PREPARED BY : T.KAMEDA :M

DATE

:Mar.14.2014

CHECKED BY

DATE

H.YAMAGUCHI : Mar.14.2014

H. Gamagach.

# **SHARP**

DISPLAY DEVICE BUSINESS SHARP CORPORATION

## **SPECIFICATION**

 SPEC
 No.
 LD-D2114302A

 FILE
 No.

 ISSUE:
 Mar.14.2014

27 pages

APPLICABLE GROUP
DISPLAY DEVICE BUSINESS
DIVISION

PAGE:

**Device Specification for** 

# TFT-LCD module

MODEL No. LQ133T1JW01

| □ CUSTOMER'S APPROVAL |  |
|-----------------------|--|
| DATE                  |  |
| RV                    |  |

**PRESENTED** 

H.Őkuno

DEPARTMENT GENERAL MANAGER

DEVELOPMENT DEPARTMENT I

**DISPLAY DEVICE UNIT II** 

**DISPLAY DEVICE BUSINESS DIVISION** 

# **RECORDS OF REVISION**

MODEL NO: LQ133T1JW01 SPEC NO: LD-D2114302A

| DATE      | REVISED | PAGE | SUMMARY               | NOTE |
|-----------|---------|------|-----------------------|------|
| 2014.3.14 | Α       |      | 1 <sup>st</sup> Issue |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           | +       |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      |                       |      |
|           |         |      | <del> </del>          |      |

#### **NOTICE**

This publication is the proprietary of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before sending this publication to third parties except your company and SHARP.

The application circuit examples in this publication are provided to explain the representative applications of SHARP's devices and are not intended to guarantee any circuit design or permit any industrial property right or other rights to be executed. SHARP takes no responsibility for any problems related to any industrial property right or a third party resulting from the use of SHARP's devices, except for those resulting directly from device manufacturing processes.

In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP's device.

SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structures and other contents described herein at any time without notice in order to improve design or reliability. Contact SHARP in order to obtain the latest specification sheets before using any SHARP's device. Manufacturing locations are also subject to change without notice.

Observe the following points when using any device in this technical literature. SHARP takes no responsibility for damage caused by usage deviating from the listed specifications and precautions.

The devices in this publication are designed for general electronic equipment use.

The appropriate design measures should be taken to ensure reliability and safety when SHARP's devices are used for equipment such as:

- Transportation control and safety equipment(i.e.,aircraft, trains, automobiles, etc.)
- •Traffic signals •Gas leakage sensor breakers •Alarm equipment •Various safety devices etc.

SHARP's devices shall not be used for equipment that requires extremely high level of reliability, such as:

- Military and space applications
- Nuclear power control equipment
- Medical equipment for life support

Contact a SHARP representative, in advance, when intending to use SHARP's devices for any "specific" applications other than those recommended by SHARP.

Contact and consult with a SHARP representative in advance, if there are any questions about the contents of this publication.

# - Table of contents -

|     |                                                  |                                                         | page |
|-----|--------------------------------------------------|---------------------------------------------------------|------|
| 1.  | Application                                      |                                                         | 3    |
| 2.  | Overview                                         |                                                         | 3    |
| 3.  | Mechanical Specifications                        |                                                         | 3    |
| 4.  | Input Terminals                                  |                                                         | 4    |
|     | 4-1 symbol                                       |                                                         | 4    |
|     | 4-2 eDP interface                                |                                                         | 5    |
| 5.  | Absolute Maximum Ratings                         |                                                         | 7    |
| 6.  | Electrical Characteristics                       |                                                         | 8    |
|     | 6-1 TFT-LCD panel driving                        |                                                         | 8    |
|     | 6-2 Backlight driving                            |                                                         | 11   |
| 7.  | Timing Characteristics of Input Signals          |                                                         | 12   |
|     | 7-1 Timing characteristics                       |                                                         | 12   |
|     | 7-2 Input Data Signals and Display Position      | on the screen                                           | 13   |
| 8.  | Input Signals, Basic Display Colors and Gray Sca | ale of Each Color · · · · · · · · · · · · · · · · · · · | 14   |
|     |                                                  |                                                         |      |
| 9.  | EDID Specification                               |                                                         | 15   |
|     | 9-1 EDID data structure                          |                                                         | 15   |
| 10. | Optical Characteristics                          |                                                         | 19   |
| 11. | Display Qualities                                |                                                         | 21   |
| 12. | Handling Precautions                             |                                                         | 22   |
| 13. | Packing Condition                                |                                                         | 23   |
| 14. | Storage Conditions                               |                                                         | 23   |
|     | Fig.1 Packing form                               |                                                         | 24   |
| 15. | Marking of product name                          |                                                         | 25   |
| 16. | RoHS Directive                                   |                                                         | 25   |
| 17. | Reliability Test Items                           |                                                         | 26   |
|     | Fig.2 Outline Dimensions                         |                                                         | 27   |

# 1. Application

This specification applies to a color TFT-LCD module, LQ133T1JW01.

### 2. Overview

This module is a color active matrix LCD module incorporating Oxide TFT (Thin Film Transistor). It is composed of a color TFT-LCD panel, driver ICs, a control circuit and power supply circuit, and a backlight unit. Graphics and texts can be displayed on a 2560 × 3 × 1440 dots panel with 16,777,216 colors by using eDP (Embedded Display Port) to interface and supplying +3.3V DC supply voltage for TFT-LCD panel driving and applying +12V DC supply voltage for LED backlight-driving. In this TFT-LCD panel, color filters for excellent color performance and backlights for high brightness are incorporated to realize brighter and clearer pictures, making this model optimum for use in multi-media applications.

Optimum viewings are in all directions.

Backlight-driving LED controller is built in this module.

eDP Transfer rate Specification: 2.7Gbps / 4 lane

# 3. Mechanical Specifications

| Parameter               |        | Specifications             | Unit  |  |  |  |
|-------------------------|--------|----------------------------|-------|--|--|--|
| Display size            |        | 33.78 (13.3") Diagonal     |       |  |  |  |
| Active area             |        | 293.76 (H) × 165.24 (V)    |       |  |  |  |
| Pixel format            |        | 2560 (H) × 1440 (V)        | nivol |  |  |  |
| Pixer format            |        | (1pixel=R+G+B dot)         | pixel |  |  |  |
| Pixel pitch             |        | 0.11475 (H) × 0.11475 (V)  |       |  |  |  |
| Pixel configuration     |        | R,G,B vertical stripe      |       |  |  |  |
| Display mode            |        | Normally black             |       |  |  |  |
| Display mode            |        | Glare (Hard coat 2H)       |       |  |  |  |
|                         | Width  | 305.35 ± 0.5               |       |  |  |  |
| Unit outline dimensions | Height | 187.90 ± 1.0               |       |  |  |  |
| [Note 3-3]              |        | 2.168 ± 0.2 [Note 3-1 3-2] |       |  |  |  |
|                         | Depth  |                            |       |  |  |  |
|                         |        | 2.794 ± 0.25 (PWB part )   |       |  |  |  |
| Mass                    |        | 195 ± 15                   | g     |  |  |  |

[Note 3-1] Except for LED Part and Shading Tape.

