi_0\rangle = |00\rangle$$

$$- |\psi_1\rangle = |01\rangle$$

$$- \ |\psi_2\rangle = |+-\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle |-\rangle + |1\rangle |-\rangle)$$

$$- |\psi_3\rangle = U_f \frac{1}{\sqrt{2}}(|0\rangle| - \rangle + |1\rangle| - \rangle) = \frac{1}{\sqrt{2}}(U_f|0\rangle| - \rangle + U_f|1\rangle| - \rangle) \overset{\text{phase oracle}}{=} \frac{1}{\sqrt{2}}((-1)^{f(0)}|0\rangle| - \rangle + (-1)^{f(1)}|1\rangle| - \rangle) \\ (|-\rangle \text{ can be omitted as its not needed})$$

$$- \text{case } f(0) = f(1) \colon \begin{cases} |\psi_3\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), & f(0) = f(1) = 0 \\ |\psi_3\rangle = -\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), & f(0) = f(1) = 1 \end{cases} \\ |\psi_3\rangle = \pm \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = \pm |+\rangle$$

$$- \text{case } f(0) \neq f(1) \colon \begin{cases} |\psi_3\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle), & f(0) = 0 \land f(1) = 1 \\ |\psi_3\rangle = -\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle), & f(0) = 1 \land f(1) = 0 \end{cases} \\ |\psi_3\rangle = \pm \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) = \pm |-\rangle$$

$$- |\psi_4\rangle = \begin{cases} \pm |0\rangle, & f(0) = f(1) \\ \pm |1\rangle, & f(0) \neq f(1) \end{cases}$$

• measuring 0 iff function is constant and 1 iff function is balanced

4 Deutsch-Jozsa Algorithm

- generalized version of Deutsch Algorithm to n qubits
- $f: \{0,1\}^n \to \{0,1\}$
- f is constant iff $\forall x, f(x) = c$
- f is balanced iff $|\{x \mid f(x) = 0\}| = |\{x \mid f(x) = 1\}|$
- classical: $2^{n-1} + 1$ function calls (input half the possible inputs)
- quantum: one call of f in needed (exponential speed up)

$$- |\psi_0\rangle = |00...0\rangle|-\rangle = |0\rangle^{\bigotimes n}|-\rangle$$
 (we can get the $|-\rangle$ by $H|1\rangle$)

$$- |\psi_1\rangle = H^{\bigotimes n} |0\rangle^{\bigotimes n} |-\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle |-\rangle \text{ (uniform distribution)}$$

$$-|\psi_2\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} U_f|x\rangle |-\rangle \stackrel{\text{phase oracle}}{=} \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} |x\rangle |-\rangle$$

- Note:
$$H^{\bigotimes n}|x\rangle = \frac{1}{\sqrt{2^n}} \sum_{z \in \{0,1\}^n} (-1)^{x \cdot z} |z\rangle, \ (*)$$

$$- |\psi_{3}\rangle = \frac{1}{\sqrt{2^{n}}} \sum_{x \in \{0,1\}^{n}} (-1)^{f(x)} H^{\bigotimes n} |x\rangle |-\rangle$$

$$\stackrel{(*)}{=} \frac{1}{\sqrt{2^{n}}} \sum_{x \in \{0,1\}^{n}} (-1)^{f(x)} \frac{1}{\sqrt{2^{n}}} \sum_{z \in \{0,1\}^{n}} (-1)^{x \cdot z} |z\rangle$$

$$= \frac{1}{2^{n}} \sum_{x \in \{0,1\}^{n}} \sum_{z \in \{0,1\}^{n}} (-1)^{f(x)+x \cdot z} |z\rangle$$

- consider the amplitude of $|0\rangle^{\bigotimes n}$ is $\frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x)}$ case f constant:

$$\begin{cases} \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^0 = \frac{1}{2^n} 2^n = 1, & f(x) = 0\\ \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^1 = \frac{1}{2^n} (-2^n) = -1, & f(x) = 1 \end{cases}$$

- hence if f is constant the probability of measuring all zeros is 1
- hence if f is balanced half of the sum is 1 and half is -1 hence the probability of measuring all zeros is 0
- $-\rightarrow$ measure and iff we get 000...0 then f(x) is constant else balanced

5 Grovers Algorithm

• Problem: given an unstructured database, find an element \hat{x} within this database

- $f: \{0,1\}^n \to \{0,1\}$ with $f(\hat{x}) = 1$, $f(\neg \hat{x}) = 0$ $(x, \hat{x} \in \{0,1\}^n)$
- classical: $\frac{N+1}{2} \in O(N)$
- quantum: $\frac{\pi}{4}\sqrt{N} \in O(\sqrt{N})$
- Steps:
 - 1. generate uniform distribution on all elements:

$$-H^{\bigotimes n}|000...0\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle$$
$$-|s\rangle = H^{\bigotimes n+1}|000...0\rangle |1\rangle = |0\rangle^{\bigotimes n}|-\rangle$$

- 2. Grover Iteration:
 - (a) Negate the amplitude of \hat{x} (Oracle \hat{U}_f)

$$-\hat{U_f}|s\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} H^{\bigotimes n} |x\rangle |-\rangle \quad \text{(as in Deutsch-Josza)}$$

