Identificación de la Variedad del Lenguaje para la Mejora del Geoposicionamineto en Social Media

Autor: Raül Fabra Boluda

Directores: Dr. Paolo Rosso, Universitat Politècnica de València

Dr. Francisco Rangel, Autoritas Consulting

Trabajo de Final de Máster en Inteligencia Artificial, RECONOCIMIENTO DE FORMAS E IMAGEN DIGITAL

30 de septiembre de 2016

Índice I

- 1 Motivación
- 2 Metodología para la Construcción de un Corpus Anotado con Variedades del Lenguaje: HispaTweets
- 3 Marco de Evaluación y Resultados Experimentales
- 4 Participación en la Tarea de Discriminación de Idiomas Similares
- 5 Conclusiones y Trabajo Futuro

Medios Sociales y Geoposicionamiento

Medios sociales:

- Plataformas online orientadas al intercambio de información entre sus usuarios.
- Se encuentran en plena proliferación.

Problema del geoposicionamiento:

- Fronteras geográficas desdibujadas.
- Apenas un 2 % de los usuarios georreferencia su contenido

Aplicaciones:

Marketing

Segmentación geográfica o demográfica de las opiniones de los usuarios al lanzar un nuevo producto.

Seguridad y lingüística forense

Tratar de identificar rasgos del autor de una amenaza a partir de mensajes sospechosos.

Geoposicionamineto mediante Identificación de la Variedad del Lenguaje

Objetivos:

- Geoposicionamiento mediante la identificación de la variedad del lenguaje.
- Metodología para la construcción de corpus anotados con la variedad del idioma, garantizando la ausencia de sobreajustes por autor.
- Construcción y evaluación de un corpus para identificación de variedades del español en Twitter.

Author Profiling

Author Profiling:

Los textos de un individuo reflejan sus creencias e influencias socioculturales y educacionales.

Tareas organizadas en los últimos años:

- PAN 2013/14/15/16: reconocimiento de la edad, el sexo, la personalidad en Twitter y a nivel cross-genre.
- myPersonality: reconocimiento de la personalidad.
- PR-SOCO: reconocimiento de la personalidad de los programadores a partir de sus códigos fuentes.
- NLI 2013: identificación del idioma nativo.
- DSL 2015: discriminación de idiomas similares (DSL) y variedades del idioma (LVI).

LVI y DSL

Características	LVI	DSL
<i>n</i> -gramas (caracteres)	Χ	X
<i>n</i> -gramas (palabras)	Х	Χ
<i>n</i> -gramas (sílabas)	Χ	

Clasificación	LVI	DSL
SVM	Х	Χ
Modelos de lenguaje	Х	
Modelos Ocultos de Markov	Х	
Máxima Entropía	Х	Χ
Naïve Bayes	Х	Χ
Árboles de Decisión		Χ

Escasez de Recursos para LVI/DSL

DSLCC_{v.2.0}

No se separan por autor los textos en los conjuntos de entrenamiento y test.

Training 252.000

Development 28.000

Test* 14.000

*Dos conjuntos de test, idénticos pero uno de ellos sin Entidades Nombradas.

Grupo	Idioma/
·	Variedad
Eslavos del	Búlgaro
sureste	Macedonio
	Argentino
Español	Peninsular
Portugués	Brasileño
	Europeo
	Bosnio
Eslavos de	Croata
suroeste	Serbio
At	Indonesio
Austronesios	Malayo
Eslavos del oeste	Checo
Esiavos dei deste	Eslovaco
Otros	

Chile

Entrenamiento 2.250 blogueros (450 por país)

Test 1.000 blogueros (200 por país)

Los autores aparecen sólo en uno de los dos conjuntos

Tipología específica de textos

Metodología para la Construcción de Corpus para LVI

- Metodología y sistema desarrollado.
- Corpus en bruto.
- Refinamientos: filtrado geográfico, temporal y por frecuencia.
- 4 Corpus final: HispaTweets

Descripción de la Metodologia y el Sistema

Software liberado: https://github.com/autoritas/RD-Lab/tree/master/src/

Corpus tras el Proceso de Descarga

País	Usuarios	Tweets	Tweets/	Longitud media		
Fais	Usuarios	(timelines)	usuario	Palabras	Caracteres	
Argentina	2.393	1.684.662	704,00	10,72	65,18	
Chile	1.378	1.059.724	769,03	11,71	77,45	
Colombia	1.719	1.084.965	631,16	12,13	79,96	
España	1.909	1.148.523	601,64	12,81	84,12	
México	2.684	1.571.859	585,64	11,82	76,87	
Perú	1.113	676.623	607,93	11,34	72,87	
Venezuela	1.400	715.987	511,42	13,55	90,33	
Total	12.596	7.942.343	630,88	11,87	76,81	
Media	1.799,44	1.134.620,43	630,12	12,01	78,11	
SDev	529,37	355.970,97	77,58	0,87	7,42	

Corpus obtenido tras la búsqueda geolocalizada y la descarga de las *timelines*.

