EC504 ALGORITHMS AND DATA STRUCTURES FALL 2020 MONDAY & WEDNESDAY 2:30 PM - 4:15 PM

Prof: David Castañón, dac@bu.edu

GTF: Mert Toslali, toslali@bu.edu

Haoyang Wang: haoyangw@bu.edu

Christopher Liao: cliao25@bu.edu

Sequence Alignment

- How similar are two sequences of symbols?
 - □Example: ocurrance and occurrence

■ Applications: Bioinformatics, spell correction, machine translation, speech recognition, information extraction

Edit Distance

- Concept due to Levenshtein 1966, Needleman–Wunsch 1970
- Scoring function
 - □Cost of mutation (mismatch)
 - \blacksquare s(x,y) is cost of matching $x \neq y$
 - □Cost of insertion/deletion
 - \blacksquare δ is cost of matching x to a gap, or matching y to a gap
 - □Reward of correct match
 - \blacksquare s(x, y) is value of correctly matching when x = y
- Complex search problem
 - \Box For sequences of length 100, number of possible matches is $9 \cdot 10^{58}$

Dynamic Programming (Needleman-Wunsch)

- Let OPT(i, j) = minimum cost of aligning prefix strings $x_1x_2 \cdots x_i$, $y_1y_2 \cdots y_j$
- Goal. Is to compute OPT(m,n)
- Idea: Assume we know OPT(i-1, j-1), OPT(i,j-1), and OPT(i-1,j-1):

Case 1. OPT(i, j) matches
$$x_i \rightarrow y_j$$
: $Opt(i, j) = s(x_i, y_j) + OPT(i-1, j-1)$

- \square Case 2a. OPT(i, j) leaves x_i unmatched: $Opt(i, j) = \delta + OPT(i-1, j)$
- \Box Case 2b. OPT(i, j) leaves y_i unmatched: $Opt(i, j) = \delta + OPT(i, j 1)$
- Initially, $Opt(i,0) = i\delta$; $Opt(0,j) = j\delta$
- Iteration:

$$Opt(i,j) = \min \left\{ s(x_i, y_j) + OPT(i-1, j-1), \delta + OPT(i-1, j), \delta + OPT(i, j-1) \right\}$$

Ptr(i,j) = {diag, up, left} corresponding to which term is minimized

Small Example

PTR =

OPT(i,j) with
$$\delta = 2$$
; $s(x_i, y_j) = \begin{cases} 2, & x_i \neq y_j \\ -1, & x_i = y_j \end{cases}$

		-	Α	G	С
	-	0	2	4	6
OPT =	Α	2	-1	1	3
	Α	4	1	1	3
	Α	6	3	3	3
	С	8	5	5	2

	-	Α	G	С
-	0	Left	Left	Left
Α	Up	Diag	Left	Left
Α	Up	Diag	Diag	Diag
Α	Up	Diag	Diag	Diag
С	Up	Up	Up	Diag

Mismatch =
$$-1$$

Match = 2

Example

	j	0	1	2	3	4	5	
<u>i</u>			С	a	d	b	d	←T
0		0	-1	-2	-3	-4	-5	
1	a	-1	,					
2	С	-2		C	Sc	ore(c,-	·) = -1	
3	b	-3						
4	С	-4						
5	d	-5						
6	b	-6						

\$

Mismatch = -1Match = 2

Example

	j	0	1	2	3	4	5	
<u>i</u>			С	a	d	b	d	←T
0		0	-1	-2	-3	-4	-5	
1	a	-1	-1	1	0	-1	-2	
2	С	-2	1	0	0	-1	-2	
3	b	-3	0	0	-1	2	1	
4	О	-4	-1	-1	-1	1	1	
5	р	-5	-2	-2	1	0	3	
6	b	-6	-3	-3	0	3	2	

↑ S

Optimal Match: Backtrack Pointers

	j	0	1	2	3	4	5	
<u>i</u>			С	a	d	b	d	←T
0		0	—	-2	-3	-4	-5	
1	a	<u>-1</u>	-1	1	0	-1	-2	
2	С	-2		0	0	-1	-2	
3	р	-3	0	0	-1	2	1	
4	С	-4	-1	-1	-1	1,	1	
5	d	-5	-2	-2	1,	0	3	
6	b	-6	-3	-3	0	3		
	Ŝ							•

