

Федеральное государственное бюджетное образовательное учреждение высшего образования «Белгородский государственный технологический университет им. В.Г. Шухова» (БГТУ им. В.Г. Шухова)

Представление на соискание учёной степени кандидата технических наук по специальности 2.3.8 Информатика и информационные процессы

Разработка методов интеллектуального анализа данных на основе нечетких систем при несинглтонной фаззификации

Выступающий: С.А. Каратач Руководитель: к. т. н.., проф. В.Г. Синюк

Белгород, 2025

Положения, выносимые на защиту

- Результаты расчёта этого путём таким-то.
- Результаты разработки того.
- И ещё . . .
- ...пару пунктов.

1 Списки

Нумерованные Не нумерованные Комбинированные

2 Графика

Расположение Линии

3 Остальное

Формулы Таблицы Разное

Списки

Нумерованные списки

- ① один
- 2 два
- 3 три

Перечисления

- Проблема 1
- Проблема 2
- Проблема 3

Комбинация списков

- 0 Задача 1
 - Подзадача 1-1
 - Подзадача 1-2
- Задача 2
 - Подзадача 2-1
 - Подзадача 2-2
 - Подзадача 2-3
- 3 Задача 3
 - Подзадача 3-1
 - Подзадача 3-2
 - Подзадача 3-3

Разделение слайда |

Поясняющий текст

- Один
- Два
- Три

Разделение слайда II

Продолжение предыдущего слайда

Графика

Изображения по-горизонтали

Составная подпись 1

Составная подпись 2

Разделяющие линии

Составная подпись 1

Составная подпись 2

Остальное

$$\begin{cases} \dot{x} = \sigma(y - x) \\ \dot{y} = x(r - z) - y \\ \dot{z} = xy - bz \end{cases}$$

amsmath

$$y = 1x^{1} + 2x^{2} + 3x^{3} + 4x^{4} + 5x^{5} + \dots$$

Уравнения Максвелла I

Интегральная форма	Дифференциальная форма
$Q_e(t) = \iint_S \vec{D}(t) \cdot d\vec{s} = \iiint_V \rho_v(t) dv$	$\nabla \cdot \vec{D}(t) = \rho_v(t)$
$\oiint_S ec{B}(t) \cdot dec{s} = 0$	$\nabla \cdot \vec{B}(t) = 0$
$V_{emf}(t) = \oint_{L} \vec{E}(t) \cdot d\vec{l} = -\iint_{S} \left[\frac{\partial \vec{B}(t)}{\partial t} \right] \cdot d\vec{s}$	$ abla imes ec{E}(t) = -rac{\partial ec{B}(t)}{\partial t}$
$I(t) = \oint_L \vec{H}(t) \cdot d\vec{l} = \iint_S \left[\vec{J}(t) + \frac{\partial \vec{D}(t)}{\partial t} \right] \cdot d\vec{s}$	$ abla imes ec{H}(t) = ec{J}(t) + rac{\partial ec{D}(t)}{\partial t}$
$ \oint \int_{S} \vec{J} \cdot d\vec{s} = -\frac{\partial Q_{e}}{\partial t} $	$ abla \cdot \vec{J} = -rac{\partial ho_v}{\partial t}$

$$\vec{D}(t) = [\varepsilon(t)] * \vec{E}(t)$$

$$\vec{B}(t) = [\mu(t)] * \vec{H}(t)$$

Интегральная форма	Дифференциальная форма
$Q_e = \iint_S \vec{D} \cdot d\vec{s} = \iiint_V \rho_v dv$	$ abla \cdot \vec{D} = ho_v$
$\iint_{S} \vec{B} \cdot d\vec{s} = 0$	$\nabla \cdot \vec{B} = 0$
$V_{emf} = \oint_L \vec{E} \cdot d\vec{l} = -\iint_S \left[j\omega \vec{B} \right] \cdot d\vec{s}$	$\nabla \times \vec{E} = -j\omega \vec{B}$
$I = \oint_L \vec{H} \cdot d\vec{l} = \iint_S \left[\vec{J} + j\omega \vec{D} \right] \cdot d\vec{s}$	$\nabla \times \vec{H} = \vec{J} + j\omega \vec{D}$
$\iint_{S} \vec{J} \cdot d\vec{s} = -j\omega Q_{e}$	$ abla \cdot \vec{J} = -j\omega ho_v$

$$\vec{D}(t) = [\varepsilon] \, \vec{E}(t)$$

$$\vec{B}(t) = [\mu]\,\vec{H}(t)$$

Таблица

Заголовок 1	Заголовок 2
Сумма	b+a
Разность	a-b
Произведение	a * b

Заголовок 1	Заголовок 2
Сумма	b+a
Разность	a-b
Произведение	a*b

Большой многоуровневый список

- Пункт 1
 - ✓ Подпункт 1-1
 - ✓ Подпункт 1-2
- Пункт 2
 - ✓ Подпункт 2-1
- Пункт 3
 - ✓ Подпункт 3-1
 - ✓ Подпункт 3-2
- Пункт 4
 - ✓ Подпункт 4-1
- Пункт 5
 - √ Подпункт 5-1
 - √ Подпункт 5-2
 - √ Подпункт 5-3

Научная новизна

- Впервые реализован . . .
- Разработана программа . . .
- Впервые проведён анализ . . .
- Предложена схема . . .

Научная и практическая значимость

- Получены выражения для
- Определены условия
- Разработаны устройства

Свидетельство о регистрации программы

Образен для заполнения акта о внедрения

УТВЕРЖДЬЮ УТВЕРЖДЬЮ УТВЕРЖДЬЮ Румоверкого развителем Развителем Развителем Соответствую и вересправник прирамента, того утвержения догодальства узыварентей догодальства (полиже). (полиже) (полиже)

AKT

Гербовая печать

о впедрении (использовании) результитов

- научной и инпоминенный деятельности
- Источник предложения (диссертация, дишемная работа, курсовая работа, научное неследование и др.)
- 3. Название объекта внедрения

1. Автор (соляторы) внедрения (ФИО полностью)

Гербовая печать

- 4. Наименование оптинграции, где используются петультаты исследования
- 5. Дата начала отсчета виспрения
- Заключение об эффективности инедрения (использование умаливиех результатов познолет: позысить клюстно граситирования и эффективность ...: повысить клюство предсеставления уклуг; совращить заграты на проведение работ; повысить производительность труда при...; повысить уровены подготовки... и др.)

Руковедитать поархідальник, из которого находит внадраню (ФИО, далжность, подпись)

Ответственный за виспрение (из чисах авторов, ФИО, должность, подпись)

Основные публикации

Участие в конференциях

- Научная сессия МГУ, Москва 2013–2015;
- XXIV Russian Conference (RuC 2014), Obninsk, Russia, 2014
- VII International Conference (IAC 16), Busan, Korea, 2016;
- XXVIII Other Conference (AC 16), East Lansing, MI USA, 2016;
- •

Спасибо за внимание!

Ответы на замечания ведущей организации НИИ «Рога и копыта»

- Замечание ответ

Ответы на замечания оф. оппонента Иванова И. И

- Замечание ответ

Ответы на замечания Петрова П. П

- Замечание ответ
- Замечание ответ
- Замечание ответ
- Замечание ответ
- Замечание ответ