# Il teorema di Cauchy-Kowalevski e le sue conseguenze

Candidato: Alessandro Pedone, Relatore: Prof. Maurizio Grasselli

Politecnico di Milano

24 settembre 2024



### Indice

- 1 Introduzione
- 2 Strumenti fondamentali
- 3 Versione invariante
- Esempi
- 5 Versioni alternative
- 6 Applicazioni



# Sofya Vasilyevna Kovalevskaya (1850-1891)

Diamo per nota la figura storica di Augustin-Louis Cauchy. Kowalevski è stata:

- una matematica russa allieva di Weierstrass
- la **prima donna** a conseguire un dottorato (3 tesi risalenti al 1874) e a ottenere una cattedra in Europa (in matematica)

- Una biografia accurata: Little Sparrow: A Portrait of Sophia Kovalevsky (1983), Don H. Kennedy
- Un racconto breve: Too Much Happiness (2009), Alice Munro

## Domande guida

E' possibile che esista una soluzione analitica di un sistema di EDP con condizioni di Cauchy?

- sotto quali ipotesi?
- la soluzione è unica?
- il problema è ben posto?
- quali conseguenze hanno risultati i ottenuti?

# Tipologie di equazioni (e operatori)

### Equazioni di ordine k:

| Lineare          | $\sum_{ \alpha  \le k} a_{\alpha} D^{\alpha} u = f$                                   |
|------------------|---------------------------------------------------------------------------------------|
| Quasi-lineare    | $\sum_{ \alpha =k} a_{\alpha}(x, D^{\beta}u) D^{\alpha}u + a_{0}(x, D^{\beta}u) = f,$ |
|                  | $ \beta  < k$                                                                         |
| Non-lineare      | $F(x, D^{\alpha}u) = 0,   \alpha  \le k$                                              |
| In forma normale | $D_t^k u = G(x, t, D_x^{\alpha} D_t^j u),  \alpha  + j \le k, j < k$                  |

### Strumenti

- Superfici caratteristiche
- Metodo delle caratteristiche
- Problemi di Cauchy
- Serie di potenze



## Superfici caratteristiche per op. lineari

L operatore differenziale lineare.

#### Definizione 2.1

Forma caratteristica di L:

$$\chi_L(x,\xi) = \sum_{|\alpha|=k} a_{\alpha}(x) \, \xi^{\alpha} \quad \text{con} \quad x,\xi \in \mathbb{R}^n$$

### Definizione 2.2

Varietà caratteristica di L in x:

$$char_x(L) = \{ \xi \neq 0 : \chi_L(x, \xi) = 0 \}$$



#### Definizione 2.3

 $\Gamma$  superficie caratteristica per L in  $x \iff \nu(x) \in \operatorname{char}_x(L)$ 

### Osservazione

Caso di operatore del 1° ordine:  $A = (a_1, \ldots, a_n)$  tangente a  $\Gamma$ . Utile per generalizzazioni successive.

## Significato

$$\xi \in \operatorname{char}_x(L)$$

in x L non è "propriamente" di ordine k nella direzione  $\xi$ .

 $\Gamma$  non caratteristica

date su  $\Gamma$   $D^i_{\nu}u$  (i < k) di una soluzione u è possibile calcolare tutte le sue derivate parziali su  $\Gamma$ .

# Op. quasi-lineari 1° ordine

- $\bullet$   $\gamma(s): \mathbb{R}^{n-1} \to \mathbb{R}^n$  parametrizzazione locale di  $\Gamma$
- $\mathbf{u} = \phi \text{ su } \Gamma \text{ dato di Cauchy}$

#### Definizione 2.4

 $\Gamma$  non caratteristica in  $x_0 = \gamma(s_0)$ 

$$\iff \det \underbrace{\begin{bmatrix} D_{s_1} \gamma_1 & \cdots & D_{s_{n-1}} \gamma_1 \\ \vdots & & \vdots \\ D_{s_1} \gamma_n & \cdots & D_{s_{n-1}} \gamma_n \end{bmatrix}}_{\text{span del piano tangente}} \underbrace{a_1(\gamma, \phi(\gamma))}_{a_1(\gamma, \phi(\gamma))} (s_0) \neq 0$$

### Metodo delle caratteristiche

I problemi seguenti <sup>1</sup> sono **equivalenti**.

