Project Title:

Comparative Study of Image Classification Using Decision Tree, Naive Bayes, and Feedforward Neural Networks

Project Overview:

This project aims to implement and compare different machine learning models for the task of image classification. Student or (group of 2) will work with a dataset of at least 500 images, organized into three or more classes (e.g., religious symbols, traffic signs, leaf types, animals types). Each image should be resized to a fixed dimension (e.g., 32×32 or 64×64) and flattened into a 1D feature vector for model input.

The models to be implemented are:

- 1. Naive Bayes Classifier fast and effective for high-dimensional data like pixel values.
- 2. Decision Tree Classifier interpretable and suitable for rule-based visual classification.
- 3. Feedforward Neural Network (MLPClassifier) optional model to explore deeper representations.

Students will train and evaluate these models and analyze their accuracy, efficiency, and ability to generalize to unseen data.

Project Objectives:

- Prepare and preprocess an image dataset for classification.
- Implement Naive Bayes and Decision Tree models.
- Optionally implement a Multi-Layer Perceptron (MLP) using MLPClassifier.
- Evaluate models using metrics such as accuracy, precision, recall, F1-score, and confusion matrix.
- - Analyze and compare the strengths and limitations of each model.

Dataset Requirements:

- Minimum of 500 labeled images, divided into at least three categories.
- Images must be:
- Resized (e.g., 32×32 or 64×64).
- Flattened into 1D vectors for model input.
- Example dataset themes: religious icons, traffic symbols, types of leaves.

Models to Implement:

- 1. Naive Bayes Classifier:
 - Use simple pixel-level features or statistical summaries (mean, variance). Evaluate as a baseline model.
- 2. Decision Tree Classifier:
 - Build a decision tree that classifies images using pixel intensity values. Visualize and analyze decision paths.

3. Feedforward Neural Network (optional):
Use Scikit-learn's MLPClassifier with 1–2 hidden layers. Compare performance with the simpler models.

Project Deliverables:

- - Source Code for all models with clear documentation.
- - Final Report (8 pages), including:
 - Introduction and dataset description.
 - Detailed explanation of each model.
 - Evaluation results with accuracy metrics and confusion matrices.
 - Comparative analysis and discussion of which model performs best and why.