Структурная и функциональная организация ЭВМ (Computer Organization and Design)

БГУИР кафедра ЭВМ

Лекции 15 «Организация шин»

План лекции

- 1. Типы шин
- 2. Иерархия шин
- 3. Физическая реализация шин
- 4. Арбитраж шин

Организация шин

Совокупность трактов, объединяющих между собой основные устройства ВМ должна обеспечивать обмен информацией между: Операция •ЦП и памятью Память Данные Адрес •ЦП и модулями в/в Данные •памятью и модулями в/в N ячеек Внутр. Операция данные Сигналы Команды Модуль управ-я Адрес ввода/ Внеш. Данные данные вывода Центральный Внутр. данные процессор Сигналы Сигналы Данные прерывания прерывания Внешн. данные М портов Слайд З

Эволюция структур взаимосвязей

Организация шин

Шина характеризуется:

- совокупностью сигнальных линий,
- физическими, механическими и электрическими характеристиками шины,
- сигналами арбитража, состояния, управления и синхронизации, правилами взаимодействия подключённых к шине устройств.

Протокол

Сигналы и синхронизация

Bus master

Bus slave

Множество проводов

Электрические характеристики

Omnibus – «для всего»

Физические и механические характеристики

Типы шин

Транзакция— чтения и записи (ввода и вывода). Две части— посылка адреса и посылка (приём) данных.

Целевое назначение шин:

- Шины «процессор-память»
- Шины ввода/вывода
- Системные шины

<u>Шина «процессор-память»</u> - связь между ЦП и ОП (основной памятью)- Front-Side Bus (FSB).

Шина для связи процессора с кэш-памятью второго уровня – Back Side Bus (BSB).

Максимизация пропускной способности и минимизация длины шины.

Типы шин

Шины ввода/вывода -

соединение между ЦП и устройствами В/В-да. Многообразие устройств -> стандартизация и унификация шин.

За исключением видеосистем — шины в/в не особо быстры.

Минимизация конструктива шины (разъёмов и т.п.). Меньше линий, но больше длина (SCSI).

Типы шин

Системная шина — физ. и лог. объединение всех устр-в BM (backplane bus). Обычно несколько сот линий. (Unibus, FastBus, VME, ISA, ESA, MCA)

Иерархия шин

ВМ с одной шиной:

Плюсы: простота, низкая стоимость Минусы: скорость транзакций

Иерархия шин

ВМ с двумя видами шин:

Адаптеры – буферизация данных.

Плюсы: снижает нагрузку на шину «ЦП-ПАМ» Минусы: относительная стоимость

Иерархия шин

ВМ с тремя видами шин:

Плюсы: снижение нагрузки на «ЦП-память» улучшение характеристик шины «ЦП-память» Минусы: стоимость

Computer Buses (1)

A computer system with multiple buses.

Computer Buses (2)

l		
Master	Slave	Example
CPU	Memory	Fetching instructions and data
CPU	I/O device	Initiating data transfer
CPU	Coprocessor	CPU handing instruction off to coprocessor
I/O	Memory	DMA (Direct Memory Access)
Coprocessor	CPU	Coprocessor fetching operands from CPU

Examples of bus masters and slaves.

Физическая реализация шин

Механические аспекты: - медные полоски на плате, тонкие — сигнальные, широкие — проводящие напряжение.

Разъёмы – проблема надёжного контакта.

Механические спецификации — размеры плат, размеры и размещение направляющих, максимальная высота элементов на плате и т.п.

Электрические аспекты: Схема меняющая напряжение на плате — драйвер или «возбудитель» шины. Необходимо уметь отключать драйвер от сигнальной линии, когда он не использует плату -> цифр. схемы с тремя уровнями — high, low, off. Отключение драйвера — через спец. вход драйвера.

Физическая реализация шин

Электрические аспекты:

Линия шины -> к выходу драйвера через резистор от источника питания. Схемы с открытым коллектором (ТТЛ), стоком (МОП) или эмиттером (ЭСЛ). Способ позволяет реализовывать — «монтажное ИЛИ» (или «монтажное И») - сигнал на линии — результат сложения (ИЛИ) всех поступивших на линию сигналов.

Распространение сигнала:

- •Скорость распространения
- •Отражение
- •Перекос
- •Эффекты перекрестного влияния.

Физическая реализация шин

•Скорость распространения — теоретически 300м/с, в реале — не более 70% от указанной.

Отражение – эффекты возникающие при перемене сигнала в линии.

