Name: Rishu Singh

Date: 21st May 2019

Place: New Delhi, INDIA

# UDACITY Data Analysis Nanodegree Project 01:



# Exploring weather Trends

#### Overview:

In this project, I have analyzed local temperature of New Delhi, India in accordance with the global temperature data and compared. I had been provided with a database on Udacity portal from where I have to extract, manipulate and visualize the data as in the following goals.

#### Goals:

- 1. Extraction of data from the database and export to CSV file
- 2. Making a line chart visualization based on extracted data
- 3. Observation based on chart

#### **Tools Used:**

- 1. SQL: To extract the data from the database.
- 2. Python: For calculating moving average and plotting line chart.
- 3. ANACONDA Jupyter Notebook: For writing python code and making observations.
- 4. Excel: Having a look at the data and writing project.

#### STEP 1 -

Extraction of Data from provided Database I have done the following activity in order to make a relevant dataset. I have learnt the SQL basics from lessons provided before this project.

I have also done an introductory course on SQL and relational database from which I have used some concepts.

1. To see which cities are available for "India" in the given dataset:

SELECT \* FROM city\_list WHERE country LIKE 'India'

2. I know that I can make a relevant dataset by joining the two tables. But, I found from the SCHEMA that both city\_data and global\_data contains same column named 'avg\_temp'.

So I have changed the names of the columns respectively in order to have distinct columns.

ALTER TABLE city\_data RENAME COLUMN avg\_temp to CAT; -- CAT = City Average Temp.

ALTER TABLE global\_data RENAME COLUMN avg\_temp to GAT; -- GAT = Global Average Temp.

3. Now I have written following code in order to join the two tables and have the relevant data:

SELECT global\_data.year, global\_data.GAT, city\_data.CAT FROM global\_data JOIN city\_data
ON global\_data.year = city\_data.year
WHERE city LIKE 'New Delhi';

Now I have got an option of downloading the file as CSV format.

## **Moving Averages:**

- To observe the trends in temperature I calculated moving average(MA).
- I used 10 years Moving Average to get the smooth line chart.

# **Excel commands for Moving Averages:**

| Moving Average              | Excel Commands   |
|-----------------------------|------------------|
| For 10 years Moving Average | =AVERAGE(B2:B11) |

# This is how the excel sheet looks like:

| 4  | ۸    | р    | _      | _     | Г        | - |
|----|------|------|--------|-------|----------|---|
| 4  | Α    | В    | С      | D .   | Ε .      | F |
| 1  | year | gat  | mA_gat | cat   | mA_cat   |   |
| 2  | 1796 | 8.27 |        | 25.03 |          |   |
| 3  | 1797 | 8.51 |        | 26.71 |          |   |
| 4  | 1798 | 8.67 |        | 24.29 |          |   |
| 5  | 1799 | 8.51 |        | 25.28 |          |   |
| 6  | 1800 | 8.48 |        | 25.21 |          |   |
| 7  | 1801 | 8.59 |        | 24.22 |          |   |
| 8  | 1802 | 8.58 |        | 25.63 |          |   |
| 9  | 1803 | 8.5  |        | 25.38 |          |   |
| 10 | 1804 | 8.84 |        | 25.68 |          |   |
| 11 | 1805 | 8.56 | 8.551  | 25.3  | 25.273   |   |
| 12 | 1806 | 8.43 | 8.567  | 25.22 | 25.292   |   |
| 13 | 1807 | 8.28 | 8.544  | 24.97 | 25.118   |   |
| 14 | 1808 | 7.63 | 8.44   |       | 25.21    |   |
| 15 | 1809 | 7.08 | 8.297  |       | 25.20125 |   |
| 16 | 1810 | 6.92 | 8.141  |       | 25.2     |   |
| 17 | 1811 | 6.86 | 7.968  |       | 25.36333 |   |
| 18 | 1812 | 7.05 | 7.815  |       | 25.31    |   |
| 19 | 1813 | 7.74 | 7.739  | 24.56 | 25.146   |   |
| 20 | 1814 | 7.59 | 7.614  | 23.73 | 24.756   |   |
| 21 | 1815 | 7.24 | 7.482  | 24.09 | 24.514   |   |
| 22 | 1816 | 6.94 | 7 333  | 23.7  | 2⊈ 21    |   |

#### STEP 2 – Python Code for Making Line Chart

So I have used some python libraries here, I have written these codes on Jupyter Notebook.

# Importing the important Libraries import numpy as np import pandas as pd from matplotlib import pyplot as plt # Importing the extracted Data Set data = pd.read\_csv("results.csv")

# Line Chart for New Delhi and Global Temperature:



## Observation:

- Global average temperature varies between 7.20 to 9.56 Degree Celsius but New Delhi city average temperature is varies between 24.03 to 26.14 Degree Celsius.
- If comparing the Global average temperature and New Delhi average temperature, then the **New Delhi city is hotter** than Global average temperature.
- Change in temperature over time:

| Year        | Change in<br>Global average<br>temperature | Change in<br>New Delhi<br>average<br>temperature | Increasing/Decreasing over time |
|-------------|--------------------------------------------|--------------------------------------------------|---------------------------------|
| 1796 - 1866 | 8.27 –8.04                                 | 25.03 – 24.30                                    | Decreasing                      |
| 1880 - 1950 | 8.27 –8.68                                 | 25.01 – 25.36                                    | Increasing                      |
| 1951 - 2013 | 8.67 –9.56                                 | 25.28 – 26.14                                    | Increasing                      |

- According to the graph and above table the difference between Global average temperature and New Delhi average temperature is been consistent over time.
- New Delhi and Global average temperature have similar kind of trends. During early years, both trends seems to have ups and downs then approx. around 1982 the moving average temperature starts to increase at a steadyrate.
- According to the graph the **world is getting hotter** because from 1834 to 2013 Temperature increases.

## **Final Conclusion:**

Global Temperature ∞New Delhi Temperature

The World is Getting Hotter.