Recherche Opérationnelle 1A Programmation Linéaire Résolution d'un Programme Linéaire

Zoltán Szigeti

Ensimag, G-SCOP

Algèbre Linéaire : $A \cdot x = b$

Notation

- Matrice A: taille n fois m, vecteur x: taille n, vecteur b: taille m.
- 2 Les colonnes de A sont notées : a^1, \ldots, a^n ,
- 3 Les lignes de A sont notées : a_1, \ldots, a_m .
- $A \cdot x = b \iff x_1 \cdot a^1 + \dots + x_n \cdot a^n = b \iff b$ peut être écrit comme une combinaison linéaire des vecteurs a^1, \dots, a^n .

Rappel

- Les colonnes a^1, \ldots, a^n de A engendrent un espace vectoriel.
- 2 Les lignes a_1, \ldots, a_m de A aussi engendrent un espace vectoriel.
- **3** Ces deux espaces vectoriels sont de même dimension (rang(A)).
- 1 Une base d'un espace vectoriel est un ensemble de vecteurs qui
 - sont linéairement indépendants et
 - engendrent tout l'espace.

Algèbre Linéaire : $A \cdot x = b$

Théorème (Existence)

 $A \cdot x = b$ possède une solution $\overline{\mathbf{x}} \iff$ il n'y pas de contradiction : une solution $\overline{\mathbf{y}}$ de $\mathbf{y}^T \cdot A = 0$ et $\mathbf{y}^T \cdot b \neq 0$.

Exemple

Résolution

Elimination de Gauss: PIVOT.

Programmation Linéaire : $A \cdot x = b, x \ge 0$

Lemme de FARKAS (Existence)

 $A \cdot x = b, x \ge 0$ possède une solution $\overline{x} \iff$ il n'y pas de contradiction : une solution \overline{y} de $y^T \cdot A \ge 0$ et $y^T \cdot b < 0$.

Exemple

$$\begin{aligned} & 2x_1 - 1x_2 = & 1 & \cdot 1 \\ & - 1x_1 + 3x_2 = -2 & \cdot 1 \\ & \underline{x_1, & x_2 \ge 0} \\ & \overline{1x_1 + 2x_2 \ne -1} & + \\ & \overline{y}^T \cdot A = \begin{pmatrix} 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix} \text{ et } \overline{y}^T \cdot b = \begin{pmatrix} 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \end{pmatrix} = -1. \end{aligned}$$

Programmation Linéaire : $A \cdot x = b, x \ge 0$

Lemme de FARKAS (Existence)

 $A \cdot x = b, x \ge 0$ possède une solution $\overline{x} \iff$ il n'y pas de contradiction : une solution \overline{y} de $y^T \cdot A \ge 0$ et $y^T \cdot b < 0$.

Démonstration

- \bullet \overline{x} et \overline{y} ne peuvent pas tous les deux exister :
 - $0 \le (\overline{y}^T \cdot A) \cdot \overline{x} = \overline{y}^T \cdot (A \cdot \overline{x}) = \overline{y}^T \cdot b < 0.$
- \bigcirc \overline{x} ou \overline{y} existe :
 - Soit b appartient au cône (a^1, \ldots, a^n) :
 - b est une combinaison linéaire non-négative des a^1, \ldots, a^n ,
 - $\bullet \ \sum_{1}^{n} \overline{x}_{i} \cdot a^{i} = b, \overline{x}_{i} \geq 0,$
 - $A \cdot \overline{x} = b, \overline{x} \ge 0$.
 - Soit b n'appartient pas au cône (a^1, \ldots, a^n) :
 - il existe donc un hyperplan H qui sépare b et les a^i ,
 - pour le vecteur normal \overline{y} de $H: \overline{y}^T \cdot a^i \geq 0$ pour tout i et $\overline{y}^T \cdot b < 0$.
 - $\overline{\mathbf{v}}^T \cdot A > 0$ et $\overline{\mathbf{v}}^T \cdot b < 0$.

Programmation Linéaire : $A \cdot x = b, x \ge 0, c^T \cdot x = z(\text{max})$

Lemme de FARKAS (Existence)

 $A \cdot x = b, x \ge 0$ possède une solution $\overline{x} \iff$ il n'y pas de contradiction : une solution \overline{y} de $y^T \cdot A \ge 0$ et $y^T \cdot b < 0$.

Résolution

Algorithme du simplexe : PIVOT.

