根底:	根据样本信息、检验每于总体的某个假设是否已净
	1险版:关于范珠分布的某个命题。
	施验:根据采自营体的样本,经出判断上亚命题准备与否证援则.
程.依依據.	京2276 晚日 顶 20
12.510 Q 4	東跨貨的
(能)************************************	考数假及检验 (总体分布已成功
	非参数(段沒格3查(草体分布未知)
检验分散:	人建之Ho (原体)、H. (各碎作效).
	2.在H·为真杂件下,选择分歧张计量,计算拖径域。
	3、根据样本值订算,作出决策。
西类错误:	(1) Ho为真, 報路線界否定Ho, 并真, 北治双.
	(2) H.为假,推断结果指复Ho,到价,汽为月
	-般假没格验是控制第一类错误概率不超过0,
	通过加大样本客量成以及.
	(1.62.1.4.24.24.24.24.24.24.24.24.24.24.24.24.2
一个正态总体:	117 从杨维之及林马金、丁灵家口
	Ho: NzMo, H1: N4Mo
	杨维结量是一个你
	$W = \left\{ (x_1, x_2, \dots, x_n) : (\ge 1 = \frac{x_1 - x_0}{\nabla I J_n} \ge \ge \frac{x_1}{2} \right\}$
	原假设 备择假设 检验统计量 拒绝域
	$\mu = \mu_0 \qquad \mu \neq \mu_0 \qquad z \geq z_{\alpha}$
	$\mu \leq \mu_0 \qquad \mu > \mu_0 \qquad Z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \qquad z \geq z_{\alpha}$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\mu \geq \mu_0$ $\mu < \mu_0$ $z \leq -z_{\alpha}$

$$W = \left\{ (x_1, x_1, \dots, x_n) : \{t\} = \left| \frac{\overline{X} - \mu_0}{s / F_n} \right| \ge t_{\frac{\kappa}{2}}(n-1) \right\}.$$

关于 μ 的检验(σ 未知) t 检验法

原假设 <i>H</i> ₀	备择假设 <i>H</i> ₁	检验统计量	拒绝域
$\mu = \mu_0$	$\mu \neq \mu_0$		$\left t \right \ge t_{\frac{\alpha}{2}}(n-1)$
$\mu \leq \mu_0$	$\mu > \mu_0$	$t = \frac{X - \mu_0}{S / \sqrt{n}}$	$t \ge t_{\alpha}(n-1)$
$\mu \ge \mu_0$	$\mu < \mu_0$	~ t(1 <u>m-1)</u>	$t \le -t_{\alpha}(n-1)$

(3) 可能够强格验,从未知

$$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2$$

关于 σ^2 的检验 (μ 未知) χ^2 检验法 原假设 备择假设 检验统计量 拒绝域 $\left|\chi^2 \leq \chi_{1-\frac{\alpha}{2}}^2(n-1)\right|$ $\sigma^2 = \sigma_0^2 \mid \sigma^2 \neq \sigma_0^2$ | 或 $\chi^2 \geq \chi_{\frac{\alpha}{2}}^2(n-1)$ $\sigma^2 \leq \sigma_0^2 \quad \sigma^2 > \sigma_0^2 \quad \chi^2 = \frac{(n-1)S^2}{\sigma_0^2} \quad \chi^2 \geq \chi_\alpha^2 (n-1)$ $\sigma^{2} \geq \sigma_{0}^{2} \quad \sigma^{2} < \sigma_{0}^{2} \qquad \qquad \chi^{2}(\underline{n-1}) \qquad \qquad \chi^{2} \leq \chi^{2}_{1-\alpha}(n-1)$

和介正太总体: 117 MI-MZに行動を発力し、丁がかりとれる

关于均值差 $\mu_1 - \mu_2$ 的检验 $(\sigma_i^2, \sigma_2^2]$ 已知)

N 51 + N2

原假设 <i>H</i> ₀	备择假设 <i>H</i> ₁	检验统计量	拒绝域
$\mu_1 - \mu_2 = 0$	$\mu_1 - \mu_2 \neq 0$	$\overline{X} - \overline{Y}$	$ Z \ge z_{\frac{\alpha}{2}}$
$\mu_1 - \mu_2 \ge 0$	$\mu_1 - \mu_2 < 0$	$U = \frac{1}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}}$	$Z \leq -z_{\alpha}$
$\mu_1 - \mu_2 \le 0$	$\mu_1 - \mu_2 > 0$		$Z \ge z_{\alpha}$

(2) 川川川的路路路接通、丁)=丁=丁=丁子东

σ_1^2, σ_2^2 未知, $\sigma_1^2 = \sigma_2^2$					
	原假设 <i>H</i> ₀	备择假设 <i>H</i> ₁	检验统计量	拒绝域	
		$\mu_1 - \mu_2 \neq 0$			2)
	$\frac{\mu_1 - \mu_2 = 0}{}$	μ1 μ2 / ο	$\overline{X} - \overline{Y}$	$\left \begin{array}{c} T \\ \end{array} \right \ge t_{\frac{\alpha}{2}}(n+m)$	- 2) -
	$\mu_1 - \mu_2 \ge 0$	$\mu_1 - \mu_2 < 0$	$T = \frac{1}{S_w \sqrt{\frac{1}{n} + \frac{1}{m}}}$	$T \le -t_{\alpha}(n+m)$	-2)
	$\mu_1 - \mu_2 \le 0$	$\mu_1 - \mu_2 > 0$	v t (n+m-2)	$T \ge t_{\alpha} (n + m)$	-2)
		其中 S _w =	$= \sqrt{\frac{(n-1)S_1^2 + (m-1)S_2^2}{n+m-2}}$		

以了了人下2份路及检验。

关于方差比 σ_1^2/σ_2^2 的检验, μ_1 , μ_2 均未知

原假设 <i>H</i> ₀	备择假设 <i>H</i> ₁	检验统计量	拒绝域
$\sigma_1^2 = \sigma_2^2$	$\sigma_1^2 \neq \sigma_2^2$	$F = \frac{S_1^2}{S_2^2}$	$F \le F_{1-\frac{\alpha}{2}}(n-1, m-1)$ $EX F \ge F_{\frac{\alpha}{2}}(n-1, m-1)$
$\sigma_1^2 \ge \sigma_2^2$	$\sigma_1^2 < \sigma_2^2$	S_2^2 $\rightarrow (\underline{n-1}, \underline{m-1})$	$F \le F_{1-\alpha}(n-1, m-1)$
$\sigma_1^2 \leq \sigma_2^2$	$\sigma_1^2 > \sigma_2^2$		$F \ge F_{\alpha}(n-1, m-1)$

计再第一类错误根据:

第一类错误为 弄真

P(移色Ho/Ho为填) = 又.

计再第二类错误概算: 第二类错误为 玄伪

P(移食H。| H。治隊)