(b) Mirror/Reflect/Diffuse all amplitudes a at the mean value m(Diffusion \hat{D})

$$-a := 2 \cdot m - a$$

- mirroring as a quantum state: $\sum_{i=0}^{N-1} a_i |i\rangle (*)$
- mean value of amplitudes: $\sum_{i=0}^{N-1} \frac{a_i}{N}$ (**)
- combining (*) and (**) we get: $|s\rangle = \sum_{i=0}^{N-1} \left(2 \cdot \sum_{j=0}^{N-1} \frac{a_j}{N} a_i\right) |i\rangle$

$$- D_N = \begin{bmatrix} -1 + \frac{2}{N} & \dots & \frac{2}{N} \\ \vdots & -1 + \frac{2}{N} & \vdots \\ \frac{2}{N} & \dots & -1 + \frac{2}{N} \end{bmatrix}$$

- Note: D_N can be expressed as a local operation (leq3 bits involved)
- 3. Measure $|x\rangle$ and return it off $\hat{x} > c$ (c is some constant)
- The number of grover iterations T is capped by $(2T+1)\frac{1}{\sqrt{N}}$ since every iteration rotates by $\frac{2}{\sqrt{N}} \Rightarrow T = \frac{\pi}{4}\sqrt{4}$
- doing more than the necessary number of iteration degrades the result

6 Simons Algorithms

Todo

7 Shors Algorithm

Goal: Find prime factor $z \cdot r = n$ for some $n \in \mathbb{N}$ that is not a prime power

- 1. Make a random guess $a \in \{2, ..., n-1\}$
- 2. calculate z := gcd(a, n) and return z if $z \ne 1$ (the guess was very lucky and a prime factor was guessed, other factor is $\frac{n}{z}$)
- 3. calculate the period of a in $(\mathbb{Z}/n\mathbb{Z})^{\times}$: $a^p \equiv 1 \mod n$ (Quantum) (Ordnung von a innerhalb der primen Restklassengruppe)
 - choose q with $n^2 \le q < 2n^2$
 - initialize input quantum register with: $\frac{1}{\sqrt{q}} \sum_{p=0}^{q-1} |p\rangle |0\rangle$ (superposition of all possible periods)
 - initialize output quantum register with: $\frac{1}{\sqrt{q}} \sum_{p=0}^{q-1} |p\rangle |a^p \mod n\rangle$ (superposition of the remainders of the calculation $a^p \mod n$)
 - Example q = 16, a = 7: $\frac{1}{4}(|0\rangle|1\rangle) + |2\rangle|4\rangle + |3\rangle|13\rangle + |4\rangle|1\rangle + |5\rangle|1\rangle) + |6\rangle|4\rangle + |7\rangle|13\rangle + |8\rangle|1\rangle + |9\rangle|1\rangle) + |10\rangle|4\rangle + |11\rangle|13\rangle + |12\rangle|1\rangle + |13\rangle|1\rangle) + |14\rangle|4\rangle + |15\rangle|13\rangle)$ (Clearly the period p = 4 with (1, 7, 4, 13))
 - measuring the output/reminder register yields a superposition of all elements with the same reminder (uniformly random which exactly) Example: $\frac{1}{2}(|1\rangle + |5\rangle + |9\rangle + |13\rangle)|7\rangle$ (all elements with reminder 7)
 - apply QFT_n to input register to get the period pExample: $\frac{1}{2}(|0\rangle + |4\rangle + |8\rangle + |12\rangle)$ (amplitudes for each element may have changed sign/phase)
 - measuring the input register yields $\{\frac{j \cdot n}{p} | j = 0, ..., 3\}$ Example: $\{0, 4, 8, 12\}$

- calculate p using $\frac{j}{p} = \frac{y}{n}$ (y...output measurement) (only works if j and p have no common divisors hence measuring 0 or 8 in the Example necessitates a new run as the state is now destroyed)
- 4. GoTo (1) if: p is odd (we cannot calculate $\frac{p}{2} \in \mathbb{N}$)
- 5. calculate $z := gcd(a^{\frac{p}{2}} 1, n)$
 - return z if $z \neq 1$ as its a factor of n
- 6. calculate $z := gcd(a^{\frac{p}{2}} + 1, n)$
 - if z = n Goto (1), as we have a multiple of n
 - else return z
- $(a^{\frac{p}{2}} 1) \cdot (a^{\frac{p}{2}} + 1) = a^p 1 = k \cdot n$
- hence either the first or the second term must have a common divisor with n

Note: applying QFT to $|0\rangle$ yields a uniform superposition as a Hadamard-transformation

7.1 RSA

- asymetric encryption
- key generation:
 - 1. choose $p, q \in \mathbb{P}$ at random
 - 2. calculate $n = p \cdot q$ (this is the modulus for the public/private key)
 - 3. compute $\varphi(n) = (p-1)(q-1)$ (number of coprime integers)
 - 4. choose *e* s.t. $1 < e < \varphi(n)$ and *e* and $\varphi(n)$ are coprime (e: encryption exponent)
 - 5. calculate $e \cdot d \equiv 1 \pmod{\varphi(n)}$ (d: decryption exponent) (calculation by adv. eucl. alg.)
 - 6. keys are:
 - **–** Public: (*e*, *n*)
 - Private: (d, n)