Systembefehle

ITS-Net-Lin

Sebastian Meisel

7. Dezember 2024

1 Verzeichnisstruktur und Laufwerke

Unixoide Systeme, wie Linux, verwenden eine baumartige Verzeichnisstruktur. Diese beginnt mit dem Verzeichnis /. Dieses Verzeichnis wird auch Root-Verzeichnis genannt. Von dort aus verzweigen sich alle weiteren Verzeichnisse.

```
bin -> usr/bin
                       # Programme des Paketmanagers für alle Benutzer.
- boot
                       # Bootloader und Dateien für den Bootprozess.
                       # Schnittstellen zu Geräten über Pseudo-Dateien.
- dev
                       # Systemweite Konfigurationsdateien.
- etc
                       # Verzeichnisse der Benutzer.
- home
                       # 32-Bit-Bibliotheken.
- lib -> usr/lib
- lib64 -> usr/lib64
                       # 64-Bit-Bibliotheken.
                       # Mountpoint für externe Dateisysteme.
- mnt
                       # Große Programme von Drittanbietern.
- opt
                       # Pseudo-Dateien mit Systeminformationen.
- proc
                       # Heimatverzeichnis des Root-Benutzers.
- root
                       # Laufzeitdateien.
- run
- sbin -> usr/sbin
                       # Superuser-Programme des Paketmanagers.
                       # Geräteinformationen als Pseudo-Dateien.
- sys
- tmp
                    # Temporäre Dateien, die nach Neustart gelöscht werden.
                       # Nicht direkt benötigte Systemkomponenten.
usr
                       # Logs, Cache-Dateien und dynamische Inhalte.
- var
```

Anders als bei Windows zeigt ein Verzeichnis nicht an, auf welchem Laufwerk es liegt. In Linux können Laufwerke an beliebigen Stellen in dieser Baumstruktur eingehängt werden.

1.1 lsblk

Der Befehl lsblk listet die verfügbaren Laufwerke (Blockgeräte) und zeigt an, wo sie im Verzeichnisbaum eingehängt sind.

Zum Beispiel könnte das Verzeichnis / home auf der zweiten Partition der ersten Festplatte (sda6) liegen.

```
NAME
       MAJ:MIN RM
                    SIZE RO TYPE MOUNTPOINTS
       254:0
                     50G
                          0 disk
sda
                0
 -sda1 254:1
                    512M
                          0 part /boot/efi
                0
 -sda2 254:2
                   9.5G
                          0 part /
 -sda3 254:3
                    3.5G
                          0 part /var
                0
 -sda4 254:4
                          0 part [SWAP]
                    977M
 -sda5 254:5
                0
                    680M
                          0 part /tmp
∟sda6 254:6
                0 34.9G
                          0 part /home
        11:0
                1 1024M
                          0 rom
sr0
```

1.2 df

Mit dem Befehl df kann überprüft werden, wie viel Speicherplatz auf den Dateisystemen verfügbar oder belegt ist. Mit der Option –h (human-readable) werden die Ergebnisse in leicht lesbaren Größen (z. B. MiB oder GiB) angezeigt.

Filesystem	Size	Used	Avail	Use%	Mounted on
udev	947M	0	947M	0%	/dev
tmpfs	195M	1.4M	194M	1%	/run
/dev/vda2	9.3G	4.4G	4.5G	50%	/
tmpfs	974M	0	974M	0%	/dev/shm
tmpfs	5.0M	8.0K	5.0M	1%	/run/lock
/dev/vda3	3.4G	420M	2.8G	13%	/var
/dev/vda6	35G	1.1G	32G	4%	/home
/dev/vda5	652M	124K	605M	1%	/tmp
/dev/vda1	511M	5.9M	506M	2%	/boot/efi
tmpfs	195M	80K	195M	1%	/run/user/1000

Dabei werden auch virtuelle Dateisysteme angezeigt:

- tmpfs: Temporäre Dateisysteme im RAM.
- udev: Virtuelles Dateisystem für Gerätekommunikation.