Suites et séries de fonctions

Dans tout ce chapitre, A désigne une partie de \mathbb{R} et \mathbb{K} le corps \mathbb{R} ou \mathbb{C} .

1 Suites de fonctions

1.1 Modes de convergence d'une suite de fonctions

Définition 1.1 Convergence simple

Soit (f_n) une suite de fonctions de A dans \mathbb{K} . On dit que (f_n) **converge simplement** sur A vers une fonction f de A dans \mathbb{K} si

$$\forall x \in A$$
, $\lim_{n \to +\infty} f_n(x) = f(x)$

Exemple 1.1

On pose $f_n(x) = \left(1 + \frac{x}{n}\right)^n$ pour $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$. La suite de fonctions (f_n) converge simplement sur \mathbb{R} vers $x \mapsto e^x$.

Exercice 1.1

Soit (f_n) une suite de fonctions définies sur un intervalle I de \mathbb{R} à valeurs dans \mathbb{R} convergeant simplement sur I vers une fonction f. Montrer que si les f_n sont croissantes / décroissantes / convexes / concaves, alors f est croissante / décroissante / convexe / concave.

Rappel Norme uniforme

On rappelle que la **norme uniforme** est définie sur l'ensemble des fonctions bornées de A dans K par

$$||f||_{\infty} = \sup_{x \in A} |f(x)|$$

Définition 1.2 Convergence uniforme

Soit (f_n) une suite de fonctions de A dans \mathbb{K} . On dit que (f_n) converge uniformément sur A vers une fonction f de A dans \mathbb{K} si les fonctions $f_n - f$ sont bornées à partir d'un certain rang et

$$\lim_{n \to +\infty} \|f_n - f\|_{\infty} = 0$$

Remarque. En termes de quantificateurs, la **convergence simple** s'écrit :

$$\forall x \in A, \ \forall \varepsilon > 0, \exists N \in \mathbb{N}, \ \forall n \geq N, \ |f_n(x) - f(x)| \leq \varepsilon$$

La convergence uniforme s'écrit :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \ \forall n \ge N, \ \forall x \in A, \ |f_n(x) - f(x)| \le \varepsilon$$

On notera la place du quantificateur « $\forall x \in A$ ».

REMARQUE. Si une suite de fonctions converge uniformément sur A, elle converge uniformément sur toute partie de A.

Exercice 1.2

Montrer qu'une combinaison linéaire de deux suites de fonctions convergeant uniformément sur une partie de \mathbb{R} converge également uniformément sur cette partie.

Proposition 1.1 La convergence uniforme implique la convergence simple

Si une suite de fonctions (f_n) converge **uniformément** sur A vers f, alors elle converge **simplement** vers f sur A.

ATTENTION! La réciproque est fausse.

Méthode Montrer qu'une suite de fonctions converge uniformément

Soit (f_n) une suite de fonctions dont on souhaite montrer qu'elle converge uniformément.

- 1. On étudie d'abord la convergence simple. On **fixe** $x \in A$ et on étudie la limite éventuelle de la suite $(f_n(x))$. Si cette limite existe, on note f(x) cette limite. Ainsi (f_n) converge simplement vers f sur l'ensemble D des x pour lesquels cette limite existe.
- 2. Il s'agit ensuite de montrer que $||f_n f||_{\infty}$ tend vers 0 lorsque n tend vers $+\infty$. On doit donc trouver une majoration de $|f(x) f_n(x)|$ **indépendante** de x. Pour cela, on peut étudier les variations de $f_n f$ sur A pour déterminer la borne supérieure (ou éventuellement le maximum) de $|f_n f|$ sur A.

Exemple 1.2

Soit $a \in [0,1[$. On considère la suite de fonctions de terme général $f_n: x \in [0,1] \mapsto n^a x^n (1-x)$.

