Accepted Manuscript

Safety and Outcomes of Oral Graded Challenges to Amoxicillin without Prior Skin Testing

Melissa Iammatteo, MD, Santiago Alvarez Arango, MD, Denisa Ferastraoaru, MD, Nadeem Akbar, MD, Andrew Y. Lee, MD, Hillel W. Cohen, DrPH, Elina Jerschow, MD, MSc

PII: S2213-2198(18)30330-1

DOI: 10.1016/j.jaip.2018.05.008

Reference: JAIP 1619

To appear in: The Journal of Allergy and Clinical Immunology: In Practice

Received Date: 27 February 2018

Revised Date: 15 April 2018 Accepted Date: 8 May 2018

Please cite this article as: Iammatteo M, Alvarez Arango S, Ferastraoaru D, Akbar N, Lee AY, Cohen HW, Jerschow E, Safety and Outcomes of Oral Graded Challenges to Amoxicillin without Prior Skin Testing, *The Journal of Allergy and Clinical Immunology: In Practice* (2018), doi: 10.1016/j.jaip.2018.05.008.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

- 1 Safety and Outcomes of Oral Graded Challenges to Amoxicillin without Prior Skin Testing
- 2 Melissa Iammatteo, MD¹, Santiago Alvarez Arango, MD, Denisa Ferastraoaru, MD¹, Nadeem
- 3 Akbar, MD³, Andrew Y. Lee, MD³, Hillel W. Cohen, DrPH⁴, Elina Jerschow, MD, MSc¹
- ⁴ Division of Allergy and Immunology, Department of Medicine, Montefiore Medical Center,
- 5 Albert Einstein College of Medicine, Bronx, New York
- 6 ² Division of Allergy and Clinical Immunology, Johns Hopkins Hospital, Baltimore, Maryland
- 7 ³ Department of Otorhinolaryngology, Montefiore Medical Center, Bronx, New York
- 8 ⁴ Department of Epidemiology & Population Health, Albert Einstein College of Medicine,
- 9 Bronx, New York
- 10 Corresponding author:
- 11 Elina Jerschow, M.D., M.Sc.
- 12 Albert Einstein College of Medicine
- 13 Montefiore Medical Center
- 14 Associate Professor of Medicine
- 15 Director, Drug Allergy Center
- 16 Allergy/Immunology Division
- 17 Bronx, New York
- 18 Phone (w) 866-MEDTALK (866.633.8255)
- 19 Phone (c) 917.362.5291
- 20 Fax 929.263.3959
- 21 Email: Elina.Jerschow@einstein.yu.edu
- 22 **Conflicts of interest:** Elina Jerschow has research support from Stony-Wold Herbert Fund and
- 23 Cumberland Pharmaceuticals, Inc., which is not relevant to the present study. Melissa

24	Iammatteo, Santiago Alvarez Arango, Denisa Ferastraoaru, Nadeem Akbar, Andrew Y. Lee, and
25	Hillel W. Cohen have no conflicts of interest to disclose.
26	Funding: This research did not receive any specific grant from funding agencies in the public,
27	commercial, or not-for-profit sectors.
28	Abstract word count: 246
29	Manuscript word count: 3497
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

47	Abstract
48	Background: Unconfirmed penicillin allergy poses substantial public health consequences. The
49	most widely accepted protocol to evaluate penicillin allergy is skin testing followed by
50	amoxicillin challenge.
51	Objective: To evaluate the safety of direct oral graded challenges to amoxicillin.
52	Methods: Prospective single-blind clinical trial with historical controls of patients ≥ 7 years old
53	with historical non-life-threatening reactions to penicillin. Patients received placebo followed by
54	a 2-step graded challenge to amoxicillin. The allergic reaction rate was compared to the rate
55	observed in our previous study that included skin testing and to the currently reported penicillin
56	allergy prevalence in the US population.
57	Results: Of the 155 participants who completed an amoxicillin challenge, 120 patients (77.4%)
58	experienced no reaction while 31 patients (20%) experienced non-allergic reactions to either
59	placebo (n=16) or amoxicillin (n=15). Four patients (2.6%) developed mild allergic reactions.
60	Significantly (p =0.03) fewer patients [4/155, 2.6%, 95% CI (1.0%, 6.5%)] were determined to be
61	allergic compared to 14/170 subjects [(8.2%, 95% CI (5.0%, 13.4%)] in our previous study
62	where patients were determined to be allergic based on either positive skin tests (n=11) or
63	allergic challenge reactions after negative skin tests (n=3). This 2.6% reaction rate was also
64	significantly less than the 10% reported US prevalence of penicillin allergy (p =0.003).
65	Conclusions: Placebo-controlled oral graded challenges to amoxicillin without prior skin testing
66	may be safe for patients ≥ 7 years old with non-life-threatening historical reactions to penicillin.
67	Amoxicillin can be tolerated by the majority of patients with self-reported penicillin allergy.
68	ClinicalTrials.gov Registration: NCT03158831

70	Highlights Box
71	1. What is already known about this topic?
72	Penicillin allergy is reported by approximately 10% of the United States population. The most
73	widely accepted protocol to evaluate penicillin allergy is skin testing followed by amoxicillin
74	challenge.
75	2. What does this article add to our knowledge?
76	This study demonstrates that placebo-controlled oral graded challenges to amoxicillin without
77	prior penicillin skin testing may be safe for patients ≥ 7 years old with non-life-threatening
78	historical reactions to penicillin.
79	3. How does this study impact current management guidelines?
80	If confirmed by larger studies, skin testing to penicillin prior to an oral amoxicillin challenge is
81	unlikely to be necessary in patients ≥ 7 years old with non-life-threatening historical reactions to
82	penicillin.
83	Key Words: Penicillin allergy; graded challenge; drug provocation test; adverse drug reaction;
84	hypersensitivity reaction; placebo
85	Abbreviations
86	ANOVA: analysis of variance
87	CI: confidence interval
88	IgE: Immunoglobulin E
89	IQR: interquartile range
90	mg: milligram
91	ml: milliliter
92	NPV: negative predictive value

93	SEM: standard error of the mean
94	US: United States
95	
96	
97	
98	
99	
100	
101	
102	
103	
104	
105	
106	
107	
108	
109	
110	
111	
112	
113	
114	
115	

Background

Penicillin allergy is reported by approximately 10% of the United States (US) population,
which is equivalent to over 32.7 million people. Patients labeled with penicillin allergy often
receive suboptimal treatment for infectious diseases with second-line, broad-spectrum antibiotics
that tend to be less effective, more costly, and associated with an increased risk of antibiotic-
resistant infections. ³⁻⁵ The substantial public health consequences of unconfirmed penicillin
allergy have led numerous societies and agencies, including the Centers for Disease Control and
Prevention, Infectious Diseases Society of America, the American Academy of Allergy, Asthma,
and Immunology, and the Choosing Wisely initiative of the American Board of Internal
Medicine Foundation, to recommend testing for penicillin allergy as an essential component of
antibiotic stewardship. 6-10 After a comprehensive evaluation, recent studies have demonstrated
that greater than 94% of patients who report penicillin allergy can tolerate the antibiotic. 11-13
The most widely accepted protocol to evaluate penicillin allergy consists of skin testing
followed by an oral amoxicillin challenge in skin test-negative individuals. 11,13-17 In the US, skin
testing is typically performed using the major determinant (benzylpenicilloyl polylysine) and
penicillin G dilutions due to the lack of commercial access to the full panel of minor
determinants, which also includes penicilloate and penilloate. 11 Skin testing with these reagents
has a negative predictive value (NPV) around 95%, which increases to nearly 100% when
followed by an oral amoxicillin challenge. 1,11,18 In a study conducted at our center using this
approach, 8.2% of 170 patients were determined to beallergic based on either a positive skin test
or an allergic challenge reaction to a beta-lactam after negative skin tests. 13 While most positive
challenge reactions after negative skin tests are mild and self-limited, systemic reactions to

amoxicillin have been reported, including immediate life-threatening reactions involving hypotension and bronchospasm.¹⁹

Recent studies in patients with historical cutaneous reactions to amoxicillin have also demonstrated that positive skin tests do not necessarily predict challenge reactions. For example, skin testing was shown to have poor diagnostic value for benign skin rashes due to beta-lactams in children with an overall sensitivity of 50% for immediate-reading intradermal tests in one study. ²⁰ In another study, only one of 17 children who developed an immediate reaction during an amoxicillin graded challenge subsequently had a positive penicillin skin test. ¹² Of 34 patients with a history of non-immediate penicillin allergy associated with positive skin tests, only two patients experienced allergic challenge reactions to penicillin. ²¹ One-hundred-sixty-nine patients with a remote non-life-threatening reaction to penicillin were challenged regardless of the results of penicillin skin testing. Mild rashes to oral challenges were observed in 6.6% of 137 challenges associated with a positive skin test and 3.7% of 135 challenges associated with a negative skin test result (p=0.29). ²² Therefore, the gold standard for verifying penicillin tolerance is an oral challenge to a therapeutic dose of amoxicillin. ^{15,23}

Recent studies have begun to explore the safety of direct oral challenges without preceding skin tests in limited populations with low-risk histories of penicillin allergy. 12,21,24 Direct challenges were found to be safe in children with amoxicillin-induced rashes with a NPV of 89.1%. Ninety-four percent of children tolerated challenges while the remainder developed mild reactions. In a cohort limited to male Marine recruits, only 5 (1.5%) recruits had immediate reactions during direct amoxicillin challenges. Five-day oral penicillin challenges without antecedent skin testing have also been found to safely exclude clinically significant

160	delayed-onset hypersensitivity reactions in patients with previous nonimmediate reactions to
161	penicillin. ²¹
162	These studies have demonstrated the safety of direct beta-lactam challenges in patient
163	populations limited to well-defined cohorts with a history of low-risk penicillin allergy. The
164	present study sought to evaluate the safety of a direct oral graded challenge to amoxicillin
165	without prior skin testing in a broader cohort of patients ≥ 7 years old who reported a history of
166	penicillin allergy that was non-life-threatening.
167	
168	
169	
170	
171	
172	
173	
174	
175	
176	
177	
178	
179	
180 181	
182	
104	

Methods

Trial Design and Setting

We conducted a prospective single-blind clinical trial with historical controls between

January 2016 and December 2017 at an outpatient drug allergy clinic affiliated with a single,
tertiary-care academic center in Bronx, NY. This study was approved by the Institutional Review
Board at Montefiore Medical Center/Albert Einstein College of Medicine and was registered on
ClinicalTrials.gov (NCT03158831). No funding was obtained to support this study.

Inclusion/Exclusion Criteria

Patients ≥ 7 years old with historical non-life-threatening reactions to penicillin were eligible for inclusion. Exclusion criteria included reactions to penicillin with the following features: bronchospasm or laryngeal edema requiring intubation; anaphylactic shock; or severe non-IgE-mediated reactions (Stevens-Johnson syndrome, toxic epidermal necrolysis, interstitial nephritis, hepatitis, hemolytic anemia, drug reaction with eosinophilia and systemic symptoms, cutaneous and/or mucosal blisters, hypersensitivity vasculitis, pneumonitis, pulmonary fibrosis, and serum sickness). Pregnancy and antihistamine use within three days of enrollment were also exclusion criteria.

Recruitment Methods

Consecutive patients with reported penicillin allergy who presented to our outpatient drug allergy clinic were screened for enrollment. We also utilized a decision support tool at our institution to identify patients who had penicillin allergy documented in their electronic medical record. Recruitment letters were sent to these patients, who were subsequently screened for eligibility. Informed consent was obtained for all patients.

Intervention

Patients were challenged with placebo followed by a two-step oral graded challenge to
amoxicillin, as described in our previous study. 13 Patients were informed they would receive a
placebo, but were not told when it would be administered. Study investigators followed the same
protocol for all patients, who first received placebo followed by a 30-minute observation period.
An oral challenge was subsequently performed with 80 mg (1 ml of 400 mg/5 ml suspension) of
amoxicillin followed by 30 minutes of observation and subsequent administration of a full
therapeutic dose (500 mg) of amoxicillin. Patients were observed for 60 minutes after the
therapeutic dose. Amoxicillin was supplied in liquid formulation and mixed in the same yogurt
and pharmaceutical sweetener used for placebo. Vital signs and physical examination were
performed at baseline and every 30 minutes. If a subjective reaction occurred, vital signs and
physical examination were repeated. If no objective signs of an allergic reaction were observed
and vital signs were stable, the patient was given the option of discontinuing the challenge with
or without treatment or continuing the challenge without treatment. If a patient experienced an
objective reaction to amoxicillin, the challenge was discontinued and treatment was
administered, if warranted. All challenges were performed in an outpatient allergy clinic
equipped to handle anaphylactic reactions.
Non-allergic challenge reactions were defined as reactions to placebo or amoxicillin
comprised solely of subjective symptoms that resolved spontaneously with no change in vital
signs and no objective signs of a reaction when examined by a study investigator. Patients with
non-allergic reactions were advised that they had no restrictions on future penicillin use.
Allergic reactions were defined as reactions with either objective signs observed by the study
investigator that did not resolve spontaneously within an hour or subjective symptoms
experienced by the subject that did not resolve spontaneously. Avoidance of beta-lactams was

advised for all patients determined to be allergic. All patients were instructed to call the principal investigator if a delayed reaction occurred. All participants were also called within one month to assess for delayed reactions and again within one year to determine tolerability of subsequent treatment with penicillin.

Primary Outcome

We compared the proportion of allergic challenge reactions to amoxicillin in our study to the following proportions observed in our previous study of oral beta-lactam challenges with antecedent penicillin skin testing: 1) the proportion of patients determined to be allergic to beta-lactams based on skin testing or objective challenge reactions (14/170=8.2%) and 2) the proportion of patients determined to be allergic to beta-lactams based on objective challenge reactions only (3/170=1.8%). 13

Secondary Outcomes

We assessed the safety of our protocol by determining the number of patients who had life-threatening allergic challenge reactions defined as follows: 1) bronchospasm or laryngeal edema requiring intubation 2) use of epinephrine for anaphylaxis or 3) severe non-IgE-mediated reactions (Stevens-Johnson syndrome, toxic epidermal necrolysis, interstitial nephritis, hepatitis, hemolytic anemia, drug reaction with eosinophilia and systemic symptoms, cutaneous and/or mucosal blisters, hypersensitivity vasculitis, pneumonitis, pulmonary fibrosis, and serum sickness). We also compared the proportion of allergic reactions in our study to the currently reported penicillin allergy prevalence of 10% in the US population.¹

Statistical Analysis

Comparisons were made among three groups of patients: those who had no reaction to either placebo or amoxicillin, those who had non-allergic reactions to either placebo or

placebo). One-way ANOVA or Kruskal-Wallis rank test (if data were non-normally distributed)
were used for analysis of continuous variables. Categorical data were analyzed with Chi-square
test or Fisher exact test, as appropriate. Summary statistics were expressed as means \pm standard
error of the mean (SEM), medians and interquartile range (IQR), or proportions, as appropriate.
The proportion of allergic reactions in this study was compared with Chi-square to both the
proportion of patients determined to be allergic based on skin testing or allergic challenge
reactions and to allergic challenge reactions alone observed in our previous study. 13 Allergic
reaction rate was also compared to the reported 10% prevalence of penicillin allergy in the US
population with a one-sample test of proportions. All statistical analyses were performed with
SPSS (Version 24) and STATA 14.2 software (StataCorp, College Station, Texas). P values
<0.05 were considered statistically significant.

Patients' Characteristics

One hundred sixty-five patients were screened with enrollment of 159 patients, of whom 3 discontinued the challenge and 1 withdrew (Figure 1). Of the 155 patients included in the analysis, the majority were female (n=120, 77.4%) and Latino (n=58, 37.4%) with a mean age of 51.1 years (Table 1). Both White (n=43, 27.7%) and Black (n=41, 26.5%) patients were well-represented. Historical reactions were predominantly reported as urticaria (n=61), rash (n=43), or unknown reaction as a child (n=23) (Tables 1 and 2).

Outcomes of Graded Challenges

One hundred twenty patients (77.4%) experienced no reaction while 31 patients (20%) experienced non-allergic reactions to either placebo (n=16) or amoxicillin (n=15) and 4 patients (2.6%) developed allergic reactions (Table 1, Figure 1). One patient had a distinct reaction to placebo with a subjective sensation of a "funny feeling" in his throat that spontaneously resolved and was subsequently followed by an allergic reaction to amoxicillin with a nonimmediate rash several hours later; this patient's reaction is included in the analysis only as an allergic reaction. No patients developed life-threatening challenge reactions.

Patients who developed allergic reactions had a significantly greater number of baseline reported drug allergies/intolerances [median: 3, IQR 2.5-3.5] compared with patients with non-allergic reactions (median 2, IQR 1-4) and no reaction (median 1, IQR 1-2.5) (p=0.02) (Table 1). Significant differences in symptoms reported during historical reactions were present (p=0.03) with urticaria as the most common historical symptom in patients with no reaction (n=46, 38.3%) or with non-allergic reactions (n=15, 48.3%) (Tables 1 and 2). No patients with a history of urticaria or isolated rash to penicillin experienced allergic challenge reactions. While a higher

percentage of women (22.5%) experienced non-allergic challenge reactions as compared to men (11.4%), the finding was not statistically significant (p=0.14).

Characteristics of Challenge Reactions

The majority of patients who experienced non-allergic challenge reactions had subjective symptoms predominantly characterized by pruritus (n=10), oropharyngeal symptoms (n=9; one patient underwent laryngoscopy, which was unremarkable), or a combination of these two symptoms (n=3) (Figure 2). Four female patients experienced objective signs/symptoms after receiving placebo, including urticaria, vomiting, cough, and a decrease in peak flow associated with subjective oropharyngeal and oculonasal symptoms. All symptoms resolved spontaneously with subsequent completion of amoxicillin challenges without reactions.

Four patients experienced challenge reactions that were determined to be allergic (Figure 2). Three patients reported mild nonimmediate rashes within 24 hours of the challenge. Only one patient required treatment with antihistamines with resolution within 24 hours. A patient who experienced intractable pruritus was determined to be allergic with symptom resolution within 1 hour of antihistamine treatment.

Relationship of Historical Reactions to Challenge Reactions

The majority of patients who experienced non-allergic challenge reactions (n=31) had historical reactions associated with urticaria (n=15) (Tables 1 and 2, Figure 3). These patients experienced various non-allergic challenge reactions, mostly pruritus (n=8), and subjective oropharyngeal symptoms (n=5). One patient with a historical urticarial reaction subsequently experienced urticaria after receiving placebo, which resolved spontaneously. She completed her amoxicillin challenge without reaction. Pruritus (n=7) and oropharyngeal symptoms (n=6) were

320	also common non-allergic challenge symptoms experienced by patients with historical reactions
321	of rash, unknown reaction as a child, and angioedema or oropharyngeal symptom.
322	Three patients determined to be allergic who experienced nonimmediate rashes had
323	distinct historical reactions: 1) unknown reaction as a child, 2) nausea/vomiting, and 3)
324	angioedema associated with a rash (Tables 1 and 2). The fourth allergic patient who had severe
325	intractable pruritus during the challenge also had a historical reaction of pruritus.
326	Comparison of Outcomes of Graded Challenges
327	Significantly (p =0.03) fewer patients [(4/155, 2.6%, 95% CI (1.0%, 6.5%)] were
328	determined to be allergic compared to 14/170 subjects [(8.2%, 95% CI (5.0%, 13.4%)] in our
329	previous study where patients were determined to be allergic based on either positive skin tests
330	(n=11) or allergic challenge reactions after negative skin tests (n=3). ¹³ There was no significant
331	difference in the proportion of allergic challenge reactions observed in our current study
332	(4/155=2.6.%) compared to our prior study $(3/170=1.8%)$ $(p=0.59)$. This 2.6% reaction rate was
333	also significantly less than the 10% reported US prevalence of penicillin allergy (p =0.003).
334	Results of Follow-Up Phone Calls
335	We reached 96 patients (61.9%) within one month of amoxicillin challenges to assess for
336	delayed reactions. Nineteen patients completed a subsequent course of amoxicillin, of whom five
337	patients reported mild, delayed symptoms [cutaneous symptoms (n=4) and subjective
338	oropharyngeal symptom (n=1)] that self-resolved and did not preclude completion of their
339	amoxicillin course.
340	Sixty-nine patients (44.5%) patients were eligible for one-year follow-up phone calls, of
341	whom 19 patients were reached. One of the five patients who subsequently completed a course

342	of amoxicillin reported a subjective symptom of "inflamed skin" that self-resolved and did not
343	preclude completion of a 10-day treatment course.
344	
345	
346	
347	
348	
349	
350	
351	
352	
353	
354	
355	
356	
357	
358	
359	
360	
361	
362	
363	
364	

Discussion

To our knowledge, this is the first study to assess the safety and outcomes of direct oral
amoxicillin challenges without prior skin testing in patients ≥ 7 years old who reported a history
of penicillin allergy that was non-life-threatening. Our study demonstrates that direct challenges
were safe in this broad population with only 2.6% of patients determined to be allergic, all of
whom experienced mild, non-life-threatening symptoms. Three of four allergic patients
developed mild nonimmediate rashes, which cannot be accurately predicted by skin testing as
these reactions are likely T-cell-mediated rather than IgE-mediated. 1,21,24 The reaction rate
observed in our study is in range with the reaction rates of 1.5-6.1% reported in three recently
published studies regarding the safety of direct amoxicillin challenges in children with penicillin
allergy, patients with nonimmediate historical reactions, and male Marine recruits with historical
reactions to penicillin. 12,21,24 The percentage of our study population determined to be allergic is
also significantly lower than the 8.2% of patients in our prior study who were determined to be
beta-lactam-allergic based on either positive skin testing or positive oral challenges. ¹³ It is
possible that some of the 11 skin test-positive patients in our prior study may have tolerated the
culprit beta-lactam if challenged, as demonstrated by results of a recent study of 34 skin test-
positive patients with historical cutaneous reactions to penicillin who overwhelmingly tolerated
amoxicillin. ²¹ These findings suggest that not only is skin testing prior to oral challenges in
patients with non-life-threatening historical reactions unlikely to be necessary, but also that, in
some cases, it may actually overdiagnose penicillin allergy. Therefore, the gold standard for
evaluating penicillin allergy should remain an oral challenge. 15,23
The safety of direct oral challenges in our study is further demonstrated by the

comparable proportion of allergic challenge reactions observed both with and without antecedent

skin testing.¹³ Furthermore, the allergic reaction rate in our study was significantly less than the estimated 10% US prevalence of penicillin allergy, which suggests that the majority of patients labeled with penicillin allergy would tolerate penicillin. By extrapolation, it is possible that the true percentage of patients allergic to penicillin in the US is likely closer to 0.3%.

There are several possibilities why most patients in our study tolerated amoxicillin. Both amoxicillin and ampicillin have been associated with the development of non-IgE-mediated, nonimmediate maculopapular exanthems in approximately 5-10% of patients potentially due to the presence of concomitant underlying viral infections or other cofactors, which were not present during the challenge. It is also possible that some patients with historical reactions gained tolerance to penicillin over time due to the loss of sensitization through IgE antibodies. One study also demonstrated that the rate of positive penicillin skin tests was lower in older patients and in those with a longer time since reaction, further supporting this notion.

Recent studies have also found that the overwhelming majority of patients who report penicillin allergy have negative skin testing. ^{11,13,16} While skin testing is considered a low-risk procedure, it can be expensive. A base-case penicillin allergy evaluation including skin testing followed by oral challenge is estimated to cost \$220. ¹⁸ Evaluation of all Americans who report penicillin allergy would cost over \$7 billion using this protocol. ^{1,2,18} However, lower cost estimates of \$84 per evaluation could potentially be achieved by eliminating skin testing in patients with non-life-threatening historical reactions. ¹⁸ Forgoing skin testing would also result in decreased utilization of time and resources.

The absence of skin testing in our study protocol could potentially expand its usability to physicians other than allergists. If evaluation of penicillin allergy is limited to board-certified allergists, each allergist would need to evaluate over 5000 patients in the US.^{2,30} To begin to

tackle the substantial public health burden of unconfirmed penicillin allergy in the US, it would
be beneficial if more physicians were trained to perform these evaluations. Recent studies have
demonstrated that inpatients with reported beta-lactam allergies can be assessed by providers
other than allergists for a direct graded challenge using standardized guidelines based solely on
the characteristics of the historical reaction. ^{31,32} One study demonstrated that implementation of
these guidelines resulted in an almost 7-fold increase in inpatient graded challenges to beta-
lactams without increased adverse reactions as compared to patients who underwent prior skin
testing. ³² The feasibility, safety, and potential value of training non-allergists to use our
challenge protocol would need to be further studied.

Although the current standard of care does not include the use of placebo during oral graded drug challenges, we believe the addition of placebo can be helpful, especially when patients experience subjective symptoms. The double-blind, placebo-controlled food challenge is currently recognized as the gold standard for evaluating food allergy.³³ In our prior study that focused on the utility of placebo prior to graded drug challenges, we found that patients who reacted to placebo prior to beta-lactam challenges had an increased number of baseline reported drug allergies as compared with those who both did and did not react to beta-lactams.¹³ In our current cohort of patients, those with allergic reactions during amoxicillin challenges and patients with nonallergic reactions both had a higher median number of drug allergies as compared with those who did not react. Therefore, the use of placebo should particularly be considered in patients who report more than one drug allergy or intolerance. Placebo should also be considered when challenging female patients given the majority of patients who reacted to placebo both in our current study and prior study were female.¹³

Our study has some potential limitations. Despite a study population well-represented with
Latino, White, and Black patients, our patients were enrolled at a single, academic center, which
may reduce generalizability. Our study also did not include children under the age of 7 or
pregnant women and, therefore, results cannot be generalized to these patient populations. Given
we evaluated patients who were generally healthy at the time of challenge, we were unable to
investigate the potential for a drug-virus interaction leading to a reaction or the presence of other
potential co-factors. Since we did not perform a randomized controlled trial, there is also a
possibility of confounding due to our comparison with historical controls. Finally, we were
unable to calculate NPV since only 27.5% of patients eligible for 1-year follow-up phone calls
were reached, of whom only 5 patients completed a subsequent course of amoxicillin.
Our study suggests that placebo-controlled oral graded challenges to amoxicillin without
prior skin testing may be safe in the evaluation of patients ≥ 7 years old who report a history of
penicillin allergy that was non-life-threatening. However, our study protocol should be further
validated at other centers to confirm its safety and generalizability. Our findings also support
earlier reports that amoxicillin can be tolerated by the vast majority of those with self-reported
penicillin allergy. The absence of skin testing can potentially increase the usability of this
protocol beyond allergists to other specialists, which can expand the national effort to address the
vast public health consequences of underuse of penicillin due to unconfirmed allergy in the US.

- 456 **References**
- 1. Solensky R, Khan D. Drug allergy: an updated practice parameter. Ann Allergy Asthma
- 458 Immunol 2010; 105:259-73.
- 459 2. United States Census Bureau. U.S. and World Population Clock.
- https://www.census.gov/popclock. Accessed February 20, 2018.
- 3. Picard M, Bégin P, Bouchard H, Cloutier J, Lacombe-Barrios J, Paradis J, et al. Treatment of
- patients with a history of penicillin allergy in a large tertiary-care academic hospital. J Allergy
- 463 Clin Immunol Pract. 2013 May-Jun;1(3):252-7.
- 464 4. Jeffres MN, Narayanan PP, Shuster JE, Schramm GE. Consequences of avoiding β-lactams in
- 465 patients with β-lactam allergies. J Allergy Clin Immunol. 2016 Apr;137(4):1148-1153.
- 5. Macy E, Contreras R. Health care use and serious infection prevalence associated
- with penicillin "allergy" in hospitalized patients: a cohort study. J Allergy Clin Immunol
- 468 2014;133:790-6.
- 6. Centers for Disease Control and Prevention. Is it really a penicillin allergy? Available from:
- 470 https://www.cdc.gov/antibiotic-use/community/pdfs/penicillin-factsheet.pdf. Accessed February
- 471 20, 2018.
- 7. National Quality Forum. NQF launches antibiotic stewardship initiative. Available from:
- 473 http://www.qualityforum.org/News_And_Resources/Press_Releases/2015/NQF_Launches_Anti
- biotic_Stewardship_Initiative.aspx. Accessed February 20, 2018.
- 8. Barlam TF, Cosgrove SE, Abbo LM, MacDougall C, Schuetz AN, Septimus EJ, et al.
- 476 Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society
- of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis 2016;62:
- 478 e51-77.

- 9. Penicillin Allergy in Antibiotic Resistance Workgroup. Penicillin Allergy Testing Should Be
- 480 Performed Routinely in Patients with Self-Reported Penicillin Allergy. J Allergy Clin Immunol
- 481 Pract. 2017 Mar Apr;5(2):333-334.
- 482 10. Choosing Wisely. Five things physicians and patients should question. Available from:
- 483 http://www.choosingwisely.org/wp-content/uploads/2015/01/Choosing-Wisely-
- 484 Recommendations.pdf. Accessed February 20, 2018.
- 485 11. Macy E, Ngor EW. Safely diagnosing clinically significant penicillin allergy using only
- 486 penicilloyl-poly-lysine, penicillin, and oral amoxicillin. J Allergy Clin Immunol Pract. 2013
- 487 May-Jun;1(3):258-63.
- 488 12. Mill C, Primeau MN, Medoff E, Lejtenyi C, O'Keefe A, Netchiporouk E, et al. Assessing
- 489 the Diagnostic Properties of a Graded Oral Provocation Challenge for the Diagnosis of
- 490 Immediate and Nonimmediate Reactions to Amoxicillin in Children. JAMA Pediatr. 2016 Jun
- 491 6;170(6):e160033.
- 492 13. Iammatteo M, Ferastraoaru D, Koransky R, Alvarez-Arango S, Thota N, Akenroye A, et al.
- 493 Identifying Allergic Drug Reactions Through Placebo-Controlled Graded Challenges. J Allergy
- 494 Clin Immunol Pract. 2017 May Jun;5(3):711-717.e2.
- 495 14. Geng B, Eastman JJ, Mori K, Braskett M, Riedl MA. Utility of minor determinants for skin
- 496 testing in inpatient penicillin allergy evaluation. Ann Allergy Asthma Immunol. 2017 14.
- 497 Sep;119(3):258-261.
- 498 15. Bousquet PJ, Pipet A, Bousquet-Rouanet L, Demoly P. Oral challenges are needed in the
- diagnosis of beta-lactam hypersensitivity. Clin Exp Allergy. 2008 Jan;38(1):185-90.
- 16. Macy E, Schatz M, Lin C, Poon KY. The falling rate of positive penicillin skin tests from
- 501 1995 to 2007. Perm J. 2009 Spring;13(2):12-8.

- 502 17. Drug and Therapeutics Bulletin. Penicillin allergy-getting the label right. BMJ. 2017 Aug
- 503 4;358:j3402.
- 18. Blumenthal KG, Li Y, Banerji A, Yun BJ, Long AA, Walensky RP. The Cost of Penicillin
- Allergy Evaluation. J Allergy Clin Immunol Pract. 2017 Sep 22. pii: S2213-2198(17)30616-5.
- 506 19. Lin RY. Probability and pragmatism in penicillin allergy evaluations. Ann Allergy Asthma
- 507 Immunol. 2011 Dec;107(6):546-7.
- 508 20. Caubet JC, Frossard C, Fellay B, Eigenmann PA. Skin tests and in vitro allergy tests have a
- 509 poor diagnostic value for benign skin rashes due to β-lactams in children. Pediatr Allergy
- 510 Immunol. 2015 Feb;26(1):80-2.
- 21. Confino-Cohen R, Rosman Y, Meir-Shafrir K, Stauber T, Lachover-Roth I, Hershko A, et al.
- 512 Oral Challenge without Skin Testing Safely Excludes Clinically Significant Delayed-Onset
- Penicillin Hypersensitivity. J Allergy Clin Immunol Pract. 2017 May Jun;5(3):669-675.
- 514 22. Goldberg A, Confino-Cohen R. Skin testing and oral penicillin challenge in patients with a
- 515 history of remote penicillin allergy. Ann Allergy Asthma Immunol. 2008 Jan;100(1):37-43.
- 516 23. Macy E. Penicillin allergy: optimizing diagnostic protocols, public health implications, and
- 517 future research needs. Curr Opin Allergy Clin Immunol. 2015 Aug;15(4):308-13.
- 518 24. Tucker MH, Lomas CM, Ramchandar N, Waldram JD. Amoxicillin challenge without
- 519 penicillin skin testing in evaluation of penicillin allergy in a cohort of Marine recruits. J Allergy
- 520 Clin Immunol Pract. 2017 May Jun;5(3):813-815.
- 521 25. Muraro A, Lemanske RF Jr, Castells M, Torres MJ, Khan D, Simon HU, et al. Precision
- medicine in allergic disease-food allergy, drug allergy, and anaphylaxis-PRACTALL document
- of the European Academy of Allergy and Clinical Immunology and the American Academy of
- Allergy, Asthma and Immunology. Allergy. 2017 Jul;72(7):1006-1021.

- 525 26. Moral L, Caubet JC. Oral challenge without skin tests in children with non-severe beta-
- lactam hypersensitivity: Time to change the paradigm? Pediatr Allergy Immunol. 2017
- 527 Dec;28(8):724-727.
- 528 27. Wölbing F, Fischer J, Köberle M, Kaesler S, Biedermann T. About the role and underlying
- mechanisms of cofactors in anaphylaxis. Allergy. 2013 Sep;68(9):1085-92.
- 530 28. Torres MJ, Corzo JL, Leyva L, Mayorga C, Garcia-Martin FJ, Antunez C, et al. Differences
- in the immunological responses in drug- and virus-induced cutaneous reactions in children.
- 532 Blood Cells Mol Dis. 2003 Jan-Feb;30(1):124-31.
- 533 29 Blanca M, Torres MJ, Garcia JJ, Romano A, Mayorga C, de Ramon E, et al. Natural
- evolution of skin test sensitivity in patients allergic to b-lactam antibiotics. J Allergy Clin
- 535 Immunol. 1999;103: 918e924.
- 536 30. American Board of Allergy and Immunology: Diplomate Statistics.
- 537 https://www.abai.org/statistics_diplomates.asp. Accessed February 20, 2018.
- 31. Blumenthal KG, Shenoy ES, Varughese CA, Hurwitz S, Hooper DC, Banerji A. Impact of a
- clinical guideline for prescribing antibiotics to inpatients reporting penicillin or cephalosporin
- allergy. Ann Allergy Asthma Immunol. 2015 Oct;115(4):294-300.e2.
- 32. Blumenthal KG, Wickner PG, Hurwitz S, Pricco N, Nee AE, Laskowski K, et al. Tackling
- 542 inpatient penicillin allergies: Assessing tools for antimicrobial stewardship. J Allergy Clin
- 543 Immunol. 2017 Jul;140(1):154-161.e6.
- 33. NIAID-Sponsored Expert Panel, Boyce JA, Assa'ad A, Burks AW, Jones SM, Sampson HA,
- et al. Guidelines for the Diagnosis and Management of Food Allergy in the United States:
- 546 Summary of the NIAID-Sponsored Expert Panel Report. J Allergy Clin Immunol.
- 547 2010;126:1105e1118.

548	Figure Legends
549	Figure 1. Outcomes of evaluation. *Two patients discontinued the challenge after placebo
550	reactions: 1. subjective oropharyngeal symptom with an unremarkable laryngoscopy and 2.
551	severe retching/coughing. One patient had an upper respiratory tract infection and elected to
552	discontinue the challenge after the test dose due to personal reasons.
553	Figure 2. Characteristics of reactions during challenges.
554	Figure 3. Relationship of historical reactions to non-allergic challenge reactions. Each bracket
555	with arrows represents one patient who experienced multiple symptoms during his/her non-
556	allergic challenge reaction.

Table 1. Characteristics of patients by outcome of challenge (N = 155)

Characteristic	No Reaction	Non-Allergic	Allergic Reactions	<i>p</i> -values*
	(n=120, 77.4%)	Reactions	(n=4, 2.6%)	
		(n=31, 20%)		
Age (y), mean ± SE	51.8 ±1.85	48.3 ±3.0	54.3 ±13.3	0.6
Female patients, n (%)	91 (75.8)	27 (87)	2 (50)	0.15
Race/Ethnicity, n (%)				0.8
Latino**	48 (40)	9 (29)	1 (25)	/
White	30 (25)	12 (38.7)	1 (25)	Y
Black	31 (25.8)	8 (25.8)	2 (50)	
Multiracial	3 (2.5)	1 (3.2)	0	
Other/Unknown	8 (6.7)	1 (3.2)	0	
No. of reported drug	1 (1-2.5)	2 (1-4)	3 (2.5-3.5)	0.02
allergies/intolerances,				
median (IQR)				
Age at time of historical	24.4 ±1.9	21.5 ±3.7	20.3 ±14.8	0.8
reaction (y), mean ± SE				
No. of years between	27.2 ±1.8	26.2 ±3.3	32.2 ±3.9	0.9
historical reaction and				
challenge, mean ± SE				
Historical Reactions, n (%)				0.03
Urticaria	46 (38.3)	15 (48.3)	0	
Rash	37 (30.8)	6 (19.4)	0	
Unknown historical	16 (13.3)	6 (19.4)	1 (25)	
reaction				
Angioedema or	6 (5)	3 (9.7)	1 (25)	
oropharyngeal		<i>)</i> ′		
symptom				
Other***	15 (12.5)	1 (3.2)	2 (50)	

- * P values are for comparisons of the 3 columns and derived from analysis of variance
- 4 or Kruskal-Wallis rank test for the continuous variables reported as mean ±SE or
- 5 medians and IQR, respectively, or from Chi-square analysis for categorical variables
- presented as n (%). Bolded p-values are statistically significant (p < 0.05). Bolded p-
- 7 values are statistically significant (p < 0.05).
- 8 **48 of 58 patients categorized as Latino provided further details of their ethnicity. The majority
- 9 of patients were Puerto Rican (n=20), Dominican (n=17), or Central/South American (n=7).
- ***For patients with no reaction, other includes no historical reaction (n=4), pruritus (n=3),

11	gastrointestinal symptom (n=2), dyspnea (n=2), stupor (n=1), seizure (n=1), vasovagal syncope
12	(n=1), and anaphylaxis to beta-lactam with unrelated side chain (n=1). Other refers to pruritus in
13	one patient with a non-allergic challenge reaction. For patients with allergic reactions, other
14	refers to pruritus (n=1) and gastrointestinal symptom (n=1).
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 50 50 50 50 50 50 50 50 50 50 50 50	

Table 2. Detailed characteristics of historical reactions to beta-lactams by outcome of

challenge

Historical Reactions*	No Reaction	Non-Allergio (n=31)	Allergic Reactions	
	(n=120)			(n = 4)
		Placebo	Challenge	
		Reactions	Reactions	
		(n=16)	(n=15)	
Urticaria	46 (38.3)	7 (43.8)	8 (53.3)	0
Immediate urticaria	28 (23.3)	4 (25)	7 (46.7)	0
Urticaria and	8 (6.7)	1 (6.3)	1 (6.7)	0
angioedema				
Nonimmediate	8 (6.7)	0	0	0
urticaria				
Nonimmediate	1 (0.8)	0	0	0
urticaria and				7
vomiting			K Y.	7
Urticaria and	1 (0.8)	1 (6.3)	0	0
respiratory			47	
symptom			Y	
Urticaria and	0	1 (6.3)	0	0
oropharyngeal				
symptom		(A)	y	
Rash	37 (30.8)	3 (18.8)	3 (20)	0
Unspecified details	18 (15)	2 (11.1)	2 (13.3)	0
Nonimmediate rash	13 (10.8)	0	1 (6.7)	0
Immediate non-	6 (5)	1 (6.3)	0	0
urticarial rash		7		
Unknown historical	16 (13.3)	3 (18.8)	3 (20)	1 (25)
reaction	(, y			
Angioedema	5 (4.2)	1 (6.3)	0	1 (25)
Isolated	2 (16.7)	1 (6.3)	0	0
angioedema				
Angioedema and	1 (0.8)	0	0	1 (25)
unspecified rash				
Angioedema and	1 (0.8)	0	0	0
dyspnea				
Ocular	1 (0.8)	0	0	0
angioedema	' '			
and subjective				
oropharyngeal				
symptom				

Oropharyngeal symptom	1 (0.8)	2 (11.1)	0	0
Isolated oropharyngeal symptom	1 (0.8)	0	0	0
Oropharyngeal symptom and palpitations	0	1 (6.3)	0	0
Oropharyngeal symptom and pruritus	0	1 (6.3)	0	0
No historical reaction	4 (3.3)	0	0	0
Pruritus	3 (2.5)	0	1 (6.7)	1 (25)
Gastrointestinal symptom	2 (1.7)	0	0	1 (25)
Nausea and vomiting	0	0	0	1 (25)
Nausea and dizziness	1 (0.8)	0	0	0
Nausea, vomiting, diarrhea	1 (0.8)	0	0	0
Other**	6 (5)	0	0	0

- Values represent n (%).
- *If the patient's historical reaction affected more than one system, the reaction was grouped
- under the more prominent reported system.
- **Includes dyspnea (n=2), stupor (n=1), seizure (n=1), vasovagal syncope (n=1), and
- anaphylaxis to beta-lactam with unrelated side chain (n=1).

61

62

63

Figure 2

