Name: Solutions — Caleb McWhorter

MATH 308 Fall 2021

"There is only one problem with common sense; it's not very common."

HW 10: Due 11/05

-Milt Bryce

Problem 1. (10pt) Determine if the following functions are injective, surjective, and/or bijective. Which of the functions have an inverse function? [No formal proofs required.]

- (a) $f: \mathbb{R} \to [0,1]$ defined by $f(x) = \sin^2 x$.
- (b) $g:[0,\frac{\pi}{2}] \to [0,1]$ defined by $g(x) = \cos x$.
- (c) $h: \mathbb{N} \to \mathbb{Z}$ given by $h(n) = 3^n$.
- (d) $j: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ given by $j(n, m) = (n m + 3)^2$.

Solution.

(a) From the plot of f(x), it would seem that f(x) is surjective but not injective. Because f(x) is not both injective and surjective, f(x) is not bijective. Because $f: \mathbb{R} \to [0,1]$ is not bijective, it does not have an inverse function.

To see this directly, observe that $0,\pi\in\mathbb{R},\ f(0)=\sin^2(0)=0,\ \text{and}\ f(\pi)=\sin^2(\pi)=0.$ Because $f(0)=f(\pi)$ and $0\neq\pi$, we know that f(x) is not injective. Alternatively, f(x) is not injective because there is a horizontal line which intersects the graph of f(x) more than once, e.g. the horizontal line y=1. Alternatively, observe that f(x) is surjective because every horizontal line y=c, where $c\in[0,1]$, intersects the graph of f(x) at least once. We know that $\arcsin x$ is defined when $-1\leq x\leq 1.$ Let $y\in[0,1]$ and define $x:=\arcsin(\sqrt{y})$ (observe that \sqrt{y} is defined because $y\geq 0$ and $\arcsin(\sqrt{y})$ is defined because $-1\leq\sqrt{y}\leq 1$). Then $f(x)=f(\arcsin(\sqrt{y}))=\left(\sin(\arcsin(\sqrt{y}))\right)^2=(\sqrt{y})^2=y.$ Therefore, f(x) is surjective.

(b) From the plot of g(x), it would seem that g(x) is injective and surjective. Because g(x) is both injective and surjective, it is bijective. Because $g:[0,\frac{\pi}{2}]\to [0,1]$ is bijective, we know that g(x) has an inverse function, i.e. $g^{-1}:[0,1]\to [0,\frac{\pi}{2}]$ exists. In fact, the inverse is

 $\arccos x : [0,1] \to [0,\frac{\pi}{2}].$

We can see these facts directly. To see that g(x) is injective, observe that every horizontal line $y=c\in[0,1]$ intersects the graph of g(x) at most once. Alternatively, recall that $\arccos x$ is defined for $x\in[-1,1]$ and produces values in $[0,\pi]$. Let $x,y\in[0,\frac{\pi}{2}]$ and suppose that g(x)=g(y), i.e. $\cos(x)=\cos(y)$. But then $x=\arccos\left(\cos(x)\right)=\arccos\left(\cos(y)\right)=y$, where we have used the fact that $x,y\in[0,\frac{\pi}{2}]$. Therefore, g(x) is injective. To see that g(x) is surjective, observe that every horizontal line $y=c\in[0,1]$ intersects the graph of g(x) at least once. Alternatively, recall that $g(x)=\cos x$ is continuous. We know that $g(0)=\cos(0)=1$ and $g(\frac{\pi}{2})=\cos(\frac{\pi}{2})=0$. By the Intermediate Value Theorem, for any $y\in[0,1]$, there exists $x\in[0,\frac{\pi}{2}]$ such that g(x)=y. But then g(x) is surjective.

(c) We can plot a few values for this function. From this plot it seems that h(n) is injective but not surjective. Because h(n) is not both injective and surjective, h(n) is not bijective. Because $h: \mathbb{N} \to \mathbb{Z}$ is not bijective, it does not have an inverse function.

