

Amplifiers and Comparators

Data Book New Releases

2000

Analog and Mixed Signal

General Information	1
Data Sheets	2
Product Previews	3
Evaluation Modules	4
Application Reports	5
Mechanical Data	6

9	

Amplifiers and Comparators Data Book

New Releases

Literature Number: SLOD002

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated

Printed in U.S.A. by Von Hoffmann Graphics Owensville, Missouri

INTRODUCTION

As the world leader in DSP and Analog, Texas Instruments (TI) designs, manufactures, and markets a broad portfolio of operational amplifiers and comparators in addition to many other integrated products. TI offers *thousands* of amplifiers to suit a broad range of application needs. This databook of new releases represents the first of three lines of amplifiers at TI:

- Amplifiers and Comparators
- Audio Power Amplifiers
- High Speed Amplifiers

How Amplifiers information is organized

The 1997 databook *Amplifiers, Comparators and Special Functions*, in two volumes (A & B), remains as a reference. This supplement is the year 2000 Databook of new releases, *Amplifiers and Comparators*, and includes all new releases of performance amplifiers since 1997. New releases of Audio Power Amplifiers can be found in a separate volume, entitled *Audio Power Amplifiers*, also published in 2000. And new releases of High Speed Amplifiers are found in another databook entitled *High Speed Amplifiers*, also released in 2000.

There is an alphanumeric index and selection guide within this volume. This databook includes selection guides sorted by several criteria: speed, precision, low power, micropower, low noise, rail-to-rail, and low voltage amplifiers. The selection guide includes all of the amplifiers that TI offers, including new releases and those listed in the 1997 Volumes A and B. Selection guides for High Speed and Audio Power Amplifiers are included here as separate sections.

To obtain any of the three databooks that represent Tl's total current offering as follows in *Related Tl Publications*, call your local Tl Sales office, distributors, or the Tl Product Information Center as listed in the last page of this book.

World Wide Web

Visit our world wide web site at http://www.ti.com for rapid access to the latest technology. Future amplifiers include complete families of low-voltage, ultra-low-power, rail-to-rail input/output, and improved BiMOS amplifiers. Most families are offered with and without shutdown. Our web site offers up-to-the-minute information about TI and its products; such as datasheets, a product parametric search (a user-sortable selection guide), application notes, amplifier evaluation modules, an on-line product sampling system, and much more.

Related TI Publications

Publication	Literature Number
Operational Amplifiers and Comparators Data Book New Releases 2000	SLOD002
Audio Power Amplifiers Databook 2000	SLOD004
High Speed Amplifiers Databook 2000	SLOD005
August 1999 Mixed Signal and Analog Designer's Guide, including CD ROM of 1999 Designer's Guide and Databook	SLYU001B (updated biannually)
CD ROM of Mixed Signal Designer's Guide and Databook	SLYC005C (updated biannually)
Amplifiers, Comparators, and Special Functions 1997, Volume A	SLYD011A
Amplifiers, Comparators, and Special Functions 1997, Volume B	SLYD012A
1999 Semiconductor Group Package Outlines Reference Guide	SSYU001E

For the latest product information check www.ti.com/sc

TI Worldwide Technical Support

If you do not have access to the web, call the TI product information center or your local TI Sales office as listed on the last page of this volume for assistance in obtaining a CD ROM or hardcopy of these volumes.

While these volumes offer information only on the amplifier and comparator devices available from TI, complete technical data for upcoming analog or any other TI Semiconductor product is available from your nearest TI sales office (listed on the last page of this book), your local authorized distributor, or by writing directly to:

Texas Instruments Incorporated
Literature Response Center
P.O. Box 809066
Dallas, Texas 75380–9066
United States

General Information	1
Data Sheets	2
Product Previews	3
Evaluation Modules	4
Application Reports	5
Mechanical Data	6

Contents

-
9
0
3
nera
7
2
-
=
Info
0
2
-
na
0
0

		Page
Alphanumeric Index		1–3
Operational Amplifier Selection Guide	i.	1–8
Operational Amplifier Package Codes		1–51
Comparator Selection Guide		1–53
Audio Power Amplifier Selection Guide	· · · · · · · · · · · · · · · · · · ·	1–56
High Speed Amplifier Selection Guide		1–59
Glossary		1–61

LF347 Vol. A	LM2904A Vol. A
LF347B Vol. A	LM2904Q Vol. A
LF351 Vol. A	LM3302 Vol. B
LF353 Vol. A	LM3900 Vol. A
LF411C Vol. A	LMV321† 3–7
LF412C Vol. A	LMV324 [†] 3–7
LM111	LMV331† 3–3
LM118	LMV339† 3–3
LM124 Vol. A	LMV358† 3–7
LM124A Vol. A	LMV393† 3–3
LM139 Vol. A	LP111 Vol. B
LM139A Vol. B	LP211
LM148 Vol. A	LP239
LM158 Vol. A	LP311
LM158A Vol. A	A LP339 Vol. B
LM193 Vol. B	B LP2901 Vol. B
LM193A Vol. B	A LT1013 Vol. A
LM211 Vol. B	LT1013A Vol. A
LM218 Vol. A	LT1013D Vol. A
LM224 Vol. A	LT1016 Vol. A
LM224A Vol. A	MC1458 Vol. A
LM239 Vol. B	MC1558 Vol. A
LM239A Vol. B	MC3303 Vol. A
LM248 Vol. A	MC3403 Vol. A
LM258 Vol. A	NE555 Vol. B
LM258A Vol. A	NE556 Vol. B
LM293 Vol. B	NE5532 Vol. A
LM293A Vol. B	NE5532A Vol. A
LM306 Vol. B	NE5534 Vol. A
LM311 Vol. B	NE5534A Vol. A
LM318 Vol. A	OP07C Vol. A
LM324 Vol. A	OP07D Vol. A
LM324A Vol. A	RC4136 Vol. A
LM324x2 Vol. A	RC4558 Vol. A
LM339 Vol. B	RM4136 Vol. A
LM339A Vol. B	RM4558 Vol. A
LM339x2 Vol. B	RV4136 Vol. A
LM348 Vol. A	RV4558
LM358 Vol. A	A SA555 Vol. B
LM358A Vol. A	SA556 Vol. B
LM393 Vol. B	SE555 Vol. B
LM393A Vol. B	SE555C Vol. B
LM2900 Vol. A	SE556 Vol. B
LM2901 Vol. B	SE556C Vol. B
LM2901Q Vol. B	SE5534 Vol. A
LM2901Q	SE5534A
LM2902 Vol. A LM2902Q Vol. A	
LM2902 Vol. A	THS3001 See Note 1 THS4001 See Note 1
LM2903Q	THS4011 See Note 1
LM2904	A THS4012 See Note 1

NAME AND POST OF THE OWNER, WHEN PERSON AS PARTY OF THE P	
THS4031 See Note 1	TL081B Vol. A
THS4032 See Note 1	TL082 Vol. A
THS4041 See Note 1	TL082A Vol. A
THS4042 See Note 1	TL082B Vol. A
THS4051 See Note 1	TL084 Vol. A
THS4052 See Note 1	TL084A Vol. A
THS4061 See Note 1	TL084B Vol. A
THS4061 See Note 1	TL084x2 Vol. A
THS6002 See Note 1	TL331
THS6012 See Note 1	TL343 2–7
THS6022 See Note 1	TL393 Vol. B
THS6032 See Note 1	TL441A
THS6062 See Note 1	TL592B
	TL712 Vol. B
THS7002 See Note 1	
TL022 Vol. A	TL714 Vol. B
TL026 Vol. B	TL2828Z Vol. A
TL031 Vol. A	TL2829Z Vol. A
TL032 Vol. A	TL3016 Vol. B
TL032A Vol. A	TL3116 Vol. B
TL034 Vol. A	TL3472 2–13
TL034A Vol. A	TLC070 2–17
TL051 Vol. A	TLC070A 2–17
TL051A Vol. A	TLC071 2–17
TL052 Vol. A	TLC071A 2–17
TL052A Vol. A	TLC072 2–17
TL054 Vol. A	TLC072A 2–17
TL054A Vol. A	TLC073 2–17
TL061 Vol. A	TLC073A 2–17
TL061A Vol. A	TLC074 2–17
TL061B Vol. A	TLC074A 2–17
TL062 Vol. A	TLC075 2–17
TL062A Vol. A	TLC075A 2–17
TL062B Vol. A	TLC080 2–43
TL064 Vol. A	TLC080A 2-43
TL064A Vol. A	TLC081 2–43
TL064B Vol. A	TLC081A 2-43
TL064x2 Vol. A	TLC082 2–43
TL070 Vol. A	TLC082A 2-43
TL071 Vol. A	TLC083 2–43
TL071A Vol. A	TLC083A 2–43
TL071B Vol. A	TLC084 2–43
TL072 Vol. A	TLC084A 2-43
TL072A Vol. A	TLC085 2–43
TL072B Vol. A	TLC085A 2–43
TL074 Vol. A	TLC139 Vol. B
TL074A Vol. A	TLC251 Vol. A
TL074B Vol. A	TLC251A
TL074x2 Vol. A	TLC251B
TL081 Vol. A	
	TLC252 Vol. A
TL081A Vol. A	TLC252A Vol. A

				Minimum -
TLC252B		Vol. A	TLC372	Vol. B
TLC25L2			TLC372Q	Vol. B
TLC25L2A	Vassa	Vol. A	TLC374	Vol. B
TLC25L2E		Vol. A	TLC374Q	Vol. B
	CPERT.		TLC393	
	Α		TLC551	
	FAPTOV		TLC552	
	VSMS		TLC555	
			TLC556	
			TLC1078	
	press.		TLC1079	
			TLC2201	
	and a second		TLC2201A	
	Δ		TLC2201B	
	3			
			TLC2202A	
			TLC2202B	
			TLC2252	
			TLC2252A	
			TLC2254	
			TLC2254A	The second second
	MS4424		TLC2262	
			TLC2262A	
TLC27L1E			TLC2264	
			TLC2264A	Vol. A
TLC27L2A		Vol. A	TLC2272	Vol. A
TLC27L2E		Vol. A	TLC2272A	Vol. A
TLC27M2		Vol. A	TLC2274	Vol. A
TLC27M2	A	Vol. A	TLC2274A	Vol. A
TLC27M2I	3	Vol. A	TLC2652	Vol. A
TLC274 .		Vol. A	TLC2652A	Vol. A
TLC274A		Vol. A	TLC2654	Vol. A
TLC274B		Vol. A	TLC2654A	Vol. A
TLC27L4		Vol. A	TLC2801Z	
			TLC2810Z	Vol. A
TLC27L4E		Vol. A	TLC2872Z	
TLC27M4		Vol. A	TLC3702	Vol. B
	A		TLC3704	
	3		TLC4501	
	Arabac		TLC4501A	
	22962		TLC4502	
	Acaeoo		TLC4502A	
			TLE2021	
TLC27M7			TLE2021A	
			TLE2021B	
			TLE2022	
	· · · · · · · · · · · · · · · · · · ·		TLE2022A	
110354 .		VOI. D	TLE2024	
GOLDEN TO THE STREET			TLE2024A	vol. B

TLE2024B Vol. B	TLV2264 Vol. B
TLE2027 Vol. B	TLV2264A Vol. B
TLE2027A Vol. B	TLV2322 Vol. B
TLE2037 Vol. B	TLV2324 Vol. B
TLE2037A Vol. B	TLV2332 Vol. B
TLE2061 Vol. B	TLV2334 Vol. B
TLE2061A Vol. B	TLV2341 Vol. B
TLE2062 Vol. B	TLV2342 Vol. B
TLE2062A Vol. B	TLV2344 Vol. B
TLE2062B Vol. B	TLV2352 Vol. B
TLE2064 Vol. B	TLV2554 Vol. B
TLE2064A Vol. B	TLV2361 Vol. B
TLE2064B Vol. B	TLV2362 Vol. B
TLE2071 Vol. B	TLV2393
TLE2071A Vol. B	TLV2422 2–69
TLE2072 Vol. B	TLV2422A 2–69
	TLV2432 Vol. B
TLE2072A Vol. B	
TLE2074 Vol. B	TLV2432A Vol. B
TLE2074A Vol. B	TLV2434 Vol. B
TLE2081 Vol. B	TLV2434A Vol. B
TLE2081A	TLV2442 Vol. B
TLE2082 Vol. B	TLV2442A Vol. B
TLE2082A Vol. B	TLV2444 Vol. B
TLE2084 Vol. B	TLV2444A Vol. B
TLE2084A Vol. B	TLV2450 2–99
TLE2141 Vol. B	TLV2450A 2–99
TLE2141A Vol. B	TLV2451 2–99
TLE2142 Vol. B	TLV2451A 2–99
TLE2142A Vol. B	TLV2452 2–99
TLE2144 Vol. B	TLV2452A 2–99
TLE2144A Vol. B	TLV2453 2–99
TLE2161 Vol. B	TLV2453A 2–99
TLE2161A Vol. B	TLV2454 2–99
TLE2161B Vol. B	TLV2454A 2–99
TLE2227 Vol. B	TLV2455 2–99
TLE2301 Vol. B	TLV2455A 2–99
TLS1233 Vol. B	TLV2460 2–127
TLS1255 Vol. B	TLV2460A 2–127
TLV1391 Vol. B	TLV2461 2–127
TLV1393 Vol. B	TLV2461A 2–127
TLV2211 Vol. B	TLV2462 2–127
TLV2221 Vol. B	TLV2462A 2–127
TLV2231 Vol. B	TLV2463 2–127
TLV2252 Vol. B	TLV2463A 2–127
TLV2252A Vol. B	TLV2464 2–127
TLV2254 Vol. B	TLV2464A 2–127
TLV2254A Vol. B	TLV2465 2–127
TLV2262 Vol. B	TLV2465A 2–127
TLV2262A Vol. B	TLV2470 2–153
AACORA IT	TLV2470A 2–153
The devices in BOLD type are in this data book	2-133

		THE PERSON OF THE PERSON PROPERTY HAVE AND ADDRESS OF THE PERSON PROPERTY.	
TLV2471	2-153	TPA0132	See Note 2
TLV2471A		TPA0142	See Note 2
TLV2472	SHOULD BY EIGHT STREET AND	TPA0152	See Note 2
TLV2472A	2-153	TPA0162	See Note 2
TLV2473	2-153	TPA0172 [†]	See Note 2
TLV2473A	PRODUCT TELEPHONE THE TAX OF	TPA0202	See Note 2
TLV2474	2-153	TPA0211†	See Note 2
TLV2474A	2-153	TPA0212†	See Note 2
TLV2475	2-153	TPA0213 [†]	See Note 2
TLV2475A	2-153	TPA0222†	See Note 2
TLV2711	. 2-177	TPA0223†	See Note 2
TLV2721	2-203	TPA0232 [†]	See Note 2
TLV2731	. 2-229	TPA0233 [†]	See Note 2
TLV2770	. 2-255	TPA0242 [†]	See Note 2
TLV2770A	. 2-255	TPA0253†	See Note 2
TLV2771	. 2-255	TPA032D02	See Note 2
TLV2771A	. 2-255	TPA032D04	See Note 2
TLV2772	. 2-255	TPA102	See Note 2
TLV2772A	2-255	TPA152	See Note 2
TLV2773	. 2-255	TPA301	See Note 2
TLV2773A	. 2-255	TPA302	See Note 2
TLV2773A	. 2-255	TPA311	See Note 2
TLV2774	. 2–255	TPA701	See Note 2
TLV2774A	. 2-255	TPA711	See Note 2
TLV2775	. 2–255	TPA721	See Note 2
TLV2775A	. 2–255	TPA1517	See Note 1
TPA005D02 Se	THE RESERVE OF THE PARTY OF THE	TPA4860	
TPA005D12 Se		TPA4861	
TPA005D14 Se	e Note 2	μA733	Vol. B
TPA0102 Se		μΑ741	
TPA0103 Se		μΑ747	
TPA0112 Se		μΑ748	Vol. B
TPA0122 Se	e Note 2		

The devices in BOLD type are in this data book.

† This device is in the Product Preview stage of development.

NOTES: 1: The device can be found in the High-Speed Amplifiers Data Book (Literature Number SLOD005).

2. The device can be found in the Audio Power Amplifiers Data Book (Literature Number SLOD004)

INTRODUCTION TO THE SELECTION GUIDES

The following selection guides are designed to help you quickly identify which operational amplifiers best suit your needs. This section includes specification tables for each operational amplifier, sorted by primary performance category. This permits a quick comparison of key specifications. Also included in this section is a complete alphanumerically sorted list of all Texas Instruments advanced linear amplifiers with key specifications.

The following selection guides are separated into seven primary-selection categories:

- DC precision
- Noise
 - Low power
- Micro power
 - Low voltage
- Rail to rail
 - Wide Bandwidth (Higher Speed)

These categories are then subdivided into secondary and tertiary groups combining performance indices. An understanding of what is meant by each term is helpful when choosing the right amplifier for your application.

DEFINITION OF TERMS

DC Precision

Precision refers to an amplifier's inherent dc errors, the input offset voltage (V_{IO}), its temperature coefficient (α_{VIO}), and long-term drift (Δ_{VIO}). In direct-coupled applications, these errors are amplified by the amplifier and carried through the system. The magnitude of the input offset voltage limits the minimum signal level that can be accurately measured. This document defines precision operational amplifiers as those having $V_{IO} \le 1$ mV. In the precision-operational-amplifiers specification table, these operational amplifiers are sorted in ascending order of V_{IO} max at 25°C.

Noise

Noise in operational amplifiers typically has two components: voltage noise and current noise. Current noise is primarily a function of input bias currents ($I_{|B}$) and is negligible in JFET-input (BiFET) and CMOS amplifiers. Voltage noise (V_n) is noise generated by the amplifier due to the thermal noise of the channel resistance in JFET and CMOS amplifiers or the emitter resistance in bipolar amplifiers. Bipolar technology offers the lowest voltage noise and offers the greatest advantage when interfacing to low-impedance sources. As source impedance increases to about 10 k Ω , system noise is dominated by the thermal noise of the source and feedback resistances and selection of an amplifier is usually driven by other characteristics. At higher source impedances, the noise contribution due to the high-input currents of bipolar amplifiers becomes prohibitive and either a CMOS or BiFET amplifier should be chosen. Amplifiers in the low-noise operational amplifier sections have $V_n \le 15 \text{ nV}/\sqrt{\text{Hz}}$. Current noise, though not specified, can be approximated by:

$$I_n \approx \sqrt{(2 \times q \times I_{IB})}$$
, where $q = 1.6 \times 10^{-19}$

Low Power

Low power in this document refers to amplifiers whose quiescent currents are less than 1 mA per channel. This category is further broken down to delineate micropower amplifiers, or those with I_{CC} or $I_{DD} \le 50 \,\mu\text{A}$. The supply current is specified under no-load conditions; the outputs neither sink nor source current. To minimize power consumption, unused amplifiers should be connected as unity-gain followers with their inputs grounded.

Low Voltage

Low-voltage amplifiers operate with V_{CC} or $V_{DD} \le 3$ V. Some CMOS amplifiers operate with $V_{DD} = 1.4$ V. When using any supply voltage, you must ensure that input signals are within the common-mode input voltage range (V_{ICR}) of the device. To address the emerging 3-V device market, Texas Instruments has introduced a full line of 3-V operational amplifiers, the TLV series of devices.

Rail to Rail

Rail-to-rail operational amplifiers feature outputs that swing close to both the positive and negative supply rails. To achieve expected results, maintain loading conditions within the specified drive capability of the amplifier; output swing decreases as load increases.

Wide Bandwidth (Higher Speed)

Speed refers to an operational amplifier's slew rate (SR) and its bandwidth. Slew rate describes the ability of the amplifier's output to follow a large rapidly changing signal at its input, expressed in V/μ s. Slew rate is a function of and inversely proportional to supply current (I_{CC} or I_{DD}); increased power consumption must often be traded for faster output response. BiFET amplifiers have traditionally offered the best speed performance, although new complementary bipolar technologies are gaining ground. The high-speed operational amplifiers in this selection guide have a bandwidth \geq 2 MHz; the amplifiers' slew rate is included in the specification tables for reference. For amplifiers specifically developed for applications requiring high-speed signal conditioning, please refer to the *High Speed Amplifiers Data Book* (Literature number SLOD005)

Shutdown

Each selection guide has a column indicating whether an amplifier features shutdown terminal(s). While in shutdown, the operational amplifier output is placed in a high-impedance state.

Single Supply

Single-supply operational amplifiers are those that are designed to operate well with only one power-supply rail, typically 5 V. They are generally characterized as having a common-mode input voltage range (V_{ICR}) that includes ground and outputs that can swing to or very near ground ($V_{OL} \approx 0$ V). Most single-supply operational amplifiers are manufactured using CMOS technology, although some bipolar single-supply amplifiers are available. Single-supply operational amplifiers can be used in systems with split supplies (e.g., ± 5 V), but care must be taken not to exceed the maximum supply voltage across the device. For example, V_{DD} max for CMOS operational amplifiers is 16 V. No more than ± 8 V should be applied to these devices in a split-supply system. Also, some single-supply operational amplifier output stages are not designed to both source and sink current; when used with split supplies, they may exhibit some crossover distortion as the signal passes through midsupply.

OPERATIONAL AMPLIFIERS

Device	ΔV	CC V)	per ch (m	annel	V _I (Ma (m)	X)	I _{IB} (Typ)	CMRR (Typ) (Typ) (Typ)	Slew Rate (Typ)	AMPS	SHDN	Rail	Spec'd at	Ref.		
	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(Typ) (nV/√Hz)	(MHz)	(V/μs)	3		Rail	V _{CC}	MILA
LF347	36	7	2	2.75	13	10	50	100	18	3	13	4			±15	Vol. A
LF347B	36	7	2	2.75	7	5	50	100	18	3	13	4			±15	Vol. A
LF353	36	7	1.8	3.25	13	10	50	100	18	3	13	2			±15	Vol. A
LF411	36	7	2	3.4		2	50	100	18	3	13	1			±15	Vol. A
LF412	36	7	2.25	3.4		3	50	100	18	3	13	2			±15	Vol. A
LM2902	26	3	0.175	0.3	10	7	-20000	80	23	0.4	0.25	4			5	Vol. A
LM2904	26	3	0.35	0.6	10	7	-20000	80	23	0.4	0.15	2			5	Vol. A
LM318	40	10	5	10	15	10	150000	100	23	15	70	1			±15	Vol. A
LM324	32	3	0.175	0.3	9	7	-20000	80	23	0.4	0.25	4			5	Vol. A
LM324A	32	3	0.175	0.3	5	3	-15000	80	23	0.4	0.25	4		-	5	Vol. A
LM348	36	8	0.6	1.125	7.5	6	30000	90	23	- 1	0.5	4			±15	Vol. A
LM358	32	3	0.5	1	9	7	-20000	80	23	0.4		2			5	Vol. A
LM358A	32	3	0.5	1	5	3	-15000	80	23	0.4		2			5	Vel. A
LT1013	44	4	0.35	0.55	0.4	0.3	-15000	114	22		0.4	2		-	±15	Vol. A
LT1013A	44	4	0.35	0.5	0.24	0.15	-12000	117	22		0.4	2	-		±15	Vol. A
LT1013D	44	4	0.35	0.55	1	0.8	-15000	114	22		0.4	2		-	±15	Vol. A
MC1458	30	10	1.7	2.8	7.5	6	80000	90	45	1	0.5	2		-	±15	Vol. A
MC3403	30	5	0.7	1.75	12	10	-200000	90		1	0.6	4		-	±15	Vol. A
NE5532	30	10	4	8	5	4	200000	100	5	10	9	2			±15	Vol. A
NE5534	30	10	4	8	5	4	500000	100	4	10	13	1			±15	Vol. A
NE5534A	30	10	4	8	5	4	500000	100	3.5	10	13	1		-	±15	Vol. A
OP07C	36	6	2.7	5	0.25	0.15	±1800	120	9.8	0.6	0.3	1	and the second second		±15	Vol. A
OP07D	36	6	2.7	5	0.25	0.15	±2000	110	9.8	0.6	0.3	1			±15	Vol. A
RC4136	30	10	1.25	2.825	7.5	6	140000	90	8	3	1.7	4			±15	Vol. A
RC4558	30	10	1.25	2.8	7.5	6	150000	90	8	3	1.7	2			±15	Vol. A
TL022	30	10	0.065	0.125	7.5	5	100000	72	50	0.5	0.5	2			±15	Vol. A
TL031	30	10	0.217	0.28	2.5	1.5	2	94	41	1.1	5.1	1			±15	Vol. A
TL031A	30	10	0.217	0.28	1.8	0.8	2	94	41	1.1	5.1	1			±15	Vol. A
TL032	30	10	0.211	0.28	2.5	1.5	2	94	41	1.1	5.1	2			±15	Vol. /
TL032A	30	10	0.211	0.28	1.8	0.8	2	94	41	(1.1.)	5.1	2		- APRIL	±15	Vol. /
TL034	30	10	0.2175	0.28	6.2	4	2	94	43	1.1	5.1	4	264084	-10	±15	Vol. A
TL034A	30	10	0.2175	0.28	3.7	1.5	2	94	43	1.1	5.1	4	7		±15	Vol. A

OPERATIONAL AMPLIFIER GENERAL SELECTION GUIDE

OPERATIONAL AMPLIFIER
GENERAL SELECTION GUIDE

OPERATIONAL AMPLIFIERS (continued)

Device	ΔV	CC	per cl (m	CC hannel nA)	V _I (Ma (m'	IX)	l _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz	GBW (Typ)	Slew Rate (Typ)	AMPS	SHDN	Rail	Spec'd at	Ref.
TLESSA	Max	Min	Тур	Max	Full Range	25°C	(pA)	(Typ) (dB)	(Typ) (nV/√Hz)	(MHz)	(V/μs)			Rail	V _{CC} (V)	
TL051	30	10	2.7	3.2	2.5	1.5	30	93	18	3.1	20	1		-	±15	Vol. A
TL051A	30	10	2.7	3.2	1.8	0.8	30	93	18	3.1	20	1			±15	Vol. A
TL052	30	10	2.4	2.8	2.5	1.5	30	93	19	3	20.7	2			±15	Vol. A
TL052A	30	10	2.4	2.8	1.8	0.8	30	93	19	3	20.7	2			±15	Vol. A
TL054	30	10	2.1	2.8	6.2	4	30	92	21	2.7	17.8	4			±15	Vol. A
TL054A	30	10	2.1	2.8	3.7	1.5	30	92	21	2.7	17.8	4			±15	Vol. A
TL061	36	7	0.2	0.25	20	15	30	86	42	1	3.5	1			±15	Vol. A
TL061A	36	7	0.2	0.25	7.5	6	30	86	42	1	3.5	1			±15	Vol. A
TL061B	36	7	0.2	0.25	5	3	30	86	42	- 1	3.5	1			±15	Vol. A
TL062	36	7	0.2	0.25	20	15	30	86	42	- 1	3.5	2			±15	Vol. A
TL062A	36	7	0.2	0.25	7.5	6	30	86	42	- 1	3.5	2			±15	Vol. A
TL062B	36	7	0.2	0.25	5	3	30	86	42	1	3.5	2			±15	Vol. A
TL064	36	7	0.2	0.25	20	15	30	86	42	- 1	3.5	4		-	±15	Vol. A
TL064A	36	7	0.2	0.25	7.5	6	30	86	42	-1-	3.5	4		-	±15	Vol. A
TL064B	36	7	0.2	0.25	5	3	30	86	42	-1-	3.5	4		-	±15	Vol. A
TL070	36	7	1.4	2.5	13	10	65	100	18	3	13	1		-	±15	Vol. A
TL071	36	7	1.4	2.5	13	10	65	100	18	3	13	1		-	±15	Vol. A
TL071A	36	7	1.4	2.5	7.5	6	65	100	18	3	13	-1	-	-	±15	Vol. A
TL071B	36	7	1.4	2.5	5	3	65	100	18	3	13	1			±15	Vol. A
TL072	36	7	1.4	2.5	13	10	65	100	18	3	13	2		-	±15	Vol. A
TL072A	36	7	1.4	2.5	7.5	6	65	100	18	3	13	2			±15	Vol. A
TL072B	36	7	1.4	2.5	5	3	65	100	18	3	13	2		-	±15	Vol. A
TL074	36	7	1.4	2.5	13	10	65	100	18	3	13	4			±15	Vol. A
TL074A	36	7	1.4	2.5	7.5	6	65	100	18	3	13	4	-		±15	Vol. A
TL074B	36	7	1.4	2.5	5	3	65	100	18	3	13	4		-	±15	Vol. A
TL081	36	7	1.4	2.8	20	15	30	86	18	3	13	1			±15	Vol. A
TL081A	36	7	1.4	2.8	7.5	6	30	86	18	3	13	1			±15	Vol. A
TL081B	36	7	1.4	2.8	5	3	30	86	18	3	13	1			±15	Vol. A
TL082	36	7	1.4	2.8	20	15	30	86	18	3	13	2		-	±15	Vol. A
TL082A	36	7	1.4	2.8	7.5	6	30	86	18	3	13	2		- Kritisi	±15	Vol. A
TL082B	36	7	1.4	2.8	5	3	30	86	18	3	13	2	B14004	90	±15	Vol. A
TL084	36	7	1.4	2.8	20	15	30	86	18	3	13	4			±15	Vol. A

Devices in **bold** are is this data book Volume A (SLYD011A); Vol B – Amplifiers, Comparators, and Special Functions Data Book Volume B (SLYD012A)

OPERATIONAL AMPLIFIER GENERAL SELECTION GUIDE

OPERATIONAL AMPLIFIERS (continued)

Device	ΔV	CC V)	per c	CC hannel nA)	V _I (Ma (m)	IX)	I _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz	GBW (Typ)	Slew Rate	AMPS	SHDN	Rail	Spec'd at	Ref.
MORTH	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(Typ) (nV/√Hz)	(MHz)	(Typ) (V/μs)	1 9		Rail	V _{CC} (V)	AUFY
TL084A	36	7	1.4	2.8	7.5	6	30	86	18	3	13	4			±15	Vol. A
TL084B	36	7	1.4	2.8	5	3	30	86	18	3	13	4			±15	Vol. A
TL343	36	3	0.7	2.8	12	10	-200	90		1	1	1			±15	2-7
TL3472	36	4	3.5	4.5	12	10	100000	97	49	4	13	2			±15	2-13
TLC070	16	4.5	1.9	2.5	1.5	1	1.5	140	. 7	10	16	1	Υ		5	2-17
TLC070A	16	4.5	1.9	2.5	1	0.75	1.5	140	7	10	16	1	Υ	-	5	2-17
TLC071	16	4.5	1.9	2.5	1.5	1	1.5	140	7	10	16	1			5	2-17
TLC071A	16	4.5	1.9	2.5	1	0.75	1.5	140	7	10	16	1			5	2-17
TLC072	16	4.5	1.9	2.5	1.5	1	1.5	140	7	10	16	1		-	5	2-17
TLC072A	16	4.5	1.9	2.5	1	0.75	1.5	140	7	10	16	1		-	5	2-17
TLC073	16	4.5	1.9	2.5	1.5	1	1.5	140	7	10	16	2	Υ		5	2-17
TLC073A	16	4.5	1.9	2.5	1	0.75	1.5	140	7	10	16	2	Υ		5	2-17
TLC074	16	4.5	1.9	2.5	1.5	1	1.5	140	7	10	16	4			5	2-17
TLC074A	16	4.5	1.9	2.5	1	0.75	1.5	140	7	10	16	4		-	5	2-1
TLC075	16	4.5	1.9	2.5	1.5	1	1.5	140	7	10	16	4	Υ	- District	5	2-17
TLC075A	16	4.5	1.9	2.5	1	0.75	1.5	140	7	10	16	4	Υ	-	- 5	2-17
TLC080	16	4.5	1.9	2.5	1.5	1	3	140	8.5	10	16	1	Υ	Total Control	5	2-43
TLC080A	16	4.5	1.9	2.5	1	0.75	3	140	8.5	10	16	1	Υ	- Park	5	2-43
TLC081	16	4.5	1.9	2.5	1.5	1	3	140	8.5	10	16	1			5	2-43
TLC081A	16	4.5	1.9	2.5	- 1	0.75	3	140	8.5	10	16	1			5	2-43
TLC082	16	4.5	1.9	2.5	1.5	- 1	3	140	8.5	10	16	2		- 600	5	2-43
TLC082A	16	4.5	1.9	2.5	1	0.75	3	140	8.5	10	16	2		10000	5	2-43
TLC083	16	4.5	1.9	2.5	1.5	1	3	140	8.5	10	16	2	Υ	1	5	2-43
TLC083A	16	4.5	1.9	2.5	1	0.75	3	140	8.5	10	16	2	Υ	-	5	2-43
TLC084	16	4.5	1.9	2.5	1.5	1	3	140	8.5	10	16	4		OLD IV	5	2-43
TLC084A	16	4.5	1.9	2.5	1	0.75	3	140	8.5	10	16	4		1	-5	2-43
TLC085	16	4.5	1.9	2.5	1.5	1	3	140	8.5	10	16	4	Υ	1000	5	2-43
TLC085A	16	4.5	1.9	2.5	1	0.75	3	140	8.5	10	16	4	Υ		5	2-43
TLC1078	16	1.4	0.01	0.017	0.8	0.45	0.6	95	68	0.085	0.032	2		100	5	Vol.
TLC1079	16	1.4	0.01	0.017	1.2	0.85	0.6	95	68	0.085	0.032	4		10000	5	Vol.
TLC2201	16	4.6	1 0	1.5	0.6	0.5	1	110	8	1.8	2.5	1	NON	RRO	5	Vol. /
TLC2201A	16	4.6	1	1.5	0.3	0.2	1	110	15	1.8	2.5	1		RRO	5	Vol. /

Devices in **bold** are is this data book Volume A (SLYD011A); Vol B – Amplifiers, Comparators, and Special Functions Data Book Volume B (SLYD012A)

OPERATIONAL AMPLIFIER GENERAL SELECTION GUIDE

TEXAS
INSTRUMENTS
POST OFFICE BOX 655003* DALLAS, TEXAS 75265

OPERATIONAL AMPLIFIERS (continued)

Device	ΔV	CC V)		cc nannel nA)	V _I (Ma (m)	x)	I _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz	GBW (Typ)	Slew Rate	AMPS	SHDN	Rail	Spec'd at VCC (V)	Ref.
1101019	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(Typ) (nV/√Hz)	(MHz)	(Typ) (V/μs)	- 1		Rail	(V)	NO.A.
TLC2201B	16	4.6	1	1.5	0.3	0.2	1	110	12	1.8	2.5	1		RRO	5	Vol. A
TLC2202	16	4.6	0.85	1.3	1.15	1	1	100	8	1.9	2.5	2		RRO	5	Vol. A
TLC2202A	16	4.6	0.85	1.3	0.65	0.5	1	100	15	1.9	2.5	2		RRO	5	Vol. A
TLC2202B	16	4.6	0.85	1.3	0.65	0.5	- 1	100	12	1.9	2.5	2		RRO	5	Vol. A
TLC2252	16	4.4	0.035	0.0625	1.75	1.5	1	83	19	0.2	0.12	2		RRO	5	Vol. A
TLC2252A	16	4.4	0.035	0.0625	1	0.85	1	83	19	0.2	0.12	2		RRO	5	Vol. A
TLC2254	16	4.4	0.035	0.0625	1.75	1.5	1	83	19	0.2	0.12	4		RRO	5	Vol. A
TLC2254A	16	4.4	0.035	0.0625	1	0.85	1	83	19	0.2	0.12	4		RRO	5	Vol. A
TLC2262	16	4.4	0.2	0.25	3	2.5	1	83	12	0.82	0.55	2		RRO	5	Vol. A
TLC2262A	16	4.4	0.2	0.25	1.5	0.95	1	83	12	0.82	0.55	2		RRO	5	Vol. A
TLC2264	16	4.4	0.2	0.25	3	2.5	1	83	12	0.82	0.55	4		RRO	5	Vol. A
TLC2264A	16	4.4	0.2	0.25	1.5	0.95	1	83	12	0.82	0.55	4		RRO	5	Vol. A
TLC2272	16	4.4	1.1	1.5	3	2.5	1	75	9	2.18	3.6	2	A	RRO	5	Vol. A
TLC2272A	16	4.4	1.1	1.5	1.5	0.95	1	75	9	2.18	3.6	2		RRO	5	Vol. A
TLC2274	16	4.4	1.1	1.5	3	2.5	1	75	9	2.18	3.6	4		RRO	5	Vol. A
TLC2274A	16	4.4	1.1	1.5	1.5	0.95	1	75	9	2.18	3.6	4		RRO	5	Vol. A
TLC251	16	1.4	0.675	1.6	12	10	0.6	80	25	1.7	3.6	1			5	Vol. A
TLC251A	16	1.4	0.675	1.6	6.5	5	0.6	80	25	1.7	3.6	1		-	5	Vol. A
TLC251B	16	1.4	0.675	1.6	3	2	0.6	80	25	1.7	3.6	1			5	Vol. A
TLC252	16	1.4	0.7	1.6	12	10	0.6	80	25	1.7	3.6	2	(Contraction of the	-	5	Vol. A
TLC252A	16	1.4	0.7	1.6	6.5	5	0.6	80	25	1.7	3.6	2			5	Vol. A
TLC252B	16	1.4	0.7	1.6	3	2	0.6	80	25	1.7	3.6	2	-		5	Vol. A
TLC254	16	1.4	0.775	1.8	12	10	0.6	80	25	1.7	3.6	1			5	Vol. A
TLC254A	16	1.4	0.775	1.8	6.5	5	0.6	80	25	1.7	3.6	4	Committee and		5	Vol. A
TLC254B	16	1.4	0.775	1.8	3	2	0.6	80	25	1.7	3.6	4			5	Vol. A
TLC25L2	16	1.4	0.01	0.017	12	10	0.6	94	68	0.085	0.03	2		-	5	Vol. A
TLC25L2A	16	1.4	0.01	0.017	6.5	5	0.6	94	68	0.085	0.03	2			5	Vol. A
TLC25L2B	16	1.4	0.01	0.017	3	2	0.6	94	68	0.085	0.03	2	(A.)		5	Vol. A
TLC25L4	16	1.4	0.01	0.017	12	10	0.6	94	70	0.085	0.03	4			5	Vol. A
TLC25L4A	16	1.4	0.01	0.017	6.5	5	0.6	94	70	0.085	0.03	4		1	5	Vol. A
TLC25L4B	16	1.4	0.01	0.017	3	2	0.6	94	70	0.085	0.03	4	SHDH	15	5	Vol. A
TLC25M2	16	1.4	0.105	0.28	12	10	0.6	91	32	0.525	0.43	2		1000	5	Vol. A

Device	ΔV	CC V)	per ch (m	CC nannel nA)	V _I (Ma (m)	x)	I _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz (Typ)	GBW (Typ)	Slew Rate (Typ)	AMPS	SHDN	Rail to	Spec'd at VCC (V)	Ref.
ITESB09	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(nV/√Hz)	(MHz)	(V/μs)			Rail	(V)	ART B
TLC25M2A	16	1.4	0.105	0.28	6.5	5	0.6	91	32	0.525	0.43	2			5	Vol. A
TLC25M4	16	1.4	0.105	0.28	12	10	0.6	91	32	0.525	0.43	4			5	Vol. A
TLC25M4A	16	1.4	0.105	0.28	6.5	5	0.6	91	32	0.525	0.43	4			5	Vol. A
TLC25M4B	16	1.4	0.105	0.28	3	2	0.6	91	32	0.525	0.43	4			5	Vol. A
TLC2652	16	3.8	1.5	2.4	0.004	0.003	4	140	23	1.9	3.1	1			±5	Vol. A
TLC2652A	16	3.8	1.5	2.4	0.002	0.001	4	140	35	1.9	3.1	1		-	±5	Vol. /
TLC2654	16	4.6	1.5	2.4	0.034	0.02	50	125	13	1.9	3.7	1		-	±5	Vol. /
TLC2654A	16	4.6	1.5	2.4	0.024	0.01	50	125	20	1.9	3.7	1		-	±5	Vol. A
TLC271	16	3	0.675	1.6	12	10	0.6	80	25	1.7	3.6	1		-	5	Vol. /
TLC271A	16	3	0.675	1.6	6.5	5	0.6	80	25	1.7	3.6	1		-	5	Vol. /
TLC271B	16	3	0.675	1.6	3	2	0.6	80	25	1.7	3.6	1		-	5	Vol. /
TLC272	16	3	0.7	1.6	12	10	0.6	80	25	1.7	3.6	2		-	5	Vol.
TLC272A	16	3	0.7	1.6	6.5	5	0.6	80	25	1.7	3.6	2			5	Vol.
TLC272B	16	3	0.7	1.6	3	2	0.6	80	25	1.7	3.6	2			5	Vol.
TLC274	16	3	0.675	1.6	12	10	0.6	80	25	1.7	3.6	4			5	Vol. /
TLC274A	16	3	0.675	1.6	6.5	5	0.6	80	25	1.7	3.6	4	and the second	-	5	Vol. /
TLC274B	16	3	0.675	1.6	3	2	0.6	80	25	1.7	3.6	4			5	Vol. /
TLC277	16	3	0.7	1.6	1.5	0.5	0.6	80	25	1.7	3.6	2			5	Vol. /
TLC279	16	3	0.675	1.6	1.5	0.9	0.6	80	25	1.7	3.6	4			5	Vol.
TLC27L1	16	3	0.01	0.017	13	10	0.6	94	68	0.085	0.03	1		- for the spire	5	Vol. /
TLC27L1A	16	3	0.01	0.017	7	5	0.6	94	68	0.085	0.03	1		- USA	5	Vol. /
TLC27L1B	16	3	0.01	0.017	3.5	2	0.6	94	68	0.085	0.03	1	Q	000	5	Vol. /
TLC27L2	16	3	0.01	0.017	13	10	0.6	94	68	0.085	0.03	2			5	Vol. /
TLC27L2A	16	3	0.01	0.017	7	5	0.6	94	68	0.085	0.03	2		-	5	Vol. /
TLC27L2B	16	3	0.01	0.017	3.5	2	0.6	94	68	0.085	0.03	2		-	5	Vol.
TLC27L4	16	3	0.01	0.017	12	10	0.6	94	70	0.085	0.03	4		-	5	Vol.
TLC27L4A	16	3	0.01	0.017	6.5	5	0.6	94	70	0.085	0.03	4	14 15 15 15 15 15 15 15 15 15 15 15 15 15	-	5	Vol.
TLC27L4B	16	3	0.01	0.017	3	2	0.6	94	70	0.085	0.03	4			5	Vol.
TLC27L7	16	3	0.01	0.017	2	0.5	0.6	94	68	0.085	0.03	2		-	5	Vol.
TLC27L9	16	3	0.01	0.017	1.5	0.9	0.6	94	70	0.085	0.03	4		amen)	5	Vol.
TLC27M2	16	3	0.105	0.28	13	10	0.6	91	32	0.525	0.43	2	Brible	10	5	Vol.
TLC27M2A	16	3	0.105	0.28	7	5	0.6	91	32	0.525	0.43	2	El galadiya	1 200	5	Vol.

Devices in **bold** are is this data book Volume A (SLYD011A); Vol B – Amplifiers, Comparators, and Special Functions Data Book Volume B (SLYD012A)

Device	ΔV	CC		cC nannel nA)	(Ma (m)	IX)	I _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz (Typ)	GBW (Typ)	Slew Rate (Typ)	AMPS	SHDN	Rail	Spec'd at VCC (V)	Ref.
	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(nV/√Hz)	(MHz)	(V/μs)			Rail	(V)	Vol A
TLC27M2B	16	3	0.105	0.28	3.5	2	0.6	91	32	0.525	0.43	2		-	5	Vol. A
TLC27M4	16	3	0.105	0.28	12	10	0.6	91	32	0.525	0.43	4			5	Vol. A
TLC27M4A	16	3	0.105	0.28	6.5	5	0.6	91	32	0.525	0.43	4		-	5	Vol. A
TLC27M4B	16	3	0.105	0.28	3	2	0.6	91	32	0.525	0.43	4		-	5	Vol. A
TLC27M7	16	3	0.105	0.28	2	0.5	0.6	91	32	0.525	0.43	2			5	Vol. A
TLC27M9	16	3	0.105	0.28	1.5	0.9	0.6	91	32	0.525	0.43	4			5	Vol. A
TLC4501	6	4	1	1.5	0.08	0.08	- 1	100	12	4.7	2.5	1		RRO	5	Vol. A
TLC4501A	6	4	1	1.5	0.04	0.04	1	100	12	4.7	2.5	1		RRO	5	Vol. A
TLC4502	6	4	1.25	3.5	0.1	0.1	- 1	100	12	4.7	2.5	2		RRO	5	Vol. A
TLC4502A	6	4	1.25	3.5	0.05	0.05	-1	100	12	4.7	2.5	2		RRO	5	Vol. A
TLE2021	40	4	0.2	0.3	0.85	0.6	25000	110	15	2	0.65	1			5	Vol. I
TLE2021A	40	4	0.2	0.3	0.6	0.3	25000	110	30	2	0.65	1			5	Vol. I
TLE2021B	40	4	0.2	0.3	0.3	0.2	25000	110	30	2	0.65	1		-	5	Vol.
TLE2022	40	4	0.225	0.3	0.8	0.6	35000	100	15	2.8	0.65	2		-	5	Vol. I
TLE2022A	40	4	0.225	0.3	0.55	0.4	33000	102	15	2.8	0.65	2			5	Vol. I
TLE2022B	40	4	0.225	0.3	0.4	0.3	33000	105	15	2.8	0.65	2			5	Vol. I
TLE2024	40	4	0.26	0.35	1.3	1.1	46000	90	15	2.8	0.7	4		-	5	Vol.
TLE2024A	40	4	0.26	0.35	1.05	0.85	40000	92	15	2.8	0.7	4			5	Vol. I
TLE2024B	40	4	0.26	0.35	0.8	0.6	35000	95	15	2.8	0.7	4			5	Vol. 1
TLE2027	38	8	3.8	5.3	0.145	0.1	15000	131	2.5	13	2.8	1		-	±15	Vol. I
TLE2027AM	38	8	3.8	5.3	0.1	0.025	15000	131	2.5	13	2.8	1			±15	Vol. I
TLE2037	38	8	3.8	5.3	0.145	0.1	15000	131	2.5	50	7.5	1			±15	Vol. I
TLE2037AM	38	8	3.8	5.3	0.1	0.025	15000	131	2.5	50	7.5	1			±15	Vol. I
TLE2061	36	7	0.29	0.35	4	3	4	90	40	2	3.4	1			±15	Vol. I
TLE2061A	36	7	0.29	0.35	3.5	2.6	4	90	40	2	3.4	1			±15	Vol.
TLE2061B	36	. 7	0.29	0.35	2.4	1.9	4	90	40	2	3.4	1			±15	Vol. I
TLE2062	36	7	0.31	0.345	4.9	4	4	90	40	2	3.4	2			±15	Vol.
TLE2062A	36	7	0.31	0.345	2.9	2	4	90	40	2	3.4	2			±15	Vol. I
TLE2062B	36	7	0.31	0.345	1.9	1	4	90	40	2	3.4	2	-		±15	Vol. I
TLE2064	36	7	0.31	0.35	6.9	6	4	90	40	2	3.4	4		1000	±15	Vol. 1
TLE2064A	36	7	0.31	0.35	4.9	4	4	90	40	2	3.4	4	RI-IDSE -	10	±15	Vol. I
TLE2064B	36	7	0.31	0.35	2.9	2	4	90	40	2	3.4	4		1000	±15	Vol. I

Device	ΔV	CC V)		CC hannel nA)	V _I (Ma (m)	x)	I _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz (Typ)	GBW (Typ)	Slew Rate (Typ)	AMPS	SHDN	Rail	Spec'd at VCC (V)	Ref.
LFADER	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(nV/√Hz)	(MHz)	(V/μs)			Rail	(V)	5-85
TLE2071	38	4.5	1.7	2.2	6	4	20	98	14	10	45	1		0000	±15	Vol. B
TLE2071A	38	4.5	1.7	2.2	4	2	20	98	14	10	45	1		District Control	±15	Vol. B
TLE2072	38	4.5	1.55	1.8	7.8	6	20	98	14	10	45	2		e construction	±15	Vol. B
TLE2072A	38	4.5	1.55	1.8	5.3	3.5	20	98	14	10	45	2		11000	±15	Vol. B
TLE2074	38	4.5	1.425	1.875	7.1	5	25	98	14	10	45	4		1000	±15	Vol. B
TLE2074A	38	4.5	1.425	1.875	5.1	3	25	98	14	10	45	4			±15	Vol. B
TLE2081	38	4.5	1.7	2.2	8	6	20	98	14	10	45	1			±15	Vol. B
TLE2081A	38	4.5	1.7	2.2	5	3	20	98	14	10	45	1		- DOWN	±15	Vol. B
TLE2082	38	4.5	1.55	1.8	8.1	7	20	98	14	10	45	2		18.80	±15	Vol. B
TLE2082A	38	4.5	1.55	1.8	5.1	4	20	98	14	10	45	2		1600	±15	Vol. B
TLE2084	38	4.5	1.625	1.875	9.1	7	25	98	14	10	45	4		TO SEC.	±15	Vol. B
TLE2084A	38	4.5	1.625	1.875	6.1	4	25	98	14	10	45	4			±15	Vol. B
TLE2141	44	4	3.5	4.5	1.3	0.9	-7000	108	10.5	5.9	45	1			±15	Vol. E
TLE2141A	44	4	3.5	4.5	0.8	0.5	-7000	108	10.5	5.9	45	1		1100	±15	Vol. E
TLE2142	44	4	3.45	4.5	1.6	1.2	-7000	108	10.5	5.9	45	2			±15	Vol. E
TLE2142A	44	4	3.45	4.5	1.2	0.75	-7000	108	10.5	5.9	45	2		200	±15	Vol. E
TLE2144	44	4	3.45	4.5	3.2	2.4	-7000	108	10.5	5.9	45	4		1100	±15	Vol. E
TLE2144A	44	4	3.45	4.5	2.4	1.5	-7000	108	10.5	5.9	45	4		1000	±15	Vol. E
TLE2161	36	7	0.29	0.35	3.9	3	4	90	40	6.4	10	1			±15	Vol. E
TLE2161A	36	7	0.29	0.35	2.5	1.5	4	90	40	6.4	10	1			±15	Vol. B
TLE2161B	36	7	0.29	0.35	1	0.5	4	90	40	6.4	10	1			±15	Vol. B
TLE2227	38	8	3.65	5.3	0.5	0.35	15000	115	2.5	13	2.5	2		-	±15	Vol. E
TLE2301	40	9	2.2	3.5	15	10	260000	97	44	8	14	1		-	±15	Vol. E
TLV2211	10	2.7	0.013	0.025	3	0.45	1	83	22	0.065	0.025	1		RRO	5	Vol. B
TLV2221	10	2.7	0.11	0.15	3	0.45	1	85	19	0.51	0.18	1		RRO	5	Vol. E
TLV2231	10	2.7	0.85	1.2	3	0.45	1	70	15	2	1.6	1		RRO	5	Vol. E
TLV2252	8	2.7	0.034	0.0625	1.75	1.5	1	75	19	0.187	0.1	2		RRO	5	Vol. E
TLV2252A	8	2.7	0.034	0.0625	1	0.85	1	75	19	0.187	0.1	2		RRO	5	Vol. E
TLV2254	8	2.7	0.034	0.0625	1.75	1.5	1	75	19	0.187	0.1	4		RRO	5	Vol. E
TLV2254A	8	2.7	0.034	0.0625	1	0.85	1	75	19	0.187	0.1	4		RRO	5	Vol. E
TLV2262	8	2.7	0.2	0.25	3	2.5	1	83	12	0.67	0.55	2	EHOM:	RRO	5	Vol. E
TLV2262A	8	2.7	0.2	0.25	1.5	0.95	1	83	12	0.67	0.55	2		RRO	5	Vol. B

OPERATIONAL AMPLIFIER GENERAL SELECTION GUIDE

Device	ΔV	CC	per ch (m		V _I (Ma (m'	ix)	I _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz (Typ)	GBW (Typ)	Slew Rate (Typ)	AMPS	SHDN	Rail	Spec'd at VCC (V)	Ref.
	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(nV/√Hz)	(MHz)	(V/μs)			Rail	(V)	per s
TLV2264	8	2.7	0.2	0.25	3	2.5	1	83	12	0.67	0.55	4		RRO	5	Vol. B
TLV2264A	8	2.7	0.2	0.25	1.5	0.95	1	83	12	0.67	0.55	4		RRO	5	Vol. E
TLV2322	8	2	0.01	0.017	11	9	0.6	94	68	0.027	0.02	2		1	5	Vol. E
TLV2324	8	2	0.01	0.017	12	10	0.6	94	68	0.027	0.02	4		-	5	Vol. E
TLV2332	8	2	0.1	0.28	- 11	9	0.6	91	32	0.3	0.38	2		1000	5	Vol. E
TLV2334	8	2	0.1	0.28	12	10	0.6	91	32	0.3	0.38	4			5	Vol. E
TLV2341	8	2	0.675	1.6	10	8	0.6	80	25	1.7	3.6	1		-	5	Vol. E
TLV2342	8	2	0.325	1.5	- 11	9	0.6	80	25	0.79	2.1	2			5	Vol. E
TLV2344	8	2	0.325	1.5	12	10	0.6	78	25	0.79	2.1	4	-	-	5	Vol. I
TLV2361	5	2	1.75	2.5	7.5	6	20000	85	8	7	3	1	Section (section)	-	±2.5	Vol. I
TLV2362	5	2	1.75	2.5	7.5	6	20000	85	8	7	3	2			±2.5	Vol. I
TLV2422	10	2.7	0.05	0.075	2.5	2	1	90	18	0.052	0.02	2		RRO	5	2-69
TLV2422A	10	2.7	0.05	0.075	1.5	0.95	- 1	90	18	0.052	0.02	2		RRO	5	2-69
TLV2432	10	2.7	0.098	0.125	2.5	2	1	90	18	0.5	0.25	2		RRO	5	Vol. I
TLV2432A	10	2.7	0.098	0.125	1.5	0.95	1	83	18	0.5	0.25	2	and making	RRO	5	Vol. I
TLV2434	10	2.7	0.098	0.125	2.5	2	1	90	18	0.5	0.25	4		RRO	5	Vol. I
TLV2434A	10	2.7	0.098	0.125	1.5	0.95	- 1	83	18	0.5	0.25	4		RRO	5	Vol. I
TLV2442	10	2.7	0.75	1.1	2.5	2	1	75	18	1.75	1.3	2		RRO	5	Vol. I
TLV2442A	10	2.7	1.1	0.725	1.5	0.95	1	75	18	1.75	1.3	2		RRO	5	Vol. E
TLV2444	10	2.7	0.75	1.1	2.5	2	1	75	18	1.75	1.3	4		RRO	5	Vol. I
TLV2444A	10	2.7	1.1	0.725	1.5	0.95	1	75	18	1.75	1.3	4		RRO	5	Vol. I
TLV2450	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	1	Υ	RRIO	3	2-99
TLV2450A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	1	Υ	RRIO	3	2-99
TLV2451	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	1		RRIO	3	2-99
TLV2451A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	1		RRIO	3	2-99
TLV2452	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	2		RRIO	3	2-99
TLV2452A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	2		RRIO	3	2-99
TLV2453	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	2	Υ	RRIO	3	2-99
TLV2453A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	2	Υ	RRIO	3	2-99
TLV2454	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	4		RRIO	3	2-99
TLV2454A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	4	SHOW	RRIO	3	2-99
TLV2455	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	4	Υ	RRIO	3	2-99

Device	ΔV ()	CC	per ch	CC nannel nA)	V _I ((Ma (m)	x)	l _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz	GBW (Typ)	Slew Rate	AMPS	SHDN	Rail	Spec'd at	Ref.
	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(Typ) (nV/√Hz)	(MHz)	(Typ) (V/μs)			Rail	V _{CC} (V)	
TLV2455A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	4	Υ	RRIO	3	2-99
TLV2460	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	1	Υ	RRIO	3	2-127
TLV2460A	6	2.7	0.5	0.575	1.7	1.5	4400	80	11	5.2	1.6	1	Υ	RRIO	3	2-127
TLV2461	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	1		RRIO	3	2-127
TLV2461A	6	2.7	0.5	0.575	1.7	1.5	4400	80	11	5.2	1.6	1		RRIO	3	2-127
TLV2462	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	2		RRIO	3	2-127
TLV2462A	6	2.7	0.5	0.575	1.7	1.5	4400	80	11	5.2	1.6	2		RRIO	3	2-127
TLV2463	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	2	Υ	RRIO	3	2-127
TLV2463A	6	2.7	0.5	0.575	1.7	1.5	4400	80	11	5.2	1.6	2	Υ	RRIO	3	2-127
TLV2464	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	4		RRIO	3	2-127
TLV2464A	6	2.7	0.5	0.575	1.7	1.5	4400	80	11	5.2	1.6	4		RRIO	3	2-127
TLV2465	6	2.7	0.5	0.575	2.2	2	4400	80	- 11	5.2	1.6	4	Υ	RRIO	3	2-127
TLV2465A	6	2.7	0.5	0.575	1.7	1.5	4400	80	11	5.2	1.6	4	Υ	RRIO	3	2-12
TLV2470	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	1	Υ	RRIO	3	2-15
TLV2470A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	1	Υ	RRIO	3	2-15
TLV2471	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	1	Υ	RRIO	3	2-15
TLV2471A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	1	in filoph Yolur	RRIO	3	2-15
TLV2472	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	2		RRIO	3	2-15
TLV2472A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	2		RRIO	3	2-15
TLV2473	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	2	Υ	RRIO	3	2-15
TLV2473A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	2	Υ	RRIO	3	2-15
TLV2474	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	4		RRIO	3	2-15
TLV2474A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	4		RRIO	3	2-15
TLV2475	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	4	Υ	RRIO	3	2-15
TLV2475A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	4	Υ	RRIO	3	2-15
TLV2711	10	2.7	0.013	0.025	0.47	3	1	83	22	0.065	0.025	1		RRO	3	2-17
TLV2721	10	2.7	0.11	0.15	0.6	3	1	82	20	0.51	0.18	1		RRO	3	2-20
TLV2731	10	2.7	0.75	1.2	0.75	3	1	70	16	2	1.25	1		RRO	3	2-22
TLV2770	5.5	2.5	1	2	2.7	2.5	2	84	21	4.8	9	1	Υ	RRO	2.7	2-25
TLV2770A	5.5	2.5	1	2	1.9	1.6	2	84	21	4.8	9	1	Y	RRO	2.7	2-25
TLV2771	5.5	2.5	1	2	2.7	2.5	2	84	21	4.8	9	1010	SHOW	RRO	2.7	2-25
TLV2771A	5.5	2.5	1	2	1.9	1.6	2	84	21	4.8	9	1		RRO	2.7	2-25

Device	ΔV.	CC	per cl	cc nannel nA)	V _I (Ma (m)	ix)	I _{IB}	CMRR (Typ)	V _n @ 1 kHz	GBW (Typ)	Slew Rate	AMPS	SHDN	Rail	Spec'd at	Ref.
APASSASA .	Max	Min	Тур	Max	Full Range	25°C	(Typ) (pA)	(dB)	(Typ) (nV/√Hz)	(Typ) (MHz)	(Typ) (V/μs)			Rail	V _{CC} (V)	
TLV2772	5.5	2.5	1	2	2.7	2.5	2	84	21	4.8	9	2		RRO	2.7	2-255
TLV2772A	5.5	2.5	1	2	1.9	1.6	2	84	21	4.8	9	2		RRO	2.7	2-255
TLV2773	5.5	2.5	1	2	2.7	2.5	2	84	21	4.8	9	2	Υ	RRO	2.7	2-255
TLV2773A	5.5	2.5	1	2	1.9	1.6	2	84	21	4.8	9	2	Υ	RRO	2.7	2-255
TLV2774	5.5	2.5	1	2	2.9	2.7	2	84	21	4.8	9	4		RRO	2.7	2-255
TLV2774A	5.5	2.5	-1	2	2.2	2.1	2	84	21	4.8	9	4		RRO	2.7	2-255
TLV2775	5.5	2.5	1	2	2.9	2.7	2	84	21	4.8	9	4	Υ	RRO	2.7	2-255
TLV2775A	5.5	2.5	1	2	2.2	2.1	2	84	21	4.8	9	4	Υ	RRO	2.7	2-255
UA741	36	7	1.7	2.8	7.5	6	80000	90			0.5	1		100000	±15	Vol. B
UA747	36	7	1.7	2.8	7.5	6	80000	90			0.5	2		GENERAL	±15	Vol. B
UA748	36	7	1.7	2.8	7.5	6	80000	90			0.5	2		0.000	±15	Vol. B

Vol A - Amplifiers, Comparators, and Special Functions Data Book Volume A (SLYD011A); Vol B - Amplifiers, Comparators, and Special Functions Data Book Volume B (SLYD012A)

PRECISION OPERATIONAL AMPLIFIERS

Device	ΔV.	cc	per cl	nannel nA)	V _I (Ma (m	ax)	l _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz (Typ)	GBW (Typ) (MHz)	Slew Rate (Typ)	AMPS	SHDN	Rail	Spec'd at VCC (V)	Page No.
	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(nV/√Hz)	(MHz)	(V/μs)			Rail	(V)	AGE V
TLC2652A	16	3.8	1.5	2.4	0.002	0.001	4	140	35	1.9	3.1	1			±5	Vol. A
TLC2652	16	3.8	1.5	2.4	0.004	0.003	4	140	23	1.9	3.1	1			±5	Vol. A
TLC2654A	16	4.6	1.5	2.4	0.024	0.01	50	125	20	1.9	3.7	1			±5	Vol. A
TLC2654	16	4.6	1.5	2.4	0.034	0.02	50	125	13	1.9	3.7	1			±5	Vol. A
TLE2027AM	38	8	3.8	5.3	0.1	0.025	15000	131	2.5	13	2.8	1			±15	Vol. B
TLE2037AM	38	8	3.8	5.3	0.1	0.025	15000	131	2.5	50	7.5	1			±15	Vol. B
TLC4501A	6	4	1	1.5	0.04	0.04	1	100	12	4.7	2.5	1		RRO	5	Vol. A
TLC4502A	6	4	1.25	3.5	0.05	0.05	1	100	12	4.7	2.5	2		RRO	5	Vol. A
TLC4501	6	4	1	1.5	0.08	0.08	1	100	12	4.7	2.5	1		RRO	5	Vol. A
TLC4502	6	4	1.25	3.5	0.1	0.1	1	100	12	4.7	2.5	2		RRO	5	Vol. A
TLE2027	38	8	3.8	5.3	0.145	0.1	15000	131	2.5	13	2.8	1		-	±15	Vol. B
TLE2037	38	8	3.8	5.3	0.145	0.1	15000	131	2.5	50	7.5	1		-	±15	Vol. E
LT1013A	44	4	0.35	0.5	0.24	0.15	-12000	117	22		0.4	2		-	±15	Vol. A
OP07C	36	6	2.7	5	0.25	0.15	±1800	120	9.8	0.6	0.3	1			±15	Vol. A
OP07D	36	6	2.7	5	0.25	0.15	±2000	110	9.8	0.6	0.3	1			±15	Vol. A
TLC2201A	16	4.6	1	1.5	0.3	0.2	1	110	15	1.8	2.5	1		RRO	5	Vol. A
TLC2201B	16	4.6	1	1.5	0.3	0.2	1	110	12	1.8	2.5	1		RRO	5	Vol. A
TLE2021B	40	4	0.2	0.3	0.3	0.2	25000	110	30	2	0.65	1			5	Vol. B
LT1013	44	4	0.35	0.55	0.4	0.3	-15000	114	22		0.4	2		-	±15	Vol. A
TLE2021A	40	4	0.2	0.3	0.6	0.3	25000	110	30	2	0.65	1			5	Vol. B
TLE2022B	40	4	0.225	0.3	0.4	0.3	33000	105	15	2.8	0.65	2		-	5	Vol. B
TLE2227	38	8	3.65	5.3	0.5	0.35	15000	115	2.5	13	2.5	2			±15	Vol. B
TLE2022A	40	4	0.225	0.3	0.55	0.4	33000	102	15	2.8	0.65	2			5	Vol. B
TLC1078	16	1.4	0.01	0.017	0.8	0.45	0.6	95	68	0.085	0.032	2			5	Vol. A
TLV2211	10	2.7	0.013	0.025	3	0.45	1	83	22	0.065	0.025	1		RRO	5	Vol. E
TLV2221	10	2.7	0.11	0.15	3	0.45	- 1	85	19	0.51	0.18	1		RRO	5	Vol. E
TLV2231	10	2.7	0.85	1.2	3	0.45	1	70	15	2	1.6	1		RRO	5	Vol. B
TLE2141A	44	4	3.5	4.5	0.8	0.5	-7000	108	10.5	5.9	45	1		4,00	±15	Vol. B
TLC277	16	3	0.7	1.6	1.5	0.5	0.6	80	25	1.7	3.6	2	ENDH -	19	5	Vol. A
TLC27L7	16	3	0.01	0.017	2	0.5	0.6	94	68	0.085	0.03	2			5	Vol. A

PRECISION OPERATIONAL AMPLIFIERS (continued)

Device	ΔV	CC		nannel nA)	V _I (Ma (m	IX)	l _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz (Typ)	GBW (Typ)	Slew Rate (Typ)	AMPS	SHDN	Rail to	Spec'd at VCC (V)	Page No.
	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(nV/√Hz)	(MHz)	(V/μs)			Rail	(V)	NOT B
TLC27M7	16	3	0.105	0.28	2	0.5	0.6	91	32	0.525	0.43	2			5	Vol. A
TLC2201	16	4.6	1	1.5	0.6	0.5	1	110	8	1.8	2.5	1		RRO	5	Vol. A
TLC2202A	16	4.6	0.85	1.3	0.65	0.5	1	100	15	1.9	2.5	2		RRO	5	Vol. A
TLC2202B	16	4.6	0.85	1.3	0.65	0.5	1	100	12	1.9	2.5	2		RRO	5	Vol. A
TLE2161B	36	7	0.29	0.35	1	0.5	4	90	40	6.4	10	1		-	±15	Vol. B
TLE2021	40	4	0.2	0.3	0.85	0.6	25000	110	15	2	0.65	1			5	Vol. B
TLE2022	40	4	0.225	0.3	0.8	0.6	35000	100	15	2.8	0.65	2		-	5	Vol. B
TLE2024B	40	4	0.2625	0.35	0.8	0.6	35000	95	15	2.8	0.7	4			5	Vol. B
TLE2142A	44	4	3.45	4.5	1.2	0.75	-7000	108	10.5	5.9	45	2			±15	Vol. B
TLC070A	16	4.5	1.9	2.5	1	0.75	1.5	140	7	10	16	1	Y	-	5	2-17
TLC071A	16	4.5	1.9	2.5	1	0.75	1.5	140	7	10	16	1		-	5	2-17
TLC072A	16	4.5	1.9	2.5	1	0.75	1.5	140	7	10	16	1			5	2-17
TLC073A	16	4.5	1.9	2.5	1	0.75	1.5	140	7	10	16	2	Y		5	2-17
TLC074A	16	4.5	1.9	2.5	1	0.75	1.5	140	7	10	16	4			5	2-17
TLC075A	16	4.5	1.9	2.5	1	0.75	1.5	140	7	10	16	4	Υ		5	2-17
TLC080A	16	4.5	1.9	2.5	1	0.75	3	140	8.5	10	16	1	Υ		5	2-43
TLC081A	16	4.5	1.9	2.5	1	0.75	3	140	8.5	10	16	1			- 5	2-43
TLC082A	16	4.5	1.9	2.5	1	0.75	3	140	8.5	10	16	2		17072	5	2-43
TLC083A	16	4.5	1.9	2.5	1	0.75	3	140	8.5	10	16	2	Υ		5	2-43
TLC084A	16	4.5	1.9	2.5	1	0.75	3	140	8.5	10	16	4		-	5	2-43
TLC085A	16	4.5	1.9	2.5	1	0.75	3	140	8.5	10	16	4	Υ	1000	5	2-43
LT1013D	44	4	0.35	0.55	1	0.8	-15000	114	22		0.4	2			±15	Vol. A
TL031A	30	10	0.217	0.28	1.8	0.8	2	94	41	1.1	5.1	1		-	±15	Vol. A
TL032A	30	10	0.211	0.28	1.8	0.8	2	94	41	1.1	5.1	2			±15	Vol. A
TL051A	30	10	2.7	3.2	1.8	0.8	30	93	18	3.1	20	1			±15	Vol. A
TL052A	30	10	2.4	2.8	1.8	0.8	30	93	19	3	20.7	2			±15	Vol. A
TLC1079	16	1.4	0.01	0.017	1.2	0.85	0.6	95	68	0.085	0.032	4			5	Vol. A
TLC2252A	16	4.4	0.035	0.0625	1	0.85	1	83	19	0.2	0.12	2		RRO	5	Vol. A
TLC2254A	16	4.4	0.035	0.0625	1 111	0.85	1	83	19	0.2	0.12	4	SHIDIN	RRO	5	Vol. A
TLV2252A	8	2.7	0.034	0.0625	1	0.85	1	75	19	0.187	0.1	2		RRO	5	Vol. B

OPERATIONAL AMPLIFIER PRECISION SELECTION GUIDE

PRECISION OPERATIONAL AMPLIFIERS (continued)

Device	ΔV	(CC V)		cc nannel nA)	V _I (Ma (m	x)	I _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz	GBW (Typ)	Slew Rate (Typ)	AMPS	SHDN	Rail to	Spec'd at VCC (V)	Page No.
	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(Typ) (nV/√Hz)	(MHz)	(V/μs)			Rail	(V)	110.
TLV2254A	8	2.7	0.034	0.0625	1	0.85	1	75	19	0.187	0.1	4		RRO	5	Vol. B
TLE2024A	40	4	0.2625	0.35	1.05	0.85	40000	92	15	2.8	0.7	4			5	Vol. B
TLE2141	44	4	3.5	4.5	1.3	0.9	-7000	108	10.5	5.9	45	1			±15	Vol. B
TLC279	16	3	0.675	1.6	1.5	0.9	0.6	80	25	1.7	3.6	4			5	Vol. A
TLC27L9	16	3	0.01	0.017	1.5	0.9	0.6	94	70	0.085	0.03	4			5	Vol. A
TLC27M9	16	3	0.105	0.28	1.5	0.9	0.6	91	32	0.525	0.43	4			5	Vol. A
TLC2262A	16	4.4	0.2	0.25	1.5	0.95	1	83	12	0.82	0.55	2		RRO	5	Vol. A
TLC2264A	16	4.4	0.2	0.25	1.5	0.95	1	83	12	0.82	0.55	4		RRO	5	Vol. A
TLC2272A	16	4.4	1.1	1.5	1.5	0.95	1	75	9	2.18	3.6	2		RRO	5	Vol. A
TLC2274A	16	4.4	1.1	1.5	1.5	0.95	1	75	9	2.18	3.6	4		RRO	5	Vol. A
TLV2262A	8	2.7	0.2	0.25	1.5	0.95	1	83	12	0.67	0.55	2	N. H. W. T.	RRO	5	Vol. B
TLV2264A	8	2.7	0.2	0.25	1.5	0.95	1	83	12	0.67	0.55	4		RRO	5	Vol. B
TLV2422A	10	2.7	0.05	0.075	1.5	0.95	1	90	18	0.052	0.02	2		RRO	5	2-69
TLV2432A	10	2.7	0.098	0.125	1.5	0.95	1	83	18	0.5	0.25	2		RRO	5	Vol. B
TLV2434A	10	2.7	0.098	0.125	1.5	0.95	1	83	18	0.5	0.25	4		RRO	5	Vol. B
TLV2442A	10	2.7	1.1	0.725	1.5	0.95	1	75	18	1.75	1.3	2		RRO	5	Vol. B
TLV2444A	10	2.7	1.1	0.725	1.5	0.95	1	75	18	1.75	1.3	4		RRO	5	Vol. B
TLC2202	16	4.6	0.85	1.3	1.15	1	1	100	8	1.9	2.5	2		RRO	5	Vol. A
TLC070	16	4.5	1.9	2.5	1.5	100 1 00 11	1.5	140	7	10	16	K 1 DE	Y	B IBIAD	5	2-17
TLC071	16	4.5	1.9	2.5	1.5	1	1.5	140	7	10	16	1			5	2-17
TLC072	16	4.5	1.9	2.5	1.5	1	1.5	140	7	10	16	1			5	2-17
TLC073	16	4.5	1.9	2.5	1.5	1	1.5	140	7	10	16	2	Y	1	5	2-17
TLC074	16	4.5	1.9	2.5	1.5	1	1.5	140	7	10	16	4			5	2-17
TLC075	16	4.5	1.9	2.5	1.5	1	1.5	140	7	10	16	4	Y	-	5	2-17
TLC080	16	4.5	1.9	2.5	1.5	1	3	140	8.5	10	16	1	Y		5	2-43
TLC081	16	4.5	1.9	2.5	1.5	1	3	140	8.5	10	16	1			5	2-43
TLC082	16	4.5	1.9	2.5	1.5	1	3	140	8.5	10	16	2			5	2-43
TLC083	16	4.5	1.9	2.5	1.5	1	3	140	8.5	10	16	2	Υ	1200	5	2-43
TLC084	16	4.5	1.9	2.5	1.5	1	3	140	8.5	10	16	4	BHEN	1.8	5	2-43
TLC085	16	4.5	1.9	2.5	1.5	1	3	140	8.5	10	16	4	Υ		5	2-43

Device	∆VCC (V)		ICC per channel (mA)		V _{IO} (Max) (mV)		I _{IB} (Typ)	CMRR (Typ) (dB)	V _n @ 1 kHz	GBW (Typ) (MHz)	Slew Rate (Typ)	AMPS	SHDN	Rail	Spec'd at VCC (V)	Page No.
	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(Typ) (nV/√Hz)	(MHz)	(V/μs)			Rail	(V)	140.
TLE2062B	36	7	0.3125	0.345	1.9	1	4	90	40	2	3.4	2			±15	Vol. B
TLV2450A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	1	Υ	RRIO	3	2-99
TLV2451A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	1		RRIO	3	2-99
TLV2452A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	2		RRIO	3	2-99
TLV2453A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	2	Υ	RRIO	3	2-99
TLV2454A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	4		RRIO	3	2-99
TLV2455A	6	2.7	0.023	0.035	1.3	-1	900	86	51	0.22	0.12	4	Υ	RRIO	3	2-99

OPERATIONAL AMPLIFIER LOW-NOISE SELECTION GUIDE

LOW-NOISE OPERATIONAL AMPLIFIERS

Device	ΔV (cc /)	Per channel (mA)		V _{IO} (Max) (mV)		l _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz (Typ)	GBW (Typ)	Slew Rate (Typ)	AMPS	SHDN	Rail	Spec'd at VCC (V)	Ref.
DASTING	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(nV/√Hz)	(MHz)	(V/μs)			Rail	(V)	8-183
TLE2027	38	8	3.8	5.3	0.145	0.1	15000	131	2.5	13	2.8	1		100000	± 15	Vol. B
TLE2027AM	38	8	3.8	5.3	0.1	0.025	15000	131	2.5	13	2.8	1		No. of the last of	± 15	Vol. B
TLE2037	38	8	3.8	5.3	0.145	0.1	15000	131	2.5	50	7.5	1		1000	± 15	Vol. E
TLE2037AM	38	8	3.8	5.3	0.1	0.025	15000	131	2.5	50	7.5	1			± 15	Vol. E
TLE2227	38	8	3.65	5.3	0.5	0.35	15000	115	2.5	13	2.5	2		0.000	± 15	Vol. E
NE5534A	30	10	4	8	5	4	500000	100	3.5	10	13	1			±15	Vol. A
NE5534	30	10	4	8	5	4	500000	100	4	10	13	1		-	±15	Vol. A
NE5532	30	10	4	8	5	4	200000	100	5	10	9	2			±15	Vol. A
TLC070	16	4.5	1.9	2.5	1.5	1	1.5	140	7	10	16	1	Υ	-	5	2-17
TLC070A	16	4.5	1.9	2.5	1	0.75	1.5	140	7	10	16	1	Υ	-	5	2-17
TLC071	16	4.5	1.9	2.5	1.5	1	1.5	140	7	10	16	1			5	2-17
TLC071A	16	4.5	1.9	2.5	1	0.75	1.5	140	7	10	16	1			5	2-17
TLC072	16	4.5	1.9	2.5	1.5	1	1.5	140	7	10	16	1			5	2-17
TLC072A	16	4.5	1.9	2.5	1	0.75	1.5	140	7	10	16	1			5	2-17
TLC073	16	4.5	1.9	2.5	1.5	1	1.5	140	7	10	16	2	Υ	-	5	2-17
TLC073A	16	4.5	1.9	2.5	1	0.75	1.5	140	7	10	16	2	Υ	-	5	2-17
TLC074	16	4.5	1.9	2.5	1.5	1	1.5	140	7	10	16	4			5	2-17
TLC074A	16	4.5	1.9	2.5	- 1	0.75	1.5	140	7	10	16	4			5	2-17
TLC075	16	4.5	1.9	2.5	1.5	1	1.5	140	7	10	16	4	Υ		5	2-17
TLC075A	16	4.5	1.9	2.5	1	0.75	1.5	140	7	10	16	4	Υ	-	5	2-17
RC4136	30	10	1.25	2.825	7.5	6	140000	90	8	3	1.7	4			±15	Vol. A
RC4558	30	10	1.25	2.8	7.5	6	150000	90	8	3	1.7	2		- 100	±15	Vol. A
TLC2201	16	4.6	1	1.5	0.6	0.5	1	110	8	1.8	2.5	1		RRO	5	Vol. A
TLC2202	16	4.6	0.85	1.3	1.15	1	1	100	8	1.9	2.5	2		RRO	5	Vol. A
TLV2361	5	2	1.75	2.5	7.5	6	20000	85	8	7	3	1		-	±2.5	Vol. E
TLV2362	5	2	1.75	2.5	7.5	6	20000	85	8	7	3	2		-	±2.5	Vol. E
TLC080	16	4.5	1.9	2.5	1.5	1	3	140	8.5	10	16	1	Υ	-	5	2-43
TLC080A	16	4.5	1.9	2.5	1	0.75	3	140	8.5	10	16	1	Y	-	5	2-43
TLC081	16	4.5	1.9	2.5	1.5	1	3	140	8.5	10	16	1			5	2-43
TLC081A	16	4.5	1.9	2.5	1111	0.75	3	140	8.5	10	16	1		hotel	5	2-43
TLC082	16	4.5	1.9	2.5	1.5	1	3	140	8.5	10	16	2	BHORE	80	5	2-43
TLC082A	16	4.5	1.9	2.5	1	0.75	3	140	8.5	10	16	2			5	2-43

Devices in **bold** are is this data book Volume A (SLYD011A); Vol B – Amplifiers, Comparators, and Special Functions Data Book Volume B (SLYD012A)

LOW-NOISE OPERATIONAL AMPLIFIERS (continued)

Device	ΔV	CC	Per channel (mA)		V _{IO} (Max) (mV)		I _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz (Typ)	GBW (Typ)	Slew Rate (Typ)	AMPS	SHDN	Rail	Spec'd at VCC (V)	Ref.
	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(nV/√Hz)	(MHz)	(V/μs)	7.1		Rail	(V)	
TLC083	16	4.5	1.9	2.5	1.5	1	3	140	8.5	10	16	2	Υ	-	5	2-43
TLC083A	16	4.5	1.9	2.5	1	0.75	3	140	8.5	10	16	2	Υ		5	2-43
TLC084	16	4.5	1.9	2.5	1.5	1	3	140	8.5	10	16	4			5	2-43
TLC084A	16	4.5	1.9	2.5	1	0.75	3	140	8.5	10	16	4			5	2-43
TLC085	16	4.5	1.9	2.5	1.5	1	3	140	8.5	10	16	4	Υ		5	2-43
TLC085A	16	4.5	1.9	2.5	1	0.75	3	140	8.5	10	16	4	Υ	10000	5	2-43
TLC2272	16	4.4	1.1	1.5	3	2.5	1	75	9	2.18	3.6	2		RRO	5	Vol. A
TLC2272A	16	4.4	1.1	1.5	1.5	0.95	1	75	9	2.18	3.6	2		RRO	5	Vol. A
TLC2274	16	4.4	1.1	1.5	3	2.5	1	75	9	2.18	3.6	4		RRO	5	Vol. A
TLC2274A	16	4.4	1.1	1.5	1.5	0.95	-1	75	9	2.18	3.6	4		RRO	5	Vol. A
OP07C	36	6	2.7	5	0.25	0.15	±1800	120	9.8	0.6	0.3	1			±15	Vol. A
OP07D	36	6	2.7	5	0.25	0.15	±2000	110	9.8	0.6	0.3	1			±15	Vol. A
TLE2141	44	4	3.5	4.5	1.3	0.9	-7000	108	10.5	5.9	45	1	Option of the control	-	± 15	Vol. f
TLE2141A	44	4	3.5	4.5	0.8	0.5	-7000	108	10.5	5.9	45	1			± 15	Vol. 8
TLE2142	44	4	3.45	4.5	1.6	1.2	-7000	108	10.5	5.9	45	2	recognis (I)		± 15	Vol. E
TLE2142A	44	4	3.45	4.5	1.2	0.75	-7000	108	10.5	5.9	45	2		-	± 15	Vol. E
TLE2144	44	4	3.45	4.5	3.2	2.4	-7000	108	10.5	5.9	45	4			± 15	Vol. E
TLE2144A	44	4	3.45	4.5	2.4	1.5	-7000	108	10.5	5.9	45	4			± 15	Vol. E
TLV2460	6	2.7	0.5	0.575	2.2	2	4400	80	- 11	5.2	1.6	1	Υ	RRIO	3	2-12
TLV2460A	6	2.7	0.5	0.575	1.7	1.5	4400	80	11	5.2	1.6	1	Υ	RRIO	3	2-12
TLV2461	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	- 1		RRIO	3	2-12
TLV2461A	6	2.7	0.5	0.575	1.7	1.5	4400	80	11	5.2	1.6	1	-	RRIO	3	2-12
TLV2462	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	2		RRIO	3	2-12
TLV2462A	6	2.7	0.5	0.575	1.7	1.5	4400	80	11	5.2	1.6	2		RRIO	3	2-12
TLV2463	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	2	Y	RRIO	3	2-12
TLV2463A	6	2.7	0.5	0.575	1.7	1.5	4400	80	- 11	5.2	1.6	2	Υ	RRIO	3	2-12
TLV2464	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	4		RRIO	3	2-12
TLV2464A	6	2.7	0.5	0.575	1.7	1.5	4400	80	- 11	5.2	1.6	4		RRIO	3	2-12
TLV2465	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	4	Υ	RRIO	3	2-12
TLV2465A	6	2.7	0.5	0.575	1.7	1.5	4400	80	(4)11=3	5.2	1.6	4	Υ	RRIO	3	2-12
TLC2201B	16	4.6	1	1.5	0.3	0.2	1	110	12	1.8	2.5	¥11-8	SHOW	RRO	5	Vol. A
TLC2202B	16	4.6	0.85	1.3	0.65	0.5	1	100	12	1.9	2.5	2		RRO	5	Vol. A

OPERATIONAL AMPLIFIER LOW-NOISE SELECTION GUIDE

LOW-NOISE OPERATIONAL AMPLIFIERS (continued)

Device	ΔV	/cc V)		CC hannel nA)	VIO (Max (mV	ix)	I _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz	GBW (Typ)	Slew Rate	AMPS	SHDN	Rail	Spec'd at	Ref.
LOUIS .	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(Typ) (nV/√Hz)	(MHz)	(Typ) (V/μs)	3		Rail	V _{CC} (V)	ADE Y
TLC2262	16	4.4	0.2	0.25	3	2.5	1	83	12	0.82	0.55	2		RRO	5	Vol. A
TLC2262A	16	4.4	0.2	0.25	1.5	0.95	1	83	12	0.82	0.55	2		RRO	5	Vol. A
TLC2264	16	4.4	0.2	0.25	3	2.5	1	83	12	0.82	0.55	4		RRO	5	Vol. A
TLC2264A	16	4.4	0.2	0.25	1.5	0.95	1	83	12	0.82	0.55	4		RRO	5	Vol. A
TLC4501	6	4	1	1.5	0.08	0.08	1	100	12	4.7	2.5	1		RRO	5	Vol. A
TLC4501A	6	4	1	1.5	0.04	0.04	1	100	12	4.7	2.5	1		RRO	5	Vol. A
TLC4502	6	4	1.25	3.5	0.1	0.1	1	100	12	4.7	2.5	2		RRO	5	Vol. A
TLC4502A	6	4	1.25	3.5	0.05	0.05	1	100	12	4.7	2.5	2		RRO	5	Vol. A
TLV2262	8	2.7	0.2	0.25	3	2.5	1	83	12	0.67	0.55	2		RRO	5	Vol. B
TLV2262A	8	2.7	0.2	0.25	1.5	0.95	1	83	12	0.67	0.55	2		RRO	5	Vol. B
TLV2264	8	2.7	0.2	0.25	3	2.5	1	83	12	0.67	0.55	4		RRO	5	Vol. B
TLV2264A	8	2.7	0.2	0.25	1.5	0.95	1	83	12	0.67	0.55	4		RRO	5	Vol. B
TLC2654	16	4.6	1.5	2.4	0.034	0.02	50	125	13	1.9	3.7	1			±5	Vol. A
TLE2071	38	4.5	1.7	2.2	6	4	20	98	14	10	45	1-			± 15	Vol. E
TLE2071A	38	4.5	1.7	2.2	4	2	20	98	14	10	45	1			± 15	Vol. E
TLE2072	38	4.5	1.55	1.8	7.8	6	20	98	14	10	45	2			± 15	Vol. E
TLE2072A	38	4.5	1.55	1.8	5.3	3.5	20	98	14	10	45	2			± 15	Vol. E
TLE2074	38	4.5	1.425	1.875	7.1	5	25	98	14	10	45	4	-		± 15	Vol. E
TLE2074A	38	4.5	1.425	1.875	5.1	3	25	98	14	10	45	4			± 15	Vol. E
TLE2081	38	4.5	1.7	2.2	8	6	20	98	14	10	45	1			± 15	Vol. E
TLE2081A	38	4.5	1.7	2.2	5	3	20	98	14	10	45	1			± 15	Vol. E
TLE2082	38	4.5	1.55	1.8	8.1	7	20	98	14	10	45	2		7000	± 15	Vol. E
TLE2082A	38	4.5	1.55	1.8	5.1	4	20	98	14	10	45	2			± 15	Vol. E
TLE2084	38	4.5	1.625	1.875	9.1	7	25	98	14	10	45	4			± 15	Vol. E
TLE2084A	38	4.5	1.625	1.875	6.1	4	25	98	14	10	45	4		-	± 15	Vol. E
TLC2201A	16	4.6	1	1.5	0.3	0.2	1	110	15	1.8	2.5	1	-	RRO	5	Vol. A
TLC2202A	16	4.6	0.85	1.3	0.65	0.5	1	100	15	1.9	2.5	2		RRO	5	Vol. /
TLE2021	40	4	0.2	0.3	0.85	0.6	25000	110	15	2	0.65	1			5	Vol. E
TLE2022	40	4	0.225	0.3	0.8	0.6	35000	100	15	2.8	0.65	2			5	Vol. E
TLE2022A	40	4	0.225	0.3	0.55	0.4	33000	102	15	2.8	0.65	2		demi.	5	Vol. I
TLE2022B	40	4	0.225	0.3	0.4	0.3	33000	105	15	2.8	0.65	2	BisDitt	-50	5	Vol. E
TLE2024	40	4	0.2625	0.35	1.3	1.1	46000	90	15	2.8	0.7	4			5	Vol. E

Devices in **bold** are is this data book Volume A (SLYD011A); Vol B – Amplifiers, Comparators, and Special Functions Data Book Volume B (SLYD012A)

LOW-NOISE OPERATIONAL AMPLIFIERS (continued)

Device	ΔV	CC V)	per ch (m	annel	V _{IC} (Ma (m)	x)	I _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz (Typ)	GBW (Typ)	Slew Rate (Typ)	AMPS	SHDN	Rail	Spec'd at VCC (V)	Ref.
JUE 20594	Max	Min	Тур	Max	Full Range	25°C	(pA)	(Typ) (dB)	(nV/√Hz)	(MHz)	(V/μs)			Rail	(V)	Val B
TLE2024A	40	4	0.2625	0.35	1.05	0.85	40000	92	15	2.8	0.7	4			5	Vol. B
TLE2024B	40	4	0.2625	0.35	0.8	0.6	35000	95	15	2.8	0.7	4			5	Vol. B
TLV2231	10	2.7	0.85	1.2	3	0.45	1	70	15	2	1.6	1		RRO	5	Vol. B
TLV2470	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	1	Υ	RRIO	3	2-153
TLV2470A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	1	Υ	RRIO	3	2-153
TLV2471	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	1	Υ	RRIO	3	2-153
TLV2471A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	1		RRIO	3	2-153
TLV2472	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	2		RRIO	3	2-153
TLV2472A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	2		RRIO	3	2-153
TLV2473	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	2	Υ	RRIO	3	2-153
TLV2473A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	2	Y	RRIO	3	2-153
TLV2474	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	4		RRIO	3	2-153
TLV2474A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	4		RRIO	3	2-153
TLV2475	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	4	Υ	RRIO	3	2-153
TLV2475A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	4	Υ	RRIO	3	2-153
TLV2731	10	2.7	0.75	1.2	0.75	3	1	70	16	2	1.25	1		RRO	3	2-229
LF347	36	7	2	2.75	13	10	50	100	18	3	13	4			±15	Vol. A
LF347B	36	7	2	2.75	7	5	50	100	18	3	13	4	Section Control of the Control of th	1979	±15	Vol. A
LF353	36	7	1.8	3.25	13	10	50	100	18	3	13	2		1000	±15	Vol. A
LF411	36	7	2	3.4		2	50	100	18	3	13	1		-	±15	Vol. A
LF412	36	7	2.25	3.4		3	50	100	18	3	13	2		10000	±15	Vol. A
TL051	30	10	2.7	3.2	2.5	1.5	30	93	18	3.1	20	1		2000	±15	Vol. A
TL051A	30	10	2.7	3.2	1.8	0.8	30	93	18	3.1	20	1		11100	±15	Vol. A
TL070	36	7	1.4	2.5	13	10	65	100	18	3	13	1		1000	±15	Vol. A
TL071	36	7	1.4	2.5	13	10	65	100	18	3	13	1		11170	±15	Vol. A
TL071A	36	7	1.4	2.5	7.5	6	65	100	18	3	13	1		GUE.	±15	Vol. A
TL071B	36	7	1.4	2.5	5	3	65	100	18	3	13	1	-	1000	±15	Vol. A
TL072	36	7	1.4	2.5	13	10	65	100	18	3	13	2		100	±15	Vol. A
TL072A	36	7	1.4	2.5	7.5	6	65	100	18	3	13	2		100.00	±15	Vol. A
TL072B	36	7	1.4	2.5	5	3	65	100	18	3	13	2			±15	Vol. A
TL074	36	7	1.4	2.5	13	10	65	100	18	3	13	4	SHOW	100	±15	Vol. A
TL074A	36	7	1.4	2.5	7.5	6	65	100	18	3	13	4		1000	±15	Vol. A

Devices in **bold** are is this data book Volume A (SLYD011A); Vol B – Amplifiers, Comparators, and Special Functions Data Book Volume B (SLYD012A)

OPERATIONAL AMPLIFIER LOW-NOISE SELECTION GUIDE

LOW-NOISE OPERATIONAL AMPLIFIERS (continued)

Device	ΔV	CC V)	Per channel (mA)		V _{IO} (Max) (mV)		I _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz (Typ)	GBW (Typ)	Slew Rate (Typ)	AMPS	SHDN	Rail to	Spec'd at VCC (V)	Ref.
ATMNOSTW	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(nV/√Hz)	(MHz)	(V/μs)	8		Rail	(V)	8-30
TL074B	36	7	1.4	2.5	5	3	65	100	18	3	13	4	- 1	HHIO	±15	Vol. A
TL081	36	7	1.4	2.8	20	15	30	86	18	3	13	1.	A	FIRM	±15	Vol. A
TL081A	36	7	1.4	2.8	7.5	6	30	86	18	3	13	1		RRIG	±15	Vol. A
TL081B	36	7	1.4	2.8	5	3	30	86	18	3	13	1		FIRIO	±15	Vol. A
TL082	36	7	1.4	2.8	20	15	30	86	18	3	13	2		DEC.	±15	Vol. A
TL082A	36	7	1.4	2.8	7.5	6	30	86	18	3	13	2		BRSO	±15	Vol. A
TL082B	36	7	1.4	2.8	5	3	30	86	18	3	13	2		HEED -	±15	Vol. A
TL084	36	7	1.4	2.8	20	15	30	86	18	3	13	4		180 1	±15	Vol. A
TL084A	36	7	1.4	2.8	7.5	6	30	86	18	3	13	4			±15	Vol. A
TL084B	36	7	1.4	2.8	5	3	30	86	18	3	13	4			±15	Vol. A
TLV2422	10	2.7	0.05	0.075	2.5	2	1	90	18	0.052	0.02	2		RRO	5	2-69
TLV2422A	10	2.7	0.05	0.075	1.5	0.95	1	90	18	0.052	0.02	2		RRO	5	2-69
TLV2432	10	2.7	0.098	0.125	2.5	2	9.1	90	18	0.5	0.25	2		RRO	5	Vol. E
TLV2432A	10	2.7	0.098	0.125	1.5	0.95	1	83	18	0.5	0.25	2		RRO	5	Vol. E
TLV2434	10	2.7	0.098	0.125	2.5	2	1	90	18	0.5	0.25	4		RRO	5	Vol. E
TLV2434A	10	2.7	0.098	0.125	1.5	0.95	1	83	18	0.5	0.25	4		RRO	5	Vol. E
TLV2442	10	2.7	0.75	1.1	2.5	2	1	75	18	1.75	1.3	2		RRO	5	Vol. E
TLV2442A	10	2.7	1.1	0.725	1.5	0.95	1	75	18	1.75	1.3	2		RRO	5	Vol. E
TLV2444	10	2.7	0.75	1.1	2.5	2	1	75	18	1.75	1.3	2		RRO	5	Vol. E
TLV2444A	10	2.7	1.1	0.725	1.5	0.95	0.1	75	18	1.75	1.3	2		RRO	5	Vol. E
TL052	30	10	2.4	2.8	2.5	1.5	30	93	19	3	20.7	2			±15	Vol. A
TL052A	30	10	2.4	2.8	1.8	0.8	30	93	19	3	20.7	2			±15	Vol. A
TLC2252	16	4.4	0.035	0.0625	1.75	1.5	1	83	19	0.2	0.12	2		RRO	5	Vol. A
TLC2252A	16	4.4	0.035	0.0625	1	0.85	1	83	19	0.2	0.12	2		RRO	5	Vol. A
TLC2254	16	4.4	0.035	0.0625	1.75	1.5	79	83	19	0.2	0.12	4		RRO	5	Vol. A
TLC2254A	16	4.4	0.035	0.0625	1	0.85	1	83	19	0.2	0.12	4		RRO	5	Vol. A
TLV2221	10	2.7	0.11	0.15	3	0.45	1	85	19	0.51	0.18	11		RRO	5	Vol. E
TLV2252	8	2.7	0.034	0.0625	1.75	1.5	19	75	19	0.187	0.1	2		RRO	5	Vol. E
TLV2252A	8	2.7	0.034	0.0625	1	0.85	0.1	75	19	0.187	0.1	2		RRO	5	Vol. E
TLV2254	8	2.7	0.034	0.0625	1.75	1.5	1	75	19	0.187	0.1	4		RRO	5	Vol. E
TLV2254A	8	2.7	0.034	0.0625	1	0.85	1	75	19	0.187	0.1	4	Sister.	RRO	5	Vol. I
TLC2654A	16	4.6	1.5	2.4	0.024	0.01	50	125	20	1.9	3.7	1		Reit	±5	Vol. E
TLV2721	10	2.7	0.11	0.15	0.6	3	1	82	20	0.51	0.18	1		RRO	3	2-20

LOW-POWER OPERATIONAL AMPLIFIERS

Device	ΔV ()	CC	per ch	nannel nA)	V _I ((Ma (m ¹	x)	I _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz	GBW (Typ)	Slew Rate (Typ)	AMPS	SHDN	Rail	Spec'd at VCC (V)	Ref.
10.000	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(Typ) (nV/√Hz)	(MHz)	(V/μs)			Rail	(V)	
TLV2324	8	2	0.01	0.017	12	10	0.6	94	68	0.027	0.02	4		1000	5	Vol. B
TLV2322	8	2	0.01	0.017	11	9	0.6	94	68	0.027	0.02	2		INUO	5	Vol. B
TLC27L9	16	3	0.01	0.017	1.5	0.9	0.6	94	70	0.085	0.03	4		1 480	5	Vol. A
TLC27L7	16	3	0.01	0.017	2	0.5	0.6	94	68	0.085	0.03	2		- AMBICA	5	Vol. A
TLC27L4B	16	3	0.01	0.017	3	2	0.6	94	70	0.085	0.03	4		1,1000	5	Vol. A
TLC27L4A	16	3	0.01	0.017	6.5	5	0.6	94	70	0.085	0.03	4		dist.	5	Vol. A
TLC27L4	16	3	0.01	0.017	12	10	0.6	94	70	0.085	0.03	4		T RESIG	5	Vol. A
TLC27L2B	16	3	0.01	0.017	3.5	2	0.6	94	68	0.085	0.03	2			5	Vol. A
TLC27L2A	16	3	0.01	0.017	7	5	0.6	94	68	0.085	0.03	2			5	Vol. A
TLC27L2	16	3	0.01	0.017	13	10	0.6	94	68	0.085	0.03	2		1-1950	5	Vol. A
TLC27L1B	16	3	0.01	0.017	3.5	2	0.6	94	68	0.085	0.03	1		1 100	5	Vol. A
TLC27L1A	16	3	0.01	0.017	7	5	0.6	94	68	0.085	0.03	1	A Control of	1990	5	Vol. A
TLC27L1	16	3	0.01	0.017	13	10	0.6	94	68	0.085	0.03	1		1.080	5	Vol. A
TLC25L4B	16	1.4	0.01	0.017	3	2	0.6	94	70	0.085	0.03	4		I dist	5	Vol. A
TLC25L4A	16	1.4	0.01	0.017	6.5	5	0.6	94	70	0.085	0.03	4		1 640	5	Vol. A
TLC25L4	16	1.4	0.01	0.017	12	10	0.6	94	70	0.085	0.03	4		Juli SQ	5	Vol. A
TLC25L2B	16	1.4	0.01	0.017	3	2	0.6	94	68	0.085	0.03	2		1 4660	5	Vol. A
TLC25L2A	16	1.4	0.01	0.017	6.5	5	0.6	94	68	0.085	0.03	2		1,000	5	Vol. A
TLC25L2	16	1.4	0.01	0.017	12	10	0.6	94	68	0.085	0.03	2		HE	5	Vol. A
TLC1079	16	1.4	0.01	0.017	1.2	0.85	0.6	95	68	0.085	0.032	4		1	5	Vol. A
TLC1078	16	1.4	0.01	0.017	0.8	0.45	0.6	95	68	0.085	0.032	2			5	Vol. A
TLV2711	10	2.7	0.013	0.025	0.47	3	1	83	22	0.065	0.025	1		RRO	3	2-17
TLV2211	10	2.7	0.013	0.025	3	0.45	100	83	22	0.065	0.025	15		RRO	5	Vol. E
TLV2455A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	4	Υ	RRIO	3	2-99
TLV2455	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	4	Υ	RRIO	3	2-99
TLV2454A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	4		RRIO	3	2-99
TLV2454	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	4		RRIO	3	2-99
TLV2453A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	2	Y	RRIO	3	2-99
TLV2453	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	2	Υ	RRIO	3	2-99
TLV2452A	6	2.7	0.023	0.035	1.3	1.0	900	86	51	0.22	0.12	2		RRIO	3	2-99
TLV2452	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	2	1 muse	RRIO	3	2-99
TLV2451A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	1		RRIO	3	2-99

Devices in **bold** are is this data book Volume A (SLYD011A); Vol B – Amplifiers, Comparators, and Special Functions Data Book Volume B (SLYD012A)

OPERATIONAL AMPLIFIER LOW-POWER SELECTION GUIDE

LOW-POWER OPERATIONAL AMPLIFIERS (continued)

Device	ΔV	CC		cc nannel nA)	V _I (Ma (m)	x)	I _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz	GBW (Typ)	Slew Rate (Typ)	AMPS	SHDN	Rail	Spec'd at	Ref.
	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(Typ) (nV/√Hz)	(MHz)	(V/μs)			Rail	V _{CC} (V)	V61.8
TLV2451	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	1		RRIO	3	2-99
TLV2450A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	1	Υ	RRIO	3	2-99
TLV2450	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	1	Υ	RRIO	3	2-99
TLV2254A	8	2.7	0.034	0.0625	1	0.85	1	75	19	0.187	0.1	4		RRO	5	Vol. B
TLV2254	8	2.7	0.034	0.0625	1.75	1.5	Î	75	19	0.187	0.1	4		RRO	5	Vol. E
TLV2252A	8	2.7	0.034	0.0625	1	0.85	1	75	19	0.187	0.1	2		RRO	5	Vol. E
TLV2252	8	2.7	0.034	0.0625	1.75	1.5	1	75	19	0.187	0.1	2		RRO	5	Vol. E
TLC2254A	16	4.4	0.035	0.0625	1	0.85	1	83	19	0.2	0.12	4		RRO	5	Vol. A
TLC2254	16	4.4	0.035	0.0625	1.75	1.5	1	83	19	0.2	0.12	4		RRO	5	Vol. A
TLC2252A	16	4.4	0.035	0.0625	1	0.85	1	83	19	0.2	0.12	2		RRO	5	Vol. A
TLC2252	16	4.4	0.035	0.0625	1.75	1.5	1	83	19	0.2	0.12	2	-	RRO	5	Vol. A
TLV2422A	10	2.7	0.05	0.075	1.5	0.95	1	90	18	0.052	0.02	2		RRO	5	2-69
TLV2422	10	2.7	0.05	0.075	2.5	2	1	90	18	0.052	0.02	2		RRO	5	2-69
TLV2432A	10	2.7	0.098	0.125	1.5	0.95	1	83 *	18	0.5	0.25	2	-	RRO	5	Vol. E
TLV2432	10	2.7	0.098	0.125	2.5	2	1	90	18	0.5	0.25	2		RRO	5	Vol. E
TLV2434A	10	2.7	0.098	0.125	1.5	0.95	1	83	18	0.5	0.25	4		RRO	5	Vol. E
TLV2434	10	2.7	0.098	0.125	2.5	2	1	90	18	0.5	0.25	4		RRO	5	Vol. E
TL022	30	10	0.065	0.125	7.5	5	100000	72	50	0.5	0.5	2			±15	Vol. /
TLV2721	10	2.7	0.11	0.15	0.6	3	1	82	20	0.51	0.18	1		RRO	3	2-20
TLV2221	10	2.7	0.11	0.15	3	0.45	1	85	19	0.51	0.18	1	-	RRO	5	Vol. E
TLV2264A	8	2.7	0.2	0.25	1.5	0.95	1	83	12	0.67	0.55	4		RRO	5	Vol. E
TLV2264	8	2.7	0.2	0.25	3	2.5	1	83	12	0.67	0.55	4		RRO	5	Vol. E
TLV2262A	8	2.7	0.2	0.25	1.5	0.95	1	83	12	0.67	0.55	2		RRO	5	Vol. E
TLV2262	8	2.7	0.2	0.25	3	2.5	1	83	12	0.67	0.55	2		RRO	5	Vol. E
TLC2264A	16	4.4	0.2	0.25	1.5	0.95	1	83	12	0.82	0.55	4		RRO	5	Vol. A
TLC2264	16	4.4	0.2	0.25	3	2.5	1	83	12	0.82	0.55	4		RRO	5	Vol. A
TLC2262A	16	4.4	0.2	0.25	1.5	0.95	1	83	12	0.82	0.55	2		RRO	5	Vol. /
TLC2262	16	4.4	0.2	0.25	3	2.5	1	83	12	0.82	0.55	2		RRO	5	Vol. A
TL064B	36	7	0.2	0.25	5	3	30	86	42	1	3.5	4			±15	Vol. A
TL064A	36	7	0.2	0.25	7.5	6	30	86	42	1.1	3.5	4		1000	±15	Vol. A
TL064	36	7	0.2	0.25	20	15	30	86	42	1	3.5	4	3HD8	10	±15	Vol. A
TL062B	36	7	0.2	0.25	5	3	30	86	42	1	3.5	2			±15	Vol. A

LOW-POWER OPERATIONAL AMPLIFIERS (continued)

Device	ΔV	CC V)	per ch (m	nannel	V _I (Ma (m	ix)	I _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz	GBW (Typ)	Slew Rate	AMPS	SHDN	Rail	Spec'd at	Ref.
	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(Typ) (nV/√Hz)	(MHz)	(Typ) (V/μs)			Rail	V _{CC} (V)	
TL062A	36	7	0.2	0.25	7.5	6	30	86	42	1	3.5	2			±15	Vol. A
TL062	36	7	0.2	0.25	20	15	30	86	42	1	3.5	2			±15	Vol. A
TL061B	36	7	0.2	0.25	5	3	30	86	42	1	3.5	1			±15	Vol. A
TL061A	36	7	0.2	0.25	7.5	6	30	86	42	1	3.5	1		0.00	±15	Vol. A
TL061	36	7	0.2	0.25	20	15	30	86	42	1	3.5	1			±15	Vol. A
TLV2334	8	2	0.1	0.28	12	10	0.6	91	32	0.3	0.38	4			5	Vol. B
TLV2332	8	2	0.1	0.28	11	9	0.6	91	32	0.3	0.38	2			5	Vol. B
TLC27M9	16	3	0.105	0.28	1.5	0.9	0.6	91	32	0.525	0.43	4			5	Vol. A
TLC27M7	16	3	0.105	0.28	2	0.5	0.6	91	32	0.525	0.43	2		-	5	Vol. A
TLC27M4B	16	3	0.105	0.28	3	2	0.6	91	32	0.525	0.43	4		-	5	Vol. A
TLC27M4A	16	3	0.105	0.28	6.5	5	0.6	91	32	0.525	0.43	4			5	Vol. A
TLC27M4	16	3	0.105	0.28	12	10	0.6	91	32	0.525	0.43	4			5	Vol. A
TLC27M2B	16	3	0.105	0.28	3.5	2	0.6	91	32	0.525	0.43	2		-	5	Vol. A
TLC27M2A	16	3	0.105	0.28	7	5	0.6	91	32	0.525	0.43	2			5	Vol. A
TLC27M2	16	3	0.105	0.28	13	10	0.6	91	32	0.525	0.43	2			5	Vol. A
TLC25M4B	16	1.4	0.105	0.28	3	2	0.6	91	32	0.525	0.43	4			5	Vol. A
TLC25M4A	16	1.4	0.105	0.28	6.5	5	0.6	91	32	0.525	0.43	4			5	Vol. A
TLC25M4	16	1.4	0.105	0.28	12	10	0.6	91	32	0.525	0.43	4			5	Vol. A
TLC25M2A	16	1.4	0.105	0.28	6.5	5	0.6	91	32	0.525	0.43	2			5	Vol. A
TLC25M2	16	1.4	0.105	0.28	12	10	0.6	91	32	0.525	0.43	2			5	Vol. A
TL034A	30	10	0.2175	0.28	3.7	1.5	2	94	43	1.1	5.1	4			±15	Vol. A
TL034	30	10	0.2175	0.28	6.2	4	2	94	43	1.1	5.1	4			±15	Vol. A
TL032A	30	10	0.211	0.28	1.8	0.8	2	94	41	1.1	5.1	2			±15	Vol. A
TL032	30	10	0.211	0.28	2.5	1.5	2	94	41	1.1	5.1	2			±15	Vol. A
TL031A	30	10	0.217	0.28	1.8	0.8	2	94	41	1.1	5.1	1			±15	Vol. A
TL031	30	10	0.217	0.28	2.5	1.5	2	94	41	1.1	5.1	1			±15	Vol. A
TLE2022B	40	4	0.225	0.3	0.4	0.3	33000	105	15	2.8	0.65	2		E101101	5	Vol. E
TLE2022A	40	4	0.225	0.3	0.55	0.4	33000	102	15	2.8	0.65	2			5	Vol. E
TLE2022	40	4	0.225	0.3	0.8	0.6	35000	100	15	2.8	0.65	2			5	Vol. E
TLE2021B	40	4	0.2	0.3	0.3	0.2	25000	110	30	2	0.65	1		6570	5	Vol. E
TLE2021A	40	4	0.2	0.3	0.6	0.3	25000	110	30	2	0.65	112	- SHCM	19	5	Vol. E
TLE2021	40	4	0.2	0.3	0.85	0.6	25000	110	15	2	0.65	1			5	Vol. E

6

2.7

0.5

0.575

1.7

1.5

TLV2460A

Vol A - Amplifiers, Comparators, and Special Functions Data Book Volume A (SLYD011A); Vol B - Amplifiers, Comparators, and Special Functions Data Book Volume B (SLYD012A)

11

5.2

3

2-127

Y

LOW-POWER OPERATIONAL AMPLIFIERS (continued)

Device	ΔV,	CC	per ch	cc nannel nA)	V _I (Ma (m)	x)	I _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz	GBW (Typ)	Slew Rate	AMPS	SHDN	Rail	Spec'd at	Ref.
	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(Typ) (nV/√Hz)	(MHz)	(Typ) (V/μs)			Rail	V _{CC} (V)	
TLV2460	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	1	Υ	RRIO	3	2-127
LM2904	26	3	0.35	0.6	10	7	-20000	80	23	0.4	0.15	2			5	Vol. A
TLV2442A	10	2.7	1.1	0.725	1.5	0.95	1	75	18	1.75	1.3	2		RRO	5	Vol. B
TLV2444A	10	2.7	1.1	0.725	1.5	0.95	1	75	18	1.75	1.3	4		RRO	5	Vol. B
TLV2475A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	4	Υ	RRIO	3	2-153
TLV2475	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	4	Υ	RRIO	3	2-153
TLV2474A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	4		RRIO	3	2-153
TLV2474	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	4		RRIO	3	2-153
TLV2473A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	2	Υ	RRIO	3	2-153
TLV2473	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	2	Υ	RRIO	3	2-153
TLV2472A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	2		RRIO	3	2-153
TLV2472	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	2		RRIO	3	2-153
TLV2471A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	1		RRIO	3	2-153
TLV2471	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	1	Υ	RRIO	3	2-153
TLV2470A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	1	Υ	RRIO	3	2-153
TLV2470	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	1	Υ	RRIO	3	2-153
LM358A	32	3	0.5	1	5	3	-15000	80	23	0.4		2			5	Vol. A
LM358	32	3	0.5	1	9	7	-20000	80	23	0.4		2		-	5	Vol. A

OPERATIONAL AMPLIFIER MICRO-POWER SELECTION GUIDE

MICROPOWER OPERATIONAL AMPLIFIERS

Device	ΔV	CC V)	per ch	C nannel nA)	V _I (Ma (m)	x)	I _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz (Typ)	GBW (Typ)	Slew Rate (Typ)	AMPS	SHDN	Rail	Spec'd at	Page No.
	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(nV/√Hz)	(MHz)	(V/μs)			Rail	V _{CC}	No.
TLV2324	8	2	0.01	0.017	12	10	0.6	94	68	0.027	0.02	4			5	Vol. B
TLV2322	8	2	0.01	0.017	11	9	0.6	94	68	0.027	0.02	2			5	Vol. B
TLC27L9	16	3	0.01	0.017	1.5	0.9	0.6	94	70	0.085	0.03	4			5	Vol. A
TLC27L7	16	3	0.01	0.017	2	0.5	0.6	94	68	0.085	0.03	2		-	5	Vol. A
TLC27L4B	16	3	0.01	0.017	3	2	0.6	94	70	0.085	0.03	4			5	Vol. A
TLC27L4A	16	3	0.01	0.017	6.5	5	0.6	94	70	0.085	0.03	4			5	Vol. A
TLC27L4	16	3	0.01	0.017	12	10	0.6	94	70	0.085	0.03	4			5	Vol. A
TLC27L2B	16	3	0.01	0.017	3.5	2	0.6	94	68	0.085	0.03	2			5	Vol. A
TLC27L2A	16	3	0.01	0.017	7	5	0.6	94	68	0.085	0.03	2			5	Vol. A
TLC27L2	16	3	0.01	0.017	13	10	0.6	94	68	0.085	0.03	2			5	Vol. A
TLC27L1B	16	3	0.01	0.017	3.5	2	0.6	94	68	0.085	0.03	1			5	Vol. A
TLC27L1A	16	3	0.01	0.017	7	5	0.6	94	68	0.085	0.03	1			5	Vol. A
TLC27L1	16	3	0.01	0.017	13	10	0.6	94	68	0.085	0.03	1			5	Vol. /
TLC25L4B	16	1.4	0.01	0.017	3	2	0.6	94	70	0.085	0.03	4			5	Vol. /
TLC25L4A	16	1.4	0.01	0.017	6.5	5	0.6	94	70	0.085	0.03	4	CONTRACTOR	18 (BUAD	5	Vol. A
TLC25L4	16	1.4	0.01	0.017	12	10	0.6	94	70	0.085	0.03	4			5	Vol. /
TLC25L2B	16	1.4	0.01	0.017	3	2	0.6	94	68	0.085	0.03	2			5	Vol. /
TLC25L2A	16	1.4	0.01	0.017	6.5	5	0.6	94	68	0.085	0.03	2			5	Vol. /
TLC25L2	16	1.4	0.01	0.017	12	10	0.6	94	68	0.085	0.03	2			5	Vol. /
TLC1079	16	1.4	0.01	0.017	1.2	0.85	0.6	95	68	0.085	0.032	4			5	Vol. A
TLC1078	16	1.4	0.01	0.017	0.8	0.45	0.6	95	68	0.085	0.032	2		-	5	Vol. /
TLV2711	10	2.7	0.013	0.025	0.47	3	1	83	22	0.065	0.025	1		RRO	3	2-17
TLV2211	10	2.7	0.013	0.025	3	0.45	1	83	22	0.065	0.025	1	and the second	RRO	5	Vol. I
TLV2455A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	4	Υ	RRIO	3	2-99
TLV2455	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	4	Υ	RRIO	3	2-99
TLV2454A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	4	-	RRIO	3	2-99
TLV2454	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	4		RRIO	3	2-99
TLV2453A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	2	Y	RRIO	3	2-99
TLV2453	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	2	Υ	RRIO	3	2-99
TLV2452A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	2		RRIO	3	2-99
TLV2452	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	2	MONE	RRIO	3	2-99
TLV2451A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	1	P 12/2 Se	RRIO	3	2-99

