

Deep Learning CS60010

Abir Das

Assistant Professor
Computer Science and Engineering Department
Indian Institute of Technology Kharagpur

http://cse.iitkgp.ac.in/~adas/

Agenda

The Building Blocks of Convolutional Neural Networks/CNNs/ConvNets

Importance of MNIST

MNIST

- database of handwritten digits
- 10 classes
 - Training set 60,000 images
 - Test set of 10,000 images
- Greyscale images of size 28x28
- Often treated as `Hello World' for any ML/DL practitioner

Example from MNIST

7 Like Window?

Classification by Matching Filters

But what if the test image is a little

Rotated (or)

Skewed (or)

Zoomed out and so on

Effect of Slight Rotation

Convnets (Fukushima, LeCun, Hinton)

Convnets (Fukushima, LeCun, Hinton)

Convnets (Fukushima, LeCun, Hinton)

By "pooling" (e.g., max or average) filter responses, we gain robustness to the exact spatial location of features.

Convolution

Image

	<u>'5</u>			
3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

Convolution with Zero Padding

	<i>y</i>	-		-
}	1	2	2	3
2	0	0	2	2
	Ů			_

Convolution with Strides

Convolving a 3x3 kernel over a 5x5 input using 2x2 strides

Convolution with Strides and Zero Padding

Convolving a 3x3 kernel over a 5 x5 input using 1 x1 strides and half padding

Inputs Generally have Multiple Channels

Convolution Arithmetic

(For simplicity we are assuming square image and filter/kernel)

Image width = image height = w

Filter width = Filter height = *k*

Stride = s

Output size =
$$\left[\frac{w-k}{s}\right] + 1$$

Padding = $p \rightarrow$ This means image dimension becomes w + 2p

So, output size =
$$\left[\frac{w+2p-k}{s}\right] + 1$$

Note the box function

$$w = 6, p = 1, k = 3, s = 2$$

Convolution Arithmetic

Input volume: 32x32x3 [w, h, c]. 64 filters of size 3x3 [k, k] with stride 2 [s], pad 1 [p]

What is the output feature map size?

And What is the number of parameters in this convolution layer?

$$\left| \frac{32 + 2 * 1 - 3}{2} \right| + 1 = 16$$

So, $16 \times 16 \times 64$ [w, h, c]

$$64 \times 3 \times 3 \times 3$$
 [c_out, w, h, c_in] = 1728

Computer Science and Engineering | Indian Institute of Technology Kharagpur

cse.iitkgp.ac.in

Pooling

3x3 max-pooling on 5x5 input with 1x1 stride

3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	

-	3	3	2	1	0
()	0	1	3	1
3	3	1	2	2	3
	2	0	0	2	2
3	2	0	0	0	1

3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	3.0

Pooling Arithmetic

(For simplicity we are assuming square input and max pooling kernel)

Input width = Input height = w

Filter width = Filter height = *k*

Stride = s

Output size =
$$\left[\frac{w-k}{s}\right] + 1$$

Input volume: 32x32x3 [w, h, c].

Max-pooling kernel of size 2x2 [k, k] with

stride 2 [s]

What is the output feature map size?

And What is the number of parameters in this pooling layer?

0

$$\left| \frac{32-2}{2} \right| + 1 = 16$$
 So, $16 \times 16 \times 3$ [w, h, c]

Visualizations

AlexNet (2012)

First layer (CONV1): 96 11x11 filters

Visualizations

