

(1) Publication number:

0 146 228

12

EUROPEAN PATENT APPLICATION

- Application number: 84307095.4
- Date of filing: 16.10.84

(a) Int. Cl.4: C 07 D 233/84, C 07 D 401/06, A 61 K 31/415

(30) Priority: 18.10.83 FI 833794

Applicant: Farmos-Yhtymä Oy, P.O. Box 425, SF-20101 Turku 10 (FI)

- Date of publication of application: 26.06.85 Bulletin 85/26
- Inventor: Parhi, Seppo S.L., Venetie 2, SF-90810 Kiviniemi (FI)
- Designated Contracting States: AT BE CH DE FR GB IT LI LU NL SE
- Representative: Collier, Jeremy Austin Grey et al, J.A.Kemp & Co. 14, South Square Gray's Inn, London WC1R 5EU (GB)
- Substituted 2-mercapto-imidazoles and their preparation and use.
- The invention provides novel 1-substituted-5-hydroxymethyl-2-mercapto-imidazoles of the formula

(I) CH20H

preparation of known therapeutically valuable imidazole derivatives, by removing the mercapto group, oxidizing the alcohol group to an aldehyde group and condensing the aldehyde with an appropriate phenyl or phenylalkyl magnesium halide.

wherein R is pyridylmethyl, alkyl of 1 to 4 carbon atoms, or a aradical of formula:

• R₁ is hydrogen or halogen and n is 1–3. These compounds are prepared by reacting together dihydroxyacetone dimer, the amine R-NH2, and potassium thiocyanate. The com-

pounds of formula (I) are useful as starting materials in the BEST AVAILABLE COPY

ACTORUM AG

SUBSTITUTED 2-MERCAPTO-IMIDAZOLES AND THEIR PREPARATION AND USE

This invention relates to substituted imidazole derivatives useful in the preparation of phenylethylimidazole derivatives of therapeutic interest and to their preparation and use.

A number of substituted phenylethylimidazole derivatives of therapeutic interest are known. For example in our European Specification No.24829 we have described compounds of the formula:

$$\bigvee_{\substack{N \\ N \\ N \\ N}} \times \longrightarrow \bigcirc \bigvee_{\substack{R_2 \\ R_3}} \times \bigcap_{\substack{R_3 \\ R_3}} \times \bigcap_{$$

10 wherein R₁, R₂ and R₃, which can be the same or different, are each selected from hydrogen, chloro, bromo, fluoro, methyl, ethyl, methoxy, amino, hydroxy and nitro but are not all hydrogen; R₄ is hydrogen or alkyl of 1 to 7 carbon atoms:

O R₄

wherein R₅ is hydrogen, hydroxy or —OR₆ and R₆ is alkyl of 1 to 7 carbon atoms or phenyl; and their non-toxic pharmaceutically acceptable acid addition salts and mixtures thereof. These compounds are useful particularly as 20 antihypertensive and anti-ulcer agents, and also as diuretic, sedative, analgesic, anti-inflammatory and tranquillizing agents.

In our European Specification No.58047, we have described compounds of the formula:

wherein each of R_1 , R_2 and R_3 , which can be the same or different, is hydrogen, chloro, bromo, fluoro, methyl, ethyl, methoxy, amino, hydroxy or nitro; $R_{l_{\!\scriptscriptstyle 4}}$ is hydrogen or 5 an alkyl radical of 1 to 7 carbon atoms; R_5 is hydrogen or a straight or branched alkyl group of 1 to 5 carbon atoms or a phenyl group; R_6 is hydrogen or an alkyl group of 1 to 7 carbon atoms or a substituted or unsubstituted benzyl; X is $-CH_2-$, -CHOH- or -CH=CH-; and n is 0-4, provided that 10 R_5 and R_6 are simultaneously hydrogen only when n is 4 and X is -CH=CH- and when n is 0, X is -CH $_2$ -, R $_1$, R $_2$, R $_3$ and R $_6$ are all hydrogen, and R₄ is hydrogen or ethyl, then R₅ is other than methyl or phenyl; when n is 0, X is CHOH, and R_1 , R_2 , R_3 and R_4 are all hydrogen, both of R_5 and R_6 15 are other than methyl; and when n is 2, X is CHOH, R_1 , R_2 , R_4 and R_5 are all hydrogen, and R_6 is methyl, then R_3 is other than 2-amino, and their non-toxic, pharmaceutically acceptable acid addition salts. These compounds have anti-thrombotic, anti-hypertensive, and β -blocking activity 20 and also have anti-microbial and anti-fungal properties.

