Задания к лабораторным работам для группы №117182

дата генерации документа 14 ноября 2020 г.

Содержание

Лабораторная работа N 9 «Моделирование реакций в реакторах с различной структурой потоков»

3

Лабораторная работа № 9 «Моделирование реакций в реакторах с различной структурой потоков»

Вариант 1

В реакторе идеального вытеснения протекает реакция:

$$A + B \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$B + C \xrightarrow{k_3} D + \Delta H_2$$

На вход реактор подается смесь при температуре T=202K, теплоемкость смеси $c_p=2174_{\overline{K}}$, состав подаваемой смеси: $c_A=33.8$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=9.7$, $E_{a2}=15.5$, $E_{a3}=9.1$, предэкспоненциальный множитель $k_{01}=34, k_{02}=310, k_{03}=23$, тепловой эффект $\Delta H_1=-36.6$, $\Delta H_2=-10.6$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 2

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} B + \Delta H_1$$
$$B \underset{k_3}{\overset{k_3}{\longleftrightarrow}} C + \Delta H_2$$

На вход реактор подается смесь при температуре T=256K, теплоемкость смеси $c_p=3172_{\overline{K}}$, состав подаваемой смеси: $c_A=28.5$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=11.6$, $E_{a2}=23.3$, $E_{a3}=11.6$, предэкспоненциальный множитель $k_{01}=33, k_{02}=2558, k_{03}=25$, тепловой эффект $\Delta H_1=-22.9$, $\Delta H_2=-11.4$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 3

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\underset{k_2}{\longleftrightarrow}} C + \Delta H_1$$
$$A \stackrel{k_3}{\longrightarrow} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=220K, теплоемкость смеси $c_p=2854_{\overline{K}}$, состав подаваемой смеси: $c_A=29.0$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=9.2$, $E_{a2}=21.5$, $E_{a3}=15.4$, предэкспоненциальный множитель $k_{01}=27, k_{02}=2860, k_{03}=348$, тепловой эффект $\Delta H_1=14.8$, $\Delta H_2=-9.3$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 4

В реакторе идеального вытеснения протекает реакция:

$$A \stackrel{k_1}{\underset{k_2}{\longleftrightarrow}} C + \Delta H_1$$

$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=372K, теплоемкость смеси $c_p=2633_{\overline{K}}$, состав подаваемой смеси: $c_A=23.2$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=18.7$, $E_{a2}=29.8$, $E_{a3}=17.8$, предэкспоненциальный множитель $k_{01}=37, k_{02}=855, k_{03}=34$, тепловой эффект $\Delta H_1=-32.5$, $\Delta H_2=11.6$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 5

В реакторе идеального вытеснения протекает реакция:

$$A \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$

$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=314K, теплоемкость смеси $c_p=3600_{\overline{K}}$, состав подаваемой смеси: $c_A=21.5$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=16.5$, $E_{a2}=27.2$, $E_{a3}=37.6$, предэкспоненциальный множитель $k_{01}=87,k_{02}=1935,k_{03}=64305$, тепловой эффект $\Delta H_1=25.9$, $\Delta H_2=37.5$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 6

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$

$$B + C \xrightarrow{k_3} D + \Delta H_2$$

На вход реактор подается смесь при температуре T=268K, теплоемкость смеси $c_p=2477_{\overline{K}}$, состав подаваемой смеси: $c_A=16.9$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=12.4$, $E_{a2}=26.7$, $E_{a3}=22.3$, предэкспоненциальный множитель $k_{01}=34,k_{02}=4958,k_{03}=1435$, тепловой эффект $\Delta H_1=-43.3$, $\Delta H_2=-28.1$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 7

В реакторе идеального вытеснения протекает реакция:

$$A \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$

$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=280K, теплоемкость смеси $c_p=3041_{\overline{K}}$, состав подаваемой смеси: $c_A=31.0$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=13.2$, $E_{a2}=18.0$, $E_{a3}=15.8$, предэкспоненциальный множитель $k_{01}=33, k_{02}=131, k_{03}=73$, тепловой эффект $\Delta H_1=44.6$, $\Delta H_2=-23.0$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 8

