A Group-Type Distributed Coded Computation Scheme Based on a Gabidulin Code

Koki Kazama
Waseda University
Email: kokikazama@aoni.waseda.jp

Toshiyasu Matsushima *Waseda University* Email: toshimat@waseda.jp

Abstract—We focus on a distributed coded computation scheme for matrix multiplication. In this system, the product matrix is encoded and decoded through the overall system to correct errors in computation. We propose a group-type distributed coded computation scheme, for one example, a scheme based on a Gabidulin code, and evaluate the computation time complexity and the error-correcting capability of the overall system.

The full version of this paper is in [1].

I. Introduction

We focus on a distributed computation scheme in which errors are corrected in computing multiplication of two matrices **A** and **B** on a finite field \mathbb{F}_q . In the system of a distributed computation scheme, the main computer (master) partitions the matrix and distributes them to multiple computers (workers), and (2) workers perform parallel computing. This system has the advantage of decreasing the computation time complexity, while this has the disadvantage of increasing the possibility of occurring errors in computation. To eliminate the advantage, a distributed coded computation scheme (DCC) [2], [3], [4], [5] uses an error-correcting code (ECC) to correct errors in distributed computation. On performance evaluation of DCCs, (a) computation time complexity (CTC) and (b) error-correcting capability of the overall system are important criteria while they are a tradeoff. Considering the reason to construct DCCs, we would like to propose the DCC which can correct some errors and compute AB more efficiently than the stand-alone scheme (SA), of which the system computes AB solely. Here all errors form a matrix E and we call E an error matrix. We focus on systems that correct E whose all entries are nonzero. The scheme of [5] corrects E if it satisfies some conditions of column-dependency, while the other previous schemes cannot correct them.

In this paper, we propose a new distributed coded computation scheme called *Group-Type Distributed Coded Computation scheme* (GDCC) and, as one example, a *GDCC based on a Gabidulin code* (GDCCG). A Gabidulin code encodes a matrix over \mathbb{F}_q and correct an error matrix E if $\mathrm{rank}(E) \leq t$, where t is a constant defined later. The key idea is that computing an inner product of two vectors over an extension field \mathbb{F}_{q^m} can be decomposed to computations over \mathbb{F}_q , which can be parallelly performed. Using these facts, this distributed

This research is supported in part by Grant-in-Aid JP17K06446 for Scientific Research (C).

computation system performs a process over \mathbb{F}_q , which is equivalent to encoding a vector over \mathbb{F}_{q^m} corresponding AB to a codeword over \mathbb{F}_{q^m} . Thus the encoder in the GDCCG system encodes all columns of AB together while the encoders in previous DCC systems encode each column of AB. This enables to correct error matrices whose columns depend on each other and enables to decrease the overall CTC of the system simultaneously. The GDCCG is a little different from the scheme of [5] because more workers are used and they are equally partitioned into multiple groups and the parallel computation of matrix products is performed within each group. Thus the computation time complexity of the GDCCG is less than that of [5], while the error-correcting capability of the GDCCG is the same as that of [5].

Moreover, we evaluate (a) the CTC and (b) the errorcorrecting capability of the GDCC in detail and show the advantages as follows. In the evaluation of (a), we evaluate the CTC of the GDCCG and the SA and we show the condition of parameters (the number of workers and groups) in which the GDCC is superior to the SA. We cannot generally evaluate (a) of the GDCC because the CTC of the decoding algorithm is depending on the code. Thus we evaluate (a) only on the GDCCG. We define the CTC of a DCC system as the number of four arithmetic operations (an addition, a subtraction, a multiplication, and an inversion over \mathbb{F}_q in parallel computing of each worker and decoding of the master. To evaluate the number of operations of the encoder and the decoder using a Gabidulin code over \mathbb{F}_{q^m} in the GDCCG system, we first show how many times it is necessary when the operation of \mathbb{F}_{q^m} is decomposed into the operation of \mathbb{F}_q , and then we count them. In the evaluation of (b), we show what error matrices the GDCC system and the GDCCG system can correct, respectively. Specifically, we show that the GDCCG system can correct an error matrix if $rank(E) \le t$, where t is a certain constant.

