Machine Intelligence & Deep Learning Workshop

Raymond Ptucha, Majid Rabbani, Mark Smith

The Kate Gleason COLLEGE OF ENGINEERING

Language & Vision

Raymond Ptucha
June 27-29, 2018
Rochester Institute of Technology
www.rit.edu/kgcoe/cqas/machinelearning

© 2018 Ray Ptucha, Rochester Institute of Technology

1

Fair Use Agreement

This agreement covers the use of all slides in this document, please read carefully.

- You may freely use these slides for personal use, if:
 - My name (R. Ptucha) appears on each slide.
- You may freely use these slides externally, if:
 - You send me an email telling me the conference/venue/company name in advance, and which slides you wish to use.
 - You receive a positive confirmation email back from me.
 - My name (R. Ptucha) appears on each slide you use.
- (c) Raymond Ptucha, rwpeec@rit.edu

© 2018 Ray Ptucha, Rochester Institute of Technology

Agenda

Wed, June 27

- 9-10:30am - 10:30-10:45pm Regression and Classification

Break

- 10:45-12:15pm

Boosting and SVM

12:15-1:30pm - 1:30-3:30pm - 3:30-5pm

Neural Networks and Dimensionality Reduction Hands-on Python and Machine Learning

Thur, June 28

- 9-10:30am

- 10:30-10:45pm - 10:45-12:15pm Introduction to deep learning Break Convolutional Neural Networks

12:15-1:30pm - 1:30-3:30pm

Region and pixel-level convolutions Hands-on CNNs

- 3:30-5pm

Fri, June 29 - 9-10:30am

Recurrent neural networks

Break

- 10:30-10:45pm - 10:45-12:15pm

Language and Vision

12:15-1:30pm

- 1:30-3:30pm

<start>

Graph convolutional neural networks; Generative adversarial networks

3

- 3:30-5pm Hands-on regional CNNs, RNNs

© 2018 Ray Ptucha, Rochester Institute of Technology

Recurrent Networks for Character **Prediction** '<EOS>' 'A' T ʻp' 'p' 'e' For this to work, we need to represent characters as some latent vector numerical representation.

© 2018 Ray Ptucha, Rochester Institute of Technology

Word2vec

- In the simplest form, we can start with a one-hot encoded vector of all words, and then learn a model which converts to a lower dimensional representation.
- Word2vec, glove, and skip-gram are popular metrics which encode words to a latent vector representation (~300 dimensions).
- Now we have a way to represent images, characters, and words as vectors.

© 2018 Ray Ptucha, Rochester Institute of Technology

One-hot Word Representation

- One-hot character representations work great, but there are only 26-100 unique characters, meaning our character embedding only needs to be 26-100 dimensions.
- Words can be embedded identically to characters.
- If we have 10K unique words, our word embedding is 10K dimensions.

© 2018 Ray Ptucha, Rochester Institute of Technology

7

One-hot Word Representation

I want a glass of orange (

- Lets say our vocabulary, $V = [a, aaa, aaron, ..., zulu], V \in R^{10,000}$ in one-hot representation.
- Instead of predicting next character, we will predict next word.

Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orang (6257)
0 0 : 0 1 0 :	0 0 : 0 0 0 1 :	0 0 :: 1 :: 0 0	0 0 : 0 0 1 0	0 1 0 0 0 0 0	0 0 : 0 1 0 0
LoJ	L_0J	[0]	L _O J	[0]	[0]

- A key weakness with this embedding is that the Euclidean distance between any two words is the same.
- Further, for very large vocabularies, our embedded representation is of high dimension.

Inspired by Deeplearning.ai, course 5, week 2 © 2018 Ray Plucha, Rochester Institute of Technology

Feature-based Representation

I want a glass of orange [

- · We want similar words to be closer together.
- If we could come up with various features, we can start to encode similarities from one word to the next
- Now, NLP algorithms can utilize similarity from word to word to try to predict the next word, 'juice' in this

example.	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)	
Gender	-1	+1	8	+.95	01	007	
Royal	001	+.1	+.85	+.95	01	057	
Age	+.01	15	+.75	+.85	+.03	06	
: Food	+.11	+.05	+.05	+.02	+.92	+.96	
	© 2018	Ray Ptucha, Ro	chester Institute	of Technology			9

Feature-based Representation

I want a glass of orange juice

- Instead of hand crafted features, let the computer try to learn the features.
- By looking at statistics (what word comes before/after other words in sentences) from billions of samples; the computer can automatically learn this embedding.
- Once learned, we have an embedding, or a latent vector representation for words, word2vec.
- Although useful to the computer, it is not clear to humans what each dimension means.