MICROPOWER OPERATIONAL AMPLIFIERS (continued)

Device	ΔV,	CC	per ch	CC nannel nA)	V _{IC} (Ma (m)	x)	l _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz	GBW (Typ)	Slew Rate	AMPS	SHDN	Rail	Spec'd at VCC	Page No.
LYABUSEV	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(Typ) (nV/√Hz)	(Typ) (MHz)	(Typ) (V/μs)			Rail	(V)	NO.
TLV2451	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	1		RRIO	3	2-99
TLV2450A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	1	Υ	RRIO	3	2-99
TLV2450	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	1	Υ	RRIO	3	2-99
TLV2254A	8	2.7	0.034	0.0625	1	0.85	1	75	19	0.187	0.1	4		RRO	5	Vol. E
TLV2254	8	2.7	0.034	0.0625	1.75	1.5	1	75	19	0.187	0.1	4		RRO	5	Vol. E
TLV2252A	8	2.7	0.034	0.0625	1	0.85	1	75	19	0.187	0.1	2		RRO	5	Vol. E
TLV2252	8	2.7	0.034	0.0625	1.75	1.5	1	75	19	0.187	0.1	2		RRO	5	Vol. E
TLC2254A	16	4.4	0.035	0.0625	- 1	0.85	1	83	19	0.2	0.12	4		RRO	5	Vol. E
TLC2254	16	4.4	0.035	0.0625	1.75	1.5	1	83	19	0.2	0.12	4		RRO	5	Vol. E
TLC2252A	16	4.4	0.035	0.0625	- 1	0.85	1	83	19	0.2	0.12	2		RRO	5	Vol. E
TLC2252	16	4.4	0.035	0.0625	1.75	1.5	- 1	83	19	0.2	0.12	2		RRO	5	Vol. E
TLV2422A	10	2.7	0.05	0.075	1.5	0.95	-1	90	18	0.052	0.02	2		RRO	5	2-69
TLV2422	10	2.7	0.05	0.075	2.5	2	1	90	18	0.052	0.02	2		RRO	5	2-69

Devices in **bold** are is this data book Volume A (SLYD011A); Vol B - Amplifiers, Comparators, and Special Functions Data Book Volume B (SLYD012A)

LOW-VOLTAGE OPERATIONAL AMPLIFIERS

Device	ΔV	CC V)		cc nannel nA)	V _I (Ma (m)	x)	l _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz	GBW (Typ)	Slew Rate (Typ)	AMPS	SHDN	Rail to	Spec'd at VCC (V)	Ref.
	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(Typ) (nV/√Hz)	(MHz)	(V/μs)	. 5		Rail	(V)	
TLV2361	5	2	1.75	2.5	7.5	6	20000	85	8	7	3	1			±2.5	Vol. B
TLV2362	5	2	1.75	2.5	7.5	6	20000	85	8	7	3	2			±2.5	Vol. B
TLV2770	5.5	2.5	1	2	2.7	2.5	2	84	21	4.8	9	1	Υ	RRO	2.7	2-255
TLV2770A	5.5	2.5	1	2	1.9	1.6	2	84	21	4.8	9	1	Υ	RRO	2.7	2-255
TLV2771	5.5	2.5	1	2	2.7	2.5	2	84	21	4.8	9	1		RRO	2.7	2-255
TLV2771A	5.5	2.5	1	2	1.9	1.6	2	84	21	4.8	9	1		RRO	2.7	2-255
TLV2772	5.5	2.5	1	2	2.7	2.5	2	84	21	4.8	9	2		RRO	2.7	2-255
TLV2772A	5.5	2.5	1	2	1.9	1.6	2	84	21	4.8	9	2		RRO	2.7	2-255
TLV2773	5.5	2.5	1	2	2.7	2.5	2	84	21	4.8	9	2	Υ	RRO	2.7	2-255
TLV2773A	5.5	2.5	1	2	1.9	1.6	2	84	21	4.8	9	2	Υ	RRO	2.7	2-255
TLV2774	5.5	2.5	1	2	2.9	2.7	2	84	21	4.8	9	4		RRO	2.7	2-255
TLV2774A	5.5	2.5	1	2	2.2	2.1	2	84	21	4.8	9	4		RRO	2.7	2-255
TLV2775	5.5	2.5	1	2	2.9	2.7	2	84	21	4.8	9	4	Υ	RRO	2.7	2-255
TLV2775A	5.5	2.5	1	2	2.2	2.1	2	84	21	4.8	9	4	Υ	RRO	2.7	2-255
TLV2450	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	1	Y	RRIO	3	2-99
TLV2450A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	1	Y	RRIO	3	2-99
TLV2451	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	1		RRIO	3	2-99
TLV2451A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	1		RRIO	3	2-99
TLV2452	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	2		RRIO	3	2-99
TLV2452A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	2		RRIO	3	2-99
TLV2453	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	2	Y	RRIO	3	2-99
TLV2453A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	2	Y	RRIO	3	2-99
TLV2454	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	4		RRIO	3	2-99
TLV2454A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	4		RRIO	3	2-99
TLV2455	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	4	Y	RRIO	3	2-99
TLV2455A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	4	Y	RRIO	3	2-99
TLV2460	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	1	Y	RRIO	3	2-127
TLV2460A	6	2.7	0.5	0.575	1.7	1.5	4400	80	11	5.2	1.6	1	Υ	RRIO	3	2-127
TLV2461	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	1	SHIDH	RRIO	3	2-127
TLV2461A	6	2.7	0.5	0.575	1.7	1.5	4400	80	11	5.2	1.6	1		RRIO	3	2-127

OPERATIONAL AMPLIFIER LOW-VOLTAGE SELECTION GUIDE

LOW-VOLTAGE OPERATIONAL AMPLIFIERS (continued)

Device	ΔV	CC		CC hannel nA)	V _I (Ma (m	ix)	I _{IB}	CMRR (Typ)	V _n @ 1 kHz (Typ)	GBW (Typ)	Slew Rate	AMPS	SHDN	Rail to	Spec'd at VCC (V)	Ref.
	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(nV/√Hz)	(MHz)	(Typ) (V/μs)			Rail	(V)	8-451
TLV2462	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	2		RRIO	3	2-127
TLV2462A	6	2.7	0.5	0.575	1.7	1.5	4400	80	11	5.2	1.6	2		RRIO	3	2-127
TLV2463	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	2	Υ	RRIO	3	2-127
TLV2463A	6	2.7	0.5	0.575	1.7	1.5	4400	80	11	5.2	1.6	2	Υ	RRIO	3	2-127
TLV2464	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	4		RRIO	3	2-127
TLV2464A	6	2.7	0.5	0.575	1.7	1.5	4400	80	11	5.2	1.6	4		RRIO	3	2-127
TLV2465	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	4	Υ	RRIO	3	2-127
TLV2465A	6	2.7	0.5	0.575	1.7	1.5	4400	80	11	5.2	1.6	4	Υ	RRIO	3	2-127
TLV2470	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	1	Υ	RRIO	3	2-153
TLV2470A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	1	Υ	RRIO	3	2-153
TLV2471	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	1	Υ	RRIO	3	2-153
TLV2471A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	1		RRIO	3	2-15
TLV2472	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	2		RRIO	3	2-150
TLV2472A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	2		RRIO	3	2-153
TLV2473	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	2	Υ	RRIO	3	2-153
TLV2473A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	2	Υ	RRIO	3	2-153
TLV2474	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	4		RRIO	3	2-150
TLV2474A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	4		RRIO	3	2-150
TLV2475	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	4	Υ	RRIO	3	2-150
TLV2475A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	4	Υ	RRIO	3	2-153
TLV2322	8	2	0.01	0.017	11	9	0.6	94	68	0.027	0.02	2			5	Vol. E
TLV2324	8	2	0.01	0.017	12	10	0.6	94	68	0.027	0.02	4			5	Vol. E
TLV2332	8	2	0.1	0.28	11	9	0.6	91	32	0.3	0.38	2			5	Vol. E
TLV2334	8	2	0.1	0.28	12	10	0.6	91	32	0.3	0.38	4			5	Vol. E
TLV2341	8	2	0.675	1.6	10	8	0.6	80	25	1.7	3.6	1			5	Vol. E
TLV2342	8	2	0.325	1.5	11	9	0.6	80	25	0.79	2.1	2			5	Vol. E
TLV2344	8	2	0.325	1.5	12	10	0.6	78	25	0.79	2.1	4			5	Vol. E
TLV2252	8	2.7	0.034	0.0625	1.75	1.5	1	75	19	0.187	0.1	2		RRO	5	Vol. E
TLV2252A	8	2.7	0.034	0.0625	1 (11)	0.85	1	75	19	0.187	0.1	2	CHOK	RRO	5	Vol. E
TLV2254	8	2.7	0.034	0.0625	1.75	1.5	1	75	19	0.187	0.1	4		RRO	5	Vol. E

LOW-VOLTAGE OPERATIONAL AMPLIFIERS (continued)

Device	ΔV	cc		nannel nA)	VI((Ma (m)	x)	I _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz	GBW (Typ)	Slew Rate (Typ)	AMPS	SHDN	Rail	Spec'd at VCC (V)	Ref.
	Мах	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(Typ) (nV/√Hz)	(MHz)	(V/μs)			Rail	(V)	
TLV2254A	8	2.7	0.034	0.0625	1	0.85	1	75	19	0.187	0.1	4		RRO	5	Vol. B
TLV2262	8	2.7	0.2	0.25	3	2.5	1	83	12	0.67	0.55	2	Maria Tara	RRO	5	Vol. B
TLV2262A	8	2.7	0.2	0.25	1.5	0.95	1	83	12	0.67	0.55	2	MARINE H	RRO	5	Vol. B
TLV2264	8	2.7	0.2	0.25	3	2.5	1	83	12	0.67	0.55	4		RRO	5	Vol. B
TLV2264A	8	2.7	0.2	0.25	1.5	0.95	1	83	12	0.67	0.55	4		RRO	5	Vol. B
TLV2211	10	2.7	0.013	0.025	3	0.45	1	83	22	0.065	0.025	1		RRO	5	Vol. B
TLV2221	10	2.7	0.11	0.15	3	0.45	1	85	19	0.51	0.18	1		RRO	5	Vol. B
TLV2231	10	2.7	0.85	1.2	3	0.45	1	70	15	2	1.6	1		RRO	5	Vol. B
TLV2422	10	2.7	0.05	0.075	2.5	2	1	90	18	0.052	0.02	2		RRO	5	2-71
TLV2422A	10	2.7	0.05	0.075	1.5	0.95	1	90	18	0.052	0.02	2		RRO	5	2-71
TLV2432	10	2.7	0.098	0.125	2.5	2	1	90	18	0.5	0.25	2		RRO	5	Vol. B
TLV2432A	10	2.7	0.098	0.125	1.5	0.95	1	83	18	0.5	0.25	2		RRO	5	Vol. B
TLV2434	10	2.7	0.098	0.125	2.5	2	(8) (4) (V)	90	18	0.5	0.25	4	1000	RRO	5	Vol. B
TLV2434A	10	2.7	0.098	0.125	1.5	0.95	1	83	18	0.5	0.25	4		RRO	5	Vol. B
TLV2442	10	2.7	0.75	1.1	2.5	2	1	75	18	1.75	1.3	2		RRO	5	Vol. B
TLV2442A	10	2.7	1.1	0.725	1.5	0.95	1	75	18	1.75	1.3	2		RRO	5	Vol. B
TLV2444	10	2.7	0.75	1.1	2.5	2	1 -	75	18	1.75	1.3	4		RRO	5	Vol. B
TLV2444A	10	2.7	1.1	0.725	1.5	0.95	1	75	18	1.75	1.3	4		RRO	.5	Vol. B
TLV2711	10	2.7	0.013	0.025	0.47	3	1	83	22	0.065	0.025	1		RRO	3	2-183
TLV2721	10	2.7	0.11	0.15	0.6	3	1	82	20	0.51	0.18	1		RRO	3	2-209
TLV2731	10	2.7	0.75	1.2	0.75	3	1	70	16	2	1.25	1		RRO	3	2-235
TLC1078	16	1.4	0.01	0.017	0.8	0.45	0.6	95	68	0.085	0.032	2			5	Vol. A
TLC1079	16	1.4	0.01	0.017	1.2	0.85	0.6	95	68	0.085	0.032	4			5	Vol. A
TLC251	16	1.4	0.675	1.6	12	10	0.6	80	25	1.7	3.6	1			5	Vol. A
TLC251A	16	1.4	0.675	1.6	6.5	5	0.6	80	25	1.7	3.6	1			5	Vol. A
TLC251B	16	1.4	0.675	1.6	3	2	0.6	80	25	1.7	3.6	1			5	Vol. A
TLC252	16	1.4	0.7	1.6	12	10	0.6	80	25	1.7	3.6	2			5	Vol. A
TLC252A	16	1.4	0.7	1.6	6.5	5	0.6	80	25	1.7	3.6	2		1	5	Vol. A
TLC252B	16	1.4	0.7	1.6	3	2	0.6	80	25	1.7	3.6	2	delbyl		5	Vol. A
TLC254	16	1.4	0.775	1.8	12	10	0.6	80	25	1.7	3.6	1			5	Vol. A

OPERATIONAL AMPLIFIER LOW-VOLTAGE SELECTION GUIDE

Devices in **bold** are is this data book Volume A (SLYD011A); Vol B – Amplifiers, Comparators, and Special Functions Data Book Volume B (SLYD012A)

LOW-VOLTAGE OPERATIONAL AMPLIFIERS (continued)

Device	ΔV	CC	per ch (m	CC nannel nA)	V _I (Ma	x)	I _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz	GBW (Typ)	Slew Rate	AMPS	SHDN	Rail	Spec'd at VCC (V)	Ref.
	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(Typ) (nV/√Hz)	(MHz)	(Typ) (V/μs)			Rail	(V)	Yot A
TLC254A	16	1.4	0.775	1.8	6.5	5	0.6	80	25	1.7	3.6	4			5	Vol. A
TLC254B	16	1.4	0.775	1.8	3	2	0.6	80	25	1.7	3.6	4		-	5	Vol. A
TLC25L2	16	1.4	0.01	0.017	12	10	0.6	94	68	0.085	0.03	2		-	5	Vol. A
TLC25L2A	16	1.4	0.01	0.017	6.5	5	0.6	94	68	0.085	0.03	2			5	Vol. A
TLC25L2B	16	1.4	0.01	0.017	3	2	0.6	94	68	0.085	0.03	2			5	Vol. A
TLC25L4	16	1.4	0.01	0.017	12	10	0.6	94	70	0.085	0.03	4		1	5	Vol. A
TLC25L4A	16	1.4	0.01	0.017	6.5	5	0.6	94	70	0.085	0.03	4			5	Vol. A
TLC25L4B	16	1.4	0.01	0.017	3	2	0.6	94	70	0.085	0.03	4			5	Vol. A
TLC25M2	16	1.4	0.105	0.28	12	10	0.6	91	32	0.525	0.43	2			5	Vol. A
TLC25M2A	16	1.4	0.105	0.28	6.5	5	0.6	91	32	0.525	0.43	2			5	Vol. A
TLC25M4	16	1.4	0.105	0.28	12	10	0.6	91	32	0.525	0.43	4		1	5	Vol. A
TLC25M4A	16	1.4	0.105	0.28	6.5	5	0.6	91	32	0.525	0.43	4		-	5	Vol. A
TLC25M4B	16	1.4	0.105	0.28	3	2	0.6	91	32	0.525	0.43	4			5	Vol. A

Devices in **bold** are is this data book

Vol A - Amplifiers, Comparators, and Special Functions Data Book Volume A (SLYD011A); Vol B - Amplifiers, Comparators, and Special Functions Data Book Volume B (SLYD012A)

OPERATIONAL AMPLIFIER RAIL-TO-RAIL SELECTION GUIDE

RAIL-TO-RAIL OPERATIONAL AMPLIFIERS

Device	ΔV		per ch	cc nannel nA)	V _I (Ma (m)	ax)	l _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz (Typ)	GBW (Typ)	Slew Rate (Typ)	AMPS	SHDN	Rail	Spec'd at VCC (V)	Ref.
	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(nV/√Hz)	(MHz)	(V/μs)			Rail	(V)	APP V
TLV2450	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	1	Υ	RRIO	3	2-99
TLV2450A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	1	Υ	RRIO	3	2-99
TLV2451	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	1		RRIO	3	2-99
TLV2451A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	1		RRIO	3	2–99
TLV2452	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	2		RRIO	3	2-99
TLV2452A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	2		RRIO	3	2-99
TLV2453	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	2	Υ	RRIO	3	2-99
TLV2453A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	2	Υ	RRIO	3	2-99
TLV2454	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	4		RRIO	3	2-99
TLV2454A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	4		RRIO	3	2-99
TLV2455	6	2.7	0.023	0.035	2	1.5	900	86	51	0.22	0.12	4	Υ	RRIO	3	2-99
TLV2455A	6	2.7	0.023	0.035	1.3	1	900	86	51	0.22	0.12	4	Υ	RRIO	3	2-99
TLV2460	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	1	Υ	RRIO	3	2-12
TLV2460A	6	2.7	0.5	0.575	1.7	1.5	4400	80	11	5.2	1.6	1	Υ	RRIO	3	2-12
TLV2461	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	1		RRIO	3	2-12
TLV2461A	6	2.7	0.5	0.575	1.7	1.5	4400	80	11	5.2	1.6	1		RRIO	3	2-12
TLV2462	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	2		RRIO	3	2-12
TLV2462A	6	2.7	0.5	0.575	1.7	1.5	4400	80	11	5.2	1.6	2		RRIO	3	2-12
TLV2463	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	2	Υ	RRIO	3	2-12
TLV2463A	6	2.7	0.5	0.575	1.7	1.5	4400	80	11	5.2	1.6	2	Υ	RRIO	3	2-12
TLV2464	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	4		RRIO	3	2-12
TLV2464A	6	2.7	0.5	0.575	1.7	1.5	4400	80	11	5.2	1.6	4		RRIO	3	2-12
TLV2465	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	4	Y	RRIO	3	2-12
TLV2465A	6	2.7	0.5	0.575	1.7	1.5	4400	80	11	5.2	1.6	4	Y	RRIO	3	2-12
TLV2470	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	1	Y	RRIO	3	2-15
TLV2470A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	1	Y	RRIO	3	2-15
TLV2471	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	1	Υ	RRIO	3	2-15
TLV2471A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	1		RRIO	3	2-15
TLV2472	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	2	PHOH	RRIO	3	2-15
TLV2472A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	2		RRIO	3	2-15

Devices in **bold** are is this data book Volume A (SLYD011A); Vol B – Amplifiers, Comparators, and Special Functions Data Book Volume B (SLYD012A)

RAIL-TO-RAIL OPERATIONAL AMPLIFIERS (continued)

Device	ΔV	CC	per cl	nannel nA)	V _I (Ma (m	ax)	I _{IB} (Typ)	CMRR (Typ) (dB)	V _n @ 1 kHz	GBW (Typ)	Slew Rate (Typ)	AMPS	SHDN	Rail to	Spec'd at VCC (V)	Ref.
	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(Typ) (nV/√Hz)	(MHz)	(V/μs)			Rail	(V)	
TLV2473	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	2	Υ	RRIO	3	2-153
TLV2473A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	2	Υ	RRIO	3	2-153
TLV2474	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	4		RRIO	3	2-153
TLV2474A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	4		RRIO	3	2-153
TLV2475	6	2.7	0.55	0.75	2.4	2.2	2	78	15	2.8	1.4	4	Υ	RRIO	3	2-150
TLV2475A	6	2.7	0.55	0.75	1.8	1.6	2	78	15	2.8	1.4	4	Υ	RRIO	3	2-153
TLC2201	16	4.6	1	1.5	0.6	0.5	1	110	8	1.8	2.5	1		RRO	5	Vol. A
TLC2201A	16	4.6	1	1.5	0.3	0.2	1	110	15	1.8	2.5	1		RRO	5	Vol. A
TLC2201B	16	4.6	1	1.5	0.3	0.2	1	110	12	1.8	2.5	1		RRO	5	Vol. A
TLC2202	16	4.6	0.85	1.3	1.15	1	1	100	8	1.9	2.5	2		RRO	5	Vol. A
TLC2202A	16	4.6	0.85	1.3	0.65	0.5	1	100	15	1.9	2.5	2		RRO	5	Vol. A
TLC2202B	16	4.6	0.85	1.3	0.65	0.5	1	100	12	1.9	2.5	2		RRO	5	Vol. A
TLC2252	16	4.4	0.035	0.0625	1.75	1.5	1	83	19	0.2	0.12	2		RRO	5	Vol. A
TLC2252A	16	4.4	0.035	0.0625	1	0.85	1	83	19	0.2	0.12	2		RRO	5	Vol. A
TLC2254	16	4.4	0.035	0.0625	1.75	1.5	1	83	19	0.2	0.12	4		RRO	5	Vol. A
TLC2254A	16	4.4	0.035	0.0625	1	0.85	1	83	19	0.2	0.12	4		RRO	5	Vol. A
TLC2262	16	4.4	0.2	0.25	3	2.5	1	83	12	0.82	0.55	2		RRO	5	Vol. A
TLC2262A	16	4.4	0.2	0.25	1.5	0.95	1	83	12	0.82	0.55	2		RRO	5	Vol. A
TLC2264	16	4.4	0.2	0.25	3	2.5	1	83	12	0.82	0.55	4		RRO	5	Vol. A
TLC2264A	16	4.4	0.2	0.25	1.5	0.95	1	83	12	0.82	0.55	4		RRO	5	Vol. A
TLC2272	16	4.4	1.1	1.5	3	2.5	1	75	9	2.18	3.6	2		RRO	5	Vol. A
TLC2272A	16	4.4	1.1	1.5	1.5	0.95	1	75	9	2.18	3.6	2		RRO	5	Vol. A
TLC2274	16	4.4	1.1	1.5	3	2.5	1	75	9	2.18	3.6	4		RRO	5	Vol. A
TLC2274A	16	4.4	1.1	1.5	1.5	0.95	1	75	9	2.18	3.6	4		RRO	5	Vol. A
TLC4501	6	4	1	1.5	0.08	0.08	1	100	12	4.7	2.5	1		RRO	5	Vol. /
TLC4501A	6	4	1	1.5	0.04	0.04	1	100	12	4.7	2.5	1		RRO	5	Vol. /
TLC4502	6	4	1.25	3.5	0.1	0.1	1	100	12	4.7	2.5	2		RRO	5	Vol. A
TLC4502A	6	4	1.25	3.5	0.05	0.05	1	100	12	4.7	2.5	2		RRO	5	Vol. /
TLV2211	10	2.7	0.013	0.025	3	0.45	1	83	22	0.065	0.025	1	SHOW	RRO	5	Vol. E
TLV2221	10	2.7	0.11	0.15	3	0.45	1	85	19	0.51	0.18	1		RRO	5	Vol. E

RAIL-TO-RAIL OPERATIONAL AMPLIFIERS (continued)

Device	ΔV,	CC /)	per ch (m	C nannel nA)	V _I (Ma (m)		i _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz	GBW (Typ)	Slew Rate (Typ)	AMPS	SHDN	Rail to	Spec'd at VCC (V)	Ref.
	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(Typ) (nV/√Hz)	(MHz)	(V/μs)			Rail	(V)	
TLV2231	10	2.7	0.85	1.2	3	0.45	1	70	15	2	1.6	1		RRO	5	Vol. B
TLV2252	8	2.7	0.034	0.0625	1.75	1.5	1	75	19	0.187	0.1	2		RRO	5	Vol. B
TLV2252A	8	2.7	0.034	0.0625	1	0.85	1	75	19	0.187	0.1	2		RRO	5	Vol. B
TLV2254	8	2.7	0.034	0.0625	1.75	1.5	1	75	19	0.187	0.1	4		RRO	5	Vol. B
TLV2254A	8	2.7	0.034	0.0625	1	0.85	1	75	19	0.187	0.1	4	THE STREET	RRO	5	Vol. B
TLV2262	8	2.7	0.2	0.25	3	2.5	1	83	12	0.67	0.55	2		RRO	5	Vol. B
TLV2262A	8	2.7	0.2	0.25	1.5	0.95	1	83	12	0.67	0.55	2		RRO	5	Vol. B
TLV2264	8	2.7	0.2	0.25	3	2.5	1	83	12	0.67	0.55	4		RRO	5	Vol. B
TLV2264A	8	2.7	0.2	0.25	1.5	0.95	1	83	12	0.67	0.55	4		RRO	5	Vol. B
TLV2422	10	2.7	0.05	0.075	2.5	2	1	90	18	0.052	0.02	2		RRO	5	2-69
TLV2422A	10	2.7	0.05	0.075	1.5	0.95	1	90	18	0.052	0.02	2		RRO	5	2-69
TLV2432	10	2.7	0.098	0.125	2.5	2	1	90	18	0.5	0.25	2		RRO	5	Vol. B
TLV2432A	10	2.7	0.098	0.125	1.5	0.95	1	83	18	0.5	0.25	2		RRO	5	Vol. B
TLV2434	10	2.7	0.098	0.125	2.5	2	1	90	18	0.5	0.25	4		RRO	5	Vol. B
TLV2434A	10	2.7	0.098	0.125	1.5	0.95	1	83	18	0.5	0.25	4		RRO	5	Vol. B
TLV2442	10	2.7	0.75	1.1	2.5	2	1	75	18	1.75	1.3	2	7 E T	RRO	5	Vol. B
TLV2444A	10	2.7	1.1	0.725	1.5	0.95	1	75	18	1.75	1.3	4		RRO	5	Vol. B
TLV2444	10	2.7	0.75	1.1	2.5	2	1	75	18	1.75	1.3	4		RRO	5	Vol. B
TLV2442A	10	2.7	1.1	0.725	1.5	0.95	1	75	18	1.75	1.3	2		RRO	5	Vol. B
TLV2711	10	2.7	0.013	0.025	0.47	3	1	83	22	0.065	0.025	1		RRO	3	2-177
TLV2721	10	2.7	0.11	0.15	0.6	3	1	82	20	0.51	0.18	1		RRO	3	2-203
TLV2731	10	2.7	0.75	1.2	0.75	3	HOLD LIVE	70	16	2	1.25	201	BOTH ANYTHIS	RRO	3	2-229
TLV2770	5.5	2.5	1	2	2.7	2.5	2	84	21	4.8	9	1	Υ	RRO	2.7	2-255
TLV2770A	5.5	2.5	1	2	1.9	1.6	2	84	21	4.8	9	1	Υ	RRO	2.7	2-255
TLV2771	5.5	2.5	1	2	2.7	2.5	2	84	21	4.8	9	1		RRO	2.7	2-255
TLV2771A	5.5	2.5	1	2	1.9	1.6	2	84	21	4.8	9	1		RRO	2.7	2-255
TLV2772	5.5	2.5	1	2	2.7	2.5	2	84	21	4.8	9	2		RRO	2.7	2-255
TLV2772A	5.5	2.5	1	2	1.9	1.6	2	84	21	4.8	9	2		RRO	2.7	2-255
TLV2773	5.5	2.5	1	2	2.7	2.5	2	84	21	4.8	9	2	Y	RRO	2.7	2-255
TLV2773A	5.5	2.5	1	. 2	1.9	1.6	2	84	21	4.8	9	2	Y	RRO	2.7	2-255

OPERATIONAL AMPLIFIER RAIL-TO-RAIL SELECTION GUIDE

Devices in **bold** are is this data book Volume A (SLYD011A); Vol B – Amplifiers, Comparators, and Special Functions Data Book Volume B (SLYD012A)

Device	ΔV	cc /)	per ch	nannel nA)	VIC (Ma (m)	x)	I _{IB}	CMRR (Typ) (dB)	V _n @ 1 kHz	GBW (Typ) (MHz)	Slew Rate	AMPS	SHDN	Rail	Spec'd at VCC (V)	Ref.
	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(Typ) (nV/√Hz)	(MHz)	(Typ) (V/μs)			Rail	(V)	11-30
TLV2774	5.5	2.5	1	2	2.9	2.7	2	84	21	4.8	9	4		RRO	2.7	2-261
TLV2774A	5.5	2.5	1	2	2.2	2.1	2	84	21	4.8	9	4	-	RRO	2.7	2-261
TLV2775	5.5	2.5	1	2	2.9	2.7	2	84	21	4.8	9	4	Y	RRO	2.7	2-261
TLV2775A	5.5	2.5	1	2	2.2	2.1	2	84	21	4.8	9	4	Υ	RRO	2.7	2-261

OPERATIONAL AMPLIFIER WIDE-BANDWIDTH (HIGHER-SPEED) SELECTION GUIDE

WIDE-BANDWIDTH (HIGHER-SPEED) OPERATIONAL AMPLIFIERS

Device	ΔV	CC	per ch (m	cc nannel nA)	Vic (Ma (m)	x)	I _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz	GBW (Typ)	Slew Rate (Typ)	AMPS	SHDN	Rail to	Spec'd at VCC (V)	Ref.
	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(Typ) (nV/√Hz)	(MHz)	(V/μs)			Rail	(V)	
TLE2037	38	8	3.8	5.3	0.145	0.1	15000	131	2.5	50	7.5	1			±15	Vol. B
TLE2037AM	38	8	3.8	5.3	0.1	0.025	15000	131	2.5	50	7.5	1		-	±15	Vol. B
LM318	40	10	5	10	15	10	150000	100	23	15	70	-1	-	-	±15	Vol. A
TLE2027	38	8	3.8	5.3	0.145	0.1	15000	131	2.5	13	2.8	1			±15	Vol. B
TLE2027AM	38	8	3.8	5.3	0.1	0.025	15000	131	2.5	13	2.8	1		-	±15	Vol. B
TLE2227	38	8	3.65	5.3	0.5	0.35	15000	115	2.5	13	2.5	2			±15	Vol. B
TLE2071	38	4.5	1.7	2.2	6	4	20	98	14	10	45	1			±15	Vol. B
TLE2071A	38	4.5	1.7	2.2	4	2	20	98	14	10	45	- 1	-		±15	Vol. B
TLE2072	38	4.5	1.55	1.8	7.8	6	20	98	14	10	45	2			±15	Vol. B
TLE2072A	38	4.5	1.55	1.8	5.3	3.5	20	98	14	10	45	2			±15	Vol. B
TLE2074	38	4.5	1.425	1.875	7.1	5	25	98	14	10	45	4	Environ less to	-	±15	Vol. B
TLE2074A	38	4.5	1.425	1.875	5.1	3	25	98	14	10	45	4		-	±15	Vol. B
TLE2081	38	4.5	1.7	2.2	8	6	20	98	14	10	45	1			±15	Vol. B
TLE2081A	38	4.5	1.7	2.2	5	3	20	98	14	10	45	1		-	±15	Vol. B
TLE2082	38	4.5	1.55	1.8	8.1	7	20	98	14	10	45	2			±15	Vol. B
TLE2082A	38	4.5	1.55	1.8	5.1	4	20	98	14	10	45	2			±15	Vol. B
TLE2084	38	4.5	1.625	1.875	9.1	7	25	98	14	10	45	4		-	±15	Vol. B
TLE2084A	38	4.5	1.625	1.875	6.1	4	25	98	14	10	45	4			±15	Vol. B
TLC070	16	4.5	1.9	2.5	1.5	1	1.5	140	7	10	16	1	Υ		5	2-17
TLC070A	16	4.5	1.9	2.5	1	0.75	1.5	140	7	10	16	1	Y	-	5	2-17
TLC071	16	4.5	1.9	2.5	1.5	1	1.5	140	7	10	16	1			5	2-17
TLC071A	16	4.5	1.9	2.5	1	0.75	1.5	140	7	10	16	1			5	2-17
TLC072	16	4.5	1.9	2.5	1.5	1	1.5	140	7	10	16	1		-	5	2-17
TLC072A	16	4.5	1.9	2.5	1	0.75	1.5	140	7	10	16	1			5	2-17
TLC073	16	4.5	1.9	2.5	1.5	1	1.5	140	7	10	16	2	Υ		5	2-17
TLC073A	16	4.5	1.9	2.5	1	0.75	1.5	140	7	10	16	2	Υ		5	2-17
TLC074	16	4.5	1.9	2.5	1.5	1	1.5	140	7	10	16	4	-	-	5	2-17
TLC074A	16	4.5	1.9	2.5	1	0.75	1.5	140	7	10	16	4			5	2-17
TLC075	16	4.5	1.9	2.5	1.5	1	1.5	140	7	10	16	4	Υ	10	5	2-17
TLC075A	16	4.5	1.9	2.5	1	0.75	1.5	140	7	10	16	4	Y	-	5	2-17

Devices in **bold** are is this data book Volume A (SLYD011A); Vol B – Amplifiers, Comparators, and Special Functions Data Book Volume B (SLYD012A)

Device	ΔV	CC	per ch	CC nannel nA)	V _{IC} (Ma (m)	x)	I _{IB} (Typ)	CMRR (Typ)	V _n @ 1 kHz (Typ)	GBW (Typ)	Slew Rate (Typ)	AMPS	SHDN	Rail	Spec'd at VCC (V)	Ref.
	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(nV/√Hz)	(MHz)	(V/μs)			Rail	(V)	
TLC080	16	4.5	1.9	2.5	1.5	1	3	140	8.5	10	16	1	Υ		5	2-43
TLC080A	16	4.5	1.9	2.5	1	0.75	3	140	8.5	10	16	1	Υ		5	2-43
TLC081	16	4.5	1.9	2.5	1.5	1	3	140	8.5	10	16	1			5	2-43
TLC081A	16	4.5	1.9	2.5	1	0.75	3	140	8.5	10	16	1		-	5	2-43
TLC082	16	4.5	1.9	2.5	1.5	1	3	140	8.5	10	16	2			5	2-43
TLC082A	16	4.5	1.9	2.5	1	0.75	3	140	8.5	10	16	2	-		5	2-43
TLC083	16	4.5	1.9	2.5	1.5	1	3	140	8.5	10	16	2	Υ		5	2-43
TLC083A	16	4.5	1.9	2.5	1	0.75	3	140	8.5	10	16	2	Υ		5	2-43
TLC084	16	4.5	1.9	2.5	1.5	1	3	140	8.5	10	16	4		-	5	2-43
TLC084A	16	4.5	1.9	2.5	1	0.75	3	140	8.5	10	16	4	-		5	2-43
TLC085	16	4.5	1.9	2.5	1.5	1	3	140	8.5	10	16	4	Y		5	2-43
TLC085A	16	4.5	1.9	2.5	1	0.75	3	140	8.5	10	16	4	Y		5	2-43
NE5534	30	10	4	8	5	4	500000	100	4	10	13	1			±15	Vol.
NE5534A	30	10	4	8	5	4	500000	100	3.5	10	13	1			±15	Vol.
NE5532	30	10	4	8	5	4	200000	100	5	10	9	2			±15	Vol.
TLE2301	40	9	2.2	3.5	15	10	260000	97	44	8	14	1			±15	Vol. I
TLV2361	5	2	1.75	2.5	7.5	6	20000	85	8	7	3	1			±2.5	Vol.
TLV2362	5	2	1.75	2.5	7.5	6	20000	85	8	7	3	2			±2.5	Vol. I
TLE2161	36	7	0.29	0.35	3.9	3	4	90	40	6.4	10	1			±15	Vol. I
TLE2161A	36	7	0.29	0.35	2.5	1.5	4	90	40	6.4	10	1			±15	Vol.
TLE2161B	36	7	0.29	0.35	1	0.5	4	90	40	6.4	10	1			±15	Vol.
TLE2141	44	4	3.5	4.5	1.3	0.9	-7000	108	10.5	5.9	45	1			±15	Vol.
TLE2141A	44	4	3.5	4.5	0.8	0.5	-7000	108	10.5	5.9	45	1			±15	Vol.
TLE2142	44	4	3.45	4.5	1.6	1.2	-7000	108	10.5	5.9	45	2			±15	Vol.
TLE2142A	44	4	3.45	4.5	1.2	0.75	-7000	108	10.5	5.9	45	2			±15	Vol.
TLE2144	44	4	3.45	4.5	3.2	2.4	-7000	108	10.5	5.9	45	4			±15	Vol.
TLE2144A	44	4	3.45	4.5	2.4	1.5	-7000	108	10.5	5.9	45	4			±15	Vol.
TLV2460	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	1	Y	RRIO	3	2-12
TLV2460A	6	2.7	0.5	0.575	1.7	1.5	4400	80	11	5.2	1.6	11.9	Y	RRIO	3	2-12
TLV2461	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	1		RRIO	3	2-12

WIDE-BANDWIDTH (HIGHER-SPEED) OPERATIONAL AMPLIFIERS (continued)

Device	ΔV	CC		CC hannel nA)	V _I (Ma (m)	x)	l _{IB} (Typ) (pA)	CMRR (Typ) (dB)	V _n @ 1 kHz	GBW (Typ)	Slew Rate	AMPS	SHDN	Rail	Spec'd at VCC (V)	Ref.
	Max	Min	Тур	Max	Full Range	25°C	(pA)	(dB)	(Typ) (nV/√Hz)	(MHz)	(Typ) (V/μs)			Rail	(V)	1 8-40
TLV2461A	6	2.7	0.5	0.575	1.7	1.5	4400	80	11	5.2	1.6	1		RRIO	3	2-127
TLV2462	6	2.7	0.5	0.575	2.2	2	4400	80	- 11	5.2	1.6	2		RRIO	3	2-127
TLV2462A	6	2.7	0.5	0.575	1.7	1.5	4400	80	11	5.2	1.6	2		RRIO	3	2-127
TLV2463	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	2	Υ	RRIO	3	2-127
TLV2463A	6	2.7	0.5	0.575	1.7	1.5	4400	80	11	5.2	1.6	2	Υ	RRIO	3	2-127
TLV2464	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	4		RRIO	3	2-12
TLV2464A	6	2.7	0.5	0.575	1.7	1.5	4400	80	11	5.2	1.6	4		RRIO	3	2-12
TLV2465	6	2.7	0.5	0.575	2.2	2	4400	80	11	5.2	1.6	4	Υ	RRIO	3	2-12
TLV2465A	6	2.7	0.5	0.575	1.7	1.5	4400	80	11	5.2	1.6	4	Υ	RRIO	3	2-12
TLV2770	5.5	2.5	1	2	2.7	2.5	2	84	21	4.8	9	1	Υ	RRO	2.7	2-25
TLV2770A	5.5	2.5	1	2	1.9	1.6	2	84	21	4.8	9	1	Y	RRO	2.7	2-25
TLV2771	5.5	2.5	1	2	2.7	2.5	2	84	21	4.8	9	1		RRO	2.7	2-25
TLV2771A	5.5	2.5	1	2	1.9	1.6	2	84	21	4.8	9	1		RRO	2.7	2-25
TLV2772	5.5	2.5	1	2	2.7	2.5	2	84	21	4.8	9	2		RRO	2.7	2-25
TLV2772A	5.5	2.5	1	2	1.9	1.6	2	84	21	4.8	9	2		RRO	2.7	2-25
TLV2773	5.5	2.5	1	2	2.7	2.5	2	84	21	4.8	9	2	Y	RRO	2.7	2-25
TLV2773A	5.5	2.5	1	2	1.9	1.6	2	84	21	4.8	9	2	Υ	RRO	2.7	2-25
TLV2774	5.5	2.5	1	2	2.9	2.7	2	84	21	4.8	9	4		RRO	2.7	2-25
TLV2774A	5.5	2.5	1 1	2	2.2	2.1	2	84	21	4.8	9	4		RRO	2.7	2-25
TLV2775	5.5	2.5	1	2	2.9	2.7	2	84	21	4.8	9	4	Υ	RRO	2.7	2-25
TLV2775A	5.5	2.5	1	2	2.2	2.1	2	84	21	4.8	9	4	Υ	RRO	2.7	2-25

OPERATIONAL AMPLIFIER WIDE-BANDWIDTH (HIGHER-SPEED) SELECTION GUIDE

PACKAGE AVAILABILITY

This package availability guide shows with an *X* the amplifiers that are available in the indicated package by product suffix code (e.g., TLV2461IDBV is a TLV2462 in the industrial temperature grade in a SOT-23 package). The following product suffix codes indicate the associated package.

Product Suffix Code	Package Type	Product Suffix Code	Package Type
D	SOIC (8, 14, or 16 pin)	J	CDIP (14 or 16 pin)
DBV	SOT-23 (5 or 6 pin)	JG	CDIP (8 pin)
DGK	MSOP (8 pin)	N	PDIP (14, 16, or 18 pin)
DGN	MSOP in PowerPAD™ (8 pin)	P	PDIP (8 pin)
DGQ	MSOP in PowerPAD™ (8 pin)	PW	TSSOP (8, 14, 16, 20, 24, or 28 pin)
DGS	MSOP (10 pin)	PWP	TSSOP in PowerPAD™ (20 pin)
FK	LCCC (20 pin)	U	CPAK (10 pin)

PowerPAD is a trademark of Texas Instrument Incorporated.

DEVICE	D	DBV	DGK	DGN	DGQ	DGS	FK	J	JG	N	P	PW	PWP	U	Pg. No.
TL343		X													2-7
TL3472	X										X				2-13
TLC070	X		-	X							X				2-17
TLC070A	X				-	397		-			X			210	2-17
TLC071	X			X							X		SV I		2-17
TLC071A	X										X				2-17
TLC072	- X			X							X				2-17
TLC072A	X		E E E		X		272				X				2-17
TLC073	X				-				-	Х	-				2-17
TLC073A	X		-		138			-		X					2-17
TLC074	X		-							X	-	X	X	-	2-17
TLC074A	X									Х		X	X		2-17
TLC075	X									X		X	X		2-17
TLC075A	X									X		X	X		2-17
TLC080	X			X						none de mon	X			-	2-43
TLC080A	X				-						X				2-43
TLC081	X	1 100	Line	X	The state of	York	I mara	(3)	1 (10)	9	X			64	2-43
TLC081A	X	3.55		Plat .					1	12.50	X				2-43
TLC082	X		65.55	X		H COL					X	100			2-43
TLC082A	X				THE STATE OF					100000	X				2-43

OPERATIONAL AMPLIFIER PACKAGE AVAILABILITY SELECTION GUIDE

PACKAGE AVAILABILITY (continued)

DEVICE	D	DBV	DGK	DGN	DGQ	DGS	FK	J	JG	N	P	PW	PWP	U	Pg. No.
TLC083	X				X					X					2-43
TLC083A	X									X	1.7				2-43
TLC084	X	1/2								X		French III	Х		2-43
TLC084A	X						Real of			X	and a		X		2-43
TLC085	X						N. Francis			X		X	X		2-43
TLC085A	X									X	DESCRIPTION OF THE PERSON OF T	X	X	The same	2-43
TLV2422	X						X		X			X		X	2-69
TLV2422A	X				Marile De		X		X			X		X	2-69
TLV2450	X	X					-			-	X			And the second	2-99
TLV2450A	X	and the same		Karata a						The Teams of	X				2-99
TLV2451	X	X		part of the							X		N. S. S. S.		2-99
TLV2451A	X						a.				X			- 00	2-99
TLV2452	X		X		-						X				2-99
TLV2452A	X				- verreur	-	-	-	· Contract		X				2-99
TLV2453	X				S. Landelline	X	1000			X				NI TO	2-99
TLV2453A	X									X					2-99
TLV2454	X		-	62.						X			X		2-99
TLV2454A	X							The State of		X			X		2-99
TLV2455	X									X	1500	444	X		2-99
TLV2455A	X				-					X		1	X		2-99
TLV2460	X	X									X	-			2-127
TLV2460A	X	La Carrier			-						X				2-127
TLV2461	X	X			-						X				2-127
TLV2461A	X	200 7000 2700			-						X				2-127
TLV2462	X		X				-	-		State un	X				2-127
TLV2462A	X				Contract of					Alar Inch	X	1040HEA			2-127
TLV2463	X					X				X					2-127
TLV2463A	X									X					2-127
TLV2464	X									X			X		2-127
TLV2464A	X									×			X		2-127
TLV2465	X								100000	X	Date of the		X		2-127
TLV2465A	X		1 3 3 2		-	- 1-4			Page 1	X			X		2-127
TLV2470	X	X									X				2-153

PACKAGE AVAILABILITY (continued)

DEVICE	D	DBV	DGK	DGN	DGQ	DGS	FK	J	JG	N	Р	PW	PWP	U	Pg. No.
TLV2470A	X									1333	X				2-153
TLV2471	Х	X				1			40.40		X	8-1-6-3			2-153
TLV2471A	Х							PER SALES		100000	X				2-153
TLV2472	X			X							X				2-153
TLV2472A	X	0.00									X				2-153
TLV2473	X	1000			X					X					2-153
TLV2473A	X									X					2-153
TLV2474	X									X			X		2-153
TLV2474A	X	4.55							The same	Х			X		2-153
TLV2475	X	-		-	-				-	X	-	X	X		2-153
TLV2475A	X				ALC: N				-	Х		X	X	-	2-153
TLV2711		X			San and								No. of Street, Street, or other	97.55	2-177
TLV2721		Х										11333			2-203
TLV2731	and a primary	Х						2002							2-229
TLV2770	X		X						No.		X				2-255
TLV2770A	X										X			-	2-255
TLV2771	X	X						-			10000000				2-255
TLV2771A	X					Marine In the			-						2-255
TLV2772	Х		X				X		X	-	X			X	2-255
TLV2772A	X						X		X		X			X	2-255
TLV2773	X					X				Х					2-255
TLV2773A	X	-				None of the	September 1	der Lie		X		-			2-255
TLV2774	X										X	X	-		2-255
TLV2774A	X				- promo		oderinaind	-		100000	X	X		Maria and	2-255
TLV2775	X		Silver, Missilla							Х	1.00	X			2-255
TLV2775A	X		23.82							X	Market 1	X	E E	Service of	2-255

MSOP Package Codes Guide

Purpose: MSOP packages are too small to denote the full part number symbolization on the MSOP package. Following is a table of codes that appear on the MSOP packages for operational amplifiers. The xx preceding the 5-digit code designates a changing manufacturing code not needed for product identification, and will vary.

Example: An MSOP package that is physically stamped with 97TIABX denotes that this is part number TLV2473IDGQ. These parts are also available on reels. Therefore this MSOP, reeled, would be orderable as TLV2473IDGQR.

Symbol	Orderable Part Number
xxTIACS	TLC070CDGN
xxTIACT	TLC070IDGN
xxTIACU	TLC071CDGN
xxTIACV	TLC071IDGN
xxTIADV	TLC072CDGN
xxTIADW	TLC072IDGN
xxTIADX	TLC073CDGQ
xxTIADY	TLC073IDGQ
xxTIACW	TLC080CDGN
xxTIACX	TLC080IDGN
xxTIACY	TLC081CDGN
xxTIACZ	TLC081IDGN
xxTIADZ	TLC082CDGN
xxTIAEA	TLC082IDGN
xxTIAEB	TLC083CDGN
XXTIAEC	TLC083IDGN
xxTIABI	TLV2452CDGK
xxTIABJ	TLV2452IDGK
xxTIABK	TLV2453CDGS
xxTIABL	TLV2453IDGS

Symbol	Orderable Part Number
xxTIAAI	TLV2462CDGK
xxTIAAJ	TLV2462IDGK
xxTIAAK	TLV2463CDGS
xxTIAAL	TLV2463IDGS
xxTIABU	TLV2472CDGN
xxTIABV	TLV2472IDGN
xxTIABW	TLV2473CDGQ
xxTIABX	TLV2473IDGQ
xxTIABO	TLV2770CDGK
xxTIABP	TLV2770IDGK
XXTIAAH	TLV2772AIDGK
xxTIAAF	TLV2772CDGK
xxTIAAG	TLV2772IDGK
xxTIABQ	TLV2773CDGS
xxTIABR	TLV2773IDGS
xxTIADL	TLV2782CDGK
xxTIADM	TLV2782IDGK
xxTIADN	TLV2783CDGS
xxTIADO	TLV2783IDGS

SOT-23 Package Codes Guide

Purpose: SOT-23 packages are too small to denote the full part number symbolization on the package. Following is a table of codes that appear on the SOT-23 packages for operational amplifiers.

Example: A SOT-23 package that is physically stamped with VAOI denotes that this is part number TLV2460CDBV. These parts are also available on reels. Therefore this SOT part is also orderable as TLV2460CDBVR.

Symbol	Orderable Part Number
TAAC	TL343CDBV
TAAI	TL343IDBV
VAAC	TLV2361CDBV
VAAI	TLV2361IDBV
VABC	TLV1391CDBV
VABI	TLV1391IDBV
VACC	TLV2211CDBV
VACI	TLV2211IDBV
VADC	TLV2221CDBV
VADI	TLV2221IDBV
VAEC	TLV2231CDBV
VAEI	TLV2231IDBV
VAFC	TLV2311CDBV
VAFI	TLV2311IDBV
VAGC	TLV2321CDBV
VAGI	TLV2321IDBV
VAJC	TLV2711CDBV
VAJI	TLV2711IDBV
VAKC	TLV2721CDBV

Symbol	Orderable Part Number
VAKI	TLV2721IDBV
VALC	TLV2731CDBV
VALI	TLV2731IDBV
VAMC	TLV2771CDBV
VAMI	TLV2771IDBV
VANI	TLV2771AIDBV
VAOC	TLV2460CDBV
VAOI	TLV2460IDBV
VAPC	TLV2461CDBV
VAPI	TLV2461IDBV
VAQC	TLV2450CDBV
VAQI	TLV2450IDBV
VARC	TLV2451CDBV
VARI	TLV2451IDBV
VAUC	TLV2470CDBV
VAUI	TLV2470IDBV
VAVC	TLV2471CDBV
VAVI	TLV2471IDBV

COMPARATORS

Device	ΔV (1	cc /)	per channel (mA)	IOL (mA)	tRESP Low-to-High	VIC (V	CR	(mV)	Spec'd at VCC	Comments	Page No.
	Min	Max	Max	Min	(μs)	Min	Max	Max			
LM111	3.5	30	6		0.165	-14.7	13.8	3			Vol. B
LM139			0.5	6	0.3	0	3.5	5			Vol. B
LM139A			0.5	6	0.3	0	3.5	2			Vol. B
LM193		and to	0.5	6	0.3	0	3.5	5			Vol. B
LM211	3.5	30	6		0.165	-14.7	13.8	3			Vol. B
LM239			0.5	6	0.3	0	3.5	5			Vol. B
LM239A			0.5	6	0.3	0	3.5	2			Vol. B
LM2901	2	36	0.5	6	0.3	0	34.5	7	5		Vol. B
LM2903	2	36	0.5	6	0.3	0	34.5	7	5		Vol. B
LM293		lus I	0.5	6	0.3			5			Vol. B
LM293A		1.3	0.5	6	0.3			2			Vol. B
LM306		30	10	16	0.028	-5	5	5	12	"High Speed, Strobe capability"	Vol. B
LM311	3.5	30	7.5	8	0.115	-14.7	13.8	7.5	±15	"High Speed, Strobe capability"	Vol. B
LM3302	2	28	.2 (typ)	6	0.3	0	26.5	20	5	General Purpose	Vol. E
LM339	2	36	0.5	6	0.3	0	34.5	5	5	General Purpose	Vol. E
LM339A	2	36	0.5	6	0.3	0	34.5	3	5	General Purpose	Vol. E
LM339x2	2	36	0.5	6	0.3	0	34.5	5	5	"General Purpose, LIFEBUY"	Vol. B
LM393	2	36	0.5	6	0.3	0	34.5	5	5	General Purpose	Vol. B
LM393A	2	36	0.5	6	0.3	0	34.5	3	5	General Purpose	Vol. E
LP111		30	0.3		1.2					Not in Production	Vol. B
LP211		30	0.3		1.2			-	-	Strobe capability	Vol. B
LP239		17 1	0.025		1.3	0	3.5	5		Obsolete	Vol. E
LP2901	5	30	0.025		1.3	0	28	±5	5	Low Power	Vol. E
LP311	3.5	30	0.3	1.6	1.2	-14.5	13.5	7.5	±15	"Low Power,Strobe capability"	Vol. E
LP339	5	30	0.025	6	1.3	0	28	±5	5	Low Power	Vol. E
TL3016	-7	7	12.5		0.0078	-3.75	3.5	3		High Speed	Vol. E
TL331	-7	7	14.7		0.0099	-5	2.5	3		High Speed	2-3
TL393	2	7	0.5	6	0.2	0	5.8	5	5	General Purpose	Vol. E
TL712	4.75	5.25	20	16	0.025	0	5	5+	5	High Speed	Vol. E
TL714	4.75	5.25	12	16	0.006	1.4	3.85	10+	5	High Speed	Vol. E

COMPARATORS (continued)

Device		CC	per channel (mA)	IOL (mA)	tRESP Low-to-High	V _I	CR V)	V _{IO} (mV)	Spec'd at	Comments	Page No.	
	Min	Max	Max	Min	(μs)	Min	Max	Max	7		1.0.	
TLC352	1.4	16	0.15	6	0.2	0	4	5		Low Voltage	Vol. B	
TLC354	1.4	16	0.15	6	0.2	0	4	5		Low Voltage	Vol. B	
TLC3702	3	16	0.02	4	1.1	0	4	5		Low Power	Vol. B	
TLC3704	3	16	0.02	4	1.1	0	4	5		Low Power	Vol. B	
TLC371	3	16	0.15	6	0.2	0	4	5		Not in Production	Vol. B	
TLC372	3	16	0.15	6	0.2	0	4	5		Low Power	Vol. B	
TLC374	3	16	0.15	6	0.2	0	4	5		Low Power	Vol. B	
TLC393	3	16	0.02	6	1.1	0	4	5		Low Power	Vol. B	
TLV1391	2	7	0.15	0.6	0.18	0	5.8	5	5	"Low Power, Low Voltage"	Vol. B	
TLV1393	2	7	0.15	0.6	0.18	0	5.8	5	5	"Low Power, Low Voltage"	Vol. B	
TLV2352	2	8	0.15	6	0.2	0	3.75	5	5	Low Voltage	Vol. B	
TLV2354	2	8	0.15	6	0.2	0	3.75	5	5	Low Voltage	Vol. B	
TLV2393	2	7	0.75	6	0.15	0	5.8	5	5	"Low Power, Low Voltage"	Vol. B	

PACKAGE AVAILABILITY

DEVICE	D	DBV	DGK	DGN	DGQ	DGS	FK	J	JG	N	Р	PW	PWP	U	Pg. No.
TL331		X	le all												2-3

Devices in **bold** are is this data book Vol B – Amplifiers, Comparators, and Special Functions Data Book Volume B (SLYD012A)

Class AB Audio Power Amplifiers†

Part No	Output Power (W)	THD + N @ 1 kHz	V _{CC} /V _{DD} (min) (V)	VCC/VDD (max) (V)	IDD/ICC per channel (typ) (mA)	PSRR (dB)	Shutdown Control (typ) (uA)	ISD (uA)	Description
TPA0102	1.5	0.05	3	5.5	10	75	5	5	BTL, SE, Stereo
TPA0103	1.75	0.05	3	5.5	10	75	5	5	BTL, SE, Stereo
TPA0112	2	0.75	4.5	5.5	3	77	100	150	BTL, Depop, SE, Stereo
TPA0122	2	0.1	4.5	5.5	9	77	100	100	BTL, Depop, SE, Stereo
TPA0132	2	0.4	4.5	5.5	5	67	100	150	BTL, Depop, SE, Stereo
TPA0142	2	0.05	4.5	5.5	10	67	100	100	BTL, Depop, SE, Stereo
TPA0152	2	0.05	4.5	5.5	5	67	100	100	BTL, Depop, SE, Stereo
TPA0162	2	0.05	4.5	5.5	10	67	100	100	BTL, Depop, SE, Stereo
TPA0202	2	0.05	3	5.5	10	75	5	5	BTL, Depop, SE, Stereo
TPA102	0.15	0.05	2.5	5.5	0.75	76	60	60	Depop, SE, Stereo
TPA112	0.15	0.05	2.5	5.5	0.75	76			SE, Stereo
TPA122	0.15	0.05	2.5	5.5	0.75	76	60	60	Depop, SE, Stereo
TPA152	0.075	0.02	4.5	5.5	3	81	5 4 1	Walter William	Depop, SE, Stereo
TPA301	0.35	0.3	2.5	5.5	0.7	78	0.15	0.15	BTL, Mono
TPA302	0.3	0.08	2.7	5.5	2	65	0.6	0.6	SE, Stereo
TPA311	0.35	0.3	2.5	5.5	0.7	78	7	7	BTL, Depop, Mono, SE
TPA701	0.7	0.2	2.5	5.5	1.25	85	0.0015	0.0015	BTL, Mono
TPA711	0.7	0.2	2.5	5.5	1.25	85	50	50	BTL, Mono, SE
TPA721	0.7	0.2	2.5	5.5	1.25	85	50	50	BTL, Depop, Mono
TPA1517	6	10	9.5	18	20	65	7	7	SE, Stereo
TPA4860	1	0.3	2.7	5.5	3.5	75	0.6	0.6	BTL, Mono
TPA4861	1	0.3	2.7	5.5	3.5	75	0.6	0.6	BTL, Mono

AUDIO POWER AMPLIFIER SELECTION GUIDE

† Data sheets for these devices can be found in the Audio Power Amplifiers Data Book (Literature Number SLOD004).

Part No	Output Power (W)	THD + N @ 1 kHz	V _{CC} /V _{DD} (min) (V)	V _{CC} /V _{DD} (max) (V)	IDD/ICC per channel (typ) (mA)	PSRR (dB)	Shutdown Control (typ) (uA)	ISD (uA)	Description
TPA005D02	2	0.4	4.5	5.5	12	40	400	400	Class-D, Stereo
TPA005D12	2	0.5	4.5	5.5	12.5	40	0.2	0.2	Class-D, Stereo
TPA005D14	2	0.5	4.5	5.5	12.5	40	0.2	0.2	Class-D, Stereo

1	Data sheets for these devices can be found in the Audio Power Amplifiers Data Book (Literature Number SLODO	004).	
---	---	-------	--

Class Alb Audio Power Amplibura?

Current/Voltage Feedback High-Speed Amplifiers†

Part No	VCC/ VDD 5 (V)	VCC/ VDD ±5 (V)	V _{CC} / V _{DD} ± 15 (V)	ACL, min Stable Gain (V/V)	BW at ACL (MHz)	Slew Rate (V/µs)	Settling Time (0.1%) (typ) (ns)	THD FC=1 MHz (typ) (dB)	V _n (typ) (nV/√Hz)	Diff Gain (%)	Diff Phase (deg)	Description
THS3001	No	Yes	Yes	1	420	6500	40	-96		0.01	0.02	Current Feedback
THS3002	No	Yes	Yes	1	420	6500	40	-96		0.01	0.02	Current Feedback
THS4001	Yes	Yes	Yes	1	270	400	40	-72	12.5	0.04	0.15	Voltage Feedback
THS4011				1	290	310	37		7.5	0.006	0.01	PowerPAD Package, Sub-miniature Package, Voltage Feedback
THS4012				1	290	310	37		7.5	0.006	0.01	PowerPAD Package, Sub-miniature Package, Voltage Feedback
THS4031				1	100	100	60		1.6	0.015	0.025	PowerPAD Package, Sub-miniature Package, Voltage Feedback
THS4032	No			2	100	100	60		1.6	0.015	0.025	PowerPAD Package, Sub-miniature Package, Voltage Feedback
THS4051				1	70	240	60		14	0.01	0.01	PowerPAD Package, Sub-miniature Package, Voltage Feedback
THS4052				1	70	240	60		14	0.01	0.01	PowerPAD Package, Sub-miniature Package, Voltage Feedback
THS4061				1	180	400	40		14.5	0.02	0.02	PowerPAD Package, Sub-miniature Package, Voltage Feedback
THS4062				1	180	400	40		14.5	0.02	0.02	PowerPAD Package, Sub-miniature Package Voltage Feedback

HIGH-SPEED AMPLIFIER
SELECTION GUIDE

† Data sheets for these devices can be found in the High-Speed Amplifiers Data Book (Literature Number SLOD005).

xDSL High-Speed Drivers/Receivers†

Part No	VCC/ VDD ±5 (V)	VCC/ VDD ± 15 (V)	BW at ACL (MHz)	Slew Rate (V/μs)	V _n (typ) (nV/√Hz)	THD FC=1 MHz (typ) (dB)	l _O (typ) (mA)	Description
THS6002	Yes	Yes	140	1000		-62	480	PowerPAD Package, xDSL Amplifiers
THS6012	Yes	Yes	140	1300		-65	500	PowerPAD Package, xDSL Amplifiers
THS6022	Yes	Yes	210	1900		-65	250	PowerPAD Package, Sub-miniature Package, xDSL Amplifiers
THS6062	Yes	Yes	100	100	1.6	-84	90	PowerPAD Package, Sub-miniature Package, Voltage Feedback, xDSL Amplifiers
THS7001			75	175	1.7	-84	50	PGA, PowerPAD Package, SHUTDOWN, Sub-miniature Package, Voltage Feedback, xDSL Amplifiers
THS7002			75	175	1.7	-84	50	PGA, PowerPAD Package, SHUTDOWN, Sub-miniature Package, Voltage Feedback, xDSL Amplifiers

† Data sheets for these devices can be found in the High-Speed Amplifiers Data Book (Literature Number SLOD005).

α_{IIO} Average Temperature Coefficient of Input Offset Current

The ratio of the change in input offset current to the change in free-air temperature. This is an average value for the specified temperature range.

$$\alpha_{IIO} = \frac{\left(I_{IO} \text{ at } T_{A(1)}\right) - \left(I_{IO} \text{ at } T_{A(2)}\right)}{T_{A(1)} - T_{A(2)}}$$

where $T_{A(1)}$ and $T_{A(2)}$ are the specified temperature extremes.

αVIO Average Temperature Coefficient of Input Offset Voltage

The ratio of the change in input offset current to the change in free-air temperature. This is an average value for the specified temperature range. The dc voltage that must be applied between the input terminals to force the guiescent dc output voltage to zero or other level, if specified.

$$\alpha_{VIO} = \frac{\left(V_{IO} \text{ at } T_{A(1)}\right) - \left(V_{IO} \text{ at } T_{A(2)}\right)}{T_{A(1)} - T_{A(2)}}$$

where $T_{A(1)}$ and $T_{A(2)}$ are the specified temperature extremes.

AVCC

See ksys

Δ٧10

See ksys

φ_m Phase Margin

The absolute value of the open-loop phase shift between the output and the inverting input at the frequency at which the modulus of the open-loop amplification is unity.

A_m Gain Margin

The reciprocal of the open-loop voltage amplification at the lowest frequency at which the open-loop phase shift is such that the output is in phase with the inverting input.

Av Large-Signal Voltage Amplification

The ratio of the peak-to-peak output voltage swing to the change in input voltage required to drive the output

AVD Differential Voltage Amplification

The ratio of the change in output to the change in differential input voltage producing it with the common-mode input voltage held constant

B₁ Unity-Gain Bandwidth

The range of frequencies within which the maximum output voltage swing is above a specified value.

B_{OM} Maximum-Output-Swing Bandwidth

The range of frequencies within which the maximum output voltage swing is above the specified value.

c_i Input Capacitance

The capacitance between the input terminals with either input grounded

OPERATIONAL AMPLIFIER GLOSSARY

CMRR, k_{CMR} Common-Mode Rejection Ratio

The ratio of differential voltage amplification to common-mode voltage amplification.

NOTE: This is measured by determining the ratio of a change in input common-mode voltage to the resulting change in input offset voltage.

F **Average Noise Figure**

The ratio of an ideal current source (having an internal impedance equal to infinity) in parallel with the input terminals of the device that represents the part of the internally generated noise that can properly be represented by a current source.

I_{CC+}, I_{CC-} Supply Current

The current into the V_{CC+} or V_{CC-} terminal of an integrated circuit

Input Bias Current l_{IB}

The average of the currents into the two input terminals with the output at the specified level

Input Offset Current 110

The difference between the currents into the two input terminals with the output at the specified level

Equivalent Input Noise Current In

> The current of an ideal current source (having internal impedance equal to infinity) in parallel with the input terminals of the device that represents the part of the internally generated noise that can properly be represented by a current source.

Low-Level Output Current OL

> The current into an output with input conditions applied that according to the product specification will establish a low level at the output.

los **Short-Circuit Output Current**

> The maximum output current available from the amplifier with the output shorted to ground, to either supply, or to a specified point

KCMR

See CMRR

ksvs, ∆Vcc, ∆Vio Supply Voltage Sensitivity

The absolute value of the ratio of the change in supply voltages to the change in input offset voltage.

NOTES: 1. Unless otherwise noted, both supply voltages are varied symmetrically.

2. This is the reciprocal of supply voltage sensitivity.

Supply Voltage Rejection Ratio KSVR

The absolute value of the ratio of the change in supply voltages to the change in input offset voltage.

NOTES: 1. Unless otherwise noted, both supply voltages are varied symmetrically.

2. This is the reciprocal of supply voltage sensitivity.

PD **Total Power Dissipation**

> The total dc power supplied to the device less any power delivered from the device to a load. NOTE: At no load: PD = VCC+ • ICC+ + VCC- • ICC-

r_i Input Resistance

The resistance between the input terminals and either input grounded

rid Differential Input Resistance

The small-signal resistance between two ungrounded input terminals

ro Output Resistance

The resistance between an output terminal and ground

SR Slew Rate

The average time rate of change of the closed-loop amplifier output voltage for a step-signal input

t, Rise Time

The time required for an output voltage step to change from 10% to 90% of its final value

t_{tot} Total Response Time

The time between a step-function change of the input signal and the instant at which the magnitude of the output signal reaches for the last time a specified level range (±e) containing the final output signal level.

V_I Input Voltage Range

The range of voltage that if exceeded at either input terminal may cause the operational amplifier to cease functioning properly.

V_{IO} Input Offset Voltage

The dc voltage that must be applied between the input terminals to force the quiescent dc output voltage to zero or other level, if specified.

V_{IC} Common-Mode Input Voltage

The average of the two input voltages

V_{ICR} Common-Mode Input Voltage Range

The range of common-mode input voltage that if exceeded may cause the operational amplifier to cease functioning properly.

V_n Equivalent Input Noise Voltage

The voltage of an ideal voltage source (having internal impedance equal to zero) in series with the input terminals of the device that represents the part of the internally generated noise that can properly be represented by a voltage source.

V_{O1}/V_{O2} Crosstalk Attenuation

The ratio of the change in output voltage of a driven channel to the resulting change in output voltage of another channel

VOH High-Level Output Voltage

The voltage at an output with input conditions applied that according to the product specification will establish a high level at the output.

V_{OL} Low-Level Output Voltage

The voltage at an output with input conditions applied that according to the product specification will establish a low level at the output.

OPERATIONAL AMPLIFIER GLOSSARY

V_{ID} Differential Input Voltage

The voltage at the noninverting input with respect to the inverting input

VOM Maximum Peak Output Voltage Swing

The maximum positive or negative peak output voltage that can be obtained without waveform clipping when quiescent dc output voltage is zero.

V_{O(PP)} Maximum Peak-to-Peak Output Voltage Swing

The maximum peak-to-peak output voltage that can be obtained without waveform clipping when quiescent dc output voltage is zero.

zic Common-Mode Input Impedance

The parallel sum of the small-signal impedance between each input terminal and ground

zo Output Impedance

The small-signal impedance between the output terminal and ground

Overshoot Factor

The ratio of the largest deviation of the output signal value from its final steady-state value after a step-function change of the input signal to the absolute value of the difference between the steady-state output signal values before and after the step-function change of the input signal.

General Information	1
Data Sheets	2
Product Previews	3
Evaluation Modules	4
Application Reports	5
Mechanical Data	6

Contents

		P	age
	TL331	Single Differential Comparator	2-3
2	TL343	Single Low-Power Operational Amplifiers	2-7
	TL3472	High-Slew-Rate Single-Supply	
a		Operational Amplifiers2-	-13
9	TLC07x	Family of Wide-Bandwidth High-Output-Drive	
Data Sheets		Single Supply Operational Amplifiers2-	-17
ē	TLC08x	Family of Wide-Bandwidth High-Output-Drive	
ets		Single Supply Operational Amplifiers2-	-43
0,	TLV242x	Advanced LinCMOS Rail-To-Rail Output	
		Wide-Input-Voltage Micropower Dual	
		Operational Amplifiers2-	-69
	TLV245x	Family of 23-μA 220-kHz Rail-To-Rail Input/Output	
		Operational Amplifiers With Shutdown 2-	-99
	TLV246x	Family of Low-Power Rail-To-Rail Input/Output	
		Operational Amplifiers With Shutdown 2-	127
	TLV247x	Family of 600-μA 2.8-MHz Rail-To-Rail Input/Output	
			153
	TLV2711	Advanced LinCMOS Rail-To-Rail Micropower Single	
			177
	TLV2721	Advanced LinCMOS Rail-To-Rail Very Low-Power	
			203
	TLV2731	Advanced LinCMOS Rail-To-Rail Low-Power	
		Single Operational Amplifiers 2-2	229
	TLV277x	Family of High-Slew-Rate Rail-To-Rail Output	
		Operational Amplifiers With Shutdown 2-2	255

SINGLE DIFFERENTIAL COMPARATOR

SLVS238 - AUGUST 1999

- Single Supply or Dual Supplies
- Wide Range of Supply Voltage ... 2 V to 36 V
- Low Supply-Current Drain Independent of Supply Voltage . . . 0.5 mA Typ
- Low Input Bias Current . . . 25 nA Typ
- Low Input Offset Voltage . . . 2 mV Typ
- Common-Mode Input Voltage Range **Includes Ground**
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage . . . ±36 V
- Low Output Saturation Voltage
- Output Compatible With TTL, MOS, and **CMOS**
- Packaged in Plastic Small-Outline **Transistor Package**

description

This device consists of a single voltage comparator that is designed to operate from a single power supply over a wide range of voltages. Operation from dual supplies also is possible if the difference between the two supplies is 2 V to 36 V and V_{CC} is at least 1.5 V more positive than the input common-mode voltage. Current drain is independent of the supply voltage. The output can be connected to other open-collector outputs to achieve wired-AND relationships.

The TL331I is characterized for operation from -40°C to 85°C.

logic diagram

AVAILABLE OPTIONS

	at of madeur.	PACKAGED DEVICE
T _A	VIO(max) AT 25°C	SMALL-OUTLINE TRANSISTOR (DBV)
-40°C to 85°C	5 mV	TL331IDBV

The DBV package is only available left-end taped and reeled. Add R suffix to device type (e.g., TL331IDBVR).

schematic

Current values shown are norminal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	36 V
Differential input voltage, V _{ID} (see Note 2)	±36 V
Input voltage range, V _I (either input)	0.3 V to 36 V
Output voltage, VO	
Output current, IO	20 mA
Duration of output short-circuit to ground (see Note 3)	unlimited
Package thermal impedance, θ_{JA} (see Notes 4 and 5)	347°C/W
Operating free-air temperature range, T _A	40°C to 85°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C
Storage temperature range, T _{stq}	-65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground.
 - 2. Differential voltages are at IN+ with respect to IN-.
 - 3. Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.
 - Maximum power dissipation is a function of T_J(max), θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is P_D = (T_J(max) T_A)/θ_{JA}. Operating at the absolute maximum T_J of 150°C can impact reliability.
 - 5. The package thermal impedance is calculated in accordance with JESD 51.

SLVS238 - AUGUST 1999

electrical characteristics at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

	PARAMETER	TEST C	CONDITIONS	TAT	MIN	TYP	MAX	UNIT
.,	1	offset voltage $V_{CC} = 5 \text{ V to } 30 \text{ V, } V_{O} = 1.4 \text{ V,} $ $V_{IC} = V_{IC}(\text{min})$		25°C		2	5	mV
VIO	Input offset voltage			-40°C to 85°C			9	mv
	I	V 44V		25°C		5	50	nA
10	Input offset current	V _O = 1.4 V		-40°C to 85°C			250	nA
		V- 44V		25°C		-25	-250	
IB	Input bias current	V _O = 1.4 V		-40°C to 85°C			-400	nA
., Common-mode				25°C	0 to V _{CC} -1.5			V
VICR	input voltage range‡	ut voltage range‡		-40°C to 85°C	0 to VCC-2			V
AVD	Large-signal differential voltage amplification	$V_{CC} = 15 \text{ V}, V_{O} = 1.4 \text{ V to } 11.4 \text{ V},$ $R_{L} \ge 15 \text{ k}\Omega \text{ to } V_{CC}$		25°C	50	200		V/mV
1	Hab lavel autout ausent	V _{OH} = 5 V,	V _{ID} = 1 V	25°C		0.1	50	nA
ЮН	High-level output current	V _{OH} = 30 V,	V _{ID} = 1 V	-40°C to 85°C			1	μА
		1	V 4V	25°C	METHOR	150	400	
VOL	Low-level output voltage	put voltage $I_{OL} = 4 \text{ mA}, V_{ID} = -1 \text{ V}$		-40°C to 85°C			700	mV
loL	Low-level output current	V _{OL} = 1.5 V,	V _{ID} = 1 V	25°C	6			mA
Icc	Supply current	R _L = ∞,	V _{CC} = 5 V	25°C		0.4	0.7	mA

[†] All characteristics are measured with zero common-mode input voltage, unless otherwise specified.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER	TEST C	CONDITIONS	MIN	TYP	MAX	UNIT
Response time	R _L connected to 5 V through 5.1 kΩ,	100-mV input step with 5-mV overdrive	1.3			
	C _L = 15 pF§, See Note 6	TTL-level input step		0.3		μs

§ CL includes probe and jig capacitance.

NOTE 6: The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.

[‡] The voltage at either input or common-mode should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V_{CC+} – 1.5 V, but either or both inputs can go to 30 V without damage.

The voltage of all for and or continuous and a character super sequence is an 0.3 V. The upper annotative common mode vintage in V_{CCL} - 1.5 V. Sut other or best septem can go to 30 V without durings.

switching characteristics, V_{CC} = 5 V, T_A = 25 °C.

A TENNET THE MENT PROPERTY OF THE PROPERTY OF

TL343 SINGLE LOW-POWER OPERATIONAL AMPLIFIER

SLOS250C - JUNE 1999 - REVISED JULY 1999

- Wide Range of Supply Voltages, Single Supply . . . 3 V to 36 V, or Dual Supplies
- Class AB Output Stage
- True Differential-Input Stage
- Low Input Bias Current
- Internal Frequency Compensation
- Short-Circuit Protection
- Packaged in SOT-23 Package

(TOP VIEW) IN+ 1 5 V_{CC}+ V_{CC}-/GND 2 1 OUT

DBV PACKAGE

description

The TL343 is a single operational amplifier similar in performance to the μ A741, but with several distinct advantages. It is designed to operate from a single supply over a range of voltages from 3 V to 36 V. Operation from split supplies also is possible, provided the difference between the two supplies is 3 V to 36 V. The common-mode input range includes the negative supply. Output range is from the negative supply to $V_{CC}-1.5$ V.

The TL343 is characterized for operation from -40°C to 125°C.

symbol

AVAILABLE OPTIONS

	V 888 V	PACKAGE
TA	VIOMAX AT 25°C	SOT-23 (DBV)
-40°C to 125°C	10 mV	TL343IDBV

The DBV package is only available taped and reeled. Add R suffix to device type for ordering (e.g., TL343IDBVR).

SLOS250C - JUNE 1999 - REVISED JULY 1999

schematic

NOTE A. Component values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		MAX	UNIT
Complexed (and Note 4)	V _{CC+}	18	\/
Supply voltage (see Note 1)	V _{CC} -	-18	V
Supply voltage, V _{CC+} with respect to V _{CC-}		36	٧
Differential input voltage (see Note 2)		±36	V
Input voltage (see Notes 1 and 3)		±18	٧
Package thermal impedance, θ _{JA} (see Note 4)	DBV package	347	°C/W
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds		260	°C
Storage temperature range		-65 to 150	°C

- NOTES: 1. These voltage values are with respect to the midpoint between V_{CC+} and V_{CC-}.
 - 2. Differential voltages are at IN+ with respect to IN-.
 - 3. Neither input must ever be more positive than V_{CC-} or more negative than V_{CC-} .

 4. The package thermal impedance is calculated in accordance with JESD 51.

SLOS250C - JUNE 1999 - REVISED JULY 1999

recommended operating conditions

THU XAM SYT HM 188	ionidiao test	HITTINARI	MIN	MAX	UNIT
Single-supply voltage	V-630V1	Vcc	5	30	٧
Dalama kanana	Vest-byl Time	V _{CC+}	2.5	15	V
Dual-supply voltage		V _{CC} -	-2.5	-15	V
Operating free-air temperature, TA	(8) 2 (9)	Toniva egat	-40	125	°C

electrical characteristics at specified free-air temperature, $V_{CC\pm} = \pm 15 \text{ V}$ (unless otherwise noted)

	PARAMETER	R TEST CONDITIONST			TYP	MAX	UNIT
,	DECEMBER OF THE PROPERTY OF TH	O N-t- 5	25°C		2	10	
VIO	Input offset voltage	See Note 5	Full range			12	mV
ανιο	Temperature coefficient of input offset voltage	See Note 5	Full range		10		μV/°(
l. a	Input offset current	See Note 5	25°C	esiteh	30	50	nA
10	input offset current	See Note 5	Full range			200	IIA
αΙΙΟ	Temperature coefficient of input offset current	See Note 5	Full range		50		pA/0
lin	Input bias current	See Note 5	25°C		-0.2	-0.5	μА
IB	input bias current	See Note 5	Full range	Provide services		-0.8	μΛ
VICR	Common-mode input voltage range‡		25°C	V _{CC} - to 13	V _{CC} - to 13.5	STEEL ST	V
-		$R_L = 10 \text{ k}\Omega$	25°C	±12	±13.5		
VOM	Peak output-voltage swing	$R_L = 2 k\Omega$	25°C	±10	±13		V
		$R_L = 2 k\Omega$	Full range	±10			
A. m	Large-signal differential	$V_0 = \pm 10 \text{ V},$	25°C	20	200		V/m
AVD	voltage amplification	$R_L = 2 k\Omega$	Full range	15			V/III
Вом	Maximum-output-swing bandwidth	$V_{OPP} = 20 \text{ V},$ $A_{VD} = 1,$ $THD \le 5\%,$ $R_L = 2 k\Omega$	25°C		9		kHz
B ₁	Unity-gain bandwidth	$V_O = 50 \text{ mV},$ $R_L = 10 \text{ k}\Omega$	25°C		1		МН
φm	Phase margin	$C_L = 200 \text{ pF},$ $R_L = 2 \text{ k}\Omega$	25°C		44°		
rį	Input resistance	f = 20 Hz	25°C	0.3	1		ΜΩ
ro	Output resistance	f = 20 Hz	25°C		75		Ω
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min	25°C	70	90		dB
ksvs	Supply-voltage sensitivity (ΔV _{IO} /ΔV _{CC})	$V_{CC\pm} = \pm 2.5 \text{ to } \pm 15 \text{ V}$	25°C		30	150	μV/
los	Short-circuit output current§		25°C	±10	±30	±55	mA
lcc	Total supply current	No load, See Note 5	25°C		0.7	2.8	mA

TAll characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified. Full range for TA is -40°C to 125°C.

NOTE 5: VIO, IIO, IIB, and ICC are defined at VO = 0.

[‡] The V_{ICR} limits are linked directly, volt-for-volt, to supply voltage; the positive limit is 2 V less than V_{CC+}. § Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

SLOS250C - JUNE 1999 - REVISED JULY 1999

electrical characteristics, $V_{CC+} = 5 \text{ V}$, $V_{CC-} = 0 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

TUNU	PARAMETER	TEST CONDITIONST	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	V _O = 2.5 V		2	10	mV
lio	Input offset current	V _O = 2.5 V		30	50	nA
IIB	Input bias current	V _O = 2.5 V		-0.2	-0.5	μΑ
VOM	Peak output voltage swing‡	$R_L = 10 \text{ k}\Omega$	3.3	3.5	Ramori	٧
AVD	Large-signal differential voltage amplification	$V_O = 1.7 \text{ V to } 3.3 \text{ V},$ $R_L = 2 \text{ k}\Omega$	20	200	erts In	V/mV
ksvs	Supply-voltage sensitivity (ΔV _{IO} /ΔV _{CC±})	V _{CC±} = ± 2.5 V to ±15 V	NO DE LOS DE LA COMPANION DE L		150	μV/V
Icc	Supply current	V _O = 2.5 V, No load		0.7	1.75	mA

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified.

operating characteristics, $V_{CC\pm} = \pm 15 \text{ V}$, $T_A = 25^{\circ}\text{C}$, $A_{VD} = 1$ (unless otherwise noted)

	PARAMETER TEST CONDITIONS			MIN	TYP	MAX	UNIT		
SR	Slew rate at unity gain	$V_1 = \pm 10 \text{ V},$	C _L = 100 pF,	$R_L = 2 k\Omega$,	See Figure 1	P Minnager	1		V/µs
tr	Rise time		See Hote 5				0.35	and high	μs
tf	Fall time	$\Delta V_O = 50 \text{ mV},$	C _L = 100 pF,	$R_L = 10 \text{ k}\Omega$	See Figure 1	-	0.35		μs
1	Overshoot factor	0.69			Fegrus on	How sugn	20%	(deminie)	T PO
	Crossover distortion	$V_{I(PP)} = 30 \text{ mV},$	V _{OPP} = 2 V,	f = 10 kHz			1%		

PARAMETER MEASUREMENT INFORMATION

Figure 1. Unity-Gain Amplifier

[‡]Output will swing essentially to ground.

TYPICAL CHARACTERISTICS†

Figure 2

Figure 3

† Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

TYPICAL CHARACTERISTICS†

Figure 7

[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

10UT [

VCC_/GND [4

1IN+ [] 3

SLOS200B - OCTOBER 1997 - REVISED JULY 1999

TVCC+

7 1 20UT

6 2IN-

5 1 2IN+

D OR P PACKAGE (TOP VIEW)

- Wide Gain-Bandwidth Product . . . 4 MHz
- High Slew Rate . . . 13 V/μs
- Fast Settling Time . . . 1.1 μs to 0.1%
- Wide-Range Single-Supply Operation ... 4 V to 36 V
- Wide Input Common-Mode Range Includes Ground (V_{CC})
- Low Total Harmonic Distortion . . . 0.035%
- Large-Capacitance Drive Capability ... 10,000 pF
- Output Short-Circuit Protection

description

Quality, low-cost, bipolar fabrication with innovative design concepts are employed for the TL3472 operational amplifier. This device offers 4 MHz of gain-bandwidth product, 13-V/µs slew rate, and fast settling time without the use of JFET device technology. Although the TL3472 can be operated from split supplies, it is particularly suited for single-supply operation because the common-mode input voltage range includes ground potential (V_{CC}). With a Darlington transistor input stage, this device exhibits high input resistance, low input offset voltage, and high gain. The all-npn output stage, characterized by no dead-band crossover distortion and large output voltage swing, provides high-capacitance drive capability, excellent phase and gain margins, low open-loop high-frequency output impedance, and symmetrical source/sink ac frequency response. This low-cost amplifier is an alternative to the MC33072 and the MC34072 operational amplifiers.

The TL3472C is characterized for operation from 0° C to 70° C. The TL3472I is characterized for operation from -40° C to 105° C.

AVAILABLE OPTIONS

	PACKAGED DEVICES				
TA	SMALL OUTLINE (D)	PLASTIC DUAL-IN-LINE (P)			
0°C to 70°C	TL3472CD	TL3472CP			
-40°C to 105°C	TL3472ID	TL3472IP			

D package is available taped and reeled. Add R suffix to device type for ordering (e.g., TL3472CDR).

SLOS200B - OCTOBER 1997 - REVISED JULY 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage: V _{CC+} (see Note 1)	18 V
VCC- ·····	-18 V
VCC	100 1
Differential input voltage, V _{ID} (see Note 2)	
Input voltage, V _I (any input)	V _{CC±}
Input current, I _I (each input)	±1 mA
Output current, Io	±80 mA
Total current into V _{CC+}	80 mA
Total current out of V _{CC}	80 mA
Duration of short-circuit current at (or below) 25°C (see Note 3)	
Package thermal impedance, θ _{JA} (see Notes 4 and 5): D package	197°C/W
P package	104°C/W
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds	260°C
Storage temperature range, T _{stq}	-65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC-

- Differential voltages are at the noninverting input with respect to the inverting input. Excessive input current can flow when the input is less than V_{CC} 0.3 V.
- The output can be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.
- 4. Maximum power dissipation is a function of T_J(max), θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is P_D = (T_J(max) T_A)/θ_{JA}. Operating at the absolute maximum T_J of 150°C can impact reliability.
 - The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

recommended operating conditions

	BHOTTRO BUBALBAVA		MIN	MAX	UNIT
Supply voltage, V _{CC±}	PACKAGED DEVICES		4	36	٧
Common mode input voltage V.a.	STEALY PLANE	V _{CC} = 5 V	0	2.8	V
Common-mode input voltage, V _{IC}		V _{CC±} = ±15 V	-15	12.8	V
Operating free air temperature T-		TL3472C	0	70	°C
Operating free-air temperature, TA		TL3472I	-40	105	0

SLOS200B - OCTOBER 1997 - REVISED JULY 1999

electrical characteristics at specified free-air temperature, $V_{CC\pm}$ = ±15 V (unless otherwise noted)

TINU	PARAMETER	TES	T CONDITIONS	TA	MIN	TYPT	MAX	UNIT
	or a		V _{CC} = 5 V	25°C	- Contract	1.5	10	188
VIO	Input offset voltage		100 Lange (100 San	25°C		1.0	10	mV
		10.0	V _{CC} = ±15 V	Full range‡			12	
ανιο	Temperature coefficient of input offset voltage	V _{IC} = 0, V _O = 0,	V _{CC} = ±15 V	Full range‡		10	Southing	μV/°C
S-IP-Wit	1	$R_S = 50 \Omega$	V 14FV	25°C	v eston i	6	75	The same
10	Input offset current		V _{CC} = ±15 V	Full range‡	3100.061	ugai mi	300	nA
	Investigation assumes a	2512 (E) 14 (E) 251-25	Van MEV	25°C	solit aledo	100	500	
IB	Input bias current		V _{CC} = ±15 V	Full range‡	(product	tiolwheta	700	μА
XXXX	Common-mode	903 4 1097 1 4	10 P = 18 2 03 - 19 2 03 - 19 2 04 1	25°C	100	-15 to 12.8	Iswo?	V
VICR input voltage range	VICR	$R_S = 50 \Omega$		Full range‡		-15 to 12.8	m (ini)	V
OH	091	V _{CC+} = 5 V,	$V_{CC-}=0$, $R_L=2 k\Omega$	25°C	3.7	4	digan(C)	, a
Vон	High-level output voltage	$R_L = 10 \text{ k}\Omega$		25°C	13.6	14	o toon!	V
	output voltage	$R_L = 2 k\Omega$	100-	Full range‡	13.4	sistma k	Ottesto.	
0	105	V _{CC+} = 5 V,	$V_{CC-}=0$, $R_L=2 k\Omega$	25°C	potent lu	0.1	0.3	- Math
VOL	Low-level output voltage	$R_L = 10 \text{ k}\Omega$		25°C		-14.7	-14.3	V
	output voltage	$R_L = 2 k\Omega$		Full range‡			-13.5	
A. em	Large-signal differential	V _O = ±10 V,	D 0 kO	25°C	25	100		V/mV
AVD	voltage amplification	VO = ±10 V,	$R_L = 2 k\Omega$	Full range‡	20			V/mv
laa	Short-circuit	Source: V _{ID} = 1 V,	V _O = 0	25°C	-10	-34		A
los	output current	Sink: $V_{ID} = -1 V$,	V _O = 0	25.0	20	27		mA
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}(min),$	R _S = 50 Ω	25°C	65	97		dB
ksvr	Supply-voltage rejection ratio (ΔV _{CC±} /ΔV _{IO})	V _{CC±} = ±13.5 V to	±16.5 V, $R_S = 100 Ω$	25°C	70	97		dB
	0	V0	No load	25°C		3.5	4.5	
Icc	Supply current (per channel)	V _O = 0,	No load	Full range‡		4.5	5.5	mA
	(1-2-2	V _{CC+} = 5 V, V _O = 2	2.5 V, V _{CC} = 0, No load	25°C		3.5	4.5	

[†] All typical values are at T_A = 25°C. ‡ Full range is 0°C to 70°C for the TL3472C device and –40°C to 105°C for the TL3472I device.

SLOS200B - OCTOBER 1997 - REVISED JULY 1999

operating characteristics, V_{CC+} = ±15 V, T_A = 25°C

TIMU	PARAMETER	TEST C	ONDITIONS	MIN	TYP MAX	UNIT
SR+	Positive slew rate	$V_{I} = -10 \text{ V to } 10 \text{ V},$	A _V = 1	8 10		
SR-	Negative slew rate	$R_L = 2 k\Omega$, $C_L = 300 pF$	Ay = -1	46.00	13	V/μs
	Settling time	A 4 40 V atan	To 0.1%	-	1.1	-
ts		AVD = -1, 10-V step	To 0.01%	epation	2.2	μs
Vn	Equivalent input noise voltage	f = 1 kHz,	f = 1 kHz, R _S = 100 Ω		49	
In	Equivalent input noise current	f = 1 kHz	f = 1 kHz		0.22	
THD	Total harmonic distortion	$V_0 = 2 \text{ V to } 20 \text{ V}, \text{ R}_L = 2 \text{ k}\Omega, \text{ A}_{VD} = 10, \text{ f} = 10 \text{ kHz}$		0.02		%
GBW	Gain-bandwidth product	f=100 kHz	f=100 kHz		3 4	
BW	Power bandwidth	VO(PP) = 20 V, RL = 2 k	$Ω$, $A_{VD} = 1$, $THD = 5.0%$		160	kHz
	Dhasa wayala	$R_L = 2 k\Omega$,	C _L = 0		70°	
φm	Phase margin	$R_L = 2 k\Omega$,	C _L = 300 pF	-	50°	HON/
	Colle mottle Septem 8.	$R_L = 2 k\Omega$,	C _L = 0		12	-ID
	Gain margin	$R_L = 2 k\Omega$,	C _L = 300 pF	4		dB
rj	Differential input resistance	V _{IC} = 0	Vecus Vec		150	ΜΩ
Ci	Input capacitance	V _{IC} = 0	324 GT # JR		2.5	pF
	Channel separation	f = 10 kHz	give a jet		101	dB
z _o	Open-loop output impedance	f = 1 MHz,	A _V = 1		20	Ω

SLOS219B - JUNE 1999 - REVISED NOVEMBER 1999

8 SHDN

7 WDD

L6 TOUT

5 NULL

TLC070 D. DGN OR P PACKAGE

(TOP VIEW)

NULL CT

GND IT

IN- 1 2-

IN+ 1 3

	Mida	Randwidth	10 MHz
•	WINE	Randwidth	III IVIPIZ

High Output Drive

- I_{OH} . . . 57 mA at V_{DD} - 1.5

- IOL . . . 55 mA at 0.5 V

High Slew Rate

- SR+ . . . 16 V/us

- SR-... 19 V/us

Wide Supply Range . . . 4.5 V to 16 V

Supply Current . . . 1.9 mA/Channel

Ultra-Low Power Shutdown Mode
 IDD . . . 125 μA/Channel

Low Input Noise Voltage . . . 7 nV√Hz

• Input Offset Voltage . . . 60 μV

Ultra-Small Packages

- 8 or 10 Pin MSOP (TLC070/1/2/3)

description

Introducing the first members of TI's new BiMOS general-purpose operational amplifier family—the TLC07x. The BiMOS family concept is simple: provide an upgrade path for BiFET users who are moving away from dual-supply to single-supply systems and demand higher ac and dc performance. With performance rated from 4.5 V to 16 V across commercial (0°C to 70°C) and an extended industrial temperature range (−40°C to 125°C), BiMOS suits a wide range of audio, automotive, industrial and instrumentation applications. Familiar features like offset nulling pins, and new features like MSOP PowerPAD™ packages and shutdown modes, enable higher levels of performance in a multitude of applications.

Developed in Tl's patented LBC3 BiCMOS process, the new BiMOS amplifiers combine a very high input impedance low-noise CMOS front end with a high-drive Bipolar output stage—thus providing the optimum performance features of both. AC performance improvements over the TL07x BiFET predecessors include a bandwidth of 10 MHz (an increase of 300%) and voltage noise of 7 nV/ $\sqrt{\text{Hz}}$ (an improvement of 60%). DC improvements include a factor of 4 reduction in input offset voltage down to 1.5 mV (maximum) in the standard grade, and a power supply rejection improvement of greater than 40 dB to 130 dB. Added to this list of impressive features is the ability to drive ± 50 -mA loads comfortably from an ultra-small-footprint MSOP PowerPAD package, which positions the TLC07x as the ideal high-performance general-purpose operational amplifier family.

FAMILY PACKAGE TABLE

DEVICE	NO. OF	NO. OF PACKAGE TYPES		NO. OF PACKAGE TYP		CHUTDOWN	UNIVERSAL
	CHANNELS	MSOP	PDIP	SOIC	TSSOP	SHUTDOWN	EVM BOARD
TLC070	1	8	8	8	-	Yes	
TLC071	1	8	8	8	-		
TLC072	2	8	8	8	-		Refer to the EVM
TLC073	2	10	14	14	-	Yes	Selection Guide (Lit# SLOU060)
TLC074	4	-	14	14	20	SIG-STO	1
TLC075	4	-	16	16	20	Yes	

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerPAD is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of texas instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright @ 1999, Texas Instruments Incorporated

SLOS219B - JUNE 1999 - REVISED NOVEMBER 1999

TLC070 and TLC071 AVAILABLE OPTIONS

	PACKAGED DEVICES	PA	CKAGED DEVIC	ES
T _A	SMALL OUTLINE (D)†	SMALL OUTLINE (DGN)†	SYMBOL	PLASTIC DIP
0°C to 70°C	TLC070CD TLC071CD	TLC070CDGN TLC071CDGN	xxTIACS xxTIACU	TLC070CP TLC071CP
AMMARIES A DE	TLC070ID TLC071ID	TLC070IDGN TLC071IDGN	xxTIACT xxTIACV	TLC070IP TLC071IP
40°C to 125°C	TLC070AID TLC071AID	Tennerio\/	m e.E., 20	TLC070AIP TLC071AIP

This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLC070CDR).

‡ Chip forms are tested at TA = 25°C only.

TLC072 and TLC073 AVAILABLE OPTIONS

	PACKAGED DEVICES									
TA					IA		A	PLASTIC	PLASTIC	
	OUTLINE (D)†	(DGN)†	SYMBOLS	(DGQ)†	SYMBOL§	DIP (N)	DIP (P)			
0°C to 70°C	TLC072CD TLC073CD	TLC072CDGN	xxTIADV —	TLC073CDGQ	— xxTIADX	TLC073CN	TLC072CP			
-40°C to 125°C	TLC072ID TLC073ID	TLC072IDGN	xxTIADW —	TLC073IDGQ	— xxTIADY	TLC073IN	TLC072IP			
-40 C to 125°C	TLC072AID TLC073AID	ushtautini beb	setxe na bn	(0°07th;3°0)	sommercia:	TLC073AIN	TLC072AIP			

[†] This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLC072CDR).

§ xx represents the device date code.

TLC074 and TLC075 AVAILABLE OPTIONS

LOTX BIFET predacessors	PACKAGED DEVICES					
of the meant April 18 SHAVE and its first of the common of	SMALL OUTLINE (D)†	PLASTIC DIP (N)	TSSOP (PWP)†			
0°C to 70°C	TLC074CD	TLC074CN	TLC074CPWP			
	TLC075CD	TLC075CN	TLC075CPWP			
4000 to 40000	TLC074ID	TLC074IN	TLC074IPWP			
	TLC075ID	TLC075IN	TLC075IPWP			
-40°C to 125°C	TLC074AID	TLC074AIN	TLC074AIPWP			
	TLC075AID	TLC075AIN	TLC075AIPWP			

[†]This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLC074CDR).

[‡] Chip forms are tested at TA = 25°C only.

[‡] Chip forms are tested at T_A = 25°C only.

SLOS219B - JUNE 1999 - REVISED NOVEMBER 1999

TLC07x PACKAGE PINOUTS TLC070 TLC071 TLC072 D, DGN OR P PACKAGE D, DGN OR P PACKAGE D. DGN, OR P PACKAGE (TOP VIEW) (TOP VIEW) (TOP VIEW) 8 II SHDN NULL I NULL I 8 III NC 10UT 8 VDD IN- □ 2-1IN- 2A IN- IN- 7 VDD 7 WDD 7 1 2OUT 1IN+ 1 3 4 6 1 2IN-IN+ 🔲 3-L6 DOUT IN+ 1 3 L₆ D OUT 5 NULL 5 NULL GND I 4 GND I 4 GNDIT 4 _ 5 _ 2IN+ TLC074 **TLC073 TLC073** DGQ PACKAGE D OR N PACKAGE D OR N PACKAGE (TOP VIEW) (TOP VIEW) (TOP VIEW) 10UT 19 10 VDD 10UT 1 1 40UT 11N - 13 1 4IN -1IN- = 2.A 10UT 14 VDD 9 1 2OUT 1IN- 1 2A 4 8 = 2IN--13 1 2OUT 1IN+ = 3-₱ 2IN-1IN+ 3 -12 14IN+ 1IN+ ____ 3-GND II 4 -7 - 2IN+ GND I 4 -11 1 2IN+ V_{DD} 4 11 GND 1SHDN III 5 6 III 2SHDN NC III 5 10 NC 2IN+ 5 10 3IN+ 2IN- 6- 9 3IN-POUT 7 8 3OUT 9 III 2SHDN 1SHDN TT 6 NC I 8 III NC 20UT TLC074 TLC075 TLC075 PWP PACKAGE D OR N PACKAGE **PWP PACKAGE** (TOP VIEW) (TOP VIEW) (TOP VIEW) 10UT [1-20 1 4OUT 10UT 1-10UT 1 20 40UT 2-19 4IN-1IN- 2-19 4IN-1IN-1IN+ 3 18 11 4IN+ 1IN+ 3 - 14 1 4IN+ 1IN+ 3--18 4IN+ VDD 4 17 GND V_{DD} 4 13 GND VDD 4 17 III GND 2IN+ 5 7 16 3IN+ 2IN+ 5 - 12 3IN+ □16 □ 3IN+ 2IN+ 1 5-2IN- 6- 15 3IN-2OUT 7- 14 3OUT 2IN- 6- 11 3IN-2OUT 7- 10 3OUT 2IN- 6- 15 3IN-2OUT 7- 14 3OUT 20UT NC B 13 NC 1/2SHDN 8 9 3/4SHDN 1/2SHDN III 8 13 3/4SHDN NC I 9 12 NC 12 NC NC 9 NC 10 11 NC NC 10 11 NC

NC - No internal connection

2-19

SLOS219B - JUNE 1999 - REVISED NOVEMBER 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

See Dissipation Rating Table	
x 0°C to 70°C	
-40°C to 125°C	DOY THE A PLINOR IN A
150°C	Maximum junction temperature, T _J
65°C to 150°C	Storage temperature range, Tstg
or 10 seconds 260°C	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE: All voltage values, except differential voltages, are with respect to GND.

DISSIPATION RATING TABLE

PACKAGE	(°C/W)	θJA (°C/W)	T _A ≤ 25°C POWER RATING
D (8)	38.3	176	710 mW
D (14)	26.9	122.3	1022 mW
D (16)	25.7	114.7	1090 mW
DGN (8)	4.7	52.7	2.37 W
DGQ (10)	4.7	52.3	2.39 W
N (14, 16)	32	78	1600 mW
P (8)	41	104	1200 mW
PWP (20)	1.40	26.1	4.79 W

recommended operating conditions

THE LAND BY THE		MIN	MAX	UNIT
Supply wellings Vi-	Single supply	4.5	16	
Supply voltage, V _{DD}	Split supply	±2.25	±8	V
Common-mode input voltage range, VICR	Date THE LANGE THE AVE	+0.5	V _{DD} -0.8	V
Operating free platement tree T.	C-suffix	0	70	°C
Operating free-air temperature, TA	I-suffix	-40	125	

SLOS219B - JUNE 1999 - REVISED NOVEMBER 1999

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	TAT	MIN	TYP	MAX	UNIT
DAV	ZASSET SYLENGER STATES	EXETTOR	TLC070/1/2/3	25°C		60	1000	
			110070/1/2/3	Full range	anvereille i	englik sig	1500	
		5010f m ₃ R	TLC070/1/2/3A	25°C	THE REAL	20	750	
00	Input offset voltage	V _{DD} = 5 V,	1LC070/1/2/3A	Full range	elevi higi	to inverse	1000	μV
VIO	Input offset voltage	V _{IC} = 2.5,	TI CO74/E	25°C	fuors who	390	1900	μν
		$V_{O} = 2.5,$ Rs = 50 Ω	TLC074/5	Full range			3000	
		NS = 50 12	TLC074/5A	25°C	THE STATE OF	390	1400	
		Pe+102	TLC074/5A	Full range	onte retec	in-dougen	2000	takını
ανιο	Temperature coefficient of input offset voltage	Vice Veces.	V00.01 V d.k = 00V	cites re	Bosen eg	1.2	03	μV/°C
	80 tyrantu-t		080108	25°C	30	0.7	50	
10	Input offset current	V 5 V	TLC07XC		1936	mus yige	100	рА
	Put range [S.A.	V _{DD} = 5 V, V _{IC} = 2.5,	TLC07XI	Full range		CONTRACTOR OF	700	
W	25-0 1 25-0	V _O = 2.5,	Ctalia) of evaluaria	25°C	Stored and	1.5	50	ano
IB	Input bias current	$R_S = 50 \Omega$	TLC07XC		Toyel ing	they from	100	рА
			TLC07XI	Full range	acte of the	MILLS VIGO	700	
Ad	Common-mode input voltage	CMRR > 70 dB,	R _S = 50 Ω	25°C	0.5 to 4.2	08 (607 c C020, 11 to 10°C	00 (M m) - M	V
VICR	ICR range	CMRR > 52 dB,	R _S = 50 Ω	Full range	0.5 to 4.2			V
100		laur 4	4-4	25°C	4.1	4.3		
			I _{OH} = -1 mA	Full range	3.9			
			1	25°C	3.7	4		
			I _{OH} = -20 mA	Full range	3.5			
VOH	High-level output voltage	V _{IC} = 2.5 V	1 OF A	25°C	3.4	3.8		V
			$I_{OH} = -35 \text{ mA}$	Full range	3.2		TO PARTY	
				25°C	3.2	3.6		
		IOH = -	I _{OH} = -50 mA	-40°C to 85°C	3			
is in			lou = 1 mA	25°C		0.18	0.25	
		Market Line	I _{OL} = 1 mA	Full range			0.35	
			los = 20 m4	25°C		0.35	0.39	
			I _{OL} = 20 mA	Full range		E CO	0.45	
VOL	Low-level output voltage	V _{IC} = 2.5 V	101 - 35 mA	25°C		0.43	0.55	٧
			I _{OL} = 35 mA	Full range			0.7	-
				25°C		0.48	0.63	
			I _{OL} = 50 mA	-40°C to 85°C			0.7	
	Chart aircuit autaut aurent	Sourcing		25°C		100		
os	Short-circuit output current	Sinking		25°C		100		mA
10	Output ourrort	V _{OH} = 1.5 V from po	sitive rail	25°C		57		
0	Output current	V _{OL} = 0.5 V from ne	gative rail	25°C		55		mA

[†] Full range is 0°C to 70°C for C suffix and -40°C to 125°C for I suffix. If not specified, full range is -40°C to 125°C.

TLC070, TLC071, TLC072, TLC073, TLC074, TLC075, TLC07xA FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS SLOS219B – JUNE 1999 – REVISED NOVEMBER 1999

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted) (continued)

00	PARAMETER	TEST CON	DITIONS	TAT	MIN	TYP	MAX	UNIT
. 00	Large-signal differential voltage	V 2V	D 4010	25°C	100	120		dB
AVD	amplification	$V_{O(PP)} = 3 V,$	$R_L = 10 \text{ k}\Omega$	Full range	100			UD
ri(d)	Differential input resistance	I Personal Indiana	W Samuel	25°C		1000		GΩ
CIC	Common-mode input capacitance	f = 10 kHz	/10 = 2.8, 20 = 2.8	25°C		22.9		pF
z _o	Closed-loop output impedance	f = 10 kHz,	Ay = 10	25°C		0.25		Ω
CMRR	Common made valenties vatio	Via the OV	D- F0.0	25°C	100	140		dB
CMAR	Common-mode rejection ratio	$V_{IC} = 1 \text{ to } 3 \text{ V},$	$R_S = 50 \Omega$	Full range	100			ab
kove	Supply voltage rejection ratio	V _{DD} = 4.5 V to 16 V,	$V_{IC} = V_{DD}/2$,	25°C	95	130	flo.	dB
ksvr	(ΔV _{DD} /ΔV _{IO})	No load		Full range	95			uВ
Au - 00	Supply current	V _O = 2.5 V,	No load	25°C	mamuo	1.9	2.5	m A
IDD	(per channel)	VO = 2.5 V,	No load	Full range			3.5	mA
V _(ON)	Turnon voltage level	Relative to GND	1.5 × 2.5 × 6 × 6	25°C		1.41		٧
V _(OFF)	Turnoff voltage level	Relative to GND		25°C	shorts	1.4	int /	٧
IDD(SHDN)	Supply current in shutdown mode (per channel)	SHDN ≤ 1.45 V		25°C		125	200	μА
DD(GIIDIA)	(TLC070, TLC073, TLC075)	0.1011211401		Full range			250	par .

[†] Full range is 0°C to 70°C for C suffix and -40°C to 125°C for I suffix. If not specified, full range is -40°C to 125°C.

SLOS219B - JUNE 1999 - REVISED NOVEMBER 1999

operating characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMET	TER AT	TEST CONDI	TIONS	TAT	MIN	TYP	MAX	UNIT	
SR+	Positive slew rate at unity gain		$V_{O(PP)} = 0.8 \text{ V},$	C _L = 50 pF,	25°C	10	16		V/us	
on+	Fositive siew ra	ite at unity gain	$V_{O(PP)} = 0.8 \text{ V},$ $R_{L} = 10 \text{ k}\Omega$		Full range	9.5			V/μS	
SR-	Negative claws	ate at unity gain	V _{O(PP)} = 0.8 V,	C _L = 50 pF,	25°C	12.5	19		V/µs	
on-	rvegative slew i	ate at utility gain	$R_L = 10 \text{ k}\Omega$	V,St = noV	Full range	10			ν/μ5	
V _n Equi	Equivalent inpu	t noise voltage	f = 100 Hz	VIO In 61	25°C		12		nV/√H;	
vn	Equivalent inpu	t Hoise voltage	f = 1 kHz	it = 0.ν	25°C		7		HV/VII	
n	Equivalent inpu	t noise current	f = 1 kHz		25°C		0.6		fA/√H;	
	1002	Harris Helian Iva	V _{O(PP)} = 3 V,	Ay = 1			0.002%			
THD + N	D + N Total harmonic distorti	Total harmonic	distortion plus noise	$R_L = 10 \text{ k}\Omega$ and 250 Ω ,	A _V = 10	25°C	eix(fleco e	0.012%	oT .	ISSN!
			f = 1 kHz	Ay = 100			0.085%			
t(on)	Amplifier turnor	time‡	$R_{I} = 10 \text{ k}\Omega$		25°C		0.15		μs	
t(off)	Amplifier turnof	f time‡] H[= 10 K22	Vitteday	25°C	THE TRAIL	1.3		μs	
	Gain-bandwidth	product	f = 10 kHz,	$R_L = 10 \text{ k}\Omega$	25°C		10		MHz	
			V(STEP)PP = 1 V, A _V = -1,	0.1%		Jenny L	0.18	pol .	8	
ts	Settling time		$C_L = 10 \text{ pF},$ $R_L = 10 \text{ k}\Omega$	0.01%	25°C		0.39		μѕ	
			V(STEP)PP = 1 V, Av = -1,	0.1%	250		0.18			
		6.0	$C_L = 47 \text{ pF},$ $R_L = 10 \text{ k}\Omega$	0.01%			0.39	ma .	ROF	
A	Phase margin	277	$R_L = 10 \text{ k}\Omega$,	C _L = 50 pF	25°C		32°			
φm	r nase margin	THE TEN	$R_L = 10 \text{ k}\Omega$,	C _L = 0 pF	25.0		40°			
	Coin marain	Files manager	$R_L = 10 \text{ k}\Omega$,	C _L = 50 pF	0500		2.2		-ID	
	Gain margin		$R_{L} = 10 \text{ k}\Omega$	C _I = 0 pF	25°C		3.3		dB	

† Full range is 0°C to 70°C for C suffix and -40°C to 125°C for I suffix. If not specified, full range is -40°C to 125°C.

Disable time and enable time are defined as the interval between application of the logic signal to SHDN and the point at which the supply current has reached half its final value.

TLC070, TLC071, TLC072, TLC073, TLC074, TLC075, TLC07xA FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS SLOS219B – JUNE 1999 – REVISED NOVEMBER 1999

electrical characteristics at specified free-air temperature, V_{DD} = 12 V (unless otherwise noted)

	PARAMETER		TEST CO	NDITIONS	TAT	MIN	TYP	MAX	UNIT	
	87 01 1	0128	70 08 m (O	TI 0070/4/0/0	25°C		60	1000		
				TLC070/1/2/3	Full range	THE COLUMN TWO IS NOT	AND PROPERTY.	1500		
			Ag 08 = 10	TI 00701/10/04	25°C		20	750		
ELEV -	0.1			TLC070/1/2/3A	Full range	of sea person study	1. 10 100	1000		
VIO	Input offset voltage		$V_{DD} = 12 V$ $V_{IC} = 6$,	5H,00F=1	25°C		390	1900	μV	
			V _O = 6,	TLC074/5	Full range			3000		
			$R_S = 50 \Omega$	TI COT 1/21	25°C	nedou tugni	390	1400		
			1 = 46.1	TLC074/5A	Full range			2000		
ανιο	Temperature coefficient offset voltage	of input	12. Agra 10.	R ₂ = 10 kG and (50 f = 1 kg/s	seion suig	ocroteth olno	1.2	pid!	μV/°C	
201	at 6	OREC			25°C	Samu nomi	0.7	50	- Inc	
lio	Input offset current		V _{DD} = 12 V	TLC07xC	E. II.	Tarnit Borns	or well i	100	pA	
			V _{IC} = 6,	TLC07xI	Full range	a though elibles	A. Land	700		
		-	V _O = 6,		25°C		1.5	50		
IIB	Input bias current		$R_S = 50 \Omega$	TLC07xC				100	рА	
			Seren	TLC07xI	Full range		1.14	700		
- 11	Common-mode input vo	oltage	CMRR > 70 dB	$R_S = 50 \Omega$	25°C	0.5 to 11.2	retrigo	Betal		
VICR	ICR range		CMRR > 52 dB	R _S = 50 Ω	Full range	0.5 to 11.2			V	
	469	-0-20	Te 0 = 10	20101 × 10	25°C		11.2		77	
			34 52 a 10	IOH = -1 mA	Full range	11				
			He0 = 10	0200	25°C	10.8	10.9	DUYER		
			net list declineds for	I _{OH} = -20 mA	Full range	10.7	17 m	Stern Land		
Vон	High-level output voltage	е	V _{IC} = 6 V	and again re-marked bayler	25°C	10.6	10.7	Bris artif	V	
				$I_{OH} = -35 \text{ mA}$	Full range	10.3	11 (8)	State of the	am es	
					25°C	10.4	10.5			
				I _{OH} = -50 mA	-40°C to 85°C	10.3				
				lou = 1 mA	25°C		0.17	0.25	THE REP	
				I _{OL} = 1 mA	Full range			0.35		
				In 20 mA	25°C		0.35	0.45		
				I _{OL} = 20 mA	Full range			0.5	120	
VOL	Low-level output voltage	Э	V _{IC} = 6 V	lou = 25 mA	25°C	AFELY LEE	0.4	0.52	V	
				I _{OL} = 35 mA	Full range			0.6	1	
					25°C		0.45	0.6		
				I _{OL} = 50 mA	-40°C to 85°C			0.65		
	Chart aircuit autrest aver	ont	Sourcing		25°C		150		m A	
los	Short-circuit output curre	ent	Sinking		25°C		150		mA	
	0.1-1		VOH = 1.5 V from po	ositive rail	25°C		57		Milli	
0	Output current		VOL = 0.5 V from ne		25°C		55		mA	

[†] Full range is 0°C to 70°C for C suffix and -40°C to 125°C for I suffix. If not specified, full range is -40°C to 125°C.

