Introduction to Computer Networking

Introduction to Computer Networking

Our goal:

- ☐ get "feel" and terminology
- more depth, detail later in course
- approach:
 - * use Internet as example

Overview:

- what's the Internet?
- □ what's a protocol?
- network edge; hosts, access net, physical media
- network core: packet/circuit switching, Internet structure
- performance: loss, delay, throughput
- security
- protocol layers, service models
- history

<u>roadmap</u>

- 1.1 What is the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 History

What's the Internet: "nuts and bolts" view

 $\mathcal{P}C$

server

wireless laptop

cellular handheld

- millions of connected computing devices: hosts = end systems
 - * running network apps
- communication links

access points

wired links

- fiber, copper, radio, satellite
- transmission rate =
 bandwidth
- routers: forward packets (chunks of data)

What's the Internet: "nuts and bolts" view

- protocols control sending, receiving of msgs
 - e.g., TCP, IP, HTTP, Skype, Ethernet
- ☐ Internet: "network of networks"
 - * loosely hierarchical
 - * public Internet versus private intranet
- ☐ Internet standards
 - * RFC: Request for comments
 - * IETF: Internet Engineering Task Force

What's the Internet: a service view

- communication infrastructure enables distributed applications:
 - * Web, VoIP, email, games, e-commerce, file sharing
- communication services provided to apps:
 - reliable data delivery from source to destination
 - * "best effort" (unreliable) data delivery

What's a protocol?

<u>human protocols:</u>

- "what's the time?"
- "I have a question"
- introductions
- ... specific msgs sent
- ... specific actions taken when msgs received, or other events

network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt

What's a protocol?

a human protocol and a computer network protocol:

Q: Other human protocols?

<u>roadmap</u>

- 1.1 What is the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 History

A closer look at network structure:

- network edge: applications and hosts
- access networks, physical media: wired, wireless communication links
- network core:
 - * interconnected routers
 - * network of networks

The network edge:

- end systems (hosts):
 - run application programs
 - * e.g. Web, email
 - * at "edge of network"
- client/server model
 - client host requests, receives service from always-on server
 - * e.g. Web browser/server; email client/server
- peer-peer model:
 - minimal (or no) use of dedicated servers
 - e.g. Skype, BitTorrent

Access networks and physical media

- Q: How to connect end systems to edge router?
- residential access nets
- institutional access networks (school, company)
- mobile access networks

Keep in mind:

- bandwidth (bits per second) of access network?
- shared or dedicated?

Dial-up Modem

- Uses existing telephony infrastructure
 - * Home is connected to central office
- * up to 56Kbps direct access to router (often less)
- * Can't surf and phone at same time: not "always on"

Digital Subscriber Line (DSL)

- * Also uses existing telephone infrastruture
- * up to 1 Mbps upstream (today typically < 256 kbps)
- * up to 8 Mbps downstream (today typically < 1 Mbps)
- dedicated physical line to telephone central office

Residential access: cable modems

- Does not use telephone infrastructure
 - * Instead uses cable TV infrastructure
- HFC: hybrid fiber coax
 - * asymmetric: up to 30Mbps downstream, 2 Mbps upstream
- network of cable and fiber attaches homes to ISP router
 - * homes share access to router
 - * unlike DSL, which has dedicated access

Residential access: cable modems

Typically 500 to 5,000 homes

Fiber to the Home

- Optical links from central office to the home
- Two competing optical technologies:
 - Passive Optical network (PON)
 - * Active Optical Network (PAN)
- Much higher Internet rates; fiber also carries television and phone services

Ethernet Internet access

- ☐ Typically used in companies, universities, etc
- 10 Mbs, 100Mbps, 1Gbps, 10Gbps Ethernet
- Today, end systems typically connect into Ethernet switch

Wireless access networks

- shared wireless access network connects end system to router
 - via base station aka "access point"
- wireless LANs:
 - * 802.11b/g (WiFi): 11 or 54 Mbps
- wider-area wireless access
 - provided by telco operator
 - * ~1Mbps over cellular system (EVDO, HSDPA)
 - * next up (?): WiMAX (10's Mbps) over wide area

Home networks

Typical home network components:

- DSL or cable modem
- □ router/firewall/NAT
- Ethernet
- wireless access

 point

 to/from
 cable
 headend

 to/from
 cable
 firewall

 Ethernet

 wireless

 access

 point

wireless laptops

Physical Media

- Bit: propagates between transmitter/rcvr pairs
- physical link; what lies between transmitter & receiver
- guided media:
 - * signals propagate in solid media: copper, fiber, coax
- unguided media:
 - signals propagate freely, e.g., radio

Twisted Pair (TP)

- two insulated copper wires
 - * Category 3: traditional phone wires, 10 Mbps Ethernet
 - * Category 5: 100Mbps Ethernet

Physical Media: coax, fiber

Coaxial cable:

- two concentric copper conductors
- bidirectional
- baseband:
 - single channel on cable
 - legacy Ethernet
- broadband:
 - multiple channels on cable
 - · HFC

Fiber optic cable:

- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
 - * high-speed point-to-point transmission (e.g., 10's-100's Gps)
- low error rate: repeaters spaced far apart; immune to electromagnetic noise

Physical media: radio

- signal carried in electromagnetic spectrum
- no physical "wire"
- bidirectional
- propagation environment effects:
 - * reflection
 - * obstruction by objects
 - * interference

Radio link types:

- terrestrial microwave
 - e.g. up to 45 Mbps channels
- LAN (e.g., Wifi)
 - * 11Mbps, 54 Mbps
- □ wide-area (e.g., cellular)
 - * 3G cellular: ~ 1 Mbps
- □ satellite
 - * Kbps to 45Mbps channel (or multiple smaller channels)
 - * 270 msec end-end delay
 - * geosynchronous versus low altitude

<u>roadmap</u>

- 1.1 What is the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 History

The Network Core

- mesh of interconnected routers
- the fundamental question: how is data transferred through net?
 - * circuit switching: dedicated circuit per call: telephone net
 - * packet-switching: data sent thru net in discrete "chunks"

Network Core: Circuit Switching

End-end resources reserved for "call"

- link bandwidth, switch capacity
- dedicated resources: no sharing
- circuit-like (guaranteed) performance
- call setup required

Network Core: Circuit Switching

- network resources (e.g., bandwidth) divided into "pieces"
- pieces allocated to calls
- resource piece idle if not used by owning call (no sharing)

- dividing link bandwidth into "pieces"
 - * frequency division
 - * time division

Circuit Switching: FDM and TDM

Numerical example

- How long does it take to send a file of 640,000 bits from host A to host B over a circuit-switched network?
 - * All links are 1.536 Mbps
 - * Each link uses TDM with 24 slots/sec
 - * 500 msec to establish end-to-end circuit

Let's work it out!

Network Core: Packet Switching

- each end-end data stream divided into packets
- user A, B packets share network resources
- each packet uses full link bandwidth
- resources used as needed

Bendwidth division into 'pieces"

Dedicated allocation

Resource reservation

resource contention:

- aggregate resource demand can exceed amount available
- congestion: packets queue, wait for link use
- store and forward: packets move one hop at a time
 - Node receives complete packet before forwarding

Packet Switching: Statistical Multiplexing

Sequence of A & B packets does not have fixed pattern, bandwidth shared on demand → statistical multiplexing.

TDM: each host gets same slot in revolving TDM frame.

Packet-switching: store-and-forward

- takes L/R seconds to transmit (push out) packet of L bits on to link at R bps
- store and forward: entire packet must arrive at router before it can be transmitted on next link
- delay = 3L/R (assuming zero propagation delay)

Example:

- \Box L = 7.5 Mbits
- \square $\mathcal{R} = 1.5 \, \mathcal{M}bps$
- □ transmission delay = 15 sec

more on delay shortly ...

Packet switching versus circuit switching

Packet switching allows more users to use network!

- □ 1 Mb/s link
- each user:
 - * 100 kb/s when "active"
 - * active 10% of time
- circuit-switching:
 - * 10 users
- packet switching:
 - * with 35 users, probability > 10 active at same time is less than .0004

Q: how did we get value 0.0004?

Packet switching versus circuit switching

Is packet switching a "slam dunk winner?"

- great for bursty data
 - * resource sharing
 - * simpler, no call setup
- excessive congestion: packet delay and loss
 - * protocols needed for reliable data transfer, congestion control
- Q: How to provide circuit-like behavior?
 - * bandwidth guarantees needed for audio/video apps
 - * still an unsolved problem (chapter 7)

Q: human analogies of reserved resources (circuit switching) versus on-demand allocation (packet-switching)?

- roughly hierarchical
- at center: "tier-1" ISPs (e.g., Verizon, Sprint, AT&T, Cable and Wireless), national/international coverage
 - * treat each other as equals

Tier-1 ISP: e.g., Sprint

- "Tier-2" ISPs: smaller (often regional) ISPs
 - Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs

- "Tier-3" ISPs and local ISPs
 - last hop ("access") network (closest to end systems)

a packet passes through many networks!

<u>roadmap</u>

- 1.1 What is the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 History

How do loss and delay occur?

packets queue in router buffers

- packet arrival rate to link exceeds output link capacity
- packets queue, wait for turn

free (available) buffers: arriving packets dropped (loss) if no free buffers

Four sources of packet delay

- ☐ 1. nodal processing:
 - check bit errors
 - * determine output link

- 2. queueing
 - time waiting at output link for transmission
 - depends on congestion level of router

Delay in packet-switched networks

3. Transmission delay:

- R=link bandwidth (bps)
- ☐ L=packet length (bits)
- \Box time to send bits into link = L/R

4. Propagation delay:

- \Box d = length of physical link
- $s = propagation speed in medium (~2<math>\chi$ 10⁸ m/sec)
- \square propagation delay = d/s

Note: s and R are very different quantities!

