Ejercicio 8

Andoni Latorre Galarraga

a)

Tenemos que
$$X^2 + 1 - (Y^2 + 1) = X^2 - Y^2 \in (X^2 + 1, Y^2 + 1)$$
. Pero $(X + Y)(X - Y) = X^2 - Y^2$ y $\deg_X(X + Y) = \deg_X(X - Y) = \deg_Y(X + Y) = \deg_Y(X - Y) < \deg_X(X^2 + 1) = \deg_Y(Y^2 + 1)$ $\Rightarrow X + Y, X - Y \notin (X^2 + 1, Y^2 + 1)$

b)

Veamos que $\frac{\mathbb{R}[X,Y]}{(X^2+1,X^2Y)}$ es DI. Plantemos el homorfismo

$$\begin{array}{cccc} \varphi: & \mathbb{R}[X,Y] & \longrightarrow & \mathbb{C} \\ & X & \longmapsto & i \\ & Y & \longmapsto & 0 \\ & c \in \mathbb{R} & \mapsto & c \end{array}$$

Calculamos $\ker \varphi$. Sea $\varphi(f)=0$ si dividimos f entre Y tenmos que f=gY+h con $\deg_Y(h)=0$ entonces $\varphi(f)=0\Rightarrow \varphi(h)=0$ pero $h\in\mathbb{R}[X]$ es tal que i es una raiz y por tanto -i también. Es decir $h\in(X^2+1)$ ya que $(X+i)(X-i)=X^2+1$. Concluimos que $\ker \varphi=(X^2+1,Y)$. Ahora, veamos que $(X^2+1,Y)=(X^2+1,X^2Y)$. Sean $a,b\in\mathbb{R}[X,Y]$,

$$a(X^2+1)+bX^2Y=a(X^2+1)+b((X^2+1)Y-Y)=(a+bY)(X^2+1)-bY\in (X^2+1)-bY$$

$$a(X^2+1)+bY=a(X^2+1)+b((X^2+1)Y-X^2Y)=(a+bY)(X^2+1)-bX^2Y\in (X^2+1)-bY$$
 Tenemos que $\frac{\mathbb{R}[X,Y]}{(X^2+1,X^2Y)}\simeq \varphi(\mathbb{R}[X,Y])\subseteq \mathbb{C}$ que concluye la prueba.