

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: +86-755-26648640 Fax: +86-755-26648637

Website: <u>www.cqa-cert.com</u>

Report Template Version: V04
Report Template Revision Date: 2018-07-06

# **RF Exposure Evaluation Report**

Report No.: CQASZ20190901002E-03
Applicant: Avantree Technology Co., Ltd.

Address of Applicant: The 4th Floor, Yuepeng Building, No.1019 Jiabin Rd, Luohu District, Shenzhen,

China

**Equipment Under Test (EUT):** 

**EUT Name:** Wireless Stereo Headphones

All Model No.: BTHS-AS90, BTHS-AS90B, BTHS-AS90C, BTHS-AS90M, BTHS-ANC033,

**BTHS-035** 

Test Model No.: BTHS-AS90

Brand Name: Avantree

FCC ID: 2AITF-BTHS-AS90 Standards: 47 CFR Part 1.1307

47 CFR Part 1.1310

KDB447498D01 General RF Exposure Guidance v06

**Date of Receipt:** 2019-12-13

**Date of Test:** 2019-12-13 to 2019-12-24

Date of Issue: 2019-12-24
Test Result: PASS\*

\*In the configuration tested, the EUT complied with the standards specified above

Tested By:

(Tom Chen)

Reviewed By:

(Aaron Ma)

Jack Ai)

Approved By:

APPRO

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.



Report No.: CQASZ20190901002E-03

## 1 Version

## **Revision History Of Report**

| Report No.           | Version | Description    | Issue Date |
|----------------------|---------|----------------|------------|
| CQASZ20190901002E-03 | Rev.01  | Initial report | 2019-12-24 |





Report No.: CQASZ20190901002E-03

## 2 Contents

|   |         |                                                           | Page |
|---|---------|-----------------------------------------------------------|------|
| 1 | VERS    | SION                                                      | 2    |
| 2 | CONT    | TENTS                                                     | 3    |
| 3 | GENE    | ERAL INFORMATION                                          | 4    |
|   | 3.1 Cli | JENT INFORMATION                                          | 4    |
|   | 3.1 CEI | ENERAL DESCRIPTION OF EUT                                 | 4    |
|   | 3.3 GEN | ENERAL DESCRIPTION OF BT                                  | 4    |
|   | 3.4 GEN | ENERAL DESCRIPTION OF NFC                                 | 4    |
| 4 | SAR E   | EVALUATION                                                | 5    |
|   | 4.1 RF  | EXPOSURE COMPLIANCE REQUIREMENTStandard RequirementLimits | 5    |
|   | 4.1.1   | Standard Requirement                                      | 5    |
|   | 4.1.2   | Limits                                                    | 5    |
|   | 4.1.3   | B EUT RF Exposure                                         | 6    |



Report No.: CQASZ20190901002E-03

## 3 General Information

### 3.1 Client Information

| Applicant:               | Avantree Technology Co., Ltd.                                                         |
|--------------------------|---------------------------------------------------------------------------------------|
| Address of Applicant:    | The 4th Floor, Yuepeng Building, No.1019 Jiabin Rd, Luohu<br>District,Shenzhen, China |
| Manufacturer:            | Avantree Technology Co., Ltd.                                                         |
| Address of Manufacturer: | The 4th Floor, Yuepeng Building, No.1019 Jiabin Rd, Luohu<br>District,Shenzhen, China |

## 3.2 General Description of EUT

| Product Name:     | Wireless Stereo Headphones                                           |
|-------------------|----------------------------------------------------------------------|
| All Model No.:    | BTHS-AS90, BTHS-AS90B, BTHS-AS90C, BTHS-AS90M, BTHS-ANC033, BTHS-035 |
| Test Model No.:   | BTHS-AS90                                                            |
| Trade Mark:       | Avantree                                                             |
| Hardware Version: | Rer 2.7                                                              |
| Software Version: | BT5.0                                                                |
| USB Cable:        | 98cm(Unshielded)                                                     |
| AUX Cable:        | 148cm(Unshielded)                                                    |
| Product Type:     | ☐ Mobile ☐ Portable ☐ Fix Location                                   |
| Power Supply:     | lithium battery:DC3.7V, Charge by DC5V                               |

