Nitrogen-Vacancy Photoionization from the Singlet State: Micro-diamond electrodes

Joe Becker

Texas A&M Department of Physics and Astronomy jbecker@physics.tamu.edu

December 5, 2016

Why Nitrogen-Vacancy Diamond Electrodes?

Nitrogen-Vacancy as a Solid-State Electron Spin

The NV⁻ has the potential to be a solid-state realization of quantum system at room temperature. This has applications in

- Quantum Information and Metrology
- Nanoscale Magnetometry and Thermometry

Photoionization as a New Approach to NV⁻ Spin Control

- Ionization experiments can provide a new measurement of the singlet state
- Ionization can enhance current contrast of magnetic resonances
- Photocurrent can open an new avenue for spin-state measurements

Nitrogen-Vacancy Diamonds

NV Defect

I. V. Fedotov, et al. Sci. Rep. 4, 5362 (2014).

Nitrogen-Vacancy Photoionization

NV Energy and Fluorescence

Enhanced Contrast ODMR Spectrum

By increasing resonant peak contrast we:

- Improve signal to noise
- Increase sensitivity of magnetic field or temperature measurements

Single-Photon Electroluminescence

Two Photon Photoionization

E. Bourgeois, et al. Nat. Commun. 6, 8577 (2015).

Proposed Micro-diamond Electrode Process

Current Progress

Currently we have successfully suspended a 100 μm diamond within freely suspended SU8

We still need to find a polishing process that allows for a clean binding surface for silver coating.

Photoionization Current Measurement

Experimental Schematic

We intend to measure the photocurrent caused by photoionization in three wavelength regimes.

- At 532 nm to verify a measured photocurrent (two-photon)
- 2 In the range of 470 to 500 nm (single-photon)
- Then in the enhanced contrast ODMR regime with both green and blue light

Conclusions

- Singlet state ionization is a single photon process.
- If we can ionize from the singlet state we should be able to measure a photocurrent with a linear dependence on pump power.
- Ionization from the singlet state will open the possibility of enhanced contrast ODMR. Increasing the sensitivity of NV⁻ based magnetometers and thermometers.