

Waste management

Milestone report 1: Initialization

Picture space

Team 38

Blecha Antonin Monti Antonio Odermatt Patrick Suvorova Maria

Frongillo Matteo Murali Arjun Rosu Justin von Fuchs Alexander

Coaches: S. Züst, K. Dmitrjieva

Submission date: 10. October 2025

Team 38

Name	Field of studies	E-mail
Blecha Antonin	Energy and Environmental Systems Engineering	antonin.blecha@stud.hslu.ch
Frongillo Matteo	Energy and Environmental Systems Engineering	matteo.frongillo@stud.hslu.ch
Monti Antonio	Energy and Environmental Systems Engineering	antonio.monti@stud.hslu.ch
Murali Arjun	Energy and Environmental Systems Engineering	arjun.murali@stud.hslu.ch
Odermatt Patrick	Energy and Environmental Systems Engineering	patrick.odermatt@stud.hslu.ch
Rosu Justin	Electrical Engineering	justin.rosu@stud.hslu.ch
Suvorova Maria	Energy and Environmental Systems Engineering	maria.suvorova@stud.hslu.ch
von Fuchs Alexander	Electrical Engineering	alexander.vonfuchs@stud.hslu.ch

Summary

TODO

Contents

1	Introduction	4
2	Process	4
3	Functional components 3.1 Components	4
4	Organisational components 4.1 Dimensions	4
5	References	5
Δ	List of stuff	5

1 Introduction

2 Process

Concept Phase & System Design (Rough Concept): Using creative and analytical methods, you will systematically develop and evaluate three different solution concepts. These describe fundamental approaches to how the tüftelPark-kit could essentially be realized. You will present these results to the experts from the Tüftelpark.

3 Functional components

3.1 Components

The kit must be based on specific technical basis (TueftelPlattform). The TueftelPlattform consists of:

- Arduino Uno with Grove-Shield
- I2C motor driver board
- $\bullet\,$ Power supply via 7.4V / 1300 mAh Li-Ion battery
- Freely selectable Grove sensors and actuators
- The mechanical components can be made from 4mm poplar plywood (CO₂ laser) and 3D-printed parts
- Optional components from the Stokys range are available

Standard components (e.g. connecting elements, bearings, ...) may also be used.

4 Organisational components

4.1 Dimensions

The system must be designed in such a way that it can be packed in a standard stacking container measuring $60 \times 40 \times 32.3$ cm during PDP and must not exceed a total weight of 20 kg. This is necessary to ensure efficient and safe storage of the prototypes during the semesters.

A LIST OF STUFF 5

- 5 References
- A List of stuff