	CUMENTATION PA		Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information and maintaining the data needed, and collection of information, including suggestions for Davis Highway, Suite 1204, Artington, VA 12102-43	nation is estimated to average 1 hour per r impleting and reviewing the collection of in reducing this burden, to Washington Hase 02, and to the Office of Management and 8	espanse, including the time for re- formation. Send comments regar quartors Services, Directorate for udget, Paperwork Reduction Proje	riswing instructions, searching existing data sources, ding this burden estimate or any other aspect of this information Operations and Reports, 1215 Jefferson ct (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	hase I SBIR May 1994 thru	DAYES COVERED Final Report
4. TITLE AND SUBTITLE	28Mar95	May 1994 thru	1 March 1995 5, FUNDING NUMBERS
4. TITLE AND SUBTILLE			
Brush Seal Shaft Wear	Resistant Coatings		NAS3-27383
a. Author(5)			•
Harold Howe			
7. PERFORMING ORGANIZATION NAM Technetics Corporation 1600 Industrial Drive DeLand, FL 32724-209	on APP	CTE ROA1995	E. PERFORMING ORGANIZATION REPORT NUMBER
		G	Accesion For
3. SPONSONING/MONITORING AGEN NASA/U.S. Army NASA Lewis Research (Research and Technolo 21000 Brookpark Road Cleveland, OH 44135-	Center ogy Branch		DTIC TAB Unannounced
11. SUPPLEMENTARY NOTES			Ву
Robert C. Hendricks			Distribution/
Contracting Officer's	: Technical Represen	tative	
12a. DISTRIBUTION/AVAILABILITY ST	ATEMENT		Availability Codes
Approved for public r distribution unlimite		,	Dist Avail and / or Special
13. ABSTRACT (Maximum 200 words)			
Brush seals suffer fr work sought to reduce industry standard coa It was a co-sprayed I lubricant. Other coa Testing of these coat wear/coefficient of f coating to a rotor ar the coating. Surface Rotor wear was noted, the testing indicates	e brush seal wear by trings. One of the PSZ with boron-nitrictings tested were a cings included therm friction testing. We at then running a same speeds at point of as well as coeffices that the oxide certarbide coatings will the oxidizes in the halfor a coating that	identifying and coatings was devide added for a last PSZ, chrome careal shocking, terear testing consent of Side contact were sident of friction amic coatings call not work because has a lubricant	reloped for this work. migh temperature dry bide and a bare rotor. misile testing and sisted of applying a C ceramic fiber against lightly over 1000 ft/sec. mannot withstand the given use of the need for a ed by friction. All c contained within g environment.
14. SUBJECT TERMS		•	15. NUMBER OF PAGES 37
Brush Seal, Coating,	Wear, Ceramic		16. PRICE CODE
17. SECURITY CLASSIFICATION 18	SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFI OF ABSTRACT	
Unclassified	Unclassified	Unclassifie	d UL

INTRODUCTION AND BACKGROUND

Brush seals are currently being used for replacement of labyrinth type shaft seals, since brush seals provide better leakage characteristics. Brush seals also allow for shaft dynamics or shaft excursions. When a labyrinth seal experiences a shaft excursion, a permanent groove or scar is left in the seal. presence of a scar on the labyrinth will allow additional leakage, which with time will continue to degrade the seal's effectiveness. A brush seal will bend with the excursion and then return to its original configuration and leakage characteristics. The bristles ride or rest on the shaft of a rotating member, creating the sealing or flow restriction that makes the brush seal a better seal. As the shaft rotates, a tribological problem arises between the bristles and the shaft. Frictional heating of the bristle causes, or at least increases, the oxidation of the bristle alloy and increases wear of the fiber. The net effect of this is to decrease the brush seals' effectiveness. When a brush seal is initially installed, an interference condition is intentionally The clearance between the shaft and the bristles is typically -.010 inches, but after only a few hours of operation the bristles have worn to a zero clearance fit. Bristle wear is caused by frictional heating and related oxidation, which then chips off. In an attempt to alleviate wear, ceramic bristle brush seals are being investigated. Ceramics are well known for their favorable temperature and wear characteristics. A ceramic fiber will allow the bristle to maintain the interference fit for a longer time. With the fibers intimate contact with the shaft, greater brush seal performance can be taken advantage of, for a much longer time. is known that the greater the contact pressure of the bristles on the shaft, the greater the leakage resistance of the brush seal. This tendency of brush seals has been documented by several For this reason, it is desirable that the bristles maintain their interference fit with the shaft over the life of the seal.

Since it has been shown that a brush seal can be made with ceramic fibers (thereby producing a prolonged intimate contact between bristle and shaft), the next logical system member for improvement is the shaft. Most current applications and test programs utilize some type of shaft coating for the bristle to slide against. There are two main reasons for this. The first is to eliminate damage that the brush may do to a bare shaft. safety reasons, it is better that the seal wear, rather than the The second, is to provide a smoother surface for the bristle to ride on, so as to prolong the seal's life. To reduce wear, the coatings are usually required to have a 10μ in. Ra or The polished finish reduces the friction better finish. coefficient, thereby reducing wear. While this does prolong the intimate contact, the usual time required to produce a line-to-line or zero clearance fit is still in the tens of hours. It is acknowledged that even at line-to-line contact a brush seal still reduces leakage substantially better than a labyrinth but with an interference fit, a brush seal can even do better. Figure 1 is the

TECHNETICS TEST RIG

Typical Graph of Predicted Brush Seal Performance

Figure 1

PRESSURE DROP (bars)

predicted leakage of a typical brush seal on a circumferential inch basis. It is seen that the seal's performance drops off sharply with a clearance increase between the seal's bristles and the shaft - evidencing the performance advantages that could be realized if a bristle and coating can be developed to retain an interference fit.

TECHNICAL OBJECTIVES

The technical objectives of this work were:

- 1. Identify candidate coatings
- 2. Identify and/or develop coating application methods
- 3. Screen coatings and application methods

In the identification of candidate coatings, coefficients of friction, wear, temperature and capabilities/properties were considered - to find the best available state of the art coatings which may compliment the brush seal system. Coatings that were examined are industry standard coatings and variants thereof.

Experimental work indicates that the wear of a ceramic can be attributed, in part, to its porosity. More porosity produces more wear. For this reason coating application methods were sought, which would produce a low porosity structure. It has also been demonstrated that ceramics with a softer second phase around the grain boundaries may also reduce wear. A coating, produced by cospraying two materials to produce a soft second phase, was evaluated. It was believed that a co-sprayed coating of zirconia and boron nitride could produce a softer second phase surrounding hard primary phase grains, thus producing a dry lubricated coating with good potential.

Screening of the coatings and application methods was based on properties and characteristics known to be necessary for a low wear tribological system. Considered candidate coatings must have had at least some favorable properties that fit the goals of this effort. For this reason, a literature search, as well as discussions with industry leaders in coatings, was completed prior to choosing coatings for testing. Screening proceeded with temperature, oxidation, thermal shock, wear and friction testing.

WEAR TESTING

Wear testing consisted of placing a prepared tuft of fiber in contact with a high speed rotating rotor on which a coating had been applied. Figure 2 shows a simplified view of the test apparatus. The rig is powered by a 15 hp air turbine capable of speeds up to 50,000 rpm. For purposes of these tests, a heavier 6 inch diameter rotor was employed and rotational speeds were held to a maximum of 40,000 rpm. The tuft holder is attached to an air bearing to minimize any frictional error. A moment arm is

Figure 2

projected off the air bearing shaft and rests on a one pound load cell. By adjusting the load cells position in relation to the axis of the air bearing, the load sensitivity can be adjusted. Additional test points were temperatures taken by thermocouples placed for and aft of the tuft/rotor contact point.

Prior to testing, a rotor was prepared by applying and polishing a coating. A super finishing process was used for polishing. Surface finishes were 10 Ra or below, when possible. After polishing, rotors were mounted on the air turbine and dynamically balanced. Rotors were balanced to below 0.00002 inches peak to peak vibration. Tufts were prepared by placing approximately 350 SiC fibers of 0.006 inch diameter into a ceramic tube and fixing the fibers with ceramic cement. At least 0.75 inches of fiber was left protruding from the tube and was used for, or consumed in testing. Similar tuft samples were also made from Haynes 25 fiber.

Testing began by bringing the rotor up to speed and letting it stabilize. Base readings for temperature and drag load were then taken. A fiber tuft was applied with a dead load, normal to a tangent line from the rotor with the tuft axis directly over the center of the rotor. Three sets of readings were taken. Initial readings were taken right after application of the tuft. The second reading was taken at 3 minutes. A final set of readings was then taken at the conclusion of the test after a total of six minutes of fiber to coating/rotor contact. Tuft wear measurements were taken prior to increasing the dead load. Combination of 3 weights and 3 speeds were made to develop the test matrix. Figure 3 shows the test matrix.