We can see these facts directly. To see that $h:\mathbb{N}\to\mathbb{Z}$ is not surjective, observe that not every horizontal line $y=z\in\mathbb{Z}$ intersects the graph of the function. For instance, the lines y=2 and y=-5 do not intersect the graph of h(n). Alternatively, consider $0\in\mathbb{Z}$. Because h(n)>0, there does not exist $n\in\mathbb{N}$ such that h(n)=0. Therefore, h(n) is not surjective. To see that h(n) is injective, observe that every horizontal line $y=z\in\mathbb{Z}$ intersects the graph of h(n) at most once. Alternatively, suppose that $n,m\in\mathbb{N}$ with $n\neq m$. Without loss of generality, assume that n< m. Because $h(n)=3^x$ has the property that $h(n)=3^x$ has the property that $h(n)=3^x$ has the property that $h(n)=3^x$ has the property of $h(n)=3^x$. Therefore, if $h(n)=3^x$ has the property that $h(n)=3^x$ has the property has the property that $h(n)=3^x$ has the property has the property

(d) Though we cannot (usefully) plot j(n,m), we can still easily determine that j is neither injective nor surjective. Because j is not both injective and surjective, j is not bijective. Because $j: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ is not bijective, it does not have an inverse function. To see that j is not injective, observe that $(0,0), (1,1) \in \mathbb{Z} \times \mathbb{Z}, j(0,0) = (0-0+3)^2 = 3^2 = 9$, and $j(1,1) = (1-1+3)^2 = 3^2 = 9$. Because $(0,0) \neq (1,1)$ but j(0,0) = j(1,1), we know that j is not injective. To see that j is not surjective, observe that $n-m+3 \in \mathbb{Z}$ because $n,m \in \mathbb{Z}$. But then $(n-m+3)^2 \geq 0$. Therefore, there exist no $n,m \in \mathbb{Z}$ such that $(n-m+3)^2 = -1$. But then there exists no $(n,m) \in \mathbb{Z} \times \mathbb{Z}$ such that j(n,m) = -1. Therefore, j is not surjective.

Problem 2. (10pt) Show that the function $f : \mathbb{R} \setminus \{-1\} \to \mathbb{R} \setminus \{3\}$ given by $f(x) = \frac{3x-5}{x+1}$ is a bijection. Explain why this implies f is invertible and then find the inverse for f(x).

Solution. To show that $f: \mathbb{R} \setminus \{-1\} \to \mathbb{R} \setminus \{3\}$ is bijective, we need to prove that f is both injective and surjective. To see that f is injective, let $x, y \in \mathbb{R} \setminus \{1\}$ and suppose that f(x) = f(y). We need to show x = y. But f(x) = f(y) implies. . .

$$f(x) = f(y)$$

$$\frac{3x - 5}{x + 1} = \frac{3y - 5}{y + 1}$$

$$(3x - 5)(y + 1) = (3y - 5)(x + 1)$$

$$3xy + 3x - 5y - 5 = 3xy + 3y - 5x - 5$$

$$3x - 5y = 3y - 5x$$

$$8x = 8y$$

$$x = y$$

Therefore, f is injective.

To see that f is surjective, suppose that $y \in \mathbb{R} \setminus \{3\}$. We need to show there exists $x \in \mathbb{R} \setminus \{-1\}$ such that f(x) = y. Because $y \neq 3$, we can define $x := \frac{y+5}{3-y}$. We need to show that $x \neq -1$. If x = -1, then

$$x = -1$$

$$\frac{y+5}{3-y} = -1$$

$$y+5 = y-3$$

$$5 = -3$$

which is impossible. Therefore, $x \neq -1$. Observe...

$$f(x) = \frac{3x - 5}{x + 1} = \frac{3 \cdot \frac{y + 5}{3 - y} - 5}{\frac{y + 5}{3 - y} + 1} = \frac{\frac{3y + 15}{3 - y} - \frac{15 - 5y}{3 - y}}{\frac{y + 5}{3 - y} + \frac{3 - y}{3 - y}} = \frac{\frac{8y}{3 - y}}{\frac{8}{3 - y}} = \frac{8y}{8} = y$$

Therefore, f is surjective.

