Fixed-Parameter Tractable Algorithms for Crossing Minimization in Book Embeddings

Presented by: Michael J Bannister

Joint work with: David Eppstein and Joseph A. Simons

Book crossing number of a drawing D

= sum of the # crossings in each page

k-Page crossing number of a graph G

= min crossing # of a k-page drawing of G

1-Page crossing minimization

Known complexity results:

Planar: O(n)

Minimization: NP-hard

Exact minmization: $O(n!) = 2^{O(n \log n)}$

Approximation ratio: $O(\log^2 n)$

Heuristics work well in practice

2-Page crossing minimization

Known complexity results:

Planar: NP-complete

Minimization: NP-hard

Exact minimization: $O(n!2^m) = 2^{O(n \log n + m)}$

Approximation ratio: $O(\log^2 n)$

Heuristics do not work well in practice

Parameterized Complexity

NP-Hard ⇒ likely (at least) exponential

Is the problem easier for:

graphs we few crossings?

graphs that are "tree like"?

social networks?

Fixed-parameter tractable if given a parameter p of the input

 \exists a computable function f

 \exists an exact algorithm running in $O(f(p)n^c)$ with c=O(1)

WE FEEL THE OFFICE SCAPEGOAT IS A KEY COMPONENT OF TEAM-BUILDING, AND YOU'RE A GREAT FIT FOR THE JOB.

Parameterized Complexity

NP-Hard ⇒ likely (at least) exponential

Is the problem easier for:

graphs we few crossings?

graphs that are "tree like"?

social networks?

Fixed-parameter tractable if given a parameter p of the input

 \exists a computable function f

 \exists an exact algorithm running in $O(f(p)n^c)$ with c=O(1)

WE FEEL THE OFFICE SCAPEGOAT IS A KEY COMPONENT OF TEAM-BUILDING, AND YOU'RE A GREAT FIT FOR THE JOB.

Blame the difficulty of the problem on p not n!

Parameters

k-Almost tree parameter Distance from a tree by edge count Max of m-n+1 over all biconnected components

Treewidth parameter

Common FPT parameter

Measure of large scale tree structure

Natural parameter
Number of crossings
Not possible for 2-page

Methods

Kernelization

Step 1: Reduce the size of the input

Step 2: Solve the smaller problem

with exact algorithms

Logical expressibility

Step 1: Describe the problem in MSO ($\subseteq 2^{nd}$ order logic)

Step 2: Use powerful meta-theorems to produce algorithms

k-Almost tree kernel

Step 1: Iteratively remove degree 1 vertices

Step 2: Reduce paths of degree 2 vertices to $\leq \ell(k)$

To be determined later.

Kernelization Results

Crossing minimization:

1-Page
$$O((5k)!n)$$

2-Page
$$O(2^{6k^3}(6k^3)!n)$$

Crossed edge minimization:

1-Page
$$O((5k)!n)$$

2-Page
$$O(2^{6k^2}(6k^2)!n)$$

Additional Result:

1-Planar recognition is FPT

MSO₂ and Courcelle's theorem

```
Monadic second-order logic:
```

```
Vertex and edge variables: v_0, v_1, \ldots, e_0, e_1, \ldots
```

Vertex and edge set variables: $V_0, V_1, \ldots, E_0, \overline{E_1, \ldots}$

Binary relations: =, \in , I

Propositional logic operations: $\neg, \land, \lor, \rightarrow$

Quantifiers: \forall , \exists

Examples of properties expressible in MSO₂

k-coloring minor containment

connectedness planarity

hamiltonicity outerplanarity

MSO₂ and Courcelle's theorem

Input: A graph G and an MSO_2 -formula ϕ

Parameter: treewidth(G) + length (ϕ)

Output: Does G/satisfy ϕ

Runtime: $f(k, \ell)n$

Application:

Crossing minimization is FPT in the # crossings Grohe (2001), Kawarabayashi & Reed (2007)

Logical expressibility results

1-Page crossing minimization is FPT parameter: crossing number

2-Page planarity is FPT parameter: treewidth

2-Page crossing minimization is FPT parameter: treewidth + crossing number

Open Problems

- ullet Extend results to k-pages with k>2
- Faster exact algorithms
- Close the approximation gap
- Practical FPT algorithms

Open Problems

- ullet Extend results to k-pages with k>2
- Faster exact algorithms
- Close the approximation gap
- Practical FPT algorithms

Thank You!