- 0. MOTIVATION
- 1. PROBLEM SOLVING
- 2. INFORMATION
- 3. COUNTING
- 4. BITS
- 5. CODES
- 6. ALGORITHMS
- 7. COMPUTERS
- 8. ARITHMETIC
- 9. MEMORY
- 10. ANALOG VS. DIGITAL

The slides are meant as visual support for the lecture. They are neither a documentation nor a script.

Please do not print the slides.

Comments and feedback at n.meseth@hs-osnabrueck.de

MOTIVATION

digitally illiterate society with a few experts

collective understanding

you?

society with a distributed and high degree of digital education

processing

processing

programming

processing

programming

data analysis

representation

processing

programming

data analysis

artificial intelligence

representation

processing

programming

digital applications

data analysis

artificial intelligence

representation

processing

programming

PROBLEM SOLVING

a model for solving problems

a model for solving problems

a model for solving problems

problem solving strategies

divide and conquer

smaller problem	smaller problem
smaller problem	smaller problem

even smaller problem	smaller problem
even smaller problem	
smaller problem	smaller problem

is 67 a prime number?

```
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
```

linear search

```
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
```

linear search

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

linear search

```
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
```

linear search

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

linear search

```
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
```

19 steps... can't we do better?

```
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
```

large and complex problem

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

large and complex problem

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

smaller problem

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41

smaller problem

43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

```
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
```

```
binary search 67!= 41

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,

43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
```

67 > 41


```
binary search 67 > 41

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,

43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
```

```
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

1
67!=71
```

```
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

67!=59
```

```
\frac{2}{5}, \frac{5}{5}, \frac{7}{7}, \frac{11}{13}, \frac{17}{17}, \frac{19}{19}, \frac{23}{29}, \frac{29}{31}, \frac{37}{37}, \frac{41}{43}, \frac{47}{47}, \frac{53}{59}, \frac{59}{61}, \frac{67}{71}, \frac{73}{79}, \frac{79}{83}, \frac{89}{89}, \frac{97}{67}
```

$$\frac{2}{5}$$
, $\frac{5}{5}$, $\frac{7}{7}$, $\frac{11}{13}$, $\frac{17}{17}$, $\frac{19}{19}$, $\frac{23}{29}$, $\frac{29}{31}$, $\frac{37}{37}$, $\frac{41}{43}$, $\frac{47}{53}$, $\frac{59}{59}$, 61 , 67 , $\frac{71}{73}$, $\frac{79}{79}$, $\frac{83}{89}$, $\frac{89}{97}$.

$$\frac{2}{5}$$
, $\frac{5}{5}$, $\frac{7}{7}$, $\frac{11}{13}$, $\frac{17}{17}$, $\frac{19}{19}$, $\frac{23}{29}$, $\frac{29}{31}$, $\frac{37}{37}$, $\frac{41}{43}$, $\frac{47}{53}$, $\frac{59}{59}$, $\frac{61}{67}$, $\frac{67}{71}$, $\frac{73}{79}$, $\frac{83}{89}$, $\frac{89}{97}$.

3 splits → much better

$$\frac{2}{5}$$
, $\frac{5}{5}$, $\frac{7}{7}$, $\frac{11}{13}$, $\frac{17}{17}$, $\frac{19}{19}$, $\frac{23}{29}$, $\frac{29}{31}$, $\frac{37}{37}$, $\frac{41}{43}$, $\frac{47}{53}$, $\frac{59}{59}$, $\frac{61}{67}$, $\frac{67}{71}$, $\frac{73}{79}$, $\frac{83}{89}$, $\frac{89}{97}$.

how efficient are linear and binary search in general?

how many words are in the book?

strategies, anyone?

page 1

n = 1327 pages

Ø 2:23 minutes per page

~ 52.34 hours

divide and conquer

+

7

pages 1 - 700

student 1

pages 701 - 1327

student 2

divide and conquer

4

distribution and parallelization

