

Decimal Numbers

The position of each digit in a weighted number system is assigned a weight based on the **base** or **radix** of the system.

The radix of decimal numbers is ten, because only ten symbols (0 through 9) are used to represent any number.

The column weights of decimal numbers are powers of ten that increase from right to left beginning with $10^0 = 1$:

 $...10^5 10^4 10^3 10^2 10^1 10^0$.

For fractional decimal numbers, the column weights are negative powers of ten that decrease from left to right:

 $10^2 \ 10^1 \ 10^0$, $10^{-1} \ 10^{-2} \ 10^{-3} \ 10^{-4} \dots$

Floyd, Digital Fundamentals, 10th ed

Decimal Numbers

Decimal numbers can be expressed as the sum of the products of each digit times the column value for that digit. Thus, the number 9240 can be expressed as

$$(9 \times 10^3) + (2 \times 10^2) + (4 \times 10^1) + (0 \times 10^0)$$

or

$$9 \times 1,000 + 2 \times 100 + 4 \times 10 + 0 \times 1$$

Example

Express the number 480.52 as the sum of values of each digit.

Solution

$$480.52 = (4 \times 10^{2}) + (8 \times 10^{1}) + (0 \times 10^{0}) + (5 \times 10^{-1}) + (2 \times 10^{-2})$$

Floyd, Digital Fundamentals, 10th ed

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Summary

Binary Numbers

For digital systems, the binary number system is used. Binary has a radix of two and uses the digits 0 and 1 to represent quantities.

The column weights of binary numbers are powers of two that increase from right to left beginning with $2^0 = 1$:

$$\dots 2^5 \ 2^4 \ 2^3 \ 2^2 \ 2^1 \ 2^0$$
.

For fractional binary numbers, the column weights are negative powers of two that decrease from left to right:

Floyd, Digital Fundamentals, 10th ed

Binary Conversions

You can convert a decimal whole number to binary by reversing the procedure. Write the decimal weight of each column and place 1's in the columns that sum to the decimal number.

Example

Convert the decimal number 49 to binary.

The column weights double in each position to the right. Write down column weights until the last number is larger than the one you want to convert.

 $2^6 \ 2^5 \ 2^4 \ 2^3 \ 2^2 \ 2^1 \ 2^0.$ $64 \ 32 \ 16 \ 8 \ 4 \ 2 \ 1.$ $0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1.$

Floyd, Digital Fundamentals, 10th ed

 $\ensuremath{\mathbb{C}}$ 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Summary

Binary Conversions

You can convert a decimal fraction to binary by repeatedly multiplying the fractional results of successive multiplications by 2. The carries form the binary number.

Example Colution

Convert the decimal fraction 0.188 to binary by repeatedly multiplying the fractional results by 2.

Answer = .00110 (for five significant digits)

Floyd, Digital Fundamentals, 10th ed

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Floyd, Digital Fundamentals, 10th ed

Binary Subtraction

The rules for binary subtraction are

$$0 - 0 = 0$$

$$1 - 1 = 0$$

$$1 - 0 = 1$$

10 - 1 = 1 with a borrow of 1

Example

Subtract the binary number 00111 from 10101 and show the equivalent decimal subtraction.

Solution

111 10101 21

00111 7

 $\overline{01110} = \overline{14}$

Floyd, Digital Fundamentals, 10th ed

 $\ensuremath{\mathbb{C}}$ 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Summary

Binary Subtraction

$$= (10)_2$$

$$0 - 2 - 2 - 0 - 0 - 2$$

$$-$$
 1 0 1 1 1 = 23

Floyd, Digital Fundamentals, 10th ed

I's Complement Example: Find 1's complement of (101100)₂ = (010011)₂ Example: Find 1's complement of (0.0110)₂ = (0.1001)₂ Floyd, Digite' Fundementals, 10th ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Signed Binary Numbers

Negative numbers are written as the 2's complement of the corresponding positive number.

The negative number -58 is written as:

-58 = 11000110 (complement form)

Sign bit

Magnitude bits

An easy way to read a signed number that uses this notation is to assign the sign bit a column weight of -128 (for an 8-bit number). Then add the column weights for the 1's.

Example Colution

Assuming that the sign bit = -128, show that 11000110 = -58 as a 2's complement signed number:

Column weights: -128 64 32 16 8 4 2 1.