© 2018 Ray Ptucha, Rochester Institute of Technology

Similar to Face Encoding

- These word embeddings are very similar to the face encoding or face embedding used in DeepFace [Taigman et al. 2014].
- One key difference is word embeddings work on a fixed vocabulary of words, where facial embeddings are meant to work on any unforeseen face.

Similarity Functions

$$\max_{w} similarWord(e_{w}, e_{king} - e_{man} + e_{woman})$$
Word1 Word2

• Word analogies generally get Man:Woman as Boy:Girl 30-75% accuracy using these methods.

Ottawa:Canada as Nairobi:Kenya Big: Bigger as Tall:Taller Yen:Japan as Ruble:Russia

- Similarity can be measured in Euclidean distance.
- Similarity can be measured in cosine distance:
 - Similar words have small angles, cos(0)=1
 - Opposite words have opposite, 180° angles, cos(180)=-1

$$cosSimilarity(u, v) = \frac{u^T v}{\|u\|_2 \|v\|_2}$$

© 2018 Ray Ptucha, Rochester Institute of Technology

13

Embedding Matrix

 Lets say you have 10K words and your embedding is 300 dimensions.

$$w_e = W w_{one-hot}$$

Where:

- $w_{\textit{one-hot}}$ is the one-hot encoding of each word $\in \mathbb{R}^{10000}$
- W is the embedding matrix $\in \mathbb{R}^{300 \times 10000}$
- \textit{w}_{e} is the embedded representation of each word $\in \mathbb{R}^{300}$

14

© 2018 Ray Ptucha, Rochester Institute of Technology

Where Does Embedding Matrix Come From?

Bengio et al. 2003, A Neural Probabilistic Language Model

• The embedding matrix is learned through backpropagation!

The quick brown fox jumps over the lazy dog.

- Word predict predicts target word, which is one of 10K words
- Learn W1, W2 using gradient descent, when done, W1 is our embedding
 © 2018 Ray Ptucha, Rochester Institute of Technology

15

Other Forms of Learning Embedding Matrix

The quick brown fox jumps over the lazy dog.

• Use prior 4 to predict next word.

The quick brown fox jumps over the lazy dog.

- Use before and after to predict center word.
- Use prior 4 and after 4 to predict center word, ...

© 2018 Ray Ptucha, Rochester Institute of Technology

Skip grams

Mikolov et al., 2013, Efficient Estimation of Word Representations in Vector Space

- Start with any reference word, then pseudo randomly chose a nearby target word, say within +/- 5 or within +/-10 words.
- Alternate model uses a bag of randomly selected neighboring words to predict a target word.
- If context words were chosen completely at random, very common words, often with little value would dominate the classifier.
 - As such, stop words are eliminated.
- Term Frequency-Inverse Document Frequency (TF-IDF) applied to words to increase importance of rare words.
 - TF-IDF makes rare words more important
 - https://en.wikipedia.org/wiki/TF-idf

© 2018 Ray Ptucha, Rochester Institute of Technology

17

Using Embedding Matrix

 $w_e = W w_{one-hot}$

Where:

 $w_{one\text{-}hot}$ is the one-hot encoding of each word $\in \mathbb{R}^{10000}$ W is the embedding matrix $\in \mathbb{R}^{300 \times 10000}$

 w_e is the embedded representation of each word $\in \mathbb{R}^{300}$

© 2018 Ray Ptucha, Rochester Institute of Technology

- But wait, only one value of one-hot vector is '1', the rest are zeros.
- Matrix multiply inefficient!
- Can use one-hot offset to extract column of matrixno costly matrix multiply!

Sent2vec

• In the English to French translation, we have:

...but wait, this point in the RNN is a representation (sent2vec) of all the words in the English sentence!

 Now we have a way to represent images, characters, words, and sentences as vectors...can extend to paragraphs and documents...

