计算机网络综合实验

为什么要做网络实验?

中国有一句古老的名言:
 "不闻不若闻之,闻之不若见之,见之不若知之,知之不若行之。学至于行而止矣。"

——《荀子·儒效》

这句话在西方被广为引用:
 "Tell me and I forget. Show me and I remember.
 Involve me and I understand."

—— Chinese Proverb

根本原因:加深对理论的理解提高实践的能力

教学目标

- 使学生通过实验更加深刻的理解计算机网络的基本原理、算法和协议
- 使学生掌握H3C网络设备的配置、组网方法(不同网络设备制造商生产的设备是大同的)
- 为学生参加H3C的H3CNE技术认证考试打下良好的基础(认证的特点和社会认可度;对认证保持正确的态度)

课程主要内容

共计9次实验:

- 网络协议分析工具Wireshark的使用
- 登录交换机与网络操作系统VRP介绍
- 交换机的端口配置与生成树协议配置
- VLAN及VLAN间路由配置
- 登录路由器与路由协议(静态及RIP)配置
- 广域网协议配置
- 防火墙配置与NAT配置
- 路由综合实验(含OSPF)与故障诊断
- 组网综合实验(闭卷实践考核)

教材与参考书

- 教材(推荐)
 新华三大学编著《路由与交换技术》(第1卷)(上、下册)
 清华大学出版社,2017
- 参考书
 - H3C网络设备的操作手册(官方网站下载)
 - 陈鸣(译)《计算机网络:自顶向下方法》(原书第7版)机械工业出版社 2018
 - 诸葛建伟(译).《Wireshark数据包分析实战》(第3版)人民邮电出版社出版社,2018
 - 大学霸IT达人编写组编著. 《从实践中学习Wireshark数据分析》(第一版)机械工业出版社, 2020年

第一讲 网络协议分析工具Wireshark的使用

第一讲 网络协议分析工具Wireshark的使用

- Wireshark概览
- Wireshark的图形界面
- Wireshark的基本用法
- Wireshark的过滤规则

Wireshark概览

- Wireshark是目前使用最广泛的网络协议分析工具(Network Protocol Analyzer)
- Wireshark能够实时地捕获网络上的包(帧)(所以又被称为是 "A Packet Sniffer"),并对包中每个域的细节进行解释
- Wireshark的广为流行主要有以下三个原因: 功能相当强大 开源并且免费 具有非常详细的文档
- 2006年后, Ethereal改名为Wireshark,最新的安装文件和文档可以在http://www.wireshark.org下载, Wireshark目前也推出了相应的认证考试和教材。(这是一个所有64位wireshark 版本下载的链接https://1.as.dl.wireshark.org/win64/all-versions/)

Wireshark概览(WinPcap和Npcap)

- 多年来,WinPcap被公认为Windows环境中用于链路层网络访问的行业标准工具,它允许应用程序绕过协议栈来捕获和传输网络数据包,包括内核级数据包过滤,网络统计引擎和支持远程数据包捕获。
- WinPcap包含一个扩展操作系统的驱动程序,以提供低级网络访问权限;该库用于轻松访问低级网络层。该库还包含Windows版本的著名libpcap Unix API。
- 凭借其一系列功能,WinPcap已成为许多开源和商业网络工具的数据包捕获和过滤引擎,包括协议分析器,网络监视器,网络入侵检测系统,嗅探器,流量生成器和网络测试器。其中的一些联网工具,例如Wireshark,Nmap,Snort和ntop,在整个联网社区中都是众所周知的并使用。
- Npcap是Windows的Nmap项目的数据包嗅探(和发送)库。它基于已停产的WinPcap库,但具有提高的速度,可移植性,安全性和效率。Wireshark 自3.0以上版本开始使用Npcap。

Wireshark的图形界面

共分为5个部分:

- 菜单项和工具栏:Wireshark提供的所有功能都可以从这一部分中找到
- Filter: 又称Display Filter,用于在显示被捕获包时对它们进行过滤
- 被捕获包列表:给出了被捕获包的一般信息,例如被捕获的时间,源和目的IP地址,所属的协议类型等
- 选中包分析:解释选中包的每一个域的具体信息,从以太网帧的首部开始,一直到应用层协议的负载
- 选中包原貌:显示选中包的16进制和ASCII表示,以帮助用户来了解一个包的本来的样子

菜单项

工具栏

Wireshark

文件(F) 编辑(E) 视图(V) 跳转(G) 捕获(C) 分析(A) 统计(S) 电话(Y) 无线(W) 工具(T) 帮助(H)

Filter

被捕获包列表

No.	Time	Source	Destination	Protocol	Length Info	
	1 0.000000	Tp-LinkT_8d:79:ff	Broadcast	ARP	60 ARP Announcer	ment for 210.30.97.214
	2 0.480999	fe80::4188:4198:34f	ff02::1:3	LLMNR	95 Standard que	ry 0x2b78 A windows-nwvbtir
	3 0.481266	210.30.97.130	224.0.0.252	LLMNR	75 Standard que	ry 0x2b78 A windows-nwvbtir
	4 0.589304	fe80::4188:4198:34f	ff02::1:3	LLMNR	95 Standard que	ry 0x2b78 A windows-nwvbtir
	5 0.589306	210.30.97.130	224.0.0.252	LLMNR	75 Standard que	ry 0x2b78 A windows-nwvbtir
	6 0.769689	0.0.0.0	255.255.255.255	DHCP	347 DHCP Discover	r - Transaction ID 0xa8580d3d
	7 0.793710	210.30.97.130	210.30.97.255	NBNS	92 Name query Ni	B WINDOWS-NWVBTIR<20>
	8 1.556458	210.30.97.130	210.30.97.255	NBNS	92 Name query Ni	B WINDOWS-NWVBTIR<20>

- > Frame 1: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface \Device\NPF_{3CB9CAB6-4E1C-421A-9966-E
- > Ethernet II, Src: Tp-LinkT_8d:79:ff (ec:88:8f:8d:79:ff), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
- > Address Resolution Protocol (ARP Announcement)

00 00 00 00 00 00 00 00 00 00 00 00

0000	ff	ff	ff	ff	ff	ff	ec	88	8f	8d	79	ff	08	06	00	01
0010																
0020	00	00	00	00	00	00	d2	1e	61	d6	00	00	00	00	00	00

.....a-

选中包分析

选中包原貌

Wireshark的基本用法 — 捕获包

- 选择" Capture" 菜单项中的" Options"
- 配置"Options"对话框:(不同版本的Options对话框有差别)
 - 选择执行"Capture"的网卡(即"Interface")选对网卡后,IP
 地址会从Unknow变成有效值。
 - 配置" Capture Filter"
 - 选中 "Update list of packets in real time"
- 点击 "Start" 按钮

启动wireshark抓帧前的必要设置

Wireshark的基本用法 — 保存结果

注意:不同版本Save操作会有细微差别

- 选择"File"菜单项中的"Save"
- "Save" 对话框:
 - 在 "Name:" 栏填入保存文件名
 - 在 "Save in folder:" 栏选择保存路径
- 点击 "Save" 按钮

Wireshark的过滤规则

- 精通Wireshark使用的重点所在
- Wireshark支持在两处配置过滤规则:
 - Wireshark Display Filter
 - ◆ Wireshark Capture Filter
- 两处过滤规则的语法并不相同

Display Filter 过滤规则(1)

- 根据协议来进行包过滤:
 - eth, ip, tcp, http, telnet等
- 根据包格式中的域值来进行包过滤
 - 例:显示以太网地址为 00:d0:f8:00:00:03 的设备的所有 帧
 - eth.addr==00.d0.f8.00.00.03
 - 例:显示 IP地址为 192.168.10.1 的主机的所有报文 ip.addr==192.168.10.1
 - 例:显示所有 Web 浏览的报文 tcp.port==80

Display Filter 过滤规则(2)

