PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

III I E			
(51) International Patent Classification 6:	C00B 30/04 A1	(11) International Publication Number:	WO 98/37214
C12N 15/82, 9/10, 15/11, C08B 30/04		(43) International Publication Date:	27 August 1998 (27.08.98)

(21) International Application Number: PCT/IB98/00295
 (22) International Filing Date: 23 February 1998 (23.02.98)

(30) Priority Data:
9703672.7
9706075.0
21 February 1997 (21.02.97)
GB
GB

(71) Applicant (for all designated States except US): DANISCO A/S [DK/DK]; Langebrogade 1, P.O. Box 17, DK-1001 Copenhagen K (DK).

(72) Inventor; and
 (75) Inventor/Applicant (for US only): POULSEN, Peter [DK/DK];
 Danisco a/s, Langebrogade 1, P.O. Box 17, DK-1001
 Copenhagen K (DK).

(74) Agents: MASCHIO, Antonio et al.; D Young & Co., 21 New Fetter Lane, London EC4A 1DA (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: SENSE INTRON INHIBITION OF STARCH BRANCHING ENZYME EXPRESSION

(57) Abstract

A method of inhibiting gene expression is described. The method, which affects enzymatic activity in a plant, comprises expressing in a plant (or a cell, a tissue or an organ thereof) a nucleotide sequence wherein the nucleotide sequence codes, partially or completely, for a class A SBE intron in a sense orientation; and wherein the nucleotide sequence does not contain a sequence that is sense to an exon sequence normally associated with the intron.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP '	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	2W	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	Lì	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EB	Estonia	LR	Liberia	SG	Singapore		

WO 98/37214 PCT/IB98/00295

SENSE INTRON INHIBITION OF STARCH BRANCHING ENZYME EXPRESSION

The present invention relates to a method of inhibiting gene expression, particularly inhibiting gene expression in a plant. The present invention also relates to a nucleotide sequence useful in the method. In addition, the present invention relates to a promoter that is useful for expressing the nucleotide sequence.

Starch is one of the main storage carbohydrates in plants, especially higher plants. The structure of starch consists of amylose and amylopectin. Amylose consists essentially of straight chains of α -1-4-linked glycosyl residues. Amylopectin comprises chains of α -1-4-linked glycosyl residues with some α -1-6 branches. The branched nature of amylopectin is accomplished by the action of *inter alia* an enzyme commonly known as the starch branching enzyme ("SBE"). SBE catalyses the formation of branch points in the amylopectin molecule by adding α -1,4 glucans through α -1,6-glucosidic branching linkages. The biosynthesis of amylose and amylopectin is schematically shown in Figure 1, whereas the α -1-4-links and the α -1-6 links are shown in Figure 2.

10

15

20

25

30

In Potato, it is known that two classes of SBE exist. In our copending international patent applications PCT/EP96/03052 and PCT/EP96/03053, class B potato SBE and a gene encoding it are discussed. In international patent application WO96/34968, class A potato SBE and a cDNA encoding it are disclosed.

It is known that starch is an important raw material. Starch is widely used in the food, paper, and chemical industries. However, a large fraction of the starches used in these industrial applications are post-harvest modified by chemical, physical or enzymatic methods in order to obtain starches with certain required functional properties.

Within the past few years it has become desirable to make genetically modified plants which could be capable of producing modified starches which could be the same as the post-harvest modified starches. It is also known that it may be possible to prepare such genetically modified plants by expression of antisense nucleotide coding sequences. In

15

20

25

30

this regard, June Bourque provides a detailed summary of antisense strategies for the genetic manipulations in plants (Bourque 1995 Plant Science 105 pp 125-149).

WO96/34968 discusses the use of antisense sequences complementary to sequences which encode class A and class B potato SBE to downregulate SBE expression in potato plants.

The sequences used are complementary to SBE coding sequences.

Whilst it is known that enzymatic activity can be affected by expression of particular nucleotide sequences (for example see the teachings of Finnegan and McElroy [1994] Biotechnology 12 883-888; and Matzke and Matzke [1995] TIG 11 1-3) there is still a need for a method that can more reliably and/or more efficiently and/or more specifically affect enzymatic activity.

According to a first aspect of the present invention there is provided a method of affecting enzymatic activity in a plant (or a cell, a tissue or an organ thereof) comprising expressing in the plant (or a cell, a tissue or an organ thereof) a nucleotide sequence wherein the nucleotide sequence partially or completely codes (is) an intron of the potato class A SBE gene in a sense orientation, optionally together with a nucleotide sequence which codes, partially or completely, for an intron of a class B starch branching enzyme in a sense or antisense orientation; and wherein the nucleotide sequence does not contain a sequence that is a sense exon sequence normally associated with the intron.

According to a second aspect of the present invention there is provided a method of affecting enzymatic activity in a starch producing organism (or a cell, a tissue or an organ thereof) comprising expressing in the starch producing organism (or a cell, a tissue or an organ thereof) a nucleotide sequence wherein the nucleotide sequence codes, partially or completely, for an intron of the potato class A SBE gene in a sense orientation optionally together with a nucleotide sequence which codes, partially or completely, for an intron of a class B starch branching enzyme in a sense or antisense orientation; wherein the nucleotide sequence does not contain a sequence that is sense to an exon sequence normally associated with the intron; and wherein starch branching enzyme activity is

affected and/or the levels of amylopectin are affected and/or the composition of starch is changed.

Preferably, the class A SBE gene sense intron construct is used in combination with a potato class B SBE gene sense intron construct as defined in PCT/EP96/03053. However, it may also be used independently thereof, to target class A SBE alone, or in combination with other transgenes such as other sense and/or antisense transgenes, for example antisense intron transgenes such as from SBE genes, to further manipulate starch quality in potato plants.

10

According to a third aspect of the present invention there is provided a sequence comprising the nucleotide sequence shown as SEQ. ID. No. 38 or a variant, derivative or homologue thereof.

According to a fourth aspect of the present invention there is provided a promoter comprising the sequence shown as SEQ.I.D. No. 14 or a variant, derivative or homologue thereof.

According to a fifth aspect of the present invention there is provided a construct capable of comprising or expressing the present invention.

According to a sixth aspect of the present invention there is provided a vector comprising or expressing the present invention.

According to a seventh aspect of the present invention there is provided a cell, tissue or organ comprising or expressing the present invention.

According to an eighth aspect of the present invention there is provided a transgenic starch producing organism comprising or expressing the present invention. According to a ninth aspect of the present invention there is provided a starch obtained from the present invention.

A key advantage of the present invention is that it provides a method for preparing modified starches that is not dependent on the need for post-harvest modification of starches. Thus the method of the present invention obviates the need for the use of hazardous chemicals that are normally used in the post-harvest modification of starches.

In addition, the present invention provides *inter alia* genetically modified plants which are capable of producing modified and/or novel and/or improved starches whose properties would satisfy various industrial requirements.

10

20

25

30

5

Thus, the present invention provides a method of preparing tailor-made starches in plants which could replace the post-harvest modified starches.

Also, the present invention provides a method that enables modified starches to be prepared by a method that can have a more beneficial effect on the environment than the known post-harvest modification methods which are dependent on the use of hazardous chemicals and large quantities of energy.

An other key advantage of the present invention is that it provides a method that may more reliably and/or more efficiently and/or more specifically affect enzymatic activity when compared to the known methods of affecting enzymatic activity. With regard to this advantage of the present invention it is to be noted that there is some degree of homology between coding regions of SBEs. However, there is little or no homology with the intron sequences of SBEs. Thus, sense intron expression provides a mechanism to affect selectively the expression of a particular SBE. This advantageous aspect could be used, for example, to reduce or eliminate a particular SBE enzyme and replace that enzyme with another enzyme which can be another branching enzyme or even a recombinant version of the affected enzyme or even a hybrid enzyme which could for example comprise part of a SBE enzyme from one source and at least a part of another SBE enzyme from another source. This particular feature of the present invention is

covered by the combination aspect of the present invention which is discussed in more detail later.

Thus the present invention provides a mechanism for selectively affecting SBE activity. This is in contrast to the prior art methods which are dependent on the use of for example antisense exon expression whereby it would not be possible to introduce new SBE activity without affecting that activity as well.

In the context of the present invention, class B SBE is synonymous with SBE I: class A SBE is synonymous with SBE II. Class A SBE is as defined in WO96/34968, incorporated herein by reference. Preferably, the antisense intron construct used comprises intron 1 of class A SBE, which is 2.0 kb in length and is located starting at residue 45 of the coding sequence of class A SBE. The boundaries of the intron may be calculated by searching for consensus intron boundary sequences, and are shown in attached figure 11. The sequence of the intron is set forth in SEQ. ID. No. 38. Class B SBE is substantially as defined in the sequences given herein and in PCT/EP96/03053.

Preferably with the first aspect of the present invention starch branching enzyme activity is affected and/or wherein the levels of amylopectin are affected and/or the composition of starch is changed.

Preferably with the first or second aspect of the present invention the nucleotide sequence does not contain a sequence that is sense to an exon sequence.

25 Preferably with the fourth aspect of the present invention the promoter is in combination with a gene of interest ("GOI").

Preferably the enzymatic activity is reduced or eliminated.

Preferably the nucleotide sequence codes for at least substantially all of at least one intron in a sense orientation.

Preferably the nucleotide sequence codes, partially or completely, for two or more introns and wherein each intron is in a sense orientation.

5 Preferably the nucleotide sequence comprises at least 350 nucleotides (e.g. 350 bp), more preferably at least 500 nucleotides (e.g. 500 bp).

Preferably the nucleotide sequence comprises the sequence shown as SEQ. ID. No. 38, or a fragment thereof.

10

Preferably the nucleotide sequence is expressed by a promoter having a sequence shown as SEQ. I.D. No. 14 or a variant, derivative or homologue thereof.

Preferably the transgenic starch producing organism is a plant.

15

20

A preferred aspect of the present invention therefore relates to a method of affecting enzymatic activity in a plant (or a cell, a tissue or an organ thereof) comprising expressing in the plant (or a cell, a tissue or an organ thereof) a nucleotide sequence wherein the nucleotide sequence codes, partially or completely, for a class A SBE intron in a sense orientation; wherein the nucleotide sequence does not contain a sequence that is sense to an exon sequence normally associated with the intron; and wherein starch branching enzyme activity is affected and/or the levels of amylopectin are affected and/or the composition of starch is changed.

25

30

A more preferred aspect of the present invention therefore relates to a method of affecting enzymatic activity in a plant (or a cell, a tissue or an organ thereof) comprising expressing in the plant (or a cell, a tissue or an organ thereof) a nucleotide sequence wherein the nucleotide sequence codes, partially or completely, for an intron in a sense orientation; wherein the nucleotide sequence does not contain a sequence that is sense to an exon sequence normally associated with the intron; wherein starch branching enzyme activity is affected and/or the levels of amylopectin are affected and/or the composition of

starch is changed; and wherein the nucleotide sequence comprises the sequence shown as SEQ. ID. No. 38, or fragments thereof.

The term "nucleotide" in relation to the present invention includes DNA and RNA.

Preferably it means DNA, more preferably DNA prepared by use of recombinant DNA techniques.

The term "intron" is used in its normal sense as meaning a segment of nucleotides, usually DNA, that does not encode part or all of an expressed protein or enzyme.

10

5

The term "exon" is used in its normal sense as meaning a segment of nucleotides, usually DNA, encoding part or all of an expressed protein or enzyme.

Thus, the term "intron" refers to gene regions that are transcribed into RNA molecules,

but which are spliced out of the RNA before the RNA is translated into a protein. In

contrast, the term "exon" refers to gene regions that are transcribed into RNA and
subsequently translated into proteins.

The terms "variant" or "homologue" or "fragment" in relation to the nucleotide sequence of the present invention include any substitution of, variation of, modification of, 20 replacement of, deletion of or addition of one (or more) nucleic acid from or to the respective nucleotide sequence providing the resultant nucleotide sequence can affect enzyme activity in a plant, or cell or tissue thereof, preferably wherein the resultant nucleotide sequence has at least the same effect as the sequence shown in SEQ. ID. No. 38. In particular, the term "homologue" covers homology with respect to similarity of 25 structure and/or similarity of function providing the resultant nucleotide sequence has the ability to affect enzymatic activity in accordance with the present invention. With respect to sequence homology (i.e. similarity), preferably there is more than 80% homology, more preferably at least 85% homology, more preferably at least 90% homology, even more preferably at least 95% homology, more preferably at least 98% homology. The 30 above terms are also synonymous with allelic variations of the sequences.

Likewise, the terms "variant" or "homologue" or "fragment" in relation to the promoter of the present invention include any substitution of, variation of, modification of, replacement of, deletion of or addition of one (or more) nucleic acid from or to the respective promoter sequence providing the resultant promoter sequence allows expression of a GOI, preferably wherein the resultant promoter sequence has at least the same effect as SEQ.I.D. No. 14. In particular, the term "homologue" covers homology with respect to similarity of structure and/or similarity of function providing the resultant promoter sequence has the ability to allow for expression of a GOI, such as a nucleotide sequence according to the present invention. With respect to sequence homology (i.e. similarity), preferably there is more than 80% homology, more preferably at least 85% homology, more preferably at least 90% homology, even more preferably at least 95% homology, more preferably at least 98% homology. The above terms are also synonymous with allelic variations of the sequences.

15

20

25

30

10

The intron sequence of the present invention can be any one or all of the intron sequences of the present invention, including partial sequences thereof, provided that if partial sense sequences are used the partial sequences affect enzymatic activity. Suitable examples of partial sequences include sequences that are shorter than any one of the full sense sequences shown as SEQ. ID. No. 38 but which comprise nucleotides that are adjacent the respective exon or exons.

With regard to the second aspect of the present invention (i.e. specifically affecting SBE activity), the nucleotide sequences of the present invention may comprise one or more sense or antisense exon sequences of the class A or class B SBE gene (but not sense exon sequences naturally associated with the intron sequence), including complete or partial sequences thereof, providing the nucleotide sequences can affect SBE activity, preferably wherein the nucleotide sequences reduce or eliminate SBE activity. Preferably, the nucleotide sequence of the second aspect of the present invention does not comprise sense exon sequences.

10

15

20

25

The term "vector" includes an expression vector and a transformation vector. The term "expression vector" means a construct capable of *in vivo* or *in vitro* expression. The term "transformation vector" means a construct capable of being transferred from one species to another - such as from an *E.Coli* plasmid to a fungus or a plant cell, or from an *Agrobacterium* to a plant cell.

The term "construct" - which is synonymous with terms such as "conjugate", "cassette" and "hybrid" - in relation to the sense nucleotide sequence aspect of the present invention includes the nucleotide sequence according to the present invention directly or indirectly attached to a promoter. An example of an indirect attachment is the provision of a suitable spacer group such as an intron sequence, such as the *Sh1*-intron or the ADH intron, intermediate the promoter and the nucleotide sequence of the present invention. The same is true for the term "fused" in relation to the present invention which includes direct or indirect attachment. The terms do not cover the natural combination of the wild type SBE gene when associated with the wild type SBE gene promoter in their natural environment.

The construct may even contain or express a marker which allows for the selection of the genetic construct in, for example, a plant cell into which it has been transferred. Various markers exist which may be used in, for example, plants - such as mannose. Other examples of markers include those that provide for antibiotic resistance - e.g. resistance to G418, hygromycin, bleomycin, kanamycin and gentamycin.

The construct of the present invention preferably comprises a promoter. The term "promoter" is used in the normal sense of the art, e.g. an RNA polymerase binding site in the Jacob-Monod theory of gene expression. Examples of suitable promoters are those that can direct efficient expression of the nucleotide sequence of the present invention and/or in a specific type of cell. Some examples of tissue specific promoters are disclosed in WO 92/11375.

The promoter could additionally include conserved regions such as a Pribnow Box or a TATA box. The promoters may even contain other sequences to affect (such as to maintain, enhance, decrease) the levels of expression of the nucleotide sequence of the present invention. Suitable examples of such sequences include the *Sh1*-intron or an ADH intron. Other sequences include inducible elements - such as temperature, chemical, light or stress inducible elements. Also, suitable elements to enhance transcription or translation may be present. An example of the latter element is the TMV 5' leader sequence (see Sleat Gene 217 [1987] 217-225; and Dawson Plant Mol. Biol. 23 [1993] 97).

10

15

20

25

5

As mentioned, the construct and/or the vector of the present invention may include a transcriptional initiation region which may provide for regulated or constitutive expression. Any suitable promoter may be used for the transcriptional initiation region, such as a tissue specific promoter. In one aspect, preferably the promoter is the patatin promoter or the E35S promoter. In another aspect, preferably the promoter is the SBE promoter.

If, for example, the organism is a plant then the promoter can be one that affects expression of the nucleotide sequence in any one or more of seed, tuber, stem, sprout, root and leaf tissues, preferably tuber. By way of example, the promoter for the nucleotide sequence of the present invention can be the α -Amy 1 promoter (otherwise known as the Amy 1 promoter, the Amy 637 promoter or the α -Amy 637 promoter) as described in our co-pending UK patent application No. 9421292.5 filed 21 October 1994. Alternatively, the promoter for the nucleotide sequence of the present invention can be the α -Amy 3 promoter (otherwise known as the Amy 3 promoter, the Amy 351 promoter or the α -Amy 351 promoter) as described in our co-pending UK patent application No. 9421286.7 filed 21 October 1994.

The present invention also encompasses the use of a promoter to express a nucleotide sequence according to the present invention, wherein a part of the promoter is inactivated but wherein the promoter can still function as a promoter. Partial inactivation of a

20

25

30

promoter in some instances is advantageous. In particular, with the Amy 351 promoter mentioned earlier it is possible to inactivate a part of it so that the partially inactivated promoter expresses the nucleotide sequence of the present invention in a more specific manner such as in just one specific tissue type or organ. The term "inactivated" means partial inactivation in the sense that the expression pattern of the promoter is modified but wherein the partially inactivated promoter still functions as a promoter. However, as mentioned above, the modified promoter is capable of expressing a gene coding for the enzyme of the present invention in at least one (but not all) specific tissue of the original promoter. Examples of partial inactivation include altering the folding pattern of the promoter sequence, or binding species to parts of the nucleotide sequence, so that a part of the nucleotide sequence is not recognised by, for example, RNA polymerase. Another, and preferable, way of partially inactivating the promoter is to truncate it to form fragments thereof. Another way would be to mutate at least a part of the sequence so that the RNA polymerase can not bind to that part or another part. modification is to mutate the binding sites for regulatory proteins for example the CreA protein known from filamentous fungi to exert carbon catabolite repression, and thus abolish the catabolite repression of the native promoter.

The construct and/or the vector of the present invention may include a transcriptional termination region.

The nucleotide according to the present invention can be expressed in combination (but not necessarily at the same time) with an additional construct. Thus the present invention also provides a combination of constructs comprising a first construct comprising the nucleotide sequence according to the present invention operatively linked to a first promoter; and a second construct comprising a GOI operatively linked to a second promoter (which need not be the same as the first promoter). With this aspect of the present invention the combination of constructs may be present in the same vector, plasmid, cells, tissue, organ or organism. This aspect of the present invention also covers methods of expressing the same, preferably in specific cells or tissues, such as expression in just a specific cell or tissue, of an organism, typically a plant. With this aspect of the

present invention the second construct does not cover the natural combination of the gene coding for an enzyme ordinarily associated with the wild type gene promoter when they are both in their natural environment.

An example of a suitable combination would be a first construct comprising the nucleotide sequence of the present invention and a promoter, such as the promoter of the present invention, and a second construct comprising a promoter, such as the promoter of the present invention, and a GOI wherein the GOI codes for another starch branching enzyme either in sense or antisense orientation.

10

The above comments relating to the term "construct" for the sense nucleotide aspect of the present invention are equally applicable to the term "construct" for the promoter aspect of the present invention. In this regard, the term includes the promoter according to the present invention directly or indirectly attached to a GOI.

15

20

The term "GOI" with reference to the promoter aspect of the present invention or the combination aspect of the present invention means any gene of interest, which need not necessarily code for a protein or an enzyme - as is explained later. A GOI can be any nucleotide sequence that is either foreign or natural to the organism in question, for example a plant.

Typical examples of a GOI include genes encoding for other proteins or enzymes that modify metabolic and catabolic processes. The GOI may code for an agent for introducing or increasing pathogen resistance.

25

The GOI may even be an antisense construct for modifying the expression of natural transcripts present in the relevant tissues. An example of such a GOI is the nucleotide sequence according to the present invention.

30

The GOI may even code for a protein that is non-natural to the host organism - e.g. a plant. The GOI may code for a compound that is of benefit to animals or humans. For example, the GOI could code for a pharmaceutically active protein or enzyme such as any one of the therapeutic compounds insulin, interferon, human serum albumin, human growth factor and blood clotting factors. The GOI may even code for a protein giving additional nutritional value to a food or feed or crop. Typical examples include plant proteins that can inhibit the formation of anti-nutritive factors and plant proteins that have a more desirable amino acid composition (e.g. a higher lysine content than a non-transgenic plant). The GOI may even code for an enzyme that can be used in food processing such as xylanases and α -galactosidase. The GOI can be a gene encoding for any one of a pest toxin, an antisense transcript such as that for α -amylase, a protease or a glucanase. Alternatively, the GOI can be a nucleotide sequence according to the present invention.

- The GOI can be the nucleotide sequence coding for the arabinofuranosidase enzyme which is the subject of our co-pending UK patent application 9505479.7. The GOI can be the nucleotide sequence coding for the glucanase enzyme which is the subject of our co-pending UK patent application 9505475.5. The GOI can be the nucleotide sequence coding for the α-amylase enzyme which is the subject of our co-pending UK patent application 9413439.2. The GOI can be the nucleotide sequence coding for the α-amylase enzyme which is the subject of our co-pending UK patent application 9421290.9. The GOI can be any of the nucleotide sequences coding for the α-glucan lyase enzyme which are described in our co-pending PCT patent application PCT/EP94/03397.
- In one aspect the GOI can even be a nucleotide sequence according to the present invention but when operatively linked to a different promoter.

The GOI could include a sequence that codes for one or more of a xylanase, an arabinase, an acetyl esterase, a rhamnogalacturonase, a glucanase, a pectinase, a branching enzyme or another carbohydrate modifying enzyme or proteinase. Alternatively, the GOI may be a sequence that is antisense to any of those sequences.