[Note 3-2] Measured by the Weighted 200g.

[Note 3-3] Outline dimensions is shown in Fig.2

# 4. Input Terminals

# 4-1. Symbol

CN1 (eDP signals, +3.3V DC power supply, and B/L power supply)

| Pin<br>No. | Symbol     | I/O | power supply, and B/L power supply)  Function | Remark      |
|------------|------------|-----|-----------------------------------------------|-------------|
| 1          | NC         | _   | Reserved for LCD manufacturer's use           | [Note4-1-1] |
| 2          | H_GND      | Р   | High Speed Ground                             |             |
| 3          | Lane3_N    | I   | Complement Signal Link Lane 3                 |             |
| 4          | Lane3_P    | I   | True Signal Link Lane 3                       |             |
| 5          | H_GND      | Р   | High Speed Ground                             |             |
| 6          | Lane2_N    | I   | Complement Signal Link Lane 2                 |             |
| 7          | Lane2_P    | I   | True Signal Link Lane 2                       |             |
| 8          | H_GND      | Р   | High Speed Ground                             |             |
| 9          | Lane1_N    | I   | Complement Signal Link Lane 1                 |             |
| 10         | Lane1_P    | I   | True Signal Link Lane 1                       |             |
| 11         | H_GND      | Р   | High Speed Ground                             |             |
| 12         | Lane0_N    | I   | Complement Signal Link Lane 0                 |             |
| 13         | Lane0_P    | I   | True Signal Link Lane 0                       |             |
| 14         | H_GND      | Р   | High Speed Ground                             |             |
| 15         | AUX_CH_P   | I   | True Signal Auxiliary Channel                 |             |
| 16         | AUX_CH_N   | I   | Complement Signal Auxiliary Channel           |             |
| 17         | H_GND      | Р   | High Speed Ground                             |             |
| 18         | VDD        | Р   | LCD logic and driver power(3.3V)              |             |
| 19         | VDD        | Р   | LCD logic and driver power(3.3V)              |             |
| 20         | VDD        | Р   | LCD logic and driver power(3.3V)              |             |
| 21         | VDD        | Р   | LCD logic and driver power(3.3V)              |             |
| 22         | LCD_GND    | Р   | LCD logic and driver ground                   |             |
| 23         | LCD_GND    | Р   | LCD logic and driver ground                   |             |
| 24         | LCD_GND    | Р   | LCD logic and driver ground                   |             |
| 25         | LCD_GND    | Р   | LCD logic and driver ground                   |             |
| 26         | LCD_GND    | Р   | LCD logic and driver ground                   |             |
| 27         | HPD        | 0   | HPD signal pin                                |             |
| 28         | BL_GND     | Р   | Backlight ground                              |             |
| 29         | BL_GND     | Р   | Backlight ground                              |             |
| 30         | BL_GND     | Р   | Backlight ground                              |             |
| 31         | BL_GND     | Р   | Backlight ground                              |             |
| 32         | BL_ENABLE  | I   | Backlight On/0ff                              |             |
| 33         | BL_PWM_DIM | I   | System PWM                                    |             |
| 34         | NC         | _   | Reserved for LCD manufacturer's use           | [Note4-1-1] |
| 35         | NC         | _   | Reserved for LCD manufacturer's use           | [Note4-1-1] |
| 36         | VBL        | Р   | Backlight power                               |             |
| 37         | VBL        | Р   | Backlight power                               |             |
| 38         | VBL        | Р   | Backlight power                               |             |
| 39         | VBL        | Р   | Backlight power                               |             |
| 40         | NC         | _   | Reserved for LCD manufacturer's use           | [Note4-1-1] |

※I : Input , O : Output , P : Power:

[Note 4-1-1] Don't input any signals or any powers into a NC pin. Keep the NC pin open.

[Note 4-1-2] The shielding case is connected with signal GND.

- Connector used: HD1S040HA1 (JAE)
- Corresponding connector: HD1P040MA1 (JAE) or 20454-040T (I-PEX)

(Sharp is not responsible to its product quality, if the user applies a connector not corresponding to the above model.)

#### 4-2. eDP interface



Fig.4-2-1 DP architecture.



Fig.4-2-2 Main Link differential pair.



Fig.4-2-3 AUX Link differential pair.

| Lane0  | Lane1  | Lane2   | Lane3   |
|--------|--------|---------|---------|
| R0-7:0 | R1-7:0 | R2-7:0  | R3-7:0  |
| G0-7:0 | G1-7:0 | G2-7:0  | G3-7:0  |
| B0-7:0 | B1-7:0 | B2-7:0  | B3-7:0  |
| R4-7:0 | R5-7:0 | R6-7:0  | R7-7:0  |
| G4-7:0 | G5-7:0 | G6-7:0  | G7-7:0  |
| B4-7:0 | B5-7:0 | B6-7:0  | B7-7:0  |
| R8-7:0 | R9-7:0 | R10-7:0 | R11-7:0 |
| G8-7:0 | G9-7:0 | G10-7:0 | G11-7:0 |
| B8-7:0 | B9-7:0 | B10-7:0 | B11-7:0 |

Fig.4-2-4 eDP 4 lane 8 bit input data mapping.

