

数据库系统概论

第二章 关系数据库

第2章 关系数据库

- ◆ 第一节 关系数据结构及形式化定义
- ❖ 第二节 关系操作
- ❖ 第三节 关系的完整性
- * 第四节 关系代数

本讲教学目标

❖ 掌握

- 关系的定义、特点;
- 关系的三类完整性约束;
- 传统集合运算和专门的关系运算

❖ 了解

- 关系的操作及其分类、关系演算
- ❖ 重点
 - 关系数据结构、关系的三类完整性约束、关系代数
- ❖ 难点
 - 专门的关系运算

第2章 关系数据库

- 第一节 关系数据结构及形式化定义
- ❖ 第二节 关系操作
- ❖ 第三节 关系的完整性
- * 第四节 关系代数

关系数据结构及形式化定义

- ❖ 关系
 - 域
 - 笛卡尔积
 - 关系
- * 关系模式
- * 关系数据库

- ❖ 域是一组具有相同数据类型的值的集合
- ❖ 例:
 - 整数
 - 实数
 - 介于某个取值范围的整数
 - 指定长度的字符串集合
 - ◆ {'男', '女'}
 - 介于某个取值范围的日期

❖ 笛卡尔积—域上的一种集合运算

给定一组域 D_1 , D_2 , ..., D_n , 允许其中某些域是相同的。 $D_1, D_2, ..., D_n$ 的笛卡尔积为: $D_1 \times D_2 \times ... \times D_n = \{ (d_1, d_2, ..., d_n) \mid d_i \in D_i, i = 1, 2, ..., n \}$

- 所有域的所有取值的一个组合
- 其中每一个元素(d₁, d₂, ..., dn)叫作一个n元组(n-tuple)或简称元组(Tuple)
- · 元素中的每一个值di叫做一个分量
- 一个域允许的不同取值个数称为这个域的基数

例:给出三个域:

 $D_1 = \{ 张清玫, 刘逸 \}$ 导师集合

 $D_2 = \{$ 计算机专业,信息专业 $\}$ 专业集合

 D_3 ={李勇, 刘晨, 王敏} 研究生集合

则D1, D2, D3的笛卡尔积为:

 $D1 \times D2 \times D3 =$

(张清玫, 计算机专业, 李勇), (张清玫, 计算机专业, 刘晨),

(张清玫, 计算机专业, 王敏), (张清玫, 信息专业, 李勇),

(张清玫, 信息专业, 刘晨), (张清玫, 信息专业, 王敏),

(刘逸, 计算机专业, 李勇), (刘逸, 计算机专业, 刘晨),

(刘逸, 计算机专业, 王敏), (刘逸, 信息专业, 李勇),

(刘逸, 信息专业, 刘晨), (刘逸, 信息专业, 王敏)

笛卡尔积

- 基数 (Cardinal number)
 - ightharpoonup 若 D_i (i=1, 2, ..., n) 为有限集,其基数为 m_i (i=1, 2, ..., n) ,则 $D_1 \times D_2 \times ... \times D_n$ 的基数M为:

$$M = \prod_{i=1}^n m_i$$

- 笛卡尔积的表示方法
 - ▶笛卡尔积可表示为一个二维表
 - > 表中的每行对应一个元组,表中的每列对应一个域

表 2.1 D_1 , D_2 , D_3 的笛卡尔积

信息专业

王敏

	SUPERVISOR	SPECIALITY	POSTGRADUATE
	张清玫	计算机专业	李勇有
D1 = {张清玫、刘逸}	张清玫	计算机专业	刘晨实
	张清玫	计算机专业	王敏
D2 = {计算机专业、信息专业}	张清玫	信息专业	李勇 意
D2 (木子 - 沙月 - 丁島)	张清玫	信息专业	刘晨 义
D3 = {李勇、刘晨、王敏}	张清玫	信息专业	王敏 吗
	刘逸	计算机专业	李勇 ?
	刘逸	计算机专业	刘晨
	刘逸	计算机专业	王敏
	刘逸	信息专业	李勇
	刘逸	信息专业	刘晨

