STANDARD THERMODYNAMIC PROPERTIES OF CHEMICAL SUBSTANCES

This table gives the standard state chemical thermodynamic properties of about 2500 individual substances in the crystalline, liquid, and gaseous states. Substances are listed by molecular formula in a modified Hill order; all substances not containing carbon appear first, followed by those that contain carbon. The properties tabulated are:

- $\Delta_{\rm f} H^{\circ}$ Standard molar enthalpy (heat) of formation at 298.15 K in kJ/mol
- $\Delta_f G^{\circ}$ Standard molar Gibbs energy of formation at 298.15 K in kJ/mol
- S° Standard molar entropy at 298.15 K in J/mol K
- C_p Molar heat capacity at constant pressure at 298.15 K in J/mol K

The standard state pressure is 100 kPa (1 bar). The standard states are defined for different phases by:

- The standard state of a pure gaseous substance is that of the substance as a (hypothetical) ideal gas at the standard state pressure.
- The standard state of a pure liquid substance is that of the liquid under the standard state pressure.
- The standard state of a pure crystalline substance is that of the crystalline substance under the standard state pressure.

An entry of 0.0 for $\Delta_f H^\circ$ for an element indicates the reference state of that element. See References 1 and 2 for further information on reference states. A blank means no value is available.

The data are derived from the sources listed in the references, from other papers appearing in the *Journal of Physical and Chemical Reference Data*, and from the primary research literature. We are indebted to M. V. Korobov for providing data on fullerene compounds.

References

- Cox, J. D., Wagman, D. D., and Medvedev, V. A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1989.
- Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L., and Nuttall, R. L., *The NBS Tables of Chemical Thermodynamic Properties, J. Phys. Chem. Ref. Data*, Vol. 11, Suppl. 2, 1982.
- Chase, M. W., Davies, C. A., Downey, J. R., Frurip, D. J., McDonald, R. A., and Syverud, A. N., JANAF Thermochemical Tables, Third Edition, J. Phys. Chem. Ref. Data, Vol. 14, Suppl.1, 1985.
- Chase, M. W., NIST-JANAF Thermochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998.
- Daubert, T. E., Danner, R. P., Sibul, H. M., and Stebbins, C. C., *Physical and Thermodynamic Properties of Pure Compounds: Data Compilation*, extant 1994 (core with 4 supplements), Taylor & Francis, Bristol, PA.
- Pedley, J. B., Naylor, R. D., and Kirby, S. P., Thermochemical Data of Organic Compounds, Second Edition, Chapman & Hall, London, 1986.
- Pedley, J. B., Thermochemical Data and Structures of Organic Compounds, Thermodynamic Research Center, Texas A & M University, College Station, TX, 1994.
- 8. Domalski, E. S., and Hearing, E. D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase, Volume III, *J. Phys. Chem. Ref. Data*, 25, 1-525, 1996.
- Zabransky, M., Ruzicka, V., Majer, V., and Domalski, E. S., Heat Capacity of Liquids, J. Phys. Chem. Ref. Data, Monograph No. 6, 1996.
- Gurvich, L. V., Veyts, I.V., and Alcock, C. B., Thermodynamic Properties of Individual Substances, Fourth Edition, Vol. 1, Hemisphere Publishing Corp., New York, 1989.
- Gurvich, L. V., Veyts, I.V., and Alcock, C. B., Thermodynamic Properties of Individual Substances, Fourth Edition, Vol. 3, CRC Press, Boca Raton, FL, 1994.
- 12. NIST Chemistry Webbook, <webbook.nist.gov>

			Cry	stal			Lic	Juid			Ga	as	
Molecular formula	Name	Δ _f H° kJ/mol	∆ _f G° kJ/mol	<i>\$</i> ° J/mol K	C _p J/mol K	Δ _f H° kJ/mol	∆ _f G° kJ/mol	<i>S</i> ° J/mol K	<i>C_p</i> J∕mol K	Δ _f H° kJ/mol	∆ _f G° kJ/mol	<i>\$</i> ° J/mol K	C _p J/mol K
Substance	s not containing carbon:												
Ac	Actinium	0.0		56.5	27.2					406.0	366.0	188.1	20.8
Ag	Silver	0.0		42.6	25.4					284.9	246.0	173.0	20.8
AgBr	Silver(I) bromide	-100.4	-96.9	107.1	52.4								
AgBrO ₃	Silver(I) bromate	-10.5	71.3	151.9									
AgCl	Silver(I) chloride	-127.0	-109.8	96.3	50.8								
AgCIO ₃	Silver(I) chlorate	-30.3	64.5	142.0									
AgCIO ₄	Silver(I) perchlorate	-31.1											
AgF	Silver(I) fluoride	-204.6											
AgF ₂	Silver(II) fluoride	-360.0											
AgI	Silver(I) iodide	-61.8	-66.2	115.5	56.8								
AgIO ₃	Silver(I) iodate	-171.1	-93.7	149.4	102.9								
AgNO ₃	Silver(I) nitrate	-124.4	-33.4	140.9	93.1								
Ag ₂	Disilver									410.0	358.8	257.1	37.0
Ag ₂ CrO ₄	Silver(I) chromate	-731.7	-641.8	217.6	142.3								
Ag ₂ O	Silver(I) oxide	-31.1	-11.2	121.3	65.9								
Ag_2O_2	Silver(II) oxide	-24.3	27.6	117.0	88.0								
Ag ₂ O ₃	Silver(III) oxide	33.9	121.4	100.0									
Ag ₂ O ₄ S	Silver(I) sulfate	-715.9	-618.4	200.4	131.4								
Ag ₂ S	Silver(I) sulfide (argentite)	-32.6	-40.7	144.0	76.5								
Al	Aluminum	0.0		28.3	24.2					330.0	289.4	164.6	21.4

			Cry	stal			Liq	uid			Ga	as	
Molecular formula	Name	Δ₁H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J∕mol K	∆ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J∕mol K	∆ _f H° kJ/mol	∆ _f G° kJ/mol	<i>S</i> ° J/mol K	<i>C_p</i> J∕mol K
AIB ₃ H ₁₂	Aluminum borohydride					-16.3	145.0	289.1	194.6	13.0	147.0	379.2	
AlBr	Aluminum monobromide									-4.0	-42.0	239.5	35.6
AlBr ₃	Aluminum bromide	-527.2		180.2	100.6					-425.1			
AICI	Aluminum monochloride									-47.7	-74.1	228.1	35.0
AICI ₂	Aluminum dichloride									-331.0			-
AICI ₃	Aluminum chloride	-704.2	-628.8	109.3	91.1					-583.2			-
AIF	Aluminum monofluoride									-258.2	-283.7	215.0	31.9
AIF ₃	Aluminum fluoride	-1510.4	-1431.1	66.5	75.1					-1204.6	-1188.2	277.1	62.6
AIF₄Na	Sodium tetrafluoroaluminate									-1869.0	-1827.5	345.7	105.9
AIH	Aluminum monohydride									259.2	231.2	187.9	29.4
AIH ₃	Aluminum hydride	-46.0		30.0	40.2								-
AIH ₄ K	Potassium aluminum hydride	-183.7											
AlH₄Li	Lithium aluminum hydride	-116.3	-44.7	78.7	83.2								
AlH₄Na	Sodium aluminum hydride	-115.5											
All	Aluminum monoiodide									65.5			36.0
All ₃	Aluminum iodide	-313.8	-300.8	159.0	98.7					-207.5			
AIN	Aluminum nitride	-318.0	-287.0	20.2	30.1								
AIO	Aluminum monoxide									91.2	65.3	218.4	30.9
AIO ₄ P	Aluminum phosphate	-1733.8	-1617.9	90.8	93.2								
AIP	Aluminum phosphide	-166.5											
AIS	Aluminum monosulfide									200.9	150.1	230.6	33.4
Al ₂	Dialuminum									485.9	433.3	233.2	36.4
Al ₂ Br ₆	Aluminum hexabromide									-970.7			
Al ₂ Cl ₆	Aluminum hexachloride									-1290.8	-1220.4	490.0	
Al ₂ F ₆	Aluminum hexafluoride									-2628.0			
Al ₂ l ₆	Aluminum hexaiodide									-516.7			
Al ₂ 0	Aluminum oxide (Al ₂ O)									-130.0	-159.0	259.4	45.7
Al ₂ O ₃	Aluminum oxide (corundum)	-1675.7	-1582.3	50.9	79.0								
Al ₂ S ₃	Aluminum sulfide	-724.0		116.9	105.1								
Am	Americium	0.0		110.0	100.1								
Ar	Argon									0.0		154.8	20.8
As	Arsenic (gray)	0.0		35.1	24.6					302.5	261.0	174.2	20.8
As	Arsenic (yellow)	14.6								002.0	20110		
AsBr ₃	Arsenic(III) bromide	-197.5								-130.0	-159.0	363.9	79.2
AsCI ₃	Arsenic(III) chloride	107.0				-305.0	-259.4	216.3		-261.5	-248.9	327.2	75.7
AsF ₃	Arsenic(III) fluoride					-821.3	-774.2	181.2	126.6	-785.8	-770.8	289.1	65.6
AsGa	Gallium arsenide	-71.0	-67.8	64.2	46.2	021.0			120.0	7 00.0	110.0	200.1	
AsH ₃	Arsine		01.0	0 1.12						66.4	68.9	222.8	38.1
AsH ₃ O ₄	Arsenic acid	-906.3											
Asl ₃	Arsenic(III) iodide	-58.2	-59.4	213.1	105.8							388.3	80.6
AsIn	Indium arsenide	-58.6	-53.6	75.7	47.8								
As0	Arsenic monoxide									70.0			
As ₂	Diarsenic									222.2	171.9	239.4	35.0
As ₂ O ₅	Arsenic(V) oxide	-924.9	-782.3	105.4	116.5							200.1	
As ₂ S ₃	Arsenic(III) sulfide	-169.0	-168.6	163.6	116.3								
At	Astatine	0.0	100.0	100.0	110.0								
Au	Gold	0.0		47.4	25.4					366.1	326.3	180.5	20.8
AuBr	Gold(I) bromide	-14.0			20.1					000.1	020.0	100.0	
AuBr ₃	Gold(III) bromide	-53.3											
AuCl	Gold(I) chloride	-34.7											
AuCl ₃	Gold(III) chloride	-117.6											
AuF ₃	Gold(III) fluoride	-363.6											
AuH	Gold hydride	-303.0								295.0	265.7	211.2	29.2
Aul	Gold(I) iodide	0.0								200.0	200.1	211.2	
Au ₂	Digold	0.0								515.1			36.9
B B	Boron (β-rhombohedral)	0.0		5.9	11.1					565.0	521.0	153.4	20.8
BBr	Bromoborane(1)	0.0		J.8	11.1					238.1	195.4	225.0	32.9
BBr ₃	Boron tribromide					-239.7	-238.5	229.7		-205.6	-232.5	324.2	67.8
BCI	Chloroborane(1)					-203.1	-230.3	LLJ.1		149.5	120.9	213.2	31.7
BCIO	Chloroxyborane									-314.0	120.9	۷۱۵.۷	31./
BCI ₃	Boron trichloride					-427.2	-387.4	206.3	106.7	-403.8	-388.7	290.1	62.7
BCsO ₂	Cesium metaborate	-972.0	-915.0	104.4	80.6	-421.2	-301.4	200.3	100.7	-403.0	-300.7	∠∃U. I	02.1
BF BCSU ₂	Fluoroborane(1)	-312.0	-510.0	104.4	00.0					-122.2	-149.8	200.5	29.6
BF0	Fluoroporane(T) Fluorooxyborane									-607.0	-149.6	200.3	29.0
BF ₃	Boron trifluoride									-1136.0	-1119.4	254.4	
		-1353.9								-1130.0	-1119.4	204.4	
BF ₃ H ₃ N	Aminetrifluoroboron	-1353.9											

			Cry	stal			Liq	uid			G	as	
Molecular formula	Name	Δ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	∆ _f <i>G</i> ° kJ/mol	S° J/mol K	C _p J/mol K	Δ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J∕mol K
BF ₃ H ₃ P	Trihydro(phosphorus trifluoride)boron									-854.0			
BF₄Na	Sodium tetrafluoroborate	-1844.7	-1750.1	145.3	120.3								
ВН	Borane(1)									442.7	412.7	171.8	29.2
BHO ₂	Metaboric acid (β, monoclinic)	-794.3	-723.4	38.0						-561.9	-551.0	240.1	42.2
BH ₃	Borane(3)	1004.0	-968.9	00.0	00.1					-994.1	93.3	188.2	36.0
BH₃O₃ BH₄K	Boric acid Potassium borohydride	-1094.3 -227.4	-160.3	90.0	86.1 96.1					-994.1			
BH ₄ Li	Lithium borohydride	-190.8	-100.3	75.9	82.6								
BH ₄ Na	Sodium borohydride	-188.6	-123.9	101.3	86.8								
Bl ₃	Boron triiodide									71.1	20.7	349.2	70.8
BKO ₂	Potassium metaborate	-981.6	-923.4	80.0	66.7								
BLiO ₂	Lithium metaborate	-1032.2	-976.1	51.5	59.8								
BN	Boron nitride	-254.4	-228.4	14.8	19.7					647.5	614.5	212.3	29.5
BNaO ₂	Sodium metaborate	-977.0	-920.7	73.5	65.9								
В0	Boron monoxide									25.0	-4.0	203.5	29.2
BO ₂	Boron dioxide									-300.4	-305.9	229.6	43.0
BO₂Rb	Rubidium metaborate	-971.0	-913.0	94.3	74.1					0.40.0	000.0	040.0	00.0
BS	Boron monosulfide									342.0	288.8 774.0	216.2	30.0
B ₂ CI ₄	Diboron Tetrachlorodiborane					-523.0	-464.8	262.3	137.7	830.5 -490.4	-460.6	201.9 357.4	30.5 95.4
B ₂ G ₄	Tetrafluorodiborane					-323.0	-404.0	202.3	137.7	-490.4	-1410.4	317.3	79.1
B ₂ H ₆	Diborane									36.4	87.6	232.1	56.7
B ₂ O ₂	Diboron dioxide									-454.8	-462.3	242.5	57.3
B ₂ O ₃	Boron oxide	-1273.5	-1194.3	54.0	62.8					-843.8	-832.0	279.8	66.9
B ₂ S ₃	Boron sulfide	-240.6		100.0	111.7					67.0			
B ₃ H ₆ N ₃	Borazine					-541.0	-392.7	199.6					
B ₄ H ₁₀	Tetraborane(10)									66.1	184.3	280.3	93.2
B ₄ Na ₂ O ₇	Sodium tetraborate	-3291.1	-3096.0	189.5	186.8								
B ₅ H ₉	Pentaborane(9)					42.7	171.8	184.2	151.1	73.2	173.6	280.6	99.6
B ₅ H ₁₁	Pentaborane(11)					73.2				103.3	230.6	321.0	130.3
B ₆ H ₁₀	Hexaborane(10)					56.3				94.6	211.3	296.8	125.7
B ₉ H ₁₅	Nonaborane(15)									158.4	357.5	364.9	187.0
B ₁₀ H ₁₄	Decaborane(14)									47.3	232.8	350.7	186.1
Ba	Barium	0.0	700.0	62.5	28.1					180.0	146.0	170.2	20.8
BaBr ₂ BaCl ₂	Barium bromide Barium chloride	-757.3 -855.0	-736.8 -806.7	146.0 123.7	75.1								
BaCl ₂ H ₄ O ₂	Barium chloride dihydrate	-1456.9	-1293.2	203.0	73.1								
BaF ₂	Barium fluoride	-1207.1	-1156.8	96.4	71.2								
BaH ₂	Barium hydride	-177.0	-138.2	63.0	46.0								
BaH ₂ O ₂	Barium hydroxide	-944.7											
Bal ₂	Barium iodide	-602.1											
BaN ₂ O ₄	Barium nitrite	-768.2											
BaN ₂ O ₆	Barium nitrate	-988.0	-792.6	214.0	151.4								
Ba0	Barium oxide	-548.0	-520.3	72.1	47.3					-112.0			
BaO₄S	Barium sulfate	-1473.2	-1362.2	132.2	101.8								
BaS	Barium sulfide	-460.0	-456.0	78.2	49.4								
Be	Beryllium	0.0		9.5	16.4					324.0	286.6	136.3	20.8
BeBr ₂	Beryllium bromide	-353.5	145.0	108.0	69.4								
BeCl ₂	Beryllium chloride	-490.4	-445.6 -979.4	75.8	62.4								
BeF ₂ BeH ₂ O ₂	Beryllium fluoride Beryllium hydroxide	-1026.8 -902.5	-815.0	53.4 45.5	51.8 62.1								
Bel ₂	Beryllium iodide	-192.5	-010.0	121.0	71.1								
BeO	Beryllium oxide	-609.4	-580.1	13.8	25.6								
BeO₄S	Beryllium sulfate	-1205.2	-1093.8	77.9	85.7								
BeS	Beryllium sulfide	-234.3		34.0	34.0								
Bi	Bismuth	0.0		56.7	25.5					207.1	168.2	187.0	20.8
BiCIO	Bismuth oxychloride	-366.9	-322.1	120.5									
BiCl ₃	Bismuth trichloride	-379.1	-315.0	177.0	105.0					-265.7	-256.0	358.9	79.7
BiH ₃ O ₃	Bismuth hydroxide	-711.3											
Bil ₃	Bismuth triiodide		-175.3										
Bi ₂	Dibismuth									219.7			36.9
Bi ₂ O ₃	Bismuth oxide	-573.9	-493.7	151.5	113.5								
Bi ₂ O ₁₂ S ₃	Bismuth sulfate	-2544.3		000	100.1								
Bi ₂ S ₃	Bismuth sulfide	-143.1	-140.6	200.4	122.2								
Bk	Berkelium	0.0											

			Cry	stal			Liq	uid			Ga	as	
Molecular formula	Name	Δ₁ H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J∕mol K	∆ _f H° kJ/mol	∆ _f G° kJ/mol	<i>S</i> ° J/mol K	<i>C_p</i> J∕mol K	∆ _f H° kJ/mol	∆ _f G° kJ/mol	S° J∕mol K	<i>C_p</i> J∕mol K
Br	Bromine (atomic)									111.9	82.4	175.0	20.8
BrCl	Bromine chloride									14.6	-1.0	240.1	35.0
BrCl ₃ Si	Bromotrichlorosilane											350.1	90.9
BrCs	Cesium bromide	-405.8	-391.4	113.1	52.9								
BrCu	Copper(I) bromide	-104.6	-100.8	96.1	54.7								
BrF	Bromine fluoride									-93.8	-109.2	229.0	33.0
BrF ₃	Bromine trifluoride					-300.8	-240.5	178.2	124.6	-255.6	-229.4	292.5	66.6
BrF ₅	Bromine pentafluoride					-458.6	-351.8	225.1		-428.9	-350.6	320.2	99.6
BrGe	Germanium monobromide									235.6		074.0	37.1
BrGeH ₃	Bromogermane									20.0	F0.4	274.8	56.4
BrHSi	Hydrogen bromide Bromosilylene									-36.3 -464.4	-53.4	198.7	29.1
BrH₃Si	Bromosilane									-404.4		262.4	52.8
BrH ₄ N	Ammonium bromide	-270.8	-175.2	113.0	96.0							202.4	J2.0
BrI	lodine bromide	270.0	110.2	110.0	30.0					40.8	3.7	258.8	36.4
Brln	Indium(I) bromide	-175.3	-169.0	113.0						-56.9	-94.3	259.5	36.7
BrK	Potassium bromide	-393.8	-380.7	95.9	52.3								
BrKO ₃	Potassium bromate	-360.2	-271.2	149.2	105.2								
BrKO ₄	Potassium perbromate	-287.9	-174.4	170.1	120.2								
BrLi	Lithium bromide	-351.2	-342.0	74.3									
BrNO	Nitrosyl bromide									82.2	82.4	273.7	45.5
BrNa	Sodium bromide	-361.1	-349.0	86.8	51.4					-143.1	-177.1	241.2	36.3
BrNaO ₃	Sodium bromate	-334.1	-242.6	128.9									
Br0	Bromine monoxide									125.8	109.6	233.0	34.2
BrO ₂	Bromine dioxide									152.0	155.0	271.1	45.4
BrRb	Rubidium bromide	-394.6	-381.8	110.0	52.8								
BrSi	Bromosilyldyne									209.0			38.6
BrTl	Thallium(I) bromide	-173.2	-167.4	120.5						-37.7			
Br ₂	Bromine					0.0		152.2	75.7	30.9	3.1	245.5	36.0
Br ₂ Ca	Calcium bromide	-682.8	-663.6	130.0									
Br ₂ Cd	Cadmium bromide	-316.2	-296.3	137.2	76.7								
Br ₂ Co	Cobalt(II) bromide	-220.9			79.5								
Br ₂ Cr	Chromium(II) bromide	-302.1											
Br ₂ Cu	Copper(II) bromide	-141.8	000.4	1100									
Br ₂ Fe	Iron(II) bromide	-249.8	-238.1	140.6								200.7	
Br ₂ H ₂ Si	Dibromosilane	170.7	150.1	170.0								309.7	65.5
Br ₂ Hg	Mercury(II) bromide Mercury(I) bromide	-170.7 -206.9	-153.1 -181.1	172.0 218.0									
Br ₂ Hg ₂ Br ₂ Mg	Magnesium bromide	-524.3	-503.8	117.2									
Br ₂ Mn	Manganese(II) bromide	-384.9	-303.0	117.2									
Br ₂ Ni	Nickel(II) bromide	-212.1											
Br ₂ Pb	Lead(II) bromide	-278.7	-261.9	161.5	80.1								
Br ₂ Pt	Platinum(II) bromide	-82.0	201.0	101.0	00.1								
Br ₂ S ₂	Sulfur bromide	02.0				-13.0							
Br ₂ Se	Selenium dibromide					10.0				-21.0			
Br ₂ Sn	Tin(II) bromide	-243.5											
Br ₂ Sr	Strontium bromide	-717.6	-697.1	135.1	75.3								
Br ₂ Ti	Titanium(II) bromide	-402.0		****									
Br ₂ Zn	Zinc bromide	-328.7	-312.1	138.5									
Br ₃ Ce	Cerium(III) bromide	-891.4											
Br ₃ CISi	Tribromochlorosilane											377.1	95.3
Br ₃ Dy	Dysprosium(III) bromide	-836.2											
Br ₃ Fe	Iron(III) bromide	-268.2											-
Br ₃ Ga	Gallium(III) bromide	-386.6	-359.8	180.0									
Br ₃ HSi	Tribromosilane					-355.6	-336.4	248.1		-317.6	-328.5	348.6	80.8
Br ₃ In	Indium(III) bromide	-428.9								-282.0			
Br ₃ OP	Phosphoric tribromide	-458.6										359.8	89.9
Br ₃ P	Phosphorus(III) bromide					-184.5	-175.7	240.2		-139.3	-162.8	348.1	76.0
Br ₃ Pt	Platinum(III) bromide	-120.9											
Br₃Re	Rhenium(III) bromide	-167.0											
Br₃Ru	Ruthenium(III) bromide	-138.0											
Br ₃ Sb	Antimony(III) bromide	-259.4	-239.3	207.1						-194.6	-223.9	372.9	80.2
Br ₃ Sc	Scandium bromide	-743.1			•								
Br ₃ Ti	Titanium(III) bromide	-548.5	-523.8	176.6	101.7								
Br₄Ge	Germanium(IV) bromide					-347.7	-331.4	280.7		-300.0	-318.0	396.2	101.8
Br₄Pa	Protactinium(IV) bromide	-824.0	-787.8	234.0									

			Cry	stal			Liq	uid			G	as	
Molecular formula	Name	Δ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J∕mol K	Δ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J∕mol K	Δ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K
Br ₄ Pt	Platinum(IV) bromide	-156.5											
Br ₄ Si	Tetrabromosilane					-457.3	-443.9	277.8		-415.5	-431.8	377.9	97.1
Br ₄ Sn	Tin(IV) bromide	-377.4	-350.2	264.4						-314.6	-331.4	411.9	103.4
Br₄Te Br₄Ti	Tellurium tetrabromide	-190.4 -616.7	-589.5	243.5	131.5					-549.4	-568.2	398.4	100.8
Br ₄ V	Titanium(IV) bromide Vanadium(IV) bromide	-010.7	-369.3	243.3	131.3					-336.8	-306.2	390.4	100.6
Br₄Zr	Zirconium(IV) bromide	-760.7								-330.0			
Br ₅ P	Phosphorus(V) bromide	-269.9											
Br ₅ Ta	Tantalum(V) bromide	-598.3											
Br ₆ W	Tungsten(VI) bromide	-348.5											
Ca	Calcium	0.0		41.6	25.9					177.8	144.0	154.9	20.8
CaCl ₂	Calcium chloride	-795.4	-748.8	108.4	72.9								
CaF ₂	Calcium fluoride	-1228.0	-1175.6	68.5	67.0								
CaH ₂	Calcium hydride	-181.5	-142.5	41.4	41.0								
CaH ₂ O ₂	Calcium hydroxide	-985.2	-897.5	83.4	87.5								
Cal ₂	Calcium iodide	-533.5	-528.9	142.0	440.4								
CaN ₂ O ₆	Calcium nitrate	-938.2	-742.8 -603.3	193.2	149.4								
CaO ₄ S	Calcium oxide Calcium sulfate	-634.9 -1434.5	-1322.0	38.1 106.5	42.0 99.7								
CaS CaS	Calcium sulfide	-1434.5	-477.4	56.5	47.4								
Ca ₃ O ₈ P ₂	Calcium phosphate	-4120.8	-3884.7	236.0	227.8								
Cd Cd	Cadmium	0.0	0007.7	51.8	26.0					111.8		167.7	20.8
CdCl ₂	Cadmium chloride	-391.5	-343.9	115.3	74.7								
CdF ₂	Cadmium fluoride	-700.4	-647.7	77.4									
CdH ₂ O ₂	Cadmium hydroxide	-560.7	-473.6	96.0									
Cdl ₂	Cadmium iodide	-203.3	-201.4	161.1	80.0								
CdO	Cadmium oxide	-258.4	-228.7	54.8	43.4								
CdO ₄ S	Cadmium sulfate	-933.3	-822.7	123.0	99.6								
CdS	Cadmium sulfide	-161.9	-156.5	64.9									
CdTe	Cadmium telluride	-92.5	-92.0	100.0									
Ce	Cerium (γ, fcc)	0.0	004.0	72.0	26.9					423.0	385.0	191.8	23.1
CeCl ₃	Cerium(III) chloride	-1060.5	-984.8	151.0	87.4								
Cel ₃	Cerium(III) iodide Cerium(IV) oxide	-669.3 -1088.7	-1024.6	62.3	61.6								
CeS	Cerium(II) sulfide	-459.4	-451.5	78.2	50.0								
Ce ₂ O ₃	Cerium(III) oxide	-1796.2	-1706.2	150.6	114.6								
Cf	Californium	0.0											
CI	Chlorine (atomic)									121.3	105.3	165.2	21.8
CICs	Cesium chloride	-443.0	-414.5	101.2	52.5								
CICsO ₄	Cesium perchlorate	-443.1	-314.3	175.1	108.3								
CICu	Copper(I) chloride	-137.2	-119.9	86.2	48.5								
CIF	Chlorine fluoride									-50.3	-51.8	217.9	32.1
CIFO ₃	Perchloryl fluoride									-23.8	48.2	279.0	64.9
CIF ₃	Chlorine trifluoride					-189.5				-163.2	-123.0	281.6	63.9
CIF ₅ S	Sulfur chloride pentafluoride					-1065.7				455.0	404.0	0.47.0	00.0
CIGe	Germanium monochloride									155.2	124.2	247.0 263.7	36.9 54.7
CIGeH ₃	Chlorogermane Hydrogen chloride									-92.3	-95.3	186.9	29.1
CIHO	Hypochlorous acid									-92.3	-95.5	236.7	37.2
CIHO ₄	Perchloric acid					-40.6				10.1	JU. I	200.1	31.2
CIH ₃ Si	Chlorosilane					10.0						250.7	51.0
CIH ₄ N	Ammonium chloride	-314.4	-202.9	94.6	84.1								2.7.0
CIH ₄ NO ₄	Ammonium perchlorate	-295.3	-88.8	186.2									
CIH ₄ P	Phosphonium chloride	-145.2											
CII	lodine chloride					-23.9	-13.6	135.1		17.8	-5.5	247.6	35.6
Clln	Indium(I) chloride	-186.2								-75.0			
CIK	Potassium chloride	-436.5	-408.5	82.6	51.3					-214.6	-233.3	239.1	36.5
CIKO ₃	Potassium chlorate	-397.7	-296.3	143.1	100.3					·			
CIKO ₄	Potassium perchlorate	-432.8	-303.1	151.0	112.4								
CILi	Lithium chloride	-408.6	-384.4	59.3	48.0								
CILIO ₄	Lithium perchlorate	-381.0								F4 7	00.4	001 =	44-
CINO CINO ₂	Nitrosyl chloride									51.7 12.6	66.1 54.4	261.7 272.2	44.7 53.2
CINO ₂	Nitryl chloride Sodium chloride	-411.2	-384.1	72.1	50.5					12.0	24.4	212.2	53.2
CINaO ₂	Sodium chlorite	-411.2	-304.1	12.1	30.3								
CINaO ₃	Sodium chlorate	-365.8	-262.3	123.4									
311403	Codium onlorato	000.0	۷.۷	120.4									

				Cry	stal			Liq	uid			G	as	
Selling perhanses		Name				<i>C_p</i> J∕mol K				<i>C_p</i> J/mol K				<i>C_p</i> J∕mol K
District globax Control Contro	CINaO ₄	Sodium perchlorate												
Col.											101.8	98.1	226.6	31.5
Col. Color September Color C		<u> </u>	-607.0	-556.0	75.0						100.5	100.5	250.0	40.0
Column C														42.0 46.0
City Content Content		. , ,	_//27.2	-306.0	161.1						09.1	105.0	203.1	40.0
Cist Different Property Cist						52.4								
			100.1	107.0		02.1					189.9			36.9
Chapte			-204.1	-184.9	111.3	50.9								
Clock Cheminarity Christic Cheminarity Cheminarity Christic Cheminarity Christic Cheminarity Cheminarity Christic Cheminarity Cheminarity Christic Cheminarity Christic Cheminarity Christic Cheminarity Christia Christ		Chlorine									0.0		223.1	33.9
Clorage Compart Control Cont		Cobalt(II) chloride	-312.5		109.2	78.5								
Color		. ,	-395.4	-356.0	115.3	71.2								
							-579.5	-510.8	221.8		-538.1	-501.6	329.8	84.5
Chils Marcary Chils Ch														
CLHS			-341.8	-302.3	118.0	/6./							005.7	CO. F
Cliffor Meanurify clorinde			224.2	170 6	146.0								285.7	60.5
Column														
Clamb						71 4								
Cloud Clother monaids -395.3 -259.0 97.7 71.7		*												
Cigo Chlorine monoide		* ''												
CLOS											80.3	97.9	266.2	45.4
City		Thionyl chloride					-245.6			121.0	-212.5	-198.3	309.8	66.5
Cigno	Cl ₂ O ₂ S	Sulfuryl chloride					-394.1			134.0	-364.0	-320.0	311.9	77.0
Cig. Patimum(1) chioride		Uranyl chloride				107.9								
Cig. Sulfur dichoride				-314.1	136.0									
Ci_S			-123.4											
CLS Strontine Chloride -3251														
CLST Strontium chloride			005.4				-59.4							
Cigno Tanism(n) Chloride -5138 -4644 874 698				701.1	1110	75.0								
Cigar Zinc chloride														
Cigra											-266.1			
Cignor Chromium(III) chloride -5665 -486.1 123.0 91.8				-303.4	111.5	71.0					-200.1			
Cigra Dispression(III) chloride -1000 -1000				-486.1	123.0	91.8								
Cigra Ethium Chloride -998.7 100.0		. ,												
Ci_Fe Iron(III) chloride -339.5 -334.0 142.3 96.7 Ci_Ga Gallium(III) chloride -524.7 -458.8 142.0		Erbium chloride	-998.7			100.0								
Cl_GG Gallium(III) chloride -524.7 -454.8 142.0 Cl_GG Gadolium(IIII) chloride -1008.0 88.0 Cl_HSI Trichlorosilane -539.3 -482.5 227.6 -513.0 -482.0 313.9 Cl_Ho Holmium chloride -1005.4 88.0	Cl ₃ Eu	Europium(III) chloride	-936.0											
Ci_GGd Gadolinium(III) chloride -1008.0 88.0 Ci_JHSI Trichlorosilane -539.3 -639.3 -482.5 227.6 -513.0 -482.0 313.9 Cl_JHO Holmium chloride -1005.4 88.0		Iron(III) chloride			142.3	96.7								
Cl ₃ HSI Trichlorosilane -539.3 -482.5 227.6 -513.0 -482.0 313.9 Cl ₃ Ho Holimium chloride -1005.4 88.0				-454.8	142.0									
Cight			-1008.0			88.0								
Cl ₃ In Indium(III) chloride -537.2 -374.0	0		1005.1				-539.3	-482.5	227.6		-513.0	-482.0	313.9	75.8
Cl ₃ Ir Iridium(III) chloride -245.6 Cl ₃ Lu Lanthanum chloride -1072.2 108.8 Cl ₃ Lu Lutetium chloride -945.6 -945.6 -649.0 -649.0 Cl ₃ N Nitrogen trichloride -945.6 -230.0 -597.1 -520.8 222.5 138.8 -558.5 -512.9 325.5 Cl ₃ OP Phosphoric trichloride -190.4 -597.1 -520.8 222.5 138.8 -558.5 -512.9 325.5 Cl ₃ OV Vanadyl trichloride -190.4 -597.1 -520.8 222.5 138.8 -558.5 -512.9 325.5 Cl ₃ OV Vanadyl trichloride -190.4 -190.4 -190.4 -190.4 -190.8 22.5 138.8 -558.5 -512.9 325.5 -512.9 325.5 -512.9 325.5 -512.9 325.5 -512.9 325.5 -512.9 325.5 -512.9 325.5 -512.9 325.5 -512.9 325.5 -512.9 325.5 -512.9 -520.8 221.5<						0.88					074.0			
CI ₃ La Lanthanum chloride -1072.2 108.8 CI ₃ Lu Lutetium chloride -945.6 -230.0 CI ₃ N Nitrogen trichloride -230.0 CI ₃ Nd Neodymium chloride -1041.0 113.0 CI ₃ Nd Phosphoric trichloride -597.1 -590.8 222.5 138.8 -558.5 -512.9 325.5 CI ₃ OV Vanadyl trichloride -190.4 -734.7 -668.5 24.3 -695.6 -699.3 344.3 CI ₃ OV Vanadyl trichloride -190.4 -190.4 -190.4 -190.4 -190.4 -190.8 222.5 138.8 -558.5 -512.9 325.5 -512.9 325.5 -512.9 325.5 -597.1 -668.5 244.3 -695.6 -659.3 344.3 -588.6 -659.3 344.3 -588.6 -599.0 -287.0 -287.0 -287.0 -287.0 -287.0 -287.0 -287.0 -287.0 -287.0 -287.0 -287.0 -287.0 -287.0 -287.0 -287.0 -		* *									-3/4.0			
Cl ₃ Lu Lutetium chloride -945.6 230.0 Cl ₃ Nd Nitrogen trichloride -1041.0 113.0 Cl ₃ Nd Neodymium chloride -1041.0 113.0 Cl ₃ OP Phosphoric trichloride -597.1 -590.8 222.5 138.8 -558.5 -512.9 325.5 Cl ₃ OP Phosphorus (III) chloride -190.4 -734.7 -686.5 244.3 -695.6 -659.3 344.3 Cl ₃ OP Phosphorus (III) chloride -190.4 -731.7 -688.5 244.3 -695.6 -659.3 344.3 Cl ₃ OP Phosphorus (III) chloride -190.4 -731.7 -272.3 217.1 -287.0 -267.8 311.8 Cl ₃ P Phosphorus (IIII) chloride -186.0 123.8 92.4 -272.3 217.1 -287.0 -267.8 311.8 Cl ₃ PR Phatinum (III) chloride -188.0 123.8 92.4 -272.3 217.1 -287.0 -287.0 -267.8 311.8 Cl ₃ PR Rhenium (III) chloride		. ,				108.8								
Ci ₃ N Nitrogen trichloride -1041.0 113.0 Ci ₃ OP Phosphoric trichloride -1041.0 113.0 Ci ₃ OP Phosphoric trichloride -597.1 -597.1 -520.8 222.5 138.8 -558.5 -512.9 325.5 Ci ₃ OV Vanadyl trichloride -190.4 -734.7 -668.5 244.3 -695.6 -659.3 344.3 Ci ₃ OS Osmium(III) chloride -190.4 -734.7 -668.5 244.3 -695.6 -659.3 344.3 Ci ₃ OS Osmium(III) chloride -190.4 -734.7 -668.5 244.3 -695.6 -659.3 344.3 Ci ₃ OF Phosphorus(III) chloride -190.4 -7319.7 -272.3 217.1 -287.0 -267.8 311.8 Ci ₃ Pr Phosphorus(III) chloride -1056.9 100.0 -272.3 217.1 -287.0 -287.0 -267.8 311.8 Ci ₃ Pr Platinum(III) chloride -182.0 123.8 92.4 -272.3 -272.3 -272.3 184.1						100.0					-649 0			
Cl ₃ Nd Neodymium chloride -1041.0 113.0 Cl ₃ OP Phosphoric trichloride -597.1 -520.8 222.5 138.8 -558.5 -512.9 325.5 Cl ₃ OV Vanadyl trichloride -190.4 -734.7 -668.5 244.3 -695.6 -659.3 344.3 Cl ₃ OS Osmium(III) chloride -190.4 -734.7 -668.5 244.3 -695.6 -659.3 344.3 Cl ₃ OS Osmium(III) chloride -190.4 -734.7 -668.5 244.3 -695.6 -659.3 344.3 Cl ₃ OS Osmium(III) chloride -190.4 -100.0 -272.3 217.1 -287.0 -267.8 311.8 Cl ₃ Pr Praseodymium chloride -182.0 123.8 92.4 -272.3 217.1 -287.0 -267.8 311.8 Cl ₃ PR Platinum(III) chloride -182.0 123.8 92.4 -272.1 -272.1 -272.0 -272.0 -282.1 -272.1 -272.0 -272.0 -272.0 -272.0 -272.0			0 10.0				230.0				0.10.0			
Cl ₃ OP Phosphoric trichloride -597.1 -520.8 222.5 138.8 -558.5 -512.9 325.5 Cl ₃ OV Vanadyl trichloride -190.4 -734.7 -668.5 244.3 -695.6 -695.8 331.8 Cl ₃ OS Osmium(III) chloride -190.4 -319.7 -272.3 217.1 -287.0 -267.8 311.8 Cl ₃ P Phosphorus(III) chloride -1056.9 100.0 -272.3 217.1 -287.0 -268.0 311.8 Cl ₃ P Praseodymium chloride -1056.9 100.0 -272.3 217.1 -287.0 -268.0 311.8 Cl ₃ P Praseodymium chloride -1056.9 100.0 -272.3 217.1 -287.0 -267.8 311.8 Cl ₃ P Phaseodymium chloride -182.0 123.8 92.4 -272.1 -272.0 -267.8 311.8 Cl ₃ R Rhodium(III) chloride -286.0 123.8 92.4 -272.1 -272.0 -282.0 -282.0 -282.0 -282.0 -282.0 <td></td> <td></td> <td>-1041.0</td> <td></td> <td></td> <td>113.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			-1041.0			113.0								
Cl ₃ OV Vanadyl trichloride -734.7 -68.5 244.3 -695.6 -695.3 344.3 Cl ₃ Os Osmium(III) chloride -190.4 -319.7 -272.3 217.1 -287.0 -267.8 311.8 Cl ₃ Pr Praseodymium chloride -1056.9 100.0 -272.3 217.1 -287.0 -267.8 311.8 Cl ₃ Pr Platinum(III) chloride -182.0							-597.1	-520.8	222.5	138.8	-558.5	-512.9	325.5	84.9
Cl ₃ P Phosphorus(III) chloride -319.7 -272.3 217.1 -287.0 -267.8 311.8 Cl ₃ Pr Praseodymium chloride -1056.9 100.0 Cl ₃ Pt Platinum(III) chloride -182.0 Cl ₃ Re Rhenium(III) chloride -264.0 -188.0 123.8 92.4 Cl ₃ Rh Rhodium(III) chloride -299.2		Vanadyl trichloride					-734.7	-668.5	244.3		-695.6	-659.3	344.3	89.9
Cl ₃ Pr Praseodymium chloride -1056.9 100.0 Cl ₃ Pt Platinum(III) chloride -182.0 Cl ₃ Re Rhenium(III) chloride -264.0 -188.0 123.8 92.4 Cl ₃ Rh Rhodium(III) chloride -299.2	Cl ₃ Os	Osmium(III) chloride	-190.4											
Cl ₃ Pt Platinum(III) chloride -182.0 Cl ₃ Re Rhenium(III) chloride -264.0 -188.0 123.8 92.4 Cl ₃ Rh Rhodium(III) chloride -299.2		Phosphorus(III) chloride					-319.7	-272.3	217.1		-287.0	-267.8	311.8	71.8
Cl _B Re Rhenium(III) chloride -264.0 -188.0 123.8 92.4 Cl _B Rh Rhodium(III) chloride -299.2<						100.0								
Cl ₃ Rh Rhodium(III) chloride -299.2 Cl ₃ Ru Ruthenium(III) chloride -205.0 Cl ₃ Sb Antimony(III) chloride -382.2 -323.7 184.1 107.9 Cl ₃ Sc Scandium chloride -925.1 -925.		. ,												
Cl ₃ Ru Ruthenium(III) chloride -205.0 Cl ₃ Sb Antimony(III) chloride -382.2 -323.7 184.1 107.9 Cl ₃ Sc Scandium chloride -925.1		. ,		-188.0	123.8	92.4								
Cl ₃ Sb Antimony(III) chloride -382.2 -323.7 184.1 107.9 Cl ₃ Sc Scandium chloride -925.1 -925.1 -925.1 -925.1 -925.1 -925.1 -925.1 -925.2 <td></td>														
CI ₃ Sc Scandium chloride -925.1 CI ₃ Sm Samarium(III) chloride -1025.9 CI ₃ Tb Terbium chloride -997.0 CI ₃ Ti Titanium(III) chloride -720.9 -653.5 139.7 97.2 CI ₃ TI Thallium(III) chloride -315.1 -315.1 CI ₃ Tm Thulium chloride -986.6		. ,		200 7	1041	1070								
CI ₃ Sm Samarium(III) chloride -1025.9 CI ₃ Tb Terbium chloride -997.0 CI ₃ Ti Titanium(III) chloride -720.9 -653.5 139.7 97.2 CI ₃ TI Thallium(III) chloride -315.1 -315.1 CI ₃ Tm Thulium chloride -986.6		, ,		-323./	184.1	107.9								
CI ₃ Tb Terbium chloride -997.0 CI ₃ Ti Titanium(III) chloride -720.9 -653.5 139.7 97.2 CI ₃ TI Thallium(III) chloride -315.1 -315.1 CI ₃ Tm Thulium chloride -986.6														
CI ₃ Ti Titanium(III) chloride -720.9 -653.5 139.7 97.2 CI ₃ TI Thallium(III) chloride -315.1 -315.														
CI ₃ TI Thallium(III) chloride -315.1 CI ₃ Tm Thulium chloride -986.6				-653.5	139 7	97 2								
Cl ₃ Tm Thulium chloride -986.6				330.0	.30.1	31.2								
	Cl ₃ U	Uranium(III) chloride	-866.5	-799.1	159.0	102.5								

