



LOA

#### INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

SO

SΠ

SN

SN

SN

SO

SN

SΩ

SU

SN

SΩ

(99.20.30) 9991 yam 3

PCT/US99/09847

| Ц_ | (+0-1)                   |                                       |    |                                             |  |  |  |
|----|--------------------------|---------------------------------------|----|---------------------------------------------|--|--|--|
| (  | )998 <b>\$</b> /66 OM :  | (11) International Publication Number |    | (51) International Patent Classification 6: |  |  |  |
|    | 99. [1.81] 999 (18.11.99 | (43) International Publication Date:  | IA | CITA 12/00' 12/17' COLK 14/00' 14/432       |  |  |  |

3142 Quesada Street, N.W., Washington, DC 20015 (US). ENDRESS, Gregory, A. [US/US]; 9729 Clagett Farm Drive, Potomac, MD 20854 (US). EBNER, Reinhard Drive, Potomac, MD 20854 (US). EBNER, Reinhard Drive, Potomac, MD 20854 (US). SOPPH, Daniel, R. [US/US]; 15050 Stillfield Place, Centreville, VA 22020 (US). LAPLEUR, David, W. [US/US]; (US). BREWER, Laurie, A. [US/US]; Apartment 115, 410 Van Dyke Street, St. Paul, MN 55119-4321 (US). Fing-Fei [CN/US]; 242 Gravatt Drive, Berkeley, CA 94705 122 Beckwith Street, Gaithersburg, MD 20878 (US). WEI, Gaithersburg, MD 20878 (US). YOUNG, Paul, E. [US/US]; 20878 (US). SHI, Yang-gu [CN/US]; 437 West Side Drive, Brandy Hall Lane, North Potomac, MD 20878 (US).

MOORE, Paul, A. [US/US]; 19005 Leatherbark Drive,
Germantown, MD 20874 (US). OLSEN, Henrik, S.
[DK/US]; 182 Kendrick Place #24, Gaithersburg, MD
20878 (US). MD 20882 (US). CARTER, Kenneth, C. [US/US]; 11601 Craig, A. [US/US]; 22400 Rolling Hill Road, Laytonsville, Manorfield Road, Rockville, MD 20853 (US). ROSEN, enue, Rockville, MD 20851 (US). NI, Jian [CN/US]; 5502 (US). FLORENCE, Kimberly [US/US]; 12805 Atlantic Av-

Sciences, Inc., 9410 Key West Avenue, Rockville, MD (74) Agents: BROOKES, A., Anders et al.; Human Genome

(BE, BI, CE, CG, CI, CM, GA, GN, GW, ML, MR, NE, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TI, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, 

Published

SN, TD, TG).

·szuəwpuəwp claims and to be republished in the event of the receipt of Before the expiration of the time limit for amending the With international search report.

(57) Abstract

(24) Liff: 97 HUMAN SECRETED PROTEINS

secreted proteins. The invention further relates to diagnostic and therapeutic methods useful for diagnosing and treating disorders related to these novel human encoding such proteins. Also provided are vectors, host cells, amibodies, and recombinant methods for producing human secreted proteins. The present invention relates to novel human secreted proteins and isolated nucleic acids containing the coding regions of the genes

[US/US]; 18528 Heritage Hills Drive, Olney, MD 20832 (75) Inventors/Applicants (for US only): RUBEN, Steven, M.

GENOME SCIENCES, INC. [US/US]; 9410 Key West (II) Applicant (for all designated States except US): HUMAN

(86.20.81) 8991 yaM 81

(86.20.81) 8991 yaM 81

(89.20.81) 8991 yaM 81

(80.20.81) 8991 yaM 81

(86.20.81) 8991 yaM 81

(86.20.81) 8991 yaM 81

(86.20.81) 8991 ysM 81

18 May 1998 (18.05.98)

18 May 1998 (18.05.98)

12 May 1998 (12.05.98)

12 May 1998 (12.05.98)

(86.20.21) 8991 yeM SI

12 May 1998 (12.05.98)

Avenue, Rockville, MD 20850 (US).

(72) Inventors; and

076'\$80/09

876'\$80/09

526,280/09

126,280/03

60/085,923

776'580/09

426,280/03

906'\$80/09

LZ6'\$80/09

081,280/08

501,280/03

**460,280/09** 

£60,280/03 (30) Priority Data:

(22) International Filing Date:

(21) International Application Number:

### LOK THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

|   | _                        |                |                       |     |                     |    |                          |    |
|---|--------------------------|----------------|-----------------------|-----|---------------------|----|--------------------------|----|
|   | •                        |                | 3noqegni 2            | ec  | Liberia             | หา | Estonia                  | ээ |
|   |                          |                | Sweden                | 2E  | Sri Lanka           | ГK | Denmark                  | DK |
| į |                          |                | Sudan                 | αs  | Liechtenstein       | n  | Сешэлу                   | DE |
|   |                          |                | Russian Federation    | ВU  | Saint Lucia         | гс | Czech Republic           | ZO |
| i |                          |                | Romania               | ВО  | Kazakstan           | ZХ | Cuba                     | cn |
|   |                          |                | Portugal              | Tq  | Republic of Korea   | KK | China                    | СИ |
|   |                          |                | Poland                | Пd  | Republic of Korea   |    | Сатыстооп                | CM |
|   |                          |                | New Zealand           | ZN  | Democratic People's | КЪ | Côte d'Ivoire            | cı |
|   | swdsdmi.S                | MZ             | Norway                | ON  | Kyrgyzstan          | KC | Switzerland              | СН |
|   | riveleoguy.              | ΩX             | Metherlands           | IN  | Kenya               | KE | Congo                    | 90 |
|   | Vict Nam                 | NΛ             | Niger                 | NE  | nsqst               | аſ | Central African Republic | CE |
|   | Uzbekistan               | $\mathbf{z}$ n | ∞ix <b>ɔ</b> M        | XW  | Kialy               | TI | Canada                   | CV |
|   | United States of America | sn             | iwslsM                | MM  | Iceland             | SI | Belarus                  | BX |
|   | sbnsgU                   | ne             | sinstitusM            | WK  | Israel              | IL | lizerA                   | ВК |
|   | Ukraine                  | VΩ             | silognoM              | NIM | reland              | IE | Benin                    | ВĴ |
|   | ogsdoT bas bsbininT      | LL             | ilsM                  | WL  | Hungary             | ΠH | sinsgluð                 | BC |
|   | Тийсу                    | TR             | Republic of Macedonia |     | Steece              | СК | Burkina Faso             | BŁ |
|   | Turkmenistan             | MT             | The former Yugoslav   | WK  | soniu Ə             | СИ | Belgium                  | BE |
|   | Tajikistan               | LT             | Madagascar            | МC  | Chana               | ен | Barbados                 | 88 |
|   | OgoT                     | TG             | Republic of Moldova   | ŒW  | Georgia             | СE | Bosnia and Herzegovina   | BA |
|   | Chad                     | αT             | Мопасо                | MC  | United Kingdom      | СB | najisd19xA               | ZV |
|   | bnafizaw2                | ZS             | Latvia                | LΥ  | Gabon               | €¥ | silsntanA                | UA |
|   | Senegal                  | NS             | Premis                | ΓΩ  | भारतातु.<br>-       | FR | sirtsuA                  | TA |
|   | Slovakia                 | SK             | Lithuania             | LT  | bnslniA             | H  | Amenia                   | MA |
|   | Slovenia                 | IS             | Pesotho               | 57  | Spain               | EZ | sinsdlA                  | ΤV |
|   |                          |                |                       |     |                     |    |                          |    |

# 97 Human Secreted Proteins

# Field of the Invention

This invention relates to newly identified polynucleotides and the polypeptides encoded by these polynucleotides, uses of such polynucleotides and polypeptides, and their production.

# Background of the Invention

Unlike bacterium, which exist as a single compartment surrounded by a membrane, human cells and other eucaryotes are subdivided by membranes into many functionally distinct compartments. Each membrane-bounded compartment, or organelle, contains different proteins essential for the function of the organelle. The cell uses "sorting signals," which are amino acid motifs located within the protein, to target proteins to particular cellular organelles.

One type of sorting signal, called a signal sequence, a signal peptide, or a

leader sequence, directs a class of proteins to an organelle called the endoplasmic reticulum (ER). The ER separates the membrane-bounded proteins from all other types of proteins. Once localized to the ER, both groups of proteins can be further directed to another organelle called the Golgi apparatus. Here, the Golgi distributes the proteins to vesicles, including secretory vesicles, the cell membrane, lysosomes, and the other organelles.

Proteins targeted to the ER by a signal sequence can be released into the

extracellular space as a secreted protein. For example, vesicles containing secreted proteins can fuse with the cell membrane and release their contents into the extracellular space - a process called exocytosis. Exocytosis can occur constitutively or after receipt of a triggering signal. In the latter case, the proteins are stored in secretory vesicles (or secretory granules) until exocytosis is triggered. Similarly, proteins residing on the cell membrane can also be secreted into the extracellular space by proteolytic cleavage of a "linker" holding the protein to the membrane.

Despite the great progress made in recent years, only a small number of genes

encoding human secreted proteins have been identified. These secreted proteins include the commercially valuable human insulin, interferon, Factor VIII, human

30

70

ςĮ

01

MO 66)289900 FCL/N266)06841

7

the pervasive role of secreted proteins in human physiology, a need exists for identifying and characterizing novel human secreted proteins and the genes that encode them. This knowledge will allow one to detect, to treat, and to prevent medical disorders by using secreted proteins or the genes that encode them.

### noitneyal sat to grammed

The present invention relates to novel polynucleotides and the encoded polypeptides. Moreover, the present invention relates to vectors, host cells, antibodies, and recombinant methods for producing the polypeptides and to the polypeptides. Also provided are diagnostic methods for detecting disorders related to the polypeptides, and therapeutic methods for treating such disorders. The invention further relates to screening methods for identifying binding partners of the polypeptides.

# Detailed Description

## **Definitions**

terms used throughout this specification.

In the present invention, "isolated" refers to material removed from its original

The following definitions are provided to facilitate understanding of certain

environment (e.g., the natural environment if it is naturally occurring), and thus is altered "by the hand of man" from its natural state. For example, an isolated polynucleotide could be part of a vector or a composition of matter, or could be contained within a cell, and still be "isolated" because that vector, composition of matter, or particular cell is not the original environment of the polynucleotide.

In the present invention, a "secreted" protein refers to those proteins capable

of being directed to the ER, secretory vesicles, or the extracellular space as a result of a signal sequence, as well as those proteins released into the extracellular space, without necessarily containing a signal sequence. If the secreted protein is released into the extracellular space, the secreted protein can undergo extracellular processing to produce a "mature" protein. Release into the extracellular space can occur by many mechanisms, including exocytosis and proteolytic cleavage.

30

57

07

ςĮ

ς

/

ςį

In specific embodiments, the polynucleotides of the invention are less than 300 kb, 200 kb, 100 kb, 50 kb, 15 kb, 10 kb, or 7.5 kb in length. In a further embodiment, polynucleotides of the invention comprise at least 15 contiguous nucleotides of the coding sequence, but do not comprise all or a portion of any intron. In another embodiment, the nucleic acid comprising the coding sequence does not contain coding sequences of a genomic flanking gene (i.e., 5' or 3' to the gene in the genome).

As used herein, a "polynucleotide" refers to a molecule having a nucleic acid

sequence contained in SEQ ID NO:X or the cDNA contained within the clone deposited with the ATCC. For example, the polynucleotide can contain the nucleotide sequence of the full length cDNA sequence, including the 5' and 3' untranslated sequences, the coding region, with or without the signal sequence, the secreted protein coding region, as well as fragments, epitopes, domains, and variants of the nucleic acid sequence. Moreover, as used herein, a "polypeptide" refers to a

polynucleotide as broadly defined.

In the present invention, the full length sequence identified as SEQ ID NO:X

molecule having the translated amino acid sequence generated from the

was often generated by overlapping sequences contained in multiple clones (contig

analysis). A representative clone containing all or most of the sequence for SEQ ID

20 NO:X was deposited with the American Type Culture Collection ("ATCC"). As
shown in Table 1, each clone is identified by a cDNA Clone ID (Identifier) and the
ATCC Deposit Number. The ATCC is located at 10801 University Boulevard,
Manassas, Virginia 20110-2209, USA. The ATCC deposit was made pursuant to the
terms of the Budapest Treaty on the international recognition of the deposit of
microorganisms for purposes of patent procedure.

A "polynucleotide" of the present invention also includes those polynucleotides capable of hybridizing, under stringent hybridization conditions, to sequences contained in SEQ ID NO:X, the complement thereof, or the cDNA within the clone deposited with the ATCC. "Stringent hybridization conditions" refers to an overnight incubation at 42° C in a solution comprising 50% formamide, 5x SSC (750 overnight incubation at 42° C in a solution comprising 50% formamide, 5x SSC (750 overnight incubation at 42° C in a solution comprising 50% formamide, 5x SSC (750 overnight incubation at 42° C in a solution comprising 50% formamide, 5x SSC (750 overnight incubation at 42° C in a solution comprising 50% formamide, 5x SSC (750 overnight incubation at 42° C in a solution comprising 50% formamide, 5x SSC (750 overnight incubation at 42° C in a solution comprising 50% formamide, 5x SSC (750 overnight incubation at 42° C in a solution comprising 50% formamide, 5x SSC (750 overnight incubation at 42° C in a solution comprising 50% formamide, 5x SSC (750 overnight incubation at 42° C in a solution comprising 50% formamide, 5x SSC (750 overnight incubation at 42° C in a solution comprising 50% formamide, 5x SSC (750 overnight incubation).

ςı



solution, 10% dextran sulfate, and 20  $\mu$ g/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1x SSC at about 65°C.

Also contemplated are nucleic acid molecules that hybridize to the

polynucleotides of the present invention at lower stringency hybridization conditions.

Changes in the stringency of hybridization and signal detection are primarily accomplished through the manipulation of formamide concentration (lower temperature. For example, lower stringency conditions include an overnight incubation at 37°C in a solution comprising 6X SSPE (20X SSPE = 3M NaCl; 0.2M incubation at 37°C in a solution comprising 6X SSPE (20X SSPE = 3M NaCl; 0.2M sperm blocking DNA; followed by washes at 50°C with 1XSSPE, 0.1% SDS. In addition, to achieve even lower stringency, washes performed following stringent hybridization can be done at higher salt concentrations (e.g. 5X SSC).

Note that variations in the above conditions may be accomplished through the

inclusion and/or substitution of alternate blocking reagents used to suppress background in hybridization experiments. Typical blocking reagents include Denhardt's reagent, BLOTTO, heparin, denatured salmon sperm DNA, and reagents may require modification of the hybridization conditions described above, due to problems with compatibility.

Of course, a polynucleotide which hybridizes only to polyA+ sequences (such

as any 3' terminal polyA+ tract of a cDNA shown in the sequence listing), or to a complementary stretch of T (or U) residues, would not be included in the definition of "polynucleotide," since such a polynucleotide would hybridize to any nucleic acid molecule containing a poly (A) stretch or the complement thereof (e.g., practically any double-stranded cDNA clone).

The polynucleotide of the present invention can be composed of any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. For example, polynucleotides can be composed of single- and double-stranded DNA, DNA that is a mixture of stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA single- and double-stranded regions, hybrid molecules comprising DNA and RNA

that may be single-stranded or, more typically, double-stranded or a mixture of single-and double-stranded regions. In addition, the polynucleotide can be composed of triple-stranded regions comprising RNA or DNA or both RNA and DNA. A polynucleotide may also contain one or more modified bases or DNA or RNA backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications can be made to DNA and RNA; thus, "polynucleotide" embraces

chemically, enzymatically, or metabolically modified forms.

The polypeptide of the present invention can be composed of amino acids

may be made by synthetic methods. Modifications include acetylation, acylation, and branched cyclic polypeptides may result from posttranslation natural processes or ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, modifications. Polypeptides may be branched, for example, as a result of 07 a given polypeptide. Also, a given polypeptide may contain many types of type of modification may be present in the same or varying degrees at several sites in side-chains and the amino or carboxyl termini. It will be appreciated that the same can occur anywhere in a polypeptide, including the peptide backbone, the amino acid detailed monographs, as well as in a voluminous research literature. Modifications SI known in the art. Such modifications are well described in basic texts and in more posttranslational processing, or by chemical modification techniques which are well The polypeptides may be modified by either natural processes, such as isosteres, and may contain amino acids other than the 20 gene-encoded amino acids. joined to each other by peptide bonds or modified peptide bonds, i.e., peptide 10

cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, glycosylation, GPI anchor formation, hydroxylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA° mediated addition of amino acids to proteins such as arginylation, and ubiquitination.

heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent

ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a

52

SI

10

(See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993); Dohnson, Ed., Academic Press, New York, pgs. 1-12 (1983); Seifter et al., Meth Johnson, Ed., Academic Press, New York, pgs. 1-12 (1983); Seifter et al., Meth Insymol 182:626-646 (1990); Rattan et al., Ann NY Acad Sci 663:48-62 (1992).)

"SEQ ID NO:X" refers to a polynucleotide sequence while "SEQ ID NO:Y" refers to a polypeptide sequence, both sequences identified by an integer specified in Table 1.

"A polypeptide having biological activity" refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide of the present invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. In the case where dose dependency does exist, it need not be identical to that of the polypeptide, but rather substantially similar to the dose-dependence in a given activity as compared to the polypeptide of the present invention (i.e., the candidate polypeptide will exhibit greater activity or not more than about 25-fold less and, preferably, not more than about tenfold less activity, and most preferably, not more than about three-fold less activity relative to

# 20 Polynucleotides and Polypeptides of the Invention

the polypeptide of the present invention.)

# **LEVLINES OF PROTEIN ENCODED BY GENE NO: 1**

which is thought to be important in tumor metastasis and is itself a secretory protein 25 (See, Kiselev SL, et al., J Biol Chem. 273:18633 (1998) and Genetika. 1996 May; 32(5): 621-628. (Russian)), and a family of peptidoglycan recognition proteins involved in the innate immune response to peptidoglycan in species as diverse as insects and humans (See, Kang, D. et.al., PNAS 95:10078 (1998)).

Preferred polypeptides of the invention comprise the following amino acid

The translation product of this gene shares sequence homology with tag-7

sequence: WAGTQEPTGLPSTLSRSESWDH (SEQ ID NO: 211). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in keratinocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, dermatological disorders, especially skin cancers such as melanoma. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the may be routinely detected in certain tissues or cell types (e.g., skin, cancerous and may be routinely detected in certain tissues or cell types (e.g., skin, cancerous and may be routinely detected in certain tissues or cell types (e.g., skin, cancerous and fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO:

Preferred epitopes include those comprising a sequence shown in SEQ ID NO:

111 as residues: Ser-25 to Ala-31, Gln-146 to Ser-151, His-231 to Asn-236.

The trasue distribution in keratinocytes and homology to tag-7 indicates that the protein products of this gene are useful for detection, treatment, and/or prevention of dermatological disorders, especially skin cancers like melanoma, and integumentary tumors (e.g., keratoses, Bowen's disease, basal cell carcinoma, malignant melanoma, Paget's disease, mycosis fungoides, and Kaposi's sarcoma). Tag-7 was dicovered when gene expression was compared in neoplastic cell line by means of the differential display method. A fragment of cDNA neoplastic cell line by means of the differential display method. A fragment of cDNA offerential display method. A fragment of cDNA determined. The full-length tag-7 cDNA was gened and its nucleotide sequence was determined. The full-length tag-7 cDNA was gened and its nucleotide sequence was activities with tag-7. Such activities can be assayed as set forth herein and by assays activities with tag-7. Such activities can be assayed as set forth herein and by assays activities with the art.

family involved in innate immunity, suggests that polynucleotides and polypeptides corresponding to this gene are useful for the treatment, diagnosis, and/or prevention

Additionally, the homology to a conserved peptidoglycan recognition protein

30

52

07

ςī

01

Many polynucleotide sequences, such as EST sequences, are publicly tissues. utility as a tumor marker and immunotherapy targets for the above listed tumors and and ringworm). Protein, as well as, antibodies directed against the protein may show 10 contagiosum, herpes zoster, boils, cellulitis, erysipelas, impetigo, tinea, althlete's foot, bacterial infections of the skin (e.g., cold sores, warts, chickenpox, molluscum Moreover, such disorders may predispose increased susceptibility to viral and pemphigus), keloids, striae, erythema, petechiae, purpura, and xanthelasma. erythematosus, vitiligo, dermatomyositis, morphea, scleroderma, pemphigoid, and ς atherosclerosis, uticaria, eczema, photosensitivity, autoimmune disorders (e.g., lupus the skin (e.g., wounds, rashes, prickly heat disorder, psoriasis, dermatitis), Mongolian spots, hemangiomas, port-wine syndrome), injuries and inflammation of of various skin disorders including congenital disorders (e.g., nevi, moles, freckles, 8

available and accessible through sequences, such as EST sequences, are puonety available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:11 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically

the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1177 of SEQ ID NO:11, b is an integer of 15 to 1191, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:11, and where b is greater than or equal to a + 14.

FGF Receptor Ligand-2 which is thought to be important in activating FGF receptor FGF Receptor Ligand-2 which is thought to be important in activating FGF receptor Ligand-2 which is thought to be important in activating FGF receptor Ligand-2 which is thought to be important in activating FGF receptor Ligand-2 which is thought to be important in activating FGF receptor Ligand-3 with the second control of the second

in mediating cell proliferative functions.

Preferred polypeptides of the invention comprise the following amino acid

WAŁKIOSASOTTTKKKDSTCYŁIÓŁWYTNIIHAŁWSZKCIŁŁYÓSCŁSŁŁKSTM GKKGEWESMTAWSZMSITDŁŁLEYKLOTŁUTAŁLEHSŁASCKHALKEKGCŁ SCOGNCUCC: EIIHALŁSKWYYKKKADIIAIKAŁYDCAŁKWSAKAKCS

WCPHPISKCQLGLYSSQIRDIPYLA (SEQ ID NO: 212),

30

70

SI

51

10

encoding these polypeptides are also provided.

This gene is expressed primarily in neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as

reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, abnormal immune reactions or disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system tissue and connective of the above tissues or cells, particularly of the immune system tissue and connective

tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID MO: 112 as residues: Met-1 to Met-6.

The tissue distribution and homology to FGF Receptor Ligand-2 indicates that the protein products of this gene are useful for detection, treatment, and/or prevention 25 of immune disorders, especially those that are mediated by neutrophil functions. They

can be utilized in the treatment of neural and immune disorders, or to stimulate proliferation of vertebrate cells, raise antibodies, and to screen for antagonists useful for inhibiting tumor growth. Moreover, the expression of this gene product suggests a role in regulating the proliferation, survival, differentiation, and/or activation of hematopoietic cell lineages, including blood stem cells. This gene product may be involved in the regulation of cytokine production, antigen presentation, or other

PCT/US99/09847

processes that may also suggest a usefulness in the treatment of cancer (e.g., by boosting immune responses).

Since the gene is expressed in cells of lymphoid origin, the natural gene agent for immunological disorders including arthritis, asthma, immunodeficiency diseases such as AIDS, leukemia, rheumatoid arthritis, granulomatous disease, hypersensitivities, such as T-cell mediated cytotoxicity; immune reactions to transplanted organs and tissues, such as host-versus-graft and graft-versus-host diseases, or autoimmunity disorders, such as autoimmune infertility, lense tissue injury, demyelination, systemic lupus erythematosis, drug induced hemolytic anemia, injury, demyelination, systemic lupus erythematosis, drug induced hemolytic anemia, product may have commercial utility in the expansion of stem cells and committed product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Protein, as well as, antibodies directed against the protein may various cell types. Protein, as well as, antibodies directed against the protein may

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1237 of SEQ ID NO:12, b is an

show utility as a tumor marker and/or immunotherapy targets for the above listed

**EEATURES OF PROTEIN ENCODED BY GENE NO: 3** 

30

tissues.

ςī

10

The translation product of this gene shares sequence homology with glycosyl transferase, which is thought to be important in glycosylation of proteins (See Genbank Accession No. g2996578).

integer of 15 to 1251, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:12, and where b is greater than or equal to a + 14.

and organs. haemopoietic cells and colon tissue, and, to a lesser extent, in several other tissues This gene is expressed primarily in osteoclastoma cells, melanocytes,

fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another types (e.g., immune, musculo-skeletal, cancerous and wounded tissues) or bodily significantly higher or lower levels may be routinely detected in certain tissues or cell haemopoietic system, epithelium and skeletal system, expression of this gene at type(s). For a number of disorders of the above tissues or cells, particularly of the providingimmunological probes for differential identification of the tissue(s) or cell polypeptides and antibodies directed to these polypeptidesare useful in not limited to, disorders of the skin, blood, skeletal system and cancer. Similarly, biological sample and for diagnosis of diseases and conditions which include, but are reagents for differential identification of the tissue(s) or cell type(s) present in a Therefore, polynucleotides and polypeptides of the invention are useful as

fluid from an individual not having the disorder. standard gene expression level, i.e., the expression level in healthy tissue or bodily tissue or cell sample taken from an individual having such a disorder, relative to the

113 as residues: Glu-136 to Pro-141, Ala-221 to Ser-227, Asp-307 to Pro-312, Lys-Preferred epitopes include those comprising a sequence shown in SEQ ID NO:

of disorders of the haemopoietic, skeletal and epithelial systems, and cancers thereof, polypeptides corresponding to this gene are useful for the treatment and/or diagnosis homology to glycosyl transferase protein, suggests that polynucleotides and The tissue distribution in musculo-skeletal and immune tissues, and the

355 to Gly-361, Phe-449 to Pro-454.

tissues. may show utility as a tumor marker and/or immunotherapy targets for the above listed proteins (i.e. glycosylation). Protein, as well as, antibodies directed against the protein as well as disorders associated with incorrect post-translational modification of

the present invention. Preferably, such related polynucleotides are specifically related to SEQ ID NO:13 and may have been publicly available prior to conception of available and accessible through sequence databases. Some of these sequences are

Many polynucleotide sequences, such as EST sequences, are publicly

30

52

07

10

excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1720 of SEQ ID NO:13, b is an integer of 15 to 1734, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:13, and where b is greater than or equal to a + 14.

#### **LEVLINES OF PROTEIN ENCODED BY GENE NO: 4**

The translation product of this gene shares sequence homology with human pleckstrin protein (See Genbank Accession No. g35518), which is thought to be important in platelet formation or activity. Therefore, it is likely that this gene also has activity in platelets.

This gene is expressed primarily in keratinocytes, and, to a lesser extent, in

spleen and bone marrow.

Therefore, nucleic acids of the invention are useful as reagents for differential

identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of the following diseases and conditions which include, but are not limited to, immune and clotting disorders. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and blood clotting systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, blood clotting, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or to the standard gene expression level, i.e., the expression level in healthy tissue or

bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 114 as residues: Leu-38 to Gly-49, Lys-75 to Thr-80.

The tissue distribution in keratinocytes, spleen and bone marrow, and the homology to pleckstrin suggests that polynucleotides and polypeptides corresponding to this gene are useful for the study, diagnosis and/or treatment of immune system and

30

SI

ς

clotting disorders. Furthermore, since this protein is 50% identical to the Pleckstrin protein, it is an excellent candidate for a protein kinase C substrate. Identification of this protein as a target of protein kinase C, and the exploration of its role in protein kinase C mediated responses, such as inflammation, may lead to a better kinase C mediated responses, such as inflammation, may lead to a better one biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:14 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1526 of SEQ ID NO:14, b is an integer of 15 to 1540, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:14, and where b is greater than or equal to a + 14.

## **LEVILIBES OF PROTEIN ENCODED BY GENE NO: 5**

30

52

The gene encoding the disclosed cDNA is thought to reside on chromosome 17. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 17.

This gene is expressed primarily in infant liver/spleen tissues, T cells, bone marrow stromal cells, and thymus tissue, and, to a lesser extent, in brain and tonsils tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, various immune system disorders and/or diseases. Similarly,

polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO:

115 as residues: Ser-46 to Arg-54.

The tissue distribution in liver/spleen tissues, T-cells, bone marrow stromal

cells, and thymus tissue suggests that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and/or treatment of a variety of cancers, most notably cancers of the immune system. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the expression of this gene product in a variety of cells of the immune system suggests that this gene may be a inhibitors as therapeutics. Furthermore, the tissue distribution suggests that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and/or diagnosis of hematopoietic related disorders such as anemia, pancytopenia, leukopenia, thrombocytopenia or leukemia, since stromal cells are important in the production of cells of hematopoietic lineages.

The uses include bone marrow cell ex vivo culture, bone marrow releases include bone marrow cell ex vivo culture, bone marrow

transplantation, bone marrow reconstitution, radiotherapy or chemotherapy of neoplasia. The gene product may also be involved in lymphopoiesis, therefore, it can be used in immune disorders such as infection, inflammation, allergy, immunodeficiency etc. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue protein may also be used to determine biological activity, to raise antibodies, as tissue

52

07

SΙ

10

ς

ςı

antibodies directed against the protein may show utility as a tumor marker and/or interactions, in addition to its use as a nutritional supplement. Protein, as well as, markers, to isolate cognate ligands or receptors, to identify agents that modulate their

Many polynucleotide sequences, such as EST sequences, are publicly immunotherapy targets for the above listed tissues.

integer of 15 to 1558, where both a and b correspond to the positions of nucleotide formula of a-b, where a is any integer between 1 to 1544 of SEQ ID NO:15, b is an more polynucleotides comprising a nucleotide sequence described by the general cumbersome. Accordingly, preferably excluded from the present invention are one or excluded from the scope of the present invention. To list every related sequence is the present invention. Preferably, such related polynucleotides are specifically related to SEQ ID NO:15 and may have been publicly available prior to conception of available and accessible through sequence databases. Some of these sequences are

residues shown in SEQ ID NO:15, and where b is greater than or equal to a + 14.

**LEVLINES OF PROTEIN ENCODED BY GENE NO: 6** 

Science. (1997) 277(5322): 55-60, incorporated herein by reference in its entirety. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. angiopoietin-2, an anti-angiogenic factor. See, for example, Maisonpierre, et al.,

The translation product of this gene shares sequence homology with

known in the art and described herein. share certain biological activities with Angiopoietin-2 as may be assessed by assays Based on the sequence similarity, the translation product of this gene is expected to

Preferred polypeptides of the invention comprise the following amino acid

**GSNAALRIELEDWKDNKHYTEYSFYLGNHETNYTLHLVAITGNVPNAIPENK ACDAISGSPWILLIQHRIDGSQNFNETWENYKYGFGRLDGFFWLGLEKIYSIVK** KPRAPRITPFLQLNEIRNVKHDGIPAECTTIYNRGEHTSGMYAIRPSUSQVFHV TK1. ŁACEKÓDNZIKDLTÓŁAEDÓŁKÓLNÓÓHZÓIKEIENÓLBKŁZIÓEŁ LEIZTZZ NEEVKNMSLELNSKLESLLEEKILLQQKVKYLEEQLTNLIQNQPETPEHPEVTS GEKDFAHKLKGGINDIFQKLNIFDQSFYDLSLQTSEIKEEFKELRRTTYKLQVK **WETIKLLLIVPLYISSRIDQDNSSFDSLSPEPKSRFAMLDDVKILANGLLQCH** 

30

52

07

SI

01

sedneuce:

PCT/US99/09847 0998\$/66 OM

50 chromosome 1. polynucleotides related to this invention are useful as a marker in linkage analysis for encoding the disclosed cDNA is believed to reside on chromosome 1. Accordingly, Also preferred are the polynucleotides encoding these polypeptides. The gene and/or ERRRGLSWKSQNGRLYSIKSTKMLIHPTDSESFE (SEQ ID NO: 231). SI HENCLECA SCEMMMHDECERNT NEK ANKLEVEKKE (SEG ID NO: 530)<sup>1</sup> TNYTLHLVAITGNVPNAIPENKDLVFSTWDHKAKG (SEQ ID NO: 229), ASIAKÓSNAATBIETEDMKDNKHAIEASŁATGNHE (2EÓ ID NO: 558)<sup>1</sup> IGHKIDG2GNENELMENAKAGEGKTDGEEMTGFEKI (2EG ID NO: 551)<sup>1</sup> IXNBCEHTSGMYAIRPSNSQVFHVYCDVISGSPWTL (SEQ ID NO: 226), 10 ISLSSKPRAPRTTPFLQLNEIRNVKHDGIPAECTT (SEQ ID NO: 225), LQTVEDQYKQLNQQHSQIKEIENQLRRTSIQEPTE (SEQ ID NO: 224), EQLTULIQUQPETPEHPEVTSLKTFVEKQDNSIKDL (SEQ ID NO: 223), OAKNEEAKNWSTETNSKTESTTEEKITTOOKAKATE (SEO ID NO: 555)' FOKLNIFDQSFYDLSLQTSEIKEEEKELRRTTYKL (SEQ ID NO: 221), ς WILDDVKILANGLLQLGHGLKDFVHKTKGQINDI (SEQ ID NO: 220), WŁLIKTTTŁIAŁNISZKIDÓDNZZŁDZTZŁEKZKŁ (ZEÓ ID NO: 318)<sup>1</sup> ERRRGLSWKSQNGRLYSIKSTKMLIHPTDSESFE (SEQ ID NO: 218), DFAESLMDHKYKCHENCLECKSCCMMMHDECCENNFNCKKNKBKYKSKF

This gene is expressed primarily in liver.

individual having such a disorder, relative to the standard gene expression level, i.e., synovial fluid and spinal fluid) or another tissue or cell sample taken from an cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, 30 may be routinely detected in certain tissues or cell types (e.g., vascular, liver, the vascular system, expression of this gene at significantly higher or lower levels or cell type(s). For a number of disorders of the above tissues or cells, particularly of useful in providingimmunological probes for differential identification of the tissue(s) 52 development. Similarly, polypeptides and antibodies directed to these polypeptidesare not limited to, angiogenesis and neovascularisation associated with tumour biological sample and for diagnosis of diseases and conditions which include, but are reagents for differential identification of the tissue(s) or cell type(s) present in a Therefore, polynucleotides and polypeptides of the invention are useful as

MO 66\28960 PCT/US99/09847

the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 116 as residues: Arg-18 to Asp-27, Leu-29 to Arg-36, Ser-90 to Tyr-104, Val-108 to Lys-114.

The tissue distribution primarily in liver and homology to angiopoietin-2 indicates that the protein products of this gene are useful for the treatment and/or detection of disorders associated with angiogenesis including the inhibition of angiogenesis and neovascularisation associated with tumour development; the promotion of neovascularisation and wound healing; the treatment of ischaemia; thromboembolytic disease; atherosclerosis; inflammation; and diabetes. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue

markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are

related to SEQ ID NO:16 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1622 of SEQ ID NO:16, b is an integer of 15 to 1636, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:16, and where b is greater than or equal to a + 14.

### **LEVLINES OF PROTEIN ENCODED BY GENE NO: 7**

30

Preferred polypeptides of the invention comprise the following amino acid sequence: LPPRGPATFGSPGCPPANSPPSAPATPE PARAPERV (SEQ ID NO: 232). Polynucleotides encoding these polypeptides are also provided.

reference herein). strands (See, J. Cell Biol 143:391-401 (1998), which is hereby incorporated by TJ strand formation, and occludin is an accessory protein in some function of TJ SI homophilic interaction. It is believed that claudin-1 and -2 are mainly responsible for microscopy to be highly concentrated at cell contact sites as planes through a tagged claudin-1 and -2 protein have been demonstrated using immunofluorescence 2, and occludin, are known to be components of tight junction (TI) strands. FLAGand/or gil4128015|gnllPIDle1363658). Three integral membrane proteins, claudin-1, -01 transmembrane domains (e.g., See Genbank Acc. Nos. gil3335182 (AF072127) integral membrane proteins which are structurally similar and contain four murine claudin-1 and other murine and human members of the claudin family of proliferation. The translation product of this gene shares sequence homology with tissues and cell types upon activation, leading the cells to undergo differentiation and response 1 (EGR1) is a promoter associated with certain genes that induces various activates fibroblast cells through a signal transduction pathway. Early growth containing this gene activated the EGRI assay. Thus, it is likely that this gene When tested against fibroblast cell lines, supernatants removed from cells

This gene is expressed primarily in wound healing tissues, and various carcinoma tissues, and, to a lesser extent, in some other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as

reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, tumorigenesis. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential tissues or cells, particularly of wounded tissues, and cancerous tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an expression level in healthy tissue or bodily fluid from an expression level in healthy tissue or bodily fluid from an expression level, i.e., the expression level in healthy tissue or bodily fluid from an

individual not having the disorder.

The tissue distribution in healing wound tissue and various carcinomas

Many polynucleotide sequences, such as EST sequences, are publicly immunotherapy targets for the above listed tissues. antibodies directed against the protein may show utility as a tumor marker and/or interactions, in addition to its use as a nutritional supplement. Protein, as well as, markers, to isolate cognate ligands or receptors, to identify agents that modulate their protein may also be used to determine biological activity, to raise antibodies, as tissue in the regulation of cellular division and tight junction formation. Furthermore, the of this gene to a family of claudin proteins suggests that this protein may play a role healing wound and various carcinomas) and the homology of the translation product disorders. Expression within cellular sources marked by proliferating cells (e.g., useful for the detection, treatment, and/or prevention of cancer and other proliferative assays indicate that polynucleotides and polypeptides corresponding to this gene are activity of supernatants from cells expressing this gene on fibroblast cells in EGR I, a integral membrane protein involved in tight junction formation, and the biological herein. Additionally, the homology of the translation product of this gene to claudinand/or prevention of wounds and tumors. Representative uses are described elsewhere indicates that the protein products of this gene are useful for detection, treatment,

related to SEQ ID NO:17 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1242 of SEQ ID NO:17, b is an integer of 15 to 1256, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:17, and where b is greater than or equal to a + 14.

available and accessible through sequence databases. Some of these sequences are

#### **LEVLURES OF PROTEIN ENCODED BY GENE NO: 8**

30

52

50

SI

01

The translation product of this gene shares sequence homology with fibulin which is thought to be important in cellular adhesion and extracellular matrix organization.

**TMTRSWRIFFUNIA** 

ς

sequence: GTRAGVSKYTGGRGVTWAPSSAAVPRISSATMRMGLTSFSTTGA

MÓZGHKTMÓTEMЬЬЬГЗ V DEHЬMEGЬГЬС LZ BZ BKEZWBZ BABHCHHKBLT (ZEÓ ID NO: 233),

- *XB222ANRLFRVIRREHGDPLIEELNPGDALEPEGRGTGGVVTDFDGDGMLDL*
- ILSHGESMAQPLSVFRG
- NOGENNUMERAADELEE VERBERAALTELEKSGENTE VIDGESGETCEME
- (SEÓ ID NO: 534), WQSGHRLWQLEWPPPLEANIAYBSSS (SEO ID NO: DTNECIQFPYCPROPHPPT TATESWREIFBNIAYBSSS (SEQ ID NO: POCKMYSRAVASGEMASVENTELLYPRDEDTLQDPAPLECCQGFSQQENGHCM POCKMYSRAVASGEMASVLEILYPRDEDTLQDPAPLECCQGFSQQENGHCM PVAHFGLGKDEASSVEVTW
- GGSGYLCEMEPVAHFGLGKDEASSVEVTWPDGKMVS (SEQ ID NO: 239), NWLRVVPRTRFGAFARGARVVLYTKKSGAHLRIID (SEQ ID NO: 239), TOFDGDGMLDLILSHGESMAQPLSVFRGNQGFNN (SEQ ID NO: 238), TOFDGDGMLDLILSHGESMAQPLSVFRGNQGFNN (SEQ ID NO: 237), NGS, FSMPSPVPHGPPLIEELNPGDALEPEGRGTGGVV (SEQ ID NO: 237), TOFDGDGMLPRVIRREHGDPLIEELNPGDALEPEGRGTGGVV (SEQ ID NO: 239), TOFDGDGMLPRVIRREHGDPLIEELNPGDALEPEGRGTGGVV (SEQ ID NO: 239), TOFDGDGMLPRVIRREHGDPLIEELNPGDALEPEGRGTGGVV (SEQ ID NO: 2370), TOFDGGMLPRVIRREHGDPLIEELNPGDALEPEGRGTGGVV (SEQ ID NO: 2370), TOFDGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGDPLIEELNPGGMLPRVIRREHGMLPRVIRREHGMLPRVIRREHGMLPRVIRRE
- 20 Sud/of CRTNKKCSXGLRVPTRMAHTGL (SEQ ID NO: 243). Polynucleotides GGSGYLCEMEPVAHFGLGKDEASSVEVTWPDGKMVS (SEQ ID NO: 241), GGSGYLCEMEPVAHFGLGKDEASSVEVTWPDGKMVS (SEQ ID NO: 242), GGSGYLCEMEPVAHFGLGKGTMVS (SEQ ID NO: 243), GG

linkage analysis for chromosome 10.

- encoding these polypeptides are also provided.

  The gene encoding the disclosed cDNA is believed to reside on chromosome 10. Accordingly, polynucleotides related to this invention are useful as a marker in
- Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,thrombosis, atherosclerosis, neoplasia, schizophrenia, Alzheimer's disease, Parkinson's disease, Huntington's disease, transmissible spongiform encephalopathies (TSE), Creutzfeldt-Jakob disease (CJD), specific brain tumors, aphasia, mania, depression and dementia. Similarly, polypeptides and antibodies

ςī

17

differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous and cardiovascular systems, expression of this gene at significantly higher or lower levels may be tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid or cerebrospinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in brain and the homology to fibulin suggests that the

protein product of this gene is useful for the treatment and diagnosis of developmental, degenerative and/or neoplastic conditions (such as cancer) with mechanisms contingent on the regulation of cellular adhesion and extracellular matrix organization. Fibulin itself, can be used to manipulate adhesion of cells to fibronectin, collagen, laminin, and possibly also other proteins. Thrombosis, atherosclerosis and polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of neurodegenerative disease states, behavioral disorders, or inflammatory conditions.

"Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Briefly, the uses include, but are not limited to the detection, treatment, and/or prevention of Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Tourette Syndrome, meningitis, encephalitis, demyelinating diseases, peripheral neuropathies, neoplasia, trauma, congenital malformations, spinal cord injuries, ischemia and infarction, aneuryams, hemorrhages, achizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, depression, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception. In addition, elevated expression of this gene product in regions of the brain indicates it plays a role in normal neural function. Furthermore, the protein may also be used to determine hological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or

Representative uses are described in the "Regeneration" and

receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID MO:18 and may have been publicly available prior to conception of the present invention. To list every related sequence is excluded from the scope of the present invention. To list every related sequence is more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1129 of SEQ ID MO:18, b is an integer of 15 to 1143, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID MO:18, and where b is greater than or equal to a + 14.

# **LEVLINES OF PROTEIN ENCODED BY GENE NO: 9**

The translation product of this gene shares sequence homology with carbonic anhydrase VI, which is thought to be important in protein degradation and pH regulation (see e.g., EMBL locus BTCARANVI, accession X96503; and Jiang et al.,

Biochem. J. 318:291-296 (1996) which is hereby incorporated herein, by reference).

Based on this homology, it is likely that this gene would have activity similar to

carbonic anhydrase.

Preferred polypeptides of the invention comprise the following amino acid sequence: GQHWTYEGPHGQDHWP (SEQ ID NO: 248), QSPIDIQTDSVTFD (SEQ ID NO: 248), LHNNGHTVQLSLPST (SEQ ID NO: 250),

KYVAAQLHLHWG (SEQ ID NO: 251), and/or AELHIVHYDSDSY (SEQ ID NO: 752). Polynucleotides encoding these polypeptides are also provided.

The gene encoding the disclosed cDNA is thought to reside on chromosome I.

Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome l

This gene is expressed primarily in fetal tissues and brain tissue, and, to a lesser extent, in melanocytes, wilms tumor and retinal tissues.

57

70

ςĮ

10

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, glaucoma and alkalosis resulting from disease of the kidney. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the systems regulating ionic balance and pH in the fluids of the body, expression of this systems regulating ionic balance and pH in the fluids of the body, expression of this tissues or cell types (e.g., Iymph, serum, plasma, urine, synovial fluid and spinal divides) or bodily fluids (e.g., Iymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a fluid) or another tissue or cell sample taken from an individual having such a

Preferred epitopes include those comprising a sequence shown in SEQ ID MO: 119 as residues: Tyr-24 to His-32, Pro-38 to Ala-44, Pro-66 to Glu-75, His-111 to Gly-116, Tyr-139 to Ser-146, Thr-176 to Ser-181, Lys-239 to Lys-249.

The tissue distribution and homology to secreted carbonic anhydrase suggests

disorder, relative to the standard gene expression level, i.e., the expression level in

healthy tissue or bodily fluid from an individual not having the disorder.

that polynucleotides and polypeptides corresponding to this gene are useful for developing drugs that modulate ionic balance in the serum and in the retina, and may be used for treating diseases such as glaucoma or alkalosis secondary to renal disease. Representative uses are described elsewhere herein. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

available and accessible through sequence databases. Some of these sequences are related to SEQ ID MO:19 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is

Many polynucleotide sequences, such as EST sequences, are publicly

cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1523 of SEQ ID NO:19, b is an integer of 15 to 1537, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:19, and where b is greater than or equal to a + 14.

# **EEVILIBES OF PROTEIN ENCODED BY GENE NO: 10**

The translation product of this gene shares sequence homology with murine CD63/ME491 which is thought to be important in activation of macrophage and platelet population (marker of); CD37 (Genbank Acc. No. gil29794), a human leukocyte marker; and several members of the tetraspanin protein family (See, e.g., Genbank Acc. No. gil3152703 (AF065389) and gil2995865 (AF053455)), which are expressed in a wide variety of species and regulate cell adhesion, migration, proliferation and differentiation.

The transmembrane 4 superfamily (TM4SF) which has at least 16 members is

the second biggest subfamily among CD antigen superfamilies and activation antigens of T-cells. All TM4SF members contain four putative transmembrane domains, two extracellular loops, and two short cytoplasmic tails. They are variously expressed on immature, early, mature, activated lymphocytes, monocytes, macrophages, and a variety of other cells and tissues. CD9 cell surface protein is expressed by both hematopoietic and neural cells, and may play a role in intercellular signaling in the immune and nervous system. CD63 is a 53-Kd lysosomal membrane glycoprotein that has been identified as a platelet activation molecule; it plays an important role in cell has been identified as a platelet activation molecule; it plays an important role in cell subscious of platelets and endothelial cells.

Watanabe heritable hyperlipidemic rabbits, suggesting a potential role of CD63 in progression of atherosclerosis. CD63 is also a mast cell marker. This gene also shares close homology with C33 antigen (CD82); CD82 was originally identified as the target of several mAbs inhibitory to syncytium formation induced by human T-cell leukemia virus type I (HTLV-I), the etiological agent of adult T-cell leukemia. Therefore, this gene could be a target for the development of a drug for this leukemia.

Increased mRNA for CD63 antigen was found in atherosclerotic lesions of

30

ςī

CD81 is the target of an antiproliferative antibody. A diverse group of human cell lines, including hematolymphoid, neuroectodermal, and mesenchymal cells, express the CD81 protein.

Many of the lymphoid cell lines, in particular those derived from large cell

TGATGTCAGGTTCAGCTGAAGAGCAAGTGGGATGAGTCCATCTTCACGA AATTGCAGCGGTGCCAGCCGAGAGAATGCGGGGTCCCCTTCTCC 30 TGCTGTGGCGCATATGGCCCTGAAAGACTGGGACCTCAGACGTCTACTTC ACGATACGAAAGCTCATCGACTCCATCAGAAGCTAACCAG GAGGGACCGGTTCCGGGGGGCACATCAAGTCCTACCGGG CTTCCTGGAGCTGGCTGTGGCTGCTGCTTCCTGTTCCAGGACTGGGT GGAGAATATCTGCTCAACTTTTCTGTGGCACCATCGTGCTCATCTT 52 GGCGTGGTGATCACCCTGGGGTTCGCCGGCTGCGTGGGGGGCTCTGCCG AGTCGGGCTGTGGCCATGGAGGTGTGCTGTCCGACCTCACCA TCCTTTTCAGCTACACATCATCTGATTGGCTGGAGTTGTCTTCCTTGG GCACTATTATAGATACTCTAACGCCAAGGTCAGCTGCTGGTACAAGTACC 50 GGCGCGCGCCGCCGCCGCCGCGCGTTCTGAGAAT

edneuce:

AGTTTATTT (SEQ ID NO: 253). 70 GCCATGGTTCTTCACTGAGAGCGGCTCTCCTTTTCTTAAAGTGTGTAAAT ACTGCCTCTGGTCTTGATAGCATTAAGCCCTGATTGGCCGGTGGCGCGGTG TGCCTTGTCCACTGTCCCCCTGTGTCCACCAGCTATTCTCCTGGCGCCGGA TGTTCAAGTGAAGTGAGCCTGAGCGAGGGACTGGTGCCACGGGAG GTCTGCTGGGACATGCACATATCAGGGGTTGTTTGCAGGATCCTCAGCCA 51 CCTAACGGGACGCGCCCCCCCTGGGCCTCTGAGTGCCAGCGCA GAACAGGCATCCTCCCATCCAAGCCAAGCCAGCATGGGGGGCCTGC CCACATCTGTGGGTGGGCCCGTGGGTAAGAAGGGAACCCCACAGGCGTG ACCTGGTCCCCTCTCCCAGTGGCATCCCAACATCTGCTTTGGGTCCATC CCAGGAGGCTTGACTCAGACCCCTGCAGCTCAAGCATGTCTGCAGGAC 10 CTTTATGTGGGAGTGGTGACTCTGAAAGACAGAGGCTCCTGTGGCTG AAACTTGTGACTGCATCCCTCTGGAGTCTACCCAGAGACAGAGATGTGT TGTTTCTGCTTGTTGCTGAAGACCAAGGGTCCCCCTTGTTACCTGCCC ACCCCAGAGCCAGTCTTAAGCATCAGCGTGACGTGACCTCTC CAGAGCCTTTCTCTGCCATCAGCCTACGTCCAGAGGGAGAGGAGCCGAC ς CTTCTGAGGAGCAGATTGAGGGAGCCGAGCTGAGCCACGCTGGGAGGC CTGGCAAGGACGCTGATCTCAGACGTCAAGGCCGCCGCCATCA GTGGCTGTCTTCATCGCTGTTGCAGATATTTGGCATCTTC AAGGCTGCATCCAGGCTGGAAAGCTGGCTCCCGCGGAACATTTACATT

Preferred polypeptides of the invention comprise the following amino acid

DIONIGEG.

DIONIGEG.

DIONICE TEAM THE (SEG ID NO: 254). POLYMUCLEOTIGES ENCOGING THESE POLYMERITISDIEAN

AGPEDWDLUVYFRICGEAS YSREKCGVPFSCCVPDPAQKVVNTQCGYDVRIQ

TELAVAVLAFTFQDWVRDRFREFFESNIKS YRDDIDLQULIDSLQKANQCCGA

TKYTRMHGIDPVVLVLAVGVVMFTLGFAGCVGALRENICLLUFFCGTIVLIFF

MHYYRYSUAKVSCWYKYLLFSYNIIFWLAGVVFLGVGLWAWSEKGVLSDL

sequence:

The gene encoding the disclosed cDNA is believed to reside on chromosome 10. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 10.

30

This gene is expressed primarily in infant and human brain and, to a lesser extent, in pancreas islet cell tumor, Wilm's tumor, uterine cancer, and B cell lymphomas.

Therefore, polynucleotides and polypeptides of the invention are useful as

Diological sample and for diagnosis of diseases and conditions: cancers and central biological sample and for diagnosis of diseases and conditions: cancers and central nervous system disorders. Similarly, polypeptides and antibodies directed to those polypeptides are useful to provide immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, gene at significantly higher or lower levels may be detected in certain tissues or cell types (e.g., CNS, cancerous and wounded tissues) or bodily fluids (e.g., lymph, bile, serum, plasma, urine, synovial fluid or spinal fluid) taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 120 as residues: Met-1 to Ala-9.

The tissue distribution in infant and human brain, and various tumors, and

homology to murine CD63/ME491, human CD37, and tetraspanins indicates that the protein product of this gene is useful for the study, detection, treatment, and/or prevention of central nervous system diseases and cancers. Moreover, the expression within embryonic tissue and other cellular sources marked by proliferating cells, and its homology indicates this protein may play a role in the regulation of cellular division, and may show utility in the diagnosis, treatment, and/or prevention of developmental diseases and disorders, cancer, and other proliferative conditions.

Representative uses are described in the "Hyperproliferative Disorders" and

"Regeneration" sections below and elsewhere herein. Briefly, developmental tissues rely on decisions involving cell differentiation and/or apoptosis in pattern formation. Dysregulation of apoptosis can result in inappropriate suppression of cell death, as occurs in the development of some cancers, or in failure to control the extent of cell death, as is believed to occur in acquired immunodeficiency and certain

death, as is believed to occur in acquired immunodeficiency and certain neurodegenerative disorders, such as spinal muscular atrophy (SMA). Because of

30

52

70

SI

10

potential roles in proliferation and differentiation, this gene product may have applications in the adult for tissue regeneration and the treatment of cancers. It may also act as a morphogen to control cell and tissue type specification. Therefore, the polynucleotides and polypeptides of the present invention are useful in treating, and/or preventing said disorders and conditions, in addition to other types of degenerative conditions. Thus this protein may modulate apoptosis or tissue differentiation and is useful in the detection, treatment, and/or prevention of degenerative or proliferative conditions and diseases.

The protein is useful in modulating the immune response to aberrant

polypeptides, as may exist in proliferating and cancerous cells and tissues. The protein can also be used to gain new insight into the regulation of cellular growth and proliferation. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly

available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:20 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general

cumbersome. Accordingly, preferably excluded from the present invention are one more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2658 of SEQ ID NO:20, b is an integer of 15 to 2672, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:20, and where b is greater than or equal to a + 14.

# **EEVLINEES OF PROTEIN ENCODED BY GENE NO: 11**

The translation product of this gene shares sequence homology to several steroid receptor proteins (e.g., See Genbank Acc. Nos. gnllPIDle314174, gnllPIDle1154367 (AJ002030), and/or gnllPIDle257707).

30

Preferred polypeptides of the invention comprise the following amino acid sequence:

SGNLGSADGWAYIDVEVRRPWAFVGPGCSRSSGNGSTAYGLVGSPRWLSPF HTGGAVSLPRRPRGP

- 5 GPVLGVARPCLRCVLRPEHYEPGSHYSGFAGRDASRAFVTGDCSEAGLVDD VSDLSAAEMLTLHNWLSFY EKNYVCVGRVTGRFYGEDGLPTPALTQVEAAITRGLEANKLQLQEKQTFPPC NAEWSSARGSRLWCSQKS
- GGVSRDWIGVPRKLYKPGAKEPRCVCVRTTGPPSGQMPDNPPHRNRGDLDH
  10 PNLAEYTGCPPLAITCSFP L (SEQ ID NO: 255),
  SGNLGSADGWAYIDVEVRRPWAFVGPGCSRSSGNGS (SEQ ID NO: 256),

TAYGLVGSPRWLSPFHTGGAVSLPRRPRGPGPVLGV (SEQ ID NO: 257), ARPCLRCVLRPEHYEPGSHYSGFAGRDASRAFVTGD (SEQ ID NO: 258), CSEAGLVDDVSDLSAAEMLTLHNWLSFYEKNYVCVG (SEQ ID NO: 259),

15 RVTGRFYGEDGLPTPALTQVEAAITRGLEANKLQLQ (SEQ ID NO: 260), EKQTFPPCNAEWSSARGSRLWCSQKSGGVSRDWIGV (SEQ ID NO: 261), PRKLYKPGAKEPRCVCVRTTGPPSGQMPD (SEQ ID NO: 262), and/or NPPHRNRGDLDHPNLAEYTGCPPLAITCSFPL (SEQ ID NO: 263). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in brain and, to a lesser extent, in variety of other tissues and cell types.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, developmental, degenerative and behavioral diseases of the brain such as schizophrenia, Alzheimer's disease, Parkinson's disease, Huntington's disease, transmissible spongiform encephalopathies (TSE), Creutzfeldt-Jakob disease (CJD), specific brain tumors, aphasia, mania, depression, dementia, paranoia, addictive behavior and sleep disorders. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, expression of this gene at significantly higher

10

15

20

25

30

or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 121 as residues: Glu-42 to Pro-53, Ser-67 to Thr-73, Ala-84 to Leu-90.

The tissue distribution in brain and the homology to steroid receptor proteins indicates polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of neurodegenerative disease states, behavioral disorders, or inflammatory conditions. Representative uses are described in the "Regeneration" and "Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Briefly, the uses include, but are not limited to the detection, treatment, and/or prevention of Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Tourette Syndrome, meningitis, transmissible spongiform encephalopathy (TSE), Creutzfeldt-Jakob disease (CJD), aphasia, specific brain tumors, encephalitis, demyelinating diseases, peripheral neuropathies, neoplasia, trauma, congenital malformations, spinal cord injuries, ischemia and infarction, aneurysms, hemorrhages, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, depression, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception. In addition, elevated expression of this gene product in regions of the brain indicates it plays a role in normal neural function. Potentially, this gene product is involved in synapse formation, neurotransmission, learning, cognition, homeostasis, or neuronal differentiation or survival. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protéin, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

10

15

20

25

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:21 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1494 of SEQ ID NO:21, b is an integer of 15 to 1508, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:21, and where b is greater than or equal to a + 14.

# FEATURES OF PROTEIN ENCODED BY GENE NO: 12

This gene is expressed primarily in kidney and gall bladder tissues, fetal tissue, and testes tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,renal disorders, metabolic diseases, and disorders of the reproductive and developing organs. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the renal, metabolic, developing, and reproductive systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., renal, metabolic, reproductive, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 122 as residues: Lys-60 to Ala-66.

WO 99/58660 PCT/US99/09847

32

The tissue distribution in kidney and gall bladder tissues, testicular tissue, and fetal tissues, suggests that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of disorders of the renal system, reproductive system, metabolic system and developing systems. Furthermore, the tissue distribution in kidney suggests that this gene or gene product is useful in the treatment and/or detection of kidney diseases including renal failure, nephritus, renal tubular acidosis, proteinuria, pyuria, edema, pyelonephritis, hydronephritis, nephrotic syndrome, crush syndrome, glomerulonephritis, hematuria, renal colic and kidney stones, in addition to Wilm's Tumor Disease, and congenital kidney abnormalities

such as horseshoe kidney, polycystic kidney, and Falconi's syndrome.

5

10

15

20

25

30

Alternatively, the tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of conditions concerning proper testicular function (e.g., endocrine function, sperm maturation), as well as cancer. Therefore, this gene product is useful in the treatment of male infertility and/or impotence. This gene product is also useful in assays designed to identify binding agents, as such agents (antagonists) are useful as male contraceptive agents. Similarly, the protein is believed to be useful in the treatment and/or diagnosis of testicular cancer. The testes are also a site of active gene expression of transcripts that may be expressed, particularly at low levels, in other tissues of the body. Therefore, this gene product may be expressed in other specific tissues or organs where it may play related functional roles in other processes, such as hematopoiesis, inflammation, bone formation, and kidney function, to name a few possible target indications. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:22 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general

formula of a-b, where a is any integer between 1 to 1433 of SEQ ID NO:22, b is an integer of 15 to 1447, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:22, and where b is greater than or equal to a + 14.

#### 5 FEATURES OF PROTEIN ENCODED BY GENE NO: 13

10

15

20

25

30

Preferred polypeptides of the invention comprise the following amino acid sequence: RDNDYLLHGHRPPMF (SEQ ID NO: 264),
SFRACFKSIFRIHTETGNIWTHLL (SEQ ID NO: 265), and/or
GFVLFLFLGILTMLRPNMYFMAPLQEKVV (SEQ ID NO: 266). Polynucleotides encoding these polypeptides are also provided.

The gene encoding the disclosed cDNA is thought to reside on chromosome 1. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 1.

This gene is expressed primarily in bone marrow, fetal liver and spleen tissues, several types of leukocytes including neutophils, and T-cells, placental tissue, and brain tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, diseases and/or disorders of the immune system and central nervous system including AIDS, Lupus, hemotological cancers, mood disorders, and dementia. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and central nervous sytem, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, neural, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

10

15

20

25

30

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 123 as residues: Glu-24 to Tyr-35, Arg-83 to Thr-92, Pro-148 to Gly-154.

The tissue distribution suggests that polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of a variety of immune system disorders. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the expression of this gene product in fetal liver and spleen tissues, and several types of leukocytes, suggests a role in the regulation of the proliferation; survival; differentiation; and/or activation of potentially all hematopoietic cell lineages, including blood stem cells. This gene product may be involved in the regulation of cytokine production, antigen presentation, or other processes that may also suggest a usefulness in the treatment of cancer (e.g. by boosting immune responses).

Since the gene is expressed in cells of lymphoid origin, the gene or protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, leukemia, rheumatoid arthritis, inflammatory bowel disease, sepsis, acne, and psoriasis. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Alternatively, the tissue distribution suggests that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioural disorders such as Alzheimers Disease, Parkinsons Disease, Huntingtons Disease, Tourette Syndrome, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception.

In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental disorders associated with the developing embryo, or sexually-linked disorders. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or

receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:23 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1569 of SEQ ID NO:23, b is an integer of 15 to 1583, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:23, and where b is greater than or equal to a + 14.

15

20

25

30

10

5

# FEATURES OF PROTEIN ENCODED BY GENE NO: 14

The translation product of this gene shares sequence homology with gp25L, which is thought to be important in protein processing.

This gene is expressed primarily in stimulated synovium, cerebellum, and placental tissues, and, to a lesser extent, in several other tissues and organs.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,inflammation, disorders of developing systems, central nervous system, and musculo-skeletal system. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, central nervous system, musculo-skeletal, and developing systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, neural, musculo-skeletal, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample

36

taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to gp25L suggests that the protein product of this gene is useful for treatment and/or diagnosis of disorders of immune, central nervous system, musculo-skeletal, and developing systems. In addition, the expression of this gene product in synovium suggests a role in the detection and treatment of disorders and conditions affecting the skeletal system, in particular osteoporosis as well as disorders afflicting connective tissues (e.g., arthritis, trauma, tendonitis, chrondomalacia and inflammation), such as in the diagnosis or treatment of various autoimmune disorders such as rheumatoid arthritis, lupus, scleroderma, and dermatomyositis as well as dwarfism, spinal deformation, and specific joint abnormalities as well as chondrodysplasias (i.e., spondyloepiphyseal dysplasia congenita, familial arthritis, Atelosteogenesis type II, metaphyseal chondrodysplasia type Schmid). Furthermore, the protein may also be used to determine biological activity, raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:24 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1655 of SEQ ID NO:24, b is an integer of 15 to 1669, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:24, and where b is greater than or equal to a + 14.

30

5

10

15

20

25

37

This gene is expressed primarily in immune and hematopoietic cells, and breast and brain tissues, and, to a lesser extent, in several other tissues.

5

10

15

20

25

30

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immune and hematopoietic disorders, disorders of the central nervous system and reproductive organs. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, hematopoietic, central nervous system and reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, reproductive, neural, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in breast, brain, and immune tissues suggests that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and/or diagnosis of disorders of the immune, hematopoietic, central nervous and reproductive systems. Furthermore, the protein may also be used to determine biological activity, raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:25 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or

38

more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1039 of SEQ ID NO:25, b is an integer of 15 to 1053, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:25, and where b is greater than or equal to a + 14.

5

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 16

Preferred polypeptides fragments from this alternative reading frame comprise:

- 10 TGPEFPGSNSTVARRIKDLAADIEEELVCRLKICDGFSLQLDESADVSGLAVLL VFVRYRFNKSIEED
  - LLLCESLQSNATGEEIFNCINSFMQKHEIEWEKCVDVCSDASRAVDGKIAEAV TLIKYVAPESTSSHCLL
  - YRHALAVKIMPTSLKNVLDQAVQIINYIKARPHQSRLLKILCEEMGAQHTALL
- 15 LNTEVRWLSRGKVLVRL
  - $FELRRELLVFMDSAFRLSDCLTNSSWLLRLAYLADIFTKLNEVNLSMQGKNV\\ TVFTVFDKMSSLLRKLEF$
  - WASSVEEENFDCFPTLSDFLTEINSTVDKDICSAIVQHLRGLRATLLKYFPVTN DNNAWVRNPFTVTVKP
- 20 ASLVARDYESLIDLTSDSQVKQNFSELSLNDFWSSLIQEYPSIARRAVRVLLPF ATMHLCETGFSYYAAT
  - KTKYRKRLDAAPHMRIRLSNITPNIKRICDKKTQKHCSH (SEQ ID NO: 267), DIEEELVCRLKICDGFSLQLDESADVSGLAV (SEQ ID NO: 268),
  - NSFMQKHEIEWEKCVDVCSDASRAVDGKIAEAVTLI (SEQ ID NO: 269),
- 25 LDQAVQIINYIKARPHQSRLLKILCEEMGAQHTALL (SEQ ID NO: 270), SAFRLSDCLTNSSWLLRLAYLADIFTKLNEVNLSMQGKNVTVFTVFDKM (SEQ ID NO: 271), SDFLTEINSTVDKDICSAIVQHLRGLRATLLK (SEQ ID NO: 272), and/or SDSQVKQNFSELSLNDFWSSLIQEYPSIARRAVRVLLP (SEQ ID NO: 273). Also preferred are polynucleotide fragments encoding these polypeptide
- 30 fragments.

10

15

20

25

30

The gene encoding the disclosed cDNA is believed to reside on chromosome 11. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 11.