SLOS219B - JUNE 1999 - REVISED NOVEMBER 1999

electrical characteristics at specified free-air temperature, V_{DD} = 12 V (unless otherwise noted) (continued)

	PARAMETER	TEST CONI	DITIONS	TAT	MIN	TYP	MAX	UNIT
Λ	Large-signal differential voltage	Voinni - 9 V	D. 401-0	25°C	120	140	IBON .	dB
AVD	amplification	$V_{O(PP)} = 8 V,$	$R_L = 10 \text{ k}\Omega$	Full range	120			UB
ri(d)	Differential input resistance		D(0) = [R]	25°C	JE STEV I	1000	I PROPERTY.	GΩ
CIC	Common-mode input capacitance	f = 10 kHz	±1001 ≈1	25°C	selon luc	21.6	lupit	pF
z _o	Closed-loop output impedance	f = 10 kHz,	Ay = 10	25°C		0.25	-	Ω
CMRR	Common mode valenties vatio	V 1 to 10 V	D- F0.0	25°C	100	140		dB
CIVIAN	Common-mode rejection ratio	V _{IC} = 1 to 10 V,	$R_S = 50 \Omega$	Full range	100			uБ
kove	Supply voltage rejection ratio	V _{DD} = 4.5 V to 16 V,	V _{IC} = V _{DD} /2,	25°C	95	130		dB
ksvr	(ΔV _{DD} /ΔV _{IO})	No load		Full range	95			UD
las	Supply current	V _O = 7.5 V,	No load	25°C		2.1	2.9	mA
IDD	(per channel)	VO = 7.5 V,	No load	Full range			3.5	IIIA
V(ON)	Turnon voltage level	Relative to GND		25°C		1.39		٧
V(OFF)	Turnoff voltage level	Relative to GND	The Late of the La	25°C		1.38		٧
IDD(SHDN)	Supply current in shutdown mode (TLC070, TLC073,	SHDN ≤ 1.45 V	G_ = 10 pE,	25°C		125	200	μА
DD(CHDIV)	TLC075) (per channel)			Full range			250	

[†] Full range is 0°C to 70°C for C suffix and -40°C to 125°C for I suffix. If not specified, full range is -40°C to 125°C.

TLC070, TLC071, TLC072, TLC073, TLC074, TLC075, TLC07xA FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS SLOS219B – JUNE 1999 – REVISED NOVEMBER 1999

operating characteristics at specified free-air temperature, V_{DD} = 12 V (unless otherwise noted)

	PARAMETER	TEST CONDI	TIONS	TAT	MIN	TYP	MAX	UNIT
SR+	Positive slew rate at unity gain	V _{O(PP)} = 2 V,	C _L = 50 pF,	25°C	10	16		V/µs
SH+	Positive siew rate at unity gain	$R_L = 10 \text{ k}\Omega$		Full range	9.5	angle ely	61	V/μS
SR-	Negative slew rate at unity gain	V _{O(PP)} = 2 V,	C _L = 50 pF,	25°C	12.5	19		V/us
on-	Negative siew rate at unity gain	R _L = 10 kΩ		Full range	10	etalinengi	10	ν/μ5
Vn	Equivalent input noise voltage	f = 100 Hz	site 0 to 3	25°C	Justin 1900	12	00	nV/√Hz
٧n	Equivalent input hoise voltage	f = 1 kHz		25°C		7	-	HV/VIII2
In	Equivalent input noise current	f = 1 kHz		25°C		0.6	200	fA/√Hz
ab je		V _{O(PP)} = 8 V,	A _V = 1	ottan not	ede rejad	0.002%	60	RAMO
THD + N	Total harmonic distortion plus noise	$R_L = 10 \text{ k}\Omega$ and 250 Ω ,	A _V = 10	25°C		0.005%		-
		f = 1 kHz	A _V = 100	CREATER		0.022%	And I	FEVEN
t(on)	Amplifier turnon time‡	D 10 kO		25°C		0.47		μs
t(off)	Amplifier turnoff time‡	$R_L = 10 \text{ k}\Omega$	YO = TEV	25°C		2.5	heili	μs
	Gain-bandwidth product	f = 10 kHz,	R _L = 10 kΩ	25°C		10		MHz
V	86.1 D'88	V(STEP)PP = 1 V, Ay = -1,	0.1%		lavel ag	0.17	UT	(130)
	Settling time	C _L = 10 pF, R _L = 10 kΩ	0.01%	25°C	onte el ima VYO, TLOS	0.22	orp. gal	
t _S	Settling time	V(STEP)PP = 1 V, Av = -1,	0.1%	25 0	Hue O tol	0.17	29 a.e.	μѕ
		$C_L = 47 \text{ pF},$ $R_L = 10 \text{ k}\Omega$	0.01%			0.29		
	Phase margin	$R_L = 10 \text{ k}\Omega$,	C _L = 50 pF	25°C	74	37°		
φm	r nase margin	$R_L = 10 \text{ k}\Omega$,	C _L = 0 pF	250	12500	42°		
	Gain margin	R _L = 10 kΩ,	C _L = 50 pF	25°C		3.1		dB
	Gairmargin	$R_{I} = 10 \text{ k}\Omega$	C _L = 0 pF	25.0	0=100	4		aB

[†] Full range is 0°C to 70°C for C suffix and -40°C to 125°C for I suffix. If not specified, full range is -40°C to 125°C.

Disable time and enable time are defined as the interval between application of the logic signal to SHDN and the point at which the supply current has reached half its final value.

SLOS219B - JUNE 1999 - REVISED NOVEMBER 1999

TYPICAL CHARACTERISTICS

Table of Graphs

STANDERS.	TO A STATE OF THE		FIGURE
VIO	Input offset voltage	vs Common-mode input voltage	1, 2
lio	Input offset current	vs Free-air temperature	3, 4
IB	Input bias current	vs Free-air temperature	3, 4
Vон	High-level output voltage	vs High-level output current	5, 7
VOL	Low-level output voltage	vs Low-level output current	6, 8
Zo	Output impedance	vs Frequency	9
IDD	Supply current	vs Supply voltage	10
PSRR	Power supply rejection ratio	vs Frequency	11
CMRR	Common-mode rejection ratio	vs Frequency	12
Vn	Equivalent input noise voltage	vs Frequency	13
VO(PP)	Peak-to-peak output voltage	vs Frequency	14, 15
8.00	Crosstalk	vs Frequency	16
	Differential voltage gain	vs Frequency	17, 18
OV TUEST	Phase	vs Frequency	17, 18
∳m	Phase margin	vs Load capacitance	19, 20
	Gain margin	vs Load capacitance	21, 22
	Gain-bandwidth product	vs Supply voltage	23
SR	Slew rate	vs Supply voltage vs Free-air temperature	24 25, 26
TUD . N	Tatal bassassis distantias also salas	vs Frequency	27, 28
THD + N	Total harmonic distortion plus noise	vs Peak-to-peak output voltage	29, 30
	Large-signal follower pulse response	vs Time	31, 32
N FF	Small-signal follower pulse response	vs Time	33
	Large-signal inverting pulse response	vs Time	34, 35
EDIT	Small-signal inverting pulse response	vs Time	36
18 30 18 4	Shutdown forward isolation	vs Frequency	37, 38
thermal popular	Shutdown reverse isolation	vs Frequency	39, 40
	Chutdown gunnly gurrent	vs Supply voltage	41
muadani	Shutdown supply current	vs Free-air temperature	42
	Shutdown pulse		43, 44

SLOS219B - JUNE 1999 - REVISED NOVEMBER 1999

TYPICAL CHARACTERISTICS

SLOS219B - JUNE 1999 - REVISED NOVEMBER 1999

TYPICAL CHARACTERISTICS

SLOS219B - JUNE 1999 - REVISED NOVEMBER 1999

TYPICAL CHARACTERISTICS

Figure 22

Figure 23

Figure 24

SLOS219B - JUNE 1999 - REVISED NOVEMBER 1999

TYPICAL CHARACTERISTICS

SLOS219B - JUNE 1999 - REVISED NOVEMBER 1999

TYPICAL CHARACTERISTICS

PARAMETER MEASUREMENT INFORMATION

APPLICATION INFORMATION

input offset voltage null circuit

The TLC070 and TLC071 has an input offset nulling function. Refer to Figure 46 for the diagram.

NOTE A. If R1 = 5.6 k Ω for offset voltage adjustment of ± 10 mV. If R1 = 20 k Ω for offset voltage adjustment of ± 3 mV.

Figure 46. Input Offset Voltage Null Circuit

APPLICATION INFORMATION

driving a capacitive load

When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the device's phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater than 10 pF, it is recommended that a resistor be placed in series (R_{NULL}) with the output of the amplifier, as shown in Figure 47. A minimum value of 20 Ω should work well for most applications.

Figure 47. Driving a Capacitive Load

offset voltage

The output offset voltage, (V_{OO}) is the sum of the input offset voltage (V_{IO}) and both input bias currents (I_{IB}) times the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage:

Figure 48. Output Offset Voltage Model

APPLICATION INFORMATION

high speed CMOS input amplifiers

The TLC07x is a family of high-speed low-noise CMOS input operational amplifiers and has an input capacitance of the order of 20 pF. Any resistor used in the feedback path adds a pole in the transfer function equivalent to the input capacitance multiplied by the combination of source resistance and feedback resistance. For example, a gain of -10, source resistance of 1 k Ω and a feedback resistance of 10 k Ω adds an additional pole at approximately 8 MHz. This is more apparent with CMOS amplifiers than bipolar amplifiers due to their greater input capacitance.

This is of little consequence on slower CMOS amplifiers, as this pole normally occurs at frequencies above their unity-gain bandwidth. However, the TLC07x with its 10-MHz bandwidth means that this pole normally occurs at frequencies where there is on the order of 5 dB gain left and the phase shift adds considerably.

The effect of this pole is the strongest with large feedback resistances at small closed loop gains. As the feedback resistance is increased, the gain peaking increases at a lower frequency and the 180° phase shift crossover point also moves down in frequency, decreasing the phase margin.

For the TLC07x, the maximum feedback resistor recommended is $5 \text{ k}\Omega$, larger resistances can be used but a capacitor in parallel with the feedback resistor is recommended to counter the effects of the input capacitance pole.

The TLC073 with a 1-V step response has an 80% overshoot with a natural frequency of 3.5 MHz when configured as a unity gain buffer and with a $10-k\Omega$ feedback resistor. By adding a 10-pF capacitor in parallel with the feedback resistor, the overshoot is reduced to 40% and eliminates the natural frequency, resulting in a much faster settling time (see Figure 49). The 10-pF capacitor was chosen for convenience only.

Load capacitance had little effect on these measurements due to the excellent output drive capability of the TLC07x.

Figure 49. 1-V Step Response

APPLICATION INFORMATION

general configurations

When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifer (see Figure 50).

$$V_{I} = \begin{pmatrix} R_{F} \\ V_{O} \\ V_{I} \end{pmatrix} = \begin{pmatrix} 1 + \frac{R_{F}}{R_{G}} \end{pmatrix} \begin{pmatrix} \frac{1}{1 + sR1C1} \end{pmatrix}$$

Figure 50. Single-Pole Low-Pass Filter

If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure to do this can result in phase shift of the amplifier.

Figure 51. 2-Pole Low-Pass Sallen-Key Filter

SLOS219B - JUNE 1999 - REVISED NOVEMBER 1999

APPLICATION INFORMATION

shutdown function

Three members of the TLC07x family (TLC070/3/5) have a shutdown terminal (\overline{SHDN}) for conserving battery life in portable applications. When the shutdown terminal is tied low, the supply current is reduced to 16 nA/channel, the amplifier is disabled, and the outputs are placed in a high-impedance mode. To enable the amplifier, the shutdown terminal can either be left floating or pulled high. When the shutdown terminal is left floating, care should be taken to ensure that parasitic leakage current at the shutdown terminal does not inadvertently place the operational amplifier into shutdown. The shutdown terminal threshold is always referenced to $V_{DD}/2$. Therefore, when operating the device with split supply voltages (e.g. ± 2.5 V), the shutdown terminal needs to be pulled to V_{DD} — (not GND) to disable the operational amplifier.

The amplifier's output with a shutdown pulse is shown in Figures 43 and 44. The amplifier is powered with a single 5-V supply and is configured as noninverting with a gain of 5. The amplifier turnon and turnoff times are measured from the 50% point of the shutdown pulse to the 50% point of the output waveform. The times for the single, dual, and quad are listed in the data tables.

Figures 37, 38, 39, and 40 show the amplifier's forward and reverse isolation in shutdown. The operational amplifier is configured as a voltage follower ($A_V = 1$). The isolation performance is plotted across frequency using 0.1 V_{PP}, 2.5 V_{PP}, and 5 V_{PP} input signals at ± 2.5 V supplies and 0.1 V_{PP}, 8 V_{PP}, and 12 V_{PP} input signals at ± 6 V supplies.

circuit layout considerations

To achieve the levels of high performance of the TLC07x, follow proper printed-circuit board design techniques. A general set of guidelines is given in the following.

- Ground planes It is highly recommended that a ground plane be used on the board to provide all
 components with a low inductive ground connection. However, in the areas of the amplifier inputs and
 output, the ground plane can be removed to minimize the stray capacitance.
- Proper power supply decoupling Use a 6.8-μF tantalum capacitor in parallel with a 0.1-μF ceramic capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the application, but a 0.1-μF ceramic capacitor should always be used on the supply terminal of every amplifier. In addition, the 0.1-μF capacitor should be placed as close as possible to the supply terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less effective. The designer should strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors.
- Sockets Sockets can be used but are not recommended. The additional lead inductance in the socket pins
 will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board
 is the best implementation.
- Short trace runs/compact part placements Optimum high performance is achieved when stray series
 inductance has been minimized. To realize this, the circuit layout should be made as compact as possible,
 thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of
 the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at
 the input of the amplifier.
- Surface-mount passive components Using surface-mount passive components is recommended for high
 performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of
 surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small
 size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray
 inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be
 kept as short as possible.

APPLICATION INFORMATION

general PowerPAD™ design considerations

The TLC07x is available in a thermally-enhanced PowerPAD family of packages. These packages are constructed using a downset leadframe upon which the die is mounted [see Figure 52(a) and Figure 52(b)]. This arrangement results in the lead frame being exposed as a thermal pad on the underside of the package [see Figure 52(c)]. Because this thermal pad has direct thermal contact with the die, excellent thermal performance can be achieved by providing a good thermal path away from the thermal pad.

The PowerPAD package allows for both assembly and thermal management in one manufacturing operation. During the surface-mount solder operation (when the leads are being soldered), the thermal pad can also be soldered to a copper area underneath the package. Through the use of thermal paths within this copper area, heat can be conducted away from the package into either a ground plane or other heat dissipating device.

The PowerPAD package represents a breakthrough in combining the small area and ease of assembly of surface mount with the, heretofore, awkward mechanical methods of heatsinking.

NOTE B. The thermal pad is electrically isolated from all terminals in the package.

Figure 52. Views of Thermally Enhanced DGN Package

Thermal Pad Area

Although there are many ways to properly heatsink the PowerPAD package, the following steps illustrate the recommended approach.

Single or Dual 68 mils x 70 mils) with 5 vias (Via diameter = 13 mils) 78 mils x 94 mils) with 9 vias (Via diameter = 13 mils)

Figure 53. PowerPAD PCB Etch and Via Pattern

PowerPAD is a trademark of Texas Instruments Incorporated

TLC070, TLC071, TLC072, TLC073, TLC074, TLC075, TLC07xA FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS

SLOS219B - JUNE 1999 - REVISED NOVEMBER 1999

APPLICATION INFORMATION

general PowerPAD design considerations (continued)

- 1. Prepare the PCB with a top side etch pattern as shown in Figure 53. There should be etch for the leads as well as etch for the thermal pad.
- 2. Place five holes (dual) or nine holes (quad) in the area of the thermal pad. These holes should be 13 mils in diameter. Keep them small so that solder wicking through the holes is not a problem during reflow.
- 3. Additional vias may be placed anywhere along the thermal plane outside of the thermal pad area. This helps dissipate the heat generated by the TLC07x IC. These additional vias may be larger than the 13-mil diameter vias directly under the thermal pad. They can be larger because they are not in the thermal pad area to be soldered so that wicking is not a problem.
- 4. Connect all holes to the internal ground plane.
- 5. When connecting these holes to the ground plane, **do not** use the typical web or spoke via connection methodology. Web connections have a high thermal resistance connection that is useful for slowing the heat transfer during soldering operations. This makes the soldering of vias that have plane connections easier. In this application, however, low thermal resistance is desired for the most efficient heat transfer. Therefore, the holes under the TLC07x PowerPAD package should make their connection to the internal ground plane with a complete connection around the entire circumference of the plated-through hole.
- The top-side solder mask should leave the terminals of the package and the thermal pad area with its five holes (dual) or nine holes (quad) exposed. The bottom-side solder mask should cover the five or nine holes of the thermal pad area. This prevents solder from being pulled away from the thermal pad area during the reflow process.
- 7. Apply solder paste to the exposed thermal pad area and all of the IC terminals.
- 8. With these preparatory steps in place, the TLC07x IC is simply placed in position and run through the solder reflow operation as any standard surface-mount component. This results in a part that is properly installed.

For a given θ_{JA} , the maximum power dissipation is shown in Figure 54 and is calculated by the following formula:

$$\mathsf{P}_{D} = \left(\frac{\mathsf{T}_{MA} \mathsf{X}^{-\mathsf{T}} \mathsf{A}}{\theta_{JA}}\right)$$

Where:

P_D = Maximum power dissipation of TLC07x IC (watts)

T_{MAX} = Absolute maximum junction temperature (150°C)

T_A = Free-ambient air temperature (°C)

 $\theta_{JA} = \theta_{JC} + \theta_{CA}$

 $\theta_{\mbox{\scriptsize JC}}$ = Thermal coefficient from junction to case

θ_{CA} = Thermal coefficient from case to ambient air (°C/W)

APPLICATION INFORMATION

general PowerPAD design considerations (continued)

MAXIMUM POWER DISSIPATION vs

NOTE A. Results are with no air flow and using JEDEC Standard Low-K test PCB.

Figure 54. Maximum Power Dissipation vs Free-Air Temperature

The next consideration is the package constraints. The two sources of heat within an amplifier are quiescent power and output power. The designer should never forget about the quiescent heat generated within the device, especially muti-amplifier devices. Because these devices have linear output stages (Class A-B), most of the heat dissipation is at low output voltages with high output currents.

The other key factor when dealing with power dissipation is how the devices are mounted on the PCB. The PowerPAD devices are extremely useful for heat dissipation. But, the device should always be soldered to a copper plane to fully use the heat dissipation properties of the PowerPAD. The SOIC package, on the other hand, is highly dependent on how it is mounted on the PCB. As more trace and copper area is placed around the device, θ_{JA} decreases and the heat dissipation capability increases. The currents and voltages shown in these graphs are for the total package. For the dual or quad amplifier packages, the sum of the RMS output currents and voltages should be used to choose the proper package.

TLC070, TLC071, TLC072, TLC073, TLC074, TLC075, TLC07xA FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS

SLOS219B - JUNE 1999 - REVISED NOVEMBER 1999

APPLICATION INFORMATION

macromodel information

Macromodel information provided was derived using Microsim $Parts^{TM}$, the model generation software used with Microsim $PSpice^{TM}$. The Boyle macromodel (see Note 1) and subcircuit in Figure 55 are generated using the TLC07x typical electrical and operating characteristics at $T_A = 25^{\circ}C$. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification

- Unity-gain frequency
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- Short-circuit output current limit

NOTE 1: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers," *IEEE Journal of Solid-State Circuits*, SC-9, 353 (1974).

APPLICATION INFORMATION

Figure 55. Boyle Macromodel and Subcircuit

TLC080, TLC081, TLC082, TLC083, TLC084, TLC085, TLC08xA FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS

SLOS254B - JUNE 1999 - REVISED NOVEMBER 1999

8 SHDN

7 DVDD

L6 DOUT

5 NULL

TLC080 D, DGN OR P PACKAGE

(TOP VIEW)

NULL 10 10 1N 2-

IN+ 1 3

GND 4

- Wide Bandwidth . . . 10 MHz
- High Output Drive
 - I_{OH} . . . 57 mA at V_{DD} 1.5
 - IOL ... 55 mA at 0.5 V
- High Slew Rate
 - SR+ . . . 16 V/μs
 - SR-... 19 V/μs
- Wide Supply Range . . . 4.5 V to 16 V
- Supply Current . . . 1.9 mA/Channel
- Ultra-Low Power Shutdown Mode
 I_{DD} . . . 125 μA/Channel
- Low Input Noise Voltage . . . 8.5 nV√Hz
- Wide V_{ICR} . . . 0 to V_{DD} 1
- Input Offset Voltage . . . 60 μV
- Ultra-Small Packages
 - 8 or 10 Pin MSOP (TLC080/1/2/3)

description

Introducing the first members of Tl's new BiMOS general-purpose operational amplifier family—the TLC08x. The BiMOS family concept is simple: provide an upgrade path for BiFET users who are moving away from dual-supply to single-supply systems and demand higher ac and dc performance. With performance rated from 4.5 V to 16 V across commercial (0°C to 70°C) and an extended industrial temperature range (−40°C to 125°C), BiMOS suits a wide range of audio, automotive, industrial and instrumentation applications. Familiar features like offset nulling pins, and new features like MSOP PowerPAD™ packages and shutdown modes, enable higher levels of performance in a multitude of applications.

Developed in Ti's patented LBC3 BiCMOS process, the new BiMOS amplifiers combine a very high input impedance, low-noise CMOS front end with a high-drive Bipolar output stage—thus providing the optimum performance features of both. AC performance improvements over the TL08x BiFET predecessors include a bandwidth of 10 MHz (an increase of 300%) and voltage noise of 8.5 nV/ $\sqrt{\rm Hz}$ (an improvement of 60%). DC improvements include an ensured V_{ICR} that includes ground, a factor of 4 reduction in input offset voltage down to 1.5 mV (maximum) in the standard grade, and a power supply rejection improvement of greater than 40 dB to 130 dB. Added to this list of impressive features is the ability to drive ± 50 -mA loads comfortably from an ultra-small-footprint MSOP PowerPAD package, which positions the TLC08x as the ideal high-performance general-purpose operational amplifier family.

FAMILY PACKAGE TABLE

DEVICE	NO. OF		PACKAGE TYPES				UNIVERSAL	
DEVICE	CHANNELS	MSOP	PDIP	SOIC	TSSOP	SHUTDOWN	EVM BOARD	
TLC080	1	8	8	8	_	Yes		
TLC081	1	8	8	8				
TLC082	2	8	8	8	-		Refer to the EVM	
TLC083	2	10	14	14	-	Yes	Selection Guide (Lit# SLOU060)	
TLC084	4	-	14	14	20		(Litin OLOGOO)	
TLC085	4	_	16	16	20	Yes		

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerPAD is a trademark of Texas Instruments Incorporated

TEXAS INSTRUMEN Copyright © 1999, Texas Instruments Incorporated

TLC080 and TLC081 AVAILABLE OPTIONS

WEIV 901)	PACKAGED DEVICES	PACKAGED DEVICES				
TA C. F.	SMALL OUTLINE (D)†	SMALL OUTLINE (DGN)†	SYMBOL	PLASTIC DIP		
0°C to 70°C	TLC080CD TLC081CD	TLC080CDGN TLC081CDGN	xxTIACW xxTIACY	TLC080CP TLC081CP		
ARM DELS AF	TLC080ID TLC081ID	TLC080IDGN TLC081IDGN	xxTIACX xxTIACZ	TLC080IP TLC081IP		
-40°C to 125°C	TLC080AID TLC081AID	Chennel	Am 8	TLC080AIP TLC081AIP		

[†] This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLC080CDR).

‡ Chip forms are tested at TA = 25°C only.

TLC082 and TLC083 AVAILABLE OPTIONS

	PACKAGED DEVICES								
TA	SMALL		MS	OP	PLASTIC	PLASTIC			
	OUTLINE (D)†	(DGN)†	SYMBOL§	(DGQ)†	SYMBOLS	DIP (N)	DIP (P)		
0°C to 70°C	TLC082CD TLC083CD	TLC082CDGN	xxTIADZ —	TLC083CDGQ	— xxTIAEB	TLC083CN	TLC082CP		
800 IT AN - Vinnet	TLC082ID TLC083ID	TLC082IDGN	xxTIAEA —	TLC083IDGQ	xxTIAEC	TLC083IN	TLC082IP		
-40°C to 125°C	TLC082AID TLC083AID	and doperfor	ener <u>lo</u> ld bri	emes <u>e</u> ns ems	eva <u>vil</u> gaus	TLC083AIN	TLC082AIP		

[†] This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLC082CDR).

‡ Chip forms are tested at T_A = 25°C only. § xx represents the device date code.

TLC084 and TLC085 AVAILABLE OPTIONS

	PACKAGED DEVICES					
TA TERMEN	SMALL OUTLINE (D)†	PLASTIC DIP (N)	TSSOP (PWP)†			
0°C to 70°C	TLC084CD	TLC084CN	TLC084CPWP			
	TLC085CD	TLC085CN	TLC085CPWP			
STORMS AND AMOUNT AND COMMENTS	TLC084ID	TLC084IN	TLC084IPWP			
	TLC085ID	TLC085IN	TLC085IPWP			
-40°C to 125°C	TLC084AID	TLC084AIN	TLC084AIPWP			
	TLC085AID	TLC085AIN	TLC085AIPWP			

This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLC084CDR).

‡ Chip forms are tested at TA = 25°C only.

TLC080, TLC081, TLC082, TLC083, TLC084, TLC085, TLC08xA FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS

SLOS254B - JUNE 1999 - REVISED NOVEMBER 1999

TLC08x PACKAGE PINOUTS TLC080 TLC081 TLC082 D, DGN OR P PACKAGE D. DGN, OR P PACKAGE D, DGN OR P PACKAGE (TOP VIEW) (TOP VIEW) (TOP VIEW) NULL 10 8 II NC 10UT 19 8 SHDN 8 VDD NULL I IN- 12 7 1 V_{DD} 1IN- 2A 7 1 2OUT IN- 2 7 VDD 1IN+ 1 3 4 6 1 2IN-6 DOUT IN+ 3 L₆ U OUT IN+ 🔲 3 GND T 4 GND 4 5 NULL _ 5 □ 2IN+ 5 NULL GND 4 TLC084 TLC083 TLC083 D OR N PACKAGE DGQ PACKAGE D OR N PACKAGE (TOP VIEW) (TOP VIEW) (TOP VIEW) 10UT 19 10 VDD 10UT 14 VDD 10UT 1 1 40UT 11N - 13 14 11N -1IN- = 2 9 20UT 2IN-1IN- 1 2A _13 ___ 2OUT 1IN+ == 3-1IN+ 3 4-12 1N-1IN+ 3 -12 T 4IN+ GND 4 _ 7 ___ 2IN+ GND I 4 -11 - 2IN+ V_{DD} 4 11 GND 6 III 2SHDN 1SHDN III 5 2IN+ 5 - 10 3IN+ NC III 5 10 NC 2IN- 6- 9 3IN-2OUT 7- 8 3OUT 1SHDN III 6 9 III 2SHDN NC II 7 8 NC 20UT **TLC084 TLC085** TLC085 **PWP PACKAGE** PWP PACKAGE D OR N PACKAGE (TOP VIEW) (TOP VIEW) (TOP VIEW) 10UT 16 40UT 11N- 12 15 11 41N-10UT 1 1 20 40UT 10UT 1 2 20 40UT 11N- 12 41N-10UT 1 1IN+ 1 3- 14 1 4IN+ 18 10 4IN+ 1IN+ 3 18 7 4IN+ 1IN+ II 3-V_{DD} 4 13 GND VDD 4 17 GND VDD 4 17 GND 2IN+ 5 16 3IN+ 2IN- 6 15 3IN-2OUT 7 14 3OUT 2IN+ 5 7 16 3IN+ 2IN+ 157 12 3IN+ 2IN- 6-7 11 3IN-2OUT 7 7 3OUT 2IN- 15 13IN-20UT 17-14 1 3OUT 14 1 30UT NC I 8 13 NC 9 3/4SHDN 1/2SHDN 8 13 3/4SHDN 12 NC 12 NC NC I 9 NC II 9 NC 10 11 NC 11 NC NC III 10

NC - No internal connection

TLC080, TLC081, TLC082, TLC083, TLC084, TLC085, TLC08xA FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS

SLOS254B - JUNE 1999 - REVISED NOVEMBER 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{DD} (see Note 1)	
Differential input voltage, V _{ID}	±V _{DD}
Continuous total power dissipation	
Operating free-air temperature range, TA: C suffix	0°C to 70°C
I suffix	
Maximum junction temperature, T _J	150°C
Storage temperature range, T _{stq}	65°C to 150°C
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE: All voltage values, except differential voltages, are with respect to GND.

DISSIPATION RATING TABLE

PACKAGE	θJC (°C/W)	θJA (°C/W)	T _A ≤ 25°C POWER RATING
D (8)	38.3	176	710 mW
D (14)	26.9	122.3	1022 mW
D (16)	25.7	114.7	1090 mW
DGN (8)	4.7	52.7	2.37 W
DGQ (10)	4.7	52.3	2.39 W
N (14, 16)	32	78	1600 mW
P (8)	41	104	1200 mW
PWP (20)	1.40	26.1	4.79 W

recommended operating conditions

ION CENTAL PERIOD	THE PARTY OF THE P	MIN	MAX	UNIT
Complete State of the state of	Single supply	4.5	16	V
ipply voltage, V _{DD}	Split supply	±2.25	±8	V
Common-mode input voltage range, VICR	AND TELEVISION OF THE AND	GND V _{DD} -1		V
Operating free-air temperature, TA	C-suffix	0 0	70	00
	I-suffix	-40	125	°C

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	TAT	MIN	TYP	MAX	UNIT
3 1934	TELEVISION OF THE PARTY OF THE	ON JUST LEV	TI C000/4/0/0	25°C		60	1000	
		OLOTA JA	TLC080/1/2/3	Full range	Empre Bib I	and landy	1500	
			TI 0000/1/10/04	25°C		20	750	
90	0007	V _{DD} = 5 V,	TLC080/1/2/3A	Full range		Control of	1000	
VIO	Input offset voltage	V _{IC} = 2.5,		25°C	TOURS SER	390	1900	μV
		V _O = 2.5,	TLC084/5	Full range			3000	
		$R_S = 50 \Omega$		25°C		390	1400	
		E 56 + pR	TLC084/5A	Full range	arjen abo	m-namm	2000	FIFTE
ανιο	Temperature coefficient of input offset voltage	ShogV = ON	Ar at V BA = GCV	edin št	roejot apj	1.2	u8	μV/°(
				25°C	10	1.9	50	
10	Input offset current	V _{DD} = 5 V,	TLC08XC		17	Minh Aidil	100	pA
	各组 (R) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B	V _{IC} = 5 V, V _{IC} = 2.5,	TLC08XI	Full range			700	
T.V	A SUBJECT OF SUBJECT O	V _O = 2.5,	DMC IN BUILDING	25°C	TOWN OF	3	50	(05.)
IB	Input bias current	$R_S = 50 \Omega$	TLC08XC		1979 (4)	MOV SOF	100	pA
	26°C 235 200		TLC08XI	Full range	urle mi Inc	mus yiek	700	
	Common-mode input voltage CR range	CMRR > 70 dB,	R _S = 50 Ω	25°C	0 to 3.5	0 00 or	(T)	pers fac
VICR		CMRR > 52 dB,	R _S = 50 Ω	Full range	0 to 3.5			V
				25°C	4.1	4.3		
			IOH = -1 mA	Full range	3.9			
			I _{OH} = -20 mA	25°C	3.7	4		٧
		1-1-		Full range	3.5			
Vон	High-level output voltage	V _{IC} = 2.5 V		25°C	3.4	3.8		
011		,,,	IOH = -35 mA	Full range	3.2			
				25°C	3.2	3.6		
			$I_{OH} = -50 \text{ mA}$	-40°C to 85°C	3			
			1	25°C		0.18	0.25	
			I _{OL} = 1 mA	Full range	EURIN		0.35	
			1	25°C		0.35	0.39	
			I _{OL} = 20 mA	Full range			0.45	
VOL	Low-level output voltage	V _{IC} = 2.5 V	1- 25 m A	25°C		0.43	0.55	٧
			I _{OL} = 35 mA	Full range		ALC: N	0.7	
			25°C		0.45	0.63		
		I _{OL} = 50 mA	-40°C to 85°C			0.7		
	Ob-1-1-1-1	Sourcing		25°C		100		
os	Short-circuit output current	Sinking		25°C		100		mA
		V _{OH} = 1.5 V from po	ositive rail	25°C		57		
0	Output current	V _{OL} = 0.5 V from ne		25°C		55		mA

[†] Full range is 0°C to 70°C for C suffix and -40°C to 125°C for I suffix. If not specified, full range is -40°C to 125°C.

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS	TAT	MIN	TYP	MAX	UNIT		
. 100	Large-signal differential voltage	V 2.V	D 4010	25°C	100	120		dB		
AVD	amplification	VO(PP) = 3 V,	$R_L = 10 \text{ k}\Omega$	Full range	Full range	Full range	100			ub
ri(d)	Differential input resistance	NAME AND ADDRESS OF THE PARTY O		25°C		1000		GΩ		
CIC	Common-mode input capacitance	f = 10 kHz	,ä.\$ + g.V	25°C	attenday	22.9		pF		
z _o	Closed-loop output impedance	f = 10 kHz,	Ay = 10	25°C		0.25		Ω		
CMRR	Common-mode rejection ratio	V _{IC} = 0 to 3 V, R _S = 50	D- 500	25°C	100	140		dB		
			NS = 50 22	Full range	100			UD		
keyen	Supply voltage rejection ratio	V _{DD} = 4.5 V to 16 V,	V _{IC} = V _{DD} /2,	25°C	95	130	(h	dB		
ksvr	(ΔV _{DD} /ΔV _{IO})	No load		Full range	95			UB		
India 100	Supply current	V _O = 2.5 V,	No load	25°C	Durging	1.8	2.5	mA		
IDD	(per channel)	VO = 2.5 V,	NO IOAU	Full range			3.5	IIIA		
V(ON)	Turnon voltage level	Relative to GND	4.5 = 01	25°C		1.41		V		
V(OFF)	Turnoff voltage level	Relative to GND	17.00 = 58	25°C	- Internal	1.4	ned -	٧		
IDD(SHDN)	Supply current in shutdown mode (per channel)	SHDN ≤ 1.45 V		25°C		125	200	μА		
-DD(SHDN)	(TLC080, TLC083, TLC085)	011011 2 1.70 1		Full range			250	189		

† Full range is 0°C to 70°C for C suffix and -40°C to 125°C for I suffix. If not specified, full range is -40°C to 125°C.

operating characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

THE	PARAMETER	TEST CONDIT	TIONS	TAT	MIN	TYP	MAX	UNIT	
SR+	Positive slew rate at unity gain	$V_{O(PP)} = 0.8 \text{ V},$	C _L = 50 pF,	25°C	10	16		V/µs	
Sn+	Positive siew rate at unity gain	$R_L = 10 \text{ k}\Omega$		Full range	9.5			ν/μο	
SR-	Negative slew rate at unity gain	$V_{O(PP)} = 0.8 \text{ V},$	C _L = 50 pF,	25°C	12.5	19		V/µs	
on-	ivegative siew rate at unity gain	$R_L = 10 \text{ k}\Omega$	N N month	Full range	10			ν/μ5	
Vn	Equivalent input noise voltage	f = 100 Hz	100 Hz 25°C 12			nV/√H			
vn	Equivalent input noise voltage	f = 1 kHz		25°C		8.5		NV/VM	
In	Equivalent input noise current	f = 1 kHz	= 1 kHz			0.6		fA/√H	
	Total harmonic distortion plus noise	V _{O(PP)} = 3 V,	A _V = 1			0.002%			
THD + N		$R_L = 10 \text{ k}\Omega$ and 250 Ω ,	Ay = 10	25°C	aiollispa (0.012%			
		f = 1 kHz	Ay = 100			0.085%	200		
t(on)	Amplifier turnon time‡	D. 1010		25°C		0.15		μs	
t(off)	Amplifier turnoff time‡	$R_L = 10 \text{ k}\Omega$	VSEs and	25°C	1.3			μs	
	Gain-bandwidth product	f = 10 kHz,	$R_L = 10 \text{ k}\Omega$	25°C		10		MHz	
10	201	V(STEP)PP = 1 V, Ay = -1,			Priorita	0.18	911	. 81	
ts	Settling time	$C_L = 10 \text{ pF},$ $R_L = 10 \text{ k}\Omega$	0.01%	25°C		0.39		μѕ	
'S	Seturing units	V(STEP)PP = 1 V, Ay = -1,	0.1%	25 0		0.18			
	D Avenue lines	$C_L = 47 \text{ pF},$ $R_L = 10 \text{ k}\Omega$	0.01%			0.39	182		
	Phase margin	$R_L = 10 \text{ k}\Omega$	C _L = 50 pF	25°C		32°			
φm	rnase margin	$R_L = 10 \text{ k}\Omega$, $C_L = 0 \text{ pF}$		25°C		40°			
	Colombia Transport	$R_L = 10 \text{ k}\Omega$	C _L = 50 pF	0500		2.2		-10	
	Gain margin	in margin $R_{l} = 10 \text{ k}\Omega, \qquad C_{l}$		25°C		3.3		dB	

† Full range is 0°C to 70°C for C suffix and -40°C to 125°C for I suffix. If not specified, full range is -40°C to 125°C.

Disable time and enable time are defined as the interval between application of the logic signal to SHDN and the point at which the supply current has reached half its final value.

electrical characteristics at specified free-air temperature, V_{DD} = 12 V (unless otherwise noted)

THU	PARAMETER	TEST CO	NDITIONS	TAT	MIN	TYP	MAX	UNIT	
edV -	91 07 D725	Physica po	TLC080/1/2/3	25°C		60	1000		
			11.0080/1/2/3	Full range			1500		
		3e03 × 10	TI 0000/4/0/04	25°C		20	750		
silly !-	at the lagranter	V _{DD} = 12 V	TLC080/1/2/3A	Full range			1000		
VIO	Input offset voltage	V _{IC} = 6,	TI 0004/5	25°C		390	1900	μV	
		V _O = 6,	TLC084/5	Full range			3000	and the	
		$R_S = 50 \Omega$	TI 0004/54	25°C	o elleri (l	390	1400		
		1 - vs.	TLC084/5A	Full range			2000		
ανιο	Temperature coefficient of input offset voltage	2 Ay = 10 Av = 100	occiona carón 4 jaj anti trad	aniom soliq	solnetsib	1.2	letoT	μV/°C	
04	and oras			25°C	Tarabin.	1.5	50	(mp)	
110	Input offset current	V _{DD} = 12 V	TLC08xC	Full range	Await B	Server seets	100	pA	
		V _{IC} = 6,	TLC08xI	Full range	loubroup ri	Color Corner	700		
		$V_0 = 6,$	V F and a second	25°C		2	50		
IIB	Input bias current	$R_S = 50 \Omega$	TLC08xC	Full senses			100	pA	
		anga h	TLC08xI	Full range			700		
	Common-mode input voltage	CMRR > 70 dB	R _S = 50 Ω	25°C	0 to 10.5	WALL BY	ilmail -		
VICR		CMRR > 52 dB	R _S = 50 Ω	Full range	0 to 10.5			V	
	7014	30.0 a 10	Ri e 1010	25°C	11.1	11.2			
		34,06 = 30 3446 = 30	$I_{OH} = -1 \text{ mA}$	Full range	11				
			Person po	him him a	25°C	10.8	11	sents.	
				$I_{OH} = -20 \text{ mA}$	Full range	10.7	Mary Val	-	on any Horizon
VOH	High-level output voltage	V _{IC} = 6 V	I _{OH} = -35 mA	25°C	10.6	10.7	bearing	V	
				Full range	10.3	r time a	MAR STORE		
				25°C	10.3	10.5		la la la	
			I _{OH} = -50 mA	-40°C to 85°C	10.2				
			1 1 1	25°C		0.17	0.25		
			I _{OL} = 1 mA	Full range			0.35		
			I 20 mA	25°C		0.35	0.45		
			I _{OL} = 20 mA	Full range			0.5		
VOL	Low-level output voltage	V _{IC} = 6 V	1- 25 mA	25°C		0.4	0.52	V	
			I _{OL} = 35 mA	Full range			0.6		
			25°C	Marie I	0.45	0.6			
		I _{OL} = 50 mA	-40°C to 85°C			0.65			
loo	Short aircuit autaut aurrant	Sourcing		25°C		150		A	
los	Short-circuit output current	Sinking		25°C		150		mA	
le.	Output ourrent	V _{OH} = 1.5 V from p	ositive rail	25°C		57			
10	Output current	VOL = 0.5 V from ne	egative rail	25°C	Million.	55		mA	

[†] Full range is 0°C to 70°C for C suffix and -40°C to 125°C for I suffix. If not specified, full range is -40°C to 125°C.

electrical characteristics at specified free-air temperature, V_{DD} = 12 V (unless otherwise noted) (continued)

	PARAMETER	TEST CONI	DITIONS	TAT	MIN	TYP	MAX	UNIT
A PARTY	Large-signal differential voltage	V 0 V	D 4010	25°C	120	140	104	dB
AVD	amplification	$V_{O(PP)} = 8 V,$	$R_L = 10 \text{ k}\Omega$	Full range	120			QD.
ri(d)	Differential input resistance		CHO! = IF!	25°C	THE BIRT	1000	H BIN	GΩ
CIC	Common-mode input capacitance	f = 10 kHz	KH 007 = 1	25°C	relent for	21.6	hat	pF
z _o	Closed-loop output impedance	f = 10 kHz,	Ay = 10	25°C		0.25		Ω
CMRR	Common mode valenties ratio	V _{IC} = 0 to 10 V,	B F0 O	25°C	100	140		dB
	Common-mode rejection ratio		$R_S = 50 \Omega$	Full range	100		Land I	
leas on	Supply voltage rejection ratio	V _{DD} = 4.5 V to 16 V,	V _{IC} = V _{DD} /2,	25°C	95	130		dB
ksvr	(ΔV _{DD} /ΔV _{IO})	No load		Full range	95			UD
la a	Supply current	upply current	No load	25°C		1.9	2.9	mA
IDD	(per channel)	$V_0 = 7.5 \text{ V},$	No load	Full range			3.5	MA
V(ON)	Turnon voltage level	Relative to GND		25°C		1.39		V
V(OFF)	Turnoff voltage level	Relative to GND		25°C		1.38		V
IDD(SHDN)	Supply current in shutdown mode (TLC080, TLC083,	SHDN ≤ 1.45 V	3q 01 = J0	25°C		125	200	μА
IDD(SHDN)	TLC085) (per channel)	311DIV 2 1,40 V		Full range			250	

[†] Full range is 0°C to 70°C for C suffix and -40°C to 125°C for I suffix. If not specified, full range is -40°C to 125°C.

operating characteristics at specified free-air temperature, V_{DD} = 12 V (unless otherwise noted)

PARAMETER		TEST CONDI	TIONS	T _A †	MIN	TYP	MAX	UNIT	
CD.	Positive slew rate at unity gain	V _{O(PP)} = 2 V,	C _L = 50 pF,	25°C	10	16		V/µs	
SR+		$R_L = 10 \text{ k}\Omega$	V R wyomenV.	Full range	9.5	aufile ed		V/μS	
SR-	Negative slew rate at unity gain	V _{O(PP)} = 2 V,	C _L = 50 pF,	25°C	12.5	19		V/us	
SH- Negative siew rate at un	Negative siew rate at unity gain	$R_L = 10 \text{ k}\Omega$		Full range	10	i listra est		ν/μ5	
Vn	Equivalent input noise voltage	f = 100 Hz	498.01 =1	25°C	25°C 14		90	nV/√Hz	
٧n	Equivalent input noise voltage	f = 1 kHz		25°C	8.5			TIV/YII2	
In	Equivalent input noise current	f = 1 kHz		25°C	0.6		fA/√Hz		
Bb -	Total harmonic distortion plus noise	V _{O(PP)} = 8 V,	A _V = 1	olter col	wajni obo	0.002%	69	HAME	
THD + N		$R_L = 10 \text{ k}\Omega$ and 250 Ω ,	A _V = 10	25°C		0.005%	7		
- Eb -		f = 1 kHz	A _V = 100	0.000.00	ataisper ang	0.022%		81/2	
t(on)	Amplifier turnon time‡	R _I = 10 kΩ		25°C		0.47		μs	
t(off)	Amplifier turnoff time‡	HE = 10 K22		25°C		2.5		μs	
	Gain-bandwidth product	f = 10 kHz,	$R_L = 10 \text{ k}\Omega$	25°C		10		MHz	
V		V(STEP)PP = 1 V, A _V = -1,	0.1%		levol egi	0.17	in the	(130)	
ts	Settling time	$C_L = 10 \text{ pF},$ $R_L = 10 \text{ k}\Omega$	0.01%	25°C	eran Ira Sour de	0.22	2	μѕ	
'S	Security units	V(STEP)PP = 1 V, Ay = -1,	0.1%	7 Oh - brie y	THE CHARLES	0.17	ort Orthe	μs	
		$C_L = 47 \text{ pF},$ $R_L = 10 \text{ k}\Omega$	0.01%			0.29			
	Phase margin	$R_L = 10 \text{ k}\Omega$,	C _L = 50 pF	25°C		37°			
φm	r nase margin	$R_L = 10 \text{ k}\Omega$,	C _L = 0 pF	250		42°			
	Gain margin	$R_L = 10 \text{ k}\Omega$,	C _L = 50 pF	25°C		3.1		dB	
		$R_L = 10 \text{ k}\Omega$	C _L = 0 pF	25.0		4		QB.	

[†] Full range is 0°C to 70°C for C suffix and -40°C to 125°C for I suffix. If not specified, full range is -40°C to 125°C.

Disable time and enable time are defined as the interval between application of the logic signal to SHDN and the point at which the supply current has reached half its final value.

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
VIO	Input offset voltage	vs Common-mode input voltage	1, 2
lio	Input offset current	vs Free-air temperature	3, 4
IB	Input bias current	vs Free-air temperature	3, 4
VOH	High-level output voltage	vs High-level output current	5, 7
VOL	Low-level output voltage	vs Low-level output current	6, 8
Zo	Output impedance	vs Frequency	9
IDD	Supply current	vs Supply voltage	10
PSRR	Power supply rejection ratio	vs Frequency	11
CMRR	Common-mode rejection ratio	vs Frequency	12
Vn	Equivalent input noise voltage	vs Frequency	13
VO(PP)	Peak-to-peak output voltage	vs Frequency	14, 15
Ews	Crosstalk	vs Frequency	16
giv ripatri	Differential voltage gain	vs Frequency	17, 18
	Phase	vs Frequency	17, 18
φm	Phase margin	vs Load capacitance	19, 20
	Gain margin	vs Load capacitance	21, 22
	Gain-bandwidth product	vs Supply voltage	23
SR	Slew rate	vs Supply voltage vs Free-air temperature	24 25, 26
TUD N		vs Frequency	27, 28
THD + N	Total harmonic distortion plus noise	vs Peak-to-peak output voltage	29, 30
	Large-signal follower pulse response	vs Time	31, 32
	Small-signal follower pulse response	vs Time	33
	Large-signal inverting pulse response	vs Time	34, 35
	Small-signal inverting pulse response	vs Time	36
1 86 19 20	Shutdown forward isolation	vs Frequency	37, 38
2 80	Shutdown reverse isolation	vs Frequency	39, 40
High	Chutdour cumhi current	vs Supply voltage	41
IDHIA GERICI	Shutdown supply current	vs Free-air temperature	42
	Shutdown pulse		43, 44

TLC080, TLC081, TLC082, TLC083, TLC084, TLC085, TLC08xA FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS

SLOS254B - JUNE 1999 - REVISED NOVEMBER 1999

TLC080, TLC081, TLC082, TLC083, TLC084, TLC085, TLC08xA FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS

SLOS254B - JUNE 1999 - REVISED NOVEMBER 1999

TLC080, TLC081, TLC082, TLC083, TLC084, TLC085, TLC08xA FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS

SLOS254B - JUNE 1999 - REVISED NOVEMBER 1999

TLC080, TLC081, TLC082, TLC083, TLC084, TLC085, TLC08xA FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS

SLOS254B - JUNE 1999 - REVISED NOVEMBER 1999

TLC080, TLC081, TLC082, TLC083, TLC084, TLC085, TLC08xA FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS

SLOS254B - JUNE 1999 - REVISED NOVEMBER 1999

TYPICAL CHARACTERISTICS

PARAMETER MEASUREMENT INFORMATION

APPLICATION INFORMATION

Figure 45

input offset voltage null circuit

The TLC080 and TLC081 has an input offset nulling function. Refer to Figure 46 for the diagram.

NOTE A. If R1 = 5.6 k Ω for offset voltage adjustment of ±10 mV. If R1 = 20 k Ω for offset voltage adjustment of ±3 mV.

Figure 46. Input Offset Voltage Null Circuit

APPLICATION INFORMATION

driving a capacitive load

When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the device's phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater than 10 pF, it is recommended that a resistor be placed in series (R_{NULL}) with the output of the amplifier, as shown in Figure 47. A minimum value of 20 Ω should work well for most applications.

Figure 47. Driving a Capacitive Load

offset voltage

The output offset voltage, (V_{OO}) is the sum of the input offset voltage (V_{IO}) and both input bias currents (I_{IB}) times the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage:

Figure 48. Output Offset Voltage Model

APPLICATION INFORMATION

high speed CMOS input amplifiers

The TLC08x is a family of high-speed low-noise CMOS input operational amplifiers and has an input capacitance of the order of 20 pF. Any resistor used in the feedback path adds a pole in the transfer function equivalent to the input capacitance multiplied by the combination of source resistance and feedback resistance. For example, a gain of –10, source resistance of 1 k Ω and a feedback resistance of 10 k Ω adds an additional pole at approximately 8 MHz. This is more apparent with CMOS amplifiers than bipolar amplifiers due to their greater input capacitance.

This is of little consequence on slower CMOS amplifiers, as this pole normally occurs at frequencies above their unity-gain bandwidth. However, the TLC08x with its 10-MHz bandwidth means that this pole normally occurs at frequencies where there is on the order of 5dB gain left and the phase shift adds considerably.

The effect of this pole is the strongest with large feedback resistances at small closed loop gains. As the feedback resistance is increased, the gain peaking increases at a lower frequency and the 180° phase shift crossover point also moves down in frequency, decreasing the phase margin.

For the TLC08x, the maximum feedback resistor recommended is $5 \, k\Omega$, larger resistances can be used but a capacitor in parallel with the feedback resistor is recommended to counter the effects of the input capacitance pole.

The TLC083 with a 1-V step response has an 80% overshoot with a natural frequency of 3.5 MHz when configured as a unity gain buffer and with a $10-k\Omega$ feedback resistor. By adding a 10-pF capacitor in parallel with the feedback resistor, the overshoot is reduced to 40% and eliminates the natural frequency, resulting in a much faster settling time (see Figure 49). The 10-pF capacitor was chosen for convenience only.

Load capacitance had little effect on these measurements due to the excellent output drive capability of the TLC08x.

Figure 49. 1-V Step Response

general configurations

When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifer (see Figure 50).

Figure 50. Single-Pole Low-Pass Filter

If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure to do this can result in phase shift of the amplifier.

Figure 51. 2-Pole Low-Pass Sallen-Key Filter

TLC080, TLC081, TLC082, TLC083, TLC084, TLC085, TLC08xA FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS

SLOS254B - JUNE 1999 - REVISED NOVEMBER 1999

APPLICATION INFORMATION

shutdown function

Three members of the TLC08x family (TLC080/3/5) have a shutdown terminal (\overline{SHDN}) for conserving battery life in portable applications. When the shutdown terminal is tied low, the supply current is reduced to 16 nA/channel, the amplifier is disabled, and the outputs are placed in a high-impedance mode. To enable the amplifier, the shutdown terminal can either be left floating or pulled high. When the shutdown terminal is left floating, care should be taken to ensure that parasitic leakage current at the shutdown terminal does not inadvertently place the operational amplifier into shutdown. The shutdown terminal threshold is always referenced to $V_{DD}/2$. Therefore, when operating the device with split supply voltages (e.g. ± 2.5 V), the shutdown terminal needs to be pulled to V_{DD} — (not GND) to disable the operational amplifier.

The amplifier's output with a shutdown pulse is shown in Figures 43 and 44. The amplifier is powered with a single 5-V supply and is configured as noninverting with a gain of 5. The amplifier turnon and turnoff times are measured from the 50% point of the shutdown pulse to the 50% point of the output waveform. The times for the single, dual, and quad are listed in the data tables.

Figures 37, 38, 39, and 40 show the amplifier's forward and reverse isolation in shutdown. The operational amplifier is configured as a voltage follower ($A_V = 1$). The isolation performance is plotted across frequency using 0.1 V_{PP}, 2.5 V_{PP}, and 5 V_{PP} input signals at ± 2.5 V supplies and 0.1 V_{PP}, 8 V_{PP}, and 12 V_{PP} input signals at ± 6 V supplies.

circuit layout considerations

To achieve the levels of high performance of the TLC08x, follow proper printed-circuit board design techniques. A general set of guidelines is given in the following.

- Ground planes It is highly recommended that a ground plane be used on the board to provide all
 components with a low inductive ground connection. However, in the areas of the amplifier inputs and
 output, the ground plane can be removed to minimize the stray capacitance.
- Proper power supply decoupling Use a 6.8-μF tantalum capacitor in parallel with a 0.1-μF ceramic capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the application, but a 0.1-μF ceramic capacitor should always be used on the supply terminal of every amplifier. In addition, the 0.1-μF capacitor should be placed as close as possible to the supply terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less effective. The designer should strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors.
- Sockets Sockets can be used but are not recommended. The additional lead inductance in the socket pins
 will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board
 is the best implementation.
- Short trace runs/compact part placements Optimum high performance is achieved when stray series inductance has been minimized. To realize this, the circuit layout should be made as compact as possible, thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at the input of the amplifier.
- Surface-mount passive components Using surface-mount passive components is recommended for high performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be kept as short as possible.

APPLICATION INFORMATION

general PowerPAD™ design considerations

The TLC08x is available in a thermally-enhanced PowerPAD family of packages. These packages are constructed using a downset leadframe upon which the die is mounted [see Figure 52(a) and Figure 52(b)]. This arrangement results in the lead frame being exposed as a thermal pad on the underside of the package [see Figure 52(c)]. Because this thermal pad has direct thermal contact with the die, excellent thermal performance can be achieved by providing a good thermal path away from the thermal pad.

The PowerPAD package allows for both assembly and thermal management in one manufacturing operation. During the surface-mount solder operation (when the leads are being soldered), the thermal pad can also be soldered to a copper area underneath the package. Through the use of thermal paths within this copper area, heat can be conducted away from the package into either a ground plane or other heat dissipating device.

The PowerPAD package represents a breakthrough in combining the small area and ease of assembly of surface mount with the, heretofore, awkward mechanical methods of heatsinking.

NOTE B. The thermal pad is electrically isolated from all terminals in the package.

Figure 52. Views of Thermally Enhanced DGN Package

Although there are many ways to properly heatsink the PowerPAD package, the following steps illustrate the recommended approach.

Single or Dual 68 mils x 70 mils) with 5 vias (Via diameter = 13 mils) (Via diameter = 13 mils)

Figure 53. PowerPAD PCB Etch and Via Pattern

PowerPAD is a trademark of Texas Instruments Incorporated.

TLC080, TLC081, TLC082, TLC083, TLC084, TLC085, TLC08xA FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS

SLOS254B - JUNE 1999 - REVISED NOVEMBER 1999

APPLICATION INFORMATION

general PowerPAD design considerations (continued)

- Prepare the PCB with a top side etch pattern as shown in Figure 53. There should be etch for the leads as well as etch for the thermal pad.
- 2. Place five holes (dual) or nine holes (quad) in the area of the thermal pad. These holes should be 13 mils in diameter. Keep them small so that solder wicking through the holes is not a problem during reflow.
- 3. Additional vias may be placed anywhere along the thermal plane outside of the thermal pad area. This helps dissipate the heat generated by the TLC08x IC. These additional vias may be larger than the 13-mil diameter vias directly under the thermal pad. They can be larger because they are not in the thermal pad area to be soldered so that wicking is not a problem.
- 4. Connect all holes to the internal ground plane.
- 5. When connecting these holes to the ground plane, do not use the typical web or spoke via connection methodology. Web connections have a high thermal resistance connection that is useful for slowing the heat transfer during soldering operations. This makes the soldering of vias that have plane connections easier. In this application, however, low thermal resistance is desired for the most efficient heat transfer. Therefore, the holes under the TLC08x PowerPAD package should make their connection to the internal ground plane with a complete connection around the entire circumference of the plated-through hole.
- 6. The top-side solder mask should leave the terminals of the package and the thermal pad area with its five holes (dual) or nine holes (quad) exposed. The bottom-side solder mask should cover the five or nine holes of the thermal pad area. This prevents solder from being pulled away from the thermal pad area during the reflow process.
- 7. Apply solder paste to the exposed thermal pad area and all of the IC terminals.
- 8. With these preparatory steps in place, the TLC08x IC is simply placed in position and run through the solder reflow operation as any standard surface-mount component. This results in a part that is properly installed.

For a given $\theta_{1,A}$, the maximum power dissipation is shown in Figure 54 and is calculated by the following formula:

$$\mathsf{P}_\mathsf{D} = \left(\frac{\mathsf{T}_\mathsf{MAX}^{-\mathsf{T}}\mathsf{A}}{\theta_\mathsf{JA}}\right)$$

Where:

P_D = Maximum power dissipation of TLC08x IC (watts)

T_{MAX} = Absolute maximum junction temperature (150°C)

T_A = Free-ambient air temperature (°C)

 $\theta_{JA} = \theta_{JC} + \theta_{CA}$

 θ_{JC} = Thermal coefficient from junction to case

 θ_{CA} = Thermal coefficient from case to ambient air (°C/W)

APPLICATION INFORMATION

general PowerPAD design considerations (continued)

MAXIMUM POWER DISSIPATION vs FREE-AIR TEMPERATURE

NOTE A. Results are with no air flow and using JEDEC Standard Low-K test PCB.

Figure 54. Maximum Power Dissipation vs Free-Air Temperature

The next consideration is the package constraints. The two sources of heat within an amplifier are quiescent power and output power. The designer should never forget about the quiescent heat generated within the device, especially muti-amplifier devices. Because these devices have linear output stages (Class A-B), most of the heat dissipation is at low output voltages with high output currents.

The other key factor when dealing with power dissipation is how the devices are mounted on the PCB. The PowerPAD devices are extremely useful for heat dissipation. But, the device should always be soldered to a copper plane to fully use the heat dissipation properties of the PowerPAD. The SOIC package, on the other hand, is highly dependent on how it is mounted on the PCB. As more trace and copper area is placed around the device, θ_{JA} decreases and the heat dissipation capability increases. The currents and voltages shown in these graphs are for the total package. For the dual or quad amplifier packages, the sum of the RMS output currents and voltages should be used to choose the proper package.

TLC080, TLC081, TLC082, TLC083, TLC084, TLC085, TLC08xA FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS

SLOS254B - JUNE 1999 - REVISED NOVEMBER 1999

APPLICATION INFORMATION

macromodel information

Macromodel information provided was derived using Microsim $Parts^{TM}$, the model generation software used with Microsim $PSpice^{TM}$. The Boyle macromodel (see Note 1) and subcircuit in Figure 55 are generated using the TLC08x typical electrical and operating characteristics at $T_A = 25^{\circ}C$. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification

- Unity-gain frequency
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- Short-circuit output current limit

NOTE 1: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers," *IEEE Journal of Solid-State Circuits*, SC-9, 353 (1974).

PSpice and Parts are trademarks of MicroSim Corporation.

APPLICATION INFORMATION

Figure 55. Boyle Macromodel and Subcircuit

.ends

model gx2 NPN(Is=800.0000E-18 Bf=407.50E6)

ga 6 0 11 12 402.12E-6 gcm 0 6 10 99 1.5735E-6

TLV2422, TLV2422A, TLV2422Y Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS1998 – SEPTEMBER 1997 – REVISED SEPTEMBER 1999

- Output Swing Includes Both Supply Rails
- Extended Common-Mode Input Voltage Range . . . 0 V to 4.5 V (Min) with 5-V Single Supply
- No Phase Inversion
- Low Noise . . . 18 nV/√Hz Typ at f = 1 kHz
- Low Input Offset Voltage
 950 μV Max at T_A = 25°C (TLV2422A)

description

The TLV2422 and TLV2422A are dual low-voltage operational amplifiers from Texas Instruments. The common-mode input voltage range for this device has been extended over the typical CMOS amplifiers making them suitable for a wide range of applications. In addition, the devices do not phase invert when the common-mode input is driven to the supply rails. This satisfies most design requirements without paying a premium for rail-to-rail input performance. They also exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applications. This family is fully characterized at 3-V and 5-V supplies and is optimized for low-voltage operation. The TLV2422 only requires 50 µA of supply current per channel, making it ideal for battery-powered applications. The TLV2422 also has increased output drive over previous rail-to-rail operational amplifiers and can drive $600-\Omega$ loads for telecom applications.

Other members in the TLV2422 family are the high-power, TLV2442, and low-power, TLV2432, versions.

- Low Input Bias Current . . . 1 pA Typ
- Micropower Operation . . . 50 μA Per Channel
- 600-Ω Output Drive
- Available in Q-Temp Automotive
 HighRel Automotive Applications
 Configuration Control / Print Support
 Qualification to Automotive Standards

HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT

Figure 1

The TLV2422, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels and low-voltage operation, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single- or split-supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLV2422A is available with a maximum input offset voltage of 950 µV.

If the design requires single operational amplifiers, see the TITLV2211/21. This is a family of rail-to-rail output operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal for high density, battery-powered equipment.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Advanced LinCMOS is a trademark of Texas Instruments Incorporated.

TLV2422, TLV2422A, TLV2422Y Advanced LinCMOS™ RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS

SLOS199B - SEPTEMBER 1997 - REVISED SEPTEMBER 1999

AVAILABLE OPTIONS

	A DB	PACKAGED DEVICES						
TA	V _{IO} max AT 25°C	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (JG)	TSSOP (PW)	CERAMIC FLAT PACK (U)	CHIP FORM (Y)	
0°C to 70°C	2.5 mV	TLV2422CD	l elde la va e	- S. I. S.	TLV2422CPWLE	GARGER MARK		
-40°C to 85°C	950 μV 2.5 mV	TLV2422AID TLV2422ID	risikrij uli (progra d)	- 99	TLV2422AIPWLE —	n 81 — . ésle N tesmô tes	I would	
-40°C to 125°C	950 μV 2.5 mV	TLV2422AQD TLV2422QD		= 4	8845V. H).0188	AT to mest Vi	TLV2422Y	
−55°C to 125°C	950 μV 2 mV	ruo J a valiik	TLV2422AMFK TLV2422MFK	TLV2422AMJG TLV2422MJG		TLV2422AMU TLV2422MU	lolighoas	

The D packages are available taped and reeled. Add R suffix to device type (e.g., TLV2422CDR). The PW package is available only left-end taped and reeled. Chips are tested at 25°C.

TLV2422, TLV2422A Advanced LinCMOS™ RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{DD} (see Note 1) Differential input voltage, V _{ID} (see Note 2)		12 V
Input voltage, V _I (any input, see Note 1): C		
Input current, I _I (each input)		
Output current, IO		±50 mA
Total current into V _{DD+}		±50 mA
Total current out of V _{DD}		±50 mA
Duration of short-circuit current at (or below		
Continuous total power dissipation		
Operating free-air temperature range, TA:		
		40°C to 85°C
		40°C to 125°C
		55°C to 125°C
Storage temperature range, T _{stg}		
Lead temperature 1.6 mm (1/16 inch) from	case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD-.

2. Differential voltages are at IN+ with respect to IN-. Excessive current flows if input is brought below VDD - 0.3 V.

The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW	145 mW
FK	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
JG	1050 mW	8.4 mW/°C	672 mW	546 mW	210 mW
PW	525 mW	4.2 mW/°C	336 mW	273 mW	105 mW
U	675 mW	5.4 mW/°C	432 mW	350 mW	135 mW

recommended operating conditions

	C SUFFIX		I SUFFIX		Q SUFFIX		M SUFFIX		111117
	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
Supply voltage, V _{DD±}	2.7	10	2.7	10	2.7	10	2.7	10	V
Input voltage range, V _I	V _{DD} -	V _{DD+} -0.8	٧						
Common-mode input voltage, VIC	V _{DD} -	V _{DD+} -0.8	V						
Operating free-air temperature, T _A	0	70	-40	85	-40	125	-55	125	°C

TLV2422, TLV2422A Advanced LinCMOS™ RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS

SLOS199B - SEPTEMBER1997 - REVISED SEPTEMBER 1999

electrical characteristics at specified free-air temperature, V_{DD} = 3 V (unless otherwise noted)

- Sandarana	DADAMETER	TEST CONDITIONS		T + +	T	LV24220		LIMIT	
	PARAMETER	TEST CO	T _A †	MIN	TYP	MAX	UNIT		
.,	A 0.00 000 1000 1000 000 000 1000 1000 1	0.55		25°C		300	2000		
VIO	Input offset voltage	Pultrange		Full range			2500	μV	
ανιο	Temperature coefficient of input offset voltage	$V_{IC} = 0$, $V_{DD} \pm \pm 2.5 \text{ V}$,	Dries	25°C to 70°C	п	2	negnial nicilisc:	μV/°C	
×	Input offset voltage long-term drift (see Note 4)		25°C	-	0.003		μV/m		
	Input offset current	$V_O = 0$,	$R_S = 50 \Omega$	25°C		0.5	more very the	рА	
10	input onset current			Full range			150	PA	
lun	Input bias current	25°C		25°C		1		рА	
IB	input bias current	Full renge		Full range		OTHUO THE	150	PA	
Aq	081 081	Parameter 1975	D- 50 0	25°C	0 to 2.5	-0.25 to 2.75		V	
VICR	ICR Common-mode input voltage range	IV _{IO} I ≤ 5 mV,	$R_S = 50 \Omega$	Full range	0 to 2.2	i abomir	ommo:	V	
VOH		IOH = -100 μA	25°C		2.97				
	High-level output voltage	I _{OH} = -500 μA		25°C	1	2.75		V	
				Full range	2.5				
·V	2.75	V _{IC} = 0,	I _{OL} = 100 μA	25°C		0.05		148	
VOL	Low-level output voltage	V _{IC} = 0,	I _{OL} = 250 μA	25°C		0.2		٧	
	an.o. ac.o.	AIC = 0,	IOL = 250 μA	Full range			0.5		
W	20 02	0.514	$R_{\rm I} = 10 \rm k\Omega^{\ddagger}$	25°C	6	10		V/mV	
AVD	Large-signal differential voltage amplification	$V_{IC} = 2.5 \text{ V},$ $V_{O} = 1 \text{ V to 2 V}$	-	Full range	3				
	01 02 01 01	0.00	$R_L = 1 M\Omega^{\ddagger}$	25°C		700	A. Acres		
ri(d)	Differential input resistance	Fall-lenge	Assessed Tool	25°C		1012	Dries of Mil	Ω	
ri(c)	Common-mode input resistance	DIRE.	FOM tw j6	25°C		1012		Ω	
Ci(c)	Common-mode input capacitance	f = 10 kHz		25°C		8	Injone liki	pF	
z _o	Closed-loop output impedance	f = 100 kHz,	Ay = 10	25°C	-	130		Ω	
CMRR	Common-mode rejection ratio	$V_{IC} = 0 \text{ to } 2.5 \text{ V}, V_{O} = 1.5 \text{ V},$ $R_{S} = 50 \Omega$		25°C	70	83	SULTATION.	dB	
OWITH	Common-mode rejection ratio			Full range	70			dB	
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	$V_{DD} = 2.7 \text{ V to 8}$		25°C	80	95	deligni	dB	
HVC	Cappi, rollage rejection ratio (4400/A410)	$V_{IC} = V_{DD}/2,$	No load	Full range	80	dhenon	The Table	aB	
lDD	Supply current	V _O = 1.5 V,	No load	25°C		100	150	μА	
טט	OR DESIGNATION OF THE PROPERTY	.0-1.01,	Water Mark	Full range			175	per	

[†] Full range is 0°C to 70°C.

[‡] Referenced to 2.5 V

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T_A = 150°C extrapolated to T_A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

electrical characteristics at specified free-air temperature, V_{DD} = 3 V (unless otherwise noted)

	DADAMETED	TEST CO	NDITIONS	T. 4	T	LV2422		TI	LV2422/	Al	UNIT
	PARAMETER	IESI CO	NDITIONS	TAT	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
\/	Innut offset voltage	0283		25°C		300	2000		300	950	μV
VIO	Input offset voltage	egneri flu?		Full range			2500		1000	1500	μν
αΛΙΟ	Temperature coefficient of input offset voltage	0°68 0°01 et		25°C to 70°C	ege A.a.	2	o toqui i	a imploit	2	pregnal	μV/°C
Aq	Input offset voltage long-term drift (see Note 4)	$V_{IC} = 0,$ $V_{O} = 0,$	$V_{DD}\pm=\pm2.5 \text{ V},$ RS = 50 Ω	25°C		0.003		by	0.003	itto juni	μV/mo
t a let	Input offeet current	0.62		25°C		0.5			0.5	ele Roine	pA
110	Input offset current	gran run		Full range			150			150	PA
lun	Input bias current			25°C		1			1		pA
IB	input bias current	2,62		Full range			150			150	pA
¥	Common-mode input	ngnin liu?i	€ 02 = gR	25°C	0 to 2.5	-0.25 to 2.75	niar ege	0 to 2.5	-0.25 to 2.75	noremes.	V
VICR	voltage range	IV _{IO} I ≤ 5 mV,	$R_S = 50 \Omega$	Full range	0 to 2.2			0 to 2.2	luctuo k	ent rige	HO
	1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	IOH = -100 μA		25°C		2.97			2.97		
VOH	High-level output voltage	0.88	Au 602 - 10	25°C		2.75			2.75		V
	voltage	IOH = -500 μA		Full range	2.5			2.5	Training I	oval-arc.	10
	0.6	V _{IC} = 0,	I _{OL} = 100 μA	25°C		0.05			0.05		
VOL	Low-level output voltage	V _{IC} = 0,	I _{OL} = 250 μA	25°C		0.2			0.2		V
VmV	Voltago	AIC = 0,	IOΓ = 530 hA	Full range	F/0	itophigo	0.5	u ladner	di len	0.5	OV.
	Large-signal	V 05V	$R_{I} = 10 \text{ k}\Omega^{\ddagger}$	25°C	6	10		6	10		
AVD	differential voltage	$V_{IC} = 2.5 \text{ V},$ $V_{O} = 1 \text{ V to 2 V}$		Full range	3			3	tueni lu	Ine of C	V/mV
- 0	amplification	2.83	$R_L = 1 M\Omega^{\ddagger}$	25°C		700	93/15/8	ser fugr	700	normmb©	(11)
ri(d)	Differential input resistance	290	Dinui	25°C		1012	acitamos acados	hto tings sooni is	1012	torrenes.	Ω
ri(c)	Common-mode input resistance	26.0	V VO = 1.5 V.	25°C		1012	plila	neutrala	1012	neromo.	Ω
ci(c)	Common-mode input capacitance	f = 10 kHz	V8*	25°C		8	VA) oão	noine	8	vylono	pF
z _o	Closed-loop output impedance	f = 100 kHz,	A _V = 10	25°C		130			130		Ω
CMRR	Common-mode	V _{IC} = 0 to 2.5 V,	V _O = 1.5 V,	25°C	70	83		70	83		dB
OWINA	rejection ratio	$R_S = 50 \Omega$		Full range	70			70	0701 W	Ord als	UD
batelois	Supply-voltage	V _{DD} = 2.7 V to 8	3 V.	25°C	80	95	al anti-as	80	95	v telolope	3 370
ksvr	rejection ratio (ΔV _{DD} /ΔV _{IO})	$V_{IC} = V_{DD}/2$		Full range	80	manusi.	SUIT OF THE	80	10 J E	PATRI	dB
	(21)()(21)()			25°C		100	150		100	150	
IDD	Supply current	$V_0 = 1.5 V$	No load	Full range		100	175		100	175	μА

[†] Full range is - 40°C to 85°C.

[‡] Referenced to 2.5 V

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T_A = 150°C extrapolated to T_A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

TLV2422, TLV2422A Advanced LinCMOS™ RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS

SLOS199B - SEPTEMBER1997 - REVISED SEPTEMBER 1999

operating characteristics at specified free-air temperature, V_{DD} = 3 V

ratera [PARAMETER	TEST COND	ITIONS	TAT	TLV2422C, TLV2422I TLV2422AI			UNIT
					MIN	TYP	MAX	
		$V_O = 1.5 \text{ V to } 3.5 \text{ V}, R_L = 10 \text{ k}\Omega^{\ddagger}, C_L = 100 \text{ pF}^{\ddagger}$		25°C	0.01	0.02	no ston	21.6
SR	Slew rate at unity gain			Full range	0.008	engl	ristros.	V/µs
V		f = 10 Hz		25°C		100		24/11
Vn	Equivalent input noise voltage	f = 1 kHz		25°C		23		nV/√Hz
V TO THE REAL PROPERTY.	Post to solve a final state of the solution of	f = 0.1 Hz to 1 Hz		25°C	0	2.7	meleccia	
VN(PP)	Peak-to-peak equivalent input noise voltage	f = 0.1 Hz to 10 Hz		25°C		4	Piski	μV
In	Equivalent input noise current	2/88		25°C		0.6		fA√Hz
THD + N	Total harmonic distortion plus noise	V _O = 0.5 V to 2.5 V,	A _V = 1	25°C	-	0.25%		
IND+N	Total Harmonic distortion plus noise	f = 1 kHz, R _L = 10 kΩ [‡]	Ay = 10	25.0		1.8%	ela naie	
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF [‡]	$R_L = 10 \text{ k}\Omega^{\ddagger}$,	25°C		46		kHz
ВОМ	Maximum output-swing bandwidth	$V_{O(PP)} = 1 \text{ V},$ $R_{L} = 10 \text{ k}\Omega^{\ddagger},$	Ay = 1, C _L = 100 pF‡	25°C	Fig. Turge	8.3	nommaí n ágista	kHz
	Settling time	$A_V = -1$, Step = 0.5 V to 2.5 V,	To 0.1%	25°C		8.6		
ts	Setung time	$R_L = 10 \text{ k}\Omega^{\ddagger},$ $C_L = 100 \text{ pF}^{\ddagger}$	To 0.01%	25 0		16	reservation of the service of the se	μѕ
φm	Phase margin at unity gain	$R_{I} = 10 \text{ k}\Omega^{\ddagger}$	C _I = 100 pF [‡]	25°C	MI	62°		
	Gain margin	IL = 10 K22+1	OL = 100 bF+	25°C		11		dB

[†] Full range for the C version is 0°C to 70°C. Full range for the I version is -40°C to 85°C.

‡ Referenced to 2.5 V

TLV2422, TLV2422A Advanced LinCMOS™ RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS

SLOS199B - SEPTEMBER1997 - REVISED SEPTEMBER 1999

electrical characteristics at specified free-air temperature, V_{DD} = 3 V (unless otherwise noted)

A part of the	PARAMETER	TEST CO	NDITIONS	TAT		V24220 LV24221			V2422A .V2422A		UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
	1	- Stole -		25°C		300	2000		300	950	
VIO	Input offset voltage	101, Told		Full range	MI III		2500	71500 VII	u zá kto	1800	μV
αΛΙΟ	Temperature coefficient of input offset voltage	D'ag		Full range		2	equito	usión h	2	Equiva	μV/°C
Va	Input offset voltage long-term drift (see Note 4)	V _{IC} = 0, V _O = 0,	$V_{DD}\pm=\pm1.5 V$, R _S = 50 Ω	25°C		0.003	augisti	pindupi	0.003	Perk	μV/mo
RIPA	lanut affact aurrent	0/80		25°C		0.5	hemic	ector to	0.5	Equive	рА
110	Input offset current			Full range	r Eur		150			150	PA
l	lanut bina auwant	250		25°C		1	n stuni n	Shrohaile Girchard	1	I logg/	
IB	Input bias current			Full range			300			300	pA
aldi	Common-mode input	0783	101 = JR - 17 = sek	25°C	0 to 2.5	-0.25 to 2.75		0 to 2.5	-0.25 to 2.75	0.040	
VICR	voltage range	IV _{IO} I ≤ 5 mV,	$R_S = 50 \Omega$	Full range	0 to 2.2			0 to 2.2			V
44		I _{OH} = -100 μA		25°C		2.97			2.97	r dell'act	
VOH	High-level output			25°C		2.75			2.75		V
	voltage	$I_{OH} = -500 \mu A$		Full range	2.5		rius	2.5	eagrand	SELVER	
100		V _{IC} = 0,	I _{OL} = 100 μA	25°C		0.05			0.05	1 (3401)	
VOL	Low-level output voltage	V - 0	1- 050 - 4	25°C	1 101 648	0.2	0-01 to	THE PARTY	0.2	FF FI	V
	voltage	$V_{IC} = 0$,	I _{OL} = 250 μA	Full range			0.5			0.5	
	Large-signal		D 401-ot	25°C	6	10		6	10		
AVD	differential voltage	$V_{IC} = 1.5 \text{ V},$ $V_{O} = 1 \text{ V to 2 V}$	$R_L = 10 \text{ k}\Omega^{\ddagger}$	Full range	2			2			V/m\
	amplification		$R_L = 1 M\Omega^{\ddagger}$	25°C		700			700		
ri(d)	Differential input resistance			25°C		1012			1012		Ω
ri(c)	Common-mode input resistance			25°C		1012			1012		Ω
^C i(c)	Common-mode input capacitance	f = 10 kHz		25°C		8			8		pF
z _O	Closed-loop output impedance	f = 100 kHz,	A _V = 10	25°C		130			130		Ω
CMRR	Common-mode	VIC = VICR min,	V _O = 1.5 V,	25°C	70	83		70	83	18	dB
O.VII LIT	rejection ratio	$R_S = 50 \Omega$		Full range	70			70			UD
	Supply-voltage	V _{DD} = 2.7 V to 8	3 V.	25°C	80	95		80	95		
ksvr	rejection ratio (ΔV _{DD} /ΔV _{IO})	V _{IC} = V _{DD} /2,	No load	Full range	80			80			dB
				25°C		100	150		100	150	
IDD	Supply current	$V_0 = 1.5 V$,	No load	Full range			175			175	μА

[†] Full range is -40°C to 125°C for Q level part, -55°C to 125°C for M level part.

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T_A = 150°C extrapolated to T_A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

[‡] Referenced to 1.5 V

TLV2422, TLV2422A Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999

operating characteristics at specified free-air temperature, V_{DD} = 3 V

TIMU	PARAMETER	TEST CONDI	TAT	TLV2422Q, TLV2422M, TLV2422AQ, TLV2422AM			UNIT	
19	lioas I agrico III				MIN	TYP	MAX	U
CRIVE I		V- 44V4-40V	D 401-0†	25°C	0.01	0.02	name I	Cultural
SR	Slew rate at unity gain	$V_O = 1.1 \text{ V to } 1.9 \text{ V}, \qquad R_L = 10 \text{ k}\Omega^{\ddagger}, \\ C_L = 100 \text{ pF}^{\ddagger}$		Full range	0.008	stovilag	no tuon	V/µs
.,	THE ROUSE HAVE A TOTAL OF THE REAL PROPERTY.	f = 10 Hz		25°C		100		
Vn	Equivalent input noise voltage	f = 1 kHz		25°C		23		nV/√Hz
.,		f = 0.1 Hz to 1 Hz		25°C		2.7		
VN(PP)	Peak-to-peak equivalent input noise voltage	f = 0.1 Hz to 10 Hz		25°C		4		μV
In	Equivalent input noise current			25°C		0.6		fA√Hz
THD + N	Table and a distanting the sales	V _O = 0.5 V to 2.5 V,	A _V = 1	25°C		0.25%		
IND+N	Total harmonic distortion plus noise	f = 1 kHz, $R_L = 10 \text{ k}\Omega^{\ddagger}$	A _V = 10	25°C		1.8%	Alterior.	RON
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF [‡]	$R_L = 10 \text{ k}\Omega^{\ddagger}$,	25°C		46		kHz
Вом	Maximum output-swing bandwidth	$V_{O(PP)} = 1 \text{ V},$ $R_L = 10 \text{ k}\Omega^{\ddagger},$	Ay = 1, C _L = 100 pF‡	25°C	egalov	8.3	release	kHz
t _s	Settling time	A _V = -1, Step = 0.5 V to 2.5 V,	To 0.1%	25°C		8.6		ue.
'S	Setuling time	$R_L = 10 \text{ k}\Omega^{\ddagger},$ $C_L = 100 \text{ pF}^{\ddagger}$	To 0.01%	250	apadov	16	Vel-wo.	μѕ
φm	Phase margin at unity gain	$R_L = 10 \text{ k}\Omega^{\ddagger}$	C _I = 100 pF‡	25°C		62°		
Same F	Gain margin	LIL = 10 K22+	OL = 100 pr+	25°C		11		dB

[†] Full range is -40°C to 125°C for Q level part, -55°C to 125°C for M level part.

[‡] Referenced to 1.5 V

TLV2422, TLV2422A Advanced LinCMOS™ RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	DADAMETED	TEST OF	NDITIONS		Т	LV24220		
	PARAMETER	TEST CO	NDITIONS	TAT	MIN	TYP	MAX	UNIT
1 10 10	MASSAGE A			25°C		300	2000	
VIO	Input offset voltage			Full range			2500	μV
ανιο	Temperature coefficient of input offset voltage	a vareni		25°C to 70°C	niau viir	2	wet3	μV/°C
	Input offset voltage long-term drift (see Note 4)	VIC = 0,	$V_{DD} \pm = \pm 2.5 \text{ V},$	25°C		0.003		μV/mo
	1 0788	$V_{O} = 0,$	$R_S = 50 \Omega$	25°C		0.5	11.	1
10	Input offset current			Full range			150	pA
	3-88	sid-f-olist		25°C		1		^
IB	Input bias current	sti Of of al		Full range			150	pA
ERI-AI	#8500 P=	Was of Va		25°C	0 to 4.5	-0.25 to 4.75	elup(i	V
VICR	Common-mode input voltage range		HS = 50 12	Full range	0 to 4.2	thirbus	-nist)	V
-		I _{OH} = -100 μA		25°C		4.97		
VOH	High-level output voltage	I _{OH} = -1 mA	01 = 18	25°C	4.5	4.75	nbrekt	V
		IOH = -1 IIIA		Full range	4.25			
		V _{IC} = 2.5 V,	I _{OL} = 100 μA	25°C		0.04	alan in	
VOL	Low-level output voltage	V _{IC} = 2.5 V,	I _{OL} = 500 μA	25°C		0.15		V
		VIC = 2.5 V,	IOΓ = 200 hA	Full range			0.5	
-	9 50 001 e	Q. A. A. A. A. COS	$R_{I} = 10 \text{ k}\Omega^{\ddagger}$	25°C	8	12	10001114	-6
AVD	Large-signal differential voltage amplification	V _{IC} = 2.5 V, V _O = 1 V to 4 V	H[= 10 K22+	Full range	5	Digitar	MISU	V/mV
		Jacq level la	$R_L = 1 M\Omega^{\ddagger}$	25°C	101018	1000	APP BILL	
ri(d)	Differential input resistance	a state		25°C		1012		Ω
ri(c)	Common-mode input resistance			25°C		1012		Ω
Ci(c)	Common-mode input capacitance	f = 10 kHz		25°C		8		pF
z _o	Closed-loop output impedance	f = 100 kHz,	Ay = 10	25°C		130		Ω
CMDD	Common mode sejection setie	V _{IC} = 0 to 4.5 V,	V _O = 2.5 V,	25°C	70	90		dB
CIVIAN	Common-mode rejection ratio	$R_S = 50 \Omega$		Full range	70			QB
kovo	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	V _{DD} = 4.4 V to	8 V,	25°C	80	95		dB
ksvr	Supply-voltage rejection ratio (AvDD/AvIO)	$V_{IC} = V_{DD}/2$,	No load	Full range	80			UB
IDD	Supply current	V _O = 2.5 V,	No load	25°C		100	150	μА
טטי	Supply culterit	VO = 2.5 V,	No load	Full range			175	μм

[†] Full range is 0°C to 70°C.

[‡] Referenced to 2.5 V

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T_A = 150°C extrapolated to T_A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

TLV2422, TLV2422A Advanced LinCMOS™ RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199B - SEPTEMBER1997 - REVISED SEPTEMBER 1999

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	TORINGE TO DESIGNATION		UDITIONS		T	LV2422		TLV2422AI			UNIT
	PARAMETER	IESI CO	NDITIONS	TAT	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
.,	PARTITION NO.			25°C		300	2000		300	950	μV
VIO	Input offset voltage	T D'AS I		Full range			2500		8 771	1500	μν
αΛΙΟ	Temperature coefficient of input offset voltage	tuff		25°C to 70°C		2		na g yu	2	World	μV/°C
SMVAVA	Input offset voltage long-term drift (see Note 4)	$V_{IC} = 0, V_{O} = 0,$	$V_{DD}\pm=\pm2.5 \text{ V},$ RS = 50 Ω	25°C	El acol	0.003	Apparov Jugarija	dalon is seeming	0.003	WEBS.	μV/mo
lie	Input offset current	Di Dres I		25°C		0.5			0.5		рА
110	input onset current			Full range			150	al mase	Cal Male	150	PA
l	Input bigg gurrent			25°C		1			1		рА
IB	Input bias current		Stanti	Full range		X-	150			150	pA
alea V	Common-mode input		XOTA JR	25°C	0 to 4.5	-0.25 to 4.75		0 to 4.5	-0.25 to 4.75	Hate(C)	V
VICR	voltage range	IV _{IO} I ≤ 5 mV,	$R_S = 50 \Omega$	Full range	0 to 4.2	alto	woned :	0 to 4.2	dno una	Maudi	мов
		I _{OH} = -100 μA	V-0.81	25°C		4.97	THE PERSON		4.97	Official .	4.416
VOH	High-level output voltage		Proto at	25°C	4.5	4.75		4.5	4.75		V
	voltage	1OH = −1 mA		Full range	4.25			4.25			
		V _{IC} = 2.5 V,	I _{OL} = 100 μA	25°C	A famous	0.04			0.04	March .	
VOL	Low-level output voltage	V 05V	. 500 4	25°C		0.15	Sant at		0.15	Bir	V
	voltage	V _{IC} = 2.5 V,	I _{OL} = 500 μA	Full range			0.5		Va	0.5	randur.
	Large-signal		D 4010‡	25°C	8	12		8	12		
AVD	differential voltage	V _{IC} = 2.5 V, V _O = 1 V to 4 V	$R_L = 10 \text{ k}\Omega^{\ddagger}$	Full range	5			5			V/mV
	amplification	10-10-04	$R_L = 1 M\Omega^{\ddagger}$	25°C		1000			1000		
ri(d)	Differential input resistance			25°C		1012			1012		Ω
r _{i(c)}	Common-mode input resistance			25°C		1012			1012		Ω
^C i(c)	Common-mode input capacitance	f = 10 kHz	10	25°C		8			8		pF
z _O	Closed-loop output impedance	f = 100 kHz,	A _V = 10	25°C		130			130		Ω
CMRR	Common-mode	V _{IC} = 0 to 4.5 V,	V _O = 2.5 V,	25°C	70	90		70	90		dB
	rejection ratio	$R_S = 50 \Omega$		Full range	70			70			
ksvr	Supply-voltage rejection ratio	V _{DD} = 4.4 V to		25°C	80	95		80	95		dB
	(ΔV _{DD} /ΔV _{IO})	$V_{IC} = V_{DD}/2,$	No load	Full range	80			80			
IDD	Supply current	V _O = 2.5 V,	No load	25°C		100	150		100	150	μА
טטי	Cuppiy Cuitotit	0-2.5 V,	140 load	Full range			175	LI ISLE		175	μΛ

[†] Full range is - 40°C to 85°C.

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T_A = 150°C extrapolated to T_A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

[‡]Referenced to 2.5 V

TLV2422, TLV2422A Advanced LinCMOS™ RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS

SLOS199B - SEPTEMBER1997 - REVISED SEPTEMBER 1999

operating characteristics at specified free-air temperature, V_{DD} = 5 V

TRAD	PARAMETER	TEST COND	ITIONS	TAT	TLV2422C, TLV2422I TLV2422AI			UNIT
		1-100		-	MIN	TYP	MAX	
VE	one) Goes	The state of the s	n	25°C	0.01	0.02	HO 7419/8	01
SR	Slew rate at unity gain	$V_O = 1.5 \text{ V to } 3.5 \text{ V},$ $C_L = 100 \text{ pF}^{\ddagger}$	$R_L = 10 \text{ k}\Omega^{\ddagger}$,	Full range	0.008	onuti igni to to	nii driisii elbiileaa	V/µs
.,		f = 10 Hz		25°C		100	N Taking	->4/11
Vn	Equivalent input noise voltage	f = 1 kHz	+100V	25°C	1 9	18	No Period	nV/√H2
V	Peak-to-peak equivalent input noise voltage	f = 0.1 Hz to 1 Hz	min Sur	25°C		1.9	(Buildeld	μV
V _N (PP)	Peak-to-peak equivalent input noise voltage	f = 0.1 Hz to 10 Hz		25°C	-	2.8		μν
In	Equivalent input noise current	Full range		25°C	10	0.6	No Nuga	fA√Hz
THD + N	Total harmonic distortion plus noise	$V_0 = 1.5 \text{ V to } 3.5 \text{ V},$ f = 1 kHz,	A _V = 1	25°C		0.24%		
IUD+N	Total narmonic distortion plus noise	$R_L = 10 \text{ k}\Omega^{\ddagger}$	Ay = 10	25.0		1.7%		
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF [‡]	$R_L = 10 \text{ k}\Omega^{\ddagger}$,	25°C		52		kHz
Вом	Maximum output-swing bandwidth	$V_{O(PP)} = 2 V$, $R_{L} = 10 \text{ k}\Omega^{\ddagger}$,	A _V = 1, C _L = 100 pF‡	25°C		5.3	spellos	kHz
ts	Settling time	$A_V = -1$, Step = 1.5 V to 3.5 V,	To 0.1%	25°C		8.5		μѕ
'S	Setung time	$R_L = 10 \text{ k}\Omega^{\ddagger},$ $C_L = 100 \text{ pF}^{\ddagger}$	To 0.01%	250		15.5	val-rigin Agattos	μs
φm	Phase margin at unity gain	$R_{I} = 10 \text{ k}\Omega^{\ddagger}$	C _I = 100 pF‡	25°C		66°		
	Gain margin	INC = 10 K22+1	OL = 100 br+	25°C	-	11	and and	dB

† Full range for the C version is 0°C to 70°C. Full range for the I version is -40°C to 85°C.

‡ Referenced to 2.5 V

TLV2422, TLV2422A Advanced LinCMOS™ RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199B - SEPTEMBER1997 - REVISED SEPTEMBER 1999

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	T _A †		.V24220 .V24221			V2422A V2422A		UNIT
		JAT		Bar	MIN	TYP	MAX	MIN	TYP	MAX	
	land offert veltons			25°C		300	2000		300	950	
VIO	Input offset voltage	pres I		Full range			2500			1800	μV
αγιο	Temperature coefficient of input offset voltage			Full range		2		Alog yak	2	Bles	μV/°C
SHOWN	Input offset voltage long-term drift (see Note 4)	$V_{IC} = 0,$ $V_{O} = 0,$	$V_{DD}\pm=\pm2.5 \text{ V},$ $R_S=50 \Omega$	25°C		0.003	egalov	ut nplac	0.003	Equay	μV/mo
lio	Input offset current	Dras I		25°C		0.5	13,1/g/iii 318	alie VIII Ca	0.5	71.50	pA
10	input onset current	28°C		Full range			150	ezion tu	ani inois	150	PA
l	lanut bing gurrent			25°C	7	1			1		
IB	Input bias current			Full range		edig	300	inel b	agamer	300	pA
Vion	Common-mode input		Po = 50 O	25°C	0 to 4.5	-0.25 to 4.75		0 to 4.5	-0.25 to 4.75	-olaD	V
VICR	voltage range	7	NS = 50 12	Full range	0 to 4.2	rtito	Michael (0 to 4.2	glao mur		MD
	1.6.0	I _{OH} = -100 μA	21.0 et	25°C		4.97			4.97		
VOH	High-level output voltage	In. 1 mA	ero n ar	25°C		4.75			4.75	Willes.	V
	voltage	I _{OH} = -1 mA		Full range	4.5			4.5			
	198	V _{IC} = 2.5 V,	I _{OL} = 100 μA	25°C		0.04	nlag	yshu sa	0.04	BH (F)	
VOL	Low-level output voltage	V _{IC} = 2.5 V,	I _{OL} = 500 μA	25°C		0.15			0.15	nish	V
	vollago	VIC = 2.5 V,	IOL = 300 μA	Full range	St of Co	ept. – 56	0.5	50) (IFE	DE ANCE	0.5	can Bu-
	Large-signal	V 05V	R _L = 10 kΩ [‡]	25°C	8	12		8	12	Se in Leave	100000000
AVD	differential voltage	$V_{IC} = 2.5 \text{ V},$ $V_{O} = 1 \text{ V to 4 V}$	HL = 10 K22+	Full range	3			3			V/mV
	amplification		$R_L = 1 M\Omega^{\ddagger}$	25°C		1000			1000		
ri(d)	Differential input resistance			25°C		1012			1012		Ω
ri(c)	Common-mode input resistance			25°C		1012			1012		Ω
Ci(c)	Common-mode input capacitance	f = 10 kHz		25°C		8			8		pF
z _o	Closed-loop output impedance	f = 100 kHz,	A _V = 10	25°C		130			130		Ω
CMRR	Common-mode	VIC = VICR min,	V _O = 2.5 V,	25°C	70	90		70	90		-JD
OWINN	rejection ratio	$R_S = 50 \Omega$		Full range	70			70			dB
	Supply-voltage	V _{DD} = 4.4 V to 8	8 V.	25°C	80	95		80	95		
ksvr	rejection ratio (ΔV _{DD} /ΔV _{IO})	$V_{IC} = V_{DD}/2$	No load	Full range	80			80			dB
1	Completerment	V- 05V	Nelsed	25°C	Rugel .	100	150		100	150	
IDD	Supply current	$V_0 = 2.5 V$,	No load	Full range			175		N. I. I. IV	175	μА

[†] Full range is -40°C to 125°C for Q level part, -55°C to 125°C for M level part.

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

[‡] Referenced to 2.5 V

TLV2422, TLV2422A Advanced LinCMOS™ RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999

operating characteristics at specified free-air temperature, VDD = 5 V

THE	PARAMETER	TEST COND	TAT	TLV2422Q, TLV2422M, TLV2422AQ, TLV2422AM			UNIT	
		200			MIN	TYP	MAX	100
	10068	V 45V 05V	D totat	25°C	0.01	0.02		
SR	Slew rate at unity gain	$V_O = 1.5 \text{ V to } 3.5 \text{ V},$ $C_L = 100 \text{ pF}^{\ddagger}$	$R_L = 10 \text{ k}\Omega^{\ddagger}$,	Full range	0.008	ent of hy	piorituas no Sautio	V/µs
1/		f = 10 Hz		25°C	e Tone	100	in sure	
Vn	Equivalent input noise voltage	f = 1 kHz	(Na wight	25°C	608	18	red ghol	nV/√Hz
V	Deals to seek as it plant in a straight will be	f = 0.1 Hz to 1 Hz		25°C		1.9	(RIPROVI	
VN(PP)	Peak-to-peak equivalent input noise voltage	f = 0.1 Hz to 10 Hz		25°C	A man	2.8	la tuos	μV
In	Equivalent input noise current	1 egnattari		25°C		0.6		fA√Hz
THD + N	Total harmonic distortion plus noise	$V_O = 1.5 \text{ V to } 3.5 \text{ V},$ f = 1 kHz,	A _V = 1	25°C	(0.24%	dd hugal	ari
1110 114	Total Harmonic distortion plus holse	$R_L = 10 \text{ k}\Omega^{\ddagger}$	A _V = 10	200		1.7%		
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF [‡]	$R_L = 10 \text{ k}\Omega^{\ddagger}$,	25°C	hagni	52	ommoO	kHz
ВОМ	Maximum output-swing bandwidth	$V_{O(PP)} = 2 V$, $R_L = 10 \text{ k}\Omega^{\ddagger}$,	A _V = 1, C _L = 100 pF‡	25°C		5.3		kHz
ts	Settling time	$A_V = -1$, Step = 1.5 V to 3.5 V,	To 0.1%	25°C		8.5		μѕ
'8	Settling time	$R_L = 10 \text{ k}\Omega^{\ddagger},$ $C_L = 100 \text{ pF}^{\ddagger}$	To 0.01%	7 = 440		15.5	dominy	до
φm	Phase margin at unity gain	$R_{I} = 10 \text{ k}\Omega^{\ddagger}$	C _I = 100 pF [‡]	25°C	1	66°		
V. I	Gain margin	HE = 10 K22+	OL = 100 PF+	25°C		11	WELL WILL	dB

† Full range is -40°C to 125°C for Q level part, -55°C to 125°C for M level part.

‡Referenced to 2.5 V

Table of Graphs

-		NAME OF TAXABLE PROPERTY.	FIGURE
Vio	Input offset voltage	Distribution	2,3
10	niput onsot voltage	vs Common-mode input voltage	4,5
ανιο	Temperature coefficient	Distribution	6,7
IB/IO	Input bias and input offset currents	vs Free-air temperature	8
VOH	High-level output voltage	vs High-level output current	9,11
VOL	Low-level output voltage	vs Low-level output current	10,12
VO(PP)	Maximum peak-to-peak output voltage	vs Frequency	13
los	Short-circuit output current	vs Supply voltage vs Free-air temperature	14 15
VID	Differential input voltage	vs Output voltage	16,17
	Differential gain	vs Load resistance	18
AVD	Large-signal differential voltage amplification	vs Frequency vs Free-air temperature	19,20 21,22
z _o	Output impedance	vs Frequency	23,24
CMRR	Common-mode rejection ratio	vs Frequency vs Free-air temperature	25 26
ksvr	Supply-voltage rejection ratio	vs Frequency vs Free-air temperature	27,28 29
IDD	Supply current	vs Supply voltage	30
SR aga	Slew rate	vs Load capacitance vs Free-air temperature	31 32
Vo	Inverting large-signal pulse response	SOAT MY THOSE DOOR	33,34
Vo	Voltage-follower large-signal pulse response		35,36
Vo	Inverting small-signal pulse response		37,38
Vo	Voltage-follower small-signal pulse response		39,40
Vn	Equivalent input noise voltage	vs Frequency	41, 42
	Noise voltage (referred to input)	Over a 10-second period	43
THD + N	Total harmonic distortion plus noise	vs Frequency	44,45
	Gain-bandwidth product	vs Supply voltage vs Free-air temperature	46 47
φm	Phase margin	vs Frequency vs Load capacitance	19,20 48
	Gain margin	vs Load capacitance	49
B ₁	Unity-gain bandwidth	vs Load capacitance	50

Figure 6

DISTRIBUTION OF TLV2422 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

Figure 7

HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT

DIFFERENTIAL GAIN
vs
LOAD RESISTANCE

Figure 18

LARGE-SIGNAL DIFFERENTIAL VOLTAGE

AMPLIFICATION AND PHASE MARGIN

Figure 19

SLOS199B - SEPTEMBER1997 - REVISED SEPTEMBER 1999

TYPICAL CHARACTERISTICS

LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN

Figure 20

DIFFERENTIAL VOLTAGE AMPLIFICATION DIFFERENTIAL VOLTAGE AMPLIFICATION VS VS FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE 10000 10000 $V_{DD} = 3 V$ $V_{DD} = 5 V$ Avp - Differential Voltage Amplication - V/mV Avp - Differential Voltage Amplication - V/mV $R_L = 1 M\Omega$ 1000 $R_L = 1 M\Omega$ 1000 100 100 $R_L = 10 \text{ k}\Omega$ $R_L = 10 \text{ k}\Omega$ 10 10 -50 -25 50 -75 75 100 -75 -50 -25 25 50 TA - Free-Air Temperature - °C TA - Free-Air Temperature - °C Figure 21 Figure 22

SUPPLY-VOLTAGE REJECTION RATIO FREQUENCY 120 $V_{DD} = 3 V$ dB TA = 25°C KSVR - Supply-Voltage Rejection Ratio -100 KSVR+ 80 60 KSVR-40 20 102 103 104 105 101 106 f - Frequency - Hz Figure 27

VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 400 VDD = 3 V $R_L = 10 \text{ k}\Omega$ 300 CL = 100 pF Av = 1200 TA = 25°C 100 - Output Voltage 0 -100 V0--200 -300 -400 -4 -3 -2 -1 0 1 -5 t-Time-us Figure 39

Figure 40

EQUIVALENT INPUT NOISE VOLTAGE FREQUENCY

Figure 41

EQUIVALENT INPUT NOISE VOLTAGE

Figure 42

NOISE VOLTAGE OVER A 10-SECOND PERIOD 1000 Over a 10 Second Period $V_{DD} = 5 V$ 800 f = 0.1 Hz to 10 Hz TA = 25°C 600 400 Vu-200 Noise Voltage 0 -200 -400 -600 -800 -1000-12002 0 1 3 4 5 8 9 10 t-Time-s

Figure 43

TOTAL HARMONIC DISTORTION PLUS NOISE FREQUENCY 100 E THD +N - Total Harmonic Distortion Plus Noise - $V_{DD} = 3 V$ $R_L = 10 \text{ k}\Omega$ TA = 25°C 10 Ay = 10 0.1 0.01 103 104 102 105 101 f - Frequency - Hz Figure 44

UNITY-GAIN BANDWIDTH vs

Figure 50

TLV2450, TLV2451, TLV2452, TLV2453, TLV2454, TLV2455, TLV245xA FAMILY OF 23-µA 220-kHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS218B - DECEMBER 1998 - REVISED JUNE 1999

- Supply Current . . . 23 μA/Channel
- Gain-Bandwidth Product . . . 220 kHz
- Output Drive Capability . . . ±10 mA
- Input Offset Voltage . . . 20 μV (typ)
- V_{DD} Range . . . 2.7 V to 6 V
- Power Supply Rejection Ratio . . . 106 dB
- Ultra-Low Power Shutdown Mode
 I_{DD} ... 16 nA/ch
- Rail-To-Rail Input/Output (RRIO)
- Ultra-Small Packaging
 - 5 or 6 Pin SOT-23 (TLV2450/1)
 - 8 or 10 Pin MSOP (TLV2452/3)

[†]This device is in the Product Preview stage of development. Please contact your local TI sales office for availability.

description

The TLV245x is a family of rail-to-rail input/output operational amplifiers that set a new performance point for supply current and ac performance. These devices consume a mere 23 µA/channel while offering 220 kHz of gain bandwidth product; much higher than competitive devices with similar supply current levels. Along with increased ac performance, the amplifier provides high output drive capability, solving a major shortcoming of older micropower rail-to-rail input/output operational amplifiers. The TLV245x can swing to within 250 mV of each supply rail while driving a 2.5-mA load. Both the inputs and outputs swing rail-to-rail for increased dynamic range in low-voltage applications. This performance makes the TLV245x family ideal for portable medical equipment, patient monitoring systems, and data acquisition circuits.

Three members of the family (TLV2450/3/5) offer a shutdown terminal for conserving battery life in portable applications. During shutdown, the outputs are placed in a high-impedance state and the amplifier consumes only 16 nA/channel. The family is fully specified at 3 V and 5 V across an expanded industrial temperature range (–40°C to 125°C). The singles and duals are available in the SOT23 and MSOP packages, while the quads are available in TSSOP. The TLV2450 offers an amplifier with shutdown functionality all in a 6-pin SOT23 package, making it perfect for high density circuits.

FAMILY PACKAGE TABLE

DEVICE	NUMBER OF	SPECT OF	PAC	CKAGE TY	CHUTDOWN	UNIVERSAL		
DEVICE	CHANNELS	PDIP	SOIC	SOT-23	TSSOP	MSOP	SHUTDOWN	EVM BOARD
TLV2450	1 1	8	8	6‡	-023	08VT1	Yes	UNIV-OPAMP-2
TLV2451	1 2/02	8	8	5	7110.5	Set711		UNIV-OPAMP-1
TLV2452	2	8	8	SV.FF	-81/3	8	-	UNIV-OPAMP-1
TLV2453	2	14	14	de s qui ctr	ibil o d l' is	10	Yes	UNIV-OPAMP-2
TLV2454	4	14	14		14	-	_GACGA	ASV.(Y., a. a)
TLV2455	4	16	16	-	16	1719 0 05	Yes	-

‡This device is in the Product Preview stage of development. Contact your local TI sales office for availability.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TLV2450, TLV2451, TLV2452, TLV2453, TLV2454, TLV2455, TLV245xA FAMILY OF 23- μ A 220-kHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS218B - DECEMBER 1998 - REVISED JUNE 1999

TLV2450 and TLV2451 AVAILABLE OPTIONS

		d - william between			
TA	SMALL OUTLINE	SOT-2	3	PLASTIC DIP	CHIP FORM‡
	(D)†	(DBV)†	SYMBOL	(P)	
0°C to 70°C	TLV2450CD§ TLV2451CD	TLV2450CDBV TLV2451CDBV	VAQC VARC	TLV2450CP TLV2451CP	TLV2450Y TLV2451Y
	TLV2450ID§ TLV2451ID	TLV2450IDBV TLV2451IDBV	VAQI VARI	TLV2450IP TLV2451IP	e' Power Supp
-40°C to 125°C	TLV2450AID TLV2451AID	ou arrit	=	TLV2450AIP TLV2451AIP	00

[†]This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2450CDR).

‡ Chip forms are tested at TA = 25°C only.

TLV2452 and TLV2453 AVAILABLE OPTIONS

	PACKAGED DEVICES									
TA	SMALL OUTLINE (D)†	wen it test test	MS	OP	PLASTIC	PLASTIC	CHIP FORM‡			
		(DGK)†	SYMBOL§	(DGS)†	SYMBOL§	DIP (N)	DIP (P)	(Y)		
0°C to 70°C	TLV2452CD TLV2453CD	TLV2452CDGK	xxTIABI —	TLV2453CDGS	— xxTIABK	TLV2453CN	TLV2452CP	TLV2452Y TLV2453Y		
−40°C to	TLV2452ID TLV2453ID	TLV2452IDGK	xxTIABJ —	TLV2453IDGS	 xxTIABL	 TLV2453IN	TLV2452IP	ma tamo		
125°C	TLV2452AID TLV2453AID	ords Almines ver	STORY OF THE	voltisk <u>un</u> os ats	p brus_arne	TLV2453AIN	TLV2452AIP	sanqiu <u>ri</u> a		

This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2452CDR).

‡ Chip forms are tested at T_A = 25°C only. § xx represents the device date code.

	PAC			
TA	SMALL OUTLINE (D)†	PLASTIC DIP (N)	TSSOP (PW)†	CHIP FORM [‡] (Y)
0°C to 70°C	TLV2454CD TLV2455CD	TLV2454CN TLV2455CN	TLV2454CPW TLV2455CPW	TLV2454Y TLV2455Y
4000 to 40500	TLV2454ID TLV2455ID	TLV2454IN TLV2455IN	TLV2454IPW TLV2455IPW	E
-40°C to 125°C	TLV2454AID TLV2455AID	TLV2454AIN TLV2455AIN	TLV2454AIPW TLV2455AIPW	

[†] This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2454CDR).

[§] This device is in the Prodauct Preview stage of development. Contacat your local TI sales office for availability.

[‡] Chip forms are tested at TA = 25°C only.

TLV2450, TLV2451, TLV2452, TLV2453, TLV2454, TLV2455, TLV245xA FAMILY OF 23-μA 220-kHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS218B - DECEMBER 1998 - REVISED JUNE 1999

TLV245x PACKAGE PINOUTS TLV2450 TLV2451 TLV2452 **DBV PACKAGE DBV PACKAGE** D. DGN. OR P PACKAGE (TOP VIEW) (TOP VIEW) (TOP VIEW) VDD+ OUT V_{DD+} 10UT 8 VDD+ 1IN- 2A - 7 1 2OUT 5 SHDN GND 2 1IN+ 3 4 6 1 2IN-_ 5 □ 2IN+ GND 4 IN+CR IN+ IN-TLV2453 TLV2450 TLV2451 D OR P PACKAGE D OR P PACKAGE DGS PACKAGE (TOP VIEW) (TOP VIEW) (TOP VIEW) 10UT 119 NC III NC I 8 III SHDN 10 VDD+ 8 DNC 1IN- 112-A 9 20UT 2IN-IN- II 2-IN- 12 7 1 VDD+ 7 VDD+ 1IN+ 3-IN+ [3] 6 DOUT 6 DOUT IN+ 1 3 GND 4 7 1 2IN+ 5 NC GND IT 4 GND I 5 D NC 1SHDN III 5 6 III 2SHDN TLV2454 TLV2455 TLV2453 D OR N PACKAGE D, N, OR PW PACKAGE D, N, OR PW PACKAGE (TOP VIEW) (TOP VIEW) (TOP VIEW) 10UT 17 10UT 1 14 40UT 11N- 12 13 14 41N-14 VDD+ 1IN- 24-13 20UT 1IN+ 3-12 2IN-1IN+ 3 -12 4IN+ GND 4 -11 1 2IN+ 11 GND V_{DD}+ 4 13 GND V_{DD}+ 4 2IN+ 5 7 12 3IN+ NC 5 10 NC 2IN+ 5 - 10 3IN+ 2IN- 6-7 11 3IN-2OUT 7 7 10 3OUT 2IN- 6- 9 3IN-2OUT 7 8 3OUT 1SHDN III 6 9 III 2SHDN NC II 7 8 NC 20UT 1/2SHDN III 8 9 3/4SHDN

NC - No internal connection

TLV2450, TLV2451, TLV2452, TLV2453, TLV2454, TLV2455, TLV245xA FAMILY OF 23-µA 220-kHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS218B - DECEMBER 1998 - REVISED JUNE 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, Vnn (see Note 1)	7 V
	±V _{DD}
	See Dissipation Rating Table
Operating free-air temperature range, TA: (C suffix 0°C to 70°C
	I suffix −40°C to 125°C
Maximum junction temperature, TJ	150°C
	65°C to 150°C
	case for 10 seconds 260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE: All voltage values, except differential voltages, are with respect to VDD....