刘逸

* 关系

 $D_1 \times D_2 \times ... \times D_n$ 的子集叫作在域 D_1 , D_2 , ..., D_n 上的关系,表示为

- R: 关系名
- n: 关系的目或度 (Degree)

$$R$$
 (D_1 , D_2 , ..., D_n)

例:在表2.1的笛卡尔积中取出有实际意义的元组来构造关系

关系: SAP(SUPERVISOR, SPECIALITY, POSTGRADUATE)

假设:专业与导师: 1:n,导师与研究生: 1:n

于是: SAP关系可以包含三个元组

表 2.2 SAP 关系

SUPERVISOR	SPECIALITY	POSTGRADUATE
张清玫	信息专业	李勇
张清玫	信息专业	刘晨
刘逸	计算机专业	王敏

❖ 关系的术语

- ◆ 表(table)、列(column)、行(row)
- 关系(relation)、元组(tuple)、属性(attribute)

关系或表

属性或列

元组或行

学号	姓名	性别	年 龄	所在系
Sno	Sname	Ssex	Sage	Sdept
201215121	李勇	男	20	CS
201215122	刘晨	女	19	CS
201215123	王敏	女	18	MA
201215125	张立	男	19	IS

* 关系术语

• 候选码 (Candidate key) 全码 (All-key)

主属性

主属性

非主属性

• 主码 主属性 非主属性

主码

学 号 Sno	课程号 Cno	成绩 Grade
201215121	1	92
201215121	2	85
201215121	3	88
201215122	2	90
201215122	3	80

SC (Sno, Cno, Grade)

❖ 三类关系

· 基本关系 (基本表或基表)

实际存在的表,是实际存储数据的逻辑表示

• 查询表

查询结果对应的表

视图表

由基本表或其他视图表导出的表,是虚表,不对应实际存储的数据

❖ 基本关系的性质

- ① 列是同质的 (Homogeneous)
- ② 不同的列可出自同一个域
 - > 其中的每一列称为一个属性
 - > 不同的属性要给予不同的属性名
- ③ 列的顺序无所谓, 列的次序可以任意交换
- ④ 任意两个元组的候选码不能相同
- ⑤ 行的顺序无所谓,行的次序可以任意交换
- ⑥ 分量必须取原子值

关系数据结构及形式化定义

- ※ 关系
- ❖ 关系模式
 - 什么是关系模式
 - 定义关系模式
 - 关系模式与关系
- * 关系数据库

关系模式

- ❖ 关系模式是对关系的描述,是静态的、稳定的
- ❖ 关系是关系模式在某一时刻的状态或内容,是动态的、随时间不断变化的
- ❖ 关系模式和关系往往统称为关系,通过上下文加以区别

关系

学号	姓名	性别	年 龄	所在系
Sno	Sname	Ssex	Sage	Sdept
201215121	李勇	男	20	cs
201215122	刘晨	女	19	CS
201215123	王敏	女	18	MA
201215125	张立	男	19	IS

关系 模式

关系模式可以形式化地表示为:

R (U, D, DOM, F)

R 关系名

U 组成该关系的属性名集合

D 属性组U中属性所来自的域

DOM 属性向域的映象集合

F 属性间的数据依赖关系集合

定义关系模式

❖ 关系模式通常可以简记为

R (U) 或 R (A1, A2, ..., An)

- R: 关系名
- A1, A2, ..., An:属性名
- 注:域名及属性向域的映象常常直接说明为属性的类型、长度

关系数据结构及形式化定义

- ※ 关系
- * 关系模式
- * 关系数据库

❖ 关系数据库

• 在一个给定的应用领域中,所有关系的集合构成一个关系数据库

❖ 关系数据库的型与值

- 关系数据库的型也称关系数据库模式,是对关系数据库的描述
- 关系数据库的值是关系模式在某一时刻对应的关系的集合,简称为关系数据库据库

第2章 关系数据库

- ◆ 第一节 关系数据结构及形式化定义
- 第二节 关系操作
- ❖ 第三节 关系的完整性
- ❖ 第四节 关系代数

关系操作

- ❖ 基本关系操作
- ❖ 关系数据库语言的分类

基本关系操作

- ❖ 常用的关系操作
 - 查询:选择、投影、连接、除、并、交、差
 - 数据更新:插入、删除、修改
 - 查询的表达能力是其中最主要的部分
 - · 选择、投影、并、差、笛卡尔积是5种基本操作
- ❖ 关系操作的特点
 - 集合操作方式:操作的对象和结果都是集合,一次一集合的方式