This gene is expressed primarily in spleen from a chronic lymphocytic leukemia patient, and hodgkin's lymphoma, and, to a lesser extent, in pancreatic islet cell tumors and activated T cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, chronic lymphocytic leukemia; hodgkin's lymphoma; pancreatic islet cell cancer; cancer in general; hematopoietic disorders; immune dysfunction.

Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and pancreas, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., hematopoietic, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in spleen from a chronic lymphocytic leukemia patient, and hodgkin's lymphoma, pancreatic islet cell tumors, and activated T-cells. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the protein product of this gene is useful for the diagnosis and/or treatment of a variety of cancers, including CLL; Hodgkin's lymphoma; and pancreatic cancer. Expression of this gene product in a variety of cancers suggests that it may be a bad player and may likely be a target for inhibitors as therapeutics. Alternately, this gene product may be expressed in both normal and abnormal hematopoietic tissues, where it may play necessary roles in the proliferation; survival; differentiation; or activation of hematopoietic cell lineages. Likewise, expression in pancreatic islet cell tumors

10

15

20

25

30

may simply reflect a necessary role that this protein plays in normal pancreatic function. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:26 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1463 of SEQ ID NO:26, b is an integer of 15 to 1477, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:26, and where b is greater than or equal to a + 14.

### FEATURES OF PROTEIN ENCODED BY GENE NO: 17

When tested against U937 Myeloid cell lines, supernatants removed from cells containing this gene activated the GAS assay. Thus, it is likely that this gene activates myeloid cells, and to a lesser extent other cells, through the Jak-STAT signal transduction pathway. The gamma activating sequence (GAS) is a promoter element found upstream of many genes which are involved in the Jak-STAT pathway. The Jak-STAT pathway is a large, signal transduction pathway involved in the differentiation and proliferation of cells. Therefore, activation of the Jak-STAT pathway, reflected by the binding of the GAS element, can be used to indicate proteins involved in the proliferation and differentiation of cells.

This gene is expressed primarily in endometrial tumor tissue and cartilage tissue, and to a lesser extent in several other tissues and organs.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are

not limited to tumors and disorders of the musculo-skeletal system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providingimmunological probes for differential identification of the tissue(s) or celltype(s). For a number of disorders of the above tissues or cells, particularly of the musculo-skeletal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., musculo-skeletal, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

5

10

15

20

25

30

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 127 as residues: Met-1 to Ser-8.

The tissue distribution in musculo-skeletal tissues and biological activity in the GAS assay, suggests that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and/or diagnosis of disorders of the musculo-skeletal system, and cancers thereof. In addition, the expression of this gene product in cartilage tissue suggests a role in the detection and treatment of disorders and conditions affecting the skeletal system, in particular osteoporosis as well as disorders afflicting connective tissues (e.g., arthritis, trauma, tendonitis, chrondomalacia and inflammation), such as in the diagnosis or treatment of various autoimmune disorders such as rheumatoid arthritis, lupus, scleroderma, and dermatomyositis as well as dwarfism, spinal deformation, and specific joint abnormalities as well as chondrodysplasias (i.e., spondyloepiphyseal dysplasia congenita, familial arthritis, Atelosteogenesis type II, metaphyseal chondrodysplasia type Schmid). Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are

42

related to SEQ ID NO:27 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2490 of SEQ ID NO:27, b is an integer of 15 to 2504, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:27, and where b is greater than or equal to a + 14.

#### 10 FEATURES OF PROTEIN ENCODED BY GENE NO: 18

15

20

25

30

The gene encoding the disclosed cDNA is thought to reside on chromosome 17. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 17.

This gene is expressed primarily in breast and cerebellum tissues, as well as in cells of the hematopoietic system, and, to a lesser extent, in several other organs and tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, disorders of the brain, reproductive system and hematopoietic system. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and hematopoietic system, central nervous system and reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, neural, reproductive, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 128 as residues: Gly-56 to Gly-86, Leu-107 to Ala-112, Ala-121 to Thr-129, Lys-164 to Gln-174.

The tissue distribution in immune, reproductive, and neural tissues suggests that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and/or diagnosis of disorders of the immune and haemopoietic system, the central nervous system, and the reproductive system. Furthermore, the expression in the breast tissue may indicate its uses in breast neoplasia and breast cancers, such as fibroadenoma, pipillary carcinoma, ductal carcinoma, Paget's disease, medullary carcinoma, mucinous carcinoma, tubular carcinoma, secretory carcinoma and apocrine carcinoma, as well as juvenile hypertrophy and gynecomastia, mastitis and abscess, duct ectasia, fat necrosis and fibrocystic diseases.

5

10

15

20

25

30

Alternatively, the tissue distribution in cerebellum tissue suggests that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioural disorders such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Tourette Syndrome, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental disorders associated with the developing embryo, or sexually-linked disorders. In addition, the tissue distribution in immune system cells and tissues suggests that the translation product of this gene is useful for the detection and/or treatment of immune system disorders. This gene product may be involved in the regulation of cytokine production, antigen presentation, or other processes that may also suggest a usefulness in the treatment of cancer (e.g., by boosting immune responses).

Since the gene is expressed in cells of lymphoid origin, the gene or protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, leukemia, rheumatoid arthritis, inflammatory

bowel disease, sepsis, acne, and psoriasis. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:28 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1852 of SEQ ID NO:28, b is an integer of 15 to 1866, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:28, and where b is greater than or equal to a + 14.

# FEATURES OF PROTEIN ENCODED BY GENE NO: 19

5

10

15

20

25

30

The translation product of this gene shares weak sequence homology with dehydrogenase enzymes (See, e.g., gnllPIDle1316908) which are thought to be important in a variety of enzymatic conversions, including the biosynthesis of clavulanic acid from a precursor clavulanic acid aldehyde. The obtained clavulanic acid is in turn a key ingredient in antibiotics.

Preferred polypeptides of the invention comprise the following amino acid sequence: DSRISLLVNNAGVGATASLLESDADK (SEQ ID NO: 274).

Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in CD34 positive hematopoietic cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, hematopoietic diseases and/or disorders; impaired immune function; lymphomas & leukemias. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential

10

15

20

25

30

identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., hematopoietic, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 129 as residues: Pro-97 to Pro-113.

The tissue distribution in CD34 positive hematopoietic cells indicates that the protein product of this gene is useful for the diagnosis and/or treatment of a variety of hematopoietic disorders. Expression of this gene product specifically in CD34 positive cells suggests that it plays a role in early events of hematopoiesis, including proliferation; survival; differentiation; and activation of early stem and committed progenitor cells. The protein product of this gene is useful for the treatment and diagnosis of hematopoietic related disorders such as anemia, pancytopenia, leukopenia, thrombocytopenia or leukemia since stromal cells are important in the production of cells of hematopoietic lineages. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the uses include bone marrow cell ex-vivo culture, bone marrow transplantation, bone marrow reconstitution, radiotherapy or chemotherapy of neoplasia. The gene product may also be involved in lymphopoiesis, therefore, it can be used in immune disorders such as infection, inflammation, allergy, immunodeficiency etc. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

10

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:29 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1487 of SEQ ID NO:29, b is an integer of 15 to 1501, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:29, and where b is greater than or equal to a + 14.

# FEATURES OF PROTEIN ENCODED BY GENE NO: 20

Preferred polypeptides of the invention comprise the following amino acid sequence:

- 15 GTPAGTGPEFPGRPTRPSRTESAQTTQHSPLRPLWRLKRDSSPCHPQTRADWG VCPPWGGAAQGLRPGCH LAPRRCLCPGSCCPWHWAEAQWSFLWRGLWGLRTLPTALRASPAASGTVTY SACLGTSCLLRAPCWRLRT CRQSWC (SEQ ID NO: 275),
  - GTPAGTGPEFPGRPTRPSRTESAQTTQH (SEQ ID NO: 276),
- SPLRPLWRLKRDSSPCHPQTRADWGVCPPW (SEQ ID NO: 277), GGAAQGLRPGCHLAPRRCLCPGSCCPWHWA (SEQ ID NO: 278), EAQWSFLWRGLWGLRTLPTALRASPAASGT (SEQ ID NO: 279), and/or VTYSACLGTSCLLRAPCWRLRTCRQSWC (SEQ ID NO: 280). Polynucleotides encoding these polypeptides are also provided.
- The gene encoding the disclosed cDNA is believed to reside on chromosome 3. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 3.

This gene is expressed primarily in osteoarthritis, breast cancer, and uterine cancer, and, to a lesser extent, in brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are

10

15

20

25

30

not limited to,cancer, particularly breast and uterine cancer; and neurological diseases and/or disorders. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the breast, lymph node, and CNS, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., reproductive, breast, skeletal, joint, neural, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, amniotic fluid, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 130 as residues: Gln-75 to Cys-80.

The tissue distribution in breast and uterine cancer indicates that the protein product of this gene is useful for the diagnosis and/or treatment of a variety of cancers, particularly breast cancer and uterine cancer. Expression of this gene in brain also indicates that it may play a role in neurological function, and that its absence may lead to disorders such as Alzheimer's & Parkinson's disease. Expression of this gene product at elevated levels within cancerous tissue indicates that it may be a player in the progression of the disease, perhaps by driving proliferation or blocking differentiation or apoptosis. Therefore, beneficial therapeutics may be developed based upon attempts to block this gene product.

Representative uses are described in the "Hyperproliferative Disorders" and "Regeneration" sections below and elsewhere herein. Briefly, developmental tissues rely on decisions involving cell differentiation and/or apoptosis in pattern formation. Dysregulation of apoptosis can result in inappropriate suppression of cell death, as occurs in the development of some cancers, or in failure to control the extent of cell death, as is believed to occur in acquired immunodeficiency and certain neurodegenerative disorders, such as spinal muscular atrophy (SMA). Because of potential roles in proliferation and differentiation, this gene product may have applications in the adult for tissue regeneration and the treatment of cancers. It may

also act as a morphogen to control cell and tissue type specification. Therefore, the polynucleotides and polypeptides of the present invention are useful in treating, detecting, and/or preventing said disorders and conditions, in addition to other types of degenerative conditions. Thus this protein may modulate apoptosis or tissue differentiation and is useful in the detection, treatment, and/or prevention of degenerative or proliferative conditions and diseases. The protein is useful in modulating the immune response to aberrant polypeptides, as may exist in proliferating and cancerous cells and tissues. The protein can also be used to gain new insight into the regulation of cellular growth and proliferation. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:30 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1738 of SEQ ID NO:30, b is an integer of 15 to 1752, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:30, and where b is greater than or equal to a + 14.

25

30

5

10

15

20

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 21

This gene shares sequence homology with a yeast hypothetical 52.9 KD protein CDC26-YMR31 intergenic region (See Genbank Accession No. gplD50617lYSCCHRVI\_114.). This gene has been mapped to chromosome 18q22-23, and therefore can be used in linkage analysis as a marker for 18q22-23.

This gene is expressed primarily in whole brain tissue, as well as brain specific tissues such as hypothalamus, frontal cortex, cerebellum, amygdala, and hippocampus tissues, as well as other brain specific tissues.

5

10

15

20

25

30

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, schizophrenia, developmental disorders, and abnormal mental states. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., neural, brain, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 131 as residues: Met-98 to Gln-107, Gly-120 to Gly-126, Pro-138 to Trp-145, Leu-159 to Gly-169, Val-211 to Arg-217, Cys-256 to His-262, Glu-320 to Val-327, Phe-399 to Asn-406, Asp-444 to Ser-450, Asp-475 to Trp-488.

The tissue distribution in whole brain tissue and brain specific tissues suggests that polynucleotides and polypeptides corresponding to this gene are useful for treating and/or diagnosing neural and neurodegenerative disorders. Furthermore, the tissue distribution suggests that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioural disorders such as Alzheimers Disease, Parkinsons Disease, Huntingtons Disease, Tourette Syndrome, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental disorders associated with the developing embryo, or sexually-linked disorders. Elevated expression of this gene product within

the frontal cortex of the brain suggests that it may be involved in neuronal survival; synapse formation; conductance; neural differentiation, etc. Such involvement may impact many processes, such as learning and cognition. Additionally, the amygdala processes sensory information and relays this to other areas of the brain including the endocrine and autonomic domains of the hypothalamus and the brain stem. Thus, the translation product of this gene may also be useful for the detection and/or treatment of neural disorders that impact processes mediated by the amygdala. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:31 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2138 of SEQ ID NO:31, b is an integer of 15 to 2152, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:31, and where b is greater than or equal to a + 14.

20

25

5

10

15

### FEATURES OF PROTEIN ENCODED BY GENE NO: 22

Preferred polypeptides of the invention comprise the following amino acid sequence: PPRPSTSGQWG (SEQ ID NO: 281) and/or RRSPFTSAQTG (SEQ ID NO: 282). Polynucleotides encoding these polypeptides are also provided.

The gene encoding the disclosed cDNA is thought to reside on chromosome 1.

Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 1.

This gene is expressed primarily in breast and soleus tissues, and, to a lesser extent, in several cell types, including T-cells.

30

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are

10

15

20

25

30



not limited to, breast cancer, and musculo-skeletal diseases and/or disorders. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the lactation system and breast, as well as the musculo-skeletal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., musculo-skeletal, breast, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 132 as residues: Thr-35 to Lys-43, Pro-59 to Arg-64.

The tissue distribution in soleus tissue indicates that the protein product of this gene is useful for the detection, treatment, and/or prevention of conditions and pathologies of the cardiovascular system, such as heart disease, restenosis, atherosclerosis, stoke, angina, thrombosis, and wound healing. Representative uses are described elsewhere herein. Alternatively, the expression in the breast tissue may indicate its uses in breast neoplasia and breast cancers, such as fibroadenoma, pipillary carcinoma, ductal carcinoma, Paget's disease, medullary carcinoma, mucinous carcinoma, tubular carcinoma, secretory carcinoma and apocrine carcinoma, as well as juvenile hypertrophy and gynecomastia, mastitis and abscess, duct ectasia, fat necrosis and fibrocystic diseases. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:32 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically

excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1743 of SEQ ID NO:32, b is an integer of 15 to 1757, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:32, and where b is greater than or equal to a + 14.

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 23

5

15

25

30

The gene encoding the disclosed cDNA is believed to reside on chromosome 10 3. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 3.

Preferred polypeptides of the invention comprise the following amino acid sequence: GTGWDFGLAAVCLRAAEVAGSFK (SEQ ID NO: 283), GYRRVFEEYMRVISQRYPDIRIEGENYLPQPIYRHIASFLSVFKLVLIGLIIVGK **DPFAFFGMQAPSI** WOWGOENKVYACMMVFFLSNMIENQCMSTGAFEITLNDVPVWSKLESGHL

PSMQQLVQILDNEMKLNVHM DSIPHHRS (SEQ ID NO: 284), GYRRVFEEYMRVISQRYPDIRIEGENYLPQPIYR (SEQ ID NO: 285), HIASFLSVFKLVLIGLIIVGKDPFAFFGMQAPSI (SEQ ID NO: 286), 20

WQWGQENKVYACMMVFFLSNMIENQCMSTGAFEI (SEQ ID NO: 287), TLNDVPVWSKLESGHLPSMQQLVQILDNEMKLNVHM (SEQ ID NO: 288), and/or DSIPHHRS (SEQ ID NO: 289). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in fast-growing tissues such as early development stage tissues, cancerous tissues, and hematopoietic tissues, and, to a lesser extent, in some other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, growth disorders, tumorigenesis, and immune and inflammatory disorders. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s)

15

20

25

30

or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fast-growing tissues such as early development stage tissues, cancer tissues, and hematopoietic tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in fast-growing tissues such as early development stage tissues, cancerous tissues, and hematopoietic tissues, indicates that the protein products of this gene are useful for detection, treatment, and/or prevention of growth disorders, tumorigenesis, and immune and inflammatory disorders. Similarly, the tissue distribution suggests that polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of cancer and other proliferative disorders. Expression in cellular sources marked by proliferating cells suggests that this protein may play a role in the regulation of cellular division. Additionally, the expression in hematopoietic cells and tissues suggests that this protein may play a role in the proliferation, differentiation, and/or survival of hematopoietic cell lineages. In such an event, this gene may be useful in the treatment of lymphoproliferative disorders, and in the maintenance and differentiation of various hematopoietic lineages from early hematopoietic stem and committed progenitor cells. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:33 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1452 of SEQ ID NO:33, b is an

10

15

20

25

30

integer of 15 to 1466, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:33, and where b is greater than or equal to a + 14.

# FEATURES OF PROTEIN ENCODED BY GENE NO: 24

Preferred polypeptides of the invention comprise the following amino acid sequence: GRARGRPPGPEAAPASLSVSLRREVHSRGE (SEQ ID NO: 290). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in olfactory epithelium.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, olfactory disorders. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the olfactory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., olfactory, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 134 as residues: His-24 to Ala-29, Glu-42 to Glu-49.

The tissue distribution primarily in the olfactory epithelium indicates a role for this protein in the treatment and/or diagnosis of olfactory and sensory disorders, including loss of the sense of smell. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:34 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically

10

15

20

25

30

55

excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 512 of SEQ ID NO:34, b is an integer of 15 to 526, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:34, and where b is greater than or equal to a + 14.

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 25

This gene is expressed primarily in 8 week embryo.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, developmental disorders. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly during fetal development, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., embryonic, cancerous and wounded tissues) or bodily fluids (e.g., lymph, amniotic fluid, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The expression of this gene primarily in the embryo, indicates a key role for this protein in embryo development and further indicates its usefulness in the treatment and/or detection of embryonic developmental defects.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:35 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general

15

20

25

30

56

formula of a-b, where a is any integer between 1 to 2398 of SEQ ID NO:35, b is an integer of 15 to 2412, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:35, and where b is greater than or equal to a + 14.

### 5 FEATURES OF PROTEIN ENCODED BY GENE NO: 26

This gene is expressed primarily in neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, disorders affecting the immune system. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 136 as residues: Trp-25 to Thr-38, Pro-83 to Ala-88.

The tissue distribution in neutrophils suggests that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and/or treatment of immune system disorders, especially those affecting neutrophils. Furthermore, this gene product may be involved in the regulation of cytokine production, antigen presentation, or other processes that may also suggest a usefulness in the treatment of cancer (e.g. by boosting immune responses).

Since the gene is expressed in cells of lymphoid origin, the gene or protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, leukemia, rheumatoid arthritis, inflammatory

10

15

20

25

30

A STATE OF THE STA

bowel disease, sepsis, acne, and psoriasis. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:36 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1260 of SEQ ID NO:36, b is an integer of 15 to 1274, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:36, and where b is greater than or equal to a + 14.

# FEATURES OF PROTEIN ENCODED BY GENE NO: 27

The gene encoding the disclosed cDNA is thought to reside on chromosome 1. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 1.

This gene is expressed primarily in fetal liver and brain tissues, and, to a lesser extent, in various other fetal and transformed cell types.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,immune, developmental and neurological conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the developing, immune and central nervous systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, developing, neural, cancerous and wounded tissues) or bodily

10

15

20

25

30

58

fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 137 as residues: Pro-75 to Asn-81, Gln-106 to Cys-111, Glu-130 to Asp-141, Arg-176 to Asp-182, Ala-201 to Trp-206, Lys-238 to Thr-246.

The tissue distribution in fetal liver and brain tissues suggests that polynucleotides and polypeptides corresponding to this gene are useful for the study, detection and/or treatment of growth disorders and neoplasias of the immune and central nervous systems. The tissue distribution indicates polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of neurodegenerative disease states, behavioral disorders, or inflammatory conditions.

Representative uses are described in the "Regeneration" and "Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Briefly, the uses include, but are not limited to the detection, treatment, and/or prevention of Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Tourette Syndrome, meningitis, encephalitis, demyelinating diseases, peripheral neuropathies, neoplasia, trauma, congenital malformations, spinal cord injuries, ischemia and infarction, aneurysms, hemorrhages, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, depression, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception. In addition, elevated expression of this gene product in regions of the brain indicates it plays a role in normal neural function. Potentially, this gene product is involved in synapse formation, neurotransmission, learning, cognition, homeostasis, or neuronal differentiation or survival. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental disorders associated with the developing embryo, or sexually-linked disorders.

Alternatively, expression of this gene product in fetal liver/spleen tissue suggests a role in the regulation of the proliferation; survival; differentiation; and/or

10

15

20

25

30

activation of potentially all hematopoietic cell lineages, including blood stem cells. This gene product may be involved in the regulation of cytokine production, antigen presentation, or other processes that may also suggest a usefulness in the treatment of cancer (e.g., by boosting immune responses).

59

PCT/US99/09847

Since the gene is expressed in cells of lymphoid origin, the gene or protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, leukemia, rheumatoid arthritis, inflammatory bowel disease, sepsis, acne, and psoriasis. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:37 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1022 of SEQ ID NO:37, b is an integer of 15 to 1036, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:37, and where b is greater than or equal to a + 14.

### FEATURES OF PROTEIN ENCODED BY GENE NO: 28

This gene shares sequence homology to fibulin (See GeneSeq Accession No. R11148 and R11149). Fibulin binds to the cytoplasmic domain of the beta-1 subunit of integrin adhesion receptors in a cation-dependent, EDTA-reversible manner. Thus,

10

15

20

25

30

this gene may be used to manipulate adhesion of cells to fibronectin, collagen, laminin, and possibly also other proteins. When tested against both U937 Myeloid cell lines and Jurkat T-cell cell lines, supernatants removed from cells containing this gene activated the GAS assay. Thus, it is likely that this gene activates both T-cells and myeloid cells, and to a lesser extent other tissues and cell types, through the Jak-STAT signal transduction pathway. The gamma activating sequence (GAS) is a promoter element found upstream of many genes which are involved in the Jak-STAT pathway. The Jak-STAT pathway is a large, signal transduction pathway involved in the differentiation and proliferation of cells. Therefore, activation of the Jak-STAT pathway, reflected by the binding of the GAS element, can be used to indicate proteins involved in the proliferation and differentiation of cells.

The gene encoding the disclosed cDNA is thought to reside on chromosome 3. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 3.

This gene is expressed primarily in cerebellum tissue, and, to a lesser extent, in multiple tissues and cell types including prostate, liver, T-cells, kidney, and lung tissues, as well as musculo-skeletal tissues such as endothelial tissue, healing groin wound tissue, fetal heart tissue, and osteosarcoma tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, diseases and/or disorders of the central nervous system, including dementia, mood disorders, both unipolar and bipolar deppression, and Alzheimer's disease, as well as disorders of the musculo-skeletal, renal, and pulmonary systems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, renal, pulmonary system, and musculo-skeletal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., neural, musculo-skeletal, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such

10

15

20

25

30

a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 138 as residues: Pro-28 to Thr-45, Arg-59 to Gly-67, Ala-71 to Glu-84, Lys-120 to Asp-126, Pro-159 to Gly-164, Glu-167 to Gly-186, Arg-217 to Asn-225, Glu-245 to Ala-255, Gly-282 to Gly-297, Pro-312 to Gly-324, Thr-356 to Lys-364, Gly-366 to Thr-372, Lys-377 to Ala-383, Gly-397 to Thr-407, Thr-419 to Gly-433.

The tissue distribution suggests that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and/or treatment of a variety of cancers, most notably cancers of the central nervous system, pulmonary, and renal systems, as well as the disorders of the central nervous system listed above. Representative uses are described in the "Hyperproliferative Diseases", "Chemotaxis" and "Binding Activity" sections below, in Examples 11, 12, 13, 14, 15, 16, 18, 19, and 20, and elsewhere herein. Briefly, the expression of this gene product in a variety of systems suggests that this gene may be a player in the progression of these diseases, and may be a beneficial target for inhibitors as therapeutics.

Alternatively, the tissue distribution in musculo-skeletal tissues, as the homology to fibulin, suggests that the translation product of this gene is useful for the detection and/or treatment of disorders involving the vasculature. Elevated expression of this gene product by endothelial cells suggests that it may play vital roles in the regulation of endothelial cell function; secretion; proliferation; or angiogenesis. Alternately, this may represent a gene product expressed by the endothelium and transported to distant sites of action on a variety of target organs. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:38 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically

15

20

excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1365 of SEQ ID NO:38, b is an integer of 15 to 1379, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:38, and where b is greater than or equal to a + 14.

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 29

The translation product of this gene shares sequence homology with coxsackie and adenovirus receptor in mouse. Particularly, this gene shares sequence homology with a human A33 antigen, which is a transmembrane protein and a novel member of the immunoglobulin superfamily. (See Proc. Natl. Acad. Sci. U.S.A. 94, 469-474 (1997); see also, Accession No. 1814277; all references available through the accession and reference are hereby incorporateed herein by reference.) Therefore, this gene likely has activity similar to the human A33 antigen.

Preferred polypeptides of the invention comprise the following amino acid sequence:

MISLPGPLVTNLLRFLFLGLSALAPPSRAQLQLHLPANRLQAVEGGEVVLPAW
YTLHGEVSSSQPWEVPFVMWFFKQKEKEDQVLSYINGVTTSKPGVSLVYSMP
SRNLSLRLEGLQEKDSGPYSCSVNVQNKQGKSRGHSIKTLELNVLVPPAPPSC
RLQGVPHVGANVTLSCQSPRSKPAVQYQWDRQLPSFQTFFAPALDVIRGSLS
LTNLSSSMAGVYVCKAHNEVGTAQCNVTLEVSTGPGAAVVAGAVVGTLVG
LGLLAGLVLLYHRRGKALEEPANDIKEDAIAPRTLPWPKSSDTISKNGTLSSV
TSARALRPPHGPPRPGALTPTPSLSSQALPSPRLPTTDGAHPQPISPIPGGVSSSG

- 25 LSRMGAVPVMVPAQSQAGSL (SEQ ID NO: 291), MISLPGPLVTNLLRFLFLGLSALAPPSRAQLQLHL (SEQ ID NO: 292), PANRLQAVEGGEVVLPAWYTLHGEVSSSQPWEVPF (SEQ ID NO: 293), VMWFFKQKEKEDQVLSYINGVTTSKPGVSLVYSMP (SEQ ID NO: 294), SRNLSLRLEGLQEKDSGPYSCSVNVQNKQGKSRGH (SEQ ID NO: 295),
- 30 SIKTLELNVLVPPAPPSCRLQGVPHVGANVTLSCQ (SEQ ID NO: 296), SPRSKPAVQYQWDRQLPSFQTFFAPALDVIRGSLS (SEQ ID NO: 297), LTNLSSSMAGVYVCKAHNEVGTAQCNVTLEVSTGP (SEQ ID NO: 298),

10

15

20

25

30

GAAVVAGAVVGTLVGLGLLAGLVLLYHRRGKALEE (SEQ ID NO: 299),
PANDIKEDAIAPRTLPWPKSSDTISKNGTLSSVTS (SEQ ID NO: 300),
ARALRPPHGPPRPGALTPTPSLSSQALPSPRLPTT (SEQ ID NO: 301), and/or
DGAHPQPISPIPGGVSSSGLSRMGAVPVMVPAQSQAGSL (SEQ ID NO: 302).
Polynucleotides encoding these polypeptides are also provided.

This gene is expressed in various tissues including placenta, brain, heart, muscle, adipocytes, and liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: viral diseases, and immune diseases and/or disorders. Similarly, polypeptides and antibodies directed to those polypeptides are useful to provide immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., CNS, reproductive, vascular, cancerous and wounded tissues) or bodily fluids (e.g., lymph, amniotic fluid, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in various tissues including placenta, brain, heart, muscle, adipocytes, and liver, and the homology to A33 antigen indicates that the protein product of this gene is useful for the diagnosis and/or treatment of a variety of cancers, most notably cancers of the immune system, as well as viral infections. Expression of this gene product suggests that this gene may be a player in the progression of these diseases, and may be a beneficial target for inhibitors as therapeutics. Representative uses are described in the "Chemotaxis" and "Binding Activity" sections below, in Examples 11, 12, 13, 14, 15, 16, 18, 19, and 20, and elsewhere herein. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional

supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:39 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1918 of SEQ ID NO:39, b is an integer of 15 to 1932, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:39, and where b is greater than or equal to a + 14.

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 30

5

10

15

20

25

30

Preferred polypeptides of the invention comprise the following amino acid sequence: GSSFVVSEGSYLDISDWLNPAKLSLYY (SEQ ID NO: 303), LDISDWLNPAKL (SEQ ID NO: 304), SDWLNPAKLSL (SEQ ID NO: 305), and/or DACEQLCDPETGE (SEQ ID NO: 310). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in human ovary and adrenal gland tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, reproductive diseases and/or disorders, particularly ovarian cancer. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., reproductive, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e.,

the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in ovary tissue suggests that polynucleotides and polypeptides corresponding to this gene are useful for diagnosing and/or treating reproductive system disorders including ovarian cancer, as well as cancers of other tissues where expression has been observed. Representative uses are described in the "Hyperproliferative Disorders" and "Regeneration" sections below and elsewhere herein. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:40 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1416 of SEQ ID NO:40, b is an integer of 15 to 1430, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:40, and where b is greater than or equal to a + 14.

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 31

10

15

20

30

This gene is expressed primarily in thymus and stromal cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, aberrant immune responses, such as either chronic or acute inflammation. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above

10

15

20

25

30

tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in thymus stromal cells suggests that polynucleotides and polypeptides corresponding to this gene are useful for diagnosing and/or treating disorders of the immune system, particularly those involving a pathological inflammatory reponse. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Furthermore, the gene product may also be involved in lymphopoiesis, therefore, it can be used in immune disorders such as infection, inflammation, allergy, immunodeficiency etc. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:41 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1393 of SEQ ID NO:41, b is an integer of 15 to 1407, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:41, and where b is greater than or equal to a + 14.

10

15

20

25

30

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 32

Preferred polypeptides of the invention comprise the following amino acid sequence: EGKIKICEKKAIKVILHTCNS (SEQ ID NO: 311). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in frontal cortex.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, central nervous system (CNS) diseases and/or disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the CNS, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., brain, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid or cerebrospinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 142 as residues: Pro-41 to Asp-47.

The tissue distribution in frontal cortex indicates that the protein products of this gene are useful for detection, treatment, and/or prevention of CNS disorders including disorders of the brain and nervous system. Representative uses are described in the "Regeneration" and "Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Elevated expression of this gene product within the frontal cortex of the brain suggests that it may be involved in neuronal survival, synapse formation, conductance, neural differentiation, etc. Such involvement may impact many processes, such as learning and cognition. It may also be useful in the treatment of such neurodegenerative disorders as schizophrenia, ALS, or Alzheimer's. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors,

10

20

25

30

to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:42 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 936 of SEQ ID NO:42, b is an integer of 15 to 950, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:42, and where b is greater than or equal to a + 14.

#### 15 FEATURES OF PROTEIN ENCODED BY GENE NO: 33

This gene is expressed primarily in adipose tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, obesity, Nasu-Hakola disease, cardiovascular disease, non-insulindependent diabetes mellitus. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the adipose, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., adipose, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in adipose suggests that the protein product of this gene is useful for the treatment and diagnosis of metabolic disorders related to lipids and

10

20

25

30

adipose tissue, such as obesity, Nasu-Hakola disease (membranous lipodystrophy), cardiovascular disease, lipidemia, non-insulin-dependent diabetes mellitus, stroke and carcinoma. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:43 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 990 of SEQ ID NO:43, b is an integer of 15 to 1004, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:43, and where b is greater than or equal to a + 14.

# FEATURES OF PROTEIN ENCODED BY GENE NO: 34

Preferred polypeptides of the invention comprise the following amino acid sequence: NSARVEFFIPPLRITQKVRSTKS (SEQ ID NO: 312). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is apparently expressed exclusively in IL-1- and LPS-induced neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, abnormal immune reactions or disorders including, but not limited to, chronic or cyclic neutropenia, neutrophilia, and neutrocytosis. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression

10

15

20

25

30

of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in neutrophils suggests that the protein product of this gene is useful for detection, treatment, and/or prevention of immune disorders or abnormal reactions mediated by neutrophils, including infection, inflammation, allergy, immunodeficiency, chronic or cyclic neutropenia, neutrophilia, and neutrocytosis, and the like. Moreover, the expression of this gene product suggests a role in regulating the proliferation, survival, differentiation, and/or activation of hematopoietic cell lineages, including blood stem cells. This gene product may be involved in the regulation of cytokine production, antigen presentation, or other processes that may also suggest a usefulness in the treatment of cancer (e.g., by boosting immune responses).

Since the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immunodeficiency diseases such as AIDS, leukemia, rheumatoid arthritis, granulomatous disease, inflammatory bowel disease, sepsis, acne, neutropenia, neutrophilia, psoriasis, hypersensitivities, such as T-cell mediated cytotoxicity, immune reactions to transplanted organs and tissues, such as host-versus-graft and graft-versus-host diseases, or autoimmunity disorders, such as autoimmune infertility, lense tissue injury, demyelination, systemic lupus erythematosis, drug induced hemolytic anemia, rheumatoid arthritis, Sjogren's disease, scleroderma and tissues. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

10

15

20

25

30

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:44 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1667 of SEQ ID NO:44, b is an integer of 15 to 1681, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:44, and where b is greater than or equal to a + 14.

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 35

The translated ORF of the contig has homology with the human, porcine, and bovine INS10 double-chain insulin precursor, especially around a region containing multiple cysteine residues.

Preferred polypeptides of the invention comprise the following amino acid sequence:

MMVWNLFPCFPPLLLLQFIDCQQSSEIEQGFTRSLLGHPIFFCPDPCWQSCMN CVILSVLSFFFLIRWISKIVAVQKLESSSRRKPILFLIISCEIASFIHLFLSQMSAEC CCFYLVILICKY (SEQ ID NO: 313), MMVWNLFPCFPPLLLLQFIDCQQSSEIE (SEQ ID NO: 314), QGFTRSLLGHPIFFCPDPCWQSCMNCVI (SEQ ID NO: 315), LSVLSFFFLIRWISKIVAVQKLESSSRRKPILFLI (SEQ ID NO: 316), and/or ISCEIASFIHLFLSQMSAECCCFYLVILICKY (SEQ ID NO: 317). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in cells and tissues isolated from a 15 days post-incision healing abdomen wound and, to a lesser extent, in many connective tissues/cells with proliferative capacity, such as osteoclastoma, ovarian cancer, B-cell lymphoma and hepatocellular tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, wound healing, diabetes mellitus, and cancers of the bone and

10

15

20

25

30

connective tissues, lymphomas, and cancers of the liver. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly those of the cells and tissues involved in healing tissue damages and regeneration, diabetes mellitis, and many cancers including, but not limited to ovarian cancer, breast cancer, colon cancer, cardiac tumors, pancreatic cancer, melanoma, retinoblastoma, glioblastoma, lung cancer, intestinal cancer, testicular cancer, stomach cancer, neuroblastoma, myxoma, myoma, lymphoma, endothelioma, osteoblastoma, osteoclastoma, osteosarcoma, chondrosarcoma, adenoma, and the like, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 145 as residues: Gln-22 to Phe-31.

The tissue distribution in healing wound and regenerating tissues/cells suggests that the protein product of this gene is useful for detection, treatment, and/or prevention of tissue damages, trauma, necrosis, and tissue regeneration. In addition, since this gene exhibits homology with an insulin precursor, it can be used to regulate the metabolism of glucose or other sugars, the synthesis of proteins, and the formation and storage of neutral lipids.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:45 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1351 of SEQ ID NO:45, b is an

10

15

20

25

30

integer of 15 to 1365, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:45, and where b is greater than or equal to a + 14.

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 36

Preferred polypeptides of the invention comprise the following amino acid sequence:

KVDTPRRHFCPEISFFLTPLPQSARNSTVRNALSGLKNLTPAMISTVSKQDTSK LGEEE (SEQ ID NO: 318). Polynucleotides encoding these polypeptides are also provided.

When tested against U937 Myeloid cell lines, supernatants removed from cells containing this gene activated the GAS assay. Thus, it is likely that this gene activates myeloid cells through the Jak-STAT signal transduction pathway. The gamma activating sequence (GAS) is a promoter element found upstream of many genes which are involved in the Jak-STAT pathway. The Jak-STAT pathway is a large, signal transduction pathway involved in the differentiation and proliferation of cells. Therefore, activation of the Jak-STAT pathway, reflected by the binding of the GAS element, can be used to indicate proteins involved in the proliferation and differentiation of cells.

This gene is expressed primarily in B-cell lymphoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,B-cell lymphoma, immunodeficient or auto-immune conditions. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution suggests that the protein product of this gene is useful for the detection, treatment, and/or prevention of B-cell lymphomas, as well as other immune disorders including: leukemias, auto-immunities, immunodeficiencies (e.g., AIDS), immuno-supressive conditions (transplantation) and hematopoietic disorders, such as anemia, pancytopenia, leukopenia, thrombocytopenia or leukemia, since stromal cells are important in the production of cells of hematopoietic lineages. In addition, this gene product may be applicable in conditions of general microbial infection, inflammation or cancer. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. The uses include bone marrow cell ex vivo culture, bone marrow transplantation, bone marrow reconstitution, radiotherapy or chemotherapy of neoplasia. The gene product may also be involved in lymphopoiesis, therefore, it can be used in immune disorders such as infection, inflammation, allergy, immunodeficiency etc. In addition, the biological activity of supernatants from cells expressing this gene in the GAS assay indicates that this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:46 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1123 of SEQ ID NO:46, b is an integer of 15 to 1137, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:46, and where b is greater than or equal to a + 14.

30

5

10

15

20

25

WO 99/58660 PCT/US99/09847

75

The gene encoding the disclosed cDNA is thought to reside on chromosome 10. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 10.

This gene is expressed primarily in infant brain and caudate nucleus tissues, and, to a lesser extent, in various other normal and transformed cell types, including smooth muscle and adult heart tissues, and T-cell lymphoma.

5

10

15

20

25

30

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, neurological and growth defects. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the developing nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., neural, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in infant brain tissue suggests that polynucleotides and polypeptides corresponding to this gene are useful for the study, detection and/or treatment of infant and general nervous system disorders and neoplasias. The tissue distribution indicates polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of neurodegenerative disease states, behavioral disorders, or inflammatory conditions. Representative uses are described in the "Regeneration" and "Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Briefly, the uses include, but are not limited to the detection, treatment, and/or prevention of Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Tourette Syndrome, meningitis, encephalitis, demyelinating diseases, peripheral neuropathies, neoplasia, trauma, congenital malformations, spinal cord injuries, ischemia and infarction, aneurysms, hemorrhages, schizophrenia, mania, dementia, paranoia, obsessive compulsive

10

15

20

disorder, depression, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception.

In addition, elevated expression of this gene product in regions of the brain indicates it plays a role in normal neural function. Potentially, this gene product is involved in synapse formation, neurotransmission, learning, cognition, homeostasis, or neuronal differentiation or survival. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental disorders associated with the developing embryo, or sexually-linked disorders. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:47 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2749 of SEQ ID NO:47, b is an integer of 15 to 2763, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:47, and where b is greater than or equal to a + 14.

25

30

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 38

The translation product of this gene shares weak homology with O-linked GlcNAc transferases (See, e.g., Genbank Acc. No. gil2266994) which are important for a variety of cellular functions, including, secreted protein stability and proper function.

Preferred polypeptides of the invention comprise the following amino acid sequence: LLLCPWWLCFDWS (SEQ ID NO: 319),

15

20

25

30

MGCIPLIKSISDWRVIALAALWFCLIGLICQALCSEDGHKRRILTLGLGFLVIPF LPASNLFFRVGFVVAECVLYLPSIGYCVLLTFGFGALSKHTKKKKLIAAVVLG ILFINTLRCVLRTAKWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTA AIRYYREAVRLNPKYVHAMNNLGNILKERNELQEAEELLSLAVQIQPDFAAA WMNLGIVQNSLKRFETAEQNYRTAIKHRRKYPDCYYNLGRLVRTGCPVPVE GKMGYFS (SEQ ID NO: 320), MGCIPLIKSISDWRVIALAALWFCLIGLICQALCSEDG (SEQ ID NO: 321), HKRRILTLGLGFLVIPFLPASNLFFRVGFVVAECVLYL (SEQ ID NO: 322), PSIGYCVLLTFGFGALSKHTKKKKLIAAVVLGILFINT (SEQ ID NO: 323), LRCVLRTAKWRSEEQLFRSALSVCPLNAKVHYNIGKNL (SEQ ID NO: 325),

LRCVLRTAKWRSEEQLFRSALSVCPLNAKVHYNIGKNL (SEQ ID NO: 325), ADKGNQTAAIRYYREAVRLNPKYVHAMNNLGNILKERN (SEQ ID NO: 326), ELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFET (SEQ ID NO: 327), and/or AEQNYRTAIKHRRKYPDCYYNLGRLVRTGCPVPVEGKMGYFS (SEQ ID NO: 328). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in substantia nigra and, to a lesser extent, in amygdala and brain, striatum.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, neurodegenerative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system and brain, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., CNS, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 148 as residues: Ser-35 to Arg-41.

10

15

20

25

30

The tissue distribution in substantia nigra and, to a lesser extent, in amygdala and brain, striatum, suggests that polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of neurodegenerative disease states, behavioral disorders, or inflammatory conditions. Representative uses are described in the "Regeneration" and "Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Briefly, the uses include, but are not limited to the detection, treatment, and/or prevention of Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Tourette Syndrome, meningitis, encephalitis, demyelinating diseases, peripheral neuropathies, neoplasia, trauma, congenital malformations, spinal cord injuries, ischemia and infarction, aneurysms, hemorrhages, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, depression, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception.

In addition, elevated expression of this gene product in regions of the brain indicates it plays a role in normal neural function. Potentially, this gene product is involved in synapse formation, neurotransmission, learning, cognition, homeostasis, or neuronal differentiation or survival. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:48 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1562 of SEQ ID NO:48, b is an

10

15

20

25

30

integer of 15 to 1576, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:48, and where b is greater than or equal to a + 14.

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 39

This gene is expressed primarily in epithelial-TNFa and INF induced cells and brain frontal cortex.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, neurodegenerative diseases and/or disorders. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., CNS, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 149 as residues: Lys-35 to Asp-41, Glu-49 to Leu-63.

The tissue distribution in the brain suggests that the protein product of this gene is useful for detection, treatment, and/or prevention of neurodegenerative disorders, especially those involving the frontal cortex. Representative uses are described in the "Regeneration" and "Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Briefly, the elevated expression of this gene product within the frontal cortex of the brain suggests that it may be involved in neuronal survival; synapse formation; conductance; neural differentiation, etc. Such involvement may impact many processes, such as learning and cognition. It may also be useful in the treatment of such neurodegenerative disorders as schizophrenia; ALS; or Alzheimer's. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate

ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:49 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1334 of SEQ ID NO:49, b is an integer of 15 to 1348, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:49, and where b is greater than or equal to a + 14.

15

5

10

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 40

Preferred polypeptides of the invention comprise the following amino acid sequence: PTRPPTRPLSFTFTKQTSSTCLSLHF (SEQ ID NO: 329).

Polynucleotides encoding these polypeptides are also provided.

20

The gene encoding the disclosed cDNA is believed to reside on chromosome 18. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 18.

This gene is expressed primarily in infant brain, frontal cortex, and, to a lesser extent, in melanocytes.

25

30

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, neurodegenerative diseases and/or disorders. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely

10

15

25

detected in certain tissues or cell types (e.g., CNS, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 150 as residues: Val-40 to Cys-47, Lys-49 to Gly-54.

The tissue distribution suggests that the protein product of this gene is useful for the detection, treatment, and/or prevention of neurodegenerative disorders especially those involving the frontal cortex. Moreover, polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of neurodegenerative disease states, behavioral disorders, or inflammatory conditions. Representative uses are described in the "Regeneration" and "Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Briefly, the uses include, but are not limited to the detection, treatment, and/or prevention of Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Tourette Syndrome, meningitis, encephalitis, demyelinating diseases, peripheral neuropathies, neoplasia, trauma, congenital malformations, spinal cord injuries, ischemia and infarction, aneurysms, hemorrhages, schizophrenia, 20 mania, dementia, paranoia, obsessive compulsive disorder, depression, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception.

In addition, elevated expression of this gene product in regions of the brain indicates it plays a role in normal neural function. Potentially, this gene product is involved in synapse formation, neurotransmission, learning, cognition, homeostasis, or neuronal differentiation or survival. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

15

20

25

30

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:50 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1250 of SEQ ID NO:50, b is an integer of 15 to 1264, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:50, and where b is greater than or equal to a + 14.

## FEATURES OF PROTEIN ENCODED BY GENE NO: 41

This gene shows structural homology with the duck insulin precursor which is thought to be important in metabolic homeostasis (See Accession No. pirlA01600IPDK insulin precursor). Preferred polypeptide fragments comprise the amino acid sequence:

LECVLLICFRAMSAIYTHTSIGNAQKLFTDGSAFRRVREPLPKEGKSWPQ (SEQ ID NO: 330). Also preferred are polynucleotide fragments encoding this polypeptide fragment.

This gene is expressed primarily in eosinophil-IL5 induced cells, and, to a lesser extent, in B cell lymphoma, breast lymph node, and CD34 depleted buffy coat (cord blood).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,immune diseases and/or disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, hematopoeitic, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal

10

15

20

25

30

fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 151 as residues: Arg-39 to Glu-56.

The tissue distribution in hematopoietic tissues suggests that the protein product of this gene is useful for detection, treatment, and/or prevention of immune disorders especially those involving eosinophils and B-cells. The protein product of this gene is useful for the detection, treatment, and/or prevention of a variety of immune system disorders. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the expression of this gene product indicates a role in regulating the proliferation; survival; differentiation; and/or activation of hematopoietic cell lineages, including blood stem cells. This gene product may be involved in the regulation of cytokine production, antigen presentation, or other processes suggesting a usefulness in the treatment of cancer (e.g. by boosting immune responses).

Since the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immunodeficiency diseases such as AIDS, leukemia, rheumatoid arthritis, granulomatous disease, inflammatory bowel disease, sepsis, acne, neutropenia, neutrophilia, psoriasis, hypersensitivities, such as T-cell mediated cytotoxicity; immune reactions to transplanted organs and tissues, such as host-versus-graft and graft-versus-host diseases, or autoimmunity disorders, such as autoimmune infertility, lense tissue injury, demyelination, systemic lupus erythematosis, drug induced hemolytic anemia, rheumatoid arthritis, Sjogren's disease, scleroderma and tissues. Moreover, the protein may represent a secreted factor that influences the differentiation or behavior of other blood cells, or that recruits hematopoietic cells to sites of injury. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Furthermore, the protein may also be used to determine biological

WO 99/58660 PCT/US99/09847

84

activity, raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:51 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1646 of SEQ ID NO:51, b is an integer of 15 to 1660, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:51, and where b is greater than or equal to a + 14.

15

20

25

30

5

10

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 42

Preferred polypeptides of the invention comprise the following amino acid sequence: KQNLTNLDVPVQYHVALSDKVK (SEQ ID NO: 331). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in pineal gland and, to a lesser extent, in multiple sclerosis cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,insomnia, multiple sclerosis, and other neurodegenerative diseases and/or disorders. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system and endocrine system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., CNS, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or

10

15

20

25

30

another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 152 as residues: Pro-7 to Gly-12.

The tissue distribution primarily in pineal gland and, to a lesser extent, in multiple sclerosis cells suggests that the protein product of this gene is useful for treatment of insomia and jet lag through agonist or antagonist interaction with pineal gland receptors to allow regulation of melatonin production. Representative uses are described elsewhere herein. This gene may also be useful in the treatment of multiple sclerosis. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:52 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1664 of SEQ ID NO:52, b is an integer of 15 to 1678, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:52, and where b is greater than or equal to a + 14.

### FEATURES OF PROTEIN ENCODED BY GENE NO: 43

The gene encoding the disclosed cDNA is believed to reside on chromosome 2. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 2.

Preferred polypeptides of the invention comprise the following amino acid sequence:

10

15

20

25

30

PSCPPEMKKELPVDSCLPRSLELHPQKMDPKRQHIQLLSSLTECLTVDPLSASV WRQLYPKHLSQSSLLL

XHLLSSWEQIPKKVQKSLQETIQSLKLTNQELLRKGSSNNQDVVTCD (SEQ ID NO: 332). Also preferred are the polynucleotides encoding these polypeptides.

This gene is expressed primarily in ovary tumors and breast cancer and, to a lesser extent, in normal lung and colon tumors.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,cancer, particularly of the ovary and breast; and colon. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the colon, breast, or female reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., reproductive, gastrointestinal, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution primarily in ovary tumors and breast cancer and, to a lesser extent, in normal lung and colon tumors indicates that the protein product of this gene is useful for the diagnosis and/or treatment of a variety of cancers, most notably cancers of the ovary, breast, or colon. Representative uses are described in the "Hyperproliferative Disorders" and "Regeneration" sections below and elsewhere herein. Briefly, the expression of this gene product in a variety of cancers suggests that it may be a player in the progression of the disease, and may be a beneficial target for inhibitors as therapeutics. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may

10

15

20

25

30



show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:53 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1846 of SEQ ID NO:53, b is an integer of 15 to 1860, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:53, and where b is greater than or equal to a + 14.

## FEATURES OF PROTEIN ENCODED BY GENE NO: 44

In an alternative reading frame, this gene shares sequence homology with a murine testosterone induced transcript (See Geneseq Accession No. 758299). This same region also shares sequence homology with a human cancer suppressor transfer factor protein (See Geneseq Accession No. R86875). The gene encoding the disclosed cDNA is thought to reside on chromosome 11. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 11.

Preferred polypeptides of the invention comprise the following amino acid sequence:

KAPYSWLADSWPHPSRSPSAQEPRGSCCPSNPDPDDRYYNEAGISLYLAQTA RGTAAPGEGPVYSTIDPAGEELQTFHGGFPQHPSGDLGPWSQYAPPEWSQG (SEQ ID NO: 333). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in various embryonic/fetal tissues, particularly fetal brain tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, congenital birth defects, particularly of the central nervous system, and cancers, such as MEN. Similarly, polypeptides and antibodies directed to these

WO 99/58660 PCT/US99/09847

88

polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., neural, developing, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

10

15

20

25

5

The tissue distribution in fetal and embryonic tissues suggests that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and/or treatment of a variety of cancers, most notably cancers of the central nervous system, such as MEN, as well as the disorders of the central nervous system listed above. Representative uses are described in the "Hyperproliferative Disorders" and "Regeneration" sections below and elsewhere herein. Briefly, the expression within embryonic tissue and other cellular sources marked by proliferating cells suggests that this protein may play a role in the regulation of cellular division, and may show utility in the detection, treatment, and/or prevention of cancer and other proliferative disorders. Similarly, embryonic development also involves decisions involving cell differentiation and/or apoptosis in pattern formation. Thus, this protein may also be involved in apoptosis or tissue differentiation and could again be useful in cancer therapy. Expression of this gene product in a variety of systems suggests that this gene may be a player in the progression of these diseases, and may be a beneficial target for inhibitors as therapeutics. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

30

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:54 and may have been publicly available prior to conception of

10

15

20

25

30

the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1649 of SEQ ID NO:54, b is an integer of 15 to 1663, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:54, and where b is greater than or equal to a + 14.

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 45

The gene encoding the disclosed cDNA is thought to reside on chromosome 1. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 1. This gene is highly homologous to bovine cytochrome b-5 reductase (See e.g., GENBANK: locus BOVCYB5R, accession M83104; Strittmatter et al., J. Biol. Chem. 267:2519-2523 (1992); the references available through the accession number and the captioned reference are hereby incorporated herein by reference). Based on this homology, it is likely that this gene would have activity similar to NADH-cytochrome b5 reductase.

This gene is expressed primarily in liver and lung tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, diseases and/or disorders of the liver and lung including chronic liver failure, bronchitis, emphasema, and chronic lung failure. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hepatic and pulmonary systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., hepatic, pulmonary, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

10

15

20

25

30

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 155 as residues: Arg-31 to Gln-37, Val-88 to Gly-95, Pro-110 to Gln-120, Gln-151 to Ala-163, Asp-231 to Trp-237, Pro-277 to Lys-287.

The tissue distribution in liver tissue suggests that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of liver disorders and cancers (e.g. hepatoblastoma, jaundice, hepatitis, liver metabolic diseases and conditions that are attributable to the differentiation of hepatocyte progenitor cells). Representative uses are described in the "Hyperproliferative Disorders", "Infectious Disease", and "Binding Activity" sections below, in Example 11, and 27, and elsewhere herein. Alternatively, the tissue distribution suggests that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of disorders associated with developing lungs, particularly in premature infants where the lungs are the last tissues to develop. The tissue distribution suggests that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and intervention of lung tumors, since the gene may be involved in the regulation of cell division, particularly since it is expressed in fetal tissue. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:55 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1618 of SEQ ID NO:55, b is an integer of 15 to 1632, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:55, and where b is greater than or equal to a + 14.

PCT/US99/09847

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 46

5

10

15

20

25

30

This gene is expressed primarily in tonsil tissue and neutrophils, and, to a lesser extent, in testes tissue, brain and cerebellum tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, diseases and/or disorders of the tonsils, immune system disorders, reproductive disorders, and neural disorders. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the tonsils, and the immune, reproductive, and neural systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, neural, reproductive, tonsils, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 156 as residues: Pro-17 to Glu-26, Asp-60 to Val-72.

The tissue distribution suggests that polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of a variety of immune system disorders. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the expression of this gene product in tonsils as well as neutrophils suggests a role in the regulation of the proliferation; survival; differentiation; and/or activation of potentially all hematopoietic cell lineages, including blood stem cells. This gene product may be involved in the regulation of cytokine production, antigen presentation, or other processes that may also suggest a usefulness in the treatment of cancer (e.g. by boosting immune responses).

15

20

25

30

Since the gene is expressed in cells of lymphoid origin, the gene or protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, leukemia, rheumatoid arthritis, inflammatory bowel disease, sepsis, acne, and psoriasis. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Alternatively, the tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and/or diagnosis of conditions concerning proper testicular function (e.g. endocrine function, sperm maturation), as well as cancer. Therefore, this gene product is useful in the treatment of male infertility and/or impotence. This gene product is also useful in assays designed to identify binding agents, as such agents (antagonists) are useful as male contraceptive agents. Similarly, the protein is believed to be useful in the treatment and/or diagnosis of testicular cancer. The testes are also a site of active gene expression of transcripts that may be expressed, particularly at low levels, in other tissues of the body. Therefore, this gene product may be expressed in other specific tissues or organs where it may play related functional roles in other processes, such as hematopoiesis, inflammation, bone formation, and kidney function, to name a few possible target indications.

The tissue distribution in brain and cerebellum tissues suggests that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioural disorders such as Alzheimers Disease, Parkinsons Disease, Huntingtons Disease, Tourette Syndrome, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental disorders associated with the developing embryo, or sexually-linked disorders. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to

10

20

25

30

identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:56 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2219 of SEQ ID NO:56, b is an integer of 15 to 2233, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:56, and where b is greater than or equal to a + 14.

#### 15 FEATURES OF PROTEIN ENCODED BY GENE NO: 47

The translation product of this gene shares sequence homology with seven trans-membrane receptors and plectin, which is thought to be important in muscular dystrophy and multiple other diseases. The gene encoding the disclosed cDNA is thought to reside on chromosome 16. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 16.

This gene is expressed primarily in brain, fetal organs and placental tissue, and, to a lesser extent, in several other organs and tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, diseases and/or disorders of the central nervous system, fetal and developing organs. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, developing and fetal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., neural, developing, cancerous

10

15

20

25

30

PCT/US99/09847 WO 99/58660

94

and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 157 as residues: Arg-13 to Trp-19, Leu-76 to Ala-92, Ser-100 to Arg-105.

The tissue distribution and homology to plectin and seven transmembrane receptors suggests that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and/or diagnosis of disorders of the central nervous system, as well as developing and fetal systems. Moreover, the expression within fetal tissue indicates this protein may play a role in the regulation of cellular division, and may show utility in the diagnosis, treatment, and/or prevention of developmental diseases and disorders, cancer, and other proliferative conditions.

Representative uses are described in the "Hyperproliferative Disorders" and "Regeneration" sections below and elsewhere herein. Briefly, developmental tissues rely on decisions involving cell differentiation and/or apoptosis in pattern formation. Dysregulation of apoptosis can result in inappropriate suppression of cell death, as occurs in the development of some cancers, or in failure to control the extent of cell death, as is believed to occur in acquired immunodeficiency and certain neurodegenerative disorders, such as spinal muscular atrophy (SMA). Because of potential roles in proliferation and differentiation, this gene product may have applications in the adult for tissue regeneration and the treatment of cancers. It may also act as a morphogen to control cell and tissue type specification. Therefore, the polynucleotides and polypeptides of the present invention are useful in treating, detecting, and/or preventing said disorders and conditions, in addition to other types of degenerative conditions. Thus this protein may modulate apoptosis or tissue differentiation and would be useful in the detection, treatment, and/or prevention of degenerative or proliferative conditions and diseases. The protein is useful in modulating the immune response to aberrant polypeptides, as may exist in proliferating and cancerous cells and tissues. The protein can also be used to gain new insight into the regulation of cellular growth and proliferation. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:57 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1949 of SEQ ID NO:57, b is an integer of 15 to 1963, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:57, and where b is greater than or equal to a + 14.

15

10

5

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 48

Preferred polypeptides of the invention comprise the following amino acid sequence: LQQTMQAMLHFGGRLAQSLRGTSKEAASDPSDSPNLPTPGSWW (SEQ ID NO: 334),

- 20 EQLTQASRVYASGGTEGFPLSRWAPGRHGTAAEEGAQERPLPTDE (SEQ ID NO: 335), MAPGRGLWLGRLFGVPGGPAENENGALKSRRPSSWLPPTVSVLAL (SEQ ID NO: 336),
  - VKRGAPPEMPSPQELEASAPRMVQTHRAVRALCDHTAARPDQLS (SEQ ID NO: 337), FRRGEVLRVITTVDEDWLRCGRDGMEGLVPVGYTSLVL (SEQ ID
- 25 NO: 338), and/or LQQTMQAMLHFGGRLAQSLRGTSKEAASDPSDSPNLPTPGSWWEQLTQASR VYASGGTEGFPLSRWAPGRHGTAAEEGAQERPLPTDEMAPGRGLWLGRLFG VPGGPAENENGALKSRRPSSWLPPTVSVLALVKRGAPPEMPSPQELEASAPR MVQTHRAVRALCDHTAARPDQLSFRRGEVLRVITTVDEDWLRCGRDGMEG
- 30 LVPVGYTSLVL (SEQ ID NO: 339). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in synovium, synovial sarcoma, and chondrosarcoma tissues, and, to a lesser extent, in endometrial stromal cells.

5

10

15

20

25

30

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, skeletal and reproductive disorders. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal and reproductive systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., skeletal, reproductive, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in skeletal tissues suggests that polynucleotides and polypeptides corresponding to this gene are useful for the detection and/or treatment of disorders and conditions affecting the skeletal system, in particular osteoporosis as well as disorders afflicting connective tissues (e.g., arthritis, trauma, tendonitis, chrondomalacia and inflammation). The protein product is useful in the diagnosis or treatment of various autoimmune disorders such as rheumatoid arthritis, lupus, scleroderma, and dermatomyositis as well as dwarfism, spinal deformation, and specific joint abnormalities as well as chondrodysplasias (i.e., spondyloepiphyseal dysplasia congenita, familial arthritis, Atelosteogenesis type II, metaphyseal chondrodysplasia type Schmid). Alternatively, the tissue distribution in endometrium suggests that polynucleotides and polypeptides corresponding to this gene are useful for treating female infertility. The protein product is likely involved in preparation of the endometrium of implantation and could be administered either topically or orally.

Alternatively, this gene could be transfected in gene-replacement treatments into the cells of the endometrium and the protein products could be produced.

Similarly, these treatments could be performed during artificial insemination for the purpose of increasing the likelyhood of implantation and development of a healthy

embryo. In both cases this gene or its gene product could be administered at later stages of pregnancy to promote heathy development of the endometrium. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:58 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1253 of SEQ ID NO:58, b is an integer of 15 to 1267, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:58, and where b is greater than or equal to a + 14.

15

20

. 25

30

10

5

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 49

Preferred polypeptides of the invention comprise the following amino acid sequence:

ARACPRXGAAVEKLGGKPVQPDSKPTCCSQVKAEGLIFAGLTGLKLLPSSLQ RAVFVRQCLGFWNDGSRA LQ (SEQ ID NO: 340). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in hypothalamus and hepatocellular tumor and, to a lesser extent, in other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, obesity, metabolic disorders, and hepatocellular tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the, endocrine system, hypothalamus and hepatocellular tumor, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell

15

20

25

30

types (e.g., hypothalamus, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in hypothalamus and hepatocellular tumors indicates that the protein products of this gene are useful for detection, treatment, and/or prevention of obesity, metabolic disorders, and hepatocellular tumors. Similarly, the tissue distribution suggests that polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of various endocrine disorders and cancers, particularly Addison's disease, Cushing's Syndrome, and disorders and/or cancers of the pancreas (e.g., diabetes mellitus), adrenal cortex, ovaries, pituitary (e.g., hyper-, hypopituitarism), thyroid (e.g., hyper-, hypothyroidism), parathyroid (e.g., hyper-, hypoparathyroidism), hypothallamus, and testes. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:59 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1281 of SEQ ID NO:59, b is an integer of 15 to 1295, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:59, and where b is greater than or equal to a + 14.

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 50

Preferred polypeptides of the invention comprise the following amino acid sequence: FQSVYHMKLQSSNLPASVYGNNLNCINSSSS (SEQ ID NO: 341). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in brain, placenta and breast.

10

15

20

25

30



Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, reproductive, neurological and behavioural disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the CNS, immune and female reproductive systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., reproductive, CNS, cancerous and wounded tissues) or bodily fluids (e.g., lymph, breast milk, amniotic fluid, serum, plasma, urine, synovial fluid or cerebrospinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution of this gene in brain indicates that the protein products of this gene are useful for the detection/treatment of neurodegenerative disease states and behavioural disorders such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder. In addition, expression in breast and placenta suggests a role in the detection and/or treatment of female infertility and/or pregnancy disorders. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental disorders associated with the developing embryo, or sexually-linked disorders. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:60 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general

15

20

25

30

formula of a-b, where a is any integer between 1 to 901 of SEQ ID NO:60, b is an integer of 15 to 915, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:60, and where b is greater than or equal to a + 14.

# 5 FEATURES OF PROTEIN ENCODED BY GENE NO: 51

This gene is expressed primarily in adipocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, obesity, Nasu-Hakola disease, cardiovascular disease, non-insulin-dependent diabetes mellitus. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the adipose, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., endocrine, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 161 as residues: Asp-6 to Arg-12, Lys-31 to Leu-41.

The tissue distribution in adipose tissue suggests that the protein product of this gene is useful for the treatment and diagnosis of endocrine and metabolic disorders related to lipids and adipose tissue, such as obesity, Nasu-Hakola disease (membranous lipodystrophy), cardiovascular disease, lipidemia, non-insulindependent diabetes mellitus, stroke and carcinoma. Furthermore, the protein product of this gene may show utility in ameliorating conditions which occur secondary to aberrant fatty-acid metabolism (e.g., aberrant myelin sheath development), either directly or indirectly. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

10

15

20

25

30

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:61 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1431 of SEQ ID NO:61, b is an integer of 15 to 1445, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:61, and where b is greater than or equal to a + 14.

## FEATURES OF PROTEIN ENCODED BY GENE NO: 52

The gene encoding the disclosed cDNA is thought to reside on chromosome 1. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 1.

This gene is expressed primarily in testes, endometrial tumor tissue, bone marrow and placenta tissue, and, to a lesser extent, in several other tissues and organs.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,reproductive diseases and disorders, cancers and hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic and reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, reproductive, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

WO 99/58660

5

10

15

20

25

30

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 162 as residues: Phe-32 to Gln-41, Gln-54 to Asn-68.

The tissue distribution in testes tissue and bone marrow suggests that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and/or diagnosis of disorders of the hematopoietic and reproductive systems, and cancers thereof. The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of conditions concerning proper testicular function (e.g., endocrine function, sperm maturation), as well as cancer. Therefore, this gene product is useful in the treatment of male infertility and/or impotence. This gene product is also useful in assays designed to identify binding agents, as such agents (antagonists) are useful as male contraceptive agents. Similarly, the protein is believed to be useful in the treatment and/or diagnosis of testicular cancer. The testes are also a site of active gene expression of transcripts that may be expressed, particularly at low levels, in other tissues of the body. Therefore, this gene product may be expressed in other specific tissues or organs where it may play related functional roles in other processes, such as hematopoiesis, inflammation, bone formation, and kidney function, to name a few possible target indications. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:62 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1086 of SEQ ID NO:62, b is an

10

15

20

25

30

integer of 15 to 1100, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:62, and where b is greater than or equal to a + 14.

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 53

The translation product of this gene has homology with metallothionine proteins from several organisms.

This gene is expressed primarily in ovarian cancer, tonsils, and B-cell lymphoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,reproductive defects, and lymphoid and ovarian cancers. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and female reproductive systems, and of lymphoid and ovarian cancers, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, reproductive, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 163 as residues: Leu-39 to Ser-47.

The tissue distribution in ovarian cancer, tonsils, and B-cell lymphoma suggests that polynucleotides and polypeptides corresponding to this gene are useful for the study, detection and/or treatment of female reproductive disorders, gonadal and general lymphoid neoplasias, and cancers thereof. Expression of this gene product in tonsils suggests a role in the regulation of the proliferation; survival; differentiation; and/or activation of potentially all hematopoietic cell lineages, including blood stem cells. This gene product may be involved in the regulation of

cytokine production, antigen presentation, or other processes that may also suggest a usefulness in the treatment of cancer (e.g., by boosting immune responses).