25

30

As mentioned above, the present invention provides a mechanism for selectively affecting a particular enzymatic activity.

In an important application of the present invention it is now possible to reduce or eliminate expression of a genomic nucleotide sequence coding for a genomic protein or enzyme by expressing a sense intron construct for that particular genomic protein or enzyme and (e.g. at the same time) expressing a recombinant version of that enzyme or protein - in other words the GOI is a recombinant nucleotide sequence coding for the genomic enzyme or protein. This application allows expression of desired recombinant enzymes and proteins in the absence of (or reduced levels of) respective genomic enzymes and proteins. Thus the desired recombinant enzymes and proteins can be easily separated and purified from the host organism. This particular aspect of the present invention is very advantageous over the prior art methods which, for example, rely on the use of antisense exon expression which methods also affect expression of the recombinant enzyme.

Thus, a further aspect of the present invention relates to a method of expressing a recombinant protein or enzyme in a host organism comprising expressing a nucleotide sequence coding for the recombinant protein or enzyme; and expressing a further nucleotide sequence wherein the further nucleotide sequence codes, partially or completely, for an intron in a sense orientation; wherein the intron is an intron normally associated with the genomic gene encoding a protein or an enzyme corresponding to the recombinant protein or enzyme; and wherein the further nucleotide sequence does not contain a sequence that is sense to an exon sequence normally associated with the intron. Additional aspects cover the combination of those nucleotide sequences including their incorporation in constructs, vectors, cells, tissues and transgenic organisms.

Therefore the present invention also relates to a combination of nucleotide sequences comprising a first nucleotide sequence coding for a recombinant enzyme; and a second nucleotide sequence which corresponds to an intron in a sense orientation; wherein the intron is an intron that is associated with a genomic gene encoding the enzyme

corresponding to the recombinant enzyme; and wherein the second nucleotide sequence does not contain a sequence that is sense to an exon sequence normally associated with the intron.

- The GOI may even code for one or more introns but in an antisense orientation, such as any one or more of the antisense intron sequences presented in the attached sequence listings. For example, the present invention also covers the expression of for example a sense intron (e.g. SEQ.I.D.No. 38) in combination with for example an antisense intron which preferably is not complementary to the sense intron sequence (e.g. SEQ.I.D.No. 16).
 - The terms "cell", "tissue" and "organ" include cell, tissue and organ *per se* and when within an organism.
- The term "organism" in relation to the present invention includes any organism that could comprise the nucleotide sequence according to the present invention and/or wherein the nucleotide sequence according to the present invention can be expressed when present in the organism. Preferably the organism is a starch producing organism such as any one of a plant, algae, fungi, yeast and bacteria, as well as cell lines thereof. Preferably the organism is a plant.

The term "starch producing organism" includes any organism that can biosynthesise starch. Preferably, the starch producing organism is a plant.

- The term "plant" as used herein includes any suitable angiosperm, gymnosperm, monocotyledon and dicotyledon. Typical examples of suitable plants include vegetables such as potatoes; cereals such as wheat, maize, and barley; fruit; trees; flowers; and other plant crops. Preferably, the term means "potato".
- The term "transgenic organism" in relation to the present invention includes any organism that comprises the nucleotide sequence according to the present invention and/or products

obtained therefrom, and/or wherein the nucleotide sequence according to the present invention can be expressed within the organism. Preferably the nucleotide sequence of the present invention is incorporated in the genome of the organism. Preferably the transgenic organism is a plant, more preferably a potato.

5

10

15

20.

25

30

To prepare the host organism one can use prokaryotic or eukaryotic organisms. Examples of suitable prokaryotic hosts include *E. coli* and *Bacillus subtilis*. Teachings on the transformation of prokaryotic hosts is well documented in the art, for example see Sambrook *et al* (Sambrook *et al*. in Molecular Cloning: A Laboratory Manual, 2nd edition, 1989, Cold Spring Harbor Laboratory Press).

Even though the enzyme according to the present invention and the nucleotide sequence coding for same are not disclosed in EP-B-0470145 and CA-A-2006454, those two documents do provide some useful background commentary on the types of techniques that may be employed to prepare transgenic plants according to the present invention. Some of these background teachings are now included in the following commentary.

The basic principle in the construction of genetically modified plants is to insert genetic information in the plant genome so as to obtain a stable maintenance of the inserted genetic material.

Several techniques exist for inserting the genetic information, the two main principles being direct introduction of the genetic information and introduction of the genetic information by use of a vector system. A review of the general techniques may be found in articles by Potrykus (Annu Rev Plant Physiol Plant Mol Biol [1991] 42:205-225) and Christou (Agro-Food-Industry Hi-Tech March/April 1994 17-27).

Thus, in one aspect, the present invention relates to a vector system which carries a nucleotide sequence or construct according to the present invention and which is capable of introducing the nucleotide sequence or construct into the genome of an organism, such as a plant.

The vector system may comprise one vector, but it can comprise two vectors. In the case of two vectors, the vector system is normally referred to as a binary vector system. Binary vector systems are described in further detail in Gynheung An et al. (1980), Binary Vectors, Plant Molecular Biology Manual A3, 1-19.

One extensively employed system for transformation of plant cells with a given promoter or nucleotide sequence or construct is based on the use of a Ti plasmid from Agrobacterium tumefaciens or a Ri plasmid from Agrobacterium rhizogenes An et al. (1986), Plant Physiol. 81, 301-305 and Butcher D.N. et al. (1980), Tissue Culture Methods for Plant Pathologists, eds.: D.S. Ingrams and J.P. Helgeson, 203-208. Several different Ti and Ri plasmids have been constructed which are suitable for the construction of the plant or plant cell constructs described above. A non-limiting example of such a Ti plasmid is pGV3850.

15

10

5

The nucleotide sequence or construct of the present invention should preferably be inserted into the Ti-plasmid between the terminal sequences of the T-DNA or adjacent a T-DNA sequence so as to avoid disruption of the sequences immediately surrounding the T-DNA borders, as at least one of these regions appears to be essential for insertion of modified T-DNA into the plant genome.

20

As will be understood from the above explanation, if the organism is a plant the vector system of the present invention is preferably one which contains the sequences necessary to infect the plant (e.g. the *vir* region) and at least one border part of a T-DNA sequence, the border part being located on the same vector as the genetic construct.

25

30

Furthermore, the vector system is preferably an Agrobacterium tumefaciens Ti-plasmid or an Agrobacterium rhizogenes Ri-plasmid or a derivative thereof. As these plasmids are well-known and widely employed in the construction of transgenic plants, many vector systems exist which are based on these plasmids or derivatives thereof.

In the construction of a transgenic plant the nucleotide sequence or construct of the present invention may be first constructed in a microorganism in which the vector can replicate and which is easy to manipulate before insertion into the plant. An example of a useful microorganism is *E. coli*, but other microorganisms having the above properties may be used. When a vector of a vector system as defined above has been constructed in *E. coli*, it is transferred, if necessary, into a suitable *Agrobacterium* strain, e.g. *Agrobacterium tumefaciens*. The Ti-plasmid harbouring the nucleotide sequence or construct of the present invention is thus preferably transferred into a suitable *Agrobacterium* strain, e.g. *A. tumefaciens*, so as to obtain an *Agrobacterium* cell harbouring the promoter or nucleotide sequence or construct of the present invention, which DNA is subsequently transferred into the plant cell to be modified.

If, for example, for the transformation the Ti- or Ri-plasmid of the plant cells is used, at least the right boundary and often however the right and the left boundary of the Ti- and Ri-plasmid T-DNA, as flanking areas of the introduced genes, can be connected. The use of T-DNA for the transformation of plant cells has been intensively studied and is described in EP-A-120516; Hoekema, in: The Binary Plant Vector System Offset-drukkerij Kanters B.B., Alblasserdam, 1985, Chapter V; Fraley, et al., Crit. Rev. Plant Sci., 4:1-46; and An et al., EMBO J. (1985) 4:277-284.

20

25

30

15

10

Direct infection of plant tissues by Agrobacterium is a simple technique which has been widely employed and which is described in Butcher D.N. et al. (1980), Tissue Culture Methods for Plant Pathologists, eds.: D.S. Ingrams and J.P. Helgeson, 203-208. For further teachings on this topic see Potrykus (Annu Rev Plant Physiol Plant Mol Biol [1991] 42:205-225) and Christou (Agro-Food-Industry Hi-Tech March/April 1994 17-27). With this technique, infection of a plant may be performed in or on a certain part or tissue of the plant, i.e. on a part of a leaf, a root, a stem or another part of the plant.

Typically, with direct infection of plant tissues by Agrobacterium carrying the GOI (such as the nucleotide sequence according to the present invention) and, optionally, a promoter, a plant to be infected is wounded, e.g. by cutting the plant with a razor blade

or puncturing the plant with a needle or rubbing the plant with an abrasive. The wound is then inoculated with the *Agrobacterium*. The inoculated plant or plant part is then grown on a suitable culture medium and allowed to develop into mature plants.

- When plant cells are constructed, these cells may be grown and maintained in accordance with well-known tissue culturing methods such as by culturing the cells in a suitable culture medium supplied with the necessary growth factors such as amino acids, plant hormones, vitamins, etc.
- Regeneration of the transformed cells into genetically modified plants may be accomplished using known methods for the regeneration of plants from cell or tissue cultures, for example by selecting transformed shoots using an antibiotic and by subculturing the shoots on a medium containing the appropriate nutrients, plant hormones, etc.

15

20

25

Further teachings on plant transformation may be found in EP-A-0449375.

As reported in CA-A-2006454, a large amount of cloning vectors are available which contain a replication system in *E. coli* and a marker which allows a selection of the transformed cells. The vectors contain for example pBR 322, pUC series, M13 mp series, pACYC 184 etc. In this way, the nucleotide or construct of the present invention can be introduced into a suitable restriction position in the vector. The contained plasmid is then used for the transformation in *E.coli*. The *E.coli* cells are cultivated in a suitable nutrient medium and then harvested and lysed. The plasmid is then recovered. As a method of analysis there is generally used sequence analysis, restriction analysis, electrophoresis and further biochemical-molecular biological methods. After each manipulation, the used DNA sequence can be restricted and connected with the next DNA sequence. Each sequence can be cloned in the same or different plasmid.

30 After the introduction of the nucleotide sequence or construct according to the present invention in the plants the presence and/or insertion of further DNA sequences may be

necessary - such as to create combination systems as outlined above (e.g. an organism comprising a combination of constructs).

The above commentary for the transformation of prokaryotic organisms and plants with the nucleotide sequence of the present invention is equally applicable for the transformation of those organisms with the promoter of the present invention.

In summation, the present invention relates to affecting enzyme activity by expressing sense intron sequences.

.10

Also, the present invention relates to a promoter useful for the expression of those sense intron sequences.

The following samples have been deposited in accordance with the Budapest Treaty at the recognised depositary The National Collections of Industrial and Marine Bacteria Limited (NCIMB) at 23 St Machar Drive, Aberdeen, Scotland, AB2 1RY, United Kingdom, on 13 July 1995:

NCIMB 40754 (which refers to pBEA 11 as described herein);

20

NCIMB 40751 (which refers to λ -SBE 3.2 as described herein), and

NCIMB 40752 (which refers to λ -SBE 3.4 as described herein).

A highly preferred embodiment of the present invention therefore relates to a method of affecting enzymatic activity in a plant (or a cell, a tissue or an organ thereof) comprising expressing in the plant (or a cell, a tissue or an organ thereof) a nucleotide sequence wherein the nucleotide sequence codes, partially or completely, for an intron in a sense orientation; wherein the nucleotide sequence does not contain a sequence that is sense to an exon sequence normally associated with the intron; wherein starch branching enzyme activity is affected and/or the levels of amylopectin are affected and/or the composition of

starch is changed; and wherein the intron nucleotide sequence is the sequence of intron 1 of class A SBE as set forth in SEQ. ID. No. 38, or any other intron of class A SBE, including fragments thereof, and including combinations of class A sense intron sequences and class B sense or antisense intron sequences. The sequence of introns of class A SBE other than intron 1 may be obtained by sequencing of, for example, potato class A SBE genomic DNA, isolatable by hybridisation screening of a genomic DNA library with class A SBE cDNA obtainable according to WO96/34968 according to methods well known in the art and set forth, for example, in Sambrook *et al.*, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, 1989.

10

The present invention will now be described only by way of example, in which reference is made to the following attached Figures:

Figure 1, which is a schematic representation of the biosynthesis of amylose and amylopectin;

Figure 2, which is a diagrammatic representation of the α -1-4-links and the α -1-6 links of amylopectin;

20 Figure 3, which is a diagrammatic representation of the exon-intron structure of a genomic SBE clone;

Figure 4, which is a plasmid map of pPATA1, which is 3936 bp in size;

25 Figure 5, which is a plasmid map of pABE7, which is 5106 bp in size;

Figure 6, which is a plasmid map of pVictorIV Man, which is 7080 bp in size;

Figure 7, which is a plasmid map of pBEA11, which is 9.54 kb in size;

Figure 8, which shows the full genomic nucleotide sequence for SBE including the promoter, exons and introns;

Figure 9, which is a plasmid map of pVictor5a, which is 9.12 kb in size;

5

Figure 10, which is a plasmid map of pBEP2, which is 10.32 kb in size;

Figure 11, which shows the positioning of intron 1 in the class A and class B SBE genes;

10 Figure 12, which shows the sequence of intron 1 of the potato class A SBE;

Figure 13, which shows pSS15; and

Figure 14, which shows pSS16.

15

20

25

30

Figures 1 and 2 were referred to above in the introductory description concerning starch in general. As mentioned, Figure 3 is a diagrammatic representation of the exon-intron structure of a genomic SBE clone, the sequence of which is shown in Figure 8. This clone, which has about 11.5 k base pairs, comprises 14 exons and 13 introns. The introns are numbered in increasing order from the 5' end to the 3' end and correspond to SEQ.I.D.No.s 1-13, respectively. Their respective antisense intron sequences are shown as SEQ.I.D.No.s 15-27.

In more detail, Figures 3 and 8 present information on the 11468 base pairs of a potato SBE gene. The 5' region from nucleotides 1 to 2082 contain the promoter region of the SBE gene. A TATA box candidate at nucleotide 2048 to 2051 is boxed. The homology between a potato SBE cDNA clone (Poulsen & Kreiberg (1993) Plant Physiol 102: 1053-1054) and the exon DNAs begin at 2083 bp and end at 9666 bp. The homology between the cDNA and the exon DNA is indicated by nucleotides in upper case letters, while the translated amino acid sequences are shown in the single letter code below the exon DNA. Intron sequences are indicated by lower case letters.

20

25

30

Figure 7 is a plasmid map of pBEA7, which is 9.54 k base pairs in size. Plasmid pBEA 11 comprises the first intron sequence of the potato SBE gene. This first intron sequence, which has 1177 base pairs, is shown in Figure 3 and lies between the first exon and the second exon.

These experiments and aspects of the present invention are now discussed in more detail.

10 EXPERIMENTAL PROTOCOL

ISOLATION, SUBCLONING IN PLASMIDS, AND SEQUENCING OF GENOMIC SBE CLONES

Various clones containing the potato SBE gene are isolated from a Desiree potato genomic library (Clontech Laboratories Inc., Palo Alto CA, USA) using radioactively labelled potato SBE cDNA (Poulsen & Kreiberg (1993) Plant Physiol. 102:1053-1054) as probe. The fragments of the isolated λ-phages containing SBE DNA (λSBE 3.2 - NCIMB 40751 - and λSBE-3.4 - NCIMB 40752) are identified by Southern analysis and then subcloned into pBluescript II vectors (Clontech Laboratories Inc., Palo Alto CA, USA). λSBE 3.2 contains a 15 kb potato DNA insert and λSBE-3.4 contains a 13 kb potato DNA insert. The resultant plasmids are called pGB3, pGB11, pGB15, pGB16 and pGB25 (see discussion below). The respective inserts are then sequenced using the Pharmacia Autoread Sequencing Kit (Pharmacia, Uppsala) and a A.L.F. DNA sequencer (Pharmacia, Uppsala).

In total, a stretch of 11.5 kb of the SBE gene is sequenced. The sequence is deduced from the above-mentioned plasmids, wherein: pGB25 contains the sequences from 1 bp to 836 bp, pGB15 contains the sequences from 735 bp to 2580 bp, pGB16 contains the sequences from 2580 bp to 5093 bp, pGB11 contains the sequences from 3348 bp to 7975 bp, and pGB3 contains the sequences from 7533 bp to 11468 bp.

In more detail, pGB3 is constructed by insertion of a 4 kb EcoRI fragment isolated from $\lambda SBE 3.2$ into the EcoRI site of pBluescript II SK (+). pGB11 is constructed by

insertion of a 4.7 kb XhoI fragment isolated from λ SBE 3.4 into the XhoI site of pBluescript II SK (+). pGB15 is constructed by insertion of a 1.7 kb SpeI fragment isolated from λ SBE 3.4 into the SpeI site of pBluescript II SK (+). pGB16 is constructed by insertion of a 2.5 kb SpeI fragment isolated from λ SBE 3.4 into the SpeI site of pBluescript II SK (+). For the construction of pGB25 a PCR fragment is produced with the primers

5' GGA ATT CCA GTC GCA GTC TAC ATT AC 3' (SEQ. ID. No. 30)

and

.

5' CGG GAT CCA GAG GCA TTA AGA TTT CTG G 3'

(SEQ. ID. No. 31)

and $\lambda SBE 3.4$ as a template.

The PCR fragment is digested with BamHI and EcoRI, and inserted in pBluescript II SK (+) digested with the same restriction enzymes.

15

10

CONSTRUCTION OF PLASMID pBEA11

The SBE intron 1 is amplified by PCR using the oligonucleotides

5' CGG GAT CCA AAG AAA TTC TCG AGG TTA CAT GG 3'

(SEQ. ID. No. 32)

20 and

5' CGG GAT CCG GGG TAA TTT TTA CTA ATT TCA TG 3'

(SEQ. ID. No. 33)

and the λSBE 3.4 phage containing the SBE gene as template.

The PCR product is digested with BamHI and inserted in a sense orientation in the BamHI site of plasmid pPATA1 (described in WO 94/24292) between the patatin promoter and the 35S terminator. This construction, pABE7, is digested with KpnI, and the 2.4 kb "patatin promoter-SBE intron 1- 35S terminator" KpnI fragment is isolated and inserted in the KpnI site of the plant transformation vector pVictorIV Man yielding plasmid pBEA11.

30

25

CONSTRUCTION OF PLASMID pSS15.

15

20

25

30

The 2122 bp intron 1 sequence of the potato SBEII gene (see SEQ. ID. No. 38) is amplified by PCR from a genomic SBEII subclone using the primers 5' - CGG GAT CCC GTA TGT CTC ACT GTG TTT GTG GC - 3' (SEQ. ID. No. 34) and 5' - CGG GAT CCC CCT ACA TAC ATA TAT CAG ATT AG - 3' (SEQ. ID. No. 35). The PCR product is digested with BamHI and inserted in sense orientation after a patatin promoter in the BamHI site of a plant transformation vector in which the NPTII gene is used as selectable marker (see figure 13).

CONSTRUCTION OF PLASMID pSS16.

The 2122 bp intron 1 sequence of the potato SBEII gene (SEQ. ID. No. 38) is amplified by PCR from a genomic SBEII subclone using the primers 5' - CGG GAT CCC GTA TGT CTC ACT GTG TTT GTG GC - 3' (SEQ. ID. No. 34) and 5' - CGG GAT CCC CCT ACA TAC ATA TAT CAG ATT AG - 3' (SEQ. ID. No. 35). The PCR product is digested with BamHI and inserted in sense orientation after a patatin promoter in the BamHI site of a plant transformation vector in which the *manA* gene is used as selectable marker (see figure 14).

PRODUCTION OF TRANSGENIC POTATO PLANTS

Axenic stock cultures

Shoot cultures of *Solanum tuberosum* 'Bintje' and 'Dianella' are maintained on a substrate (LS) of a formula according to Linsmaier, E.U. and Skoog, F. (1965), Physiol. Plant. 18: 100-127, in addition containing 2 μ M silver thiosulphate at 25°C and 16 h light/8 h dark.

The cultures are subcultured after approximately 40 days. Leaves are then cut off the shoots and cut into nodal segments (approximately 0.8 cm) each containing one node.

Inoculation of potato tissues

Shoots from approximately 40 days old shoot cultures (height approximately 5-6 cms) are cut into internodal segments (approximately 0.8 cm). The segments are placed into liquid LS-substrate containing the transformed Agrobacterium tumefaciens containing the binary vector of interest. The Agrobacterium are grown overnight in YMB-substrate

(di-potassium hydrogen phosphate, trihydrate (0.66 g/l); magnesium sulphate, heptahydrate (0.20 g/l); sodium chloride (0.10 g/l); mannitol (10.0 g/l); and yeast extract (0.40 g/l)) containing appropriate antibiotics (corresponding to the resistance gene of the *Agrobacterium* strain) to an optical density at 660 nm (OD-660) of approximately 0.8, centrifuged and resuspended in the LS-substrate to an OD-660 of 0.5.

The segments are left in the suspension of Agrobacterium for 30 minutes and then the excess of bacteria are removed by blotting the segments on sterile filter paper.

Co-cultivation

The shoot segments are co-cultured with bacteria for 48 hours directly on LS-substrate containing agar (8.0 g/l), 2,4-dichlorophenoxyacetic acid (2.0 mg/l) and transzeatin (0.5 mg/l). The substrate and also the explants are covered with sterile filter papers, and the petri dishes are placed at 25°C and 16 h light/8 dark.

"Washing" procedure

After the 48 h on the co-cultivation substrate the segments are transferred to containers containing liquid LS-substrate containing 800 mg/l carbenicillin. The containers are gently shaken and by this procedure the major part of the *Agrobacterium* is either washed off the segments and/or killed.

Selection

15

20

25

30

After the washing procedure the segments are transferred to plates containing the LS-substrate, agar (8 g/l), trans-zeatin (1-5 mg/l), gibberellic acid (0.1 mg/l), carbenicillin (800 mg/l), and kanamycin sulphate (50-100 mg/l) or phosphinotricin (1-5 mg/l) or mannose (5 g/l) depending on the vector construction used. The segments are sub-cultured to fresh substrate each 3-4 weeks. In 3 to 4 weeks, shoots develop from the segments and the formation of new shoots continued for 3-4 months.

