Multiple Sequence Alignment using Profile HMM

based on Chapter 5 and Section 6.5 from

Biological Sequence Analysis by R. Durbin et al., 1998

Acknowledgements:
M.Sc. students Beatrice Miron,
Oana Răţoi, Diana Popovici

PLAN

- 1. From profiles to Profile HMMs
- 2. Setting the parameters of a profile HMM; the optimal (MAP) model construction
- 3. Basic algorithms for profile HMMs
- 4. Profile HMM training from unaligned sequences:
 Getting the model and the multiple alignment simultaneously
- 5. Profile HMM variants for non-global alignments
- 6. Weighting the training sequences

1 From profiles to Profile HMMs

Problem

Given a multiple alignment (obtained either manually or using one of the methods presented in Ch. 6 and Ch. 7), and the profile associated to a set of marked (X = match) columns,

design a HMM that would perform sequence alignments to that profile.

Example

	X X X			1	2	 . 3
bat	A G C	_	Α	4/5	0	0
rat	A - A G - C		C	0	0	4/5
cat	A G - A A -		G	0	3/5	0
gnat	A A A C			0		0
goat	A G C		-	1/5	2/5	1/5

Building up a solution

At first sight, not taking into account gaps:

What about insert residues?

What about gaps?

A better treatment of gaps:

Could we put it all together?

Transition structure of a profile HMM

Does it work?

						X
bat	Α	G	-	-	-	C
rat	Α	_	Α	G	_	C
cat	Α	G	-	Α	Α	_
gnat	-	-	Α	Α	Α	C
rat cat gnat goat	Α	G	_	_	_	C
						3

7

Any resemblance to pair HMMs?

Doesn't seem so...

However, remember...

An example of the state assignments for global alignment using the affine gap model:

When making the extension to multiple sequence alignment, think of generating only one string (instead of a pair of strings); use $|_x$ for inserting residues, and $|_y$ to produce a gap; use one triplet of states $(M, |_x, |_y)$ for each column in the alignment; finally define (appropriate) edges in the resulting FSA.

Consequence

It shouldn't be difficult to re-write the basic HMM algorithms for profile HMMs!

one moment, though...

- 2 Setting the parameters of a Profile HMM
- 2.1 Using Maximum Likelihood Estimates (MLE) for transition and emission probabilities

For instance — assuming a given multiple alignment with match states marked (X) —, the emission probabilities are computed as

$$e_{M_j}(a) = \frac{c_{ja}}{\sum_{a'} c_{ja'}}$$

where c_{ja} is the observed frequency of residue a in the column j of the multiple alignment.

What about zero counts, i.e. unseen emissions/transitions?

One solution: use pseudocounts (generalising Laplace's law...):

$$e_{M_j}(a) = \frac{c_{ja} + Aq_a}{\sum_{a'} c_{ja'} + A}$$

where A is a weight put on pseudocounts as compared to real counts (c_{ja}) , and q_a is the frequency with which a appears in a random model.

A=20 works well for protein alignments.

Note: At the intuitive level, using pseudocount makes a lot of sense:

- $e_{M_j}(a)$ is approximately equal to q_a if very little data is available, i.e. all real counts are very small compared to A;
- when a large amount of data is available, $e_{M_j}(a)$ is essentially equal to the maximum likelihood solution.

For other solutions (e.g. Dirichlet mixtures, substitution matrix mixtures, estimation based on an ancestor), you may see Durbin et al., 1998, Section 6.5.

2.2 Setting the L parameter

- The process of model construction represents a way to decide which columns of the alignment should be assigned to match states, and which to insert states.
- There are 2^L combinations of marking for alignment of L columns, and hence 2^L different profile HMMs to choose from.

In a marked column, symbols are assigned to match states and gaps are assigned to delete states

In an unmarked column, symbols are assigned to insert states and gaps are ignored.

- There are at least tree ways to determine the marking:
 - manual construction: the user marks alignment columns by hand;
 - heuristic construction: e.g. a column might be marked when the proportion of gap symbols in it is below a certain threshold;
 - Maximum A Posteriori (MAP) model construction: next slides.

The MAP (maximum a posteriori) model construction

• Objective: we search for the model μ that maximises the likelihood of the given data, namely:

$$\operatorname*{argmax}_{\mu} P(\mathcal{C} \mid \mu)$$

where \mathcal{C} is a set of aligned sequences.

Note: The sequences in \mathcal{C} are assumed to be statistically independent.

- Idea: The MAP model construction algorithm recursively calculates S_j , the log probability of the optimal model for the alignment up to and including column j, assuming that the column j is marked.
- More specifically: S_j is calculated from smaller subalignments ending at a marked column i, by incrementing S_i with the summed log probability of the transitions and emissions for the columns between i and j.

