Оглавление

1	Аналитическая часть			2
	1.1	.1 Формализация задачи		
	 1.2 Формализация данных			2
				3
				4
		1.4.1	Классификация баз данных по месту хранения инфор-	
			мации	5
	1.5	Обзор	in-memory NoSQL СУБД	6
		1.5.1	Tarantool	6
		1.5.2	Redis	7
		1.5.3	Выбор СУБД для решения задачи	8
Лı	итера	атура		9

1 Аналитическая часть

В данном разделе описана структура рабочей программы дисциплины. Представлен анализ способов хранения данных и систем управления базами данных, оптимальных для решения поставленной задачи. Описаны проблемы кэшированных данных и представлены методы их решения.

1.1 Формализация задачи

Необходимо спроектировать и реализовать базу данных для онлайнмониторинга состояния трасс и подъемников горнолыжного курорта. Также необходимо разработать интерфейс, позволяющий работать с данной базой для получения и изменения хранящейся в ней информации и мониторинга очередей к подъемникам в онлайн-режиме. Реализовать, как минимум, три вида ролей – пользователь, сотрудник лыжного патруля и администратор.

1.2 Формализация данных

База данных должна хранить информацию о:

- трассах;
- подъемниках;
- связях трасс и подъемников (на одном подъемнике можно добраться до нескольких трасс, и до одной трассы можно добраться на нескольких подъемниках);
- турникетах;
- проездных картах;
- считываниях карт на турникетах подъемников;
- сообщениях о происшествиях;

- пользователях;
- группах пользователей.

В таблице 1.1 приведены категории и сведения о данных.

Таблица 1.1: Категории и сведения о данных

Категория	Сведения
Трассы	ID трассы, название трассы, уровень
Трассы	сложности, открытость/закрытость.
	ID подъемника, название подъемника,
Подъемники	открытость/закрытость, количество мест,
	время подъема, время в очереди.
Связи трасс и подъемников	ID записи, ID подъемника, ID трассы.
Турникеты	ID турникета, ID подъемника,
Турникеты	открытость/закрытость.
Проездные карты	ID карты, дата и время активации, тип.
Считывания карт на	ID записи, ID турникета, ID карты,
турникетах подъемников	дата и время считывания.
Сообщения о	ID сообщения, ID отправителя,
происшествиях	ID прочитавшего, текст сообщения.
Пользователи	ID пользователя, ID карты, email (логин),
полроователи	пароль, ID группы пользователей.
Группы пользователей	ID группы пользователей, права доступа.

1.3 Типы пользователей

В соответствии с поставленной задачей необходимо разработать приложение с возможностью аутентификации пользователей, что делит их, прежде всего, на авторизованных и неавторизованных. для управления приложением необходима ролевая модель: авторизованный (обычный) пользователь, сотрудник лыжного патруля и администратор.

Для каждого типа пользователя предусмотрен свой набор функций:

- неавторизованный пользователь:
 - регистрация,
 - аутентификация,

- просмотр информации о состоянии трасс и подъемников,
- просмотр информации о связях трасс и подъемников;

• авторизованный пользователь:

- выход,
- просмотр информации о состоянии трасс и подъемников,
- просмотр информации о связях трасс и подъемников,
- отправка сообщений о происшествиях;

• сотрудник лыжного патруля:

- выход,
- просмотр и изменение информации о состоянии трасс и подъемников,
- просмотр и изменение информации о связях трасс и подъемников,
- просмотр сообщений о происшествиях;

• администратор:

- выход,
- просмотр и изменение всей информации, доступной в базе данных, в том числе права доступа групп и отдельных пользователей.

1.4 Анализ баз данных и систем управления базами данных

Для реализации поставленной задачи необходимо выбрать подходящую базу данных (БД) и систему управления базой данных (СУБД).

БД – это упорядоченный набор структурированной информации или данных, которые обычно хранятся в электронном виде в компьютерной системе [5]. СУБД – это совокупность программных и лингвистических

средств общего или специального назначения, обеспечивающих управление созданием и использованием баз данных [5].

1.4.1 Классификация баз данных по месту хранения информации

По месту хранения информации БД можно разделить на [6]:

- традиционные, которые хранят информацию на жестком диске или другом постоянном носителе;
- in-memory databases (IMDB) (резидентные базы данных), которые хранят информацию непосредственно в оперативной памяти.

