

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DECEX - DEPA COLÉGIO MILITAR DO RECIFE

CONCURSO DE ADMISSÃO AO 1º ANO DO ENSINO MÉDIO PROVA DE MATEMÁTICA 22 DE SETEMBRO DE 2019

INSTRUÇÕES:

- 1-Verifique se a prova contém 20 questões, numeradas de 1 a 20. Caso contrário, reclame ao fiscal da sala;
- 2- Para cada questão, existe apenas UMA ÚNICA resposta correta;
- 3- Essa resposta deve ser marcada na FOLHA DE RESPOSTAS, que você recebeu, com caneta azul ou preta;
- 4- Marque a letra na folha de respostas conforme orientação do fiscal da sala;
- 5- Não será permitida qualquer espécie de consulta. A posse de materiais não permitidos (quaisquer aparelhos eletrônicos, livros e anotações) e/ou uso de meios ilícitos para execução da prova excluirá o candidato do Concurso de Admissão;
- 6- A duração da prova é de 3 horas para responder a todas as questões e preencher a folha de respostas.

ATENÇÃO: A FOLHA DE RESPOSTAS deverá ser preenchida dentro do tempo de 3 horas previsto para esta prova. Não haverá tempo extra para o preenchimento da FOLHA DE RESPOSTAS.

PREENCHA OS DADOS ABAIXO:

Número de inscrição:				
Nome:	 1			

<u>Item 01</u> – Plantares, uma empresa inclusiva e sustentável, é um projeto que está sendo desenvolvido por alunos do 7º Ano do Ensino Fundamental do Colégio Militar do Recife e que nasceu como trabalho da Feira de Ciência de 2018. Essa empresa pretende atuar no setor de produtos orgânicos através do cultivo e da comercialização de cestas com hortaliças.

Após os primeiros trinta dias de funcionamento, a empresa vendeu 600 cestas com hortaliças. Considerando as vendas insatisfatórias, a Plantares recorreu a uma empresa de consultoria, a qual orientou que, se houver um investimento extra, mensal, de R\$ 1.500,00 em publicidade, ocorrerá um aumento de 60 cestas em relação ao volume atual de vendas.

O Gráfico 1, abaixo, mostra a representação das funções custo total e receita total, considerando a produção e a venda de x cestas produzidas pela Plantares no período com e sem publicidade. Supondo que a Plantares realizou o investimento extra de R\$ 1.500,00 em publicidade, o qual não está incluso no custo total representado no Gráfico 1, e sabendo que lucro é a diferença entre a receita total e o custo total, é possível afirmar que:

- A) A diferença entre os lucros obtidos com e sem a publicidade não passa de R\$ 100,00.
- B) Realizando campanha publicitária, o lucro não passa de R\$ 50,00.
- C) O lucro obtido no mês em que houve a campanha publicitária foi menor do que o lucro obtido no mês sem campanha publicitária.
- D) O lucro obtido no mês em que houve publicidade foi maior que R\$ 10.000,00.
- E) O lucro obtido no mês em que não houve publicidade foi maior que R\$ 10.000,00.

A)
$$f(x) = 2. \left(x - \frac{1}{2}\right)^2 - \frac{\Delta}{4}$$

B)
$$f(x) = \left(x - \frac{1}{2}\right)^2 - \frac{\Delta}{4}$$

C)
$$f(x) = \left(x + \frac{1}{2}\right)^2 - \frac{\Delta}{4}$$

D)
$$f(x) = 2.(x - \frac{1}{2})^2 - \frac{\Delta}{8}$$

E)
$$f(x) = \left(x - \frac{1}{2}\right)^2 + \frac{\Delta}{4}$$

Gráfico 2 – Representação da função f(x)

<u>Item 03</u> – Segundo o Instituto Nacional de Pesquisas Espaciais (INPE), a Tabela 1, abaixo, contém o número de focos de incêndios ativos detectados via satélite, no período de junho de 1998 até agosto de 2019, no bioma Amazônia. De acordo com a Tabela 1, marque a única alternativa correta.