MAP model construction algorithm: Notations

- c_{xy} the observed state transition counts
- a_{xy} the transition probabilities, estimated from the c_{xy} in the usual fashion (MLE)

$$a_{xy} = \frac{c_{xy}}{\sum_{y} c_{xy}}$$

- S_j the log probability of the optimal model for the alignment up to and including column j, assuming that column j is marked
- \mathcal{T}_{ij} the summed log probability of all the state transitions between marked columns i and j

$$\mathcal{T}_{ij} = \sum_{x,y \in M, D, I} c_{xy} \log a_{xy}$$

- \mathcal{M}_j the log probability contribution for match state symbol emissions in the column j
- $\mathcal{L}_{i,j}$ the log probability contribution for the insert state symbol emissions for the columns $i+1,\ldots,j-1$ (for j-i>1).

The MAP model construction algorithm

Initialization: $S_0 = 0$, $\mathcal{M}_{L+1} = 0$

Recurrence:

for
$$j = 1, ..., L + 1$$

$$S_j = \max_{0 \le i < j} S_i + \mathcal{T}_{ij} + \mathcal{M}_j + \mathcal{L}_{i+1,j-1} + \lambda$$

$$\sigma_j = \arg\max_{0 \le i < j} S_i + \mathcal{T}_{ij} + \mathcal{M}_j + \mathcal{L}_{i+1,j-1} + \lambda$$

Traceback:

from $j = \sigma_{L+1}$, while j > 0: mark column j as a match column; $j = \sigma_j$

Complexity:

 $\mathcal{O}(L)$ in memory and $\mathcal{O}(L^2)$ in time for an alignment of L columns... with some care in implementation!

Note: λ is a penalty used to favour models with fewer match states. In Bayesian terms, λ is the log of the prior probability of marking each column. It implies a simple but adequate exponentially decreasing prior distribution over model lengths.

3 Basic algorithms for Profile HMMs

Notations

- $v_{M_j}(i)$ the probability of the best path matching the subsequence $x_{1...i}$ to the (profile) submodel up to the column j, ending with x_i being emitted by the state M_j ;
 - $v_{I_j}(i)$ the probability of the best path ending in x_i being emitted by I_j ;
 - $v_{D_j}(i)$ the probability of the best path ending in D_j (x_i being the last character emitted before D_j).
- $V_{M_j}(i)$, $V_{I_j}(i)$, $V_{D_j}(i)$ the log-odds scores corresponding respectively to $v_{M_j}(i)$, $v_{I_j}(i)$, $v_{D_j}(i)$.
- $f_{M_j}(i)$ the combined probability of all alignments up to x_i that end in state M_j , and similarly $f_{I_i}(i)$, $f_{D_j}(i)$.
- $b_{M_j}(i)$, $b_{I_j}(i)$, $b_{D_j}(i)$ the corresponding backward probabilities.

The Viterbi algorithm for profile HMM

Initialization:

rename the Begin state as M_0 , and set $v_{M_0}(0) = 1$; rename the End state as M_{L+1}

Recursion:

$$v_{M_j}(i) = e_{M_j}(x_i) \max \begin{cases} v_{M_{j-1}}(i-1) \ a_{M_{j-1}M_j} \\ v_{I_{j-1}}(i-1) \ a_{I_{j-1}M_j} \\ v_{D_{j-1}}(i-1) \ a_{D_{j-1}M_j} \end{cases}$$

$$v_{I_j}(i) = e_{I_j}(x_i) \max \begin{cases} v_{M_j}(i-1) \ a_{M_j I_j}, \\ v_{I_j}(i-1) \ a_{I_j I_j} \\ v_{D_j}(i-1) \ a_{D_j I_j} \end{cases}$$

$$v_{D_j}(i) = \max \begin{cases} v_{M_{j-1}}(i) \ a_{M_{j-1}D_j} \\ v_{I_{j-1}}(i) \ a_{I_{j-1}D_j} \\ v_{D_{j-1}}(i) \ a_{D_{j-1}D_j} \end{cases}$$

Termination:

the final score is $v_{M_{L+1}}(n)$, calculated using the top recursion relation.

