Entraînement au calcul algébrique : niveau 1.

Les divers paramètres qui apparaissent (a, b, c, x, y, ...) sont des réels.

La calculatrice n'est pas autorisée.

Factorisations

Question 4. Les expressions suivantes peuvent se factoriser sans jamais développer, soyez bien attentif pour repérer les facteurs communs.

1°)
$$A = x^4 - x^2$$

$$\mathbf{2}^{\circ}$$
) $B = x^2 - 2x + 1 - (x - 1)(2x + 3)$

$$3^{\circ}$$
) $C = (3x+2)^2 - (x-1)^2$

4°)
$$D = x^3 + x^2 + x + 1$$

$$5^{\circ}$$
) $E = 9x^2 - 49 + (3x + 7)(2x + 3)$

Quotients

On ne se préoccupera pas de l'existence lorsqu'il y a des variables indéterminées.

Question 5. Réduire (de la manière la plus efficace) :

$$\frac{7}{8} + \frac{5}{12} - \frac{4}{3}$$
 $\frac{1}{(n+1)^2} + \frac{1}{n+1} - \frac{1}{n}$

Question 6. Simplifier, sans se préoccuper de l'existence :

$$x = \frac{\frac{a}{\overline{b}}}{\frac{c}{d}}, \quad y = \frac{a}{\frac{b}{\overline{c}}}, \quad z = \frac{\frac{a}{\overline{b}}}{\frac{c}{\overline{c}}}, \quad t = \frac{\frac{a}{\overline{b}}}{\frac{c}{\overline{c}}}$$

$$A = \frac{\frac{a^2}{3b}}{\frac{ac}{6b}}, \qquad B = \frac{\frac{3}{10} \times \frac{15}{\frac{9}{2}}}{\frac{9}{15} \times \frac{5}{2}}, \qquad C = \frac{6\left(3 - \frac{1}{2}\right)\left(4 + \frac{1}{3}\right)}{12\left(5 + \frac{1}{4}\right)\left(7 - \frac{1}{3}\right)}$$

Question 7. Simplifier, sans se préoccuper de l'existence :

$$A = \frac{1}{x-1} - \frac{1}{x+1} + \frac{2x}{1-x^2} \qquad B = \frac{x-a}{ax} + \frac{a-b}{ab} + \frac{b-x}{xb}$$

Racines

Question 8. Simplifier, de sorte qu'aucune racine n'apparaisse au dénominateur :

$$A = \frac{4}{3 - \sqrt{5}}, \quad B = \frac{1}{\sqrt{\sqrt{2}}} \sqrt{\frac{1 + \sqrt{2}}{2}}, \quad C = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} - \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}.$$

Question 9. Simplifier, pour
$$x \in]-1,1[, A = \frac{\frac{1}{1+x} + \frac{1-x}{(1+x)^2}}{\sqrt{\frac{1-x}{1+x}} \left(1 + \frac{1-x}{1+x}\right)}$$
.

Puissances

Question 10. Mettre sous forme irréductible : $\frac{14^2 \times 9^2}{3^5 \times 7}$

Question 11. Mettre les nombres suivants sous la forme $2^a 3^b$ où a et b sont entiers.

$$x = \frac{2^3 3^2}{6^{-2} 3^4 2^8}, \quad y = 2^{100} + 2^{101}, \quad z = 2^{101} - 2^{100}, \quad t = 3^{15} + 3^{15}, \quad u = \frac{\left(3^2 (-2)^4\right)^8}{\left((-3)^5 2^3\right)^{-2}}$$

Question 12. Simplifier, sans se préoccuper de l'existence :

$$A = 3x^{2}y^{3} - y(xy)^{2} \qquad B = \frac{4x^{2}y^{3} - (xy)^{2}y}{x^{2}y^{2} \times (-x)^{3}} \qquad C = \frac{(-a)^{7} \times (-b^{2}c^{3})^{3}}{-b^{3}c \times (-a)^{5}}$$