Syntax Analysis: Top-Down Parsing

Lecture 4

Objectives

By the end of this lecture you should be able to:

- Identify top-down parsing.
- 2 Compute the functions *First* and *Follow* for a given grammar.
- **3** Identify LL(1) grammars.
- Construct the parsing table for a grammar.
- Onstruct a predictive top-down parser using pushdown automata.

Outline

- Top-Down Parsing
- 2 First and Follow
- Predictive Top-Down Parsing
- 4 Predictive Parsing with Pushdown Automata

Outline

- Top-Down Parsing
- 2 First and Follow
- 3 Predictive Top-Down Parsing
- 4 Predictive Parsing with Pushdown Automata

What is Top-Down Parsing?

Definition

Top-down parsing consists in a preorder construction of a parse tree for a given input string and CFG.

Equivalently:

Definition

Top-down parsing consists in finding a left-most derivation of a given string in a given CFG.

What is Top-Down Parsing?

Definition

Top-down parsing consists in a preorder construction of a parse tree for a given input string and CFG.

Equivalently:

Definition

Top-down parsing consists in finding a left-most derivation of a given string in a given CFG.

Example: G_3

Example

$$\begin{array}{cccc} E & \longrightarrow & T \ E' \\ E' & \longrightarrow & + T \ E' \ | \ \varepsilon \\ T & \longrightarrow & F \ T' \\ T' & \longrightarrow & * F \ T' \ | \ \varepsilon \\ F & \longrightarrow & (E) \ | \ \mathbf{id} \ | \ \mathbf{number} \end{array}$$

Input: id + id * id.

Example: Top-Down Parsing

Example

(c) Aho et al. (2007)

Given
$$G = \langle V, \Sigma, R, S \rangle$$
 and $w = w_1 \cdots w_n$.

- $\delta = \varepsilon$ or
- \bigcirc if |w| < |u|, then fail.
- 4 if $w_1 \cdots w_{|u|} \neq u$ then fail.
- $SF = \delta$.
- $0 w = w_{|u|+1} \cdots w_n.$
- 8 If $\delta = \varepsilon$, then fail.
- \bigcirc $SF = \beta \alpha.$
- Goto 2.

$$tree t = new tree(S)$$

return(t)

4 D > 4 D > 4 E > 4 E > E 990

Given
$$G = \langle V, \Sigma, R, S \rangle$$
 and $w = w_1 \cdots w_n$.

- **2** For $SF = u \delta$, where $u \in \Sigma^*$ and
 - $\delta = \varepsilon$ or
 - $\delta = A\alpha$, with $A \in V$ and $\alpha \in (\Sigma \cup V)^*$
- (4) if $w_1 \cdots w_{|u|} \neq u$ then fail.
- $SF = \delta$.
- $0 w = w_{|u|+1} \cdots w_n$
- 1 If $\delta = w = \varepsilon$, then return.
- δ If δ = ε, then fail.
- \bigcirc SF = $\beta \alpha$.
- Goto 2.

$$tree t = new tree(S)$$

return(t)

4 m > 4 m >

Given
$$G = \langle V, \Sigma, R, S \rangle$$
 and $w = w_1 \cdots w_n$.

- ② For $SF = u \delta$, where $u \in \Sigma^*$ and
 - $\delta = \varepsilon$ or
 - $\delta = A\alpha$, with $A \in V$ and $\alpha \in (\Sigma \cup V)^*$
- \bigcirc if |w| < |u|, then fail.
- (4) if $w_1 \cdots w_{|u|} \neq u$ then fail.
- $SF = \delta$.
- $0 w = w_{|u|+1} \cdots w_n$
- 1 If $\delta = w = \varepsilon$, then return.
- 8 If $\delta = \varepsilon$, then fail.

- Goto 2.

$$tree t = new tree(S)$$

return(t)

Given
$$G = \langle V, \Sigma, R, S \rangle$$
 and $w = w_1 \cdots w_n$.