A Larger Example

$$\delta = 2$$
;

$$s(x_i, y_j) = \begin{cases} 2, & x_i \neq y_j \\ -1, & x_i = y_j \end{cases}$$

		S	I	М	ı	L	Α	R	I	Т	Υ
	0 🕳	_ 2	4	6	8	10	12	14	16	18	20
I	2	4	1 🗲	— 3 ←	— 2	4	6	8	7	9	11
D	4	6	3	3	4	4	6	8	9	9	11
E	6	8	5	5	6	6	6	8	10	11	11
N	8	10	7	7	8	8	8	8	10	12	13
Т	10	12	9	9	9	10	10	10	10	9	11
I	12	14	8	10	8	10	12	12	9	11	11
Т	14	16	10	10	10	10	12	14	11	8	11
Y	16	18	12	12	12	12	12	14	13	10	7

Another Example

$$\delta = 1;$$

$$\delta = 1;$$

$$s(x_i, y_j) = \begin{cases} 1, & x_i \neq y_j \\ 0, & x_i = y_j \end{cases}$$

		P	О	L	Y	N	О	M	Ι	A	L
	0	1	2	3	4	5	6	7	8	9	10
E	1	1	2	3	4	5	6	7	8	9	10
X	2	2	2	3	4	5	6	7	8	9	10
P	3	2	3	3	4	5	6	7	8	9	10
O	4	3	2	3	4	5	5	6	7	8	9
N	5	4	3	3	4	4	5	6	7	8	9
E	6	5	4	4	4	5	5	6	7	8	9
N	7	6	5	5	5	4	5	6	7	8	9
T	8	7	6	6	6	5	5	6	7	8	9
I	9	8	7	7	7	6	6	6	6	7	8
A	10	9	8	8	8	7	7	7	7	6	7
L	11	10	9	8	9	8	8	8	8	7	6

Sequence Matching Complexity

- Need to complete table of m by n
 - ☐ Length of x: m, length of y: n
- Computational complexity O(mn)
 - \square O(1) operations to compute new element
 - □Polynomial!
- Still, may be too slow for long DNA sequences
 - **□**50,000 genes...
- Search for faster approximate algorithms

Upcoming Seminar

- The Second-Price Knapsack Problem: Near-Optimal Real Time Bidding in Internet Advertisement
- Abstract: In many online advertisement (ad) exchanges ad slots are each sold via a separate second-price auction. This work considers the bidder's problem of maximizing the value of ads they purchase in these auctions subject to budget constraints. This 'second-price knapsack' problem presents challenges when devising a bidding strategy because of the uncertain resource consumption: bidders win if they bid the highest amount but pay the second-highest bid unknown a priori. This is in contrast to the traditional online knapsack problem where posted prices are revealed when ads arrive and for which there exists a rich literature of primal and dual algorithms. The main results of this paper establish general methods for adapting these primal and dual online knapsack selection algorithms to the second-price knapsack problem where the prices are revealed only after bidding.
- In particular a methodology is provided for converting deterministic and randomized knapsack selection algorithms into second-price knapsack bidding strategies that purchase ads through an equivalent set of criteria and thereby achieve the same competitive guarantees.

Directed, Weighted, Capacitated Graphs

- A weighted, capacitated, directed graph is a directed graph G = (V, E) along with a capacity function c(e) and a weight function w(e)
 - \square Capacities are positive: $c: E \to \Re^+$, weights can be real numbers: $w: E \to \Re$
- Capacity represents maximum number of simultaneous units that can use an edge, weight is cost per unit of using edge
- Some vertices are sources, others are sinks
- Min-cost flow: find minimum weight flow that matches supply with demand

Special Case: The Assignment Problem

- In many business situations, management needs to assign
 - personnel to jobs,
 - □jobs to machines,
 - machines to job locations,
 - □salespersons to territories
- Consider the situation of assigning n jobs to n machines.
- When a job i (=1,2,....,n) is assigned to machine j (=1,2,n) that incurs a cost C_{ij}
- The objective is to assign the jobs to machines at the least possible total cost

Assignment Problem Statement

- N persons, N objects
- \blacksquare Cost of matching person i to object j: C_{ij} , $(i,j) \in E$

Variable:
$$x_{ij} = \begin{cases} 0 & \text{person i not assigned to object j} \\ 1 & \text{person i assigned to object j} \end{cases}$$

