					F: 1 X OR
FORTH ESPON.	Angolo α sin(α) cos(α) cot(α)	$\sin(\alpha)$	$\cos(\alpha)$	$\cot(a)$	Per $x \to 0$,
$z = ho e^{i\theta}$	π 9	-17	2 3	√3 3	1 2
PRODOTE E QUOZIEMIE	κl 4	2	2 2	-	$\sin x \sim x$; $\arcsin x \sim x$; $\tan x \sim x$; $\arctan x \sim x$; $1 - \cos x \sim \frac{1}{2}x^{-1}$;
$z_1 z_2 = \rho_1 \rho_2 (\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2))$	π ! ε	2 3	2 1	3 3	$e^x - 1 \sim x$; $a^x - 1 \sim x \log a$; $\log(1+x) \sim x$; $\log_a(1+x) \sim \frac{x}{1-\alpha}$;
$\frac{z_1}{z_2} = \frac{\rho_1}{\rho_2}(\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2))$	2 [3	1	0	0	ngor
SERBRCHIA WFINITI	$\frac{2\pi}{3}$	2 2	-12	$-\frac{\sqrt{3}}{3}$	$(1+x)^{\alpha}-1\sim \alpha x (\text{con }\alpha\in\mathbb{R} \text{ costante non nulla}).$
ر در الراق الر	$\frac{3\pi}{4}$	2/2/	1 2/2	-	
$\log_a x \ll x^b \ll c^x \ll x! \ll x^x$	<u>δπ</u>	4 -1	1	[7	CARITERNO DETLO RADICÉ (SERIE EAM)
SEDIE GERNEROUS (BCB BF1)	9	2	2	>	Se $\mathfrak{S}_1 \mathfrak{S}_1 \mathfrak{E}$ $\lim_{n \to +\infty} \sqrt[n]{a_n} = l$
-	se $ q < 1$	SERIB ARMONIA	ARMC	101 CG	e $l>1$ la serie diverge, se $l<1$ la serie converge; se $l=1$ nulla si può concludere.
	$\operatorname{se} q \ge 1$ $\operatorname{se} q \le -1$	$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}} $ che $\left\{ \right.$	$\begin{cases} \text{converge} & \alpha > 1 \\ \text{diverge} & \alpha \le 1 \end{cases}$	e $\alpha > 1$ $\alpha < 1$	CRITERIO PAPPORTO E VAVAUS F
		SERIB NENGIOL	nENG	1701	
CRIT. DBL CONFRONTS and bm i) $\sum b_n$ convergente $\Longrightarrow \sum a_n$ convergente	vergente	$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)}$		→ conveilans	/E(On)S
ii) $\sum a_n$ divergente $\implies \sum b_n$ divergente.	rgente.				