A FINITE DIFFERENCE APPROACH TO SOLVING THE TRANSMISSION LINE TELEGRAPH EQUATION

Christian Y. Cahig *

Department of Electrical Engineering and Technology Mindanao State University - Iligan Institute of Technology Iligan City, Philippines {christian.cahig}@g.msuiit.edu.ph

ABSTRACT

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

1 Introduction

Consider a transmission line of length X characterized by per-unit-length series resistance R, series inductance L, shunt conductance G, and shunt capacitance C. Let u(x,t) be the instantaneous voltage signal (referred to ground) at point x along the length of the line at time t, where $0 \le x \le X$ and $0 \le t \le T$. We refer to x = 0 as the *sending end* and x = X as the *receiving end* of the line. From elementary transmission line theory, the propagation of a voltage signal through the line is described by the *telegraph equation*:

$$\frac{1}{LC}\frac{\partial^{2}u\left(x,t\right)}{\partial x^{2}} = \frac{\partial^{2}u\left(x,t\right)}{\partial t^{2}} + \left(\frac{G}{C} + \frac{R}{L}\right)\frac{\partial u\left(x,t\right)}{\partial t} + \left(\frac{RG}{LC}\right)u\left(x,t\right) \tag{1}$$

which is a hyperbolic partial differential equation (PDE). Letting

$$c^2 = \frac{1}{LC}, \quad \alpha = \frac{G}{C}, \quad \beta = \frac{R}{L}$$

we can rewrite Eq. 1 more succinctly as

$$c^{2} \frac{\partial^{2} u\left(x,t\right)}{\partial x^{2}} = \frac{\partial^{2} u\left(x,t\right)}{\partial t^{2}} + (\alpha + \beta) \frac{\partial u\left(x,t\right)}{\partial t} + \alpha \beta u\left(x,t\right) \tag{2}$$

The first-order term on the right-hand side of Eq. 2 is the *dissipation term*, while the zeroth-order term is the *dispersion term*. In the absence of losses, *i.e.*, R = G = 0, the telegraph equation reduces into one describing a wave that propagates at a velocity c and an angular frequency ω given as

$$\omega = \frac{1}{X\sqrt{LC}}\tag{3}$$

Solving the telegraph equation is valuable in the analysis of power system dynamics. However, deriving the expression for the exact analytic solution may not always be tractable nor the most efficient course; in which case numerical approaches that approximate the PDE as a combination of algebraic operations are used. This work presents a basic finite difference method for numerically solving the transmission line telegraph equation.

The remainder of the paper proceeds as follows. Section 2 details how the telegraph equation is approximated as a linear equation via discretization and finite differences. Section 3 presents and discusses results from select worked examples. Section 4 concludes the work.

^{*}Under the supervision of Engr. Michael S. Villame.

2 FINITE DIFFERENCE APPROXIMATION

2.1 DISCRETIZATION SCHEME

We transform the continuous spatial domain into a set of equally separated discrete points, i.e.,

$$0 < x < X \longrightarrow x_k = k\Delta x, \ 0 < k < K \in \mathbb{Z}$$

In other words, we approximate the spatial domain by sampling K+1 points spaced Δx apart. Note that x_0 corresponds to x=0 just as x_K to x=X. Similarly, for the temporal domain:

$$0 \le t \le T \longrightarrow t_n = n\Delta t, \ 0 \le n \le N \in \mathbb{Z}$$

where t_0 corresponds to t=0 as t_N to t=T. The voltage defined on the continuous domain is likewise discretized, and is parametrized by k and n:

$$u(x,t) \longrightarrow u(x_k,t_n)$$

For notational convenience, $u_k^n = u(x_k, t_n)$.

2.2 DIFFERENCE EQUATION

We can approximate the continuous derivatives as central divided differences:

$$\frac{\partial u\left(x,t\right)}{\partial t} \longrightarrow \frac{\partial u_{k}^{n}}{\partial t} = \frac{u_{k}^{n+1} - u_{k}^{n-1}}{2\Delta t}$$

$$\frac{\partial^{2} u\left(x,t\right)}{\partial t^{2}} \longrightarrow \frac{\partial^{2} u_{k}^{n}}{\partial t^{2}} = \frac{u_{k}^{n+1} - 2u_{k}^{n} + u_{k}^{n-1}}{\left(\Delta t\right)^{2}}$$

$$\frac{\partial^{2} u\left(x,t\right)}{\partial x^{2}} \longrightarrow \frac{\partial^{2} u_{k}^{n}}{\partial x^{2}} = \frac{u_{k+1}^{n} - 2u_{k}^{n} + u_{k-1}^{n}}{\left(\Delta x\right)^{2}}$$