# 5. Absolute Maximum Ratings

### 5-1. Environmental condition

| Parameter           | non-operation(Storage) operation                                     |                  | Condtion         |
|---------------------|----------------------------------------------------------------------|------------------|------------------|
| Ambient temperature | −20 <b>~</b> 60°C                                                    | 0~50°C           | No condensation. |
| Humidity            | Humidity:90%RH Max. at Ta≦+40°C<br>Maximum wet-bulb temperature at + | No condensation. |                  |

# 5-2. Absolute Maximum Ratings Electrical

| Parameter                 | Symbol            | Condition | Min. | Max.    | Unit     | Remark     |
|---------------------------|-------------------|-----------|------|---------|----------|------------|
| +3.3V supply voltage      | VDD               | Ta=25°C   | -0.3 | +4.0    | ٧        |            |
| Back Light supply voltage | VBL               | Ta=25°C   | -0.3 | +30     | ٧        |            |
| Input voltage(eDP)        | VI                | Ta=25°C   | -0.3 | VDD+0.3 | <b>V</b> | [Note 5-1] |
| Input voltage(BL)         | VBL-ENABL<br>VPWM | Ta=25°C   | -0.3 | VDD+0.3 | ٧        | [Note 5-2] |

[Note 5-1] eDP signals

[Note 5-2] Back light control signals (BL\_ENABLE, BL\_PWM\_DIM)

# 6. Electrical Characteristics

### 6-1. TFT-LCD panel driving

Ta=+25°C

|                                                               | ם בו                                   | atula al Obasso | hawlatia -     |       |            | 1a=+25°C                |
|---------------------------------------------------------------|----------------------------------------|-----------------|----------------|-------|------------|-------------------------|
|                                                               | DG Elec                                | ctrical Charac  | teristics      |       |            | T                       |
| Parameter                                                     | Symbol                                 | Min.            | Тур.           | Max.  | Unit       | Remark                  |
| Supply voltage                                                | VDD                                    | +3.0            | +3.3           | +3.6  | V          |                         |
| Vsync Frequency                                               | fv                                     | -               | 60             | -     | Hz         |                         |
| Hsync Frequency                                               | fh                                     | -               | 88.79          | -     | KHz        |                         |
| Main Frequency                                                | fdclk                                  | -               | 241.5          | -     | MHz        |                         |
| Current dissipation                                           | IDD                                    | -               | 420            | 900   | mA         | [Note 6-1-2]            |
| Permissive input ripple voltage                               | $V_{RP}$                               | -               | -              | 100   | $mV_{P-P}$ | VDD = +3.3V             |
|                                                               | eDP AUX                                | Channel Char    | acteristics    |       |            |                         |
| Parameter                                                     | Symbol                                 | Min.            | Тур.           | Max.  | Unit       | Remark                  |
| peak-to-peak voltage                                          | V <sub>AUX-DIFF P-P</sub>              | 0.32            | -              | 1.32  | ٧          |                         |
| AUX DC Common Mode Voltage                                    | V <sub>AUX-DC-CM</sub>                 | 0.0             | -              | 2     | ٧          |                         |
| AUX CH impedance                                              | Z Aux                                  | -               | 100            | -     | Ω          |                         |
|                                                               | eDP Main Lir                           | nk Receiver C   | naracteristics |       |            |                         |
| Parameter                                                     | Symbol                                 | Min.            | Тур.           | Max.  | Unit       | Remark                  |
| Differential Peak-to-peak<br>Input Voltage at RX package pins | V <sub>RX-DIFF P-P</sub>               | 120             | -              | 1200  | mV         | For<br>High bit rate    |
| Differential Peak-to-peak Input<br>Voltage at RX package pins | V <sub>RX-DIFF</sub> <sub>P-P</sub>    | 40              | -              | 1200  | mV         | For<br>Reduced bit rate |
| RX DC Common Mode Voltage                                     | V <sub>RX-DC-CM</sub>                  | 0               | -              | 2.0   | mV         |                         |
| RX impedance                                                  | Z RX                                   | -               | 100            | -     | Ω          |                         |
| Lane Intra-pair Skew at<br>RX package pins                    | RX-SKEW-INTRA -PAIR-High-Bit-Rate      | -               | -              | 100.0 | ps         |                         |
| Lane Intra-pair Skew at<br>RX package pins                    | LRX-SKEW-INTRA -PAIR-Reduced -Bit-Rate | -               | -              | 300.0 | ps         |                         |

[Note 6-1-1] ON-OFF conditions for supply voltage.



Do not keep the interface signal high-impedance or unusual signal when power is on.

| 記号<br>Symbol | Min. | Max. | 単位<br>Unit | 備考<br>Remark |
|--------------|------|------|------------|--------------|
| t1           | 0.1  | 10   | ms         |              |
| t2           | 0.1  | 10   | ms         |              |
| t3           | 120  | 200  | ms         |              |
| t4           | 0    | -    | ms         |              |
| t5           | 0    | -    | ms         |              |
| t6           | 17   | -    | ms         |              |
| t7           | 17   | -    | ms         |              |
| t8           | 0    | -    | ms         |              |
| t9           | 10   | 50   | ms         | *1           |
| t10          | 1    | -    | s          |              |
| t11          | 0.1  | -    | ms         |              |
| t12          | 1    | -    | s          | _            |
| t13          | 0    | -    | ms         |              |
| t14          | 0    | -    | ms         |              |

- \*1) As for the power off sequence for VDD (t9), be sure to keep above mentioned timing.

  If the VDD power off sequence timing is other than shown above, LCD may cause permanent damage.
- \*2) As for the power sequence for backlight, it is recommended to apply above mentioned input timing.

  If the backlight is light on and off at a timing other than shown above, displaying image may get disturbed.

VDD-dip conditions

1) 2.5 V≦VDD<3.0 V

td≦10 ms



#### 2) VDD < 2.5 V

VDD-dip conditions should also follow the ON-OFF sequences for input voltage

#### [Note 6-1-2]

Typical current condition: 16-gray-bar pattern. VDD=+3.3V Typical timing



Maximum current condition: Dot checker pattern



#### 6-2. Backlight driving

The backlight system is an edge-lighting type with white-LED.

Ta=+25°C

| Parameter                      | Symbol                  | Min.      | Тур.   | Max.      | Unit | Remark                                                                        |
|--------------------------------|-------------------------|-----------|--------|-----------|------|-------------------------------------------------------------------------------|
| Supply voltage                 | $V_{BL}$                | 7.0       | 12.0   | 21.0      | ٧    |                                                                               |
| Current dissipation            | I <sub>BL</sub>         | -         | 396    | 740       | mA   | V <sub>BL</sub> =12.0V(TYP)<br>V <sub>BL</sub> = 7.0V(MAX)<br>Duty Ratio=100% |
| DWM simple self-               | $V_{PWM}H$              | 0.6 × VDD | 3.3    | 3.6       | ٧    |                                                                               |
| PWM signal voltage             | V <sub>PWM</sub> L      | 0         | -      | 0.4 × VDD | ٧    |                                                                               |
| Brightness Control Duty Ratio  | Duty                    | 1         | -      | 100       | %    | [Note6-2-1]<br>[Note6-2-4]                                                    |
| Brightness Control pulse width | $T_PWM$                 | 30        | -      | -         | us   | [Note6-2-2]                                                                   |
| Brightness Control frequency   | $f_{PWM}$               | 150       | 200    | 250       | Hz   |                                                                               |
| DI ENADI E circul voltare      | V <sub>BL-ENABL</sub> H | 1.8       | 3.3    | 3.6       | ٧    | [Note6-2-3]                                                                   |
| BL-ENABLE signal voltage       | V <sub>BL-ENABL</sub> L | -         | -      | 0.6       | ٧    |                                                                               |
| Input signal pin current       | I <sub>IN</sub>         | -         | -      | 1.0       | μΑ   | V <sub>CNT</sub> , V <sub>PWM</sub> pin                                       |
| LED lifetime                   | -                       | -         | 10,000 | -         | h    | [Note6-2-5]                                                                   |

[Note6-2-1] PWM Duty Input: 100% = Max luminance 1% = Min luminance

[Note6-2-2] The minimum value of the dimming signal pulse width is assumed regulations of the width of high and the width of low.