Because f is both injective and surjective, $f: \mathbb{R} \setminus \{-1\} \to \mathbb{R} \setminus \{3\}$ is a bijection. Therefore, $f^{-1}: \mathbb{R} \setminus \{3\} \to \mathbb{R} \setminus \{-1\}$ exists. We can find it by interchanging the roles of x and y and solving for

y:

$$x = \frac{3y - 5}{y + 1}$$

$$x(y + 1) = 3y - 5$$

$$xy + x = 3y - 5$$

$$xy - 3y = -x - 5$$

$$y(x - 3) = -x - 5$$

$$y = \frac{-x - 5}{x - 3}$$

$$y = \frac{x + 5}{3 - x}$$

Therefore, $f^{-1}: \mathbb{R}\setminus \{3\} \to \mathbb{R}\setminus \{-1\}^1$ is given by $f^{-1}(x) = \frac{x+5}{3-x}$.

We can easily verify that this is indeed the inverse:

$$(f \circ f^{-1})(x) = f(f^{-1}(x)) \qquad (f^{-1} \circ f)(x) = f^{-1}(f(x))$$

$$= f\left(\frac{x+5}{3-x}\right) \qquad = f^{-1}\left(\frac{3x-5}{x+1}\right)$$

$$= \frac{3 \cdot \frac{x+5}{3-x} - 5}{\frac{x+5}{3-x} + 1} \qquad = \frac{\frac{3x-5}{x+1} + 5}{3-\frac{3x-5}{x+1}}$$

$$= \frac{\frac{3x+15}{3-x} - \frac{15-5x}{3-x}}{\frac{x+5}{3-x}} \qquad = \frac{\frac{3x-5}{x+1} + \frac{5x+5}{x+1}}{\frac{3x+3}{x+1} - \frac{3x-5}{x+1}}$$

$$= \frac{\frac{8x}{3-x}}{\frac{8}{3-x}} \qquad = \frac{\frac{8x}{x+1}}{\frac{8}{x+1}}$$

$$= \frac{8x}{8} \qquad = \frac{8x}{8}$$

$$= x \qquad = x$$

We need prove that f^{-1} has the correct domain and codomain. Because $f: \mathbb{R} \setminus \{-1\} \to \mathbb{R} \setminus \{3\}$, we need to prove $f^{-1}: \mathbb{R} \setminus \{3\} \to \mathbb{R} \setminus \{-1\}$. Clearly, f^{-1} is defined on $\mathbb{R} \setminus \{3\}$. We need to prove that im $f^{-1} \subseteq \mathbb{R} \setminus \{-1\}$. Clearly, im $f^{-1} \subseteq \mathbb{R}$. So we only need show that $-1 \notin \text{im } f^{-1}$, i.e. $f^{-1}(x) \neq -1$ for all x. If $f^{-1}(x) = -1$ for some x, then $\frac{x+5}{3-x} = -1$. But this implies x+5 = x-3, which forces 5 = -3, which is impossible. Therefore, $f^{-1}(x) \neq -1$ for all x. This proves that $-1 \notin \text{im } f$ so that im $f^{-1} \subseteq \mathbb{R} \setminus \{-1\}$. This proves we can allow the codomain to be $\mathbb{R} \setminus \{-1\}$.

²In fact, finding f^{-1} was how we found how to define x given y in the proof of surjectivity.

Problem 3. (10pt) Let $S \subseteq \mathbb{R}$ and $f, g : S \to \mathbb{R}$ be monotone increasing functions.

- (a) Prove that f + g is a monotone increasing function.
- (b) If f and f + g are increasing on S, then is g necessarily increasing on S? Prove this statement or give a counterexample.

Solution.

(a) Recall that a function $\phi: \mathbb{R} \to \mathbb{R}$ is monotone increasing if for all $x, y \in \mathbb{R}$ with x < y, then $\phi(x) \le \phi(y)$. Assume that $f, g: S \to \mathbb{R}$ are monotone increasing functions. But then if $x, y \in S$ with x < y, we know that $f(x) \le f(y)$ and $g(x) \le g(y)$.

