Exam 3 - Question 2

$Adam\ McQuistan$

Sunday, May 01, 2016

Problem 2 - 8.37

For this problem Y is total serious crime divided by total population (X9 / X4), X_1 will be population density (X4 / X3) and, X_2 will be unemployment rate (X13).

The dataset

Variable	Description
X1	County
X2	State
X3	Land area
X4	Population
X5	Percent of population 18-34
X6	Percent of population older than 65
X7	Number of physicians
X8	Number of hospital beds
X9	Total serious crimes
X10	Percent highschool graduates
X11	Percent bachelors degrees
X12	Percent below poverty level
X13	Percent unemployment
X14	Per capita income
X15	Total personal income
X16	Geographic region

```
df <- read.csv(file="data/8.37.csv")
df$Y <- df$X9 / df$X4; df$X_1 <- df$X4 / df$X3; df$X_2 <- df$X13
summary(df[,c("Y","X_1", "X_2")])</pre>
```

```
Y
                                                 X_2
##
                             X_1
##
           :0.004601
                                   13.26
                                                   : 2.200
    Min.
                       Min.
                                           Min.
    1st Qu.:0.038102
                        1st Qu.:
                                  192.34
                                            1st Qu.: 5.100
   Median :0.052429
                       Median :
                                  335.91
                                            Median : 6.200
##
    Mean
           :0.057286
                        Mean
                                  888.44
                                                   : 6.597
                                            Mean
    3rd Qu.:0.072597
                                  756.55
                                            3rd Qu.: 7.500
##
                        3rd Qu.:
##
   Max.
           :0.295987
                        Max.
                               :32403.72
                                                   :21.300
                                            Max.
```

Part A

Fit a second-order regression model. Plot the residuals against the fitted values. How well does the model appear to fit the data? What is R squared?

The Model

7

8

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{11} X_1^2 + \beta_{22} X_2^2 + \beta_{12} X_1 X_2 + \varepsilon$$

First the inputs need to be centered to aleviate effects of multi-collinearity____

```
X_1_{bar} \leftarrow mean(df$X_1); X_2_{bar} \leftarrow mean(df$X_2)
df$X_1_cent <- df$X_1 - X_1_bar; df$X_2_cent <- df$X_2 - X_2_bar
result1 <- lm(Y \sim X_1_cent + X_2_cent + I(X_1_cent^2) + I(X_2_cent^2) + I(X_1_cent * X_2_cent),
             data=df)
result1_smry <- summary(result1); print(result1_smry)</pre>
##
## Call:
##
      I(X_1_cent * X_2_cent), data = df)
##
## Residuals:
##
        Min
                   1Q
                         Median
                                       30
## -0.055642 -0.016851 -0.002889
                                0.014810
                                          0.085485
##
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
                          5.629e-02 1.260e-03 44.662 < 2e-16 ***
## (Intercept)
## X 1 cent
                          4.585e-06
                                     9.841e-07
                                                 4.659 4.23e-06 ***
                         -8.800e-05
## X_2_cent
                                     6.276e-04
                                                -0.140
                                                         0.8886
## I(X_1_cent^2)
                          2.698e-12
                                     5.932e-11
                                                 0.045
                                                         0.9637
                                                 1.708
## I(X_2_cent^2)
                          1.629e-04
                                     9.541e-05
                                                         0.0884
## I(X_1_cent * X_2_cent) 8.334e-07
                                     4.091e-07
                                                 2.037
                                                         0.0423 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.02383 on 434 degrees of freedom
## Multiple R-squared: 0.2485, Adjusted R-squared: 0.2398
## F-statistic: 28.7 on 5 and 434 DF, p-value: < 2.2e-16
result1_aov <- fullRegressionAnova(anova(result1))</pre>
##
           VariationSource
                                         SS
                                                      MS
                                                             F_stats
## 1
                             5 0.0814617240 0.0162923448
                                                          28.6984676
                Regression
## 2
                             1 0.0756708467 0.0756708467 133.2918848
                  X_1_cent
## 3
                             1 0.0003138473 0.0003138473
                  X_2_cent
                                                           0.5528324
## 4
             I(X_1_cent^2)
                             1 0.0022033375 0.0022033375
                                                           3.8811117
             I(X_2_cent^2)
                             1 0.0009184249 0.0009184249
## 5
                                                           1.6177775
## 6 I(X_1_cent * X_2_cent)
                             1 0.0023552675 0.0023552675
                                                           4.1487318
```

NA

NA

NA

Residuals 434 0.2463851985 0.0005677078

Total 439 0.3278469225

Correlation Among the Predictor Terms

Correlations
0.868
0.848
0.957
0.623

Note that the correlations between the centered data is less than the uncentered data.