[Note6-2-3] VCNT Input: High or OPEN = BL ON, Low = BL OFF



1) Vth  $\leq$  V<sub>BL</sub> < Vmin : td  $\leq$  20ms

 $V_{\rm BL} < V {
m th}$  : The condition of instantaneous voltage drop is apply to input voltage sequences

# [Note6-2-4] When PWM signal is set "L" over 10ms, please reset BL-ENABLE.

If PWM signal is set "L->H"without reset BL-ENABLE ,Softstart function of LED driver is invalid and inrush current may occur.



[Note6-2-5] Luminance becomes 50% of an initial value. (Ta=25°C, PWM=100%)

# 7. Timing Characteristics of Input Signals

### 7-1. Timing characteristics

| Parameter             |                          | Symbol | Min. | Тур. | Max. | Unit  | Remark       |
|-----------------------|--------------------------|--------|------|------|------|-------|--------------|
|                       | Horizontal period        | TH     | 2720 | 2720 | 2720 | clock |              |
| Data enable<br>Signal | Horizontal period (High) | THd    | 2560 | 2560 | 2560 | clock |              |
| Signal                | Vertical period          | TV     | 1479 | 1479 | 1479 | Line  | [Note 7-1-1] |
|                       | Vertical period (High)   | TVd    | 1440 | 1440 | 1440 | Line  |              |

[Note 7-1-1] In case of using the long vertical period, the deterioration of display quality, flicker, etc, may occur.

[Note7-1-2] Timing characteristics is based on EDID



# 7-2. Input Data Signals and Display Position on the screen



Display position of input data(V  $\cdot$  H)

# 8. Input Signals, Basic Display Colors and Gray Scale of Each Color

|                     | Colors &     |              | Data signal |    |    |    |    |              |    |          |     |              |     |    |    |    |    |     |     |    |    |    |    |    |    |     |
|---------------------|--------------|--------------|-------------|----|----|----|----|--------------|----|----------|-----|--------------|-----|----|----|----|----|-----|-----|----|----|----|----|----|----|-----|
|                     | Gray         | Gray         | R0          | R1 | R2 | R3 | R4 | R5           | R6 | R7       | G0  | G1           | G2  | G3 | G4 | G5 | G6 | G7  | B0  | В1 | B2 | ВЗ | B4 | B5 | В6 | В7  |
|                     | scale        | Scale        | LSE         | 3  |    |    |    |              | M  | 1SB      | LSE | 3            |     |    |    |    | M  | ISB | LSE | 3  |    |    |    |    | M  | 1SB |
|                     | Black        | -            | 0           | 0  | 0  | 0  | 0  | 0            | 0  | 0        | 0   | 0            | 0   | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
|                     | Blue         | _            | 0           | 0  | 0  | 0  | 0  | 0            | 0  | 0        | 0   | 0            | 0   | 0  | 0  | 0  | 0  | 0   | 1   | 1  | 1  | 1  | 1  | 1  | 1  | 1   |
| 'n                  | Green        | _            | 0           | 0  | 0  | 0  | 0  | 0            | 0  | 0        | 1   | 1            | 1   | 1  | 1  | 1  | 1  | 1   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| Basic Color         | Cyan         | _            | 0           | 0  | 0  | 0  | 0  | 0            | 0  | 0        | 1   | 1            | 1   | 1  | 1  | 1  | 1  | 1   | 1   | 1  | 1  | 1  | 1  | 1  | 1  | 1   |
| 3asic               | Red          | _            | 1           | 1  | 1  | 1  | 1  | 1            | 1  | 1        | 0   | 0            | 0   | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| "                   | Magenta      | _            | 1           | 1  | 1  | 1  | 1  | 1            | 1  | 1        | 0   | 0            | 0   | 0  | 0  | 0  | 0  | 0   | 1   | 1  | 1  | 1  | 1  | 1  | 1  | 1   |
|                     | Yellow       | _            | 1           | 1  | 1  | 1  | 1  | 1            | 1  | 1        | 1   | 1            | 1   | 1  | 1  | 1  | 1  | 1   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
|                     | White        | _            | 1           | 1  | 1  | 1  | 1  | 1            | 1  | 1        | 1   | 1            | 1   | 1  | 1  | 1  | 1  | 1   | 1   | 1  | 1  | 1  | 1  | 1  | 1  | 1   |
|                     | Black        | GS0          | 0           | 0  | 0  | 0  | 0  | 0            | 0  | 0        | 0   | 0            | 0   | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
|                     | 1            | GS1          | 1           | 0  | 0  | 0  | 0  | 0            | 0  | 0        | 0   | 0            | 0   | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| Gray Scale of Red   | Darker       | GS2          | 0           | 1  | 0  | 0  | 0  | 0            | 0  | 0        | 0   | 0            | 0   | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| ale o'              | 1            | ↓ ↓          |             |    |    |    |    |              |    |          | ,   | l            |     |    |    |    |    |     | 1   | ,  |    |    |    |    |    |     |
| , Sc                | 1            | <b>↓</b>     |             |    |    |    |    | <b>↓</b>     |    |          |     |              | ↓ · |    |    |    |    |     |     |    |    |    |    |    |    |     |
| Gray                | Brighter     | GS253        | 1           | 0  | 1  | 1  | 1  | 1            | 1  | 1        | 0   | 0            | 0   | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
|                     | <b>1</b>     | GS254        | 0           | 1  | 1  | 1  | 1  | 1            | 1  | 1        | 0   | 0            | 0   | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
|                     | Red          | GS255        | 1           | 1  | 1  | 1  | 1  | 1            | 1  | 1        | 0   | 0            | 0   | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
|                     | Black        | GS0          | 0           | 0  | 0  | 0  | 0  | 0            | 0  | 0        | 0   | 0            | 0   | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| <u> </u>            | 1            | GS1          | 0           | 0  | 0  | 0  | 0  | 0            | 0  | 0        | 1   | 0            | 0   | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| Gree                | Darker       | GS2          | 0           | 0  | 0  | 0  | 0  | 0            | 0  | 0        | 0   | 1            | 0   | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| e of                | 1            | <b>↓ ↓</b>   |             |    |    |    |    | $\downarrow$ |    |          |     | $\downarrow$ |     |    |    |    |    |     |     |    |    |    |    |    |    |     |
| Scal                | 1            | $\downarrow$ | ↓ ↓         |    |    |    |    |              |    | <u> </u> |     |              |     |    | ↓  |    |    |     |     |    |    |    |    |    |    |     |
| Gray Scale of Green | Brighter     | GS253        | 0           | 0  | 0  | 0  | 0  | 0            | 0  | 0        | 1   | 0            | 1   | 1  | 1  | 1  | 1  | 1   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
|                     | <b>1</b>     | GS254        | 0           | 0  | 0  | 0  | 0  | 0            | 0  | 0        | 0   | 1            | 1   | 1  | 1  | 1  | 1  | 1   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
|                     | Green        | GS255        | 0           | 0  | 0  | 0  | 0  | 0            | 0  | 0        | 1   | 1            | 1   | 1  | 1  | 1  | 1  | 1   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
|                     | Black        | GS0          | 0           | 0  | 0  | 0  | 0  | 0            | 0  | 0        | 0   | 0            | 0   | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| Gray Scale of Blue  | 1            | GS1          | 0           | 0  | 0  | 0  | 0  | 0            | 0  | 0        | 0   | 0            | 0   | 0  | 0  | 0  | 0  | 0   | 1   | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
|                     | Darker       | GS2          | 0           | 0  | 0  | 0  | 0  | 0            | 0  | 0        | 0   | 0            | 0   | 0  | 0  | 0  | 0  | 0   | 0   | 1  | 0  | 0  | 0  | 0  | 0  | 0   |
|                     | 1            | $\downarrow$ |             |    |    | ļ  | ļ  |              |    |          |     |              |     | ,  | Į  |    |    |     |     |    |    | 1  | ,  |    |    |     |
| , Sca               | $\downarrow$ | $\downarrow$ |             |    |    |    | ,  |              |    |          |     |              | 1   | ,  | l  |    |    |     |     | 1  |    | J  |    |    |    |     |
| Gray                | Brighter     | GS253        | 0           | 0  | 0  | 0  | 0  | 0            | 0  | 0        | 0   | 0            | 0   | 0  | 0  | 0  | 0  | 0   | 1   | 0  | 1  | 1  | 1  | 1  | 1  | 1   |
|                     | <b>1</b>     | GS254        | 0           | 0  | 0  | 0  | 0  | 0            | 0  | 0        | 0   | 0            | 0   | 0  | 0  | 0  | 0  | 0   | 0   | 1  | 1  | 1  | 1  | 1  | 1  | 1   |
|                     | Blue         | GS255        | 0           | 0  | 0  | 0  | 0  | 0            | 0  | 0        | 0   | 0            | 0   | 0  | 0  | 0  | 0  | 0   | 1   | 1  | 1  | 1  | 1  | 1  | 1  | 1   |

