修士論文

ユニタリ 行列の座標化に基づいた量子ゲートの 分解の効率化

氏名: PHAM TRUNG TIEN

学籍番号: 6611140060-2

指導教員:山下茂教授

提出日: 2015年2月6日

立命館大学大学院 情報理工学研究科博士課程前期課程 情報理工学専攻

目次

第1章	はじめに	1
第2章	背景	2
2.1	量子計算	2
2.2	量子回路と量子ゲート	2
2.3	量子ゲート分解とユニタリ行列の分解問題	2
2.4	部分的な分解の組み合わせによるアプローチ	2
	2.4.1 アプローチの概要	2
	2.4.2 一般のシナリオ	2
	2.4.3 Selingerらの手法への適用するシナリオ	2
第3章	問題定義	3
3.1	メイン問題:	3
3.2	サブ問題:	3
第4章	提案手法	4
4.1	ユニタリ行列の座標化による効率化手法	4
	4.1.1 ユニタリ 行列の座標の概念	4
	4.1.2 ユニタリ 行列の積と 座標の和の関係	4
	4.1.3 提案した問題への繋がり	4
	4.1.4 アルゴリズムの詳細	4
	4.1.5 考察	4
第5章	実験結果	5
5.1	一般のシナリオ向けの実験	5
	5.1.1 2x2 行列の分解	5
	5.1.2 4x4 行列の分解	5
5.2	Selingerらの手法への適用シナリオ向けの実験	5

図目次

表目次

第1章 はじめに

第2章 背景

- 2.1 量子計算
- 2.2 量子回路と量子ゲート
- 2.3 量子ゲート分解とユニタリ行列の分解問題
- 2.4 部分的な分解の組み合わせによるアプローチ
- 2.4.1 アプローチの概要

分解結果をビルディングブロックから構成するステージには、Brute-force の従来のアルゴリズムは全ての行列組み合わせを生成し、検証する必要がある。アルゴリズムの詳細を以下に述べる。

なお、Dは $(d \times d)$ 行列の距離関数である。Dの例としては、 $D(V,W) \equiv \sqrt{\frac{d-|Trace(V*W^{\dagger})|}{d}}$ 、量子計算の研究ではよく使われる距離関数である。

- 2.4.2 一般のシナリオ
- 2.4.3 Selingerらの手法への適用するシナリオ

第3章 問題定義

3.1 メイン問題:

両方のシナリオに組み合わせ数に伴う計算コストの問題が存在

3.2 サブ問題:

一般のシナリオの場合、初期探索空間の生成、記憶するコスト問題

第4章 提案手法

- 4.1 ユニタリ 行列の座標化による効率化手法
- 4.1.1 ユニタリ 行列の座標の概念

ユニタリ → エルミート → 実数体上のベクトルとのマッピング

- 4.1.2 ユニタリ 行列の積と座標の和の関係
 - ユニタリ行列の積と座標の和の誤差に関する不等式を
- 4.1.3 提案した問題への繋がり
 - 全組み合わせ →ソート 済配列の探索へ- ベクトル演算子の条件
- 4.1.4 アルゴリズムの詳細
 - 条件を満たすベクトル演算子の例- 仮ソースコード
- 4.1.5 考察
 - 提案手法は NearIdentity 以外に適用ようできるための添削

第5章 実験結果

- 5.1 一般のシナリオ向けの実験
- 5.1.1 2x2 行列の分解
- 5.1.2 4x4 行列の分解
- 5.2 Selingerらの手法への適用シナリオ向けの実験

参考文献

- [1] C. M. Dawson and M. A. Nielsen. The Solovay-Kitaev algorithm. *Quantum Information and Computation*, 6(1):81–95, 2006.
- [2] Matthew Amy, Dmitri Maslov, Michele Mosca, and Martin Roetteler A meetin-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. arXiv:1206.0758, 2012.
- [3] Vadym Kliuchnikov Synthesis of unitaries with Clifford+T circuits. arXiv:1306.3200, 2013.