II. NOTATIONS

For two integers m and n which satisfies $m \leq n$, [m,n] denotes $[m,n] \coloneqq \{m,m+1,\ldots,n\}$. [n] denotes [1,n]. All vectors are column vectors except specifically noted. \boldsymbol{E}^{\top} is the transpotent of a matrix \boldsymbol{A} . \mathbb{F}_q is a finite field with q elements,

 1 An inversion is an operation of computing a^{-1} from a. This indicates that an operation of computing ab^{-1} is a combination of an inversion b^{-1} and a multiplication ab^{-1} .

where q is a power of 2. $\mathbb{F}_q^{n \times b}$ denotes the set of all $n \times b$ matrices over \mathbb{F}_q , and $\mathbb{F}_q^n := \mathbb{F}_q^{n \times 1}$. $e_{\cdot j} \in \mathbb{F}_q^n$ denotes j-th column of a matrix $E \in \mathbb{F}_q^{n \times b}$ $e_{i \cdot} \in \mathbb{F}_q^b$ denotes the transpotent of i-th row vector. Thus the matrix E is $(e_{\cdot 1}, \dots, e_{\cdot b}) = (e_1, \dots, e_n)^{\top}$. For any set $A \subset [n]$, we define a matrix $G_A^{\top} \in \mathbb{F}_q^{|A| \times k_A}$ as a matrix constructed from all $i \in A$ -th row $g_i^{\top} \in \mathbb{F}_q^{1 \times k_A}$ of the matrix G.? denotes the symbol of an erasure or decoding failure. We formally define the sum and difference of any $a \in \mathbb{F}_q$ and ? as ?.

Definition 2.1 (v, f^s) : Let $v_1, \ldots, v_m \in \mathbb{F}_{q^m}$ be linearly independent over \mathbb{F}_q and $v_i = v_1^{q^{i-1}}$ for any $i \in [m]$. $\{v_1, \ldots, v_m\}$ is a normal basis [6] of a linear space \mathbb{F}_{q^m} over \mathbb{F}_q . Let v denote a vector (v_1, \ldots, v_m) . For any $s \in \mathbb{N}$, let a linear homomorphism $f^s \colon \mathbb{F}_{q^m}^s \to \mathbb{F}_q^{s \times m}$ over \mathbb{F}_q output a matrix $X \in \mathbb{F}_q^{s \times m}$ which satisfies x = Xv from the input $x \in \mathbb{F}_{q^m}^s$. $f^1 \coloneqq f^1$.

III. COMPUTATION TIME COMPLEXITY

We explain the problem setting, especially the definition of computation time complexity, of distributed coded computation schemes in this paper. In this paper, q is a power of 2. Positive integers $n, k_{\rm A}, k_{\rm B}, l, m$ satisfy $2 \le k_{\rm A} < n, 2 \le k_{\rm B}, 1 \le m$ and $2 \le l$.

The schemes in this paper compute $AB \in \mathbb{F}_q^{k_{\rm A} \times k_{\rm B}}$. In this paper, we consider schemes for computing a multiplication of two matrices, $A \in \mathbb{F}_q^{k_{\rm A} \times l}$ and $B \in \mathbb{F}_q^{l \times k_{\rm B}}$. One value of A is input to the master only once, and the master store this value. On the other hand, many values of B are input to the master many times, and each time the master attempts to compute the value of the matrix AB.

The most simple scheme is as follows.

Definition 3.1: We define a stand-alone scheme (SA) as a scheme in which the master computes AB solely from the input A, B.

We would like to compute AB more efficiently than the SA system, i.e. to construct a computing system whose CTC is less than that of the SA system.

Definition 3.2: We define computation time complexity (CTC) of a process as the number of four arithmetic operations over \mathbb{F}_q which the system performs in the process from input to output. A subtraction, an addiction, a multiplication, and an inversion are equally treated as one operation in the evaluation of the CTC. CTC of the system is the overall CTC from input \hat{AB} .

Proposition 3.1: The CTC of the SA system is $k_A k_B (2l-1)$.

IV. THE PROPOSED SCHEME

In this section, we propose a computation scheme called *GDCC*. Moreover, we propose a scheme called *GDCC* with a *Gabidulin code* (GDCCG) as an example of a GDCC.

First, we define symbols. We define $\tilde{\mathcal{C}} \subset \mathbb{F}_{q^m}^n$ as an (n,k_{A}) linear code over \mathbb{F}_{q^m} . This code has a generator matrix $G \in \mathbb{F}_{q^m}^{n \times k_{\mathrm{A}}}$ of a canonical systematic encoder. $\mathcal{C} \coloneqq f^n(\tilde{\mathcal{C}})(\subset \mathbb{F}_q^{n \times m})$ is a linear code over \mathbb{F}_q . The decoder of \mathcal{C}

Fig. 1. the master and the workers

is $\psi \colon \mathbb{F}_q^{n \times m} \to \mathcal{C} \cup \{?\}$. We define a set $\mathcal{E} \ (\subset \mathbb{F}_q^{n \times m})$ as the set of all error matrices which can be corrected rightly, i.e. for any $E \in \mathcal{E}$ and $C \in \mathcal{C}$, $\psi(C + E) = C$.