- 类似C语言的表达式
 - 关系运算符:==,>,<=,!=等
 - 逻辑连接符: &&, ||,!等
 - 还可以用()来指定运算顺序
 - 例:显示192.168.10.1除了http外的所有报文 ip.addr==192.168.10.1 && tcp.port!=80
- 书写过滤规则的两个诀窍:
 - 看Display Filter的背景色
 - 绿色时,说明规则符合语法;红色时,则否。
 - 使用Expression对话框
 - 查询协议或域的关键字
 - wireshark支持的全部协议及协议字段可查看 https://www.wireshark.org/docs/dfref/

Capture Filter 的过滤规则(1)

- 过滤规则共有两种形式:
 - 一个原语 (Primitive);
 - 用 " and" , "or" , "not" 关系运算符 , 以及括号" ()" 将原语组合起来而构成的表达式 ;
- 因此,我们只要掌握了原语的写法,再用关系运算符把它们组合起来,就可以写出满足各种不同要求的过滤规则了

Capture Filter 的过滤规则(2)

- ether [src|dst] host <mac_addr>
 - 捕获所有源或目的MAC地址是 " 08:00:1B:D3:D3:61" 的以太网 帧
 - ether host 08:00:1B:D3:D3:61
 - 捕获所有源MAC地址是 " 08:00:1B:D3:D3:61" 的以太网帧 ether src host 08:00:1B:D3:D3:61
- [src|dst] host <ip_addr>
 - 捕获所有源或目的IP地址是 "210.30.97.53" 的报文 host 210.30.97.53
 - 捕获所有目的IP地址是 " 210.30.97.53" 的报文 dst host 210.30.97.53

Capture Filter 的过滤规则(3)

- [tcp|udp] [src|dst] port <number>
 - 捕获所有源或目的端口号是80的TCP协议的包 tcp port 80
 - 捕获所有目的端口号是53的UDP协议的包udp dst port 53
 - arp | ip | icmp | udp | tcp 等
 - 捕获所有ICMP协议的包 icmp
 - 捕获所有ARP协议的包 arp

Capture Filter 的过滤规则(4)

用关系运算符组合原语举例:

例1:捕获主机 192.168.0.10 发出或收到的,除HTTP协议之外的所有网络包

host 192.168.0.10 and not tcp port 80

注:HTTP协议通常使用TCP 端口号 80。

例2:记主机 192.168.0.10为 A, 捕获 A 与主机 192.168.0.20 或 A 与主机 192.168.0.30 之间的网络包 host 192.168.0.10 and (host 192.168.0.20 or host 192.168.0.30)

附录一: traceroute 和 tracert

- traceroute
 - 请参见课程网站上的文章 "Traceroute-from-Linux.doc"
- tracert
 - 请参见课程网站上的文章 "Tracert-from-Microsoft.doc"

附录二: DNS (Domain Name System)

- 起因
- 历史
- 域名 (Domain Names)
- 域名服务器 (Name Servers)
- 域名解析 (Name Resolution)
- 资源纪录 (Resource Records)
- DNS消息

DNS - 起因

- 网络设备使用IP地址,但IP地址难于记忆
- 人们容易记忆有意义的名字
 - www.dlut.edu.cn
 - www.huawei-3com.com.cn
- DNS (Domain Name System) 就是用于在IP地址和主机名 字之间进行相互转换的查询系统。

DNS - 历史

- 在DNS产生之前,人们使用一个文本文件来记录IP地址和主机名字之间的映射
 - /etc/hosts
 - 今天仍然在使用
- 1983年之后,人们逐渐开始使用DNS.
 - RFC 882, 883 1983
 - RFC 1034, 1035 1987 -- today

DNS - 域名

• Internet上的主机数目极其巨大 (4.4亿个, Jul 2006), 如何管理数目如此巨大的名字呢?