© 2018 Ray Ptucha, Rochester Institute of Technology

Data for Captioning

- Flickr8K
 - 8,000 images, from Flickr website, each with five captions
 - http://nlp.cs.illinois.edu/HockenmaierGroup/8kpictures.html
- Flickr30K
 - 31,783 images, from Flickr website, each with five
 - http://shannon.cs.illinois.edu/DenotationGraph/
- **MSCOCO**
 - 80,000 training images, each with five captions
 - http://mscoco.org/

© 2018 Ray Ptucha, Rochester Institute of Technology

33

Captioning Datasets

Amazon mechanical turkers do all labeling https://www.mturk.co m/mturk/welcome

bicyclist raises his fist as he rides on desert dirt trail. this dirt bike rider is smiling and raising his fist in triumph. a man riding a bicycle while pumping his fist in the air. a mountain biker pumps his fist in celebration.

© 2018 Ray Ptucha, Rochester Institute of Technology

MSCOCO Dataset

- •A pile of wooden boxes filled with fruits and •A cat stands on a counter while a dog stands on the
- ·An assortment of fruit in buckets for sale in a shop. An outdoor fruit stand with various types of fruits for sale.
- ·A display of crates of fruit on a city street.
- There are many crates with fruit and vegetables.
- ·A cat on the kitchen counter is looking down at a dog.
- •A cat is looking at a dog rummage in the garbage.
- ·A cat on the counter and a dog on the ground in the
- ·A cat stalking a dog on the kitchen floor.

© 2018 Ray Ptucha, Rochester Institute of Technology

35

How to Tell How Well Models are Working? **BLEU & METEOR Scores**

- Popular metrics: BLEU (BiLingual Evaluation Understudy) and METEOR (Metric for Evaluation of Translation with Explicit Order)
- BLEU (B1,B2,B3,B4) uses n-gram (n=1,2,3,4) comparisons between sentences to evaluate the precision and penalizes sentences shorter than reference sentence
- Precision is the sum of ratio of *n*-gram matches and total *n*-
- Longer *n*-grams account for the fluency and have higher correlation with human judgement
- METEOR is similar to BLEU except that it considers paraphrased sentences and synonymous words and phrases as matches

© 2018 Ray Ptucha, Rochester Institute of Technology

Sentence Comparison

Prediction: Picture of a man Ground truth: Portrait of a man

unigrams: {picture, of, a, man} {portrait, of, a, man}

unigram matches: 3 Precision (B-1): 3/4

bigrams: {picture of, of a, a man} {portrait of, of a, a man}

bigram matches: 2 Precision(B-2): 2/3

trigrams: {picture of a, of a man} {portrait of a, of a man}

trigram matches: 1 B-3: 1/2

4-grams: {picture of a man} {portrait of a man}

4-gram matches: 0 B-4: 0

© 2018 Ray Ptucha, Rochester Institute of Technology

37

BLEU Calculation

- For image I_i , evaluate generated caption c_i , given a set of ground truth captions $S_i = \{s_{i1}, ..., s_{im}\}$.
- The number of times an n-gram, w_k occurs in a sentence s_{ii} or caption c_i is $h_k(s_{ii})$ or $h_k(c_i)$.

© 2018 Ray Ptucha, Rochester Institute of Technology

BLEU Calculation

- CP_n is a precision score and favors shorter generated captions and/or longer ground truth captions.
- A brevity penalty is used, where I_C / I_S is the length of prediction / ground truth caption.
- When multiple ground truth captions used, the closest length, I_{Si} to I_C is used. $b(C,S) = \begin{cases} 1 & \text{if } l_C > l_S \\ e^{1-l_S/l_C} & \text{if } l_C \leq l_S \end{cases}$
- To combine all individual CP_n scores into a single BLEU score, use geometric mean:

$$BLEU_N(C,S) = b(C,S) \exp \left(\sum_{n=1}^N w_n \log C P_n(C,S) \right)$$

Note: for BLEU, w_n is typically a constant such as 1

© 2018 Ray Ptucha, Rochester Institute of Technology

39

Sample METEOR Output

	these	include	activities	linked	to	energy	and		in	particular		energy	efficiency	
these	•													
are		0						Г						Г
the														Г
activities			•											
related				0										
to					•				П					
energy						•								Г
,		3									•			
and							•							
in									•					Г
particular						Г		Г		•		Г		Г
to														
energy												•		
efficiency													•	

P: 0.897 R: 0.907 Frag: 0.514

METEOR uses exact alignment matching of tokens. However, tokens use WordNet [Miller '95] synonyms, stemmed tokens*, and paraphrases.

Score: 0.440

*the words "fishing", "fished", and "fisher" are all stemmed to the same root word, "fish".

