Tratamento Estatístico de dados em Física Experimental

Prof. Zwinglio Guimarães

2º semestre de 2019

Tópico 6 - Testes estatísticos parte 2 (testes "z" e "t")

Os testes z e t – intervalos de confiança (I)

• Se os dados seguem uma função densidade de probabilidade gaussiana com desvio-padrão conhecido, σ_x , então a variável aleatória z, definida como

$$z=\frac{x-x_0}{\sigma_x},$$

segue uma função densidade de probabilidade gaussiana com valor médio verdadeiro 0 e desvio-padrão 1.

Os intervalos de confiança para z mais conhecidos são:

$$P(|z| \le 1) \cong 68,27\%$$

 $P(|z| \le 2) \cong 95,45\%$
 $P(|z| \le 3) \cong 99,73\%$

Os testes z e t – intervalos de confiança (II)

 Quando a variável x seguir uma função densidade de probabilidade gaussiana, porém com desvio-padrão estimado a partir da análise estatística de um conjunto com ν graus de liberdade, o teste é feito com a variável aleatória t,

$$t=\frac{x-x_0}{\tilde{\sigma}_x},$$

onde $\tilde{\sigma}_x$ é o desvio-padrão estimado de x, que segue a função densidade de probabilidade t de Student que depende do v.

- A largura dos intervalos de confiança para t são sempre maiores do que os correspondente intervalos para z.
- Essa diferença diminui quanto maior for o número de graus de liberdade, ν , usados para estimar $\tilde{\sigma}_{\chi}$.

Os testes z e t – intervalos de confiança (III)

$$t = \frac{x - x_0}{\tilde{\sigma}_x}$$

Valores críticos de t que definem intervalos de confiança de 68,3%, 95,5% e 99,7%, para alguns casos de número de graus de liberdade, ν , usados para estimar o desvio-padrão, $\tilde{\sigma}_x$.

ν	t_1	t_2	t ₃
	$IC_1 = 68,27\%$	$IC_2 = 95,45\%$	$IC_3 = 99,73\%$
1	1,84	14,0	235,8
2	1,32	4,53	19,21
3	1,20	3,31	9,22
5	1,11	2,65	5,51
10	1,053	2,28	3,96
20	1,026	2,13	3,42
100	1,005	2,03	3,08
∞	1	2	3

As funções densidade de probabilidade de z e t (com intervalo de confiança de 95%)

$$z = \frac{x - x_0}{\sigma_x}$$

$$t = \frac{x - x_0}{\widetilde{\sigma}_x}, \text{ com } \nu = 2$$

As funções densidade de probabilidade de z e t (com intervalo de confiança de 95%)

$$z = \frac{x - x_0}{\sigma_x}$$

$$t = \frac{x - x_0}{\widetilde{\sigma}_x}, \text{ com } \mathbf{v} = \mathbf{4}$$

As funções densidade de probabilidade de z e t (com intervalo de confiança de 95%)

$$Z = \frac{x - x_0}{\sigma_x}$$

$$0.4 - \frac{0.35 - \frac{0.35}{0.25} - \frac{0.15}{0.05}}{0.15 - \frac{0.05}{0.05}}$$

 \boldsymbol{Z}

$$t = \frac{x - x_0}{\widetilde{\sigma}_x}, \text{ com } \mathbf{v} = \mathbf{10}$$