2 For
$$SF = u \delta$$
, where $u \in \Sigma^*$ and

•
$$\delta = \varepsilon$$
 or

•
$$\delta = A\alpha$$
, with $A \in V$ and $\alpha \in (\Sigma \cup V)^*$

- \bigcirc if |w| < |u|, then fail.
- (4) if $w_1 \cdots w_{|u|} \neq u$ then fail.
- $SF = \delta$.
- 1 If $\delta = w = \varepsilon$, then return.
- 8 If $\delta = \varepsilon$, then fail.
- $SF = \beta \alpha$.
- Goto 2.

$$tree t = new tree(S)$$

return(t)

(), / ·

Given
$$G = \langle V, \Sigma, R, S \rangle$$
 and $w = w_1 \cdots w_n$.

② For
$$SF = u \delta$$
, where $u \in \Sigma^*$ and

•
$$\delta = \varepsilon$$
 or

•
$$\delta = A\alpha$$
, with $A \in V$ and $\alpha \in (\Sigma \cup V)^*$

$$tree t = new tree(S)$$

Given
$$G = \langle V, \Sigma, R, S \rangle$$
 and $w = w_1 \cdots w_n$.

2 For
$$SF = u \delta$$
, where $u \in \Sigma^*$ and

•
$$\delta = \varepsilon$$
 or

•
$$\delta = A\alpha$$
, with $A \in V$ and $\alpha \in (\Sigma \cup V)^*$

4 if
$$w_1 \cdots w_{|u|} \neq u$$
 then fail.

$$SF = \delta$$
.

1 If
$$\delta = w = \varepsilon$$
, then return.

$$\delta = \varepsilon$$
, then fail.

One (A
$$\longrightarrow \beta$$
) $\in R$.

$$\bigcirc$$
 SF = $\beta \alpha$.

$$tree t = new tree(S)$$

Given
$$G = \langle V, \Sigma, R, S \rangle$$
 and $w = w_1 \cdots w_n$.

2 For
$$SF = u \delta$$
, where $u \in \Sigma^*$ and

•
$$\delta = \varepsilon$$
 or

•
$$\delta = A\alpha$$
, with $A \in V$ and $\alpha \in (\Sigma \cup V)^*$

4 if
$$w_1 \cdots w_{|u|} \neq u$$
 then fail.

1 If
$$\delta = w = \varepsilon$$
, then return.

8 If
$$\delta = \varepsilon$$
, then fail.

$$SF = \beta \alpha$$
.

$$tree t = new tree(S)$$

Given
$$G = \langle V, \Sigma, R, S \rangle$$
 and $w = w_1 \cdots w_n$.

2 For
$$SF = u \delta$$
, where $u \in \Sigma^*$ and

•
$$\delta = \varepsilon$$
 or

•
$$\delta = A\alpha$$
, with $A \in V$ and $\alpha \in (\Sigma \cup V)^*$

4 if
$$w_1 \cdots w_{|u|} \neq u$$
 then fail.

1 If
$$\delta = w = \varepsilon$$
, then return.

8 If
$$\delta = \varepsilon$$
, then fail.

$$\bigcirc$$
 SF = $\beta \alpha$.

$$tree t = new tree(S)$$

Given
$$G = \langle V, \Sigma, R, S \rangle$$
 and $w = w_1 \cdots w_n$.

2 For
$$SF = u \delta$$
, where $u \in \Sigma^*$ and

•
$$\delta = \varepsilon$$
 or

•
$$\delta = A\alpha$$
, with $A \in V$ and $\alpha \in (\Sigma \cup V)^*$

If
$$\delta = w = \varepsilon$$
, then return.

8 If
$$\delta = \varepsilon$$
, then fail

$$SF = \beta \alpha$$
.

$$tree t = new tree(S)$$

rccurn(c)

Given
$$G = \langle V, \Sigma, R, S \rangle$$
 and $w = w_1 \cdots w_n$.

2 For
$$SF = u \delta$$
, where $u \in \Sigma^*$ and

•
$$\delta = \varepsilon$$
 or

•
$$\delta = A\alpha$$
, with $A \in V$ and $\alpha \in (\Sigma \cup V)^*$

If
$$\delta = w = \varepsilon$$
, then return.

11 If
$$\delta = \varepsilon$$
, then fail.

$$SF = \beta \alpha$$
.

$$tree t = new tree(S)$$

Given
$$G = \langle V, \Sigma, R, S \rangle$$
 and $w = w_1 \cdots w_n$.

