POSCAT Seminar 4 : Adv. Data Structure

yougatup @ POSCAT

Topic

- Topic today
 - Heap (Just for your knowledge)
 - D-ary heap
 - Binomial heap
 - Fibonacci heap
 - —Indexed Tree
 - Binary Indexed Tree
 - Fenwick Tree
 - —Implementation of Indexed Tree

Heap

- You already know what it is
 - Definition ?
- Amazingly, there is faster data structures
 - Fibonacci heap 은 이론적으로 Time complexity 가장 적음
 - But, 구현해보면 느림 → 실제로 쓰지는 않습니다
 - d-ary heap, Binomial heap, Fibonacci heap
- Operations
 - find_min, delete_min, insert, delete, decrease_key

- It has child at most d
 - Extended version of binary heap
 - How it works?
 - We use it for Prim algorithm

```
find_min?
insert?
delete?
decrease_key?
delete_min?
```


- It has child at most d
 - Extended version of binary heap
 - How it works ?
 - We use it for Prim algorithm

find_min : root!

insert : insert to right-most

delete : decrease a value to -∞, and delete_min

decrease_key : decrease a value, and rearrange heap

delete_min : like binary heap ☺

- It has child at most d
 - Extended version of binary heap
 - How it works?
 - We use it for Prim algorithm

find min : root!

insert : insert to right-most

delete : decrease a value to -∞, and delete_min decrease_key : decrease a value, and rearrange heap

delete min : like binary heap ©

Time complexity?

It has child at most d

- Extended version of binary heap
- How it works?
- We use it for Prim algorithm

find_min : O(1)

insert : $O(\log_d n)$

delete : $O(d \log_d n)$

decrease_key : $O(\log_d n)$

 $delete_min : O(d \log_d n)$

Time complexity?

Definition

A binomial tree of height k (denoted by B_k) is defined as follows

- 1. B_0 consists of a single node.
- 2. B_k is formed by joining two B_{k-1} trees, making one's root child of the other

Property

- 1. B_k has 2^k nodes
- 2. The height of B_k is $k = \log |B_k|$
- 3. The root of B_k has k children

Use mathematical induction to prove

Therefore, the height and the degree of a node v in a binomial tree are both at most logarithmic in the size of the subtree rooted at v

Storing data

How can we store $n \neq 2^k$ nodes using binomial tree?

Storing data

How can we store $n \neq 2^k$ nodes using binomial tree?

Think about binary notation of n

Storing data

How can we store $n \neq 2^k$ nodes using binomial tree?

Think about binary notation of n

We can use binomial tree chain! We call it as root list

Definition

A binomial heap is a (set of) binomial tree(s) where each node is associated with a key and the heap-order property is preserved. We also have the requirement that for any i there is at most one B_i . In other words, it doesn't contain two B_i in the binomial heap.

Operations

find_min, delete_min, insert, delete, decrease_key

Find_min

We need to consider all the root nodes of binomial tree It takes $O(\log n)$. Why ?

Find_min

We need to consider all the root nodes of binomial tree It takes $O(\log n)$. Why ? we have $\log n$ binomial trees

Decrease_key

Decrease_key

Decrease_key

Decrease_key

Delete_min

If we delete the root node of binomial tree, it is split into many trees

Delete_min

If we delete the root node of binomial tree, it is **split** into many trees

Delete_min

If we delete the root node of binomial tree, it is **split** into many trees Make **another chain**! Then we get another binomial heap.

Delete_min

If we delete the root node of binomial tree, it is **split** into many trees Make **another chain**! Then we get another binomial heap.

Merge two binomial heaps into one! How?

Delete_min

If we delete the root node of binomial tree, it is **split** into many trees Make **another chain**! Then we get another binomial heap.

Merge two binomial heaps into one! How? Merging on merge sort?

Delete_min

If we delete the root node of binomial tree, it is **split** into many trees Make **another chain**! Then we get another binomial heap.

Merge two binomial heaps into one!

Delete_min

If we delete the root node of binomial tree, it is **split** into many trees Make **another chain**! Then we get another binomial heap.

Merge two binomial heaps into one!

