

Mestrado Integrado em Engenharia Física

UC de Análise de Circuitos

Departamento de Eletrónica Industrial e Computadores

Paulo Carvalhal pcarvalhal@dei.uminho.pt

Sumário

- Rudimentos de magnetismo
 - força elétrica
 - campo elétrico
 - energia potencial elétrica
 - tensão elétrica
 - corrente elétrica
 - produção de um campo magnético
 - Oersted
 - Ampére
 - Intensidade de um campo magnético
 - Faraday
 - Lenz
 - densidade de fluxo magnético
 - fluxo magnétixco
 - ferromagnetismo
 - correntes de Foucault
 - produção de foça num condutor no seio de um campo magnético

- tópicos preliminares
 - representação e caracterização de sinais
 - valor médio (por definição e graficamente)
 - valor Eficaz
 - tensão
 - potencial elétrico
 - diferença de potencial
 - corrente
 - potência
 - rendimento
 - resistência
 - · lei de Joule

Rudimentos de Electricidade

- Força Eléctrica
 - ... a **Lei de** *Coulomb* (@1783) descreve a interação entre duas partículas elétricas carregadas, estabelecendo que duas cargas eléctricas pontuais se atraem ou repelem com uma força cuja intensidade é:

$$F_{xy} = \frac{1}{4\pi\varepsilon_0} \frac{Q_x Q_y}{r^2} \text{ N (newton)}$$

 ε_0 \rightarrow permitividade do vazio (8,854 x 10⁻¹² F/m)

 Q_{x} , $Q_{v} \rightarrow$ valor absoluto das cargas eléctricas

 $r \rightarrow$ distância entre as cargas

Nota: a lei da gravitação universal estabelece que:

$$F_{xy} = G \frac{m_x m_y}{r^2} \text{ N (newton)}, G = 6.67 \times 10^{-11} \text{ Nm}^2 / \text{Kg}^2$$

Rudimentos de Electricidade

Força Eléctrica

Com N cargas (c), a força resultante numa carga específica obtém-se por sobreposição, com a soma vectorial de todas as forças.

Rudimentos de Electricidade

- Campo Eléctrico
 - Se considerarmos uma carga Qx numa posição fixa, e movermos uma carga de teste Qy na vizinhança de Qx, verificamos que Qy experimenta uma força, devido à existência de um campo de forças criado por Qx.
 - A lei de Coulomb como já se viu define essa força.
 - Se se reescrever a expressão de Fxy, como uma força por unidade de carga:

$$\frac{Fy}{Qy} = \frac{Qx}{4\pi\varepsilon_0 r^2}$$

A parte direita da expressão corresponde à intensidade do campo elétrico, que apenas depende de Qx

$$E = \frac{F_{y}}{Q_{y}}$$

Rudimentos de Electricidade

- Campo Eléctrico
 - O campo eléctrico é uma medida da acção que uma carga exerce sobre as cargas eléctricas localizadas no seu raio de acção. A intensidade do campo eléctrico criado por uma carga pontual⁽¹⁾ é expressa por :

⁽¹⁾ A direcção do vector campo eléctrico criado por uma carga eléctrica pontual é radial. Cargas positivas têm sentido divergente e cargas negativas têm sentido convergente

Rudimentos de Electricidade

- Campo Eléctrico
 - O campo eléctrico é uma medida da acção que uma carga exerce sobre as cargas eléctricas localizadas no seu raio de acção. A intensidade do campo eléctrico criado por uma carga pontual⁽¹⁾ é expressa por :

$$E_{x} = \frac{1}{4\pi\varepsilon_{0}} \frac{Q_{x}}{r^{2}} \text{ V/m (volt por metro)}$$

$$E_{x} \text{ inversamente proporcional ao módulo da carga}$$

$$E_{x} \text{ inversamente proporcional ao quadrado da distância}$$

Pelo que,

$$F_{x,y} = E_x Q_y$$
 A força depende da carga (onde se exerce a força) para além da carga de controlo Qx O campo electrico não depende da carga onde se exerce a força

⁽¹⁾ A direcção do vector campo eléctrico criado por uma carga eléctrica pontual é radial. Cargas positivas têm sentido divergente e cargas negativas têm sentido convergente