关系数据库语言的分类

关系数据语言的分类

第2章 关系数据库

- ◆ 第一节 关系数据结构及形式化定义
- ❖ 第二节 关系操作
- 第三节 关系的完整性
- ❖ 第四节 关系代数

第三节 关系的完整性

❖ 关系的三类完整性约束

关系的三类完整性约束

❖ 实体完整性和参照完整性:

关系模型必须满足的完整性约束条件

称为关系的两个不变性,应该由关系系统自动支持

- ❖ 用户定义的完整性:
 - 应用领域需要遵循的约束条件,体现了具体领域中的语义约束

规则2.1 实体完整性规则(Entity Integrity)

若属性A是基本关系R的主属性,则属性A不能取空值

例: 学生的选修(<u>学号、课程号</u>、成绩)中学号和课程号为主码,则学号、

课程号都是主属性,都不能取空值

SC (Sno, Cno, Grade)

(201215121, 1, 92)

(201215121, null, 92)

关系的完整性

关系的三类完整性约束

- ❖ 实体完整性
- ❖ 参照完整性
 - 关系间的引用
 - 外码
 - 参照完整性规则
- ❖ 用户定义的完整性

关系间的引用

❖ 模型中实体及实体间的联系都是用关系来描述的,因此可能存在着 关系与关系间的引用

学号	姓名	性别	专业号	年龄
801	张三	女	01	19
802	李四	男	01	20
803	王五	男	01	20
804	赵六	女	02	20
805	钱七	男	02	19

专业号	专业名
01	信息
02	数学
03	计算机

学生

学号	姓名	性别	专业号	年龄
801	张三	女	01	19
802	李四	男	01	20
803	王五	男	01	20
804	赵六	女	02	20
805	钱七	男	02	19

课程

课程号	课程名	学分	
01	数据库	4	
02	数据结构	4	
03	编译	4	
04	PASCAL	2	

学生选课

学号	课程号	成绩
801	04	92
801	03	78
801	02	85
802	03	82
802	04	90
803	04	88

学生实体及其内部的一对多联系

[例1] 学生(学号,姓名,性别,专业号,年龄,班长)

学号	姓名	性别	专业号	年龄	班长
801	张三	女	01	19	802
802	李四	男	01	20	
803	王五	男	01	20	802
804	赵六	女	02	20	805
805	钱七	男	02	19	

■ "**学号**"是主码, "班长"引用了本关 系的"学号"

■ "班长" 必须是确实存在的学生的学号

外码 (Foreign Key)

- \star 设F是基本关系R的一个或一组属性,但不是关系R的码, K_s 是基本关系S的主码。如果F与 K_s 相对应,则称F是基本关系R的**外码**
 - 关系R和S不一定是不同的关系
 - ◆ 目标关系S的主码Ks 和参照关系的外码F必须定义在同一个(或一组)域上
 - 外码并不一定要与相应的主码同名,当外码与相应的主码属于不同关系时,往往取相同的名字,以便于识别

[例2]

学生(学号、姓名、性别、专业号、年龄) 课程(课程号、课程名、学分) 选修关系(学号、课程号、成绩)

- · "学号"和"课程号"是选修关系的外码
- 学生关系和课程关系均为被参照关系

[例3] "班长"与本身的主码"学号"相对应

- "班长"是外码
- 学生关系既是参照关系也是被参照关系

规则2.2 参照完整性规则

若属性(或属性组) F是基本关系R的外码,它与基本关系S的主码K_s相对应(基本关系R和S不一定是不同的关系),则对于R中每个元组在F上的值必须为:

- · 或者取空值 (A的每个属性值均为空值)
- 或者等于5中某个元组的主码值

[例4] 学生关系中每个元组的"专业号"属性只取两类值:

- (1) 空值,表示尚未给该学生分配专业
- (2) 非空值,这时该值必须**是专业关系中某个元组的"专业号"值**,表示该学生不可能分配一个不存在的专业

[例5] 选修 (学号, 课程号, 成绩)

"学号"和"课程号"可能的取值:

- (1) 选修关系中的主属性,不能取空值
- (2) 只能取相应被参照关系中已经存在的主码值

关系的完整性

- ❖ 关系的三类完整性约束
 - 实体完整性
 - 参照完整性
 - 用户定义的完整性

用户定义的完整性

- ❖ 针对某一具体关系数据库的约束条件,反映某一具体应用所涉及的数据 必须满足的语义要求
- ❖ 关系模型应提供定义和检验这类完整性的机制,以便用统一的系统的方法处理它们,而不要由应用程序承担这一功能
- ❖ 例:课程(课程号,课程名,学分)
 - "课程号"属性必须取唯一值
 - 非主属性"课程名"也不能取空值
 - "学分"属性只能取值{1, 2, 3, 4}

第2章 关系数据库

- ◆ 第一节 关系数据结构及形式化定义
- ❖ 第二节 关系操作
- ❖ 第三节 关系的完整性
- 第四节 关系代数

- ❖ 传统集合运算
 - 并(Union)
 - ◆ 差(Except)
 - ◆ 交(Intersection)
 - ◆ 笛卡尔积(Cartesian Product)
- ❖ 专门的集合运算

表2.4 关系代数运算符

运第	符	含义	运第	育	含义
集合 运算 符	∪ - ∩ ×	并差交 笛积	比较运算符	> <u>></u> < <u><</u> = <>	大于等于 大于等于 小于等于 小于等于 不等于

表2.4 关系代数运算符(续)

运算符	含义	运算符	含义	
专门的 关系运 算符	σ π ×	逻辑运算符	¬	非与或

传统的集合运算

- ❖ 并 (Union)
 - R和S
 - ▶具有相同的目n (即两个关系都有n个属性)
 - > 相应的属性取自同一个域
 - *R* ∪ *S*
 - ightharpoonup 仍为n目关系,由属于R或属于S的元组组成 $R \cup S = \{ t | t \in R \lor t \in S \}$

R		
A	В	C
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1

S		
A	В	C
a_1	b_2	c_2
a_1	b_3	c_2
a_2	b_2	c_1

$R \cup S$				
A	В	C		
a_1	b_1	c_1		
a_1	b_2	c_2		
a_2	b_2	c_1		
a_1	b_3	c_2		

- ❖ 差 (Difference)
 - *R*和*S*
 - ▶ 具有相同的目n
 - > 相应的属性取自同一个域
 - R S
 - \triangleright 仍为n目关系,由属于R 而不属于S 的所有元组组成

$$R - S = \{ t \mid t \in R \land t \notin S \}$$

R		
A	В	С
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1

S		
A	В	С
a_1	b_2	c_2
a_1	b_3	c_2
a_2	b_2	c_1

R– S			
A	В	C	
a_1	b_1	c_1	

❖ 交 (Intersection)

- *R*和S
 - ▶ 具有相同的目n
 - ▶ 相应的属性取自同一个域
- R∩S
 - ▶ 仍为n目关系,由既属于R又属于S的元组组成

$$R \cap S = \{ t | t \in R \land t \in S \}$$
$$R \cap S = R - (R - S)$$

R		
A	В	C
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1

S		
A	В	С
a_1	b_2	c_2
a_1	b_3	c_2
a_2	b_2	c_1

$R \cap S$		
A	В	C
a_1	b_2	c_2
a_2	b_2	c_1

❖ 笛卡尔积 (Cartesian Product)