0 : Low level voltage 1 : High level voltage

Each basic color can be displayed in 256 gray scales from 8 bit data signals.

According to the combination of 24 bit data signals, the 16.7M color display can be achieved on the screen.

# 9. EDID Specification

#### 9-1. EDID data structure

This is the EDID(Extended Display Identification Data) data formats to support displays as defined in the VESA Plug & Display

| Byte<br>(decimal) | Byte<br>(hex) | Field Name and Comments                                      | Value<br>(hex) | Value<br>(binary) |
|-------------------|---------------|--------------------------------------------------------------|----------------|-------------------|
| 0                 | 0             | Header                                                       | 00             | 00000000          |
| 1                 | 1             | Header                                                       | FF             | 11111111          |
| 2                 | 2             | Header                                                       | FF             | 11111111          |
| 3                 | 3             | Header                                                       | FF             | 11111111          |
| 4                 | 4             | Header                                                       | FF             | 11111111          |
| 5                 | 5             | Header                                                       | FF             | 11111111          |
| 6                 | 6             | Header                                                       | FF             | 11111111          |
| 7                 | 7             | Header                                                       | 00             | 00000000          |
| 8                 | 8             | EISA manufacture code = SHP                                  | 4D             | 01001101          |
| 9                 | 9             | EISA manufacture code (Compressed ASCII)                     | 10             | 00010000          |
| 10                | 0A            | Product code (LQ133T1JW01 : 5108)                            | 08             | 00001000          |
| 11                | 0B            | Product code (hex,LSB first)                                 | 51             | 01010001          |
| 12                | 0C            | LCD module Serial No (fixed "0")                             | 01             | 0000001           |
| 13                | 0D            | LCD module Serial No (fixed "0")                             | 00             | 00000000          |
| 14                | 0E            | LCD module Serial No (fixed "0")                             | 00             | 00000000          |
| 15                | 0F            | LCD module Serial No (fixed "0")                             | 00             | 00000000          |
| 16                | 10            | Week of manufacture (fixed "0")                              | 1D             | 00011101          |
| 17                | 11            | Year of manufacture - 1990 (ex 2000 - 1990 = 10) (fixed "0") | 16             | 00010110          |
| 18                | 12            | EDID structure version # = 1                                 | 01             | 0000001           |
| 19                | 13            | EDID revision # = 4                                          | 04             | 00000100          |
| 20                | 14            | Video i/p definition = Digital 8bit DP support               | A5             | 10100101          |
| 21                | 15            | Max H image size(cm) = 29cm                                  | 1D             | 00011101          |
| 22                | 16            | Max V image size(cm) = 17cm                                  | 11             | 00010001          |
| 23                | 17            | Display gamma (2.2 × 100) - 100 = 120                        | 78             | 01111000          |
| 24                | 18            | Feature support(stanby,suspend,RGB color/Prefer Time)        | 02             | 0000010           |
| 25                | 19            | Red/Green Low bit(RxRy/GxGy)                                 | EE             | 11101110          |
| 26                | 1A            | Blue/White Low bit(BxBy/WxWy)                                | 95             | 10010101          |
| 27                | 1B            | Red X(Rx) (written value " ")                                | A3             | 10100011          |
| 28                | 1C            | Red Y(Ry) (written value " ")                                | 54             | 01010100          |
| 29                | 1D            | Green X(Gx) (written value " ")                              | 4C             | 01001100          |
| 30                | 1E            | Green Y(Gy) (written value " ")                              | 99             | 10011001          |

