Genes for cooperation are not more likely to be carried by plasmids Supplementary Material 1

Abstract

This document contains full details of all our analyses. It is also available to download as both an R markdown file and an R script, to enable full access to all our code. Data and phylogeny files are also provided.

Contents

1	All	model	s & results	2		
	1.1	Genes	for cooperation are not more likely to be carried on plasmids	2		
		1.1.1	MCMCglmm with supertree phylogeny	2		
		1.1.2	MCMCglmm with GTDB phylogeny	2		
		1.1.3	MCMCglmm with GTDB phylogeny (individual genome level) $\ \ldots \ \ldots \ \ldots \ \ldots$	2		
	1.2	Chron	nosomes carry the vast majority of genes for cooperation	3		
		1.2.1	Genes coding for cooperative $\&$ non-cooperative traits on plasmids $\&$ chromosomes	3		
		1.2.2	Proportion of genes carried on plasmid(s) in an average genome	4		
		1.2.3	Proportion of genes coding for cooperative traits in an average genome	4		
		1.2.4	Proportion of genes for cooperative traits carried on plasmid(s)	5		
	1.3	Influe	nce of including other kinds of genes for cooperative traits	5		
		1.3.1	Genes coding for extracellular proteins	5		
		1.3.2	Genes with a cooperative functional annotation	5		
		1.3.3	Genes which are part of a cooperative secondary metabolite cluster	5		
2	Sup	pleme	ntary figures	8		
	2.1 Additional data figure					
	2.2	Phylo	genies	9		
		2.2.1	Supertree	9		
		2.2.2	GTDB tree	10		
3	Spe	cies ta	able	11		

1 All models & results

1.1 Genes for cooperation are not more likely to be carried on plasmids

1.1.1 MCMCglmm with supertree phylogeny

First, we tested whether plasmid(s) had a proportion of genes coding for cooperative traits compared to chromosome(s). We calculated the difference in plasmid and chromosome proportion for each genome, and then calculated the mean for each species. We then used a MCMCglmm analysis to examine this mean difference across species, controlling for phylogenetic relationships between species.

We found that across species, chromosome(s) had a higher proportion of genes coding for cooperative traits compared to plasmid(s).

Table S1: Results from the above MCMCglmm with species' mean difference in plasmid and chromosome proportion of genes coding for cooperative traits as the response variable and phylogeny as a random effect.

	post.mean	l-95% CI	u-95% CI	eff.samp	pMCMC	signif.
(Intercept)	-0.06638	-0.1179	-0.01383	9700	0.0167	*
		d value				
	Ra	andom effect	0.4834			

1.1.2 MCMCglmm with GTDB phylogeny

We also did the same analysis for species as defined by the GTDB phylogeny. There were 4364 genomes for which we could identify a representative genome within the GTDB tree, comprising 284 species clusters. Of these, 132 had at least 10 corresponding genomes in our dataset. To make the analysis as analogous to our main model as possible, we first took the mean difference for those 132 species clusters and used a MCMCglm to compared this across species, while controlling for phylogeny using the GTDB tree.

We found very similar results to our main analysis: chromosomes carried a higher proportion of genes coding for cooperative traits compared to plasmids.

Table S2: Results from the above MCMCglmm with species' mean difference in plasmid and chromosome proportion of genes coding for cooperative traits as the response variable and phylogeny (GTDB tree) as a random effect.

	post.mean	l-95% CI	u-95% CI	eff.samp	pMCMC	signif.
(Intercept)	-0.06138	-0.115	-0.008094	9700	0.02825	*
		d value				
	Ra	andom effect	0.462			

1.1.3 MCMCglmm with GTDB phylogeny (individual genome level)

As an additional robustness check, we also analysed the difference in plasmid and chromosome proportion of genes coding for cooperative traits across all 4364 genomes with representatives in the GTDB tree. Because the data is now individual genomes, we controlled for both phylogenetic relationship between species clusters and also sample size within species clusters.

We again found that chromosomes carried a higher proportion of genes coding for cooperative traits compared to plasmids.

