Subword Regularization

1. Introduction

- 번역 모델에서 vocabulary size는 성능에 큰 영향을 줌
- 제한된 vocabulary 에서 좋은 성능을 내기 위해 subword unit을 사용
- BPE는 가장 일반적인 subword segmentation 알고리즘

1. Introduction

- BPE의 문제점

: 같은 어휘로도 여러개의 subword sequence를 생성할 수 있는것을 고려하지 않음

Subwords (. means spaces)	Vocabulary id sequence
_Hell/o/_world	13586 137 255
_H/ello/_world	320 7363 255
_He/llo/_world	579 10115 255
_/He/l/l/o/_world	7 18085 356 356 137 255
H/el/l/o//world	320 585 356 137 7 12295

Table 1: Multiple subword sequences encoding the same sentence "Hello World"

1. Introduction

- noise나 segmentation 에러에 강한 subword segmentation 방법을 제안
 - 제안 1: 여러개의 분할 후보를 통합
 - 제안 2 : language model 기반의 새로운 분할 알고리즘

- 일반적인 Sequential NMT 모델

$$\begin{split} P(\mathbf{y}|\mathbf{x};\theta) &= \prod_{n=1}^{N} P(y_{n}|\mathbf{x},y_{< n};\theta), \\ &= \mathsf{P}(y_{1}|x) * \mathsf{P}(y_{2}|x,\,y_{1}) * \mathsf{P}(y_{3}|x,\,y_{1},y_{2}) * \dots \end{split}$$

x : source sentence, y : target sentence

- 일반적인 Sequential NMT 모델의 학습 방법

$$\{\langle X^{(s)}, Y^{(s)} \rangle\}_{s=1}^{|D|} = \{\langle \mathbf{x}^{(s)}, \mathbf{y}^{(s)} \rangle\}_{s=1}^{|D|},$$

$$\theta_{MLE} = \underset{\theta}{\arg \max} \mathcal{L}(\theta)$$

$$where, \ \mathcal{L}(\theta) = \sum_{s=1}^{|D|} \log P(\mathbf{y}^{(s)} | \mathbf{x}^{(s)}; \theta). (2)$$

- 논문의 가정

: source sentence X와 target sentence Y는 여러개의 subword sequence로 분리할 수 있으며, 이 sequence는 각각 P(x|X), P(y|Y) 의 확률값을 따른다.

$$\mathcal{L}_{marginal}(\theta) = \sum_{s=1}^{|D|} \mathbb{E}_{\substack{\mathbf{x} \sim P(\mathbf{x}|X^{(s)}) \\ \mathbf{y} \sim P(\mathbf{y}|Y^{(s)})}} [\log P(\mathbf{y}|\mathbf{x}; \theta)] \quad (3)$$

앞에서는 subword sequence가 한 가지 였지만, 가정에 따라 논문에서는 여러개의 subword sequence를 고려하므로 학습시 marginal likelihood를 사용함?

- 문장이 길어지면 가능한 candidate가 크게 늘어 marginal likelihood를 최적화하기 어렵기 때문에 sequence sample 수를 k로 제한

$$\mathcal{L}_{marginal}(\theta) \cong \frac{1}{k^2} \sum_{s=1}^{|D|} \sum_{i=1}^k \sum_{j=1}^k \log P(\mathbf{y}_j | \mathbf{x}_i; \theta)$$

$$\mathbf{x}_i \sim P(\mathbf{x} | X^{(s)}), \quad \mathbf{y}_j \sim P(\mathbf{y} | Y^{(s)}).$$
(4)

- Decoding
 - one best decoding

P(x|X) 가 최대인 $x = x^*$ 이라고 할 때, 이 x^* 를 이용해 decoding

n-best decoding

n개의 segmentation 후보들로 decoding한 결과를 y라고 할 때, 아래 score가 최대인 결과 y*를 사용

$$score(\mathbf{x}, \mathbf{y}) = \log P(\mathbf{y}|\mathbf{x})/|\mathbf{y}|^{\lambda},$$
 (5)

1. BPE (생략)

2. Unigram language model

: 여러개의 subword segmentation과 각각의 확률값을 output으로 가짐

$$P(\mathbf{x}) = \prod_{i=1}^{M} p(x_i),$$
 (6)
 $\forall i \ x_i \in \mathcal{V}, \ \sum_{x \in \mathcal{V}} p(x) = 1,$

