TTK4135 - Exercise 4 - Problem 2

February 2023

This problem is meant to be solved using the template found at: GitHub: QP - Production Planning. The problem is an old problem that appeared as problem 2 in exercise 4 for the course *TTK4135* - *Optimization and Control* at NTNU.

Problem 2 - Reactor Production Planning

Two reactors, R_I and R_{II} , produce two products A and B. To make 1000 kg of A, 2 hours of R_I and 1 hour of R_{II} are required. To make 1000 kg of B, 1 hour of R_I and 3 hours of R_{II} are required. The order of R_I and R_{II} does not matter. R_I and R_{II} are available for 8 and 15 hours, respectively. We want to maximize the profit from selling the two products.

The profit now depends on the production rate:

- the profit from A is $3 0.4x_1$ per tonne produced,
- the profit from B is $2 0.2x_2$ per tonne produced,

where x_1 is the production of product A and x_2 is the production of product B (both in number of tonnes).

- a) Formulate this as a quadratic program.
- b) Make a contour plot and sketch the constraints (try using the QP class).
- c) Find the production of A and B that maximizes the total profit. Is the solution found at a point of intersection between the constraints? Are all constraints active? Mark the iterations on the plot made in b), as well as the iteration number.
- d) The solution is calculated by an active-set method. Explain how this method works based on the sequence of iterations from c).