We need to show that (f+g)(x) is monotone increasing; that is, we need to show that if x < y, then $(f+g)(x) \le (f+g)(y)$. Observe...

$$(f+g)(x) = f(x) + g(x) \le f(y) + g(x) \le f(y) + g(y) = (f+g)(y)$$

Therefore, $(f+g)(x) \le (f+g)(y)$ so that f+g is monotone increasing.

(b) Recall that a function $\phi: \mathbb{R} \to \mathbb{R}$ is increasing if for all $x,y \in \mathbb{R}$ with x < y, then $\phi(x) < \phi(y)$. Suppose that $f, f + g: S \to \mathbb{R}$ are increasing functions. It need not be the fact that g is increasing on S.

For example, let $S=[0,\infty)$, $f(x)=x^2+x$, and g(x)=-x. Observe that $(f+g)(x)=f(x)+g(x)=(x^2+x)+(-x)=x^2$. Because $f'(x)=2x+1\geq 0$ on $[0,\infty)$ and $(f+g)'(x)=2x\geq 0$ on $[0,\infty)$. Both f and f+g are clearly increasing on $[0,\infty)$. However, g(x)=-x is clearly decreasing on $[0,\infty)$.

Problem 4. (10pt) Let $f: X \to Y$ and let $A, B \in \mathcal{P}(X)$.

- (a) Prove that $f(A \cup B) = f(A) \cup f(B)$.
- (b) Is it true that $f(A \cap B) = f(A) \cap f(B)$? Prove or give a counterexample.

Solution.

(a) To prove $f(A \cup B) = f(A) \cup f(B)$, we need to prove that $f(A \cup B) \subseteq f(A) \cup f(B)$ and $f(A) \cup f(B) \subseteq f(A \cup B)$.

 $f(A \cup B) \subseteq f(A) \cup f(B)$: Let $y \in f(A \cup B)$. We want to show that $y \in f(A) \cup f(B)$. Because $y \in f(A \cup B)$, there exists $x \in A \cup B$ such that f(x) = y. Because $x \in A \cup B$, we know that $x \in A$ or $x \in B$. We consider both cases.

Case I, $x \in A$: If $x \in A$, then $x \in A$ and f(x) = y so that $y \in f(A)$. But then $y \in f(A) \cup f(B)$.

Case II, $x \in B$: If $x \in B$, then $x \in B$ and f(x) = y so that $y \in f(B)$. But then $y \in f(A) \cup f(B)$.

Therefore, if $y \in f(A \cup B)$, then $y \in f(A) \cup f(B)$. This proves that $f(A \cup B) \subseteq f(A) \cup f(B)$.

 $f(A) \cup f(B) \subseteq f(A \cup B)$: Let $y \in f(A) \cup f(B)$: Let $y \in f(A) \cup f(B)$. We want to show that $y \in f(A \cup B)$. Because $y \in f(A) \cup f(B)$, we know that $y \in f(A)$ or $y \in f(B)$. We consider both cases:

Case I, $y \in f(A)$: If $y \in f(A)$, then there exists $x \in A$ such that f(x) = y. Because $x \in A$, we know that $x \in A \cup B$. But then because $x \in A \cup B$ and f(x) = y, we know that $y \in f(A \cup B)$.

Case II, $y \in f(B)$: If $y \in f(B)$, then there exists $x \in B$ such that f(x) = y. Because $x \in B$, we know that $x \in A \cup B$. But then because $x \in A \cup B$ and f(x) = y, we know that $y \in f(A \cup B)$.

But then if $y \in f(A) \cup f(B)$, then $y \in f(A \cup B)$. Therefore, $f(A) \cup f(B) \subseteq f(A \cup B)$.

Therefore, because $f(A \cup B) \subseteq f(A) \cup f(B)$ and $f(A) \cup f(B) \subseteq f(A \cup B)$, we know that $f(A \cup B) = f(A) \cup f(B)$.