■ Rudimentos de Electricidade

Campo Eléctrico

■ Rudimentos de Electricidade

- Energia Potencial (Eléctrica)
 - Energia caso geral do deslocamento de uma massa sob acção de uma força:

$$W = -\int_{x_i}^{x_f} \vec{F} \cdot \vec{dL}$$
 J (joule)

 Caso particular da queda de uma massa num campo gravitacional (a força é constante e a direcção coincidente com o deslocamento)

$$W = mgh$$

Rudimentos de Electricidade

- Energia Potencial (Eléctrica)
 - A definição de energia potencial eléctrica aplica-se a qualquer conjunto de cargas eléctricas sujeitas à acção de um campo eléctrico

- Se se tentar mover uma carga elétrica "contra" a direção do campo elétrico a que está sujeita, temos de exercer uma força contrária à que é exercida pelo campo, o que implica usar energia ou seja, executar trabalho.
- Se movermos a carga na direção do campo elétrico, o consumo de energia é negativo, quem executa trabalho é o campo.

Rudimentos de Electricidade

- Energia Potencial (Eléctrica)
 - Considere-se então um átomo de hidrogénio, constituído por um protão e por um electrão. Em face da existência de uma força de atracção entre as duas cargas, o deslocamento do electrão entre órbitas envolve a realização de um trabalho cujo módulo é:

$$W = \frac{1}{4\pi\varepsilon_0} e^2 \left(\frac{1}{r_f} - \frac{1}{r_i} \right)$$

O conceito de energia potencial elétrica aplica-se a um conjunto de cargas elétricas sujeitas à ação de um campo elétrico.

Rudimentos de Electricidade

Energia Potencial (Eléctrica)

O Sistema dispõe de energia armazenada

Fornecimento de energia

O Sistema aumenta a sua energia potencial (eléctrica)

Rudimentos de Electricidade

O transporte de um eletrão entre os terminais negativo e positivo de uma bateria é efetuado no sentido da força, portanto no sentido contrário ao do campo elétrico, envolve a libertação de energia (realização de um trabalho negativo) e indica a presença de uma tensão elétrica positiva, no sentido do terminal positivo para o terminal negativo

- Rudimentos de Electricidade
- Tensão Eléctrica

Existe tensão elétrica entre dois pontos de um campo sempre que o transporte de carga entre esses mesmos dois pontos envolve libertação ou absorção de energia elétrica por parte do sistema.

Rudimentos de Electricidade

- Tensão Eléctrica
 - A tensão é uma medida da energia envolvida no transporte de uma carga elementar entre dois pontos de um campo eléctrico. É uma quantidade que se mede em volts (V) e que coincide com o cociente entre a energia libertada e a quantidade de carga transportada:

$$Tens\~ao = \frac{W}{Q} \ V \ (volts)$$

 Tendo em atenção as relações entre trabalho, força e campo eléctrico, verifica-se que,

Tensão =
$$\frac{W}{Q} = \frac{-\int_{x_i}^{x_f} \vec{F} \cdot \vec{dL}}{Q} = \frac{-\int_{x_i}^{x_f} Q \vec{E} \cdot \vec{dL}}{Q} = \int_{x_i}^{x_f} \vec{E} \cdot \vec{dL}$$

Rudimentos de Electricidade

Corrente Eléctrica

... define-se corrente média como a quantidade de carga eléctrica que na unidade de tempo atravessa uma dada superfície ...

$$I = \frac{Q}{\Delta T} A \text{ (ampere)}$$

$$\rightarrow i(t) = \frac{dq}{dt}$$

Rudimentos de Electricidade

- Corrente Eléctrica
 - Fluxo de electrões versus corrente convencional

Quando se aplica uma diferença de potencial aos terminais de um condutor, cria-se um campo eléctrico. Os eletrões livres movem-se (ao contrário dos iões positivos que estão retidos na estrutura atómica), e tentam anular o campo elétrico, mas não o conseguem porque devido à existência de uma fonte de tensão, mantem-se a diferença de potencial aos terminais.

■ Rudimentos de Magnetismo

Produção de um Campo Magnético

Campo magnético terrestre

O campo magnético terrestre é formado pelas enormes massas de metal líquido que se movem em correntes de convecção no interior do planeta, e geram correntes elétricas.

São estas correntes as responsáveis pelo campo magnético terrestre.