- 严格地讲应该是广义的笛卡尔积 (Extended Cartesian Product)
- R: n目关系, k₁个元组
- S: m目关系, k₂个元组
- *R*×*S*
 - ▶ 列: (n+m) 列元组的集合
 - ✓ 元组的前*n*列是关系*R*的一个元组
 - ✓ 后*m*列是关系S的一个元组
 - → 行: k₁×k₂个元组
 - $\checkmark R \times S = \{\widehat{t_r t_s} | t_r \in R \land t_s \in S \}$

R		
A	В	C
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1

S		
A	В	C
a_1	b_2	c_2
a_1	b_3	c_2
a_2	b_2	c_1

$R \times S$

	R.A	R.B	R.C	S.A	S.B	S.C
	a_1	b_1	c_1	a_1	b_2	c_2
	a_1	b_1	c_1	a_1	b_3	c_2
	a_1	b_1	c_1	a_2	b_2	c_1
	a_1	b_2	c_2	a_1	b_2	c_2
	a_1	b_2	c_2	a_1	b_3	c_2
	a_1	b_2	c_2	a_2	b_2	c_1
	a_2	b_2	c_1	a_1	b_2	c_2
	a_2	b_2	c_1	a_1	b_3	c_2
_	a_2	b_2	c_1	a_2	b_2	c_1

关系代数

- * 传统集合运算
- ❖ 专门的集合运算
 - 选择
 - 投影
 - 连接
 - 除

专门的关系运算

先引入几个记号

(1) R, $t \in R$, $t[A_i]$

设关系模式为 $R(A_1, A_2, ..., A_n)$

它的一个关系设为R

t∈R表示t是R的一个元组

 $t[A_i]$ 则表示元组t中相应于属性 A_i 的一个分量

(2) A, t[A], A ____

若 $A=\{A_{i1}, A_{i2}, ..., A_{ik}\}$,其中 $A_{i1}, A_{i2}, ..., A_{ik}$ 是 $A_1, A_2, ..., A_n$ 中的一部分,则A称为属性列或属性组。

 $t[A]=(t[A_{i1}], t[A_{i2}], ..., t[A_{ik}])表示元组t在属性列A上诸分量的集合。$

A则表示 $\{A_1, A_2, ..., A_n\}$ 中去掉 $\{A_{i1}, A_{i2}, ..., A_{ik}\}$ 后剩余的属性组。

 $(3) \quad t_{\rm r} t_{\rm s}$

R为n目关系,S为m目关系。

 $t_r \in R$, $t_s \in S$, $t_r t_s$ 称为元组的连接。

 $t_r t_s$ 是一个n + m列的元组,前n个分量为R中的一个n元组,后m个分量为S中的一个m元组。

(4) 给定一个关系R (X, Z) X和Z为属性组。当t[X]=x时, x在R 中的**象集**定义为

$$Z_X = \{t[Z] | t \in \mathbb{R}, \ t[X] = x\}$$

它表示R中属性组X上值为x的诸元组在Z上分量的集合。

学生-课程数据库

❖ 学生关系Student、课程关系Course和选修关系SC

学号 Sno	姓名 Sname	性别 Ssex	年龄 Sage	所在系 Sdept
201215121	李勇	男	20	CS
201215122	刘晨	女	19	IS
201215123	王敏	女	18	MA
201215125	张立	男	19	IS

课程号	课程名	先行课	学分
Cno	Cname	Cpno	Ccredi
			t
1	数据库	5	4
2	数学		2
3	信息系统	1	4
4	操作系统	6	3
5	数据结构	7	4
6	数据处理		2

Student

Course

SC

 学号	课程号	成绩
Sno	Cno	Grade
201215121	1	92
201215121	2	85
201215121	3	88
201215122	2	90
201215122	3	80

选择 (Selection)

- ❖ 选择又称为限制 (Restriction)
- * 选择运算符的含义
 - 在关系R中选择满足给定条件的诸元组 $\sigma_F(R) = \{t | t \in R \land F(t) = '真'\}$
 - F: 选择条件,是一个逻辑表达式,基本形式为: $X_1 \Theta Y_1$
- ❖ 选择运算是从关系*R*中选取使逻辑表达式*F*为真的元组,是从行的 角度进行的运算