			Cry	stal			Liq	uid			G	as	
Molecular formula	Name	Δ _f H° kJ/mol	Δ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	Δ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K
CI ₃ V	Vanadium(III) chloride	-580.7	-511.2	131.0	93.2								
Cl ₃ Y	Yttrium chloride	-1000.0								-750.2			75.0
Cl ₃ Yb	Ytterbium(III) chloride	-959.8											
Cl ₄ Ge	Germanium(IV) chloride	000.4	004.0	400.0	400.5	-531.8	-462.7	245.6		-495.8	-457.3	347.7	96.1
Cl₄Hf Cl₄Pa	Hafnium(IV) chloride Protactinium(IV) chloride	-990.4 -1043.0	-901.3 -953.0	190.8 192.0	120.5					-884.5			
CI ₄ Pa	Lead(IV) chloride	-1043.0	-955.0	192.0		-329.3							
CI ₄ Pt	Platinum(IV) chloride	-231.8				-323.3							
Cl ₄ Si	Tetrachlorosilane	-231.0				-687.0	-619.8	239.7	145.3	-657.0	-617.0	330.7	90.3
Cl ₄ Sn	Tin(IV) chloride					-511.3	-440.1	258.6	165.3	-471.5	-432.2	365.8	98.3
Cl ₄ Te	Tellurium tetrachloride	-326.4			138.5	011.0		200.0	100.0		102.2		
Cl ₄ Th	Thorium(IV) chloride	-1186.2	-1094.1	190.4	120.3					-964.4	-932.0	390.7	107.5
Cl ₄ Ti	Titanium(IV) chloride					-804.2	-737.2	252.3	145.2	-763.2	-726.3	353.2	95.4
CI ₄ U	Uranium(IV) chloride	-1019.2	-930.0	197.1	122.0					-809.6	-786.6	419.0	
CI ₄ V	Vanadium(IV) chloride					-569.4	-503.7	255.0		-525.5	-492.0	362.4	96.2
CI ₄ Zr	Zirconium(IV) chloride	-980.5	-889.9	181.6	119.8								
Cl ₅ Nb	Niobium(V) chloride	-797.5	-683.2	210.5	148.1					-703.7	-646.0	400.6	120.8
CI ₅ P	Phosphorus(V) chloride	-443.5								-374.9	-305.0	364.6	112.8
CI ₅ Pa	Protactinium(V) chloride	-1145.0	-1034.0	238.0									
CI ₅ Ta	Tantalum(V) chloride	-859.0											
CI ₆ U	Uranium(VI) chloride	-1092.0	-962.0	285.8	175.7					-1013.0	-928.0	431.0	
CI ₆ W	Tungsten(VI) chloride	-602.5								-513.8			
Cm	Curium	0.0											
Co	Cobalt	0.0	0.47.0	30.0	24.8					424.7	380.3	179.5	23.0
CoF ₂	Cobalt(II) fluoride	-692.0	-647.2	82.0	68.8								
CoH ₂ O ₂	Cobalt(II) hydroxide	-539.7	-454.3	79.0									
Col ₂	Cobalt(II) iodide	-88.7											
CoN ₂ O ₆	Cobalt(II) nitrate	-420.5 -237.9	-214.2	53.0	55.2								
CoO ₄ S	Cobalt(II) oxide Cobalt(II) sulfate	-888.3	-782.3	118.0	33.2								
CoS	Cobalt(II) sulfide	-82.8	-102.3	110.0									
C0 ₂ S ₃	Cobalt(III) sulfide	-147.3											
C0 ₂ O ₃	Cobalt(II,III) oxide	-891.0	-774.0	102.5	123.4								
Cr Cr	Chromium	0.0	77 1.0	23.8	23.4					396.6	351.8	174.5	20.8
CrF ₂	Chromium(II) fluoride	-778.0		20.0							001.0		
CrF ₃	Chromium(III) fluoride	-1159.0	-1088.0	93.9	78.7								
Crl ₂	Chromium(II) iodide	-156.9											
Crl ₃	Chromium(III) iodide	-205.0											
CrO ₂	Chromium(IV) oxide	-598.0											
CrO ₃	Chromium(VI) oxide									-292.9		266.2	56.0
CrO₄Pb	Lead(II) chromate	-930.9											
Cr ₂ FeO ₄	Chromium iron oxide	-1444.7	-1343.8	146.0	133.6								
Cr_2O_3	Chromium(III) oxide	-1139.7	-1058.1	81.2	118.7								
Cr_3O_4	Chromium(II,III) oxide	-1531.0											
Cs	Cesium	0.0		85.2	32.2					76.5	49.6	175.6	20.8
CsF	Cesium fluoride	-553.5	-525.5	92.8	51.1								
CsF ₂ H	Cesium hydrogen fluoride	-923.8	-858.9	135.2	87.3								
CsH	Cesium hydride	-54.2	074.0	1010	00.0					050.0	050.5	0540	40.7
CsHO S	Cesium hydroxide	-416.2	-371.8	104.2	69.9					-256.0	-256.5	254.8	49.7
CsHO ₄ S CsH ₂ N	Cesium hydrogen sulfate Cesium amide	-1158.1 -118.4											
CsH ₂ N	Cesium arride Cesium iodide	-346.6	-340.6	123.1	52.8								
CsNO ₃	Cesium nitrate	-506.0	-406.5	155.2	J2.0								
CsNO ₂	Cesium superoxide	-286.2	-+00.0	133.2									
Cs ₂ O	Cesium oxide	-345.8	-308.1	146.9	76.0								
Cs ₂ O ₃ S	Cesium sulfite	-1134.7	000.1	1-10.3	10.0								
Cs ₂ O ₄ S	Cesium sulfate	-1443.0	-1323.6	211.9	134.9								
Cs ₂ S	Cesium sulfide	-359.8	.020.0	211.0	.51.0								
Cu	Copper	0.0		33.2	24.4					337.4	297.7	166.4	20.8
CuF ₂	Copper(II) fluoride	-542.7		30.2									20.0
CuH ₂ O ₂	Copper(II) hydroxide	-449.8											
Cul	Copper(I) iodide	-67.8	-69.5	96.7	54.1								
CuN ₂ O ₆	Copper(II) nitrate	-302.9											
CuO	Copper(II) oxide	-157.3	-129.7	42.6	42.3								
CuO ₄ S	Copper(II) sulfate	-771.4	-662.2	109.2									
CuO ₄ W	Copper(II) tungstate	-1105.0											

			Cry	stal			Lic	quid			Ga	as	
Molecular formula	Name	∆ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J∕mol K	∆ _f H° kJ/mol	∆ _f <i>G</i> ° kJ/mol	<i>S</i> ° J/mol K	<i>C₀</i> J/mol K	∆ _f H° kJ/mol	∆ _f G° kJ/mol	<i>S</i> ° J/mol K	<i>C_p</i> J∕mol K
CuS	Copper(II) sulfide	-53.1	-53.6	66.5	47.8								
CuSe	Copper(II) selenide	-39.5											
Cu ₂	Dicopper									484.2	431.9	241.6	36.6
Cu ₂ O	Copper(I) oxide	-168.6	-146.0	93.1	63.6								
Cu ₂ S	Copper(I) sulfide	-79.5	-86.2	120.9	76.3								
Dy	Dysprosium	0.0		75.6	27.7					290.4	254.4	196.6	20.8
Dyl ₃	Dysprosium(III) iodide	-620.5											
Dy ₂ O ₃	Dysprosium(III) oxide	-1863.1	-1771.5	149.8	116.3								
Er	Erbium	0.0		73.2	28.1					317.1	280.7	195.6	20.8
ErF ₃	Erbium fluoride	-1711.0	1000.7	455.0	400.5								
Er ₂ O ₃	Erbium oxide	-1897.9	-1808.7	155.6	108.5								
Es Eu	Einsteinium Europium	0.0		77.8	27.7					175.3	142.2	188.8	20.8
Eu ₂ O ₃	Europium(III) oxide	-1651.4	-1556.8	146.0	122.2					1/0.3	142.2	100.0	20.0
Eu ₂ O ₃ Eu ₃ O ₄	Europium(II,III) oxide	-2272.0	-2142.0	205.0	122.2								
F	Fluorine (atomic)	-2212.0	-2142.0	203.0						79.4	62.3	158.8	22.7
FGa	Gallium monofluoride									-251.9	02.0	130.0	33.3
FGe	Germanium monofluoride									-33.4			34.7
FGeH ₃	Fluorogermane									JUf		252.8	51.6
FH FH	Hydrogen fluoride					-299.8				-273.3	-275.4	173.8	31.0
FH ₃ Si	Fluorosilane					200.0				270.0	2.0.1	238.4	47.4
FH ₄ N	Ammonium fluoride	-464.0	-348.7	72.0	65.3								
FI	lodine fluoride									-95.7	-118.5	236.2	33.4
FIn	Indium(I) fluoride									-203.4			
FK	Potassium fluoride	-567.3	-537.8	66.6	49.0								
FLi	Lithium fluoride	-616.0	-587.7	35.7	41.6								
FN0	Nitrosyl fluoride									-66.5	-51.0	248.1	41.3
FNO ₂	Nitryl fluoride											260.4	49.8
FNS	Thionitrosyl fluoride (NSF)											259.8	44.1
FNa	Sodium fluoride	-576.6	-546.3	51.1	46.9								
F0	Fluorine oxide									109.0	105.3	216.4	32.0
FO ₂	Fluorine superoxide (F00)									25.4	39.4	259.5	44.5
FRb	Rubidium fluoride	-557.7											
FSi	Fluorosilylidyne									7.1	-24.3	225.8	32.6
FTI	Thallium(I) fluoride	-324.7								-182.4			
F ₂	Fluorine									0.0		202.8	31.3
F ₂ Fe	Iron(II) fluoride	-711.3	-668.6	87.0	68.1								
F ₂ HK	Potassium hydrogen fluoride	-927.7	-859.7	104.3	76.9							050.0	40.4
F ₂ HN	Difluoramine	000.0	050.0	00.0	75.0							252.8	43.4
F ₂ HNa	Sodium hydrogen fluoride	-920.3	-852.2	90.9	75.0								
F ₂ HRb	Rubidium hydrogen fluoride	-922.6 -1124.2	-855.6 -1071.1	120.1 57.2	79.4 61.6								
F ₂ Mg	Magnesium fluoride Difluoroamidogen	-1124.2	-10/1.1	37.2	01.0					43.1	57.8	249.9	41.0
$\frac{F_2N}{F_2N_2}$	cis-Difluorodiazine									69.5	37.0	249.9	41.0
F ₂ N ₂	trans-Difluorodiazine									82.0			
F ₂ Ni	Nickel(II) fluoride	-651.4	-604.1	73.6	64.1					02.0			
F ₂ 0	Fluorine monoxide	7.100	004.1	70.0	04.1					24.5	41.8	247.5	43.3
F ₂ OS	Thionyl fluoride									21.0	11.0	278.7	56.8
F ₂ O ₂	Fluorine dioxide									19.2	58.2	277.2	62.1
F ₂ O ₂ S	Sulfuryl fluoride											284.0	66.0
F ₂ O ₂ U	Uranyl fluoride	-1653.5	-1557.4	135.6	103.2								
F ₂ Pb	Lead(II) fluoride	-664.0	-617.1	110.5									
F ₂ Si	Difluorosilylene									-619.0	-628.0	252.7	43.9
F ₂ Sr	Strontium fluoride	-1216.3	-1164.8	82.1	70.0								
F ₂ Zn	Zinc fluoride	-764.4	-713.3	73.7	65.7								
F ₃ Ga	Gallium(III) fluoride	-1163.0	-1085.3	84.0									
F ₃ Gd	Gadolinium(III) fluoride									-1297.0			
F₃HSi	Trifluorosilane											271.9	60.5
F ₃ Ho	Holmium fluoride	-1707.0											
F ₃ N	Nitrogen trifluoride									-132.1	-90.6	260.8	53.4
F ₃ Nd	Neodymium fluoride	-1657.0											
F ₃ OP	Phosphoric trifluoride									-1254.3	-1205.8	285.4	68.8
F₃P	Phosphorus(III) fluoride									-958.4	-936.9	273.1	58.7
F ₃ Sb	Antimony(III) fluoride	-915.5											
F ₃ Sc	Scandium fluoride	-1629.2	-1555.6	92.0						-1247.0	-1234.0	300.5	67.8
F₃Sm	Samarium(III) fluoride	-1778.0											

			Cry	stal			Liq	uid			Ga	as	
Molecular formula	Name	Δ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J∕mol K	Δ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J∕mol K	Δ _f H° kJ/mol	∆ _f <i>G</i> ° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K
F ₃ Th	Thorium(III) fluoride									-1166.1	-1160.6	339.2	73.3
F ₃ U	Uranium(III) fluoride	-1502.1	-1433.4	123.4	95.1					-1058.5	-1051.9	331.9	74.3
F ₃ Y	Yttrium fluoride	-1718.8	-1644.7	100.0						-1288.7	-1277.8	311.8	70.3
F ₄ Ge	Germanium(IV) fluoride									-1190.2	-1150.0	301.9	
F ₄ Hf	Hafnium fluoride	-1930.5	-1830.4	113.0						-1669.8			
F_4N_2	Tetrafluorohydrazine									-8.4	79.9	301.2	79.2
F ₄ Pb	Lead(IV) fluoride	-941.8											
F ₄ S	Sulfur tetrafluoride									-763.2	-722.0	299.6	77.6
F ₄ Si	Tetrafluorosilane									-1615.0	-1572.8	282.8	73.6
F ₄ Th	Thorium(IV) fluoride	-2097.8	-2003.4	142.0	110.7					-1759.0	-1724.0	341.7	93.0
F ₄ U	Uranium(IV) fluoride	-1914.2	-1823.3	151.7	116.0					-1598.7	-1572.7	368.0	91.2
F ₄ V	Vanadium(IV) fluoride	-1403.3											
F ₄ Xe	Xenon tetrafluoride	-261.5	1000.0	104.0	100.7								
F ₄ Zr	Zirconium(IV) fluoride lodine pentafluoride	-1911.3	-1809.9	104.6	103.7	0640				000 5	-751.7	327.7	99.2
F ₅ I		-1813.8	-1699.0	160.2	134.7	-864.8				-822.5 -1739.7	-1673.6	321.7	99.2
F₅Nb F₅P	Niobium(V) fluoride Phosphorus(V) fluoride	-1013.0	-1099.0	100.2	134.7					-1739.7	-1520.7	300.8	84.8
F ₅ Ta	Tantalum(V) fluoride	-1903.6								-1094.4	-1020.7	300.0	04.0
F ₅ V	Vanadium(V) fluoride	-1303.0				-1480.3	-1373.1	175.7		-1433.9	-1369.8	320.9	98.6
F ₆ H ₈ N ₂ Si	Ammonium hexafluorosilicate	-2681.7	-2365.3	280.2	228.1	-1400.3	-1070.1	110.1		-1400.0	-1003.0	020.3	30.0
F ₆ Ir	Iridium(VI) fluoride	-579.7	-461.6	247.7	220.1					-544.0	-460.0	357.8	121.1
F ₆ K ₂ Si	Potassium hexafluorosilicate	-2956.0	-2798.6	226.0						0.11.0	400.0	007.0	121.1
F ₆ Mo	Molybdenum(VI) fluoride	2000.0	2700.0	220.0		-1585.5	-1473.0	259.7	169.8	-1557.7	-1472.2	350.5	120.6
F ₆ Na ₂ Si	Sodium hexafluorosilicate	-2909.6	-2754.2	207.1	187.1								
F ₆ Os	Osmium(VI) fluoride			246.0								358.1	120.8
F ₆ Pt	Platinum(VI) fluoride			235.6								348.3	122.8
F ₆ S	Sulfur hexafluoride									-1220.5	-1116.5	291.5	97.0
F ₆ Se	Selenium hexafluoride									-1117.0	-1017.0	313.9	110.5
F ₆ Si ₂	Hexafluorodisilane	-2427.0	-2299.7	219.1	129.5					-2383.3	-2307.3	391.0	129.9
F ₆ Te	Tellurium hexafluoride									-1318.0			
F ₆ U	Uranium(VI) fluoride	-2197.0	-2068.5	227.6	166.8					-2147.4	-2063.7	377.9	129.6
F ₆ W	Tungsten(VI) fluoride					-1747.7	-1631.4	251.5		-1721.7	-1632.1	341.1	119.0
Fe	Iron	0.0		27.3	25.1					416.3	370.7	180.5	25.7
Fel ₂	Iron(II) iodide	-113.0											
Fel ₃	Iron(III) iodide									71.0			
FeMoO ₄	Iron(II) molybdate	-1075.0	-975.0	129.3	118.5								
Fe0	Iron(II) oxide	-272.0											
FeO ₄ S	Iron(II) sulfate	-928.4	-820.8	107.5	100.6								
FeO ₄ W	Iron(II) tungstate	-1155.0	-1054.0	131.8	114.6								
FeS	Iron(II) sulfide	-100.0	-100.4	60.3	50.5								
FeS ₂	Iron disulfide	-178.2	-166.9	52.9	62.2								
Fe ₂ O ₃	Iron(III) oxide	-824.2	-742.2	87.4	103.9								
Fe ₂ O ₄ Si	Iron(II) orthosilicate	-1479.9	-1379.0	145.2	132.9								
Fe ₃ O ₄	Iron(II,III) oxide	-1118.4	-1015.4	146.4	143.4								
Fm	Fermium	0.0		0E 4									
Fr Ga	Francium Gallium	0.0	0.0	95.4 40.8	26.1	5.6				272.0	233.7	169.0	25.3
GaH ₃ O ₃	Gallium(III) hydroxide	-964.4	-831.3	100.0	20.1	3.0				272.0	233.1	109.0	20.3
Gal ₃	Gallium(III) iodide	-238.9	-031.3	205.0	100.0								
GaN	Gallium nitride	-110.5		200.0	100.0								
GaO	Gallium monoxide	-110.5								279.5	253.5	231.1	32.1
GaP	Gallium phosphide	-88.0								213.3	200.0	201.1	JZ.1
GaSb	Gallium antimonide	-41.8	-38.9	76.1	48.5								
Ga ₂	Digallium	71.0	00.0	70.1	TU.U					438.5			
Ga ₂ O	Gallium suboxide	-356.0								100.0			
Ga_2O_3	Gallium(III) oxide	-1089.1	-998.3	85.0	92.1								
Gd	Gadolinium	0.0	330.0	68.1	37.0					397.5	359.8	194.3	27.5
Gd_2O_3	Gadolinium(III) oxide	-1819.6		30.1	106.7					337.0	230.0	.51.0	27.0
Ge Ge	Germanium	0.0		31.1	23.3					372.0	331.2	167.9	30.7
GeH ₃ I	lodogermane	0.0		31.1	20.0					J. L.U	JJ 1.L	283.2	57.5
GeH ₄	Germane									90.8	113.4	217.1	45.0
Gel ₄	Germanium(IV) iodide	-141.8	-144.3	271.1						-56.9	-106.3	428.9	104.1
GeO	Germanium(II) oxide	-261.9	-237.2	50.0						-46.2	-73.2	224.3	30.9
GeO ₂	Germanium(IV) oxide	-580.0	-521.4	39.7	52.1								
GeP	Germanium phosphide	-21.0	-17.0	63.0									
GeS	Germanium(II) sulfide	-69.0	-71.5	71.0						92.0	42.0	234.0	33.7
	, , , , , , , , , , , , , , , ,	22.0								32.0			

			Cry	stal			Liq	uid			G	as	
Molecular formula	Name	Δ _t H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J∕mol K	Δ _f H° kJ/mol	∆ _f <i>G</i> ° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J∕mol K
GeTe	Germanium(II) telluride	20.0				-							
Ge ₂	Digermanium									473.1	416.3	252.8	35.6
Ge ₂ H ₆	Digermane					137.3				162.3			
Ge ₃ H ₈	Trigermane					193.7				226.8			
Н	Hydrogen (atomic)									218.0 26.5	203.3	114.7	20.8
HIO ₃	Hydrogen iodide lodic acid	-230.1								26.5	1.7	206.6	29.2
HK	Potassium hydride	-230.1											
HK0	Potassium hydroxide	-424.6	-379.4	81.2	68.9					-232.0	-229.7	238.3	49.2
HKO ₄ S	Potassium hydrogen sulfate	-1160.6	-1031.3	138.1	00.3					-202.0	-223.1	200.0	73.2
HLi	Lithium hydride	-90.5	-68.3	20.0	27.9								
HLi0	Lithium hydroxide	-487.5	-441.5	42.8	49.6					-229.0	-234.2	214.4	46.0
HN	Imidogen									351.5	345.6	181.2	29.2
HNO ₂	Nitrous acid									-79.5	-46.0	254.1	45.6
HNO ₃	Nitric acid					-174.1	-80.7	155.6	109.9	-133.9	-73.5	266.9	54.1
HN ₃	Hydrazoic acid					264.0	327.3	140.6		294.1	328.1	239.0	43.7
HNa	Sodium hydride	-56.3	-33.5	40.0	36.4								
HNa0	Sodium hydroxide	-425.8	-379.7	64.4	59.5					-191.0	-193.9	229.0	48.0
HNaO₄S	Sodium hydrogen sulfate	-1125.5	-992.8	113.0									
HNa ₂ O ₄ P	Sodium hydrogen phosphate	-1748.1	-1608.2	150.5	135.3								
H0	Hydroxyl									39.0	34.2	183.7	29.9
HORb	Rubidium hydroxide	-418.8	-373.9	94.0	69.0					-238.0	-239.1	248.5	49.5
HOTI	Thallium(I) hydroxide	-238.9	-195.8	88.0									
HO ₂	Hydroperoxy	0.10.5								10.5	22.6	229.0	34.9
HO ₃ P	Metaphosphoric acid	-948.5											
HO₄RbS HO₄Re	Rubidium hydrogen sulfate Perrhenic acid	-1159.0 -762.3	-656.4	158.2									
HRb	Rubidium hydride	-762.3	-030.4	130.2									
HS	Mercapto	-32.3								142.7	113.3	195.7	32.3
HSi	Silylidyne									361.0	110.0	130.1	02.0
HTa ₂	Tantalum hydride	-32.6	-69.0	79.1	90.8					001.0			
H ₂	Hydrogen	02.0								0.0		130.7	28.8
H ₂ KN	Potassium amide	-128.9											
H ₂ KO ₄ P	Potassium dihydrogen phosphate	-1568.3	-1415.9	134.9	116.6								
H ₂ LiN	Lithium amide	-179.5											
H ₂ Mg	Magnesium hydride	-75.3	-35.9	31.1	35.4								
H_2MgO_2	Magnesium hydroxide	-924.5	-833.5	63.2	77.0								
H ₂ N	Amidogen									184.9	194.6	195.0	33.9
H ₂ NNa	Sodium amide	-123.8	-64.0	76.9	66.2								
H ₂ NRb	Rubidium amide	-113.0											
$H_2N_2O_2$	Nitramide	-89.5											
H ₂ NiO ₂	Nickel(II) hydroxide	-529.7	-447.2	88.0									
H ₂ 0	Water					-285.8	-237.1	70.0	75.3	-241.8	-228.6	188.8	33.6
H ₂ O ₂	Hydrogen peroxide					-187.8	-120.4	109.6	89.1	-136.3	-105.6	232.7	43.1
H ₂ O ₂ Sn	Tin(II) hydroxide	-561.1	-491.6	155.0									
H ₂ O ₂ Sr	Strontium hydroxide	-959.0	FF0 F	01.0									
H ₂ O ₂ Zn	Zinc hydroxide	-641.9 -1188.7	-553.5 -1092.4	81.2 134.0									
H ₂ O ₃ Si H ₂ O ₄ S	Metasilicic acid Sulfuric acid	-1100.7	-1092.4	134.0		-814.0	-690.0	156.9	138.9				
H ₂ O ₄ Se	Selenic acid	-530.1				-014.0	-090.0	100.9	130.9				
H ₂ S	Hydrogen sulfide	-330.1								-20.6	-33.4	205.8	34.2
H ₂ S ₂	Hydrogen disulfide					-18.1			84.1	15.5	-33.4	200.0	51.5
H ₂ Se	Hydrogen selenide					10.1			04.1	29.7	15.9	219.0	34.7
H ₂ Sr	Strontium hydride	-180.3										2.0.0	
H ₂ Te	Hydrogen telluride									99.6			
H ₂ Th	Thorium hydride	-139.7	-100.0	50.7	36.7								
H ₂ Zr	Zirconium(II) hydride	-169.0	-128.8	35.0	31.0								
H ₃ ISi	lodosilane											270.9	54.4
H ₃ N	Ammonia									-45.9	-16.4	192.8	35.1
H ₃ NO	Hydroxylamine	-114.2											
H ₃ O ₂ P	Phosphinic acid	-604.6				-595.4							
H_3O_3P	Phosphonic acid	-964.4											
H_3O_4P	Phosphoric acid	-1284.4	-1124.3	110.5	106.1	-1271.7	-1123.6	150.8	145.0				
H ₃ P	Phosphine									5.4	13.5	210.2	37.1
H ₃ Sb	Stibine									145.1	147.8	232.8	41.1
H ₃ U	Uranium(III) hydride	-127.2	-72.8	63.7	49.3								

			Cry	stal			Liq	uid			G	as	
Molecular formula	Name	Δ _f H° kJ/mol	Δ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	∆ _f <i>G</i> ° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K
H ₄ IN	Ammonium iodide	-201.4	-112.5	117.0	•,	,	,	•,	•,•	,	,	•,	
H_4N_2	Hydrazine					50.6	149.3	121.2	98.9	95.4	159.4	238.5	48.4
$H_4N_2O_2$	Ammonium nitrite	-256.5											
$H_4N_2O_3$	Ammonium nitrate	-365.6	-183.9	151.1	139.3								
H ₄ N ₄	Ammonium azide	115.5	274.2	112.5									
H ₄ O ₄ Si	Orthosilicic acid Diphosphoric acid	-1481.1	-1332.9	192.0		-2231.7							
$H_4O_7P_2$ H_4P_2	Diphosphine Diphosphine	-2241.0				-2231.7				20.9			
H ₄ Si	Silane					-3.0				34.3	56.9	204.6	42.8
H ₄ Sn	Stannane									162.8	188.3	227.7	49.0
H ₅ NO	Ammonium hydroxide					-361.2	-254.0	165.6	154.9	102.0	100.0	227.7	10.0
H₅NO₃S	Ammonium hydrogen sulfite	-768.6											
H₅NO₄S	Ammonium hydrogen sulfate	-1027.0											
H ₆ Si ₂	Disilane									80.3	127.3	272.7	80.8
$H_8N_2O_4S$	Ammonium sulfate	-1180.9	-901.7	220.1	187.5								
H ₈ Si ₃	Trisilane					92.5				120.9			-
$H_9N_2O_4P$	Ammonium hydrogen phosphate	-1566.9			188.0								
$H_{12}N_3O_4P$	Ammonium phosphate	-1671.9											
He	Helium									0.0		126.2	20.8
Hf	Hafnium	0.0		43.6	25.7					619.2	576.5	186.9	20.8
HfO ₂	Hafnium oxide	-1144.7	-1088.2	59.3	60.3			75.0	20.0		04.0	175.0	
Hg	Mercury	405.4	404.7	400.0		0.0		75.9	28.0	61.4	31.8	175.0	20.8
Hgl ₂	Mercury(II) iodide	-105.4	-101.7	180.0	44.4								
Hg0	Mercury(II) oxide Mercury(II) sulfate	-90.8 -707.5	-58.5	70.3	44.1								
HgO₄S HgS	Mercury(II) sulfide (red)	-707.5	-50.6	82.4	48.4								
HgTe	Mercury(II) telluride	-42.0	-30.0	02.4	40.4								
Hg ₂	Dimercury	-42.0								108.8	68.2	288.1	37.4
Hg ₂ l ₂	Mercury(I) iodide	-121.3	-111.0	233.5						100.0	00.2	200.1	
Hg ₂ O ₄ S	Mercury(I) sulfate	-743.1	-625.8	200.7	132.0								
Ho	Holmium	0.0		75.3	27.2					300.8	264.8	195.6	20.8
Ho ₂ O ₃	Holmium oxide	-1880.7	-1791.1	158.2	115.0								
T	Iodine (atomic)									106.8	70.2	180.8	20.8
lln	Indium(I) iodide	-116.3	-120.5	130.0						7.5	-37.7	267.3	36.8
IK	Potassium iodide	-327.9	-324.9	106.3	52.9								
IKO ₃	Potassium iodate	-501.4	-418.4	151.5	106.5								
IKO ₄	Potassium periodate	-467.2	-361.4	175.7									
ILi	Lithium iodide	-270.4	-270.3	86.8	51.0								
INa	Sodium iodide	-287.8	-286.1	98.5	52.1								
INaO ₃	Sodium iodate	-481.8	202.0	100.0	92.0								
INaO ₄	Sodium periodate	-429.3	-323.0	163.0						100.0	100 E	220.6	20.0
IRb	lodine monoxide Rubidium iodide	-333.8	-328.9	118.4	53.2					126.0	102.5	239.6	32.9
ITI	Thallium(I) iodide	-123.8	-125.4	127.6	33.2					7.1			
l ₂	lodine (rhombic)	0.0	120.4	116.1	54.4					62.4	19.3	260.7	36.9
I ₂ Mg	Magnesium iodide	-364.0	-358.2	129.7						02.1		200	
I ₂ Ni	Nickel(II) iodide	-78.2											-
I ₂ Pb	Lead(II) iodide	-175.5	-173.6	174.9	77.4								
I ₂ Sn	Tin(II) iodide	-143.5											-
I ₂ Sr	Strontium iodide	-558.1			81.6								
I ₂ Zn	Zinc iodide	-208.0	-209.0	161.1									
l ₃ In	Indium(III) iodide	-238.0								-120.5			
I ₃ La	Lanthanum iodide	-668.9											
I ₃ Lu	Lutetium iodide	-548.0											
I ₃ P	Phosphorus(III) iodide	-45.6										374.4	78.4
I ₃ Ru	Ruthenium(III) iodide	-65.7											
I ₃ Sb	Antimony(III) iodide	-100.4											
I ₄ Pt	Platinum(IV) iodide	-72.8											
I ₄ Si	Tetraiodosilane	-189.5			04.0							440 4	405.4
I ₄ Sn	Tin(IV) iodide	975.7	-371.5	249.4	84.9					077.0		446.1	105.4
I ₄ Ti I ₄ V	Titanium(IV) iodide Vanadium(IV) iodide	-375.7	-3/1.5	249.4	125.7					-277.8 -122.6			
I ₄ V	Zirconium(IV) iodide	-481.6								-122.0			
In	Indium	0.0		57.8	26.7					243.3	208.7	173.8	20.8
InO	Indium monoxide	0.0		31.0	20.1					387.0	364.4	236.5	32.6
InP	Indium phosphide	-88.7	-77.0	59.8	45.4					551.0	33 i. ī	250.0	
	- p p												

			Cry	stal			Lic	quid			Ga	as	
Molecular	Nome	Δ _f H°	Δ _f G°	S°	<i>C_p</i> J/mol K	Δ _f H°	Δ _f G °	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H°	Δ _f G °	S° J/mol K	C _p
formula InS	Name Indium(II) sulfide	kJ/mol -138.1	kJ/mol -131.8	J/mol K 67.0	J/IIIUI K	kJ/mol	kJ/mol	J/IIIUI K	J/IIIUI K	kJ/mol 238.0	kJ/mol	J/IIIUI K	J/mol K
InSb	Indium antimonide	-30.5	-25.5	86.2	49.5					344.3			
In ₂	Diindium	00.0	20.0	00.2	10.0					380.9			
In ₂ O ₃	Indium(III) oxide	-925.8	-830.7	104.2	92.0					000.0			
In ₂ S ₃	Indium(III) sulfide	-427.0	-412.5	163.6	118.0								
In ₂ Te ₅	Indium(IV) telluride	-175.3											
lr	Iridium	0.0		35.5	25.1					665.3	617.9	193.6	20.8
IrO ₂	Iridium(IV) oxide	-274.1			57.3								
IrS ₂	Iridium(IV) sulfide	-138.0											
Ir ₂ S ₃	Iridium(III) sulfide	-234.0											
K	Potassium	0.0		64.7	29.6					89.0	60.5	160.3	20.8
KMnO ₄	Potassium permanganate	-837.2	-737.6	171.7	117.6								
KNO ₂	Potassium nitrite	-369.8	-306.6	152.1	107.4								
KNO ₃	Potassium nitrate	-494.6	-394.9	133.1	96.4								
KNa	Potassium sodium					6.3							
KO ₂	Potassium superoxide	-284.9	-239.4	116.7	77.5								
K ₂	Dipotassium									123.7	87.5	249.7	37.9
K ₂ 0	Potassium oxide	-361.5											
K_2O_2	Potassium peroxide	-494.1	-425.1	102.1									
K ₂ O ₄ S	Potassium sulfate	-1437.8	-1321.4	175.6	131.5								
K ₂ S	Potassium sulfide	-380.7	-364.0	105.0									
K_3O_4P	Potassium phosphate	-1950.2											
Kr	Krypton									0.0		164.1	20.8
La	Lanthanum	0.0		56.9	27.1					431.0	393.6	182.4	22.8
LaS	Lanthanum monosulfide	-456.0	-451.5	73.2	59.0								
La_2O_3	Lanthanum oxide	-1793.7	-1705.8	127.3	108.8								
Li	Lithium	0.0		29.1	24.8					159.3	126.6	138.8	20.8
LiNO ₂	Lithium nitrite	-372.4	-302.0	96.0									
LiNO ₃	Lithium nitrate	-483.1	-381.1	90.0									
Li ₂	Dilithium									215.9	174.4	197.0	36.1
Li ₂ 0	Lithium oxide	-597.9	-561.2	37.6	54.1								
Li ₂ O ₂	Lithium peroxide	-634.3											
Li ₂ 0 ₃ Si	Lithium metasilicate	-1648.1	-1557.2	79.8	99.1								
Li ₂ O ₄ S	Lithium sulfate	-1436.5	-1321.7	115.1	117.6								
Li ₂ S	Lithium sulfide	-441.4											
Li ₃ O ₄ P	Lithium phosphate	-2095.8											
Lr	Lawrencium	0.0											
Lu	Lutetium	0.0		51.0	26.9					427.6	387.8	184.8	20.9
Lu ₂ O ₃	Lutetium oxide	-1878.2	-1789.0	110.0	101.8								
Md	Mendelevium	0.0											
Mg	Magnesium	0.0		32.7	24.9					147.1	112.5	148.6	20.8
MgN ₂ O ₆	Magnesium nitrate	-790.7	-589.4	164.0	141.9								
Mg0	Magnesium oxide	-601.6	-569.3	27.0	37.2								
MgO ₄ S	Magnesium sulfate	-1284.9	-1170.6	91.6	96.5								
MgO₄Se	Magnesium selenate	-968.5	044.0	50.0	15.0								
MgS	Magnesium sulfide	-346.0	-341.8	50.3	45.6					007.7			
Mg ₂	Dimagnesium	0474.0	0055.4	05.4	440.5					287.7			
Mg ₂ O ₄ Si	Magnesium orthosilicate	-2174.0	-2055.1	95.1	118.5					000.7	000.5	470.7	00.0
Mn M=N O	Manganese Manganese	0.0		32.0	26.3					280.7	238.5	173.7	20.8
MnN ₂ O ₆	Manganese(II) nitrate	-576.3											
MnNaO ₄	Sodium permanganate	-1156.0	000.0	F0 7	45.4								
Mn0	Manganese(II) oxide	-385.2	-362.9	59.7	45.4								
MnO ₂	Manganese(IV) oxide	-520.0	-465.1	53.1	54.1								
MnO ₃ Si	Manganese(II) metasilicate	-1320.9	-1240.5	89.1	86.4								
MnS	Manganese(II) sulfide (α form)	-214.2	-218.4	78.2	50.0								
MnSe	Manganese(II) selenide	-106.7	-111.7	90.8	51.0 107.7								
Mn ₂ O ₃	Manganese(III) oxide	-959.0 1720.5	-881.1 -1632.1	163.2	129.9								
Mn ₂ O ₄ Si	Manganese(II) orthosilicate Manganese(II,III) oxide	-1730.5 -1387.8	-1032.1	155.6	139.7								
Mn ₃ O ₄			-1283.2							CFO 4	610 5	100.0	00.0
MoNo O	Molybdenum Sodium molybdete	0.0	10540	28.7	24.1					658.1	612.5	182.0	20.8
MoNa ₂ O ₄	Sodium molybdate Molybdanum(IV) avida	-1468.1	-1354.3	159.7	141.7								
MoO ₂	Molybdenum(IV) oxide Molybdenum(VI) oxide	-588.9	-533.0 -668.0	46.3 77.7	56.0 75.0								
MoO ₃	• • •	-745.1	-951.4		119.7								
MoO ₄ Pb	Lead(II) molybdate Molybdenum(IV) sulfide	-1051.9	-951.4	166.1									
MoS ₂	• • •	-235.1	-125.7	62.6	63.6 93.1								
Mo ₃ Si	Molybdenum silicide	-125.2	-125./	106.3	93. I								

