Experiment No.: 04
ADALINE Network

Aim: To develop a SCILAB program for OR function with bipolar inputs

and targets using ADALINE network.

Apparatus: SCILAB

Theory: Widrow and Hoff [1960] developed the learning rule that is very

closely related to the perceptron learning rule. The rule, called the

Delta rule, adjusts the weights to reduce the difference between the

net input to the output unit, and the desired output which results

in a least mean squared error (LMS error). Adaline (Adaptive Linear

Neuron) and Madaline (Multi-layered Adaline) networks use the

LMS learning rule.

Adaline uses bipolar activations for its input signals and target output. The weights and bias of the adaline network are adjustable. The adaline network has only one output unit which receives input

from several units and bias (whose activation is always +1). The

link between the input and the output neuron possess weighted

interconnections, which can be changed as the training progresses.

The initial weights are set to small random values and not to zero

as in case of perceptron as it influences the error factor. The net

input is calculated based on the training input patterns and the

weights. By applying the delta learning rule, the weight updation is

carried out. The training process continues until the error, which is

the difference between the target and the net input becomes

1

minimum.

B.E (Electronics) / Sem VII / NNFL

Training
Algorithm:

Step 1: Initialize all the weights and the bias to small random values other than zero.

Step 2: While stopping condition is false, perform steps 3 - 7.

Step 3: Set activations for the input units with input vector.

$$x_i = s_i$$
 $(i = 1 \text{ to } n)$

Step 4: Set activation for the output unit with output neuron.

$$y = t$$

Step 5: Compute net input to output unit

$$y_{in} = b + \sum_{i=1}^{n} x_i w_i$$

Step 6: Update the weights and the bias,

$$w_i(new) = w_i(old) + \alpha(t - y_{in})x_i \dots for \ i = 1 \ to \ n$$
$$b(new) = b(old) + (t - y_{in})$$

Step 7: Test for stopping condition.

The stopping condition may be when the weight change reaches small level or number of iterations attained.

Procedure:

- 1. To implement the function using SCILAB / Python code and check the resultant weights and bias values for each epoch.
- 2. Calculate the mean error per epoch and stop the program when the error remains constant.
- 3. Display the final weights and bias values.

B.E (Electronics) / Sem VII / NNFL 2
SAP No: 60001180046 DATE: 17/09/2021

Problem : Implement OR function using ADALINE networks for bipolar inputs and targets. (learning rate, $\alpha = 0.1$).

The algorithm should stop if the total error between 2 epochs is less than 0.1. Display the final weights and total number of epochs.

Results:

1. Solve and upload the given problem for 2 epochs.

	Learni	ng rate	α =	0.1									
	Inputs		Target	Net input		We	ight chan	ges		Weights		Error	Total Error
x1	x2	b	t	Yin	t-yin	Δw1	Δw2	Δb	w1	w2	b	(t-yin)^2	E
Initial condition				•	•				0.1	0.1	0.1		
1	1	1	1	0.3	0.7	0.07	0.07	0.07	0.17	0.17	0.17	0.49	
1	-1	1	1	0.17	0.83	0.083	-0.083	0.083	0.253	0.087	0.253	0.6889	3.0210875
-1	1	1	1	0.087	0.913	-0.091	0.0913	0.0913	0.1617	0.178	0.344	0.83357	
-1	-1	1	-1	0.0043	-1.0043	0.1004	0.1004	-0.1	0.2617	0.2787	0.2439	1.00862	
	•		•			Ep	och 2						
1	1	1	1	0.7847	0.2153	0.0215	0.0215	0.0215	0.2837	0.302	0.2654	0.04635	
1	-1	1	1	0.2488	0.7512	0.07512	-0.0751	0.07512	0.3588	0.2688	0.3405	0.5643	1.9328506
-1	1	1	1	0.2085	0.7915	-0.0792	0.07915	0.07915	0.2796	0.3059	0.4196	0.62647	
-1	-1	1	-1	-0.1659	-0.8341	0.08341	0.08341	-0.0834	0.363	0.3893	0.3362	0.69572	

2. (Code and outputs)

