Espacios vectoriales, subespacios y bases

2. a. Es espacio vectorial b. Es espacio vectorial c. Es espacio vectorial d. No es espacio vectorial

3. a. S_1 no es subespacio de R^2 c. S_3 es subespacio de R^2

b. S_2 no es subespacio de R^2 d. S_4 no es subespacio de R^2 .

4. a. S_1 no es subespacio de R^3

b. S_2 no es subespacio de R^3

c. S_3 es subespacio de R^3

d. S_4 es subespacio de R^3 .

5. a. S es subespacio de R^2

b. S no es subespacio de \mathbb{R}^2

c. S es subespacio de \mathbb{R}^3

d. S no es subespacio de R^3

e. S no es subespacio de R^{2x2}

6. a. Si es posible

b. Si es posible

c. No es posible

d. Si es posible e. No es posible

7. k = -10

8. a. Sí lo genera b. No lo genera c. Sí lo genera d. Sí lo genera

9. a. $A = \{(2,1)\}$ b. $A = \{(1,1,-1)\}$ c. $A = \{(1,0,1), (1,-2,0)\}$ d. $A = \{\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\}$

10. a. linealmente independiente b. linealmente dependiente

c. linealmente independiente

d. linealmente independiente

e. linealmente independiente

11. k ≠-10

12. a. B = $\{(2, 3)\}$ dim(S) = 1. Recta en \mathbb{R}^2 que pasa por el origen de coordenadas b. B = $\{(-3, 2, 0), (2, 0, 1)\}$ dim(S) = 2. Plano en \mathbb{R}^3 que pasa por el origen de coordenadas c. B = $\{(1, -1, -1)\}\$ dim(S) = 1. Recta en \mathbb{R}^3 que pasa por el origen de coordenadas d. B = {(-1, 1, 3), (0, 5, -1)} dim(S) = 2. Plano en R^3 que pasa por el origen de ocoordenadas e. $B = \left\{ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$, dim(S) = 3

 $C_{B_1}(\vec{v}) = (-3, 7, -5), \ C_{B_2}(\vec{v}) = \left(-\frac{6}{7}, \frac{5}{7}, \frac{10}{7}\right)$ 13. $C_{B_1}(\vec{w}) = (-1, 2, -1), \ C_{B_2}(\vec{w}) = \left(-\frac{1}{2}, \frac{2}{2}, \frac{4}{2}\right)$

 $B_1 = \{(1,0,3,0), (0,1,0,0), (1,4,-2,-1)\}, B_2 = \{(0,0,5,1), (0,1,0,0), (1,4,-2,-1)\}$ 14.

a. $C_E(\vec{X}) = \begin{pmatrix} -4 \\ -6 \end{pmatrix}$, E base canónica de R^2 b. $C_{B'}(\vec{X}) = \begin{pmatrix} -\frac{4}{3} \\ 2 \end{pmatrix}$ 15.

16. a. B = $\{(-1, 0, 1, 3), (2, 1, 0, 5), (0, 4, 8, -4)\}$ dim(S) = 3 b. k = -2

a. B = $\{(1, -2, 1)\}\ dim(S^{\perp}) = 1$ 17.

b. B =
$$\{(1, 0, 0, 1), (1, -3, 0, 1)\}$$
 dim $(S^{\perp}) = 2$
c. B = $\{(2, 1, 0), (-1, 0, 1)\}$ dim $(S^{\perp}) = 2$
d. dim $(S^{\perp}) = 0$. S^{\perp} no tiene base

Si es un subespacio. Una base de S^{\perp} es $B = \{(1, 1, 1)\}, dim(S^{\perp}) = 1.$ 18.