2 For
$$SF = u \delta$$
, where $u \in \Sigma^*$ and

•
$$\delta = \varepsilon$$
 or

•
$$\delta = A\alpha$$
, with $A \in V$ and $\alpha \in (\Sigma \cup V)^*$

4 if
$$w_1 \cdots w_{|u|} \neq u$$
 then fail.

If
$$\delta = w = \varepsilon$$
, then return.

$$\delta = \varepsilon$$
, then fail.

$$SF = \beta \alpha$$

tree t = new tree(S)

.children
$$(A, \beta)$$

Given
$$G = \langle V, \Sigma, R, S \rangle$$
 and $w = w_1 \cdots w_n$.

2 For
$$SF = u \delta$$
, where $u \in \Sigma^*$ and

•
$$\delta = \varepsilon$$
 or

•
$$\delta = A\alpha$$
, with $A \in V$ and $\alpha \in (\Sigma \cup V)^*$

4 if
$$w_1 \cdots w_{|u|} \neq u$$
 then fail.

8 If
$$\delta = \varepsilon$$
, then fail.

$$\bigcirc$$
 SF = $\beta \alpha$.

$$tree t = new tree(S)$$

 $\mathsf{t.children}(A,\beta)$

Given
$$G = \langle V, \Sigma, R, S \rangle$$
 and $w = w_1 \cdots w_n$.

2 For
$$SF = u \delta$$
, where $u \in \Sigma^*$ and

•
$$\delta = \varepsilon$$
 or

•
$$\delta = A\alpha$$
, with $A \in V$ and $\alpha \in (\Sigma \cup V)^*$

4 if
$$w_1 \cdots w_{|u|} \neq u$$
 then fail.

8 If
$$\delta = \varepsilon$$
, then fail.

$$\bigcirc$$
 $SF = \beta \alpha$.

$$tree t = new tree(S)$$

 $\mathsf{t.children}(A,\beta)$

- Top-down parsing may be implemented using recursive transition networks (giving rise to recursive-descent parsing).
- As is, the algorithm is nondeterministic.
 - Backtracking may be needed
- A left-recursive grammar may cause an infinite loop.

- Top-down parsing may be implemented using recursive transition networks (giving rise to recursive-descent parsing).
- As is, the algorithm is nondeterministic.
 - Backtracking may be needed.
- A left-recursive grammar may cause an infinite loop.

- Top-down parsing may be implemented using recursive transition networks (giving rise to recursive-descent parsing).
- As is, the algorithm is nondeterministic.
 - Backtracking may be needed.
- A left-recursive grammar may cause an infinite loop.

- Top-down parsing may be implemented using recursive transition networks (giving rise to recursive-descent parsing).
- As is, the algorithm is nondeterministic.
 - Backtracking may be needed.
- A left-recursive grammar may cause an infinite loop.

Outline

- Top-Down Parsing
- 2 First and Follow
- 3 Predictive Top-Down Parsing
- 4 Predictive Parsing with Pushdown Automata

First

Let $G = \langle V, \Sigma, R, S \rangle$ be a CFG.

Definition

For every sentential form α of G,

$$First(\alpha) = \{ a \in \Sigma \mid \alpha \stackrel{*}{\Rightarrow} a\beta \} \cup \Upsilon$$

where

$$\Upsilon = \begin{cases} \{\varepsilon\} & \text{if } \alpha \stackrel{*}{\Rightarrow} \varepsilon \\ \emptyset & \text{otherwise} \end{cases}$$

with β a sentential form of G.

Follow

Let $G = \langle V, \Sigma, R, S \rangle$ be a CFG.

Definition

For every $A \in V$,

$$Follow(A) = \{ a \in \Sigma \mid S \stackrel{*}{\Rightarrow} \alpha A \ a \ \beta \} \cup \Xi$$

where

$$\Xi = \begin{cases} \{\$\} & \text{if } S \stackrel{*}{\Rightarrow} \alpha A \\ \varnothing & \text{otherwise} \end{cases}$$

with α and β sentential forms of G and \$ is not.