## 3.3 General Description of BT

| Operation Frequency:  | 2402MHz~2480MHz                         |
|-----------------------|-----------------------------------------|
| Bluetooth Version:    | V5.0                                    |
| Modulation Technique: | Frequency Hopping Spread Spectrum(FHSS) |
| Modulation Type:      | GFSK, π/4DQPSK, 8DPSK                   |
| Transfer Rate:        | 1Mbps/2Mbps/3Mbps                       |
| Number of Channel:    | 79                                      |
| Hopping Channel Type: | Adaptive Frequency Hopping systems      |
| Test Software of EUT: | Blue test 3 (manufacturer declare )     |
| Antenna Type:         | Integral antenna                        |
| Antenna Gain:         | 0.9dBi                                  |

## 3.4 General Description of NFC

|   | Operation Frequency: | 13.56MHz       |
|---|----------------------|----------------|
| İ | Modulation Type:     | ASK            |
| İ | Antenna Type:        | Induction coil |
| Ī | Antenna Gain:        | 0dBi           |



Report No.: CQASZ20190901002E-03

#### 4 SAR Evaluation

### **4.1** RF Exposure Compliance Requirement

#### 4.1.1 Standard Requirement

According to KDB447498D01 General RF Exposure Guidance v06

4.3.1. Standalone SAR test exclusion considerations

Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied.

#### **4.1.2 Limits**

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]  $\sqrt{f(GHz)}$  ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

f(GHz) is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation<sup>17</sup>

The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is  $\leq$  50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is  $\leq$  5 mm, a distance of 5 mm is applied to determine SAR test exclusion

For frequencies below 100 MHz, the following may be considered for SAR test exclusion (also illustrated in Appendix C):

#### Appendix C

#### SAR Test Exclusion Thresholds for < 100 MHz and < 200 mm

Approximate SAR test exclusion power thresholds at selected frequencies and test separation distances are illustrated in the following table. The equation and threshold in 4.3.1 must be applied to determine SAR test exclusion.

| MHz  | < 50 | 50   | 60   | 70   | 80   | 90   | 100  | 110  | 120  | 130  | 140  | 150  | 160  | 170  | 180  | 190  | mm |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|----|
| 100  | 237  | 474  | 481  | 487  | 494  | 501  | 507  | 514  | 521  | 527  | 534  | 541  | 547  | 554  | 561  | 567  |    |
| 50   | 308  | 617  | 625  | 634  | 643  | 651  | 660  | 669  | 677  | 686  | 695  | 703  | 712  | 721  | 729  | 738  |    |
| 10   | 474  | 948  | 961  | 975  | 988  | 1001 | 1015 | 1028 | 1041 | 1055 | 1068 | 1081 | 1095 | 1108 | 1121 | 1135 |    |
| 1    | 711  | 1422 | 1442 | 1462 | 1482 | 1502 | 1522 | 1542 | 1562 | 1582 | 1602 | 1622 | 1642 | 1662 | 1682 | 1702 | mW |
| 0.1  | 948  | 1896 | 1923 | 1949 | 1976 | 2003 | 2029 | 2056 | 2083 | 2109 | 2136 | 2163 | 2189 | 2216 | 2243 | 2269 |    |
| 0.05 | 1019 | 2039 | 2067 | 2096 | 2125 | 2153 | 2182 | 2211 | 2239 | 2268 | 2297 | 2325 | 2354 | 2383 | 2411 | 2440 |    |
| 0.01 | 1185 | 2370 | 2403 | 2437 | 2470 | 2503 | 2537 | 2570 | 2603 | 2637 | 2670 | 2703 | 2737 | 2770 | 2803 | 2837 |    |