The present invention provides novel 1-substituted-5-hydroxymethyl-2-mercapto-imidazoles of the formula

in which R is pyridylmethyl, alkyl of 1 to 4 carbon atoms, or a radical of formula:

in which R₁ is hydrogen or halogen and n is 1-3, which 5 are valuable intermediates in the preparation of phenyl-ethyl imidazoles of the aforesaid types, including in particular 4(5)-(2,3-dimethylbenzyl)-imidazole which, in the form of the base, has the formula:

- The compounds of the formula (I) are novel. A compound of formula (I) wherein R=H is known from R.A.F. Bullerwell et al., J.Chem.Soc. 1951, 3030. This known compound was obtained by the reaction of serine with potassium thiocyanate and sodium amalgam.
- The compounds of the invention can occur as free bases or acid addition salts such as, for example, hydrochlorides, acetates, and sulfates.

According to the present invention the new 2mercapto-imidazole derivatives of formula (I) are prepared
20 by a new adaptation of two previously known reactions. They
are the Art Lobry de Bruyn - Alberda von Ekenstein
rearrangement for the preparation of D-glucosamine
derivatives (L Sattler, Adv. Carbohydr. Chemistry 3 (1948)
113 and K Heynes et al., Z. Naturforsch. 76 (1952) 486), and
25 the process for the preparation of alfa-mercaptoglucimidazoles
from glucosamine and potassium thiocyanate (IF García
Gonzáles and J Fernández Bolanos, Anales Real. Soc. Espan.

Fis. y Quim. 44 B (1948) 233; G von Huber et al., Helv. Chim. Acta 43 (1960) 713 and 1787).

The process of the present invention comprises reacting dihydroxyacetone dimer (III), with an amine of 5 formula RNH₂ to give the aminoaldehyde (II), which cyclizes with potassium thiocyanate in the presence of an acid to give the imidazole derivative of formula I. The process may be represented as follows:

This synthesis conveniently takes place in one stage. Dihydroxyacetone dimer, the amine and potassium thiocyanate are combined in a lower alcohol, e.g. an alkanol of 1 to 4 carbon atoms, and are reacted in the presence of an acid. The reaction temperature can range from 10 to 15 100°C. The yield is excellent.

When the compounds of the invention are used to prepare compounds of medicinal interest such as those mentioned above, the mercapto group is first removed by oxidation preferably with nitric acid and the alcohol 20 obtained is oxidized, e.g. with manganese dioxide, to the corresponding aldehyde. The N-substituted imidazole carboxaldehyde obtained may then be reacted with a Grignard reagent to prepare a 1,5-imidazole derivative and the protecting group of the N-atom can be removed to give a 25 4(5)-mono-substituted imidazole.

The invention thus includes within its scope a process for preparing the valuable aldehyde intermediate of formula:

wherein R is as hereinbefore defined, which comprises reacting a compound of formula I with an oxidizing agent to remove the mercapto group and oxidizing the alcohol group in the 5 product to an aldehyde group.