5

10

15

20

25

30

Since the gene is expressed in cells of lymphoid origin, the gene or protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, leukemia, rheumatoid arthritis, inflammatory bowel disease, sepsis, acne, and psoriasis. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Furthermore, the protein may also be used to determine biological activity, raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:63 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1485 of SEQ ID NO:63, b is an integer of 15 to 1499, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:63, and where b is greater than or equal to a + 14.

## FEATURES OF PROTEIN ENCODED BY GENE NO: 54

This gene is expressed primarily in adult kidney and pulmonary tissues, as well as in osteoblasts.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are

10

15

20

25

30

not limited to, metabolic, endocrine and skeletal disorders. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine, skeletal, metabolic and developmental systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., endocrine, skeletal, cancerous and wounded tissues) or bodily fluids (e.g., sputum, lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 164 as residues: Ala-35 to Gly-45, Pro-67 to Pro-73, Pro-91 to Ser-97, Thr-127 to Leu-139, Leu-143 to Asn-152, Ser-162 to Pro-167.

The tissue distribution in kidney tissue and osteoblasts suggests that polynucleotides and polypeptides corresponding to this gene are useful for the study, diagnosis and/or treatment of various endocrine and skeletal disorders. Furthermore, elevated levels of expression of this gene product in osteoblasts suggests that it may play a role in the survival, proliferation, and/or growth of osteoblasts. Therefore, it may be useful in influencing bone mass in such conditions as osteoporosis. Alternatively, the tissue distribution in kidney suggests that this gene or gene product is useful in the treatment and/or detection of kidney diseases including renal failure, nephritus, renal tubular acidosis, proteinuria, pyuria, edema, pyelonephritis, hydronephritis, nephrotic syndrome, crush syndrome, glomerulonephritis, hematuria, renal colic and kidney stones, in addition to Wilm's Tumor Disease, and congenital kidney abnormalities such as horseshoe kidney, polycystic kidney, and Falconi's syndrome. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

10

15

20

25

30

PCT/US99/09847

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:64 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 641 of SEQ ID NO:64, b is an integer of 15 to 655, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:64, and where b is greater than or equal to a + 14.

## FEATURES OF PROTEIN ENCODED BY GENE NO: 55

This gene is expressed primarily in neutrophils and embryonic tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immune system disorders and cancers, and developmental disorders. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and developing systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, developing, cancerous and wounded tissues) or bodily fluids (e.g., lymph, amniotic fluid, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 165 as residues: Gln-21 to Ala-33, Lys-48 to Pro-53.

The tissue distribution in neutrophils and embryonic tissues suggests that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis, study and/or treatment of various developmental and immune system

10

15

20

25

30

disorders and cancers thereof, as well as cancers of other tissues where expression of this gene has been observed. Furthermore, expression within embryonic tissue and other cellular sources marked by proliferating cells suggests that this protein may play a role in the regulation of cellular division, and may show utility in the detection, treatment, and/or prevention of cancer and other proliferative disorders. Similarly, embryonic development also involves decisions involving cell differentiation and/or apoptosis in pattern formation. Thus, this protein may also be involved in apoptosis or tissue differentiation and could again be useful in cancer therapy.

Alternatively, expression of this gene product in neutrophils also strongly suggests a role for this protein in immune function and immune surveillance. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:65 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1432 of SEQ ID NO:65, b is an integer of 15 to 1446, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:65, and where b is greater than or equal to a + 14.

# FEATURES OF PROTEIN ENCODED BY GENE NO: 56

Preferred polypeptides of the invention comprise the following amino acid sequence: FDFIASLLKANRLSLQTCELLLAAALLPSERYKAISI (SEQ ID NO: 342). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in fetal liver, spleen and, to a lesser extent, in breast.

10

15

20

25

30

PCT/US99/09847

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,immune and haemopoietic diseases and/ordisorders, in addition to, fetal development. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the circulatory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., hematopoietic, developmental, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, amniotic fluid, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 166 as residues: Ile-50 to Ser-61, Pro-75 to Ser-104.

The tissue distribution in fetal liver and spleen suggests that the protein product of this gene is useful for detection, treatment, and/or prevention of haemopoietic disorders involving stem cell production and maturation. Similarly, polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of hematopoietic related disorders such as anemia, pancytopenia, leukopenia, thrombocytopenia or leukemia since stromal cells are important in the production of cells of hematopoietic lineages. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the uses include bone marrow cell ex-vivo culture, bone marrow transplantation, bone marrow reconstitution, radiotherapy or chemotherapy of neoplasia.

The gene product may also be involved in lymphopoiesis, therefore, it can be used in immune disorders such as infection, inflammation, allergy, immunodeficiency etc. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Furthermore, the protein may

10

15

20

25

30

also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:66 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 656 of SEQ ID NO:66, b is an integer of 15 to 670, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:66, and where b is greater than or equal to a + 14.

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 57

This gene is expressed primarily in adult pulmonary cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,emphysema and other pulmonary diseases and/or disorders. Similarly, polypeptides and antibodies directed to these polypeptides useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the pulmonary system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., lung, cardiovascular, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, sputum, pulmonary surfactant, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in adult pulmonary cells suggests that the protein product of this gene is useful for detection, treatment, and/or prevention of disorders of the pulmonary systems, especially emphysema, asthma, and other similar dysfunctions. Representative uses are described elsewhere herein. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:67 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1678 of SEQ ID NO:67, b is an integer of 15 to 1692, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:67, and where b is greater than or equal to a + 14.

20

25

30

15

5

10

# FEATURES OF PROTEIN ENCODED BY GENE NO: 58

This gene is expressed primarily in hypothalmus (schizophrenic), and, to a lesser extent, in cerebellum.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,schizophenia and hypothalic diseases and/or diseases. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., CNS, cancerous and

10

15

20

25

wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in hypothalmus (schizophrenic) and, to a lesser extent, in cerebellum suggests that the protein product of this gene is useful for detection, treatment, and/or prevention of neurological disorders, especially schizophenia, neurodegenerative disease states, behavioral disorders, or inflammatory conditions. Representative uses are described in the "Regeneration" and "Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Briefly, the uses include, but are not limited to the detection, treatment, and/or prevention of Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Tourette Syndrome, meningitis, encephalitis, demyelinating diseases, peripheral neuropathies, neoplasia, trauma, congenital malformations, spinal cord injuries, ischemia and infarction, aneurysms, hemorrhages, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, depression, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception. In addition, elevated expression of this gene product in regions of the brain indicates it plays a role in normal neural function.

Potentially, this gene product is involved in synapse formation, neurotransmission, learning, cognition, homeostasis, or neuronal differentiation or survival. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:68 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or

WO 99/58660 PCT/US99/09847

112

more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 641 of SEQ ID NO:68, b is an integer of 15 to 655, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:68, and where b is greater than or equal to a + 14.

5

10

15

20

25

30

## FEATURES OF PROTEIN ENCODED BY GENE NO: 59

This gene is expressed primarily in CD34 positive hematopoietic cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,hematopoietic diseases and/or disorders; impaired immune function; susceptibility to infections; lymphomas and leukemias. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., hematopoitic, immune, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in CD34 positive cells indicates that the protein product of this gene is useful for the diagnosis and/or treatment of a variety of hematopoietic disorders. Expression of this gene product particularly in CD34 positive cells suggests that it plays a role in the proliferation; survival; differentiation; and/or activation of early stem and committed progenitor cells within the hematopoietic system. Thus, this gene product may be useful in determining the numbers and proportions of different hematopoietic cell lineages both in vitro and in vivo. Additionally, the tissue distribution indicates polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of hematopoietic related disorders such as anemia, pancytopenia, leukopenia, thrombocytopenia or leukemia since stromal cells are important in the production of cells of hematopoietic lineages.

10

15

20

Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the uses include bone marrow cell ex-vivo culture, bone marrow transplantation, bone marrow reconstitution, radiotherapy or chemotherapy of neoplasia. The gene product may also be involved in lymphopoiesis, therefore, it can be used in immune disorders such as infection, inflammation, allergy, immunodeficiency etc. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:69 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1604 of SEQ ID NO:69, b is an integer of 15 to 1618, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:69, and where b is greater than or equal to a + 14.

25

30

# FEATURES OF PROTEIN ENCODED BY GENE NO: 60

Preferred polypeptides of the invention comprise the following amino acid sequence: IDLSFPSTNVSLEDRNTTKPSVNVG (SEQ ID NO: 343).

Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in dermatofibrosarcoma protuberance and 12 week old early human embryos.

10

15

20

25

30

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, dermatofibrosarcoma; cancer; abnormal cell proliferation; embryological/developmental defects; inhibition of apoptosis; and hematopoietic diseases and/or disorders. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skin and epithelium, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., integumentary, reproductive, developmental, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, amniotic fluid, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this gene is useful for the diagnosis and/or treatment of abnormal cellular proliferation, such as cancer. Expression of this gene in dermatofibrosarcoma and 12 week early stage embryos indicates that it is involved in cellular proliferation and/or a block in differentiation. It may drive cellular proliferation directly, or it may play a role in inhibiting apoptosis or interfering with differentiation events. Similarly, this gene is useful for the treatment, diagnosis, and/or prevention of various skin disorders. Representative uses are described in the "Biological Activity", "Hyperproliferative Disorders", "Infectious Disease", and "Regeneration" sections below, in Example 11, 19, and 20, and elsewhere herein. Briefly, the protein is useful in detecting, treating, and/or preventing congenital disorders (i.e. nevi, moles, freckles, Mongolian spots, . hemangiomas, port-wine syndrome), integumentary tumors (i.e., keratoses, Bowen's disease, basal cell carcinoma, squamous cell carcinoma, malignant melanoma, Paget's disease, mycosis fungoides, and Kaposi's sarcoma), injuries and inflammation of the skin (i.e., wounds, rashes, prickly heat disorder, psoriasis, dermatitis), atherosclerosis, uticaria, eczema, photosensitivity, autoimmune disorders (i.e., lupus erythematosus, vitiligo, dermatomyositis, morphea, scleroderma, pemphigoid, and pemphigus),

10

15

20

25

30

115

keloids, striae, erythema, petechiae, purpura, and xanthelasma. In addition, such disorders may predispose increased susceptibility to viral and bacterial infections of the skin (i.e., cold sores, warts, chickenpox, molluscum contagiosum, herpes zoster,

boils, cellulitis, erysipelas, impetigo, tinea, althlete's foot, and ringworm).

Moreover, the protein product of this gene may also be useful for the treatment or diagnosis of various connective tissue disorders (i.e., arthritis, trauma, tendonitis, chrondomalacia and inflammation, etc.), autoimmune disorders (i.e., rheumatoid arthritis, lupus, scleroderma, dermatomyositis, etc.), dwarfism, spinal deformation, joint abnormalities, amd chondrodysplasias (i.e., spondyloepiphyseal dysplasia congenita, familial osteoarthritis, Atelosteogenesis type II, metaphyseal chondrodysplasia type Schmid). Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:70 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1788 of SEQ ID NO:70, b is an integer of 15 to 1802, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:70, and where b is greater than or equal to a + 14.

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 61

This gene is expressed primarily in neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are

WO 99/58660

5

10

15

20

25

30

PCT/US99/09847

not limited to, disorders affecting the immune system. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue from an individual not having the disorder.

116

The tissue distribution in neutrophils suggests that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and/or treatment of immune system disorders, especially those affecting neutrophils. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, this gene product may be involved in the regulation of cytokine production, antigen presentation, or other processes that may also suggest a usefulness in the treatment of cancer (e.g. by boosting immune responses).

Since the gene is expressed in cells of lymphoid origin, the gene or protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, leukemia, rheumatoid arthritis, inflammatory bowel disease, sepsis, acne, and psoriasis. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

10

15

20

25

30



Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:71 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1278 of SEQ ID NO:71, b is an integer of 15 to 1292, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:71, and where b is greater than or equal to a + 14.

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 62

Preferred polypeptides of the invention comprise the following amino acid sequence: LNILISLTVSSHCKL (SEQ ID NO: 344), INYHSGFIHQFLA (SEQ ID NO: 345), and/or MANNSLSSQFI (SEQ ID NO: 346). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in thymus tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, diseases and/or disorders of the immune system. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 172 as residues: Pro-44 to Arg-50.

WO 99/58660 PCT/US99/09847

The tissue distribution suggests that polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of a variety of immune system disorders. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the expression of this gene product in thymus suggests a role in the regulation of the proliferation; survival; differentiation; and/or activation of potentially all hematopoietic cell lineages, including blood stem cells. This gene product may be involved in the regulation of cytokine production, antigen presentation, or other processes that may also suggest a usefulness in the treatment of cancer (e.g. by boosting immune responses).

Since the gene is expressed in cells of lymphoid origin, the gene or protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, leukemia, rheumatoid arthritis, inflammatory bowel disease, sepsis, acne, and psoriasis. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:72 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1040 of SEQ ID NO:72, b is an

10

15

20

25

30

integer of 15 to 1054, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:72, and where b is greater than or equal to a + 14.

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 63

The translation product of this gene shares sequence homology with angiotensin II receptor which is thought to be important in ligand binding for blood pressure regulation. (See, e.g., GenBank Accession No. gil387891, gil1763532, and/or gil349736; all references available through these accessions are hereby incorporated herein by reference).

Preferred polypeptide fragments comprise the amino acid sequence (portion of extracellular domain):

PFWAAESALDFHWPFGGALCKMVLTATVLNVYASIFLITALSVARY (SEQ ID NO: 347). Also preferred are the polynucleotides that encode this polypeptide fragment.

This gene is expressed primarily in 7TM-pbfd and PCMIX libraries (tissue types unknown).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, blood pressure regulatory diseases and/or disorders. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 173 as residues: Gln-88 to Ser-97.

WO 99/58660 PCT/US99/09847

The tissue distribution and homology to angiotensin II receptor suggests that the protein product of this gene is useful for the study, detection, treatment, and/or prevention of vascular diseases such as blood pressure regulatory disorders.

Representative uses are described elsewhere herein. In particular, the extracellular region of the receptor can be used as a soluble antagonist. Moreover, the protein is useful in the detection, treatment, and/or prevention of a variety of vascular disorders and conditions, which include, but are not limited to miscrovascular disease, vascular leak syndrome, aneurysm, stroke, embolism, thrombosis, coronary artery disease, arteriosclerosis, and/or atherosclerosis. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:73 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 719 of SEQ ID NO:73, b is an integer of 15 to 733, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:73, and where b is greater than or equal to a + 14.

25

10

15

20

# FEATURES OF PROTEIN ENCODED BY GENE NO: 64

Preferred polypeptides of the invention comprise the following amino acid sequence: THADKNQVRNSN (SEQ ID NO: 348), QFLSWEQCTGNTESQ (SEQ ID NO: 349), VRRPKAKGXQTSN (SEQ ID NO: 350),

30 PTQLNKHKPTTKERRRKGL (SEQ ID NO: 351), and/or LISKHENIY (SEQ ID NO: 352). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in neutrophils.

WO 99/58660

5

10

15

20

25

30

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, diseases and/or disorders affecting the immune system. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in neutrophils suggests that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and/or treatment of immune system disorders, especially those affecting neutrophils. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, this gene product may be involved in the regulation of cytokine production, antigen presentation, or other processes that may also suggest a usefulness in the treatment of cancer (e.g. by boosting immune responses).

Since the gene is expressed in cells of lymphoid origin, the gene or protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, leukemia, rheumatoid arthritis, inflammatory bowel disease, sepsis, acne, and psoriasis. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional

10

15

20

25

30

supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:74 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 771 of SEQ ID NO:74, b is an integer of 15 to 785, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:74, and where b is greater than or equal to a + 14.

# FEATURES OF PROTEIN ENCODED BY GENE NO: 65

Preferred polypeptides of the invention comprise the following amino acid sequence: TLYIXXMXTQTWRDQGRCGRDXINCIV (SEQ ID NO: 353). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in brain tissue from a manic depressive, in some cancer tissues such as ovarian cancer, and in spleen from a patient with chronic lymphocytic leukemia and, to a lesser extent, in other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, brain disorders (e.g., manic depression), and tumorigenesis. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system (CNS), reproductive system, and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., brain, reproductive, immune, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a

10

15

20

25

30

disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 175 as residues: Thr-29 to Ala-37, Arg-41 to Lys-46.

The tissue distribution primarily in brain tissue from a manic depressive indicates that the protein products of this gene are useful for diagnosing and treating manic depression and tumorigenesis.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:75 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2327 of SEQ ID NO:75, b is an integer of 15 to 2341, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:75, and where b is greater than or equal to a + 14.

# FEATURES OF PROTEIN ENCODED BY GENE NO: 66

Preferred polypeptides of the invention comprise the following amino acid sequence: SLCTPGRGWEESWGSSLPNLTGWSVSSLDNNDV (SEQ ID NO: 354). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in metastic melanoma spleen, rhabdomyosarcoma, and IL-1 induced neutrophils and, to a lesser extent, in other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,tumorigenesis, metastasis and inflammatory disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the

10

15

20

25

30

skin, connective tissue and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., skin, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in metastic melanoma spleen, rhabdomyosarcoma, and IL-1 induced neutrophils indicates that the protein products of this gene are useful for detection, treatment, and/or prevention of certain tumors such as melanoma, rhabdomyosarcoma and inflammatory disorders. Similarly, the tissue distribution suggests that polynucleotides and polypeptides corresponding to this gene are useful for the treatment, diagnosis, and/or prevention of various skin disorders including congenital disorders (e.g., nevi, moles, freckles, Mongolian spots, hemangiomas, port-wine syndrome), integumentary tumors (e.g., keratoses, Bowen's disease, basal cell carcinoma, squamous cell carcinoma, malignant melanoma, Paget's disease, mycosis fungoides, and Kaposi's sarcoma), injuries and inflammation of the skin (e.g., wounds, rashes, prickly heat disorder, psoriasis, dermatitis), atherosclerosis, uticaria, eczema, photosensitivity, autoimmune disorders (e.g., lupus erythematosus, vitiligo, dermatomyositis, morphea, scleroderma, pemphigoid, and pemphigus), keloids, striae, erythema, petechiae, purpura, and xanthelasma. Moreover, such disorders may predispose increased susceptibility to viral and bacterial infections of the skin (e.g., cold sores, warts, chickenpox, molluscum contagiosum, herpes zoster, boils, cellulitis, erysipelas, impetigo, tinea, althlete's foot, and ringworm). Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and immunotherapy targets for the above listed tumors and tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:76 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or

more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1868 of SEQ ID NO:76, b is an integer of 15 to 1882, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:76, and where b is greater than or equal to a + 14.

5

10

15

20

25

30

# FEATURES OF PROTEIN ENCODED BY GENE NO: 67

Preferred polypeptides of the invention comprise the following amino acid sequence:

MQVALKEDLDALKEKFRTMESNQKSSFQEIPKLNEELLSKQKQLEKIESGEM GLNKVWINITEMNKQISLLTSAVNHLKANVKSAADLISLPTTVEGLQKSVASI GXTLNSVHLAVEALQKTVDEHKKTMELLQSDMNQHFLKETPGSNQIIPSPSA TSELDNKTHSENLKQMGDRSATLKRQSLDQVTNRTDTVKIQSIKKEG (SEQ ID NO: 355), MQVALKEDLDALKEKFRTMESNQKSSFQEIPKLNEELLSKQKQ (SEQ ID NO: 356),

LEKIESGEMGLNKVWINITEMNKQISLLTSAVNHLKANVKSAA (SEQ ID NO: 357), DLISLPTTVEGLQKSVASIGXTLNSVHLAVEALQKTVDEHKKT (SEQ ID NO: 358), MELLQSDMNQHFLKETPGSNQIIPSPSATSELDNKTHSENLKQ (SEQ ID NO: 359), and/or MGDRSATLKRQSLDQVTNRTDTVKIQSIKKEG (SEQ ID NO: 360). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in placental and infant brain tissues, and, to a lesser extent, in many normal and neoplastic cell types.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, developmental disorders, cancer and general growth disorders. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive, developing, and nervous systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., reproductive, developmental, neural, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or

WO 99/58660

5

10

15

20

25

30

another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 177 as residues: Cys-30 to Asn-44.

The tissue distribution in infant brain and embryonic tissues suggests that polynucleotides and polypeptides corresponding to this gene are useful for the study, detection and/or treatment of growth and neoplastic disorders. Furthermore, the tissue distribution suggests that polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of cancer and other proliferative disorders. Expression within embryonic tissue and other cellular sources marked by proliferating cells suggests that this protein may play a role in the regulation of cellular division. Embryonic development also involves decisions involving cell differentiation and/or apoptosis in pattern formation. Thus this protein may also be involved in apoptosis or tissue differentiation and could again be useful in cancer therapy. Alternatively, the tissue distribution in brain indicates polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of neurodegenerative disease states, behavioral disorders, or inflammatory conditions.

Representative uses are described in the "Regeneration" and "Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Briefly, the uses include, but are not limited to the detection, treatment, and/or prevention of Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Tourette Syndrome, meningitis, encephalitis, demyelinating diseases, peripheral neuropathies, neoplasia, trauma, congenital malformations, spinal cord injuries, ischemia and infarction, aneurysms, hemorrhages, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, depression, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception. In addition, elevated expression of this gene product in regions of the brain indicates it plays a role in normal neural function. Potentially, this gene product is involved in synapse formation, neurotransmission, learning, cognition, homeostasis, or neuronal

WO 99/58660

10

15

25

30

differentiation or survival. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental disorders associated with the developing embryo, or sexually-linked disorders. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:77 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2878 of SEQ ID NO:77, b is an integer of 15 to 2892, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:77, and where b is greater than or equal to a + 14.

# 20 FEATURES OF PROTEIN ENCODED BY GENE NO: 68

This gene is apparently exclusively in fetal heart tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cardiovascular and growth defects. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the developing cardiovascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cardiovascular, heart, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such

a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in fetal heart tissue suggests that polynucleotides and polypeptides corresponding to this gene are useful for the study, detection and/or treatment of disorders and growth defects of heart development and function.

Furthermore, the tissue distribution in fetal heart tissue indicates that the protein product of this gene is useful for the detection, treatment, and/or prevention of conditions and pathologies of the cardiovascular system, such as heart disease, restenosis, atherosclerosis, stroke, angina, thrombosis, and wound healing.

Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement.

Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:78 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1659 of SEQ ID NO:78, b is an integer of 15 to 1673, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:78, and where b is greater than or equal to a + 14.

25

30

10

15

20

# FEATURES OF PROTEIN ENCODED BY GENE NO: 69

This gene is expressed primarily in pancreas islet cell tumor tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, digestive and metabolic defects and tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes

for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., endocrine, pancreas, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

5

10

15

20

25

30

The tissue distribution in pancreas islet cell tumor tissue suggests that polynucleotides and polypeptides corresponding to this gene are useful for the study, detection and/or treatment of hormonal and neoplastic disorders of endocrine organs and metabolism. Additionally, the tissue distribution indicates the protein product of this gene is useful for the detection, treatment, and/or prevention of various endocrine disorders and cancers. Representative uses are described in the "Biological Activity", "Hyperproliferative Disorders", and "Binding Activity" sections below, in Example 11, 17, 18, 19, 20 and 27, and elsewhere herein. Briefly, the protein can be used for the detection, treatment, and/or prevention of the Addison's disease, Cushing's Syndrome, and disorders and/or cancers of the pancreas (e.g., diabetes mellitus), adrenal cortex, ovaries, pituitary (e.g., hyper-, hypopituitarism), thyroid (e.g., hyper-, hypothyroidism), parathyroid (e.g., hyper-,hypoparathyroidism), hypothallamus, and testes. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:79 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general

formula of a-b, where a is any integer between 1 to 1447 of SEQ ID NO:79, b is an integer of 15 to 1461, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:79, and where b is greater than or equal to a + 14.

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 70 5

This gene is expressed primarily in tonsils.

10

15

20

25

30

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, diseases and/or disorders of the tonsils, and disorders of the immune system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the tonsils, and the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., tonsils, immune, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution suggests that polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of a variety of immune system disorders. Expression of this gene product in tonsils suggests a role in the regulation of the proliferation; survival; differentiation; and/or activation of potentially all hematopoietic cell lineages, including blood stem cells. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, this gene product may be involved in the regulation of cytokine production, antigen presentation, or other processes that may also suggest a usefulness in the treatment of cancer (e.g. by boosting immune responses).

Since the gene is expressed in cells of lymphoid origin, the gene or protein, as well as, antibodies directed against the protein may show utility as a tumor marker

10

15

20

25

30

and/or immunotherapy targets for the above listed tissues. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, leukemia, rheumatoid arthritis, inflammatory bowel disease, sepsis, acne, and psoriasis. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:80 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1503 of SEQ ID NO:80, b is an integer of 15 to 1517, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:80, and where b is greater than or equal to a + 14.

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 71

Preferred polypeptides of the invention comprise the following amino acid sequence: SPQFLSSKSLPT (SEQ ID NO: 361). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in infant brain and spinal cord.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, congenital brain disorders, including various forms of mental retardation, spina bifida, epilepsy, and various mood disorders, including bipolar and

15

20

25

30

unipolar depression. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., brain, CNS, cancerous and wounded tissues) or bodily fluids (e.g., lymph, amniotic fluid, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 181 as residues: Pro-42 to Lys-49, Lys-56 to Lys-71.

The tissue distribution in infant brain and spinal cord suggests that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and/or treatment of disorders of the brain and nervous system, including congenital brain disorders, including various forms of mental retardation, spina bifida, epilepsy, and various mood disorders, including bipolar and unipolar depression. It may also be useful in the treatment of such neurodegenerative disorders as schizophrenia; ALS; or Alzheimer's. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:81 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 560 of SEQ ID NO:81, b is an integer of 15 to 574, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:81, and where b is greater than or equal to a + 14.

15

20

25

30

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 72

Preferred polypeptides of the invention comprise the following amino acid sequence:

GPPSPRGLPSLPLHLPAPRRYLQSRYACSQSSVSAAARRWGSGWMAWDPWN QASGRYARITLLSVQACHQ

PTVWPRAGHSLPERYSLHPHNGDSTHLSGLLTVKCGA (SEQ ID NO: 362), GPPSPRGLPSLPLHLPAPRRYLQSRYACSQSSVSAAA (SEQ ID NO: 363), RRWGSGWMAWDPWNQASGRYARITLLSVQACHQ (SEQ ID NO: 364), and/or PTVWPRAGHSLPERYSLHPHNGDSTHLSGLLTVKCGA (SEQ ID NO: 365).

10 Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,infection, inflammation and other immune reactions or disorders. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in neutrophils indicates that the protein products of this gene are useful for detection, treatment, and/or prevention of immune disorders, such as infection, inflammation, allergy and immunodeficiency. Therefore, this gene product may have clinical relevance in the treatment of impaired immunity, in the correction of autoimmunity, in immune modulation, in the treatment of allergy, and in the regulation of inflammation. It may also play a role in influencing differentiation of specific hematopoietic lineages, and may even affect the hematopoietic stem cell.

15

20

25

30

WO 99/58660 PCT/US99/09847

Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

134

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:82 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1441 of SEQ ID NO:82, b is an integer of 15 to 1455, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:82, and where b is greater than or equal to a + 14.

## FEATURES OF PROTEIN ENCODED BY GENE NO: 73

Preferred polypeptides of the invention comprise the following amino acid sequence: NQENSLQTN SYLDSTESK (SEQ ID NO: 366). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in neutrophils and activated T-cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immune system disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

10

15

20

25

30

The tissue distribution neutrophils and T-cells indicates that the protein products of this gene are useful for disgnosis and treatment of immune related disorders including, infection, inflammation, allergy, tissue/organ transplantation, immunodeficiency, etc. Therefore, this gene product may have clinical relevance in the treatment of impaired immunity, in the correction of autoimmunity, in immune modulation, in the treatment of allergy, and in the regulation of inflammation. It may also play a role in influencing differentiation of specific hematopoietic lineages, and may even affect the hematopoietic stem cell. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:83 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1626 of SEQ ID NO:83, b is an integer of 15 to 1640, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:83, and where b is greater than or equal to a + 14.

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 74

This gene is expressed primarily in hemangioperiocytoma, placental tissue, and breast and endometrial tumor tissues, and, to a lesser extent, in various other normal and transformed cell types.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, defects and tumors of female reproductive organs. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the

reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., reproductive, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

5

10

15

20

25

30

The tissue distribution in endometrial tumor tissue and placental tissue suggests that polynucleotides and polypeptides corresponding to this gene are useful for the study, detection and/or treatment of reproductive system disorders and neoplasias, as well as cancers of other tissues where expression of this gene has been observed. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:84 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 511 of SEQ ID NO:84, b is an integer of 15 to 525, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:84, and where b is greater than or equal to a + 14.

# FEATURES OF PROTEIN ENCODED BY GENE NO: 75

In an alternativie reading frame, this gene shares homology with a DNA mismatch repair proteins, including PMS 4, and PMS1 (See Accession No. R95251, gnllPIDld1008095 and pirlJC2399lJC2399).

Preferred amino acid fragments comprise the amino acid sequence: OKRACFPFAFCRDCOFXEXSPAMLPVQPAXL (SEQ ID NO: 367),

5

10

15

20

25

30

VSAHGIWLFRS (SEQ ID NO: 368), KHAAPPASLSLSLLLHHGQKR ACFPFAFCRDCQFXEXSPAMLPVQPAXL (SEQ ID NO: 369). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in hematopoietic cells and tissues, such as monocytes, primary dendritic cells, and thymus; and, to a lesser extent, in brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, hematopoietic diseases and/or disorders; immune dysfunction; susceptibility to infection; impaired immune surveillance; neurological disorders, and cancers which may result from increased genetic instability. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, CNS, and solid tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., hematopoietic, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution primarily in hematopoietic cells and tissues and the homology to DNA mismatch repair proteins indicates that the protein product of this gene is useful for the diagnosis and/or treatment of a variety of disorders, especially cancer. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the expression of this gene product in a number of hematopoietic cells and tissues suggests that it may play a role in the proliferation; differentiation; survival; and/or activation of a variety of hematopoietic lineages, particularly the monocyte/macrophage pathway.

Expression of this gene product in a variety of brain tissues also suggests that it may play a role in normal neuronal function or in establishment of neural connectivity. Therefore, it may be useful in the treatment of neurological disorders,

10

15

20

25

30

138

such as Alzheimer's or Parkinson's. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:85 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 823 of SEQ ID NO:85, b is an integer of 15 to 837, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:85, and where b is greater than or equal to a + 14.

# FEATURES OF PROTEIN ENCODED BY GENE NO: 76

This gene is expressed primarily in T-cell lymphoma, endometrial tumors, and infant brain cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,T-cell lymphoma, endometrial tumor, and neurodegenerative or developmental diseases and/or disorders. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, central nervous system, and reproductive systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., neural, immune, reproductive, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken

10

15

20

25

30

from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 186 as residues: Glu-28 to Tyr-33, Gly-50 to Tyr-57.

The tissue distribution suggests that polynucleotides and polypeptides corresponding to this gene are useful for detecting and/or treating T-cell lymphoma, endometrial tumors, neurodegenerative or developmental disorders. The tissue distribution in infant brain cells suggests that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioural disorders.

Representative uses are described in the "Regeneration" and "Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Briefly, the uses include, but are not limited to the detection, treatment, and/or prevention of Alzheimers Disease, Parkinsons Disease, Huntingtons Disease, Tourette Syndrome, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental disorders associated with the developing embryo, or sexually-linked disorders. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:86 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or

more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1560 of SEQ ID NO:86, b is an integer of 15 to 1574, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:86, and where b is greater than or equal to a + 14.

5

10

15

20

25

## FEATURES OF PROTEIN ENCODED BY GENE NO: 77

This gene is expressed primarily in cancer cells, particular from hepatocellular carcinoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, hepatocellular carcinoma and other similar cancer, particularly of the liver. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hepatic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., hepatic, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in tissues of cancerous origins, such as hepatocellular carcinoma tissue, suggests that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and/or treatment of a variety of cancers, most notably cancers of the liver, such as hepatocellular carcinoma. Expression of this gene product in a variety of cancers suggests that this gene may be a player in the progression of these diseases, and may be a beneficial target for inhibitors as therapeutics. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

30

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:87 and may have been publicly available prior to conception of

20

25

30

the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1614 of SEQ ID NO:87, b is an integer of 15 to 1628, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:87, and where b is greater than or equal to a + 14.

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 78

This gene is expressed primarily in T-cell lymphoma, and, to a lesser extent, in hepatocellular tumor tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, T-cell lymphoma, hepatocellular tumors, and cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and hepatic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, hepatic, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 188 as residues: Pro-46 to Asn-58.

The tissue distribution in T-cell lymphoma and hepatocellular tumor tissue suggests that polynucleotides and polypeptides corresponding to this gene are useful for the detection and/or treatment of T-cell lymphomas and hepatocellular tumors, as well as cancers of other tissues where expression of this gene has been observed.

Representative uses are described in the "Immune Activity" and "Infectious Disease"

sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:88 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1781 of SEQ ID NO:88, b is an integer of 15 to 1795, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:88, and where b is greater than or equal to a + 14.

# FEATURES OF PROTEIN ENCODED BY GENE NO: 79

marker and/or immunotherapy targets for the above listed tissues.

5

10

15

20

25

30

This gene is expressed primarily in brain tissue, and, to a lesser extent, in ntera2 cell lines, melanocytes, normal colon, and T-helper cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, neurodegenerative diseases and/or conditions. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., neural, immune, hematopoietic, gastrointestinal, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e.,

10

15

20

25

30

the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 189 as residues: Met-1 to Trp-6.

The tissue distribution in brain tissue suggests that polynucleotides and polypeptides corresponding to this gene are useful for detecting and/or treating neurodegenerative diseases of the central nervous system. Representative uses are described in the "Regeneration" and "Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Briefly, the tissue distribution suggests that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioural disorders such as Alzheimers Disease, Parkinsons Disease, Huntingtons Disease, Tourette Syndrome, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental disorders associated with the developing embryo, or sexually-linked disorders. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:89 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1850 of SEQ ID NO:89, b is an

10

15

20

25

30

integer of 15 to 1864, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:89, and where b is greater than or equal to a + 14.

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 80

The gene encoding the disclosed cDNA is thought to reside on chromosome 1. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 1.

Preferred polypeptides of the invention comprise the following amino acid sequence: IPEEASCFPSAV (SEQ ID NO: 370), EILFGKLKSKAALCTQG (SEQ ID NO: 371), HADRYTCCRCLSPFSLAGL (SEQ ID NO: 372), LSDPLLLPDCSFSFN (SEQ ID NO: 373), KAVAYANVSCRRFKHKTTKLGPIQW (SEQ ID NO: 374), PSSQSPEPPQPLSLFVTRLPNLYDFP (SEQ ID NO: 375), and/or SRQIICTNLCKCTPICFLF (SEQ ID NO: 376). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in breast tissue, fetal liver and adult hepatoma tissues, and, to a lesser extent, in merkel cells and osteoblasts.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancers of the liver or breast. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the glandular systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., breast, liver, cancerous and wounded tissues) or bodily fluids (e.g., lymph, breast milk, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 190 as residues: Asn-25 to Gln-50.

10

15

20

25

The tissue distribution in breast and hepatoma tissues suggests that polynucleotides and polypeptides corresponding to this gene are useful for diagnosing and/or treating tumors of the breast or liver. Furthermore, the expression in the breast tissue may indicate its uses in breast neoplasia and breast cancers, such as fibroadenoma, pipillary carcinoma, ductal carcinoma, Paget's disease, medullary carcinoma, mucinous carcinoma, tubular carcinoma, secretory carcinoma and apocrine carcinoma, as well as juvenile hypertrophy and gynecomastia, mastitis and abscess, duct ectasia, fat necrosis and fibrocystic diseases.

Alternatively, the tissue distribution suggests that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of liver disorders and cancers (e.g. hepatoblastoma, jaundice, hepatitis, liver metabolic diseases and conditions that are attributable to the differentiation of hepatocyte progenitor cells). Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and immunotherapy targets for the above listed tumors and tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:90 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1969 of SEQ ID NO:90, b is an integer of 15 to 1983, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:90, and where b is greater than or equal to a + 14.

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 81

This gene is expressed primarily in thymus and brain tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as

reagents for differential identification of the tissue(s) or cell type(s) present in a

biological sample and for diagnosis of diseases and conditions which include, but are
not limited to, diseases and/or disorders of the immune system and diseases of the

10

15

20

25

30

brain, including various types of mood disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, neural, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution suggests that polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of a variety of immune system disorders. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the expression of this gene product in thymus suggests a role in the regulation of the proliferation; survival; differentiation; and/or activation of potentially all hematopoietic cell lineages, including blood stem cells. This gene product may be involved in the regulation of cytokine production, antigen presentation, or other processes that may also suggest a usefulness in the treatment of cancer (e.g. by boosting immune responses).

Since the gene is expressed in cells of lymphoid origin, the gene or protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, leukemia, rheumatoid arthritis, inflammatory bowel disease, sepsis, acne, and psoriasis. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Alternatively, the tissue distribution in brain tissue suggests that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioural disorders such as Alzheimers Disease, Parkinsons Disease, Huntingtons Disease, Tourette

Syndrome, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental disorders associated with the developing embryo, or sexually-linked disorders. Furthermore, the protein may also be used to determine biological activity. to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

5

10

15

20

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:91 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1943 of SEQ ID NO:91, b is an integer of 15 to 1957, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:91, and where b is greater than or equal to a + 14.

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 82

Preferred polypeptides of the invention comprise the following amino acid sequences: MLLPVNTLLYI (SEQ ID NO: 377), LLTPLCFFYGTSRP (SEQ ID NO: 25 378), PYLELVT (SEQ ID NO: 379), LLKKKKQSVGFSV (SEQ ID NO: 380), CILEAGR (SEQ ID NO: 381), MGFSAPTPGPL (SEQ ID NO: 382), FDLRRLILSIV (SEQ ID NO: 383), AFCPHVTPCKYAVIHTV (SEQ ID NO: 384), NTPLLFLWDLQ (SEQ ID NO: 385), ATIFRTSYLIKKEKTVC (SEQ ID NO: 386), WLLSLHLGGREVRAGAP (SEQ ID NO: 387), QTLQEGSLHSI (SEQ ID NO: 30 388), and/or

MGFSAPTPGPLFDLRRLILSIVAFCPHVTPCKYAVIHTVNTPLLFLWDLQATIF

10

15

20

25

30

RTSYLIKKEKTVCWLLSLHLGGREVRAGAPQTLQEGSLHSI (SEQ ID NO: 389). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in brain and breast tissues, and, to a lesser extent, in several other cell and tissue types including colon and liver tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, breast and brain cancers, mood disorders, dementia, and Alzhiemer's disease. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous and lactations systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., neural, reproductive, cancerous and wounded tissues) or bodily fluids (e.g., lymph, breast milk, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 192 as residues: Gly-21 to Tyr-27.

The expression of this gene in breast tissue may indicate its uses in breast neoplasia and breast cancers, such as fibroadenoma, pipillary carcinoma, ductal carcinoma, Paget's disease, medullary carcinoma, mucinous carcinoma, tubular carcinoma, secretory carcinoma and apocrine carcinoma, as well as juvenile hypertrophy and gynecomastia, mastitis and abscess, duct ectasia, fat necrosis and fibrocystic diseases. Representative uses are described in the "Regeneration" and "Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Alternatively, the tissue distribution of this gene in brain tissue suggests that the translation product of this gene is useful for the detection and/or treatment of brain cancers and neural disorders, such as Alzheimers Disease, Parkinsons Disease, Huntingtons Disease, Tourette Syndrome, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, panic disorder, learning

10

15

20

25

30

disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception.

In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental disorders associated with the developing embryo, or sexually-linked disorders. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:92 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 559 of SEQ ID NO:92, b is an integer of 15 to 573, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:92, and where b is greater than or equal to a + 14.

## FEATURES OF PROTEIN ENCODED BY GENE NO: 83

This gene is expressed primarily in liver and, to a lesser extent, in other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,liver/hepatocyte disorders. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the liver, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell

10

15

20

25

30

WO 99/58660 PCT/US99/09847

150

types (e.g., liver, cancerous and wounded tissues) or bodily fluids (e.g., lymph, bile, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in liver indicates that the protein products of this gene are useful for detection, treatment, and/or prevention of liver (hepatocyte) disorders and cancers (e.g., hepatoblastoma, jaundice, hepatitis, liver metabolic diseases and conditions that are attributable to the differentiation of hepatocyte progenitor cells). Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and immunotherapy targets for the above listed tumors and tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:93 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1198 of SEQ ID NO:93, b is an integer of 15 to 1212, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:93, and where b is greater than or equal to a + 14.

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 84

Preferred polypeptides of the invention comprise the following amino acid sequence: YWVSISQRSVCQQARTSIFFKDGLSREKYSNNG (SEQ ID NO: 390). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in T cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immune disorders, including AIDS and various other diseases in which the immune system is suppressed. Similarly, polypeptides and antibodies directed to

WO 99/58660

5

10

15

20

25

30

these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in T cells indicates that the polypeptides or polynucleotides are useful for treatment, prophylaxis, and diagnosis of immune and autoimmune diseases, such as lupus, transplant rejection, allergic reactions, arthritis, asthma, immunodeficiency diseases, leukemia, and AIDS. The polypeptides or polynucleotides of the present invention are also useful in the treatment, prophlaxis, and detection of thymus disorders, such as Grave's Disease, lymphocytic thyroiditis, hyperthyroidism, and hypothyroidism. Similarly, elevated levels of expression of this gene product in T cell lineages suggests that it may play an active role in normal T cell function and in the regulation of the immune response. For example, this gene product may be involved in T cell activation, in the activation or control of differentiation of other hematopoietic cell lineages, in antigen recognition, or in T cell proliferation. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:94 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1130 of SEQ ID NO:94, b is an integer of 15 to 1144, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:94, and where b is greater than or equal to a + 14.

10

15

20

25

30

## FEATURES OF PROTEIN ENCODED BY GENE NO: 85

The translation product of this gene shares sequence homology with a protein which was found to accumulate during growth-factor-induced proliferation and transformation of normal rat fibroblasts (See, Glaichenhaus, N., and Cuzin, F., Cell 50:1081 (1987); and Genbank Acc. No. gil207250).

Preferred polypeptides of the invention comprise the following amino acid sequence:

LSVRAPGVPAARPRLSSARQAGAGRGELRGQRLWLGPECGCGAGQAGSMLR AVGSLLRLGRGLTVRCGPGAPLEATRRPAPALPPRGLPCYSSGGAPSNSGPQG HGEIHRVPTQRRPSQFDKKILLWTGRFKSMEEIPPRIPPEMIDTARNKARVKAC YI (SEQ ID NO: 391), LSVRAPGVPAARPRLSSARQAGAGRGELRGQRLWLG (SEQ ID NO: 392), PECGCGAGQAGSMLRAVGSLLRLGRGLTVRCGPG (SEQ ID NO: 393), APLEATRRPAPALPPRGLPCYSSGGAPSNSGPQG (SEQ ID NO: 394), HGEIHRVPTQRRPSQFDKKILLWTGRF (SEQ ID NO: 395), and/or KSMEEIPPRIPPEMIDTARNKARVKACYI (SEQ ID NO: 396). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, developmental anomalies or fetal deficiencies, cancers or neoplastic conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the developing embryo, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., embryonic, placental, cancerous and wounded tissues) or bodily fluids (e.g., lymph, amniotic fluid, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

10

15

20

25

30

The tissue distribution and homology to a protein which was found to accumulate during proliferation and transformation of normal fibroblasts suggests that the protein product of this gene is useful for the treatment and diagnosis of developmental anomalies or fetal deficiencies, neoplasms and cancers. Additionally, the tissue distribution in placenta suggests that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and/or treatment of disorders of the placenta. Specific expression within the placenta suggests that this gene product may play a role in the proper establishment and maintenance of placental function. Alternately, this gene product may be produced by the placenta and then transported to the embryo, where it may play a crucial role in the development and/or survival of the developing embryo or fetus. Expression of this gene product in a vascular-rich tissue such as the placenta also suggests that this gene product may be produced more generally in endothelial cells or within the circulation. In such instances, it may play more generalized roles in vascular function, such as in angiogenesis. It may also be produced in the vasculature and have effects on other cells within the circulation, such as hematopoietic cells. It may serve to promote the proliferation, survival, activation, and/or differentiation of hematopoietic cells, as well as other cells throughout the body. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:95 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1260 of SEQ ID NO:95, b is an integer of 15 to 1274, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:95, and where b is greater than or equal to a + 14.

10

15

20

25

30

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 86

The gene encoding the disclosed cDNA is thought to reside on chromosome 3. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 3.

This gene is expressed primarily in T-cell lymphoma and synovial sarcoma tissues, and, to a lesser extent, in fetal liver/spleen tissue and synovial fibroblasts.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, T-Cell lymphoma and synovial sarcoma. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, hematopoietic, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 196 as residues: Gly-4 to His-10, Asp-32 to Val-38.

The tissue distribution in T-cell lymphoma and synovial sarcoma tissues suggests that polynucleotides and polypeptides corresponding to this gene are useful for the detection and/or treatment of T-cell lymphomas and synovial sarcomas, as well as cancers of other tissues where expression of this gene has been observed. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

10

15

20

25

30

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:96 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1766 of SEQ ID NO:96, b is an integer of 15 to 1780, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:96, and where b is greater than or equal to a + 14.

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 87

The gene encoding the disclosed cDNA is believed to reside on chromosome 10. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 10.

This gene is expressed primarily in brain and kidney.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,kidney diseases and various diseases of the brain including mood disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and renal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., kidney, CNS, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid or cerebrospinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 197 as residues: Arg-68 to Lys-78.

10

15

20

25

30

156

The tissue distribution in kidney suggests that this gene or gene product is useful in the treatment and/or detection of kidney diseases including renal failure, nephritis, renal tubular acidosis, proteinuria, pyuria, edema, pyelonephritis, hydronephritis, nephrotic syndrome, crush syndrome, glomerulonephritis, hematuria, renal colic and kidney stones, in addition to Wilm's Tumor Disease, and congenital kidney abnormalities such as horseshoe kidney, polycystic kidney, and Falconi's syndrome. Alternatively, the tissue distribution in brain suggests that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and/or treatment of disorders of the brain and nervous system. It may be useful in the treatment of such neurodegenerative disorders as schizophrenia, ALS, or Alzheimer's. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:97 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2051 of SEQ ID NO:97, b is an integer of 15 to 2065, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:97, and where b is greater than or equal to a + 14.

## FEATURES OF PROTEIN ENCODED BY GENE NO: 88

It has been discovered that this gene is expressed primarily in neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,immune and inflammatory disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and inflammatory systems,

10

15

20

25

30

expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 198 as residues: Pro-41 to Gln-48.

The tissue distribution in neutrophils indicates that the protein products of this gene are useful for the study, diagnosis and/or treatment of immune and inflammatory diseases. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the expression of this gene product indicates a role in regulating the proliferation; survival; differentiation; and/or activation of hematopoietic cell lineages, including blood stem cells. Furthermore, this gene product may be involved in the regulation of cytokine production, antigen presentation, or other processes that may also suggest a usefulness in the treatment of cancer (e.g., by boosting immune responses).

Since the gene is expressed in cells of lymphoid origin, the gene or protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, leukemia, rheumatoid arthritis, inflammatory bowel disease, sepsis, acne, and psoriasis. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

15

20

25

30

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:98 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1140 of SEQ ID NO:98, b is an integer of 15 to 1154, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:98, and where b is greater than or equal to a + 14.

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 89

Preferred polypeptides of the invention comprise the following amino acid sequence: ELAIGESCS (SEQ ID NO: 397). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, developmental, degenerative and behavioral diseases of the brain such as schizophrenia, Alzheimer's disease, Parkinson's disease, Huntington's disease, transmissible spongiform encephalopathies (TSE), Creutzfeldt-Jakob disease (CJD), specific brain tumors, aphasia, mania, depression, dementia, paranoia, addictive behavior and sleep disorders. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providingimmunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., CNS, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid or cerebrospinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e.,

10

15

20

25

30

the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 199 as residues: Gly-45 to Thr-50.

The tissue distribution in brain indicates polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of neurodegenerative disease states, behavioral disorders, or inflammatory conditions. Representative uses are described in the "Regeneration" and "Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Briefly, the uses include, but are not limited to the detection, treatment, and/or prevention of Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Tourette Syndrome, meningitis, encephalitis, demyelinating diseases, peripheral neuropathies, neoplasia, trauma, congenital malformations, spinal cord injuries, ischemia and infarction, aneurysms, hemorrhages, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, depression, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception.

In addition, elevated expression of this gene product in regions of the brain indicates it plays a role in normal neural function. Potentially, this gene product is involved in synapse formation, neurotransmission, learning, cognition, homeostasis, or neuronal differentiation or survival. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:99 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or

160

more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 601 of SEQ ID NO:99, b is an integer of 15 to 615, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:99, and where b is greater than or equal to a + 14.

5

10

15

20

25

30

## FEATURES OF PROTEIN ENCODED BY GENE NO: 90

This gene is expressed primarily in brain tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, neurological and behavioural disorders. Similarly, polypeptides and antibodies directed to these polypeptidesare useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., CNS, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid or cerebrospinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in brain indicates that the protein products of this gene are useful for the detection/treatment of neurodegenerative disease states and behavioural disorders such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:100 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is

ŧ į

5

10

15

20

25

30

cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1610 of SEQ ID NO:100, b is an integer of 15 to 1624, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:100, and where b is greater than or equal to a + 14.

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 91

Preferred polypeptides of the invention comprise the following amino acid sequence: PVIWPDGKRIVLLAEVS (SEQ ID NO: 398). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in adrenal gland tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, adrenal gland cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the adrenal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., adrenal gland, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 201 as residues: Arg-49 to Gln-56.

The tissue distribution in adrenal gland indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and/or treatment of disorders involving the adrenal gland. Expression of this gene product in adrenal gland tumor indicates that it may play a role in the proliferation of cells of the adrenal gland, or potentially in the proliferation of cells in general. In such an event, it may play a role in determining the course and severity of cancer. Alternatively, it may play

a role in the normal function of adrenal glands, such as in the production of corticosteroids, androgens, or epinephrines. Thus it may play a role in general homeostasis, as well as in disorders involving the androgen hormones. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:101 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1742 of SEQ ID NO:101, b is an integer of 15 to 1756, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:101, and where b is greater than or equal to a + 14.

## FEATURES OF PROTEIN ENCODED BY GENE NO: 92

5

10

15

20

25

30

The gene encoding the disclosed cDNA is thought to reside on chromosome 2. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 2.

This gene is expressed in multiple tissues, including the thymus, and cell types, including B cells and monocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, disorders and/or disorders afflicting the immune system, such as AIDS and autoimmune diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, cancerous and wounded tissues) or bodily fluids (e.g., lymph,

serum, plasma, urine, synovial fluid and spinal fluid) taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in immune system tissues and cells suggests that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and/or treatment of disorders affecting the immune system, especially autoimmune diseases and AIDS. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, this gene product may be involved in the regulation of cytokine production, antigen presentation, or other processes that may also suggest a usefulness in the treatment of cancer (e.g. by boosting immune responses).

5

10

15

20

25

30

Since the gene is expressed in cells of lymphoid origin, the gene or protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, leukemia, rheumatoid arthritis, inflammatory bowel disease, sepsis, acne, and psoriasis. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:102 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general

164

formula of a-b, where a is any integer between 1 to 1402 of SEQ ID NO:102, b is an integer of 15 to 1416, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:102, and where b is greater than or equal to a + 14.

## 5 FEATURES OF PROTEIN ENCODED BY GENE NO: 93

10

15

20

25

30

J

This gene is expressed primarily in fetal lung tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, lung diseases and/or disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the lung, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., pulmonary, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, sputum, pulmonary surfactant, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 203 as residues: Leu-32 to His-38.

The tissue distribution in fetal lung tissue suggests that polynucleotides and polypeptides corresponding to this gene are useful for the detection and/or treatment of lung diseases and/or disorders. Representative uses are described elsewhere herein. Furthermore, the tissue distribution suggests that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of disorders associated with developing lungs, particularly in premature infants where the lungs are the last tissues to develop. The tissue distribution suggests that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and intervention of lung tumors, since the gene may be involved in the regulation of cell division, particularly since it is expressed in fetal tissue. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to

165

isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:103 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 690 of SEQ ID NO:103, b is an integer of 15 to 704, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:103, and where b is greater than or equal to a + 14.

15

30

5

10

#### FEATURES OF PROTEIN ENCODED BY GENE NO: 94

Preferred polypeptides of the invention comprise the following amino acid sequence: CFLSVSFQWN (SEQ ID NO: 399), VTIAQVGIFVCFVHCCT (SEQ ID NO: 400), PGQVPSKHLGSNASVRA (SEQ ID NO: 401),

- DEGAKVQRRPWGSQTHSPVLFL (SEQ ID NO: 402),
  LTRPGLWGSLLPVQQQRG (SEQ ID NO: 403), CASLGVLRANRSPCV (SEQ ID NO: 404), SWLEVTTLSAPGPVITTY (SEQ ID NO: 405),
  PGQWVREIXLVGRAVARV (SEQ ID NO: 406), LTWPPXGPMGTVWPGF (SEQ ID NO: 407), MADIPGTFLALGCHGQR (SEQ ID NO: 408),
- 25 VGRGSWASGWTNQSA (SEQ ID NO: 409), and/or PDHPLPVGLLEAWRVE (SEQ ID NO: 410). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily neutrophils and eosinophils, and, to a lesser extent, in bone marrow and fetal liver/spleen tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, asthma and diseases and/or disorders afflicting the immune system.

10

15

20

25

30

166

Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 204 as residues: Ser-2 to Trp-7.

The tissue distribution in immune system cells and tissues suggests that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and/or treatment of asthma or other disorders affecting the immune system. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, this gene product may be involved in the regulation of cytokine production, antigen presentation, or other processes that may also suggest a usefulness in the treatment of cancer (e.g. by boosting immune responses).

Since the gene is expressed in cells of lymphoid origin, the gene or protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, leukemia, rheumatoid arthritis, inflammatory bowel disease, sepsis, acne, and psoriasis. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

15

20

25

30

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:104 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1245 of SEQ ID NO:104, b is an integer of 15 to 1259, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:104, and where b is greater than or equal to a + 14.

# FEATURES OF PROTEIN ENCODED BY GENE NO: 95

This gene shares sequence homology to the rat cornichon-like protein (See Genbank Accession No. 2317276), the murine cornichon protein (See Genbank Accession No. gil2460430), and the human cornichon protein (See Genbank Accession No. gil4063709). The Drosophila cornichon gene is though to be involved in signaling processes necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. Thus, it is likely that this gene plays a similar role in human development.

The gene encoding the disclosed cDNA is thought to reside on chromosome 1. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 1.

This gene is expressed primarily in endometrial tumor tissue and infant brain tissue, and, to a lesser extent, in frontal cortex tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,endometrial tumor, and neural and developmental diseases and/or disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neural and reproductive organs, expression of this gene at

WO 99/58660

10

15

20

25

30

significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., neural, reproductive, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, amniotic fluid, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 205 as residues: Glu-33 to Phe-38.

The tissue distribution in infant brain tissue and frontal cortex tissue, and the homology to cornichon proteins, suggests that polynucleotides and polypeptides corresponding to this gene are useful for detecting and/or treating neural and developmental disorders. The tissue distribution suggests that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioural disorders such as Alzheimers Disease, Parkinsons Disease, Huntingtons Disease, Tourette Syndrome, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental disorders associated with the developing embryo, or sexually-linked disorders.

Representative uses are described in the "Regeneration" and "Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Briefly, the elevated expression of this gene product within the frontal cortex of the brain suggests that it may be involved in neuronal survival; synapse formation; conductance; neural differentiation, etc. Such involvement may impact many processes, such as learning and cognition. Alternatively, the tissue distribution in endometrial tumor tissue suggests that the translation product of this gene is useful for the detection and/or treatment of endometrial tumors and/or reproductive disorders, as well as tumors of other tissues where expression of this gene has been observed. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or

receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:105 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1790 of SEQ ID NO:105, b is an integer of 15 to 1804, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:105, and where b is greater than or equal to a + 14.

15

20

30

10

5

## FEATURES OF PROTEIN ENCODED BY GENE NO: 96

The translation product of this gene shares significant sequence homology with a protein which was recently sequenced by another group, which was named paraplegin by this group (See Genbank Accession No. g3273089). The gene encoding the disclosed cDNA is thought to reside on chromosome 16. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 16.

Preferred polypeptides of the invention comprise the following amino acid sequence:

25 LARADPPGCRRRGWRPSSAELQLRLLTPTFEGINGLLLKQHLVQNPVRLWQL LGGTFYFNTSRLKQKNKE KDKSKGKAPEEDEXERRRERDDQ (SEQ ID NO: 411). Polynucleotides encoding these polypeptides are also provided.

When tested against Jurkat T-cell cell lines, supernatants removed from cells containing this gene activated the GAS assay. Thus, it is likely that this gene activates T-cells, and to a lesser extent other immune cells, through the Jak-STAT signal transduction pathway. The gamma activating sequence (GAS) is a promoter element found upstream of many genes which are involved in the Jak-STAT pathway. The

10

15

20

25

30

Jak-STAT pathway is a large, signal transduction pathway involved in the differentiation and proliferation of cells. Therefore, activation of the Jak-STAT pathway, reflected by the binding of the GAS element, can be used to indicate proteins involved in the proliferation and differentiation of cells.

This gene is expressed primarily in Jurkat T-cells, Macrophage, T-Cell Lymphoma, tonsils, and salivary glands.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, T-Cell lymphomas. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, hematopoietic, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 206 as residues: Met-1 to Leu-6, Asp-84 to Lys-89, Asp-124 to Gly-130, Ser-138 to Trp-143, His-145 to Ser-153, Thr-170 to Pro-183, Trp-191 to Pro-198.

The tissue distribution in immune tissues and T-cells, in conjunction with the detected GAS biological activity data, suggests that polynucleotides and polypeptides corresponding to this gene are useful for the detection and/or treatment of T-cell lymphomas. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the expression of this gene product in T cell lymphoma suggests that it may play a role in the proliferation of the lymphoid cell lineages, and may be involved in normal antigen recognition and activation of T cells during the immune process. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors,

10

20

25

30

to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:106 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 957 of SEQ ID NO:106, b is an integer of 15 to 971, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:106, and where b is greater than or equal to a + 14.