Rooting of regenerated shoots

The regenerated shoots are transferred to rooting substrate composed of LS-substrate, agar (8 g/l) and carbenicillin (800 mg/l). The transgenic genotype of the

regenerated shoot are verified by testing the rooting ability on the above mentioned substrates containing kanamycin sulphate (200 mg/l), by performing NPTII assays (Radke, S. E. et al, Theor. Appl. Genet. (1988), 75: 685-694) or by performing PCR analysis according to Wang *et al* (1993, NAR 21 pp 4153-4154). Plants which are not positive in any of these assays are discarded or used as controls. Alternatively, the transgenic plants could be verified by performing a GUS assay on the co-introduced β-glucuronidase gene according to Hodal, L. *et al.* (Pl. Sci. (1992), 87: 115-122).

Transfer to soil

The newly rooted plants (height approx. 2-3 cms) are transplanted from rooting substrate to soil and placed in a growth chamber (21°C, 16 hour light 200-400uE/m²/sec). When the plants are well established they are transferred to the greenhouse, where they are grown until tubers had developed and the upper part of the plants are senescing.

15 Harvesting

10

20

25

The potatoes are harvested after about 3 months and then analysed.

BRANCHING ENZYME ANALYSIS

The SBE expression in the transgenic potato lines are measured using the SBE assays described by Blennow and Johansson (Phytochemistry (1991) 30:437-444) and by standard Western procedures using antibodies directed against class A and class B potato SBE.

STARCH ANALYSIS

Starch is isolated from potato tubers and analysed for the amylose:amylopectin ratio (Hovenkamp-Hermelink et al. (1988) Potato Research 31:241-246). In addition, the chain length distribution of amylopectin is determined by analysis of isoamylase digested starch on a Dionex HPAEC. The number of reducing ends in isoamylase digested starch is determined by the method described by N. Nelson (1944) J. Biol.Chem. 153:375-380.

The results revealed that there is a reduction in the level of synthesis of SBE and/or the level of activity of SBE and/or the composition of starch SBE in the transgenic plants.

5 CONSTRUCTION OF SBE PROMOTER CONSTRUCT

An SBE promoter fragment is amplified from λ -SBE 3.4 using primers:

5° CCA TCG ATA CTT TAA GTG ATT TGA TGG C 3'

(SEQ. ID. No. 36)

and

5' CGG GAT CCT GTT CTG ATT CTT GAT TTC C 3'.

(SEQ. ID. No. 37)

The PCR product is digested with *ClaI* and *BamHI*. The resultant 1.2 kb fragment is then inserted in pVictor5a (see Figure 9) linearised with *ClaI* and *BgIII* yielding pBEP2 (see Figure 10).

15

20

25

30

10

STARCH BRANCHING ENZYME MEASUREMENTS OF POTATO TUBERS

Potatoes from potato plants transformed with pBEA11 are cut in small pieces and homogenised in extraction buffer (50 mM Tris-HCl pH 7.5, Sodium-dithionite (0.1 g/l), and 2 mM DTT) using a Ultra-Turax homogenizer; 1 g of Dowex xl. is added pr. 10 g of tuber. The crude homogenate is filtered through a miracloth filter and centrifuged at 4°C for 10 minutes at 24.700 g. The supernatant is used for starch branching enzyme assays. The starch branching enzyme assays are carried out at 25 °C in a volume of 400 μl composed of 0.1 M Na citrate buffer pH 7.0, 0.75 mg/ml amylose, 5 mg/ml bovine serum albumin and the potato extract. At 0, 15 30 and 60 minutes aliquouts of 50 μl are removed from the reaction into 20 μl 3 N HCl. 1 ml of iodine solution is added and the decrease in absorbance at 620 nm is measured with an ELISA spectrophotometer.

The starch branching enzyme (SBE) levels in tuber extracts are measured from 24 transgenic Dianella potato plants transformed with plasmid pBEA11, pSS15 and pSS16.

The results show that the BEA11, SS15 and SS16 transgenic lines produce tubers which have class B and class A SBE levels, respectively, that are only 10 % to 15 % of the SBE levels found in non transformed Dianella plants.

In a further experiment, plasmids pSS15 and pBEA11 are cotransfected into potato plants, as described above. In the cotransfectants, when analysed as set forth above, simultaneous reduction of class A and class B SBE levels are observed.

5 SUMMATION

10

15

20

25

30

The above-mentioned examples relate to the isolation and sequencing of a gene for potato SBE. The examples further demonstrate that it is possible to prepare SBE intron constructs. These SBE intron constructs can be introduced into plants, such as potato plants. After introduction, a reduction in the level of synthesis of SBE and/or the level of activity of SBE and/or the composition of starch in plants can be achieved.

Without wishing to be bound by theory it is believed that the expressed sense intron nucleotide sequence according to the present invention affects enzymatic activity via co-suppression and/or trans-activation. Reviews of these mechanisms has been published by Finnegan and McElroy (1994 Biotechnology 12 pp 883 - 887) and Matzke and Matzke (1995 TIG 11 No. 1 pp 1 - 3). By these mechanisms, it is believed that the sense introns of the present invention reduce the level of plant enzyme activity (in particular SBE activity), which in turn for SBE activity is believed to influence the amylose:amylopectin ratio and thus the branching pattern of amylopectin.

Thus, the present invention provides a method wherein it is possible to manipulate the starch composition in plants, or tissues or cells thereof, such as potato tubers, by reducing the level of SBE activity by using sense intron sequences.

The simultaneous reduction or elimination of class A and class B SBE sequences from the doubly transformed potato plants, moreover, offers the possibility to transform such plants with different SBE genes at will, thus allowing the manipulation of branching in starch according to the desired result.

In summation the present invention therefore relates to the surprising use of SBE class A sense intron sequences in a method to affect class A SBE activity in plants.

Other modifications of the present invention will be apparent to those skilled in the art without departing from the scope of the present invention.

The following pages present a number of sequence listings which have been consecutively numbered from SEQ.I.D. No. 1 - SEQ.I.D. No. 38. In brief, SEQ.I.D. No. 1 - SEQ.I.D. No. 13 represent sense intron sequences (genomic DNA); SEQ.I.D.

No. 14 represents the SBE promoter sequence (genomic sequence); SEQ.I.D. No. 15 - SEQ.I.D. No. 27 represent antisense intron sequences; and SEQ. I.D. No. 28 represents the sequence complementary to the SBE promoter sequence - i.e. the SBE promoter sequence in antisense orientation. The full genomic nucleotide sequence for SBE including the promoter, exons and introns is shown as SEQ. I.D. No. 29 (see Figures 3 and 8 which highlight particular gene features). SEQ. ID. No. 30 to 37 show primers used in the methods set forth above. SEQ. ID. No. 38 represents the nucleotide sequence of intron 1 of the class A potato SBE gene.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

5

- (i) APPLICANT:
 - (A) NAME: DANISCO A/S
 - (B) STREET: LANGEBROGADE 1
 - (C) CITY: COPENHAGEN K

10

- (E) COUNTRY: DENMARK
- (F) POSTAL CODE (ZIP): DK-1001
- (ii) TITLE OF INVENTION: INHIBITION OF GENE EXPRESSION
- 15 (iii) NUMBER OF SEQUENCES: 38
 - (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
- 20 (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)
 - (2) INFORMATION FOR SEQ ID NO: 1:

25

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1165 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

30

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO

35

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

5	GTAATTTTTA	CTAATTTCAT	GTTAATTTCA	ATTATTTTA	GCCTTTGCAT	TTCATTTTCC	60
	AATATATCTG	GATCATCTCC	TTAGTTTTTT	ATTTTATTTT	TTATAATATC	AAATATGGAA	120
- 0	GAAAAATGAC	ACTTGTAGAG	CCATATGTAA	GTATCATGTG	ACAAATTTGC	AAGGTGGTTG	180
10	AGTGTATAAA	ATTCAAAAAT	TGAGAGATGG	AGGGGGGTG	GGGGAAGACA	ATATTTAGAA	240
	AGAGTGTTCT	AGGAGGTTAT	GGAGGACACG	GATGAGGGGT	AGAAGGTTAG	TTAGGTATTT	300
15	GAGTGTTGTC	TGGCTTATCC	TTTCATACTA	GTAGTCGTGG	AATTATTTGG	GTAGTTTCTT	360
	GTTTTGTTAT	TTGATCTTTG	TTATTCTATT	TTCTGTTTCT	TGTACTTCGA	TTATTGTATT	420
20	ATATATCTTG	TCGTAGTTAT	TGTTCCTCGG	TAAGAATGCT	CTAGCATGCT	TCCTTTAGTG	480
	TTTTATCATG	CCTTCTTTAT	ATTCGCGTTG	CTTTGAAATG	CTTTTACTTT	AGCCGAGGGT	540
	CTATTAGAAA	CAATCTCTCT	ATCTCGTAAG	GTAGGGGTAA	AGTCCTCACC	ACACTCCACT	600
25	TGTGGGATTA	CATTGTGTTT	GTTGTTGTAA	ATCAATTATG	TATACATAAT	AAGTGGATTT	660
	TTTACAACAC	: AAATACATGG	TCAAGGGCAA	AGTTCTGAAC	: ACATAAAGGG	TTCATTATAT	720
30	GTCCAGGGAT	TATGATAAAAA	TTGTTTCTTI	GTGAAAGTTA	\ TATAAGATTI	GTTATGGCTT	780
	TTGCTGGAAA	A CATAATAAGI	TATAATGCTG	GATAGCTAC	TGAAGTTTG	TTTTTCTAGC	840
	CTTTTAAATG	TACCAATAAT	AGATTCCGT	A TCGAACGAGI	T ATGTTTTGAT	TACCTGGTCA	900
35	TGATGTTTCT	r attttttac <i>i</i>	\ TTTTTTTGG	r GTTGAACTG	C AATTGAAAA	r GTTGTATCCT	960
	ATGAGACGGA	A TAGTTGĀGAJ	A TGTGTTCTT	r gtatggacc	r tgagaagct	C AAACGCTACT	1020

WO 98/37214 PCT/IB98/00295

33

	33	
	CCAATAATTT CTATGAATTC AAATTCAGTT TATGGCTACC AGTCAGTCCA GAAATTAGGA	1080
	TATGCTGCAT ATACTTGTTC AATTATACTG TAAAATTTCT TAAGTTCTCA AGATATCCAT	1140
5	GTAACCTCGA GAATTTCTTT GACAG	1165
	(2) INFORMATION FOR SEQ ID NO: 2:	
	(i) SEQUENCE CHARACTERISTICS:	
10	(A) LENGTH: 317 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
20 .		
	·	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	
25	GTATGTTTGA TAATTTATAT GGTTGCATGG ATAGTATATA AATAGTTGGA AAACTTCTGG	. 60
	ACTGGTGCTC ATGGCATATT TGATCTGTGC ACCGTGTGGA GATGTCAAAC ATGTGTTACT	120
30	TCGTTCCGCC AATTTATAAT ACCTTAACTT GGGAAAGACA GCTCTTTACT CCTGTGGGCA	180
•	TTTGTTATTT GAATTACAAT CTTTATGAGC ATGGTGTTTT CACATTATCA ACTTCTTTCA	240
	TGTGGTATAT AACAGTTTTT AGCTCCGTTA ATACCTTTCT TCTTTTTGAT ATAAACTAAC	300
35	TGTGGTGCAT TGCTTGC	317

(2) INFORMATION FOR SEQ ID NO: 3:

	(I) SEQUENCE CHARACIERISTICS.	
	(A) LENGTH: 504 base pairs	
	(B) TYPE: nucleic acid	
5	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	•
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
1 5		
13		
٠	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
20	GTAACAGCCA AAAGTTGTGC TTTAGGCAGT TTGACCTTAT TTTGGAAGAT GAATTGTTTA	60
20	TACCTACTTT GACTTTGCTA GAGAATTTTG CATACCGGGG AGTAAGTAGT GGCTCCATTT	120
	AGGTGGCACC TGGCCATTTT TTTGATCTTT TAAAAAGCTG TTTGATTGGG TCTTCAAAAA	180
25	AGTAGACAAG GTTTTTGGAG AAGTGACACA CCCCCGGAGT GTCAGTGGCA AAGCAAAGAT	240
	TTTCACTAAG GAGATTCAAA ATATAAAAAA AGTATAGACA TAAAGAAGCT GAGGGGATTC	30
••	AACATGTACT ATACAAGCAT CAAATATAGT CTTAAAGCAA TTTTGTAGAA ATAAAGAAAG	36
30	TCTTCCTTCT GTTGCTTCAC AATTTCCTTC TATTATCATG AGTTACTCTT TCTGTTCGAA	42
	ATAGCTTCCT TAATATTAAA TTCATGATAC TTTTGTTGAG ATTTAGCAGT TTTTTCTTGT	48
35	GTAAACTGCT CTCTTTTTT GCAG	50
	(2) INFORMATION FOR SEQ ID NO: 4:	

	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 146 base pairs	
	(B) TYPE: nucleic acid	•
	(C) STRANDEDNESS: single	
5	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	•
	(iii) HYPOTHETICAL: NO	
10		
	(iv) ANTI-SENSE: NO	
		,
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
	GTAGGTCCTC GTCTACTACA AAATAGTAGT TTCCATCATC ATAACAGATT TTCCTATTAA	60
20	AGCATGATGT TGCAGCATCA TTGGCTTTCT TACATGTTCT AATTGCTATT AAGGTTATGC	120
		146
	TTCTAATTAA CTCATCCACA ATGCAG	140
	(2) INFORMATION FOR SEQ ID NO: 5:	•
25		
•	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 218 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
30	(D) TOPOLOGY: linear	
•	(ii) MOLECULE TYPE: DNA (genomic)	
	WALLE CONTROL NO	
0.5	(iii) HYPOTHETICAL: NO	
35		

TATGTCTGCT GGATACAG

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
5	GTTTTGTTAT TCATACCTTG AAGCTGAATT TTGAACACCA TCATCACAGG CATTTCGATT	60
*	CATGTTCTTA CTAGTCTTGT TATGTAAGAC ATTTTGAAAT GCAAAAGTTA AAATAATTGT	120
10	GTCTTTACTA ATTTGGACTT GATCCCATAC TCTTTCCCTT AACAAAATGA GTCAATTCTA	180
10	TAAGTGCTTG AGAACTTACT ACTTCAGCAA TTAAACAG	218
	(2) INFORMATION FOR SEQ ID NO: 6:	
15	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 198 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
20		
	(ii) MOLECULE TYPE: DNA (genomic)	,
	(iii) HYPOTHETICAL: NO	
25	(iv) ANTI-SENSE: NO	
23	(14) 22/12 52/12 5	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	•
•	GTATTTTAAA TTTATTTCTA CAACTAAATA ATTCTCAGAA CAATTGTTAG ATAGAATCCA	60
	AATATATACG TCCTGAAAGT ATAAAAGTAC TTATTTTCGC CATGGGCCTT CAGAATATTG	120
35	GTAGCCGCTG AATATCATGA TAAGTTATTT ATCCAGTGAC ATTTTTATGT TCACTCCTAT	180
	TATCTCTCCC GGATACAG	198

	(2) INFORMATION FOR SEQ ID NO: 7:	
	(i) SEQUENCE CHARACTERISTICS:	
5	(A) LENGTH: 208 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
0	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
15		
••	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
20	GTTTGTCTGT TTCTATTGCA TTTTAAGGTT CATATAGGTT AGCCACGGAA AATCTCACTC	60
	TTTGTGAGGT AACCAGGGTT CTGATGGATT ATTCAATTTT CTCGTTTATC ATTTGTTTAT	120
25	TCTTTTCATG CATTGTGTTT CTTTTTCAAT ATCCCTCTTA TTTGGAGGTA ATTTTTCTCA	180
	TCTATTCACT TTTAGCTTCT AACCACAG	208
	(2) INFORMATION FOR SEQ ID NO: 8:	
30		
	(i) SEQUENCE CHARACTERISTICS:	
-	(A) LENGTH: 293 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
35	(D) TOPOLOGY: linear	
	· ·	

(ii) MOLECULE TYPE: DNA (genomic)

(iii)	HYPOTHETICAL:	NO
-------	---------------	----

(iv) ANTI-SENSE: NO

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

0	GTATGTCTTA	CATCTTTAGA	TATTTTGTGA	TAATTACAAT	TAGTTTGGCT	TACTTGAACA	60
	AGATTCATTC	CTCAAAATGA	CCTGAACTGT	TGAACATCAA	AGGGGTTGAA	ACATAGAGGA	120
15	AAACAACATG	ATGAATGTTT	CCATTGTCTA	GGGATTTCTA	TTATGTTGCT	GAGAACAAAT	180
	GTCATCTTAA	AAAAAACATT	GTTTACTTTT	TTGTAGTATA	GAAGATTACT	GTATAGAGTT	240
	TGCAAGTGTG	TCTGTTTTGG	AGTAATTGTG	AAATGTTTGA	TGAACTTGTA	CAG	293

20 (2) INFORMATION FOR SEQ ID NO: 9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 376 base pairs
- (B) TYPE: nucleic acid
- 25 (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
- 30 (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

PCT/IB98/00295

39

	. 39	
	GTTCAAGTAT TTTGAATCGC AGCTTGTTAA ATAATCTAGT AATTTTTAGA TTGCTTACTT	60
	GGAAGTCTAC TTGGTTCTGG GGATGATAGC TCATTTCATC TTGTTCTACT TATTTTCCAA	120
5	CCGAATTTCT GATTTTTGTT TCGAGATCCA AGTATTAGAT TCATTTACAC TTATTACCGC	180
	CTCATTTCTA CCACTAAGGC CTTGATGAGC AGCTTAAGTT GATTCTTTGA AGCTATAGTT	240
	TCAGGCTACC AATCCACAGC CTGCTATATT TGTTGGATAC TTACCTTTTC TTTACAATGA	300
10	AGTGATACTA ATTGAAATGG TCTAAATCTG ATATCTATAT TTCTCCGTCT TTCCTCCCCC	360
	TCATGATGAA ATGCAG	376
15	(2) INFORMATION FOR SEQ ID NO: 10:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 172 base pairs	
	(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
25	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
	GTAAAATCAT CTAAAGTTGA AAGTGTTGGG TTTATGAAGT GCTTTAATTC TATCCAAGGA	60
35	CAAGTAGAAA CCTTTTTACC TTCCATTTCT TGATGATGGA TTTCATATTA TTTAATCCAA	120
•	TAGGTGGTCA AATTCGGTAA TAGGTGTAGT GATTAGTTAG TTCACTTTGC AG	172

	(2) INFORMATION FOR SEQ ID NO: 11:	
	(i) SEQUENCE CHARACTERISTICS:	
5	(A) LENGTH: 145 base pairs	
_	(B) TYPE: nucleic acid	·
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
20	GTATATATGT TTTACTTATC CATGAAATTA TTGCTCTGCT TGTTTTTAAT GTACTGAACA	60
	AGTTTTATGG AGAAGTAACT GAAACAAATC ATTTTCACAT TGTCTAATTT AACTCTTTTT	120
25	TCTGATCCTC GCATGACGAA AACAG	145
	(2) INFORMATION FOR SEQ ID NO: 12:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 242 base pairs	•
	(B) TYPE: nucleic acid	
•	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	

(iv) ANTI-SENSE: NO

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

	GTAAGGATTT	GCTTGAATAA	CTTTTGATAA	TAAGATAACA	GATGTAGGGT	ACAGTTCTCT	60
0	CACCAAAAAG	AACTGTAATT	GTCTCATCCA	TCTTTAGTTG	TATAAGATAT	CCGACTGTCT	120
·	GAGTTCGGAA	GTGTTTGAGC	CTCCTGCCCT	CCCCCTGCGT	TGTTTAGCTA	ATTCAAAAAG	180
	GAGAAAACTG	TTTATTGATG	ATCTTTGTCT	TCATGCTGAC	ATACAATCTG	TTCTCATGAC	240
5	AG						242

- (2) INFORMATION FOR SEQ ID NO: 13:
- 20 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 797 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

25

- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- 30 (iv) ANTI-SENSE: NO
- 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

	GCGATAGAAG	TTAACTATTG	ATTACCGCCA	CAATCGCCAG	TTAAGTCCTC	TGAACTACTA	120
	ATTTGAAAGG	TAGGAATAGC	CGTAATAAGG	TCTACTTTTG	GCATCTTACT	GTTACAAAAC	180
5	AAAAGGATGC	CAAAAAAATT	CTTCTCTATC	CTCTTTTTCC	CTAAACCAGT	GCATGTAGCT	240
•	TGCACCTGCA	TAAACTTAGG	TAAATGATCA	AAAATGAAGT	TGATGGGAAC	TTAAAACCGC	300
	CCTGAAGTAA	AGCTAGGAAT	AGTCATATAA	TGTCCACCTT	TGGTGTCTGC	GCTAACATCA	360
10	ACAACAACAT	ACCTCGTGTA	GTCCCACAAA	GTGGTTTCAG	GGGGAGGGTA	GAGTGTATGC	420
	AAAACTTACT	CCTATCTCAG	AGGTAGAGAG	GATTTTTCA	ATAGACCCTT	GGCTCAAGAA	480
15	AAAAAGTCCA	AAAAGAAGTA	ACAGAAGTGA	AAGCAACATG	TGTAGCTAAA	GCGACCCAAC	540
	TTGTTTGGGA	CTGAAGTAGT	TGTTGTTGTT	GAAACAGTGO	TATGTAGATGA	ACACATGTCA	600
	GAAAATGGAC	: AACACAGTTA	. TTTTGTGCAF	GTCAAAAAA	TGTACTACTA	A TTTCTTTGTG	660
20	CAGCTTTATO	TATAGAAAAG	TTAAATAACI	AATGAATTT	r gctagcagai	A AAATAGCTTG	720
	GAGAGAAATT	TTTTATATTT	AACTAAGCT	ACTATATTC	A TCTTTCTTT	r TGCTTCTTCT	780
25	TCTCCTTGT	r TGTGAAG			·		797

(2) INFORMATION FOR SEQ ID NO: 14:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2169 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