DISSIPATION RATING TABLE

PACKAGE	(°C/W) ₀ JC	θJA (°C/W)	T _A ≤ 25°C POWER RATING						
D (8)	38.3	176	710 mW						
D (14)	26.9	122.3	1022 mW						
D (16)	25.7	114.7	1090 mW						
DBV (5)	55	324.1	385 mW						
DBV (6)	55	294.3	425 mW						
DGK (8)	54.2	259.9	481 mW						
DGS (10)	54.1	257.7	485 mW						
N (14, 16)	32	78	1600 mW						
P (8)	41	104	1200 mW						
PW (14)	29.3	173.6	720 mW						
PW (16)	28.7	161.4	774 mW						

recommended operating conditions

	HIETTAL CATTORNS	MIN	MAX	UNIT
Cumph welfage V-=	Single supply	2.7	6	The Name of the Na
upply voltage, V _{DD}	Split supply	±1.35	±3	V
Common-mode input voltage range, VICR		V _{DD} _	V _{DD+}	V
Operating free six temperature T-	C-suffix	0	70	°C
Operating free-air temperature, TA	I-suffix	-40	125	-0

TLV2450, TLV2451, TLV2452, TLV2453, TLV2454, TLV2455, TLV245xA FAMILY OF 23-µA 220-kHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS218B - DECEMBER 1998 - REVISED JUNE 199

electrical characteristics at specified free-air temperature, V_{DD} = 3 V (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS	T _A †	MIN	TYP	MAX	UNIT	
11010	AAR STY HIM		S. SERVITORIN	A4 1820	25°C		20	1500		
	88	TLV245x			Full range			2000		
VIO	Input offset voltage	TIMOAF	(Caracter)		25°C		20	1000	μV	
		TLV245xA	ta8egV.IF		Full range			1300		
ανιο	Temperature coeffici offset voltage	ent of input	$V_{DD} = \pm 1.5 \text{ V}$ $V_{IC} = 0$,	$V_O = 0$, $R_S = 50 \Omega$		terrologi terrologi	0.3	multi multi	μV/°C	
	Input offset current	1 - 3/ds -			25°C	arte et la	0.3	4.5	nA	
10	input onset current	epine 361	TLVZASAC		Full range	V.ST.,089	sV.M o	5.5	IIA	
	Input bias current	Furtherings	14050078		25°C	de ibelo sa	0.9	5	nA	
IB	input bias current			PROFILE TO STATE OF	Full range	Mue Ging	10 01 6	7	nA	
(bute	Common-mode inpu	t voltage	CMRR > 70 dB	$R_S = 50 \Omega$	25°C	to 3	efas 1	g che	illan	
VICR	range		CMRR > 52 dB	$R_S = 50 \Omega$	Full range	0 to 3	ov.le sk	n wells	V	
V- Ulab lavel and		To see		the section of	25°C	2.85	2.95			
VOH	High-level output voltage		V _{IC} = 1.5 V,	IOH = -500 μA	Full range	2.83	A P HOU	I A INTER	V	
water out	Law lavel autout vale	Distance of the second	V - 45V	I- 500 · A	25°C	a action is	0.09	0.16	V	
VOL	Low-level output volt	age	V _{IC} = 1.5 V,	I _{OL} = 500 μA	Full range			0.2	V	
	Country Of the Countr		0.01	25°C	4	12	2	10-0		
00	Short-circuit output of	urront	Sourcing		Full range	3		Turk	mA	
los	Short-circuit output o	urrent	Sinking		25°C	2	7	illigmA	mA	
	No.	1990	Siriking	g JFDS is benujacht	Full range	1	to duri in	(BornA		
0	Output current	1 dame	$V_O = 0.5 \text{ V from rail}$	entine)	25°C	bullions:	±4	d-min)	mA	
AVD	Large-signal differen	tial voltage	V _{O(PP)} = 1 V,	$R_{I} = 10 \text{ k}\Omega$	25°C	96	110		dB	
VD	amplification		VO(PP) = 1 V,	HL = 10 KS2	Full range	91			ub	
ri(d)	Differential input resi	stance	Biogl	Agure ju	25°C		109		Ω	
CIC	Common-mode inpu capacitance	t se	f = 10 kHz	X8 = 49(937a)Y	25°C		4.5	nine2	pF	
z _o	Closed-loop output in	mpedance	f = 10 kHz,	A _V = 10	25°C		80		Ω	
CMRR	Common-mode reject	18	Common-mode rejection ratio VIC = 0 to 3 V,		TLV245xC	Full range	60			dB
OWNT	Common-mode rejec	Julion ratio	$R_S = 50 \Omega$	TLV245xI	Truil range	52	alguin	Phase	UD	
		- oraș	$V_{DD} = 2.7 \text{ V to 6 V},$	$V_{IC} = V_{DD}/2$,	25°C	76	89	mrino)		
SVR	Supply voltage rejection ratio		No load	Allthon Lives Constitution	Full range	74	1000	1 0 YO 16	dB	
HVC	(ΔV _{DD} /ΔV _{IO})		$V_{DD} = 3 V \text{ to } 5 V$	$V_{IC} = V_{DD}/2$,	25°C	88	106		ub	
			No load		Full range	84				

[†] Full range is 0°C to 70°C for C suffix and -40°C to 125°C for I suffix.

TLV2450, TLV2451, TLV2452, TLV2453, TLV2454, TLV2455, TLV245xA FAMILY OF 23-µA 220-kHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS218B – DECEMBER 1998 – REVISED JUNE 1999

electrical characteristics at specified free-air temperature, V_{DD} = 3 V (unless otherwise noted) (continued)

	PARAMETER	TEST CO	NDITIONS	TAT	MIN	TYP	MAX	UNIT
	otes inner h			25°C		23	35	
IDD	Supply current (per channel)	V _O = 1.5 V, No load	TLV245xC	Full range	aguaro	V 316(110).1	40	μΑ
	(per charmer)	140 load	TLV245xI	Full range		When the	45	
V _(ON)	Turnon voltage level	A _V = 1	VSYERE	25°C	Kolheco	1.73	me?	٧
V(OFF)	Turnoff voltage level	A _V = 1	.5.45	25°C		1.45	pullo	٧
	Supply current in shutdown			25°C		12	70	
IDD(SHDN)	mode (TLV2450, TLV2453,	SHDN = < 1.45 V	TLV245xC	Full range			70	nA
	TLV2455) (per channel)		TLV245xI	Full range			80	

[†] Full range is 0°C to 70°C for C suffix and -40°C to 125°C for I suffix.

operating characteristics at specified free-air temperature, V_{DD} = 3 V (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	TAT	MIN	TYP	MAX	UNIT
SR	Clay rate at unity gain	V _{O(PP)} = 0.8 V,	C _L = 150 pF,	25°C	0.05	0.11		V/µs
on	Slew rate at unity gain	$R_L = 10 \text{ k}\Omega$		Full range	0.02			ν/μ3
V	Equivalent input noise voltage	f = 100 Hz	W. S. P. S. Ph.	25°C	udirection	49	didid	nV/√Hz
Vn	Equivalent input hoise voltage	f = 1 kHz		25°C		51		IIV/VIIIZ
In .	Equivalent input noise current	f = 1 kHz		25°C		3.5		pA/√Hz
	after in	V _{O(PP)} = 1.5 V,	A _V = 1			0.04%		
THD + N	Total harmonic distortion plus noise	$R_L = 10 \text{ k}\Omega$	Ay = 10	25°C		0.3%		
		f = 1 kHz	Ay = 100		nas funte	1.5%	bus -	1
t(on)	Amplifier turnon time	A _V = 5,	R _L = OPEN,	25°C		59	41-11	μs
t(off)	Amplifier turnoff time	Measured at 50% p	oint	25°C		836		ns
Am	Gain-bandwidth product	f = 10 kHz,	$R_L = 10 \text{ k}\Omega$	25°C		200		kHz
- 80	10 segres to 1	V(STEP)PP = 2 V, A _V = -1,	0.1%	edere-	an aret	26	gms -	OT OT
9	Cottling time	$C_L = 10 \text{ pF},$ $R_L = 10 \text{ k}\Omega$	0.01%	25°C		31		0
ts	Settling time	V(STEP)PP = 2 V, Av = -1,	0.1%			26	ogus	μs
9	08 0'85	$C_L = 56 \text{ pF},$ $R_L = 10 \text{ k}\Omega$	0.01%	83/1924		31		and the same
φm	Phase margin	$R_L = 10 \text{ k}\Omega$,	C _L = 1000 pF	25°C		56°		
7 17 17	Gain margin	$R_1 = 10 \text{ k}\Omega$	C _I = 1000 pF	25°C		7		dB

[†] Full range is 0°C to 70°C for C suffix and -40°C to 125°C for I suffix.

TLV2450, TLV2451, TLV2452, TLV2453, TLV2454, TLV2455, TLV245xA FAMILY OF 23-µA 220-kHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS	T _A †	MIN	TYP	MAX	UNIT
		T11/045			25°C		20	1500	
.,	land effect values	TLV245x			Full range	20	cuso iqu	2000	
VIO	Input offset voltage	TIMOATHA	D-0393447		25°C		20	1000	μV
		TLV245xA	SESSIVE T		Full range		-	1300	
αVIO	Temperature coefficients offset voltage	ent of input	$V_{DD} = \pm 2.5 V$ $V_{IC} = 0$,	$V_O = 0$, $R_S = 50 \Omega$		Joseph St.	0.3	mux	μV/°C
	lanut effect everent	1985			25°C	hurta el fa	0.3	4.5	nA
lio	Input offset current		DEPUGE		Full range	Mar Joel	SVIII I	5.5	TIA
	Input bigg gurrant	Teorem No.	HERRYLITE		25°C		0.5	5	nA
IB	Input bias current				Full range	Man of the	A SAN D	7	IIA
VICR	Common-mode inpu	t voltage	CMRR > 70 dB	$R_S = 50 \Omega$	25°C	0 to 5	elben Mane	ado g	V
VICH	range	Oraș agranilui	CMRR > 52 dB	$R_S = 50 \Omega$	Full range	0 to 5	nu la el	n wald	
VOH High-lev	High level output vol	togo	V _{IC} = 2.5 V,	I _{OH} = -500 μA	25°C	4.87	4.97	andrum?	V
VOH	OH High-level output voltage		VIC = 5.5 V,	ЮН = -500 µА	Full range	4.85			V
VOL	Low-level output volt	280	V _{IC} = 2.5 V,	Ιοι = 500 μΑ	25°C	n eston i	0.07	0.15	V
VOL	Low-level output voit	age	vIC = 5.5 v,	IOL = 500 μA	Full range			0.16	V
			Sourcing		25°C	20	32	at Indol'	N+O
los	Short-circuit output of	urrent	Courcing	SHM F = 1	Full range	18		157	mA
105	Onort-circuit output o	urront	Sinking Sinking		25°C	12	18	Magna	1112
1	668	2002			Full range	10	li mul 19	SigmA.	
lo	Output current	0138	$V_O = 0.5 \text{ V from rail}$	sHill 01 = 1	25°C	bulleng	±10	d-rife()	mA
AVD	Large-signal differen	tial voltage	V _{O(PP)} = 3 V,	$R_{I} = 10 \text{ k}\Omega$	25°C	96	103		dB
	amplification		VO(PP) = 0 V,	HL = 10 KS2	Full range	91			u.b
ri(d)	Differential input resi	stance	arroid)	(5) M = 30 (5) M = 40	25°C		109		Ω
CIC	Common-mode inpu capacitance		f = 10 kHz	YS=99(9378)Y	25°C		4.5	mides	pF
z _o	Closed-loop output in	mpedance	f = 10 kHz,	A _V = 10	25°C		45		Ω
CMRR Common-mode rejection		etion ratio	V _{IC} = 0 to 5 V,	TLV245xC	Full range	66			dB
- In the	Johnnon-mode rejec	ALIOTI TALIO	$R_S = 50 \Omega$	TLV245xI	1 diritariye	52	nigrano	8.75/19	db
	V _{DD} = 2.7 V to 6 V		$V_{DD} = 2.7 \text{ V to 6 V},$	$V_{IC} = V_{DD}/2$,	25°C	76	89	Gale fr	
ksvr	Supply voltage rejection ratio		No load	Street tel 0/891 o	Full range	74	4.0000 0	1004	dB
NOVA	(ΔV _{DD} /ΔV _{IO})		$V_{DD} = 3 V \text{ to } 5 V$	$V_{IC} = V_{DD}/2$	25°C	88	106		UD
			No load		Full range	84			

[†] Full range is 0°C to 70°C for C suffix and -40°C to 125°C for I suffix.

TLV2450, TLV2451, TLV2452, TLV2453, TLV2454, TLV2455, TLV245xA FAMILY OF 23-µA 220-kHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS218B - DECEMBER 1998 - REVISED JUNE 1999

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted) (continued)

PARAMETER		TEST CO	TEST CONDITIONS		MIN	TYP	MAX	UNIT
				25°C		23	42	Lu, N
Supply current (per channel)	Supply current (per channel)	V _O = 2.5 V, No load	TLV245xC	Full range	- oftest voltage		44	μА
	(per charmer)	No load	TLV245xI	Full range		made in	46	
V(ON)	Turnon voltage level	A _V = 1	Vaccent	25°C		1.73	Anna T	٧
V(OFF)	Turnoff voltage level	A _V = 1	all a fi	25°C		1.45	milis .	٧
	Supply current in shutdown			25°C		16	65	
IDD(SHDN)	mode (TLV2450, TLV2453,	SHDN = < 1.45 V	TLV245xC	Full range	172111	I liberally	65	nA
	TLV2455) (per channel)		TLV245xI	Full range			80	

[†] Full range is 0°C to 70°C for C suffix and -40°C to 125°C for I suffix.

operating characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	TAT	MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	V _{O(PP)} = 2 V,	C _L = 150 pF,	25°C	0.05	0.11		V/µs
on	Siew rate at unity gain	$R_L = 10 \text{ k}\Omega$		Full range	0.02			V/μS
1/	Equivalent input noise voltage	f = 100 Hz		25°C	Te Fire	49		->4//11
Vn	Equivalent input noise voltage	f = 1 kHz		25°C		52		nV/√H2
In	Equivalent input noise current	f = 1 kHz		25°C		3.5	La de la	pA/√Hz
	Pull rende 0.26	V _{O(PP)} = 3 V,	A _V = 1			0.02%		
THD + N	Total harmonic distortion plus noise	$R_L = 10 \text{ k}\Omega$	Ay = 10	25°C		0.18%		
	ST egns Hu	f = 1 kHz	Ay = 100			0.9%		
t(on)	Amplifier turnon time	A _V = 5,	RL = OPEN,	25°C		59		μs
t(off)	Amplifier turnoff time	Measured at 50% p	oint	25°C		836		ns
Fan	Gain-bandwidth product	f = 10 kHz,	$R_L = 10 \text{ k}\Omega$	25°C		220	piQ.	kHz
60	spr es oras	V(STEP)PP = 2 V, Ay = -1,	0.1%	ON egallov	Stranelli	24	gna.J ignia	0
ts	Settling time	$C_L = 10 \text{ pF},$ $R_L = 10 \text{ k}\Omega$	0.01%	25°C	alateg luk	30	elio	μѕ
5	9.50	V(STEP)PP = 2 V, AV = -1,	0.1%		Total te sa	25	eges.	μο
	BA 370s	$C_L = 56 \text{ pF},$ $R_L = 10 \text{ k}\Omega$	0.01%	e gonste		30		
φm	Phase margin	$R_L = 10 \text{ k}\Omega$,	C _L = 1000 pF	25°C	1 - 1 - 1 - 1 - 1	56°	TRUC	237 (1)
	Gain margin	$R_{\rm I} = 10 \text{ k}\Omega$	C _L = 1000 pF	25°C		7		dB

[†] Full range is 0°C to 70°C for C suffix and -40°C to 125°C for I suffix.

Table of Graphs

MAY LONG	THREE STORY HOWENS	ASSETTION TURNS ARTHUR	FIGURE
VIO	Input offset voltage	vs Common-mode input voltage	1, 2
lio	Input offset current	vs Common-mode input voltage vs Free-air temperature	3, 4 7, 8
I _{IB}	Input bias current	vs Common-mode input voltage vs Free-air temperature	5, 6 7, 8
AVD	Differential voltage amplification	vs Frequency	9, 10
	Phase	vs Frequency	9, 10
VOL	Low-level output voltage	vs Low-level output current	11, 13
VOH	High-level output voltage	vs High-level output current	12, 14
Zo	Output impedance	vs Frequency	15, 16
CMRR	Common-mode rejection ratio	vs Frequency	17
PSRR	Power supply rejection ratio	vs Frequency	18
IDD	Supply current	vs Supply voltage	19
IDD	Supply current	vs Free-air temperature	20
Vn	Equivalent input noise voltage	vs Frequency	21
THD + N	Total harmonic distortion plus noise	vs Frequency	22, 23
φm	Phase margin	vs Load capacitance	24
	Gain-bandwidth product	vs Supply voltage	25
SR	Slew rate	vs Supply voltage vs Free-air temperature	26 27
VO(PP)	Maximum peak-to-peak output voltage	vs Frequency	28
SOATIO	Crosstalk	vs Frequency	29, 30
	Small-signal follower pulse response	vs Time	31, 33
	Large-signal follower pulse response	vs Time	32, 34
	Shutdown on supply current	vs Time	35
Terrore	Shutdown off supply current	vs Time	36
	Shutdown supply current	vs Free-air temperature	37
	Shutdown supply current	vs Time	38 – 41
	Shutdown pulse	vs Time	38 – 41
	Shutdown off pulse response	vs Time	42, 43
	Shutdown on pulse response	vs Time	44, 45
	Shutdown reverse isolation	vs Frequency	46
	Shutdown forward isolation	vs Frequency	47

TLV2450, TLV2451, TLV2452, TLV2453, TLV2454, TLV2455, TLV245xA FAMILY OF 23-µA 220-kHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS218B - DECEMBER 1998 - REVISED JUNE 1999

SLOS218B - DECEMBER 1998 - REVISED JUNE 1999

 $V_{DD} = 5 V$

TA = 25° C

TYPICAL CHARACTERISTICS

110

45 65 85

25

Figure 7

TA - Free-Air Temperature - °C

5

0.9

0.8 0.7

0.5 0.4

0.3

0.2

0.1

0 -0.1 -55

-35 -15

and Input

IB/I IO - Input Bias

105 125

TLV2450, TLV2451, TLV2452, TLV2453, TLV2454, TLV2455, TLV245xA FAMILY OF 23-uA 220-kHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS218B - DECEMBER 1998 - REVISED JUNE 1999

TYPICAL CHARACTERISTICS

DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE

VS **FREQUENCY** 120 TTTT VDD = ±1.5 V TA = 25°C Voltage Amplification 120 90 60 60 Gain 0 30 Differential 0 -60 Phase AVD--120 -30 -60 -180 23 8 28 8 28 2 100 10k 100k f - Frequency - Hz

Figure 9

DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE

VS FREQUENCY 120 qB $V_{DD} = \pm 2.5 V_{DC}$ TA = 25°C Amplification 90 120 60 60 Gain Voltage 30 0 Differential 0 -60 Phase VD--30 -60 1M -180 100 1k 10k 100k f - Frequency - Hz

Figure 10

TLV2450, TLV2451, TLV2452, TLV2453, TLV2454, TLV2455, TLV245xA FAMILY OF 23-µA 220-kHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS218B - DECEMBER 1998 - REVISED JUNE 1999

TYPICAL CHARACTERISTICS

COMMON-MODE REJECTION RATIO

Figure 17

Figure 18

SUPPLY CURRENT VS FREE-AIR TEMPERATURE 30 VDD = 5 V 25 Supply Current - µA 20 $V_{DD} = 3 V$ 10 dal $V_I = V_{DD}/2$ 5 SHDN = VDD per channel -55 -35 -15 5 25 45 65 85 105 125 TA - Free-Air Temperature - °C Figure 20

TLV2450, TLV2451, TLV2452, TLV2453, TLV2454, TLV2455, TLV245xA FAMILY OF 23-µA 220-kHz RAIL-TO-RAIL INPUT/OUTPUT **OPERATIONAL AMPLIFIERS WITH SHUTDOWN**

SLOS218B - DECEMBER 1998 - REVISED JUNE 1999

TYPICAL CHARACTERISTICS

V_{DD} - Supply Voltage - V

Figure 25

CI - Load Capacitance - pF

Figure 24

SLOS218B - DECEMBER 1998 - REVISED JUNE 1999

TYPICAL CHARACTERISTICS

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE

Figure 28

TLV2450, TLV2451, TLV2452, TLV2453, TLV2454, TLV2455, TLV245xA FAMILY OF 23-µA 220-kHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS218B - DECEMBER 1998 - REVISED JUNE 1999

TYPICAL CHARACTERISTICS

SMALL-SIGNAL FOLLOWER PULSE RESPONSE

Figure 31

SLOS218B - DECEMBER 1998 - REVISED JUNE 1999

TYPICAL CHARACTERISTICS

LARGE-SIGNAL FOLLOWER PULSE RESPONSE

Figure 32

SMALL-SIGNAL FOLLOWER PULSE RESPONSE

Figure 33

LARGE-SIGNAL FOLLOWER PULSE RESPONSE

Figure 34

SHUTDOWN ON SUPPLY CURRENT

Figure 35

SHUTDOWN OFF SUPPLY CURRENT

Figure 36

SHUTDOWN SUPPLY CURRENT

VS

Figure 37

SHUTDOWN SUPPLY CURRENT AND SHUTDOWN PULSE

Figure 38

SHUTDOWN SUPPLY CURRENT AND SHUTDOWN PULSE

Figure 39

SLOS218B - DECEMBER 1998 - REVISED JUNE 1999

Pulse -

Shutdown

TYPICAL CHARACTERISTICS

SHUTDOWN SUPPLY CURRENT AND SHUTDOWN PULSE

Figure 40

SHUTDOWN SUPPLY CURRENT AND SHUTDOWN PULSE

TIME 220 $V_{DD} = 5 V$ SD Pulse 200 4 $A_V = 1$ Current - uA 180 3 V_I = 2.5 V $R_L = 10 \text{ k}\Omega$ 160 2 CL = 160 pF and 10 pF TA = 25°C 1 140 Shutdown Supply 120 0 Pulse 100 Shutdown 80 -2 -3 60 IDD(SD) 40 -4 -(as)aa 20 -5 -6 0 -7 -20 -40 -8 -5 15 t - Time - μs

Figure 41

TLV2450, TLV2451, TLV2452, TLV2453, TLV2454, TLV2455, TLV245xA FAMILY OF 23-µA 220-kHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS218B - DECEMBER 1998 - REVISED JUNE 1999

TYPICAL CHARACTERISTICS

Figure 45

Figure 44

TLV2450, TLV2451, TLV2452, TLV2453, TLV2454, TLV2455, TLV245xA FAMILY OF 23-µA 220-kHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS218B - DECEMBER 1998 - REVISED JUNE 1999

TYPICAL CHARACTERISTICS

TLV2450, TLV2451, TLV2452, TLV2453, TLV2454, TLV2455, TLV245xA FAMILY OF 23-μA 220-kHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS218B - DECEMBER 1998 - REVISED JUNE 1999

APPLICATION INFORMATION

general power dissipation considerations

For a given θ_{JA} , the maximum power dissipation is shown in Figure 48 and is calculated by the following formula:

$$P_{D} = \left(\frac{T_{MAX} - T_{A}}{\theta_{JA}}\right)$$

Where:

P_D = Maximum power dissipation of TLV245x IC (watts)

T_{MAX} = Absolute maximum junction temperature (150°C)

T_A = Free-ambient air temperature (°C)

 $\theta_{JA} = \theta_{JC} + \theta_{CA}$

 θ_{JC} = Thermal coefficient from junction to case

 θ_{CA} = Thermal coefficient from case to ambient air (°C/W)

MAXIMUM POWER DISSIPATION vs FREE-AIR TEMPERATURE

NOTE A. Results are with no air flow and using JEDEC Standard Low-K test PCB.

Figure 48. Maximum Power Dissipation vs Free-Air Temperature

TLV2450, TLV2451, TLV2452, TLV2453, TLV2454, TLV2455, TLV245xA FAMILY OF 23-μA 220-kHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS218B - DECEMBER 1998 - REVISED JUNE 1999

APPLICATION INFORMATION

shutdown function

Three members of the TLV245x family (TLV2450/3/5) have a shutdown terminal for conserving battery life in portable applications. When the shutdown terminal is tied low, the supply current is reduced to 16 nA/channel, the amplifier is disabled, and the outputs are placed in a high impedance mode. To enable the amplifier, the shutdown terminal can either be left floating or pulled high. When the shutdown terminal is left floating, care should be taken to ensure that parasitic leakage current at the shutdown terminal does not inadvertently place the operational amplifier into shutdown. The shutdown terminal threshold is always referenced to $V_{\rm DD}/2$. Therefore, when operating the device with split supply voltages (e.g. ± 2.5 V), the shutdown terminal needs to be pulled to $V_{\rm DD}$ — (not GND) to disable the operational amplifier.

The amplifier's output with a shutdown pulse is shown in Figures 42, 43, 44, and 45. The amplifier is powered with a single 5-V supply and configured as a noninverting configuration with a gain of 5. The amplifier turnon and turnoff times are measured from the 50% point of the shutdown pulse to the 50% point of the output waveform. The times for the single, dual, and guad are listed in the data tables.

Figures 46 and 47 show the amplifier's forward and reverse isolation in shutdown. The operational amplifier is powered by ± 1.35 -V supplies and configured as a voltage follower ($A_V = 1$). The isolation performance is plotted across frequency using 0.1-V_{PP}, 1.5-V_{PP}, and 2.5-V_{PP} input signals. During normal operation, the amplifier would not be able to handle a 2.5-V_{PP} input signal with a supply voltage of ± 1.35 V since it exceeds the common-mode input voltage range (V_{ICR}). However, this curve illustrates that the amplifier remains in shutdown even under a worst case scenario.

macromodel information

Macromodel information provided was derived using Microsim $Parts^{TM}$, the model generation software used with Microsim $PSpice^{TM}$. The Boyle macromodel (see Note 1) and subcircuit in Figure 49 are generated using the TLV245x typical electrical and operating characteristics at $T_A = 25$ °C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification

- Unity-gain frequency
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- Short-circuit output current limit

NOTE 1: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers," IEEE Journal of Solid-State Circuits, SC-9, 353 (1974).

PSpice and Parts are trademarks of MicroSim Corporation.

TLV2450, TLV2451, TLV2452, TLV2453, TLV2454, TLV2455, TLV245xA FAMILY OF 23-µA 220-kHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS218B - DECEMBER 1998 - REVISED JUNE 1999

APPLICATION INFORMATION

* Schematics Subcircuit *
.subckt TLV2450_ver1 Vout Vdd GND V+ V- SD

* Schematics Subcircuit *
.subckt TLV2451_ver1 V+ V- Vout Vdd GND

X_SUB_U1 V+ V- GND Vout AMP_TLV2450-X .ENDS tlv2451 ver1

Figure 49. Boyle Macromodel and Subcircuit

TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465 FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

GND

SLOS220E - JULY 1998 - REVISED JUNE 1999

V_{DD+}

SHDN

IN-

TLV2460

DBV PACKAGE

(TOP VIEW)

2

6

5

- Input Common-Mode Range Exceeds Both Supply Rails . . . V_{DD} – 0.2V to V_{DD+} + 0.2V
- Gain Bandwidth Product . . . 6.4MHz
- Supply Current . . . 500μA/channel
- Input Offset Voltage . . . 100 μV
- Input Noise Voltage . . . 11nV/√Hz
- Rail-to-Rail Output Swing
- Slew Rate . . . 1.6 V/μs
- ±90mA Output Drive Capability
- Micropower Shutdown Mode (TLV2460/3/5)...0.3 μA/channel
- Available in 5- or 6-pin SOT23 and 8- or 10-Pin MSOP
- Characterized From T_A = −40°C to 125°C
- Universal Op Amp EVM

description

The TLV246x is a family of low-power rail-to-rail input/output operational amplifiers specifically designed for portable applications. The input common-mode voltage range extends beyond the supply rails for maximum dynamic range in low-voltage systems. The amplifier output has rail-to-rail performance with high-output-drive capability, solving one of the limitations of older rail-to-rail input/output operational amplifiers. This rail-to-rail dynamic range and high output drive make the TLV246x ideal for buffering analog-to-digital converters.

The operational amplifier has 6.4 MHz of bandwidth and 1.6 V/ μ s of slew rate with only 500 μ A of supply current, providing good ac performance with low power consumption. Three members of the family offer a shutdown terminal, which places the amplifier in an ultra-low supply current mode (IDD = 0.3 μ A/ch). While in shutdown, the operational-amplifier output is placed in a high-impedance state. DC applications are also well served with an input noise voltage of 11 nV/ μ Hz and input offset voltage of 100 μ V.

This family is available in the low-profile SOT23, MSOP, and TSSOP packages. The TLV2460 is the first rail-to-rail input/output operational amplifier with shutdown available in the 6-pin SOT23, making it perfect for high-density circuits. The family is specified over an expanded temperature range ($T_A = -40$ °C to 125°C) for use in industrial control and automotive systems.

FAMILY PACKAGE TABLE

DEVIOE	110 05 01	PACKAGE TYPES				CHUTDOWN	UNIVERSAL	
DEVICE	NO. OF Ch	PDIP	SOIC	SOT-23	TSSOP	MSOP	SHUTDOWN	EVM BOARD
TLV2460	1	8	8	6	nasa anta	pt.Tran	X	UNIV-OPAMP-2
TLV2461	1	8	8	5	7	CORT T	_	UNIV-OPAMP-1
TLV2462	2	8	8	MANAGEMENT.	-2.(A)	8	544 <u>C</u> BUNES	UNIV-OPAMP-1
TLV2463	2 00AV	14	14	SPONET	-	10†	X	UNIV-OPAMP-2
TLV2464	4 1044	14	14	TI- <u>V</u> 246	14	-	-	-
TLV2465	4 09AV	16	16	BHOWLIT	16	_	X	_

† This device is in the Product Preview stage of development. Please contact your local TI sales office for availability.

TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465 FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS220E – JULY 1998 – REVISED JUNE 1999

TLV2460 and TLV2461 AVAILABLE OPTIONS

auen	STATE OF STA		PACKAGED DEVICES			
T _A 0°C to 70°C	V _{IO} max AT 25°C	SMALL OUTLINE (D)	SOT-23 [†] (DBV)	PLASTIC DIP (P)	CHIP FORM	
0°C to 70°C	2000 μV	TLV2460CD TLV2461CD	TLV2460CDBV TLV2461CDBV	TLV2460CP TLV2461CP	TLV2460Y TLV2461Y	
4000 1- 40000	2000 μV	TLV2460ID TLV2461ID	TLV2460IDBV TLV2461IDBV	TLV2460IP TLV2461IP	Talk-ox-lak	
-40°C to 125°C	1500 μV	TLV2460AID TLV2461AID	Ξ	TLV2460AIP TLV2461AIP	edsR malé	

[†] This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2460CDR). ‡ Chip forms are tested at TA = 25°C only.

TI V2462 and TI V2463 AVAILABLE OPTIONS

TA		PACKAGED DEVICES						
	A VIOMAX AT 25°C	SMALL OUTLINET (D)	MSOP (DGK)	MSOPT (DGS)	PLASTIC DIP (N)	PLASTIC DIP (P)	CHIP FORM	
0°C to 70°C	2000 μV	TLV2462CD TLV2463CD	TLV2462CDGK	TLV2463CDQS	TLV2463CN	TLV2462CP	TLV2462Y TLV2463Y	
-40°C to 125°C	2000 μV	TLV2462ID TLV2463ID	TLV2462IDGK	TLV2463IDGS	TLV2463IN	TLV2462IP	UT eπt	
	1500 μV	TLV2462AID TLV2463AID	brestxe — gner eg pislier i — l'épétié	Ph-	TLV2463AIN	TLV2462AIP	skint —	

[†] This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2462CDR). ‡ Chip forms are tested at T_A = 25°C only.

TLV2464 and TLV2465 AVAILABLE OPTIONS

	in energiation is	PAC	Serifi Building		
T _A	V _{IO} max AT 25°C	SMALL OUTLINE (D)	PLASTIC DIP (N)	TSSOP (PW)	CHIP FORM [‡]
0°C to 70°C	2000 μV	TLV2464CD TLV2465CD	TLV2464CN TLV2465CN	TLV2464CPW TLV2465CPW	TLV2464Y TLV2465Y
-40°C to 125°C	2000 μV	TLV2464ID TLV2465ID	TLV2464IN TLV2465IN	TLV2464IPW TLV2465IPW	luqni I—I-ci-i rio vlia n ola-di
-40°C to 125°C	1500 μV	TLV2464AID TLV2465AID	TLV2464AIN TLV2465AIN	TLV2464AIPW TLV2465AIPW	interior ni s

[†]This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2464CDR).

SOT-23 AND MSOP DEVICE SYMBOLS

DEVICE TYPE	NO. OF TERMINALS	PACKAGE NAME	SYMBOL	
×	6 Pin	TLV2460CDBV	VAOC	
SOT-23	6 Pin	TLV2460IDBV	VAOI	
501-23	5 Pin	TLV2461CDBV	VAPC	
	5 PIII	TLV2461IDBV	VAPI	
	8 Pin	TLV2462CDGK	XXTIAAI	
MSOP	O PIII	TLV2462IDGK	XXTIAAJ	
MSOF	10 Pin	TLV2463CDGS	xxTIAAK	
	10 Pin	TLV2463IDGS	xxTIAAL	

[‡] Chip forms are tested at TA = 25°C only.

TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465 FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS220E - JULY 1998 - REVISED JUNE 199

TLV246x PACKAGE PINOUTS TLV2460 TLV2461 DBV PACKAGE **DBV PACKAGE** D, DGK, OR P PACKAGE (TOP VIEW) (TOP VIEW) (TOP VIEW) VDD+ 10UT 19 OUT [VDD+ OUT [8 D VDD+ GND [2 4 SHDN GND [2 5 _ 5 _ 2IN+ GND 4 IN-IN+ TLV2460 TLV2461 TLV2463 D OR P PACKAGE DGS PACKAGE D OR P PACKAGE (TOP VIEW) (TOP VIEW) (TOP VIEW) 10UT 1 10 V_{DD}+ 20UT 8 2IN-NC I 8 SHDN NC I 8 III NC 1IN- 12-IN- 12-7 VDD+ IN- 2 7 VDD+ 1N+ 3 3 0 0UT 1IN+ H 3-5 IN+ 1 3 L₆ UOUT - 7 1 2IN+ GND ___ 5 INC 5 III NC GND I 1SHDN I 6 III 2SHDN TLV2464 TLV2465 TLV2463 D OR N PACKAGE D, N, OR PWP PACKAGE D, N, OR PWP PACKAGE (TOP VIEW) (TOP VIEW) (TOP VIEW) 10UT 1-10UT 110 16 16 40UT 110 15 16 110 16 10UT 14 VDD+ 10UT 1--14 1 40UT 1IN- 2 2 13 4IN-1IN- = 2A 1IN- 2 13 20UT 1IN+ 3 212 2IN-1IN+ 3- -14 1 4IN+ 1IN+ 3 -12 14IN+ V_{DD}+ 4 13 GND GND I 4 -11 2IN+ V_{DD}+ 4 11 GND 2IN+ 5 - 12 3IN+ NC III 5 10 NC 2IN+ 5 10 3IN+ 2IN- 6- 9 3IN-2OUT 7 8 3OUT 2IN- 6-7 11 3IN-2OUT 7 7 3OUT 1SHDN G 6 9 III 2SHDN 8 NC 20UT NC II 7 1/2SHDN I 8 9 3/4SHDN NC - No internal connection

TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465 FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS220E - JULY 1998 - REVISED JUNE 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{DD} (see Note 1)	
Input current, I _I (any input)	
Output current, IO	
Total input current, I _I (into V _{DD+})	175 mA
Total output current, IO (out of VDD-)	
Continuous total power dissipation	
Operating free-air temperature range, TA: C suffix	
	40°C to 125°C
Maximum junction temperature, Tj	150°C
Storage temperature range, T _{stq}	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values, except differential voltages, are with respect to VDD -.

DISSIPATION RATING TABLE

PACKAGE	⊖JC (°C/W)	ΘJA (°C/W)	T _A ≤ 25°C POWER RATING
D (8)	38.3	176	725 mW
D (14)	26.9	122.6	725 mW
D (16)	25.7	114.7	725 mW
DBV (5)	55	324.1	437 mW
DBV (6)	55	294.3	437 mW
DGK	54.23	259.96	424 mW
DGS	54.1	257.71	424 mW
N (14)	32	78	1150 mW
N (16)	32	78	1150 mW
Р	41	104	1000 mW
PW (14)	29.3	173.6	700 mW
PW (16)	28.7	161.4	700 mW

recommended operating conditions

MHSNE CTALL E THE NOVEMENT		MIN	MAX	UNIT
O	Single supply	2.7	6	d/v
upply voltage, V _{DD}	Split supply	±1.35	±3	V
Common-mode input voltage range, VICR		V _{DD} -	V _{DD+}	٧
One water of the column and the Translation	C-suffix	0	70	00
Operating free-air temperature, TA	I-suffix	-40	125	°C

TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465 FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS220E - JULY 1998 - REVISED JUNE 1999

electrical characteristics at specified free-air temperature, V_{DD} = 3 V (unless otherwise noted)

	PARAMETER	TEST COND	ITIONS	TAT		LV246x		UNIT
95(85)	Allegaria Art	CONTRACTOR	TEST		MIN	TYP	MAX	
VIO	Input offset voltage (TLV246x)			25°C		100	2000	μV
-	The state of the s	$V_{DD} = \pm 1.5 \text{ V},$ $V_{IC} = 0,$	$V_O = 0$, $R_S = 50 \Omega$	Full range	SUBSTITUTE	Note pinco	2200	0,00
αΛΙΟ	Temperature coefficient of input offset voltage	Tanneso	nS = 50 12			2		μV/°(
	XIII.D	Champel 2	ELST ILE	25°C		2.8	7	
10	Input offset current	$V_{DD} = \pm 1.5 \text{ V},$	TLV246xC	Full range	ris ni toer	nua vigo	20	nA
		V _{IC} = 0,	TLV246xI	Full range	TENSVER.	10848V.	75	HEIE)
	ful sanga sa – 40°C to 125°C.	$V_0 = 0$,	d tol O'dst of D's	25°C	anii sol	4.4	14	MAGE B
I _{IB}	Input bias current	$R_S = 50 \Omega$	TLV246xC	Full range	-		25	nA
· (that	on Dermanzo ezeniu) v z. =	DUA 'estratadora	TLV246xI	Full range	JII DI Ita	G-210 PE	75	312.46
THE	XASS SYT MOS TAT	CMRR > 66 dB	$R_S = 50 \Omega$	25°C	-0.2 to 3.2	KASIAS.		
VICR	Common-mode input voltage range	CMRR > 60 dB	R _S = 50 Ω	Full range	-0.2 to 3.2	178 600	Slaw	V
Wilder		. 05-4	3071007 =1	25°C	salon ha	2.9	Soils 1	
	PF CPES)	$I_{OH} = -2.5 \text{ mA}$		Full range	2.8			
VOH	High-level output voltage	10 1	NO LEI	25°C	oalon ile	2.7	App.o	V
		I _{OH} = -10 mA		Full range	2.5	real.		
	2750.0 0 es	V = 45V	1	25°C	links bo	0.1	IND!	10 + (U)
	aren order to the co	V _{IC} = 1.5 V,	$I_{OL} = 2.5 \text{ mA}$	Full range			0.2	V
VOL	Low-level output voltage	V _{IC} = 1.5 V,	I _{OL} = 10 mA	25°C		0.3		V
	The same of the sa	VIC = 1.5 V,		Full range			0.5	
		Course of the co		25°C	The same of	50	of the same	(6)
loo	Short-circuit output current	Sourcing		Full range	20	4/11/4		mA
los	Short-circuit output current	Ciation		25°C		40		IIIA
		Sinking		Full range	20			
10	Output current	no Signated Sign	1 - 1	25°C	emt he	±30	IgmA	m/
AVD	Large-signal differential voltage	$R_{I} = 10 \text{ k}\Omega$		25°C	90	105		dB
700	amplification	11L = 10 K32		Full range	89			dB
ri(d)	Differential input resistance	DLOT # IT	396 07 w E	25°C	udarente dal	109	Sales 3	Ω
Ci(c)	Common-mode input capacitance	f = 10 kHz	THE PARTY OF	25°C		7		pF
z _o	Closed-loop output impedance	f = 100 kHz,	A _V = 10	25°C		33		Ω
		V 00 V to 20 V	Selt v iO	25°C	66	80	PER	
CMRR	Common-mode rejection ratio	$V_{ICR} = -0.2 \text{ V to } 3.2 \text{ V},$ Rs = 50 \Omega	TLV246xC	Full range	64			dB
	ng-	March WS	TLV246xI	Full range	60			
		$V_{DD} = 2.7 \text{ V to 6 V},$	$V_{IC} = V_{DD}/2$	25°C	80	85		
ksvr	Supply voltage rejection ratio	No load	08 07 at 181	Full range	75	1.124		dB
OVI	(ΔV _{DD} /ΔV _{IO})	$V_{DD} = 3 V \text{ to 5 V},$	$V_{IC} = V_{DD}/2$	25°C	85	95	549	G.D
Bh		No load	TENETT II JET	Full range	80	Spen	della Contra	
IDD	Supply current (per channels)	V _O = 1.5 V,	No load,	25°C	Dear Chara C	0.5	0.575	mA
50		SHDN > 1.02 V		Full range			0.9	

[†] Full range is 0°C to 70°C for the C suffix and -40°C to 125°C for the I suffix. If not specified, full range is -40°C to 125°C.

TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465 FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS220E – JULY 1998 – REVISED JUNE 1999

electrical characteristics at specified free-air temperature, V_{DD} = 3 V (unless otherwise noted) (continued)

THE X	PARAMETER	TEGT	TEST CONDITIONS		TLV246x		UNIT	
	PARAMETER	TEST CONDITIONS		TAT	MIN TYP	MAX		
V _(ON)	Towns with an level	A. 45=25	Channel 1	25°C	1.021	HE HALLY	V	
	Turnon voltage level	A _V = 1	Channel 2	25.0	1.02	nécome?	V	
V			Channel 1	25°C	0.822	egailles	V	
V(OFF)	Turnoff voltage level	Ay = 1 Channel 2		25-0	0.817	V		
		SHDN < 0.8 V,		25°C	0.3	no augra		
IDD(SHDN)	(TLV2460, TLV2463, TLV2465)	Per channel in shutdown		Full range	2.5		μА	

[†] Full range is 0°C to 70°C for the C suffix and -40°C to 125°C for the I suffix. If not specified, full range is -40°C to 125°C.

operating characteristics at specified free-air temperature, V_{DD} = 3 V (unless otherwise noted)

	PARAMETER	TEST COL	NDITIONS	TAT	TL	.V246x		UNIT	
	PANAMETER	TEST COL	NOTTIONS	'A'	MIN	TYP	MAX	UNIT	
V		V 0V	0. 160 - 5	25°C	nput bottom	1.6	ommo!	SECK	
SR	Slew rate at unity gain	$V_{O(PP)} = 2 V$, $R_{L} = 10 \text{ k}\Omega$	C _L = 160 pF,	Full range	0.8			V/µs	
17	Factorian to a second and a	f = 100 Hz		25°C		16		144 (17)	
Vn	Equivalent input noise voltage	f = 1 kHz	AIR B.S-= FIGT	25°C		11		nV/√Hz	
In	Equivalent input noise current	f = 1 kHz		25°C	epation	0.13	vel-rejir	pA/√Hz	
	Pull relige 1 2.5	V _{O(PP)} = 2 V,	A _V = 1		0	.006%			
THD + N	Total harmonic distortion plus noise	$R_L = 10 \text{ k}\Omega$	A _V = 10	25°C		0.02%			
		f = 1 kHz	A _V = 100		THERE	0.08%			
TEV I	E.O. Oraș		Both channels	25°C	odesno	7.6	WEI-WO.	μs	
t(on)	Amplifier turnon time	$A_V = 1$, $R_L = 10 \text{ k}\Omega$	Channel 1 only, Channel 2 on			7.65			
Am			Channel 2 only, Channel 1 on		Manua to	7.25	do-morta		
		A _V = 1,	Both channels	25°C		333		ns	
t(off)	Amplifier turnoff time		Channel 1 only, Channel 2 on			328	о Ецерь/С		
Ep.		$R_L = 10 \text{ k}\Omega$	Channel 2 only, Channel 1 on	(189	they intring	329	la-agra. Iotilomi		
Ω =n	Gain-bandwidth product	f = 10 kHz, C _L = 160 pF	$R_L = 10 \text{ k}\Omega$,	25°C	nonetalain	5.2	Intrattic	MHz	
10	28°C 83	V(STEP)PP = 2 V, A _V = -1,	0.1%		aaboqmi ke	1.47	baealt		
ts	Settling time	$C_L = 10 \text{ pF},$ $R_L = 10 \text{ k}\Omega$	0.01%	25°C	thi noltaeju	1.78	ormneC	μѕ	
8	V(STEP)PP = 2 V Av = -1,	V(STEP)PP = 2 V, A _V = -1,	0.1%	250		1.77		μъ	
	Frail range 75	$C_L = 56 \text{ pF},$ $R_L = 10 \text{ k}\Omega$	0.01%		nia noitorje	1.98	/ ylaquit	ca. mil	
φm	Phase margin at unity gain	$R_{I} = 10 \text{ k}\Omega$	C _I = 160 pF	25°C		44°	DOWN		
	Gain margin	11L - 10 KSZ,	OL = 100 pr	25°C		7		dB	

[†] Full range is 0°C to 70°C for the C suffix and -40°C to 125°C for the I suffix. If not specified, full range is -40°C to 125°C.

TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465 FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS220E - JULY 1998 - REVISED JUNE 1999

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER	TEST CONDI	TIONS	TAT		LV246x		UNIT
79011	PANAMETER	TEOT COND.	TRAT		MIN	TYP	MAX	Oldi
VIO	Input offset voltage (TLV246x)			25°C		150	2000	μV
10	input onder voltage (12v2-vox)	Jacob et .		Full range	Section States	nie vine	2200	-
VIO	Input offset voltage (TLV246xA)	$V_{DD} = \pm 2.5 V$,	V _O = 0,	25°C		150	1500	μV
*10	input offset voltage (TEVE-YOAT)	V _{IC} = 0,	$R_S = 50 \Omega$	Full range	and Valor	(by Asm	1700	μ.
ωVIO	Temperature coefficient of input offset voltage	1 Countries 2		25°C		2		μV/°
	808.5	S leconiar D		25°C	diam.	0.3	7	Comple
10	Input offset current	V _{DD} = ±2.5 V,	TLV246xC	Full range	ele al traj	nua vigi	15	nA
		V _{IC} = 0,	TLV246xI	Full range	889.514_11	yearea,	60	UP les)(
	D'81 4 0'04 - 1 ag 4 1 hd	$V_O = 0$,	nicolegi a olu	25°C	3 401 101	1.3	14	prev l
IB	Input bias current	$R_S = 50 \Omega$	TLV246xC	Full range			30	nA
		ggV ,anuteregmet	TLV246xI	Full range	W1123114	30016	60	TISTE
THU	XAM NYE ME: TAY	CMRR > 71 dB,	R _S = 50 Ω	25°C	-0.2 to 5.2	HARAH		.,
VICR	Common-mode input voltage range	CMRR > 60 dB,	$R_S = 50 \Omega$	Full range	0 to 5	u in other	well)	V
SHUWA		0.5-4	THE TWEET	25°C	parinti fai	4.9	dans.	
	No. of the second secon	$I_{OH} = -2.5 \text{ mA}$		Full range	4.8			V
VOH High-	High-level output voltage	101	SH OUT IS T	25°C	DE COLUM	4.8	1175	
		I _{OH} = -10 mA		Full range	4.7			
	e real	OF SUA	ADI 01 = JR	25°C	PUTALING O	0.1	ABOL	4 + 03
	3100	V _{IC} = 2.5 V,	$I_{OL} = 2.5 \text{ mA}$	Full range			0.2	v
VOL	w-level output voltage	10-1	25°C		0.2		V	
		V _{IC} = 2.5 V,	$I_{OL} = 10 \text{ mA}$	Full range			0.3	7
100		Sourcing LAIOT will		25°C		145		1 48
	Object along it as to a second	Sourcing		Full range	60		Maria	A
os	Short-circuit output current	Sinking		25°C		100		mA
		Sinking		Full range	60			
0	Output current	no StemantO	121/4	25°C	anti ti	±90	fornA.	m/
۸	Large-signal differential voltage	V _{IC} = 2.5 V,	$R_L = 10 \text{ k}\Omega$	25°C	92	109		dB
AVD	amplification	V _O = 1 V to 4 V		Full range	90			UE
ri(d)	Differential input resistance	Ot 01 = JR	SP48 01 = 1	25°C	dasan itt	109	inso I	Ω
Ci(c)	Common-mode input capacitance	f = 10 kHz	AND STATE	25°C		7		pF
z _o	Closed-loop output impedance	f = 100 kHz,	A _V = 10	25°C		29		Ω
			Su DI a LO	25°C	71	85		19-1
CMRR	RR Common-mode rejection ratio VICR = -0.2 V to 5.2 V	$V_{ICR} = -0.2 \text{ V to } 5.2 \text{ V},$ $R_S = 50 \Omega$	TLV246xC	Full range	69		hill is	dB
		aren VS	TLV246xl	Full range	60			
		V _{DD} = 2.7 V to 6 V,	V _{IC} = V _{DD} /2,	25°C	80	85		
	Supply voltage rejection ratio	No load	DESCRIPTION OF THE PROPERTY OF	Full range	75			dB
KSVR	(ΔVDD /ΔVIO)	V _{DD} = 3 V to 5 V,	V _{IC} = V _{DD} /2,	25°C	85	95	port?	-
		$V_{DD} = 3 V_{10} S V_{1}$ No load		Full range	80	physical	medi	dB

T Full range is 0°C to 70°C for the C suffix and -40°C to 125°C for the I suffix. If not specified, full range is -40°C to 125°C.

TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465 FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS220E – JULY 1998 – REVISED JUNE 1999

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted) (continued)

PARAMETER		TEST CONDITIONS		-+	TLV246x			
				TAT	MIN TYP	TYP	MAX	UNIT
I _{DD}	Supply current (per channel)	$V_0 = 2.5 \text{ V},$ $\overline{\text{SHDN}} > 1.38 \text{ V}$	No load,	25°C	sam () möj	0.55	0.65	A
				Full range			1	mA
V _(ON)	Turnon voltage level	A _V = 1	Channel 1	25°C	STALL OF	1.372	no luga	V
			Channel 2	25.0	A Manifoldia	1.368	-toninal	
V _(OFF)	Turnoff voltage level	A _V = 1	Channel 1	25°C		1.315	eigston	V
			Channel 2	25°C	MESIL	1.309		
IDD(SHDN)	Supply current in shutdown (TLV2460, TLV2463, TLV2465)	SHDN < 1.3 V, Per channels in shutdown		25°C	tomus fedfa luta		tio Juga	
				Full range			3	μΑ

[†] Full range is 0°C to 70°C for the C suffix and -40°C to 125°C for the I suffix. If not specified, full range is -40°C to 125°C.

operating characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	DADAMETER	PARAMETER TEST COM		IDITIONS	- +	TLV246x			UNIT	
	PARAMETER		TEST COL	NDITIONS AND I	T _A †	MIN	TYP	MAX	UNIT	
SR	Slew rate at unity gain		$V_{O(PP)} = 2 \text{ V},$ $C_{L} = 160 \text{ pF},$ $R_{L} = 10 \text{ k}\Omega$		25°C	patio frug	1.6	DOWNESS.	V/µs	
					Full range	0.8				
.,	End of the Land and an			f = 100 Hz			14		->///	
Vn	Equivalent input noise voltage		f = 1 kHz		25°C	The same	11	11.34	nV/√Hz	
In	Equivalent input noise	current	f = 100 Hz		25°C	spain	0.13	yel-dgih	pA/√Hz	
	Total harmonic distortion plus noise		$V_{O(PP)} = 4 \text{ V},$ $R_{L} = 10 \text{ k}\Omega,$ $f = 10 \text{ kHz}$	A _V = 1			0.004%			
THD + N				A _V = 10	25°C		0.01%			
				A _V = 100			0.04%			
	80	25.0		Both channels		654163	7.6	1712-100.	- VIOV	
t(on)	Amplifier turnon time	AV = 1, Channel 1 only,	25°C		7.65		μs			
April 1			R _L = 10 kΩ	Channel 2 only, Channel 1 on		Inemtry 6	7.25	do-Herti		
	um ores	7.62		Both channels	25°C		333		ns	
t(off)	Amplifier turnoff time		Ay = 1,	Channel 1 only, Channel 2 on			328	o JugluC		
an			$R_L = 10 \text{ k}\Omega$			dov ledna	329	urga-qu soliligmu		
. 0	Gain-bandwidth produc	0198	f = 10 kHz, C _L = 160 pF	$R_L = 10 \text{ k}\Omega$,	25°C	scineBied	6.4	isensiti (MHz	
8 1	69	2456	V(STEP)PP = 2 V, Ay = -1,	0.1%	0.00		1.53	-bosolC	63	
ts	Settling time		$C_L = 10 \text{ pF},$ $R_L = 10 \text{ k}\Omega$ $V(\text{STEP})PP = 2 \text{ V},$ $AV = -1$	0.01%	25°C	tga noštálji	1.83	ommo)	μs	
'S	Detung time			0.1%			3.13			
8	81	Full range	$C_L = 56 \text{ pF},$ $R_L = 10 \text{ k}\Omega$	0.01%		ilar nottae	3.33	yayquğ		
φm	Phase margin at unity gain		$R_{\rm I} = 10 \rm k\Omega$	C _L = 160 pF	25°C		45°	OOVA	01000	
	Gain margin	egnin Rus	7 11 - 10 K22, OL = 160 pF		25°C		7		dB	

[†] Full range is 0°C to 70°C for the C suffix and -40°C to 125°C for the I suffix. If not specified, full range is -40°C to 125°C.

TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465 FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS220E – JULY 1998 – REVISED JUNE 1999

TYPICAL CHARACTERISTICS

Table of Graphs

HINE STATE			FIGURE
VIO	Input offset voltage	vs Common-mode input voltage	1, 2
IB	Input bias current	vs Free-air temperature	3, 4
10	Input offset current	vs Free-air temperature	3, 4
Vон	High-level output voltage	vs High-level output current	5, 6
VOL	Low-level output voltage	vs Low-level output current	7, 8
VO(PP)	Peak-to-peak output voltage	vs Frequency	9, 10
	Open-loop gain	vs Frequency	11, 12
	Phase	vs Frequency	11, 12
AVD	Differential voltage amplification	vs Load resistance	13
	Amplifier stability	vs Load	14
Zo	Output impedance	vs Frequency	15, 16
CMRR	Common-mode rejection ratio	vs Frequency	17
ksvr	Supply-voltage rejection ratio	vs Frequency	18, 19
IDD	0	vs Supply voltage	20
	Supply current	vs Free-air temperature	21
	Amplifier turnon characteristics	1 22 0 22	22
V onari	Amplifier turnoff characteristics	- Common-Rode Input Voltrige - V	23
	Supply current turnon	Figure 1	24
	Supply current turnoff		25
histories :	Shutdown supply current	vs Free-air temperature	26
SR	Slew rate	vs Supply voltage	27
V		vs Frequency	28, 29
Vn	Equivalent input noise voltage	vs Common-mode input voltage	30, 31
THD	Total harmonic distortion	vs Frequency	32, 33
THD+N	Total harmonic distortion plus noise	vs Peak-to-peak signal amplitude	34, 35
	and Z	vs Frequency	11, 12
φm	Phase margin	vs Load capacitance	36
		vs Free-air temperature	37
	Cain bandwidth product	vs Supply voltage	38
	Gain bandwidth product	vs Free-air temperature	39
	Large signal follower		40, 41
	Small signal follower		42, 43
	Inverting large signal		44, 45
	Inverting small signal		46, 47

SLOS220E - JULY 1998 - REVISED JUNE 1999

TYPICAL CHARACTERISTICS

SLOS220E - JULY 1998 - REVISED JUNE 1999

TYPICAL CHARACTERISTICS

 $V_{DD} = 5 V$

 $A_{V} = -10$

THD = 1%

 $R_L = 10 \text{ k}\Omega$

10M

OPEN-LOOP GAIN AND PHASE

Figure 11

SLOS220E - JULY 1998 - REVISED JUNE 1999

TYPICAL CHARACTERISTICS

OPEN-LOOP GAIN AND PHASE

Figure 12

COMMON-MODE REJECTION RATIO

Figure 17

SLOS220E - JULY 1998 - REVISED JUNE 1999

TYPICAL CHARACTERISTICS

SUPPLY CURRENT WITH A SHUTDOWN PULSE TURNON CHARACTERISTICS

SLOS220E - JULY 1998 - REVISED JUNE 1999

TYPICAL CHARACTERISTICS

TURNOFF SUPPLY CURRENT WITH A SHUTDOWN PULSE

 $V_{DD} = 3 V$

VI = 1.5 V

Figure 25

FREE-AIR TEMPERATURE 3 2.5 $V_{DD} = 5 V$ Supply Current - µA 2 $V_1 = 2.5 \text{ V}$ 1.5 1

0.5

Figure 26

TA - Free-Air Temperature - °C

SLEW RATE VS

TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465 FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS220E - JULY 1998 - REVISED JUNE 1999

TYPICAL CHARACTERISTICS

Figure 30

Figure 31

SLOS220E - JULY 1998 - REVISED JUNE 1999

TYPICAL CHARACTERISTICS

TOTAL HARMONIC DISTORTION PLUS NOISE vs PEAK-TO-PEAK SIGNAL AMPLITUDE

TOTAL HARMONIC DISTORTION PLUS NOISE vs PEAK-TO-PEAK SIGNAL AMPLITUDE

LARGE SIGNAL FOLLOWER 3.3 Input 2.9 Output Vo-Voitage 2.5 $V_{DD} = 5 V$ V_{I(PP)} = 2 V Input 2.1 $V_1 = 2.5 \text{ V}$ $R_L = 10 \text{ k}\Omega$ Output CL = 160 pF 1.7 Ay = 1 TA = 25°C 1.3 4 6 8 10 12 14 16 18 -2 t - Time - μs Figure 41

TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465 FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS220E - JULY 1998 - REVISED JUNE 1999

APPLICATION INFORMATION

shutdown function

Three members of the TLV246x family (TLV2460/3/5) have a shutdown terminal for conserving battery life in portable applications. When the shutdown terminal is tied low, the supply current is reduced to $0.3~\mu$ A/channel, the amplifier is disabled, and the outputs are placed in a high impedance mode. To enable the amplifier, the shutdown terminal can either be left floating or pulled high. When the shutdown terminal is left floating, care should be taken to ensure that parasitic leakage current at the shutdown terminal does not inadvertently place the operational amplifier into shutdown. The shutdown terminal threshold is always referenced to $V_{DD}/2$. Therefore, when operating the device with split supply voltages (e.g. $\pm 2.5~V$), the shutdown terminal needs to be pulled to V_{DD} — (not GND) to disable the operational amplifier.

The amplifier's output with a shutdown pulse is shown in Figures 22, 23, 24, and 25. The amplifier is powered with a single 5-V supply and configured as a noninverting configuration with a gain of 5. The amplifier turnon and turnoff times are measured from the 50% point of the shutdown pulse to the 50% point of the output waveform. The times for the single, dual, and quad are listed in the data tables.

general power dissipation considerations

For a given θ_{JA} , the maximum power dissipation is shown in Figure 48 and is calculated by the following formula:

 $P_D = \left(\frac{T_{MAX} - T_A}{\theta_{JA}}\right)$

Where:

P_D = Maximum power dissipation of THS246x IC (watts)

T_{MAX} = Absolute maximum junction temperature (150°C)

T_A = Free-ambient air temperature (°C)

 $\theta_{JA} = \theta_{JC} + \theta_{CA}$

 θ_{JC} = Thermal coefficient from junction to case

θ_{CA} = Thermal coefficient from case to ambient air (°C/W)

APPLICATION INFORMATION

general power dissipation considerations (continued)

MAXIMUM POWER DISSIPATION
VS
FREE-AIR TEMPERATURE

NOTE A. Results are with no air flow and using JEDEC Standard Low-K test PCB.

Figure 48. Maximum Power Dissipation vs Free-Air Temperature

macromodel information

Macromodel information provided was derived using Microsim *Parts™* Release 8, the model generation software used with Microsim *PSpice™*. The Boyle macromodel (see Note 2) and subcircuit in Figure 48 are generated using the TLV246x typical electrical and operating characteristics at T_A = 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification

- Unity-gain frequency
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- Short-circuit output current limit

NOTE 2: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Intergrated Circuit Operational Amplifiers", IEEE Journal of Solid-State Circuits, SC-9, 353 (1974).

PSpice and Parts are trademarks of MicroSim Corporation.

APPLICATION INFORMATION

Figure 49. Boyle Macromodels and Subcircuit

TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465 FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS220E-JULY 1998 - REVISED JUNE 1999

macromodel information (continued)

.subckt 7	TLV_246	Y1234	456		500000000000000000000000000000000000000	rp	3	71	8.9127	
	c1	11	12	2.4603E-12		rss	10	99	10.610E6	
	c2	72	7	10.000E-12		rs1	6	4	1G	
	CSS	10	99	443.21E-15		rs2	6	4	1G	
	dc	70	53	dy		rs3	6	4	1G	
	de	54	70	dy	8.00	rs4	6	4	1G	
	dlp	90	91 90	dx		s1	6 6 6 71	4	6 4 s1x	
	dln	90 92	90	dx		s2	70	5 74	6 4 s1x	
	dp	4	3	dx		s3	10	74	6 4 s1x	
	egnd	99	0	poly(2) (3,0) (4,0) 0 .5 .5	4	s4	74	4	6 4 s2x	
	fb	7	99	poly(5) vb vc ve vlp vln 0	1 700	vb	9	0	dc 0	
21.600E	6-1E31	E3 22E	6-22E		1 1 1 1 1	VC		53	dc .7836	
	ga	72	0	11 12 345.26E-6		ve	54	4	dc .7436	
	gcm	0	72	10 99 15.422E-9	62.0	vlim	7	8	dc 0	
	iss	74	4	dc 18.850E-6		vlp	91	0	dc 117	
	hlim	90 11	0	vlim 1K	767 795	vln	0	92	dc 117	
	i1	11	2	10 jx1		.model	dx D(Is	=800.0	00E-18)	
	į2	12	1	10 ix2		.model	dy D(Is	=800.0	00E-18 Rs=1m Cjo=10p)	
	r2	12 72 3 3	9	100.00E3					0000E-12 Beta=6.3239É-3 Vto=-1)	
	rd1	3	9	2.8964E3	A 30	.model	ix2 NJF	(Is=1.0	0000E-12 Beta=6.3239E-3 Vto=-1)	
	rd2	3	12	2.8964E3		.model	s1x VS	WITCH	H(Roff=1E8 Ron=1.0 Voff=2.5 Von=0.0))
	ro1	8	70	5.6000	127.6	.model	s2x VS	SWITCH	H(Roff=1E8 Ron=1.0 Voff=0 Von=2.5)	1
	ro2	7	99	6.2000		.ends				
					The second second					

Figure 48. Boyle Macromodels and Subcircuit (CONTINUED)

SLOS232A - JUNE 1999 - REVISED AUGUST 1999

- CMOS Rail-To-Rail Input/Output
- Input Bias Current . . . 2.5 pA
- Low Supply Current . . . 600 μA/Channel
- Ultra-Low Power Shutdown Mode
 IDD(SHDN) . . . 350 nA/ch at 3 V
 IDD(SHDN) . . . 1000 nA/ch at 5 V
- Gain-Bandwidth Product . . . 2.8 MHz
- High Output Drive Capability
 - ±10 mA at 180 mV
 - ±35 mA at 500 mV
- Input Offset Voltage . . . 250 μV (typ)
- Supply Voltage Range . . . 2.7 V to 6 V
- Ultra-Small Packaging
 - 5 or 6 Pin SOT-23 (TLV2470/1)
 - 8 or 10 Pin MSOP (TLV2472/3)

description

The TLV247x is a family of CMOS rail-to-rail input/output operational amplifiers that establishes a new performance point for supply current versus ac performance. These devices consume just 600 µA/channel while offering 2.8 MHz of gain bandwidth product. Along with increased ac performance, the amplifier provides high output drive capability, solving a major shortcoming of older micropower operational amplifiers. The TLV247x can swing to within 180 mV of each supply rail while driving a 10-mA load. For non-RRO applications, the TLV247x can supply ±35 mA at 500 mV off the rail. Both the inputs and outputs swing rail-to-rail for increased dynamic range in low-voltage applications. This performance makes the TLV247x family ideal for sensor interface, portable medical equipment, and other data acquisition circuits.

FAMILY PACKAGE TABLE

DEVIOE	NUMBER OF	PACKAGE TYPES					SHUTDOWN	UNIVERSAL	
DEVICE	CHANNELS	PDIP	SOIC	SOT-23	TSSOP	MSOP	SHUIDOWN	EVM BOARD	
TLV2470	1-	8	8	6‡	A 157	au ti ne	Yes	UNIV-OPAMP-2	
TLV2471	180010	8	8	5‡	_	- 10		UNIV-OPAMP-1	
TLV2472	2	8	8	NEWS	VIT-	8	SVIT -	UNIV-OPAMP-1	
TLV2473	2	14	14	NUB IS		10	Yes	UNIV-OPAMP-2	
TLV2474	4	14	14	- Militar	14‡	<u> 0</u> 17	NOT -		
TLV2475	4	16	16	10000	16‡	52/5-72	Yes	- 01651 0165	

[‡]This device is in the Product Preview stage of development. Please contact your local TI sales office for availability.

A SELECTION OF SINGLE-SUPPLY OPERATIONAL AMPLIFIER PRODUCTS§

	DEVICE	V _{DD} (V)	BW (MHz)	SLEW RATE (V/µs)	IDD (per channel) (μA)	RAIL-TO-RAIL
	TLV247X	2.7 - 6.0	2.8	1.5	600	1/0
Г	TLV245X	2.7 - 6.0	0.22	0.11	23	1/0
Г	TLV246X	2.7 - 6.0	6.4	1.6	550	1/0
	TLV277X	2.5 - 6.0	5.1	10.5	1000	0

[§] All specifications measured at 5 V.

SLOS232A - JUNE 1999 - REVISED AUGUST 1999

TLV2470 and TLV2471 AVAILABLE OPTIONS

		PACKAGED D	EVICES		CHIP FORMS	
TA	SMALL OUTLINE	SOT-2	3 Isamerica A	PLASTIC DIP		
+000	(D)†	(DBV)†	SYMBOL	(P)		
0°C to 70°C	TLV2470CD TLV2471CD	TLV2470CDBV§ TLV2471CDBV§	VAUC VAVC	TLV2470CP TLV2471CP	TLV2470Y TLV2471Y	
1000 11 10500	TLV2470ID TLV2471ID	TLV2470IDBV§ TLV2471IDBV§	VAUI VAVI	TLV2470IP TLV2471IP	e (<u>G</u> ain-Baild	
-40°C to 125°C	TLV2470AID TLV2471AID	n and 1 = E	=	TLV2470AIP TLV2471AIP	m Otd_v	

[†] This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2470CDR).

‡ Chip forms are tested at TA = 25°C only.

TLV2472 AND TLV2473 AVAILABLE OPTIONS

TA			PAC	CKAGED DEVICES	S		HI WE THE I	957	
	SMALL	MSOP		MSOP		PLASTIC	PLASTIC	CHIP FORM‡	
	OUTLINE (D)†	(DGN)†	SYMBOL\$	(DGQ)†	SYMBOL§	DIP (N)	DIP (P)	(Y)	
0°C to 70°C	TLV2472CD TLV2473CD	TLV2472CDGN	xxTIABU —	TLV2473CDGQ	 xxTIABW	TLV2473CN	TLV2472CP	TLV2472Y TLV2473Y	
-40°C to	TLV2472ID TLV2473ID	TLV2472IDGN —	xxTIABV —	TLV2473IDGQ	 xxTIABX	TLV2473IN	TLV2472IP	to uldin	
125°C	TLV2472AID TLV2473AID	seams supposed the	ine s <u>u</u> ignien	Trito List aff	500 <u>m</u> V an	TLV2473AIN	TLV2472AIP	(UT edi	

This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2472CDR).

‡ Chip forms are tested at TA = 25°C only.

§ xx represents the device date code.

TLV2474 and TLV2475 AVAILABLE OPTIONS

	TUBBL	PACKAGED	DEVICES			
TA	SMALL OUTLINE (D)†	PLASTIC DIP (N)	TSSOP (PW)†	TSSOP (PWP)†	CHIP FORMA (Y)	
0°C to 70°C	TLV2474CD TLV2475CD	TLV2474CN TLV2475CN	TLV2475CPW	TLV2474CPWP§	TLV2474Y TLV2475Y	
-40°C to 125°C	TLV2474ID TLV2475ID	TLV2474IN TLV2475IN	TLV2475IPW	TLV2475CPWP§	N/ATTACK	
	TLV2474AID TLV2475AID	TLV2474AIN TLV2475AIN	TLV2475AIPW	TLV2475CPWP§	Fins device	

[†] This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2474CDR).

‡ Chip forms are tested at TA = 25°C only.

[§] This device is in the Product Preview stage of development. Please contact your local TI sales office for availability.

[§] This device is in the Product Preview stage of development. Please contact your local TI sales office for availability.

SLOS232A - JUNE 1999 - REVISED AUGUST 1999

† This device is in the Product Preview stage of development. Please contact your local TI sales office for availability.

description (continued)

Three members of the family (TLV2470/3/5) offer a shutdown terminal for conserving battery life in portable applications. During shutdown, the outputs are placed in a high-impedance state and the amplifier consumes only 350 nA/channel. The family is fully specified at 3 V and 5 V across an expanded industrial temperature range (–40°C to 125°C). The singles and duals are available in the SOT23 and MSOP packages, while the quads are available in TSSOP. The TLV2470 offers an amplifier with shutdown functionality all in a 6-pin SOT23 package, making it perfect for high density power-sensitive circuits.

SLOS232A - JUNE 1999 - REVISED AUGUST 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Cumply voltage V - (acc Note 1)	7 V
	±V _{DD}
Continuous total power dissipation	 See Dissipation Rating Table
	0°C to 70°C
	40°C to 125°C
Maximum junction temperature, T.J	 150°C
Storage temperature range, Tstg	
	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE: All voltage values, except differential voltages, are with respect to VDD —.

DISSIPATION RATING TABLE

PACKAGE	(°C/W) θJC	θJA (°C/W)	T _A ≤ 25°C POWER RATING
D (8)	38.3	176	710 mW
D (14)	26.9	122.3	1022 mW
D (16)	25.7	114.7	1090 mW
DBV (5)	55	324.1	385 mW
DBV (6)	55	294.3	425 mW
DGN (8)	4.7	52.7	2.37 W
DGQ (10)	4.7	52.3	2.39 W
N (14, 16)	32	78	1600 mW
P (8)	41	104	1200 mW
PW (16)	28.7	161.4	720 mW
PWP (14)	2.07	30.7	4.07 W
PWP (16)	2.07	29.7	4.21 W

recommended operating conditions

WE TITLE OF REFT WIS	CLIFE APPLICATIONS - ME	MIN	MAX	UNIT	
Constructions V	Single supply	2.7	6	1/	
Supply voltage, V _{DD}	Split supply	±1.35	±3	V	
Common-mode input voltage range, VICR		V _{DD} -	V _{DD+}	V	
biosi Ti saisa ofice for poglability	C-suffix	0	70		
Operating free-air temperature, TA	I-suffix	-40	125	°C	

TLV2470, TLV2471, TLV2472, TLV2473, TLV2474, TLV2475, TLV247xA FAMILY OF 600-μA/Ch 2.8-MHz RAIL-TO-RAIL INPUT/OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS232A – JUNE 1999 – REVISED AUGUST 1999

electrical characteristics at specified free-air temperature, V_{DD} = 3 V (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS	T _A †	MIN	TYP	MAX	UNIT	
THE	MAN TYP MAN	TLV247x	OMBITICALS	OTHER	25°C	Batt	250	2200		
,	100	TLV24/X			Full range			2400		
VIO	Input offset voltage	TIMOATA	TLVEBVXC		25°C		250	1600	μV	
		TLV247xA	TEVRAZIS		Full range	Atan mina	a ame	1800	and the same of	
ανιο	Temperature coeffici offset voltage	ent of input	$V_{DD} = \pm 1.5 V$ $V_{IC} = 0$,				0.4		μV/°C	
	48	Full range	$V_0 = 0$,	atten to obtain Q	25°C		1.5	50		
10	Input offset current		$R_S = 50 \Omega$	TLV247xC	Full range			100	pA	
				TLV247xI	Full range	pelan sar	show vice	300	рА	
	50 77	25/10	SignV = orV	V Bot V E = nrtV	25°C	(0	2	50	T MYS	
IB	Input bias current			TLV247xC	Full range			100	pA	
				TLV247xI	Full range			300	рА	
N. I	Common-mode input voltage	t voltage	CMRR > 70 dB	R _S = 50 Ω	25°C	-0.2 to 3.2	Boy tion	nut .	(140)	
VICR	range	voltage	CMRR > 52 dB	R _S = 50 Ω	Full range	-0.2 to 3.2	stey dyn	pg pg	V	
	Otton	Scott Reft	beneson in		25°C	2.85	2.94	41		
			as full stellionag ton il	$I_{OH} = -2.5 \text{ mA}$	Full range	2.8	OPOY of	G*0 z n	ones flu	
VOH	H High-level output voltage	tage	V _{IC} = 1.5 V	TO THE PROPERTY.	25°C	2.6	2.74		٧	
			imperature, Voi	$I_{OH} = -10 \text{ mA}$	Full range	2.5	MARKE S	no gr	denes	
THU	U XAM SYY MIN TAT		SYT JON 1 1AT SWOMMON TEST		25°C	Rara	0.07	0.15		
	1 ()	Dres .		I _{OL} = 2.5 mA	Full range			0.2	V	
VOL	Low-level output volt	age	V _{IC} = 1.5 V		25°C	UNES AND	0.2	0.35		
					Full range			0.4		
THUNK!	15	25 C	Sourcing	side t = 1	25°C	30	THE PARTY	FIDHS -		
			Sourcing	1011-1	Full range	20	oni inela	A RES		
			7 HYA		25°C	62				
			Sourcing, Outside of rails‡	TLV247xC	Full range	60	knomed	te sort	MARKE	
los	Short-circuit output of	rurrent		TLV247xI	Full range	59			mA	
105	Onor onoun output	J. C.	Sinking		25°C	30	tier bures	(lonal)	IIIA	
			Oniking	Augro = Jrl	Full range	20	mid tall	lesma.		
			Sinking,	15 (1 (A) (A)	25°C	62	the board	Must.		
			Outside of rails‡	TLV247xC	Full range	60				
	D.1			TLV247xI	Full range	59				
lo	Output current		$V_O = 0.5 \text{ V from rail}$	30 91 = 10	25°C		±22		mA	
AVD	Large-signal differen	tial voltage	V _{O(PP)} = 1 V,	$R_{I} = 10 \text{ k}\Omega$	25°C	90	116	South	dB	
VU	amplification		-O(FF) - 1 * 3 * 10	11 - 10 Ks2	Full range	88			ab.	
ri(d)	Differential input resi	stance		30 85 × 10	25°C		1012		Ω	
CIC	Common-mode inpu capacitance	0989	f = 10 kHz	0401 = jE	25°C		19.3	de 15	pF	
z _o	Closed-loop output in	mpedance	f = 10 kHz,	Ay = 10	25°C		2	elada.	Ω	

[†] Full range is 0°C to 70°C for C suffix and -40°C to 125°C for I suffix. If not specified, full range is -40°C to 125°C.

[‡] Depending on package dissipation rating

SLOS232A - JUNE 1999 - REVISED AUGUST 1999

electrical characteristics at specified free-air temperature, V_{DD} = 3 V (unless otherwise noted) (continued)

	PARAMETER	TEST CON	DITIONS	TAT	MIN	TYP	MAX	UNIT	
00	Full range 240	I II-II-II	Manual Control	25°C	61	78			
		$V_{IC} = 0 \text{ to } 3 \text{ V},$ $R_S = 50 \Omega$	TLV247xC	Full range	59	Institute or			
OMPD	O	NS = 50 12	TLV247xI	Full range	58			40	
CMRR	Common-mode rejection ratio	$V_{IC} = -0.2 \text{ to } 3.2 \text{ V},$	A sales	25°C	62	78	ring"	dB	
		$R_S = 50 \Omega$,	TLV247xC	Full range	60	patiov to	alto		
		Outside of rails	TLV247xI	Full range	59	AT S Legit			
Aq 00	epino Itali	$V_{DD} = 2.7 \text{ V to 6 V},$	VIC = VDD/2,	25°C	74	90	gni (
	Supply voltage rejection ratio	No load		Full range	66			dB	
ksvr	(ΔV _{DD} /ΔV _{IO})	V _{DD} = 3 V to 5 V, No load	$V_{IC} = V_{DD}/2$,	25°C	77	92		UB	
				Full range	68	o said h	gnl		
Aq 00	Some No.	V 45V	Madand	25°C		550	750		
IDD	Supply current (per channel)	$V_0 = 1.5 \text{ V},$	No load	Full range			800	μА	
V(ON)	Turnon voltage level	Relative to GND	CONTRACTOR OF THE PARTY OF THE	25°C		1.03		٧	
V(OFF)	Turnoff voltage level	Relative to GND		25°C	VIII II VIII	0.81	1193	V	
	Supply current in shutdown	D.02 = pH	OWER & SE de	25°C		350	1500		
IDD(SHDN)	mode (TLV2470, TLV2473,	SHDN = < 1.45 V	TLV247xC	Full range 20	2000	nA			
	TLV2475) (per channel)		TLV247xI	Full range			4000		

[†] Full range is 0°C to 70°C for C suffix and -40°C to 125°C for I suffix. If not specified, full range is -40°C to 125°C.

operating characteristics at specified free-air temperature, V_{DD} = 3 V (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	TAT	MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	$V_{O(PP)} = 0.8 \text{ V},$	C _L = 150 pF,	25°C	1.1	1.4	95.1	V/µs
011	Cion rate at army gain	$R_L = 10 \text{ k}\Omega$		Full range	0.6			Ψ/μο
V	Equivalent input noise voltage	f = 100 Hz		25°C		28		->1//11
Vn	Equivalent input noise voltage	f = 1 kHz		25°C		15		nV/√H2
In	Equivalent input noise current	f = 1 kHz		25°C		0.405		pA/√Hz
	The state of the s	V _{O(PP)} = 2 V,	A _V = 1			0.02%		
THD + N	Total harmonic distortion plus noise	$R_L = 10 \text{ k}\Omega$	Ay = 10	25°C		0.1%		
		f = 1 kHz	Ay = 100	- him	an lucieso	0.5%	118	-
t(on)	Amplifier turnon time	D ODENÍ	problem	25°C		5		με
t(off)	Amplifier turnoff time	R _L = OPEN‡		25°C		250		ns
	Gain-bandwidth product	f = 10 kHz,	R _L = 600 Ω	25°C		2.8		MHz
	Full tetroph 80	V(STEP)PP = 2 V, A _V = -1,	0.1%	0		1.5		
ts	Settling time	$C_L = 10 \text{ pF},$ $R_L = 10 \text{ k}\Omega$	0.01%	25°C	la la	3.9	10	μѕ
	Full range 88	$V(STEP)PP = 2 V,$ $AV = -1,$ $C_L = 56 pF,$ $R_L = 10 k\Omega$	0.1%	250		1.6	ne	μο
9	2507 - 2012		0.01%	8088	pisen ruge poeni nice	4	100	
φm	Phase margin	$R_L = 10 \text{ k}\Omega$,	C _L = 1000 pF	25°C		61°	100	
- 13	Gain margin	$R_L = 10 \text{ k}\Omega$	C _L = 1000 pF	25°C	III LANGUR	15	115	dB

[†] Full range is 0°C to 70°C for C suffix and -40°C to 125°C for I suffix. If not specified, full range is -40°C to 125°C.

[‡] Depending on package dissipation rating

TLV2470, TLV2471, TLV2472, TLV2473, TLV2474, TLV2475, TLV247xA FAMILY OF 600-μA/Ch 2.8-MHz RAIL-TO-RAIL INPUT/OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS232A – JUNE 1999 – REVISED AUGUST 1999

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER		TEST CON	IDITIONS	TAT	MIN	TYP	MAX	UNIT
THEO	AND STATE OF THE PARTY OF THE P	TI 1/047:	BRUTTERS	O FORF	25°C	Har	250	2200	
	141 148	TLV247x			Full range			2400	
VIO	Input offset voltage	TLV247xA	OF A STATE W		25°C		250	1600	μV
			This each		Full range	aist all		2000	10000
ανιο	Temperature coeffici offset voltage	ent of input	V _{DD} = ±2.5 V				0.4		μV/°C
	88	egnes (GR)	$V_{IC} = 0, V_{O} = 0,$ $R_{S} = 50 \Omega$		25°C		1.7	50	pA
lio	Input offset current		A solve pile a	TLV247xC	Full range			100	рА
				TLV247xI	Full range	Full range	300	рА	
	17 92	22%C	Vig=Vpo/2.	Vad VE = anv	25°C	10	2.5	50	
IB	Input bias current			TLV247xC	Full range		M-UU	100	pA
				TLV247xI	Full range			300	рА
V	Common-mode input voltage		CMRR > 70 dB	$R_S = 50 \Omega$	25°C	-0.2 to 5.2	dice ston		(47)
VICR	range	0 28 0 28 00 00 10 5	CMRR > 52 dB	R _S = 50 Ω	Full range	-0.2 to 5.2		ant an	V
- Day	TOTAL TOTAL CONTRACTOR	special licit	between the		25°C	4.85	4.96	OT .	
	OH High-level output voltage	in not expectated. In the	IOH = -2.5 mA	Full range	4.8	o ot o	O'to as	order la	
VOH		tage	V _{IC} = 2.5 V		25°C	4.72	4.82		V
			angerature, Von	IOH = -10 mA	Full range	4.65	Mary 18	110 00	Herior
THEFO	ZAR SYT MMS TAY		examos	N TSW7	25°C	ser	0.07	0.15	
	A CONTRACTOR OF THE CONTRACTOR		I _{OL} = 2.5 mA	Full range			0.2		
VOL	Low-level output volt	tage	V _{IC} = 2.5 V	08.01 = 10.1	25°C	MUKI PA	0.178	0.28	V
			-	I _{OL} = 10 mA	Full range			0.35	-
SHAPSVILL	21	Settles		1941 10	25°C	90	UNITED S	VINDES .	411.0
			Sourcing		Full range	60	Juni Lauku	wines.	-
					25°C	63			
			Sourcing, Outside of rails‡	TLV247xC	Full range	61	describer.	Claure?	Di Lon
			Outside of rails+	TLV247xI	Full range	58	Track to		
los	Short-circuit output of	current	0.11		25°C	110		String /	mA
			Sinking		Full range	60	Towns on the	Hetera A	
			72.000 - 10	NAST DE LA	25°C	63			
			Sinking,	TLV247xC	Full range	61			
	Outside of rails‡	Outside of falls+	TLV247xI	Full range	58				
lo	Output current		V _O = 0.5 V from rail	30 OL = 10 OF	25°C		±35		mA
10 L	Large-signal differen	tial voltage	V 0V	1000	25°C	92	120	ellite B	10
AVD	amplification		V _O (PP) = 3 V,	$R_L = 10 \text{ k}\Omega$	Full range	91			dB
ri(d)	Differential input resi	stance		39.60 - 10	25°C		1012		Ω
CIC	Common-mode inpu	t	f = 10 kHz	E 1010	25°C		18.9	esir I	pF
z _o	Closed-loop output in	mpedance	f = 10 kHz,	Ay = 10	25°C		1.8	- Table 1	Ω

[†] Full range is 0°C to 70°C for C suffix and -40°C to 125°C for I suffix. If not specified, full range is -40°C to 125°C.

[‡] Depending on package dissipation rating

SLOS232A - JUNE 1999 - REVISED AUGUST 1999

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted) (continued)

	PARAMETER	TEST CON	DITIONS	TAT	MIN	TYP	MAX	UNIT	
100	Full carios (L. Cario			25°C	64	84			
		$V_{IC} = 0 \text{ to } 5 \text{ V},$ $R_S = 50 \Omega$	TLV247xC	Full range	63	Joeno III	208		
OMPR	0	115 - 50 32	TLV247xl	Full range	58			4D	
CMRR	Common-mode rejection ratio	$V_{IC} = -0.2 \text{ to } 5.2 \text{ V},$		25°C	63	82	nei		
		$R_S = 50 \Omega$	TLV247xC	Full range	61	palloy is	6870		
		Outside of rails	TLV247xI	Full range	58				
20 0	ngrat Iu-H	V _{DD} = 2.7 V to 6 V,	V _{IC} = V _{DD} /2,	25°C	74	90	gnf (
Aug 60	Supply voltage rejection ratio	No load VDD = 3 V to 5 V, No load		Full range	66			dB	
KSVR	(ΔV _{DD} /ΔV _{IO})		$V_{IC} = V_{DD}/2$,	25°C	77	92			
				Full range	66	o said tu	ign)		
Ag Oi	Full pages (MP)	V = 100 KV III	- N I I	25°C		600	900	dB	
IDD	Supply current (per channel)	$V_0 = 2.5 \text{ V},$	$V_0 = 2.5 \text{ V},$ No load				1000	μА	
V(ON)	Turnon voltage level	Relative to GND	ag by < Helles	25°C		1.38		٧	
V(OFF)	Turnoff voltage level	Relative to GND		25°C		1.3	I STATE OF THE STA	٧	
	Supply current in shutdown	DOI: SE	Bode CRIMO	25°C		1000	2500		
IDD(SHDN)	mode (TLV2470, TLV2473,	SHDN = < 1.45 V	TLV247xC	Full range			3000	nA	
	TLV2475) (per channel)		TLV247xI	Full range		1348	6000	nA	

Full range is 0°C to 70°C for C suffix and -40°C to 125°C for I suffix. If not specified, full range is -40°C to 125°C.

operating characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	TAT	MIN	TYP	MAX	UNIT
OD.	Class rate at smith and	V _{O(PP)} = 2 V,	C _I = 150 pF,	25°C	1.1	1.5	en f	Mus
SR	Slew rate at unity gain	$R_L = 10 \text{ k}\Omega$		Full range	0.7	V/μs		
.,	February Land	f = 100 Hz		25°C		28		24/11
Vn	Equivalent input noise voltage	f = 1 kHz	polyano2	25°C		15		nV/√Hz
In	Equivalent input noise current	f = 1 kHz		25°C		0.39		pA/√Hz
No.		V _{O(PP)} = 4 V,	A _V = 1			0.01%		
t _(on) Amplifier turnon time	Total harmonic distortion plus noise	$R_L = 10 \text{ k}\Omega$	Ay = 10	25°C		0.05%		
		f = 1 kHz	Ay = 100	6100	0.3%			1
t(on)	Amplifier turnon time	D. ODENÍ	Sterios	25°C		5		μѕ
t(off)	Amplifier turnoff time	R _L = OPEN [‡]	UL = OF EINT			250		ns
	Gain-bandwidth product	f = 10 kHz,	R _L = 600 Ω	25°C		2.8		MHz
	Full mynger 88	V(STEP)PP = 2 V, Av = -1,	0.1%			1.8		
-49	Settling time	$C_L = 10 \text{ pF},$ $R_L = 10 \text{ k}\Omega$	0.01%	25°C	àn	3.3	uO :	
t _S	Settling time	V _{(STEP)PP} = 2 V, A _V = -1,	0.1%	250		1.7	mid.	μs
9 1	9703	$C_L = 56 \text{ pF},$ $R_L = 10 \text{ k}\Omega$	0.01%	5314	3		00	(6)
φm	Phase margin	$R_L = 10 \text{ k}\Omega$,	C _L = 1000 pF	25°C		68°	100	200
	Gain margin	$R_L = 10 \text{ k}\Omega$	C _L = 1000 pF	25°C	rif lugiuo	23	200	dB

[†] Full range is 0°C to 70°C for C suffix and -40°C to 125°C for I suffix. If not specified, full range is -40°C to 125°C.

[‡] Disable and enable time are defined as the interval between application of logic signal to SHDN and the point at which the supply current has reached half its final value.

SLOS232A - JUNE 1999 - REVISED AUGUST 1999

SLOS232A - JUNE 1999 - REVISED AUGUST 1999

TYPICAL CHARACTERISTICS

Figure 11

Figure 16

SLOS232A - JUNE 1999 - REVISED AUGUST 1999

SLOS232A - JUNE 1999 - REVISED AUGUST 1999

SLOS232A - JUNE 1999 - REVISED AUGUST 1999

TYPICAL CHARACTERISTICS

SHUTDOWN SUPPLY CURRENT

SHUTDOWN PULSE CURRENT

PARAMETER MEASUREMENT INFORMATION

APPLICATION INFORMATION

driving a capacitive load

When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the device's phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater than 10 pF, it is recommended that a resistor be placed in series (R_{NULL}) with the output of the amplifier, as shown in Figure 42. A minimum value of 20 Ω should work well for most applications.

Figure 42. Driving a Capacitive Load

SLOS232A - JUNE 1999 - REVISED AUGUST 199

APPLICATION INFORMATION

offset voltage

The output offset voltage, (V_{OO}) is the sum of the input offset voltage (V_{IO}) and both input bias currents (I_{IB}) times the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage:

Figure 43. Output Offset Voltage Model

general configurations

When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifer (see Figure 44).

Figure 44. Single-Pole Low-Pass Filter

If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure to do this can result in phase shift of the amplifier.

SLOS232A - JUNE 1999 - REVISED AUGUST 1999

APPLICATION INFORMATION

general configurations (continued)

Figure 45, 2-Pole Low-Pass Sallen-Key Filter

shutdown function

Three members of the TLV247x family (TLV2470/3/5) have a shutdown terminal for conserving battery life in portable applications. When the shutdown terminal is tied low, the supply current is reduced to 350 nA/channel, the amplifier is disabled, and the outputs are placed in a high impedance mode. To enable the amplifier, the shutdown terminal can either be left floating or pulled high. When the shutdown terminal is left floating, care should be taken to ensure that parasitic leakage current at the shutdown terminal does not inadvertently place the operational amplifier into shutdown. The shutdown terminal threshold is always referenced to $V_{\rm DD}/2$. Therefore, when operating the device with split supply voltages (e.g. ± 2.5 V), the shutdown terminal needs to be pulled to $V_{\rm DD}$ — (not GND) to disable the operational amplifier.

The amplifier's output with a shutdown pulse is shown in Figures 33 and 34. The amplifier is powered with a single 5-V supply and configured as a noninverting configuration with a gain of 5. The amplifier turnon and turnoff times are measured from the 50% point of the shutdown pulse to the 50% point of the output waveform. The times for the single, dual, and quad are listed in the data tables.

Figures 35 and 36 show the amplifier's forward and reverse isolation in shutdown. The operational amplifier is powered by ± 1.35 -V supplies and configured as a voltage follower (A_V = 1). The isolation performance is plotted across frequency using 0.1-V_{PP}, 1.5-V_{PP}, and 2.5-V_{PP} input signals. During normal operation, the amplifier would not be able to handle a 2.5-V_{PP} input signal with a supply voltage of ± 1.35 V since it exceeds the common-mode input voltage range (V_{ICR}). However, this curve illustrates that the amplifier remains in shutdown even under a worst case scenario.

SLOS232A - JUNE 1999 - REVISED AUGUST 1999

APPLICATION INFORMATION

circuit layout considerations

To achieve the levels of high performance of the TLV247x, follow proper printed-circuit board design techniques.

A general set of guidelines is given in the following.

- Ground planes It is highly recommended that a ground plane be used on the board to provide all
 components with a low inductive ground connection. However, in the areas of the amplifier inputs and
 output, the ground plane can be removed to minimize the stray capacitance.
- Proper power supply decoupling Use a 6.8-μF tantalum capacitor in parallel with a 0.1-μF ceramic capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the application, but a 0.1-μF ceramic capacitor should always be used on the supply terminal of every amplifier. In addition, the 0.1-μF capacitor should be placed as close as possible to the supply terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less effective. The designer should strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors.
- Sockets Sockets can be used but are not recommended. The additional lead inductance in the socket pins
 will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board
 is the best implementation.
- Short trace runs/compact part placements Optimum high performance is achieved when stray series
 inductance has been minimized. To realize this, the circuit layout should be made as compact as possible,
 thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of
 the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at
 the input of the amplifier.
- Surface-mount passive components Using surface-mount passive components is recommended for high
 performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of
 surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small
 size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray
 inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be
 kept as short as possible.

SLOS232A - JUNE 1999 - REVISED AUGUST 1999

APPLICATION INFORMATION

general PowerPAD™ design considerations

The TLV247x is available in a thermally-enhanced PowerPAD family of packages. These packages are constructed using a downset leadframe upon which the die is mounted [see Figure 46(a) and Figure 46(b)]. This arrangement results in the lead frame being exposed as a thermal pad on the underside of the package [see Figure 46(c)]. Because this thermal pad has direct thermal contact with the die, excellent thermal performance can be achieved by providing a good thermal path away from the thermal pad.

The PowerPAD package allows for both assembly and thermal management in one manufacturing operation. During the surface-mount solder operation (when the leads are being soldered), the thermal pad can also be soldered to a copper area underneath the package. Through the use of thermal paths within this copper area, heat can be conducted away from the package into either a ground plane or other heat dissipating device.

The PowerPAD package represents a breakthrough in combining the small area and ease of assembly of surface mount with the, heretofore, awkward mechanical methods of heatsinking.

NOTE A. The thermal pad is electrically isolated from all terminals in the package.

Figure 46. Views of Thermally Enhanced DGN Package

Although there are many ways to properly heatsink the PowerPAD package, the following steps illustrate the recommended approach.

Thermal Pad Area

Figure 47. PowerPAD PCB Etch and Via Pattern

PowerPAD is a trademark of Texas Instruments Incorporated.

SLOS232A - JUNE 1999 - REVISED AUGUST 1999

APPLICATION INFORMATION

general PowerPAD design considerations (continued)

- 1. Prepare the PCB with a top side etch pattern as shown in Figure 47. There should be etch for the leads as well as etch for the thermal pad.
- 2. Place five holes (dual) or nine holes (quad) in the area of the thermal pad. These holes should be 13 mils in diameter. Keep them small so that solder wicking through the holes is not a problem during reflow.
- 3. Additional vias may be placed anywhere along the thermal plane outside of the thermal pad area. This helps dissipate the heat generated by the TLV247x IC. These additional vias may be larger than the 13-mil diameter vias directly under the thermal pad. They can be larger because they are not in the thermal pad area to be soldered so that wicking is not a problem.
- 4. Connect all holes to the internal ground plane.
- 5. When connecting these holes to the ground plane, do not use the typical web or spoke via connection methodology. Web connections have a high thermal resistance connection that is useful for slowing the heat transfer during soldering operations. This makes the soldering of vias that have plane connections easier. In this application, however, low thermal resistance is desired for the most efficient heat transfer. Therefore, the holes under the TLV247x PowerPAD package should make their connection to the internal ground plane with a complete connection around the entire circumference of the plated-through hole.
- 6. The top-side solder mask should leave the terminals of the package and the thermal pad area with its five holes (dual) or nine holes (quad) exposed. The bottom-side solder mask should cover the five or nine holes of the thermal pad area. This prevents solder from being pulled away from the thermal pad area during the reflow process.
- 7. Apply solder paste to the exposed thermal pad area and all of the IC terminals.
- 8. With these preparatory steps in place, the TLV247x IC is simply placed in position and run through the solder reflow operation as any standard surface-mount component. This results in a part that is properly installed.

For a given θ_{JA} , the maximum power dissipation is shown in Figure 48 and is calculated by the following formula:

$$P_{D} = \left(\frac{T_{MAX} - T_{A}}{\theta_{JA}}\right)$$

Where:

P_D = Maximum power dissipation of TLV247x IC (watts)

T_{MAX} = Absolute maximum junction temperature (150°C)

T_A = Free-ambient air temperature (°C)

 $\theta_{JA} = \theta_{JC} + \theta_{CA}$

θ_{JC} = Thermal coefficient from junction to case

 θ_{CA} = Thermal coefficient from case to ambient air (°C/W)

SLOS232A - JUNE 1999 - REVISED AUGUST 1999

APPLICATION INFORMATION

general PowerPAD design considerations (continued)

MAXIMUM POWER DISSIPATION

vs FREE-AIR TEMPERATURE

NOTE A. Results are with no air flow and using JEDEC Standard Low-K test PCB.

Figure 48. Maximum Power Dissipation vs Free-Air Temperature

The next consideration is the package constraints. The two sources of heat within an amplifier are quiescent power and output power. The designer should never forget about the quiescent heat generated within the device, especially muti-amplifier devices. Because these devices have linear output stages (Class A-B), most of the heat dissipation is at low output voltages with high output currents. Figure 49 to Figure 54 show this effect, along with the quiescent heat, with an ambient air temperature of 70°C and 125°C. When using $V_{DD}=3$ V, there is generally not a heat problem with an ambient air temperature of 70°C. But, when using $V_{DD}=5$ V, the packages are severely limited in the amount of heat it can dissipate. The other key factor when looking at these graphs is how the devices are mounted on the PCB. The PowerPAD devices are extremely useful for heat dissipation. But, the device should always be soldered to a copper plane to fully use the heat dissipation properties of the PowerPAD. The SOIC package, on the other hand, is highly dependent on how it is mounted on the PCB. As more trace and copper area is placed around the device, θ_{JA} decreases and the heat dissipation capability increases. The currents and voltages shown in these graphs are for the total package. For the dual or quad amplifier packages, the sum of the RMS output currents and voltages should be used to choose the proper package.

SLOS232A - JUNE 1999 - REVISED AUGUST 1999

APPLICATION INFORMATION

general PowerPAD design considerations (continued)

Figure 50

TLV2472, TLV2473†

TLV2470, TLV2471†

† A – SOT23(5); B – SOT23 (6); C – SOIC (8); D – SOIC (14); E – SOIC (16); F – MSOP PP (8); G – PDIP (8); H – PDIP (14); I – PDIP (16); J – TSSOP PP (14/16)

APPLICATION INFORMATION

general PowerPAD design considerations (continued)

† A – SOT23(5); B – SOT23 (6); C – SOIC (8); D – SOIC (14); E – SOIC (16); F – MSOP PP (8); G – PDIP (8); H – PDIP (14); I – PDIP (16); J – TSSOP PP (14/16)

TLV2470, TLV2471, TLV2472, TLV2473, TLV2474, TLV2475, TLV247xA FAMILY OF 600-μA/Ch 2.8-MHz RAIL-TO-RAIL INPUT/OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS282A – JUNE 1999 – REVISED AUGUST 1999

APPLICATION INFORMATION

macromodel information

Macromodel information provided was derived using Microsim $Parts^{TM}$, the model generation software used with Microsim $PSpice^{TM}$. The Boyle macromodel (see Note 1) and subcircuit in Figure 2 are generated using the TLV247x typical electrical and operating characteristics at $T_A = 25^{\circ}C$. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification

- Unity-gain frequency
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- Short-circuit output current limit

NOTE 1: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers," *IEEE Journal of Solid-State Circuits*, SC-9, 353 (1974).

PSpice and Parts are trademarks of MicroSim Corporation.

APPLICATION INFORMATION

* Schematics Subcircuit * .subckt TLV2470_ver1 Vout Vdd GND V+ V- SD

* Schematics Subcircuit *
.subckt TLV2471_ver1 V+ V- Vout Vdd GND

X_SUB_U1 V+ V- GND Vout AMP_TLV2470-X .ENDS TLV2471_ver1

Figure 55. Boyle Macromodel and Subcircuit

SLOS196 - AUGUST 1997

- Output Swing Includes Both Supply Rails
- Low Noise . . . 21 nV/√Hz Typ at f = 1 kHz
- Low Input Bias Current . . . 1 pA Typ
- Very Low Power . . . 11 μA Per Channel Typ
- Common-Mode Input Voltage Range Includes Negative Rail
- Wide Supply Voltage Range 2.7 V to 10 V
- Available in the SOT-23 Package
- Macromodel Included

description

The TLV2711 is a single low-voltage operational amplifier available in the SOT-23 package. It consumes only 11 μA (typ) of supply current and is ideal for battery-power applications. Looking at Figure 1, the TLV2711 has a 3-V noise level of 21 nV/\delta at 1kHz; five times lower than competitive SOT-23 micropower solutions. The device exhibits rail-to-rail output performance for increased dynamic range in single- or split-supply applications. The TLV2711 is fully characterized at 3 V and 5 V and is optimized for low-voltage applications.

The TLV2711, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels combined with 3-V operation, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single or split supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs).

EQUIVALENT INPUT NOISE VOLTAGET vs

f – Frequency – Hz

Figure 1. Equivalent Input Noise Voltage
Versus Frequency

AVAILABLE OPTIONS

-	V AT 0500	PACKAGED DEVICES	OVERDOL	CHIP FORM	
TA	V _{IO} max AT 25°C	SOT-23 (DBV)†	SYMBOL	(Y)	
0°C to 70°C	3 mV	TLV2711CDBV	VAJC	TIV0744V	
-40°C to 85°C	3 mV	mV TLV2711IDBV		TLV2711Y	

† The DBV package available in tape and reel only.

‡ Chip forms are tested at TA = 25°C only.

Advanced LinCMOS is a trademark of Texas Instruments Incorporated.

TEXAS INSTRUMENTS
POST OFFICE BOX 655303 DALLAS, TEXAS 75265

description (continued)

With a total area of 5.6mm², the SOT-23 package only requires one-third the board space of the standard 8-pin SOIC package. This ultra-small package allows designers to place single amplifiers very close to the signal source, minimizing noise pick-up from long PCB traces.

TLV2711Y chip information

This chip, when properly assembled, displays characteristics similar to the TLV2711C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with conductive epoxy or a gold-silicon preform.

TLV2711, TLV2711Y Advanced LinCMOS™ RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196 - AUGUST 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

upply voltage, V _{DD} (see Note 1)	
put voltage range, V _I (any input, see Note 1)	
put current, I _I (each input)	±5 mA
utput current, Io	±50 mA
otal current into V _{DD+}	
otal current out of VDD	
uration of short-circuit current (at or below) 25°C (see Note 3)	unlimited
ontinuous total power dissipation	See Dissipation Rating Table
perating free-air temperature range, TA: TLV2711C	0°C to 70°C
	40°C to 85°C
torage temperature range, T _{stq}	65°C to 150°C
ead temperature 1,6 mm (1/16 inch) from case for 10 seconds: DBV p	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to VDD -

The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE TA = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
DBV	150 mW	1.2 mW/°C	96 mW	78 mW

recommended operating conditions

本集 B 主義 を 集 1 1 1 1 1 1 1 1 1	TL	TLV2711C		TLV2711I		
upply voltage, V _{DD} (see Note 1)	MIN	MAX	MIN	MAX	UNIT	
Supply voltage, V _{DD} (see Note 1)	2.7	10	2.7	10	٧	
Input voltage range, V _I	V _{DD} -	V _{DD+} -1.3	V _{DD} -	V _{DD+} -1.3	٧	
Common-mode input voltage, V _{IC}	V _{DD} -	V _{DD+} -1.3	V _{DD} -	V _{DD+} -1.3	٧	
Operating free-air temperature, TA	0	70	-40	85	°C	

NOTE 1: All voltage values, except differential voltages, are with respect to VDD -

^{2.} Differential voltages are at the noninverting input with respect to the inverting input. Excessive current flows when input is brought below V_{DD} = 0.3 V.

electrical characteristics at specified free-air temperature, V_{DD} = 3 V (unless otherwise noted)

	DADAMETER	TEST COND	SHOITI	TAT	TI	LV2711	C	T	LV2711		LIMPT
	PARAMETER	TEST COND	ITIONS	IAI	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	895.0 70.0	ores I			0.4	3		0.4	3	mV
αΛΙΟ	Temperature coefficient of input offset voltage	abo	9.5	Full range		1	O.	evines you	1		μV/°C
EHWV:	Input offset voltage long-term drift (see Note 4)	$V_{DD\pm} = \pm 1.5 \text{ V},$ $V_{O} = 0,$	$V_{IC} = 0$, $R_S = 50 \Omega$	25°C	18 F &	0.003	at in	Mayupa	0.003	voluge Voluge	μV/m
110	Input offset current	088		Full range	#1010	0.5	150	digal	0.5	150	рА
IB	Input bias current			Full range		1	150	esipe n	90.711	150	pA
VICR	Common-mode input voltage range	V _{IO} ≤5 mV, Rs	$R_S = 50 \Omega$	25°C	0 to 2	-0.3 to 2.2	#1 # Ø	0 to 2	-0.3 to 2.2	d-nina)	V
			1700 1700	Full range	to 1.7		31	to 1.7		wbried	MO
VOL	1 200	I _{OH} = -100 μA	U NN Trip	25°C	38	2.94	in l		2.94	a Manu	V
	High-level output voltage	Jan 250 HA	5° 85	25°C		2.85			2.85	n hladi	
	voltage	I _{OH} = -250 μA		Full range	2.6			2.6	3 102 - 773	ik si m	
		V _{IC} = 1.5 V,	I _{OL} = 50 μA	25°C		15			15	r of hor	carrello
VOL	Low-level output voltage	V _{IC} = 1.5 V,	I _{OL} = 500 μA	25°C		150			150		mV
	vollago	VIC = 1.5 V,	IOL = 300 μA	Full range			500			500	
	Large-signal	V - 45V	R _L = 10 kه	25°C	3	7		3	7		
AVD	differential voltage	V _{IC} = 1.5 V, V _O = 1 V to 2 V	UF = 10 K75+	Full range	1			1			pA V V mV
	amplification	· ·	$R_L = 1 M\Omega^{\ddagger}$	25°C		600	11		600		
^r i(d)	Differential input resistance			25°C		1012			1012		Ω
ri(c)	Common-mode input resistance			25°C		1012			1012		Ω
^C i(c)	Common-mode input capacitance	f = 10 kHz,		25°C		5			5		pF
z _o	Closed-loop output impedance	f = 7 kHz,	A _V = 1	25°C		200			200		Ω
CMRR	Common-mode	V _{IC} = 0 to 1.7 V,	V _O = 1.5 V,	25°C	65	83		65	83		dD
OWINA	rejection ratio	$R_S = 50 \Omega$		Full range	60			60			UB
ksvr	Supply voltage rejection ratio	V _{DD} = 2.7 V to 8 V,	V _{IC} = V _{DD} /2	25°C	80	95		80	95		dB
	(AVDD /AVIO)	No load	,	Full range	80			80			
IDD	Supply current	V _O = 1.5 V,	No load	25°C		11	25		11	25	Ω pF Ω
טטי	oupply outlon	VO = 1.5 V,	140 load	Full range			30			30	μΑ

[†] Full range for the TLV2711C is 0°C to 70°C. Full range for the TLV2711I is - 40°C to 85°C.

[‡] Referenced to 1.5 V

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

operating characteristics at specified free-air temperature, V_{DD} = 3 V (unless otherwise noted)

manual in	DADAMETED	TECT COMP	ITIONO	- +	T	LV2711	С		UNIT		
	PARAMETER	TEST COND	ITIONS	TAT	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Ven	E 6.0 8	V- 44 W4-4 0 V	D. totot	25°C	0.01	0.025		0.01	0.025	in high	on on
SR	Slew rate at unity gain	V _O = 1.1 V to 1.9 V, C _L = 100 pF [‡]	$R_L = 10 \text{ k}\Omega^{\ddagger}$	Full range	0.005			0.005	inui et of lop	engrad doffisse	V/µs
V	Equivalent input noise	f = 10 Hz		25°C	I A	80	No Carl	-	80		->4//11
Vn	voltage	f = 1 kHz	Sens A	25°C		22	W-0		22	120	nV/√Hz
\/=.	Peak-to-peak equivalent	f = 0.1 Hz to 1 Hz		25°C		660			660	iota mus	
VN(PP)	input noise voltage	f = 0.1 Hz to 10 Hz	opom Bu ³	25°C		880		l In	880	the Jesse	μV
In	Equivalent input noise current	60- 6	Pull range	25°C		0.6			0.6	ed Juga	fA/√Hz
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF‡	$R_L = 10 \text{ k}\Omega^{\ddagger}$,	25°C		56		Jurges	56	om/not	kHz
ВОМ	Maximum output-swing bandwidth	$V_{O(PP)} = 1 \text{ V},$ $R_{L} = 10 \text{ k}\Omega^{\ddagger},$	Ay = 1, C _L = 100 pF [‡]	25°C		7			7	Spuller	kHz
φm	Phase margin at unity gain	$R_L = 10 \text{ k}\Omega^{\ddagger}$	C _L = 100 pF‡	25°C		56°			56°		
N. S.	Gain margin	2.85	28.0	25°C		20			20	anath.	dB

[†] Full range is -40°C to 85°C.

[‡] Referenced to 1.5 V

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER	TEST COND	ITIONS	TAT	Т	LV2711	C	Т	LV2711	1	LINUT
	PARAMETER	TEST COND	THONS	IA1	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	2600 100				0.45	3		0.45	3	mV
ανιο	Temperature coefficient of input offset voltage	780		Full range	7 3 5 10 20 20 20 20 20 20 20 20 20 20 20 20 20	0.5	10,00	nily gián	0.5	1 W.18	μV/°C
3800	Input offset voltage long-term drift (see Note 4)	$V_{DD\pm} = \pm 2.5 \text{ V},$ $V_{O} = 0,$	$V_{IC} = 0$, R _S = 50 Ω	25°C	EH 1 d	0.003	=1 20	elevitore	0.003	SERVER SERVER	μV/m
lio	Input offset current	008		25°C	1010	0.5	-1	riger	0.5	rs. Alecgali	рА
10	input onset current			Full range			150	edion is	got Injek	150	PA
lun	Input bias current			25°C		1			1	Cumant	рА
IB	input bias current			Full range		31/14 (0)	150	Charles (I	Americano	150	PA
Vicr	Common-mode input	V _O ≤5 mV	R _S = 50 Ω	25°C	0 to 4	-0.3 to 4.2	ev i	0 to 4	-0.3 to 4.2	niseM miseM	V
VICH	voltage range	1401 23 1114	NS = 30 32	Full range	0 to 3.5	ONOT =	, a	0 to 3.5	ritigation citic	Protein unity g Chain in	V
	High lavel autout	I _{OH} = -100 μA		25°C		4.95		018	4.95	Maria de	rito B
VOH	High-level output voltage	I _{OH} = -250 μA		25°C		4.875			4.875	f at bea	V
		IOH = -250 μA		Full range	4.6			4.6			
	Low lovel output	V _{IC} = 2.5 V,	I _{OL} = 50 μA	25°C	A P	12	18年	mena	12	no iri	11170
VOL	Low-level output voltage	V _{IC} = 2.5 V,	I _{OL} = 500 μA	25°C	P.S.	120		- STD	120		mV
	XAM SYT MB	VIC = 2.5 V,	10Γ = 200 μΑ	Full range			500			500	
	Large-signal	V _{IC} = 2.5 V,	$R_{\rm I} = 10 \text{k}\Omega^{\ddagger}$	25°C	6	12		6	12	(hap)	
AVD	differential	$V_0 = 2.5 \text{ V},$ $V_0 = 1 \text{ V to 4 V}$		Full range	3			3	to tostic	hungel	V/m
Ag	voltage amplification	The contract of	$R_L = 1 M\Omega^{\ddagger}$	25°C		800		Tries	800	high	
ri(d)	Differential input resistance		B (8 = 88 B	25°C	OIV1	1012	egatica	toqsi el	1012	mmjoO.	Ω
ri(c)	Common-mode input resistance			25°C	1101	1012			1012		Ω
Ci(c)	Common-mode input capacitance	f = 10 kHz,	Au 06 = 304	25°C	HO!	5			5		pF
z _o	Closed-loop output impedance	f = 7 kHz,	A _V = 1	25°C	e OrV	200		Dillo A Th	200	anylou.	Ω
CMRR	Common-mode rejection ratio	$V_{IC} = 0 \text{ to } 2.7 \text{ V},$ $R_S = 50 \Omega$	$V_0 = 2.5 \text{ V},$	25°C Full range	70 70	83		70 70	83	ng/su ng/su	dB
	Supply voltage			-		05		CIPOLOUS	0.5	1107011	
ksvr	rejection ratio (ΔV _{DD} /ΔV _{IO})	V _{DD} = 4.4 V to 8 V, No load	$V_{IC} = V_{DD}/2$,	25°C Full range	80	95	netrios	80	95	nimed)	dB
Q	1 008		Land	25°C	Tell	13	25	rei Archi	13	25	
IDD	Supply current	V _O = 2.5 V,	No load	Full range			30	Principal Co	ACCOLUMN	30	μΑ

[†] Full range for the TLV2711C is 0°C to 70°C. Full range for the TLV2711I is – 40°C to 85°C.

