Review Sheet 19

1) $x = (x_1, ..., x_n) \in \mathbb{R}^n$, $U = \{(x_1, ..., x_n) \mid \lambda \in \mathbb{R}^n\}$, finds closest vector in U + b = x, $u \in U_1$. Let u = (1, ..., 1). X = cu + w, $x = \frac{\langle x_1 u \rangle}{\langle u_1 u \rangle} u + (x - \frac{\langle x_1 u \rangle}{\langle u_1 u \rangle} u)$ $\langle u_1 u \rangle = 1 + ... + 1 = n$ $\langle x_1 u \rangle = x_1 + ... + x_n = \sum_{i=2}^{n} x_i$ $cu \in U_i$, $w \in U^T$; thus the closest vector to $x \in S$. $S = \sum_{i=2}^{n} x_i$ $S = \sum_{n} x_i$ $S = \sum_{i=2}^{n} x_i$ $S = \sum_{i=2}^{n} x_i$ $S = \sum_{i=2}^$

2) $\rho(x) \in P$, (IR); approximate $cos(\frac{\pi x}{2})$ on [0,1]; that is minimize $\int_{0}^{1} [cos(\frac{\pi x}{2}) - \rho(x)]^{2} dx$,

From RS 18, an orthonormal basis of $P_4(R)$ w.r.t. laner product $\langle \rho, q \rangle = \int_0^{\infty} \rho(x)q(x)dx$

2, 2x13-13

Let U=P(IR), From 6,55(i)

Pu(cos(==)) = (cos(==), 1) 1 + (cos(==), 2x5-5=) (2x5-5=)

From Wolfram Alpha;

(些),1)=

< cos(\$\frac{\pi}{\pi}\), \(2x\lambda\frac{1}{3} \rangle = \int_0^1 \left(\text{os} \left(\frac{\pi}{2} \right) \left(2x\lambda\frac{1}{3} - \frac{1}{3} \right) dx = \frac{2\lambda \frac{1}{3} \left(\pi - 4 \right)}{\pi - 2} \right)

Thus the meanest polynomial $p(x) \in P(CR)$ to $cos(\frac{\pi \pi}{2})$ is $P_{H}\left(cos(\frac{\pi \pi}{2})\right) = \frac{2}{\pi} + \left(\frac{2\sqrt{3}(\pi - 4)}{\pi^{2}}\right)\left(2x\sqrt{3} - \sqrt{3}\right)$

Simplified, this becomes Pu (cos (==)) = 1,1585 - 1.04370x

1

3) (6,C,6) U, W subspace of V's prone Ply = 0 H < M, w) = 0 YNEW_EW, Suppose Pulw =0, and let NEU, Then Pu=1, so me need

Pwu = 0; but this happens only when uEW. In other words, in order for
Pulw =0, any uEU must be orthogonal to any wEW Come uEW! (yw) = 0 for every nell weW.