- 1. Etudions d'abord la convergence simple. Si $x \in [0, 1[, (f_n(x))$ converge vers 0 par croissances comparées. De plus, $f_n(1) = 0$ pour tout $n \in \mathbb{N}$. Ainsi (f_n) converge simplement vers la fonction nulle.
- 2. f_n est dérivable sur [0,1] et $f_n'(x) = n^a x^{n-1} (n-(n+1)x)$. Comme $f_n(0) = f_n(1) = 0$, on en déduit aisément que f_n est positive sur [0,1] et qu'elle admet son maximum en $\frac{n}{n+1} = 1 \frac{1}{n+1}$. Ainsi

$$||f_n||_{\infty} = f_n\left(\frac{n}{n+1}\right) = \frac{n^a}{n+1}\left(1 - \frac{1}{n+1}\right)^n$$

Or

$$\ln\left(\left(1 - \frac{1}{n+1}\right)^n\right) = n\ln\left(1 - \frac{1}{n+1}\right) \underset{n \to +\infty}{\sim} -\frac{n}{n+1} \underset{n \to +\infty}{\sim} -1$$

On en déduit que

$$\lim_{n\to+\infty} \left(1 - \frac{1}{n+1}\right)^n = e^{-1}$$

Par ailleurs, $\lim_{n \to +\infty} \frac{n^a}{n+1} = 0$ car a < 1. On en déduit que $\lim_{n \to +\infty} \|f_n\|_{\infty} = 0$ donc (f_n) converge uniformément vers la fonction nulle.

Méthode Montrer qu'une suite de fonctions ne converge pas uniformément

- Tout d'abord, si une suite de fonctions (f_n) ne converge pas simplement, elle ne peut converger uniformément.
- Si l'on veut montrer qu'une suite de fonctions (f_n) convergeant simplement vers f ne converge pas uniformément, il suffit de trouver une suite $(x_n) \in A^{\mathbb{N}}$ tel que la suite $(f(x_n) f_n(x_n))$ ne converge pas vers 0.
- En effet, si (f_n) convergeait uniformément, elle convergerait uniformément vers f et on aurait donc $\lim_{n \to +\infty} f(x_n) f_n(x_n) = 0$ quelle que soit la suite $(x_n) \in A^{\mathbb{N}}$ choisie.

Exemple 1.3

Posons $f_n: x \in \mathbb{R}_+ \mapsto nxe^{-nx}$. On montre aisément que (f_n) converge simplement sur \mathbb{R}_+ vers la fonction nulle (croissance comparée si x > 0 et traiter le cas x = 0 à part).

Une étude de fonctions montre que f_n admet son maximum en $x_n = \frac{1}{n}$. Or $f_n(x_n) = e^{-1}$ donc la suite $(f_n(x_n))$ ne converge pas vers 0. La suite de fonctions (f_n) ne converge donc pas uniformément sur \mathbb{R}_+ .

Graphes des fonctions $x \mapsto nxe^{-nx}$

ATTENTION! Si $(A_i)_{i \in I}$ est une famille **infinie** de parties de A et si (f_n) converge uniformément sur chacun des A_i , alors (f_n) ne converge pas forcément uniformément sur $\bigcup A_i$.

C'est néanmoins vrai lorsque la famille $(A_i)_{i \in I}$ est **finie**.

Exercice 1.3

Montrer que la suite de fonctions $(x \mapsto nxe^{-nx})_{n \in \mathbb{N}}$ converge uniformément sur tout **segment** de \mathbb{R}_+ mais pas sur \mathbb{R}_+ .

Théorèmes d'interversion

Rappel | Point adhérent

On rappelle que $a \in F$ est **adhérent** à A si tout voisinage de a (ou toute boule ouverte de centre a) possède une intersection non vide avec A.

Théorème 1.1 Théorème de la double limite

Soient (f_n) une suite de fonctions de A dans \mathbb{K} convergeant uniformément vers f sur A et a un point adhérent à A. Si pour tout $n \in \mathbb{N}$, f_n possède une limite **finie** $\ell_n \in \mathbb{K}$ en a, alors

- la suite (ℓ_n) possède une limite en ℓ ;
- $\lim f = \ell$.

Remarque. Le résultat reste valide si $a = \pm \infty$ (dans ce cas A doit être une partie de \mathbb{R} non majorée ou non minorée).

