Logistic Regression

逻辑回归

线性回归对于分类的困扰

Sigmod函数

- 构造一个函数更好地解决二分类问题
 - 目标:输出一个(0,1)的实数代表概率

$$g(z)$$
: $\overline{1}$: $\frac{1}{1+e^{-z}}$.

• Z = w^tX 线性回归

实质

- 我们赋予 $g(z) = \frac{1}{1+e^{-z}}$.
- 即 g(z) < 0.5 时 判断y=0
- g(z)>=0.5时 判断y=1

函数输出的含义为 该条数据y=1的概

z的图像含义

- g(z) = 0.5 时 $w^t X = 0$ 二维平面下是一条直线
- 直线左侧的x通过计算会让
 - Gz<0.5
- 直线右侧的x通过计算会让
 - Gz>0.5

如何确定g(z)?

• 确定了一组w 就确定了 z

• 确定了z 就确定了 g(z) 的输出, 那么配合上已知的x 确定了w就能确定g(z)的最终输出值, 那么g(z) 也可以写成 g(w,x)

最大似然估计

• 根据若干已知的 X,y (训练集) 找到一组w 使得 x作为已知条件下 y 发生的概率最大

- 既然g(w,x)的输出含义为 P(y=1|w,x)
- 那么 P(y=0|w,x) = 1 g(z)
- •那么就将g(w) 作为未知数, 将训练集上 y^{hat} =y的概率计算出来

• 只要让我的g(w,x) 函数在训练集上预测正确的概率最大,我的g(w,x) 就是好g(w,x)

w1	w2	w3	w4		
V1	v2	v2	v.1		3.5 公司 元 7.5 4.5 4元 3g
x1 24	x2 3	x3 2	x4 3	у 1	预测正确的概率 g(wx)
4	3	2	2		g(wx)
23	1	3	3	1	g(wx)
1	2	5	5		1-g(wx)
3	12	1	2	0	1-g(wx)

- 对于每一条数据预测正确的概率
 - P(正确 $) = (g(w,xi))^{y^i} * (1-g(w,xi))^{1-y^i}$
- 全部预测正确的概率 = 每一条数据预测正确的概率相乘
- $P(全部正确) = \prod_{i=1}^{n} p_i(正确)$

• 记P(全部正确) 为 $L(\theta)$ 这里的 θ 为之前的W

$$L(\theta) = \prod_{i=1}^{m} (h_{\theta}(x^{(i)}))^{y^{(i)}} (1 - h_{\theta}(x^{(i)}))^{1-y^{(i)}} + \frac{1}{m} (h_{\theta}(x^{(i)}))^{1-y^{(i)}} + \frac{1}{m} (h_{\theta$$

- 现在想找到一组θ(就是前面说的w) 使得上面的概率函数有最大值
- 由于In函数时单调递增的 $In(L(\theta))$ 最大时 $L(\theta)$ 也最大

$$l(\theta) = \log L(\theta)$$

$$= \sum_{i=1}^{m} \left(y^{(i)} \log h_{\theta}(x^{(i)}) + \left(1 - y^{(i)} \right) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right)$$
http://blog.csdn.net/dong

定义损失函数

- 使 $I(\theta)$ 最大的 θ 生产出来的 $g(\theta,x)$ 全预测对的概率最大
- 损失函数: 某个函数结果越小 生成的模型越好
- 那么我们定义 $l(\theta)$ 为逻辑回归的损失函数

$$J_{\log}(w) = \sum_{i=1}^{m} -y_i Log(p(x_i; w)) - (1 - y_i) Log(1 - p(x_i; w))$$

整理思路

• 损失函数最小 -> $l(\theta)$ 最大 -> 在训练集上全部正确的概率最大 -> 达成目标

• 问题转化为 找到一组使损失函数最小的w

$$J_{\log}(w) = \sum_{i=1}^{m} -y_i Log(p(x_i; w)) - (1 - y_i) Log(1 - p(x_i; w))$$

梯度下降

- 想要通过梯度下降优化 L(w) 到最小值需要几步?
 - 1. 随机产生w0
 - 2. wk+1 = wk + $\lambda * -\frac{\partial L(wk)}{\partial (wk)}$
 - 3. 迭代足够多轮的 wk+1 就是能使L(w) 最小的w