Table S3: Results from the above MCMCglmm with genome-level difference in plasmid and chromosome proportion of genes coding for cooperative traits as the response variable, and phylogeny (GTDB tree) and species name as a random effect.

	post.mean	l-95% CI	u-95%	CI	eff.samp	pMCMC	signif.		
(Intercept)	-0.0634	-0.1132	-0.0120	64	9373	0.0167	*		
					R-squared value				
	Random	effect: phy	logeny	0.2	670				
	Random effect: species			0.2	481				
	Total model			0.5	151				

1.2 Chromosomes carry the vast majority of genes for cooperation

1.2.1 Genes coding for cooperative & non-cooperative traits on plasmids & chromosomes

We first estimated the average number of genes coding for cooperative and non-cooperative traits. To do this, we first calculated the mean number of each kind of gene for each species, and then used an intercept-only MCMCglmm analysis to estimate the average number of genes while controlling for phylogenetic relationships across species. Below are the results for these MCMCglmm analyses.

Note: The variance across species in the number of genes on plasmids & chromosomes was very large. For this reason, the 95% Credible Intervals are inflated compared to if we were to calculate 1.96*SE of the data, which would be an approximate 95% Confidence Interval. These analyses are not designed as hypothesis tests (i.e. we are not examining whether a certain value is contained within the 95% Credible Interval), so we have instead reported Standard Error of the Means in the main text as a more meaningful value for the reader to assess variability in the data. Additionally, if you run the corresponding R code on your own computer, the exact values may vary slightly due to the stochasticity of MCMCglmm analyses.

Table S4: Results from the above MCMCglmm with species' mean number of genes coding for cooperative traits on plasmid(s) as the response variable and phylogeny as a random effect.

	post.mean	l-95% CI	u-95% CI	eff.samp	pMCMC	signif.
(Intercept)	5.599	-1.241	12.14	9807	0.09649	
			R-square	d value		
	Ra	andom effect	0.2886			

Table S5: Results from the above MCMCglmm with species' mean number of genes coding for non-cooperative traits on plasmid(s) as the response variable and phylogeny as a random effect.

	post.mean	l-95% CI	u-95% CI	eff.samp	pMCMC	signif.
(Intercept)	201.9	-60.99	456.8	9700	0.1153	
			R-square	d value		
Random effect		0.537				

Table S6: Results from the above MCMCglmm with species' mean number of genes coding for cooperative traits on chromosome(s) as the response variable and phylogeny as a random effect.

	post.mean	l-95% CI	u-95% CI	eff.samp	pMCMC	signif.
(Intercept)	86.86	-142	316	9326	0.4299	
			R-square	d value		
	R	andom effect	0.9945			

Table S7: Results from the above MCMCglmm with species' mean number of genes coding for non-cooperative traits on chromosome(s) as the response variable and phylogeny as a random effect.

	post.mean	l-95% CI	u-95% CI	eff.samp	pMCMC	signif.
(Intercept)	2748	-2251	8129	9700	0.2845	
		d value				
Random effect			0.9992			

1.2.2 Proportion of genes carried on plasmid(s) in an average genome

We also estimated the average proportion of genes in a bacterial genome that are carried on plasmid(s). We did this first by calculating the proportion per genome, and then taking the mean proportion for each species. We then examined this value across species using a MCMCglmm analysis controlling for phylogeny.

Table S8: Results from the above MCMCglmm with species' mean proportion of genes carried on plasmid(s) as the response variable and phylogeny as a random effect. We arcsine square-root transformed the proportions before analysis, and we then backtransformed the output of the MCMCglmm to a proportion.

	post.mean	l-95% CI	u-95% CI	eff.samp	pMCMC	signif.
(Intercept)	0.0422	0.0125	0.0907	9700	0.001237	**
			R-square	d value		
	Ra	andom effect	0.6503			

1.2.3 Proportion of genes coding for cooperative traits in an average genome

We also estimated the average proportion of genes in a bacterial genome that coded for cooperative traits. We did this first by calculating the proportion per genome, and then taking the mean proportion for each species. We then examined this value across species using a MCMCglmm analysis controlling for phylogeny.