[‡]Referenced to 1.5 V

NOTE 5: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T_A = 150°C extrapolated to T_A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

TLV2711, TLV2711Y Advanced LinCMOS™ RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS196 - AUGUST 1997

operating characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

- West of	THE STREET STREET	TEGT COME	ITIONIO	- +	Т	LV2711	С	1	LIMIT		
	PARAMETER	TEST COND	ITIONS	TAT	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Vin	S da.V	V- 45V4-05V	D. 40 bot	25°C	0.01	0.025		0.01	0.025	le luite	OI.
SR	Slew rate at unity gain	$V_O = 1.5 \text{ V to } 3.5 \text{ V,}$ $C_L = 100 \text{ pF}^{\ddagger}$	$R_L = 10 \text{ k}\Omega^{\ddagger}$	Full range	0.005			0.005	get to an		V/µs
.,	Equivalent input noise	f = 10 Hz		25°C		72		700	72	No Euro	->1/4/11-
Vn	voltage	f = 1 kHz	(Mas)	25°C		21	* 100		21	nalgre	nV/√Hz
	Peak-to-peak equivalent	f = 0.1 Hz to 1 Hz		25°C		600	450		600	DM sas	
VN(PP)	input noise voltage	f = 0.1 Hz to 10 Hz		25°C		800			800		μV
In	Equivalent input noise current	i	Sport R27 Ores	25°C		0.6			0.6		fA/√Hz
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF‡	$R_L = 10 \text{ k}\Omega^{\ddagger}$,	25°C		65			65		kHz
Вом	Maximum output-swing bandwidth	$V_{O(PP)} = 2 \text{ V},$ $R_{L} = 10 \text{ k}\Omega^{\ddagger},$	A _V = 1, C _L = 100 pF [‡]	25°C		7		tuge	7	ionemus	kHz
φm	Phase margin at unity gain	$R_L = 10 \text{ k}\Omega^{\ddagger}$	C _L = 100 pF [‡]	25°C		60°			60°	ogalis.	
	Gain margin	0.6		25°C		22			22		dB

[†] Full range is -40°C to 85°C. ‡ Referenced to 1.5 V

electrical characteristics at V_{DD} = 3 V, T_A = 25°C (unless otherwise noted)

- Vnii.	DADAMETED	0.89	T COMPITIONS		TI	_V2711\	/	
	PARAMETER	agree land	ST CONDITIONS	Meses	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	2010				0.47	Carama.	mV
110	Input offset current	$V_{DD\pm} = \pm 1.5 \text{ V},$ $R_S = 50 \Omega$	$V_O = 0$,	V _{IC} = 0,		0.5	encent	рА
IB	Input bias current	NS = 30 12			Pioli	1	9.00810	рА
VICR	Common-mode input voltage range	V _{IO} ≤5 mV,	R _S = 50 Ω			-0.3 to 2.2	umpya Est demilaisus	V
.,		I _{OH} = -100 μA				2.94	aun hugir	V
VOH	High-level output voltage	I _{OH} = -200 μA			Marie	2.85	normand (V
V	Law law Law day day day	V _{IC} = 0,	I _{OL} = 50 μA			15	geo Juga	\/
VOL	Low-level output voltage	V _{IC} = 0,	I _{OL} = 500 μA	7 leitz	4	150	M-Dumple	mV
Α	Large-signal differential	V - 45V		$R_L = 10 \text{ k}\Omega^{\dagger}$		7	THE RESERVE	1//1/
AVD	voltage amplification	$V_{IC} = 1.5 V,$	$V_0 = 1 \text{ V to 2 V}$	$R_L = 1 M\Omega^{\dagger}$		600	rivellessons	V/mV
ri(d)	Differential input resistance					1012		Ω
ri(c)	Common-mode input resistance	1 1 1 1	NOW SHOW A	8 JU V 8 & - CI		1012	noltosia	Ω
Ci(c)	Common-mode input capacitance	f = 10 kHz				5	A ggVa	pF
z _o	Closed-loop output impedance	f = 7 kHz,	A _V = 1			200		Ω
CMRR	Common-mode rejection ratio	V _{IC} = 0 to 1.7 V,	V _O = 1.5 V,	R _S = 50 Ω		83		dB
ksvr	Supply voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	$V_{DD} = 2.7 \text{ V to 8 V},$	$V_{IC} = V_{DD}/2$,	No load	0 8577	95	erit vol e Lit of be	dB
IDD	Supply current	V _O = 1.5 V,	No load		Daniel D	11	O BUSINESS OF THE	μА

[†] Referenced to 1.5 V

electrical characteristics at V_{DD} = 5 V, T_A = 25°C (unless otherwise noted)

	DADAMETED	TE	OT COMPITIONS		T	LV2711Y	1	LINUT
	PARAMETER	edoale	ST CONDITIONS		MIN	TYP	MAX	UNIT
VIO	Input offset voltage			5.000		0.45		mV
110	Input offset current	$V_{DD} \pm = \pm 2.5 \text{ V},$ $R_S = 50 \Omega$	$V_{IC} = 0,$	V _O = 0,		0.5		pA
IB	Input bias current	118 = 30 32			SUP SUR	1	97	pA
VICR	Common-mode input voltage range	V _{IO} ≤5 mV,	R _S = 50 Ω	ingent apollov h Ibido troni bin	ella tuga wiri tuga	-0.3 to 4.2	Olym Olym	V
V	High land a had a had	I _{OH} = -100 μA	22-10-12-11-22-11	10	Eov lugn	4.95	- AV	V
VOH	High-level output voltage	I _{OH} = -250 μA		America hamin	and seed	4.875	Lucil	V
V	1 1 1 1 17 1 5 1 6	V _{IC} = 2.5 V,	I _{OL} = 50 μA	Septime to object	montava	12		
VOL	Low-level output voltage	V _{IC} = 2.5 V,	I _{OL} = 500 μA		earning at	120	War and	mV
Λ	Large-signal differential	V 0.5.V	V 4VI 4V	$R_L = 10 \text{ k}\Omega^{\dagger}$		12		\//\
AVD	voltage amplification	$V_{IC} = 2.5 V,$	$V_O = 1 V \text{ to } 4 V$	$R_L = 1 M\Omega^{\dagger}$	A THE WAY	800	-80-	V/m\
ri(d)	Differential input resistance	on salino attica av		619	ov JudjuC	1012	eVI	Ω
ri(c)	Common-mode input resistance	hetateer Eroo J av				1012		Ω
Ci(c)	Common-mode input capacitance	f = 10 kHz	A SOUR	used use teleplate in	EN BIR	5	CIVIC	pF
z _o	Closed-loop output impedance	f = 7 kHz,	A _V = 1		Lazer S	200		Ω
CMRR	Common-mode rejection ratio	V _{IC} = 0 to 2.7 V,	V _O = 2.5 V,	$R_S = 50 \Omega$		83		dB
ksvr	Supply voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	V _{DD} = 4.4 V to 8 V,	$V_{IC} = V_{DD}/2$,	No load	sun iritos	95	CMB	dB
IDD	Supply current	V _O = 2.5 V,	No load	si dottane egen	Nekjadine	13	B) EA	μА

† Referenced to 1.5 V

Table of Graphs

			FIGURE
VIO	Input offset voltage	Distribution vs Common-mode input voltage	3, 4 5, 6
ανιο	Input offset voltage temperature coefficient	Distribution	7,8
I _{IB} /I _{IO}	Input bias and input offset currents	vs Free-air temperature	9
VI	Input voltage	vs Supply voltage vs Free-air temperature	10 11
Vон	High-level output voltage	vs High-level output current	12, 15
VOL	Low-level output voltage	vs Low-level output current	13, 14, 16
VO(PP)	Maximum peak-to-peak output voltage	vs Frequency	17
los	Short-circuit output current	vs Supply voltage vs Free-air temperature	18 19
Vo	Output voltage	vs Differential input voltage	20, 21
AVD	Differential voltage amplification	vs Load resistance vs Frequency vs Free-air temperature	22 23, 24 25, 26
z _o	Output impedance	vs Frequency	27, 28
CMRR	Common-mode rejection ratio	vs Frequency vs Free-air temperature	29 30
ksvr	Supply-voltage rejection ratio	vs Frequency vs Free-air temperature	31, 32 33
IDD	Supply current	vs Supply voltage	34
SR	Slew rate	vs Load capacitance vs Free-air temperature	35 36
Vo	Large-signal pulse response	vs Time	37, 38, 39, 4
Vo	Small-signal pulse response	vs Time	41, 42, 43, 4
Vn	Equivalent input noise voltage	vs Frequency	45, 46
	Noise voltage (referred to input)	Over a 10-second period	47
THD + N	Total harmonic distortion plus noise	vs Frequency	48
	Gain-bandwidth product	vs Free-air temperature vs Supply voltage	49 50
φm	Phase margin	vs Frequency vs Load capacitance	23, 24 51
	Gain margin	vs Load capacitance	52
B ₁	Unity-gain bandwidth	vs Load capacitance	53

Figure 2

DISTRIBUTION OF TLV2711
INPUT OFFSET VOLTAGE

Figure 3

INPUT OFFSET VOLTAGET vs COMMON-MODE INPUT VOLTAGE

Figure 5

[†] For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

DISTRIBUTION OF TLV2711 INPUT OFFSET

VOLTAGE TEMPERATURE COEFFICIENT

Figure 6

INPUT BIAS AND INPUT OFFSET CURRENTS†

Figure 7

0

αVIO - Temperature Coefficient - μV/°C

2

3

-1

-3

-2

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For all curves where $V_{DD} = 5 \text{ V}$, all loads are referenced to 2.5 V. For all curves where $V_{DD} = 3 \text{ V}$, all loads are referenced to 1.5 V.

Figure 14

Figure 15

Figure 16

Figure 17

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGINT

Figure 22

LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGINT

† For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

Figure 23

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

Figure 28

SUPPLY-VOLTAGE REJECTION RATIO

SUPPLY-VOLTAGE REJECTION RATIO†

† For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V. ‡ Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

Figure 38

VOLTAGE-FOLLOWER LARGE-SIGNAL

† For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE[†]

VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSET

† For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.

[†] For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

UNITY-GAIN BANDWIDTH vs

Figure 52

APPLICATION INFORMATION

driving large capacitive loads

The TLV2711 is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 50 and Figure 51 illustrate its ability to drive loads up to 600 pF while maintaining good gain and phase margins $(R_{null} = 0)$.

A smaller series resistor (R_{null}) at the output of the device (see Figure 53) improves the gain and phase margins when driving large capacitive loads. Figure 50 and Figure 51 show the effects of adding series resistances of 500 Ω and 1000 Ω . The addition of this series resistor has two effects: the first is that it adds a zero to the transfer function and the second is that it reduces the frequency of the pole associated with the output load in the transfer function.

The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To calculate the improvement in phase margin, equation 1 can be used.

$$\Delta \phi_{m1} = \tan^{-1} \left(2 \times \pi \times \text{UGBW} \times \text{R}_{\text{null}} \times \text{C}_{\text{L}} \right)$$
 (1)

 $\Delta \phi_{m1}$ = improvement in phase margin

UGBW = unity-gain bandwidth frequency

R_{null} = output series resistance

C₁ = load capacitance

APPLICATION INFORMATION

driving large capacitive loads (continued)

The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 52). To use equation 1, UGBW must be approximated from Figure 52.

Figure 53. Series-Resistance Circuit

driving heavy dc loads

The TLV2711 is designed to provide better sinking and sourcing output currents than earlier CMOS rail-to-rail output devices. This device is specified to sink 500 μ A and source 250 μ A at V_{DD} = 3 V and V_{DD} = 5 V at a maximum quiescent I_{DD} of 25 μ A. This provides a greater than 90% power efficiency.

When driving heavy dc loads, such as 10 k Ω , the positive edge under slewing conditions can experience some distortion. This condition can be seen in Figure 38. This condition is affected by three factors.

- Where the load is referenced. When the load is referenced to either rail, this condition does not occur. The distortion occurs only when the output signal swings through the point where the load is referenced. Figure 39 illustrates two 10-kΩ load conditions. The first load condition shows the distortion seen for a 10-kΩ load tied to 2.5 V. The third load condition shows no distortion for a 10-kΩ load tied to 0 V.
- Load resistance. As the load resistance increases, the distortion seen on the output decreases. Figure 39 illustrates the difference seen on the output for a 10-kΩ load and a 100-kΩ load with both tied to 2.5 V.
- Input signal edge rate. Faster input edge rates for a step input result in more distortion than with slower input edge rates.

APPLICATION INFORMATION

macromodel information

Macromodel information provided was derived using Microsim $Parts^{TM}$, the model generation software used with Microsim $PSpice^{TM}$. The Boyle macromodel (see Note 6) and subcircuit in Figure 54 are generated using the TLV2711 typical electrical and operating characteristics at $T_A = 25^{\circ}C$. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification

- Unity-gain frequency
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- Short-circuit output current limit

NOTE 6: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers", *IEEE Journal of Solid-State Circuits*, SC-9, 353 (1974).

Figure 54. Boyle Macromodel and Subcircuit

PSpice and Parts are trademark of MicroSim Corporation.

TLV2721, TLV2721Y Advanced LinCMOS™ RAIL-TO-RAIL **VERY LOW-POWER SINGLE OPERATIONAL AMPLIFIERS**

SLOS197 - AUGUST1997

- Output Swing Includes Both Supply Rails
- Low Noise . . . 19 nV/√Hz Typ at f = 1 kHz
- Low Input Bias Current . . . 1 pA Typ
- Fully Specified for Single-Supply 3-V and 5-V Operation
- Very Low Power . . . 110 μA Typ
- Common-Mode Input Voltage Range **Includes Negative Rail**
- Wide Supply Voltage Range 2.7 V to 10 V
- Macromodel Included

description

The TLV2721 is a single low-voltage operational amplifier available in the SOT-23 package. It offers a compromise between the ac performance and output drive of the TLV2731 and the micropower TLV2711.

It consumes only 150 µA (max) of supply current and is ideal for battery-powered applications. The device exhibits rail-to-rail output performance for increased dynamic range in single- or split-supply applications. The TLV2721 is fully characterized at 3 V and 5 V and is optimized for low-voltage applications.

The TLV2721, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels combined with 3-V operation, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single or split supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs).

With a total area of 5.6mm², the SOT-23 package only requires one third the board space of the standard 8-pin SOIC package. This ultra-small package allows designers to place single amplifiers very close to the signal source, minimizing noise pick-up from long PCB traces.

AVAILABLE OPTIONS

		PACKAGED DEVICES		CHIP
TA	V _{IO} max AT 25°C	SOT-23 (DBV)†	SYMBOL	FORM‡
0°C to 70°C	3 mV	TLV2721CDBV	VAKC	TI.V07043
-40°C to 85°C	3 mV	TLV2721IDBV	VAKI	TLV2721Y

† The DBV package available in tape and reel only.

Chip forms are tested at T_A = 25°C only.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas instruments standard warranty. Production processing does not necessarily include testing of all parameters.

TLV2721Y chip information

This chip, when properly assembled, displays characteristics similar to the TLV2721C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with conductive epoxy or a gold-silicon preform.

CHIP THICKNESS: 10 MILS TYPICAL BONDING PADS: 4×4 MILS MINIMUM T_J max = 150° C TOLERANCES ARE $\pm10\%$. ALL DIMENSIONS ARE IN MILS. PIN (2) IS INTERNALLY CONNECTED TO BACKSIDE OF CHIP.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{DD} (see Note 1)	
Differential input voltage, V _{ID} (see Note 2)	
Input voltage range, V _I (any input, see Note 1)	0.3 V to V _{DD}
Input current, I _I (each input)	
Output current, IO	±50 mA
Total current into V _{DD+}	
Total current out of V _{DD}	±50 mA
Duration of short-circuit current (at or below) 25°C (see Note 3)	unlimited
Continuous total power dissipation	
Operating free-air temperature range, TA: TLV2721C	0°C to 70°C
TLV2721I	40°C to 85°C
Storage temperature range, T _{stq}	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: DBV package	ge 260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to V_{DD} -.

- Differential voltages are at the noninverting input with respect to the inverting input. Excessive current flows when input is brought below V_{DD} = 0.3 V.
- The output can be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE TA = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
DBV	150 mW	1.2 mW/°C	96 mW	78 mW

recommended operating conditions

	TL	TLV2721C		TLV2721I		
	MIN	MAX	MIN	MAX	UNIT	
Supply voltage, V _{DD} (see Note 1)	2.7	10	2.7	10	٧	
Input voltage range, V _I	V _{DD} -	V _{DD+} -1.3	V _{DD} -	V _{DD+} -1.3	٧	
Common-mode input voltage, V _{IC}	V _{DD} -	V _{DD+} -1.3	V _{DD} -	V _{DD+} -1.3	٧	
Operating free-air temperature, TA	0	70	-40	85	°C	

NOTE 1: All voltage values, except differential voltages, are with respect to VDD --

SLOS197 - AUGUST 1997

electrical characteristics at specified free-air temperature, V_{DD} = 3 V (unless otherwise noted)

	DADAMETER	TEST CON	DITIONS	-+	TI	_V2721	C	1	LV2721	1	1 11 1199
	PARAMETER	TEST CON	IDITIONS	TAT	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	0.35	1.0 0.00			0.5	3		0.5	3	mV
αγιο	Temperature coefficient of input offset voltage	estr		Full range		1	01 = 10		1		μV/°C
19 12 Vin	Input offset voltage long-term drift (see Note 4)	$V_{DD\pm} = \pm 1.5 \text{ V},$ $V_{O} = 0,$	V _{IC} = 0, R _S = 50 Ω	25°C	1	0.003	M# 1 = 1 1 1:0 = 1		0.003	colea y	μV/m
110	Input offset current	489		25°C Full range		0.5	150		0.5	150	pA
altfva.61	8.0	ao		25°C		1	150		1	150	
IIB	Input bias current			Full range			150		1100	150	pA
Vicr	Common-mode input	Rs = 50 Ω,	IV _{IOI} ≤5 mV	25°C	0 to 2	-0.3 to 2.2	F= 20 kl	0 to 2	-0.3 to 2.2	el bajor Bostor	V
VICH	voltage range	0.1428	IAIOI ZOMA	Full range	0 to 1.7		1=20k fit =21	0 to 1.7		denteD	·
	High-level output	$I_{OH} = -100 \mu A$		25°C		2.97	01 = 10		2.97	penong	
VOH	voltage	I _{OH} = -400 μA		25°C		2.88	A Victoria		2.88	Maxing	V
27.01				Full range	2.6	- 40	SAUR	2.6	No tree	Margaro .	MO
	Low-level output	V _{IC} = 1.5 V,	I _{OL} = 50 μA	25°C		15			15		777
VOL	voltage	V _{IC} = 1.5 V,	I _{OL} = 500 μA	25°C		150	500		150	500	mV
				Full range	2	3	500	2	3	500	
AVD	Large-signal differential voltage	V _{IC} = 1.5 V,	$R_L = 2 k\Omega^{\ddagger}$	Full range	1	3		1	3	DECT'S	V/m\
~VD	amplification	$V_0 = 1 \text{ V to 2 V}$	$R_L = 1 M\Omega^{\ddagger}$	25°C		250	3.435		250	R KOLA	V/IIIV
^r id	Differential input resistance			25°C		1012		13	1012	A- Haj	Ω
ric	Common-mode input resistance			25°C		1012			1012	0 es boo	Ω
cic	Common-mode input capacitance	f = 10 kHz		25°C		6			6		pF
z _o	Closed-loop output impedance	f = 10 kHz,	A _V = 10	25°C		90			90		Ω
CMRR	Common-mode	V _{IC} = 0 to 1.7 V,	D- 500	25°C	70	82		70	82		dB
	rejection ratio	V _O = 1.5 V,	$R_S = 50 \Omega$	Full range	65			65			
ksvr	Supply voltage rejection ratio	$V_{DD} = 2.7 \text{ V to 8}$ $V_{IC} = V_{DD}/2$,	V, No load	25°C Full range	80	95		80	95		dB
	(ΔV _{DD} /ΔV _{IO})			25°C	00	100	150		100	150	
IDD	Supply current	$V_0 = 1.5 V$,	No load	Full range		100	200		100	200	μΑ

[†] Full range for the TLV2721C is 0°C to 70°C. Full range for the TLV2721I is – 40°C to 85°C.

[‡] Referenced to 1.5 V

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T_A = 150°C extrapolated to T_A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

operating characteristics at specified free-air temperature, V_{DD} = 3 V

THE	DADAMETED	TEOT COM	DITIONS	- +	T	LV2721	C		UNIT		
	PARAMETER	TEST CONI	DITIONS	TAT	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Visit	Claus sate at smits	V= 11 V4c 10 V	D alot	25°C	0.1	0.25		0.1	0.25	la logni	00
SR	Slew rate at unity gain	$V_O = 1.1 \text{ V to } 1.9 \text{ V},$ $C_L = 100 \text{ pF}^{\ddagger}$, HL = 2 K12+,	Full range	0.05			0.05	eture int of kny	necmet rickinos	V/µs
\/	Equivalent input	f = 10 Hz		25°C		120			120	AV TESSES	->///
Vn	noise voltage	f = 1 kHz	Sein	25°C	a Sale	20	s. american	100	20	ne Hadai	nV/√H
.,	Peak-to-peak	f = 0.1 Hz to 1 Hz		25°C	- BR	680	0 = 01		680	ofil (usu)	
VN(PP)	equivalent input noise voltage	f = 0.1 Hz to 10 Hz	0.78	25°C		860		10	860	to Event	mV
In	Equivalent input noise current		D'es	25°C		0.6			0.6	in the same	fA/√Hz
	Def	V _O = 1 V to 2 V,	A _V = 1	0500		2.52%			2.52%		
TUD N	Total harmonic	f = 20 kHz, $R_L = 2 \text{ k}\Omega^{\ddagger}$	Ay = 10	25°C		7.01%			7.01%		
THD+N	distortion plus noise	V _O = 1 V to 2 V,	Ay = 1	0500	Not	0.076%	00 = 08	tugn	0.076%	Commo	FIGI!
		f = 20 kHz, $R_L = 2 \text{ k}\Omega$ §	Ay = 10	25°C		0.147%	5.771		0.147%		
	Gain-bandwidth product	f = 1 kHz, C _L = 100 pF‡	$R_L = 2 k\Omega^{\ddagger}$,	25°C		480	110		480		kHz
Вом	Maximum output-swing bandwidth	V _O (PP) = 1 V, R _L = 2 kΩ [‡] ,	A _V = 1, C _L = 100 pF‡	25°C		30	80		30	ogallov	kHz
Vin	Cattling time	$A_V = -1$, Step = 1 V to 2 V,	To 0.1%	25°C		4.5	E to Judy		4.5	vel-wo.J	μѕ
t _S	Settling time	$R_L = 2 k\Omega^{\ddagger},$ $C_L = 100 pF^{\ddagger}$	To 0.01%	25°C		6.8			6.8		μs
φm	Phase margin at unity gain	$R_L = 2 k\Omega^{\ddagger}$	C _I = 100 pF [‡]	25°C		53°	1 = 0 V	8	53°	seroliis sileoma	gy/
	Gain margin			25°C		12			12		dB

[†] Full range is -40°C to 85°C.

[‡]Referenced to 1.5 V

[§] Referenced to 0 V

SLOS197 - AUGUST 1997

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

YOU	PARAMETER	TEST CONDITIONS		TAT	TLV2721C			TLV2721I			LIMIT	
a pour	PARAMETER	TEST CON	IDITIONS	IAI	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
VIO	Input offset voltage	0.29	2570 1011	tourn		0.5	3		0.5	3	mV	
αΛΙΟ	Temperature coefficient of input offset voltage			Full range		1	nov = 34		1	nieg	μV/°C	
347146	Input offset voltage long-term drift (see Note 4)	$V_{DD\pm} = \pm 2.5 \text{ V},$ $V_{O} = 0,$	V _{IC} = 0, R _S = 50 Ω	25°C		0.003	SMIT S HIDE		0.003	nowey Pages	μV/mo	
l. a	Input offect gurrent	100		25°C		0.5	913.0 -		0.5	Laster	pA	
10	Input offset current			Full range			150		week to be	150	PA	
SHIPLES.	Input bias current	6,0		25°C		1			1	o ection :	рА	
IB	input bias current	Jena e		Full range	al y	LEWY	150			150	PA	
	Common-mode input	######################################	04-1-5 mV	25°C	0 to 4	-0.3 to 4.2	rol US = M S u gl	0 to 4	-0.3 to 4.2	richter in	V	
VICR	CR voltage range	$R_S = 50 \Omega$,	V _{IO} ≤5 mV	Full range	0 to 3.5	į į	107 (28 m 14 (2 m) 16 (2 m)	0 to 3.5		Solet	V	
.,	High-level output	it I _{OH} = -500 μA		0500	4.75	4.88	oor = 3	4.75	4.88	plobaba.	V	
VOH	voltage	I _{OH} = -1 mA		25°C	4.6	4.76	79800	4.6	4.76	intoh!	V	
	Low-level output	V _{IC} = 2.5 V,	C = 2.5 V, I _{OL} = 50 μA			12	N S H L	1	12	Parine.	MILO	
VOL		V _{IC} = 2.5 V,	I _{OL} = 500 μA	25°C		120	Jesy		120		mV	
	voltage			Full range	and SM E	GOT N	500		emal	500		
	Large-signal differential voltage	V _{IC} = 2.5 V, V _O = 1 V to 4 V	$R_L = 2 k\Omega^{\ddagger}$	25°C	3	5	001mm	3	5		V/mV	
AVD				Full range	1			1	rignero	ALCOHOL:		
	amplification		$R_L = 1 M\Omega^{\ddagger}$	25°C	0	800	MERI		800	d Appen		
^r id	Differential input resistance	SI		25°C		1012		1.09	1012	m clists The eller	Ω	
ric	Common-mode input resistance			25°C		1012			1012	Gol bio	Ω	
Cic	Common-mode input capacitance	f = 10 kHz		25°C		6			6		pF	
z _o	Closed-loop output impedance	f = 10 kHz,	A _V = 10	25°C		70			70		Ω	
CMRR	Common-mode rejection ratio	V _{IC} = 0 to 2.7 V,	V _O = 1.5 V,	25°C	70	85		70	85		dB	
		$R_S = 50 \Omega$		Full range	65			65			ab	
ksvr	Supply voltage rejection ratio	$V_{DD} = 4.4 \text{ V to 8}$		25°C	80	95		80	95		dB	
	(ΔVDD /ΔVIO)	V _{IC} = V _{DD} /2,	No load	Full range	80			80				
IDD	Supply current	V _O = 2.5 V,	No load	25°C		110	150		110	150	μА	
טטי	Supply Guilett	10 - 2.0 V, 140 load		Full range		200				200		

[†] Full range for the TLV2721C is 0°C to 70°C. Full range for the TLV2721I is -40°C to 85°C.

[‡] Referenced to 2.5 V

NOTE 5: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T_A = 150°C extrapolated to T_A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

TLV2721, TLV2721Y Advanced LinCMOS™ RAIL-TO-RAIL **VERY LOW-POWER SINGLE OPERATIONAL AMPLIFIERS** SLOS197 - AUGUST 1997

operating characteristics at specified free-air temperature, V_{DD} = 5 V

den and	DADAMETED	TEST CONDITIONS TAT TLV2721C MIN TYP		C	TLV27211			LIAME				
11150	PARAMETER			TAT	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
Vat	8. 80	4544-054	n aust	25°C	0.1	0.25		0.1	0.25	to luon	.01	
SR Slew rate at unity gain		$V_O = 1.5 \text{ V to } 3.5 \text{ V}, \qquad R_L = 2 \text{ k}\Omega^{\ddagger},$ $C_L = 100 \text{ pF}^{\ddagger}$		Full range	0.05			0.05	enuta igni to sni	regmat softwo	V/µs	
V	Equivalent input	f = 10 Hz f = 1 kHz		25°C		90		-	90	N Their	->1/-/11-	
Vn	noise voltage			25°C	a risk	19	- Interest	90	19	no suura	nV/√Hz	
.,	Peak-to-peak	f = 0.1 Hz to 1 Hz f = 0.1 Hz to 10 Hz		25°C	e gii	800	0 = 0		800	old seal		
V _N (PP)	equivalent input noise voltage			25°C	960		960		mV			
In	Equivalent input noise current	1081	3*35	25°C		0.6			0.6		fA/√Hz	
	Total harmonic distortion plus noise	$V_{O} = 1.5 \text{ V to } 3.5 \text{ V},$ f = 20 kHz, $R_{L} = 2 \text{ k}\Omega^{\ddagger}$	Ay = 1	25°C		2.45%			2.45%		HOIY	
TUD: N			Ay = 10			5.54%			5.54%			
THD+N		$V_{O} = 1.5 \text{ V to } 3.5 \text{ V},$ f = 20 kHz, $R_{L} = 2 \text{ k}\Omega$ §	A _V = 1	25°C	r loi VI	0.142%	08 × 89	fugn	0.142%	pinma9		
			Ay = 10			0.257%			0.257%			
	Gain-bandwidth product	f = 1 kHz, C _L = 100 pF [‡]	$R_L = 2 k\Omega^{\ddagger}$,	25°C		510	- + AD		510	rai-right	kHz	
Вом	Maximum output- swing bandwidth	$V_{O(PP)} = 1 V,$ $R_L = 2 k\Omega^{\ddagger},$	Ay = 1, C _L = 100 pF‡	25°C	= 189	40	- = HO		40	Bosiles	kHz	
ts	Settling time	$A_V = -1$, Step = 1.5 V to 3.5 V,	To 0.1%	25°C	*101	6.8	S = 0/V		6.8	apatos	30	
S	Cotting time	$R_L = 2 k\Omega^{\ddagger},$ $C_L = 100 pF^{\ddagger}$	To 0.01%	25°C		9.2			9.2	R-1016.	μѕ	
φm	Phase margin at unity gain	$R_L = 2 k\Omega^{\ddagger}$	C _L = 100 pF‡	25°C	= 31	53°	(1=5V	34	53°		ON	
	Gain margin			25°C		12			12	anos III	dB	

[†] Full range is -40°C to 85°C. ‡ Referenced to 2.5 V

[§] Referenced to 0 V

electrical characteristics at V_{DD} = 3 V, T_A = 25°C (unless otherwise noted)

	DADAMETER	TEST CONDITIONS			TLV2721Y		
PARAMETER		PAGE TEST C	MIN	TYP	MAX	UNIT	
VIO	Input offset voltage				620		μV
110	Input offset current	$V_{DD}\pm=\pm1.5 \text{ V},$ $R_S=50 \Omega$	$V_{IC} = 0, \qquad V_O = 0,$		0.5		рА
I _{IB}	Input bias current	115 - 30 32	. vollaga	es motos	1	Ola	pA
VICR	Common-mode input voltage range	V _{IO} ≤5 mV,	R _S = 50 Ω	safte Juani aski fizeni	-0.3 to 2.2	H ₁ 8t	٧
Vон	High-level output voltage	I _{OH} = -100 μA		e Pov logni	2.97	N.	٧
V	Low-level output voltage	V _{IC} = 1.5 V,	I _{OL} = 50 μA	Number Straff	15	Tay I	mV
VOL Low-lo	ow-level output voltage	V _{IC} = 1.5 V,	I _{OL} = 500 μA	(rund-ours	150	Tayl.	IIIV
۸	Large-signal differential	V _O = 1 V to 2 V	$R_L = 2 k\Omega^{\dagger}$	edaceiunid	3	T.T.	V/mV
AVD	voltage amplification	$R_L = 1 \text{ M}\Omega^{\dagger}$			250		V/IIIV
rid	Differential input resistance	end evi			1012	000	Ω
ric	Common-mode input resistance	eliG ev j		Cuina voi	1012	104	Ω
Cic	Common-mode input capacitance	f = 10 kHz	volege ampification	o Immuniti G	6	CVA .	pF
z _o	Closed-loop output impedance	f = 10 kHz,	Ay = 10	nia desse I	90	Land	Ω
CMRR	Common-mode rejection ratio	V _{IC} = 0 to 1.7 V,	$V_O = 0$, $R_S = 50 \Omega$		82		dB
ksvr	Supply voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	$V_{DD} = 2.7 \text{ V to 8 V},$	V _{IC} = 0, No load	a males	95	2 65	dB
IDD	Supply current	$V_{O} = 0,$	No load	Constitute	100	BMD	μΑ

[†] Referenced to 1.5 V

electrical characteristics at V_{DD} = 5 V, T_A = 25°C (unless otherwise noted)

	DADAMETER	TEOT	ONDITIONS	TLV2721Y	UNIT
	PARAMETER	IESI C	CONDITIONS	MIN TYP MAX	
VIO	Input offset voltage	erff av	angger palug artija egtel	colleged 610 car	μV
110	Input offset current	$V_{DD}\pm=\pm1.5 V$, $R_S=50 \Omega$	$V_{IC} = 0, \qquad V_{O} = 0,$	epaleV 0.5	рА
I _{IB}	Input bias current	115 - 50 52	sangan salug keptadana	polimental 1 GV	рА
VICR	Common-mode input voltage range	I V _{IO} I ≤5 mV,	$R_S = 50 \Omega$	-0.3 to 4.2	V
Vон	High-level output voltage	I _{OH} = -500 μA		4.88	V
	Law layed autout valtage	V _{IC} = 2.5 V,	I _{OL} = 50 μA	12	mV
VOL	Low-level output voltage	$V_{IC} = 2.5 \text{ V}, \qquad I_{OL} = 500 \mu\text{A}$		120	mv
A. co	Large-signal differential	V _O = 1 V to 4 V	$R_L = 2 k\Omega^{\dagger}$	5	\//ma\
AVD	voltage amplification	VO = 1 V 10 4 V	$R_L = 1 M\Omega^{\dagger}$	800	V/mV
rid	Differential input resistance	MISSEL SELECTION	rite	1012	Ω
ric	Common-mode input resistance	to Lov	Althoughout a	1012	Ω
Cic	Common-mode input capacitance	f = 10 kHz		6	pF
z _o	Closed-loop output impedance	f = 10 kHz,	Ay = 10	70	Ω
CMRR	Common-mode rejection ratio	V _{IC} = 0 to 1.7 V,	$V_{O} = 0$, $R_{S} = 50 \Omega$	85	dB
ksvr	Supply voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	$V_{DD} = 2.7 \text{ V to 8 V},$	V _{IC} = 0, No load	95	dB
IDD	Supply current	V _O = 0,	No load	110	μΑ

[†] Referenced to 2.5 V

Table of Graphs

			FIGURE
VIO	Input offset voltage	Distribution vs Common-mode input voltage	1, 2 3, 4
ανιο	Input offset voltage temperature coefficient	Distribution	5, 6
I _{IB} /I _{IO}	Input bias and input offset currents	vs Free-air temperature	7
V _I	Input voltage	vs Supply voltage vs Free-air temperature	8 9
VOH	High-level output voltage	vs High-level output current	10, 13
VOL	Low-level output voltage	vs Low-level output current	11, 12, 14
VO(PP)	Maximum peak-to-peak output voltage	vs Frequency	15
los	Short-circuit output current	vs Supply voltage vs Free-air temperature	16 17
Vo	Output voltage	vs Differential input voltage	18, 19
AVD	Differential voltage amplification	vs Load resistance	20
AVD	Large signal differential voltage amplification	vs Frequency vs Free-air temperature	21, 22 23, 24
z _o	Output impedance	vs Frequency	25, 26
CMRR	Common-mode rejection ratio	vs Frequency vs Free-air temperature	27 28
ksvr	Supply-voltage rejection ratio	vs Frequency vs Free-air temperature	29, 30 31
IDD	Supply current	vs Supply voltage	32
SR	Slew rate	vs Load capacitance vs Free-air temperature	33 34
Vo and	Inverting large-signal pulse response	vs Time	35, 36
Vo	Voltage-follower large-signal pulse response	vs Time	37, 38
Vo	Inverting small-signal pulse response	vs Time	39, 40
Vo	Voltage-follower small-signal pulse response	vs Time	41, 42
Vn	Equivalent input noise voltage	vs Frequency	43, 44
	Input noise voltage (referred to input)	Over a 10-second period	45
THD + N	Total harmonic distortion plus noise	vs Frequency	46
190	Gain-bandwidth product	vs Free-air temperature vs Supply voltage	47 48
φm	Phase margin	vs Frequency vs Load capacitance	21, 22 51, 52
5101	Gain margin	vs Load capacitance	49, 50
B ₁	Unity-gain bandwidth	vs Load capacitance	53, 54

-1.5

-1.1

-0.7 -0.3 0.1 0.5 0.9

VIO - Input Offset Voltage - mV

Figure 2

† For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

Figure 5

DISTRIBUTION OF TLV2721 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

Figure 6

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.

105

0

-4

-8

3

 $V_{ID} = 100 \text{ mV}$

V_{DD} - Supply Voltage - V

Figure 16

 $R_L = 2 k\Omega$ TA = 25°C

102

103

f - Frequency - Hz Figure 15

104

SLOS197 - AUGUST 1997

TYPICAL CHARACTERISTICS

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For all curves where $V_{DD} = 5 \text{ V}$, all loads are referenced to 2.5 V. For all curves where $V_{DD} = 3 \text{ V}$, all loads are referenced to 1.5 V.

LARGE-SIGNAL DIFFERENTIAL VOLTAGET
AMPLIFICATION AND PHASE MARGIN

Figure 21

LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGINT

Figure 22

† For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

SLOS197 - AUGUST 1997

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

† For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V. ‡ Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

105

0 25

Figure 34

T_A - Free-Air Temperature - °C

0 101

103

CL - Load Capacitance - pF

Figure 33

 $[\]dagger$ Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. \ddagger For all curves where $V_{DD} = 5 \text{ V}$, all loads are referenced to 2.5 V. For all curves where $V_{DD} = 3 \text{ V}$, all loads are referenced to 1.5 V.

INVERTING LARGE-SIGNAL PULSE RESPONSET 3 VDD = 3 V RL = 2 kΩ CL = 100 pF AV = -1 TA = 25°C 1.5 0 0 5 10 15 20 25 30 35 40 45 50 t - Time - μs

Figure 35

Figure 37

Figure 36

Figure 38

† For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

- Output Voltage

0

SLOS197 - AUGUST 1997

TYPICAL CHARACTERISTICS

Figure 39

Figure 41

Figure 40

† For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

Figure 46

† For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

Figure 53

UNITY-GAIN BANDWIDTH

APPLICATION INFORMATION

driving large capacitive loads

The TLV2721 is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 50 through Figure 55 illustrate its ability to drive loads greater than 100 pF while maintaining good gain and phase margins (R_{pull} = 0).

A small series resistor (R_{null}) at the output of the device (Figure 55) improves the gain and phase margins when driving large capacitive loads. Figure 50 through Figure 53 show the effects of adding series resistances of $100~\Omega$, $200~\Omega$, $500~\Omega$, and $1~k\Omega$. The addition of this series resistor has two effects: the first effect is that it adds a zero to the transfer function and the second effect is that it reduces the frequency of the pole associated with the output load in the transfer function.

The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To calculate the approximate improvement in phase margin, equation 1 can be used.

$$\Delta \phi_{m1} = \tan^{-1} \left(2 \times \pi \times \text{UGBW} \times \text{R}_{\text{null}} \times \text{C}_{\text{L}} \right)$$
where:

where:

 $\Delta \phi_{m1}$ = improvement in phase margin

UGBW = unity-gain bandwidth frequency

R_{null} = output series resistance

C₁ = load capacitance

The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (Figure 54 and Figure 55). To use equation 1, UGBW must be approximated from Figure 54 and Figure 55.

Figure 55. Series-Resistance Circuit

The TLV2721 is designed to provide better sinking and sourcing output currents than earlier CMOS rail-to-rail output devices. This device is specified to sink 500 μ A and source 1 mA at V_{DD} = 5 V at a maximum quiescent I_{DD} of 200 μ A. This provides a greater than 80% power efficiency.

When driving heavy dc loads, such as $2 \, k\Omega$, the positive edge under slewing conditions can experience some distortion. This condition can be seen in Figure 38. This condition is affected by three factors:

- Where the load is referenced. When the load is referenced to either rail, this condition does not occur. The distortion occurs only when the output signal swings through the point where the load is referenced. Figure 39 illustrates two 2-k Ω load conditions. The first load condition shows the distortion seen for a 2-k Ω load tied to 2.5 V. The third load condition in Figure 39 shows no distortion for a 2-k Ω load tied to 0 V.
- Load resistance. As the load resistance increases, the distortion seen on the output decreases. Figure 39 illustrates the difference seen on the output for a 2-kΩ load and a 100-kΩ load with both tied to 2.5 V.
- Input signal edge rate. Faster input edge rates for a step input result in more distortion than with slower input edge rates.

APPLICATION INFORMATION

macromodel information

Macromodel information provided was derived using Microsim $Parts^{TM}$, the model generation software used with Microsim $PSpice^{TM}$. The Boyle macromodel (see Note 6) and subcircuit in Figure 57 are generated using the TLV2721 typical electrical and operating characteristics at $T_A = 25^{\circ}C$. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification

- Unity-gain frequency
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- Short-circuit output current limit

NOTE 6: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers", *IEEE Journal of Solid-State Circuits*, SC-9, 353 (1974).

Figure 56. Boyle Macromodel and Subcircuit

PSpice and Parts are trademark of MicroSim Corporation.

Macromodels, simulation models, or other models provided by TI, directly or indirectly, are not warranted by TI as fully representing all of the specification and operating characteristics of the semiconductor product to which the model relates.

TLV2731, TLV2731Y Advanced LinCMOS™ RAIL-TO-RAIL LOW-POWER SINGLE OPERATIONAL AMPLIFIERS

DBV PACKAGE

(TOP VIEW)

SLOS198 - AUGUST 1997

VDD_/GND

- Output Swing Includes Both Supply Rails
- Low Noise . . . 15 nV/√Hz Typ at f = 1 kHz
- Low Input Bias Current . . . 1 pA Typ
- Fully Specified for Single-Supply 3-V and 5-V Operation
- Common-Mode Input Voltage Range Includes Negative Rail
- High Gain Bandwidth . . . 2 MHz at V_{DD} = 5 V with 600 Ω Load
- High Slew Rate . . . 1.6 V/μs at V_{DD} = 5 V
- Wide Supply Voltage Range 2.7 V to 10 V
- Macromodel Included

description

The TLV2731 is a single low-voltage operational amplifier available in the SOT-23 package. It offers 2 MHz of bandwidth and 1.6 $V/\mu s$ of slew rate for applications requiring good ac performance. The device exhibits rail-to-rail output performance for increased dynamic range in single or split supply applications. The TLV2731 is fully characterized at 3 V and 5 V and is optimized for low-voltage applications.

The TLV2731, exhibiting high input impedance and low noise, is excellent for small-signal conditioning of high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels combined with 3-V operation, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single- or split-supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). The device can also drive $600-\Omega$ loads for telecom applications.

With a total area of 5.6mm², the SOT-23 package only requires one-third the board space of the standard 8-pin SOIC package. This ultra-small package allows designers to place single amplifiers very close to the signal source, minimizing noise pick-up from long PCB traces.

AVAILABLE OPTIONS

-	V AT 0500	PACKAGED DEVICES	OVIMBOL	CHIP
TA	V _{IO} max AT 25°C	SOT-23 (DBV)†	SYMBOL	FORM [‡] (Y)
0°C to 70°C	3 mV	TLV2731CDBV	VALC	TIMO704)
-40°C to 85°C	3 mV	TLV2731IDBV	VALI	TLV2731Y

†The DBV package available in tape and reel only.

‡ Chip forms are tested at T_A = 25°C only.

TLV2731Y chip information

This chip, when properly assembled, displays characteristics similar to the TLV2731C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with conductive epoxy or a gold-silicon preform.

CHIP THICKNESS: 10 MILS TYPICAL BONDING PADS: 4×4 MILS MINIMUM

T_Jmax = 150°C TOLERANCES ARE ±10%.

ALL DIMENSIONS ARE IN MILS.

PIN (2) IS INTERNALLY CONNECTED TO BACKSIDE OF CHIP.

TLV2731, TLV2731Y Advanced LinCMOS™ RAIL-TO-RAIL LOW-POWER SINGLE OPERATIONAL AMPLIFIERS

SLOS198 - AUGUST 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{DD} (see Note 1)		
Differential input voltage, V _{ID} (see Note 2) Input voltage range, V _I (any input, see Note 2)		
Input current, I _I (each input)		
Output current, I _O		
Total current into V _{DD+}		
Total current out of V _{DD}		±50 mA
Duration of short-circuit current (at or below	w) 25°C (see Note 3)	unlimited
Continuous total power dissipation		. See Dissipation Rating Table
Operating free-air temperature range, TA:	TLV2731C	0°C to 70°C
	TLV2731I	
Storage temperature range, T _{stq}		65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from	case for 10 seconds: DBV packa	ge 260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to V_{DD} -

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE TA = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
DBV	150 mW	1.2 mW/°C	96 mW	78 mW

recommended operating conditions

RY CHEATTI A	TL	TLV2731C		TLV2731I		
	MIN	MAX	MIN	MAX	UNIT	
Supply voltage, V _{DD} (see Note 1)	2.7	10	2.7	10	٧	
Input voltage range, V _I	V _{DD} -	V _{DD+} -1.3	V _{DD} -	V _{DD+} -1.3	٧	
Common-mode input voltage, V _{IC}	V _{DD} -	V _{DD+} -1.3	V _{DD} -	V _{DD+} -1.3	٧	
Operating free-air temperature, TA	0	70	-40	85	°C	

NOTE 1: All voltage values, except differential voltages, are with respect to VDD -.

^{2.} Differential voltages are at the noninverting input with respect to the inverting input. Excessive current flows when input is brought below V_{DD} = 0.3 V.

The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.

electrical characteristics at specified free-air temperature, V_{DD} = 3 V (unless otherwise noted)

	Integral	TEST CONDITIONS		- +	T	LV27310	C	1	LV2731		UNIT	
	PARAMETER	TEST CON	NDITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
VIO	Input offset voltage	1.83	are oras		1977	0.7	3		0.7	3	mV	
αΝΙΟ	Temperature coefficient of input offset voltage	Spt		Full range	JH N	0.5	7.1 = c n 1001 a		0.5	nlsg	μV/°C	
shytyn	Input offset voltage long-term drift (see Note 4)	$V_{DD\pm} = \pm 1.5 V,$ $V_{O} = 0,$	V _{IC} = 0, R _S = 50 Ω	25°C		0.003	31917 s 511.0 s	1	0.003	reales v Pentoto	μV/m	
lue	Input offeet ourrent	2.7		25°C		0.5	M(1.0)		0.5	or health	рА	
10	Input offset current	-		Full range			150		Length Irrae	150	by	
SHIPUS	Input bias current	0,0		25°C		1			1	o delan.	рА	
IB	input bias current	200000		Full range		Nº20	150	1		150	PA	
V	Common-mode input	Rs = 50 Ω,	V _{1O} ≤5 mV	25°C	0 to 2	-0.3 to 2.2	20 kHz = 800 s	to 2	-0.3 to 2.2	of latet	V	
VICR	voltage range	ng = 50 sz,	IAIOI Z 2 IIIA	Full range	0 to 1.7	95	= 600	0 to 1.7		SOURCE	V	
SHIM	E.F.	I _{OH} = -1 mA	SEC	25°C	The state of	2.87	nne		2.87	Salvana.		
VOH	High-level output			25°C		2.74		7	2.74	selvola.	V	
	voltage	$I_{OH} = -2 \text{ mA}$		Full range	2.3	,40	008.4	2.3	relivensi	evings	1010	
		V _{IC} = 1.5 V,	I _{OL} = 50 μA	25°C		10	Take 1		10			
VOL	Low-level output voltage	V - 45V	I- 500 A	25°C		100	V t = qe	2	100	Septime 2	mV	
	voltage	$V_{IC} = 1.5 V,$	I _{OL} = 500 μA	Full range	of lo	12	300			300		
	Large-signal		D con ot	25°C	1	1.6		1	1.6	100		
AVD	differential voltage	$V_{IC} = 1.5 \text{ V},$ $V_{O} = 1 \text{ V to 2 V}$	$R_L = 600 \Omega^{\ddagger}$	Full range	0.3	100	hos.	0.3		n voleta.	V/m	
	amplification	10-111021	$R_L = 1 M\Omega^{\ddagger}$	25°C		250			250	THE		
^r id	Differential input resistance			25°C		1012		-01	1012	n – el er l er bet	Ω	
ric	Common-mode input resistance			25°C		1012			1012	0 d) 5e:	Ω	
Cic	Common-mode input capacitance	f = 10 kHz		25°C		6			6		pF	
z _o	Closed-loop output impedance	f = 1 MHz,	A _V = 1	25°C		156			156		Ω	
CMRR	Common-mode	V _{IC} = 0 to 1.7 V,		25°C	60	70		60	70		dB	
OWINA	rejection ratio	$V_0 = 1.5 V$,	$R_S = 50 \Omega$	Full range	55			55			ub	
ksvr	Supply voltage rejection ratio	V _{DD} = 2.7 V to	8 V, No load	25°C	70	96		70	96		dB	
	(ΔV _{DD} /ΔV _{IO})	$V_{IC} = V_{DD}/2,$	140 loau	Full range	70			70				
IDD	Supply current	V _O = 1.5 V,	No load	25°C		750	1200		750	1200	μА	
טט	Cappi) carroit	1.0 - 1.0 1,		Full range			1500			1500	μΛ	

[†] Full range for the TLV2731C is 0°C to 70°C. Full range for the TLV2731I is - 40°C to 85°C.

[‡]Referenced to 1.5 V

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T_A = 150°C extrapolated to T_A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

TLV2731, TLV2731Y Advanced LinCMOS™ RAIL-TO-RAIL LOW-POWER SINGLE OPERATIONAL AMPLIFIERS

SLOS198 - AUGUST 1997

operating characteristics at specified free-air temperature, V_{DD} = 3 V

wani.	A DAMETED	TEST CONDITIONS		- +	T	LV2731	C		TLV2731		UNIT
1000	PARAMETER	TEST CON	NUTTONS	TAT	MIN	TYP	MAX	MIN	TYP	MAX	UNII
Van	01	E I I I I I I I I I		25°C	0.75	1.25		0.75	1.25	lo firen	- Idh
SR	Slew rate at unity gain	V _O = 1.1 V to 1.9 V C _L = 100 pF [‡]	$R_{L} = 600 \Omega^{\ddagger},$	Full range	0.5			0.5	multi scril to in	ringinal solftoor	V/µs
.,	Equivalent input	f = 10 Hz		25°C		105			105	olemnic ve	24/11
Vn	noise voltage	f = 1 kHz		25°C	16		-		16	He Iven	nV/√H2
	Peak-to-peak	f = 0.1 Hz to 1 Hz		25°C	= 98	1.4	Vo=0.		1.4	(nge-N	
V _N (PP)	equivalent input noise voltage	f = 0.1 Hz to 10 Hz	Drag.	25°C	1.5		30	1.5	to same	μV	
In	Equivalent input noise current	-	Ortes	25°C	°C 0.6		0.6		0.6	and the second	fA/√Hz
	l oar	V _O = 1 V to 2 V,	Ay = 1	0500		0.285%			0.285%		-
Tota	Total harmonic	f = 20 kHz, $R_L = 600 \Omega^{\ddagger}$	A _V = 10	25°C		7.2%			7.2%		
THD+N	distortion plus	V _O = 1 V to 2 V,	A _V = 1	25°C	Land III	0.014%		desgin	0.014%	Commo	
	noise	f = 20 kHz,	A _V = 10			0.098%		0.098%		SOMEON	Han
	107	R _L = 600 Ω§	A _V = 100			0.13%			0.13%		
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF [‡]	$R_L = 600 \Omega^{\ddagger}$,	25°C		1.9	- 210		1.9		MHz
Вом	Maximum output- swing bandwidth	$V_{O(PP)} = 1 V,$ $R_{L} = 600 \Omega^{\ddagger},$	A _V = 1, C _L = 100 pF [‡]	25°C		60	BOJ		60	egallov	kHz
ts	Settling time	$A_V = -1$, Step = 1 V to 2 V,	To 0.1%	25°C	1.0	0.9	LE ON		0.9	val-ero.	μs
'S	DOR	$R_L = 600 \Omega^{\ddagger},$ $C_L = 100 pF^{\ddagger}$	To 0.01%	250	- 30	1.5	1 * G M		1.5		μδ
φm	Phase margin at unity gain $R_L = 600 \Omega^{\ddagger}$, C_L		C _L = 100 pF‡	25°C	In A	50°	t = piV	9	50°	e agra perelit	OV ⁶
	Gain margin	013	000	25°C	FE JETS	8			8		dB

[†] Full range is -40°C to 85°C.

[‡]Referenced to 1.5 V

[§] Referenced to 0 V

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	DADAMETER	TEST CONDITIONS		TAT	TLV2731C		С	1	LV2731	1	UNIT	
	PARAMETER	TEST CON	IDITIONS	IAI	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
VIO	Input offset voltage	10.00	1 . 0'88			0.7	3		0.7	3	mV	
ανιο	Temperature coefficient of input offset voltage	100		Full range		0.5	501 = 1		0.5	riisg	μV/°	
SPO WIT	Input offset voltage long-term drift (see Note 4)	$V_{DD\pm} = \pm 2.5 \text{ V},$ $V_{O} = 0,$	V _{IC} = 0, R _S = 50 Ω	25°C		0.003	#811 a	1	0.003	roles v Peak-tr	μV/n	
lia	Input offset current	8.1		25°C		0.5	SH LOS		0.5	an reupes of contrast.	рА	
10	input onset current			Full range			150		and Inc	150	ph	
lun	Input bias current	8.0		25°C		1			inst,	notes o	рА	
IB	input bias current	urbnt o		Full range	A N	AEMI	150			150	PΜ	
.,	Common-mode input	D- 500) 38	25°C	0 to 4	-0.3 to 4.2	190 03 ×	0 to 4	-0.3 to 4.2	Total hi	V V	
VICR	voltage range	$R_S = 50 \Omega$,	V _{IO} ≤5 mV	Full range	0 to 3.7		s 600 e	0 to 3.7			V	
SHIR		I _{OH} = -1 mA	- los	25°C		4.9	ACK		4.9	on the least		
VOH	High-level output	-		25°C	-	4.6			4.6		V	
	voltage	$I_{OH} = -4 \text{ mA}$		Full range	4.3	1/1	C(59)C	4.3	polisis	Hackar	100	
		V _{IC} = 2.5 V,	I _{OL} = 500 μA	25°C		80			80	in lated		
VOL	Low-level output voltage	V 05V	I 1A	25°C	is!	160	Jest		160		m\	
	voltage	$V_{IC} = 2.5 \text{ V}, \qquad I_{OL} = 1 \text{ mA}$		Full range		albeat yr	500		- emir	500	2	
	Large-signal		B see of	25°C	1	1.5	1002	1	1.5			
AVD		Full range	0.3			0.3	e nibrosa	Fouen	V/m			
	amplification	10-11041	$R_L = 1 M\Omega^{\ddagger}$	25°C	10	400	000 = 3	1	400	g (hnu		
^r id	Differential input resistance	8	1 0-81	25°C		1012		.01	1012	m mas- ok- et es	Ω	
ric	Common-mode input resistance			25°C		1012			1012	Corbus	Ω	
cic	Common-mode input capacitance	f = 10 kHz		25°C		6			6		pF	
z _o	Closed-loop output impedance	f = 1 MHz,	A _V = 1	25°C		138			138		Ω	
CMRR	Common-mode	V _{IC} = 0 to 2.7 V,		25°C	60	70		60	70		dB	
OWN III	rejection ratio	$V_0 = 2.5 \text{ V},$	$R_S = 50 \Omega$	Full range	55			55			UD	
len.	Supply voltage	V _{DD} = 4.4 V to 8	3 V,	25°C	70	96	1	70	96		-10	
ksvr	rejection ratio (ΔV _{DD} /ΔV _{IO})	VIC = V _{DD} /2,	No load	Full range	70			70		314-3	dB	
		V 05V	No local	25°C		850	1300	130 88	850	1300		
IDD	Supply current	$V_0 = 2.5 V$,	No load	Full range			1600			1600	μА	

[†] Full range for the TLV2731C is 0°C to 70°C. Full range for the TLV2731I is - 40°C to 85°C.

NOTE 5: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

TLV2731, TLV2731Y Advanced LinCMOS™ RAIL-TO-RAIL LOW-POWER SINGLE OPERATIONAL AMPLIFIERS SLOS198 – AUGUST 1997

operating characteristics at specified free-air temperature, V_{DD} = 5 V

	Trevsvur	TEGT COMPLETIONS		_ +	T	LV2731	С		TLV2731		UNIT
THE P	PARAMETER	TEST CONDITIONS		TAT	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Vmt	01	V- 45V4-05V	D con of	25°C	1	1.6		100	1.6	Ro Divers	(3)
SR	Slew rate at unity gain	$V_O = 1.5 \text{ V to } 3.5 \text{ V},$ $C_L = 100 \text{ pF}^{\ddagger}$	$R_L = 600 \Omega^{\ddagger}$,	Full range	0.7			0.7	enuin int et inpo	negrad Rolliela	V/µs
\/	Equivalent input	f = 10 Hz		25°C		100			100	N MEN	->///
Vn	noise voltage	f = 1 kHz		25°C	S roll	15	e una	1 1	15	ng Aygn	nV/√Hz
	Peak-to-peak	f = 0.1 Hz to 1 Hz		25°C	Rg=	1.4 0 = 0			1.4	GM ees	
VN(PP)	equivalent input noise voltage	f = 0.1 Hz to 10 Hz	25.0	25°C				1	1.5	fo toan	μV
In	Equivalent input noise current	100	Oraș	25°C		0.6			0.6	and home	fA/√Hz
Total harmonic	V _O = 1.5 V to 3.5 V,	A _V = 1	0500		0.409%			0.409%	10124		
	Total harmonic	f = 20 kHz, $R_L = 600 \Omega^{\ddagger}$	A _V = 10	25°C		3.68%			3.68%	12-15	
THD+N	distortion plus	V _O = 1.5 V to 3.5 V,	Ay = 1	1700.30	a brankly	0.018%	72	tean	0.018%	Carring	
	noise	f = 20 kHz,	A _V = 10	25°C		0.045%		Facility.	0.045%	BIJANDA	25,012
	0)	R _L = 600 Ω§	A _V = 100			0.116%			0.116%		
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF [‡]	$R_L = 600 \Omega^{\ddagger}$,	25°C		2	- FHG		2		MHz
Вом	Maximum output-swing bandwidth	V _O (PP) = 1 V, R _L = 600 Ω [‡] ,	A _V = 1, C _L = 100 pF‡	25°C	w tol	300	S = HQ		300	egato	kHz
. Vin	Settling time	$A_V = -1$, Step = 1.5 V to 3.5 V,	Stop - 1 5 V to 2 5 V		a jol	0.95	1.2 × 0.17		0.95	ver-wo.l	10
ts	Settling time	$R_L = 600 \Omega^{\ddagger},$ $C_L = 100 pF^{\ddagger}$	To 0.01%	25°C		2.4			2.4	n-epro.	μѕ
φm	Phase margin at unity gain	$R_L = 600 \Omega^{\ddagger}$	C _L = 100 pF‡	25°C	- 18	48°	(tack		48°	ne um b offigne	Gui
	Gain margin			25°C		8			8	Parent of	dB

[†] Full range is -40°C to 85°C.

[‡] Referenced to 2.5 V

[§] Referenced to 0 V

electrical characteristics at V_{DD} = 3 V, T_A = 25°C (unless otherwise noted)

-	PARAMETER TEST CONDITIONS					TLV2731Y		
	PARAMETER	artgano (ES)		MIN	TYP	MAX	UNIT	
VIO	Input offset voltage				diam'r.	750		μV
lio	Input offset current	$V_{DD}\pm=\pm1.5 \text{ V},$ $R_S=50 \Omega$	$V_{IC} = 0,$	$V_O = 0$,		0.5		рА
IB	Input bias current	115 - 50 32		egallov teatto	ELOIS	1		рА
VICR	Common-mode input voltage range	V _{IO} ≤5 mV,	$R_S = 50 \Omega$	or spallov to tillo o hugol bon salo	lugal lugal	-0.3 to 2.2		٧
Vон	High-level output voltage	I _{OH} = -1 mA		egettov	logsi .	2.87	V3	٧
11-	Land Land Lands Avade and	V _{IC} = 1.5 V,	I _{OL} = 50 μA			10		mV
VOL	Low-level output voltage	V _{IC} = 1.5 V,	I _{OL} = 500 μA			100		IIIV
	Large-signal differential voltage	V 4VI-0V	R _L = 600 Ω [†]	An and should draw	Land &	1.6		Mark
AVD	amplification	$V_0 = 1 \text{ V to 2 V}$	$R_L = 1 M\Omega^{\dagger}$			250		V/mV
rid	Differential input resistance	lys Fragen	District.	A IN SUIT RUNEY	lons.	1012	31	Ω
ric	Common-mode input resistance	nor Ald ald I		spattery b	atil 2	1012	W.	Ω
Cic	Common-mode input capacitance	f = 10 kHz	neitant ven	us susaffour bollens	6862	6	61	pF
z _o	Closed-loop output impedance	f = 1 MHz,	A _V = 1			156		Ω
CMRR	Common-mode rejection ratio	V _{IC} = 0 to 1.7 V,	$V_{O} = 0,$	$R_S = 50 \Omega$	SHE A	70		dB
ksvr	Supply voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	V _{DD} = 2.7 V to 8 V,	V _{IC} = 0,	No load	gar3	96		dB
IDD	Supply current	$V_{O} = 0,$	No load		manual .	750		μΑ
IDD	Supply current	V _O = 0,	No load			750		l

[†] Referenced to 1.5 V

electrical characteristics at V_{DD} = 5 V, T_A = 25°C (unless otherwise noted)

	DADAMETER	C 40.1 4V	CONDITION	0	Section Ti			
	PARAMETER	IESI	CONDITION	5	MIN	TYP	MAX	UNIT
VIO	Input offset voltage		minigues spli		HALL DA	710	4	μV
10	Input offset current	$V_{DD} \pm = \pm 1.5 \text{ V},$ $R_S = 50 \Omega$	$V_{IC} = 0,$	$V_O = 0$,	STEP	0.5		рА
IB	Input bias current	115 - 30 32		y lample forms get	20 ALL	1		рА
VICR	Common-mode input voltage range	V _{IO} ≤5 mV,	$R_S = 50 \Omega$	seini sugii mete temako sostlov	nupči nupči	-0.3 to 4.2	V	٧
VOH	High-level output voltage	I _{OH} = -1 mA	ncino sula o	of splate oloomean	Intell	4.9	11	V
V	1 - 01 - 1 - 4 - 4 - 4 - 4	V _{IC} = 2.5 V,	I _{OL} = 500 μ	A		80		>/
VOL	Low-level output voltage	V _{IC} = 2.5 V,	I _{OL} = 1 mA		THESE	160		mV
	Large-signal differential voltage	4.44.04	R _L = 600 Ω	nignem	nist	15		1//1/
AVD	amplification	V _O = 1 V to 2 V	$R_L = 1 M\Omega^{\dagger}$			400		V/mV
rid	Differential input resistance					1012		Ω
ric	Common-mode input resistance	2 SOL 32		gain bandseilin	Mark .	1012		Ω
Cic	Common-mode input capacitance	f = 10 kHz				6		pF
z _o	Closed-loop output impedance	f = 1 MHz,	Ay = 1			138		Ω
CMRR	Common-mode rejection ratio	V _{IC} = 0 to 1.7 V,	V _O = 0,	$R_S = 50 \Omega$		70		dB
ksvr	Supply voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	V _{DD} = 2.7 V to 8 V,	V _{IC} = 0,	No load		96		dB
IDD	Supply current	V _O = 0,	No load			850		μА

[†] Referenced to 2.5 V

Table of Graphs

000	Anna Anna Val		FIGURE
VIO	Input offset voltage	Distribution vs Common-mode input voltage	2, 3 4, 5
ανιο	Input offset voltage temperature coefficient	Distribution	6, 7
I _{IB} /I _{IO}	Input bias and input offset currents	vs Free-air temperature	8
VI	Input voltage	vs Supply voltage vs Free-air temperature	9
VOH	High-level output voltage	vs High-level output current	11, 14
VOL	Low-level output voltage	vs Low-level output current	12, 13, 15
VO(PP)	Maximum peak-to-peak output voltage	vs Frequency	16
los	Short-circuit output current	vs Supply voltage vs Free-air temperature	17 18
Vo	Output voltage	vs Differential input voltage	19, 20
AVD	Differential voltage amplification	vs Load resistance	21
AVD	Large-signal differential voltage amplification	vs Frequency vs Free-air temperature	22, 23 24, 25
z _o	Output impedance	vs Frequency	26, 27
CMRR	Common-mode rejection ratio	vs Frequency vs Free-air temperature	28 29
ksvr	Supply-voltage rejection ratio	vs Frequency vs Free-air temperature	30, 31 32
IDD	Supply current	vs Supply voltage	33
SR	Slew rate	vs Load capacitance vs Free-air temperature	34 35
Vo	Inverting large-signal pulse response	vs Time	36, 37
Vo	Voltage-follower large-signal pulse response	vs Time	38, 39
Vo	Inverting small-signal pulse response	vs Time	40, 41
Vo	Voltage-follower small-signal pulse response	vs Time	42, 43
Vn	Equivalent input noise voltage	vs Frequency	44, 45
	Noise voltage (referred to input)	Over a 10-second period	46
THD + N	Total harmonic distortion plus noise	vs Frequency	47
081	Gain-bandwidth product	vs Free-air temperature vs Supply voltage	48 49
81	Gain margin	vs Load capacitance	50, 51
φm	Phase margin	vs Frequency vs Load capacitance	22, 23 52, 53
B ₁	Unity-gain bandwidth	vs Load capacitance	54, 55

SLOS198 - AUGUST 1997

TYPICAL CHARACTERISTICS

† For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

3

0

1

V_{IC} - Common-Mode Input Voltage - V

Figure 3

2

2

VIC - Common-Mode Input Voltage - V

Figure 4

3

4

5

0

DISTRIBUTION OF TLV2731 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 30 32 Amplifiers From 1 Wafer Lots VDD± = ±1.5 V 25 P Package %-TA = 25°C to 125°C Percentage of Amplifiers 20 15 10 5 -3 -4 -2 -1 0 1 2 3 α VIO - Input Offset Voltage Temperature Coefficient − µV/°C

Figure 5

INPUT BIAS AND INPUT OFFSET CURRENTST

VS FREE-AIR TEMPERATURE PA 100 VDD± = ±2.5 V and I₁₀ - Input Bias and Input Offset Currents VIC = 0 90 Vo = 0 $R_S = 50 \Omega$ 80 70 60 50 40 30 20 IB 10 10 n E 8 25 45 125

TA - Free-Air Temperature - °C

Figure 7

DISTRIBUTION OF TLV2731 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

Figure 6

INPUT VOLTAGE vs SUPPLY VOLTAGE

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For all curves where $V_{DD} = 5 \text{ V}$, all loads are referenced to 2.5 V. For all curves where $V_{DD} = 3 \text{ V}$, all loads are referenced to 1.5 V.

LOW-LEVEL OUTPUT VOLTAGE†‡
vs
LOW-LEVEL OUTPUT CURRENT

Figure 14

SHORT-CIRCUIT OUTPUT CURRENT

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

[‡] For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGINT

Figure 21

LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGINT

† For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

Figure 27

[†] For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V. ‡ Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

SLOS198 - AUGUST 1997

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

INVERTING LARGE-SIGNAL PULSE
RESPONSET

Figure 36

VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSET

Figure 38

[†] For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

† For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.

10

8

문 0.01

101

102

103

f - Frequency - Hz

Figure 46

104

105

-1000

2

t - Time - s Figure 45

[†] For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For all curves where $V_{DD} = 5 \text{ V}$, all loads are referenced to 2.5 V. For all curves where $V_{DD} = 3 \text{ V}$, all loads are referenced to 1.5 V.

Figure 52

[†] For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.

APPLICATION INFORMATION

driving large capacitive loads

The TLV2731 is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 50 through Figure 55 illustrate its ability to drive loads greater than 100 pF while maintaining good gain and phase margins ($R_{null} = 0$).

A small series resistor (R_{null}) at the output of the device (see Figure 55) improves the gain and phase margins when driving large capacitive loads. Figure 50 through Figure 53 show the effects of adding series resistances of 50 Ω , 100 Ω , 500 Ω , and 1000 Ω . The addition of this series resistor has two effects: the first effect is that it adds a zero to the transfer function and the second effect is that it reduces the frequency of the pole associated with the output load in the transfer function.

The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To calculate the approximate improvement in phase margin, equation 1 can be used.

$$\Delta \phi_{m1} = tan^{-1} \left(2 \times \pi \times UGBW \times R_{null} \times C_L \right)$$
 where :

 $\Delta \phi_{m1}$ = improvement in phase margin

UGBW = unity-gain bandwidth frequency

R_{null} = output series resistance

C₁ = load capacitance

The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 54 and Figure 55). To use equation 1, UGBW must be approximated from Figure 54 and Figure 55.

Figure 55. Series-Resistance Circuit

APPLICATION INFORMATION

macromodel information

SLOS198 - AUGUST 1997

Macromodel information provided was derived using Microsim $Parts^{TM}$, the model generation software used with Microsim $PSpice^{TM}$. The Boyle macromodel (see Note 6) and subcircuit in Figure 57 are generated using the TLV2731 typical electrical and operating characteristics at $T_A = 25^{\circ}C$. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification

- Unity-gain frequency
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- Short-circuit output current limit

NOTE 6: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers," IEEE Journal of Solid-State Circuits, SC-9, 353 (1974).

Figure 56. Boyle Macromodel and Subcircuit

PSpice and Parts are trademark of MicroSim Corporation.

TLV277x, TLV277xA FAMILY OF 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS209D - JANUARY 1998 - REVISED NOVEMBER 1999

- High Slew Rate . . . 10.5 V/μs Typ
- High-Gain Bandwidth . . . 5.1 MHz Typ
- Supply Voltage Range 2.5 V to 5.5 V
- Rail-to-Rail Output
- 360 μV Input Offset Voltage
- Low Distortion Driving 600-Ω 0.005% THD+N

- 1 mA Supply Current (Per Channel)
- 17 nV/√Hz Input Noise Voltage
- 2 pA Input Bias Current
- Characterized from T_A = −40°C to 125°C
- Available in MSOP and SOT-23 Packages
- Micropower Shutdown Mode . . . IDD < 1 μA

description

The TLV277x CMOS operational amplifier family combines high slew rate and bandwidth, rail-to-rail output swing, high output drive, and excellent dc precision. The device provides 10.5 V/ μ s of slew rate and 5.1 MHz of bandwidth while only consuming 1 mA of supply current per channel. This ac performance is much higher than current competitive CMOS amplifiers. The rail-to-rail output swing and high output drive make these devices a good choice for driving the analog input or reference of analog-to-digital converters. These devices also have low distortion while driving a 600- Ω load for use in telecom systems.

These amplifiers have a 360 µV input offset voltage, a 17 nV/√Hz input noise voltage, and a 2 pA input bias current for measurement, medical, and industrial applications. The TLV277x family is also specified across an extended temperature range (−40°C to 125°C), making it useful for automotive systems.

These devices operate from a 2.5 V to 5.5 V single supply voltage and are characterized at 2.7 V and 5 V. The single-supply operation and low power consumption make these devices a good solution for portable applications. The following table lists the packages available.

FAMILY PACKAGE TABLE

DEMOS	NUMBER				PACKAG	E TYPES				SHUTDOWN	UNIVERSAL
DEVICE	OF CHANNELS	PDIP	CDIP	SOIC	SOT-23	TSSOP	MSOP	LCCC	CPAK	SHUIDOWN	EVM BOARD
TLV2770	1	8	_	8	-	-	8		_	Yes	
TLV2771	resurr1	-	_	8	5	-	10.	197 - T	_	3	2707 (d) 707G
TLV2772	2	8	8	8	-	_	8	20	10		Refer to the EVM
TLV2773	2	14	_	14	EXTENT	_	10	7-1		Yes	Selection Guide (Lit# SLOU060)
TLV2774	4	14	SVat	14	-	14	DA M (SA	m-1	_		(======================================
TLV2775	4	16	_	16	MY LINE	16	10-21-10-1	M_	_	Yes	

A SELECTION OF SINGLE-SUPPLY OPERATIONAL AMPLIFIER PRODUCTS§

10	DEVICE	V _{DD} (V)	BW (MHz)	SLEW RATE (V/µs)	I _{DD} (per channel) (μA)	RAIL-TO-RAIL
	TLV277X	2.5 - 6.0	5.1	10.5	1000	0
17	TLV247X	2.7 - 6.0	2.8	1.5	600	1/0
	TLV245X	2.7 - 6.0	0.22	0.11	23	1/0
	TLV246X	2.7 - 6.0	6.4	1.6	550	1/0

[§] All specifications measured at 5 V.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Copyright © 1999, Texas Instruments Incorporated

TLV277x, TLV277xA FAMILY OF 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS209D - JANUARY 1998 - REVISED NOVEMBER 1999

TLV2770 and TLV2771 AVAILABLE OPTIONS

voltage	V AT 0500	PACKAGED DEVICES						
T _A 0°C to 70°C	V _{IO} max AT 25°C (mV)			MSOP (DGK)	PLASTIC DIP (P)			
0°C to 70°C	2.5	TLV2770CD TLV2771CD	TLV2771CDBV	TLV2770CDGK†	TLV2770CP			
(F > ggl ebold :	2.5	TLV2770ID TLV2771ID	TLV2771IDBV	TLV2770IDGK [†]	TLV2770IP			
-40°C to 125°C	1.6	TLV2770AID TLV2771AID	Ξ	_	TLV2770AIP			

[†]This device is in the Product Preview stage of development. Please contact your local TI sales office for availability.

TLV2772 and TLV2773 AVAILABLE OPTIONS

CERTIFICATION OF THE COLUMN	V	PACKAGED DEVICES								
TA	VIOMAX AT 25°C (mV)	SMALL OUTLINE (D)	MSOP (DGK)	MSOP (DGS)	PLASTIC DIP (N)	PLASTIC DIP (P)				
0°C to 70°C	2.5	TLV2772CD TLV2773CD	TLV2772CDGK	TLV2773CDGS	TLV2773CN	TLV2772CP				
4000 1 40500	2.5	TLV2772ID TLV2773ID	TLV2772IDGK —	TLV2773IDGS	TLV2773IN	TLV2772IP				
-40°C to 125°C	1.6	TLV2772AID TLV2773AID	uniption_nake the	ngo 1911 <u>o</u> g wol b	TLV2773AIN	TLV2772AIP				

TLV2774 and TLV2775 AVAILABLE OPTIONS

			PACKAG	ED DEVICES	name and the same	
TA	V _{IO} max AT 25°C (mV)	SMALL OUTLINE (D)	PLASTIC DIP (N)	PLASTIC DIP (P)	TSSOP (PW)	
0°C to 70°C	2.7	TLV2774CD TLV2775CD		TLV2774CP	TLV2774CPW TLV2775CPW	
Selection Guide	2.7	TLV2774ID TLV2775ID		TLV2774IP —	TLV2774IPW TLV2775IPW	
-40°C to 125°C	2.1	TLV2774AID TLV2775AID	TLV2775AIN	TLV2774AIP	TLV2774AIPW TLV2775AIPW	

TLV2772M AND TLV2772AM AVAILABLE OPTIONS

	V	PACKAGED DEVICES						
TA	V _{IO} max AT 25°C (mV)	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (JG)	CERAMIC FLATPACK (U)			
5500 to 40500	2.5	TLV2772MD	TLV2772MFK	TLV2772MJG	TLV2772MU			
-55°C to 125°C	1.6	TLV2772AMD	TLV2772AMFK	TLV2772AMJG	TLV2772AMU			

SLOS209D - JANUARY 1998 - REVISED NOVEMBER 1999

PACKAGE SYMBOLS

PACKAGE TYPE	PINS	PART NUMBER	SYMBOLT	
00700	5 Di-	TLV2771CDBV	VAMC	
SOT23	5 Pin	TLV2771IDBV	VAMI	
	men - h	TLV2770CDGK	xxTIABO	
DM .	0 Di-	TLV2770IDGK	xxTIABP	
MSOP	8 Pin	TLV2772CDGK	xxTIAAF	
		TLV2772IDGK	xxTIAAG	
CIVIE	10 Die	TLV2773CDGS	xxTIABQ	
	10 Pin	TLV2773IDGS	xxTIABR	

[†]xx represents the device date code.

TLV277x, TLV277xA FAMILY OF 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS209D - JANUARY 1998 - REVISED NOVEMBER 1999

NC - No internal connection

† This device is in the Product Preview stage of development. Please contact your local TI sales office for availability.

TLV277x, TLV277xA FAMILY OF 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS209D - JANUARY 1998 - REVISED NOVEMBER 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{DD} (see Note 1)		
Differential input voltage, V _{ID} (see Note 2)		
Input voltage range, VI (any input, see Note	e 1)	0.3 V to V _{DD}
Input current, I _I (any input)		±4 mA
Output current, IO		±50 mA
Total current into V _{DD+}		±50 mA
Total current out of GND		
Duration of short-circuit current (at or below	w) 25°C (see Note 3)	unlimited
Continuous total power dissipation		
Operating free-air temperature range, TA:	C suffix	0°C to 70°C
James & John Darm Day Vol. A.		40°C to 125°C
	M suffix	55°C to 125°C
Storage temperature range, Tstg		65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from	case for 10 seconds .	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to GND.

- Differential voltages are at the noninverting input with respect to the inverting input. Excessive current flows when input is brought below GND – 0.3 V.
- The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE TA = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW	145 mW
DBV	437 mW	3.5 mW/°C	280 mW	227 mW	87 mW
DGK	424 mW	3.4 mW/°C	271 mW	220 mW	85 mW
DGS	424 mW	3.4 mW/°C	271 mW	220 mW	85 mW
FK	1375 mW	11.0 mW/°C	672 mW	546 mW	210 mW
JG	1050 mW	8.4 mW/°C	880 mW	714 mW	275 mW
N	1150 mW	9.2 mW/°C	736 mW	598 mW	230 mW
Р	1000 mW	8.0 mW/°C	640 mW	520 mW	200 mW
PW	700 mW	5.6 mW/°C	448 mW	364 mW	140 mW
U	675 mW	5.4 mW/°C	432 mW	350 mW	135 mW

recommended operating conditions

Fuß range 1.3 g	C SUFFIX		I SUFFIX		M SUFFIX		UNIT
	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
Supply voltage, V _{DD}	2.5	6	2.5	6	2.5	6	V
Input voltage range, V _I	GND	V _{DD+} -1.3	GND	V _{DD+} -1.3	GND	V _{DD+} -1.3	V
Common-mode input voltage, V _{IC}	GND	V _{DD+} -1.3	GND	V _{DD+} -1.3	GND	V _{DD+} -1.3	٧
Operating free-air temperature, TA	0	70	-40	125	-55	125	°C

TLV277x, TLV277xA FAMILY OF 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS209D - JANUARY 1998 - REVISED NOVEMBER 1999

electrical characteristics at specified free-air temperature, V_{DD} = 2.7 V (unless otherwise noted)

DADAMETED		TEST CON	DITIONS	T. +	T	LV277x0	n/ ulas	UNIT	
	PARAMETER		TEST CON	DITIONS	TAT	MIN	TYP	MAX	UNIT
anV of Visit	0-	T1.1/0770/4/0		see Note 1)	25°C	W.sp	0.44	2.5	ant
ym Jeb		TLV2770/1/2	V _{IC} = 0,	$V_{O} = 0$,	Full range	ini yas	0.47	2.7	
VIO	Input offset voltage	Name of the last	$R_S = 50 \Omega$,	$V_{DD} = \pm 1.35 \text{ V}$	25°C		0.8	2.7	mV
		TLV2773/4/5			Full range	+OQ*	0.86	2.9	01
αΝΙΟ	Temperature coeffic offset voltage	ient of input	(see Note 3)	t or below) 25°C	25°C to 125°C	Ruonio-	2	nolin	μV/°C
Marin grade	Hallingsold col		V _{IC} = 0,	V _O = 0,	25°C	2000	1	Wall III	
10	Input offset current		$R_S = 50 \Omega$	$V_{DD} = \pm 1.35 \text{ V}$	Full range		2	100	pA
MARK HIS	WEB .			Harris Mill	25°C	1	2		
IB	Input bias current				Full range	in onit	6	100	pA
260%	Common-mode inpu	ommon-mode input voltage		ecso mort (da	25°C	0 to 1.4	-0.3 to 1.7	steat ba	
VICR	range	n teer W it er by nistabet" nabru yrilldallen 40146)	CMRR > 70 dB,	$R_S = 50 \Omega$	Full range	0 to 1.4	-0.3 to 1.7	tanaga k HospanS	٧
			lev- 0.075 A	film our supottov is	25°C	K) (88)	2.6	WAA I	383 R
Inputed at loca	no monte await Instituto	eviseosidi Juq	$I_{OH} = -0.675 \text{ mA}$		Full range	2.5		Sulling Sulling	V
VOH	High-level output vo	itage		a supply Tempula	25°C	a vad ya	2.4	erii . E	V
			I _{OH} = −2.2 mA		Full range	2.1	an moltery	(app)	
The first St					25°C		0.1		
V _{OL} I			V _{IC} = 1.35 V,	IOL = 0.675 MA	Full range		-	0.2	
	Low-level output vol	tage	V _{IC} = 1.35 V, I _{OL} = 2.2 mA	25°C	a silvent	0.21	BOAR	V	
				I _{OL} = 2.2 mA	Full range	1000		0.6	
	Large-signal differential voltage		V _{IC} = 1.35 V,	$R_{\rm I} = 10 \text{ k}\Omega$	25°C	20	380	-	
AVD	amplification		V _O = 0.6 V to 2.1 V		Full range	13			V/mV
ri(d)	Differential input res	istance			25°C		1012		Ω
Ci(c)	Common-mode inpu	ut capacitance	f = 10 kHz	O BRIGHT	25°C		8		pF
z _o	Closed-loop output i	impedance	f = 100 kHz,	Ay = 10	25°C	7107	25	17.7	Ω
	The second second		V _{IC} = 0 to 1.5 V,	VO = 1.5 V,	25°C	70	84		
CMRR	Common-mode reje	ction ratio	R _S = 50 Ω	04/4929	Full range	70	82		dB
VENERO	Supply voltage reject	ction ratio	$V_{DD} = 2.7 \text{ V to 5 V},$	V _{IC} = V _{DD} /2,	25°C	70	89		
ksvr	(ΔVDD /ΔVIO)		No load	10 -00-	Full range	70	84		dB
MIRE	91	909	WHI END	of there are	25°C	2351	1	2	
IDD	Supply current (per	channel)	V _O = 1.5 V,	No load	Full range			2	mA
23.5	Supply current in sh	utdown (per			25°C	of the last	0.8	1.5	WIND O
IDD(SHDN)	channel)	XITEU	NISHO!		Full range		1.3	2	μА
	X/400 1000	TLV2770	nel said	500			1.47		
V(ON)	Turnon voltage	TLV2773	Av = 5		25°C		1.43	V 8077	V
(314)	level	TLV2775	GND C.C-, GOV	v circa			1.40	mir ege	Contracto
N N	THE LEGIS LINES	TLV2770	ONE BUT - CINY	CMIS /		017.80	1.27	N econy	Same
V(OFF)	Turnoff voltage	TLV2773	Av = 5		25°C	D 000	1.21	45-801	V
(011)	level	TLV2775			250		1.20		

† Full range is 0°C to 70°C.

TLV277x, TLV277xA **FAMILY OF 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT** OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS209D - JANUARY 1998 - REVISED NOVEMBER 1999

operating characteristics at specified free-air temperature, V_{DD} = 2.7 V (unless otherwise noted)

	DADAMETER	TEOT COMPLET	ONO	- +	TLV277xC			LINUT	
	PARAMETER	TEST CONDITI	ONS	TAT	MIN	TYP	MAX	UNIT	
Total P	850 088 2.5	V 00V	0 400 - 5	25°C	5 9				
SR	Slew rate at unity gain	$V_{O(PP)} = 0.8 \text{ V},$ $R_{L} = 10 \text{ k}\Omega$	$C_L = 100 \text{ pF},$	Full range	4.7	6	qui 📑	V/µs	
.,	F	f = 1 kHz	Des	25°C	21				
Vn	Equivalent input noise voltage	f = 10 kHz		25°C	17			nV/√Hz	
O WATE	Peak-to-peak equivalent input noise	f = 0.1 Hz to 1 Hz		0500	0.33			μV	
VN(PP)	voltage	f = 0.1 Hz to 10 Hz	Our solv I	25°C	0.86				
In	Equivalent input noise current	f = 100 Hz	Bg = 50	25°C		0.6		fA/√Hz	
12/2010	orac orac		A _V = 1		0.0085%				
THD + N	Total harmonic distortion plus noise	$R_L = 600 \Omega$, f = 1 kHz	Ay = 10	25°C	7 3	0.025%	025%		
	100-120-120	1-1812	Ay = 100			0.12%			
v	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF	$R_L = 600 \Omega$,	25°C	v Jugar st	4.8	est)	MHz	
	Settling time	A _V = -1, Step = 1 V,	0.1%	25°C	0.186				
ts	Settling time	R _L = 600 Ω, C _L = 100 pF	0.01%	25°C	0.3		199	μs	
φm	Phase margin at unity gain	$R_{\rm I} = 600 \Omega_{\rm s}$	C _L = 100 pF	25°C		46°			
	Gain margin	THE = 000 24	OL = 100 pr	25°C	12		dB		

† Full range is 0°C to 70°C.

TLV277x, TLV277xA FAMILY OF 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS209D – JANUARY 1998 – REVISED NOVEMBER 1999

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER		TEST CONI	DITIONS	TAT	Т	LV277x	C	UNIT
32	PANAMETER	18	TEST CON	DITIONS	'A'	MIN	TYP	MAX	UNIT
		TLV2770/1/2	NY IN		25°C		0.36	2.5	
Via	Input offset voltage	1LV2/10/1/2	V _{IC} = 0,	$V_0 = 0$,	Full range	ilg yffnu	0.4	2.7	mV
VIO	Input offset voltage	TI V/0779/4/E	$R_S = 50 \Omega$	$V_{DD} = \pm 2.5 \text{ V}$	25°C		0.7	2.5	IIIV
		TLV2773/4/5		SP [0]	Full range	ion tim	0.78	2.7	
αVIO	Temperature coefficier offset voltage	nt of input	\$41	M39-01 = 1 M 39-1 1.0 = 1	25°C to 125°C	tváspa z	2	les"i	μV/°C
	80.0		V _{IC} = 0,	V _O = 0,	25°C		1	altov	
IIO	Input offset current		$R_S = 50 \Omega$	$V_{DD} = \pm 2.5 \text{ V}$	Full range	ion hig	2	100	pA
	218800 D		I = \A		25°C		2		
IB	Input bias current		Df = 1/4		Full range	ounity Si	6	100	pA
	8127.0		U - y/)		25°C	0 to 3.7	-0.3 to 3.8		
VICR	Common-mode input	voltage range	CMRR > 60 dB,	$R_S = 50 \Omega$	Full range	0 to 3.7	-0.3 to 3.8	ORDER TO SERVICE OF THE PERSON	V
		1 2 2 1		V1 = 008 2	25°C		4.9		
			$I_{OH} = -1.3 \text{ mA}$		Full range	4.8		1 1	
VOH	High-level output volta	ige			25°C		4.7		V
			I _{OH} = -4.2 mA		Full range	4.4			- 1
					25°C		0.1		
			$V_{IC} = 2.5 V,$	$I_{OL} = 1.3 \text{ mA}$	Full range			0.2	TELLIA I
VOL	Low-level output volta	ge			25°C		0.21		٧
			V _{IC} = 2.5 V,	$I_{OL} = 4.2 \text{ mA}$	Full range			0.6	
	Large-signal differentia	al voltane	V _{IC} = 2.5 V,	$R_L = 10 \text{ k}\Omega$	25°C	20	450		
AVD	amplification	ai voitago	V _O = 1 V to 4 V	11L = 10 Kaz,	Full range	13			V/mV
ri(d)	Differential input resist	tance			25°C		1012		Ω
Ci(c)	Common-mode input		f = 10 kHz		25°C		8		pF
Z _O	Closed-loop output im	-	f = 100 kHz,	Ay = 10	25°C		20		Ω
A DIRECTOR			V _{IC} = 0 to 3.7 V,	V _O = 3.7 V,	25°C	60	96		
CMRR	Common-mode reject	ion ratio	$R_S = 50 \Omega$	v0 = 0 v,	Full range	60	93		dB
	Supply voltage rejection	on ratio	V _{DD} = 2.7 V to 5 V,	V _{IC} = V _{DD} /2,	25°C	70	89		
KSVR	(ΔV _{DD} /ΔV _{IO})		No load	*IC * DD.=1	Full range	70	84		dB
					25°C		1	2	
IDD	Supply current (per ch	iannel)	$V_0 = 1.5 V$,	No load	Full range			2	mA
	Supply current in shut	down (per	2011		25°C		0.8	1.5	
IDD(SHDN)	channel)	down (por			Full range		1.3	2	μА
		TLV2770					2.59		
V(ON)	Turnon voltage level	TLV2773	A _V = 5		25°C		2.47	11/23	V
(311)		TLV2775					2.48		
		TLV2770					2.41		
V(OFF)	Turnoff voltage level	TLV2773	A _V = 5		25°C		2.32		V
(011)	32.2701	TLV2775					2.29		

[†] Full range is 0°C to 70°C.

TLV277x, TLV277xA FAMILY OF 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS209D - JANUARY 1998 - REVISED NOVEMBER 1999

operating characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PADAMETER		TEGT COL	IDITIONS	- +	1	TLV277xC		UNIT
	PARAMETER		TEST CON	IDITIONS	TAT	MIN	TYP	MAX	UNIT
	0.44 2.5 0.44 4.0		V 08 15V	0 100-5	25°C	5	10.5		
SR	Slew rate at unity gain		$V_{O(PP)} = 1.5 \text{ V},$ R _L = 10 kΩ	CL = 100 pF,	Full range	4.7	6	orit lov	V/μs
.,	2.2 38.0 0.0 0.0		f = 1 kHz		25°C		17		
Vn	Equivalent input noise voltage		f = 10 kHz		25°C	a follows	12	nell'	nV/√H
	Peak-to-peak equivalent input nois	se	f = 0.1 Hz to 1 Hz		0500		0.33	illo .	
V _N (PP)	voltage		f = 0.1 Hz to 10 Hz	Norwill Von	25°C		0.86		μV
In	Equivalent input noise current		f = 100 Hz	5 m = 3H	25°C		0.6		fA/√H
			3783	A _V = 1		1	0.005%		
THD + N	Total harmonic distortion plus nois	se	$R_L = 600 \Omega$, f = 1 kHz	A _V = 10	25°C		0.016%		
			1 - 1 KHZ	A _V = 100		0.095%			
V	Gain-bandwidth product	9	f = 10 kHz, C _L = 100 pF	$R_L = 600 \Omega$,	25°C	dign et	5.1	nin i	MHz
ts	Settling time	61 (61) (8)	A _V = -1, Step = 2 V,	0.1%	25°C		0.335		μѕ
'S	Setung une	4.5	R _L = 600 Ω, C _L = 100 pF	0.01%	25°C	silov tvol	0.6	altel	μδ
φm	Phase margin at unity gain		$R_1 = 600 \Omega$	C _I = 100 pF	25°C		46°		
	Gain margin	133	nL = 600 \$2,	CL = 100 pr	25°C		12		dB
		TLV2770	Ay = 5,	A SECTION OF THE PARTY OF			1.2	285	
t(ON)	Amplifier turnon time	TLV2773	R _L = Open,		25°C	utlov jug	2.4	p,f	μs
	130	TLV2775	Measured to 50% p	point	42.4		1.9		
		TLV2770	Ay = 5				335		- 3.
t(OFF)	Amplifier turnoff time	TLV2773	R _L = Open,		25°C	dom: R	444	BJ	ns
	Amplifier turnoff time TLV2773 TLV2775						345	ma	UN

† Full range is 0°C to 70°C.

TLV277x, TLV277xA FAMILY OF 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS209D – JANUARY 1998 – REVISED NOVEMBER 1999

electrical characteristics at specified free-air temperature, V_{DD} = 2.7 V (unless otherwise noted)

and the second	DADAMETER		TEST CONDITIONS	T +	1	LV277x	d	T	LV277x	Al	115.00
	PARAMETER		TEST CONDITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	8.01 6	TLV2770/1/2		25°C		0.44	2.5		0.44	1.6	
Via	Input offset	1LV2/70/1/2	$V_{IC} = 0, V_{O} = 0,$	Full range		0.47	2.7	sg yans	0.47	1.9	mV
VIO	voltage	TLV2773/4/5	$R_S = 50 \Omega$ $V_{DD} = \pm 1.35 V$	25°C		0.8	2.7		0.8	2.1	IIIV
	71	1LV2//3/4/5	-DD = moo :	Full range		0.86	2.9	day tak	0.86	2.2	
αΛΙΟ	Temperature coeff offset voltage	icient of input	1811	25°C to 125°C		2	rarii Shel	evición o	2	Pasi	μV/°C
	88,0		$V_{IC} = 0, V_{O} = 0,$	25°C		1			1	stlav	6/12/10
10	Input offset curren	t over	$R_S = 50 \Omega$	Full range		2	125	ron Neg	2	125	pA
	×30000		T=VA	25°C		2			2		
IB	Input bias current		DI = VA	Full range		6	350	ntelb si	6	350	pA
	Common-mode in	put voltage	CMRR > 70 dB,	25°C	0 to 1.4	-0.3 to 1.7		0 to 1.4	-0.3 to 1.7		
VICR	range	put voltago	$R_S = 50 \Omega$	Full range	0 to 1.4	-0.3 to 1.7		0 to 1.4	-0.3 to 1.7	unio.	V
Bit	38.0		200	25°C		2.6			2.6	uned 1	
			$I_{OH} = -0.675 \text{ mA}$	Full range	2.5	2.10		2.5	2.10	0100	
VOH	High-level output v	/oltage		25°C		2.4			2.4	-	V
			I _{OH} = -2.2 mA	Full range	2.1		10000	2.1			
			V _{IC} = 1.35 V,	25°C		0.1			0.1		
			I _{OL} = 0.675 mA	Full range			0.2			0.2	
VOL	Low-level output v	oltage	V _{IC} = 1.35 V,	25°C	To the same	0.21			0.21	7.17	V
			I _{OL} = 2.2 mA	Full range	- Avenue		0.6	-		0.6	
. 50	Large-signal differ	ential voltage	V _{IC} = 1.35 V,	25°C	20	380		20	380	Amid	FT17563
AVD	amplification		$R_L = 10 \text{ k}\Omega$, $V_O = 0.6 \text{ V to } 2.1 \text{ V}$	Full range	13	Ur	10.10	13			V/mV
ři(d)	Differential input re	esistance		25°C		1012			1012	770 (4.6)	Ω
Ci(c)	Common-mode in capacitance	put	f = 10 kHz,	25°C		8			8		pF
z _O	Closed-loop output	t impedance	f = 100 kHz, A _V = 10	25°C		25			25		Ω
F F CH			V _{IC} = 0 to 1.5 V,	25°C	70	84		70	84		
CMRR	Common-mode re	jection ratio	$V_{O} = 1.5 \text{ V},$ $R_{S} = 50 \Omega$	Full range	70	82		70	82		dB
	Supply voltage rej	ection ratio	V _{DD} = 2.7 V to 5 V,	25°C	70	89		70	89		
ksvr	(ΔV _{DD} /ΔV _{IO})	Collottiallo	V _{IC} = V _{DD} /2, No load	Full range	70	84		70	84		dB
				25°C		1	2		1	2	
IDD	Supply current (pe	er channel)	$V_O = 1.5 \text{ V}$, No load	Full range			2			2	mA
	Supply current in s	shutdown (per		25°C		0.8	1.5		0.8	1.5	
IDD(SHDN)	channel)	AP -	Out of the second	Full range		1.3	2		1.3	2	μΑ

[†] Full range is - 40°C to 125°C.

TLV277x, TLV277xA FAMILY OF 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS209D – JANUARY 1998 – REVISED NOVEMBER 1999

electrical characteristics at specified free-air temperature, V_{DD} = 2.7 V (unless otherwise noted) (continued)

1995	DADAMETED	EXAM SYT	TEST CONDITIONS	al Quant	TLV277xI		TL	V277x/	M	1101199
	PARAMETER		TEST CONDITIONS	TAT	MIN TYP	MAX	MIN	TYP	MAX	UNIT
F To Fa	. 1 - 4.0	TLV2770	Pull tation		1.47			1.47		
V(ON)	Turnon voltage	TLV2773	A _V = 5	25°C	1.43		Stellar M	1.43		٧
	16461	TLV2775	ogam tivil		1.40	41	1.4			
		TLV2770	1-01093		1.27	- their	leno inu	1.27	a l	
V(OFF)	Turnoff voltage	TLV2773	A _V = 5	25°C	1.21		90%	1.21	lo i	V
	16461	TLV2775	28:0		1.20			1.2		

[†] Full range is – 40°C to 125°C.

operating characteristics at specified free-air temperature, V_{DD} = 2.7 V (unless otherwise noted)

	DADAMETED	TEGT CON	DITIONS		Т	LV277xI		TI	V277xAI		
	PARAMETER	TEST CON	DITIONS	TAT	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	8.0- 0	V 00V	C. 100 -F	25°C	5	9	- 100	5	9	123)	Plus
SR	Slew rate at unity gain	$V_{O(PP)} = 0.8 \text{ V},$ $R_{L} = 10 \text{ k}\Omega$	GL = 100 pF,	Full range	4.7	6		4.7	6		V/µs
V	Equivalent input noise	f = 1 kHz	eenar MA	25°C	9.1 - 11.51	21			21		->4//11
Vn	voltage	f = 10 kHz	0985	25°C		17			17		nV/√Hz
	Peak-to-peak	f = 0.1 Hz to 1 Hz	Full range	25°C		0.33			0.33		μV
V _{N(PP)}	equivalent input noise voltage	f = 0.1 Hz to 10 H	łz	25°C	V &S + O	0.86	1		0.86		μV
In	Equivalent input noise current	f = 100 Hz	op an ec	25°C	0=235 K	0.6	00	atloydugt	0.6	rout .	fA/√Hz
	0.0		Ay = 1		0	.0085%		(.0085%		
THD + N	Total harmonic distortion plus noise	$R_L = 600 \Omega$, $f = 1 \text{ kHz}$	Ay = 10	25°C	N 42 = 0	0.025%	entier ti	distanti	0.025%	und .	
Canal C	diotoritori pido rioloo	81	A _V = 100	94	of N. A. mar	0.12%			0.12%	715	G/v-
53	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF	$R_L = 600 \Omega$,	25°C		4.8	portes	sles i luci	4.8	nd .	MHz
ts	Settling time	A _V = -1, Step = 0.85 V to 1.85 V,	0.1%	25°C	100 RHz (= 10	0.186	ośnabac	mi fucilio	0.186	10	
'S	Setting time	R _L = 600 Ω, C _L = 100 pF	0.01%	25°C	Salow o	3.92	ciles no	losjin etc	3.92	60	μѕ
φm	Phase margin at unity gain	R _L = 600 Ω,	C _L = 100 pF	25°C	11 50 = 8 (1 8 = 00	46°			46°		
	Gain margin			25°C		12			12	an I	dB

† Full range is -40°C to 125°C.

TLV277x, TLV277xA FAMILY OF 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS209D - JANUARY 1998 - REVISED NOVEMBER 1999

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	DADAMETER		TEST	- +		LV277x	:1	Т	LV277x/	Al	
	PARAMETER		CONDITIONS	TAT	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
X4	SI HET MIN 13	TI VO770/4/0	V _{IC} = 0,	25°C		0.36	2.5		0.36	1.6	
		TLV2770/1/2	$V_O = 0$,	Full range		0.4	2.7		0.4	1.9	\/m\/
VIO	Input offset voltage	86,8	$R_S = 50 \Omega$,	25°C	= WAT	0.7	2.5		0.7	2.1	mV
		TLV2773/4/5	$V_{DD} = \pm 2.5 \text{ V}$	Full range		0.78	2.7		0.78	2.2	
αΛΙΟ	Temperature coeffici offset voltage	ent of input	V 0	25°C to 125°C	in ush	2	SVJT	908	2	a	μV/°(
	5.7	05.1	$V_{IC} = 0,$ $V_{O} = 0,$	25°C		1	SYLIT-		1		
IIO	Input offset current		$R_S = 50 \Omega$,	Full range		2	125	27 83	2	125	pA
			$V_{DD} = \pm 2.5 \text{ V}$	25°C		2			2		- 4
IB	Input bias current		gy ,eruhareçon	Full range	1,220,000	6	350	16118	6	350	pA
THU	Common-mode inpu	it voltage	CMRR > 60 dB.	25°C	0 to 3.7	-0.3 to 3.8		0 to 3.7	-0.3 to 3.8	PASSA	.,
VICR	range	ii ronago	$R_S = 50 \Omega$	Full range	0 to 3.7	-0.3 to 3.8	pov ,	0 to 3.7	-0.3 to 3.8	Samuel 1	V
			Legoph	25°C		4.9			4.9		
			$I_{OH} = -1.3 \text{ mA}$	Full range	4.8	sho	lall,	4.8	ini transi	Aumin .	
VOH	High-level output vol	Itage	10/80	25°C		4.7	Tall.		4.7	C.1124	٧
			I _{OH} = -4.2 mA	Full range	4.4	orald L	gall.	4.4	Major of	Pagi	1 4
Va I	68.0	1 100	V _{IC} = 2.5 V,	25°C	-12712	0.1		GROST TU	0.1	Alabia	(1999)
			I _{OL} = 1.3 mA	Full range		-	0.2			0.2	
VOL	Low-level output volt	tage	V _{IC} = 2.5 V,	25°C		0.21	P=1		0.21	AOHES !	٧
			I _{OL} = 4.2 mA	Full range			0.6			0.6	
	Lorgo signal differen	tial valtage	V _{IC} = 2.5 V,	25°C	20	450	138	20	450	leiot	0-0
AVD	Large-signal different amplification	iliai voltage	$R_L = 10 \text{ k}\Omega$, $V_O = 1 \text{ V to 4 V}$	Full range	13			13		ofeli	V/m
ri(d)	Differential input resi	istance	Q*8s	25°C		1012	I mil	TIB	1012	Tales of	Ω
Ci(c)	Common-mode inpu	t capacitance	f = 10 kHz	25°C	1	8			8		pF
z _o	Closed-loop output in	mpedance	f = 100 kHz, Ay = 10	25°C	of all	20	Stup		20	12112	Ω
	59.6	60.0	V _{IC} = 0 to 3.7 V,	25°C	60	96	181	60	96	100	FIT
CMRR	Common-mode reject	ction ratio	$V_{O} = 3.7 \text{ V},$ $R_{S} = 50 \Omega$	Full range	60	93		60	93	Phon	dB
	Supply voltage rejec	tion ratio	$V_{DD} = 2.7 \text{ V to 5 V},$	25°C	70	89	je	70	89	nieg	
ksvr	(ΔV _{DD} /ΔV _{IO})	SI	V _{IC} = V _{DD} /2, No load	Full range	70	84		70	84	nisu	dB
loo	Supply current (per o	channel)	V _O = 1.5 V,	25°C		1	2		1	2	mA
IDD	Supply current (per t	oname)	No load	Full range			2			2	III/A
l== .==	Supply current shuto	down (per		25°C		0.8	1.5	N.	0.8	1.5	
IDD(SHDN)	channel)			Full range		1.3	2		1.3	2	μΑ

[†] Full range is - 40°C to 125°C.

TLV277x, TLV277xA FAMILY OF 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS209D - JANUARY 1998 - REVISED NOVEMBER 1999

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted) (continued)

EBMU T	DADAMETED	XAM FRIT	TEST	- +	TLV277xI	TLV277xAI	
	PARAMETER		CONDITIONS	TAT	MIN TYP MAX	MIN TYP MAX	UNIT
Vm - m	E EN 0	TLV2770	Full candod		2.59	2.59	1.0
V(ON)	Turnon voltage level	TLV2773	A _V = 5	25°C	2.47	2.47	V
Dayler L	16461	TLV2775	ar	1.1.1.1	2.48	2.48	089
		TLV2770	1 0/851	10 = 1	2.41	2.41	
V(OFF)	Turnoff voltage	TLV2773	A _V = 5	25°C	2.32	2.32	V
	10401	TLV2775	i apper duit }		2.29	2.29	1

[†] Full range is - 40°C to 125°C.

operating characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	DADA445		TEOT CO.	DITIONS		Т	LV277xI		T	LV277xAI		
	PARAMETI	ER	TEST COM	IDITIONS	TAT	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	lat lat	- 01	457	0 100-5	25°C	5	10.5		5	10.5		
SR	Slew rate	at unity gain	$V_{O(PP)} = 1.5 \text{ V},$ $R_{L} = 10 \text{ k}\Omega$	GL = 100 pF,	Full range	4.7	6		4.7	6		V/µs
V	Equivalent	t input noise	f = 1 kHz	S. I marrow the B.	25°C		17	10.0-1	PIO!	17	and the first	14/11
Vn	voltage		f = 10 kHz	25.0	25°C		12			12	nghila	nV/√H;
	Peak-to-pe		f = 0.1 Hz to 1 H	Z I home lief	25°C		0.33	133-4	HOL	0.33		μV
V _N (PP)	equivalent noise volta		f = 0.1 Hz to 10	Hz	25°C	D= int	0.86	V eE.t	mer!	0.86		μV
In	Equivalent	t input noise	f = 100 Hz	1 222	25°C		0.6			0.6	restroit.	fA/√Hz
	0.0	ALL DE		A _V = 1			0.005%		THE	0.005%		
THD + N	Total harm		$R_L = 600 \Omega$, f = 1 kHz	Ay = 10	25°C	circ.	0.016%	v ze il	av l	0.016%	ekogna.	
Vaniv	diotortion	SIGO TIOIGO	T T KITZ	A _V = 100		7	0.095%	# V 8.0	ovi.	0.095%	(10) IS THE	OW
B	Gain-band product	lwidth	f = 10 kHz, C _L = 100 pF	$R_L = 600 \Omega$,	25°C		5.1			5.1	rayefiid	MHz
ts	Settling tin	ne	A _V = -1, Step = 1.5 V to 3.5 V.	0.1%	25°C		0.134	10400	P mil	0.134	amnest an luan	μѕ
'S	Cotting till		R _L = 600 Ω, C _L = 100 pF	0.01%	25°C	0) = 48.	1.97	51 H 02		1.97	tinent,	μο
φm	Phase ma gain	rgin at unity	R _L = 600 Ω,	C _L = 100 pF	25°C	VO = 1-2	46°	FIOIV #	VIC Rs	46°	ordinol mikinim	HAVE
	Gain marg	in or	70	CHAR	25°C		12			12	ylone	dB
100	Amplifier	TLV2770	$A_V = 5$	arrange to 12			1.2	bis	ON	1.2	olisalo	EWE
t(ON)	turnon	The state of the s		25°C		2.4			2.4	THE	μs	
	time	TLV2775		% point		burghe/d	1.9	Var	OF L	1.9		
-	Amplifier	TLV2770	$A_{V} = 5$.				335		-	335		
t(OFF)	turnoff	TLV2773	A _V = 5, R _L = Open, Measured to 50% point	25°C	United St.	444			444	T st books	ns	
	time	TLV2775				345			345			

[†] Full range is -40°C to 125°C.

TLV277x, TLV277xA FAMILY OF 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS209D – JANUARY 1998 – REVISED NOVEMBER 1999

electrical characteristics at specified free-air temperature, V_{DD} = 2.7 V (unless otherwise noted)

	DADAMETED	TEST CONF	SHOTL	T.+	TI	V2772	M	TL	V2772A	M	LIMPT
Tierra	PARAMETER	TEST COND	DITIONS	TAT	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V	Input offset voltage	Year Still Ann		25°C		0.44	2.5		0.44	1.6	mV
VIO	Input offset voltage	20,3		Full range		0.47	2.7		0.47	1.9	IIIV
αΝΙΟ	Temperature coefficient of input offset voltage	$V_{DD} = \pm 1.35 \text{ V},$ $V_{IC} = 0,$	V _O = 0,	25°C to 125°C	- 101	2	TUN		2	ral	μV/°C
		$R_S = 50 \Omega$		25°C	- WA	1	NUT -	100	1		^
10	Input offset current	90.3		Full range		2	125		2	125	pA
				25°C		2		.0*88	2	5-000	
IB	Input bias current			Full range		6	350		6	350	pA
Vicr	Common-mode	CMRR > 70 dB,	R _S = 50 Ω	25°C	0 to 1.4	-0.3 to 1.7	18 00	0 to 1.4	-0.3 to 1.7	IO GO WARRA	V
auv	input voltage range	3.01	25°C 5	Full range	0 to 1.4	-0.3 to 1.7	NOV A	0 to 1.4	-0.3 to 1.7	well	-
		I _{OH} = -0.675 mA	811411	25°C		2.6			2.6		
V	High-level output	IOH = -0.075 IIIA	0 20	Full range	2.45	MAN.	1 = 1 =	2.45	nd Imalia	illupi3	V
VOH	voltage	I _{OH} = -2.2 mA	0.62	25°C		2.4	181		2.4	Territoria.	V
101	6.03	10H = -2.2 IIIA	0.48	Full range	2.1	11 30 F. T.	0×1	2.1	litoq-ot-	1700%	
		V _{IC} = 1.35 V,	I _{OL} = 0.675 mA	25°C	SHOP	0.1	141	7131	0.1	Market Co.	177700
VOL	Low-level output	V C = 1.00 V,	10L = 0.070 HIX	Full range			0.2	sins tue	ni bunin	0.2	V
·OL	voltage	V _{IC} = 1.35 V,	I _{OL} = 2.2 mA	25°C		0.21	171		0.21	culvila	
	0.000.p	10 110 11	-OL	Full range			0.6			0.6	
Λ	Large-signal	V _{IC} = 1.35 V,	$R_L = 10 \text{ k}\Omega, \ddagger$	25°C	20	380		20	380		V/m\
AVD	differential voltage amplification	V _O = 0.6 V to 2.1 V		Full range	13			13			V/IIIV
ri(d)	Differential input resistance	18	0.87	25°C		1012	10		1012	apoiq	Ω
^C i(c)	Common-mode input capacitance	f = 10 kHz,	2970	25°C	0 101	8	Ske		8	Jan. 73	pF
z _o	Closed-loop output impedance	f = 100 kHz,	A _V = 10	25°C		25	10		25		Ω
CMRR	Common-mode	VIC = VICR (min),	V _O = 1.5 V,	25°C	70	84		70	84	ang .	dB
OWINH	rejection ratio	$R_S = 50 \Omega$		Full range	70	82)AL	70	82	plag	ub
ksvr	Supply voltage rejection ratio	V _{DD} = 2.7 V to 5 V, No load	$V_{IC} = V_{DD}/2$,	25°C	70	89		70	89	nipo .	dB
	(ΔV _{DD} /ΔV _{IO})	Notoau	The same of	Full range	70	84	100	70	84	ALCOHOLD !	
IDD	Supply current	V _O = 1.5 V,	No load	25°C	di lene	1	2		1	2	mA
טט	(per channel)	10-110-11	110104	Full range			2			2	1111/1

[†] Full range is - 55°C to 125°C.

[‡] Referenced to 1.35 V

TLV277x, TLV277xA FAMILY OF 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS209D - JANUARY 1998 - REVISED NOVEMBER 1999

operating characteristics at specified free-air temperature, V_{DD} = 2.7 V (unless otherwise noted)

Williams of	HEASTYSVEY F	TT0T 001	DITIONS		TI	V2772M	No.	TL	V2772AN		110117
	PARAMETER	TEST CON	DITIONS	TAT	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
3200	8,7 08,0	V- 96.0	0 100-5	25°C	5	9		5	9		
SR	Slew rate at unity gain	$V_{O(PP)} = 0.8 \text{ V},$ $R_{L} = 10 \text{ k}\Omega$	CL = 100 pF,	Full range	4.7	6		4.7	6		V/µs
ONVA	Equivalent input	f = 1 kHz	01	25°C		21	assv	new	21	aipillos	
Vn	noise voltage	f = 10 kHz	U'est	25°C		17	,0 1	DIF I	17	UV 18KIII	nV/√Hz
An	Peak-to-peak	f = 0.1 Hz to 1 Hz	0.01	25°C		0.33	11-10		0.33	No trigo	μV
VN(PP)	equivalent input noise voltage	f = 0.1 Hz to 10 H	lz	25°C		0.86			0.86		μV
In	Equivalent input noise current	f = 100 Hz	-Full regree	25°C		0.6			0.6		fA/√Hz
	of of	01 01	Ay = 1		C	0.0085%		(0.0085%		
THD + N	Total harmonic distortion plus noise	$R_L = 600 \Omega$, f = 1 kHz	Ay = 10	25°C		0.025%	en in	and a	0.025%	igmeno(-
	distortion plus noise	8.0- 0	Ay = 100			0.12%			0.12%	idin Jedia	- PIOS
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF	$R_L = 600 \Omega$,	25°C		4.8			4.8		MHz
V	Settling time	Ay = -1, Step = 0.85 V to 1.85 V.	0.1%	25°C		0.186	16.1-h	Nel	0.186	unt right	110
t _S	Settling time	R _L = 600 Ω, C _L = 100 pF	0.01%	25°C		3.92	12,8	HOL	3.92		μѕ
φm	Phase margin at unity gain	R _L = 600 Ω,	C _L = 100 pF	25°C	= 401	46°	W8.53	OP!	46°	wal-wo.	1/2
	Gain margin	0.21	5/85	25°C		12	wab.	and I	12	W.Johnson	dB

† Full range is -55°C to 125°C.

