第8章 通信网和服务

传输层协议: UDP 和 TCP

大纲

- 1. UDP 协议
- 2. TCP 可靠的流服务
- 3. TCP 协议
- 4. TCP 连接管理
- 5. TCP 拥塞控制

1、用户数据报协议-UDP

- 尽力而为数据报服务
- 多路复用支持共享IP数据报服务
- 简单的发送端和接收端
 - 无连接: 没有握手和连接状态
 - 低头部开销
 - 没有流控制,没有差错控制,没有拥塞控制
 - UDP 数据报可能会丢失或乱序
- 应用
 - 多媒体 (e.g. RTP)
 - 网络服务 (e.g. DNS, RIP, SNMP)

用户数据报协议(续)

UDP 数据报

UDP 段格式

- 源端口和目的端口号
 - 客户端使用临时性的端口号
 - 服务器使用大家熟知的端口 号
 - 最大端口号为65,535
- UDP长度
 - 数据报的字节总数(包括头部)
 - 8≤长度(字节)≤65,535
- UDP校验和
 - 可选地用来检查UDP数据报 的错误

用户数据报协议(续)

部分已分配的 UDP 端口

端口号	服务进程	说明
53	Name server	域名服务
67	Bootps	下载引导程序信息的服务器端口
68	Bootpc	下载引导程序信息的客户机端口
69	TFTP	简单文件传输协议
111	RPC	远程过程调用
123	NTP	网络时间协议
161	SNMP	简单网络管理协议

UDP校验和: 伪头部

- 1. UDP 校验和检测端到端错误
- 2. 在伪头部后跟UDP数据报
- 3. 含有IP地址用于针对错误传递进行检测
- 4. IP & UDP校验和在计算过程中设置为0
- 5. 如果UDP长度为奇数,在后面填充0(变成16位的整数倍)

用户数据报协议(续)

UDP 接收端校验和

- UDP 接收端重新计算校验和,然后悄悄丢弃有错 误被检测出的数据报
 - "悄悄"意味着没有差错信息产生
- UDP校验和的使用是可选的
- 但主机被强制要求有校验和能够被使用

例 [UDP接收端校验和]

,				
12 字节	153.19.8.104			
伪头部	171.3.14.11			
DA DA HA	全 0	17	15	
8字节 [1087 15		13	
UDP 头部[全 0	
7字节∫	数据	数据	数据	数据
数据 〔	数据	数据	数据	全0
			·r	/

填充

100110	01 00010011	\longrightarrow	153.19	
000010	00 01101000	\longrightarrow	8.104	
101010	11 00000011	\longrightarrow	171.3	
000011	10 00001011	\rightarrow	14.11	
000000	00 00010001	\longrightarrow	0和17	
000000	00 00001111	\rightarrow	15	
000001	00 00111111	\longrightarrow	1087	
000000	00 00001101	\longrightarrow	13	
000000	00 00001111	\rightarrow	15	
000000	00 00000000	\longrightarrow	0 (检验和))
010101	00 01000101	\longrightarrow	数据	
010100	11 01010100	\longrightarrow	数据	
010010	01 01001110	\longrightarrow	数据	
010001	11 00000000	\rightarrow	数据和0(填充

按二进制反码运算求和 10010110 11101101 → 求和得出的结果 将得出的结果求反码 01101001 00010010 → 检验和

请注意:进行反码运算求和时,最高位有进位2,这个2应当加到最低位。

用户数据报协议(续)

优点:

- 更低的开销(没有连接建立)
- 更加高效(不提供可靠交付)
- -实时应用(没有差错检测或流控制)
 - E.g. 天气,时间,视频,音频, 游戏
- 从多台机器接收数据

使用UDP的协议: SNMP、DNS、BOOTP、TFTP、SUNRPC、SNMPTRAP、NFS RIP、GTP、BIFF、WHO、SYSLOG、RTP

用户数据报协议(续)

UDP显著特点:

- 1. 传输前不需要建立连接;
- 2. 接收端收到UDP报文不需要做出确认;
- 3. 不提供可靠交付,但在一些情况下效率更高!

注意!

伪头部仅为计算校验和时由源主机和目的主机创建,不 占用实际传输开销!

大纲

- 1. UDP 协议
- 2. TCP 可靠的流服务
- 3. TCP 协议
- 4. TCP 连接管理
- 5. TCP 拥塞控制

2、TCP可靠的流服务

- 可靠的字节流服务
- 更加复杂的发送端和接收端
 - 面向连接: 客户端和服务器端进程之间全双工单播连接
 - 连接建立,连接状态,连接释放
 - 更高的头部开销
 - 差错控制,流控制和拥塞控制
 - 相较于UDP更高的延迟
- 绝大多数应用使用TCP
 - HTTP, SMTP, FTP, TELNET, POP3, ...

