

National Institute Of Technology Andhra Pradesh School of Sciences (Mathematics)

$Minor ext{-}II$ Examination, Nov. 2021 2^{nd} Year B.Tech.(ECE) (Odd Semester)

MA205-Complex Variables and Special Functions

Date: 05.11.2021 Max. Marks: 10

Please answer all the questions and submit a neatly written assignment by 12/11/2021.

1. Describe the following regions as open/closed, bounded/unbounded, connected. Also, are they domains?

(a)
$$Re(z) \ge |z - i|^2$$
.

(b)
$$2 < |z - 1 - i| < 3$$
.

- 2. Find the domain of definition of the function $f(z) = \frac{z-1}{2z+1}$. Also, write f(z) in the form u(x,y) + iv(x,y).
- 3. Find the values of z satisfying $e^z = -i$.
- 4. Evaluate $\lim_{z \to 0} \left[\frac{1}{1 e^{\frac{1}{x}}} + iy^2 \right]$.
- 5. Discuss the continuity of $f(z) = \begin{cases} Re(z^2), & z \neq 0 \\ 0, & z = 0 \end{cases}$ at z = 0.
- 6. Let P(z) and Q(z) be polynomials of degrees m and n respectively. Evaluate $\lim_{z \to 0} \frac{P(z)}{Q(z)}$ and $\lim_{z \to \infty} \frac{P(z)}{Q(z)}$.
- 7. Show that $f(z) = |z|^2$ is not analytic at any point and $g(z) = \frac{1}{z}$ is analytic everywhere except at one point in the complex plane.
- 8. State the CR equations in polar form. Show that if the arg(f) is a constant, then f is a constant.
- 9. Show that $r^2\cos 2\theta$ is a harmonic function and find its harmonic conjugate. Write down the corresponding analytic function.
- 10. Evaluate $\int_0^1 \phi(t)dt$, where $\phi(t) = t + \frac{i}{\sqrt{t}}$.
- 11. Evaluate $\int_C z^n dz$, $n = 0, \pm 1, \pm 2, ...$, where C is the circle with centre 0 and radius r traveresed counter clockwise.

- 12. Evaluate $\int_C \frac{z}{\bar{z}} dz$, where C is the boundary of the half annulus (annulus in the upper half plane) $2 \le |z| \le 3$.
- 13. Obtain an upper bound for the absolute value of $\int_C \frac{z}{z+1} dz$, where C is the upper half of the circle |z| = 2.
- 14. State the Cauchy Integral theorem and the Cauchy Goursat theorem.
- 15. Evaluate $\int_C [Re(z) + z] dz$, where C: |z| = 2 using the Cauchy Integral theorem.
- 16. Use the extension of Cauchy Integral theorem to multiply connected domains and evaluate $\int_C \frac{3z-1}{z^3-z} dz$, where C is a square with centre at 0 and side length 3.
- 17. Evaluate $\int_0^1 z^2 e^{z^3} dz.$
- 18. State the Cauchy Integral formula and use it to evaluate $\int_C \frac{z^2+1}{z(2z-1)} dz$, where C is the unit circle.
- 19. State the Cauchy Integral formula for derivatives, Morera's theorem, Liouville's theorem and Maximum Modulus theorem.
- 20. Obtain the Taylor series expansion of $f(z) = \frac{1}{z^2 + (1+2i)z + 2i}$ about z = 0. Find the radius of convergence of this series.
- 21. Find all possible series expansions of $f(z) = \frac{1}{(z+1)(z+2)^2}$ about z=1.
- 22. Classify the singularities of $f(z) = tan(\frac{1}{z})$.
- 23. Classify the singularities of $f(z) = \frac{z^2 + iz + 2}{(z^2 + 1)^2(z + 3)}$ and calculate the residues at those points.
- 24. Compute the residues at the singularities of $f(z) = \sec z$.
- 25. Using the Residue theorem, evaluate

(a)
$$\int_C \frac{dz}{z^4 + 1}$$
, where $C : |z - 1| = 1$.

(b)
$$\int_0^{2\pi} \frac{d\theta}{1 - 2a \cos \theta + a^2}$$
, where $a \in \mathbb{C}$ is such that $|a| \neq 1$.

(c)
$$\int_0^\infty \frac{x^2 + 2}{(x^2 + 1)(x^2 + 4)} dx.$$

(d)
$$\int_{-\infty}^{\infty} \frac{\cos ax}{x^2 + b^2} dx \text{ and } \int_{-\infty}^{\infty} \frac{\sin ax}{x^2 + b^2} dx, \ a, b > 0.$$

(e)
$$\int_{-\infty}^{\infty} \frac{3x+5}{x(x+2)(x^2+1)} dx$$

- 26. Find the image of Im(z) < 0 and |z| > 1 under the mapping $w = \frac{i}{z-i}$.
- 27. Find all bilinear transformations whose fixed points are 1 and -1. Also, find the bilinear transformation that maps z = 1, i, 2 + i onto the points $w = i, 1, \infty$.
- 28. Determine the points where $\cos z$ and $\cosh z$ are not conformal.
- 29. Classify the singular points of the following differential equations:

(a)
$$x^2y'' + (x + x^2)y' - y = 0$$
.

(b)
$$x^2y'' + (\sin x)y' + (\cos x)y = 0$$
.

- 30. Find the power series solution about x = 0 of the differential equation $(1-x^2)y'' 4xy' + 2y = 0$.
- 31. Find the power series solution about x=2 of the IVP 4y''-4y'+y=0, y(2)=0, $y'(2)=\frac{1}{e}$.
- 32. Find a fourth degree polynomial approximation (a power series about x = 0) to the IVP y'' y = 0, y(0) = 2, y'(0) = 0.
- 33. Find two linearly independent solutions of $2x^2y'' + xy' (x^2 1)y = 0$ using the Frobenius method.
- 34. Find the series solution of xy'' + y' xy = 0 using the Frobenius method.
- 35. Find a series solution of $x^2y'' + x^3y' + (x^2 2)y = 0$ using the Frobenius method.
- 36. State the Legendre differential equation, Rodrigue's formula and generating function of Legendre polynomials. Also, show that $(n+1)P_{n+1}(x) = (2n+1)xP_n(x) nP_{n-1}(x)$.
- 37. State the orthogonality property of Legendre polynomials and use it to expand $f(x) = x^3 + x$, $-1 \le x \le 1$, as a Fourier-Legendre series.
- 38. State the Bessel's differential equation and evaluate $\int x^3 J_0(x) dx$. Also, show that $\int x J_0^2(x) dx = \frac{x^2}{2} [J_0^2(x) + J_1^2(x)]$.
- 39. Show that $2\sum_{n=0}^{\infty} J_n^2 = \frac{1+J_0^2}{2}$.
- 40. Show that $J_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \cos \theta) d\theta$.