• 方法:把Internet上的主机名字组织成分层的树状结构。

- 模仿地名系统: 国家->省份->城市->街道

DNS - 域名(续)

- · 树状结构上的每一个非叶节点都对应于一个域 (domain)。
- · 树状结构上的每一个叶节点都对应于一个主机名字。
- · 一个域可以包含子域或主机名字。

DNS - 域名 (续)

- 树状结构上的每一个节点都具有一个标记,这个标记被称 为该节点的 label。
- 兄弟节点不可以具有相同的 label, 但非兄弟节点可以。

DNS - 域名 (续)

- · 域的名字或主机的名字被称为域名 (Domain Name)。
- · 域名由该节点到根节点路径上的每个节点的 label 连接而成 , 并且这些 label 之间用''分开。

例如:acm.org, robot.ai.cs.yale.edu, 等

DNS - 域名 (续)

- ICANN (Internet Corporation For Assigned Names and Numbers 互联网名称与数字地址分配机构)具有对顶级域的 管理权
 - http://www.icann.org/
 - 2000年, ICANN新增加了四个顶级域: biz (business), info (information), name (people's names), pro (professions)
- 每个单位或组织拥有对属于自己的域的管理权。
 - 子域划分
 - 主机或子域命名

DNS – 域名服务器

- DNS由三种域名服务器 (Name Servers)组成:
- Root Name Servers
- TLD Name Servers
- Authoritative Name Servers

DNS - 域名服务器 (续)

- 拥有域的机构至少要有一个 primary name server 和一个或 多个 secondary name servers。
- Primary name server中存储该机构中域名和IP地址对应的最新信息。
- Secondary name server中存储的是primary name server 中信息的拷贝。
- 当primary name server不能正常运行时,查询请求会被送到secondary name server。

DNS - 域名解析

- 应用程序通过一个系统函数调用来查询一个主机名字所对应的IP地址,这个系统函数调用被称为 "resolver".
 - 例如:gethostbyname()
- Resovler会把域名解析请求传送给本地域名服务器,并把由本地域名服务器收到的回答返回给应用程序。
- 如果本地域名服务器知道被查询域名所对应的IP地址,那么 它就会直接把这个IP地址回答给resovler。否则,它会去查询 其它的域名服务器

DNS - 域名解析 (续)

• 举例:

DNS - 根域名服务器

- 本地域名服务器在不知道被查询域名所对应的IP地址的情况下,它一般会把这个查询请求传递给根域名服务器 (Root Name Servers)。
- 根域名服务器知道每个顶级域名服务器(例如,edu,com,cn,jp,等)的地址。
- 从而这个查询请求能够依次向下传递。

DNS - 根域名服务器 (续)

全球一共有13组根域名服务器 (a - m):

察看镜像情况: http://www.root-servers.org/

截止2020年4月,全球共有1091组根域名服务器运行实例(含镜像)

DNS - 全球根域名服务器及其镜像

数据来源 http://www.root-servers.org 2020中国大陆目前有13 组镜像服务器,香港有7组镜像服务器,澳门有2组镜像服务器

DNS - 解析方式

• 域名服务器解析域名的方式一共有两种:

- Recursive: 被查询域名服务器承担起继续查询的任务

 Iterative: 被查询域名服务器返回另外一个域名服务器的 地址

DNS - 解析方式 (续)

- Recursive:
 - 举例:解析地址 www.cs.mit.edu

DNS - 解析方式 (续)

- Iterative:
 - 举例:解析地址 www.cs.mit.ed u

DNS – Caching

- 域名服务器把每次解析的结果都暂时存放在缓存 (Cache)里面
- Cache中的结果都具有一定的生存期 (Time-to-live);如果生存期结束,该结果就被删除。
- 由缓存中返回的结果被称为 "non-authoritative answer"
- 由非缓存中(即由负责该域名的服务器中)返回的结果被称为 "authoritative answer"

DNS - Resource Record

- 域名服务器中存储域名信息的基本单位被称为Resource Record (RR).
- 每个Resource Record都由一个五元组构成
 - Domain_name
 - Time_to_live
 - 单位是秒,例如:86400(一天)
 - Class
 - 一般为 "IN" , 表示Internet
 - Type
 - Value

DNS - Resource Record (续)

