Міністерство освіти і науки України Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Фізико-технічний інститут

«Хмарні технології»

Лабораторна робота №2

Виконав: студент гр. ФБ-92 Курганський Л.С. Мета роботи: ознайомитися з використанням AWS Simple Storage Service S3

Завдання:

- 1. Отримати програматично дані щодо курсу гривні у JSON-форматі на інстанс (https://bank.gov.ua/ua/open-data/api-dev) (засобами Python за 2021 рік)
- 2. Написати скрипт, що створить відповідний сsv-файл з даними, конвертуючи отриманий json-файл з пункту
- 3. Створені csv-файли мають програматично вивантажуватись на S3
- 4. Розробити скрипт для читання файлів з бакету та візуалізації курсу валют засобами Python (наприклад у jupyter notebook https://jupyter.org, ядро якого працюватиме на інстансі, а сам він буде працювати у браузері на вашому комп'ютері)
- 5. Побудувати графік із курсом гривні щодо іноземних валют (Долар США та Євро) для 2021 року.
- 6. Зберегти побудований графік на бакет та додати його до звіту
- 7. Результати усіх кроків оформити у вигляді детального протоколу зі скріншотами та командами в консолі які використовувалися
- 8. Навести перелік проблем, вирішення яких було складним в ході виконання роботи в розділі висновків до протоколу

Хід виконання роботи:

Парсер даних:

```
#створення списку потрібних дат

df = pd.DataFrame({"date":[], 'USD':[], 'EUR':[]})

dates = pd.Series(pd.date_range(start='1/1/2021', end='12/31/2021',

freq='d'))

dates = dates.dt.strftime('%Y%m%d')

for date in dates:

    df_t =

pd.read_json(f'https://bank.gov.ua/NBUStatService/v1/statdirectory/exchange?date=
{date}&json')

    df_t =

pd.DataFrame({"date":df_t[df_t['cc']=="USD"]['exchangedate'].values,

'USD':df_t[df_t['cc']=="USD"]['rate'].values,

'EUR':df_t[df_t['cc']=="EUR"]['rate'].values})

    df = pd.concat([df,df_t], axis=0)

df = df.reset_index(drop=True)

    df.to_csv("data.csv", index=False)
```

ФБ-92 Курганський Л.С.

```
■ data.csv
           ×
data.csv
  1
       date,USD,EUR
  2
       01.01.2021,28.2746,34.7396
       02.01.2021,28.2746,34.7396
       03.01.2021,28.2746,34.7396
       04.01.2021,28.2746,34.7396
       05.01.2021,28.431,34.9389
       06.01.2021,28.4028,34.846
       07.01.2021,28.4028,34.846
       08.01.2021,28.4028,34.846
       09.01.2021,28.4028,34.846
 10
 11
       10.01.2021,28.4028,34.846
```

Створення S3:

Налаштування клієнту:

```
PS C:\Users\Nagruk\Desktop\IPT_3_2\git\lab_2> aws configure
AWS Access Key ID [None]: AKIAZGHC27RHPE
AWS Secret Access Key [None]: /fzFTwytBoxIAf0p2ppz6xj1b08
Default region name [None]: eu-west-3
Default output format [None]: json
PS C:\Users\Nagruk\Desktop\IPT_3_2\git\lab_2>
```

Завантаження на S3:

```
def s3_upload(filename, backetname):
    s3 = boto3.client('s3')
    with open(filename, "rb") as f:
        s3.upload_fileobj(f, backetname, filename)
```

Завантаження з S3:

```
def s3_download(filename, backetname):
    s3 = boto3.client('s3')
    s3.download_file(backetname, filename, filename)
```

Налаштування захищеного тунелю для Jupyter notebook:

Встановлення на сервер jupyter notebook:

```
    □ ubuntu@ip-172-31-2-174: ~

ubuntu@ip-172-31-2-174: ~ $ sudo apt install python3-pip

    □ ubuntu@ip-172-31-2-174: ~

ubuntu@ip-172-31-2-174: ~ $ sudo pip3 isntall jupyter notebook
```

Встановлення на клієнт plink і створення захищеного тунелю:

```
ssh -i .\lab_1.pem -N -f -L localhost:8888:localhost:8889 ubuntu@13.38.79.81
```

З'єднання встановлено:

Надсилаємо програмні файли на сервер:

.git	File folder	2/11/2022 9:07:05
lab_2	File folder	2/12/2022 6:50:16
SCC 1 Upload	der	2/11/2022 3:19:14
707 A LICL I		2/11/2022 2 10 12

Налаштування серверу:

```
ubuntu@ip-172-31-2-174:~$ aws configure

AWS Access Key ID [None]: AKIAZGHC27RHPE: The second of the
```

Створення графіку та його збереження

Графік:

Загрузка графіку на бакет:

s3_upload('plot.png', 'lkurgan')

Результат:

Name ▲	Type ♥	Last modified ▽	Size ▽	Storage class ▽
data.csv	CSV	February 12, 2022, 10:21:38 (UTC+02:00)	10.0 KB	Standard
D plot.png	png	February 12, 2022, 19:11:57 (UTC+02:00)	35.6 KB	Standard

Перелік проблем:

З'єднання через plink не вийшло, але команда для Linux, також підходить для PowerShell

Висновок:

AWS пропонує платформу для хмарних обчислень та для збереження даних.

S3 — це хмарне сховище об'єктів, яке використовують для зберігання файлів та їх обробки. Переваги: продуктивність, масштабованость, доступніст та безпека даних.

S3 використовують для зберігання великих обсягів даних для подальшої обробки, резервного копіювання та відновлення, архівації даних, тощо.

Даний сервіс ϵ досить вдобним, хоч і потребу ϵ певні знання: уміння працювати з командним рядком, SSH з'єднаннями, специфічні бібліотеки для мови програмування.