REMARQUE. Il s'agit d'un théorème d'interversion dans le sens où

$$\lim_{n \to +\infty} \lim_{x \to a} f_n(x) = \lim_{x \to a} \lim_{n \to +\infty} f_n(x)$$

Remarque. Le théorème de la double limite ne donne que des limites **finies**.

Attention! L'hypothèse de convergence uniforme est essentielle. Considérons par exemple les fonctions f_n : $x \in$ $[0,1]\mapsto x^n$. La suite de fonctions (f_n) converge **simplement** sur [0,1] vers la fonction nulle. De plus, pour tout $n\in\mathbb{N}$, $\lim_{n \to \infty} f_n = 1$ mais la limite de la fonction nulle en 1 est 0 et non 1.

On en déduit en particulier que la suite (f_n) ne converge pas uniformément sur [0,1[.

Théorème 1.2 Transfert de continuité

Si (f_n) est une suite de fonctions **continues** sur un intervalle I à valeurs dans \mathbb{K} convergeant **uniformément** vers f sur tout segment de I, alors f est continue sur I.

REMARQUE. Si (f_n) converge uniformément sur tout segment de I, alors (f_n) converge simplement sur I.

ATTENTION! L'hypothèse de convergence **uniforme** est à nouveau essentielle. Considérons les fonctions $f_n: x \in [0,1] \mapsto$ x^n . Les fonctions f_n sont bien continues sur [0,1]. Cependant, la suite (f_n) converge simplement vers la fonction $x \in$ $[0,1] \mapsto \delta_{x,1}$ qui est discontinue en 1.

On en déduit en particulier que la suite (f_n) ne converge pas uniformément sur [0,1].

ATTENTION! Si une suite de fonctions continues converge simplement vers une fonction continue, la convergence n'est pas nécessairement uniforme.

On peut par exemple considérer l'exemple suivant dû à Cantor : la suite de fonctions de terme général :

$$f_n: x \in \mathbb{R} \mapsto \frac{2nx}{1+n^2x^2}$$

converge simplement vers la fonction nulle (traiter à part le cas x = 0) qui est bien continue. Pourtant, pour tout $n \in \mathbb{N}^*$, $f_n(1/n) = 1$ donc la convergence ne peut être uniforme.

Théorème 1.3 Interversion limite / primitive

Soient (g_n) une suite de fonctions continues sur un **intervalle** I à valeurs dans \mathbb{K} et $a \in I$. On suppose que (g_n) converge uniformément sur tout segment de I vers une fonction g. On pose

$$\forall n \in \mathbb{N}, \ G_n : x \in I \mapsto \int_a^x g_n(t) \ dt$$
 et $G : x \in I \mapsto \int_a^x g(t) \ dt$

Alors (G_n) converge uniformément vers la fonction G sur tout segment de I.

Corollaire 1.1 Interversion limite / intégration

Soit (f_n) une suite de fonctions continues sur un **segment** [a,b] convergeant **uniformément** sur [a,b] vers une fonction f. Alors

$$\lim_{n \to +\infty} \int_{a}^{b} f_{n}(t) dt = \int_{a}^{b} f(t) dt$$

REMARQUE. Il s'agit à nouveau d'un théorème d'interversion

$$\lim_{n \to +\infty} \int_{a}^{b} f_{n}(t) dt = \int_{a}^{b} \lim_{n \to +\infty} f_{n}(t) dt$$

ATTENTION! A nouveau, la condition de convergence uniforme n'est pas décorative. Considérons f_n : $x \in [0, \pi/2] \mapsto (n+1)\cos^n(x)\sin(x)$. La suite (f_n) converge simplement vers la fonction nulle sur $[0, \pi/2]$ (traiter à part le ca x = 0) mais pour tout $n \in \mathbb{N}$,

$$\int_0^{\frac{\pi}{2}} f_n(t) \, \mathrm{d}t = 1$$

Théorème 1.4 Interversion limite / dérivation

Soit (f_n) une suite de fonctions **de classe** \mathcal{C}^1 sur un intervalle I à valeurs dans K. Si

- (f_n) converge **simplement** vers une fonction f sur I;
- (f'_n) converge **uniformément** vers une fonction g sur tout segment de I.

