#### SMT solvers, tools of trade in formal methods

Damien Zufferey

IST Austria

March 17, 2017

- Introduction
- 2 Formalism
  - General Concepts
  - First Order Theories
- 3 Algorithm
  - Propositional Logic
  - Equality with Uninterpreted Function symbols
  - Difference Logic
  - Linear Arithmetic
- 4 SMT Solver
  - Combining Theories
  - CQFF(T) to QFF(T)

#### Outline

- Introduction
- 2 Formalism
- 3 Algorithm
- 4 SMT Solver

#### What are SMT solvers?

SMT Solver are tools that tell if a given formula has some solution.

For instance:

$$p = f(x + a) \land q = f(y + b) \land a = b \land s = f(p + c) \land t = f(q + d) \land c = d \land 1 = s - t + z \land x = y \land z = 0$$

in unsatisfiable.

# Challenges



#### Outline

- Introduction
- 2 Formalism
  - General Concepts
  - First Order Theories
- 3 Algorithm
- 4 SMT Solver

# Propositional Logic (PL)

Also known as boolean logic.

#### Syntax

 $F:: F \wedge F \mid F \vee F \mid \neg F \mid \top \mid \bot \mid$  propositional variable

Other operators  $(\rightarrow, \leftrightarrow, \oplus)$  are syntactic sugar.

#### **Semantics**

An interpretation I is an assignment of the propositional variables to either  $\top$  or  $\bot$ , i.e.  $I = \{P \mapsto \top, Q \mapsto \bot, \ldots\}$ 

## Propositional Logic: example

You need to schedule 3 talks given by 3 different speakers with their own availability.

Create 9 variables  $x_{ws}$  ( $w \in 1...3, s \in 1...3$ ).

For each speaker s, add  $\neg x_{ws}$  where w corresponds to the dates where s in not available.

For each speaker s, add  $x_{is} \rightarrow \neg x_{js} \land \neg x_{ks}$  with i, j, k all different.

For each week w, add  $x_{w1} \lor x_{w2} \lor x_{w3}$ .

For each week w, add  $x_{wi} \rightarrow \neg x_{wj} \land \neg x_{wk}$  with i, j, k all different.

# First Order Logic (FOL)

#### Syntax

```
T :: constants | variables | functions
```

P:: predicate | propositional variables |  $\top$  |  $\bot$ 

 $F :: P \mid F \wedge F \mid F \vee F \mid \neg F \mid \exists x. F[x] \mid \forall x. F[x]$ 

Example:  $\forall x.p(f(x),x) \rightarrow (\exists y.p(g(x,y),g(y,x)))$ 

#### **Semantics**

An interpretation  $I=\langle D,\alpha\rangle$  is a pair domain, assignment. D is a non-empty set of values.  $\alpha$  maps variables and constants to elements of D, n-ary functions to functions over  $D^n\to D$ , and n-ary predicates to predicates over  $D^n\to \{true, false\}$ .

Interpretations are also known as models.

#### Quantifiers and free variables

Free variables are either universally or existentially quantified, depending on the problem we are solving:

- The universal closure  $(\forall)$  for the validity problem.
- The existential closure  $(\exists)$  for the satisfiability problem.

#### First Order Theories

#### Definition

A theory  $T = \langle \Sigma, \mathcal{A} \rangle$  is a pair signature, axioms.

- ullet is a set of constants, functions and predicates symbols.
- $\mathcal{A}$  is a set of closed FOL formula over the elements of  $\Sigma$ .

The quantifier-free fragment of a theory (QFF) is a syntactic restriction that prevents using quantifiers in formulas.

The conjunctive QFF (CQFF) is the fragment where formulas are only conjunctions.

