

Eric, Owen, VK 08 December 2023

OUR FINAL PROJECT

Our group wanted to examine Electric Vehicles (EV's). We found datasets concerning car brands, charging stations, and EV usage overtime..

• We came up with five data analysis questions, and also found an interesting outlier vehicle to compare and contrast with.

DATA ANALYSIS QUESTIONS

- Question 1: How common are charging stations?
 - We will create a Leaflet map to find the charging stations in Pennsylvania.
- Question 2: What vehicle has the longest excursion time/length on a full-charge?
 - We will create a scatter plot to examine this relationship. (NYI)
- Question 3: What is the most cost-efficient car? What would you buy if you had just graduated? (NYI)
- Question 4: How has global EV usage changed over the years?
 - We will create a bar plot of EV usage each year.
- Question 5:
 - We will create a bar plot of EV usage by country.

CHARGING STATIONS IN PENNSYLVANIA

How many charging stations are in PA? Where are they located?

Fuel Type Code	Station Name	Street Address	Intersection Direct	City	State	ZIP
CNG	Spire - Montgom	2951 Chestnut S	t	Montgomery	AL.	36107
CNG	PS Energy - Atla	340 Whitehall St	From I-7585 N, e	Atlanta	GA	30303
CNG	Metropolitan Atla	2424 Piedmont F	Nd NE	Atlanta	GA	30324
CNG	United Parcel Se	270 Marvin Miller	Dr	Atlanta	GA	30336
CNG	Clean Energy - T	7721A Washingt	I-10, Washington	Houston	TX	77007
CNG	Arkansas Oklaho	2100 S Waldron	Rd	Fort Smith	AR	72903
CNG	Clean Energy - L	1000 Cottage St	From Route 1, ta	East Boston	MA	2128

1	Fuel Type Code ▼	Station Name	City	State	Groups With Access Code	Latitude	Longitude
161	ELEC	LADWP - Truesdale Center	Sun Valley	CA	Private	34.24831915	-118.3879714
162	ELEC	LADWP - West LA District Office	Los Angeles	CA	Private	34.052542	-118.448504
163	ELEC	Southern California Edison - Rosemead Office B	Rosemead	CA	TEMPORARILY UNAVAILAB	34.050745	-118.081014
164	ELEC	Los Angeles Convention Center	Los Angeles	CA	Public	34.040539	-118.271387
165	ELEC	LADWP - John Ferraro Building	Los Angeles	CA	Private	34.059133	-118.248589
166	ELEC	LADWP - Haynes Power Plant	Long Beach	CA	Private	33.759802	-118.096665
167	ELEC	State Capitol Parking Garage	Sacramento	CA	Private - Government only	38.576769	-121.495022
168	ELEC	LADWP - Harbor Generating Station	Wilmington	CA	Private	33.770508	-118.265628

CHARGING STATIONS IN PENNSYLVANIA

```
#-Data Visualizations-
##1. How common are charging stations?
## Use groundhog to make sure the code runs mostly everywhere
library(groundhog)
groundhog.day="2023-11-20"
## 'here' for using a relative filepath
## 'leaflet' will display the map of charging stations
## 'dplyr' is brought in for tidying data
pkgs=c('here', 'leaflet', 'dplyr')
groundhog.library(pkgs, groundhog.day)
## Using 'here' for a relative filepath
csv_path <- here("EVfuelstations.csv")
EVfuelstations <- read.csv(csv_path)
## This dataset includes a column called "Fuel Type Code" that can stand for electric, CNG, etc.
## We want to only consider the fuel stations that are ELEC, in Pennsylvania, and for public use
filtered_stations <- EVfuelstations %% filter(Fuel.Type.Code = "ELEC") %%
 filter(State = "PA") %>% filter(Groups.With.Access.Code = 'Public')
num_stations = nrow(filtered_stations)
print("Number of Public EV Charging Stations in PA:")
print(num_stations)
## The station names and coordinates are easily selected
stationNames <- filtered_stations$Station.Name
latitude <- filtered_stations$Latitude
longitude <- filtered_stations$Longitude
## Create a custom data frame with station coordinates and names
## Leaflet is sensitive to large datasets
|station_data <- data.frame(
 Name = stationNames.
 Latitude = latitude,
 Longitude = longitude
# Create the leaflet map
EVchargemap <- leaflet(station_data) %>%
 setView(lng = -77.8124, lat = 40.86833, zoom = 6) %>% # Center the map around State College. PA
  addTiles() %>% # Add map tiles as the base layer
  addMarkers(lat = \simLatitude, lng = \simLongitude, popup = \simName)
# Display the map
EVchargemap
```


Answer: There are 931 charging stations available for public use in PA. Generally, if we travel along the US Interstate System, we can reliably recharge an EV.