Substituting these into their continuous counterparts, we approximate the telegraph as a difference equation:

$$c^{2} \frac{u_{k+1}^{n} - 2u_{k}^{n} + u_{k-1}^{n}}{\left(\Delta x\right)^{2}} = \frac{u_{k}^{n+1} - 2u_{k}^{n} + u_{k}^{n-1}}{\left(\Delta t\right)^{2}} + (\alpha + \beta) \frac{u_{k}^{n+1} - u_{k}^{n-1}}{2\Delta t} + \alpha \beta u_{k}^{n} \tag{4}$$

This numerical approximation of Eq. 2 suggests that we can estimate the voltage at point x_k at the next time instant t_{n+1} given the voltages at x_k and at the neighbouring points at the current time instant (that is, u_k^n , u_{k-1}^n , and u_{k+1}^n) and the voltage at x_k at the preceding time instant (that is, u_k^{n-1}).

2.3 UPDATE SCHEME

From Eq. 4, we can obtain the "update" u_k^{n+1} given u_k^n , u_{k-1}^n , u_{k+1}^n , and u_k^{n-1} . To express this more explicitly, we can rewrite Eq. 4 as

$$Au_k^{n+1} = Eu_{k-1}^n + Fu_k^n + Eu_{k+1}^n - Bu_k^{n-1}$$
(5)

where

$$A = 1 + \frac{\Delta (\alpha + \beta)}{2} \tag{6}$$

$$B = 1 - \frac{\Delta (\alpha + \beta)}{2} \tag{7}$$

$$E = \left(c\frac{\Delta t}{\Delta x}\right)^2\tag{8}$$

$$F = 2 - 2\left(c\frac{\Delta t}{\Delta x}\right)^2 - \alpha\beta \left(\Delta t\right)^2 \tag{9}$$

2.4 Some Remarks

2.4.1 ENCODING INITIAL AND BOUNDARY CONDITIONS

Notice that the difference equation approximation applies for k = 1, 2, ..., K - 1 and n = 1, 2, ..., N - 1. It requires initial (i.e., at t_0) and boundary (i.e., at x_0 and x_K) values to be specified separately.

In general, initial voltage values are exressed as a function of x:

$$u(x,0) = \mu(x) \longrightarrow u_k^0 = \mu(x_k), \forall k.$$

It is also common to have predetermined initial time rate of change of voltage, which can then be approximated by a forward finite divided difference:

$$\frac{\partial u\left(x,0\right)}{\partial t}=\xi^{0} \quad \longrightarrow \quad \frac{\partial u_{k}^{0}}{\partial t}=\frac{u_{k}^{1}-u_{k}^{0}}{\Delta t}=\xi^{0} \quad \longrightarrow \quad u_{k}^{1}=u_{k}^{0}+\xi^{0}\Delta t, \ \forall k.$$

The sending- and receiving-end voltages can be expressed as functions of t:

$$u(0,t) = \nu_0(t) \longrightarrow u_0^n = \nu_0(t_n), \forall n$$

$$u(X,t) = \nu_X(t) \longrightarrow u_K^n = \nu_X(t_n), \forall n.$$

Information at the boundaries may also be expressed in terms of space-derivatives, which can be approximated usign forward and backward finite divided differences:

$$\begin{split} \frac{\partial u\left(0,t\right)}{\partial x} &= \gamma_0 &\longrightarrow & \frac{\partial u_0^n}{\partial x} &= \frac{u_1^n - u_0^n}{\Delta x} = \gamma_0 &\longrightarrow & u_0^n &= u_1^n - \gamma_0 \Delta x, \ \forall n \\ \frac{\partial u\left(X,t\right)}{\partial x} &= \gamma_X &\longrightarrow & \frac{\partial u_K^n}{\partial x} &= \frac{u_K^n - u_{K-1}^n}{\Delta x} = \gamma_X &\longrightarrow & u_K^n &= u_{K-1}^n + \gamma_X \Delta x, \ \forall n. \end{split}$$

