12th Assignment, due December 14

- 1. Let K be a field of characteristic zero, $L \supset K$ a finite extension, of degree n over K, and $E \supset K$ another extension (which may or may not contain L). An "embedding of L into E over K" is a homorphism of fields $\phi: L \to E$ which is the identity on K. An "automorphism of L over K" is a isomorphism of fields $\sigma: L \to L$ which is the identity on K. Show:
- a) Every homomorphism of fields $\sigma: L \to L$ which is the identity on K is necessarily invertible (i.e., is an automorphism).
- b) The number of distinct embeddings of L into E over K is at most n.
- c) There exists a finite extension E of K such that the number of distinct embeddings of L into E over K is exactly equal to n.
- d) The following conditions on the extension L are equivalent:
- i) For every extension E of L, and for every embedding σ of L into E over K, $\sigma(L) = L$;
- ii) L is the splitting field of an irreducible polynomial in K[X];
- iii) Every irreducible polynomial in K[X] which has a root in L splits into a product of linear factors in L[X];
- iv) The number of distinct automorphisms of L over K is equal to n.
- If L satisfies these equivalent conditions, it is said to be a "normal extension" or "Galois extension" of K (for fields of finite characteristic, which we are not considering here, the notion of Galois extension is more restrictive than normality). By definition, the Galois group of a Galois extension $L \supset K$ is the group of all automorphism of L over K; notation: $\operatorname{Gal}(L/K)$. For the next part of this problem, suppose that L is a Galois extension of K, of degree n. If $H \subset \operatorname{Gal}(L/K)$ is a subgroup, let L^H denote the "fixed field" of H, i.e., $L^H = \{x \in L \mid \sigma x = x \text{ for all } \sigma \in H\}$; note that L^H is indeed a field, and that it contains the ground field K.
- e) The association $H \mapsto L^H$ establishes a bijection between the subgroups of $\operatorname{Gal}(L/K)$ and the subfields of L which contain K. The field L is a Galois extension of L^H , and $\operatorname{Gal}(L/L^H) = H$. The group H is normal in $\operatorname{Gal}(L/K)$ if and only if L^H is normal over K; if so, $\operatorname{Gal}(L^H/K) \simeq \operatorname{Gal}(L/K) / H$.
- **f)** Determine $Gal(L/\mathbb{Q})$ for L = splitting field, over \mathbb{Q} , of the polynomial $X^4 + X^3 + X^2 + X + 1$ (hint: multiply the polynomial by X 1).
- **g)** Let ζ denote the positive cube root of 2. Is $\mathbb{Q}[\zeta]$ normal over \mathbb{Q} ? If so, determine the Galois group of this extension.
- **2.** A representation of a group G on a vector space V is a group homomorphism

$$\pi: \ G \ \longrightarrow \ \operatorname{Aut}(V) \ =_{\operatorname{def}} \ \big\{ \, T \in \operatorname{End}(V) \ \mid \ T \text{ is invertible} \, \big\} \, .$$

Equivalently, it is the datum of a linear transformation $\pi(g): V \to V$ for every $g \in G$, such that $\pi(e) = 1_V$ and $\pi(gh) = \pi(g) \circ \pi(h)$ for all $g, h \in G$. For $k \in \mathbb{N}$,

let S_k denote the permutation group of the set $\{1, 2, ..., k\}$, as usual. Recall the action a of S_k on $\otimes^k V$, by permutation of the factors in k-fold tensor products, that was defined in class. Note that $a(\sigma)$, for $\sigma \in S_k$, is a linear transformation – in other words, a defines a representation of S_k on $\otimes^k V$. Show:

- a) Any representation π of a group G on a vector space V induces a representation $\otimes^k \pi$ on $\otimes^k V$.
- **b)** The representations $\otimes^k \pi$ of G and a of S_k commute i.e., $\otimes^k \pi(g) \circ a(\sigma) = a(\sigma) \circ \otimes^k(g)$ for all $\sigma \in S_k$ and $g \in G$.