THERMAL SHOCK TESTING

A coupon with coating material applied was thermally shocked for 2,178 cycles to determine if thermal cycling would cause the coatings to crack. A coupon consists of a superalloy sheet metal rectangle one inch by three inches. It is rolled to a convex contour. The coupon is then fixtured next to the rotor during coating application. Testing of these coupons consisted of simultaneously heating the coating surface to 2000°F while cooling the back side with a 150 SCFH air jet. The coupon is then quenched with a 150 SCFH air jet on the coating side. Each cycle lasts 90 seconds. Periodic examinations are made for sampled degradation.

COATINGS

Six coatings were chosen for testing. Chosen coatings were all thought to have desirable characteristics for a ceramic brush seal application.

1. <u>Chrome Carbide</u> - This coating was supplied by General Plasma and is their coating GPX-2176HP. Composition is 75% chromium carbide and 25% 80 nickel/20 chromium. It is applied by plasma flame spray. This and similar

Test Matrix

TUFT TESTING

03/28/95

REPEATABILITY STUDY

BN/PSZ COATED ROTOR

		S20	M20	L20	S30	M30	L30	S40	M40	- L40
		TRAC/PN	TRAC/PN	TRAC/PN	TRAC/PN	TRAC/PN	TRAC/PN	TRAC/PN	TRAC/PN	TRAC/PN
SiC Fibers	AMB	9A/038	9A/038	9A/038	9A/038	9A/039	9A/039	9A/040	9A/040	DISC
SiC Fibers	AMB	9A/038	9A/038	9A/038	9A/039	9A/039	9A/039	9A/040	9A/040	DISC
SiC Fibers	AMB	9A/038	9A/038	9A/038	9A/039	9A/039	9A/039	9A/040	9A/040	DISC
SiC Fibers	AMB	9A/038	9A/038	9A/038	9A/039	9A/039	DISC	9A/040	9A/040	DISC
SiC Fibers	COLD	9B/041	9B/041	9B/041	9B/042	9B/042	9B/042	9B/043	9B/043	9B/044
SiC Fibers	COLD	9B/041	9B/041	9B/041	9B/042	9B/042	9B/042	9B/043	9B/043	9B/044
SiC Fibers	СОГР	9B/041	9B/041	9B/042	9B/042	9B/042	9B/043	9B/043	9B/043	9B/044
SiC Fibers	COLD	9B/041	9B/041	9B/042	9B/042	9B/042	9B/043	9B/043	9B/043	9B/044
				PSZ COAT	ED ROTOR					
0:0 Et	ANAD	ONIDOC	8A/036	8A/036	8B/037	8B/037	8B/037	8C/037	8C/037	DISC
SiC Fibers	AMB AMB	8A/036 8A/036	8A/036	8A/036	8B/037	8B/037	8B/037	8C/037	8C/037	DISC
SiC Fibers SiC Fibers	AMB	8A/036	8A/036	8A/036	8B/037	8B/037	8B/037	8C/037	8C/037	DISC
SiC Fibers	AMB	8A/036	8A/036	8A/036	8B/037	8B/037	8B/037	8C/037	8C/037	DISC
SIC FIDEIS	AMO		07,000	ONIGOO						2.00
			•	CHROME (CARBIDE C	OATED RO	TOR			
SiC Fibers	A M B	7A/019	7A/019	7A/019	7A/019	7A/019	7A/019	7A/020	7A/020	7A/020
SiC Fibers	AMB	7A/019	7A/019	7A/019	7A/019	7A/019	7A/019	7A/020	7A/020	7A/020
SiC Fibers	AMB	7A/019	7A/019	7A/019	7A/019	7A/019	7A/019	7A/020	7A/020	7A/020
SiC Fibers	AMB	7A/019	7A/019	7A/019	7A/019	7A/019	7A/019	7A/020	7A/020	7A/020
SiC Fibers	сош	7B/025	7B/025	7B/025	7B/025	7B/025	78/025	7B/025	7B/025	7B/025
SiC Fibers	COLD	7B/025	7B/025	7B/025	7B/025	7B/025	7B/025	7B/025	7B/025	7B/035
SiC Fibers	COLD	7B/025	7B/025	7B/025	7B/025	7B/025	7B/025	7B/025	7B/025	7B/035
SiC Fibers	COLD	7B/025	7B/025	7B/025	7B/025	7B/025	7B/025	7B/025	7B/025	7B/035
				BARE ROT	OR – NO C	OATING				
SiC Fibers	AMB	10A/050	10A/050	10A/050	10A/050	10A/050	10A/050	10A/050	10A/050	10A/051
SiC Fibers	AMB	10A/050	10A/050	10A/050	10A/050	10A/050	10A/050	10A/050	10A/051	10A/051
SiC Fibers	AMB	10A/050	10A/050	10A/050	10A/050	10A/050	10A/050	10A/050	10A/051	10A/051
SiC Fibers	AMB	-	10A/050	10A/050	10A/050	10A/050	10A/050	10A/050	10A/051	10A/051
SIC FIDEIS	AMID	10/1000	IONOOO		· · · · · · · · · · · · · · · · · · ·				::::::::::::::::::::::::::::::::::::::	
				BARE ROT	OR – NO C	OATING				
H25 Fibers	AMB	10B/052	10B/052	10B/052	10B/052	10B/052	10B/052	10B/052	10B/052	10B/053
H25 Fibers	AMB	- 10 to 10 t	10B/052	10B/052	10B/052	10B/052	10B/052	10B/052	10B/052	10B/053
H25 Fibers	AMB	10B/052	10B/052	10B/052	10B/052	10B/052	10B/052	10B/052	10B/052	10B/053
H25 Fibers	AMB	10B/052	10B/052	108/052	10B/052	10B/052	10B/052	10B/052	10B/052	10B/053

WEIGHTS	RPM'S	COMPLETED	DISC - DISCONTINUED
S - SMALL	20 - 20,000	AMBIENT - NO AIR FLOW	010 011 (001) 04 DDIDE FIDER
M – MEDIUM	30 - 30,000	COLD - 7.5 SCFM	SiC - SILICON CARBIDE FIBER
L – LARGE	40 40,000		H25 — HAYNES 25 FIBER

EXAMPLE: 1A/001 - ROTOR:1; TRACK:A; TUFT:001

coatings are the current coatings of choice for metallic brush seal applications. The coating proved very hard and dense. These attributes enabled the coating to be polished to a finish of less than one micro inch Ra.

- 2. Boron Nitride filled PSZ A plasma co-sprayed mixture of boron nitride and yttria stabilized zirconia was developed for this program in an effort to provide an oxide coating with a dry high temperature lubricant additive. It was known that a two phase system composed of a hard primary phase and a soft secondary phase would produce a coating resistant to crack propagation. It is also known that born nitride can provide a high temperature lubricant. These two characteristics are believed to be necessary for a successful ceramic brush seal coating.
- 3. Partially Stabilized Zirconia A plasma sprayed yttria stabilized zirconia was chosen for its fracture toughness and the non-stick or slick properties of zirconia. Zirconia has a high coefficient of thermal expansion so it lends itself well to the direct application onto metals. Ytterbia stabilized ceramics are known for their fracture toughness. These characteristics would eliminate the cracking and high wear situation seen in alumina coatings.
- 4. Partially Stabilized Zirconia A vapor deposited PSZ was chosen for its high density and previously noted properties. This coating was the highest density of all coatings chosen. This coating was not available at the time of testing, due to coating application problems. The coating was incompatible with the high expansion rotor material. Bond coat failures on two attempts precluded any further testing.
- 5. <u>Alumina</u> A HVOF applied alumina coating was chosen for its high density and oxidation resistance. This coating was not available at the time of testing.
- 6. Triboglide® This coating is known for its high temperature, self-lubricating properties. It has been tested extensively for bearing applications and initial testing for application with metallic brush seals has shown excellent results. This coating was not available at the time of testing.

RESULTS

Raw wear data with calculated values and plotted data are provided in Appendix A. Thermal shock testing was done on the oxide ceramic coatings to determine if thermal growth or shock would cause cracking or spallation. All passed 2,178 cycles

without one crack or spallation. Ultimate tensile strength testing of the oxide ceramic coatings had similar results in that all coatings exceeded the minimum tensile strengths for test conditions.

Wear testing was the primary objective of this program and generated the most applicable data for ceramic brush seals. The chrome carbide coating suffered the most damage. After only a few minutes of testing, the SiC fiber tufts wore through the .006-.007" thick coating. It is believed that the metal matrix oxidized away and the carbide particles were then free to fall off. Metal matrixes or bonding agents cannot withstand the high temperatures created by friction between the ceramic bristles and the coating, even after the coating has been polished to a mirror finish.

