Construção de Compiladores

Daniel Lucrédio, Helena Caseli, Mário César San Felice e Murilo Naldi Tópico 04 - Análise Sintática Descendente - Lista de Exercícios Resolvida (Última revisão: fev/2020)

1. Qual o processo usado pela análise sintática descendente ao associar uma gramática a uma entrada?

R: É um processo que encontra derivações, a partir do símbolo inicial da gramática, até encontrar uma cadeia que corresponde à entrada. Caso não consiga, é detectado um erro sintático.

2. Quais as vantagens do analisador preditivo com relação ao analisador com retrocesso? Existe alguma desvantagem?

R: A principal vantagem é a eficiência, pois um analisador preditivo consegue determinar a regra de substituição a ser aplicada em cada passo da derivação. A desvantagem é que a gramática precisa ser "predizível", ou seja, ela precisa ter características especiais que permitem que a predição possa ocorrer. Já um analisador com retrocesso funciona mesmo sem essas características especiais. Ou seja, um analisador preditivo reconhece uma classe menor de gramáticas do que o analisador com retrocesso.

3. Qual o principal desafio do analisador sintático preditivo?

R: Encontrar a regra de substituição correta a ser aplicada, olhando-se apenas um certo número de símbolos terminais à frente.

4. Dada a gramática a seguir:

```
Expr : Expr 'OU' Termo | Termo
Termo : Termo 'E' Fator | Fator
Fator : 'NÃO' Fator | id
```

Ela é LL(1)? Se não, aplique as transformações necessárias para convertê-la para LL(1).

R: Não é LL(1), pois, há recursividade à esquerda. Removendo:

5. Considere a gramática a seguir:

```
lexp : atomo | lista
atomo : numero | identificador
lista : ( lexpseq )
lexpseq : lexpseq lexp | lexp
```

Ela é LL(1)? Se não, aplique as transformações necessárias para convertê-la para LL(1).

R: Não é LL(1), pois, há recursividade à esquerda. Removendo:

```
lexp : atomo | lista
atomo : numero | identificador
lista : ( lexpseq )
lexpseq : lexp lexpseq2
lexpseq2 : lexp lexpseq2 | ε
```

6. Dada a seguinte tabela LL(1):

	numero	identificador	()	\$
lexp	lexp → atomo	lexp → atomo	lexp → lista		
atomo	atomo → numero	atomo → identificador			
lista			lista → (lexpseq)		
lexpseq	lexpseq → lexp lexpseq2	lexpseq → lexp lexpseq2	lexpseq → lexp lexpseq2		
lexpseq2	lexpseq2 → lexp lexpseq2	lexpseq2 → lexp lexpseq2	lexpseq2 → lexp lexpseq2	lexpseq2 → ε	

a) Mostre as ações do analisador preditivo não recursivo correspondente dada a cadeia de entrada:

OBS.: x, y e z são identificadores e 2, número.

R:

Casamento	Pilha	Entrada	Ação
	<u>lexp</u> \$	(x(y(2))(z))\$	lexp → lista
	<u>lista</u> \$	<u>(</u> x(y(2))(z))\$	lista → (lexpseq)
	<u>(</u> lexpseq) \$	(x(y(2))(z))\$	casamento
Ţ	<pre>lexpseq) \$</pre>	x (y(2))(z))\$	lexpseq → lexp lexpseq2
	<pre>lexp</pre> lexpseq2) \$	x (y(2))(z))\$	lexp → atomo
	<pre>atomo lexpseq2) \$</pre>	x (y(2))(z))\$	atomo → identificador
	<pre>identificador lexpseq2) \$</pre>	x (y(2))(z))\$	casamento
(<u>x</u>	<pre>lexpseq2) \$</pre>	(y(2))(z))\$	lexpseq2 → lexp lexpseq2
	<pre>lexp</pre> lexpseq2) \$	(y(2))(z))\$	lexp → lista
	<u>lista</u> lexpseq2) \$	(y(2))(z))\$	lista → (lexpseq)
		(y(2))(z))\$	casamento
(x <u>1</u>	<pre>lexpseq) lexpseq2) \$</pre>	y (2))(z))\$	lexpseq → lexp lexpseq2
	<pre>lexp lexpseq2) lexpseq2) \$</pre>	y (2))(z))\$	lexp → atomo
	<pre>atomo lexpseq2) lexpseq2) \$</pre>	y (2))(z))\$	atomo → identificador
	<pre>identificador lexpseq2) lexpseq2) \$</pre>	y (2))(z))\$	casamento
(x (y	<pre>lexpseq2) lexpseq2) \$</pre>	(2))(z))\$	lexpseq2 → lexp

