IZVEŠTAJ ZA DRUGI DOMAĆI ZADATAK IZ VEŠTACKE INTELIGENCIJE

Prvi zadatak

Potrebno je izračunati verovatnoću P(e-|f+) sledećim metodama.

a) metoda eliminacije

S obzirom na to da C i G ne utiču na verovatnocu P(e-|f+) jer ne spadaju u Markovljeve pokrivače ovih nijedne od ovih promenljivih, mozemo ih zanemarivati prilikom računanja verovatnoće metodom eliminacije, kao i narednim matodama. Metoda eliminacije je precizna i njen rezultat za traženu verovatnoću je 0,6428. Naredne metode su Monte Karlo metode i biće prikazani odgovarajući histogrami. Korišćeno je N = 50000 odbiraka.

b) uzorkovanje sa odbacivanjem

Kod uzorkovanja sa odbacivanjem, uzorkujemo sve promenljive koje figurišu u formuli za P(e-|f+). Krećemo od korena stabla, i kada dođemo do dokaznih promenljive, odbacujemo one slučajeve kada dobijemo neodgovarajuću vrednost, odnosno f-. Zatim uzorkujemo promenljivu e, a verovatnoću računamo kao količnik broja generisanih slučajeva kada je f = f+ i e = e- i broja slučajeva kada je f = f+.

c) metoda ponderisanja verodostojnošću

Kod metoda ponderisanja verodostojnošću metode ne uzorkujemo dokazne promenljive – fiksiramo ih na samom početku, dok ostale promenljive uzorkujemo u skladu sa njihovim roditeljima. Na kraju je potrebno broj povoljnih ishoda pomnožiti odgovarajućom težinama koje su proporcionalne verodostojnostima dokazne promenljive pod uslovom odgovarajućeg ishoda.

d) Gibbsovo uzorkovanje

Kod Gibbsovog uzorkovanja promenljive uzorkujemo iz uslovnih raspodela, na osnovu trenutnih vrednosti ostalih promenljivih. Na početku je potrebno inicijalizovati na slučajan način ne-dokazne promenljive. Dokazne su fiksirane kada uzorkujemo ostale, ali i dokazne uzorkujemo i u zavisnosti od toga da li se vrednosti pokalapaju sa traženim, brojimo povoljne ishode na isti način kao u metodi uzorkovanja sa odbacivanjem.

Drugi zadatak

Potrebno je za jednodimenzionalni proces odrediti optimalan broj čestica (N) u česticnom filtru na osnovu dva tipa greške: procenat čestica za koje važi da procenenjena pozicija od stvarne po apsolutnoj vrednosti odstupa za više od 2 standardne devijacije aposteriorne raspodele u posmatranom trenutku; koren srednje-kvadratne greške estimacije, usrednjenim za 10 realizacija za svaku vrednost N.

Izbarani optimalni broj čestica je N = 100, jer sa povećanjem broja čestica ne dobijamo znatna smanjenja greške, dok se složenost povećava. Sledi rezultat impementacija čestični filtar za jednu realizaciju slučajnog procesa, sa reuzorkovanjem (slika 2.1) i bez njega (slika 2.2). Reuzorkovanjem se postiže balansiranje težina čestica, kako ne bi jedna sa najvećom verovatnoćom povukla estimaciju ka sebi, jer je moguće da ne ide u dobrom smeru. Vidimo da su rezultati puno bolji kada je reuzorkovanje uključeno u algoritam (prva greška iznosti 6%, a druga 4.4822), dok kad isključimo reuzorkovanje greške iznose 80% i 10.8820. Vidimo takođe i da je na drugom grafiku dosta uži 2-sigma interval poverenja, zbog toga što smo veoma uvereni da je predikcija ispravna (težina najteže čestice je skoro 1), pa se procena i najteža čestica skoro poklapaju, što daje malu standardnu devijaciju, jer i druge nemaju puno udela u računanju standardne devijacije jer su otežinjene vrednostima bliskim 0 (što na kraju dovodi do velike greške).

Slika 2.1.

Slika 2.2.