Перекос сигнала — при параллельной передаче данные поступают не одновременно ко всем соотв. приёмникам. Наводки электростатического и магнитного полей на соседние линии — перекрёстная или переходная помеха.

Все вышеперечисленное приводит к изменению фронтов сигналов -> минимальное значение ширины импульса, при котором его ещё можно распознать -> ограничения на число импульсов в ед. времени.

Любая транзакция начинается с выставления ведущим устройством адресной информации -> часть сигнальных линий — Шина Адреса (ША).

ША может передавать — адреса яч. памяти, номера портов ЦП, адреса портов в/в... -> доп. информация, определяющая вид транзакции (обычно с помощью спец. управляющих линий шины).

Число линий ША — максимально возможный размер адресного пространства.

Шина данных, характеризуется шириной и пропускной способностью. Ширина -> количество бит информации, передаваемой за один цикл шины. Цикл может занимать несколько тактовых периодов. Обычно элемент данных задействующий всю шину — «слово». Слайо 17

Пропускная способность шины — количество единиц информации, передаваемых за единицу времени (определяется физическим построением шины и конструктивом подключаемых устройств).

t_{зд} – задержка между выставлением данных A и их появлением на шине (1-4 нс).

t_{pc} — задержка распространения (для min — уменьшать длину шины).

t_{ст} – время стабилизации.

t_{уд} — время удержания — данные должны быть на шине, после фиксации их устройством В.

Общее время передачи $t_n = t_{3d} + t_{pc} + t_{cr} + t_{yd}$. Типовые значения параметров — 4 +1,5 + 2 +0 = 7,5 нс — частота шины 100/7,5 = 133,3 Мгц.

Если адрес и данные — по независимым сигнальным линиям, то ширина ША и ШД — независимы. 16-8, 16-16, 20-8, 20-16, 24-32, 32-32.

Если передача — по одним линиям — временное мультиплексирование. Ширина ША и ШД — взаимосвязана.

Совокупность линий для передачи управляющих сигналов и инф. о состоянии — шина управления (ШУ).

Bus Width

Growth of an Address bus over time.

Шина управления (ШУ):

Линии сигналов управления транзакциями-

- •тип выполняемой транзакции (чт. или запись),
- •количество байтов, передаваемых по ШД, если часть слова то какие байты.
- •какой тип адреса на ША
- какой протокол передачи должен использоваться
 Всего на данную группу от 2 до 8 линий.

Линии информации состояния (статуса) –

от одной до четырёх линий для передачи ведомым информации ведущему.

Линии арбитража – от 3-х до 11 линий.

Шина управления (ШУ):

Пинии прерывания — запросы от ведомых к ведущему на обслуживание (обычно одна две-линии) + доп. Арбитраж (если не используются линии пред. группы).

Линии для организации последовательных локальных сетей — обычно от 1 до 4 линий (последовательная передача значительно медленнее параллельной — выгоднее добавить пару линий чем загружать основные), иногда могут заменить ША и ШД, служить для реализации спец. функций — обработка прерываний или сортировка приоритетов задач.

Пинии позиционного кода — (от 4 до 5 линий) — для передачи уникального позиционного кода дочерних плат.

Слайд 24

Шина управления (ШУ):

Линии тактирования и синхронизации — от 2 до 6 линий — в зависимости от протокола (асинхронный, синхронный).

Линии питания и заземления – от 2 до 20.

Выделенные и мультиплексируемые линии

Арбитраж шин

Несколько ведущих на одной шине —> конфликт интересов -> присвоение приоритетов.

Статический приоритет — устройства с выс. приоритетом могут полностью блокировать шину. Динамический приоритет — есть шанс у каждого. Смена приоритетов по алгоритмам:

- •Простая циклическая смена приоритетов,
- •Циклическая смена приоритетов с учётом последнего запроса
- •Смена приоритетов по случайному закону,
- •Схема равных приоритетов
- •Алгоритм наиболее давнего использования

Арбитраж шин

Смена приоритетов по алгоритмам:

- •Простая циклическая смена приоритетов после каждого цикла изменение приоритета на единицу по кругу.
- •Циклическая смена приоритетов с учётом последнего запроса последний обслуженный получает самый низкий приоритет, остальные за ним сдвигаются по кругу (более распространена).
- •Смена приоритетов по случайному закону генератор СЧ назначает новые значения приоритетов.
- •Схема равных приоритетов при поступлении нескольких запросов каждый из них имеет шансы на обслуживание, конфликт решается арбитром (обычно асинхронные схемы).
- •Алгоритм наиболее давнего использования

Арбитраж шин

•Алгоритм наиболее давнего использования — LRU (Last Recently Used) — после каждого цикла — наивысший приоритет — кто дольше всех не использовал шину.