Lemma 4.1: Any codeword of a linear code $C = f^n(\tilde{C})$ over \mathbb{F}_q is $f^n(GMv)$ for some matrix $M \in \mathbb{F}_q^{k_A \times m}$.

Proof: A codeword an $(n, k_{\rm A})$ linear code $\tilde{\mathcal{C}} \subset \mathbb{F}_{q^m}^n$ over \mathbb{F}_{q^m} is GMv for some matrix $M \in \mathbb{F}_q^{k_{\rm A} \times m}$. \square

The flow of the system of the proposed DCC is as follows. The system outputs a codeword $\Pi(AB) := f^n(GA(B, \mathbf{0}_{l \times (m-k_{\mathrm{B}})})v)$ of a code $\mathcal{C}(\subset \mathbb{F}_q^{n \times m})$ from A and B if there is no error. However, errors occur in the computation of the system. The errors form a matrix, we denote E as this error matrix. Thus the system decode $Y = \Pi(AB) + E$ and obtain $\psi(Y)$.

This flow is based on two ideas: (1) correspondence in principle between an ECC and the system of the proposed DCC based on [5] and (2) decomposing operations over an extension field \mathbb{F}_{q^m} to operations over \mathbb{F}_q . The system can compute ABefficiently and correct errors by these ideas. (1) is an idea for error-correcting. This flow indicates that AB, $\Pi(AB)$, $E, Y, G, \Pi: \mathbb{F}_q^{\check{k}_{\mathrm{A}} \times k_{\mathrm{B}}} \rightarrow \mathcal{C}(\subset \mathbb{F}_q^{n \times m}), \ \psi: \mathbb{F}_q^{n \times m} \rightarrow \mathcal{C}$ and C correspond with information, codeword, error , recieved word, generator matrix, encoder, decoder, code in ECCs, respectively. We call them product matrix, codeword (matrix), error (matrix), recieved matrix, generator matrix, encoder, decoder, code, respectively. (2) is an idea for decreasing the CTC. The decomposition is used for the computation of a matrix $\Pi(AB)$ from A and B by operations over \mathbb{F}_q instead of that of a vector $GA(B, \mathbf{0}_{l \times (m-k_{\mathrm{B}})})v$ over an extension field \mathbb{F}_{q^m} . This computation can be performed by distributed computing.

A. GDCC

Master

We propose a GDCC $((\pi_{ij}|i \in [n_A], j \in [n_B]), G, \psi)$ when q, k_A, k_B, l, n, n_A and n_B are given. In this scheme, we use the master and $n_A n_B$ workers which are partitioned into multiple groups, where $n_A \in \mathbb{N}$ devides n and $n_B \in \mathbb{N}$ devides m. All workers are equally partitioned into n groups. The j-th worker of the i-th group is called a worker $(i,j) \in [n_A] \times [n_B]$ (Figure 1). We assume that errors occur only when workers compute something. The master has the matrix $G \in \mathbb{F}_q^{m \times k_A}$ mentioned above and a function ψ . A function π_{ij} are stored in each worker $(i,j) \in [n_A] \times [n_B]$.

In GDCC, when the matrix A is input to the master, then the master and all workers perform *preprocess*. For any time

 $^{{}^{2}\}hat{AB}$ may not be AB by errors.

Fig. 2. the flow of the DCC

Fig. 3. Preprocess

when the matrix B is input to the master, all workers perform $Computing\ Process$, and then the master performs $Decoding\ Process$. The result of Decoding Process of the master is $\hat{AB} \in \mathbb{F}_q^{k_{\rm A} \times k_{\rm B}}$, which is an estimated results of AB. See the details in below (Figure 2).

 $\langle Preprocess \rangle$ (Figure 3) The master encodes A to

$$oldsymbol{GA} = \left(egin{array}{c} oldsymbol{G}_{[1,n/n_{
m A}]}^{ op}.oldsymbol{A} \ dots \ oldsymbol{G}_{[n_{
m A}-1)(n/n_{
m A})+1,n]}^{ op}.oldsymbol{A} \end{array}
ight) \in \mathbb{F}_{q^m}^{n imes l}. \hspace{1.5cm} (1)$$

