## POS tagging

Aquí se mostrará los resultados del uso de NTK y Python para el procesamiento del corpus y obtener el POS tagging.

Primero descargamos el corpus NTK, reducimos el número de etiquetas de 289 a 66 y separamos los datos en 90% para realizar el entrenamiento y 10% para la evaluación. Después importamos dos tipos de modelos hmm y tnt. Obtenemos así un porcentaje de acierto de 85% para el modelo hmm y 79% para el modelo tnt.

Tras esto dividimos el corpus en 10 partes, asignando para la partición 1 la primera para evaluación y el resto para training, para la 2 la segunda para evaluación y el resto para training y así sucesivamente. Obteniendo:

| Partición: | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Hmm        | 91% | 90% | 91% | 91% | 91% | 84% | 86% | 87% | 87% | 85% |
| Tnt        | 88% | 87% | 87% | 87% | 88% | 79% | 83% | 82% | 83% | 79% |

Que gráficamente queda representado como:



Vemos que obtenemos valores muy similares, si tuviéramos que quedarnos con alguna partición sería la 1 o la 5.

Después barajamos los datos y realizamos la evaluación de nuevo de la misma forma. Obteniendo:

| Partición: | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Hmm        | 97% | 96% | 95% | 94% | 93% | 93% | 92% | 92% | 92% | 90% |
| Tnt        | 98% | 97% | 95% | 94% | 92% | 91% | 90% | 90% | 90% | 88% |

## Que gráficamente queda:



Parece que al barajar los datos la partición 1 rinde mejor que las demás.

Gracias por su atención