Quoc Ho

ID: 001200151

Assignment 1

1.

a.
$$(37)_{10} = (100101)_2$$

b.
$$(65)_{10} = (1000001)_2$$

c.
$$(138)_{10} = (10001010)_2$$

	Quotient	Remainder	а
138/2	69	0	0
69/2	34	1	1
34/2	17	0	2
17/2	8	1	3
8/2	4	0	4
4/2	2	0	5
2/2	1	0	6
1/2	0	1	7

2.

a.
$$(101101)_2 = (45)_{10}$$

b.
$$(111001)_2 = (57)_{10}$$

c.
$$(1100111)_2 = (103)_{10}$$

 $(1100111)_2$
= $(1 \times 2^6) + (1 \times 2^5) + (0 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (1 \times 2^0)$
= $64 + 32 + 0 + 0 + 4 + 2 + 1$

3.

a.
$$(123)_{10} = (173)_8$$

b.
$$(249)_{10} = (371)_8$$

	Quotient	Remainder	а
249/8	31	1	0
31/8	3	7	1
3/8	0	3	2

```
4.
```

a.
$$(58)_{10} = (3A)_{16}$$

b.
$$(249)_{10} = (F9)_{16}$$

	Quotient	Remainder	а
249/16	15	9	0
15/16	0	15 (F)	1

5.

a.
$$(673)_8 = (1AA)_{16}$$

$$(673)_8 = (110\ 111\ 011)_2 = (1\ 1011\ 1011)_2 = (0001\ 1011\ 1011)_2 = (1AA)_{16}$$

b.
$$(23EF9)_{16} = (0437371)_8 = (437371)_8$$

$$(23EF9)_{16} = (0010\ 0011\ 1110\ 1111\ 1001)_2$$

= $(00\ 100\ 011\ 111\ 011\ 111\ 001)_2$
= $(000\ 100\ 011\ 111\ 011\ 111\ 001)_2$
= $(0437371)_8$

6.

a.
$$(36.375)_{10} = (100011.011)_2$$

	Quotient	Reminder	а
35/2	17	1	0
17/2	8	1	1
8/2	4	0	2
4/2	2	0	3
2/2	1	0	4
1/2	0	1	5

 $=(100011)_{2}$

	Integer	Fraction	а
0.375 X2	0	0.75	-1
0.75 X2	1	0.5	-2
0.5 X2	1	0	

= (.011)

b.
$$(10110.0101)_2 = (22.3125)_{10}$$

$$(10110.0101)_2$$

$$= (1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (0 \times 2^0) + (0 \times 2^{-1}) + (1 \times 2^{-2})$$

7.

a.
$$10011 - 10001 = (00010)_2 = (2)_{10}$$

2's complement of: 10001

flip 01110

add + 1

01111

add + 10011

100010

rule 1: 00010

$$(00010)_2 = (2)_{10}$$

b.
$$100010 - 101011 = (0001001)_2 = -9$$

2's complement of : 101011

flip 010100

add + 1

010101

add + 100010

110111

= <u>0</u>110111

Rule 2: 2's complement of: 110111

filp: 001000

add: +

001001

Result =
$$(\underline{0}001001)_2 = (-9)_{10}$$

8.

a.
$$(+29)_{10} + (-49)_{10}$$

 $(29)_{10} = (0011101)_2$
 $(49)_{10} = (0110001)_2$

In 8 bit CPU:

```
(+29) = 0.0011101
        (-49) = 11001111  (2's complement of 0110001 = 1001110 + 1 = 1001111)
       00011101 + 1100111 = 11101100 = -1101100
       2's complement of:
                                 1101100 = 0010011 + 1 = 0010100
       Result: (-0010100)_2 = (-20)_{10}
b. (-29)_{10} + (-49)_{10}
       In 8-bit CPU:
       (-29) = 1 \ 1100011 \ (2's \ complement of 0011101 = 1100010 + 1 = 1100011)
       (-49) = 1 1001111  (from 8(a))
       11100011 + 11001111 = 110110010 = 10110010 = -0110010
       2's complement of : 0110010 = 1001101 + 1 = 1001110
       Result: (-1001110)_2 = (-79)_{10}
9.
   a. Unsigned binary format
       10110110 = (1 \times 2^7) + (0 \times 2^6) + (1 \times 2^5) + (1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2)
                     + (1 \times 2^{1}) + (0 \times 2^{0})
                  = 128 + 0 + 32 + 16 + 0 + 4 + 2 + 0
                  = 182
       (10110110)_2 = (182)_{10}
b. Signed 1's complement format
       10110110 in 8 bit CPU
       = 1 0110110 = -0110110
       1's complement of: 0110110 = 1001001
       (1001001)_2 = 2^6 + 0 + 0 + 2^3 + 0 + 0 + 2^0 = 64 + 8 + 1 = (73)_{10}
       Result = (-1001001)_2 = (-73)_{10}
c. Signed 2's complement format
       10110110 in 8 bit CPU
       = <u>1</u> 0110110 = -0110110
       2's complement of: 0110110 = 1001001 + 1 = 1001010
       (1001010)_2 = 2^6 + 0 + 0 + 2^3 + 0 + 2^1 + 0 = 64 + 8 + 2 = (74)_{10}
       Result = (-1001010)_2 = (-74)_{10}
```

d. BCD format

 $(10110110)_2 = (182)_{10}$ (from 9.a)= $(0001\ 1000\ 0010)_{BCD}$ In 8-bit CPU: $(000110000010)_{BCD} = (1000\ 0010)_{BCD} = (82)_{10}$