## 15 FEATURES OF PROTEIN ENCODED BY GENE NO: 97

Preferred polypeptides of the invention comprise the following amino acid sequence: FLRFWCTCHVSS (SEQ ID NO: 412). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in bladder.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, diseases of the bladder, including bladder cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the urinary system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., bladder, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in bladder indicates that the polynucleotides and polypeptides corresponding to this gene are useful for treatment and/or diagnosis of urinary tract disorders (e.g., cystitis, urinary tract calcui, incontinance) and bladder tumors or cancers. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

5

10

15

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:107 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 807 of SEQ ID NO:107, b is an integer of 15 to 821, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:107, and where b is greater than or equal to a + 14.

|       |             | Last  | AA                | Jo         | ORF      | 243       |          | 41         |          | 526       |          | 354         |          | 63        |          | 309        |          | 211         |          | 20         |          | 262        |          | 270       |          | 91         |          |
|-------|-------------|-------|-------------------|------------|----------|-----------|----------|------------|----------|-----------|----------|-------------|----------|-----------|----------|------------|----------|-------------|----------|------------|----------|------------|----------|-----------|----------|------------|----------|
|       |             | First | AA of             | Secreted   | Portion  | 18        |          | 25         |          | 35        |          | 31          |          | 22        |          | 22         |          | 24          |          | 21         |          | 19         |          | 43        |          | 23         |          |
|       | Last        | AA    | of                | Sig        | Pep      | 17        |          | 24         |          | 34        |          | 30          |          | 21        |          | 21         |          | 23          |          | 70         |          | 18         |          | 42        |          | 22         |          |
|       | First Last  | AA    | Jo                | Sig        | Pep      | 1         |          | _          |          | I         |          | 1           |          | _         |          | _          |          | -           |          |            |          | _          |          | I         |          | -          |          |
|       | AA          |       | Ω                 | :0N        | Y        | 111       |          | 112        |          | 113       |          | 114         |          | 115       |          | 116        |          | 117         |          | 118        |          | 119        |          | 120       |          | 121        |          |
| S' NT | Jo          | First | AA of             | Signal NO: | Pep      | 69        |          | 24         |          | 22        |          | 105         |          | 38        |          | 39         |          | 235         |          | 133        |          | 299        |          | 178       |          | 54         |          |
|       |             | 5'NT  | Jo                |            | Codon    | 69        |          | 24         |          | 22        |          | 105         |          | 38        |          | 39         |          | 235         |          | 133        |          | 562        |          | 178       |          | 54         |          |
|       | 3'NT        | of    | Total Clone Clone | Seq.       | _        | 1191      |          | 1251       |          | 1734      |          | 1537        |          | 1558      |          | 1636       |          | 1256        |          | 1143       |          | 1537       | ,        | 2672      |          | 1501       |          |
|       | 5' NT 3' NT | Jo    | Clone             | Seq.       |          | I         |          | l          |          | I         |          | 914         |          | ľ         |          | 7          |          | 148         |          | _          |          | 92         | _        | 222       |          | 14         |          |
|       |             |       |                   | NT         | Seq.     | 1611      |          | 1251       |          | 1734      |          | 1540        |          | 1558      |          | 1636       |          | 1256        |          | 1143       |          | 1537       |          | 2672      |          | 1508       |          |
| Γ     | Z           | SEQ   | Ω                 | SON:       | X        | 11        |          | 12         |          | 13        |          | 14          |          | 15        |          | 16         |          | 17          |          | 18         |          | 19         |          | 20        |          | 21         |          |
|       |             |       |                   |            | Vector   | pCMVSport | 2.0      | Uni-ZAP XR |          | pCMVSport | 3.0      | pBluescript | SK-      | pCMVSport | 3.0      | Uni-ZAP XR |          | pBluescript | SK-      | Uni-ZAP XR |          | Uni-ZAP XR |          | pCMVSport | 3.0      | Uni-ZAP XR |          |
|       |             | ATCC  | Deposit           | Nr and     | Date     | 209683    | 03/20/98 | 209683     | 03/20/98 | 209745    | 04/07/98 | 209745      | 04/07/98 | 209746    | 04/07/98 | 209683     | 03/20/98 | 209683      | 03/20/98 | 209683     | 03/20/98 | 209746     | 04/07/98 | 209745    | 04/07/98 | 209683     | 03/20/98 |
|       |             |       |                   | cDNA       | Clone ID | HKABZ65   |          | 08DIDNH    |          | HDPUG50   |          | HAEAB66     |          | HHEPF59   |          | HE9BK23    |          | HCYBI36     |          | HSSDX51    |          | HSDAJ46    |          | HRACG45   |          | HAPPW30    |          |
|       |             |       |                   | Gene       | No.      | _         |          | 2          |          | 3         |          | 4           |          | 5         |          | 9          |          | 7           |          | ∞          |          | 6          |          | 10        | i        | 11         |          |

| Last                        | AA                | of         | ORF      | 222        |          | 201        |          | 46         |          | 305       |          | 81        |          | 242       |          | 285        |          | 81         |          | 157         | _        | 308       |          | 208        |          |
|-----------------------------|-------------------|------------|----------|------------|----------|------------|----------|------------|----------|-----------|----------|-----------|----------|-----------|----------|------------|----------|------------|----------|-------------|----------|-----------|----------|------------|----------|
| First                       | AA of             | Secreted   | Portion  | 15         |          | 23         |          | 19         |          | 22        |          | 30        |          | 30        |          | 24         |          | 21         |          | 19          |          | 21        |          | 28         |          |
| Last                        | Jo                | Sig        | Pep      | 14         |          | 22         |          | 18         |          | 21        |          | 59        |          | 56        |          | 23         |          | 70         |          | 18          |          | 20        |          | 27         |          |
| AA First Last<br>SEO AA AA  | of                | Sig        | Pep      | 1          |          | 1          |          | I          |          | 1         |          | 1         |          | 1         |          | 1          |          | 1          |          | 1           |          | 1         |          | -          |          |
| AA<br>SEO                   | Œ                 | :ÖN        | Y        | 122        | •        | 123        |          | 124        |          | 125       |          | 126       |          | 127       |          | 128        |          | 208        |          | 129         |          | 130       | •        | 131        |          |
| 5' NT<br>of AA<br>First SEO | _                 | Signal NO: |          | LL         |          | 217        |          | 25         |          | 46        |          | 132       |          | 252       |          | 130        |          | 125        |          | 08          |          | 227       |          | 183        |          |
| s' NT                       |                   | Start      | Codon    | LL         |          | 217        |          | 25         |          | 46        |          | 132       |          | 252       |          | 130        |          | 125        |          | 08          |          | 227       |          | 183        |          |
| 5'NT 3'NT                   | Clone             | Seq.       |          | 1447       |          | 1583       |          | 1280       |          | 1053      |          | 1477      |          | 2504      |          | 1866       |          | 1720       |          | 1501        |          | 1752      |          | 2152       |          |
| 5' NT<br>of                 | Total Clone Clone | Seq.       |          | 1          |          | I          | ,        | 25         |          | 1         |          |           |          | 1         |          | 1          |          | 1          |          | 1           |          | 1         |          | 141        |          |
|                             | Total             | NT         | Seq.     | 1447       |          | 1583       |          | 1669       |          | 1053      |          | 1477      |          | 2504      |          | 1866       |          | 6221       |          | 1501        |          | 1752      |          | 2152       |          |
| NT<br>SEO                   | (Al               | NO:        | X        | 22         |          | 23         |          | 24         |          | 25        |          | 26        |          | 27        |          | 28         | •        | 108        |          | 29          |          | 30        |          | 31         |          |
|                             |                   |            | Vector   | Uni-ZAP XR |          | Uni-ZAP XR |          | Uni-ZAP XR |          | pCMVSport | 3.0      | pCMVSport | 2.0      | pCMVSport | 3.0      | Uni-ZAP XR |          | Uni-ZAP XR |          | ZAP Express | •        | pCMVSport | 3.0      | Uni-ZAP XR |          |
| ATCC                        | Deposit           | Nr and     | Date     | 209745     | 04/07/98 | 209746     | 04/02/98 | 209745     | 04/07/98 | 209745    | 04/02/98 | 209745    | 04/01/98 | 209745    | 04/07/98 | 209745     | 04/07/98 | 209745     | 04/07/98 | 209745      | 04/07/98 | 209745    | 04/02/98 | 209746     | 04/01/98 |
|                             |                   | cDNA       | Clone ID | HE2ES51    |          | 95MQXLH    |          | HEEAG23    |          | НДРК193   |          | HDLAC10   |          | 90НОДОН   |          | HCE4G61    |          | HCE4G61    |          | HCWU113     |          | HDPSP01   |          | HHPEN62    |          |
|                             |                   | Gene       | No.      | 12         |          | 13         |          | 14         |          | 15        |          | 91        |          | 17        |          | 18         |          | 18         |          | 61          |          | 20        |          | 21         |          |

|       |            | st    | ✓           | <u> </u>   | Ŀ        | ي          | , ,      | 1_~        | 7         |            |            |          | T          |          | ي         |             | 4         |          | 5          |          | T_      |          | T.        |          | Τ          |          |
|-------|------------|-------|-------------|------------|----------|------------|----------|------------|-----------|------------|------------|----------|------------|----------|-----------|-------------|-----------|----------|------------|----------|---------|----------|-----------|----------|------------|----------|
| L     |            | Last  | AA          |            | ORF      | 506        | <u> </u> | 48         | 130       | -          | 43         | !        | 6          | ·<br>·   | 266       | <u> </u>    | 434       | !        | 236        |          | 8       | <u> </u> | 65        | }        | 19         |          |
|       |            | First | AA of       | Secreted   | Portion  | 20         | ì        | 22         | 23        | 1          | 30         |          | 25         | ì        | 161       | ;           | 27        | i        | 30         |          | 61      | 2        | 29        | ì        | 27         |          |
|       | First Last | AA    | of          | Sig        | Pep      | 19         | }        | 21         | 2         | 1          | 29         | ì        | 24         | i        | 200       | )           | 26        | ,        | 29         |          | ~       | 2        | 28        | <br>}    | 56         | -        |
|       | First      | AA    | Jo          | Sig        | Pep      | _          |          | -          | -         | •          | -          |          | -          |          | -         |             | -         |          | -          |          | -       | 1        | -         | ı        | -          |          |
|       | AA         | SEQ   | ĪΩ          | NO:        | ¥        | 132        | 1        | 133        | 134       | :          | 135        |          | 136        |          | 137       |             | 138       |          | 139        |          | 64      | 2        | 141       |          | 142        |          |
| 5' NT | of         | First | AA of       | Signal NO: | Pep      | 74         |          | 70         | 93        | )          | 256        |          | 305        |          | 202       | <del></del> | 78        |          | 130        |          | 150     |          | 186       |          | 268        |          |
|       |            | 5' NT |             | Start      | Codon    | 74         |          | 70         | 93        | )          | 256        |          | 305        |          | 202       |             | 78        |          | 130        |          | 150     | )        | 186       |          | 268        |          |
|       | 3' NT      | of    | Clone Clone | Seq.       | _        | 1757       |          | 1466       | 526       | )<br> <br> | 2412       |          | 1274       |          | 1036      |             | 1379      | ,        | 1836       |          | 1430    | !        | 1407      |          | 950        |          |
|       | 5' NT      | ot    | Clone       | Seq.       | '        | 99         |          | 32         | -         | ı          | _          |          | 65         |          | _         |             | ∞         |          | -          |          | _       |          | -         |          | -          |          |
|       |            |       | Total       | ZZ         | Seq.     | 1221       |          | 1466       | 526       |            | 2412       |          | 1274       |          | 1036      |             | 1379      |          | 1932       |          | 1430    | 1        | 1407      |          | 950        |          |
|       | NT         | SEQ   | A           | NO:        | ×        | 32         |          | 33         | 34        |            | 35         | -        | 36         |          | 37        |             | 38        |          | 39         |          | 40      |          | 41        |          | 42         |          |
|       |            |       |             |            | Vector   | Lambda ZAP | II       | Uni-ZAP XR | pCMVSport | 3.0        | Uni-ZAP XR |          | Uni-ZAP XR |          | pCMVSport | 3.0         | pCMVSport | 2.0      | Uni-ZAP XR |          | pSport1 | •        | pCMVSport | 3.0      | Uni-ZAP XR |          |
|       | ;          | ATCC  | Deposit     | Nr and     | Date     | 209746     | 04/07/98 | 209683     | 209683    | 03/20/98   | 209683     | 03/20/98 | 209746     | 04/07/98 | 209745    | 04/07/98    | 209746    | 04/07/98 | 209746     | 04/07/98 | 209746  | 04/01/98 | 209746    | 04/07/98 | 209683     | 03/20/98 |
|       |            |       |             | cDNA       | Clone ID | HUKBT29    |          | HMAJR50    | HBIMB51   |            | HE8DX88    |          | HNGHT03    |          | HWABU17   |             | HDTAT90   |          | HHFGR93    |          | HOVCB25 |          | HSYAV66   |          | HFPCT29    |          |
|       |            |       |             | Gene       | No.      | 22         |          | 23         | 24        |            | 25         |          | 26         |          | 27        |             | 28        |          | 29         |          | 30      |          | 31        |          | 32         |          |

| I act                | AA          | of         | ORF      | 88          |          | %          | 06         |          | 89         |          | 43      |          | 84         |          | 63                 | 19          | T        | 82         |          | 46         |          | 187        |          |
|----------------------|-------------|------------|----------|-------------|----------|------------|------------|----------|------------|----------|---------|----------|------------|----------|--------------------|-------------|----------|------------|----------|------------|----------|------------|----------|
| <u>i</u>             | AA of       | Secreted   | Portion  | 33          |          | 22         | 22         |          | 24         |          | 30      |          | 35         |          | 61                 | 81          |          | 19         |          | 40         |          | 31         |          |
| Last                 | of          | Sig        | Pep      | 32          |          | 21         | 21         |          | 23         |          | 29      |          | 34         |          | 18                 | 17          |          | 18         |          | 39         |          | 30         |          |
| AA First Last        |             | Sig        | Pep      | 1           |          | _          | -          |          | _          |          | _       |          | _          |          | ı                  | 1           |          | -          |          | I          |          | 1          |          |
| AA                   | )<br>ID     | NO:        | Y        | 143         |          | 144        | 145        |          | 146        |          | 147     |          | 148        |          | 149                | 150         |          | 151        |          | 152        |          | 153        |          |
| S' NT<br>of<br>Firet |             | Signal NO: | Pep      | 149         |          | 71         | 211        |          | 220        |          | 09      |          | 40         |          | 250                | 81          |          | 45         |          | 178        |          | 352        |          |
| ry.                  | of          | Start      | Codon    | 149         |          | 71         | 211        |          | 220        |          | 09      |          | 40         |          | 250                | 81          |          | 45         |          | 178        |          | 352        |          |
| 3' NT                | Olone       | Seq.       |          | 1004        |          | 1681       | 1365       |          | 1137       |          | 2763    |          | 1576       |          | 1348               | 1264        |          | 1660       |          | 1678       |          | 1726       |          |
| r .                  | Ol Ol Clone | Seq.       |          | 99          |          | _          | 1          |          | _          |          | 15      |          | _          |          | -                  | -           |          | 39         |          | I          |          | 569        |          |
|                      | Total       | NT         | Seq.     | 1004        |          | 1681       | 1365       |          | 1137       |          | 2763    |          | 1576       |          | 1348               | 1264        |          | 1660       |          | 1678       |          | 1860       |          |
| NT                   | JE<br>TI    | :ON        | ×        | 43          |          | 44         | 45         |          | 46         |          | 47      |          | 48         |          | 46                 | 50          |          | 51         |          | 52         |          | 23         |          |
|                      |             |            | Vector   | pBluescript | SK-      | Uni-ZAP XR | Uni-ZAP XR |          | Uni-ZAP XR |          | pSport1 |          | Uni-ZAP XR |          | Uni-ZAP XR         | pCMVSport 1 |          | Uni-ZAP XR |          | Uni-ZAP XR |          | Uni-ZAP XR |          |
| ΔTCC                 | Deposit     | Nr and     | Date     | 209683      | 03/20/98 | 209683     | 209683     | 96/07/50 | 209683     | 03/77/20 | 209745  | 04/10/40 |            | 04/07/98 | 209745<br>04/07/98 | 209745      | 04/0//98 | 209745     | 04/01/98 | 209745     | 04/01/98 |            | 04/02/98 |
|                      |             | cDNA       | Clone ID | HAWAT25     |          | HNHFR04    | HOSFT61    |          | HBJIO81    |          | HADCL55 |          | HAGGJ80    |          | HAIBO81            | HBBBC37     |          | HBJMX85    |          | HCEES66    |          | HCEMP62    |          |
|                      |             | Gene       | No.      | 33          |          | 34         | 35         |          | 36         |          | 37      |          | 38         |          | 39                 | 40          |          | 4          |          | 42         |          | 43         | _        |

understand for the comment

| VO 99/58660                                           |                    |                    | 1                             | 177                |            |                    |         |            |                    | PCI                | /US99/0            |
|-------------------------------------------------------|--------------------|--------------------|-------------------------------|--------------------|------------|--------------------|---------|------------|--------------------|--------------------|--------------------|
|                                                       |                    |                    |                               |                    |            | •                  |         |            |                    | •                  | ÷                  |
| Last<br>AA<br>of<br>ORF                               | 113                | 292                | 98                            | 901                | 28         | 40                 | 65      | 46         | 140                | 53                 | 167                |
| First<br>AA of<br>Secreted<br>Portion                 | 28                 | 27                 | 18                            | 50                 | 23         | 23                 | 23      | 31         | 17                 | 25                 | 26                 |
| Last<br>AA<br>of<br>Sig<br>Pep                        | 27                 | 26                 | 17                            | 49                 | 22         | 22                 | 22      | 30         | 16                 | 24                 | 25                 |
| First<br>AA<br>of<br>Sig<br>Pep                       | 1                  | 1                  | -                             | -                  | -          | _                  |         | _          | _                  | _                  | -                  |
| AA<br>SEQ<br>ID<br>Y                                  | 154                | 155                | 156                           | 157                | 158        | 159                | 160     | 161        | 162                | 163                | 164                |
| of AA<br>First SEQ<br>AA of ID<br>Signal NO:<br>Pep Y | 205                | 99                 | 42                            | 130                | 009        | 218                | 123     | 74         | 475                | 433                | 55                 |
| 5' NT<br>of<br>Start<br>Codon                         | 205                | 99                 | 42                            | 130                | 009        | 218                | 123     | 74         | 475                | 433                | 55                 |
| 3' NT<br>of<br>Clone<br>Seq.                          | 1663               | 1632               | 2233                          | 1760               | 1243       | 1295               | 915     | 1445       | 1100               | 1499               | 655                |
| S' NT 3' NT of Clone Clone Seq.                       | 1                  | 20                 | 1                             | -                  | 411        | _                  | 1       | -          | 224                | 267                | 1                  |
| Total<br>NT<br>Seq.                                   | 1663               | 1632               | 2233                          | 1963               | 1267       | 1295               | 915     | 1445       | 1100               | 1499               | 655                |
| NT<br>SEQ<br>ID<br>NO:                                | 54                 | 55                 | 99                            | 57                 | 58         | 59                 | 09      | 61         | 62                 | 63                 | 42                 |
| Vector                                                | Uni-ZAP XR         | Uni-ZAP XR         | 209746 Uni-ZAP XR<br>04/07/98 | Lambda ZAP<br>II   | Uni-ZAP XR | ZAP Express        | pSport1 | Uni-ZAP XR | pSport1            | Uni-ZAP XR         | pBluescript        |
| ATCC<br>Deposit<br>Nr and<br>Date                     | 209746<br>04/07/98 | 209746<br>04/07/98 | 209746<br>04/07/98            | 209745<br>04/07/98 | 209683     | 209683<br>03/20/98 | 209683  |            | 209745<br>04/07/98 | 209745<br>04/07/98 | 209745<br>04/07/98 |
| cDNA<br>Clone ID                                      | HE2FB90            | HTHDJ94            | НТОНЈ89                       | ноѕнв62            | HSXAG02    | ннтгн52            | HCFMS95 | ноист90    | HCFLR78            | HTOHT18            | HKPMB11            |
| Gene<br>No.                                           | 44                 | 45                 | 46                            | 47                 | 48         | 49                 | 20      | 51         | 52                 | 53                 | 54                 |

|             | Last        | AA          | of         | ORF      | 62         |          | 113        |          | 61         |          | 41         |          | 42          |          | 47         |          | 20         |          | 99         |          | 170     |          | 4          |          | 46         |          |
|-------------|-------------|-------------|------------|----------|------------|----------|------------|----------|------------|----------|------------|----------|-------------|----------|------------|----------|------------|----------|------------|----------|---------|----------|------------|----------|------------|----------|
|             | First       | AA of       | Secreted   | Portion  | 61         |          | 21         |          | 20         |          | 31         |          | 34          |          | 24         |          | 37         |          | 25         |          | 37      |          | 28         |          | 18         |          |
| I act       | AA          | of          | Sig        | Pep      | 81         |          | 20         |          | 61         |          | 30         |          | 33          |          | 23         |          | 36         |          | 24         |          | 36      |          | 27         |          | 17         |          |
| First I act | AA          | Jo          | Sig        | Pep      | 1          |          | 1          |          | 1          |          | 1          | ,        | 1           |          | _          |          | _          |          | _          |          | I       |          | I          |          | -          |          |
| <b>4</b>    |             | Ω           | NO:        | Y        | 165        |          | 166        |          | 167        |          | 168        |          | 169         |          | 170        |          | 171        |          | 172        |          | 173     |          | 174        |          | 175        |          |
| 5' NT       | or<br>First | AA of       | Signal NO: | Pep      | 171        |          | 201        |          | 300        |          | 157        |          | 233         |          | 156        |          | 71         |          | 52         |          | 224     |          | 132        |          | 229        |          |
|             | 5' NT       | of          | Start      | Codon    | 171        |          | 201        |          | 300        |          | 157        |          | 233         |          | 156        |          | 71         |          | 52         |          | 224     |          | 132        |          | 229        |          |
| 2. N.T      | of          | Clone Clone | Sed.       |          | 1446       |          | 699        |          | 1692       |          | 929        |          | 8191        |          | 1802       |          | 1292       |          | 1054       |          | 812     |          | 582        |          | 2215       |          |
| 5' NT       | of<br>of    | Clone       | Seq.       |          | 1          |          | 1          |          | 1          |          | 18         |          | 48          |          | 1          |          | 1          |          | 1          |          | 6       |          | 1          |          | -          |          |
|             |             | Total       | Z          | Seq.     | 1446       |          | 0/9        |          | 1692       |          | 655        |          | 1618        |          | 1802       |          | 1292       |          | 1054       |          | 733     |          | 282        |          | 2341       |          |
| FX          | SEQ         | Ω           | NO:        | X        | 99         |          | 99         |          | <i>L</i> 9 |          | 89         |          | 69          |          | 70         |          | 1/         |          | 72.        |          | £2      |          | 14         |          | <i>5L</i>  |          |
|             |             |             |            | Vector   | Uni-ZAP XR |          | Uni-ZAP XR |          | Uni-ZAP XR |          | Uni-ZAP XR |          | ZAP Express |          | Uni-ZAP XR |          | Uni-ZAP XR |          | Uni-ZAP XR |          | PCRII   |          | Uni-ZAP XR |          | Uni-ZAP XR |          |
|             | ATCC        | Deposit     | Nr and     | Date     | 209745     | 04/07/98 | 209745     | 04/07/98 | 209745     | 04/01/98 | 209745     | 04/07/98 | 209745      | 04/07/98 | 209745     | 04/07/98 | 209746     | 04/07/98 | 209746     | 04/01/98 | 209745  | 04/02/98 | 209746     | 04/01/98 | 209683     | 03/20/98 |
|             |             |             | cDNA       | Clone ID | HNFHS38    |          | HAIBU10    |          | HAPOK30    |          | HCEEM18    |          | HCWUA22     |          | HDSAG91    |          | HNED135    |          | НТНВН29    |          | H7TBA62 |          | HNGI050    |          | HMIAW81    |          |
|             |             |             | Gene       | No.      | 55         |          | 99         |          | 57         |          | 58         |          | 59          |          | 09         |          | 19         | į        | 62         |          | 63      |          | 64         |          | 9          |          |

|             | Last      | AA          | of         | ORF       | 41      |          | 47        |          | 70         |          | 41      |          | 92         |          | 42         |          | 71         |          | 99         |          | 70         |          | 40         |          | 99        |          |
|-------------|-----------|-------------|------------|-----------|---------|----------|-----------|----------|------------|----------|---------|----------|------------|----------|------------|----------|------------|----------|------------|----------|------------|----------|------------|----------|-----------|----------|
|             | First L   | AA of       | Secreted   | Portion 0 | 17      |          | 37        |          | 23         |          | 22      |          | 20         |          | 20         | -        | , 97       |          | 33 (       |          | 39         |          | 24 "       |          | 81        |          |
| ast         |           | of   A      | Sig Se     | _         | . 91    |          | 36        |          | 22         |          | 21      |          | 19         |          | 19         |          | 25         |          | 32         |          | 38         |          | 23         |          | 17        |          |
| First Last  | AA        | Jo          | Sig        | _         | -       |          | -         |          |            |          | 1       |          | _          |          | _          |          | -          |          |            |          | _          |          | -          |          | 1         |          |
| AA          | SEQ       | _           |            |           | 176     |          | 177       |          | 178        |          | 179     |          | 180        |          | 209        | -        | 181        |          | 182        |          | 183        |          | 184        |          | 185       |          |
| 5' NT<br>of | First SEQ | AA of       | Signal NO: | Pep       | 132     |          | 85        |          | 91         |          | 259     |          | 190        |          | 190        |          | 72         |          | 322        |          | 450        |          | 173        |          | 154       |          |
|             | 5' NT     | of          | Start      | Codon     | 132     |          | 85        |          | 91         |          | 259     |          | 190        |          | 190        |          | 72         |          | 322        |          | 450        | •        | 173        |          | 154       |          |
| 3' NT       | of        | Clone       | Seq.       |           | 1882    |          | 2892      |          | 1673       |          | 1461    |          | 1517       |          | 1518       |          | 574        |          | 1455       |          | 1640       |          | 525        |          | 837       |          |
| 5' NT 3' NT | of        | Clone Clone | Seq.       |           | 1       |          | 17        |          | 1          | _        | 1       |          | _          |          | 1          |          | 1          |          | -          |          | 1          |          | -          |          | 1         |          |
|             |           | Total       | Z          | Seq.      | 1882    |          | 2892      |          | 1673       |          | 1461    |          | 1517       |          | 1518       |          | 574        |          | 1455       |          | 1640       |          | 525        |          | 837       |          |
| L           | SEQ       | ΩI          | NO:        | X         | 9/      |          | 77        |          | 28         |          | 62      |          | 08         |          | 109        |          | 81         |          | 82         |          | 83         |          | 84         |          | 85        |          |
|             |           |             |            | Vector    | pSport1 |          | pCMVSport | 3.0      | Uni-ZAP XR |          | pSport1 |          | Uni-ZAP XR |          | Lambda ZAP | II       | pCMVSport | 3.0      |
|             | ATCC      | Deposit     | Nr and     | Date      | 209683  | 03/20/98 | 209745    | 04/02/98 | 209745     | 04/07/98 | 209745  | 04/07/98 | 209746     | 04/07/98 | 209746     | 04/02/98 | 209683     | 03/20/98 | 209683     | 03/20/98 | 209683     | 03/20/98 | 209745     | 04/07/98 | 209745    | 04/07/98 |
|             |           |             | cDNA       | Clone ID  | HMMCJ60 |          | HDPI009   |          | НН ЕНН 34  |          | HISCL83 |          | HTOAI70    |          | HTOAI70    |          | HSDER95    |          | HNECL25    |          | HNFGZ45    |          | HHGCU49    |          | HDPND68   |          |
|             |           |             | Gene       | No.       | 99      |          | 29        |          | 89         |          | 69      |          | 70         |          | 70         | -        | 71         |          | 72         |          | 73         |          | 74         |          | 75        |          |

| Last                       | AA<br>of            | ORF      | 99                 | 48                 | 99         | 57                 | 52              | 43              | 52               | 40              | 71         | 59         | 80                 |
|----------------------------|---------------------|----------|--------------------|--------------------|------------|--------------------|-----------------|-----------------|------------------|-----------------|------------|------------|--------------------|
| First                      | AA of<br>Secreted   | Portion  | 26                 | 25                 | 20         | 23                 | 61              | 81              | 24               | 21              | 33         | <i>L</i> 1 | 32                 |
| Last<br>AA                 | of<br>Sio           |          | 25                 | 24                 | 61         | 22                 | 18              | 17              | 23               | 20              | 32         | 16         | 31                 |
| AA First Last<br>SEQ AA AA | of<br>Sio           | Pep      | 1                  | 1                  | 1          | 1                  | 1               | _               | 1                | 1               | 1          | _          | -                  |
| . 0,2                      | Ωġ                  | Ý.       | 186                | 187                | 188        | 189                | 190             | 191             | 192              | 193             | 194        | 195        | 196                |
| 5' NT<br>of<br>First       | AA of ID Signal NO: | Pep      | 189                | 546                | 198        | 336                | 257             | . 46            | 178              | 313             | 334        | 483        | 999                |
| 5' NT                      | of<br>Start         |          | 189                | 546                | 198        | 336                | 257             | 46              | 178              | 313             | 334        | 483        | 260                |
| 3' NT<br>of                | Clone Clone         | -<br>-   | 1574               | 1627               | 1795       | 1864               | 1983            | 1957            | 573              | 1212            | 1144       | 1274       | 1780               |
| 5' NT<br>of                | Clone               | ocy.     | 1                  | 353                | -          | 239                |                 | -               | -                | 1               | -          | 334        | 349                |
|                            | Total<br>NT         | Seq.     | 1574               | 1628               | 1795       | 1864               | 1983            | 1957            | 573              | 1212            | 1144       | 1274       | 1780               |
| NT<br>SEQ                  | <u>Ω</u> Ċ          | X.       | 98                 | 87                 | 88         | 68                 | 96              | 91              | 92               | 93              | 94         | 95         | 96                 |
|                            |                     | Vector   | Uni-ZAP XR         | pBluescript<br>SK- | Uni-ZAP XR | pSport1            | pCMVSport 2.0   | Uni-ZAP XR      | Lambda ZAP<br>II | pCMVSport 3.0   | Uni-ZAP XR | Uni-ZAP XR | Uni-ZAP XR         |
| ATCC                       | Deposit<br>Nr and   | Date     | 209746<br>04/07/98 | 209746<br>04/07/98 | 209746     | 209746<br>04/07/98 | 209746 04/07/98 | 209746 04/07/98 | 209746 04/07/98  | 209683 03/20/98 | 209683     | 209683     | 209746<br>04/07/98 |
|                            | VNU                 | Clone ID | HETDT81            | HHLBA14            | HLTBU43    | HNTSJ84            | нонсе 16        | нтнсвзі         | HUKAM16          | HLDOJ66         | HTXKF10    | HPMAI22    | HL2AG57            |
|                            | 0,00                | No.      | 92                 | 77                 | 78         | 79                 | 80              | -8              | 82               | 83              | 84         | 85         | 98                 |

| 100         | AA                   | of       | ORF      | 28         |          | 115        |          | 50         |          | 57         |          | 99         |          | 49         |          | 44         |          | 44      |          | 160        |          | 198        |          | 96                |          |
|-------------|----------------------|----------|----------|------------|----------|------------|----------|------------|----------|------------|----------|------------|----------|------------|----------|------------|----------|---------|----------|------------|----------|------------|----------|-------------------|----------|
| []:         | rirst<br>AA of       | Secreted | Portion  | - 18       |          | 28         |          | 29         |          | 24         |          | 41         |          | 17         |          | 22         |          | 25      |          | 31         |          | 22         |          | 22                |          |
| Last        | AA<br>of             | Sig      | Pep      | 17         |          | 27         |          | 28         |          | 23         |          | 40         |          | 16         |          | 21         |          | 24      |          | 30         |          | 21         |          | 21                |          |
| First Last  |                      | Sig      | Pep      | 1          |          | Ι          |          | I          |          | 1          |          | 1          |          | 1          |          | 1          |          | -       |          | I          |          | 1          |          | 1                 |          |
| AA          | SEC<br>1D            | NO.      | Y        | 161        |          | 861        |          | 661        |          | 200        |          | 201        |          | 202        |          | 203        |          | 204     |          | 205        |          | 206        |          | 210               |          |
| 5' NT<br>of | AA of ID             |          | Pep      | 475        |          | 95         |          | 09         |          | 215        |          | 247        |          | 246        |          | 30         |          | 354     |          | 104        | ٠        | 283        |          | 31                |          |
| F. N.T.     | of                   | Start    | Codon    | 475        |          | 05         |          | 09         |          | 212        |          | 247        |          | 246        |          | 30         |          | 354     |          | 104        |          | 283        |          | 31                |          |
| (m          | or<br>Clone          | Seq.     |          | 2065       |          | 1154       |          | 459        |          | 1624       |          | 1756       |          | 1416       |          | 704        |          | 1259    |          | 1804       |          | 971        | , 1      | 921               |          |
|             | or or<br>Clone Clone | Seq.     |          | 1          |          | I          |          | 1          |          | 243        |          | I          |          | 207        | į        | 1          |          | 644     |          | ı          |          | 260        |          | 1                 |          |
|             | Total                | NT       | Seq.     | 2065       |          | 1154       |          | 615        |          | 1624       |          | 1756       |          | 1416       |          | 704        |          | 1259    |          | 1804       |          | 971        |          | 921               |          |
| NT          | J<br>E               | NO:      | X        | 26         |          | 86         |          | 66         |          | 100        |          | 101        |          | 102        |          | 103        |          | 104     |          | 105        |          | 106        |          | 110               |          |
|             | _                    |          | Vector   | Lambda ZAP | 11       | Uni-ZAP XR |          | pSport1 |          | Uni-ZAP XR | i        | Uni-ZAP XR |          | 209746 Uni-ZAP XR | •        |
| 7.7.t.v     | AICC<br>Deposit      | Nr and   | Date     | 209683     | 03/20/98 | 209745     | 04/07/98 | 209683     | 03/20/98 | 209683     | 03/20/98 | 209683     | 03/20/98 | 209746     | 04/07/98 | 209746     | 04/07/98 | 209746  | 04/07/98 | 209746     | 04/07/98 | 209746     | 04/07/98 | 209746            | 04/01/98 |
|             |                      | cDNA     | Clone ID | HUSAM59    |          | HNGGR26    |          | HTLCX30    |          | HCEBC87    |          | HATCB92    |          | 69XDSWH    |          | 89ТҮНТН    |          | HEOMR73 |          | HETIB83    | į        | HJPDD28    |          | НЈРОО28           |          |
|             |                      | Gene     | No.      | 87         |          | 88         |          | 68         |          | 06         |          | 16         |          | 92         |          | 93         |          | 94      |          | 95         |          | 96         |          | 96                |          |

| _     |       | _     | _       | _        | _                                                |                     |          |
|-------|-------|-------|---------|----------|--------------------------------------------------|---------------------|----------|
|       |       | Last  | AA      | Jo       | ORF                                              | 59                  |          |
|       |       | First | AA of   | Secreted | X   Seq.   Codon   Pep   Y   Pep   Portion   ORF | 20                  | -        |
|       | Last  | AA    | of      | Sig      | Pep                                              | 61                  |          |
|       | First | AA    | Jo      | Sig      | Pep                                              | 1                   |          |
|       | AA    | SEQ   | Ω       | NO:      | Y                                                | 207                 |          |
| S' NT | ot    | First | AA of   | Signal   | Pep                                              | 390 207 1 19        |          |
|       |       | 5' NT | Jo      | Start    | Codon                                            | 107 821 330 821 390 | •        |
|       | 3' NT | of    | Clone   | Seq.     | _                                                | 821                 |          |
|       | 5' NT | of    | Clone   | Seq.     | _                                                | 330                 |          |
|       |       |       | Total   | N        | Seq.                                             | 821                 |          |
|       | Z     | SEQ   | Ω       | ÖN.      | X                                                | 107                 |          |
|       |       |       |         |          | Vector                                           | pSport1             |          |
|       |       | ATCC  | Deposit | Nr and   | Date                                             | 5 209683            | 03/20/98 |
|       |       |       |         | cDNA     | No. Clone ID                                     | HBAMB15             |          |
|       |       |       |         | Gene     | No.                                              | 97                  |          |

10

15

20

25

30

Table 1 summarizes the information corresponding to each "Gene No." described above. The nucleotide sequence identified as "NT SEQ ID NO:X" was assembled from partially homologous ("overlapping") sequences obtained from the "cDNA clone ID" identified in Table 1 and, in some cases, from additional related DNA clones. The overlapping sequences were assembled into a single contiguous sequence of high redundancy (usually three to five overlapping sequences at each nucleotide position), resulting in a final sequence identified as SEQ ID NO:X.

The cDNA Clone ID was deposited on the date and given the corresponding deposit number listed in "ATCC Deposit No:Z and Date." Some of the deposits contain multiple different clones corresponding to the same gene. "Vector" refers to the type of vector contained in the cDNA Clone ID.

"Total NT Seq." refers to the total number of nucleotides in the contig identified by "Gene No." The deposited clone may contain all or most of these sequences, reflected by the nucleotide position indicated as "5' NT of Clone Seq." and the "3' NT of Clone Seq." of SEQ ID NO:X. The nucleotide position of SEQ ID NO:X of the putative start codon (methionine) is identified as "5' NT of Start Codon." Similarly, the nucleotide position of SEQ ID NO:X of the predicted signal sequence is identified as "5' NT of First AA of Signal Pep."

The translated amino acid sequence, beginning with the methionine, is identified as "AA SEQ ID NO:Y," although other reading frames can also be easily translated using known molecular biology techniques. The polypeptides produced by these alternative open reading frames are specifically contemplated by the present invention.

The first and last amino acid position of SEQ ID NO:Y of the predicted signal peptide is identified as "First AA of Sig Pep" and "Last AA of Sig Pep." The predicted first amino acid position of SEQ ID NO:Y of the secreted portion is identified as "Predicted First AA of Secreted Portion." Finally, the amino acid position of SEQ ID NO:Y of the last amino acid in the open reading frame is identified as "Last AA of ORF."

SEQ ID NO:X and the translated SEQ ID NO:Y are sufficiently accurate and otherwise suitable for a variety of uses well known in the art and described further below. For instance, SEQ ID NO:X is useful for designing nucleic acid hybridization

probes that will detect nucleic acid sequences contained in SEQ ID NO:X or the cDNA contained in the deposited clone. These probes will also hybridize to nucleic acid molecules in biological samples, thereby enabling a variety of forensic and diagnostic methods of the invention. Similarly, polypeptides identified from SEQ ID NO:Y may be used to generate antibodies which bind specifically to the secreted proteins encoded by the cDNA clones identified in Table 1.

5

10

15

20

25

30

Nevertheless, DNA sequences generated by sequencing reactions can contain sequencing errors. The errors exist as misidentified nucleotides, or as insertions or deletions of nucleotides in the generated DNA sequence. The erroneously inserted or deleted nucleotides cause frame shifts in the reading frames of the predicted amino acid sequence. In these cases, the predicted amino acid sequence diverges from the actual amino acid sequence, even though the generated DNA sequence may be greater than 99.9% identical to the actual DNA sequence (for example, one base insertion or deletion in an open reading frame of over 1000 bases).

Accordingly, for those applications requiring precision in the nucleotide sequence or the amino acid sequence, the present invention provides not only the generated nucleotide sequence identified as SEQ ID NO:X and the predicted translated amino acid sequence identified as SEQ ID NO:Y, but also a sample of plasmid DNA containing a human cDNA of the invention deposited with the ATCC, as set forth in Table 1. The nucleotide sequence of each deposited clone can readily be determined by sequencing the deposited clone in accordance with known methods. The predicted amino acid sequence can then be verified from such deposits.

Moreover, the amino acid sequence of the protein encoded by a particular clone can also be directly determined by peptide sequencing or by expressing the protein in a suitable host cell containing the deposited human cDNA, collecting the protein, and determining its sequence.

The present invention also relates to the genes corresponding to SEQ ID NO:X, SEQ ID NO:Y, or the deposited clone. The corresponding gene can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include preparing probes or primers from the disclosed sequence and identifying or amplifying the corresponding gene from appropriate sources of genomic material.

WO 99/58660

5

10

15

20

25

30

Also provided in the present invention are species homologs. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for the desired homologue.

The polypeptides of the invention can be prepared in any suitable manner. Such polypeptides include isolated naturally occurring polypeptides, recombinantly produced polypeptides, synthetically produced polypeptides, or polypeptides produced by a combination of these methods. Means for preparing such polypeptides are well understood in the art.

The polypeptides may be in the form of the secreted protein, including the mature form, or may be a part of a larger protein, such as a fusion protein (see below). It is often advantageous to include an additional amino acid sequence which contains secretory or leader sequences, pro-sequences, sequences which aid in purification, such as multiple histidine residues, or an additional sequence for stability during recombinant production.

The polypeptides of the present invention are preferably provided in an isolated form, and preferably are substantially purified. A recombinantly produced version of a polypeptide, including the secreted polypeptide, can be substantially purified by the one-step method described in Smith and Johnson, Gene 67:31-40 (1988). Polypeptides of the invention also can be purified from natural or recombinant sources using antibodies of the invention raised against the secreted protein in methods which are well known in the art.

#### Signal Sequences

Methods for predicting whether a protein has a signal sequence, as well as the cleavage point for that sequence, are available. For instance, the method of McGeoch, Virus Res. 3:271-286 (1985), uses the information from a short N-terminal charged region and a subsequent uncharged region of the complete (uncleaved) protein. The method of von Heinje, Nucleic Acids Res. 14:4683-4690 (1986) uses the information from the residues surrounding the cleavage site, typically residues -13 to +2, where +1 indicates the amino terminus of the secreted protein. The accuracy of predicting the cleavage points of known mammalian secretory proteins for each of

10

15

20

25

30

these methods is in the range of 75-80%. (von Heinje, supra.) However, the two methods do not always produce the same predicted cleavage point(s) for a given protein.

In the present case, the deduced amino acid sequence of the secreted polypeptide was analyzed by a computer program called SignalP (Henrik Nielsen et al., Protein Engineering 10:1-6 (1997)), which predicts the cellular location of a protein based on the amino acid sequence. As part of this computational prediction of localization, the methods of McGeoch and von Heinje are incorporated. The analysis of the amino acid sequences of the secreted proteins described herein by this program provided the results shown in Table 1.

As one of ordinary skill would appreciate, however, cleavage sites sometimes vary from organism to organism and cannot be predicted with absolute certainty. Accordingly, the present invention provides secreted polypeptides having a sequence shown in SEQ ID NO:Y which have an N-terminus beginning within 5 residues (i.e., + or - 5 residues) of the predicted cleavage point. Similarly, it is also recognized that in some cases, cleavage of the signal sequence from a secreted protein is not entirely uniform, resulting in more than one secreted species. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.

Moreover, the signal sequence identified by the above analysis may not necessarily predict the naturally occurring signal sequence. For example, the naturally occurring signal sequence may be further upstream from the predicted signal sequence. However, it is likely that the predicted signal sequence will be capable of directing the secreted protein to the ER. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.

### Polynucleotide and Polypeptide Variants

"Variant" refers to a polynucleotide or polypeptide differing from the polynucleotide or polypeptide of the present invention, but retaining essential properties thereof. Generally, variants are overall closely similar, and, in many regions, identical to the polynucleotide or polypeptide of the present invention.

By a polynucleotide having a nucleotide sequence at least, for example, 95%

"identical" to a reference nucleotide sequence of the present invention, it is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the polypeptide. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. The query sequence may be an entire sequence shown inTable 1, the ORF (open reading frame), or any fragement specified as described herein.

10

15

20

25

30

As a practical matter, whether any particular nucleic acid molecule or polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleotide sequence of the presence invention can be determined conventionally using known computer programs. A preferred method for determing the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. (1990) 6:237-245). In a sequence alignment the query and subject sequences are both DNA sequences. An RNA sequence can be compared by converting U's to T's. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB alignment of DNA sequences to calculate percent identity are: Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining Penalty=30, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty 0.05, Window Size=500 or the length of the subject nucleotide sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence because of 5' or 3' deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for 5' and 3' truncations of the subject sequence when calculating percent identity. For subject sequences truncated at the 5' or 3' ends, relative to the the query sequence, the percent identity is corrected by calculating the number of bases of the query sequence

WO 99/58660 PCT/US99/09847

that are 5' and 3' of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence. Whether a nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This corrected score is what is used for the purposes of the present invention. Only bases outside the 5' and 3' bases of the subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence, are calculated for the purposes of manually adjusting the percent identity score.

For example, a 90 base subject sequence is aligned to a 100 base query sequence to determine percent identity. The deletions occur at the 5' end of the subject sequence and therefore, the FASTDB alignment does not show a matched/alignment of the first 10 bases at 5' end. The 10 unpaired bases represent 10% of the sequence (number of bases at the 5' and 3' ends not matched/total number of bases in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 bases were perfectly matched the final percent identity would be 90%. In another example, a 90 base subject sequence is compared with a 100 base query sequence. This time the deletions are internal deletions so that there are no bases on the 5' or 3' of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only bases 5' and 3' of the subject sequence which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to made for the purposes of the present invention.

By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a query amino acid sequence of the present invention, it is intended that the amino acid sequence of the subject polypeptide is identical to the query sequence except that the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a query amino acid sequence, up to 5% of the amino acid residues in the subject sequence may be inserted, deleted, (indels) or substituted with another amino acid.

10

15

20

25

30

These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

As a practical matter, whether any particular polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, the amino acid sequences shown in Table 1 or to the amino acid sequence encoded by deposited DNA clone can be determined conventionally using known computer programs. A preferred method for determined the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. (1990) 6:237-245). In a sequence alignment the query and subject sequences are either both nucleotide sequences or both amino acid sequences. The result of said global sequence alignment is in percent identity.

Preferred parameters used in a FASTDB amino acid alignment are: Matrix=PAM 0, k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group

Length=0, Cutoff Score=1, Window Size=sequence length. Gap Penalty=5. Gap Size

k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group
Length=0, Cutoff Score=1, Window Size=sequence length, Gap Penalty=5, Gap Size
Penalty=0.05, Window Size=500 or the length of the subject amino acid sequence,
whichever is shorter.

If the subject sequence is shorter than the query sequence due to N- or C-

terminal deletions, not because of internal deletions, a manual correction must be made to the results. This is becuase the FASTDB program does not account for N-and C-terminal truncations of the subject sequence when calculating global percent identity. For subject sequences truncated at the N- and C-termini, relative to the the query sequence, the percent identity is corrected by calculating the number of residues of the query sequence that are N- and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total bases of the query sequence. Whether a residue is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This final percent identity score is what is used for the purposes of the present invention. Only residues to the N- and

WO 99/58660

5

10

15

20

25

30

C-termini of the subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query residue positions outside the farthest N- and C-terminal residues of the subject sequence.

For example, a 90 amino acid residue subject sequence is aligned with a 100 residue query sequence to determine percent identity. The deletion occurs at the Nterminus of the subject sequence and therefore, the FASTDB alignment does not show a matching/alignment of the first 10 residues at the N-terminus. The 10 unpaired residues represent 10% of the sequence (number of residues at the N- and Ctermini not matched/total number of residues in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 residues were perfectly matched the final percent identity would be 90%. In another example, a 90 residue subject sequence is compared with a 100 residue query sequence. This time the deletions are internal deletions so there are no residues at the N- or C-termini of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only residue positions outside the N- and C-terminal ends of the subject sequence, as displayed in the FASTDB alignment, which are not matched/aligned with the query sequnce are manually corrected for. No other manual corrections are to made for the purposes of the present invention.

The variants may contain alterations in the coding regions, non-coding regions, or both. Especially preferred are polynucleotide variants containing alterations which produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded polypeptide. Nucleotide variants produced by silent substitutions due to the degeneracy of the genetic code are preferred. Moreover, variants in which 5-10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination are also preferred. Polynucleotide variants can be produced for a variety of reasons, e.g., to optimize codon expression for a particular host (change codons in the human mRNA to those preferred by a bacterial host such as E. coli).

Naturally occurring variants are called "allelic variants," and refer to one of several alternate forms of a gene occupying a given locus on a chromosome of an

10

15

20

25

30

organism. (Genes II, Lewin, B., ed., John Wiley & Sons, New York (1985).) These allelic variants can vary at either the polynucleotide and/or polypeptide level. Alternatively, non-naturally occurring variants may be produced by mutagenesis techniques or by direct synthesis.

Using known methods of protein engineering and recombinant DNA technology, variants may be generated to improve or alter the characteristics of the polypeptides of the present invention. For instance, one or more amino acids can be deleted from the N-terminus or C-terminus of the secreted protein without substantial loss of biological function. The authors of Ron et al., J. Biol. Chem. 268: 2984-2988 (1993), reported variant KGF proteins having heparin binding activity even after deleting 3, 8, or 27 amino-terminal amino acid residues. Similarly, Interferon gamma exhibited up to ten times higher activity after deleting 8-10 amino acid residues from the carboxy terminus of this protein. (Dobeli et al., J. Biotechnology 7:199-216 (1988).)

Moreover, ample evidence demonstrates that variants often retain a biological activity similar to that of the naturally occurring protein. For example, Gayle and coworkers (J. Biol. Chem 268:22105-22111 (1993)) conducted extensive mutational analysis of human cytokine IL-1a. They used random mutagenesis to generate over 3,500 individual IL-1a mutants that averaged 2.5 amino acid changes per variant over the entire length of the molecule. Multiple mutations were examined at every possible amino acid position. The investigators found that "[m]ost of the molecule could be altered with little effect on either [binding or biological activity]." (See, Abstract.) In fact, only 23 unique amino acid sequences, out of more than 3,500 nucleotide sequences examined, produced a protein that significantly differed in activity from wild-type.

Furthermore, even if deleting one or more amino acids from the N-terminus or C-terminus of a polypeptide results in modification or loss of one or more biological functions, other biological activities may still be retained. For example, the ability of a deletion variant to induce and/or to bind antibodies which recognize the secreted form will likely be retained when less than the majority of the residues of the secreted form are removed from the N-terminus or C-terminus. Whether a particular polypeptide lacking N- or C-terminal residues of a protein retains such immunogenic

activities can readily be determined by routine methods described herein and otherwise known in the art.

5

10

15

20

25

30

Thus, the invention further includes polypeptide variants which show substantial biological activity. Such variants include deletions, insertions, inversions, repeats, and substitutions selected according to general rules known in the art so as have little effect on activity. For example, guidance concerning how to make phenotypically silent amino acid substitutions is provided in Bowie, J. U. et al., Science 247:1306-1310 (1990), wherein the authors indicate that there are two main strategies for studying the tolerance of an amino acid sequence to change.

The first strategy exploits the tolerance of amino acid substitutions by natural selection during the process of evolution. By comparing amino acid sequences in different species, conserved amino acids can be identified. These conserved amino acids are likely important for protein function. In contrast, the amino acid positions where substitutions have been tolerated by natural selection indicates that these positions are not critical for protein function. Thus, positions tolerating amino acid substitution could be modified while still maintaining biological activity of the protein.

The second strategy uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene to identify regions critical for protein function. For example, site directed mutagenesis or alanine-scanning mutagenesis (introduction of single alanine mutations at every residue in the molecule) can be used. (Cunningham and Wells, Science 244:1081-1085 (1989).) The resulting mutant molecules can then be tested for biological activity.

As the authors state, these two strategies have revealed that proteins are surprisingly tolerant of amino acid substitutions. The authors further indicate which amino acid changes are likely to be permissive at certain amino acid positions in the protein. For example, most buried (within the tertiary structure of the protein) amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Moreover, tolerated conservative amino acid substitutions involve replacement of the aliphatic or hydrophobic amino acids Ala, Val, Leu and Ile; replacement of the hydroxyl residues Ser and Thr; replacement of the acidic residues Asp and Glu; replacement of the amide residues Asp and Gln, replacement of

10

15

20

25

30

the basic residues Lys, Arg, and His; replacement of the aromatic residues Phe, Tyr, and Trp, and replacement of the small-sized amino acids Ala, Ser, Thr, Met, and Gly.

Besides conservative amino acid substitution, variants of the present invention include (i) substitutions with one or more of the non-conserved amino acid residues, where the substituted amino acid residues may or may not be one encoded by the genetic code, or (ii) substitution with one or more of amino acid residues having a substituent group, or (iii) fusion of the mature polypeptide with another compound, such as a compound to increase the stability and/or solubility of the polypeptide (for example, polyethylene glycol), or (iv) fusion of the polypeptide with additional amino acids, such as an IgG Fc fusion region peptide, or leader or secretory sequence, or a sequence facilitating purification. Such variant polypeptides are deemed to be within the scope of those skilled in the art from the teachings herein.

For example, polypeptide variants containing amino acid substitutions of charged amino acids with other charged or neutral amino acids may produce proteins with improved characteristics, such as less aggregation. Aggregation of pharmaceutical formulations both reduces activity and increases clearance due to the aggregate's immunogenic activity. (Pinckard et al., Clin. Exp. Immunol. 2:331-340 (1967); Robbins et al., Diabetes 36: 838-845 (1987); Cleland et al., Crit. Rev. Therapeutic Drug Carrier Systems 10:307-377 (1993).)

A further embodiment of the invention relates to a polypeptide which comprises the amino acid sequence of the present invention having an amino acid sequence which contains at least one amino acid substitution, but not more than 50 amino acid substitutions, even more preferably, not more than 40 amino acid substitutions, still more preferably, not more than 30 amino acid substitutions, and still even more preferably, not more than 20 amino acid substitutions. Of course, in order of ever-increasing preference, it is highly preferable for a polypeptide to have an amino acid sequence which comprises the amino acid sequence of the present invention, which contains at least one, but not more than 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid substitutions. In specific embodiments, the number of additions, substitutions, and/or deletions in the amino acid sequence of the present invention or fragments thereof (e.g., the mature form and/or other fragments described herein), is

1-5, 5-10, 5-25, 5-50, 10-50 or 50-150, conservative amino acid substitutions are preferable.

### Polynucleotide and Polypeptide Fragments

5

10

15

20

25

30

In the present invention, a "polynucleotide fragment" refers to a short polynucleotide having a nucleic acid sequence contained in the deposited clone or shown in SEQ ID NO:X. The short nucleotide fragments are preferably at least about 15 nt, and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably, at least about 40 nt in length. A fragment "at least 20 nt in length," for example, is intended to include 20 or more contiguous bases from the cDNA sequence contained in the deposited clone or the nucleotide sequence shown in SEQ ID NO:X. These nucleotide fragments are useful as diagnostic probes and primers as discussed herein. Of course, larger fragments (e.g., 50, 150, 500, 600, 2000 nucleotides) are preferred.

Moreover, representative examples of polynucleotide fragments of the invention, include, for example, fragments having a sequence from about nucleotide number 1-50, 51-100, 101-150, 151-200, 201-250, 251-300, 301-350, 351-400, 401-450, 451-500, 501-550, 551-600, 651-700, 701-750, 751-800, 800-850, 851-900, 901-950, 951-1000, 1001-1050, 1051-1100, 1101-1150, 1151-1200, 1201-1250, 1251-1300, 1301-1350, 1351-1400, 1401-1450, 1451-1500, 1501-1550, 1551-1600, 1601-1650, 1651-1700, 1701-1750, 1751-1800, 1801-1850, 1851-1900, 1901-1950, 1951-2000, or 2001 to the end of SEQ ID NO:X or the cDNA contained in the deposited clone. In this context "about" includes the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) nucleotides, at either terminus or at both termini. Preferably, these fragments encode a polypeptide which has biological activity. More preferably, these polynucleotides can be used as probes or primers as discussed herein.

In the present invention, a "polypeptide fragment" refers to a short amino acid sequence contained in SEQ ID NO:Y or encoded by the cDNA contained in the deposited clone. Protein fragments may be "free-standing," or comprised within a larger polypeptide of which the fragment forms a part or region, most preferably as a single continuous region. Representative examples of polypeptide fragments of the

15

20

25

30



invention, include, for example, fragments from about amino acid number 1-20, 21-40, 41-60, 61-80, 81-100, 102-120, 121-140, 141-160, or 161 to the end of the coding region. Moreover, polypeptide fragments can be about 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, or 150 amino acids in length. In this context "about" includes the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) amino acids, at either extreme or at both extremes.

195

Preferred polypeptide fragments include the secreted protein as well as the mature form. Further preferred polypeptide fragments include the secreted protein or the mature form having a continuous series of deleted residues from the amino or the carboxy terminus, or both. For example, any number of amino acids, ranging from 1-60, can be deleted from the amino terminus of either the secreted polypeptide or the mature form. Similarly, any number of amino acids, ranging from 1-30, can be deleted from the carboxy terminus of the secreted protein or mature form. Furthermore, any combination of the above amino and carboxy terminus deletions are preferred. Similarly, polynucleotide fragments encoding these polypeptide fragments are also preferred.

Also preferred are polypeptide and polynucleotide fragments characterized by structural or functional domains, such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and turn-forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions. Polypeptide fragments of SEQ ID NO:Y falling within conserved domains are specifically contemplated by the present invention. Moreover, polynucleotide fragments encoding these domains are also contemplated.

Other preferred fragments are biologically active fragments. Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the polypeptide of the present invention. The biological activity of the fragments may include an improved desired activity, or a decreased undesirable activity.

# **Epitopes & Antibodies**

In the present invention, "epitopes" refer to polypeptide fragments having antigenic or immunogenic activity in an animal, especially in a human. A preferred embodiment of the present invention relates to a polypeptide fragment comprising an epitope, as well as the polynucleotide encoding this fragment. A region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." In contrast, an "immunogenic epitope" is defined as a part of a protein that elicits an antibody response. (See, for instance, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998-4002 (1983).)

5

10

15

25

30

Fragments which function as epitopes may be produced by any conventional means. (See, e.g., Houghten, R. A., Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985) further described in U.S. Patent No. 4,631,211.)

In the present invention, antigenic epitopes preferably contain a sequence of at least seven, more preferably at least nine, and most preferably between about 15 to about 30 amino acids. Antigenic epitopes are useful to raise antibodies, including monoclonal antibodies, that specifically bind the epitope. (See, for instance, Wilson et al., Cell 37:767-778 (1984); Sutcliffe, J. G. et al., Science 219:660-666 (1983).)

Similarly, immunogenic epitopes can be used to induce antibodies according to methods well known in the art. (See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow, M. et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle, F. J. et al., J. Gen. Virol. 66:2347-2354 (1985).) A preferred immunogenic epitope includes the secreted protein. The immunogenic epitopes may be presented together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse) or, if it is long enough (at least about 25 amino acids), without a carrier. However, immunogenic epitopes comprising as few as 8 to 10 amino acids have been shown to be sufficient to raise antibodies capable of binding to, at the very least, linear epitopes in a denatured polypeptide (e.g., in Western blotting.)

As used herein, the term "antibody" (Ab) or "monoclonal antibody" (Mab) is meant to include intact molecules as well as antibody fragments (such as, for example, Fab and F(ab')2 fragments) which are capable of specifically binding to protein. Fab and F(ab')2 fragments lack the Fc fragment of intact antibody, clear more rapidly from the circulation, and may have less non-specific tissue binding than an intact antibody. (Wahl et al., J. Nucl. Med. 24:316-325 (1983).) Thus, these

WO 99/58660 PCT/US99/09847

197

fragments are preferred, as well as the products of a FAB or other immunoglobulin expression library. Moreover, antibodies of the present invention include chimeric, single chain, and humanized antibodies.

#### 5 Fusion Proteins

10

15

20

25

30

Any polypeptide of the present invention can be used to generate fusion proteins. For example, the polypeptide of the present invention, when fused to a second protein, can be used as an antigenic tag. Antibodies raised against the polypeptide of the present invention can be used to indirectly detect the second protein by binding to the polypeptide. Moreover, because secreted proteins target cellular locations based on trafficking signals, the polypeptides of the present invention can be used as targeting molecules once fused to other proteins.

Examples of domains that can be fused to polypeptides of the present invention include not only heterologous signal sequences, but also other heterologous functional regions. The fusion does not necessarily need to be direct, but may occur through linker sequences.

Moreover, fusion proteins may also be engineered to improve characteristics of the polypeptide of the present invention. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the polypeptide to improve stability and persistence during purification from the host cell or subsequent handling and storage. Also, peptide moieties may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of peptide moieties to facilitate handling of polypeptides are familiar and routine techniques in the art.

Moreover, polypeptides of the present invention, including fragments, and specifically epitopes, can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life in vivo. One reported example describes chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. (EP A 394,827; Traunecker et al., Nature 331:84-86 (1988).) Fusion proteins having disulfide-linked dimeric structures (due to the

10

15

20

25

30

IgG) can also be more efficient in binding and neutralizing other molecules, than the monomeric secreted protein or protein fragment alone. (Fountoulakis et al., J. Biochem. 270:3958-3964 (1995).)

Similarly, EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof. In many cases, the Fc part in a fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties. (EP-A 0232 262.) Alternatively, deleting the Fc part after the fusion protein has been expressed, detected, and purified, would be desired. For example, the Fc portion may hinder therapy and diagnosis if the fusion protein is used as an antigen for immunizations. In drug discovery, for example, human proteins, such as hIL-5, have been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. (See, D. Bennett et al., J. Molecular Recognition 8:52-58 (1995); K. Johanson et al., J. Biol. Chem. 270:9459-9471 (1995).)

Moreover, the polypeptides of the present invention can be fused to marker sequences, such as a peptide which facilitates purification of the fused polypeptide. In preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available. As described in Gentz et al., Proc. Natl. Acad. Sci. USA 86:821-824 (1989), for instance, hexa-histidine provides for convenient purification of the fusion protein. Another peptide tag useful for purification, the "HA" tag, corresponds to an epitope derived from the influenza hemagglutinin protein. (Wilson et al., Cell 37:767 (1984).)

Thus, any of these above fusions can be engineered using the polynucleotides or the polypeptides of the present invention.

# **Vectors, Host Cells, and Protein Production**

The present invention also relates to vectors containing the polynucleotide of the present invention, host cells, and the production of polypeptides by recombinant techniques. The vector may be, for example, a phage, plasmid, viral, or retroviral

10

15

20

25

30

vector. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.

The polynucleotides may be joined to a vector containing a selectable marker for propagation in a host. Generally, a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged in vitro using an appropriate packaging cell line and then transduced into host cells.

The polynucleotide insert should be operatively linked to an appropriate promoter, such as the phage lambda PL promoter, the E. coli lac, trp, phoA and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name a few. Other suitable promoters will be known to the skilled artisan. The expression constructs will further contain sites for transcription initiation, termination, and, in the transcribed region, a ribosome binding site for translation. The coding portion of the transcripts expressed by the constructs will preferably include a translation initiating codon at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.

As indicated, the expression vectors will preferably include at least one selectable marker. Such markers include dihydrofolate reductase, G418 or neomycin resistance for eukaryotic cell culture and tetracycline, kanamycin or ampicillin resistance genes for culturing in E. coli and other bacteria. Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as E. coli, Streptomyces and Salmonella typhimurium cells; fungal cells, such as yeast cells; insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS, 293, and Bowes melanoma cells; and plant cells. Appropriate culture mediums and conditions for the above-described host cells are known in the art.

Among vectors preferred for use in bacteria include pQE70, pQE60 and pQE-9, available from QIAGEN, Inc.; pBluescript vectors, Phagescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene Cloning Systems, Inc.; and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia Biotech, Inc. Among preferred eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXT1

WO 99/58660

5

10

15

20

25

30

200

PCT/US99/09847

and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. Other suitable vectors will be readily apparent to the skilled artisan.

Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, or other methods. Such methods are described in many standard laboratory manuals, such as Davis et al., Basic Methods In Molecular Biology (1986). It is specifically contemplated that the polypeptides of the present invention may in fact be expressed by a host cell lacking a recombinant vector.

A polypeptide of this invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC") is employed for purification.

Polypeptides of the present invention, and preferably the secreted form, can also be recovered from: products purified from natural sources, including bodily fluids, tissues and cells, whether directly isolated or cultured; products of chemical synthetic procedures; and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect, and mammalian cells. Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. In addition, polypeptides of the invention may also include an initial modified methionine residue, in some cases as a result of host-mediated processes. Thus, it is well known in the art that the N-terminal methionine encoded by the translation initiation codon generally is removed with high efficiency from any protein after translation in all eukaryotic cells. While the N-terminal methionine on most proteins also is efficiently removed in most prokaryotes, for some proteins, this prokaryotic removal process is inefficient, depending on the nature of the amino acid to which the N-terminal methionine is covalently linked.

WO 99/58660

5

10

15

20

25

30

201

PCT/US99/09847

In addition to encompassing host cells containing the vector constructs discussed herein, the invention also encompasses primary, secondary, and immortalized host cells of vertebrate origin, particularly mammalian origin, that have been engineered to delete or replace endogenous genetic material (e.g., coding sequence), and/or to include genetic material (e.g., heterologous polynucleotide sequences) that is operably associated with the polynucleotides of the invention, and which activates, alters, and/or amplifies endogenous polynucleotides. For example, techniques known in the art may be used to operably associate heterologous control regions (e.g., promoter and/or enhancer) and endogenous polynucleotide sequences via homologous recombination (see, e.g., U.S. Patent No. 5,641,670, issued June 24, 1997; International Publication No. WO 96/29411, published September 26, 1996; International Publication No. WO 94/12650, published August 4, 1994; Koller et al., Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989); and Zijlstra et al., Nature 342:435-438 (1989), the disclosures of each of which are incorporated by reference in their entireties).

# **Uses of the Polynucleotides**

Each of the polynucleotides identified herein can be used in numerous ways as reagents. The following description should be considered exemplary and utilizes known techniques.

The polynucleotides of the present invention are useful for chromosome identification. There exists an ongoing need to identify new chromosome markers, since few chromosome marking reagents, based on actual sequence data (repeat polymorphisms), are presently available. Each polynucleotide of the present invention can be used as a chromosome marker.

Briefly, sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the sequences shown in SEQ ID NO:X. Primers can be selected using computer analysis so that primers do not span more than one predicted exon in the genomic DNA. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids

containing the human gene corresponding to the SEQ ID NO:X will yield an amplified fragment.

Similarly, somatic hybrids provide a rapid method of PCR mapping the polynucleotides to particular chromosomes. Three or more clones can be assigned per day using a single thermal cycler. Moreover, sublocalization of the polynucleotides can be achieved with panels of specific chromosome fragments. Other gene mapping strategies that can be used include in situ hybridization, prescreening with labeled flow-sorted chromosomes, and preselection by hybridization to construct chromosome specific-cDNA libraries.

Precise chromosomal location of the polynucleotides can also be achieved using fluorescence in situ hybridization (FISH) of a metaphase chromosomal spread. This technique uses polynucleotides as short as 500 or 600 bases; however, polynucleotides 2,000-4,000 bp are preferred. For a review of this technique, see Verma et al., "Human Chromosomes: a Manual of Basic Techniques," Pergamon Press, New York (1988).

10

15

20

25

30

For chromosome mapping, the polynucleotides can be used individually (to mark a single chromosome or a single site on that chromosome) or in panels (for marking multiple sites and/or multiple chromosomes). Preferred polynucleotides correspond to the noncoding regions of the cDNAs because the coding sequences are more likely conserved within gene families, thus increasing the chance of cross hybridization during chromosomal mapping.

Once a polynucleotide has been mapped to a precise chromosomal location, the physical position of the polynucleotide can be used in linkage analysis. Linkage analysis establishes coinheritance between a chromosomal location and presentation of a particular disease. (Disease mapping data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library).) Assuming 1 megabase mapping resolution and one gene per 20 kb, a cDNA precisely localized to a chromosomal region associated with the disease could be one of 50-500 potential causative genes.

Thus, once coinheritance is established, differences in the polynucleotide and the corresponding gene between affected and unaffected individuals can be examined. First, visible structural alterations in the chromosomes, such as deletions or

10

15

20

25

30

translocations, are examined in chromosome spreads or by PCR. If no structural alterations exist, the presence of point mutations are ascertained. Mutations observed in some or all affected individuals, but not in normal individuals, indicates that the mutation may cause the disease. However, complete sequencing of the polypeptide and the corresponding gene from several normal individuals is required to distinguish the mutation from a polymorphism. If a new polymorphism is identified, this polymorphic polypeptide can be used for further linkage analysis.

Furthermore, increased or decreased expression of the gene in affected individuals as compared to unaffected individuals can be assessed using polynucleotides of the present invention. Any of these alterations (altered expression, chromosomal rearrangement, or mutation) can be used as a diagnostic or prognostic marker.

In addition to the foregoing, a polynucleotide can be used to control gene expression through triple helix formation or antisense DNA or RNA. Both methods rely on binding of the polynucleotide to DNA or RNA. For these techniques, preferred polynucleotides are usually 20 to 40 bases in length and complementary to either the region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991) ) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxy-nucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988).) Triple helix formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques are effective in model systems, and the information disclosed herein can be used to design antisense or triple helix polynucleotides in an effort to treat disease.

Polynucleotides of the present invention are also useful in gene therapy. One goal of gene therapy is to insert a normal gene into an organism having a defective gene, in an effort to correct the genetic defect. The polynucleotides disclosed in the present invention offer a means of targeting such genetic defects in a highly accurate manner. Another goal is to insert a new gene that was not present in the host genome, thereby producing a new trait in the host cell.

10

15

20

25

30

The polynucleotides are also useful for identifying individuals from minute biological samples. The United States military, for example, is considering the use of restriction fragment length polymorphism (RFLP) for identification of its personnel. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identifying personnel. This method does not suffer from the current limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult. The polynucleotides of the present invention can be used as additional DNA markers for RFLP.

The polynucleotides of the present invention can also be used as an alternative to RFLP, by determining the actual base-by-base DNA sequence of selected portions of an individual's genome. These sequences can be used to prepare PCR primers for amplifying and isolating such selected DNA, which can then be sequenced. Using this technique, individuals can be identified because each individual will have a unique set of DNA sequences. Once an unique ID database is established for an individual, positive identification of that individual, living or dead, can be made from extremely small tissue samples.

Forensic biology also benefits from using DNA-based identification techniques as disclosed herein. DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, semen, etc., can be amplified using PCR. In one prior art technique, gene sequences amplified from polymorphic loci, such as DQa class II HLA gene, are used in forensic biology to identify individuals. (Erlich, H., PCR Technology, Freeman and Co. (1992).) Once these specific polymorphic loci are amplified, they are digested with one or more restriction enzymes, yielding an identifying set of bands on a Southern blot probed with DNA corresponding to the DQa class II HLA gene. Similarly, polynucleotides of the present invention can be used as polymorphic markers for forensic purposes.

There is also a need for reagents capable of identifying the source of a particular tissue. Such need arises, for example, in forensics when presented with tissue of unknown origin. Appropriate reagents can comprise, for example, DNA probes or primers specific to particular tissue prepared from the sequences of the

10

15

20

25

30

WO 99/58660 PCT/US99/09847

205

present invention. Panels of such reagents can identify tissue by species and/or by organ type. In a similar fashion, these reagents can be used to screen tissue cultures for contamination.

In the very least, the polynucleotides of the present invention can be used as molecular weight markers on Southern gels, as diagnostic probes for the presence of a specific mRNA in a particular cell type, as a probe to "subtract-out" known sequences in the process of discovering novel polynucleotides, for selecting and making oligomers for attachment to a "gene chip" or other support, to raise anti-DNA antibodies using DNA immunization techniques, and as an antigen to elicit an immune response.

#### <u>Uses of the Polypeptides</u>

Each of the polypeptides identified herein can be used in numerous ways. The following description should be considered exemplary and utilizes known techniques.

A polypeptide of the present invention can be used to assay protein levels in a biological sample using antibody-based techniques. For example, protein expression in tissues can be studied with classical immunohistological methods. (Jalkanen, M., et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, M., et al., J. Cell . Biol. 105:3087-3096 (1987).) Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose oxidase, and radioisotopes, such as iodine (125I, 121I), carbon (14C), sulfur (35S), tritium (3H), indium (112In), and technetium (99mTc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.

In addition to assaying secreted protein levels in a biological sample, proteins can also be detected in vivo by imaging. Antibody labels or markers for in vivo imaging of protein include those detectable by X-radiography, NMR or ESR. For X-radiography, suitable labels include radioisotopes such as barium or cesium, which emit detectable radiation but are not overtly harmful to the subject. Suitable markers for NMR and ESR include those with a detectable characteristic spin, such as

10

15

20

25

30

deuterium, which may be incorporated into the antibody by labeling of nutrients for the relevant hybridoma.

A protein-specific antibody or antibody fragment which has been labeled with an appropriate detectable imaging moiety, such as a radioisotope (for example, 131I, 112In, 99mTc), a radio-opaque substance, or a material detectable by nuclear magnetic resonance, is introduced (for example, parenterally, subcutaneously, or intraperitoneally) into the mammal. It will be understood in the art that the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of 99mTc. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain the specific protein. In vivo tumor imaging is described in S.W. Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments." (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982).)