Example

$$S \longrightarrow aSb \mid T$$

$$T \longrightarrow aT \mid \varepsilon$$

- $First(a) = \{a\}$ $First(b) = \{b\}$
- $First(S) = First(T) = \{a, \varepsilon\}.$
- $Follow(S) = Follow(T) = \{b, \$\}$

Example

$$S \longrightarrow aSb \mid T$$

$$T \longrightarrow aT \mid \varepsilon$$

- $First(a) = \{a\}$ $First(b) = \{b\}.$
- $First(S) = First(T) = \{a, \varepsilon\}.$
- $Follow(S) = Follow(T) = \{b, \$\}$

Example

$$S \longrightarrow aSb \mid T$$

$$T \longrightarrow aT \mid \varepsilon$$

- $First(a) = \{a\}$ $First(b) = \{b\}.$
- $First(S) = First(T) = \{a, \varepsilon\}.$
- $Follow(S) = Follow(T) = \{b, \$\}$

Example

$$S \longrightarrow aSb \mid T$$

$$T \longrightarrow aT \mid \varepsilon$$

- $First(a) = \{a\}$ $First(b) = \{b\}.$
- $First(S) = First(T) = \{a, \varepsilon\}.$
- $Follow(S) = Follow(T) = \{b, \$\}$

Computing First for Single Symbols

```
1: for all a \in \Sigma do
      First(a) = \{a\}
3: for all A \in V do
       First(A) = \{\}
5: change = TRUE
6: while (change) do
7:
       change = FALSE
8:
       for all (A \longrightarrow B_1 \cdots B_k) \in R do
9:
          if \varepsilon \in First(B_1) \cap \cdots \cap First(B_k) then {//This also covers the case when k = 0}
10:
              if \varepsilon \notin First(A) then
11:
                 First(A) = First(A) \cup \{\varepsilon\}
12:
                 change = TRUE
13:
           else
14:
              for i = 1 to k do
15:
                 if (i == 1) or (\varepsilon \in First(B_1) \cap \cdots \cap First(B_{i-1})) then
                     if (First(B_i) - \{\varepsilon\}) \not\subseteq First(A) then
16:
17:
                        First(A) = First(A) \cup (First(B_i) - \{\varepsilon\})
18:
                       change = TRUE
```

Computing *First*

How?

Computing *Follow*

```
1: for all A \in V do
       Follow(A) = \{\}
3: Follow(S) = \{\$\}
4: change = TRUE
5: while (change) do
6:
       change = FALSE
7:
       for all (A \longrightarrow \alpha B\beta) \in R do
8:
          if (First(\beta) - \{\varepsilon\}) \not\subseteq Follow(B) then
9:
             Follow(B) = Follow(B) \cup (First(\beta) - \{\varepsilon\})
10:
              change = TRUE
11:
           if \varepsilon \in First(\beta) then
12:
              if Follow(A) \not\subseteq Follow(B) then
13:
                 Follow(B) = Follow(B) \cup Follow(A)
14:
                 change = TRUE
```

Exercise

Example

$$\begin{array}{cccc} E & \longrightarrow & T \, E' \\ E' & \longrightarrow & + \, T \, E' \mid \varepsilon \\ T & \longrightarrow & F \, T' \\ T' & \longrightarrow & * \, F \, T' \mid \varepsilon \\ F & \longrightarrow & (E) \mid \mathbf{id} \end{array}$$

Compute First and Follow for all non-terminals.

Exercise: Solution

Example

- $First(E) = First(T) = First(F) = \{(, id)\}$
- $First(E') = \{+, \varepsilon\}$
- $First(T') = \{*, \varepsilon\}$
- $Follow(E) = Follow(E') = \{\}, \}$
- $Follow(T) = Follow(T') = \{+, \}$
- $Follow(F) = \{+, *, \}, \}$

Outline

- Top-Down Parsing
- 2 First and Follow
- 3 Predictive Top-Down Parsing
- 4 Predictive Parsing with Pushdown Automata

What is it?

A predictive top-down parser is a top-down parser which will fail only if the input is ungrammatical.

- That is, predictive parsers always choose the right production rule to apply, if one exists.
- Clearly, this is not always possible.
- However, it is always possible for certain classes of CFGs.

