Deep Reinforcement Learning

Overview of main articles
Part 2. Policy gradient algorithms

Sergey Ivanov

November 1, 2018

MSU

Table of contents i

Basic policy gradient methods

REINFORCE

Baselines introduction

Actor-Critic

Generalized Advantage Estimation (GAE) (2018)

Basic policy gradient methods

Recall RL goal:

$$\mathbb{E}_{\pi(\theta)}\mathbb{E}_{\mathcal{T}}R o \max_{\theta}$$

Recall RL goal:

$$\mathbb{E}_{\pi(\theta)}\mathbb{E}_{\mathcal{T}}R o \max_{\theta}$$

Let's optimize our goal directly!

$$\nabla_{\theta} \mathbb{E}_{\pi(\theta)} \mathbb{E}_{\mathcal{T}} R -?$$

Recall RL goal:

$$\mathbb{E}_{\pi(\theta)}\mathbb{E}_{\mathcal{T}}R o \max_{\theta}$$

Let's optimize our goal directly!

$$\nabla_{\theta} \mathbb{E}_{\pi(\theta)} \mathbb{E}_{\mathcal{T}} R -?$$

Recall RL goal:

$$\mathbb{E}_{\pi(\theta)}\mathbb{E}_{\mathcal{T}}R o \max_{\theta}$$

Let's optimize our goal directly!

$$\nabla_{\theta} \mathbb{E}_{\pi(\theta)} \mathbb{E}_{\mathcal{T}} R - ?$$

Options:

- * Metaheurisics
- * Log-derivative trick¹.

¹aka REINFORCE

$$\nabla_{\theta} \mathbb{E}_{x \sim \pi(x,\theta)} f(x) = \nabla_{\theta} \int \pi(x,\theta) f(x) dx$$

$$\nabla_{\theta} \mathbb{E}_{x \sim \pi(x,\theta)} f(x) = \nabla_{\theta} \int \pi(x,\theta) f(x) dx = \left\{ \quad \text{?} \right\} = \int \nabla_{\theta} \pi(x,\theta) f(x) dx$$

$$\nabla_{\theta} \mathbb{E}_{\mathbf{x} \sim \pi(\mathbf{x}, \theta)} f(\mathbf{x}) = \nabla_{\theta} \int \pi(\mathbf{x}, \theta) f(\mathbf{x}) d\mathbf{x} = \left\{ \begin{array}{c} \mathbf{x} \\ \mathbf{x} \end{array} \right\} = \int \nabla_{\theta} \pi(\mathbf{x}, \theta) f(\mathbf{x}) d\mathbf{x}$$

Problem: and what?

$$\nabla_{\theta} \mathbb{E}_{\mathbf{x} \sim \pi(\mathbf{x}, \theta)} f(\mathbf{x}) = \nabla_{\theta} \int \pi(\mathbf{x}, \theta) f(\mathbf{x}) d\mathbf{x} = \left\{ \begin{array}{c} \mathbf{x} \\ \mathbf{x} \end{array} \right\} = \int \nabla_{\theta} \pi(\mathbf{x}, \theta) f(\mathbf{x}) d\mathbf{x}$$

Problem: and what?

Log-derivative trick

$$\nabla_{\theta} \pi(\theta) = \pi(\theta) \nabla_{\theta} \log \pi(\theta)$$

$$\nabla_{\theta} \mathbb{E}_{x \sim \pi(x,\theta)} f(x) = \nabla_{\theta} \int \pi(x,\theta) f(x) dx = \left\{ \quad \text{?} \right\} = \int \nabla_{\theta} \pi(x,\theta) f(x) dx = \left\{ \quad \text{?} \right\}$$

Problem: and what?

Log-derivative trick

$$\nabla_{\theta} \pi(\theta) = \pi(\theta) \nabla_{\theta} \log \pi(\theta)$$

$$= \int \pi(x,\theta) \nabla_{\theta} \log \pi(x,\theta) f(x) dx$$

$$\nabla_{\theta} \mathbb{E}_{x \sim \pi(x,\theta)} f(x) = \nabla_{\theta} \int \pi(x,\theta) f(x) dx = \left\{ \quad \text{?} \right\} = \int \nabla_{\theta} \pi(x,\theta) f(x) dx = \left\{ \quad \text{?} \right\}$$

Problem: and what?