Problem:

$$\min_{\{x_{ij} \in \{0,1\}\}} \sum_{(i,j) \in E} C_{ij} x_{ij}$$

Subject to constraints:

$$\sum_{i:(i,j)\in E} x_{ij} = 1 \text{ for all } j \in 1, ..., n; \sum_{j:(i,j)\in E} x_{ij} = 1 \text{ for all } i \in 1, ..., n$$

Graph Representation of Assignment

■ Every edge has capacity 1; graph can be sparse

Can Formulate as Maximization

 \blacksquare Benefit of assignment: a_{ij}

$$\max_{\{x_{ij} \in \{0,1\}\}} \sum_{(i,j) \in E} a_{ij} x_{ij}$$

$$\sum_{i:(i,j)\in E} x_{ij} = 1 \text{ for all } j \in 1, \dots, n$$

$$\sum_{j:(i,j)\in E} x_{ij} = 1 \text{ for all } i \in 1,...,n$$

Assignment Problem Structure

- Conservation of flow constraints, plus integer capacities leads to special structure: Unimodularity
- Implies that optimization over flows that can be real numbers results in optimal flows that are integer
 - □Can assign percentages of persons to objects, and optimal assignments are integers

Equivalent problem: Problem:
$$\min_{\{x_{ij} \in [0,1]\}} \sum_{(i,j) \in E} C_{ij} x_{ij}$$

Subject to constraints:

$$\sum_{i:(i,j)\in E} x_{ij} = 1 \text{ for all } j\in 1,\ldots,n; \quad \sum_{j:(i,j)\in E} x_{ij} = 1 \text{ for all } i\in 1,\ldots,n$$

Example Application

- Ballston Electronics manufactures small electrical devices.
- Products are manufactured on five different assembly lines (1,2,3,4,5).
- When manufacturing is finished, products are transported from the assembly lines to one of the five different inspection areas (A,B,C,D,E).
- Transporting products from five assembly lines to five inspection areas requires different times (in minutes)

- Cost matrix:
- What is the minimum cost assignment?

Assembly\Inspection	A	В	С	D	Е
1	10	4	6	10	12
2	11	7	7	9	14
3	13	8	12	14	15
4	14	16	13	17	17
5	19	11	17	20	19

Related: Maximum Cardinality Matching

- Sparse bipartite graph G = (V, E)
 - □Edges indicate compatible matches
 - \square Cost = 1 on all edges $e \in E$
- Solution: convert to max flow problem: assign capacity 1 to all edges, augment with vertices s, and t
- Max flow will be cardinality of maximum matching, and flow will give matches
- Solve using BFS on residual networks: shortest paths

Network Flow Representation of Assignment

- All edges capacity 1, only costs shown
- Will use for solution using combination of max-flow and shortest path

Observations

Can add constant to all edges without changing optimal assignment, only changing optimal cost by a constant

$$\sum_{i=1}^{n} \sum_{j=1}^{n} (C_{ij} + K) x_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} x_{ij} + \sum_{i=1}^{n} \sum_{j=1}^{n} K x_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} x_{ij} + Kn$$

■ Can add object-dependent price to the cost of each edge without changing optimal assignment

$$\sum_{i=1}^{n} \sum_{j=1}^{n} (C_{ij} + p_j) x_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} x_{ij} + \sum_{j=1}^{n} \sum_{i=1}^{n} p_j x_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} x_{ij} + \sum_{j=1}^{n} p_j$$

■ Can add person-dependent price to the cost of each edge without changing optimal assignment

$$\sum_{i=1}^{n} \sum_{j=1}^{n} (C_{ij} + q_i) x_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} x_{ij} + \sum_{i=1}^{n} \sum_{j=1}^{n} q_i x_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} x_{ij} + \sum_{i=1}^{n} q_j$$

Prices and Assignments

- Define prices q_i , i = 1,...,n for persons and prices p_j , j = 1,...,n for objects
- \blacksquare Define reduced costs of edges with those prices as $c^r_{p,q}(i,j') = C_{ij'} + q_i p_{j'}$
 - ■Note: Finding a minimum cost assignment with reduced costs results in the same assignment as finding a minimum cost assignment with original costs
- A set of prices is called admissible if $c_{p,q}^r(i,j') \ge 0$ for all $(i,j') \in E$
- \blacksquare A matching M is a set of assignments $\{x_{ij'}, (i,j') \in E\}$ such that $x_{ij'} \in \{0,1\}$,

$$\sum_{i:(i,j') \in E} x_{ij'} = 1 \text{ for all } j' \in 1, \dots, n; \quad \sum_{j':(i,j') \in E} x_{ij'} = 1 \text{ for all } i \in 1, \dots, n$$