|    |    | ·                                                                    |    |          |
|----|----|----------------------------------------------------------------------|----|----------|
| 31 | 1F | Blue X(Bx) (written value " ")                                       | 26 | 00100110 |
| 32 | 20 | Blue Y(By) (written value " ")                                       | 0F | 00001111 |
| 33 | 21 | White X(Wx) (written value " ")                                      | 50 | 01010000 |
| 34 | 22 | White Y(Wy) (written value " ")                                      | 54 | 01010100 |
| 35 | 23 | Established timings 1                                                | 00 | 00000000 |
| 36 | 24 | Established timings 2                                                | 00 | 00000000 |
| 37 | 25 | Established timings 3(Manufacture's reserved timing)                 | 00 | 00000000 |
| 38 | 26 | Standard timing ID1                                                  | 01 | 0000001  |
| 39 | 27 | Standard timing ID1                                                  | 01 | 0000001  |
| 40 | 28 | Standard timing ID2                                                  | 01 | 0000001  |
| 41 | 29 | Standard timing ID2                                                  | 01 | 0000001  |
| 42 | 2A | Standard timing ID3                                                  | 01 | 0000001  |
| 43 | 2B | Standard timing ID3                                                  | 01 | 0000001  |
| 44 | 2C | Standard timing ID4                                                  | 01 | 0000001  |
| 45 | 2D | Standard timing ID4                                                  | 01 | 0000001  |
| 46 | 2E | Standard timing ID5                                                  | 01 | 0000001  |
| 47 | 2F | Standard timing ID5                                                  | 01 | 0000001  |
| 48 | 30 | Standard timing ID6                                                  | 01 | 0000001  |
| 49 | 31 | Standard timing ID6                                                  | 01 | 0000001  |
| 50 | 32 | Standard timing ID7                                                  | 01 | 0000001  |
| 51 | 33 | Standard timing ID7                                                  | 01 | 0000001  |
| 52 | 34 | Standard timing ID8                                                  | 01 | 0000001  |
| 53 | 35 | Standard timing ID8                                                  | 01 | 0000001  |
| 54 | 36 | Detailed timing descriptor#1 fck/10000 (=241.5MHz/10000=24150=5E56h) | 56 | 01010110 |
| 55 | 37 | #1 fck                                                               | 5E | 01011110 |
| 56 | 38 | #1 Horizontal active 2560=A00h "00h"                                 | 00 | 00000000 |
| 57 | 39 | #1 Horizontal blanking 160=0A0h "A0h"                                | A0 | 10100000 |
| 58 | 3A | #1 Horizontal active/Horizontal blanking "A0h"                       | A0 | 10100000 |
| 59 | 3B | #1 Vertical active 1440=5A0h "A0h"                                   | A0 | 10100000 |
| 60 | 3C | #1 Vertical blanking 39=027h "27h"                                   | 27 | 00100111 |
| 61 | 3D | #1 Vertical active/Vertical blanking "50h"                           | 50 | 01010000 |
| 62 | 3E | #1 Horizontal sync , offset 48=030h "30h"                            | 30 | 00110000 |
| 63 | 3F | #1 Horizontal sync , width 32=020h "20h"                             | 20 | 00100000 |
| 64 | 40 | #1 Vertical sync,offset / Vertical sync,width (offset=3h/width=5h)   | 35 | 00110101 |
| 65 | 41 | #1 Horizontal sync offset/width/Vertical sync offset/width           | 00 | 00000000 |
| 66 | 42 | #1 Horizontal image size 294mm=126h "26h"                            | 26 | 00100110 |
| 67 | 43 | #1 Vertical image size 165mm=0A5h "A5h"                              | A5 | 10100101 |

| 68  | 44 | #1 Horizontal image size / Vertical image size "10h"                                                 | 10 | 00010000 |
|-----|----|------------------------------------------------------------------------------------------------------|----|----------|
| 69  | 45 | Horizontal boader                                                                                    | 00 | 00000000 |
| 70  | 46 | Vertical boader                                                                                      | 00 | 00000000 |
| 71  | 47 | Flags(Non-interlaced=0/non 3D=00<br>/Degital separate=11/Horizontal polarity/Vertical polarity="00") | 18 | 00011000 |
| 72  | 48 | Detailed timing descriptor #2                                                                        | 00 | 00000000 |
| 73  | 49 | Flag                                                                                                 | 00 | 00000000 |
| 74  | 4A | Reserved                                                                                             | 00 | 00000000 |
| 75  | 4B | Dummy Descriptor                                                                                     | 10 | 00010000 |
| 76  | 4C | Flag                                                                                                 | 00 | 00000000 |
| 77  | 4D | 1st Dummy                                                                                            | 00 | 00000000 |
| 78  | 4E | 2nd Dummy                                                                                            | 00 | 00000000 |
| 79  | 4F | 3rd Dummy                                                                                            | 00 | 00000000 |
| 80  | 50 | 4th Dummy                                                                                            | 00 | 00000000 |
| 81  | 51 | 5th Dummy                                                                                            | 00 | 00000000 |
| 82  | 52 | 6th Dummy                                                                                            | 00 | 00000000 |
| 83  | 53 | 7th Dummy                                                                                            | 00 | 00000000 |
| 84  | 54 | 8th Dummy                                                                                            | 00 | 00000000 |
| 85  | 55 | 9th Dummy                                                                                            | 00 | 00000000 |
| 86  | 56 | 10th Dummy                                                                                           | 00 | 00000000 |
| 87  | 57 | 11th Dummy                                                                                           | 00 | 00000000 |
| 88  | 58 | New line character #2 indicates end                                                                  | 00 | 00000000 |
| 89  | 59 | Padding with "blank" character                                                                       | 00 | 00000000 |
| 90  | 5A | Detailed timing descriptor #3                                                                        | 00 | 00000000 |
| 91  | 5B | Flag                                                                                                 | 00 | 00000000 |
| 92  | 5C | Reserved                                                                                             | 00 | 00000000 |
| 93  | 5D | Dummy Descriptor                                                                                     | 10 | 00010000 |
| 94  | 5E | Flag                                                                                                 | 00 | 00000000 |
| 95  | 5F | 1st Dummy                                                                                            | 00 | 00000000 |
| 96  | 60 | 2nd Dummy                                                                                            | 00 | 00000000 |
| 97  | 61 | 3rd Dummy                                                                                            | 00 | 00000000 |
| 98  | 62 | 4th Dummy                                                                                            | 00 | 00000000 |
| 99  | 63 | 5th Dummy                                                                                            | 00 | 00000000 |
| 100 | 64 | 6th Dummy                                                                                            | 00 | 00000000 |