Report No.: CQASZ20190901002E-03

## 4.1.3 EUT RF Exposure

#### **Measurement Data**

1)For BT

| 1)FOR BI         |                   |                   |            |             |  |  |  |  |
|------------------|-------------------|-------------------|------------|-------------|--|--|--|--|
| GFSK mode        |                   |                   |            |             |  |  |  |  |
| Test channel     | Peak Output Power | Tune up tolerance | Maximum tu | ne-up Power |  |  |  |  |
|                  | (dBm)             | (dBm)             | (dBm)      | (mW)        |  |  |  |  |
| Lowest(2402MHz)  | 3.740             | 3±1               | 4.0        | 2.512       |  |  |  |  |
| Middle(2441MHz)  | -1.500            | -1±1              | 0          | 1.000       |  |  |  |  |
| Highest(2480MHz) | -1.000            | -1±1              | 0          | 1.000       |  |  |  |  |
|                  | π/4DQPS           | SK mode           |            |             |  |  |  |  |
| Test channel     | Peak Output Power | Tune up tolerance | Maximum tu | ne-up Power |  |  |  |  |
|                  | (dBm)             | (dBm)             | (dBm)      | (mW)        |  |  |  |  |
| Lowest(2402MHz)  | -5.270            | -4.5±1            | -3.5       | 0.447       |  |  |  |  |
| Middle(2441MHz)  | -2.230            | -1.5±1            | -0.5       | 0.891       |  |  |  |  |
| Highest(2480MHz) | -1.660            | -1.5±1            | -0.5 0.891 |             |  |  |  |  |
|                  | 8DPSK             | mode              |            |             |  |  |  |  |
| Test channel     | Peak Output Power | Tune up tolerance | Maximum tu | ne-up Power |  |  |  |  |
|                  | (dBm)             | (dBm)             | (dBm)      | (mW)        |  |  |  |  |
| Lowest(2402MHz)  | -4.880            | -4.5±1            | -3.5       | 0.447       |  |  |  |  |
| Middle(2441MHz)  | -1.850            | -1.5±1            | -0.5       | 0.891       |  |  |  |  |
| Highest(2480MHz) | -1.240            | -1.5±1            | -0.5       | 0.891       |  |  |  |  |

| Channel              | Maximum Peak Conducted | Tune up        |       | ım tune-<br>ower | Calculated | Exclusion<br>threshold |
|----------------------|------------------------|----------------|-------|------------------|------------|------------------------|
| Chamile              | Output Power<br>(dBm)  | ut Power (dBm) | (dBm) | (mW)             | value      |                        |
| Lowest<br>(2402MHz)  | 3.740                  | 3±1            | 4.0   | 2.512            | 0.78       |                        |
| Middle<br>(2441MHz)  | -1.500                 | -1±1           | 0     | 1.000            | 0.31       | 3.0                    |
| Highest<br>(2480MHz) | -1.000                 | -1±1           | 0     | 1.000            | 0.31       |                        |

Remark: The Max Conducted Peak Output Power data refer to report Report No.: CQASZ20190901002E-01



Report No.: CQASZ20190901002E-03

#### 2) For NFC

eirp = pt x gt =  $(E \times d)^2/30$ 

where:

pt = transmitter output power in watts,

gt = numeric gain of the transmitting antenna (unitless),

E = electric field strength in V/m, ---10 $^{((dB\mu V/m)/20)}/10^6$ ,

d = measurement distance in meters (m)---3m,

So pt =  $(E \times d)^2/30 / gt$ 

The worst case (refer to report CQASZ20190901002E-02) is below:

| Frequency (MHz) | Level (dBuV/m) | Polarization |
|-----------------|----------------|--------------|
| 13.56           | 61.51          | Peak         |

For 13.56MHz wireless:

Field strength = 61.51dBµV/m @3m

Ant. gain 0dBi; so Ant numeric gain=1.0

So pt= ${[10^{(61.51)}/10^6x3]^2/30 /1.0}x1000mW = 0.00042mW$ 

0.00042mW<Limit:308mW

So the SAR report is not required.