

Principles of Autonomy and Decision Making

(AI_PrincAutonomy_2808)

Week 8: Reinforcement Learning

Guest Lecturer: Zahra Zeinaly, Ph.D.

Ref: Adapted from RL Course by David Silver

Team:

- · Prof. Dr. rer. nat. Lenz Belzner
- Chidvilas Karpenahalli Ramakrishna, M.Eng.
- · Adithya Mohan, M.Eng.
- Zahra Zeinaly, Ph.D.

Contents

- About Reinforcement Learning problem
- The Reinforcement Learning Formalism
- Inside an RL agent
- Problems within Reinforcement Learning

Many Faces of Reinforcement learning

Ref: RL course by David Silver

Reinforcement Learning in a nutshell

- RL is a general-purpose framework for decision-making
 - RL is for an agent with the capacity to act
 - Each action influences the agent's future state
 - Success is measured by a scalar reward signal
 - Goal: select actions to maximise future reward
 - Learning rather than direct planning

Week 8: Reinforcement Learning About RL

What makes reinforcement learning different from other machin learning paradigms?

か

- There is no supervisor, only a reward signal.
- The agent learns by interacting with environment.
- The Learning can be done without examples of optimal behaviour.
- Feedback is delayed, not instantaneous.
- Time really matters (sequential, non i.i.d data).
- Agent's actions affect the subsequent data it receives.

Week 8: Reinforcement Learning About RL

Examples of Reinforcement Learning

- Fly manoeuvres in a helicopter
- Manage an investment portfolio
- Control a power station
- Make a humanoid robot walk
- Play many different video games better than humans

Week 8: Reinforcement Learning About RL

Helicopter Manoeuvres

http://heli.stanford.edu/

Paper: <u>Autonomous Helicopter Aerobatics through Apprenticeship Learning</u>, Pieter Abbeel, Adam Coates, and Andrew Y. Ng, 2010

Week 8: Reinforcement Learning About RL

Traffic Light Control

Week 8: Reinforcement Learning About RL

Make a robot walk

4

https://www.dropbox.com/s/fdn1loibsh2p0sa/parkour.mp4?e=1&dl=0

The RL Problem: Reward

Rewards

- A reward R_t is a scalar feedback signal
- Indicates how well agent is doing at step t
- The agent's job is to maximise cumulative reward

$$G_t = R_{t+1} + R_{t+2} + R_{t+3} + \cdots$$

We call this the return

Reinforcement learning is based on the reward hypothesis.

Reward Hypothesis

All goals can be described by the maximisation of expected cumulative reward

The RL Problem: Reward

Examples of Rewards

- Fly manoeuvres in a helicopter
 - + reward for following desired trajectory
 - reward for crashing
- Manage an investment portfolio
 - + reward for each \$ in bank
- Control a power station
 - + reward for producing power
 - reward for exceeding safety thresholds
- Make a humanoid robot walk
 - + reward for forward motion
 - reward for falling over
- Play many different video games better than humans
 - +/- reward for increasing/decreasing score

The RL Problem: Reward

Sequential Decision Making

4

- Goal: select actions to maximise total future reward
- Actions may have long term consequences
- Reward may be delayed
- It may be better to sacrifice immediate reward to gain more long-term reward.
- Examples:
 - A financial investment (may take months to mature)
 - Refuelling a helicopter (might prevent a crash in several hours)
 - Blocking opponent moves (might help winning chances many moves from now)

Week 8: Reinforcement Learning The RL Problem: Environments

Agent and Environment

- At each step t the agent:
 - Receives Observation O_t
 - Executes Action A_t
 - Receves Reward R_t
- The environment
 - Receives action A_t
 - Emits observation O_{t+1}
 - Emits reward R_{t+1}
- t increments at env. step

Ref: RL course by David Silver

The RL Problem: state

History and state

■ The **history** is the full sequence of observations, actions, rewards

$$H_t = O_0, A_0, R_1, O_1, \dots, O_{t-1}, A_{t-1}, R_t, O_t$$

- i.e. all observable variables up to time t
- State is the information used to determine what happens next
- Formally, state is a function of the history:

$$S_t = f(H_t)$$

The RL Problem: state

Environment state

- The environment state is the environment's internal state
- It is usually invisible to the agent
- Even if it is visible, it may contain lots of irrelevant information

Ref: RL course by David Silver

The RL Problem: state

Agent state

- The agent state S_t is the agent's internal representation
- i.e. whatever information the agent uses to pick the next action
- i.e. it is the information used by reinforcement learning algorithms
- Agent State is the information used to determine what happens next
- It can be any function of history:

$$S_t = f(H_t)$$

Ref: RL course by David Silver

The RL Problem: state

Information state

 An information state (a.k.a. Markov state) contains all useful information from the history.