Доп. алгоритмы (не чисто динамические – не после каждого цикла):

Очередь - FIFO (сложная аппаратура — редко используется)

Фиксированный квант времени — каждому ведущему фиксированный промежуток для захвата. Метод хорошо подходит для шин с синхронным протоколом.

Централизованная и децентрализованная схема:

Централизованная – имеется *центральный* арбитр либо центральный контроллер шины (может быть самостоятельным либо частью ЦП).

Единственный арбитр – единственная точка отказа.

Централизованные схемы — параллельный или последовательный.

При параллельном подключении — ЦА связан с каждым потенциальным ведущим индивидуальными двухпроводными трактами -> запросы могут поступать параллельно и независимо.

Такой арбитраж называется «централизованным параллельным арбитражем» или «централизованным арбитражем независимых запросов». $C\pi a \tilde{u} \partial \tilde{v} \partial t$

+ быстродействие; - цена, сложность подкл. доп. устр-в, диаг-ки.

Централизованный последовательный арбитраж (цепочечный или гирляндный).

Три вида — с цепочкой сигнала ЗШ, доп сигнала разрешения (РШ) и сигнала предоставления шины (ПШ) — наиболее распространённый вариант.

ЗШ и ШЗ — по схеме «монтажное ИЛИ». До момента освобождения шины текущим ведомым арбитр не может выдать ПШ. Статическое распределение приоритетов. Плюсы — простота реализации, лёгкость наращивания. Минусы — скорость (время арбитража пропорционально длине цепочки), возможна полная блокировка, сложная диагностика.

Bus Arbitration (1)

- (a) A centralized one-level bus arbiter using daisy (ромашка) chaining.
- (b) The same arbiter, but with two levels.

Децентрализованный (распределённый) арбитраж — каждый ведущий содержит блок управления доступом к шине. Блоки взаимодействуют между собой. Параллельный арбитраж.

Кольцевая схема с циклической сменой приоритетов.

Переход к следующему ведущему — со сменой приоритетов. Текущий ведущий в след. цикле — наименьший приоритет, его сосед справа — наивысший, остальные — на 1 меньше, чем у соседа слева. Циклическая смена с учётом последнего запроса.

Схемы арбитража шин

Текущий ведущий генерирует ПШ, который проходит через все схемы ЛА. Если имеется ещё один ведущий, который просит шину (ЗШ), то его ЛА не пропускает ПШ к другим устройствам. Текущий ведущий, «потеряв» ПШ на своём входе, должен при первой возможности освободить шину. Запрашивающий — её займет.

Схемы арбитража шин

Чаще встречается иная схема децентр-го арбитража. Арбитражные линии и устройства по схеме «монтажное ИЛИ». Каждому ведущему — уникальный номер (уровень приоритета). Запрашивающие шину выставляют на арб. линии свой номер. Каждый из запрашивающих, обнаружив на линиях номер с более высоким приоритетом снимает младшие биты своего номера. В итоге (может понадобится несколько итераций) на линии остаётся только номер с наиболее высоким приоритетом. Ведущий, распознавший на линиях свой номер — захватывает шину. Способ называется распределённый арбитраж с самостоятельным выбором. Модуль равнодоступности – последний ведущий не может участвовать в след. цикле арбитража. Шины — FutureBus, NuBus, MMultiBus, FastBus.

Bus Arbitration (2)

Decentralized bus arbitration.

В целом, децентрализованный арбитраж — более надёжен — выход из строя одного из ведущих не нарушает работу остальных. Но требуются схемы детекции неполадок (например, с пом. тайм-аута). Основной недостаток схем децентрализованного арбитража — относительная сложность логики аппаратуры каждого ведущего.

Протокол шины

Сигналы на шине – перекос – прежде чем реагировать, все ведомые должны знать с какого момента поступивший адрес можно считать достоверным.

С данными ещё сложнее — могут передаваться в двух направлениях. При чтении — доп. задержка на выдачу ведомым необходимых ведущему данных на шину.

Метод информирования о достоверности адреса, данных, управляющей информации и информации состояния — протокол шины.

Два класса протоколов — синхронный (все сигналы привязаны к импульсам ГТИ) и асинхронный — для каждой группы сигналов свой сигнал подтверждения достоверности.