TLV277x, TLV277xA FAMILY OF 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS209D - JANUARY 1998 - REVISED NOVEMBER 1999

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	DADAMETED	TEST COMP	ITIONS	T. +	TI	V2772	M	TL	V2772	M	LIMIT
Than	PARAMETER	TEST COND	ITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
, _	lanut offeet valtage	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2570 8	25°C		0.36	2.5		0.36	1.6	mV
VIO	Input offset voltage			Full range		0.4	2.7	isą ytini	0.4	1.9	IIIV
αVIO	Temperature coefficient of input offset voltage	$V_{DD} = \pm 2.5 \text{ V},$ $V_{IC} = 0,$	V _O = 0,	25°C to 125°C		2	1 = 1	fuc	2	Equiv	μV/°C
		$R_S = 50 \Omega$		25°C	-11.6	1			1	unit!	1
10	Input offset current			Full range		2	125	Re	2	125	pA
Atl	88.0	88.0		25°C	THUT	2	0=1		2	noise	^
IB	Input bias current			Full range		6	350	- lang	6	350	pA
Vicr	Common-mode	CMRR > 60 dB,	Rs = 50 Ω	25°C	0 to 3.7	-0.3 to 3.8	- 18	0 to 3.7	-0.3 to 3.8	lgot '	V
shiii	input voltage range	8.6	2788	Full range	0 to 3.7	-0.3 to 3.8	L= I	0 to 3.7	-0.3 to 3.8	entaid ubata	
		I _{OH} = -1.3 mA		25°C		4.9		Constitution.	4.9		WAS
V/011	High-level output	10H = -1.5 mA	0.98	Full range	4.8	88.0 m	Story	4.8		11:10	V
VOH	voltage	I _{OH} = -4.2 mA		25°C	ed P. M	4.7			4.7	Wiffe2	
	52.8	10H = -4.2 IIIA	OTE	Full range	4.4			4.4			
		V _{IC} = 2.5 V,	I _{OL} = 1.3 mA	25°C		0.1			0.1		
VOL	Low-level output	VIC - 2.0 V,	10L = 1.0 max	Full range		A const	0.2		ritee	0.2	V
·OL	voltage	V _{IC} = 2.5 V,	I _{OL} = 4.2 mA	25°C		0.21			0.21	rise!	
		1,0 =:= 1,	OL	Full range			0.6	23000	6 KO 18	0.6	nin hi
۸	Large-signal	V _{IC} = 2.5 V,	$R_L = 10 \text{ k}\Omega,^{\ddagger}$	25°C	20	450		20	450		V/mV
AVD	differential voltage amplification	V _O = 1 V to 4 V		Full range	13			13			V/IIIV
ri(d)	Differential input resistance			25°C		1012			1012		Ω
^C i(c)	Common-mode input capacitance	f = 10 kHz,		25°C		8			8		pF
z _o	Closed-loop output impedance	f = 100 kHz,	Ay = 10	25°C		20			20		Ω
CMRR	Common-mode	V _{IC} = V _{ICR} (min),	V _O = 3.7 V,	25°C	60	96		60	96		dB
Civilal	rejection ratio	$R_S = 50 \Omega$		Full range	60	93		60	93		UD
ksvr	Supply voltage rejection ratio	V _{DD} = 2.7 V to 5 V, No load	$V_{IC} = V_{DD}/2$,	25°C	70 70	89 84		70 70	89 84		dB
	(ΔV _{DD} /ΔV _{IO})			Full range	70			70			
IDD	Supply current (per channel)	V _O = 1.5 V,	No load	25°C		1	2		1	2	mA
	(per charmer)		DATE OF THE PARTY	Full range			2			2	

[†] Full range is - 55°C to 125°C.

[‡] Referenced to 2.5 V

TLV277x, TLV277xA FAMILY OF 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS209D – JANUARY 1998 – REVISED NOVEMBER 1999

operating characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

mer i	DADAMETER	TEOT 001	DITIONS	- +	TI	_V2772M		TL	V2772AN	1	LINUT
	PARAMETER	TEST CON	IDITIONS	TAT	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	BRUDE	V- 45V	O 100 - F	25°C	5	10.5		5	10.5		1
SR	Slew rate at unity gain	$V_{O(PP)} = 1.5 \text{ V},$ $R_{L} = 10 \text{ k}\Omega$	CL = 100 pr,	Full range	4.7	6	eget	4.7	6	Oil	V/µs
V	Equivalent input	f = 1 kHz	seema basi	25°C		17	ujelloj	o emiliare	17	ON	->//-/11-
Vn	noise voltage	f = 10 kHz	-en/Tay	25°C	837	12	to paget	bas and	12	culta	nV/√Hz
V	Peak-to-peak	f = 0.1 Hz to 1 H	z olff by	25°C		0.33	alloy tur	fun la lei	0.33	HO	μV
V _N (PP)	equivalent input noise voltage	f = 0.1 Hz to 10 h	Hz	25°C		0.86	offer for	AND IEVE	0.86	0	μV
In	Equivalent input noise current	f = 100 Hz	mind by	25°C		0.6	eo tudo	a hiero	0.6	1710	fA/√Hz
			A _V = 1			0.005%			0.005%		
THD + N	Total harmonic distortion plus noise	$R_L = 600 \Omega$, f = 1 kHz	A _V = 10	25°C		0.016%			0.016%		
	distortion plus noise	1 - 1 1012	A _V = 100	110		0.095%	10112 (011)		0.095%		3
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF	$R_L = 600 \Omega$,	25°C		5.1	ms squ	idy laitnis	5.1	CIV	MHz
ts	Settling time	A _V = -1, Step = 1.5 V to 3.5 V,	0.1%	25°C		0.134	Josija d	Nors-and	0.134	RAM	116
'S	Setting time	R _L = 600 Ω, C _L = 100 pF	0.01%	25°C		1.97	disajer i	gallov-y namas vi	1.97	375	μѕ
φm	Phase margin at unity gain	R _L = 600 Ω,	C _L = 100 pF	25°C		46°		de	46°	19	
	Gain margin			25°C		12	(Kerwest -	middet in	12		dB

† Full range is -55°C to 125°C.

(before salvered to each out V & TYPICAL CHARACTERISTICS code to deliberate the language

Table of Graphs

	ot a lab a loves		FIGURE
VIO	Input offset voltage	Distribution vs Common-mode input voltage	1,2 3,4
ανιο	Temperature coefficient	Distribution	5,6
I _{IB} /I _{IO}	Input bias and input offset currents	vs Free-air temperature	7
VOH	High-level output voltage	vs High-level output current	8,9
VOL	Low-level output voltage	vs Low-level output current	10,11
VO(PP)	Maximum peak-to-peak output voltage	vs Frequency	12,13
los	Short-circuit output current	vs Supply voltage vs Free-air temperature	14 15
Vo	Output voltage	vs Differential input voltage	16
AVD	Large-signal differential voltage amplification	vs Frequency	17,18
AVD	Differential voltage amplification	vs Load resistance vs Free-air temperature	19 20,21
z _o	Output impedance	vs Frequency	22,23
CMRR	Common-mode rejection ratio	vs Frequency vs Free-air temperature	24 25
ksvr	Supply-voltage rejection ratio	vs Frequency	26,27
IDD	Supply current (per channel)	vs Supply voltage	28
SR	Slew rate	vs Load capacitance vs Free-air temperature	29 30
Vo	Voltage-follower small-signal pulse response		31,32
Vo	Voltage-follower large-signal pulse response		33,34
Vo	Inverting small-signal pulse response		35,36
Vo	Inverting large-signal pulse response		37,38
Vn	Equivalent input noise voltage	vs Frequency	39,40
	Noise voltage (referred to input)	Over a 10-second period	41
THD + N	Total harmonic distortion plus noise	vs Frequency	42,43
	Gain-bandwidth product	vs Supply voltage	44
B ₁	Unity-gain bandwidth	vs Load capacitance	45
Φm	Phase margin	vs Load capacitance	46
	Gain margin	vs Load capacitance	47
	Amplifier shutdown turnon/off characteristics		48 - 50
	Supply current shutdown turnon/off characteristics		51 - 53
	Shutdown supply current	vs Free-air temperature	54
	Shutdown forward/reverse isolation	vs Frequency	55, 56

DISTRIBUTION OF TLV2772 INPUT OFFSET VOLTAGE VDD = 5 V $R_L = 10 \text{ k}\Omega$ 35 TA = 25°C 30 Percentage of Amplifiers 25 20 15 10 5 0 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 V_{IO} - Input Offset Voltage - mV

Figure 1

Figure 2

DISTRIBUTION OF TLV2772 INPUT OFFSET VOLTAGE 35 V_{DD} = 5 V TA = 25°C to 125°C 30 25 Percentage of Amplifiers 20 15 10 5 0 -6 -3 0 3 6 α VIO – Temperature Coefficient – μ V/°C

Figure 5

Figure 6

Figure 7

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VS **FREQUENCY** 5 THD = 5% - Maximum Peak-to-Peak Output Voltage 4.5 $R_1 = 600 \Omega$ TA = 25°C 3.5 $V_{DD} = 5 V$ 3 2.5 VDD = 2.7 V 2 1.5 VO(PP) 0.5 0 100 1000 10000 f - Frequency - kHz

Figure 13

OUTPUT VOLTAGE VS **DIFFERENTIAL INPUT VOLTAGE**

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN

VS **FREQUENCY**

Figure 17

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN

Figure 18

SLOS209D - JANUARY 1998 - REVISED NOVEMBER 1999

TYPICAL CHARACTERISTICS

OUTPUT IMPEDANCE **FREQUENCY** 100 ₪ $V_{DD} = \pm 2.5 V$ TA = 25°C 0-10 Output Impedance $A_{V} = 100$ $A_V = 1$ 0.1 0.01 1k 100 10k 100k 1M f - Frequency - Hz Figure 23

COMMON-MODE REJECTION RATIO

COMMON-MODE REJECTION RATIO
vs

SUPPLY-VOLTAGE REJECTION RATIO vs

SUPPLY VOLTAGE REJECTION RATIO **FREQUENCY** 120 $V_{DD} = 5 V$ kSVR - Supply Voltage Rejection Ratio - dB TA = 25°C ksvR+ 100 KSVR-80 60 40 20 0 10 10 k 100 k 10 M f - Frequency - Hz

Figure 27

SLEW RATE

VS

LOAD CAPACITANCE

SR+ VDD = 5 V

VS FREE-AIR TEMPERATURE 14 VDD = 2.7 V $R_L = 10 \text{ k}\Omega$ CL = 100 pF 13 Av = 1 Slew Rate - µs 12 11 SR 10 9 -50 25 100 -75 -250 50 75 125 TA - Free-Air Temperature - °C Figure 30

SLEW RATE

SLOS209D - JANUARY 1998 - REVISED NOVEMBER 1999

TYPICAL CHARACTERISTICS

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t - Time - μs

Figure 33

-2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t-Time-us

Figure 34

NOISE VOLTAGE OVER A 10 SECOND PERIOD

Figure 41

TOTAL HARMONIC DISTORTION PLUS NOISE VS **FREQUENCY** 10 $V_{DD} = 2.7 V$ $R_L = 600 \Omega$ THD+N - Total Harmonic Distortion Plus Noise TA = 25°C $A_{V} = 100$ 0.1 $A_{V} = 10$ $A_V = 1$ 0.01 0.001 100 100k f - Frequency - Hz

Figure 42

Figure 43

PHASE MARGIN vs

Figure 46

GAIN MARGIN vs LOAD CAPACITANCE

TLV2770 SHUTDOWN REVERSE ISOLATION

PARAMETER MEASUREMENT INFORMATION

Figure 57

APPLICATION INFORMATION

driving a capacitive load

When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the device's phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater than 10 pF, it is recommended that a resistor be placed in series (R_{NULL}) with the output of the amplifier, as shown in Figure 58. A minimum value of 20 Ω should work well for most applications.

Figure 58. Driving a Capacitive Load

offset voltage

The output offset voltage, (V_{OO}) is the sum of the input offset voltage (V_{IO}) and both input bias currents (I_{IB}) times the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage:

Figure 59. Output Offset Voltage Model

APPLICATION INFORMATION

general configurations

When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifer (see Figure 60).

Figure 60. Single-Pole Low-Pass Filter

If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure to do this can result in phase shift of the amplifier.

Figure 61. 2-Pole Low-Pass Sallen-Key Filter

SLOS209D - JANUARY 1998 - REVISED NOVEMBER 1999

APPLICATION INFORMATION

using the TLV2772 as an accelerometer interface

The schematic, shown in Figure 62, shows the ACH04-08-05 interfaced to the TLV1544 10-bit analog-to-digital converter (ADC).

The ACH04-08-05 is a shock sensor designed to convert mechanical acceleration into electrical signals. The sensor contains three piezoelectric sensing elements oriented to simultaneously measure acceleration in three orthogonal, linear axes (x, y, z). The operating frequency is 0.5 Hz to 5 kHz. The output is buffered with an internal JFET and has a typical output voltage of 1.80 mV/g for the x and y axis and 1.35 mV/g for the z axis.

Amplification and frequency shaping of the shock sensor output is done by the TLV2772 rail-to-rail operational amplifier. The TLV2772 is ideal for this application as it offers high input impedance, good slew rate, and excellent dc precision. The rail-to-rail output swing and high output drive are perfect for driving the analog input of the TLV1544 ADC.

Figure 62. Accelerometer Interface Schematic

The sensor signal must be amplified and frequency-shaped to provide a signal the ADC can properly convert into the digital domain. Figure 62 shows the topology used in this application for one axis of the sensor. This system is powered from a single 3-V supply. Configuring the TLV431 with a 2.2-k Ω resistor produces a reference voltage of 1.23 V. This voltage is used to bias the operational amplifier and the internal JFETs in the shock sensor.

APPLICATION INFORMATION

gain calculation

Since the TLV2772 is capable of rail-to-rail output using a 3-V supply, $V_O = 0$ (min) to 3 V (max). With no signal from the sensor, nominal $V_O =$ reference voltage = 1.23 V. Therefore, the maximum negative swing from nominal is 0 V - 1.23 V = -1.23 V and the maximum positive swing is 3 V - 1.23 V = 1.77 V. By modeling the shock sensor as a low impedance voltage source with output of 2.25 mV/g (max) in the x and y axis and 1.70 mV/g (max) in the z axis, the gain of the circuit is calculated by equation 1.

$$Gain = \frac{Output Swing}{Sensor Signal \times Acceleration}$$
 (1)

To avoid saturation of the operational amplifier, the gain calculations are based on the maximum negative swing of –1.23 V and the maximum sensor output of 2.25 mV/g (x and y axis) and 1.70 mV/g (z axis).

Gain (x, y) =
$$\frac{-1.23 \text{ V}}{2.25 \text{ mV/g} \times -50 \text{ g}}$$
 = 10.9 (2)

and

Gain (z) =
$$\frac{-1.23 \text{ V}}{1.70 \text{ mV/g} \times -50 \text{ g}}$$
 = 14.5 (3)

By selecting R3 = 10 k Ω and R4 = 100 k Ω , in the x and y channels, a gain of 11 is realized. By selecting R3 = 7.5 k Ω and R4 = 100 k Ω , in the z channel, a gain of 14.3 is realized. The schematic shows the configuration for either the x- or y-axis.

bandwidth calculation

To calculate the component values for the frequency shaping characteristics of the signal conditioning circuit, 1 Hz and 500 Hz are selected as the minimum required 3-dB bandwidth.

To minimize the value of the input capacitor (C1) required to set the lower cutoff frequency requires a large value resistor for R2 is required. A 1-M Ω resistor is used in this example. To set the lower cutoff frequency, the required capacitor value for C1 is:

$$C1 = \frac{1}{2\pi f_{LOW} R_2} = 0.159 \,\mu\text{F} \tag{4}$$

Using a value of 0.22 μF, a more common value of capacitor, the lower cutoff frequency is 0.724 Hz.

To minimize the phase shift in the feedback loop caused by the input capacitance of the TLV2772, it is best to minimize the value of the feedback resistor R4. However, to reduce the required capacitance in the feedback loop a large value for R4 is required. Therefore, a compromise for the value of R4 must be made. In this circuit, a value of $100 \text{ k}\Omega$ has been selected. To set the upper cutoff frequency, the required capacitor value for C2 is:

$$C2 = \frac{1}{2\pi f_{HIGH} R_4} = 3.18 \ \mu F \tag{5}$$

Using a 2.2-nF capacitor, the upper cutoff frequency is 724 Hz.

R5 and C3 also cause the signal response to roll off. Therefore, it is beneficial to design this roll-off point to begin at the upper cutoff frequency. Assuming a value of 1 k Ω for R5, the value for C3 is calculated to be 0.22 μ F.

TLV277x, TLV277xA FAMILY OF 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS209D - JANUARY 1998 - REVISED NOVEMBER 1999

APPLICATION INFORMATION

circuit layout considerations

To achieve the levels of high performance of the TLV277x, follow proper printed-circuit board design techniques. A general set of guidelines is given in the following.

- Ground planes It is highly recommended that a ground plane be used on the board to provide all
 components with a low inductive ground connection. However, in the areas of the amplifier inputs and
 output, the ground plane can be removed to minimize the stray capacitance.
- Proper power supply decoupling Use a 6.8-μF tantalum capacitor in parallel with a 0.1-μF ceramic capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the application, but a 0.1-μF ceramic capacitor should always be used on the supply terminal of every amplifier. In addition, the 0.1-μF capacitor should be placed as close as possible to the supply terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less effective. The designer should strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors.
- Sockets Sockets can be used but are not recommended. The additional lead inductance in the socket pins
 will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board
 is the best implementation.
- Short trace runs/compact part placements Optimum high performance is achieved when stray series
 inductance has been minimized. To realize this, the circuit layout should be made as compact as possible,
 thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of
 the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at
 the input of the amplifier.
- Surface-mount passive components Using surface-mount passive components is recommended for high
 performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of
 surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small
 size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray
 inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be
 kept as short as possible.

APPLICATION INFORMATION

general power dissipation considerations

For a given θ_{JA} , the maximum power dissipation is shown in Figure 63 and is calculated by the following formula:

$$P_{D} = \left(\frac{T_{MAX} - T_{A}}{\theta_{JA}}\right)$$

Where:

P_D = Maximum power dissipation of TLV277x IC (watts)

T_{MAX} = Absolute maximum junction temperature (150°C)

T_A = Free-ambient air temperature (°C)

 $\theta_{JA} = \theta_{JC} + \theta_{CA}$

 θ_{JC} = Thermal coefficient from junction to case

θ_{CA} = Thermal coefficient from case to ambient air (°C/W)

MAXIMUM POWER DISSIPATION

FREE-AIR TEMPERATURE

NOTE A. Results are with no air flow and using JEDEC Standard Low-K test PCB.

Figure 63. Maximum Power Dissipation vs Free-Air Temperature

TLV277x, TLV277xA FAMILY OF 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS209D - JANUARY 1998 - REVISED NOVEMBER 1999

APPLICATION INFORMATION

shutdown function

Three members of the TLV277x family (TLV2770/3/5) have a shutdown terminal for conserving battery life in portable applications. When the shutdown terminal is tied low, the supply current is reduced to 0.8 μ A/channel, the amplifier is disabled, and the outputs are placed in a high impedance mode. To enable the amplifier, the shutdown terminal can either be left floating or pulled high. When the shutdown terminal is left floating, care needs to be taken to ensure that parasitic leakage current at the shutdown terminal does not inadvertently place the operational amplifier into shutdown. The shutdown terminal threshold is always referenced to $V_{DD}/2$. Therefore, when operating the device with split supply voltages (e.g. ± 2.5 V), the shutdown terminal needs to be pulled to V_{DD} — (not GND) to disable the operational amplifier.

The amplifier's output with a shutdown pulse is shown in Figures 48, 49, and 50. The amplifier is powered with a single 5-V supply and configured as a noninverting configuration with a gain of 5. The amplifier turnon and turnoff times are measured from the 50% point of the shutdown pulse to the 50% point of the output waveform. The times for the single, dual, and quad are listed in the data tables. The *bump* on the rising edge of the TLV2770 output waveform is due to the start-up circuit on the bias generator. For the dual and quad (TLV2773/5), this *bump* is attributed to the bias generator's start-up circuit as well as the cross talk between the other channel(s), which are in shutdown.

Figures 55 and 56 show the amplifier's forward and reverse isolation in shutdown. The operational amplifier is powered by ± 1.35 -V supplies and configured as a voltage follower (A_V = 1). The isolation performance is plotted across frequency for both 0.1 V_{PP} and 2.7 V_{PP} input signals. During normal operation, the amplifier would not be able to handle a 2.7-V_{PP} input signal with a supply voltage of ± 1.35 V since it exceeds the common-mode input voltage range (V_{ICR}). However, this curve illustrates that the amplifier remains in shutdown even under a worst case scenario.

SLOS209D - JANUARY 1998 - REVISED NOVEMBER 1999

APPLICATION INFORMATION

macromodel information

Macromodel information provided was derived using Microsim $Parts^{TM}$ Release 8, the model generation software used with Microsim $PSpice^{TM}$. The Boyle macromodel (see Note 4) and subcircuit in Figure 64 are generated using the TLV2772 typical electrical and operating characteristics at $T_A = 25^{\circ}C$. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification

- Unity-gain frequency
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- Short-circuit output current limit

NOTE 4: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Intergrated Circuit Operational Amplifiers", IEEE Journal of Solid-State Circuits, SC-9, 353 (1974).

Figure 64. Boyle Macromodel and Subcircuit

PSpice and Parts are trademarks of MicroSim Corporation.

General Information	1
Data Sheets	2
Product Previews	3
Evaluation Modules	4
Application Reports	5
Mechanical Data	6

Contents

	Page
LMV331, LMV393, LMV339	
Single, Dual, Quad Comparators	3-3
LMV321, LMV358, LMV324	
Single, Dual, Quad Operational Amplifiers	3-7

Low	Supply	CI	ul	rr	ent:	
	LMV331					ур
	LMV393				100 µA	Typ
	LMV339				170 µA	Тур

2.7-V and 5-V Performance

- Input Common-Mode Voltage Range Includes Ground
- Low Output Saturation Voltage ... 200 mV Typ
- Package Options Include Plastic Small-Outline (D), Small-Outline Transistor (SOT-23 DBV, DCK), and Thin Shrink Small-Outline (PW) Packages

description

The LMV393 and LMV339 are low-voltage (2.7 V to 5.5 V) versions of the dual and quad comparators, LM393 and LM339, which operate from 5 V to 30 V. The LMV331 is the single-comparator version.

The LMV331, LMV339, and LMV393 are the most cost-effective solutions for applications where low-voltage operation, low power, space saving, and price are the primary specifications in circuit design for portable consumer products. These devices offer specifications that meet or exceed the familiar LM339 and LM393 devices at a fraction of the supply current.

LMV393...D OR PW PACKAGE (TOP VIEW)

LMV331 ... DBV OR DCK PACKAGE (TOP VIEW)

The LMV331 is available in the ultra-small DCK package, which is approximately half the size of the five-pin SOT-23. The small package saves space on printer circuit boards and enables the design of small portable electronic devices. It also allows the designer to place the device closer to the signal source to reduce noise pickup and increase signal integrity.

The LMV331, LMV339, and LMV393 devices are characterized for operation from -40°C to 85°C.

symbol (each comparator)

LMV331 SINGLE, LMV393 DUAL, LMV339 QUAD COMPARATORS

SLCS136 - AUGUST 1999

AVAILABLE OPTIONS

(assuit asset)	PACKAGE	PACKAGED DEVICES					
TA	TYPE	SINGLE	DUAL	QUADRUPLE			
	5-pin DCK	LMV331DCKR	- 0	er At Cor .			
	5-pin DBV	LMV331DBVR	- 1	/TAU-STE			
1000 4- 0500	8-pin SOIC	-	LMV393D	stick whols			
-40°C to 85°C	8-pin TSSOP		LMV393PW	-			
	14-pin SOIC	-		LMV339D			
	14-pin TSSOP	_	- 989	LMV339PWR			

The D package is available taped and reeled. Add the suffix R to the device type (e.g., LMV393DR). The DCK, DBV, and PW packages are only available left-end taped and reeled.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	5.5 V
Differential input voltage, VID (see Note 2)	±5.5 V
Input voltage, V _I (either input)	0 to 5.5°C
Operating virtual junction temperature temperature range	0 to 150°C
Package thermal impedance, θ _{JA} (see Notes 3 and 4): D (8-pin) package	197°C/W
D (14-pin) package	127°C/W
DBV package	347°C/W
DCK package	389°C/W
PW (8-pin) package	243°C/W
PW (14-pin) package	170°C/W
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or PW package	260°C
DBV or DCK package	TBD
Storage temperature range, T _{stq}	-65 to 150°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values (except differential voltages and VCC specified for the measurement of IOS) are with respect to the network GND.

2. Differential voltages are at IN+ with respect to IN-.

Maximum power dissipation is a function of T_J(max), θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is P_D = (T_J(max) – T_A)/θ_{JA}. Selecting the maximum of 150 °C can impact reliability.

 The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

recommended operating conditions

		MIN	MAX	UNIT
VCC	Supply voltage (single-supply operation)	2.7	5.5	٧
TA	Operating free-air temperature	-40	85	°C

electrical characteristics at specified free-air temperature, V_{CC} = 2.7 V, V-/GND = 0 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TA	MIN TYP	MAX	UNIT
VIO	Input offset voltage		25°C	1.7	7	mV
$\alpha_{V_{10}}$	Average temperature coefficient of input offset voltage	190-	25°C	5	nanovi.	μV/°C
Lan Car	Input bias current		25°C	10	250	- ^
IB			-40°C to 85°C		400	nA
	Tool	(PDF-	25°C	5	50	- 4
110	Input offset current		-40°C to 85°C	Acres de la	150	nA
10	Output curent	V _O ≤ 1.5 V	25°C	5 23		mA
Atta	Output leakage curent	A VAI	25°C	0.003	high)	.0
			-40°C to 85°C		1	μΑ
VICR	Common-mode input voltage range	F0(4)	25°C	-0.1 to 2		٧
VSAT	Saturation voltage	I _O ≤ 1 mA	25°C	200	Comerc	mV
17.00	004 008 400	LMV331	25°C	40	100	
Icc	Supply current	LMV393 (both comparators)	25°C	70	140	μΑ
		LMV339 (all four comparators)	25°C	140	200	

switching characteristics T_A = 25°C, V_{CC} = 2.7 V, R_I = 5.1 kΩ, V-/GND = 0 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
	Drangastian dalay high to law level autout suitabing	Input overdrive = 10 mV	1000		
tpHL Propagation delay, high- to low-level output switch	Propagation delay, night to low-level output switching	Input overdrive = 100 mV			ns
tPLH Propagation delay, low- to high-level output switching	Described delection to blob by the described	Input overdrive = 10 mV	500		
	Propagation delay, low- to high-level output switching	Input overdrive = 100 mV	400	200 2015	ns

LMV331 SINGLE, LMV393 DUAL, LMV339 QUAD COMPARATORS

SLCS136 - AUGUST 1999

electrical characteristics at specified free-air temperature, V_{CC} = 5 V, V-/GND = 0 V (unless otherwise noted)

TIME	PARAMETER	AT	TEST CONDITIONS	TA	MIN TYP	MAX	UNIT
,Vm	1	D O'VES		25°C	1.7	7	V
VIO	Input offset voltage		-40°C to 85°C	cillena enuighebreat e	9	mV	
$\alpha_{V_{10}}$	Average temperature coef of input offset voltage	ficient		25°C	5	lugni le	μV/°C
L-	Innut blee surrent	5788 of 0	01-1-2011-1-2011	25°C	25	250	
I _{IB} Input bias current		-40°C to 85°C		400	nA		
t -	land effect coment	D168.01 D	Q6-1	25°C	2	50	^
I _{IO} Input offset current		V.8.1	-40°C to 85°C	friend	150	nA	
10	Output curent	0983	V _O ≤ 1.5 V	25°C	10 84		mA
	Output leakage curent	0-1	25°C	0.003			
			-40°C to 85°C	an-mode input voltage	1	μΑ	
VICR	Common-mode input volta	ige range	Am	25°C	-0.1 to 4.2	Вапит	V
.,	001 + , 0N	The Admes	Particular and the second	25°C	200	400	
VSAT	Saturation voltage		I _O ≤ 4 mA	-40°C to 85°C	tournuo	700	mV
	140 200	0985	LMV331	25°C	60	120	
				-40°C to 85°C		150	
beson	Control of the Parket		1.1.43 (0.00 (111	25°C	100	200	Halle
ICC	Supply current		LMV393 (both comparators)	-40°C to 85°C	2502 A 12 A 25	250	μΑ
				25°C	170	300	
				-40°C to 85°C	ation delay, righ- to to	350	LINE

switching characteristics at specified free-air temperature , T_A = 25°C, V_{CC} = 5 V, R_L = 5.1 kΩ, V-/GND = 0V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPHL	Propagation delay high to law level cutaut quitabing	Input overdrive = 10 mV	600		ns	
	Propagation delay, high- to low-level output switching	Input overdrive = 100 mV	200			
tPLH	Propagation delay, low- to high-level output switching	Input overdrive = 10 mV		450		
		Input overdrive = 100 mV		300		ns

- 2.7-V and 5-V Performance
- No Crossover Distortion
- Low Supply Current:

LMV321 . . . 130 uA Tvp LMV358 . . . 210 μΑ Typ LMV324 . . . 410 μΑ Typ

- Rail-to-Rail Output Swing
- **Package Options Include Plastic** Small-Outline (D), Small-Outline Transistor (SOT-23 DBV, DCK), and Thin Shrink Small-Outline (PW) Packages

description

The LMV324 and LMV358 are low-voltage (2.7 V to 5.5 V) versions of the dual and quad commodity operational amplifiers, LM324 and LM358, that operate from 5 V to 30 V. The LMV321 is the single-amplifier version.

The LMV321, LMV324, and LMV358 are the most cost-effective solutions for applications where low-voltage operation, space saving, and low price are needed. They offer specifications that meet or exceed those of the familiar LM358 and LM324 devices. These devices have rail-to-rail output-swing capability, and the common-mode voltage range includes ground. They all exhibit excellent speed-to-power ratios, achieving 1MHz of bandwidth at 1-V/us slew rate with low supply current.

LMV321... DBV OR DCK PACKAGE (TOP VIEW)

The LMV321 is available in the ultra-small DCK package, which is approximately half the size of the five-pin SOT-23. This package saves space on printed circuit boards and enables the design of small portable electronic devices. It also allows the designer to place the device closer to the signal source to reduce noise pickup and increase signal integrity.

The LMV321, LMV324, and LMV358 devices are characterized for operation from -40°C to 85°C.

symbol (each amplifier)

AVAILABLE OPTIONS

TA	PACKAGE	PACKAGED DEVICES					
	TYPE	SINGLE	DUAL	QUADRUPLE			
	5-pin DCK	LMV321DCKR	- 0	A Aurith			
	5-pin DBV	LMV321DBVR	_	AF AU BES			
1000 1 0500	8-pin SOIC		LMV358D	MAUSTS.			
-40°C to 85°C	8-pin TSSOP	-	LMV358PW				
	14-pin SOIC	-		LMV324D			
	14-pin TSSOP	-	DISTRIBUTE OF STREET	LMV324PWR			

The D package is available taped and reeled. Add the suffix R to the device type (e.g., LMV324DR). The DCK, DBV, and PW packages are only available left-end taped and reeled.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1) Differential input voltage, V _{ID} (see Note 2) Input voltage, V _I (either input)	±5.5 V
Duration of output short circuit (one amplifier) to ground at (over $V_{CC} \le 5.5 \text{ V}$ (see Note 3)	
Operating virtual junction temperature temperature range)	150 °C
Package thermal impedance, θ _{JA} (see Notes 4 and 5): D (8-	
D (1)	4-pin) package 127 °C/W
	package 347 °C/W
DCK	package 389 °C/W
PW	(8-pin) package 243 °C/W
	(14-pin) package 170 °C/W
Lead temperature 1,6 mm (1/16 inch) from case for 10 second	
Storage temperature range, T _{stg}	–65 to 150°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values (except differential voltages and VCC specified for the measurement of IOS) are with respect to the network GND.

Differential voltages are at IN+ with respect to IN-.

3. Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.

Maximum power dissipation is a function of T_J(max), θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is P_D = (T_J(max) – T_A)/θ_{JA}. Selecting the maximum of 150°C can impact reliability.

5. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions

		MIN	MAX	UNIT
Vcc	Supply voltage (single-supply operation)	2.7	5.5	V
TA	Operating free-air temperature	-40	85	°C

LMV321 SINGLE, LMV358 DUAL, LMV324 QUAD OPERATIONAL AMPLIFIERS

SLOS263 - AUGUST 1999

electrical characteristics at T_A = 25°C and V_{CC} = 2.7 V (unless otherwise noted)

	PARAMETER	TEST CONI	DITIONS	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	Alama Harris (Mis)	HUNDA TRAT		1.7	7	mV
$\alpha_{V_{10}}$	Average temperature coefficient of input offset voltage	to of times.			5	to highl	μV/°C
IB	Input bias current			l tradalfinba	925000011	250	nA
110	Input offset current				5	50	nA
CMRR	Common-mode rejection ratio	V _{CM} = 0 to 1.7 V		50	63	de kiesel	dB
ksvr	Supply-voltage rejection ratio	V _{CC} = 2.7 V to 5 V,	V _O = 1 V	50	60		dB
VICR	Common-mode input voltage range	CMRR ≥ 50 dB		0 to 1.7	-0.2 to 1.9	to knock	V
	0.1-1.1-1-1	D. 40 k0 to 4 05 V	High level	V _{CC} - 100	V _{CC} - 10		
	Output swing	$R_L = 10 \text{ k}\Omega \text{ to } 1.35 \text{ V}$	Low level	OA TOTAL	60	180	mV
V	60 00	LMV321	VIVE ALVANCE	ON Chierro	80	170	150,000
ICC	Supply current	LMV358 (both amplifier	s)		140	340	μА
		LMV324 (all four amplifi	iers)	40	260	680	Vicin
B ₁	Unity-gain bandwidth	C _L = 200 pF			1		MHz
Фт	Phase margin	The second second desired			60	The lead	deg
Gm	Gain margin		= 2 ±11 (0.2.5.V	18	10		dB
Vn	Equivalent input noise voltage	f = 1 kHz			46		nV/√Hz
In	Equivalent input noise current	f = 1 kHz			0.17	Dulgud	pA/√Hz

electrical characteristics at specified free-air temperature range, V_{CC} = 5 V (unless otherwise noted)

	PARAMETER	TEST CONDIT	TONS	TA	MIN	TYP	MAX	UNIT
.,				25°C	Analystuses	1.7	7	
VIO	Input offset voltage			-40°C to 85°C		ogsilov testo	9	mV
$\alpha_{V_{IO}}$	Average temperature coefficient of input offset voltage			25°C		5	id Jumpil In Second	μV/°C
185	1		Vere	25°C	pites ned	15	250	V
IB	Input bias current	VIZA		-40°C to 85°C	olist in	rouler en effort	500	V
L-V	Input offset surrent		8110	25°C	shin species	5	50	V
10	Input offset current	to confirm the lateral		-40°C to 85°C			150	V
CMRR	Common-mode rejection ratio	V _{CM} = 0 to 4 V	M. Glaci Chi	25°C	50	65	MINO	V
ksvr	Supply-voltage rejection ratio	V _{CC} = 2.7 V to 5 V, V V _{CM} = 1 V	O = 1 V,	25°C	50	60		V
VICR	Common-mode input voltage range	CMMR ≥ 50 dB	legnes surol li	25°C	0 to 4	-0.2 to 4.2		V
P-2 (2 ()			LU'ab based	25°C	VCC-300	V _{CC} -40	EXC.	m ⁰
			High level	-40°C to 85°C	V _C C-400	THE REAL PROPERTY.	112011	
		$R_L = 2 k\Omega$ to 2.5 V	Low level	25°C		120	300	
				-40°C to 85°C	- Bylone a	SHEET PROJECT THE	400	
	Output swing	Annual Control of the		25°C	V _C C-100	V _C C-10	PERMIT	mV
		$R_L = 10 \text{ k}\Omega \text{ to } 2.5 \text{ V}$	High level	-40°C to 85°C	V _{CC} -200		Maria .	
			Low level	25°C		65	180	
				-40°C to 85°C			280	
		2 212		25°C	15	100		1//-11
Ay	Large-signal voltage gain	$R_L = 2 k\Omega$		-40°C to 85°C	10			V/mV
		Sourcing, VO = 0 V			5	60		
los	Output short-circuit current	Sinking, V _O = 5 V		25°C	10	160		V
		LMV321		25°C		130	250	
lcc	Supply current	LMV358 (both amplif	iers)	25°C		210	440	μΑ
		LMV324 (all four amplifiers)		-40°C to 85°C			1160	
B ₁	Unity-gain bandwidth	C _L = 200 pF		25°C		1		MHz
Φm	Phase margin			25°C		60		deg
Gm	Gain margin			25°C		10	BANK	dB
Vn	Equivalent input noise voltage	f = 1 kHz		25°C		39		nV/√Hz
In	Equivalent input noise current	f = 1 kHz		25°C		0.21		pA/√Hz
SR	Slew rate			25°C		1		V/µs

General Information	1
Data Sheets	2
Product Previews	3
Evaluation Modules	4
Application Reports	5
Mechanical Data	6

Contents

	age
Introduction to Evaluation Modules	4-3
Universal Op Amp Evaluation Module Selection Guide	4-4

INTRODUCTION TO EVALUATION MODULES

The Universal Op Amp Evaluation Module is a printed circuit board (PCB) that greatly reduces design time, intended for quick evaluation of TI general purpose and performance amplifiers. See respective databooks for Audio Power or High Speed Amplifier EVMs.

To obtain a universal EVM board and amplifier samples for evaluation, select the appropriate EVM board from the Universal Op Amp Evaluation Module Selection Guide and contact your local TI sales office, distributor, or the TI Product Information Center (listed on the last page of this book). Evaluation modules will be introduced in the future. Please check the web (www.ti.com) for the latest updates and manuals.

Universal Op Amp Evaluation Module Selection Guide

The Universal Op Amp Evaluation Module is a printed circuit board (PCB) that greatly reduces design time, intended for quick evaluation of TI general purpose and performance amplifiers. See respective databooks for Audio Power or High Speed Amplifier EVMs. The purpose of this guide is to show which universal EVM accommodates which amplifier package (also see www.ti.com).

	Shutdown	Package	Universal Op-Amp EVM SLOP120 ¹	Universal Op-Amp EVM SLOP224 ²	Universal Op-Amp EVM SLOP247 ³	Universal Op-Amp EVM SLOP248 ⁴	Universal Op-Amp EVM SLOP249 ⁵
	4 75 15	PDIP					X (8-pin)
		SOIC				X (8-pin)	
	Without Shutdown	SOT-23	X (5-pin)				
Ш	Silutuowii	TSSOP					
		MSOP			X (8-pin)		
SINGL		PDIP					X (8-pin)
\leq		SOIC		X (8-pin)		X (8-pin)	
S	With Shutdown	SOT-23		X (6-pin)			
	Shutdown	TSSOP					
		MSOP			X (8-pin)		
		PDIP					X (8-pin)
		SOIC	X (8-pin)			X (8-pin)	
	Without Shutdown	SOT-23					
		TSSOP					
1		MSOP	X (8-pin)			ILEE LAND AND AND A	
DUAL		PDIP					X (14-pin)
5		SOIC		X (14-pin)		X (14-pin)	
	With Shutdown	SOT-23					
	Shutdown	TSSOP					
u		MSOP		X (10-pin)	X (10-pin)		
		PDIP					X (14-pin)
		SOIC				X (14-pin)	
	Without Shutdown	SOT-23					
_	Siluluowii	TSSOP			X (14-pin)		
4		MSOP					
QUAD		PDIP				X (16-pin)	X (16-pin)
O		SOIC	MATERIAL DE				
	With Shutdown	SOT-23					
	Siluluowii	TSSOP			X (16-pin)		
	8 B) U	MSOP	THE STREET			ESCHOOLS IN TRACE	FEBRUARY STATES

^{1.} SLOP120 EVM Manual (SLVU006), orderable part number (UNIV-OPAMP-1B)

^{2.} SLOP224 EVM Manual (SLVU009), orderable part number (UNIV-OPAMP-2B)

^{3.} SLOP224 EVM Manual (SLOU055), orderable part number (UNIV-OPAMP-3B)

^{4.} SLOP248 EVM Manual (SLOU061), orderable part number (UNIV-OPAMP-4B)

^{5.} SLOP249 EVM Manual (SLOU062), orderable part number (UNIV-OPAMP-5B)

General Information	1
Data Sheets	2
Product Previews	3
Evaluation Modules	4
Application Reports	gue alonie 5
Mechanical Data	6

Contents

	Page
Effect of Parasitic Capacitance in Op Amp Circuits	5–3
Feedback Amplifier Analysis Tools	5-33
Noise Analysis in Operational Amplifier Circuits	5-55
Choosing an ADC and Op Amp for Minimum Offset	5-83
Electostatic Discharge (ESD)	5-95
Understanding Operational Amplifier Specifications	5-101
PowerPAD Thermally Enhanced Package	5-143
Single Supply Op Amp Design Techniques	5-189
Application of Rail-To-Rail Op Amps	5-211
Understanding Basic Analog – Circuit Equations	5-227
Understanding Basic Analog – Active Devices	5-241

Effect of Parasitic Capacitance in Op Amp Circuits

Application Report

James Karki

Literature Number: SLOA013 February 1999

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated

Contents

1		5-15
2		5-16
3	3.1 Gain Analysis	5-16 5-17 5-18
4	4.1 Gain Analysis with Cn 4.1.1 Stability Analysis with Cn	5-20 5-20 5-23 5-24
5	5.1 Gain Analysis with Cp	5-27 5-27 5-28 5-28
6	6.1 Gain Analysis with Ro and Co 6.2 Stability Analysis with Ro and Co	5-30 5-30 5-31 5-32
7		5–38
8	References	5-39

	List of Figures	
1	Basic Dominant Pole Op Amp Model	5-16
2	Amplifier Circuits Constructed with Negative Feedback	5-16
3	Gain-Block Diagrams	5-17
4	Spice Simulation of Noninverting and Inverting Amplifier	5-18
	Loop Gain Magnitude and Phase Plot	
6	Adding Cn to Amplifier Circuits	5-20
7	Spice Simulation of Cn in Noninverting and Inverting Amplifiers	5-22
8	Loop Gain Magnitude and Phase Asymptote Plots with Cn	5-23
9	Simulation Results with C1 and C2 Added to Compensate for Cn	5-26
10	Effect of Cn in Inverting and Noninverting Amplifier	5-26
11	Adding Cp to Amplifier Circuits	5-27
12	2 Spice Simulation with Cp in Noninverting and Inverting Amplifier Circuits	5-28
	Spice Simulation with Cs Added to Compensate for Cp in Noninverting Amplifier	
14	Ro and Co Added to Amplifiers	5-30
	Gain Block Diagrams with Ro and Co	
	Spice Simulation with Ro and Co	
17	7 Loop Gain Magnitude and Phase with Ro and Co	5-32
18	Isolation Resistor Added to Isolate the Feedback Loop from Effects of Ro	5-33
19	Phase Shift in $\frac{Vfb}{aVe}$ vs the Ratio Ri:Ro	5–34
20	Maximum Phase Shift in $\frac{Vfb}{aVe}$ vs the Ratio Ri:Ro	5–34
2	Spice Simulation Results with Ri Added to Compensate for Ro and Co	5–35
	2 Video Buffer Application	
23	B Ri and Cc Added to Compensate for Effects of Ro and Co	5–36
24	Simplified Feedback Models	5–36
25	5 Simulation of Feedback Using Ri and Cc to Compensate for Ro and Co	5–37
	List of Tables	
	Noninverting Amplifier: Capacitor Location, Effect, and Compensation Summary Inverting Amplifier: Capacitor Location, Effect, and Compensation Summary	

Effect of Parasitic Capacitance in Op Amp Circuits

James Karki

ABSTRACT

Parasitic capacitors are formed during normal op amp circuit construction. Op amp design guidelines usually specify connecting a small 20-pF to 100-pF capacitor between the output and negative input, and isolating capacitive loads with a small, $20\text{-}\Omega$ to $100\text{-}\Omega$ resistor. This application report analyzes the effects of capacitance at the input and output pins of an op amp, and suggests means for computing appropriate values for specific applications. The inverting and noninverting amplifier configurations are used for demonstration purposes. Other circuit topologies can be analyzed in a similar manner.

1 Introduction

Two conductors, insulated from one another, carrying a charge, and having a voltage potential between them, form a capacitor. Capacitors are characterized by their charge-to-voltage ratio; $C = \frac{q}{V}$, where C is the capacitance in Farads, q is the charge in Coulombs, and V is the voltage in volts. In general, capacitance is a function of conductor area, distance between the conductors, and physical properties of the insulator. In the special case of two parallel plates separated by an insulator $C = \frac{\epsilon \epsilon_0 \times A}{d}$ where ϵ is the dielectric constant of the insulator, ϵ_0 is the permittivity of free space, A is the area of the plates, and d is the distance between the plates. Thus, in general:

- Capacitance is directly proportional to the dielectric constant of the insulating material and area of the conductors.
- Capacitance is inversely proportional to the distance separating the conductors.

Rarely are two parallel plates used to make a capacitor, but in the normal construction of electrical circuits, an unimaginable number of capacitors are formed. On circuit boards, capacitance is formed by parallel trace runs, or traces over a ground or power plane. In cables there is capacitance between wires, and from the wires to the shield.

- Circuit traces on a PCB with a ground and power plane will be about 1-3 pF/in.
- Low capacitance cables are about 20–30 pF/ft conductor to shield.

Therefore, with a few inches of circuit board trace and the terminal capacitance of the op amp, it is conceivable that there can be 15–20 pF on each op amp terminal. Also, cables as short as a few feet can present a significant capacitance to the op amp.

This report assumes that a voltage feedback op amp is being used.

2 Basic One-Pole Op Amp Model

The voltage feedback op amp is often designed using dominant pole compensation. This gives the op amp a one-pole transfer function over the normal frequencies of operation that can be approximated by the model shown in Figure 1 (a). This model is used throughout this report in the spice simulations with the following values: gm=0.1, $Rc=1 M\Omega$ and Cc=159 nF. With these values, the model has the following characteristics: dc gain = 100 dB, dominant pole frequency = 10 Hz, and unity gain bandwidth = 1 MHz.

In the schematic drawings, the representation shown in Figure 1 (b) is used,

where
$$a = gm \times \frac{R_c}{1 + sRcCc}$$

Figure 1. Basic Dominant Pole Op Amp Model

3 Basic Circuits and Analysis

Figure 2 (a) shows a noninverting amplifier and Figure 2 (b) shows an inverting amplifier. Both amplifier circuits are constructed by adding negative feedback to the basic op amp model.

Figure 2. Amplifier Circuits Constructed with Negative Feedback

These circuits are represented in gain block diagram form as shown in Figure 3 (a) and (b). Gain block diagrams are a powerful tool in understanding gain and stability analysis.

Figure 3. Gain-Block Diagrams

In the gain block diagrams:

 $a=gm imes rac{R_c}{1+sRcCc}, \ b=rac{R1}{R1+R2}, \ and \ c=rac{R2}{R1+R2}.$ Summing node s either inverts or passes unchanged each input—depending on the sign at the input—and adds the results together to produce the output.

3.1 Gain Analysis

In the gain block diagram of Figure 3 (a) (noninverting amplifier), Vo=aVe=a(Vi-bVo). Solving the transfer function:

$$\frac{V_O}{V_I} = \left(\frac{1}{b}\right) \left(\frac{1}{1 + \frac{1}{ab}}\right) = \left(\frac{R1 + R2}{R1}\right) \left(\frac{1}{1 + \left(\frac{1 + sRcCc}{gmRc}\right)\left(\frac{R1 + R2}{R1}\right)}\right)$$
(1)

This equation describes a single pole transfer function where $\frac{1}{b}$ is the dc gain and the pole is at the frequency where $\frac{1}{ab} = 1$

In the gain block diagram of Figure 3 (b) (inverting amplifier), Vo = aVe = a(-cVi - bVo). Solving the transfer function:

$$\frac{V_O}{V_I} = -\left(\frac{c}{b}\right) \left(\frac{1}{1 + \frac{1}{ab}}\right) = \left(\frac{R2}{R1}\right) \left(\frac{1}{1 + \left(\frac{1 + sRcCc}{gmRc}\right)\left(\frac{R1 + R2}{R1}\right)}\right)$$
(2)

This equation describes a single pole transfer function where $-\frac{c}{b}$ is the dc gain and the pole is at the frequency where $\frac{1}{ab} = 1$.

Figure 4 shows the results of a spice simulation of the circuits with R1 and R2 = 100 k Ω , and Rs = 50 k Ω . As expected, the circuit gains are flat from dc to the point where $\frac{1}{ab}$ = 1, and then roll-off at –20dB/dec. The open loop gain is plotted for reference.

Figure 4. Spice Simulation of Noninverting and Inverting Amplifier

3.1.1 Stability Analysis

Using either gain block diagram, consider a signal traversing the loop from Ve, through the gain block a, to Vo, back through the gain block b, and the summing node s to Ve. If, while traversing this loop, the signal experiences a phase shift of 0° , or any integer multiple of 360° , and a gain equal to or greater than 1, it will reinforce itself causing the circuit to oscillate. Since there is a phase shift of 180° in the summing node s, this equates to:

$$|ab| \ge 1\& \angle ab = -180^{\circ} \rightarrow Oscillation.$$

In reality, anything close to this usually causes unacceptable overshoot and ringing.

The product of the open loop gain of the op amp, a, and the feedback factor, b, is of special significance and is often termed the loop gain or the loop transmission. To determine the stability of an op amp circuit, consider the magnitude, |ab|, and phase, $\angle ab$.

Figure 5 shows dB lal and dB $\frac{1}{b}$ plotted along with $\angle ab$ for the one-pole op amp model in either amplifier circuit with purely resistive feedback (R1=R2=100K). It is obvious that, since the maximum phase shift in $\angle ab$ is -90° , the circuits are stable.

Figure 5. Loop Gain Magnitude and Phase Plot

At the point where dB |a| and dB $\frac{1}{b}$ intersect, dB |a| - dB $\frac{1}{b}$ = 0. This is the same as $\log |a| + \log |b| = 0$, and taking the anti-log; |ab| = 1.

The slope of dB | a| or dB $\frac{1}{b}$ | indicates their phase: -40 dB/dec = -180°, -20 dB/dec = -90°, 0 dB/dec = 0°, 20 dB/dec = 90°, 40 dB/dec = 180°, etc. Since $\frac{1}{b}$ is the inverse of | b|, the sign of its phase is opposite, i.e., if $\angle b$ =-90° then $\angle \frac{1}{b}$ = 90°. Therefore a rate of closure = 40 dB/dec between dB | a| and dB $\frac{1}{b}$ indicates $\angle ab$ =-180° and the circuit is normally unstable. Plotting dB | a| and dB $\frac{1}{b}$ on a log scale gives a visual indication of the stability of the circuit.

4 Capacitance at the Inverting Input

Figure 6 (a) and (b) show adding ${\it Cn}$ to the noninverting and inverting amplifier circuits.

Figure 6. Adding Cn to Amplifier Circuits

4.1 Gain Analysis with Cn

Making use of the block diagrams and their related circuit solutions, determine how *Cn* has modified the gain block values and substitute as required.

For the noninverting amplifier shown in Figure 6 (a):

$$Vn = Vo \frac{Z1}{Z1 + R2}$$
where $Z1 = \frac{R1}{1 + sR1Cn}$.

Solving for the modified feedback factor:

$$b = \frac{Z1}{Z1 + R2} = \left(\frac{R1}{1 + sR1Cn}\right) \left(\frac{1}{\left(\frac{R1}{1 + sR1Cn}\right) + R2}\right) = \frac{1}{\frac{R1 + R2}{R1} + sR2Cn}$$
(3)

For the inverting amplifier shown in Figure 6 (b) writing the node equation at *Vn* results in:

$$\frac{Vn-Vi}{R1} + Vn \times sCn + \frac{Vn-Vo}{R2} = 0.$$

Therefore,

$$Vn = Vi \left(\frac{R2}{R1 + R2 + sCnR1R2} \right) + \left(\frac{Vo(R1)}{R1 + R2 + sCnR1R2} \right)$$

$$= Vi \left(\frac{1}{\frac{R1 + R2}{R2} + sCnR1} \right) + Vo \left(\frac{1}{\frac{R1 + R2}{R1} + sCnR2} \right)$$

As above:

$$b = \frac{1}{\frac{R1 + R2}{R1} + sR2Cn}$$
, and $c = \frac{1}{\frac{R1 + R2}{R2} + sR2Cn}$

Using these values in the solutions to the gain block diagrams of Figure 3, the noninverting amplifier's gain, with *Cn* added to the circuit, is:

$$\frac{Vo}{Vi} = \left(\frac{1}{b}\right) \left[\frac{1}{1 + \frac{1}{ab}}\right] = \left(\frac{R1 + R2}{R1} + sR2Cn\right) \left[\frac{1}{1 + \left(\frac{1 + sRcCc}{gmRc}\right)\left(\frac{R1 + R2}{R1} + sR2Cn\right)}\right]$$
(4)

and the inverting amplifier's gain, with Cn added to the circuit, is:

$$\frac{Vo}{Vi} = -\left(\frac{c}{b}\right) \left[\frac{1}{1 + \frac{1}{ab}}\right] = -\left[\frac{\frac{R1 + R2}{R1} + sR2Cn}{\frac{R1}{R1 + R2} + sR1Cn}\right] \left(\frac{1}{1 + \left(\frac{1 + sRcCc}{gmRc}\right)\left(\frac{R1 + R2}{R1} + sR2Cn\right)}\right]$$

$$= -\left(\frac{R2}{R1}\right) \left(\frac{\frac{R1 + R2}{R2} + sR1Cn}{\frac{R1 + R2}{R2} + sR1Cn}\right) \left(\frac{1}{1 + \left(\frac{1}{a}\right)\left(\frac{R1 + R2}{R1} + sR2Cn\right)}\right)$$

$$= -\left(\frac{R2}{R1}\right) \left(\frac{1}{1 + \left(\frac{1 + sRcCc}{gmRc}\right)\left(\frac{R1 + R2}{R1} + sR2Cn\right)}\right)$$

$$= -\left(\frac{R2}{R1}\right) \left(\frac{1}{1 + \left(\frac{1 + sRcCc}{gmRc}\right)\left(\frac{R1 + R2}{R1} + sR2Cn\right)}\right)$$

$$= -\left(\frac{R2}{R1}\right) \left(\frac{1}{1 + \left(\frac{1 + sRcCc}{gmRc}\right)\left(\frac{R1 + R2}{R1} + sR2Cn\right)}\right)$$

Figure 7 shows the results of a spice simulation of both amplifiers with Cn=15.9 nF, resistors R1 and R2=100 k Ω , and Rs=50 k Ω . Refer to it while taking a closer look at Equations 4 and 5.

In Equation 4, the first term

$$\left(\frac{R1 + R2}{R1} + sR2Cn\right)$$

contains a zero at

$$f_z = \frac{R1 + R2}{2\pi R1 R2 Cn}.$$

In the spice simulation we see effects of this zero as the gain begins to increase at around 200 Hz. In the second term of Equation 4, substitute

$$Rm = \frac{1}{gm}, \text{ to get}$$

$$\left[\frac{1}{1 + \left(\frac{Rm}{Rc} + sRmCc\right)\left(\frac{R1 + R2}{R1} + sR2Cn\right)}\right]$$

$$= \frac{1}{s^2(RmCcR2Cn) + s\left(R2Cn\frac{Rm}{Rc} + RmCc\frac{R1 + R2}{R1}\right) + 1 + \left(\frac{Rm}{Rc}\right)\left(\frac{R1 + R2}{R1}\right)}$$

Solving the characteristic equation for s^2 in the denominator we find that the transfer function has a complex conjugate pole at $s_{1,2} = -660 \pm j62890$. Taking only the dominant terms in the equation, the double pole can be approximated in the frequency domain at:

$$P_{1,2} = \frac{1}{2\pi \sqrt{RmCcR2Cn}} = 10 \text{ kHz},$$

with the model values as simulated. At this frequency the denominator tends to zero and the gain theoretically increases toward infinity. What we see on the simulation results is peaking in the gain plot and a rapid 180° phase shift in the phase plot at 10 kHz. The circuit is unstable.

In Equation 5, notice that the frequency effects of the capacitor cancel out of the first term of the transfer function. The simulation results show the gain is flat until the second term, which is identical to Equation 4, causes peaking in the gain plot, and a rapid 180° phase shift in the phase plot at 10 kHz. This circuit is also unstable.

Figure 7. Spice Simulation of Cn in Noninverting and Inverting Amplifiers

4.1.1 Stability Analysis with Cn

To analyze stability with *Cn* added to the amplifier circuit, use the modified feedback factor,

$$b = \frac{1}{\frac{R1 + R2}{R1} + sR2Cn}$$

At low frequencies where

$$\frac{R1 + R2}{R1} >> 2\pi fR 2Cn, \frac{1}{b} \cong \frac{R1 + R2}{R1}$$

and the plot is flat ($\angle b=0^\circ$). As frequency increases, eventually $\frac{R1+R2}{R1}=2\pi fR2Cn$. At this frequency $\left|\frac{1}{b}\right|=\left(\frac{R1+R2}{R1}\right)\!\left(\sqrt{2}\right)\left(\angle b=-45^\circ\right)$.

Above this frequency $\left|\frac{1}{b}\right|$ increases at 20dB/dec ($\angle b = -90^{\circ}$). Depending on the value of *Cn*, there are two possible scenarios:

- 2. The break frequency is above the frequency where $\left|\frac{1}{b}\right|$ and Ial intersect. There is no effect in the pass band of the amplifier. Reference $\frac{1}{b2}$ in Figure 8.

Figure 8. Loop Gain Magnitude and Phase Asymptote Plots with Cn

4.1.2 Compensating for the Effects of Cn

- 1. Reduce the value of *Cn* by removing ground or power plane around the circuit trace to the inverting input.
- 2. Reduce the value of R2.
- 3. For noninverting amplifier, place a capacitor $C2 = Cn \frac{R1}{R^2}$ in parallel with R2.
- 4. For inverting amplifier, place a capacitor $C2 = Cn\frac{R1}{R2}$ in parallel with R2, and place a capacitor C1=Cn in parallel with R1.

Methods 1 and 2 attempt to move the effect of *Cn* to a higher frequency where it does not interfere with normal operation.

Method 3 is used for the noninverting amplifier. It cancels the effect of Cn.

To solve the modified transfer function with C2 in parallel with R2, substitute Z2 for R2, where $Z2 = \frac{R2}{1 + sR2C2}$, in the derivation of b so that:

$$b = \frac{Vn}{Vo} = \frac{Z1}{Z1 + Z2} = \left(\frac{\frac{R1}{1 + sR1Cn}}{\frac{R1}{1 + sR1Cn} + \frac{R2}{1 + sR2C2}}\right) = \frac{1}{1 + \frac{R2}{R1}\frac{1 + sR1Cn}{1 + sR2C2}}$$

By setting $C2 = Cn\frac{R1}{R2}$, Equation 6 becomes:

$$b = \frac{1}{1 + \left(\frac{R2}{R1}\right)\left(\frac{1 + sR1Cn}{1 + sR1Cn}\right)} = \frac{1}{\left(\frac{R1 + R2}{R1}\right)} = \left(\frac{R1}{R1 + R2}\right).$$

Therefore, with the proper value of *C2* the effect of *Cn* is cancelled and the feedback factor looks purely resistive.

This works so well for the noninverting amplifier, let's investigate doing the same thing with the inverting amplifier. Placing $C2 = Cn\frac{R1}{R2}$ across R2 will cancel the effect of Cn so that b is purely resistive as shown above, but it causes another problem. Recalculating c with C2 added we find:

$$c = \frac{Z2}{R1 + Z2}$$
 where $Z2 = \frac{R2}{1 + sR2C2||Cn|} = \frac{1}{\frac{1}{R2} + sCx}$ where $Cx = C2||Cn|$.

In the transfer function, $\frac{Vo}{Vi} = -\left(\frac{c}{b}\right)\left(\frac{1}{1 + \frac{1}{ab}}\right)$, the second term is fine, but expanding out the first term we find:

$$\left(\frac{c}{b}\right) = \left(\frac{R2}{1 + sR2Cx}\right) \left(\frac{1}{R1 + \frac{R2}{1 + sR2Cx}}\right) \left(\frac{R1 + R2}{R1}\right) = \left(\frac{R2}{R1}\right) \left(\frac{1}{1 + \frac{sR1R2Cx}{R1 + R2}}\right)$$

Obviously we now have a pole in the transfer function at $f_p = 2\pi Cx \left(\frac{R1 + R2}{R1R2}\right)$ that limits the circuit's bandwidth. To cancel this pole, a zero needs to be added to the transfer function. Placing a capacitor, C1, across R1 will create a zero in the transfer function.

Again c and b need to be recalculated. We already have the solution in the form of Equation 6, and by proper substitution:

$$b = \frac{Vn}{Vo} = \left[\frac{\left(\frac{R1}{1 + sR1 Cn||C1}\right)}{\left(\frac{R1}{1 + sR1 Cn||C1}\right) + \left(\frac{R2}{1 + sR2 C2}\right)} \right] = \frac{1}{1 + \left(\frac{R2}{R1}\right)\left(\frac{1 + sR1 Cn||C1}{1 + sR2 C2}\right)}$$
(7)

$$c = \frac{Vn}{Vi} = \left[\frac{\left(\frac{R2}{1 + sR2Cn||C2}\right)}{\left(\frac{R2}{1 + sR2Cn||C2}\right) + \left(\frac{R1}{1 + sR1C1}\right)} \right] = \frac{1}{1 + \left(\frac{R1}{R2}\right)\left(\frac{1 + sR2Cn||C2}{1 + sR1C1}\right)}$$

$$\left(\frac{c}{b}\right) = \frac{1 + \left(\frac{R2}{R1}\right) \left(\frac{1 + sR1 \, Cn || \, C1}{1 + sR2 \, C2}\right)}{1 + \left(\frac{R1}{R2}\right) \left(\frac{1 + sR2 \, Cn || \, C2}{1 + sR1 \, C1}\right)}$$

Setting $C2 = (Cn||C1)\frac{R1}{R2}$ in the numerator, simultaneously with setting $C1 = (Cn||C2)\frac{R2}{R1}$ in the denominator, results in cancellation. The problem is that this cannot be simultaneously achieved.

To arrive at a suitable compromise, assume that placing $C2 = Cn \frac{R1}{R2}$ across R2 cancels the effect of Cn in the feedback path as described above. Then, isolate the signal path between Vi and Vn by assuming R2 is open. With this scenario, Cn is acting with R1 to create a pole in the input signal path and placing an equal value capacitor in parallel with R1 will create a zero to cancel its effect.

Figure 9 shows the results of a spice simulation where methods 3 and 4 are used to compensate for Cn = 15.9 nF. C2 = 15.9 F in the noninverting amplifier and C1 = C2 = 15.9 F in the inverting amplifier. In both amplifier circuits, resistors R1 and R2 = 100 k Ω , and Rs = 50 k Ω . The plots show excellent results.

Figure 9. Simulation Results with C1 and C2 Added to Compensate for Cn

The action of any op amp operated with negative feedback is such that it tries to maintain 0 V across the input terminals. In the inverting amplifier, the op amp works to keep 0V (and thus 0 charge) across Cn. Because capacitance is the ratio of charge to potential, the effective capacitance of Cn is greatly reduced. In the noninverting amplifier Cn is charged and discharged in response to Vi. Thus the impact of Cn depends on topology. Lab results verify that, in inverting amplifier topologies, the effective value of Cn will be reduced by the action of the op amp, and tends to be less problematic than in noninverting topologies. Figure 10 shows that the effects of adding Cn to a noninverting amplifier are much worse than adding 10 times the same amount to an inverting amplifier with similar circuit components.

Figure 10. Effect of Cn in Inverting and Noninverting Amplifier

5 Capacitance at the Noninverting Input

In Figure 11 Cp is added to the amplifier circuits.

Figure 11. Adding Cp to Amplifier Circuits

5.1 Gain Analysis with Cp

In the case of the noninverting amplifier, the voltage seen at the noninverting input is modified so that $Vp = Vi\left(\frac{1}{1+sRsCp}\right)$. Thus there is a pole in the input signal path before the signal reaches the input of the op amp. Rs and Cp form a low pass filter between Vi and Vp. If the break frequency is above the frequency at which $\left|\frac{1}{b}\right|$ intersects IaI, there is no effect on the operation of the circuit in the normal frequencies of operation.

The gain of the inverting amplifier is not affected by adding Cp to the circuit.

Figure 14 shows the results of a spice simulation where Cp=15.9 nF. In both amplifier circuits, resistors R1 and R2=100 k Ω , and Rs=50 k Ω . The plot shows a pole in the transfer function of the noninverting amplifier, whereas the inverting amplifier is unaffected.

Figure 12. Spice Simulation with Cp in Noninverting and Inverting Amplifier Circuits

5.2 Stability Analysis with Cp

There is no change in the loop gain and thus no effect on stability for either amplifier circuit.

5.3 Compensating for the Effects of Cp

To compensate for the effect of capacitance at the noninverting input:

- Reduce the value of Cp by removing ground or power plane around the circuit trace to the noninverting input.
- 2. Reduce the value of Rs.
- 3. Place a capacitor, Cs, in parallel with Rs so that Cs>>Cp.

Methods 1 and 2 attempt to move the effect of Cp to a higher frequency where it does not affect transmission of signals in the pass band of the amplifier.

Method 3 tries to cancel the effect of *Cp*. The modified transfer function with *Cs* in parallel with *Rs* is:

$$\frac{Vp}{Vi} = \left(\frac{1 + sRsCs}{1 + sRs(Cp + Cs)}\right)$$
If $Cs >> Cp$, then $\left(\frac{1 + sRsCs}{1 + sRs(Cp + Cs)}\right) \cong 1$ and $Vp \cong Vi$.

Figure 13 shows the results of a spice simulation of the previous noninverting amplifier circuit where a 159-nF and a 1.59- μ F capacitor is placed in parallel with Rs to compensate for Cp = 15.9 nf. The plot shows that a 10:1 ratio is good—loss of 1 db in gain at higher frequencies, but with a 100:1 ratio the effects of Cp are undetectable.

Figure 13. Spice Simulation with Cs Added to Compensate for Cp in Noninverting Amplifier

6 Output Resistance and Capacitance

Figure 14 shows *Ro* and *Co* added to the amplifier circuits. *Ro* represent the output resistance of the op amp and *Co* represents the capacitance of the load.

Figure 14. Ro and Co Added to Amplifiers

6.1 Gain Analysis with Ro and Co

Assuming that the impedance of *R2* is much higher than the impedance of *Ro* and *Co*, the gain block diagrams for the amplifiers are modified to those shown in Figure 15 where:

Figure 15. Gain Block Diagrams with Ro and Co

Using Figure 15 (a), we calculate the transfer function of the noninverting amplifier:

$$\frac{Vo}{Vi} = \frac{1}{b} \left(\frac{1}{1 + \frac{1}{abd}} \right) = \left(\frac{R1 + R2}{R1} \right) \left(\frac{1}{1 + \left(\frac{1 + sRcCc}{gmRc} \right) \left(\frac{R1 + R2}{R1} \right) (1 + sRoCo)} \right)$$
(9)

Using Figure 15 (b), we calculate the transfer function of the inverting amplifier:

$$\frac{Vo}{Vi} = -\left(\frac{c}{b}\right)\left(\frac{1}{1 + \frac{1}{abd}}\right) = -\left(\frac{R2}{R1}\right)\left(\frac{1}{1 + \left(\frac{1 + sRcCc}{gmRc}\right)\left(\frac{R1 + R2}{R1}\right)(1 + sRoCo)}\right)$$
(10)

Figure 16 shows the results of a spice simulation with $Ro=100~\Omega$ and $Co=159~\mu F$. Resistors R1 and $R2=100~k\Omega$, and $Rs=50~k\Omega$. Refer to the simulation results while taking a closer look at the second term of Equations 9 and 10. Expanding the denominator of second term with $Rm=\frac{1}{gm}$ and collecting s terms:

$$s^2(RmCcRoCo)\Big(\frac{R1\ +\ R2}{R1}\Big) + s\bigg(RoCo\Big(\frac{Rm}{Rc}\Big) + RmCc\bigg)\Big(\frac{R1\ +\ R2}{R1}\Big) + 1 + \Big(\frac{Rm}{Rc}\Big)\Big(\frac{R1\ +\ R2}{R1}\Big)$$

Solving the characteristic equation for s^2 , the transfer function has a complex conjugate pole at $s_{1,2} = -63 + j14,063$. Taking only the dominant terms in the equation, the double pole can be approximated in the frequency domain at:

$$f_{p1,2} \cong \frac{1}{2\pi \sqrt{RmCcRoCo\left(\frac{R1+R2}{R1}\right)}} = 2.2 \text{ kHz},$$

with the model values as simulated. At this frequency the second term's denominator tends to zero and the gain theoretically increases to infinity. What we see on the simulation results at 2.2 kHz is significant peaking in the gain, and a rapid 180° phase shift. The circuit is unstable.

Figure 16. Spice Simulation with Ro and Co

6.2 Stability Analysis with Ro and Co

By the gain block diagrams shown in Figure 15 (a) and (b), the loop gain is now = abd for both circuits. Since gain blocks a and b are not changed, to determine the stability of the circuit, the effect of gain block d is analyzed.

As noted above, $d=\frac{Vo}{aVe}=\frac{1}{1+sRoCo}$. At low frequencies where $1>>2\pi fRoCo, \frac{1}{d}\cong 1$ and the plot is flat $(\angle d=0^\circ)$. As frequency increases, eventually $2\pi fRoCo=1$. At this frequency $\left|\frac{1}{d}\right|=\left(\sqrt{2}\right)$, and $\angle d=-45^\circ$. Above this frequency $\left|\frac{1}{d}\right|$ increases at 20dB/dec , and $\angle d=-90^\circ$. Depending on the value of Ro and Co, there are two possible scenarios:

- 1. The break frequency is below the frequency where $\left|\frac{1}{bd}\right|$ and $\left|a\right|$ intersect. This causes the rate of closure to be 40dB/dec. This is an unstable situation and will cause oscillations (or peaking) near this frequency. Reference $\left|\frac{1}{bd1}\right|$ in Figure 17 and the results of the spice simulation shown in Figure 16.
- 2. The break frequency is above the frequency where $\left|\frac{1}{bd}\right|$ and |a| intersect. There is no effect in the pass band of the amplifier. Reference $\left|\frac{1}{bd2}\right|$ in Figure 17.

Figure 17. Loop Gain Magnitude and Phase with Ro and Co

6.3 Compensation for Ro and Co

To compensate for the effect of capacitance at the output:

- Reduce the value of Co by removing ground or power plane around the circuit trace to the output.
- 2. Reduce the value of Co by minimizing the length of output cables.
- 3. Isolate the output pin from Co with a series resistor.
- Isolate the output pin from Co with a series resistor, and provide phase lead compensation with a capacitor across R2.

Methods 1 and 2 seek to minimize the value of *Co* and thus its effects, but there is a limit to what can be done. In some cases, you will still be left with a capacitance that is too large for the amplifier to drive. Then method 3 or 4 can be used depending on your requirements.

Method 3 can be used if the resistive load is insignificant, or it is known and constant. Figure 18 shows the circuit modified with *Ri* added to isolate *Co*. By observation, adding Ri increases the phase shift seen at *Vo*, but now the feedback is taken from node *Vfb*.

Figure 18. Isolation Resistor Added to Isolate the Feedback Loop from Effects of Ro

This modifies the gain block *d*. Making the assumption that the impedance of *Ro*, *Ri*, and *Co* is small compared to *R2* then:

$$d = \frac{Vfb}{aVe} = \left(\frac{Ri + \frac{1}{sCo}}{Ro + Ri + \frac{1}{sCo}}\right) = \frac{1}{\frac{Ro}{Ri} + 1 + \frac{1}{sRiCo}} + \frac{1}{1 + sCo(Ri + Ro)}.$$
 Letting $z = \frac{1}{\frac{Ro}{Ri} + 1 + \frac{1}{sRiCo}}$ and $p = \frac{1}{1 + sCo(Ri + Ro)}$: $d = z + p$. z is a zero and p is a pole. Both have the same corner frequency; $f_{Z,p} = \frac{1}{2\pi Co(Ri + Ro)}$. When $f < < f_{Z,p}$, or when $f > > f_{Z,p}$ the phase is zero. The ratio of $Ri:Ro$ determines the maximum phase shift near $f_{Z,p}$.

Figure 19 shows a plot of the phase shift of $\frac{Vfb}{aVe}$ versus frequency with various ratios of Ri:Ro and Figure 20 plots the maximum phase shift vs. the ratio of Ri:Ro. Depending on how much the phase margin can be eroded, a ratio can be chosen to suit. Note that the amount of phase shift depends only on the resistor ratio, not the resistor or capacitor values (these set the frequency $f_{Z,D}$).

Figure 19. Phase Shift in $\frac{Vfb}{aVe}$ vs the Ratio *Ri:Ro*

Figure 20. Maximum Phase Shift in $\frac{Vfb}{aVe}$ vs the Ratio *Ri:Ro*

Figure 21 shows simulation results with the same circuits as used for Figure 16 (Ro= 100 Ω and Co= 159 μ F), but with Ri= 100 Ω added to the circuit. The circuits are stable.

Figure 21. Spice Simulation Results with Ri Added to Compensate for Ro and Co

A common use of an isolation resistor is shown in Figure 22 where a video buffer circuit is drawn. To avoid line reflections, the signal is delivered to the transmission line through a 75- Ω resistor, and the transmission line is terminated at the far end with a 75- Ω resistor. To compensate for the voltage divider, the gain of the op amp is 2.

Figure 22. Video Buffer Application

If the load is unknown or dynamic in nature, method 3 is not satisfactory. Then method 4, the configuration shown in Figure 23, is used with better results. At low frequencies, the impedance of Cc is high in comparison with R2, and the feedback path is primarily from Vo restoring the dc and low frequency response. At higher frequencies, the impedance of Cc is low compared with R2, and the feedback path is primarily from Vfb, where the phase shift, due to Co, is buffered by Ri.

Figure 23. Ri and Cc Added to Compensate for Effects of Ro and Co

To solve these circuits analytically is quite cumbersome. By making some simplifications, the basic operation is more easily seen. The transfer function of interest is $\frac{Vn}{aVe}$.

Assume the impedance of R1 and R2 is much higher than the impedance of Ri, Ro and Co, and Cc<< Co. At low frequencies, Cc looks like an open and the circuit can be represented as shown in Figure 24 (a). At higher frequencies Cc becomes active, Co is essentially a short, and the circuit can be represented as shown in Figure 24 (b).

Figure 24. Simplified Feedback Models

This breaks the feedback into low and high frequency circuits:

At low frequency:
$$\frac{Vn}{aVe}(f_{low}) = \left(\frac{R1}{R1 + R2}\right)\left(\frac{1}{1 + sCo(Ro + Ri)}\right)$$
.

At high frequency: $\frac{Vn}{aVe}(f_{high}) = \left(\frac{Ri}{Ri + Ro}\right)\left(\frac{1}{1 + \frac{1}{sCc(R1||R2)}}\right)$.

The overall feedback factor is a combination of the two so that:

$$\frac{Vn}{aVe} = \left(\frac{R1}{R1 + R2}\right)\left(\frac{1}{1 + sCo(Ro + Ri)}\right) + \left(\frac{Ri}{Ri + Ro}\right)\left(\frac{1}{1 + \frac{1}{sCc(Ro + Ri)}}\right)$$

5-28

This formula contains a pole and a zero. Choosing the value of the components so that the pole and zero are at the same frequency by setting $Cc = Co \frac{Ro + Ri}{R1 \parallel R2}$ results in the feedback path switching from Vo to Vfb as the phase shift due to Co(Ri+Ro) transitions to -90° .

Figure 24 shows the simulation results of adding Cc=636 nf with isolation resistor, $Ri=100~\Omega$, to the feedback path (as indicated in Figure 23). The circuit is no longer unstable and the low frequency load independence of the output is restored. Simulation of the circuit shows similar results as those depicted in Figure 21, and is not shown.

Figure 25. Simulation of Feedback Using Ri and Cc to Compensate for Ro and Co

7 Summary

The techniques described herein show means for analyzing and compensating for known component values. In circuit application, the value of parasitic components is not always known. Thus the ubiquitous rule of thumb comes into play:

- 1. Always connect a small, 20-pF to 100-pF, capacitor between the output and the negative input.
- 2. If the op amp has to drive a significant capacitance, isolate the output with a small, $20-\Omega$ to $100-\Omega$, resistor.

Table 1. Noninverting Amplifier: Capacitor Location, Effect, and Compensation Summary

Topology: Noninvert	ting Amplifier	
Capacitor Location	Effect	Compensation
All places	Various	Reduce capacitance and/or associated resistance.
Negative input, Cn	Gain peaking or oscillation	Compensate with $C2 = Cn\frac{R1}{R2}$ across $R2$.
Positive input, Cp	Reduced Band- width	Compensate with C1 >> Cn across R1.
Output, Co	Gain peaking or oscillation	 If load is known, isolate with resistor, Ri = Ro This causes load dependence. If load is unknown, isolate with resistor, Ri = Ro and provide ac feedback from isolated point with Co = CoRO + Ri
		isolated point with $C_C = C_0 \frac{R_0 + R_i}{R^1 R^2}$. Provide dc feedback from Vo.

Table 2. Inverting Amplifier: Capacitor Location, Effect, and Compensation Summary

Topology: Inverting	Amplifier	
Capacitor Location	Effect	Compensation
All places	Various	Reduce capacitance and/or associated resistance.
Negative input, Cn	Gain peaking or oscillation	Compensate with $C2 = Cn \frac{R1}{R2}$ across $R2$, and $C1 = Cn$ across $R1$.
Positive input, Cp	None	None
Output, Co	Gain peaking or oscillation	 If load is known, isolate with resistor, Ri = Ro. This causes load dependence. If load is unknown, isolate with resistor, Ri = Ro and provide ac feedback from isolated point with Cc = Co Ro + Ri / R1 R2 / R1 R1 R1 R2 / R1 R1 R1 R1 R1 R1 R1 R1

8 References

- 1. Paul R. Gray and Robert G. Meyer. *Analysis and Design of Analog Integrated Circuits*. 2d ed., John Wiley & sons, Inc., 1984.
- 2. Sergio Franco. *Design with Operational Amplifiers and Analog Integrated Circuits*. McGrawHill, Inc., 1988.
- 3. Jiri Dostal. Operational Amplifiers. Elsevier Scientific Publishing Co., 1981.

- 3 References
- Paul R. Gray and Robert G. Mayer. Analysis and Design of Analog Integrated
 Chaults 2d ed. John Wiley & sons, Inc., 1984.
- Sergio Franco, Design with Operational Ampliflers and Analog Integrated Circuits, McGrawHill, Inc., 1988.
 - 3. Jif Dostal. Conventional Amolifers: Flagular Schooling Publishing Co., 1981

Feedback Amplifier Analysis Tools Application Report

Ronald Mancini

Literature Number: SLOA017 April 1999

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated

Contents

1	Introduction5-	45
2	Block Diagram Math and Manipulations5-	46
3	Feedback Equation and Stability5-	-50
4	Bode Analysis of Feedback Circuits5-	52
5	Loop Plots are the Key to Understanding Stability5-	-56
6	The Second Order Equation and Ringing/Overshoot Predictions5–	-59
7	Summary 5–	-61
8	References	
	List of Figures	
1	Definition of Blocks 5–	46
2	Summary Points 5–	47
3	Definition of Control System Terms 5–	47
4	Definition of an Electronic Feedback Circuit5-	47
5	Multiloop Feedback System 5–	48
6	Block Diagram Transforms5-	49
7	Commercial Feedback System	-50
	Low-Pass Filter5–	
	Bode Plot of Low-Pass Filter Transfer Function5–	
10	Band Reject Filter 5-	-53
	Individual Pole Zero Plot of Band Reject Filter5–	
	Combined Pole Zero Plot of Band Reject Filter 5–	
	When No Pole Exists in Equation (12)5–	
	When Equation (12) Has a Single Pole5–	
	Magnitude and Phase Plot of Equation (14)5–	
	Magnitude and Phase Plot of the Loop Gain Increased to (K+C)	
	Magnitude and Phase Plot of the Loop Gain With Pole Spacing Reduced5–	
	Phase Margin and Percent Overshoot vs Damping Ratio5–	

Contents

Placeir Diagram Wishin and Benchpulations 5-a5 Pation Diagram Wishin and Benchpulations 5-a5 Paddack Equation and Stability 5-a5 Eddack Equation and Stability 5-a5 Lique Priors are the Key to Understanding Stability 5-a5 The Second Order Equation and Ringing/Overshad Pradictions 5-a5 Summary 6-a5 Summary 7-a5 Bench Diagram Control System Ferra 5-a5 Definition of Glocks 5-a5 Definition of An Electronic Feedback Circuit 5-a5 Stabic Diagram Tenera 5-a5 Stabic Diagram Tenera 6-a5 Stabic Diagram Tenera 6-a5 Stabic Diagram Tenerations 5-a5 Stabic Diagram Teneration 6-a5 Stabic Diagram Finder Finder Finder 6-a5 Stabic Diagram Finder 6		
Feedback Equation and Stability 5-50 Eoda Analysis of Feedback Circuits 5-52 Lique Plois are the Key to Understanding Stability 5-65 The Second Order Equation and Ringhagi Oversheet Regulations 5-65 Summary 5-65 Preferences 5-65 Detinition of Elocia 5-65 Detinition of Slocia 5-65 Summary Points 5-65 Detinition of Control System Terms 5-67 Detinition of Control System Terms 5-67 Summary Points 5-65 Detinition of Control System Terms 5-65 Summary Points 5-65 Block Diagram Transforms 5-65 Substitution of State System 5-65 Substitution of Control System 5-65 Block Diagram Transforms 5-65 Commercial Feedback System 5-65 Low Park Filter 6-65 Commercial Feedback System 5-65 Commercial Feedback System 5-		
	Feedback Equation and Blability 5-50	

Feedback Amplifier Analysis Tools

Ronald Mancini

ABSTRACT

This paper gives the reader a command of the simplest set of tools required to analyze and design feedback amplifiers. These tools are fundamental, and they form the basis of feedback analysis and design.

9 Introduction makes and as and the average to Acold and seasoned bliev at an agreement

Analysis tools have something in common with medicine because they both can be distasteful but necessary. Medicine often tastes bad or has undesirable side effects, and analysis tools involve lots of hard learning work before they can be applied to yield results. Medicine assists the body in fighting an illness; analysis tools assist the brain in learning/designing feedback circuits.

The analysis tools given here are a synopsis of salient points; thus they are detailed enough to get you where you are going without any extras. The references, along with thousands of their counterparts, must be consulted when making an in-depth study of the field. Aspirin, home remedies, and good health practice handle the majority of health problems, and these analysis tools solve the majority of circuit problems.

I have little patience; therefore I would not study these tools in detail prior to reading an application note. A little advanced study however, pays off for those who have patience.

10 Block Diagram Math and Manipulations

Electronic systems and circuits are often represented by block diagrams, and block diagrams have a unique algebra and set of transformations.[1] The block diagrams are used because they are a shorthand pictorial representation of the cause-and-effect relationship between the input and output in a real system. They are a convenient method for characterizing the functional relationships between components. It is not necessary to understand the functional details of a block to manipulate a block diagram.

The input impedance of each block is assumed to be infinite to preclude loading. Also, the output impedance of each block is assumed to be zero to enable high fan-out. The systems designer sets the actual impedance levels, but the fan-out assumption is valid because the block designers adhere to the system designer's specifications. All blocks multiply the input times the block quantity (see Figure 1) unless otherwise specified within the block. The quantity within the block can be a constant as shown in Figure 1(c), or it can be a complex math function involving Laplace transforms. The blocks can perform time-based operations such as differentiation and integration.

Figure 26. Definition of Blocks

Adding and subtracting are done in special blocks called summing points. Figure 2 gives several examples of summing points. Summing points can have unlimited inputs, can add or subtract, and can have mixed signs yielding addition and subtraction within a single summing point. Figure 3 defines the terms in a typical control system, and Figure 4 defines the terms in a typical electronic feedback system. Multiloop feedback systems (Figure 5) are intimidating, but they can be reduced to a single loop feedback system, as shown in the figure, by writing equations and solving for V_{OUT}/V_{IN} . An easier method for reducing multiloop feedback systems to single loop feedback systems is to follow the rules and use the transforms given in Figure 6.

Figure 27. Summary Points

Figure 28. Definition of Control System Terms

Figure 29. Definition of an Electronic Feedback Circuit

Figure 30. Multiloop Feedback System

Block diagram reduction rules:

- Combine cascade blocks.
- Combine parallel blocks.
- Eliminate interior feedback loops.
- · Shift summing points to the left.
- · Shift takeoff points to the right.
- Repeat until canonical form is obtained.

Figure 6 gives the block diagram transforms. The idea is to reduce the diagram to its canonical form because the canonical feedback loop is the simplest form of a feedback loop, and its analysis is well documented. All feedback systems can be reduced to the canonical form, so all feedback systems can be analyzed with the same math. A canonical loop exists for each input to a feedback system; although the stability dynamics are independent of the input, the output results are input dependent. The response of each input of a multiple input feedback system can be analyzed separately and added through superposition.

Figure 31. Block Diagram Transforms

11 Feedback Equation and Stability

Figure 7 shows the canonical form of a feedback loop with control system and electronic system terms. The terms make no difference except that they have meaning to the system engineers, but the math does have meaning, and it is identical for both types of terms. The electronic terms and negative feedback sign are used in this analysis, because subsequent application notes deal with electronic applications. The output equation is written in equation (1).

Figure 32. Commercial Feedback System

$$V_{OUT} = EA$$
 (11)

The error equation is written in equation (2).

$$E = V_{IN} - \beta V_{OUT} \tag{12}$$

Combining equations (1) and (2) yields equation (3).

$$\frac{V_{OUT}}{A} = V_{IN} - \beta V_{OUT} \tag{13}$$

Collecting terms yields equation (4).

$$V_{OUT}\left(\frac{1}{A} + \beta\right) = V_{IN} \tag{14}$$

Rearranging terms yields the classic form of the feedback equation (5).

$$\frac{V_{OUT}}{V_{IN}} = \frac{A}{1 + A\beta} \tag{15}$$

Notice that when A β in equation (5) becomes very large with respect to one the one can be neglected, and equation (5) reduces to equation (6) which is the ideal feedback equation. Under the conditions that A β >>1, the system gain is determined by the feedback factor β . Stable passive circuit components are used to implement the feedback factor, thus in the ideal situation, the closed loop gain is predictable and stable because β is stable and predictable.

$$\frac{V_{OUT}}{V_{IN}} = \frac{1}{\beta} \tag{16}$$

The quantity $A\beta$ is so important that it has been given a special name: loop gain. In Figure 7, when the voltage inputs are grounded (current inputs are opened) and the loop is broken, the calculated gain is the loop gain, $A\beta$. Now, keep in mind that we are using complex numbers which have magnitude and direction. When the loop gain approaches minus one, or to express it mathematically $1 \angle 180^\circ$, equation (5) approaches $1/0 = \infty$. The circuit output heads for infinity as fast as it can using the equation of a straight line. If the output were not energy limited, the circuit would explode the world, but happily, it is energy limited, so somewhere it comes up against the limit.

Active devices in electronic circuits exhibit nonlinear phenomena when their output approaches a power supply rail, and the nonlinearity reduces the gain to the point where the loop gain no longer equals 1∠180°. Now the circuit can do two things: first it can become stable at the power supply limit, or second, it can reverse direction (because stored charge keeps the output voltage changing) and head for the negative power supply rail.

The first state where the circuit becomes stable at a power supply limit is named lockup; the circuit will remain in the locked up state until power is removed and reapplied. The second state where the circuit bounces between power supply limits is named oscillatory. Remember, the loop gain, $A\beta$, is the sole factor determining stability of the circuit or system. Inputs are grounded or disconnected, so they have no bearing on stability. The loop gain criteria is analyzed in depth in the section 6.

Equations (1) and (2) are combined and rearranged to yield equation (7) which gives an indication of the system or circuit error.

$$E = \frac{V_{IN}}{1 + A\beta} \tag{17}$$

First, notice that the error is proportional to the input signal. This is the expected result because a bigger input signal results in a bigger output signal, and bigger output signals require more drive voltage. As the loop gain increases, the error decreases, thus large loop gains are attractive for minimizing errors.

12 Bode Analysis of Feedback Circuits

H. W. Bode developed a quick, accurate, and easy method of analyzing feedback amplifiers, and he published a book about his techniques in 1945.[2] Operational amplifiers had not been developed when Bode published his book, but they fall under the general classification of feedback amplifiers, so they are easily analyzed with Bode techniques. The mathematical manipulations required to analyze a feedback circuit are complicated because they involve multiplication and division. Bode developed the Bode plot which simplifies the analysis through the use of graphical techniques.

The Bode equations are log equations which take the form 20LOG(F(t)) = 20LOG(IF(t)I) + phase angle. The terms that are normally multiplied and divided can now be added and subtracted because they are log equations. The addition and subtraction is done graphically, thus easing the calculations and giving the designer a pictorial representation of circuit performance. Equation (8) is written for the low pass filter shown in Figure 8.

Figure 33. Low-Pass Filter

$$\frac{V_{OUT}}{V_{IN}} = \frac{1}{1 + RCs} = \frac{1}{1 + \tau s}$$
 (18)

Where:

$$s = j\omega$$
, $j = \sqrt{(-1)}$, and $RC = \tau$

The magnitude of this transfer function is $|V_{OUT}/V_{IN}|=1/\sqrt{(1+(\tau\omega))^2}$. This magnitude, $|V_{OUT}/V_{IN}| \equiv 1$ when $\omega=0.1/\tau$, it equals 0.707 when $\omega=1/\tau$, and it is approximately = 0.1 when $\omega=10/\tau$. These points are plotted in Figure 9 using straight line approximations. The negative slope is –20 dB/decade or –6 dB/octave. The magnitude curve is plotted as a horizontal line until it intersects the breakpoint where $\omega=1/\tau$. The negative slope begins at the breakpoint because the magnitude decreases rapidly at that point. The gain is equal to 1 or 0 dB at very low frequencies, equal to 0.707 or –3 dB at the break frequency, and it keeps falling with a –20 dB/decade slope for higher frequencies.

The phase shift for the low pass filter or any other transfer function is calculated with the aid of equation (9).

$$\phi = tangent^{-1} \left(\frac{1}{\omega \tau} \right)$$
 (19)

The phase shift is much harder to approximate because the tangent function is nonlinear. Normally the phase information is only required around the 0 dB intercept point for an active circuit, so the calculations are minimized. The phase is shown in Figure 9, and it is approximated by remembering that the tangent of 90° is 1, the tangent of 60° is $\sqrt{3}$, and the tangent of 30° is $\sqrt{3}/3$.

Figure 34. Bode Plot of Low-Pass Filter Transfer Function

A breakpoint occurring in the denominator is called a pole, and it slopes down. Conversely, a breakpoint occurring in the numerator is called a zero, and it slopes up. When the transfer function has multiple poles and zeros, each pole or zero is plotted independently, and the individual poles/zeros are added graphically. If multiple poles, zeros, or a pole/zero combination have the same breakpoint, they are plotted on top of each other. Multiple poles or zeros cause the slope to change by more than 20 dB/decade.

An example of a transfer function with multiple poles and zeros is a band reject filter (see Figure 10). The transfer function of the band reject filter is given in equation (10).

Figure 35. Band Reject Filter

$$G = \frac{V_{OUT}}{V_{IN}} = \frac{(1 + \tau s)(1 + \tau s)}{2\left(1 + \frac{\tau s}{0.44}\right)\left(1 + \frac{\tau s}{4.56}\right)}$$
(20)

The pole zero plot for each individual pole and zero is shown in Figure 11, and the combined pole zero plot is shown in Figure 12.

Figure 36. Individual Pole Zero Plot of Band Reject Filter

Figure 37. Combined Pole Zero Plot of Band Reject Filter

The individual pole zero plots show the dc gain of 1/2 plotting as a straight line from the -6 dB intercept. The two zeros occur at the same break frequency, thus they have a 40 dB/decade slope. The two poles are plotted at their breakpoints of

 $\omega=0.44/\tau$ and $\omega=4.56/\tau.$ The combined amplitude plot intercepts the axis at -6 dB because of the dc gain, and then breaks down at the first pole. When the amplitude function gets to the double zero, the first zero cancels out the pole, and the second zero breaks up. The upward slope continues until the second pole cancels out the second zero, and the amplitude is flat from that point out in frequency.

When the separation between all the poles and zeros is great, a decade or more in frequency, it is easy to draw the Bode plot. As the poles and zeros get closer the plot gets harder to make. The phase is especially hard to plot because of the tangent function, but picking a few salient points and sketching them in first gets a pretty good approximation.[3] The Bode plot enables the designer to get a good idea of pole zero placement, and it is valuable for fast evaluation of possible compensation techniques. When the situation gets critical, accurate calculations must be made and plotted to get an accurate result.

Consider equation (11).

$$\frac{V_{OUT}}{V_{IN}} = \frac{A}{1 + A\beta} \tag{21}$$

Taking the log of equation (11) yields equation (12)

$$20Log\left(\frac{V_{OUT}}{V_{IN}}\right) = 20Log(A)-20Log(1 + A\beta)$$
 (22)

If A and β do not contain any poles or zeros there will be no break points. Then the Bode plot of equation (12) looks like that shown in Figure 13, and because there are no poles to contribute negative phase shift, the circuit cannot oscillate.

Figure 38. When No Pole Exists in Equation (12)

All real amplifiers have many poles, but they are normally internally compensated so that they appear to have a single pole. Such an amplifier would have an equation similar to that given in equation (13).

$$A = \frac{a}{1 + j\frac{\omega}{\omega_a}} \tag{23}$$

The plot for the single pole amplifier is shown in Figure 14.

Figure 39. When Equation (12) has a Single Pole

The amplifier gain, A, intercepts the amplitude axis at 20Log(A), and it breaks down at a slope of -20 dB/decade at $\omega=\omega_a$. The negative slope continues for all frequencies greater than the breakpoint, $\omega=\omega_a$. The closed loop circuit gain intercepts the axis at $20\text{Log}(V_{OUT}/V_{IN})$, and because β does not have any poles or zeros, it is constant until its projection intersects the amplifier gain at point X. After intersection with the amplifier gain curve, the closed loop gain follows the amplifier gain because the amplifier becomes the controlling factor.

Actually, the closed loop gain starts to roll off earlier, and it is down 3 dB at point X. At point X the difference between the closed loop gain and the amplifier gain is -3 dB, thus according to equation (12) the term $-20\text{Log}(1+A\beta) = -3$ dB. The

magnitude of 3 dB is $\sqrt{2}$, hence $\sqrt{1+(A\beta)^2}=\sqrt{2}$, and elimination of the radicals shows that $A\beta=1$. There is a method [4] of relating phase shift and stability to the slope of the closed loop gain curves, but only the Bode method is covered here. An excellent discussion of poles, zeros, and their interaction is given by M. E Van Valkenberg, [5] and he also includes some excellent prose to liven the discussion.

13 Loop Gain Plots are the Key to Understanding Stability

Stability is determined by the loop gain, and when $A\beta = -1 = |11| \angle 180^{\circ}$ instability or oscillation occurs. If the magnitude of the gain exceeds one, it is usually reduced to one by circuit nonlinearities, so oscillation generally results for situations where the gain magnitude exceeds one.

Consider oscillator design which depends on nonlinearities to decrease the gain magnitude; if the engineer designed for a gain magnitude of one at nominal circuit conditions, the gain magnitude would fall below one under worst case circuit conditions causing oscillation to cease. Thus, the prudent engineer designs for a gain magnitude of one under worst case conditions knowing that the gain magnitude is much more than one under optimistic conditions. The prudent engineer depends on circuit nonlinearities to reduce the gain magnitude to the appropriate value, but this same engineer pays a price of poorer distortion performance. Sometimes a design compromise is reached by putting a nonlinear component, such as a lamp, in the feedback loop to control the gain without introducing distortion.

Some high gain control systems always have a gain magnitude greater than one, but they avoid oscillation by manipulating the phase shift. The amplifier designer who pushes the amplifier for superior frequency performance has to be careful not to let the loop gain phase shift accumulate to 180°. Problems with overshoot and ringing pop up before the loop gain reaches 180° phase shift, thus the amplifier designer must keep a close eye on loop dynamics. Ringing and overshoot are handled in the next section, so preventing oscillation is emphasized in this section. Equation (14) has the form of many loop gain transfer functions or circuits, so it is analyzed in detail.

Figure 40. Magnitude and Phase Plot of Equation (14)

The quantity, K, is the dc gain, and it plots as a straight line with an intercept of 20Log(K). The Bode plot of equation (14) is shown in Figure 15. The two break points, $\omega = \omega_1 = 1/\tau_1$ and $\omega = \omega_2 = 1/\tau_2$, are plotted in the Bode plot. Each breakpoint adds -20 dB/decade slope to the plot, and 45° phase shift accumulates at each breakpoint. This transfer function is referred to as a two slope because of the two breakpoints. The slope of the curve when it crosses the 0 dB intercept indicates phase shift and the ability to oscillate. Notice that a one slope can only accumulate 90° phase shift, so when a transfer function passes through 0 dB with a one slope, it cannot oscillate. Furthermore, a two-slope system can accumulate 180° phase shift, therefore a transfer function with a two or greater slope is capable of oscillation.

A one slope crossing the 0 dB intercept is stable, whereas a two or greater slope crossing the 0 dB intercept may be stable or unstable depending upon the accumulated phase shift. Figure 15 defines two stability terms; the phase margin, φ_M , and the gain margin, G_M . Of these two terms the phase margin is much more popular because phase shift is critical for stability. Phase margin is a measure of the difference in the actual phase shift and the theoretical 180° required for oscillation, and the phase margin measurement or calculation is made at the 0 dB crossover point. The gain margin is measured or calculated at the 180° phase crossover point. Phase margin is expressed mathematically in equation (15).

$$\phi_{M} = 180 - tangent^{-1}(A\beta) \tag{25}$$

The phase margin in Figure 15 is very small, 20°, so it is hard to measure or predict from the Bode plot. A designer probably doesn't want a 20° phase margin because the system overshoots and rings badly, but this case points out the need to calculate small phase margins carefully. The circuit is stable, and it does not oscillate because the phase margin is positive. Also, the circuit with the smallest phase margin has the highest frequency response and bandwidth.

Figure 41. Magnitude and Phase Plot of the Loop Gain Increased to (K+C)

Increasing the loop gain to (K+C) as shown in Figure 16 shifts the magnitude plot up. If the pole locations are kept constant, the phase margin reduces to zero as shown, and the circuit will oscillate. The circuit is not good for much in this condition because production tolerances and worst case conditions insure that the circuit will oscillate when you want it to amplify, and vice versa.

Figure 42. Magnitude and Phase Plot of the Loop Gain With Pole Spacing Reduced

The circuit poles are spaced closer in Figure 17, and this results in a faster accumulation of phase shift. The phase margin is zero because the loop gain phase shift reaches 180° before the magnitude passes through 0 dB. This circuit oscillates, but it is not a very stable oscillator because the transition to 180° phase shift is very slow. Stable oscillators have a very sharp transition through 180°.

When the closed loop gain is increased the feedback factor, β_i is decreased because $V_{OUT}/V_{IN}=1/\beta$ for the ideal case. This in turn decreases the loop gain, A β_i , thus the stability increases. In other words, increasing the closed loop gain makes the circuit more stable. Stability is not important except to oscillator designers because overshoot and ringing become intolerable to linear amplifiers long before oscillation occurs. The overshoot and ringing situation is investigated in the next section.

14 The Second Order Equation and Ringing/Overshoot Predictions

The second order equation is a common approximation used for feedback system analysis because it describes a two-pole circuit which is the most common approximation used. All real circuits are more complex than two poles, but except for a small fraction, they can be represented by a two-pole equivalent. The second order equation is extensively described in electronic and control literature^[6].

$$(1 + A\beta) = 1 + \frac{K}{(1 + \tau_1 s) (1 + \tau_2 s)}$$
 (26)

After algebraic manipulation equation (16) is presented in the form of equation (17).

$$s^2 + \frac{\tau_1 + \tau_2}{\tau_1 \tau_2} + \frac{1 + K}{\tau_1 \tau_2} = 0 \tag{27}$$

Equation (17) is compared to the second order control equation (18), and the damping ratio, z, and natural frequency, w_{N} are obtained through like term comparisons.

$$s^2 + 2\xi\omega_N s + \omega_N^2$$
 (28)

Comparing these equations yields formulas for the phase margin and per cent overshoot as a function of damping ratio.

$$\omega_{\mathsf{N}} = \sqrt{\frac{1+\mathsf{K}}{\tau_1 \, \tau_2}} \tag{29}$$

$$\xi = \frac{\tau_1 + \tau_2}{2\omega_N \ \tau_1 \ \tau_2} \tag{30}$$

When the two poles are well separated, equation (21) is valid.

$$\phi_{M} = tangent^{-1}(2\xi) \tag{31}$$

The salient equations are plotted in Figure 18 which enables a designer to determine the phase margin and overshoot when the gain and pole locations are known.

Figure 43. Phase Margin and Overshoot vs Damping Ratio

Enter Figure 18 at the calculated damping ratio, say 0.4, and read the overshoot at 25% and the phase margin at 42°. If a designer had a circuit specification of 5% maximum overshoot, then the damping ratio must be 0.78 with a phase margin of 62°.

15 Summary

These equations and examples are adequate to get designers started in the design and analysis of feedback circuits. When the engineers reach the point where the examples and equations given here are inadequate, they must go to the references for more information. If the engineers find themselves digging through the references on a regular basis, they should consider becoming analog design engineers.

16 References

- DiStefano, Stubberud, and Williams, Theory and Problems of Feedback and Control Systems, Schaum's Outline Series, Mc Graw Hill Book Company, 1967
- Bode, H. W., Network Analysis And Feedback Amplifier Design, D. Van Nostrand, Inc., 1945
- Frederickson, Thomas, Intuitive Operational Amplifiers, McGraw Hill Book Company, 1988
- Bower, J. L. and Schultheis, P. M., Introduction To The Design Of Servomechanisms, Wiley, 1961
- 5. Van Valkenberg, M. E., Network Analysis, Prentice-Hall, 1964
- Del Toro, V., and Parker, S., Principles of Control Systems Engineering, McGraw-Hill, 1960.

Noise Analysis in Operational Amplifier Circuits

Application Report

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated

Contents

Introduction	5–67
Notational Conventions	
Spectral Density	
Types of Noise	5–68
Shot Noise	5–68
Thermal Noise	
Flicker Noise	
Burst Noise	
Avalanche Noise	5–69
Noise Characteristics	5–70
Adding Noise Sources	5–70
Noise Spectra	5–72
Integrating Noise	5–72
Equivalent Noise Bandwidth	5–74
Resistor Noise Model	5–76
Op Amp Circuit Noise Model	5–76
Inverting and Non-Inverting Op Amp Circuit Noise Calculations	5–77
Differential Op Amp Circuit Noise Calculations	5–81
Summary	5–86
References	
Appendix A Using Current Sources for Resistor Noise Analysis	5–89

List of Figures

BUILD 그 사용 10 BUILD		
1 Gaussian Distribution of Noise Amplitude	5–70	
2 R1 and R2 Noise Model	5-71	
3 1/f and White Noise Spectra	5–72	
4 Equivalent Input Noise Voltage vs Frequency for TLV2772 as Normally Presented	5–74	
5 Equivalent Input Noise Voltage vs Frequency for TLV2772 on Log-Log Scale	5–74	
6 ENB Brick-wall Equivalent	5–75	
7 RC Filter	5–75	
8 Resistor Noise Models	5–76	
9 Op Amp Noise Model	5–76	
10 Inverting and Non-Inverting Noise Analysis Circuit		
11 E1	5–77	
12 E2	5–78	
13 E3	5–78	
14 Ep		
15 Enp	5–79	
16 Enn		
17 Differenital Op Amp Circuit Noise Model	5–81	
18 e1		
19 e2		
20 e3		
21 e4		
22 inp		
23 ep		
24 inn		
A-1 E1		
A-2 E2		
A-3 E3	5–89	
List of Tables		
miot or range		

Noise Analysis in Operational Amplifier Circuits

ABSTRACT

This application report uses standard circuit theory and noise models to calculate noise in op amp circuits. Example analysis of the inverting, noninverting, and differential-amplifier circuits shows how calculations are performed. Characteristics of noise sources are presented to help the designer make informed decisions when designing for noise.

Introduction

"Statistical fluctuation of electric charge exists in all conductors, producing random variation of potential between the ends of the conductor. The electric charges in a conductor are found to be in a state of thermal agitation, in thermodynamic equilibrium with the heat motion of the atoms of the conductor. The manifestation of the phenomenon is a fluctuation of potential difference between the terminals of the conductor" – J.B. Johnson^[1]

"The term spontaneous fluctuations, although, perhaps, theoretically the most appropriate, is not commonly used in practice; usually it is simply called noise" – Aldert van der Ziel^[2]

Early investigators of noise likened spontaneous fluctuations of current and voltage in electric circuits to Brownian motion. In 1928 Johnson^[1] showed that electrical noise was a significant problem for electrical engineers designing sensitive amplifiers. The limit to the sensitivity of an electrical circuit is set by the point at which the signal-to-noise ratio drops below acceptable limits.

Notational Conventions

In the calculations throughout this report, lower case letters e and i indicate independent voltage and current noise sources; upper case letters E and I indicate combinations or amplified versions of the independent sources.

Spectral Density

Types of Noise

In electrical circuits there are 5 common noise sources:

- Shot noise
- Thermal noise
- Flicker noise
- Burst noise
- Avalanche noise

In op amp circuits, burst noise and avalanche noise are normally not problems, or they can be eliminated if present. They are mentioned here for completeness, but are not considered in the noise analysis.

Shot Noise

Shot noise is always associated with current flow. Shot noise results whenever charges cross a potential barrier, like a pn junction. Crossing the potential barrier is a purely random event. Thus the instantaneous current, i, is composed of a large number of random, independent current pulses with an average value, i_D. Shot noise is generally specified in terms of its mean-square variation about the average value. This is

written as i_n^2 , where:

$$\overline{i_n^2} = \overline{\left(i - i_D\right)^2} = \int 2q i_D df \tag{32}$$

Where q is the electron charge (1.62 × 10⁻¹⁹ C) and df is differential frequency. Shot noise is spectrally flat or has a uniform power density, meaning that when plotted vs. frequency, it has a constant value. Shot noise is independent of temperature.

The term qi_D is a current power density having units A^2/Hz .

Thermal Noise

Thermal noise is caused by the thermal agitation of charge carriers (electrons or holes) in a conductor. This noise is present in all passive resistive elements.

Like shot noise, thermal noise is spectrally flat or has a uniform power density, but thermal noise is independent of current flow.

Thermal noise in a conductor can be modeled as voltage, or current. When modeled as a voltage it is placed in series with an otherwise noiseless resistor. When modeled as a current it is placed in parallel with an otherwise noiseless resistor. The average mean-square value of the voltage noise source or current noise source is calculated by:

$$\overline{e^2} = \int 4kTRdf \text{ or } \overline{i^2} = \int (4kT/R)df$$
 (33)

Where k is Boltzmann's constant (1.38 × 10⁻²³ j/K), T is absolute temperature in Kelvin (K), R is the resistance of the conductor in ohms (Ω) and df is differential frequency.

The terms 4kTR and 4kT/R are voltage and current power densities having units of V^2/Hz and A^2/Hz .

Flicker Noise

Flicker noise is also called 1/f noise. It is present in all active devices and has various origins. Flicker noise is always associated with a dc current, and its average mean-square value is of the form:

$$\overline{e^2} = \left(\left(\frac{\kappa_e^2}{f} \right) df \text{ or } i^2 = \left(\frac{\kappa_i^2}{f} \right) df$$
 (34)

Where K_{θ} and K_{i} are the appropriate device constants (in volts or amps), f is frequency, and df is differential frequency.

Flicker noise is also found in carbon composition resistors where it is often referred to as excess noise because it appears in addition to the thermal noise. Other types of resistors also exhibit flicker noise to varying degrees, with wire wound showing the least. Since flicker noise is proportional to the dc current in the device, if the current is kept low enough, thermal noise will predominate and the type of resistor used will not change the noise in the circuit.

The terms K_e^2/f and K_i^2/f are voltage and current power densities having units of V^2/Hz and A^2/Hz .

Burst Noise

Burst noise, also called popcorn noise, appears to be related to imperfections in semiconductor material and heavy ion implants. Burst noise makes a popping sound at rates below 100 Hz when played through a speaker. Low burst noise is achieved by using clean device processing.

Avalanche Noise

Avalanche noise is created when a pn junction is operated in the reverse breakdown mode. Under the influence of a strong reverse electric field within the junction's depletion region, electrons have enough kinetic energy that, when they collide with the atoms of the crystal lattice, additional electron-hole pairs are formed. These collisions are purely random and produce random current pulses similar to shot noise, but much more intense.

Noise Characteristics

Since noise sources have amplitudes that vary randomly with time, they can only be specified by a probability density function. Thermal noise and shot noise have Gaussian probability density functions. The other forms of noise noted do not. If δ is the standard deviation of the Gaussian distribution, then the instantaneous value lies between the average value of the signal and $\pm \delta$ 68% of the time. By definition, δ^2 (variance) is the average mean-square variation about the average value. This means that in noise signals having Gaussian distributions of amplitude, the average mean-square variation about the average value, i^2 or e^2 , is the variance δ^2 , and the rms value is the standard deviation δ .

Theoretically the noise amplitude can have values approaching infinity. However, the probability falls off rapidly as amplitude increases. An effective limit is $\pm 3\delta$, since the noise amplitude is within these limits 99.7% of the time. Figure 1 shows graphically how the probability of the amplitude relates to the rms value.

Figure 44. Gaussian Distribution of Noise Amplitude

Since the rms value of a noise source is equal to δ , to assure that a signal is within peak-to-peak limits 99.7% of the time, multiply the rms value by $6(+3\delta-(-3\delta))$: $Erms \times 6 = Epp$. For more or less assurance, use values between 4(95.4%) and 6.8(99.94%).

Adding Noise Sources

With multiple noise sources in a circuit, the signals must be combined properly to obtain the overall noise signal.

Consider the example of two resistors, R_1 and R_2 , connected in series. Each resistor has a noise generator associated with it as shown in Figure 2 where

$$\overline{\theta_1^2} = \int 4kTR_1 df$$
 and $\overline{\theta_2^2} = \int 4kTR_2 df$.

Figure 45. R1 and R2 Noise Model

To calculate the average mean square voltage, $\overline{E_t^2}$, across the two resistors, let $E_t(t) = e_1(t) + e_2(t)$ be the instantaneous values. Then

$$\overline{E_t(\hat{\eta}^2)} = \left[e_1(\hat{\eta} + e_2(\hat{\eta}))^2 = \overline{e_1(\hat{\eta}^2)} + \overline{e_2(\hat{\eta}^2)} + \overline{2e_1(\hat{\eta})e_2(\hat{\eta})}\right]$$
(35)

Since the noise voltages, $e_1(t)$ and $e_2(t)$, arise from separate resistors, they are independent, and the average of their product is zero:

$$\overline{2e_1(t)e_2(t)} = 0 \tag{36}$$

This results in

$$\overline{E_t^2} = \overline{e_t^2} + \overline{e_2^2}. \tag{37}$$

Therefore, as long as the noise sources arise from separate mechanisms and are independent, which is usually the case, the average mean square value of a sum of separate independent noise sources is the sum of the individual average mean square values. Thus in our example $\overline{E_t^2} = \int 4kT(R_1 + R_2)df$, which is what would be expected. This is derived using voltage sources, but also is true for current sources. The same result can be shown to be true when considering two independent sine wave sources.

Noise Spectra

A pure sine wave has power at only one frequency. Noise power, on the other hand, is spread over the frequency spectrum. Voltage noise power density, $\overline{e^2}/Hz$, and current noise power density, $\overline{i^2}/Hz$ are often used in noise calculations. To calculate the mean-square value, the power density is integrated over the frequency of operation. This application report deals with noise that is constant over frequency, and noise that is proportional to 1/f.

Spectrally flat noise is referred to as white noise. When plotted vs frequency, white noise is a horizontal line of constant value.

Flicker noise is 1/f noise and is stated in equation form as:

$$\overline{e^2} = \int \left(K_e^2 / f \right) df \text{ or } \overline{i^2} = \int \left(K_i^2 / f \right) df$$

See equation (3). When plotted vs frequency on log-log scales, 1/f noise is a line with constant slope. If the power density V^2/Hz is plotted, the slope is -1 decade per decade. If the square root of the power density, $V_{rms}/\!\!\!\!/Hz$, is plotted, the slope is -0.5 decade per decade.

Figure 3 shows the spectra of 1/f and white noise per root hertz.

Figure 46. 1/f and White Noise Spectra

Integrating Noise

To determine the noise or current voltage over a given frequency band, the beginning and ending frequencies are used as the f integration limits and the integral evaluated. The following analysis uses voltages; the same is true for currents.

Given a white or constant voltage noise vs frequency source then:

$$\overline{e^2} = \int_{f_L}^{f_H} C \ df = C \left(f_H - f_L \right) \tag{38}$$

where $\overline{e^2}$ is the average mean-square voltage, C is the spectral power density per hertz (constant), f_I is the lowest frequency, and f_H is the highest frequency.

Given a 1/f voltage noise vs. frequency source then:

$$\overline{e^2} = \int_{f_L}^{f_H} \frac{K^2}{f} df = K^2 \ln \frac{f_H}{f_L}$$
(39)

where $\overline{e^2}$ is the average mean-square voltage, K is the appropriate device constant in volts, f_I is the lowest frequency, and f_H is the highest frequency.

The input noise of an op amp contains both 1/f noise and white noise. The point in the frequency spectrum where 1/f noise and white noise are equal is referred to as the noise corner frequency, $f_{\rm nc}$. Using the same notation as in the equations above, this means that $K^2/{\rm fnc} = C$. It is useful to find $f_{\rm nc}$ because the total average mean-square noise can be calculated by adding equations (7) and (8) and substituting $Cf_{\rm nc}$ for K^2 :

$$\overline{E^2} = C \left(f_{nc} \ln \frac{f_H}{f_I} + f_{H} - f_L \right) \tag{40}$$

Where C is the square of the white noise voltage specification for the op amp.

