4. PRAKTIKA: *Grafoak*

Grafo baten erpinak lotzen dituzten arkuak definitzeko honako notazio hau erabiliko dugu: (P, Q): $P \rightarrow Q$. Arku guztiak zerrenda baten definituko dira.

Praktika honetan erabiliko ditugun Mathematica-ko funtzioak Combinatorica paketean daude eta bertan sartu beharko da:

Needs["Combinatorica`"]

GraphPlot[grafo, aukerak] Esandako grafoa adieraziko du azaldutako aukerekin. Aukeren artean honako hauek ditugu:

VertexLabeling→True Erpinak etiketatzen ditu.

DirectedEdges→True Grafoa zuzendua da.

RegularQ[g] True agertuko da g grafoa erregularra bada.

DeleteEdges[g, zerrenda] Zerrendan adierazitako g-ren arkuak ezabatzen ditu.

DeleteVertex[g, v] g grafoaren v erpina ezabatuko du.

DeleteVertices[g, zerrenda] Zerrendako g-ren erpinak ezabatuko ditu.

TreeQ[g] True agertuko da g grafoa zuhaitza bada

EulerianQ[g] True agertuko da g grafoa euleriarra bada.

RegularGraph[q, n] n erpineko q-erregularra den grafo bat lortuko du.

ExactRandomGraph[n, e] n erpineko eta e arku dituen zorizko grafo etiketatu bat lortuko da.

EulerianCycle[g] Existitzen bada, g grafoaren zirkuitu euleriarra aurkituko du.

Degrees[g] g grafoaren erpin bakoitzaren gradua lortuko du. Zuzendua den kasuan irteera graduak lortuko ditu.

FromAdjacencyMatrix[matrizea, baldintzak] grafo baten auzokidetasun matrizea definituko du. Pisuen bidez definitzerakoan **EdgeWeight** baldintza jarri beharko dugu pisuak onartzeko. Grafoa zuzendua den kasuan **Type→Directed** baldintza jarri beharko da.

MinimumSpanningTree[grafoa] Grafoaren zuhaitz estaltzaile minimala aurkituko du.

2. PRAKTIKA:

Logika matematikoa

1. Tautologiak, kontraesanak eta baliokidetasunak

TautologyQ[adierazpena, {a₁, a₂, ...}] a_1 , a_2 , ... aldagaietan emandako adierazpena tautologia bat bada ikusten du.

Equivalent $[e_1,e_2]$ $e_1 \Leftrightarrow e_2$ $(e_1 = e_2)$ baliokidetasun logikoa adieraziko du.

LogicalExpand[adierazpena] adierazpen logikoa garatu eta sinplifikatu egingo du.

Implies[p,q] $p \rightarrow q$ inplikazio logikoa adieraziko du.

Simplify[adierazpena] Emandako adierazpena ahal den gehien sinplifikatuko du.

! adierazpena Not (¬) funtzio logikoa adieraziko du.

4. PRAKTIKA: Grafoak

Grafo baten erpinak lotzen dituzten arkuak definitzeko honako notazio hau erabiliko dugu: (P, Q): $P \rightarrow Q$. Arku guztiak zerrenda baten definituko dira.

Praktika honetan erabiliko ditugun *Mathematica*-ko funtzioak *Combinatorica* paketean daude eta bertan sartu beharko da:

Needs["Combinatorica"]

GraphPlot[grafo, aukerak] Esandako grafoa adieraziko du, azaldutako aukerekin. Aukeren artean honako hauek ditugu:

VertexLabeling → **True** Erpinak etiketatzen ditu.

DirectedEdges → **True** Grafoa zuzendua da.

RegularQ[g] True agertuko da g grafoa erregularra bada.

DeleteEdges[g, zerrenda] Zerrendan adierazitako g-ren arkuak ezabatzen ditu.

DeleteVertex[g, v] g grafoaren v erpina ezabatuko du.

DeleteVertices[g, zerrenda] Zerrendako g-ren erpinak ezabatuko ditu.

TreeQ[g] True agertuko da g grafoa zuhaitza bada.

EulerianQ[g] True agertuko da g grafoa euleriarra bada.

RegularGraph[q, n] n erpineko q-erregularra den grafo bat lortuko du.

ExactRandomGraph[n, e] n erpineko eta e arku dituen zorizko grafo etiketatu bat lortuko da.

EulerianCycle[g] Existitzen bada, g grafoaren zirkuitu euleriarra aurkituko du.

Degrees[g] g grafoaren erpin bakoitzaren gradua lortuko du. Zuzendua den kasuan irteera graduak lortuko ditu.

FromAdjacencyMatrix[matrizea, baldintzak] grafo baten auzokidetasun matrizea definituko du. Pisuen bidez definitzerakoan EdgeWeight baldintza jarri beharko dugu pisuak onartzeko. Grafoa zuzendua den kasuan Type → Directed baldintza jarri beharko da.

 $\label{lem:minimumSpanningTree} \textbf{[grafoa]} \ \ \text{Grafoaren zuhaitz estaltzaile minimala aurkituko} \\ \ \ \text{du.}$