Deep contextualized word representations

• 动机

相比于以往的语言模型elmo具有以下两大提升

- 。 能够学习到词汇用法的复杂性, 例如语法, 句法
- 。 能够学习到不同上下文的语义多样性
- 模型结构

ELMo是从大量的文本和双向语言模型学习得到,从中得到内部状态

- 。 双向语言模型
 - 前向语言模型是指得到序列 t_1, t_2, \ldots, t_N 的概率,公式如下所示:

$$p(t_1, t_2...t_N) = \prod_{k=1}^{N} p(t_k|t_1, t_2....t_{k-1})$$

最近,如《Exploring the limits of language modeling》、《On the state of the art of evaluation in neural language models》和《Regularizing and optimizing lstm language models》等论文中,首先使用character-level的RNN或CNN,计算得到"上下文无关"(context-independent)词向量表示 X_k^{LM} ,然后将这个词向量表示放入L层LSTM中,对于位置k的词向量来说,每层LSTM输出一个上下文相关的 $\vec{h}_{k,j}^{LM}$,其中j=1,2....L,最顶层的LSTM输出为 $\vec{h}_{k,L}^{LM}$,然后加上softmax来预测 t_{k+1} 。

■ 后向语言模型即通过后面的词语来预测前面的词语

$$p(t_1, t_2 \dots t_N) = \prod_{k=1}^N p(t_k | t_{k+1}, t_{k+2} \dots \dots t_N)$$

■ 双向语言模型 (biLM) 将前后向语言模型结合起来,最大化前向、后向模型的联合似然函数即可,如下式所示:

$$\sum_{k=1}^{N} (logp(t_k|t_1,t_2,\ldots,t_{k-1};\Theta_x,\vec{\Theta}_{LSTM},\Theta_s) + logp(t_k|t_{k+1},t_{k+2},\ldots,t_N;\Theta_x,\overleftarrow{\Theta}_{LSTM},\Theta_s))$$
 其中 Θ_x 和 Θ_s 是context-independent词向量训练时和softmax时的参数, $\vec{\Theta}_{LSTM}$ 和 Θ_{LSTM} 是双向语言模型的参数。

ELMo

ELMo是中间双向LSTM层的结合,对于一个词语 t_k ,一个L层的双向语言模型可以计算得到 t_k 的 2l+1个状态

$$egin{aligned} R_k &= X_k^{LM}, ec{h}_{k,j}^{LM}, \stackrel{\longleftarrow}{h}_{k,j}^{LM} | j=1,\ldots,L \ R_k &= h_{k,j}^{LM} | j=0,\ldots,L \end{aligned}$$

其中,
$$h_{k,j}^{LM}=[\vec{h}_{k,j}^{LM},\overleftarrow{h}_{k,j}^{LM}]$$
。 最终得到线性组合的单元集合

$$\mathbf{ELMo}_{k}^{task} = E(R_{k}; \Theta^{task}) = \gamma^{task} \sum_{j=0}^{L} s_{j}^{task} \mathbf{h}_{k,j}^{LM}.$$

其中, s_j^{task} 是softmax-normalized权重, γ^{task} 是根据具体的任务去放缩ELMO的参数

o 利用双向语言模型来完成有监督的语言任务

- 在RNN任务中,将原先的词向量 x_k 替换为 $[x_k; ELMo_h^{task}]$
- 可以 h_k 替换为 $[h_k; ELMo_h^{task}]$
- 增加dropout层和L2 loss的方法来提升效果,其中L2的系数λ越大,越代表了取各层平均的意思,越小,越代表了各层发挥不同的效果。

o 预训练双向模型结构

- 这里采用的还是语言模型去训练网络. 并且这篇的模型是有借鉴先行研究的. Exploring the limits of language modeling. Character-Aware Neural Language Models 这两个先行研究都是基于字符卷积网络来做的, 但是这其中有一个问题是字符卷积网络的低效问题, 详细见论文,通过这篇论文我们也知道, 能够实现最大效率利用字符共现来表达词义的网络就是 biLSTMs 网络, 这也是为什么这个模型采用这个网络的原因. 但是不同于这两个论文的是, 这个论文增加了
 - 联合双向训练
 - LSTM层之间增加了残差连接