Floyd, Digital Fundamentals, 10th ed

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Summary

Floating Point Numbers

Floating point notation is capable of representing very large or small numbers by using a form of scientific notation. A 32-bit single precision number is illustrated.

S E (8 bits)

F (23 bits)

Sign bit Biased exponent (+127)

Magnitude with MSB dropped

Example Colution

Express the speed of light, c, in single precision floating point notation. ($c = 0.2998 \times 10^9$)

In binary, $c = 0001\ 0001\ 1101\ 1110\ 1001\ 0101\ 1100\ 0000_2$.

In scientific notation, $c = 1.001 \ 1101 \ 1110 \ 1001 \ 0101 \ 1100 \ 0000 \ x \ 2^{28}$.

S = 0 because the number is positive. $E = 28 + 127 = 155_{10} = 1001 \ 1011_2$. F is the next 23 bits after the first 1 is dropped.

In floating point notation, c = 0 10011011 001 1101 1110 1001 0101 1100

Floyd, Digital Fundamentals, 10th ed

Arithmetic Operations with Signed Numbers

Using the signed number notation with negative numbers in 2's complement form simplifies addition and subtraction of signed numbers.

Rules for **addition**: Add the two signed numbers. Discard any final carries. The result is in signed form.

Examples:

```
\begin{array}{c} 00011110 = +30 \\ \underline{00001111} = +15 \\ \hline 00101101 = +45 \\ \end{array} \qquad \begin{array}{c} 00001110 = +14 \\ \underline{11101111} = -17 \\ \underline{11111101} = -3 \\ \end{array} \qquad \begin{array}{c} 111111111 = -1 \\ \underline{11111000} = -8 \\ \end{array}
```

Floyd, Digital Fundamentals, 10th ed

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Summary

Arithmetic Operations with Signed Numbers

Note that if the number of bits required for the answer is exceeded, overflow will occur. This occurs only if both numbers have the same sign. The overflow will be indicated by an incorrect sign bit.

Two examples are:

```
01000000 = +128

01000001 = +129

10000001 = -127

10000001 = -127

10000001 = -127

10000001 = -127

Wrong! The answer is incorrect

and the sign bit has changed.
```

Floyd, Digital Fundamentals, 10th ed

 $\ensuremath{\mathbb{C}}$ 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

V	Summary				
		Decimal	Hexadecimal	Binary	1
	Hexadecimal Numbers	0	0	0000	
	Have desimal year sinteen about the	1	1	0001	
	Hexadecimal uses sixteen characters to	2	2	0010	1
	represent numbers: the numbers 0	3	3	0011	4
	through 9 and the alphabetic characters	4	4	0100	
	A through F.	5	5	0101	
		6	6	0110	
	Large binary number can easily	7	7	0111	
	be converted to hexadecimal by	8	8	1000	
	grouping bits 4 at a time and writing	9	9	1001	
	the equivalent hexadecimal character.	10	A	1010	
	_	11	В	1011	
	Express 1001 0110 0000 1110 ₂ in	12	C	1100	
	hexadecimal:	13	D	1101	
	Group the binary number by 4-bits	14	Е	1110	
	starting from the right. Thus, 960E	15	F	1111	1
Floy	rd, Digita' Fundamentals, 10 th ed © 2009 Pearson Education, Upp	er Saddle Riv	er, NJ 07458. All Ri	ights Reserved	

		Decimal	Octal	Binary
Octal N	lumbers	0	0	0000
Oatal va	and aight above atoms the many base	1	1	0001
1	ses eight characters the numbers	2	2	0010
d throug	gh 7 to represent numbers.	3	3	0011
There is	no 8 or 9 character in octal.	4	4	0100
1	Binary number can easily be	5	5	0101
	•	6	6	0110
	ed to octal by grouping bits 3 at	7	7	0111
I	nd writing the equivalent octal	8	10	1000
characte	er for each group.	9	11	1001
Evemple	Express 1 001 011 000 001 110 ₂ in	10	12	1010
Exallipic	octal:	11	13	1011
Colution		12	14	1100
Juinnall	Group the binary number by 3-bits	13	15	1101
	starting from the right. Thus, 113016_8	14	16	1110
		15	17	1111

