# Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 9: The Linear Model II





#### Where we are

- Linear classification
- Linear regression ✓
- Logistic regression
- Nonlinear transforms

# Logistic regression - Outline

• The model

• Error measure

• Learning algorithm

#### A third linear model

$$s = \sum_{i=0}^{d} w_i x_i$$

linear classification

$$h(\mathbf{x}) = \operatorname{sign}(s)$$



linear regression

$$h(\mathbf{x}) = s$$



## logistic regression

$$h(\mathbf{x}) = \theta(s)$$



# The logistic function $\theta$

The formula:

$$\theta(s) = \frac{e^s}{1 + e^s}$$



soft threshold: uncertainty

sigmoid: flattened out 's'

# Probability interpretation

 $h(\mathbf{x}) = \theta(s)$  is interpreted as a probability

**Example**. Prediction of heart attacks

Input x: cholesterol level, age, weight, etc.

 $\theta(s)$ : probability of a heart attack

The signal  $s = \mathbf{w}^{\mathsf{T}}\mathbf{x}$  "risk score"

### Genuine probability

Data  $(\mathbf{x}, y)$  with binary y, generated by a noisy target:

$$P(y \mid \mathbf{x}) = \begin{cases} f(\mathbf{x}) & \text{for } y = +1; \\ 1 - f(\mathbf{x}) & \text{for } y = -1. \end{cases}$$

The target  $f:\mathbb{R}^d o [0,1]$  is the probability

Learn  $g(\mathbf{x}) = \theta(\mathbf{w}^{\mathsf{T}} \mathbf{x}) \approx f(\mathbf{x})$ 

#### Error measure

For each  $(\mathbf{x}, y)$ , y is generated by probability  $f(\mathbf{x})$ 

Plausible error measure based on likelihood:

If h = f, how likely to get y from  $\mathbf{x}$ ?

$$P(y \mid \mathbf{x}) = \begin{cases} h(\mathbf{x}) & \text{for } y = +1; \\ 1 - h(\mathbf{x}) & \text{for } y = -1. \end{cases}$$

#### Formula for likelihood

$$P(y \mid \mathbf{x}) = \begin{cases} h(\mathbf{x}) & \text{for } y = +1; \\ 1 - h(\mathbf{x}) & \text{for } y = -1. \end{cases}$$



Substitute 
$$h(\mathbf{x}) = \theta(\mathbf{w}^\mathsf{T}\mathbf{x})$$
, noting  $\theta(-s) = 1 - \theta(s)$ 

$$\theta(s) = e^{s}/(1+e^{s})$$
so,  $\theta(-s) = e^{-s}/(1+e^{-s})$ 
=1/e<sup>s</sup>x(1/(1+e<sup>-s</sup>))
=1/(e<sup>s</sup>+1)
=1- e<sup>s</sup>/(1+e<sup>s</sup>) = 1 -  $\theta(s)$ 
hence,  $\theta(-s) = 1$  -  $\theta(s)$ 

$$P(y \mid \mathbf{x}) = \theta(y \ \mathbf{w}^{\mathsf{T}} \mathbf{x})$$

Likelihood of 
$$\mathcal{D} = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$$
 is

$$\prod_{n=1}^{N} P(y_n \mid \mathbf{x}_n) = \prod_{n=1}^{N} \theta(y_n \mathbf{w}^{\mathsf{T}} \mathbf{x}_n)$$

## Maximizing the likelihood

$$-\frac{1}{N}\ln\left(\prod_{n=1}^{N}\theta(y_n \mathbf{w}^{\mathsf{T}} \mathbf{x}_n)\right)$$

Apply rule: ln(MxN) = lnM + lnNthen,  $ln(M^{-1}) = -ln(M)$ 

$$= \frac{1}{N} \sum_{n=1}^{N} \ln \left( \frac{1}{\theta(y_n \mathbf{w}^\mathsf{T} \mathbf{x}_n)} \right)$$

Divide numerator and denominator of  $\theta(s)$  by  $e^s$ 

$$\theta(s) = \frac{1}{1 + e^{-s}}$$

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \underbrace{\ln\left(1 + e^{-y_n \mathbf{w}^{\mathsf{T}} \mathbf{x}_n}\right)}_{e\left(h(\mathbf{x}_n), y_n\right)}$$

Intuitively,  $ln(1+exp(-y_nW^Tx_n))$  should work. if  $W^Tx_n$  is very positive and  $y_n$  is 1 then it gives  $exp(high\ negative) \cong 0$  and then  $ln(1) \cong approx\ 0$  which is expected.

"cross-entropy" error

# Logistic regression - Outline

The model

• Error measure

• Learning algorithm

#### How to minimize $E_{\rm in}$

For logistic regression,

#### **Cross Entropy Error**

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln \left( 1 + e^{-y_n \mathbf{w}^\mathsf{T} \mathbf{x}_n} \right) \qquad \longleftarrow \text{iterative solution}$$

its derivation is easy:  $e^{-ywx}/(1+e^{-ywx})^*(-yx)$  since: derv(lnx) = 1/x

 $= (1/e^{ywx})^*(1+1/e^{ywx})^*(-yx)$ 

 $=(1/e^{ywx})^*((e^{ywx}+1)/e^{ywx})^*(-yx)$ 

 $= -vx/(1+e^{ywx})$ 

Compare to linear regression:

$$E_{\mathrm{in}}(\mathbf{w}) = \frac{1}{N} \sum_{1}^{N} \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{n} - y_{n}\right)^{2}$$
 squared error  $\leftarrow$  closed-form solution

# Iterative method: gradient descent

General method for nonlinear optimization

Start at  $\mathbf{w}(0)$ ; take a step along steepest slope

Fixed step size: 
$$\mathbf{w}(1) = \mathbf{w}(0) + \eta \hat{\mathbf{v}}$$

What is the direction  $\hat{\mathbf{v}}$ ?

