

Digital Logic Gates

Digital Logic gates

Draw the logic diagram of the function
 F = A+B'C

Real Gates

- Logic gates are integrated form
 - Built within a solid piece of silicon called
 IC (Integrated Circuit)

Several gates are included in a single plastic moulding

IC Families

- Transistor-Transistor Logic (TTL)
- Emitter Coupled Logic (ECL)
- Complementary Metal-Oxide-Semiconductor (CMOS)

Levels of IC

- Small-scale
 Integration
 - ICs with 1 to 10 gates
- Large-scale
 Integration
 - ICs with 100 to1000s of gates

- Medium-scale
 Integration
 - ICs with 10 to 100 gates

- Very large-scale
 Integration
 - ICs with 1000s to millions of gates

Chapter 4 (Part 1) Simplification of Logic Circuits

Recall: Representations of Boolean Functions

- Truth Table
 - unique

Example:

X	у	F
0	0	0
0	1	1
1	0	1
1	1	1

- Algebraic expression
 - not unique
 - convenient for manipulation

Example: F = x + y

- Logic circuits
 - not unique
 - close to implementation

Simplification of Boolean Functions

- Simpler circuit is faster
- Simpler circuit is less expensive
- Reduce complexity of the gate level implementation
- Reduce signal propagation delays

Ways to simplify Boolean functions

- Boolean Algebra
- Graphical method (Karnaugh Map)
- Tabular method (Quine–McCluskey)

Simplify: x'y' + xyz + x'y

$$= X^{2}(y^{2} + y) + XyZ$$

$$= X' + XYZ$$

Comm / Dist.

Inv / Identity

$$= X'(y' + y) + XyZ$$

$$= X' + XYZ$$

$$= (X^2 + X)(X^2 + YZ)$$

Comm / Dist.

Inv / Identity

Dist.

$$= X^2(y^2 + y) + XyZ$$

$$= X^{2} + XYZ$$

$$= (X^2 + X)(X^2 + YZ)$$

$$= X^2 + YZ$$

Comm / Dist.

Inv / Identity

Dist.

Inv / Identity

Simplify: AB + A(B+C) + B(B+C)

Simplify:
$$AB + A(B+C) + B(B+C)$$

= $AB + AB + AC + BB + BC$ Dist.

Simplify:
$$AB + A(B+C) + B(B+C)$$

$$= AB + AC + B + BC$$
 Idempotency

Simplify:
$$AB + A(B+C) + B(B+C)$$

$$= AB + AB + AC + BB + BC$$
 Dist.

$$= AB + AC + B + BC$$
 Idempotency

$$= AB + AC + B$$
 Absorption

Simplify:
$$AB + A(B+C) + B(B+C)$$

$$= AB + AB + AC + BB + BC$$
 Dist.

$$= AB + AC + B + BC$$
 Idempotency

$$= AB + AC + B$$
 Absorption

- Karnaugh map (K-map)
 - alternate way of representing Boolean functions
 - a graphical tool for assisting in the general simplification procedure
 - A simpler way to handle most jobs of manipulating logic functions

General Steps of K-Map Simplification

- Express function in canonical form
- Map expression on a K-Map
- Group 1's or 0's
- Determine the minimum expression

Step 1: Function in Canonical form

Sum of minterms

$$-F(x,y) = x^2y^2 + xy = \Sigma(0,3)$$

$$-G(a,b,c) = a'b'c + abc' + a'bc = \Sigma(1,3,6)$$

Product of maxterms

$$-H(x,y) = (x+y')(x'+y) = \Pi(1,2)$$

$$-I(a,b,c) = (a+b+c)(a'+b+c') = \Pi(0,5)$$

Step 2: Map Expression

Two-variable map

Three-variable map

Four-variable map

Mapping Example

• $F = X^2y^2Z + X^2yZ^2 + XyZ^2 + XyZ$

XYZ	00	01	11	10	
0		1		1	
1			1	1	

Mapping Example

• $G = \Sigma (2,4,6,8,12,14,15)$

WX YZ	00	01	11	10
00				1
01	1			1
11	1		1	1
10	1			
•		•		

- Grouping Rules:
 - A group must contain either 1,2,4,8 and
 16 cells.
 - Each cell in a group must be adjacent to one or more cells in that same group.
 - Always include the largest possible group in accordance with the first rule.
 - Each element of a group must be included in at least one group.

Sample Groupings: Four-variable map

Mapping Example

• $F = X^2y^2Z + X^2yZ^2 + XyZ^2 + XyZ$

Mapping Example

• $G = \Sigma (2,4,6,8,12,14,15)$

ABC	00	01	11	10
0	1		1	
1			1	1

ABC	00	01	11	10
0	1	1		1
1	1	1	1	

AB CD	00	01	11	10
00	1			$\mid 1 \mid$
01	1	1		1
11	1	1		1
10	1		1	1

Step 4. Determine Minimum Expression

Determine minimum terms

# of cells	# of vars
1	3
2	2
4	1
8	Fn's value is 1

three-variable map

# of cells	# of vars
1	4
2	3
3	2
8	1
16	Fn's value is 1

four-variable map