[例1] 查询信息系 (IS系) 全体学生 $\sigma_{Sdept = 'IS'}$ (Student)

Sno	Sname	Ssex	Sage	Sdept
201215122	刘晨	女	19	IS
201215125	张立	男	19	IS

思考: 查询年龄小于20岁且性别为男的学生

投影 (Projection)

- ❖ 1) 投影运算符的含义
 - ◆ 从R中选择出若干属性列组成新的关系

$$\pi_A(R) = \{ t[A] \mid t \in R \}$$

A:R中的属性列

❖ 2) 投影操作主要是从列的角度进行运算

但投影之后不仅取消了原关系中的某些列,而且还可能取消某些元组(避免重复行)

[例2] 查询学生的姓名和所在系

即求Student关系上学生姓名和所在系两个属性上的投影

 $\pi_{\text{Sname, Sdept}}(Student)$

Sname	Sdept
李勇	CS
刘晨	IS
王敏	MA
张立	IS

连接 (Join)

- ❖ 连接也称为θ连接
- * 连接运算的含义

从两个关系的笛卡尔积中选取属性间满足一定条件的元组

$$R \bowtie_{A \theta B} S = \{ \widehat{t_{\mathbf{r}} t_{\mathbf{s}}} \mid t_{\mathbf{r}} \in R \land t_{\mathbf{s}} \in S \land t_{\mathbf{r}}[A] \theta t_{\mathbf{s}}[B] \}$$

- ➤ A和B: 分别为R和S上度数相等且可比的属性组
- > θ: 比较运算符
- 连接运算从*R*和*S*的广义笛卡尔积*R*×*S*中选取(*R*关系)在*A*属性组上的值与(*S*关系)在*B*属性组上值满足比较关系θ的元组

❖ 两类常用连接运算

- ◆ 等值连接 (equijoin)
 - 什么是等值连接θ为 "=" 的连接运算称为等值连接
 - > 等值连接的含义

从关系R与S的广义笛卡尔积中选取A、B属性值相等的那些元组,即等值连接为:

$$R \bowtie_{A=B} S = \{ \widehat{t_{\mathbf{r}} t_{\mathbf{s}}} \mid t_{\mathbf{r}} \in R \land t_{\mathbf{s}} \in S \land t_{\mathbf{r}}[A] = t_{\mathbf{s}}[B] \}$$

- 自然连接 (Natural join)
 - ▶自然连接是一种特殊的等值连接
 - ✓ 两个关系中进行比较的分量必须是相同的属性组
 - ✓ 在结果中把重复的属性列去掉
 - ▶自然连接的含义

R和S具有相同的属性组B

$$R \bowtie S = \{ \widehat{t_{\mathbf{r}} t_{\mathbf{s}}} \mid t_{\mathbf{r}} \in R \land t_{\mathbf{s}} \in S \land t_{\mathbf{r}}[B] = t_{\mathbf{s}}[B] \}$$

→ 一般的连接操作是从行的角度进行运算

自然连接还需要取消重复列,所以是同时从行和列的角度进行运算。

[例3] 关系R和关系S如下所示:

R		
A	В	С
a_1	b_1	5
a_1	b_2	6
a_2	b_3	8
a_2	b_4	12

<i>S</i>	
В	E
b_1	3
b_2	7
b_3	10
b_3	2
b_5	2

ightharpoonup 一般连接 $R_{C < E}$ S的结果如下

R	\bowtie	S
ϵ	$\leq E$	7

A	R.B	С	S.B	E	
a_1	b_1	5	b_2	7	
a_1	b_1	5	b_3	10	
a_1	b_2	6	b_2	7	
a_1	b_2	6	b_3	10	
a_2	b_3	8	b_3	10	