Definition

A state S_t is Markov if and only if

$$\mathbb{P}[S_{t+1}|S_t] = \mathbb{P}[S_{t+1}|S_1, ..., S_t]$$

- The future is independent of the past given the present
- Once the state is known, the history may be thrown away
- i.e. The state is a sufficient statistic of the future
- The history H_t is Markov.

Week 8: Reinforcement Learning

The RL Problem: state

Rat Example

Ref: RL course by David Silver

- What if agent state = last 3 items in sequence?
- What if agent state = counts for lights, bells and levers?
- What if agent state = complete sequence?

The RL Problem: state

Fully observable environment

- Agent directly observes environment state
- Agent state= environment state= information state

$$S_t = O_t$$
= environment state

Formally, this is a Markov decision process (MDP)

Ref: RL course by David Silver

The RL Problem: state

Partially Observable Environment

- Partial observability: agent indirectly observes environment:
 - A robot with camera vision isn't told its absolute location
 - A poker playing agent only observes public cards
- Now agent state ≠ environment state
- using the observation as state would not be Markovian
- Formally this is a partially observable Markov decision process (POMDP)

Major Components of an RL Agent

- An RL agent may include one or more of these components:
 - Policy: agent's behaviour function
 - Value function: how good is each state and/or action
 - Model: agent's representation of the environment

- A policy defines the agent's behaviour
- It is a map from state to action
- Deterministic policy: $a = \pi(s)$
- Stochastic policy: $\pi(a|s) = \mathbb{P}(A_t = a|S_t = s)$

Week 8: Reinforcement Learning Inside An RL Agent Value Function

- Value function is a prediction of future reward
- Can be used to evaluate the goodness/badness of states
- Can be used to select between actions
- The actual value function is the expected return

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s] = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s]$$

■ Discount factor $\gamma \in [0,1]$: Trades off importance of immediate vs long-term rewards

- A model predicts what the environment will do next
- Predicts the next state

$$\mathcal{P}_{s\dot{s}}^{a} = \mathbb{P}[S_{t+1} = \dot{s}|S_t = s, A_t = a]$$

Predicts the next reward

$$\mathcal{R}_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$$

■ A model does not immediately give us a good policy - we would still need to plan

Maze Example

■ Rewards: -1 per time-step

Actions: N, E, S, W

States: Agent's location

Goal

Ref: RL course by David Silver

Maze Example: Policy

• Arrows represent policy $\pi(s)$ for each state s

Goal

Ref: RL course by David Silver

Maze Example: Value function

• Numbers represent value $v_{\pi}(s)$ of each state s

-14 -13 -12 -11 -10 -9 Start -16 -15 -12 -8 -16 -17 -6 -5 -18 -19 -24 -20 -4 -3 Goal -23 -22 -21 -22 -2

Ref: RL course by David Silver

Maze Example: Model

- Agent may have an internal model of the environment
- Dynamics: how actions change the state
- Rewards: how much reward from each state
- Grid layout represents transition model $\mathcal{P}^a_{s\dot{s}}$
- Numbers represent immediate reward \mathcal{R}_s^a from each state s (same for all a and \dot{s} in this case)

Ref: RL course by David Silver

Categorizing RL agents(1): Value based and Policy based

- Value- based: will determine a value function that quantifies the reward and using this value function we determine the optimal policy
 - No policy(implicit)
 - Value function
 - Q- learning
 - Deep Q network
 - SARSA
- Policy based: will determine an optimal policy directly which means the policy that maximizes reward
 - Policy
 - No value function
 - REINFORCE
 - PPO (Proximal Policy Optimization)
 - TRPO (Trust Region Policy Optimization)
- Actor Critic
 - Policy network (Actor)
 - Value function (Critic)

Categorizing RL agents(2): Model free and Model Based

- Model free
 - Policy and/or Value Function
 - No Model
- Model based
 - Policy and/or Value Function
 - Model

Week 8: Reinforcement Learning Inside An RL Agent RL Agen

Ref: RL course by David Silver

Summary: Key concepts in RL

- Environment: Physical world in which the agent operates
- State: Current situation of the agent
- Reward: Positive or negative feedback from the environment
- Policy: The rules that change agent's state to actions
- Value: Future reward that an agent would receive