The oxide ceramic coatings did not fair much better than the chrome carbide. Life was about tripled, but deep scars appeared after only a relatively short time. The condition of dry unlubricated sliding friction between two hard ceramics produced high wear.

Bare or uncoated rotors made of 17-4PH proved to be the most wear tolerant material tested. It is believed that the 17-4PH smeared rather than fractured off, like the harder more brittle ceramics. Wear caused by oxidation of the metal was probably reduced because of the metals' greater thermal conductivity, absorbing and conducting away the frictional heat. Low total test time also contributed to the lack of oxidation wear.

CONCLUSION

No coating tested would be suitable for a rotating ceramic brush seal application. Wear was too high in all cases. However, bare uncoated metallic surfaces with 100% densities could prove to be good applications for low speed and low temperature ceramic brush seals. Investigation of coatings containing lubricants must be tested to see if they can provide the needed low wear additive required for an increase in brush seal performance.

United Start Hall Each Start Hall Start Start Hall Start Start Hall Start Start Hall Hall Hall Hall Hall Hall Hall Hal	PART #9 TRAC A	A						BN/P	SZ CO	BN/PSZ COATED ROTOR	STOR						
STATE TEMP CRIANGE FINANGE FINANGE CRIANGE FINANGE FINANGE CRIANGE FINANGE FINANGE CRIANGE FINANGE FIN	UFT 038 STAR UFT 039 L30(2	IT THRU L30 (ND) THRU L	(1ST) 30(4TH)					AMBIE	NT AIR	TESTING							
1985 1985	UFT 040 S40 FIBER/	THRU THE ET	START	TEMP	END			g č	END			START	END	LM LM	DRAG	Ζį	ರ
1256 1012 26.4 1102 26.4 1102 26.4 10.2 26.4 0.246 0.0057 0.024 13.1564 13.1469 0.0027 0.0249 0.03413 12.2 10.2 0.027 10.2 0.027 0.027 0.027 0.027 0.03113 12.2 0.0027 0.027 0.03113 12.2 0.0027 0.027 0.03113 0.0027 0.0027 0.03113 0.0027 0.0027 0.03113 0.0027 0.0027 0.03113 0.0027 0.0027 0.0027 0.03113 0.0027 0	TEST SIC /eso//MB	1C2(T)	102(11)	AHANGE (F)	1103		JANACE (- (0	216	i -		13.1688	13.1572	0.0116	\perp		1.0884
1,1,2,2,6 1,1,1,2 1,1,2,1 1,1,2 1,1,	DIO SCOLORIO	115.5		20.2	105.8	84.3	2		1.227	0.004	0.223	13.1572	Ī	0.0018			
100 100		126.7		24.7	112.1	87.8	5		1.266	0.007	0.259	13.1554	_	0.0038			
1.00 1.00		129.6	i	28.4	110.6	85.2	12		7.546	0.005	0.241	13.1516		0.0027			
1266 107 107 108	SIC/M20/AMB	129.7	104.2	25.5	108.0	86.2	7		1241	0.007	0.234	13.1489	13.1436	0.0053			0.7887
1286 106.7 26.3 107.8 84.1 23.7 0.246 0.0004 0.246 13.1359 13.1359 0.0005 0.2400 0.0601 128.6 106.7 26.3 107.9 108.5 12.40 0.66.6 2.54 0.269 0.0007 0.004 13.059 13.059 0.0005 0.2753 11.17 127.2 107.3 10.6 11.2 0.6 0.6 0.2 0.0	100000000000000000000000000000000000000	126.0	107.3	18.7	106.5	86.7	1,		7,239	9000	0.233	13.1436					0.7853
1422 1103		128.0	101.7	26.3	107.8	84.1	8		1.246	0.004	0.242	13.1393					0.8157
142.2 110.5 10.5 124.0 126.0		128.5	105.4	23.1	109.2	86.4	2		7566	900.0	0.260	13.1358	13.1289				0.8764
177 102 103	SIC/I 20/AMB	142.2		70.5		76.9	4		369	0.007	0.362	13.1289	13.0977	0.0312			0.6571
122 103		127.2		16.9		9.98	Ň		7.289	900.0	0.283	13.0977	13.0838	0.0139			0.5137
122 g 1141 2 101 2 102		122.8	li	19.2		86.0	ನ).284	0.009	0.275	13.0838	13.0660	0.0178	1		0.4992
112 110		122.9	İ	18.7		90.0	2		705	0.00	0.301	13.0550	13.0444	0.0216			0.5465
111.0 101.0 92 104.0 96.8 81 0.086 0.003 0.003 13.0362 0.0016	iC/S30/AMB	112.7	102.7	10.0	! !	0.96			060.0	0.004	0.086	13.0444	13.0400	0.0044			i
1102 1102 1102 1105 106 96 9 17 106 0 96 9 17 106 0 96 9 17 106 0 96 9 17 106 0 96 9 17 106 0 96 9 17 106 0 96 9 17 106 0 96 9 17 106 0 96 9 17 106 0 96 9 17 106 0 96 9 17 106 0 12 106 0 96 9 12 106 0 106 0 106		111.1	101.9	9.2		96.8			980	0.003	0.083	13.0400	13.0378	0.0022		1	
112 3 101 0 113 106 0 96 0 146 0.155 0.005 0.005 13.0340 0.0022 0.1945 0.3910 0.005 0.005 0.2014 0.005 0.005 0.007 0.226 0.007 0.005 0.007 0.0226 0.0014 0.005 0.007 0.005 0.005 0.007 0.005 0.007 0.005 0.005 0.007 0.005 0.005 0.007 0.005 0.005 0.007 0.005 0		110.2	102.4	7.8		6.9	-		0.085	0.005	0.080	13.0378	13.0362	0.0016	-	Ì	İ
118.7 101.8 16.9 111.5 96.9 14.6 0.135 0.007 0.128 13.0240 13.0291 0.0076 0.2556 0.6014 0.6014 1.0014 1.0014 1.0014 1.0014 1.0014 1.0012 1.0004 1.		112.3	101.0	11.3		896.8			0.096	0.005	0.091	13.0362	13.0340	0.0022			0.4720
1194 106 9 125 1116 989 127 0139 0006 0124 13.0201 13.0205 0.0075 0.2244 0.6014 0.6014 1.6014 1.602 1.102	C/M30/AMB	118.7	101.8	16.9		6.96	Ť	9	1.135	0.007	0.128	13.0340	13.0281	0.0059			0.4316