Table S9: Results from the above MCMCglmm with species' mean proportion of genes coding for cooperative traits as the response variable and phylogeny as a random effect. We arcsine square-root transformed the proportions before analysis, and we then backtransformed the output of the MCMCglmm to a proportion.

	post.mean	l-95% CI	u-95% CI	eff.samp	pMCMC	signif.
(Intercept)	0.028	0.0096	0.0556	9857	0.0004124	***
			R-square	ed value		
	R	andom effec	t 0.9659			

1.2.4 Proportion of genes for cooperative traits carried on plasmid(s)

We also estimated the average proportion of genes for cooperative traits which are carried on plasmid(s). As above, we first calculated the proportion for each genome, and then calculated the mean proportion for each species. We examined this across species using a MCMCglmm controlling for phylogeny.

Table S10: Results from the above MCMCglmm with species' mean proportion of genes for cooperative traits carried on plasmid(s) as the response variable and phylogeny as a random effect. We arcsine square-root transformed the proportions before analysis, and we then backtransformed the output of the MCMCglmm to a proportion.

	post.mean	l-95% CI	u-95% CI	eff.samp	pMCMC	signif.
(Intercept)	0.0217	0.0031	0.0586	10009	0.00433	**
			R-square	d value		
Random effect			0.5429			

1.3 Influence of including other kinds of genes for cooperative traits

We compared the plasmid and chromosome proportions of genes for cooperative traits found by each of these three modules of SOCfinder, to examine whether our results were consistent when we considered each separately.

1.3.1 Genes coding for extracellular proteins

Table S11: Results from the above MCMCglmm with species' mean difference in plasmid and chromosome proportion of genes coding for extracellular proteins as the response variable and phylogeny as a random effect.

	post.mean	l-95% CI	u-95% CI	eff.samp	pMCMC	signif.
(Intercept)	-0.03863	-0.09841	0.01739	9502	0.174	
		d value				
	Ra	andom effect	0.5527			

1.3.2 Genes with a cooperative functional annotation

Table S12: Results from the above MCMCglmm with species' mean difference in plasmid and chromosome proportion of genes with a cooperative functional annotation as the response variable and phylogeny as a random effect.

	post.mean	l-95% CI	u-95% CI	eff.samp	pMCMC	signif.
(Intercept)	-0.07326	-0.1113	-0.03896	9700	0.0006186	***
R-squared value						
	R	Random effect				

1.3.3 Genes which are part of a cooperative secondary metabolite cluster

Note: N=97 species for this analysis, because 49 species had genomes which did not have any genes found by this SOCfinder module. Therefore we removed them from this analysis, since there is no mathematical definition for a proportion with 0 as both the numerator and denominator.

Table S13: Results from the above MCMCglmm with species' mean difference in plasmid and chromosome proportion of genes which are part of a cooperative secondary metabolite cluster as the response variable and phylogeny as a random effect.

	post.mean	l-95% CI	u-95% CI	eff.samp	pMCMC	signif.
(Intercept)	-0.04372	-0.08043	-0.006574	9305	0.02907	*
R-squared value						_
	Ra	andom effect	0.3747			

2 Supplementary figures

2.1 Additional data figure

Figure S1: The same as Figure 1 in the main text, but with added species labels.

2.2 Phylogenies

2.2.1 Supertree

Figure S2: Supertree phylogeny of the 146 species. See methods and code for how we generated this tree. Raw tree file available to download.

2.2.2 GTDB tree

Figure S3: GTDB phylogeny for the 4364 of our genomes that we could identify a representative genome within the GTDB. See methods and code for more details. Raw tree file available to download.

3 Species table

Table S14: List of all all 146 species in our dataset, and their mean number of genes for cooperative and non-cooperative traits carried on plasmid(s) and chromosome(s) in a genome.

