БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ и РАДИОЭЛЕКТРОНИКИ

Факультет компьютерных систем и сетей

Кафедра ЭВМ

Контроль и диагностика средств вычислительной техники

Лабораторная работа № 2

Тестирование элементов памяти на уровне поведения. Тесты КМОП-структур на переключательном уровне Вариант №7

Выполнил: Студент гр.350501 Пашковский А.А. Проверил: Золоторевич Л.А.

Минск 2016

Триггер: D-триггер со сбросом и установкой.

Таблица функционирования

D-триггера со сбросом и установкой

R	S	D	C	Q
1	-	-	0	0
0	1	-	0	1
0	0	ı	1	(D)
0	0	-	0	N

Функциональный тест построенный на базе таблицы функционирования:

					1 1 1 1 1
R	S	D	C	Q	Операция
1	0	0	0	0	Сброс в 0
0	0	1	1	1	Установка 1
0	0	1	0	1	Хранение 1
0	0	0	1	0	Установка 0
0	0	0	0	0	Хранение 0
0	0	1	1	1	Установка 1
1	0	1	0	0	Сброс в 0
0	0	0	1	0	Установка 0
0	1	0	0	1	Установка 1

Код схемы на VLSI-SIM:

```
circuit trigger;
inputs R(1), S(1), D(1), C(1);
outputs Q(1);
GATES
NC 'NOT'(1) C(1);
NNC 'NOT'(1) NC(1);
NS 'NOT'(1) S(1);
NOA22_R 'NOA22'(1) NOA2_R(1),NC(1),D(1),NNC(1);
NOA2_R 'NOA2'(1) R(1),NOA22_R(1),NS(1);
Q 'NOT'(1) NOA22_R(1);
ENDGATES
END
```

Определение контролирующей способности функционального теста:

Моделирование на функциональном наборе (VLSI-SIM):

Моделирование на функциональном наборе (MODEL-SIM):

Построение автоматического теста:

Результат построения автоматического теста:

Моделирование на автоматическом тесте (VLSI-SIM):

Моделирование на автоматическом тесте (MODEL-SIM):

Построение автоматизированного теста:

Результат:

Моделирование на автоматизированном тесте (VLSI-SIM):