Rudimentos de Magnetismo

Produção de um Campo Magnético

Ímãs permanentes são objetos que produzem seus próprios campos magnéticos persistentes e possuem um pólo norte e um pólo sul.

Íman permanente

■ Rudimentos de Magnetismo

Produção de um Campo Magnético

Um campo magnético pode ser produzido a partir de:

- Um íman permanente
- Um campo elétrico variável no tempo
- Uma corrente elétrica

■ Rudimentos de Magnetismo

Produção de um Campo Magnético

Rudimentos de Magnetismo

- Produção de um Campo Magnético
- Øersted (@1820) a steady current produces a steady magnetic field Foi ele que estabeleceu pela primeira vez uma relação entre electricidade e magnetismo

Øersted (@1820)

Concluiu que:

- As linhas de campo estão num plano perpendicular ao fio
- Se a direção da corrente mudar, a direção da força magnética também muda
- A densidade do campo é proporcional à intensidade de corrente
- A densidade do campo é inversamente proporcional à distância

Corrente Eléctrica B Campo Magnético

A experiencia original

Rudimentos de Magnetismo

- Produção de um Campo Magnético
- ... a lei básica que governa a produção dum campo magnético a partir de uma corrente eléctrica, é a lei de *Ampére* (@1826)

$$\iint \vec{H} \cdot \vec{dl} = \sum I$$

O integral da intensidade do campo magnético é igual à corrente que penetra na superfície delimitada pelo percurso considerado

H – não depende da natureza do meio magnético

 $\vec{H} \rightarrow$ **vector** intensidade do campo magnético (A/m ou amperes · espira/m)

 $\overrightarrow{dl} \rightarrow$ **vector** elementar (a direcção coincide com o trajecto)

 $\sum l \rightarrow$ somatório das intensidades das correntes que contribuem para a produção do campo

Rudimentos de Magnetismo

- Produção de um Campo Magnético
- ... a lei básica que governa a produção dum campo magnético a partir de uma corrente eléctrica, é a lei de *Ampére* (@1826)

$$\iint \vec{H} \cdot \vec{dl} = \sum I$$

O integral da intensidade do campo magnético é igual à corrente que penetra na superfície delimitada pelo percurso considerado

■ Rudimentos de Magnetismo

 Lei de Faraday (@1831) – f.e.m induzida a partir dum campo magnético variávelo

$$|e| = \frac{d\phi}{dt}$$

A lei de Faraday diz-nos que um campo magnético variável no tempo induz numa espira que o "abrace", uma força electromotriz que é directamente proporcional a derivada do fluxo em ordem ao tempo

Ou seja:

uma corrente pode ser produzida por um campo magnético variável

Indução electromagnética

Nota: **e** não depende da forma do loop. O que é relevante é a variação de fluxo no interior da superfície http://phet.colorado.edu/en/simulation/faraday

Faraday (@1831) – produção de f.e.m variável induzida a partir dum campo magnético variável

■ Rudimentos de Magnetismo

Lei de Lenz (@1834)

O sinal menos associado à equação (que assim traduz a lei de **Lenz**), significa que o sentido da f.e.m. é tal que, se se fechasse o circuito, a corrente que circularia seria de modo a criar um fluxo que se oporia à variação do fluxo original.

Ver experiencia

$$e = -N \frac{d\phi}{dt}$$
 (lei de *Lenz*)
para $\psi = N\phi$, $e = -\frac{d\psi}{dt}$

- **■** Rudimentos de Magnetismo
 - Lei de Lenz (@1834)

Rudimentos de Magnetismo

Produção de um Campo Magnético a partir de uma corrente

$$\iint \vec{H} \cdot \vec{dl} = \sum I$$

$$\Rightarrow HI_c = Ni$$

$$\Rightarrow H = \frac{Ni}{I_c} = \frac{\Im}{I_c}$$

 $\mathfrak{I} = Ni \rightarrow Força magnetomotriz (f.m.m.)$

Rudimentos de Magnetismo

- Densidade de Fluxo Magnético
- ... A relação entre o vector intensidade do campo magnético \vec{H} e o vector indução magnética \vec{B} (ou densidade de fluxo magnético) resultante, produzida num determinado material, é dada pela expressão,

$$\vec{B} = \mu \vec{H} = \mu_r \mu_0 \vec{H}$$
 T (tesla) ou Wb/m² (weber/m²)

