ARRANJOS E DUALIDADE

PS. Alguns slides baseadas nas notas de curso de Craig Gotsman e Darius Jazayeri

RAY TRACING X SUPERSAMPLING

DISCREPÂNCIA

DADO UM CONJUNTO S DE N PONTOS DENTRO DO QUADRADO UNITÁRIO U= [0,1]²

PARA UM DADO HIPERPLANO H, QUANTOS PONTOS ESTÃO ABAIXO DESTA LINHA ?

SE OS PONTOS SÃO IGUALMENTE DISTRIBUÍDOS ESTE VALOR DEVE ESTAR PERTO DE $n\mu(h)$, ONDE $\mu(h) = |U \cap h|$. Defina $\mu_s(h) = |S \cap h|/|S|$.

S

h

A discrepância de S com respeito a h é:

$$\Delta_{\varsigma}(h) = |\mu(h) - \mu_{\varsigma}(h)|$$

E A DISCREPÂNCIA DO SEMI-ESPAÇO É

$$\Delta(\mathbf{S}) = \sup_{h} \Delta_{\mathbf{S}}(h)$$

Lema: Para calcular a discrepância de S, é suficiente considerar aqueles semiespaços que passam por um par de pontos

Algorithm simples: O(n³)

DUALITY TRANSFORMS

- A DUALITY TRANSFORM IS A MAPPING WHICH TAKES AN ELEMENT E IN THE PRIMAL PLANE TO ELEMENT E* IN THE DUAL PLANE.
- ONE POSSIBLE DUALITY TRANSFORM:

POINT $p: (p_x, p_y)$ \Leftrightarrow LINE $p^*: y = p_x x - p_y$ LINE l: y = mx + b \Leftrightarrow POINT $l^*: (m, -b)$

DUALITY TRANSFORMS

- THIS DUALITY TRANSFORM TAKES
 - POINTS TO LINES, LINES TO POINTS
 - LINE SEGMENTS TO DOUBLE WEDGES
- THIS DUALITY TRANSFORM PRESERVES ORDER
 - Point p lies above line $l \Leftrightarrow \operatorname{point} l^*$ lies above line p^*

PARÁBOLAS E DUALIDADE

- A LINHA DUAL DE UM PONTO NA PARÁBOLA $y = x^2/2$ é a TANGENTE DA PARÁBOLA NESTE PONTO.
- USANDO PARÁBOLAS ENCONTRAMOS A LINHA DUAL DE CADA PONTO NO PLANO.

BACK TO THE DISCREPANCY PROBLEM

TO DETERMINE OUR DISCRETE MEASURE, WE NEED TO:

DETERMINE HOW MANY SAMPLE POINTS LIE BELOW A GIVEN LINE (IN THE PRIMAL PLANE).

BACK TO THE DISCREPANCY PROBLEM

TO DETERMINE OUR DISCRETE MEASURE, WE NEED TO:

DETERMINE HOW MANY SAMPLE POINTS LIE BELOW A GIVEN LINE (IN THE PRIMAL PLANE).

dualizes to

GIVEN A POINT IN THE DUAL PLANE WE WANT TO DETERMINE HOW MANY SAMPLE LINES LIE ABOVE IT.

ARRANJOS DE LINHAS

- DADO N LINHAS.
- NÚMERO DE VÉRTICES $\leq \frac{\binom{n}{2}}{2} = \frac{n^2}{2} \frac{n}{2}$ (CADA PAR DE LINHAS POSSUI INTERSEÇÃO).
- NÚMERO DE ARESTAS $\leq n^2$ (CADA LINHA É CORTADA PELAS DEMAIS N-1 LINHAS).
- NÚMERO DE FACES $\leq \frac{n}{2} + \frac{n}{2} + 1$ (FORMULA DE EULER E CONECTANDO TODOS OS RAIOS A UM PONTO NO INFINITO).

ARRANJO DE LINHAS

- CALCULAR UMA MAPA PLANAR (LISTA DE ARESTAS DUPLAMENTE ENCADEADAS DCEL).
- UM PLANE SWEEP RODARIA EM $O(n^2 \log n)$ ($O(n^2)$ EVENTOS, $O(\log n)$ CADA).

ALGORITMO DE ARRANJO DE LINHAS

- Entrada: CONJUNTO L DE N LINHAS NO PLANO.
- Saída: ARRANJO DCEL (A(L)) PARA A SUBDIVISÃO INDUZIDA POR L EM UMA BOUNDING BOX B(L).
- ALGORITMO:
 - CALCULAR UMA BOUNDING BOX B(L), E INICIALIZAR DCEL.
 - INSERIR UMA LINHA APÓS A OUTRA, E ATUALIZAR O ARRANJO, CÉLULA POR CÉLULA.

ALGORITMO DE ARRANJO DE LINHAS

A COMPLEXIDADE DE CADA INSERÇÃO DE UMA LINHA DEPENDE DA COMPLEXIDADE DA SUA ZONA.

ZONA DE UMA LINHA

- A ZONA DE UMA LINHA NO ARRANJO A(L) É O CONJUNTO DE FACES DE A(L) QUE INTERSEPTAM I.
- A COMPLEXIDADE DA ZONA DE L CORRESPONDE A COMPLEXIDADE DE TODAS AS FACES: SOMA DAS ARESTAS E VÉRTICES DESTAS FACES.