。 结果分析

■ 各层加权方案

上面说过,L2 loss的系数 λ 给模型带来的影响,就是,其值越大,最后的 $ELMO_t^{task}$ 越趋近于各层之间的平均值。下面是对四个不同的构造进行的比较,

- 第一列是baseline模型(使用普通的词向量, 例如 CoVe)
- 第二列是只使用了 BiLSTMs 最后一层输出的结果.
- 第三列是使用了各层次状态值平均的结果(倾向于平均, 并非完全平均, $\lambda = 1$)
- 第四列是使用了各层次状态值加权和的结果($\lambda = 0.001$)

Task	Dagalina	Last Only	All layers	
Task	Baseline		λ =1	λ=0.001
SQuAD	80.8	84.7	85.0	85.2
SNLI	88.1	89.1	89.3	89.5
SRL	81.6	84.1	84.6	84.8

可以看出第四列效果最好,说明将各层发挥自己的特点是最好的

■ 将ELMo加入到哪里

前面说过可以在output层也加入ELMo模型,实验结果如下所示:

Task	Input	Input &	Output
Task	Only	Output	Only
SQuAD	85.1	85.6	84.8
SNLI	88.9	89.5	88.7
SRL	84.7	84.3	80.9

- 双向语言模型中捕获了哪些信息
 - 语义消歧

任务这里使用了 SemCor3.0 这个预料库, 这是一个标注了多义的预料库, 库中的每个词汇都对应着 wordnet 的一个位置. 基于该预料库进行计算的方法是, 先利用 BiLMs 来计算出了语料库中所有的词汇向量表示. 然后将位于wordnet相同位置的词汇的向量取了平均. 测试的时候,对于一个给出的target word in a target sentence. 利用 BiLM 得出结果后, 利用训练时获得的每个wordnet位置中的词汇的初始向量, 再利用 1近邻法求这个词汇可能的位置. 这个模型本身可以说是非常简单了, 只用到了 1-近邻. 但是结果还是显示, 有很高的F1值. 如下图:

Model	\mathbf{F}_1
WordNet 1st Sense Baseline	65.9
Raganato et al. (2017a)	69.9
Iacobacci et al. (2016)	70.1
CoVe, First Layer	59.4
CoVe, Second Layer	64.7
biLM, First layer	67.4
biLM, Second layer	69.0

■ POS tagging

上面的结果测试了 ELMo 表达语义的效果,接下来利用 POS tagging 检测其对语法的表达效果.这个是用向量作为输入进一个分类器,去分辨词性,也可以说是非常简单了.其结果如下:

Model	Acc.
Collobert et al. (2011)	97.3
Ma and Hovy (2016)	97.6
Ling et al. (2015)	97.8
CoVe, First Layer	93.3
CoVe, Second Layer	92.8
biLM, First Layer	97.3
biLM, Second Layer	96.8

Implications for supervised tasks

biLM中不同层的LSTM代表了不同的信息,对于下游任务来说,要将所有层的信息都结合进来

Implications for supervised tasks

在不加 ELMo 的情况下去训练 SRL model, 达到最佳 F1 值要在 486 个epoch之后, 但是!!!!!在加了 ELMo 之后, 只需要十个回合便超越了原来的 F1 值, 降低了98%的时间消耗。只需要更少的样品就 能取得同样的结果,实验如下图所示:

。 结论

作者提出了一种简单而有效的模型来替代了以往的语言模型,其实也为transformer和bert模型的提出埋下了伏笔。深度学习模型一般来说,越深越宽的模型肯定比浅层模型效果要好。network embedding的一些方法是基于word2vec的方法来完成的,在阅读这篇论文时,我就在思考一个问题,能够将这些模型套入到network embedding的方法里面呢,现在看来是有难度的,在语言模型中,一句话中的词地位应该是差不多的,但是在网络或者图中,一阶邻居,二阶邻居,乃至三阶邻居对于一个结点的重要性是不一样的。