Classification and Evolution of Field Programmable Logic Devices

Topics

- Distinction from ASIC
- Classification & evolution of FPLDs
- FPLD markets

Field-Programmable Gate Array (FPGA)

Field-Programmable Devices

- *User-configurable* ICs.
- They are standard parts, not designed for any particular application.
- Unlike traditional ASIC, logic function is specified by the user *after* the device is manufactured.
- They are programmed/configured by the users to implement their designs *at their own sites*.
- *Instant configuration* (in minutes) at users' site.

Advantages of Field-Programmable Logic Devices

- Short turnaround time for new designs
- Low startup cost
- Low inventory cost
- Low risk
- Allow easy design changes

How to make a chip that can realize different circuits and configurable?

What are the essential elements that make up any circuit?

What do you expect within a FPLD?

- Substantial amounts of uncommitted combinational logic.
- 2. Contain flip-flops/latches.
- 3. Programmable interconnections between the combinational logic, flip-flops, and chip input/outputs.

Types of Field-Programmable Devices

- Simple Programmable Logic Devices (SPLDs)
- Complex Programmable Logic Devices (CPLDs)
- Field-Programmable Gate Arrays (FPGAs)

Programmable Logic Array (PLA)

- A simple programmable logic device (SPLD).
- The first programmable logic device introduced in the early 1970s by Philips.
- Use a 2-level logic structure to implement programmed logic.
- Based on idea that logic functions can be realized in *sum-of-products* form.
- A programmable array of AND gates feeding a programmable array of OR gates.

PLA Structure (Conceptual)

PLA Realization

Function Implementation by PLA

Programmable Array Logic (PAL)

- Introduced to overcome the weaknesses of PLAs (programmable switches were hard to fabricate correctly and introduced significant propagation delays).
- A programmable array of AND gates feeding a fixed array of OR gates.
- PAL usually contains flip-flops connected to the OR gate outputs to implement sequential circuits.
 (Macrocell: an OR gate combined with a flip-flop and extra circuitry in a PAL.)
- PLAs and PALs are useful for implementing small digital circuits, typically ≤ 32 combined inputs and

PAL Structure

Function Implementation by PAL

- 4-input, 4-output PAL
 with fixed, 3-input OR
 terms
- What are the equations for F1 through F4?

$$F1 = \overline{A} \overline{B} + \overline{C}$$

$$F2 = \overline{A}B \overline{C} + AC + AB$$

$$F3 =$$

$$F4 =$$

Adapted from Logic and Computer Design Fundamentals. Copyright Prentice Hall.

M

PAL and PLA Comparison

How to get larger capacity?

Complex Programmable Logic Device (CPLD)

Complex Programmable Logic Device

- Combines multiple PAL-like blocks with programmable interconnect network.
- Provides much larger capacity than SPLDs.

Field-Programmable Gate Array (FPGA)

- A high-capacity programmable logic device providing multi-level logic.
- Introduced in 1985 by Xilinx.
- Classic FPGA consists of an array of programmable logic blocks surrounded by programmable interconnect.

Field-Programmable Gate Array

SRAM-Based FPGA

SRAM-Based FPGA

Microprocessor vs Custom Chip vs FPGA

- Microprocessor
 - □ Rely on software to implement functions
 - ☐ Slowest, most power-hungry
 - □ Re-programmable (load different software)
- Custom Chip
 - ☐ Designed for a particular purpose
 - ☐ Fastest, most power-efficient
 - □ Not re-programmable
- FPGA
 - □ Not designed for any particular function
 - ☐ In between microprocessor and custom chip in speed and power
 - □ Re-programmable (most)

Rapidly Increasing Logic Capacity

Figure 1. Largest FPGA announced (by equivalent 4-input Logic Elements - LEs).

Today's FPGAs

- Much more than just an array of programmable logic blocks
- Common additional resources: embedded memory blocks, fast carry logic chains, DSP blocks, etc.
- Versatile programmable I/Os
- May contain ≥ 1 microprocessors
- Applications: audio, video, wireless, industrial equipments, network components, medical, automotive, etc.
- Vendors offer a variety of FPGAs with specialized advanced features catering for different markets

Advanced Features of Today's FPGAs

Typical Layout of Today's FPGA

SoC FPGA

Integrate software programmability of processor with hardware programmability of FPGA in a single chip

Dual ARM Cortex A9-Based Hard Processor System

Notes:

- ¹ Integrated direct memory access (DMA)
- ² Integrated error correction code (ECC)
- ³ Multiport front-end interface to hard memory controller

AI-optimized FPGAs

- Divergent DSP block requirements for different application domains
 - □ high-precision floating point in HPC
 - □ medium-precision fixed-point in communications
 - □ low-precision fixed-point in DL
- Embedded tensor blocks are introduced to replace conventional DSP blocks in AI-optimized FPGAs (e.g. Stratix 10 NX)

References

S. M. Trimberger. 2015. "Three ages of FPGAs: A retrospective on the first thirty years of FPGA technology". Proc. of IEEE, 318-331