Week 8: Reinforcement Learning Problems within RL

Value Based Methods

Value Functions

State- value functions V(s)

How good is it to be in the state s

State-action value functions Q(s, a)

 How good is it to be in the state s and take an action a in this state

Bellman Equation

- fundamental concept in dynamic programming and reinforcement learning, named after Richard Bellman, who introduced it in the 1950s
- It provides a recursive decomposition for solving optimization problems, particularly those involving decision-making over time.
- the Bellman equation is used to describe the relationship between the value of a state and the values of subsequent states.
- Bellman equation provides a way to compute the value of each state (or state-action pair)
 recursively by considering the expected rewards and the values of subsequent states.
- Bellman Expectation Equation
- Bellman optimality Equation

Bellman Expectation Equations

For value function

$$V_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma V_{\pi}(S_{t+1}) = |S_t = s]$$

- $V_{\pi}(s)$ is the value of state s under policy π
- \mathbb{E}_{π} is the expected value given that the agent follows policy π
- R_{t+1} is the reward received after transitioning from state S to state S_{t+1}

For Q-values

$$Q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma Q_{\pi}(S_{t+1}, A_{t+1}) = |S_t = s, A_t = a]$$

Bellman Optimality Equations

- For value function
 - For the optimal value function $V^*(s)$, which represents the maximum expected return achievable from state s, the Bellman optimality equation is:

$$V^*(s) = max_a \mathbb{E}[R_{t+1} + \gamma V^*(S_{t+1}) = |S_t = s, A_t = a]$$

- V*(s) is the optimal value of state s
- max_a is the maximization over all possible actions a.
- The expectation \mathbb{E} is taken over the possible next states S_{t+1} and rewards R_{t+1} , given action A_t = a in state s
- For Q-values

$$Q^*(s, a) = \mathbb{E}[R_{t+1} + \gamma \max_{\dot{a}}(S_{t+1}, \dot{a}) = |S_t = s, A_t = a]$$

Exploration and Exploitation

4

- Reinforcement learning is like trial-and-error learning
- The agent should discover a good policy
- From its experiences of the environment
- Without losing too much reward along the way
- Exploration finds more information about the environment
 - trying out new actions that may not be the best according to the agent's current knowledge, but could potentially lead to discovering better long-term strategies.
- Exploitation exploits known information to maximise reward
 - The agent uses its current knowledge to choose actions that it believes will give the highest reward based on past experiences.
- It is usually important to explore as well as exploit

Examples

Restaurant Selection

Exploitation Go to your favourite restaurant

Exploration Go to new restaurant

Online Banner Advertisements

Exploitation Show the most successful advert

Exploration Show a different advert

Oil Drilling

Exploitation Drill at the best known location

Exploration Drill at a new location

Game Playing

Exploitation Play the move you believe is best

Exploration Play an experimental move

The Exploration-Exploitation Trade-off

- RL agent needs to make decisions about whether to use known strategies to get immediate rewards (exploitation) or try new strategies that might lead to better rewards in the future (exploration).
- Too much exploitation: The agent might not find better strategies that could improve its performance in the long run, resulting in less effective outcomes over time.
- Too much exploration: The agent may spend too much time trying new actions, resulting in lower immediate rewards and slow learning.
- Balancing these two approaches is known as the exploration-exploitation trade-off.
- Epsilon-Greedy Strategy:
 - select a random action with probability ϵ (exploration)
 - Select the best-known action with probability 1– ϵ (exploitation). $a = \underset{a \in A}{\operatorname{argmax}} Q(a)$
 - Lower ϵ over time: Often, ϵ starts high to encourage exploration and gradually decreases to shift towards more exploitation.

Learning and Planning

4

Two fundamental problems in sequential decision making

- Reinforcement Learning
 - The environment is initially unknown
 - The agent interacts with the environment
 - The agent improves its policy
- Planning
 - A model of the environment is known
 - The agent performs computations with its model (without any external interaction)
 - The agent improves its policy
 - a.k.a. reasoning, thought, search, planning

Atari Example: Reinforcement Learning

- Rules of the game are unknown
- Learn directly from interactive game-play
- Pick actions on joystick, see pixels and scores

Ref: RL course by David Silver

Atari Example: Planning

4

- Rules of the game are known
- Can query emulator
 - perfect model inside agent's brain
- If I take action a from state s:
 - what would the next state be?
 - what would the score be?
- Plan ahead to find optimal policy
 - e.g. tree search

Ref: RL course by David Silver