Software Project Management

Review

Section 1.1: Project and Project Management

□ What is Project?

A project is a temporary endeavor undertaken to create a unique product, service, or result --- PMBOK Guide

Section 1.1: Project and Project Management

□ What is Project Management?

Project management is the application of knowledge, skills, tools and techniques to project activities to meet the project requirements

Five group progress and ten knowledge area mapping

47 logically
grouped project
management
processes, which
are categorized
into 5 process
groups
Closing

Five process groups

Planning

Executing

Controlling

Software Project Management

What?

Software Project Management is a system management method based on software project, which uses the relevant knowledge, techniques and tools for planning, organizing, advising and controlling each stage of software project cycle to achieve the project objectives.

Structure of this course

	5 process groups				
10 knowledge areas	Initiating	Planning	Executing	Monitoring & Controlling	Closing
1. Integration management					
2. Scope					
3. Time					
4. Cost					
5. Quality					
6. Human resource					
7. Communications					
8. Risk					
9. Procurement					
10. Stakeholder					

5 process groups

10 knowledge areas

47 Processes

Project Management Plan

- Project Management Plan: It is the document that describes how the project will be executed, monitored, and controlled.
 - It integrates and consolidates all of the subsidiary plans and baselines from the planning processes.:

Subsidiary plans

- Scope management plan
- Requirements management plan
- Schedule management plan
- Cost management plan
- Quality management plan
- Process improvement plan
- Human resource management plan
- Communication management plan
- Risk management plan
- Procurement management plan
- Stakeholder management plan

Baseline

- **Scope baselines**
- Schedule baselines
- **Cost baselines**

Critical Path

The critical path is the sequence of activities that represents the longest path through a project, which determines the shortest possible project duration.

Critical Path

Total number of Paths 3

Critical path Start->D->E->F->G->End

Duration of Critical Path 17

Total float?

Step1: find critical path

Step2: the float for each of the activities on the critical path is zero

Step3: find the next longest path. Subtract its duration from the duration of the critical path, and that's the float for each activity on it.

Step4: Do the same for the next longest path.

D=?

How many paths _____

Write down the Float for each activity:

A____B___C___D___E___

F____ G___ H____ I____

Early Start (ES)

Duration

Early Finish (EF)

Activity Name

Late Start (LS)

Total Float (LF)

Forward pass:

Figure out the early start and early finish!

Backward pass:

Figure out the late start and late finish!

S-Successor Activity

Early Start (ES)	Duration	Early Finish (EF)			
	Activity Name				
Late Start (LS)	Total Float	Late Finish (LF)			

Take a forward pass through the network diagram:

Start at the beginning of the critical path and move forward through each activity. Figure out the early start and early finish!

Early Start (ES)	Duration	Early Finish (EF)			
	Activity Name				
Late Start (LS)	Total Float	Late Finish (LF)			

Take a backward pass
through the network diagram:
Start at the end of the path you just
took a pass through and work your
way backward. Figure out the late
start and late finish!

S-Successor Activity

B: LF=12-1=11, LS=11-5+1=7

A: LF=7-1=6, LS=6-6+1=1

LF = LS(S)-1LS = LF - Duration +1

D: LF=12-1=11, LS=11-2+1=10

Test

ES = EF(p) + 1EF = ES + Duration -1 20

LF = LS(s)-1LS = LF - Duration + 1

How many paths

Critical path

Write down the Float for each activity:

Calculate the

ES, EF,

LS, LF of each

activity

2. Function Point (FP)

- It is not related to the language and technology used by the system to measure the size of the system.
- Count the external and internal functions of the system. (Unadjusted Function Point Count)
- According to the technical complexity factor, they are adjusted to produce the product scale measurement results.
- FP = UFC*TCF
 - > UFC(Unadjusted Function Point Count)
 - > TFC(Technical Complexity Factor)

UFC's calculation method

- First, calculating feature count items, Count the following five types of elements:
 - > External input: an application oriented data item entered by the user.
 - > External Output: Output data items to the user.
 - > External query: interactive input for system response.
 - > External interface file: interface data files with other systems.
 - > Internal file: internal fixation for system use.

UFC's calculation method

■ Then for each function and summing the weighted count items, gained UFC.