• Type的类型主要有以下几种(所对应的Value取值情况也一并列出):

Type	Meaning	Value
SOA	Start of Authority	Parameters for this zone
Α	IP address of a host	32-Bit integer
MX	Mail exchange	Priority, domain willing to accept e-mail
NS	Name Server	Name of a server for this domain
CNAME	Canonical name	Domain name
PTR	Pointer	Alias for an IP address
HINFO	Host description	CPU and OS in ASCII
TXT	Text	Uninterpreted ASCII text

DNS - Resource Record 分析

; Authoritative data for cs.vu.nl				
cs.vu.nl.	86400	IN	SOA	star boss (952771,7200,7200,2419200,86400)
cs.vu.nl.	86400	IN	TXT	"Divisie Wiskunde en Informatica."
cs.vu.nl.	86400	IN	TXT	"Vrije Universiteit Amsterdam."
cs.vu.nl.	86400	IN	MX	1 zephyr.cs.vu.nl.
cs.vu.nl.	86400	IN	MX	2 top.cs.vu.nl.
flits.cs.vu.nl.	86400	IN	HINFO	Sun Unix
flits.cs.vu.nl.	86400	IN	Α	130.37.16.112
flits.cs.vu.nl.	86400	IN	Α	192.31.231.165
flits.cs.vu.nl.	86400	IN	MX	1 flits.cs.vu.nl.
flits.cs.vu.nl.	86400	IN	MX	2 zephyr.cs.vu.nl.
flits.cs.vu.nl.	86400	IN	MX	3 top.cs.vu.nl.
www.cs.vu.nl.	86400	IN	CNAME	star.cs.vu.nl
ftp.cs.vu.nl.	86400	IN	CNAME	zephyr.cs.vu.nl
rowboat		IN	Α	130.37.56.201
		IN	MX	1 rowboat
		IN	MX	2 zephyr
		IN	HINFO	Sun Unix
little-sister		IN	Α	130.37.62.23
		IN	HINFO	Mac MacOS
laserjet		IN		192.31.231.216
		IN	HINFO	"HP Laserjet IIISi" Proprietary

DNS – 消息 (Messages)

- DNS消息交换一般用UDP来实现,使用UDP端口号53。
- DNS消息一共只有两种类型:
 - DNS Query
 - DNS Reply

DNS - 消息 (续)

头部共有12个字节:

- Identification (2 bytes):
 用于匹配 query 和 reply
- Flags (2 bytes): 内容主 要包括:
 - query or reply
 - recursion desired
 - reply is authoritative

identification	flags	
number of questions	number of answer RRs	12 bytes
number of authority RRs	number of additional RRs	
ques (variable numbe		
ansv (variable number of		
auth (variable number of		
additional (variable number of		

DNS - 消息 (续)

查询请求,包括 Name, type 等域

查询结果的Resource Records Resource Records for authoritative servers

其它有用的信息

identification	flags				
number of questions	number of answer RRs				
number of authority RRs	number of additional RRs				
questions (variable number of questions)					
answers (variable number of resource records)					
authority (variable number of resource records)					
additional information (variable number of resource records)					

DNS - 总结

- DNS是一个分布式的系统。
 - 避免了 Single Point of Failure Problem
 - 避免了 Overloading Problem
 - 符合对域名进行管理的需要
- DNS提供的域名解析服务是Internet上最重要的服务之一
 - 域名解析几乎是我们使用Internet上任何其它服务的第一步
 - 如果DNS瘫痪, Internet将会怎样?
- 除域名解析外,DNS还起到其它一些作用,例如:
 - 使更换IP地址更加容易
 - 在多个服务器之间作负载平衡

实验注意事项

- 1认真阅读实验指导书,看清并了解实验要求,严格依据实验指导书操作步骤及注意事项进行操作。
- 2 编写实验指导书问题回答部分时,看清题目,如果要求根据实验现象进行回答,则应该图文并茂,根据实验时的截图进行解释,只有截图或者只有文字都不能得分。截图应该简洁明了,只保留有效部分。

