IV Powers of a root.

Theory If α is a root of a polynomial equation f(x) = 0, then α^m is a root of a polynomial equation $f(y^{\frac{1}{m}}) = 0$.

That is to say, change $x \to y^{\frac{1}{m}}$.

Class Work IV.1

Let α , β be the roots of $x^2 - 2x + 5 = 0$.

Find a new equation whose roots are α^2 , β^2

Transform $x \rightarrow \sqrt{y}$.

The new equation is $y^2 + 6y + \underline{\hspace{1cm}} = 0$

Class Work IV.2

If α , β and $\gamma \neq 0$ are the roots of $x^3 + 3px + q = 0$, find the new equation whose roots are

$$\frac{\beta\gamma}{\alpha},\!\frac{\gamma\alpha}{\beta},\!\frac{\alpha\beta}{\gamma}\,.$$

$$\frac{\beta\gamma}{\alpha} = \frac{\alpha\beta\gamma}{\alpha^2} = -\frac{q}{\alpha^2}$$

Transformation is: _____

$$()^3 + 3p() + q = 0$$

$$qy^3 + 9p^2y^2 - 6pqy + q^2 = 0$$