35 (ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

	ATCATGGCCA	ATTACTGGTT	CAAATGCATT	ACTTCCTTTC	AGATTCTTTC	GAGTTCTCAT	60
0	GACCGGTCCT	ACTACAGACG	ATACTAACCC	GTGGAACTGT	TGCATCTGCT	TCTTAGAACT	120
	CTATGGCTAT	TTTCGTTAGC	TTGGCGTCGG	TTTGAACATA	GTTTTTGTTT	TCAAACTCTT	180
	CATTTACAGT	CAAAATGTTG	TATGGTTTTT	GTTTTCCTCA	ATGATGTTTA	CAGTGTTGTG	240
15	TTGTCATCTG	TACTTTTGCC	TATTACTTGT	TTTGAGTTAC	ATGTTAAAAA	AGTGTTTATT	300
	TTGCCATATT	TTGTTCTCTT	ATTATTATTA	TCATACATAC	ATTATTACAA	GGAAAAGACA	360
20	AGTACACAGA	TCTTAACGTT	TATGTTCAAT	CAACTTTTGG	AGGCATTGAC	AGGTACCACA	420
	AATTTTGAGT	TTATGATTAA	GTTCAATCTT	AGAATATGAA	TTTAACATCT	ATTATAGATG	480
	САТАААААТА	GCTAATGATA	GAACATTGAC	ATTTGGCAGA	GCTTAGGGTA	TGGTATATCC	540
25	AACGTTAATT	TAGTAATTT	TGTTACGTAC	GTATATGAA	A TATTGAATTA	ATCACATGAA	600
	CGGTGGATAT	TATATTATGA	GTTGGCATC	GCAAAATCAT	TGGTGTAGT	GACTGTAGTT	660
30	GCAGATTTAA	TAATAAAT	GTAATTAACO	GTCGATATT	A AAATAACTC	CATTTCAAGT	720
	GGGATTAGAA	A CTAGTTATT	TETAAAAA /	A TACTTTAAG	r gatttgatg	G CATATAATTT	780
	AAAGTTTTT	C ATTTCATGC	T AAAATTGTT	A ATTATTGTA	A TGTAGACTG	C GACTGGAATT	840
35	ATTATAGTG	r aaatttatgo	C ATTCAGTGT.	A AAATTAAAG	T ATTGAACTT	G TCTGTTTTAG	900
	አ አ አ አ ጥ ው ርጥጥ	т атастттаа'	T ATAGGATTT	T GTCATGCGA	A TTTAAATTA	A TCGATATTGA	960

	ACACGGAATA	CCAAAATTAA	AAAGGATACA	CATGGCCTTC	ATATGAACCG	TGAACCTTTG	1020
	ATAACGTGGA	AGTTCAAAGA	AGGTAAAGTT	TAAGAATAAA	CTGACAAATT	AATTTCTTTT	1080
5	ATTTGGCCCA	CTACTAAATT	TGCTTTACTT	TCTAACATGT	CAAGTTGTGC	CCTCTTAGTT	1140
	GAATGATATT	CATTTTTCAT	CCCATAAGTT	CAATTTGATT	GTCATACCAC	CCATGATGTT	1200
0	CTGAAAAATG	CTTGGCCATT	CACAAAGTTT	ATCTTAGTTC	CTATGAACTT	TATAAGAAGC	1260
	TTTAATTTGA	CATGTTATTT	ATATTAGATG	АТАТААТССА	TGACCCAATA	GACAAGTGTA	1320
_	TTAATATTGT	AACTTTGTAA	TTGAGTGTGT	CTACATCTTA	TTCAATCATT	TAAGGTCATT	1380
.5	TTAAAATAAAT	` ATTTTTTGAC	ATTCTAAAAC	TTTAAGCAGA	A ATAAATAGTT	TATCAATTAT	1440
•	TAAAAACAAA	AAACGACTTA	TTTATAAATC	AACAAACAA	TTTAGATTGC	TCCAACATAT	1500
20	TTTTCCAAAT	TAAATGCAGA	AAATGCATAA	A TTTTATACT	r gatcttata	A GCTTATTTT	1560
	TTTAGCCTA	A CCAACGAATA	TTTGTAAAC	r CACAACTTG	A TTAAAAGGG	A TTTACAACAA	1620
26	GATATATAT	A AGTAGTGACA	A AATCTTGAT	TTAAATAT	T TAATTTGGA	GTCAAAATTT	1680
25	TACCATAAT	C ATTTGTATT	AAATTAATA	r tttaaatat	C TTATTTATA	C ATATCTAGTA	1740
	AACTTTTAA	A TATACGTAT	A TACAAAATA	T AAAATTATT	G GCGTTCATA	T TAGGTCAATA	1800
30	AATCCTTAA	C TATATCTGC	C TTACCACTA	G GAGAAAGTA	A AAAACTCTT	T ACCAAAAATA	1860
•	CATGTATTA	T GTATACAAA	A AGTCGATTA	G ATTACCTAA	A TAGAAATTG	T ATAACGAGTA	1920
	AGTAAGTAG	AAAATATAA A	A AACTACAAT	а стаааааа	A TATGTTTA	C TTCAATTTCG	1980
35	AAACTAATG	G GGTCTGAGT	G AAATATTCA	AG AAAGGGGA	GG ACTAACAA	A GGGTCATAAT	2040
		ም አካካካሊሮ ር ርክ	ר דאאאאדכאר.	C AAATCAAG	AA TCAGAACA	ra caagaaggca	2100

PCT/1B98/00295

45

	GCAGCTGAAG CAAAGTACCA TAATTTAATC AATGGAAATT AATTTCAAAG TTTTATCAAA	2160
_	ACCCATTCG	2169
5	(2) INFORMATION FOR SEQ ID NO: 15:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1165 base pairs	
10	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
15		
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: YES	
20		
		•
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
25	CTGTCAAAGA AATTCTCGAG GTTACATGGA TATCTTGAGA ACTTAAGAAA TTTTACAGTA	60
·	TAATTGAACA AGTATATGCA GCATATCCTA ATTTCTGGAC TGACTGGTAG CCATAAACTG	120
	AATTTGAATT CATAGAAATT ATTGGAGTAG CGTTTGAGCT TCTCAAGGTC CATACAAAGA	180
30		240
	ACACATTCTC AACTATCCGT CTCATAGGAT ACAACATTTT CAATTGCAGT TCAACACCAA	240
•	THE CANADAGE THE C	300
	AAAAATGTAA AAAATAGAAA CATCATGACC AGGTAATCAA AACATACTCG TTCGATACGG	
	AATCTATTAT TGGTACATTT AAAAGGCTAG AAAAAACAAA CTTCAGTAGC TATCTCAGCA	360
35	AATCTATTAT TGGTACATTT AAAAGGCIAG AAAAAACAAA CIICAGIAGC TATCTCAGCI	•
	TTATAACTTA TTATGTTTCC AGCAAAAGCC ATAACAAATC TTATATAACT TTCACAAAGA	420
	TTATAACTIA TIAIGITICC AGCAMANGCC ATMACANATC TIATTATA	

	AACAATTTTT	ATCATATCCC	TGGACATATA	ATGAACCCTT	TATGTGTTCA	GAACTTTGCC	480
	CTTGACCATG	TATTTGTGTT	GTAAAAAATC	CACTTATTAT	GTATACATAA	TTGATTTACA	540
5	ACAACAAACA	CAATGTAATC	CCACAAGTGG	AGTGTGGTGA	GGACTTTACC	CCTACCTTAC	600
	GAGATAGAGA	GATTGTTTCT	AATAGACCCT	CGGCTAAAGT	AAAAGCATTT	CAAAGCAACG	660
10	CGAATATAAA	GAAGGCATGA	TAAAACACTA	AAGGAAGCAT	GCTAGAGCAT	TCTTACCGAG	720
10	GAACAATAAC	TACGACAAGA	ТАТАТААТАС	AATAATCGAA	GTACAAGAAA	CAGAAAATAG	780
	AATAACAAAG	ATCAAATAAC	AAAACAAGAA	ACTACCCAAA	TAATTCCACG	ACTACTAGTA	840
15	TGAAAGGATA	AGCCAGACAA	CACTCAAATA	CCTAACTAAC	CTTCTACCCC	TCATCCGTGT	900
	CCTCCATAAC	CTCCTAGAAC	ACTCTTTCTA	AATATTGTCT	TÖCCCCACC	CCCCTCCATC	960
20	TCTCAATTT	TGAATTTTAT	' ACACTCAACO	ACCTTGCAA	TTTGTCACA	r GATACTTACA	1020
20	TATGGCTCT	A CAAGTGTCAT	TTTTCTTCC	A TATTTGATA	AAAAAATAT 1	AAAATAAAA 1	1080
	ACTAAGGAGA	A TGATCCAGAT	T ATATTGGAA	A ATGAAATGC	A AAGGCTAAA	A ATAATTGAAA	1140
25	TTAACATGA	A ATTAGTAAA	ATTAC				1165

(2) INFORMATION FOR SEQ ID NO: 16:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 317 base pairs

30

35

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

	GCAAGCAATG	CACCACAGTT	AGTTTATATC	AAAAAGAAGA	AAGGTATTAA	CGGAGCTAAA	60
10	AACTGTTATA	TACCACATGA	AAGAAGTTGA	TAATGTGAAA	ACACCATGCT	CATAAAGATT	120
	GTAATTCAAA	TAACAAATGC	CCACAGGAGT	AAAGAGCTGT	CTTTCCCAAG	TTAAGGTATT	180
	ATAAATTGGC	GGAACGAAGT	AACACATGTT	TGACATCTCC	ACACGGTGCA	CAGATCAAAT	240
15	ATGCCATGAG	CACCAGTCCA	GAAGTTTTCC	AACTATTAT	ATACTATCCA	TGCAACCATA	300
	TAAATTATCA	AACATAC					317

20 (2) INFORMATION FOR SEQ ID NO: 17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 504 base pairs
 - (B) TYPE: nucleic acid
- 25 (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
- . 30 (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: YES

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

	CTGCAAAAAA AGAGAGCAGT TTACACAAGA AAAAACTGCT AAATCTCAAC AAAAGTATCA	60
	TGAATTTAAT ATTAAGGAAG CTATTTCGAA CAGAAAGAGT AACTCATGAT AATAGAAGGA	120
5	AATTGTGAAG CAACAGAAGG AAGACTTTCT TTATTTCTAC AAAATTGCTT TAAGACTATA	180
	TTTGATGCTT GTATAGTACA TGTTGAATCC CCTCAGCTTC TTTATGTCTA TACTTTTTTT	240
	ATATTTTGAA TCTCCTTAGT GAAAATCTTT GCTTTGCCAC TGACACTCCG GGGGTGTGTC	300
10	ACTTCTCCAA AAACCTTGTC TACTTTTTTG AAGACCCAAT CAAACAGCTT TTTAAAAGAT	360
•	CAAAAAAATG GCCAGGTGCC ACCTAAATGG AGCCACTACT TACTCCCCGG TATGCAAAAT	420
15	TCTCTAGCAA AGTCAAAGTA GGTATAAACA ATTCATCTTC CAAAATAAGG TCAAACTGCC	480
	TAAAGCACAA CTTTTGGCTG TTAC	504
20	(2) INFORMATION FOR SEQ ID NO: 18:	
- -	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 146 base pairs	
	(B) TYPE: nucleic acid	
	•••	

- (C) STRANDEDNESS: single
- 25 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

35

30

	AGCCAATGAT GCTGCAACAT CATGCTTTAA TAGGAAAATC TGTTATGATG ATGGAAACTA	120
	CTATTTTGTA GTAGACGAGG ACCTAC	146
5		
3	(2) INFORMATION FOR SEQ ID NO: 19:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 218 base pairs	
10	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: YES	
20		
•	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
25	CTGTTTAATT GCTGAAGTAG TAAGTTCTCA AGCACTTATA GAATTGACTC ATTTTGTTAA	60
•	GGGAAAGAGT ATGGGATCAA GTCCAAATTA GTAAAGACAC AATTATTTTA ACTTTTGCAT	120
30	TTCAAAATGT CTTACATAAC AAGACTAGTA AGAACATGAA TCGAAATGCC TGTGATGATG	180
	GTGTTCAAAA TTCAGCTTCA AGGTATGAAT AACAAAAC	218
	(2) INFORMATION FOR SEQ ID NO: 20:	
35	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 198 base pairs	

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
5	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: YES	
10		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:	
1.5	CTGTATCCAG CAGACATAAT AGGAGTGAAC ATAAAAATGT CACTGGATAA ATAACTTATC	60
15	ATGATATTCA GCGGCTACCA ATATTCTGAA GGCCCATGGC GAAAATAAGT ACTTTTATAC	120
	TTTCAGGACG TATATATTTG GATTCTATCT AACAATTGTT CTGAGAATTA TTTAGTTGTA	180
20	GAAATAAATT TAAAATAC	198
	(2) INFORMATION FOR SEQ ID NO: 21:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 208 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	

(iv) ANTI-SENSE: YES

(xi)	SEQUENCE	DESCRIPTION:	SEQ	ID	NO:	21:
------	----------	--------------	-----	----	-----	-----

	(XI) SEQUENCE BESCRIFFICATION OF THE AND THE SECOND OF THE	
	CTGTGGTTAG AAGCTAAAAG TGAATAGATG AGAAAAATTA CCTCCAAATA AGAGGGATAT	60
5	TGAAAAAGAA ACACAATGCA TGAAAAGAAT AAACAAATGA TAAACGAGAA AATTGAATAA	120
	TCCATCAGAA CCCTGGTTAC CTCACAAAGA GTGAGATTTT CCGTGGCTAA CCTATATGAA	180
_	CCTTAAAATG CAATAGAAAC AGACAAAC	208
υ	(2) INFORMATION FOR SEQ ID NO: 22:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 293 base pairs	
5	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
20		
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: YES	
		:
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:	
30	CTGTACAAGT TCATCAAACA TTTCACAATT ACTCCAAAAC AGACACACTT GCAAACTCTA	60
	TACAGTAATC TTCTATACTA CAAAAAAGTA AACAATGTTT TTTTTAAGAT GACATTTGTT	120
	CTCAGCAACA TAATAGAAAT CCCTAGACAA TGGAAACATT CATCATGTTG TTTTCCTCTA	180
35	TGTTTCAACC CCTTTGATGT TCAACAGTTC AGGTCATTTT GAGGAATGAA TCTTGTTCAA	240

GTAAGCCAAA CTAATTGTAA TTATCACAAA ATATCTAAAG ATGTAAGACA TAC

(2)	INFORMATION	FOR	SEQ	ID	NO:	23:
-----	-------------	-----	-----	----	-----	-----

		•	
	(i)	SEQUI	ENCE CHARACTERISTICS:
5		(A)	LENGTH: 376 base pairs
		(B)	TYPE: nucleic acid
		(C)	STRANDEDNESS: single
		(D)	TOPOLOGY: linear

10 (ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

CTGCATTTCA TCATGAGGGG GAGGAAAGAC GGAGAAATAT AGATATCAGA TTTAGACCAT 60

TTCAATTAGT ATCACTTCAT TGTAAAGAAA AGGTAAGTAT CCAACAAATA TAGCAGGCTG 120

25 TGGATTGGTA GCCTGAAACT ATAGCTTCAA AGAATCAACT TAAGCTGCTC ATCAAGGCCT 180

TAGTGGTAGA AATGAGGCGG TAATAAGTGT AAATGAATCT AATACTTGGA TCTCGAAACA 240

AAAATCAGAA ATTCGGTTGG AAAATAAGTA GAACAAGATG AAATGAGCTA TCATCCCCAG 300

AACCAAGTAG ACTTCCAAGT AAGCAATCTA AAAATTACTA GATTATTTAA CAAGCTGCGA 360

TTCAAAATAC TTGAAC 376

35 (2) INFORMATION FOR SEQ ID NO: 24:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 172 base pairs

(B) TYPE: nucleic acid

	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: YES	
10		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:	:
15	CTGCAAAGTG AAGTAACTAA TCAGTACAGC TATTACCGAA TTTGACCAGC TATTGGATTA	60
·	AATAATATGA AATCCATCAT CAAGAAATGG AAGGTAAAAA GGTTTCTACT TGTCCTTGGA	120
20	TAGAATTAAA GCACTTCATA AACCCAACAC TTTCAACTTT AGATGATTTT AC	172
	(2) INFORMATION FOR SEQ ID NO: 25:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 145 base pairs	
,	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: DNA (genomic)	
•	(iii) HYPOTHETICAL: NO	
35	(iv) ANTI-SENSE: YES	

(xi)	SEQUENCE	DESCRIPTION:	SEQ	ID	NO:	25:
------	----------	--------------	-----	----	-----	-----

CTGTTTCGT CATGCGAGGA TCAGAAAAAA GAGTTAAATT AGACAATGTG AAAATGATTT 60

5 GTTTCAGTTA CTTCTCCATA AAACTTGTTC AGTACATTAA AAACAAGCAG AGCAATAATT 120

TCATGGATAA GTAAAACATA TATAC 145

(2) INFORMATION FOR SEQ ID NO: 26:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 242 base pairs

(B) TYPE: nucleic acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(C) STRANDEDNESS: single

(iii) HYPOTHETICAL: NO

20

15

(iv) ANTI-SENSE: YES

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

CTGTCATGAG AACAGATTGT ATGTCAGCAT GAAGACAAAG ATCATCAATA AACAGTTTTC 60

TCCTTTTTGA ATTAGCTAAA CAACGCAGGG GGAGGGCAGG AGGCTCAAAC ACTTCCGAAC 120

TCAGACAGTC GGATATCTTA TACAACTAAA GATGGATGAG ACAATTACAG TTCTTTTTGG 180

TGAGAGAACT GTACCCTACA TCTGTTATCT TATTATCAAA AGTTATTCAA GCAAATCCTT 240

AC

(2) INFORMATION FOR SEQ ID NO: 27:

35

	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 797 base pairs	
	(B) TYPE: nucleic acid	
5	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
10	(iii) HYPOTHETICAL: NO	
10	(222)	
	(iv) ANTI-SENSE: YES	
•		
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:	
	CTTCACAAAC AAGGAGAAGA AGAAGCAAAA AGAAAGATGA ATATAGTTAG CTTAGTTCAA	60
20	TATAAAAAAT TTCTCTCCAA GCTATTTTTC TGCTAGCAAA ATTCATTAGT TATTTAACTT	120
	TTCTATACAT AAAGCTGCAC AAAGAAATAG TAGTACATTT TTTTGACTTG CACAAAATAA	180
25	CTGTGTTGTC CATTTTCTGA CATGTGTTCA TCTACATGCA CTGTTTCAAC AACAACAACT	240
	ACTTCAGTCC CAAACAAGTT GGGTCGCTTT AGCTACACAT GTTGCTTTCA CTTCTGTTAC	300
30	TTCTTTTTGG ACTTTTTTC TTGAGCCAAG GGTCTATTGA AAAAATCCTC TCTACCTCTG	360
	AGATAGGAGT AAGTTTTGCA TACACTCTAC CCTCCCCTG AAACCACTTT GTGGGACTAC	420
	ACGAGGTATG TTGTTGTTGA TGTTAGCGCA GACACCAAAG GTGGACATTA TATGACTATT	480

CCTAGCTTTA CTTCAGGGCG GTTTTAAGTT CCCATCAACT TCATTTTTGA TCATTTACCT

AAGTTTATGC AGGTGCAAGC TACATGCACT GGTTTAGGGA AAAAGAGGAT AGAGAAGAAT

D	CT	πD	90	'n	በን	05
P	C. I	/ I D	וסכו	'U'	U.Z	73

	30	
	TTTTTTGGCA TCCTTTTGTT TTGTAACAGT AAGATGCCAA AAGTAGACCT TATTACGGCT	660
	ATTCCTACCT TTCAAATTAG TAGTTCAGAG GACTTAACTG GCGATTGTGG CGGTAATCAA	720
5	TAGTTAACTT CTATCGCATT CAAATAACTA TGAACAAAAC CACAATAAAA AGGGAGGTCA	780
•	CACGGCAAGA ACTGTAC	797
	(2) INFORMATION FOR SEQ ID NO: 28:	
10		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2169 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
15	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
20		
	(iv) ANTI-SENSE: YES	
25.	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:	
	CGAATGGGTT TTGATAAAAC TTTGAAATTA ATTTCCATTG ATTAAATTAT GGTACTTTGC	60
30	TTCAGCTGCT GCCTTCTTGT ATGTTCTGAT TCTTGATTTC CTCATTTTAG TGGCTTTTTA	120
	TAAAAAAACA TTATGACCCT TTTGTTAGTC CTCCCCTTTC TGAATATTTC ACTCAGACCC	180
35	CATTAGTTTC GAAATTGAAG TAAAACATAT TTTTTTTAGT ATTGTAGTTT TTTTATATTT	240
	CTACTTACTT ACTCGTTATA CAATTTCTAT TTAGGTAATC TAATCGACTT TTTGTATACA	300
	TAGES THE ATTEMPT OF A ACACHTTTT TACTTTCTCC TAGTGGTAAG GCAGATATAG	360

