

MA2301 Videregående diskret matematikk Onsdag 26. mai 2004 løsningsforslag

Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

- 1 a) Et regulært uttrykk for språket uten isolerte nuller er f.eks. (1∪000*)*.
 - **b)** Denne endelige automaten har samme språk som språket generert av det regulære uttrykket $(1 \cup 000^*)$.

Når vi så bruker Kleene stjerne får vi f.eks. denne automaten

c) Her er standardautomaten til språket L.

2 Partisjonen tilhørende \equiv er $\{\{q_0, q_1, q_2\}\{q_3, q_4, q_5, q_6, q_7\}\}$, og partisjonen tilhørende \equiv er $\{\{q_0, q_1\}\{q_2\}\{q_3, q_4\}\{q_5, q_6, q_7\}\}$. Videre er \equiv = \equiv , så her stopper prosessen. Standardautomaten har derfor 4 tilstander og er representert grafisk under.

Det tilhørende språket er alle strenger med minst en isolert 0. Et ekvivalent regulært uttrykk med stjernehøyde 1 er f.eks. $0 \cup 01(0 \cup 1)^* \cup (0 \cup 1)^*10 \cup (0 \cup 1)^*101(0 \cup 1)^*$. Et regulært uttrykk med stjernehøyde 1 for språket uten isolerte nuller er f.eks. $(1 \cup 00 \cup 000)^*$.

 $[4] \quad \text{i)} \quad C \in K \times \triangleright \Sigma^* \times (e \cup \Sigma^*(\Sigma - \{\triangleright, \sqcup\}))$

Det vil si at en M-konfigurasjon er et trippel av formen $C=(q,\triangleright x,y),$ der $q\in K$ er en M-tilstand, x og y er strenger over alfabetet $\Sigma-\{\triangleright\}$. Strengen y kan ikke slutte med symbolet \sqcup .

Konfigurasjonen $C = (q, \triangleright x, y)$ forteller at maskinen er i tilstand q og leser det siste symbolet i strengen $\triangleright x$, på båndet som er $\triangleright xy$ etterfulgt av bare blanke ruter.

ii) At M beregner f betyr at for enhver streng $x \in \Sigma_1^*$ har vi,

$$(s, \triangleright \sqcup, x) \vdash_M^* (h, \triangleright \sqcup, f(x))$$

.

- iii) Det finnes et polynom P slik at for enhver streng $x \in \Sigma^*$ og alle beregningskjeder $(s, \triangleright \sqcup, x) \vdash_M^n (q, \triangleright y, z)$ er $n \leq P(|x|)$.
- iv) Det finnes en polynom tid Turingmaskin som beregner en funksjon $f: \Sigma_1^* \to \Sigma_1^*$, med egenskapen at for enhver streng $x \in \Sigma_1^*$ så er $x \in L$ hvis og bare hvis $f(x) \in M$.
- 5 Maskinen på figuren under beregner funksjonen $w \mapsto w \sqcup w^R$.

 $\boxed{5}$ Vi nummererer klausulene i rekkefølge c_1,\ldots,c_9 og setter $v(x_1)=0.$

Fra $v(c_1) = 1$ følger at $v(x_6) = 1$. Fra $v(c_3) = 1$ følger at $v(x_3) = 1$. Fra $v(c_8) = 1$ følger at $v(x_7) = 0$. Fra $v(c_2) = 1$ følger at $v(x_2) = 1$. Fra $v(c_4) = 1$ følger at $v(x_6) = 0$.

Siden vi ikke kan ha både $v(c_6) = 1$ og $v(c_6) = 0$, kan vi umulig ha $v(x_1) = 0$, så vi prøver med $v(x_1) = 1$.

Fra $v(c_6) = 1$ følger at $v(x_4) = 0$. Fra $v(c_9) = 1$ følger at $v(x_8) = 1$. Fra $v(c_5) = 1$ følger at $v(x_5) = 0$. Fra $v(c_7) = 1$ følger at $v(x_6) = 1$. Fra $v(c_3) = 1$ følger at $v(x_3) = 1$. Fra $v(c_8) = 1$ følger at $v(x_7) = 0$. Fra $v(c_2) = 1$ følger at $v(x_2) = 1$. Fra $v(c_4) = 1$ følger at $v(x_6) = 0$.

Dette er en selvmotsigelse, så vi kan ikke ha $v(x_1) = 1$ heller, så formelen er ikke tilfredsstillbar.