Министерство высшего образования и науки Российской федерации Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Моделирование характеристик полевого транзистора с каналом в виде массива квантовых точек

Худайбергенов Абдумухамед Ресул-Улы

Выпускная квалификационная работа *Название работы*

Уровень образования: магистратура
Направление 11.04.04 «Электроника и наноэлектроника»
Образовательная программа «Наноэлектроника, спинтроника и фотоника»

Научный руководитель: к.фм.н., доцент
кафедры физики конденсированных сред,
Сибирмовский Ю.Д.
Подпись:
Рецензент: к.фм.н., доцент
кафедры физики конденсированных сред,
Сибирмовский Ю.Д.
Подпись:
THOUSE IN

Москва 2024 г.

Содержание

Введени	e							•	•	 •	•	 •	•	•	•	•	•	•	•	3
Цель и з	адачи												•						•	3
Глава 1.	Обзор ли	терат	уры									 •								5
1.1	. Раздел 1														•	•				5
1.2	. Раздел 2	2						•			•	 •	•							6
Глава 2.	Теория и	основ	ные	yp	авне	низ	Я.	•				 •								7
2.1	. Раздел 1																			7
2.2	. Раздел 2	2											•							7
Глава 3.	Численн	ые мет	годь	и	алго	рит	ГМІ	Ы											•	8
3.1	. Раздел 1														•					8
3.2	. Раздел 2	2											•		•					8
Глава 4.	Програм	мная ј	реал	иза	щия	•		•			•		•						•	9
Глава 5.	Результа	ты и о	бсух	кде	ние															11
Выводы												 •		•	•		•			13
Заключе	ынь																			13

Введение

Здесь необходимо рассказать, о чём работа. Объём 1-2 страницы. Нужно охарактеризовать область исследования, практическую значимость (для разработки каких приборов могут быть использованы ваши результаты), какую проблему решает ваша работа (кратко, подробнее будет в обзоре), какие методы использованы (тоже кратко, подробнее в главе Методы).

Здесь необходимо рассказать, о чём работа. Объём 1-2 страницы. Нужно охарактеризовать область исследования, практическую значимость (для разработки каких приборов могут быть использованы ваши результаты), какую проблему решает ваша работа (кратко, подробнее будет в обзоре), какие методы использованы (тоже кратко, подробнее в главе Методы).

Здесь необходимо рассказать, о чём работа. Объём 1-2 страницы. Нужно охарактеризовать область исследования, практическую значимость (для разработки каких приборов могут быть использованы ваши результаты), какую проблему решает ваша работа (кратко, подробнее будет в обзоре), какие методы использованы (тоже кратко, подробнее в главе Методы).

Цель и задачи

Цель: Цель не должна совпадать с темой работы. Цель должна быть достижима (должен быть конечный результат) и проверяема. Исследование — это процесс, и целью быть не может.

Задачи

- 1. Расчёт плотности состояний для массива простых квантовых точек (с небольшим числом уровней) с учетом разброса (дисперсии) по размерам.
- 2. Учет зависимости уширения уровней

$$\gamma_1, \gamma_2 \tag{1}$$

и времени туннелирования

$$\tau_1, \tau_2 \tag{2}$$

от размеров КТ, а также от положения квантовой точки относительно электродов.

3. Учет зависимости кулоновской блокады

$$U_0$$
 (3)

от размера КТ.

4. Расчёт ВАХ с учетом кулоновской блокады и влияния затвора.

Достаточно задач. Обзор литературы наверное в задачи включать не будем. Лучше написать конкретно, что мы делаем (разработка алгоритма, программная реализация, расчёт конкретных параметров при определённых условиях и т.д.)

Глава 1. Обзор литературы

1.1 Раздел 1

В обзоре не нужно рассказывать теорию и методы, нужно просто провести обобщение и анализ исследований, которые были проведены до вас по данной теме.

Если вы будете пользоваться какими-то терминами и понятиями, которые требуют разъяснения, их нужно объяснить в следующих двух главах, а отсюда можно сослаться на эти определения.

Ссылка на книгу: [1]. Ссылка на книгу на русском: [2].

Рис. 1: Схема измерений спектров поглощения в поперечном поле из работы [3].

Если рисунок взят из какой-то статьи, книги или из интернета (из интернета нежелательно), то нужно обязательно в подписи сделать ссылку на соответствующий пункт в списке литературы.

Ссылаемся на рисунок 1.

Ссылки на статьи: [3], [4], [5].

Ссылка на российскую статью: [6].

Ссылка на диссертацию: [7]

1.2 Раздел 2

Глава 2. Теория и основные уравнения

2.1 Раздел 1

Ненумерованная формула:

$$\begin{pmatrix} \dot{\varphi} \\ \dot{\theta} \\ \dot{\psi} \end{pmatrix} = \begin{pmatrix} \cos(\theta)\cos(\psi) & -\sin(\psi) & 0 \\ \cos(\theta)\sin(\psi) & \cos(\psi) & 0 \\ -\sin(\theta) & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix}.$$

2.2 Раздел 2

Нумерованные формулы:

$$\dot{\theta} = \frac{P - p_1 \cos(\varphi_1 - \theta) - p_2 \cos(\varphi_2 - \theta)}{\mu + \sin^2(\varphi_1 - \theta) + \sin^2(\varphi_2 - \theta)} \tag{4}$$

$$\dot{\varphi}_1 = p_1 - \dot{\theta}\cos(\phi_1 - \theta) \tag{5}$$

$$\dot{\varphi}_2 = p_2 - \dot{\theta}\cos(\phi_2 - \theta) \tag{6}$$

Тест ссылки на формулу (4).