RAW DATA -- INTERNATIONAL ENERGY AGENCY (IEA)

_	region [‡]	category	parameter	mode [‡]	powertrain	year ‡	unit [‡]	value
1	Australia	Historical \	EV stock	Cars	BEV	2011	Vehicles	49.00000
2	Australia	Historical	EV stock share	Cars	EV	2011	percent	0.00046
3	Australia	Historical	EV sales share	Cars	EV	2011	percent	0.00650
4	Australia	Historical	EV sales	Cars	BEV	2011	Vehicles	49.00000
5	Australia	Historical	EV sales	Cars	BEV	2012	Vehicles	170.00000
6	Australia	Historical	EV sales share	Cars	EV	2012	percent	0.03000
7	Australia	Historical	EV stock share	Cars	EV	2012	percent	0.00280
8	Australia	Historical	EV stock	Cars	BEV	2012	Vehicles	220.00000
9	Australia	Historical	EV stock	Cars	PHEV	2012	Vehicles	80.00000
10	Australia	Historical	EV sales	Cars	PHEV	2012	Vehicles	80.00000
11	Australia	Historical	EV sales	Cars	PHEV	2013	Vehicles	100.00000
12	Australia	Historical	EV stock	Cars	PHEV	2013	Vehicles	180.00000
13	Australia	Historical	EV stock	Cars	BEV	2013	Vehicles	410.00000
14	Australia	Historical	EV stock share	Cars	EV	2013	percent	0.00540

Dataset:

- IEA Global EV Data 2023 (csv)
- No Missing Values
- EV encompasses
 BEV (battery electric
 vehicles) and PHEV
 (plug-in hybrid
 electric vehicles)
- Shares (percent) vs
 Stock (counts)

TIDYING IEA DATA(INITIAL)

^	region [‡]	year [‡]	count
1	Australia	2011	98
2	Australia	2012	550
3	Australia	2013	880
4	Australia	2014	3200
5	Australia	2015	5360
6	Australia	2016	6370
7	Australia	2017	9600
8	Australia	2018	14500
9	Australia	2019	29800
10	Australia	2020	33900
11	Australia	2021	68400
12	Australia	2022	126900
13	Austria	2010	350
14	Austria	2011	990
15	Austria	2012	1540
16	Austria	2013	3160
17	Austria	2014	5880
18	Austria	2015	9300
19	Austria	2016	16400

```
## wrangle data to include columns for: year, region, count of EVS
EV_ownership_region_year_raw <- EV_Global_Historical_raw %>%
  filter(unit == 'Vehicles', region != "World") %>%
  select(region, year, value) %>%
  group_by(region, year) %>%
  summarise(count = sum(value))
```

Goal: To keep only necessary data

- filter to only vehicles and countries
- attributes: region, year, value
- EV count = BEV count + PHEV count

TIDYING IEA DATA(CONTINUED)

Q4: Global EV Usage by Year

CASE: A GIVEN YEAR

ATTRIBUTES: YEAR, COUNT OF EVS

```
## wrangled data to cases of years with attributes: year, count of EVs
EV_ownership_global_year <- EV_ownership_region_year_raw %>%
   group_by(year) %>%|
   summarise(count = sum(count))
```

Q5: EV Usage by Country since 2019

CASE: A GIVEN REGION

ATTRIBUTES: REGION, COUNT OF EVS

NOTE: ONLY WANT 2019-2022 TO MAKE DATA MORE RECENT

```
# Wrangle Data to get cases of regions from 2019-2022 with attributes: region, count
EV_ownership_region_2019_2022 <- EV_ownership_region_year_raw %>%
  filter(year >= 2019) %>%
  group_by(region) %>%
  summarise(count = sum(count))
```

CREATING BAR CHART OF GLOBAL EVS OWNED EACH YEAR

BAR CHART OF GLOBAL EVS OWNED EACH YEAR

NOTES:

- EXPONENTIAL GROWTH
- OWNERSHIP INDICATES EVS IN STOCK AND SOLD TO CUSTOMERS

REMINDER Q4:

 HOW HAS GLOBAL EV USAGE CHANGED OVER THE YEARS?

CREATING BAR CHART OF EVS OWNED BY COUNTRY

```
# use y = reorder(region, +count) to order countries by car ownership
regional_ev_ownership_bar_chart <- ggplot(EV_ownership_region_2019_2022, aes(x = geom_col() +
    scale_x_continuous(limits = c(0, max(EV_ownership_order_by_country$count)), n.breaks = 9) +
    labs(title = "EV Ownership By Region",
        subtitle = "Total EVs Owned from 2019 to 2022 for each Region",
        x = "Count of Electric Vehicles",
        y = "Region") +
    theme_classic() +
    theme(legend.position = "none") # removes legend</pre>
```

NOTES: USED REORDER(COL1, +COL2) IN AES() TO MAKE COUNTRIES IN ORDER FROM HIGHEST COUNT OF EVS TO LOWEST COUNT OF EVS

BAR CHART OF EVS OWNED BY COUNTRY

NOTES:

- CHINA HAS MOST EVS (HIGHEST POPULATION)
- WHAT PERCENT OF EVS DO THE TOP 3 EV-OWNING COUNTRIES OWN?

REMINDER Q5:

WHICH COUNTRIES
 LEAD IN EV USAGE?
 WHICH COUNTRIES ARE
 LAGGING BEHIND?