Test of Fit

To determine if a lack of fit test can be used we'll search the data for replicates among the data.

```
## Total Records 440
## Distinct Categories 440
```

Since there are not replicates a formal lack of fit test cannot be performed.

Residual Plots

Q-Q Normality Plot

Answer

The residual plots suggest that there is equal variance among the error terms and the model is appropriate for the data. The R squared value is 0.2485 and the adjusted R squared is 0.2398

Part B

Test whether or not all quadratics and interaction terms can be dropped from the regression model. Use $\alpha = 0.01$.

```
H_0: \beta_{11} = \beta_{22} = \beta_{12} = 0
H_a: Not all \beta_s in H_o equals 0
F stat = SSR(X_1^2, X_2^2, X_{12}|X_1, X_2) / 3 / MSE
F \text{ crit} = F(0.99, 3, 5)
If F Stat < F crit, conclude H_o
If F Stat >= F crit, conclude H_a
F_{crit} \leftarrow qf(0.99, 3, 5)
SSR <- sum(result1_aov$SS[4:6])
MSE <- result1_aov$MS[7]</pre>
F_stat <- SSR / 3 / MSE
msg = paste("F stat = ", F_stat, "\nF crit = ", F_crit)
result <- ifelse(F_stat < F_crit,</pre>
                   "\nConclude Ho, no curvature interaction effects are needed.",
                    "\nConclude Ha, curvature interaction effects are significant.")
cat(msg, result, sep="")
## F stat = 3.21587363957109
## F crit = 12.059953691652
## Conclude Ho, no curvature interaction effects are needed.
```

Answer

As the output suggests there H_o appears to be appropriate meaning that no curvature interactions are needed.

Part C

Fitting The Model with Population, Land Area, and Unemployment Rate

(Intercept) 4.250e-02 3.889e-03 10.927 < 2e-16 ***

```
## X4
               3.206e-08 3.941e-09
                                      8.133 4.41e-15 ***
                                     -5.710 2.10e-08 ***
## I(X4^2)
              -3.356e-15
                          5.878e-16
## X3
              -5.576e-07
                          8.123e-07
                                     -0.687
                                               0.493
## X13
               6.824e-04
                          5.302e-04
                                               0.199
                                      1.287
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.02539 on 435 degrees of freedom
## Multiple R-squared: 0.1444, Adjusted R-squared: 0.1365
## F-statistic: 18.35 on 4 and 435 DF, p-value: 6.022e-14
```

The R squared value is 0.1444 and the adjusted R squared is 0.1365.

Since the above section proved that a quadratic effect is not required lets compare this to the first order model.

```
result3 <- lm(Y ~ X_1 + X_2, data=df)
summary(result3)</pre>
```

```
##
## Call:
## lm(formula = Y \sim X_1 + X_2, data = df)
## Residuals:
##
                    1Q
                                        3Q
         Min
                          Median
                                                 Max
## -0.053806 -0.016940 -0.003898
                                 0.014680
                                            0.084508
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
                                              <2e-16 ***
## (Intercept) 4.959e-02
                          3.452e-03
                                     14.368
               5.973e-06
                         5.222e-07
                                              <2e-16 ***
## X_1
                                     11.439
## X 2
               3.618e-04 4.902e-04
                                      0.738
                                               0.461
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.02401 on 437 degrees of freedom
## Multiple R-squared: 0.2318, Adjusted R-squared: 0.2283
## F-statistic: 65.92 on 2 and 437 DF, p-value: < 2.2e-16
```

Answer

For the model with population, land area, and unemployment rate the R squared value is 0.1444 and the adjusted R squared is 0.1365. Comparing that the first order model from part A-B we see that it actually explains less of the variation but both are pretty low R squared values.