EDP: 
$$\begin{cases} \sum a_j(x, u) D_{x_j} u = b(x, u) \\ u = \phi \text{ su } \Gamma \end{cases}$$
 (1)

EDO: 
$$\begin{cases} D_t x = A(x, y)^2 \\ D_t y = b(x, y) \\ x(0) = x_0 \\ y(0) = \phi(x_0) \quad \forall x_0 \in \Gamma \end{cases}$$
 (2)

Dove y = u(x) e  $A(x, y) = [a_1(x, y), \dots, a_n(x, y)].$ 

<sup>&</sup>lt;sup>1</sup>si può generalizzare al caso non lineare (1° ordine!)

 $<sup>^2</sup>$ le soluzioni x vengono dette  $\mathit{curve}\ \mathit{caratteristiche} \mapsto \langle \neg \rangle \mapsto \langle \neg \rangle \mapsto \langle \neg \rangle$ 

#### Teorema 2.1

| Ipotesi | Problema (1) $a_j, b, \phi, \Gamma \in C^1$ $\Gamma$ non caratteristica |
|---------|-------------------------------------------------------------------------|
| Tesi    | $\exists ! \text{ soluzione } C^1 \text{ in un interno di } \Gamma$     |
| Dim     | sfruttando il teorema di esistenza<br>e unicità locale per EDO          |

- Spesso utilizzato quando la superficie dei dati **non** è un bordo.
- Necessita anche le **derivate normali**  $(D^j_{\nu}u)$  della soluzione sulla superficie per determinarla univocamente.
- Porta con sé il rischio di essere sovradeterminato (buono per l'unicità e meno per l'esistenza della soluzione).

## Problema generale

$$\begin{cases} F^*(x, D^{\alpha}u^*) = 0 & |\alpha| \le k, \ F^* \text{ almeno } C^1 \\ D^j_{\nu}u^* = \phi^*_j & \text{su } \Gamma^* \text{ per } j < k \end{cases}$$

## Mappatura in t = 0

Detta  $\gamma^*$  la parametrizz. locale di  $\Gamma^*$ , applichiamo la mappa:

$$\Phi(x) = [x_1 \quad \cdots \quad x_{n-1} \mid x_n - \gamma^*(x_1, \dots, x_{n-1})]$$



 ${\it L.~C.~Evans,~Partial~Differential~Equations}$ 



I Selezioniamo una variabile privilegiata e chiamiamola "tempo":

$$t \leftarrow x_n \\ x \leftarrow (x_1, \dots, x_{n-1})$$

- Chiamiamo  $\Gamma_0 = \{t = 0\}.$
- Indichiamo le derivate nel modo seguente:  $D_x^{\alpha} D_t^{j} u$ .
- Otteniamo il problema  $(u^* = u(\Phi))$ :

$$\begin{cases} F(x, t, D_x^{\alpha} D_t^j u) = 0 & |\alpha| + j \le k \\ D_t^j u(x, 0) = \phi_j(x) & \text{per } j < k \end{cases}$$



## Superfici non caratteristiche in generale

#### Definizione 2.5

 $\Gamma^*$  (o  $\Gamma_0$ ) è non caratteristica  $\iff$  l'equazione su  $\Gamma_0$  può essere riscritta in **forma normale** rispetto a t.

### Osservazione

Si dimostra che è coerente con le definizioni precedenti.

#### Osservazione

- $\blacksquare$  Caso lineare  $\rightarrow$  condizione sui coefficienti.
- lacktriangle Caso non lineare o validità ipotesi teorema del Dini su F.