O TEOREMA DA ZONA (ZONE THEOREM)

- Teorema: Em um arranjo de n linhas em 2D, a complexidade da zona de uma linha é O(n).
- PROVA (IDÉIAS):
 - ASSUMIR QUE L É HORIZONTAL (WLOG)
 - CONTE O NÚMERO DE ARESTAS ESQUERDAS LIMITADORAS, E PROVE QUE ESTE NÚMERO É NO MÁXIMO 3Ñ.

1,

PROVA

- POR INDUÇÃO EM N.
- PARA M=1 TRIVIAL.
- PARA M>1:
 - l, é a linha mais a direita intersectando l.
 - Pela hipótese de indução, a zona de l em $A(L\setminus\{l_1\})$ possui no máximo 3(n-1) arestas esquerdas.
 - Quando adicionando l_1 , o número de arestas aumenta de tal forma:
 - Uma nova aresta em I_1 .
 - Duas arestas antigas cortadas por l₁.

Portanto, a complexidade é 3(n-1)+3=3n

CONSTRUINDO O ARRANJO

O TEMPO NECESSÁRIO PARA INSERIR UMA LINHA l_i É LINEAR COM A COMPLEXIDADE DA ZONA, A QUAL É LINEAR NO NÚMERO DE ARESTAS. PORTANTO:

$$T(n) = \sum_{i=1}^{n} O(i) = O(n^{2})$$

Note que este valor independe da ordem de inserção.

TRIÂNGULO DE ÁREA MÍNIMA

DADO UM CONJUNTO DE N PONTOS, DETERMINAR OS TRÊS PONTOS QUE FORMAM O TRIÂNGULO COM A MENOR ÁREA.

FÁCIL DE RESOLVER EM O(N3).

ALGORITMO O(n2) USANDO DUAL

- CONSTRUIR ARRANJO DUAL EM O
 (N2)
- PARA CADA PAR DE PONTOS P, E P,

 (ASSUMA QUE ESTE É O

 TRIÂNGULO BASE):
 - IDENTIFICAR O VÉRTICE V DO ARRANJO CORRESPONDENTE A LINHA QUE PASSA POR ESTES PONTOS.
 - ENCONTRA A LINHA DO ARRANJO MAIS PRÓXIMA VERTICALMENTE A V.
 - GUARDE A MELHOR LINHA.
- EMITIR PONTO CORRESPONDENDO
 A MELHOR LINHA

CALCULANDO DISCREPÂNCIA

NO PLANO DUAL É EQUIVALENTE A CONTAR O NÚMERO DE LINHAS SOBRE O PONTO DUAL.

CALCULANDO DISCREPÂNCIA

- PARA CADA VÉRTICE EM A(S*), CALCULAR O NÚMERO DE LINHAS ACIMA, SOBRE E ABAIXO ELE.
- ESTES TRÊS NÚMEROS SOMAM N, PORTANTO É SUFICIENTE CALCULAR DOIS DELES.
- DA DCEL PODEMOS

 CALCULAR QUANTAS LINHAS

 PASSAM PELO VÉRTICE.

NÍVEIS DE UM ARRANJO

- UM PONTO ESTÁ NO NÍVEL K DE UM ARRANJO DE N LINHAS SE EXSITEM PELO MENOS k-1 LINHAS SOBRE ESTE PONTO E NO MÁXIMO n-k LINHAS SOBRE ESTE PONTO.
- EXISTEM N NÍVEIS EM UM ARRANJO DE N LINHAS.
- UM VÉRTICE PODE ESTAR EM MÚLTIPLOS NÍVEIS, DEPENDENDO DO NÚMERO DE LINHAS ELE INTERSECTA.

ALGORITMO O(n2) PARA CÁLCULO DA DISCREPÂNCIA

- CONSTRIR O ARRANJO DUAL.
- PARA CADA LINHA, CALCULAR OS NÍVEIS DE TODOS OS VÉRTICES.
- COMEÇANDO COM O VÉRTICE MAIS A ESQUERDA. CALCULE SEU NÍVEL EXAMINANDO TODAS OUTRAS LINHAS (O(n)).
- PASSE PARA O PRÓXIMO VÉRTICE.
 INCREMENTE OU DECREMENTE O
 NÍVEL, DEPENDENDO DA DIREÇÃO
 (COEFICIENTE ANGULAR) DA LINHA
 SENDO CRUZADA.

DUAL-RAY SPACE

DUAL RAY

PARÁBOLA E DUALIDADE: PARTE 1

AS LINHAS DUAIS DE DOIS PONTOS (a,b_1) E (a,b_2) POSSUEM MESMO COEF. ANGULAR, E UMA DISTÂNCIA VERTICAL DE $|b_1-b_2|$.

PARÁBOLAS E

DUALIDADE: PARTE 2

- B PARA ENCONTRAR A LINHA DUAL DE UM PONTO P:
 - ENCONTRAR DUAS LINHAS ATRAVÉS DE P TANGENTES A PARÁBOLA.
 - A LINHA UNINDO ESTES DOIS PONTOS DE TANGÊNCIA É A LINHA DUAL DE P.

