Representation Theory of Finite Groups

Alex Rutar* University of Waterloo

Fall 2019[†]

^{*}arutar@uwaterloo.ca

[†]Last updated: September 4, 2019

Contents

Chapter I REPLACE

I. REPLACE

Let G be a finite group of order n, and write $G = \{g_1, \ldots, g_n\}$. Fix $g \in G$; then $gg_i = gg_j$ if and only if i = j. Thus there exists some $\sigma_g \in S_i$ such that $gg_i = g_{\sigma_g(i)}$ for all $i \in \{1, 2, \ldots, n\}$. In particular, $\phi : G \to S_n$ by $\phi(g) = \sigma_g$ is an embedding (injective group homomorphism). This observation is usually referred to as Cayley's Theorem.

Now let V be an n-dimensional complex vector space. We then denote GL(V) as the group of invertible linear operators $T: V \to V$. Now define $\psi: S_n \to GL_n(V)$ by $\psi(\sigma) = T_{\sigma}$ where if $\{b_1, \ldots, b_n\}$ is a basis for V and $T_{\sigma}(b_i) = b_{\sigma(i)}$. This is an injective group homomorphism, so $\psi \circ \phi: G \to GL(V)$ is an embedding of G into GL(V).

Definition. Let G be a finite group, and V a finite dimensional \mathbb{C} -vector space. A **representation** of G is a group homomorphism $\rho: G \to \mathrm{GL}(V)$. We call $\dim(V)$ the **degree** of the representation.

In particular, if *V* is *n*-dimensional, then $GL(V) \cong GL_n(\mathbb{C})$.

Example. Consider $\rho: G \to \operatorname{GL}(\mathbb{C}) \cong \mathbb{C}^{\times}$ given by $\rho(g) = 1$ for all $g \in G$. This is called the *trivial representation*.

Example. Consider $\rho: S_n \to \mathbb{C}^{\times}$ given by $\rho(\sigma) = \operatorname{sgn}(\sigma)$, which is called the *sign representation*.

Example. The representation fo *G* afforded by Cayley's theorem is called the *regular representation* of *G*. Here is a good way to understand the regular rep of *G*.

Consider $X = \{v_g : g \in G\}$ be a set of symbols, and let V = Free(X). Then define $\rho : G \to GL(V)$ given by $\rho(g)(v_h) = v_{gh}$ for all $g, h \in G$.

Example. Consider G, $X = \{x_1, ..., x_n\}$, and V = Free(X). Suppose G acts on X. Then $\rho: G \to \text{GL}(V)$ given by $\rho(g)(x_i) = gx_i$.