Refinamientos

- Filtrado geográfico: prescindimos de ciudades fronterizas. Proceso manual.
- 2 Filtrado temporal: conservamos tweets entre: 1 de enero de 2013 y 1 de enero de 2016

Filtrado por frecuencia: conservamos aquellos usuarios con más de 500 tweets.

Corpus Final

País	Usuarios	Tweets	Tweets/	Longitud media	
Fais	Usuarios	(timelines)	usuario	Palabras	Caracteres
Argentina	650	566.113	870,94	10,63	64,32
Chile	650	569.190	875,68	11,71	77,51
Colombia	650	559.619	860,95	12,17	80,34
España	650	558.253	858,85	12,72	83,91
México	650	567.734	873,44	11,75	76,42
Perú	650	564.203	868,00	11,26	72,35
Venezuela	650	552.978	850,74	13,54	90,94
Total	4.550	3.938.090	865,51	11,96	77,91
Media	650	562.584,29	865,51	11,97	77,97
SDev	0,00	5.412,43	8,33	0,89	7,83

Corpus final tras los tres filtrados.

Marco de Evaluación y Resultados Experimentales

- 1 Algoritmo de localización por perfil.
 - Utiliza únicamente información disponible en perfil del usuario.
- Zécnicas para LVI
 - Basadas el análisis de los textos con técnicas del estado del arte.

Localización por Perfil

Evaluación de HispaTweets con la información disponible en el perfil del usuario. Referencia para comparar con técnicas de LVI.

LVI: Representaciones

TF: Cada usuario es representado por un vector con la frecuencia de los términos que utiliza.

TF-IDF: Cada usuario es representado por un vector de pesos. Cada peso indica la relevancia de su término asociado en el documento (usuario).

LDR o Low-Dimensionality Representation [Rangel et al., 2016]:

- Cálculo de la matriz TF-IDF.
- 2 Ponderado de términos dependientes de las clases.
 - Para cada clase $c \in C$ (variedad) y cada término $t \in T$, se calcula una puntuación que indica con que confianza el término t pertenece a la clase c.
- 3 Representación dependiente de las clases.
 - Para cada clase, se calculan 6 medidas estadísticas en base a las puntuaciones anteriores.
 - avg, std, min, max, prob y prop
 - El número de características con qué representamos cada usuario es $6 \times |C|$.

Marco Experimental

Evaluación con validación cruzada en 5 bloques, asegurando siempre la separación de los usuarios de entrenamiento y validación durante todo el proceso.

Resultados del Algoritmo de Localización por Perfil

Predicción	Usuarios	% Usuarios
Correcta	2.731	60,02
Incorrecta	129	2,84
Indefinible	1.690	37,14
Total	4.550	100,00

Considerando únicamente usuarios etiquetados (62,86 % del total)

Accuracy: 0.95

País	Número usuarios	Precision	Recall	F-score
Argentina	358	0,91	0,96	0,93
Chile	403	0,97	0,97	0,97
Colombia	474	0,98	0,96	0,97
España	335	0,95	0,94	0,94
México	387	0,93	0,97	0,95
Perú	470	0,97	0,91	0,94
Venezuela	433	0,96	0,99	0,97
Total	2.860	0,96_	0,95	0,95

0.9

Mejores Resultados con *n*-gramas

n-gramas de palabras, TF-IDF, 5000 términos

Mejor resultado: 92 % con 1-gramas de palabras y SVM lineales.

Mejor resultado: 91 % con 4-gramas de caracteres y SVM lineales.

HispaTweets vs HispaBlogs

Accuracy HispaTweets (HT): 0,96 Accuracy HispaBlogs (HB): 0,71

País	Precision		Recall		F-score	
Fais	HT	HB	HT	HB	HT	НВ
Argentina	0,95	0,66	0,96	0,72	0,96	0,69
Chile	0,97	0,67	0,96	0,76	0,97	0,71
Colombia	0,95	-	0,95	-	0,95	-
España	0,95	0,71	0,96	0,77	0,95	0,74
México	0,95	0,78	0,98	0,66	0,96	0,71
Perú	0,98	0,77	0,90	0,66	0,94	0,71
Venezuela	0,94	-	0,98	-	0,96	-
Total	0,96	0,71	0,96	0,71	0,96	0,71

Resultados alineados para HispaTweets (HT) e HispaBlogs (HB). LDR sobre uni-gramas de palabras y SVM.

Participación en la Tarea de Discriminación de Idiomas Similares

- 1 Descripción y motivación de la tarea.
- 2 Aproximaciones.
- **3** Resultados experimentales.