Глава 3. Численные методы и алгоритмы

- **3.1** Раздел 1
- **3.2** Раздел 2

Глава 4. Программная реализация

Листинг 1: Программная реализация метода Рунге-Кутты

```
// From the pendulum program
fn runge_kutta(
   vars: &MyVec,
   pars: &Vec<f64>,
   rhs: &dyn Fn(&MyVec, &Vec<f64>) -> MyVec,
   dt: f64,
) -> MyVec {
   let rk_1 = rhs(vars, pars);
   let rk_2 = rhs(&vars.add(&rk_1.scale(dt / 2.0)), pars);
   let rk_3 = rhs(&vars.add(&rk_2.scale(dt / 2.0)), pars);
   let rk_4 = rhs(&vars.add(&rk_3.scale(dt)), pars);
   let vars_new = vars
        .add(&rk_1.scale(dt / 6.0))
        .add(&rk_2.scale(dt / 3.0))
        .add(&rk_3.scale(dt / 3.0))
        .add(&rk_4.scale(dt / 6.0));
   vars_new
}
```

Листинг 2: Подпрограмма случайного блуждания на плоскости

Глава 5. Результаты и обсуждение

Ниже тестируется очень большая таблица на несколько страниц

Таблица 1: Заголовок таблицы

1	2	3	4
2	2	3	4
3	2	3	4
4	2	3	4
5	2	3	4
6	2	3	4
7	2	3	4
8	2	3	4
9	2	3	4
10	2	3	4
1	2	3	4
2	2	3	4
3	2	3	4
4	2	3	4
5	2	3	4
6	2	3	4
7	2	3	4
8	2	3	4
9	2	3	4
10	2	3	4
1	2	3	4
2	2	3	4
3	2	3	4
4	2	3	4
5	2	3	4
6	2	3	4
7	2	3	4

8	2	3	4
9	2	3	4
10	2	3	4

А также тестируется счетчик таблиц, жирные и двойные линии.

Таблица 2: Заголовок таблицы номер 2

1	2	3	4
2	2	3	4
3	2	очень жирная ячейка	4
		с переносом	
4	2	3	4
5	2	3	4
6	2	3	4
7	2	3	4
8	2	3	4
9	2	3	4
10	2	3	4

Ссылаемся на Листинг 1 здесь.

Выводы

Структура файлов, которые можно редактировать:

- main.tex содержит основной текст;
- titlepage.tex содержит титульный лист;
- literature.bib содержит источники для списка литературы;
- code_highlight.tex форматирование листингов (фрагментов кода).

Файл diploma.sty очень важный, его трогать и особенно удалять не надо, там задаются различные стили документа.

Заключение

Нужны ли отдельно и выводы, и заключение — я не знаю. Разберёмся.

Список литературы ниже оформлен не по ГОСТу, но это легко исправить. Главное, что он организован, и можно ссылаться на каждый пункт по фамилии первого автора.

Внимание!

Список литературы находится в отдельном файле literature.bib, в который можно добавлять новые источники в любом порядке. Они будут сами располагаться как нужно, в порядке упоминания в тексте.

Если какой-то источник не процитирован в тексте, он в список литературы добавлен не будет.

Поэтому один и тот же файл с источниками можно использовать для нескольких документов.

Список литературы

[1] S. Datta. *Quantum Transport: Atom to Transistor*. Cambridge: Cambridge University Press, 2005, c. 404 (цит. на с. 5).

- [2] И.М. Федоткин. *Математическое моделирование технологических про- цессов:* Учебное пособие. Москва: Книжный дом «Либроком», 2015, с. 416 (цит. на с. 5).
- [3] D. Miller, J. Weiner и D. Chemla. «Electric-field dependence of linear optical properties in quantum well structures: Waveguide electroabsorption and sum rules». *IEEE Journal of Quantum Electronics* том 2, номер 9, (1986), с. 1816—1830 (цит. на с. 5).
- [4] D.A.B. Miller, D. S. Chemla и Т. C. Damen. «Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect». *Physical Review Letters* том 53 (1984), с. 2173 (цит. на с. 5).
- [5] H. Mohseni и др. «Enhanced Electro-Optic Effect in GaInAsP-InP Three-Step Quantum Wells». *Applied Physics Letters* том 84, номер 11, (2004), с. 1823—25 (цит. на с. 5).
- [6] А. Л. Скубачевский. «Уравнения Власова–Пуассона для двукомпонентной плазмы в однородном магнитном поле». *Успехи математических наук* том 69, номер 2, (2014), с. 107—148 (цит. на с. 5).
- [7] И.А. Павличенко. «Поверхностные и объемные плазмоны, возбуждаемые в наноразмерных структурах лазерными импульсами и потоками заряженных частиц». Диссертация. Нижний Новгород: НГУ им. Лобачевского, 2015 (цит. на с. 5).