What is it?

A predictive top-down parser is a top-down parser which will fail only if the input is ungrammatical.

- That is, predictive parsers always choose the right production rule to apply, if one exists.
- Clearly, this is not always possible.
- However, it is always possible for certain classes of CFGs.

LL(1) Grammars

Definition

A CFG $G = \langle V, \Sigma, R, S \rangle$ is an LL(1) grammar if whenever $(A \longrightarrow \alpha \mid \beta) \in R$ we have

- 2 if $\varepsilon \in First(\alpha)$, then $First(\beta) \cap Follow(A) = \emptyset$; and
- **3** if $\varepsilon \in First(\beta)$, then $First(\alpha) \cap Follow(A) = \emptyset$

Note: LL(1) stands for left-to-right input scanning in a left-most derivation with 1 input symbol of lookahead.

LL(1) Grammars

Definition

A CFG $G = \langle V, \Sigma, R, S \rangle$ is an LL(1) grammar if whenever $(A \longrightarrow \alpha \mid \beta) \in R$ we have

- 2 if $\varepsilon \in First(\alpha)$, then $First(\beta) \cap Follow(A) = \emptyset$; and
- **3** if $\varepsilon \in First(\beta)$, then $First(\alpha) \cap Follow(A) = \emptyset$

Note: *LL*(1) stands for left-to-right input scanning in a left-most derivation with 1 input symbol of lookahead.

- The predictive parsing table, for a given CFG, is a $|V| \times (|\Sigma| + 1)$ table M.
- Rows are indexed by V; columns are indexed by $\Sigma \cup \{\$\}$.
- $\bullet \ M[A,a] \subseteq \{(A \longrightarrow \alpha) \in R\}.$
- In particular, $(A \longrightarrow \alpha) \in M[A, a]$ if
 - $a \in First(\alpha)$, or
 - @ $\varepsilon \in First(\alpha)$ and $a \in Follow(A)$
- $M[A, a] = \emptyset$ is an error entry.

- The predictive parsing table, for a given CFG, is a $|V| \times (|\Sigma| + 1)$ table M.
- Rows are indexed by V; columns are indexed by $\Sigma \cup \{\$\}$.
- $\bullet \ M[A,a] \subseteq \{(A \longrightarrow \alpha) \in R\}.$
- In particular, $(A \longrightarrow \alpha) \in M[A, a]$ if
 - $\mathbf{0}$ $a \in First(\alpha)$, or
 - $@ \varepsilon \in First(\alpha) \text{ and } a \in Follow(A)$
- $M[A, a] = \emptyset$ is an error entry.

- The predictive parsing table, for a given CFG, is a $|V| \times (|\Sigma| + 1)$ table M.
- Rows are indexed by V; columns are indexed by $\Sigma \cup \{\$\}$.
- $\bullet M[A,a] \subseteq \{(A \longrightarrow \alpha) \in R\}.$
- In particular, $(A \longrightarrow \alpha) \in M[A, a]$ if
 - $a \in First(\alpha)$, or
 - @ $\varepsilon \in First(\alpha)$ and $a \in Follow(A)$
- $M[A, a] = \emptyset$ is an error entry.

- The predictive parsing table, for a given CFG, is a $|V| \times (|\Sigma| + 1)$ table M.
- Rows are indexed by V; columns are indexed by $\Sigma \cup \{\$\}$.
- $\bullet \ M[A,a] \subseteq \{(A \longrightarrow \alpha) \in R\}.$
- In particular, $(A \longrightarrow \alpha) \in M[A, a]$ if
 - $a \in First(\alpha)$, or
- $M[A, a] = \emptyset$ is an error entry.

- The predictive parsing table, for a given CFG, is a $|V| \times (|\Sigma| + 1)$ table M.
- Rows are indexed by V; columns are indexed by $\Sigma \cup \{\$\}$.
- $\bullet \ M[A,a] \subseteq \{(A \longrightarrow \alpha) \in R\}.$
- In particular, $(A \longrightarrow \alpha) \in M[A, a]$ if
 - $\mathbf{0}$ $a \in First(\alpha)$, or
- $M[A, a] = \emptyset$ is an error entry.