(b) No, generally, we only know that $f(A \cap B) \subseteq f(A) \cap f(B)$. [Try proving this!] The other inclusion need not hold, i.e. there may be elements of $f(A) \cap f(B)$ that may not be elements of $f(A \cap B)$. This is because there could be elements only in A and B, i.e. $a \in A \setminus B$ and $b \in B \setminus A$ (hence, $a, b \notin A \cap B$), such that f(a) = f(b). For instance, consider the function

f(x) given by the diagram below.

That is, let $f: X \to Y$ be the function given by $f(a) = \pi$ and $f(b) = \pi$. Define $A = \{a\}$ and $B = \{b\}$. Clearly, $A \cap B = \varnothing$. Therefore, $f(A \cap B) = f(\varnothing) = \varnothing$. Moreover, $f(A) = \{f(x) \colon x \in A\} = \{f(a)\} = \{\pi\}$ and $f(B) = \{f(x) \colon x \in B\} = \{f(b)\} = \{\pi\}$. But then $f(A) \cap f(B) = \{\pi\} \cap \{\pi\} = \{\pi\}$. While we have $f(A \cap B) = \varnothing \subseteq \{\pi\} = f(A) \cap f(B)$, we do not have $f(A \cap B) = f(A) \cap f(B)$.

Problem 5. (10pt) Let $f: X \to Y$ and $A, B \subseteq Y$. Prove that $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.

Solution. To prove $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$, we need to prove that $f^{-1}(A \cap B) \subseteq f^{-1}(A) \cap f^{-1}(B)$ and $f^{-1}(A) \cap f^{-1}(B) \subseteq f^{-1}(A \cap B)$.

 $f^{-1}(A\cap B)\subseteq f^{-1}(A)\cap f^{-1}(B)$: Let $x\in f^{-1}(A\cap B)$. We need to show that $x\in f^{-1}(A)\cap f^{-1}(B)$. Because $x\in f^{-1}(A\cap B)$, we know that $f(x)\in A\cap B$. But then $f(x)\in A$, which implies $x\in f^{-1}(A)$. Similarly, because $f(x)\in A\cap B$, we know that $f(x)\in B$, which implies $x\in f^{-1}(B)$. Because $x\in f^{-1}(A)$ and $x\in f^{-1}(B)$, we know $x\in f^{-1}(A)\cap f^{-1}(B)$. But then if $x\in f^{-1}(A\cap B)$, then $x\in f^{-1}(A)\cap f^{-1}(B)$. Therefore, $f^{-1}(A\cap B)\subseteq f^{-1}(A)\cap f^{-1}(B)$.

 $f^{-1}(A)\cap f^{-1}(B)\subseteq f^{-1}(A\cap B)$: Let $x\in f^{-1}(A)\cap f^{-1}(B)$. We need to show that $x\in f^{-1}(A\cap B)$. Because $x\in f^{-1}(A)\cap f^{-1}(B)$, we know that $x\in f^{-1}(A)$, which implies that $f(x)\in A$. Similarly, because $x\in f^{-1}(A)\cap f^{-1}(B)$, we know that $x\in f^{-1}(B)$, which implies that $f(x)\in B$. Therefore, because $f(x)\in A$ and $f(x)\in B$, we know that $f(x)\in A\cap B$. This implies that $x\in f^{-1}(A\cap B)$. But then if $x\in f^{-1}(A)\cap f^{-1}(B)$, then $x\in f^{-1}(A\cap B)$. Therefore, $f^{-1}(A)\cap f^{-1}(B)\subseteq f^{-1}(A\cap B)$.

Therefore, because $f^{-1}(A \cap B) \subseteq f^{-1}(A) \cap f^{-1}(B)$ and $f^{-1}(A) \cap f^{-1}(B) \subseteq f^{-1}(A \cap B)$, we know $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.

