Linear Algebra (MATH 3333) Spring 2009 Section 2 Midterm Practice Problems

Throughout the exam, V denotes a vector space.

1. Go over the problems on your quiz and previous homeworks, and make sure you can do them correctly.

True/False

Circle T or F.

- 2. T F Any two nonzero vectors in \mathbb{R}^3 are linearly independent.
- 3. T F A minimal spanning set for V is a basis for V.
- 4. T F Any subspace of \mathbb{R}^2 is either a line through the origin or \mathbb{R}^2 .
- 5. T F The span of two nonzero vectors is either a line through the origin or a plane through the origin.
- 6. T F The set of polynomials in x of degree at most 5 form a vector space.

Definitions

- 7. If $S = \{v_1, v_2, \dots, v_k\} \subseteq V$, define span(S).
- 8. With S as above, define what it means for S to be a basis of V.
- 9. With S as above, define what it means for S to be linearly independent.

Problems

Show your work (i.e., prove your answers except where stated otherwise).

- 10. Show that the set of vectors of the form $\begin{pmatrix} a \\ b \\ a+b \end{pmatrix}$ in \mathbb{R}^3 forms a subspace of \mathbb{R}^3 . Find a basis for this space (no proof needed). Describe this space geometrically.
- 11. Do the same as the previous problem for the subset $\{(x,y,z): x+y+z=0\}$ of \mathbb{R}^3 .
- 12. Find two different bases for \mathbb{R}^2 (no proof needed).
- 13. Is $\{(x, y, z) : 2x 3y + z = 1\}$ a subspace of \mathbb{R}^3 ?
- 14. Solve the system of equations or conclude that no solutions exist:

$$x - y = 1$$
$$2x - y - z = 1$$
$$-x + 2y - z = 1.$$

15. Solve the system of equations or conclude that no solutions exist:

$$-2x + y + z = 1$$
$$x + z = 0$$
$$x + y - 2z = -1.$$

- 16. Is $\left\{ \begin{pmatrix} 1\\1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\1 \end{pmatrix}, \begin{pmatrix} -1\\1\\1 \end{pmatrix} \right\}$ linearly independent? If not, find a maximal linear independent subset.
- 17. Do the same as the previous problem for $\left\{ \begin{pmatrix} 1\\2\\-2\\3 \end{pmatrix}, \begin{pmatrix} 1\\-2\\-2\\3 \end{pmatrix}, \begin{pmatrix} 2\\1\\-1\\0 \end{pmatrix}, \begin{pmatrix} -1\\1\\1\\-1 \end{pmatrix} \right\}$.
- 17. Is $\left\{ \begin{pmatrix} 1\\2\\-2 \end{pmatrix}, \begin{pmatrix} 1\\-2\\3 \end{pmatrix}, \begin{pmatrix} 1\\-1\\0 \end{pmatrix}, \begin{pmatrix} -1\\1\\-1 \end{pmatrix} \right\}$ a basis for \mathbb{R}^3 ?
- 18. Is $\left\{ \begin{pmatrix} 1\\1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\1 \end{pmatrix}, \begin{pmatrix} -1\\1\\1 \end{pmatrix} \right\}$ a basis for \mathbb{R}^3 ?
- 19. Find a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 whose image is the set of vectors of the form $\begin{pmatrix} a \\ 2b-a \\ b \end{pmatrix}$.