Tabela 1 - Comparação do total de focos ativos detectados pelo satélite de referência em cada mês, no período de 1998 até 31/08/2019.

referencia em cada mes, no periodo de 1996 ate 31/06/2019.													
Ano	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Total
1998	-	-	-		==	1549	3192	20075	19214	8777	3833	2547	59187
1999	160	358	130	70	449	1439	3675	21525	16106	12794	4449	1703	62858
2000	87	182	405	92	930	3211	1510	12791	10062	10226	5497	3175	48168
2001	165	699	1134	617	916	4227	1816	17679	15528	14292	8346	4256	69675
2002	590	667	901	405	1490	5702	7529	43484	48549	27110	23660	9174	169261
2003	3704	1573	1997	1038	1983	6848	15918	34765	47789	25341	19631	13813	174400
2004	2178	805	1035	1012	3131	9179	19179	43320	71522	23928	26424	16924	218637
2005	4314	1048	758	832	1746	2954	19364	63764	68560	26624	16790	6966	213720
2006	1973	879	903	709	843	2522	6995	34208	51028	18309	17474	8579	144422
2007	1918	1761	1431	760	1176	3519	6196	46385	73141	28731	16025	5437	186480
2008	938	527	860	569	383	1248	5901	21445	26469	23518	15450	6145	103453
2009	1095	354	584	435	673	1023	2327	9732	20527	19323	19104	6505	81682
2010	1697	1147	1176	633	1026	1911	5868	45018	43933	14798	12167	5240	134614
2011	771	271	427	465	528	1083	2445	8002	16987	9760	9815	7632	58186
2012	1203	438	484	473	855	1875	3095	20687	24067	14814	13259	5469	86719
2013	1181	374	738	518	796	1450	2531	9444	16786	10242	6615	8013	58688
2014	1573	473	1010	632	673	1628	2766	20113	20522	13222	12169	7773	82554
2015	2042	1047	572	762	407	1287	2817	20471	29326	19469	16935	11303	106438
2016	4657	1559	2024	1075	895	1663	6120	18340	20460	14234	11610	5124	87761
2017	796	379	736	618	805	1759	7986	21244	36569	14457	14105	7985	107439
2018	1444	888	1359	513	772	1980	4788	10421	24803	10654	8881	1842	68345
2019	1419	1368	3383	1702	854	1880	5318	29359	-	-	-	:=	45283
Média*	1624	771	933	611	1024	2765	6287	25853	33426	17173	13440	6934	110604
* O cálcu	O cálculo da média não considerou os valores do ano corrente.												

Disponível em: http://queimadas.dgi.inpe.br/queimadas/portal-static/estatisticas_estados/ Acessado em: 31 agosto 2019.

- A) O número de focos de incêndio em agosto de 2019 é o maior já registrado quando comparado aos meses de agosto dos últimos dez anos anteriores.
- B) Se o mês de setembro de 2019 registrar mais de 25 mil focos ativos, ele superará a média aritmética dos meses de setembro nos últimos dez anos anteriores.
- C) O 1º Semestre de 2019 apresentou o maior número de focos ativos já registrados desde 1999, quando comparado ao 1º semestre dos demais anos do período de 1999 a 2019.
- D) Historicamente, agosto é o mês que apresenta maior índice de focos ativos detectados de 1998 a 2018.
- E) Em 2019, o número de focos ativos detectados no mês de julho superou a média aritmética do número de focos detectados no 1º semestre do mesmo ano.

Item 04 – Um grupo de alunas montou uma empresa de vendas de brigadeiro. Inicialmente, elas praticaram a modalidade de venda a preço fixo, ou seja, o preço não variava de acordo com a demanda. Nesse período, a empresa chegou a vender, em média, 40 brigadeiros por dia ao preço de R\$ 3,50. Durante o 2º bimestre de 2019, as alunas decidiram praticar a modalidade na qual a quantidade vendida pode variar de acordo com o preço de venda, ou seja, quanto menor for o preço estabelecido, maior será a quantidade vendida. Dessa forma, ao longo do 2º bimestre de 2019, as alunas perceberam que, para cada R\$ 0,10 de desconto no preço do brigadeiro (limitado a um desconto máximo de R\$ 2,00), o número de brigadeiros vendidos por dia aumentava em 2 unidades, como pode ser observado na Tabela 2, abaixo. O Gráfico 3, abaixo, representa a receita da empresa durante o 2º bimestre de 2019. Sendo $X_1(0,0)$ e $X_2(110,0)$ os zeros da função representada no gráfico e P um ponto de coordenadas (90,90), sabendo que a receita pode ser obtida através do produto entre o preço unitário de venda e o número de unidades vendidas, determine qual é a maior receita que pode ser alcançada pela empresa de venda de brigadeiros no 2º bimestre de 2019.