			Cry	stal			Liq	Juid			Ga	as	
Molecular formula	Name	Δ _f <i>H</i> ° kJ/mol	Δ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	Δ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K
N	Nitrogen (atomic)									472.7	455.5	153.3	20.8
NNaO ₂	Sodium nitrite	-358.7	-284.6	103.8									
NNaO ₃	Sodium nitrate	-467.9	-367.0	116.5	92.9								
NO NO	Nitric oxide									91.3	87.6	210.8	29.9
NO ₂	Nitrogen dioxide									33.2	51.3	240.1	37.2
NO ₂ Rb	Rubidium nitrite	-367.4	-306.2	172.0									
NO ₃ Rb	Rubidium nitrate	-495.1	-395.8	147.3	102.1								
NO ₃ TI	Thallium(I) nitrate	-243.9	-152.4	160.7	99.5								
NP	Phosphorus nitride	-63.0								171.5	149.4	211.1	29.7
N ₂	Nitrogen Nitrous oxide									0.0	100.7	191.6	29.1
N ₂ 0 N ₂ O ₃	Nitrous oxide Nitrogen trioxide					50.3				81.6 86.6	103.7 142.4	220.0 314.7	38.6 72.7
N ₂ O ₃	Nitrogen tetroxide					-19.5	97.5	209.2	142.7	11.1	99.8	304.4	79.2
N ₂ O ₄ N ₂ O ₄ Sr	Strontium nitrite	-762.3				-13.5	31.3	203.2	142.7	11.1	33.0	304.4	13.2
N ₂ O ₅	Nitrogen pentoxide	-43.1	113.9	178.2	143.1					13.3	117.1	355.7	95.3
N ₂ O ₆ Pb	Lead(II) nitrate	-451.9	110.0							10.0			
N ₂ O ₆ Ra	Radium nitrate	-992.0	-796.1	222.0									
N ₂ O ₆ Sr	Strontium nitrate	-978.2	-780.0	194.6	149.9								
N_2O_6Zn	Zinc nitrate	-483.7											
N ₃ Na	Sodium azide	21.7	93.8	96.9	76.6								
N ₄ Si ₃	Silicon nitride	-743.5	-642.6	101.3									
Na	Sodium	0.0		51.3	28.2					107.5	77.0	153.7	20.8
NaO ₂	Sodium superoxide	-260.2	-218.4	115.9	72.1								
Na ₂	Disodium									142.1	103.9	230.2	37.6
Na ₂ O	Sodium oxide	-414.2	-375.5	75.1	69.1								
Na ₂ O ₂	Sodium peroxide	-510.9	-447.7	95.0	89.2								
Na ₂ O ₃ S	Sodium sulfite	-1100.8	-1012.5	145.9	120.3								
Na ₂ O ₃ Si	Sodium metasilicate	-1554.9	-1462.8	113.9									
Na ₂ O ₄ S	Sodium sulfate	-1387.1	-1270.2	149.6	128.2								
Na ₂ S	Sodium sulfide	-364.8	-349.8	83.7									
Nb	Niobium	0.0		36.4	24.6					725.9	681.1	186.3	30.2
Nb0	Niobium(II) oxide	-405.8	-378.6	48.1	41.3								
NbO ₂	Niobium(IV) oxide	-796.2	-740.5	54.5	57.5								
Nb ₂ O ₅	Niobium(V) oxide	-1899.5	-1766.0	137.2	132.1					007.0	000.4	400.4	00.4
Nd	Neodymium	0.0	1700.0	71.5	27.5					327.6	292.4	189.4	22.1
Nd ₂ O ₃	Neodymium oxide	-1807.9	-1720.8	158.6	111.3					0.0		146.0	20.0
Ne Ni	Neon Nickel	0.0		29.9	26.1					0.0 429.7	384.5	146.3 182.2	20.8
NiO₄S	Nickel(II) sulfate	-872.9	-759.7	92.0	138.0					429.7	304.3	102.2	23.4
NiS	Nickel(II) sulfide	-82.0	-739.7	53.0	47.1								
Ni ₂ O ₃	Nickel(III) oxide	-489.5	-13.3	55.0	47.1								
No	Nobelium	0.0											
0	Oxygen (atomic)	0.0								249.2	231.7	161.1	21.9
OP OP	Phosphorus monoxide									-28.5	-51.9	222.8	31.8
OPb	Lead(II) oxide (massicot)	-217.3	-187.9	68.7	45.8					20.0	01.0	LLL.0	
OPb	Lead(II) oxide (litharge)	-219.0	-188.9	66.5	45.8								
OPd	Palladium(II) oxide	-85.4			31.4					348.9	325.9	218.0	-
ORa	Radium oxide	-523.0											
ORb ₂	Rubidium oxide	-339.0											
ORh	Rhodium monoxide									385.0			
OS	Sulfur monoxide									6.3	-19.9	222.0	30.2
OSe	Selenium monoxide									53.4	26.8	234.0	31.3
0Si	Silicon monoxide									-99.6	-126.4	211.6	29.9
0Sn	Tin(II) oxide	-280.7	-251.9	57.2	44.3					15.1	-8.4	232.1	31.6
0Sr	Strontium oxide	-592.0	-561.9	54.4	45.0					1.5			
0Ti	Titanium(II) oxide	-519.7	-495.0	50.0	40.0								
OTI ₂	Thallium(I) oxide	-178.7	-147.3	126.0									
OU	Uranium(II) oxide									21.0			
OV	Vanadium(II) oxide	-431.8	-404.2	38.9	45.4								
0Zn	Zinc oxide	-350.5	-320.5	43.7	40.3								
02	Oxygen									0.0		205.2	29.4
0 ₂ P	Phosphorus dioxide									-279.9	-281.6	252.1	39.5
O ₂ Pb	Lead(IV) oxide	-277.4	-217.3	68.6	64.6								
O ₂ Rb	Rubidium superoxide	-278.7											
0 ₂ Rb ₂	Rubidium peroxide	-472.0											
O ₂ Ru	Ruthenium(IV) oxide	-305.0											

			Cry	stal			Liq	quid			Ga	as	
Molecular formula	Name	Δ _f <i>H</i> ° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J∕mol K	Δ _f H° kJ/mol	∆ _f <i>G</i> ° kJ/mol	<i>S</i> ° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	∆ _f <i>G</i> ° kJ/mol	<i>S</i> ° J/mol K	<i>C_p</i> J/mol K
02S	Sulfur dioxide					-320.5				-296.8	-300.1	248.2	39.9
O ₂ Se	Selenium dioxide	-225.4											
O ₂ Si	Silicon dioxide (α-quartz)	-910.7	-856.3	41.5	44.4					-322.0			
O ₂ Sn	Tin(IV) oxide	-577.6	-515.8	49.0	52.6								
O_2 Te O_2 Th	Tellurium dioxide Thorium(IV) oxide	-322.6 -1226.4	-270.3 -1169.2	79.5 65.2	61.8								
0 ₂ Ti	Titanium(IV) oxide	-944.0	-888.8	50.6	55.0								
0 ₂ II	Uranium(IV) oxide	-1085.0	-1031.8	77.0	63.6					-465.7	-471.5	274.6	51.4
0 ₂ W	Tungsten(IV) oxide	-589.7	-533.9	50.5	56.1							27 1.0	
0 ₂ Zr	Zirconium(IV) oxide	-1100.6	-1042.8	50.4	56.2								
03	Ozone									142.7	163.2	238.9	39.2
O ₃ PbS	Lead(II) sulfite	-669.9											
O ₃ PbSi	Lead(II) metasilicate	-1145.7	-1062.1	109.6	90.0								•
O ₃ Pr ₂	Praseodymium oxide	-1809.6			117.4								
O ₃ Rh ₂	Rhodium(III) oxide	-343.0	0740	70.7	103.8	111.0	070.0	440.0		005.7	074.4	050.0	F0.7
0 ₃ S	Sulfur trioxide	-454.5	-374.2 -1819.4	70.7 77.0	94.2	-441.0	-373.8	113.8		-395.7	-371.1	256.8	50.7
O ₃ Sc ₂ O ₃ SiSr	Scandium oxide Strontium metasilicate	-1908.8 -1633.9	-1549.7	96.7	88.5								
0 ₃ Sin ₂	Samarium(III) oxide	-1823.0	-1734.6	151.0	114.5								
0 ₃ Tb ₂	Terbium oxide	-1865.2			115.9								
0 ₃ Ti ₂	Titanium(III) oxide	-1520.9	-1434.2	78.8	97.4								
0 ₃ Tm ₂	Thulium oxide	-1888.7	-1794.5	139.7	116.7								
0 ₃ U	Uranium(VI) oxide	-1223.8	-1145.7	96.1	81.7								
0 ₃ V ₂	Vanadium(III) oxide	-1218.8	-1139.3	98.3	103.2								
0 ₃ W	Tungsten(VI) oxide	-842.9	-764.0	75.9	73.8								
0 ₃ Y ₂	Yttrium oxide	-1905.3	-1816.6	99.1	102.5								
0 ₃ Yb ₂	Ytterbium(III) oxide	-1814.6	-1726.7	133.1	115.4					207.0	200.0	200.0	
0 ₄ 0s	Osmium(VIII) oxide	-394.1	-304.9	143.9	100.0					-337.2	-292.8	293.8	74.1
O₄PbS O₄PbSe	Lead(II) sulfate Lead(II) selenate	-920.0 -609.2	-813.0 -504.9	148.5 167.8	103.2								
O ₄ Pb ₂ Si	Lead(II) orthosilicate	-1363.1	-1252.6	186.6	137.2								
0 ₄ Pb ₃	Lead(II,II,IV) oxide	-718.4	-601.2	211.3	146.9								
0 ₄ RaS	Radium sulfate	-1471.1	-1365.6	138.0									
O ₄ Rb ₂ S	Rubidium sulfate	-1435.6	-1316.9	197.4	134.1								
O ₄ Ru	Ruthenium(VIII) oxide	-239.3	-152.2	146.4									2
O ₄ SSr	Strontium sulfate	-1453.1	-1340.9	117.0									
O ₄ STI ₂	Thallium(I) sulfate	-931.8	-830.4	230.5									
O ₄ SZn	Zinc sulfate	-982.8	-871.5	110.5	99.2								
O ₄ SiSr ₂	Strontium orthosilicate	-2304.5	-2191.1	153.1	134.3								
$\frac{O_4SiZn_2}{O_4SiZr}$	Zinc orthosilicate Zirconium(IV) orthosilicate	-1636.7 -2033.4	-1523.2 -1919.1	131.4 84.1	123.3 98.7								
O ₄ SiZi O ₄ TiZr	Zirconium titanate	-2033.4	-1915.8	116.7	114.0								
0 ₅ Sb ₂	Antimony(V) oxide	-971.9	-829.2	125.1	114.0								
0 ₅ Ta ₂	Tantalum(V) oxide	-2046.0	-1911.2	143.1	135.1								
0 ₅ Ti ₃	Titanium(III,IV) oxide	-2459.4	-2317.4	129.3	154.8								
0 ₅ V ₂	Vanadium(V) oxide	-1550.6	-1419.5	131.0	127.7								
0 ₅ V ₃	Vanadium(III,IV) oxide	-1933.0	-1803.0	163.0									
O ₇ Re ₂	Rhenium(VII) oxide	-1240.1	-1066.0	207.1	166.1					-1100.0	-994.0	452.0	•
0 ₇ U ₃	Uranium(IV,VI) oxide	-3427.1	-3242.9	250.5	215.5								
O ₈ S ₂ Zr	Zirconium(IV) sulfate	-2217.1	2222.5	200.0	172.0								
0 ₈ U ₃	Uranium(V,VI) oxide	-3574.8	-3369.5	282.6	238.4								
0 ₉ U ₄ 0s	Uranium(IV,V) oxide Osmium	-4510.4 0.0	-4275.1	334.1 32.6	293.3 24.7					791.0	745.0	192.6	20.8
P	Phosphorus (white)	0.0		41.1	23.8					316.5	280.1	163.2	20.8
P	Phosphorus (red)	-17.6		22.8	21.2					510.5	۷.00.1	100.2	20.0
P	Phosphorus (black)	-39.3		22.0									
P ₂	Diphosphorus									144.0	103.5	218.1	32.1
P ₄	Tetraphosphorus									58.9	24.4	280.0	67.2
Pa	Protactinium	0.0		51.9						607.0	563.0	198.1	22.9
Pb	Lead	0.0		64.8	26.4					195.2	162.2	175.4	20.8
PbS	Lead(II) sulfide	-100.4	-98.7	91.2	49.5								
PbSe	Lead(II) selenide	-102.9	-101.7	102.5	50.2								
PbTe	Lead(II) telluride	-70.7	-69.5	110.0	50.5					070.0	000 7	1071	00.0
Pd PdS	Palladium Palladium(II) sulfide	-75.0	-67.0	37.6	26.0					378.2	339.7	167.1	20.8
Pas Pm	Palladium(II) sulfide Promethium	-/5.0	-0/.U	46.0								187.1	24.3
1 111	i TUTTIGUTUITT	0.0										107.1	24.3

			Cry	stal			Liq	quid			G	as	
Molecular formula	Name	Δ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J∕mol K	Δ _f H° kJ/mol	$\Delta_{ m f} {\it G}^{ m o}$ kJ/mol	<i>S</i> ° J/mol K	<i>C₀</i> J/mol K	Δ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C₀</i> J/mol K
Po	Polonium	0.0											
Pr	Praseodymium	0.0		73.2						355.6	320.9	189.8	21.4
Pt	Platinum	0.0	70.4	41.6	25.9					565.3	520.5	192.4	25.5
PtS PtS ₂	Platinum(II) sulfide Platinum(IV) sulfide	-81.6 -108.8	-76.1 -99.6	55.1 74.7	43.4 65.9								
Pu Pu	Plutonium	0.0	-99.0	74.7	00.9								
Ra	Radium	0.0		71.0						159.0	130.0	176.5	20.8
Rb	Rubidium	0.0		76.8	31.1					80.9	53.1	170.1	20.8
Re	Rhenium	0.0		36.9	25.5					769.9	724.6	188.9	20.8
Rh	Rhodium	0.0		31.5	25.0					556.9	510.8	185.8	21.0
Rn	Radon									0.0		176.2	20.8
Ru	Ruthenium	0.0		28.5	24.1					642.7	595.8	186.5	21.5
S	Sulfur (rhombic)	0.0		32.1	22.6					277.2	236.7	167.8	23.7
S	Sulfur (monoclinic)	0.3											
SSi	Silicon monosulfide									112.5	60.9	223.7	32.3
SSn	Tin(II) sulfide	-100.0	-98.3	77.0	49.3								-
SSr	Strontium sulfide	-472.4	-467.8	68.2	48.7								
STI ₂	Thallium(I) sulfide	-97.1	-93.7	151.0									
SZn	Zinc sulfide (wurtzite)	-192.6			•								
SZn	Zinc sulfide (sphalerite)	-206.0	-201.3	57.7	46.0								
S ₂	Disulfur									128.6	79.7	228.2	32.5
Sb	Antimony	0.0		45.7	25.2					262.3	222.1	180.3	20.8
Sb ₂	Diantimony									235.6	187.0	254.9	36.4
Sc	Scandium	0.0		34.6	25.5					377.8	336.0	174.8	22.1
Se	Selenium (gray)	0.0		42.4	25.4					227.1	187.0	176.7	20.8
Se	Selenium (α form)	6.7								227.1			
Se	Selenium (vitreous)	5.0								227.1			
SeSr	Strontium selenide	-385.8	F0.0	170.0									
SeTl ₂ SeZn	Thallium(I) selenide	-59.0 -163.0	-59.0 -163.0	172.0 84.0									
Se ₂	Zinc selenide Diselenium	-103.0	-103.0	04.0						146.0	96.2	252.0	35.4
Si	Silicon	0.0		18.8	20.0					450.0	405.5	168.0	22.3
Si ₂	Disilicon	0.0		10.0	20.0					594.0	536.0	229.9	34.4
Sm	Samarium	0.0		69.6	29.5					206.7	172.8	183.0	30.4
Sn	Tin (white)	0.0		51.2	27.0					301.2	266.2	168.5	21.3
Sn	Tin (gray)	-2.1	0.1	44.1	25.8						200.2	100.0	
Sr	Strontium	0.0		55.0	26.8					164.4	130.9	164.6	20.8
Та	Tantalum	0.0		41.5	25.4					782.0	739.3	185.2	20.9
Tb	Terbium	0.0		73.2	28.9					388.7	349.7	203.6	24.6
Tc	Technetium	0.0								678.0		181.1	20.8
Te	Tellurium	0.0		49.7	25.7					196.7	157.1	182.7	20.8
Te ₂	Ditellurium									168.2	118.0	268.1	36.7
Th	Thorium	0.0		51.8	27.3					602.0	560.7	190.2	20.8
Ti	Titanium	0.0		30.7	25.0					473.0	428.4	180.3	24.4
TI	Thallium	0.0		64.2	26.3					182.2	147.4	181.0	20.8
Tm	Thulium	0.0		74.0	27.0					232.2	197.5	190.1	20.8
U	Uranium	0.0		50.2	27.7					533.0	488.4	199.8	23.7
V	Vanadium	0.0		28.9	24.9					514.2	754.4	182.3	26.0
W	Tungsten	0.0		32.6	24.3					849.4	807.1	174.0	21.3
Xe	Xenon									0.0		169.7	20.8
Υ	Yttrium	0.0		44.4	26.5					421.3	381.1	179.5	25.9
Yb	Ytterbium	0.0		59.9	26.7					152.3	118.4	173.1	20.8
Zn	Zinc	0.0		41.6	25.4					130.4	94.8	161.0	20.8
Zr	Zirconium	0.0		39.0	25.4					608.8	566.5	181.4	26.7
Substance	es containing carbon: Carbon (graphite)	0.0		5.7	8.5					716.7	671.3	158.1	20.8
C	Carbon (diamond)	1.9	2.9	2.4	6.1					1 10.1	01 1.0	130.1	20.0
CAgN	Silver(I) cyanide	146.0	156.9	107.2									
CAg ₂ O ₃	Silver(I) carbonate	-505.8	-436.8	167.4	112.3								
CBaO ₃	Barium carbonate	-1213.0	-1134.4	112.1	86.0								
CBeO ₃	Beryllium carbonate	-1025.0	11011	52.0	65.0								
CBrCIF ₂	Bromochlorodifluoromethane	1020.0		02.0	00.0							318.5	74.6
CBrCl ₂ F	Bromodichlorofluoromethane											330.6	80.0
CBrCl ₃	Bromotrichloromethane									-41.1			85.3
CBrF ₃	Bromotrifluoromethane									-648.3			69.3
J													

			Cry	stal			Lic	quid			Ga	as	
Molecular formula	Name	Δ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	Δ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	∆ _f <i>G</i> ° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K
CBrN	Cyanogen bromide	140.5								186.2	165.3	248.3	46.9
CBrN ₃ O ₆	Bromotrinitromethane					32.5				80.3			
CBr ₂ CIF	Dibromochlorofluoromethane											342.8	82.4
CBr ₂ Cl ₂	Dibromodichloromethane											347.8	87.1
CBr ₂ F ₂	Dibromodifluoromethane					107.0				00.0	110.0	325.3	77.0
CBr ₂ O	Carbonyl bromide Tribromochloromethane					-127.2				-96.2	-110.9	309.1 357.8	61.8 89.4
CBr ₃ CI CBr ₃ F	Tribromofluoromethane											345.9	84.4
CBr ₄	Tetrabromomethane	29.4	47.7	212.5	144.3					83.9	67.0	358.1	91.2
CCaO ₃	Calcium carbonate (calcite)	-1207.6	-1129.1	91.7	83.5					00.0	01.0	330.1	31.2
CCaO ₃	Calcium carbonate (aragonite)	-1207.8	-1128.2	88.0	82.3								
CCdO ₃	Cadmium carbonate	-750.6	-669.4	92.5	02.0								
CCIFO	Carbonyl chloride fluoride											276.7	52.4
CCIF ₃	Chlorotrifluoromethane									-706.3			66.9
CCIN	Cyanogen chloride					112.1				138.0	131.0	236.2	45.0
CCIN ₃ O ₆	Chlorotrinitromethane					-27.1				18.4			
CCI ₂ F ₂	Dichlorodifluoromethane									-477.4	-439.4	300.8	72.3
CCI ₂ O	Carbonyl chloride									-219.1	-204.9	283.5	57.7
CCI ₃	Trichloromethyl									59.0			
CCI₃F	Trichlorofluoromethane					-301.3	-236.8	225.4	121.6	-268.3			78.1
CCI ₄	Tetrachloromethane					-128.2			130.7	-95.7			83.3
CCoO ₃	Cobalt(II) carbonate	-713.0											
CCs ₂ O ₃	Cesium carbonate	-1139.7	-1054.3	204.5	123.9								
CCuN	Copper(I) cyanide	96.2	111.3	84.5									
CFN	Cyanogen fluoride											224.7	41.8
CF ₂ O	Carbonyl fluoride									-639.8	101.0	2015	46.8
CF ₃	Trifluoromethyl									-477.0	-464.0	264.5	49.6
CF ₃ I	Trifluoroiodomethane									-587.8		307.4	70.9
CF ₄	Tetrafluoromethane	740.0	000.7	00.0	00.4					-933.6		261.6	61.1
CFeO ₃	Iron(II) carbonate Iron carbide	-740.6 25.1	-666.7 20.1	92.9	82.1 105.9								
CH CH	Methylidyne	23.1	20.1	104.0	100.9					595.8			
CHBrCIF	Bromochlorofluoromethane									333.0		304.3	63.2
CHBrCl ₂	Bromodichloromethane											316.4	67.4
CHBrF ₂	Bromodifluoromethane									-424.9		295.1	58.7
CHBr ₂ CI	Chlorodibromomethane									12 1.0		327.7	69.2
CHBr ₂ F	Dibromofluoromethane											316.8	65.1
CHBr ₃	Tribromomethane					-22.3	-5.0	220.9	130.7	23.8	8.0	330.9	71.2
CHCIF ₂	Chlorodifluoromethane									-482.6		280.9	55.9
CHCI ₂ F	Dichlorofluoromethane											293.1	60.9
CHCI ₃	Trichloromethane					-134.1	-73.7	201.7	114.2	-102.7	6.0	295.7	65.7
CHCsO ₃	Cesium hydrogen carbonate	-966.1											
CHFO	Formyl fluoride											246.6	39.9
CHF ₃	Trifluoromethane									-695.4		259.7	51.0
CHI ₃	Triiodomethane	-181.1								251.0		356.2	75.0
CHKO ₂	Potassium formate	-679.7											
CHKO ₃	Potassium hydrogen carbonate	-963.2	-863.5	115.5		100.0	105.0	1100	70.0	105.1	1017	201.0	
CHN	Hydrogen cyanide					108.9	125.0	112.8	70.6	135.1	124.7	201.8	35.9
CHNO	Isocyanic acid (HNCO)									107.0	110.0	238.0	44.9
CHNS CHN ₃ O ₆	Isothiocyanic acid					-32.8				127.6 -13.4	113.0	247.8 435.6	46.9 134.1
CHNaO ₂	Trinitromethane Sodium formate	-666.5	-599.9	103.8	82.7	-32.0				-13.4		433.0	134.1
CHNaO ₃	Sodium hydrogen carbonate	-950.8	-851.0	101.7	87.6								
CHO	Oxomethyl (HCO)	-330.0	-031.0	101.7	01.0					43.1	28.0	224.7	34.6
CH ₂	Methylene									390.4	372.9	194.9	33.8
CH ₂ BrCl	Bromochloromethane									530.4	012.0	287.6	52.7
CH ₂ BrF	Bromofluoromethane											276.3	49.2
CH ₂ Br ₂	Dibromomethane											293.2	54.7
CH ₂ CIF	Chlorofluoromethane											264.4	47.0
CH ₂ CI ₂	Dichloromethane					-124.2		177.8	101.2	-95.4		270.2	51.0
CH ₂ F ₂	Difluoromethane									-452.3		246.7	42.9
CH ₂ I ₂	Diiodomethane					68.5	90.4	174.1	134.0	119.5	95.8	309.7	57.7
CH ₂ N ₂	Diazomethane											242.9	52.5
CH ₂ N ₂	Cyanamide	58.8											
CH ₂ N ₂ O ₄	Dinitromethane					-104.9				-61.5		358.1	86.4
CH ₂ O	Formaldehyde									-108.6	-102.5	218.8	35.4

			Cry	stal			Liq	uid			G	as	
Molecular formula	Name	Δ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	∆ _f <i>G</i> ° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K
(CH ₂ O) _x	Paraformaldehyde	-177.6	,		-,	,	,	-,	•,•	,	,	•,	
CH ₂ O ₂	Formic acid					-425.0	-361.4	129.0	99.0	-378.7			
CH ₂ S ₃	Trithiocarbonic acid					24.0							
CH ₃	Methyl									145.7	147.9	194.2	38.7
CH ₃ BO	Borane carbonyl					E0.0				-111.2	-92.9	249.4	59.5
CH₃Br CH₃CI	Bromomethane Chloromethane					-59.8				-35.4 -81.9	-26.3	246.4 234.6	42.4 40.8
CH ₃ CI ₃ Si	Methyltrichlorosilane							262.8	163.1	-528.9		351.1	102.4
CH ₃ F	Fluoromethane							202.0	100.1	020.0		222.9	37.5
CH ₃ I	Iodomethane					-13.6		163.2	126.0	14.4		254.1	44.1
CH ₃ NO	Formamide					-254.0				-193.9			
CH ₃ NO ₂	Nitromethane					-112.6	-14.4	171.8	106.6	-80.8		282.9	55.5
CH ₃ NO ₂	Methyl nitrite									-66.1			
CH ₃ NO ₃	Methyl nitrate					-156.3	-43.4	217.1	157.3	-122.0		305.8	76.6
CH ₄	Methane									-74.6	-50.5	186.3	35.7
CH ₄ N ₂	Ammonium cyanide	0.4			134.0					0.45.0			
CH ₄ N ₂ O	Urea	-333.1								-245.8			
CH ₄ N ₂ S	Thiourea	-89.1 -92.4								22.9			
CH ₄ N ₄ O ₂ CH ₄ O	Nitroguanidine Methanol	-92.4				-239.2	-166.6	126.8	81.1	-201.0	-162.3	239.9	44.1
CH ₄ S	Methanethiol					-46.7	-7.7	169.2	90.5	-201.0	-102.3	255.2	50.3
CH ₅ N	Methylamine					-47.3	35.7	150.2	102.1	-22.5	32.7	242.9	50.1
CH ₅ NO ₃	Ammonium hydrogen carbonate	-849.4	-665.9	120.9		17.0	00.1	100.2	102.1	LL.0	02.1	£ 12.0	
CH ₅ N ₃	Guanidine	-56.0											
CH ₅ N ₃ S	Hydrazinecarbothioamide	24.7											
CH ₅ N ₅ O ₂	3-Amino-1-nitroguanidine	22.1											
CH ₆ CIN	Methylamine hydrochloride	-298.1											
CH ₆ N ₂	Methylhydrazine					54.2	180.0	165.9	134.9	94.7	187.0	278.8	71.1
CH ₆ Si	Methylsilane											256.5	65.9
CHg ₂ O ₃	Mercury(I) carbonate	-553.5	-468.1	180.0									
CIN	Cyanogen iodide	166.2	185.0	96.2						225.5	196.6	256.8	48.3
CI ₄	Tetraiodomethane	-392.9	404.0	100.5	00.0					474.0		391.9	95.9
CKN CKNS	Potassium cyanide	-113.0	-101.9 -178.3	128.5 124.3	66.3 88.5								
CK ₂ O ₃	Potassium thiocyanate Potassium carbonate	-200.2 -1151.0	-1063.5	155.5	114.4								
CLi ₂ O ₃	Lithium carbonate	-1215.9	-1132.1	90.4	99.1								
CMgO ₃	Magnesium carbonate	-1095.8	-1012.1	65.7	75.5								
CMnO ₃	Manganese(II) carbonate	-894.1	-816.7	85.8	81.5								
CN	Cyanide									437.6	407.5	202.6	29.2
CNNa	Sodium cyanide	-87.5	-76.4	115.6	70.4								
CNNa0	Sodium cyanate	-405.4	-358.1	96.7	86.6								
CN ₄ O ₈	Tetranitromethane					38.4				82.4		503.7	176.1
CNa ₂ O ₃	Sodium carbonate	-1130.7	-1044.4	135.0	112.3								
CO	Carbon monoxide									-110.5	-137.2	197.7	29.1
COS	Carbon oxysulfide									-142.0	-169.2	231.6	41.5
CO ₂	Carbon dioxide	600.1	-625.5	101.0	87.4					-393.5	-394.4	213.8	37.1
CO ₃ Pb CO ₃ Rb ₂	Lead(II) carbonate Rubidium carbonate	-699.1 -1136.0	-1051.0	131.0 181.3	117.6								
CO ₃ rio ₂	Strontium carbonate	-1220.1	-1140.1	97.1	81.4								
CO ₃ TI ₂	Thallium(I) carbonate	-700.0	-614.6	155.2	01.1								
CO ₃ Zn	Zinc carbonate	-812.8	-731.5	82.4	79.7								
CS	Carbon monosulfide									280.3	228.8	210.6	29.8
CS ₂	Carbon disulfide					89.0	64.6	151.3	76.4	116.7	67.1	237.8	45.4
CSe ₂	Carbon diselenide					164.8							
CSi	Silicon carbide (cubic)	-65.3	-62.8	16.6	26.9								
CSi	Silicon carbide (hexagonal)	-62.8	-60.2	16.5	26.7								
C ₂	Dicarbon	·			·					831.9	775.9	199.4	43.2
C ₂ BrF ₅	Bromopentafluoroethane					A*. =				-1064.4			
C ₂ Br ₂ CIF ₃	1,2-Dibromo-1-chloro-1,2,2- trifluoroethane					-691.7				-656.6			
$C_2Br_2F_4$	1,2-Dibromotetrafluoroethane					-817.7				-789.1			
C ₂ Br ₂ r ₄	Tetrabromoethene					011.1				100.1		387.1	102.7
	Hexabromoethane											441.9	139.3
C ₂ Br ₆	Πολαυτοπισσιτατισ											-	
C ₂ Br ₆ C ₂ Ca	Calcium carbide	-59.8	-64.9	70.0	62.7								
C ₂ Br ₆ C ₂ Ca C ₂ CaN ₂		-59.8 -184.5	-64.9	70.0	62.7								

			Cry	stal			Liq	Juid			G	as	
Molecular formula	Name	Δ₁H° kJ/mol	$\Delta_{\mathrm{f}} G^{\circ}$ kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	∆₁G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K
C ₂ CIF ₃	Chlorotrifluoroethene	-, -				-522.7				-505.5	-523.8	322.1	83.9
C ₂ CIF ₅	Chloropentafluoroethane									-1118.8			184.2
C ₂ Cl ₂ F ₄	1,2-Dichloro-1,1,2,2- tetrafluoroethane					-960.2			111.7	-937.0			
C2CI2O2	Oxalyl chloride					-367.6				-335.8			
C ₂ CI ₃ F ₃	1,1,2-Trichloro-1,2,2- trifluoroethane					-745.0			170.1	-716.8			
C ₂ CI ₃ N	Trichloroacetonitrile											336.6	96.1
C ₂ CI ₄	Tetrachloroethene					-50.6	3.0	266.9	143.4	-10.9			
C ₂ CI ₄ F ₂	1,1,1,2-Tetrachloro-2,2- difluoroethane									-489.9	-407.0	382.9	123.4
C ₂ Cl ₄ F ₂	1,1,2,2-Tetrachloro-1,2- difluoroethane								173.6				
C ₂ CI ₄ O	Trichloroacetyl chloride					-280.8				-239.8			
C ₂ CI ₆	Hexachloroethane	-202.8		237.3	198.2					-143.6			
C ₂ F ₃ N	Trifluoroacetonitrile									-497.9		298.1	77.9
C ₂ F ₄	Tetrafluoroethene	-820.5								-658.9		300.1	80.5
C ₂ F ₆	Hexafluoroethane									-1344.2		332.3	106.7
C ₂ HBr	Bromoacetylene											253.7	55.7
C ₂ HBrCIF ₃	1-Bromo-2-chloro-1,1,2- trifluoroethane					-675.3				-644.8			
C ₂ HBrCIF ₃	2-Bromo-2-chloro-1,1,1- trifluoroethane					-720.0				-690.4			
C ₂ HCI	Chloroacetylene											242.0	54.3
C ₂ HCIF ₂	1-Chloro-2,2-difluoroethene									-315.5	-289.1	303.0	72.1
C ₂ HCl ₂ F	1,1-Dichloro-2-fluoroethene											313.9	76.5
C ₂ HCl ₂ F ₃	2,2-Dichloro-1,1,1-trifluoroethane											352.8	102.5
C ₂ HCl ₃	Trichloroethene					-43.6		228.4	124.4	-9.0		324.8	80.3
C ₂ HCl ₃ O	Trichloroacetaldehyde					-234.5			151.0	-196.6			
C ₂ HCl ₃ O	Dichloroacetyl chloride					-280.4			10110	-241.0			
C ₂ HCl ₃ O ₂	Trichloroacetic acid	-503.3				200.1				211.0			
C ₂ HCl ₅	Pentachloroethane	000.0				-187.6			173.8	-142.0			
C ₂ HF	Fluoroacetylene					107.0			170.0	172.0		231.7	52.4
C ₂ HF ₃	Trifluoroethene									-490.5		201.7	- JL.4
C ₂ HF ₃ O ₂	Trifluoroacetic acid					-1069.9				-1031.4			
C ₂ HF ₅	Pentafluoroethane					1000.0				-1100.4			
C ₂ H ₂	Acetylene									227.4	209.9	200.9	44.0
C ₂ H ₂ BrF ₃	2-Bromo-1,1,1-trifluoroethane									-694.5			
C ₂ H ₂ Br ₂	cis-1,2-Dibromoethene											311.3	68.8
C ₂ H ₂ Br ₂	trans-1.2-Dibromoethene											313.5	70.3
C ₂ H ₂ Br ₂ Cl ₂	1,2-Dibromo-1,2-dichloroethane									-36.9			
C ₂ H ₂ Br ₄	1,1,2,2-Tetrabromoethane								165.7				
C ₂ H ₂ CIF ₃	2-Chloro-1,1,1-trifluoroethane											326.5	89.1
C ₂ H ₂ Cl ₂	1,1-Dichloroethene					-23.9	24.1	201.5	111.3	2.8	25.4	289.0	67.1
C ₂ H ₂ Cl ₂	cis-1,2-Dichloroethene					-26.4		198.4	116.4	4.6	20.1	289.6	65.1
C ₂ H ₂ Cl ₂	trans-1,2-Dichloroethene					-24.3	27.3	195.9	116.8	5.0	28.6	290.0	66.7
C ₂ H ₂ CI ₂ O	Chloroacetyl chloride					-283.7	21.0	100.0	110.0	-244.8	20.0	200.0	
C ₂ H ₂ Cl ₂ O ₂	Dichloroacetic acid					-496.3				21110			
C ₂ H ₂ CI ₃ NO	2,2,2-Trichloroacetamide	-358.0				100.0							
C ₂ H ₂ CI ₄	1,1,1,2-Tetrachloroethane											356.0	102.7
C ₂ H ₂ CI ₄	1,1,2,2-Tetrachloroethane					-195.0		246.9	162.3	-149.2		362.8	100.8
C ₂ H ₂ F ₂	1,1-Difluoroethene					100.0		2 10.0	102.0	-335.0		266.2	60.1
C ₂ H ₂ F ₂	cis-1,2-Difluoroethene									000.0		268.3	58.2
C ₂ H ₂ F ₃ I	1,1,1-Trifluoro-2-iodoethane									-644.5		200.0	
C ₂ H ₂ I ₂	cis-1,2-Diiodoethene									-207.4			
C ₂ H ₂ O	Ketene					-67.9				-47.5	-48.3	247.6	51.8
C ₂ H ₂ O ₂	Glyoxal					01.3				-212.0	-189.7	272.5	60.6
C ₂ H ₂ O ₄	Oxalic acid	-829.9		109.8	91.0					-731.8	-662.7	320.6	86.2
C ₂ H ₂ O ₄ Sr	Strontium formate	-1393.3		103.0	31.0					-101.0	-002.7	520.0	00.2
C ₂ H ₂ S	Thiirene	- 1030.0								300.0	275.8	255.3	54.7
C ₂ H ₃ Br	Bromoethene									79.2	81.8	275.8	55.5
						-223.5				-190.4	01.0	213.0	33.3
C ₂ H ₃ BrO	Acetyl bromide					-223.5					220.2	227.0	00.5
C ₂ H ₃ BrO ₂	Bromoacetic acid	044			FO 4	440				-383.5	-338.3	337.0	80.5
C ₂ H ₃ CI	Chloroethene	-94.1			59.4	14.6				37.2	53.6	264.0	53.7
C ₂ H ₃ CIF ₂	1-Chloro-1,1-difluoroethane					070.0	000.0	000.0	117 ^	040.0	005.0	307.2	82.5
C ₂ H ₃ CIO	Acetyl chloride	F00 =				-272.9	-208.0	200.8	117.0	-242.8	-205.8	295.1	67.8
C ₂ H ₃ CIO ₂	Chloroacetic acid	-509.7								-427.6	-368.5	325.9	78.8