© 2018 Ray Ptucha, Rochester Institute of Technology

BLEU, Meteor, CIDEr, ROUGE

Consensus using TF-IDF

More for text summarization

- If you use the Microsoft COCO caption evaluation tool, you get all four which evaluate how close your generated caption is to the ground truth captions.
 - https://github.com/tylin/coco-caption
 ← Has detail calculation of each metric.
- BLEU: K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting on association for computational linguistics, pages 311-318. Association for Computational Linguistics, 2002.
- Meteor: S. Banerjee and A. Lavie. Meteor: An automatic metric for mt evaluation with improved correlation with human judgments. In Proceedings of the ACL workshop on intrinsic and extrinsic evaluation measures for machine translation and/or summarization, volume 29, pages 65-72, 2005.
- CIDEr: R. Vedantam, C. Lawrence Zitnick, and D. Parikh. Cider: Consensus-based image description evaluation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4566-4575, 2015.
- ROUGE: C.-Y. Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization branches out: Proceedings of the ACL-04 workshop, volume 8. Barcelona, Spain, 2004.

© 2018 Ray Ptucha, Rochester Institute of Technology

41

Human Generated Caption vs. Ground **Truth Captions**

METEOR generally believed to correlate best with how a human would rate captioning performance.

Since generated caption needs to match only one or more of ground truth captions, having 40 captions per image gives better results.

		5 captions per image	40 captions per image
Much easier to	Metric Name	MS COCO c5	MS COCO c40
match 1-gram vs. 4-gram METEOR	BLEU 1	0.663	0.880
	BLEU 2	0.469	0.744
	BLEU 3	0.321	0.603
	BLEU 4	0.217	0.471
hardest, and	$\begin{array}{c} \text{METEOR} \\ \text{ROUGE}_L \\ \text{CIDEr-D} \end{array}$	0.252	0.335
CIDEr hardest to		0.484	0.626
get high scores.		0.854	0.910

Chen et al. 2015

© 2018 Ray Ptucha, Rochester Institute of Technology

Video Data for Captioning

MSVD: Microsoft Video Description Dataset MSR-VTT: Microsoft Research -Video to Text M-VAD: Movie description dataset M-VAD

	MSVD	MSR-VTT	M-VAD
#sentences	80,827	200,000	54,997
#sent. per video	\sim 42	20	\sim 1-2
vocab. size	9,729	24,282	16,307
avg. length	10.2s	14.8s	5.8s
#train video	1,200	6,513	36,921
#val. video	100	497	4,651
#test video	670	2,990	4,951

© 2018 Ray Ptucha, Rochester Institute of Technology

The Sequence to Sequence Learning with Neural Networks paper

 In 2014, Sutskever, Vinyals, and Le (from Google) showed that a simple encoder-decoder framework was just as good as sophisticated Statistical Machine Translation (SMT) systems, and almost as good as SMT systems paired with nnets.

Sutskever et al., NIPS '14

© 2018 Ray Ptucha, Rochester Institute of Technology

47

The Sequence to Sequence Learning with Neural Networks paper- Performance on EMT'14 English to French test set (ntst14):

12M sentences consisting of 348M French words and 304M English words

Method	test BLEU score (ntst14)
Bahdanau et al. [2]	28.45
Baseline System [29]	33.30
Single forward LSTM, beam size 12	26.17
Single reversed LSTM, beam size 12	30.59
Ensemble of 5 reversed LSTMs, beam size 1	33.00
Ensemble of 2 reversed LSTMs, beam size 12	33.27
Ensemble of 5 reversed LSTMs, beam size 2	34.50
Ensemble of 5 reversed LSTMs, beam size 12	34.81

- Used separate LSTM for encoding and decoding
- Used 4-layer LSTM,1000 units
- Reversing words in input sentence help!

English to French: So for example, instead of mapping the sentence "Hello my friend" to the sentence "Bonjour mon ami", map "friend my Hello" to "Bonjour mon ami".

Γ	Method	test BLEU score (ntst14)	1	
	Baseline System [29]	33.30	1	Note:
Г	Cho et al. [5]	34.54]	NOLE.
	State of the art [9]	37.0	—	within 0.5
Γ	Rescoring the baseline 1000-best with a single forward LSTM	35.61]	
Г	Rescoring the baseline 1000-best with a single reversed LSTM	35.85	l	BLEU
	Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs	36.5]	1
Ē	Oracle Rescoring of the Baseline 1000-best lists	~45	Ì	score!