	TTAAGGATTT	ATTGACCTAA	TATGAACGCC	ATTTTAATAA	TATTTTGTAT	ATACGTATAT	420
_	TTAAAAGTTT	ACTAGATATG	TATAAATAAG	AAAATTTAAAA	TTTAATTATA	AATACAAATG	480
5	ATTATGGTAA	AATTTTGACC	TCCAAATTAA	AAATTTTAAA	ATCAAGATTT	GTCACTACTT	540
	ATATATATCT	TGTTGTAAAT	CCCTTTTAAT	CAAGTTGTGA	GTTTACAAAT	ATTCGTTGGT	600
10	TAGGCTAAAA	AAAATAAGCT	ATAAAGATCA	AGTATAAAAT	TATGCATTTT	CTGCATTTAA	660
	TTTGGAAAAA	TATGTTGGAG	CAATCTAAAA	TTGTTTGTTG	ATTTATAAAT	AAGTCGTTTT	720
	TTGTTTTTAA	TAATTGATAA	ACTATTTATT	CTGCTTAAAG	TTTTAGAATG	TCAAAAAATA	780
15	ATTTATTTA	ATGACCTTAA	ATGATTGAAT	AAGATGTAGA	CACACTCAAT	TACAAAGTTA	840
	CAATATTAAT	ACACTTGTCT	ATTGGGTCAT	GGATTATATO	: ATCTAATATA	A AATAACATGT	900
20	CAAATTAAAG	CTTCTTATAA	AGTTCATAGG	AACTAAGATA	A AACTTTGTG	A ATGGCCAAGC	960
	ATTTTTCAG#	ACATCATGGG	TGGTATGACA	. ATCAAATTGA	A ACTTATGGGA	A TGAAAATGA	1020
	ATATCATTCA	A ACTAAGAGGG	CACAACTTGA	CATGTTAGA/	A AGTAAAGCA	A ATTTAGTAGT	1080
25	GGGCCAAATI	A AAAGAAATTA	A ATTTGTCAGI	TTATTCTTA	A ACTTTACCT	T CTTTGAACTT	1140
	CCACGTTAT	C AAAGGTTCAC	GGTTCATATO	AAGGCCATG	T GTATCCTTT	T TAATTTTGGT	1200
30	ATTCCGTGT"	r CAATATCGA	CAAATTTAAA	r TCGCATGAC	A AAATCCTAT	A TTAAAGTATA	1260
	AAGTATTTT	C TAAAACAGA	C AAGTTCAAT	A CTTTAATTT	T ACACTGAAT	G CATAAATTTA	1320
	CACTATAAT	A ATTCCAGTC	G CAGTCTACA	T TACAATAAT	T AACAATTT	'A GCATGAAATG	1380
35	AAAAACTTT	A AATTATATG	C CATCAAATC	A CTTAAAGTA	AT ACATTTTT	TT AATAACTAGT	1440
	TCTAATCCC	A CTTGAAATG	A GAGTTATTT	T AATATCGAC	CC GTTAATTA	CC ATTTTATTAT	1500

	TAAATCTGCA	ACTACAGTCA	ACTACACCAA	TGATTTTGCT	GATGCCAACT	CATAATATAA	1560
5	TATCCACCGT	TCATGTGATT	AATTCAATAT	TTCATATACG	TACGTAACAA	AAATTACTAA	1620
	ATTAACGTTG	GATATACCAT	ACCCTAAGCT	CTGCCAAATG	TCAATGTTCT	ATCATTAGCT	1680
	ATTTTTATGC	АТСТАТААТА	GATGTTAAAT	TCATATTCTA	AGATTGAACT	TAATCATAAA	1740
0	CTCAAAATTT	GTGGTACCTG	TCAATGCCTC	CAAAAGTTGA	TTGAACATAA	ACGTTAAGAT	1800
	CTGTGTACTT	GTCTTTTCCT	TGTAATAATG	TATGTATGAT	AATAATAATA	AGAGAACAAA	1860
_	ATATGGCAAA	ATAAACACTT	TTTTAACATG	ТААСТСАААА	CAAGTAATAG	GCAAAAGTAC	1920
15	AGATGACAAC	ACAACACTGT	AAACATCATT	GAGGAAAACA	AAAACCATAC	AACATTTTGA	1980
	CTGTAAATGA	AGAGTTTGAA	AACAAAAACT	ATGTTCAAAC	CGACGCCAAG	CTAACGAAAA	2040
20	TAGCCATAGA	GTTCTAAGAA	GCAGATGCAA	CAGTTCCACG	GGTTAGTATC	GTCTGTAGTA	2100
	GGACCGGTCA	TGAGAACTCG	AAAGAATCTG	AAAGGAAGTA	ATGCATTTGA	ACCAGTAATT	2160
	GGCCATGAT						2169

30

(2) INFORMATION FOR SEQ ID NO: 29:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 11469 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

35

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

-	ATCATGGCCA	ATTACTGGTT	CAAATGCATT	ACTTCCTTTC	AGATTCTTTC	GAGTTCTCAT	60
•	GACCGGTCCT	ACTACAGACG	ATACTAACCC	GTGGAACTGT	TGCATCTGCT	TCTTAGAACT	120
0	CTATGGCTAT	TTTCGTTAGC	TTGGCGTCGG	TTTGAACATA	GTTTTTGTTT	TCAAACTCTT	180
	CATTTACAGT	CAAAATGTTG	TATGGTTTTT	GTTTTCCTCA	ATGATGTTTA	CAGTGTTGTG	240
.5	TTGTCATCTG	TACTTTTGCC	TATTACTTGT	TTTGAGTTAC	ATGTTAAAAA	AGTGTTTATT	300
	TTGCCATATT	TTGTTCTCTT	ATTATTATTA	TCATACATAC	ATTATTACAA	GGAAAAGACA	360
	AGTACACAGA	TCTTAACGTT	TATGTTCAAT	CAACTTTTGG	AGGCATTGAC	AGGTACCACA	420
20	AATTTTGAGT	TTATGATTAA	GTTCAATCTT	AGAATATGAA	TTTAACATCT	ATTATAGATG	480
	САТААААТА	GCTAATGATA	GAACATTGAC	ATTTGGCAGA	GCTTAGGGTA	TGGTATATCC	540
25	AACGTTAATT	TAGTAATTT	TGTTACGTAC	GTATATGAAA	\ TATTGAATTA	ATCACATGAA	600
	CGGTGGATAI	TATATTATGA	GTTGGCATCA	GCAAAATCAT	TGGTGTAGTT	GACTGTAGTT	660
20	GCAGATTTA	OTAAAATAAT	GTAATTAACG	GTCGATATT	AAATAACTCT	CATTTCAAGT	720
30	GGGATTAGA	A CTAGTTATT	AAAAAATGTI	A TACTTTAAG	r gatttgatgo	CATATAATTT	780
	AAAGTTTTT	C ATTTCATGC	T AAAATTGTT	A TTATTGTA	A TGTAGACTG	GACTGGAATT	840
35	ATTATAGTG	T AAATTTATGO	C ATTCAGTGT	a aaattaaag	T ATTGAACTT	G TCTGTTTTAG	900
	2 2 2 M 2 COM	ሙ አጥአ <i>ር</i> ጥጥ ^ሚ እነ	ኮ አጥአርርአጥጥጥ	т стсатссеа	A TTTAAATTA	A TCGATATTGA	960

	ACACGGAATA	CCAAAATTAA	AAAGGATACA	CATGGCCTTC	ATATGAACCG	TGAACCTTTG	1020
	ATAACGTGGA	AGTTCAAAGA	AGGTAAAGTT	TAAGAATAAA	CTGACAAATT	AATTTCTTTT	1080
5	ATTTGGCCCA	CTACTAAATT	TGCTTTACTT	TCTAACATGT	CAAGTTGTGC	CCTCTTAGTT	1140
	GAATGATATT	CATTTTTCAT	CCCATAAGTT	CAATTTGATT	GTCATACCAC	CCATGATGTT	1200
10	CTGAAAAATG	CTTGGCCATT	CACAAAGTTT	ATCTTAGTTC	CTATGAACTT	TATAAGAAGC	1260
10	TTTAATTTGA	CATGTTATTT	ATATTAGATG	ATATAATCCA	TGACCCAATA	GACAAGTGTA	1320
	TTAATATTGT	AACTTTGTAA	TTGAGTGTGT	CTACATCTTA	TTCAATCATT	TAAGGTCATT	1380
15	TTAAATAAAA	ATTTTTTGAC	ATTCTAAAAC	TTTAAGCAGA	ATAAATAGTT	TATCAATTAT	1440
	TAAAAACAAA	AAACGACTTA	TTTATAAATC	AACAAACAAT	TTTAGATTGC	TCCAACATAT	1500
20	TTTTCCAAAT	TAAATGCAGA	AAATGCATAA	TTTTATACTT	GATCTTTATA	GCTTATTTT	1560
20	TTTAGCCTAA	. CCAACGAATA	TTTGTAAACI	CACAACTTGA	TTAAAAGGGA	TTTACAACAA	1620
	GATATATATA	AGTAGTGACA	AATCTTGATT	TTTATAAATT 1	TAATTTGGAG	GTCAAAATTT	1680
25	TACCATAATC	ATTTGTATTI	CAAATTAAA	TATAAATTT 1	TTATTTATAC	ATATCTAGTA	1740
	AACTTTTAAA	A TATACGTATA	A TACAAAATA	OTTATTAAAA 1	GCGTTCATA	r TAGGTCAATA	1800
30	AATCCTTAAC	TATATCTGC	TTACCACTA	g gagaaagtai	AAAACTCTT	I ACCAAAATA	1860
	CATGTATTAT	r gtatacaaa	A AGTCGATTA	G ATTACCTAA	A TAGAAATTG	r ataacgagta	1920
	AGTAAGTAGA	AAAATATAA A	A AACTACAAT	а стааааааа	A TATGTTTA	C TTCAATTTCG	1980
35	AAACTAATG	G GGTCTGAGT	G AAATATTCA	g aaaggggag	G ACTAACAAA	A GGGTCATAAT	204
	GTTTTTTA'	T AAAAAGCCA	C TAAAATGAG	G AAATCAAGA	A TCAGAACAT	A CAAGAAGGCA	210

	GCAGCTGAAG	CAAAGTACCA	TAATTTAATC	AATGGAAATT	AATTTCAAAG	TTTTATCAAA	2160
*	ACCCATTCGA	GGATCTTTTC	CATCTTTCTC	ACCTAAAGTT	TCTTCAGGGG	ТААТТТТТАС	2220
5	TAATTTCATG	TTAATTTCAA	TTATTTTTAG	CCTTTGCATT	TCATTTTCCA	ATATATCTGG	2280
	ATCATCTCCT	TAGTTTTTTA	TTTTATTTT	TATAATATCA	AATATGGAAG	AAAAATGACA	2340
10	CTTGTAGAGC	CATATGTAAG	TATCATGTGA	CAAATTTGCA	AGGTGGTTGA	GTGTATAAAA	2400
	TTCAAAAATT	GAGAGATGGA	GGGGGGGTGG	GGGAAGACAA	TATTTAGAAA	GAGTGTTCTA	2460
	GGAGGTTATG	GAGGACACGG	ATGAGGGGTA	GAAGGTTAGT	TAGGTATTTG	AGTGTTGTCT	2520
15	GGCTTATCCT	TTCATACTAG	TAGTCGTGGA	ATTATTTGGG	TAGTTTCTTG	TTTTGTTATT	2580
	TGATCTTTGT	TATTCTATTT	TCTGTTTCTT	GTACTTCGAT	TATTGTATTA	TATATCTTGT	2640
20	CGTAGTTATT	GTTCCTCGGT	AAGAATGCTC	TAGCATGCTT	CCTTTAGTG	TTTATCATGC	2700
	CTTCTTTATA	TTCGCGTTGC	TTTGAAATGO	TTTTACTTT	A GCCGAGGGT(TATTAGAAAC	2760
	AATCTCTCT	A TCTCGTAAGG	; TAGGGGTAA!	A GTCCTCACC	A CACTCCACT	r GTGGGATTAC	2820
25	ATTGTGTTT	TTGTTGTAA	TCAATTATG	r atacataat	A AGTGGATTT	r TTACAACACA	2880
	AATACATGG:	r caaggcaa	A GTTCTGAAC	A CATAAAGGG	T TCATTATAT	G TCCAGGGATA	2940
.30	TGATAAAA	r TGTTTCTTT	TGAAAGTTA	T ATAAGATTT	G TTATGGCTT	T TGCTGGAAAC	3000
. 30	ATAATAAGT	T ATAATGCTG	A GATAGCTAC	T GAAGTTTGT	T TTTTCTAGC	C TTTTAAATGT	3060
	ACCAATAAT	A GATTCCGTA	r cgaacgagt	A TGTTTTGAT	T ACCTGGTCA	T GATGTTTCTA	3120
35	ТТТТТТАСА	T TTTTTTGGT	G TTGAACTGC	A ATTGAAAAI	G TTGTATCCI	TA TGAGACGGAT	3180
	AGTTGAGAA	ጥ GጥGጥጥርጥጥጥ	G TATGGACCT	T GAGAAGCTO	A AACGCTACT	C CAATAATTTC	324

	TATGAATTCA	AATTCAGTTT	ATGGCTACCA	GTCAGTCCAG	AAATTAGGAT	ATGCTGCATA	3300
	TACTTGTTCA	ATTATACTGT	AAAATTTCTT	AAGTTCTCAA	GATATCCATG	TAACCTCGAG	3360
. 5	AATTTCTTTG	ACAGGCTTCT	AGAAATAAGA	TATGTTTTCC	TTCTCAACAT	AGTACTGGAC	3420
	TGAAGTTTGG	ATCTCAGGAA	CGGTCTTGGG	ATATTTCTTC	CACCCCAAAA	TCAAGAGTTA	3480
10	GAAAAGATGA	AAGGGTATGT	TTGATAATTT	ATATGGTTGC	ATGGATAGTA	TATAAATAGT	3540
10	TGGAAAACTT	CTGGACTGGT	GCTCATGGCA	TATTTGATCT	GTGCACCGTG	TGGAGATGTC	3600
:	AAACATGTGT	TACTTCGTTC	CGCCAATTTA	TAATACCTTA	ACTTGGGAAA	GACAGCTCTT	3660
15	TACTCCTGTG	GGCATTTGTT	ATTTGAATTA	CAATCTTTAT	GAGCATGGTG	TTTTCACATT	3720
	ATCAACTTCT	TTCATGTGGT	ATATAACAGI	TTTTAGCTCC	GTTAATACCI	TTCTTCTTTT	3780
20	TGATATAAAC	TAACTGTGGT	GCATTGCTT	G CATGAAGCA	AGTTCAGCTA	A TTTCCGCTGT	3840
20	TTTGACCGAT	GACGACAATT	CGACAATGG	C ACCCCTAGA	GAAGATGTC	A AGACTGAAAA	3900
	TATTGGCCTC	CTAAATTTGC	ATCCAACTT	r ggaacctta	r ctagatcac	T TCAGACACAG	3960
25	AATGAAGAGA	TATGTGGAT	C AGAAAATGC	r cattgaaaa	A TATGAGGGA	C CCCTTGAGGA	4020
	ATTTGCTCAA	GGTAACAGC	C AAAAGTTGT	G CTTTAGGCA	G TTTGACCTT	A TTTTGGAAGA	4080
30	TGAATTGTTT	TATACCTACT	T TGACTTTGC	T AGAGAATTT	T GCATACCGG	G GAGTAAGTAG	4140
	TGGCTCCATT	TAGGTGGCA	C CTGGCCATT	T TTTTGATCT	T TTAAAAAGC	T GTTTGATTGG	4200
	GTCTTCAAA	A AAGTAGACA	A GGTTTTTGG	A GAAGTGACA	C ACCCCCGGA	G TGTCAGTGGC	4260
35	AAAGCAAAG	A TTTTCACTA	A GGAGATTCA	AAATATAA AA	A AAGTATAGA	AC ATAAAGAAGC	4320
•	TGAGGGGAT	T CAACATGTA	C TATACAAGO	CA TCAAATAT	G TCTTAAAGC	CA ATTTTGTAGA	4380

	AATAAAGAAA	GTCTTCCTTC	TGTTGCTTCA	CAATTTCCTT	CTATTATCAT	GAGTTACTCT	4440
	TTCTGTTCGA	AATAGCTTCC	TTAATATTAA	ATTCATGATA	CTTTTGTTGA	GATTTAGCAG	4500
5	TTTTTTCTTG	TGTAAACTGC	TCTCTTTTTT	TGCAGGTTAT.	TTAAAATTTG	GATTCAACAG	4560
	GGAAGATGGT	TGCATAGTCŢ	ATCGTGAATG	GGCTCCTGCT	GCTCAGTAGG	TCCTCGTCTA	4620
10	CTACAAAATA	GTAGTTTCCA	TCATCATAAC	AGATTTTCCT	ATTAAAGCAT	GATGTTGCAG	4680
10	CATCATTGGC	TTTCTTACAT	GTTCTAATTG	CTATTAAGGT	TATGCTTCTA	ATTAACTCAT	4740
	CCACAATGCA	GGGAAGCAGA	AGTTATTGGC	GATTTCAATG	GATGGAACGG	TTCTAACCAC	4800
15	ATGATGGAGA	AGGACCAGTT	TGGTGTTTGG	AGTATTAGAA	TTCCTGATGT	TGACAGTAAG	4860
	CCAGTCATTC	CACACAACTC	CAGAGTTAAG	TTTCGTTTCA	AACATGGTAA	TGGAGTGTGG	4920
20	GTAGATCGTA	TCCCTGCTTG	GATAAAGTAT	GCCACTGCAG	ACGCCACAAA	GTTTGCAGCA	4980
20	CCATATGATG	GTGTCTACTG	GGACCCACCA	CCTTCAGAAA	GGTTTTGTTA	TTCATACCTT	5040
	GAAGCTGAAT	TTTGAACACC	ATCATCACAG	GCATTTCGAT	TCATGTTCTT	ACTAGTCTTG	5100
25	TTATGTAAGA	CATTTTGAAA	TGCAAAAGTT	OTTAATAAAA	G TGTCTTTACT	T AATTTGGACT	5160
	TGATCCCATA	CTCTTTCCCT	TAACAAAATO	G AGTCAATTCI	r ataagtgct	r gagaäcttac	5220
30	TACTTCAGCA	ATTAAACAGG	TACCACTTC	AATACCCTCC	G CCCTCCCAAJ	A CCCCGAGCCC	5280
	CACGAATCTA	A TGAAGCACAI	GTCGGCATG	A GCAGCTCTG	A GCCACGTGT	A AATTCGTATC	5340
	GTGAGTTTGC	AGATGATGT	TTACCTCGG	A TTAAGGCAA	а таастатаа	T ACTGTCCAGT	5400
35	TGATGGCCAT	T AATGGAACAT	TCTTACTAT	G GATCATTTG	G ATATCATGT	T ACAAACTTTT	5460
Ť	TTGCTGTGAC	CAGTAGATA	r ggaaacccg	G AGGACCTAA	A GTATCTGAT	A GATAAAGCAC	5520

	ATAGCTTGGG	TTTACAGGTT	CTGGTGGATG	TAGTTCACAG	TCATGCAAGC	AATAATGTCA	5580
	CTGATGGCCT	CAATGGCTTT	GATATTGGCC	AAGGTTCTCA	AGAATCCTAC	TTTCATGCTG	5640
5	GAGAGCGAGG	GTACCATAAG	TTGTGGGATA	GCAGGCTGTT	CAACTATGCC	AATTGGGAGG	5700
	TTCTTCGTTT	CCTTCTTTCC	AACTTGAGGT	GGTGGCTAGA	AGAGTATAAC	TTTGACGGAT	5760
10	TTCGATTTGA	TGGAATAACT	TCTATGCTGT	ATGTTCATCA	TGGAATCAAT	ATGGGATTTA	5820
10	CAGGAAACTA	TAATGAGTAT	TTCAGCGAGG	CTACAGATGT	TGATGCTGTG	GTCTATTTAA	5880
	TGTTGGCCAA	TAATCTGATT	CACAAGATTT	TCCCAGATGC	AACTGTTATT	GCCGAAGATG	5940
15	TTTCTGGTAT	GCCGGGCCTT	GGCCGGCCTG	TTTCTGAGGG	AGGAATTGGT	TTTGTTTACC	6000
	GCCTGGCAAT	GGCAATCCCA	GATAAGTGGA	TAGATTATTI	· AAAGAATAAG	; AATGATGAAG	6060
20	ATTGGTCCAT	GAAGGAAGTA	ACATCGAGTI	TGACAAATAG	GAGATATACA	A GAGAAGTGTA	6120
20	TAGCATATGC	GGAGACCCAT	GATCAGGTAT	TTTAAATTT 1	A TTTCTACAA	TAAATAATTC	6180
	TCAGAACAAT	TGTTAGATAG	AATCCAAATI	A TATACGTCC	GAAAGTATA	A AAGTACTTAT	6240
25	TTTCGCCATG	GGCCTTCAGA	ATATTGGTA	G CCGCTGAAT	A TCATGATAA	G TTATTTATCC	6300
	AGTGACATTI	TTATGTTCAC	CTCCTATTAT	G TCTGCTGGA	T ACAGTCTAT	T GTTGGTGACA	6360
20	AGACCATTGO	ATTTCTCTIA	A ATGGACAAA	G AGATGTATT	C TGGCATGTC	T TGCTTGACAG	6420
30	ATGCTTCTCC	TGTTGTTGA	r CGAGGAATT	G CGCTTCACA	a ggtttgtct	G TTTCTATTGC	6480
	ATTTTAAGG	r TCATATAGG	r tagccacgg	A AAATCTCAC	T CTTTGTGAG	G TAACCAGGGT	6540
35	TCTGATGGA'	TATTCAATT	T TCTCGTTTA	T CATTTGTTI	'A TTCTTTTC	AT GCATTGTGTT	6600
	ጥር-ምምጥጥር A	› አ ፕልፕሮሮሮፕሮፕ	T ATTTGGAGG	T AATTTTCI	C ATCTATTC	C TTTTAGCTTC	666

	TAACCACAGA TGATCCATTT TTTCACAATG GCCTTGGGAG GAGAGGGGTA CCTCAATTTC	6720
÷	ATGGGTAACG AGGTATGTCT TACATCTTTA GATATTTTGT GATAATTACA ATTAGTTTGG	6780
5	CTTACTTGAA CAAGATTCAT TCCTCAAAAT GACCTGAACT GTTGAACATC AAAGGGGTTG	6840
	AAACATAGAG GAAAACAACA TGATGAATGT TTCCATTGTC TAGGGATTTC TATTATGTTG	6900
0	CTGAGAACAA ATGTCATCTT AAAAAAAACA TTGTTTACTT TTTTGTAGTA TAGAAGATTA	6960
0	CTGTATAGAG TTTGCAAGTG TGTCTGTTTT GGAGTAATTG TGAAATGTTT GATGAACTTG	7020
	TACAGTTTGG CCATCCTGAG TGGATTGACT TCCCTAGAGA GGGCAATAAT TGGAGTTATG	7080
.5	ACAAATGTAG ACGCCAGTGG AACCTCGCGG ATAGCGAACA CTTGAGATAC AAGGTTCAAG	7140
	TATTTTGAAT CGCAGCTTGT TAAATAATCT AGTAATTTTT AGATTGCTTA CTTGGAAGTC	7200
20	TACTTGGTTC TGGGGATGAT AGCTCATTTC ATCTTGTTCT ACTTATTTTC CAACCGAATT	7260
20	TCTGATTTTT GTTTCGAGAT CCAAGTATTA GATTCATTTA CACTTATTAC CGCCTCATTT	7320
	CTACCACTAA GGCCTTGATG AGCAGCTTAA GTTGATTCTT TGAAGCTATA GTTTCAGGCT	7380
25	ACCAATCCAC AGCCTGCTAT ATTTGTTGGA TACTTACCTT TTCTTTACAA TGAAGTGATA	7440
	CTAATTGAAA TGGTCTAAAT CTGATATCTA TATTTCTCCG TCTTTCCTCC CCCTCATGAT	7500
30	GAAATGCAGT TTATGAATGC ATTTGATAGA GCTATGAATT CGCTCGATGA AAAGTTCTCA	7560
3 0	TTCCTCGCAT CAGGAAAACA GATAGTAAGC AGCATGGATG ATGATAATAA GGTAAAATCA	7620
	TCTAAAGTTG AAAGTGTTGG GTTTATGAAG TGCTTTAATT CTATCCAAGG ACAAGTAGAA	7680
35	ACCTTTTTAC CTTCCATTTC TTGATGATGG ATTTCATATT ATTTAATCCA ATAGCTGGTC	7740
	AAATTCGGTA ATAGCTGTAC TGATTAGTTA CTTCACTTTG CAGGTTGTTG TGTTTGAACG	7800