Alors

- (f_n) converge **uniformément** vers f sur tout segment de I;
- f est de classe C^1 sur I;
- f' = g.

REMARQUE. Il s'agit bien d'un théorème d'interversion dans le sens où

$$(\lim_{n\to+\infty} f_n)' = \lim_{n\to+\infty} f_n'$$

Corollaire 1.2

Soit (f_n) une suite de fonctions de classe \mathcal{C}^k sur un intervalle I à valeurs dans \mathbb{K} . Si

- pour tout $j \in [0, k-1], (f_n^{(j)})$ converge simplement sur I;
- $(f_n^{(k)})$ converge uniformément sur tout segment de I.

Alors

- la limite simple f de (f_n) est de classe \mathcal{C}^k sur I;
- pour tout $j \in [0, k]$, la suite $(f_n^{(j)})$ converge uniformément vers $f^{(j)}$ sur tout segment de I.

2 Séries de fonctions

2.1 Modes de convergence

Définition 2.1 Série de fonctions

Soit (f_n) une suite de fonctions de A dans \mathbb{K} , on note $\sum f_n$ la suite $(S_n)_{n\in\mathbb{N}}$ où $S_n = \sum_{k=0}^n f_k$ est appelée la somme partielle de rang n de la série $\sum f_n$.

Définition 2.2 Convergence simple

On dit qu'une série de fonctions de A dans \mathbb{K} converge simplement sur A si la suite de ses sommes partielles converge simplement sur A.

Remarque. Si la série $\sum f_n$ converge simplement sur A, alors la suite (f_n) converge simplement vers la fonction nulle sur A.

Définition 2.3 Reste

Si $\sum f_n$ converge simplement sur A, la fonction $R_n = \sum_{k=n+1}^{+\infty} f_k$ est bien définie sur A et est appelée reste de rang n de la série $\sum f_n$.

Définition 2.4 Convergence uniforme

On dit qu'une série de fonctions de A dans \mathbb{K} converge uniformément sur A si la suite de ses sommes partielles converge uniformément sur A.

Remarque. Si la série $\sum f_n$ converge uniformément sur A, alors la suite (f_n) converge uniformément vers la fonction nulle sur A.

Exemple 2.1

Posons $f_n: x \in \mathbb{R} \mapsto \frac{x^n}{n!}$. Pour tout $x \in \mathbb{R}$, la série $\sum_{n \in \mathbb{N}} f_n(x)$ converge et a pour somme e^x . Ainsi la série de fonctions $\sum_{n \in \mathbb{N}} f_n$ converge simplement et a pour somme la fonction exp.

Par contre, $\sum f_n$ ne converge pas uniformément sur $\mathbb R$ puisque pour tout $n \in \mathbb N^*$, $\|f_n\|_{\infty} = +\infty$ et donc (f_n) ne peut évidemment converger vers la fonction nulle.

Exercice 2.1

Soit $f_n: x \mapsto x^n$.

- 1. Sur quelle partie I de \mathbb{R} la série $\sum f_n$ converge-t-elle simplement?
- 2. La série $\sum f_n$ converge-t-elle uniformément sur I? sur les segments de I?

Proposition 2.1

Une série de fonctions converge uniformément sur A si et seulement si

- elle converge simplement sur A
- et la suite de ses restes converge uniformément vers la fonction nulle sur A.

Définition 2.5 Convergence normale

Soit $\sum f_n$ une série de fonctions de A dans \mathbb{K} . On dit que la série $\sum f_n$ converge **normalement** sur A si $\sum \|f_n\|_{\infty}$ converge.

Rappel Convergence absolue

Soit $\sum u_n$ une série de termes à valeurs dans \mathbb{K} . On dit que $\sum u_n$ converge **absolument** si la série $\sum |u_n|$ converge.

