Arithmetic Polynomial

Dr. E.SURESH BABU

Assistant Professor

Computer Science and Engineering Department

National Institute of Technology, Warangal

Warangal

Arithmetic Polynomial

Why Study Polynomial Arithmetic

- ❖ Defining finite fields over sets of polynomials will allow us to create a **finite set of numbers** that are particularly appropriate for digital computation.
- * Finite set of numbers will constitute a finite field
 - ✓ Specifically, We will perform all arithmetic operations on sets of polynomials

What do meant by Polynomial

❖ A Polynomial **f(x)** is a mathematical expression of the form

$$a^{n}x_{n} + a^{n-1}x_{n-1} + \dots + a^{1}x + a^{0}$$

- \checkmark The highest exponent of **x** is the degree of the polynomial.
- ✓ Some non-negative integer **n**
- \checkmark a_n , a_{n-1} , ..., a_0 are called **coefficients**.
- \checkmark where x_i is called the i^{th} term

- ❖ We can add, subtract polynomials by **combine the terms** in the polynomials with the **same powers**.
- **Polynomial Addition:** $(x^5 + 3x^3 + 4) + (6x^6 + 4x^3)$

$$x^{5} + 3x^{3} + 4$$

$$+ 6x^{6} + 4x^{3}$$

$$6x^{6} + x^{5} + 7x^{3} + 4$$

$$(x^5 + 3x^3 + 4) + (6x^6 + 4x^3) = 6x^6 + x^5 + 7x^3 + 4$$

Polynomial Subtraction : $(x^5 + 3x^3 + 4) - (6x^6 + 4x^3)$

$$\begin{array}{r} x^5 + 3x^3 + 4 \\
 - 6x^6 + 4x^3 \\
 \hline
 - 6x^6 + x^5 - 1x^3 + 4
 \end{array}$$

$$(x^5 + 3x^3 + 4) - (6x^6 + 4x^3) = -6x^6 + x^5 - x^3 + 4$$

❖ We can also multiply two polynomials. The general rule is that each **term** in the first polynomial has to **multiply each term** in the second polynomial, then **sum the resulted** polynomials up.

Polynomial Multiplication: $(x^5 + 3x^3 + 4) \times (6x^6 + 4x^3)$

$$x^{5} + 3x^{3} + 4$$

$$\times 6x^{6} + 4x^{3}$$

$$4x^{8} + 12x^{6} + 16x^{3}$$

$$6x^{11} + 18x^{9} + 24x^{6}$$

$$6x^{11} + 18x^{9} + 4x^{8} + 36x^{6} + 16x^{3}$$

$$(x^5 + 3x^3 + 4) \times (6x^6 + 4x^3) = 6x^{11} + 18x^9 + 4x^8 + 36x^6 + 16x^3$$

Polynomial Division with Quotient

Polynomial Division: $(6x^{11} + 18x^9 + 4x^8 + 36x^6 + 16x^3) \div (x^5 + 3x^3 + 4)$

$$\begin{array}{r}
6x^{6} + 4x^{3} \\
x^{5} + 3x^{3} + 4 \overline{\smash{\big)}}6x^{11} + 18x^{9} + 4x^{8} + 36x^{6} + 16x^{3} \\
\underline{6x^{11} + 18x^{9} + 24x^{6}} \\
4x^{8} + 12x^{6} + 16x^{3} \\
\underline{4x^{8} + 12x^{6} + 16x^{3}} \\
0
\end{array}$$

$$(6x^{11} + 18x^9 + 4x^8 + 36x^6 + 16x^3) \div (x^5 + 3x^3 + 4) = 6x^6 + 4x^3$$

Polynomial Division with Remainder

❖ But in many cases the divisors **cannot divide** the dividends, which means you will have **remainders**.