			Cry	stal			Liq	uid			G	as	
Molecular formula	Name	Δ _t H° kJ/mol	∆₁G° kJ/mol	S° J/mol K	<i>C_p</i> J∕mol K	Δ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _t H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K
C ₂ H ₃ Cl ₂ F	1,1-Dichloro-1-fluoroethane	-, -										320.2	88.7
C ₂ H ₃ Cl ₃	1,1,1-Trichloroethane					-177.4		227.4	144.3	-144.4		323.1	93.3
C ₂ H ₃ Cl ₃	1,1,2-Trichloroethane					-190.8		232.6	150.9	-151.3		337.2	89.0
C ₂ H ₃ F	Fluoroethene									-138.8			
C ₂ H ₃ FO	Acetyl fluoride					-467.2				-442.1			
$C_2H_3F_3$	1,1,1-Trifluoroethane									-744.6		279.9	78.2
C ₂ H ₃ F ₃	1,1,2-Trifluoroethane									-730.7			
C ₂ H ₃ F ₃ O	2,2,2-Trifluoroethanol					-932.4				-888.4			
C ₂ H ₃ I	lodoethene											285.0	57.9
C ₂ H ₃ IO	Acetyl iodide	700.0				-163.5				-126.4			
C ₂ H ₃ KO ₂	Potassium acetate	-723.0				40.0	00.5	440.0	04.5	74.0	04.0	040.4	
C ₂ H ₃ N	Acetonitrile					40.6	86.5	149.6	91.5	74.0	91.9	243.4	52.2
C ₂ H ₃ N	Isocyanomethane					130.8	159.5	159.0		163.5	165.7	246.9	52.9
C ₂ H ₃ NO	Methyl isocyanate Nitroethene					-92.0				22.2		300.5	73.7
C ₂ H ₃ NO ₂ C ₂ H ₃ NO ₃	Oxamic acid	-661.2								-552.3		300.5	13.1
C ₂ H ₃ NS	Methyl isothiocyanate	79.4								-332.3			
C ₂ H ₃ NaO ₂	Sodium acetate	-708.8	-607.2	123.0	79.9								
C ₂ H ₄	Ethylene	-700.0	-007.2	123.0	13.3					52.4	68.4	219.3	42.9
C ₂ H ₄ BrCl	1-Bromo-2-chloroethane								130.1	J2. 1	00.4	213.5	42.3
C ₂ H ₄ Br ₂	1,1-Dibromoethane					-66.2			100.1			327.7	80.8
C ₂ H ₄ Br ₂	1,2-Dibromoethane					-79.2		223.3	136.0	-37.5		021.1	
C ₂ H ₄ CIF	1-Chloro-1-fluoroethane								100.0	-313.4			
C ₂ H ₄ CI ₂	1,1-Dichloroethane					-158.4	-73.8	211.8	126.3	-127.7	-70.8	305.1	76.2
C ₂ H ₄ Cl ₂	1,2-Dichloroethane					-166.8			128.4	-126.4		308.4	78.7
C ₂ H ₄ F ₂	1,1-Difluoroethane									-497.0		282.5	67.8
C ₂ H ₄ I ₂	1,2-Diiodoethane	9.3								75.0			
C ₂ H ₄ N ₂ O ₂	Oxamide	-504.4								-387.1			
C ₂ H ₄ N ₂ O ₂	Ethanedial dioxime	-90.5											
C ₂ H ₄ N ₂ O ₄	1,1-Dinitroethane					-148.2							
C ₂ H ₄ N ₂ O ₄	1,2-Dinitroethane					-165.2							
C ₂ H ₄ N ₂ S ₂	Ethanedithioamide	-20.8								83.0			
C ₂ H ₄ N ₄	1 <i>H</i> -1,2,4-Triazol-3-amine	76.8											
C ₂ H ₄ O	Acetaldehyde					-192.2	-127.6	160.2	89.0	-166.2	-133.0	263.8	55.3
C ₂ H ₄ O	Oxirane					-78.0	-11.8	153.9	88.0	-52.6	-13.0	242.5	47.9
C ₂ H ₄ OS	Thioacetic acid					-216.9				-175.1			
C ₂ H ₄ O ₂	Acetic acid					-484.3	-389.9	159.8	123.3	-432.2	-374.2	283.5	63.4
$C_2H_4O_2$	Methyl formate					-386.1			119.1	-357.4		285.3	64.4
C ₂ H ₄ O ₃	Peroxyacetic acid												82.4
C ₂ H ₄ O ₃	Glycolic acid									-583.0	-504.9	318.6	87.1
C ₂ H ₄ S	Thiirane					51.6				82.0	96.8	255.2	53.3
C ₂ H ₄ Si	Ethynylsilane						05.0	100.7	100.0	01.0		269.4	72.6
C ₂ H ₅ Br	Bromoethane					-90.5	-25.8	198.7	100.8	-61.9	-23.9	286.7	64.5
C ₂ H ₅ CI	Chloroethane					-136.8	-59.3	190.8	104.3	-112.1	-60.4	276.0	62.8
C ₂ H ₅ CIO	2-Chloroethanol					-295.4						264.5	58.6
C ₂ H ₅ F C ₂ H ₅ I	Fluoroethane Iodoethane					-40.0	14.7	211.7	115.1	-8.1	19.2	306.0	66.9
C ₂ H ₅ N	Ethyleneimine					91.9	14.7	211.7	110.1	126.5	19.2	300.0	00.9
C ₂ H ₅ NO	Acetamide	-317.0		115.0	91.3	31.3				-238.3			
C ₂ H ₅ NO	N-Methylformamide	-317.0		113.0	31.3				123.8	-230.3			
C ₂ H ₅ NO ₂	Nitroethane					-143.9			134.4	-103.8		320.5	79.0
C ₂ H ₅ NO ₂	Glycine	-528.5				140.0			101.1	-392.1		020.0	10.0
C ₂ H ₅ NO ₃	2-Nitroethanol	320.0				-350.7				032.1			
C ₂ H ₅ NO ₃	Ethyl nitrate					-190.4				-154.1			
C ₂ H ₅ NS	Thioacetamide	-71.7				130.4				11.4			
C ₂ H ₆	Ethane	7 1.7								-84.0	-32.0	229.2	52.5
C ₂ H ₆ Cd	Dimethyl cadmium					63.6	139.0	201.9	132.0	101.6	146.9	303.0	- JL.J
C ₂ H ₆ Hg	Dimethyl mercury					59.8	140.3	209.0	102.0	94.4	146.1	306.0	83.3
C ₂ H ₆ N ₂ O	N-Methylurea	-332.8				30.0	. 10.0	200.0		J 1. T	. 10.1	550.0	
$C_2H_6N_4O_2$	1,2-Hydrazinedicarboxamide	-498.7											
$C_2H_6N_4O_2$	Oxalyl dihydrazide	-295.2											
C ₂ H ₆ O	Ethanol	200.2				-277.6	-174.8	160.7	112.3	-234.8	-167.9	281.6	65.6
C ₂ H ₆ O	Dimethyl ether					-203.3	.,			-184.1	-112.6	266.4	64.4
C ₂ H ₆ OS	Dimethyl sulfoxide					-204.2	-99.9	188.3	153.0	-151.3			
C ₂ H ₆ O ₂	Ethylene glycol					-460.0		163.2	148.6	-392.2		303.8	82.7
C ₂ H ₆ O ₂ S	Dimethyl sulfone	-450.1	-302.4	142.0						-373.1	-272.7	310.6	100.0
- 2 0 - 2 -	,	.00.1								2.0.1	_, _,	2.0.0	

			Cry	stal			Liq	uid			Ga	as	
Molecular formula	Name	Δ _f H ° kJ/mol	Δ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	Δ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	∆ _f <i>G</i> ° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K
C ₂ H ₆ O ₃ S	Dimethyl sulfite	,	,	0,0		-523.6	,	7,	0,01 11	-483.4	,	0,0	0,0. 11
C ₂ H ₆ O ₄ S	Dimethyl sulfate					-735.5				-687.0			
C ₂ H ₆ S	Ethanethiol					-73.6	-5.5	207.0	117.9	-46.1	-4.8	296.2	72.7
C ₂ H ₆ S	Dimethyl sulfide					-65.3		196.4	118.1	-37.4		286.0	74.1
C ₂ H ₆ S ₂	1,2-Ethanedithiol					-54.3				-9.7			
C ₂ H ₆ S ₂	Dimethyl disulfide					-62.6		235.4	146.1	-24.7			
C ₂ H ₆ Zn	Dimethyl zinc					23.4		201.6	129.2	53.0			
C ₂ H ₇ N	Ethylamine					-74.1			130.0	-47.5	36.3	283.8	71.5
C ₂ H ₇ N	Dimethylamine					-43.9	70.0	182.3	137.7	-18.8	68.5	273.1	70.7
C ₂ H ₇ NO	Ethanolamine								195.5				
C ₂ H ₈ CIN	Dimethylamine hydrochloride	-289.3											
C ₂ H ₈ N ₂	1,2-Ethanediamine					-63.0	200.4	100.0	172.6	-18.0			
C ₂ H ₈ N ₂	1,1-Dimethylhydrazine					48.9	206.4	198.0	164.1	84.1			
C ₂ H ₈ N ₂	1,2-Dimethylhydrazine	4400.0			000.0	52.7				92.2			
C ₂ H ₈ N ₂ O ₄	Ammonium oxalate	-1123.0			226.0								
C ₂ HgO ₄	Mercury(II) oxalate	-678.2										212.1	70.0
C ₂ I ₂	Diiodoacetylene	305.0										313.1	70.3
C_2I_4 $C_2K_2O_4$	Tetraiodoethene Potassium oxalate	-1346.0											
$C_2N_2U_4$ C_2MgO_4	Magnesium oxalate	-1346.0											
$C_2N_1QO_4$	Cyanogen	-1203.0				285.9				306.7		241.9	56.8
$C_2N_4O_6$	Trinitroacetonitrile					183.7				000.1		241.5	30.0
C ₂ Na ₂ O ₄	Sodium oxalate					100.1				-1318.0			
C ₂ O ₄ Pb	Lead(II) oxalate	-851.4	-750.1	146.0	105.4					1010.0			
C ₃ F ₈	Perfluoropropane									-1783.2			
C ₃ H ₂ N ₂	Malononitrile	186.4								265.5			
C ₃ H ₂ O ₂	2-Propynoic acid					-193.2							
C ₃ H ₂ O ₃	1,3-Dioxol-2-one					-459.9				-418.6			
C ₃ H ₃ Cl ₃	1,2,3-Trichloropropene					-101.8							
C ₃ H ₃ F ₃	3,3,3-Trifluoropropene									-614.2			
C ₃ H ₃ N	Acrylonitrile					147.1				180.6			
C ₃ H ₃ NO	Oxazole					-48.0				-15.5			
C ₃ H ₃ NO	Isoxazole					42.1				78.6			
C ₃ H ₄	Allene									190.5			
C ₃ H ₄	Propyne									184.9			
C ₃ H ₄	Cyclopropene									277.1			
C ₃ H ₄ Cl ₂	2,3-Dichloropropene					-73.3							
C ₃ H ₄ Cl ₄	1,1,1,3-Tetrachloropropane					-208.7							
C ₃ H ₄ Cl ₄	1,2,2,3-Tetrachloropropane					-251.8				1001.0			
C ₃ H ₄ F ₄ O	2,2,3,3-Tetrafluoro-1-propanol	105.4			01.0	-1114.9				-1061.3 179.4			
C ₃ H ₄ N ₂ C ₃ H ₄ N ₂	1 <i>H</i> -Pyrazole Imidazole	49.8			81.0					132.9			
C ₃ H ₄ N ₂	Acrolein	49.0								132.9			71.3
C ₃ H ₄ O ₂	1,2-Propanedione					-309.1				-271.0			11.3
C ₃ H ₄ O ₂	Acrylic acid					-383.8			145.7	-211.0			
C ₃ H ₄ O ₂	2-Oxetanone					-329.9		175.3	122.1	-282.9			
C ₃ H ₄ O ₂	Ethylene carbonate					-682.8		170.0	133.9	-508.4			
C ₃ H ₅ Br	cis-1-Bromopropene					7.9			100.0	40.8			
C ₃ H ₅ Br	3-Bromopropene					12.2				45.2			
C ₃ H ₅ BrO	Bromoacetone									-181.0			
C ₃ H ₅ CI	2-Chloropropene									-21.0			
C ₃ H ₅ CI	3-Chloropropene								125.1				
C ₃ H ₅ CIO	Epichlorohydrin					-148.4			131.6	-107.8			
C ₃ H ₅ CIO ₂	2-Chloropropanoic acid					-522.5				-475.8			
C ₃ H ₅ CIO ₂	3-Chloropropanoic acid	-549.3											
C ₃ H ₅ CIO ₂	Ethyl chloroformate					-505.3				-462.9			
C ₃ H ₅ CIO ₂	Methyl chloroacetate					-487.0				-444.0			
C ₃ H ₅ Cl ₃	1,2,3-Trichloropropane					-230.6			183.6	-182.9			
C ₃ H ₅ I	3-lodopropene					53.7				91.5			
C ₃ H ₅ IO	Iodoacetone									-130.5			
C ₃ H ₅ IO ₂	3-lodopropanoic acid	-460.0											
C ₃ H ₅ N	Propanenitrile					15.5			119.3	51.7			
C ₃ H ₅ N	2-Propyn-1-amine					205.7							
C ₃ H ₅ N	Ethyl isocyanide	0.12				108.6				141.7			
C ₃ H ₅ NO	Acrylamide	-212.1			110.6	-224.0				-130.2			
$C_3H_5NO_3$	Nitroacetone					-278.6							

			Cry	stal			Lic	Juid			G	as	
Molecular formula	Name	Δ _f H° kJ/mol	Δ _f G° kJ/mol	<i>S</i> ° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	Δ _f G° kJ/mol	<i>S</i> ° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	Δ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K
$C_3H_5NO_4$	Methyl nitroacetate					-464.0							
C ₃ H ₅ N ₃ O ₉	Trinitroglycerol					-370.9				-279.1		545.9	234.2
C ₃ H ₆	Propene					4.0 35.2				20.0 53.3	104.5	237.5	
C ₃ H ₆ C ₃ H ₆ Br ₂	Cyclopropane 1,2-Dibromopropane					-113.6				-71.6	104.5	231.3	55.6
C ₃ H ₆ Cl ₂	1,2-Dichloropropane, (±)					-198.8			149.1	-162.8			
C ₃ H ₆ Cl ₂	1,3-Dichloropropane					-199.9			1 10.1	-159.2			
C ₃ H ₆ Cl ₂	2,2-Dichloropropane					-205.8				-173.2			
C ₃ H ₆ Cl ₂ O	2,3-Dichloro-1-propanol					-381.5				-316.3			
C ₃ H ₆ Cl ₂ O	1,3-Dichloro-2-propanol					-385.3				-318.4			
C ₃ H ₆ I ₂	1,2-Diiodopropane									35.6			
$C_3H_6I_2$	1,3-Diiodopropane					-9.0							
$C_3H_6N_2O_2$	Propanediamide	-546.1											
C ₃ H ₆ N ₂ O ₂	N-(Aminocarbonyl)acetamide	-544.2				100.0				-441.2			
C ₃ H ₆ N ₂ O ₄	1,1-Dinitropropane					-163.2				-100.7			
C ₃ H ₆ N ₂ O ₄	1,3-Dinitropropane 2,2-Dinitropropane					-207.1 -181.2							
C ₃ H ₆ N ₂ O ₄ C ₃ H ₆ N ₆ O ₆	Hexahydro-1,3,5-trinitro-1,3,5-					-101.2				192.0		482.4	230.2
U ₃ П ₆ N ₆ U ₆	triazine									192.0		402.4	230.2
C ₃ H ₆ O	Allyl alcohol					-171.8			138.9	-124.5			
C ₃ H ₆ O	Propanal					-215.6				-185.6		304.5	80.7
C ₃ H ₆ O	Acetone					-248.4		199.8	126.3	-217.1	-152.7	295.3	74.5
C ₃ H ₆ O	Methyloxirane					-123.0		196.5	120.4	-94.7		286.9	72.6
C ₃ H ₆ O	Oxetane					-110.8				-80.5			
C ₃ H ₆ O ₂	Propanoic acid					-510.7		191.0	152.8	-455.7			
C ₃ H ₆ O ₂	Ethyl formate								149.3				
C ₃ H ₆ O ₂	Methyl acetate					-445.9			141.9	-413.3		324.4	86.0
C ₃ H ₆ O ₂	1,3-Dioxolane					-333.5			118.0	-298.0			
C ₃ H ₆ O ₂ S	Thiolactic acid	F00 F		100.0	111 1	-468.4				405.0			
C ₃ H ₆ O ₃ C ₃ H ₆ S	1,3,5-Trioxane Thietane	-522.5		133.0	111.4	24.7		184.9		-465.9 60.6	107.1	285.0	68.3
C ₃ H ₆ S	Methylthiirane					11.3		104.3		45.8	107.1	200.0	
C ₃ H ₆ S ₂	1,2-Dithiolane					11.0				0.0	47.7	313.5	86.5
C ₃ H ₆ S ₂	1,3-Dithiolane									10.0	54.7	323.3	84.7
C ₃ H ₆ S ₃	1,3,5-Trithiane									80.0	130.4	336.4	111.3
C ₃ H ₇ Br	1-Bromopropane					-121.9				-87.0			
C ₃ H ₇ Br	2-Bromopropane					-130.5				-99.4			
C ₃ H ₇ CI	1-Chloropropane					-160.5				-131.9			
C ₃ H ₇ CI	2-Chloropropane					-172.3				-144.9			
C ₃ H ₇ CIO ₂	3-Chloro-1,2-propanediol					-525.3							
C ₃ H ₇ CIO ₂	2-Chloro-1,3-propanediol					-517.5							
C ₃ H ₇ F	1-Fluoropropane									-285.9			
C ₃ H ₇ F	2-Fluoropropane					-66.0				-293.5			
C ₃ H ₇ I C ₃ H ₇ I	1-lodopropane 2-lodopropane					-74.8				-40.3			
C ₃ H ₇ N	Allylamine					-10.0				-40.3			
C ₃ H ₇ N	Cyclopropylamine					45.8		187.7	147.1	77.0			
C ₃ H ₇ NO	N,N-Dimethylformamide					-239.3			150.6	-192.4			
C ₃ H ₇ NO	Propanamide	-338.2								-259.0			
C ₃ H ₇ NO ₂	1-Nitropropane					-167.2				-124.3		350.0	104.1
C ₃ H ₇ NO ₂	2-Nitropropane					-180.3			170.3	-138.9			
C ₃ H ₇ NO ₂	Ethyl carbamate	-517.1			156.4	-497.3				-446.3			
C ₃ H ₇ NO ₂	<i>DL</i> -Alanine	-563.6											
C ₃ H ₇ NO ₂	D-Alanine	-561.2											
C ₃ H ₇ NO ₂	L-Alanine	-604.0								-465.9			
C ₃ H ₇ NO ₂	β-Alanine	-558.0								-424.0			
C ₃ H ₇ NO ₂	Sarcosine	-513.3 -534.1								-367.3			
C ₃ H ₇ NO ₂ S C ₃ H ₇ NO ₃	L-Cysteine Propyl nitrate	-534.1				-214.5				-174.1		362.6	123.2
C ₃ H ₇ NO ₃	Isopropyl nitrate					-214.5				-174.1		302.0	123.2
C ₃ H ₇ NO ₃	DL-Serine	-739.0				-223.1				-131.0			
C ₃ H ₇ NO ₃	L-Serine	-732.7											
C ₃ H ₇ NO ₃	Propane	, oc.1				-120.9				-103.8	-23.4	270.3	73.6
C ₃ H ₈ N ₂ O	N-Ethylurea	-357.8											
C ₃ H ₈ N ₂ O	N,N-Dimethylurea	-319.1											
C ₃ H ₈ N ₂ O	N,N-Dimethylurea	-312.1											

			Cry	stal			Liq	uid			G	as	
Molecular formula	Name	Δ₁H° kJ/mol	∆₁G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J∕mol K
C ₃ H ₈ N ₂ O ₃	Oxymethurea	-717.0					<u> </u>						
C ₃ H ₈ O	1-Propanol					-302.6		193.6	143.9	-255.1		322.6	85.6
C ₃ H ₈ O	2-Propanol					-318.1		181.1	156.5	-272.6		309.2	89.3
C_3H_8O	Ethyl methyl ether									-216.4		309.2	93.3
$C_3H_8O_2$	1,2-Propylene glycol					-501.0			190.8	-429.8			
C ₃ H ₈ O ₂	1,3-Propylene glycol					-480.8				-408.0			
C ₃ H ₈ O ₂	Ethylene glycol monomethyl ether								171.1				
C ₃ H ₈ O ₂	Dimethoxymethane					-377.8		244.0	162.0	-348.5			
C ₃ H ₈ O ₃	Glycerol					-669.6		206.3	218.9	-577.9			
C ₃ H ₈ S	1-Propanethiol					-99.9		242.5	144.6	-67.8			
C ₃ H ₈ S	2-Propanethiol					-105.9		233.5	145.3	-76.2			
C ₃ H ₈ S	Ethyl methyl sulfide 1,3-Propanedithiol					-91.6 -79.4		239.1	144.6	-59.6 -29.8			
C ₃ H ₈ S ₂ C ₃ H ₉ Al	Trimethyl aluminum					-136.4	-9.9	209.4	155.6	-74.1			
C ₃ H ₉ B	Trimethylborane					-143.1	-32.1	238.9	100.0	-124.3	-35.9	314.7	88.5
C ₃ H ₉ BO ₃	Trimethyl borate					-143.1	-32.1	230.9	189.9	-124.3	-30.9	314.7	00.0
C ₃ H ₉ CISi	Trimethylchlorosilane					-382.8	-246.4	278.2	103.3	-352.8	-243.5	369.1	
C ₃ H ₉ N	Propylamine					-101.5	-240.4	210.2	164.1	-70.1	39.9	325.4	91.2
C ₃ H ₉ N	Isopropylamine					-112.3		218.3	163.8	-83.7	32.2	312.2	97.5
C ₃ H ₉ N	Trimethylamine					-45.7		208.5	137.9	-23.6	OL.L	287.1	91.8
C ₃ H ₁₀ CIN	Propylamine hydrochloride	-354.7						200.0	107.0			20111	
C ₃ H ₁₀ CIN	Trimethylamine hydrochloride	-282.9											
C ₃ H ₁₀ N ₂	1,2-Propanediamine, (±)	202.0				-97.8				-53.6			
C ₃ H ₁₀ Si	Trimethylsilane					01.0						331.0	117.9
C ₃ H ₁₂ BN	Trimethylamine borane	-142.5	70.7	187.0									
C ₃ H ₁₂ BN	Aminetrimethylboron	-284.1	-79.3	218.0									
C ₄ Cl ₆	Hexachloro-1,3-butadiene					-24.5							-
C ₄ F ₈	Perfluorocyclobutane									-1542.6			
C ₄ F ₁₀	Perfluorobutane								127.2				
C ₄ H ₂ N ₂	trans-2-Butenedinitrile	268.2								340.2			
C ₄ H ₂ O ₃	Maleic anhydride	-469.8								-398.3			-
C ₄ H ₂ O ₄	2-Butynedioic acid	-577.3											-
C ₄ H ₃ NO ₃	2-Nitrofuran	-104.1								-28.8			
C ₄ H ₄ BrNO ₂	<i>N</i> -Bromosuccinimide	-335.9											
C ₄ H ₄ CINO ₂	<i>N</i> -Chlorosuccinimide	-357.9											
C ₄ H ₄ N ₂	Succinonitrile	139.7		191.6	145.6					209.7			
C ₄ H ₄ N ₂	Pyrazine	139.8								196.1			
$C_4H_4N_2$	Pyrimidine					145.9				195.7			
C ₄ H ₄ N ₂	Pyridazine					224.9				278.3			
$C_4H_4N_2O_2$	Uracil	-429.4			120.5					-302.9			
C ₄ H ₄ N ₂ O ₃	Barbituric acid	-634.7											
C ₄ H ₄ O	Furan					-62.3		177.0	114.8	-34.8		267.2	65.4
C ₄ H ₄ O ₂	Diketene					-233.1				-190.3			
C ₄ H ₄ O ₃	Succinic anhydride	-608.6								-527.9			
C ₄ H ₄ O ₄	Maleic acid	-789.4		160.8	137.0					-679.4			
C ₄ H ₄ O ₄	Fumaric acid	-811.7		168.0	142.0					-675.8			
C ₄ H ₄ S	Thiophene					80.2		181.2	123.8	114.9	126.1	278.8	72.8
C ₄ H ₅ N	trans-2-Butenenitrile					95.1				134.3			
C ₄ H ₅ N	3-Butenenitrile					117.8			100.0	159.7			
C ₄ H ₅ N	2-Methylacrylonitrile					00.4		450.4	126.3	100.0			
C ₄ H ₅ N	Pyrrole					63.1		156.4	127.7	108.2			
C ₄ H ₅ N	Cyclopropanecarbonitrile	450.0				140.8				182.8			
C ₄ H ₅ NO ₂	Succinimide 4. Methylthiczele	-459.0				67.9				-375.4			
C ₄ H ₅ NS C ₄ H ₅ N ₃ O	4-Methylthiazole Cytosine	-221.3			132.6	67.9				111.8			
		-221.3			132.0	100.6				160.0			
C ₄ H ₆	1,2-Butadiene 1,3-Butadiene					138.6 88.5		199.0	123.6	162.3 110.0			
C ₄ H ₆ C ₄ H ₆	1,3-Butadiene 1-Butyne					141.4		199.0	123.0	165.2			
C ₄ H ₆	2-Butyne					119.1				145.7			
C ₄ H ₆	Z-Butyrie Cyclobutene					119.1				156.7			
C ₄ H ₆ C ₄ H ₆ N ₂ O ₂	2,5-Piperazinedione	-446.5								1.00.7			
C ₄ H ₆ N ₂ U ₂	Divinyl ether	-440.3				-39.8				-13.6			
C ₄ H ₆ O	trans-2-Butenal					-138.7				-100.6			
C ₄ H ₆ O ₂	trans-2-Butenoic acid					-130./				-100.0			
C ₄ H ₆ O ₂	Methacrylic acid								161.1				
C ₄ H ₆ O ₂	Vinyl acetate					-349.2			101.1	-314.4			
U4I I6U2	viriyi acciaic					-049.2				-014.4			

			Cry	stal			Lic	quid			G	as	
Molecular formula	Name	Δ _f H° kJ/mol	∆ _f G° kJ/mol	<i>S</i> ° J/mol K	<i>C_p</i> J∕mol K	Δ _f H° kJ/mol	∆ _f <i>G</i> ° kJ/mol	S° J/mol K	C _p J/mol K	Δ _f H° kJ/mol	∆ _f <i>G</i> ° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K
C ₄ H ₆ O ₂	Methyl acrylate					-362.2		239.5	158.8	-333.0			
C ₄ H ₆ O ₂	γ-Butyrolactone					-420.9			141.4	-366.5			
C ₄ H ₆ O ₃	Acetic anhydride					-624.4			010.0	-572.5			
$C_4H_6O_3$ $C_4H_6O_4$	Propylene carbonate Succinic acid	-940.5		167.3	153.1	-613.2			218.6	-582.5 -823.0			
C ₄ H ₆ O ₄	Dimethyl oxalate	-756.3		107.3	100.1					-708.9			
C ₄ H ₆ S	2,3-Dihydrothiophene	700.0				52.9				90.7	133.5	303.5	79.8
C ₄ H ₆ S	2,5-Dihydrothiophene					47.0				86.9	131.6	297.1	83.3
C ₄ H ₇ CIO	2-Chloroethyl vinyl ether					-208.1				-170.1			
C ₄ H ₇ CIO ₂	2-Chlorobutanoic acid					-575.5							
C ₄ H ₇ CIO ₂	3-Chlorobutanoic acid					-556.3							
C ₄ H ₇ CIO ₂	4-Chlorobutanoic acid					-566.3				400.7			
C ₄ H ₇ CIO ₂ C ₄ H ₇ N	Propyl chlorocarbonate Butanenitrile					-533.4 -5.8				-492.7 33.6			
C ₄ H ₇ N	2-Methylpropanenitrile					-13.8				23.4			
C ₄ H ₇ NO	Acetone cyanohydrin					-120.9				20.4			
C ₄ H ₇ NO	2-Pyrrolidone					-286.2							
C ₄ H ₇ NO	2-Methyl-2-oxazoline					-169.5				-130.5			
C ₄ H ₇ NO ₄	Iminodiacetic acid	-932.6											
C ₄ H ₇ NO ₄	Ethyl nitroacetate					-487.1							
C ₄ H ₇ NO ₄	L-Aspartic acid	-973.3											
C ₄ H ₇ N ₃ O	Creatinine	-238.5				00.0		007.0	440.0	0.4			
C ₄ H ₈	1-Butene					-20.8 -29.8		227.0 219.9	118.0	-7.1			
C ₄ H ₈ C ₄ H ₈	cis-2-Butene trans-2-Butene					-29.8		219.9	127.0	-11.4			
C ₄ H ₈	Isobutene					-37.5				-16.9			
C ₄ H ₈	Cyclobutane					3.7				27.7			
C ₄ H ₈	Methylcyclopropane					1.7							
C ₄ H ₈ Br ₂	1,2-Dibromobutane					-142.1				-91.6			
C ₄ H ₈ Br ₂	1,3-Dibromobutane					-148.0							
$C_4H_8Br_2$	1,4-Dibromobutane					-140.3				-87.8			
C ₄ H ₈ Br ₂	2,3-Dibromobutane					-139.6				-102.0			
C ₄ H ₈ Br ₂	1,2-Dibromo-2-methylpropane					-156.6 -237.3				-113.3 -195.0			
C ₄ H ₈ Cl ₂ C ₄ H ₈ Cl ₂	1,3-Dichlorobutane 1,4-Dichlorobutane					-237.3				-195.0			
C ₄ H ₈ Cl ₂ O	Bis(2-chloroethyl) ether					-223.0			220.9	-100.4			
C ₄ H ₈ I ₂	1,4-Diiodobutane					-30.0							
C ₄ H ₈ N ₂ O ₂	Succinamide	-581.2											
C ₄ H ₈ N ₂ O ₂	Dimethylglyoxime	-199.7											
C ₄ H ₈ N ₂ O ₃	L-Asparagine	-789.4											
C ₄ H ₈ N ₂ O ₃	<i>N</i> -Glycylglycine	-747.7											
C ₄ H ₈ N ₂ O ₄	1,4-Dinitrobutane					-237.5				407.0		500.0	075.5
C ₄ H ₈ N ₈ O ₈ C ₄ H ₈ O	Cyclotetramethylenetetranitramine Ethyl vinyl ether					-167.4				187.9 -140.8		568.8	275.5
C ₄ H ₈ O	1,2-Epoxybutane					-168.9		230.9	147.0	-140.0			
C ₄ H ₈ O	Butanal					-239.2		246.6	163.7	-204.8		343.7	103.4
C ₄ H ₈ O	Isobutanal					-247.3				-215.7			
C ₄ H ₈ O	2-Butanone					-273.3		239.1	158.7	-238.5		339.9	101.7
C ₄ H ₈ O	Tetrahydrofuran					-216.2		204.3	124.0	-184.1		302.4	76.3
C ₄ H ₈ OS	S-Ethyl thioacetate					-268.2				-228.1			
C ₄ H ₈ O ₂	Butanoic acid					-533.8		222.2	178.6	-475.9			
C ₄ H ₈ O ₂	2-Methylpropanoic acid								173.0				
C ₄ H ₈ O ₂	Propyl formate					-500.3		057.7	170.7	-462.7			
C ₄ H ₈ O ₂ C ₄ H ₈ O ₂	Ethyl acetate Methyl propanoate					-479.3		257.7	170.7 171.2	-443.6			
C ₄ H ₈ O ₂	1,3-Dioxane					-379.7			143.9	-340.6			
C ₄ H ₈ O ₂	1,4-Dioxane					-353.9		270.2	152.1	-315.3			
C ₄ H ₈ O ₂	2-Methyl-1,3-dioxolane					-386.9				-352.0			
C ₄ H ₈ O ₂ S	Sulfolane								180.0				
C ₄ H ₈ S	Tetrahydrothiophene					-72.9				-34.1	45.8	309.6	92.5
$C_4H_8S_2$	1,3-Dithiane									-10.0	72.4	333.5	110.4
C ₄ H ₈ S ₂	1,4-Dithiane	·						·		0.0	84.5	326.2	109.7
C ₄ H ₉ Br	1-Bromobutane					-143.8				-107.1			
C ₄ H ₉ Br	2-Bromobutane, (±)					-154.9 -164.4				-120.3 -132.4			
C ₄ H ₉ Br C ₄ H ₉ CI	2-Bromo-2-methylpropane 1-Chlorobutane					-164.4				-132.4			
041 1901	i OlliolopuidIIC					-100.1				-104.4			