- µ é a permeabilidade magnética do material onde se produz o campo
- μ_r é a permeabilidade relativa do material onde se produz o campo
- μ₀ é a permeabilidade magnética do vazio:

$$\mu_0 = 4\pi \times 10^{-7} \text{ H/m (henry/m)}$$

Rudimentos de Magnetismo

- Densidade de Fluxo Magnético
- ... a densidade do fluxo magnético produzido num determinado material é o resultado do produto de dois termos:
 - H, que depende da intensidade da corrente I utilizada para estabelecer o campo e da geometria do circuito magnético
 - μ , que tem a ver com a maior ou menor facilidade concedida pelo material para o estabelecimento do campo magnético (depende da sua estrutura atómica).

Rudimentos de Magnetismo

- Fluxo Magnético
- ... o <u>fluxo magnético</u> através de uma superfície **A** (aberta ou fechada) define-se do seguinte modo:

$$\phi = \int_{\Delta} \vec{B} \cdot \vec{dA}$$
 Wb (weber)

 $\vec{B} \rightarrow$ **vector** densidade de fluxo magnético

 $\overrightarrow{dA} \rightarrow$ unidade diferencial de área

Rudimentos de Magnetismo

Fluxo Magnético

$$\phi = \int_{A} \overrightarrow{B} \cdot \overrightarrow{dA} = BA = \mu HA$$

$$\to \phi = \frac{\mu NiA}{I_{c}} = \frac{\mu A}{I_{c}} \Im$$

ф depende da área

Se admitirmos que:

- · todas as linhas de força do campo se fecham através do ferro
- que a densidade do fluxo **B** é constante
- que o vector \mathbf{B} é perpendicular à superfície \mathbf{A} ($\theta = 0^{\circ}$)

Então $\phi = B.A$

 ϕ depende do ângulo entre \overrightarrow{B} e \overrightarrow{dA}

Rudimentos de Magnetismo

Comportamento de Materiais Ferromagnéticos

Um material ferromagnético depois de sujeito à acção de um campo magnético externo, apresenta um momento magnético espontâneo, ie, um momento magnético mesmo no contexto de ausência de um campo magnético externo. A existência de um momento espontâneo sugere que os spins dos electrões e os seus momentos magnéticos estão arranjados de uma maneira regular. O facto do momento magnético ser diferente após a remoção do campo magnético externo, deve-se à **histerese**.

Rudimentos de Magnetismo

Comportamento de Materiais Ferromagnéticos

$$\vec{B} = \mu \vec{H}$$

- µ é constante para o vazio e materiais isotrópicos (a relação entre B e H é linear)
- Para os materiais <u>ferromagnéticos</u>
 µ depende do próprio valor da densidade de fluxo magnético (a relação não é linear)

■ Rudimentos de Magnetismo

Perdas nos materiais ferromagnéticos (devidas à histerese)

Do fenómeno da histerese resultam perdas no ferro das máquinas eléctricas que se costumam designar por **perdas por histerese**.

Rudimentos de Magnetismo

Ferro normal (maciço)

Ferro laminado

<u>Corrente de Foucault</u> é o nome dado à corrente induzida num material condutor quando sujeito a um fluxo magnético variável.

Um aspeto indesejável deste fenómeno, é o aquecimento do material, por efeito de Joule. Com ferro laminado e isolado diminuem-se as correntes de Foucault

Rudimentos de Magnetismo

- Produção de F.E.M num Condutor que se Movimenta num Campo Magnético
- ... Num condutor que se move no seio dum campo magnético induz-se uma f.e.m que se exprime do seguinte modo:

$$e_{ind} = (\vec{v} \times \vec{B}) \cdot \vec{I}$$

 $\vec{v} \rightarrow \text{velocidade do deslocamento}$

 $\vec{B} \rightarrow$ densidade de fluxo magnético

Rudimentos de Magnetismo

 Produção de F.E.M num Condutor que se Movimenta num Campo Magnético (exemplo)

$$e_{ind} = (\vec{v} \times \vec{B}) \cdot \vec{I} =$$

$$= v \cdot B \cdot \text{sen}(90^{\circ}) \cdot I \cdot \text{cos}(0^{\circ})$$

$$= vBI$$

http://micro.magnet.fsu.edu/electromag/java/generator/dc.html

Rudimentos de Magnetismo

Produção de Força num Condutor

Um condutor percorrido por uma corrente eléctrica no seio dum campo magnético sofre a acção duma força...