Thus, the invention provides a diagnostic method of a disorder, which involves (a) assaying the expression of a polypeptide of the present invention in cells or body fluid of an individual; (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of a disorder.

Moreover, polypeptides of the present invention can be used to treat disease. For example, patients can be administered a polypeptide of the present invention in an effort to replace absent or decreased levels of the polypeptide (e.g., insulin), to supplement absent or decreased levels of a different polypeptide (e.g., hemoglobin S for hemoglobin B), to inhibit the activity of a polypeptide (e.g., an oncogene), to activate the activity of a polypeptide (e.g., by binding to a receptor), to reduce the activity of a membrane bound receptor by competing with it for free ligand (e.g., soluble TNF receptors used in reducing inflammation), or to bring about a desired response (e.g., blood vessel growth).

WO 99/58660 PCT/US99/09847

Similarly, antibodies directed to a polypeptide of the present invention can also be used to treat disease. For example, administration of an antibody directed to a polypeptide of the present invention can bind and reduce overproduction of the polypeptide. Similarly, administration of an antibody can activate the polypeptide, such as by binding to a polypeptide bound to a membrane (receptor).

At the very least, the polypeptides of the present invention can be used as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art. Polypeptides can also be used to raise antibodies, which in turn are used to measure protein expression from a recombinant cell, as a way of assessing transformation of the host cell. Moreover, the polypeptides of the present invention can be used to test the following biological activities.

### **Biological Activities**

The polynucleotides and polypeptides of the present invention can be used in assays to test for one or more biological activities. If these polynucleotides and polypeptides do exhibit activity in a particular assay, it is likely that these molecules may be involved in the diseases associated with the biological activity. Thus, the polynucleotides and polypeptides could be used to treat the associated disease.

20

25

30

5

10

15

# **Immune Activity**

A polypeptide or polynucleotide of the present invention may be useful in treating deficiencies or disorders of the immune system, by activating or inhibiting the proliferation, differentiation, or mobilization (chemotaxis) of immune cells. Immune cells develop through a process called hematopoiesis, producing myeloid (platelets, red blood cells, neutrophils, and macrophages) and lymphoid (B and T lymphocytes) cells from pluripotent stem cells. The etiology of these immune deficiencies or disorders may be genetic, somatic, such as cancer or some autoimmune disorders, acquired (e.g., by chemotherapy or toxins), or infectious. Moreover, a polynucleotide or polypeptide of the present invention can be used as a marker or detector of a particular immune system disease or disorder.

WO 99/58660

5

10

15

20

25

30

A polynucleotide or polypeptide of the present invention may be useful in treating or detecting deficiencies or disorders of hematopoietic cells. A polypeptide or polynucleotide of the present invention could be used to increase differentiation and proliferation of hematopoietic cells, including the pluripotent stem cells, in an effort to treat those disorders associated with a decrease in certain (or many) types hematopoietic cells. Examples of immunologic deficiency syndromes include, but are not limited to: blood protein disorders (e.g. agammaglobulinemia, dysgammaglobulinemia), ataxia telangiectasia, common variable immunodeficiency, Digeorge Syndrome, HIV infection, HTLV-BLV infection, leukocyte adhesion deficiency syndrome, lymphopenia, phagocyte bactericidal dysfunction, severe combined immunodeficiency (SCIDs), Wiskott-Aldrich Disorder, anemia, thrombocytopenia, or hemoglobinuria.

Moreover, a polypeptide or polynucleotide of the present invention could also be used to modulate hemostatic (the stopping of bleeding) or thrombolytic activity (clot formation). For example, by increasing hemostatic or thrombolytic activity, a polynucleotide or polypeptide of the present invention could be used to treat blood coagulation disorders (e.g., afibrinogenemia, factor deficiencies), blood platelet disorders (e.g. thrombocytopenia), or wounds resulting from trauma, surgery, or other causes. Alternatively, a polynucleotide or polypeptide of the present invention that can decrease hemostatic or thrombolytic activity could be used to inhibit or dissolve clotting. These molecules could be important in the treatment of heart attacks (infarction), strokes, or scarring.

A polynucleotide or polypeptide of the present invention may also be useful in treating or detecting autoimmune disorders. Many autoimmune disorders result from inappropriate recognition of self as foreign material by immune cells. This inappropriate recognition results in an immune response leading to the destruction of the host tissue. Therefore, the administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing autoimmune disorders.

Examples of autoimmune disorders that can be treated or detected by the present invention include, but are not limited to: Addison's Disease, hemolytic

10

15

20

25

30

anemia, antiphospholipid syndrome, rheumatoid arthritis, dermatitis, allergic encephalomyelitis, glomerulonephritis, Goodpasture's Syndrome, Graves' Disease, Multiple Sclerosis, Myasthenia Gravis, Neuritis, Ophthalmia, Bullous Pemphigoid, Pemphigus, Polyendocrinopathies, Purpura, Reiter's Disease, Stiff-Man Syndrome, Autoimmune Thyroiditis, Systemic Lupus Erythematosus, Autoimmune Pulmonary Inflammation, Guillain-Barre Syndrome, insulin dependent diabetes mellitis, and autoimmune inflammatory eye disease.

Similarly, allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems, may also be treated by a polypeptide or polynucleotide of the present invention. Moreover, these molecules can be used to treat anaphylaxis, hypersensitivity to an antigenic molecule, or blood group incompatibility.

A polynucleotide or polypeptide of the present invention may also be used to treat and/or prevent organ rejection or graft-versus-host disease (GVHD). Organ rejection occurs by host immune cell destruction of the transplanted tissue through an immune response. Similarly, an immune response is also involved in GVHD, but, in this case, the foreign transplanted immune cells destroy the host tissues. The administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing organ rejection or GVHD.

Similarly, a polypeptide or polynucleotide of the present invention may also be used to modulate inflammation. For example, the polypeptide or polynucleotide may inhibit the proliferation and differentiation of cells involved in an inflammatory response. These molecules can be used to treat inflammatory conditions, both chronic and acute conditions, including inflammation associated with infection (e.g., septic shock, sepsis, or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine induced lung injury, inflammatory bowel disease, Crohn's disease, or resulting from over production of cytokines (e.g., TNF or IL-1.)

### **Hyperproliferative Disorders**

10

15

20

25

30

A polypeptide or polynucleotide can be used to treat or detect hyperproliferative disorders, including neoplasms. A polypeptide or polynucleotide of the present invention may inhibit the proliferation of the disorder through direct or indirect interactions. Alternatively, a polypeptide or polynucleotide of the present invention may proliferate other cells which can inhibit the hyperproliferative disorder.

For example, by increasing an immune response, particularly increasing antigenic qualities of the hyperproliferative disorder or by proliferating, differentiating, or mobilizing T-cells, hyperproliferative disorders can be treated. This immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, decreasing an immune response may also be a method of treating hyperproliferative disorders, such as a chemotherapeutic agent.

Examples of hyperproliferative disorders that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but are not limited to neoplasms located in the: abdomen, bone, breast, digestive system, liver, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), eye, head and neck, nervous (central and peripheral), lymphatic system, pelvic, skin, soft tissue, spleen, thoracic, and urogenital.

Similarly, other hyperproliferative disorders can also be treated or detected by a polynucleotide or polypeptide of the present invention. Examples of such hyperproliferative disorders include, but are not limited to: hypergammaglobulinemia, lymphoproliferative disorders, paraproteinemias, purpura, sarcoidosis, Sezary Syndrome, Waldenstron's Macroglobulinemia, Gaucher's Disease, histiocytosis, and any other hyperproliferative disease, besides neoplasia, located in an organ system listed above.

#### **Infectious Disease**

A polypeptide or polynucleotide of the present invention can be used to treat or detect infectious agents. For example, by increasing the immune response, particularly increasing the proliferation and differentiation of B and/or T cells, infectious diseases may be treated. The immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response.

Alternatively, the polypeptide or polynucleotide of the present invention may also directly inhibit the infectious agent, without necessarily eliciting an immune response.

Viruses are one example of an infectious agent that can cause disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the 5 present invention. Examples of viruses, include, but are not limited to the following DNA and RNA viral families: Arbovirus, Adenoviridae, Arenaviridae, Arterivirus, Birnaviridae, Bunyaviridae, Caliciviridae, Circoviridae, Coronaviridae, Flaviviridae, Hepadnaviridae (Hepatitis), Herpesviridae (such as, Cytomegalovirus, Herpes Simplex, Herpes Zoster), Mononegavirus (e.g., Paramyxoviridae, Morbillivirus, 10 Rhabdoviridae), Orthomyxoviridae (e.g., Influenza), Papovaviridae, Parvoviridae, Picornaviridae, Poxviridae (such as Smallpox or Vaccinia), Reoviridae (e.g., Rotavirus), Retroviridae (HTLV-I, HTLV-II, Lentivirus), and Togaviridae (e.g., Rubivirus). Viruses falling within these families can cause a variety of diseases or symptoms, including, but not limited to: arthritis, bronchiollitis, encephalitis, eye infections (e.g., conjunctivitis, keratitis), chronic fatigue syndrome, hepatitis (A, B, C, 15 E, Chronic Active, Delta), meningitis, opportunistic infections (e.g., AIDS), pneumonia, Burkitt's Lymphoma, chickenpox, hemorrhagic fever, Measles, Mumps, Parainfluenza, Rabies, the common cold, Polio, leukemia, Rubella, sexually transmitted diseases, skin diseases (e.g., Kaposi's, warts), and viremia. A polypeptide 20 or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Similarly, bacterial or fungal agents that can cause disease or symptoms and that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but not limited to, the following Gram-Negative and Gram-positive bacterial families and fungi: Actinomycetales (e.g., Corynebacterium, Mycobacterium, Norcardia), Aspergillosis, Bacillaceae (e.g., Anthrax, Clostridium), Bacteroidaceae, Blastomycosis, Bordetella, Borrelia, Brucellosis, Candidiasis, Campylobacter, Coccidioidomycosis, Cryptococcosis, Dermatocycoses, Enterobacteriaceae (Klebsiella, Salmonella, Serratia, Yersinia), Erysipelothrix, Helicobacter, Legionellosis, Leptospirosis, Listeria, Mycoplasmatales, Neisseriaceae (e.g., Acinetobacter, Gonorrhea, Menigococcal), Pasteurellacea Infections (e.g., Actinobacillus, Heamophilus, Pasteurella), Pseudomonas, Rickettsiaceae,

25

30

Chlamydiaceae, Syphilis, and Staphylococcal. These bacterial or fungal families can cause the following diseases or symptoms, including, but not limited to: bacteremia, endocarditis, eye infections (conjunctivitis, tuberculosis, uveitis), gingivitis, opportunistic infections (e.g., AIDS related infections), paronychia, prosthesis-related infections, Reiter's Disease, respiratory tract infections, such as Whooping Cough or Empyema, sepsis, Lyme Disease, Cat-Scratch Disease, Dysentery, Paratyphoid Fever, food poisoning, Typhoid, pneumonia, Gonorrhea, meningitis, Chlamydia, Syphilis, Diphtheria, Leprosy, Paratuberculosis, Tuberculosis, Lupus, Botulism, gangrene, tetanus, impetigo, Rheumatic Fever, Scarlet Fever, sexually transmitted diseases, skin diseases (e.g., cellulitis, dermatocycoses), toxemia, urinary tract infections, wound infections. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Moreover, parasitic agents causing disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but not limited to, the following families: Amebiasis, Babesiosis, Coccidiosis, Cryptosporidiosis, Dientamoebiasis, Dourine, Ectoparasitic, Giardiasis, Helminthiasis, Leishmaniasis, Theileriasis, Toxoplasmosis, Trypanosomiasis, and Trichomonas. These parasites can cause a variety of diseases or symptoms, including, but not limited to: Scabies, Trombiculiasis, eye infections, intestinal disease (e.g., dysentery, giardiasis), liver disease, lung disease, opportunistic infections (e.g., AIDS related), Malaria, pregnancy complications, and toxoplasmosis. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Preferably, treatment using a polypeptide or polynucleotide of the present invention could either be by administering an effective amount of a polypeptide to the patient, or by removing cells from the patient, supplying the cells with a polynucleotide of the present invention, and returning the engineered cells to the patient (ex vivo therapy). Moreover, the polypeptide or polynucleotide of the present invention can be used as an antigen in a vaccine to raise an immune response against infectious disease.

#### Regeneration

5

10

15

20

25

30

A polynucleotide or polypeptide of the present invention can be used to differentiate, proliferate, and attract cells, leading to the regeneration of tissues. (See, Science 276:59-87 (1997).) The regeneration of tissues could be used to repair, replace, or protect tissue damaged by congenital defects, trauma (wounds, burns, incisions, or ulcers), age, disease (e.g. osteoporosis, osteocarthritis, periodontal disease, liver failure), surgery, including cosmetic plastic surgery, fibrosis, reperfusion injury, or systemic cytokine damage.

5

10

15

20

25

30

Tissues that could be regenerated using the present invention include organs (e.g., pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac), vasculature (including vascular and lymphatics), nervous, hematopoietic, and skeletal (bone, cartilage, tendon, and ligament) tissue. Preferably, regeneration occurs without or decreased scarring. Regeneration also may include angiogenesis.

Moreover, a polynucleotide or polypeptide of the present invention may increase regeneration of tissues difficult to heal. For example, increased tendon/ligament regeneration would quicken recovery time after damage. A polynucleotide or polypeptide of the present invention could also be used prophylactically in an effort to avoid damage. Specific diseases that could be treated include of tendinitis, carpal tunnel syndrome, and other tendon or ligament defects. A further example of tissue regeneration of non-healing wounds includes pressure ulcers, ulcers associated with vascular insufficiency, surgical, and traumatic wounds.

Similarly, nerve and brain tissue could also be regenerated by using a polynucleotide or polypeptide of the present invention to proliferate and differentiate nerve cells. Diseases that could be treated using this method include central and peripheral nervous system diseases, neuropathies, or mechanical and traumatic disorders (e.g., spinal cord disorders, head trauma, cerebrovascular disease, and stoke). Specifically, diseases associated with peripheral nerve injuries, peripheral neuropathy (e.g., resulting from chemotherapy or other medical therapies), localized neuropathies, and central nervous system diseases (e.g., Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome), could all be treated using the polynucleotide or polypeptide of the present invention.

#### **Chemotaxis**

5

10

15

25

30

A polynucleotide or polypeptide of the present invention may have chemotaxis activity. A chemotaxic molecule attracts or mobilizes cells (e.g., monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells) to a particular site in the body, such as inflammation, infection, or site of hyperproliferation. The mobilized cells can then fight off and/or heal the particular trauma or abnormality.

A polynucleotide or polypeptide of the present invention may increase chemotaxic activity of particular cells. These chemotactic molecules can then be used to treat inflammation, infection, hyperproliferative disorders, or any immune system disorder by increasing the number of cells targeted to a particular location in the body. For example, chemotaxic molecules can be used to treat wounds and other trauma to tissues by attracting immune cells to the injured location. Chemotactic molecules of the present invention can also attract fibroblasts, which can be used to treat wounds.

It is also contemplated that a polynucleotide or polypeptide of the present invention may inhibit chemotactic activity. These molecules could also be used to treat disorders. Thus, a polynucleotide or polypeptide of the present invention could be used as an inhibitor of chemotaxis.

### 20 **Binding Activity**

A polypeptide of the present invention may be used to screen for molecules that bind to the polypeptide or for molecules to which the polypeptide binds. The binding of the polypeptide and the molecule may activate (agonist), increase, inhibit (antagonist), or decrease activity of the polypeptide or the molecule bound. Examples of such molecules include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.

Preferably, the molecule is closely related to the natural ligand of the polypeptide, e.g., a fragment of the ligand, or a natural substrate, a ligand, a structural or functional mimetic. (See, Coligan et al., Current Protocols in Immunology 1(2):Chapter 5 (1991).) Similarly, the molecule can be closely related to the natural receptor to which the polypeptide binds, or at least, a fragment of the receptor capable

10

15

20

25

30

of being bound by the polypeptide (e.g., active site). In either case, the molecule can be rationally designed using known techniques.

Preferably, the screening for these molecules involves producing appropriate cells which express the polypeptide, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, Drosophila, or *E. coli*. Cells expressing the polypeptide (or cell membrane containing the expressed polypeptide) are then preferably contacted with a test compound potentially containing the molecule to observe binding, stimulation, or inhibition of activity of either the polypeptide or the molecule.

The assay may simply test binding of a candidate compound to the polypeptide, wherein binding is detected by a label, or in an assay involving competition with a labeled competitor. Further, the assay may test whether the candidate compound results in a signal generated by binding to the polypeptide.

Alternatively, the assay can be carried out using cell-free preparations, polypeptide/molecule affixed to a solid support, chemical libraries, or natural product mixtures. The assay may also simply comprise the steps of mixing a candidate compound with a solution containing a polypeptide, measuring polypeptide/molecule activity or binding, and comparing the polypeptide/molecule activity or binding to a standard.

Preferably, an ELISA assay can measure polypeptide level or activity in a sample (e.g., biological sample) using a monoclonal or polyclonal antibody. The antibody can measure polypeptide level or activity by either binding, directly or indirectly, to the polypeptide or by competing with the polypeptide for a substrate.

All of these above assays can be used as diagnostic or prognostic markers. The molecules discovered using these assays can be used to treat disease or to bring about a particular result in a patient (e.g., blood vessel growth) by activating or inhibiting the polypeptide/molecule. Moreover, the assays can discover agents which may inhibit or enhance the production of the polypeptide from suitably manipulated cells or tissues.

Therefore, the invention includes a method of identifying compounds which bind to a polypeptide of the invention comprising the steps of: (a) incubating a

candidate binding compound with a polypeptide of the invention; and (b) determining if binding has occurred. Moreover, the invention includes a method of identifying agonists/antagonists comprising the steps of: (a) incubating a candidate compound with a polypeptide of the invention, (b) assaying a biological activity, and (b) determining if a biological activity of the polypeptide has been altered.

## **Other Activities**

5

10

15

20

25

30

A polypeptide or polynucleotide of the present invention may also increase or decrease the differentiation or proliferation of embryonic stem cells, besides, as discussed above, hematopoietic lineage.

A polypeptide or polynucleotide of the present invention may also be used to modulate mammalian characteristics, such as body height, weight, hair color, eye color, skin, percentage of adipose tissue, pigmentation, size, and shape (e.g., cosmetic surgery). Similarly, a polypeptide or polynucleotide of the present invention may be used to modulate mammalian metabolism affecting catabolism, anabolism, processing, utilization, and storage of energy.

A polypeptide or polynucleotide of the present invention may be used to change a mammal's mental state or physical state by influencing biorhythms, caricadic rhythms, depression (including depressive disorders), tendency for violence, tolerance for pain, reproductive capabilities (preferably by Activin or Inhibin-like activity), hormonal or endocrine levels, appetite, libido, memory, stress, or other cognitive qualities.

A polypeptide or polynucleotide of the present invention may also be used as a food additive or preservative, such as to increase or decrease storage capabilities, fat content, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional components.

## **Other Preferred Embodiments**

Other preferred embodiments of the claimed invention include an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95%

WO 99/58660 PCT/US99/09847

217

identical to a sequence of at least about 50 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Clone Sequence and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

5

10

15

20

25

30

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Start Codon and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Similarly preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 150 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.

Further preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 500 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.

A further preferred embodiment is a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ID NO:X beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

10

15

20

25

30

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence of SEQ ID NO:X.

Also preferred is an isolated nucleic acid molecule which hybridizes under stringent hybridization conditions to a nucleic acid molecule, wherein said nucleic acid molecule which hybridizes does not hybridize under stringent hybridization conditions to a nucleic acid molecule having a nucleotide sequence consisting of only A residues or of only T residues.

Also preferred is a composition of matter comprising a DNA molecule which comprises a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the material deposited with the American Type Culture Collection and given the ATCC Deposit Number shown in Table 1 for said cDNA Clone Identifier.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in the nucleotide sequence of a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the deposit given the ATCC Deposit Number shown in Table 1.

Also preferred is an isolated nucleic acid molecule, wherein said sequence of at least 50 contiguous nucleotides is included in the nucleotide sequence of the complete open reading frame sequence encoded by said human cDNA clone.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 150 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 500 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is a method for detecting in a biological sample a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method comprises a step of comparing a nucleotide sequence of at least one nucleic acid molecule in said sample with a sequence selected from said group and determining whether the sequence of said nucleic acid molecule in said sample is at least 95% identical to said selected sequence.

5

10

15

20

25

30

Also preferred is the above method wherein said step of comparing sequences comprises determining the extent of nucleic acid hybridization between nucleic acid molecules in said sample and a nucleic acid molecule comprising said sequence selected from said group. Similarly, also preferred is the above method wherein said step of comparing sequences is performed by comparing the nucleotide sequence determined from a nucleic acid molecule in said sample with said sequence selected from said group. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

A further preferred embodiment is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting nucleic acid molecules in said sample, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

The method for identifying the species, tissue or cell type of a biological sample can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least

10

15

20

25

30

one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject nucleic acid molecules, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

The method for diagnosing a pathological condition can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

Also preferred is a composition of matter comprising isolated nucleic acid molecules wherein the nucleotide sequences of said nucleic acid molecules comprise a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1.

Also preferred is a polypeptide, wherein said sequence of contiguous amino acids is included in the amino acid sequence of SEQ ID NO:Y in the range of

10

15

20

25

30

positions beginning with the residue at about the position of the First Amino Acid of the Secreted Portion and ending with the residue at about the Last Amino Acid of the Open Reading Frame as set forth for SEQ ID NO:Y in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the complete amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is a polypeptide wherein said sequence of contiguous amino acids is included in the amino acid sequence of a secreted portion of the secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

10

15

20

25

30

WO 99/58660 PCT/US99/09847

222

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is an isolated antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method for detecting in a biological sample a polypeptide comprising an amino acid sequence which is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method comprises a step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group and determining whether the sequence of said polypeptide molecule in said sample is at least 90% identical to said sequence of at least 10 contiguous amino acids.

Also preferred is the above method wherein said step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group comprises determining the extent of specific binding of polypeptides in said sample to an antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA

10

15

20

25

30

223

PCT/US99/09847

clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is the above method wherein said step of comparing sequences is performed by comparing the amino acid sequence determined from a polypeptide molecule in said sample with said sequence selected from said group.

Also preferred is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting polypeptide molecules in said sample, if any, comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is the above method for identifying the species, tissue or cell type of a biological sample, which method comprises a step of detecting polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the above group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

WO 99/58660

5

10

15

20

25

30

In any of these methods, the step of detecting said polypeptide molecules includes using an antibody.

224

PCT/US99/09847

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a nucleotide sequence encoding a polypeptide wherein said polypeptide comprises an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated nucleic acid molecule, wherein said nucleotide sequence encoding a polypeptide has been optimized for expression of said polypeptide in a prokaryotic host.

Also preferred is an isolated nucleic acid molecule, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method of making a recombinant vector comprising inserting any of the above isolated nucleic acid molecule into a vector. Also preferred is the recombinant vector produced by this method. Also preferred is a method of making a recombinant host cell comprising introducing the vector into a host cell, as well as the recombinant host cell produced by this method.

Also preferred is a method of making an isolated polypeptide comprising culturing this recombinant host cell under conditions such that said polypeptide is expressed and recovering said polypeptide. Also preferred is this method of making an isolated polypeptide, wherein said recombinant host cell is a eukaryotic cell and said polypeptide is a secreted portion of a human secreted protein comprising an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y beginning with the residue at the position of the First Amino Acid of

the Secreted Portion of SEQ ID NO:Y wherein Y is an integer set forth in Table 1 and said position of the First Amino Acid of the Secreted Portion of SEQ ID NO:Y is defined in Table 1; and an amino acid sequence of a secreted portion of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The isolated polypeptide produced by this method is also preferred.

Also preferred is a method of treatment of an individual in need of an increased level of a secreted protein activity, which method comprises administering to such an individual a pharmaceutical composition comprising an amount of an isolated polypeptide, polynucleotide, or antibody of the claimed invention effective to increase the level of said protein activity in said individual.

Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting.

15

20

25

10

5

#### **Examples**

## **Example 1: Isolation of a Selected cDNA Clone From the Deposited Sample**

Each cDNA clone in a cited ATCC deposit is contained in a plasmid vector. Table 1 identifies the vectors used to construct the cDNA library from which each clone was isolated. In many cases, the vector used to construct the library is a phage vector from which a plasmid has been excised. The table immediately below correlates the related plasmid for each phage vector used in constructing the cDNA library. For example, where a particular clone is identified in Table 1 as being isolated in the vector "Lambda Zap," the corresponding deposited clone is in "pBluescript."

|    | Vector Used to Construct Library | Corresponding Deposited |
|----|----------------------------------|-------------------------|
|    | Plasmid                          |                         |
|    | Lambda Zap                       | pBluescript (pBS)       |
| 30 | Uni-Zap XR                       | pBluescript (pBS)       |
|    | Zap Express                      | pBK                     |
|    | lafmid BA                        | plafmid BA              |

pSport1 pSport1
pCMVSport 2.0 pCMVSport 2.0
pCMVSport 3.0 pCMVSport 3.0

pCR<sup>®</sup>2.1 pCR<sup>®</sup>2.1

5

10

15

Vectors Lambda Zap (U.S. Patent Nos. 5,128,256 and 5,286,636), Uni-Zap XR (U.S. Patent Nos. 5,128, 256 and 5,286,636), Zap Express (U.S. Patent Nos. 5,128,256 and 5,286,636), pBluescript (pBS) (Short, J. M. et al., Nucleic Acids Res. 16:7583-7600 (1988); Alting-Mees, M. A. and Short, J. M., Nucleic Acids Res. 17:9494 (1989)) and pBK (Alting-Mees, M. A. et al., Strategies 5:58-61 (1992)) are commercially available from Stratagene Cloning Systems, Inc., 11011 N. Torrey Pines Road, La Jolla, CA, 92037. pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene. Both can be transformed into E. coli strain XL-1 Blue, also available from Stratagene. pBS comes in 4 forms SK+, SK-, KS+ and KS. The S and K refers to the orientation of the polylinker to the T7 and T3 primer sequences which flank the polylinker region ("S" is for SacI and "K" is for KpnI which are the first sites on each respective end of the linker). "+" or "-" refer to the orientation of the f1 origin of replication ("ori"), such that in one orientation, single stranded rescue initiated from the f1 ori generates sense strand DNA and in the other, antisense.

Vectors pSport1, pCMVSport 2.0 and pCMVSport 3.0, were obtained from 20 Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into E. coli strain DH10B, also available from Life Technologies. (See, for instance, Gruber, C. E., et al., Focus 15:59 (1993).) Vector lafmid BA (Bento Soares, Columbia University, NY) contains an ampicillin resistance gene and can be transformed into E. coli strain 25 XL-1 Blue. Vector pCR<sup>®</sup>2.1, which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into E. coli strain DH10B, available from Life Technologies. (See, for instance, Clark, J. M., Nuc. Acids Res. 16:9677-9686 (1988) and Mead, D. et al., Bio/Technology 9: (1991).) Preferably, a polynucleotide of the present invention 30 does not comprise the phage vector sequences identified for the particular clone in Table 1, as well as the corresponding plasmid vector sequences designated above.

10

15

20

25

30

The deposited material in the sample assigned the ATCC Deposit Number cited in Table 1 for any given cDNA clone also may contain one or more additional plasmids, each comprising a cDNA clone different from that given clone. Thus, deposits sharing the same ATCC Deposit Number contain at least a plasmid for each cDNA clone identified in Table 1. Typically, each ATCC deposit sample cited in Table 1 comprises a mixture of approximately equal amounts (by weight) of about 50 plasmid DNAs, each containing a different cDNA clone; but such a deposit sample may include plasmids for more or less than 50 cDNA clones, up to about 500 cDNA clones.

Two approaches can be used to isolate a particular clone from the deposited sample of plasmid DNAs cited for that clone in Table 1. First, a plasmid is directly isolated by screening the clones using a polynucleotide probe corresponding to SEQ ID NO:X.

Particularly, a specific polynucleotide with 30-40 nucleotides is synthesized using an Applied Biosystems DNA synthesizer according to the sequence reported. The oligonucleotide is labeled, for instance, with <sup>32</sup>P-γ-ATP using T4 polynucleotide kinase and purified according to routine methods. (E.g., Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring, NY (1982).) The plasmid mixture is transformed into a suitable host, as indicated above (such as XL-1 Blue (Stratagene)) using techniques known to those of skill in the art, such as those provided by the vector supplier or in related publications or patents cited above. The transformants are plated on 1.5% agar plates (containing the appropriate selection agent, e.g., ampicillin) to a density of about 150 transformants (colonies) per plate. These plates are screened using Nylon membranes according to routine methods for bacterial colony screening (e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edit., (1989), Cold Spring Harbor Laboratory Press, pages 1.93 to 1.104), or other techniques known to those of skill in the art.

Alternatively, two primers of 17-20 nucleotides derived from both ends of the SEQ ID NO:X (i.e., within the region of SEQ ID NO:X bounded by the 5' NT and the 3' NT of the clone defined in Table 1) are synthesized and used to amplify the desired cDNA using the deposited cDNA plasmid as a template. The polymerase chain reaction is carried out under routine conditions, for instance, in 25 µl of reaction

10

15

20

25

30

mixture with 0.5 ug of the above cDNA template. A convenient reaction mixture is 1.5-5 mM MgCl<sub>2</sub>, 0.01% (w/v) gelatin, 20 µM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR (denaturation at 94°C for 1 min; annealing at 55°C for 1 min; elongation at 72°C for 1 min) are performed with a Perkin-Elmer Cetus automated thermal cycler. The amplified product is analyzed by agarose gel electrophoresis and the DNA band with expected molecular weight is excised and purified. The PCR product is verified to be the selected sequence by subcloning and sequencing the DNA product.

Several methods are available for the identification of the 5' or 3' non-coding portions of a gene which may not be present in the deposited clone. These methods include but are not limited to, filter probing, clone enrichment using specific probes, and protocols similar or identical to 5' and 3' "RACE" protocols which are well known in the art. For instance, a method similar to 5' RACE is available for generating the missing 5' end of a desired full-length transcript. (Fromont-Racine et al., Nucleic Acids Res. 21(7):1683-1684 (1993).)

Briefly, a specific RNA oligonucleotide is ligated to the 5' ends of a population of RNA presumably containing full-length gene RNA transcripts. A primer set containing a primer specific to the ligated RNA oligonucleotide and a primer specific to a known sequence of the gene of interest is used to PCR amplify the 5' portion of the desired full-length gene. This amplified product may then be sequenced and used to generate the full length gene.

This above method starts with total RNA isolated from the desired source, although poly-A+ RNA can be used. The RNA preparation can then be treated with phosphatase if necessary to eliminate 5' phosphate groups on degraded or damaged RNA which may interfere with the later RNA ligase step. The phosphatase should then be inactivated and the RNA treated with tobacco acid pyrophosphatase in order to remove the cap structure present at the 5' ends of messenger RNAs. This reaction leaves a 5' phosphate group at the 5' end of the cap cleaved RNA which can then be ligated to an RNA oligonucleotide using T4 RNA ligase.

This modified RNA preparation is used as a template for first strand cDNA synthesis using a gene specific oligonucleotide. The first strand synthesis reaction is used as a template for PCR amplification of the desired 5' end using a primer specific

WO 99/58660 PCT/US99/09847

229

to the ligated RNA oligonucleotide and a primer specific to the known sequence of the gene of interest. The resultant product is then sequenced and analyzed to confirm that the 5' end sequence belongs to the desired gene.

## 5 Example 2: Isolation of Genomic Clones Corresponding to a Polynucleotide

A human genomic P1 library (Genomic Systems, Inc.) is screened by PCR using primers selected for the cDNA sequence corresponding to SEQ ID NO:X., according to the method described in Example 1. (See also, Sambrook.)

## 10 Example 3: Tissue Distribution of Polypeptide

15

20

25

30

Tissue distribution of mRNA expression of polynucleotides of the present invention is determined using protocols for Northern blot analysis, described by, among others, Sambrook et al. For example, a cDNA probe produced by the method described in Example 1 is labeled with P<sup>32</sup> using the rediprime<sup>TM</sup> DNA labeling system (Amersham Life Science), according to manufacturer's instructions. After labeling, the probe is purified using CHROMA SPIN-100<sup>TM</sup> column (Clontech Laboratories, Inc.), according to manufacturer's protocol number PT1200-1. The purified labeled probe is then used to examine various human tissues for mRNA expression.

Multiple Tissue Northern (MTN) blots containing various human tissues (H) or human immune system tissues (IM) (Clontech) are examined with the labeled probe using ExpressHyb™ hybridization solution (Clontech) according to manufacturer's protocol number PT1190-1. Following hybridization and washing, the blots are mounted and exposed to film at -70°C overnight, and the films developed according to standard procedures.

#### **Example 4: Chromosomal Mapping of the Polynucleotides**

An oligonucleotide primer set is designed according to the sequence at the 5' end of SEQ ID NO:X. This primer preferably spans about 100 nucleotides. This primer set is then used in a polymerase chain reaction under the following set of conditions: 30 seconds, 95°C; 1 minute, 56°C; 1 minute, 70°C. This cycle is repeated 32 times followed by one 5 minute cycle at 70°C. Human, mouse, and

WO 99/58660 PCT/US99/09847

230

hamster DNA is used as template in addition to a somatic cell hybrid panel containing individual chromosomes or chromosome fragments (Bios, Inc). The reactions is analyzed on either 8% polyacrylamide gels or 3.5 % agarose gels. Chromosome mapping is determined by the presence of an approximately 100 bp PCR fragment in the particular somatic cell hybrid.

## **Example 5: Bacterial Expression of a Polypeptide**

5

10

30

A polynucleotide encoding a polypeptide of the present invention is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' ends of the DNA sequence, as outlined in Example 1, to synthesize insertion fragments. The primers used to amplify the cDNA insert should preferably contain restriction sites, such as BamHI and XbaI, at the 5' end of the primers in order to clone the amplified product into the expression vector. For example, BamHI and XbaI correspond to the restriction enzyme sites on the bacterial expression vector pQE-9. (Qiagen, Inc.,

Chatsworth, CA). This plasmid vector encodes antibiotic resistance (Amp<sup>r</sup>), a bacterial origin of replication (ori), an IPTG-regulatable promoter/operator (P/O), a ribosome binding site (RBS), a 6-histidine tag (6-His), and restriction enzyme cloning sites.

The pQE-9 vector is digested with BamHI and XbaI and the amplified

fragment is ligated into the pQE-9 vector maintaining the reading frame initiated at the bacterial RBS. The ligation mixture is then used to transform the E. coli strain M15/rep4 (Qiagen, Inc.) which contains multiple copies of the plasmid pREP4, which expresses the lacI repressor and also confers kanamycin resistance (Kan<sup>r</sup>). Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies are selected. Plasmid DNA is isolated and confirmed by restriction analysis.

Clones containing the desired constructs are grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml). The O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells are grown to an optical density 600 (O.D.<sup>600</sup>) of between 0.4 and 0.6. IPTG (Isopropyl-B-D-thiogalacto pyranoside) is then added to a final concentration of 1

10

15

20

25

30

mM. IPTG induces by inactivating the lacI repressor, clearing the P/O leading to increased gene expression.

Cells are grown for an extra 3 to 4 hours. Cells are then harvested by centrifugation (20 mins at 6000Xg). The cell pellet is solubilized in the chaotropic agent 6 Molar Guanidine HCl by stirring for 3-4 hours at 4°C. The cell debris is removed by centrifugation, and the supernatant containing the polypeptide is loaded onto a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (available from QIAGEN, Inc., *supra*). Proteins with a 6 x His tag bind to the Ni-NTA resin with high affinity and can be purified in a simple one-step procedure (for details see: The QIAexpressionist (1995) QIAGEN, Inc., *supra*).

Briefly, the supernatant is loaded onto the column in 6 M guanidine-HCl, pH 8, the column is first washed with 10 volumes of 6 M guanidine-HCl, pH 8, then washed with 10 volumes of 6 M guanidine-HCl pH 6, and finally the polypeptide is eluted with 6 M guanidine-HCl, pH 5.

The purified protein is then renatured by dialyzing it against phosphate-buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl. Alternatively, the protein can be successfully refolded while immobilized on the Ni-NTA column. The recommended conditions are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH 7.4, containing protease inhibitors. The renaturation should be performed over a period of 1.5 hours or more. After renaturation the proteins are eluted by the addition of 250 mM immidazole. Immidazole is removed by a final dialyzing step against PBS or 50 mM sodium acetate pH 6 buffer plus 200 mM NaCl. The purified protein is stored at 4°C or frozen at -80°C.

In addition to the above expression vector, the present invention further includes an expression vector comprising phage operator and promoter elements operatively linked to a polynucleotide of the present invention, called pHE4a. (ATCC Accession Number 209645, deposited on February 25, 1998.) This vector contains:

1) a neomycinphosphotransferase gene as a selection marker, 2) an E. coli origin of replication, 3) a T5 phage promoter sequence, 4) two lac operator sequences, 5) a Shine-Delgarno sequence, and 6) the lactose operon repressor gene (lacIq). The

origin of replication (oriC) is derived from pUC19 (LTI, Gaithersburg, MD). The promoter sequence and operator sequences are made synthetically.

DNA can be inserted into the pHEa by restricting the vector with NdeI and Xbal, BamHI, Xhol, or Asp718, running the restricted product on a gel, and isolating the larger fragment (the stuffer fragment should be about 310 base pairs). The DNA insert is generated according to the PCR protocol described in Example 1, using PCR primers having restriction sites for NdeI (5' primer) and XbaI, BamHI, XhoI, or Asp718 (3' primer). The PCR insert is gel purified and restricted with compatible enzymes. The insert and vector are ligated according to standard protocols.

The engineered vector could easily be substituted in the above protocol to express protein in a bacterial system.

## Example 6: Purification of a Polypeptide from an Inclusion Body

5

10

15

20

30

The following alternative method can be used to purify a polypeptide expressed in E coli when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.

Upon completion of the production phase of the E. coli fermentation, the cell culture is cooled to 4-10°C and the cells harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.

The cells are then lysed by passing the solution through a microfluidizer 25 (Microfuidics, Corp. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 xg for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.

The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 xg centrifugation for 15 min., the pellet is discarded and the polypeptide containing supernatant is incubated at 4°C overnight to allow further GuHCl extraction.

WO 99/58660 PCT/US99/09847

233

Following high speed centrifugation (30,000 xg) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.

To clarify the refolded polypeptide solution, a previously prepared tangential filtration unit equipped with 0.16 µm membrane filter with appropriate surface area (e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a stepwise manner. The absorbance at 280 nm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGE.

Fractions containing the polypeptide are then pooled and mixed with 4 volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A<sub>280</sub> monitoring of the effluent. Fractions containing the polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.

The resultant polypeptide should exhibit greater than 95% purity after the above refolding and purification steps. No major contaminant bands should be observed from Commassie blue stained 16% SDS-PAGE gel when 5 µg of purified protein is loaded. The purified protein can also be tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.

5

10

15

20

25

15

20

25

30

## Example 7: Cloning and Expression of a Polypeptide in a Baculovirus Expression System

In this example, the plasmid shuttle vector pA2 is used to insert a polynucleotide into a baculovirus to express a polypeptide. This expression vector contains the strong polyhedrin promoter of the *Autographa californica* nuclear polyhedrosis virus (AcMNPV) followed by convenient restriction sites such as BamHI, Xba I and Asp718. The polyadenylation site of the simian virus 40 ("SV40") is used for efficient polyadenylation. For easy selection of recombinant virus, the plasmid contains the beta-galactosidase gene from *E. coli* under control of a weak Drosophila promoter in the same orientation, followed by the polyadenylation signal of the polyhedrin gene. The inserted genes are flanked on both sides by viral sequences for cell-mediated homologous recombination with wild-type viral DNA to generate a viable virus that express the cloned polynucleotide.

Many other baculovirus vectors can be used in place of the vector above, such as pAc373, pVL941, and pAcIM1, as one skilled in the art would readily appreciate, as long as the construct provides appropriately located signals for transcription, translation, secretion and the like, including a signal peptide and an in-frame AUG as required. Such vectors are described, for instance, in Luckow et al., Virology 170:31-39 (1989).

Specifically, the cDNA sequence contained in the deposited clone, including the AUG initiation codon and the naturally associated leader sequence identified in Table 1, is amplified using the PCR protocol described in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the pA2 vector does not need a second signal peptide. Alternatively, the vector can be modified (pA2 GP) to include a baculovirus leader sequence, using the standard methods described in Summers et al., "A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures," Texas Agricultural Experimental Station Bulletin No. 1555 (1987).

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The plasmid is digested with the corresponding restriction enzymes and optionally, can be dephosphorylated using calf intestinal phosphatase, using routine procedures known in the art. The DNA is then isolated from a 1% agarose gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.).

The fragment and the dephosphorylated plasmid are ligated together with T4 DNA ligase. E. coli HB101 or other suitable E. coli hosts such as XL-1 Blue (Stratagene Cloning Systems, La Jolla, CA) cells are transformed with the ligation mixture and spread on culture plates. Bacteria containing the plasmid are identified by digesting DNA from individual colonies and analyzing the digestion product by gel electrophoresis. The sequence of the cloned fragment is confirmed by DNA sequencing.

5

10

15

20

25

30

Five μg of a plasmid containing the polynucleotide is co-transfected with 1.0 μg of a commercially available linearized baculovirus DNA ("BaculoGold<sup>TM</sup> baculovirus DNA", Pharmingen, San Diego, CA), using the lipofection method described by Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417 (1987). One μg of BaculoGold<sup>TM</sup> virus DNA and 5 μg of the plasmid are mixed in a sterile well of a microtiter plate containing 50 μl of serum-free Grace's medium (Life Technologies Inc., Gaithersburg, MD). Afterwards, 10 μl Lipofectin plus 90 μl Grace's medium are added, mixed and incubated for 15 minutes at room temperature. Then the transfection mixture is added drop-wise to Sf9 insect cells (ATCC CRL 1711) seeded in a 35 mm tissue culture plate with 1 ml Grace's medium without serum. The plate is then incubated for 5 hours at 27° C. The transfection solution is then removed from the plate and 1 ml of Grace's insect medium supplemented with 10% fetal calf serum is added. Cultivation is then continued at 27° C for four days.

After four days the supernatant is collected and a plaque assay is performed, as described by Summers and Smith, *supra*. An agarose gel with "Blue Gal" (Life Technologies Inc., Gaithersburg) is used to allow easy identification and isolation of gal-expressing clones, which produce blue-stained plaques. (A detailed description of a "plaque assay" of this type can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc., Gaithersburg, page 9-10.) After appropriate incubation, blue stained plaques are picked with the tip of a micropipettor (e.g., Eppendorf). The agar containing the recombinant viruses is then

10

15

20

25

30

resuspended in a microcentrifuge tube containing 200  $\mu$ l of Grace's medium and the suspension containing the recombinant baculovirus is used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supernatants of these culture dishes are harvested and then they are stored at 4° C.

To verify the expression of the polypeptide, Sf9 cells are grown in Grace's medium supplemented with 10% heat-inactivated FBS. The cells are infected with the recombinant baculovirus containing the polynucleotide at a multiplicity of infection ("MOI") of about 2. If radiolabeled proteins are desired, 6 hours later the medium is removed and is replaced with SF900 II medium minus methionine and cysteine (available from Life Technologies Inc., Rockville, MD). After 42 hours, 5  $\mu$ Ci of  $^{35}$ S-methionine and 5  $\mu$ Ci  $^{35}$ S-cysteine (available from Amersham) are added. The cells are further incubated for 16 hours and then are harvested by centrifugation. The proteins in the supernatant as well as the intracellular proteins are analyzed by SDS-PAGE followed by autoradiography (if radiolabeled).

Microsequencing of the amino acid sequence of the amino terminus of purified protein may be used to determine the amino terminal sequence of the produced protein.

### Example 8: Expression of a Polypeptide in Mammalian Cells

The polypeptide of the present invention can be expressed in a mammalian cell. A typical mammalian expression vector contains a promoter element, which mediates the initiation of transcription of mRNA, a protein coding sequence, and signals required for the termination of transcription and polyadenylation of the transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing. Highly efficient transcription is achieved with the early and late promoters from SV40, the long terminal repeats (LTRs) from Retroviruses, e.g., RSV, HTLVI, HIVI and the early promoter of the cytomegalovirus (CMV). However, cellular elements can also be used (e.g., the human actin promoter).

Suitable expression vectors for use in practicing the present invention include, for example, vectors such as pSVL and pMSG (Pharmacia, Uppsala, Sweden), pRSVcat (ATCC 37152), pSV2dhfr (ATCC 37146), pBC12MI (ATCC 67109),

10

15

20

25

30

pCMVSport 2.0, and pCMVSport 3.0. Mammalian host cells that could be used include, human Hela, 293, H9 and Jurkat cells, mouse NIH3T3 and C127 cells, Cos 1, Cos 7 and CV1, quail QC1-3 cells, mouse L cells and Chinese hamster ovary (CHO) cells.

Alternatively, the polypeptide can be expressed in stable cell lines containing the polynucleotide integrated into a chromosome. The co-transfection with a selectable marker such as dhfr, gpt, neomycin, hygromycin allows the identification and isolation of the transfected cells.

The transfected gene can also be amplified to express large amounts of the encoded protein. The DHFR (dihydrofolate reductase) marker is useful in developing cell lines that carry several hundred or even several thousand copies of the gene of interest. (Sec, e.g., Alt, F. W., et al., J. Biol. Chem. 253:1357-1370 (1978); Hamlin, J. L. and Ma, C., Biochem. et Biophys. Acta, 1097:107-143 (1990); Page, M. J. and Sydenham, M. A., Biotechnology 9:64-68 (1991).) Another useful selection marker is the enzyme glutamine synthase (GS) (Murphy et al., Biochem J. 227:277-279 (1991); Bebbington et al., Bio/Technology 10:169-175 (1992). Using these markers, the mammalian cells are grown in selective medium and the cells with the highest resistance are selected. These cell lines contain the amplified gene(s) integrated into a chromosome. Chinese hamster ovary (CHO) and NSO cells are often used for the production of proteins.

Derivatives of the plasmid pSV2-dhfr (ATCC Accession No. 37146), the expression vectors pC4 (ATCC Accession No. 209646) and pC6 (ATCC Accession No. 209647) contain the strong promoter (LTR) of the Rous Sarcoma Virus (Cullen et al., Molecular and Cellular Biology, 438-447 (March, 1985)) plus a fragment of the CMV-enhancer (Boshart et al., Cell 41:521-530 (1985).) Multiple cloning sites, e.g., with the restriction enzyme cleavage sites BamHI, XbaI and Asp718, facilitate the cloning of the gene of interest. The vectors also contain the 3' intron, the polyadenylation and termination signal of the rat preproinsulin gene, and the mouse DHFR gene under control of the SV40 early promoter.

Specifically, the plasmid pC6, for example, is digested with appropriate restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from a 1% agarose gel.

10

15

20

25

30

A polynucleotide of the present invention is amplified according to the protocol outlined in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the vector does not need a second signal peptide.

Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The amplified fragment is then digested with the same restriction enzyme and purified on a 1% agarose gel. The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. *E. coli* HB101 or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC6 using, for instance, restriction enzyme analysis.

Chinese hamster ovary cells lacking an active DHFR gene is used for transfection. Five µg of the expression plasmid pC6 is cotransfected with 0.5 µg of the plasmid pSVneo using lipofectin (Felgner et al., supra). The plasmid pSV2-neo contains a dominant selectable marker, the neo gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of metothrexate plus 1 mg/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6-well petri dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nM, 800 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 µM, 2 µM, 5 µM, 10 mM, 20 mM). The same procedure is repeated until clones are obtained which grow at a concentration of 100 -200 µM. Expression of the desired gene product is analyzed, for instance, by SDS-PAGE and Western blot or by reversed phase HPLC analysis.

## **Example 9: Protein Fusions**

10

15

20

25

30

The polypeptides of the present invention are preferably fused to other proteins. These fusion proteins can be used for a variety of applications. For example, fusion of the present polypeptides to His-tag, HA-tag, protein A, IgG domains, and maltose binding protein facilitates purification. (See Example 5; see also EP A 394,827; Traunecker, et al., Nature 331:84-86 (1988).) Similarly, fusion to IgG-1, IgG-3, and albumin increases the halflife time in vivo. Nuclear localization signals fused to the polypeptides of the present invention can target the protein to a specific subcellular localization, while covalent heterodimer or homodimers can increase or decrease the activity of a fusion protein. Fusion proteins can also create chimeric molecules having more than one function. Finally, fusion proteins can increase solubility and/or stability of the fused protein compared to the non-fused protein. All of the types of fusion proteins described above can be made by modifying the following protocol, which outlines the fusion of a polypeptide to an IgG molecule, or the protocol described in Example 5.

Briefly, the human Fc portion of the IgG molecule can be PCR amplified, using primers that span the 5' and 3' ends of the sequence described below. These primers also should have convenient restriction enzyme sites that will facilitate cloning into an expression vector, preferably a mammalian expression vector.

For example, if pC4 (Accession No. 209646) is used, the human Fc portion can be ligated into the BamHI cloning site. Note that the 3' BamHI site should be destroyed. Next, the vector containing the human Fc portion is re-restricted with BamHI, linearizing the vector, and a polynucleotide of the present invention, isolated by the PCR protocol described in Example 1, is ligated into this BamHI site. Note that the polynucleotide is cloned without a stop codon, otherwise a fusion protein will not be produced.

If the naturally occurring signal sequence is used to produce the secreted protein, pC4 does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

. .

Human IgG Fc region:

10

15

20

25

30

GGGATCCGGAGCCCAAATCTTCTGACAAAACTCACACATGCCCACCGTGC
CCAGCACCTGAATTCGAGGGTGCACCGTCAGTCTTCCTCTTCCCCCCAAAA
CCCAAGGACACCCTCATGATCTCCCGGACTCCTGAGGTCACATGCGTGGT
GGTGGACGTAAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGG
ACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTA
CAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACT
GGCTGAATGGCAAGGAGTACAAGTGCAAAGGCCTCCCA
ACCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGCCCCGAGAAC
CACAGGTGTACACCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAG
GTCAGCCTGACCTGCCTCGTCAAAGGCTTCTATCCAAGCGACATCGCCGT
GGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCT
CCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTG
GACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCA
TGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCGG
GTAAATGAGTGCGACGGCCGCGACTCTAGAGGAT (SEQ ID NO:1)

## Example 10: Production of an Antibody from a Polypeptide

The antibodies of the present invention can be prepared by a variety of methods. (See, Current Protocols, Chapter 2.) For example, cells expressing a polypeptide of the present invention is administered to an animal to induce the production of sera containing polyclonal antibodies. In a preferred method, a preparation of the secreted protein is prepared and purified to render it substantially free of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity.

In the most preferred method, the antibodies of the present invention are monoclonal antibodies (or protein binding fragments thereof). Such monoclonal antibodies can be prepared using hybridoma technology. (Köhler et al., Nature 256:495 (1975); Köhler et al., Eur. J. Immunol. 6:511 (1976); Köhler et al., Eur. J. Immunol. 6:292 (1976); Hammerling et al., in: Monoclonal Antibodies and T-Cell Hybridomas, Elsevier, N.Y., pp. 563-681 (1981).) In general, such procedures involve immunizing an animal (preferably a mouse) with polypeptide or, more preferably, with a secreted polypeptide-expressing cell. Such cells may be cultured in

10

15

20

25

30

any suitable tissue culture medium; however, it is preferable to culture cells in Earle's modified Eagle's medium supplemented with 10% fetal bovine serum (inactivated at about 56°C), and supplemented with about 10 g/l of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100 µg/ml of streptomycin.

The splenocytes of such mice are extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; however, it is preferable to employ the parent myeloma cell line (SP2O), available from the ATCC. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as described by Wands et al. (Gastroenterology 80:225-232 (1981).) The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the polypeptide.

Alternatively, additional antibodies capable of binding to the polypeptide can be produced in a two-step procedure using anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, protein specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the protein-specific antibody can be blocked by the polypeptide. Such antibodies comprise anti-idiotypic antibodies to the protein-specific antibody and can be used to immunize an animal to induce formation of further protein-specific antibodies.

It will be appreciated that Fab and F(ab')2 and other fragments of the antibodies of the present invention may be used according to the methods disclosed herein. Such fragments are typically produced by proteolytic cleavage, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments). Alternatively, secreted protein-binding fragments can be produced through the application of recombinant DNA technology or through synthetic chemistry.

For in vivo use of antibodies in humans, it may be preferable to use "humanized" chimeric monoclonal antibodies. Such antibodies can be produced

using genetic constructs derived from hybridoma cells producing the monoclonal antibodies described above. Methods for producing chimeric antibodies are known in the art. (See, for review, Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Cabilly et al., U.S. Patent No. 4,816,567; Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 8601533; Robinson et al., WO 8702671; Boulianne et al., Nature 312:643 (1984); Neuberger et al., Nature 314:268 (1985).)

# **Example 11: Production Of Secreted Protein For High-Throughput Screening**

#### 10 **Assays**

5

15

25

30

The following protocol produces a supernatant containing a polypeptide to be tested. This supernatant can then be used in the Screening Assays described in Examples 13-20.

First, dilute Poly-D-Lysine (644 587 Boehringer-Mannheim) stock solution (1mg/ml in PBS) 1:20 in PBS (w/o calcium or magnesium 17-516F Biowhittaker) for a working solution of 50ug/ml. Add 200 ul of this solution to each well (24 well plates) and incubate at RT for 20 minutes. Be sure to distribute the solution over each well (note: a 12-channel pipetter may be used with tips on every other channel). Aspirate off the Poly-D-Lysine solution and rinse with 1ml PBS (Phosphate Buffered Saline). The PBS should remain in the well until just prior to plating the cells and 20 plates may be poly-lysine coated in advance for up to two weeks.

Plate 293T cells (do not carry cells past P+20) at 2 x 10<sup>5</sup> cells/well in .5ml DMEM(Dulbecco's Modified Eagle Medium)(with 4.5 G/L glucose and L-glutamine (12-604F Biowhittaker))/10% heat inactivated FBS(14-503F Biowhittaker)/1x Penstrep(17-602E Biowhittaker). Let the cells grow overnight.

The next day, mix together in a sterile solution basin: 300 ul Lipofectamine (18324-012 Gibco/BRL) and 5ml Optimem I (31985070 Gibco/BRL)/96-well plate. With a small volume multi-channel pipetter, aliquot approximately 2ug of an expression vector containing a polynucleotide insert, produced by the methods described in Examples 8 or 9, into an appropriately labeled 96-well round bottom plate. With a multi-channel pipetter, add 50ul of the Lipofectamine/Optimem I mixture to each well. Pipette up and down gently to mix. Incubate at RT 15-45

minutes. After about 20 minutes, use a multi-channel pipetter to add 150ul Optimem I to each well. As a control, one plate of vector DNA lacking an insert should be transfected with each set of transfections.

Preferably, the transfection should be performed by tag-teaming the following tasks. By tag-teaming, hands on time is cut in half, and the cells do not spend too much time on PBS. First, person A aspirates off the media from four 24-well plates of cells, and then person B rinses each well with .5-1ml PBS. Person A then aspirates off PBS rinse, and person B, using a12-channel pipetter with tips on every other channel, adds the 200ul of DNA/Lipofectamine/Optimem I complex to the odd wells first, then to the even wells, to each row on the 24-well plates. Incubate at 37°C for 6 hours.

10

While cells are incubating, prepare appropriate media, either 1%BSA in DMEM with 1x penstrep, or CHO-5 media (116.6 mg/L of CaCl2 (anhyd); 0.00130  $mg/L CuSO_4-5H_2O$ ; 0.050 mg/L of  $Fe(NO_3)_3-9H_2O$ ; 0.417 mg/L of  $FeSO_4-7H_2O$ ; 15 311.80 mg/L of Kcl; 28.64 mg/L of MgCl<sub>2</sub>; 48.84 mg/L of MgSO<sub>4</sub>; 6995.50 mg/L of NaCl; 2400.0 mg/L of NaHCO<sub>3</sub>; 62.50 mg/L of NaH<sub>2</sub>PO<sub>4</sub>-H<sub>2</sub>O; 71.02 mg/L of Na, HPO4; .4320 mg/L of ZnSO<sub>4</sub>-7H<sub>2</sub>O; .002 mg/L of Arachidonic Acid; 1.022 mg/L of Cholesterol; .070 mg/L of DL-alpha-Tocopherol-Acetate; 0.0520 mg/L of Linoleic Acid; 0.010 mg/L of Linolenic Acid; 0.010 mg/L of Myristic Acid; 0.010 mg/L of 20 Oleic Acid; 0.010 mg/L of Palmitric Acid; 0.010 mg/L of Palmitric Acid; 100 mg/L of Pluronic F-68; 0.010 mg/L of Stearic Acid; 2.20 mg/L of Tween 80; 4551 mg/L of D-Glucose; 130.85 mg/ml of L- Alanine; 147.50 mg/ml of L-Arginine-HCL; 7.50 mg/ml of L-Asparagine-H<sub>2</sub>0; 6.65 mg/ml of L-Aspartic Acid; 29.56 mg/ml of L-Cystine-2HCL-H<sub>2</sub>0; 31.29 mg/ml of L-Cystine-2HCL; 7.35 mg/ml of L-Glutamic Acid: 365.0 25 mg/ml of L-Glutamine; 18.75 mg/ml of Glycine; 52.48 mg/ml of L-Histidine-HCL-H<sub>2</sub>0; 106.97 mg/ml of L-Isoleucine; 111.45 mg/ml of L-Leucine; 163.75 mg/ml of L-Lysine HCL; 32.34 mg/ml of L-Methionine; 68.48 mg/ml of L-Phenylalainine; 40.0 mg/ml of L-Proline; 26.25 mg/ml of L-Serine; 101.05 mg/ml of L-Threonine; 19.22 mg/ml of L-Tryptophan; 91.79 mg/ml of L-Tryrosine-2Na-2H<sub>2</sub>0; 99.65 mg/ml of L-30 Valine; 0.0035 mg/L of Biotin; 3.24 mg/L of D-Ca Pantothenate; 11.78 mg/L of Choline Chloride; 4.65 mg/L of Folic Acid; 15.60 mg/L of i-Inositol; 3.02 mg/L of Niacinamide; 3.00 mg/L of Pyridoxal HCL; 0.031 mg/L of Pyridoxine HCL; 0.319

10

15

30

mg/L of Riboflavin; 3.17 mg/L of Thiamine HCL; 0.365 mg/L of Thymidine; and 0.680 mg/L of Vitamin B<sub>12</sub>; 25 mM of HEPES Buffer; 2.39 mg/L of Na Hypoxanthine; 0.105 mg/L of Lipoic Acid; 0.081 mg/L of Sodium Putrescine-2HCL; 55.0 mg/L of Sodium Pyruvate; 0.0067 mg/L of Sodium Selenite; 20uM of Ethanolamine; 0.122 mg/L of Ferric Citrate; 41.70 mg/L of Methyl-B-Cyclodextrin complexed with Linoleic Acid; 33.33 mg/L of Methyl-B-Cyclodextrin complexed with Oleic Acid; and 10 mg/L of Methyl-B-Cyclodextrin complexed with 2mm glutamine and 1x penstrep. (BSA (81-068-3 Bayer) 100gm dissolved in 1L DMEM for a 10% BSA stock solution). Filter the media and collect 50 ul for endotoxin assay in 15ml polystyrene conical.

The transfection reaction is terminated, preferably by tag-teaming, at the end of the incubation period. Person A aspirates off the transfection media, while person B adds 1.5ml appropriate media to each well. Incubate at 37°C for 45 or 72 hours depending on the media used: 1%BSA for 45 hours or CHO-5 for 72 hours.

On day four, using a 300ul multichannel pipetter, aliquot 600ul in one 1ml deep well plate and the remaining supernatant into a 2ml deep well. The supernatants from each well can then be used in the assays described in Examples 13-20.

It is specifically understood that when activity is obtained in any of the assays described below using a supernatant, the activity originates from either the polypeptide directly (e.g., as a secreted protein) or by the polypeptide inducing expression of other proteins, which are then secreted into the supernatant. Thus, the invention further provides a method of identifying the protein in the supernatant characterized by an activity in a particular assay.

## 25 Example 12: Construction of GAS Reporter Construct

One signal transduction pathway involved in the differentiation and proliferation of cells is called the Jaks-STATs pathway. Activated proteins in the Jaks-STATs pathway bind to gamma activation site "GAS" elements or interferonsensitive responsive element ("ISRE"), located in the promoter of many genes. The binding of a protein to these elements alter the expression of the associated gene.

10

15

20

25

30

GAS and ISRE elements are recognized by a class of transcription factors called Signal Transducers and Activators of Transcription, or "STATs." There are six members of the STATs family. Stat1 and Stat3 are present in many cell types, as is Stat2 (as response to IFN-alpha is widespread). Stat4 is more restricted and is not in many cell types though it has been found in T helper class I, cells after treatment with IL-12. Stat5 was originally called mammary growth factor, but has been found at higher concentrations in other cells including myeloid cells. It can be activated in tissue culture cells by many cytokines.

245

PCT/US99/09847

The STATs are activated to translocate from the cytoplasm to the nucleus upon tyrosine phosphorylation by a set of kinases known as the Janus Kinase ("Jaks") family. Jaks represent a distinct family of soluble tyrosine kinases and include Tyk2, Jak1, Jak2, and Jak3. These kinases display significant sequence similarity and are generally catalytically inactive in resting cells.

The Jaks are activated by a wide range of receptors summarized in the Table below. (Adapted from review by Schidler and Darnell, Ann. Rev. Biochem. 64:621-51 (1995).) A cytokine receptor family, capable of activating Jaks, is divided into two groups: (a) Class 1 includes receptors for IL-2, IL-3, IL-4, IL-6, IL-7, IL-9, IL-11, IL-12, IL-15, Epo, PRL, GH, G-CSF, GM-CSF, LIF, CNTF, and thrombopoietin; and (b) Class 2 includes IFN-a, IFN-g, and IL-10. The Class 1 receptors share a conserved cysteine motif (a set of four conserved cysteines and one tryptophan) and a WSXWS motif (a membrane proximal region encoding Trp-Ser-Xxx-Trp-Ser (SEQ ID NO:2)).

Thus, on binding of a ligand to a receptor, Jaks are activated, which in turn activate STATs, which then translocate and bind to GAS elements. This entire process is encompassed in the Jaks-STATs signal transduction pathway.

Therefore, activation of the Jaks-STATs pathway, reflected by the binding of the GAS or the ISRE element, can be used to indicate proteins involved in the proliferation and differentiation of cells. For example, growth factors and cytokines are known to activate the Jaks-STATs pathway. (See Table below.) Thus, by using GAS elements linked to reporter molecules, activators of the Jaks-STATs pathway can be identified.