Mane				Cry	stal			Liq	Juid			G	as	
CACAD C-Colorabinates		Name								C _p	Δ _f H °		S° J/mol K	<i>C_p</i> J/mol K
CACIO 1-Chiono-2-melaybropanes -191.1 -183.2 CALIO 2-Chiono-2-melaybropanes -201.3 -382.2 CALIO 1-Chio-2-melaybropanes -803.3 CALIO 1-Chio-2-melaybropanes -803.3 CALIO 2-Chio-2-melaybropanes -803.3 CALIO 1-Chio-2-melaybropanes -803.3 CALIO Providence -86.8 -41.2 CALIO Providence -80.8 -41.2 CALIO Providence -98.8 -82.0 CALIO All Managements -80.0 -82.0 CALIO All Managements -80.0 -80.0 CALIO All Managements -19.2 -14.1 CALIO All Managements -19.2 -17.1 CALIO All Managements -19.2 -17.1 CALIO			NJ/IIIUI	NJ/IIIUI	J/IIIUI K	J/IIIUI K		KJ/IIIUI	J/IIIUI K	J/IIIUI K		KJ/IIIUI	J/IIIUI K	J/IIIUI K
Cip(Cip)														
CALIFON														
Part		* 1 1												
Column C	1 0	, ,								162.3				
Color							-107.5				-72.1			-
Part							5.6				41.2			
CLAND Methylogrammide		Pyrrolidine					-41.1		204.1	156.6	-3.6			
ChMN0		Butanamide	-364.8								-282.0			
ChAMPO Abdinitylopogrammine										179.0				
CALMO		2-Methylpropanamide	-368.6								-282.6			
Child Monthaline		N,N-Dimethylacetamide					-278.3			175.6	-228.0			
C_HMO_ 1										164.8				
C_HANO_ Programmer							-192.5				-143.9		369.9	115.1
CH,HOQ 3-Mino-2-butanol -581.0 -441.0 CH,HOQ 3-Wino-2-butanol -10.1 -390.0 CH,HOQ 2-Methyl-2-into-1-proportiol -410.1 CH,HOQ Chellone -783.8 CH,HOQ Chellone -807.2 CH,HOQ Creatine -537.2 CH,H Station -147.3 140.9 -152.7 CH,B Station -147.3 140.9 -152.7 CH,B Stockulare -154.2 -134.2 -134.2 CH,H,B Distributions -30.0	C ₄ H ₉ NO ₂	2-Nitroisobutane					-217.2				-177.1			
C,H,H0		Propyl carbamate	-552.6								-471.4			
C_HMO_ SAttro-2 buttanol		4-Aminobutanoic acid	-581.0								-441.0			
Cyt, No. De. Thronine -758 B Cyt, No. De. Thronine -807 2 Cyt, No. De. Thronine -807 2 Cyt, B. Butane -147,3 140 9 -125 7 CH _H . Butane -1542 -1342 -1342 CH,Hyl. Butture 30.1 182 8 75.3 CH,Hyl. Delity Immoruty 30.1 182 8 75.3 CH,Hyl. Delity Immoruty 30.1 182 8 75.3 CH,Hyl. Delity Immoruty -1062 -53.0 -55.0 CH,Hyl. Delity Immoruty -1086 -1062 -278.0 -278.0 CH,Hyl. Delity Immoruty -1086 -278.2 -278.8 -278.8 -278.8 -278.8 -278.8 -278.8 -278.8 -278.8 -278.8 -278.8 -278.8 -278.8	C ₄ H ₉ NO ₃	3-Nitro-2-butanol					-390.0							
C,HyHO, D, PC-Threonine -758.8 C,HyHO, C, Pressine -807.2 C,HyHO, C, Dreasine -537.2 C,H _{Ho} Buture -147.3 140.9 -125.7 C,H _{Ho} Buture -154.2 -134.2 -134.2 C,H _{Ho} HO Diethyl metury 30.1 182.8 75.3 C,H _{Ho} HO Timethylures -330.5		2-Methyl-2-nitro-1-propanol	-410.1											
C,H,M,C Creatine		<i>DL</i> -Threonine	-758.8											
C,H,H ₀ / ₂ Creatine -537.2 C,H ₁ / ₂ Butane -147.3 140.9 -157.2 C,H ₂ / ₂ Bobulare -154.2 -134.2 C,H ₂ H ₂ / ₂ Diethyl mercury 30.1 182.8 75.3 C,H ₂ H ₂ N ₂ Person -45.6 -45.6 -45.6 -45.0 -45.1 -45.1 -45.1 -45.1 -45.1 -45.1 -45.1 -45.1 -45.1 -45.1 -45.1 -45.1 -45.1 -45		L-Threonine	-807.2											
C,H _H Balane 1.147.3 140.9 -125.7 C,H _H Isobutare -154.2 -134.2 C,H _H ,N Piperazine -45.6 C,H _H ,N Piperazine -45.6 C,H _H ,N,O Thrimethylursa -330.5 C,H _H ,N,O _L L-Asparagine, monthydrate -106.2 -53.0 C,H _H ,N,O _L L-Asparagine, monthydrate -108.6 -174.9 -194.0 C,H _H ,O 2-Butanol -327.3 225.8 177.2 -274.9 C,H _H ,O 2-Butanol -342.6 214.9 196.9 -292.8 C,H _H ,O 2-Butanol -342.6 214.7 181.5 -283.1 C,H _H ,O 2-Butanol -334.7 214.7 181.5 -283.8 C,H _H ,O 2-Butanol		Creatine	-537.2											
C,H _m Isobulane -1542 -1342 C,H _m Hy Diethyl meroury 30.1 182.8 75.3 C,H _m N,O Piperazine -45.6 -45.6 C,H _m N,Q,I L-Asparagine, monohydrate -106.2 -53.0 C,H _m N,Q,I L-Asparagine, monohydrate -1086.6 -106.2 -53.0 C,H _m Q,D 1-Butanol -327.3 225.8 177.2 -274.9 C,H _m Q,D 1-Butanol -342.6 214.9 196.9 -292.8 C,H _m Q 2-Methyl-1-propanol -334.7 214.7 1815. -283.8 C,H _m Q 2-Methyl-2-propanol -359.2 193.3 218.6 -312.5 C,H _m Q Diethyl sulfoxide -288.0 -253.6 -243.2 <t< td=""><td></td><td>Butane</td><td></td><td></td><td></td><td></td><td>-147.3</td><td></td><td></td><td>140.9</td><td>-125.7</td><td></td><td></td><td></td></t<>		Butane					-147.3			140.9	-125.7			
CH,H ₀ N ₀ Piperazine -4.5 G CH ₀ N ₀ N ₀ Piperazine -4.5 G CH ₀ N ₀ O Trimethylurea -330.5 CH ₀ N ₀ O L-Nitrodelhylamine -106.2 -53.0 CH ₀ N ₀ O L-Saparajine, monthydrate -108.6 -106.2 -27.3 CH ₀ N ₀ O L-Saparajine, monthydrate -108.6 -227.3 22.8 lb 177.2 -274.9 CH ₀ N ₀ O L-Sabarani -334.7 21.4 m 181.5 -283.8 CH ₀ O 2-Methyl-1-propanol -334.7 21.4 m 181.5 -283.8 CH ₀ O 2-Methyl-2-propanol -359.2 193.3 216.6 -12.5 m CH ₀ O 2-Methyl-1-propanol -359.2 193.3 126.6 -282.1 CH ₀ O 2-Methyl-1-propanol -359.2 193.3 166.4 -238.1 CH ₀ O 2-Methyl-1-propanol -359.2 193.3 166.4 -238.1 CH ₀ O 2-Methyl dependent -276.8 253.8 161.9 -252.0 C		Isobutane					-154.2				-134.2			
C,H_M,N_Classifier 4.6 f. B C,H_M,N_Q, Interthylurae -330.5 C,H_M,N_Q, Interthylurae -106.2 -53.0 C,H_M,N_Q, Interthylurae -1086.6 -1086.6 C,H_M,O 2-Baparajee, monothydrate -1086.6 C,H_M,O 2-Butanol -327.3 225.8 177.2 -274.9 C,H_M,O 2-Butanol -342.6 214.9 196.9 -292.8 C,H_M,O 2-Methyl-1-propanol -334.7 214.7 181.5 -283.8 C,H_M,O 2-Methyl-2-propanol -399.2 193.3 218.6 -312.5 C,H_M,O Diethyl ether -279.5 172.4 175.6 -252.1 C,H_M,O Diethyl propyl other -286.0 262.9 165.4 -238.1 C,H_M,O 1.2-Butanediol -506.0 262.9 165.4 -238.1 C,H_M,O 1.2-Butanediol -501.0 -232.6 -248.7 C,H_M,O 1.2-Butanediol -505.3 223.4 200.1 -482.7 C,H_M,O		Diethyl mercury					30.1			182.8	75.3			
CH_MN_Q Trimethylurea -330.5 CH_MN_Q L-Asparagine, monohydrate -1086.6 CH_MN_Q L-Asparagine, monohydrate -1086.6 CH_MO 2-Butanol -327.3 225.8 177.2 -274.9 CH_MO 2-Butanol -342.6 214.9 196.9 -292.8 CH_MO 2-Methyl-1-propanol -334.7 214.7 181.5 -283.8 CH_MO 2-Methyl-2-propanol -389.2 193.3 218.6 -312.5 CH_MO Diethyl ether -279.5 172.4 176.6 -252.1 CH_MO Methyl propyl ether -2266.0 262.9 165.4 -238.1 CH_MO Inspired properties -278.8 238.8 161.9 -252.0 CH_MO 1.33 -278.8 238.8 161.9 -252.0 CH_MO 1.33 -278.8 238.8 161.9 -252.0 CH_MO 1.28 -536.6 -278.8 238.8 161.9 -252.0 CH_MO			-45.6											
C,H_M,NQ. Al-Mitrodietylamine -1086.2 —53.0 C,H_M,VQ. L-Asparagine, monohydrate -1086.6 —1081.2 225.8 177.2 -274.9 C,H_M,O 1-Bulanol -342.6 214.9 196.9 -292.8 C,H_M,O 2-Methyl-1-propanol -334.7 214.7 181.5 -283.8 C,H_M,O 2-Methyl-2-propanol -359.2 193.3 218.6 -312.5 C,H_M,O Diethyl ether -278.5 172.4 175.6 -252.1 C,H_M,O Diethyl sproyl ether -266.0 262.9 165.4 -238.1 C,H_M,O Isopropyl methyl ether -278.8 253.8 161.9 -252.0 C,H_M,O Isopropyl methyl ether -278.8 253.8 161.9 -252.0 C,H_M,O 1-28 blanediol -265.0 -285.0 -245.6 -245.0 C,H_M,O 1-28 blanediol -501.0 -433.2 -241.9 -241.9 -241.9 -241.9 -241.9 -241.9 -241.9 -241.9 <		•	-330.5											
C,H _m N,Q ₁ L-Asparagine, monohydrate -1086.6 C,H _m O 1-Butanol -327.3 225.8 177.2 -274.9 C,H _m O 2-Butanol -342.6 214.9 196.9 -292.8 C,H _m O 2-Methyl-1-propanol -334.7 214.7 181.5 -283.8 C,H _m O 2-Methyl-2-propanol -339.2 193.3 218.6 -312.5 C,H _m O Diethyl ether -279.5 172.4 175.6 -282.1 C,H _m O Diethyl ether -266.0 269.9 165.4 -238.1 C,H _m O Bethyl ether -278.8 253.8 161.9 -252.0 C,H _m O Diethyl sulfoxide -288.0 -285.8 161.9 -252.0 C,H _m O 1.2-Butanediol. (±) -523.6		<u> </u>					-106.2				-53.0			
CH _H _Q 1-Butanol :3273 22.5.8 177.2 :274.9 CH _{HQ} O 2-Butanol -342.6 214.9 196.9 -292.8 CH _{HQ} O 2-Methyl-1-propanol -334.7 214.7 181.5 -283.8 CH _{HQ} O 2-Methyl-2-propanol -359.2 193.3 216.6 -312.5 CH _{HQ} O Dethyl ether -279.5 172.4 175.6 -252.1 CH _{HQ} O Isopropyl methyl ether -266.0 262.9 165.4 -238.1 CH _{HQ} O Isopropyl methyl ether -278.8 253.8 161.9 -252.0 CH _{HQ} O Dethyl sulfoxde -268.0 -268.0 -265.1 CH _{HQ} O 1-2-Butanediol -263.6 -278.8 253.8 161.9 -252.0 CH _{HQ} O 1-3-Butanediol -501.0 2 473.2 -201.6 -433.2 CH _{HQ} O 1-3-Butanediol -505.3 223.4 200.1 -428.7 CH _{HQ} O 1-1-Butanediol -539.7 -542.5 -74.6 <td></td> <td></td> <td>-1086.6</td> <td></td>			-1086.6											
C,H ₁ ,O 2-Butanol -342.6 214.9 196.9 -228.8 C,H ₂ ,O 2-Methyl-1-propanol -334.7 214.7 181.5 -283.8 C,H ₂ ,O 2-Methyl-2-propanol -359.2 193.3 216.6 -312.5 C,H ₂ ,O Diethyl ether -279.5 172.4 175.6 -282.1 C,H ₂ ,O Methyl propyl ether -266.0 262.9 165.4 -238.1 C,H ₂ ,O Sporpoyl methyl ether -278.8 253.8 161.9 -252.0 C,H ₂ ,O Diethyl subdoide -268.0 -205.6 -205.6 C,H ₂ ,O 1,2-Butanediol -501.0 -433.2 -243.2 C,H ₂ ,O 1,3-Butanediol -505.3 23.4 200.1 -428.7 C,H ₂ ,O 2,3-Butanediol -505.3 23.4 200.1 -428.7 C,H ₂ ,O 2,4-Methyl-1-2-propanediol -539.7 -539.7 -2448.3 -2448.3 -2448.3 -2448.3 -2448.3 -2448.3 -2448.3 -2448.3 -2448.3 <							-327.3		225.8	177.2	-274.9			
C,H ₁₁ O 2-Methyl-1-propanol -334.7 214.7 181.5 -283.8 C,H ₁₀ O 2-Methyl-2-propanol -599.2 193.3 218.6 -312.5 C,H ₁₀ O Dethyl ether -279.5 172.4 175.6 -262.1 C,H ₁₀ O Methyl propyl ether -266.0 262.9 165.4 -238.1 C,H ₁₀ O Sopropyl methyl ether -278.8 253.8 161.9 -252.0 C,H ₁₀ O Diethyl sulfoxide -268.0 -265.0 -205.6 C,H ₁₀ O 12-Butanediol, (±) -523.6 -245.0 -243.2 C,H ₁₀ O 1.2-Butanediol, (±) -505.3 223.4 200.1 -483.2 C,H ₁₀ O 1.4-Butanediol -505.3 23.4 200.1 -482.7 C,H ₁₀ O 2.3-Butanediol -501.0 -533.7 -221.0 -248.7 C,H ₁₀ O 2.3-Butanediol -539.7 -221.0 -248.7 -248.3 C,H ₁₀ O 2.3-Butanediol -539.7 -25.2 -248.1 -249.3 <		2-Butanol					-342.6		214.9	196.9	-292.8		359.5	112.7
C _i H _{iij} O 2-Melthyl-2-propanol -359.2 193.3 218.6 -312.5 C _i H _{iij} O Diethyl ether -279.5 172.4 175.6 -252.1 C _i H _{iij} O Methyl propyl ether -266.0 262.9 165.4 -238.1 C _i H _{iij} O Isopropyl methyl ether -278.8 253.8 161.9 -252.0 C _i H _{iij} OS Diethyl sulfoxide -268.0 -253.6 -255.0 C _i H _{iij} OS Diethyl sulfoxide -523.6 -253.6 -253.6 -253.6 C _i H _{iij} OS 1,3-Butanediol -501.0 -433.2 -433.2 -248.7 -248.8 -248.3 -248.7 -248.7 -248.7 -248.7 -248.7 -248.3 -248.9 -248.9 -248.9 <		2-Methyl-1-propanol					-334.7		214.7	181.5				
C _i ,H _{ii} O ₀ Diethyl ether -279.5 172.4 175.6 -252.1 C _i ,H _{ii} O ₀ Methyl propyl ether -266.0 262.9 165.4 -238.1 C _i ,H _{ii} O ₀ Sporpoyl methyl ether -278.8 258.8 161.9 -252.0 C _i ,H _{iii} O ₂ 1.9 butanetiol (±) -523.6 -205.6 -205.6 C _i ,H _{iii} O ₂ 1.2 Butanetiol (±) -501.0 -433.2 -428.7 C _i ,H _{iii} O ₂ 1.4 Butanetiol (±) -505.3 223.4 200.1 -428.7 C _i ,H _{iii} O ₂ 1.4 Butanetiol (±) -505.3 223.4 200.1 -428.7 C _i ,H _{iii} O ₂ 1.4 Butanetiol (±) -505.3 223.4 200.1 -428.7 C _i ,H _{iii} O ₂ 2.4 Bethyl-1.2 propanetiol (±) -539.7 -521.0 -428.3 C _i ,H _{iii} O ₂ 2.1 Butanetiol (±) -539.7 -218.8 -228.0 C _i ,H _{iii} O ₂ Ethylene glycol (monotehyl ether -376.6 193.3 -2245.9 C _i ,H _{iii} O ₂ Ethylene glycol (monotehyl ether -376.6 1		2-Methyl-2-propanol					-359.2		193.3	218.6	-312.5		326.7	113.6
C _i H _{iij} O Methyl propyl ether -266.0 262.9 165.4 -238.1 C _i H _{iij} O Sispropyl methyl ether -278.8 253.8 161.9 -252.0 C _i H _{iij} OS Diethyl sulfoxide -268.0 -205.6 C _i H _{iij} O2 1,2-Butanediol -523.6 C _i H _{iij} O2 1,3-Butanediol -501.0 -433.2 C _i H _{iij} O2 1,4-Butanediol -505.3 223.4 200.1 -482.3 C _i H _{iij} O2 2-3-Butanediol -505.3 223.4 200.1 -482.3 C _i H _{iij} O2 2-3-Butanediol -539.7 -539.7 -756.3 213.0 -482.3 C _i H _{iij} O2 2-Methyl-1,2-propanediol -539.7 -756.6 193.3 -775.6 193.3 C _i H _{iij} O2 Ethylene glycol imethyl ether -376.6 193.3 -789.7 -789.7 -789.7 -789.7 -789.7 -789.7 -789.7 -789.7 -789.7 -789.7 -789.7 -789.7 -789.7 -789.7 -789.7 -789.7 -789.7 -789							-279.5		172.4	175.6	-252.1		342.7	119.5
C _i H ₁₀ O Isopropyl methyl ether -278.8 253.8 161.9 -252.0 C _i H ₁₀ OS Diethyl sulfoxide -268.0 -205.6 C _i H ₁₀ O2 1,2-Butanediol (±) -523.6 C _i H ₁₀ O2 1,3-Butanediol -501.0 -433.2 C _i H ₁₀ O2 1,4-Butanediol -505.3 223.4 200.1 -428.7 C _i H ₁₀ O2 2-Methyl-1,2-propanediol -541.5 213.0 -482.3 C _i H ₁₀ O2 2-Methyl-1,2-propanediol -539.7 -539.7 -756.3 224.8 210.8 -756.3		Methyl propyl ether					-266.0		262.9	165.4	-238.1			
C _i H ₁₀ OS Diethyl sulfoxide -268.0 -205.6 C _i H ₁₀ O ₂ 1.2-Butanediol, (±) -523.6 C _i H ₁₀ O ₂ 1.3-Butanediol -501.0 -428.7 C _i H ₁₀ O ₂ 1.4-Butanediol -505.3 223.4 200.1 -428.7 C _i H ₁₀ O ₂ 2.3-Butanediol -541.5 213.0 -482.3 C _i H ₁₀ O ₂ 2-Methyl-1.2-propanediol -539.7 -541.5 218.8 C _i H ₁₀ O ₂ Ethylene glycol monethyl ether 210.8 -245.9 -245.9 C _i H ₁₀ O ₂ Ethylene glycol dimethyl ether -376.6 193.3 -245.9 <td< td=""><td></td><td>Isopropyl methyl ether</td><td></td><td></td><td></td><td></td><td>-278.8</td><td></td><td>253.8</td><td>161.9</td><td>-252.0</td><td></td><td></td><td></td></td<>		Isopropyl methyl ether					-278.8		253.8	161.9	-252.0			
C _i H ₁₀ O ₂ 1,2-Butanediol, (±) -523.6 C _i H ₁₀ O ₂ 1,3-Butanediol -501.0 -433.2 C _i H ₁₀ O ₂ 1,3-Butanediol -501.5 203.3 223.4 200.1 -428.7 C _i H ₁₀ O ₂ 2.3-Butanediol -541.5 213.0 -482.3 C _i H ₁₀ O ₂ 2.4-Methyl-1,2-propanediol -539.7 C _i H ₁₀ O ₂ Ethylene glycol monotehyl ether 210.8 C _i H ₁₀ O ₂ Ethylene glycol monotehyl ether -376.6 193.3 C _i H ₁₀ O ₂ Dimethylacetal -420.6 -389.7 C _i H ₁₀ O ₂ Iert-Butyl hydroperoxide -283.6 -245.9 C _i H ₁₀ O ₂ Diethyl sulfite -600.7 -552.2 C _i H ₁₀ O ₃ Diethyl sulfite -813.2 -756.3 C _i H ₁₀ O ₃ Diethyl sulfite -813.2 -756.3 C _i H ₁₀ O ₃ Diethyl sulfite -813.2 -756.3 C _i H ₁₀ O ₃ Diethyl sulfite -813.2 -756.3 C _i H ₁₀ O ₃ Diethyl sulfite -124.7 171.2 -88.0 <td></td> <td>Diethyl sulfoxide</td> <td></td> <td></td> <td></td> <td></td> <td>-268.0</td> <td></td> <td></td> <td></td> <td>-205.6</td> <td></td> <td></td> <td></td>		Diethyl sulfoxide					-268.0				-205.6			
C _t H ₁₀ O ₂ 1,3-Butanediol -501.0 -433.2 C _t H ₁₀ O ₂ 1,4-Butanediol -505.3 223.4 200.1 -428.7 C _t H ₁₀ O ₂ 2,3-Butanediol -541.5 213.0 -482.3 C _t H ₁₀ O ₂ 2-Methyl-1,2-propanediol -539.7		1,2-Butanediol, (±)					-523.6							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1,3-Butanediol					-501.0				-433.2			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1,4-Butanediol					-505.3		223.4	200.1	-428.7			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2,3-Butanediol					-541.5			213.0	-482.3			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							-539.7							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₄ H ₁₀ O ₂	Ethylene glycol monoethyl ether								210.8				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₄ H ₁₀ O ₂	Ethylene glycol dimethyl ether					-376.6			193.3				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Dimethylacetal					-420.6				-389.7			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		tert-Butyl hydroperoxide					-293.6				-245.9			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Diethylene glycol					-628.5			244.8	-571.2			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							-600.7				-552.2			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Diethyl sulfate					-813.2				-756.3			
$ \begin{array}{c} \textbf{C}_4\textbf{H}_{10}\textbf{S} & \textbf{2}\text{-Butanethiol} & -131.0 & -96.9 \\ \textbf{C}_4\textbf{H}_{10}\textbf{S} & \textbf{2}\text{-Methyl-1-propanethiol} & -132.0 & -97.3 \\ \textbf{C}_4\textbf{H}_{10}\textbf{S} & \textbf{2}\text{-Methyl-2-propanethiol} & -140.5 & -109.6 \\ \textbf{C}_4\textbf{H}_{10}\textbf{S} & \textbf{Diethyl sulfide} & -119.4 & 269.3 & 171.4 & -83.5 \\ \textbf{C}_4\textbf{H}_{10}\textbf{S} & \textbf{Diethyl propyl sulfide} & -118.5 & 272.5 & 171.6 & -82.2 \\ \textbf{C}_4\textbf{H}_{10}\textbf{S} & \textbf{Isopropyl methyl sulfide} & -124.7 & 263.1 & 172.4 & -90.5 \\ \textbf{C}_4\textbf{H}_{10}\textbf{S} & \textbf{Isopropyl methyl sulfide} & -105.7 & -50.6 \\ \textbf{C}_4\textbf{H}_{10}\textbf{S}_2 & \textbf{Diethyl disulfide} & -120.1 & 269.3 & 171.4 & -79.4 \\ \textbf{C}_4\textbf{H}_{11}\textbf{N} & \textbf{Butylamine} & -127.6 & 179.2 & -91.9 \\ \textbf{C}_4\textbf{H}_{11}\textbf{N} & \textbf{sec-Butylamine} & -137.5 & -104.6 \\ \textbf{C}_4\textbf{H}_{11}\textbf{N} & \textbf{tert-Butylamine} & -150.6 & 192.1 & -121.0 \\ \textbf{C}_4\textbf{H}_{11}\textbf{N} & \textbf{Isobutylamine} & -132.6 & 183.2 & -98.7 \\ \textbf{C}_4\textbf{H}_{11}\textbf{N} & \textbf{Diethylamine} & -132.6 & 183.2 & -72.2 \\ \end{array}$		1-Butanethiol					-124.7			171.2	-88.0			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2-Butanethiol					-131.0				-96.9			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₄ H ₁₀ S	2-Methyl-1-propanethiol					-132.0				-97.3			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2-Methyl-2-propanethiol					-140.5				-109.6			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Diethyl sulfide					-119.4		269.3	171.4	-83.5		368.1	117.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Methyl propyl sulfide					-118.5		272.5	171.6	-82.2			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Isopropyl methyl sulfide					-124.7		263.1	172.4	-90.5			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1,4-Butanedithiol					-105.7							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Diethyl disulfide					-120.1		269.3	171.4	-79.4			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
		<u> </u>									-104.6			
										192.1				
$C_4H_{11}N$ Diethylamine -103.7 169.2 -72.2		<u> </u>												
Quinter 14,74 Difficulty/formational T203.1 -203.0	C ₄ H ₁₁ NO	N,N-Dimethylethanolamine					-253.7				-203.6			
$C_4H_{11}NO_2$ Diethanolamine -493.8 233.5 -397.1			-493.8			233.5								
$C_4H_{11}NO_3$ Tris(hydroxymethyl)methylamine -717.8														

			Cry	stal			Liq	uid			Ga	as	
Molecular formula	Name	Δ _f H° kJ/mol	Δ _f G° kJ/mol	<i>S</i> ° J/mol K	<i>C_p</i> J∕mol K	Δ _f H° kJ/mol	Δ _f G° kJ/mol	S° J/mol K	C _p J/mol K	Δ _f H° kJ/mol	∆ _f <i>G</i> ° kJ/mol	S° J/mol K	<i>C_p</i> J∕mol K
C ₄ H ₁₂ BrN	Tetramethylammonium bromide	-251.0											
C ₄ H ₁₂ CIN	Diethylamine hydrochloride	-358.6											
C ₄ H ₁₂ CIN	Tetramethylammonium chloride	-276.4											
C ₄ H ₁₂ IN	Tetramethylammonium iodide	-203.9				100.0				20.0			
C ₄ H ₁₂ N ₂	2-Methyl-1,2-propanediamine					-133.9				-90.3			
C ₄ H ₁₂ Pb C ₄ H ₁₂ Si	Tetramethyl lead Tetramethylsilane					97.9	-100.0	277.3	204.1	135.9 -239.1	-99.9	359.0	143.9
C ₄ H ₁₂ Sn	Tetramethylstannane					-204.0	-100.0	211.3	204.1	-239.1	-99.9	339.0	143.9
C ₄ H ₁₃ N ₃	Bis(2-aminoethyl)amine					-02.0			254.0	-10.0			
C ₄ N ₂	2-Butynedinitrile					500.4			204.0	529.2			
C ₄ NiO ₄	Nickel carbonyl					-633.0	-588.2	313.4	204.6	-602.9	-587.2	410.6	145.2
C ₅ FeO ₅	Iron pentacarbonyl					-774.0	-705.3	338.1	240.6				
$C_5H_2F_6O_2$	Hexafluoroacetylacetone	-2286.7											
C ₅ H ₃ NO ₅	5-Nitro-2-furancarboxylic acid	-516.8											
C ₅ H ₄ N ₄	1 <i>H</i> -Purine	169.4											
C ₅ H ₄ N ₄ O	Hypoxanthine	-110.8		145.6	134.5								
C ₅ H ₄ N ₄ O ₂	Xanthine	-379.6		161.1	151.3								
C ₅ H ₄ N ₄ O ₃	Uric acid	-618.8		173.2	166.1								
C ₅ H ₄ O ₂	Furfural					-201.6			163.2	-151.0			
C ₅ H ₄ O ₃	2-Furancarboxylic acid	-498.4								-390.0			
$C_5H_4O_3$	3-Methyl-2,5-furandione					-504.5				-447.2			
C ₅ H ₅ F ₃ O ₂	1,1,1-Trifluoro-2,4-pentanedione					-1040.2				-993.3			
C ₅ H ₅ N	Pyridine					100.2			132.7	140.4			
C ₅ H ₅ NO	1 <i>H</i> -Pyrrole-2-carboxaldehyde	-106.4											
C ₅ H ₅ N ₅	Adenine	96.9			147.0					205.7			
C ₅ H ₅ N ₅ O	Guanine	-183.9				200.5							
C ₅ H ₆	cis-3-Penten-1-yne					226.5							
C ₅ H ₆	trans-3-Penten-1-yne					228.2				1040			
C ₅ H ₆	1,3-Cyclopentadiene	460.0			150.0	105.9				134.3 -328.7			
$\frac{C_5H_6N_2O_2}{C_5H_6O_2}$	Thymine Furfuryl alcohol	-462.8			150.8	-276.2			204.0	-320.7			
C ₅ H ₆ O ₄	trans-1-Propene-1,2-dicarboxylic acid	-824.4				-210.2			204.0	-211.0			
C ₅ H ₆ S	2-Methylthiophene					44.6		218.5	149.8	83.5			
C ₅ H ₆ S	3-Methylthiophene					43.1				82.5			
C ₅ H ₇ N	trans-3-Pentenenitrile					80.9				125.7			
C ₅ H ₇ N	Cyclobutanecarbonitrile					103.0				147.4			
C ₅ H ₇ N	1-Methylpyrrole					62.4				103.1			
C ₅ H ₇ N	2-Methylpyrrole					23.3				74.0			
C ₅ H ₇ N	3-Methylpyrrole					20.5				70.2			
C ₅ H ₇ NO ₂	Ethyl cyanoacetate								220.2				
C ₅ H ₈	1,2-Pentadiene									140.7			
C ₅ H ₈	cis-1,3-Pentadiene									81.4			
C ₅ H ₈	trans-1,3-Pentadiene									76.1			
C ₅ H ₈	1,4-Pentadiene									105.7			
C ₅ H ₈	2,3-Pentadiene 3-Methyl-1,2-butadiene					101.2				133.1			
C ₅ H ₈ C ₅ H ₈	2-Methyl-1,3-butadiene					48.2		229.3	152.6	75.5			
C ₅ H ₈	Cyclopentene					46.2		201.2	122.4	34.0			
C ₅ H ₈	Spiropentane					157.5		193.7	134.5	185.2			
C ₅ H ₈	Methylenecyclobutane					93.8		133.1	104.0	121.6			
C ₅ H ₈ N ₄ O ₁₂	Pentaerythritol tetranitrate	-538.6				33.0				-387.0		614.7	294.8
C ₅ H ₈ O	Cyclopentanone	-330.0				-235.9				-192.1		014.7	234.0
C ₅ H ₈ O ₂	4-Pentenoic acid					-430.6				102.1			
C ₅ H ₈ O ₂	Allyl acetate					100.0			184.1				
C ₅ H ₈ O ₂	Ethyl acrylate					-370.6				-354.2			
C ₅ H ₈ O ₂	Methyl <i>trans</i> -2-butenoate					-382.9				-341.9			
C ₅ H ₈ O ₂	Methyl methacrylate								191.2				
C ₅ H ₈ O ₂	2,4-Pentanedione					-423.8			.51.2	-382.0			
C ₅ H ₈ O ₂	Dihydro-4-methyl-2(3 <i>H</i>)-furanone					-461.3				-406.5			
C ₅ H ₈ O ₂	Tetrahydro-2 <i>H</i> -pyran-2-one					-436.7				-379.6			
C ₅ H ₈ O ₃	Methyl acetoacetate					-623.2							
C ₅ H ₈ O ₄	Glutaric acid	-960.0											
C ₅ H ₉ CIO ₂	Propyl chloroacetate					-515.5				-467.0			
C ₅ H ₉ N	Pentanenitrile					-33.1				10.5			
C ₅ H ₉ N	2,2-Dimethylpropanenitrile					-39.8		232.0	179.4	-2.3			

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Cry	stal			Liq	Juid			G	as	
ClyMon Marty-Symmistry Sept S		Name				<i>C_p</i> J/mol K								<i>C_p</i> J/mol K
Ministry 2 grantines							33.5							
ChipMon		<u>'</u>	-306.6											
City		,	F1F 0				-262.2			307.8	200.0			
C-PAMPA C-PA											-366.2			
Cyling Cylor Cyling Cylor Cyling Cylor Cyling Cyli														
Cylig			-1003.7				-46.9		262 6	154 0	-21 1			
Colling									256.5		-31.9			
Chilling Pathonic		2-Methyl-1-butene					-61.1		254.0	157.2	-35.2			
China	C ₅ H ₁₀													
Chillage Methyloptochame														
Child 1-10									204.5	128.8	-76.4			
Cyth														
Colling														
Cyling Farse 2-Dimethylocopropage -30.7											-8.2			
Ci-														
Chillage							-30.7				197.6			
Cyl.,Hy.,Hy., Lotteraine							_21 1							
C.HM. Columnine -826.4														
Cython			-826.4				30.0				11.0			
C,H_0			020.1				-300.1		204.1	182.5	-242.5		362.9	
CH-H_O														
C_H_LO		2-Pentanone					-297.3			184.1	-258.8			
CHH_0 3-hethry-2-butanone -299.5 288.5 17.99 -262.6		3-Pentanone					-296.5		266.0	190.9	-257.9			
CH_0O Tetrahydrogyran -288.3 -223.4 -250.5 -250.0 <td< td=""><td></td><td>3-Methyl-2-butanone</td><td></td><td></td><td></td><td></td><td>-299.5</td><td></td><td>268.5</td><td>179.9</td><td>-262.6</td><td></td><td></td><td></td></td<>		3-Methyl-2-butanone					-299.5		268.5	179.9	-262.6			
C.H., D.S. S. Propy Intersectate .294 5 .250 4 .250 8 .203 .491.9 .250.8 .2	C ₅ H ₁₀ O	3,3-Dimethyloxetane					-182.2							
C,H_0,		Tetrahydropyran												
C,H_0, 2 -														
C,H_10,0 3-Methyblatanic acid -561.6 -510.0 C,H_10,0 22-Dimethylpropanoic acid -564.5 -491.3 C,H_20,0 Butyl formate 2002 C,H_20,0 Propyl acetale -518.9 199.4 -481.6 C,H_20,1 Ehyl propanoate -502.7 -463.4 -481.6 C,H_20,0 Ehyl propanoate -502.7 -463.4 -481.6 -481.6 -481.6 -481.6 -481.6 -481.6 -481.6 -481.6 -481.6 -481.6 -481.6 -481.6 -481.6 -483.4 -481.6 -483.4 -481.6 -483.4 -481.6 -483.4 -481.6 -483.4 -481.6 -483.4 -481.6 -483.4 -483.									259.8	210.3	-491.9			
C,H ₁₀ ,O ₂ 2.2-Dimethylpropragnoic acid -564.5 -481.3 -481.3 -481.3 -481.3 -481.3 -481.3 -481.3 -481.3 -481.6 -481.7 -4											510.0			
C _i H ₁₀ O _i C _i H ₂₀ O _i C _i H ₂₀ O _i C _i H ₂₀ O _i C _i H ₃ O _i C _i			EC 1 E				-561.6							
CyH ₁₀ C ₂ Propyl acetate -518.9 199.4 -481.6 -483.4 -481.6 -483.4 -483.4 -481.6 -483.4 -484.4 -483.4 -484.4			-304.3							200.2	-491.3			
C _y H _y O _y Ebnyl propanoate -58.9 199.4 -481.6 C _y H _y O _y Ebnyl propanoate -502.7 -463.4 C _y H _y O _y Ebnyl propanoate -296.5 C _y H _y O _y CEhoxymethyl)oxirane -296.5 C _y H _y O _y 4-Methyl 1-3-dioxane -416.1 -376.9 C _y H _y O _y 6-12-Cyclopentanediol -485.0 -485.0 C _y H _y O _y 6-12-Cyclopentanediol -485.0 -369.1 C _y H _y O _y Diethyl carbonate -805.5 -369.1 C _y H _y O _y Diethyl carbonate -801.5 -637.9 C _y H _y O _y Ethylene glycol monomethyl either acidate -801.5 -637.9 C _y H _y O _y Ethylene glycol monomethyl either acidate -909.2 -451.0 -637.9 C _y H _y O _y Divityl carbonate -805.5 -83.9 -83.9 -83.9 C _y H _y O _y O-Ribose -1047.2 -909.2 -463.1 -463.5 -463.1 -463.5 -463.1 -463.5 -463.1 -463.6 -463.1 -463.5														
CyH ₁₀ O ₂ Ethyl propanaele -502,7 -463,4 CyH ₁₀ O ₂ Methyl bulanoele 198.2 CyH ₁₀ O ₂ 4-Methyly-1,3-dioxane -296.5 CyH ₁₀ O ₂ 4-Methyl-1,3-dioxane -416.1 -376.9 CyH ₁₀ O ₂ 6-St-1,2-Cyclopentarediol -485.0 -485.0 CyH ₁₀ O ₂ Tetrahydrofurfuryl alcohol -490.1 -485.7 -369.1 CyH ₁₀ O ₃ Diethyl carbonate -681.5 -637.9		.,					-518.9				-481 6			
C _y H _{yy} O _z Methyl butanoate 1982 C _y H _{yy} O _z (Ethoxymethyl)oxirae -296.5 C _y H _{yy} O _z 261.2 376.9 C _y H _{yy} O _z cis-1,2-Cyclopentanediol -485.0 C _y H _{yy} O _z terrallydroturturyl alcohol -435.7 369.1 C _y H _{yy} O _z Dichly carbonate -681.5 -687.9 C _y H _{yy} O _z Ethylea glycol monomethyl other acatelate -881.5 310.0 C _y H _{yy} O _z Ethylea glycol monomethyl other acatelate -999.2 -899.2 -899.2 C _y H _{yy} O _z Dichlia fill acatelate -999.2 -899.2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100.1</td><td></td><td></td><td></td><td></td></t<>										100.1				
C _y H _{yy} O _y (Ethoxymethyl)oxirane -296.5 C _y H _{yy} O _y c/6+1/2- Oxiopantaetiol -485.0 C _y H _{yy} O _y trans-1/2- Oxiopantaetiol -490.1 C _y H _y O _y Tetrahydrofurfuryl alcohol -435.7 -369.1 C _y H _y O _y Tetrahydrofurfuryl alcohol -681.5 -637.9 C _y H _y O _y Ethylene glycol monomethyl ether acetale 310.0 C _y H _y O _y Ethyl leatale 999.2 C _y H _y O _y O-Ribose -1047.2 C _y H _y O _y O-Pilose -1047.2 C _y H _y O _y O-Pilose -1057.8 C _y H _y O _y O-Pilose -1057.8 C _y H _y O _y O-Pilosexare -1057.9 C _y H _y O _y O-Pilosexare -1063 218.2 163.3 -63.5 53.1 323.0 109.7 C _y H _y O _y O-Prabinopyranose -1057.9 -106.3 218.2 163.3 -63.5 53.1 323.0 109.7 C _y H _y O _y O-Prabinopyranose -106.3 218.2 165.2 -48.1										198.2				
C ₉ H ₁₀ O ₂ 4-Methyl-1,3-dioxane -416.1 -376.9 C ₉ H ₁₀ O ₂ tofis-1,2-Cyclopentanediol -485.0 C ₉ H ₁₀ O ₂ terrahyd-ordurbyl alcohol -435.7 -369.1 C ₉ H ₁₀ O ₃ Eithylene glycol monomethyl ether acetate -881.5 -837.9 C ₉ H ₁₀ O ₃ Ethylene glycol monomethyl ether acetate -881.5 -837.9 C ₉ H ₁₀ O ₃ Ethylene glycol monomethyl ether acetate -881.5 -837.9 C ₉ H ₁₀ O ₃ Ethylene glycol monomethyl ether acetate -881.5 -837.9 C ₉ H ₁₀ O ₃ Ethylene glycol monomethyl ether acetate -881.5 -837.9 C ₉ H ₁₀ O ₃ Ethylene glycol monomethyl ether acetate -881.5 -837.9 C ₉ H ₁₀ O ₃ Ethyl lacthe -909.2 -909.		(Ethoxymethyl)oxirane					-296.5							
C _y H ₁₀ O ₂ trans-1.2-Cyclopentanediol -490.1 C _y H ₁₀ O ₃ Tetralynofurfurfury lachonate -681.5 -369.1 C _y H ₁₀ O ₃ Elthylace glycol monmethyl ether acetale 310.0 C _y H ₁₀ O ₃ Elthylacetale glycol monmethyl ether acetale 310.0 C _y H ₁₀ O ₃ Elthylacetale glycol monmethyl ether acetale 254.0 C _y H ₁₀ O ₃ Glycerol 1-acetale, (DL) -999.2 C _y H ₁₀ O ₃ D-Ritiose -1047.2 C _y H ₁₀ O ₃ D-Rylose -1047.2 C _y H ₁₀ O ₃ D-Xylose -1057.8 C _y H ₁₀ O ₃ O-X-Parlatinopyranose -106.3 218.2 163.3 -63.5 53.1 320.0 109.7 C _y H ₁₀ O ₃ O-Cyclopentanethiol -89.5 256.9 165.2 -48.1 109.7 44.1 109.7 44.1 109.7 44.1 109.7 44.1 109.7 44.1 109.7 44.1 109.7 44.1 109.7 44.1 109.7 44.1 109.7 44.1 109.7 44.1 109.7 44.1		4-Methyl-1,3-dioxane					-416.1				-376.9			
C _y H ₁₀ O ₂ Tetrahydrofurfuryl alcohol Pass. 7		cis-1,2-Cyclopentanediol	-485.0											
C ₃ H ₁₀ O ₃ Diethyl carbonate -681.5 -637.9 C ₃ H ₁₀ O ₃ Ethylene glycol monomethyl ether acetate 310.0 C ₃ H ₁₀ O ₃ Ethyl lactate 254.0 C ₃ H ₁₀ O ₃ Glycerol 1-acetate, (DL) -909.2 C ₃ H ₁₀ O ₃ D-Nylose -1047.2 C ₃ H ₁₀ O ₃ D-Nylose -1057.8 C ₃ H ₁₀ O ₃ Thiacyclohexane -106.3 218.2 163.3 -63.5 53.1 32.0 109.7 C ₃ H ₁₀ O ₃ Cyclopentanethiol -89.5 256.9 165.2 -48.1 -47.1 -47.1 -47.1	C ₅ H ₁₀ O ₂		-490.1											
CyHno03 Ethylene glycol monomethyl ether acetate 310.0 CyHno03 Ethyl lactate 254.0 CyHno04 Glycerol 1-acetate, (DL) -909.2 CyHno05 D-Ribose -1047.2 CyHno05 α -D-Arabinopyranose -1057.8 CyHno05 α -D-Arabinopyranose -1057.9 CyHno05 Oyclopentanethiol -89.5 256.9 165.2 -48.1 CyHny16 1-Bromopentane -170.2 -128.9 -174.9 -174.9 CyHny16 1-Chloro-3-methylbutane -213.2 -174.9 -174.9 -174.9 CyHny16 2-Chloro-2-methylbutane -226.6 -177.9 -202.2 CyHny10 2-Chloro-3-methylbutane -285.1 241.0 181.2 -54.9 CyHny10 2-Chloro-3-methylbutane -286.6 -179.7 -202.2 CyHny10 2-Chloro-3-methylbutane -89.1 241.0 181.2 -54.9 CyHny10 2-Chloro-3-methylbutane -86.4 210.0 179.9 -47.1 CyHny10<														
acetate $C_{i}H_{10}O_{3}$ Ethyl lactate 254.0 $C_{i}H_{10}O_{4}$ Glycerol 1-acetate, (DL) -909.2 $C_{i}H_{10}O_{5}$ D -Ribose -1047.2 $C_{i}H_{10}O_{5}$ D -Xylose -1057.8 $C_{i}H_{10}O_{5}$ C -D-Arabinopyranose -1057.9 $C_{i}H_{10}O_{5}$ Thiacyclohexane -106.3 218.2 163.3 -63.5 53.1 323.0 109.7 $C_{i}H_{10}O_{5}$ Cyclopentanethiol -89.5 256.9 165.2 -48.1 <t< td=""><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td><td></td><td></td><td>-681.5</td><td></td><td></td><td></td><td>-637.9</td><td></td><td></td><td></td></t<>		· · · · · · · · · · · · · · · · · · ·					-681.5				-637.9			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C_5H_{10}O_3$									310.0				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CrH.oOo									254 0				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							-909.2			20110				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-1047.2											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		D-Xylose	-1057.8											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		α-D-Arabinopyranose	-1057.9											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Thiacyclohexane										53.1	323.0	109.7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									256.9	165.2				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		·												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-							0.44.0	101.0				
		· · ·												
		•	-270 5				-00.4		۷.10.0	119.9				
$ \frac{C_5H_1NO_2}{C_5H_1NO_2} \frac{1-\text{Nitropentane}}{DL\text{-Valine}} \frac{-215.4}{628.9} \frac{-164.4}{390.9} \frac{390.9}{137.1} $														
C ₅ H ₁₁ NO ₂ <i>DL</i> -Valine -628.9			333.1				-215.4						390.9	137.1
			-628.9				=::::							
	C ₅ H ₁₁ NO ₂										-455.1			

