

Departamento de Electrónica y Tecnología de Computadores Universidad de Granada

EXAMEN FINAL DE COMPONENTES Y CIRCUITOS ELECTRÓNICOS JUNIO 2015

Nombre:

Grupo:

- 1. Una muestra semiconductora de silicio está dopada con impurezas tanto aceptadoras como donadoras (N_D=2x10¹⁷ cm⁻³, N_A=5x10¹⁷ cm⁻³).
 - a.- Calcular la concentración de electrones y huecos en la muestra a temperatura ambiente. **(0.75 puntos)**
 - b.- Obtener el valor de la resistividad si los valores de la movilidad son μ_n =1417 cm²/Vs y μ_p =471 cm²/Vs. (0.75 puntos)

DATOS: ni = $1.45 \cdot 10^{10}$ cm⁻³, q = $1.6 \cdot 10^{-19}$ C.

2. En el siguiente circuito se usa un diodo Zéner como regulador de tensión.

- a. Determine el valor de la resistencia Rs para que la corriente que circula por el diodo sea 5 mA. DATOS: $V_Z = 5$ V, $R_Z = 0$ Ω . (0.8 puntos)
- b. La fuente de tensión no está bien diseñada y su salida, en lugar de ser constante, tiene un pequeño rizado de amplitud v_{dd} . En el circuito anterior, ¿cómo influye este rizado sobre la tensión de salida, v_o , soportada por la resistencia? Calcule el factor de regulación de línea, definido como:

$$F_L = v_o / v_{dd}$$

DATO: un diodo Zéner conduciendo en inversa se comporta en pequeña señal igual que en directa, como una resistencia equivalente, en este caso, de valor: $r_Z = nV_T / I_Z$, donde n = 2, $V_T = 25.8$ mV e I_Z es la corriente inversa del diodo en el punto de polarización. (1 punto)

c. Suponiendo que Rs = $3.85 \text{ k}\Omega$, calcule el factor de regulación de línea. (0.7 puntos)

3. En el circuito de la figura, el transistor MOSFET tiene las siguientes características: $V_t = 1V$, $k_n = 0.8 \text{mA/V}^2$ y $V_A = 40V$.

- a. Calcular los valores de R_D y R_S para que $I_D = 0.1$ mA y $V_D = 0$ V. Despreciar el efecto Early. La resistencia $R_G = 10$ M Ω . (1.5 puntos)
- b. Si el terminal Z se pone a masa, en X se conecta una fuente de señal (a través de una resistencia de fuente serie igual a $1M\Omega$) y en el terminal Y se conecta una resistencia de carga de $40 \text{ k}\Omega$, determine la ganancia de tensión desde la fuente de señal hasta la carga (v_Y/v_s). Incluya el efecto Early. (2 puntos)
- 4. Para el circuito correspondiente a la siguiente figura, calcular:
 - a) Los valores de I_C y V_{CE} cuando R_C =0.1 k Ω . ¿En qué región de operación se encuentra el transistor? (**1 punto**)
 - b) Si $R_C=5 \text{ k}\Omega$. En qué región de operación se encuentra el transistor? (0.5 puntos)
 - c) ¿Qué valor de R_C determina la transición de activa a saturación? (1 punto)

DATOS: $R_1=50 \text{ k}\Omega$, $R_2=100 \text{ k}\Omega$, $R_E=1 \text{ k}\Omega$, $\beta=300$, $V_{BE}=0.7 \text{ V}$, $V_{CE(sat)}=0.2 \text{ V}$, $V_{CC}=15 \text{ V}$.