As diferentes grandezas em jogo, relacionam-se do seguinte modo:

$$\vec{F} = i(\vec{l} \times \vec{B})$$

 $i \rightarrow$ intensidade da corrente

 $\overrightarrow{B} \rightarrow$ densidade de fluxo magnético

Rudimentos de Magnetismo

Produção de Força num Condutor (exemplo)

$$\vec{F} = i(\vec{l} \times \vec{B})$$

= ilB (porque $\vec{l} \perp \vec{B}$)

Caso geral:

$$\vec{F} = ilB \operatorname{sen}(\theta) \qquad (\theta = \Box \vec{I}, \vec{B})$$

 θ = angulo entre a corrente i e o campo B

- Representação de Sinais (matemática e gráfica)
 - ... os sinais eléctricos são grandezas (eléctricas) que apresentam uma determinada evolução ao longo do tempo (são função da variável tempo t)...

$$e(t) = 10 \text{ V}$$

■ Representação de Sinais (matemática e gráfica)

e(t) = componente contínua + componente alternada

- Representação de Sinais (matemática e gráfica)
 - Sinais periódicos

$$e(t+T)=e(t)$$

- Representação de Sinais (matemática e gráfica)
 - Sinais sinusoidais

$$e(t) = A \cdot sen(\omega t + \theta)$$

 $\omega = 2\pi f \rightarrow$ frequência angular

A → *amplitude*

 $\theta \rightarrow fase$

- Representação de Sinais (matemática e gráfica)
 - Sinais sinusoidais

Forma de onda da tensão na rede de energia eléctrica

■ Valor Médio

E se inverter a fonte DC?

Valor Médio

$$G(valor \ médio) = \frac{\acute{a}rea (soma \ algébrica)}{T(período)}$$

$$G = \frac{A_1 - A_2}{T} = \frac{(8 \text{ V})(5 \text{ s}) - (2V)(5 \text{ s})}{10 \text{ s}} = \frac{30}{10} = 3 \text{ V}$$

Valor Médio

■ Valor Médio (cálculo para o caso geral)

$$G = \frac{1}{T} \int_{t_1}^{t_1+T} e(t) dt$$

■ Valor Eficaz

$$E_{eff} = \sqrt{\frac{1}{T} \int_{t_1}^{t_1+T} e(t)^2 dt}$$

O valor eficaz de uma grandeza alternada é o valor da grandeza contínua que, para uma dada resistência, produz, num dado tempo, o mesmo *Efeito de Joule* (calorífico) que a grandeza alternada considerada.

O valor eficaz é também conhecido como valor médio quadrático (RMS - Root Mean Square)

O valor eficaz de uma grandeza alternada é o valor da grandeza contínua que, para uma dada resistência, produz, num dado tempo, o mesmo *Efeito de Joule* (calorífico) que a grandeza alternada considerada.

O valor eficaz é também conhecido como valor médio quadrático (RMS - Root Mean Square)

Exemplo: valor eficaz da sinusóide

$$E_{eff} = \sqrt{\frac{1}{T} \int_{t_1}^{t_1+T} e(t)^2 dt}$$

$$E_{\text{eff}} = \sqrt{\frac{1}{T} \int_0^T A^2 \operatorname{sen}^2(wt) dt} = \sqrt{\frac{1}{2\pi} \int_0^\alpha A^2 \operatorname{sen}^2(\varphi) d\varphi}$$