## Serie di potenze notevole

#### Definizione 2.6

Funzione maggiorante:

$$\mathcal{M}_{Cr}(x) = \frac{Cr}{r - (x_1 + \dots + x_n)}$$

#### Osservazione

Per il teorema multinomiale se |x| < r/n si ha che

$$\frac{Cr}{r - (x_1 + \ldots + x_n)} = C \sum_{\alpha} \frac{|\alpha|!}{\alpha! \, r^{|\alpha|}} x^{\alpha}.$$



## Metodo dei maggioranti

## Teorema 2.2 (utilità del maggiorante)

$$\begin{cases} g_{\alpha} \geq |f_{\alpha}| \\ \sum g_{\alpha} x^{\alpha} \text{ ha raggio di conv. } R \end{cases} \implies \begin{cases} \sum f_{\alpha} x^{\alpha} \\ \text{ha raggio almeno } R \end{cases}$$

In questo caso si scrive:  $\sum g_{\alpha}x^{\alpha} \gg \sum f_{\alpha}x^{\alpha}$ .



 $\sum f_{\alpha} x^{\alpha}$  ha raggio  $R \implies \exists r < R, C > 0$  tali che

$$|f_{\alpha}| \le C \frac{1}{r^{|\alpha|}} \le C \frac{|\alpha|!}{\alpha! \, r^{|\alpha|}}$$



# Schema dell'approccio

Seguendo l'ordine cronologico di scoperta procediamo per generalizzazioni progressive:

Versione invariante •0000000000000

- EDO
- EDP quasi-lineari
- 3 EDP in forma normale

localmente esiste un'unica soluzione olomorfa

### EDO

#### Teorema 3.1

Ipotesi

Tesi

$$A \subseteq \mathbb{C}, B \subseteq \mathbb{C}^n \text{ aperti}$$
 $\Omega \subseteq A \text{ aperto connesso}$ 
 $f: A \times B \to \mathbb{C}^n \text{ olomorfa}$ 

$$\text{Pb: } \begin{cases} y' = f(x, y) & \forall x \in \Omega \\ y(x_0) = y_0 \end{cases}$$

#### Teorema 3.2

Ipotesi del teorema precedente 
$$\exists \overline{B_a(x_0)} \subseteq A, \ \overline{B_b(y_0)} \subseteq B$$
 Tesi La soluzione converge almeno con raggio<sup>3</sup> 
$$\widetilde{r} = a \left[ 1 - \exp\left(-\frac{b}{aM(n+1)}\right) \right]$$



 $<sup>^{3}</sup>M = \max_{B_{a}(x_{0}), B_{b}(y_{0})} |f|$ 

### Teorema 3.3

Ipotesi 
$$\begin{cases} A_j, \ B \text{ analitici} \\ \text{Pb: } \begin{cases} D_t \ y = \sum\limits_{j=1}^{n-1} A_j(x,y) D_{x_j} y + B(x,y) \\ y = 0 \quad \text{su } \Gamma_0 \end{cases}$$
Tesi 
$$\begin{cases} \exists! \ y(x,t) : \mathbb{R}^n \to \mathbb{R}^m \text{ sol. analitica} \\ \text{in intorno dell'origine} \end{cases}$$

Versione invariante 0000000000000

### Dimostrazione

- I ipotizziamo  $y_h = \sum c_h^{\alpha j} x^{\alpha} t^j$
- 2 inserendo le serie di y,  $A_i$ , B si ottiene che:

$$c_h^{\alpha j} = Q_h^{\alpha j}$$
 (coeff. delle serie di  $A_j, B$ )

Q polinomio a coefficienti non negativi

- $\widetilde{A}_i \gg A_i$ ,  $\widetilde{B} \gg B \implies \widetilde{y} \gg y$  grazie a Q
- 4 si scelgono  $\widetilde{A}_i$ ,  $\widetilde{B}$  in modo da poter calcolare esplicitamente  $\widetilde{y}$  analitica con il metodo delle caratteristiche



