Wydział Informatyki i Telekomunikacji Laboratorium Podstaw Elektroniki

Sprawozdanie z ćwiczenia

Tytuł Elementy RLC część II (obwody RC i RL)		Rok akademicki 2019/2020
Data wykonania ćwiczenia 05.05.2020	Data oddania sprawozdania 06.05.2020	Kierunek Informatyka
Skład grupy laboratoryjnej 1. Dawid Królak 2. Michał Matuszak 3. Mateusz Miłkowski 4. Dominik Pawłowski	Rok, semestr, grupa Rok 1, semestr 2, grupa l2.1	

1. Cel ćwiczenia.

Analiza zachowania się elementów rezystancyjnych, indukcyjnych i pojemnościowych w obwodach prądu zmiennego. Badanie wpływu zmian częstotliwości wymuszenia na elementy reaktancyjne.

2. Układ RC

Badany układ:

Zad.4 Wartość napięcia wymuszenia sinusoidalnego (V1) ustawiono na 5V.

Wartości skuteczne napięć na rezystorze i źródle pobudzenia dla częstotliwości z przedziału 1Hz-20kHz z krokiem 2kHz przedstawiono w tabeli:

Częstotliwość pobudzająca (f)	Napięcie skuteczne na źródle (U _v)	Napięcie skuteczne na rezystancji (U_R)
1Hz	3,5311V	221,71μV
2000Hz	3,5353V	434,19mV
4000Hz	3,5352V	849,35mV
6000Hz	3,532V	1,2291V
8000Hz	3,5304V	1,5658V
10000Hz	3,5312V	1,8569V
12000Hz	3,5339V	2,1048V
14000Hz	3,5333V	2,3104V
16000Hz	3,5327V	2,4808V
18000Hz	3,5319V	2,6216V
20000Hz	3,5312V	2,7381V

Korzystając z zależności:

$$U_V = \sqrt{U_R^2 + U_C^2}$$

Napięcie na pojemności można wyznaczyć poprzez:

$$U_C = \sqrt{U_V^2 - U_R^2}$$

W zależności od częstotliwości pobudzającej wartości U_c zmieniały się w sposób następujący:

	Napięcie skuteczne na
Częstotliwość	pojemności z prawa
pobudzająca	Kirchoffa
1Hz	3,53109999303966
2000Hz	3,50853603856366
4000Hz	3,43165319015486
6000Hz	3,3112440547323
8000Hz	3,16417359195099
10000Hz	3,00354720788604
12000Hz	2,83870853910718
14000Hz	2,67324909613751
16000Hz	2,51507468079976
18000Hz	2,36675538448738
20000Hz	2,22983896952224

Wykres $U_C(2\pi f)$:

Zad.5 Korzystając z powyższych danych obliczono wartości skuteczne prądu w funkcji częstotliwości za pomocą prawa Ohma.

Wykres zmiany skutecznej wartości prądu w obwodzie w funkcji częstotliwości prezentuje się w sposób następujący:

Reaktancja pojemnościowa wyraża się wzorem:

$$Z_c = \frac{1}{\omega C} = \frac{1}{2\pi f C}$$

Zatem wraz ze wzrostem częstotliwości pobudzającej prąd ulega wzrostowi, natomiast reaktancja pojemnościowa maleje.

Zad.6
Przesunięcie fazowe wyznaczono dla częstotliwości f = 5 kHz.
Z wykresu odczytano czas dla którego napięcie na rezystancji i na źródle osiągnęły swoje amplitudy

$$T_R = 610 \mu s$$

$$T_V = 650 \mu s$$

Przesunięcie fazowe wyznaczono w oparciu o wzór:

$$\alpha = 360 \cdot f \cdot (T_R - T_V)$$

$$\alpha = 360 \cdot 5000 Hz \cdot (610 \mu s - 650 \mu s) = -72$$

Zanotowano następujące wartości napięcia skutecznego na źródle oraz rezystorze:

$$U_V = 3,5352V$$

$$U_R = 1.0448V$$

Analityczne wyznaczenie wartości napięć i prądów metodą liczb zespolonych:

Obliczenie impedancji układu:

$$Z_C = -j\frac{1}{\omega C} = -j\frac{1}{2\pi \cdot 5000 \cdot 10^{-8}} = -j \cdot 3181,19\Omega$$

$$Z_R = R = 1000\Omega$$

$$Z=\sqrt{Z_R^2+Z_C^2}=3336,57\Omega$$

Obliczenie natężenia skutecznego układu:

$$I_S = \frac{U_V}{Z} = \frac{3,5352V}{3336,57\Omega} = 1,0595mA$$

Obliczenie napięć skutecznych na poszczególnych elementach:

$$U_R = I_S \cdot R = 1,0595 mA \cdot 1000\Omega = 1,0595 V$$

$$U_C = I_S \cdot Z_C = 1,0595mA \cdot 3181,19\Omega = 3,3704V$$

4. Układ RL

Badany układ:

Zad.4 Wartość napięcia wymuszenia sinusoidalnego (V1) ustawiono na 5V.

