This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Anzeige der Ergebnisse aus WPINDEX Datenbank

ANTWORT 1 © 2003 THOMSON DERWENT on STN

Title

Fluorescent substance - gives orange emission by activation with electron rays.

Derwent Class

L03

Patent Assignee

(TOKE) TOKYO SHIBAURA ELECTRIC CO

Patent Information

JP 49003631 B

19740128 (197407)*

Priority Application Information

JP 1969-82183

19691016

Abstract

JP 74003631 B UPAB: 19930831

Terbium yttrium aluminate

(Tb1-xYx)3.Al5O12, where 0 < x <0.6, is activated with cerium, whereby the Ce is not >30% of the total amt. of Tb and Y. The emission energy distribution of the fluorescent substance is the same as in cerium-activated terbium aluminate fluorescent substance, but as compared thereto, shows high luminescence. When the value of x in the compsn. >0.4, Tb acts not only as an activator but also as a mother substance so that the emission energy distribution curve and emission colour change. The prefd. calcination temp. is 1300-1500 degrees C.

Accession Number

1974-12521V [07]

WPINDEX

60日本分類 6) Int · Cl · 13(9) C 114 C 09 k 1/68

19日本国特許庁

①特許出願公告 昭49—3631

許 公 特

昭和 49年(1974) 1月28日 ④公告

発明の数 1

(全3頁)

60笼光体

204# 昭44-82183

②出 頤 昭44(1969) 10月16日

1

72発 眀

> 川崎市幸区堀川町72東京芝浦電 気株式会社堀川町工場内

①出 爾 人 東京芝浦電気株式会社

川崎市幸区堀川町72

何代 理 人 弁理士 富岡章 外3名

図面の簡単な説明

図は本発明の螢光体の発光エネルギー分布由線 図である。

発明の詳細な説明

本発明はセリウムで活性化してなるテルビウム ・イツトリウム・アルミネート螢光体 ((Tb_{1-x}Yx) 3・Al₅O₁₂: Ce、但しO<x< 0.6) に関する。これは電子線の刺激によつて極めて効 率よい橙色の発光を示す螢光体である。

本発明による螢光体は電子線で刺戟した場合図 に示すようにセリウム付活テルビウムアルミネー ト螢光体と同じ発光を示す螢光体である。

本発明による螢光体は電子線で刺戟した場合図 に示すようにセリウム付活テルピウム、アルミネ 25 ート螢光体と同じ発光エネルギー分布を示し、そ のピークは約5700Aであるがセリウム付活テル ピウム、アルミネート螢光体に比べると輝度が高 いという長所を有するものである。この事は母体 中でテルピウムの替りにイツトリウムを入れてい 30 くと輝度も上昇することからも明かである。

しかし組成式におけるxの値が 0.4 を超えると テルビウムは母体としての作用をするだけでなく、 活性剤としての作用をするため発光エネルギー分 35 布曲線も変化し発光色も変化する。

一方のセリウムについてはその量がイツトリウ ムとテルビウムの総量の30%以上である場合に は活性剤としての機能を失い螢光体として使用す ることはできない。

しかしその焼成温度は1300℃あればよく抵 抗加熱炉の限界である。1500℃迄では製造可 5 能であることを確認した。

先ず本発明の実施例による、組成配合について 説明する。

実施例 1

	酸化アルミニウム (Al 2O3)	0.5	モル
10	酸化テルビウム(Tb2O3)	0.15	"
	酸化ィツトリウム(Y 2O3)	0.15	"
	酸化セリウム (Ce ₂ O ₃)	0.0 0 3	<i>"</i> ·
	実施例 2		
	酸化アルミニウム(Al2O3)	0.5	モル
15	酸化テルビウム(Tb2O3)	0.2 2	"
	・酸化イツトリウム(Y 2O3)	8 0.0	"
	酸化セリウム (Ce 2O 3)	0.00	3 "
	実施例 3		

硝酸アルミニウム 20

(Al (NO3) 2 · 9 H2O)

酸化テルピウム 0.15モル (Tb 2O 3) 酸に溶解 し修敵塩 酸化イツトリウム 0.3 4 0.15 " として共 (Y_2O_3) 沈させる

1.0モル

酸化セリウム 0.003" (Ce 2O 3)

実施例 4 /

モル 酸化アルミニウム(Al2O3)・ 0.5 酸化テルビウム(Tb2O3) 0.15 0.15 酸化ィツトリウム (Y2O3) 酸化セリウム (Ce 2O3) 0.003 "

実施例 5

酸化アルミニウム (Al2O3) 0.5 モル 酸化テルピウム(Tb2O3) 0.15 酸化イツトリウム (Y2O3) 0.15 酸化セリウム (Ce2O3)

尚、螢光体の原材料としてアルミニウムでは酸

化アルミニウムまたは水酸化アルミニウム、硝酸 アルミニウム等を最適材料として用いたのである。

またテルビウム、セリウム、イツトリウムにつ いては、酸化物または蓚酸塩或いはこれらを蓚酸 で共沈した塩類を適用した。

前記の実施例組成配合材料をアルミナ製乳鉢に 入れてその中で充分混合させた後、これをアルミ ナ製坩堝に移してから1400℃に設定した焼成 用炉に入れて大気雰囲気の中で前記の混合粉末を 2時間焼成することによつて所望の螢光体が得ら 10 体であることが判つた。 れるのである。

本発明によつて得られた螢光体を用いこれを電 子線によつて励起した場合、とくに輝度の高い螢 光体が得られるのである。

の試料セリウム付活テルビウム、イツトリウム、 アルミネートと従来のセリウム付活テルビウムア ルミネート (Tb3Al5O12:Ce) 螢光体との輝度

特性を比較した場合について述べる。

実施例No. 特性	1	2	3	比較用 (Tb3Al5O12:Ce)
輝 度 (比率)	1.8	1.5	2.3	1.0

本発明によつて得られた螢光体を用い、これを 電子線によつて励起した場合特に輝度の高い螢光

切特許請求の範囲

テレビウム・イツトリウム・アルミネート ((Tb_{1-x}Yx)₃・Al₅O₁₂) 但し0<x<0.6)を母 体とし、これに前記テルピウムとイツトリウムと、 次に前記した実施例 1, 2, 3を撰出した 3 つ 15 の総重量の 3 0 %を超えないセリウムで付活した ことを特徴とする螢光体。

