Deep Learning

Syed Irtaza Muzaffar

Loss Functions and Activation Functions for Machine Learning

ss Functions Minimization Matrix Calculus Activation Function

Pre-requisites

Before looking at how a multilayer perceptron can be trained, one must study

- 1. Gradient computation
- 2. Gradient descent
- 3. Loss functions for machine learning
- 4. Smooth activation functions

Loss Functions for Machine Learning

Notation:

- Let $x \in \mathbb{R}$ denote a *univariate* input.
- Let $\mathbf{x} \in \mathbb{R}^D$ denote a *multivariate* input.
- Same for targets $t \in \mathbb{R}$ and $\mathbf{t} \in \mathbb{R}^K$.
- ▶ Same for outputs $y \in \mathbb{R}$ and $\mathbf{y} \in \mathbb{R}^K$.
- Let θ denote the set of *all* learnable parameters of a machine learning model.

Loss Functions for Machine Learning *Regression*

Univariate

$$L(\theta) = \frac{1}{2} \sum_{n=1}^{N} (y_n - t_n)^2$$

Multivariate

$$L(\theta) = \frac{1}{2} \sum_{n=1}^{N} \|\mathbf{y}_n - \mathbf{t}_n\|^2$$

- ▶ Known as half-sum-squared-error (SSE) or ℓ_2 -loss.
- ► Verify that both losses are 0 when outputs match targets for all n. Otherwise, both losses are greater than 0.

Loss Functions for Machine Learning Regression

Univariate

$$L(\theta) = \frac{1}{2} \sum_{n=1}^{N} (y_n - t_n)^2$$

$$L_1 - L_{oss}$$

Multivariate

$$L(\theta) = \frac{1}{2} \sum_{n=1}^{N} \|\mathbf{y}_n - \mathbf{t}_n\|^2 = \frac{1}{2} \sum_{n=1}^{N} \underbrace{\sum_{k=1}^{K} (\mathbf{y}_{nk} - \mathbf{t}_{nk})^2}_{k=1}$$

Verify that both losses are 0 when outputs match targets for all n. Otherwise, both losses are greater than 0.

BackgroundProbability and Negative of Natural Logarithm

- Logarithm is a monotonically increasing function.
- Probability lies between 0 and 1.
- ▶ Between 0 and 1, logarithm is negative.
- ▶ So $-\ln(p(x))$ approaches ∞ for p(x) = 0 and 0 for p(x) = 1.
- Can be used as a loss function.

- For two-class classification, targets can be binary.
 - $ightharpoonup t_n = 0$ if \mathbf{x}_n belongs to class \mathcal{C}_0 .
 - $ightharpoonup t_n = 1$ if \mathbf{x}_n belongs to class \mathcal{C}_1 .
- If output y_n can be restricted to lie between 0 and 1, we can *treat* it as probability of x_n belonging to class C_1 . That is, $y_n = P(C_1|x_n)$.
- ► Then $1 y_n = P(\mathcal{C}_0 | \mathbf{x}_n)$.
- Ideally.
 - \triangleright v_n should be 1 if $\mathbf{x}_n \in \mathcal{C}_1$, and
 - $ightharpoonup 1 v_n$ should be 1 if $\mathbf{x}_n \in \mathcal{C}_0$.
- Equivalently,
 - $-\ln y_n$ should be 0 if $x_n \in \mathcal{C}_1$, and
 - $-\ln(1-y_n)$ should be 0 if $x_n \in \mathcal{C}_0$.
- So depending upon t_n , either $-\ln y_n$ or $-\ln(1-y_n)$ should be considered as loss.

Loss Functions

Loss Functions for Machine Learning Binary Classification

• Using t_n to pick the relevant loss, we can write total loss as

$$L(\theta) = -\sum_{n=1}^{N} t_n \ln y_n + (1 - t_n) \ln(1 - y_n)$$

- ► Known as binary cross-entropy (BCE) loss.
- ▶ Verify that BCE loss is 0 when outputs match targets for all n. Otherwise, loss is greater than 0.

Multiclass Classification

- For multiclass classification, targets can be represented using 1-of-K coding. Also known as 1-hot vectors.
 - ▶ 1-hot vector: only one component is 1. All the rest are 0.
 - If $t_{n3} = 1$, then \mathbf{x}_n belongs to class 3.
- If outputs of K neurons can be restricted to
 - 1. $0 \le y_{nk} \le 1$, and 2. $\sum_{k=1}^{K} y_{nk} = 1$,

then we can *treat* outputs as probabilities.