Wartości skuteczne napięć na rezystorze i źródle pobudzenia dla częstotliwości z przedziału 1Hz-20kHz z krokiem 2kHz przedstawiono w tabeli:

Częstotliwość	Napięcie skuteczne	Napięcie skuteczne na
pobudzająca	na źródle	rezystancji
1Hz	3,5311V	3,5278V
2000Hz	3,5355V	3,2737V
4000Hz	3,5354V	2,739V
6000Hz	3,532V	2,234V
8000Hz	3,5302V	1,8435V
10000Hz	3,5311V	1,5526V
12000Hz	3,5339V	1,3342V
14000Hz	3,5333V	1,165V
16000Hz	3,5327V	1,0317V
18000Hz	3,5319V	0,9245V
20000Hz	3,5312V	0,8366V

Korzystając z zależności:

$$U_V = \sqrt{U_R^2 + U_L^2}$$

Napięcie na pojemności można wyznaczyć poprzez:

$$U_L = \sqrt{U_V^2 - U_R^2}$$

W zależności od częstotliwości pobudzającej wartości U_L zmieniały się w sposób następujący:

Częstotliwość	Napięcie skuteczne na indukcji z prawa
pobudzająca	Kirchoffa
1Hz	0,152624932432413
2000Hz	1,33515862727992
4000Hz	2,23538188236373
6000Hz	2,73573902264087
8000Hz	3,01061784190554
10000Hz	3,17145084306852
12000Hz	3,27236299484027
14000Hz	3,33571340045874
16000Hz	3,37869270576654
18000Hz	3,4087559842265
20000Hz	3,43066668156497

Wykres na podstawie powyższych danych:

Napięcie skuteczne na indukcji w zależności od częstotliwości pobudzającej

Zad.5,6 Korzystając z powyższych danych obliczono wartości skuteczne prądu w funkcji częstotliwości za pomocą prawa Ohma.

Wykres zmiany skutecznej wartości prądu w obwodzie w funkcji częstotliwości prezentuje się w sposób następujący:

Reaktancja indukcyjna wyraża się wzorem:

$$Z_L = \omega L = 2\pi f L$$

Zatem wraz ze wzrostem częstotliwości pobudzającej prąd maleje, natomiast reaktancja indukcyjna rośnie.

Zad.7

Przesuniecie fazowe wyznaczono dla czestotliwości f = 5 kHz.

Z wykresu odczytano czas dla którego napięcie na rezystancji i na źródle osiągnęły swoje

amplitudy.

$$T_R = 675 \mu s$$

$$T_V = 650 \mu s$$

Przesunięcie fazowe wyznaczono w oparciu o wzór:

$$\alpha = 360 \cdot f \cdot (T_R - T_V)$$

$$\alpha = 360 \cdot 5000Hz \cdot (675\mu s - 650\mu s) = 45$$

Zanotowano następujące wartości napięcia skutecznego na źródle oraz rezystorze:

$$U_V = 3,5354V$$

$$U_R = 2,4746V$$

Analityczne wyznaczenie wartości napięć i prądów metodą liczb zespolonych:

Obliczenie impedancji układu:

$$Z_L = j\omega L = j2\pi \cdot 5000 \cdot 33 \cdot 10^{-3} = 1036,695\Omega$$

$$Z_R = R = 1000\Omega$$

$$Z = \sqrt{Z_R^2 + Z_L^2} = 1440,3946\Omega$$

Obliczenie natężenia skutecznego układu:

$$I_S = \frac{U_S}{Z} = \frac{3,5354V}{1440,3946\Omega} = 2,4545mA$$

Obliczenie napięć skutecznych na poszczególnych elementach:

$$U_R = I_S \cdot R = 2,4545 mA \cdot 1000\Omega = 2,4545 V$$

$$U_L = I_S \cdot Z_L = 2,4545mA \cdot 1036,695\Omega = 2,5445V$$