Species	Plas. & coop.	Chr. & coop.	Plas. & non-coop.	Chr & non-coop.
Acetobacter pasteurianus	8	74	341	2435
$A cine to bacter\ baumannii$	3	155	146	3467
Acinetobacter haemolyticus	0	111	87	3022
$A cine to bacter\ indicus$	1	78	108	2599
$A cine to bacter\ john sonii$	1	90	166	3053
$A cine to bacter\ pittii$	1	162	147	3480
$A cine to bacter\ seifertii$	2	152	189	3540
$Aeromonas\ caviae$	3	146	127	3836
$Aeromonas\ hydrophila$	4	173	104	4089
$Aeromonas\ salmonicida$	8	174	158	3822
Aeromonas veronii	2	163	73	3874
$A grobacterium\ fabrum$	5	144	587	4267
Agrobacterium tumefaciens	11	143	520	4477
$Alteromonas\ macleodii$	1	187	110	3621
$Bacillus\ amylolique faciens$	1	139	29	3664
Bacillus anthracis	4	172	185	4869
Bacillus cereus	9	188	287	4973
Bacillus cytotoxicus	2	114	91	3689
Bacillus licheniformis	2	168	66	4085
Bacillus mycoides	20	202	414	4904
Bacillus subtilis	1	152	43	3906
Bacillus thuringiensis	20	201	564	5137
Bacillus toyonensis	18	202	415	4905
Bacillus velezensis	1	138	55	3631
Bacteroides fragilis	0	142	53	3970
Bacteroides thetaiotaomicron	0	166	50	4540
Borrelia miyamotoi	2	12	340	771
Borreliella burgdorferi	1	13	479	797
Buchnera aphidicola	0	7	7	506
Burkholderia cenocepacia	16	271	416	6227
Burkholderia glumae	9	230	338	5029
Burkholderia multivorans	3	219	112	5379
Burkholderia pseudomallei	1	294	57	5630
Campylobacter coli	1	39	70	1625
Campylobacter fetus	0	41	51	1597
Campylobacter jejuni	0	40	52	1574
Chlamydia psittaci	1	38	6	928
Chlamydia trachomatis	0	38	8	847
-	4	169	232	4445
Citrobacter freundii Citrobacter portucalensis	6	159	232 238	4382
-	$\frac{0}{2}$	103	61	2740
Clavibacter michiganensis Clostridioides difficile	1	103 66	87	
***	4			3547
Clostridium botulinum	=	98	117	3300
Clostridium butyricum	12	110	454	3359
Clostridium perfringens	1	87	90	2625
Coxiella burnetii	2	27	36	1894
Cronobacter sakazakii	9	114	155	3808
Deinococcus radiodurans	8	42	158	2584
Enterobacter asburiae	7	184	234	4191
Enterobacter cloacae	8	195	301	4282
Enterobacter hormaechei	9	196	304	4191
Enterobacter kobei	7	202	290	4228
$Enterobacter\ roggen kampii$	5	184	201	4207
Enterococcus faecalis	1	61	116	2605
$Enterococcus\ faecium$	2	46	263	2477
Enterococcus hirae	2	54	85	2311

Table S14: List of all all 146 species in our dataset, and their mean number of genes for cooperative and non-cooperative traits carried on plasmid(s) and chromosome(s) in a genome. (continued)