Problem 6. (10pt) For each of the following, find a function $f : \mathbb{N} \to \mathbb{Z}$ with the following properties:

- (a) f is injective but not surjective
- (b) *f* is surjective but not injective
- (c) *f* is neither surjective nor injective
- (d) f is a bijection

Solution. There are infinitely many possible solutions. Here is a collection of possible solutions:

- (a) Let $f: \mathbb{N} \to \mathbb{Z}$ be given by f(n) = n. Clearly, f is injective because if f(n) = f(m), then n = f(n) = f(m) = m, so that n = m. Therefore, f is injective. But f is not surjective. Because $n \in \mathbb{N}$, we know that $n \ge 0$. But then $f(n) \ge 0$ for all n. But then $f(n) \ne -1$ for all $n \in \mathbb{N}$. Therefore, f is not surjective.
- (b) Let $g: \mathbb{N} \to \mathbb{Z}$ be the bijection in (d)—no one said parts had to or should be done in order, i.e.

$$g(n) = \begin{cases} 0, & n = 1\\ \frac{n}{2}, & n \text{ is even}\\ -\frac{n+1}{2}, & n \text{ is odd} \end{cases}$$

From (d), we know that g is a bijection. Suppose we construct a surjection $h: \mathbb{N} \to \mathbb{N}$ that is not injective. We know that $g \circ h: \mathbb{N} \to \mathbb{Z}$ will be a surjection because the composition of surjective functions is surjective. But because h is not injective, there exists $n, m \in \mathbb{N}$ with $n \neq m$ but h(n) = h(m). Define N := h(n) = h(m). Then $(g \circ h)(n) = g(h(n)) = g(N)$ and $(g \circ h)(m) = g(h(m)) = g(N)$ so that $(g \circ h)(n) = (g \circ h)(m)$ but $n \neq m$. Thus, $g \circ h$ would not be injective. It remains to construct a surjection $h: \mathbb{N} \to \mathbb{N}$ that is not an injection. Let $h: \mathbb{N} \to \mathbb{N}$ be given by...

$$h(n) = \begin{cases} \frac{n}{2}, & n \text{ even} \\ \frac{n+1}{2}, & n \text{ odd} \end{cases}$$

The function h maps the even positive integers to $1,2,3,\ldots$ and maps the odd even integers to $1,2,3,\ldots$. To see that h is not injective, observe that $h(1)=\frac{1+1}{2}=\frac{2}{2}=1$ and $h(2)=\frac{2}{2}=1$. Obviously $1\neq 2$ but h(1)=h(2), so that h is not injective. It only remains to show that h is surjective. Let $n\in\mathbb{N}$. We want to show there exists $m\in\mathbb{N}$ such that h(m)=n. Observe that $2n\in\mathbb{N}$ is even. Defining m:=2n, we have $h(m)=\frac{m}{2}=\frac{2n}{2}=n$. But then for all $n\in\mathbb{N}$, there exists $m\in\mathbb{N}$ such that h(m)=n. Therefore, h is surjective.

Now define $f := g \circ h : \mathbb{N} \to \mathbb{Z}$, i.e. f(n) := g(h(n)). We know that f is surjective (because it is the composition of surjective functions is surjective) and that f is not injective (because h is not injective). But then $f : \mathbb{N} \to \mathbb{Z}$ is a surjection that is not injective. One can even give f

explicitly using the value of n modulo 4^3

$$f(n) = \begin{cases} \frac{n}{4}, & n \equiv 0 \mod 4 \\ -\frac{n-1}{4}, & n \equiv 1 \mod 4 \\ -\frac{n-2}{4}, & n \equiv 2 \mod 4 \\ \frac{n+1}{4}, & n \equiv 3 \mod 4 \end{cases}$$

- (c) Let $f: \mathbb{N} \to \mathbb{Z}$ be given by f(n) = 0 for all $n \in \mathbb{N}$. Clearly, f is not injective because f(1) = f(2) = 0 but $1 \neq 2$. Furthermore, f is not surjective because there is no $n \in \mathbb{N}$ such that f(n) = 1.
- (d) We will construct a function that will 'count through' $\mathbb Z$ in the following way: $0,1,-1,2,-2,3,-3,\ldots$ For now, we shall focus on the sequence $1,-1,2,-2,3,-3,\ldots$ We will create a map that assigns values in $\mathbb N$ to these values in the order. A table may be helpful:

Letting f(1)=0 and shifting each of the outputs one spot to the right in the table above gives a 'valid' description of a bijective function. However, we can be more concrete. Observe that the even integers are assigned to the negation of half their value, i.e. -n/2. Using this as a 'hint' for the odd integers, observe that the odd integers are mapped to half of one less than their value, i.e. (n-1)/2. If we want to include 0, we can simply 'shift' everything up, insert 0, and use the same idea as above.