117.3 106.4 10.9 110.0 98.0 12.0 0.123 0.000 0.0120 13.0205 13.0130 0.00075 0.2434 0.6014		119.4		12.5		98.9	-		0.130	9000	0.124	13.0281	13.0205	0.0076			0.4181
116 B 104 B 120 126 B 124 D	117.3		10.9		0.86			1.123	0.003	0.120	13.0205	13.0130	0.0075			0.4047	
123 104 2 25 124 0 97 0 27 0 22 0 0 0 0 0 0 0		116.8		12.0		97.4	-		0.119	9000	0.113	13.0130	13.0060	0.0070			0.3811
123 678 567 1201 839 362 0.256 0.004 0.251 12.8987 0.0385 0.5090 1.1167 1.1166 1.1166 1.1167 1.1168 1.	ICA 30/AMB	129.5		25.3	!	97.0	2		3.226	0.004	0.222	1 1		0.0480			0.4031
121 6 104 9 167 118 188 296 0.239 0.006 0.023 12.8987 12.8432 0.0555 0.4725 1.1166 DISC	123.5		55.7		83.9	ರ		7.258	2000	0.251	- 1		0.0385			0.4558	
114.9 99.1 15.8 108.5 107.8 0.7 0.092 0.006 0.006 0.006 13.7246 13.6955 0.0291 0.1744 0.3925 10.302 11.5 10.1 1		121.6	104.9	1	118.1	88.5		9	239	8	0.233	- IC	2	0.0555	Ž	טוט	0.4232 DISC
114.9 99.1 15.8 108.5 107.8 107.8 0.07 0.0992 0.006 0.008 13.7246 13.6891 0.0064 0.2190 0.3925 1770		Diac		DISC.			2010	3			201	2000	250	200	250	250	2
117.0 105.5 11.5 107.9 101.5 6.4 0.114 0.006 0.108 13.6956 13.6891 0.0064 0.2199 0.3255 117.2 104.8 12.4 110.1 110.2 104.1 6.1 0.115 0.008 0.009 13.6891 13.6840 0.0059 0.2129 0.3924 123.7 107.0 16.7 113.7 102.2 11.5 0.115 0.006 0.149 13.6781 13.6654 0.0059 0.2129 0.3924 123.7 107.0 16.7 113.7 102.2 11.5 0.145 0.006 0.149 13.654 13.654 0.0127 0.3022 0.6028 123.1 108.4 14.7 115.3 104.0 11.3 0.140 0.008 0.155 13.6498 13.6556 0.0142 0.3023 0.6028 123.1 108.4 14.7 115.3 104.0 11.3 0.160 0.008 0.155 13.6498 13.6356 0.0142 0.3023 0.6028 123.1 108.4 14.7 115.3 104.0 11.3 0.140 0.010 0.125 13.6498 13.6356 0.0116 0.2535 0.6028 123.1 108.4 14.7 115.3 104.0 11.3 0.140 0.010 0.012 13.6498 13.6356 0.0116 0.2535 0.6028 123.1 108.4 14.1 105.0 0.150 0.010 0.012 0.010 0.0116 0.2535 0.6027 123.1 108.2 0.150 0.150 0.010 0.010 0.0116 0.0150 0.010 0.0116 0.0150 0.010 123.1 108.2 0.150 0.150 0.150 0.150 0.150 0.150 0.010 0.010 0.0116 0.0150 0.01	IC/S40/AMB	114.9		15.8		107.8			2.092	9000	0.086	13.7246	Ц		Ц	Ц	0.4444
17.2 104.8 12.4 110.1 101.7 84 0.102 0.008 0.094 13.6840 0.0051 0.1908 0.3924 124.1 106.3 110.2 104.1 6.1 0.115 0.016 0.105 13.6840 13.6781 0.0059 0.2129 0.3924 124.1 106.1 111.5 101.6 9.9 0.140 0.006 0.149 13.6781 13.6654 0.0127 0.3022 0.6028 123.1 108.4 14.7 115.3 104.0 11.3 0.140 0.006 0.149 13.654 13.6498 0.0156 0.2718 0.6028 123.1 0.006 0.149 13.6498 13.6356 0.0142 0.3022 0.6028 121.1 109.8 11.3 114.1 105.0 9.1 0.135 0.010 0.125 13.6356 13.6356 0.0116 0.2535 0.6027 121.1 109.8 11.3 114.1 105.0 0.15		117.0				101.5			0.114	9000	0.108	13.6955	1		_	_	1
124.1 106.3 17.8 110.2 104.1 6.1 0.115 0.006 0.149 13.6781 13.6654 0.0127 0.3022 0.3924 12.1 10.2 11.0 111.5 101.6 9.9 0.140 0.006 0.134 13.6654 13.6498 0.0156 0.2718 0.6028 12.1 10.1 10.2 11.3 114.1 106.0 9.1 0.135 0.010 0.125 13.636 13.636 0.0156 0.0116 0.2638 0.6028 12.1 10.1		117.2				101.7			0.102	0.008	0.094	13.6891	-		1		
123.7 107.0 16.7 113.7 108.2 11.5 0.1455 0.006 0.149 13.6781 13.6654 0.0127 0.3022 0.6028 123.1 108.4 11.5 111.5 101.6 0.140 0.006 0.134 13.6654 13.6498 0.0156 0.2718 0.6028 123.1 108.4 11.3 114.1 105.0 11.3 0.140 0.140 0.008 0.152 13.6498 13.6356 0.0156 0.2718 0.6028 12.11 109.8 11.3 114.1 105.0 0.135 0.135 0.015 0.125 13.6356 13.6356 0.016		124.1	106.3	17.8		2			0.115	0.010	0.105	13.6840	_	0.0056			0.5426
121.2 110.2 110.2 111.5 111.5 111.6 111.	SIC/M40/AMB	123.7			113.7	102.2			0.155	900.0	0.149			0.0127		L	0.5013
1231 1084 14.7 115.3 104.0 11.3 0.160 0.008 0.152 13.6498 13.6356 0.0142 0.3028 0.6028 1.121 109.6 11.3 114.1 105.0 0.15 0.015 0.010 0.125 13.6356 13.6356 0.0116 0.2535 0.6027 0.155 0.15		121.2				101.6			0.140	0.00	0.134	- 1		0.0156			0.4508
121.1 108.8 11.3 114.1 108.0 9.1 0.135 0.010 0.125 13.6356 13.6356 0.0116 0.2535 0.6027		123.1				104.0			0.160	0.008	0.152			0.0142			0.5114
DISC DISC <th< td=""><td></td><td>121.1</td><td></td><td>11.3</td><td></td><td>105.0</td><td></td><td></td><td>0.135</td><td>0.010</td><td>0.125</td><td></td><td></td><td>0.0116</td><td></td><td></td><td>0.4206</td></th<>		121.1		11.3		105.0			0.135	0.010	0.125			0.0116			0.4206
DISC DISC	SiC/L40/AMB	DISC	DISC	DISC	DISC		DISC	DISC		П	OISC	DISC	DISC	DISC	DISC	DISC	DISC
DISC DISC DISC DISC DISC DISC DISC DISC		DISC	DISC	DISC	DISC		Disc	Disc			Disc	DISC	DISC	DISC	DISC	DISC	DISC
		OISC	Disc.	Disc	200		Disc		T		200	200		200		200	DISC DISC DISC DISC DISC DISC DISC DISC