Delete_min

If we delete the root node of binomial tree, it is **split** into many trees Make **another** chain! Then we get another binomial heap.

Merge two binomial heaps into one!

Delete_min

If we delete the root node of binomial tree, it is **split** into many trees Make **another** chain! Then we get another binomial heap.

Merge two binomial heaps into one!

Delete_min

If we delete the root node of binomial tree, it is **split** into many trees Make **another** chain! Then we get another binomial heap.

Merge two binomial heaps into one!

Delete_min

If we delete the root node of binomial tree, it is **split** into many trees Make **another** chain! Then we get another binomial heap.

Merge two binomial heaps into one!

Delete_min

If we delete the root node of binomial tree, it is **split** into many trees Make **another** chain! Then we get another binomial heap.

Merge two binomial heaps into one!

Delete_min

Time complexity?

Delete_min

Time complexity?

Each node has at most $\log n$ child.

Delete_min

Time complexity?

Each node has at most $\log n$ child. New binomial heap consists of at most $\log n$ binomial trees

Delete_min

Time complexity?

Each node has at most $\log n$ child.

New binomial heap consists of at most $\log n$ binomial trees Therefore, Merging and rearrange takes $O(\log n)$.

Binomial heap

Insert

Insert a new node and rearrange binomial heap $O(\log n)$

Binomial heap

Delete

Make it as $-\infty$, and delete_min! $O(\log n)$

- Theoretically fastest heap
 - But it is just theoretical. It is slow if you implement it
 - We don't use it
- Similar with binomial heap
 - Relaxed version of binomial heap
 - Use a *lazy* update scheme.

Operation	Binary ^[1]	Binomial ^[1]	Fibonacci ^[1]
find-min	Θ(1)	O(log n)	Θ(1)
delete-min	Θ(log <i>n</i>)	Θ(log <i>n</i>)	O(log <i>n</i>)*
insert	Θ(log <i>n</i>)	O(log n)	Θ(1)
decrease- key	Θ(log n)	Θ(log n)	Θ(1)*
merge	Θ(<i>n</i>)	O(log n)**	Θ(1)

Main feature

- Individual trees are not necessarily binomial (let me denote it as B_i)
- Allow many copies of B_i for the same i.

Operations

find_min, delete_min, insert, delete, decrease_key

Find_min via pointer!

Insert

Create a node. No update because I'm lazy © Give \$1 to inserted node. I'll explain the meaning of 'coin' later.

Delete

-∞, delete_min

Delete_min

Delete min and rearrange Fibonacci heap.

Time complexity will proportional to the number of trees.

Delete_min

Delete min and rearrange Fibonacci heap.

Time complexity will proportional to the number of trees.

Delete_min

Delete min and rearrange Fibonacci heap.

Time complexity will proportional to the number of trees.

Delete_min

Delete min and rearrange Fibonacci heap.

Time complexity will proportional to the number of trees.

Delete_min

Delete min and rearrange Fibonacci heap.

Time complexity will proportional to the number of trees.

Delete_min

Delete min and rearrange Fibonacci heap.

Time complexity will proportional to the number of trees.

Delete_min

Delete min and rearrange Fibonacci heap.

Time complexity will proportional to the number of trees.

Is it fast ? \rightarrow we'll analyze it soon.

Decrease_key

Decrease the value of the element. If the heap-order property is violated, **cut** the link between the node and its parent. (It may produce a result which is not a binomial tree)

Decrease_key

Decrease the value of the element. If the heap-order property is violated, **cut** the link between the node and its parent. (It may produce a result which is not a binomial tree)

Decrease_key

Decrease the value of the element. If the heap-order property is violated, **cut** the link between the node and its parent. (It may produce a result which is not a binomial tree)

Decrease_key

Decrease the value of the element. If the heap-order property is violated, **cut** the link between the node and its parent. (It may produce a result which is not a binomial tree)

Decrease_key

Decrease the value of the element. If the heap-order property is violated, **cut** the link between the node and its parent. (It may produce a result which is not a binomial tree)

Definition

- 1. Whenever a node is being cut, *mark the parent* of the cut node in the original tree, and
 - Pay \$1 for the cut
 - Store \$2 in the parent of the cut node
 - Store \$1 in the new root (cut node).