Proposition 2.2

Si une série de fonctions converge **normalement** sur A, alors elle converge **uniformément** sur A et **absolument** en tout point de A.

Remarque. On peut alors préciser que si $\sum f_n$ converge normalement, alors $\left\|\sum_{n=0}^{+\infty} f_n\right\|_{\infty} \le \sum_{n=0}^{+\infty} \|f_n\|_{\infty}$.

ATTENTION! La réciproque est fausse : une série de fonctions peut converger uniformément sans converger normalement.

Exemple 2.2

Soit $f_n: x \mapsto \frac{\sin(nx)}{n^2}$. Alors la série $\sum_{n \in \mathbb{N}^*} f_n$ converge normalement sur \mathbb{R} . En effet, pour tout $n \in \mathbb{N}^*$, $||f_n||_{\infty} = \frac{1}{n^2}$ et $\sum \frac{1}{n^2}$ converge.

2.2 Comparaison série / intégrale

Méthode Comparaison série-intégrale

On rappelle que si f est une fonction continue par morceaux et décroissante sur $[N, +\infty[$ telle que $\int_{N}^{+\infty} f(t) dt$ converge, alors la série $\sum f(n)$ converge et

$$\int_{N}^{+\infty} f(t) dt \le \sum_{n=N}^{+\infty} f(n) \le f(N) + \int_{N}^{+\infty} f(t) dt$$

Exercice 2.2 Fonction ζ d'Euler

Soit
$$\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$$
.

- 1. Quel est le domaine de définition D de ζ ?
- 2. La série de fonctions définissant ζ converge-t-elle uniformément sur D? sur tout segment de D?

Exemple 2.3 Equivalent de la fonction ζ en 1

On rappelle que ζ : $x \mapsto \sum_{n=1}^{+\infty} \frac{1}{n^x}$ est définie sur]1, $+\infty$ [. Soit x > 1. La fonction f: $t \mapsto \frac{1}{t^x}$ est continue et décroissante sur [1, $+\infty$ [.

$$\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{x}} \, \mathrm{d}t \le \zeta(x) \le 1 + \int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{x}}$$

ou encore

$$\frac{1}{x-1} \le \zeta(x) \le 1 + \frac{1}{x-1}$$

On en déduit que

$$\zeta(x) = \frac{1}{x-1} + \mathcal{O}(1)$$

En particulier,

$$\zeta(x) \underset{x \to 1^+}{\sim} \frac{1}{x - 1}$$

2.3 Séries alternées

Rappel Séries alternées

Soit $\sum (-1)^n u_n$ une série vérifiant le critère spécial des séries alternées, c'est-à-dire que (u_n) est une suite réelle décroissant vers 0. Si on note $R_n = \sum_{k=n+1}^{+\infty} (-1)^k u_k$, alors $|R_n| \le |u_{n+1}|$.

Exemple 2.4

On considère la série de fonctions $\sum f_n$ avec f_n : $x\mapsto \frac{(-1)^n}{n+x}$. Si on fixe $x\in\mathbb{R}^*$, la série $\sum f_n(x)$ converge car elle vérifie le critère des séries alternées. Autrement dit, la série de fonctions $\sum f_n$ converge simplement sur \mathbb{R}_+^* . De plus, si on pose $R_n=\sum_{k=n+1}^{+\infty}f_k$,

$$\forall x \in \mathbb{R}_{+}^{*}, \ |R_{n}(x)| \le \frac{1}{n+1+x} \le \frac{1}{n+1}$$

ou encore $\|\mathbf{R}_n\|_{\infty} \leq \frac{1}{n+1}$. On en déduit que (\mathbf{R}_n) converge uniformément vers 0 sur \mathbb{R}_+^* . Ainsi la série $\sum f_n$ converge uniformément sur \mathbb{R}_+^* .

Exercice 2.3

On considère $f_n: x \mapsto \frac{(-1)^n x^n}{n}$. Montrer que $\sum f_n$ converge uniformément mais pas normalement sur [0,1].