$$E_{\text{eff}}^{2} = \frac{1}{2\pi} \int_{0}^{\alpha} A^{2} \operatorname{sen}^{2}(\varphi) d\varphi = \frac{A^{2}}{4\pi} \int_{0}^{2\pi} \left(1 - \cos(2\alpha) \right) d\alpha = \frac{A^{2}}{4\pi} \left[\alpha - \frac{1}{2} \operatorname{sen}(2\alpha) \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} \operatorname{sen}(2\alpha) \right) \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} \operatorname{sen}(2\alpha) \right) \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} \operatorname{sen}(2\alpha) \right) \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} \operatorname{sen}(2\alpha) \right) \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} \operatorname{sen}(2\alpha) \right) \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} \operatorname{sen}(2\alpha) \right) \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} \operatorname{sen}(2\alpha) \right) \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} \operatorname{sen}(2\alpha) \right) \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} \operatorname{sen}(2\alpha) \right) \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} \operatorname{sen}(2\alpha) \right) \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} \operatorname{sen}(2\alpha) \right) \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} \operatorname{sen}(2\alpha) \right) \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} \operatorname{sen}(2\alpha) \right) \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} \operatorname{sen}(2\alpha) \right) \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} \operatorname{sen}(2\alpha) \right) \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} \operatorname{sen}(2\alpha) \right) \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} \operatorname{sen}(2\alpha) \right) \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} \operatorname{sen}(2\alpha) \right) \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} \operatorname{sen}(2\alpha) \right) \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} \operatorname{sen}(2\alpha) \right) \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} \operatorname{sen}(2\alpha) \right) \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} \operatorname{sen}(2\alpha) \right) \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} \operatorname{sen}(2\alpha) \right) \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} \operatorname{sen}(2\alpha) \right) \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} \operatorname{sen}(2\alpha) \right) \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} \operatorname{sen}(2\alpha) \right) \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[\frac$$

$$=\frac{A^2}{2}$$

$$ightarrow E_{eff} = \frac{A}{\sqrt{2}}$$

■ Quantidades em corrente contínua (cc):

Letras maiúsculas para a variável e para o índice (I_B , I_C , V_{CF})

Quantidades em corrente alternada (ca):

Letras minúsculas para a variável e para o índice (i_b, i_c, v_{ce})

■ Quantidades totais (cc + ca):

Letras minúsculas para a variável e maiúscula para o índice (i_B , i_C , v_{CF})

■ Sistemas de unidades do SI

Grandeza		Unidade	
Nome	Símbolo	Nome	Símbolo
potencial eléctrico	U	volt	V
tensão, diferença de potencial ou queda de potencial	U, E	volt	V
corrente eléctrica	I	ampere	A
energia	W	joule	J
potência	P	watt	W
frequência	f	hertz	Hz
resistência eléctrica	R	ohm	Ω
resistividade	ρ	ohm metro	$\Omega{\cdot}m$
capacidade eléctrica	C	farad	F
permitividade	3	farad por metro	$F \cdot m^{-1}$
coeficiente de auto-indução	L	henry	Н
permeabilidade	μ	henry por metro	H·m ⁻¹
momento do binário	T	newton metro	$N \cdot m$

Múltiplos

Nome	Símbolo	Factor multiplicador
yotta	Y	$10^{24} = 1\ 000\ 000\ 000\ 000\ 000\ 000\ 000\$
zetta	Z	$10^{21} = 1\ 000\ 000\ 000\ 000\ 000\ 000\ 000$
exa	E	$10^{18} = 1\ 000\ 000\ 000\ 000\ 000\ 000$
peta	P	$10^{15} = 1\ 000\ 000\ 000\ 000\ 000$
tera	T	$10^{12} = 1\ 000\ 000\ 000\ 000$
giga	\mathbf{G}	$10^9 = 1\ 000\ 000\ 000$
mega	M	$10^6 = 1\ 000\ 000$
quilo	k	$10^3 = 1000$
hecto	h	$10^2 = 100$
deca	da	$10^1 = 10$

Submúltiplos

Nome	Símbolo	Factor multiplicador
deci	d	$10^{-1} = 0,1$
centi	c	$10^{-2} = 0.01$
mili	m	$10^{-3} = 0,001$
micro	μ	$10^{-6} = 0,000\ 001$
nano	n	$10^{-9} = 0,000\ 000\ 001$
pico	p	$10^{-12} = 0,000\ 000\ 000\ 001$
fento	f	$10^{-15} = 0,000\ 000\ 000\ 000\ 001$
ato	a	$10^{-18} = 0,000\ 000\ 000\ 000\ 000\ 001$
zepto	z	$10^{-21} = 0,000\ 000\ 000\ 000\ 000\ 000\ 001$
yocto	y	$10^{-24} = 0,000\ 000\ 000\ 000\ 000\ 000\ 000\ $