Programmation Linéaire

Notation

Soient
$$J \subseteq \{1, \dots, n\}$$
 et $\overline{J} = \{1, \dots, n\} \setminus J$,
$$\begin{pmatrix} A^J & A^{\overline{J}} \end{pmatrix} \cdot \begin{pmatrix} x_J \\ x_{\overline{J}} \end{pmatrix} = b$$

$$x \ge 0 & \qquad \qquad \begin{pmatrix} x_J \\ x_{\overline{J}} \end{pmatrix} \ge 0 & \qquad \qquad x_J, \qquad x_{\overline{J}} \ge 0$$

$$c^T \cdot x = z(\max) & \qquad \qquad c_J^T \cdot x_J + c_{\overline{J}}^T \cdot x_{\overline{J}} = z(\max)$$

Programmation Linéaire

Supposition

Les lignes de A sont linéairement indépendantes (rang(A) = m).

• Si elles sont linéairement dépendantes alors on peut en effacer une.

Définition : $J \subseteq \{1, \ldots, n\}$

- **1** base : si $\{a^j : j \in J\}$ forme une base de l'espace vectoriel engendré par les colonnes de A, ainsi (|J| = m).
 - si et seulement si $(A^{J})^{-1}$ existe,
 - si et seulement si A^J est non-singulière : $det(A^J) \neq 0$.
- **2** solution de base associée à J: la solution unique de $A^J \cdot x_J = b$, $\binom{\overline{x}_J}{\overline{x}_T} = \binom{(A^J)^{-1}b}{0}$.
- **3** réalisable : si $(A^J)^{-1} \cdot b \ge 0$.
- optimale : si $\left(\frac{\overline{X}_J}{\overline{X}_J}\right)$ est une solution optimale du PL.

Algorithmes pour résoudre un PL

Algorithme	Auteur	Théorie	Pratique
Simplexe	Dantzig'47	non-polynomial	très rapide
Ellipsoïde	Khachiyan'79	polynomial	très lent
Point intérieur	Karmarkar'84	polynomial	rapide

Remarques sur l'algorithme du simplexe

- S'il existe une solution optimale alors il en existe une qui est un sommet (point extrême) du polyèdre (borné).
- L'algorithme du simplexe se promène sur des sommets du polyèdre en améliorant la valeur de la fonction objectif.
- 3 Le nombre de sommets peut être exponentiel!
- ① Il existe des exemples où l'algorithme du simplexe passe par tous les sommets du polyèdre et il y en a 2^n (n = n) nombre de variables).
- Ses sommets du polyèdre correspondent aux bases réalisables du PL.

Les deux étapes de l'algorithme du simplexe

Idée

- L'algorithme du simplexe a deux étapes :
 - ① Étape 1 : trouve une base réalisable s'il en existe une.
 - **②** Étape 2 : en utilisant cette base réalisable, il trouve une solution de base optimale s'il en existe une.
- 2 Les deux étapes sont très similaires.
 - Étape 2 a besoin de Étape 1 et
 - Étape 1 utilise Étape 2, sur un PL auxiliaire.
- Les deux étapes utilisent l'itération suivante :
 - Entrée : une base réalisable J,
 - Sortie : une et une seule de
 - ① *J* est une base optimale,
 - il n'existe pas de base optimale bornée,
 - une meilleure base réalisable J',
 la fonction objectif augmente dans la nouvelle solution de base.

Opérations de lignes

Définitions

- **①** Opération 1 : multiplication d'une ligne par une constante $\alpha_i \neq 0$:
 - $a_i \cdot x = b_i$ \Longrightarrow $(\alpha_i \cdot a_i) \cdot x = (\alpha_i \cdot b_i).$
- Opération 2 : soustraction d'une ligne d'une autre :
 - $a_i \cdot x = b_i$ \implies $(a_i a_j) \cdot x = (b_i b_j)$ ou plus généralement:
 - $a_i \cdot x = b_i$ \Longrightarrow $(a_i \alpha_j \cdot a_j) \cdot x = (b_i \alpha_j \cdot b_j).$
- Opération 2 peut être utilisée sur la fonction objectif!
 - $c^T \cdot x = z(\max) \implies (c^T \alpha_j \cdot a_j) \cdot x = z(\max) \alpha_j \cdot b_j$.
 - $c^T \cdot x = z(\text{max}) z_0$ sera utilisée.
- Deux PL P et P' sont équivalents si
 - $\{x : A \cdot x = b, x \ge 0\} = \{x : A' \cdot x = b', x \ge 0\}$
 - $c^T \cdot x + z_0 = c'^T \cdot x + z'_0$ pour toute solution réalisable x.

Remarque

En utilisant des opérations de lignes on obtient un PL équivalent.

Forme standard par rapport à une base réalisable

Étant donné un PL sous forme standard et une base réalisable J, on utilisera une forme plus adaptée :

$$A^{J} \cdot x_{J} + A^{\overline{J}} \cdot x_{\overline{J}} = b$$

$$x_{J}, \quad x_{\overline{J}} \ge 0 \qquad \Longrightarrow \qquad x_{J}, \quad x_{\overline{J}} \ge 0$$

$$c_{J}^{T} \cdot x_{J} + c_{\overline{J}}^{T} \cdot x_{\overline{J}} = z(\max) - z_{0} \qquad 0 \cdot x_{J} + c_{\overline{J}}^{\prime T} \cdot x_{\overline{J}} = z(\max) - z_{0}^{\prime}$$

Définition

Forme standard par rapport à une base réalisable J:

- \bullet $A^J = I_m$ (matrice identité à une permutation des colonnes près),
- ② $c_J^T = 0$ (Quand $A^J = I_m$ c'est facile à avoir : $c^T \Longrightarrow c^T c_J^T \cdot A$).

Forme standard par rapport à une base réalisable

Remarque

- $\begin{array}{c} \textbf{I} \cdot x_J + A^J \cdot x_{\overline{J}} = b \\ \textbf{X}_J, \qquad x_{\overline{J}} \geq 0 \\ \textbf{0} \cdot x_J + c_J^T \cdot x_{\overline{J}} = z(\max) z_0 \end{array}$
 - la solution de base associée à J est $\begin{pmatrix} \overline{x}_J \\ \overline{x}_{\overline{J}} \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}$.
 - $b \ge 0$ (la solution de base est réalisable).
 - la valeur de la fonction objectif est $\mathbf{z_0}$: $\mathbf{z} - \mathbf{z_0} = \mathbf{c_J}^T \cdot \overline{\mathbf{x}_J} + \mathbf{c_I}^T \cdot \overline{\mathbf{x}_I} = 0 \cdot \overline{\mathbf{x}_J} + \mathbf{c_I}^T \cdot \mathbf{0} = 0.$
- ② Si on a la forme canonique avec $b \ge 0$ alors la forme standard sera une forme standard par rapport à une base réalisable :

$$\begin{array}{ll} A \cdot x \leq b & A \cdot x + I \cdot y = b \\ x \geq 0 & \Longrightarrow & x, \quad y \geq 0 \\ c^T \cdot x = z(\mathsf{max}) & c^T \cdot x + \mathbf{0} \cdot y = z(\mathsf{max}) \end{array}$$

Idée de l'amélioration de la base sur un exemple

Exemple : forme standard par rapport à $J=\{1,2\}$

$$+1x_{1} + 1x_{3} - 2x_{4} + 2x_{5} = 1 +1x_{2} + 2x_{3} + 1x_{4} + 2x_{5} = 3 x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \ge 0 +2x_{3} + 1x_{4} - 1x_{5} = z(\max) - 0$$

$$A^{J} = I_{2} b \ge 0$$

$$c_{J}^{T} = 0$$

- On voudrait augmenter la valeur de la fonction objectif.
- On essaie d'augmenter une variable dont le coefficient dans la fonction objectif est strictement positif, en gardant les autres variables hors de base fixées à 0.
- On augmente celle dont le coefficient est le plus grand, donc x_3 .
- Les variables dans J doivent rester non-négatives en augmentant x_3 :
 - $x_1 = 1 1x_3$, $\overline{x}_3 = 1$, \overline{x}_1 devient 0.
 - $x_2 = 3 2x_3$, $J' = \{3, 2\}$.

Idée de l'amélioration de la base sur un exemple

Exemple : forme standard par rapport à $J=\{1,2\}$

$$\begin{array}{lll}
+1x_1 & +1x_3 - 2x_4 + 2x_5 = 1 & A^J = I_2 \\
& +1x_2 + 2x_3 + 1x_4 + 2x_5 = 3 & b \ge 0 \\
x_1, & x_2, & x_3, & x_4, & x_5 \ge 0 \\
& & +2x_3 + 1x_4 - 1x_5 = z(\max) - 0 & c_J^T = 0
\end{array}$$