The master store $G_{[(i-1)(n/n_{\rm A})+1,i(n/n_{\rm A})]}^{\top}$. $A \in \mathbb{F}_q^{(n/n_{\rm A}) \times l}$ in all workers of each group $i \in [n_{\rm A}]$. Then, the workers in the i-th group store the j'-th symbol of a matrix $f^1(g_{i'}^{\top}a_{\cdot l'}v_{m'}) \in \mathbb{F}_q^{1 \times m}$ for all $l' \in [l]$, $m' \in [m]$, $i' \in [(i-1)(n/n_{\rm A})+1,i(n/n_{\rm A})]$ and $j' \in [(j-1)(m/n_{\rm B})+1,j(m/n_{\rm B})]$. We define this as $\tilde{a}_{i'l'm'j'} \in \mathbb{F}_q$. $a_{\cdot l'} \in \mathbb{F}_q^{k_{\rm A}}$ is the l'-th column of the matrix A. $\tilde{a}_{i'l'm'j}$ can be computed from $g_{i'}^{\top}A = (g_{i'}^{\top}a_{\cdot l},\ldots,g_{i'}^{\top}a_{\cdot l})$.

 $\langle \textit{Computing Process} \rangle$ (Figure 4) The master sends the matrix \boldsymbol{B} to all workers. Hereafter, we define $\boldsymbol{B}' = \boldsymbol{B}$ if $n \leq k_{\rm B}$, and $\boldsymbol{B}' = (\boldsymbol{B}, \boldsymbol{0})$ if $n > k_{\rm B}$, where $\boldsymbol{0}$ is

Fig. 4. Computing Process

an $l \times (m-k_{\rm B})$ zero matrix over \mathbb{F}_q . Each worker (i,j) computes the $(j-1)(m/n_{\rm B})+1,\ldots,j(m/n_{\rm B})$ -th columns (we think them as j-th block) of an $(m/n_{\rm B})\times m$ matrix $C_i := f^{m/n_{\rm B}}\left(G_{[(i-1)(m/n_{\rm B})+1,i(m/n_{\rm B})]}.AB'v\right)$. This computation can be done by computing $\sum_{l'\in [l]}\sum_{m'\in [m]}\tilde{a}_{i'l'm'j'}b_{l'm'}$ from B for any $(i',j')\in [(i-1)(m/n_{\rm B})+1,i(m/n_{\rm B})]\times [(j-1)(m/n_{\rm B})+1,j(m/n_{\rm B})]$. See proposition 4.1.

For any $(i,j) \in [n_A] \times [n_B]$, we define the correct computing result of any worker (i,j) as $\pi_{ij}(\boldsymbol{g}_i^\top \boldsymbol{A}, \boldsymbol{B})$. we define product function as the function $\pi_{ij} \colon \mathbb{F}_q^{(n/n_A) \times l} \times \mathbb{F}_q^{l \times k_B} \to \mathbb{F}_q$ which computes the $(j-1)(m/n_B)+1,\ldots,j(m/n_B)$ -th columns of the matrix \boldsymbol{C}_i . from $\boldsymbol{G}_{[(i-1)(n/n_A)+1,i(n/n_A)]}^{\top}.\boldsymbol{A} \in \mathbb{F}_q^{(n/n_A) \times l}$ and \boldsymbol{B} . We assume that the error $e_{i'j'} \in \mathbb{F}_q$ occurs in computing the j'-th symbol of $f^1\left(\boldsymbol{g}_{i'}^{\top}.\boldsymbol{A}\boldsymbol{B}'\boldsymbol{v}\right) \in \mathbb{F}_q^{1 \times m}$. The master recieves a matrix $\boldsymbol{Y} := \boldsymbol{f}^n(\boldsymbol{G}\boldsymbol{A}\boldsymbol{B}'\boldsymbol{v}) + \boldsymbol{E}$, where \boldsymbol{E} is a matrix whose (i',j')-th entry is $e_{i'j'}$ for any $(i',j') \in [n] \times [m]$. This matrix is constructed from all output results of all workers.

 $\langle Decoding\ Process \rangle$ The master gets $\psi(Y)$ from the matrix Y with a function $\psi: \mathbb{F}_q^{n \times m} \to \mathcal{C} \cup \{?\}$, where a symbol $? \notin \mathcal{C}$ represents a fact that the master cannot get an estimated matrix \hat{AB} . Since the generator matrix is a generator matrix of a canonical systematic encoder, if $\psi(Y) \in \mathcal{C}$, the master gets \hat{AB} from $\psi(Y)$.

Assumption 4.1: We do not include CTC of the preprocess in the evaluation of (a) since A is input only once. Moreover, we do not include any communication time between workers and the master.

