1. Develop a program to create histograms for all numerical features and analyze the distribution of each feature. Generate box plots for all numerical features and identify any outliers. Use California Housing dataset.

PROGRAM:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_california_housing
# Step 1: Load the California Housing dataset
data = fetch_california_housing(as_frame=True)
housing_df = data.frame
# Step 2: Create histograms for numerical features
numerical features = housing df.select dtypes(include=[np.number]).columns
# Plot histograms
plt.figure(figsize=(15, 10))
for i, feature in enumerate(numerical_features):
  plt.subplot(3, 3, i + 1)
  sns.histplot(housing_df[feature], kde=True, bins=30, color='blue')
  plt.title(f'Distribution of {feature}')
plt.tight_layout()
plt.show()
# Step 3: Generate box plots for numerical features
plt.figure(figsize=(15, 10))
for i, feature in enumerate(numerical_features):
  plt.subplot(3, 3, i + 1)
  sns.boxplot(x=housing_df[feature], color='orange')
  plt.title(f'Box Plot of {feature}')
plt.tight_layout()
```

```
plt.show()
# Step 4: Identify outliers using the IQR method
print("Outliers Detection:")
outliers_summary = {}
for feature in numerical_features:
  Q1 = housing_df[feature].quantile(0.25)
  Q3 = housing_df[feature].quantile(0.75)
  IQR = Q3 - Q1
  lower_bound = Q1 - 1.5 * IQR
  upper_bound = Q3 + 1.5 * IQR
  outliers = housing_df[(housing_df[feature] < lower_bound) | (housing_df[feature] >
upper_bound)]
  outliers_summary[feature] = len(outliers)
  print(f"{feature}: {len(outliers)} outliers")
# Optional: Print a summary of the dataset
print("\nDataset Summary:")
print(housing_df.describe())
```

OUTPUT:

Outliers Detection:

MedInc: 681 outliers

HouseAge: 0 outliers

AveRooms: 511 outliers

AveBedrms: 1424 outliers

Population: 1196 outliers

AveOccup: 711 outliers

Latitude: 0 outliers

Longitude: 0 outliers

MedHouseVal: 1071 outliers

Dataset Summary:

MedInc HouseAge ... Longitude MedHouseVal count 20640.000000 20640.000000 ... 20640.000000 20640.000000 mean 3.870671 28.639486 ... -119.569704 2.068558 std 1.899822 12.585558 ... 2.003532 1.153956 min 0.499900 1.000000 ... -124.350000 0.149990 2.563400 18.000000 ... -121.800000 25% 1.196000 3.534800 29.000000 ... -118.490000 50% 1.797000 4.743250 37.000000 ... -118.010000 75% 2.647250 15.000100 52.000000 ... -114.310000 5.000010 max

[8 rows x 9 columns]

pip install pandas

pip install seaborn

pip install scikit-learn