Later, we shall see activation functions that produce per-class probability values.

$$\mathbf{t}_n = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{y}_{n} = \begin{bmatrix} P(\mathcal{C}_{1}|\mathbf{x}_{n}) \\ P(\mathcal{C}_{2}|\mathbf{x}_{n}) \\ P(\mathcal{C}_{3}|\mathbf{x}_{n}) \\ P(\mathcal{C}_{4}|\mathbf{x}_{n}) \\ P(\mathcal{C}_{5}|\mathbf{x}_{n}) \end{bmatrix}$$

ightharpoonup Similar to BCE loss, we can use t_{nk} to *pick* the relevant negative log loss and write overall loss as

$$L(\theta) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} \ln y_{nk}$$

- ► Known as *multiclass cross-entropy (MCE) loss*.
- ► Verify that MCE loss is 0 when outputs match targets for all n. Otherwise, loss is greater than 0.

Convexity

A function f(x) is *convex* if *every* chord lies on or above the function.

- Can be minimized by finding stationary point. There will only be one.
- Loss functions for neural networks are *not* convex.
- ► They have multiple local minima and maxima.
- Can be minimized via gradient descent.

ss Functions Minimization Matrix Calculus Activation Function

Second Derivative

► First derivative equal to zero determines stationary points.

- Second derivative distinguishes between maxima and minima.
 - At maximum, second derivative is negative.
- At minimum, second derivative is positive.
- ▶ But all of the above applies to functions in 1-dimension.
- In higher dimensions, stationary point is still defined by $abla f = \mathbf{0}$.
- But there will be a second derivative in each dimension some might be positive and some negative.
- So how can we distinguish between maxima and minima in higher dimensions?

Higher Dimensions

In *D*-dimensions, maxima and minima are distinguished via a special $D \times D$ matrix of second derivatives known as the *Hessian matrix*.

$$\mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_D} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_D} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_D \partial x_1} & \frac{\partial^2 f}{\partial x_D \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_D \partial x_D} \end{bmatrix}$$

- ▶ If $\mathbf{x}^T \mathbf{H} \mathbf{x} \ge 0$ for all $\mathbf{x} \ne \mathbf{0}$, then **H** is positive semi-definite.
- ► This is equivalent to **H** having *non-negative eigenvalues*.

If Hessian matrix at a stationary point x is positive semi-definite, then x is a (local) minimizer of f.

Example Calculation

Consider the function:

$$f(x,y) = x^2 + xy + y^2$$

First, compute the second-order partial derivatives:

$$\frac{\partial^2 f}{\partial x^2} = 2, \quad \frac{\partial^2 f}{\partial y^2} = 2$$
$$\frac{\partial^2 f}{\partial x \partial y} = 1, \quad \frac{\partial^2 f}{\partial y \partial x} = 1$$

Thus, the Hessian matrix is:

Let's choose
$$X = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, then:

$$\begin{split} X^T H X &= \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \end{bmatrix} = (1 \times 4) + (2 \times 5) = 4 + 10 = 14 \end{split}$$

Since 14 > 0, the function is convex in the given direction.

Matrix and Vector Derivatives

For scalar function $f \in \mathbb{R}$.

$$\nabla_{\mathbf{v}} f = \frac{\partial f}{\partial \mathbf{v}} = \begin{bmatrix} \frac{\partial f}{\partial v_1} & \frac{\partial f}{\partial v_2} & \dots & \frac{\partial f}{\partial v_D} \end{bmatrix}$$

$$\nabla_{\mathbf{M}} f = \frac{\partial f}{\partial \mathbf{M}} = \begin{bmatrix} \frac{\partial f}{\partial M_{11}} & \frac{\partial f}{\partial M_{12}} & \dots & \frac{\partial f}{\partial M_{1n}} \\ \frac{\partial f}{\partial M_{21}} & \frac{\partial f}{\partial M_{22}} & \dots & \frac{\partial f}{\partial M_{2n}} \end{bmatrix}$$

$$\vdots & \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial M_{m1}} & \frac{\partial f}{\partial M_{m2}} & \dots & \frac{\partial f}{\partial M_{mn}} \end{bmatrix}$$

For vector function $\mathbf{f} \in \mathbb{R}^K$,

$$\nabla_{\mathbf{v}} \mathbf{f} = \begin{bmatrix} \nabla_{\mathbf{v}} f_1 \\ \nabla_{\mathbf{v}} f_2 \\ \vdots \\ \nabla_{\mathbf{v}} f_K \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial v_1} & \frac{\partial f_1}{\partial v_2} & \cdots & \frac{\partial f_1}{\partial v_D} \\ \frac{\partial f_2}{\partial v_1} & \frac{\partial f_2}{\partial v_2} & \cdots & \frac{\partial f_2}{\partial v_D} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_K}{\partial v_1} & \frac{\partial f_K}{\partial v_2} & \cdots & \frac{\partial f_K}{\partial v_D} \end{bmatrix}$$

s Functions Minimization Matrix Calculus Activation Functions

Activation Functions

► Recall that a perceptron has a non-differentiable activation function, i.e., step function.