Sutskever et al., NIPS '14

Note: state-of-the art [9] is a finely tuned phrase based SMT specifically for the ntst14 test set.

© 2018 Ray Ptucha, Rochester Institute of Technology

© 2018 Ray Ptucha, Rochester Institute of Technology

49

© 2018 Ray Ptucha, Rochester Institute of Technology

Back to S2VT (Venugopalan ICCV'15)

- Embedding layers used to convert both images and words to 500 dimensions each.
 - Remove last FC layer and insert 500 dim FC layer for AlexNet and VGGNet- jointly learn new weights with LSTM weights during backprop.
 - One hot encode words get converted to 500 via a DictLength×500 matrix

© 2018 Ray Ptucha, Rochester Institute of Technology

51

Back to S2VT (Venugopalan ICCV'15)

- Optical flow maps also tried.
 - Center Δx and Δy around 128.
 - Scale so flow values fall between 0:255
 - Calculate magnitude and use as 3rd channel
 - Pretrain using flow CNN from UCF101 video dataset

© 2018 Ray Ptucha, Rochester Institute of Technology

Back to S2VT (Venugopalan ICCV'15)

- RGB and flow merged with late fusion
 - At each timestep RGB and flow makes work prediction
 - Use weighted sum of both for final word probability

© 2018 Ray Ptucha, Rochester Institute of Technology

53

Three Video Datasets

	MSVD	MPII-MD	MVAD
#-sentences	80,827	68,375	56,634
#-tokens	567,874	679,157	568,408
vocab	12,594	21,700	18,092
#-videos	1,970	68,337	46,009
avg. length	10.2s	3.9s	6.2s
#-sents per video	\approx 41	1	1-2

© 2018 Ray Ptucha, Rochester Institute of Technology

	MSVD Dataset			
	Model	METEOR		
Traditional NLP	FGM [36] Mean pool	23.9	(1)	
Mean pool are	- AlexNet [39]	26.9	(2)	
·	- VGG	27.7	(3)	
all around	- AlexNet COCO pre-trained [39]	29.1	(4)	
Venugopalan NAACL'15	- GoogleNet [43] Temporal attention	28.7	(5)	
	- GoogleNet [43]	29.0	(6)	
/	- GoogleNet + 3D-CNN [43]	29.6	(7)	
[43] is the Yao	S2VT (ours)			
Spatial-	- Flow (AlexNet)	24.3	(8)	
temporal	- RGB (AlexNet)	27.9	(9)	
attention,	- RGB (VGG) random frame order	28.2	(10)	
•	- RGB (VGG)	29.2	(11)	
ICCV'15	- RGB (VGG) + Flow (AlexNet)	29.8	(12)	

SMT is a statistical machine translation	MPII-MD Dataset						
(traditional NLP	Approach	METEOI	R				
features) In place of an	SMT (best variant) [28] Visual-Labels [27]	5.6 7.0	_				
encoding stage, Visual-Labels uses	Mean pool (VGG) S2VT: RGB (VGG), ours	6.7 7.1					
a variety of visual features such as object detectors	MSM-VAD Da	ataset	_				
and scene	Approach		METEOR				
classifiers	Visual-Labels [27] Temporal att. (GoogleNet+3D-CN Mean pool (VGG) S2VT: RGB (VGG), ours	NN) [43] ⁴	6.3 4.3 6.1 6.7				

CNN as Vector Representation

- Fully connected layers are excellent descriptors of the input image!
- For example, you can pass images through a pre-trained CNN, then take the output from a FC layer as input to a SVM classifier. (image2vec)

• Images in this vector space generally have the property that similar images are close in this latent representation.

© 2018 Ray Ptucha, Rochester Institute of Technology

Word2vec

- In the simplest form, we can start with a one-hot encoded vector of all words, and then learn a model which converts to a lower dimensional representation.
- Word2vec, glove, and skip-gram are popular metrics which encode words to a latent vector representation (~300 dimensions).
- Now we have a way to represent images, characters, and words as vectors.

© 2018 Ray Ptucha, Rochester Institute of Technology

Sent2vec

• In the English to French translation, we have:

...but wait, this point in the RNN is a representation (sent2vec) of all the words in the English sentence!

 Now we have a way to represent images, characters, words, and sentences as vectors...can extend to paragraphs and documents...

