INVESTOR'S OBJECTIVES EVALUATION: STOCHASTIC DOMINANCE Risk and Asset Allocation - Springer - symmys.com

Attilio Meucci

www.symmys.com

Formulas and figures in this presentation refer to the book Risk and Asset Allocation, Springer.

The notation, say, (5.24) refers to Formula 24 in Chapter 5 of the book

The notation, say, (T4.12) refers to Formula 12 in the Technical Appendices for Chapter 4, which can be downloaded from www.symmys.com

Risk and Asset Allocation - Springer - symmys.com

$$\Psi_{\alpha} = \alpha' \mathbf{M}_{(5.10)}$$

strong dom.: $\Psi_{\alpha} \geq \Psi_{\beta}$ in all scenarios. (5.31)

Fig. 5.1

INVESTOR'S OBJECTIVES EVALUATION: STOCHASTIC DOMINANCE Risk and Asset Allocation - Springer - symmys.com

 $\Psi_{\alpha} = \alpha' \mathbf{M}_{(5.10)}$

strong dom.: $\Psi_{\alpha} \geq \Psi_{\beta}$ in all scenarios. (5.31)

weak dom: $Q_{\Psi_{\alpha}}(p) \geq Q_{\Psi_{\beta}}(p)$ for all $p \in (0,1)$ (5.36)

Fig. 5.2. Weak dominance

INVESTOR'S OBJECTIVES EVALUATION: STOCHASTIC DOMINANCE Risk and Asset Allocation - Springer - symmys.com

$$\Psi_{\alpha} = \alpha' \mathbf{M}_{(5.10)}$$

strong dom.: $\Psi_{\alpha} \geq \Psi_{\beta}$ in all scenarios. (5.31)

weak dom: $Q_{\Psi_{\alpha}}\left(p\right) \geq Q_{\Psi_{\beta}}\left(p\right)$ for all $p \in (0,1)$ (5.36)

$$\mathrm{SSD}\colon \operatorname{E}\left\{-\left(\varPsi_{\alpha}-\psi\right)^{-}\right\} \geq \operatorname{E}\left\{-\left(\varPsi_{\beta}-\psi\right)^{-}\right\} \text{ for all } \psi \in (-\infty,+\infty) \quad \text{(5.43)}$$

Risk and Asset Allocation - Springer - symmys.com

$$\Psi_{\alpha} = \alpha' \mathbf{M}_{(5.10)}$$

strong dom.: $\Psi_{\alpha} \geq \Psi_{\beta}$ in all scenarios. (5.31)

weak dom: $Q_{\Psi_{\alpha}}(p) \geq Q_{\Psi_{\beta}}(p)$ for all $p \in (0,1)$ (5.36)

second-order stochastic dominance

$$\mathcal{I}^{2}[f_{\Psi_{\alpha}}](\psi) \leq \mathcal{I}^{2}[f_{\Psi_{\beta}}](\psi) \quad (5.44)$$

$$\mathcal{I}^{2}[f_{\Psi}](\psi) \stackrel{\checkmark}{=} \mathcal{I}[F_{\Psi}](\psi) \equiv \int_{-\infty}^{\psi} F_{\Psi}(s) ds \quad (5.45)$$
SSD: $\mathbb{E}\left\{-(\Psi_{\alpha} - \psi)^{-}\right\} \geq \mathbb{E}\left\{-(\Psi_{\beta} - \psi)^{-}\right\} \text{ for all } \psi \in (-\infty, +\infty) \quad (5.43)$

Risk and Asset Allocation - Springer - symmys.com

strong dom.: $\Psi_{\alpha} \geq \Psi_{\beta}$ in all scenarios. (5.31)

$$\Psi_{\alpha} = \alpha' \mathbf{M}_{(5.10)}$$

first-order dominance

$$F_{\Psi_{\alpha}}(\psi) \leq F_{\Psi_{\beta}}(\psi)$$
 for all $\psi \in (-\infty, +\infty)$ (5.36)

weak dom: $Q_{\Psi_{\alpha}}(p) \geq Q_{\Psi_{\beta}}(p)$ for all $p \in (0,1)$ (5.36)

second-order stochastic dominance

$$\mathcal{I}^{2}[f_{\Psi_{\alpha}}](\psi) \leq \mathcal{I}^{2}[f_{\Psi_{\beta}}](\psi)$$
 (5.44)

Risk and Asset Allocation - Springer - symmys.com

$$\Psi_{\alpha} = \alpha' \mathbf{M}_{(5.10)}$$

strong dom.: $\Psi_{\alpha} \geq \Psi_{\beta}$ in all scenarios. (5.31)

first-order dominance (weak)

$$F_{\Psi_{\alpha}}(\psi) \leq F_{\Psi_{\beta}}(\psi)$$
 for all $\psi \in (-\infty, +\infty)$ (5.36)

second-order stochastic dominance

$$\mathcal{I}^{2}\left[f_{\Psi_{\alpha}}\right]\left(\psi\right) \leq \mathcal{I}^{2}\left[f_{\Psi_{\beta}}\right]\left(\psi\right)$$
 (5.44)

order-q dominance.

$$q$$
-dom.: $\mathcal{I}^{q}\left[f_{\Psi_{\alpha}}\right](\psi) \leq \mathcal{I}^{q}\left[f_{\Psi_{\beta}}\right](\psi)$ (5.46)

Risk and Asset Allocation - Springer - symmys.com

 $\Psi_{\alpha} = \alpha' \mathbf{M}_{(5.10)}$

strong dom.: $\Psi_{\alpha} \geq \Psi_{\beta}$ in all scenarios. (5.31)

first-order dominance (weak)

$$F_{\varPsi_{\alpha}}\left(\psi\right) \leq F_{\varPsi_{\beta}}\left(\psi\right) \text{ for all } \psi \in \left(-\infty, +\infty\right)$$
 (5.36)

second-order stochastic dominance

$$\mathcal{I}^{2}\left[f_{\Psi_{\alpha}}\right]\left(\psi\right) \leq \mathcal{I}^{2}\left[f_{\Psi_{\beta}}\right]\left(\psi\right)$$
 (5.44)

order-q dominance

$$q$$
-dom.: $\mathcal{I}^q \left[f_{\Psi_{\alpha}} \right] (\psi) \leq \mathcal{I}^q \left[f_{\Psi_{\beta}} \right] (\psi)$ (5.46)

Risk and Asset Allocation - Springer - symmys.com

order zero dominance (strong)

 $\Psi_{\alpha} \geq \Psi_{\beta}$ in all scenarios. (5.31)

first-order dominance (weak)

$$F_{\Psi_{\alpha}}(\psi) \leq F_{\Psi_{\beta}}(\psi)$$
 for all $\psi \in (-\infty, +\infty)$ (5.36)

second-order stochastic dominance

$$\mathcal{I}^{2}\left[f_{\Psi_{\alpha}}\right](\psi) \leq \mathcal{I}^{2}\left[f_{\Psi_{\beta}}\right](\psi) \quad (5.44)$$

order-q dominance

$$q$$
-dom.: $\mathcal{I}^{q}\left[f_{\Psi_{\alpha}}\right](\psi) \leq \mathcal{I}^{q}\left[f_{\Psi_{\beta}}\right](\psi)$ (5.46)

$$\Psi_{\alpha} = \alpha' \mathbf{M}_{(5.10)}$$

$$0$$
-dom. $\Rightarrow 1$ -dom. $\Rightarrow \cdots \Rightarrow q$ -dom. (5.47)