Polynomial Division with Remainder

Polynomial Division: $3x^6 + 7x^4 + 4x^3 + 5$) ÷ $(x^4 + 3x^3 + 4)$

$$\begin{array}{r}
3x^{2} - 9x + 34 \\
x^{4} + 3x^{3} + 4 \overline{\smash{\big)}\ 3x^{6} + 7x^{4} + 4x^{3}} + 5 \\
\underline{3x^{6} + 9x^{5}} + 12x^{2} + 5 \\
\underline{-9x^{5} + 7x^{4} + 4x^{3} - 12x^{2}} + 5 \\
\underline{-9x^{5} - 27x^{4}} - 36x \\
\underline{34x^{4} + 4x^{3} - 12x^{2} + 36x + 5} \\
\underline{34x^{4} + 102x^{3} + 136} \\
\underline{-98x^{3} - 12x^{2} + 36x - 131}
\end{array}$$
Subtract

 $(3x^6 + 7x^4 + 4x^3 + 5) \div (x^4 + 3x^3 + 4) = 3x^2 - 9x + 34$ with remainder $-98x^3 - 12x^2 + 26x - 131$

Arithmetic Operations On Polynomials To A Finite Field

Arithmetic Operations On Polynomials Whose Coefficients Belong To A Finite Field

- * We can perform modular arithmetic with polynomials over a field.
- The operands and modulus are polynomials.

$$\Rightarrow$$
 Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$ and

$$g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_0$$
 be two polynomials over a field F ,

Arithmetic Operations On Polynomials Over a Finite Field

* Let's consider the **set of all polynomials** whose coefficients

belong to the finite field \mathbb{Z}_7 (which is the same as GF(7)).

1. Adding Two Polynomials: $f(x) = 5x^2 + 4x + 6$; g(x) = 2x + 1

$$f(x) + g(x) = 5x^{2} + 4x + 6$$

$$+ 2x + 1$$

$$5x^{2} + 6x + 0 (7 Mod 7)$$

Ans: $5x^2 + 6x$

Arithmetic Operations On Polynomials Over a Finite Field

* Let's consider the **set of all polynomials** whose coefficients

belong to the finite field \mathbb{Z}_7 (which is the same as GF(7)).

2. Subtract Two Polynomials: $f(x) = 5x^2 + 4x + 6$; g(x) = 2x + 1

$$f(x) - g(x) = 5x^2 + 4x + 6$$

$$- 2x + 1$$

$$5x^2 + 2x + 5$$
 (5 Mod 7 = 5)

Ans: $5x^2 + 2x + 5$

Arithmetic Operations On Polynomials Over a Finite Field

3. Multiply Two Polynomials: $f(x) = 5x^2 + 4x + 6$; g(x) = 2x + 1

$$f(x) X g(x) = 5x^{2} + 4x + 6$$

$$X \qquad 2x + 1$$

$$5x^{2} + 4x + 6$$

$$10x^{3} + 8x^{2} + 12x$$

 $10 x^3 + 13 x^2 + 16x + 6 \mod 7 = 3 x^3 + 6x^2 + 2x + 6$

❖ **Dividing polynomials** defined over a finite field is a little bit more

frustrating than performing other arithmetic operations on such polynomials.

❖ Consider again the polynomials defined over GF(7).Let's say we

want to divide $5x^2 + 4x + 6$ by 2x + 1.

- Arr Step-1: In a long division, we must start by dividing $5x^2$ by 2x.
 - \checkmark This requires that we divide 5 by 2 in GF(7).
 - ✓ Dividing **5 by 2** is the same as **multiplying 5** by the **multiplicative inverse of 2**.
 - ✓ Multiplicative inverse of **2** is **4** since **2** × **4** mod **7** is **1**. So we

have $5/2 = 5 \times 2^{-1} = 5 \times 4 = 20 \mod 7 = 6$

- ✓ Therefore, the first term of the **quotient is 6x**.
- ✓ Since the product of 6x and 2x + 1 is $5x^2 + 6x$,
- ✓ we need to subtract $5x^2 + 6x$ from $5x^2 + 4x + 6$ which result is

(4-6)x+6 (since the additive inverse of 6 is 1) is the same as

(4+1)x+6, and that is the same as 5x+6.

❖ Step-2: Our new dividend for the next round of long division is

$$5x + 6$$
. (i.e $5x + 6 / 2x + 1$)

- \checkmark To find the next quotient term, we need to **divide 5x by 2x.**
- ✓ We see that the **next quotient term** is again **6**.