© 2018 Ray Ptucha, Rochester Institute of Technology

63

What about Video2vec????

https://arxiv.org/pdf/1412.0767.pdf

Learning Spatiotemporal Features with 3D Convolutional Networks

Du Tran^{1,2}, Lubomir Bourdev¹, Rob Fergus¹, Lorenzo Torresani², Manohar Paluri¹

¹Facebook AI Research, ²Dartmouth College

{dutran,lorenzo}@cs.dartmouth.edu {lubomir,robfergus,mano}@fb.com

Abstract

We propose a simple, yet effective approach for spatiotemporal feature learning using deep 3-dimensional convolutional networks (3D ComvNets) trained on a large scale supervised video dataset. Our findings are three-fold: 1) 3D ComvNets are more suitable for spatiotemporal feature learning compared to 2D ComvNets; 2) A homogeneous architecture with small 3 × 3 × 3 convolution kernels in all ayers is among the best performing architectures for 3D ComvNets; and 3) Our learned features, namely C3D (Convolutional 3D), with a simple linear classifier outperform state-of-the-art methods on 4 different benchmarks and are comparable with current best methods on the other 2 benchmarks. In addition, the features are compact: achieving

ing, and retrieving tasks much more scalable; (iii) it needs to be efficient to compute, as thousands of videos are expected to be processed every minute in real world systems; and (iv) it must be simple to implement. Instead of using complicated feature encoding methods and classifiers, a good descriptor should work well even with a simple model (e.g. linear classifier).

Inspired by the deep learning breakthroughs in the image domain [24] where rapid progress has been made in the past few years in feature learning, various pre-trained convolutional network (ConvNet) models [16] are made available for extracting image features. These features are the activations of the network's last few fully-connected layers which perform well on transfer learning tasks [47, 48]. However, such image based deep features are not directly suitable for

© 2018 Ray Ptucha, Rochester Institute of Technology

C3D

Tran et al. "Learning Spatiotemporal Features with 3D Convolutional Networks", ICCV 2015.

- Rather than learn a single vector (e.g. FC7), introduced a spatio-temporal video feature representation using deep 3D ConvNets.
- Not the first to propose 3D ConvNets, but first to exploit deep nets with large supervised datasets.
- Models appearance and motion.
- Showed that:
 - 3D ConvNets are better than 2D ConvNets
 - Simple architecture with 3×3×3 filters works very well
 - Learned features are then passed into simple linear classifier to give state-of-the-art results

© 2018 Ray Ptucha, Rochester Institute of Technology

65

2D and 3D Convolution

(will still work with c channels and f frames)
(Similar phenomenon for pooling)

(a) 2D convolution

Tran et al., 2015

 2D conv on a 2D image results in 2D image

- 2D conv on a 3D volume results in 2D image
 - Because filter depth matches volume depth.
- 3D conv on a 3D volume results in 3D volume
 - Preserves spatiotemporal information.

6

© 2018 Ray Ptucha, Rochester Institute of Technology

Quo Vadis Action Recognition: a New Model and the Kinetics Dataset. Carreira and Zisserman, CVPR 2017

© 2018 Ray Ptucha, Rochester Institute of Technology

71

Inflated Inception v1 for Video (I3D)

	UCF-101				HMDB-51				
Architecture	Original	Fixed	Full-FT	Δ	Original	Fixed	Full-FT	Δ	
(a) LSTM	81.0	81.6	82.1	-6%	36.0	46.6	46.4	-16.7%	
(b) 3D-ConvNet	51.6	76.0	79.9	-58.5%	24.3	47.5	49.4	-33.1%	
(c) Two-Stream	91.2	90.3	91.5	-3.4%	58.3	64.0	58.7	-13.7%	
(d) 3D-Fused	89.3	88.5	90.1	-7.5%	56.8	59.0	61.4	-10.6%	
(e) Two-Stream I3D	93.4	95.7	96.5	-47.0%	66.4	74.3	75.9	-28.3%	

Note: I3D always started from an ImageNet model.

Original: train on UCF-101/HMDB-51

Fixed: train on miniKinetics, tune last layer on UCF-101/

HMDB-51

Full-FT: train on miniKinetics, fine tune the entire network on

UCF-101/HMDB-51

3D fused does fuses the cone net outputs from flow and RGB before the FC layers

Quo Vadis Action Recognition: a New Model and the Kinetics Dataset. Carreira and Zisserman, CVPR 2017

© 2018 Ray Ptucha, Rochester Institute of Technology

