Übung zur Vorlesung im WS 2010/2011 **Algorithmische Eigenschaften von Wahlsystemen I**

(Lösungsvorschläge) Blatt 9, Abgabe am 16. Dezember 2010

Aufgabe 1 (\leq_m^p -Reduktion): Eine Menge \mathcal{C} heißt *komplementabgeschlossen*, wenn aus $A \in \mathcal{C}$ folgt, dass auch $\overline{A} \in \mathcal{C}$. Es gilt, dass die Komplexitätsklasse NP abgeschlossen unter \leq_m^p ist. Angenommen, NP sei *nicht* komplementabgeschlossen. Zeigen Sie damit, dass es Mengen gibt, für die folgendes nicht gilt:

$$A \leq_m^p \overline{A}.$$

Lösungsvorschläge: Setze $B:=\overline{A}$. Damit ist $\overline{B}=A$. Wir beweisen durch Widerspruch, dass es Mengen gibt, für die obiges nicht gilt.

WA: Die Aussage gilt für alle Mengen.

Aus WA folgt, dass die Aussage auch für $B \in NP$ gilt. Da jedoch NP abgeschlossen ist unter \leq_m^p , folgt aus $A \leq_m^p B$, dass $A = \overline{B} \in NP$ gilt. Damit wäre dann gezeigt, dass für alle $B \in NP$ auch $\overline{B} \in NP$ gilt. Dies ist ein Widerspruch zu der Annahme, dass NP nicht komplementabgeschlossen ist.

Aufgabe 2 (P, NP und NP-vollständige Mengen): Es sei B eine NP-vollständige Menge. Zeigen Sie die folgende Äquivalenz:

$$NP = P \Leftrightarrow B \in P$$
.

Lösungsvorschläge:

Von links nach rechts: Klar, da $B \in NP = P$.

Von rechts nach links: Wir wissen, dass $P \subseteq NP$ gilt. Bleibt also zu zeigen, dass $NP \subseteq P$ gilt. Es sei nun $A \in NP$ eine beliebige Menge. Da B NP-vollständig ist, gilt $A \leq_m^p B$. Da nach Voraussetzung aber gilt, dass $B \in P$ und P nun wiederum abgeschlossen ist unter \leq_m^p , folgt $A \in P$. Somit gilt $NP \subseteq P$ und NP = P.

Aufgabe 3 (**Copeland-CCWM für 4 Kandidaten**): In der Vorlesung haben Sie das Manipulationsproblem Copeland-CCWM für 4 Kandidaten im uneindeutigen Gewinnermodell kennengelernt. Es wurde gezeigt, dass dieses Problem NP-hart ist.

- (a) Zeigen Sie, dass Copeland-CCWM in NP enthalten ist.
- (b) Es sei die Copeland-CCWM-Instanz (C, V, S, c) gegeben. Es sei $C = \{a, b, c, d\}$, $V = (v_1, v_2, v_3, v_4)$ mit

 $v_1: a b c d$ $v_2: a b c d$ $v_3: c b a d$ $v_4: b d c a$

S = (1,3) und c sei der ausgezeichnete Kandidat.

Erläutern Sie an dieser Instanz die Vorgehensweise aus Aufgabenteil (a).

(c) Erläutern Sie, warum der NP-Härte-Beweis aus der Vorlesung nur für das uneindeutige Gewinnermodell korrekt ist.

Lösungsvorschläge:

- (a) Angenommen, es sei eine Copeland-CCWM-Instanz (C,V,S,c) gegeben. Rate zu jedem Gewicht in S eine Präferenz. Überprüfe dann, ob c ein Copeland-Gewinner der Wahl $(C,V\cup S)$ ist. Die Überprüfung ist in Polynomialzeit möglich, da die Gewinnerbestimmung in Copeland in Polynomialzeit möglich ist.
- (b) Für die Wahl (C,V) haben wir die folgenden paarweisen Vergleiche und Copeland-Scores:

	a	b	c	d	#Siege	#Ties	Copeland-Score
a	-	2:2	2:2	3:1	1	2	2
b	2:2	-	3:1	4:0	2	1	2,5
c	2:2	1:3	-	3:1	1	1	1,5
d	1:3	0:4	1:3	-	0	0	0

Mögliche Präferenzen bei 4 Kandidaten:

Um c zum eindeutigen Copeland-Gewinner zu machen, muss er/sie z.B. die Kandidaten a und b schlagen. Eine Möglichkeit, dies zu erreichen ist beide Manipulatoren mit c b d a abstimmen zu lassen.

Damit sind in $(C, V \cup S)$ die folgenden Verhältnisse und Copeland-Scores gegeben:

	a	b	c	d	#Siege	#Ties	Copeland-Score
a	-	2:6	2:6	3:5	0	0	0
b	6:2	-	3:5	8:0	2	0	2
c	6:2	5:3	-	7:1	3	0	3
d	5:3	0:8	1:7	-	1	0	1

Kandidat c ist also eindeutiger Copeland-Gewinner in der manipulierten Wahl.

(c) Die Reduktion funktioniert nicht für das eindeutige Gewinnermodell, da p nicht zum eindeutigen Gewinner gemacht werden kann, auch wenn die gegebene PARTITION-Instanz eine Ja-Instanz ist (die Kandidaten a und b erreichen Gleichstand mit dem ausgezeichneten Kandidaten p). Die benötigte Äquivalenz ist folglich nicht gegeben.