IMDB появились как ответ традиционным БД в связи со снижением стоимости оперативной памяти, что позволяет хранить весь набор операционных данных непосредственно в памяти, увеличивая тем самым скорость их обработки более чем в 1000 раз [7].

Ключевыми преимуществами IMDB, в сравнении с традиционными БД, считаются следующие [8]:

- быстрота выполнения операций;
- эффективное сохранение зафиксированных данных, которые используются не часто, на жестком диске;
- высокая пропускная способность систем, критичных к производительности.

Обратной стороной этих достоинств являются следующие недостатки:

- однопоточность и эффективная утилизация только одного ядра ЦП,
 что не позволяет в полной мере воспользоваться возможностями современных многоядерных серверов;
- энергозависимость и привязка к размеру оперативной памяти.

В практическом плане IMDB-системы особенно востребованы в тех приложениях работы с данными в реальном времени, где требуется минимальное время отклика [9].

Основным требованием к разрабатываемой БД является предоставление возможности **онлайн**-мониторинга состояния объектов горнолыжного курорта. То есть задача предполагает постоянное добавление и изменение данных, а также быструю отзывчивость на запросы пользователя.

Таким образом, задача является типовым примером использования inmemory БД. И поскольку в современных СУБД существуют надежные и достаточно простые способы устранения указанных недостатков IMDB, было принято решение использовать именно этот подход к хранению данных.

1.5 Обзор in-memory СУБД

1.5.1 Tarantool

Tarantool [29] – это платформа in-memory вычислений с гибкой схемой хранения данных для эффективного создания высоконагруженных приложений. Включает себя базу данных и сервер приложений на языке программирования Lua [30].

Записи в Tarantool хранятся в пространствах (space) – аналог таблицы в реляционной базе данных SQL. Внутри пространства находятся кортежи (tuples), которые похожи на строку в таблице SQL.

Tarantool объединяет в себе преимущества, характерные для кэша:

- «горячие данные»;
- оптимальная работа при высокой параллельной нагрузке;
- ullet низкая задержка (99% запросов < 1 мс, 99,9% запросов < 3 мс);
- поддерживаемая загрузка на запись до 1 миллиона транзакций в секунду на одном ядре ЦПУ;
- система работает постоянно, не нужно делать перерыв на профилактические работы,

и достоинства классических СУБД:

- персистентность;
- транзакции со свойствами ACID;
- наличие репликации (master-slave и master-master);
- наличие хранимых процедуры.
- поддержка первичных и вторичных индексов (в том числе, составных).

В Tarantool реализован механизм «снимков» текущего состояния хранилища и журналирования всех операций, что позволяет восстановить состояние базы данных после ее перезагрузки.

1.5.2 Redis

Redis [34] – резидентная система управлениями базами данных класса NoSQL с открытым исходным кодом.

Основной структурой данных, с которой работает Redis является структура типа «ключ-значение». Данная СУБД используется как для хранения данных, так и для реализации кэшей и брокеров сообщений.

Redis хранит данные в оперативной памяти и снабжена механизмом «снимков» и журналирования, что обеспечивает постоянное хранение данных. Предоставляются операции для реализации механизма обмена сообщениями в шаблоне «издатель-подписчик»: с его помощью приложения могут создавать программные каналы, подписываться на них и помещать в эти каналы сообщения, которые будут получены всеми подписчиками. Существует поддержка репликации данных типа master-slave, транзакций и пакетной обработки комманд.

Все данные Redis хранит в виде словаря, в котором ключи связаны со своими значениями. Ключевое отличие Redis от других хранилищ данных заключается в том, что значения этих ключей не ограничиваются строками. Поддерживаются следующие абстрактные типы данных:

- строки;
- списки;
- множества;
- хеш-таблицы;
- упорядоченные множества.

Тип данных значения определяет, какие операции доступные для него; поддерживаются высокоуровневые операции: например, объединение, разность или сортировка наборов.

1.5.3 Выбор СУБД для решения задачи

Для кэширования данных была выбрана СУБД Tarantool, так как она проста в развертывании и переносимости, и имеет подходящие коннекторы для базы данных PostgreSQL.

