UGANDA ADVANCED CERTIFICATE OF EDUCATION

SENIOR SIX

PURE MATHEMATICS

P425/1

MID - JANUARY 2023

TIME: 3 HOURS

Instructions;

- Attempt all the eight questions in Section A and five from section B
- All working must be clearly shown
- Clearly indicate the questions attempted
- Silent non programmable calculators may be used.

SECTION A (40 marks)

- 1. Given that the equation $2x^2 + 5x 8 = 0$ has roots α and β find the equation whose roots are $\frac{1}{(\alpha+2)^2}$ and $\frac{1}{(\beta+2)^2}$ (5 marks)
- 2. The vector equations of two lines r_1 and r_2 meet at a point P.

$$r_1={5\choose -6}+\partial {3\choose 1}$$
 And $r_2={4\choose 1}+\mu {-2\choose 3}$ Find the coordinates of point P.

- 3. Solve the equation $\cos(\theta + 30^{\circ}) = \sin(\theta + 25^{\circ})$ for $0^{\circ} \le \theta \le 360^{\circ}$
- 4. Solve for x in; $\log_4(6-x) = \log_2 x$ (5 marks)
- 5. A curve is defined parametrically by

$$x = t^2 - t$$
$$y = 3t + 4$$

Find the equation of the tangent to the curve at (2,10) (5 marks)

- 6. If $y = \sqrt{x}$. Show that $\frac{\partial y}{\partial x} = \frac{1}{\sqrt{(x+dx)} + \sqrt{x}}$ hence deduce $\frac{dy}{dx}$
- 7. Solve the equation $\sqrt{(2x+3)} \sqrt{(x+1)} = \sqrt{(x-2)}$

(5 marks)

8. Find the equation of the line through the point (5,3) and is perpendicular to the line 2x - y + 4 = 0

SECTION B

- 9. a) Given that $\mathbf{x} = \frac{3t}{t+3}$ and $y = \frac{4t+1}{t-2}$ Find $\frac{d_y^2}{dx^2}$ in terms of t in its simplest form
 - b) Differentiate $\frac{(x^2+1)}{(x+1)^3}$ with respect to x

10.sketch the curve $y = \frac{4(x-3)}{(x+1)^3}$

(12 marks)

- 11.a) The polynomial $f(x) = x^3 + px^2 5x + q$ has a factor (x-2) and has a value of 5 when x=-3. Find P and q
 - b) The roots of the equation $ax^2 + bx + c = 0$ are α and β . Form the equation whose roots are α/β and β/α
 - c) Simplify $\frac{\sqrt{3}-2}{2\sqrt{3}+3}$
- 12. solve:
 - a) $4\sin^2\theta 12\sin 2\theta + 35\cos^2\theta = 0$ for $0 \le \theta \le 90^0$ (06 marks)
 - b) $3\cos\theta 2\sin\theta = 2 \text{ for } 0^{0} \le \theta \le 360^{0}$

(06 marks)

- 13. solve the equation: $2(3^{2x}) 5(3^x) + 2 = 0$ (06 marks)
 - b) The equations of three planes p_1 , p_2 and p_3 are

$$2x - y + 3z = 3$$

 $3x + y + 2z = 7$
 $x + 7y - 5z = 13$

Determine where the three planes intersect. marks)

(06

14. Show that;

 $\frac{\sin 3\theta \sin 6\theta + \sin \theta \sin 2\theta}{\sin 3\theta \cos 6\theta + \sin \theta \cos 2\theta} = \tan 5\theta$

- b) Solve; $4\cos\theta 5\sin\theta = 2.2 \text{ for } 0^0 \le \theta \le 360^0$
- 15.a) express $\frac{i}{4+6i}$ in modulus argument form
 - b) Solve (z + 2z *)z = 5 + 2z where z^* is the complex conjugate of z

GOOD LUCK