Species	Plas. & coop.	Chr. & coop.	Plas. & non-coop.	Chr & non-coop
Erwinia amylovora	0	144	25	3070
Escherichia albertii	7	191	182	4108
Escherichia coli	10	206	196	4395
Escherichia fergusonii	8	168	206	4043
Helicobacter pylori	0	44	6	1372
Klebsiella aerogenes	4	189	185	4565
Klebsiella grimontii	8	199	315	5103
Klebsiella michiganensis	7	220	349	5183
Klebsiella oxytoca	7	216	259	5164
Klebsiella pneumoniae	9	171	319	4802
Klebsiella quasipneumoniae	7	168	306	4687
Klebsiella variicola	7	171	295	4912
Lacticaseibacillus paracasei	1	41	93	2727
Lacticaseibacillus rhamnosus	0	40	42	2617
Lactiplantibacillus plantarum	2	54	115	2804
Lactobacillus helveticus	0	28	23	1764
Lactococcus cremoris	2	37	141	2155
Lactococcus lactis	1	42	130	2236
Latilactobacillus curvatus	1	28	58	1691
Latilactobacillus sakei	0	34	52	1729
Legionella pneumophila	1	108	92	2809
Leptospira interrogans	3	118	191	3550
Leptospira noguchii	3	102	108	3412
Leuconostoc mesenteroides	0	32	84	1801
Levilactobacillus brevis	1	38	115	2130
Ligilactobacillus salivarius	1	31	235	1569
Limosilactobacillus reuteri	1	28	63	1887
Listeria innocua	1	49	106	2696
Listeria monocytogenes	3	56	151	2729
Morganella morganii	1	101	40	3524
Mycobacterium avium	1	87	121	4480
Mycobacterium intracellulare	1	89	105	5058
Mycobacteroides abscessus	1 1	71 52	43 23	4814 1922
Neisseria gonorrhoeae	22			
Pantoea agglomerans		123	711	3474
Pantoea ananatis Parabacteroides distasonis	6 0	140 114	317 31	3879
Pasteurella multocida	1	42	50	3913 2013
Pediococcus acidilactici	0	30	50 51	2013 1783
Pediococcus pentosaceus	0	25	73	1606
Phaeobacter inhibens	30	58	403	3334
Photobacterium damselae	4	113	104	3411
Piscirickettsia salmonis	6	68	259	2498
Prescottella equi	0	120	71	4478
Priestia megaterium	7	118	413	4911
Proteus mirabilis	2	124	83	3416
Providencia rettgeri	2	108	94	3688
Pseudomonas aeruginosa	4	313	126	5673
Pseudomonas putida	2	184	157	5029
Pseudomonas syringae	6	280	124	4954
Pseudosulfitobacter pseudonitzschiae	13	46	874	3404
Ralstonia solanacearum	108	143	1375	340^{4}
Raoultella ornithinolytica	6	145 166	372	4800
Rhizobium leguminosarum	50	122	2117	443
Rnizovium ieguminosarum Rhizobium phaseoli	50 37	106	1972	398'
Rhodococcus erythropolis	3 <i>1</i>	142	$\frac{1972}{254}$	5489
Rhodococcus erythropolis Rhodococcus pyridinivorans	2	113	254 312	4265
	5	113	457	5485 5485
Rhodococcus qingshengii				

Table S14: List of all all 146 species in our dataset, and their mean number of genes for cooperative and non-cooperative traits carried on plasmid(s) and chromosome(s) in a genome. (continued)

Species	Plas. & coop.	Chr. & coop.	Plas. & non-coop.	Chr & non-coop.
Serratia marcescens	2	183	89	4547
Shigella boydii	10	144	123	4004
Shigella dysenteriae	12	146	124	3863
Shigella flexneri	11	148	174	4039
Shigella sonnei	9	169	135	4211
Sinorhizobium meliloti	71	74	2660	3417
Staphylococcus argenteus	2	101	27	2388
Staphylococcus aureus	1	108	25	2544
Staphylococcus epidermidis	1	68	34	2232
Staphylococcus haemolyticus	1	54	37	2192
Staphylococcus saprophyticus	1	51	59	2295
Staphylococcus simulans	1	54	61	2310
Streptococcus suis	0	36	7	1988
Streptococcus thermophilus	0	30	3	1571
Streptomyces clavuligerus	36	223	696	5095
Thermus thermophilus	2	33	274	1949
Vibrio alginolyticus	1	212	87	4283
Vibrio campbellii	8	255	258	4369
Vibrio cholerae	2	187	108	3404
$Vibrio\ parahae molyticus$	2	217	126	4311
Weissella cibaria	1	39	39	1886
$X anthomonas\ campestris$	2	186	85	3845
$Xanthomonas\ citri$	1	203	101	3893
$Xanthomonas\ oryzae$	0	150	50	3465
$Xanthomonas\ phaseoli$	3	188	105	3885
$Xy lella\ fastidios a$	1	96	40	2023
Yersinia enterocolitica	10	151	77	3727
Yersinia pestis	17	209	157	3619
Yersinia pseudotuberculosis	12	192	64	3742
Yersinia ruckeri	4	134	75	2986
$Zymomonas\ mobilis$	1	53	102	1651