■ A matching M and a set of admissible prices $\{p,q\}$ are compatible if $x_{ij'}=1\iff c_{p,q}^r(i,j')=0$

Optimality Theorem

	If a matching M is compatible with a set of admissible prices $\{p,q\}$, then it
	is an optimal solution to the minimum cost assignment problem
F	Proof:

- ☐ Using the admissible prices, the reduced costs of every edge is non-negative
- ☐ The matching M has total cost 0 (all the matched edges have reduced cost 0)
- ☐ Hence, matching M is optimal in reduced cost graph, so it is optimal in original graph
- We will exploit this concept to construct an algorithm for optimal assignments
 - □Construct admissible prices and a matching M that are compatible

Successive Shortest Paths Algorithm

A partial matching M' are assignments $\{x_{ij'}, (i,j') \in E\}$ such that $x_{ij'} \in \{0,1\}$,

$$\sum_{i:(i,j') \in E} x_{ij'} \le 1 \text{ for all } j' \in 1, \dots, n; \quad \sum_{j':(i,j') \in E} x_{ij'} \le 1 \text{ for all } i \in 1, \dots, n$$

Idea: Given a partial matching M' compatible with a set of admissible prices $\{p,q\}$, find an augmenting path to increase the size of M' by one and modify the prices $\{p,q\}$ so the new matching is compatible with the new prices

Successive Shortest Path: Initialization

- Initially, set all $x_{ij'} = 0$, $(i, j') \in E$ as the initial matching $M' = \emptyset$
- Initially, set prices $p_{j'}=\min_{(i,j')\in E}C_{ij'},\ q_i=0,\ i,j'\in 1,...,n$
- Note: all reduced costs $c_{p,q}^r(i,j) = C_{ij} + q_i p_j \ge 0 \Rightarrow$ prices are admissible
- lacksquare Note: initial matching M' and prices are compatible
- \blacksquare Construct the residual network (V,E^r) with respect to the matching M' and the prices $\{p,q\}$
 - \square Cost of arcs $(i, j) \in E$: $c_{p,q}^r(i, j)$
 - \square Cost of reverse arcs (j,i), where $(i,j) \in E$: $-c_{p,q}^r(i,j)$

Successive Shortest Path: Iteration

- Given residual network (V, E^r) with respect to the matching M' and the prices $\{p, q\}$, find shortest augmenting path P from s to t and compute the shortest distances d(i), d(j') to vertices i=1, ..., n, j'=1, ..., n
- Raise prices $q_i := q_i + d(i), i = 1,...,n; p_j := p_{j'} + d(j'), j' = 1,...,n$
- Modify assignments on augmenting path P by one unit, resulting in new partial matching M' that includes one more assignment (increases total flow to t by 1)
- Claim: new partial matching M' will be compatible with new set of admissible prices $\{p,q\}$
- Repeat above iteration n times until complete matching is found

 □ Each iteration increases the number of persons matched by 1

Motivating Example

Optimal solution:

$$\Box x_{02} = 1$$

$$\Box x_{10} = 1$$

$$\Box x_{21} = 1$$

■ Total cost 12

Initialization

Set prices $p_{j'} = \min_{i:(i,j') \in E} C_{ij'}, \ q_i = 0, \ i,j' \in 1,...,n$

Construct residual network with reduced costs $c_{p,q}^r(i,j') = C_{ij'} + q_i - p_{j'}$

\

Iteration 1: Compute Shortest Path

Compute shortest path s on residual network, with distances to all vertices Update prices $q_i,\ p_{j'}$ using distances

V	d(v)	p_{v}
1	0	0
2	0	0
3	0	0
1'	0	5
2′	0	4
3′	0	1

Perform Augmentation, Compute Residual Network

Set
$$x_{33'} = 1$$
, $x_{S3} = 1$, $x_{3'T} = 1$

Construct residual network with reduced costs $c_{p,q}^{r}(i,j') = C_{ij'} + q_i - p_{j'}$

Note reverse edges have non-negative reduced costs $c_{p,q}^r(j',i)=0$

V	d(v)	p_{v}
1	0	0
2	0	0
3	0	0
1′	0	5
2′	0	4
3'	0	1

Iteration 2: Compute Shortest Path

Compute shortest path s on residual network, with distances to all vertices Update prices: they stay the same, all distances are 0.

