高微 2 第四周习题课材料

- 1 (1) 给定 $\alpha > 4$, 判断函数项级数 $\sum_{n=1}^{\infty} \frac{nx}{1 + n^{\alpha}x^2}$ 在 R 上是否一致收敛.
 - (2) 给定 a>0,判断函数项级数 $\sum_{n=1}^{\infty}2^n\sin(\frac{1}{3^nx})$ 在区间 $[a,+\infty)$ 上是否一致收敛.
 - (3) 判断函数项级数 $\sum_{n=1}^{\infty} 2^n \sin(\frac{1}{3^n x})$ 在区间 $(0, +\infty)$ 上是否一致收敛.
 - (4) 给定 a > 0, 判断函数项级数 $\sum_{n=1}^{\infty} \frac{x^2}{(1+x^2)^n}$ 在 $[a, +\infty)$ 上是否一致收敛.
 - (5) 判断函数项级数 $\sum_{n=1}^{\infty} \frac{x^2}{(1+x^2)^n}$ 在 **R** 上是否一致收敛.
- 2 设 f 在 R 上有连续的导函数. 定义函数序列

$$g_n(x) = n\left(f(x+\frac{1}{n}) - f(x)\right), \quad \forall x \in \mathbf{R}.$$

- (1) 证明: 对任何有界闭区间 [a,b], $\{g_n(x)\}_{n=1}^{\infty}$ 一致收敛于 f'(x).
- (2) 证明:

$$\lim_{n \to \infty} \int_a^b g_n(x) dx = f(b) - f(a).$$

- 3 考虑函数 $S(x) = \sum_{n=0}^{\infty} \frac{x^n}{3^n} \cos(n\pi x^2).$
 - (1) 证明: 当 0 < L < 3 时,函数级数 $\sum_{n=0}^{\infty} \frac{x^n}{3^n} \cos(n\pi x^2)$ 在 (-L, L) 上一致收敛.
 - (2) 求极限 $\lim_{x\to 1} S(x)$.

- 4 考虑函数 $f(x) = \sum_{n=1}^{\infty} (x + \frac{1}{n})^n$.
 - (1) 确定 f 的定义域 D.
 - (2) 证明: 函数级数 $\sum_{n=1}^{\infty} (x + \frac{1}{n})^n$ 在 D 上不一致收敛.
 - (3) 证明: $f \in C(D)$.
- 5 (1) 求函数级数 $\sum_{n=1}^{\infty} \frac{e^{-nx}}{1+n^2}$ 的收敛域.
 - (2) 证明: 和函数 $S(x) = \sum_{n=1}^{\infty} \frac{e^{-nx}}{1+n^2}$ 在 $[0, +\infty)$ 上连续.
 - (3) 证明: S(x) 在 $(0,+\infty)$ 上可导.
- 6 判断下列幂级数的收敛半径, 收敛区间 (收敛域).
 - $(1) \sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} (x-1)^{2n}.$
 - (2) $\sum_{n=1}^{\infty} \left(\frac{a^n}{n} + \frac{b^n}{n^2} \right) x^n$, 其中 a, b 是给定的正数.
 - (3) $\sum_{n=1}^{\infty} 2^{-n} x^{n^2}$.
 - $(4) \sum_{1}^{\infty} (1 + \frac{1}{n})^{n^2} x^n.$
- 7 设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 $r \in (0, +\infty)$. 求幂级数 $\sum_{n=0}^{\infty} \frac{a_n}{n!} x^n$ 的收敛半径.
- 8 求级数 $\sum_{n=2}^{\infty} \frac{1}{(n^2-1)2^n}$ 的和.
- 9 求极限

$$\lim_{x \to 1^{-}} (1 - x)^{3} \sum_{n=1}^{\infty} n^{2} x^{n}.$$