1. Dati $a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n) \in \mathbf{N}^n$ tali che $a_i, b_i \leq e^{n^3}$ per ogni $i = 1, \ldots, n$, si dia una stima che dipende solo da n per il numero di operazioni bit necessarie a calcolare il prodotto scalare

$$a_1b_1+\ldots+a_nb_n$$
.

2. Dato il numero binario $n = (1001101010)_2$, calcolare $[\sqrt{n}]$ usando l'algoritmo delle approssimazioni successive (Non passare a base 10 e non usare la calcolatrice!)

4	. Calcolare l'identità d	il massimo di Bezout us	comun divisor ando i quozie	re $(30, 125)$ us nti ottenuti n	ando sia l'ago ell'algortimo d	ritmo di Euc li Euclide.	clide che quell	o MCD-binario.	Poi calcolare