PCT/US99/09847

|    | <u>Ligand</u>             | tyk2 | JAKs<br>Jak1 | Jak2   | Jak3 | STATS    | GAS(elements) or ISRE        |  |  |
|----|---------------------------|------|--------------|--------|------|----------|------------------------------|--|--|
| -  | IFN family                |      | _            |        |      | 1 2 2    | ICDE                         |  |  |
| 5  | IFN-a/B                   | +    | +            | -      | -    | 1,2,3    | ISRE                         |  |  |
|    | IFN-g                     |      | +<br>?       | +<br>? | -    | 1<br>1,3 | GAS (IRF1>Lys6>IFP)          |  |  |
|    | Il-10                     | +    | ,            | ſ      | -    | 1,3      |                              |  |  |
|    | gp130 family              |      |              |        |      |          |                              |  |  |
| 10 | IL-6 (Pleiotrophic)       | +    | +            | +      | ?    | 1,3      | GAS (IRF1>Lys6>IFP)          |  |  |
| •• | Il-11(Pleiotrophic)       | ?    | +            | ?      | ?    | 1,3      | •                            |  |  |
|    | OnM(Pleiotrophic)         | ?    | +            | +      | ?    | 1,3      |                              |  |  |
|    | LIF(Pleiotrophic)         | ?    | +            | +      | ?    | 1,3      |                              |  |  |
|    | CNTF(Pleiotrophic)        | -/+  | +            | +      | ?    | 1,3      |                              |  |  |
| 15 | G-CSF(Pleiotrophic)       |      | +            | ?      | ?    | 1,3      |                              |  |  |
| _  | IL-12(Pleiotrophic)       | +    | -            | +      | +    | 1,3      |                              |  |  |
|    |                           |      |              |        |      |          |                              |  |  |
|    | g-C family                |      |              |        |      |          |                              |  |  |
|    | IL-2 (lymphocytes)        | -    | +            | -      | +    | 1,3,5    | GAS                          |  |  |
| 20 | IL-4 (lymph/myeloid)      | ) -  | +            | -      | +    | 6        | GAS (IRF1 = IFP >> Ly6)(IgH) |  |  |
|    | IL-7 (lymphocytes)        | -    | +            | -      | +    | 5        | GAS                          |  |  |
|    | IL-9 (lymphocytes)        | -    | +            | -      | +    | 5        | GAS                          |  |  |
|    | IL-13 (lymphocyte)        | -    | +            | ?      | ?    | 6        | GAS                          |  |  |
|    | IL-15                     | ?    | +            | ?      | +    | 5        | GAS                          |  |  |
| 25 |                           |      |              |        |      |          |                              |  |  |
|    | gp140 family              |      |              |        |      |          |                              |  |  |
|    | IL-3 (myeloid)            | -    | -            | +      | -    | 5        | GAS (IRF1>IFP>>Ly6)          |  |  |
|    | IL-5 (myeloid)            | -    | -            | +      | -    | 5        | GAS                          |  |  |
|    | GM-CSF (myeloid)          | -    | -            | +      | -    | 5        | GAS                          |  |  |
| 30 |                           |      |              |        |      |          | •                            |  |  |
|    | Growth hormone fam        | -    |              |        |      |          |                              |  |  |
|    | GH                        | ?    | -            | +      | -    | 5        |                              |  |  |
|    | PRL                       | ?    | +/-          | +      | -    | 1,3,5    |                              |  |  |
|    | EPO                       | ?    | -            | +      | -    | 5        | GAS(B-CAS>IRF1=IFP>>Ly6)     |  |  |
| 35 |                           |      |              |        |      |          |                              |  |  |
|    | Receptor Tyrosine Kinases |      |              |        |      |          |                              |  |  |
|    | EGF                       | ?    | +            | +      | -    | 1,3      | GAS (IRF1)                   |  |  |
|    | PDGF                      | ?    | +            | +      | -    | 1,3      | GAG ( IDVI)                  |  |  |
|    | CSF-1                     | ?    | +            | +      | -    | 1,3      | GAS (not IRF1)               |  |  |
| 40 |                           |      |              |        |      |          |                              |  |  |

30

To construct a synthetic GAS containing promoter element, which is used in the Biological Assays described in Examples 13-14, a PCR based strategy is employed to generate a GAS-SV40 promoter sequence. The 5' primer contains four tandem copies of the GAS binding site found in the IRF1 promoter and previously demonstrated to bind STATs upon induction with a range of cytokines (Rothman et al., Immunity 1:457-468 (1994).), although other GAS or ISRE elements can be used instead. The 5' primer also contains 18bp of sequence complementary to the SV40 early promoter sequence and is flanked with an XhoI site. The sequence of the 5' primer is:

10 5':GCGCCTCGAGATTTCCCCGAAATCTAGATTTCCCCGAAATGATTTCCCC GAAATGATTTCCCCGAAATATCTGCCATCTCAATTAG:3' (SEQ ID NO:3)

The downstream primer is complementary to the SV40 promoter and is flanked with a Hind III site: 5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:4)

PCR amplification is performed using the SV40 promoter template present in the B-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI/Hind III and subcloned into BLSK2-. (Stratagene.) Sequencing with forward and reverse primers confirms that the insert contains the following sequence:

5':CTCGAGATTTCCCCGAAATCTAGATTTCCCCGAAATGATTTCCCCGAAA TGATTTCCCCGAAATATCTGCCATCTCAATTAGTCAGCAACCATAGTCCCG CCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCT CCGCCCCATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCC TCGGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTTGGAGGCCT AGGCTTTTGCAAAAAGCTT:3' (SEQ ID NO:5)

With this GAS promoter element linked to the SV40 promoter, a GAS:SEAP2 reporter construct is next engineered. Here, the reporter molecule is a secreted alkaline phosphatase, or "SEAP." Clearly, however, any reporter molecule can be instead of SEAP, in this or in any of the other Examples. Well known reporter molecules that can be used instead of SEAP include chloramphenicol acetyltransferase (CAT), luciferase, alkaline phosphatase, B-galactosidase, green fluorescent protein (GFP), or any protein detectable by an antibody.

10

15

20

25

30

WO 99/58660 PCT/US99/09847

248

The above sequence confirmed synthetic GAS-SV40 promoter element is subcloned into the pSEAP-Promoter vector obtained from Clontech using HindIII and XhoI, effectively replacing the SV40 promoter with the amplified GAS:SV40 promoter element, to create the GAS-SEAP vector. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

Thus, in order to generate mammalian stable cell lines expressing the GAS-SEAP reporter, the GAS-SEAP cassette is removed from the GAS-SEAP vector using SalI and NotI, and inserted into a backbone vector containing the neomycin resistance gene, such as pGFP-1 (Clontech), using these restriction sites in the multiple cloning site, to create the GAS-SEAP/Neo vector. Once this vector is transfected into mammalian cells, this vector can then be used as a reporter molecule for GAS binding as described in Examples 13-14.

Other constructs can be made using the above description and replacing GAS with a different promoter sequence. For example, construction of reporter molecules containing NFK-B and EGR promoter sequences are described in Examples 15 and 16. However, many other promoters can be substituted using the protocols described in these Examples. For instance, SRE, IL-2, NFAT, or Osteocalcin promoters can be substituted, alone or in combination (e.g., GAS/NF-KB/EGR, GAS/NF-KB, Il-2/NFAT, or NF-KB/GAS). Similarly, other cell lines can be used to test reporter construct activity, such as HELA (epithelial), HUVEC (endothelial), Reh (B-cell), Saos-2 (osteoblast), HUVAC (aortic), or Cardiomyocyte.

## Example 13: High-Throughput Screening Assay for T-cell Activity.

The following protocol is used to assess T-cell activity by identifying factors, such as growth factors and cytokines, that may proliferate or differentiate T-cells. T-cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The T-cell used in this assay is Jurkat T-cells (ATCC Accession No. TIB-152), although Molt-3 cells (ATCC Accession No. CRL-1552) and Molt-4 cells (ATCC Accession No. CRL-1582) cells can also be used.

15

20

25

30

Jurkat T-cells are lymphoblastic CD4+ Th1 helper cells. In order to generate stable cell lines, approximately 2 million Jurkat cells are transfected with the GAS-SEAP/neo vector using DMRIE-C (Life Technologies)(transfection procedure described below). The transfected cells are seeded to a density of approximately 20,000 cells per well and transfectants resistant to 1 mg/ml genticin selected. Resistant colonies are expanded and then tested for their response to increasing concentrations of interferon gamma. The dose response of a selected clone is demonstrated.

Specifically, the following protocol will yield sufficient cells for 75 wells containing 200 ul of cells. Thus, it is either scaled up, or performed in multiple to generate sufficient cells for multiple 96 well plates. Jurkat cells are maintained in RPMI + 10% serum with 1%Pen-Strep. Combine 2.5 mls of OPTI-MEM (Life Technologies) with 10 ug of plasmid DNA in a T25 flask. Add 2.5 ml OPTI-MEM containing 50 ul of DMRIE-C and incubate at room temperature for 15-45 mins.

During the incubation period, count cell concentration, spin down the required number of cells ( $10^7$  per transfection), and resuspend in OPTI-MEM to a final concentration of  $10^7$  cells/ml. Then add 1ml of 1 x  $10^7$  cells in OPTI-MEM to T25 flask and incubate at 37°C for 6 hrs. After the incubation, add 10 ml of RPMI + 15% serum.

The Jurkat: GAS-SEAP stable reporter lines are maintained in RPMI + 10% serum, 1 mg/ml Genticin, and 1% Pen-Strep. These cells are treated with supernatants containing a polypeptide as produced by the protocol described in Example 11.

On the day of treatment with the supernatant, the cells should be washed and resuspended in fresh RPMI + 10% serum to a density of 500,000 cells per ml. The exact number of cells required will depend on the number of supernatants being screened. For one 96 well plate, approximately 10 million cells (for 10 plates, 100 million cells) are required.

Transfer the cells to a triangular reservoir boat, in order to dispense the cells into a 96 well dish, using a 12 channel pipette. Using a 12 channel pipette, transfer 200 ul of cells into each well (therefore adding 100, 000 cells per well).

10

15

20

25

30

After all the plates have been seeded, 50 ul of the supernatants are transferred directly from the 96 well plate containing the supernatants into each well using a 12 channel pipette. In addition, a dose of exogenous interferon gamma (0.1, 1.0, 10 ng) is added to wells H9, H10, and H11 to serve as additional positive controls for the assay.

The 96 well dishes containing Jurkat cells treated with supernatants are placed in an incubator for 48 hrs (note: this time is variable between 48-72 hrs). 35 ul samples from each well are then transferred to an opaque 96 well plate using a 12 channel pipette. The opaque plates should be covered (using sellophene covers) and stored at -20°C until SEAP assays are performed according to Example 17. The plates containing the remaining treated cells are placed at 4°C and serve as a source of material for repeating the assay on a specific well if desired.

As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate Jurkat T cells. Over 30 fold induction is typically observed in the positive control wells.

The above protocol may be used in the generation of both transient, as well as, stable transfected cells, which would be apparent to those of skill in the art.

## Example 14: High-Throughput Screening Assay Identifying Myeloid Activity

The following protocol is used to assess myeloid activity by identifying factors, such as growth factors and cytokines, that may proliferate or differentiate myeloid cells. Myeloid cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The myeloid cell used in this assay is U937, a pre-monocyte cell line, although TF-1, HL60, or KG1 can be used.

To transiently transfect U937 cells with the GAS/SEAP/Neo construct produced in Example 12, a DEAE-Dextran method (Kharbanda et. al., 1994, Cell Growth & Differentiation, 5:259-265) is used. First, harvest 2x10e<sup>7</sup> U937 cells and wash with PBS. The U937 cells are usually grown in RPMI 1640 medium containing

10% heat-inactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 mg/ml streptomycin.

Next, suspend the cells in 1 ml of 20 mM Tris-HCl (pH 7.4) buffer containing 0.5 mg/ml DEAE-Dextran, 8 ug GAS-SEAP2 plasmid DNA, 140 mM NaCl, 5 mM KCl, 375 uM Na<sub>2</sub>HPO<sub>4</sub>.7H<sub>2</sub>O, 1 mM MgCl<sub>2</sub>, and 675 uM CaCl<sub>2</sub>. Incubate at 37°C for 45 min.

Wash the cells with RPMI 1640 medium containing 10% FBS and then resuspend in 10 ml complete medium and incubate at 37°C for 36 hr.

5

10

15

20

25

30

The GAS-SEAP/U937 stable cells are obtained by growing the cells in 400 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 400 ug/ml G418 for couple of passages.

These cells are tested by harvesting  $1 \times 10^8$  cells (this is enough for ten 96-well plates assay) and wash with PBS. Suspend the cells in 200 ml above described growth medium, with a final density of  $5 \times 10^5$  cells/ml. Plate 200 ul cells per well in the 96-well plate (or  $1 \times 10^5$  cells/well).

Add 50 ul of the supernatant prepared by the protocol described in Example 11. Incubate at 37°C for 48 to 72 hr. As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate U937 cells. Over 30 fold induction is typically observed in the positive control wells. SEAP assay the supernatant according to the protocol described in Example 17.

#### Example 15: High-Throughput Screening Assay Identifying Neuronal Activity.

When cells undergo differentiation and proliferation, a group of genes are activated through many different signal transduction pathways. One of these genes, EGR1 (early growth response gene 1), is induced in various tissues and cell types upon activation. The promoter of EGR1 is responsible for such induction. Using the EGR1 promoter linked to reporter molecules, activation of cells can be assessed.

Particularly, the following protocol is used to assess neuronal activity in PC12 cell lines. PC12 cells (rat phenochromocytoma cells) are known to proliferate and/or differentiate by activation with a number of mitogens, such as TPA (tetradecanoyl phorbol acetate), NGF (nerve growth factor), and EGF (epidermal growth factor).

10

15

20

25

30

The EGR1 gene expression is activated during this treatment. Thus, by stably transfecting PC12 cells with a construct containing an EGR promoter linked to SEAP reporter, activation of PC12 cells can be assessed.

The EGR/SEAP reporter construct can be assembled by the following protocol. The EGR-1 promoter sequence (-633 to +1)(Sakamoto K et al., Oncogene 6:867-871 (1991)) can be PCR amplified from human genomic DNA using the following primers:

- 5' GCGCTCGAGGGATGACAGCGATAGAACCCCGG -3' (SEQ ID NO:6)
- 5' GCGAAGCTTCGCGACTCCCCGGATCCGCCTC-3'. (SEQ ID NO:7)

Using the GAS:SEAP/Neo vector produced in Example 12, EGR1 amplified product can then be inserted into this vector. Linearize the GAS:SEAP/Neo vector using restriction enzymes XhoI/HindIII, removing the GAS/SV40 stuffer. Restrict the EGR1 amplified product with these same enzymes. Ligate the vector and the EGR1 promoter.

To prepare 96 well-plates for cell culture, two mls of a coating solution (1:30 dilution of collagen type I (Upstate Biotech Inc. Cat#08-115) in 30% ethanol (filter sterilized)) is added per one 10 cm plate or 50 ml per well of the 96-well plate, and allowed to air dry for 2 hr.

PC12 cells are routinely grown in RPMI-1640 medium (Bio Whittaker) containing 10% horse serum (JRH BIOSCIENCES, Cat. # 12449-78P), 5% heat-inactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 ug/ml streptomycin on a precoated 10 cm tissue culture dish. One to four split is done every three to four days. Cells are removed from the plates by scraping and resuspended with pipetting up and down for more than 15 times.

Transfect the EGR/SEAP/Neo construct into PC12 using the Lipofectamine protocol described in Example 11. EGR-SEAP/PC12 stable cells are obtained by growing the cells in 300 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 300 ug/ml G418 for couple of passages.

To assay for neuronal activity, a 10 cm plate with cells around 70 to 80% confluent is screened by removing the old medium. Wash the cells once with PBS

15

20

25

30

(Phosphate buffered saline). Then starve the cells in low serum medium (RPMI-1640 containing 1% horse serum and 0.5% FBS with antibiotics) overnight.

The next morning, remove the medium and wash the cells with PBS. Scrape off the cells from the plate, suspend the cells well in 2 ml low serum medium. Count the cell number and add more low serum medium to reach final cell density as  $5 \times 10^5$  cells/ml.

Add 200 ul of the cell suspension to each well of 96-well plate (equivalent to  $1 \times 10^5$  cells/well). Add 50 ul supernatant produced by Example 11, 37°C for 48 to 72 hr. As a positive control, a growth factor known to activate PC12 cells through EGR can be used, such as 50 ng/ul of Neuronal Growth Factor (NGF). Over fifty-fold induction of SEAP is typically seen in the positive control wells. SEAP assay the supernatant according to Example 17.

#### **Example 16: High-Throughput Screening Assay for T-cell Activity**

NF-κB (Nuclear Factor κB) is a transcription factor activated by a wide variety of agents including the inflammatory cytokines IL-1 and TNF, CD30 and CD40, lymphotoxin-alpha and lymphotoxin-beta, by exposure to LPS or thrombin, and by expression of certain viral gene products. As a transcription factor, NF-κB regulates the expression of genes involved in immune cell activation, control of apoptosis (NF- κB appears to shield cells from apoptosis), B and T-cell development, anti-viral and antimicrobial responses, and multiple stress responses.

In non-stimulated conditions, NF-  $\kappa B$  is retained in the cytoplasm with I- $\kappa B$  (Inhibitor  $\kappa B$ ). However, upon stimulation, I-  $\kappa B$  is phosphorylated and degraded, causing NF-  $\kappa B$  to shuttle to the nucleus, thereby activating transcription of target genes. Target genes activated by NF-  $\kappa B$  include IL-2, IL-6, GM-CSF, ICAM-1 and class 1 MHC.

Due to its central role and ability to respond to a range of stimuli, reporter constructs utilizing the NF-kB promoter element are used to screen the supernatants produced in Example 11. Activators or inhibitors of NF-kB would be useful in treating diseases. For example, inhibitors of NF-kB could be used to treat those

10

15

20

25

30

sequence:

diseases related to the acute or chronic activation of NF-kB, such as rheumatoid arthritis.

The downstream primer is complementary to the 3' end of the SV40 promoter and is flanked with a Hind III site:

#### 5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:4)

PCR amplification is performed using the SV40 promoter template present in the pB-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI and Hind III and subcloned into BLSK2-. (Stratagene)

Sequencing with the T7 and T3 primers confirms the insert contains the following

5':CTCGAGGGGACTTTCCCGGGGACTTTCCGGGACTTTCC
ATCTGCCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCC
ATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGA
CTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTA
TTCCAGAAGTAGTGAGGAGGCCTTTTTTGGAGGCCTAGGCTTTTTGCAAAAA
GCTT:3' (SEQ ID NO:10)

Next, replace the SV40 minimal promoter element present in the pSEAP2-promoter plasmid (Clontech) with this NF-kB/SV40 fragment using XhoI and HindIII. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

In order to generate stable mammalian cell lines, the NF-kB/SV40/SEAP cassette is removed from the above NF-kB/SEAP vector using restriction enzymes SalI and NotI, and inserted into a vector containing neomycin resistance. Particularly,

15

20

25

the NF-kB/SV40/SEAP cassette was inserted into pGFP-1 (Clontech), replacing the GFP gene, after restricting pGFP-1 with SalI and NotI.

Once NF-κB/SV40/SEAP/Neo vector is created, stable Jurkat T-cells are created and maintained according to the protocol described in Example 13. Similarly, the method for assaying supernatants with these stable Jurkat T-cells is also described in Example 13. As a positive control, exogenous TNF alpha (0.1,1, 10 ng) is added to wells H9, H10, and H11, with a 5-10 fold activation typically observed.

#### **Example 17: Assay for SEAP Activity**

As a reporter molecule for the assays described in Examples 13-16, SEAP activity is assayed using the Tropix Phospho-light Kit (Cat. BP-400) according to the following general procedure. The Tropix Phospho-light Kit supplies the Dilution, Assay, and Reaction Buffers used below.

Prime a dispenser with the 2.5x Dilution Buffer and dispense  $15 \mu l$  of 2.5x dilution buffer into Optiplates containing  $35 \mu l$  of a supernatant. Seal the plates with a plastic sealer and incubate at  $65^{\circ}$ C for 30 min. Separate the Optiplates to avoid uneven heating.

Cool the samples to room temperature for 15 minutes. Empty the dispenser and prime with the Assay Buffer. Add 50 µl Assay Buffer and incubate at room temperature 5 min. Empty the dispenser and prime with the Reaction Buffer (see the table below). Add 50 µl Reaction Buffer and incubate at room temperature for 20 minutes. Since the intensity of the chemiluminescent signal is time dependent, and it takes about 10 minutes to read 5 plates on luminometer, one should treat 5 plates at each time and start the second set 10 minutes later.

Read the relative light unit in the luminometer. Set H12 as blank, and print the results. An increase in chemiluminescence indicates reporter activity.

#### **Reaction Buffer Formulation:**

| Tremetion D. | Checker Parker 2 of Hands-tolly |           |  |  |  |
|--------------|---------------------------------|-----------|--|--|--|
| # of plates  | Rxn buffer diluent (ml)         | CSPD (ml) |  |  |  |
| 10           | 60                              | 3         |  |  |  |
| 11           | 65                              | 3.25      |  |  |  |
| 12           | 70                              | 3.5       |  |  |  |
| 13           | 75                              | 3.75      |  |  |  |
| 14           | 80                              | 4         |  |  |  |
| 15           | 85                              | 4.25      |  |  |  |
|              |                                 | 4.25      |  |  |  |

| 16       90       4.5         17       95       4.75         18       100       5         19       105       5.25         20       110       5.5         21       115       5.75         22       120       6         23       125       6.25         24       130       6.5         25       135       6.75         26       140       7         27       145       7.25         28       150       7.5         29       155       7.75         30       160       8         31       165       8.25         32       170       8.5         33       175       8.75         34       180       9         35       185       9.25         36       190       9.5         37       195       9.75         38       200       10         39       205       10.25         40       210       10.5         41       215       10.75         42       220       11 <tr< th=""><th></th><th></th><th>•</th></tr<> |    |     | •    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|------|
| 17       95       4.75         18       100       5         19       105       5.25         20       110       5.5         21       115       5.75         22       120       6         23       125       6.25         24       130       6.5         25       135       6.75         26       140       7         27       145       7.25         28       150       7.5         29       155       7.75         30       160       8         31       165       8.25         32       170       8.5         33       175       8.75         34       180       9         35       185       9.25         36       190       9.5         37       195       9.75         38       200       10         39       205       10.25         40       210       10.5         41       215       10.75         42       220       11         43       225       11.25                                            | 16 | 90  | 4.5  |
| 18       100       5         19       105       5.25         20       110       5.5         21       115       5.75         22       120       6         23       125       6.25         24       130       6.5         25       135       6.75         26       140       7         27       145       7.25         28       150       7.5         29       155       7.75         30       160       8         31       165       8.25         32       170       8.5         33       175       8.75         34       180       9         35       185       9.25         36       190       9.5         37       195       9.75         38       200       10         39       205       10.25         40       210       10.5         41       215       10.75         42       220       11         43       225       11.25         44       230       11.5                                           |    |     | 4.75 |
| 19       105       5.25         20       110       5.5         21       115       5.75         22       120       6         23       125       6.25         24       130       6.5         25       135       6.75         26       140       7         27       145       7.25         28       150       7.5         29       155       7.75         30       160       8         31       165       8.25         32       170       8.5         33       175       8.75         34       180       9         35       185       9.25         36       190       9.5         37       195       9.75         38       200       10         39       205       10.25         40       210       10.5         41       215       10.75         42       220       11         43       225       11.25         44       230       11.5         45       235       11.75                                       |    |     | 5    |
| 20       110       5.5         21       115       5.75         22       120       6         23       125       6.25         24       130       6.5         25       135       6.75         26       140       7         27       145       7.25         28       150       7.5         29       155       7.75         30       160       8         31       165       8.25         32       170       8.5         33       175       8.75         34       180       9         35       185       9.25         36       190       9.5         37       195       9.75         38       200       10         39       205       10.25         40       210       10.5         41       215       10.75         42       220       11         43       225       11.25         44       230       11.5         45       235       11.75         46       240       12                                         |    |     | 5.25 |
| 22       120       6         23       125       6.25         24       130       6.5         25       135       6.75         26       140       7         27       145       7.25         28       150       7.5         29       155       7.75         30       160       8         31       165       8.25         32       170       8.5         33       175       8.75         34       180       9         35       185       9.25         36       190       9.5         37       195       9.75         38       200       10         39       205       10.25         40       210       10.5         41       215       10.75         42       220       11         43       225       11.25         44       230       11.5         45       235       11.75         46       240       12         47       245       12.25         48       250       12.5                                       |    | 110 | 5.5  |
| 23       125       6.25         24       130       6.5         25       135       6.75         26       140       7         27       145       7.25         28       150       7.5         29       155       7.75         30       160       8         31       165       8.25         32       170       8.5         33       175       8.75         34       180       9         35       185       9.25         36       190       9.5         37       195       9.75         38       200       10         39       205       10.25         40       210       10.5         41       215       10.75         42       220       11         43       225       11.25         44       230       11.5         45       235       11.75         46       240       12         47       245       12.25         48       250       12.5         49       255       12.75     <                             | 21 | 115 | 5.75 |
| 24       130       6.5         25       135       6.75         26       140       7         27       145       7.25         28       150       7.5         29       155       7.75         30       160       8         31       165       8.25         32       170       8.5         33       175       8.75         34       180       9         35       185       9.25         36       190       9.5         37       195       9.75         38       200       10         39       205       10.25         40       210       10.5         41       215       10.75         42       220       11         43       225       11.25         44       230       11.5         45       235       11.75         46       240       12         47       245       12.25         48       250       12.5         49       255       12.75                                                                   | 22 |     |      |
| 25       135       6.75         26       140       7         27       145       7.25         28       150       7.5         29       155       7.75         30       160       8         31       165       8.25         32       170       8.5         33       175       8.75         34       180       9         35       185       9.25         36       190       9.5         37       195       9.75         38       200       10         39       205       10.25         40       210       10.5         41       215       10.75         42       220       11         43       225       11.25         44       230       11.5         45       235       11.75         46       240       12         47       245       12.25         48       250       12.5         49       255       12.75                                                                                                  | 23 |     |      |
| 26       140       7         27       145       7.25         28       150       7.5         29       155       7.75         30       160       8         31       165       8.25         32       170       8.5         33       175       8.75         34       180       9         35       185       9.25         36       190       9.5         37       195       9.75         38       200       10         39       205       10.25         40       210       10.5         41       215       10.75         42       220       11         43       225       11.25         44       230       11.5         45       235       11.75         46       240       12         47       245       12.25         48       250       12.5         49       255       12.75                                                                                                                                  |    |     |      |
| 27       145       7.25         28       150       7.5         29       155       7.75         30       160       8         31       165       8.25         32       170       8.5         33       175       8.75         34       180       9         35       185       9.25         36       190       9.5         37       195       9.75         38       200       10         39       205       10.25         40       210       10.5         41       215       10.75         42       220       11         43       225       11.25         44       230       11.5         45       235       11.75         46       240       12         47       245       12.25         48       250       12.5         49       255       12.75                                                                                                                                                               | 25 |     |      |
| 28       150       7.5         29       155       7.75         30       160       8         31       165       8.25         32       170       8.5         33       175       8.75         34       180       9         35       185       9.25         36       190       9.5         37       195       9.75         38       200       10         39       205       10.25         40       210       10.5         41       215       10.75         42       220       11         43       225       11.25         44       230       11.5         45       235       11.75         46       240       12         47       245       12.25         48       250       12.5         49       255       12.75                                                                                                                                                                                               |    |     |      |
| 29       155       7.75         30       160       8         31       165       8.25         32       170       8.5         33       175       8.75         34       180       9         35       185       9.25         36       190       9.5         37       195       9.75         38       200       10         39       205       10.25         40       210       10.5         41       215       10.75         42       220       11         43       225       11.25         44       230       11.5         45       235       11.75         46       240       12         47       245       12.25         48       250       12.5         49       255       12.75                                                                                                                                                                                                                              |    |     |      |
| 30       160       8         31       165       8.25         32       170       8.5         33       175       8.75         34       180       9         35       185       9.25         36       190       9.5         37       195       9.75         38       200       10         39       205       10.25         40       210       10.5         41       215       10.75         42       220       11         43       225       11.25         44       230       11.5         45       235       11.75         46       240       12         47       245       12.25         48       250       12.5         49       255       12.75                                                                                                                                                                                                                                                              |    |     |      |
| 31       165       8.25         32       170       8.5         33       175       8.75         34       180       9         35       185       9.25         36       190       9.5         37       195       9.75         38       200       10         39       205       10.25         40       210       10.5         41       215       10.75         42       220       11         43       225       11.25         44       230       11.5         45       235       11.75         46       240       12         47       245       12.25         48       250       12.5         49       255       12.75                                                                                                                                                                                                                                                                                           |    |     |      |
| 32       170       8.5         33       175       8.75         34       180       9         35       185       9.25         36       190       9.5         37       195       9.75         38       200       10         39       205       10.25         40       210       10.5         41       215       10.75         42       220       11         43       225       11.25         44       230       11.5         45       235       11.75         46       240       12         47       245       12.25         48       250       12.5         49       255       12.75                                                                                                                                                                                                                                                                                                                           |    |     |      |
| 33       175       8.75         34       180       9         35       185       9.25         36       190       9.5         37       195       9.75         38       200       10         39       205       10.25         40       210       10.5         41       215       10.75         42       220       11         43       225       11.25         44       230       11.5         45       235       11.75         46       240       12         47       245       12.25         48       250       12.5         49       255       12.75                                                                                                                                                                                                                                                                                                                                                          |    |     |      |
| 34       180       9         35       185       9.25         36       190       9.5         37       195       9.75         38       200       10         39       205       10.25         40       210       10.5         41       215       10.75         42       220       11         43       225       11.25         44       230       11.5         45       235       11.75         46       240       12         47       245       12.25         48       250       12.5         49       255       12.75                                                                                                                                                                                                                                                                                                                                                                                          |    |     |      |
| 35       185       9.25         36       190       9.5         37       195       9.75         38       200       10         39       205       10.25         40       210       10.5         41       215       10.75         42       220       11         43       225       11.25         44       230       11.5         45       235       11.75         46       240       12         47       245       12.25         48       250       12.5         49       255       12.75                                                                                                                                                                                                                                                                                                                                                                                                                       |    |     |      |
| 36       190       9.5         37       195       9.75         38       200       10         39       205       10.25         40       210       10.5         41       215       10.75         42       220       11         43       225       11.25         44       230       11.5         45       235       11.75         46       240       12         47       245       12.25         48       250       12.5         49       255       12.75                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |     |      |
| 37       195       9.75         38       200       10         39       205       10.25         40       210       10.5         41       215       10.75         42       220       11         43       225       11.25         44       230       11.5         45       235       11.75         46       240       12         47       245       12.25         48       250       12.5         49       255       12.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |     |      |
| 38       200       10         39       205       10.25         40       210       10.5         41       215       10.75         42       220       11         43       225       11.25         44       230       11.5         45       235       11.75         46       240       12         47       245       12.25         48       250       12.5         49       255       12.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |     |      |
| 39       205       10.25         40       210       10.5         41       215       10.75         42       220       11         43       225       11.25         44       230       11.5         45       235       11.75         46       240       12         47       245       12.25         48       250       12.5         49       255       12.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |     |      |
| 40     210     10.5       41     215     10.75       42     220     11       43     225     11.25       44     230     11.5       45     235     11.75       46     240     12       47     245     12.25       48     250     12.5       49     255     12.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |      |
| 41     215     10.75       42     220     11       43     225     11.25       44     230     11.5       45     235     11.75       46     240     12       47     245     12.25       48     250     12.5       49     255     12.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |     |      |
| 42     220     11       43     225     11.25       44     230     11.5       45     235     11.75       46     240     12       47     245     12.25       48     250     12.5       49     255     12.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |     |      |
| 43     225     11.25       44     230     11.5       45     235     11.75       46     240     12       47     245     12.25       48     250     12.5       49     255     12.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |     |      |
| 44     230     11.5       45     235     11.75       46     240     12       47     245     12.25       48     250     12.5       49     255     12.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |     |      |
| 45     235     11.75       46     240     12       47     245     12.25       48     250     12.5       49     255     12.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |     |      |
| 46     240     12       47     245     12.25       48     250     12.5       49     255     12.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |     |      |
| 47     245     12.25       48     250     12.5       49     255     12.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |     |      |
| 48 250 12.5<br>49 255 12.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |     |      |
| 49 255 12.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |     |      |
| 50 260 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50 | 260 | 13   |

## Example 18: High-Throughput Screening Assay Identifying Changes in Small Molecule Concentration and Membrane Permeability

Binding of a ligand to a receptor is known to alter intracellular levels of small molecules, such as calcium, potassium, sodium, and pH, as well as alter membrane potential. These alterations can be measured in an assay to identify supernatants which bind to receptors of a particular cell. Although the following protocol describes an assay for calcium, this protocol can easily be modified to detect changes in potassium, sodium, pH, membrane potential, or any other small molecule which is detectable by a fluorescent probe.

The following assay uses Fluorometric Imaging Plate Reader ("FLIPR") to measure changes in fluorescent molecules (Molecular Probes) that bind small

10

15

20

25

molecules. Clearly, any fluorescent molecule detecting a small molecule can be used instead of the calcium fluorescent molecule, fluo-4 (Molecular Probes, Inc.; catalog no. F-14202), used here.

For adherent cells, seed the cells at 10,000 -20,000 cells/well in a Co-star black 96-well plate with clear bottom. The plate is incubated in a CO<sub>2</sub> incubator for 20 hours. The adherent cells are washed two times in Biotek washer with 200 ul of HBSS (Hank's Balanced Salt Solution) leaving 100 ul of buffer after the final wash.

A stock solution of 1 mg/ml fluo-4 is made in 10% pluronic acid DMSO. To load the cells with fluo-4, 50 ul of 12 ug/ml fluo-4 is added to each well. The plate is incubated at 37°C in a CO<sub>2</sub> incubator for 60 min. The plate is washed four times in the Biotek washer with HBSS leaving 100 ul of buffer.

For non-adherent cells, the cells are spun down from culture media. Cells are re-suspended to 2-5x10<sup>6</sup> cells/ml with HBSS in a 50-ml conical tube. 4 ul of 1 mg/ml fluo-4 solution in 10% pluronic acid DMSO is added to each ml of cell suspension. The tube is then placed in a 37°C water bath for 30-60 min. The cells are washed twice with HBSS, resuspended to 1x10<sup>6</sup> cells/ml, and dispensed into a microplate, 100 ul/well. The plate is centrifuged at 1000 rpm for 5 min. The plate is then washed once in Denley CellWash with 200 ul, followed by an aspiration step to 100 ul final volume.

For a non-cell based assay, each well contains a fluorescent molecule, such as fluo-4. The supernatant is added to the well, and a change in fluorescence is detected.

To measure the fluorescence of intracellular calcium, the FLIPR is set for the following parameters: (1) System gain is 300-800 mW; (2) Exposure time is 0.4 second; (3) Camera F/stop is F/2; (4) Excitation is 488 nm; (5) Emission is 530 nm; and (6) Sample addition is 50 ul. Increased emission at 530 nm indicates an extracellular signaling event which has resulted in an increase in the intracellular Ca<sup>++</sup> concentration.

## 30 Example 19: High-Throughput Screening Assay Identifying Tyrosine Kinase Activity

10

15

20

25

30

The Protein Tyrosine Kinases (PTK) represent a diverse group of transmembrane and cytoplasmic kinases. Within the Receptor Protein Tyrosine Kinase RPTK) group are receptors for a range of mitogenic and metabolic growth factors including the PDGF, FGF, EGF, NGF, HGF and Insulin receptor subfamilies. In addition there are a large family of RPTKs for which the corresponding ligand is unknown. Ligands for RPTKs include mainly secreted small proteins, but also membrane-bound and extracellular matrix proteins.

Activation of RPTK by ligands involves ligand-mediated receptor dimerization, resulting in transphosphorylation of the receptor subunits and activation of the cytoplasmic tyrosine kinases. The cytoplasmic tyrosine kinases include receptor associated tyrosine kinases of the src-family (e.g., src, yes, lck, lyn, fyn) and non-receptor linked and cytosolic protein tyrosine kinases, such as the Jak family, members of which mediate signal transduction triggered by the cytokine superfamily of receptors (e.g., the Interleukins, Interferons, GM-CSF, and Leptin).

Because of the wide range of known factors capable of stimulating tyrosine kinase activity, the identification of novel human secreted proteins capable of activating tyrosine kinase signal transduction pathways are of interest. Therefore, the following protocol is designed to identify those novel human secreted proteins capable of activating the tyrosine kinase signal transduction pathways.

Seed target cells (e.g., primary keratinocytes) at a density of approximately 25,000 cells per well in a 96 well Loprodyne Silent Screen Plates purchased from Nalge Nunc (Naperville, IL). The plates are sterilized with two 30 minute rinses with 100% ethanol, rinsed with water and dried overnight. Some plates are coated for 2 hr with 100 ml of cell culture grade type I collagen (50 mg/ml), gelatin (2%) or polylysine (50 mg/ml), all of which can be purchased from Sigma Chemicals (St. Louis, MO) or 10% Matrigel purchased from Becton Dickinson (Bedford,MA), or calf serum, rinsed with PBS and stored at 4°C. Cell growth on these plates is assayed by seeding 5,000 cells/well in growth medium and indirect quantitation of cell number through use of alamarBlue as described by the manufacturer Alamar Biosciences, Inc. (Sacramento, CA) after 48 hr. Falcon plate covers #3071 from Becton Dickinson (Bedford,MA) are used to cover the Loprodyne Silent Screen

WO 99/58660 PCT/US99/09847

Plates. Falcon Microtest III cell culture plates can also be used in some proliferation experiments.

259

To prepare extracts, A431 cells are seeded onto the nylon membranes of Loprodyne plates (20,000/200ml/well) and cultured overnight in complete medium. 5 Cells are quiesced by incubation in serum-free basal medium for 24 hr. After 5-20 minutes treatment with EGF (60ng/ml) or 50 ul of the supernatant produced in Example 11, the medium was removed and 100 ml of extraction buffer ((20 mM HEPES pH 7.5, 0.15 M NaCl, 1% Triton X-100, 0.1% SDS, 2 mM Na3VO4, 2 mM Na4P2O7 and a cocktail of protease inhibitors (# 1836170) obtained from 10 Boeheringer Mannheim (Indianapolis, IN) is added to each well and the plate is shaken on a rotating shaker for 5 minutes at 4°C. The plate is then placed in a vacuum transfer manifold and the extract filtered through the 0.45 mm membrane bottoms of each well using house vacuum. Extracts are collected in a 96-well catch/assay plate in the bottom of the vacuum manifold and immediately placed on 15 ice. To obtain extracts clarified by centrifugation, the content of each well, after detergent solubilization for 5 minutes, is removed and centrifuged for 15 minutes at 4°C at 16,000 x g.

Test the filtered extracts for levels of tyrosine kinase activity. Although many methods of detecting tyrosine kinase activity are known, one method is described here.

20

25

30

Generally, the tyrosine kinase activity of a supernatant is evaluated by determining its ability to phosphorylate a tyrosine residue on a specific substrate (a biotinylated peptide). Biotinylated peptides that can be used for this purpose include PSK1 (corresponding to amino acids 6-20 of the cell division kinase cdc2-p34) and PSK2 (corresponding to amino acids 1-17 of gastrin). Both peptides are substrates for a range of tyrosine kinases and are available from Boehringer Mannheim.

The tyrosine kinase reaction is set up by adding the following components in order. First, add 10ul of 5uM Biotinylated Peptide, then 10ul ATP/Mg<sub>2+</sub> (5mM ATP/50mM MgCl<sub>2</sub>), then 10ul of 5x Assay Buffer (40mM imidazole hydrochloride, pH7.3, 40 mM beta-glycerophosphate, 1mM EGTA, 100mM MgCl<sub>2</sub>, 5 mM MnCl<sub>2</sub>, 0.5 mg/ml BSA), then 5ul of Sodium Vanadate(1mM), and then 5ul of water. Mix the

10

15

20

25

30

components gently and preincubate the reaction mix at 30°C for 2 min. Initial the reaction by adding 10ul of the control enzyme or the filtered supernatant.

The tyrosine kinase assay reaction is then terminated by adding 10 ul of 120mm EDTA and place the reactions on ice.

Tyrosine kinase activity is determined by transferring 50 ul aliquot of reaction mixture to a microtiter plate (MTP) module and incubating at 37°C for 20 min. This allows the streptavadin coated 96 well plate to associate with the biotinylated peptide. Wash the MTP module with 300ul/well of PBS four times. Next add 75 ul of anti-phospotyrosine antibody conjugated to horse radish peroxidase(anti-P-Tyr-POD(0.5u/ml)) to each well and incubate at 37°C for one hour. Wash the well as above.

Next add 100ul of peroxidase substrate solution (Boehringer Mannheim) and incubate at room temperature for at least 5 mins (up to 30 min). Measure the absorbance of the sample at 405 nm by using ELISA reader. The level of bound peroxidase activity is quantitated using an ELISA reader and reflects the level of tyrosine kinase activity.

# Example 20: High-Throughput Screening Assay Identifying Phosphorylation Activity

As a potential alternative and/or compliment to the assay of protein tyrosine kinase activity described in Example 19, an assay which detects activation (phosphorylation) of major intracellular signal transduction intermediates can also be used. For example, as described below one particular assay can detect tyrosine phosphorylation of the Erk-1 and Erk-2 kinases. However, phosphorylation of other molecules, such as Raf, JNK, p38 MAP, Map kinase kinase (MEK), MEK kinase, Src, Muscle specific kinase (MuSK), IRAK, Tec, and Janus, as well as any other phosphoserine, phosphotyrosine, or phosphothreonine molecule, can be detected by substituting these molecules for Erk-1 or Erk-2 in the following assay.

Specifically, assay plates are made by coating the wells of a 96-well ELISA plate with 0.1ml of protein G (lug/ml) for 2 hr at room temp, (RT). The plates are then rinsed with PBS and blocked with 3% BSA/PBS for 1 hr at RT. The protein G

15

20

25

30

plates are then treated with 2 commercial monoclonal antibodies (100ng/well) against Erk-1

and Erk-2 (1 hr at RT) (Santa Cruz Biotechnology). (To detect other molecules, this step can easily be modified by substituting a monoclonal antibody detecting any of the above described molecules.) After 3-5 rinses with PBS, the plates are stored at 4°C until use.

A431 cells are seeded at 20,000/well in a 96-well Loprodyne filterplate and cultured overnight in growth medium. The cells are then starved for 48 hr in basal medium (DMEM) and then treated with EGF (6ng/well) or 50 ul of the supernatants obtained in Example 11 for 5-20 minutes. The cells are then solubilized and extracts filtered directly into the assay plate.

After incubation with the extract for 1 hr at RT, the wells are again rinsed. As a positive control, a commercial preparation of MAP kinase (10ng/well) is used in place

of A431 extract. Plates are then treated with a commercial polyclonal (rabbit) antibody (1ug/ml) which specifically recognizes the phosphorylated epitope of the Erk-1 and Erk-2 kinases (1 hr at RT). This antibody is biotinylated by standard procedures. The bound polyclonal antibody is then quantitated by successive incubations with Europium-streptavidin and Europium fluorescence enhancing reagent in the Wallac DELFIA instrument (time-resolved fluorescence). An increased fluorescent signal over background indicates a phosphorylation.

## Example 21: Method of Determining Alterations in a Gene Corresponding to a Polynucleotide

RNA isolated from entire families or individual patients presenting with a phenotype of interest (such as a disease) is be isolated. cDNA is then generated from these RNA samples using protocols known in the art. (See, Sambrook.) The cDNA is then used as a template for PCR, employing primers surrounding regions of interest in SEQ ID NO:X. Suggested PCR conditions consist of 35 cycles at 95°C for 30 seconds; 60-120 seconds at 52-58°C; and 60-120 seconds at 70°C, using buffer solutions described in Sidransky, D., et al., Science 252:706 (1991).

10

15

20

25

PCR products are then sequenced using primers labeled at their 5' end with T4 polynucleotide kinase, employing SequiTherm Polymerase. (Epicentre Technologies). The intron-exon borders of selected exons is also determined and genomic PCR products analyzed to confirm the results. PCR products harboring suspected mutations is then cloned and sequenced to validate the results of the direct sequencing.

PCR products is cloned into T-tailed vectors as described in Holton, T.A. and Graham, M.W., Nucleic Acids Research, 19:1156 (1991) and sequenced with T7 polymerase (United States Biochemical). Affected individuals are identified by mutations not present in unaffected individuals.

Genomic rearrangements are also observed as a method of determining alterations in a gene corresponding to a polynucleotide. Genomic clones isolated according to Example 2 are nick-translated with digoxigenindeoxy-uridine 5'-triphosphate (Boehringer Manheim), and FISH performed as described in Johnson, Cg. et al., Methods Cell Biol. 35:73-99 (1991). Hybridization with the labeled probe is carried out using a vast excess of human cot-1 DNA for specific hybridization to the corresponding genomic locus.

Chromosomes are counterstained with 4,6-diamino-2-phenylidole and propidium iodide, producing a combination of C- and R-bands. Aligned images for precise mapping are obtained using a triple-band filter set (Chroma Technology, Brattleboro, VT) in combination with a cooled charge-coupled device camera (Photometrics, Tucson, AZ) and variable excitation wavelength filters. (Johnson, Cv. et al., Genet. Anal. Tech. Appl., 8:75 (1991).) Image collection, analysis and chromosomal fractional length measurements are performed using the ISee Graphical Program System. (Inovision Corporation, Durham, NC.) Chromosome alterations of the genomic region hybridized by the probe are identified as insertions, deletions, and translocations. These alterations are used as a diagnostic marker for an associated disease.

30 Example 22: Method of Detecting Abnormal Levels of a Polypeptide in a

Biological Sample

10

15

20

25

30

A polypeptide of the present invention can be detected in a biological sample, and if an increased or decreased level of the polypeptide is detected, this polypeptide is a marker for a particular phenotype. Methods of detection are numerous, and thus, it is understood that one skilled in the art can modify the following assay to fit their particular needs.

For example, antibody-sandwich ELISAs are used to detect polypeptides in a sample, preferably a biological sample. Wells of a microtiter plate are coated with specific antibodies, at a final concentration of 0.2 to 10 ug/ml. The antibodies are either monoclonal or polyclonal and are produced by the method described in Example 10. The wells are blocked so that non-specific binding of the polypeptide to the well is reduced.

The coated wells are then incubated for > 2 hours at RT with a sample containing the polypeptide. Preferably, serial dilutions of the sample should be used to validate results. The plates are then washed three times with deionized or distilled water to remove unbounded polypeptide.

Next, 50 ul of specific antibody-alkaline phosphatase conjugate, at a concentration of 25-400 ng, is added and incubated for 2 hours at room temperature. The plates are again washed three times with deionized or distilled water to remove unbounded conjugate.

Add 75 ul of 4-methylumbelliferyl phosphate (MUP) or p-nitrophenyl phosphate (NPP) substrate solution to each well and incubate 1 hour at room temperature. Measure the reaction by a microtiter plate reader. Prepare a standard curve, using serial dilutions of a control sample, and plot polypeptide concentration on the X-axis (log scale) and fluorescence or absorbance of the Y-axis (linear scale). Interpolate the concentration of the polypeptide in the sample using the standard curve.

#### **Example 23: Formulating a Polypeptide**

The secreted polypeptide composition will be formulated and dosed in a fashion consistent with good medical practice, taking into account the clinical condition of the individual patient (especially the side effects of treatment with the secreted polypeptide alone), the site of delivery, the method of administration, the

5

10

15

20

25

30

scheduling of administration, and other factors known to practitioners. The "effective amount" for purposes herein is thus determined by such considerations.

As a general proposition, the total pharmaceutically effective amount of secreted polypeptide administered parenterally per dose will be in the range of about 1 µg/kg/day to 10 mg/kg/day of patient body weight, although, as noted above, this will be subject to therapeutic discretion. More preferably, this dose is at least 0.01 mg/kg/day, and most preferably for humans between about 0.01 and 1 mg/kg/day for the hormone. If given continuously, the secreted polypeptide is typically administered at a dose rate of about 1 µg/kg/hour to about 50 µg/kg/hour, either by 1-4 injections per day or by continuous subcutaneous infusions, for example, using a mini-pump. An intravenous bag solution may also be employed. The length of treatment needed to observe changes and the interval following treatment for responses to occur appears to vary depending on the desired effect.

Pharmaceutical compositions containing the secreted protein of the invention are administered orally, rectally, parenterally, intracistemally, intravaginally, intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

The secreted polypeptide is also suitably administered by sustained-release systems. Suitable examples of sustained-release compositions include semi-permeable polymer matrices in the form of shaped articles, e.g., films, or mirocapsules. Sustained-release matrices include polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (Sidman, U. et al., Biopolymers 22:547-556 (1983)), poly (2- hydroxyethyl methacrylate) (R. Langer et al., J. Biomed. Mater. Res. 15:167-277 (1981), and R. Langer, Chem. Tech. 12:98-105 (1982)), ethylene vinyl acetate (R. Langer et al.) or poly-D- (-)-3-hydroxybutyric acid (EP 133,988). Sustained-release compositions also include liposomally entrapped polypeptides. Liposomes containing the secreted polypeptide are prepared by methods known per se: DE 3,218,121; Epstein et al.,

15

20

25

30

Proc. Natl. Acad. Sci. USA 82:3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA 77:4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese Pat. Appl. 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily, the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. percent cholesterol, the selected proportion being adjusted for the optimal secreted polypeptide therapy.

For parenteral administration, in one embodiment, the secreted polypeptide is formulated generally by mixing it at the desired degree of purity, in a unit dosage injectable form (solution, suspension, or emulsion), with a pharmaceutically acceptable carrier, i.e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation. For example, the formulation preferably does not include oxidizing agents and other compounds that are known to be deleterious to polypeptides.

Generally, the formulations are prepared by contacting the polypeptide uniformly and intimately with liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation. Preferably the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Non-aqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as well as liposomes.

The carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and chemical stability. Such materials are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, succinate, acetic acid, and other organic acids or their salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) polypeptides, e.g., polyarginine or tripeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, manose, or dextrins; chelating agents such as EDTA; sugar

10

15

20

25

30

alcohols such as mannitol or sorbitol; counterions such as sodium; and/or nonionic surfactants such as polysorbates, poloxamers, or PEG.

The secreted polypeptide is typically formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml, preferably 1-10 mg/ml, at a pH of about 3 to 8. It will be understood that the use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of polypeptide salts.

Any polypeptide to be used for therapeutic administration can be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e.g., 0.2 micron membranes). Therapeutic polypeptide compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

Polypeptides ordinarily will be stored in unit or multi-dose containers, for example, sealed ampoules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution. As an example of a lyophilized formulation, 10-ml vials are filled with 5 ml of sterile-filtered 1% (w/v) aqueous polypeptide solution, and the resulting mixture is lyophilized. The infusion solution is prepared by reconstituting the lyophilized polypeptide using bacteriostatic Water-for-Injection.

The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, the polypeptides of the present invention may be employed in conjunction with other therapeutic compounds.

## Example 24: Method of Treating Decreased Levels of the Polypeptide

It will be appreciated that conditions caused by a decrease in the standard or normal expression level of a secreted protein in an individual can be treated by administering the polypeptide of the present invention, preferably in the secreted form. Thus, the invention also provides a method of treatment of an individual in need of an increased level of the polypeptide comprising administering to such an

15

20

25

30

individual a pharmaceutical composition comprising an amount of the polypeptide to increase the activity level of the polypeptide in such an individual.

267

For example, a patient with decreased levels of a polypeptide receives a daily dose 0.1-100 ug/kg of the polypeptide for six consecutive days. Preferably, the polypeptide is in the secreted form. The exact details of the dosing scheme, based on administration and formulation, are provided in Example 23.

#### Example 25: Method of Treating Increased Levels of the Polypeptide

Antisense technology is used to inhibit production of a polypeptide of the present invention. This technology is one example of a method of decreasing levels of a polypeptide, preferably a secreted form, due to a variety of etiologies, such as cancer.

For example, a patient diagnosed with abnormally increased levels of a polypeptide is administered intravenously antisense polynucleotides at 0.5, 1.0, 1.5, 2.0 and 3.0 mg/kg day for 21 days. This treatment is repeated after a 7-day rest period if the treatment was well tolerated. The formulation of the antisense polynucleotide is provided in Example 23.

#### Example 26: Method of Treatment Using Gene Therapy

One method of gene therapy transplants fibroblasts, which are capable of expressing a polypeptide, onto a patient. Generally, fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask. The flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e.g., Ham's F12 media, with 10% FBS. penicillin and streptomycin) is added. The flasks are then incubated at 37°C for approximately one week.

At this time, fresh media is added and subsequently changed every several days. After an additional two weeks in culture, a monolayer of fibroblasts emerge. The monolayer is trypsinized and scaled into larger flasks.

10

15

20

25

30

pMV-7 (Kirschmeier, P.T. et al., DNA, 7:219-25 (1988)), flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and HindIII and subsequently treated with calf intestinal phosphatase. The linear vector is fractionated on agarose gel and purified, using glass beads.

The cDNA encoding a polypeptide of the present invention can be amplified using PCR primers which correspond to the 5' and 3' end sequences respectively as set forth in Example 1. Preferably, the 5' primer contains an EcoRI site and the 3' primer includes a HindIII site. Equal quantities of the Moloney murine sarcoma virus linear backbone and the amplified EcoRI and HindIII fragment are added together, in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The ligation mixture is then used to transform bacteria HB101, which are then plated onto agar containing kanamycin for the purpose of confirming that the vector has the gene of interest properly inserted.

The amphotropic pA317 or GP+am12 packaging cells are grown in tissue culture to confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf serum (CS), penicillin and streptomycin. The MSV vector containing the gene is then added to the media and the packaging cells transduced with the vector. The packaging cells now produce infectious viral particles containing the gene (the packaging cells are now referred to as producer cells).

Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cells. The spent media, containing the infectious viral particles, is filtered through a millipore filter to remove detached producer cells and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed and replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his. Once the fibroblasts have been efficiently infected, the fibroblasts are analyzed to determine whether protein is produced.

The engineered fibroblasts are then transplanted onto the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads.

15

20

25

30

#### Example 27: Method of Treatment Using Gene Therapy - In Vivo

Another aspect of the present invention is using *in vivo* gene therapy methods to treat disorders, diseases and conditions. The gene therapy method relates to the introduction of naked nucleic acid (DNA, RNA, and antisense DNA or RNA) sequences into an animal to increase or decrease the expression of the polypeptide. The polynucleotide of the present invention may be operatively linked to a promoter or any other genetic elements necessary for the expression of the polypeptide by the target tissue. Such gene therapy and delivery techniques and methods are known in the art, see, for example, WO90/11092, WO98/11779; U.S. Patent NO. 5693622, 5705151, 5580859; Tabata H. et al. (1997) Cardiovasc. Res. 35(3):470-479, Chao J et al. (1997) Pharmacol. Res. 35(6):517-522, Wolff J.A. (1997) Neuromuscul. Disord. 7(5):314-318, Schwartz B. et al. (1996) Gene Ther. 3(5):405-411, Tsurumi Y. et al. (1996) Circulation 94(12):3281-3290 (incorporated herein by reference).

The polynucleotide constructs may be delivered by any method that delivers injectable materials to the cells of an animal, such as, injection into the interstitial space of tissues (heart, muscle, skin, lung, liver, intestine and the like). The polynucleotide constructs can be delivered in a pharmaceutically acceptable liquid or aqueous carrier.

The term "naked" polynucleotide, DNA or RNA, refers to sequences that are free from any delivery vehicle that acts to assist, promote, or facilitate entry into the cell, including viral sequences, viral particles, liposome formulations, lipofectin or precipitating agents and the like. However, the polynucleotides of the present invention may also be delivered in liposome formulations (such as those taught in Felgner P.L. et al. (1995) Ann. NY Acad. Sci. 772:126-139 and Abdallah B. et al. (1995) Biol. Cell 85(1):1-7) which can be prepared by methods well known to those skilled in the art.

The polynucleotide vector constructs used in the gene therapy method are preferably constructs that will not integrate into the host genome nor will they contain sequences that allow for replication. Any strong promoter known to those skilled in the art can be used for driving the expression of DNA. Unlike other gene therapies techniques, one major advantage of introducing naked nucleic acid sequences into

10

15

20

25

30

target cells is the transitory nature of the polynucleotide synthesis in the cells. Studies have shown that non-replicating DNA sequences can be introduced into cells to provide production of the desired polypeptide for periods of up to six months.

The polynucleotide construct can be delivered to the interstitial space of tissues within the an animal, including of muscle, skin, brain, lung, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gall bladder, stomach, intestine, testis, ovary, uterus, rectum, nervous system, eye, gland, and connective tissue. Interstitial space of the tissues comprises the intercellular fluid, mucopolysaccharide matrix among the reticular fibers of organ tissues, elastic fibers in the walls of vessels or chambers, collagen fibers of fibrous tissues, or that same matrix within connective tissue ensheathing muscle cells or in the lacunae of bone. It is similarly the space occupied by the plasma of the circulation and the lymph fluid of the lymphatic channels. Delivery to the interstitial space of muscle tissue is preferred for the reasons discussed below. They may be conveniently delivered by injection into the tissues comprising these cells. They are preferably delivered to and expressed in persistent, non-dividing cells which are differentiated, although delivery and expression may be achieved in non-differentiated or less completely differentiated cells, such as, for example, stem cells of blood or skin fibroblasts. In vivo muscle cells are particularly competent in their ability to take up and express polynucleotides.

For the naked polynucleotide injection, an effective dosage amount of DNA or RNA will be in the range of from about 0.05 g/kg body weight to about 50 mg/kg body weight. Preferably the dosage will be from about 0.005 mg/kg to about 20 mg/kg and more preferably from about 0.05 mg/kg to about 5 mg/kg. Of course, as the artisan of ordinary skill will appreciate, this dosage will vary according to the tissue site of injection. The appropriate and effective dosage of nucleic acid sequence can readily be determined by those of ordinary skill in the art and may depend on the condition being treated and the route of administration. The preferred route of administration is by the parenteral route of injection into the interstitial space of tissues. However, other parenteral routes may also be used, such as, inhalation of an aerosol formulation particularly for delivery to lungs or bronchial tissues, throat or mucous membranes of the nose. In addition, naked polynucleotide constructs can be

10

15

20

delivered to arteries during angioplasty by the catheter used in the procedure.

The dose response effects of injected polynucleotide in muscle in vivo is determined as follows. Suitable template DNA for production of mRNA coding for polypeptide of the present invention is prepared in accordance with a standard recombinant DNA methodology. The template DNA, which may be either circular or linear, is either used as naked DNA or complexed with liposomes. The quadriceps muscles of mice are then injected with various amounts of the template DNA.

Five to six week old female and male Balb/C mice are anesthetized by intraperitoneal injection with 0.3 ml of 2.5% Avertin. A 1.5 cm incision is made on the anterior thigh, and the quadriceps muscle is directly visualized. The template DNA is injected in 0.1 ml of carrier in a 1 cc syringe through a 27 gauge needle over one minute, approximately 0.5 cm from the distal insertion site of the muscle into the knee and about 0.2 cm deep. A suture is placed over the injection site for future localization, and the skin is closed with stainless steel clips.

After an appropriate incubation time (e.g., 7 days) muscle extracts are prepared by excising the entire quadriceps. Every fifth 15 um cross-section of the individual quadriceps muscles is histochemically stained for protein expression. A time course for protein expression may be done in a similar fashion except that quadriceps from different mice are harvested at different times. Persistence of DNA in muscle following injection may be determined by Southern blot analysis after preparing total cellular DNA and HIRT supernatants from injected and control mice. The results of the above experimentation in mice can be use to extrapolate proper dosages and other treatment parameters in humans and other animals using naked DNA.

25

30

## **Example 28: Transgenic Animals.**

The polypeptides of the invention can also be expressed in transgenic animals. Animals of any species, including, but not limited to, mice, rats, rabbits, hamsters, guinea pigs, pigs, micro-pigs, goats, sheep, cows and non-human primates, e.g., baboons, monkeys, and chimpanzees may be used to generate transgenic animals. In a specific embodiment, techniques described herein or otherwise known in the art, are

10

15

20

25

30

used to express polypeptides of the invention in humans, as part of a gene therapy protocol.

Any technique known in the art may be used to introduce the transgene (i.e., polynucleotides of the invention) into animals to produce the founder lines of transgenic animals. Such techniques include, but are not limited to, pronuclear microinjection (Paterson et al., Appl. Microbiol. Biotechnol. 40:691-698 (1994); Carver et al., Biotechnology (NY) 11:1263-1270 (1993); Wright et al., Biotechnology (NY) 9:830-834 (1991); and Hoppe et al., U.S. Pat. No. 4,873,191 (1989)); retrovirus mediated gene transfer into germ lines (Van der Putten et al., Proc. Natl. Acad. Sci., USA 82:6148-6152 (1985)), blastocysts or embryos; gene targeting in embryonic stem cells (Thompson et al., Cell 56:313-321 (1989)); electroporation of cells or embryos (Lo, 1983, Mol Cell. Biol. 3:1803-1814 (1983)); introduction of the polynucleotides of the invention using a gene gun (see, e.g., Ulmer et al., Science 259:1745 (1993); introducing nucleic acid constructs into embryonic pleuripotent stem cells and transferring the stem cells back into the blastocyst; and spermmediated gene transfer (Lavitrano et al., Cell 57:717-723 (1989); etc. For a review of such techniques, see Gordon, "Transgenic Animals," Intl. Rev. Cytol. 115:171-229 (1989), which is incorporated by reference herein in its entirety.

Any technique known in the art may be used to produce transgenic clones containing polynucleotides of the invention, for example, nuclear transfer into enucleated oocytes of nuclei from cultured embryonic, fetal, or adult cells induced to quiescence (Campell et al., Nature 380:64-66 (1996); Wilmut et al., Nature 385:810-813 (1997)).

The present invention provides for transgenic animals that carry the transgene in all their cells, as well as animals which carry the transgene in some, but not all their cells, i.e., mosaic animals or chimeric. The transgene may be integrated as a single transgene or as multiple copies such as in concatamers, e.g., head-to-head tandems or head-to-tail tandems. The transgene may also be selectively introduced into and activated in a particular cell type by following, for example, the teaching of Lasko et al. (Lasko et al., Proc. Natl. Acad. Sci. USA 89:6232-6236 (1992)). The regulatory sequences required for such a cell-type specific activation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art. When

10

15

20

25

30

it is desired that the polynucleotide transgene be integrated into the chromosomal site of the endogenous gene, gene targeting is preferred. Briefly, when such a technique is to be utilized, vectors containing some nucleotide sequences homologous to the endogenous gene are designed for the purpose of integrating, via homologous recombination with chromosomal sequences, into and disrupting the function of the nucleotide sequence of the endogenous gene. The transgene may also be selectively introduced into a particular cell type, thus inactivating the endogenous gene in only that cell type, by following, for example, the teaching of Gu et al. (Gu et al., Science 265:103-106 (1994)). The regulatory sequences required for such a cell-type specific inactivation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art.

Once transgenic animals have been generated, the expression of the recombinant gene may be assayed utilizing standard techniques. Initial screening may be accomplished by Southern blot analysis or PCR techniques to analyze animal tissues to verify that integration of the transgene has taken place. The level of mRNA expression of the transgene in the tissues of the transgenic animals may also be assessed using techniques which include, but are not limited to, Northern blot analysis of tissue samples obtained from the animal, in situ hybridization analysis, and reverse transcriptase-PCR (rt-PCR). Samples of transgenic gene-expressing tissue may also be evaluated immunocytochemically or immunohistochemically using antibodies specific for the transgene product.

Once the founder animals are produced, they may be bred, inbred, outbred, or crossbred to produce colonies of the particular animal. Examples of such breeding strategies include, but are not limited to: outbreeding of founder animals with more than one integration site in order to establish separate lines; inbreeding of separate lines in order to produce compound transgenics that express the transgene at higher levels because of the effects of additive expression of each transgene; crossing of heterozygous transgenic animals to produce animals homozygous for a given integration site in order to both augment expression and eliminate the need for screening of animals by DNA analysis; crossing of separate homozygous lines to produce compound heterozygous or homozygous lines; and breeding to place the

10

15

20

25

30

transgene on a distinct background that is appropriate for an experimental model of interest.

Transgenic animals of the invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function of polypeptides of the present invention, studying conditions and/or disorders associated with aberrant expression, and in screening for compounds effective in ameliorating such conditions and/or disorders.

#### **Example 29: Knock-Out Animals.**

Endogenous gene expression can also be reduced by inactivating or "knocking out" the gene and/or its promoter using targeted homologous recombination. (E.g., see Smithies et al., Nature 317:230-234 (1985); Thomas & Capecchi, Cell 51:503-512 (1987); Thompson et al., Cell 5:313-321 (1989); each of which is incorporated by reference herein in its entirety). For example, a mutant, non-functional polynucleotide of the invention (or a completely unrelated DNA sequence) flanked by DNA homologous to the endogenous polynucleotide sequence (either the coding regions or regulatory regions of the gene) can be used, with or without a selectable marker and/or a negative selectable marker, to transfect cells that express polypeptides of the invention in vivo. In another embodiment, techniques known in the art are used to generate knockouts in cells that contain, but do not express the gene of interest. Insertion of the DNA construct, via targeted homologous recombination, results in inactivation of the targeted gene. Such approaches are particularly suited in research and agricultural fields where modifications to embryonic stem cells can be used to generate animal offspring with an inactive targeted gene (e.g., see Thomas & Capecchi 1987 and Thompson 1989, supra). However this approach can be routinely adapted for use in humans provided the recombinant DNA constructs are directly administered or targeted to the required site in vivo using appropriate viral vectors that will be apparent to those of skill in the art.

In further embodiments of the invention, cells that are genetically engineered to express the polypeptides of the invention, or alternatively, that are genetically engineered not to express the polypeptides of the invention (e.g., knockouts) are administered to a patient *in vivo*. Such cells may be obtained from the patient (i.e.,

10

15

20

25

30

animal, including human) or an MHC compatible donor and can include, but are not limited to fibroblasts, bone marrow cells, blood cells (e.g., lymphocytes), adipocytes, muscle cells, endothelial cells etc. The cells are genetically engineered *in vitro* using recombinant DNA techniques to introduce the coding sequence of polypeptides of the invention into the cells, or alternatively, to disrupt the coding sequence and/or endogenous regulatory sequence associated with the polypeptides of the invention, e.g., by transduction (using viral vectors, and preferably vectors that integrate the transgene into the cell genome) or transfection procedures, including, but not limited to, the use of plasmids, cosmids, YACs, naked DNA, electroporation, liposomes, etc. The coding sequence of the polypeptides of the invention can be placed under the control of a strong constitutive or inducible promoter or promoter/enhancer to achieve expression, and preferably secretion, of the polypeptides of the invention. The engineered cells which express and preferably secrete the polypeptides of the invention can be introduced into the patient systemically, e.g., in the circulation, or intraperitoneally.

Alternatively, the cells can be incorporated into a matrix and implanted in the body, e.g., genetically engineered fibroblasts can be implanted as part of a skin graft; genetically engineered endothelial cells can be implanted as part of a lymphatic or vascular graft. (See, for example, Anderson et al. U.S. Patent No. 5,399,349; and Mulligan & Wilson, U.S. Patent No. 5,460,959 each of which is incorporated by reference herein in its entirety).

When the cells to be administered are non-autologous or non-MHC compatible cells, they can be administered using well known techniques which prevent the development of a host immune response against the introduced cells. For example, the cells may be introduced in an encapsulated form which, while allowing for an exchange of components with the immediate extracellular environment, does not allow the introduced cells to be recognized by the host immune system.

Transgenic and "knock-out" animals of the invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function of polypeptides of the present invention, studying conditions and/or disorders associated with aberrant expression, and in screening for compounds effective in ameliorating such conditions and/or disorders.

It will be clear that the invention may be practiced otherwise than as particularly described in the foregoing description and examples. Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, are within the scope of the appended claims.

The entire disclosure of each document cited (including patents, patent applications, journal articles, abstracts, laboratory manuals, books, or other disclosures) in the Background of the Invention, Detailed Description, and Examples is hereby incorporated herein by reference. Further, the hard copy of the sequence listing submitted herewith and the corresponding computer readable form are both incorporated herein by reference in their entireties.