Proposition 4.1: For any $(i',j') \in [(i-1)(m/n_{\rm B})+1,i(m/n_{\rm B})] \times [(j-1)(m/n_{\rm B})+1,j(m/n_{\rm B})]$, the (i',j')-th entry of a matrix $f^n(GABv)$ is $\sum_{l' \in [l]} \sum_{m' \in [k_{\rm B}]} \tilde{a}_{i'l'm'j'}b_{l'm'}$. Proof: It is the j'-th entry of

$$f^{1}\left(\boldsymbol{g}_{i'}^{\top}\boldsymbol{A}\boldsymbol{B}'\boldsymbol{v}\right)$$

$$= f^{1}\left(\left(\begin{array}{ccc} \boldsymbol{g}_{i'}^{\top}\boldsymbol{a}_{\cdot 1} & \dots & \boldsymbol{g}_{i'}^{\top}\boldsymbol{a}_{\cdot l} \end{array}\right) \left(\begin{array}{ccc} \sum_{m' \in [m]} b'_{1m'}v_{m'} \\ \vdots \\ \sum_{m' \in [m]} b'_{lm'}v_{m'} \end{array}\right)\right)$$

$$= f^{1}\left(\left(\begin{array}{ccc} \boldsymbol{g}_{i'}^{\top}\boldsymbol{a}_{\cdot 1} & \dots & \boldsymbol{g}_{i'}^{\top}\boldsymbol{a}_{\cdot l} \end{array}\right) \left(\begin{array}{ccc} \sum_{m' \in [m]} b'_{1m'}v_{m'} \\ \vdots \\ \sum_{m' \in [k_{\mathrm{B}}]} b_{1m'}v_{m'} \end{array}\right)\right)$$

$$= f^{1}\left(\sum_{l' \in [l]} \boldsymbol{g}_{i'}^{\top}\boldsymbol{a}_{\cdot l'} \left(\sum_{m' \in [k_{\mathrm{B}}]} b_{l'm'}v_{m'} \right)\right)$$

$$= f^{1}\left(\sum_{l' \in [l]} \sum_{m' \in [k_{\mathrm{B}}]} b_{l'm'} \left(\boldsymbol{g}_{i'}^{\top}\boldsymbol{a}_{\cdot l'}\right) v_{m'}\right)$$

$$= f^{1}\left(\sum_{j \in [m]} \left(\sum_{l' \in [l]} \sum_{m' \in [k_{\mathrm{B}}]} \tilde{a}_{i'l'm'j}b_{l'm'} \right) v_{j}\right)$$

$$= \left(\sum_{l' \in [l]} \sum_{m' \in [k_{\mathrm{B}}]} \tilde{a}_{i'l'm'1}b_{l'm'}, \dots, \sum_{l' \in [l]} \sum_{m' \in [k_{\mathrm{B}}]} \tilde{a}_{i'l'm'm}b_{l'm'}\right) . \square$$

Corollary 4.1: Any worker $(i,j) \in [n_A] \times [n_B]$ performs $(lk_B - 1)(mn/n_A n_B)$ additions over \mathbb{F}_q and $lk_B(mn/n_A n_B)$

multiplications over \mathbb{F}_q in Computing Process.

Proof: Proposition 4.1 shows that any worker (i,j) computes the j'-th symbol $\sum_{l'\in [l]} \sum_{m'\in [k_{\rm B}]} \tilde{a}_{i'l'm'j'} b_{l'm'}$ of $f^1(\boldsymbol{g}_{i'}^\top \boldsymbol{A}\boldsymbol{B}'\boldsymbol{v})$ for any $(i',j')\in [(i-1)(m/n_{\rm B})+1:i(m/n_{\rm B})]\times [(j-1)(m/n_{\rm B})+1,j(m/n_{\rm B})]$ in Computing Process. Moreover, each $\tilde{a}_{i'l'm'j'}$ is already computed in Preprocess. Thus the worker (i,j) performs $lk_{\rm B}-1$ additions over \mathbb{F}_q and $lk_{\rm B}$ multiplications over \mathbb{F}_q to compute $\sum_{l'\in [l]} \sum_{m'\in [k_{\rm B}]} \tilde{a}_{i'l'm'j'} b_{l'm'}$ from the input \boldsymbol{B} . The worker (i,j) performs this computation for all $(i',j')\in [(i-1)(m/n_{\rm B})+1,i(m/n_{\rm B})]\times [(j-1)(m/n_{\rm B})+1,j(m/n_{\rm B})]$. □

B. Example: GDCC Based on a Gabidulin Code

We propose a GDCC based on a Gabidulin code as an example of GDCCs.