The Viterbi algorithm for profile HMMs: log-odds version

Initialization:

 $V_{M_0}(0) = 0$; (the Begin state is M_0 , and the End state is M_{L+1})

Recursion:

$$V_{M_j}(i) = \log \frac{e_{M_j}(x_i)}{q_{x_i}} + \max \begin{cases} V_{M_{j-1}}(i-1) + \log a_{M_{j-1}M_j} \\ V_{I_{j-1}}(i-1) + \log a_{I_{j-1}M_j} \\ V_{D_{j-1}}(i-1) + \log a_{D_{j-1}M_j} \end{cases}$$

$$V_{I_j}(i) = \log \frac{e_{I_j}(x_i)}{q_{x_i}} + \max \begin{cases} V_{M_j}(i-1) + \log a_{M_j I_j}, \\ V_{I_j}(i-1) + \log a_{I_j I_j} \\ V_{D_j}(i-1) + \log a_{D_j I_j} \end{cases}$$

$$V_j^D(i) = \max \begin{cases} V_{M_{j-1}}(i) + \log a_{M_{j-1}D_j} \\ V_{I_{j-1}}(i) + \log a_{I_{j-1}D_j} \\ V_{D_{j-1}}(i) + \log a_{D_{j-1}D_j} \end{cases}$$

Termination:

the final score is $V_{M_{L+1}}(n)$, calculated using the top recursion relation.

The Forward algorithm for profile HMMs

Initialization: $f_{M_0}(0) = 1$

Recursion:

$$f_{M_{j}}(i) = e_{M_{j}}(x_{i})[f_{M_{j-1}}(i-1)a_{M_{j-1}M_{j}} + f_{I_{j-1}}(i-1)a_{I_{j-1}M_{j}} + f_{D_{j-1}}(i-1)a_{D_{j-1}M_{j}}]$$

$$f_{I_{j}}(i) = e_{I_{j}}(x_{i})[f_{M_{j}}(i-1)a_{M_{j}I_{j}} + f_{I_{j}}(i-1)a_{I_{j}I_{j}} + f_{D_{j}}(i-1)a_{D_{j}I_{j}}]$$

$$f_{D_{j}}(i) = f_{M_{j-1}}(i)a_{M_{j-1}D_{j}} + f_{I_{j-1}}(i)a_{I_{j-1}D_{j}} + f_{D_{j-1}}(i)a_{D_{j-1}D_{j}}$$

Termination:

$$f_{M_{L+1}}(n+1) = f_{M_L}(n)a_{M_LM_{L+1}} + f_{I_L}(n)a_{I_LM_{L+1}} + f_{D_L}(n)a_{D_LM_{L+1}}$$

The Backward algorithm for profile HMMs

Initialization:

$$b_{M_{L+1}}(n+1) = 1;$$

 $b_{M_L}(n) = a_{M_L M_{L+1}}; \ b_{I_L}(n) = a_{I_L M_{L+1}}; \ b_{D_L}(n) = a_{D_L M_{L+1}}$

Recursion:

$$b_{M_{j}}(i) = b_{M_{j+1}}(i+1)a_{M_{j}M_{j+1}}e_{M_{j+1}}(x_{i+1}) + b_{I_{j}}(i+1)a_{M_{j}I_{j}}e_{I_{j}}(x_{i+1}) + b_{D_{j+1}}(i)a_{M_{j}D_{j+1}}$$

$$b_{I_{j}}(i) = b_{M_{j+1}}(i+1)a_{I_{j}M_{j+1}}e_{M_{j+1}}(x_{i+1}) + b_{I_{j}}(i+1)a_{I_{j}I_{j}}e_{I_{j}}(x_{i+1}) + b_{D_{j+1}}(i)a_{I_{j}D_{j+1}}$$

$$b_{D_{j}}(i) = b_{M_{j+1}}(i+1)a_{D_{j}M_{j+1}}e_{M_{j+1}}(x_{i+1}) + b_{I_{j}}(i+1)a_{D_{j}I_{j}}e_{I_{j}}(x_{i+1}) + b_{D_{j+1}}(i)a_{D_{j}D_{j+1}}$$

The Baum-Welch (Expectation-Maximization) algorithm for Profile HMMs: re-estimation equations

Expected emission counts from sequence x:

$$E_{M_j}(a) = \frac{1}{P(x)} \sum_{i|x_i=a} f_{M_j}(i) b_{M_j}(i)$$

$$E_{I_j}(a) = \frac{1}{P(x)} \sum_{i|x_i=a} f_{I_j}(i) b_{I_j}(i)$$

Expected transition counts from sequence x:

$$A_{X_j M_{j+1}} = \frac{1}{P(x)} \sum_{i} f_{X_j}(i) a_{X_j M_{j+1}} e_{M_{j+1}}(x_{i+1}) b_{M_{j+1}}(i+1)$$

$$A_{X_{j}I_{j}} = \frac{1}{P(x)} \sum_{i} f_{X_{j}}(i) a_{X_{j}I_{j}} e_{I_{j}}(x_{i+1}) b_{I_{j}}(i+1)$$

$$A_{X_j D_{j+1}} = \frac{1}{P(x)} \sum_{i} f_{X_j}(i) a_{X_j D_{j+1}} b_{D_{j+1}}(i)$$

where X_j is one of M_j , I_j , and D_j .