### Come sappiamo già fare, maggioriamo le serie con

$$\mathcal{M}_{Cr}(x,y) \gg A_j, B$$

e risolviamo il problema<sup>4</sup>:

$$\begin{cases} D_t \, \widetilde{y}_h = \mathcal{M}_{Cr} \left[ \sum_{i,j} D_{x_j} \widetilde{y}_i + 1 \right] \\ \widetilde{y}_h = 0 \quad \text{su } \Gamma_0 \end{cases}$$



 $<sup>^{4}</sup>$ con h = 1, ..., m

Il sistema precedente ha come soluzione:

$$\widetilde{y}_h(x,t) = u(x_1 + \dots + x_n, t) \quad \forall h$$

con

$$u(s,t) = \frac{r - s - \sqrt{(r-s)^2 - 2tCrmn}}{mn},$$

di cui possiamo studiare il raggio di convergenza.



## Stima del raggio di convergenza

#### Teorema 3.4

La soluzione del teorema 3.3 converge con raggio almeno

$$\widetilde{r} = \frac{1}{n-1} \frac{r}{8Cmn} \text{ con } C \ge \frac{1}{2}$$

Osserviamone l'andamento<sup>5</sup> rispetto a r, sapendo che:

 $r < \min\{raggi\ di\ conv.\ dei\ coefficienti\ a_{ml}^{j},\ b_{m}\}$ 

$$C \ge \max \left\{ \frac{\max\limits_{j,m,l,\alpha} \left| a_{ml}^{j} \, r^{|\alpha|} \right|}{\max\limits_{m,\alpha} \left| b_{m} \, r^{|\alpha|} \right|} \right\}$$



<sup>&</sup>lt;sup>5</sup> trade-off Cr

### EDP in forma normale

#### Teorema 3.5

I due problemi seguenti sono equivalenti

$$\begin{array}{ll} \text{non lineare} : \begin{cases} D_t^k u = G(x,t,D_x^\alpha D_t^j u) & |\alpha|+j \leq k,\, j < k \\ D_t^j u = \phi_j & \text{su } \Gamma_0,\, j < k \end{cases} \\ \text{quasi-lineare} : \begin{cases} D_t \, y = \sum\limits_{j=1}^{n-1} A_j(x,y) D_{x_j} y + B(x,y) \\ y = 0 & \text{su } \Gamma_0 \end{cases} \end{array}$$

### Dimostrazione

I Si costruisce il sistema in modo tale che  $y_{\alpha j} = D_x^{\alpha} D_t^{j} u$ 



Le matrici  $A_i$  e B saranno quindi ricavabili dalle espressioni<sup>6</sup>:

$$D_t y_{\alpha j} = y_{\alpha(j+1)} \qquad |\alpha| + j < k$$

$$D_t y_{\alpha j} = D_{x_i} y_{(\alpha-1_i)(j+1)} \qquad |\alpha| + j = k, \ j < k$$

$$D_t y_{0k} = D_t G + \sum_{|\alpha|+j < k} D_{y_{\alpha j}} G y_{\alpha(j+1)}$$

$$+ \sum_{|\alpha|+j=k, \ j < k} D_{y_{\alpha j}} G D_{x_i} y_{(\alpha-1_i)(j+1)}$$

I dati di Cauchy saranno invece:

$$y_{\alpha j}(x,0) = D_x^{\alpha} \phi_j(x)$$
  $j < k$   
$$y_{0k}(x,0) = G(x,0,D_x^{\alpha} \phi_j(x))$$
  $|\alpha| + j \le k, j < k$ 



 $<sup>^{6}</sup>i(\alpha) = \min\{i : \alpha \neq 0\}$ 

- 2 rimozione  $\phi: y(x,t) \leftarrow y(x,t) \phi(x)$
- rimozione t: si aggiunge la variabile  $y^0 = t$  (con relativa equazione)

## Versione "olomorfa"

Come nel caso delle EDO tutto si estende in modo immediato al caso complesso assumendo i dati olomorfi.