# Equality with Uninterpreted Function symbols (EUF)

Example: 
$$f(f(f(f(a)))) = a \land f(f(f(a))) = a \land f(a) \neq a$$

Signature:  $\Sigma_{EUF} = \{=, a, b, c, \dots, f, g, h, \dots, p, q, r, \dots\}$ Axioms:

- for all *n*-ary function symbol f:  $\forall \vec{x}, \vec{y}. (\bigwedge_{i=1}^{n} x_i = y_i) \rightarrow f(\vec{x}) = f(\vec{y})$  (function congruence)
- **⑤** for all *n*-ary predicates symbol *p*:  $\forall \vec{x}, \vec{y}. (\bigwedge_{i=1}^{n} x_i = y_i) \rightarrow p(\vec{x}) \leftrightarrow p(\vec{y})$  (predicate congruence)

# Presburger Arithmetic( $\mathbb{N}$ ), Theory of Integers ( $\mathbb{Z}$ )

Example: 
$$\forall w, x. \ \exists y, z. \ x + 2y - z - 13 > -3w + 5$$

Signature: 
$$\Sigma_{\mathbb{N}} = \{0,1,+,=\}$$

#### Axioms:

**①** 
$$\forall x. \neg (x+1=0)$$
 (zero)

**3** 
$$\forall x, y.x + (y+1) = (x+y) + 1$$
 (plus successor)

# Theory of Reals $(\mathbb{R})$ , Theory of Rationals $(\mathbb{Q})$

```
Signature: \Sigma_{\mathbb{R}} = \{0, 1, +, \cdot, =, \geq\}
```

Axioms: ...

Signature: 
$$\Sigma_{\mathbb{Q}} = \{0,1,+,-,=,\geq\}$$

Axioms: ...

# Linear Arithmetic (LA), Difference Logic (DL)

LA and DL are fragments of the theories of  $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ .

- LA has terms of the form  $\sum_i a_i x_i \ge b$ .
  - e.g.  $3x + 2y \le 5z \land 2x 2y = 0$
- DL has terms of the form  $x y \ge c$ .

e.g. 
$$x < y + 5 \land y \le 4 \land x = z - 1$$

#### Outline

- Introduction
- 2 Formalism
- 3 Algorithm
  - Propositional Logic
  - Equality with Uninterpreted Function symbols
  - Difference Logic
  - Linear Arithmetic
- 4 SMT Solve

#### DPLL: definition

We are searching a solution for  $P \wedge (\neg P \vee Q) \wedge (R \vee \neg Q \vee S)$ .

Assumption: formula in conjunctive normal form (CNF):  $\bigwedge_i \bigvee_j x_{ij}$ .

A literal is a variable or its negation.

A disjunction of literals is a clause.

An unit clause is a clause containing only one literal.

To satisfy the unit clause (P), P has to be assigned to true.

## DPLL: algorithm

unit resolution (boolean constraint propagation):

$$\frac{I \quad C[\neg I]}{C[\bot]}$$

case splitting:

$$F[x] \leftrightarrow F[\bot] \lor F[\top]$$



## DPLL: learning

While backtracking it is possible to learn new clauses by resolution:

$$\frac{P \vee Q \quad \neg P \vee R}{Q \vee R}$$

Example:  $(P \lor Q) \land (\neg P \lor Q) \land (P \lor \neg Q) \land (\neg P \lor \neg Q)$ .

$$(P \vee Q) \wedge (\neg P \vee Q) \wedge (P \vee \neg Q) \wedge (\neg P \vee \neg Q)$$

$$Q \mapsto \top$$

( <u></u>

#### backtracking

$$(P \lor Q) \land (\neg P \lor Q) \land (P \lor \neg Q) \land (\neg P \lor \neg Q)$$

$$\frac{(\neg P \lor Q) \quad (\neg P \lor \neg Q)}{\neg P}$$

$$P \mapsto \bot$$
 $( Q) \land ( \neg Q)$ 

 $\frac{\left(\neg P \lor Q\right) \quad \left(\neg P \lor \neg Q\right)}{\neg P}$ 

$$\frac{\left(\neg P \lor Q\right) \quad \left(\neg P \lor \neg Q\right)}{\neg P}$$

#### backtracking

$$(P \lor Q) \land (\neg P \lor Q) \land (P \lor \neg Q) \land (\neg P \lor \neg Q)$$

$$\frac{(P \lor Q) \quad (P \lor \neg Q)}{P} \quad \frac{(\neg P \lor Q) \quad (\neg P \lor \neg Q)}{\bot}$$

## **DPLL**: Decision policy

Most of the generated sat problems are structured. The goal of a SAT solver is to quickly figure out what is important. The role of the decision policy is to guess which variables are important.