Figure 4 shows the equivalent input noise voltage vs frequency graph for the TLV2772 as normally displayed in the data sheet.

 f_{NC} can be determined visually from the graph of equivalent input noise per root hertz vs. frequency graph that is included in most op amp data sheets. Since at f_{NC} the white noise and 1/f noise are equal, f_{NC} is the frequency at which the noise is $\sqrt{2}$ x white noise specification. This would be about $17 \, \text{nV} / \text{Hz}$ for the TLV2772, which is at 1000 Hz as shown in Figure 4.

Another way to find f_{nc} , is to determine K^2 by finding the equivalent input noise voltage per root hertz at the lowest possible frequency in the 1/f noise region, square this value, subtract the white noise voltage squared, and multiply by the frequency. Then divide K^2 by the white noise specification squared. The answer is f_{nc} .

For example, the TLV2772 has a typical noise voltage of $130 \text{ nV}/\overline{\text{Hz}}$ at 10 Hz. The typical white noise specification for the TLV2772 is 12 $nV/\overline{\text{Hz}}$

$$K^2 = \left[\left(130 \ nV / \sqrt{Hz} \right)^2 - \left(12 \ nV / \sqrt{Hz} \right)^2 \right] \times (10 \ Hz) = 167560 \ (nV)^2$$

Therefore, $f_{DC} = (167560 (nV)^2) / (144(nV)^2 / Hz) = 1163 \ Hz$

Figure 47. Equivalent Input Noise Voltage vs. Frequency for TLV2772 as Normally Presented

Figure 5 was constructed by interpreting the equivalent input noise voltage vs frequency graph for the TLV2772 and plotting the values on log-log scales. The –0.5 dec/dec straight line nature of 1/f noise when plotted on log-log scales can be seen.

Figure 48. Equivalent Input Noise Voltage vs. Frequency for TLV2772 on Log-Log Scale Equivalent Noise Bandwidth

Equations (7), (8), and (9) are only true if the bandwidth If the op amp circuit is brick-wall. In reality there is always a certain amount of out-of-band energy transferred. The equivalent noise bandwidth (ENB) is used to account for the extra noise so that brick-wall frequency limits can be used in equations (7), (8), and (9). Figure 6 shows the idea for a first order low-pass filter.

Figure 49. ENB Brick-wall Equivalent

Figure 7 shows and example of a simple RC filter used to filter a voltage noise source, e_{in} .

$$e_{\text{in}} \qquad \qquad A_{n(f)} = \frac{1}{1 + jwRC} \Rightarrow \left| A_{n(f)} \right|^2 = \frac{1}{1 + (wRC)^2}$$

Figure 50. RC Filter

 $A_{n(f)}$ is the frequency-dependant gain of the circuit, and e_{on} is calculated:

$$e_{on} = \sqrt{\int_{0}^{\infty} \left| A_{n(f)} \right|^2 e_{in}^2 df}$$
 (41)

Assuming e_{in} is a white noise source (specified as a spectral density in V/ $\sqrt{\text{Hz}}$), using radian measure for frequency, and substituting for $A_{n(f)}$, the equation can be solved as follows:

$$e_{on} = e_{in} \sqrt{\int_{0}^{\infty} \frac{1}{1 + (\omega RC)^{2}} d\omega} = e_{in} \sqrt{\frac{1}{RC} \int_{0}^{\infty} tan^{-1} \omega RC} = e_{in} \sqrt{\frac{1}{RC} \frac{\Pi}{2}}$$

$$(42)$$

So that the ENB = 1.57×3 dB bandwidth in this first-order system. This result holds for any first-order low-pass function. For higher order filters the ENB approaches the normal cutoff frequency, f_C , of the filter. Table 1 shows the ENB for different order low-pass filters.

Table 3. ENB vs Filter Order for Low-Pass Filters

FILTER ORDER	ENB
1	1.57 x f _C
2	1.11 x f _C
3	1.05 x f _C
4	1.025 x f _C

Resistor Noise Model

To reiterate, noise in a resistor can be modeled as a voltage source in series, or a current source in parallel, with an otherwise noiseless resistor as shown in Figure 8. These models are equivalent and can be interchanged as required to ease analysis. This is explored in Appendix A.

$$\overline{i^2} = \int \frac{4kT}{R} df$$

$$\overline{e^2} = \int 4 kTR df$$

Figure 51. Resistor Noise Models

Op Amp Circuit Noise Model

Op amp manufacturers measure the noise characteristics for a large sampling of a device. This information is compiled and used to determine the typical noise performance of the device. The noise specifications published by Texas Instruments in their data sheets refer the measured noise to the input of the op amp. The part of the internally generated noise that can properly be represented by a voltage source is placed in series with the positive input to an otherwise noiseless op amp. The part of the internally generated noise that can properly be represented by current sources is placed between each input and ground in an otherwise noiseless op amp. Figure 9 shows the resulting noise model for a typical op amp.

Figure 52. Op Amp Noise Model

Inverting and Non-Inverting Op Amp Circuit Noise Calculations

To perform a noise analysis, the foregoing noise models are added to the circuit schematic and the input signal sources are shorted to ground. When this is done to either an inverting or a noninverting op amp circuit, the same circuit results, as shown in Figure 10. This circuit is used for the following noise analysis.

Figure 53. Inverting and Non-Inverting Noise Analysis Circuit

At first, this analysis may appear somewhat daunting, but it can be deciphered piece by piece. Using the principles of superposition, each of the noise sources is isolated, and everything else is assumed to be noiseless. Then the results can be added according to the rules for adding independent noise sources. An ideal op amp is assumed for the noiseless op amp. In the end it will all seem simple, if a little tedious the first time through.

Figures 11 through 13 show the analysis.

Figure 55. E2

Figure 56. E3

Combining to arrive at the solution for the circuit's output rms noise voltage, E_{Rrms} , due to the thermal noise of the resistors in the circuit:

$$\begin{split} E_{Rrms} &= \sqrt{\overline{E_1}^2 + \overline{E_2}^2 + \overline{E_3}^2} \\ E_{Rrms} &= \sqrt{\int \left[4kTR_1 \left(\frac{R_2}{R_1} \right)^2 + 4kTR_2 + 4kTR_3 \left(\frac{R_1 + R_2}{R_1} \right)^2 \right]} \ df \\ E_{Rrms} &= \sqrt{\int \left[4kTR_2 \left(\frac{R_1 + R_2}{R_1} \right) + 4kTR_3 \left(\frac{R_1 + R_2}{R_1} \right)^2 \right]} \ df \end{split}$$

If it is desired to know the resistor noise referenced to the input, E_{iRrms} , the output noise is divided by the noise gain, A_n , of the circuit:

$$A_n = \left(\frac{R_1 + R_2}{R_1}\right) \tag{44}$$

(46)

$$E_{iRrms}^{2} = \left(\frac{E_{Rrms}}{A_{n}}\right)^{2} = \int \frac{\left[4kTR_{2}\left(\frac{R_{1}+R_{2}}{R_{1}}\right) + 4kTR_{3}\left(\frac{R_{1}+R_{2}}{R_{1}}\right)^{2}\right]df}{\left(\frac{R_{1}+R_{2}}{R_{1}}\right)^{2}} = \int 4kT\left[\left(\frac{R_{1}R_{2}}{R_{1}+R_{2}}\right) + R_{3}\right]df$$

Normally R_3 is chosen to be equal to the parallel combination of R_1 and R_2 to minimize offset voltages due to input bias current. If this is done, the equation simplifies to:

$$\Xi_{iRrms} = \sqrt{8kTR_3 df}$$
 When R3 = $\left(\frac{R_1R_2}{R_1 + R_2}\right)$

Now consider the noise sources associated with the op amp itself. The analysis proceeds as before as shown in Figures 14 through 16.

Figure 57. Ep

Figure 58. Enp

Figure 59. Enn

Combining to arrive at the solution for the circuit's output rms noise voltage, E_{oarms} , due to the input referred op amp noise in the circuit:

$$E_{oarms} = \sqrt{\overline{E_p}^2 + \overline{E_{np}}^2 + \overline{E_{nn}}^2}$$

$$E_{oarms} = \sqrt{\int \left[\left(i_{nn} (R_2) \right)^2 + \left((i_{np}) R_3 \left(\frac{R_1 + R_2}{R_1} \right) \right)^2 + \left(e_p \left(\frac{R_1 + R_2}{R_1} \right) \right)^2 \right]} df$$

$$(47)$$

Now combining the resistor noise and the op amp noise to get the total output rms noise voltage, E_{Trms} .

$$E_{Trms} = \sqrt{\int \left[4kTR_2 \left(\frac{R_1 + R_2}{R_1} \right) + 4kTR_3 \left(\frac{R_1 + R_2}{R_1} \right)^2 + \left((i_{np})R_2 \right)^2 + \left((i_{np})R_3 \left(\frac{R_1 + R_2}{R_1} \right) \right)^2 + \left(e_n \left(\frac{R_1 + R_2}{R_1} \right) \right)^2 \right] df}$$

The only work left is to evaluate the integral. Most of the terms are constants that can be brought straight out of the integral. The resistors and their associated noise are constant over frequency so that the first two terms are constants. The last three terms contain the input referred noise of the op amp. The voltage and current input referred noise of op amps contains flicker noise, shot noise, and thermal noise. This means that they must be evaluated as a combination of white and 1/f noise. Using equation (9) and Table 1, the output noise is:

$$E_{Trms} = \sqrt{ENB \left(4kTR_2A + 4kTR_3A^2 \right) + i_W^2 \left(R_2^2 + R_3^2A^2 \right) \left(f_{inc} \ln \frac{f_H}{f_L} + ENB \right) + e_W^2 A^2 \left(f_{enc} \ln \frac{f_H}{f_L} + ENB \right)}$$

Where $A = (R_1 + R_2)/R_1$, i_W is the white current noise specification (spectral density in A/\sqrt{Hz}), f_{IRC} is the current noise corner frequency, e_W is the white voltage noise specification (spectral density in V/\sqrt{Hz} , and f_{eRC} is the voltage noise corner frequency. ENB is determined by the frequency characteristics of the circuit. f_H/f_L is set equal to ENB.

In CMOS input op amps, noise currents are normally so low that the input noise voltage dominates and the i_W terms are not factored into the noise computation. Also, since bias current is very low, there is no need to use R_3 for bias current compensation, and it, too, is removed from the circuit and the calculations. With these simplifications the formula above reduces to:

$$E_{Trms} = \sqrt{ENB \ 4kTR_2 \ A + e_w^2 \ A^2 \left(f_{enc} \ ln \frac{f_H}{f_L} + ENB \right)}$$
 CMOS input op amps

Differential Op Amp Circuit Noise Calculations

A noise analysis for a differential amplifier can be done in the same manner as the previous example. Figure 17 shows the circuit used for the analysis.

Figure 60. Differenital Op Amp Circuit Noise Model

Figures 18 through 21 show the analysis.

Figure 61. e1

Figure 62. e2

Figure 63. e3

Figure 64. e4

Combining to arrive at the solution for the circuit's output rms noise voltage, E_{Rrms} , due to the thermal noise in the resistors in the circuit:

$$E_{Rrms} = \sqrt{E1^{2} + E2^{2} + E3^{2} + E4^{2}}$$

$$E_{Rrms} = \sqrt{\left[\left(4kTR1\left(\frac{R2}{R1}\right)^{2}\right) + (4kTR2) + \left(4kTR3\left(\frac{R4}{R3 + R4}\right)^{2}\left(\frac{R1 + R2}{R1}\right)^{2}\right) + \left(4kTR4\left(\frac{R3}{R3 + R4}\right)^{2}\left(\frac{R1 + R2}{R1}\right)^{2}\right)\right]} df$$

$$E_{Rrms} = \sqrt{\left[4kT\left(\frac{R2}{R1}\right)^{2} + R2 + \left(R3\left(\frac{R4}{R3 + R4}\right)^{2}\left(\frac{R1 + R2}{R1}\right)^{2}\right) + \left(R4\left(\frac{R4}{R3 + R4}\right)^{2}\left(\frac{R1 + R2}{R1}\right)^{2}\right)\right]} df$$

Normally $R_1 = R_3$ and $R_2 = R_4$. Making this substitution reduces the above equation to:

$$E_{Rrms} = \sqrt{\int 8kTR2\left(1 + \frac{R2}{R1}\right) df}$$
 If R1 = R3 and R2 = R4 (50)

Now consider the noise sources associated with the op amp itself. The analysis proceeds as before as shown in Figures 22 through 24.

Figure 65. inp

Figure 66. ep

Figure 67. inn

Combining to arrive at the solution for the circuit's output rms noise voltage, E_{oarms} , due to the input referred op amp noise in the circuit:

$$E_{oarms} = \sqrt{\overline{Ep}^2 + \overline{Enp}^2 + \overline{Enn}^2}$$

$$E_{oarms} = \sqrt{\int \left[((inn) R2)^2 + \left((inp) \left(\frac{R3R4}{R3 + R4} \right) \left(\frac{R1 + R2}{R1} \right) \right)^2 + \left(ep \left(\frac{R1 + R2}{R1} \right) \right)^2 \right]} df$$
(51)

Normally $R_1 = R_3$, $R_2 = R_4$, and inn = inp = in. Making this substitution reduces the above equation to:

$$E_{oarms} = \sqrt{\int \left[(2inR2)^2 + \left(en\left(\frac{R1 + R2}{R1}\right) \right)^2 \right] df}$$

$$R1 = R3, R2 = R4 \text{ and inn} = inp = in$$
(52)

Now combine the resistor noise and the op amp noise to get the total output rms noise voltage, E_{Trms} .

$$E_{Trms} = \sqrt{\int \left[((inn) \ R2)^2 + \left((inp) \left(\frac{R3R4}{R3 + R4} \right) \left(\frac{R1 + R2}{R1} \right) \right)^2 + \left(en \left(\frac{R1 + R2}{R1} \right) \right)^2 + \left(4kTR1 \left(\frac{R2}{R1} \right)^2 \right)} + \left(4kTR3 \left(\frac{R4}{R3 + R4} \right)^2 \left(\frac{R1 + R2}{R1} \right)^2 \right) + \left(4kTR4 \left(\frac{R3}{R3 + R4} \right)^2 \left(\frac{R1 + R2}{R1} \right)^2 \right) \right] df}$$

$$E_{Trms} = \sqrt{\int \left[((inn) \ R2)^2 + \left((inp) \left(\frac{R3R4}{R3 + R4} \right) \left(\frac{R1 + R2}{R1} \right) \right)^2 + \left(en \left(\frac{R1 + R2}{R1} \right) \right)^2} + \left(en \left(\frac{R1 + R2}{R1} \right) \right)^2 + \left(en \left(\frac$$

Substituting $R_1 = R_3$, $R_2 = R_4$, and inn = inp = in:

$$E_{Trms} = \sqrt{\int \left[2 \left(inR2\right)^2 + \left(en\left(\frac{R1 + R2}{R1}\right)\right)^2 + 8kTR2\left(\frac{R1 + R2}{R1}\right)\right]} df$$
 (54)

$$R1 = R3$$
, $R2 = R4$ and $inn = inp = in$

Evaluating the integral using these simplifications results in:

$$E_{Trms} = \sqrt{ENB \ 8kTR_2A + 2\left(i \frac{2}{w} R_2^2\right) \left(f_{inc} \ln \frac{f_H}{f_L} + ENB\right) + e_w^2 A^2 \left(f_{enc} \ln \frac{f_H}{f_L} + ENB\right)}}$$

$$R1 = R3, \ R2 = R4 \ and \ inn = inp = in$$

$$(55)$$

Where $A=(R_1+R_2)/R_1$, i_W is the white current noise specification (spectral density in A/ $\sqrt{\text{Hz}}$), f_{inc} is the current noise corner frequency, e_W is the white voltage noise specification (spectral density in V/ $\sqrt{\text{Hz}}$), and f_{enc} is the voltage noise corner frequency. ENB is determined by the frequency characteristics of the circuit. f_H/f_L is set equal to ENB.

Summary

The techniques presented here can be used to perform a noise analysis on any circuit. Superposition was chosen for illustrative purposes, but the same solutions can be derived by using other circuit analysis techniques.

Noise is a purely random signal; the instantaneous value and/or phase of the waveform cannot be predicted at any time. The only information available for circuit calculations is the average mean-square value of the signal. With multiple noise sources in a circuit, the total root-mean-square (rms) noise signal that results is the square root of the sum of the average mean-square values of the individual sources.

$$E_{Totalrms} = \sqrt{e_{1rms}^2 + e_{2rms}^2 + ...e_{nrms}^2}$$

Because noise adds by the square, when there is an order of magnitude or more difference in value, the lower value can be ignored with very little error. For example:

$$\sqrt{1^2 + 10^2} = 10.05$$

If the 1 is ignored, the error is 0.5%. With modern computational resources, evaluation of all the terms is trivial, but it is important to understand the principles so that time will be spent reducing the 10 before working on the 1.

Noise is normally specified as a spectral density in rms volts or amps per root Hertz, V / \overline{Hz} or A / \overline{Hz} . To calculate the amplitude of the expected noise signal, the spectral density is integrated over the equivalent noise bandwidth (ENB) of the circuit.

Very often the peak-to-peak value of the noise is of interest. Once the total rms noise signal is calculated, the expected peak-to-peak value can be calculated. The instantaneous value will be equal to or less than 6 times the rms value 99.7% of the time.

References

- J. B. Johnson. Thermal Agitation of Electricity in Conductors. Physical Review, July 1928, Vol. 32.
- 2. Aldert van der Ziel. Noise. Prentice-Hall, Inc., 1954.
- 3. H. Nyquist. *Thermal Agitation of Electric Charge in Conductors.* Physical Review, July 1928, Vol. 32.
- 4. Paul R. Gray and Robert G Meyer. *Analysis and Design of Analog Integrated Circuits*. 2d ed., John Wiley & Sons, Inc., 1984.
- Sergio Franco. Design with Operational Amplifiers and Analog Integrated Circuits. McGraw-Hill, Inc., 1988.
- David E. Johnson, Johnny R. Johnson, and John L. Hilburn. Electric Circuit Analysis. Prentice-Hall, Inc., 1989.

References

- J. B. Johnson. Thermat Agitation of Electricity in Conductors. Physical Raylew, July 1928, Vol. S2.
 - 2. Aldert van der Ziel. Nolse. Prendos-Hall, Inc., 1954.
- H. Nyquist. Thermal Agitation of Electric Charge in Conductors. Physical Paview, July 1928, Vol. 32.
- Paul H, Gray and Robert G Moyer. Analysis and Oraign of Analog Integrated Cinquits 2d ed., John Wiley & Sons, Inc., 1994.
- 5. Sergio Franco, Design with Operational Ampifiers and Analog Integrated Chauth McGraw-Mill Inc., 1988.
- David & Johnson, Johnny R. Johnson, and John L. Hilburn. Electric Chourt
 Analysis Prantice-Hall, Inc., 1989.

SLVA043

Appendix A Using Current Sources for Resistor Noise Analysis

Figures A1 through A3 show analysis of the resistor noise in the inverting/noninverting op amp noise analysis circuit using current sources in parallel with the noiseless resistors.

Figure A-1. E1

Figure A-2. E2

Figure A-3. E3

Combining the independent noise signals:

$$(A-1)$$

$$\begin{split} E_{Rrms} &= \sqrt{\overline{E_1}^2 + \overline{E_2}^2 + \overline{E_3}^2} \\ E_{Rrms} &= \sqrt{\int \left[\frac{4kT}{R_1} \ R_2^2 + \frac{4kT}{R_2} \ R_2^2 + \frac{4kT}{R_3} \ R_3^2 \bigg(\frac{R_1 + R_2}{R_1} \bigg)^2 \right]} \ df \\ E_{Rrms} &= \sqrt{\int \left[4kTR_2 \bigg(\frac{R_1 + R_2}{R_1} \bigg) + 4kTR_3 \bigg(\frac{R_1 + R_2}{R_1} \bigg)^2 \right]} \ df \end{split}$$

The resulting equation is the same as equation (12) presented earlier.

Choosing an ADC and Op Amp for Minimum Offset Application Report

Literature Number: SLAA064 June 1999

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated

Contents

Background	5–95
Unipolar Supplies and Op Amps	5–95
CMOS Op Amps and Input Offset Voltage	5–97
An Example Unipolar Application	5–99
Analog-to-Digital Conversions	5–100
References	5–102
List of Figures	
1 Input Stage of a CMOS Op Amp 2 Dynamic Range 3 Block Diagram of the TLC4502 4 Differential Amplifier 5 Instrument Amplifier 6 Interface of the TLV1544/8 to the TMS320C542 7 Timing Behavior of the DSP Interface	5–97 5–98 5–99 5–100 5–101
List of Tables	
1 Resolution of an A/D Converter	5–97

Corrients setiground ... 5-95 MOS Op Amps and Op Amps ... 5-95 Application Application ... 5-96 application Application ... 5-96 application Application ... 5-96 application Application ... 5-96 application ... 5-96 List of Figures ... 5-96 Septiming Behavior of the DSP Interface ... 5-90 Itlant of Tables ... 5-90 Interface of the TLY ISAAR to the TMSQCOSAR ... 5-90 Timing Behavior of the DSP Interface ... 5-90 List of Tables ... 5-90 Electrons of the TLY ISAAR to the TMSQCOSAR ... 5-90 Timing Behavior of the DSP Interface ... 5-90 Electrons of the DSP Interface ... 5-90 Septiming Behavior of the DSP Interface ... 5-90 List of Tables ... 5-90 List of Tables ... 5-90 List of Tables ... 5-90 Septiming Behavior of the DSP Interface ... 5-90 List of Tables ... 5-90

Choosing an ADC and Op Amp for Minimum Offset

Heinz-Peter Beckemeyer

ABSTRACT

Designing a mixed-signal circuit containing analog and digital components can be a challenge to the development engineer. Requirements such as a low single-polarity supply voltage and a high degree of precision may conflict, and make the choice of components and the best circuit design difficult. This report discusses problems that arise in using operational amplifiers (op amps) for signal conditioning, and in interfacing a 10-bit A/D converter to a digital signal processor.

Background

Measurement and control applications increasingly use digital systems. However, all the variables that sensors measure (such as temperature, pressure or light intensity) are analog; therefore, an element is needed to link the analog environment to the digital system. This usually means that signals from sensors must be modified for conversion into a digital data format.

An operational amplifier (op amp) generally conditions the signal from a sensor. In the past, op amps used a bipolar supply voltage of ±15 V. The output voltage of such an op amp cannot swing between the maximum voltage levels of the supply; the maximum output voltage limits lie about 2 V above the negative supply voltage, and the same amount below the positive supply voltage. In the same way, the common-mode voltage applied to the input cannot reach the negative or positive supply voltages. In systems using bipolar ±15-V supplies however, this was not a particular restriction, because the remaining dynamic range still provided a wide dynamic range for the signal.

Unipolar Supplies and Op Amps

In most applications nowadays however, a unipolar supply voltage of 5 V, or—particularly with portable systems—a single supply of only 3 V is used.

In applications operating from a unipolar supply voltage, it is particularly important that it be possible to drive the op amp input down to 0 V, the ground (GND) voltage level. This makes it possible to amplify the very low-level signals from sensors.

CMOS op amps are ideally suited for this purpose. With the use of P-channel field-effect transistors in their input stages, the permissible common-mode voltage at the input can be taken down to the negative supply voltage, or to ground (GND) with a unipolar supply voltage. Figure 1 shows the input stage of a CMOS op amp from Texas Instruments.

The differential amplifier consists of P-channel field-effect transistors. Linear driving of the op amp is then only possible when $V_{GS} < V_T$ applies for the input voltage. As the input characteristics show, V_T is the threshold voltage of the field-effect transistor.

Figure 4. Input Stage of a CMOS Op Amp

With these conditions, it is permissible to drive the op amp down to V_{DD-} or GND. Driving in the positive direction is limited however, and the limit usually lies about 0.8 V to 1.5 V below the positive supply voltage.

This input stage has the advantage of a very high input resistance, making extremely low input currents attainable.

The magnitude of the positive supply voltage—the permissible driving dynamic range—and the sum of the total errors of the op amp limit the usable dynamic signal range of an op amp with a single supply voltage. Reducing the supply voltage from ± 15 V to 5 V or 3 V reduces the maximum dynamic range, and thus the performance of the circuit. Figure 2 shows how the dynamic range of a typical linear component deteriorates when the supply voltage is reduced from ± 15 V to 5 V, and then to 3 V.

It is important that as much as possible of the reduced supply voltage remains available for the usable dynamic range. Using components that can be driven and controlled up to the limits of the supply voltage can achieve this goal. This ability at the output of the op amp is called rail-to-rail compatibility.

Figure 5. Dynamic Range

Texas Instruments provides a number of rail-to-rail op amps in Advanced-LinCMOS technology, for 5-V and 3-V systems.

Compared to bipolar technology, CMOS op amps have very low supply current. The resulting low power consumption makes them specially suited for battery operated systems.

CMOS Op Amps and Input Offset Voltage

CMOS technology has one disadvantage compared to bipolar components: the relatively high input offset voltage. CMOS op amps have a typical input offset voltage of a few millivolts. The op amp multiplies this input offset voltage, and it becomes an important parameter in determining the precision that can be achieved with the signal conditioning of direct current signals.

Table 1 shows the minimum resolvable potential difference (magnitude of the LSB) of A/D converters. If, for example, 12-bit precision is required in a 3-V system, then a change of the LSB corresponds to a voltage change of 0.73 mV. An op amp having an input offset voltage of 1 mV and an amplification factor of 1 already exceeds the acceptable error resulting from the resolution of the LSB.

Table 1. Resolution of an A/D Converter

BITS	STEPS	RESOLUTION AT VCC = 5 V	RESOLUTION AT VCC = 3 V	RESOLUTION IN %
10	1024	4.88 mV	2.93 mV	0.098
12	4096	1.22 mV	0.73 mV	0.024

Texas Instruments makes CMOS precision op amps that adddress this problem using chopper stabilisation (TLC2652 and TLC2654). Chopper op amps are used primarily to amplify direct current signals, and they have extremely low input offset voltages. An internally-clocked circuit interrogates and compensates the input offset voltage. This technique can achieve input offset voltages of only 1 μV . Even in 5-V systems with 12-bit resolution, it is possible to choose higher amplifications without the error from the input offset voltage becoming larger than that resulting from the resolution of the LSB. Disadvantages, however, are the need for external storage capacitors and a limited usable bandwidth.

Texas Instruments now offers a new technique (Self-CalTM) that limits the input offset voltage to $50\,\mu V$ maximum without external circuitry. This technique allows the op amp to compensate the input offset voltage internally. The TLC4502 is the first CMOS op amp with this self-calibration feature. The TLC4502 uses a unipolar 5-V supply, has a rail-to-rail output stage, and can be driven down to 0 V at the input. The automatic calibration typically requires 300 ms to activate when the supply voltage is switched on.

Figure 3 shows the block diagram of the TLC4502 compensating circuit. The compensation begins automatically when the supply voltage is switched on. For this purpose, the noninverting input of the op amp is shorted to the inverting input. During this phase, two switches from the normal signal input to the circuit isolate the two inputs. This prevents the common-mode input voltage from influencing the op amp output voltage. The output voltage now corresponds to the op amp input offset voltage (V_{1O}). An internal analog-to-digital converter (ADC) converts the output voltage to digital, and stores the result in a register. The digital data is applied to the integrated digital-to-analog converter (DAC). The DAC output current makes it possible to compensate an input offset voltage of up to 5 mV. During the calibration phase, an RC oscillator provides the necessary clock signal. The oscillator is deactivated as soon as calibration is complete to reduce noise, and to keep down power consumption.

Figure 6. Block Diagram of the TLC4502

Low input offset voltage, reduced temperature drift of the input offset voltage (typically 1 μ V/°C), and low input current make the TLC4502 ideal for applications in which small dc voltages must be subjected to high amplification.

Self-Cal is a trademark of Texas Instruments Incorporated.

An Example Unipolar Application

The following application shows the design of a measuring amplifier that uses the TLC4502. This is followed by the solution to the problem of converting the measurement signal from analog into digital in a 10-bit ADC. In this application, a digital signal processor (DSP) controls the ADC.

For amplifying potential differences, such as the diagonal voltage of a Wheatstone bridge, a simple differential amplifier can be used. The differential amplifier is the combination of a noninverting and an inverting amplifier (see Figure 4). Since this circuit has a single supply voltage (5 V), the op amp must have a bias of $V_{\rm CC}/2$ to get the maximum voltage swing at the output. The TLE2425 is ideally suited for this purpose, since it can generate a reference voltage of $V_{\rm REF}=2.5$ V from a voltage of 4 V to 40 V. The output voltage of the op amp can then be calculated as follows:

$$V_A = \frac{R_3}{R_1 + R_3} \times \left(1 + \frac{R_4}{R_2}\right) \times V_1 - \frac{R_4}{R_2} \times V_2 + V_{REF}$$

The following expression applies for the calculation of the resistors:

$$\frac{R_4}{R_2} = \frac{R_3}{R_1},$$

so that the following particularly convenient result is obtained:

$$V_A = \frac{R_3}{R_1} \times (V_1 - V_2) + V_{REF},$$

because with $V_1 = V_2$, the output of the operational amplifier theoretically provides the midpoint voltage $V_A = 2.5 \text{ V}$.

Figure 7. Differential Amplifier

The common-mode rejection of the TLC4502 is typically 100 dB. This means that a common-mode voltage of 1 V has the same effect as a differential voltage of 10 μ V between the inputs of the op amp. Changing the ratio of the resistors R4/R2 = R3/R1 has a great influence on the common-mode amplification.

However, the differential amplifier is not suitable for signal sources with high internal resistances. As a result of the finite resistance of the inputs, voltage drops occur in the internal resistance of the source. Very high input resistances can be achieved using two additional op amps. Figure 5 shows this circuit, which is well-known as an instrument amplifier. This circuit uses the previously described differential amplifier, operating with an amplification factor of 1, since all resistors R_3 are the same. Two TLC4502 op amps are connected before the differential amplifier. The signal source (sensor) connected to the instrument amplifier is only loaded with the input resistance of the TLC4502. The typical input resistance of the TLC4502 is $10^{12}\,\Omega$.

Appropriate choice of resistor R_2 adjusts the amplification of the instrument amplifier. The output voltage of the instrument amplifier can be calculated as follows:

$$V_A = \left(V_2 - V_1\right) \times \left(1 + \frac{2 \times R_1}{R_2}\right) + V_{REF}$$

It is important to use high-precision resistors for R_3 to achieve a high common-mode rejection.

Figure 8. Instrument Amplifier

Analog-to-Digital Conversions

The analog output signal V_A from the differential amplifier or the instrument amplifier must now be converted into a digital signal. To do this, the analog output is connected directly to the analog input of an ADC.

This application uses the TLV1544 (or TLV1548) 10-bit ADC for the conversion. The TLV1544 has four analog inputs; the TLV1548 has eight. Besides the analog input channels, both converters have three self-test channels. The desired channel is activated through the internal multiplexer. These ADCs feature a direct interface to the TMS320 family of DSPs. In addition, they are provided with a direct 3-pole interface to the serial connector of SPI-compatible microprocessors. The TLV1544/8 operates with a supply voltage of from 2.7 V up to 5.5 V, with a low maximum current consumption of only 1 mA. The programmable power-down function reduces the supply current typically to 1 μ A. A conversion rate of 85 ksps can be achieved.

In this application the TMS320C542 DSP controls the ADC, and reads out values converted from analog to digital. Figure 6 shows the interface between the ADC and the DSP.

The TMS320C542 serial port (TDM) can be used for control, and for writing in and reading out the conversion values.

Figure 9. Interface of the TLV1544/8 to the TMS320C542

The DSP XF output signal controls the ADC input chip select ($\overline{\text{CS}}$). The DSP TFSX pulse helps initiate the transmission from the DSP. For this to happen, the output must be connected to the TLV1544/8 FS input.

The serial output of the port (TDX) is connected to the data input (DATA IN) of the TLV1544/8. From this output (TDX), the DSP transmits a 4-bit serial data stream to the ADC. These 4 bits contain information for choosing the appropriate analog input, for activating the power-down mode, and for selecting the fast or slow conversion mode.

The serial input of the port (TDR) receives the converted digital values from the data output (DATA OUT). The ADC indicates the end of a conversion cycle with the EOC (end of conversion) output. This signal is inverted and passed to the interrupt input INT0 of the TMS320C542, indicating the end of a conversion cycle. It is now possible to read in the previously converted result, and to continue processing.

The internal timer of the DSP generates the clock signal of the TLV1544/8. For this purpose, the timer output (TOUT) is connected to the clock input (I/O CLK) of the ADC, the maximum clock frequency of which is 8 MHz. The timer output (TOUT) is also connected to the clock inputs of the serial ports (TCLKR and TCLKX).

The inputs REF- and REF+ of the TLV1544/8 determine the upper and lower reference voltages, and thus the maximum input voltage range of the ADC.

Figure 7 shows the timing behaviour at the interface between the ADC and the DSP.

Figure 10. Timing Behavior of the DSP Interface

References

- 7. Texas Instruments (TI) Data Book: Data Acquisition Circuits, SLAD001, 1995
- 8. TI Data Sheet: TLV1544/8, SLAS139A, 1996
- 9. TI Data Book: Operational Amplifiers, SLYD011A, SLYD012A, 1997
- 10. TI Data Sheet TLC4502, SLOS161, 1996
- TI CD–ROM: Mixed Signal & Analogue Products, SLYC005A, 1997 http://www.ti.com/

Electrostatic Discharge (ESD)

Application Report

Literature Number: SSYA008 May 1999

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated

Electrostatic Discharge (ESD)

Introduction

In recent years, the semiconductor industry has made great strides in developing faster, lower-powered, and smaller devices. During the 1990s, many devices are produced with minimum structure feature size on the silicon chip of 0.25 micron. To put this size in perspective, a typical human hair is about 75 microns in diameter. However. as feature sizes get smaller and smaller. the ESD sensitivity (voltage level at which the device sustains damage) gets lower. Therefore, ESD protection and ESD handling procedures are becoming even more important in preventing ESD damage.

All semiconductor devices have an ESD voltage threshold above which they sustain damage. While circuit designers can provide some on-circuit ESD protection (typically in the 2,000 V to 4,000 V range for the human body model and in the 200 V to 300 V range for the machine model), this is well below the static voltage levels found in work areas without ESD protection. Proper ESD handling and packaging procedures must be used throughout the processing, handling, and storing of unmounted integrated circuits (ICs) and ICs mounted on circuit boards.

What is ESD and How Does It Occur?

A static charge is an unbalanced electrical charge at rest. A static discharge is created when insulator surfaces rub together or pull apart. One surface gains electrons while the other surface loses electrons. This results in an unbalanced electrical condition recognized as static charge.

When a static charge moves from one surface to another, it is called ESD. ESD is a miniature lightning bolt of static charge that moves between two surfaces that have different potentials. ESD only occurs when the voltage differential between the two surfaces is sufficiently high to break down the dielectric strength of the medium separating the two surfaces. When a static charge moves, it becomes a current that damages or destroys oxides, metalizations, and junctions. ESD can occur in one of four different ways: a charged

body can touch an IC, a charged IC can touch a grounded surface, a charged machine can touch an IC, or an electrostatic field can induce a voltage across a dielectric that is sufficient to break it down.

Latent Defects

Devices with latent ESD defects are devices that have been degraded by ESD but not destroyed. This occurs when an ESD pulse is not strong enough to destroy a device but causes damage. Often, the device suffers junction degradation through increased leakage or a decreased reverse breakdown, but the device still functions and is still within data-sheet limits. A device can be subjected to numerous weak ESD pulses, with each one further degrading a device before it finally becomes a catastrophic failure. There is no known practical screen for devices with latent ESD defects. To avoid this type of damage, devices must be continually provided with ESD protection as outlined later.

What Voltage Levels of ESD are Possible?

It has been shown that human beings can be charged up to 38,000 volts just by walking across a rug on a low-humidity day. In order for an ESD pulse to be seen, felt, or heard, it must be in the range of 3000–4000 volts. Many devices can be damaged well below this threshold. ESD damage can be seen in the failure analysis photographs shown in Figure 1.

Figure 1. Punctured Barrier Junction After ESD Test at 4000 V

How to Avoid ESD Damage to ICs

The best way to avoid ESD damage is to keep ICs at the same potential as their surroundings. The logical reference potential is ESD ground. The first and most important rule in avoiding ESD damage is to keep ICs and everything that comes in close proximity to them at ESD ground potential. There are four supplementary rules that support this first rule.

- Any person handling the ICs should be grounded either with a wrist strap or ESD-protective footwear used in conjunction with a conductive or static-dissipative floor or floor mat.
- The work surface where devices are placed for handling, processing, testing, etc.,
 must, be made of static-dissipative material and be grounded to ESD ground.

- All insulator materials must either be removed from the work area or must be neutralized with an ionizer. Static-generating clothing must be covered with an ESD-protective smock.
- When ICs are being stored, transferred between operations or workstations, or shipped, they must be kept in a Faraday shield container with inside surfaces (surfaces touching the ICs) that are static-dissipative.

Figure 2 shows an ESD-protected workstation.

- NOTES: A. G1 (surface equipment ground) or G2 (earth ground) is acceptable for ESD ground. Where both grounds are used, they are connected (bonded) together.
 - B. R1 is mandatory for all wrist straps.
 - C. R2 (for static-dissipative work surfaces) and R3 (for ESD-protective floor mats) are optional. ESD-protective flooring are connected directly to the ESD ground without R3.
 - D. This ESD-protected workstation complies with JEDEC Standard No. 42.

Figure 2. ESD-Protected Workstation (Side View)

Humidity

Humidity is a very important factor in the generation of static electricity. This is especially true when insulators are present. Humidity affects the surface resistivity of insulator materials. As humidity increases, the surface resistivity decreases. This means that insulator materials rubbed together or pulled apart in a humid environment generate lower static charges than the same materials rubbed together or pulled apart in a dry environment. It is recommended that relative humidity be maintained between 40% and 60%. Humidity

above 60% is uncomfortable for humans. Humidity below 40% increases the risks of static generation from insulators. Humidity is a supplementary control and is not sufficient by itself to reduce static voltages to safe levels.

Training

All personnel who must come in close proximity to ESD-sensitive ICs must have received ESD training. These personnel should be retrained at least once per year. No ESD program can be successful unless the people who handle the ICs understand the need for ESD controls.

ESD Specification

Each area handling ESD-sensitive devices is operated in accordance with the established ESD Handling Procedure. The latest version of this controlled document is maintained in each area and is accessible to all area personnel.

ESD Coordinator

The ESD coordinator has overall responsibility for the ESD program. The ESD coordinator is responsible for ESD training, material evaluation, and writing and updating of the ESD Handling Procedure.

Audits

Periodic audits ranging from daily to yearly are held to ensure that all ESD handling procedures are being followed and that all ESD materials (wrist straps, heel straps, ionizers, table mats, floor mats, etc.) are functioning properly.

TI ESD Handling Procedure

The TI Worldwide ESD Handling Procedure is available to customers upon request.

Understanding Operational Amplifier Specifications

WHITE PAPER: SLOA011

Author: Jim Karki Mixed Signal and Analog Operational Amplifiers

Digital Signal Processing Solutions April 1998

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing oall parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1998, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

INTERNET

Register with TI&ME to build custom information pages and receive new product updates automatically via

TI Semiconductor Home Page http://www.ti.com/sc

TI Distributors http://www.ti.com/sc/docs/distmenu.htm

PRODUCT INFORMATION CENTERS

Hotline (281) 274-2320 Fax (281) 274-2324 BBS (281) 274-2323 email dsph@ti.com email d

Phone +1 (972) 644-5580
Fax +1 (972) 480-7800
Email sc-informaster@ti.com

Europe, Middle East, and Africa

Phone Deutsch +49-(0) 8161 80 3311 Deutsch +49-(0) 8161 80 3311 English +44-(0) 1604 66 3399 Francais +33-(0) 1-30 70 11 67 Fax +33-(0) 1-30-70 10 32 Email epic@ti.com

Japan Phone

International +81-3-3457-0972 Domestic +0120-81-0026 Fax

International +81-3-3457-1259 Domestic +0120-81-0036 pic-japan@ti.com

Email

Asia Phone International +886-2-3786800

Asia (continued) Domestic

Australia TI Number China TI Number

Hong Kong TI Number India
TI Number
Indonesia
TI Number

Korea Malaysia

TI Number New Zealand TI Number Philippines TI Number Singapore TI Number Taiwan Thailand

TI Number

1-800-881-011 -800-800-1450 10811

10811 -800-800-1450 800-96-1111 -800-800-1450 000-117 -800-800-1450 001-801-10 -800-800-1450 080-551-2804 1-800-800-011

-800-800-011 -800-800-1450 +000-911 -800-800-1450 105-11 -800-800-1450 800-0111-111

080-006800 0019-991-1111 -800-800-1450

Contents

Abstract	
Product Support on the World Wide Web	
Introduction	
Amplifier Basics	
Ideal Op Amp Model	
Non-Inverting Amplifier	
Closed Loop Concepts and Simplifications	
Inverting Amplifier	
Closed Loop Concepts and Simplifications	
Simplified Op Amp Circuit Diagram	1
Op Amp Specifications	19
Operational Amplifier Glossary	
Absolute Maximum Ratings and Recommended Operating Conditions	2
Input Offset Voltage	
Input Current	2
Input Common Mode Voltage Range	2
Differential Input Voltage Range	
Maximum Output Voltage Swing	
Large Signal Differential Voltage Amplification	
Input Parasitic Elements	
Input Capacitance	
Input Resistance	
Output Impedance	
Common-Mode Rejection Ratio	
Supply Voltage Rejection Ratio	
Supply Current	
Equivalent Input Noise	
Total Harmonic Distortion plus Noise	
Unity-Gain Bandwidth and Phase Margin	
Settling Time	
References	
Tierer er rees a constitution de la constitution de	******

Figures

Figure 1.	Thevenin Model of Amplifier with Source and Load	10
Figure 2.	Standard Op Amp Notation	10
Figure 3.	Ideal Op Amp Model	11
Figure 4.	Non-Inverting Amplifier	13
Figure 5.	Inverting Amplifier	15
Figure 6.	Simplified Op Amp Circuit Diagram	17
Figure 7.	VIO	2
Figure 8.	Positive Common-Mode Voltage Input Limit	26
Figure 9.	Negative Common-Mode Voltage Input Limit	26
Figure 10.	Differential-Mode Voltage Input Limit	28
Figure 11.	VOM	29
Figure 12	Input Parasitic Elements	3
Figure 13.	Effect of Output Impedance	32
Figure 14	Slew Rate	34
Figure 15	Typical Op Amp Input Noise Spectrum	35
Figure 16.	Output Spectrum with THD + N = 1%	37
Figure 17.	Typical Large-Signal Differential Voltage Amplification and Phase Shift vs.	
	Frequency	39
Figure 18.	Easier to Read Graph of Voltage Amplification and Phase Shift vs.	
	Frequency	40
Figure 19.	Settling Time	41

Understanding Operational Amplifier Specifications

Abstract

Selecting the right operational amplifier for a specific application requires you to have your design goals clearly in mind along with a firm understanding of what the published specifications mean. This paper addresses the issue of understanding data sheet specifications.

This paper begins with background information. First, introductory topics on the basic principles of amplifiers are presented, including the ideal op amp model. As an example, two simple amplifier circuits are analyzed using the ideal model. Second, a simplified circuit of an operational amplifier is discussed to show how parameters arise that limit the ideal functioning of the operational amplifier.

The paper then focuses on op amp specifications. Texas Instruments' data book, *Amplifiers, Comparators, and Special Functions*, is the basis for the discussion on op amp specifications. Information is presented about how Texas Instruments defines and tests operational amplifier parameters.

Product Support on the World Wide Web

Our World Wide Web site at www.ti.com contains the most up to date product information, revisions, and additions. Users registering with Ti&ME can build custom information pages and receive new product updates automatically via email.

8

Introduction

The term operational amplifier, abbreviated op amp, was coined in the 1940s to refer to a special kind of amplifier that, by proper selection of external components, can be configured to perform a variety of mathematical operations. Early op amps were made from vacuum tubes consuming lots of space and energy. Later op amps were made smaller by implementing them with discrete transistors. Today, op amps are monolithic integrated circuits, highly efficient and cost effective.

Amplifier Basics

Before jumping into op amps, lets take a minute to review some amplifier fundamentals. An amplifier has an input port and an output port. In a linear amplifier, output signal = $A \cdot \text{input signal}$, where A is the amplification factor or gain.

Depending on the nature of input and output signals, we can have four types of amplifier gain:

- q Voltage (voltage out/voltage in)
- q Current (current out/current in)
- q Transresistance (voltage out/current in)
- g Transconductance (current out/voltage in)

Since most op amps are voltage amplifiers, we will limit our discussion to voltage amplifiers.

Thevenin's theorem can be used to derive a model of an amplifier, reducing it to the appropriate voltage sources and series resistances. The input port plays a passive role, producing no voltage of its own, and its Thevenin equivalent is a resistive element, R_t . The output port can be modeled by a dependent voltage source, AV_t , with output resistance, R_0 . To complete a simple amplifier circuit, we will include an input source and impedance, V_s and R_s , and output load, R_t . Figure 1 shows the Thevenin equivalent of a simple amplifier circuit.

Understanding Operational Amplifier Specifications

Figure 1. Thevenin Model of Amplifier with Source and Load

It can be seen that we have voltage divider circuits at both the input port and the output port of the amplifier. This requires us to re-calculate whenever a different source and/or load is used and complicates circuit calculations.

Ideal Op Amp Model

The Thevenin amplifier model shown in Figure 1 is redrawn in Figure 2 showing standard op amp notation. An op amp is a differential to single-ended amplifier. It amplifies the voltage difference, $V_d = V_p - V_n$, on the input port and produces a voltage, V_O , on the output port that is referenced to ground.

Figure 2. Standard Op Amp Notation

We still have the loading effects at the input and output ports as noted above. The ideal op amp model was derived to simplify circuit calculations and is commonly used by engineers in first-order approximation calculations. The ideal model makes three simplifying assumptions:

10

q Gain is infinite $a = \infty$ (1)

q Input resistance isRimponite (2)

q Output resistance iRozerô (3)

Applying these assumptiBigut@ results in the ideal op amp model shown Higur@.

Figure. Ideal Op Amp Model

Other simplifications can be derived using the ideal op amp model:

$$\Rightarrow \mathbf{I} = \mathbf{I} = \mathbf{0} \tag{4}$$

BecauseRi= ∞ ,we assumeI = I = 0. There is no loading effect at the input.

$$\Rightarrow$$
 Vo =a V_d (5)

BecauseRo = Othere is no loading effect at the output.

$$\Rightarrow V_d = 0$$
 (6)

If the op amp is in linearVopmanatiba,a finite voltage. By definition= V_d × a. Rearranging,= V_o /a. Since= ∞ , V_d = V_o / ∞ = 0. This is the basis of the virtual short concept.

$$\Rightarrow$$
 Common mode gain = 0 (7

The ideal voltage source driving the output port depends only the voltage difference across its input port. It rejects any vocommon ${\rm to} V_n$ and V_p .

Understanding Operational Amplifier Specifications

Understanding Operational Amplifer Specifications

12

Non-Inverting Amplifier

An ideal op amp by itself is not a very useful device since any finite input signal would result in infinite output. By connecting external components around the ideal op amp, we can construct useful amplifier circuits. Figure 4 shows a basic op amp circuit, the non-inverting amplifier. The triangular gain block symbol is used to represent an ideal op amp. The input terminal marked with a + (Vp) is called the non-inverting input; – (Vn) marks the inverting input.

Figure 4. Non-Inverting Amplifier

To understand this circuit we must derive a relationship between the input voltage, $V_{\rm I}$, and the output voltage, $V_{\rm O}$.

Remembering that there is no loading at the input,

$$V_p = V_i \tag{11}$$

The voltage at V_n is derived from V_O via the resistor network, R_I and R_2 , so that,

$$V_n = V_0 - \frac{R_1}{R_1 + R_2} = V_0 b$$
 (12)

where

$$b = \frac{R_1}{R_1 + R_2} \tag{13}$$

The parameter *b* is called the feedback factor because it represents the portion of the output that is fed back to the input.

Recalling the ideal model,

$$V_O = aV_d = a(V_p - V_n) \tag{14}$$

Substituting,

Understanding Operational Amplifier Specifications

$$V_0 = a(V_i - bV_0) \tag{15}$$

and collecting terms yield,

$$A = \frac{V_0}{V_1} = \left(\frac{1}{b}\right) \left(\frac{1}{1 + \frac{1}{ab}}\right) \tag{16}$$

This result shows that the op amp circuit of Figure 4 is itself an amplifier with gain A. Since the polarity of V_i and V_O are the same, it is referred to as a non-inverting amplifier.

A is called the *close loop gain* of the op amp circuit, whereas a is the *open loop gain*. The product *ab* is called the *loop gain*. This is the gain a signal would see starting at the inverting input and traveling in a clockwise loop through the op amp and the feedback network.

Closed Loop Concepts and Simplifications

Substituting $a = \infty$ (1) into (16) results in,

$$A = \frac{1}{b} = 1 + \frac{R_2}{R_1} \tag{17}$$

Recall that in equation (6) we state that V_d , the voltage difference between V_n and V_p , is equal to zero and therefore, $V_n = V_p$. Still they are not shorted together. Rather there is said to be a *virtual short* between V_n and V_p . The concept of the virtual short further simplifies analysis of the non-inverting op amp circuit in Figure 4.

Using the virtual short concept, we can say that,

$$V_n = V_p = V_l \tag{18}$$

Realizing that finding Vn is now the same resistor divider problem solved in (12) and substituting (18) into it, we get,

$$V_1 = V_0 - \frac{R_1}{R_1 + R_2} = V_0 b$$
 (19)

Rearranging and solving for A, we get,

$$A = (\frac{1}{b}) = 1 + (\frac{R2}{R1})$$

The same result is derived in (17). Using the virtual short concept reduced solving the non-inverting amplifier, shown in Figure 4, to solving a resistor divider network.

14

Inverting Amplifier

Figure 5 shows another useful basic op amp circuit, the inverting amplifier. The triangular gain block symbol is again used to represent an ideal op amp. The input terminal, + (Vp), is called the non-inverting input, whereas – (Vn) marks the inverting input. It is similar to the non-inverting circuit shown in Figure 4 except that now the signal is applied to the inverting terminal via R1 and the non-inverting terminal is grounded.

Figure 5. Inverting Amplifier

To understand this circuit, we must derive a relationship between the input voltage, $V_{\it l}$ and the output voltage, $V_{\it o}$.

Since V_p is tied to ground,

$$V_n = 0 (20)$$

Remembering that there is no current into the input, the voltage at V_n can be found using superposition. First let $V_0 = 0$,

$$V_n = V_i \left(\frac{R_2}{R_1 + R_2} \right) \tag{21}$$

Next let $V_t = 0$,

$$V_n = V_0 \left(\frac{R_1}{R_1 + R_2} \right) \tag{22}$$

Combining

$$V_n = V_0 \left(\frac{R_1}{R_1 + R_2} \right) + V_1 \left(\frac{R_2}{R_1 + R_2} \right)$$
 (23)

Remembering equation (14), $V_O = aV_d = a(V_p - V_n)$, substituting and rearranging,

Understanding Operational Amplifier Specifications

$$\mathbb{A} \quad \frac{V_o}{V_i} = 1 - \left(\frac{1}{b}\right) \left(\frac{1}{1 + \frac{1}{ab}}\right) \tag{24}$$

where

$$b = \frac{R_1}{R_1 + R_2}$$

Again we have an amplifier circuits Becameclosed loop gain, is negative, and the polamity be opposite to Therefore, this is an inverting amplifier.

Closed Loop Concepts and Simplifications

Substitutarg∞ (1) into (24) results in

$$A = 1 - \frac{1}{b} = -\frac{R_2}{R_1} \tag{25}$$

Recall that in equation (6) weVstated thatage difference between V_n and V_p , was equal to zero so that Still they are not shorted together. Rather there tirsaid shobs a between V_n and V_p . The concept of the virtual short further simplifies analysis of the inverting diameterization.

Using the virtual short concept, we can say that

$$V_n = V_0 = 0 \tag{26}$$

In this configuration, the inverting input is a virtual ground
We can write the node equation at the inverting input as

$$\frac{V_n - V_1}{R_1} + \frac{V_n - V_0}{R_2} = 0 {(27)}$$

Since Vn = 0, rearranging, and solaring first

$$A = 1 - \frac{1}{b} = -\frac{R_2}{R_1}$$
 (28)

The same resultderivembre easilythan in (24sing the virtual short (or virtual ground) concept reduced solving the inverting amplifier, Ehgwn6into solving a single node equation.

16

Simplified Op Amp Circuit Diagram

Real op amps are not ideal. They have limitations. To understand and discuss the origins of these limitations, see the simplified op amp circuit diagram shown in Figure 6.

Figure 6. Simplified Op Amp Circuit Diagram

Although simplified, this circuit contains the three basic elements normally found in op amps:

- q Input stage
- g Second stage
- q Output stage

The function of the input stage is to amplify the input difference, V_p - V_n , and convert it to a single-ended signal. The second stage further amplifies the signal and provides frequency compensation. The output stage provides output drive capability.

Understanding Operational Amplifier Specifications

Input Stage

Symmetry of the input stage is key to its operation. Each transistor pair, Q1-Q2 and Q3-Q4, is matched as closely as possible.

Q3 is diode connected. This forces the collector current in Q3 to equal IC1. The base-emitter junctions of Q3 and Q4 are in parallel so they both see the same V_{BE}. Because Q4 is matched to Q3, its collector current is also equal to IC1. This circuit is called a current mirror.

Current source 2IE is divided between Q1 and Q2. This division depends on the input voltages, V_p and V_n .

When V_p is more positive than V_n , Q1 carries more current than Q2, and IC1 is larger than IC2. The current mirror action of Q3-Q4 causes IOUT1 to flow into the collector-collector junction of Q2-Q4.

When V_n is more positive than V_P , Q2 carries more current than Q1 and IC2 is larger than IC1. The current mirror action of Q3-Q4 causes IOUT1 to flow out of the collector-collector junction of Q2-Q4.

 $\rm IOUT1$ is the single-ended signal out of the first stage and is proportional to the differential input, $V_P \cdot V_n$. $\rm IOUT1 = gm_1(V_P \cdot V_n)$. The term $\rm gm_1$ is called the transconductance of the input stage. The input stage is a transconductance amplifier.

Second Stage

The second stage converts $\rm IOUT1$ into a voltage and provides frequency compensation. If $\rm IOUT1$ flows into the collector-collector junction of Q2-Q4, the second stage output voltage is driven positive. If $\rm IOUT1$ flows out of the collector-collector junction of Q2-Q4, the second stage output voltage is driven negative. The second stage is a transresistance amplifier.

The capacitor, Co, in the second stage provides internal frequency compensation. It causes the gain to role off as the frequency increases. Without Co, external compensation is required to prevent the op amp from oscillating in most applications.

Output Stage

The output stage is a typical class AB, push-pull amplifier. The emitter follower configuration of Q6 and Q7 provides current drive for the output load, with unity voltage gain. The output stage is a current amplifier.

18

Op Amp Specifications

If you have experimented with op amp circuits at moderate gain and frequency, you probably have noted very good agreement between actual performance and ideal performance. As gain and/or frequency are increased, however, certain op amp limitations come into play that effect circuit performance.

In theory, with proper understanding of the internal structures and processes used to fabricate an op amp, we could calculate these effects. Thankfully this is not necessary, as manufacturers provide this information in data sheets. Proper interpretation of data sheet specifications is required when selecting an op amp for an application.

This discussion of op amp parameters is based on Texas Instruments' data sheets. The following definitions (except as noted) are from the "Operational Amplifier Glossary" found in Texas Instruments' data book, *Amplifiers, Comparators, and Special Functions*, pg. 1-37 to pg. 1-40 and pg. 5-37 to pg. 5-40. It defines most of the parameters found in the data sheets.

Operational Amplifier Glossary

a IIO	The ratio of the change in input offset current to the change in the cha
Average temperature coefficient of input offset current	free-air temperature. This is an average value for the specified temperature range. Usually measured in μ V/°C.
a Vio †Average temperature coefficient of input offset voltage	The ratio of the change in input offset voltage to the change in free-air temperature. This is an average value for the specified temperature range. Usually measured in $\mu VI^{\circ}C$.
fm Phase margin	The absolute value of the open-loop phase shift between the output and the inverting input at the frequency at which the modulus of the open-loop amplification is unity.
Am Gain margin	The reciprocal of the open-loop voltage amplification at the lowest frequency at which the open-loop phase shift is such that the output is in phase with the inverting input.
Av Large-signal voltage amplification	The ratio of the peak-to-peak output voltage swing to the change in input voltage required to drive the output.
Avo Differential voltage amplification	The ratio of the change in the output to the change in differential input voltage producing it with the common-mode input voltage held constant.

[†] These definitions were misprinted in the data book noted and were corrected by the author.

Understanding Operational Amplifier Specifications

B1 [†] Unity gain bandwidth	The range of frequencies within which the open-loop voltage amplification is greater that unity.
Bom Maximum-output- swing bandwidth	The range of frequencies within which the maximum output voltage swing is above a specified value.
Ci Input capacitance	The capacitance between the input terminals with either input grounded.
CMRR Common-mode rejection ratio	The ratio of differential voltage amplification to common-mode voltage amplification. Note: This is measured by determining the ratio of a change in input common-mode voltage to the resulting change in input offset voltage.
F [†] Average noise figure	The ratio of (1) the total output noise power within a designated output frequency band when the noise temperature of the input termination(s) is at the reference noise temperature at all frequencies to (2) that part of (1) caused by the noise temperature of the designated signal-input termination within a designated signal-input frequency.
Icc+, Icc- Supply current	The current into the $V_{\text{CC+}}$ or $V_{\text{CC-}}$ terminal of an integrated circuit.
IIB Input bias current	The average of the currents into the two input terminals with the output at the specified level.
lio Input offset current	The difference between the currents into the two input terminals with the output at the specified level.
In Equivalent input noise current	The current of an ideal current source (having internal impedance equal to infinity) in parallel with the input terminals of the device that represents the part of the internally generated noise that can properly be represented by a current source.
loL Low-level output current	The current into an output with input conditions applied that according to the product specification will establish a low level at the output.
los Short-circuit output current	The maximum output current available from the amplifier with the output shorted to ground, to either supply, or to a specified point.
ksvs † Supply voltage sensitivity	The absolute value of the ratio of the change in input offset voltage to the change in supply voltages. Notes: 1. Unless otherwise noted, both supply voltages are varied symmetrically. 2. This is the reciprocal of supply rejection ratio.

[†] These definitions were misprinted in the data book noted and were corrected by the author.

20

ksvr Supply voltage	The absolute value of the ratio of the change in supply voltages to the change in input offset voltage.
rejection ratio	Notes: 1. Unless otherwise noted, both supply voltages are varied symmetrically. 2. This is the reciprocal of supply sensitivity.
P _D Total power	The total dc power supplied to the device less any power delivered from the device to a load.
dissipation	Note: At no load: P _D = V _{CC+} • I
rı Input resistance	The resistance between the input terminals with either input grounded.
Differential input resistance	The small-signal resistance between two ungrounded input terminals.
ro Output resistance	The resistance between an output terminal and ground.
SR Slew rate	The average time rate of change of the closed-loop amplifier output voltage for a step-signal input.
tr †Rise time	The time required for an output voltage step to change from 10% to 90% of its final value.
ttot Total response time	The time between a step-function change of the input signal and the instant at which the magnitude of the output signal reaches, for the last time, a specified level range (±e) containing the final output signal level.
Vi Input voltage range	The range of voltage that if exceeded at either input may cause the operational amplifier to cease functioning properly.
Vio Input offset voltage	The dc voltage that must be applied between the input terminals to force the quiescent dc output voltage to zero or other level, if specified.
Vic Common-mode input voltage	The average of the two input voltages.
Vicr Common-mode input voltage range	The range of common-mode input voltage that if exceeded may cause the operational amplifier to cease functioning properly.
Vn Equivalent input noise voltage	The voltage of an ideal voltage source (having internal impedance equal to zero) in series with the input terminals of the device that represents the part of the internally generated noise that can properly be represented by a voltage source.
V ₀₁ /V ₀₂ Crosstalk Attenuation	The ratio of the change in output voltage of a driven channel to the resulting change in output voltage of another channel.

[†]These definitions were misprinted in the data book noted and were corrected by the author.

Understanding Operational Amplifier Specifications

Vон High-level output voltage	The voltage at an output with input conditions applied that according to the product specifications will establish a high level at the output.
Vol. Low-level output voltage	The voltage at an output with input conditions applied that according to the product specifications will establish a low level at the output.
V _{ID} Differential input voltage	The voltage at the non-inverting input with respect to the inverting input.
Vom Maximum peak output voltage swing	The maximum positive or negative voltage that can be obtained without waveform clipping when quiescent dc output voltage is zero.
Vo(PP) Maximum peak-to- peak output voltage swing	The maximum peak-to-peak voltage that can be obtained without waveform clipping when quiescent dc output voltage is zero.
Zic Common-mode input impedance	The parallel sum of the small-signal impedance between each input terminal and ground.
Zo Output impedance	The small-signal impedance between the output terminal and ground.
Overshoot factor	The ratio of the largest deviation of the output signal value from its final steady-state value after a step-function change of the input signal to the absolute value of the difference between the steady-state output signal values before and after the step-function change of the input signal.
THD + N [‡] Total harmonic distortion plus noise	The ratio of the RMS noise voltage and RMS harmonic voltage of the fundamental signal to the total RMS voltage at the output.
GBW [‡] Gain bandwidth product	The product of the open-loop voltage amplification and the frequency at which it is measured.
* Average long-term drift coefficient of input offset voltage	The ratio of the change in input offset voltage to the change time. This is an average value for the specified time period. Usually measured in µV/month.

Texas Instruments usually specifies parameters under specific test conditions with some combination of minimum, typical and maximum values at 25 °C, and over the full temperature range. What does this mean?

22

^{*} These definitions where added by the author. They appear commonly in the data sheets.

This means that a parameter measurement circuit is constructed, and the parameter is measured in a large number of devices at various temperatures over the temperature range of the device. Most parameters have a statistically normal distribution. The typical value published in the data sheet is the mean or average value of the distribution, with one exception, offset voltage. The average offset voltage is normally zero (or very close to zero). Therefore, the typical value listed for offset voltage is the 1s value. This means that in 68% of the devices tested the parameter was found to be – the typical value or better. The definition of minimum and maximum values has changed over the years. Texas Instruments currently publishes a conservative 6s value.

Certain devices are screened for parameters such as offset voltage. These devices are normally given an A suffix. This ensures that the device meets the maximum value specified in the data sheet.

The following discussion uses Figure 6 extensively to explain the origins of the various parameters.

Absolute Maximum Ratings and Recommended Operating Conditions

The following typical parameters are listed in the absolute maximum ratings and the recommended operating conditions for TI op amps. The op amp will perform more closely to the typical values for parameters if operated under the recommended conditions. Stresses beyond the maximums listed will cause unpredictable behavior and may cause permanent damage.

- q Absolute Maximums
 - n Supply Voltage
 - n Differential input voltage
 - n Input voltage range
 - n Input current
 - n Output current
 - n Total current into VDD+
 - n Total current out of VDD.
 - n Duration of short-circuit current (at or below 25°C)
 - n Continuous total power dissipation
 - n Operating free-air temperature
 - n Storage temperature
 - n Lead temperature

Understanding Operational Amplifier Specifications

- g Recommended Operating Conditions
 - n Supply Voltage
 - n Input voltage range
 - n Common-mode input voltage
 - n Operating free-air temperature

Input Offset Voltage

Input offset voltage, Vio, is defined as "the DC voltage that must be applied between the input terminals to force the quiescent DC output voltage to zero or some other level, if specified". If the input stage was perfectly symmetrical and the transistors were perfectly matched, Vio = 0. Because of process variations, geometry and doping are never exact to the last detail. All op amps require a small voltage between their inverting and non-inverting inputs to balance the mismatches. Vio is normally depicted as a voltage source driving the non-inverting input, as shown in Figure 7.

TI data sheets show two other parameters related to Vio; the average temperature coefficient of the input offset voltage and the input offset voltage long-term drift.

The average temperature coefficient of input offset voltage, aVio, specifies the expected input offset drift over temperature. Its units are mV/ C. Vio is measured at the temperature extremes of the part, and aVio is computed as ${\tt DVio/D}$ C.

Normal aging in semiconductors causes changes in the characteristics of devices. The input offset voltage long-term drift specifies how Vio is expected to change with time. Its units are mV/month.

24

Figure 7. VIO

Input offset voltage is of concern anytime DC precision is required. Several methods are used to null its effects.

Input Current

Referring to Figure 6, we can see that a certain amount of bias current is required at each input. The input bias current, lie, is computed as the average of the two inputs,

$$IIB = (I_N + I_P)/2$$

Input offset current, IIo, is defined as the difference between the bias currents at the inverting and non-inverting inputs,

Bias current is of concern when the input source impedance is high. Usually offset currents are an order of magnitude less than bias current so matching the input impedance of the inputs helps to nullify the effect of input bias current on the output voltage.

Input Common Mode Voltage Range

Normally there is a voltage that is common to the inputs of the op amp. If this common mode voltage gets too high or too low, the inputs will shut down and proper operation ceases. The common mode input voltage range, VICR, specifies the range over which normal operation is guaranteed.

Understanding Operational Amplifier Specifications

Figure 8 illustrates the positive input voltage limit using the simplified op amp diagram of Figure 6. When Vin is higher than Vcc - 0.9V, the input transistors and the current source will begin to shut down.

Figure 8. Positive Common-Mode Voltage Input Limit

Figure 9 illustrates the negative input voltage limit using the simplified op amp diagram of Figure 6. When VIN is less than -VEE + 0.6V, the current mirror (Q3-Q4) will begin to shut down.

Figure 9. Negative Common-Mode Voltage Input Limit

26

ST.OAO11

Structures like the one shown in the example above do not allow the common-mode input voltage to include either power supply rail. Other technologies used to construct op amp inputs offer different common-mode input voltage ranges that do include one or both power supply rails. Some examples are as follows (reference schematics can be found in the Texas Instruments' data bookmplifiers, Comparators, and Special:Functions

q The LM324 and LM358 use bipolar PNP inputs that have their collectors connected to the negative power rail. Since V equal zero, this allows the common-mode input voltage range to include the negative power rail.

q The TL07X and TLE207X type BiFET op amps use p-channel JFET inputs with the sources tied to the positive power rail a bipolar current sourcess Siamceedual zero, this structure typically allows the common-mode input voltage range to include the positive power rail.

q TI LinCMOS op amps use p-channel CMOS inputs with the substrate tied to the positive power rail. Therefore a conducting channel is created WHON W and this allows the common-mode input voltage range to include the negative power rail.

q Rail-to-rail input op amps use complementary N and P type devices in the differential inputs. When the common-mode input voltage nears either rail at least one of the differer inputs is still active.

Understanding Operational Amplifier Specifications

Differential Input Voltage Range

Differential input voltage range is normally specified in data as an absolute maximumgurd0 illustrates this.

If the differential input voltage is greater than the base-emi reverse break down voltage of input transistor Q1 plus the bas emitter forward breakdown voltage of Q2, then Q1's BE junction will act like a zener diode. This is a destructive mode of operand results in deterioration of Q1's current gain. The same is if N DIFF is reversed, except Q2 breaks down.

Figure 0. Differential - Mode Voltage in input

Some devices have protection built into them, and the current the input needs to be limited. Normally, differential input movoltage limit is not a design issue.

28

Maximum Output Voltage Swing

The maximum output voltage, VoM-, is defined as "the maximum positive or negative peak output voltage that can be obtained without wave form clipping when quiescent DC output voltage is zero". VoM- is limited by the output impedance of the amplifier, the saturation voltage of the output transistors, and the power supply voltages. This is shown in Figure 11. Note that VoM- depends on the output load.

Figure 11. Von-

The maximum value that VBos can be is +Vcc, therefore Vo <= +Vcc - VR1 - VBEOs - VSATQS. The minimum value that Vi can be is -VEE, therefore Vo >= -VEE + VR2 + VBEQ7 + VSATQ7.

This emitter follower structure cannot drive the output voltage to either rail. Rail to rail output op amps use a common emitter (bipolar) or common source (CMOS) output stage. With these structures, the output voltage swing is only limited by the saturation voltage (bipolar) or the on resistance (CMOS) of the output transistors, and the load being driven.

Because newer products are focused on single supply operation, more recent data sheets from Texas Instruments use the terminology VoH and VoL to specify the maximum and minimum output voltage.

Understanding Operational Amplifier Specifications

Maximum and minimum output voltage is usually a design issue when dynamic range is lost if the op amp cannot drive to the rails. This is the case in single supply systems where the op amp is used to drive the input of an analog-to-digital converter, which is configured for full scale input voltage between ground and the positive rail.

Large Signal Differential Voltage Amplification

Large signal differential voltage amplification, Avp, is the ratio of the output voltage change to the input differential voltage change, while holding Vom constant. This parameter is closely related to the open loop gain. The difference is that it is measured with an output load and therefore takes into account loading effects.

The DC value of Avb is published in the data sheet, but Avb is frequency dependent. Figure 18 shows a typical graph of A_{VD} vs. frequency.

Avb is a design issue when precise gain is required. Consider equation (16), where the loop gain of the non-inverting amplifier is given by:

$$A = \frac{V_0}{V_1} = \left(\frac{1}{b}\right) \left(\frac{1}{1 + \frac{1}{ab}}\right)$$

where,

$$b = \frac{R_1}{R_1 + R_2}$$

It is desired to control the gain of the circuit by selecting the appropriate resistors. The term 1/ab in the equation is seen as an error term. Unless a, or Avp, is large in comparison with 1/b, it will have an undesired effect on the gain of the circuit.

Input Parasitic Elements

Both inputs have parasitic impedance associated with them. Figure 12 shows a model where it is lumped into resistance and capacitance between each input terminal and ground and between the two terminals. There is also parasitic inductance, but the effects are negligible at low frequency.

Input impedance is a design issue when the source impedance is high. The input loads the source.

30

Also input capacitance will cause extra phase shift in the feedback path. This erodes phase margin and can be a problem when using high value feedback resistors.

Figure 12. Input Parasitic Elements

Input Capacitance

Input capacitance, Ci, is measured between the input terminals with either input grounded. Ci is usually on the order of a few pF. To relate Ci to Figure 12, if you ground Vp, Ci = Cd || Cn.

Sometimes common-mode input capacitance, Cic, is specified. To relate Cic to Figure 12, if you short Vp to Vn, Cic = Cp \parallel Cn, the input capacitance a common mode source would see to ground.

Input Resistance

Two parameters for input resistance, ri and rid, are defined in Texas Instruments' data book, *Amplifiers, Comparators, and Special Functions*, pg. 1-39. Input resistance, ri, is "the resistance between the input terminals and either input grounded." Differential input resistance, rid, is "the small-signal resistance between two ungrounded input terminals."

To relate ri to Figure 12, if you ground Vp, ri = Rd || Rn. Depending on the type of input, values usually run on the order of 10^{7}W to 10^{12}W .

To relate rid to Figure 12, with both input terminals floating, rid = Rd \parallel (Rn + Rp). Depending on the type of input, values usually run on the order of $10^7 \mathrm{W}$ to $10^{12} \mathrm{W}$.

Sometimes common-mode input resistance, ric, is specified. To relate ric to Figure 12, if you short Vp to Vn, ric = $Rp \mid\mid Rn$, the input resistance a common mode source would see to ground.

Understanding Operational Amplifier Specifications

Output Impedance

Different data sheets list the output impedance under two different conditions. Some data sheets list *closed-loop* output impedance while others list *open loop* output impedance, both designated by Zo.

Zo is defined as the small signal impedance between the output terminal and ground (see *Amplifiers, Comparators, and Special Functions*, pg. 1-40). Data sheet values run from 50w to 200w.

Common emitter (bipolar) and common source (CMOS) output stages used in rail-to-rail output op amps have higher output impedance than emitter follower output stages.

Output impedance is a design issue when using rail-to-rail output op amps to drive heavy loads. If the load is mainly resistive, the output impedance will limit how close to the rails the output can go. If the load is capacitive, the extra phase shift will erode phase margin. Figure 13 shows how output impedance affects the output signal assuming Zo is mostly resistive.

Figure 13. Effect of Output Impedance

Common-Mode Rejection Ratio

Common-mode rejection ratio, CMRR, is defined as the ratio of the differential voltage amplification to the common-mode voltage amplification, ADIF/ACOM. Ideally this ratio would be infinite with common mode voltages being totally rejected.

The common-mode input voltage affects the bias point of the input differential pair. Because of the inherent mismatches in the input circuitry, changing the bias point changes the offset voltage, which, in turn, changes the output voltage. The real mechanism at work is DVOs/DVCoM.

In a Texas Instrument data sheet, CMRR = DVcom/DVos (gives a positive number in dB).

CMRR, as published in the data sheet, is a DC parameter. CMRR, when graphed vs. frequency, falls off as the frequency increases.

32

A common source of common-mode interference voltage is 50 Hz or 60 Hz noise from the AC mains. Care must be used to ensure that the CMRR of the op amp is not degraded by other circuit components.

Supply Voltage Rejection Ratio

Supply voltage rejection ratio, ksvn (AKA power supply rejection ratio, PSRR), is the ratio of power supply voltage change to output voltage change.

The power voltage affects the bias point of the input differential pair. Because of the inherent mismatches in the input circuitry, changing the bias point changes the offset voltage, which, in turn, changes the output voltage. The real mechanism at work is DVos/DVcc...

In a Texas Instrument data sheet, for a dual supply op amp, ksvn = DVcc-/DVos (to get a positive number in dB). The term DVcc- means that the plus and minus power supplies are changed symmetrically. For a single supply op amp, ksvn = DVDD/DVos (to get a positive number in dB).

Also note that the mechanism that produces ksvn is the same as for CMRR. Therefore, ksvn, as published in the data sheet, is a DC parameter like CMRR; when ksvn is graphed vs. frequency, it falls off as the frequency increases.

Switching power supplies can have noise on the order of 20 kHz to 200 kHz and higher. Ksvn is almost zero at these high frequencies, so that noise on the power supply results in noise on the output of the op amp.

Supply Current

Supply current, IDD, is the quiescent current draw of the op amp(s) with no load. In a Texas Instrument data sheet, this parameter is usually the total quiescent current draw for the whole package. There are exceptions, as with the TLO5X, TLO6X, and TLO7X, where IDD is the quiescent current draw for each amplifier.

In op amps you trade power consumption for noise and speed.

Slew Rate at Unity Gain

Slew rate, SR, is the rate of change in the output voltage caused by a step input. Its units are V/ms or V/ms. Figure 14 shows slew rate graphically.

Understanding Operational Amplifier Specifications

Referring back to Figure 6, voltage change in the second stage is limited by the charging and discharging of capacitor Cc. The maximum rate of change occurs when either side of the differential pair is conducting 2le. This is the major limit to slew rate. Essentially, SR = 2le/Cc. However, there are op amps that work on different principles where this is not true.

The requirement to have current flowing in or out of the input stage to change the voltage out of the second stage requires an error voltage at the input anytime the output voltage of an op amp is changing. An error voltage on the order of 120 mV is required for an op amp with a bipolar input to realize full slew rate. This can be as high as 1V to 3V for a JFET or MOSFET input.

Capacitor, Cc, is added to make the op amp unity gain stable. Some op amps come in de-compensated versions where the value of Cc is reduced . This increases realizable bandwidth and slew rate, but the engineer must ensure the stability of the circuit by other means.

In op amps you trade power consumption for noise and speed. To increase slew rate, the bias currents within the op amp are increased.

Figure 14. Slew Rate

$$Vin \circ \begin{array}{c} \downarrow t = 0 \\ \downarrow \\ \downarrow \\ \downarrow \\ Vo \\ SR = dV/dt \\ \end{array} Vo$$

Equivalent Input Noise

All op amps have associated parasitic noise sources. Noise is measured at the output of an op amp and referenced back to the input; thus, it is called equivalent input noise.

Equivalent input noise specifications are usually given in two ways. One way is to specify the spot noise; that is, the equivalent input noise is given as voltage, Vn, (or current, In) per root hertz at a specific frequency. The second way is to specify noise as a peak-to-peak value over a frequency band. A brief review of noise characteristics is necessary to explain these parameters.

34

The spectral density of noise in op amps has a 1/f and a white noise component. 1/f noise is inversely proportional to frequency and is usually only significant at low frequencies. White noise is spectrally flat. Figure 15 shows a typical graph of op amp equivalent input noise.

Usually spot noise is specified at two frequencies. The first frequency is usually 10 Hz, where the noise exhibits 1/f spectral density. The second frequency is typically 1 kHz, where the noise is spectrally flat. The units used are normally RMS nV/ Hz (or RMS pA/ Hz for current noise). In Figure 15 the transition between 1/f and white is denoted as the corner frequency, foe.

A noise specification, such as $V_{N(PP)}$, is the a peak to peak voltage over a specific frequency band, typically 0.1 Hz to 1 Hz or 0.1 Hz to 10 Hz. The units of measurement are typically nV pk-pk. To convert noise voltages given in RMS to pk-pk, a factor around 6 is typically used to account for the high crest factor seen in noise voltages e.g. $V_{N(PP)} = 6 \times V_{N(PMS)}$.

Given the same structure within an op amp, increasing bias currents lowers noise (and increases SR, GBW, and power dissipation).

Also the resistance seen at the input to an op amp adds noise. Balancing the input resistance on the non-inverting input to that seen at the inverting input, while helping with offsets due to input bias current, adds noise to the circuit.

Figure 15. Typical Op Amp Input Noise Spectrum

Understanding Operational Amplifier Specifications

Total Harmonic Distortion plus Noise

Total harmonic distortion plus noise, THD + N, compares the frequency content of the output signal to the frequency content of the input. Ideally, if the input signal is a pure sine wave, the output signal is a pure sine wave. Because of non-linearity and noise sources within the op amp, the output is never pure.

THD + N is the ratio of all other frequency components to the fundamental and is usually specified as a percentage:

THD + N = (Harmonic voltages + Noise voltages) 100%

Figure 16 shows a hypothetical graph where THD + N = 1%. The fundamental is the same frequency as the input signal and makes up 99% of the output signal. Non-linear behavior of the op amp results in harmonics of the fundamental being produced in the output. The noise in the output is mainly due to the input referenced noise of the op amp. All the harmonics and noise added together make up 1% of the output signal.

Two major reasons for distortion in an op amp are the limit on output voltage swing and slew rate. Typically an op amp must be operated at or below its recommended operating conditions to realize low THD.

36

Figure 16. Output Spectrum with THD + N = 1%

Unity-Gain Bandwidth and Phase Margin

There are five parameters that relate to the frequency characteristics of the op amp that you will encounter in Texas Instruments' data sheets:

- q Unity-gain bandwidth (B1)
- q Gain bandwidth product (GBW)
- q Phase margin at unity gain (fm)
- Gain margin
- g Maximum output-swing bandwidth (Bom)

Unity-gain bandwidth (B1) and gain bandwidth product (GBW) are similar. B1 specifies the frequency at which Avo of the op amp is 1:

B1 = f @ AVD = 1

GBW specifies the gain-bandwidth product of the op amp in an open loop configuration and the output loaded:

Understanding Operational Amplifier Specifications

GBW = Avp · f

Phase margin at unity gain (f_m) is the difference between the amount of phase shift a signal experiences through the op amp at unity gain and 180:

fm = 180 - phase shift @ B1

Gain margin is the difference between unity gain and the gain at 180 phase shift:

Gain margin = 1 - Gain @ 180 phase shift

Maximum output-swing bandwidth (BoM) specifies the bandwidth over which the output is above a specified value:

Bom = fmax, while Vo > Vmin

The limiting factor for Bomis slew rate. As the frequency gets higher and higher the output becomes slew rate limited and can not respond quickly enough to maintain the specified output voltage swing.

To make the op amp stable, capacitor, Cc, is purposely fabricated on chip in the second stage (see Figure 6). This type of frequency compensation is termed dominant pole compensation. The idea is to cause the open-loop gain of the op amp to role off to unity before the output phase shifts by 180 . Remember that Figure 6 is very simplified: there are other frequency shaping elements within a real op amp. Figure 17 shows a typical gain vs. frequency plot for an internally compensated op amp as normally presented in a Texas Instruments data sheet. Figure 18 contains the same information except the phase axis is shifted for clarity.

As noted earlier, it can be seen that Avp falls off with frequency. Avp (and thus B1 or GBW) is a design issue when precise gain is required of a specific frequency band. Consider equation (16), where the loop gain of the non-inverting amplifier is given by:

$$A = \frac{V_0}{V_1} = \left(\frac{1}{b}\right) \left(\frac{1}{1 + \frac{1}{ab}}\right)$$

It is desired to control the gain of the circuit by selecting the appropriate resistors. The term 1/ab in the equation is seen as an error term. Unless a, or Avp. is large for all frequencies of interest in comparison with 1/b, a will have an effect on the gain of the circuit, which is undesired.

Phase margin (fm) and gain margin are different ways of specifying the stability of the circuit. Since rail-to-rail output op amps have higher output impedance, a significant phase shift is seen when driving capacitive loads. This extra phase shift erodes the phase margin, and for this reason most CMOS op amps with rail-to-rail outputs have limited ability to drive capacitive loads.

Figure 17. Typical Large-Signal Differential Voltage Amplification and Phase Shift vs. Frequency

Understanding Operational Amplifier Specifications

Figure 18. Easier to Read Graph of Voltage Amplification and Phase Shift vs. Frequency

40

Settling Time

It takes a finite time for a signal to propagate through the internal circuitry of an op amp. Therefore, it takes a certain period of time for the output to react to a step change in the input. Also the output normally overshoots the target value, experiences damped oscillation, and settles to a final value. Settling time, ts, is the time required for the output voltage to settle to within a specified percentage of the final value given a step input. Figure 19 shows this graphically.

Figure 19. Settling Time

Settling time is a design issue in data acquisition circuits when signals are changing rapidly. An example is when using an op amp following a multiplexer to buffer the input to an analog to digital converter. Step changes can occur at the input to the op amp when the multiplexer changes channels. The output of the op amp must settle to within a certain tolerance before the analog to digital converter samples the signal.

References

Paul R. Gray and Robert G Meyer. Analysis and Design of Analog Integrated Circuits. 2d ed., John Wiley & Sons, Inc.,

Sergio Franco. Design with Operational Amplifiers and Analog Integrated Circuits. McGraw-Hill, Inc., 1988.

Texas Instruments, Inc. Amplifiers, Comparators, and Special Functions Data Book. Volume A and B, 1997.

42

PowerPAD Thermally Enhanced Package

TECHNICAL BRIEF: SLMA002

Mixed Signal Products

Semiconductor Group 21 November 1997

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

TI and PowerPAD are trademarks of Texas Instruments Incorporated.

MQUAD is a registered trademark of Olin Corporation

Other brands and names are the property of their respective owners.

Contents

Abstract	7
1. Introduction	8
2. Installation and Use	10
2.1 PCB Attachment	10
2.2 PCB Design Considerations	11
2.3 Thermal Lands	12
2.4 Thermal Vias	
2.5 Solder Stencil Determination	18
3. Assembly	20
3.1 Solder Reflow Profile Suggestion	24
3.2 Installation and Assembly Summary	25
4. Repair	
4.1 Part Removal From PCBs	
4.2 Attachment of a Replacement Component to the PCB	
5. Summary	
Appendix A. Thermal Modeling of PowerPAD Packages	
General	
Texas Instruments Recommended Board for PowerPAD	
JEDEC Low Effective Thermal Conductivity Board (Low-K)	
Boundary Conditions	
Results	
Conclusions	39
Appendix B. Rework Process for Heat Sink TQFP and TSSOP PowerPAD	
Packages - from Air-Vac Engineering	
Introduction	
Equipment	
Profile	
Removal	42
Site Redress	43
Alignment	43
Replacement	44
Conclusion	44
Appendix C. PowerPAD Process Rework Application Note from Metcal	45
Removal	45
Conduction Procedure	45
Convection Procedure	
Placement Procedure	46

Figures

The state of the s	
Figure 1. Schematic Representation of the PowerPAD Package Components	12 14 16 16 17 P
Figure 12. Typical Infrared Oven Profile	25
Figure 13. Texas Instruments Recommended Board (Side View)	34
Figure 14. Thermal Pad and Lead Attachment to a PCB Using the PowerPAD Packa	
Figure 15. General Leadframe Drawing Configuration	36
Figure 16. PowerPAD θ _{JC} Measurement	37
Figure 17. Standard Package θ _{JC} Measurement	
Figure 18. Comparison of θ _{JA} for Various Packages	
Figure 19. DRS22C Reworking Station	
Figure 20. Reworking Nozzles of Various Sizes	41
Figure 21. Nozzle Configuration	42
Figure 22. Air-Vac Vision System	43
Tables	
Table 1. Typical Power Handling Capabilities of PowerPAD Packages	9
Table 2. Measured ⊝ _{ic} from Test Board	22
Table 3. Measured Θ _{la} from Test Board	22
Table 4. Relationship of the Solder Joint Area on Θ _{ic} , from Test Board Data	
Table 5. Relationship of the Solder Joint Area on Θ _{ia} , from Test Board Data	
Table 6. Thermal Characteristics for Different Package and PCB Configurations	31
Table 7. PowerPAD Package Template Description	35

PowerPAD Thermally Enhanced Package

Abstract

The PowerPAD thermally enhanced package provides greater design flexibility and increased thermal efficiency in a standard size IC package. PowerPAD's improved performance permits higher clock speeds, more compact systems and more aggressive design criteria.

PowerPAD packages are available in several standard surface mount configurations. They can be mounted using standard printed circuit board (PCB) assembly techniques, and can be removed and replaced using standard repair procedures.

To make optimum use of the thermal efficiencies designed into the PowerPAD package, the PCB must be designed with this technology in mind. This document will focus on the specifics of integrating a PowerPAD package into the PCB design.

PowerPAD Thermally Enhanced Package

1. Introduction

The PowerPAD concept is implemented in a standard epoxy-resin package material. The integrated circuit die is attached to the leadframe die pad using a thermally conductive epoxy. The package is molded so that the leadframe die pad is exposed at a surface of the package. This provides an extremely low thermal resistance $(\Theta_{\rm pc})$ path between the IC junction and the exterior of the case. Because the external surface of the leadframe die pad is on the PCB side of the package, it can be attached to the board using standard flow soldering techniques. This allows efficient attachment to the board, and permits board structures to be used as heat sinks for the IC. Using vias, the leadframe die pad can be attached to a ground plane or special heat sink structure designed into the PCB. For the first time, the PCB designer can implement power packaging without the constraints of extra hardware, special assembly instructions, thermal grease or additional heat sinks.

Figure 1. Schematic Representation of the PowerPAD Package Components

Because the exact thermal performance of any PCB is dependent on the details of the circuit design and component installation, exact performance figures cannot be given here. However, representative performance is very important in making design decisions. The data shown in Table 1 is typical of the performance that can be expected from the PowerPAD package.

8 SLMA002

Table 1. Typical Power Handling Capabilities of PowerPAD Packages

Package Type	Pin Count	Standard Package	PowerPAD Package
SSOP	20	0.75 W	3.25 W
TSSOP	24	0.55 W	2.32 W

Notes: 1) Assumes 150° C junction temperature and 80° C ambient temperature.

2) Values are calculated from Θ_{ja} figures shown in Appendix A.

For example, the user can expect 3.25 watts of power handling capability for the PowerPAD version of the 20-pin SSOP package. The standard version of this package can only handle 0.75 watts. Details for all package styles and sizes are given in Appendix A.

2. Installation and Use

2.1 PCB Attachment

Proper thermal management of the PowerPAD package requires PCB preparation. This preparation is not difficult, nor does it use any extraordinary PCB design techniques, however it is necessary for proper heat removal.

Figure 2. Bottom and Top View of the 20 pin TSSOP PowerPAD Package

10 SLMA002

Figure 3. 64 Pin, 14 x 14 x 1.0mm Body TQFP PowerPAD Package

All of the thermally enhanced packages incorporate features that provide a very low thermal resistance path for heat removal from the integrated circuit - either to and through a printed circuit board (in the case of zero airflow environments), or to an external heatsink. The TI PowerPAD implementation does this by creating a leadframe where the bottom of the die pad is even with a surface of the package (as opposed to the case where a heat slug is embedded in the package body to create the thermal path). (See Figure 2 and Figure 3.)

2.2 PCB Design Considerations

The printed circuit board that will be used with PowerPAD packages must have features included in the design to remove the heat from the package efficiently.

PowerPAD Thermally Enhanced Package

As a minimum, there must be an area of solder-tinned-copper underneath the PowerPAD package. This area is called the thermal land. As detailed below, the thermal land will vary in size depending on the PowerPAD package being used, the PCB construction and the amount of heat that needs to be removed. In addition, this thermal land may or may not contain thermal vias depending on PCB construction. The requirements for thermal lands and thermal vias are detailed below.

2.3 Thermal Lands

A thermal land is required on the surface of the PCB directly underneath the body of the PowerPAD package. During normal surface mount flow solder operations the leadframe on the underside of the package will be soldered to this thermal land creating a very efficient thermal path. Normally, the PCB thermal land will have a number of thermal vias within it that provide a thermal path to internal copper areas (or to the opposite side of the PCB) that provide for more efficient heat removal. The size of the thermal land should be as large as needed to dissipate the required heat.

For simple, double-sided PCBs, where there are no internal layers, the surface layers must be used to remove heat. Shown in Figure 4 is an example of a thermal land for a 24-pin package. Details of the package, the thermal land and the required solder mask are shown. If the PCB copper area is not sufficient to remove the heat, the designer can also consider external means of heat conduction, such as attaching the copper planes to a convenient chassis member or other hardware connection.

Figure 4. Package and PCB Land Configuration for a Single Layer PCB

24-Pin PWP Thermal Layout Single Layer

12 SLMA002

For multilayer PCBs, the designer can take advantage of internal copper layers (such as the ground plane) for heat removal. The external thermal land on the surface layer is still required, however the thermal vias can conduct heat out through the internal power or ground plane. Shown in Figure 5 is an example of a thermal land used for multilayer PCB construction. In this case, the primary method of heat removal is down through the thermal vias to an internal copper plane.

Figure 5. Package and PCB Land Configuration for a Multi-Layer PCB

24-Pin PWP Thermal Layout Multi-Layer

Shown in Figure 6 are the details of a 64 pin TQFP PowerPAD package. The recommended PCB thermal land for this package is shown in Figure 7.

The maximum land size for TQFP packages is the package body size minus 2.0 mm. This land is normally attached to the PCB for heat removal, but can be configured to take the heat to an external heat sink. This is preferred when airflow is available.

Figure 6. 64 pin TQFP Package with PowerPAD Implemented, Bottom View

1220 nn S0

Figure 7. PCB Thermal Land Design Considerations for Thermally Enhanced TQFP Packages

4 SLMA002

2.4 Thermal Vias

Thermal vias are the primary method of heat transfer from the PCB thermal land to the internal copper planes or to other heat removal sources. The number of vias used, the size of the vias and the construction of the vias are all important factors in both the PowerPAD package thermal performance and the package-to-PCB assembly. Recommendations and guidelines for thermal vias follow.

Shown in Figure 8 and Figure 9 are the effects on PCB thermal resistance of varying the number of thermal vias for various sizes of die for 2- and 4-layer PCBs. As can be seen from the curves, there is a point of diminishing returns where additional vias will not significantly improve the thermal transfer through the board. For a small die, having from five to nine vias should prove adequate for most applications. For larger die, a higher number may be used simply because there is more space available under the larger package. Shown in Figure 10 are examples of ideal thermal land size and thermal via patterns for PowerPAD™ packages using 0.33mm (13 mil) diameter vias plated with 1 oz. copper. This thermal via pattern set represents a copper cross section in the barrel of the thermal via of approximately 1% of the total thermal land area. Fewer vias may be utilized and still attain a reasonable thermal transfer into and through the PCB as shown in Figures 8 and 9.

The number of thermal vias will vary with each product being assembled to the PCB, depending on the amount of heat that must be moved away from the package, and the efficiency of the system heat removal method. Characterization of the heat removal efficiency versus the thermal via copper surface area should be performed to arrive at an optimum value for a given board construction. Then the number of vias required can be determined for any new design to achieve the desired thermal removal value.

Figure 8. Impact of the Number of Thermal Vias versus Chip Area (Die Area)

Figure 9. Impact of the Number of 0.33mm (0.013 inch) Diameter Thermal Vias versus Chip Area (Die Area)

16 SLMA002

Figure 10. Ideal Thermal Land Size and Thermal Via Patterns for PowerPAD

Thermal vias connect the thermal land to internal or external copper planes and should have a drill diameter sufficiently small so that the via hole is effectively plugged when the barrel of the via is plated with copper. This plug is needed to prevent wicking the solder away from the interface between the package body and the thermal land on the surface of the board during solder reflow. The experiments conducted jointly with Solectron Texas indicate that a via drill diameter of 0.33mm (13 mils) or smaller works well when 1 ounce copper is plated at the surface of the board and simultaneously plating the barrel of the via. If the thermal vias will not be plugged when the copper plating is performed, then a solder mask material should be used to cap the vias with a dimension equal to the via diameter + 0.1mm minimum. This will prevent the solder from being wicked through the thermal via and potentially creating a solder void in the region between the package bottom and the thermal land on the surface of the PCB.

PowerPAD Thermally Enhanced Package

To assure the optimum thermal transfer through the thermal vias to internal planes or the reverse side of the PCB, the thermal vias used in the thermal land should not use web construction techniques. Web construction on PCB vias is a standard technique used in most PCBs today to facilitate soldering, by constructing the via so that it has a high thermal resistance. This is not desirable for heat removal from the PowerPAD package. Therefore it is recommended that all vias used under the package make internal connections to the planes using a continuous connection completely around the hole diameter. Web construction for thermal vias is not recommended.

2.5 Solder Stencil Determination

A series of experiments were conducted at Solectron-Texas to determine the effects of solder stencil thickness on the quality of the solder joint between the thermal pad of a PowerPAD package and the thermal land on the surface of the PCB. Stencil thickness of 5, 6, and 7 mils were used in conjunction with a metal squeegee to deposit solder in the desired locations on the board. Note: 6 and 7 mil thick solder stencil is normally used with package lead pitch of 0.5 and 0.65mm respectively. A 5 mil thick stencil is normally used for packages with 0.4mm lead pitch to avoid solder bridging during reflow

It was found that the standoff height for the package being attached to the PCB was critical in making good solder joints between the thermal pad of the package and the thermal land on the PCB. Note: during this series of experiments, a good solder joint was defined as a connection that joined at least 90% of the area of the smallest pattern to its intended connection point - such as the thermal pad of the package to the thermal land on the PCB. When the standoff height of the package (i.e., the distance between the bottom of the package leads and the bottom of the package body) was in the range of 0 to 2 mils, the package tended to float on the solder. This led to the possibility that all leads of the package would not be soldered to the lead traces on the board. This happened even when the 5 mil thick stencil was utilized. There were also cases when the solder was squeezed out from the desired land area, and then formed solder balls during the reflow process - an undesirable result that could cause shorting between package leads on the board surface, or short the thermal land on the PCB to the lead traces. A standoff height of 2.0 to 4.2 mils provided good solder joints for both the leads and the thermal pad for stencil thickness of 5, 6, and 7 mils. When the standoff height of the package was between 4.2 and 6.0 mils, only the 6 and 7 mil thick stencil provided consistently good solder joints for both the package leads and the thermal-pad to thermal-land bond. A general guideline would be to use the thickest solder stencil that works well for the products being assembled for the most process margin in assembling thermally enhanced parts to a PCB.

The Joint Electron Devices Engineering Council (JEDEC) specification for the standoff height of TSSOP and TQFP packages is the range of 0.05 to 0.15mm (1.97 to 5.91 mils), and is an acceptable range when the solder stencil thickness of 6 and 7 mils are used. Texas Instruments has elected to center the stand-off height of the PowerPAD packages at 3.5 mils (within the JEDEC specification range) to provide good package to PCB solder joint characteristics for standard solder stencil thickness of 5, 6, and 7 mils - the most common range within industry practice today.

3. Assembly

Solder joint inspection in the attachment area of the thermal pad of the thermally enhanced packages to the thermal land on the PCB is difficult to perform with the best option to date being x-ray inspection. Tests performed within Texas Instruments and during the joint PCB experiments with Solectron-Texas indicate that x-ray inspection will allow detection of voiding within the solder joint and could be used either in a monitor mode, or for 100% inspection if required by the application. However, this is a slow and costly process so an effort was made to determine the minimum amount of solder required in this joint before degradation of the thermal performance became significant.

The experimental vehicle used in determining the amount of solder required was a 6S2P double sided test board with copper thermal lands on the surface of the board representing 0%, 7.5%, 22%, and 83% of the package body area. The package used was a 100 pin PowerPAD package (side B - standard enhanced l/f side of the PCB) as shown in Figure 11. There was additional copper area on the surface of the A side of the board due to connections between selected pins and the thermal land area. Four thermal vias were created in each thermal land area with connections to the internal power or ground plane, and continuing to make connection to the thermal land on the opposite side of the board.

A thermal test chip (Texas Instruments x-1158240) with dimensions of 6.1mm (0.240-inch) square was assembled in the test packages using die pad sizes of 6.0mm square, and 9.0mm square. The assembled units were then mounted to the PCB using either eutectic Sn63:Pb37 solder or thermally conductive epoxy adhesive. Measurement of the thermal resistance junction-to-case and thermal resistance junction-to-ambient with the individual packed parts powered at 2.5 watts was made using standard techniques for these measurements. Results are shown in Table 1 for tests with and without attachment between the package thermal pad and the board thermal land, as well as a comparison between solder and thermally conductive epoxy attachment. Table 2 provides the effective connection area obtained for each of the measurement points.

Figure 11. Test Board for Measurement of Θ_{Jc} and Θ_{Ja} Using 100 pin PowerPAD TQFP Packages

LAYERS 1, 2, 3, 6, 7, 8 ARE 1 OZ COPPER, 20% COVERAGE
LAYERS 4, 5 ARE 1 OZ COPPER, 80% COVERAGE
VIAS IN BOARD CONNECT COMMONS FROM TOP TO LAYERS 4 AND 5
ANTICIPATED POWER LEVEL OF 2.5 WATT MAX FOR EACH PART
STANDARD THERMAL TEST BOARD DIMENSIONS
CONNECTOR IS 0.125 INCH PITCH, 18 CONTACTS/SIDE, 2 SIDES
PACKAGE IS LGPP/TOFP 14 X 14 X 1.0 OR 1.4 mm BODY SIZE; 0.5 mm LEAD PITCH
VENDOR - SERIUS SOLUTIONS (RAY MULLINS 404-9748) NUMBER 10-00001-00 8 LAYER; K FACTOR X 6; 100 LGPP/TOFP

The relative thermal land size and location is shown along with the location of the thermal vias that connect the surface thermal land to the internal power or ground plane, and continuing to connect to the thermal land on the opposite side of the board. The board is approximately 82.5mm (3.25 inch) square.

Table 2 and Table 3 show the thermal resistance data for Θ_{jc} and Θ_{ja} (junction to case, and junction to ambient) for the 8 layer thermal test board, with the copper thermal land on the PCB shown as a percentage of the area of the package body.

Table 2. Measured Θ_{ic} from Test Board

		ME	ASURED DA	ATA		
		Θjc	Θjc	Θjc	Θjc	Θ _{jc}
Part position on PCB	PCB Copper land as % of package body area	6mm Die Pad Soldered one side only	9mm Die Pad Not Soldered to PCB	9mm Die Pad Soldered one side only	9mm Die Pad Soldered both sides of PCB	9mm Die Pac Epoxy used to attach to PCE
1B	0	9.3	alle-	9.9	11.4	ER OFF
4B	7.5			7.2	5.8	7.2
2B	22	6.8		6.3	7.2	7.5
3B	83	6.2		6.2	6.2	6.2
2A	0	8.7	7.4	9.1	7.8	7.8
ЗА	7.5	7.6	8.3	6.3	6.8	6.8
1A	30		8		6.6	6.5
4A	85	7.5	7.3	6.4	6.4	6.9

Notes: 1) Numbers in **bold** have die pad attached to the board. 2) Power level for all measurements is 2.5 watt.

Θ_{jc} is measured in 1 cubic foot of liquid freon.

Table 3. Measured ⊕ja from Test Board

		ME	ASURED DA	ATA	edit	
ST UTS IN	Many documents the	Θja	Θja	Θja	Θja	Θja
Part position on PCB	PCB Copper land as % of package body area	6mm Die Pad Soldered one side only	9mm Die Pad Not Soldered to PCB	9mm Die Pad Soldered one side only	9mm Die Pad Soldered both sides of PCB	9mm Die Pad Epoxy used to attach to PCB
1B	0	33.8	E World Fall	40.6	44.3	
4B	7.5	migwas of the	atorish bress	27	23.1	25.5
2B	22	28.4	Jedniko su	25.8	25	24.3
3B	83	24.2	N 40 2000 N	26.9	24.6	24
2A	0	34.4	34	33.3	32.3	25.8
3A	7.5	33.5	33	24.4	24.9	25.2
1A	30		31		24.4	23.2
4A	85	33.3	30	25.5	24.6	24

Notes: 1) Numbers in **bold** have die pad attached to the board.

2) Power level for all measurements is 2.5 watt.

3) $\Theta_{|a}$ is measured in 1 cubic foot of still air.

Small changes in the percentage of copper land area (between the "A" side of the PCB and the "B" side of the PCB) do not significantly affect the thermal resistance.

Table 4 and Table 5 show the relationship of the solder joint area between the thermal pad in the PowerPAD package and the thermal land of the PCB for the thermal resistance values obtained in Table 2 and Table 3.

Table 4. Relationship of the Solder Joint Area on Θ_{ic}, from Test Board Data

stif jo a	THERMAL PAI	TO THERM	AL LAND CO	NNECTION	AREA ANAL	YSIS - %
144	s no peramease i	Θ _{jc}	Θ _{jc}	Θ _{jc}	Θjc	Θ _{jc}
Position on PCB	PCB Copper land size on PCB	6mm Die Pad Soldered one side only	9mm Die Pad Not Soldered to PCB	9mm Die Pad Soldered one side only	9mm Die Pad Soldered both sides of PCB	9mm Die Pad Epoxy used to attach to PCE
1B	0	0	0	0	0	0
4B	4*(2x2)	36	16	16	16	100
2B	1*(6x6)	80	32	32	32	100
3B	1*(12x12)	100	100	100	100	100
2A	0	0	0	0	0	0
ЗА	4*(2x2)	80	16	16	16	100
1A	1*(6x6)+4*(5.7)	85	58	58	58	100
4A	1*(12x12)+4*(5.6)	100	100	100	100	100

Notes: 1) Numbers in **bold** have die pad attached to the board.
2) Power level for all measurements is 2.5 watt.
3) $\Theta_{\mathbb{R}}$ is measured in 1 cubic foot of liquid freon.

Table 5. Relationship of the Solder Joint Area on ⊗ia, from Test Board Data

	Minute of the procession of the	Θia	Θia	Θ _{la}	Θia	Θja
Position on PCB	PCB Copper land as % of package body area	6mm Die Pad Soldered one side only	9mm Die Pad Not Soldered to PCB	9mm Die Pad Soldered one side only	9mm Die Pad Soldered both sides of PCB	9mm Die Pac Epoxy used to attach to PCE
1B	0	0	0	0	0	0
4B	4*(2x2)	36	16	16	16	100
2B	1*(6x6)	80	32	32	32	100
3B	1*(12x12)	100	100	100	100	100
2A	0	0	0	0	0	0
ЗА	4*(2x2)	80	16	16	16	100
1A	1*(6x6)+4*(5.7)	85	58	58	58	100
4A	1*(12x12)+4*(5.6)	100	100	100	100	100

Numbers in **bold** have die pad attached to the board.

2) Power level for all measurements is 2.5 watt.

Θ_{ja} is measured in 1 cubic foot of still air.

In this example, there is significant improvement in thermal heat removal with solder joint areas as small as 16%, and the thermal removal efficiency as measured by Θ_{jc} and Θ_{ja} are within measurement error tolerance for all solder joint areas greater than 32%.

Based on the measured data for this test board configuration, Texas Instruments recommends a minimum solder joint area of 50% of the package thermal pad area when the part is assembled on a PCB. The results of the PCB assembly study conducted with Solectron-Texas indicate that standard board assembly processes and materials will normally achieve >80% solder joint area without any attempt to optimize the process for thermally enhanced packages. A characterization of the solder joint achieved with a given process should be conducted to assure that the results obtained during testing apply directly to the customer application, and that the thermal efficiency in the customer application is similar to the thermal test board results for the power level of the packaged component. If the heat removal is not at the efficiency desired, then either additional thermal via structures will have to be added to the PCB construction, or additional thermal removal paths will need to be defined (such as direct contact with the system chassis).

An alternative to attaching the thermal pad of the package to the thermal land of the PCB with solder is to use thermally conductive epoxy for the attachment. This epoxy can either be dispensed from the liquid form with a material that will cure during the reflow cycle, or a "B" staged preform that will receive the final cure during the reflow cycle. These materials can be the same as normally used with externally applied heat sinks. When epoxy is used as the attachment mechanism, then the effective attachment area is 100% of the die pad area, and there is some added benefit as thermal transfer to the PCB can occur, even with no copper thermal land at the surface of the PCB.

3.1 Solder Reflow Profile Suggestion

The reflow profile for IR board assembly using the Texas Instruments PowerPAD packages does not have to change from that used with conventional plastic packaged parts. The construction of the package does not add thermal mass, and the only new thermal load is due to the increased solder area between the package thermal pad and the thermal land on the PCB. A typical IR oven profile for fine pitch surface mount packages is shown in Figure 11. for eutectic Sn63:Pb37 solder. Nitrogen purged, convection IR reflow will be advantageous for this part to PCB assembly to minimize the possibility of solder ball formation under the package body.

24 SI MADO2

Figure 12 shows a typical infrared (IR) oven profile for a fine pitch plastic package assembly mounted to an FR-4 PCB using eutectic Sn63:Pb37 solder.

Figure 12. Typical Infrared Oven Profile

Peak temperature should be approximately 220 degrees centigrade, and the exposure time should normally be less than 1 minute at temperatures above 183 degrees centigrade.

3.2 Installation and Assembly Summary

The PowerPAD package families can be attached to printed circuit boards using conventional Infrared solder reflow techniques that are standard in the industry today without changing the reflow process used for normal fine pitch surface mount package assembly. A minimum solder attachment area of 50% of the package thermal pad area is recommended to provide efficient heat removal from the semiconductor package, with the heat being carried into or through the PCB to the final thermal management system. This attachment can be achieved either by the use of solder for the joining material, or through the use of thermally conductive epoxy materials. Typical PCB thermal land pattern definitions have been provided that have been shown to work with 4 and 8 layer PCB test boards, and can be extended for use by other board structures.

PowerPAD Thermally Enhanced Package

4. Repair

Reworking thermally enhanced packaged semiconductors that have been attached to PCB assemblies through the use of solder or epoxy attachment can present significant challenges, depending on the point at which the re-work is to be accomplished. Tests of re-work procedures to date indicate that part removal from the PCB is successful with all of the conventional techniques used in the industry today. The challenge is part replacement on the board due to the combined thermal enhancement of the PCB itself, and the addition of thermal removal enhancement features to the semiconductor package. The traditional steps in the rework or repair process can be simply identified by the following steps for solder attached components:

- 1) Unsolder old component from the board
- 2) Remove any remaining solder from the part location
- 3) Clean the PCB assembly
- Tin the lands on the PCB and leads, or apply solder paste to the lands on the PCB
- 5) Target, align, and place new component on the PCB
- 6) Reflow the new component on the PCB
- 7) Clean the PCB assembly

When thermally conductive epoxy has been used to attach the thermal pad of the package to the thermal land on the PCB, the same basic steps in the rework or repair procedure can be followed with only minor modifications:

- Unsolder old component and torque package to remove from the board
- 2) Remove any remaining solder from the part location
- 3) Remove any remaining epoxy from the thermal land on the PCB
- 4) Clean the PCB assembly
- 5) Tin the lands on the PCB and leads, or apply solder paste to the lands on the PCB
- Place new thermally conductive "B" staged epoxy preform or dispense epoxy on thermal land
- 7) Target, align, and place new component on the PCB
- 8) Reflow the new component on the PCB

26 SI MADO

9) Complete epoxy cure (if required as a separate step)

10) Clean the PCB assembly

4.1 Part Removal From PCBs

Almost any removal process will work to remove the device from the PCB, even with the thermal pad of the package soldered to the PCB. Heat is easily transferred to the area of the solder attachment either from the exposed surface thermal land of the PCB (single layer example), or through the thermal vias in the PCB (multi-layer example) from the backside of the PCB.

Re-work has been performed for both the TSSOP and TQFP PowerPAD style packages using METCAL removal irons and hot air. The specific example of a 20 pin TSSOP PowerPAD part removal is discussed in detail.

A 750-Watt METCAL removal iron was used in conjunction with hot air to verify the removal method efficiency to take 20 pin PowerPAD TSSOP packages off of assembly test boards. The hot air method is recommended as it subjects the PCB and surrounding components to less thermal and mechanical stress than other methods available, and has been proven to be much easier to control than some of the hot bar techniques. Use of the hot air method may require assemblers to acquire tools specifically for the smaller packages since most assemblers use a hot bar method for packages of this size. (Note: This same tool will also be needed for part reattachment to the PCB when the hot air method is employed). A tool with an integrated vacuum pick up tip will be an advantage in the part removal process so the part can be physically removed from the board as soon as the solder reaches liquidus. Preheating of the local area of the PCB to a temperature of approximately 160 degrees centigrade can make the part removal easier. This is especially helpful in the case of larger packages such as 56 pin TSSOP or 100-pin TQFP style packages. This preheat will be required in the thermal removal method if the semiconductor package is a heat slug package rather than the TI PowerPAD package version. Some experimentation will be required to find the optimum procedure to use for any specific PCB construction and thermally enhanced package version.

After the part has been removed from the PCB, conventional techniques to clean the area of the part attachment - such as solder wicking - will be needed to prepare the location for subsequent attachment of a new component.

PowerPAD Thermally Enhanced Package

27

When thermally conductive epoxy has been used for attachment of the package thermal pad to the thermal land on the PCB, a slightly different approach to part removal must be used. This will require a tool that has dimensions that will allow contact with the sides of the package body directly above the leads, and will allow the package to be twisted or rotated horizontally when the solder joints of the package leads have reached liquidus. The temperature at the epoxy interface to the package thermal pad or the PCB thermal land must be above the glass transition temperature of the epoxy (typically less than 180 degrees centigrade) to break the adhesion between the epoxy and the attach location with the twisting or rotational method discussed above. In most cases, any remaining epoxy on the PCB after part removal can be removed by peeling it from the surface - occasionally, it will be necessary to apply heat to the epoxy location so it will peel away from the PCB cleanly.

4.2 Attachment of a Replacement Component to the PCB

Preparation of the PCB for attachment of a new component follows normal industry practice with respect to the lands on the board and the leads of the package. Both may be tinned, and/or solder paste applied to the lands for new component attachment. In addition, when solder will be used to re-attach the thermal pad of the package to the thermal land on the PCB, solder paste will need to be applied to the surface of the thermal land on the board. This may be in the form of stripes of solder paste with sufficient volume to achieve the desired solder coverage, or a solder preform may be applied to the location for attachment. In a factory environment, the component is then placed in the desired location and alignment, and processed through a reflow oven to re-establish the desired solder joints. This is the most desirable process and is normally the easiest to accomplish.

When a manual or off-line attachment and reflow procedure is to be used, the challenge of supplying sufficient heat to the components and solder becomes a greater concern. In most cases, the corner leads of the package being attached will be tack soldered to hold the component in alignment so the balance of the leads and the thermal pad to thermal land solder reflow can be accomplished without causing part movement from its desired location. As in the part removal case, it is advisable to pre-heat the board or the specific device location to a temperature below the melting point of the solder to minimize the amount of heat that must be provided by the reflow device as the part is being attached. A good starting point is to pre-heat to approximately 160 degrees centigrade. A hot gas reflow tool can then be used to complete the solder joint formation both at the leads and for the connection of the thermal pad to the thermal land of the PCB. Care must be taken at this operation to avoid blowing solder out from the thermal pad to thermal land interface and causing solder balling under the package or creating

lead to lead or thermal land to lead shorts. The thermal enhancement of the package and the PCB will require a higher temperature gas or higher gas flow to reach solder liquidus than would be needed with an assembly lacking these enhancements. The tool should be specifically sized to the part being reworked to minimize possible damage to surrounding components or the PCB itself.

If the re-attachment of the interface between the thermal pad of the package and the thermal land of the PCB using solder attachment is too difficult to control using hot gas methods, then the best approach is to use either a thermally conductive "B" staged epoxy preform cut to the shape of the thermal land on the PCB, or dispensing liquid thermally conductive epoxy in a pattern on the thermal land that will result in at least a 50% void free connection between the pad and the land. Virtually any epoxy material that is used for the attachment of external heat sinks to packaged components is suitable for this application, and cure time/temperature requirements can be matched to the product need (anywhere from 24 hours at room temperature to less than 1 hour at temperatures below 100 degrees centigrade). Care must be taken to choose a material with limited run-out to avoid the possibility of shorting adjacent package leads together or shorting the thermal land of the PCB to the package leads.

