```
import pandas as pd
df = pd.read_csv("Dataset .csv")
print(df['Cuisines'].value_counts())
top_cuisines = df['Cuisines'].value_counts().nlargest(10).index
df = df[df['Cuisines'].isin(top_cuisines)]
df = df.drop(['Restaurant Name', 'Address', 'Locality Verbose'], axis=1)
from sklearn.preprocessing import LabelEncoder
label = LabelEncoder()
df['Cuisines_encoded'] = label.fit_transform(df['Cuisines'])
for col in df.columns:
   if df[col].dtype == 'object':
        df[col] = label.fit_transform(df[col])
from sklearn.model_selection import train_test_split
from \ sklearn.ensemble \ import \ Random Forest Classifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
X = df.drop(['Cuisines', 'Cuisines_encoded'], axis=1)
y = df['Cuisines_encoded']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
clf = RandomForestClassifier()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Classification Report:\n", classification_report(y_test, y_pred))
import seaborn as sns
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 6))
\verb|sns.heatmap| (confusion\_matrix(y\_test, y\_pred), annot=True, fmt="d", cmap="Blues")| \\
plt.title("Confusion Matrix")
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.show()
```


₹	Cuisines North Indian North Indian, Chinese Chinese Fast Food North Indian, Mughlai World Cuisine, Patisserie, Cafe Burger, Izgara Desserts, B�_rek Restaurant Cafe, Turkish, Desserts Restaurant Cafe, Desserts Name: count, Length: 1825, dtype:			936 511 354 354 334	
				1 1 1 1 1 1 nt64	
	Accuracy: 0.31 Classification			f1-score	support
	0 1 2 3 4 5 6 7 8	0.22 0.27 0.44 0.26 0.28 0.37 0.24 0.11	0.07 0.07 0.48 0.11 0.28 0.51 0.35 0.32 0.05	0.11 0.12 0.46 0.16 0.28 0.43 0.29 0.28 0.07 0.39	56 41 56 80 64 186 91 60 38 33
	accuracy macro avg weighted avg	0.28 0.30	0.26 0.31	0.31 0.26 0.29	705 705 705

Confusion Matrix

