Université Saclay-Paris-Sud

Feuille de TD 5

M303

Exercice 1. 1. Montrer que l'ensemble

$$\{a^2 + b^2 + c^2 \in \mathbb{Z}/8\mathbb{Z} \mid a, b, c \in \mathbb{Z}/8\mathbb{Z}\}\$$

est strictement contenu dans $\mathbb{Z}/8\mathbb{Z}$.

2. En déduire qu'il existe une infinité d'entiers n'étant pas somme de 3 carrés.

Exercice 2. Résoudre l'équation $n^{13} \equiv n \mod 1365$ en entiers.

Exercice 3. Calculer 10^{10^n} modulo 7 pour tout entier $n \in \mathbb{N}$.

Exercice 4. Trouver tous les x dans \mathbb{Z} vérifiant simultanément $3x - 10 \in 7\mathbb{Z}$, $11x + 8 \in 17\mathbb{Z}$ et $16x - 1 \in 5\mathbb{Z}$.

Exercice 5. Résoudre le système de congruences simultanées :

$$\begin{cases} 14x \equiv 7 \pmod{1789} \\ 18x \equiv 6 \pmod{1940} \end{cases}$$

Exercice 6. Soient p et ℓ deux nombres premiers.

- 1. Montrer qu'il existe un élément d'ordre ℓ dans $(\mathbb{Z}/p\mathbb{Z})^{\times}$ si et seulement si p-1 est un multiple de ℓ . Dans ce cas, combien de solutions y a-t-il ?
- 2. On suppose p impair. Montrer que l'équation $x^2 + x + 1 = 0$ a une solution dans $\mathbb{Z}/p\mathbb{Z}$ si et seulement si l'équation $x^2 + 3 = 0$ a une solution dans $\mathbb{Z}/p\mathbb{Z}$.
- 3. On suppose $p \geq 5$. Montrer que -3 est un carré dans $\mathbb{Z}/p\mathbb{Z}$ si et seulement si $p \equiv 1 \mod 3$.

Exercice 7. Pour tout ensemble fini E, on note $\operatorname{Card} E$ le nombre d'éléments de E. Dans tout cet exercice, p est un nombre premier impair et l'on note $\mathbb{F}_p := (\mathbb{Z}/p\mathbb{Z}, +, *)$ le corps à p éléments.

- 1. Montrer que l'on définit bien des morphismes du groupe $(\mathbb{F}_p^{\times},*)$ par $\chi(x):=x^2$ et $\lambda(x):=x^{\frac{p-1}{2}}$ pour tout $x\in\mathbb{F}_p^{\times}$.
- 2. (a) Pour tout $x \in \mathbb{F}_p^{\times}$, calculer

$$\chi \circ \lambda(x)$$
 et $\lambda \circ \chi(x)$.

(b) En déduire que

$$\operatorname{Im} \lambda \subset \operatorname{Ker} \chi \operatorname{et} \operatorname{Im} \chi \subset \operatorname{Ker} \lambda.$$

- 3. (a) Pour tout polynôme P de degré d, à coefficients dans \mathbb{F}_p , donner, en justifiant brièvement votre réponse, un majorant du nombre de racines de P dans \mathbb{F}_p .
 - (b) En déduire que

$$\operatorname{Card} \operatorname{Ker} \chi = 2 \operatorname{et} \operatorname{Card} \operatorname{Ker} \lambda \leq \frac{p-1}{2}.$$

(c) Montrer finalement que

$$\operatorname{Im} \chi = \operatorname{Ker} \lambda .$$

- 4. Déduire de ce qui précède que -1 est un carré modulo p si et seulement si $p \equiv 1 \pmod{4}$.
- 5. Montrer qu'il existe une infinité de premiers p tels que -1 est un carré modulo p. Indication : Par l'absurde on pourra considérer un p maximal, et choisir un diviseur premier de $(p!)^2 + 1$.

Exercice 8. Soit p un nombre premier et m un entier. Calculer

$$\sum_{x \in \mathbb{Z}/p\mathbb{Z}} x^m.$$

Exercice 9. Calculer $\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^{20212022}$