Синхронные шины

Синхронный протокол (все сигналы привязаны к импульсам ГТИ). Период изменения тактового сигнала — тактовый период шины — определяет минимальный квант времени на шине. Изменение управляющих сигналов обычно совпадает с передним или задним фронтом ТИ.

Протокол NuBus (Macintosh)

Bus Clocking (1)

Цикл шины – 25 нс (40 МГц)

MREQ – доступ к памяти, а не к В/В.

Пусть чтение - 40 нс, с момента стабилизации адреса.

Read timing on a synchronous bus.

Bus Clocking (2)

Symbol	Parameter	Min	Max	Unit
T _{AD}	Address output delay		4	nsec
T _{ML}	Address stable prior to MREQ	2		nsec
T _M	\overline{MREQ} delay from falling edge of Φ in T_1		3	nsec
T _{RL}	RD delay from falling edge of Φ in T_1		3	nsec
T _{DS}	Data setup time prior to falling edge of Φ	2		nsec
T _{MH}	\overline{MREQ} delay from falling edge of Φ in T_3		3	nsec
T _{RH}	\overline{RD} delay from falling edge of Φ in T_3		3	nsec
T _{DH}	Data hold time from negation of RD	0		nsec

(b)

Specification of some critical times.

Синхронные шины

Синхронные шины: следует добиваться, чтобы ТИ доставлялись к каждому разъёму шины практически одновременно.

ТИ должен выбираться так, чтобы любой сигнал на шине мог быть доставлен в любую её точку до завершения тактового периода -> чем короче шина, тем м.б. выше частота ТИ.

Синхронные протоколы — проще, требуют меньше сигн. линий, но менее гибки — привязаны к конкретной тактовой частоте (уровню технологий). Из-за проблемы перекоса синхросигналов синхронные шины не могут быть длинными.

Обычно синхр. шины — «процессор-память».

Протокол шины

Синхронные шины: (доп. неудобства) ведущий не знает, что ответил ведомый, ведущий должен работать со скоростью самого медленного из устр-в, участвующих в пересылке данных.

Асинхронные шины: позволяют избегать указанных выше недостатков.

Начало очередного события определяется не ТИ, а окончанием предыдущего. Каждая совокупность сигналов, помещаемых на шину, сопровождается синхронизирующим сигналом (стробом).

Синхросигналы от ведомого — *квитирующие сигналы* (handshakes) или *подтверждения сообщений* (acknowledges).

Асинхронные шины

Когда ведущий видит сигнал подтверждения данных, он считывает данные и снимает строб данных (а здесь и строб адреса), чтобы показать, что действия с данными завершены. В более сложных вариантах — строб адреса может оставаться несколько циклов.

Асинхронные шины

В асинхронных шинах подтверждение успешности транзакции обеспечивается двунаправленным обменом сигналами управления. Такая процедура называется квитированием установления связи или "рукопожатием" (handshake).

Асинхронные шины

Скорость асинхронной пересылки определяется ведомым -> шины самосинхронизирующиеся, поэтому успешно могут применяться и новые и старые устройства. Плата — некоторое увеличение сложности аппаратуры.

Квитирование не всегда производится в полном объёме.

Иногда транзакция не может быть завершена стандартным образом (например обращение по несуществующему адресу памяти) — ведомое не ответит подтверждающим сигналом. Выход из ситуации — схема тайм-аута.

Тайм-ауты из-за отказа оборудования — редки, но таймауты по адресу — часты (например, проверка присутствия устройств на шине) -> малые значения тайм-аута и очень быстрые схемы декод-я адреса.

Асинхронные обычно шины ввода/вывода.

Синхронные vs асинхронные

Ранее в ВМ преобладали асинхронные шины, в последних разработках — всё чаще синхронные.

В настоящее время синхронные чуть быстрее асинхронных и близки к макс. значениям распростр-я сигналов. Возможное ускорение асинхронных дастлишь незначительный выигрыш по сравн. с синхр-ми.

Перекос сигналов — в синхронных уже заложен в такт. частоту, в асинхронных должен учитываться в каждой транзакции и каждым устр-вом.

Проблема *метастабильного состояния* триггеров ведомых в асинхронных решается легче — спец. Схемы определяют подобные ситуации и асинхр. система ожидает пока состояние не станет стабильным. В синхронном протоколе — синхронизация триггеров ТИ и/или двухтактные триггеры.

Слайд 49

Asynchronous Buses

Operation of an asynchronous bus.

MSYN – Master SYNchronization – после установки адреса и управляющих сигналов. SSYN – Slave SYNchronization – сигнал от ведомого, что данные уже на шине.