Log-derivative trick

$$\nabla_{\theta} \pi(\theta) = \pi(\theta) \nabla_{\theta} \log \pi(\theta)$$

$$= \int \pi(x,\theta) \nabla_{\theta} \log \pi(x,\theta) f(x) dx = \mathbb{E}_{x \sim \pi(x,\theta)} \nabla_{\theta} \log \pi(x,\theta) f(x)$$

Recall Importance Sampling. For arbitrary distribution $\phi(x)$:

$$\mathbb{E}_{x \sim \pi(x,\theta)} f(x) = \mathbb{E}_{x \sim \phi(x)} \frac{\pi(x,\theta)}{\phi(x)} f(x)$$

Recall Importance Sampling. For arbitrary distribution $\phi(x)$:

$$\mathbb{E}_{x \sim \pi(x,\theta)} f(x) = \mathbb{E}_{x \sim \phi(x)} \frac{\pi(x,\theta)}{\phi(x)} f(x)$$

Recall Importance Sampling. For arbitrary distribution $\phi(x)$:

$$\mathbb{E}_{x \sim \pi(x,\theta)} f(x) = \mathbb{E}_{x \sim \phi(x)} \frac{\pi(x,\theta)}{\phi(x)} f(x)$$

Let's set $\phi(x) \equiv \pi(x, \theta)$:

Recall Importance Sampling. For arbitrary distribution $\phi(x)$:

$$\mathbb{E}_{x \sim \pi(x,\theta)} f(x) = \mathbb{E}_{x \sim \phi(x)} \frac{\pi(x,\theta)}{\phi(x)} f(x)$$

Let's set $\phi(x) \equiv \pi(x, \theta)$:

$$\nabla_{\theta} \mathbb{E}_{\mathbf{x} \sim \phi(\mathbf{x})} \frac{\pi(\mathbf{x}, \theta)}{\phi(\mathbf{x})} f(\mathbf{x}) = \mathbb{E}_{\mathbf{x} \sim \phi(\mathbf{x})} \frac{\nabla_{\theta} \pi(\mathbf{x}, \theta)}{\phi(\mathbf{x})} f(\mathbf{x})$$

Note: that is the same gradient as with log-derivative trick².

²really? Could it even happen otherwise?

REINFORCE

Let's apply log-derivative trick to our goal!

$$\nabla_{\theta} \mathbb{E}_{\pi(\theta)} \mathbb{E}_{\mathcal{T}} R = \mathbb{E}_{\pi(\theta)} \nabla_{\theta} \log \pi(\theta) \mathbb{E}_{\mathcal{T}} R$$

REINFORCE

Let's apply log-derivative trick to our goal!

$$abla_{ heta} \mathbb{E}_{\pi(heta)} \mathbb{E}_{\mathcal{T}} R = \mathbb{E}_{\pi(heta)}
abla_{ heta} \log \pi(heta) \mathbb{E}_{\mathcal{T}} R pprox$$

We can estimate this gradient using Monte-Carlo by playing, let's say, one game:

$$pprox \sum_{t}^{T}
abla_{ heta} \log \pi(a_{t} \mid s_{t}, heta) R$$

Problems of REINFORCE

 \times Doesn't work.

Problems of REINFORCE

- × Doesn't work.
 - Reason: high variance of Monte-Carlo gradient estimation.

Problems of REINFORCE

- × Doesn't work.
 - **Reason:** *high variance* of Monte-Carlo gradient estimation.
 - you can play more than one game for one gradient step, but that doesn't help much.

Baseline

Proprosition

For arbitrary distribution $\pi(\theta)$:

$$\mathbb{E}
abla_{ heta} \log \pi(heta) = \int
abla_{ heta} \pi(heta) =
abla_{ heta} \int \pi(heta) =
abla_{ heta} 1 = 0$$

7

Baseline

Proprosition

For arbitrary distribution $\pi(\theta)$:

$$\mathbb{E}
abla_{ heta} \log \pi(heta) = \int
abla_{ heta} \pi(heta) =
abla_{ heta} \int \pi(heta) =
abla_{ heta} 1 = 0$$

Adding $\mathbb{E}\nabla_{\theta} \log \pi(\theta)b$ for some b to gradient estimate will not lead to bias, but may change variance.