Tabela 2 – Relação entre preço e quantidade vendida

quantidade vendida						
Preço unitário de	Números de brigadeiros					
venda (p), em reais.	vendidos (x)					
3,40	42					
3,30	44					
3,00	50					
2,50	60					
2,00	70					

A) R\$ 151,25

Gráfico 3 - Receita R(x)

<u>Item 05</u> – Sendo $mx^2 - 7x + 3 = 0$, com $m \in \mathcal{R} \ e \ m > 1$, uma equação do 2º grau que possui duas raízes reais distintas, para que a equação $mx^2 - 7x + 3 = 2(x - n) \cdot (x - q)$ seja verdadeira, é possível afirmar que $\sqrt{n+q}$ é:

A)
$$0 < \sqrt{n+q} < 1$$

B)
$$2 < \sqrt{n+q} < 4$$

C)
$$2 < \sqrt{n+q} < 3$$

D)
$$1 < \sqrt{n+q} < 2$$

E)
$$5 < \sqrt{n+q} < 6$$

Item 06 — O Gráfico 4, abaixo, mostra os candidatos aprovados na prova de seleção de uma empresa. Os candidatos aprovados foram distribuídos em duas equipes para realizarem duas semanas de adaptação à rotina da empresa. Na Equipe A, ficaram os 20 candidatos que obtiveram as melhores notas na seleção, e os demais aprovados foram colocados na Equipe B. As médias aritméticas das duas equipes foram calculadas com base nas notas da prova de seleção, sendo X a média das notas da Equipe A e Y a média das notas da Equipe B. Na segunda semana de adaptação, decidiu-se transferir para a Equipe A, o candidato com melhor nota na prova de seleção da Equipe B. Dessa forma, é possível afirmar que:

Gráfico 4 - Candidatos aprovados

- A) As médias aritméticas das Equipes A e B não se alteraram.
- B) A média aritmética da Equipe A aumentou e a da Equipe B diminuiu.
- C) A média aritmética da Equipe A diminuiu e a da Equipe B aumentou.
- D) As médias aritméticas da Equipe A e da Equipe B aumentaram.
- E) As médias aritméticas da Equipe A e da Equipe B diminuíram.

<u>Item 07</u> – Maria Aparecida é uma empresária do ramo culinário especializada em bolo de rolo. No início de 2019, Maria resolveu ampliar sua empresa e abrir uma filial no Shopping Recife, além da loja matriz, que fica localizada no bairro de Casa Forte. Após alguns meses de funcionamento da nova loja, a empresária foi informada por seu contador que os lucros diários das duas lojas variam de acordo com o número de bolos vendidos (x), segundo as seguintes expressões:

Loja matriz: $Lm(x) = x^2 - 20x + 187$

Loja filial: Lf(x) = 8x + 135

Com base na informação do contador e sabendo que as duas lojas recebem patrocínio para divulgar a marca de uma grande fábrica de açúcar, analise as alternativas abaixo:

- A) A filial dará mais lucro que a matriz se vender qualquer quantidade acima de 3 bolos por dia.
- B) A filial só dará mais lucro que a matriz se x > 3 ou x < 25.
- C) A matriz sempre dará mais lucro que a filial.
- D) A filial dará mais lucro que a matriz se $x \ge 2$ ou se $x \le 26$.
- E) A filial só dará mais lucro que a matriz se vender de 3 a 25 bolos por dia.

Item 08 - Analise as afirmativas I, II, III e IV e escolha, dentre as alternativas abaixo, a correta.

I - Se
$$2^x = p$$
 e $2^y = q$, é correto afirmar que $\sqrt[3]{4^{(x-y)}} = \left(\frac{p}{q}\right)^{0,666\dots}$

II - Se
$$2^n = 15$$
 e $2^p = 20$, é correto afirmar que $2^{(n-p+3)} = 6$

III -
$$\left[(3^{0,333...})^{27} - 4^{\frac{1}{2}} + \sqrt[5]{239 + \sqrt[5]{\frac{3072}{3}}} - (\sqrt[3]{3})^{3^3} \right]^{\frac{5}{\sqrt{32}}} = 1$$

$$IV - \left(\sqrt{20 + \sqrt{21 + \sqrt{8 + \sqrt{64}}} - 6 + 8^0}\right)^0 = 1$$

- A) Todas as afirmativas são verdadeiras.
- B) Somente a afirmativa I é verdadeira.
- C) Somente as afirmativas I e II são verdadeiras.
- D) Somente as afirmativas I, II e III são verdadeiras.
- E) Todas as afirmativas são falsas.