2.4 Théorèmes d'interversion

Théorème 2.1 Théorème d'interversion série/limite

Soient $\sum_{n\in\mathbb{N}} f_n$ une série de fonctions de A dans \mathbb{K} convergeant uniformément vers f sur A et a un point adhérent à A. Si pour tout $n\in\mathbb{N}$, f_n possède une limite finie $\ell_n\in\mathbb{K}$ en a, alors

- la série $\sum_{n\in\mathbb{N}} \ell_n$ converge;
- $\lim_{a} f = \sum_{n=0}^{+\infty} \ell_n.$

Remarque. Le résultat reste valide si $a = \pm \infty$ (dans ce cas A doit être une partie de \mathbb{R} non majorée ou non minorée).

REMARQUE. Le théorème d'interversion série/limite ne donne que des limites **finies**.

Exemple 2.5 Limite en $+\infty$ de la fonction ζ

Posons $f_n(x) = \frac{1}{n^x}$ et $\zeta(x) = \sum_{n=1}^{+\infty} f_n(x)$. En tant que série de Riemann, la série $\sum_{n \in \mathbb{N}^*} f_n$ converge simplement sur $]1, +\infty[$. $\forall n \in \mathbb{N}^*, \ \forall x \in [2, +\infty[, \ |f_n(x)| \le \frac{1}{n^2}]$

Or $\sum \frac{1}{n^2}$ converge donc la série $\sum f_n$ converge normalement (et donc uniformément) sur $[2, +\infty[$. De plus, $\lim_{t \to \infty} f_n = \delta_{1,n}$ donc $\lim_{t \to \infty} \zeta = 1$.

Exemple 2.6

Posons $f_n(x) = \frac{1}{n^x}$. La série $\sum_{n \in \mathbb{N}^*} f_n$ ne peut converger uniformément sur $]1, +\infty[$. En effet, pour tout $n \in \mathbb{N}^*$, $\lim_{n \to \infty} f_n = \frac{1}{n}$ mais la série $\sum_{n \in \mathbb{N}^*} \frac{1}{n}$ diverge.

Exercice 2.4

Montrer que

$$\zeta(x) = 1 + \frac{1}{2^x} + o\left(\frac{1}{2^x}\right)$$

Exemple 2.7 Limite en 1^+ de la fonction ζ

Posons à nouveau $f_n(x) = \frac{1}{n^x}$ et $\zeta(x) = \sum_{n=1}^{+\infty} f_n(x)$. La série $\sum f_n$ ne converge pas uniformément sur]1, $+\infty$ [donc on ne peut pas utiliser le théorème d'interversion série/limite. Néanmoins, ζ est décroissante sur]1, $+\infty$ [en tant que somme d'une série de fonctions décroissantes. La fonction ζ admet donc une limite en 1⁺. Fixons $N \in \mathbb{N}^*$.

$$\forall x \in]1, +\infty[, \zeta(x) \ge \sum_{n=1}^{N} \frac{1}{n^x}$$

Par passage à la limite,

$$\lim_{1^{+}} \zeta \ge \lim_{x \to 1^{+}} \sum_{n=1}^{N} \frac{1}{n^{x}} = \sum_{n=1}^{N} \frac{1}{n}$$

En faisant tendre N vers $+\infty$, on obtient $\lim_{1^+} \zeta = +\infty$.

Exercice 2.5

On pose
$$f(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^x}$$
.

- 1. Quel est le domaine de définition D de f?
- 2. La série de fonctions définissant f converge-t-elle uniformément sur D? sur tout segment de D?

Théorème 2.2 Transfert de continuité

Si $\sum f_n$ est une série de fonctions **continues** sur un intervalle I à valeurs dans \mathbb{K} convergeant **uniformément** vers f sur tout segment de I, alors f est continue sur I.

Remarque. Si $\sum f_n$ converge uniformément sur tout segment de I, alors $\sum f_n$ converge simplement sur I.