- ► Zero-derivative everywhere except at 0 where it is non-differentiable.
- Prevents gradient descent.
- ► Can we use a smooth activation function that behaves similar to a step function?
- Perceptron with a smooth activation function is called a neuron.
- ▶ Neural networks are also called multilayer perceptrons (MLP) even though they do not contain any perceptron.

Logistic Sigmoid Function

- ► For $a \in \mathbb{R}$, the *logistic sigmoid* function is given by $\sigma(a) = \frac{1}{1+e^{-a}}$
- Sigmoid means S-shaped.
- Maps $-\infty \le a \le \infty$ to the range $0 \le \sigma \le 1$. Also called *squashing* function.
- Can be treated as a probability value.
- Symmetry $\sigma(-a) = 1 \sigma(a)$. Prove it.
- ► Easy derivative $\sigma' = \sigma(1 \sigma)$. Prove it.

The derivative of e^{-x} can be understood using the chain rule of differentiation.

For a function like $e^{f(x)}$, the derivative is given by:

$$\frac{d}{dx}e^{f(x)} = e^{f(x)} \cdot f'(x)$$

In the case of e^{-x} , we can treat -x as the function f(x). So, f(x) = -x, and its derivative f'(x) = -1.

Now, applying the chain rule:

$$\frac{d}{dx}e^{-x} = e^{-x} \cdot (-1) = -e^{-x}$$

Thus, the derivative of e^{-x} is $-e^{-x}$.

Step 1: Rewrite the Sigmoid Function

Define:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Let $u=1+e^{-x}$, so:

$$\sigma(x) = u^{-1}$$

Step 2: Differentiate Using the Chain Rule

Using the power rule and chain rule:

$$\frac{d}{dx}\sigma(x) = -u^{-2} \cdot \frac{du}{dx}$$

Since:

$$\frac{du}{dx} = -e^{-x}$$

we get:

$$\frac{d}{dx}\sigma(x) = -(1 + e^{-x})^{-2} \cdot (-e^{-x})$$
$$= \frac{e^{-x}}{(1 + e^{-x})^2}$$

Activation Functions

Regression

- Univariate: use 1 output neuron with identity activation function y(a) = a.
- Multivariate: use K output neurons with identity activation functions $y(a_k) = a_k$.

Classification

- ▶ Binary: use 1 output neuron with logistic sigmoid $y(a) = \sigma(a)$.
- ▶ Multiclass: use *K* output neurons with *softmax* activation function.

Activation Functions

Univariate: use 1 output neuron with identity activation function y(a) = a. $w^T \vec{h} + b \leftarrow -\infty$, so f(n)= n

Multivariate: use K output neurons with identity activation functions $y(a_k) = a_k$. $\alpha = \vec{w_k}^T \vec{h} + b$ P(C, /x,)

Classification

Regression

▶ Binary: use 1 output neuron with logistic sigmoid $y(a) = \sigma(a)$. Multiclass: use K output neurons with softmax activation function.

ass: use ...

P(c₁|x_k)

P(c₁|x_k)

Softmax Activation Function

▶ For real numbers $a_1, ..., a_K$, the *softmax* function is given by

$$y(a_k; a_1, a_2, ..., a_K) = \frac{e^{a_k}}{\sum_{i=1}^K e^{a_i}}$$

- ▶ Output of *k*-th neuron depends on activations of *all neurons in the same layer*.
- ▶ Softmax is ≈ 1 when $a_k >> a_j \ \forall j \neq k$ and ≈ 0 otherwise.

Softmax Activation Function

- ▶ Provides a smooth (differentiable) approximation to finding the *index of* the maximum element.
 - ightharpoonup Compute softmax for 1, 10, 100.
 - Does not work everytime.
 - ► Compute softmax for 1,2,3. Solution: multiply by 100.
 - Compute softmax for 1, 10, 1000. Solution: subtract maximum before computing softmax.
- Also called the normalized exponential function.
- ▶ Since $0 \le y_k \le 1$ and $\sum_{k=1}^K y_k = 1$, softmax outputs can be treated as probability values.
- ▶ Show that $\frac{\partial y_k}{\partial a_j} = y_k(\delta_{jk} y_j)$ where $\delta_{jk} = 1$ if j = k and 0 otherwise.

Softmax Activation Function

Provides a smooth (differentiable) approximation to finding the <u>index of</u> the maximum element.

- the maximum element. $\frac{1}{2}$ $\frac{1$ Does not work everytime. 100, 400, 300
- Compute softmax for 1,2,3. Solution: multiply by 100. Compute softmax for 1, 10, 1000. Solution: subtract maximum before computing softmax.
 - Also called the normalized exponential function. ▶ Since $0 \le y_k \le 1$ and $\sum_{k=1}^K y_k = 1$, softmax outputs can be treated as
 - probability values. ▶ Show that $\frac{\partial y_k}{\partial a_i} = y_k(\delta_{jk} - y_j)$ where $\delta_{jk} = 1$ if j = k and $\underline{0}$ otherwise.

 - e 20 for all meiR