		lexpseq2
	<u>lexp</u> lexpseq2) lexpseq2) $\$$ (2))(z)) $\$$	lexp → lista
	<u>lista</u> lexpseq2) lexpseq2) \$ (2))(z))\$	lista → (lexpseq)
	$\underline{\textbf{(}}$ lexpseq) lexpseq2) lexpseq2) $\frac{\textbf{(}}{2}$ (2))(z))\$	casamento
(x (y <u>(</u>	<pre>lexpseq) lexpseq2) lexpseq2) \$2))(z))\$</pre>	lexpseq → lexp lexpseq2
	$\underline{1exp}$ lexpseq2) lexpseq2) lexpseq2) $\$ \underline{2}$))(z)) $\$$	lexp → atomo
	<pre>atomo lexpseq2) lexpseq2) lexpseq2) \$2))(z))\$</pre>	atomo → numero
	<pre>numero lexpseq2) lexpseq2) lexpseq2) \$2))(z))\$</pre>	casamento
(x(y(<u>2</u>	<pre>lexpseq2) lexpseq2) lexpseq2) \$\frac{1}{2}(z))\$</pre>	lexpseq2 → E
	$\underline{)}$ lexpseq2) lexpseq2) $\underline{)}$)(z))	casamento
(x(y(2 <u>)</u>	<u>lexpseq2</u>) lexpseq2) \$ <mark>)</mark> (z))\$	lexpseq2 → E
	<u>)</u> lexpseq2) \$ <u>)</u> (z))\$	casamento
(x(y(2) <u>)</u>	<u>lexpseq2</u>) \$ (z))\$	lexpseq2 → lexp lexpseq2
	<u>lexp</u> lexpseq2) \$ <mark>(</mark> z))\$	lexp → lista
	<u>lista</u> lexpseq2) \$ (z))\$	lista → (lexpseq)
	<u>(</u> lexpseq) lexpseq2) \$ (z))\$	casamento
(x(y(2)) <u>(</u>	<u>lexpseq</u>) lexpseq2) \$ z))\$	lexpseq → lexp lexpseq2
	<u>lexp</u> lexpseq2) lexpseq2) \$ <mark>z</mark>))\$	$lexp \rightarrow atomo$
	<pre>atomo lexpseq2) lexpseq2) \$z))\$</pre>	atomo → identificador
	<pre>identificador lexpseq2) lexpseq2) \$z))\$</pre>	casamento
(x(y(2))(z	<u>lexpseq2</u>) lexpseq2) \$ <mark>)</mark>)\$	lexpseq2 → E
	<u>)</u> lexpseq2) \$ <u>)</u>)\$	casamento
(x(y(2))(z <u>)</u>	<u>lexpseq2</u>) \$ <mark>)</mark> \$	lexpseq2 → E
	<u>)</u> \$ <mark>)</mark> \$	casamento
(x(y(2))(z) <u>)</u>	<u>s</u> s	fim

b) Repita o item a) para a entrada:

(x y 2)) (z))

R:

Casamento	Pilha <mark>E</mark> ntrada	
	<u>lexp</u> \$ (x y 2))(z))\$	lexp → lista
	<u>lista</u> \$ (x y 2))(z))\$	lista → (lexpseq)
	<u>(</u> lexpseq) \$ (x y 2))(z))\$	casamento
۲	<u>lexpseq</u>) \$ x y 2))(z))\$	lexpseq → lexp lexpseq2
	<u>lexp</u> lexpseq2) \$ x y 2))(z))\$	lexp → atomo
	<u>atomo</u> lexpseq2) \$ x y 2))(z))\$	atomo → identificador
	<pre>identificador lexpseq2) \$x y 2))(z))\$</pre>	casamento
(<u>x</u>	<u>lexpseq2</u>) \$ v 2))(z))\$	lexpseq2 → lexp lexpseq2
	<u>lexp</u> lexpseq2) \$ <u>v</u> 2))(z))\$	lexp → atomo
	<u>atomo</u> lexpseq2) \$ v 2))(z))\$	atomo → identificador
	<pre>identificador lexpseq2) \$ v 2))(z))\$</pre>	casamento
(x y	lexpseq2) \$ <mark>2</mark>))(z))\$	lexpseq → lexp lexpseq2
	<u>lexp</u> lexpseq2) \$ <mark>2</mark>))(z))\$	lexp → atomo
	<u>atomo</u> lexpseq2) \$ 2))(z))\$	atomo → numero

	<u>numero</u> lexpseq2) \$ <mark>2</mark>))(z))\$	casamento
(x y <u>2</u>	<u>lexpseq2</u>) \$ 1 (z)) \$	lexpseq2 → E
	<u>)</u> \$ <u>)</u>) (z))\$	casamento
(x y 2 <u>)</u>	<u>\$ </u>	erro!

c) Repita o item a) para a entrada:

(x y 2

R:

Casamento	Pilha	Entrada	Ação
	<u>lexp</u> \$	(x y 2\$	lexp → lista
	<u>lista</u> \$	(x y 2\$	lista → (lexpseq)
	<u>(</u> lexpseq) \$	(x y 2\$	casamento
τ	<u>lexpseq</u>) \$	x y 2\$	lexpseq → lexp lexpseq2
	<pre>lexp</pre> lexpseq2) \$	x y 2\$	lexp → atomo
	<u>atomo</u> lexpseq2) \$	x y 2\$	atomo → identificador
	<u>identificador</u> lexpseq2) \$	<u>ж</u> у 2\$	casamento
(<u>x</u>	<u>lexpseq2</u>) \$	y 2\$	lexpseq2 → lexp lexpseq2
	<u>lexp</u> lexpseq2) \$	y 2\$	lexp → atomo
	<pre>atomo lexpseq2) \$</pre>	y 2\$	atomo → identificador
	<u>identificador</u> lexpseq2) \$	y 2\$	casamento
(x y	lexpseq2) \$	2 \$	lexpseq → lexp lexpseq2
	<u>lexp</u> lexpseq2) \$	<u>2</u> \$	lexp → atomo
	<u>atomo</u> lexpseq2) \$	<u>2</u> \$	atomo → numero
	<u>numero</u> lexpseq2) \$	<u>2</u> \$	casamento
(x y <u>2</u>	<u>lexpseq2</u>) \$	<u>\$</u>	erro!

7. A gramática a seguir é LL(k).

```
S : id ':' id | id ':' id '{' S '}';
```

Qual o valor de k?

R: k == 4, pois é preciso olhar 4 símbolos à frente para decidir qual das duas produções de S utilizar.

8. A gramática a seguir é LL(k)? Justifique sua resposta

R: Não, pois não há nenhum valor mínimo de k tal que garantidamente seja possível determinar qual das duas produções da regra "declaração" utilizar. Isso porque a regra nomeQualificado tem recursividade, e portanto pode gerar nomes infinitamente grandes.