NOTES: TC2 — Thermocouple located after the tuft slightly above the rotor. TC3 — Thermocouple located before the tuft slightly above the rotor DL — Drag Load (lbs. @ 6.085 in. radius)

SiC - Silicon Carbide Fibers

20 – 20,000 RPM's 30 – 30,000 RPM's 40 – 40,000 RPM's

AMB - Ambient Air (no flow)

*** - Test Failure

S -- Small Weight 164.30g M -- Medium Weight 259.73g L -- Large Weight 493.56

CF - Coefficient of Friction

SiC on BN/PSZ Ambient Air / Small Wt.

CotE

SiC on BN/PSZ Ambient Air / Medium Wt.

C of F

SiC on BN/PSZ

Ambient Air / Large Wt.

CofF

BN/PSZ COATED ROTOR

COLD AIR TESTING

PART #9 TRAC B

TUFT PART #041 START THRU L20(2ND)
TUFT PART #042 THRU L30(2ND)
TUFT PART #043 THRU M40
TUFT PART #044 REMAINDER
FIBER\
FIBER\

TUFT PART #044 REMAINDER	REMAINDE	er i	į	į				CTABL	3	TANT		TACT	OVGC	2	7
FIBER/	END	S AH	TWE!	END TC3/F)	TC3(P)	CHANGE	2	5 2	rin.		TFT WT(a)	(OSS(a)	9	<u>z</u> @	5
1531	7 157			1 22	11.	_ c O	0.176	2000	_	4-	13 1125	0.0018	0.3427	0.3912	0.8761
SiC/S20/CLD	977	00.0	- 0	02.0	2 2	300	0.17	000	0.00	13.0780	13 0755	0.0025	0.3407	0.3911	0.8711
	0.07	4.00	7.0	2 2	5 4	2 -	163	2000	0.15	19 0755	19 0734	10000	0.3143	0 3911	0.8037
	70.2	29.3	99	3 5	603		0.179	0.010	0.169	13.0734	13.0718	0.0016	0.3427	0.3911	0.8763
	10.5	23						1							
SiC/M20/CLD	69.4	63.9	5.5	51.4	51.7	-0.3	0.182	0.008	0.174	13.0718	13.0686	0.0032	0.3529	0.6015	0.5866
	9.69	62.0	7.6	50.2	50.5	-0.3	0.165	0.008	0.157	13.0686	13.0646	0.0040	0.3184	0.6015	0.5293
	68.0	62.9	5.1	49.7	20.0	-0.3	0.159	200.0	0.152	13.0646	13.0627	0.0019	0.3083	0.6015	0.5125
	68.3	61.2	7.1	49.2	49.6	0.4	0.154	0.009	0.145	13.0627	13.0598	0.0029	0.2941	0.6015	0.4889
SiC/I 20/ICI D	72.0	60 4	11.6	49.4	48.9	0.5	0.248	2000	0.241	13.0598	13.0389	0.0209	0.4887	1.1171	0.4375
	71.9	64.0	7.9	49.3	48.9	0.4	0.269	200.0	0.262	13.0389	13.0154	0.0235	0.5313	1.1170	0.4757
	75.0	58.8	16.2	49.3	48.4	6.0	0.287	0.008	0.279	13.3645	13.3489	0.0156	0.5658	1.1177	0.5062
	77.3	65.8	11.5	49.6	48.9	7.0	0.289	0.010	0.279	13.3489	13.3317	0.0172	0.5658	1.1177	0.5062
GIC/S30/CI D	6 62	63.3	16.6	50.1	49.6	0.5	0.123	0.008	0.115	13.3317	13.3313	0.0004	0.2332	0.3917	0.5954
a constant	78.8	56.3	22.5	51.4	50.7	0.7	0.101	0.005	960.0	13.3313	13.3300	0.0013	0.1947	0.3917	0.4971
	78.7	69.1	9.6	51.5	51.2	0.3	0.100	0.007	0.093	13.3300	ľ	0.0008	0.1886	0.3917	0.4815
	79.5	65.0	14.5	51.8	51.3	0.5	0.104	0.006	0.098	13.3292	13.3262	0.0030	0.1987	0.3917	0.5074
0.00	0.10	107	424	59.9	7. 5	17.0	0.129	0.006	0 123	13 3262	13 3200	0.0062	0.2494	0.6021	0.4143
SIC/MSO/CLD	7 C A	717	101	52.6	50.1	0.5	0.126	9000	0.120	13,3200	1	0.0049	0.2434	0.6021	0.4042
	25.5	6 62	12.2	52.8	52.6	0.2	0.147	900.0	0.141	13.3151	ľ	0.0049	0.2859	0.6021	0.4750
	85.6	73.5	12.1	53.0	52.4	9.0	0.139	0.008	0.131	13.3102		0.0061	0.2657	0.6020	0.4413
											0000	,,,,,,	0014		., .,
SiC/L30/CLD	93.0	73.8	19.2	53.7	52.8	60	0.229	0.00	0.223	13.3041	13.2690	0.0351	0.4522	1.11/6	0.4047
	200	74.0	10.1	54.4	20.00	10.0	0.252	200	0.245	13 2495	13 2151	0.0344	0.4969	11174	0.4446
	99.6	81.0	15.6	54.6	53.9	0.7	0.252	0.007	0.245	13.2151	13.1711	0.0440	0.4969	1.1173	0.4447
									-		0,0,0,	0000	1000	0,000	1000
SiC/S40/CLD	92.3	79.4	12.9		54.3	4.0	1000	0.000	0.085	13.1711		0.0000	0.1724	0.3913	0.4400
	91.4	83.6	8.7		24.8	4 2	0.032	2000	0000	13 1500		1000	0 1845	0.3913	0.420
	0.0	79.3	1.7	54.7	848	-0.1	0.097	0.007	060.0	13.1551	13.1525	0.0026	0.1825	0.3913	0.4665
			1		911	,	00+0	000	0 4 4 0	191695	19 1400	0.04.95	0.0419	0.6047	0.4041
SIC/M40/CLD	27.0	04.3	40.0	D. 10	27.0	¥.0	0 133	0000	0.124	13 1400	ĺ.	0.0115	0.2515	0.6017	0.4180
	90.4		200	57.6	57.5		0.148	6000	0 139	13.1285	13.1154	0.0131	0.2819	0.6016	0.4686
	200		2 0	57.7	57.3	0.4	0.169	0.007	0.162	13 1154		0 0194	0.3285	0.6016	0.5461
	34.2		6.0	1.10	0.10	1.0	3	200	20.00	5	2000				
SIC/L40/CLD	101.5		25.1	58.2	57.5	7.0	0.259	0.009	0.250	13.3562	Ė	0.0369	0.5070	1.1177	0.4536
	105.0		41.4	58.4	56.8	1.6	0.192	0.00	0.183	13.3193	1	0.0680	0.3711	1.1175	0.3321
	101.6	90.4	11.2	58.7	58.2	0.5	0.213	0.008	0.205	13.2513		0.0386	0.4157	1.1174	0.3720
	95.9		6.3	58.8	58.4	0.4	0.165	0.010	0.155	13.2127	13.1742	0.0385	0.3143	1.1173	0.2813

NOTES: TC2 — Thermocouple located after the tuft slightly above the rotor. TC3 — Thermocouple located before the tuft slightly above the rotα DL – Drag Load (lbs. @ 6.085 in. radius)

SiC - Silicon Carbide Fibers

20 - 20,000 RPM's 30 - 30,000 RPM's 40 - 40,000 RPM's

CLD - Cold Air (7.5 scfm)

S – Small Weight 164.30g M – Medium Weight 259.73g L – Large Weight 493.56

CF - Coefficient of Friction

SiC on BN/PSZ Cold Air(7.5 scfm) / Small Wt.

SiC on BN/PSZ Cold Air(7.5 scfm) / Medium Wt.

CofF

SiC on BN/PSZ Cold Air(7.5 scfm) / Large Wt.

CofF

PART #8 TRAC A PN 036 20000 HPMS PART #8 TRAC B PN 037 30000 HPMS PART #8 TRAC C PN 037 40000 HPMS

PSZ COATED ROTOR

AMBIENT AIR TESTING

FIBER/	CIC ICOUNTAINE	CINCIDATION			 SiC/M20/AMB				SiC/I 20/AMB	Charles and Carlo			SiC/S30/AMB				SiC/M30/AMB				SiC/L30/AMB				SiC/S40/AMB				SIC/M40/AMB			SiC/L40/AMB		
TC2/ED	90.2	3.00	200	90.0	104.5	105.3	105.6	104.6	133.5	120	116.1	116.0	119.2	125.7	132.2	145.3	145.2	139.7	128.7	122.2	128.8	141.0	145.0	149.1	135.5	135.3	136.6		136.3	140.5	136.6	DISC	DISC	בומר
TC2/PF)		9	7.97	73.1	63.8	79.1	82.0	83.2	602	942	94.0	93.0	89.9	101.2	102.3	81.3	102.6	113.6	110.2	109.0	79.4	110.0	117.9	0.00			116.5				119.4		DISC	į
HANGELEE	26.1	200	126	17.9	40.7	26.	23.0	21.4	9 29	34.5	22.1	23.0	29.	24.5	29.	64.1	42.6	26.	18.5	13	49.4	31.0	27.1	43.	29.5		20.1		9	1.0	17.2	DISC	DISC	36
TC3(°F)				80.2	7 92.9				6 116.6					5 113.5					5 111.8			•	128.5			118.7					119.6	DISC	DISC	200
TC3(°F)	66.1			68.0	68.8					L	77.3				94.7					38.5	93.3						110.4			1100		DISC	Sign	3
CHANGE																						-	The second second									DISC	Colo	202
	0			12.2 0.123		20.1 0.179		16.7 0.1	45.4 0.3					19.3 0.0			27.3 0.0		13.2 0.027	- 1	31.0 0.2		28.4 0.0		12.6 0.1						8.5 0.1	DISC		2
ದ									0.323 0.0							0.185 0.	0.040 0.	0.032 0.0		0.075 0.			0.094				0.110			0.146		DISC		2
DI. CHANGE	0.007	L						0.004	0.006		0.001				Ì	0.008	0.007			0.009		İ	5000			ĺ	0.008			0 007		DISC	282	֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝ ֓֞֓֞֓֞֩֞֩֞֩֞֩֞֩֞֩֞֩֞֩֞֩֞֩֞֩֞֩֞֩֞֩֞֩
NGE TFT V	Ł	ľ	ľ	0.118 13			0.157 13		0.317 13	0.275 13	0.244 13	_				0.177 13		0.023 13		0.066 13		0.073					0.100		1	0 139			OSIC	
TET WT(q) TET		Ľ	1	13.3456 1			_	3.3345 1	3.3321	3.2630 1	Ш	3.2012				13.0584	13.0515			3.0047		+	12.9146			13.1760	13.1720			İ	13.1207			
TFT WT(g)	L	3.3480	3 3456	3.3436	3.3420	3.3384	3.3345	13.3321	13.2630	3.2312	13.2012	3.1780	13.0606	13.0590	13.0584	13.0515	13.0438	13.0099	13.0047	13.0000	12.9608	2.9146	2.8510	2	13.1760	13.1755	13.1680	19 1506	2 465	13.1207	13.0946	DISC	Sic	3
LOSS(q)	0.0076	0.0030	0.0024	0.0020	0.0016	0.0036	0.0039	0.0024	0.0691	0.0318	0.0300	0.0232	0.0016	0.0016	0.0006	0.0069	1,000.0	0.0044	0.0052	0.0047	0.0392	0.0462	0.0030	2	0.0059	0.0005	0.0035	7800	2000	0.0258	0.0261	0.0000	0000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
a	0.2494	0.2474	0 2494	0.2393	0.3610	0.3529	0.3184	0.3265	0.6429	0.5577	0.4948	0.5232	0.0791	0.1886	0.2778	0.3590	0.0669	0.0466	0.0345	0.1338	0.3995	0.1480	0.1724	2001.0	0.1967	0.1906	0.2028	0.9130	0.2616	0.2819	0.2880	0.0000	00000	11111
<u>(a</u>)	0.3917	0.3917	0.3917	0.3917	0.6021	0.6021	0.6021	0.6021	1.1175	1.1175	1.1174	1.1174	0.3911	0.3911	0.3911	0.3911	0.6015	0.6014	0.6014	0.6014	1.1169	8 3	11.100		0.3913	0.3913	0.3913	0.6017	2000	0.6016	0.6016	1.0883	1.0863	
	0.6368	0.6316	0.6368	0.6109	0.5995	0.5861	0.5288	0.5423	0.5753	0.4991	0.4428	0.4683	0.2022	0.4823	0.7104	0.9179	0.1113	0.0776	0.0573	0.2226	0.3577	0.1326	0.1344	0.002	0.5027	0.4871	0.5338	0.9590	948	0.4685	0.4787	0.0000	0000	33333

NOTES: TC2 — Thermocouple located after the tuft slightly above the rotor. TC3 — Thermocouple located before the tuft slightly above the rotor DL — Drag Load (lbs @ 6.085 in. radius)

SiC - Silicon Carbide Fibers

20 - 20,000 RPM's 30 - 30,000 RPM's 40 - 40,000 RPM's

S – Small Weight 164.30g M – Medium Weight 259.73g L – Large Weight 493.56

AMB - Ambient Air (no flow)

CF - Coefficient of Friction

SiC on PSZ Ambient Air / Small Wt.