* 等值连接 $R \bowtie S$ 的结果

A	R.B	С	S.B	E
a_1	b_1	5	b_1	3
a_1	b_2	6	b_2	7
a_2	b_3	8	b_3	10
a_2	b_3	8	b_3	2

\Rightarrow 自然连接 $R \bowtie S$ 的结果

A	В	C	E
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2

❖ 外连接

 如果把舍弃的元组也保存在结果关系中,而在其他属性上填空值(Null),这种连接就叫做 外连接(OUTER JOIN)

❖ 左外连接

如果只把左边关系R中要舍弃的元组保留就叫做左外连接(LEFT OUTER JOIN或LEFT JOIN)

❖ 右外连接

 如果只把右边关系S中要舍弃的元组保留就叫做右外连接(RIGHT OUTER JOIN或RIGHT JOIN) R

A	В	С
a_1	b_1	5
a_1	b_2	6
a_2	b_3	8
a_2	b_4	12

 \mathcal{S}

В	E
b_1	3
b_2	7
b_3	10
b_3	2
<i>b</i> ₅	2

❖ 下图是例5中关系₹ 和S 的外连接 、左连接、右连接

A	В	C	E
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2
a_2	b_4	12	NULL
NULL	b_5	NULL	2

A	В	С	Ε
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2
a_2	b_4	12	NULL

A	В	C	E
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2
NULL	b_5	NULL	2

(a) 外连接

(b) 左外连接

(c) 右外连接

除 (Division)

给定关系R(X, Y)和S(Y, Z),其中X, Y,Z为属性组R中的Y与 S中的Y可以有不同的属性名,但必须出自相同的域集。R与S的除运算得到一个新的关系P(X),P是R中满足下列条件的元组在X属性列上的投影:元组在X上分量值X的象集 Y_X 包含S在Y上投影的集合。

$$R \div S = \{t_r[X] \mid t_r \in R \land \pi_Y(S) \subseteq Y_X\}$$

 Y_{x} : x在R中的象集, $x = t_{r}[X]$

除(续)

R

$oldsymbol{A}$	В	\boldsymbol{C}
a_1	b_1	c_2
a_2	b_3	c_7
a_3	b_4	c_6
a_1	b_2	c_3
a_4	b_6	c_6
a_2	b_2	c_3
a_1	b_2	c_1

S

В	<i>C</i>	D
b_1	c_2	d_1
b_2	c_1	d_1
b_2	c_3	d_2

$R \div S$
\boldsymbol{A}
a_1

```
在关系R中, A可以取四个值{a1, a2, a3, a4}
```

 a_1 的象集为 { $(b_1, c_2), (b_2, c_3), (b_2, c_1)$ }

 a_2 的象集为 $\{(b_3, c_7), (b_2, c_3)\}$

 a_3 的象集为 $\{(b_4, c_6)\}$

 a_4 的象集为 $\{(b_6, c_6)\}$

S在(B, C)上的投影为

$$\{(b1, c2), (b2, c1), (b2, c3)\}$$

只有 a_1 的象集包含了S在(B, C)属性组上的投影,所以 $R \div S = \{a_1\}$

综合举例

以学生-课程数据库为例 (P.60)

[例4] 查询至少选修1号课程和3号课程的学生号码

首先建立一个临时关系*K*:

Cno	
1	
3	

然后求: $\pi_{Sno.Cno}(SC) \div K$

综合举例(续)

[例 4]续 $\mathbf{T}_{\mathsf{Sno},\mathsf{Cno}}(\mathsf{SC})$

201215121象集{1, 2, 3}

201215122象集{2, 3}

$$\pi_{Cno}(K) = \{1, 3\}$$

于是: π_{Sno.Cno}(SC)÷*K=*{201215121}

Sno	Cno
201215121	1
201215121	2
201215121	3
201215122	2
201215122	3

- ❖ 关系结构
- ❖ 关系操作
- ❖ 关系的完整性
- 关系代数运算
 - 关系代数运算

并、差、交、笛卡尔积、投影、选择、连接、除

- 基本运算
 - 并、差、笛卡尔积、投影、选择
- 交、连接、除

子曰:"君子不器。"

