Deterministic Finite Automata (DFA)

$$A = (Q, \Sigma, \delta, q_0, F)$$

Q = a finite set (of states)

 Σ = a finite (input alphabet) set

 δ = the transition function (full function) where :

$$\delta: Q \times \Sigma \to Q; (q, \sigma) \to \delta(q, \sigma) \in Q$$

 q_0 = initial state, $q_0 \in Q$

 $F = final \ state \ set \ , \ F \subseteq Q$

Simple Representations of **DFA**

(1) Visual (Graphical): Transition Diagrams

strings (event sequences) that end up in colored (final) state

(2) Tabular: Transition Tables

state	input	state'
q_0	0	q_0
q_0	1	q_I
q_I	0	q_0
q_I	1	q_I

no. of columns in transition table = 3
in general how many rows are there?

answer $\rightarrow |\Sigma| \times |Q|$ rows

$\delta E = Extended Transition Function$

$$\delta E: Q \times \Sigma^* \rightarrow Q; (q, s) \rightarrow \delta E(q, s) \in Q$$

Inductive Definition (*e* =*empty string*)

$$\delta E(q, e) := q$$
, Basis

$$\delta E(q, s.a) = \delta(\delta E(q, s), a), Induction$$

L(A) := the language accepted by A

$$s \in L(A) \leftrightarrow (if \ and \ only \ if) \ \delta E(q_0, s) \in F ; or :$$

$$L(A) = (s \in \Sigma^* \mid \delta E(q_0, s) \in F)$$

Examples 1- Describe in simple natural language L(A) = the language accepted by A

$$L(A) = (s \in \{0,1\}^* \mid \delta E(q_0, s) \in \{q_1\})$$

Answer: all strings in {0,1}* that terminate with a 1

2- Design a DFA **X** that accepts the string of letters in Turkish alphabet in which the substring 'BABA' occurs at least once!

Let Σ denote the set of all capital letters in the Turkish alphabet

Discussion slide on Example 2

Is this or the next DFA the true solution?

Does not accept strings

'BBABA' or; 'BABBABA'

Both strings get stuck in state 3 which is not a final state

What language does X" accept?

All strings where 'BABA' occurs as a substring precisely once and only as a postfix

Nondeterministic Finite Automata (NFA)

set of all subsets of Q

Same as **DFA** except:

- (1) $\delta: Q \times \Sigma \rightarrow 2^Q$ (where $2^Q := P(Q) = power set of Q$)
- (2) initial state (is a set!) $Q_0 \subseteq Q$ (differs from main text!)

Distinction in graphical representation (transition diagram):

In **DFA** for every $\sigma \in \Sigma$ there **is** exactly **one** outgoing transition edge from every state $q \in Q$

In NFA for every $\sigma \in \Sigma$ there may be multiple (including none!) outgoing transition edges from every state $q \in Q$

Extended Transition Function for NFA

$$\delta E: 2^{Q} \times \Sigma^{*} \rightarrow 2^{Q}; (X, s) \rightarrow \delta E(X, s) \in 2^{Q}$$

Inductive Definition

$$\delta E(X, e) := X$$
, Basis

$$\delta E(X, s.a) = \bigcup_{q \in \delta E(X, s)} \delta(q, a), Induction$$

L(A) :=the language *accepted* by A

$$s \in L(A) \leftrightarrow (if \text{ and only if}) \delta E(Q_0, s) \cap F \neq \emptyset; \text{ or } :$$

$$L(A) := \{ s \in \Sigma^* \mid \delta E(Q_0, s) \cap F \neq \emptyset \}; \emptyset := null set$$

Examples 1 - Describe in simple natural language L(X) = the language accepted by X

$$L(X) = (s \in \{0,1\}^* \mid \delta E(q_0, s) \cap \{q_1\} \neq \emptyset)$$

Answer: all strings in {0,1}* that terminate with a 1

2 - Design an NFA **X** that accepts the string of letters in Turkish alphabet in which the substring 'BABA' occurs AT LEAST once!

3 - Design a NFA **X** that accepts the string of letters in Turkish alphabet in which the substring 'BABA' occurs **PRECISELY** once! **Exercise**

Hint for exercise: use an NFA that rejects all strings in which 'BABA' is a substring

Solution to the Exercise on slide no. 8 is automaton W below

The automaton that generates ALL strings in which the substring 'BABA' occurs precisely once as a postfix upon arrival at state q

ALL sequences of length 1 or 2 that differ from BA reach from q to q_0 or q_1 . To avoid BABA through a second BA sequence, a trap state t is placed.