| 101 | 65 | 7th Dummy                                                              | 00 | 00000000 |
|-----|----|------------------------------------------------------------------------|----|----------|
| 102 | 66 | 8th Dummy                                                              | 00 | 00000000 |
| 103 | 67 | 9th Dummy                                                              | 00 | 00000000 |
| 104 | 68 | 10th Dummy                                                             | 00 | 00000000 |
| 105 | 69 | 11th Dummy                                                             | 00 | 00000000 |
| 106 | 6A | New line character #3 indicates end                                    | 00 | 00000000 |
| 107 | 6B | Padding with "blank" character                                         | 00 | 00000000 |
| 108 | 6C | Detailed timing descriptor #4                                          | 00 | 00000000 |
| 109 | 6D | Flag                                                                   | 00 | 00000000 |
| 110 | 6E | Reserved                                                               | 00 | 00000000 |
| 111 | 6F | Dummy descriptor                                                       | FC | 11111100 |
| 112 | 70 | Flag                                                                   | 00 | 00000000 |
| 113 | 71 | Supplier P/N#1 (L)                                                     | 4C | 01001100 |
| 114 | 72 | Supplier P/N#2 (Q)                                                     | 51 | 01010001 |
| 115 | 73 | Supplier P/N#3 (1)                                                     | 31 | 00110001 |
| 116 | 74 | Supplier P/N#4 (3)                                                     | 33 | 00110011 |
| 117 | 75 | Supplier P/N#5 (3)                                                     | 33 | 00110011 |
| 118 | 76 | Supplier P/N#6 (T)                                                     | 54 | 01010100 |
| 119 | 77 | Supplier P/N#7 (1)                                                     | 31 | 00110001 |
| 120 | 78 | Supplier P/N#8 (J)                                                     | 4A | 01001010 |
| 121 | 79 | Supplier P/N#9 (W)                                                     | 57 | 01010111 |
| 122 | 7A | Supplier P/N#10 (0)                                                    | 30 | 00110000 |
| 123 | 7B | Supplier P/N#11 (1)                                                    | 31 | 00110001 |
| 124 | 7C | Supplier P/N#12 ("Space")                                              | 0A | 00001010 |
| 125 | 7D | (If<13 char,then terminate with ASCII code 0Ah,set remaining char 20h) | 20 | 00100000 |
| 126 | 7E | Extension flag                                                         | 00 | 00000000 |
| 127 | 7F | Checksum                                                               | FE | 11111110 |

# 10. Optical specification

Ta=+25°C, VDD=+3.3V, VBL=+12V

| Parameter                 |                       | Symbol         | Condition           | Min.  | Тур.  | Max.  | Unit  | Remark                     |  |  |
|---------------------------|-----------------------|----------------|---------------------|-------|-------|-------|-------|----------------------------|--|--|
| Viewing                   | Horizontal            | θ 21,θ 22      | 00>10               | 70    | 80    | -     | deg.  | [Note 10-1, 10-3,          |  |  |
| angle<br>range            | Vertical              | θ 11           | CR≧10               | 70    | 80    | _     | deg.  | 10-4, 10-6]                |  |  |
| rango                     | vertical              | θ 12           |                     | 70    | 80    | -     | deg.  |                            |  |  |
| Contra                    | st ratio              | CR             | θ =0°               | 700   | 1000  | -     |       | [Note 10-2, 10-4,<br>10-6] |  |  |
| Respon                    | se Time               | т r+т d        | θ =0°               | -     | 25    | -     | ms    | [Note 10-2, 10-5,<br>10-6] |  |  |
| Chramatia                 | Chromaticity of White |                |                     | 0.283 | 0.313 | 0.343 |       |                            |  |  |
| Chromatic                 |                       |                |                     | 0.299 | 0.329 | 0.359 |       |                            |  |  |
| Chromotic                 | Ol                    |                | Chromaticity of Red |       |       | 1     | 0.640 | -                          |  |  |
| Onromatic                 | City of Neu           | У              |                     | 1     | 0.330 | 1     |       | [Note 10-2, 10-6]          |  |  |
| Chromatici                | ty of Green           | x              |                     | 1     | 0.300 | 1     |       | Normal operation           |  |  |
| Oniomatici                | ty or dreen           | У              |                     | ı     | 0.600 | ı     |       | (PWM Duty=100%)            |  |  |
| Chromatic                 | Chromaticity of Blue  |                |                     | -     | 0.150 | -     |       |                            |  |  |
| Officinations of blue     |                       | У              |                     | -     | 0.060 | -     |       |                            |  |  |
| Luminance of white        |                       | $Y_{LI}$       |                     | 240   | 300   | _     | cd/m² |                            |  |  |
| White Uniformity 13points |                       | δ <sub>W</sub> |                     | _     | 1.3   | 1.5   |       | [Note 10-2, 10-7]          |  |  |

XThe measurement shall be taken 30 minutes after lighting the module at the following rating:

Condition: PWM Duty = 100%

The optical characteristics shall be measured in a dark room or equivalent.

[Note 10-1] Measuring setup for Viewing angle range

[Note 10-2] Measuring setup for Luminance, Chromaticity and Contrast.



Viewing angle range:EZ-CONTRAST/Response time: Photo diode)

[Note 10-3]



[Note 10-4]
Definition of contrast ratio:

The contrast ratio is defined as the following.

 $\label{eq:Contrast_Ratio} \textbf{Contrast Ratio(CR)} \underline{\underline{\qquad}} \underline{ \begin{array}{c} \textbf{Luminance(brightness) with all pixels white} \\ \textbf{Luminance(brightness) with all pixels black} \end{array}}$ 

#### [Note 10-5]

Definition of response time

The response time is defined as the following figure and shall be measured by switching the input signal for black and white .



#### [Note 10-6]

This shall be measured at center of the screen.

#### [Note 10-7]

Definition of white uniformity:

White uniformity(13ponts) is defined as the following with 13 measurements (A~M)

$$\delta w = \frac{\text{Maximum Luminance of} \quad 13 \text{ points (brightness)}}{\text{Minimum Luminance of} \quad 13 \text{ points (brightness)}}$$



# 11. Display Qualities

The display quality of the color TFT-LCD module shall be in compliance with the Incoming Inspection Standard.