V : pre-determined vocabulary, p(xi) : subword occurrence probability

- S(X)가 segmentation 후보 집합일 때, 최적의 x^* 는 다음과 같이 구할 수 있음

$$\mathbf{x}^* = \arg\max_{\mathbf{x} \in \mathcal{S}(X)} P(\mathbf{x}), \tag{7}$$

Viterbi 알고리즘을 이용해 x*를 구함 (Viterbi ; 최적 상태를 얻기 위한 DP방법)

 어휘 V가 주어졌을 때 subword xi의 등장 확률 p(xi)는 EM알고리즘을 이용해 구함

$$\mathcal{L} = \sum_{s=1}^{|D|} \log(P(X^{(s)})) = \sum_{s=1}^{|D|} \log\left(\sum_{\mathbf{x} \in \mathcal{S}(X^{(s)})} P(\mathbf{x})\right)$$

배치 내 s번째 문장 X(s) 의 확률 = 배치 내 s번째 문장 X(s)에 대한 segmentation 후보 확률들의 합?

- 실제로는 어휘셋 V와 등장확률을 둘 다 최적화 해야하는데, 둘 다 하기는 힘듦
- 아래의 방법을 사용
 - 1. train corpus 내에서 충분히 큰 어휘 셋을 생성
 - 2. V가 적절한 크기가 될 때 까지 아래를 반복
 - a. 어휘 셋을 고정
 - b. subword의 등장확률을 EM 알고리즘으로 구함
 - c. 각 subword를 뺀 후 구한 likelihood의 변화분 loss i 계산
 - d. loss를 감소시킨 순으로 정렬 후 상위 몇% 까지 사용할지 결정
 - i. 이 때 single character는 반드시 포함해야 함

V를 구하는 여러가지 방법이 있지만 주로 모든 character의 조합과 자주 등장하는 set을 사용?

3. Subword sampling

P(x|X) 의 분포를 따르는 segmentation 후보 들 중 I개의 상위 후보를 구함

$$P(\mathbf{x}_i|X) \cong P(\mathbf{x}_i)^{\alpha} / \sum_{i=1}^l P(\mathbf{x}_i)^{\alpha},$$

i번째 segmentation 후보는 위와 같은 확률분포를 따라 sampling됨

여기서 α는 분포의 smoothness를 나타내는데,

α가 클수록 Viterbi segmentation을 선택할 경향이 크며, α가 작을수록 uniform한 분포에서 선택될 확률이 큼

- 1→∞이면 이론적으로 모든 가능한 segmentation을 고려할 수 있으나 문장이 길어질수록 l의 크기는 exponential하게 증가하기 때문에 실행가능하지 않음

- 1→∞ (모든 가능한 segmentation 고려)를 적용하기 위해 FFPS 알고리즘을 사용

- 결론

: BPE 보다 Subword segmentation이 좋음

- 1. 확률기반 모델을 사용 ; 유연함
- 2. 여러 segmentation 후보와 그에 대한 확률을 알 수 있음

4. Related Work

- 이전의 연구들과는 달리
 - source sentence 뿐 아니라 target sentence에도 적용 가능
 - parameter를 업데이트할 때 **마다** sampling을 통해 segmentation을 생성

		Size of sentences			Parameters			
Corpus	Language pair	train	dev	test	#vocab (Enc/Dec shared)	#dim of LSTM embedding	#layers of LSTM (Enc+Dec)	
IWSLT15	en ↔ vi	133k	1553	1268	16k	512	2+2	
	$en \leftrightarrow zh$	209k	887	1261	16k	512	2+2	
IWSLT17	$en \leftrightarrow fr$	232k	890	1210	16k	512	2+2	
	$en \leftrightarrow ar$	231k	888	1205	16k	512	2+2	
KFTT	$en \leftrightarrow ja$	440k	1166	1160	8k	512	6+6	
ASPEC	$en \leftrightarrow ja$	2M	1790	1812	16k	512	6+6	
WMT14	$en \leftrightarrow de$	4.5M	3000	3003	32k	1024	8+8	
	$en \leftrightarrow cs$	15M	3000	3003	32k	1024	8+8	

Table 2: Details of evaluation data set

- 사용한 번역 모델 : GNMT (https://norman3.github.io/papers/docs/google_neural_machine_translation.html)
- 평가 방법 : BLEU (https://brunch.co.kr/@kakao-it/154)
 - 번역 모델에서 많이 사용하는 평가 지표
 - 정답과 번역결과가 n-gram단위로 얼마나 비슷한지 보는 것
- baseline : BPE