### Rispondiamo ora alle domande con tre esempi:

- e. di Lewy: importanza dell'analiticità
- e. di Kowalevski: importanza della non-caratteristicità
- e. di Hadamard: il problema potrebbe non essere ben posto

# Esempio di Lewy

#### Definizione 4.1

$$\mathcal{L} = D_x + iD_y - 2i(x+iy)D_t$$

è detto operatore di Lewy.



#### Teorema 4.1

f funzione continua a valori reali Ipotesi che dipende solo da t $u \in C^1$ :  $\mathcal{L}u = f$  in un intorno dell'origine Tesi f analitica in un intorno di t=0Dim Principio di riflessione di Schwarz

L'enunciato precedente può essere generalizzato nel modo seguente:

### Teorema 4.2

Ipotesi 
$$A \subseteq \mathbb{R}^3$$
 aperto 
$$\exists F \in C^{\infty}(\mathbb{R}^3, \mathbb{R}) : \nexists u \in C^1(A, \mathbb{R})$$
 tale che 
$$\begin{cases} \mathcal{L}u = F \text{ in } A \\ u_x, u_y, u_t \text{ soddisfano la condizione di H\"older} \end{cases}$$

### Dimostrazione

- 1 Traslare il problema del teorema precedente in modo da ricondursi al caso di un generico punto  $(x_0, y_0, t_0)$ , usando come forzante la funzione  $g(x, y, t) = f(t - 2xy_0 + 2x_0y)$ .
- 2 Costruire con una serie una funzione  $S_a \in C^{\infty}$  per ogni  $a \in l^{\infty}$
- 3 Costruire degli insiemi  $E_{i,n} \subseteq l^{\infty}$  chiusi e senza parte interna sfruttando  $S_a$  e il teorema di Ascoli-Arzelà.
- 4 Concludere la dimostrazione del nuovo teorema utilizzando i lemmi appena citati per ricavare, con un ragionamento per assurdo, l'uguaglianza  $l^{\infty} = \bigcup E_{i,n}$ , grazie alla quale si può applicare l'argomento di Baire.



# Esempio di Kowalevski

Questo problema non ammette soluzioni<sup>7</sup> analitiche in un intorno dell'origine:

$$\begin{cases} u_t - u_{xx} = 0 \\ u(x,0) = \frac{1}{1+x^2} \quad \forall x \in \mathbb{R} \end{cases}$$

Osservazione

La superficie è caratteristica!



<sup>&</sup>lt;sup>7</sup>dimostrazione per assurdo

## Esempio di Hadamard

Il problema

$$\begin{cases} u_{xx} + u_{yy} = 0 \\ u(x,0) = 0 \\ u_y(x,0) = n\sin(nx)e^{-\sqrt{n}} \text{ con } n \in \mathbb{N} \end{cases}$$

ha come soluzione

$$u_n(x,y) = \sin(nx)\underbrace{\sinh(ny)e^{-\sqrt{n}}}_{n\to\infty}.$$



## Versioni alternative

Versione astratta (classi di Ovsyannikov)

Versione classica (simile a esistenza e unicità locale per EDO)



Versione invariante (superfici non caratteristiche)



### Teorema 5.1

$$\overline{\mathcal{O}}_0 \subseteq \mathcal{O}_1 \subseteq \mathbb{C}^n \text{ aperti connessi limitati}$$
 
$$A_j, f, y_0 \text{ olomorfi in } z$$
 
$$A_j, f \text{ continui in } t$$
 
$$\text{Pb: } \begin{cases} D_t y = \sum A_j(z,t) D_{z_j} y + A_0(z,t) y + f(z,t) \\ y(z,0) = y_0(z) \end{cases}$$
 
$$\exists \delta \in (0,T) : \exists ! y \text{ sol. per } |t| < T$$
 
$$- \text{ olomorfa in } z$$
 
$$- C^1 \text{ in } t \qquad \rightarrow (\neq \text{Holmgren})$$

# Conseguenze

Le conseguenze di questo teorema si osservano in vari campi, tra cui i principali sono:

- teoria delle equazioni differenziali
- fisica matematica: emersione di numerose domande (cosa succede nella realtà se esiste una sol. analitica locale?)
- geometria differenziale
- teoria economica



## Impatto sulla teoria delle equazioni differenziali:

- confutare la congettura di Weierstrass
- teorema di Holmgren
- ricerca di condizioni necessarie e/o sufficienti per l'esistenza di soluzioni locali di Treves e Nirenberg
- teoria degli operatori differenziali lineari di Hörmander



Risultato di unicità delle soluzioni per EDP lineari.

Osservazione

Il teorema di Cauchy-Kowalevski non esclude l'esistenza di altre soluzioni che non sono analitiche!

$$\begin{array}{c|cccc} CK & \text{astratto} & \Longrightarrow & \text{classico} & \Longrightarrow & \text{invariante} \\ & & & & & \\ H & \text{astratto} & \Longrightarrow & \text{classico} & \Longrightarrow & \text{invariante} \\ \end{array}$$

### Versione astratta

Una qualsiasi equazione lineare può essere ridotta a un sistema del 1° ordine. Ci concentriamo su questo caso.

#### Teorema 6.1

## Versione classica

### Teorema 6.2

$$\begin{array}{c|c}
\Omega \subseteq \mathbb{R}^n \text{ aperto} \\
A_j \text{ analitici} \\
y \in C^1(\Omega \times (-T,T)) : \\
\begin{cases}
D_t y = \sum A_j(x,t) D_{x_j} y + A_0(x,t) y \\
y = 0 \text{ per } t = 0
\end{array}$$
Tesi
$$\begin{array}{c|c}
y = 0 \text{ in un intorno di } \Omega \times \{0\}$$

## Dimostrazione

E' un'applicazione della versione astratta alla funzione

$$\widetilde{y}(x,t) = H(t)\,y(x,t),$$

la quale soddisfa sempre un sistema della stessa tipologia.



### Teorema di Cartan-Kähler

Un teorema molto importante in geometria differenziale:

- sull'integrabilità di sistemi differenziali esterni (exterior  $differential\ systems)$
- che si dimostra utilizzando il teorema di Cauchy-Kowalevski
- che ha un'applicazione al campo economico (I. Ekeland, P.A. Chiappori)



Citando Ekeland a riguardo del paper scritto nel 1999 insieme a Chiappori:

Questo articolo risolve un problema di base nella teoria economica, che era rimasto aperto per trent'anni, ovvero la caratterizzazione delle funzioni di domanda di mercato. Il metodo di dimostrazione consiste nel ridurre il problema a un sistema di equazioni differenziali alle derivate parziali non lineari, per il quale si cercano soluzioni convesse. Questo viene riscritto come un sistema differenziale esterno e viene risolto mediante il teorema di Cartan-Kähler, insieme ad alcune manipolazioni algebriche per ottenere la convessità.

### Nonostante la ricerca condotta in quegli anni

- non fosse guidata da applicazioni immediate
- portò a risultati **deludenti** rispetto alle aspettative di Cauchy e Weierstrass

ha avuto un impatto gigantesco grazie alla comprensione delle soluzioni di sistemi di EDP che ci ha permesso di raggiungere. In conclusione, una citazione sul rapporto tra Weierstrass e Kowalevski:

Era una vita - gli costava dirlo, come ebbe ad ammettere, perché si era sempre quardato dagli eccessivi entusiasmi -, era una vita che aspettava di veder entrare nel suo studio un allievo del genere. Un allievo in grado di lanciargli una sfida assoluta, di non seguire soltanto il percorso spericolato della sua mente, ma se possibile di spiccare un volo più alto.

— Alice Munro, Too Much Happiness