	TGGTGACCTG	GTATTTGTAT	TCAACTTCCA	CCCAAAGAAC	ACATACGAAG	GGTATATATG	7860 ·
	TTTTACTTAT	CCATGAAATT	ATTGCTCTGC	TTGTTTTTAA	TGTACTGAAC	AAGTTTTATG	7920
5	GAGAAGTAAC	TGAAACAAAT	CATTTTCACA	TTGTCTAATT	TAACTCTTTT	TTCTGATCCT	7980
	CGCATGACGA	AAACAGGTAT	AAAGTTGGAT	GTGACTTGCC	AGGGAAGTAC	AGAGTTGCAC	8040
10	TGGACAGTGA	TGCTTGGGAA	TTTGGTGGCC	ATGGAAGAGT	AAGGATTTGC	TTGAATAACT	8100
	TTTGATAATA	AGATAACAGA	TGTAGGGTAC	AGTTCTCTCA	CCAAAAAGAA	CTGTAATTGT	8160
15	CTCATCCATC	TTTAGTTGTA	TAAGATATCO	GACTGTCTGA	GTTCGGAAGT	GTTTGAGCCT	8220
	CCTGCCCTCC	CCCTGCGTTG	TTTAGCTAAT	TCAAAAAGGA	A GAAAACTGTT	TATTGATGAT	8280
	CTTTGTCTTC	ATGCTGACAT	ACAATCTGT	CTCATGACAC	ACTGGTCATG	ATGTTGACCA	8340
20	TTTCACATCA	CCAGAAGGAA	TACCTGGAG	r TCCAGAAAC	A AATTTCAATC	GTCGTCCAAA	8400
	TTCCTTCAAA	GTGCTGTCTC	CTGCGCGAA	C ATGTGTGGT	A CAGTTCTTG	CGTGTGACCT	8460
	CCCTTTTTAT	TGTGGTTTT	TTCATAGTT	A TTTGAATGC	G ATAGAAGTT	A ACTATTGATT	8520
25	ACCGCCACAA	TCGCCAGTT	A AGTCCTCTG	A ACTACTAAT	T TGAAAGGTA	G GAATAGCCGT	8580
	AATAAGGTCI	ACTTTTGGC	A TCTTACTGT	т асалаасаа	A AGGATGCCA	А АААААТТСТТ	8640
30	CTCTATCCTC	TTTTTCCCT.	A AACCAGTGC	A TGTAGCTTG	C ACCTGCATA	A ACTTAGGTAA	8700
	ATGATCAAA	A ATGAAGTTG	A TGGGAACTI	A AAACCGCCC	T GAAGTAAAG	C TAGGAATAGT	8760
	CATATAATG	r ccacctttg	G TGTCTGCG(CT AACATCAAC	CA ACAACATAC	C TCGTGTAGTC	8820
35	CCACAAAGT	G GTTTCAGGG	G GAGGGTAG	AG TGTATGCA	AA ACTTACTC	CT ATCTCAGAGG	888
	тасасасса	т тттттсаат	À GACCCTTG	GC TCAAGAAA	AA AAGTCCAA	AA AGAAGTAACA	8940

	GAAGTGAAAG	CAACATGTGT	AGCTAAAGCG	ACCCAACTTG	TTTGGGACTG	AAGTAGTTGT	9000
	TGTTGTTGAA	ACAGTGCATG	TAGATGAACA	CATGTCAGAA	AATGGACAAC	ACAGTTATTT	9060
5	TGTGCAAGTC	AAAAAAATGT	ACTACTATTT	CTTTGTGCAG	CTTTATGTAT	AGAAAAGTTA	9120
	AATAACTAAT	GAATTTTGCT	AGCAGAAAAA	TAGCTTGGAG	AGAAATTTTT	TATATTGAAC	9180
	TAAGCTAACT	ATATTCATCT	TTCTTTTTGC	TTCTTCTTCT	CCTTGTTTGT	GAAGGCTTAT	9240
10	TACAGAGTTG	ATGAACGCAT	GTCAGAAACT	GAAGATTACC	AGAÇAGACAT	TTGTAGTGAG	9300
	CTACTACCAA	CAGCCAATAT	ĊGAGGAGAGT	GACGAGAAAC	TTAAAGATTC	GTTATCTACA	9360
15	AATATCAGTA	ACATTGACGA	ACGCATGTCA	GAAACTGAAG	TTTACCAGAC	AGACATTTCT	9420
	AGTGAGCTAC	TACCAACAGC	CAATATTGAG	GAGAGTGACG	: AGAAACTTAA	AGATTCGTTA	9480
20	TCTACAAATA	. TCAGTAACAT	TGATCAGACT	GTTGTAGTT	CTGTTGAGGA	GAGAGACAAG	9540
20	GAACTTAAAG	; ATTCACCGTC	TGTAAGCATC	ATTAGTGATO	TTGTTCCAGO	TGAATGGGAT	9600
	GATTCAGATG	CAAACGTCTG	GGGTGAGGAC	TAGTCAGATO	3 ATTGATCGAC	CCTTCTACCG	9660
25	ATTGGTGAT	GCTATCCTTG	CTCTCTGAG!	A AATAGGTGA	GCGAAACAA	A AAATAATTTG	9720
. •	CATGATAAA	A AGTCTGATTI	TATGATCGC	T ATCCTCGCT	C TCTGAGAAA	3 AAGCGAAACA	9780
	AAGGCGACT	CTGGACTCG	ATCTATAAG	A TAACAAAGG	C GACTCCTGG	G ACTCGAATCT	9840
30	ATAAGATAA	C AAAGGCAATT	CCAAGACTT	AATCTATAA	A AAATTTAGT	T AAGAATGATT	9900
	AACGTCCGA	T CCTAATTCG	A ATCGAGGCA	T CTTACCACT	C CATTGATAA	T TATATAAGTC	9960
35	AATAAGTCA	T ATAAAGTAT	г ааааастаа	A TTGACTTGA	T CGGTCTATC	A AAAATAGATA	10020
	AATTGTGTT	C ATATGTAAC	A TTTTTGTTG	T CACAATTAG	C TTAATTACA	T CTTTCATGTG	10080

	CAATAACAAA	GAAATGATAG	GAATTTAGAG	ATTCCAATTT	TTTTGTTGCC	ACAATTAACT	10140
	TAATTACATC	TTTCATTTGC	AATAACAAAG	AAATGATAGG	AATTTAGAGA	TCCAGTGTCA	10200
5	ATACACAACC	TAGGCCAACA	TCGAAAGCAT	AACTGTAAAC	TCATGCATGA	AGAAATCAGT	10260
	CGTAAAAATG	AATAAATGCG	ACATAAAAAC	AAATTGCATG	TATCATTAAT	GTGACTTAAC	10320
10	TACAAGTAAA	ATTAAATTA	ACAAATGTAA	CTTAACTACA	AGTAAAAATA	AATTGCTTCT	10380
10	ATCATTAACA	AACAAACAGA	ATTAAAAAGA	AAAAAACATA	CTAAATCTTA	CCGTCATTCG	10440
	AAAAAATA	ATACCAAATT	CATAATGCAA	GGAAAACGAA	ACGCGTCCTG	ATCGGGTATC	10500
15	AACGATGAAA	TGGACCAGTT	GGATCGACTG	CCTGCACAAC	GTTAGGTATG	CCAAAAAAAA	10560
	GAACACGATC	CTTTGCACCC	GTTCGATGAT	TATCAGTATG	TTCACAAAAA	AAACTTAAGT	10620
20	TCATCCCAGT	GTACAACAGC	CCCAACATCT	GCCCCAAGTA	ACAAAAAACA	ACCAATTTAT	10680
20	CTTATTCTTA	TCTGCCACAA	AATAATCGGT	TTCACACTAT	TCTCTTGTT	TACAAAATTG	10740
	ACAAGTAGGA	AGGAGAGGAG	TCATCCAAAT	· AAACGGTGC#	A CGTTCTTTG!	A GAAAAGTCTT	10800
25	ATTTTTCGTA	AGATCCAATT	TCAACAAACI	TTTCTTCAAC	TCAAAATTC	TGATAGTGTA	10860
	TCTCCTCTCG	ACGACCTCTT	GCATTGAAC	ATCTCCGCT	r atcatgaaa	A GTTGCTTGGA	10920
30	TAACAAGTAT	' TGCAAGGGGG	GGACAGTAG	TATTAAGTT	A GTCGGCCCA	A GGAAATGGAG	10980
	GAGTGATAGI	CTCGAATAT	TATTCACCTC	TTAGCATTA	CCGGTCTGG	C TTTAAGGAGT	11040
	TACGTCTTT	ACGCTCGCC	ATTTCTTTT	T TTAGAATGG	T TGGTGTCAA	A ATCGCGAGTT	11100
35	GTGGAAGGTT	CAAGTTACT	GATTCGTGA	T TTTCAAGTA	T GAGTGGTGA	G AGAGATTCGA	11160
	TATTTTCACO	AGGTGTATT	C GAGGTCTAG	T AGAACGAAG	G GTGTCACTA	A TGAAAGTTTC	11220

	•					
	69					
	AAGAGTTCAT CATCATCTTC TTCTAGTAGA TTTTCGCTTT CAAATGAGTA TGAAAATTCT	11280				
	TCCTCTTTTC TATTGATTTT CTTCATTGTT TTCTTCATTG TTGTGGTTGT TATTGAAAAG	11340				
5	AAAGAAAATT TATAACAGAA AAAGATGTCA AAAAAAAGGT AAAATGAAAG AGTATCATAT	11400				
	ACTTAAAGAG TTGCGTAGAG ATAAGTCAAA AGAAACAGAA TTATAGTAAT TTCAGCTAAG	11460				
. ^	TTAGAATTC	11469				
10	(2) INFORMATION FOR SEQ ID NO: 30:					
•	(i) SEQUENCE CHARACTERISTICS:					
	(A) LENGTH: 26 base pairs					
15	(B) TYPE: nucleic acid					
	(C) STRANDEDNESS: single					
	(D) TOPOLOGY: linear					
	(ii) MOLECULE TYPE: other nucleic acid	•				
20	(A) DESCRIPTION: /desc = "Synthetic DNA Primer"					
	(iii) HYPOTHETICAL: NO					
	(iv) ANTI-SENSE: YES					
25						

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

GGAATTCCAG TCGCAGTCTA CATTAC

30

,

- (2) INFORMATION FOR SEQ ID NO: 31:
- 35 (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 28 base pairs

 (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "Synthetic DNA Primer"

- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: YES

10

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:
- 15 CGGGATCCAG AGGCATTAAG ATTTCTGG

28

- (2) INFORMATION FOR SEQ ID NO: 32:
 - (i) SEQUENCE CHARACTERISTICS:

20

- (A) LENGTH: 32 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

25

- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "Synthetic DNA Primer"
- (iii) HYPOTHETICAL: NO
- 30 (iv) ANTI-SENSE: YES

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

32

35

(iv) ANTI-SENSE: YES

71

	\ \frac{1}{2}
	(2) INFORMATION FOR SEQ ID NO: 33:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 32 base pairs
5	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: single
	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: other nucleic acid
10	(A) DESCRIPTION: /desc = "Synthetic DNA Primer"
٠	(iii) HYPOTHETICAL: NO
	(iv) ANTI-SENSE: YES
15	
÷	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:
	CGGGATCCGG GGTAATTTTT ACTAATTTCA TG
	(2) INFORMATION FOR SEQ ID NO: 34:
25	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 32 base pairs
	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: single
	(D) TOPOLOGY: linear
30	
	(ii) MOLECULE TYPE: other nucleic acid
٠	(A) DESCRIPTION: /desc = "Synthetic DNA Primer"
	(iii) HYPOTHETICAL: NO

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:	
5	CGGGATCCCG TATGTCTCAC TGTGTTTGTG GC	32
	(2) INFORMATION FOR SEQ ID NO: 35:	
	(i) SEQUENCE CHARACTERISTICS:	
10	(A) LENGTH: 32 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc = "Synthetic DNA Primer"	
	(44)	
	(iii) HYPOTHETICAL: NO	•
		•
20	(iv) ANTI-SENSE: YES	•
		,
		•
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
		•
	CGGGATCCCC CTACATACAT ATATCAGATT AG	32
	(2) INFORMATION FOR SEQ ID NO: 36:	
30		
	(i) SEQUENCE CHARACTERISTICS:	
•	(A) LENGTH: 28 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
35	(D) TOPOLOGY: linear	
		٠

(ii) MOLECULE TYPE: other nucleic acid

(A) DESCRIPTION: /desc = "Synthetic DNA Primer"

- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: YES

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

10

CCATCGATAC TTTAAGTGAT TTGATGGC

28

- (2) INFORMATION FOR SEQ ID NO: 37:
- 15
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

20

- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "Synthetic DNA Primer"
- (iii) HYPOTHETICAL: NO

25

(iv) ANTI-SENSE: YES

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

CGGGATCCTG TTCTGATTCT TGATTTCC

28

- 35 (2) INFORMATION FOR SEQ ID NO: 38:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2122 base pairs

74

(B)	TYPE: nucleic	acid
(C)	STRANDEDNESS:	single

(D) TOPOLOGY: linear

5 (ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:

15	Статстстса	CTGTGTTTGT	GGCTGTGTGT	GTTTTTTCT	CTGTCTTTTT	GTGTTTTGTG	60
							120
		TCTTTAAAGT					
20	GCAAAATGAT	GAATCTTGAT	TGACATTAGT	AAGGGTTGTA	ACTTTTTGAA	GTTTGGTTAG	180
	GTGTAATTGA	GTTTGGCTTG	TGTGTCTGTG	TGTCGAGGTT	ATTTTTTGG	TTTGTGTTAT	240
05	TGGGGATTCT	TAAAAGTTGG	TATTGTGTAT	ACCCTTTTGA	GTATAGTCTT	TGAGGAAGCA	300
25	AAAATGATGA	ATCTTGATTG	GCATTAGTAA	AGGTTGTAGC	TTTTTGAAGT	GTGGTTAGGT	360
	GTAATTGAGT	TTGGCTTGTG	TGTCTGTGTG	TTTTGGAATC	CTGATGTGTG	TCAAGTCCTG	420
30	ATATGGGTCG	AGGTTCTTTC	TTTGGTTTGT	GTAATTGGGG	GTTCTTAAAA	GTTGGTATTA	480
	TGTACCTTTT	TAAGAATAGT	GTCTGAGAAA	A GCAAAATCGA	TGAATTTTG!	A TTGACAGCAT	540
25	ATTCTTTGAG	AAAGCAAAAA	ATGGTGAGT	r TTCATGGAGA	A AACTTGATT	G ACATTACTAA	600
35	AGGTAGCAAC	C TTTTTCAAC	CCTGATATG	GTCAAGGTT	C TTTGTTTGG	T TTGTGTAATT	660
	ም ርርርርቸቸር ጥ	r TGAAGTTTT	AGAAAGAAA	A ATTATGATT	T TTCATGGAG	A AATTTGATTT	720

	ACATTAATAA AGGTAGTAGC TTTTTAAAGT GTGGTCAGCT GTAATGAGTT CAGCTTGGTT	780
_	TAAAGGGGCC CTACATATGG TGCTTTCTGG TGAGATATTT GTTGCTCCAC CATACGAGTT	840
5	ATAAGAATCA TAGTGTTAGG ATCTTTTTTC TTTTTTTTTT	900
	ACTAGAGGAG TGATCTTGAC GGCGGAAAAT CTTAGAAAGG GGAAGGTTGT TTGCATCAAC	960
10	TGGTGTTATA TGTGCAAGGA GACGGGAGAT GATGTAGATC ATCTTCTTCT TCATTGTGGT	1020
	CTTTCCATGA GGTTATGATG TGATATGTTT GAATGGTTTG GTACTTCTTG GCTATGCCAA	1080
16	GAACTGTGAA AGAATTGATA TTCAGTTGGA AGTGTGGAGT TGGAAGAGTG GAAGAATTGA	1140
15	CACTTGGTTC CATTAGCTTT AATGTGGGTG GTGTGGAGAG AGAGAGAAAT AGGAGAGCTT	1200
	TTGAGGGGGT AGAGTTGAGC TTTCCTCAGT TGAGAAGTAG CCTTTGATAT CTTTTTTTT	1260
20	TTTTTTTGTA CACCCATAGA ATTCCCAATT GTATAGAAGA TTGGGTGGAG TTTGTAGAGA	1320
·	ATCATCTTTT GTAGTAGATT CTTTACCTTT TGGTATATCC ATTGTATACA GCCAGGCCTT	1380
25	TGACTATGTT TATGAATGAA TATACATTAC TTGAAAAAA AAGAAGTGAA GCCAGTCTGT	1440
23	TGTACCTTTG TAGACAATGT TGTTGCAGCA TCTTGATAAT TCCCTGAAAA TTGTCTCCCT	1500
٠	GAAGGAATAG TTTGGTTGAT ATTGATTATT TCTTGGTTTG TTTAATTCGG TGTTCTTGAA	1560
. 30	GGCCATTTTA AATCCTTTGA CATTGTTAAA GGTGTTTACA AGTGTTGGTC TGGGTTTAAA	1620
•	AGCACCTCTT GTATGGTGCT TTCTGGAGTG ATCTTTCTTC CTCCAAAAGA GAAGTTGCAA	1680
35	GAATCAGTGT GTGTACTTTT TTCTCTTGTA TGATCAGATC TTTTTCAAT TTTTCCGTTT	1740
33	TAGTTGATTT ATCCATATAG TGAAAGTTGG TGTCATAGTT GCTGTTTGTG GACTTCCTGT	1800
	AND GETTETT TGATATACTT ANANASTTGT CACACAGAAG AAAGAGTTTT TTACCATTAC	186

	TTAAGCTAGA	TGGGACTGTT	TGATTCTTAG	ACCAAATAAT	GAACCTTTTT	GTTCTCTTAA	1920
<i>-</i>	CGTGTACTTG	AAATAGTTTG	GTAAAATTGT	GATAGGAAAA	AAGATAATTC	TTGATTGCTT	1980
5	TTGGAGCATC	ACTTCTAATC	ATAAAAGTCT	TTGCTCTCTT	CAACCATGAA	TGATAAATTG	2040
•	GACACTTATG	TGGCCCTAAG	TTGCTCTCAG	TAGTGGTCTT	TAATTGTGGA	GATATAACTA	2100
10	ATCTGATATA	TGTATGTAGG	GA		•		2122

CLAIMS

- 1. A method of affecting enzymatic activity in a plant (or a cell, a tissue or an organ thereof) comprising expressing in the plant (or a cell, a tissue or an organ thereof) a nucleotide sequence wherein the nucleotide sequence codes, partially or completely, for an intron of a class A potato starch branching enzyme in a sense orientation, optionally together with a nucleotide sequence which codes, partially or completely, for an intron of a class B starch branching enzyme in a sense or antisense orientation; and wherein the nucleotide sequence does not contain a sequence that is sense to an exon sequence normally associated with the intron.
- 2. A method according to claim 1 wherein starch branching enzyme activity is affected and/or wherein the levels of amylopectin are affected and/or the composition of starch is changed.

15

20

25

10

5

- 3. A method of affecting enzymatic activity in a starch producing organism (or a cell, a tissue or an organ thereof) comprising expressing in the starch producing organism (or a cell, a tissue or an organ thereof) a nucleotide sequence wherein the nucleotide sequence codes, partially or completely, for an intron of a class A starch branching enzyme in a sense orientation, optionally together with a nucleotide sequence which codes, partially or completely, for an intron of a class B starch branching enzyme in a sense or antisense orientation; wherein the nucleotide sequence does not contain a sequence that is sense to an exon sequence normally associated with the intron; and wherein starch branching enzyme activity is affected and/or the levels of amylopectin are affected and/or the composition of starch is changed.
- 4. A method according to any one of claims 1 to 3 wherein the nucleotide sequence does not contain a sequence that is sense to an exon sequence.
- 30 5. A method according to any one of the preceding claims wherein the enzymatic activity is reduced or eliminated.

10

20

30

- 6. A method according to any one of the preceding claims wherein the nucleotide sequence codes for at least substantially all of at least one intron in a sense orientation.
- 5 7. A method according to any one of the preceding claims wherein the nucleotide sequence codes for all of at least one intron in a sense orientation.
 - 8. A method according to any one of the preceding claims wherein the nucleotide sequence comprises the sequence shown as SEQ. ID. No. 38, or a variant, derivative or homologue thereof.
 - 9. A method according to any one of the preceding claims wherein the nucleotide sequence is expressed by a promoter having a sequence shown as SEQ.I.D. No. 14 or a variant, derivative or homologue thereof.
- 1510. A promoter having a sequence shown as SEQ.I.D. No. 14, or a variant, derivative or homologue thereof.
 - 11. A promoter according to claim 10 in combination with a gene of interest ("GOI").
 - 12. A construct capable of comprising or expressing the invention according to any one of claims 10 and 11.
- 13. A vector comprising or expressing the invention according to any one of claims 1025 to 12.
 - 14. A combination of nucleotide sequences comprising a first nucleotide sequence coding for a recombinant enzyme; and a second nucleotide sequence which corresponds to a class A SBE intron in a sense orientation; wherein the intron is an intron that is associated with a genomic gene encoding an enzyme corresponding to the recombinant

WO 98/37214 PCT/IB98/00295

enzyme; and wherein the second nucleotide sequence does not contain a sequence that is sense to an exon sequence normally associated with the intron.