More particularly, to prepare the pharmacologically active imidazole compounds described in the European Specification No.00248929 or 0058047, the mercapto group can be removed in a first step from a compound of formula 10 (I) by treatment with dilute nitric acid with stirring at about 30-35°C. The alcohol is then oxidized to the aldehyde with an appropriate oxidizing agent such as manganese dioxide for example by boiling in dioxane for 6 hours. In the third step a substituted phenyl-or phenylethyl-15 magnesium halide, usually bromide, is reacted with the above mentioned aldehyde in tetrahydrofuran to give the pharmacologically interesting 1,5-imidazole derivative. the 1-substituent is a hydrogenolysable substituted or unsubstituted benzyl group, the 4(5)-substituted imidazole 20 can be obtained by hydrogenation. The hydrogenation can be performed, e.g., in dilute acid solution at an elevated temperature.

The following Examples illustrate the invention.

Example 1 describes the new intermediates and Example 2

25 their use.

Example 1

1-Benzyl-2-mercapto-5-hydroxymethyl-imidazole

n-Butanol (50 ml), glacial acetic acid (25 g), dihydroxyacetone dimer (21.0 g), potassium thiocyanate (34.1 g) and benzylamine (28.0 g) are combined at room temperature. The mixture is stirred at room temperature for 50 hours and the product is filtered. A light brown product is obtained, 35.0 g (68.2 %), m.p. 229-231°C. The NMR spectrum shows:

13c NMR (DMSO-d6, TMS): 46.35, 53.22, 112.46. 112.61, 126,69 127.02, 128.20, 130.20, 136.92, 162.53.

- By using the same process with an appropriate amine starting material the following products can be prepared:

 1-(4-chlorobenzyl)-2-mercapto-5-hydroxymethyl-imidazole, m.p. 217-222°C.
- 1-(2-phenylethy1)-2-mercapto-5-hydroxymethyl-imidazole, m.p.
 15 202-208°C.
 - 1-(2-pyridylmethyl)-2-mercapto-5-hydroxymethyl-imidazole, m.p.
 181-185°C.

1-ethyl-2-mercapto-5-hydroxymethyl-imidazole, m.p. dec. (175-250°C).

Example 2

20 4-(2,3-dimethylbenzyl)-imidazole hydrochloride

l-Benzyl-2-mercapto-5-hydroxymethyl-imidazole
(7.5 g) is added in small portions to a mixture of water
(18 ml) and concentrated nitric acid (7.5 g) at 35°C. The
mixture is stirred for 3 hours and the pH of the reaction
25 mixture adjusted to 9-10 with sodium hydroxide. l-Benzyl5-hydroxymethyl-imidazole is obtained, 3.8 g (60 %), m.p.
131-135°C.

l-Benzyl-5-hydroxymethyl-imidazole (4.5 g), activated Mn 0 (8.5 g) and dioxane (25 ml) are mixed. The

mixture is stirred at 90°C for 6 hours, filtered and evaporated to dryness. The product, 1-benzyl-5-carboxaldehyde, crystallized from acetone as white crystals. Yield 3.58 g (80 %), m.p. 52-54°C.

2,3-Dimethylphenylmagnesium bromide (40 g), prepared in known manner, in 500 ml tetrahydrofuran is added dropwise to a tetrahydrofuran solution of 1-benzyl-5-carboxaldehyde (12 g). The reaction mixture is stirred for 5 hours and poured into ice-water (170 ml). Then is stirred and 10 filtered. White 1-benzyl-5-[&- (2,3-dimethylphenyl)-hydroxymethyl]-imidazole HCl-salt is obtained in this way, 18.2 g (85 %). The product can be recrystallized from, e.g., isopropanol.

1-Benzyl-5-[\$\alpha\$-(2,3-dimethylphenyl)hydroxymethyl]15 imidazole hydrochloride (17 g), 1N HCl solution (190 ml)
and Pd/C catalyst are mixed. The mixture is hydrogenated
in the usual way at normal pressure at 60°C until no more
hydrogen is consumed. The catalyst is filtered off and the
filtrate made alkaline with sodium hydroxide. The product
20 is filtered and dried. The product can be converted into
the hydrochloride salt with HCl-isopropanol in ethyl acetate,
m.p. 154-159°C. Yield 8 g (70 %).