Моделирование на автоматизированном тесте (MODEL-SIM):


```
Исходный код схемы на VHDL:
Элемент N:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity N is
    Port (
        INPUT: in STD LOGIC;
        OUTPUT: out STD_LOGIC
    );
end N;
architecture Behavioral of N is
begin
    OUTPUT <= not INPUT after 1 ns;
end Behavioral;
Элемент NOA:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity NOA is
    Port (
        A: in STD_LOGIC;
        B: in STD LOGIC;
        C: in STD_LOGIC;
        OUTPUT: out STD_LOGIC
    );
end NOA;
architecture Behavioral of NOA is
begin
    OUTPUT <= not(A or (B and C))after 3 ns;
end Behavioral;
Элемент NOAA:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity NOAA is
    Port (
```

```
A: in STD_LOGIC;
        B: in STD LOGIC;
        C: in STD_LOGIC;
        D: in STD_LOGIC;
        OUTPUT: out STD_LOGIC
    );
end NOAA;
architecture Behavioral of NOAA is
begin
    OUTPUT <= not((A and B) or (C and D)) after 4 ns;
end Behavioral;
Структурная схема триггера:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity trigger is
    Port (
        D: in STD_LOGIC;
        R: in STD LOGIC;
        S: in STD_LOGIC;
        C: in STD LOGIC;
        Q: out STD_LOGIC
    );
end trigger;
architecture Behavioral of trigger is
    component N
        Port (
            INPUT: in STD_LOGIC;
            OUTPUT: out STD_LOGIC
        );
    end component;
    component NOA
        Port (
            A: in STD_LOGIC;
            B: in STD LOGIC;
            C: in STD_LOGIC;
            OUTPUT: out STD_LOGIC
        );
    end component;
    component NOAA
        Port (
            A: in STD_LOGIC;
```

```
B: in STD LOGIC;
            C: in STD LOGIC;
            D: in STD LOGIC;
            OUTPUT: out STD_LOGIC
        );
    end component;
    signal ns, nc, nnc: STD LOGIC;
    signal noaa r, noa r: STD LOGIC;
begin
    n first instance: N port map(C, nc);
    n_second_instance: N port map(nc, nnc);
    n third instance: N port map(S, ns);
    noaa first instance: NOAA port map(noa r, nc, D, nnc, noaa r);
    noa_first_instance: NOA port map(R, ns, noaa_r, noa_r);
    n_four_instance: N port map(noaa_r, Q);
end Behavioral;
Поведенческая схема триггера:
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity trigger_behavioral is
    Port (
        D: in STD_LOGIC;
        R: in STD LOGIC;
        S: in STD LOGIC;
        C: in STD LOGIC;
        Q: out STD_LOGIC
    );
end trigger behavioral;
architecture Behavioral of trigger behavioral is
begin
    process (D, R, S, C)
        variable trigger_state: STD_LOGIC := '0';
    begin
        if (R = '1' \text{ and } C = '0') then
            trigger_state := '0';
            Q <= trigger state;</pre>
        end if;
        if (R = '0') and S = '1' and C = '0') then
            trigger state := '1';
            Q <= trigger state;</pre>
        end if;
```

```
if (R = '0') and S = '0' and C' event and C = '1') then
            trigger_state := D;
            Q <= trigger_state;</pre>
        end if;
        if (R = '0') and S = '0' and C = '0') then
            Q <= trigger_state;</pre>
        end if;
    end process;
end Behavioral;
Тест:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity trigger tb is
    --Port ( );
end trigger_tb;
architecture Behavioral of trigger_tb is
    component trigger
        Port (
            D: in STD_LOGIC;
            R: in STD LOGIC;
            S: in STD LOGIC;
            C: in STD_LOGIC;
            Q: out STD LOGIC
        );
    end component;
    type TRIGGER TEST is array (natural range <>) of STD LOGIC VECTOR(0
to 3);
    signal inputs: STD_LOGIC_VECTOR(0 to 3);
    signal output: STD_LOGIC;
    constant manual functional test: TRIGGER TEST(0 to 8) := (
        "1000",
        "0011",
        "0010",
        "0001",
        "0000",
        "0011",
        "1010",
        "0001",
        "0100"
```

```
);
    constant automatic_functional_test: TRIGGER_TEST(0 to 5) := (
        "0011",
        "0000",
        "1110",
        "0000",
        "0101",
        "0010"
    );
    constant automatization_functional_test: TRIGGER_TEST(0 to 6) := (
        "0100",
        "1010",
        "0011",
        "0101",
        "0000",
        "0110",
        "0010"
    );
begin
    trigger_instance: trigger port map(
        R => inputs(0),
        S => inputs(1),
        D => inputs(2),
        C => inputs(3),
        Q => output
    );
    process
    begin
        for index in 0 to 6 loop
            inputs <= automatization_functional_test(index);</pre>
            wait for 100ns;
        end loop;
    end process;
end Behavioral;
```

Построение тестов контроля в классе неисправностей ПЗТ:

7 Комбинационный элемент 2И-3ИЛИ-НЕ (NO3A2)

а	b	С	d	y*	y_I	<i>y</i> ₂	у з	<i>y</i> ₄	y 5	<i>y</i> ₆	<i>y</i> ₇	у 8
0	0	0	0	1	П	П	1	1	1	1	1	1
0	0	0	1	1	П	П	П	1	1	1	1	1
0	0	1	0	1	П	П	1	П	1	1	1	1
0	0	1	1	0	0	0	0	0	П	0	0	П
0	1	0	0	0	0	0	0	0	0	0	П	0
0	1	0	1	0	0	0	0	0	0	0	П	0
0	1	1	0	0	0	0	0	0	0	0	П	0
0	1	1	1	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	П	0	0
1	0	0	1	0	0	0	0	0	0	П	0	0
1	0	1	0	0	0	0	0	0	0	П	0	0
1	0	1	1	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0

```
у* - состояние исправной схемы;
y_i - состояние схемы с неисправностью і;
\Pi - предыдущее состояние схемы.
Тесты для проверки:
- неисправности типа «ПЗТ» транзистора Т1, Т2
\{0011-1111\} - \{0000-0010\}
- неисправности типа «ПЗТ» транзистора ТЗ
\{0011-1111\} - \{0001\}
- неисправности типа «ПЗТ» транзистора Т4
\{0011-1111\} - \{0010\}
- неисправности типа «ПЗТ» транзистора Т5, Т8
\{0000-0010\} - \{0011\}
- неисправности типа «ПЗТ» транзистора Т6
\{0000-0010\} - \{1000-1010\}
- неисправности типа «ПЗТ» транзистора Т7
\{0000-0010\} - \{0100-0110\}
Тест для проверки всех неисправностей заданного класса:
0011
0010
0011
0001
0000
0011
0010
1010
0010
0110
```