

We want to show for each Π :

there exist $e \in C(V_1 \times ... \times V_m, F)$

such that yout; = Ti

For arbitrary $V. \in V_1, V_2 \in V_2, ..., V_m \in V_m$, denote $\Pi.(V.) = S_1, \Pi_2(V_2) : S_2, ..., \Pi_m(V_m) = S_m$

y (0,6, Vm) = 5m

Define f_i as *- Given any $V_i \neq V_i$, $f_i = f(V_i) = f(0, ..., V_i, ..., 0) = f(V_i)$ $f_i = f(V_i) = f(0, ..., V_i, ..., 0) = f(V_i)$ $f_i = f(V_i) = f(0, ..., V_i, ..., 0) = f(V_i)$