- decoding 방법 두 가지
 - one-best decoding
 - n-best decoding (n=64)
- 1: 상위 몇 개의 segmentation 후보를 고려할 것인지
 - 1 = 1 : 하나의 후보만 고려 (BPE 와 비교했을 때 빈도 vs language model 중 뭐가 좋은지 평가 가능)
 - 1 = 64
 - 1 = ∞
- α: sampling 할 분포의 smoothing을 고려
 - 작을수록 uniform한 분포에서 sampling 되는 것
 - $\alpha = 0.1, 0.2, 0.5$

n-best decoding의 성능이 전체적으로 좀 더

			Proposed (on best decoding)			Proposed (n -best decoding, $n = 64$)			
	Language	baseline	200 700	l = 64	$l=\infty$	2000	l = 64	$l = \infty$	
Corpus	pair	(BPE)	l=1	$\alpha = 0.1$	$\alpha = 0.2/0.5$	l = 1	$\alpha = 0.1$	$\alpha = 0.2/0.5$	
IWSLT15	$en \rightarrow vi$	25.61	25.49	27.68*	27.71*	25.33	28.18*	28.48*	
	$vi \rightarrow en$	22.48	22.32	24.73*	26.15*	22.04	24.66*	26.31*	
	$en \rightarrow zh$	16.70	16.90	19.36*	20.33*	16.73	20.14*	21.30*	
	$zh \rightarrow en$	15.76	15.88	17.79*	16.95*	16.23	17.75*	17.29*	
IWSLT17	$en \rightarrow fr$	35.53	35.39	36.70*	36.36*	35.16	37.60*	37.01*	
	$fr \rightarrow en$	33.81	33.74	35.57*	35.54*	33.69	36.07*	36.06*	
	$en \rightarrow ar$	13.01	13.04	14.92*	15.55*	12.29	14.90*	15.36*	
	$ar \rightarrow en$	25.98	27.09*	28.47*	29.22*	27.08*	29.05*	29.29*	
KFTT	$en \rightarrow ja$	27.85	28.92*	30.37*	30.01*	28.55*	31.46*	31.43*	
	$ja \rightarrow en$	21.37	21.46	22.33*	22.04*	21.37	22.47*	22.64*	
ASPEC	$en \rightarrow ja$	40.62	40.66	41.24*	41.23*	40.86	41.55*	41.87*	
	$ja \rightarrow en$	26.51	26.76	27.08*	27.14*	27.49*	27.75*	27.89*	
WMT14	$en \rightarrow de$	24.53	24.50	25.04*	24.74	22.73	25.00*	24.57	
	$de \rightarrow en$	28.01	28.65*	28.83*	29.39*	28.24	29.13*	29.97*	
	$en \rightarrow cs$	25.25	25.54	25.41	25.26	24.88	25.49	25.38	
	$cs \rightarrow en$	28.78	28.84	29.64*	29.41*	25.77	29.23*	29.15*	

Table 3: Main Results (BLEU(%)) (l: sampling size in SR, α : smoothing parameter). * indicates statistically significant difference (p < 0.05) from baselines with bootstrap resampling (Koehn, 2004). The same mark is used in Table 4 and 6.