Tarea DSL 2015

- Tarea de discriminación de idiomas similares y variedades del idioma (DSL 2015).
- Recortes de noticias (entre 20 y 100 tokens).
- Los textos de los diferentes conjuntos no están separados por autor.

DSLCC v.2.0

Training 252.000
Development 28.000
Test* 14.000

*Dos conjuntos de test, idénticos pero uno de ellos sin Entidades Nombradas.

Grupo	Idioma/
	Variedad
Eslavos del	Búlgaro
sureste	Macedonic
Español	Argentino
	Peninsular
Portugués	Brasileño
	Europeo
	Bosnio
Eslavos de	Croata
suroeste	Serbio
Austronesios	Indonesio
Austronesios	Malayo
Ealayea dal aceta	Checo
Eslavos del oeste	Eslovaco
Otros	

Aproximación

Objetivo: evaluación del rendimiento con LDR en dos sistemas diferentes.

Resultados

Accuracy					curacy		
Variedad	Validación	ón Test A Test B		Variedad	Validación	Test A	Test B
bg*	99,80	99,90	99,80	bg	98,15	97,50	95,10
mk*	100,00	99,90	100,00	mk*	98,95	98,20	98,20
es-ES	88,00	84,70	79,50	es-ES	87,55	84,80	48,70
es-AR*	87,50	88,00	87,70	es-AR**	67,05	70,00	74,10
pt-PT	88,60	87,40	94,00	pt-PT	82,15	81,20	58,30
pt-BR	90,10	90,03	68,50	pt-BR	72,45	72,50	65,90
bs*	78,35	78,00	74,40	bs	55,70	54,30	86,20
hr*	86,15	85,80	85,40	hr	80,85	78,88	13,10
sr**	86,40	86,40	82,70	sr	74,40	74,70	7,80
id	99,40	99,40	92,90	id	97,75	97,60	92,00
my*	99,45	99,20	99,50	my	94,25	93,60	97,60
cz*	99,70	99,80	99,40	cz	98,45	98,40	94,40
sk*	99,60	99,30	99,60	sk	98,80	97,60	79,30
xx*	99,90	99,90	99,70	xx*	98,55	98,50	98,80
global	93,07	92,71	90,22	global	86,08	85,57	72,11

Modalidad abierta.

Modalidad cerrada.

¿Es posible que exista sobreajuste por autor?

Conclusiones: Localización por Perfil vs. LVI

Algoritmo de localización por perfil:

- 60,02 % de los usuarios en total etiquetados correctamente.
- Considerando usuarios etiquetados, acierta el 95 % de las veces.

Obtenemos un *accuracy* del 96 % con LDR sobre uni-gramas de palabras, SVM lineales y con un vocabulario de 5.000 términos.

- Aumento de n en los n-gramas de palabras empeoran el resultado
- n-gramas de caracteres funcionan mejor con $n \ge 4$.

Conclusiones: HispaTweets vs. HispaBlogs

Comparativa de HispaTweets con HispaBlogs:

- Diferencia entre accuracies: en HispaTweets disponemos de mucha más información por usuario.
- Perú: el clasificador no suele equivocarse (alta precision), pero le cuesta más detectarlos (bajo recall).
- En ambos corpus, Chile, España y en menor medida Argentina presentan un recall alto (más fáciles de detectar).

Conclusiones: Tarea DSL 2015

Participación en la tarea DSL 2015 [Fabra et al., 2015]:

- El sistema en dos pasos obtiene mejores resultados.
- Los grupos más complicados de diferenciar han sido:
 - Bosnio, serbio y croata (accuracy medio de 83,63 %).
 - Español: argentino y peninsular (accuracy medio de 87,75 %).
 - Portugués: de Portugal y Brasil (accuracy medio de 89,35 %).
- Accuracies superiores al 99 % para el resto de idiomas/variedades.

Fabra R., Rangel F., Rosso P. NLEL_UPV_Autoritas Participation at Discrimination between Similar Languages (DSL) 2015 Shared Task. In: Proc. of the RANLP Joint Workshop on Language Technology for Closely Related Languages, Varieties and Dialects (LT4VarDial), Hissar, Bulgaria, 10 September, pp. 52-58

Trabajo Futuro

Para un entorno de producción en la empresa hay que tener en cuenta la aplicabilidad.

- Necesidad de obtención de conocimiento en tiempo real.
- Reducción de la cantidad de información por usuario:
 - Identificación a nivel de tweet en lugar de usuario.
 - Limitar la cantidad de tweets por usuario en el entrenamiento.

Aplicación de la metodología para la construcción de corpus para otros idiomas/variedades.

Para la tarea PAN en la conferencia CLEF 2017 se elaborarán corpus para portugués, inglés y árabe.