2.4.2 Vectorizing the Update Scheme

The update scheme Eq. 5 is essentially a system of K-1 linear equations:

$$A\begin{bmatrix} u_1^{n+1} \\ u_2^{n+1} \\ \vdots \\ u_{K-1}^{n+1} \end{bmatrix} = \begin{bmatrix} E & F & E & 0 & \cdots & 0 & 0 & 0 \\ 0 & E & F & E & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & E & F & E \end{bmatrix} \begin{bmatrix} u_0^n \\ u_1^n \\ u_2^n \\ \vdots \\ u_{K-1}^n \\ u_K^n \end{bmatrix} - B\begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{bmatrix} \begin{bmatrix} u_0^{n-1} \\ u_1^{n-1} \\ u_2^{n-1} \\ \vdots \\ u_{K-1}^{n-1} \\ u_K^{n-1} \end{bmatrix}$$

Letting

$$\hat{\mathbf{u}}^{n} = \begin{bmatrix} u_{1}^{n}, u_{2}^{n}, \dots, u_{K-1}^{n} \end{bmatrix}^{\mathsf{T}} \in \mathbb{R}^{K-1}
\mathbf{u}^{n} = \begin{bmatrix} u_{0}^{n}, u_{1}^{n}, \dots, u_{K-1}^{n}, u_{K}^{n} \end{bmatrix}^{\mathsf{T}} \in \mathbb{R}^{K+1}
\mathbf{E} = \begin{bmatrix} E & F & E & 0 & \cdots & 0 & 0 & 0 \\ 0 & E & F & E & \cdots & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & E & F & E \end{bmatrix} \in \mathbb{R}^{(K-1)\times(K+1)}$$

$$\mathbf{B} = B \begin{bmatrix} \mathbf{0} & \mathbf{I} & \mathbf{0} \end{bmatrix} \in \mathbb{R}^{(K-1)\times(K+1)}$$
(10)

where $\mathbf{0}$ is an (K-1)-vector of zeros and \mathbf{I} is the identity matrix of size (K-1), the update equations can be expressed compactly as

$$A\hat{\mathbf{u}}^{n+1} = \mathbf{E}\mathbf{u}^n - \mathbf{B}\mathbf{u}^{n-1} \tag{12}$$

$$\mathbf{u}^{n+1} = \begin{bmatrix} u_0^{n+1} \\ \hat{\mathbf{u}}_{n+1}^{n+1} \\ u_K^{n+1} \end{bmatrix}$$
 (13)

where u_0^{n+1} and u_K^{n+1} are determined from the boundary conditions.

2.4.3 Choosing the Time Step

In general, the finer the spatial and temporal domains are discretized, the better u_k^n approximates $u\left(x,t\right)$. However, as Δx and Δt get smaller, the number of gridpoints at which $u\left(x,t\right)$ is to be approximated increases, and so does the computational burden. Moreover, a judicious choice of the spatial and temporal steps helps avoid instability (i.e., when the error drastically accumulates). The Courant-Friedrics-Levy (CFL) condition is a commonly used guide for selecting Δx or Δt (given the other):

$$\epsilon = c \frac{\Delta t}{\Delta x} \le 1 \tag{14}$$

where ϵ is called the *CFL number*. In other words, for a particular Δx , the time step should be

$$\Delta t \leq \frac{\Delta x}{c}$$

to avoid an unstable apporximation. Intuitively, this upper limit on Δt says that the simulation cannot be incremented any more than the time required for a wave to travel one grid step in space.

3 ILLUSTRATIVE EXAMPLES

Duis aliquet dui in est. Donec eget est. Nunc lectus odio, varius at, fermentum in, accumsan non, enim. Aliquam erat volutpat. Proin sit amet nulla ut eros consectetuer cursus. Phasellus dapibus aliquam justo. Nunc laoreet. Donec consequat placerat magna. Duis pretium tincidunt justo. Sed sollicitudin vestibulum quam. Nam quis ligula. Vivamus at metus. Etiam imperdiet imperdiet pede. Aenean turpis. Fusce augue velit, scelerisque sollicitudin, dictum vitae, tempor et, pede. Donec wisi sapien, feugiat in, fermentum ut, sollicitudin adipiscing, metus.

