Team MVA-2016

Data-Science Game 2016

Antoine de Maleprade Sebastien Fischmann Mastane Achab Alexandre Garcia

Feature engineering

Best Random-Forest importance scores

- 0. feature: rowNumberForUser -- 0.474538396883
- 1. feature : NameOfPolicyProduct_NS -- 0.0328159814026
- 2. feature : PolicyHolderNoClaimDiscountYears -- 0.0307465654476
- 3. feature: DaysSinceCarPurchase -- 0.0279611458202
- 4. feature : CoverIsNoClaimDiscountSelected -- 0.0278649601994
- 5. feature : FirstDriverAge -- 0.0254410066302
- 6. feature : lda_feature_3 -- 0.0229693189225
- 7. feature : lda_feature_2 -- 0.0216706319752
- 8. feature : lda_feature_1 -- 0.0210556092396
- 9. feature : lda_feature_4 -- 0.0198186350213
- 10. feature : VoluntaryExcess -- 0.0177385677466

Number of times a user appears in the dataset

Other features:

- Number of unique values for different columns per user
- Binary features indicating whether the user Id has entered his most frequent car and most frequent driver.
- Gender Feature with DriverLicenceIdNumber

LDA Features : we consider the categorical values in each row as « words »

lda_feature_i encodes the projection of the row values on the ith topic learnt

Regression step

- Xgboost only
 - * 1st submission : 5 models trained on 5 folds with separated users and the predicted probabilities are then averaged.
 - * 2nd submission : 4 most independent model chosen among 11 with the Pearson Correlation coefficient.

- * What we tried (but didn't use):
 - * Undersampling the 0 class -> better take the unbalanced repartition into account in the gradient-boosting parameters
 - * Random Forest -> Too slow to train for this week-end