### 12. Handling Precautions

- a) Be sure to turn off the power supply when inserting or disconnecting the cable.
- b) Be sure to design the cabinet so that the module can be installed without any extra stress such as warp or twist.
- c ) Since the front polarizer is easily damaged, pay attention not to scratch it.
- d) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- e) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- f) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. Handle with care.
- g) Since CMOS LSI is used in this module, take care of static electricity and injure the human earth when handling.
- h) This module has its circuitry PCBs on the side and should be handled carefully in order not to be stressed.
- i) Protect sheet(Laminate film) is attached to the module surface to prevent it from being scratched. Peel the sheet off slowly just before the use with strict attention to electrostatic charges. Ionized air shall be blown over during the action Blow off the 'dust' on the polarizer by using an ionized nitrogen gun, etc. Working under the following environments is desirable.
  - · All workers wear conductive shoes, conductive clothes, conductive fingerstalls and grounding belts without fail.
  - •Use Ionized blower for electrostatic removal, and peel of the protect sheet with a constant speed. (Peeling of it at over 2 seconds)
- j) In case of attaching protective board over the LCD, be careful about the optical interface fringe etc. which degrades display quality.
- k ) Do not expose the LCD panel to direct sunlight. Lightproof shade etc. should be attached when LCD panel is used under such environment.
- I) When handling LCD modules and assembling them into cabinets, please be avoid that long-term storage in the environment of oxidization or deoxidization gas and the use of such materials as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the LCD modules.
- m ) Liquid crystal contained in the panel may leak if the LCD is broken. Rinse it as soon as possible if it gets inside your eye or mouth by mistake.
- n ) Never dismantle the module , because it will cause failure. Don't change the module state written in the specification except removing Laminate film.
- o ) Be careful when using it for long time with fixed pattern display as it may cause afterimage. (Please use a screen saver etc., in order to avoid an afterimage.)
- p) If a minute particle enters in the module and adheres to an optical material, it may cause display non-uniformity issue, etc. Therefore, fine-pitch filters have to be installed to cooling and inhalation hole if you intend to design a fan.
- q) Epoxy resin (amine series curing agent), silicone adhesive material (dealcoholization series and oxime series), tray forming agent (azo compound) etc, in the cabinet or the packing materials may induce abnormal display with polarizer film deterioration regardless of contact or noncontact to polarizer film.

  Be sure to confirm the component of them.
- r) Do not use polychloroprene. If you use it, there is some possibility of generating Cl<sub>2</sub> gas that influences the reliability of the connection between LCD panel and driver IC.
- s ) Do not put a laminate film on LCD module, after peeling of the original one. If you put on it, it may cause discoloration or spots because of the occurrence of air gaps between the polarizer and the film.
- t) For stabilizing against external noise and EMI, ground to the module are recommended. If a non-grounded, check that there are no problems in the state built the product.

### 13. Packing Condition

| Piling number of cartons                          | 6                        |
|---------------------------------------------------|--------------------------|
| Package quantity in one carton                    | 30                       |
| Carton size (mm)                                  | 614(W) × 426(H) × 186(D) |
| Total mass of one carton filled with full modules | 13.5 kg                  |
| Packing form                                      | Fig.1                    |

### 14. Storage Conditions

Environmental condition range of storage temperature and humidity.

Temperature : 0~40°C

Relative humidity: 95% and below

[Note] Please refer below as a mean value of the environmental conditions.

Summer time temperature 20 to 35 degrees Celsius humidity , 85% and below Winter time temperature 5 to 15 degrees Celsius humidity , 85% and below

Please maintain within 240 hours of accumulated length of storage time,

with conditions of 40 degrees Celsius and room humidity of 95%.

#### Direct sun light

Please keep the product in a dark room or cover the product to protect from direct sun light.

#### Atmospheric condition

Please refrain from keeping the product with possible corrosive gas or volatile flux.

#### Prevention of dew

Please store the product carton either on a wooden pallet or a stand / rack to prevent dew. Do not place directly on the floor. In addition, to obtain moderate ventilation in between the pallet's top and bottom surfaces, pile the cartons up in a single direction and in order.

Please place the product cartons away from the storage wall.

#### Storage period

Within above mentioned conditions, maximum storage period should be one year.



Fig. 1 Packing Form

# 15. Marking of product name

- 15-1) Module Bar code label:
  - ①Model.No
  - ②Barcode (Serial number)
  - 3 Serial number
  - 4 User's Model No.
  - ⑤Bardode (User's Model No.)



- 15-2) Packing bar code label
  - ①Model.No
  - 2 date
  - ③Quantity (30pcs / Carton)
  - 4 User's Model No.
- ⑤Carton ID
- 6 management model No.





# 17. Reliability Test Items

LCD module Reliability Test Items

| No. | Test item                                             | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | High temperature<br>storage test                      | Leaves the module at Ta = +60°C for 240h                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2   | Low temperature strage test                           | Leaves the module at Ta= $-25^{\circ}$ C for 240h                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3   | High temperature<br>& high humidity<br>operation test | Operates the module at Tp= +40°C ; 95%RH for 240h (No condensation)                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4   | High temperature operation test                       | Operates the module with +50°C at panel surface for 240h                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5   | Low temperature operation test                        | Operates the module at Ta= 0°C for 240h                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6   | Vibration test<br>(non-operation)                     | Frequency: 5~22Hz/ Vibration width: 1.54mm : 22~500Hz/ Acceleration: 14.7m/s² Sweep time: 30minutes Test period: 1 hour for each direction of X,Y,Z (total 3 hours)                                                                                                                                                                                                                                                                                                                                  |
| 7   | Shock test<br>(non-operation)                         | 1.Max. acceleration: 686m/s2, Pulse width: 11ms 2.Max. acceleration: 2352m/s2, Pulse width: 2ms Half sine wave direction: ±X,±Y,±Z Once for each direction                                                                                                                                                                                                                                                                                                                                           |
| 8   | Strength against ESD                                  | $150 pF \left[330 \Omega \right]$ , Panel center , Around the module : One time for each position <code><contact< code=""> : non-operation&gt; <math display="inline">\pm 10 kV</math> <code><contact< code=""> : operation&gt; <math display="inline">\pm 8 kV</math> <code><air< code=""> : non-operation&gt; <math display="inline">\pm 20 kV</math> <code><air< code=""> : operation&gt; <math display="inline">\pm 15 kV</math></air<></code></air<></code></contact<></code></contact<></code> |

#### Packaged freights Reliability Test Items

| No. | Test item          | Conditions                                                                                                       |
|-----|--------------------|------------------------------------------------------------------------------------------------------------------|
| 1   | Vibration test     | Frequency: 5-50Hz Acceleration: 9.8m/s2 Sweep time: 3minutes Test period: Z, 60minutes X, 15minutes Y, 15minutes |
| 2   | Drop & Impact test | Drop height:90cm<br>1 edge / 3 ridgelines / 6planes Total 10 position                                            |

#### [Result Evaluation Criteria]

Under the display quality test conditions with normal operation state, these shall be no change which may affect practical display function.

(\*)normal operation state: Temperature:  $15 \sim 35$  °C, Humidity:  $45 \sim 75$  %, Atmospheric pressure:  $86 \sim 106$  kpa [Note 17–1]

The directions of X, Y, Z are defined as below:



Fig.2. Outline Dimensions