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$
$$A \stackrel{k_3}{\longrightarrow} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=334K, теплоемкость смеси $c_p=3441_{\overline{K}}$, состав подаваемой смеси: $c_A=24.2$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=25.1$, $E_{a2}=26.2$, $E_{a3}=18.5$, предэкспоненциальный множитель $k_{01}=722, k_{02}=633, k_{03}=63$, тепловой эффект $\Delta H_1=23.0$, $\Delta H_2=-33.8$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 9

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\longleftrightarrow} B + \Delta H_1$$
$$B \underset{k_3}{\longleftrightarrow} C + \Delta H_2$$

На вход реактор подается смесь при температуре T=206K, теплоемкость смеси $c_p=3241_{\overline{K}}$, состав подаваемой смеси: $c_A=15.4$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=9.9$, $E_{a2}=11.1$, $E_{a3}=10.2$, предэкспоненциальный множитель $k_{01}=17, k_{02}=31, k_{03}=22$, тепловой эффект $\Delta H_1=-5.0$, $\Delta H_2=41.7$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 10

В реакторе идеального вытеснения протекает реакция:

$$A \xrightarrow{k_1} B + \Delta H_1$$
$$A \xrightarrow{k_2} C + \Delta H_2$$
$$A \xrightarrow{k_3} D + \Delta H_3$$

На вход реактор подается смесь при температуре T=248K, теплоемкость смеси $c_p=3652_{\overline{K}}$, состав подаваемой смеси: $c_A=16.5$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=10.5$, $E_{a2}=21.7$, $E_{a3}=12.9$, предэкспоненциальный множитель $k_{01}=14, k_{02}=826, k_{03}=55$, тепловой эффект $\Delta H_1=28.0$, $\Delta H_2=13.9$, $\Delta H_3=35.5$

Вариант 11

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$
$$B + C \stackrel{k_3}{\longrightarrow} D + \Delta H_2$$

На вход реактор подается смесь при температуре T=275K, теплоемкость смеси $c_p=3949_{\overline{K}}$, состав подаваемой смеси: $c_A=15.4$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=17.4$, $E_{a2}=26.7$, $E_{a3}=17.1$, предэкспоненциальный множитель $k_{01}=200,k_{02}=4314,k_{03}=201$, тепловой эффект $\Delta H_1=-30.9$, $\Delta H_2=-24.1$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 12

В реакторе идеального вытеснения протекает реакция:

$$A \xrightarrow{k_1} B + \Delta H_1$$
$$A \xrightarrow{k_2} C + \Delta H_2$$
$$A \xrightarrow{k_3} D + \Delta H_3$$

На вход реактор подается смесь при температуре T=206K, теплоемкость смеси $c_p=2505_{\overline{K}}$, состав подаваемой смеси: $c_A=15.0$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=8.4$, $E_{a2}=10.7$, $E_{a3}=7.9$, предэкспоненциальный множитель $k_{01}=10, k_{02}=28, k_{03}=11$, тепловой эффект $\Delta H_1=29.4$, $\Delta H_2=-42.2$, $\Delta H_3=5.7$

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 13

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$
$$B + C \stackrel{k_3}{\longrightarrow} D + \Delta H_2$$

На вход реактор подается смесь при температуре T=390K, теплоемкость смеси $c_p=2094_{\overline{K}}$, состав подаваемой смеси: $c_A=24.2$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=20.5$, $E_{a2}=47.0$, $E_{a3}=38.5$, предэкспоненциальный множитель $k_{01}=43,k_{02}=58104,k_{03}=7680$, тепловой эффект $\Delta H_1=-16.8$, $\Delta H_2=41.2$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 14

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$
$$A \stackrel{k_3}{\longrightarrow} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=239K, теплоемкость смеси $c_p=3447_{\overline{K}}$, состав подаваемой смеси: $c_A=18.5$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=11.6$, $E_{a2}=21.7$, $E_{a3}=24.8$, предэкспоненциальный множитель $k_{01}=54,k_{02}=2760,k_{03}=7848$, тепловой эффект $\Delta H_1=14.7$, $\Delta H_2=14.7$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 15

В реакторе идеального вытеснения протекает реакция:

$$A + B \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=353K, теплоемкость смеси $c_p=2429_{\overline{K}}$, состав подаваемой смеси: $c_A=25.3$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=26.0$, $E_{a2}=45.7$, $E_{a3}=40.2$, предэкспоненциальный множитель $k_{01}=1015, k_{02}=159892, k_{03}=31283$, тепловой эффект $\Delta H_1=22.3$, $\Delta H_2=-42.1$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 16