A good decision policy and learning is the key to scaling to problems with thousands of variables.

$$f(f(f(f(f(a))))) = a \wedge f(f(f(a))) = a \wedge f(a) \neq a$$

$$f(f(f(f(f(a))))) = a \wedge f(f(f(a))) = a \wedge f(a) \neq a$$

• 
$$f(f(a)) = a$$

$$f(f(f(f(f(a))))) = a \wedge f(f(f(a))) = a \wedge f(a) \neq a$$

• 
$$f(f(a)) = a$$

• 
$$f(a) = a$$

$$f(f(f(f(f(a))))) = a \wedge f(f(f(a))) = a \wedge f(a) \neq a$$

• 
$$f(f(a)) = a$$

• 
$$f(a) = a$$

## **EUF: Congruence Closure**

DAG representing the terms:

$$\{a,f(a),f(f(a)),f^3(a),f^4(a),f^5(a)\}$$



# **EUF: Congruence Closure**

DAG representing the terms:

$$\{a, f(a), f(f(a)), f^3(a), f^4(a), f^5(a)\}$$

Union-find data structure:

The nodes keep a pointer to the representative of their equivalence class.



# **EUF: Congruence Closure**

DAG representing the terms:  $\{a, f(a), f(f(a)), f^3(a), f^4(a), f^5(a)\}$ 

Union-find data structure:

The nodes keep a pointer to the representative of their equivalence class.

The representative of an equivalence class keeps pointers to its congruence closure parents.



## Congruence Closure: example



## Congruence Closure: example

• adding  $f^3(a) = a$ 



- adding  $f^3(a) = a$
- congruence  $f^4(a) = f(a)$



- adding  $f^3(a) = a$
- congruence  $f^4(a) = f(a)$
- congruence  $f^5(a) = f^2(a)$



- adding  $f^3(a) = a$
- congruence  $f^4(a) = f(a)$
- congruence  $f^5(a) = f^2(a)$
- adding  $f^5(a) = a$



- adding  $f^3(a) = a$
- congruence  $f^4(a) = f(a)$
- congruence  $f^5(a) = f^2(a)$
- adding  $f^5(a) = a$
- congruence  $f^3(a) = f(a)$



- adding  $f^3(a) = a$
- congruence  $f^4(a) = f(a)$
- congruence  $f^5(a) = f^2(a)$
- adding  $f^5(a) = a$
- congruence  $f^3(a) = f(a)$
- conflict with  $f(a) \neq a$



### Difference Bound Matrices (1)

$$x \le y + 5 \land y \le 4 \land x = z - 1$$

rewritten as a DL formula:

$$x-y \le 5 \land y-x_0 \le 4 \land x-z \le -1 \land z-x \le 1$$

as a graph:



### Difference Bound Matrices (2)

$$x-y \leq 3 \ \land \ y-z \leq -5 \ \land \ x-z \leq -1 \ \land \ z-x \leq 1$$
 as a graph:



### Difference Bound Matrices (2)

$$x-y \le 3 \ \land \ y-z \le -5 \ \land \ x-z \le -1 \ \land \ z-x \le 1$$
 as a graph:



$$x - y + y - z + z - x \le 3 - 5 + 1 \leftrightarrow 0 \le -1$$

The formula is satisfiable iff there is no negative cycle.

Damien Zufferey



Wlog such a problem can be written as  $A\vec{x} \geq \vec{b}$ .

Introducing one slack variable per constraint we get:

$$A'\vec{x}' = 0$$
  $\bigwedge_{i=1}^{m} I_i \le s_i \le u_i$  where  $A' = [AI_m], \vec{x}' = [\vec{x}\vec{s}]$ 

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \\ 1 & 1 \end{pmatrix} \implies A' = \begin{pmatrix} 2 & -1 & -1 & 0 & 0 \\ -1 & 2 & 0 & -1 & 0 \\ 1 & 1 & 0 & 0 & -1 \end{pmatrix}$$

$$\left(\begin{array}{cccc} 2 & -1 & -1 & 0 & 0 \\ -1 & 2 & 0 & -1 & 0 \\ 1 & 1 & 0 & 0 & -1 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right)$$

$$\begin{array}{rcl}
s_1 & \geq & 0 \\
s_2 & \geq & 0 \\
s_3 & \geq & 2
\end{array}$$