❖ Final Result: when the coefficients are drawn from the set GF(7),

5x2 + 4x + 6 divided by 2x + 1 yields a quotient of 6x + 6

(Adding the Two Steps) and the remainder is zero.

Observation

- So we can say that as a polynomial defined over the field GF(7), $5x^2 + 4x + 6$ is a **product of two factors**, 2x + 1 and 6x + 6.
- \clubsuit We can therefore write $5x^2 + 4x + 6 = (2x + 1) \times (6x + 6)$

Arithmetic Operations On Polynomials Over Finite Field

Polynomials Over Finite Field

- ❖ Finite fields of order 2ⁿ are called binary fields.
 - ✓ These **Binary fields** are of special interest
 - Efficient implementation in hardware/computer.
- ❖ The elements of GF(2ⁿ) are binary polynomials,
 - ✓ Polynomials whose coefficients are either 0 or 1.

Representation of Polynomials Using Bits

* Represent the 8-bit word (10011001) using a polynomials.

First simplification
$$\left| 1x^7 + 1x^4 + 1x^3 + 1x^0 \right|$$

Second simplification $x^7 + x^4 + x^3 + 1$

$$x^7 + x^4 + x^3 + 1$$

Arithmetic Operations On Polynomials Over GF(2)

* Addition and subtraction operations on polynomials are the same operation.

Examples

 \clubsuit Polynomials Addition and Subtraction $(x^5 + x^2 + x) +$

 $(x^3 + x^2 + 1)$ in GF(2). We use the symbol \oplus (XOR) for polynomial addition.

$$0x^{7} + 0x^{6} + 1x^{5} + 0x^{4} + 0x^{3} + 1x^{2} + 1x^{1} + 0x^{0} \oplus 0x^{7} + 0x^{6} + 0x^{5} + 0x^{4} + 1x^{3} + 1x^{2} + 0x^{1} + 1x^{0}$$

$$0x^{7} + 0x^{6} + 1x^{5} + 0x^{4} + 1x^{3} + 0x^{2} + 1x^{1} + 1x^{0} \rightarrow x^{5} + x^{3} + x + 1$$

Arithmetic Operations On Polynomials Over GF(2)

Polynomials Multiplication

- 1. The coefficient multiplication is done in GF(2).
- 2. The multiplying x^i by x^j results in x^{i+j} .
- 3. The multiplication may create terms with degree more than
 - n-1, which means the **result needs to be reduced** using a

modulus polynomial.

Arithmetic Operations On Polynomials Over GF(2)

Polynomials Multiplication

$$f(x) = x^{2} + x + 1$$

$$g(x) = x + 1$$

$$f(x) \times g(x) = x^{2} (x + 1) + x(x + 1) + 1(x + 1)$$

$$= x^{3} + x^{2} + x^{2} + x + x + 1$$

$$= x^{3} + 2x^{2} + 2x + 1 \mod 2 = x^{3} + 0x^{2} + 0x + 1$$

$$= x^{3} + 1$$

Irreducible Polynomial

Irreducible Polynomial

- ❖ If a polynomial is **divisible** only by **itself** and **constants**, then we call this polynomial an **irreducible polynomial**.
- An irreducible polynomial is also referred to as a prime polynomial.

Irreducible Polynomial....

- ❖ A polynomial f(x) over a GF(2ⁿ) is called irreducible
 - ✓ if f(x) cannot be expressed as a **product** of two polynomials, both over $GF(2^n)$ and both of degree **lower than** that of f(x).
- * Note: When g(x) divides f(x) without leaving a remainder, we say g(x) is a factor of f(x).

Irreducible Polynomial Over GF(2ⁿ)

Degree	Irreducible Polynomials
1	(x + 1), (x)
2	$(x^2 + x + 1)$
3	$(x^3 + x^2 + 1), (x^3 + x + 1)$
4	$(x^4 + x^3 + x^2 + x + 1), (x^4 + x^3 + 1), (x^4 + x + 1)$
5	$(x^5 + x^2 + 1), (x^5 + x^3 + x^2 + x + 1), (x^5 + x^4 + x^3 + x + 1),$ $(x^5 + x^4 + x^3 + x^2 + 1), (x^5 + x^4 + x^2 + x + 1)$

Thank U