Avoiding local maxima

- The Baum-Welch algorithm is guaranteed to find a local maximum on the probability "surface" but there is no guarantee that this local optimum is anywhere near the global optimum.
- A more involved approach is to use some form of stochastic search algorithm that "bumps" Baum-Welch off from local maxima:
 - noise injection during Baum-Welch re-estimation,
 - simulated annealing Viterbi approximation of EM,
 - Gibbs sampling.

For details, see Durbin et al. Section 6.5, pages 154–158.

4 Getting simultaneously the model and the multiple alignment

Profile HMM training from unaligned sequences

Initialization:

Choose the length of the profile HMM (i.e., the number of match states), and initialize the transition and emission parameters.

A commonly used rule is to set the profile HMM's length to be the average length of the training sequences.

Training:

Estimate the model using the Baum-Welch algorithm or its Viterbi alternative.

Start Baum-Welch from multiple different points to see if it all converges to approximately the same optimum.

If necessary, use a heuristic method for avoiding local optima. (See the previous slide.)

Multiple alignment:

Align all sequences to the final model using the Viterbi algorithm and build a multiple alignment.

Further comments on profile HMM's initial parameters:

- One possibility: guess a multiple alignment of some or all given sequences.
- A further possibility: derive the model's initial parameters from the Dirichlet prior over parameters (see Ch. 11).
- Alternatively: use frequencies derived from the prior to initialise the model's parameters, then use this model to generate a small number of random sequences, and finally use the resulting counts as 'data' to estimate an initial model.
- Note:

The model should be encouraged to use 'sensible' transitions; for instance transitions into match states should be large compared to other transition probabilities.

Model surgery

After training a model we can analyse the alignment it produces:

- From counts estimated by the forward-backward procedure we can see how much a certain transition is used by the training sequences.
- The usage of a match state is the sum of counts for all letters emitted in the state.
- If a certain match state is used by less than half the number of given sequences, the corresponding module (triplet of match, insert, delete states) should be deleted.
- Similarly, if more than half (or some other predefined fraction) of the sequences use the transitions into a certain insert state, this should be expanded to some number of new modules (usually the average number of insertions).

5 Profile HMMs for non-global alignments

Local multiple alignment

The looping probabilities of the flanking (blue diamond) states should be close to 1; let's set them to $1 - \eta$.

Transition probabilities from the left flanking state to the match states: one option: all η/L another option: $\eta/2$ for the transition into the first match state, and

 $\eta/2(L-1)$ for the other positions.

For the rare case when the first residue might be missing:

6 Weighting the training sequences

When the (training) sequences in the given multiple alignment are not statistically independent, one may use some simple weighting schemes derived from a phylogenetic tree.

Example of a phylogenetic tree:

6.1 A weighting scheme using Kirchhof's laws [Thompson et al., 1994]

- Let I_n and V_n be the current and respectively the voltage at node n. We can set the resistance equal to the edge length/time.
- Equations:

$$V_5 = 2I_1 = 2I_2$$

 $V_6 = 2I_1 + 3(I_1 + I_2) = 5I_3$
 $V_7 = 8I_4 = 5I_3 + 3(I_1 + I_2 + I_3)$

• Result:

$$I_1: I_2: I_3: I_4 = 20: 20: 32: 47$$

6.2 Another simple algorithm [Gerstein et al., 1994]

- Initially the weights are set to the edge lengths of the leafs: $w_1 = w_2 = 2, w_3 = 5, w_4 = 8.$
- Then

$$\Delta\omega_i = t_n \frac{\omega_i}{\sum_{\text{leaves } k \text{ below } n} \omega_k}$$

So, at node 5:

$$w_1 = w_2 = 2 + 3/2 = 3.5$$

At node 6:

$$w_1 = w_2 = 3.5 + 3 \times 3.5/12,$$

 $w_3 = 5 + 3 \times 5/12$

• Result:

$$w_1: w_2: w_3: w_4 = 35: 35: 50: 64$$

For details on other, more involved weighting schemes,

- Root weights from Gaussian parameters
- Voronoi weights
- Maximum discrimination weights
- Maximum entropy weights

you may see Durbin et al., Section 5.8, pages 126–132

Examples

(including the use of weights in the computation of parameters for the HMM profile):

pr. 5.6, 5.10 in [Borodovsky, Ekisheva, 2006]