Page 1 COMP1081-WE01

Examination Paper

Examination Session:	Year:		Exam Code:
May/June	2	020	COMP1081-WE01
Title: Algorithms and Data Structures			
Time Allowed:	2 hours		
Additional Material provided:			
Materials Permitted:			
Calculators Permitted:	Yes	Models Permitted:	Casio FX-83 GTPLUS, Casio
Calculators i crimitos.	103	FX-85GTPLUS, Casio FX83-GTX or Casio FX85-GTX	
Visiting Students may use die			
Visiting Students may use dictionaries: Yes			
Instructions to Candidates:	Answer ALL questions.		
motivations to candidates.	Allower ALL questions.		
	Please answer each question in a separate answer booklet.		

Revision:

Section A Prof. Matthew Johnson

Question 1

- (a) A linked list is made up of nodes. What are the two parts of a node? [2 Marks]
- (b) A linked list could be used to implement a stack. The top of the stack would be at the head of the list. For example, here is the **push** method.

```
        push(e)

        node N

        N.data = e

        N.next = L.head

        L.head = N

        if L.size = 0 then

        L.tail = N

        end if

        L.size = L.size + 1
```

Write pseudocode for the **isEmpty** and **pop** methods for a stack implemented with a linked list. (You can assume that L.size is defined.)

[9 Marks]

(c) Consider the function L(n) whose input is a positive integer.

Note that n//2 denotes the integer part of n/2. What is the output of L(n)? Justify your answer. [4 Marks]

(d) Suppose that you are given an array $A=[a_1,a_2,\ldots,a_n]$ of n positive integers, and a special integer m which appears at least once in the array. A subarray of A is a sequence of integers that appear consecutively in A and the weight of a subarray is the sum of its numbers. For example if A is [1,3,2,6,2,5] then [1,3,2] and [2,6,2] are subarrays with weights of 6 and 10 respectively.

Design an algorithm that finds the maximum weight of a subarray of A such that the subarray contains m exactly once. For example, for the array [1,3,2,6,2,5] with m=2, the algorithm should return 13 (the weight of the subarray [6,2,5]). The algorithm should read each integer in the array only once.

Write pseudocode for your algorithm.

[10 Marks]

Section B Dr. Tom Friedetzky

Question 2

(a) Define the asymptotic class o.

- [2 Marks]
- (b) Let α, β be constants with $1 < \alpha < \beta$. Let $f(n) = \alpha^n \cdot \log_2(n)$ and $g(n) = \beta^n$. Prove or disprove f(n) = o(g(n)). [3 Marks]
- (c) Consider functions $f,g,h:\mathbb{N}\to\mathbb{R}^+$. Is it true that $f(n)\cdot g(n)=\Theta(h(n))$ implies f(n)=O(h(n)) and g(n)=O(h(n))? Prove or disprove your claim. [5 Marks]
- (d) Sketch a proof for the worst-case running time of generic QuickSort (i.e., one pivot element from fixed position, say, always rightmost) being $\Theta(n^2)$.

[5 Marks]

(e) Consider the following Python function:

```
def foo(seq):
2
    i = 0
3
    while i < len(seq):
4
      if i == 0 or seq[i-1] \le seq[i]:
5
         i = i + 1
      else:
6
         seq[i], seq[i-1] = seq[i-1], seq[i]
7
8
         i = i - 1
9
    return seq
```

Explain the purpose of the function, justify its correctness and provide asymptotically tight running time bounds. [10 Marks]

Section C Prof. Andrei Krokhin

Question 3

- (a) Describe the selection problem and the Median-of-Medians algorithm for it. Your description of the algorithm can be given as an itemised list in plain English. There is no need to give pseudocode. [7 Marks]
- (b) Manually run the HeapSort algorithm on the following array: [1, 9, 6, 8, 5]. Show and explain your working. **[9 Marks]**
- (c) i. Is Median-of-Medians an optimal selection algorithm (in some specific sense)? [3 Marks]
 - ii. Is HeapSort an optimal sorting algorithm (in some specific sense)? [3 Marks]
 - Justify your answers. In your justifications, you can refer to statements proved in the lectures there is no need to reprove them.
- (d) Prove that any correct comparison-based algorithm to find the smallest element in an unsorted array (of integers) of length n must make at least n-1 comparisons. [3 Marks]

Section D Prof. Matthew Johnson

Question 4

- (a) From a depth-first search of a directed graph G, a depth-first forest F is obtained that contains the edges traversed during the search. The edges of G can be classified with respect to F. Explain the properties of an edge classified as a cross edge. [2 Marks]
- (b) Explain why, if we use the same classification of edges for an undirected graph G and a depth-first tree T, no edge will be classified as a cross edge.

[3 Marks]

- (c) From a breadth-first search of a connected undirected graph G, a breadth-first tree T is obtained that contains the edges traversed during the search. An edge e joining two vertices u and v in G is called a bridge if the deletion of e creates a graph that is not connected. Is the following statement true or false: an edge in G is a bridge if and only if it is included in every possible breadth-first tree of G? Justify your answer. [9 Marks]
- (d) Consider the graph below. List the edges of a minimum spanning tree (MST) in the order they are found when Prim's algorithm is applied starting at vertex A.

[3 Marks]

- (e) Let T be an MST of a weighted undirected graph G. Let (u,v) be an edge of T, and let T_1 and T_2 be the two trees obtained if (u,v) is removed from T. Let G_1 be the subgraph of G that contains the vertices of T_1 and all the edges of G between those vertices.
 - Show that T_1 is an MST for G_1 , and that (u, v) is a least weight edge from a vertex of T_1 to a vertex of T_2 . **[4 Marks]**
- (f) Consider the following algorithm for finding an MST of a graph G.
 - Divide the vertices of G into two roughly equal sets V_1 and V_2 .
 - Let G_1 be the subgraph of G that contains the vertices of V_1 and all the edges of G between those vertices.
 - Let G_2 be the subgraph of G that contains the vertices of V_2 and all the edges of G between those vertices.
 - Find MSTs of G_1 and G_2 . Let these two trees be T_1 and T_2 .
 - Find a least weight edge (u,v) that joins a vertex in V_1 to a vertex in V_2 .
 - The output of the algorithm is the tree formed from T_1 , T_2 and (u, v).

Is the algorithm correct? Justify your answer.

[4 Marks]