$$\left(\begin{array}{cccc} & -1 & 0 & 0 \\ & 0 & -1 & 0 \\ & 0 & 0 & -1 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right)$$

$$egin{array}{lll} s_1 & \geq & 0 \ s_2 & \geq & 0 \ s_3 & \geq & 2 \ \end{array}$$



$$\begin{pmatrix}
2 & -1 & 0 \\
-1 & 0 & -1 \\
1 & 0 & 0
\end{pmatrix}$$

$$s_1 \geq 0$$
  
 $s_2 \geq 0$   
 $s_3 = 2$ 



$$\begin{pmatrix}
2 & -1 & 0 \\
-1 & 0 & -1 \\
1 & 0 & 0
\end{pmatrix}$$

$$) = \left( \begin{array}{c} 0 \\ 0 \\ 2 \end{array} \right)$$

$$\begin{array}{ccc} s_1 & \geq & 0 \\ s_2 & \geq & 0 \\ s_3 & = & 2 \end{array}$$



$$\left(\begin{array}{cccc} 2 & -1 & -1 \\ -1 & 2 & 0 \\ 1 & 1 & 0 \end{array}\right)$$

$$\begin{array}{rcl}
s_1 & \geq & 0 \\
s_2 & = & 0 \\
s_3 & = & 2
\end{array}$$



# Simplex $(\mathbb{N})$

### Branch-and-bound method:

- solve the *relaxed* linear problem (solution in  $\mathbb{R}^n$ )
- branch on non-integral variables  $(\leq \lfloor x \rfloor \lor \lceil x \rceil \leq)$



# Simplex $(\mathbb{N})$

### Branch-and-bound method:

- solve the *relaxed* linear problem (solution in  $\mathbb{R}^n$ )
- branch on non-integral variables  $(\leq \lfloor x \rfloor \lor \lceil x \rceil \leq)$



# Simplex $(\mathbb{N})$

### Branch-and-bound method:

- solve the *relaxed* linear problem (solution in  $\mathbb{R}^n$ )
- branch on non-integral variables  $(\leq \lfloor x \rfloor \lor \lceil x \rceil \leq)$



### Outline

- Introduction
- 2 Formalism
- 3 Algorithm
- 4 SMT Solver
  - Combining Theories
  - CQFF(T) to QFF(T)

# Nelson-Oppen $(T_1 + T_2)$ : requirements

#### Idea

 $T_1$ ,  $T_2$  share the '=' symbol. Propagating equality constraints across the theories is sufficient to derive contradictions.

### Requirements:

- T<sub>1</sub>, T<sub>2</sub> are quantifier-free first-order theories with equality.
- $\Sigma_1 \cap \Sigma_2 = \{=\}$
- There are decision procedure for  $T_1$  and  $T_2$ .
- T<sub>1</sub>, T<sub>2</sub> are interpreted over an infinite domain (stably infinite).
- optionally T<sub>1</sub>, T<sub>2</sub> are convex theories.

### Nelson-Oppen $(T_1 + T_2)$ : convex theory

Consider a CQF formula F and a disjunction  $\bigvee_{i=1}^{n} u_i = v_i$ . The theory T is convex if

$$\left(F \to \bigvee_{i=1}^n u_i = v_i\right) \ \to \ (F \to u_k = v_k) \text{ for some } k \in \{1..n\}$$

### Nelson-Oppen $(T_1 + T_2)$ : purification

$$f(x_1,0) \ge x_3 \wedge f(x_2,0) \le x_3 \wedge x_1 \ge x_2 \wedge x_2 \ge x_1 \wedge x_3 - f(x_1,0) \ge 1$$

$$\begin{array}{c|cccc}
F_1 & (LA(\mathbb{Q})) & F_2 & (EUF) \\
\hline
a_1 \ge x_3 & a_1 = f(x_1,a_0) \\
a_2 \le x_3 & a_2 = f(x_2,a_0) \\
x_1 \ge x_2 & x_2 \ge x_1 \\
x_3 - a_1 \ge 1 \\
a_0 = 0 & \end{array}$$

$$F_1$$
 (LA( $\mathbb{Q}$ ))
  $F_2$  (EUF)