Definition 4.1 (Gabidulin code [7]): Let $m, k \in \mathbb{N}$ satisfy $m \geq n \geq k$. Let $h_1, \ldots, h_n \in \mathbb{F}_{q^m}$ be $h_i = v_i$ for any $i \in [n]$, where $\{v_1, \ldots, v_m\}$ is the optimal normal basis. Let $\mathbf{H} \in \mathbb{F}_{q^m}^{n \times (n-k)}$ is a matrix whose (i,j)-th entry is $h_i^{q^{j-1}}$ for any $(i,j) \in [n] \times [k]$. An (n,k) linear code $\tilde{\mathcal{C}}_G \subset \mathbb{F}_{q^m}^n$ over \mathbb{F}_{q^m} which has a parity check matrix \mathbf{H} is called an (n,k) Gabidulin code over \mathbb{F}_{q^m} .

We assume some assumptions on q and m to construct the proposed scheme.

Definition 4.2 (Multiplication Table [8]): For any $i \in [m]$, we define $T_{i1}, \ldots, T_{im} \in \mathbb{F}_q$ as the elements uniquely determined by $v_1v_i = \sum_{j \in [m]} T_{ij}v_j$. $T := (T_{ij})_{(i,j) \in [m]^2} \in \mathbb{F}_q^{m \times m}$ is called multiplication table. We define $C(T) \in \mathbb{Z}$ as the number of nonzero entries of T. C(T) is called the complexity of the normal basis $\{v_1, \ldots, v_m\}$.

Lemma 4.2 ([9]): An addition over \mathbb{F}_{q^m} costsm additions over \mathbb{F}_q . Moreover, an multiplication over \mathbb{F}_{q^m} costs $m(C(T)+1)-m^2-1$ additions over \mathbb{F}_q and m(C(T)+m) multiplications over \mathbb{F}_q

Definition 4.3 (Optimal Normal Basis [10]): For any normal basis $\{v_1,\ldots,v_m\}$ and multicative table $T,\,C(T)\geq 2m-1$. The normal basis $\{v_1,\ldots,v_m\}$ is called an *optimal* normal basis if it achieves this lower bound.

We set a normal basis $\{v_1, \ldots, v_m\} \in \mathbb{F}_{q^m}$ over \mathbb{F}_q an *optimal* normal basis.

Lemma 4.3 ([10]): An optimal normal basis of \mathbb{F}_{q^m} over \mathbb{F}_q exists if and only if q and m satisfies the following. $\log_2 q$ and m are prime with each other. 2m+1 is a prime number. A multicative group $(\mathbb{Z}/(2m+1)\mathbb{Z})^* = (\mathbb{Z}/(2m+1)\mathbb{Z})\setminus\{0\}$ is generated from 2 and -1.

Assumption 4.2 (Assumption for the parameters): We assume the condition of Lemma 4.3.

Definition 4.4 (GDCCG): Let m be $\max\{k_{\mathrm{B}}, n\}$. Let $G \in \mathbb{F}_{q^m}^{n \times k_{\mathrm{A}}}$ is a canonical systematic generator matrix of a (n, k_{A}) Gabidulin code over \mathbb{F}_{q^m} . ψ is a bounded rank distance decoder of this code. This GDCC is called GDCCG.

Remark 4.1: The previous scheme of [2], which is called distributed coded computation scheme based on a Reed Solomon code (DCCRS) in this paper, and the previous scheme of [2], which is called distributed coded computation scheme

based on a Gabidulin code (DCCG) in this paper, are special cases of the GDCC. See Appendix B in [5].

V. PERFORMANCE EVALUATIONS ON THE PROPOSED SCHEMES

We evaluate (a) the CTC of the GDCCG system and (b) the error-correcting capability of the GDCC system and the GDCCG system. We evaluate (b) of the GDCC and GDCCG and show that GDCCG corrects an error matrix that previous schemes cannot correct. Moreover, we compare (a) of the stand-alone scheme (SA) and that of GDCCG and give the parameter condition when GDCCG is superior to the SA.

A. Evaluations of the Computation Time Complexities

The CTC of the GDCCG system is the sum of the number of the four arithmetic operations in the Computing Process of each worker and the Decoding Process of the master over \mathbb{F}_q . To include operations over \mathbb{F}_q^m in the evaluation, we decompose operations over \mathbb{F}_q^m to operations over \mathbb{F}_q and enumerate them.

1) Assumptions on Computation Time Complexities: We assume some assumptions in this paper to evaluate the CTC of the GDCCG. We use corresponding between $a \in \mathbb{F}_{q^m}^n$ and $f^n(a)$ in the proposed scheme. We assume Assumption 5.1, also assumed in [8] [11] [12].

Assumption 5.1: We do not include the CTC of computing $f^n(a)$ from $a \in \mathbb{F}_{q^m}^n$ or that of computing $(f^n)^{-1}(A)$ from $A \in \mathbb{F}_q^{n \times m}$ in the evaluation of (a).

