ASSIGNMENT-9 EXPERIMENT-9

DETERMINATION OF WAVELENGTH OF MONOCHROMATIC LIGHT NEWTON'S RING

AIM: To determine the wavelength of monochromatic light using Newton's ring method.

APPARATUS: Travelling microscope, glass plate, convex lens, monochromatic light.

FORMULA:

$$\lambda = r_{n+m}^2 - r_n^2 / mR$$
 meter

Fig. 9.1. Newton's Ring Set up

Fig. 9.2. Newton's Rings

Order of the Ring	Microscope Reading		Diameter of the	Radius of the	r^2 $x 10^{-4}$	r_{n+12}^2	λ (Å)
	Left	Right	Ring cm	Ring cm	cm ²	$-\mathbf{r}_{\mathrm{n}}^{2}$ cm^{2}	(A)
N	5.652	5.755	?	?	?		
N+3	5.605	5.807	?	?	?		
N+6	5.554	5.851	?	?	?		
N+9	5.509	5.903	?	?	?		
N+12	5.455	5.955	?	?	?	?	?
N+15	5.408	5.996	?	?	?	?	
N+18	5.398	6.045	?	?	?	?	
N+21	5.353	6.003	?	?	?	?	
					Mean	?	

OBSERVATIONS

Radius of curvature of the given lens R = 1m

Order of the ring m = 12

Assignment Question:

- 1. From the microscope readings (Left and Right), find out the difference between these two readings and enter the same in the tabular coloum as diameter of the ring.
- 2. From the diameter of the ring find out the radius of the ring & square of radius and enter the same in the respective colours in four decimal points.
- 3. From square of radius calculate the difference between order of the rings, N & N+12, N+3 & N+15, N+6 & N+18, N+9 & N+21. Let it assume r_{n+12} ^2-r_n Also calculate its mean value.

- 4. From the mean value of $r_{n+12}^2 r_n^2$, order of the ring (m) and Radius of curvature of the ring (R), calculate the wave length of the monochromatic ring by using the formula.
- 5. Write the result in the following order

Wave length of the monochromatic light = \dots ...Å

Finally, submit the scanned copy of your observation note book in GCR on (or) before THREE working days from the date of experiment.