CLAIMS

1. l-Substituted-5-hydroxymethyl-2-mercaptoimidazoles of the formula

and their acid addition salts, wherein R is pyridylmethyl, alkyl of 1 to 4 carbon atoms, or a radical of formula:

$$(CH_2)_{\overline{n}}$$
, in which

R₁ is hydrogen or halogen and n is 1-3.

- 2. A substituted imidazole according to claim 1 in which R is benzyl, 4-chlorobenzyl, 2-phenylethyl, 2-pyridyl-methyl, or ethyl.
 - 3. l-Benzyl-2-mercapto-5-hydroxymethyl-imidazole.
- 4. A process for the preparation of a compound as claimed in claim 1 which comprises reacting dihydroxyacetone dimer with potassium thiocyanate and a primary amine of formula:

$$RNH_2$$
 (V)

wherein R is as defined in claim 1, in a lower alcohol in the presence of an acid at a temperature of 10 - 100°C.

5. Process for the preparation of a compound of formula:

wherein R is as defined in claim 1, which comprises

reacting a compound of formula I as claimed in claim 1 with an oxidizing agent to remove the mercapto group and oxidizing the primary alcohol group in the compound as claimed in claim 1 to an aldehyde group.

CLAIMS FOR THE DESIGNATED STATE AT

l. Process for producing a l-substituted-5-hydroxymethyl-2-mercapto-imidazole of the formula

and its acid addition salts, wherein R is pyridylmethyl, alkyl of 1 to 4 carbon atoms, or a radical of formula:

$$(CH_2)_{\overline{n}}$$
, in which

R₁ is hydrogen or halogen and n is 1-3, which comprises reacting dihydroxyacetone dimer with potassium thiocyanate and a primary amine of formula:

$$RNH_2$$
 (V)

wherein R is as hereinbefore defined in a lower alcohol in the presence of an acid at a temperature of 10 - 100°C.

- 2. Process according to claim 1 in which R is benzyl, 4-chlorobenzyl, 2-phenylethyl, 2-pyridyl-methyl, or ethyl.
- 3. Process for the preparation of a compound of formula:

wherein R is as defined in claim 1, which comprises

EUROPEAN SEARCH REPORT

0146228

Application number

EP 84 30 7095

DOCUMENTS CONSIDERED TO BE RELEVANT			7		
Category		ith indication. where appropriate, vant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.4)	
D,A	1951, part IV., pages 3030-32, R.A.F.BULLERWEI toglyoxalines. paration of 4(5)	LONDON, (GB). LL et al.: "2-Mercap Part V. The Pre-	·	C 07 D 233/84 C 07 D 401/06 A 61 K 31/415	
	* Page 3032 *				
				TECHNICAL FIELDS SEARCHED (Int. Cl.4)	
		·		C 07 D 233/00 C 07 D 401/00 A 61 K 31/00	
			_		
	The present search report has t	·	<u> </u>		
Place of search THE HAGUE		Date of completion of the search $28-01-1985$	DE B	Examiner SUYSER I.	
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure P: intermediate document		E: earlier pate after the fill bit another D: document L: document C: member of the fill bit another bit after the fill bit another bit after the fill bit another bit after bit another bit after bit another bit	T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons &: member of the same patent family, corresponding document		

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:			
☐ BLACK BORDERS			
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES			
☐ FADED TEXT OR DRAWING			
BLURRED OR ILLEGIBLE TEXT OR DRAWING			
☐ SKEWED/SLANTED IMAGES			
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS			
☐ GRAY SCALE DOCUMENTS			
☐ LINES OR MARKS ON ORIGINAL DOCUMENT			
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY			

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.