

Roy Amante Salvador and Maria Isabel Saludares

CS 295 Reinforcement Learning

Project Presentation

SAE (J3016) automation levels

SAE Level	Name	Narrative definition	Execution of steering and acceleration/deceleration	Monitoring of driving environment	Fallback performance of dynamic driving task	System capability (driving modes)	
Humar	n driver monito	rs the driving environment					
0	No Automation	The full-time performance by the humar dynamic driving task, even when "enhan systems"	Human driver			n/a	
1	Driver Assistance	The driving mode-specific execution by a driver assistance system of "either steering or acceleration/deceleration"		Human driver and system	Human driver	Human driver	Some driving modes
2	Partial Automation	The driving mode-specific execution by one or more driver assistance systems of both steering and acceleration/deceleration	expectation that the human driver performs all remaining aspects of the dynamic driving task	System			
Autom	ated driving sy	stem monitors the driving environment					
3	Conditional Automation	The driving mode-specific performance by an automated driving system of all aspects of the dynamic	with the expectation that the human driver will respond appropriately to a request to intervene		System	Human driver	Some driving modes
4	High Automation		even if a human driver does not respond appropriately to a request to intervene	System		System	Many driving modes
5	Full Automation		under all roadway and environmental conditions that can be managed by a human driver				All driving modes

Autonomous Driving

Google's AVs (Waymo)

- → 5M+ km driven
- american avenues, streets, and roads

Uber's AVs

- ➤ 1.5M+ km in testing
- Pittsburgh, Phoenix, San Francisco, Toronto
- crash: killed a pedestrian in Arizona

autonomous levels (SAE J3016)

- 1 Driver Assistance: hands on
- **2** Partial Automation: hands off
- 3 Conditional Automation: eyes off
- 4 High Automation: minds off
- 5 Full Automations: steering wheel optional

Autonomous Driving

Five increasingly sophisticated and autonomous levels (SAE J3016):

1 Driver Assistance: hands on

vehicle performs minor steering or acceleration tasks; all other operations are under full human control

2 Partial Automation: hands off

vehicle automatically responds to safety situations, but the driver must remain alert and responsive.

3 Conditional Automation: eyes off

vehicle performs certain "safety-critical functions" under various traffic or environmental conditions.

4 High Automation: minds off

vehicle can operate without requiring human input.

Full Automations: steering wheel optional

vehicle operates with full automation in any environment (weather or traffic).

Adoptation

legal liability
policy makers
customer acceptance
(cost, infrastructure, technology)

Rosenzweig, J., & Bartl, M. (2015). A review and analysis of literature on autonomous driving. *E-Journal Making-of Innovation*. https://towardsdatascience.com/reinforcement-learning-from-grid-world-to-self-driving-cars-52bd3e647bc4

Autonomous Driving

	2016			
Maker	Distance between disengagements	Distance		
Waymo	5,127.9 miles (8,252.6 km)	635,868 miles (1,023,330 km)		
BMW	638 miles (1,027 km)	638 miles (1,027 km)		
Nissan	263.3 miles (423.7 km)	6,056 miles (9,746 km)		
Ford	196.6 miles (316.4 km)	590 miles (950 km)		
General Motors	54.7 miles (88.0 km)	8,156 miles (13,126 km)		
Delphi Automotive Systems	14.9 miles (24.0 km)	2,658 miles (4,278 km)		
Tesla	2.9 miles (4.7 km)	550 miles (890 km)		
Mercedes Benz	2 miles (3.2 km)	673 miles (1,083 km)		
Bosch	0.68 miles (1.09 km)	983 miles (1,582 km)		
Volkswagen	5.56 miles (8.95 km)	9 miles (14 km)		

Wang, Brian (25 March 2018). "Uber' self-driving system was still 400 times worse [than] Waymo in 2018 on key distance intervention metric". NextBigFuture.com. Retrieved 25 March 2018.