<u>Item 09</u> - Sejam a, b, c, d e f números reais, ordene-os na ordem decrescente dos seus valores absolutos, sabendo que:

$$a = 5^{24}$$

$$b = 9^{15}$$

$$c = 3^{32}$$

$$d = \frac{\sqrt{0.64} \cdot (1.5^2 - 0.125) \cdot 1.4}{1 - 0.888}$$

$$f = 2^{48}$$

<u>Item 10</u> – Escolha, nas alternativas abaixo, aquela que contém todos os valores de k tais que a equação $(4-k)x^2+2kx+k+4=0$ possua duas raízes reais distintas positivas, sabendo que k é um número real.

A)
$$k < -2\sqrt{2} \text{ ou } k > 2\sqrt{2}$$

B)
$$-4 < k < -2\sqrt{2}$$

C)
$$-4 < k < 4$$

D)
$$k < 0$$
 ou $k > 4$

E)
$$k < \sqrt{8} \ ou \ k > -\sqrt{8}$$

<u>Item 11</u> – Um muro de contenção, com 12 metros de altura, foi construído perpendicularmente a um terreno completamente plano. Em virtude de problemas estruturais, detectou-se a necessidade de se realizar uma ancoragem em ambos os lados do muro com barras de aço, conforme a Figura 1, abaixo. Segundo o engenheiro responsável pela obra, as barras de aço devem ficar perpendiculares entre si, para que o muro não altere sua posição inicial em relação ao solo. Sabendo que a menor barra mede 15 metros, qual deve ser o comprimento da maior barra de aço?

- A) 9
- B) 12
- C) 20
- D) 25
- E) 30

Figura 1

Item 12 – Sendo $z^{\frac{1}{2}}=33^{\frac{(1-x-y)}{(2-2y)}}$, e sabendo que $66^x=33$ e $66^y=2$, é possível afirmar que:

- A) z é uma dízima periódica composta.
- B) z é um número irracional.
- C) z é uma dízima periódica simples.
- D) z é um quadrado perfeito.
- E) z é um número negativo.

<u>Item 13</u> – Uma empresa, ao final do ano de 2018, decidiu implantar a participação dos funcionários nos lucros e resultados da empresa. Diante dessa situação, R\$ 200.000,00 foram distribuídos equitativamente entre seus funcionários, independentemente da quantidade de dias que o funcionário tenha trabalhado naquele ano. Porém, três funcionários que integram o primeiro escalão da empresa renunciaram às suas respectivas partes, gerando um valor adicional que será divido para todos os demais funcionários. Qual deve ser o número mínimo de funcionários que essa empresa poderia ter para que o valor adicional acima referido seja inferior a R\$ 15.000,00?

- A) 8 funcionários.
- B) 9 funcionários.
- C) 10 funcionários.
- D) 11 funcionários.
- E) 12 funcionários.

<u>Item 14</u> – Sejam as funções f(x) = 2x + 1, $g(x) = x^2 - 2x - 8$ e $h(x) = -x^2 - 2x + 8$, é correto afirmar que:

- A) $[g(x) \cdot h(x)] > 0$, quando -4 < x < -2 ou 2 < x < 4.
- B) $[g(x) \cdot h(x)] > 0$, somente quando 4 < x < 2.
- C) $[g(x) \cdot h(x)] > 0$, somente quando 2 < x < 4.
- D) $[f(x) \cdot h(x)] = 0$, quando x = 5.
- E) $[f(x) \cdot g(x)] = 0$, quando x = 5.

Item 15 - Sejam x, y e z números reais, determine a soma x+y+z, sabendo que:

I)
$$\mathbf{x} = \frac{2^{2003} \cdot 9^{1001}}{4^{1001} \cdot 3^{2003}} + \frac{4^{1001} \cdot 9^{1001}}{2^{2002} \cdot 3^{2003}}$$

