- 1. Poiščite globalno poravnavo zaporedij $s_1 = ATTCG$, $s_2 = GGAGT$, $s_3 = TGACG$ in $s_4 = GAACT$ z uporabo
 - (a) algoritma za progresivno poravnavo
 - (b) 2-aproksimacijskega algoritma

Za razdaljo med dvema zaporedjema uporabite Needleman–Wunschev algoritem z nagrado $0\,$ za ujemanje in kaznijo za zamenjavo, vstavljanje in brisanje enako 1.

a) Progresivna porawnava

1. Matrika razdalj

2. Drevo UPGMA

3. MSA

· (2) parov zaporedij · k zaporedij

1. Matrika vazdalj (već možnih razdalj)

- Pazdalja = ocena globalno poraviave (absolutne vrednosti)

	S1	Sz	Sz	Sy
S ₁	0	5	3	4
52		0	3	2
Sz			<i>(</i>)	3
Sy				0

Poravnave so bile te ustranjene, druga Ee moras vse varedit sam.

(2. Drevo UPGMA (vec metod: UPGMA, neighbor joining, iz aditivnih matrik)

	S1	Sz	Sz	Sy
Sı	0	5	3	4
Sz		0	3 (2
Sz			Ø	3
Sy				0

$$d(C_{1}, S_{1}) = \frac{(d(S_{2}, S_{1}) + d(S_{1}, S_{1}))}{|C_{1}|}$$

$$= \frac{5+4}{2} = 4.5$$

	S ₁	C1	53	
S1	0	4.5	3	izberes
C1		0	3	enega
53			0	v

- · vsaki gruči dofočimo najboljšo poravnavo zaporedja ene skupine z zaporedjem iz druge skupine (rajboljša = rajmanjša):
 - · C1 iwa poravnavo (52, S4)

 - · Cz ima poravnavo (S1, S3) · C3 ima poravnavo min {C1, C2} = min {d(S2, S1), d(S2, S3), d(S4, S1), d(S4, S3)} = min 85,3,4,33; izberemo (52,53), saj se sy boljše poravna z S1.
- · Začnemo na vrhu s C3 = (S2, S3) in progresivno dodajamo poravnave.
 - Sy dodaż v (Sz,S3) glede na to kako se porawna z Sz
 - · SI dodas v (54,52,53) glede na to kako se poravna Z S3

(b) 2-aproksimacijski algoritem

- · 1. Korak je enak kot pri (a); 2. Korak ni potreben nadomestimo ga z naslednjim algoritmom:
 - · Vrednost poravnave je enaka vsoti vrednosti poravnav vseh (½) parov zaporedij, induciranih s poravnavo k zaporedij.
 - · Predp., da iscerno cim manjse vrednosti
 - · Vsota parov poravnav k-zaporedij be kvečjemu za faktor 2-3k većja od optimalne vsote parov.

	51	Sz	Sz	Sy	
Sı	0	5	3	4	= 12
52	5	0	3)	2	= 10
Sz	3	3	Ø	3	= 9 7
Sy	4	2	3	0	= 9]

Itberemo enega irmed teh dueh najmanj \bar{s} ih. Izbenimo npr. s_3 .

· Poravnamo po vrsti (\$1,53), (\$1,52,53), (\$1,52,54,53).
glede va (\$1,53), (\$2,53) in (\$4,53).

sestejemo vistice ...

Vrednost porawnawe:

$$V(A) := \sum_{i \in j} V_A(S_{i,i}, S_{j,i})$$

12 MSA dobimo Levenstheirovo razdaljo za vsak par:

•
$$V_{A}(S_{11}S_{2}) = 5$$

•
$$V_A(S_2, S_3) = 3$$

• $V_A(S_2, S_4) = 5$

$$V_{A}(s_{1}, s_{3}) = 3$$

$$V(A) = 5+3+5+3+5+3$$
= 24

* * velja :

$$v(A_c) \leq (2-2/k)v(A^*)$$

 $v(A_c)/(2-2/k) \leq v(A^*)$

Dobino jo tako, da iz matrike razdalj odoitamo razdalje med zaporedji; vzamemo manjão izmed te in one tazdalje iz MSA:

$$V(A^*) = 5+3+4+3+2+3$$

= 20

*. Kako bi porawral zaponedja glede na drevo:

- · C1 ima (51,52)
- · Cz ima (53, S4)
- · C3 ima (S5, S6)

- · Cy ima min {C2, C3 } = min {d(53, S5), d(53, S6), d(54, S5), d(54, S6) }

 NOT: (53, S5)
- C5 ima min $\frac{2}{5}$ (1, $\frac{2}{5}$ = min $\frac{2}{5}$ d(S1, S3), d(S1, S5), d(S2, S3), d(S2, S5) $\frac{2}{5}$ upr. (S1, S5) par, li smo ga izbrali za C4, ne vsa zaporedý a spodaý...

7a poravnavo potrebnjemo poravnave zaporedij: (51,52), (53,54), (55,56), (53,55) in (51,55).