CofF

SiC on PSZ Ambient Air / Medium Wt.

C of F

PART #7 TRACK A

PN 019; SIC/S20 THRU SIC/L30 PN 020 REMAINDER

CHROME CARBIDE COATED ROTOR

AMBIENT AIR TESTING

			<u> </u>		=	ie.	-	I	1	<u></u>		-1	<u>~</u> 1	12	Ī.	100	ī-	1			011		1-	1-	J~	lan-	7	N . [mi	(O	o i	- Ic	1	Jio		e i	41	οl.	٦
ਹ	0.3732	0.2851	0.2592	0.2384	1.1325	0.7382	0.7820	0.9741		0.4520	0.4484	0.5464	0.5809	0.4044	0.4407	0.3266	0.3370		0.3034	0.3001	0.2832	0.2461	0 3050	0.2960	0.214	0.3668		0.3167	0.308	0.285	0.295	0 2903	0.276	0 283	0.2700	0.2888	0.3324	0.325	0.3270
z @	0.3913	0.3913	0.3912	0.3912	0.6017	0.6017	0.6017	0.6017		1.1172	1.1172	1.1172	1.1172	0.3912	0.3911	0.3911	0.3911		0.6015	0.6015	0.6015	0.6015	0211	1169	1.1167	1.1167		0.3906	0.3906	0.3306	0.3906	0 60 10	0 60 10	6009	0.6003	1.1164	1.162	1.1183	1.1162
DRAG (Ib)	0.1460	0.1115	0.1014	0.0933	0.6814	0.4441	0.4705	0.5861		0.5050	0.5003	0.6104	0.6430	0.1582	0.1724	0.1278	0.1318		0.1825	0.1805	0.1704	0.1480	0 3407	0.3308	0.2333	0.4097		0.1237	0.1197	0.1115	0.1156	0 1744	0 1663	0 1704	0.1622	0.3225	0.3711	0.3630	0.3650
WT LOSS(q)	0.0018	0.0006	0.0006	0000	0.0015	90000	0.0002	0.0012		0.0130	0.0038	0.00	0.0056	0.0052	0.0036	0,0040	9600.0		92,00.0	0.0084	0.0098	0.0100	9960 0	0.0325	0.0397	0.0247		0.0116	0.0074	0.0084	0.0070	0.0137	00111	0.0121	0.0130	0.0346	0.0337	0.0353	0.0369
END FT WT(q)	13,1400	13.1395	13.1336	13.1336	13.1321	13.1316	13,1314	13,1302	0 1 1 1 1 1	13.1172	13.1134	13.1054	13.0398	13.0946	13.0910	13.0864	13.0828		13.0752	13.0668	13.0570	13.0470	13.0205	12.9880	12,9007	12.8760		12.8642	12.8568	12.8484	12.8414	128977	128166	12.8045	12.7915	12.7569	- 1	12.6879	12,6510
START FT WT(a)T	13.1418	13.1400	13.1342	13.1336	13.1336	13.1321	13.1316	13.1314		13.1302	13.1172	13.1134	13.1054	13.0998	13.0946	13.0904	13.0864		13.0828	13.0752	13.0668	13.0570	13 0470	13 0 20 5	12.9404	12.9007		12.8758	12.8642	12.8568	12.8484	128414	198977	12.8166	12.8045	12.7915	12.7569	12.7232	12.6879
DL CHANGE 1	0.072	0.055	0.060	0.046	0.336	0.219	0.232	0.289		0.249	0.247	0.301	0.320	0.078	0.085	0.063	0.065		0.000	0.089	0.084	0.073	931.0	0 163	0.118	0.202		0.061	0.059	0.055	0.057	0.086	0.083	0.084	0.080	0.159	0.183	0.179	0, 180
START	0.004	0.003	0.005	0.00	0.004	900.0	0.003	0.004		0.00	0.004	0.006	0.007	0.007	0.007	0.008	0.005		0.005	0.005	0.005	0.005	0 00	0.005	0.005	0.004		0.003	0.002	0.003	0.003	0.004	000	0.003	0.00	0.00	0.003	0.003	0.003
END	0.076	0.058	0.055	0.062	0.340	0.225	0.235	0.293		0.253	123	0.307	0.327	0.085	0.092	0.071	0.070		0.095	0.094	0.089	0.078	0 474	168	0.123	0.206		0.064	0.061	0.058	090.0	060 0	O CBR	0.087	0.084	0.161	0.186	0.182	0.183
TEMP CHANGE(*F)	10.8	7.1	2.9	4.8	50.2	23.4	28.1	36.4		40.2	35.7	43.1	39.0	11.8	6.6	6.9	9.5		17.4	12.8	10.6	9.1	95.3	25.8	30.00	22.6		3.0	7.2	6.5	1.9	4	7.6	3.8	9.5	17.0	8.0	15.7	14.3
START TC3(*F) CH	79.3	90.0	76.0	76.2	74.7	78.4	75.0	74.0		74.9	76.0	77.8	79.3	96.5	0.66	99.1	286		93.5	99.0	100.3	4.00	7 00	98.8	6.001	108.0		126.2	122.8	124.5	125.4	1.24 1	124 4	197.9	128.3	131.0	137.5	131.0	130.2
END TC3(*F)	90.1	17.4	82.7	81.0	124.9	101.8	103.1	110.4		115.1	111.7	120.9	118.3	108.3	6.80	106.0	106.9		110.9	111.8	110.9	109.5	2 701	124 8	140.8	130.6		129.2	130.0	131.0	127.3	130 0	130 0	1310	137.8	148.0	145.5	146.7	144.51
TEMP CHANGE(*F)	19.0	8.8	12.2	6.7	55.6	15.6	25.3	38.4		53.2	41.6	60.0	41.6	23.6	13.9	9.6	14.3		34.5	22.0	15.6	14.1	7 00	41.7	59.5	35.2		20.6	13.6	14.4	10.4	17.71	- 2	000	26.4	27.5	21.7	24.5	22.6
START TC2(*F) CH	71.5	80.0	70.4	74.8	75.2	910	82.1	78.0		81.8	85.0	71.0	88.3	94.2	103.5	103 4	0 66		84.0	99.0	103.7	103.7	300	93.0	133	125.2		117.6	123.1	124.0	124.7	103 6	3 6	197.3	117.9	131.1	134.0	133.9	134.7
END TC2(*F)	90.5	88.8	82.6	81.5	130.8	106.6	107.4	116.4		135.0	126.6	131.0	129.9	117 B	117.4	1128	113.3		118.5	121.0	119.3	117.8	0 00,	30.5	169 7	160.4		138.2	136.7	138.4	136.1	141.3	406	30.00	44.3	158.6	155.7	158.4	157.3
FIBER/ TEST	SIC/S20/AMB				SIC/M20/AMB	-				SIC/L 20/AMB				SICASAOAMA	ami ilacata				SIC/M30/AMB				01100100	OLUL SULLAND				SIC/S40/AMB				CICARACIAND	C MAN COLUMN			SIC/L40/AMB			

NOTES: TC2 – Thermocouple located after the tuft slightly above the rotor. TC3 – Thermocouple located before the tuft slightly above the rotor DL – Drag Load (Ibs. @ 6.085 in.radius)

SIC - Silicon Carbide Fibers

20 - 20,000 RPM's 30 - 30,000 RPM's 40 - 40,000 RPM's

*** - Test Failure

AMB - Ambient Air (no flow)

S – Small Weight 164.30g
 M – Medium Weight 259.73g
 L – Large Weight 493.56

CF - Coefficient of Friction

C of F

SiC on Chrome Carbide

CotF

SiC on Chrome Carbide Ambient Air / Large Wt.