3.1 ON VECTORIZATION

Quisque consectetuer. In suscipit mauris a dolor pellentesque consectetuer. Mauris convallis neque non erat. In lacinia. Pellentesque leo eros, sagittis quis, fermentum quis, tincidunt ut, sapien. Maecenas sem. Curabitur eros odio, interdum eu, feugiat eu, porta ac, nisl. Curabitur nunc. Etiam fermentum convallis velit. Pellentesque laoreet lacus. Quisque sed elit. Nam quis tellus. Aliquam tellus arcu, adipiscing non, tincidunt eleifend, adipiscing quis, augue. Vivamus elementum placerat enim. Suspendisse ut tortor. Integer faucibus adipiscing felis. Aenean consectetuer mattis lectus. Morbi malesuada faucibus dolor. Nam lacus. Etiam arcu libero, malesuada vitae, aliquam vitae, blandit tristique, nisl.

3.2 ON SPATIAL DOMAIN DISCRETIZATION

Morbi nunc. Aliquam consectetuer varius nulla. Phasellus eros. Cras dapibus porttitor risus. Maecenas ultrices mi sed diam. Praesent gravida velit at elit vehicula porttitor. Phasellus nisl mi, sagittis ac, pulvinar id, gravida sit amet, erat. Vestibulum est. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Curabitur id sem elementum leo rutrum hendrerit. Ut at mi. Donec tincidunt faucibus massa. Sed turpis quam, sollicitudin a, hendrerit eget, pretium ut, nisl. Duis hendrerit ligula. Nunc pulvinar congue urna.

3.3 ON TEMPORAL DOMAIN DISCRETIZATION

Ut lectus lectus, ultricies sit amet, semper eget, laoreet non, ante. Proin at massa quis nunc rhoncus mattis. Aliquam lorem. Curabitur pharetra dui at neque. Aliquam eu tellus. Aenean tempus, felis vitae vulputate iaculis, est dolor faucibus urna, in viverra wisi neque non risus. Fusce vel dolor nec sapien pretium nonummy. Integer faucibus massa ac nulla ornare venenatis. Nulla quis sapien. Sed tortor. Phasellus eget mi. Cras nunc. Cras a enim.

3.4 A MULTI-STAGE SCENARIO

Phasellus vestibulum orci vel mauris. Fusce quam leo, adipiscing ac, pulvinar eget, molestie sit amet, erat. Sed diam. Suspendisse eros leo, tempus eget, dapibus sit amet, tempus eu, arcu. Vestibulum wisi metus, dapibus vel, luctus sit amet, condimentum quis, leo. Suspendisse molestie. Duis in ante. Ut sodales sem sit amet mauris. Suspendisse ornare pretium orci. Fusce tristique enim eget mi. Vestibulum eros elit, gravida ac, pharetra sed, lobortis in, massa. Proin at dolor. Duis accumsan accumsan pede. Nullam blandit elit in magna lacinia hendrerit. Ut nonummy luctus eros. Fusce eget tortor.

4 CONCLUSION

Nulla ac nisl. Nullam urna nulla, ullamcorper in, interdum sit amet, gravida ut, risus. Aenean ac enim. In luctus. Phasellus eu quam vitae turpis viverra pellentesque. Duis feugiat felis ut enim. Phasellus pharetra, sem id porttitor sodales, magna nunc aliquet nibh, nec blandit nisl mauris at pede. Suspendisse risus risus, lobortis eget, semper at, imperdiet sit amet, quam. Quisque scelerisque dapibus nibh. Nam enim. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Nunc ut metus. Ut metus justo, auctor at, ultrices eu, sagittis ut, purus. Aliquam aliquam.

SUBMISSION OF CONFERENCE PAPERS TO ICLR 2021

ICLR requires electronic submissions, processed by https://openreview.net/. See ICLR's website for more instructions.

If your paper is ultimately accepted, the statement \iclrfinalcopy should be inserted to adjust the format to the camera ready requirements.

The format for the submissions is a variant of the NeurIPS format. Please read carefully the instructions below, and follow them faithfully.

STYLE

Papers to be submitted to ICLR 2021 must be prepared according to the instructions presented here.

Authors are required to use the ICLR LATEX style files obtainable at the ICLR website. Please make sure you use the current files and not previous versions. Tweaking the style files may be grounds for rejection.