7

Lowest variance baseline

Theorem

$$b = \frac{\mathbb{E}(\nabla_{\theta} \log \pi(\theta))^{2} R}{\mathbb{E}(\nabla_{\theta} \log \pi(\theta))^{2}}$$

is the baseline which leads to the lowest variance.

Lowest variance baseline

Theorem

$$b = \frac{\mathbb{E}(\nabla_{\theta} \log \pi(\theta))^{2} R}{\mathbb{E}(\nabla_{\theta} \log \pi(\theta))^{2}}$$

is the baseline which leads to the lowest variance.

* similar to average reward, which is also a good baseline.

Strange thing: our gradient estimate depends on R, which includes reward in the first state $r(s_0)$, where we haven't performed any actions.³

³did we make any mistake?

Strange thing: our gradient estimate depends on R, which includes reward in the first state $r(s_0)$, where we haven't performed any actions.³ Let's untangle our goal:

$$\nabla_{\theta} \mathbb{E}_{\rho(s_1)} \left(r(s_1) + \mathbb{E}_{a_1 \sim \pi(s_1, \theta)} \mathbb{E}_{\rho(s_2 \mid s_1, a)} \left[r(s_2) + \dots \right] \right)$$

³did we make any mistake?

Strange thing: our gradient estimate depends on R, which includes reward in the first state $r(s_0)$, where we haven't performed any actions.³ Let's untangle our goal:

$$\nabla_{\theta} \mathbb{E}_{\rho(s_1)} \left(r(s_1) + \mathbb{E}_{a_1 \sim \pi(s_1, \theta)} \mathbb{E}_{\rho(s_2 \mid s_1, a)} \left[r(s_2) + \ldots \right] \right) =$$

After carefully applying log-derivative trick:

$$= \mathbb{E} \sum_{t}^{T} \nabla_{\theta} \log \pi(a_{t} \mid s_{t}, \theta) \left(\sum_{t'=t+1}^{T} r(s_{t'}) \right)$$

³did we make any mistake?

Strange thing: our gradient estimate depends on R, which includes reward in the first state $r(s_0)$, where we haven't performed any actions.³ Let's untangle our goal:

$$\nabla_{\theta} \mathbb{E}_{p(s_1)} \left(r(s_1) + \mathbb{E}_{a_1 \sim \pi(s_1, \theta)} \mathbb{E}_{p(s_2 \mid s_1, a)} \left[r(s_2) + \ldots \right] \right) =$$

After carefully applying log-derivative trick:

$$= \mathbb{E} \sum_{t}^{T} \nabla_{\theta} \log \pi(a_{t} \mid s_{t}, \theta) \left(\sum_{t'=t+1}^{T} r(s_{t'}) \right)$$

√ that's much better!

³did we make any mistake?

Note:
$$\sum_{t'=t+1}^{T} r(s_{t'})$$
 is estimation of $Q^{\pi}(s_t, a_t)!$

$$abla = \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_{t} \mid s_{t}, heta) \left(\sum_{t'=t+1}^{T} r(s_{t'}) \right)$$

Note:
$$\sum_{t'=t+1}^{I} r(s_{t'})$$
 is estimation of $Q^{\pi}(s_t, a_t)!$

$$egin{aligned}
abla &= \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_{t} \mid s_{t}, heta) \left(\sum_{t'=t+1}^{T} r(s_{t'})
ight) = \ &= \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_{t} \mid s_{t}, heta) Q^{\pi}(s_{t}, a_{t}) \end{aligned}$$

Note: $\sum_{t'=t+1}^{T} r(s_{t'}) \text{ is estimation of } Q^{\pi}(s_t, a_t)!$

$$egin{aligned}
abla &= \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_{t} \mid s_{t}, heta) \left(\sum_{t'=t+1}^{T} r(s_{t'})
ight) = \ &= \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_{t} \mid s_{t}, heta) Q^{\pi}(s_{t}, a_{t}) \end{aligned}$$

Better estimation of $Q^{\pi}(s, a)$ should lead to lower variance.