- The predictive parsing table, for a given CFG, is a $|V| \times (|\Sigma| + 1)$ table M.
- Rows are indexed by V; columns are indexed by $\Sigma \cup \{\$\}$.
- $\bullet \ M[A,a] \subseteq \{(A \longrightarrow \alpha) \in R\}.$
- In particular, $(A \longrightarrow \alpha) \in M[A, a]$ if
 - \bullet $a \in First(\alpha)$, or
- $M[A, a] = \emptyset$ is an error entry.

- The predictive parsing table, for a given CFG, is a $|V| \times (|\Sigma| + 1)$ table M.
- Rows are indexed by V; columns are indexed by $\Sigma \cup \{\$\}$.
- $\bullet \ M[A,a] \subseteq \{(A \longrightarrow \alpha) \in R\}.$
- In particular, $(A \longrightarrow \alpha) \in M[A, a]$ if
 - $\mathbf{0}$ $a \in First(\alpha)$, or
- $M[A, a] = \emptyset$ is an error entry.

Exercise 1

Example

Construct the parsing table of the grammar

$$\begin{array}{cccc} E & \longrightarrow & T \, E' \\ E' & \longrightarrow & + \, T \, E' \mid \varepsilon \\ T & \longrightarrow & F \, T' \\ T' & \longrightarrow & * \, F \, T' \mid \varepsilon \\ F & \longrightarrow & (E) \mid \mathbf{id} \end{array}$$

Exercise 1: Solution

Example M id $E \rightarrow TE'$ $E \rightarrow T E'$ \overline{E} E' $E' \rightarrow +TE'$ $E' \to \varepsilon$ $E' \to \varepsilon$ \overline{T} $T \rightarrow FT'$ $T \rightarrow FT'$ T' $T' \to \varepsilon$ $T' \rightarrow *FT'$ $T' \to \varepsilon$ $T' \to \varepsilon$ F $F \rightarrow id$ $F \rightarrow (E)$

Here we are using the *First* and *Follow* sets computed before .

Exercise 2

Example

Construct the parsing table of the grammar

$$\begin{array}{ccc} S & \longrightarrow & \mathbf{i} \, E \, \mathbf{t} \, S \, S' \mid \mathbf{a} \\ S' & \longrightarrow & \mathbf{e} \, S \mid \varepsilon \\ E & \longrightarrow & \mathbf{b} \end{array}$$

Exercise 2: Solution

Example

	a	b	e	i	t	\$
S	$S \longrightarrow \mathbf{a}$			$S \longrightarrow \mathbf{i}E\mathbf{t}SS'$		
S'			$S' \longrightarrow \varepsilon$			$S' \longrightarrow \varepsilon$
			$S' \longrightarrow \mathbf{e}S$			
E		$E \longrightarrow \mathbf{b}$				

Important!

Observation

If $G = \langle V, \Sigma, R, S \rangle$ is an LL(1) CFG then $|M[A, a]| \le 1$, for every $A \in V$ and $a \in \Sigma \cup \{\$\}$.

- The parsing table can be used to direct the choice of a production during parsing.
- If the grammar is an LL(1) grammar, parsing will be predictive.
- Most programming constructs may be described by LL(1) grammars.

Important!

Observation

If $G = \langle V, \Sigma, R, S \rangle$ is an LL(1) CFG then $|M[A, a]| \le 1$, for every $A \in V$ and $a \in \Sigma \cup \{\$\}$.

- The parsing table can be used to direct the choice of a production during parsing.
- If the grammar is an LL(1) grammar, parsing will be predictive.
- Most programming constructs may be described by LL(1) grammars.

Grammars Not LL(1)

- Some CFGs, though not LL(1), may be transformed to equivalent LL(1) grammars by left-factoring and left-recursion elimination.
- Ambiguous grammars, in general, may not; see Exercise 2.
- Note, however, that we can always opt for one of the multiple rules to enforce a disambiguation policy.
- In Exercise 2, if we always choose $S' \longrightarrow eS$, we are effectively associating e with the closest i.