Definition

2. When a 2^{nd} child of a node v is lost (cutting a child of an already marked node), by that time node v will have accumulated \$ 4; recursively cut that node from its parent, marking again the parent of v and using \$4 to pay for the operation before.

\$1 for the cut, \$2 to its parent, \$1 to the new root

decrease it to 2!

Definition

2. When a 2^{nd} child of a node v is lost (cutting a child of an already marked node), by that time node v will have accumulated \$ 4; recursively cut that node from its parent, marking again the parent of v and using \$4 to pay for the operation before.

\$1 for the cut, \$2 to its parent, \$1 to the new root

decrease it to 2!

Definition

2. When a 2^{nd} child of a node v is lost (cutting a child of an already marked node), by that time node v will have accumulated \$ 4; recursively cut that node from its parent, marking again the parent of v and using \$4 to pay for the operation before.

\$1 for the cut, \$2 to its parent, \$1 to the new root

Definition

2. When a 2^{nd} child of a node v is lost (cutting a child of an already marked node), by that time node v will have accumulated \$ 4; recursively cut that node from its parent, marking again the parent of v and using \$4 to pay for the operation before.

\$1 for the cut, \$2 to its parent, \$1 to the new root

Time complexity of cascading cut

Each node has the coin they already have. Each cut requires only \$4, and decrease_key takes **overall** still amortized time O(1) (Overall cost / The number of operation)

Decrease_key

Decrease the value of the element. If the heap-order property is violated, **cut** the link between the node and its parent. (It may produce a result which is not a binomial tree)

Decrease_key

Decrease the value of the element. If the heap-order property is violated, **cut** the link between the node and its parent. (It may produce a result which is not a binomial tree)

Not just cut, we use "Cascading cut"

Analysis

Cascading cut takes O(1)

How much is merging cost?

Analysis

Cascading cut takes O(1)

How much is merging cost ? O(1) because of the coin

Analysis

Cascading cut takes O(1)

After cut, we get (# of child) additional trees

How much is merging cost per child? O(1) because of the coin

How many child does a node has?

Analysis

Cascading cut takes O(1)

After cut, we get (# of child) additional trees

How much is merging cost per child? O(1) because of the coin

How many child does a node has ? → Degree of a node

Analysis

Let x be any node in a Fibonacci heap. Then

 $size(x) \ge F_{k+2} \ge \emptyset^k$ where k is the degree of x, \emptyset is golden ratio

Proof by induction on k. Consider a node x of degree k = n + 1. Let y_i be the k children of x, from oldest to youngest (i.e. y_0 was made children of x before y_1 , and so on). Then

$$size(x) = 1 + size(y_0) + size(y_1) + ... + size(y_{k-1})$$

Analysis

Let x be any node in a Fibonacci heap. Then

 $size(x) \ge F_{k+2} \ge \emptyset^k$ where k is the degree of x, \emptyset is golden ratio

Proof by induction on k. Consider a node x of degree k = n + 1. The degree of y_i is at least i - 1 for $1 \le i \le d$ because we merge two trees when their degree is the same.

Analysis

Let x be any node in a Fibonacci heap. Then

 $size(x) \ge F_{k+2} \ge \emptyset^k$ where k is the degree of x, \emptyset is golden ratio

Proof by induction on k. Consider a node x of degree k = n + 1. Therefore,

$$\begin{aligned} \operatorname{size}(x) &= 1 + \operatorname{size}(y_0) + \operatorname{size}(y_1) + \operatorname{size}(y_2) + \dots + \operatorname{size}(y_{k-1}) \\ &\geq 1 + 1 + F_2 + F_3 + \dots + F_k \\ &\geq F_{k+2} &\geq \emptyset^k \text{ (also it can be proved by induction)} \end{aligned}$$

Analysis

Therefore, $k \leq \log_{\emptyset} size(x)$.

$$\therefore k \le \log n$$

Therefore, decrease_key takes $O(\log n)$