Code:

```
//truth table
//x1 x2 b t
//1 1 1 1
//1 -1 1 1
//-1 1 1 1
//-1 -1 1 -1
clc ;
clear ;
disp("Reeha Parkar - 60001180046");
disp ('Adaline network for OR function Bipolar inputs and targets') ;
// inputs
x1 = [1 \ 1 \ -1 \ -1];
x2 = [1 -1 1 -1];
// bias
x3 = [1 \ 1 \ 1 \ 1];
// target
t = [1 \ 1 \ 1 \ -1];
// weights and bias
w1 = 0.1;
w2 = 0.1;
b = 0.1;
//learning rate
alpha = 0.1;
```

B.E (Electronics) / Sem VII / NNFL

SAP No: 60001180046 DATE: 17/09/2021

3

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Department of Electronics Engineering

```
// error:
e = 0;
e1=0;
delw1 = 0; delw2 = 0; delb = 0;
epoch =1;
//1st epoch
for i =1:4
   nety(i) = w1*x1(i) + w2*x2(i) + b;
   nt = [nety(i) t(i)];
   delw1 = alpha*(t(i)-nety(i)) * x1(i);
    delw2 = alpha*(t(i)-nety(i)) * x2(i);
   delb = alpha*(t(i)-nety(i)) * x3(i) ;
    // weight changes
   wc =[ delw1 delw2 delb ]
    // update weights
   w1 = w1 + delw1;
    w2 = w2 + delw2;
   b = b + delb;
    //new weights
   w = [ w1 w2 b ];
    // input current
   x = [x1(i) x2(i) x3(i)];
end
for i = 1:4
e = e + (t(i)-nety(i))^2;
end;
//Error prints:
disp("Error after first epoch:");
disp(e);
//2nd epoch
for i =1:4
   nety(i) = w1*x1(i) + w2*x2(i) + b;
   nt = [ nety(i) t(i) ];
    delw1 = alpha*(t(i)-nety(i)) * x1(i);
    delw2 = alpha*(t(i)-nety(i)) * x2(i);
   delb = alpha*(t(i)-nety(i)) * x3(i);
    // weight changes
    wc =[ delw1 delw2 delb ]
    // updating of weights
    w1 = w1 + delw1;
   w2 = w2 + delw2;
   b = b + delb;
    //new weights
   w = [ w1 w2 b ];
    // input pattern
    x = [x1(i) x2(i) x3(i)];
end
for i =1:4
   e1 = e1 + (t(i)-nety(i))^2;
end:
//Error prints:
disp("Error after second epoch:");
disp(e1);
```

B.E (Electronics) / Sem VII / NNFL

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

5

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Department of Electronics Engineering

```
disp("Error difference error2-error1");
disp(e-e1);
epoch = epoch + 1;
while (e - e1) > 0.1
    epoch = epoch +1;
    e = e1;
    e1 = 0;
    for i =1:4
        nety(i) = w1*x1(i) + w2*x2(i) + b;
       nt = [nety(i) t(i)];
        delw1 = alpha*(t(i)-nety(i)) * x1(i);
        delw2 = alpha*(t(i)-nety(i)) * x2(i);
        delb = alpha*(t(i)-nety(i)) * x3(i);
        // weight changes
        wc =[ delw1 delw2 delb ]
        // update weights
        w1 = w1 + delw1;
        w2 = w2 + delw2;
        b = b + delb;
        //weights
        w = [ w1 w2 b ];
        // input
       x = [x1(i) x2(i) x3(i)];
    //printing the error difference
    for i =1:4
        e1 = e1 + (t(i) - nety(i))^2;
    disp("Current epoch:");
    disp(epoch);
    disp("Current epoch error");
    disp(e1);
    disp("Error difference");
    disp(e-e1);
end
disp("Total Number of epochs ");
disp(epoch);
disp("The final bias is: ");
disp(b);
disp("The final weights are: ");
disp("w1 =");
disp(w1);
disp("w2 =");
      disp(w2);
```

Output:

B.E (Electronics) / Sem VII / NNFL

B.E (Electronics) / Sem VII / NNFL 6 SAP No: 60001180046 DATE: 17/09/2021

Conclusion:

Hence, in this lab, we developed a SCILAB program for OR function with bipolar inputs and targets using ADALINE network. The solved values and the experiment values match which proves the accuracy of the model.

