The Poincaré Disk D

HEGL Seminar

Phil Neitzel

3rd November 2021

Important Definitions

Definition 1 (Set of the Poincaré disk).

$$\mathbb{D} = \{ z \in \mathbb{C} | |z| < 1 \}$$

Definition 2 (Line element). Let $z \in \mathbb{C}$ with z := x + iy then the line element is defined as

$$ds_{\mathbb{D}}^{2} := \frac{(dx^{2} + dy^{2})}{(1 - (x^{2} + y^{2}))^{2}}$$

Definition 3 (Length of a curve). Let $\gamma:[a,b]\to\mathbb{D}$ be a curve with $\gamma(t)=x(t)+iy(t)\in\mathbb{D}$

$$\int_{a}^{b} \frac{2}{1 - x^2 - y^2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

Definition 4 (Distance). Given two points $z_0, z_1 \in \mathbb{D}$ we can calculate the distance $dist_{\mathbb{D}}(z_0, z_1)$ using one of these formulas¹:

$$dist_{\mathbb{D}}(z_0, z_1) = arcosh\left(+\frac{2|z_0 - z_1|^2}{(1 - |z_0|^2)(1 - |z_1|^2)}\right)$$
(1)

$$dist_{\mathbb{D}}(z_0, z_1) = \frac{1}{2} |log(u : v : z_0 : z_1)| \tag{2}$$

We consider the unique circle orthogonal to the unit disk \mathbb{D} that contains z_0 and z_1 . This circle meets the unit circle in two points u and v.

Definition 5 (Cayley transformation). The transformation

$$C:\mathbb{H}\to\mathbb{D}$$

$$z \mapsto \frac{z-i}{z+i}$$

with it's inverse

$$C^{-1}: \mathbb{D} \to \mathbb{H}$$
 $w \mapsto i \left(\frac{1+w}{1-w}\right)$

is called Cayley Transformation and it is an isometry between the two models of the hyperbolic plane \mathbb{H} and \mathbb{D} .

 $^{^{1}\}text{We}$ are using the cross ratio $[x:y:z:t] = \frac{z-x}{z-y} \cdot \frac{t-y}{t-x}$

Geodesics

In general the geodesics of the Poincaré disk are the intersections of \mathbb{D} with circles in $\hat{\mathbb{R}}^2$ that are orthogonal to $\partial \mathbb{D}$.

Figure 1: Geodesics in $\mathbb D$

Triangles

A triangle on \mathbb{D} consist of three geodesics meeting each other in three different points. An Ideal triangle consist of three geodesics meeting in three points on $\partial \mathbb{D}$ and hence has all angles equal to zero.

Figure 2: different triangles in \mathbb{D}

Angles

Angles on \mathbb{D} are the euclidean angles between the tangents of two geodesics in the point they meet.

Figure 3: Different angles between the tangents of two geodesics

Horocycles

In the Pioncaré disk model horocycles are represented by circles tangent to \mathbb{D} , the centre of the horocycle is the ideal point where the horocycle touches $\partial \mathbb{D}$. Since the ideal point isn't inside \mathbb{D} it's not part of the horocycle. In general a Euclidean Circle that is inside the disk and touches $\partial \mathbb{D}$ is a horocycle.

Figure 4: Example of Horocycles and an ideal point A