RETRIEVAL OF STYLE FILES

The style files for ICLR and other conference information are available online at:

The file iclr2021_conference.pdf contains these instructions and illustrates the various formatting requirements your ICLR paper must satisfy. Submissions must be made using LATEX and the style files iclr2021_conference.sty and iclr2021_conference.bst (to be used with LATEX2e). The file iclr2021_conference.tex may be used as a "shell" for writing your paper. All you have to do is replace the author, title, abstract, and text of the paper with your own.

The formatting instructions contained in these style files are summarized in sections 4, 4, and 4 below.

GENERAL FORMATTING INSTRUCTIONS

The text must be confined within a rectangle 5.5 inches (33 picas) wide and 9 inches (54 picas) long. The left margin is 1.5 inch (9 picas). Use 10 point type with a vertical spacing of 11 points. Times New Roman is the preferred typeface throughout. Paragraphs are separated by 1/2 line space, with no indentation.

Paper title is 17 point, in small caps and left-aligned. All pages should start at 1 inch (6 picas) from the top of the page.

Authors' names are set in boldface, and each name is placed above its corresponding address. The lead author's name is to be listed first, and the co-authors' names are set to follow. Authors sharing the same address can be on the same line.

Please pay special attention to the instructions in section 4 regarding figures, tables, acknowledgments, and references.

There will be a strict upper limit of 8 pages for the main text of the initial submission, with unlimited additional pages for citations. Note that the upper page limit differs from last year! Authors may use as many pages of appendices (after the bibliography) as they wish, but reviewers are not required to read these. During

the rebuttal phase and for the camera ready version, authors are allowed one additional page for the main text, for a strict upper limit of 9 pages.

HEADINGS: FIRST LEVEL

First level headings are in small caps, flush left and in point size 12. One line space before the first level heading and 1/2 line space after the first level heading.

HEADINGS: SECOND LEVEL

Second level headings are in small caps, flush left and in point size 10. One line space before the second level heading and 1/2 line space after the second level heading.

HEADINGS: THIRD LEVEL

Third level headings are in small caps, flush left and in point size 10. One line space before the third level heading and 1/2 line space after the third level heading.

CITATIONS, FIGURES, TABLES, REFERENCES

These instructions apply to everyone, regardless of the formatter being used.

CITATIONS WITHIN THE TEXT

Citations within the text should be based on the natbib package and include the authors' last names and year (with the "et al." construct for more than two authors). When the authors or the publication are included in the sentence, the citation should not be in parenthesis using \citet{} (as in "See Hinton et al. (2006) for more information."). Otherwise, the citation should be in parenthesis using \citep{} (as in "Deep learning shows promise to make progress towards AI (Bengio & LeCun, 2007).").

The corresponding references are to be listed in alphabetical order of authors, in the REFERENCES section. As to the format of the references themselves, any style is acceptable as long as it is used consistently.

FOOTNOTES

Indicate footnotes with a number¹ in the text. Place the footnotes at the bottom of the page on which they appear. Precede the footnote with a horizontal rule of 2 inches (12 picas).²

FIGURES

All artwork must be neat, clean, and legible. Lines should be dark enough for purposes of reproduction; art work should not be hand-drawn. The figure number and caption always appear after the figure. Place one line space before the figure caption, and one line space after the figure. The figure caption is lower case (except for first word and proper nouns); figures are numbered consecutively.

Make sure the figure caption does not get separated from the figure. Leave sufficient space to avoid splitting the figure and figure caption.

You may use color figures. However, it is best for the figure captions and the paper body to make sense if the paper is printed either in black/white or in color.

TABLES

All tables must be centered, neat, clean and legible. Do not use hand-drawn tables. The table number and title always appear before the table. See Table 1.

¹Sample of the first footnote

²Sample of the second footnote

Figure 1: Sample figure caption.

Table 1: Sample table title

PART	DESCRIPTION
Dendrite Axon Soma	Input terminal Output terminal Cell body (contains cell nucleus)

Place one line space before the table title, one line space after the table title, and one line space after the table. The table title must be lower case (except for first word and proper nouns); tables are numbered consecutively.

DEFAULT NOTATION

In an attempt to encourage standardized notation, we have included the notation file from the text-book, *Deep Learning* Goodfellow et al. (2016) available at https://github.com/goodfeli/dlbook_notation/. Use of this style is not required and can be disabled by commenting out math_commands.tex.