说干就干

$$\theta_j := \theta_j - \alpha \frac{\delta}{\delta_{\theta_j}} J(\theta)$$

$$\frac{\delta}{\delta_{\theta_{j}}} J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left(y_{i} \frac{1}{h_{\theta}(x_{i})} \frac{\delta}{\delta_{\theta_{j}}} h_{\theta}(x_{i}) - (1 - y_{i}) \frac{1}{1 - h_{\theta}(x_{i})} \frac{\delta}{\delta_{\theta_{j}}} h_{\theta}(x_{i}) \right) \\
= -\frac{1}{m} \sum_{i=1}^{m} \left(y_{i} \frac{1}{g(\theta^{T} x_{i})} - (1 - y_{i}) \frac{1}{1 - g(\theta^{T} x_{i})} \right) \frac{\delta}{\delta_{\theta_{j}}} g(\theta^{T} x_{i}) \\
= -\frac{1}{m} \sum_{i=1}^{m} \left(y_{i} \frac{1}{g(\theta^{T} x_{i})} - (1 - y_{i}) \frac{1}{1 - g(\theta^{T} x_{i})} \right) g(\theta^{T} x_{i}) (1 - g(\theta^{T} x_{i})) \frac{\delta}{\delta_{\theta_{j}}} \theta^{T} x_{i} \\
= -\frac{1}{m} \sum_{i=1}^{m} (y_{i} (1 - g(\theta^{T} x_{i})) - (1 - y_{i}) g(\theta^{T} x_{i})) x_{i}^{j}$$

$$= -\frac{1}{m} \sum_{i=1}^{m} (y_i - g(\theta^T x_i)) x_i^j$$
$$= \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i) x_i^j$$

结论

w1	w2	w3	w4		
x1	x2	x3	x4	У	预测正确的概率
24	3	2	3	1	g(wx)
4	3	2	2		g(wx)
23	1	3	3	1	g(wx)
1	2	5	5	0	1-g(wx)
3	12	1	2		1-g(wx)

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x_i) - y_i) x_i^j - \frac{\lambda}{m} \theta_j$$

逻辑回归的优化

• W0(分界线的截距)

• 手动为数据集的x增加一列全1 此时的w0就是截距

有w0 vs 无w0

一种特殊情况:线性不可分

一种解决方案:映射至高维

改变阈值 0.5

- 根据需求的变通 去除固定阈值0.5
- 癌症病人的判断?
- 假如病人是癌症:
 - 判断成不是癌症
- 假如病人是非癌症
 - 判断是癌症
- 0.3
- 虽然整体的错误率变大了,但是规避了一些不能接受的风险

L1 L2 正则

• 复习线性回归中的 L1 L2正则

- L1 与 L2 的特性
 - Ridge 整体变小
 - Lasso 稀疏编码
 - 副产品 降维
- 牺牲正确率来提高模型的推广能力
 - 换句话说 牺牲测试集内的正确率换取验证集的正确率

多分类问题

• 将多分类转变为多个2分类

• 改变训练集 将多分类改为2分类

N分类转为n个二分类

• 修改数据的lable

• 训练N个逻辑回归模型

• 根据输出的概率结果输出

• 注意事项: 样本不均衡

样本不均衡问题

- 假如一个数据集 正负例样本比例为 1:100
 - 训练处的模型会倾向于将所有例子判为负例

- 解决方法:
 - 重采样 对多的欠采样, 对少的重采样
 - 人工创造新样本: 属性随机采样组成新的数据
 - 使用决策树算法

多分类问题 softmax

- 如果设计一个模型用于处理10分类问题 那么概率输出应该是什么 样的?
- 输入一条数据 输出10个概率 选择概率最大的那个作为分类结果

$$h_{\theta}(x^{(i)}) = \begin{bmatrix} p(y^{(i)} = 1 | x^{(i)}; \theta) \\ p(y^{(i)} = 2 | x^{(i)}; \theta) \\ \vdots \\ p(y^{(i)} = k | x^{(i)}; \theta) \end{bmatrix} = \frac{1}{\sum_{j=1}^{k} e^{\theta_{j}^{T} x^{(i)}}} \begin{bmatrix} e^{\theta_{1}^{T} x^{(i)}} \\ e^{\theta_{2}^{T} x^{(i)}} \\ \vdots \\ e^{\theta_{k}^{T} x^{(i)}} \end{bmatrix}$$