Exemple 2.8 Continuité de la fonction ζ

Posons $f_n(x) = \frac{1}{n^x}$ et $\zeta(x) = \sum_{n=1}^{+\infty} f_n(x)$. En tant que série de Riemann, la série $\sum_{n \in \mathbb{N}^*} f_n$ converge simplement sur $]1, +\infty[$. Soit $a \in]1, +\infty[$. Pour tout $n \in \mathbb{N}^*$, la fonction f_n est continue sur $[a, +\infty[$ et

$$\forall n \in \mathbb{N}^*, \ \forall x \in [a, +\infty[, |f_n(x)| \le \frac{1}{n^a}]$$

Or $\sum \frac{1}{n^a}$ converge donc la série $\sum f_n$ converge normalement (et donc uniformément) sur $[a, +\infty[$. On en déduit que ζ est continue sur $[a, +\infty[$.

Comme $]1, +\infty[=\bigcup_{a>1} [a, +\infty[, \zeta \text{ est continue sur }]1, +\infty[.$

Théorème 2.3 Interversion série / primitive

Soient $\sum_{n\in\mathbb{N}} f_n$ une série de fonctions continues sur un **intervalle** I à valeurs dans \mathbb{K} et $a\in I$. On suppose que $\sum_{n\in\mathbb{N}} f_n$ converge uniformément sur tout segment de I. On pose

$$\forall n \in \mathbb{N}, \ F_n : x \in I \mapsto \int_a^x f_n(t) dt$$
 et $F : x \in I \mapsto \int_a^x \sum_{n=0}^{+\infty} f_n(t) dt$

Alors $\sum_{n\in\mathbb{N}} F_n$ converge uniformément vers la fonction F sur tout segment de I.

Corollaire 2.1 Interversion série / intégration

Soit $\sum_{n\in\mathbb{N}} f_n$ une série de fonctions continues sur un **segment** [a,b] convergeant **uniformément** sur [a,b]. Alors

$$\sum_{n=0}^{+\infty} \int_a^b f_n(t) dt = \int_a^b \sum_{n=0}^{+\infty} f_n(t) dt$$

Exercice 2.6

Soit $r \in \mathbb{R}_+$ et $z \in \mathbb{C}$ tel que $|z| \neq r$. Calculer $\int_0^{2\pi} \frac{re^{i\theta} d\theta}{re^{i\theta} - z}$. On distinguera les cas |z| < r et |z| > r.

Théorème 2.4 Interversion série / dérivation

Soit $\sum_{n\in\mathbb{N}} f_n$ une série de fonctions **de classe** \mathcal{C}^1 sur un intervalle I à valeurs dans \mathbb{K} . Si

- $\sum_{n\in\mathbb{N}} f_n$ converge **simplement** sur I;
- $\sum_{n\in\mathbb{N}} f_n'$ converge **uniformément** sur tout segment de I.

Alors

- $\sum_{n\in\mathbb{N}} f_n$ converge **uniformément** sur tout segment de I;
- $\sum_{n=0}^{+\infty} f_n$ est de **classe** \mathcal{C}^1 sur I;
- $\bullet \left(\sum_{n=0}^{+\infty} f_n\right)' = \sum_{n=0}^{+\infty} f_n'.$

Corollaire 2.2

Soit $\sum_{n\in\mathbb{N}}f_n$ une série de fonctions de classe \mathcal{C}^k sur un intervalle I à valeurs dans \mathbb{K} . Si

- pour tout $j \in [0, k-1]$, $\sum_{n \in \mathbb{N}} f_n^{(j)}$ converge simplement sur I;
- $\sum_{n\in\mathbb{N}} f_n^{(k)}$ converge uniformément sur tout segment de I.

Alors

- $\sum_{n=0}^{+\infty} f_n$ est de classe C^k sur I;
- pour tout $j \in [0, k]$, la série $\sum_{n \in \mathbb{N}} f_n^{(j)}$ converge uniformément vers $\left(\sum_{n=0}^{+\infty} f_n\right)^{(j)}$ sur tout segment de I.