5

10

## INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

| A. The indications made be                       | low relate to the microorganis   | m refen   | red to in the description                                                                              |
|--------------------------------------------------|----------------------------------|-----------|--------------------------------------------------------------------------------------------------------|
| on page                                          | 173 , line                       |           | N/A                                                                                                    |
| B. IDENTIFICATIONOR                              | FDEPOSIT                         |           | Further deposits are identified on an additional sheet                                                 |
| Name of depositary institution                   | n American Type Culture          | e Colle   | ction                                                                                                  |
| •                                                |                                  |           |                                                                                                        |
| Address of depositary instit                     | tution (including postal code a  | nd count  | ry)                                                                                                    |
| 10801 University Boulev<br>Manassas, Virginia 20 |                                  |           |                                                                                                        |
| United States of Americ                          |                                  |           |                                                                                                        |
|                                                  |                                  |           |                                                                                                        |
| Data of democit                                  |                                  |           | Accession Number                                                                                       |
| Date of deposit  Ap                              | ril 7, 1998                      |           | Accession Number 209745                                                                                |
|                                                  |                                  |           |                                                                                                        |
| C. ADDITIONAL INDIC                              | CATIONS (leave blank if not a    | іррисави  | This information is continued on an additional sheet                                                   |
|                                                  |                                  |           |                                                                                                        |
|                                                  | •                                |           |                                                                                                        |
| !<br>                                            |                                  |           |                                                                                                        |
|                                                  |                                  |           |                                                                                                        |
|                                                  |                                  | ·         |                                                                                                        |
| D. DESIGNATED STAT                               | ES FOR WHICH INDIC.              | ATION     | IS ARE MADE (if the indications are not for all designated States)                                     |
| EUROPE                                           | nationa in which a Euron         | oon D     | ptont is pought a soundle of the demonstrat                                                            |
| microorganism will be ma                         | ide available until the pu       | ıblicatio | atent is sought a sample of the deposited on of the mention of the grant of the European patent        |
|                                                  |                                  |           | or withdrawn or is deemed to be withdrawn, only by the person requesting the sample (Rule 28 (4) EPC). |
| the issue of such a samp                         | ie to arrexpert normitate        | u by u    | to person requesting the sample (Tule 20 (4) EPO).                                                     |
|                                                  |                                  |           |                                                                                                        |
| E. SEPARATE FURNISI                              |                                  |           |                                                                                                        |
| Number of Deposit")                              | will be sublimited to the inte   | zi nauon  | al Bureau later (specify the general nature of the indications e.g., "Accession                        |
|                                                  |                                  |           |                                                                                                        |
|                                                  |                                  |           |                                                                                                        |
|                                                  |                                  |           |                                                                                                        |
| Forzeceiving                                     | Office use only                  |           | For International Bureau use only                                                                      |
|                                                  | vith the international applicati | ion       | This sheet was received by the International Bureau on:                                                |
| <b></b>                                          |                                  |           |                                                                                                        |
| Authorized officer                               |                                  | _         | Authorized officer                                                                                     |
|                                                  |                                  | 1         |                                                                                                        |
|                                                  |                                  |           | L                                                                                                      |

Form PCT/RO/134 (July 1992)

WO 99/58660 278

ATCC Deposit No. 209745 Page 2

#### **CANADA**

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

#### **NORWAY**

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

#### **AUSTRALIA**

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

#### **FINLAND**

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Regulations), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

#### UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.



ATCC Dep sit N . 208745 Page 3

#### **DENMARK**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

#### **SWEDEN**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

#### **NETHERLANDS**

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in the 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

## INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

| A. The indications made                                                                                                                                                                                                                                                                                                                                                                                                                  | below relate to the microorganism refe |                                                                     |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------|--|
| on page                                                                                                                                                                                                                                                                                                                                                                                                                                  | 173 , line                             | N/A                                                                 |  |
| B. IDENTIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                        | OFDEPOSIT                              | Further deposits are identified on an additional sheet              |  |
| Name of depositary institu                                                                                                                                                                                                                                                                                                                                                                                                               | ntion American Type Culture Col        | lection                                                             |  |
| Address of depositary in<br>10801 University Bou<br>Manassas, Virginia<br>United States of Ame                                                                                                                                                                                                                                                                                                                                           | 20110-2209                             | untry)                                                              |  |
| Date of deposit                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | Accession Number                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                          | April 7, 1998                          | 209746                                                              |  |
| C. ADDITIONAL IN                                                                                                                                                                                                                                                                                                                                                                                                                         | DICATIONS (leave blank if not applice  | able) This information is continued on an additional sheet          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                                     |  |
| D. DESIGNATED ST                                                                                                                                                                                                                                                                                                                                                                                                                         | ATES FOR WHICH INDICATION              | ONS ARE MADE (if the indications are not for all designated States) |  |
| EUROPE In respect to those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28 (4) EPC). |                                        |                                                                     |  |
| E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)                                                                                                                                                                                                                                                                                                                                                                    |                                        |                                                                     |  |
| The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications e.g., "Accession Number of Deposit")                                                                                                                                                                                                                                                                     |                                        |                                                                     |  |
| For receiving Office use only For International Bureau use only                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                          | ved with the international application | This sheet was received by the International Bureau on:             |  |
| Authorized officer                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | Authorized officer                                                  |  |
| Form PCT/RO/134 (July 19                                                                                                                                                                                                                                                                                                                                                                                                                 | 992)                                   |                                                                     |  |

WO 99/58660 281 PCT/US99/09847

ATCC Deposit No. 209746 Page 2

#### **CANADA**

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

#### **NORWAY**

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

#### AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

#### **FINLAND**

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Regulations), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

#### UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

ATCC Deposit No. 209746 Page 3

#### **DENMARK**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

282

PCT/US99/09847

#### **SWEDEN**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

#### **NETHERLANDS**

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in the 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

## INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

| A.                                                                                                                                                                   | Theindicationsn                         | nade below relate to the                   | microorganism refer                      | red to in the description                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------|
|                                                                                                                                                                      | on page                                 | 173                                        | , line                                   | N/A                                                                                             |
| B.                                                                                                                                                                   | IDENTIFICATI                            | ONOFDEPOSIT                                |                                          | Further deposits are identified on an additional sheet                                          |
| Na                                                                                                                                                                   | me of depositary in                     | stitution American T                       | ype Culture Colle                        | ction                                                                                           |
|                                                                                                                                                                      |                                         |                                            |                                          |                                                                                                 |
| Ad                                                                                                                                                                   | dress of depositar                      | y institution (including                   | postal code and count                    | (rr)                                                                                            |
| 10                                                                                                                                                                   | 801 University I                        | Boulevard                                  | •                                        |                                                                                                 |
|                                                                                                                                                                      | inassas, virgini<br>ited States of A    | a 20110-2209<br>.merica                    |                                          |                                                                                                 |
|                                                                                                                                                                      |                                         |                                            |                                          |                                                                                                 |
|                                                                                                                                                                      |                                         |                                            |                                          |                                                                                                 |
| Dat                                                                                                                                                                  | e of deposit                            |                                            |                                          | Accession Number                                                                                |
|                                                                                                                                                                      |                                         | March 20, 1998                             |                                          | 209683                                                                                          |
| C.                                                                                                                                                                   | ADDITIONAL                              | INDICATIONS (leav                          | ve blank if not applicable               | This information is continued on an additional sheet                                            |
|                                                                                                                                                                      |                                         |                                            |                                          |                                                                                                 |
|                                                                                                                                                                      |                                         |                                            |                                          |                                                                                                 |
|                                                                                                                                                                      |                                         |                                            |                                          |                                                                                                 |
|                                                                                                                                                                      |                                         |                                            |                                          | •                                                                                               |
|                                                                                                                                                                      |                                         |                                            |                                          |                                                                                                 |
| D.                                                                                                                                                                   | DESIGNATED                              | STATES FOR WHI                             | CH INDICATION                            | S ARE MADE (if the indications are not for all designated States)                               |
|                                                                                                                                                                      | ROPE                                    |                                            |                                          |                                                                                                 |
| In re                                                                                                                                                                | espect to those or<br>roorganism will l | designations in whi<br>be made available i | ch a European Pa<br>until the publicatic | atent is sought a sample of the deposited on of the mention of the grant of the European patent |
| or u                                                                                                                                                                 | ntil the date on                        | which application ha                       | as been refused o                        | or withdrawn or is deemed to be withdrawn, only by                                              |
| the i                                                                                                                                                                | ssue of such a                          | sample to an exper                         | t nominated by th                        | e person requesting the sample (Rule 28 (4) EPC).                                               |
|                                                                                                                                                                      |                                         |                                            |                                          |                                                                                                 |
| ,                                                                                                                                                                    |                                         | RNISHING OF IND                            |                                          | • • • •                                                                                         |
| The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications e.g., "Accession Number of Deposit") |                                         |                                            |                                          |                                                                                                 |
|                                                                                                                                                                      |                                         |                                            |                                          |                                                                                                 |
|                                                                                                                                                                      |                                         |                                            |                                          |                                                                                                 |
|                                                                                                                                                                      |                                         |                                            |                                          |                                                                                                 |
|                                                                                                                                                                      |                                         |                                            |                                          |                                                                                                 |
|                                                                                                                                                                      |                                         | ceiving Office use only                    | 1 1                                      | For International Bureau use only                                                               |
| Ш                                                                                                                                                                    | This sheet was reco                     | eived with the internation                 | onal application                         | This sheet was received by the International Bureau on:                                         |
| <del></del>                                                                                                                                                          |                                         |                                            |                                          |                                                                                                 |
| Auth                                                                                                                                                                 | orized officer                          |                                            | 11                                       | Authorized officer                                                                              |
|                                                                                                                                                                      |                                         |                                            | <b> </b>                                 | 1                                                                                               |
|                                                                                                                                                                      |                                         |                                            |                                          |                                                                                                 |

Form PCT/RO/134 (July 1992)

ATCC Deposit N . 209683 Page 2

#### **CANADA**

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

284

#### NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

#### **AUSTRALIA**

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

#### **FINLAND**

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Regulations), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

#### UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

\* 2世紀 大学 130 · ·

ATCC Dep sit No. 209683 Page 3

#### **DENMARK**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

#### **SWEDEN**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

#### **NETHERLANDS**

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in the 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

10

20

#### What Is Claimed Is:

- 1. An isolated nucleic acid molecule comprising a polynucleotide having a nucleotide sequence at least 95% identical to a sequence selected from the group consisting of:
- (a) a polynucleotide fragment of SEQ ID NO:X or a polynucleotide fragment of the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
- (b) a polynucleotide encoding a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
  - (c) a polynucleotide encoding a polypeptide domain of SEQ ID NO:Y or a polypeptide domain encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
- (d) a polynucleotide encoding a polypeptide epitope of SEQ ID NO:Y or a polypeptide epitope encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
  - (e) a polynucleotide encoding a polypeptide of SEQ ID NO:Y or the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X, having biological activity;
    - (f) a polynucleotide which is a variant of SEQ ID NO:X;
    - (g) a polynucleotide which is an allelic variant of SEQ ID NO:X;
  - (h) a polynucleotide which encodes a species homologue of the SEQ ID NO:Y;
- (i) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(h), wherein said polynucleotide does not hybridize under stringent conditions to a nucleic acid molecule having a nucleotide sequence of only A residues or of only T residues.

30

- 2. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises a nucleotide sequence encoding a secreted protein.
- 5 The isolated nucleic acid molecule of claim 1, wherein the 3. polynucleotide fragment comprises a nucleotide sequence encoding the sequence identified as SEQ ID NO:Y or the polypeptide encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X.
- 10 4. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises the entire nucleotide sequence of SEQ ID NO:X or the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X.
- 15 5. The isolated nucleic acid molecule of claim 2, wherein the nucleotide sequence comprises sequential nucleotide deletions from either the C-terminus or the N-terminus.
- 6. The isolated nucleic acid molecule of claim 3, wherein the nucleotide 20 sequence comprises sequential nucleotide deletions from either the C-terminus or the N-terminus.
  - 7. A recombinant vector comprising the isolated nucleic acid molecule of claim 1.

8. A method of making a recombinant host cell comprising the isolated

- nucleic acid molecule of claim 1.
  - 9. A recombinant host cell produced by the method of claim 8.
  - The recombinant host cell of claim 9 comprising vector sequences. 10.

- 11. An isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence selected from the group consisting of:
- (a) a polypeptide fragment of SEQ ID NO:Y or the encoded sequenceincluded in ATCC Deposit No:Z;
  - (b) a polypeptide fragment of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z, having biological activity;
  - (c) a polypeptide domain of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
- (d) a polypeptide epitope of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
  - (e) a secreted form of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
- (f) a full length protein of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
  - (g) a variant of SEQ ID NO:Y;

- (h) an allelic variant of SEQ ID NO:Y; or
- (i) a species homologue of the SEQ ID NO:Y.
- The isolated polypeptide of claim 11, wherein the secreted form or the
   full length protein comprises sequential amino acid deletions from either the C-terminus or the N-terminus.
  - 13. An isolated antibody that binds specifically to the isolated polypeptide of claim 11.
  - 14. A recombinant host cell that expresses the isolated polypeptide of claim 11.
    - 15. A method of making an isolated polypeptide comprising:
- 30 (a) culturing the recombinant host cell of claim 14 under conditions such that said polypeptide is expressed; and

- (b) recovering said polypeptide.
- 16. The polypeptide produced by claim 15.
- 5 17. A method for preventing, treating, or ameliorating a medical condition, comprising administering to a mammalian subject a therapeutically effective amount of the polypeptide of claim 11 or the polynucleotide of claim 1.
- 18. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject comprising:
  - (a) determining the presence or absence of a mutation in the polynucleotide of claim 1; and
  - (b) diagnosing a pathological condition or a susceptibility to a pathological condition based on the presence or absence of said mutation.

- 19. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject comprising:
- (a) determining the presence or amount of expression of the polypeptide of claim 11 in a biological sample; and
- 20 (b) diagnosing a pathological condition or a susceptibility to a pathological condition based on the presence or amount of expression of the polypeptide.
  - 20. A method for identifying a binding partner to the polypeptide of claim 11 comprising:
    - (a) contacting the polypeptide of claim 11 with a binding partner; and
  - (b) determining whether the binding partner effects an activity of the polypeptide.
    - 21. The gene corresponding to the cDNA sequence of SEQ ID NO:Y.

- 22. A method of identifying an activity in a biological assay, wherein the method comprises:
  - (a) expressing SEQ ID NO:X in a cell;
  - (b) isolating the supernatant;
- 5 (c) detecting an activity in a biological assay; and
  - (d) identifying the protein in the supernatant having the activity.
  - 23. The product produced by the method of claim 20.

The state of the s

```
<110> Human Genome Sciences, Inc., et al.
```

- <120> 97 Human Secreted Proteins
- <130> PZ028PCT
- <140> Unassigned
- <141> 1999-05-05
- <150> 60/085,180
- <151> 1997-05-10
- <150> 60/085,105
- <151> 1997-05-10
- <150> 60/085,094
- <151> 1997-05-10
- <150> 60/085,093
- <151> 1997-05-10
- <150> 60/085,924
- <151> 1997-05-10
- <150> 60/085,906
- <151> 1997-05-10
- <150> 60/085,927
- <151> 1997-05-10
- · <150> 60/085,920
- <151> 1997-05-10
- <150> 60/085,928
- <151> 1997-05-10
- <150> 60/085,925
- <151> 1997-05-10
- <150> 60/085,921
- <151> 1997-05-10
- <150> 60/085,923
- <151> 1997-05-10
- <150> 60/085,922
- <151> 1997-05-10
- <160> 412
- <170> PatentIn Ver. 2.0
- <210> 1
- <211> 733
- <212> DNA
- <213> Homo sapiens

```
<400> 1
gggatccgga gcccaaatct tctgacaaaa ctcacacatg cccaccgtgc ccagcacctg
                                                                         60
                                                                        120
aattcgaggg tgcaccgtca gtcttcctct tccccccaaa acccaaggac accctcatga
tctcccggac tcctgaggtc acatgcgtgg tggtggacgt aagccacgaa gaccctgagg
                                                                        180
tcaagttcaa ctggtacgtg gacggcgtgg aggtgcataa tgccaagaca aagccgcggg
                                                                        240
aggagcagta caacagcacg taccgtgtgg tcagcgtcct caccgtcctg caccaggact
                                                                        300
ggctgaatgg caaggagtac aagtgcaagg tctccaacaa agccctccca acccccatcg
                                                                        360
                                                                        420
agaaaaccat ctccaaagcc aaagggcagc cccgagaacc acaggtgtac accctgcccc
catcccggga tgagctgacc aagaaccagg tcagcctgac ctgcctggtc aaaggcttct
                                                                        480
                                                                        540
atccaagcga catcgccgtg gagtgggaga gcaatgggca gccggagaac aactacaaga
ccacgcctcc cgtgctggac tccgacggct ccttcttcct ctacagcaag ctcaccgtgg
                                                                        600
acaagagcag gtggcagcag gggaacgtct tctcatgctc cgtgatgcat gaggctctgc
                                                                        660
acaaccacta cacgcagaag agecteteee tgteteeggg taaatgagtg egaeggeege
                                                                        720
                                                                        733
gactctagag gat
<210> 2
<211> 5
<212> PRT
<213> Homo sapiens
<220>
<221> Site
<222> (3)
<223> Xaa equals any of the twenty naturally ocurring L-amino acids
<400> 2
Trp Ser Xaa Trp Ser
<210> 3
<211> 86
<212> DNA
<213> Homo sapiens
gcgcctcgag atttccccga aatctagatt tccccgaaat gatttccccg aaatgatttc
                                                                         60
                                                                         86
cccgaaatat ctgccatctc aattag
<210> 4
<211> 27
<212> DNA
<213> Homo sapiens
<400> 4
                                                                         27
gcggcaagct ttttgcaaag cctaggc
<210> 5
<211> 271
<212> DNA
<213> Homo sapiens
ctcgagattt ccccgaaatc tagatttccc cgaaatgatt tccccgaaat gatttccccg
                                                                         60
                                                                        120
aaatatctgc catctcaatt agtcagcaac catagtcccg cccctaactc cgcccatccc
gcccctaact ccgcccagtt ccgcccattc tccgccccat ggctgactaa tttttttat
                                                                        180
                                                                        240
ttatgcagag gccgaggccg cctcggcctc tgagctattc cagaagtagt gaggaggctt
ttttggaggc ctaggctttt gcaaaaagct t
                                                                        271
<210> 6
<211> 32
```

| <212> DNA<br><213> Homo                                                                                      | sapiens                                                                                                      |                                                                                                                                          |                                                                                         |                                                                                                              |                                                                                                              |                                                            |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| <400> 6<br>gcgctcgagg                                                                                        | gatgacagcg                                                                                                   | atagaacccc                                                                                                                               | <b>ā</b> ā                                                                              |                                                                                                              |                                                                                                              | . 32                                                       |
| <210> 7<br><211> 31<br><212> DNA<br><213> Homo                                                               | sapiens                                                                                                      |                                                                                                                                          |                                                                                         | ·                                                                                                            |                                                                                                              |                                                            |
| <400> 7<br>gcgaagcttc                                                                                        | gegaeteece                                                                                                   | ggatccgcct                                                                                                                               | С                                                                                       |                                                                                                              |                                                                                                              | 31                                                         |
| <210> 8<br><211> 12<br><212> DNA<br><213> Homo                                                               | sapiens                                                                                                      |                                                                                                                                          | •                                                                                       |                                                                                                              |                                                                                                              |                                                            |
| <400> 8<br>ggggactttc                                                                                        | cc                                                                                                           |                                                                                                                                          |                                                                                         |                                                                                                              |                                                                                                              | 12                                                         |
| <210> 9<br><211> 73<br><212> DNA<br><213> Homo                                                               | sapiens                                                                                                      |                                                                                                                                          |                                                                                         |                                                                                                              |                                                                                                              |                                                            |
| <400> 9<br>gcggcctcga<br>ccatctcaat                                                                          |                                                                                                              | ccggggactt                                                                                                                               | tccggggact                                                                              | ttccgggact                                                                                                   | ttccatcctg                                                                                                   | 60<br>73                                                   |
| <210> 10<br><211> 256<br><212> DNA<br><213> Homo                                                             | sapiens                                                                                                      |                                                                                                                                          |                                                                                         |                                                                                                              |                                                                                                              |                                                            |
| caattagtca<br>cagttccgcc                                                                                     | gcaaccatag<br>cattctccgc<br>gcctctgagc                                                                       | gactttccgg<br>tcccgcccct<br>cccatggctg<br>tattccagaa                                                                                     | aactccgccc<br>actaattttt                                                                | atcccgcccc<br>tttatttatg                                                                                     | taactccgcc<br>cagaggccga                                                                                     | 60<br>120<br>180<br>240<br>256                             |
| <210> 11<br><211> 1191<br><212> DNA<br><213> Homo                                                            | sapiens                                                                                                      |                                                                                                                                          |                                                                                         |                                                                                                              |                                                                                                              |                                                            |
| gggaccacat<br>gggatactcc<br>ccctgctgac<br>agcagcagag<br>taggctggtg<br>gtgttggctg<br>tcgccttctt<br>agggtctgat | ggggacgctg<br>caccatcgtc<br>cctgcctgtg<br>cgtttgcagc<br>cgacgtggcg<br>gaacatccaa<br>tggcaataag<br>ctcctatgcc | cccacagggc<br>ccatggcttc<br>tcccgcaagg<br>gcctacatca<br>cagatgctgc<br>tacaacttcc<br>ggcttgcaca<br>ataagcagca<br>atccagaagg<br>tgcctggacc | ttgccttctt agtggggggc tcacagacca gggggttgca tggttgggga cccagggcta gtcccagccc gtcacctgtc | cattctgggt<br>aagaccgctc<br>gctcccaggg<br>gtcccattcc<br>tgatggcagg<br>caacaacatt<br>tgctgcctta<br>gcccaggtat | ctccaggctt<br>gcctgcaggg<br>atgcagtgcc<br>gtctacacca<br>gtgtatgaag<br>tccctgggca<br>tcagctgcag<br>attcagccac | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540 |

```
gccccaacat catcaaacga tctgcttggg aagccagaga gacacactgc cctaaaatga
                                                                        660
acctcccage caaatatgte atcateatee acaccgetgg cacaagetge actgtateca
                                                                        720
cagactgcca gactgtcgtc cgaaacatac agtcctttca catggacaca cggaactttt
                                                                        780
gtgacattgg atatcaataa ggccaggcgt ggcggcgatt acgtctgtaa tcccaggact
                                                                        840
ttgggaggcc aaggcgggca gatcacttca ggccaggaat tcaagagcag cctggccaat
                                                                        900
atggcgaaac tctgtctcta ctgaaaacaa acaaacaaac aaacaaacaa acaaagaaac
                                                                        960
aacaaaaatt agccgggtgt ggtggcacac gcctgtagtc ccagctactc aggaggctga
                                                                       1020
ggcataagaa ttgcttgaac cctggaggcg gaggttgcag tgagctgaga ttgggccacc
                                                                       1080
gcactccagt ctgggagaca gagtgagact gtctcaaaac aacaacaaaa aaatccctaa
                                                                       1140
cataatctca aaaaaaaaaa aaaaaaaaaa aagggcggccg c
                                                                       1191
<210> 12
<211> 1251
<212> DNA
<213> Homo sapiens
                                                                         60
ggcacaggtc agccaactaa caaatgaagc gcagggaaat gactcaattc ttattgagtc
tagttgctct taattgctgc tctatttctt tgggaagatt gacatatcca ggaggttttc
                                                                        120
                                                                        180
atctaaaact agacccctta gaactctgaa gtcagagcaa ctttccctct gtcaatccta
                                                                        240
ctcactactt ttgtamcctt gaccagagaa gttgcttaat cttttggggc ctgcattctc
atatacctaa agtaggaata aaaatacctg cttagagact tgctcagtcc atcaaatrag
                                                                        300
agattataca caaccttccc acttcaagga tggctgcaag gacaaaaaag aaaaatgaca
                                                                        360
taataaatat aaaggtccct gcagactgta atactaggat gagttattac tacaaaggct
                                                                        420
cagggaaaag aggagagatg gagtcttggt tggtcatgtc atcatggtct attttagatt
                                                                        480
ttgagttttt agaggcaaga ccacagttgt ttaatttagt gtatacagaa cattccactt
                                                                        540
attcagggag acattatact agggaaaggg gtgggttcat ggtgttcaaa aattcatact
                                                                        600
cacagttatt attaaaaaga aaggattete tatgtgettt tatteageee atggetttaa
                                                                        660
atatcatcca tgtgcctatg tcttccaaat gtatttttcc agcccagtct ggtccctcga
                                                                        720
                                                                        780
catteagate cttatggtgg tgccctcace ctatatecaa atgccaactt ggtctctact
                                                                        840
ctagtcagat tagagatatc ccatacttgg catgactaaa atggaacttt aacttgtttc
ttatctctat ctcagtaaat cacaccacca cagtgcatca ttttcctaaa tcaaattcct
                                                                        900.
aagaatcatc cttgattttt cccttccttt tgtcccttgc catcccagat tatcctgcaa
                                                                       960
aaactgtcta tgctacctac aaaagtatct gccacatgtc atactaattg tcratatcct
                                                                       1020
agageacemt teatetgeet teacetgtgg tgttgetgea attgteteet teetggetge
                                                                       1080
cctgattata tccattctcc ctgtctccaa aagcattctg cgcacagcag acacagatgt
                                                                       1140
ttcataaatg taagtctggt catgcgctcc tctacctaaa accattagat ggtttttcat
                                                                       1200
                                                                      1251
tgcactcaca actagagttt cctgaccatg acttgcaggc taagctcgta g
<210> 13
<211> 1734
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (1417)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (1703)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (1714)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (1715)
```

```
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (1731)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (1732)
<223> n equals a,t,g, or c
<400> 13
gaagcgtgcg gtgccgcagc aatggcggcg ctcacaattg ccacgggtac tggcaattgg
                                                                         60
ttttcggctt tggcgctcgg ggtgactctt ctcaaatgcc ttctcatccc cacataccat
                                                                        120
tccacagatt ttgaagtaca ccgaaactgg cttgctatca ctcacagttt gccaatatca
                                                                        180
cagtggtatt atgaggcaac ttcagagtgg acgttggatt acccccttt ctttgcatgg
                                                                        240
tttgagtata tcctgtcaca tgttgccaaa tattttgatc aagaaatgct gaatgtccat
                                                                        300
aatttgaatt actccagctc aaggacctta cttttccaga gattttccgt catctttatg
                                                                        360
gatgtactct ttgtgtatgc tgtccgtgag tgctgtaaat gcattgatgg aaaaaaagtg
                                                                        420
ggtaaagaac ttacagaaaa gccaaaattt attctgtcgg tattacttct gtggaacttc
                                                                        480
gggttattaa ttgtggacca tattcatttt cagtacaatg gctttttatt tggattaatg
                                                                        540
ctactctcca ttgcacgatt atttcagaaa aggcatatgg aaggagcatt tctctttgct
                                                                        600
gttctcctac atttcaagca tatctacctc tatgtagcac cagcttatgg tgtatatctg
                                                                        660
ctgcgatcct actgtttcac tgcaaataaa ccagatgggt ctattcgatg gaagagtttc
                                                                        720
agetttgtte gtgttattte cetgggaetg gttgttttet tagtttetge tettteattg
                                                                        780
ggtcctttcc tggccttgaa tcagctgcct caagtctttt cccgactctt tcctttcaag
                                                                        840
aggggcctct gtcatgcata ttgggctcca aacttctggg ctttgtacaa tgctttggac
                                                                        900
aaagtgctgt ctgtcatcgg tttgaaattg aaatttcttg atcccaacaa tattcccaag
                                                                        960
gcctcaatga caagtggttt ggttcagcag ttccaacaca cagtccttcc ctcagtgact
                                                                       1020
cccttggcaa ccctcatctg cacactgatt gccatattgc cctctatttt ctgtctttgg
                                                                       1080
tttaaacccc aagggcccag aggctttctc cgatgtctaa ctctttgtgc cttgagctcc
                                                                       1140
tttatgtttg ggtggcatgt tcatgaaaaa gccatacttc tagcaattct cccaatgagc
                                                                       1200
                                                                       1260
cttttgtctg tgggaaaagc aggagacgct tcgatttttc tgattctgac cacaacagga
cattattece tettteetet getetteact geaccagaac tteccattaa aatettaete
                                                                       1320
atgttactat tcaccatata tagtatttcg tcactgaaga ctttattcag aaaagaaaaa
                                                                       1380
                                                                       1440
cctcttttta attggatgga aactttctac ctgcttngcc tggggcctct ggaagtctgc
tgtgaatttg tattcccttt cacctcctgg aaggtgaagt accccttcat ccctttgtta
                                                                       1500
ctaacctcag tgtattgtgc agtaggcatc acatatgctt ggttcaaact gtatgtttca
                                                                       1560
gtattgattg actctgctat tggcaagaca aagaaacaat gaataaagga actgcttaga
                                                                       1620
aaaaaaaaaa aaaaaaaaaa aaagggcggc cgctctagag gatccctcga gggcccaagc
                                                                       1680
                                                                       1734
ttacgcgtgc atgcgagtca tantetetec tggnntgate gtatgaaget nnge
<210> 14
<211> 1540
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (22)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (430)
<223> n equals a,t,g, or c
gcctgggcgc cgtgggcgcg gnactgcgcg ggctgcgcgg gtgccgagga gcgcgaggcg
                                                                         60
cggggaaggc gcacctgggg tggccctggc gtgcgggcgg cgacatggag gacggcgtgc
                                                                        120
tcaaggaggg cttcctggtc aagaggggcc acattgtcca caactggaag gcgcgatggt
                                                                        180
tcatccttcg gcagaacacg ctggtgtact acaagcttga ggggggtcgg agagtgaccc
                                                                        240
```

| ctcccaaggg              | ccggatcctc   | ctggatggct   | gcaccatcac   | ctgcccctgc | ctggagtatg | 300  |
|-------------------------|--------------|--------------|--------------|------------|------------|------|
| aaaaccgacc              | gctcctcatt   | aagctgaaga   | ctcaaacatc   | cacggagtac | ttcctggagg | 360  |
| cctgttctcg              | agaggaagcg   | ggatgcctgg   | gcctttkaag   | rtyaccgggg | ctattcatgc | 420  |
| agggcagccn              | ggggaaggto   | : cagcagctgc | acagcctgag   | aaactccttc | amgctgcccc | 480  |
| cgcacatcar              | gctgyatcgy   | attgtggaca   | agatgcacga   | tagcaacacc | ggwatccgtt | 540  |
| caagccccaa              | catggagcag   | agaagcacct   | . ataaaaagam | cttyctcggc | tcctccctgg | 600  |
| tggactggyt              | . yatctycaam | n agcttcamgg | gcagccgtct   | kgaggcggtg | amcctggcct | 660  |
| ccatgytcat              | rgaggagaac   | : ttcctcaggt | ctgtggctgt   | acgatgcatg | ggaggcattc | 720  |
| ggtctgggga              | tctggccgag   | cagttcctgg   | atgactccac   | agccctgtac | acttttsctg | 780  |
| agagctacam              | aaagawgata   | agccccaagg   | aagaaattag   | cctgagcact | gtggagttaa | 840  |
| gtggcacggt              | ggtgaaacaa   | ggctacctgg   | ccaagcaggg   | acacaagagg | aaaaactgga | 900  |
| aggtgcgtcg              | ctttgttcta   | aggaaggatc   | cagctttcct   | gcattactat | gacccttcca | 960  |
| aagaagagaa              | caggccagtg   | ggtgggtttt   | ctcttcgtgg   | ttcactcgtg | tctgctctgg | 1020 |
| aagataatgg              | cgttcccact   | ggggttaaag   | ggaatgtcca   | gggaaacctc | ttcaaagtga | 1080 |
| ttactaagga              | tgacacacac   | tattacattc   | aggccagcag   | caaggctgag | cgagccgagt | 1140 |
| ggattgaagc              | tatcaaaaag   | ctaacatgac   | aaggacctga   | gggaaccagg | attcctccct | 1200 |
| cctaccagat              | gacacagaca   | agagttcctg   | gagaatggga   | gtgttaagac | ttttgacttc | 1260 |
| tttgtaagtt              | ttgtactgct   | ttggagagtg   | aatgctgcca   | agagttcctc | agattacaaa | 1320 |
| cagcagtggt              | gccatttcct   | tccccatctt   | catgttacaa   | acctggaaag | gctagaacag | 1380 |
| ccattaggcg              | tcagcatctt   | gacttttccc   | cagcatcaca   | aacagccatt | tcctcgggca | 1440 |
|                         |              |              |              | tgccataatg | ttgaataaaa | 1500 |
| ctctcttctt              | atgaaaaaaa   | aaaaaaaaa    | aaaaaaaaa    |            |            | 1540 |
|                         |              |              |              |            |            |      |
| <210> 15                |              |              |              |            |            |      |
| <211> 1558              |              |              |              |            |            |      |
| <211> 1338<br><212> DNA |              |              |              |            |            |      |
| <213> Homo              | canions      |              |              |            |            |      |
| \ZI3> HOMO              | saprens      |              |              |            |            |      |
| <400> 15                |              |              |              |            |            |      |
|                         | cgaacctttt   | aaaaatggtc   | ttaatatata   | taasaasaa  | taratatara | 60   |
| tatatteeta              | tacatagcat   | gggtgcagct   | atagatatat   | acaaaaaaa  | atasatatat | 120  |
| atatatatat              | gtaaaggggt   | ctgtcctaga   | gcccacatca   | arttattata | aatctccaaa | 180  |
| aagggtcggt              | gagggccggg   | agatgttgac   | cctggtggga   | gcaggctgag | actacccat  | 240  |
| tctccacatc              | ctctatttta   | cccagtctct   | gattccatta   | agaggagtat | gctgaagcca | 300  |
| ttctcggatg              | cttcccagac   | caggctccct   | ctgccagagt   | cacatgcatc | cgagetgetg | 360  |
| gtctccattg              | tccagcagga   | aggcggaaag   | gcaggcaaga   | taatataaaa | cttaaagctt | 420  |
| gtatttgatg              | gaaaaggtct   | ccctgttca    | tctgagaggc   | caagcctggc | caccccagge | 480  |
| tcagaacctg              | ggcttcaaga   | aatgtgctgg   | gagetectaa   | cttacacatc | cctccagcct | 540  |
| tccttgaatc              | ctcccaccac   | cccctatttc   | ctttaatttc   | tcaggtctgc | tecetectee | 600  |
| cccaacccca              | cagctgggca   | agaagtctgc   | aaaaqctqca   | tctgcagctg | tctctaactc | 660  |
| ttcccagcca              | tctcccgtat   | tttttggtac   | cttgattcct   | tgactcttaa | taagccaagc | 720  |
| caccttatct              | ctgtagttct   | tattttttg    | ttgactaaat   | ttggggggtt | cttttttatq | 780  |
| gtcatgtcac              | tgacctatta   | aattggggct   | tggtgctttt   | ccaccttccc | cctctgaatg | 840  |
| aaagccaagg              | aatgggggaa   | gagcgggaac   | tctgccgcgg   | aggtggagca | agaacggtga | 900  |
| agggccctgg              | tcccagagag   | gctggtgggt   | ccctctccca   | aaggaaggca | gacagtctct | 960  |
|                         |              | gctgggggtg   |              |            |            | 1020 |
| cattcccctt              | cctttgtcct   | aatcctggaa   | ttaagtacag   | gggtttatag | gttctatttc | 1080 |
| ttcccaagag              | ccctgcaaag   | aaccccagtt   | tcctatttgg   | atgcccctac | actgttgtgt | 1140 |
| ttcagtggaa              | tgtattttca   | tttaaaaaca   | actttgaatg   | gggcactttt | tctttcctgt | 1200 |
| tttaaaaatt              | gaaaaattct   | tacagtacaa   | acaggactgt   | cagggtgggg | gtgttggtgc | 1260 |
| tgtaagaggt              | tactcttgag   | tgcattttgg   | cactgggatg   | ggatggctgg | ggtgggaaga | 1320 |
| cccccatccc              | cacccccaac   | ttcttttcta   | atatttaagg   | agtgttttgt | aggattcaac | 1380 |
| aaccaccaca              | acttgaattt   | gtatcatggg   | aggtgggagg   | gagtggctta | gaggtgtctg | 1440 |
| cctatgctta              | aagccaactg   | tggaagtttt   | gttttccctt   | ttttgtataa | taaagtgaaa | 1500 |
| aacaaaaaaa              | aaaaaaaaa    | aaaaaaaaa    | aaaaaaaaa    | aaaaaaaaa  | aaaaaaa    | 1558 |
|                         |              |              |              |            |            |      |
|                         |              |              |              |            |            |      |
| <210> 16                |              |              |              |            |            |      |

<220>

<sup>&</sup>lt;210> 16 <211> 1636 <212> DNA

<sup>&</sup>lt;213> Homo sapiens

```
<221> SITE
<222> (424)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (823)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (960)
<223> n equals a,t,g, or c
<400> 16
                                                                     60
gaattcggca cgagttgaaa ttgaaaatca agataaaaat gttcacaatt aagctccttc
tttttattgt tcctctagtt atttcctcca gaattgatca agacaattca tcatttgatt
                                                                    120
ctctatctcc agagccaaaa tcaagatttg ctatgttaga cgatgtaaaa attttagcca
                                                                    180
atggcctcct tcagttggga catggtctta aagactttgt ccataagacg aagggccaaa
                                                                    240
ttaatgacat atttcaaaaa ctcaacatat ttgatcagtc tttttatgat ctatcgctgc
                                                                    300
aaaccagtga aatcaaagar gaagaaaagg aactgagaag aactacmtat aaactacaag
                                                                    360
tcaaaaatga agaggtaaag aatatgtcac ttgaactcaa ctcaaaactt gaaagcctcc
                                                                    420
tagnagaaaa aattctactt caacaaaaag tgaaatattt agaagagcaa ctaactaact
                                                                    480
taattcaaaa tcaacctgaa actccagaac acccagaagt aacttcactt aaaacttttg
                                                                    540
tagaaaaaca agataatagc atcaaagacy ttctccagac cgtggaagac caatatwaac
                                                                    600
aattaaacca acagcatagt caaataaaag aratagaaaa tcagctcaga aggactagta
                                                                    660
720
ttcttcagtt gaatgaaata agaaatgtaa aacatgatgg cattcctgct gaatgtacca
                                                                    780
ccatttataa cagaggtgaa catacaagtg gcatgtatgc atncagaccc agcaactctc
                                                                    840
aagtttttca tgtctactgt gatgttatat caggtagtcc atggacatta attcaacatc
                                                                    900
gaatagatgg atcacaaaac ttcaatgaaa cgtgggagaa ctacaaatat ggttttgggn
                                                                    960
                                                                   1020
aggettgatg gagaattttg gttgggeeta gagaagatat actecatagt gaagcaatet
aattatgttt tacgaattga gttggaagac tggaaagaca acaaacatta tattgaatat
                                                                   1080
totttttact tgggaaatca cgaaaccaac tatacgctac atctagttgc gattactggc
                                                                   1140
                                                                   1200
aatqtcccca atgcaatccc ggaaaacaaa gatttggtgt tttctacttg ggatcacaaa
gcaaaaggac acttcaactg tccagagggt tattcaggag gctggtggtg gcatgatgag
                                                                   1260
tgtggagaaa acaacctaaa tggtaaatat aacaaaccaa gagcaaaatc taagccagag
                                                                   1320
                                                                   1380
aggagaagag gattatettg gaagteteaa aatggaaggt tatactetat aaaatcaace
aaaatgttga tccatccaac agattcagaa agctttgaat gaactgaggc aaatttaaaa
                                                                   1440
                                                                   1500
ggcaataatt taaacattaa cctcattcca agttaatgtg gtctaataat ctggtattaa
atccttaaga gaaagcttga gaaatagatt ttttttatct taaagtcact gtctatttaa
                                                                   1560
1620
                                                                   1636
gtacccaatt cgccgg
<210> 17
<211> 1256
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (1240)
<223> n equals a,t,g, or c
<400> 17
togacccacg cgtccgagca accgcagctt ctagtatcca gactccagcg ccgccccggg
                                                                     60
                                                                    120
cgcggacccc aaccccgacc cagagettet ccageggegg cgcacgagea gggeteeceg
ccttaacttc ctccgcgggg cccagccacc ttcgggagtc cgggttgccc acctgcaaac
                                                                    180
                                                                    240
totocgoott otgoacotgo caccootgag ocagogogg ogcocgagog agtoatggoo
                                                                    300
aacgcggggc tgcagctgtt gggcttcatt ctcgccttcc tgggatggat cggcgccatc
                                                                    360
gtcagcactg ccctgcccca gtggaggatt tactcctatg ccggcgacaa catcgtgacc
                                                                    420
gcccaggcca tgtacgaggg gctgtggatg tcctgcgtgt cgcagagcac cgggcagatc
cagtgcaaag totttgacto ottgotgaat otgagcagca cattgcaago aaccogtgco
                                                                    480
```

```
540
ttgatggtgg ttggcatcct cctgggagtg atagcaatct ttgtggccam cgttggcatg
aagtgtatga agtgcttgga agacgatgag gtgcagaaga tgaggatggc tgtcattggg
                                                                        600
ggcgcgatat ttcttcttgc aggtctggct attttagttg ccacagcatg gtatggcaat
                                                                        660
agaatcgttc aagaattcta tgaccctatg accccagtca atgccaggta cgaatttggt
                                                                        720
caggetetet teactggetg ggetgetget tetetetgee ttetgggagg tgeeetaett
                                                                        780
tgctgttcct gtccccgaaa aacaacctct tacccaacac caaggcccta tccaaaacct
                                                                        840
gcaccttcca gcgggaaaga ctacgtgtga cacagaggca aaaggagaaa atcatgttga
                                                                        900
aacaaaccga aaatggacat tgagatacta tcattaacat taggacctta gaattttggg
                                                                        960
tattgtaatc tgaagtatgg tattacaaaa caaacaaaca aacaaaaaac ccatgtgtta
                                                                       1020
                                                                       1080
aaatactcag tgctaaacat ggcttaatct tattttatct tctttcctca atataggagg
gaagattttt ccatttgtat tactgcttcc cattgagtaa tcatactcaa ctgggggaag
                                                                       1140
                                                                       1200
gggtgctcct taaatatata tagatatgta tatatacatg tttttctatt aaaaatagac
agtaaaatwo taaaaaaaaa aaaaaaamcy cgggggggn ccggtaccca ttcgcc
                                                                       1256
<210> 18
<211> 1143
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (1100)
<223> n equals a,t,g, or c
<400> 18
ggcacgaggg ctggggtcag caaatataca gggggccgag gcgtcacgtg ggccccatcc
                                                                         60
tcagcagcag tgcctcggat atcttctgcg acaatgagaa tgggcctaac ttccttttcc
                                                                        120
                                                                        180
acaaccgggg cgatggcacc tttgtggacg ctgcggccag tgctggtgtg gacgaccccc
accagcatgg gcgaggtgtc gccctggctg acttcaaccg tgatggcaaa gtggacatcg
                                                                        240
tctatggcaa ctggaatggc ccccaccgcc tctatctgca gatgagcacc catgggaagg
                                                                        300
tecgetteeg gggacatege etteaceeaa gttetecatg eceteceetg tteegeacgg
                                                                        360
tcatcaccgg ccgactttga caatgaccag gagctggaga atcttcttca acaacattgc
                                                                        420
                                                                        480
ctaccgcagc tectcageca accgeetett eegegteate egtagagage acggagaece
cctcatcgag gagctcaatc ccggcgacgc cttggagcct gagggccggg gcacaggggg
                                                                        540
tgtggtgacc gacttcgacg gagacgggat gctggacctc atcttgtccc atggagagtc
                                                                        600
catggeteaa eegetgteeg tetteegggg caateaggge tteaacaaca aetggetgeg
                                                                        660
agtggtgcca cgcacccggt ttggggcctt tgccagggga gctaaggtcg tgctctacac
                                                                        720
caagaagagt ggggcccacc tgaggatcat cgacgggggc tcaggctacc tgtgtgagat
                                                                        780
ggagcccgtg gcacactttg gcctggggaa ggatgaagcc agcagtgtgg aggtgacgtg
                                                                        840
gccagatggc aagatggtga gccggaacgt ggccagcggg gagatgaact cagtgctgga
                                                                        900
gatectetae eccegggatg aggacaeact teaggaceea geceeactgg agtgtggeea
                                                                        960
aggattetee cageaggaaa atggeeattg catggacace aatgaatgea tecagtteee
                                                                       1020
attcgtgtgc cctcgagaca agcccgtatg tgtcaacacc tatggaagct acaggtgccg
                                                                       1080
gaccaacaag aagtgcagtn cggggctacg agtcccaacg aggatggcac atacgggctt
                                                                       1140
                                                                       1143
atc
<210> 19
<211> 1537
<212> DNA
<213> Homo sapiens
<400> 19
atcatatagg aaacggtagc ctgcagtacc ggtccggaat tcccgggtcg acccacgcgt
                                                                         60
ccggagcagc aagagatttg tcctggggat ccagaaaccc atgataccct actgaacacc
                                                                        120
                                                                        180
gaatcccctg gaagcccaca gagacagaga cagcaagaga agcagagata aatacactca
cgccaggagc tegetegete tetetetete teteteacte etecetecet etetetetge
                                                                        240
                                                                        300
etgteetagt cetetagtee teaaatteee agteeeetge acceetteet gggacactat
gttgttctcc gccctcctgc tggaggtgat ttggatcctg gctgcagatg ggggtcaaca
                                                                        360
ctggacgtat gagggcccac atggtcagga ccattggcca gcctcttacc ctgagtgtgg
                                                                        420
aaacaatgcc cagtcgccca tcgatattca gacagacagt gtgacatttg accctgattt
                                                                        480
gcctgctctg cagccccacg gatatgacca gcctggcacc gagcctttgg acctgcacaa
                                                                        540
caatggccac acagtgcaac tetetetgee etetaceetg tatetgggtg gaetteeceg
                                                                        600
```

```
aaaatatgta gctgcccagc tccacctgca ctggggtcag aaaggatccc caggggggtc
                                                                         660
 agaacaccag atcaacagtg aagccacatt tgcagagctc cacattgtac attatgactc
                                                                         720
 tgattcctat gacagcttga gtgaggctgc tgagaggcct cagggcctgg ctgtcctggg
                                                                         780
 catcctaatt gagctggaaa agcttcaggg gacattgttc tccacagaag aggagccctc
                                                                         840
 taagcttctg gtacagaact accgagccct tcagcctctc aatcagcgca tggtctttgc
                                                                         900
 ttctttcatc caagcaggat cctcgtatac cacaggtgaa atgctgagtc taggtgtagg
                                                                         960
 aatcttggtt ggctgtctct gccttctcct ggctgtttat ttcattgcta gaaagattcg
                                                                        1020
 gaagaagagg ctggaaaacc gaaagagtgt ggtcttcacc tcagcacaag ccacgactga
                                                                        1080
 ggcataaatt cetteteaga taccatggat gtggatgact tecetteatg cetateagga
                                                                        1140
 agcctctaaa atggggtgta ggatctggcc agaaacactg taggagtagt aagcagatgt
                                                                        1200
 cctccttccc ctggacatct cctagagagg aatggaccca ggctgtcatt ccaggaagaa
                                                                        1260
 ctgcagagec ttcagectet ecaaacatgt aggaggaaat gaggaaateg etgtgttgtt
                                                                        1320
 aatgcagaga acaaactctg tttagttgca ggggaagttt gggatatacc ccaaagtcct
                                                                        1380
 ctaccccctc acttttatgg ccctttccct agatatactg cgggatctct ccttaggata
                                                                        1440
 aagagttgct.gttgaagttg tatatttttg atcaatatat ttggaaatta aagtttctga
                                                                        1500
 ctttaaaaaa aaaaaaaaa aaaaaactcg agggggg
                                                                        1537
 <210> 20
 <211> 2672
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> SITE
 <222> (16)
 <223> n equals a,t,g, or c
 <220>
<221> SITE
<222> (28)
 <223> n equals a,t,g, or c
<220>
<221> SITE
<222> (47)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (52)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (93)
<223> n equals a,t,g, or c
<400> 20
cccaaagttc ggaaantaaa ccttcaanta aagggaaaca aaaagcngga gnttcccacc
gcgggtgggc ggcccgttct agaattaagt ggnatccccc cggggctgcc aggaatttcc
                                                                        120
gageegggge egegeegeeg etgeeegeeg eegegsgegg attytgette teagaagatg
                                                                        180
cactattata gatactctaa cgccaaggtc agctgctggt acaagtacct ccttttcagc
                                                                        240
tacaacatca tettetgrtt ggetggagtt gtetteettg gagteggget gtgggeatgg
                                                                        300
agcgaaaagg gtgtgctgtc cgacctcacc aaagtgaccc ggatgcatgg aatcgaccct
                                                                        360
gtggtgctgg tcctgatggt gggcgtggtg atgttcaccc tggggttcgc cggctgcgtg
                                                                        420
ggggctctgc gggagaatat ctgcttgctc aactttttct gtggcaccat cgtgctcatc
                                                                        480
ttcttcctgg agctggctgt ggccgtgctg gccttcctgt tccaggactg ggtgagggac
                                                                        540
cggttccggg agttcttcga gagcaacatc aagtcctacc gggacgatat cgatctgcaa
                                                                        600
aacctcatcg actcccttca gaaagctaac cagtgctgtg gcgcatatgg ccctgaagac
                                                                        660
tgggacctca acgtctactt caattgcagc ggtgccagct acagccgaga gaagtgcggg
                                                                        720
gtccccttct cctgctgcgt gccagatcct gcgcaaaaag ttgtgaacac acagtgtgga
                                                                        780
tatgatgtca ggattcagct gaagagcaag tgggatgagt ccatcttcac gaaaggctgc
                                                                        840
atccaggege tggaaagetg geteeegegg aacatttaca ttgtggetgg egtetteate
                                                                       900
```

aactcgag

```
gccatctcgc tgttgcagat atttggcatc ttcctggcaa ggacgctgat ctcagacatc
                                                                      960
gaggcagtga aggccggcca tcacttctga ggagcagagt tgagggagcc gagctgagcc
                                                                     1020
acgctgggag gccagagcct ttctctgcca tcagccctac gtccagaggg agaggagccg
                                                                     1080
acaccccag agccagtgcc ccatcttaag catcagcgtg acgtgacctc tctgtttctg
                                                                     1140
cttgctggtg ctgaagacca agggtccccc ttgttacctg cccaaacttg tgactgcatc
                                                                     1200
cctctggagt ctacccagag acagagaatg tgtctttatg tgggagtggt gactctgaaa
                                                                     1260
gacagagagg gctcctgtgg ctgccaggag ggcttgactc agaccccctg cagctcaagc
                                                                     1320
                                                                     1380
atgtctgcag gacaccctgg tcccctctcc actggcatcc agacatctgc tttgggtcat
ccacatctgt gggtgggccg tgggtagagg gacccacagg cgtggacagg gcatctctct
                                                                     1440
ccatcaagca aagcagcatg ggggcctgcc cgtaacggga ggcggacgtg gccccgctgg
                                                                     1500
gcctctgagt gccagcgcag tctgctggga catgcacata tcaggggttg tttgcaggat
                                                                     1560
cctcagccat gttcaagtga agtaagcctg agccagtgcg tggactggtg ccacgggagt
                                                                     1620
gccttgtcca ctgtcccct gtgtccacca gctattctcc tggcgccgga actgcctctg
                                                                     1680
gtottgatag cattaagcco tgatggcgco ggtggcggtt gggcatggtt cttcactgag
                                                                     1740
                                                                     1800
agccggctct ccttttctta aagtgtgtaa atagtttatt tataggggta agaatgttct
cacaccattt cactteetet teeteteete cagcattete etetgageag cettagatag
                                                                     1860
tgtccatggc tggagccgac cctttgagtc cccttgagtg tcttaagaac cagcccacaa
                                                                     1920
cageetetet tteteeteea cataetgeag eeteeeteea tgeateeeac ataeaageae
                                                                     1980
toccccacto cocagogtgg cotcactgto ttotggtott ggtgctactg aaattgtoac
                                                                     2040
ccaqaatttg aatcctgacc ctccccactg caagcccagg gagccccagc ccaagatggc
                                                                     2100
cagcetgaaa etgttggeea gggeteetet tgtggeeatg tacceaggge tggetggeet
                                                                     2160
gccatttgcc tctccccgga gacagccgtt cttctgcaac cacaccccgt gcctagccac
                                                                     2220
aaccccaggc tgcagctgct cagaagctcc aggcattttg tttctggtga ccgcccctaa
                                                                     2280
tgggatatcg gtgatcactg gtccaccctt cctgtcaggg cttttctggg gctgctcttg
                                                                     2340
gaaatgaagt cttaagtact gaataactcc cctggggata gctggggcat ttgtctagct
                                                                     2400
gggctacttt ctaacacttt gccatagctc agaccacttc tcatcgttca gggatggact
                                                                     2460
gcaaccttaa tttacttgcc ggagtgtaca ttctagtgtg gtgtatactg gtggctgttg
                                                                     2520
atgatgattt ttttttttt tttacacaat tctctgtaga ctaggagaag aatgcttgtg
                                                                     2580
                                                                     2640
tttttcggaa gtgtgatgct tctctttgac tgccaaactc ttttatggaa tatatcttta
tattaaaaaa aaaaaaaaa aa
                                                                     2672
<210> 21
<211> 1508
<212> DNA
<213> Homo sapiens
<400> 21
                                                                       60
ggcacagaga tagagcggca acctcggaag tgcggacggg tgggcctata tagatgttga
ggtgcggagg ccgtgggctt ttgttgggcc tggctgtagc cgcagcagcg gtaatggcag
                                                                      120
                                                                      180
cacggettat gggetggtgg ggteceegeg etggettteg cetttteata eeggaggage
tgtctcgcta ccgcggcggc ccaggggacc cgggcctgta cttggcgttg ctcggccgtg
                                                                      240
tctacgatgt gtcctccggc cggagcacta cgagcctggg tcccactata gcggcttcgc
                                                                      300
aggccgagac gcatccagag ctttcgtgac cggggactgt tctgaagcag gcctcgtgga
                                                                      360
tgacgtatcc gacctgtcag ccgctgagat gctgacactt cacaattggc tttcattcta
                                                                      420
                                                                      480
tqaqaaqaat tatgtgtgtg ttgggagggt gacaggacgg ttctacggag aggatgggct
gcccaccccg gcactgaccc aggtagaagc tgcgatcacc agaggcttgg aggccaacaa
                                                                      540
                                                                      600
actacagetg caagagaage agacatteee geegtgcaac geggagtgga geteageeag
gggcagccgg ctctggtgct cccagaagag tggaggtgtg agcagagact ggattggcgt
                                                                      660
                                                                      720
ccccaggaag ctgtataagc caggtgctaa ggagccccgc tgcgtgtgtg tgagaaccac
cggccccct agtggccaga tgccggacaa ccctccacac agaaatcgtg gggacctgga
                                                                      780
ccacccaaac ttggcagagt acacaggctg cccaccgcta gccatcacat gctcctttcc
                                                                      840
                                                                      900
actctaagcc gtagcctctt ctgttaataa cacacagaga gctctgccaa gcacctgagt
aggcccttga cacttgtgtg ccctgggatg cctcctggcg cgaatcagga gggtctggaa
                                                                      960
ggactetgge tatattetge aaatgtgget catgeceett accgtggete ggegttgtgg
                                                                     1020
tgcctgaggg acagccggcc acctgcccag tactggtcag cttttcaaca ctattccctt
                                                                     1080
                                                                     1140
tgacctactg gccatcttcc tcacagccct cagatatcaa cgggcacaaa taagaccaac
tcaatttcca cttgaattta caaccaaaag cctgctgagt tgattacagc tgggccaata
                                                                     1200
cagtacgagg caataacaaa ttagtgtggg ttgattctgg aattggaaaa gcttttgctt
                                                                     1260
qtatqqatac aqcaaatcca gatgtctctg aacaaagcaa caatttaaag caacgacatt
                                                                     1320
ttctgtcctt taagcactta aaatcaggtg tggtgtgttt tcaaaggcag aagtctgcat
                                                                     1380
                                                                     1440
tttgagcaaa aggtggcttc ccagctctaa caaggtaact ggttagcatg acattaaagc
1500
                                                                     1508
```

```
<210> 22
<211> 1447
<212> DNA
<213> Homo sapiens
<400> 22
aattcggcac gagagattta agtgcagcgt ggattttttt tttctcactt tgccttgtgt
                                                                       60
tttccaccct gaaagaatgt tgtggctgct cttttttctg gtgactgcca ttcatgctga
                                                                      120
actotytoaa coaggtycay aaaatyottt taaagtyaga ottaytatoa gaacagotot
                                                                      180
gggagataaa gcatatgcct gggataccaa tgaagaatac ctcttcaaag cgatggtagc
                                                                      240
tttctccatg agaaaagttc ccaacagaga agcaacagaa atttcccatg tcctactttg
                                                                      300
caatgtaacc cagagggtat cattctggtt tgtggttaca gacccttcaa aaaatcacac
                                                                      360
cetteetget gttgaggtge aatcageeat aagaatgaac aagaacegga teaacaatge
                                                                      420
cttctttcta aatgmccaaa ctctggaatt tttaaaaatc ccttccacac ttgcaccacc
                                                                      480
catggaccca totgtgccca totggattat tatatttggt gtgatatttt gcatcatcat
                                                                      540
                                                                      600
agttgcaatt gcactactga ttttatcagg gatctggcaa cgtagaagaa agaacaaaga
accatctgaa gtggatgacg ctgaagataa gtgtgaaaac atgatcacaa ttgaaaatgg
                                                                      660
catcccctct gatcccctgg acatgaaggg agggcatatt aatgatgcct tcatgacaga
                                                                      720
ggatgagagg ctcacccctc tctgaagggc tgttgttctg cttcctcaag aaattaaaca
                                                                      780
tttgtttctg tgtgactgct gagcatcctg aaataccaag agcagatcat atattttgtt
                                                                      840
tcaccattct tcttttgtaa taaattttga atgtgcttga aagtgaaaag caatcaatta
                                                                      900
tacccaccaa caccactgaa atcataagct attcacgact caaaatattc taaaatattt
                                                                      960
ttctgacagt atagtgtata aatgtggtca tgtggtattt gtagttattg atttaagcat
                                                                     1020
ttttagaaat aagatcaggc atatgtatat attttcacac ttcaaagacc taaggaaaaa
                                                                     1080
taaattttcc agtggagaat acatataata tggtgtagaa atcattgaaa atggatcctt
                                                                     1140
tttgacgatc acttatatca ctctgkatat gactaagtaa acaaaagtga gaagtaatta
                                                                     1200
ttgtaaatgg atggataaaa atggaattac tcatatacag ggtggaattt tatcctgtta
                                                                     1260
tcacaccaac agttgattat atattttctg aatatcagcc cctaatagga caattctatt
                                                                     1320
tgttgaccat ttctacaatt tgtaaaagtc caatctgtgc taacttaata aagtaataat
                                                                     1380
1440
                                                                     1447
actcgag
<210> 23
<211> 1583
<212> DNA
<213> Homo sapiens
<400> 23
ggcacgaggg acaacgacta tctgctacat ggtcatagac ctcccatgtt ctcctttcgg
                                                                       60
gettgettea agageatett cegeatteat acagaaactg geaacatetg gacecatetg
                                                                      120
cttggtttcg tgctgtttct ctttttggga atcttgacca tgctcagacc aaatatgtac
                                                                      180
ttcatggccc ctctacagga gaaggtggtt tttgggatgt tctttttggg tgcagtgctc
                                                                      240
tgcctcagct tctcctggct ctttcacacc gtctattgtc attcagagaa agtctctcgg
                                                                      300
actttttcca aactggacta ttcagggatt gctcttctaa ttatggggag ctttgtcccc
                                                                      360
tggctctatt attccttcta ctgctcccca cagccacggc tcatctacct ctccatcgtc
                                                                      420
tgtgtcctgg gcatttctgc catcattgtg gcgcagtggg accggtttgc cactcctaag
                                                                      480
                                                                      540
caccggcaga caagagcagg cgtgttcctg ggacttggct tgagtggcgt cgtgcccacc
atgcacttta ctatcgctga gggctttgtc aaggccacca cagtgggcca gatgggctgg
                                                                      600
ttcttcctca tggctgtgat gtacatcact ggagctggcc tttatgctgc tcgaattcct
                                                                      660
gagegettet tteetggaaa atttgacata tggtteeagt eteateagat ttteeatgte
                                                                      720
ctggtggtgg cagcagcctt tgtccacttc tatggagtct ccaaccttca ggaattccgt
                                                                      780
tacggcctag aaggcggctg tactgatgac accettetet gagcetteec acctgcgggg
                                                                      840
tggaggagga acttcccaag tgcttttaaa aataacttct ttgctgaagt gagaggaaga
                                                                      900
gtctgagttg tctgtttcta gaagaaacct cttagagaat tcagtaccaa ccaagcttca
                                                                      960
gcccactttc acacccactg ggcaataaac tttccatttc cattctccta gctggggatg
                                                                     1020
gggcatggtc aaacttagcc atcccctcct cagcaaggca tctaccggcc cctcacagag
                                                                     1080
acagtacttt gaaactcatg ttgagatttt acceteteet ccaaccattt tgggaaaatt
                                                                     1140
atggactggg actottcaga aattotgtot tttottctgg aagaaaatgt coctcoctta
                                                                     1200
cccccatcct taactttgta tcctggctta taacaggcca tccatttttg tagcacactt
                                                                     1260
ttcaaaaaca attatatacc ctggtcccat ctttctaggg cctggatctg cttatagagc
                                                                     1320
aggaagaata aagccaccaa cttttaccta gcccggctaa tcatggaagt gtgtccaggc
                                                                     1380
```

```
ttcaagtaac ttgagtttta atttttttt ttttcttggc agagtaatgt aaaatttaaa
tggggaaaga tatttaatat ttaatactaa gctttaaaaa gaaacctgct atcattgcta
                                                                      1500
                                                                      1560
tgtatcttga tgcaaagact atgatgttaa taaaagaaag tacagaagac acttggcatt
caaaaaaaa aaaaaaaaa aaa
                                                                      1583
<210> 24
<211> 1669
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (587)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (1634)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (1648)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (1659)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (1668)
<223> n equals a,t,g, or c
aggcgcttag gggctgaggc gcgatggcag gtgtcggggc tgggcctctg cgggcgatgg
ggcggcaggc cctgctgctt ctcgcgctgt gcgccacagg cgcccagggg ctctacttcc
                                                                        120
acateggega gacegagaag egetgtttea tegaggaaat ceeegaegag accatggtea
                                                                        180
tcggtcaggc gggctgaggg tggggaggcc ctttgtaccc agctcagccc tcggcggcgc
                                                                        240
tecetectee egageceage egggtegetg getececeag tacetageet gagggtgeee
                                                                        300
cgaggacgcc aggccccctg cctagagctc cgggccgcac gtcggagggg gccgggcgga
                                                                        360
gaggeggeec actagggeeg gtegtgacta tgtgtetgee eegeaggeaa etategtace
                                                                        420
cagatgtggg ataagcagaa ggaggtette etgeeetega eeeetggeet gggeatgeae
                                                                        480
                                                                        540
gtggaagtga aggaccccga cggcaaggtg gtgctgtccc ggcagtacgg ctcggagggc
cgcttcacgt tcacctccca cacgcccggt gaccatcaaa tctgtcngca ctccaattct
                                                                        600
                                                                        660
accaggatgg ctctcttcgc tggtggcaaa ctgcgkgtgc atctcgacat ccaggttggg
gagcatgcca acaactaccc tgagattgct gcaaaagata agctgacgga gctacagctc
                                                                        720
cgcgcccgcc agttgcttga tcaggtggaa cagattcaga aggagcagga ttaccaaagg
                                                                        780
                                                                        840
gcaagtgcat atctccttgt aatttgagag ggcagttgac ctttataccc actataccta
ctcaagtttc tgcttgggag atcagctctg cagagaatgg aatgagaagt attggtttag
                                                                        900
                                                                        960
ataggttgtt tgtttgttgt ttttgagacg gagtttcact cttgttgccc atgctggagt
gcaatgccat gatcttggct cactgcaacc tccgcctccc caggctgagg caggagaatg
                                                                       1020
gcgtgagetc gggaggtgga gettgeagtg agetgagate gtgeeaetge aetecageet
                                                                       1080
gggcgacaga gtgagactcc ttctaaaaaa caaaaacaaa accaaaacag tagttagggt
                                                                      1140
acacacacac aaattctagt gattttcccc ccagtactac ccttgacttt tgaaattcct
                                                                       1200
gettteteag agtttacaac atcettacca aacageette teceteetta ecacaaaaaa
                                                                       1260
araaaaaaa gttctggggt tgaggggaca ctccattctt aacatcctct attatcccag
                                                                       1320
                                                                       1380
cccaattccc cageteteac tgggactagt tgtacetate tteatteatt tggteceage
atgactacct gttggtgcat gagctgatct ctcctaacct aacagccaga tgctagtctc
                                                                      1440
                                                                      1500
tggtactyag atgctgggct gcatcagata ggatgcacag gatcatcctg ggaagcttgt
tgacatagat tcctgtgcaa cacttcagat atagtcttaa tgtagatttg tgttggggtg
                                                                      1560
                                                                      1620
gtatggtagg tagaataatg ggcctaccac tgtgtaaaca tatggatatg tttacctaac
```

```
atgacagaag aganttaagt tgctaatnag atgactgtna aataaatna
                                                                       1669
<210> 25
<211> 1053
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (1025)
<223> n equals a,t,g, or c
<400> 25
ctaggagcac cgagcagctt ggctaaaagt aagggtgtcg tgctgatggc cctgtgcgca
                                                                         60
ctgaccegeg etetgekete tetgaacetg gegeeceega eegtegeege ecetgeeceg
                                                                        120
agtotgttoc cogoogocca gatgatgaac aatggcotco tocaacagoo etotgcottg
                                                                        180
atgttgctcc cctgccgccc agttcttact tctgtggccc ttaatgccaa ctttgtgtcc
                                                                        240
tggaagagtc gtaccaagta caccattaca ccagtgaaga tgaggaagtc tgggggccga
                                                                        300
gaccacacag gccgaatccg ggtgcatggt attggcgggg gccacaagca acgttatcga
                                                                        360
atgattgact ttctgcgttt ccggcctgag gagaccaagt caggaccett tgaggagaag
                                                                        420
gttatccaag tocgotatga tocotgtagg toagcagaca tagototggt tgctgggggc
                                                                        480
                                                                        540
agccggaaac gctggatcat cgccacagaa aacatgcagg ctggagatac aatcttgaac
totaaccaca taggeegaat ggeagttget getegggaag gggatgegea teetettggg
                                                                        600
gctctgcctg tggggaccct catcaacaac gtggaaagtg agccaggccg gggtgcccaa
                                                                        660
                                                                        720
tatatccgag ctgcagggac gtgtggtgtg ctactgcgga aggtgaatgg cacagccatt
atccagctgc cctctaagag gcagatgcag gtgctggaaa cgtgcgtagc aacagtaggc
                                                                        780
cgagtatcca acgttgatca taacaaacgg gtcattggca aggcaggtcg caaccgctgg
                                                                        840
ctgggcaaga ggcctaacag tgggcggtgg caccgcaagg ggggctgggc tggccgaaag
                                                                        900
atteggecae taccecccat gaagagttae gtgaagetge ettetgette tgeccaaage tgatatecet gtactetaat aaaatgecee eececcegt taaaaaaaaaa aaaaaaaaaa
                                                                        960
                                                                       1020
ctcgnggggg ggcccggtaa ccaattcggc cta
                                                                       1053
<210> 26
<211> 1477
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (7)
<223> n equals a,t,g, or c
<400> 26
tgcaggnacc ggtccggaat tcccgggatc aaacagtact gttgcacgtc gaattaagga
                                                                         60
totagetget gacattgaag aagagettgt ttgtagactg aaaatttgeg atgggtttte
                                                                        120
actgcaacta gatgaatcag ctgatgtttc aggacttgct gtgctgcttg tgtttgttcg
                                                                        180
ttataggttt aataagtcta ttgaggaaga cctactcctg tgtgaatctt tgcaaagtaa
                                                                        240
tgctaccggt gaagaaatat tcaactgtat caacagtttt atgcagaaac atgaaattga
                                                                        300
atgggaaaaa tgtgttgatg tttgtagtga tgcttctagg gcagtggatg ggaaaattgc
                                                                        360
cgaagctgtc accttaataa aatatgtggc tcccgaaagc accagtagtc actgcctatt
                                                                        420
atacagacat gcactggcag ttaaaataat gcctacatct ctaaaaaatg tgctagacca
                                                                        480
ggcagtacaa atcatcaatt atattaaagc tcgaccacat caatccagac tattaaaaat
                                                                        540
600
gctttctcga ggtaaagttc ttgtaagact ttttgaactt cgtcgtgaac tttttggtttt
                                                                        660
catggattet gettttegae tatetgattg tttaacaaat teatettgge tgetaagaet
                                                                        720
tgcatatctt gcagatattt ttactaaatt aaatgaagtt aatttgtcaa tgcaaggaaa
                                                                        780
aaatgtgacc gtttttacag tatttgataa aatgtcgtca ttgttaagaa aattggaatt
                                                                        840
ttgggcctca tctgtagaag aagaaaactt tgattgtttt cctacactca gtgatttttt
                                                                        900
gactgaaatt aattctacag ttgataaaga tatttgcagt gccattgtgc agcacctaag
                                                                        960
gggtttgcgc gctactctgt taaaatactt tcctgtaaca aatgacaata atgcttgggt
                                                                       1020
tagaaatcca tttacagtta ctgttaaacc agcttcatta gtagcacggg actatgagag
                                                                       1080
                                                                       1140
cctgattgat ttaacatctg attctcaagt gaagcaaaat tttagtgaac tttcactaaa
```