CHROME CARBIDE COATED ROTOR

PN 025 SIC/S20 -- SIC/S40(1) PN 035 LAST THREE

PART #7 TRACK B

COLD AIR TESTING

0.2647 0.3477 0.3373 0.2751 0.4150 0.5533 0.5439 0.5972 0.3959 0.4014 0.4559 0.4541 0.3741 0.3845 0.3741 0.3533 3815 3748 3917 3816 2307 2980 2798 2472 0.4179 0.4052 0.4270 0.4179 0.2867 0.2159 0.3104 0.2969 0.4256 0.6696 0.6281 0.3634 ರ 0 0000 000 1.1160 1.1163 1.1161 1.1160 0.6007 0.6012 0.6012 0.6012 0.6012 1,1162 1,1161 1,1161 1,1161 0.3907 0.3907 0.3907 0.6011 1.1166 1.1165 1.1165 1.1164 0.3904 0.3826 0.3326 0.3123 0.2758 0.1460 0.1501 0.1460 0.1379 0.2292 0.2251 0.2352 0.2392 0. 1034 0. 1359 0. 1318 0. 1075 0.1663 0.2616 0.2454 0.1420 0.4421 0.4482 0.5030 0.5070 0.1724 0.1238 0.1866 0.1785 0.4664 0.4522 0.4766 0.4664 2494 3326 3306 3590 0000 0.0128 0.0456 0.0509 0.0509 0.0851 0.0110 0.0084 0.0128 0.0145 0.0350 0.0246 0.0305 0.0292 0.0034 0.0021 0.0021 0.00010 0.0000 0.0007 0.0024 0.0094 0.0056 0.0013 0.0047 0.0009 3 12.5606 12.6767 12.6258 12.5407 START DL START END DL CHANGE IFT WT(q) IT WT(q) 1 0.004 0.061 12.9158 12.9137 0.005 0.065 12.9127 12.9127 0.006 0.065 12.9127 12.9127 0.004 0.063 12.9127 12.9120 3 12.7074 12.6946 1 12.6946 12.6820 6 12.6820 12.6884 3 12.6684 12.6525 12.8907 12.8883 12.8883 12.8883 12.8883 12.8874 12.8874 12.8667 12.8773 12.8717 12.8704 12.8657 12.7340 12.7258 12.7164 12.7074 12.9111 12.9107 12.9096 12.9091 12.6415 12.6331 12.6203 12.6058 12.8307 12.8061 12.7756 12.7464 12.8867 12.8773 12.8717 12.8704 12.8657 12.8307 12.8061 12.7756 12.7464 12.7340 12.7258 12.7258 12.6058 12.7223 12.6767 12.6258 12.9120 12.9111 12.9107 12.9096 12.6525 12.6415 12.6331 12.6203 0.123 0.164 0.163 0.177 0.072 0.113 0.085 0.230 0.082 0.129 0.121 0.070 0.218 0.221 0.251 0.250 0, 182 0, 164 0, 154 0, 136 0.008 0.007 0.007 0.007 0.008 0.008 0.009 0.000 0.007 0.007 0.007 0.007 0.007 9000 0 000 0 000 0 000 0.006 0.006 0.006 0.007 0.007 0.007 0.009 0.226 0.228 0.258 0.257 0.078 0.080 0.080 0.076 0.121 0.123 0.123 190 172 163 146 END DICESS 0.0772 0.0771 0.067 0.089 0.237 0.230 0.242 0.239 0.089 0.135 0.127 0.076 0. 130 0. 171 0. 169 0. 184 0000 TC3CF) CHANGE (°C) 73.0 0.1 73.1 0.1 73.8 74.0 74.0 0.00 0.2 -0.5 0.0 0.0 0 0 0 0 0.4 0.2 0 0.7 0.6 1.6 TEMP 59.9 60.0 60.4 59.7 63.6 65.3 66.2 65.9 65.6 65.9 66.5 68.9 70.7 71.8 59.5 60.3 60.0 73.9 74.2 74.5 61.2 61.3 61.8 60.9 60.2 60.1 5 6 65 65.4 65.9 66.3 70.2 70.8 70.8 71.4 73.1 73.1 74.2 74.0 60.3 60.5 60.5 60.5 60.8 60.4 65.3 65.8 65.6 65.9 73.9 74.6 74.5 61.4 61.7 61.7 62.0 60.1 60.0 59.5 59.5 14.1 12.8 14.7 31.7 19.6 19.7 6.1 11.0 5.7 22.2 10.9 10.5 12.8 6.2 6.6 22.8 24.6 27.1 22.9 39.9 30.2 33.4 22.7 27.3 13.0 11.2 12.1 6.1 7.1 8.1 4.1 1C2(°F) CHANGE(° 74.2 77.3 75.1 78.1 78.8 76.9 92.2 94.0 94.0 94.1 95.4 95.4 78.6 95.8 102.2 106.1 74.2 91.3 87.6 91.3 78.8 80.0 75.8 81.0 61.7 73.0 75.0 76.3 74.0 76.2 80.2 76.3 73.7 85.4 85.1 87.6 104.2 105.2 105.2 108.1 108.6 110.1 127.5 127.5 121.8 125.8 96.5 110.0 112.2 114.1 121.5 121.0 114.0 95.6 95.6 92.9 C2(°F) 81.3 82.7 83.2 82.9 84.9 86.8 86.8 83.9 83.9 86.6 86.8 SIC/M40/CLD FIBER/ TE\$T SIC/S20/CLD SIC/M30/CLD SIC/L 40/CLD SIC/M20/CLD SIC/S30/CLD SIC/L30/CLD SIC/S40/CLD SIC/L 20/CLD

NOTES: TC2 — Thermocouple located after the tuft slightly above the rotor. TC3 — Thermocouple located before the tuft slightly above the rotor OI — Drad Load (lbs @ 6.085 in.radius)

Fiber SiC - Silioon Carbide

(7.5 SCFM)

- COLD AIR

CLD

တΣ

Small Weight 164.30gMedium Weight 259.73gLarge Weight 493.56

Coefficient of Friction ì Ç

COLF

SiC on Chrome Carbide Cold Air(7.5 scfm) / Medium Wt.

CofF

SiC on Chrome Carbide Cold Air (7.5 scfm) / Large Wt.

CofF

PART # 10A TUFT # 050--START THRU M40(1) TUFT # 051--REMAINDER

BARE ROTOR

AMBIANT AIR TESTING

Č Z	(ib) 0.3921 0.2896		0.3921 0.2845		0.6025 0.4881		0.6025 0.3097	0.6025 0.4544	1 1181 0 3972	1	L	1.1181 0.3446	Ļ	0.3921 0.4230	1			0.6025 0.4645		0.6025 0.4544	0.6025 0.3568	1.1180 0.3991		1.1179 0.3955	1.1178 0.4155	0 3018	L			0.6021 0.3402		0.6026 0.4039		1.1181 0.3591	1,1180 0.3229	
g		0.1136	0.1115	0.1237	0.2941		0.1866	0.2738	0.4441	-	0.4015	0.3853	L	0.1003	0.1400	0.1704	0.1000	0.2799	0.2129	0.2738	0.2150	0.4462		0.4421	0.4644	0.1218		0.1460	0.1501	0.2048	0.2292	0.2434	0.2373	_	0.3610	
	(g) COSS(g)	1_	50 0.0015		01 0.0042			0.0009	0 0005			34 0.0008	-	0.0023	1	6000	-				112 0.0019	14 0 0 298			119 0.0211	0.0055	1	L	8600.0 679	297 0 0242		İ	112 0.0118	0.0310		
	13 5370 13 5368		L		13.5243 13.5201	13.5201 13.5186	13.5186 13.5179	13.5179 13.51	19 5170 19 5165	1	\perp	13.5142 13.5134		13.5134 13.5111	4	13.5111 13.5109	13.5108 13.51	13.5109 13.5093			13.5031 13.5012	13 5012 13 4714		13,4372 13,4130	13,4130 13,3919	19 9010 19 9864	L	Ĺ	13.3677 13.3579	9 3579 13 3337	1	13.5648 13.5530		13.5412 13.51	13.5102 13.4805	
	CHANGE IF IV	L		Ш	0.145 13			0.135 13	0.040 49				lL				0.092	0.138 13			0.106 13	0.220 13	L	L	0.229 18	0.065 10	L	L	0.074 13	0.104		0.120		0.198		
START	1000	1	1		6 0.001		9000	200.0	6000	1	0003						0.001	2 0.004			6 0.003	0000				2000				0 001		0.002		2000		
	L	i		7.5 0.061	20.3 0.146		<u> </u>		95 4 0 00	1	23.9	25.1 0.191		14.4 0.084			15.8 0.093	24.1 0.142			19.2 0.109		39.0 0.229		30.1 0.231	7900						20.9 0.122	18.9 0.11	442 0200	33.7 0.179	
	IC3(*F) CHANGE(*F)	5.00	90.5	92.5	93.3		95.0		4 60	4.00				115.8	11/.4	120.6	121.3	122.6	123.3	123.3	122.4	123.1	121.8	126.0	131.5	100 6	136.5	135.5	138.1	1977	137.4	138.8	139.9	134 0	139.7	
END	1	0.06	98.8	100.0	113.6	-	106.7				131.3					134.8		146.7				159.6					147.1		150.5				158.8	1782		
	CHANGE	44	9	6							11.6					8.7			6.7				•	9.9			08		9.5				11.0	63.8		
		16 872	İ	92.3 88.8	104.0			100.9			115.4 103.8				Ì	118.5 109.8		130.0			128.5 117.9	101 4		38.5 128.6	136.2 132.6		121.7 194 E 116 E	118.5		405 E 100 0		1	141.5 130.5	151 E 87 B	ľ	
	TEST TC2(F)	1	n ð	000	CICALONAMB 10	ļ	Ö	01		SiC/L20/AMB	-	-		SiC/S30/AMB 11	=	=	12	SIC/M30/AMR 13	Ļ	12	12	At DAVAND		13	1		SIC/S4U/AMB	121	15		OIC/M40/AMID	17	4	CICT AOVAND 15	+	