Feature Count items	Complexity Weight			
	simple	medium	complex	
External input	3	4	6	
External Output	4	5	7	
External inquiry	3	4	6	
External interface file	5	7	10	
Internal documents	7	, 10	15	

Example

Feature Count items	Counts	Complexity Weight
External input	0	
External Output	1 complex	7
External inquiry	1 medium	4
External interface file	3 medium	7
Internal documents	0	

TCF's calculation method

	Technical complexity factors				
F1	Reliable backup and recovery	F2	data communication		
F3	Distributed function	F4	performance		
F5	Large use of configuration	F6	Online data entry		
F7	Simplicity of operation	F8	Online upgrade		
F9	Complex interface	F10	Complex data processing		
F11	Reusability	F12	Installation simplicity		
F13	Multiple Sites	F14	Easy to modify		

TCF's calculation method

Each technical complexity of factors affecting the range:

Value	Impact on the system	
0	Does not exist or has no effect	
1	No significant impact	
2	Considerable influence	
3	Average effect	
4	Significant effect	
5	Powerful influence	

TCF=0.65+0.01(sum(Fi)): Fi:0-5,TCF:0.65~1.35

Technical complexity factors					
F1	Reliable backup and recovery	1	F2	data communication	5
F3	Distributed function	0	F4	performance	3
F5	Large use of configuration	1	F6	On-line data entry	0
F7	Simplicity of operation	1	F8	Online upgrade	0
F9	Complex interface	1	F10	Complex data processing	4
F11	Reusability	0	F12	Installation simplicity	3
F13	Multiple Sites	0	F14	Easy to modify	3

sum(Fi)=22

FP = **UFC*****TCF**

TCF=0.65+0.01(sum(Fi))=0.65+0.01*22=0.87

- Calculations

 (1)According to the tables below, please calculate the UFC, TCF and FP for this software project.
- (2) If the productivity of this project is 15 hours/FP, then please calculate the workload of this project.
- (3) If the cost for each labor hour is ¥100/hour, what is the total cost of this project.

Test

Feature Count items	counts
External input	1 medium
External Output	1 complex
External inquiry	1 simple
External interface file	1 simple, 2 medium
Internal documents	2 simple

Feature Count items	Complexity Weight				
	simple	medium	complex		
External input	3	4	6		
External Output	4	5	7		
External inquiry	3	4	6		
External interface file	5	7	10		
Internal documents	7	10	15		

Technical complexity factors					
F1	Reliable backup and recovery	1	F2	data communication	3
F3	Distributed function	2	F4	performance	2
F5	Large use of configuration	1	F6	On-line data entry	4
F7	Simplicity of operation	1	F8	Online upgrade	2
F9	Complex interface	1	F10	Complex data processing	3
F11	Reusability	4	F12	Installation simplicity	2
/ F13	Multiple Sites	2	F14 \	Easy to modify	3

Feature Count items	counts	Complexity weight
External input	1 medium	4
External Output	1 complex	7
External inquiry	1 simple	3
External interface file	1 simple, 2 medium	5,7,7
Internal documents	2 simple	7,7

- 3. Calculations
 - (1)According to the tables below, please calculate the UFC, TCF and FP for this software project.
- (2) If the productivity of this project is 15 hours/FP, then please calculate the workload of this project.
- (3) If the cost for each labor hour is ¥100/hour, what is the total cost of this project.
 - UFC=1*4+1*7+1*3+1*5+2*7+2*7=47
 - sum(Fi)=31
 - \blacksquare TCF=0.65+0.01(sum(Fi))=0.65+0.01*31=0.96
 - FP =UFC*TCF=45.12
 - Workload=15*45.12=676.8 hours
 - Total cost=676.8*100=67680¥

PV, EV, AC, SV, CV, SPI, CPI

The total of the PV is sometimes referred to as the performance measurement baseline (PMB)

PV

Planned value is the authorized budget assigned to scheduled work.

The total planned value for the project is also known as budget at completion (BAC)

EV

Earned value is a measure of work performed expressed in terms of the budget authorized for that work

EV being measured needs to be related to the PMV EV is often used to calculate the percent complete of a project.

AC

Actual cost is the realized cost incurred for the work performed on an activity during a specific time period.

AC needs to correspond in definition to what was budgeted in the PV and measured in the EV

PV, EV, AC, SV, CV, SPI, CPI

Variances from the approved baseline will also be monitored

SV

Schedule variance is a measure of schedule performance expressed as the difference between EV and PV

SV=EV-PV

A useful metric in that it indicate when a project is falling behind (sv<0) or is ahead of (sv>0) its baseline schedule

project is completed SV=0

CV

Cost variance is the amount of budget deficit or surplus at a given point in time, expressed as the difference between EV minus the AC

CV=EV-AC

CV is particularly critical because it indicates the relationship of physical performance to the costs spent.