<u>Nodal delay</u>

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

- \Box $d_{proc} = processing delay$
 - * typically a few microsecs or less
- \Box $d_{queue} = queuing delay$
 - * depends on congestion
- \Box $d_{trans} = transmission delay$
 - \bullet = L/R_c significant for low-speed links
- \Box $d_{prop} = propagation delay$
 - * a few microsecs to hundreds of msecs

Queueing delay (revisited)

- □ R=link bandwidth (bps)
- ☐ L=packet length (bits)
- □ a=average packet arrival rate

traffic intensity = La/R

- \square La/ $\mathbb{R} \sim 0$: average queueing delay small
- \square La/R -> 1: delays become large
- \square La/ $\mathbb{R} > 1$: more "work" arriving than can be serviced, average delay infinite!

Packet loss

- queue (aka buffer) preceding link in buffer has finite capacity
- packet arriving to full queue dropped (aka lost)
- lost packet may be retransmitted by previous node, by source end system, or not at all

Throughput

- throughput: rate (bits/time unit) at which bits transferred between sender/receiver
 - * instantaneous: rate at given point in time
 - * average: rate over longer period of time

Throughput (more)

 \square $\mathcal{R}_{\mathfrak{g}} < \mathcal{R}_{\mathfrak{g}}$ What is average end-end throughput?

 \square $\mathcal{R}_{\downarrow} > \mathcal{R}_{e}$ What is average end-end throughput?

bottleneck link

link on end-end path that constrains end-end throughput

Throughput: Internet scenario

- per-connection end-end throughput:
 min(R,R,R/10)
- \square in practice: R_{ϵ} or R_{ϵ} is often bottleneck

10 connections (fairly) share backbone bottleneck link R bits/sec

<u>roadmap</u>

- 1.1 What is the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 History

Protocol "Layers"

<u>Networks</u> are complex!

- many "pieces":
 - * hosts
 - * routers
 - * links of various media
 - applications
 - * protocols
 - * hardware, software

Question:

Is there any hope of organizing structure of network?

Or at least our discussion of networks?

Why layering?

Dealing with complex systems:

- explicit structure allows identification, relationship of complex system's pieces
 - * layered reference model for discussion
- modularization eases maintenance, updating of system
 - * change of implementation of layer's service transparent to rest of system
 - * e.g., change in gate procedure doesn't affect rest of system
- layering considered harmful?

Internet protocol stack

- application: supporting network applications
 - * FTP, SMTP, HTTP
- transport: process-process data transfer
 - * TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - * PPP, Ethernet
- physical: bits "on the wire"

application

transport

network

link

physical

ISO/OSI reference model

- presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machine-specific conventions
- session: synchronization, check pointing, recovery of data exchange
- Internet stack "missing" these layers!
 - * these services, if needed, must be implemented in application
 - * needed?

application presentation session transport network link physical

<u>roadmap</u>

- 1.1 What is the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 History

1961-1972: Early packet-switching principles

- □ 1961: Kleinrock queueing theory shows effectiveness of packet-switching
- □ 1964: Baran packet-switching in military nets
- 1967: ARPAnet conceived by Advanced Research Projects Agency
- □ 1969: first ARPAnet node operational

- **□** 1972:
 - * ARPAnet public demonstration
 - * NCP (Network Control Protocol) first host-host protocol
 - * first e-mail program
 - * ARPAnet has 15 nodes

1972-1980: Internetworking, new and proprietary nets

- ☐ 1970: ALOHAnet satellite network in Hawaii
- □ 1974: Cerf and Kahn architecture for interconnecting networks
- □ 1976: Ethernet at Xerox PARC
- □ ate70's: proprietary architectures: DECnet, SNA, XNA
- □ late 70's: switching fixed length packets (ATM precursor)
- 1979: ARPAnet has 200 nodes

Cerf and Kahn's internetworking principles:

- * minimalism, autonomy no internal changes required to interconnect networks
- * best effort service model
- * stateless routers
- decentralized control

define today's Internet architecture

1980-1990: new protocols, a proliferation of networks

- □ 1983: deployment of TCP/IP
- □ 1982: smtp e-mail protocol defined
- 1983: DNS defined for nameto-IP-address translation
- □ 1985: ftp protocol defined
- 1988: TCP congestion control

- new national networks: Csnet, BITnet, NSFnet, Minitel
- □ 100,000 hosts connected to confederation of networks

1990, 2000's: commercialization, the Web, new apps

- Early 1990's: ARPAnet decommissioned
- □ 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- 📮 early 1990s: Web
 - * hypertext [Bush 1945, Nelson 1960's]
 - 🌺 HTML, HTTP: Berners-Lee
 - * 1994: Mosaic, later Netscape
 - * late 1990's: commercialization of the Web

Late 1990's − 2000's:

- more killer apps: instant messaging, P2P file sharing
- network security to forefront
- est. 50 million host, 100 million+ users
- backbone links running at Gbps

Introduction: Summary

Covered a "ton" of material!

- Internet overview
- what's a protocol?
- network edge, core, access network
 - * packet-switching versus circuitswitching
 - * Internet structure
- performance: loss, delay, throughput
- layering, service models
- security
- history

You now have:

- context, overview, "feel" of networking
- more depth, detail to follow!