- 15. A cell, tissue or organ comprising or expressing the invention according to any one of claims 10 to 14.
 - 16. A transgenic starch producing organism comprising or expressing the invention according to any one of claims 10 to 15.
- 10 17. A transgenic starch producing organism according to claim 16 wherein the organism is a plant.
 - 18. A starch obtained from the invention according to any one of the preceding claims.

15

20

19. A method of expressing a recombinant protein or enzyme in a host organism comprising expressing a nucleotide sequence coding for the recombinant protein or enzyme; and expressing a further nucleotide sequence; wherein the further nucleotide sequence codes, partially or completely, for a class A SBE intron in a sense orientation; wherein the intron is an intron normally associated with the genomic gene encoding a protein or an enzyme corresponding to the recombinant protein or enzyme; and wherein the further nucleotide sequence does not contain a sequence that is sense to an exon sequence normally associated with the intron.

SUBSTITUTE SHEET (rule 26)

SUBSTITUTE SHEET (rule 26)

SUBSTITUTE SHEET (rule 26)

SUBSTITUTE SHEET (rule 26)

10	20	30	40	50	60 567890	
123456789012345 ATCATGGCCAATTAG	<u>36 / 8901 234</u> CTGGTTCAA!	TGCATTACTI	CCTTTCAGA	TTCTTTCGAGT	TCTCAT	60
GACCGGTCCTACTAC	CAGACGATAC	CTAACCCGTGC	AACTGTTGC	ATCTGCTTCTI	AGAACT	120
CTATGGCTATTTTC						180
CATTTACAGTCAAA						240
TTGTCATCTGTACT						300
TTGCCATATTTTGT						360
AGTACACAGATCTT	·					420
AATTTTGAGTTTAT						480
CATAAAAATAGCTA	•					540
AACGTTAATTTAGT	:AATTTTTGT	TACGTACGTA	TATGAAATAT	TGAATTAATC	ACAT GAA	600
CGGTGGATATTATA	TTATGAGTT	GGCATCAGCA	AAATCATTGO	TGTAGTTGAC	TGTAGTT	660
GCAGATTTAATAAT	raaaatggta	ATTAACGGTC	GATATTAAA!	ATAACTCTCAT	TICAAGT	720
GGGATTAGAACTAG	AAAATTATTE	AAATGTATAC	TTTAAGTGA:	PTTGATGGCAT	TTTAATA	780
AAAGTTTTTCATTT	rcatgctaa;	attgttaatt	ATTGTAATG	r'AGACTGCGAC	TGGAATT	840
ATTATAGTGTAAA	PTTATGCATT	CAGTGTAAA	TATOAAATT	IGAACTTGTCT	GTTTTAG	900
AAAATACTTTATA	CTTTAATAT	AGGATTTTGT	CATGCGAATT	OTAATTAATC	SATATTGA	960
ACACGGAATACCA	LAAAATTAAA	AGGATACACA	rGGCCTTCAT	ATGAACCGTG	ACCTTTG	1020
ATAACGTGGAAGT	TCAAAGAAG	GTAAAGTTTA	AGAATAAACT	GACAAATTAA:	TTCTTT	1080
ATTTGGCCCACTA	CTAAATTTG	CTTTACTTTC	raacatgtca	AGITGTGCCC	CTTAGTT	1140
GAATGATATTCAT	TTTTCATCC	CATAAGTTCA	atttgattgt	CATACCACCC	ATGATGTT	1200
CTGAAAAATGCTT	GGCCATTCA	CAAAGTTTAT	CTTAGTTCCT	'ATGAACTTTA'	TAAGAAGC	1260
TTTAATTTGACAT	TATTTAT	ATTAGATGAT	ATAATCCATG	SACCCAATAGA	CAAGTGTA	1320
TTAATATTGTAAC	TTTGTAATT	GAGTGTGTCT	ACATCTTATI	CAATCATTTA	AGGTCATT	1380
TTATTAAATAAAA	TTTTGACAT	TCTAAAACTT	TAAGCAGAAT	raaatagttta	TCAATTAT	1440
талаласалалал	CGACTTATT	ТАТАААТСАА	CAAACAATT	MAGATTGCTC	CAACATAT	1500

FIG.8

1034	10 567890)	15670	20	45671	30 89012	34567	40	123	456	50 7890	1234	5678	60 90	
TTTT	CCAAAI	LAAT	ATGCA	GAAAA	TGCA	TAATT	TTATA	CTT	GATY	CII	TATA	GCTI	ATTI	TT	1560
TTTA	GCCTAI	ACCAI	ACGAA	TATTI	GTAA	ACTCA	CAACT	rtga	TTA	AAA	GGGA	TTTA	CAAC	ΆA	1620
GATA	TATAT	AAGT	AGTG	CAAAT	CTTG	ATTTT	'AAAT	ATTT	TAA'	TTT	GGAG	GTC	AAA!	TT	1680
	TAATA														1740
AACT	TTTAA	ATAT.	ACGT	ATATA	_AAAA	TATA	AATT	ATTG	GCG	TTC	:ATAT	TAGO	STCA	ATA	1800
AATO	CTTAA	CTAT.	ATCT(GCCTT?	ACCAC	TAGGA	(GAAA	GTAA	AAA	ACI	CTT	'ACC	AAAA	ATA	1860
	TATTA														1920
•	AGTAG							-							1980
	TAATG														2040
	TTTE														2100
	CTGAA									LŢŢ	CAAA	STIT	TATO	AAA	2160
	ATTCG	AGGA	TCTT	TTCCA	TCTT	i CTCA	M E CCTAA	I AGT	N MC	F ITC	K AGGG	A T	. 5	· K	2220
P		G	SF	P	S F	S	P K	V	S	S	G				2280
	atctco														2340
	gtagag							•							2400
	aaaaat														2460
	gaggtt														2520
	gcttal														2580
	gatct														2640
	gtagt						•								2700
•	ttett														2760
	atctc														2820
	ittgtg														2880
	ataca														2940
	gataa:														3000
لطا	.yacaa		-ycc		2 - 2 00				;	,	55		- 5	J-J	

12345678901	20	30 4567890123	40 4567890123	50 60 45678901234567890	
acataataagt	tataatgctgag	atagctactg	aagtttgttt	tttctagccttttaaat	3060
				cctggtcatgatgtttc	
	•			tgtatcctatgagacgg	
				acgctactccaataatt	
				aattaggatatgctgca	
				gatatccatgtaacctcg	
				TTCTCAACATAGTACTG	
• .	ASI	RNKI	CFP	S Q H S T G CACCCCAAAATCAAGAG	
f. K F (SSOEI	R S W D	ISS	T P K S R V atggatagtatataaat	
RKD	E R			gtgcaccgtgtggagat	
		•			
				acttgggaaagacagct	
	•			gagcatggtgttttcac	
				gttaatacctttcttct	
tttgatataa	actaactgtggt	gcattgcttg	cbkkkatgaa m K	GCACAGTTCAGCTATTT H S S A I S	℃ 3840
CCCTCTTTTC	ACCGATGACGAC T D D D	AATTCGACAA	TGGCACCCCT	'AGAGGAAGATGTCAAGA	C 3900
TGAAAATATT	GGCCTCCTAAAT	TTGGATCCAA	CTTTGGAACC	TTATCTAGATCACTICA	AG 3960
ACACAGAATG	G L L N AAGAGATATGTG	GATCAGAAAA	TGCTCATTG	AAAATATGAGGGACCCC	T 4020
TGAGGAATTI	K R Y V GCTCAAGgtaac	D Q K M agccaaaagt	tgtgctttag	gcagtttgaccttatt	
E E F ggaagatgaa	A Q G ittgtttatacct	actttgactt	tgctagagaa	attttgcataccggggag	gt 4140
aagtagtggo	ccatttaggtg	gcacctggco	attttttg	atcttttaaaaagctgt	tt 4200
				gacacaccccggagtg	
				aaaaaagtatagacat	
•				tatagtcttaaagcaat	
				tccttctattatcatga	
				tgatacttttgttgaga	
	- 5 5 5			-	

	1	0			20			30			4	0			50	~~ 4		60		
123456	5789	012	345	678	901	234	567	890	123	456	<u> 789</u>	012	345	678	901	234	56/	890	_	
agcag	TE E E	ttt	ctt	ato	ıtaa	act	act	ctc	ttt	ttt	tgc	agG	TTA	TT	'AAA	TTA	TGC	ATT	•	4560
														u		•	•	•		
CAACA	GGZ	AGA	ATGO	TTC	CAT	ragi	CTA	TCG	TGA	ATG	CGC	TCC	TGC	TGC	TC	\gta	ıggt	cct		4620
M D	E	ח	G	_	Т	v	Y	R	E	W	A	ξ.	A	A	Q					
cgtct	acta	acaa	aaat	taσt	.agt	ttto	cat	cat	cat	aac	aga	ttt	tco	tat	taa	aago	cato	gatg	J	4680
																				4
ttgca	acat	cat	ta	acti	ttet	ttad	ato	rtto	taa	atto	rcta	tta	aagg	jtt:	atgo	ctto	cta	atta	3	4740
actca	tcc	aca:	atα	cao	GGA	AGC	AGAZ	AGT	TAT:	rgg	GAT	TT	CAA:	rggi	ATG	GAAC	CGG	TTC:	r	4800
					F	Α	E	v	Ι	G	D	F.	N	G	W	74	G	3		
AACCA	ርልጥ	ידעב	CCA	GAA	GGA	CCA	ملمك	rgg'	rGT	TTG	GAG?	TAT.	rag	TAA	ICC.	TGA'	IGT	TGA	2	4860
N H			E	ĸ	ח	0	F	G	v	W	S	I	R	I	P	D	V	D		
n n AGTAA	CCC	a Can	ርልጥ	ጥርር ጥርር	מרמו	ሮል እ፣	اعلب	CAG	AGT"	TAAC	TI.	rcg	TT	CAA	ACA'	TGG	TAA	TGG	A	4920
S K	.OC.C	V	I		H		S	R	v	K	F	R	F	K	Н	G	N	G		
GTGTG	ድ የድርጥ	ACA:	ተርር	ተልጥ	٠	TY.	ттC	GAT.	AAA	GTA'	rgc(CAC	TGC.	AGA	CGC	CAC	AAA	GIT	T	4980
A M				I	P		W	T	ĸ	Y	A	T	Α	D	A	T	K	F		
GCAGC	ארר יארר	ATA	TC A	TCC	TCT	ረጥ አ	.برد ا	GGA	CCC			TTC	AGA	AAG	gtt	ttg	tta	ttc	a	5040
A A	wcc	ATU	ייסיי	G	17	v	w	n.	P	P	P	S	E	R	_	_				
tacct	. . .		+ ==	2++	++0	220	200	atc	atc	aca				att	cat	gtt	ctt	act	a	5100
tactt	.cya	ayc	cya	امدد	ccy	ممد	٠٠٠				55-					-				
gtctt		250	+ = =	~~~	·a++	tto	222	tac	. ב ב בי	agt	taa	aat	aat	tat	gto	ttt	act	aat	t	5160
gitti	.ycc	مدي	,	gac		.ccg	حص	cyc		9.	•			_	_					
tggad	-++		.~~=	+ = c	-+ ~ +	ttc	cct	taa	caa	aat	σασ	tca	att	cta	taa	gtg	rctt	gag	ra	5220
tggad		acc		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							9-3					•	•			
actta	·	~++		7025	h+:	222	·200	ידאכ	CAC	TTC	AAA	TAC	CCI	CGC	CCI	rcco	'AA	ACCC	C	5280
actic	3000		ي د د د	,			9	Y	H	F	K	Y	P	R	P	P	K	P	R	
GAGC		CGZ	እ ጥ	יתיתי	נמביו	יככי	רבי	rGT(GGC	ATG	AGC	AGC	TCI	GAC	CC	CG	GT	LAAA	T	5340
	P		T	v	E) A	ж.	v	G	M	S	S	S	E	P	R	٧	N	S	
CGTA'	يان ج	nca.	ململت ح	ר <u>ה</u> רז	~ ^~	ייבאי	ملت. 	لابلملما م	ر درسا	rcgo	ATI	AAC	GCZ	VAA:	AA1	TA.	'AA'	rac:	rG	5400
	_		F	A		D	v	τ.	P.	R	I	K	A	N	N	Y	N	T	V	
Y TCCA	~tvt∧ ~v	ים אחעי	2000 E	ጉልጥ፤	ב אדע מ	20 A Z	יע אי	سكلما	ייים(ראיר	rGGZ	TC	ATT.	rgg	ATA'	ICA'	IGT	TAC	AA.	5460
	L		À		M	E	H	·	v	Y	G	s	F	G	Y	H	v	T	N	
ACTT	Wataka Ti	וררייי בי	ועבאו עי	כאַכּי די	ري ري. ۲.۳	raci	ימידע ימידע	TYCC:	777		GAC		CT	AAA	GTA'	TCT	GAT	AGA!	ΓA	5520
			ν.	S	S	פרי	v	C	N	P	E	D	L	K	Y	L	I.	D	K	
AAGC	F	ሙ የአርሳ	-AAA-A A	ccc	ىلملمك ح	እርኳ፤	ملت ۳	אריזע ט	اللت	CCA	LC:L)	AGT	TCA	CAG	TCA	TGC	AAG	CAA'	TA	5580
_		_		G	7	~~~ ^	301	T.	V	D.	v	v	н	S	Н	A	S	N	N	
A ATGT	H	~~ ~~~	₩CC	~~~	~ X X (₩ ~~~	—————————————————————————————————————	ייי ביי	ידיינית א	TCC	ירא:	۰۹۲	1-TC	TCA		ATC	CTA	CTT	TC	5640
AIGT				L	CAA N	100	- E	L) TOV	T	G	<u> </u>	G	ŝ	Q	E	S	Y	F	Н	
ATGC	T	ע	-C-	700	- K12	CC 2:	ב תאת	CTT C	صبت ب	ינבטי	TAC:	CVC					TGC	CAA	TT	57.00
				AGG	GIA Y	CLA	1 WW	211		D N	S	- PO	L	T	N.	Y	A	N	W	
A GGGA	G	E.	R	<u></u>	N COM	wom n	ww.	~>> 	- Mα -	יישר ער	CALC S	تىلت س	ترب ت	200	ACA				TG	5760
GGGA	CCI	TCT	1.00	TIT	CCT	TCT	TIC			R	m GIG	ษ	T.	nor.	E	v	N	F	D	_
E	. V	— ப	, K	₩C.F	mcc L	 	 	~*** N	ישעשי ה	$\sim \sim$	ענים אי	ىلىتىل 14	ברת מיחד	ב. מיצד	TCC	raa:	CA.	TAT	'GG	5820
ACGG	ATT	100	AT1	.⊥GA	ي د د	MAT T	MAL m	TIC	TAT	L	A. GTW	47	T.	щ		T	N	M	G	_ = =
G GATI	F	R	ľ	רעי ע		T.			~>> ™	י בי	GC-C	ጥልሮ	. אני ייי	ىتكىل	ACI C	เสริง	<u> </u>	rggr	CT	5880
	TAC	AGG	AAA	LIA	TAA	TIGY	1.P	77.7.7	سيدن	E	 	ተጥ	בייריבי	v.	ח	Δ	v	v	Y	
F	T	G	N	Y	N	E Total	Y	r.	S .	E Cam		~~~	יטמי ע	ν \Τ()()	ם יממי	متكامات ويو	יעידיי עידיי	سرج	CG	5940
ATT	ľAA'I	GII	ىنى:	ممت.	TAA	VICI	GAT	ייי.	**************************************	4 7047	- E		ער אבושי	 A	æ ∕2727	v	T	A A	F	
Ŀ	M	L	A	~N	N	 	. L	H		I	ملات ت	ALAIA E	יישר ה	1000 1000	2D/C/	יממ: י	رتيكيا	مليك		6000
AAGI	ATGI	TIC	TGC	ı'A']	. GCC	يى.		1160	بر رزر م	jijil P	. 101	717	W	 	יט עטייי	.محري ۲	ت. د	F	v	
	7.7	-	7.	M	-	(-	١.		×	_	v	- 3	-	u	J	-	•	•	4	

12 / 25 .

								_									
		10			20		:	30		4			50			60	
<u> 123</u>	<u>45671</u>	<u> 8901</u>	234	<u> 5678</u>	3901	2345	678	9012	3450	5789	0123	4567	890.	12345	6/8	90	
					CAA	TCC	LAGA'	TAAC	TGG	ATAG	ATTA	TTT	LAAG	ATA	'GAA	IG	6060
Y	R	L	A 1	M A	1	P	D	K	W	I D	Y	E CC	K			D.	6120
		TTGG	TCC	ATG	AGG	AAG	raac	ATCC	AGI	ו. היידורו	CAAA	.IAGC	R ?)ATA1 T	_AGA	K	0120
		W	S .	M F	(E	CCC	T.							tacaa	_	-	6180
	GIAT. I								yıa								,
<u>ل</u> دد+	 +++	rada Cada	iaca	atto	3 7773	orat:	acaa	toca	aaat	atat	acqt	cct	gaaa	gtata	aaaa	gt	6240
Laa		cage		رددد	9000	agac.	سي سي						•	•	,	-	
act	tatt	ttc	gcca	tggg	gcct	tca	gaat	atto	ggta	gccg	jctga	ata	tcat	gata	agtt	at	6300
																	6360
tta	tcca	gtga	acat	tttl	tato	gttc	acto	ctai	ttat	gtct	gctg	gat	acag	TCTA'	TIGI	16	6360
									~	~ · ·	. m~m				~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		6420
GTG	ACAA K	GAC	CATI	'GCA'	TTT(CTCC	TAAT	GGA	LAAA W	CAG	41G17	4110	I GGC	atgt M S	C110	L	0120
TC N) K CNCN	ست .T.	لمحاملا T	A I	ململت 1 یا	تاملمات ۱۲ ب	ነ መ አጥርር	יאכני ע	ጉ ጉ	הרמו היים	ר-אולים. ז	ACAA	Gatt	tgtc			6480
164	D	.1GC.	5	D 1	A 1	ם ע	R	G	I	A I	L H	K	-900	•500	-5-		
tat	taca	ttti	taac	att.	cat	atao	atta	racc:	acgg	aaa	atcto	cact	cttt	gtga	ggta	ac	6540
cag	ggtt	ctg	atgg	jatt	att	caat	tttc	tcg	ttta	tca	tttgl	ttta	ttct	tttc	atgo	cat	6600
																	6660
tgt	gttt	ctt	tttc	aat	atc	cctc	ttat	ttg	gagg	rtaa	tttt	tctc	atct	atto	acti	בבב	0000
				· - > =	~~~	~~~	······		<u> </u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	محمحم	CCNC	CNC	cccc	TAC	٠,	6720
ago	ctct	aac	caca	igat	GAT	CCAI	TITI.	TICA	CAAI) A	L	GGWG	E	C G	Y	L	0.20
227	والملمام	ישיי	ርጥን ፣	ACCA ACCA	Cat	n atot	r l	. I	et.tt	· aca	tatt	ttat		atta			6780
	F				.cgc	atyt		1000		.ugu			9				
					aag	atto	atto	cctc	aaaa	atga	cctg	aact	gttg	gaaca	tca	aag	6840
ggg	gttga	aac	atag	gagg	raaa	acaa	acat	gatg	aat	gttt	ccat	tgto	tage	gatt	tct	att	6900
																	6960
ate	gttg	ctga	gaad	caaa	itgt	cato	ctta	aaaa	aaa	catt	gttt	acti	יבבני	gtag	gcac	aga	0300
			_ <u>.</u>						~++		ant a	2556	7t (7 2 :	aatot	rtta	ato	7020
aga	attac	ecgc	aca	yagı	.ccg	Caaç	jtgt	gici	.ycc	LLYY	ayca	بعدد	Jega	aatgt	9		
22	cttal	aca	ملمك	TCCC	דבר	ירריזי	TACT	GGAT	TGA	CTTC	CCTA	GAG	AGGG	CAAT	TTAA	GGA	7080
20.	-ccy		F	G	H	P	E W	I	D	F	P F	E	G	N I	N W	S	
GT	TATG	ACAA	ATG	TAGA	ACGO	CAG	TGGA	ACC1	rccc	GGAI	AGCG	AAC	ACTT	GAGA'	TACA	AGg	7140
•	Y D	K	С	R	R	QI	W N	L	A	D.	SE	H	L	R '	Y I	•	
tt	caag	tatt	ttg	aato	gca	agcti	tgtt	aaat	aat	ctag	rtaat	ttt	taga	ttgc	ttac	ttg	7200
				•													7260
ga	agtc	tact	tgg	ttct	999	gat	gata	gcto	catt	tcat	ctto	jttc	tact	tatt	ttc	aac	7260
										-	~ -		2020	++=+	tacc	-	7320
cg	aatt	בכנכ	jacc	בבבק	gcci	_cga	gacc	caag	giai	cayo	1666	1000	acac	ttat	cace	.gcc	.,
to	attt	ctac	CAC	taar	aacı	St.ta	atos	acad	actt	aagt	tgat	ttct	ttaa	agct	atac	itt	7380
				;	- \				J		5		5 -			-	
ca	ggct	acca	atc	caca	agc	ctgc	tata	ttt	gttg	gata	actta	acct	tttc	ttta	caal	tgaa	7440
																-	
							2250	+	+ = + 0	tat:	2222	ctcc	or or	ttcc	t cc	CCCt	7500