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=383K, теплоемкость смеси $c_p=3184_{\overline{K}}$, состав подаваемой смеси: $c_A=18.8$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=29.1$, $E_{a2}=44.4$, $E_{a3}=30.6$, предэкспоненциальный множитель $k_{01}=1351, k_{02}=63662, k_{03}=1211$, тепловой эффект $\Delta H_1=-19.8$, $\Delta H_2=14.9$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 17

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=306K, теплоемкость смеси $c_p=2429_{\overline{K}}$, состав подаваемой смеси: $c_A=28.6$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=21.6$, $E_{a2}=21.0$, $E_{a3}=14.3$, предэкспоненциальный множитель $k_{01}=292, k_{02}=144, k_{03}=28$, тепловой эффект $\Delta H_1=7.1$, $\Delta H_2=43.6$.

Вариант 18

В реакторе идеального вытеснения протекает реакция:

$$A \stackrel{k_1}{\underset{k_2}{\longleftrightarrow}} B + \Delta H_1$$

$$B \xrightarrow{k_3} C + \Delta H_2$$

На вход реактор подается смесь при температуре T=257K, теплоемкость смеси $c_p=3073_{\overline{K}}$, состав подаваемой смеси: $c_A=31.0$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=13.6$, $E_{a2}=25.4$, $E_{a3}=21.8$, предэкспоненциальный множитель $k_{01}=85,k_{02}=5122,k_{03}=1641$, тепловой эффект $\Delta H_1=-15.0$, $\Delta H_2=8.2$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 19

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$

$$B+C \xrightarrow{k_3} D+\Delta H_2$$

На вход реактор подается смесь при температуре T=242K, теплоемкость смеси $c_p=3052_{\overline{K}}$, состав подаваемой смеси: $c_A=33.9$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=11.5$, $E_{a2}=20.2$, $E_{a3}=16.4$, предэкспоненциальный множитель $k_{01}=23, k_{02}=731, k_{03}=110$, тепловой эффект $\Delta H_1=-13.8$, $\Delta H_2=-15.1$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 20

В реакторе идеального вытеснения протекает реакция:

$$A \xrightarrow{k_1} B + \Delta H_1$$
$$A \xrightarrow{k_2} C + \Delta H_2$$
$$A \xrightarrow{k_3} D + \Delta H_3$$

На вход реактор подается смесь при температуре T=250K, теплоемкость смеси $c_p=2606_{\overline{K}}$, состав подаваемой смеси: $c_A=18.3$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=12.1$, $E_{a2}=13.7$, $E_{a3}=12.2$, предэкспоненциальный множитель $k_{01}=28, k_{02}=39, k_{03}=42$, тепловой эффект $\Delta H_1=-21.8$, $\Delta H_2=-32.0$, $\Delta H_3=38.4$

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 21

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$

$$B + C \xrightarrow{k_3} D + \Delta H_2$$

На вход реактор подается смесь при температуре T=233K, теплоемкость смеси $c_p=3856_{\overline{K}}$, состав подаваемой смеси: $c_A=29.7$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=13.7$, $E_{a2}=15.6$, $E_{a3}=7.6$, предэкспоненциальный множитель $k_{01}=62, k_{02}=104, k_{03}=6$, тепловой эффект $\Delta H_1=-35.5$, $\Delta H_2=21.2$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 22

В реакторе идеального вытеснения протекает реакция:

$$A \xrightarrow{k_1} B + \Delta H_1$$
$$A \xrightarrow{k_2} C + \Delta H_2$$
$$A \xrightarrow{k_3} D + \Delta H_3$$

На вход реактор подается смесь при температуре T=379K, теплоемкость смеси $c_p=3438_{\overline{K}}$, состав подаваемой смеси: $c_A=20.4$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=23.7$, $E_{a2}=44.4$, $E_{a3}=24.4$, предэкспоненциальный множитель $k_{01}=129, k_{02}=39562, k_{03}=205$, тепловой эффект $\Delta H_1=-9.9$, $\Delta H_2=-5.2$, $\Delta H_3=-30.0$

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 23

В реакторе идеального вытеснения протекает реакция:

$$A + B \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=341K, теплоемкость смеси $c_p=2535_{\overline{K}}$, состав подаваемой смеси: $c_A=16.3$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=20.5$, $E_{a2}=38.8$, $E_{a3}=25.0$, предэкспоненциальный множитель $k_{01}=198,k_{02}=27403,k_{03}=737$, тепловой эффект $\Delta H_1=-39.5$, $\Delta H_2=10.0$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 24