TCP可靠的流服务(续)

- 数据流传输
 - 通过网络传输连续的字节流,不指示边界
 - 将字节分组为段(信息段)
 - 在方便时传输信息段(定义了推送功能)
- 可靠性
 - **错误控制机制** 应对IP传输错误

TCP可靠的流服务(续)

流量控制:

- 缓存限制和速率不匹配会导致到达目的地的数据丢失
- 接收端控制发送端发送分组的速率来防止缓存溢出

TCP可靠的流服务(续)

拥塞控制:

- 到目的地的可用带宽随其他用户的活动而变
- 发送端根据RTT(往返时间)和ACKs指示的网络拥塞程度 动态调整传输速率
- 网络带宽的弹性利用

TCP多路复用

TCP多路复用:

- 一个TCP连接由一个四元组唯一标识
 - (源IP地址,源端口,目的IP地址,目的端口)
- TCP允许在终端系统之间多路复用多个连接,以同时支持多个应用
- 数据段由连接的四元组指引到达目的地

大纲

- 1. UDP 协议
- 2. TCP 可靠的流服务
- 3. TCP 协议
- 4. TCP 连接管理
- 5. TCP 拥塞控制

3、TCP协议

TCP段格式

0	4	10	16	24	31
	源端口			目的端口	
序号					
确认号					
头部 长度	预留	U A P R S F R C S S Y I G K H T N N	ج با با	窗口尺寸	
校验和			紧急指针		
可选					填充
数据					

•每个TCP段头部都有1个20字节的固定部分加上一个大小可变的任选字段

TCP头部:

端口号

- 一个套接字标识连接的一端
 - IP 地址 + 端口
- 一个连接可以由一对套接字唯一标识
- 熟知的端口

•	FTP	20.	21
•	I' I I	4 U 9	

- Telnet 23
- **SMTP** 25
- DNS 53
- TFTP 69
- HTTP 80
- POP3 110

头部长度

- 4 位
- 头部长度是32位字长的整数倍
- - 面向字节: TCP 报文==字节组成的数据流+每个 字节对应于一个序号

确认号

- 如

- 在连接建业时,远挥彻炻厅亏

- 2. 连接建立时,双方商定初始序号。报文段首部中 的序号字段数值表示负载部分第一个字节的序号
- 3. TCP 对接收到数据的最高序号表示确认,即确认 号==已收到数据最高序号加 1,即接收端期望下 次收到的数据中第一个字节的序号

预留字段

- 6位

控制字段

- 6位

- URG: 紧急指针标志

• 紧急信号末端 = 序号+ 紧急指针

- ACK: 数据包确认标志

- PSH: 覆盖TCP缓存

- RST: 重置连接

• 收到RST后,连接中止,应用层得到通知

- SYN: 建立连接

- FIN: 关闭连接

窗口尺寸

- 通知窗口尺寸为16位
- 用于流量控制
- 发送端将接受序号从ACK 到 ACK + 窗口-1的字节
- 最大窗口尺寸为65535字节

TCP校验和

- 网络检验和方法
- TCP伪头部 + TCP段

TCP校验和计算

- TCP差错检测使用和UDP相同的伪头部

TCP伪头部

大纲

- 1. UDP 协议
- 2. TCP 可靠的流服务
- 3. TCP 协议
- 4. TCP 连接管理
- 5. TCP 拥塞控制

4、TCP连接管理

初始序号 (ISN):

- 选择ISN来防止接收来自之前连接的信息段(可能会在网络中循环并在更晚的时间到达)
- 选择ISN来防止和之前连接的序号重复
- 使用本地时钟来选择ISN序号
- 时钟经过一个完整周期的时间应该大于一个段的最大生存期 (MSL) e.g. 通常 MSL=120秒
- 高带宽连接带来了问题

TCP连接建立(续)

TCP连接建立:

- "三次握手"
- ISN防止接收来自之前连接的信息段

采用三次握手建立连接是为了 防止已失效的连接请求报文突 然又传到B, 而产生错误。如: 一段时间当A发送的第一个连接 请求并未丢失,由于网络滞留 影响A超时未受到B的确认,则 发一个新的连接请求。在这次 连接释放后前一个请求报文到 达B。B以为A向它发出新的连接 请求,于是向A发出确认报文, 而主机A并未发出连接请求确认 报文, 因此不理睬B的确认报文。 若把三次握手改成二次握手可 能发生死锁。

TCP连接建立(续)

例 [如果主机一直使用相同的 ISN]

TCP连接建立(续)

最大段尺寸:

- 最大段尺寸
 - TCP发送到另一端的最大数据块
- 每个终端可以在连接建立阶段宣布自己的MSS
- 默认值是576字节,包括20字节用于IP报头和20字节用于TCP 报头
- 以太网限制MSS为1460字节
- IEEE 802.3限制MSS为1452字节

近端:连接请求

Filter:

远端: 确认和请求

近端:确认

F:14 - ... | [

/ Daniel Santa File: utural prutima

TCP连接管理(续)

例[客户端-服务器应用程序]

TCP连接管理(续)

例[TCP窗口流控制]

TCP连接管理(续)

- TCP连接关闭 -- "温和关闭"
 - -- " 四次握手 "

主机A

主机 B

大纲

- 1. UDP 协议
- 2. TCP 可靠的流服务
- 3. TCP 协议
- 4. TCP 连接管理
- 5. TCP 拥塞控制

5、TCP拥塞控制

cwnd:拥塞窗口

SendWin = Min [rwnd, cwnd]

TCP状态转移图