  $a_1 \geq x_3$ 
 $a_1 = f(x_1, a_0)$ 
 $a_2 \leq x_3$ 
 $a_2 = f(x_2, a_0)$ 
 $x_1 \geq x_2$ 
 $x_2 \geq x_1$ 
 $x_3 - a_1 \geq 1$ 
 $a_0 = 0$ 

| $F_1 \left(LA(\mathbb{Q}) ight)$ |               | F <sub>2</sub> (EUF) |
|----------------------------------|---------------|----------------------|
| $a_1 \ge x_3$                    |               | $a_1=f(x_1,a_0)$     |
| $a_2 \leq x_3$                   |               | $a_2=f(x_2,a_0)$     |
| $x_1 \ge x_2$                    |               |                      |
| $x_2 \ge x_1$                    |               |                      |
| $x_3-a_1\geq 1$                  |               |                      |
| $a_0 = 0$                        |               |                      |
| $x_1 = x_2$                      | $\Rightarrow$ | $x_1 = x_2$          |

| $F_1 \; (LA(\mathbb{Q}))$ |              | F <sub>2</sub> (EUF) |
|---------------------------|--------------|----------------------|
| $a_1 \ge x_3$             |              | $a_1=f(x_1,a_0)$     |
| $a_2 \leq x_3$            |              | $a_2=f(x_2,a_0)$     |
| $x_1 \geq x_2$            |              |                      |
| $x_2 \ge x_1$             |              |                      |
| $x_3-a_1\geq 1$           |              |                      |
| $a_0 = 0$                 |              |                      |
| $x_1 = x_2$               |              | $x_1 = x_2$          |
| $a_1=a_2$                 | $\Leftarrow$ | $a_1 = a_2$          |

| $F_1 \; (LA(\mathbb{Q}))$ | F <sub>2</sub> (EUF) |
|---------------------------|----------------------|
| $a_1 \ge x_3$             | $a_1=f(x_1,a_0)$     |
| $a_2 \leq x_3$            | $a_2=f(x_2,a_0)$     |
| $x_1 \ge x_2$             |                      |
| $x_2 \ge x_1$             |                      |
| $x_3-a_1\geq 1$           |                      |
| $a_0 = 0$                 |                      |
| $x_1 = x_2$               | $x_1 = x_2$          |
| $a_1=a_2$                 | $a_1=a_2$            |
| $a_1 = x_3$               |                      |

| $F_1 \; (LA(\mathbb{Q}))$ | F <sub>2</sub> (EUF) |
|---------------------------|----------------------|
| $a_1 \ge x_3$             | $a_1=f(x_1,a_0)$     |
| $a_2 \leq x_3$            | $a_2=f(x_2,a_0)$     |
| $x_1 \ge x_2$             |                      |
| $x_2 \ge x_1$             |                      |
| $x_3-a_1\geq 1$           |                      |
| $a_0 = 0$                 |                      |
| $x_1 = x_2$               | $x_1 = x_2$          |
| $a_1 = a_2$               | $a_1=a_2$            |
| $a_1 = x_3$               |                      |

### DPLL + T: Propositional skeleton of a formula

$$x = y \land (x = z \lor (y = z \land x \neq z))$$

$$\downarrow \downarrow \downarrow$$

$$a \land (b \lor (c \land \neg b))$$
where  $a \mapsto (x = y), b \mapsto (x = z), c \mapsto (y = z)$ 

### DPLL + T: Idea



$$a \wedge (b \vee (c \wedge \neg b))$$
 where  $a \mapsto (x = y), b \mapsto (x = z), c \mapsto (y = z)$ 



$$a \wedge (b \vee (c \wedge \neg b))$$
 where  $a \mapsto (x = y), b \mapsto (x = z), c \mapsto (y = z)$  
$$a \wedge \neg b \wedge c \quad \mapsto \quad x = y \wedge y = z \wedge x \neq z$$
 SAT Solver Decision procedure for T

$$a \wedge (b \vee (c \wedge \neg b))$$
 where  $a \mapsto (x = y), b \mapsto (x = z), c \mapsto (y = z)$ 



$$a \wedge (b \vee (c \wedge \neg b))$$
 where  $a \mapsto (x = y), b \mapsto (x = z), c \mapsto (y = z)$ 



$$a \wedge (b \vee (c \wedge \neg b))$$
 where  $a \mapsto (x = y), b \mapsto (x = z), c \mapsto (y = z)$ 



# Questions?