Observe that the document has spaced out the problems so that there space for comments.

Chapter 2 Problems

1. Use Proof by Induction to prove the statement below.

For all
$$n \in \mathbb{N}$$
, $\frac{1}{2} + \frac{1}{6} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$.

2. For a = 23771 and b = 19945, calculate gcd(a,b) and find integers s and t such that

$$as + bt = gcd(a,b).$$

Answer: Your answer goes here.

3. Suppose that a and b are integers such that gcd(a,b) = 1. Let s and t be integers such that as + bt = 1. Prove that gcd(a,s) = gcd(r,b) = gcd(s,t) = 1.

4. Let $a,b,c\in\mathbb{N}$. Prove that if gcd(a,b)=1 and $a\,|\,bc$, then $a\,|\,c$.

Chapter 3 Problems

5. This question is about the symmetries of a **square**, as opposed to the example of the rectangle at the beginning of this section. You may want to use a drawing or permutations to describe your ideas but you don't have to. It's OK to have essay-style answers.

(a) Describe the symmetries of the square.

Answer: Your answer goes here.

(b) How many symmetries of the square are there? **Answer:** Your answer goes here. It's going to be just a number!

(c) How many permutations of the set $\{A, B, C, D\}$ are there? **Answer:** Your answer goes here. It's going to be just a number! A little explanation of your reasoning here never hurts!

(d) Give an example of a permutation of the set $\{A, B, C, D\}$ that cannot correspond to a symmetry of the square pictured above?

Answer: Your answer goes here. Justify your answer

6. Let $S = \mathbb{R} \setminus \{-1\}$ and define a binary operation * by a * b = a + b + ab. Prove that (S, *) is an abelian group.

7. Give an example of two elements *A* and *B* in $GL_2(\mathbb{R})$ with $AB \neq BA$.

Answer: Your answer goes here.

8. Given the groups \mathbb{R}^* and \mathbb{Z} , let $G = \mathbb{R}^* \times \mathbb{Z}$. Define a binary operation \circ on G by $(a,m) \circ (b,n) = (ab, m+n)$. Prove that (G, \circ) is a group.

9. Let (G, \circ) be a group. Let $g_1, g_2, \dots, g_n \in G$. Show that the inverse of $g_1g_2 \dots g_n$ is $g_n^{-1} \dots g_2^{-1}g_1^{-1}$.