SAE Level	Name	Narrative definition	Execution of steering and acceleration/ deceleration	Monitoring of driving environment	Fallback performance of dynamic driving task	System capability (driving modes)	
Humar	driver monito	rs the driving environment					
0	No Automation	The full-time performance by the huma dynamic driving task, even when "enha systems"	Human driver	Human driver	Human driver	n/a	
1	Driver Assistance	The driving mode-specific execution by a driver assistance system of "either steering or acceleration/deceleration"	using information about the driving environment and with the expectation that the human driver performs all remaining aspects of	Human driver and system			Some driving modes
2	Partial Automation	The driving mode-specific execution by one or more driver assistance systems of both steering and acceleration/deceleration	the dynamic driving task	System			
Autom	ated driving sy	stem monitors the driving environment					
3	Conditional Automation	The driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task	with the expectation that the human driver will respond appropriately to a request to intervene	System	System	Human driver	Some driving modes
4	High Automation		even if a human driver does not respond appropriately to a request to intervene			System	Many driving modes
5	Full Automation		under all roadway and environmental conditions that can be managed by a human driver				All driving modes

Simulation to Real Environment

generating simulation data for training visoumotor representation from simulated to real environment ¹ robotic control transfer from simulation to real ^{2,3} reinforcement learning with imagined goals ⁴

- 1. Towards Adapting Deep Visuomotor Representations from Simulated to Real Environments, Eric Tzeng, Coline Devin, Judy Hoffman, Chelsea Finn, Pieter Abbeel, Sergey Levine, Kate Saenko, Trevor Darrell. In the proceedings of the Workshop on Algorithmic Foundations of Robotics (WAFR), San Francisco, CA, USA, December 2016. (arXiv 1511.07111)
- 2. Sim-to-Real Transfer of Robotic Control with Dynamics Randomization, Xue Bin (Jason) Peng, Marcin Andrychowicz, Wojciech Zaremba, Pieter Abbeel. In the proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, May 2018. (arXiv 1710.064537, video)
- 3. Transfer from Simulation to Real World through Learning Deep Inverse Dynamics Model, Paul Christiano, Zain Shah, Igor Mordatch, Jonas Schneider, Trevor Blackwell, Joshua Tobin, Pieter Abbeel, Wojciech Zaremba. arXiv 1610.03518
- 4. Nair, A. V., Pong, V., Dalal, M., Bahl, S., Lin, S., & Levine, S. (2018). Visual reinforcement learning with imagined goals. In Advances in Neural Information Processing Systems (pp. 9191-9200).

Environment Simulators

physics engine

can simulate any scenario, run tests before deploying to autonomous vehicle (AV) flexibility in setting environment conditions: weather, time of day, etc flexibility in building environments: build city scapes, rough terrains, etc.

Simulator

Microsoft AirSim Neighborhood v 1.2.1 simulator

- access to car controls, like steering, velocity, acceleration, brakes
- has information on car states like speed, quaternion (position, velocity, acceleration, orientation)

End-to-end framework for autonomous driving

- raw sensor inputs -> driving actions (continuous)
- Handles partially observable scenarios
- Integration of attention models to extract relevant information

End-to-end framework for autonomous driving 1:

spatial aggregation: sensor fusion, spatial features action and glimpse network²

recurrent temporal aggregation deep Recurrent Q-Learning: LSTM + DQNs = DQRN³

- 1. Sallab, A. E., Abdou, M., Perot, E., & Yogamani, S. (2017). Deep reinforcement learning framework for autonomous driving. Electronic Imaging, 2017(19), 70-76.
- 2. "End-to-end Learning of Action Detection from Frame Glimpses in Videos" at https://arxiv.org/pdf/1511.06984.pdf
- 3. Hausknecht, M., & Stone, P. (2015, September). Deep recurrent q-learning for partially observable mdps. In 2015 AAAI Fall Symposium Series.

Objectives

create a wrapper class for OpenAI Gym with AirSim train a model for autonomous car driving via reinforcement learning

investigate the effects during the learning and its effect in training multiple policy networks:

- MI P
- MLP LSTM
- Deep Meta RL

On different action spaces:

- break, gear, throttle, steering
- break, throttle, steering
- movement, steering

On various inputs:

LIDAR

Environment

- created wrapper class for OpenAl Gym¹
- Goal: reach waypoints (sequence in random)
- Conditions:
 - Agent car initially spawns at the middle of the map
 - Episode ends when all waypoints are reached or time runs out

Action Space

On different action spaces:

- break, gear, throttle, steering
- break, throttle, steering
- movement, steering

break soft to hard break

throttle accelerometer

geardrive, neutral, reverse
(probability distribution)

steering angle

Observation Space

Speed /
Linear and
Angular
Velocity

Light Detection
And Ranging
(LIDAR)
reading per 1°

Range: 10

Rotations Per Second: 10 Points Per Second: 10000

Orientation (yaw)

Reward Scheme

rewards (+)