			Cry	stal			Lic	quid			G	as	
Molecular	Nama	$\Delta_{f} H^{o}$	$\Delta_{f} oldsymbol{G}^{o}$	S°	C _p	$\Delta_{f} H^{o}$	$\Delta_{f} oldsymbol{G}^{o}$	S°	C _p	Δ _f H°	$\Delta_{f} oldsymbol{G}^{o}$	S°	C _p
formula	Name	kJ/mol	kJ/mol	J/mol K	J/mol K	kJ/mol	kJ/mol	J/mol K	J/mol K	kJ/mol	kJ/mol	J/mol K	J/mol K
C ₅ H ₁₁ NO ₂ C ₅ H ₁₁ NO ₂ S	5-Aminopentanoic acid L-Methionine	-604.1 -577.5								-460.0 -413.5			
C ₅ H ₁₁ NO ₄	2-Ethyl-2-nitro-1,3-propanediol	-606.4								410.0			
C ₅ H ₁₂	Pentane					-173.5			167.2	-146.9			
C ₅ H ₁₂	Isopentane					-178.4		260.4	164.8	-153.6			
C ₅ H ₁₂	Neopentane					-190.2				-168.0			
$C_5H_{12}N_2O$	Butylurea	-419.5											
C ₅ H ₁₂ N ₂ O	tert-Butylurea	-417.4											
C ₅ H ₁₂ N ₂ O	N,N-Diethylurea	-372.2				-262.2							
C ₅ H ₁₂ N ₂ O C ₅ H ₁₂ N ₂ S	Tetramethylurea Tetramethylthiourea	-38.1				-202.2				44.9			
C ₅ H ₁₂ O	1-Pentanol	-30.1				-351.6			208.1	-294.6			
C ₅ H ₁₂ O	2-Pentanol					-365.2			200.1	-311.0			
C ₅ H ₁₂ O	3-Pentanol					-368.9			239.7	-314.9			
C ₅ H ₁₂ O	2-Methyl-1-butanol, (±)					-356.6				-301.4			
C ₅ H ₁₂ O	3-Methyl-1-butanol					-356.4				-300.7			
$C_5H_{12}O$	2-Methyl-2-butanol					-379.5			247.1	-329.3			
C ₅ H ₁₂ O	3-Methyl-2-butanol, (±)					-366.6				-313.5			
C ₅ H ₁₂ O	2,2-Dimethyl-1-propanol					-399.4		005.0	100 7	050 4			
C ₅ H ₁₂ O C ₅ H ₁₂ O	Butyl methyl ether Methyl <i>tert</i> -butyl ether					-290.6 -313.6		295.3 265.3	192.7 187.5	-258.1 -283.7			
C ₅ H ₁₂ O	Ethyl propyl ether					-313.6		295.0	197.2	-283.7			
C ₅ H ₁₂ O ₂	1.5-Pentanediol					-528.8		230.0	131.2	-450.8			
C ₅ H ₁₂ O ₂	2,2-Dimethyl-1,3-propanediol	-551.2				020.0				100.0			
C ₅ H ₁₂ O ₂	Diethoxymethane					-450.5				-414.7			
C ₅ H ₁₂ O ₂	1,1-Dimethoxypropane					-443.6							
C ₅ H ₁₂ O ₂	2,2-Dimethoxypropane					-459.4				-429.9			
$C_5H_{12}O_3$	Diethylene glycol monomethyl ether								271.1				
C ₅ H ₁₂ O ₃	2-(Hydroxymethyl)-2-methyl-1,3- propanediol	-744.6											
C ₅ H ₁₂ O ₄	Pentaerythritol	-920.6								-776.7			
C ₅ H ₁₂ O ₅	Xylitol	-1118.5				151.0				110.0			
C ₅ H ₁₂ S C ₅ H ₁₂ S	1-Pentanethiol 2-Methyl-1-butanethiol, (+)					-151.3 -154.4				-110.0 -114.9			
C ₅ H ₁₂ S	3-Methyl-1-butanethiol					-154.4				-114.9			
C ₅ H ₁₂ S	2-Methyl-2-butanethiol					-162.8		290.1	198.1	-127.1			
C ₅ H ₁₂ S	3-Methyl-2-butanethiol					-158.8				-121.3			
C ₅ H ₁₂ S	2,2-Dimethyl-1-propanethiol					-165.4				-129.0			
C ₅ H ₁₂ S	Butyl methyl sulfide					-142.9		307.5	200.9	-102.4			
C ₅ H ₁₂ S	tert-Butyl methyl sulfide					-157.1		276.1	199.9	-121.3			
C ₅ H ₁₂ S	Ethyl propyl sulfide					-144.8		309.5	198.4	-104.8			
C ₅ H ₁₂ S	Ethyl isopropyl sulfide					-156.1			040.0	-118.3			
C ₅ H ₁₃ N C ₅ H ₁₄ N ₂	Pentylamine N,N,N',N'-					-51.1			218.0	-18.2			
U ₅ Π ₁₄ IN ₂	Tetramethylmethanediamine					-31.1				-10.2			
C ₆ CIF ₅	Chloropentafluorobenzene	-858.4								-809.3			
C ₆ CI ₆	Hexachlorobenzene	-127.6		260.2	201.2					-35.5			
C_6F_6	Hexafluorobenzene					-991.3		280.8	221.6	-955.4			
C ₆ F ₁₀	Perfluorocyclohexene					-1963.5				-1932.7			
C ₆ F ₁₂	Perfluorocyclohexane					-2406.3				-2370.4			
C ₆ HCI ₅ O	Pentachlorophenol	-292.5		253.2	202.0	0.44.0				000 5			
C ₆ HF ₅ C ₆ HF ₅ O	Pentafluorobenzene Pentafluorophenol	-852.7 -1024.1				-841.8 -1007.7				-806.5			
C ₆ HF ₅ U C ₆ H ₂ F ₄	1,2,4,5-Tetrafluorobenzene	-1024.1				-683.8							
C ₆ H ₃ Cl ₃	1,2,3-Trichlorobenzene	-70.8				000.0				3.8			
C ₆ H ₃ Cl ₃	1,2,4-Trichlorobenzene	, 0.0				-63.1				-8.1			
C ₆ H ₃ Cl ₃	1,3,5-Trichlorobenzene	-78.4								-13.4			
$C_6H_3N_3O_6$	1,3,5-Trinitrobenzene	-37.0			214.6								
C ₆ H ₃ N ₃ O ₇	2,4,6-Trinitrophenol	-217.9			239.7								
$C_6H_3N_3O_8$	2,4,6-Trinitro-1,3-benzenediol	-467.5											
C ₆ H ₄ CINO ₂	1-Chloro-4-nitrobenzene	-48.7			250.2								
C ₆ H ₄ Cl ₂	o-Dichlorobenzene					-17.5			162.4	30.2			
C ₆ H ₄ Cl ₂	m-Dichlorobenzene	-42.3		175.4	1170	-20.7				25.7 22.5			
C ₆ H ₄ CI ₂ C ₆ H ₄ CI ₂ O	<i>p</i> -Dichlorobenzene 2,4-Dichlorophenol	-42.3		1/5.4	147.8					-156.3			
C ₆ H ₄ G ₁₂ U	o-Difluorobenzene	-220.4				-330.0		222.6	159.0	-130.3			
C ₆ H ₄ F ₂	<i>m</i> -Difluorobenzene					-343.9		223.8	159.1	-309.2			
0 412						- 10.0			.50.1				

			Cry	stal			Liq	uid			G	as	
Molecular formula	Name	Δ _f H° kJ/mol	$\Delta_{\mathrm{f}} G^{\circ}$ kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	∆₁ G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K
C ₆ H ₄ F ₂	p-Difluorobenzene	,	,	-,	•,	-342.3		•,	157.5	-306.7	,	•,	-,
C ₆ H ₄ N ₂ O ₄	1,2-Dinitrobenzene	-2.0			200.4								
$C_6H_4N_2O_4$	1,3-Dinitrobenzene	-27.0			197.5	-36.0							
$C_6H_4N_2O_4$	1,4-Dinitrobenzene	-38.0			200.0								
$C_6H_4N_2O_5$	2,4-Dinitrophenol	-232.7								-128.1			
C ₆ H ₄ O ₂	<i>p</i> -Benzoquinone	-185.7			129.0					-122.9			
C ₆ H ₅ Br	Bromobenzene					60.9		219.2	154.3				
C ₆ H ₅ CI	Chlorobenzene					11.1			150.1	52.0			
C ₆ H ₅ CIO	2-Chlorophenol	000.4				400.0			188.7				
C ₆ H ₅ CIO C ₆ H ₅ CIO	3-Chlorophenol 4-Chlorophenol	-206.4 -197.7				-189.3 -181.3							
C ₆ H ₅ CI ₂ N	3,4-Dichloroaniline	-197.7				-101.3							
C ₆ H ₅ F	Fluorobenzene	-09.1				-150.6		205.9	146.4	-115.9			
C ₆ H ₅ I	lodobenzene					117.2		205.4	158.7	164.9			
C ₆ H ₅ NO ₂	Nitrobenzene					12.5		200.4	185.8	68.5		348.8	120.4
C ₆ H ₅ NO ₂	3-Pyridinecarboxylic acid	-344.9				12.0			100.0	-221.5		0.010.0	120.4
C ₆ H ₅ NO ₃	2-Nitrophenol	-202.4											
C ₆ H ₅ N ₃	1 <i>H</i> -Benzotriazole	236.5								335.5			
C ₆ H ₅ N ₃ O ₄	2,3-Dinitroaniline	-11.7											
C ₆ H ₅ N ₃ O ₄	2,4-Dinitroaniline	-67.8											
C ₆ H ₅ N ₃ O ₄	2,5-Dinitroaniline	-44.3											
C ₆ H ₅ N ₃ O ₄	2,6-Dinitroaniline	-50.6											
C ₆ H ₅ N ₃ O ₄	3,5-Dinitroaniline	-38.9											
C ₆ H ₆	1,5-Hexadiyne					384.2							
C ₆ H ₆	Benzene					49.1	124.5	173.4	136.0	82.9	129.7	269.2	82.4
C ₆ H ₆ CIN	2-Chloroaniline					-4.6							
C ₆ H ₆ CIN	3-Chloroaniline					-20.3			198.7				
C ₆ H ₆ CIN	4-Chloroaniline	-33.3			147.3								
$C_6H_6N_2O_2$	2-Nitroaniline	-26.1			166.0	-9.4				63.8			
C ₆ H ₆ N ₂ O ₂	3-Nitroaniline	-38.3			158.8	-14.4				58.4			
C ₆ H ₆ N ₂ O ₂	4-Nitroaniline	-42.0		1110	167.0	-20.7				58.8			
C ₆ H ₆ O	Phenol	-165.1		144.0	127.4	40.0				-96.4			
C ₆ H ₆ O	2-Vinylfuran	-364.5			100.0	-10.3				27.8 -265.3			
$C_6H_6O_2$ $C_6H_6O_2$	p-Hydroquinone Pyrocatechol	-354.1			136.0					-267.5			
$\frac{C_6 H_6 O_2}{C_6 H_6 O_2}$	Resorcinol	-368.0								-207.5			
C ₆ H ₆ O ₃	1,2,3-Benzenetriol	-551.1								-434.2			
C ₆ H ₆ O ₃	1,2,4-Benzenetriol	-563.8								-444.0			
C ₆ H ₆ O ₃	1,3,5-Benzenetriol	-584.6								-452.9			
C ₆ H ₆ O ₃	3,4-Dimethyl-2,5-furandione	-581.4											
C ₆ H ₆ O ₆	cis-1-Propene-1,2,3-tricarboxylic	-1224.4											
C ₆ H ₆ O ₆	acid trans-1-Propene-1,2,3-tricarboxylic	-1232.7											
	acid												
C ₆ H ₆ S	Benzenethiol					63.7		222.8	173.2	111.3			
C ₆ H ₇ N	Aniline					31.6			191.9	87.5	-7.0	317.9	107.9
C ₆ H ₇ N	2-Methylpyridine					56.7			158.6	99.2			
C ₆ H ₇ N	3-Methylpyridine					61.9		216.3	158.7	106.4			
C ₆ H ₇ N	4-Methylpyridine					59.2		209.1	159.0	103.8			
C ₆ H ₇ N	1-Cyclopentenecarbonitrile					111.5				156.5			
C ₆ H ₈ N ₂	Adiponitrile					85.1			128.7	149.5			
C ₆ H ₈ N ₂	1,2-Benzenediamine	-0.3		4545	450.0								
C ₆ H ₈ N ₂	1,3-Benzenediamine	-7.8		154.5	159.6								
C ₆ H ₈ N ₂	1,4-Benzenediamine Phenylhydrazine	3.0				141.0			217.0	202.9			
C ₆ H ₈ N ₂ C ₆ H ₈ N ₂ S	Pnenyinydrazine Bis(2-cyanoethyl) sulfide					96.3			217.0	202.9			
C ₆ H ₈ N ₂ S	Dimethyl maleate					90.3			263.2				
C ₆ H ₈ O ₆	L-Ascorbic acid	-1164.6							203.2				
C ₆ H ₈ O ₇	Citric acid	-1543.8											
C ₆ H ₉ Cl ₃ O ₂	Butyl trichloroacetate	-1040.0				-545.8				-492.3			
C ₆ H ₉ Cl ₃ O ₂	Isobutyl trichloroacetate					-553.4				-500.2			
C ₆ H ₉ N	Cyclopentanecarbonitrile					0.7				44.1			
C ₆ H ₉ N	2,4-Dimethylpyrrole	-422.3				0.1				11.1			
C ₆ H ₉ N	2,5-Dimethylpyrrole	.22.0				-16.7				39.8			
C ₆ H ₉ NO ₃	Triacetamide					-610.5				-550.1			
C ₆ H ₉ NO ₆	Nitrilotriacetic acid	-1311.9											
C ₆ H ₉ N ₃ O ₂	L-Histidine	-466.7											

			Cry	stal			Lic	quid			G	ias	
Molecular formula	Name	Δ _f H° kJ/mol	Δ _f G° kJ/mol	<i>S</i> ° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	$\Delta_{\mathrm{f}} G^{\circ}$ kJ/mol	<i>S</i> ° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	Δ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K
C ₆ H ₁₀	1,5-Hexadiene					54.1				84.2			
C ₆ H ₁₀	3,3-Dimethyl-1-butyne					78.4							
C ₆ H ₁₀	Cyclohexene					-38.5		214.6	148.3	-5.0			
C ₆ H ₁₀	1-Methylcyclopentene					-36.4				-3.8			
C ₆ H ₁₀	3-Methylcyclopentene					-23.7				7.4			
C ₆ H ₁₀ C ₆ H ₁₀ Cl ₂ O ₂	4-Methylcyclopentene Butyl dichloroacetate					-17.6 -550.1				14.6 -497.8			
C ₆ H ₁₀ O	Cyclohexanone					-271.2			182.2	-226.1			
C ₆ H ₁₀ O	2-Methylcyclopentanone					-265.2			102.2	220.1			
C ₆ H ₁₀ O	Mesityl oxide					200.2			212.5				
C ₆ H ₁₀ O ₂	Ethyl trans-2-butenoate					-420.0				-375.6			
C ₆ H ₁₀ O ₂	Methyl cyclobutanecarboxylate					-395.0				-350.2			
C ₆ H ₁₀ O ₃	Ethyl acetoacetate								248.0				
C ₆ H ₁₀ O ₃	Propanoic anhydride					-679.1				-626.5			
C ₆ H ₁₀ O ₄	Adipic acid	-994.3											
C ₆ H ₁₀ O ₄	Diethyl oxalate					-805.5				-742.0			
$C_6H_{10}O_4$	Ethylene glycol diacetate								310.0				
C ₆ H ₁₁ CI	Chlorocyclohexane					-207.2				-163.7			
C ₆ H ₁₁ CIO ₂	Ethyl 4-chlorobutanoate					-566.5				-513.8			
C ₆ H ₁₁ CIO ₂	Propyl 3-chloropropanoate					-537.6				-485.7			
C ₆ H ₁₁ CIO ₂	Butyl chloroacetate	000.4			450.0	-538.4				-487.4			
C ₆ H ₁₁ NO	Caprolactam	-329.4			156.8	000.0				-239.6			
C ₆ H ₁₁ NO	1-Methyl-2-piperidinone 1-Hexene					-293.0 -74.2		295.2	183.3	-43.5			
C ₆ H ₁₂	cis-2-Hexene					-83.9		290.2	103.3	-43.5			
C ₆ H ₁₂	trans-2-Hexene					-85.5				-53.9			
C ₆ H ₁₂	cis-3-Hexene					-78.9				-47.6			
C ₆ H ₁₂	trans-3-Hexene					-86.1				-54.4			
C ₆ H ₁₂	2-Methyl-1-pentene					-90.0				-59.4			
C ₆ H ₁₂	3-Methyl-1-pentene					-78.2				-49.5			
C ₆ H ₁₂	4-Methyl-1-pentene					-80.0				-51.3			
C ₆ H ₁₂	2-Methyl-2-pentene					-98.5				-66.9			
C ₆ H ₁₂	3-Methyl- <i>cis</i> -2-pentene					-94.5				-62.3			
C ₆ H ₁₂	3-Methyl- <i>trans</i> -2-pentene					-94.6				-63.1			
C ₆ H ₁₂	4-Methyl- <i>cis</i> -2-pentene					-87.0				-57.5			
C ₆ H ₁₂	4-Methyl- <i>trans</i> -2-pentene					-91.6				-61.5			
C ₆ H ₁₂	2-Ethyl-1-butene					-87.1				-56.0			
C ₆ H ₁₂	2,3-Dimethyl-1-butene					-93.2				-62.4			
C ₆ H ₁₂ C ₆ H ₁₂	3,3-Dimethyl-1-butene 2,3-Dimethyl-2-butene					-87.5 -101.4		270.2	174.7	-60.3 -68.1			
C ₆ H ₁₂	Cyclohexane					-156.4		210.2	154.9	-123.4			
C ₆ H ₁₂	Methylcyclopentane					-137.9			134.3	-106.2			
C ₆ H ₁₂	Ethylcyclobutane					-59.0				-27.5			
C ₆ H ₁₂	1,1,2-Trimethylcyclopropane					-96.2				27.0			
C ₆ H ₁₂ N ₂ O ₄ S ₂	L-Cystine	-1032.7											
C ₆ H ₁₂ N ₂ S ₄	Thiram	40.2			301.7								
C ₆ H ₁₂ O	Butyl vinyl ether					-218.8			232.0	-182.6			
C ₆ H ₁₂ O	Hexanal							280.3	210.4				
C ₆ H ₁₂ O	2-Hexanone					-322.0			213.3	-278.9			
C ₆ H ₁₂ O	3-Hexanone	· · ·				-320.2		305.3	216.9	-277.6			
C ₆ H ₁₂ O	4-Methyl-2-pentanone								213.3				
C ₆ H ₁₂ O	2-Methyl-3-pentanone					-325.9				-286.0			
C ₆ H ₁₂ O	3,3-Dimethyl-2-butanone					-328.6			000.0	-290.6			
C ₆ H ₁₂ O	Cyclohexanol					-348.2			208.2	-286.2			
C ₆ H ₁₂ O C ₆ H ₁₂ O ₂	cis-2-Methylcyclopentanol Hexanoic acid					-345.5 -583.8				-511.9			
$\frac{C_6H_{12}O_2}{C_6H_{12}O_2}$	Butyl acetate					-529.2			227.8	-485.3			
C ₆ H ₁₂ O ₂	tert-Butyl acetate					-554.5			231.0	-405.5			
C ₆ H ₁₂ O ₂	Isobutyl acetate					007.0			233.8	310.3			
C ₆ H ₁₂ O ₂	Ethyl butanoate								228.0				
C ₆ H ₁₂ O ₂	Methyl pentanoate					-514.2			229.3	-471.1			
C ₆ H ₁₂ O ₂	Methyl 2,2-dimethylpropanoate					-530.0			257.9	-491.2			
C ₆ H ₁₂ O ₂	Diacetone alcohol								221.3				
C ₆ H ₁₂ O ₃	Ethylene glycol monoethyl ether								376.0				
	acetate												
C ₆ H ₁₂ O ₃	Paraldehyde					-673.1				-631.7			

			Cry	stal			Lic	Juid			G	as	
Molecular formula	Name	Δ _f H° kJ/mol	∆ _f <i>G</i> ° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	$\Delta_{\mathrm{f}} G^{\circ}$ kJ/mol	S° J/mol K	<i>G_p</i> J/mol K	Δ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K
C ₆ H ₁₂ O ₆	β- <i>D</i> -Fructose	-1265.6	1.0/11101	5 / 5 1 K	5 /11101 IX	110,11101	KO/IIIOI	5 / 5 1 11	O, IIIO IX	1.0711101	KO, IIIO	5/IIIOI IX	
C ₆ H ₁₂ O ₆	D-Galactose	-1286.3											-
C ₆ H ₁₂ O ₆	α-D-Glucose	-1273.3											
C ₆ H ₁₂ O ₆	D-Mannose	-1263.0											
C ₆ H ₁₂ O ₆	L-Sorbose	-1271.5											-
C ₆ H ₁₂ S	Thiepane									-65.8	79.4	363.5	131.3
C ₆ H ₁₂ S	Cyclohexanethiol					-140.7		255.6	192.6	-96.2			-
C ₆ H ₁₂ S	Cyclopentyl methyl sulfide					-109.8				-64.7			
C ₆ H ₁₃ Br	1-Bromohexane					-194.2		453.0	204.0	-148.3			
C ₆ H ₁₃ CI	2-Chlorohexane					-246.1				-204.3			
C ₆ H ₁₃ N	Cyclohexylamine					-147.6				-104.0			
C ₆ H ₁₃ N	2-Methylpiperidine, (±)					-124.9				-84.4			
C ₆ H ₁₃ NO	Hexanamide	-423.0								-324.2			
C ₆ H ₁₃ NO	N-Butylacetamide					-380.9				-305.9			
C ₆ H ₁₃ NO ₂	<i>DL</i> -Leucine	-640.6											
C ₆ H ₁₃ NO ₂	D-Leucine	-637.3											
C ₆ H ₁₃ NO ₂	L-Leucine	-637.4			200.1					-486.8			
C ₆ H ₁₃ NO ₂	DL-Isoleucine	-635.3											
C ₆ H ₁₃ NO ₂	L-Isoleucine	-637.8											
C ₆ H ₁₃ NO ₂	L-Norleucine	-639.1											
C ₆ H ₁₃ NO ₂	6-Aminohexanoic acid	-637.3											
C ₆ H ₁₄	Hexane					-198.7			195.6	-166.9			
C ₆ H ₁₄	2-Methylpentane					-204.6		290.6	193.7	-174.6			
C ₆ H ₁₄	3-Methylpentane					-202.4		292.5	190.7	-171.9			
C ₆ H ₁₄	2,2-Dimethylbutane					-213.8		272.5	191.9	-185.9			
C ₆ H ₁₄	2,3-Dimethylbutane					-207.4		287.8	189.7	-178.1			
C ₆ H ₁₄ N ₂	Azopropane					11.5				51.3			
C ₆ H ₁₄ N ₂ O ₂	DL-Lysine	-678.7											
C ₆ H ₁₄ N ₄ O ₂	<i>D</i> -Arginine	-623.5		250.6	232.0								
C ₆ H ₁₄ O	1-Hexanol					-377.5		287.4	240.4	-315.9			
C ₆ H ₁₄ O	2-Hexanol					-392.0				-333.5			
C ₆ H ₁₄ O	3-Hexanol					-392.4			286.2				
C ₆ H ₁₄ O	2-Methyl-1-pentanol								248.0				
C ₆ H ₁₄ O	3-Methyl-2-pentanol								275.9				
C ₆ H ₁₄ O	4-Methyl-2-pentanol					-394.7			273.0				
C ₆ H ₁₄ O	2-Methyl-3-pentanol					-396.4							
C ₆ H ₁₄ O	3-Methyl-3-pentanol								293.4				
C ₆ H ₁₄ O	Dipropyl ether					-328.8		323.9	221.6	-293.0			
C ₆ H ₁₄ O	Diisopropyl ether					-351.5			216.8	-319.2			
C ₆ H ₁₄ O	Butyl ethyl ether								159.0				
C ₆ H ₁₄ O	tert-Butyl ethyl ether									-313.9			
C ₆ H ₁₄ OS	Dipropyl sulfoxide					-329.4				-254.9			
C ₆ H ₁₄ O ₂	1,2-Hexanediol					-577.1				-490.1			
C ₆ H ₁₄ O ₂	1,6-Hexanediol	-569.9				-548.6				-461.2			
C ₆ H ₁₄ O ₂	2-Methyl-2,4-pentanediol								336.0				
C ₆ H ₁₄ O ₂	Ethylene glycol monobutyl ether								281.0				
C ₆ H ₁₄ O ₂	1,1-Diethoxyethane					-491.4				-453.5			
C ₆ H ₁₄ O ₂	Ethylene glycol diethyl ether					-451.4			259.4	-408.1			
C ₆ H ₁₄ O ₃	Diethylene glycol monoethyl ether								301.0				
C ₆ H ₁₄ O ₃	Diethylene glycol dimethyl ether								274.1				
C ₆ H ₁₄ O ₃	Trimethylolpropane	-750.9											
C ₆ H ₁₄ O ₄	Triethylene glycol					-804.3				-725.0			
C ₆ H ₁₄ O ₄ S	Dipropyl sulfate					-859.0				-792.0			
C ₆ H ₁₄ O ₆	Galactitol					-1317.0							
C ₆ H ₁₄ O ₆	D-Mannitol					-1314.5							
C ₆ H ₁₄ S	1-Hexanethiol					-175.7				-129.9			
C ₆ H ₁₄ S	2-Methyl-2-pentanethiol					-188.3				-148.3			
C ₆ H ₁₄ S	2,3-Dimethyl-2-butanethiol					-187.1				-147.9			
C ₆ H ₁₄ S	Diisopropyl sulfide					-181.6		313.0	232.0	-142.0			
C ₆ H ₁₄ S	Butyl ethyl sulfide					-172.3		0.0.0		-127.8			
C ₆ H ₁₄ S	Methyl pentyl sulfide					-167.1				-121.8			
C ₆ H ₁₄ S ₂	Dipropyl disulfide					-171.5				-118.3			
C ₆ H ₁₅ B	Triethylborane					-194.6	9.4	336.7	241.2	-157.7	16.1	437.8	
C ₆ H ₁₅ N	Dipropylamine					-156.1	0.1	000.1	211.2	-116.0	10.1	101.0	
C ₆ H ₁₅ N	Diisopropylamine					-178.5				-143.8			
C ₆ H ₁₅ N	Triethylamine					-127.7			219.9	-92.7			
-010.4						121.1			210.0	UL.1			

			Cry	stal			Liq	uid			G	as	
Molecular formula	Name	Δ _t H° kJ/mol	∆₁ G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	C _p J/mol K	Δ _t H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J∕mol K
C ₆ H ₁₅ NO	2-Diethylaminoethanol					-305.9	<u> </u>			<u> </u>	<u> </u>		
C ₆ H ₁₅ NO ₃	Triethanolamine	-664.2			389.0					-558.3			2
C ₆ H ₁₆ N ₂	1,6-Hexanediamine	-205.0											
C ₆ H ₁₈ N ₃ OP	Hexamethylphosphoric triamide								321.0				
C ₆ H ₁₈ OSi ₂	Hexamethyldisiloxane					-815.0	-541.5	433.8	311.4	-777.7	-534.5	535.0	238.5
C_6MoO_6	Molybdenum hexacarbonyl	-982.8	-877.7	325.9	242.3					-912.1	-856.0	490.0	205.0
C_6N_4	Tetracyanoethene	623.8								705.0			
C ₇ F ₈	Perfluorotoluene					-1311.1		355.5	262.3				
C ₇ F ₁₄	Perfluoromethylcyclohexane					-2931.1		501.0	353.1	-2897.2			
C ₇ F ₁₆	Perfluoroheptane					-3420.0		561.8	419.0	-3383.6			
C ₇ H ₃ F ₅	2,3,4,5,6-Pentafluorotoluene					-883.8		306.4	225.8	-842.7			
C ₇ H ₄ Cl ₂ O	3-Chlorobenzoyl chloride	400.0				-189.7							
C ₇ H ₄ N ₂ O ₆	3,5-Dinitrobenzoic acid	-409.8				150.0				100.0			
C ₇ H ₅ CIO	Benzoyl chloride 2-Chlorobenzoic acid	404 E				-158.0				-103.2 -325.0			
C ₇ H ₅ CIO ₂ C ₇ H ₅ CIO ₂	3-Chlorobenzoic acid	-404.5 -424.3								-342.3			
C ₇ H ₅ CIO ₂	4-Chlorobenzoic acid	-424.3			163.2					-342.3			
$C_7H_5F_3$	(Trifluoromethyl)benzene	-420.9			103.2				188.4	-341.0			
C ₇ H ₅ N	Benzonitrile					163.2		209.1	165.2	215.7			
C ₇ H ₅ NO	Benzoxazole	-24.2				100.2		203.1	103.2	44.8			
C ₇ H ₅ NO ₄	2-Nitrobenzoic acid	-378.8								11.0			
C ₇ H ₅ NO ₄	3-Nitrobenzoic acid	-394.7											
C ₇ H ₅ NO ₄	4-Nitrobenzoic acid	-392.2											
C ₇ H ₅ N ₃ O ₆	2.4.6-Trinitrotoluene	-63.2			243.3								
C ₇ H ₆ N ₂	1 <i>H</i> -Benzimidazole	79.5			£ 10.0					181.7			
C ₇ H ₆ N ₂	1 <i>H</i> -Indazole	151.9								243.0			
C ₇ H ₆ N ₂ O ₄	1-Methyl-2,4-dinitrobenzene	-66.4								33.2			
C ₇ H ₆ O	Benzaldehyde					-87.0		221.2	172.0	-36.7			
C ₇ H ₆ O ₂	Benzoic acid	-385.2		167.6	146.8					-294.0			-
C ₇ H ₆ O ₂	Salicylaldehyde								222.0				
C ₇ H ₆ O ₂	3-(2-Furanyl)-2-propenal	-182.0								-105.9			
C ₇ H ₆ O ₃	2-Hydroxybenzoic acid	-589.9								-494.8			
C ₇ H ₇ Br	4-Bromotoluene					12.0							
C ₇ H ₇ CI	2-Chlorotoluene								166.8				-
C ₇ H ₇ CI	(Chloromethyl)benzene					-32.5				18.9			
C ₇ H ₇ F	4-Fluorotoluene					-186.9			171.2	-147.4			
C ₇ H ₇ NO	Benzamide	-202.6								-100.9			
C ₇ H ₇ NO ₂	Aniline-2-carboxylic acid	-401.1								-296.0			
C ₇ H ₇ NO ₂	Aniline-3-carboxylic acid	-417.3								-283.6			
C ₇ H ₇ NO ₂	Aniline-4-carboxylic acid	-410.0			177.8					-296.7			
C ₇ H ₇ NO ₂	2-Nitrotoluene					-9.7							
C ₇ H ₇ NO ₂	3-Nitrotoluene					-31.5							
C ₇ H ₇ NO ₂	4-Nitrotoluene	-48.1			172.3					31.0			
C ₇ H ₇ NO ₂	(Nitromethyl)benzene					-22.8				30.7			
C ₇ H ₇ NO ₂	Salicylaldoxime	-183.7											
C ₇ H ₈	Toluene					12.4			157.3	50.5			
C ₇ H ₈ N ₂ O	Phenylurea	-218.6											
C ₇ H ₈ O	o-Cresol	-204.6		165.4	154.6					-128.6			
C ₇ H ₈ O	m-Cresol					-194.0		212.6	224.9	-132.3			
C ₇ H ₈ O	<i>p</i> -Cresol	-199.3		167.3	150.2					-125.4			
C ₇ H ₈ O	Benzyl alcohol					-160.7		216.7	217.9	-100.4			
C ₇ H ₈ O	Anisole					-114.8				-67.9			
C ₇ H ₉ N	Benzylamine					34.2			207.2	94.4	10-1	25.1	
C ₇ H ₉ N	2-Methylaniline					-6.3				56.4	167.6	351.0	130.2
C ₇ H ₉ N	3-Methylaniline	00.5				-8.1				54.6	165.4	352.5	125.5
C ₇ H ₉ N	4-Methylaniline	-23.5							007 1	55.3	167.7	347.0	126.2
C ₇ H ₉ N	N-Methylaniline					40.4			207.1	101.0			
C ₇ H ₉ N	1-Cyclohexenecarbonitrile					48.1		040.7	100 F	101.6			
C ₇ H ₉ N	2,3-Dimethylpyridine					19.4		243.7	189.5	67.1			
C ₇ H ₉ N	2,4-Dimethylpyridine					16.1 18.7		248.5 248.8	184.8 184.7	63.6 66.5			
C ₇ H ₉ N	2,5-Dimethylpyridine 2,6-Dimethylpyridine					12.7		248.8		58.1			
C ₇ H ₉ N						18.3		244.2	185.2	68.8			
C ₇ H ₉ N C ₇ H ₉ N	3,4-Dimethylpyridine					22.5		240.7	191.8 184.5	72.0			
C_7H_9N $C_7H_{10}O_2$	3,5-Dimethylpyridine Ethyl 2-pentynoate					-301.8		241.7	104.5	-250.3			
	Methyl 2-hexynoate					-301.8				-200.3			-
$C_7H_{10}O_2$	welliyi z-nexylloale					-242.1							

			Cry	/stal			Lic	Juid			G	as	
Molecular formula	Name	∆ _f H° kJ/mol	$\Delta_{\mathrm{f}} G^{\circ}$ kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	$\Delta_{\mathrm{f}} G^{\circ}$ kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	$\Delta_{\mathrm{f}} G^{\circ}$ kJ/mol	S° J/mol K	<i>C_p</i> J/mol K
C ₇ H ₁₁ Cl ₃ O ₂	Isopentyl trichloroacetate	KO/IIIOI	KU/IIIUI	O/IIIOI K	O/IIIOI K	-580.9	KO/IIIOI	O/IIIOI K	O/IIIOI K	-523.1	KO/IIIOI	O/IIIOI K	O/IIIOI K
C ₇ H ₁₁ N	Cyclohexanecarbonitrile					-47.2				4.8			
C ₇ H ₁₂	Bicyclo[2.2.1]heptane	-95.1			151.0					-54.8			
C ₇ H ₁₂	1-Methylbicyclo(3,1,0)hexane					-33.2				1.7			
C ₇ H ₁₂	Methylenecyclohexane					-61.3				-25.2			
C ₇ H ₁₂	Vinylcyclopentane					-34.8							
C ₇ H ₁₂	1-Ethylcyclopentene					-53.3				-19.8			
C ₇ H ₁₂ O	2-Methylenecyclohexanol					-277.6							
C ₇ H ₁₂ O ₂	Butyl acrylate					-422.6			251.0	-375.3			
$C_7H_{12}O_4$	Diethyl malonate								285.0				
C ₇ H ₁₃ CIO ₂	Butyl 2-chloropropanoate					-571.7				-517.3			
C ₇ H ₁₃ CIO ₂	Isobutyl 2-chloropropanoate					-603.1				-549.6			
C ₇ H ₁₃ CIO ₂	Butyl 3-chloropropanoate					-557.9				-502.3			
C ₇ H ₁₃ CIO ₂	Isobutyl 3-chloropropanoate					-572.6				-517.3			
C ₇ H ₁₃ CIO ₂	Propyl 2-chlorobutanoate Heptanenitrile					-630.7 -82.8				-578.4 -31.0			
C ₇ H ₁₃ N C ₇ H ₁₄	1-Heptene					-97.9		327.6	211.8	-62.3			
C ₇ H ₁₄	cis-2-Heptene					-105.1		321.0	211.0	-02.3			
C ₇ H ₁₄	trans-2-Heptene					-109.5							
C ₇ H ₁₄	cis-3-Heptene					-109.3							
C ₇ H ₁₄	trans-3-Heptene					-104.3							
C ₇ H ₁₄	5-Methyl-1-hexene					-100.0				-65.7			
C ₇ H ₁₄	cis-3-Methyl-3-hexene					-115.9				-79.4			
C ₇ H ₁₄	trans-3-Methyl-3-hexene					-112.7				-76.8			
C ₇ H ₁₄	2,4-Dimethyl-1-pentene					-117.0				-83.8			
C ₇ H ₁₄	4,4-Dimethyl-1-pentene					-110.6				-81.6			
C ₇ H ₁₄	2,4-Dimethyl-2-pentene					-123.1				-88.7			
C ₇ H ₁₄	cis-4,4-Dimethyl-2-pentene					-105.3				-72.6			
C ₇ H ₁₄	trans-4,4-Dimethyl-2-pentene					-121.7				-88.8			
C ₇ H ₁₄	2-Ethyl-3-methyl-1-butene					-114.1				-79.5			
C ₇ H ₁₄	2,3,3-Trimethyl-1-butene					-117.7				-85.5			
C ₇ H ₁₄	Cycloheptane					-156.6				-118.1			
C ₇ H ₁₄	Methylcyclohexane					-190.1			184.8	-154.7			
C ₇ H ₁₄	Ethylcyclopentane					-163.4		279.9		-126.9			
C ₇ H ₁₄	1,1-Dimethylcyclopentane					-172.1				-138.2			
C ₇ H ₁₄	cis-1,2-Dimethylcyclopentane					-165.3		269.2		-129.5			
C ₇ H ₁₄	trans-1,2-Dimethylcyclopentane					-171.2				-136.6			
C ₇ H ₁₄	cis-1,3-Dimethylcyclopentane					-170.1				-135.8			
C ₇ H ₁₄	trans-1,3-Dimethylcyclopentane					-168.1				-133.6			
C ₇ H ₁₄	1,1,2,2-Tetramethylcyclopropane					-119.8				157.0			
C ₇ H ₁₄ Br ₂	1,2-Dibromoheptane					-212.3 -311.5		335.4	230.1	-157.9 -263.8			
C ₇ H ₁₄ O	1-Heptanal 2-Heptanone					-311.3		333.4	230.1	-203.0			
C ₇ H ₁₄ O C ₇ H ₁₄ O	3-Heptanone								232.0	-297.1			
C ₇ H ₁₄ O	4-Heptanone									-298.3			
C ₇ H ₁₄ O	2,2-Dimethyl-3-pentanone					-356.1				-313.6			
C ₇ H ₁₄ O	2,4-Dimethyl-3-pentanone					-352.9		318.0	233.7	-311.3			
C ₇ H ₁₄ O	cis-2-Methylcyclohexanol					-390.2		010.0	200.1	-327.0			
C ₇ H ₁₄ O	trans-2-Methylcyclohexanol, (±)					-415.7				-352.5			
C ₇ H ₁₄ O	cis-3-Methylcyclohexanol, (±)					-416.1				-350.9			
C ₇ H ₁₄ O	trans-3-Methylcyclohexanol, (±)					-394.4				-329.1			
C ₇ H ₁₄ O	cis-4-Methylcyclohexanol					-413.2				-347.5			
C ₇ H ₁₄ O	trans-4-Methylcyclohexanol					-433.3				-367.2			
C ₇ H ₁₄ O ₂	Heptanoic acid					-610.2			265.4	-536.2			
C ₇ H ₁₄ O ₂	Pentyl acetate								261.0				
C ₇ H ₁₄ O ₂	Isopentyl acetate								248.5				
C ₇ H ₁₄ O ₂	Ethyl pentanoate					-553.0				-505.9			
C ₇ H ₁₄ O ₂	Ethyl 3-methylbutanoate					-571.0				-527.0			
$C_7H_{14}O_2$	Ethyl 2,2-dimethylpropanoate					-577.2				-536.0			
$C_7H_{14}O_2$	Methyl hexanoate	•				-540.2				-492.2			
$C_7 H_{14} O_6$	α-Methylglucoside	-1233.3											
C ₇ H ₁₅ Br	1-Bromoheptane	·				-218.4				-167.8			
C ₇ H ₁₆	Heptane					-224.2			224.7	-187.6			
C ₇ H ₁₆	2-Methylhexane					-229.5		323.3	222.9	-194.5			
C ₇ H ₁₆	3-Methylhexane					-226.4		0	0/	-191.3			
C ₇ H ₁₆	3-Ethylpentane					-224.9		314.5	219.6	-189.5			

