CS 181 (Introduction to Formal Languages and Automata Theory)

March 31, 2022

1 Deterministic finite automata (DFAs)

1.1 Basic notions

Definition 1.1.1

An **alphabet** is any finite set of symbols.

Example 1.1.2. Binary alphabet: {0, 1}

Example 1.1.3. English alphabet: $\{a, b, ..., c\}$

Definition 1.1.4

A string is any finite sequence of symbols from a given alphabet.

Example 1.1.5. 001010110101

Example 1.1.6. abracadabra

Example 1.1.7. ε (empty string)

Definition 1.1.8

A language is a set of strings over a given alphabet.

Example 1.1.9. \varnothing (empty language)

Example 1.1.10. $\{\varepsilon\}$

Example 1.1.11. {acclaim, aim, brim, ...}

Example 1.1.12. $\{0, 1, 00, 11, \dots\}$

Definition 1.1.13

A computational device is a mechanism that inputs a string and either accepts or rejects it.

1.2 Deterministic finite automata

- Choose an alphabet: {a,b}.
- Draw states.
- Choose start state and accept states.
- Draw transitions (out of every state on every symbol).

Input	Output	
ε	reject	
ab	reject	
aaa	accept	
bb	accept	

In words, this machine accepts nonempty strings of all a's or all b's.

Definition 1.2.1

The **language** of a DFA is the set of all strings it accepts.

Example 1.2.2.

Input	Output	
000	accept	
12	accept	
111	accept	
20	reject	
1	reject	

Alphabet: $\{0, 1, 2\}$, language: $\{w : 3 \mid \sum w_i\}$

Example 1.2.3.

Alphabet: $\{0, 1\}$, language: $\{w : 2 \mid |w|\}$

Example 1.2.4.

Alphabet: {a,b}, language: $\{w: w \neq \varepsilon \land w_1 = w_{|w|}\}$

1.3 Designing DFAs

We will be using the binary alphabet $\{0, 1\}$.

Example 1.3.1. Language: ∅

Example 1.3.2. Language: $\{w : \text{every odd position is a 1}\}$

Example 1.3.3. Language: $\{w : w \text{ ends in } \mathbf{0}\}$

Example 1.3.4. Language: $\{w : w \text{ begins with 1, ends with 0}\}$

Example 1.3.5. Language: $\{w : |w| \le 4\}$

Example 1.3.6. Language: $\{w : 1000 \mid |w|\}$

In words, each state represents a remainder modulo 1000, and only the 0 state is accepting.

Example 1.3.7. Language: $\{w : w \text{ contains 0101 as a substring}\}$

1.4 Formal definitions

Definition 1.4.1

A DFA is a tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q = set of states,
- Σ = alphabet,
- δ = transition ($\delta: Q \times \Sigma \to Q$),
- $q_0 = \text{start state } (q_0 \in Q)$, and
- F = set of accept states ("favorable"? states, $F \subseteq Q$).

Example 1.4.2.

$$A \xrightarrow{1} B \xrightarrow{0,1} C$$

Formal description: $(\{A, B, C\}, \{0, 1\}, \delta, A, \{B\})$ where δ is defined by the table

Example 1.4.3. Formal description: $(\{A, B, C, D, E\}, \{0, 1\}, \delta, C, \{C\})$ where δ is defined by the table

	0	1
A	A	В
B	A	C
C	В	D
D	C	Ε
E	D	Ε.

Example 1.4.4. Formal description for Example 1.3.6: $(\{0, 1, 2, ..., 999\}, \{0, 1\}, \delta, 0, \{0\})$ where $\delta(q, \sigma) = (q + 1) \mod 1000$.

Definition 1.4.5

DFA $(Q, \Sigma, \delta, q_0, F)$ accepts a string $w = w_1 w_2 \dots w_n$ iff

$$\delta(\cdots \delta(\delta(q_0, w_1), w_2) \cdots, w_n) \in F.$$

Definition 1.4.6

DFA D recognizes the language \mathcal{L} iff

$$\mathcal{L} = \{w : D \text{ accepts } w\}.$$

Note.

- Every DFA recognizes exactly 1 language.
- $\bullet\,$ A language has either 0 or ∞ DFAs recognizing it.

2 Nondeterminism

2.1 Basic notions

Example 2.1.1.

- Choose an alphabet: {0, 1}.
- Draw states.
- Choose start state and accept states. The steps so far are the same as those of a DFA.
- Draw transitions. A state may have any number of transitions on a given symbol. A state may also have transitions on ε .

Definition 2.1.2

An NFA **accepts** w iff there is *at least* one path to an accept state.

Example 2.1.3. Output table for Example 2.1.1:

Input	Accepting path	Output
\mathcal{E}	-	reject
0	-	reject
1	-	reject
010110	AABCDDD	accept
010	-	reject
11	ABCD	accept

Language: all strings containing 101 or 11

2.2 Using shortcuts

Example 2.2.1. Language: ∅

Example 2.2.2. Language: $\{\varepsilon\}$

Example 2.2.3. Language: $\{w : w \text{ doesn't contain } 1\}$

Example 2.2.4. Language: $\{w : |w| \ge 2 \text{ and } w \text{ starts and ends with } 0\}$

2.3 pattern matching

Example 2.3.1. Language: $\{w : \text{conatins 0101}\}\$

Example 2.3.2. Language:
$$\left\{ w : w = \underbrace{00...0}_{\geq 0} \underbrace{11...1}_{\geq 0} \geq 0 \underbrace{00...0}_{\geq 1} \geq 1 \right\}$$

Example 2.3.3. Language: $\{w : w \text{ has a 1 in the 3rd position from the end}\}$

2.4 Alternatives

Example 2.4.1. Language: $\{w : 2 \mid |w| \lor 3 \mid |w|\}$

Note that the following is not valid due to side effects:

