Cache performance

Le Nguyen Dung 7140224 Le Nguyen Khanh Duy 7140226 Pham Minh Thien 7140258

Ho Chi Minh City University of Technology

Instructor: Dr. Tran Ngoc Thinh

Content

- Replacement policy
- 2 Optimization
- References

What is replacement policy?

What is replacement policy?

Where do cache go?

Cache replacement save the world

Cache replacement

Figure 2: Cache evict

Cache replacement

Figure 3: Cache replacement

Replacement policy

- Not recently used
- First-in, first-out
- Least recently used
- Not frequently used
- Random

Not recently used

- Remove the page used the least often since the last clock cycle
 - 3. referenced, modified
 - 2. referenced, not modified
 - 1. not referenced, modified
 - 0. not referenced, not modified

First-in, first-out

Figure 4: FIFO

Least recently used

Not frequently used

- The not frequently used (NFU) page replacement algorithm requires a counter, and every page has one counter of its own which is initially set to 0.
- each clock interval, all pages that have been referenced within that interval will have their counter incremented by 1. In effect, the counters keep track of how frequently a page has been used. Thus, the page with the lowest counter can be swapped out when necessary.

Random Replacement (RR)

- Randomly selects a candidate item and discards it to make space when necessary.
- This algorithm does not require keeping any information about the access history.
- For its simplicity, it has been used in ARM processors It admits efficient stochastic simulation.

- A better measure of memory hierarchy performance is the average memory access time:
 - $\bullet \ \, \text{Average memory access time} = \text{Hit time} + \text{Miss rate} \times \text{Miss} \\ \text{penalty}$

• First Optimization: Larger Block Size to Reduce Miss Rate

	Cache size			
Block size	4K	16K	64K	256K
16	8.57%	3.94%	2.04%	1.09%
32	7.24%	2.87%	1.35%	0.70%
64	7.00%	2.64%	1.06%	0.51%
128	7.78%	2.77%	1.02%	0.49%
256	9.51%	3.29%	1.15%	0.49%

Second Optimization: Larger Caches to Reduce Miss Rate

• Third Optimization: Higher Associativity to Reduce Miss Rate

Cache size (KB)	Associativity				
	1-way	2-way	4-way	8-way	
4	3.44	3.25	3.22	3.28	
8	2.69	2.58	2.55	2.62	
16	2.23	2.40	2.46	2.53	
32	2.06	2.30	2.37	2.45	
64	1.92	2.14	2.18	2.25	
128	1.52	1.84	1.92	2.00	
256	1.32	1.66	1.74	1.82	
512	1.20	1.55	1.59	1.66	

Average memory access

 Fourth Optimization: Multilevel Caches to Reduce Miss Penalty

 Fifth Optimization: Giving Priority to Read Misses over Writes to Reduce Miss Penalty

 Sixth Optimization: Avoiding Address Translation during Indexing of the Cache to Reduce Hit Time

References

- Computer Architecture: A Quantitative Approach
- http://en.wikipedia.org/wiki/Cache_algorithms