Вывод

В данном разделе:

- рассмотрена структура рабочей программы дисциплины и выявлены её наиболее интересные части;
- проанализированы способы хранения информации для система и выбраны оптимальные способы для решения поставленной задачи;
- проведен анализ СУБД, используемых для решения задачи и также выбраны оптимальные информационные системы;
- рассмотрена проблема актуальности кэшируемых данных и предложенно ее решение;
- формализованны данные, используемые в системе.

Литература

- [1] Положение о порядке разработки и утверждение рабочей программы дисциплины [Электронный ресурс]. Режим доступа: https://www.volgmed.ru/uploads/files/2010-11/1180-polozhenie_o_poryadke_razrabotki_i_utverzhdeniya_rabochej_programmy_uchebnoj_discipliny_(kursa).doc (дата обращения: 07.06.2021).
- [2] Learning Management System (LMS) HSE [Электронный ресурс]. Режим доступа: https://www.hse.ru/en/studyspravka/lms_student/ (дата обращения: 07.06.2021).
- [3] Microsoft Word Word Processing Software | Microsoft 365 [Электронный ресурс]. Режим доступа: https://www.microsoft.com/en-us/microsoft-365/word (дата обращения: 07.06.2021).
- [4] What is a REST API? Red Hat [Электронный ресурс]. Режим доступа: https://www.redhat.com/en/topics/api/what-is-a-rest-api (дата обращения: 07.06.2021).
- [5] Что такое база данных | Oracle Россия и СНГ [Электронный ресурс]. Режим доступа: https://www.oracle.com/ru/database/what-is-database/ (дата обращения: 29.04.2022).
- [6] Системы и технологии баз данных в памяти | Microsoft [Электронный ресурс]. Режим доступа: https://docs.microsoft.com/ru-ru/sql/relational-databases/in-memory-database?view=sql-server-ver15 (дата обращения: 29.04.2022).
- [7] In-Memory. База данных в оперативной памяти | ECM-Journal [Электронный ресурс]. Режим доступа: https://ecm-journal.ru/material/In-Memory-Baza-dannykh-v-operativnojj-pamjati (дата обращения: 29.04.2022).
- [8] In-Memory Database [Электронный ресурс]. Режим доступа: https://ru.bmstu.wiki/IMDB_(In-memory_Database) (дата обращения: 29.04.2022).

- [9] 4 крупных примера внедрения Tarantool | Big Data School [Электронный ресурс]. Режим доступа: https://www.bigdataschool.ru/blog/tarantool-use-cases-and-advantages.html (дата обращения: 29.04.2022).
- [10] Что такое микросервисная архитектура: простое объяснение | MCS Mail.ru [Электронный ресурс]. Режим доступа: https://mcs.mail.ru/blog/prostym-jazykom-o-mikroservisnoj-arhitekture (дата обращения: 07.06.2021).
- [11] Race conditions and deadlocks Microsoft Docs [Электронный ресурс]. Режим доступа: https://docs.microsoft.com/en-us/troubleshoot/dotnet/visual-basic/race-conditions-deadlocks (дата обращения: 07.06.2021).
- [12] What is OLTP? | IBM [Электронный ресурс]. Режим доступа: https://www.ibm.com/cloud/learn/oltp (дата обращения: 07.06.2021).
- [13] What is OLAP? | IBM [Электронный ресурс]. Режим доступа: https://www.ibm.com/cloud/learn/olap (дата обращения: 07.06.2021).
- [14] PostgreSQL: Документация. [Электронный ресурс]. Режим доступа: https://postgrespro.ru/docs/postgresql/ (дата обращения: 07.06.2021).
- [15] PostgreSQL: вчера, сегодня, завтра [Электронный ресурс]. Режим доступа: https://postgrespro.ru/blog/media/17768 (дата обращения: 07.06.2021).
- [16] Транзакции, ACID, CAP | GeekBrains [Электронный ресурс]. Режим доступа: https://gb.ru/posts/acid_cap_transactions (дата обращения: 07.06.2021).
- [17] Documentation: 12: 13.1. Introduction PostgreSQL [Электронный ресурс]. Режим доступа: https://www.postgresql.org/docs/12/mvcc-intro.html (дата обращения: 07.06.2021).