This allows us to explicitly define f(n):⁴

$$f(n) = \begin{cases} 0, & n = 1\\ \frac{n}{2}, & n \text{ is even}\\ -\frac{n-1}{2}, & n \text{ is odd} \end{cases}$$

Observe that f(n) = 0 if and only if n = 1, f(n) > 0 if and only if n is even, and f(n) < 0 if and only if n is odd. We need to prove that f is injective and surjective.

We first prove that f is injective. Suppose that f(n) = f(m) for some $n, m \in \mathbb{N}$. We need to show that n = m. There are three cases:

³The value of h at n depends upon the parity of n. But then the out h(n) may have different parity than n, which is then input into g whose output depends upon the parity of its input. For instance, if n is even then $h(n) = \frac{n}{2}$, which may be even, e.g. n = 8, or odd, e.g. n = 6. One would then only use the ' $\frac{n}{2}$ ' definition of h and the $\frac{n}{2}$ definition of h is even then $h(n) = \frac{n}{2}$, which may be even, e.g. h and the h definition of h and the h definition of h are divisible by 2 at least twice, i.e. divisible by four.

⁴One can do this without singling out the case of n=1 if one defines $f(n)=\frac{n}{2}$ when n is even and defining $f(n)=-\left\lfloor\frac{n}{2}\right\rfloor$ when n is odd. Of course, because $\left\lfloor\frac{n}{2}\right\rfloor=\frac{n}{2}$ when n is even, this immediately gives that one could simply define $f(n)=(-1)^n\left\lfloor\frac{n}{2}\right\rfloor$ for all $n\in\mathbb{N}$.

- (i) f(n) = f(m) = 0: Of course, f(n) = 0 and f(m) = 0 if and only if n = 0 and m = 0. But then n = m.
- (ii) f(n) = f(m) > 0: Because f(n) > 0, we know that n is even. This implies $f(n) = \frac{n}{2}$. Similarly, because f(m) > 0, we know that m is even so that $f(m) = \frac{m}{2}$. But then f(n) = f(m) implies that $\frac{n}{2} = \frac{m}{2}$. Therefore, n = m.
- (iii) f(n)=f(m)<0: Because f(n)<0, we know that n is odd. This implies $f(n)=-\frac{n-1}{2}$. Similarly, because f(m)<0, we know that m is even so that $f(m)=-\frac{m-1}{2}$. But then f(n)=f(m) implies that $-\frac{n-1}{2}=-\frac{m-1}{2}$. This obviously implies $\frac{n-1}{2}=\frac{m-1}{2}$ so that n-1=m-1. Therefore, n=m.

But then if f(n) = f(m), we know that n = m. Therefore, f(n) is injective.

To see that f is surjective, suppose that $z \in \mathbb{Z}$. We need to show that there exists $n \in \mathbb{N}$ such that f(n) = z. There are three cases:

- (i) z = 0: We know that f(1) = 0 = z.
- (ii) z > 0: Let z > 0 and define n := 2z. Clearly, 2z > 0 is an even integer. Then $f(n) = f(2z) = \frac{2z}{2} = z$.
- (iii) z < 0: Let z < 0 and define n := -2z + 1. Because $z \le -1$ (because z < 0 is an integer), we know that $-2z \ge 2$ so that $-2z + 1 \ge 3$. But then $f(n) = f(-2z + 1) = -\frac{(-2z + 1) 1}{2} = -\frac{-2z}{2} = -(-z) = z$.

But then for all $z \in \mathbb{Z}$, there exists $n \in \mathbb{N}$ such that f(n) = z. Therefore, f is surjective.

Because f is injective and surjective, f is a bijection.