В реакторе идеального вытеснения протекает реакция:

$$A \xrightarrow{k_1} B + \Delta H_1$$
$$A \xrightarrow{k_2} C + \Delta H_2$$
$$A \xrightarrow{k_3} D + \Delta H_3$$

На вход реактор подается смесь при температуре T=326K, теплоемкость смеси $c_p=3549_{\overline{K}}$, состав подаваемой смеси: $c_A=16.6$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=23.0$, $E_{a2}=33.3$, $E_{a3}=29.9$, предэкспоненциальный множитель $k_{01}=557, k_{02}=8491, k_{03}=3964$, тепловой эффект $\Delta H_1=40.5$, $\Delta H_2=32.6$, $\Delta H_3=-39.4$

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 25

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$
$$B + C \stackrel{k_3}{\longrightarrow} D + \Delta H_2$$

На вход реактор подается смесь при температуре T=333K, теплоемкость смеси $c_p=2161_{\overline{K}}$, состав подаваемой смеси: $c_A=29.9$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=23.3$, $E_{a2}=43.4$, $E_{a3}=30.0$, предэкспоненциальный множитель $k_{01}=534,k_{02}=130593,k_{03}=4108$, тепловой эффект $\Delta H_1=-11.7$, $\Delta H_2=-23.5$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 26

В реакторе идеального вытеснения протекает реакция:

$$A + B \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$B + C \xrightarrow{k_3} D + \Delta H_2$$

На вход реактор подается смесь при температуре T=366K, теплоемкость смеси $c_p=2664_{\overline{K}}$, состав подаваемой смеси: $c_A=24.3$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=19.8$, $E_{a2}=44.2$, $E_{a3}=36.2$, предэкспоненциальный множитель $k_{01}=102, k_{02}=76200, k_{03}=9374$, тепловой эффект $\Delta H_1=-8.2$, $\Delta H_2=6.0$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 27

В реакторе идеального вытеснения протекает реакция:

$$A \xrightarrow{k_1} B + \Delta H_1$$
$$A \xrightarrow{k_2} C + \Delta H_2$$
$$A \xrightarrow{k_3} D + \Delta H_3$$

На вход реактор подается смесь при температуре T=265K, теплоемкость смеси $c_p=2737_{\overline{K}}$, состав подаваемой смеси: $c_A=24.6$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=16.9$, $E_{a2}=21.5$, $E_{a3}=21.0$, предэкспоненциальный множитель $k_{01}=346,k_{02}=850,k_{03}=1346$, тепловой эффект $\Delta H_1=-29.2$, $\Delta H_2=-21.4$, $\Delta H_3=-44.9$

Вариант 28

В реакторе идеального вытеснения протекает реакция:

$$A \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$

$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=226K, теплоемкость смеси $c_p=2686_{\overline{K}}$, состав подаваемой смеси: $c_A=24.7$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=9.6$, $E_{a2}=14.4$, $E_{a3}=8.6$, предэкспоненциальный множитель $k_{01}=10, k_{02}=61, k_{03}=9$, тепловой эффект $\Delta H_1=41.3$, $\Delta H_2=-10.0$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 29

В реакторе идеального вытеснения протекает реакция:

$$A \stackrel{k_1}{\underset{k_2}{\longleftrightarrow}} C + \Delta H_1$$

$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=376K, теплоемкость смеси $c_p=2602_{\overline{K}}$, состав подаваемой смеси: $c_A=27.0$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=20.3$, $E_{a2}=61.3$, $E_{a3}=38.7$, предэкспоненциальный множитель $k_{01}=119,k_{02}=7006448,k_{03}=15777$, тепловой эффект $\Delta H_1=-42.6$, $\Delta H_2=-9.0$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 30

В реакторе идеального вытеснения протекает реакция:

$$A + B \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=289K, теплоемкость смеси $c_p=3731_{\overline{K}}$, состав подаваемой смеси: $c_A=34.5$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=16.2$, $E_{a2}=33.3$, $E_{a3}=24.0$, предэкспоненциальный множитель $k_{01}=139, k_{02}=28915, k_{03}=2193$, тепловой эффект $\Delta H_1=25.6$, $\Delta H_2=42.7$.