It should be noted that the Texas Instruments PowerPAD packages are easier to rework at the board level than other semiconductor packages utilizing metal slugs for the thermal path between the chip and the PCB. This is due to the additional requirement for heating the total mass of the slug to reflow temperatures versus heating the thermal pad of the PowerPAD package. The hot gas temperature and/or flow becomes critical for effective joining of the components without causing damage to the adjacent components or the PCB. In either case, the use of thermally conductive epoxy materials will make the rework task easier and more reliable to perform in a manual repair environment.

5. Summary

An overview of the design, use and performance of the Texas Instruments PowerPAD package has been presented. The package is simple to use and can be assembled and repaired using existing assembly and manufacturing tools and techniques. Package performance is outstanding. By exposing the leadframe on the package bottom, extremely efficient thermal transfer between the die and the PCB can be achieved.

The simplicity of the PowerPAD package not only makes for a low cost package, but there is no additional cost in labor or material for the customer using standard surface mount assembly techniques.

The only preparation needed to implement a PowerPAD design is at the PCB design stage. Simply by including a thermal land and thermal vias on the PCB the design can use the PowerPAD package effectively.

Appendix A. Thermal Modeling of PowerPAD Packages

Table 6. Thermal Characteristics for Different Package and PCB Configurations

Pac	kage Des	cription		ce and Co with Solde			ice and Co	opper Pad der		Low Effect oz. trace	
Pkg Type	Pin Count	Package Designator	θJA (°C/W)	θ _{JC} (°C/W)	Ψ _{JT} (°C/W)	θ _{JA} (°C/W)	θ _{JC} (°C/W)	Ψ _J (°C/W)	θ _{JA} (°C/W)	θ _{JC} (°C/W)	Ψ _{JT} (°C/W
SSOP	20	DWP	21.46	0.37	1.617	43.91	0.37	6.031	92.95	16.58	2.212
1111	24	DWP	20.77	0.27	1.507	38.43	0.27	4.88	80.49	13.49	1.959
	28	DWP	19.52	0.22	1.337	33.92	0.22	. 4.109	69.73	11.24	1.641
TVSOP	80	DDP	19.88	0.21	0.196	32.64	0.21	0.359	65.53	4.69	0.353
	100	DDP	18.35	0.17	0.182	28.45	0.17	0.313	54.55	3.73	0.297
	20	DGP	37.92	2.46	1.074	95.88	2.46	3.318	192.65	28.85	1.054
-	24	DGP	36.87	2.46	1.056	89.50	2.46	3.176	179.91	28.41	0.999
	48	DGP	27.35	0.72	0.45	52.82	0.72	1.138	107.49	12.32	0.58
To the	56	DGP	25.42	0.58	0.406	46.69	0.58	0.98	95.48	10.40	0.526
TSSOP	48	DCA	22.30	0.32	0.22	40.27	0.32	0.443	84.04	6.63	0.434
1 (1999)	56	DCA	21.17	0.27	0.212	36.42	0.27	0.401	75.50	5.81	0.395
-	64	DCA	19.89	0.21	0.196	32.52	0.21	0.357	65.70	4.69	0.35
	28	DAP	25.10	0.45	0.244	51.28	0.45	0.556	110.60	8.96	0.54
	30	DAP	24.20	0.45	0.233	48.34	0.45	0.551	103.45	8.73	0.48
	32	DAP	23.51	0.32	0.233	44.32	0.32	0.468	95.63	7.32	0.478
	38	DAP	22.41	0.31	0.219	41.18	0.31	0.444	87.32	6.57	0.45
1717	28	DCP	30.62	0.94	0.534	63.99	0.94	1.424	133.67	16.13	0.707
7000	30	DCP	30.55	0.94	0.532	63.32	0.94	1.408	131.23	16.05	0.69
	38	DCP	27.41	0.72	0.447	52.93	0.72	1.13	109.55	12.42	0.598
SH HILL	44	DCP	25.57	0.58	0.406	47.18	0.58	0.982	97.13	10.47	0.538
900	50	DCP	24.10	0.51	0.369	43.76	0.51	0.892	89.53	9.34	0.5
	14	PWP	37.47	2.07	0.851	97.65	2.07	2.711	195.35	26.86	1.047
1112	16	PWP	36.51	2.07	0.848	90.26	2.07	2.6	182.31	26.56	0.964
	20	PWP	32.63	1.40	0.607	74.41	1.40	1.777	151.89	19.90	0.77
	24	PWP	30.13	0.92	0.489	62.05	0.92	1.263	128.44	14.83	0.665
	28	PWP	27.87	0.72	0.446	56.21	0.72	1.169	115.82	12.41	0.623
TQFP	48	PHP	29.11	1.14	0.429	64.42	1.14	1.262	108.71	18.18	0.511
	52	PGP	21.61	0.38	0.192	42.58	0.38	0.391	77.15	7.83	0.353
	64	PBP	17.46	0.12	0.155	28.04	0.12	0.252	52.21	3.12	0.26
	64	PAP	21.47	0.38	0.19	42.20	0.38	0.386	75.83	7.80	0.34
	80	PFP	19.04	0.17	0.174	31.52	0.17	0.29	57.75	4.20	0.29
	100	PZP	17.28	0.12	0.154	27.32	0.12	0.247	49.17	3.11	0.252
	128	PNP	17.17	0.12	0.152	27.07	0.12	0.244	48.39	3.11	0.248
LQFP	144	PRP	15.68	0.13	0.199	27.52	0.13	0.346	47.34	4.62	0.288
	176	PTP	14.52	0.10	0.17	24.46	0.10	0.28	42.95	3.67	0.257
	160	PSP	11.14	0.10	0.14	22.40	0.10	0.266	43.93	3.70	0.262
	208	PYP	10.96	0.10	0.139	21.48	0.10	0.258	39.18	3.66	0.235

PowerPAD Thermally Enhanced Package

31

General

Thermal modeling is used to estimate the performance and capability of IC packages. From a thermal model, design changes can be made and thermally tested before any time is spent on manufacturing. It can also be determined what components have the most influence on the heat dissipation of a package. Models can give an approximation of the performance of a package under many different conditions. In this case, a thermal analysis was performed in order to approximate the improved performance of a PowerPAD thermally enhanced package to that of a standard package.

Modeling Considerations

There are only a few differences between the thermal models of the standard packages and models for PowerPAD. The geometry of both packages was essentially the same, except for the location of the lead frame bond pad. The pad for the thermally enhanced PowerPAD package is deep downset, so its location is further away from the lead fingers than a standard package lead frame pad. Both models used the maximum pad and die size possible for the package, as well as using a lead frame that had a gap of one lead frame thickness between the pad and the lead fingers. The lead frame thickness was:

TQFP/LQFP: 0.127 mm, or 5 mils TSSOP/TVSOP/SSOP: 0.147 mm, or 5.8 mils

In addition, the board design for the standard package is different than the PowerPAD. One of the most influential components on the performance of a package is board design. In order to take advantage of PowerPAD's heat dissipating abilities, a board must be used that acts similarly to a heat sink and allows for the use of the exposed (and solderable) deep downset pad. This is Texas Instruments' recommended board for PowerPAD (see

Figure 13). A summary of the board geometry is included below.

Texas Instruments Recommended Board for PowerPAD

0.062" thick

3" x 3" (for packages <27 mm long)

4" x 4" (for packages >27 mm long)

2 oz. copper traces located on the top of the board (0.071 mm thick)

Copper areas located on the top and bottom of the PCB for soldering

Power and ground planes, 1 oz. copper (0.036 mm thick)

Thermal vias, 0.33 mm diameter, 1.5 mm pitch

Thermal isolation of power plane

PowerPAD Thermally Enhanced Package

Figure 13. Texas Instruments Recommended Board (Side View)

The standard packages were placed on a board that is commonly used in the industry today, following the JEDEC standard. It does not contain any of the thermal features that are found on the Texas Instruments recommended board. It only has component traces on the top of the board. A summary of the standard is located below:

JEDEC Low Effective Thermal Conductivity Board (Low-K)

0.062" thick

3" x 3" (for packages <27 mm long)

4" x 4" (for packages >27 mm long)

1 oz. copper traces located on the top of the board (0.036 mm thick) $\,$

These boards were used to estimate the thermal resistance for both PowerPAD and the standard packages under many different conditions. While the PowerPAD can be used on a JEDEC low-k board, in order to achieve the maximum thermal capability of the package, it is recommended that it be used on the Texas Instruments heat dissipating board design. It allows for the exposed pad to be directly soldered to the board, which creates an extremely low thermal resistance path for the heat to escape.

A general modeling template was used for each PowerPAD package, with variables dependent on the package size and type. The package dimensions and an example of the template used to model the packages are shown in Figure 14 and Table 7. While only 1/4 of the package was modeled (in order to simplify the model and to lessen the calculation time), the dimensions shown are those for a full model.

Figure 14. Thermal Pad and Lead Attachment to a PCB Using the PowerPAD Package

Table 7. PowerPAD Package Template Description

(A)	PCB Thickness:	1.5748 mm	(K)	Package Thickness:	(3)
	PCB Length:	76.2 mm (1)		Package Length:	(3)
	PCB Width:	76.2 mm (1)		Package Width:	(3)
(B)	Chip Thickness:	0.267 mm	(L)	Pad Thickness:	0.147 mm (8)
	Chip Length:	(2)		Pad Length:	(3)
	Chip Width:	(2)		Pad Width:	(3)
(C)	Die Attach Thickness:	0.0127 mm		PCB Trace Length:	25.4 mm
(D)	Lead Frame Downset:	(3)		PCB Trace Thkn:	0.071 mm
	Tie Strap Width:	(3)		PCB Backplane Th:	0.0 mm (4)
(E)	PCB to Package Bottom:	0.09 mm		PCB Trace Width:	0.254 mm
(G)	Shoulder Lead Width:	(3),(5),(6)	(M)	Foot Width:	(5)
(H)	Shoulder Lead Space:	(3),(6)	(N)	Foot Length on PCB:	(3)
(J)	Shoulder to PCB Dist .:	(7)			

Notes: 1) 99.8mm for packages > 27mm max length
2) Chip size is 10 mils smaller than the largest pad size (5 mils from each side)

Dependent on package size and type
The recommended board requires the addition of two internal copper planes, solder pads, and thermal vias

Foot width was set equal to shoulder lead width for model efficiency
Lead pitch is equal to the shoulder lead width plus the shoulder lead space (pitch = G + H)

PowerPAD Thermally Enhanced Package

- 7) The shoulder to board distance is equal to the downset plus the board to package bottom distance (J = D + E)
 8) The pad thickness for TQFP/LQFP is equal to 0.127 mm

9) All dimensions are in millimeters.

In addition to following a template for the dimensions of the package, a simplified lead frame was used. A description of the lead frame geometry is seen in Figure 15.

Figure 15. General Leadframe Drawing Configuration

NOTE:

The lead frame downset bend area = 20 mils (lead frame thickness). For SSOP, TSSOP, and TVSOP packages, add the bend area to the width of the pad. For TQFP and LQFP, add the bend area to both the width and length of the pad.

Results

The purpose of the thermal modeling analysis was to estimate the increase in performance that could be achieved by using the PowerPAD package over a standard package. For this package comparison, several conditions were examined:

Case 1. PowerPAD soldered to the TI recommended board

Case 2. PowerPAD not soldered to the TI recommended board

Case 3. A standard package configuration on a low-k board

Case 4. A standard package on the TI recommended board

The first three cases show a comparison of PowerPAD packages on the recommended board to standard packages on a board commonly used in the industry. The results are shown in Table 6. From these results, it was shown that the PowerPAD, when soldered to the TI recommended board, performed an average of 47% cooler than when not soldered, and 73% cooler than a standard package on a low-k board.

For the final case, a separate analysis was performed in order to show the difference in thermal resistance when the standard and the thermally enhanced packages are used on the same board. The results showed that the PowerPAD, when soldered, performed an average of 44% cooler than the standard package (See Figure 18).

Figure 18. Comparison of θ_{JA} for Various Packages

PowerPAD Thermally Enhanced Package

However, when the PowerPAD is not soldered to the board, similar to a standard package, the θ_{JA} is approximately 3% hotter than a standard package. This is due to the location of the lead frame pad relative to the lead fingers, which is the strongest conduction path in a standard package. Since the pad on a standard package lead frame is closer to the lead fingers, more heat is dissipated through the leads than in the PowerPAD package with its deep downset pad.

Conclusions

The deep downset pad of a PowerPAD package allows for an extensive increase in package performance. Standard packages are limited by using only the leads to transport a majority of the heat away. The addition of a heat sink will improve standard package performance, but greatly increases the cost of a package. The PowerPAD package improves performance, but maintains a low cost. The results of the thermal analysis showed that by soldering the PowerPAD package directly to a board designed to dissipate heat, thermal performance increased approximately 44% over the standard packages used on the same board.

Figure 18. Comparison of θ_{JA} for Various Packages

However, when the PowerPAD is not soldered to the board, similar to a standard package, the θ_{JA} is approximately 3% hotter than a standard package. This is due to the location of the lead frame pad relative to the lead fingers, which is the strongest conduction path in a standard package. Since the pad on a standard package lead frame is closer to the lead fingers, more heat is dissipated through the leads than in the PowerPAD package with its deep downset pad.

Conclusions

The deep downset pad of a PowerPAD package allows for an extensive increase in package performance. Standard packages are limited by using only the leads to transport a majority of the heat away. The addition of a heat sink will improve standard package performance, but greatly increases the cost of a package. The PowerPAD package improves performance, but maintains a low cost. The results of the thermal analysis showed that by soldering the PowerPAD package directly to a board designed to dissipate heat, thermal performance increased approximately 44% over the standard packages used on the same board.

PowerPAD Thermally Enhanced Package

Appendix B. Rework Process for Heat Sink TQFP and TSSOP PowerPAD Packages - from Air-Vac Engineering

Introduction

The addition of bottom side heat sink attachment has enhanced the thermal performance of standard surface mounted devices. This has presented new process requirements to effectively remove, redress, and replace (rework) these devices due to the hidden and massive heat sink, coplanarity issues, and balance of heat to the leads and heat sink. The following is based on rework of the TQFP100 and TSSOP20/24 pin devices.

Figure 19. DRS22C Reworking Station

Equipment

The equipment used was the Air-Vac Engineering DRS22C hot gas reflow module. The key requirements for the heat sink applications include: stable PCB platform with sufficient bottom side preheat, alignment capabilities, very accurate heat control, and proper nozzle design.

O SI MADOS

PCB support is critical to reduce assembly sagging and to provide a stable, flat condition throughout the process. The robust convection-based area heater provides sufficient and accurate bottom side heat to reduce thermal gradient, minimize local PCB warpage, and compensate for the heat sink thermal characteristics. The unique pop-up feature allows visible access to the PCB with multiple easy position board supports.

Figure 20. Reworking Nozzles of Various Sizes

During removal, alignment, and replacement, the device is held and positioned by a combination hot gas/hot bar nozzle. Built-in nozzle tooling positions the device correctly to the heat flow. A vacuum cup holds the component in place. Hot gas is applied to the top of the device while hot gas/hot bar heating is applied to the component leads. The hot bar feature also insures bonding of the fine pitch leads.

Figure 21. Nozzle Configuration

Profile

The gas temperature, flow, and operator step-by-step instructions are controlled by an established profile. This allows complete process repeatability and control with minimal operator involvement. Very accurate, low gas flow is required to insure proper temperature control of the package and to achieve good solder joint quality.

Removal

The assembly is preheated to 75 °C. While the assembly continued to preheat to 100 °C, the nozzle is preheated. After the preheat cycle, the nozzle is lowered and the device is heated until reflow occurs. Machine settings: TSSOP 20/24 - 220 °C at 0.39 scfm gas flow for 50 seconds (preheat) above board level, 220 °C at 0.39 scfm for 10 seconds. TQFP 100 - 240 °C at 0.10 scfm for 60 seconds (preheat) above board level, 250 °C at 0.65 scfm for 15 seconds. The built in vacuum automatically comes on at the end of the cycle and the nozzle is raised. The time to reach reflow was approximately 15 seconds. The component is released automatically allowing the part to fall into an appropriate holder.

Site Redress

After component removal the site must be cleaned of residual solder. This may be done by vacuum desoldering or wick. The site is cleaned with alcohol and lint-free swab. It is critical that the heat sink area be flat to allow proper placement on the leads on new device. Stenciling solder paste is the preferred method to apply new solder. Solder dispensing or reflowing the solder bumps on the pads for the leads may also be an alternative, but reflow (solid mass) of solder to the heat sink is not.

Figure 22. Air-Vac Vision System

Alignment

A replacement device is inserted into the gas nozzle and held by vacuum. The device is raised to allow the optical system to be utilized. The optical system used for alignment consists of a beam-splitting prism combined with an inspection quality stereo microscope or camera/video system. the leads of the device are superimposed over the corresponding land pattern on the board. This four sided viewing allows quick and accurate operator alignment.

Replacement

Once aligned, the x/y table is locked and the optical system retracts away from the work area. The preheat cycle is activated. The device is then lowered to the board. An automatic multi-step process provides a controlled reflow cycle with repeatable results. Machine settings for TSSOP 20/24: 160 °C at 0.39 scfm gas flow for 40 seconds (preheat), 220 °C at 0.39 scfm for 60 seconds above board level, 220 °C at 0.39 scfm for 10 seconds. For TQFP 100: 100 °C at 0.78 scfm for 40 seconds (preheat), 240 °C at 0.10 scfm for 90 seconds above board level, 250 °C at 0.65 scfm for 15 seconds (2 stages).

Conclusion

Rework of heat sink devices, TQFP and TSSOP, can be successful with attention to the additional issues they present. With respect to proper thermal profiling of the heat sink, die, and lead temperatures, the correct gas nozzle and profile can be developed to meet the requirements of the device and assembly. Existing equipment and nozzle design by Air-Vac can provide the tools and process knowledge to meet the heat sink TQFP and TSSOP rework application.

Appendix C. PowerPAD Process Rework Application Note from Metcal

The following report references six of Texas Instruments' fine pitch, surface mount prototype packages (TSOP20, TSOP56, TSOP24, TQFP100, and TQFP64). The shapes and sizes are not new to the circuit board industry. Normally, I would use Metcal conduction tools to simply remove and replace these components. However, these packages are unique because all packages include a 'dye lead' on the underside of the package. This dye lead cannot be accessed by contact soldering. Therefore, convection rework methods are necessary for component placement.

NOTE:

Conduction tools can be used for removal. But, convection rework techniques are required for placement, and recommended for removal.)

Removal

Conduction (optional): All packages can be removed with Metcal conduction tips. Use the following tips:

Component	Metcal Tip Cartridge	OK Nozzle
TSOP20	SMTC-006	N-S16
TSOP56	SMTC-166	N-TSW32
TSOP24	SMTC-006	N-S16
TQFP100	SMTC-0118	N-P68
TQFP64	SMTC-112	N-P20

The dye lead, which is not in contact with the Metcal tip, will easily reflow as heat passes through the package.

Conduction Procedure

- Tin the tip, contact all perimeter leads simultaneously, and wait 3-5 seconds for the leads to reflow.
- Lift the package off the board (surface tension will hold it in the tip cartridge). Dislodge the component from the tip by wiping the tip cartridge on a damp sponge.

Convection Procedure

 Flux the leads. Preferably, use a liquid RMA/rosin flux. Pre-heat the board at 100C. Use a convection or IR preheater, like the SMW-2201 from OK Industries. The settings 2-4 will generally heat a heavy board to 100° in 60 seconds.

PowerPAD Thermally Enhanced Package

45

2) Remove the component with the OK Industries FCR hot air system. Use a nozzle that matches the size and shape of the component (see above). With the preheat still on, heat the top of the board for 30-45 seconds on a setting of 3-4 (depending on board thickness and amount of copper in board*).

Since convection is NECESSARY for placement, convection is recommended for removal.

Placement Procedure

- Pads can be tinned by putting solder paste on the pads and reflowing with hot air. Simply apply a fine bead of solder paste (pink nozzle, 24AWG) to the rows of pads. Be sure to apply very little paste. Excessive paste will cause bridging, especially with fine pitch components.
- 2) Once the pads are tinned, apply gel flux (or liquid flux) to the pads. RMA flux is preferable. Be sure to apply gel flux to the dye pad as well. It is important that your pads not be OVER tinned. If too much solder has formed on the dye pad, the component will sit above the perimeter leads, causing co-planarity problems. The gel flux is tacky and helps with manual placement. The joints require very little solder, so stenciling is not necessary. The pads are so thin that a minimal amount of solder is needed to form a good joint. Use a hot air nozzle for the FCR system. Pre-heat the board and (setting 3-5). Use low air flow (5-10 liters/minute) and topside heat (setting 3-4) for about 30-45 seconds*.

NOTES:

The quality of the dye lead's solder joint cannot be visually inspected. An X-ray machine, cross sectioning, or electrical testing will be required.

The vias on the test board are not solder masked very well which causes some bridging and solder wicking.

*Specific board and component temperatures will vary from board to board and from nozzle to nozzle. Larger nozzles require a higher setting because the heat must travel farther away from the heat source. There will be a slight convection cooling effect from pushing hot air through long flutes, and depending on how wide the nozzle is. However, as a rule, keep the board temperature at 100 °C (as thermocoupled from the TOP). You can regulate the board temperature by setting the temperature knob on the bottom side pre-heater. Apply a HIGHER topside heat from the FCR heating head. As a rule, use a maximum of 200-210°C for a short peak period (10 seconds). Look for the flux to burn off. For board profiling purposes, you can visually inspect the condition of the solder joints during the removal process. Note the time ellotted for reflow and set the system to Auto Remove or Auto Place at the same time designation for good repeatability. Be sure not to overheat the joints. Excessive heat can cause board delamination and discoloration. Alignment will 'self-correct' once all the solder has reflowed. Tap board lightly. Remove any solder bridges with solder braid. Also, limit the board's heatting cycles to a minimum. Excessive heat shock may warp the board or cause cracking in the solder joints.

Single Supply Op Amp Design Techniques

Application Report

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated

Contents

Introduction	5–193
Boundary Conditions	5–195
Circuit Analysis	5–195
Simultaneous Equations	5–199
Case1: V _{OUT} = mV _{IN} +b	5–200
Case 2: V _{OUT} = mV _{IN} - b	5–203
Case 3: V _{OUT} = -mV _{IN} + b	5–205
Case 4: V _{OUT} = -mV _{IN} - b	5–208
Conclusion	5–210
List of Figures	
1 Split Supply Op Amp Circuit	
2 Split Supply Op Amp Circuit With Reference Voltage Input	
3 Split Supply Op Amp Circuit With Common-Mode Voltage	
4 Single Supply Op Amp Circuit	
5 Inverting Op Amp	
6 Inverting Op Amp With V _{CC} Bias	
7 Transfer Curve for Inverting Op Amp With V _{CC} Bias	
8 Noninverting Op Amp	
9 Transfer Curve for Noninverting Op Amp	
10 Schematic for Case1: V _{OUT} = mV _{IN} + b 11 Case 1 Example Circuit	
12 Case 1 Example Circuit Measured Transfer Curve	
13 Schematic for Case 2; V _{OUT} = mV _{IN} - b	
14 Case 2 Example Circuit	
15 Case 2 Example Circuit Measured Transfer Curve	
16 Schematic for Case 3; V _{OUT} = -mV _{IN} + b	
17 Case 3 Example Circuit	
18 Case 3 Example Circuit Measured Transfer Curve	
19 Schematic for Case 4; V _{OUT} = -mV _{IN} - b	
20 Case 4 Example Circuit	
21 Case 4 Example Circuit Measured Transfer Curve	

Contents

Single Supply Op Amp Design Techniques

Ron Mancini

ABSTRACT

This application report describes single supply op amp applications, their portability and their design techniques. The single supply op amp design is more complicated than a spilt or dual supply op amp, but single supply op amps are more popular because of their portability. New op amps, such as the TLC247X, TLC07X, and TLC08X have excellent single supply parameters. When used in the correct applications, these op amps yield almost the same performance as their split supply counterparts. The single supply op amp design normally requires some form of biasing.

Introduction

Most portable systems have one battery, thus the popularity of portable equipment results in increased single supply applications. Split or dual supply op amp circuit design is straightforward because the op amp inputs and outputs are referenced to the normally grounded center tap of the supplies. In the majority of split supply applications, signal sources driving the op amp inputs are referenced to ground. Thus with one input of the op amp referenced to ground, as shown in Figure 1, there is no need to consider input common—mode voltage problems.

Figure 1. Split Supply Op Amp Circuit

When the signal source is not referenced to ground (see Figure 2), the voltage difference between ground and the reference voltage shows up amplified in the output voltage. Sometimes this situation is okay, but other times the difference voltage must be stripped out of the output voltage. An input bias voltage is used to eliminate the difference voltage when it must not appear in the output voltage (see Figure 3). The voltage, V_{REF}, is in both input circuits, hence it is named a common-mode voltage. Voltage feedback op amps, like those used in this application note, reject common-mode voltages because their input circuit is constructed with a differential amplifier (chosen because it has natural common-mode voltage rejection capabilities).

Figure 2. Split Supply Op Amp Circuit With Reference Voltage Input

Figure 3. Split Supply Op Amp Circuit With Common-Mode Voltage

When signal sources are referenced to ground, single supply op amp circuits exhibit a large input common-mode voltage. Figure 4 shows a single supply op amp circuit that has its input voltage referenced to ground. The input voltage is not referenced to the midpoint of the supplies like it would be in a split supply application, rather it is referenced to the lower power supply rail. This circuit does not operate when the input voltage is positive because the output voltage would have to go to a negative voltage, hard to do with a positive supply. It operates marginally with small negative input voltages because most op amps do not function well when the inputs are connected to the supply rails.

Figure 4. Single Supply Op Amp Circuit

The constant requirement to account for inputs connected to ground or other reference voltages makes it difficult to design single supply op amp circuits. This application note develops an orderly procedure which leads to a working design every time. If you do not have a good working knowledge of op amp equations, please reference the *Understanding Basic Analog....* series of application notes available from Texas Instruments. Application note SLAA068 titled, *Understanding Basic Analog-Ideal Op Amps* develops the ideal op amp equations. Circuit equations are written with the ideal op amp assumptions as specified in *Understanding Basic Analog-Ideal Op Amps*; the assumptions are tabulated below for your reference.

PARAMETER NAME	PARAMETERS SYMBOL	VALUE
Input current	taalbradan linudid arti	0
Input offset voltage	Vos	0
Input impedance	Z _{IN}	00
Output impedance	Zout	0
Gain	a	- 00

Unless otherwise specified, all op amps circuits are single supply circuits. The single supply may be wired with the negative or positive lead connected to ground, but as long as the supply polarity is correct, the wiring does not affect circuit operation.

Boundary Conditions

Use of a single supply limits the polarity output voltage. For example, when the supply voltage, V_{CC} , = 10 V the output voltage is limited to the range $0 \le V_{out} \le 10$. This limitation precludes negative output voltages when the circuit has a positive supply voltage, but it does not preclude negative input voltages when the circuit has a positive supply voltage. As long as the voltage on the op amp input leads does not become negative, the circuit can handle negative input voltages.

Beware of working with negative (positive) input voltages when the op amp is powered from a positive (negative) supply because op amp inputs are highly susceptible to reverse voltage breakdown. Also, insure that all possible start-up conditions do not reverse bias the op amp inputs when the input and supply voltage are opposite polarity.

Circuit Analysis

The first circuit to be examined is the inverting circuit shown in Figure 5.

Figure 5. Inverting Op Amp

Equation 1 is written with the aid of superposition, and simplified algebraically, to acquire equation 2.

$$V_{OUT} = V_{REF} \left(\frac{R_F}{R_G + R_F} \right) \left(\frac{R_F + R_G}{R_G} \right) - V_{IN} \frac{R_F}{R_G}$$
 (56)

$$V_{OUT} = \left(V_{REF} - V_{IN}\right) \frac{R_F}{R_G} \tag{57}$$

As long as the load resistor, RL, is a large value, it does not enter into the circuit calculations, but it can introduce some second order effects which might show up in the lab. Equation 3 is obtained by setting V_{RFF} equal to V_{IN}, and there is no output voltage from the circuit regardless of the input voltage. The author unintentionally designed a few of these circuits before he created an orderly method of op amp circuit design. Actually, a real circuit has a small output voltage equal to the lower transistor saturation voltage, which is about 150 mV for a TLC07X.

$$V_{OUT} = (V_{REF} - V_{IN}) \frac{R_F}{R_G} = (V_{IN} - V_{IN}) \frac{R_F}{R_G} = 0$$
 (58)

When V_{REF}=0, V_{OUT}=-V_{IN}(R_F/R_G), there are two possible solutions to equation 2. First, when VIN is any positive voltage, VOUT should be negative voltage. The circuit can not achieve a negative voltage with a positive supply, so the output saturates at the lower power supply rail. Second, when VIN is any negative voltage, the output spans the normal range according to equation 5.

$$V_{IN} \ge 0, \qquad V_{OUT} = 0 \tag{59}$$

$$V_{IN} \ge 0,$$
 $V_{OUT} = 0$ (59)
 $V_{IN} \le 0,$ $V_{OUT} = |V_{IN}| \frac{R_F}{R_G}$

When V_{REF} equals the supply voltage, V_{CC} , we obtain equation 6. When V_{IN} is positive V_{OUT} should exceed V_{CC}; that is impossible, so the output saturates. When VIN is negative the circuit acts as an inverting amplifier.

$$V_{OUT} = \left(V_{CC} - V_{IN}\right) \frac{R_F}{R_C} \tag{61}$$

The transfer curve for the circuit shown in Figure 6 (V_{CC} = 5 V, $R_G = R_F = 100 \text{ K}$, $R_L = 10 \text{ K}$) is shown in Figure 7.

Figure 6. Inverting Op Amp With V_{CC} Bias

Figure 7. Transfer Curve for Inverting Op Amp With V_{CC} Bias

Four op amps were tested in the circuit configuration shown in Figure 6. Three of the old generation op amps, LM358, TL07X, and TLC272 had output voltage spans of 2.3 to 3.75 volts. This performance does not justify the ideal op amp assumption that was made in the beginning of this application note unless the output voltage swing is severely limited. Limited output or input voltage swing is one of the worst deficiencies a single supply op amp can have because the limited voltage swing limits the circuit's dynamic range. Also, limited voltage swing frequently results in distortion of large signals. The fourth op amp tested was the newer TLV247X which was designed for rail-to-rail operation in single supply circuits. The TLV247X plotted a perfect curve (results limited by the instrumentation), and it amazed the author with a textbook performance that justifies the use of ideal assumptions. Some of the older op amps must limit their transfer equation as shown in equation 7.

$$V_{OUT} = (V_{CC} - V_{IN}) \frac{R_F}{R_C}$$
 for $V_{OUTLOW} \le V_{OUT} \le V_{OUTHI}$ (62)

The noninverting op amp circuit is shown in Figure 8. Equation 8 is written with the aid of superposition, and simplified algebraically, to acquire equation 9.

$$V_{OUT} = V_{IN} \left(\frac{R_F}{R_G + R_F} \right) \left(\frac{R_F + R_G}{R_G} \right) - V_{IN} \frac{R_F}{R_G}$$
 (63)

$$V_{OUT} = \left(V_{IN} - V_{REF}\right) \frac{R_F}{R_G} \tag{64}$$

When $V_{REF} = 0$, $V_{OUT} = V_{IN} \frac{R_F}{R_G}$, there are two possible circuit solutions. First,

when V_{IN} is a negative voltage, V_{OUT} must be a negative voltage. The circuit can not achieve a negative output voltage with a positive supply, so the output saturates at the lower power supply rail. Second, when V_{IN} is a positive voltage, the output spans the normal range as shown by equation 11.

$$V_{IN} \le 0, \qquad V_{OUT} = 0 \tag{65}$$

$$V_{IN} \ge 0, \qquad V_{OUT} = V_{IN} \tag{66}$$

The noninverting op amp circuit is shown in Figure 8 with $V_{CC} = 5$ V, $R_G = R_F = 100$ K, $R_L = 10$ K, and $V_{REF} = 0$. The transfer curve for this circuit is shown in Figure 9; a TLV247X serves as the op amp.

Figure 8. Noninverting Op Amp

Figure 9. Transfer Curve for Noninverting Op Amp

There are many possible variations of inverting and noninverting circuits. At this point many designers analyze these variations hoping to stumble upon the one that solves the circuit problem. Rather than analyze each circuit, it is better to learn how to employ simultaneous equations to render specified data into equation form. When the form of the desired equation is known, a circuit that fits the equation is chosen to solve the problem. The resulting equation must be a straight line, thus there are only four solutions each of which is given in this application note.

Simultaneous Equations

Taking an orderly path to developing a circuit that works the first time starts here; follow these steps until the equation of the op amp is determined. Use specifications and simultaneous equations to determine what form the op amp equation must have. Go to the section that illustrates that equation form (called a case), solve the equation to determine the resistor values, and you have a working solution.

A linear op amp transfer function is limited to the equation of a straight line.

$$y = \pm mx \pm b \tag{67}$$

The equation of a straight line has four possible solutions depending upon the sign of m, the slope, and b, the intercept; thus simultaneous equations yield solutions in four forms. Four circuits must be developed; one for each form of the equation of a straight line. The four equations, cases, or forms of a straight line are given in equations 13 through 16, where electronic terminology has been substituted for math terminology.

$$V_{OUT} = mV_{IN} + b \tag{68}$$

$$V_{OLIT} = mV_{IN} - b \tag{69}$$

$$V_{OUT} = -mV_{IN} + b \tag{70}$$

$$V_{OUT} = -mV_{IN} - b \tag{71}$$

Given a set of two data points for V_{OUT} and V_{IN} , simultaneous equations are solved to determine m and b for the equation that satisfies the given data. The sign of m and b determines the type of circuit required to implement the solution. The given data is derived from the specifications; i. e., a sensor output signal ranging from 0.1 volts to 0.2 volts must be interfaced into an analog-to-digital converter which has an input voltage range of 1volt to 4 volts. These data points ($V_{OUT} = 1 \ V \ @ V_{IN} = 0.1 \ V$, $V_{OUT} = 4 \ V \ @ V_{IN} = 0.2 \ V$) are inserted into equation 13, as shown in equations 17 and 18, to obtain m and b for the specifications.

$$1 = m(0.1) + b (72)$$

$$4 = m(0.2) + b$$
 (73)

Multiply equation 17 by 2 and subtract it from equation 18.

$$2 = m(0.2) + 2b$$
 (74)

$$b = -2 (75)$$

After algebraic manipulation of equation 17, substitute equation 20 into equation 17 to obtain equation 21.

$$m = \frac{2+1}{0.1} = 30 \tag{76}$$

Now m and b are substituted back into equation 13 yielding equation 22.

$$V_{OUT} = 30V_{IN} - 2 \tag{77}$$

Notice, although equation 13 was the starting point, the form of equation 22 is identical to the format of equation 14. The specifications or given data determine the sign of m and b, and starting with equation 13, the final equation form is discovered after m and b are calculated. The next step is to develop a circuit that has an m=30 and b=-2 to complete the problem solution. Circuits were developed for equations 13 through 16, and they are given under the headings Case 1 through Case 4 respectively.

Case1: VOUT = mVIN+b

The circuit configuration which yields a solution for Case 1 is shown in Figure 10. The figure includes two 0.01 μF capacitors. These capacitors are called decoupling capacitors, and they are included to reduce noise and provide increased noise immunity. Sometimes two 0.01 μF capacitors serve this purpose, sometimes more extensive filtering is needed, sometimes one capacitor serves this purpose, but when V_{CC} is used as a reference, special attention must be paid to the regulation and noise content of V_{CC} .

Figure 10. Schematic for Case1: VOUT = mVIN + b

The circuit equation is written using the voltage divider rule and superposition.

$$V_{OUT} = V_{IN} \left(\frac{R_2}{R_1 + R_2} \right) \left(\frac{R_F + R_G}{R_G} \right) + V_{REF} \left(\frac{R_1}{R_1 + R_2} \right) \left(\frac{R_F + R_G}{R_G} \right)$$
(78)

The equation of a straight line (case 1) is repeated below so comparisons can be made between it and equation 23.

$$V_{OUT} = mV_{IN} + b \tag{79}$$

Term-by-term comparisons yield equations 25 and 26.

$$m = \left(\frac{R_2}{R_1 + R_2}\right) \left(\frac{R_F + R_G}{R_G}\right) \tag{80}$$

$$b = V_{REF} \left(\frac{R_1}{R_1 + R_2}\right) \left(\frac{R_F + R_G}{R_G}\right) \tag{81}$$

Example; the circuit specifications are $V_{OUT} = 1 \text{ V}$ at $V_{IN} = 0.01 \text{ V}$, $V_{OUT} = 4.5 \text{ V}$ at $V_{IN} = 1 \text{ V}$, $R_L = 10 \text{ K}$, five per cent resistor tolerances, and $V_{CC} = 5 \text{ V}$. No reference voltage is available, thus V_{CC} is used for the reference input, and $V_{REF} = 5 \text{ V}$. A reference voltage source is left out of the design as a space and cost savings measure, and it sacrifices noise, accuracy, and stability performance. Cost is an important specification, and the V_{CC} supply must be specified well enough to do the job. Each step in the subsequent design procedure is included in this analysis to ease learning and increase boredom. Many steps are skipped when subsequent cases are analyzed.

The data is substituted into simultaneous equations.

$$1 = m(0.01) + b (82)$$

$$4.5 = m(1.0) + b$$
 (83)

Equation 27 is multiplied by 100 (equation 29) and equation 28 is subtracted from equation 29 to obtain equation 30.

$$100 = m(1.0) + 100b (84)$$

$$b = \frac{95.5}{99} = 0.9646 \tag{85}$$

The slope of the transfer function, m, is obtained by substituting b into equation 27.

$$m = \frac{1-b}{0.01} = \frac{1-0.9646}{0.01} = 3.535 \tag{86}$$

Now that b and m are calculated, the resistor values can be calculated. Equations 25 and 26 are solved for the quantity $(R_F + R_G)/R_G$, and then they are set equal in equation 32 thus yielding equation 33.

$$\frac{R_F + R_G}{R_G} = m \left(\frac{R_1 + R_2}{R_2} \right) = \frac{b}{V_{CC}} \left(\frac{R_1 + R_2}{R_1} \right)$$
(87)

$$R_2 = \frac{3.535}{0.9646} R_1 = 18.316 R_1 \tag{88}$$

Five per cent tolerance resistors are specified for this design, so we choose $\rm R_1$ = 10K, and that sets the value of $\rm R_2$ = 183.16 K. The closest 5% resistor value to 183.16 K is 180 K; therefore, select $\rm R_1$ = 10 K and $\rm R_2$ = 180 K. Being forced to yield to reality by choosing standard resistor values means that there is an error in the circuit transfer function because m and b are not exactly the same as calculated. The real world constantly forces compromises into circuit design, but the good circuit designer accepts the challenge and throws money or brains at it. Resistor values closer to the calculated values could be selected by using 1% or 0.5% resistors, but that selection increases cost and violates the design specification. The cost increase is hard to justify except in precision circuits. Using ten cent resistors with a ten cent op amp usually is false economy.

The left half of equation 32 is used to calculate RF and RG.

$$\frac{R_F + R_G}{R_G} = m \left(\frac{R_1 + R_2}{R_2} \right) = 3.535 \left(\frac{180 + 10}{180} \right) = 3.73$$
 (89)

$$R_{\rm F} = 2.73R_{\rm G} \tag{90}$$

The resulting circuit equation is given below.

$$V_{OUT} = 3.5V_{IN} + 0.97 \tag{91}$$

The gain setting resistor, R_G , is selected as 10K, and 27 K, the closest 5% standard value is selected for the feedback resistor, R_F . Again, there is a slight error involved with standard resistor values. This circuit must have an output voltage swing from 1 to 4.5 volts. The older op amps can not be used in this circuit because they lack dynamic range, so the TLV247X family of op amps is selected. The data shown in Figure 7 confirms the op amp selection because there is little error. The circuit with the selected component values is shown in Figure 11. The circuit was built with the specified components, and the transfer curve is shown in Figure 12.

Figure 11. Case 1 Example Circuit

Figure 12. Case 1 Example Circuit Measured Transfer Curve

The transfer curve shown is a straight line, and that means that the circuit is linear. The V_{OUT} intercept is about 0.98 volts rather than 1 volt as specified, and this is excellent performance considering that the components were selected randomly from bins of resistors. Different sets of components would have slightly different slopes because of the resistor tolerances. The TLV247X has input bias currents and input offset voltages, but the effect of these errors is hard to measure on the scale of the output voltage. The output voltage measured 4.53 volts when the input voltage was 1 volt. Considering the low and high input voltage errors, it is safe to conclude that the resistor tolerances have skewed the gain slightly, but this is still excellent performance for 5% components. Often lab data similar to that shown here is more accurate than the 5% resistor tolerance, but do not fall into the trap of expecting this performance, because you will be disappointed if you do.

The resistors were selected in the K ohm range arbitrarily. The gain and offset specifications determine the resistor ratios, but supply current, frequency response, and op amp drive capability determine their absolute values. The resistor value selection in this design is high because modern op amps do not have input current offset problems, and they yield reasonable frequency response. If higher frequency response is demanded, the resistor values must decrease, and resistor value decreases reduce input current errors, while supply current increases. When the resistor values get low enough, it becomes hard for another circuit, or possibly the op amp, to drive the resistors.

Case 2: Vout = mVIN - b

The circuit shown in figure 13 yields a solution for Case 2. The circuit equation is obtained by taking the Thevenin equivalent circuit looking into the junction of R_1 and R_2 . After the R_1 , R_2 circuit is replaced with the Thevenin equivalent circuit, the gain is calculated with the ideal gain equation (equation 37).

Figure 13. Schematic for Case 2; VOUT = mVIN - b

$$V_{OUT} = V_{IN} \left(\frac{R_F + R_G + R_1 \parallel R_2}{R_G + R_1 \parallel R_2} \right) - V_{REF} \left(\frac{R_2}{R_1 + R_2} \right) \left(\frac{R_F}{R_G + R_1 \parallel R_2} \right)$$
(92)

Comparing terms in equations 37 and 14 enables the extraction of m and b.

$$m = \frac{R_F + R_G + R_1 \parallel R_2}{R_G + R_1 \parallel R_2}$$
 (93)

$$IbI = V_{REF} \left(\frac{R_2}{R_1 + R_2} \right) \left(\frac{R_F}{R_G + R_1 + R_2} \right)$$
 (94)

The specifications for an example design are: $V_{OUT} = 1.5V @ V_{IN} = 0.2V$, $V_{OUT} = 4.5V @ V_{IN} = 0.5V$, $V_{REF} = V_{CC} = 5V$, $R_L = 10K$, and 5% resistor tolerances. The simultaneous equations, 40 and 41, are written below.

$$1.5 = 0.2m + b$$
 (95)

$$4.5 = 0.5m + b$$
 (96)

From these equations we find that b = -0.5 and m = 10. Making the assumption that $R_1||R_2| < R_G$ simplifies the calculations of the resistor values.

$$m = 10 = \frac{R_F + R_G}{R_G}$$
 (97)

$$R_{\rm F} = 9R_{\rm G} \tag{98}$$

Let $R_G = 20K$, and then $R_F = 180K$.

$$b = V_{CC} \left(\frac{R_F}{R_G} \right) \left(\frac{R_2}{R_1 + R_2} \right) = 5 \left(\frac{180}{20} \right) \left(\frac{R_2}{R_1 + R_2} \right)$$
 (99)

$$R_1 = \frac{1 - 0.01111}{0.01111} R_2 = 89R_2$$
 100)

Select $R_2=0.82 K$ and R_1 equals 72.98 K. Since 72.98 K is not a standard 5% resistor value, R_1 is selected as 75 K. The difference between the selected and calculated value of R_1 has about a 3% effect on b, and this error shows up in the transfer function as an intercept rather than a slope error. The parallel resistance of R_1 and R_2 is approximately .82K and this is much less than R_G which is 20K, thus the earlier assumption that $R_G >> R1 IIR2$ is justified. R_2 could have been selected as a smaller value, but the smaller values yielded poor standard 5% values for R_1 . The measured transfer curve for this circuit is shown in Figure 15.

Figure 14. Case 2 Example Circuit

Figure 15. Case 2 Example Circuit Measured Transfer Curve

The TLV247X was used to build the test circuit because of its wide dynamic range. The transfer curve plots very close to the theoretical curve, and this results from a high performance op amp.

Case 3: $V_{OUT} = -mV_{IN} + b$

The circuit shown in Figure 16 yields the transfer function desired for Case 3.

Figure 16. Schematic for Case 3; V_{OUT} = -mV_{IN} + b

The circuit equation is obtained with superposition.

$$V_{OUT} = -V_{IN} \left(\frac{R_F}{R_G} \right) + V_{REF} \left(\frac{R_1}{R_1 + R_2} \right) \left(\frac{R_F + R_G}{R_G} \right)$$
 101)

Comparing terms between equations 45 and 15 enables the extraction of m and b.

$$ImI = \frac{R_F}{R_G}$$
 102)

$$b = V_{REF} \left(\frac{R_1}{R_1 + R_2} \right) \left(\frac{R_F + R_G}{R_G} \right)$$
 103)

The specifications for an example design are: $V_{OUT}=1~V~@~V_{IN}=-0.1~V,$ $V_{OUT}=6~V~@~V_{IN}=-1~V,$ $V_{REF}=V_{CC}=10~V,$ $R_L=100~\Omega,$ and 5% resistor tolerances. The supply voltage available for this circuit is 10 volts, and this exceeds the maximum allowable supply voltage for the TLV247X. Also, this circuit must drive a back-terminated cable which looks like two 50 Ω resistors connected in series, thus the op amp must be able to drive 6/100 = 60 mA. The stringent op amp selection criteria limits the choice to relatively new op amps if ideal op amp equations are going to be used. The TLC07X has excellent single supply input performance coupled with high output current drive capability, so it is selected for this circuit. The simultaneous equations 49 and 50, are written below.

$$1 = (-0.1)m + b$$
 104)

$$6 = (-1)m + b$$
 105)

From these equations we find that b = 0.444 and m = -5.6.

$$|m| = 5.56 = \frac{R_F}{R_G}$$
 106)

$$R_{\rm F} = 5.56R_{\rm G}$$

Let $R_G = 10K$, and then $R_F = 56.6K$ which is not a standard 5% value, hence R_F is selected as 56K.

$$b = V_{CC} \left(\frac{R_F + R_G}{R_G} \right) \left(\frac{R_2}{R_1 + R_2} \right) = 10 \left(\frac{56 + 10}{10} \right) \left(\frac{R_2}{R_1 + R_2} \right)$$
 108)

$$R_2 = \frac{66 - 0.4444}{0.4444} R_1 = 147.64 R_1$$
 109)

The final equation for the example is given below

$$V_{OLIT} = -5.56V_{IN} - 0.444$$
 (110)

Select R_1 = 2K and R_2 = 295.28K. Since 295.28K is not a standard 5% resistor value R_1 is selected as 300K. The difference between the selected and calculated value of R_1 has a nearly insignificant effect on b. The final circuit is shown in Figure 17, and the measured transfer curve for this circuit is shown in Figure 18.

 $\left(\frac{R_1}{R_1+R_2}\right)\!\!\left(\frac{R_p+R_0}{R_0}\right)$

Figure 17. Case 3 Example Circuit

Figure 18. Case 3 Example Circuit Measured Transfer Curve

As long as the circuit works normally, there are no problems handling the negative voltage input to the circuit, because the inverting lead of the TLC07X is at a positive voltage. The positive op amp input lead is at a voltage of approximately 65 mV, and normal op amp operation keeps the inverting op amp input lead at the same voltage because of the assumption that the error voltage is zero. When $V_{\rm CC}$ is powered down while there is a negative voltage on the input circuit, most of the negative voltage appears on the inverting op amp input lead.

The most prudent solution is to connect the diode, D_1 , with its cathode on the inverting op amp input lead and its anode at ground. If a negative voltage gets on the inverting op amp input lead, it is clamped to ground by the diode. Select the diode type as germanium or Schottky so the voltage drop across the diode is about 200 mV; this small voltage does not harm most op amp inputs. As a further precaution, R_G can be split into two resistors with the diode inserted at the junction of the two resistors. This places a current limiting resistor between the diode and the inverting op amp input lead.

Case 4: $V_{OUT} = -mV_{IN} - b$

The circuit shown in Figure 19 yields a solution for Case 4. The circuit equation is obtained by using superposition to calculate the response to each input. The individual responses to V_{IN} and V_{REF} are added to obtain equation 56.

Figure 19. Schematic for Case 4; VOLIT = -mVIN - b

$$V_{OUT} = -V_{IN} \frac{R_F}{R_{G1}} - V_{REF} \frac{R_F}{R_{G2}}$$
 (111)

Comparing terms in equations 56 and 16 enables the extraction of m and b.

$$ImI = \frac{R_F}{R_{CI}}$$
 (112)

$$IbI = V_{REF} \frac{R_F}{R_{G2}}$$
 (113)

The specifications for an example design are: $V_{OUT} = 1$ V @ $V_{IN} = -0.1$ V, $V_{OUT} = 5$ V @ $V_{IN} = -0.3$ V, $V_{REF} = V_{CC} = 5$ V, $R_L = 10$ K, and 5% resistor tolerances. The simultaneous equations 59 and 60, are written below.

$$1 = (-0.1)m + b$$
 (114)

$$5 = (-0.3)m + b$$
 (115)

From these equations we find that b = -1 and m = -20. Setting the magnitude of m equal to equation 57 yields equation 61.

$$ImI = 20 = \frac{R_F}{R_{G1}}$$
 (116)

$$R_F = 20R_{G1}$$

Let $R_{G1} = 1K$, and then $R_F = 20K$.

$$|b| = V_{CC} \left(\frac{R_F}{R_{G1}} \right) = 5 \left(\frac{R_F}{R_{G2}} \right) = 1$$
 (118)

$$R_{G2} = \frac{R_F}{0.2} = \frac{20}{0.2} = 100 \text{ k}$$
 (119)

The final equation for this example is given in equation 63.

$$V_{OUT} = -20V_{IN} - 1$$
 120)

The measured transfer curve for this circuit is shown in Figure 21.

Figure 20. Case 4 Example Circuit

Figure 21. Case 4 Example Circuit Measured Transfer Curve

The TLV247X was used to build the test circuit because of its wide dynamic range. The transfer curve plots very close to the theoretical curve, and this results from using a high performance op amp.

As long as the circuit works normally there are no problems handling the negative voltage input to the circuit because the inverting lead of the TLV247X is at a positive voltage. The positive op amp input lead is grounded, and normal op amp operation keeps the inverting op amp input lead at ground because of the assumption that the error voltage is zero. When $V_{\rm CC}$ is powered down while there is a negative voltage on the input circuit, most of the negative voltage appears on the inverting op amp input lead.

The most prudent solution is to connect the diode, D_1 , with its cathode on the inverting op amp input lead and its anode at ground. If a negative voltage gets on the inverting op amp input lead it is clamped to ground by the diode. Select the diode type as germanium or Schottky so the voltage drop across the diode is about 200 mV; this small voltage does not harm most op amp inputs. As a further precaution, R_{G2} is split into two resistors ($R_{G2A} = R_{G2B} = 51K$) with the diode inserted at the junction of the two resistors. This places a current limiting resistor between the diode and the inverting op amp input lead. Also, a capacitor is placed in parallel with the diode to act as a power supply filter.

Conclusion

Single supply op amp design is more complicated than split supply op amp design, but with a logical design approach excellent results are achieved. Single supply design was considered technically limiting because the older op amps had limited capability. The new op amps, such as the TLC247X, TLC07X, and TLC08X have excellent single supply parameters; thus when used in the correct applications these op amps yield rail-to-rail performance equal to their split supply counterparts.

Single supply op amp design usually involves some form of biasing, and this requires more thought, so single supply op amp design needs discipline and a procedure. The recommended design procedure for single supply op amp design is:

- Substitute the specification data into simultaneous equations to obtain m and b (the slope and intercept of a straight line).
- Let m and b determine the form of the circuit.
- Choose the circuit configuration that fits the form.
- Using the circuit equations for the circuit configuration selected, calculate the resistor values.
- Build the circuit, take data, and verify performance.
- Test the circuit for nonstandard operating conditions (circuit power off while interface power is on, over/under range inputs, etc.).
- Add protection components as required.
- · Retest.

If this procedure is followed, good results will follow. As single supply circuit designers expand their horizon, new challenges require new solutions. Remember, the only equation a linear op amp can produce is the equation of a straight line. That equation only has four forms. The new challenges may consist of multiple inputs, common-mode voltage rejection, or something different, but the methods taught here can be expanded to meet these challenges.

Application of Rail-to-Rail Operational Amplifiers

Andreas Hahn

Mixed Signal Products

ABSTRACT

This application report assists design engineers to understand the functionality and benefits of rail-to-rail operational amplifiers. It shows simplified schematics, functions, and characteristics of the output and input stages. Typical application schematics for rail-to-rail operational amplifier are also discussed.

Contents

Introduction	5-212
Dynamic Range and SNR in Low Single Supply Systems	5-212
The Output Stage	5-213
	5-213
The Dependence of Output Signal Load	5-215
Slew Rate	5-217
Summary of Output Stage	5-217
	5-217
Construction of a Standard Input Stage	5-218
Construction of a Rail-to-Rail Input Stage	5-219
	5-221
	5-222
Unity Gain Amplifier	5-222
	5-222
	5-223
5-VPP Square Wave Oscillator Up to 600 kHz	5-223
Digital-to-Analog Converter With a Bail-to-Bail Output as an	

 Adjustable Reference Voltage Source
 5–224

 Summary
 5–224

 References
 5–225

List of Figures1 Rail-to-Rail Output Stage5–2132 Output Stage of a TLC227x5–2133 Output Drive Capability5–2144 A/D Dependent on the Load for TLV246x5–2155 Output Signal TLV2462 With $100-\Omega$ Load to Ground5–2166 Output Signal TLV2462 With $100-\Omega$ Load to VDD/25–2167 Inverting Amplifier5–2178 Change From Noninverting Amplifier to Buffer5–218

SLOA039 INSTRUMENTS

	Rail-to-Rail Input Stage	
11	Input Bias Current	5-220
12	Input Offset Voltage	5-220
	Minimizing the Transient Distortions (THD)	
14	Unity Gain Amplifier	5-222
15	Unity Gain Amplifier	5-222
16	Instrument Amplifier With Two Operational Amplifiers	5-223
17	100-kHz Square Wave Oscillator With 5 Vpp	5-223
	5-V Digital-to-Analog Converter With 0 to 5-V Output	

Introduction

Electrical applications increasingly use a single supply voltage of 5 V or less as portable electrical equipment becomes more popular. The supply voltage for portable systems can be as low as the voltage provided by one battery cell (1.5 V). Reduced supply voltage designs must use the complete power supply span to have a usable dynamic range. Operational amplifiers that use the complete span between negative and positive supply voltage for signal conditioning are generally known as rail-to-rail amplifiers. The usable span is an important value because it influences several parameters such as noise susceptibility, signal-to-noise ratio (SNR), and dynamic range. Signal sources are often connected to the positive or negative supply rail. Operational amplifiers need rail-to-rail input capability to match both signal sources with one device. This report explains the function and the use of rail-to-rail operational amplifiers.

Dynamic Range and SNR in Low Single Supply Systems

Reducing the operating supply voltage from a ± 15 -V split supply to a single 5-V supply significantly reduces the maximum available dynamic range. The dynamic range at the output is determined by the ratio of the largest output voltage to the smallest output voltage. An industry standard operational amplifier like the TLC271 is specified at 5-V single supply with 3.8 V_{pp} for the maximum output swing. This means that the whole supply span can not be used for the output swing, resulting in a further reduction of the maximum available dynamic range and SNR. A rail-to-rail operational amplifier like the TLV24xx family can use the full span of the supply range for signal conditioning at the input and output.

Operational amplifier disturbance levels are independent of the supply voltage. This results in smaller spacing between usable and noise signals. If the operational amplifier is used with ac signals, by decoupling the signals from dc, then noise forms the determining disturbance signal. For a standard operational amplifier such as the TLC271C, the input noise voltage V_n at a signal bandwidth of 1 MHz equals 68 $\mu V \uparrow$ = 68 nV/ $\sqrt{Hz} \cdot \sqrt{1}$ MHz. With a 5-V single supply, the reduced output range allows a maximum signal level of 3.8 Vpp. This results in a unity gain configuration in a SNR of 95.4 dB=20 log(4 V/68 μV). In the same configuration, a rail-to-rail amplifier such as the TLV246xl with V_n =11 nV/ \sqrt{Hz} \uparrow and a maximum signal level of 5 Vpp at the input and output provides a signal-to-noise ratio of 113 dB=20 log(5 V/11 μV) at BW=1 MHz.

In a precision system the operational amplifier must amplify the dc voltage level precisely. Errors in this area result from offset and gain problems. In a 5-V system with a constant common-mode voltage, the TLC271C has an input offset voltage V_{IO} of 1.1 mV † . This alone limits the dynamic range to 71 dB=20 log(3800/1.1) in a unity gain configuration. The TLV245x, however, with $V_{IO}=20~\mu V^{\dagger}$ and the rail-to-rail characteristic has a significantly higher dynamic range of 108 dB=20 log(5800/1.1) in the same circuitry.

[†]Typical values at 5 V single supply and 25°C.

When signal-to-noise ratio and dynamic range are critical design parameters, rail-to-rail characteristics of the operational amplifier must ensure that these parameters are met.

The Output Stage

If the output swing from a standard operational amplifier is not large enough to fit the system requirement (for example the analog-to-digital-converter input range), then a rail-to-rail operational amplifier must be used. Operational amplifiers with rail-to-rail output stages achieve the maximum output signal swing in systems with low single-supply voltages. They can generate an output signal up to the supply rails. A large output voltage swing results in increased dynamic range. For example, Figure 1 shows the output signal of a TLV2462 with a 5-V pp input signal. The TLV2462 with a 5-V single supply operates as a voltage follower and drives a load of 1 k Ω . The low 1-k Ω load results in a voltage drop of several mV, which is not visible in the diagram.

Figure 22. Rail-to-Rail Output Stage

Construction of a Rail-to-Rail Output Stage

Figure 23. Output Stage of a TLC227x

The rail-to-rail characteristic is achieved by altering the output stage construction. Figure 2 shows the basic construction of a rail-to-rail CMOS output stage as used in the TLC227x. A complimentary MOS transistor pair, consisting of a self-locking P-channel and self-locking N-channel, forms the output. Both transistors operate as a common source circuit. A common source circuit functions like a common emitter circuit for bipolar transistors. Along with the current amplification, a voltage amplification also takes place. The voltage loss $V_{\rm DS}$ at the output stage transistors has a disadvantageous effect on the voltage gain. As the current increases through a MOS transistor the resistance between drain and source increases slightly. During high loading of the output, this resistance, together with the increased current, results in a higher voltage drop $V_{\rm DS}$. The full output range of a rail-to-rail operational amplifier is therefore only useable with low load. Figure 3 shows this on the output level of the TLV243x and TLV246x.

Figure 24. Output Drive Capability

Reduction of the output signal due to the load also results in a reduction of the open-loop gain $A_{\rm VD}$. Because the open-loop gain is dependent on the connected load, the load should always be considered during comparison of the open-loop gain of different amplifiers. Figure 4 shows the influence of a resistive load on the amplification of a TLV246x.

Figure 25. A/D Dependent on the Load for TLV246x

The Dependence of Output Signal Load

It is important to know which potential the load is connected to when talking about the behaviour of the output signal due to the load. In applications with a single supply, it is typical for the load to be connected to ground (0V). The requirement from a rail-to-rail output is the capability to supply a load with current. Figure 5 shows an example of this on a TLV2462. The TLV2462 functions as a unity gain amplifier and drives a $100-\Omega$ load against the supply ground. Because of the 600-mV voltage drop across the output transistor caused by the current, the output can only drive the signal up to a maximum voltage level of 4.4 V. The minimum voltage level however, reaches the 0 V of the ground level. At an output voltage of 0 V, no current flows through the load, since both ends of the load are at the same potential. With no current, there is no voltage drop across the output transistor. With a load driven against ground, an output signal limitation due to the load current only occurs at high voltage levels.

Figure 26. Output Signal TLV2462 With 100- Ω Load to Ground

A rail-to-rail output should not be limited to sourcing a load with current; it should also have the ability to sink a current. All rail-to-rail output stages of Texas Instruments have the capability of sourcing and sinking current. Figure 27 shows an example where the TLV2462 drives —as a unity amplifier—a load of 100 Ω against half the supply voltage $V_{DD}/2$. With a maximum input signal of 5 V_{pp} an output signal is produced as shown in Figure 6. In this case, at minimum and maximum voltage levels, the maximum current flows through the respective output transistor. The resulting voltage drop of 300 mV at the respective peak voltages restricts the output signal to 4.4 $V_{\rm DD}$.

Figure 27. Output Signal TLV2462 With 100-Ω Load to VDD/2

Slew Rate

Another important parameter, especially for ac application characteristics, is the slew rate of the output stage. The slew rate is a measure for the maximum possible voltage rise and fall speed, which is the ratio of the voltage change during a period of time. To reproduce a sine signal without distortion, use the following equation:

$$SR = 2\pi f_{max} V_{p}$$

Equation 1 shows that if the output voltage is reduced by a lower supply voltage, the required slew rate decreases proportionally with the possible voltage level. This should be noted when comparing a CMOS rail-to-rail operational amplifier and a standard amplifier.

The standard amplifier with an output range of ± 13 V requires a slew rate of 82 V/ μ s to accurately reproduce a 1-MHz sine wave signal with 26 V $_{pp}$. A rail-to-rail amplifier with a 3-V single supply needs only a slew rate of 9.4 V/ μ s to achieve a distortion free 1-MHz sine wave signal with 3 V $_{pp}$. The slew rate also depends on the load and decreases with increasing load.

Summary of Output Stage

Rail-to-rail output quality is only comparable with another under identical load. Without a load on the output, it is possible for every rail-to-rail operational amplifier to bring the output signal up to the supply rail. A rail-to-rail output should be capable of both sourcing and sinking current in order to also drive loads not connected to ground. Operational amplifiers supplied with low supply voltages can only provide low signal amplitudes, which require a lower slew rate.

The Input Stage

In some applications an operational amplifier requires a rail-to-rail input in addition to the rail-to-rail output. The signal at the input pins must be in the input common-mode voltage range V_{ICR} to ensure the functionality of the amplifier. A rail-to-rail input stage offers a V_{ICR} that minimally includes the whole supply span. The V_{ICR} of the TLV246x extends beyond the supply rails by 200 mV for maximum dynamic range in low-voltage systems. A rail-to-rail input has advantages and disadvantages; it is not required in every application, but only in applications where the input signal is outside a standard common-mode range. Figure 7 shows a typical operational amplifier configured as an inverting amplifier. The relationship of the resistances R_F and R_G determine the gain in the circuit. R_C compensates offset errors from the input bias current.

$$V_{IN} = -\frac{R_F}{R_G} V_{IN} + \frac{R_F}{R_G} V_{ref} + V_{ref}$$

Figure 28. Inverting Amplifier

The noninverting input is connected to a fixed voltage level V_{ref} . The common-mode input voltage is maintained at a constant value, because the inverting input, via the feedback, takes the same reference potential as the noninverting input. In systems with a double supply, this is typically the circuit ground. In most cases it is half the supply voltage for single supply systems. The V_{ICR} of a standard operational amplifier in most cases contains this common-mode voltage level, mentioned above. If the reference level V_{ref} lies within this standard V_{ICR} , a circuit like that shown in Figure 7 does not necessarily require a rail-to-rail input stage.

The circuit shown in Figure 8 behaves differently. The inverting input here also follows the noninverting input via the feedback. In this case no fixed voltage level lies at the noninverting input, but the signal itself does. At high gains, the input signal is small and lies within the V_{ICR} of a standard operational amplifier. If the resistance R_G is removed, a unity gain amplifier, also called an impedance converter or voltage follower, is formed. This circuit produces a gain of 1 so that the input level is equal to the output level. If the entire output range of the rail-to-rail operational amplifier is used for signal conditioning, then a rail-to-rail input stage is also required. Impedance converters and high-side sensing applications are the main activity areas for operational amplifiers with rail-to-rail input and output.

Figure 29. Change From Noninverting Amplifier to Buffer

Construction of a Standard Input Stage

On a standard operational amplifier using bipolar technology, the input differential amplifier, as shown in Figure 9, consists ideally of equal transistors. To achieve ground potential in the common-mode range, PNP transistors are primarily used here. Likewise in the MOS technology, P-channel transistors are used. There is a voltage drop of around 0.7 V across the PNP transistor and around 0.3 V across the bias current source. This results in a limited common-mode range, which always lies at least 1 V below the positive supply voltage. In the other direction, the V_{ICR} extends up to the negative supply voltage or slightly beyond. To enable use of the full supply voltage range, the construction of the standard differential amplifier has to be modified.

Figure 30. Differential Amplifier

Construction of a Rail-to-Rail Input Stage

Figure 31. Rail-to-Rail Input Stage

There are various methods of constructing these types of input stages. Figure 31 shows the general construction of a rail-to-rail input stage using two different techniques. The bipolar input stage is used in the TLV245x and TLV246x. The input stage of the TLV247x series is designed in CMOS technology. The bipolar input stage in Figure 10 shows clearly that two differential amplifiers are being driven simultaneously. The differential amplifier with PNP transistors, mentioned before, works up to a maximum common-mode level of 1 V below the supply voltage. The differential amplifier working with NPN transistors requires a common-mode level of at least 1 V.

Table 2. The Different Common-Mode Input Ranges

COMMON-MODE INPUT RANGE WITH SINGLE SUPPLY VOLTAGE VDD				
DIFFERENCE AMPLIFIER TYPE	MAXIMUM NEGATIVE INPUT VOLTAGE	MAXIMUM POSITIVE INPUT VOLTAGE	COMMON-MODE INPUT VOLTAGE RANGE	
PNP	0 V	V _{DD} - 1 V	0 V to (V _{DD} -1 V)	
NPN	1 V	V _{DD}	1 V to V _{DD}	
PNP+NPN	0 V	V _{DD}	0 V to V _{DD}	

As shown in Table 2, there are three input ranges for a rail-to-rail input stage. In the input range from 0 V to around 1 V, only the PNP differential amplifier is active. From approximately 1 V to approximately (V_{DD} –1 V) both input amplifiers are active. From around (V_{DD} –1 V) up to V_{DD} only the NPN differential amplifier is active. Both differential amplifiers, according to the transistor type, have different polarity input bias currents I_{IB} . In the V_{ICR} where both NPN and PNP differential amplifiers are activated, these bias currents compensate themselves and form a bias current around 1000 times smaller than a standard bipolar input stage. The input offset voltage V_{IO} also changes in each range, which depends on the activated differential amplifier. Figure 11 and Figure 12 show these two values for the TLV245x series. This characteristic has the benefit that in the range from around 1 V to (V_{DD} –1 V) the input stage has lower input bias in comparison with values for a standard bipolar input stage typical of this technology.

Figure 32. Input Bias Current

Figure 33. Input Offset Voltage

The different bias currents and offset voltages in Figure 11 and Figure 12 result in a different output error in each range. If the whole input range is used, distortion is generated at the transitions of the individual ranges. By connecting a series resistance $R_{\rm C}$ as shown in Figure 7 and Figure 8, it is possible to reduce the errors at the transitions caused by the bias currents. The required resistance is as follows:

$$R_{C} = \frac{R_{G} \times R_{F}}{R_{G} + R_{F}}$$
 122)

The bias current at the resistors now causes an equal voltage drop at both inputs. To minimize a voltage drop caused by the bias current, all resistance values must be kept as small as possible for the application. Typical values for R_C lie below 10 $k\Omega$. This significantly reduces the transient distortions.

Figure 34. Minimizing the Transient Distortions (THD)

To emphasize the function of the compensation resistor, large resistance values of 10 k Ω have been deliberately selected for the circuit shown in Figure 13. Both noninverting amplifiers are set to a gain of 1. The left amplifier operates without a resistance in the feedback circuit. For compensation, both inputs on the right amplifier are connected with an equal resistance. This balances the voltage drops on both inputs, which are caused by the input currents. This reduces the total harmonic distortion (THD) from 0.025% to 0.008%.

Summary of the Input Stage

This section shows that a rail-to-rail input is not required in every application. In many cases, a standard input range, such as that of a TLC450x, is sufficient. The main advantage of a rail-to-rail input is the higher common-mode input range. It is possible to drive the amplifier in the entire common-mode input range from 0 V up to V_{DD} and above both rails. A disadvantage is the additional distortion caused by the transitions in the common-mode input range. The rail-to-rail input stage behaves like a normal standard input stage if the common-mode voltage is fixed or fits in one field of the common-mode input range.

Circuits Which Use the Rail-to-Rail Characteristics

The following circuits use the rail-to-rail benefits.

Unity Gain Amplifier

Figure 35. Unity Gain Amplifier

Figure 14 shows a buffer circuit. The rail-to-rail characteristic of the TLV246x makes the full operating voltage range of 0 to 5 V available for input and output signals. To reduce distortion both input resistors are used.

Measurement of the Supply Current

Figure 36. Unity Gain Amplifier

The rail-to-rail input of the TLV246x in the circuit shown in Figure 36 allows measurement of the load current in a 5-V system. The load current through R_L is measured by applying the voltage drop across the shunt resistor R_S to the differential input. This input voltage is amplified 100 times. The rail-to-rail output allows output voltages, which extend up to the supply voltage, to be generated. The output voltage is proportional to the load current. Selecting an appropriate shunt resistor R_S for the circuit can set the maximum load current. R_S is therefore calculated as follows:

$$R_S = \frac{0.05 \text{ V}}{I_{1 \text{ max}}}$$
 123)

Differential Amplifier With Rail-to-Rail Output

Figure 37. Instrument Amplifier With Two Operational Amplifiers

The TLC4502, with a typical common-mode rejection of 100 dB and a low temperature drift of 1 μ V/°K, has outstanding characteristics for constructing an instrument amplifier, as shown in Figure 16. A high input impedance for the differential signal is achieved by using two operational amplifiers. The two resistors R_{P1} and R_{P2} provide protection against excessive input currents. The resistors R₁ and R₂ must have a tolerance of ≤0.1% to achieve high common-mode rejection. The resistor R_G adjusts the gain of the entire differential amplifier. The rail-to-rail output signal is calculated using the following equation:

$$U_{OUT} = U_{IN} \left(1 + \frac{R_1}{R_2} + \frac{2R_1}{R_G} \right) + U_{REF}$$
 124)

5-V_{PP} Square Wave Oscillator Up to 600 kHz

Figure 38. 100-kHz Square Wave Oscillator With 5 Vpp

Figure 17 shows a 5-V square wave generator using the rail-to-rail amplifier TLV277x. The amplifier offers a rail-to-rail output and a slew rate of 10.5 V/µs. In this circuit, the TLV277x can deliver at the output a 5-Vpp square wave up to 600 kHz. The frequency is independent of the operating voltage. The output frequency depends on the value of the resistors and the capacitor.

Digital-to-Analog Converter With a Rail-to-Rail Output as an Adjustable Reference Voltage Source

Figure 39. 5-V Digital-to-Analog Converter With 0 to 5-V Output

The combination of the digital-to-analog converter TLC7524 and the rail-to-rail operational amplifier TLV2771 shown in Figure 39, forms an 8-bit digital-to-analog converter powered by a single-voltage supply of 5 V. The TLV2771 can drive a $600-\Omega$ load, which allows the converter to be used as a digitally adjustable reference voltage source for loads $\geq 600~\Omega$.

The TLC7524 supplies a digitally-adjustable output voltage of $V_{REF} = D/256$. The reference voltage V_{REF} is generated with the TL1431 with an accuracy of 0.4 %. The TLV2771 works as an impedance converter with a gain of 2. The total output voltage of the circuit is calculated as follows:

$$V_{OUT} = 2 V_{REF} \left(\frac{D}{256} \right)$$
 125)

Summary

Single-supply systems with low voltage reduce the available signal range. Rail-to-rail amplifiers increase the signal level in such systems. Consequently, some parameters of a rail-to-rail amplifier, like the input noise voltage, offset voltage, and others become more important, which was shown in the first section. A rail-to-rail output stage is necessary to get an output swing up to the rails. It has been shown that such an output stage has a different structure that influences some parameters like the open loop gain and the slew rate, but it is also able to source and sink high currents. In some applications, like unity gain buffers or high-sensing in addition, a rail-to-rail input stage is needed if the whole supply range should be used for signal conditioning. It has been illustrated how a rail-to-rail input stage works and how it improves the input common mode range. Drawbacks have also been shown. Finally, the report shows some typical applications for rail-to-rail amplifiers.

References

- 12. Linear Design Seminar 99, Texas Instruments Incorporated, 1999
- 13. TL1431 Data sheet SLVS062C, Texas Instruments Incorporated, July 1998
- 14. TLC450x Data sheet SLOS221, Texas Instruments Incorporated, May 1998
- 15. TLC7424 Data sheet SLAS061C, Texas Instruments Incorporated, Nov. 1998
- 16. TLV245x Data sheet SLOS218A, Texas Instruments Incorporated, April 1999
- 17. TLV246x Data sheet SLOS220A, Texas Instruments Incorporated, August 1998
- 18. TLV247x Data sheet SLOS232, Texas Instruments Incorporated, May 1999
- 19. TLV277x Data sheet SLOS209A ,Texas Instruments Incorporated, July 1998
- 20. Rail-to-Rail Verstärker in Niederspannungssystemen, Artikel "Extrem Sparsam", Elektronik Praxis Nr.7 April 1999 (Rail-to-rail amplifiers in low-voltage systems, Article "extremely economical", Practical Electronics No. 7, April 1999)
- 21. Halbleiter Schaltungstechnik, Tietze & Schenk, Springer Verlag 1993 (Semiconductor circuit technology, publishers: Tietze & Schenk, Springer Verlag 1993)
- 22. Professionelle Schaltungstechnik mit Operationsverstärker, Horst Wupper, Franzis-Verlag GmbH, 1994 (Professional circuit technology with operation amplifiers, publishers: Horst Wupper, Franzis-Verlag GmbH, 1994)

Understanding Basic Analog - Circuit Equations

Application Report

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright @ 1999, Texas Instruments Incorporated

Contents

Introduction	5–231					
Laws of Physics	5–231					
oltage Divider Rule						
urrent Divider Rule 5-23						
hevenin's Theorem						
Superposition						
Calculation of a Saturated Transistor Circuit						
ransistor Amplifier						
Conclusions	5–240					
List of Figures						
1 Ohm's Law Applied to the Total Circuit	5–232					
2 Ohm's Law Applied to a Component	5–232					
3 Kirchoff's Voltage Law	5–232					
4 Kirchoff's Current Law	5-232					
5 Voltage Divider Rule	5–233					
6 Current Divider Rule	5–234					
7 Original Circuit	5–234					
8 Thevenin's Equivalent Circuit for Figure 7	5–235					
9 Example of Thevenin's Equivalent Circuit	5–235					
10 Analysis Done the Hard Way	5–236					
11 Superposition Example	5–237					
12 When V ₁ is Grounded	5–237					
13 When V ₂ is Grounded	5–237					
14 Saturated Transistor Circuit	5–238					
15 Transistor Amplifier	5–239					
16 Thevenin Equivalent of the Base Circuit	5–239					

Contents

Understanding Basic Analog—Circuit Equations

By Ron Mancini

ABSTRACT

This application report provides a basic understanding of analog circuit equations. Only sufficient math and physics are presented in this application report to enable understanding the concepts.

Introduction

Although this application note tries to minimize math, some algebra is germane to the understanding of analog electronics. Math and physics are presented in this application note in the manner in which they are used later, so no practice exercises are given. For example, after the voltage divider rule is explained, it is used several times in the development of other concepts, and this usage constitutes the practice. This application note builds on each concept after it has been explained, thus, if you want to get familiar with the concepts, read it from beginning to end.

Circuits are a mix of passive and active components. The components are arranged in a manner that enables them to perform some desired function. The resulting arrangement of components is called a circuit or sometime a circuit configuration. The art portion of analog design is designing the circuit configuration. There are many published circuit configurations for almost any circuit task, thus all circuit designers need not be artists.

When the design has progressed to the point that a circuit exists, equations must be written to predict and analyze circuit performance. Textbooks are filled with rigorous methods for equation writing, and this application note does not supplant those textbooks. But, a few equations are used so often that they should be memorized, and these equations are considered here.

There are almost as many ways to analyze a circuit as there are electronic engineers, and if the equations are written correctly, all methods yield the same answer. There are some simple ways to analyze the circuit without completing unnecessary calculations, and these methods are illustrated here.

Laws of Physics

Ohm's law is stated as V=IR, and it is fundamental to all electronics. Ohm's law can be applied to a single component, to any group of components, or to a complete circuit. When the current flowing through any portion of a circuit is known, the voltage dropped across that portion of the circuit is obtained by multiplying the current times the resistance.

Figure 40. Ohm's Law Applied to the Total Circuit

V = IR 126)

In Figure 1, Ohm's law is applied to the total circuit. The current, (I) flows through the total resistance (R), and the voltage (V) is dropped across R. In Figure 2, Ohm's law is applied to a single component. The current (IR) flows through the resistor (R) and the voltage (V_R) is dropped across R. Notice, the same formula is used to calculate the voltage drop regardless of what portion of the circuit the calculation is made on.

Figure 41. Ohm's Law Applied to a Component

Kirchoff's voltage law states that the sum of the voltage drops in a series circuit equals the sum of the voltage sources. Otherwise, the source (or sources) voltage must be dropped across the passive components. When taking sums keep in mind that the sum is an algebraic quantity.

Figure 42. Kirchoff's Voltage Law

$$\sum V_{\text{SOURCES}} = \sum V_{\text{DROPS}}$$
 127)

 $V = V_{R1} + V_{R2}$ 128)

Kirchoff's current law states; the sum of the currents entering a junction equals the sum of the currents leaving a junction. It makes no difference if a current flows from a current source, through a component, or through a wire, because all currents are equal. Kirchoff's law is illustrated in Figure 4.

Figure 43. Kirchoff's Current Law

5-232 SLOA025

$$\sum I_{IN} = \sum I_{OUT}$$
 129)

$$I_1 + I_2 = I_3 + I_4$$
 130)

Voltage Divider Rule

When the output of a circuit is not loaded, the voltage divider rule can be used to calculate the circuit's output voltage. Assume that the same current flows through all circuit elements. Equation 6 is written using Ohm's law as $V = I(R_1 + R_2)$. Equation 7 is written as Ohm's law across the output resistor.

Figure 44. Voltage Divider Rule

$$I = \frac{V}{R_1 + R_2}$$
 (131)

$$V_{D} = IR_{2}$$
 132)

Substituting equation 6 into equation 7, and using algebraic manipulation yields equation 8.

$$V_{D} = V \frac{R_{2}}{R_{1} + R_{2}}$$
 133)

A simple way to remember the voltage divider rule is that the output resistor is divided by the total circuit resistance. This fraction is then multiplied by the input voltage to obtain the output voltage. Remember that the voltage divider rule always assumes that the output resistor is not loaded; the equation is not valid when the output resistor is loaded by parallel component. Fortunately, most circuits following a voltage divider are input circuits, and input circuits are usually high resistance. When a fixed load is in parallel with the output resistor, the equivalent parallel value comprised of the output resistor and loading resistor can be used in the voltage divider calculations with no error. Many people ignore the load resistor if it is ten times greater than the output resistor value, but this calculation can lead to a 10% error.

Current Divider Rule

When the output of a circuit is not loaded, the current divider rule can be used to calculate the current flow in the output branch circuit (R2). The currents I1 and I2 in Figure 6 are assumed to be flowing in the branch circuits. Equation 9 is written with the aid of Kirchoff's current law. The circuit voltage is written in equation 10 with the aid of Ohm's law. Combining equations 9 and 10 yields equation 11.

Figure 45. Current Divider Rule

$$I = I_1 + I_2$$
 134)

$$V = I_1 R_1 = I_2 R_2$$
 135)

$$I = I_1 + I_2 = I_2 \frac{R_2}{R_1} + I_2 = I_2 \left(\frac{R_1 + R_2}{R_1} \right)$$
 136)

Rearranging the terms in equation 11 yields equation 12.

$$I_2 = I\left(\frac{R_1}{R_1 + R_2}\right) \tag{137}$$

The total circuit current divides into two parts, and the resistance (R_1) divided by the total resistance determines how much current flows through R_2 . An easy method of remembering the current divider rule is to remember the voltage divider rule. Then modify the voltage divider rule such that the opposite resistor is divided by the total resistance, and the fraction is multiplied by the input current to get the branch current.

Thevenin's Theorem

There are times when it is advantageous to isolate a part of the circuit, and analyze just the isolated part of the circuit. Rather than write loop or node equations for the complete circuit, and solving them simultaneously, Thevenin's theorem enables us to isolate the part of the circuit we are interested in. We then replace the remaining circuit with a simple series equivalent circuit, thus Thevenin's theorem simplifies the analysis.

There are two theorems that do the similar functions, and the second theorem is called Norton's theorem. Thevenin's theorem is used when the input driver is a voltage source, and Norton's theorem is used when the input drive is a current source. Norton's theorem is rarely used, so its explanation is left for the reader to dig out of a textbook if it is ever required.

Figure 46. Original Circuit

The rules for Thevenin's theorem start with the component or part of the circuit being replaced. Referring to Figure 7, look into the terminals (point XX in the figure) of the circuit being replaced. Calculate the no load voltage (V_{TH}) as seen from these terminals (use the voltage divider rule). Look into the terminals of the circuit being replaced, short independent voltage sources, and calculate the impedance between these terminals. The final step is to substitute the Thevenin equivalent circuit for the part you wanted to replace.

Figure 47. Thevenin's Equivalent Circuit for Figure 7

The Thevenin equivalent circuit is a simple series circuit, thus further calculations are simplified. The simplification of circuit calculations is often sufficient reason to use Thevenin's theorem because it eliminates the need for solving several simultaneous equations. The detailed information about what happens in the circuit that was replaced is not available when using Thevenin's theorem, but that is no consequence because you had no interest in it.

As an example of Thevenin's theorem, let's calculate the output voltage (V_O) shown in Figure 9A. The first step is to stand on the terminals X–Y with your back to the output circuit, and calculate the open circuit voltage seen. This is a perfect opportunity to use the voltage divider rule to obtain equation 13.

Figure 48. Example of Thevenin's Equivalent Circuit

$$V_{TH} = V \frac{R_2}{R_1 + R}$$
 (138)

Still standing on the terminals X-Y, step two is to calculate the impedance seen looking into these terminals (short the voltage sources). The Thevenin impedance is the parallel impedance of $\rm R_1$ and $\rm R_2$ as calculated in equation 14. Now get off the terminals X-Y before you damage them with your big feet. Step three replaces the circuit to the left of X-Y with the Thevenin equivalent circuit $\rm V_{TH}$ and $\rm R_{TH}$.

$$R_{TH} = \frac{R_1 R_2}{R_1 + R_2} \tag{139}$$

The final step is to calculate the output voltage. Notice the voltage divider rule is used again. Equation 15 describes the output voltage, and it comes out naturally in the form of a series of voltage dividers, which makes sense. That's another advantage of the voltage divider rule; the answers normally come out in a recognizable form rather than a jumble of coefficients and parameters.

$$V_{OUT} = V_{TH} \frac{R_4}{R_{TH} + R_3 + R_4} = V \left(\frac{R_2}{R_1 + R_2}\right) \frac{R_4}{\frac{R_1 R_2}{R_1 + R_2} + R_3 + R_4}$$
(140)

The circuit analysis is done the hard way in Figure 10, so you can see the advantage of using Thevenin's Theorem. Two loop currents, I_1 and I_2 , are assigned to the circuit. Then the loop equations 16 and 17 are written.

Figure 49. Analysis Done the Hard Way

$$V = I_1(R_1 + R_2) - I_2R_2$$
 141)

$$I_2(R_2 + R_3 + R_4) = I_1R_2$$
 142)

Equation 17 is rewritten as equation 18 and substituted into equation 16 to obtain equation 19.

$$I_1 = I_2 \frac{R_2 + R_3 + R_4}{R_2} \tag{143}$$

$$V = I_2 \left(\frac{R_2 + R_3 + R_4}{R_2} \right) (R_1 + R_2) - I_2 R_2$$
 (144)

The terms are rearranged in equation 20. Ohm's law is used to write equation 21, and the final substitutions are made in equation 22.

$$I_2 = \frac{V}{\frac{R_2 + R_3 + R_4}{R_2} (R_1 + R_2) - R_2}$$
 (145)

$$V_{OUT} = I_2 R_4 \tag{146}$$

$$V_{OUT} = V \frac{R_4}{\frac{(R_2 + R_3 + R_4)(R_1 + R_2)}{R_2} - R_2}$$
(147)

This is a lot of extra work for no gain. Also, the answer is not in a usable form because the voltage dividers are not recognizable, thus more algebra is required to get the answer into usable form.

Superposition

Superposition is a theorem that can be applied to any linear circuit. Essentially, when there are independent sources, the voltages and currents resulting from each source can be calculated separately, and the results are added algebraically. This simplifies the calculations because it prevents writing a series of loop or node equations.

Figure 50. Superposition Example

When V_1 is grounded, V_2 forms a voltage divider with R_3 and the parallel combination of R_2 and R_1 . The output voltage for this circuit (V_{OUT_1}) is calculated with the aid of the voltage divider equation. The circuit is shown in Figure 12. The voltage divider theorem yields the answer quickly.

Figure 51. When V₁ is Grounded

$$V_{OUT2} = V_2 \frac{R_1 \| R_2}{R_3 + R_1 \| R_2}$$
 (148)

Likewise, when V_2 is grounded, V_1 forms a voltage divider with R_1 and the parallel combination of R_3 and R_2 , and the voltage divider theorem is applied again to calculate V_{OUT1} .

Figure 52. When V2 is Grounded

$$V_{OUT1} = V_1 \frac{R_2 \| R_3}{R_1 + R_2 \| R_3}$$
 (149)

After the calculations for each source are made the components are added to obtain the final solution.

$$V_{O} = V_{1} \frac{R_{2} \| R_{3}}{R_{1} + R_{2} \| R_{3}} + V_{2} \frac{R_{1} \| R_{2}}{R_{3} + R_{1} \| R_{2}}$$
(150)

The reader should analyze this circuit with loop or node equations to gain an appreciation for superposition. Again, the superposition results come out as a simple arrangement that is easy to understand. One looks at the final equation and it is obvious that if the sources are equal and opposite polarity, and $R_1 = R_3$, then the output voltage is zero. Conclusions such as this are hard to make after the results of a loop or node analysis unless considerable effort is made to manipulate the final equation into symmetrical form.

Calculation of a Saturated Transistor Circuit

The circuit specifications are: when $V_{IN}=12$ V, $V_{OUT}<0.4$ V at $I_{SINK}<10$ mA, and $V_{IN}<0.05$ V, $V_{OUT}>10$ V at $I_{OUT}=1$ mA. The circuit diagram is shown in Figure 14.

Figure 53. Saturated Transistor Circuit

The collector resistor must be sized when the transistor is off, because it has to be small enough to allow the output current to flow through it without dropping more than two volts.

$$R_C \le \frac{V_{+12} - V_{OUT}}{I_{OUT}} = \frac{12 - 10}{1} = 2 \text{ K}$$
 (151)

When the transistor is off, 1 mA can be drawn out of the collector resistor without pulling the collector or output voltage to less than ten volts. When the transistor is on, the base resistor must be sized to enable the input signal to drive enough base current into the transistor to saturate it. The transistor beta is 50.

$$I_{C} = \beta I_{B} = \frac{V_{+12} - V_{CE}}{R_{C}} + I_{L} \approx \frac{V_{+12}}{R_{C}} + I_{L}$$
 (152)

$$R_{B} \le \frac{V_{+12} - V_{BE}}{I_{B}} \tag{153}$$

Substituting equation 27 into equation 28 yields equation 29.

$$R_{B} \le \frac{(V_{+12} - V_{BE})\beta}{I_{C}} = \frac{(12 - 0.6)50}{\frac{12}{2} + (10)} = 35.6 \text{ K}$$
 (154)

When the transistor goes on it sinks the load current, and it still goes into saturation. These calculations neglect some minor details, but they are in the 98% accuracy range.

Transistor Amplifier

The amplifier is an analog circuit, and the calculations, plus the points that must be considered during the design, are more complicated than for a saturated circuit. This extra complication leads people to say that analog design is harder than digital design (the saturated transistor is digital i.e.; on or off). Analog design is harder than digital design because the designer must account for all states in analog, whereas in digital only two states must be accounted for. The specifications for the amplifier are an ac gain of four and a peak-to-peak signal swing of 4 volts.

Figure 54. Transistor Amplifier

 I_C is selected as 10 mA because the transistor has a current gain (β) of 100 at that point. The collector voltage is arbitrarily set at 8 V; when the collector voltage swings positive 2 V (from 8 V to 10 V) there is still enough voltage dropped across R_C to keep the transistor on. Set the collector-emitter voltage at 4 V; when the collector voltage swings negative 2 V (from 8 V to 6 V) the transistor still has 2 V across it, so it stays linear. This sets the emitter voltage (V_E) at 4 V.

$$R_C \le \frac{V_{+12} - V_C}{I_C} = \frac{12 - 8}{10} = 400 \Omega$$
 (155)

$$R_E = R_{E1} + R_{E2} = \frac{V_E}{I_E} = \frac{V_E}{I_B + I_C} \cong \frac{V_E}{I_C} = \frac{4}{10} = 400 \Omega$$
 (156)

Use Thevenin's equivalent circuit to calculate R₁ and R₂ as shown in Figure 16.

$$12 \frac{R_2}{R_1 + R_2} \longrightarrow V_B = 4.6 \text{ V}$$

Figure 55. Thevenin Equivalent of the Base Circuit

$$I_{B} = \frac{I_{C}}{\beta} = \frac{10 \text{ mA}}{100} = 0.1 \text{ mA}$$
 (157)

$$V_{TH} = \frac{12R_2}{R_1 + R_2} \tag{158}$$

$$R_{TH} = \frac{R_1 R_2}{R_1 + R_2} \tag{159}$$

We want the base voltage to be 4.6 V because the emitter voltage is then 4 V. Assume a voltage drop of 0.4 V across R_{TH} , so equation 35 can be written. The drop across R_{TH} may not be exactly 0.4 V because of beta variations, but a few hundred mV does not matter is this design. Now, calculate the ratio of R_1 and R_2 using the voltage divider rule (the load current has been accounted for).

$$R_{TH} = \frac{0.4}{0.1} K = 4 K$$
 (160)

$$V_{Th} - I_B R_{Th} + V_B = 0.4 + 4.6 = 5 = 12 \frac{R_1}{R_1 + R_2}$$
 (161)

$$R_1 = \frac{7}{5} R_2 \tag{162}$$

 R_1 is almost equal to R_2 , thus selecting R_2 as twice the Thevenin resistance yields approximately 4 K as shown in equation 35. Hence, R_2 = 11.2 K and R_1 = 8 K. The ac gain is approximately R_C/R_{E1} so we can write equation 38.

$$R_{E1} = \frac{R_C}{G} = \frac{400}{4} = 100 \ \Omega \tag{163}$$

$$R_{E2} = R_E - R_{E1} = 400 - 100 = 300 \Omega$$
 (164)

The capacitor selection depends on the frequency response required for the amplifier, but 10 μ F for C_{IN} and 1000 μ F for C_E suffice for a starting point.

Conclusions

The application note presents the minimum number of physics laws and equations required for beginning analog analysis. The laws and equations are simple, but when applied correctly, they are powerful. As you proceed further into the realm of analog analysis or into analog design, the physics laws and equations get more complicated, but they are understandable.

Understanding Basic Analog - Active Devices

Application Report

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated

Contents

Introduction	5–245
Bipolar Junction Transistor	5–245
Junction Field Effect Transistor	5–247
Metal Oxide Semiconductor Field Effect Transistors	5–248
Voltage Feedback Operational Amplifier	5–249
Current Feedback Operational Amplifiers	5–250
Voltage Comparators	5–251
Other Active Devices	5–252
Summary	5–253
List of Figures	
1 BJT Description	5–246
2 BJT Model	
3 JFET Description	5–247
4 JFET Model	5–247
5 MOSFET Description	5–248
6 MOSFET Model	5–249
7 Voltage Feedback Op Amp Model	
8 Current Feedback Op Amp Model	5–251
9 Voltage Comparator Model	5_250

Contents

Understanding Basic Analog – Active Devices

By Ron Mancini

ABSTRACT

This application report describes active devices and their use as the basic building blocks of all electronic equipment. Active devices, coupled with passive devices, create the combination needed to fulfill all circuit requirements. A select few active devices are discussed in this report.

Introduction

Active devices have gain, thus they have transfer functions which are not available to passive devices. Active devices are considerably more complicated than passive devices; hence, their models and transfer equations are more complicated than those of passive devices. Active devices are the foundation on which all electronics equipment is built. Integrated circuits and higher forms of electronic components are built from the active devices discussed here.

Bipolar Junction Transistor

The bipolar junction transistor (BJT) was the first active semiconductor device manufactured; therefore, it became the workhorse of the semiconductor industry. When the field effect transistor (FET) manufacturing process was perfected, it began competing with the BJT. Since then, the FET has been taking sockets from the BJT, but there are many applications, such as high frequency amplifiers, where the BJT still excels. Also, the BJT manufacturing process can be simple and inexpensive, and this, coupled with the BJT's long list of captured sockets, insures that the BJT will be around for a long time.

BJT transistors are made from a silicon bar that has three areas that are doped differently to produce the transistor. Doping means that the base semiconductor material has charged atoms added to change its polarity. These three areas are called the base, emitter, and collector. The emitter and collector are doped to have the same polarity which can be positive or negative, and the base is doped to have the opposite polarity. The BJT, like most transistors, come in two types called NPN or PNP. P stands for positive, N stands for negative, and the positive or negative regions gain their name from the doping of the semiconductor material making up the base, collector, and emitter areas of the BJT. An NPN transistor has a positively doped base and a negatively doped collector and emitter

An NPN transistor looks like two diodes with the anodes connected together (see Figure 1). The point where the anodes connect is called the base, one cathode is called the collector, and the other cathode is called the emitter. Although this illustration does not work with discrete diodes, it is fact in a BJT because when the width of the base junction is decreased enough, the back-to-back diodes function as a transistor. Using the back-to-back diode model, transistors are commonly checked for short circuits and open circuits with an ohmmeter. The base-emitter and base-collector junctions of a BJT act like forward biased diodes when the positive ohmmeter lead is connected to the base while the negative ohmmeter is connected to the emitter or collector. It looks like a reverse biased diode when the lead connections are reversed.

Figure 56. BJT Description

The model of a BJT is shown in Figure 2. The input circuit looks like a forward biased diode; the input impedance equation is $Z_{IN} = r_e = I_C/26$. The base-emitter junction must be forward biased, thus there is a forward voltage drop of V_{BE} . V_{BE} is approximately 0.6 volts in a silicon transistor, and 0.2 volts in a germanium transistor. The input current is called V_{BE} or V_{BE}

Figure 57. BJT Model

Since the collector-base junction is reverse biased, the collector current flows from the collector to the emitter. The collector current equation is $I_C=\beta(I_B)$ where β is the current gain of the transistor, and the emitter current equation is $I_E=I_C+I_B$. The impedance of the collector-emitter junction is called r_C , and r_C is very a high value (in the $M\Omega$ range). Current gain and the forward voltage drop are a function of the manufacturing process, temperature, and device physics, hence they are not stable parameters. Therefore, BJT circuits that depend on β and V_{BE} are not stable; thus, in well designed BJT circuits, the external components stabilize these parameters with feedback. This is not a drawback with just BJTs; this same condition exists for all transistors.

Junction Field Effect Transistor

The junction field effect transistor is called the JFET, and it comes in two flavors, p-channel and n-channel. It has high input impedance, so it is often used in the input circuit of amplifiers. The JFET has a high bandwidth, but circuit topologies and parasitic capacitors prevent it from achieving the same high bandwidth circuits where the BJT excels. Very often, the JFET is used as the input stage to achieve high input impedance. The JFET can achieve high bandwidth when its output is limited to small signal swings which are characteristic of input circuits. JFETs and BJTs can be made simultaneously on a semiconductor process called BIFET, thus they are often combined to make a high input impedance, high bandwidth amplifier. The JFET output impedance is high in the off state and low in the on state.

The JFET can be visualized as a bar of doped silicon that has a diode junction made in the middle of the bar. If the silicon bar is doped N, the JFET is called an N-channel device. Figure 3 shows the symbols for n-channel and p-channel JFETs. When the n-channel gate is negative with respect to the source the diode is biased off, the bar is depleted of carriers, and the source to drain resistance is quite high (several $M\Omega$). When the n-channel gate is biased positive with respect to the source, the diode is biased on, and the bar is flooded with carriers thus causing a low source to drain resistance (as low as $m\Omega$). The converse is true for a p-channel JFET.

Figure 58. JFET Description

The linear JFET model is shown in Figure 4. When the JFET is biased in its linear region, the gate is represented as an open circuit because the input diode is reverse biased. The drain to source current is a voltage controlled current source, $g_m(e_g)$. The output resistance is modeled by R_O . As long as the signal swings stay in the linear region, the gate-source voltage signal swing induces a drain-source current flow. Again, as is the case with the BJT, the key parameters of the JFET such as gain are temperature and drift sensitive, so feedback is used to make JFET circuits dependent on stable passive components.

Figure 59. JFET Model

Metal Oxide Semiconductor Field Effect Transistors

The BJT and JFET have a diode in their input circuit which controls their mode of operation. The metal oxide semiconductor field effect transistor (MOSFET) works on a similar principle, but the diode is buried within the MOSFET. The MOSFET input diode is controlled by an electric field in the gate region, thus the input impedance is always extremely high because there is no forward biased diode to lower the input impedance. The input impedance of MOSFETs is so high that there is no mechanism that readily bleeds off the accumulated charge except for humidity, thus they are often packaged with lead shorting wires to drain the charge. The lead shorting devices protect the MOSFETs from charge buildup and the subsequent catastrophic discharge current. All semiconductor devices should be protected from static discharge, but MOSFETs are the most liable to build up a killing charge. Do not be lax with static protection because some sensitive BJTs are affected by only a few hundred volts static discharge.

The MOSFET is a majority carrier device, and because majority carriers have no recombination delays, the MOSFET achieves extremely high bandwidths and switching times. The gate is electrically isolated from the source, and while this provides the MOSFET with its high input impedance, it also forms a good capacitor. Driving the gate with a dc or a low frequency signal is a snap because Z_{IN} is so high, but driving the gate with a step signal is much harder because the gate capacitance must be charged at the signal rate. This situation leads to a paradox; the high input impedance MOSFET must be driven with a low impedance driver to obtain high switching speeds and low bandwidth.

MOSFETs do not have a secondary breakdown area, and their drain-source resistance has a positive temperature coefficient, so they tend to be self protective. These features, coupled with the very low on resistance and no junction voltage drop when forward biased, make the MOSFET an extremely attractive power supply-switching transistor.

The MOSFET (see Figure 5 for a description) can be visualized as a bar of doped silicon that contains a capacitively coupled diode junction in the middle of the bar. If the silicon bar is doped N, then the MOSFET is called an N-channel device. When the n-channel gate is charged negative with respect to the source the internal gate diode is biased off, the bar is depleted of carriers, and the source to drain resistance is quite high (several hundred $M\Omega$). When the n-channel gate is charged positive with respect to the source, the internal gate diode is biased on, and the bar is flooded with carriers thus causing a low source to drain resistance (in the low $m\Omega$ range). The converse is true for a P-channel MOSFET.

Figure 60. MOSFET Description

The linear MOSFET model is shown in Figure 6. When the MOSFET is biased in its linear region, the gate appears as an open circuit to dc. The drain to source current is derived from a voltage controlled current source, $g_m(e_g)$. The output resistance is modeled by R_O . As long as the signal swings stay in the linear region, gate-source voltage signals induce a drain-source current.

Figure 61. MOSFET Model

The MOSFET contains a diode connected across from the drain (cathode) to the source (anode). This diode is not forward biased during normal operation, consequently it does not conduct current during normal operation. When the MOSFET is connected to an inductive load, the inductive kick causes the diode to turn on and conduct current. In some modes of operation, this is a desired effect because it limits the inductive voltage rise. The diode is not a fast turn-off diode, so it consumes quite a bit of power during turn-off. The turn-off power consumption is detrimental in some circuits, thus those circuits must put a diode with a smaller forward voltage drop (Schottky diode) in parallel with the body diode.

 C_{IN} can be as large as several hundred pF, and it must be charged by the gate signal. When the MOSFET is used in a power switching application, the gate is normally driven by a low impedance driver so that C_{IN} can be charged quickly. If C_{IN} is charged slowly, the switching time of the MOSFET is long causing the MOSFET to stay in the linear region for a long time. When the MOSFET operates in the linear region, its voltage drop and current flow are high, resulting in high power dissipation.

Again, as is the case with the BJT, the key parameters of the MOSFET such as gain are temperature and drift sensitive, so feedback is used to make MOSFET circuits dependent on stable passive components.

Voltage Feedback Operational Amplifier

The voltage feedback operational amplifier (VF op amp), or op amp as it is affectionately known, is a versatile amplifier which requires feedback to function. The op amp gain is so high that the output saturates on any differential input signal, so feedback is employed to lower the closed loop gain. The feedback makes the op amp circuit a precision circuit because the closed loop gain is dependent on the passive components which can be very accurate. Some op amp parameters, such as input offset voltage can still degrade precision, but there are specially designed precision op amps that have very low input offset voltages (micro volts), and selected salient parameters chosen to yield a precision circuit. The differential input structure of op amp enhances precision because the transistors in both inputs can be matched.

Op amp bandwidth depends on the process used to make the op amp, and BJT op amps have the highest bandwidth and current drain, with JFET op amps are next highest, and MOSFET op amps have the lowest bandwidth and current drain. Voltage feedback op amps are discussed in this section, and their bandwidth starts rolling off at low frequencies (about five decades before the advertised gain—bandwidth point.

The input impedance of the op amps is very high, and their output impedance is relatively low, thus they are ideal for configuring many different circuits. Some of the possible circuits op amps make are inverting amplifiers, noninverting amplifiers, differential amplifiers, summing amplifiers, and integrating amplifiers. The op amp model is shown in Figure 7. The input impedance of op amps is very high, and it is often modeled as an open circuit. The output circuit consists of a voltage controlled voltage source, and the control voltage is the differential voltage applied across the inputs.

Figure 62. Voltage Feedback Op Amp Model

Op amps are always surrounded with passive components, which are required to program the gain and add stability.

Current Feedback Operational Amplifiers

Current feedback op amps, called CFA for current feedback amplifier, are also called op amps, hence there can be confusion about which type of op amp (voltage or current feedback) is under discussion. It is assumed that voltage feedback op amps are being discussed unless a reference is made to the current feedback op amp (CFA).

The CFA configuration makes it hard to achieve precision because there is a buffer tied across the inputs. The input structure of a CFA is not matched, hence it is hard to obtain dc precision, which requires a matched input structure (usually a differential amplifier is used when matching is required). The applications for CFAs generally do not require high precision because CFAs are used in high frequency circuits. In many high frequency circuits, the dc portion of the signal contains little or no information, thus precision is not paramount in these applications.

CFAs are usually made with BJTs because they yield very high bandwidths. The high bandwidth of a CFA does not start rolling off till much higher frequencies (several decades higher) than a VFA does, but it rolls off at a much faster rate. CFA have bandwidths in the GHz range while VFA bandwidths are down in the several hundred MHz range. The input impedance of CFAs is high for the positive input and low for the negative input because of the input voltage buffer.

The CFA model is shown in Figure 8. The positive input is a voltage buffer input, so the positive input has very high input impedance. The negative input is connected to the output of the same voltage buffer, hence the negative input impedance is close to zero. It is very hard to match parameters between the inputs because they are connected to different ends of a buffer, and this situation makes it hard to build precision CFAs.

Figure 63. Current Feedback Op Amp Model

The output circuit contains a transimpedance stage, Z, so the error current which flows through the input stage $I_{\rm IN}$ is multiplied by Z to form a voltage. This voltage is buffered before it becomes the output voltage, thus the CFA has very low output impedance.

Voltage Comparators

The voltage comparator is used to convert an analog signal to a digital signal. This is usually accomplished by connecting a reference to the negative comparator input and a signal to the positive comparator input. When the signal exceeds the reference the output goes from a low voltage (a logic zero) to a high voltage (a logic one). Inverted operation can be obtained with a comparator by reversing the inputs.

The input stage of a comparator is similar to an op amp input stage. The differential input voltage is multiplied by the gain to obtain an output signal. The comparator gain is very large, and it is not limited by feedback, so the output would saturate if it was an op amp. The difference is that the comparator has an output stage that reaches a limit but does not saturate. The comparator's ability to run open loop without saturating separates it from the op amp which always saturates when it runs open loop. Never use op amps for a comparator function when propagation delay is important, because when an op amp saturates, the time needed for it to come out of saturation is unpredictable.

The voltage comparator is shown in Figure 9. The voltage comparator input stage is identical to a VF op amp input stage, consequently the comparator input impedance is very high. The inputs can be matched very well, thus comparators are capable of doing precision work. The voltage comparator output stage looks like a very high open loop gain stage that has its output clamped to the power supply rails. There are other forms of the output stage which have two leads, and they enable the circuit designer to connect the output to two different voltage levels. This type of comparator is useful when the input must sense signals over a wide voltage range including negative voltages, and the output voltage swing must be compatible with a specific logic family.

Figure 64. Voltage Comparator Model

Other Active Devices

There are many more active devices than are covered in this application report. The exposure here is limited to the most popular devices, and these devices are adequate to cover the large majority of electronic equipment applications.

Specialty fields like power supplies, motor controls, data transmission, etc. have active devices not shown here. Rather than turn this application report into a two hundred-page collection of active devices, 99 percent of which are of little or no interest to the average reader, the author chose to ignore 99 percent. If you have a need for further information on an active device, mentioned or not mentioned here, contact the manufacturer. For example, if you contact the local TI sales office or the factory in Dallas, and ask for information on current feedback op amps, TI will send you information gratis. If you contact the local analog field specialist, they will see that you are sent data sheets and applications literature.

This application note is purposely kept brief, but the manufacturer's support system is more than happy to flood you with information. If you can't get information from a manufacturer, maybe you are talking to the wrong manufacturer.

Summary

Active devices have gain, so they perform functions that passive devices can't fill. Active devices have voltage, current, and power gain; hence, when active devices are coupled with passive devices the combination fulfills all circuit requirements.

Active devices employ feedback to control the gain, and the feedback makes active devices dependent on passive device parameters. Accept this for now, because later applications will illustrate the concept. Feedback brings its own problems as well as its advantages. Oscillation resulting from misapplied feedback is the major disadvantage of active circuits.

This application note is purposely kept bnet, but the manufacturer's support system is more than happy to flood you with miormation. If you can't get information from a manufacturer, maybe you are talking to the wrong manufacturer.

Summary

Active devices have gain, so they perform functions that passive devices can't fill.

Active devices have voltage, current, and power gain; hence, when active devices are coupled with passive devices the combination fulfills all circuit requirements.

Active devices employ feedback to control the gain, and the feedback makes active devices dependent on passive device parameters. Accept this for now, because leter applications will illustrate the concept. Feedback brings its own problems as well as its advantages. Coefficient resulting from misapplied feedback is the major disadvantage of active circuits.

General Information	1
Data Sheets	2
Product Previews	3
Evaluation Modules	4
Application Reports	5
Mechanical Data	6

Contents

	Page
Ordering Information	6-3
Mechanical Data	6-5

Mechanical Data

Electrical characteristics presented in this data book, unless otherwise noted, apply for the circuit type(s) listed in the page heading regardless of package. The availability of a circuit function in a particular package is denoted by an alphabetical reference above the pin-connection diagram(s). These alphabetical references refer to mechanical outline drawings shown in this section.

Factory orders for circuits described in this data book should include a four-part type number as shown in the following example.

			Example:		2022	(9WG MP	W LE
Prefix —			polituT otbet				ristallo or Coru
MUST CONTA	AIN TWO OF	R THREE LET	TERS				priduT offee
TLC	TI	Linear Silicon-	TI Linear Products Gate CMOS Products Itage CMOS Products				
STANDARD S	ECOND-SC	URCE PREFIX	XES				
LF, LM, or L	P	119.70.02501	Analog Devices National Linear Technology		YRTER GRAGI BOAM		
MC			Motorola				
NE, SA, or open control of the contr	SE RV		Signetics PMI Raytheon Fairchild/National			NSOP	
Unique Part N	Number —	N 25 AV AV		1000			
		R MORE CHAP heets)				18806	
Examples:	592	34070 1451AC 2217-285				dios	
Package —	-	00 81	Br As I			900	
MUST CONTA	AIN ONE, T	VO, OR THRE	E LETTERS				
			DW, DWP, FK, J, JG, I vidual data sheet)	N, NE, P,	PW, PWP	, U, W	
Available Tap	ed and Ree	eled or Left-En	ded Taped and Reele	ed			
B – Availah							

LE - Available Only Left-Ended Taped and Reeled

ORDERING INSTRUCTIONS

Circuits are shipped in one of the carriers below. Unless a specific method of shipment is specified by the customer (with possible additional costs), circuits will be shipped via the most practical carrier.

Dual-In-Line (J, JG, N, NE, P)

 A-Channel Antistatic or Conductive Plastic Tubing Shrink Small Outline (DB, DBV)

- Tape and Reel

Thin Shrink Small Outline (PW)

- Tape and Reel

Small Outline (D, DW, DWP)

- Tape and Reel

 Antistatic or Conductive Plastic Tubing Chip Carriers (FK)

- Antistatic or Conductive

Plastic Tubing

Flat (U, W)

- Milton Ross Carriers

PACKAGE GUIDE

INDUSTRY STANDARD PACKAGE	TI PACKAGE SUFFIX	NUMBER OF PINS		
SOT-23	DBV	5, 6 (Shutdown)		
MSOP	DGK	8		
	DGN	8 (PowerPAD™)		
	DGS	10		
	DGQ	10		
TSSOP	PW	8, 14, 16, 20, 24, 28		
	PWP	20 (PowerPAD™)		
	D	8, 14, 16		
SOIC	DW	16, 20, 24, 28		
	DWP	16, 20, 24, 28 (PowerPAD™)		
PDIP	P	8		
	N	14, 16, 18, 20		
	NE	16, 20		
SSOP	PS	8		

D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

This drawing is subject to change without notice.
 Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions include mold flash or protrusion.

DBV (R-PDSO-G6)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions include mold flash or protrusion.

DGK (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion.

DGN (S-PDSO-G8)

PowerPAD™ PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions include mold flash or protrusions.
- D. The package thermal performance may be enhanced by attaching an external heat sink to the thermal pad.

 This pad is electrically and thermally connected to the backside of the die and possibly selected leads. The dimension of the thermal pad is 68 mils (height as illustrated) × 70 mils (width as illustrated) (maximum). The pad is centered on the bottom of the package.

E. Falls within JEDEC MO-187

PowerPAD is a trademark of Texas Instruments Incorporated.

DGQ (S-PDSO-G10)

PowerPAD™ PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion.

D. The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane.

This pad is electrically and thermally connected to the backside of the die and possibly selected leads. The dimension of the thermal pad is 68 mils (height as illustrated) × 70 mils (width as illustrated) (maximum). The pad is centered on the bottom of the package.

PowerPAD is a trademark of Texas Instruments Incorporated.

DGS (S-PDSO-G10)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion.

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. This package can be hermetically sealed with a metal lid.

D. The terminals are gold plated.

E. Falls within JEDEC MS-004

J (R-GDIP-T**)

CERAMIC DUAL-IN-LINE

14 LEADS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. This package is hermetically sealed with a ceramic lid using glass frit.

D. Index point is provided on cap for terminal identification.

E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, and GDIP1-T20

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. This package can be hermetically sealed with a ceramic lid using glass frit.

D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.

E. Falls within MIL-STD-1835 GDIP1-T8

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)

14/18 PIN ONLY

4040049/C 08/95

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-001

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PIN SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

PWP (R-PDSO-G**)

PowerPAD™ PLASTIC SMALL-OUTLINE

20 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusions.

D. The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane. This pad is electrically and thermally connected to the backside of the die and possibly selected leads.

E. Falls within JEDEC MO-153

PowerPAD is a trademark of Texas Instruments Incorporated.

U (S-GDFP-F10)

CERAMIC DUAL FLATPACK

NOTES: A. All linear dimensions are in inches (millimeters).

- This drawing is subject to change without notice.
 This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.

 E. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA

6601 YAM OTRIVER - BUILT VISALINAL - CHOOSTHI

MECHANICAL INFORMATION

CERAINC DUAL PLATPACK

U (S-GDFP-F10)

A - All Breat dimensions are in trotuc froillurators)

B. This drawing is subject to deeper without notice.

Of This paddede stance from the ballier view ballier view that all of the paddede stance in the padded stance in the paddede stance in the padded stance

To Index votat is provided on each for lambinal identification only.

E. Felle William Mil. STO 1835 COFFE (FIG and JEDEC MOTESTA)