构建预测函数

$$h_{\theta}(x^{(i)}) = \begin{bmatrix} p(y^{(i)} = 1 | x^{(i)}; \theta) \\ p(y^{(i)} = 2 | x^{(i)}; \theta) \\ \vdots \\ p(y^{(i)} = k | x^{(i)}; \theta) \end{bmatrix} = \frac{1}{\sum_{j=1}^{k} e^{\theta_{j}^{T} x^{(i)}}} \begin{bmatrix} e^{\theta_{1}^{T} x^{(i)}} \\ e^{\theta_{2}^{T} x^{(i)}} \\ \vdots \\ e^{\theta_{k}^{T} x^{(i)}} \end{bmatrix}$$

• 关键在于:
$$\theta = \begin{bmatrix} -\theta_1^T - \\ -\theta_2^T - \\ \vdots \\ -\theta_k^T - \end{bmatrix}$$
 有了这一组 θ , $h(x)$ 就可以使用了

损失函数

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{j=1}^{k} 1 \left\{ y^{(i)} = j \right\} \log \frac{e^{\theta_j^T x^{(i)}}}{\sum_{l=1}^{k} e^{\theta_l^T x^{(i)}}} \right]$$

• 有了损失函数就可以交给 sgd 或者 I-bfgs 来进行最小化 我们就可以求得一个 $I_{-\theta}I_{-1}$ 使得模型表现最好

$$heta = egin{bmatrix} - heta_1^T - \ - heta_2^T - \ dots \ - heta_k^T - \end{bmatrix}$$

$$\theta_{j} := \theta_{j} - \alpha \nabla_{\theta_{j}} J(\theta)(j = 1, \dots, k) \qquad \nabla_{\theta_{j}} J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[x^{(i)} \left(1\{y^{(i)} = j\} - p(y^{(i)} = j | x^{(i)}; \theta) \right) \right]$$

Softmax有趣的特点

$$p(y^{(i)} = j | x^{(i)}; \theta) = \frac{e^{(\theta_j - \psi)^T x^{(i)}}}{\sum_{l=1}^k e^{(\theta_l - \psi)^T x^{(i)}}}$$

$$= \frac{e^{\theta_j^T x^{(i)}} e^{-\psi^T x^{(i)}}}{\sum_{l=1}^k e^{\theta_l^T x^{(i)}} e^{-\psi^T x^{(i)}}}$$

$$= \frac{e^{\theta_j^T x^{(i)}}}{\sum_{l=1}^k e^{\theta_l^T x^{(i)}}}.$$

每组θ向量减去同一个向量, 不 会影响最终预测结果

Softmax 与逻辑回归的关系

• 当类别数 k=2 时

$$h_{\theta}(x) = \frac{1}{e^{\theta_{1}^{T}x} + e^{\theta_{2}^{T}x^{(i)}}} \begin{bmatrix} e^{\theta_{1}^{T}x} \\ e^{\theta_{2}^{T}x} \end{bmatrix}$$

$$h(x) = \frac{1}{e^{\vec{0}^{T}x} + e^{(\theta_{2} - \theta_{1})^{T}x^{(i)}}} \begin{bmatrix} e^{\vec{0}^{T}x} \\ e^{(\theta_{2} - \theta_{1})^{T}x} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{1 + e^{(\theta_{2} - \theta_{1})^{T}x^{(i)}}} \\ \frac{e^{(\theta_{2} - \theta_{1})^{T}x^{(i)}}}{1 + e^{(\theta_{2} - \theta_{1})^{T}x^{(i)}}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{1 + e^{(\theta_{2} - \theta_{1})^{T}x^{(i)}}} \\ 1 - \frac{1}{1 + e^{(\theta_{2} - \theta_{1})^{T}x^{(i)}}} \end{bmatrix}$$

• 此时的softmax回归 就是 参数为(θ 2- θ 1)的逻辑回归