Rudimentos de Electricidade

- Tensão Eléctrica
 - A tensão é uma medida da energia envolvida no transporte de uma carga elementar entre dois pontos de um campo eléctrico. É uma quantidade que se mede em volts (V) e que coincide com o cociente entre a energia libertada e a quantidade de carga transportada:

$$Tens\~ao = \frac{W}{Q} \lor (volts)$$

Rudimentos de Electricidade

Fontes de Tensão

Uma fonte de energia transforma uma forma de energia neste caso, química em energia elétrica

Bateria de chumbo

Rudimentos de Electricidade

- Valor nominal da tensão de fontes bem conhecidas:
 - Tensão gerada pelas células nervosas: cerca de 30 mV
 - Baterias recarregáveis NiMH or NiCd (por cada célula): 1.2 V
 - Bateria de mercúrio 1.355 V
 - Baterias alcalinas (tipo AAA, AA, C e D): 1.5 V
 - Alimentação do sistema eléctrico dos automóveis: 12 V (nominal)
 - Tensão nominal de rede eléctrica doméstica: 230 V (eficazes ou RMS) na Europa, Austrália, Ásia e África, 120 V na América do Norte, 100 V no Japão
 - Tensão de alimentação de comboios de alta velocidade: 25 kV eficazes
 - Linhas de transporte de energia eléctrica em alta tensão: entre 110 kV e
 1150 kV eficazes
 - Relâmpago: varia muito, frequentemente à volta de100 MV.

Rudimentos de Electricidade

Medida de Tensão

Num recetor há conversão em outra forma de energia de energia elétrica **Voltímétro** Que não depende da referência escolhida

Tensão num ponto, não tem significado físico.

Só existe tensão entre dois pontos.

A tensão entre dois pontos tem um valor

Pode-se eventualmente falar em potencial num ponto (sub-entendendo-se

que se trata da tensão desse ponto relativamente a uma referência

Resistência interna do voltímetro ideal

A tensão entre dois pontos de um circuito tem um valor que não depende da referencia escolhida

O potencial elétrico que existe num ponto depende da referência escolhida

$\mathbf{U}_{\mathbf{A}} =$
$\mathbf{U}_{\mathrm{B}} =$
$U_c =$
$U_D =$
\mathbf{U}_{E} =
$\mathbf{E} =$
$\mathbf{U}_{\mathbf{AC}} =$
$\mathbf{U}_{\mathbf{CD}}$ =

Rudimentos de Electricidade

Corrente Eléctrica

... define-se corrente média como a quantidade de carga eléctrica que na unidade de tempo atravessa uma dada superfície ...

$$I = \frac{Q}{\Delta T}$$
 A (ampere)

Rudimentos de Electricidade

Medida Corrente Eléctrica

Amperimetro

Resistência interna do amperímetro ideal

Rudimentos de Electricidade

Potência Eléctrica

... a potência (caso geral) é uma medida do ritmo a que se dissipa ou acumula energia...

$$P = \frac{W}{\Delta T}$$
 W (watt), $p(t) = \frac{dw(t)}{dt}$, $w(t) = \int_{-\infty}^{t} p(\tau) d\tau$

Tendo em conta as relações entre trabalho, tensão, carga, tempo e corrente eléctrica, a potência eléctrica é dada por (valor médio),

$$P = \frac{W}{\Delta T} = \frac{W}{Q} \frac{Q}{\Delta T} = VI \text{ (W)}$$

$$[J/C].[C/s] = [J/s] = W (Watt)$$

Rudimentos de Electricidade

Potência/Energia Eléctrica

$$W = P \cdot t$$
 [J] = [W].[s]

$$W \text{ (em kWh)} = \frac{P \text{ (em watts)} \times t \text{(em horas)}}{1000}$$

 $1 \text{ kWh} = 1000 \text{W} \times 3600 \text{s} = 3.600.000 \text{J} = 3.600 \text{kJ} = 3,6 \text{ MJ}$

Rudimentos de Electricidade

- Potência/Energia Eléctrica
 - Exemplo
 - ... qual é o custo da energia consumida por um radiador de 2 kW que funciona durante 1h30m?. Assuma que o custo do kWh são 0.1 €.

$$W = \frac{2000W \cdot 1.5h}{1000} = 3 \text{ kWh} \Rightarrow Custo = 3 \text{ kWh} \frac{0.1 \cdot 1}{\text{kWh}} = 0.3 \cdot 1000$$

Rudimentos de Electricidade

- Potência/Energia Eléctrica
 - Rendimento

Potência de entrada (*P*_e)

$$P_{\rm e} = P_{\rm s} + P_{\rm p}$$

$$\eta = \frac{P_s}{P_e} \times 100\%$$

Rudimentos de Electricidade

- Resistência
 - ... o fluxo ordenado de cargas eléctricas através de um material pressupõe a aplicação de uma diferença de potencial e é limitado pela estrutura interna do mesmo ...