10 12345678901234567	20 78901234567	30 890123456	40 78901234	50 567890123456	60 7890	
catgatgaaatgcagT	TATGAATGCA	TTTGATAGA	GCTATGAA	TTCGCTCGATGA	LAAAG 7	7560
TTCTCATTCCTCGCAT	LAGGAAAACAG	ATAGTAAGC	AGCATGGA	atgatgataata.		7620
F S F L A S aaatcatctaaagttg	G K Q aaagtgttggg	I V S ytttatgaag	tgctttaa	ttctatccaag	gacaa	7680 -
gtagaaacctttttac	cttccatttct	tgatgatgg	gatttcata	ttatttaatcc	aatag	7740
ctggtcaaattcggta	atagctgtact	gattagtta	acttcactt	tgcagGTTGTT V V		7800
TGAACGTGGTGACCTG	GTATTTGTAT	CAACTICC	ACCCAAAG	ACACATACGAA	GGgta	7860
tatatgttttacttat	ccatgaaatt	attgctctg	cttgttttl	aatgtactgaa	caagt	7920
tttatggagaagtaac	tgaaacaaat	cattttcac	attgtcta	atttaactcttt	tttct	7980
gatectegeatgaega	aaacagGTAT.	aaagttgga K V G	TGTGACTT	GCCAGGGAAGTA PGKY	CAGAG R V	8040
TTGCACTGGACAGTGA	TGCTTGGGAA	TTTGGTGGC	CATGGAAG			8100
A L D S D ataacttttgataata	a w E lagataacaga	r G G tgtagggta	cagttctc	tcaccaaaaaga	actgt	8160
aattgtctcatccatc	tttagttgta	taagatato	cgactgtc	tgagttcggaag	tgttt	8220
gagcctcctgccctcc	ccctgcgttg	tttagctaa	ttcaaaaa	ggagaaaactgt	ttatt	8280
gatgatctttgtcttc	catgctgacat	acaatctgt	tctcatga	cagaCTGGTCAT	rgatgt D V	8340
TGACCATTTCACATC	ACCAGAAGGAA	TACCTGGAC	TTCCAGAA		IGGTCG	8400
TCCAAATTCCTTCAA	AGTGCTGTCTC	CTGCGCGA	CATGTGTG			8460
P N S F K tgacctcccttttta	ttgtggtttt	ttcatagt	atttgaat	gcgatagaagt	taacta	8520
ttgattaccgccaca	atcgccagtta	aagtcctct	gaactacta	aatttgaaaggt	aggaat	8580
agccgtaataaggtc	tacttttggc	atcttactg	ttacaaaa	caaaaggatgcc	aaaaaa	8640
attettetetateet	ctttttccct	aaaccagtg	catgtagc	ttgcacctgcat	aaactt	8700
aggtaaatgatcaaa	aatgaagttg	atgggaact	taaaaccg	ccctgaagtaaa	gctagg	8760
aatagtcatataatg	tccacctttg	gtgtctgcg	ctaacatc	aacaacaacata	cctcgt	8820
gtagtcccacaaagt	.ggtttcaggg	ggagggtag	agtgtatg	caaaacttacto	ctatct	8880
cagaggtagagagga	ittttttcaat	agacccttg	gctcaaga	aaaaaagtccaa	aaaagaa	8940
gtaacagaagtgaaa	agcaacatgtg	tagctaaag	cgacccaa	cttgtttggga	ctgaagt	9000

													_						
	. 10	0		20			30	• • • •	450	4	0	245	670	50	234	567	60 890		
1:	23456789	<u>01234</u>	<u>5678</u>	901	234	567	<u>890</u>	123	400	787	012	242	323	+00	202	aca	Cad	90	060
a	gttgttgt	tgttg	aaac	agt	.gca	tgt	aga	tga	aca	Cat	.gcc	ayo	ممد	93	,000			-	
t	tattttgt	gcaag	tcaa	aaaa	aat	gta	cta	cta	ttt	ctt	tgt	gca	gct	tta	itgt	ata	igaa	91	120
a	agttaaat	aacta	atga	aatt	ttg	cta	gca	gaa	aaa	taç	jctt	gga	agaç	gaaa	atti	ttt	ata	9:	180
t	tgaactaa	gctaa	ctat	tatt	cat	ctt	tct	ttt	tgo	tt	ctto	ctto	ctco	ctt	gtti	tgt	gaag	9:	240
C	CTTATTAC	'AGAGI	TGA'	TGA	ACGO	ATC	TC	(GAZ	AAC?	rga)	AGA'	TTA(CAC	GAC	AGA	CAT	TTGT	9	300
_	11 V	D 17	T	₽	ס	M	C	F.	·I·	E.	ע	1	v			-	•	۵	360
A	GTGAGCTA	CTAC	LAAC	AGC	CAAI)TAT	GAC	GA(GAG'	rga(CGA	GAA.	ACT	TAA.	AGA n	S	T.	9	200
_	E L CTAGAAAT	• •	m	•	2.7	T	-	F	<u>~</u>	13	20.				ע		_	9	420
7	CTAGAAAT	I S	STAAI N	CAT	TGAC	JGA/	ACC	_A∵I\	ب د	non E	nnc T	E	V	Ÿ	Q	T	D		
	; T N ATTCTAGT	いいかてし	PACT	ACC	AAC	AGC	ZAA:	TAT	TGA	GGA	GAG	TGA	CGA	GAA	ACT	TAA	AGAT	9	480
-		T T	T.	Ð	. 170	λ	N	Ŧ	E	E	>	ע	ᄃ	~		1.	_	,	540
7	CGTTATC	racaa.	TATA	CAG	TAA	CAT	rga'	TCA	GAC	TGT	TGT	AGT	TIC	TGI	TGA	LGGA	GAGA	3	7540
		r 17	~	C	λī	T	ח	O	T	v	v	v	3	v			**	(9600
(SACAAGGA	ACTTA	AAGA D	TIC	ACC	GTC	TGT.	AAG	CAT	CAT	TAU	מיני	v	v	P	A A	E	•	
1	o K E Igggatga'	L K	D	. S	D.	_S	~~~	S TCA	CCD T	T CTD	ريار ا	'AGA	TGA	TTC	ATC			•	9660
		C D		NT	37	TAT .	C	F.	ח										
1	N D D CTACCGAT	TGGTG	AT <u>C</u> C	CTA	TCC	TTG	CTC	TCI	GAC	AA	ATAC	GIY	AGC	3CG/)AAA	CAA!	TAAAA		9720
	AATTTGCA	TGATA	LAAA	AGTO	TGA	TTT	TAT	'GAI	CGC	TAT	rcc	rcg	TC:	CIC	GAG	AAA(GAAGC		9 780
	GAAACAAA	GGCGA	CTC	CTGC	GACT	CGA	ATC	TAT	DAAT	TAE	AAC	AAA(GGC	GAC	TCC	TGG	GACTC		9840
	GAATCTAT	'AAGAT	'AAC	AAA	GCA	LATI	CC	AG	CT	rgaj	ATC	TAT	AAA	AAA	TTT	AGT	TAAGA		9900
	atgattaa	CGTCC	GAT	CCT	TTAA	CG)TA	GAG	GGCI	ATC	TTA	CCA	CTC	CAT	TGA	TAA	ATATT		9960
	TAAGTCAA	TAAGT	CAT	ATA	AWAC	TAT	LAT	AAA	ACT	AAA'	TTG	ACT	TGA	TCG	GTC	TAT	CAAAA	. 1	L0020
	ATMAGATN	iaaat.	rgtg	TTC	ATA?	rgtz	AACI	ATT	TTT	GTT	GTC	ACA	ATT	AGC	ATT:	ATI	'ACATC	: 1	10080
	TTTCATG	rgcaa'	raac	AAA	GAA	ATG	ATA	GGA	ATT	TAG	AGA	TTC	CAA	'TTI	TT	TGI	TGCCA	•	10140
	CAATTAAG	TTAA'	TTAC	ATC	TTT	CAT	TTG	CAA	AAT	CAA	AGA	raa.	GAT	PAGC	GAA?	TT?	GAGAT	:	10200
	CCAGTGT	CAATA	CACA	ACC	TAG	GCC	AAC	ÀTC	GAA	AGC	ATA:	ACT	GTA	AAA(CTC	ATG	CATGA	7	10260
	GAAATCA	GTCGT.	AAAA	ATG	AAT.	AAA	TGC	GAC	ATA	AAA	AC	CAAZ	TG	CATY	GTA'	rca:	YEARTI	3	10320
	TGACTTA	ACTAC	aagi	'AAA'	LAAT	AAA	TTT	AAC	AA.	TG1)AA1	TT	AAC	TAC	AAG	TAA	ATAAA	A	10380
	ATTGCTT	CTATO	ATTA	\ACA	AAC	AAA	CAG	CAA	'AT'	LAAJ	AGA	AAA	AAA	CAT	ACT	AAA	TCTTA	С	10440
	CGTCATT	CGATA	LAAA	LAA	ATA	rccs	raa.	TC	LATA	\TG	CAA	GGA.	AAA	CGA	AAC	GCG	TCCTG	Α	10500

FIG. 8 CONTINUED

123456789	10	20	3456789	0	40 5678901	23456	50 7890123	60 34567890	
TCGCGTAT	701234.	TC	ACCACTT	GGATC	GACTGCC	TGCAC	AACGTT	AGGTATGC	10560
TCGGGTAT	LAACGA	IGAAAIG	WCCW011	00110					
СААААААА	AGAACA	CGATCCTI	TGCACCC	GTTCG	ATGATTA	TCAGT.	ATGTTC	ACAAAAAA	10620
AACTTAAG	TTCATC	CCAGTGT	CAACAGO	CCCAA	CATCTGC	CCCAA	GTAACA	AAAAACAA	10680
CCAATTTA'	TCTTAT	TCTTATC	rgccacaa	AATAA	TCGGTTI	CACAC	TATTCT	CTTGTTAT	10740
ACAAAATT	GACAAG	TAGGAAG	GAGAGGAG	TCATO	CAAATAA	ACGGT	GCACGT	TCTTTGAG	10800
AAAAGTCT	TATTTI	TCGTAAG	ATCCAATI	TCAAC	AAACTTI	TCTTC	AAGTCA	AAATTCCT	10860
GATAGTGT	ATCTCC	TCTCGAC	GACCTCT	rgcati	GAACGAT	CTCC	CTTATO	ATGAAAAG	10920
TIGCTIGG	ATAACA	AGTATTG	CAAGGGG	GGGAC#	GTAGCT	AATTA	TTAGTO	GGCCCAAG	10980
GAAATGG?	GGAGT	SATAGTCT	CGAATAT	TATTC	CCTCTT	ragca:	TACCC	GTCTGGCT	11040
TTAAGGAC	TTACG	CTTTTAC	GCTCGCC)TTTAA	CITITIT	TAGAA'	rggttg	TGTCAAAA	11100
TCGCGAG7	TGTGG/	AGGTTCA	AGTTACT	CGATT	CGTGATT	TTCAA	GTATGA(STGGTGAGA	11160
GAGATTC	GATATT	TCACGAC	GTGTATT	CGAGG	TCTAGTA	GAACG	AAGGGTY	GTCACTAAT	11220
GAAAGTT	ICAAGA(GTTCATCA	TCATCTT	CTTCT	AGTAGAT	TTTCG	CTTTCA	aatgagtat	11280
GAAAATTY	CITCCI	CTTTTCT	TTGATTT	TCTTC	ATTGTTT	TCTTC	ATTGTT	GIGGIIGII	11340
ATTGAAA	AGAAAG	TTTAAAA	TAACAGA	AAAAG	ATGTCAA	AAAAA	aggtaa	ADAAADTAA	11400
GTATCAT	ATACTT	AAAGAGT.	rgcgtaga	GATAA	GTCAAAA	GAAAC	AGAATT	atagtaatt	11460
TCAGCTA	AGTTAG	AATTC			٠		. •		11478

FIG. 8 CONTINUED

SUBSTITUTE SHEET (rule 26)

18 / 25 **ASRNKICFPSQHSTGLKFGSQ** INTRON 1: 2.0 kb INTRON 1: 1.2 kb MEINFKVLSKPIRGSFPSFSPKVSSG SBEII MYTLSGVRFPTVPSVYKSNGFSSNGDRRNANISVFLKKHSLSR EXON 1: 26 aa SBEI

10	20	30	40	50	60	
12345678901234567	<u>89012345678</u>	<u>9012345678</u>	8901234567	/89012345678	390	
				* *		
GTATACACTCTCTGGAC	TTCGTTTTCCT	ACTGTTCCA	TCAGTGTAC	AAATCTAATGG	ATT	60
		T V P	SVYI	K S N G	F	
						•
*		SspI				
	,	BsmI				
	_		ĊM3 MTCTTC	AAAAAACACTC	ጥርጥ 1	.20
CAGCAGTAATGGTGAT		AATATTICT N I S		K K H S	L	•
SSNGD	RRNA	N I S	V F 13		_	
BsaAI						
TTCACgtatgtctcac	tgtgtttgtggd	tgtgtgtgt	ttttttctc	tgtctttttgt	gtt .	L80
SR			•			
•						
	Bsp1286I					
	BanII					
ttgtgtaattggggct	ctttaaagttg	gtattgtgta	ataccctttt	gagtatagtct	ttg :	240
009090						
4						
• •						
					•	
aggaagcaaaatgatg	eatcttdattd:	acattanta:	aggettetaa	ctttttgaagt	ttg	300
aggaagcaaaacgacg	aaccccgaccg.	acaccagca	29990090		<u> </u>	
				•		
•						•
			et casaat t	etttttaati	ttat	360
gttaggtgtaattgag	reeggeregeg	tgtttgtgt	gccgaggcca	Accecee55		
					•	
						420
gttattggggatctta	aaagttggtat	tgtgtatac	ccttttgag	catagecetty	ayya	420
		•				
			·			
						400
agcaaaaatgatgaat	cttgattggca	ttagtaaag	gttgtagct	ttttgaagtgt	ggtt	480
	•	•				•
					•	
aggtgtaattgagtt	taacttatatat	ctatatat	ttogaatco	tgatgtgtgt	caagt	540
232235425534365						•
	•		40			

FIG. 12

·		-				
10 234567890123456	20 57890123456	30 578901234	40 5678901234	50 4567890123	60 4567890	
•	·	•	,		٠.	
ctgatatgggtcgag	gttctttcti	ttggtttgt	gtaattggg	ggttcttaaa	agttggt	600
						•
			Cl Bs	aI pDI		
attatgtaccttttt	aagaatagtg	tctgagaaa	gcaaaatcg	atgaattttg	attgaca	660
•						
gcatattctttgaga	aagcaaaaa	tggtgagtt	ttcatggag	aaacttgatt	gacatta	720
	•	ř				
•						780
ctaaaggtagcaact	ttttcaactc	ctgatatgg	ggtcaaggtt	cccgcccg	geege	
					•	
						•
aatttggggttcttt	.gaagttttga	agaaagaaa	aattatgati	tttcatgga	gaaatttg	840
AseI	•			PvuII NspBII		
atttacattaataaa	iggtagtagc!	ttttaaag	tgtggtcag	, ctgtaatgag	ttcagctt	900
				:		
	Ssp1286I BanII	•				
	lpal Ndel					060
ggtttaaaggggccc	ctacatatge:	gtgctttct	ggtgagata	tttgttgctc	caccatac	960
				·		
						-
gagttataagaatca	atagtgttag	gatctttt	tcttttt	tttcatttt	cacttgac	1020
	·					
tagctactagaggag	gtgatcttga	cggcggaa	aatcttagaa	aggggaagg	ttgtttgca	1080

FIG. 12 CONTINUED

10	20 30 8901234567890123456	40 50 789012345678901234567	60 7890
123450/090123450/	0701234307070123430	7070 <u>180 200 1</u> 020 1	
tcaactggtgttatatg	Esp3I tgcaaggagacgggagatg	BsaBI matgtagatcatcttcttcttc	catt 1140
gtggtctttccatgagg	rtatgatgtgatatgtttg	gaatggtttggtacttcttgg	ctat 1200
gccaagaactgtgaaag	gaattgatattcagttggaa	FarI agtgtggagttggaagagtgg	gaaga 1260
attgacacttggttcca	attagctttaatgtgggtg	gtgtggagagagagaaata	aggag 1320
agcttttgagggggtag	gagttgagctttcctcagt	tgagaagtagcctttgatato	oRV cttt 1380
tttttttttttttaca	EcoRI Muni acccatagaattcccaatt	gtatagaagattgggtggagt	tttgt 1440
agagaatcatcttttg	tagtagattetttaeettt	tggtatatccattgtataca	gccag 1500
StuI gcctttgactatgttt	atgaatgaatatacattac	rtgaaaaaaaaagaagtgaa	ngccag 1560
tctgttgtacctttgt	agacaatgttgttgcagca	atcttgataattccctgaaaa	attgtc 1620

FIG. 12continued substitute sheet (rule 26)

10 20 30 40 50 60 12345678901234567890123456789012345678901234567890	
1234567890123430789042343070701234307023	
	1680
tccctgaaggaatagtttggttgatattgattatttcttggtttgttt	•
	•
ttgaaggccattttaaatcctttgacattgttaaaggtgtttacaagtgttggtctgggt	1740
	, ·
ttaaaagcacctcttgtatggtgctttctggagtgatctttctt	1800
ttaaaagcacccccgcacggcgcccccggagggcccccc	
BclI_BglII	
tgcaagaatcagtgtgtgtactttttctcttgtatgatcagatcttttttcaatttttc	: 1860
	·
cgttttagttgatttatccatatagtgaaagttggtgtcatagttgctgtttgtggact	1920
	c 1980
cctgtaaaagttttttgatatacttaaaaaattgtcacacagaagaagagttttttac	. 1300
AflII	•
attacttaagctagatgggactgtttgattcttagaccaaataatgaacctttttgttc	t 2040
AflIII cttaacgtgtacttgaaatagtttggtaaaattgtgataggaaaaaagataattcttga	at 2100
CECAACACACACACACACACACACACACACACACACACA	
	<u>.</u>
EarI	02.50
tgcttttggagcatcacttctaatcataaaagtctttgctctcttcaaccatgaatga	ta 2160

FIG. 12 CONTINUED SUBSTITUTE SHEET (rule 26)

10	20	30	40	50	60 67890	
123456789012345	6789012345	5/8901234	56/8901234	30703012333	<u> </u>	
aattggacacttato	gtggccctaag	ttgctctca	agtagtggtct	ttaattgtgga	gatat	2220
aactaatctgatat	atgtatgtagG	BglII GAAGATCT K I L	BDSI TGGCTGAAAAG A E K	TCTTCTTACA! S S Y N	ATTCCG S E	2280
_	fcI ACAGTTGCAGO T V A A	CATCG S				2309

FIG. 12 CONTINUED

FIG. 13

INTERNATIONAL. SEARCH REPORT

Inter anal Application No PCT/IB 98/00295

A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C12N15/82 C12N9/10 C12N1	5/11 C08B30/04	
According to	o International Patent Classification(IPC) or to both national clas	sification and IPC	
	SEARCHED		· · · · · · · · · · · · · · · · · · ·
	ocumentation searched (classification system followed by classification sy	cation symbols)	
Documental	tion searched other than minimum documentation to the extent the	nat such documents are included in the	e fields searched
Electronic d	ata base consulted during the international search (name of dat	a base and, where practical, search te	erms used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category '	Citation of document, with indication, where appropriate, of the	e relevant passages	Relevant to claim No.
X	WO 97 04112 A (DANISCO ;POULSE (DK)) 6 February 1997 cited in the application see the whole document	N PETER	1-19
X	WO 97 04113 A (DANISCO ;POULSE (DK)) 6 February 1997 cited in the application see the whole document	N PETER	1-19
Y	WO 96 34968 A (NAT STARCH CHEM; COOKE DAVID (GB); DEBET MARTI GIDL) 7 November 1996 cited in the application see page 5, paragraph 3 - para see page 9, paragraph 2 - page	NE (GB); graph 4	1-19
X	paragraph 1 see page 11, paragraph 3	_/	16-18
	the description of the Continuation of the Con	Patent family members	e are listed in annex
	her documents are listed in the continuation of box C.	A Pateria failing members	, wo 1000 III WIII MA
"A" docum consid "E" earlier filing ("L" docum which	ent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international date ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another mor other special reason (as specified)	cited to understand the prii invention "X" document of particular relev cannot be considered nove involve an inventive step w "Y" document of particular relev	conflict with the application but nciple or theory underlying the vance; the claimed invention alor cannot be considered to when the document is taken alone vance; the claimed invention
"O" docum other "P" docum	ment referring to an oral disclosure, use, exhibition or means entry by the second of the international filling date but than the priority date claimed	document is combined with	ivolve an inventive step when the hone or more other such docu- being obvious to a person skilled ame patent family
Date of the	actual completion of theinternational search	Date of mailing of the intern	national search report
2	? June 1998	09/06/1998	
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2260 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,	Authorized officer Chakravarty	. A

INTERNATIONAL SEARCH REPORT

Inte onal Application No PCT/IB 98/00295

C.(Continua	ition) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category '	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Υ	WO 90 12084 A (DNA PLANT TECHN CORP) 18 October 1990 see page 9, line 14 - line 19 see page 11, line 25 - page 12, line 11	1-19
Y	WO 92 15680 A (UNIV TEXAS) 17 September 1992 see page 6, line 17 - line 28	1-19
,		
!		

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inter anal Application No PCT/IB 98/00295

Patent document cited in search report	Publication date	Patent family member(s)	Publication date	
WO 9704112	A 06-02-1997	AU 6614596 A EP 0839202 A	18-02-1997 06-05-1998	
WO 9704113	A 06-02-1997	AU 6614696 A EP 0839203 A	18-02-1997 06-05-1998	
WO 9634968	A 07-11-1996	AU 5509996 A EP 0826061 A	21-11-1996 04-03-1998	
WO 9012084	A 18-10-1990	US 5034323 A AT 123806 T	23-07-1991 15-06-1995	
*		AU 640644 B AU 5412390 A	02-09-1993 05-11-1990	
•	•	DE 69020151 D DE 69020151 T	20-07-1995 28-09-1995	
	•	DK 465572 T EP 0465572 A EP 0647715 A	07-08-1995 15-01-1992 12-04-1995	
		ES 2075897 T JP 4504800 T	16-10-1995 27-08-1992	
		WO 9011682 A US 5231020 A US 5283184 A	18-10-1990 27-07-1993 01-02-1994	
WO 9215680	A 17-09-1992	AU 663702 B AU 1570492 A	19-10-1995 06-10-1992	
		CA 2108144 A EP 0575518 A US 5747469 A	07-09-1992 29-12-1993 05-05-1998	