For multi-dimension V has infinite directions. Here only 2D is shown.



#### Formula for the direction $\hat{\mathbf{v}}$

```
Taylor Series:
Approximate f(x)
f(x) \cong f(a) + (x-a)f'(a)/1! + (x-a)^2f''(a)/2! + ...
or
f(x+a) \cong f(a) + (x)f'(a)/1! + (x)^2f''(a)/2! + ...
for Error Ein or E:
E(\eta v+w0) \cong E(w0) + (\eta v)E'(w0)/1! + (\eta v)^2E''(w0)/2! + ...
E(\eta v + w0) - E(w0) \cong E(w0) - E(w0) + (\eta v)E'(w0)/1! + (\eta v)
{}^{2}E''(w0)/2! + ...
\cong (\eta v)E'(w0) + (\eta v)^2E''(w0)/2! + ...
\triangle \Delta E \cong (\eta v) \nabla E(w0) + O(\eta^2)
```

$$\Delta E_{\mathrm{in}} = E_{\mathrm{in}}(\mathbf{w}(0) + \eta \hat{\mathbf{v}}) - E_{\mathrm{in}}(\mathbf{w}(0))$$

$$= \eta \nabla E_{\mathrm{in}}(\mathbf{w}(0))^{\mathrm{T}} \hat{\mathbf{v}} + O(\eta^{2})$$

$$\geq \eta(\mathbf{v}) \nabla E_{\mathrm{in}}$$

$$\geq \eta(\nabla E_{\mathrm{in}}/||E_{\mathrm{in}}||) \nabla E_{\mathrm{in}}$$

$$\geq -\eta ||\nabla E_{\mathrm{in}}(\mathbf{w}(0))||$$

$$\leq -\eta ||\nabla E_{\mathrm{in}}(\mathbf{w}(0))||$$
We need  $\Delta E_{\mathrm{in}}$  to be less than 0. 
$$\frac{|\mathbf{A}.\mathbf{A}^{\mathrm{T}} = ||\mathbf{A}|| \times ||\mathbf{A}||}{|\mathbf{A}.\mathbf{A}^{\mathrm{T}} = ||\mathbf{A}||}$$

$$\leq \ln \cos \hat{\mathbf{w}} \text{ is a complete weather } \hat{\mathbf{w}} = \frac{|\mathbf{A}.\mathbf{A}^{\mathrm{T}}||\mathbf{A}||}{|\mathbf{A}.\mathbf{A}^{\mathrm{T}} = ||\mathbf{A}||}$$

Since  $\hat{\mathbf{v}}$  is a unit vector,

$$\hat{\mathbf{v}} = -\frac{\nabla E_{\text{in}}(\mathbf{w}(0))}{\|\nabla E_{\text{in}}(\mathbf{w}(0))\|}$$

## Fixed-size step?

How  $\eta$  affects the algorithm:



 $\eta$  should increase with the slope

 $\bigcirc$   $\nearrow$  Creator: Yaser Abu-Mostafa - LFD Lecture 9

#### Easy implementation

Instead of

$$\Delta \mathbf{w} = \boldsymbol{\eta} \, \hat{\mathbf{v}}$$

$$= -\boldsymbol{\eta} \, \frac{\nabla E_{\text{in}}(\mathbf{w}(0))}{\|\nabla E_{\text{in}}(\mathbf{w}(0))\|}$$

since eta is prop size of  $\nabla E$   $\eta = const^*||\nabla E||$   $\therefore \Delta W = -\eta |\nabla E/||\nabla E||$   $= -const^*||\nabla E|| * |\nabla E| / ||\nabla E||$   $= -const |\nabla E|$ lets call this constant another eta  $\therefore \Delta W = -\eta |\nabla E|$ 

Have

$$\Delta \mathbf{w} = - \boldsymbol{\eta} \nabla E_{\text{in}}(\mathbf{w}(0))$$

Fixed **learning rate**  $\eta$ 

## Logistic regression algorithm

- Initialize the weights at t=0 to  $\mathbf{w}(0)$
- 2: for  $t = 0, 1, 2, \dots$  do
- 3: Compute the gradient

$$\nabla E_{\text{in}} = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \mathbf{x}_n}{1 + e^{y_n \mathbf{w}^{\mathsf{T}}(t) \mathbf{x}_n}}$$

- Update the weights:  $\mathbf{w}(t+1) = \mathbf{w}(t) \eta \nabla E_{\mathrm{in}}$
- 1 Iterate to the next step until it is time to stop
- 6. Return the final weights **w**

### Summary of Linear Models



24/24