Proposition 5.1: For any q, m and $a \in \mathbb{F}_{q^m}$, if $f^1(a) = (a_1, \ldots, a_m) \in \mathbb{F}_q^{1 \times m}$, then $f^1(a^{q^i}) = (a_{m-i+1}, \ldots, a_m, a_1, a_2, \ldots, a_{m-i})$.

Definition 5.1 (cyclic shift [8]): For any q, m and a, we define i-thcyclic shift up as $\mathbf{a}^{\uparrow i} \coloneqq f(a^{q^i})$ and cyclic shift down $\mathbf{a}^{\downarrow i} \coloneqq f(a^{q^i})$.

We assume Assumption 5.2, also assumed in [8] [11] [12].

Assumption 5.2: We do not include computation time complexities of cyclic shifts up or down in the evaluation.

From these assumptions, the below facts hold.

Proposition 5.2: q and m satisfies Assumption 4.2. An addition, which is also a substraction, over \mathbb{F}_{q^m} costs m additions over \mathbb{F}_q . A multiplication over \mathbb{F}_{q^m} costs m^2-1 additions and m^2 multiplication over \mathbb{F}_q . An inversion over \mathbb{F}_{q^m} costs $(m^2-1)(2\lfloor \log_2(m\log_2q-1)\rfloor+2)$ additions and $m^2(2\lfloor \log_2(m\log_2q-1)\rfloor+2)$ multiplications over \mathbb{F}_q .

Form Proposition 5.2, Corollary 5.1 holds. The value D is a little modified from the upper bound of the number of operations, derived in [11]. See Appendix A in [1].

Corollary 5.1: q and m satisfies the condition of Lemma 4.3. We define $t = \lfloor (n-k_{\rm A})/2 \rfloor$ and $d = n-k_{\rm A}+1$. Then D is an upper bound of the complexity of the decoding algorithm [11] of an $(n,k_{\rm A})$ Gabidulin code over \mathbb{F}_{q^m} . D is

$$2mnt+m^2+m-1+\frac{2}{3}(m(m-1)(2m-1)-t(t-1)(2t-1))\\-(t-2)(m-t)-(t-1)(m^2-m-t^2+t)\\+(dn+d^2-t^2+2dt+mt-n-4d-t-1)m$$

$$+ (dn+3d^2+3t^2-4dt+mt-n-9d+9t+5)(2m^2-1) +2t(2m^2-1)(2[\log_2(m\log_2q-1)]).$$
 (2)

2) Evaluations and A Comparison to the Stand-Alone System: We evaluate (a) the CTC of the GDCCG system in case $\operatorname{rank} E \leq t$. The CTC of the GDCC system is the sum of the number of four arithmetic operations over \mathbb{F}_q of each worker and that of Decoding Process of the master.

Theorem 5.1 (evaluation of (a) of GDCCG): D is defined in Eq. (2). Under Assumption 4.2, the sum of CTC of Computation Process of each worker and that of Decoding Process of the master in the GDCCG system is at most

$$(2k_{\rm B}l - 1)(mn/n_{\rm A}n_{\rm B}) + D.$$
 (3)

Proof: We showed from Corollary 4.1 that CTC of Computation Process of each worker $(i,j) \in [n_{\rm A}] \times [n_{\rm B}]$ is at most $(2k_{\rm B}l-1)(mn/n_{\rm A}n_{\rm B})$. The master computes $f^n(GAB'v)$ from $f^n(GAB'v)+E$ with the bounded rank-distance decoder in Decoding Process. We do not include time to compute AB from $f^n(GAB'v)$ since G is a generator matrix of a canonical systematic encoder. Thus the CTC is at most D. \square

We compare the CTC of the stand-alone scheme.

Corollary 5.2 (Comparison (a) of the GDCCG with that of the SA system): Under Assumption 4.2, if n, n_A, n_B satisfies the below, the value of Eq.(3) is less than the CTC of the SA system.

$$l > \frac{1}{2k_{\rm B}(k_{\rm A} - (mn/n_{\rm A}n_{\rm B}))}(k_{\rm A}k_{\rm B} - (mn/n_{\rm A}n_{\rm B}) + D).$$

Example 5.1: Set $n=n_{\rm A}, m=n_{\rm B}, q=2, k_{\rm A}=100, k_{\rm B}=293$ and l=100000. The value of Eq.(3) is less than the CTC of the SA system when $n(>k_{\rm A}=100)$ satisfies $101 \le n \le 172$. Table 4.1 of [10] shows that (q,m)=(2,293) satisfy Assumption 4.2.