Exemple 2.9 La fonction ζ est de classe \mathcal{C}^{∞}

Posons $f_n(x) = \frac{1}{n^x}$ et $\zeta(x) = \sum_{n=1}^{+\infty} f_n(x)$. La série $\sum_{n \in \mathbb{N}^*} f_n$ converge simplement sur $]1, +\infty[$. Les fonctions f_n sont de classe \mathcal{C}^{∞} sur $]1, +\infty[$ et

$$\forall k \in \mathbb{N}, \ \forall n \in \mathbb{N}^*, \ \forall x \in]1, +\infty[, \ f_n^{(k)}(x) = \frac{(-\ln n)^k}{n^x}$$

Fixons $a \in]1, +\infty[$.

$$\forall k \in \mathbb{N}, \ \forall n \in \mathbb{N}^*, \ \forall x \in [a, +\infty[, \ \left| f_n^{(k)}(x) \right| \le \frac{(\ln n)^k}{n^a}$$

Or pour tout $k \in \mathbb{N}$, la série $\sum_{n \in \mathbb{N}^*} \frac{(\ln n)^k}{n^a}$ converge (série de Bertrand, classique quoique hors programme). Donc pour tout $k \in \mathbb{N}$, la série $\sum_{n \in \mathbb{N}^*} f_n^{(k)}$ converge normalement et donc uniformément sur $[a, +\infty[$. On en déduit que ζ est de classe \mathcal{C}^{∞} sur $[a, +\infty[$. Comme $]1, +\infty[=\bigcup_{a>1} [a, +\infty[$, ζ est de classe \mathcal{C}^{∞} sur $]1, +\infty[$. De plus,

$$\forall k \in \mathbb{N}, \ \forall x \in]1, +\infty[, \ \zeta^{(k)}(x) = \sum_{n=1}^{+\infty} \frac{(-\ln n)^k}{n^x}$$

3 Approximation uniforme

Théorème 3.1 Approximation uniforme d'une fonction continue par morceaux par des fonctions en escalier

Soit f une fonction **continue par morceaux** sur un **segment** [a,b] à valeurs dans \mathbb{K} . Alors il existe une suite (φ_n) de fonctions **en escalier** sur [a,b] à valeurs dans \mathbb{K} **convergeant uniformément** vers f.

REMARQUE. Si on note $\mathcal{C}_m([a,b],\mathbb{K})$ l'ensemble des fonctions continues par morceaux sur [a,b] à valeurs dans \mathbb{K} et $\mathcal{E}([a,b],\mathbb{K})$ l'ensemble des fonctions en escalier sur [a,b] à valeurs dans \mathbb{K} , ceci signifie que $\mathcal{E}([a,b],\mathbb{K})$ est **dense** dans $\mathcal{C}_m([a,b],\mathbb{K})$ pour la norme uniforme.

Exercice 3.1 ★★★

Lemme de Riemann-Lebesgue

On considère un segment [a,b] de $\mathbb R$ et un espace vectoriel normé de dimension finie $\mathbb E$.

1. Soit φ une fonction en escalier sur [a, b] à valeurs dans E. Montrer que

$$\lim_{\lambda \to +\infty} \int_{a}^{b} e^{i\lambda t} \varphi(t) \, dt = 0$$

2. Soit f une fonction continue par morceaux sur [a, b] à valeurs dans E. Montrer que

$$\lim_{\lambda \to +\infty} \int_{a}^{b} e^{i\lambda t} f(t) \, \mathrm{d}t = 0$$

3. Soit f une fonction intégrable sur $\mathbb R$ à valeurs dans E. Montrer que

$$\lim_{\lambda \to +\infty} \int_{-\infty}^{\infty} e^{i\lambda t} f(t) \, dt = 0$$

Théorème 3.2 Théorème de Weierstrass

Soit f une fonction **continue** sur un **segment** [a,b] à valeurs dans \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$). Alors il existe une suite (P_n) de fonctions **polynomiales** sur [a,b] à coefficients dans \mathbb{K} **convergeant uniformément** vers f.

Remarque. A nouveau, ceci signifie que l'ensemble des fonctions polynomiales sur [a,b] à coefficients dans \mathbb{K} est **dense** dans $\mathcal{C}([a,b],\mathbb{K})$ pour la norme uniforme.