Existem 3 tipos de materiais:

- Condutores
- Isoladores (não condutores)
- Semicondutores

Rudimentos de Electricidade

Resistência de um condutor

$$R = \rho \frac{L}{A}$$
 depende da geometria

Resistividade (depende do material e da temperatura)

Material	Resistividade (@ 20°C)
prata	1.645×10 ⁻⁸ Ω.m
cobre	1.723×10 ⁻⁸ Ω.m
ouro	2.443×10 ⁻⁸ Ω.m
alumínio	2.825×10 ⁻⁸ Ω.m
tungsténio	5.485×10 ⁻⁸ Ω.m
níquel	7.811×10 ⁻⁸ Ω.m
ferro	1.229×10 ⁻⁷ Ω.m
constantan	4.899×10 ⁻⁷ Ω.m
nicrómio	9.972×10 ⁻⁷ Ω.m
carbono	3.5×10 ⁻⁵ Ω.m
silício	2.3×10 ³ Ω.m
polystirene	$\sim 10^{16} \Omega.m$

Rudimentos de Electricidade

Resistência de um condutor

$$R = \rho \frac{L}{A}$$

Resistividade (também depende da temperatura)

Um condutor percorrido por uma corrente elétrica aquece por efeito de Joule Aumentando a corrente, aumenta a dissipação térmica Aumentando a temperatura, aumenta a resistência Assim, aumentando a corrente, aumenta a resistência!

Então como é possível ter resistências com um valor nominal fixo e conhecido?

Na realidade, mantendo a temperatura do condutor constante (dentro dos intervalos definidos pelo fabricante),
(usando dissipadores se necessário) a resistência do condutor permanecerá constante (dentro das tolerâncias)

Rudimentos de Electricidade

Tipos de Resistências

(b)

Resistências fixas: (a) de carbono; (b) bobinadas

Rudimentos de Electricidade

Tipos de Resistências

Potenciómetro rotativo (dispositivo e símbolo)

Rudimentos de Electricidade

Tipos de Resistências

Reóstato bobinado (dispositivo e símbolo)

Rudimentos de Eletricidade

Medida/Especificação de resistências

Exemplos

Rudimentos de Electricidade

- Resistência. Lei de Ohm
 - ... As duas grandezas eléctricas fundamentais **tensão** e **corrente** relacionam-se através de outra grandeza de igual importância: a **resistência** ...
 - ... A relação entre as duas grandezas é descrita pela mais importante das leis dos circuitos eléctricos: a *lei de Ohm*:

$$R = \frac{V}{I} \Omega \text{ (ohm)} \qquad \rightarrow I = \frac{V}{R}, \qquad V = RI$$

A Lei de Ohm permite três interpretações distintas:

i) para uma determinada tensão aplicada, a corrente é inversamente proporcional à resistência eléctrica do elemento;
(ii) para uma determinada corrente aplicada, a tensão desenvolvida aos terminais do elemento é proporcional à resistência;
(iii) a resistência de um elemento é dada pelo cociente entre a tensão e a corrente aos seus terminais

Rudimentos de Electricidade

Resistência, Lei de Ohm

Símbolo da resistência e polaridades

$$V = RI$$

Rudimentos de Electricidade

Resistência. Lei de Ohm

$$I = \frac{E}{R} = \frac{V}{R} = \frac{12 V}{6 \Omega} = 2 A$$

Circuito eléctrico simples

A corrente circula sempre do potencial mais alto para o potencial mais baixo?

Rudimentos de Electricidade

Resistência. Lei de Joule

... a potência dissipada por efeito de Joule numa resistência é dada por:

$$P = V \times I = (R \times I) \times I = R \times I^2$$

Se a corrente triplicar, a potencia não quadrado da corrente. $P = V \times I = V \times \left(\frac{V}{R}\right) = \frac{V^2}{R}$ A potência é proporcional ao quadrado da corrente.