B. Evaluations of the Error-Correcting Capabilities

Theorem 5.2 (Evaluation of (b) of GDCC): The GDCC system computes correctly if the error matrix E is in \mathcal{E} .

Proof: GDCC outputs $f^n(GAB'v) \in \mathbb{F}_q^{n \times m}$ from A and B when no error occurs in the computation. If $E \in \mathcal{E}$, then $\psi(f^n(GAB'v) + E) = f^n(GAB'v)$ since $f^n(GAB'v) \in \mathcal{C}$ from Lemma 4.1. Thus this scheme corrects all error matrices in \mathcal{E} . \square

Theorem 5.3 (evaluation of (b) of the GDCCG): The GDCCG system computes correctly if the error matrix E satisfies rank $E \leq t$.

Proof: An (n,k_{A}) Gabidulin code over \mathbb{F}_{q^m} can correct an error matrix E if $\mathrm{rank}(E) \leq t$. \square

This error-correcting capability is the same as that of [5].

Remark 5.1: Theorem 5.3 showed that (b) the error-correcting capability of the GDCCG is the same as that of [5]. However, (a) the CTC of the GDCCG is less than or equal to that of the scheme of [5]. This is because, for each $i \in [n]$, one worker in Group i computes a part of $g_i AB'v$ in the GDCCG, while one worker computes all entries of $g_i AB'v$

in the scheme of [5]. Since the purpose of this paper is to compare the GDCCG with the SA, we do not compare the GDCCG with the scheme of [5] in detail.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we proposed and evaluated a new distributed coded computation scheme called GDCC and, as one example, GDCCG. First, we evaluated the GDCCG with (a) the computation time complexity and showed the parameter condition in which the GDCCG system is superior to the SA system. Next, we evaluated the GDCC and the GDCCG with (b) the error-correcting capability of the overall system and showed that the GDCCG system can correct E which satisfies $\operatorname{rank}(E) \leq t$.

In future works, we would like to improve the proposed schemes. For example, if we use more efficient decoding algorithms such as [13], the GDCCG may be better concerning the CTC. For another example, the GDCCG uses more workers than the scheme of [5]. Thus we would like to propose new DCCs considering not only (a) and (b) but also communication load and the number of workers.

REFERENCES

- K. Kazama and T Matsushima. A group-type distributed coded computation scheme based on a gabidulin code. https://onl.bz/w2NxCX5, 2022.
- [2] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran. Speeding up distributed machine learning using codes. In 2016 IEEE International Symposium on Information Theory (ISIT), pp. 1143–1147, 2016
- [3] K.H. Huang and J. A. Abraham. Algorithm-based fault tolerance for matrix operations. *IEEE Transactions on Computers*, Vol. C-33, No. 6, pp. 518–528, 1984.
- [4] S. Dutta, V. Cadambe, and P. Grover. "short-dot": Computing large linear transforms distributedly using coded short dot products. *IEEE Transactions on Information Theory*, Vol. 65, No. 10, pp. 6171–6193, 2019.
- [5] K. Kazama and T Matsushima. A coded computation method based on a gabidulin code and the evaluation of its error-correcting capability (in japanese). *IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences A*, Vol. J104-A, No. 6, pp. 156–159, 2021.
- [6] H. Niederreiter. Finite Fields. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1984.
- [7] E. M. Gabidulin. Theory of codes with maximum rank distance. Problems of Information Transmission (English translation of Problemy Peredachi Informatsii), Vol. 21, No. 1, pp. 1–12, 1985.
- [8] S. Gao, D. Panario, V. Shoup, et al. Algorithms for exponentiation in finite fields. *Journal of Symbolic Computation*, Vol. 29, No. 6, pp. 879–889, 2000.
- [9] D. Silva and F. R. Kschischang. Fast encoding and decoding of gabidulin codes. In 2009 IEEE International Symposium on Information Theory (ISIT), pp. 2858–2862, 2009.
- [10] S. Gao. Normal bases over finite fields. University of Waterloo Waterloo, 1993.
- [11] M. Gadouleau and Zhiyuan Yan. Complexity of decoding gabidulin codes. In 2008 42nd Annual Conference on Information Sciences and Systems, pp. 1081–1085, 2008.
- [12] R. B. Venturelli and D. Silva. An evaluation of erasure decoding algorithms for gabidulin codes. In 2014 International Telecommunications Symposium (ITS), pp. 1–5, 2014.
- [13] H. Bartz, T. Jerkovits, S. Puchinger, and J. Rosenkilde. Fast decoding of codes in the rank, subspace, and sum-rank metric. *IEEE Transactions* on *Information Theory*, Vol. 67, No. 8, pp. 5026–5050, 2021.