The automaton starting at initial state q_0 accepts ALL strings that do NOT have the substring 'BABA' in it

FACT: If a DFA X accepts the language L(X) then the DFA that accepts the complement language Σ^* -L(X) is same as X except F is replaced with Q-F

Construction of Equivalent DFA D from a given NFA N

Problem: Given an NFA $N = (Q, \Sigma, \delta_N, Q_0, F_N)$ construct a DFA $D = (2^Q, \Sigma, \delta_D, Q_0, F_D)$ such that L(N) = L(D)

Solution:

(1)
$$\delta_D(X, \sigma) := \bigcup_{\{v \in X\}} \delta_N(v, \sigma) ; \delta_D(\emptyset, \sigma) := \emptyset, \ \forall \ \sigma \in \Sigma$$

$$(2) F_D := \{ Y \subseteq Q \mid Y \cap F_N \neq \emptyset \}$$

To prove that L(D) = L(N) first show that $\delta_D E(Q_0, s) = \delta_N E(Q_0, s)$ using induction on the length of s

$$\delta_D E(Q_0,e) = \delta_N E(Q_0,e) = Q_0$$
 by definition (basis; s=e case)

$$\delta_D E(Q_0, s.a) = \delta_D(\delta_D E(Q_0, s), a) = \bigcup_{\{v \in X\}} \delta_N(v, a);$$
where $X = \delta_D E(Q_0, s)$

But by induction hypothesis: $\delta_D E(Q_0, s) = \delta_N E(Q_0, s) = X$; hence

$$\delta_{D}E(Q_{0}, s.a) = \bigcup_{\{v \in X\}} \delta_{N}(v, a) = \delta_{N}E(Q_{0}, s.a) ; by def. of \delta_{N}E(Q_{0}, s.a)$$

Finally L(N)=L(D) is proved as follows:

$$s \in L(N) \Leftrightarrow \delta_N E(Q_0, s) \cap F_N \neq \emptyset$$
 ; by def. of $L(N)$

$$\Leftrightarrow \delta_N E(Q_0, s) \in F_D$$
 ; since $F_D := \{ Y \subseteq Q \mid Y \cap F_N \neq \emptyset \}$

$$\Leftrightarrow \delta_D E(Q_0, s) \in F_D$$
 ; since $\delta_N E(Q_0, s) = \delta_D E(Q_0, s)$

$$\Leftrightarrow s \in L(D)$$
; by def. of $L(D)$

Example for DFA equivalent **D** for an NFA **N**

 $L=(s \in \{0,1\}^* \mid s = u \ v \ ; |v| \le 2 \ ; v \ has \ at \ least \ one \ 1\}$

	state	input	next
> A ->	1	0	1,4 (B)
	1	1	1,2,3,5 (C)
$B \rightarrow$	1,4	0	1,4 (B)
	1,4	1	1,2,3,5 (C)
	1,2,3,5	0	1,4,5 (E)
final C ->	1,2,3,5	1	1,2,3,5 (C)
final E→	1,4,5	0	1,4 (B)
	1,4,5	1	1,2,3,5 (C)

Another example for DFA equivalent **D** for an NFA **X**

 $L=(s \in \{0,1\}^* \mid s \text{ does } NOT \text{ have a substring } 1.1.1)$

$$L^{c}=(s \in \{0,1\}^{*} \mid s = u.1.1.1.v ; u,v \in \{0,1\}^{*})$$

\boldsymbol{q}	σ	q,
X > 1	0	1
1	1	1,2
1,2 =A	0	1
1,2	1	1,2,3
1,2,3 = B	0	1
1,2,3	1	1,2,3,4
$1,2,3,4 = C^*$	0	1,4
1,2,3,4	1	1,2,3,4
1,4, = D*	0	1,4
1,4,	1	1,2,4
1,2,4 = E*	0	1,4
1,2,4	1	1,2,3,4

A 'bad case' example for NFA-to-DFA conversion

$$L = (s \in \{0,1\}^* \mid s=u.1.v ; |v|=n-1, n > 1, a fixed integer)$$

An **n+1** state NFA to accept **L**

Fact: Any DFA D to accept L has at least 2^n states

A special case: n=3

CS 302 Spring 2021 15

Proof of Fact

- (1) Consider all (2^n) sequences of 0 and 1s of length n; denote each by u^k for $k=1,...,2^n$ and jth input of u^k by u_j^k for j=1,...,n.
- (2) Apply each sequence \mathbf{u}^k starting from the initial state $\mathbf{q'}_0$ of \mathbf{D} and let \mathbf{q}_n^k be the state of \mathbf{D} arrived at the end of the application of \mathbf{u}^k .

Claim $k \neq p$ implies $q_n^k \neq q_n^p$!

- (3) Suppose the claim is false for some $k \neq p$ (i.e. $q_n^k = q_n^p$!) then let j be the first (smallest) index for which $u_j^k = 1$ and $u_j^p = 0$
- (4) Then after n-j steps the corresponding states merge at the same value $q_n^k = q_n^p$
- (5) But then it becomes impossible to differentiate inputs of length n+j starting with u^k and u^p although at jth stage one continues with l (to be accepted by p) and the other with l (to be rejected by l)! A contradiction!