Numbers and Arrays

a	A scalar (integer or real)
a	A vector
\boldsymbol{A}	A matrix
Α	A tensor
I_n	Identity matrix with n rows and n columns
I	Identity matrix with dimensionality implied by context
$e^{(i)}$	Standard basis vector $[0,\ldots,0,1,0,\ldots,0]$ with a 1 at position i
$\operatorname{diag}({m a})$	A square, diagonal matrix with diagonal entries given by $oldsymbol{a}$
a	A scalar random variable
a	A vector-valued random variable
\mathbf{A}	A matrix-valued random variable

Sets and Graphs

A	A set
\mathbb{R}	The set of real numbers
$\{0,1\}$	The set containing 0 and 1
$\{0,1,\ldots,n\}$	The set of all integers between 0 and n
[a,b]	The real interval including a and b
(a, b]	The real interval excluding a but including b
$\mathbb{A} \setminus \mathbb{B}$	Set subtraction, i.e., the set containing the elements of $\mathbb A$ that are not in $\mathbb B$
\mathcal{G}	A graph
$Pa_{\mathcal{G}}(\mathbf{x}_i)$	The parents of x_i in \mathcal{G}
	Indexing
a_i	Element i of vector a , with indexing starting at 1
a_{-i}	All elements of vector \boldsymbol{a} except for element i
$A_{i,j}$	Element i, j of matrix \boldsymbol{A}
$oldsymbol{A}_{i,:}$	Row i of matrix \boldsymbol{A}
$oldsymbol{A}_{:,i}$	Column i of matrix \boldsymbol{A}
$A_{i,j,k}$	Element (i, j, k) of a 3-D tensor A
$\mathbf{A}_{:,:,i}$	2-D slice of a 3-D tensor
\mathbf{a}_i	Element i of the random vector \mathbf{a}
	Calculus
$\frac{dy}{dx}$	Derivative of y with respect to x
$\frac{\partial y}{\partial x}$	Partial derivative of y with respect to x
$\nabla_{\boldsymbol{x}} y$	Gradient of y with respect to x
$\nabla_{\boldsymbol{X}} y$	Matrix derivatives of y with respect to \boldsymbol{X}
$\nabla_{\mathbf{X}} y$	Tensor containing derivatives of y with respect to \mathbf{X}
$\frac{\partial f}{\partial \boldsymbol{x}}$	Jacobian matrix $\boldsymbol{J} \in \mathbb{R}^{m \times n}$ of $f: \mathbb{R}^n \to \mathbb{R}^m$
$\nabla_{m{x}}^2 f(m{x}) \text{ or } m{H}(f)(m{x})$	The Hessian matrix of f at input point \boldsymbol{x}
$\int f(m{x}) dm{x}$	Definite integral over the entire domain of x
$\int_{\mathbb{S}} f(oldsymbol{x}) doldsymbol{x}$	Definite integral with respect to x over the set $\mathbb S$

