- **4.3.** (Sec. 4.2.1) Suppose a sample correlation of 0.65 is observed in a sample of 10. Test the hypothesis of independence against the alternatives of positive correlation at significance level 0.05.
- 4.4. (Sec. 4.2.2) Suppose a sample correlation of 0.65 is observed in a sample of 20. Test the hypothesis that the population correlation is 0.4 against the alternatives that the population correlation is greater than 0.4 at significance level 0.05.
- **4.5.** (Sec. 4.2.1) Find the significance points for testing $\rho = 0$ at the 0.01 level with N = 15 observations against alternatives (a) $\rho \neq 0$, (b) $\rho > 0$, and (c) $\rho < 0$.
- **4.13.** (Sec. 4.2.3) Use Fisher's z to estimate ρ based on sample correlations of -0.7 (N=30) and of -0.6 (N=40).
- **4.14.** (Sec. 4.2.3) Use Fisher's z to obtain a confidence interval for ρ with confidence 0.95 based on a sample correlation of 0.65 and a sample size of 25.
- **4.15.** (Sec. 4.2.2). Prove that when N=2 and $\rho=0$, $\Pr\{r=1\}=\Pr\{r=-1\}=\frac{1}{2}$.
- **4.33.** (Sec. 4.3) Invariance of the sample partial correlation coefficient. Prove that $r_{12\cdot 3....p}$ is invariant under the transformations $x_{i\alpha}^* = a_i x_{i\alpha} + b_i' x_{\alpha}^{(3)} + c_i$, $a_i > 0$, $i = 1, 2, x_{\alpha}^{(3)*} = Cx_{\alpha}^{(3)} + b$, $\alpha = 1, ..., N$, where $x_{\alpha}^{(3)} = (x_{3\alpha}, ..., x_{p\alpha})'$, and that any function of \bar{x} and $\hat{\Sigma}$ that is invariant under these transformations is a function of $r_{12\cdot 3....p}$.
- **4.34.** (Sec. 4.4) Invariance of the sample multiple correlation coefficient. Prove that R is a function of the sufficient statistics \bar{x} and S that is invariant under changes of location and scale of $x_{1\alpha}$ and nonsingular linear transformations of $x_{\alpha}^{(2)}$ (that is, $x_{1\alpha}^* = cx_{1\alpha} + d$, $x_{\alpha}^{(2)*} = Cx_{\alpha}^{(2)} + d$, $\alpha = 1, ..., N$) and that every function of \bar{x} and S that is invariant is a function of R.

1 of 2

4.42. Let the components of X correspond to scores on tests in arithmetic speed (X_1) , arithmetic power (X_2) , memory for words (X_3) , memory for meaningful symbols (X_4) , and memory for meaningless symbols (X_5) . The observed correla-

tions in a sample of 140 are [Kelley (1928)]

```
0.4248
                                              0.0573
                       0.0420
                                   0.0215
0.4248 1.0000
0.0420 0.1487
0.0215 0.2489
0.0573 0.2843
                       0.1487
                                              0.2843
                                   0.2489
                      1.0000
                                   0.6693
                                              0.4662
                       0.6693
                                              0.6915
                                   1.0000
                       0.4662
                                   0.6915
                                              1.0000
```

- (a) Find the partial correlation between X_4 and X_5 , holding X_3 fixed.
- (b) Find the partial correlation between X_1 and X_2 , holding X_3 , X_4 , and X_5 fixed.
- (c) Find the multiple correlation between X_1 and the set X_3 , X_4 , and X_5 .
- (d) Test the hypothesis at the 1% significance level that arithmetic speed is independent of the three memory scores.

2 of 2 13/02/23, 19:26