

Jurusan Teknologi Informasi Politeknik Negeri Malang **Mata Kuliah Data Warehouse Kuis 1**

Nama : Yonanda Mayla Rusdiaty

Nomor Urut : 30

1. Tuliskan perbandingan star schema dan snowflake schema pada tabel berikut:

Jawab:

- Star schema: merupakan skema paling sederhana yang memiliki satu tabel tengah yaitu tabel fakta (berisikan key) dimana tabel tersebut terhubung dengan beberapa tabel dimensi lainnya.
- Snowflake schema: merupakan perpanjangan dari Skema Star dengan menambahkan tabel dimensi lainnya dimana tabel dimensi lain tersebut merupakan hasil normalisasi tabel-tabel dimensi yang telah ada sebelumnya

	Star Schema	Snowflake Schema
Normalisasi	Tidak dinormalisasi (denormalized), data disimpan secara redundan untuk efisiensi.	Dinormalisasi, data dipecah ke tabel-tabel tambahan untuk mengurangi redundansi.
Kompleksitas desain/skema	Desain/skema lebih sederhana dan mudah dipahami, yakni hanya terdiri dari tabel fakta dan tabel dimensi langsung	Desain/skema lebih kompleks karena ada hierarki dimensi yang dinormalisasi ke tabel tambahan.
Kompleksitas query	Query lebih sederhana karena jumlah join yang lebih sedikit (hanya fakta dan dimensi)	Query lebih kompleks karena membutuhkan lebih banyak join kibat normalisasi tabel dimensi
Performa query	Performa query lebih cepat karena mengurangi jumlah join	Performa query lebih lambat dibanding star schema karena membutuhkan lebih banyak join
Storage	Membutuhkan lebih banyak storage karena redundansi data	Lebih hemat storage karena data dinormalisasi dan redundansi dikurangi.
Integritas data	Rentan terhadap inkonsistensi data (rendah) karena redundansi.	Lebih baik menjaga integritas data (tinggi) karena normalisasi.
Maintenance (pengisian data dengan proses ETL dari OLTP)	Lebih mudah karena struktur sederhana, tapi bisa lebih lambat akibat redundansi.	Lebih kompleks karena perlu mengisi banyak tabel tambahan, tapi lebih efisien

2. Gambar berikut menunjukkan skema OLTP database dari sebuah sistem informasi ekspedisi. Buatlah data warehouse dalam star schema yang digunakan sebagai dasar analisis performa ekspedisi.

Jawab:

Langkah-langkah Membuat Data Warehouse dalam Star Schema untuk Analisis Performa Ekspedisi:

- a. Membuat Tabel Fakta (Fact_ExpeditionPerformance) yang digunakan untuk analisis performa ekspedisi. Atribut-atributnya diperoleh dari tabel Pengiriman dan Pembayaran di skema OLTP, dengan beberapa dihitung atau diturunkan melalui transformasi. Berikut rinciannya:
 - 1) ID_Pengiriman → Diambil langsung dari kolom ID di tabel Pengiriman. Digunakan sebagai primary key untuk mengidentifikasi setiap transaksi pengiriman secara unik
 - 2) ID_Waktu → Diturunkan dari kolom TanggalPengiriman, TanggalSampaiPerkiraan, atau TanggalSampaiAktual di tabel Pengiriman. Foreign key ke Dim_Waktu, dibuat berdasarkan tanggal-tanggal tersebut untuk analisis berdasarkan waktu (misalnya, hari, bulan, tahun)
 - 3) ID_Pelanggan → Diturunkan dari kolom NamaPelanggan di tabel Pengiriman. Foreign key ke Dim_Pelanggan, dibuat untuk mengidentifikasi pelanggan berdasarkan nama mereka sebagai pengganti ID unik (karena skema OLTP tidak memiliki ID pelanggan terpisah).
 - 4) ID_Kurir → Diambil langsung dari kolom KurirID di tabel Pengiriman. Foreign key ke Dim_Kurir, menghubungkan pengiriman dengan detail kurir yang menanganinya.
 - 5) ID_LokasiAsal → Diturunkan dari kolom KecamatanAsalID di tabel Pengiriman, yang terkait dengan tabel Kecamatan, Kota, dan Provinsi. Foreign key ke Dim_Lokasi, mewakili lokasi asal pengiriman setelah denormalisasi (menggabungkan kecamatan, kota, provinsi)

- 6) ID_LokasiTujuan → Diturunkan dari kolom KecamatanTujuanID di tabel Pengiriman, yang terkait dengan tabel Kecamatan, Kota, dan Provinsi. Foreign key ke Dim_Lokasi, mewakili lokasi tujuan pengiriman setelah denormalisasi.
- 7) ID_StatusPengiriman → Diambil langsung dari kolom StatusPengirimanID di tabel Pengiriman. Foreign key ke Dim_StatusPengiriman, menghubungkan status pengiriman (misalnya, "Sukses" atau "Tertunda")
- 8) ID_TipePembayaran → Diturunkan dari kolom PembayaranID di tabel Pengiriman, yang terkait dengan tabel Pembayaran, lalu ke TipePembayaranID di tabel Pembayaran. Foreign key ke Dim_TipePembayaran, menghubungkan tipe pembayaran (misalnya, "Tunai" atau "Transfer")
- 9) Waktu_Pengiriman \rightarrow Dihitung dari selisih antara TanggalSampaiAktual dan TanggalPengiriman di tabel Pengiriman. Metrik kuantitatif yang menunjukkan durasi pengiriman dalam hari untuk mengukur efisiensi.
- 10) Keterlambatan → Dihitung dari selisih antara TanggalSampaiAktual dan TanggalSampaiPerkiraan di tabel Pengiriman. Metrik kuantitatif yang menunjukkan apakah pengiriman terlambat (nilai positif) atau lebih cepat (nilai negatif)
- 11) Berat_Pengiriman → Diambil langsung dari kolom Berat di tabel Pengiriman. Metrik kuantitatif untuk analisis beban pengiriman
- 12) Total_Biaya → Diambil langsung dari kolom Total di tabel Pembayaran, yang dihubungkan melalui PembayaranID. Metrik kuantitatif untuk analisis finansial pengiriman

b. Menambahkan Tabel Dimensi:

- 1) Dim_Waktu → Memungkinkan analisis performa ekspedisi berdasarkan dimensi waktu
- 2) Dim_Pelanggan → Memungkinkan analisis performa ekspedisi dari perspektif pelanggan
- 3) Dim_Kurir → Memungkinkan analisis performa ekspedisi dari perspektif kurir
- 4) Dim_Lokasi → Memungkinkan analisis performa ekspedisi berdasarkan lokasi asal dan tujuan pengiriman
- 5) Dim_StatusPengiriman → Memungkinkan analisis performa berdasarkan status pengiriman
- 6) Dim_TipePembayaran → Memungkinkan analisis performa ekspedisi berdasarkan metode pembayaran