V	d(v)	
1	0	0
2	0	0
3	0	0
1′	0	5
2′	0	4
3′	0	1

Perform Augmentation, Compute Residual Network

Set
$$x_{21'} = 1$$
, $x_{S2} = 1$, $x_{1'T} = 1$

Construct residual network with reduced costs $c_{p,q}^{r}(i,j') = C_{ij'} + q_i - p_{j'}$

Note reverse edges have non-negative reduced costs $c_{p,q}^{r}(i',j)=0$

V	d(v)	p_{v}
1	0	0
2	0	0
3	0	0
1'	0	5
2′	0	4
3′	0	1

Iteration 3: Compute Shortest Path

Compute shortest path s on residual network, with distances to all vertices Update prices $q_2=2,\ q_3=2,\ p_{3'}=3,\ p_{2'}=6,\ p_{1'}=7$

V	d(v)	p_{v}
1	0	0
2	2	2
3	2	2
1′	2	7
2′	2	6
3′	2	3

Perform Augmentation, Done

Set $x_{13'} = 1$, $x_{S1} = 1$, $x_{33'} = 0$. $x_{32} = 1$, $x_{2'T} = 1$

Final assignments: $x_{13'} = 1$, $x_{21'} = 1$, $x_{32'} = 1$. Total cost = 12

V	d(v)	p_{v}
1	0	0
2	0	2
3	0	2
1′	0	7
2′	0	6
3′	0	3

Algorithm Complexity

- Can use Dijkstra's algorithm for shortest path computations
 - □All reduced costs in residual networks are non-negative
 - \square Complexity of shortest path computation: O($|E| + |V| \log(|V|)$) using rank-pairing heaps or Fibonacci heaps
 - \square Complexity $O(|V|^2)$ using simple list priority heaps
- Complexity of augmentation and price changes: O(|V|)
- Number of iterations needed: n iterations, which is O(|V|)
- Total algorithm complexity: $O(|V|^3)$ for simple data structures
 - $O(|V||E| + |V|^2 \log(|V|))$ with best priority queues

Why Does Successive Shortest Path Work?

- Claim: at each iteration, we generate a partial matching M' and an admissible set of prices $\{p,q\}$ that are compatible
- At each iteration, the partial set of matchings contains one more matched pair than the previous iteration
- After n iterations, we obtain a complete matching M and an an admissible set of prices $\{p,q\}$ that are compatible

☐Must be optimal!

■ We must show that the claim is true

Proof of Correctness

- Lemma: Assume we have a partial matching M' and an admissible set of prices $\{p,q\}$ that are compatible.

 - □Define d(v) to be the shortest cost (distance) from s to vertex v in residual graph, and let P be the shortest path from s to t
 - Let $\{p',q'\}$ be the new prices after adding the distances $p'_{j'}=p_{j'}+d(j'),\ q'_i=q_i+d(i)$
- Then, every edge in P has reduced cost 0 when using prices $\{p', q'\}$

$$\ \ \, \prod \mathsf{If} \ (j',i) \in P, \mathsf{then} \ x_{ij} = 1 \ \mathsf{in} \ M', \mathsf{and} \ c^r_{p,q}(j',i) = 0, \mathsf{d(i)} = \mathsf{d(j')}. \ \mathsf{Then,}$$

$$c_{p',q'}^r(i,j') = C_{ij'} + q_i + d(i) - p_{j'} - d(j') = 0$$

$$\square \text{If } (i,j') \in P \text{, then } d(j') = d(i) + C_{ii'} + q_i - p_{j'} \text{, and }$$

$$c_{p',q'}^{r}(i,j') = C_{ij'} + q_i + d(i) - p_{j'} - d(j') = 0$$

Proof of Correctness - 2

- Lemma: Let $\{p,q\}$ be compatible prices for partial assignment M', and d(v) be shortest path distances in $G_{M'} = (V \cup \{s,t\}, E_{M'})$ with reduced costs $c_{p,q}^r(i,j')$, and let $\{p',q'\}$ be the new prices after adding the distances $p'_{j'} = p_{j'} + d(j'), \ q'_i = q_i + d(i)$
- Then $\{p', q'\}$ are also compatible prices for M'

