ASSIGNMENT 2

- 1. Simplify the following Boolean expressions to number of literals specified and draw logic diagrams of the circuits that implement the original and simplified expressions.
 - a. (x'y' + z)' + z + xy + wz

to three literals

b. A'B(D' + C'D) + B(A + A'CD)

to one literal

2. Simplify the following Boolean functions T_1 and T_2 to a minimum number of literals:

A	В	C	<i>T</i> ₁	T ₂
0	0	0	1	0
0	0	1	1	0
0 0 0 0	1	0	1	0
0	1	1	O	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	0	1

- 3. Obtain the truth table of the following functions, and express each function in sum-of-min-terms and product-of-maxterms form (b + cd)(c + bd)
- 4. Express the following function as a sum of minterms and as a product of maxterms:
 - a. F(A, B, C, D) = B'D + A'D + BD
 - b. F(u, v, w, x) = (u + xw)(x + u'v)
 - c. F(x, y, z) = x' + x(x + y')(y + z')
- 5. Express the complement of the following functions in sum-of-minterms form:
 - a. $F(A,B,C,D) = \Sigma(3, 5, 9, 11, 15)$
 - b. $F(x, y, z) = \Pi(2, 4, 5, 7)$
- 6. Show that the exclusive-OR operation is commutative and associative. Also show that it's dual is equal to its complement.
- 7. Write Boolean expressions and construct the truth tables describing the output of the circuits described by the logic diagrams in Fig below:

- 8. Given the Boolean functions F1 and F2, show that
 - a. The Boolean function E = F1 + F2 contains the sum of minterms of F1 and F2.
 - b. The Boolean function G = F1F2 contains only the minterms that are common to F1 and F2
- 9. Implement the Boolean function F = xy + x'y' + y'z using OR and inverter gates.
- 10. The logical sum of all minterms of a Boolean function of n variables is 1.
 - a. Prove the previous statement for n = 3.
 - b. Suggest a procedure for a general proof.