

Local-first software

Local-First Software: Collaborative Spreadsheet Editing

Sandro Gössi & Fabian Gubler Supervisors: George Zakhour & Dr. Pascal Weisenburger

Our Team

Sandro GössiMaster of Computer Science *University of St. Gallen*

Fabian GublerMaster of Computer Science *University of St. Gallen*

Our Supervisors

George Zakhour

PhD Student, Programming Group

University of St. Gallen

Alumni of EPFL and AUB

Dr. Pascal WeisenburgerPostdoc, Programming Group

University of St. Gallen
Alumni of TU Darmstadt

Table Of Contents

- Promotional Pitch Video
- 2. Motivation & Project Goal
- 3. Problem Statement
- 4. Methodological Approach
- 5. Key Findings
- 6. Quality Of Results

Cellster

Promotional Pitch Video

Why Do You As A User NEED Our Product?

Motivation & Project Goal

What Was The Motivation & Goal Of Our Project?

В	С	D	E		
Discounted Cas	sh Flow Valua	tion Model (DCF)		
Weighted Average Cost of Capital (WACC)					
Projected Free Cash Flow (FCF)					
WACC	10%				
FCF (Year 1)	140				
FCF (Year 2)	200				
FCF (Year 3)	250				
DCF	=140/(1+0.1)	+200/(1+0.1)	+250/(1+0.1)		

Simple Text Merging Does Not Work!

Jser 1	
--------	--

User 2

Before merge

SUM(140(1+0.1))

140(1+0.1) + 50

After merge

140(1+0.1) + 50

140(1+0.1) + 50

Simple Text Merging Does Not Work!

Collaborative Local-First Spreadsheet

Project Goal: "Excel formula CRDT" – Developing A CRDT for Merging Abstract Syntax Trees of Excel Formulas/Cells

Problem Statement

What Was The Concrete Problem We Wanted To Solve With Our Project?

Building The Functionality To Merge Two Excel Formulas

High Difficulty Of The Problem

Formula Complexity

Variability & Ambiguity Of Merging Rules

Conflict Resolution

Methodological Approach

How Did We Approach Solving The Problem?

Step 1: Parsing Formulas: Abstract Syntax Tree (AST)

7*3-SIN(A5)


```
[8] formula = 'SUM(ABS(A1:A100)) + IF(true, INIT_VALUE, B12)*4' # String
    parse (formula) # Abstract Syntax Tree (AST)

Binary[+][Func[SUM][1][Func[ABS][1][Range[Cell[A1]][Cell[A100]]]]][Binary[*][Func[IF][3][Bool[True], Name[INIT_VALUE], Cell[B12]]][Num[4.000000]]]
```


So Let's Start And Parse Our Example!

Formula before any edits were made:

=SUM(A2:A9)

Function **SUM**

Formula before any edits were made:

=SUM(A2:A9)

Formula before any edits were made:

=SUM(A2:A9)

User 1 changed two "Cell Nodes"

Excel Formula

Formula before any edits were made:

User 1
Changes the Formula to:

Formula before any edits were made:

=SUM(A2:A9)

User 2 added two Nodes

How do we merge these two ASTS?

First Focus

Approach 1: Rule-Based Method Approach 2: History-Based Method

Approach 1: Rule-Based Method **Second Focus**

Approach 2: History-Based Method

Isolate User Changes

Add Operations Binary (→ New Root) Cell (→ New Child)

Both Users End Up With The Same AST!

Key Findings

What Were Our Key Findings?

Comparison

Approach 1: Rule-Based Method

- Effective for node-level decisions

 (Allows tailored merging strategies for specific scenarios)
- Struggles to cover all possible tree-level cases

Approach 2: History-Based Method

- Efficiently manages tree-level changes (Handles all scenarios comprehensively)
- Less precise for individual node-level conflicts

Final Implementation

Addition On Top

Approach 1: Rule-Based Method

(Foundation)

Approach 2: History-Based Method

Effective for node-level decisions

Efficiently manages tree-level changes

Benefits of using both approaches

Inclusion

Sometimes it's a optimized solution to include changes of both users on one Node to get better merging results (e.g. CellRanges)

Syntax Preservation

To preserve the Syntax, we need strict Rule. Approach 2 alone wouldn't guarantee that the Syntax gets preserved.

Edge Cases

Some edge cases in merging cannot be solved with Approach 2 alone. We need specific rules to solve them.

Quality Of Results

What Was The Quality Of Our Results?

Quality Of Results

Baseline Comparison

Compared to the Baseline (Microsoft Excel & Google Sheets) we are able to successfully merge formulas after users worked offline.

Merge Quality

Our system ensures high-quality merging for simple formulas and basic edits, accurately reconciling most changes based on their edit history

Edge Cases

Sometimes the algorithm still encounters difficulties with complex formulas and large-scale or unusual edits that involve substantial changes, deletions, or complete rewrites.

Quality Of Results – Local-First Principles & CRDT

Technology

7. Fast 2. Multi-device A. Collaboration G. Priwacy 7. User control

Cellster

In distributed computing, a conflict-free replicated data type (CRDT) is a data structure that is replicated across multiple computers in a network, with the following features: The application can update any replica independently, concurrently and without coordinating with other replicas.

Thank You For Your Attention!

Q&A: Any Questions?

Feel Free To Come To Our Booth During The Apéro!

Cellster: Empowering Offline Collaboration In Spreadsheets – Demo At Our Booth!

Empowering Offline Collaboration in Spreadsheets

Break free from the chains of constant connectivity with the power of local-first software. Dive into a revolutionary way of collaboratively editing spreadsheet formulas without the need for real-time online presence. Experience seamless merges using CRDTs and witness the power of structured conflict resolution.