Note: $\sum_{t'=t+1}^{T} r(s_{t'}) \text{ is estimation of } Q^{\pi}(s_t, a_t)!$

$$egin{aligned}
abla &= \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_{t} \mid s_{t}, heta) \left(\sum_{t'=t+1}^{T} r(s_{t'})
ight) = \ &= \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_{t} \mid s_{t}, heta) Q^{\pi}(s_{t}, a_{t}) \end{aligned}$$

Better estimation of $Q^{\pi}(s, a)$ should lead to lower variance.

- * π is an actor
- * estimate of $Q^{\pi}(s,a)$ is a *critic*

Advantage Actor Critic

$$abla = \mathbb{E} \sum_{t}^{\mathcal{T}}
abla_{ heta} \log \pi(a_t \mid s_t, heta) Q^{\pi}(s_t, a_t)$$

Let's insert some baseline:

Advantage Actor Critic

$$abla = \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_t \mid s_t, heta) \left(Q^{\pi}(s_t, a_t) - b
ight)$$

Let's insert some baseline:

$$abla = \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_t \mid s_t, heta) \left(Q^{\pi}(s_t, a_t) - b
ight)$$

Let's insert some baseline:

* Recall average $Q^{\pi}(s_t, a_t)$ is a good baseline.

$$abla = \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_t \mid s_t, heta) \left(Q^{\pi}(s_t, a_t) - b
ight)$$

Let's insert some baseline:

- * Recall average $Q^{\pi}(s_t, a_t)$ is a good baseline.
- * Recall $\mathbb{E}Q^{\pi}(s_t,a_t)=V^{\pi}(s_t)$

$$abla = \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_t \mid s_t, heta) \left(Q^{\pi}(s_t, a_t) - b
ight)$$

Let's insert some baseline:

- * Recall average $Q^{\pi}(s_t, a_t)$ is a good baseline.
- * Recall $\mathbb{E}Q^{\pi}(s_t,a_t)=V^{\pi}(s_t)$
- * Recall definition $A^{\pi}(s_t,a_t) = Q^{\pi}(s_t,a_t) V^{\pi}(s_t)$

$$abla = \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_t \mid s_t, heta) A^{\pi}(s_t, a_t)$$

Let's insert some baseline:

- * Recall average $Q^{\pi}(s_t, a_t)$ is a good baseline.
- * Recall $\mathbb{E}Q^{\pi}(s_t,a_t)=V^{\pi}(s_t)$
- * Recall definition $A^{\pi}(s_t,a_t) = Q^{\pi}(s_t,a_t) V^{\pi}(s_t)$

Critic can be a second neural net!

Critic can be a second neural net!

Options:

* approximate $A^{\pi}(s,a)$

Critic can be a second neural net!

Options:

- * approximate $A^{\pi}(s, a)$
- * approximate $Q^{\pi}(s,a)^4$

⁴can we just use Q-learning for this?

Critic can be a second neural net!

Options:

- * approximate $A^{\pi}(s, a)$
- * approximate $Q^{\pi}(s,a)^4$
- * approximate $V^{\pi}(s)$:

⁴can we just use Q-learning for this?

Critic can be a second neural net!

Options:

- * approximate $A^{\pi}(s, a)$
- * approximate $Q^{\pi}(s,a)^4$
- * approximate $V^{\pi}(s)$:

$$Q^{\pi}(s_t, a_t) - V^{\pi}(s_t) \approx r(s_{t+1}) + V^{\pi}(s_{t+1}) - V^{\pi}(s_t)$$

 $^{^{4}} can$ we just use Q-learning for this?

Critic can be a second neural net!

Options:

- * approximate $A^{\pi}(s, a)$
- * approximate $Q^{\pi}(s,a)^4$
- * approximate $V^{\pi}(s)$:

$$Q^{\pi}(s_t, a_t) - V^{\pi}(s_t) \approx r(s_{t+1}) + V^{\pi}(s_{t+1}) - V^{\pi}(s_t)$$

 \checkmark the least complex one! ⁵

⁴can we just use Q-learning for this?