NFA with *\varepsilon*-transitions

$$N\varepsilon = (Q, \Sigma, \delta_{N\varepsilon}, Q_0, F)$$

Difference is in $\delta_{N\varepsilon}: Q \times (\Sigma \cup \varepsilon) \to 2^Q$

 $\delta_{N\varepsilon}(q, \varepsilon) \in 2^Q$ is called (a bundle of) ε -transitions

In computing the language accepted, $L(N\varepsilon)$, ε -transitions do not count, i.e., they are defined as invisible and erased!

Typical Applications of ε -transitions

CS 302 Spring 2021

Eliminating *\varepsilon*-transitions

Idea : define ε -closures inductively (recursively)

Let $X \subseteq Q$ and compute $ECLOSE(X) \subseteq Q$ recursively as below:

ECLOSE(X)=X, basis

If $y \in ECLOSE(X)$ then set:

 $ECLOSE(X) := ECLOSE(X) \cup \delta_{N\varepsilon}(y, \varepsilon)$, recursion

Example for computing E-closures

All transitions are epsilon-transitions

Progress in inductive steps →

E-CLOSURE (1)
$$\rightarrow$$
 (1) \rightarrow (1,2,4) \rightarrow (1,2,4,3,5) \rightarrow (1,2,4,3,5,6)

E-CLOSURE (4)
$$\rightarrow$$
 (4) \rightarrow (4,5) \rightarrow (4,5,2) \rightarrow (4,5,2,3) \rightarrow (4,5,2,3,6)

The language $L(N\varepsilon)$ accepted by an automaton $N\varepsilon$ with ε -transitions

Extended Transition Function for $N\varepsilon$:

$$\delta_{N\varepsilon}E(X, e) := ECLOSE(X)$$
; basis

$$\delta_{N\varepsilon}E(X, s.a) := \bigcup_{v \in Y}ECLOSE(\delta_{N\varepsilon}(y, a)), Y = \delta_{N\varepsilon}E(X, s) : induction$$

$$L(N\varepsilon)$$
 = language accepted by $N\varepsilon$

$$= \{ s \in \Sigma^* \mid \delta_{N\varepsilon} E(Q_0, s) \cap F \neq \emptyset \}$$

~N := NFA-equivalent for $N\varepsilon$ with no ε -transitions

$$\sim N := (Q, \Sigma, \delta_{\sim N}, Q'_{0}, F)$$

where : $\delta_{\sim N}(q, a) := \delta_{N \varepsilon} E(\{q\}, a)$; $Q'_{\theta} := ECLOSE(Q_{\theta})$

 $Fact: L(\sim N) = L(N\varepsilon)$

Example for &-NFA to NFA without &-transitions transformation

q	σ	q'
1*	0	5
1	1	3
2	0	ϕ
2	1	3
3	0	1,2,4,6 =A
3	1	ϕ
4	0	5
4	1	ϕ
5	0	ϕ
5	1	1,2,4,6
6	0	5
6	1	3
A*	0	5
A*	1	3

A Resume of equivalence formulas for DFA , NFA and ε -NFA

(1)
$$\delta_A: Q \times \Sigma \to Q$$
; $\delta_A E: Q \times \Sigma^* \to Q$; $s \in L(A) \Leftrightarrow \delta_A E(q_0, s) \in F$

(2)
$$\delta_N: Q \times \Sigma \to 2^Q$$
; $\delta_N E: 2^Q \times \Sigma^* \to 2^Q$; $s \in L(N) \Leftrightarrow \delta_N E(Q_0, s) \cap F \neq \emptyset$

(3) Deterministic Equivalent **D** of an NFA N such that L(N) = L(D)

$$D = (2^{Q}, \Sigma, \delta_{D}, Q_{0}, F_{D}); \delta_{D}(X, \sigma) := \bigcup_{\{v \in X\}} \delta_{N}(v, \sigma); \delta_{D}(\emptyset, \sigma) := \emptyset$$

$$F_{D} := \{ Y \subseteq Q \mid Y \cap F_{N} \neq \emptyset \}$$

$$(4) \; \delta_{N\varepsilon} \colon Q \times \Sigma \cup \{\varepsilon\} \; \to 2^{Q} \; ; \; \delta_{N\varepsilon}E \colon 2^{Q} \times \Sigma^{*} \; \to 2^{Q} \; ; \; s \in L(N\varepsilon) \Leftrightarrow \delta_{N\varepsilon}E(Q_{\theta},s) \cap F \neq \emptyset$$

(5) Equivalent $\sim N$ without ϵ -transitions of an ϵ -NFA $N\epsilon$ such that $L(\sim N) = L(N\epsilon)$

$$\sim N := (Q, \Sigma, \delta_{\sim N}, Q_0, F); \delta_{\sim N}(q,a) := \delta_{N\varepsilon}E(\lbrace q \rbrace, a); Q_0 := ECLOSE(Q_0)$$