Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИУК «Информатика и управление»

КАФЕДРА ИУК4 «Программная инженерия»

Домашняя работа №1

«Глубокая генеративно-состязательная сеть GAN»

ДИСЦИПЛИНА: «Методы глубокого обучения»

Выполнил: студент гр. ИУК4	-21M	(Сафронов Н.С.
	(подпись)		(Ф.И.О.)
Проверил:		(Белов Ю.С.
	(подпись)		(Ф.И.О.)
Дата сдачи (защиты):			
Результаты сдачи (защиты):			
- Ба	алльная оценка:		
- O	уценка:		

Калуга, 2025

Цель работы: получение практических навыков построения генеративно-состязательной сети.

Постановка задачи:

На основе разобранного примера реализуйте генеративносостязательную сеть. В соответствие с выданным вариантом используйте как объект для реализации:

Вариант 2

Изображение животных.

Результаты выполнения работы

```
def make_generator():
   model = keras.Sequential([
       layers.Input(shape=(latent_dim,)),
       layers.Reshape((1, 1, latent_dim)),
       layers.Conv2DTranspose(512, 4, strides=1, padding='valid', use_bias=False),
       layers.BatchNormalization(),
       layers.ReLU(),
       layers.Conv2DTranspose(256, 4, strides=2, padding='same', use_bias=False),
       layers.BatchNormalization(),
       layers.ReLU(),
       layers.Conv2DTranspose(128, 4, strides=2, padding='same', use_bias=False),
       layers.BatchNormalization(),
       layers.ReLU(),
       layers.Conv2DTranspose(64, 4, strides=2, padding='same', use_bias=False),
       layers.BatchNormalization(),
       layers.ReLU(),
       layers.Conv2DTranspose(3, 4, strides=2, padding='same', activation='tanh')
   return model
```

Рисунок 1 – Архитектура генератора

```
(variable) model: Any
model = keras.Sequential([
   layers.Input(shape=(64, 64, 3)),
   layers.Conv2D(64, 4, strides=2, padding='same'),
   layers.LeakyReLU(0.2),
    layers.Conv2D(128, 4, strides=2, padding='same', use_bias=False),
   layers.BatchNormalization(),
   layers.LeakyReLU(0.2),
   layers.Conv2D(256, 4, strides=2, padding='same', use_bias=False),
   layers.BatchNormalization(),
   layers.LeakyReLU(0.2),
   layers.Conv2D(512, 4, strides=2, padding='same', use_bias=False),
   layers.BatchNormalization(),
   layers.LeakyReLU(0.2),
   layers.Conv2D(1, 4, strides=1, padding='valid'),
   layers.Flatten(),
   layers.Activation('sigmoid')
return model
```

Рисунок 2 – Архитектура дискриминатора

Рисунок 3 – Результат после 10 эпох обучения

Рисунок 4 – Результат после 20 эпох обучения

Рисунок 5 – Результат после 30 эпох обучения

Рисунок 6 – Результат после 40 эпох обучения

Рисунок 7 – Результат после 50 эпох обучения

Вывод: в ходе выполнения домашней работы были получены практические навыки построения генеративно-состязательной сети.