Familles de vecteurs, applications linéaires et intégration

1. Familles de vecteurs, applications linéaires

Exercice 1 On s'intéresse pour chaque $\lambda \in \mathbb{R}^*$ à l'ensemble noté $F(\lambda)$ des endomorphismes linéaires de \mathbb{R}^3 vérifiant l'équation $f \circ f = \lambda f$:

$$F(\lambda) = \left\{ f \in \mathcal{L}(\mathbb{R}^3) \mid f^2 = \lambda f \right\}.$$

1) Étude générale.

Soit $\lambda \in \mathbb{R}^*$ et $f \in F(\lambda)$.

- a) Montrer que Im $f = \{ u \in \mathbb{R}^3 \mid f(u) = \lambda u \}.$
- b) On veut montrer que Ker f et Im f sont des sous-espaces vectoriels supplémentaires de \mathbb{R}^3 . Soit $x \in \mathbb{R}^3$.
 - i) Analyse. On suppose que x = u + v, avec $u \in \text{Im } f$ et $v \in \text{Ker } f$. En calculant f(x), trouver la valeur de u, et donc celle de v.
 - ii) Procéder à une phase de synthèse.
 - iii) Conclure.
- 2) Un exemple.

On considère l'application

$$f: \mathbb{R}^{3} \to \mathbb{R}^{3} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} -x + y + z \\ -6x + 4y + 2z \\ 3x - y + z \end{pmatrix}.$$

- a) Montrer que f appartient a $F(\lambda)$, pour un certain λ , que l'on précisera.
- b) Déterminer une base de $\operatorname{Ker} f$, ainsi que de $\operatorname{Im} f$.
- c) Le vecteur w = (7, 6, 5) appartient-il a Im f?

Exercice 2 Quelle est la nature de l'application $f: \mathbb{R}^3 \to \mathbb{R}^3$? Déterminer $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x \\ 2x + 2z \\ z \end{pmatrix}$?

ses éléments caractéristiques.

2. Intégration

Exercice 3 On pose, pour $n \in \mathbb{N}$: $I_n = \int_0^1 \frac{(1-x)^n}{n!} e^x dx$.

- 1) Montrer que $I_n \to 0$.
- **2)** Montrer que $I_n = \frac{1}{(n+1)!} + I_{n+1}$.
- 3) En déduire que $e = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{k!}$.

Exercice 4 Soit f la fonction définie par $f:t\to \frac{1}{1+\sin^2(t)}$. Déterminer une primitive F de f (on pourra être amené à faire le changement de variable $u=\tan t$). En déduire la valeur de $I=\int_0^{2\pi}f(t)\,\mathrm{d}t$. Comparer I et 0.