- [18] Применение блокировок чтения/записи | IBM [Электронный ресурс]. Режим доступа: https://www.ibm.com/docs/ru/aix/7.2?topic= programming-using-readwrite-locks (дата обращения: 07.06.2021).
- [19] SQL Language | Oracle[Электронный ресурс]. Режим доступа: https://www.oracle.com/database/technologies/appdev/sql.html (дата обращения: 07.06.2021).
- [20] Oracle | Integrated Cloud Applications and Platform Services [Электронный ресурс]. Режим доступа: https://www.oracle.com/index.html (дата обращения: 07.06.2021).
- [21] DB-Engines Ranking [Электронный ресурс]. Режим доступа: https://db-engines.com/en/ranking (дата обращения: 07.06.2021).
- [22] MySQL Database Service is a fully managed database service to deploy cloud-native applications. [Электронный ресурс]. Режим доступа: https://www.mysql.com/ (дата обращения: 07.06.2021).
- [23] MySQL Reference Manual 8.0: The InnoDB Storage Enginee [Электронный ресурс]. Режим доступа: https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html (дата обращения: 07.06.2021).
- [24] MySQL Reference Manual 16.2: The MyISAM Storage Engine [Электронный ресурс]. Режим доступа: https://dev.mysql.com/doc/refman/8. 0/en/myisam-storage-engine.html (дата обращения: 07.06.2021).
- [25] PHP: Hypertext Preprocessor [Электронный ресурс]. Режим доступа: https://www.php.net/ (дата обращения: 07.06.2021).
- [26] The Perl Programming Language [Электронный ресурс]. Режим доступа: https://www.perl.org/ (дата обращения: 07.06.2021).
- [27] PostgreSQL: Документация: 9.6: 44.1. Python 2 и Python 3. [Электронный ресурс]. Режим доступа: https://postgrespro.ru/docs/postgresq1/9.6/plpython-python23 (дата обращения: 07.06.2021).
- [28] Что такое NoSQL? | Amazon AWS [Электронный ресурс]. Режим доступа: https://aws.amazon.com/ru/nosql/ (дата обращения: 07.06.2021).

- [29] Tarantool Платформа In-memory вычислений [Электронный ресурс]. Режим доступа: https://www.tarantool.io/ru/ (дата обращения: 07.06.2021).
- [30] The Programming Language Lua [Электронный ресурс]. Режим доступа: http://www.lua.org/ (дата обращения: 07.06.2021).
- [31] Tech Confronts Its Use of the Labels «Master» and «Slave» [Электронный ресурс]. Режим доступа: https://www.wired.com/story/tech-confronts-use-labels-master-slave/ (дата обращения: 07.06.2021).
- [32] How To Set Up MySQL Master-Master Replication [Электронный ресурс]. Режим доступа: https://www.digitalocean.com/community/tutorials/how-to-set-up-mysql-master-master-replication (дата обращения: 07.06.2021).
- [33] Движки базы данных | Tarantool [Электронный ресурс]. Режим доступа: https://www.tarantool.io/ru/doc/latest/book/box/engines/ (дата обращения: 07.06.2021).
- [34] Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache, and message broker [Электронный ресурс]. Режим доступа: https://redis.io/ (дата обращения: 07.06.2021).
- [35] LRU, метод вытеснения из кэша | Habr [Электронный ресурс]. Режим доступа: https://habr.com/ru/post/136758/ (дата обращения: 07.06.2021).
- [36] The official home of the Python Programming Language. [Электронный ресурс]. Режим доступа: https://www.python.org/ (дата обращения: 07.06.2021).
- [37] Welcome to Flask Flask Documentation (2.0.x) [Электронный ресурс]. Режим доступа: https://flask.palletsprojects.com/en/2. 0.x/ (дата обращения: 07.06.2021).

- [38] Python driver for Tarantool GitHub [Электронный ресурс]. Режим доступа: https://github.com/tarantool/tarantool-python (дата обращения: 07.06.2021).
- [39] Psycopg PostgreSQL database adapter for Python [Электронный ресурс]. Режим доступа: https://www.psycopg.org/docs/ (дата обращения: 07.06.2021).
- [40] Docker: Empowering App Development for Developers [Электронный ресурс]. Режим доступа: https://www.docker.com/ (дата обращения: 07.06.2021).
- [41] pytest: helps you write better programs pytest documentation [Электронный ресурс]. Режим доступа: https://docs.pytest.org/en/6.2. х/ (дата обращения: 07.06.2021).