			Cry	stal			Lic	quid			G	as	
Molecular formula	Name	Δ _f H° kJ/mol	$\Delta_{\mathrm{f}} G^{\circ}$ kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	$\Delta_{\mathrm{f}} G^{\circ}$ kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	Δ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K
C ₇ H ₁₆	2,2-Dimethylpentane					-238.3		300.3	221.1	-205.7			
C ₇ H ₁₆	2,3-Dimethylpentane					-233.1				-198.7			
C ₇ H ₁₆	2,4-Dimethylpentane					-234.6		303.2	224.2	-201.6			
C ₇ H ₁₆	3,3-Dimethylpentane					-234.2		000.0	010.5	-201.0			
C ₇ H ₁₆ C ₇ H ₁₆ O	2,2,3-Trimethylbutane 1-Heptanol					-236.5 -403.3		292.2	213.5 272.1	-204.4 -336.5			
C ₇ H ₁₆ O	tert-Butyl isopropyl ether					-392.8			212.1	-358.1			
C ₇ H ₁₆ O ₂	1,7-Heptanediol					-574.2				000.1			
C ₇ H ₁₆ O ₂	2,2-Diethoxypropane					-538.9				-506.9			
C ₇ H ₁₆ S	1-Heptanethiol					-200.5				-149.9			
C ₈ H ₄ O ₃	Phthalic anhydride	-460.1		180.0	160.0					-371.4			
C ₈ H ₅ NO ₂	1 <i>H</i> -Indole-2,3-dione	-268.2											
$C_8H_6O_4$	Phthalic acid	-782.0		207.9	188.1								
C ₈ H ₆ O ₄	Isophthalic acid	-803.0								-696.3			
C ₈ H ₆ O ₄	Terephthalic acid	-816.1								-717.9			
C ₈ H ₆ S	Benzo[b]thiophene	100.6								166.3			
C ₈ H ₇ N	1 <i>H</i> -Indole	86.6				103.8			100.0	156.5 147.9			
C ₈ H ₈ C ₈ H ₈ O	Styrene Phenyl vinyl ether					-26.2			182.0	22.7			
C ₈ H ₈ O	Acetophenone					-142.5				-86.7			
C ₈ H ₈ O ₂	o-Toluic acid	-416.5			174.9	-142.5				-00.7			
C ₈ H ₈ O ₂	m-Toluic acid	-426.1			163.6								
C ₈ H ₈ O ₂	p-Toluic acid	-429.2			169.0								
C ₈ H ₈ O ₂	Methyl benzoate					-343.5			221.3	-287.9			
C ₈ H ₈ O ₃	Methyl salicylate								249.0				
C ₈ H ₉ NO	Acetanilide	-209.4			179.3								
C ₈ H ₁₀	1,7-Octadiyne					334.4							
C ₈ H ₁₀	Ethylbenzene					-12.3			183.2	29.9			
C ₈ H ₁₀	<i>o</i> -Xylene					-24.4			186.1	19.1			
C ₈ H ₁₀	<i>m</i> -Xylene					-25.4			183.0	17.3			
C ₈ H ₁₀	<i>p</i> -Xylene					-24.4			181.5	18.0			
C ₈ H ₁₀ O	2-Ethylphenol					-208.8				-145.2			
C ₈ H ₁₀ O C ₈ H ₁₀ O	3-Ethylphenol 4-Ethylphenol	-224.4			206.9	-214.3				-146.1 -144.1			
C ₈ H ₁₀ O	2,3-Xylenol	-241.1			200.5					-157.2			
C ₈ H ₁₀ O	2,4-Xylenol	211.1				-228.7				-163.8			
C ₈ H ₁₀ O	2,5-Xylenol	-246.6								-161.6			
C ₈ H ₁₀ O	2,6-Xylenol	-237.4								-162.1			
C ₈ H ₁₀ O	3,4-Xylenol	-242.3								-157.3			
C ₈ H ₁₀ O	3,5-Xylenol	-244.4								-162.4			
C ₈ H ₁₀ O	Benzeneethanol								252.6				
C ₈ H ₁₀ O	Ethoxybenzene					-152.6			228.5	-101.6			
C ₈ H ₁₀ O ₂	1,2-Dimethoxybenzene					-290.3				-223.3			
C ₈ H ₁₁ N	N-Ethylaniline					8.2				56.3			
C ₈ H ₁₁ N	N,N-Dimethylaniline 2,4-Dimethylaniline					46.0 -39.2				100.5			
C ₈ H ₁₁ N C ₈ H ₁₁ N	2,5-Dimethylaniline					-39.2							
C ₈ H ₁₁ N	2,6-Dimethylaniline					-30.3			238.9				
C ₈ H ₁₂	1-Octen-3-yne					140.7			200.0				
C ₈ H ₁₂	cis-1,2-Divinylcyclobutane					124.3				166.5			
C ₈ H ₁₂	trans-1,2-Divinylcyclobutane					101.3				143.5			
C ₈ H ₁₂ N ₄	2,2'-Azobis[isobutyronitrile]	246.0			237.6								
C ₈ H ₁₂ O ₂	2,2,4,4-Tetramethyl-1,3-	-379.9								-307.6			
0.11	cyclobutanedione					100 -				50.5			
C ₈ H ₁₄	Ethylidenecyclohexane					-103.5				-59.5			
C ₈ H ₁₄ C ₈ H ₁₄ CIN ₅	Allylcyclopentane Atrazine	-125.4				-64.5				-24.1			
C ₈ H ₁₄ CIN ₅	Butanoic anhydride	-120.4							283.7				
C ₈ H ₁₅ CIO ₂	3-Methylbutyl 2-chloropropanoate					-627.3			200.1	-575.0			
C ₈ H ₁₅ CIO ₂	3-Methylbutyl 3-chloropropanoate					-593.4				-539.4			
C ₈ H ₁₅ N	Octanenitrile					-107.3				-50.5			
C ₈ H ₁₆	1-Octene					-124.5			241.0	-81.3			
C ₈ H ₁₆	cis-2-Octene					-135.7			239.0				
C ₈ H ₁₆	trans-2-Octene					-135.7			239.0				
C ₈ H ₁₆	cis-2,2-Dimethyl-3-hexene					-126.4				-89.3			
C ₈ H ₁₆	trans-2,2-Dimethyl-3-hexene					-144.9				-107.7			

			Cry	stal			Liq	quid			G	as	
Molecular formula	Name	Δ _t H° kJ/mol	∆₁ G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	$\Delta_{\mathrm{f}} G^{\circ}$ kJ/mol	S° J/mol K	<i>C_p</i> J∕mol K
C ₈ H ₁₆	3-Ethyl-2-methyl-1-pentene	KJ/IIIUI	KJ/IIIUI	J/IIIUI K	J/IIIUI K	-137.9	KJ/IIIUI	J/IIIUI K	J/IIIUI K	-100.3	NJ/IIIUI	J/IIIUI K	J/IIIUI K
C ₈ H ₁₆	2,4,4-Trimethyl-1-pentene					-145.9				-110.5			
C ₈ H ₁₆	2,4,4-Trimethyl-2-pentene					-142.4				-104.9			
C ₈ H ₁₆	Cyclooctane					-167.7				-124.4			
C ₈ H ₁₆	Ethylcyclohexane					-212.1		280.9	211.8	-171.5			
C ₈ H ₁₆	1,1-Dimethylcyclohexane					-218.7		267.2	209.2	-180.9			
C ₈ H ₁₆	cis-1,2-Dimethylcyclohexane					-211.8		274.1	210.2	-172.1			
C ₈ H ₁₆	trans-1,2-Dimethylcyclohexane					-218.2		273.2	209.4	-179.9			
C ₈ H ₁₆	cis-1,3-Dimethylcyclohexane					-222.9		272.6	209.4	-184.6			
C ₈ H ₁₆	trans-1,3-Dimethylcyclohexane					-215.7		276.3	212.8	-176.5			
C ₈ H ₁₆	cis-1,4-Dimethylcyclohexane					-215.6		271.1	212.1	-176.6			
C ₈ H ₁₆	trans-1,4-Dimethylcyclohexane					-222.4		268.0	210.2	-184.5			
C ₈ H ₁₆	Propylcyclopentane					-188.8		310.8	216.3	-147.7			
C ₈ H ₁₆	1-Ethyl-1-methylcyclopentane					-193.8							
C ₈ H ₁₆	cis-1-Ethyl-2-methylcyclopentane					-190.8							
C ₈ H ₁₆	trans-1-Ethyl-2-methylcyclopentane					-195.1				-156.2			
C ₈ H ₁₆	cis-1-Ethyl-3-methylcyclopentane					-194.4							
C ₈ H ₁₆	trans-1-Ethyl-3-methylcyclopentane					-196.0							
C ₈ H ₁₆ O	Octanal									-291.9		365.4	
C ₈ H ₁₆ O	2-Ethylhexanal					-348.5				-299.6			
C ₈ H ₁₆ O	2-Octanone								273.3				
C ₈ H ₁₆ O	2,2,4-Trimethyl-3-pentanone					-381.6				-338.3			
C ₈ H ₁₆ O ₂	Octanoic acid					-636.0			297.9	-554.3			
C ₈ H ₁₆ O ₂	2-Ethylhexanoic acid					-635.1				-559.5			
C ₈ H ₁₆ O ₂	Hexyl acetate								282.8				
C ₈ H ₁₆ O ₂	Isobutyl isobutanoate					-587.4				-542.9			
C ₈ H ₁₆ O ₂	Propyl pentanoate					-583.0				-533.6			
C ₈ H ₁₆ O ₂	Isopropyl pentanoate					-592.2				-544.9			
C ₈ H ₁₆ O ₂	Methyl heptanoate					-567.1			285.1	-515.5			
C ₈ H ₁₇ Br	1-Bromooctane					-245.1				-189.3			
C ₈ H ₁₇ CI	1-Chlorooctane					-291.3				-238.9			
C ₈ H ₁₇ NO	Octanamide	-473.2								-362.7			
C ₈ H ₁₈	Octane					-250.1			254.6	-208.5			
C ₈ H ₁₈	2-Methylheptane					-255.0		356.4	252.0	-215.3			
C ₈ H ₁₈	3-Methylheptane, (S)					-252.3		362.6	250.2	-212.5			
C ₈ H ₁₈	4-Methylheptane					-251.6			251.1	-211.9			
C ₈ H ₁₈	3-Ethylhexane					-250.4				-210.7			
C ₈ H ₁₈	2,2-Dimethylhexane					-261.9				-224.5			
C ₈ H ₁₈	2,3-Dimethylhexane					-252.6				-213.8			
C ₈ H ₁₈	2,4-Dimethylhexane					-257.0				-219.2			
C ₈ H ₁₈	2,5-Dimethylhexane					-260.4			249.2	-222.5			
C ₈ H ₁₈	3,3-Dimethylhexane					-257.5			246.6	-219.9			
C ₈ H ₁₈	3,4-Dimethylhexane					-251.8				-212.8			
C ₈ H ₁₈	3-Ethyl-2-methylpentane					-249.6				-211.0			
C ₈ H ₁₈	3-Ethyl-3-methylpentane					-252.8				-214.8			
C ₈ H ₁₈	2,2,3-Trimethylpentane					-256.9				-220.0			
C ₈ H ₁₈	2,2,4-Trimethylpentane					-259.2			239.1	-224.0			
C ₈ H ₁₈	2,3,3-Trimethylpentane					-253.5			245.6	-216.3			
C ₈ H ₁₈	2,3,4-Trimethylpentane					-255.0		329.3	247.3	-217.3			
C ₈ H ₁₈	2,2,3,3-Tetramethylbutane	-269.0		273.7	239.2					-226.0			
C ₈ H ₁₈ N ₂	Azobutane					-40.1				9.2			
C ₈ H ₁₈ O	1-Octanol					-426.5			305.2	-355.6			
C ₈ H ₁₈ O	2-Octanol								330.1				
C ₈ H ₁₈ O	2-Ethyl-1-hexanol					-432.8		347.0	317.5	-365.3			
C ₈ H ₁₈ O	Dibutyl ether					-377.9			278.2	-332.8			
C ₈ H ₁₈ O	Di- <i>sec</i> -butyl ether					-401.5				-360.6			
C ₈ H ₁₈ O	Di- <i>tert</i> -butyl ether					-399.6			276.1	-362.0			
C ₈ H ₁₈ O	tert-Butyl isobutyl ether					-409.1				-369.0			
C ₈ H ₁₈ O ₂	1,8-Octanediol	-626.6											
C ₈ H ₁₈ O ₂	2,5-Dimethyl-2,5-hexanediol	-681.7											
C ₈ H ₁₈ O ₃	Diethylene glycol monobutyl ether								354.9				
C ₈ H ₁₈ O ₃	Diethylene glycol diethyl ether								341.4				
C ₈ H ₁₈ O ₃ S	Dibutyl sulfite					-693.1				-625.3			
C ₈ H ₁₈ O ₅	Tetraethylene glycol					-981.7			428.8	-883.0			
C ₈ H ₁₈ S	Dibutyl sulfide					-220.7		405.1	284.3	-167.7			
C ₈ H ₁₈ S	Di- <i>sec</i> -butyl sulfide					-220.7				-167.7			

			Cry	stal			Lic	quid			G	as	
Molecular formula	Name	Δ₁H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J∕mol K	Δ _t H° kJ/mol	$\Delta_{\mathrm{f}} G^{\circ}$ kJ/mol	<i>S</i> ° J/mol K	<i>C_p</i> J∕mol K	Δ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J∕mol K
C ₈ H ₁₈ S	Di- <i>tert</i> -butyl sulfide	,	,	0 , 0	0,01 11	-232.6	,	0,01 11	0,0. 11	-188.8	,	0,01 11	0,0. 11
C ₈ H ₁₈ S	Diisobutyl sulfide					-229.2				-180.5			
C ₈ H ₁₈ S ₂	Dibutyl disulfide					-222.9				-160.6			
C ₈ H ₁₈ S ₂	Di-tert-butyl disulfide					-255.2				-201.0			
C ₈ H ₁₉ N	Dibutylamine					-206.0			292.9	-156.6			
C ₈ H ₁₉ N	Diisobutylamine					-218.5				-179.2			
C ₈ H ₂₀ BrN	Tetraethylammonium bromide	-342.7											
C ₈ H ₂₀ O ₄ Si	Ethyl silicate							533.1	364.4				
$C_8H_{20}Pb$	Tetraethyl lead					52.7		464.6	307.4	109.6			
C ₈ H ₂₀ Si	Tetraethylsilane								298.1				
C ₉ H ₆ N ₂ O ₂	Toluene-2,4-diisocyanate					1110			287.8	200.5			
C ₉ H ₇ N	Quinoline					141.2		0100	100.0	200.5			
C ₉ H ₇ N	Isoquinoline	1440				144.3		216.0	196.2	204.6 -25.5			
C ₉ H ₇ NO C ₉ H ₇ NO	2-Quinolinol 8-Quinolinol	-144.9 82.1								-25.5			
C ₉ H ₇ NU C ₉ H ₈	8-Quinolinoi Indene	82.1				110.6		215.3	186.9	163.4			
С ₉ П ₈	2-(Acetyloxy)benzoic acid	-815.6				110.0		210.0	100.9	103.4			
C ₉ H ₁₀	Cyclopropylbenzene	-013.0				100.3				150.5			
C ₉ H ₁₀	Indan					11.5		56.0	190.2	60.3			
C ₉ H ₁₀ Cl ₂ N ₂ O	Diuron	-329.0				11.0		30.0	130.2	00.0			
C ₉ H ₁₀ N ₂	2,2'-Dipyrrolylmethane	126.2											
C ₉ H ₁₀ O ₂	Ethyl benzoate	120.2							246.0				
C ₉ H ₁₀ O ₂	Benzyl acetate								148.5				
C ₉ H ₁₁ NO ₂	L-Phenylalanine	-466.9		213.6	203.0				1 10.0	-312.9			
C ₉ H ₁₁ NO ₃	L-Tyrosine	-685.1		214.0	216.4								
C ₉ H ₁₂	Propylbenzene					-38.3		287.8	214.7	7.9			
C ₉ H ₁₂	Isopropylbenzene					-41.1			210.7	4.0			
C ₉ H ₁₂	2-Ethyltoluene					-46.4				1.3			
C ₉ H ₁₂	3-Ethyltoluene					-48.7				-1.8			
C ₉ H ₁₂	4-Ethyltoluene					-49.8				-3.2			
C ₉ H ₁₂	1,2,3-Trimethylbenzene					-58.5		267.9	216.4	-9.5			
C ₉ H ₁₂	1,2,4-Trimethylbenzene					-61.8			215.0	-13.8			
C ₉ H ₁₂	1,3,5-Trimethylbenzene					-63.4			209.3	-15.9			
C ₉ H ₁₂ O	2-Isopropylphenol					-233.7				-182.2			
C ₉ H ₁₂ O	3-Isopropylphenol					-252.5				-196.0			
$C_9H_{12}O$	4-Isopropylphenol	-270.0								-175.3			
C ₉ H ₁₂ O ₂	Isopropylbenzene hydroperoxide					-148.3				-78.4			
C ₉ H ₁₃ NO ₂	Ethyl 3,5-dimethylpyrrole-2- carboxylate	-474.5											
C ₉ H ₁₃ NO ₂	Ethyl 2,4-dimethylpyrrole-3- carboxylate	-463.2											
C ₉ H ₁₃ NO ₂	Ethyl 2,5-dimethylpyrrole-3- carboxylate	-478.7											
C ₉ H ₁₃ NO ₂	Ethyl 4,5-dimethylpyrrole-3- carboxylate	-470.3											
C ₉ H ₁₄ O	Isophorone								253.5				
C ₉ H ₁₄ O ₆	Triacetin					-1330.8		458.3	384.7	-1245.0			
C ₉ H ₁₅ N	3-Ethyl-2,4,5-trimethylpyrrole	-89.2											
C ₉ H ₁₆	1-Nonyne					16.3				62.3			
C ₉ H ₁₆ O ₄	Nonanedioic acid	-1054.3											
C ₉ H ₁₇ NO	2,2,6,6-Tetramethyl-4-piperidinone	-334.2								-273.4			
C ₉ H ₁₈	Propylcyclohexane					-237.4		311.9	242.0	-192.3			
C ₉ H ₁₈	1α,3α,5β-1,3,5- Trimethylcyclohexane									-212.1			
C ₉ H ₁₈ O	2-Nonanone					-397.2				-340.7			
C ₉ H ₁₈ O	5-Nonanone					-398.2		401.4	303.6	-344.9			
C ₉ H ₁₈ O	2,6-Dimethyl-4-heptanone					-408.5			297.3	-357.6			
C ₉ H ₁₈ O ₂	Nonanoic acid					-659.7			362.4	-577.3			
C ₉ H ₁₈ O ₂	Butyl pentanoate					-613.3				-560.2			
$C_9H_{18}O_2$	sec-Butyl pentanoate					-624.2				-573.2			
$C_9H_{18}O_2$	Isobutyl pentanoate					-620.0				-568.6			
$C_9H_{18}O_2$	Methyl octanoate					-590.3				-533.9			
$C_9H_{19}N$	<i>N</i> -Butylpiperidine					-171.8							
$C_9H_{19}N$	2,2,6,6-Tetramethylpiperidine					-206.9		<u></u>		-159.9			
C ₉ H ₂₀	Nonane					-274.7			284.4	-228.2			
C ₉ H ₂₀	2,2-Dimethylheptane					-288.1							
C ₉ H ₂₀	2,2,3-Trimethylhexane					-282.7							

				Cry	stal			Lic	quid			G	as	
Colly 22.4 Trendsylvense	Molecular	Name				C _p				C _p				C _p
2.22 - Immitry heaves			NJ/IIIUI	KJ/IIIUI	J/IIIUI K	J/IIIUI K		KJ/IIIUI	J/IIIUI K	J/IIIUI K	KJ/IIIUI	KJ/IIIUI	J/IIIUI K	J/IIIUI K
CFPs 23.5-Firmshiphones														
CFAs 2.4. Sectionshiphocone 2940 2.4. Experimentations OFbs 2.4. Exemptifications 2975 OFbs 3.3. Transplantane 2775 OFbs 3.3. Descriptions 2775 OFbs 3. Empt 22 descriptions 2777 OFbs 3. Empt 22 descriptions 2787 OFbs 2.3. Selementylopinine 2883 2711 232.1 OFbs 2.2. Selementylopinine 2803 2711 232.1 OFbs 2.2. Selementylopinine 2800 283 2415 OFbs 2.2. Selementylopinine 2800 283 2415 OFbs 3. Selementylopinine 2800 283 2415 OFbs 3. Selementylopinine 283 2815 OFbs 3. Selementylopinine 283 2871 1810 OFbs 3. Selementylopinine 283 2871 1810 2815 OFbs 3. Selementylopinine 282 282 282 282 282 OFB 3.														
CPV _{IN} 2.4.4-Historylphocore 2992 CPV _{IN} 3.5-Descriptorease 277.5 CPV _{IN} 3.5-Descriptorease 277.5 CPV _{IN} 3.5-Descriptorease 277.7 CPV _{IN} 3.5-Descriptorease 277.7 CPV _{IN} 3.5-Descriptorease 292.7 CPV _{IN} 2.5-Descriptorease 293.7 CPV _{IN} 2.5-Descriptorease 277.7 2.50.0 CPV _{IN} 2.5-Descriptorease 2.50.0 2.50.0 CPV _{IN} 3.5-Descriptorease 2.50.1 2.50.0 CPV _{IN} 3.5-Descriptorease 2.50.1 2.50.0 CPV _{IN} 3.5-Descriptorease 2.50.1 2.50.1 CPV _{IN} 3.5-Descriptorease 2.50.1 2.50.1 CPV _{IN} 3.5-Descriptorease 2.50.1 2.50.1 CPV _{IN} <											-242.6			
CP-16 33.4-Ernsthylpomens														
Color Colo		<u> </u>												
2-										278.2	-233.3			
Color							-272.7							
2.43 10 10 10 10 10 10 10 1							-269.7							
C.P. 22.3 - Fernanthylopathers		2,2,3,3-Tetramethylpentane					-278.3			271.5	-237.1			
\$\frac{C}{1}\text{in} & 22.4.4 informally optimized	C ₉ H ₂₀	2,2,3,4-Tetramethylpentane					-277.7				-236.9			-
2.77.9 -2.88	C ₉ H ₂₀	2,2,4,4-Tetramethylpentane					-280.0			266.3	-241.6			
Color	C ₉ H ₂₀	2,3,3,4-Tetramethylpentane					-277.9				-236.1			
C.J. Incompression	C ₉ H ₂₀ N ₂ O	Tetraethylurea					-380.0				-316.4			
Cyl. No. Procession Cyl. Cy	C ₉ H ₂₀ O	1-Nonanol					-453.4				-376.5			
Cyl.N. 2-Quin-diseastonotrinis 242 3	C ₉ H ₂₀ O ₂	1,9-Nonanediol	-657.6											
Cyl,HM, 0	C ₉ H ₂₁ N	Tripropylamine					-207.1				-161.0			
C_HMAD, 1.5-0 intrinoraphthalene 29.8	C ₁₀ H ₆ N ₂	2-Quinolinecarbonitrile	246.5											
Cg_HAN_Q	C ₁₀ H ₆ N ₂	3-Quinolinecarbonitrile	242.3											
Cyl.HG C-biorrage/markere 55.4 19.8	C ₁₀ H ₆ N ₂ O ₄	1,5-Dinitronaphthalene	29.8											
Cyling C	C ₁₀ H ₆ N ₂ O ₄	1,8-Dinitronaphthalene	39.7											
CgHH -1-olographilatere	C ₁₀ H ₇ CI	1-Chloronaphthalene					54.6			212.6	119.8			
C, H, H 2-lodocophablene 144.3 255.1 C ₀ H, HO, 20H, 1-Nitrospithalene 42.6 1111.2 1111.2 C ₀ H, No, 20H, 20H, 20H, 20H, 20H, 20H, 20H, 20H	C ₁₀ H ₇ CI	2-Chloronaphthalene	55.4								137.4			
C_i,H_A 2-indomagnhalmene	C ₁₀ H ₇ I	1-lodonaphthalene					161.5				233.8			
Cuj.H. No. 1. Hibrographitalere 42.6 111.2 111.2 1. Cuj.H. Aculere 7.5 20.1 165.7 150.6 224.1 33.1 131.5 28.9 1. Cuj.H. 2. Cuj.H. Aculere 212.3 18.9 28.9 1. Cuj.H. 2. Exp. 1. 2. Exp. 1. 3.04 1. State 1. 1. State 1. 1. State 1. 3.04 1. State 1. 1. State 1. 2. Exp. 1. 3.04 1. State 1. 1. State 1. 2. Exp. 1. 3.04 1. State 1. 1. State 1. 3.04 1. State 1. 4. Fig. 1. 2. Exp. 1. 2. Exp. 1. 3.06.6 1. 4. Cuj.H. 2. Exp. 1. 3.06.6 1. 4. Cuj.H. 3. Cuj.H. 3. Cuj.H. <	C ₁₀ H ₇ I	2-lodonaphthalene	144.3								235.1			
C _i ,H _i , B _i , Audiene 78.5 201.5 167.4 165.7 150.6 224.1 33.1 131.5 C _{ii} H _i O Naghtinol +121.5 166.9 -30.4 149.4 C _{ii} H _i O Naghtinol +121.5 166.9 -30.4 149.4 C _{ii} H _i O Naghtinol +121.5 170.0 172.8 -29.9 366.6 147.6 C _{ii} H _i O Naghtinol +121.5 170.0 172.8 -29.9 366.6 147.6 C _{ii} H _i O Pathiptifilineine 67.8 134.3 -29.9 366.6 147.6 C _{ii} H _i O Pathiptifilineine 60.2 150.6 150.6 150.0 150		1-Nitronaphthalene	42.6								111.2			
C _u H _b Auliene 212.3 189.1 C _u H _b O 1-Napithol -121.5 166.9 -30.4 149.4 C _u H _b O 2-Napithol -124.1 179.0 172.8 -29.9 366.6 147.5 C _u H _b N 2-Napithol 176.8 132.8 -29.9 366.6 147.5 C _u H _b N 1-Napithylamine 60.2 134.3 -22.8 -22.8 -22.8 -22.8 -22.8 -22.8 -22.8 -22.8 -22.8 -22.8 -22.8 -22.8 -22.8 -22.8 -22.8 -22.8 -22.8 -22.8 -22.2 -27.5 -22.2 -27.5 -22.2 -27.5 -22.2 -27.5 -22.2 -27.5 -27.5 -27.5 -27.5 -27.5 -27.5 -27.5 -27.5 -27.5 -27.5 -27.5 -27.5 -27.5 -27.5 -27.5 -27.9 -27.5 -27.9 -27.5 -27.9 -27.9 -27.9 -27.9 -27.9 -27.9 -27.9 -27.9	C ₁₀ H ₈	Naphthalene	78.5	201.6	167.4	165.7					150.6	224.1	333.1	131.9
Cyth O 1-Haphthol -121.5 166.9 -30.4 149.4 Cyth O 2-Haphthylamine 67.8 132.8 .28.9 366.6 147.8 Cyth N 1-Naphthylamine 67.8 134.3 .28.9 366.6 147.8 Cyth O 2-Dihydonophthalene 71.6 .33.3		Azulene	212.3								289.1			
C_H_M		1-Naphthol	-121.5			166.9					-30.4			149.4
C _H H _N 2-Haphthylamine 67.8 132.8 C _H H _N 2-Haphthylamine 60.2 134.3 C _H H _N 1.4-Dihydroraphthalene 71.6 C _H H _N 1.4-Dihydroraphthalene 84.2 C _H H _N D Directly phthalate 84.2 C _H H _N D Directly phthalate 303.1 C _H H _N D Directly phthalate -70.9 C _H H _N D Directly phthalate -73.6 C _H H _N D 2.23.4 Teachydroraphthalene 29.2 217.5 26.0 C _H H _N D 1.23.4 Teachydroraphthalane -83.2 321.2 243.4 -11.8 C _H H _N D 1.5 Sex-Bulybenzene -66.4 243.4 -11.8 -11.8 C _H H _A 1.5 Sex-Bulybenzene -71.9 -23.0 -22.1 -22.2 21.7 2.0 -2.1	C ₁₀ H ₈ O	2-Naphthol	-124.1		179.0	172.8					-29.9		366.6	147.8
C _H H _D 2-Reporthylamine 60.2 C _H H _D 1.2-Dihydronaphthalene 71.6 C _H H _D 1.4-Dihydronaphthalene 84.2 C _H H _D O, 1-Iertalone 20.6 C _H H _D O, Dimethyl prinatale 303.1 C _H H _D O, Dimethyl sophthalate 730.9 C _H H _D O, Dimethyl propriatale 732.6 C _H H _D O, Dimethyl sophthalate 730.9 C _H H _D O, Dimethyl storphthalate 252.2 217.5 26.0 C _H H _D O, Dimethyl storphthalate 732.6 261.1 72.2 26.0 72.2 27.5 26.0 72.0 72.2 27.5 26.0 72.2 27.5 26.0 72.2 27.7 26.0 72.2 27.7 26.0 72.2 27.7 26.0 72.2 27.7 26.0 42.4 41.8 42.2 41.8 42.2 41.8 42.2 41.8 42.2 41.8 42.3 32.1 24.3 32.2 23.0 22.3 22.3 22.3	C ₁₀ H ₉ N	1-Naphthylamine	67.8								132.8			
C _W H ₁₀ 1.4-Dihydoraphthalene 84.2 C _y H ₁₀ 1-tertatione -209.6 C _y H ₁₀ 0 limethyl phrabitate 303.1 C _y H ₁₀ 0 limethyl phrabitate -73.9 C _y H ₁₀ 0 limethyl sephthalate -73.2 26.0 C _y H ₁ 1.2,3 4-Testalydroaphthalane -29.2 217.5 26.0 C _y H ₁ 8uplybenzene -63.2 321.2 243.4 118.4 C _y H ₁ see Bulybenzene (±) -66.4 -18.4 4.4 4.4 C _y H ₁ 1-sbopropyl-2-methybenzene -71.9 -23.0 2.19 C _y H ₁ 1-sbopropyl-2-methybenzene -78.6 -71.9 -22.0 C _y H ₁ 1-sbopropyl-2-methybenzene -78.6 -78.6 -78.6 -78.6 C _y H ₁ 1-sbopropyl-2-methybenzene -78.6 -78.6 -78.6 -78.6 -78.6 -78.6 -78.6 -78.6 -78.6 -78.6 -78.6 -78.6 -78.6 -78.6 -78.6 -78.6 -78.6 -78.6	C ₁₀ H ₉ N	2-Naphthylamine	60.2								134.3			
C _b H _b _b 1.4-Dillydrongophtalene 84.2 C _b H _b D _b 1.7-Erratione -29.6 C _b H _b D _c Dimethyl phthalate 303.1 C _b H _b D _c Dimethyl phthalate -73.9 C _b H _b D _c Dimethyl phthalate -73.2 6 261.1 C _b H _b D _c Dimethyl phthalate -73.2 6 261.1 C _b H _b D _c Dimethyl phthalate -73.2 6 261.1 C _b H _b D _c Dispense -63.2 321.2 243.4 11.8 C _b H _b D _c See Bulylbenzene -71.9 -23.0 -21.9 C _b H _b D _c D _c H _c -78.0 -71.9 -23.0 C _b H _b D _c D _c H _c -78.0 -21.9 C _b H _d D _c D _c H _c -78.0 -23.4 C _b H _d D _c D _c H _c -78.0 -23.4 C _b H _d D _c D _c H _c -78.0 -23.4 C _b H _d D _d D _c	C ₁₀ H ₁₀	1,2-Dihydronaphthalene					71.6							
C _y H _y D _y Dimethyl phthalate 303.1 C _y H _y D _y Dimethyl psophhalate 730.9 C _y H _y D _y Dimethyl psophhalate 732.6 C _y H _y D _y Dimethyl psophhalate 732.6 C _y H _y D _y 12.3.4-Tetahydronaphthalene -29.2 217.5 26.0 C _y H _y Buylbenzene -63.2 321.2 243.4 -11.8 C _y H _y May Debug Deb	C ₁₀ H ₁₀	1,4-Dihydronaphthalene					84.2							
C _W H _W Q ₁ Dimethyl terphthalate -730.9 C _W H _Q Q ₁ Dimethyl terphthalate -732.6 261.1 C _W H _Q 2.3.4 - Terlarytomaphthalene -29.2 217.5 26.0 C _W H _Q Bulylbenzene -63.2 321.2 243.4 -11.8 C _W H _Q 4.66.4 -18.4 -22.0 -22.0 C _W H _Q 1.69 bulylbenzene -71.9 -22.0 C _W H _Q 1.50 propyl-2-methylbenzene -78.6 -21.9 C _W H _Q 1.50 propyl-2-methylbenzene -78.6 -78.6 C _W H _Q 1.50 propyl-2-methylbenzene -78.6 -78.6 C _W H _Q 4.15 propyl-2-methylbenzene -78.6 -78.6 C _W H _Q 4.15 propyl-2-methylbenzene -78.6 -78.6 C _W H _Q 4.00 bethylbenzene -78.6 -78.6 C _W H _Q 4.00 bethylbenzene -73.5 -72.8 C _W H _Q 4.00 bethylbenzene -80.5 -80.5 C _W H _Q 4.25 byt-1.2-dimethylbenzene -80.5 -80.5	C ₁₀ H ₁₀ O	1-Tetralone	-209.6											
C _y H _y O _y Dimethyl terephthalate -732.6 261.1 C _y H _y O _y 12,3.4-Tetrahydronaphthalene -29.2 217.5 26.0 C _y H _y I _y Bulylbenzene -63.2 321.2 243.4 -11.8 C _y H _y I _y Bulylbenzene -71.9 -23.0 -22.0 C _y H _y I _y Subulylbenzene -71.9 -23.0 -22.9 C _y H _y I _y 1-Isopropyl-2-methylbenzene -73.3 -21.9 -22.0 C _y H _y 1-Isopropyl-2-methylbenzene -78.6 <td>C₁₀H₁₀O₄</td> <td>Dimethyl phthalate</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>303.1</td> <td></td> <td></td> <td></td> <td></td>	C ₁₀ H ₁₀ O ₄	Dimethyl phthalate								303.1				
Cw_H12 1.2.3.4-Tetrahydronaphthalene -63.2 321.2 243.4 -11.8 Cw_H14 burybbenzene -66.4 -18.4 -11.8 Cw_H14 bese Butybbenzene -71.9 -23.0 Cw_H14 bese Butybbenzene -71.9 -23.0 Cw_H14 1-Isopropyl-2-methylbenzene -78.6 -21.9 Cw_H14 1-Isopropyl-3-methylbenzene -78.6 -78.6 Cw_H14 1-Isopropyl-3-methylbenzene -78.0 236.4 Cw_H14 1-Isopropyl-3-methylbenzene -78.0 236.4 Cw_H14 0-Ebethylbenzene -78.0 236.4 Cw_H14 0-Diethylbenzene -78.0 236.4 Cw_H14 0-Diethylbenzene -72.8 -72.8 Cw_H14 0-Diethylbenzene -80.5 -80.5 Cw_H14 0-Diethylbenzene -80.5 -80.5 Cw_H14 0-Eithyl-1.2-dimethylbenzene -80.5 -80.5 Cw_H14 0-Eithyl-1.2-dimethylbenzene -80.1 -80.5 Cw_H14 0-Eith	C ₁₀ H ₁₀ O ₄	Dimethyl isophthalate	-730.9											
GyB+H ₄ butybenzere -63.2 butybenzere 321.2 243.4 butybenzere -11.8 butybenzere GyB+H ₄ butybenzere -71.9 cutybenzere -23.0 cutybenzere GyB+H ₄ butybenzere -66.8 cutybenzere -21.9 cutybenzere GyB+H ₄ butybenzere -78.6 cutybenzere -21.9 cutybenzere GyB+H ₄ butybenzere -78.6 cutybenzere -78.6 cutybenzere GyB+H ₄ butybenzere -78.0 cutybenzere -78.0 cutybenzere GyB+H ₄ butybenzere -78.0 cutybenzere -78.0 cutybenzere GyB+H ₄ butybenzere -78.5 cutybenzere -78.6 cutybenzere GyB+H ₄ butybenzere -78.6 cutybenzere -78.6 cutybenzere GyB+H ₄ butybenzere -78.6 cutybenzere -78.6 cutybenzere GyB+H ₄ butybenzere -78.6 cutybenzere -86.0 cutybenzere GyB+H ₄ butybenzere -86.0 cutybenzere -86.0 cutybenzere GyB+H ₄ butybenzere -86.0 cutybenzere -86.0 cutybenzere GyB+H ₄ cutybenzere -86.0 cutybenzere -86.0 cutybenzere GyB+H ₄ cutybenzere -87.8 cutybenzere -87.8 cutybenzere GyB+H ₄ cutybenzere -87.8 cutybenzere -87	C ₁₀ H ₁₀ O ₄	Dimethyl terephthalate	-732.6			261.1								
G_BH ₁₄ C _B H ₁₄ C _B H ₁₄ C _B H ₁₄ D _B H ₁₆ D _B D _B	C ₁₀ H ₁₂	1,2,3,4-Tetrahydronaphthalene								217.5				
C _W H ₁₄ terf-Butylbenzene -71.9 -23.0 C _W H ₁₄ 1sboutylbenzene -69.8 -21.9 C _W H ₁₄ 1-Isopropyl-2-methylbenzene -73.3 C _W H ₁₄ 1-Isopropyl-3-methylbenzene -78.6 C _W H ₁₄ 1-Isopropyl-3-methylbenzene -78.0 C _W H ₁₄ 1-Isopropyl-3-methylbenzene -78.0 C _W H ₁₄ 1-Isopropyl-3-methylbenzene -78.0 C _W H ₁₄ 1-Isopropyl-3-methylbenzene -88.5 C _W H ₁₄ 2-Ethyl-1-2-dimethylbenzene -80.5 C _W H ₁₄ 3-Ethyl-1-2-dimethylbenzene -80.5 C _W H ₁₄ 2-Ethyl-1-3-dimethylbenzene -80.1 C _W H ₁₄ 2-Ethyl-1-3-dimethylbenzene -84.8 C _W H ₁₄ 1-Ethyl-3-5-dimethylbenzene -87.8 C _W H ₁₄ 1-Ethyl-3-5-dimethylbenzene	C ₁₀ H ₁₄	Butylbenzene					-63.2		321.2	243.4	-11.8			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₁₀ H ₁₄	sec-Butylbenzene, (±)					-66.4				-18.4			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C ₁₀ H ₁₄	tert-Butylbenzene					-71.9				-23.0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₁₀ H ₁₄	IsobutyIbenzene					-69.8				-21.9			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₁₀ H ₁₄	1-Isopropyl-2-methylbenzene					-73.3							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₁₀ H ₁₄	1-Isopropyl-3-methylbenzene												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₁₀ H ₁₄	1-Isopropyl-4-methylbenzene					-78.0			236.4				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₁₀ H ₁₄	o-Diethylbenzene												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₁₀ H ₁₄	<i>m</i> -Diethylbenzene					-73.5							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₁₀ H ₁₄	<i>p</i> -Diethylbenzene												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₁₀ H ₁₄	3-Ethyl-1,2-dimethylbenzene					-80.5							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₁₀ H ₁₄	4-Ethyl-1,2-dimethylbenzene					-86.0							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₁₀ H ₁₄	2-Ethyl-1,3-dimethylbenzene					-80.1							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₁₀ H ₁₄	2-Ethyl-1,4-dimethylbenzene												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₁₀ H ₁₄	1-Ethyl-2,4-dimethylbenzene					-84.1							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₁₀ H ₁₄	1-Ethyl-3,5-dimethylbenzene					-87.8							
$C_{10}H_{14}O$ Thymol -309.7 -218.5 $C_{10}H_{16}$ Dipentene -50.8 249.4 -2.6 $C_{10}H_{16}$ σ -Pinene -54.5 249.0 $C_{10}H_{16}$ σ -Pinene -16.4 28.3 $C_{10}H_{16}$ σ -Pinene -7.7 38.7 $C_{10}H_{16}$ σ -Terpinene -20.6 $C_{10}H_{16}$ σ -Myrcene 14.5 $C_{10}H_{16}$ σ -Sc, c/s-2,6-Dimethyl-2,4,6-octatriene -24.0	C ₁₀ H ₁₄	1,2,4,5-Tetramethylbenzene	-119.9		245.6	215.1								
$C_{10}H_{16}$ Dipentene -50.8 249.4 -2.6 $C_{10}H_{16}$ d -Limonene -54.5 249.0 $C_{10}H_{16}$ α -Pinene -16.4 28.3 $C_{10}H_{16}$ β -Pinene -7.7 38.7 $C_{10}H_{16}$ α -Terpinene -20.6 $C_{10}H_{16}$ β -Myrcene 14.5 $C_{10}H_{16}$ $C_{10}C$	C ₁₀ H ₁₄ O	Thymol	-309.7								-218.5			
$C_{10}H_{16}$ d -Limonene -54.5 249.0 $C_{10}H_{16}$ α -Pinene -16.4 28.3 $C_{10}H_{16}$ β -Pinene -7.7 38.7 $C_{10}H_{16}$ α -Terpinene -20.6 $C_{10}H_{16}$ β -Myrcene 14.5 $C_{10}H_{16}$ c is, cis-2,6-Dimethyl-2,4,6-octatriene -24.0	C ₁₀ H ₁₆	Dipentene					-50.8			249.4	-2.6			
	C ₁₀ H ₁₆	<i>d</i> -Limonene					-54.5			249.0				
$C_{10}H_{16}$ β-Pinene -7.7 38.7	C ₁₀ H ₁₆	α-Pinene					-16.4				28.3			
$\frac{C_{10}H_{16}}{C_{10}H_{16}}$ α-Terpinene -20.6 $\frac{C_{10}H_{16}}{C_{10}H_{16}}$ β-Myrcene 14.5 $\frac{c_{is}c_{i$	C ₁₀ H ₁₆	β-Pinene					-7.7				38.7			
$C_{10}H_{16}$ β -Myrcene 14.5 $C_{10}H_{16}$ $cis, cis-2,6$ -Dimethyl-2,4,6-octatriene 24.0	C ₁₀ H ₁₆													
C ₁₀ H ₁₆	C ₁₀ H ₁₆	-					14.5							
octatriene	C ₁₀ H ₁₆						-24.0							
$C_{10}H_{16}N_2O_8$ Ethylenediaminetetraacetic acid -1759.5														
	C ₁₀ H ₁₆ N ₂ O ₈	Ethylenediaminetetraacetic acid	-1759.5											