B.E (Electronics) / Sem VII / NNFL 7 SAP No: 60001180046 DATE: 17/09/2021

Review Questions

Answer the following questions on journal sheets and attach the images or scan a pdf for the same.

- 1. Define delta rule and state error function for delta rule.
- 2. What is the significance of Adaline network?
- 3. Explain stopping condition for Adaline network
- 4. How is a Madaline network formed?
- 5. State applications for Adaline and Madaline network

B.E (Electronics) / Sem VII / NNFL 8
SAP No : 60001180046 DATE : 17/09/2021

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

Department of Electronics Engineering

	NNFL Review Questions. ADALINE NETWORK. Ree ha Parkar 60001180046. 1 of 4
Q1·	Define delta rule and state error function for detta rule Delta rule: the adjustment made to the synaptic weight
	of a neuron is proportional to the product of the error signal and the input signal of the synapse in sit question.
	The update value of synaptic weight is: $wkj (n+1) = wkj (n) + bwkj (n)$ in computational terms: $wkj (n) = z^{-1} [wkj (n+1)]$ $z^{-1} : storage element$ $where : weight change is given as:$ $b wkj (n) = nek (n) 2j (n)$
	where $e \neq (n) = error$ function and it is given as: $e \neq (n) = [d \neq (n) - o \neq (n)] f'(net)$
	f'(net) = derivative of the activation function
Q2.	what is the significance of Adaline network?
	Adaptive linear neural element network mates use of supervised learning with linear activation function. It has only one output unit: It may be trained using delta tule It helps minimize the mean squared error
<u>Sundaram</u>	FOR EDUCATIONAL USE

 $\rm B.E$ (Electronics) / Sem VII / NNFL

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

10

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA : 3.18)

Department of Electronics Engineering

	Reeha Parkar 6000 1180046
	2 of 4
	between the activation and target values it uses bipolar activation function.
	the weights and biar in the algorithm are adjustable
	It allows us to keep track of the error for each steration, hence nelps understand better, the
-	effectiveness of the model and create a stopping condition the network training is contained until this error is minimized to a very small value:
	very oman variae
	Explain stopping condition for paquine network: Adaline: training algorithm.
	not wro-set the learning parameter a.
	Set activations for the input units $i=1$ to n . Net input $y_n = b + \sum_{i=1}^{n} a_i w_i$
1 -	update weights and bias. w; (new) = w; (old) + a (t-yin) = i
(V)	b(new) = b(old) + x(t-yin) Once the weight change that occurred during the training is smaller than a specified tolerance, then stop the training process, else continue this is the
(Vi)	test of stopping condition for this network. Perform steps (ii) to (v) for each bipolar training, when stopping condition is false.
Q4-	How is Madaline Network formed?
Jundaram	FOR EDUCATIONAL USE

B.E (Electronics) / Sem VII / NNFL

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

11

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Department of Electronics Engineering

	Reena Partar 600011800UG 3 of 4 Madaline network is formed using many adaline networks in parallel with a single output whose value is based on certain selection values rules. It may use a majority rate rule.
	Adaline Network Adaline Network Adaline Network
0 -	Each Adaline unit receives the input bits and bias function.
	The weighted sum of the input is calculated and
-	passed onto the bipolar threshold units. The logical ANDing of two threshold outputs are computed to obtain the final output.
	me weights that are connected to radine layer to madaline layer are fixed, positive, and possess equal values, and the weights between input layer and radine layer are adjusted during the process.
-	Non linear separability is tackled using milliple Adalines.
Q5·	state applications for Adaline and Madaline network.
	Adaline:
	pattern recognition
Gundaram	FOR EDUCATIONAL USE

 $\rm B.E$ (Electronics) / Sem VII / NNFL

12

Department of Electronics Engineering

	Recha Parkar 60001180046
	4 of 4.
	It has better convergence properties than perception,
	useful in noise correction. used in every modem.
	echo cancellation.
	in a device used for medical purposes -it allows
	computer to see, tecl, or near their own instructions-
	madaline:
	Invariant pattern recognition.
	venicle inductive signature, recognition using madatine.
-	
(Gundaram)	FOR EDUCATIONAL USE

B.E (Electronics) / Sem VII / NNFL