12

LISTING OF THE CLAIMS:

The following is a complete listing of all the claims in the application, with an indication of the status of each:

1. (Currently amended) A distributed method for processing auction traffic using one or 1 more servers at a plurality of nodes in a distributed processing system comprising the 2 3 steps of: using a computer implemented current local winner determination method at each 4 of the nodes to identify loser bids and candidate winning bids; and 5 using a computer implemented current global winner determination method to 6 determine from the candidate winning bids from each of the nodes a current set of 7 8 winners. 2. (Original) The method of claim 1, wherein the auction is an open-cry auction. 1 3. (Previously presented) A distributed method for processing open-cry auction traffic 1 using one or more servers at a plurality of nodes in a distributed processing system 2 comprising the steps of: 3 using a current local winner determination method at each of the nodes to identify 4 loser bids and candidate winning bids, wherein the current local winner determination 5 method comprises the steps of: 6 (a) receiving a new bid(v,q) at a node, where v denotes the price per unit and q 7 denotes the quantity desired; 8 (b) checking to see if the new bid ranks in the top |N/q| bids, in terms of price/unit 9 bid value, amongst all the bids asking for quantity q whose information is 10 available to this process, where N is a number of copies of a single item on 11

sale and |x| stands for the greatest integer less than or equal to x;

13	(c) taking the new bid along with the set of $\lfloor N/q \rfloor$ bids that have been processed
14	and determining a new set of top $\lfloor N/q \rfloor$ bids;
15	(d) determining if bid(v,q) is in the top $\lfloor N/q \rfloor$ bids and, if it is not, declaring it a
16	loser bid, but if so, declaring it a candidate bid; and
17	using a current global winner determination method to determine from the
18	candidate winning bids from each of the nodes a current set of winners.
1 .	4. (Original) The method of claim 3, further comprising the steps of:
2	holding the candidate bid at the node for a time, τ ; and
3	if by time τ , through an arrival of another bid, a candidate bid loses its position
4	amongst the top $\lfloor N/q \rfloor$ highest bids, declaring the bid a loser bid;
5	otherwise, declaring the bid a winner candidate and making the bid accessible for
6	further processing by the current global winner determination method.
1	5. (Currently amended) The method of claim 4, wherein the current global winner
2	determination method comprises the steps of:
3	receiving new candidate winning bid from a node $bid(v,q)$;
4	taking the candidate winning bid along with the set of all bids that have been
5 .	processed and determines determining a new set of winners;
6	determining whether the new candidate $bid(v,q)$ is a winner or a loser, and
7	notifying the bidder of $bid(v,q)$ as to whether they are a winner or loser.
1	6. (Previously presented) A distributed method for processing open-cry auction traffic
2	using one or more servers at a plurality of nodes in a distributed processing system
3	comprising the steps of:
4	using a current local winner determination method at each of the nodes to identify
5	loser bids and candidate winning bids, wherein the current local winner determination
6	method comprises the steps of:

7	(a) receiving a new $bid(v,q)$ at a node, where v denotes the price per unit and q
8	denotes the quantity desired;
9	(b) considering a set of bids using a set of pre-specified auction rules and selecting
. 10	winners for auctioning $N+x$ copies of the item on sale; and
11	(c) determinating whether the $bid(v,q)$ is a candidate winner bid; and
12	using a current global winner determination method to determine from the
13	candidate winning bids from each of the nodes a current set of winners.
1	7. (Currently amended) The method of claim 6, wherein the current global winner
2	determination method comprises the steps of:
3	receiving new candidate winning bid from a node $bid(v,q)$;
4	taking the candidate winning bid along with the set of all bids that have been
5	processed and determines determining a new set of winners;
6	determining whether the new candidate $bid(v,q)$ is a winner or a loser; and
7	notifying the bidder of $bid(v,q)$ as to whether they are a winner or loser.
1	8. (Original) The method of claim 1, wherein the auction is a descending auction.
1	9. (Previously presented) A distributed method for processing descending auction traffic
2	using one or more servers at a plurality of nodes in a distributed processing system
3	comprising the steps of:
4	using a current local winner determination method at each of the nodes to identify
5	loser bids and candidate winning bids, wherein the current local winner determination
6	method comprises the steps of:
7	(a) receiving a bid (q) for processing, where q is the quantity desired at going
8	price p;
9	(b) determinating whether the bid is in the first $\lfloor R/q \rfloor$ bids, asking for quantity q at
10	price p, where $\lfloor x \rfloor$ stands for the greatest integer less than or equal to x and

11	R is a currently remaining quantity on auction;
12	(c) if the bid is in the first $\lfloor R/q \rfloor$ bids, asking for quantity q at the going price p,
13	then declaring the bid a candidate winner bid; and
14	(d) making the candidate winner bid available for further processing by the current
15	global winner determination method; and
16	using a current global winner determination method to determine from the
17	candidate winning bids from each of the nodes a current set of winners.
1	10. (Original) The method of claim 9, further comprising the steps of:
2	giving bids processed by the method a time stamp of arrival; and
3	determining whether the time stamp, if it exists on the bid, is greater than or equal
4	to the time stamp of any bid, asking for quantity q at going price p , that has been
5	processed by the method in the past.
1	11. (Previously presented) The method of claim 1, wherein bidders submit multi-item
2	bids and the bids may be indivisible.