Proof: if $x_{i,j'}=1$ in M', then d(i) = d(j') and $c^r_{p,q}(j',i)=0$, so $c^r_{p,q}(j',i)=0$ If $x_{i,j'}=0$ in M', then (i,j') is an edge in residual network $G_{M'}=(V\cup\{s,t\},E_{M'})$, and $d(j')\leq d(i)+c^r_{p,q}(i,j')$ from shortest distance property, so $0\leq d(i)+c^r_{p,q}(i,j')-d(j)=d(i)+p(i)+C_{ij'}-d(j)-p(j)=c^r_{p',q'}(i,j')$. Hence, $\{p',q'\}$ are admissible, and compatible with M'

Proof of Correctness - 3

- Lemma: Let $\{p,q\}$ be compatible prices for partial assignment M', and d(v) be shortest path distances in $G_{M'} = (V \cup \{s,t\}, E_{M'})$ with reduced costs $c_{p,q}^r(i,j')$, let $\{p',q'\}$ be the new prices after adding the distances, and let P be the shortest cost augmenting path found from s to t.
- Let M'' be the partial assignment obtained after augmenting M' with flow on path P. Then $\{p', q'\}$ are compatible prices for M''Proof: $\{p', q'\}$ are admissible, and compatible with M'. Furthermore, for every edge (i,j') in P, p''(i,j') = 0. Hence any p''(i,j') = 0.
 - $c_{p,q}^r(i,j')=0$. Hence any $x_{ij'}$ that are set from 0 to 1 in the augmentation on P satisfy the compatibility property that $c_{p,q}^r(i,j')=0$
- Theorem: Successive Shortest Paths results in min-cost assignment
 - \square We maintain the invariant that $\{p,q\}$, M' are compatible until M' is a complete assignment

Historical Notes

- The first algorithm for assignment is known as the Hungarian Algorithm, or Kuhn-Munkres' Algorithm, or Munkres' Algorithm
 - ☐ Hungarian name given by Kuhn in 1955 to honor ideas by König and Egerváry
 - \square Munkres: $O(n^4)$ algorithm (1957)
 - \square Edmonds-Karp: $O(n^3)$ algorithm (1971) similar to successive shortest paths
 - \Box Fredman-Tarjan: $O(n^2 + n | E| \log(n))$ using Fibonacci heaps
 - \square Bertsekas et al: (1979, 1985) Auction algorithm $O(n|E|\log(nC))$, C is max cost
 - \Box Orlin, others: 1991 $O(n^{1/2} | E| \log(nC))$, combine auction and successive shortest paths
- Ideas extend to solution of more complex, non-bipartite min cost networks

 □Beyond scope of the course...

Data Structures for Multidimensional Search

■ So far, focused on 1-D data
 □Balanced BSTs, B+ trees, ...
 ■ Many applications involve data which is higher-dimensional
 □Astronomy (simulation of galaxies) - 3 dimensions
 □Protein folding in molecular biology - 3 dimensions
 □Lossy data compression - 4 to 64 dimensions
 □Image processing - 2 dimensions
 □Graphics - 2 or 3 dimensions
 □Animation - 3 to 4 dimensions
 □Geographical databases - 2 or 3 dimensions
 □Web searching - 200 or more dimensions

☐ Machine learning - hundreds of dimensions

K-Nearest-Neighbor

Problem: whats are the 4 closest restaurants to my hotel

Nearest Neighbor Query in High Dimensions

- Very important and practical problem!
 - ■Image retrieval

Point-Region Quadtree

- PR Quadtrees are tries
 - ☐Trie: Decomposition based on equal division of the key space
 - ☐Shaped like a tree, with each internal node with 4 children (some empty)
- Every internal node corresponds to a region, with midpoint used for navigation
- () W S

Ν

F

- Leaves correspond to 2-D points
- The children of a node correspond to the four quadrants of a square partition of a region
 - ☐ The children of a node are labelled NE, NW, SW, and SE to indicate to which quadrant they correspond
- If a leaf contains more than one point, it splits into
 4 subregions
- Need rule to break ties: arbitrary prefer N to S, E to W
- 3-D variant: Octrees