Exemple : forme standard par rapport à $J' = \{3, 2\}$

$$+1x_{1} + 1x_{3} - 2x_{4} + 2x_{5} = 1
-2x_{1} + 1x_{2} + 5x_{4} - 2x_{5} = 1
x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \ge 0
-2x_{1} + 5x_{4} - 5x_{5} = z(\max) - 2$$

$$A'^{J'} = I_{2}
b' \ge 0$$

$$c'^{T}_{J'} = 0$$

Idée de l'amélioration de la base sur un exemple

Exemple : forme standard par rapport à $J'=\{3,2\}$

$$\begin{array}{lll}
+1x_1 & +1x_3 - 2x_4 + 2x_5 = 1 & A'^{J'} = I_2 \\
-2x_1 + 1x_2 & +5x_4 - 2x_5 = 1 & b' \ge 0 \\
x_1, & x_2, & x_3, & x_4, & x_5 \ge 0 \\
-2x_1 & +5x_4 - 5x_5 = z(\text{max}) - 2 & c'^{T}_{J'} = 0
\end{array}$$

On continue de la même façon : 4 entre dans la base et 2 sort de la base.

Exemple : forme standard par rapport à $J''=\{3,4\}$

On ne peut plus augmenter la fonction objectif, on a une base optimale.

En utilisant un tableau des coefficients

1	0	1	-2	2	1
0	1	2	1	2	3
0	0	2	1	-1	0

$$\ell_1$$
 ℓ_2
 ℓ_3

$$\ell'_{1} = \ell_{1}/1
\ell'_{2} = \ell_{2} - 2\ell'_{1}
\ell'_{3} = \ell_{3} - 2\ell'_{1}$$

$$\ell_1'' = \ell_1' - (-2)\ell_2''$$

$$\ell_2'' = \ell_2'/5$$

$$\ell_3'' = \ell_3' - 5\ell_2''$$

- Dans le dernier tableau la fonction objectif est non-positive donc
- une solution optimale est $(\overline{x}_1, \overline{x}_2, \overline{x}_3, \overline{x}_4, \overline{x}_5) = (0, 0, \frac{7}{5}, \frac{1}{5}, 0)$
- de valeur 3.

Itération du simplexe

Entrée : Un PL sous forme standard par rapport à une base réalisable J.

$$I \cdot x_J + A_{\overline{J}} \cdot x_{\overline{J}} = b$$

$$x_J, \qquad x_{\overline{J}} \ge 0$$

$$c_{\overline{J}}^T \cdot x_{\overline{J}} = z(\max) - z_0$$

SORTIE : Une et une seule des trois possibilités suivantes :

- La solution de base $\left(\frac{\overline{X}_{J}}{\overline{X}_{T}}\right) = \binom{b}{0}$ est une solution optimale.
- Il n'y a pas de solution optimale bornée.
- Le PL sous forme standard par rapport à une meilleure base réalisable //
- **①** Soit $s ∈ \overline{J}$ pour lequel $c_s = \max\{c_i : i ∈ \overline{J}\}$.
- ② Si $c_s \leq 0$ arrêter. (La solution de base est optimale.)
- 3 Si $a^s \le 0$ arrêter. $(z(max) = \infty)$
- **3** Sinon soit r tel que $\frac{b_r}{A_r^s} = \min\{\frac{b_i}{A_i^s}: 1 \le i \le m \text{ tel que } A_i^s > 0\}.$
- **1** Pivoter à A_r^s et arrêter avec la nouvelle base $J' = J + s J_r$.

Pivot

Itération du simplexe

- **①** Soit $s ∈ \overline{J}$ pour lequel $c_s = \max\{c_i : i ∈ \overline{J}\}$.
- 2 Si $c_s \leq 0$ arrêter. (La solution de base est optimale.)
- 3 Si $a^s \leq 0$ arrêter. $(z(max) = \infty.)$
- Sinon soit r tel que $\frac{b_r}{A_r^s} = \min\{\frac{b_i}{A_i^s}: 1 \le i \le m \text{ tel que } A_i^s > 0\}.$
- **3** Pivoter à A_r^s et arrêter avec la nouvelle base $J' = J + s J_r$.

Pivot

- \bullet $(a'_r, b'_r) = (a_r, b_r)/A^s_r,$
- $\bullet (a'_i, b'_i) = (a_i, b_i) A_i^s \cdot (a'_r, b'_r), \quad \text{pour tout } i \neq r,$
- \bullet $(c'^T, -z'_0) = (c^T, -z_0) c_s \cdot (a'_r, b'_r).$