PLANETARY EPHEMERIDES

Interplanetary Mission Design

Kate Davis

INTRODUCTION

The positions and velocities of the planets must be known on desired dates to compute interplanetary trajectories. There are various methods to determine the location of a planet for a given date. Currently, the most accurate method is to use the planetary ephemerides provided by JPL's Horizons system or from the Navigation and Ancillary Information Facility (NAIF) website (http://naif.jpl.nasa.gov/naif/). The NAIF website also provides several software packages for reading ephemerides. For the purposes of this class, the position of the planets in a heliocentric frame will be computed as a function of time using an algorithm given by Meeus.¹ Although not as accurate as ephemerides such as the DE421, it is a good approximation.

In Meeus' algorithm, the orbital elements of the planets are expressed as polynomials of the form:

Element =
$$a_0 + a_1 T + a_2 T^2 + a_3 T^3$$

where T is time measured in Julian centuries of 36525 ephemeris days from the epoch J2000.0 = JDE 2451545. T may be computed as:

$$T = \frac{\text{JDE} - 2451545.0}{36525}$$

Meeus provides coefficients for the following elements:

L =Mean longitude of the Planet

a =Semimajor axis of the orbit

e =Eccentricity of the orbit

i =Inclination of the orbit

 $\Omega =$ Longitude of the Ascending Node

 Π = Longitude of the Perihelion

The longitude of perihelion, Π should not be confused with the argument of perihelion, ω . Π is related to Ω and ω as follows:

$$\Pi = \Omega + \omega$$

The planet's mean anomaly, M, is given by:

$$M = L - \Pi$$

The true anomaly can be found as:

$$\nu = M + C_{cen}$$

1

where

$$C_{cen} = \left(2e - \frac{e^3}{4} + \frac{5}{96}e^5\right)\sin M + \left(\frac{5}{4}e^2 - \frac{11}{24}e^4\right)\sin(2M) + \left(\frac{13}{12}e^3 - \frac{43}{64}e^5\right)\sin(3M) + \frac{103}{96}e^4\sin(4M) + \frac{1097}{960}e^5\sin(5M)$$

The traditional orbital elements $(a, e, i, \Omega, \omega, \nu)$ are now known, and the position and velocity of the planet can be calculated. Tables 1-8 shows the coefficients for the planets and Pluto for the standard J2000.0 equinox.

Orbital Elements	a_0	a_1	a_2	a_3
L (deg)	252.250906	149472.6746358	-0.00000535	0.000000002
a (AU)	0.387098310			
e	0.20563175	0.000020406	-0.0000000284	-0.00000000017
i (deg)	7.004986	-0.0059516	0.00000081	0.000000041
Ω (deg)	48.330893	-0.1254229	-0.00008833	-0.000000196
Π (deg)	77.456119	0.1588643	-0.00001343	0.000000039

Table 1. Coefficients for the Orbital Elements of Mercury

Table 2. Coefficients for the Orbital Elements of Venus

Orbital Elements	a_0	a_1	a_2	a_3
L (deg)	181.979801	58517.8156760	0.00000165	-0.000000002
a (AU)	0.72332982			
e	0.00677188	-0.000047766	0.0000000975	0.00000000044
i (deg)	3.394662	-0.0008568	-0.00003244	0.000000010
Ω (deg)	76.679920	-0.2780080	-0.00014256	-0.000000198
Π (deg)	131.563707	0.0048646	-0.00138232	-0.000005332

Table 3. Coefficients for the Orbital Elements of Earth

Orbital Elements	a_0	a_1	a_2	a_3
L (deg)	100.466449	35999.3728519	-0.00000568	0.0
a (AU)	1.000001018			
e	0.01670862	-0.000042037	-0.0000001236	0.00000000004
i (deg)	0	0.0130546	-0.00000931	-0.000000034
Ω (deg)	174.873174	-0.2410908	0.00004067	-0.000001327
Π (deg)	102.937348	0.3225557	0.00015026	0.000000478

REFERENCES

[1] J. Meeus, Astronomical Algorithms. Richmond, VA: William-Bell, Inc., First English ed., 1991.

Table 4. Coefficients for the Orbital Elements of Mars

Orbital Elements	a_0	a_1	a_2	a_3
$L (\deg)$	355.433275	19140.2993313	0.00000261	- 0.000000003
a (AU)	1.523679342			
e	0.09340062	0.000090483	- 0.0000000806	- 0.0000000035
i (deg)	1.849726	- 0.0081479	- 0.00002255	- 0.00000027
Ω (deg)	49.558093	- 0.2949846	- 0.00063993	- 0.000002143
Π (deg)	336.060234	0.4438898	- 0.00017321	0.000000300

Table 5. Coefficients for the Orbital Elements of Jupiter

Orbital Elements	a_0	a_1	a_2	a_3
L (deg)	34.351484	3034.9056746	-0.00008501	0.000000004
a (AU)	5.202603191	0.0000001913		
e	0.04849485	0.000163244	-0.0000004719	-0.00000000197
i (deg)	1.303270	-0.0019872	0.00003318	0.000000092
Ω (deg)	100.464441	0.1766828	0.00090387	-0.000007032
Π (deg)	14.331309	0.2155525	0.00072252	-0.000004590

Table 6. Coefficients for the Orbital Elements of Saturn

Orbital Elements	a_0	a_1	a_2	a_3
L (deg)	50.077471	1222.1137943	0.00021004	-0.000000019
a (AU)	9.554909596	-0.0000021389		
e	0.05550862	-0.000346818	-0.0000006456	0.00000000338
i (deg)	2.488878	0.0025515	-0.00004903	0.000000018
Ω (deg)	113.665524	-0.2566649	-0.00018345	0.000000357
Π (deg)	93.056787	0.5665496	0.00052809	0.000004882

Table 7. Coefficients for the Orbital Elements of Uranus

Orbital Elements	a_0	a_1	a_2	a_3
$L (\deg)$	314.055005	429.8640561	0.00030434	0.000000026
a (AU)	19.218446062	-0.0000000372	0.00000000098	0.0
e	0.04629590	-0.000027337	0.0000000790	0.00000000025
i (deg)	0.773196	0.0007744	0.00003749	-0.000000092
Ω (deg)	74.005947	0.5211258	0.00133982	0.000018516
Π (deg)	173.005159	1.4863784	0.0021450	0.000000433

Table 8. Coefficients for the Orbital Elements of Neptune

Orbital Elements	a_0	a_1	a_2	a_3
$L (\deg)$	304.348665	219.8833092	0.00030926	0.000000018
a (AU)	30.110386869	-0.0000001663	0.00000000069	0.0
e	0.00898809	0.000006408	-0.0000000008	-0.00000000005
i (deg)	1.769952	-0.0093082	-0.00000708	0.000000028
Ω (deg)	131.784057	1.1022057	0.00026006	-0.000000636
Π (deg)	48.123691	1.4262677	0.00037918	-0.000000003

Table 9. Coefficients for the Orbital Elements of Pluto

Orbital Elements	a_0	a_1	a_2	a_3
$L (\deg)$	238.92903833	145.20780515	0.0	0.0
a (AU)	39.48211675	-0.00031596	0.0	0.0
e	0.24882730	0.00005170	0.0	0.0
i (deg)	17.14001206	0.00004818	0.0	0.0
Ω (deg)	110.30393684	-0.01183482	0.0	0.0
Π (deg)	224.06891629	-0.04062942	0.0	0.0