subword regularization을 한 결과가 더 좋음

			Proposed (one-best decoding)		Proposed (<i>n</i> -best decoding, $n = 64$)			
Corpus	Language pair	baseline (BPE)	l=1	$\begin{array}{c} l = 64 \\ \alpha = 0.1 \end{array}$	$\begin{array}{c} l = \infty \\ \alpha = 0.2/0.5 \end{array}$	l=1	$l = 64$ $\alpha = 0.1$	$\begin{array}{c} l = \infty \\ \alpha = 0.2/0.5 \end{array}$
IWSLT15	$en \rightarrow vi$	25.61	25.49	27.68*	27.71*	25.33	28.18*	28.48*
	$vi \rightarrow en$	22.48	22.32	24.73*	26.15*	22.04	24.66*	26.31*
	$en \rightarrow zh$	16.70	16.90	19.36*	20.33*	16.73	20.14*	21.30*
	$zh \rightarrow en$	15.76	15.88	17.79*	16.95*	16.23	17.75*	17.29*
IWSLT17	$en \rightarrow fr$	35.53	35.39	36.70*	36.36*	35.16	37.60*	37.01*
	$fr \rightarrow en$	33.81	33.74	35.57*	35.54*	33.69	36.07*	36.06*
	$en \rightarrow ar$	13.01	13.04	14.92*	15.55*	12.29	14.90*	15.36*
	$ar \rightarrow en$	25.98	27.09*	28.47*	29.22*	27.08*	29.05*	29.29*
KFTT	$en \rightarrow ja$	27.85	28.92*	30.37*	30.01*	28.55*	31.46*	31.43*
	$ja \rightarrow en$	21.37	21.46	22.33*	22.04*	21.37	22.47*	22.64*
ASPEC	$en \rightarrow ja$	40.62	40.66	41.24*	41.23*	40.86	41.55*	41.87*
	$ja \rightarrow en$	26.51	26.76	27.08*	27.14*	27.49*	27.75*	27.89*
WMT14	$en \rightarrow de$	24.53	24.50	25.04*	24.74	22.73	25.00*	24.57
	$de \rightarrow en$	28.01	28.65*	28.83*	29.39*	28.24	29.13*	29.97*
	$en \rightarrow cs$	25.25	25.54	25.41	25.26	24.88	25.49	25.38
	$cs \rightarrow en$	28.78	28.84	29.64*	29.41*	25.77	29.23*	29.15*

Table 3: Main Results (BLEU(%)) (l: sampling size in SR, α : smoothing parameter). * indicates statistically significant difference (p < 0.05) from baselines with bootstrap resampling (Koehn, 2004). The same mark is used in Table 4 and 6.

특히 비교적 작은 데이터 셋에서

더 좋음

Domain		Language	Baseline	Proposed
(size)	Corpus	pair	(BPE)	(SR)
Web	IWSLT15	$en \rightarrow vi$	13.86	17.36*
(5k)		$vi \rightarrow en$	7.83	11.69*
		$en \rightarrow zh$	9.71	13.85*
		$zh \rightarrow en$	5.93	8.13*
	IWSLT17	$en \rightarrow fr$	16.09	20.04*
		$fr \rightarrow en$	14.77	19.99*
	WMT14	$en \rightarrow de$	22.71	26.02*
		$de \rightarrow en$	26.42	29.63*
		$en \rightarrow cs$	19.53	21.41*
		$cs \rightarrow en$	25.94	27.86*
Patent	WMT14	$en \rightarrow de$	15.63	25.76*
(2k)		$de \rightarrow en$	22.74	32.66*
		$en \rightarrow cs$	16.70	19.38*
		$cs \rightarrow en$	23.20	25.30*
Query	IWSLT15	$en \rightarrow zh$	9.30	12.47*
(2k)		$zh \rightarrow en$	14.94	19.99*
	IWSLT17	$en \rightarrow fr$	10.79	10.99
		$fr \rightarrow en$	19.01	23.96*
	WMT14	$en \rightarrow de$	25.93	29.82*
		$de \rightarrow en$	26.24	30.90*

결론 : open domain에도 유용함

Table 4: Results with out-of-domain corpus $(l = \infty, \ \alpha = 0.2$: IWSLT15/17, $l = 64, \ \alpha = 0.1$: others, one-best decding)

Model	BLEU
Word	23.12
Character (512 nodes)	22.62
Mixed Word/Character	24.17
BPE	24.53
Unigram w/o SR $(l=1)$	24.50
Unigram w/ SR ($l=64, \ \alpha=0.1$)	25.04

Table 5: Comparison of different segmentation algorithms (WMT14 en→de)

일반적으로 1이 클수록 좋지만, α에 민감하므로 충분한 크기의 데이터 셋이라면 1=64

Figure 1: Effect of sampling hyperparameters

고려해야 할 후보는 많은데, uniform한 분포에서 sampling

Regularization type	en→vi	vi→en	en→ar	ar→en
No reg. (baseline)	25.49	22.32	13.04	27.09
Source only	26.00	23.09*	13.46	28.16*
Target only	26.10	23.62*	14.34*	27.89*
Source and target	27.68*	24.73*	14.92*	28.47*

Table 6: Comparison on different regularization strategies (IWSLT15/17, l = 64, $\alpha = 0.1$)

source 와 target 문장 모두에 적용한 결과가 가장 좋지만, 한쪽에만 적용한 것도 안한 결과보다는 더좋으니 인코더/디코더 를 사용하는 여러 NLP task에 적용할 수 있겠다