⁵why?

For given state s we can calculate a target $y = V^{\pi}(s) \approx \sum_{t'=t+1}^{T} r(s_{t'})$.

At the end of the game, make a step of gradient descent to teach critic.

For given state s we can calculate a target $y = V^{\pi}(s) \approx \sum_{t'=t+1}^{T} r(s_{t'})$.

At the end of the game, make a step of gradient descent to teach critic.

Problem: the batch is highly correlated.

For given state s we can calculate a target $y = V^{\pi}(s) \approx \sum_{t'=t+1}^{T} r(s_{t'})$.

At the end of the game, make a step of gradient descent to teach critic.

Problem: the batch is highly correlated.

* well, play more games.

For given state s we can calculate a target $y = V^{\pi}(s) \approx \sum_{t'=t+1}^{T} r(s_{t'})$.

At the end of the game, make a step of gradient descent to teach critic.

Problem: the batch is highly correlated.

- * well, play more games.
 - :(for one step of gradient descent, yeah...

For given state s we can calculate a target $y = V^{\pi}(s) \approx \sum_{t'=t+1}^{T} r(s_{t'})$.

At the end of the game, make a step of gradient descent to teach critic.

Problem: the batch is highly correlated.

- * well, play more games.
 - :(for one step of gradient descent, yeah...

Alternative: $y = V^{\pi}(s) \approx r(s') + V^{\pi}(s')$

Advantage Actor-Critic (A2C) Algorithm:

• get (s, a, r, s')

Advantage Actor-Critic (A2C) Algorithm:

- get (s, a, r, s')
- ullet update critic $\hat{V}(s)$ using target $r+\hat{V}(s')$

Advantage Actor-Critic (A2C) Algorithm:

- get (s, a, r, s')
- ullet update critic $\hat{V}(s)$ using target $r+\hat{V}(s')$
- ullet evaluate $\hat{A}(s,a)=r+\hat{V}(s')-\hat{V}(s)$

Advantage Actor-Critic (A2C) Algorithm:

- get (s, a, r, s')
- update critic $\hat{V}(s)$ using target $r + \hat{V}(s')$
- ullet evaluate $\hat{A}(s,a)=r+\hat{V}(s')-\hat{V}(s)$
- update policy using estimate of gradient $\nabla_{\theta} \log \pi(a \mid s, \theta) \hat{A}(s, a)$

Advantage Actor-Critic (A2C) Algorithm:

- get (s, a, r, s')
- ullet update critic $\hat{V}(s)$ using target $r+\hat{V}(s')$
- evaluate $\hat{A}(s,a) = r + \hat{V}(s') \hat{V}(s)$
- update policy using estimate of gradient $\nabla_{\theta} \log \pi(a \mid s, \theta) \hat{A}(s, a)$

Check out this comic about A2C!

Dealing with two networks

Option 1: just two neural nets

Option 2: shared feature extractor

Dealing with two networks

Option 1: just two neural nets \times obviously redundant

Option 2: shared feature extractor \times may be unstable

 \checkmark lower variance!

- √ lower variance!
- $\, imes\,$ yet policy gradient estimates are not unbiased anymore! 6

⁶why?

- √ lower variance!
- × yet policy gradient estimates are not unbiased anymore!⁶
- \times batch_size = 1

⁶why?

- √ lower variance!
- × yet policy gradient estimates are not unbiased anymore!⁶
- \times batch_size = 1
 - \checkmark do gradient descent step every N game steps.

⁶why?

- √ lower variance!
- × yet policy gradient estimates are not unbiased anymore!⁶
- \times batch_size = 1
 - \checkmark do gradient descent step every N game steps.
 - \checkmark play several games in parallel.

⁶why?