CV<0 over budget

PV, EV, AC, SV, CV, SPI, CPI

The SV and CV values can be converted to efficiency indicators to reflect the cost and schedule performance of any project for comparison against all other projects or within a portfolio of

projects.

SPI

Schedule performance index is a measure of schedule efficiency expressed as the ratio of EV to PV

SPI=EV/PV

SPI<1.0 indicates less work was completed than was planned.
SPI>1.0 more work was completed than was planned

CPI

Cost performance index is a measure of the cost efficiency of budgeted resources, expressed as a ratio of EV to AC

CPI=EV/AC

CPI<1.0 indicates a cost overrun for work completed; CPI>1.0 indicates a cost underrun of performance to date.

Your project has a total budget of \$300,000. You check your records and find that you've spent \$175,000 so far. The team has completed 40% of the project work, but when you check the schedule it says that they should have completed 50% of the work. Calculating the following:

$$PV =$$
____ $\times _{_{_{_{_{_{_{_{0}}}}}}} \times _{_{_{_{_{_{_{_{_{_{0}}}}}}}}} \circ } \circ$

$$AC =$$
\$

$$AC =$$
 $EV =$ $\times _$ $\times _$ $\% =$ $\times _$

Cost overrun and schedule over budget

$$CPI = \frac{\$}{\$} = \underline{\hspace{1cm}}$$

Your project has a total budget of \$300,000. You check your records and find that you've spent \$175,000 so far. The team has completed 40% of the project work, but when you check the schedule it says that they should have completed 50% of the work. Calculating the following:

BAC=
$$\$ 300000$$
 PV = $\$ BAC$
 $\times 50 \% = \$ 150000$

 AC = $\$ 175000$
 EV = $\$ BAC$
 $\times 40 \% = \$ 120000$

 SV = $\$ EV$
 - $\$ PV$
 = $\$ -30000$

 CV = $\$ EV$
 - $\$ AC$
 = $\$ -55000$

$$SPI = \frac{\$ EV}{\$ PV} = 0.8$$

$$CPI = \frac{\$ EV}{\$ AC} = \underline{0.68}$$

Cost overrun and schedule over budget

BAC, EAC, ETC

As the project progresses, the project team may develop a forecast for the estimate at completion (EAC) that may differ from the BAC based on the project performance

Budget at completion (BAC) 完工预算 Estimate at completion (EAC)完工估算 Estimate to complete (ETC) 完工尚需估算 EACs are typically based on the actual costs incurred for work completed, plus an estimate to complete (ETC) the remaining work

EAC = AC + ETC

EAC

EAC = AC + Bottom-Up ETC

Budget at completion (BAC) 完工预算 Estimate at completion (EAC)完工估算 Estimate to complete (ETC) 完工尚需估算

Three commonly used methods are as

悬崖勒马

follow^{*}

EAC forecast for ETC work performed at the budgeted rate

EAC = AC + (BAC - EV)

EAC forecast for ETC work performed at the present CPI

EAC = BAC/CPI

执迷不悟,

痛改前非

EAC forecast for ETC work considering both SPI and CPI factors

 $EAC = AC + [(BAC-EV)/(CPI \times SPI)]$

Variance at completion (VAC = BAC - EAC)

Test

It's nine months into your project. The total budget for your project is \$4,200,000. You've spent \$1,650,000 so far, and you've got a CPI of 0.875. Use the Earned Value Technique formulas from forecasting to figure out where things stand.

$$EAC = \frac{\$}{\$} = \frac{\$}{\$}$$

Will the project be over or under budget when it's complete?

Test

It's nine months into your project. The total budget for your project is \$4,200,000. You've spent \$1,650,000 so far, and you've got a CPI of 0.875. Use the Earned Value Technique formulas from forecasting to figure out where things stand.

$$EAC = \frac{\$ 4200000}{\$ 0.875} = \underline{4800000}$$

$$EAC = BAC/CPI$$

$$EAC = AC + ETC$$

$$VAC =$$
\$\frac{4200}{200}000 - \$\frac{48000}{200}00 = \$\frac{-6000}{200}00

$$VAC = BAC - EAC$$

Will the project be over or under budget when it's complete?

-600000 over budget