Summary	0016]
	Decimal	Octal	Binary	
Octal Numbers	0	0	0000	
	1	1	0001	
Octal is also a weighted number	2	2	0010	
system. The column weights are	3	3	0011	
powers of 8, which increase from right	4	4	0100	
to left.	5	5	0101	
to left.	6	6	0110	
Column weights $\begin{cases} 8^3 & 8^2 & 8^1 & 8^0 \\ 512 & 64 & 8 & 1 \end{cases}$.	7	7	0111	
Column weights \(\frac{512}{512} \) 64 \\ 8 \\ 1 \\ .	8	10	1000	
Fuermale	9	11	1001	
Express 3702 ₈ in decimal.	10	12	1010	
Court by waiting the column weighter	11	13	1011	
Solution Start by writing the column weights: 512 64 8 1	12	14	1100	
	13	15	1101	
5 , 5 - 8	14	16	1110	
$3(512) + 7(64) + 0(8) + 2(1) = 1986_{10}$	15	17	1111	
Floyd, Digital Fundamentals, 10 th ed © 2009 Pearson Education, U	pper Saddle Riv	er, NJ 07458.	All Rights Res	erved

Summary	Decimal	Binary	BCD
BCD	0	0000	0000
DCD	1	0000	0000
Binary coded decimal (BCD) is a	$\begin{bmatrix} 1\\2 \end{bmatrix}$	0011	0001
· · · · · · · · · · · · · · · · · · ·	3	0010	0010
weighted code that is commonly	4	0100	0100
used in digital systems when it is	5	0101	0100
necessary to show decimal	6	0110	0110
numbers such as in clock displays.	7	0111	0111
The table illustrates the	8	1000	1000
difference between straight binary and	9	1001	1001
BCD. BCD represents each decimal	10	1010	00010000
digit with a 4-bit code. Notice that the	11	1011	00010001
codes 1010 through 1111 are not used in	12	1100	00010010
BCD.	13	1101	00010011
	14	1110	00010100
	15	1111	00010101

BCD

You can think of BCD in terms of column weights in groups of four bits. For an 8-bit BCD number, the column weights are: 80 40 20 10 8 4 2 1.

Question:

What are the column weights for the BCD number 1000 0011 0101 1001?

Answer

8000 4000 2000 1000 800 400 200 100 80 40 20 10 8 4 2 1

Note that you could add the column weights where there is a 1 to obtain the decimal number. For this case:

 $8000 + 200 + 100 + 40 + 10 + 8 + 1 = 8359_{10}$

Floyd, Digital Fundamentals, 10th ed

Selected Key Terms

Byte A group of eight bits

Floating-point A number representation based on scientific number notation in which the number consists of an

exponent and a mantissa.

Hexadecimal A number system with a base of 16.

Octal A number system with a base of 8.

BCD Binary coded decimal; a digital code in which each

of the decimal digits, 0 through 9, is represented by

a group of four bits.

Floyd, Digital Fundamentals, 10th ed

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Selected Key Terms

Alphanumeric Consisting of numerals, letters, and other

characters

ASCII American Standard Code for Information

Interchange; the most widely used alphanumeric

code.

Parity In relation to binary codes, the condition of

evenness or oddness in the number of 1s in a code

group.

Cyclic A type of error detection code.

redundancy check (CRC)

Floyd, Digital Fundamentals, 10th ed

- 1. For the binary number 1000, the weight of the column with the 1 is
 - a. 4
 - b. 6
 - (c.)8
 - d. 10

© 2008 Pearson Education

Quiz

- 2. The 2's complement of 1000 is
 - a. 0111
 - **(b.)** 1000
 - c. 1001
 - d. 1010

- 3. The fractional binary number 0.11 has a decimal value of
 - a. 1/4
 - b. ½
 - (c.)³/₄
 - d. none of the above

© 2008 Pearson Education

Quiz

- 4. The hexadecimal number 2C has a decimal equivalent value of
 - a. 14
 - (b.)44
 - c. 64
 - d. none of the above

- 5. Assume that a floating point number is represented in binary. If the sign bit is 1, the
 - (a.)number is negative
 - b. number is positive
 - c. exponent is negative
 - d. exponent is positive

© 2008 Pearson Education

Quiz

- 6. When two positive signed numbers are added, the result may be larger that the size of the original numbers, creating overflow. This condition is indicated by
 - (a.) a change in the sign bit
 - b. a carry out of the sign position
 - c. a zero result
 - d. smoke

- 7. The number 1010 in BCD is
 - a. equal to decimal eight
 - b. equal to decimal ten
 - c. equal to decimal twelve
 - d.invalid