Generalized Advantage

Estimation (GAE) (2018)

Playing with Q and V...

$$\nabla = \mathbb{E} \sum_{t}^{I} \nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \left(Q^{\pi}(s_t, a_t) - V^{\pi}(s_t) \right)$$

In practice we may use separate approximations for $Q^{\pi}(s_t, a_t)$ and baseline $b = V^{\pi}(s_t)$ and play with different ways to do that:

Playing with Q and V...

$$abla = \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_t \mid s_t, heta) \left(Q^{\pi}(s_t, a_t) - V^{\pi}(s_t) \right)$$

In practice we may use separate approximations for $Q^{\pi}(s_t, a_t)$ and baseline $b = V^{\pi}(s_t)$ and play with different ways to do that:

$$abla = \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_{t} \mid s_{t}, heta) \Psi_{t}$$

Ψ_t	bias	variance
$\sum_{t}^{T} r(s_t)$	0	very high
$Q^{\pi}(s_t,a_t)$	tolerant	high
$A^{\pi}(s_t,a_t)$	tolerant	low enough
$\sum_{t}^{T} r(s_t) - V^{\pi}(s_t)$	0	low

We may use critic only for baseline:

$$abla = \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_t \mid s_t, heta) \left(\sum_{t'=t+1}^{T} r(s_{t'}) - V^{\pi}(s_t) \right)$$

We may use critic only for baseline:

$$abla = \mathbb{E} \sum_{t}^{T}
abla_{ heta} \log \pi(a_t \mid s_t, heta) \left(\sum_{t'=t+1}^{T} r(s_{t'}) - V^{\pi}(s_t)
ight)$$

√ unbiased gradient

We may use critic only for baseline:

$$\nabla = \mathbb{E} \sum_{t}^{T} \nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \left(\sum_{t'=t+1}^{T} r(s_{t'}) - V^{\pi}(s_t) \right)$$

- √ unbiased gradient
- \times higher variance

We may use critic only for baseline:

$$\nabla = \mathbb{E} \sum_{t}^{T} \nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \left(\sum_{t'=t+1}^{T} r(s_{t'}) - V^{\pi}(s_t) \right)$$

- √ unbiased gradient
- × higher variance

Or use a compromise (for simplicity $\gamma=1$):

$$\nabla = \mathbb{E} \sum_{t}^{T} \nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \left(\sum_{t'=t+1}^{t+N} r(s_{t'}) + V^{\pi}(s_{t+N}) - V^{\pi}(s_t) \right)$$

We may use critic only for baseline:

$$\nabla = \mathbb{E} \sum_{t}^{T} \nabla_{\theta} \log \pi(a_{t} \mid s_{t}, \theta) \left(\sum_{t'=t+1}^{T} r(s_{t'}) - V^{\pi}(s_{t}) \right)$$

- √ unbiased gradient
- × higher variance

Or use a compromise (for simplicity $\gamma = 1$):

$$\nabla = \mathbb{E} \sum_{t}^{T} \nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \left(\sum_{t'=t+1}^{t+N} r(s_{t'}) + V^{\pi}(s_{t+N}) - V^{\pi}(s_t) \right)$$

- × new hyperparameter N
- √ regulates trade-off between variance and bias

GAE

So, for different ${\it N}$ we have different advantage estimators.

GAE

So, for different N we have different advantage estimators.

Create an ensemble out of them!

GAE

So, for different N we have different advantage estimators.

Create an ensemble out of them!

Let $A^{\pi}_{(N)}(s_t,a_t)$ be a N-step advantage estimator:

$$A_{(N)}^{\pi} = \sum_{t'=t+1}^{t+N} r(s_{t'}) + V^{\pi}(s_{t+N}) - V^{\pi}(s_t)$$

So, for different N we have different advantage estimators.

Create an ensemble out of them!

Let $A^{\pi}_{(N)}(s_t,a_t)$ be a N-step advantage estimator:

$$A_{(N)}^{\pi} = \sum_{t'=t+1}^{t+N} r(s_{t'}) + V^{\pi}(s_{t+N}) - V^{\pi}(s_t)$$

Let's take exponentially-weighted average:

$$A_{(\mathsf{GAE})}^{\pi}(s_t, a_t) = (1 - \lambda)(A_{(1)}^{\pi} + \lambda A_{(2)}^{\pi} + \lambda^2 A_{(3)}^{\pi} + \dots)$$

NEXT: TRPO