NOTES: TC2 — Thermocouple located after the tuft slightly above the rotor. TC3 — Thermocouple located before the tuft slightly above the rotor DL — Drag Load (lbs @ 6.085 in. radius)

SiC - Silicon Carbide Fibers

20 – 20,000 RPM's 30 – 30,000 RPM's 40 – 40,000 RPM's

AMB -- Ambiant Air (no flow)

S – Small Weight 164.30g M – Medium Weight 259.73g L – Large Weight 493.56

CF - Coefficient of Friction

SiC on Bare Rotor

CofF

SiC on Bare Rotor Ambient Air / Medium Wt.

SiC on Bare Rotor

CofF

BARE ROTOR

- Start thru MD/40 Remainder

Part # 10B TUFT #052 -Tuft #053 --

AMBIANT AIR TESTING

0.2019 0.2588 0.2122 0.2019 0.1920 0.1953 0.2054 0.1987 0.2431 0.2594 0.2431 0.2649 2540 2087 1887 2032 0.2054 0.2121 0.1953 0.2020 0.2250 0.2123 0.2540 0.2504 1605 1605 1605 1761 2743 2639 2432 2277 1516 1381 1381 Ö 000 00 000 O 0.3917 0.3916 0.3916 0.3916 0.6020 0.6019 0.6019 1,1176 1,1176 1,1176 1,1176 0.6022 0.6022 0.6022 0.6022 1.1178 1.1178 1.1178 (1b) 0.3919 0.3919 0.3919 0.3919 3918 3918 3918 1.1178 1.1178 1.1178 0.6023 0.6023 0.6023 0.6023 0000 0.2515 0.2373 0.2839 0.2799 0.1156 0.1176 0.1237 0.1197 0.2900 0.2900 0.2718 0.2961 0.0629 0.0629 0.0629 0.0690 0.0913 0.0831 0.0833 0.2839 0.2332 0.2109 0.2271 0.0791 0.1014 0.0831 0.0791 (1b) 0.1075 0.1034 0.0953 0.0892 0.1237 0.1278 0.1176 0.1217 0.0149 0.0196 0.0104 0.0015 0.0001 0.0017 0.0015 0.0045 0.0028 0.0021 0.0022 0.0044 0.0034 0.0038 0.0038 0.0198 0.0126 0.0191 0.0173 0.0240 0.0131 0.0116 0.0094 0.0042 0.0030 0.0026 0.0016 0.0059 0.0032 0.0025 0.0018 CHANGE TET WT(g)]FT WT(g) LOSS(g)

0.053 13.4503 13.4308 0.0195

0.051 13.4308 13.4204 0.0104

0.047 13.4204 13.4151 0.0053 | 13.2620 | 13.2722 | 13.2661 | 13.2561 | 13.2370 | 13.2370 | 13.2370 | 13.2197 | 7 13.3824 13.3779 8 13.3779 13.3751 1 13.3751 13.3730 9 13.3730 13.3708 13.3330 13.3030 13.3030 13.2959 13.2959 13.2843 13.2843 13.2749 13.3857 13.3856 13.3839 13.3824 13.3664 13.3531 13.3533 13.3364 13.3024 13.2920 13.3947 13.3915 13.3890 13.3872 13.4078 13.4048 13.4022 13.4006 13.3513 13.354 13.3168 13.3024 13.4120 13.4078 13.4048 13.4006 13.3947 13.3915 13.3890 13.3664 13.3664 13.3630 13.3591 3857 3857 3856 3839 0.031 0.140 0.115 0.112 057 058 061 059 0.134 0.143 0.146 2 2 2 2 0 - - - 6 0.061 0.063 0.058 0.060 0.124 0.117 0.140 0.138 0.039 0.041 0.039 o اماماه 0000 START D1 0.003 0.002 0.002 000 100 100 0.002 0.002 0.001 0.000 0.000 0.002 0.001 0.000 003 003 004 002 002 001 003 0.001 0.001 0.003 0.002 000 000 002 002 002 002 002 001 0000 مامام ala 0.043 0.140 0.117 0.105 0.112 0.136 0.145 0.149 031 032 032 035 END DL 056 054 045 0.126 0.119 0.139 059 061 063 2 2 2 2 062 060 062 0000 0000 alalala واعاماها 1C3(-E) CHANGE(-E) 93.5 8.0 95.5 5.9 95.6 5.5 28 B 20 1 17 3 21 3 9.6 9.0 0.0 23.1 18.8 31.9 20.5 17.3 16.6 17.1 18.0 8.9 8.1 8.1 1.5 3.7 6.1 9.5 7.0 7.2 8 6 6 2 6 9 TEMP 140.3 137.5 137.0 137.2 138.4 137.8 137.8 97.4 100.4 102.7 117.8 118.7 122.9 122.8 122.5 123.5 124.1 123.9 114.0 124.4 125.4 124.7 139.4 142.0 127.7 141.5 96.4 98.0 96.7 98.3 162.5 160.8 159.6 162.0 142.8 144.5 142.7 146.0 101 5 101 4 101 0 101 0 141.8 140.3 140.7 146.7 144.8 145.0 105.0 104.9 105.2 114.7 117.0 119.8 120.0 127.1 128.3 127.8 128.8 131.4 132.0 132.2 132.0) CHANGE(1F) 5.2 6.1 1.9 1.3 -9.6 -9.5 -3.0 26.0 4.4 5.4 2.6 14.8 7.8 7.6 8.2 6.2 7.0 6.9 6.2 5.2 4.0 4.2 1.3 10.6 6.1 5.2 2.2 101.9 90.0 107.8 110.4 111.8 114.8 114.9 89.2 114.7 118.5 119.5 108.8 117.9 119.5 120.9 122.4 122.1 122.3 126.3 82.4 121.0 92.0 93.4 93.4 94.2 94.3 99.5 101.5 1C2(°F) 88.9 92.4 92.3 92.0 115.2 119.1 123.9 122.1 118.0 118.7 118.8 917 218 129.1 128.6 129.1 129.1 112.7 116.8 109.1 118.0 END 94.1 94.3 93.6 93.7 95.3 95.3 96.2 96.4 00.3 02.8 03.0 112.5 110.7 113.9 115.6 22 25 23 H25/M30/AMB H25/M40/AMB TEST H25/S20/AMB H25/S30/AMB H25/130/AMB H25/S40/AMB H25/L40/AMB H25/M20/AMB H25/L20/AMB FIBER/

- Thermocouple located arret tire turn with any above the rotor - Thermocouple located before the tuft slightly above the rotor - Drag Load (lbs @ 6.085 in. radius) NOTES: TC2 - Thermocouple located after the tuft slightly above the rotor

- Drag Load (lbs 컵

- HAYNES 25 FIBERS H25

Coefficient of 1 S

Friction

Ambiant Air (no flow)

– Small Weight 164.30g I – Medium Weight 259.73g – Large Weight 493.56 oΣ

Haynes 25 On Bare Rotor Ambient Air / Small Wt.

CotF

Haynes 25 On Bare Rotor

C of F

Haynes 25 On Bare Rotor Ambient Air / Large Wt.

CofF