II)
$$y = \frac{16^{-0.75} + \sqrt[5]{0.00243}}{\frac{2}{3} + 4.333...}$$

III)
$$z = 91.5 \cdot 10^{-2}$$

- A) 0
- B) 1
- C) 2
- D) 3
- E) 9

Item 16 – Um professor de matemática presenteia sua filha, no aniversário de 4 anos de idade, com duas moedas de R\$ 1,00, e lhe promete, diariamente, na primeira hora do dia, dobrar a quantidade de moedas, que a filha ainda tiver consigo, provenientes desta transação. No mesmo dia do aniversário, a menina já gasta uma das moedas e fica apenas com uma. Cumprindo o prometido, no dia seguinte, seu pai dobra o valor de R\$ 1,00 e a filha volta a ter R\$ 2,00. Novamente, no mesmo dia, após seu pai dobrar-lhe o valor, a menina volta a gastar uma das moedas, voltando a ficar apenas com R\$ 1,00. Esse comportamento se repete por vários dias, até que, um certo dia, a menina decide não gastar R\$ 1,00, como de costume. No dia seguinte, seu pai fica surpreso com a novidade e continua, conforme o prometido, dobrando os R\$ 2,00 que a menina possuía naquele dia. Contudo, no mesmo dia, a menina volta a repetir o padrão anterior de gastar R\$ 1,00 por dia, nunca mais vindo a repetir aquele comportamento isolado de não gastar uma das moedas. Porém, do dia em que ela não gastou a moeda em diante, a menina percebe uma mudança surpreendente no novo padrão que surge com o acúmulo de suas moedas. A contar do dia seguinte ao que a menina não gastou uma das moedas, determine qual foi o tempo mínimo necessário para que o valor acumulado ultrapassasse R\$ 1000,00.

- A) 6 dias
- B) 8 dias
- C) 9 dias
- D) 10 dias
- E) 11 dias

Pág - 08

<u>Item 17</u> – O triângulo ABC, abaixo, é um triângulo acutângulo (ângulos internos menores que 90°), cujas medidas são $\overline{BC}=4$, $\overline{CD}=3$, $\overline{BD}=2$ e $\overline{AD}=5$. Sabendo que o segmento \overline{BH} é a altura relativa ao lado \overline{AC} e que se a soma de dois ângulos α e β é igual a 180° o $\cos\alpha=-\cos(180^{\circ}-\alpha)$, determine a medida do lado \overline{AB} .

- A) $2\sqrt{6}$
- B) $\sqrt{2}$
- C) 5
- D) $\sqrt{23}$
- E) √6

<u>Item 18</u> – Seja um triângulo acutângulo (ângulos internos menores que 90°) ABC, onde seu perímetro 2p=a+b+c. Se 8p(p - c) = a.b, qual das alternativas abaixo corresponde ao valor de K, sabendo que

$$K = \frac{tg\,\hat{c}}{sen\,\hat{c}} - 4.\cos\,\hat{c}\,?$$

- A) $\frac{1}{2}$
- B) $\frac{5}{2}$
- C) $\frac{20}{12}$
- D) $\frac{18}{12}$
- E) $\frac{15}{12}$

<u>Item 19</u> – Determine todos os valores de x para os quais $\frac{-2x}{x+1} \ge \frac{4x+3}{x+2}$.

A)
$$S = \left(-2, -\frac{3}{2}\right] \cup \left(-1, -\frac{1}{3}\right]$$

$$\mathsf{B})\,\mathcal{S} = \left[-\frac{3}{2}, -1 \right) \cup \left(-1, -\frac{1}{3} \right]$$

C)
$$S = \{x \in \mathbb{R} \mid x \neq -\frac{3}{2}\}$$

D)
$$S = \{x \in \mathbb{R} \mid x < -\frac{3}{2}\}$$

$$\operatorname{E})S = \left[-2, -\frac{3}{2}\right] \cup \left[-1, -\frac{1}{3}\right]$$

Item 20 – Os macacos hidráulicos são um exemplo em nosso cotidiano da aplicação direta do Princípio de Pascal. Nesse tipo de sistema (macaco hidráulico), podemos dizer que há a comunicação entre dois cilindros cheios de fluido (óleo) e compostos por pistões que se movem em seu interior. A Figura 1, abaixo, representa um macaco hidráulico tipo jacaré em sua posição inicial. Nessa posição, o braço mecânico e a base do macaco são coplanares. Sabendo que o macaco representado pelas figuras abaixo possui um braço mecânico com 70 cm de comprimento e uma abertura angular máxima de 42°, qual será a variação na altura (altura final – altura inicial) de um objeto que se encontra a 30 cm do solo quando o mesmo for erguido verticalmente até atingir a abertura angular máxima do macaco hidráulico? (Dados: Altura do braço mecânico, na posição inicial, em relação ao solo=20 cm, tg 42° = 0,9; sen 48°=0,74 e cos 48°=0,66)

- A) 46,2 cm
- B) 36,2 cm
- C) 66,2 cm
- D) 21,8 cm
- E) 30,3 cm

ENSINO FUNDAMENTAL CONCURSO DE ADMISSÃO AO <u>6º ANO</u> 2019/2020

