

Enzymes as Green Catalysts in Pharma Industry

Workshop on Biocatalysis in Pharmaceutical Industry 27th Sept 2018, Hotel Avasa, Hyderabad.

Suresh Kumar Kannapogu Project Leader- Technical

Outline

- Advanced Enzyme Technologies in brief
- What are enzyme
- Applications in Pharma Industry
- What we offer

Brief History and Evolution

R&D centres Incorporated Takeover of Acquired (Thane and as Advanced Cal-India 100% stake in Sinnar) **Biochemicals** Foods Intl. -Evoxx recognized by Pvt Ltd. USA presence Technologies, **DSIR** Germany 2017 1989 2001 2011 1994 2005 2016 Advanced Floated IPO First Biochemicals Ltd. is fermentation renamed as Acquired 70% facility at Advanced Enzyme stake in JC Sinnar, **Technologies Limited** Biotech Maharashtra (or Advanced Enzymes)

Advanced Enzyme in brief

Advanced Enzymes is a research driven company with global leadership in the manufacturing of enzymes producing a wide range of enzymes that helps customers produce more from less

Manufacturing Units – 7

India - 5 USA - 2

23+

Years of Fermentation Experience

400+

Proprietary Products

700+

Customers Worldwide

45+

Countries Worldwide Presence

28

Registered Patents

420

m³ Fermentation Capacity

550+

Employees

68+

Enzymes & Probiotics

Global Footprint

International Presence

Manufacturing Facilities – 8

INDIA

Thane	1
Nasik	2
Indore	1
Ongole	1

USA

Chino	2
GFRMANY	

Monheim

R&D Centres - 6 INDIA

Thane	2
Nasik	1
Ongole	1
USA	
Chino	1
GERMANY	
Monheim	1

Offices - 4

INDIA	
Thane	1
USA	
Chino	1
GERMANY	
Monheim	1
MALAYSIA	
Kuala Lumpur	1

Business Segments

What are Enzymes?

- Enzymes are biological catalyst(made of proteins) which accelerates chemical reaction without being consumed or changed.
- Biocatalysis can be described as the application of nature's catalysts (enzymes) to industrial processes.
- Nature boasts of having a variety of enzymes which can catalyst variety of reactions.
- With the advent of Genetic Engineering other technology advancement enzymes are further tailored for a particular reaction.

Enzyme Applications

Enzymes are used in several commercial applications.

Pharmaceuticals

Fine chemicals

Foods and beverages

Cosmetics

Textile & Detergents

Paper

Leather

Animal Feed

advanced enzymes Where ENZYME is Life

Advantages of Enzymes over chemical reactions in APIs Industry

- Enzymes process are much safer and easy to control than chemical.
- Avoidance of hazardous reagents.
- Enzymes works in aqueous and non aqueous media
- Enzymes operate under milder conditions (Ambient temp, pH Etc)
- Enzymes offer high optical purity, high chemo selectivity, high regioand stereo-selectivity.
- Enzymes produce no harmful by-products.
- Enzymes are biodegradable and reusable.
- High yield due to excellent selectivity
- Reduce number of manufacturing steps

Lock and Key Model

ES complex

Induced Fit Model

E + S

ES complex

E + P

Pharma applications of:

- Lipases
- Alcohol Dehydrogenase/Ketoreductase
- Transaminase
- Nitrilase

Lipases are versatile Biocatalyst

(S)-Mandelic

acid

Pregabalin Chemical Process

99.8%

$$CHO \longrightarrow EtO_2C \longrightarrow CO_2Et \longrightarrow NH_2$$
 $CO_2H \longrightarrow CO_2H$

Resolution Process

- Final Step Classical Resolution
- Efficient synthesis of racemic Pregabalin
- E-Factor 86

(Org. Process R and D, 1997, 1, 26)

Asymmetric Hydrogenation Route

25-29 % overall

> 99.5 % ee

NH₂

CO₂H

- Original Catalyst (Me-DuPHOS-Rh, S/C ratio 2700)
- chiral ligand expensive
- Chemistry Published (2004JACS5966)

(2003JOC5731)

Pregabalin Biocatalytic Route

S-enantiomer S Pregabalin

Alcohol Dehydrogenases (ADHs)/KRED

- Catalyze the reduction of ketones or aldehydes to alcohols
- Reaction is highly stereoselective
- Depend on a cofactor NAD+ / NAD(P)+ (Nicotinamide adenine dinucleotide (phosphate)
- Cofactor is recycled

Chemoenzymatic Synthesis of Atorvastatin Side Chain

Chemical Route

Cryogenic conditions -80 C Pyrophoric Reagent ,Triethyl borane (TEB) Six distillations

Enzyme Route

Montelukast Intermediate

Chemical Step

- Toxic &Corrosive
- Moisture Sensitive
- 85% yield lead high cost contribution
- Low purity need crystallization

Enzyme Step

98% Yield cost reduction 99.9% Purity no need for crystallization

Transaminases (TAs)

$$R^{1}$$
 R^{2} R^{2} R^{1} R^{2} R^{1} R^{2}

- catalyze the reductive transfer of ammonium to ketons or aldehydes
- Reaction is reversible, so enzymes can be used for racemic resolution of amines
- Depend on a cofactor pyridoxal-5-phosphate (PLP)
- often highly stereoselective

Sitagliptin

$$i$$
-Pr = isopropyl

10-13% increase in overall yield, 53% increase in productivity, 19% reduction in total waste, elimination of all heavy metals, reduction in total manufacturing cost, no need for specialized, high-pressure hydrog. equipment.

$$H_2PO_4$$
 F_3C
 H_2PO_4
 F_3C
 H_3
 F_3C
 F_3C

Nitrilases

Nitrilases: Enzymes catalyse the hydrolysis of nitriles to carboxylic acids and ammonia,

Acrylonitrile

Our enzyme platform

Ready-to-use enzymes for fine chemicals manufacture

ADH/KRED

Transaminases

Lipases/Esterases

$$R' + H_2O \longleftrightarrow R' + R' - OH$$

Nitrilases/Nitrilehydratases

Screening Platform for Novel Enzymes

and Processes

- Oxidases, Nitrilases, Nitrile hydratases
- Sulfotransferases, Laccases
- Xylanases, sucrases, epimerases etc.

> 550 enzymes available & still growing...

Customized products

Enzyme development: From R&D to commercial production Tailor-made enzymes that fit customer needs....

• Proprietary enzyme-sequences

Sources

- Metagenomic libraries
- Directed enzyme-evolution
- Expression-toolbox
- Production strains

Technological assessment

- We at Advanced Enzymes are manufacturing and exporting the enzymes to the various applications for last 50 years.
- Our technical and application lab is well equipped to develop and resolve the technical queries.
- Supported by the Enzymes experts for the Industrial applications.
- Talk to us for the new development and support.

Contact us

Advanced Enzyme Technologies Ltd.

5th Floor, 'A' wing, Sun Magnetica LIC Service Road, Louiswadi Thane (W) 400 604, India

Tel: +91 22 4170 3200 / 3213

Fax: +91 22 2583 5159

Email: info@advancedenzymes.com www.advancedenzymes.com