

King Saud University

College of Computer and Information Sciences
Computer Science Department

CSC 339: Theory of Computation Homework: First Semester 2020

Due Date: December 15, 2020 at 11:59 PM

Name: Shahad Saad Ibrahem Alfouzan ID: Section: 44229

Question 1 [2 pts]	Question 2 [2 pts]	Question 3 [2 pts]	Question 4 [2 pts]	Question 5 [2 pts]
Total [10 pts]				

Instructions

- This homework **should** be solved **individually**.
- All questions **should** be answered on this homework paper.
- Write your **full information** (name, ID, and section) on the specified above table.
- You **should** follow these **submission instructions**:
 - Late submission is NOT acceptable.
 - Save your homework as (.pdf) file and name it [Your Section]_[Your ID]_[Your Full Name in Arabic].
 - o Through LMS, go to \Assignments\Homework and submit your paper.

Good Luck ©

Question 1 [2 pts]

For each of the following statements state if it is true, false or unknown:

1. If L is a regular language; then $L \in P$.	True
2. There exists some deterministic TM that can decide $3SAT$ in polynomial time.	Unknown
3. A language is in NP if and only if it is decided by some non-deterministic polynomial time TM .	True
4. 3SAT is polynomial time reducible to CLIQUE.	True

Question 2 [2 pts]

Design a Turing machine with input alphabet $\Sigma = \{0,1\}$ that accepts the language $L = \{0^i 1^{2i} \mid i \ge 0\}$.

Question 3 [2 pts]

Design a deterministic Turing machine with input alphabet $\Sigma = \{a, b, c, d\}$ that accepts the language $L = \{d^nc^nb^na^n \mid n \geq 0\}$.

Question 4 [2 pts]

Design a deterministic Turing machine with input alphabet $\Sigma = \{x, y\}$ that accept the regular language $L = \{xy^* + yx^*\}$. In other words, L is the set of strings in which the first symbol does not appear again on the input.

Question 5 [2 pts]

Let *M* be a Turing machine that defined by:

δ	а	b	c <>	#
q0	q1, b, S	q1, a, S	q0, <>, R	q2, #, S
<i>q</i> 1	q0, a, R	q0, b, R	q1, <>, R	q0, #, R
q2	-	ı	ı	ı

1. Trace the computation of M starting from the configuration (q0, <> aaabbba).

2. Describe informally what M does when it starts from state q0 and the read\write head points to any cell in the tape.

In state q0, when the machine read <> the write <> and stay in state q0, move the head to the right. when read a then write b and go to state q1 and stay in that head(i.e stay don't move neither left or right), then in q1 when read b write b and go to state q0 and move right.in q0 when read b write a and go to state q1 and stay in that head (i.e stay don't move neither left or right), then in q1 when read a write a and go to state q0 and move right. in q0 when read # write #, go to state q2 and stay in that head(i.e stay don't move neither left or right). In other word this Turing machine change every a to b and vice versa.