Euclidean distance from current waypoint

 $dist = | car_{pos} - target_{pos} |$

Orientation of car wrt current waypoint

cos (yaw_{target wrt car} - yaw_{car})

penalties (-)

collision

collision detected*w_{collision}

reverse

car reverses*W_{reverse}

lack of movement speed

if car_{vel} < car_{vel_threshold}

^{*}reward and penalties are computed every timestep

Reinforcement Learning Algorithms

Used Stable Baselines¹

Advantage Actor Critic (A2C)

- Actor controls the behavior of the agent
- Critic measures the value of the action taken. Learns the advantage function instead of Q value function

Proximal Policy Optimization (PPO)

 an Actor Critic method by limiting how far we can change the policy each iteration and adding a soft constraint to the objective function

Soft Actor Critic (SAC)

- Off-Policy Maximum Entropy Deep Reinforcement Learning
- Has a stochastic actor to introduce robustness

Policy Networks

MLP

• 2 layers of 64 neurons

MLP-LSTM

 2 layers of 64 neurons followed by LSTM layer with 256 cells

Deep Meta-RL¹

- 2 layers of 64 neurons followed by LSTM layer with 256 cells
- Reward and action from previous timestep as input

Custom MLP

- 3 normalized layer of 512 neurons
- 1. Learning to Reinforcement Learn, Jane X. Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z. Leibo, Remi Munos, Charles Blundell, Dharshan Kumaran, Matthew Botvinick 2016, (arXiv:1611.05763)

Framework

Experiments

Algorithm-Policy	Action Space	Rewards/Penalties		
	Steering, throttle, break, reverse			
A2C-MLP	Steering, throttle, break, reverse (vary reward weight)			
A2C-IVILP	Steering, throttle, break	Euclidean Distance Collision		
	Steering, throttle, break (vary reward weight)	Reverse Lack of Movement Speed		
A2C-MLP+LSTM	Steering, throttle, break, reverse			
AZC-IVILP+LSTIVI	Steering, throttle, break			
PPO2-MLP	Steering, movement (Throttle, Brake, Reverse)	Orientation Euclidean Distance		
PPO2-MLP+LSTM	Steering, movement (Throttle, Brake, Reverse)	Collision Reverse		
PPO2-MetaRL	Steering, movement (Throttle, Brake, Reverse)	Lack of Movement Speed		
SAC-LnMLP	Steering, movement (Throttle, Brake, Reverse)			

5000

4000

S 3000

2000

1000

200k

PPO2

A2C

PPO2

SAC

	Algorithm-Policy	success rate	timesteps (mean)	total reward (mean)	collisions (mean)	trajectory distance (mean)	goal distance (mean)	goal distance (std)
0	A2C-MLP_Full	7%	117.84	408.16	22.64	21.17	19.14	4.95
1	A2C-MLP_Full_1	0%	120	-323.08	18.17	10.41	25.11	2.84
2	A2C-MLPLSTM_Full	0%	120	432.78	22.90	30.93	32.40	2.82
3	A2C-MLP_Partial	15%	112.48	192.32	52.12	21.68	18.92	7.42
4	A2C-MLP_Partial_1	0%	120	-1851.52	86.50	33.89	40.93	5.63
5	A2C-MLPLSTM_Partial	30%	104.98	239.40	32.36	28.29	13.15	3.67
6	PPO2-MLP	0%	120	-2.46	12.42	47.0	32.29	5.56
7	PPO2-MLPLSTM	0%	120	-3.12	11.44	34.29	44.69	10.60
8	PPO2-MetaRL	32%	105.73	-4.05	17.80	33.16	22.83	12.49
9	SAC-LnMLP	100%	28.67	938.42	0.01	23.21	9.46	0.40

Table 2: Performance evaluation during testing at 100 episodes.

- A2C used 4 action spaces vs PPO2 and SAC used 2 action spaces
 - steering, throttle, break, reverse
 - steering + movement (throttle, break, reverse)
- Both PPO2 and A2C has an increasing trend of entropy loss for MLP Policy Network
- Meta Reinforcement Learning hastens policy convergence compared to just using LSTM and MLP
- SAC learns relatively quickly compared to A2C and PPO2

Conclusion and Recommendations

 we've conducted a preliminary dive on Autonomous Driving using Deep Reinforcement Learning

Recommendations

- Continue training with tens of millions of time steps
- Further experiment with action space simplification like reducing conversion of range of movements (e.g. angle of steering)
- Add RGB camera view as part of observation space (CNN Policy Network).
- Effects of adding more (strategically placed) sensors
- Try to train first on a simpler map then transfer to more complex ones stabilized
- Explore other policy network architectures

Roy Amante Salvador and Maria Isabel Saludares

CS 295 Reinforcement Learning

Project Presentation