63.01 / 83.01 Química

Departamento de Química

G6A: Pilas Ej 6

6)a) A continuación se representa la notación de tres pilas.

Para cada una de ellas indicar cuál de sus semipilas constituye el ánodo y cuál el cátodo, en condiciones patrón. Fundamentar las respuestas. Escribir la notación simbólica correcta.

- i) Zn (s) / Zn2+ // H+ / H2 (g) / Pt
- ii) Cu (s) / Cu2+ // H+ / H2 (g) / Pt
- iii) Cu (s) / Cu2+ // Zn2+ / Zn (s)
- b) en forma esquemática, dibujar la segunda y la tercera de di

Los potenciales estándar se dan a 1 atm, 1M, y en general se tabulan a 298K

Necesito una tabla de potenciales de reducción

Escribo las hemirreacciones como reducciones:

i)
$$Zn^{2+}(ac) + 2e \rightarrow Zn(s)$$

$$E^0 = -0.76 \text{ v}$$

$$2H^+(ac) + 2e^- \rightarrow H_2(g)$$

$$E^0 = 0 v$$

Se reduce el de mayor potencial de reducción.

La reacción que ocurre es:

$$2H^+(ac) + Zn(s) \rightarrow H_2(g) + Zn^{2+}(ac)$$

fem=
$$E_{red}^0$$
 - E_{ox}^0

La f.e.m. debe ser positiva:

Figure 2 El H⁺ se reduce
$$\longrightarrow$$
 CATODO (+)

fem= $E^0_H - E^0_{Zn} = 0 - (-0.76) = 0.76 > 0$

El Zn (s) se oxida \longrightarrow ANODO (-)

Notación de la pila: seguimos el camino de los electrones (de ánodo a cátodo)

$$Zn_{(s)}/Zn^{2+}_{(ac)}$$
 (1M) // $H^{+}_{(ac)}$ (1M) / $H_{2(g)}$ (1 atm) / Pt

Ánodo, Oxidación

Cátodo, Reducción

(vocal-vocal)

(consonante-consonante)

Una barra indica una interfase, la doble barra indica el puente salino.

El electrodo inerte debe quedar en los extremos de la pila: a la derecha en el cátodo

Aclaración: En el **Cátodo** siempre ocurre la **Reducción**.

En el **Ánodo** siempre ocurre la **Oxidación**.

Para la pila, por convención, el ánodo es negativo y el cátodo es positivo.

$$Zn_{(s)}/Zn^{2+}_{(ac)}$$
 (1M) // $H^{+}_{(ac)}$ (1M) / $H_{2(g)}$ (1 atm) / Pt

En la Pila, el electrodo de la Izquierda es el Anodo, Negativo, y ocurre la Oxidación

ii)
$$Cu^{2+}(ac) + 2e^{-} \rightarrow Cu(s)$$

$$E^0 = 0.34 \text{ v}$$

$$2H^+(ac) + 2e^- \rightarrow H_2(g)$$

$$E^0 = 0 v$$

Se reduce el de mayor potencial de reducción.

FI Cu²⁺ se reduce
$$\longrightarrow$$
 CATODO (+)
fem= E_{Cu}^0 - E_{H}^0 = 0,34 - 0 = 0,34 > 0
EI H₂ se oxida \longrightarrow ANODO (-)

La reacción que ocurre es:

$$Cu^{2+}(ac) + H_2(g) \rightarrow Cu(s) + 2H^+(ac)$$

Notación de la pila:

$$(Pt)$$
 $H_{2(g)}$ (1 atm) / $H^{+}_{(ac)}$ (1M) // $Cu^{2+}_{(ac)}$ (1M) / $Cu_{(s)}$

El electrodo inerte debe quedar en los extremos de la pila: a la izquierda en el ánodo

iii)
$$Cu^{2+}(ac) + 2e^{-} \rightarrow Cu(s)$$

$$E_{1}^{0} = 0.34 \text{ v}$$

i)
$$Zn^{2+}(ac) + 2e \rightarrow Zn(s)$$

$$E_{2}^{0} = -0.76 \text{ v}$$

Se reduce el de mayor potencial de reducción.

El Cu²⁺ se reduce
$$\longrightarrow$$
 CATODO (+)

$$\Delta E^0 = E^0_1 - E^0_2 = 0.34 - (-0.76) = 1.10 > 0$$

$$El Zn se oxida \longrightarrow ANODO (-)$$

La reacción que ocurre es:

$$Cu^{2+}(ac) + Zn(s) \rightarrow Cu(s) + Zn^{2+}(ac)$$

Notación de la pila:

$$Zn_{(s)}/Zn^{2+}_{(ac)}$$
 (1M) // $Cu^{2+}_{(ac)}$ (1M) / $Cu_{(s)}$