Outline

- Top-Down Parsing
- 2 First and Follow
- 3 Predictive Top-Down Parsing
- 4 Predictive Parsing with Pushdown Automata

From CFGs to PDA

Lemma (Sipser 2.21)

If a language is context-free, then some PDA recognizes it.

Proof Strategy

- Let L be a CFL and G a CFG such that L(G) = L.
- We construct a PDA P such that L(P) = L.
- P determines whether an input string is in L by trying to derive it (leftmost) using G.
- It uses the stack as a scratch pad where it records the steps of the derivation.
- At each transition, it rewrites the topmost variable on the stack
- A variable is brought to the top of the stack by matching top-of-the-stack terminals to input symbols.

From CFGs to PDA

Lemma (Sipser 2.21)

If a language is context-free, then some PDA recognizes it.

Proof Strategy

- Let L be a CFL and G a CFG such that L(G) = L.
- We construct a PDA P such that L(P) = L.
- P determines whether an input string is in L by trying to derive it (leftmost) using G.
- It uses the stack as a scratch pad where it records the steps of the derivation.
- At each transition, it rewrites the topmost variable on the stack.
- A variable is brought to the top of the stack by matching top-of-the-stack terminals to input symbols.

Informal Description of P

- P has three main states: q_s , q_{loop} , and q_a .
- In q_s , it pushes \$ and the start variable onto the stack, and enters q_{loop} .
- While in q_{loop}
 - If the top-of-the-stack symbol is a variable A, nondeterministically select a rule $A \longrightarrow u$ of G, and replace A by u.
 - If the top-of-the-stack symbol is a terminal, match it to the next input symbol.
 - If the top-of-the-stack symbol is \$, enter q_a .

Example

Example

Draw the state diagram of a PDA that equivalent to the following CFG.

$$egin{array}{lll} S & \longrightarrow & \mathrm{a} T \mathrm{b} \mid \mathrm{b} \ T & \longrightarrow & T \mathrm{a} \mid arepsilon \end{array}$$

- \bullet Given a CFG G, construct the parsing table M.
- 2 Construct the equivalent PDA P.
- **(3)** When variable A is on top of the stack and the head is pointing at a, use M[A, a] to choose a transition.
- ① If there are no more input symbols, use M[A, \$].
- **5** If $M[A, a] = \emptyset$, report an error.
- If we output the sequence of rules chosen, we may reconstruct the derivation and, hence, the parse tree.

- \bullet Given a CFG G, construct the parsing table M.
- ② Construct the equivalent PDA P.
- **3** When variable A is on top of the stack and the head is pointing at a, use M[A, a] to choose a transition.
- ① If there are no more input symbols, use M[A, \$].
- If we output the sequence of rules chosen, we may reconstruct the derivation and, hence, the parse tree.

- \bullet Given a CFG G, construct the parsing table M.
- 2 Construct the equivalent PDA P.
- **3** When variable A is on top of the stack and the head is pointing at a, use M[A, a] to choose a transition.
- ① If there are no more input symbols, use M[A, \$].
- If we output the sequence of rules chosen, we may reconstruct the derivation and, hence, the parse tree.

- \bullet Given a CFG G, construct the parsing table M.
- 2 Construct the equivalent PDA *P*.
- **3** When variable A is on top of the stack and the head is pointing at a, use M[A, a] to choose a transition.
- **4** If there are no more input symbols, use M[A, \$].
- If we output the sequence of rules chosen, we may reconstruct the derivation and, hence, the parse tree.

- \bullet Given a CFG G, construct the parsing table M.
- 2 Construct the equivalent PDA P.
- **3** When variable A is on top of the stack and the head is pointing at a, use M[A, a] to choose a transition.
- **4** If there are no more input symbols, use M[A, \$].
- If we output the sequence of rules chosen, we may reconstruct the derivation and, hence, the parse tree.

- \bullet Given a CFG G, construct the parsing table M.
- 2 Construct the equivalent PDA P.
- **3** When variable A is on top of the stack and the head is pointing at a, use M[A, a] to choose a transition.
- **4** If there are no more input symbols, use M[A, \$].
- **1** $If <math>M[A, a] = \emptyset$, report an error.
- **1** If we output the sequence of rules chosen, we may reconstruct the derivation and, hence, the parse tree.