Molecular formula	Name	Crystal					Liq	Juid		Gas				
		Δ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	∆ _f G° kJ/mol	<i>S</i> ° J/mol K	C _p J/mol K	Δ _f H° kJ/mol	Δ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	
C ₁₀ H ₁₆ O	Camphor, (±)	-319.4			271.2					-267.5				
C ₁₀ H ₁₈	1,1'-Bicyclopentyl					-178.9								
C ₁₀ H ₁₈	cis-Decahydronaphthalene					-219.4		265.0	232.0	-169.2				
C ₁₀ H ₁₈	trans-Decahydronaphthalene					-230.6		264.9	228.5	-182.1				
C ₁₀ H ₁₈ O ₄	Sebacic acid	-1082.6								-921.9				
C ₁₀ H ₁₉ N	Decanenitrile					-158.4				-91.5				
C ₁₀ H ₂₀	1-Decene					-173.8		425.0	300.8	-123.3				
C ₁₀ H ₂₀	cis-1,2-Di-tert-butylethene					-163.6								
C ₁₀ H ₂₀	Butylcyclohexane					-263.1		345.0	271.0	-213.7				
C ₁₀ H ₂₀ O ₂	Decanoic acid	-713.7				-684.3				-594.9				
$C_{10}H_{20}O_2$	Methyl nonanoate					-616.2				-554.2				
$C_{10}H_{21}NO_2$	1-Nitrodecane					-351.5								
C ₁₀ H ₂₂	Decane					-300.9			314.4	-249.5				
C ₁₀ H ₂₂	2-Methylnonane					-309.8		420.1	313.3	-260.2				
C ₁₀ H ₂₂	5-Methylnonane					-307.9		423.8	314.4	-258.6				
C ₁₀ H ₂₂ O	1-Decanol					-478.1			370.6	-396.6				
C ₁₀ H ₂₂ O	Dipentyl ether								250.0					
C ₁₀ H ₂₂ O	Diisopentyl ether	070 *							379.0					
C ₁₀ H ₂₂ O ₂	1,10-Decanediol	-678.9							0501					
C ₁₀ H ₂₂ O ₂	Ethylene glycol dibutyl ether	200 =				070 -		470 :	350.0	011.5				
C ₁₀ H ₂₂ S	1-Decanethiol	-309.9				-276.5		476.1	350.4	-211.5				
C ₁₀ H ₂₂ S	Dipentyl sulfide					-266.4				-204.9				
C ₁₀ H ₂₂ S	Diisopentyl sulfide					-281.8				-221.5				
C ₁₀ H ₂₃ N	Octyldimethylamine	000.5				-232.8				000.4				
C ₁₁ H ₈ O ₂	1-Naphthalenecarboxylic acid	-333.5								-223.1				
C ₁₁ H ₈ O ₂	2-Naphthalenecarboxylic acid	-346.1				50.0		0540	004.4	-232.5				
C ₁₁ H ₁₀	1-Methylnaphthalene	44.0		000.0	400.0	56.3		254.8	224.4	400.7				
C ₁₁ H ₁₀	2-Methylnaphthalene	44.9		220.0	196.0					106.7				
C ₁₁ H ₁₂ N ₂ O ₂	L-Tryptophan	-415.3		251.0	238.1	F0.0				1.0				
C ₁₁ H ₁₄	1,1-Dimethylindan					-53.6 -109.7				-1.6				
C ₁₁ H ₁₆	1-tert-Butyl-3-methylbenzene					-109.7				-57.0				
C ₁₁ H ₁₆	1- <i>tert</i> -Butyl-4-methylbenzene Pentamethylbenzene	-144.6				-109.7				-67.2				
C ₁₁ H ₁₆	Spiro[5.5]undecane	-144.0				-244.5				-188.3				
C ₁₁ H ₂₀ C ₁₁ H ₂₂	1-Undecene					-244.3			344.9	-100.3				
C ₁₁ H ₂₂ O ₂	Methyl decanoate					-640.5			344.3	-573.8				
C ₁₁ H ₂₄	Undecane					-327.2			344.9	-270.8				
C ₁₁ H ₂₄ O	1-Undecanol					-504.8			011.0	210.0				
C ₁₂ F ₂₇ N	Tris(perfluorobutyl)amine					304.0			418.4					
C ₁₂ H ₈	Acenaphthylene	186.7			166.4				710.7	259.7				
C ₁₂ H ₈ N ₂	Phenazine	237.0			100.1					328.8				
C ₁₂ H ₈ O	Dibenzofuran	-5.3								83.4				
C ₁₂ H ₈ S	Dibenzothiophene	120.0								205.1				
C ₁₂ H ₈ S ₂	Thianthrene	182.0								286.0				
C ₁₂ H ₉ N	Carbazole	101.7								200.7				
C ₁₂ H ₁₀	Acenaphthene	70.3		188.9	190.4					156.0			-	
C ₁₂ H ₁₀	Biphenyl	99.4		209.4	198.4					181.4			-	
C ₁₂ H ₁₀ N ₂ O	trans-Azoxybenzene	243.4								342.0				
C ₁₂ H ₁₀ N ₂ O	N-Nitrosodiphenylamine	227.2								<u> </u>				
C ₁₂ H ₁₀ O	Diphenyl ether	-32.1		233.9	216.6	-14.9				52.0				
C ₁₂ H ₁₀ O ₂	1-Naphthaleneacetic acid	-359.2				<u> </u>				<u> </u>				
C ₁₂ H ₁₀ O ₂	2-Naphthaleneacetic acid	-371.9												
C ₁₂ H ₁₁ N	Diphenylamine	130.2								219.3				
C ₁₂ H ₁₁ N	2-Aminobiphenyl	93.8								184.4				
C ₁₂ H ₁₁ N	4-Aminobiphenyl	81.0												
C ₁₂ H ₁₂ N ₂	<i>p</i> -Benzidine	70.7												
C ₁₂ H ₁₄ O ₄	Diethyl phthalate					-776.6		425.1	366.1	-688.4				
C ₁₂ H ₁₆	Cyclohexylbenzene					-76.6				-16.7				
C ₁₂ H ₁₇ NO ₄	Diethyl 3,5-dimethylpyrrole-2,4- dicarboxylate	-916.7												
C ₁₂ H ₁₈	3,9-Dodecadiyne					197.8								
C ₁₂ H ₁₈	5,7-Dodecadiyne					181.5								
C ₁₂ H ₁₈	1- <i>tert</i> -Butyl-3,5-dimethylbenzene					-146.5								
C ₁₂ H ₁₈	Hexamethylbenzene	-162.4		306.3	245.6					-77.4				
C ₁₂ H ₂₂	Cyclohexylcyclohexane					-273.7				-215.7				
C ₁₂ H ₂₂ O ₄	Dodecanedioic acid	-1130.0								-976.9				

C.H.A.B. Forestation Section		Name		Cry	stal			Liq	uid		Gas				
Publishment				•		<i>C_p</i> J/mol K								<i>C₀</i> J/mol K	
Sept. Selections		Sucrose													
Col.		<u>'</u>	-2236.7												
Col.									484.8	360.7					
Colling Coll			-774.6			404.3									
College Secure consistence Secure Secure			04044				-665.2				-593.8				
College		<u> </u>	-2484.1				044.7				000.0				
Company Section Sect															
C-PA-CO										275.0					
Cyt_LNA Debryshers given disting either 2816 Cyt_LPALNA Titols gebrassen 2816 Cyt_LPALO Titols gebrassen 2816 Cyt_LPALO Titols gebrassen 2818 Cyt_LPALO Authories 1915 2739 Cyt_LPALO Restriction 1910 2739 Cyt_LPALO Best Planteners 1890 2013 2031 1730 1731 Cyt_LPALO Best Planteners 1952 2248 2489 2013 2010 1731 Cyt_LPALO 9-Authorises 1755 2818 887 1900 1731 Cyt_LPALO 9-Authorises 1755 2818 887 1900 1731 Cyt_LPALO 9-Authorises 1755 2818 887 1900 1900 Cyt_LPALO 9-Authorises 1755 2818 887 1900 1900 Cyt_LPALO 1740 1740 1740 1740 1740 1740 1740 1740 1740															
C.J.J.L.J.C.P This plantame							-528.5				-430.0				
Company Comp							201.6			432.0					
Cyl.Joh. Xanthore -1915 Cyl.Joh. Phosphatin (inc.) 273 Cyl.Joh. Phesaphtrione 1419 Cyl.Joh. Phesaphtrione 1419 Cyl.Joh. 98-Fluoree 389 2073 2831 1750 1731 Cyl.Joh. 98-Fluoree 389 2073 2831 1750 1731 Cyl.Joh. 98-Fluoree 345 248 549 2010 Cyl.Joh. 98-Fluoree 715 2383 897 1890 Cyl.Joh. 100-phesymethatee 715 2383 897 1890 Cyl.Joh. 101-flaceanee 2709 1890 1990 Cyl.Joh. 11-flaceanee 2703 4673 1890 Cyl.Joh. 11-flaceanee 4033 4674 1407 Cyl.Joh. 11-flaceanee 4033 4677 468 Cyl.Joh. 11-flaceanee 4052 2075 467 Cyl.Joh. 11-flaceanee 4075 408							-201.0			370 /					
C_1AN		* ' '	-101 5							313.4					
C_HAM Percentifyinge 119 2805 C_HA 9FF incore 89 9 2073 2331 1750 1751 C_HA, M. 9 F incore 89 9 2073 2331 1750 1751 C_HA, M. 9 F incore -345 248 548											273 0				
C.H.M. BernotPlanionine 150 B 233 Z C.H.M. 9-Herrore 99 2073 283 I 1750 173.1 C.H.M. 9-Actificamine 159 Z 192 Z 193 Z <td></td>															
C.H. Service Service															
C.μ.H., D. Brace propersore 34.5 24.5 54.9 C.μ.H., D. Perceptioners 34.5 24.5 54.9 C.μ.H., D. Diphesylmetholic 101.4 201.0 C.μ.H., D. Option pulsariants 71.5 28.9 86.7 139.0 C.μ.H., D. Tridecardiolic and -14.3					207.3	203.1								173 1	
C, H, M, O. Benzophenone 34.5 24.8 54.9 C, H, N, O. Ophreymentane 71.5 293.3 89.7 139.0 C, H, A. Ophreymentane 71.5 293.3 89.7 139.0 C, H, A., O. Aft-Deminoiliphenymentane 270.9					201.0	200.1									
C.H.H. 9-Methyl-9-H-statusele 171.5 293.3 89.7 138.0 C.H.H. Methyl-pherimetrane 171.5 293.3 89.7 138.0 C.H.H., Methyl-pherimetrane 101.4 270.9 4.0 1.0						224.8					54.9				
C.H.H. No. Petersylamilare 71.5 299.3 89.7 159.0 C.H.H.N No. Petersylamilar 101.4 270.9 C.H.H.N O. H. A. Commodiphenylmethane 270.9 391.8 C.H.H. O. Thodocane on The Commodity of Contactance of of Cont		· · · · · · · · · · · · · · · · · · ·													
C, H, M, AP, Lower Common Continuous Common Commo					239.3		89.7								
C. J.H., D. J. Fidecamed or and control or collection and															
C ₁ H ₂ b ₁ - 1-indiceane of C ₂ H ₃ b ₂ b ₃ b ₄						270.9									
C ₁ H ₂ O ₂ H-fidecame 3918 C ₃ H ₂ O ₂ Titlescanus -6930 -6149 C ₃ H ₂ O ₂ Titlescanus -6930 -6149 C ₃ H ₂ O ₂ 1-finescanus -6930 -6149 C ₄ H ₂ O ₂ 1-finescanus -757 -757 C ₄ H ₂ O ₂ 1-finescanus -1563 -757 C ₄ H ₂ O ₂ 1-finescanus -1563 -4717 C ₄ H ₂ O ₃ 1-finescanus 1563 -4717 C ₄ H ₂ O ₃ 1-finescanus 1162 2151 220 5 220 9 C ₄ H ₂ O ₃ 1-finescanus 1162 2151 220 5 220 5 220 5 C ₄ H ₂ O ₃ 1-finescanus 1162 2151 220 6 220 5 220 5 C ₄ H ₂ O ₄ 1-finescanus 1162 2151 220 6 220 5 220 5 C ₄ H ₂ O ₄ 2-finescanus 1-fiss 3 252 3 223 3 222 3 C ₄ H ₂ O ₄ 2-finescanus 1-fiss 3 252 3 252 3 25		Tridecanedioic acid	-1148.3												
C ₁ H ₂ D ₁ Mintry doctoranote 693.0 6149 C ₂ H ₂ D ₂ 1-Tridecanol -599.4 -575.7 C ₃ H ₂ D ₂ 1-Tridecanol -188.5 -75.7 C ₄ H ₂ D ₂ 10-Phremathrenedione -186.7 -46.6 C ₄ H ₂ D ₂ 14-Dihydroxy-9.10 -595.8 -471.7 C ₄ H ₁ Phramathrenedione 116.2 215.1 220.6 207.5 C ₄ H ₁ Phramathrene minore 116.2 215.1 220.6 207.5 C ₄ H ₁ Phramathrene minore 116.2 215.1 220.6 207.5 C ₄ H ₁ Phramathrene minore 116.2 215.1 220.6 207.5 C ₄ H ₂ Phramathrene minore 116.2 215.1 220.6 207.5 C ₄ H ₂ Diphenylerbare 316.3 252.3 220.1 220.1 C ₄ H ₂ 1.5 Diphenylerbare 188.3 252.3 220.1 C ₄ H ₂ 1.5 Die Nebulylerone 51.5 48.7 48.7 C ₄ H ₂ 1.5 Die Neb		1-Tridecene								391.8					
C _i ,H _Q , O _i 1-fridecaniol -599.4 C _i ,H _Q , O _i 9.10-Phenanthrenedione -188.5 -75.7 C _i ,H _Q , O _i 14-Dihydrovy 9.10595.8 -46.6 C _i ,H _Q , O _i 14-Dihydrovy 9.10471.7 -471.7 C _i ,H _Q , O _i Anthracenetione 199.2 207.5 210.5 200.9 C _i ,H _Q , O _i Benzol 116.2 215.1 220.6 207.5 C _i ,H _Q , O _i Benzol 115.3 225.9		Methyl dodecanoate					-693.0				-614.9				
C ₁ ,H ₁ O ₂ 9.10-Anthracendrone -158.5 -75.7 C ₁ ,H ₁ O ₂ 9.10-Pienanthrecedone -154.7 -46.6 C ₁ ,H ₁ O ₂ 1.4-Dilydroxy-1.10-anthracencedone -585.8 -471.7 C ₁ ,H ₁ O ₂ Phanthracence 129.2 207.5 210.5 230.9 C ₁ ,H ₁ O ₂ Openations of the process of the	C ₁₃ H ₂₈	Tridecane								406.7					
C ₁ H ₁ O ₁ 9.10-Phonamthronedione -154 7 -46.6 C ₁ H ₁ O ₂ 1.4-Dilydroxy-9.10-arthracenedione -595.8 471.7 C ₁ H ₂ O ₃ Anthracene 129.2 207.5 210.5 230.9 C ₁ H ₂ O ₃ Benalthree 116.2 215.1 220.6 207.5 C ₁ H ₂ O ₃ Benazil -153.9 -55.5 -55.5 C ₁ H ₂ O ₃ Benazil -153.9 -55.5 -261.7 C ₁ H ₂ O ₃ Benazil provide -399.4 -83.3 252.3 C ₁ H ₂ O ₄ 2.5-Silbene 183.3 252.3 C ₁ H ₂ O ₄ 2.5-Instruction 183.3 252.3 C ₁ H ₂ O ₄ 1.5-Diphreylethane 51.5 183.8 29.3 C ₁ H ₂ O ₄ 1.5-Distributylethane 51.5 188.8 142.9 C ₁ H ₂ O ₄ 1.5-Distributylethane 51.5 188.8 -42.0 142.9 C ₁ H ₂ O ₄ 1.5-Distributylethane 51.5 2.20.2 -174.9 -1.20.2 -1.20.2 -1.20.2 -1.20.	C ₁₃ H ₂₈ O	1-Tridecanol	-599.4												
C ₁ ,H ₁ O ₂ 14-Dillydroxy-9-10-arithmene dinteremediations 471.7 C ₁ ,H ₁ O ₂ Anthracene 129.2 207.5 210.5 230.9 C ₁ ,H ₁ O ₂ Pheranthrene 116.2 215.1 220.6 207.5 C ₂ ,H ₁ O ₂ Benzil 116.2 215.1 220.6 207.5 C ₂ ,H ₂ O ₃ Benzil -153.9 25.5 5.5 C ₂ ,H ₂ O ₃ Benzil -153.9 25.5 2.281.7 C ₂ ,H ₂ O ₃ 6x8 Silitene -369.4 -281.7 2.281.7 C ₃ ,H ₂ O ₄ tossilitene 136.9 -281.7 2.281.7 C ₃ ,H ₄ O ₄ 1.10 pilenyletihane 48.7 -281.7 C ₃ ,H ₄ O ₄ 1.20 pilenyletihane 51.5 -168.8 -74.2 C ₃ ,H ₄ O ₄ 1.20 pilenyletihane 51.5 -188.8 -74.2 C ₃ ,H ₄ O ₄ 1.20 pilenyletihane 51.5 -260.2 -174.9 C ₃ ,H ₄ O ₂ 1.20 pilenyletihane -31.2 -32.2 -174.9 C ₃ ,H ₄ O ₂ <			-188.5								-75.7				
C ₁ ,H ₁₀ Anthracenedione 129.2 207.5 210.5 230.9 C ₁ ,H ₁₀ Pheranthrune 116.2 215.1 220.6 207.5 C ₁ ,H ₁₀ Dipherylacelyline 312.4 225.9	C ₁₄ H ₈ O ₂		-154.7												
C _μ H _μ Phenantmene 116.2 215.1 220.6 275.5 C _μ H _μ O _μ Dipterylacetylene 312.4 225.9 C _μ H _μ O _μ Bernzil -55.5 -55.5 C _μ H _μ O _μ Bernzil peroxide -369.4 -261.7 C _μ H _μ c/5 Silbene 136.9 -826.1 C _μ H _μ 1.1-Dipersylethane 136.9 -826.1 C _μ H _μ 1.3-Di-ter/butylebrane 51.5 -88.8 C _μ H _μ 1.3-Di-ter/butylebrane -18.8 -18.8 C _μ H _μ O _μ 1.3-Di-ter/butylebrane -212.0 -188.8 -89.7 C _μ H _μ O _μ 1.3-Di-ter/butylebrane -225.2 -25.0 -174.9 -89.6 C _μ H _μ O _μ 1.4-Di-ter/butylebrane -225.2 -25.0 -174.9 -89.3 C _μ H _μ O _μ 1.4-Di-ter/butylebrane -225.0 -25.0 -174.9 -89.3 C _μ H _μ O _μ 2.2-Es (Si-Hybroypher) -260.2 -174.9 -855.3 -89.7 C _μ H _μ O _μ 2.2-Es (Si-Hybroyphery) -		anthracenedione													
C ₁ H ₁₀ Dipherylacetylene 312.4 225.9 C ₁ H ₂ O ₂ Benzil -153.9 -55.5 C ₂ H ₂ O ₃ Benzil peroxide -369.4 -261.7 C ₁ H ₂ 26 Benzyl peroxide -369.4 -261.7 C ₁ H ₂ 17 Benzyl peroxide -369.4 -261.7 C ₁ H ₂ 17 Dipherylethane 183.3 252.3 C ₁ H ₄ 1.2 Dipherylethane 48.7 -260.1 C ₁ H ₄ 1.2 Dipherylethane 51.5 -188.8 C ₁ H ₂ 1.4 Di-12-tr-Duylybenzee -212.0 -268.8 C ₁ H ₂ 1.4 Di-12-tr-Duylybenzee -212.0 -271.7 C ₁ H ₂ 1.4 Di-12-tr-Duylybenzee -212.0 -271.7 C ₁ H ₂ 1.4 Di-12-tr-Duylybenzee -212.0 -271.7 C ₁ H ₂ 2.2 Bisk-1 Divitybenzee -212.0 -174.9 -635.3 C ₁ H ₂ 3.6 Divitybenzee -225.6 38.0 -580.6 -583.7 -693.7 C ₁ H ₂ O ₂ 4.5 Divitybenzee -2.2 Bisk-1 Divitybenzee -2.2 B															
C _u H ₀ O ₂ Benzil -153.9 -55.5 C _u H ₁₀ O ₄ Benzol proxide -369.4 -281.7 C _u H ₁₂ Arans-Silibene 183.3 252.3 C _u H ₁₂ Arans-Silibene 136.9 -281.7 C _u H ₁₄ 1.1-Diphenylethane 51.5 -88.7 C _u H ₂ 1.3-Di-ter/bulybenzene -188.8 -142.9 C _u H ₂ N ₂ O ₁₀ 1.4-Di-ter/bulybenzene -210.0 -281.2 C _u H ₂ N ₂ O ₁₀ Pentelic acid -222.5 -281.2 C _u H ₂ N ₃ O ₁₀ Pentelic acid -333.5 432.0 -788.8 -693.7 C _u H ₃ O ₂ O ₁ Bertadecanolic acid -833.5 432.0 -788.8 -693.7 C _u H ₃ O ₂ O ₂ Deributyl-tridecanol -629.6 388.0 -580.6 -583.3 C _u H ₃ O ₂ O ₂ Deributyl-tridecanol -629.6 388.0 -580.5 -583.3 C _u H ₃ O ₂ O ₂ 2.5-Left-bulyl-tridecanol -629.6 388.0 -580.5 -580.5 C _u H ₃ O ₂ O ₂ -15-Left-bulyl-tridecanol<					215.1						207.5				
C _t ,H ₁₀ Q _t Berzoryl peroxide -369.4 -281.7 C _{tt} H ₁₂ cis-Silibene 136.9 183.3 252.3 C _{tt} H ₁₄ 1.1-Diphenylethane 48.7		· · ·				225.9									
C _t H ₁₂ cis-Stilbene 183.3 252.3 C _{tt} H ₁₄ 1.1-Ophenylethane 48.7 236.1 C _{tt} H ₁₄ 1.2-Ophenylethane 51.5 48.7 142.9 C _{tt} H ₂₄ 1.2-Ophenylethane 51.5 -188.8 -12.2 C _{tt} H ₂₂ 1.3-Or-Ier-Dutylbenzene -212.0 -22.2 -22.2 -22.2 C _{tt} H ₂₅ N ₂ Perteit caid -225.2 -250.2 -174.9 -260.2 -174.9 C _{tt} H ₂₅ O ₂ Perteit caid -833.5 432.0 -788.8 -693.7 -693.7 C _{tt} H ₂₅ O ₂ Methyl tridecanole -835.5 432.0 -788.8 -693.7 -693.7 C _{tt} H ₂₅ O ₂ Methyl tritadecanol -835.5 483.0 -580.6 -583.7 -693.7 C _{tt} H ₂₅ O ₂ 22-Bis(4-hydroxyphenyl)propane -686.6 388.0 -580.6 -580.6 -771.9 -695.3 C _{tt} H ₂₅ O ₂ 22-Bis(4-hydroxyphenyl)propane -686.6 388.0 -580.6 -774.9 -696.3 C _{tt} H ₂₅ O ₂															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-369.4				100.0								
C _{kl} H ₁₄ 1,1-Diphenylethane 51.5 48.7 C _{kl} H ₁₂ 1,2-Diphenylethane 51.5 142.9 C _{kl} H ₂₂ 1,3-Di- Iert-bulybenzene -212.0 C _{kl} H ₂₂ 1,4-Di- Iert-bulybenzene -212.0 C _{kl} H ₂₃ N ₂ Pentel caid -2225.2 C _{kl} H ₂₃ N ₂ Pentel caid -225.2 C _{kl} H ₂₃ N ₂ Tetradecanolic acid -833.5 432.0 -788.8 -693.7 C _{kl} H ₂₃ O ₂ Methyl tridecanoate -717.9 -635.3 C _{kl} H ₃₀ O ₂ 22-Bis(4-hydroxyphenyl)propane -366.6 -717.9 -635.3 C _{kl} H ₃₀ O ₂ 22-Bis(4-hydroxyphenyl)propane -366.6 -717.9 -635.3 C _{kl} H ₃₀ O ₂ 22-Bis(4-hydroxyphenyl)propane -366.6 -717.9 -635.3 C _{kl} H ₃₀ O ₂ 22-Bis(4-hydroxyphenyl)propane -366.6 -717.9 -296.9 C _{kl} H ₃₀ O ₃ 2.5 Di- Ierb-Luyl-4-methylphenol -410.0 -43.2 -296.9 C _{kl} H ₃₀ O ₃ Decylcyclopertane -243.3 -811.7 -699.0			100.0				183.3								
Cut high 1,2-Dipherylethane 51.5 142.9 Cut high 1,3-Di-Fer/ butylbenzene -188.8 -188.8 Cut high 1,4-Di-Fer/ butylbenzene -212.0 -200.2 -174.9 Cut high Pentelic acid -2225.2 -260.2 -174.9 Cut high Pentelic acid -280.2 -174.9 Cut high Pentelic acid -833.5 432.0 -788.8 -693.7 Cut high 1-Tetradecanolic acid -629.6 388.0 -580.6 -693.7 Cut high 2 2.2-Bis(4-hydroxyphenyl)propane -368.6 -580.6 -580.6 Cut high 2 2.2-Bis(4-hydroxyphenyl)propane -368.6 -369.0 -296.9 Cut high 2 2.2-Bis(4-			130.9				10.7				230.1				
C ₁₄ H ₂₂ 1,3-Di-tert-buty/benzene -188.8 C ₁₄ H ₂₂ N ₂ 1,4-Di-tert-buty/benzene -212.0 C ₁₄ H ₂₂ N ₃ 0 ₁₀₀ Pentetic acid -225.2 C ₁₄ H ₂₂ N ₃ 0 Tetradecanenitrile -260.2 -174.9 C ₁₄ H ₂₂ O ₂ Tetradecanoic acid -833.5 432.0 -788.8 -693.7 C ₁₄ H ₂₂ O ₂ Methyl tridecanoate -629.6 386.0 -580.6 -580.6 C ₁₅ H ₁₆ O ₂ 2,2-Bis(4-hydroxypheryl)propane -686.6 -717.9 -635.3 C ₁₅ H ₂₀ O ₃ 2,2-Bis(4-hydroxypheryl)propane -686.6 -717.9 -635.3 C ₁₅ H ₂₀ O ₃ 2,2-Bis(4-hydroxypheryl)propane -686.6 -717.9 -635.3 C ₁₅ H ₂₀ O ₃ 2,2-Bis(4-hydroxypheryl)propane -686.6 -717.9 -685.3 C ₁₅ H ₂₀ O ₃ 2,2-Bis(4-hydroxypheryl)propane -286.6 -296.0 -296.9 C ₁₅ H ₂₀ O ₃ 2,6-Di-tert-butyl-4-methylpherone -245.8 -296.9 -296.9 C ₁₅ H ₂₀ O ₃ Decylcyclopentane -367.3 -443.3 -811.7 -699.0 -699.0 C ₁₅ H ₂₀ O ₃ Methyl tertadecanoal			E1 E				40.7				142.0				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C LI	100:441	31.3				100 0				142.9				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		· · · · · · · · · · · · · · · · · · ·	-212 N				-100.0								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		<u> </u>													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2220.2				-260.2				-17 <u>/</u> Q				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CHO.		-833.5			432.0									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			000.0			102.0									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		· · · · · · · · · · · · · · · · · · ·	-629 6			388.0					000.0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C15H16O2														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											-296.9				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$, , , , , , , , , , , , , , , , , , , ,					-367.3								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₁₅ H ₃₀ O ₂		-861.7			443.3					-699.0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-658.2												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₁₆ H ₁₀	Fluoranthene			230.6	230.2					289.0				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Pyrene	125.5		224.9	229.7					225.7				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₁₆ H ₂₂ O ₄	Dibutyl phthalate					-842.6				-750.9				
C_{16} H ₂₂ O ₁₁ β-D-Glucose pentaacetate -2232.6 C_{16} H ₂₆ Decylbenzene -218.3 -138.6 C_{16} H ₃₂ 1-Hexadecene -328.7 587.9 488.9 -248.4 C_{16} H ₃₂ O ₂ Hexadecanoic acid -891.5 452.4 460.7 -838.1 -737.1 C_{16} H ₃₂ O ₂ Methyl pentadecanoate -771.0 -680.0	C ₁₆ H ₂₂ O ₁₁	α-D-Glucose pentaacetate													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₁₆ H ₂₂ O ₁₁	β-D-Glucose pentaacetate	-2232.6												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Decylbenzene													
$C_{16} H_{32} O_2$ Methyl pentadecanoate -771.0 -680.0	C ₁₆ H ₃₂	1-Hexadecene							587.9	488.9					
			-891.5		452.4	460.7									
C₁6H₃Br 1-Bromohexadecane -444.5 -350.2	C ₁₆ H ₃₂ O ₂														
	C ₁₆ H ₃₃ Br	1-Bromohexadecane					-444.5				-350.2				

	Name			Liq	Juid		Gas						
Molecular formula		Δ₁ H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	Δ₁ G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K	Δ _f H° kJ/mol	∆ _f G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K
C ₁₆ H ₃₄	Hexadecane		,	-,	-,	-456.1	,	-,	501.6	-374.8	,	-,	-,
C ₁₆ H ₃₄ O	1-Hexadecanol	-686.5			422.0					-517.0			
C ₁₆ H ₃₆ IN	Tetrabutylammonium iodide	-498.6											
C ₁₇ H ₃₄ O ₂	Heptadecanoic acid	-924.4			475.7	-865.6							
C ₁₈ H ₁₂	Benz[a]anthracene	170.8								293.0			
C ₁₈ H ₁₂	Chrysene	145.3								269.8			
C ₁₈ H ₁₄	o-Terphenyl			298.8	274.8			337.1	369.1				
C ₁₈ H ₁₄	<i>p</i> -Terphenyl	163.0		285.6	278.7					279.0			
C ₁₈ H ₁₅ N	Triphenylamine	234.7								326.8			
C ₁₈ H ₁₅ O ₄ P	Triphenyl phosphate			397.5	356.2								
C ₁₈ H ₁₅ P	Triphenylphosphine				312.5								
C ₁₈ H ₃₀	1,3,5-Tri- <i>tert</i> -butylbenzene	-320.0											
C ₁₈ H ₃₄ O ₂	Oleic acid								577.0				
C ₁₈ H ₃₄ O ₄	Dibutyl sebacate								619.0				
C ₁₈ H ₃₆ O ₂	Stearic acid	-947.7			501.5	-884.7				-781.2			
C ₁₈ H ₃₇ CI	1-Chlorooctadecane					-544.1				-446.0			
C ₁₈ H ₃₈	Octadecane	-567.4		480.2	485.6					-414.6			
C ₁₈ H ₃₉ N	Trihexylamine					-433.0							
C ₁₉ H ₁₆ O	Triphenylmethanol	-2.5											
C ₁₉ H ₃₆ O ₂	Methyl oleate					-734.5				-649.9			
C ₁₉ H ₃₆ O ₂	Methyl trans-9-octadecenoate					-737.0							
C ₂₀ H ₁₂	Perylene	182.8		264.6	274.9								
C ₂₀ H ₁₂	Benzo[a]pyrene												254.8
C ₂₀ H ₁₄ O ₄	Diphenyl phthalate	-489.2											
C ₂₀ H ₃₈ O ₂	Ethyl oleate					-775.8							
C ₂₀ H ₃₈ O ₂	Ethyl <i>trans</i> -9-octadecenoate					-773.3							
C ₂₀ H ₄₀ O ₂	Eicosanoic acid	-1011.9			545.1	-940.0				-812.4			
C ₂₁ H ₂₁ O ₄ P	Tri-o-cresyl phosphate			570.0	578.0								
C ₂₂ H ₁₄	Dibenz[a,h]anthracene												283.9
C ₂₂ H ₄₂ O ₂	trans-13-Docosenoic acid	-960.7											
C ₂₂ H ₄₂ O ₂	Butyl oleate					-816.9							
C ₂₂ H ₄₄ O ₂	Butyl stearate												
C ₂₄ H ₃₈ O ₄	Bis(2-ethylhexyl) phthalate								704.7				
C ₂₄ H ₅₁ N	Trioctylamine					-585.0							
C ₂₆ H ₁₈	9,10-Diphenylanthracene	308.7								465.6			
C ₂₆ H ₅₄	5-Butyldocosane					-713.5				-587.6			
C ₂₆ H ₅₄	11-Butyldocosane					-716.0				-593.4			
C ₂₈ H ₁₈	9,9'-Bianthracene	326.2								454.3			
C ₃₁ H ₆₄	11-Decylheneicosane					-848.0				-705.8			
C ₃₂ H ₆₆	Dotriacontane	-968.3								-697.2			
C ₆₀	Carbon (fullerene-C ₆₀)	2327.0	2302.0	426.0	520.0					2502.0	2442.0	544.0	512.0
C ₇₀	Carbon (fullerene-C ₇₀)	2555.0	2537.0	464.0	650.0					2755.0	2692.0	614.0	585.0