Probability and Information Theory

$P(\mathbf{a})$	A probability distribution over a discrete variable
$p(\mathbf{a})$	A probability distribution over a continuous variable, or over a variable whose type has not been specified
$a \sim P$	Random variable a has distribution P
$\mathbb{E}_{\mathbf{x} \sim P}[f(x)]$ or $\mathbb{E}f(x)$	Expectation of $f(x)$ with respect to $P(x)$
Var(f(x))	Variance of $f(x)$ under $P(x)$
Cov(f(x), g(x))	Covariance of $f(x)$ and $g(x)$ under $P(x)$
$H(\mathbf{x})$	Shannon entropy of the random variable x
$D_{\mathrm{KL}}(P\ Q)$	Kullback-Leibler divergence of P and Q
$\mathcal{N}(m{x};m{\mu},m{\Sigma})$	Gaussian distribution over x with mean μ and covariance Σ
	T (1
	Functions
$f:\mathbb{A} o \mathbb{B}$	Functions The function f with domain \mathbb{A} and range \mathbb{B}
$f:\mathbb{A} o\mathbb{B}$ $f\circ g$	
	The function f with domain $\mathbb A$ and range $\mathbb B$
$f\circ g$	The function f with domain \mathbb{A} and range \mathbb{B} Composition of the functions f and g A function of \boldsymbol{x} parametrized by $\boldsymbol{\theta}$. (Sometimes we write $f(\boldsymbol{x})$ and omit the argument $\boldsymbol{\theta}$ to lighten notation) Natural logarithm of x
$egin{aligned} f \circ g \ f(oldsymbol{x}; oldsymbol{ heta}) \end{aligned}$	The function f with domain \mathbb{A} and range \mathbb{B} Composition of the functions f and g A function of \boldsymbol{x} parametrized by $\boldsymbol{\theta}$. (Sometimes we write $f(\boldsymbol{x})$ and omit the argument $\boldsymbol{\theta}$ to lighten notation)
$f \circ g$ $f(x; \theta)$ $\log x$	The function f with domain \mathbb{A} and range \mathbb{B} Composition of the functions f and g A function of \boldsymbol{x} parametrized by $\boldsymbol{\theta}$. (Sometimes we write $f(\boldsymbol{x})$ and omit the argument $\boldsymbol{\theta}$ to lighten notation) Natural logarithm of x
$f \circ g$ $f(x; \theta)$ $\log x$ $\sigma(x)$	The function f with domain \mathbb{A} and range \mathbb{B} Composition of the functions f and g A function of \boldsymbol{x} parametrized by $\boldsymbol{\theta}$. (Sometimes we write $f(\boldsymbol{x})$ and omit the argument $\boldsymbol{\theta}$ to lighten notation) Natural logarithm of x Logistic sigmoid, $\frac{1}{1+\exp(-x)}$
$f \circ g$ $f(x; \theta)$ $\log x$ $\sigma(x)$ $\zeta(x)$	The function f with domain $\mathbb A$ and range $\mathbb B$ Composition of the functions f and g A function of $\boldsymbol x$ parametrized by $\boldsymbol \theta$. (Sometimes we write $f(\boldsymbol x)$ and omit the argument $\boldsymbol \theta$ to lighten notation) Natural logarithm of x Logistic sigmoid, $\frac{1}{1+\exp(-x)}$ Softplus, $\log(1+\exp(x))$
$f \circ g$ $f(x; \theta)$ $\log x$ $\sigma(x)$ $\zeta(x)$ $ x _p$	The function f with domain \mathbb{A} and range \mathbb{B} Composition of the functions f and g A function of \boldsymbol{x} parametrized by $\boldsymbol{\theta}$. (Sometimes we write $f(\boldsymbol{x})$ and omit the argument $\boldsymbol{\theta}$ to lighten notation) Natural logarithm of x Logistic sigmoid, $\frac{1}{1+\exp(-x)}$ Softplus, $\log(1+\exp(x))$ L^p norm of \boldsymbol{x}

FINAL INSTRUCTIONS

Do not change any aspects of the formatting parameters in the style files. In particular, do not modify the width or length of the rectangle the text should fit into, and do not change font sizes (except perhaps in the REFERENCES section; see below). Please note that pages should be numbered.

PREPARING POSTSCRIPT OR PDF FILES

Please prepare PostScript or PDF files with paper size "US Letter", and not, for example, "A4". The -t letter option on dvips will produce US Letter files.

Consider directly generating PDF files using pdflatex (especially if you are a MiKTeX user). PDF figures must be substituted for EPS figures, however.

Otherwise, please generate your PostScript and PDF files with the following commands:

```
dvips mypaper.dvi -t letter -Ppdf -G0 -o mypaper.ps
ps2pdf mypaper.ps mypaper.pdf
```

MARGINS IN LATEX

Most of the margin problems come from figures positioned by hand using \special or other commands. We suggest using the command \includegraphics from the graphicx package. Always specify the figure width as a multiple of the line width as in the example below using .eps graphics

```
\usepackage[dvips]{graphicx} ...
\includegraphics[width=0.8\linewidth]{myfile.eps}

or

\usepackage[pdftex]{graphicx} ...
\includegraphics[width=0.8\linewidth]{myfile.pdf}
```

for .pdf graphics. See section 4.4 in the graphics bundle documentation (http://www.ctan.org/tex-archive/macros/latex/required/graphics/grfguide.ps)

A number of width problems arise when LaTeX cannot properly hyphenate a line. Please give LaTeX hyphenation hints using the \- command.

REFERENCES

Yoshua Bengio and Yann LeCun. Scaling Learning Algorithms Towards AI. In *Large Scale Kernel Machines*. MIT Press, 2007.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep Learning*, volume 1. MIT Press, 2016.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A Fast Learning Algorithm for Deep Belief Nets. *Neural Computation*, 18:1527–1554, 2006.