| tgatttttgg<br>acttcttcct<br>aaaaacaaaa<br>tattacacct<br>aaattggagg<br>ttacttcaaa | tttgctacaa<br>tataggaaaa<br>aatattaagc<br>agtttgcatg | tgcacctgtg<br>gacttgatgc<br>ggatatgtga<br>tctcatgata | tgaaacgggg<br>tgcacctcat<br>taaaaagaca<br>accaaatgta | ttttcatatt<br>atgcgaatcc<br>caaaaacact | acgetgeaac<br>gaettageaa<br>gtteteatta | 1200<br>1260<br>1320<br>1380<br>1440<br>1477 |
|----------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------|
| <210> 27<br><211> 2504<br><212> DNA                                              |                                                      |                                                      |                                                      |                                        |                                        |                                              |
| <213> Homo                                                                       | sapiens                                              |                                                      |                                                      | •                                      | •                                      |                                              |
| <400> 27                                                                         |                                                      |                                                      |                                                      |                                        |                                        | _                                            |
| tcgacccacg                                                                       |                                                      |                                                      |                                                      |                                        |                                        | 60                                           |
| ccagcatgct                                                                       |                                                      |                                                      |                                                      |                                        |                                        | 120                                          |
| gcatcctcgg                                                                       |                                                      |                                                      |                                                      |                                        |                                        | 180                                          |
| tgtacatggt                                                                       |                                                      |                                                      |                                                      |                                        |                                        | 240                                          |
| gtgctggaga                                                                       |                                                      |                                                      |                                                      |                                        |                                        | 300                                          |
| tctttgctgt                                                                       | _                                                    |                                                      |                                                      |                                        |                                        | 360                                          |
| ttactaccga                                                                       |                                                      |                                                      |                                                      |                                        |                                        | 420                                          |
| cccacctctt                                                                       |                                                      |                                                      |                                                      |                                        |                                        | 480                                          |
| agaaagttgg                                                                       |                                                      |                                                      |                                                      |                                        |                                        | 540                                          |
| tcgcgctgat                                                                       |                                                      |                                                      |                                                      |                                        |                                        | 600                                          |
| gtacagtctt                                                                       |                                                      |                                                      |                                                      |                                        | _                                      | 660                                          |
| cctgtcmgca                                                                       |                                                      |                                                      |                                                      |                                        |                                        | 720                                          |
| attctgctct (                                                                     |                                                      |                                                      |                                                      |                                        |                                        | 780                                          |
| taacgaacga                                                                       |                                                      |                                                      |                                                      |                                        |                                        | 840                                          |
| aacctttgcc g                                                                     |                                                      |                                                      |                                                      |                                        |                                        | 900                                          |
| ggcgagggct                                                                       |                                                      |                                                      |                                                      |                                        |                                        | 960                                          |
| tctatgtcag a                                                                     |                                                      |                                                      |                                                      |                                        |                                        | 1020                                         |
| cttacacaca a                                                                     |                                                      |                                                      |                                                      |                                        |                                        | 1080                                         |
| gtgcccatgg a                                                                     |                                                      |                                                      |                                                      |                                        |                                        | 1140                                         |
| caactaaggt                                                                       | _                                                    |                                                      |                                                      |                                        |                                        | 1200                                         |
| taattcacca (                                                                     | _                                                    |                                                      |                                                      |                                        |                                        | 1260                                         |
| ttgatacttc 1                                                                     |                                                      |                                                      |                                                      |                                        |                                        | 1320                                         |
| ctgcttgaat (                                                                     |                                                      |                                                      |                                                      |                                        |                                        | 1380                                         |
| ttcactgggc a                                                                     |                                                      |                                                      |                                                      |                                        |                                        | 1440                                         |
| gctctgtcat g                                                                     |                                                      |                                                      |                                                      |                                        |                                        | 1500                                         |
| ttgggcttca a                                                                     |                                                      |                                                      |                                                      |                                        |                                        | 1560                                         |
| ccaccatgcc (                                                                     |                                                      |                                                      |                                                      |                                        |                                        | 1620                                         |
| acactgaaaa a                                                                     |                                                      |                                                      |                                                      |                                        |                                        | 1680                                         |
| tcctggtarg q                                                                     |                                                      |                                                      |                                                      |                                        |                                        | 1740                                         |
| tcccacctca g                                                                     |                                                      |                                                      |                                                      |                                        |                                        | 1800                                         |
| ttttwawacc 1                                                                     |                                                      | -                                                    | <b>-</b>                                             | _                                      |                                        | 1860                                         |
| aatycttcca c                                                                     |                                                      |                                                      |                                                      |                                        |                                        | 1920                                         |
| ccagaggaca a                                                                     |                                                      |                                                      |                                                      |                                        |                                        | 1980                                         |
| ttcctggggt g                                                                     |                                                      | -                                                    |                                                      |                                        |                                        | 2040                                         |
| agtgctgtga a                                                                     |                                                      |                                                      |                                                      |                                        | _                                      | 2100                                         |
| aagaagccag g                                                                     |                                                      |                                                      |                                                      |                                        |                                        | 2160                                         |
| gcacatccag c                                                                     |                                                      |                                                      |                                                      |                                        |                                        | 2220                                         |
| gagagaactt g                                                                     |                                                      |                                                      |                                                      |                                        |                                        | 2280                                         |
| cttgccagct c                                                                     |                                                      |                                                      |                                                      |                                        |                                        | 2340                                         |
| atttcttttg a                                                                     |                                                      |                                                      |                                                      |                                        |                                        | 2400                                         |
| ggtctacatg g                                                                     |                                                      |                                                      |                                                      |                                        | ccaacagag                              | 2460<br>2504                                 |
| aaaaaaaaa a                                                                      | aaaaaaadd                                            | aaaaaaaada                                           | aaaaaayygc                                           | ggcc                                   |                                        | 2504                                         |

<sup>&</sup>lt;210> 28 <211> 1866

<sup>&</sup>lt;212> DNA

<sup>&</sup>lt;213> Homo sapiens

<sup>&</sup>lt;400> 28

540

ggcacgagaa tacatacgat ccttgtctac caggagtcta atagaaagat ggacagcgtg

gaccetgeca geagecagge catggagete tetgatgtea eceteattga gggtgtgggt

```
aatgaggtga tggtggtggc aggtgtggtg gtgctgattc tagccttggt cctagcttgg
                                                                      180
ctctctacct acgtagcaga cagcggtagc aaccagctcc tgggcgctat tgtgtcagca
                                                                      240
ggcgacacat ccgtcctcca cctggggcat gtggaccacc tggtggcagg ccaaggcaac
                                                                      300
cccgagccaa ctgaactccc ccatccatca gagggtaatg atgagaaggc tgaagaggcg
                                                                      360
                                                                      420
ggtgaaggtc ggggagactc cactggggag gctggagctg ggggtggtgt tgagcccagc
cttgagcatc teettgacat ccaaggeetg eccaaaagac aagcaggtge aggeagcage
                                                                      480
agtocagagg coccoctgag atotgaggat agcacotgoo tocotoccag coctggooto
                                                                      540
                                                                      600
atcactgtgc ggctcaaatt cctcaatgat accgaggagc tggctgtggc taggccagag
gataccgtgg gtgccctgaa gagcaaatac ttccctggac aagaaagcca gatgaaactg
                                                                      660
                                                                      720
atctaccagg geogeotget acaagaccca geoogeacac tgcgttetet gaacattace
gacaactgtg tgattcactg ccaccgctca cccccagggt cagctgttcc aggcccctca
                                                                      780
gcctccttgg ccccctcggc cactgagcca cccagccttg gtgtcaatgt gggcagcctc
                                                                      840
                                                                      900
atggtgcctg tctttgtggt gctgttgggt gtggtctggt acttccgaat caattaccgc
caattettea cageacetge caetgtetee etggtgggag teacegtett etteagette
                                                                      960
                                                                     1020
ctagtatttg ggatgtatgg acgataagga cataggaaga aaatgaaagg catggtcttt
ctcctttatg gcctccccac ttttcctggc cagagctggg cccaagggcc ggggagggag
                                                                     1080
gggtggaaag gatgtgatgg aaatctcctc cataggacac aggaggcaag tatgcggcct
                                                                     1140
cccttctca tccacaggag tacagatgtc cctcccgtgc gagcacaact caggtagaaa
                                                                     1200
tgaggatgtc atcttccttc acttttaggg tcctctgaag gagttcaaag ctgctggcca
                                                                     1260
agctcagtgg ggagcctggg ctctgagatt ccctcccacc tgtggttctg actcttccca
                                                                     1320
gtgtcctgca tgtctgcccc cagcacccag ggctgcctgc aagggcaget cagcatggcc
                                                                     1380
ccagcacaac teegtaggga geetggagta teetteeatt teteageeaa atacteatet
                                                                     1440
                                                                     1500
tttgagactg aaatcacact ggcgggaatg aagattgtgc cagcettete ttatgggcac
ctagecgect teacettett cetetacece ttageaggaa tagggtgtee teeettettt
                                                                     1560
caaagcactt tgcttgcatt ttattttatt tttttaagag tccttcatag agctcagtca
                                                                     1620
ggaaggggat ggggcaccaa gccaagcccc cagcattggg agcggccagg ccacagctgc
                                                                     1680
tgctcccgta gtcctcaggc tgtaagcaag agacagcact ggcccttggc cagcgtccta
                                                                     1740
ccctgcccaa ctccaaggac tgggtatgga ttgctgggcc ctaggctctt gcttctgggg
                                                                     1800
1860
                                                                     1866
<210> 29
<211> 1501
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (434)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (441)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (1300)
<223> n equals a,t,g, or c
ggacagccgt atcagcctgc tggtgaataa cgccggtgtg ggcgccacgg cttcgctgct
                                                                       60
ggagtcggat gccgacaaaa tggacgcgat gattctgctg aacgtactgg cgctgacccg
                                                                      120
cctggccaaa gccgcggcaa ccaactttgt cgcccagggc cgtggcacga tcatcaacat
                                                                      180
eggetegatt gtegeteteg eteceaaagt getgaaegge gtgtatggeg gtaccaaage
                                                                      240
gttcgtgcag gcgttcagcg aatcgctgca gcatgagctg agtgacaagg gcgtagtggt
                                                                       300
                                                                      360
ccaggtggtg ctgccaggcg ctaccgccac ggagttctgg gacatcgccg gcctgcctgt
gaaacaacct gccggaagcc atggtgatga ccaccgaaaa cctggtggac gccgccctgs
                                                                       420
caggeettge ccanggeraa negtgacgat teegteeetg eeggacageg cagattggga
                                                                       480
cactacgaac gcgcgcggct ggccctgggt ccgaacctgt cgcaccgtga acccgccgct
```

cgttatgggt tgaagtaatc cggactagcg cagccgggtt taaacgcagg cttcctgatt

```
gcctgggagg cctqttcata cccqtaggcg accgacagca acgtggcttc gctcaaattt
                                                                        660
ttcccataga agtgaacggc tgtcggcatc ccttcgtcgt ccatgcccga tggtatggag
                                                                        720
                                                                        780
ataccgggat aaccggccac cgccgagtag tagtaactgt atgagtgaaa gttggacatc
attgcatcaa gcttatgctc ggccagcggc ttatcgatgg tgcttttgaa aatcgggccg
                                                                        840
atggcagccc ataactcatt gcgcgcctca tcactgatat ccatcccgtt gatcatggtg
                                                                        900
agcatctgtt gatccggcac acccggaccg ctgttgcgct cgttgaattc aatcagctca
                                                                        960
gccagcgact tcaccggcaa gcctgcccgt ccggccaggt aggcttcaag ctggtgttta
                                                                       1020
acgtccgata acaacgcgtc gttatattgt tcatgggttt cgtacgggac gccctcaccc
                                                                       1080
agttgaccca cgggtaccaa tgtcgcgccc ttgcctcgca gcaacgtaat ggcatcctcg
                                                                       1140
aagtgetset gteggetttt ttegeegggt egttggeate ttetaeagat aacteaggea
                                                                       1200
acggcgtata accgatgcgc ttgcccacca aggcgtcagg cttgattccc tgggtgtagc
                                                                       1260
ggttggtatc cgtcatcgca tccagtgctt gcgccgcatn acgcacgtta cgggtgaagg
                                                                       1320
tgcccaccgt gtcctggcgg gaactggtca tcacccttcg gtactcacta atccttcggt
                                                                       1380
cggtttgaaa ccaataacac cgttgtaagc cgccggcgta atgattgaac cattggtttc
                                                                       1440
gacccccaat gccaagggca caatcccttg tgcaacggct accgcagagc ccgtactcga
                                                                       1500
g
                                                                       1501
<210> 30
<211> 1752
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (1099)
<223> n equals a,t,g, or c
<400> 30
aaggtacgcc tgcaggtacc ggtccggaat tcccgggtcg acccacgcgt ccgtccagga
                                                                         60
cagagagtgc acaaactacc cagcacagcc ccctccgccc cctctggagg ctgaagaggg
                                                                        120
attocagece etgecaceca cagacacggg etgactgggg tgtetgecec cettgggggg
                                                                        180
gggcagcaca gggcctcagg cctgggtgcc acctggcacc tagaagatgc ctgtgccctg
                                                                        240
gttcttgctg tccttggcac tgggccgaag cccagtggtc ctttctctgg agaggcttgt
                                                                        300
ggggcctcag gacgctaccc actgctctcc gggcctctcc tgccgcctct gggacagtga
                                                                        360
catactctgc ctgcctgggg acatcgtgcc tgctccgggc cccgtgctgg cgcctacgca
                                                                        420
cctgcagaca gagctggtgc tgaggtgcca gaaggagacc gactgtgacc tctgtctgcg
                                                                        480
tgtggmtgtc cacttggccg tgcatgggca ctgggaagag cctgaagatg aggaaaagtt
                                                                        540
tggaggagca gctgacttag gggtggagga gcctaggaat gcctctctcc aggcccaagt
                                                                        600
egtgetetee ttecaggeet accetactge eegetgegte etgetggagg tgeaagtgee
                                                                        660
tgctgccctt gtgcagtttq gtcagtctgt gggctctgtg gtatatgact gcttcgaggc
                                                                        720
tgccctaggg agtgaggtac gaatctggtc ctatactcag cccaggtacg agaaggaayt
                                                                        780
caaccacac cagcagctgc ctgactgcag ggggctcgaa gtctggaaca gcatcccgag
                                                                        840
ctgctgggcc ctgccctggc tcaacgtgtc agcagatggt gacaacgtgc atctggttct
                                                                        900
gaatgtetet gaggageage aetteggeet etecetgtae tggaateagg tecagggeee
                                                                        960
cccaaaaccc cggtggcaca aaaacctgac tggaccgcag atcattacct tgaaccacac
                                                                       1020
agacctggtt ccctgcctct gtattcaggt gtggcctctg gaacctgact ccgttagacg
                                                                       1080
aacatetgee eetteaggna ggaceeeege gcacaceaga acetetggea ageegeeega
                                                                       1140
ctgcgactgc tgaccctgca gagctggctg ctggacgcac cgtgctcgct gcccgcagaa
                                                                       1200
gcggcactgt gctggcgggc tccgggtggg gacccctgcc agccactggt cccaccgctt
                                                                       1260
tcctgggaga aygtcactgt ggacaaggtt ctcgagttcc cattgctgaa aggccaccct
                                                                       1320
aacctctgtg ttcaggtgaa cagctcggag aagctgcagc tgcaggagtg cttgtgggct
                                                                       1380
gactccctgg ggcctctcaa agacgatgtg ctactgttgg agacacgagg cccccaggac
                                                                       1440
aacagatccc tctgtgcctt ggaacccagt ggctgtactt cactacccag caaagcctcc
                                                                       1500
acgagggcag ctcgccttgg agagtactta ctacaagacc tgcagtcagg ccagtgtctg
                                                                       1560
cagctatggg acgatgactt gggagcgcta tgggcctgcc ccatggacaa atacatccac
                                                                       1620
aagcgctggg ccctcgtgtg gctggcctgc ctactctttg cctgcgcttt ccctcatcct
                                                                       1680
ccttctcaaa aaggatcacg cgaaagggtg gctgaggctc ttgaaacagg acgtccgctc
                                                                       1740
gggggcggcc gc
                                                                       1752
```

<210> 31 <211> 2152

```
<212> DNA
 <213> Homo sapiens
<400> 31
ccgctttgtt ctccagatgt gaatagctcc actataccag cctcgtcttc cttccggggg
                                                                          60
acaacgtggg tcagggcaca gagagatatt taatgtcacc ctcttggggc tttcatggga
                                                                         120
ctccctctgc cacatttttt ggaggttggg aaagttgcta gaggcttcag aactccagcc
                                                                         180
taatggatcc caaactcggg agaatggctg cgtccctgct ggctgtgctg ctgctgctgc
                                                                         240
tgctggagcg cggcatgttc tcctcaccct ccccgccccc ggcgctgtta gagaaagtct
                                                                         300
tccagtacat tgacctccat caggatgaat ttgtgcagac gctgaaggag tgggtggcca
                                                                         360
togagagoga ctctgtccag cctgtgcctc gcttcagaca agagctcttc agaatgatgg
                                                                         420
ccgtggctgc ggacacgctg cagcgcctgg gggcccgtgt ggcctcggtg gacatgggtc
                                                                         480
ctcagcagct gcccgatggt cagagtette caatacetee egteateetg gccgaactgg
                                                                         540
ggagcgatcc cacgaaaggc accgtgtgct tctacggcca cttggacgtg cagcctgctg
                                                                         600
accggggcga tgggtggctc acggacccct atgtgctgac ggaggtagac gggaaacttt
                                                                         660
atggacgagg agcgaccgac aacaaaggcc ctgtcttggc ttggatcaat gctgtgagcg
                                                                         720
ccttcagagc cctggagcaa gatcttcctg tgaatatcaa attcatcatt gaggggatgg
                                                                        780
aagaggctgg ctctgttgcc ctggaggaac ttgtggaaaa agaaaaggac cgattcttct
                                                                         840
ctggtgtgga ctacattgta atttcagata acctgtggat cagccaaagg aagccagcaa
                                                                        900
tcacttatgg aacceggggg aacagctact tcatggtgga ggtgaaatgc agagaccagg
                                                                         960
attiticacte aggaacetti ggiggeatee ticatgaace aatggetgat etggitgete
                                                                       1020
ttctcggtag cctggtagac tcgtctggtc atatcctggt ccctggaatc tatgatgaag
                                                                       1080
tggttcctct tacagaagag gaaataaata catacaaagc catccatcta gacctagaag
                                                                       1140
aataccggaa tagcagccgg gttgagaaat ttctgttcga tactaaggag gagattctaa
                                                                       1200
tgcacctctg gaggtaccca tctctttcta ttcatgggat cgagggcgcg tttgatgagc
                                                                       1260
ctggaactaa aacagtcata cctggccgag ttataggaaa attttcaatc cgtctagtcc
                                                                       1320
ctcacatgaa tgtgtctgcg gtggaaaaac aggtgacacg acatcttgaa gatgtgttct
                                                                       1380
ccaaaagaaa tagttccaac aagatggttg tttccatgac tctaggacta cacccgtgga
                                                                       1440
ttgcaaatat tgatgacacc cagtatctcg cagcaaaaag agcgatcaga acagtgtttg
                                                                       1500
gaacagaacc agatatgatc cgggatggat ccaccattcc aattgccaaa atgttccagg
                                                                       1560
agatcgtcca caagagcgtg gtgctaattc cgctgggagc tgttgatgat ggagaacatt
                                                                       1620
cgcagaatga gaaaatcaac aggtggaact acatagaggg aaccaaatta tttgctgcct
                                                                       1680
ttttcttaga gatggcccag ctccattaat cacaagaacc ttctagtctg atctgatcca
                                                                       1740
ctgacagatt cacctcccc acatccctag acagggatgg aatgtaaata tccagagaat
                                                                       1800
ttgggtctag tatagtacat tttcccttcc atttaaaatg tcttgggata tctggatcag
                                                                       1860
taataaaata tttcaaaggc acagatgttg gaaatggttt aaggtccccc actgcacacc
                                                                       1920
ttcctcaagt catagetget tgcagcaact tgatttcccc aagteetgtg caatageece
                                                                       1980
aggattggat tecttecaac ettttageat atetecaace ttgcaatttg attggcataa
                                                                       2040
tcactccggt ttgctttcta ggtcctcaag tgctcgtgac acataatcat tccatccaat
                                                                       2100
gatcgccttt gctttaccay tctttccttt tatcttatta ataaaaatgt tg
                                                                       2152
<210> 32
<211> 1757
<212> DNA
<213> Homo sapiens
<400> 32
aggettteca čecagacegt caactteggg acagtggggg agacggteac cetteacate
                                                                         60
tgcccagaca gggatgggga tgaggcggca cagcctgatg ctgctgccat ggtggcttgg
                                                                        120
ggcagcgggg agaaaggagt gtcacaggga gcagctcgtg gctgcagtgg aagtcactga
                                                                        180
gcaagagact aaagtcccca agaaaaccgt catcatagaa gagaccatca ccactgtggt
                                                                        240
gaagagccca cgtggccaac gacggtyccc cagcaagtcc ccctcccgct caccttcccg
                                                                        300
ctgctctgcc agcccgctga ggccaggcct actggccccc gacctgctgt acctgccagg
                                                                        360
tgctggccag ccccgcaggc cggargcaga accaggccag aagcccrtgg tgcccacact
                                                                        420
gtatgtgacg gaggecgagg eccactetee agetetgeee ggactetegg ggeceeagee
                                                                        480
caagtgggtg gaggtggagg agaccattga agtccgggtg aagaagatgg gcccgcaggg
                                                                        540
tgtgtctccc accacagagg tgcccaggag ctcatcgggg catctcttca cactgcccgg
                                                                        600
tgcgaccccc ggaggggacc ccaattccaa caactccaac aacaagctgc tggcccagga
                                                                        660
ggcctgggcc cagggcacag ccatggtcgg cgtcagagag ccccttgtct tccgcgtgga
                                                                        720
tgccagaggc agtgtggact gggctgcttc tggcatgggc agcctggagg aggagggcac
                                                                        780
catggaggag gcgggagagg aagaggggga agacggagac gcctttgtga cggaggagtc
                                                                        840
ccaggacaca cacagcettg gggategtga ccccaagate etcaegcaca acggeegcat
                                                                        900
gctgacactg gctgacctgg aagattacgt gcctggggaa ggggagacct tccactgtgg
                                                                        960
```

```
tggccctggg cctggcgccc ctgatgaccc tccctgcgag gtctcggtga tccagagaga
                                                                   1020
gateggggag cecaeggtgg geageetgtg etgeteageg tggggcatge aetgggteee
                                                                   1080
cgaggccctc tcggcctctt taggcctgag ccccgtgggg cgtcaccacc gggaccccag
                                                                   1140
gtccgtagcc ttgagggcac ctccttcctc ttgcgggagg ccccggctcg gcctgtgggc
                                                                   1200
agtgctccct ggacgcagtc tttctgcacc cgcatccggc gttctgcgga cagtggccag
                                                                   1260
agcagettea ceacagaget ttecacecag accgteaact tegggacagt gggggagaeg
                                                                    1320
gtcaccette acatetgtes etggeewegg geettettae etcacteaac tteageeagg
                                                                   1380
aggactgggt ggtgcttgca atgttggaat gaccggctca aagacctcag ctctgggctg
                                                                   1440
                                                                   1500
tttcctgtca gcctggcagg agcctcagga ctgtggacga aggatgtggc cttgggcatt
tgtcctgttc ccacatgggc ctggtccctc cctcctggcc ccagccacag ctgccaggcc
                                                                   1560
tgacatggcc ttgcctctcc tgcagtcttg gtgactgaga cccttgggtg gcgcttccca
                                                                   1620
getetgeagg ceeteetgge ettttetgea gggtggacae agggtetgtg tgtgggeage
                                                                   1680
1740
                                                                   1757
aactcgagcg gcacgag
<210> 33
<211> 1466
<212> DNA
<213> Homo sapiens
<400> 33
ggcacaggct gggactttgg gctggctgca gtctgtctga gggcggccga agtggctggc
                                                                     60
tcatttaaga tgaggettet getgettete etagtggegg egtetgegat ggteeggage
                                                                     120
gaggcctcgg ccaatctggg cggcgtgccc agcaagagat taaagatgca gtacgccacg
                                                                     180
gggccgctgc tcaagttcca gatttgtgtt tcctgaggtt ataggcgggt gtttgaggag
                                                                     240
tacatgcggg ttattagcca gcggtaccca gacatccgca ttgaaggaga gaattacctc
                                                                     300
cctcaaccaa tatatagaca catagcatct ttcctgtcag tcttcaaact agtattaata
                                                                    360
ggcttaataa ttgttggcaa ggatcctttt gctttctttg gcatgcaagc tcctagcatc
                                                                     420
tggcagtggg gccaagaaaa taaggtttat gcatgtatga tggttttctt cttgagcaac
                                                                     480
atgattgaga accagtgtat gtcaacaggt gcatttgaga taactttaaa tgatgtacct
                                                                     540
gtgtggtcta agctggaatc tggtcacctt ccatccatgc aacaacttgt tcaaattctt
                                                                     600
gacaatgaaa tgaagetcaa tgtgeatatg gatteaatee cacaceateg ateatageae
                                                                     660
cacctatcag cactgaaaac tcttttgcat taagggatca ttgcaagagc agcgtgactg
                                                                     720
acattatgaa ggcctgtact gaagacagca agctgttagt acagaccaga tgctttcttg
                                                                     780
gcaggctcgt tgtacctctt ggaaaacctc aatgcaagat agtgtttcag tgctggcata
                                                                     840
ttttggaatt ctgcacattc atggagtgca ataatactgt atagctttcc ccacctccca
                                                                     900
caaaatcacc cagttaatgt gtgtgtgtgt ttttttttta aggtaaacat tactacttgt
                                                                     960
aactttttt cttagtcata tttgaaaaag tagaaaattg agttacaatt tgatttttt
                                                                    1020
tccaaagatg tctgttaaat ctgttgtgct tttatatgaa tatttgtttt ttatagttta
                                                                    1080
aaattgatcc tttgggaatc cagttgaagt tcccaaatac tttataagag tttatcagac
                                                                    1140
atototaatt tggccatgto cagtitatac agtitacaaa atatagcaga tgcaagatta
                                                                    1200
tgggggaaat cctatattca gagtactcta taaatttttg tgtatgtgtg tatgtgcgtg
                                                                    1260
tgattaccag agaactacta aaaaaaccaa ctgcttttta aatcctattg tgtagttaaa
                                                                    1320
gtgtcatgcc ttgaccaatc taatgaattg attaattaac tgggccttta tacttaacta
                                                                    1380
1440
                                                                    1466
aaaaaaaaa aaaaaaaaa actcga
<210> 34
<211> 526
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (283)
<223> n equals a,t,g, or c
ggggacgtgc acggggccgc cctcctggcc ctgaagctgc gccggcctcc ctgagcgttt
                                                                     60
cgctgcggag ggaagtccac tctcggggag agatgctgat gccggtccac ttcctgctgc
                                                                     120
tectgetget getectgggg ggeeceagga caggeeteec ceacaagtte tacaaageea
                                                                     180
agcccatctt cagctgcctc aacaccgccc tgtctgaggc tgagaagggc cagtgggagg
                                                                     240
```

atgrateret getgageaag aggagettee actacetgeg canaagsaeg cetetteggg

```
agaggaggag gagggcaaag agaaaaagac tttccccatc tctggggcca ggggtggarc
                                                                        360
cagaggcacc cggtacagat acgtgtccca agcacagccc aggggaaagc cacgccagga
                                                                        420
cacqqccaaq aqtccccacc gcaccaagtt caccctgtcc ctcgacgtcc ccaccaacat
                                                                        480
catgaacctc ctcttcaaca tcgccaaggc caagaactgc gtgccc
                                                                        526
<210> 35
<211> 2412
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (329)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (340)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (977)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (1117)
<223> n equals a,t,g, or c
<400> 35
                                                                         60
cacqaqtttt aaatcaattt tttttcaagc aatcagattc ttttctccta gaggagctgt
gggcaagaaa actaatgaat totacatoot totoatcaco tggtttaaat tgttttotgo
                                                                        120
tctgagtaaa cagtaattac tgtttaagta catctcagca gaattttatc ccaattgcaa
                                                                        180
                                                                        240
cagttcatgt tectectaat gtaatetetg eggaggaaat gategtcaag ggaageagge
tgacctgctc acgggatggc gttcttacaa tctgcatctt atgtaatggt gattctgtgt
                                                                        300
gcctgtgtca taattattgg aatattatnt tatgcttttn tttttgagac tctatctcca
                                                                        360
                                                                        420
aaaaaaagaa gagacataga aatttgaaga aggatccttt aatggtctac accgtcttcc
aaagtcaaga agtggcagct gatatccatt tgaaagtaga atcctagctt ttcagagcta
                                                                        480
gacmaggcct cagaaactat agttgaattc ctcattgtac caatgagaaa ctcaggccta
                                                                        540
gatgggtaaa aagaggtgtg ttgtagcagt gctgggacag atctcggttt ttctgcttcc
                                                                        600
tatacaatcc tcttcaaccc aatactacaa tgtatttatt atcacatatt aagctggaga
                                                                        660
tttgtagcca tgttattaga gttgcaactg tttatcctat agattccagc cacattttaa
                                                                        720
                                                                        780
acacataact tcatgtagtt aggccactaa aaataaagta atccatcaaa ctagtaatac
actagagaat ttgacctaca tactaagatg cctgaaatcc acagtatatg gcaatttaac
                                                                        840
ccccatctaa tagtggctca atcaagtagc taaacatatt tatttcactc agatggttgg
                                                                        900
                                                                        960
ttgtttggta gaaggaatgg actccttggg ctattttggg aacaaaaaag gactaggaca
caaatcaaag ccacatncac agtaagaaat ccgggctgat ctctgccaag aaaagktaca
                                                                       1020
aagaataatt acttgatcac gtggggaaat ttcgacataa aagaagtaat ggataaaarg
                                                                      1080
aaagaaaaat gaccaattgc tgragmcaat aattatngca accctaaacc agaaagcact
                                                                       1140
aagccaggaa gtcaaaaact aagtcatmca catatgacaa ggtgcggggg ttggtcctga
                                                                       1200
                                                                      1260
gacttcagtg agaatatgtc cgatcaggat atgcaaagaa ccatttggaa gatttctagt
tcataaggga agtaccaaat gaagtggatg ggaccatacg caatttgcat aggacccca
                                                                      1320
aggaggaaat agtatgacat ggtagtaaaa aagcaatcac gactacactc acaattttag
                                                                      1380
                                                                      1440
gagaaaataa aactaaatcc agaatttgaa gccaacaaca acaaaaaaag tcattattta
gggtatacgt tcctgtgggc agtaccttgc aaagtagaac atcttcaaga agaaatattt
                                                                      1500
gacttgaggt aaggetttea agattgeeat attacattea taaaggeaaa eteateettg
                                                                      1560
                                                                      1620
agaccaaagt gacagaagat tagaaattaa ggctttgttt taaagaaatg ttgacatcat
actggaaatt attatccagc tacttacaca ttcgttttta aatccatccc tatgtttagc
                                                                      1680
tgccaaaatg caaactgcgc attgywctct cacggagagc gccacaggtc accagctatt
                                                                      1740
                                                                      1800
attotoccag gagtoattga gtaggotgoo ccaagtacca cataggaaac tcaacgaact
attttcattt caaggaccat tagaaacaga aaggaaaaga gaaggtcagg gaaacttagt
                                                                      1860
```

```
ttctaacaaa ggaagtgagg cactttgaaa aagaaaatat ttagagaacg gagaggaagc
                                                                     1920
taaacccaaa caaccaaaac gcacagctga caattattcc gggaagttgg taacttctgc
                                                                     1980
ctggtctcta gaagcacagg aagaaaggac tgttagcgtg aagaacactc cagggttctg
                                                                     2040
ggtatctagg cagagtcagt caacagggct aaccatgtga taatcctggg taattccacc
                                                                     2100
tcacagttca ctaaaaaaca agcggaaccc tgggcaaagc cctttggggc tttaatagca
                                                                     2160
atggaggaca teaccetgte actitetetg ettetacaca geaggeaate aaggaaaact
                                                                     2220
tqccaagaaa tatgagtgaa taaatgattt tgaaagtttc attgagcagg aacatgaaaa
                                                                     2280
ggatgatttg gggatagctg gaaggatagt tacttgcatg aataatattt attcaccgtc
                                                                     2340
2400
aaaaaactcg ag
                                                                     2412
<210> 36
<211> 1274
<212> DNA
<213> Homo sapiens
ggcacgagga aagaccaact ggccggtctt ctgagcagat ggattcctat aggaccagtg
                                                                       60
gggagaggat tacacagtac ctctgaaccc tcaacacaaa ataatatctc ttctattgtt
                                                                      120
ggttagtttc actatctgct tcattctttt aaaatgtcaa gtgttttctc ttgagggaac
cttctgaatt actttgcctg cactatacct aattcttatt acaatgctgt gaactttgaa
                                                                      240
ttattaccct tgttcacccc aaatggaaaa tcaaagctca aagaggtgag tgactgccca
                                                                      300
qctcatgcag ctgatagaat caagatttca tttcaggtgt gtctggatcc tgcacttact
                                                                      360
tgctcttttc tcaacatggc ctcctaagga tccagaagga agcccgccat cagcaaccag
                                                                      420
cagcccactc acccccacc tcagtctcac cttgccattc aaacaggctc cagtttcaaa
                                                                      480
tgtcagttct gccattcacg tgatgctgga caagtcagtt agcctctctg agattcaatt
                                                                      540
ttctcatatg cctaatggaa aaagagcatc taccttataa attgcatatt tactcttcct
                                                                      600
toccactgac toaatagaac tatattoccc aytoccatag atgotggcot tagacttgtg
                                                                      660
acttqcattq qccaatgaga tgagacatac accaatcaaa agagaggcat taaatgtgca
                                                                      720
tgactggttt agcttggcct cttatgstcc tgccatgcgt rattagatca tgcctgagta
                                                                      780
gccactgctc attcagcctg agttctggag tgagaaacag gtggagcagt cctggactcc
                                                                      840
atccacagee cagageagag caccatggee caccegtagg getgtaagtg agaaagaaat
                                                                      900
gtctattgtt ataaaccagt ggttttcaag gcatggtccc tcagtatcaa cgtcacttag
                                                                      960
aaatttggag aaatgcacat totcagtoot catocaaaco tgottaatca gaaactotgg
                                                                     1020
gggttgggcc cagcaatctg tattttaaaa aggcctctag gtaattctga tgcaggctca
                                                                     1080
ggcttggaat ccactgttat aaatcactga catttgggga ttatttgttg ctgtgtgaaa
                                                                     1140
qctqactaat acatctaccc tttgaggttg ctatgaggac acagtaagat aagatgtgag
                                                                     1200
aageteetgg aatgaggtte eteetgatag teetaageet ggeateeaaa attetteata
                                                                     1260
atctgatcct cgag
                                                                     1274
<210> 37
<211> 1036
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (43)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (47)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (58)
<223> n equals a,t,g, or c
<400> 37
caaaccccat ttacgtgcac actgatacac cgtcacgcct gcnggtnacc ggtccggnat
```

```
tcccgggtcg acccacgcgt ccgggggaag caagcactta tttggctact tggtgtccat
                                                                     120
ggggaaagaa ttcctaatgc tccttatgtg ttagaggact ttgttgagaa tgtgaagtcg
                                                                     180
gaaacatttc cagctgttaa gatggagctg ctcactgctt tgctgcgcct tttcctctcc
                                                                     240
cgacctgctg agtgccagga catgctagga cgtttgttgt attactgcat agaggaagaa
                                                                     300
aaagatatgg ctgtacggga ccgaggtctc ttctattatc gcctcctctt agttggcatt
                                                                     360
gatgaagtta agcggattct gtgtagccct aaatctgacc ctactcttgg acttttggag
                                                                     420
gatecggeag aaagacetgt gaatagetgg geeteagact teaacacact ggtgeeagtg
                                                                     480
tatggcaaag cccactgggc aactatetet aaatgccagg gggcagagcg ttgtgaccca
                                                                     540
gagetteeta aaaetteate etttgeegea teaggaeeet tgatteetga agagaacaag
                                                                     600
gagagggtac aagaactccc tgattctgga gccctcatgc tagtccccaa tcgccagctt
                                                                     660
actgctgatt attttgagaa aacttggctt agccttaaag ttgctcatca gcaagtgttg
                                                                     720
ccttggcggg gagaattcca tcctgacacc ctccagatgg ctcttcaagt agtgaacatc
                                                                     780
cagaccatcg caatgagtag ggctgggtct cggccatgga aagcatacct cagtgctcag
                                                                     840
gatgatactg gctgtctgtt cttaacagaa ctgctattgg agcctggaaa ctcagaaatg
                                                                     900
                                                                     960
cagatetetg tgaaacaaaa tgaagcaaga acggagacge tgaatagttt tatttetgta
1020
                                                                    1036
aaaaaagggc ggccgc
<210> 38
<211> 1379
<212> DNA
<213> Homo sapiens
<400> 38
                                                                      60
qcgqcqcggg tgggggttgt gcgttttacg caggctgtgg cagcgacgcg gtccccagcc
tgggtaaaga tggccccatg gcccccgaag gcctagtccc agctgtgctc tggggcctca
                                                                     120
gootottoot caacotooca ggacotatot ggotocagoo ototocacot coccagtott
                                                                    180
ctccccgcc tcagccccat ccgtgtcata cctgccgggg actggttgac agctttaaca
                                                                     240
agggcctgga gagaaccatc cgggacaact ttggaggtgg aaacactgcc tgggaggaag
                                                                     300
                                                                     360
agaatttgtc caaatacaaa gacagtgaga cccgcctggt agaggtgctg gagggtgtgt
gcagcaagtc agacttcgag tgccaccgcc tgctggagct gagtgaggag ctggtggaga
                                                                     420
gctggtggtt tcacaagcag caggaggccc cggacctctt ccagtggctg tgctcagatt
                                                                     480
ccctgaagct ctgctgcccc gcaggcacct tcgggccctc ctgccttccc tgtcctgggg
                                                                     540
gaacagagag gccctgcggt ggctacgggc agtgtgaagg agaagggaca cgagggggca
                                                                     600
                                                                     660
gegggcactg tgactgccaa geeggctaeg ggggtgagge etgtggccag tgtggccttg
gctactttga ggcagaacgc aacgccagcc atctggtatg ttcggcttgt tttggcccct
                                                                     720
gtgcccgatg ctcaggacct gaggaatcaa actgtttgca atgcaagaag ggctgggccc
                                                                     780
tqcatcacct caagtgtgta gacattgatg agtgtggcac agagggagcc aactgtggag
                                                                     840
ctgaccaatt ctgcgtgaac actgagggct cctatgagtg ccgagactgt gccaaggcct
                                                                     900
gcctaggctg catgggggca gggccaggtc gctgtaagaa gtgtagccct ggctatcagc
                                                                    960
aggtgggctc caagtgtctc gatgtggatg agtgtgagac agaggtgtgt ccgggagaga
                                                                    1020
acaagcagtg tgaaaacacc gagggcggtt atcgctgcat ctgtgccgag ggctacaagc
                                                                    1080
agatggaagg catctgtgtg aaggagcaga tcccaggtgc attccccatc ttaactgatt
                                                                    1140
taacccctga aacaacccga cgctggaagt tgggttctca tccccactct acatatgtaa
                                                                    1200
aaatgaagat gcagagagat gaagctactt tcccagggct atatggcaag caagtcgcaa
                                                                    1260
agctgggatc ccaatccaga cagtctgacc gtggaacgag actcatacac gtaataaatg
                                                                    1320
1379
<210> 39
<211> 1932
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (293)
<223> n equals a,t,g, or c
ggcacgaggc cgccctgggt gtcagcggct cggctcccgc gcacgctccg gccgtcgcgc
                                                                      60
asctcggcac ctgcaggtcc gtgcgtcccg cggctggcgc ccctgactcc gtcccggcca
                                                                    120
gggagggcca tgatttccct cccggggccc ctggtgacca acttgctgcg gtttttgttc
                                                                    180
```

| ctggggctga                                                                                                                                                                                                                                                                                                                  | gtgccctcgc                                                                                                                                                                                                                                                            | gcccccctcg                                                                                                                                                                                                                                    | cgggcccagc                                                                                                                                                                                                                                                                                                    | tgcaactgca                                                                                                                                                                                                                                                                                             | cttgcccgcc                                                                                                                                                                                                                           | 240                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| aaccqqttqc                                                                                                                                                                                                                                                                                                                  | aggcggtgga                                                                                                                                                                                                                                                            | gggaggggaa                                                                                                                                                                                                                                    | gtggtgcttc                                                                                                                                                                                                                                                                                                    | cagcgtggta                                                                                                                                                                                                                                                                                             | cancttgcac                                                                                                                                                                                                                           | 300                                                                                                                                    |
| gggaggtgt                                                                                                                                                                                                                                                                                                                   | cttcatccca                                                                                                                                                                                                                                                            | gccatgggag                                                                                                                                                                                                                                    | gtgccctttg                                                                                                                                                                                                                                                                                                    | tgatgtggtt                                                                                                                                                                                                                                                                                             | cttcaaacag                                                                                                                                                                                                                           | 360                                                                                                                                    |
| aaagaaaagg                                                                                                                                                                                                                                                                                                                  | aggatcaggt                                                                                                                                                                                                                                                            | gttgtcctac                                                                                                                                                                                                                                    | atcaatgggg                                                                                                                                                                                                                                                                                                    | tcacaacaag                                                                                                                                                                                                                                                                                             | caaacctgga                                                                                                                                                                                                                           | 420                                                                                                                                    |
| gtatecttgg                                                                                                                                                                                                                                                                                                                  | tctactccat                                                                                                                                                                                                                                                            | gccctcccgg                                                                                                                                                                                                                                    | aacctgtccc                                                                                                                                                                                                                                                                                                    | tgcggctgga                                                                                                                                                                                                                                                                                             | gggtctccag                                                                                                                                                                                                                           | 480                                                                                                                                    |
| gagaaagact                                                                                                                                                                                                                                                                                                                  | ctggccccta                                                                                                                                                                                                                                                            | cagctgctcc                                                                                                                                                                                                                                    | gtgaatgtgc                                                                                                                                                                                                                                                                                                    | aagacaaaca                                                                                                                                                                                                                                                                                             | aggcaaatct                                                                                                                                                                                                                           | 540                                                                                                                                    |
| aggggccaca                                                                                                                                                                                                                                                                                                                  | gcatcaaaac                                                                                                                                                                                                                                                            | cttagaactc                                                                                                                                                                                                                                    | aatqtactqq                                                                                                                                                                                                                                                                                                    | ttcctccagc                                                                                                                                                                                                                                                                                             | tcctccatcc                                                                                                                                                                                                                           | 600                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                             | agggtgtgcc                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      | 660                                                                                                                                    |
| aggagtaagg                                                                                                                                                                                                                                                                                                                  | ccgctgtcca                                                                                                                                                                                                                                                            | ataccagtgg                                                                                                                                                                                                                                    | gatcggcagc                                                                                                                                                                                                                                                                                                    | ttccatcctt                                                                                                                                                                                                                                                                                             | ccagactttc                                                                                                                                                                                                                           | 720                                                                                                                                    |
| tttgcaccag                                                                                                                                                                                                                                                                                                                  | cattagatgt                                                                                                                                                                                                                                                            | catccgtggg                                                                                                                                                                                                                                    | tctttaagcc                                                                                                                                                                                                                                                                                                    | tcaccaacct                                                                                                                                                                                                                                                                                             | ttcatcttcc                                                                                                                                                                                                                           | 780                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                             | tctatgtctg                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      | 840                                                                                                                                    |
| cactagaag                                                                                                                                                                                                                                                                                                                   | gagcacaggg                                                                                                                                                                                                                                                            | cctggagctg                                                                                                                                                                                                                                    | cagtggttgc                                                                                                                                                                                                                                                                                                    | tagaactatt                                                                                                                                                                                                                                                                                             | gtgggtaccc                                                                                                                                                                                                                           | 900                                                                                                                                    |
| taattaaact                                                                                                                                                                                                                                                                                                                  | ggggttgctg                                                                                                                                                                                                                                                            | actagactag                                                                                                                                                                                                                                    | tectettata                                                                                                                                                                                                                                                                                                    | ccaccaccaa                                                                                                                                                                                                                                                                                             | ggcaaggccc                                                                                                                                                                                                                           | 960                                                                                                                                    |
| tagaagagcc                                                                                                                                                                                                                                                                                                                  | agccaatgat                                                                                                                                                                                                                                                            | atcaaggagg                                                                                                                                                                                                                                    | atgccattgc                                                                                                                                                                                                                                                                                                    | tccccggacc                                                                                                                                                                                                                                                                                             | ctaccctaac                                                                                                                                                                                                                           | 1020                                                                                                                                   |
| ccaagagctc                                                                                                                                                                                                                                                                                                                  | agacacaatc                                                                                                                                                                                                                                                            | tccaagaatg                                                                                                                                                                                                                                    | ggaccctttc                                                                                                                                                                                                                                                                                                    | ctctgtcacc                                                                                                                                                                                                                                                                                             | tccgcacgag                                                                                                                                                                                                                           | 1080                                                                                                                                   |
| ccctccaacc                                                                                                                                                                                                                                                                                                                  | accccatggc                                                                                                                                                                                                                                                            | cctcccaggc                                                                                                                                                                                                                                    | ctggtgcatt                                                                                                                                                                                                                                                                                                    | gacccccacg                                                                                                                                                                                                                                                                                             | cccagtctct                                                                                                                                                                                                                           | 1140                                                                                                                                   |
| ccauccagge                                                                                                                                                                                                                                                                                                                  | cctgccctca                                                                                                                                                                                                                                                            | ccaagactgc                                                                                                                                                                                                                                    | ccacgacaga                                                                                                                                                                                                                                                                                                    | tggggccac                                                                                                                                                                                                                                                                                              | cctcaaccaa                                                                                                                                                                                                                           | 1200                                                                                                                                   |
| tatccccat                                                                                                                                                                                                                                                                                                                   | ccctggtggg                                                                                                                                                                                                                                                            | atttcttcct                                                                                                                                                                                                                                    | ctggcttgag                                                                                                                                                                                                                                                                                                    | ccgcatgggt                                                                                                                                                                                                                                                                                             | actataccta                                                                                                                                                                                                                           | 1260                                                                                                                                   |
| taataatacc                                                                                                                                                                                                                                                                                                                  | tgcccagagt                                                                                                                                                                                                                                                            | caagetgget                                                                                                                                                                                                                                    | ctctggtatg                                                                                                                                                                                                                                                                                                    | atgaccccac                                                                                                                                                                                                                                                                                             | cactcattgg                                                                                                                                                                                                                           | 1320                                                                                                                                   |
| ctaaaggatt                                                                                                                                                                                                                                                                                                                  | tggggtctct                                                                                                                                                                                                                                                            | ccttcctata                                                                                                                                                                                                                                    | ragatcacct                                                                                                                                                                                                                                                                                                    | ctagcacaga                                                                                                                                                                                                                                                                                             | ggcctgagtc                                                                                                                                                                                                                           | 1380                                                                                                                                   |
| atorogaaaga                                                                                                                                                                                                                                                                                                                 | gtcacactcc                                                                                                                                                                                                                                                            | tgacccttag                                                                                                                                                                                                                                    | tactctqccc                                                                                                                                                                                                                                                                                                    | ccacctctct                                                                                                                                                                                                                                                                                             | ttactgtggg                                                                                                                                                                                                                           | 1440                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                             | cagtaagacc                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      | 1500                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                             | ggagcctcca                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      | 1560                                                                                                                                   |
| tagetactea                                                                                                                                                                                                                                                                                                                  | ccaagagtga                                                                                                                                                                                                                                                            | ggggcagaga                                                                                                                                                                                                                                    | cttccagtca                                                                                                                                                                                                                                                                                                    | ctgagtctcc                                                                                                                                                                                                                                                                                             | caggccccct                                                                                                                                                                                                                           | 1620                                                                                                                                   |
| tgatctgtac                                                                                                                                                                                                                                                                                                                  | cccaccccta                                                                                                                                                                                                                                                            | tctaacacca                                                                                                                                                                                                                                    | cccttaactc                                                                                                                                                                                                                                                                                                    | ccactccage                                                                                                                                                                                                                                                                                             | tccctgtatt                                                                                                                                                                                                                           | 1680                                                                                                                                   |
| gatataacct                                                                                                                                                                                                                                                                                                                  | gtcaggctgg                                                                                                                                                                                                                                                            | cttggttagg                                                                                                                                                                                                                                    | ttttactggg                                                                                                                                                                                                                                                                                                    | gcagaggata                                                                                                                                                                                                                                                                                             | gggaatctct                                                                                                                                                                                                                           | 1740                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                             | aacatgaaat                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      | 1800                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                             | garaaaaaaa                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      | 1860                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                             | agcttacgcg                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      | 1920                                                                                                                                   |
| ttataagcta                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      | 1932                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                                                                                                                        |
| <210> 40<br><211> 1430<br><212> DNA                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                                                                                                                        |
| <211> 1430                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                                                                                                                        |
| <211> 1430<br><212> DNA<br><213> Homo<br><400> 40                                                                                                                                                                                                                                                                           | sapiens                                                                                                                                                                                                                                                               | tcagtcctaa                                                                                                                                                                                                                                    | gggcctatct                                                                                                                                                                                                                                                                                                    | ttcatcacta                                                                                                                                                                                                                                                                                             | ggttgaatta                                                                                                                                                                                                                           | 60                                                                                                                                     |
| <211> 1430<br><212> DNA<br><213> Homo<br><400> 40<br>aatttgaccc                                                                                                                                                                                                                                                             | sapiens                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      | 60<br>120                                                                                                                              |
| <211> 1430<br><212> DNA<br><213> Homo<br><400> 40<br>aatttgaccc<br>tctcccatgt                                                                                                                                                                                                                                               | sapiens tacttccctc                                                                                                                                                                                                                                                    | tctatctccc                                                                                                                                                                                                                                    | tatgggcttg                                                                                                                                                                                                                                                                                                    | caacaccatg                                                                                                                                                                                                                                                                                             | acgggcacat                                                                                                                                                                                                                           |                                                                                                                                        |
| <211> 1430<br><212> DNA<br><213> Homo<br><400> 40<br>aatttgaccc<br>tctccatgt<br>tgcaagtgca                                                                                                                                                                                                                                  | sapiens tacttccctc ttgatttgcc cttakacaaa                                                                                                                                                                                                                              | tctatctccc<br>tgagatcaga                                                                                                                                                                                                                      | tatgggcttg<br>tgacctgggg                                                                                                                                                                                                                                                                                      | caacaccatg<br>aacgtggctt                                                                                                                                                                                                                                                                               | acgggcacat<br>gtacacacct                                                                                                                                                                                                             | 120                                                                                                                                    |
| <211> 1430 <212> DNA <213> Homo <400> 40 aatttgaccctctcccatgttgcaagtgcattctgtgttc                                                                                                                                                                                                                                           | sapiens tacttccctc ttgatttgcc cttakacaaa tgtagcatca                                                                                                                                                                                                                   | tctatctccc<br>tgagatcaga<br>gctaagacct                                                                                                                                                                                                        | tatgggcttg<br>tgacctgggg<br>taaaatcagt                                                                                                                                                                                                                                                                        | caacaccatg<br>aacgtggctt<br>aagaaagtat                                                                                                                                                                                                                                                                 | acgggcacat<br>gtacacacct<br>ctgtctctct                                                                                                                                                                                               | 120<br>180                                                                                                                             |
| <211> 1430 <212> DNA <213> Homo <400> 40 aatttgaccc tctcccatgt tgcaagtgca ttctgtgttc gttcacccat                                                                                                                                                                                                                             | tacttcctc<br>ttgatttgcc<br>cttakacaaa<br>tgtagcatca<br>aggaagcagc                                                                                                                                                                                                     | tctatctccc<br>tgagatcaga<br>gctaagacct<br>ttcgtggtga                                                                                                                                                                                          | tatgggcttg<br>tgacctgggg<br>taaaatcagt<br>gtgaagggag                                                                                                                                                                                                                                                          | caacaccatg<br>aacgtggctt<br>aagaaagtat<br>ctacctggac                                                                                                                                                                                                                                                   | acgggcacat<br>gtacacacct<br>ctgtctctct<br>atctccgact                                                                                                                                                                                 | 120<br>180<br>240                                                                                                                      |
| <211> 1430 <212> DNA <213> Homo <400> 40 aatttgaccc tctcccatgt tgcaagtgca ttctgtgttc gttcacccat ggttaaaccc                                                                                                                                                                                                                  | sapiens  tacttcctc ttgatttgcc cttakacaaa tgtagcatca aggaagcagc ggccaagctt                                                                                                                                                                                             | tctatctccc<br>tgagatcaga<br>gctaagacct<br>ttcgtggtga<br>tccctgtatt                                                                                                                                                                            | tatgggcttg<br>tgacctgggg<br>taaaatcagt<br>gtgaagggag<br>accagatcaa                                                                                                                                                                                                                                            | caacaccatg<br>aacgtggctt<br>aagaaagtat<br>ctacctggac<br>tgccacctcc                                                                                                                                                                                                                                     | acgggcacat<br>gtacacacct<br>ctgtctctct<br>atctccgact<br>ccatgggtga                                                                                                                                                                   | 120<br>180<br>240<br>300                                                                                                               |
| <211> 1430 <212> DNA <213> Homo <400> 40 aatttgaccctctccatgttgcaagtgcattctgttcgttc                                                                                                                                                                                                                                          | tacttcctc<br>ttgatttgcc<br>cttakacaaa<br>tgtagcatca<br>aggaagcagc                                                                                                                                                                                                     | tctatctccc<br>tgagatcaga<br>gctaagacct<br>ttcgtggtga<br>tccctgtatt<br>wcgacagatg                                                                                                                                                              | tatgggcttg<br>tgacctgggg<br>taaaatcagt<br>gtgaagggag<br>accagatcaa<br>cctgtgagca                                                                                                                                                                                                                              | caacaccatg<br>aacgtggctt<br>aagaaagtat<br>ctacctggac<br>tgccacctcc<br>gctctgcgac                                                                                                                                                                                                                       | acgggcacat<br>gtacacacct<br>ctgtctctct<br>atctccgact<br>ccatgggtga<br>ccagaaaccg                                                                                                                                                     | 120<br>180<br>240<br>300<br>360                                                                                                        |
| <211> 1430 <212> DNA <213> Homo <400> 40 aatttgaccc tctcccatgt tgcaagtgca ttctgtgttc gttcacccat ggttaaaccc gggacctctg gtgagccatg                                                                                                                                                                                            | tacttcctc<br>ttgatttgcc<br>cttakacaaa<br>tgtagcatca<br>aggaagcagc<br>ggccaagctt<br>tggacaaagg                                                                                                                                                                         | tctatctccc<br>tgagatcaga<br>gctaagacct<br>ttcgtggtga<br>tccctgtatt<br>wcgacagatg<br>tggggataga                                                                                                                                                | tatgggcttg<br>tgacctgggg<br>taaaatcagt<br>gtgaagggag<br>accagatcaa<br>cctgtgagca<br>aggtgggaga                                                                                                                                                                                                                | caacaccatg<br>aacgtggctt<br>aagaaagtat<br>ctacctggac<br>tgccacctcc<br>gctctgcgac<br>ggctgggttg                                                                                                                                                                                                         | acgggcacat<br>gtacacacct<br>ctgtctctct<br>atctccgact<br>ccatgggtga<br>ccagaaaccg<br>aaagaggcat                                                                                                                                       | 120<br>180<br>240<br>300<br>360<br>420                                                                                                 |
| <211> 1430 <212> DNA <213> Homo <400> 40 aatttgaccc tctcccatgt tgcaagtgca ttctgtgttc gttcacccat ggttaaaccc gggacctctg gtgagccatg tgtgctccct                                                                                                                                                                                 | tacttcctc<br>ttgatttgcc<br>cttakacaaa<br>tgtagcatca<br>aggaagcagc<br>ggccaagctt<br>tggacaaagg<br>ggagccggga                                                                                                                                                           | tctatctccc<br>tgagatcaga<br>gctaagacct<br>ttcgtggtga<br>tccctgtatt<br>wcgacagatg<br>tggggataga<br>aaccatggrk                                                                                                                                  | tatgggcttg tgacctgggg taaaatcagt gtgaagggag accagatcaa cctgtgagca aggtgggaga tctgagccat                                                                                                                                                                                                                       | caacaccatg<br>aacgtggctt<br>aagaaagtat<br>ctacctggac<br>tgccacctcc<br>gctctgcgac<br>ggctgggttg<br>tgacaagtgg                                                                                                                                                                                           | acgggcacat<br>gtacacacct<br>ctgtctctct<br>atctccgact<br>ccatgggtga<br>ccagaaaccg<br>aaagaggcat<br>ctgaataaga                                                                                                                         | 120<br>180<br>240<br>300<br>360<br>420<br>480                                                                                          |
| <211> 1430 <212> DNA <213> Homo <400> 40 aatttgaccc tctcccatgt tgcaagtgca ttctgtgttc gttcacccat ggttaaaccc gggacctctg gtgagccatct aggccatca                                                                                                                                                                                 | tacttccctc<br>ttgatttgcc<br>cttakacaaa<br>tgtagcatca<br>aggaagcagc<br>ggccaagctt<br>tggacaaagg<br>ggagccggga<br>ctacctaaag<br>atctaataaa                                                                                                                              | tctatctccc<br>tgagatcaga<br>gctaagacct<br>ttcgtggtga<br>tccctgtatt<br>wcgacagatg<br>tggggataga<br>aaccatggrk<br>cactaatgta                                                                                                                    | tatgggcttg<br>tgacctgggg<br>taaaatcagt<br>gtgaagggag<br>accagatcaa<br>cctgtgagca<br>aggtgggaga<br>tctgagccat<br>tgtgctgcca                                                                                                                                                                                    | caacaccatg aacgtggctt aagaaagtat ctacctggac tgccacctcc gctctgcgac ggctgggttg tgacaagtgg ttgccttca                                                                                                                                                                                                      | acgggcacat<br>gtacacacct<br>ctgtctctct<br>atctccgact<br>ccatgggtga<br>ccagaaaccg<br>aaagaggcat<br>ctgaataaga<br>aggggggaaa                                                                                                           | 120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>600<br>660                                                                     |
| <211> 1430 <212> DNA <213> Homo <400> 40 aatttgaccc tctcccatgt tgcaagtgca ttctgtgttc gttcacccat ggttaaaccc gggacctctg gtgagccatg tgtgctccct aggcccatca ttcttagaga                                                                                                                                                           | tacttccctc ttgatttgcc cttakacaaa tgtagcatca aggaagcagct ttggacaagctt tggacaaagg ggagccggga ctacctaaag atctaataaa gccacagact                                                                                                                                           | tctatctccc tgagatcaga gctaagacct ttcgtggtga tccctgtatt wcgacagatg tggggataga aaccatggrk cactaatgta ctcagagtaa                                                                                                                                 | tatgggcttg tgacctgggg taaaatcagt gtgaagggag accagatcaa cctgtgagca aggtgggaga tctgagccat tgtgctgcca gaaaggacca                                                                                                                                                                                                 | caacaccatg aacgtggctt aagaaagtat ctacctggac tgccacctcc gctctgcgac ggctgggttg tgacaagtgg ttgccttca cagagaacat                                                                                                                                                                                           | acgggcacat<br>gtacacacct<br>ctgtcttct<br>atctccgact<br>ccatgggtga<br>ccagaaaccg<br>aaagaggcat<br>ctgaataaga<br>aggggggaaa<br>ctggcctagc                                                                                              | 120<br>180<br>240<br>300<br>360<br>420<br>480<br>540                                                                                   |
| <211> 1430 <212> DNA <213> Homo <400> 40 aatttgaccc tctcccatgt tgcaagtgca ttctgtgttc gttcacccat ggttaaaccc gggacctctg gtgagccatg tgtgacccatca aggcccatca tcttagaga tccagacaag                                                                                                                                               | tacttccctc<br>ttgatttgcc<br>cttakacaaa<br>tgtagcatca<br>aggaagcagc<br>ggccaagctt<br>tggacaaagg<br>ggagccggga<br>ctacctaaaga<br>atctaataaa<br>gccacagact<br>caaaatgtct                                                                                                 | tctatctccc tgagatcaga gctaagacct ttcgtggtga tccctgtatt wcgacagatg tggggataga aaccatggrk cactaatgta ctcagagtaa gcacttcaga                                                                                                                      | tatgggcttg tgacctgggg taaaatcagt gtgaagggag accagatcaa cctgtgagca aggtgggaga tctgagccat tgtgctgcca gaaaggacca tatccctgca                                                                                                                                                                                      | caacaccatg aacgtggctt aagaaagtat ctacctggac tgccacctcc gctctgcgac ggctgggttg tgacaagtgg ttgcctttca cagagaacat ttcagagcct                                                                                                                                                                               | acgggcacat<br>gtacacacct<br>ctgtctctct<br>atctccgact<br>ccatgggtga<br>ccagaaaccg<br>aaagaggcat<br>ctgaataaga<br>aggggggaaa<br>ctggcctagc<br>atcttcttgg                                                                               | 120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>600<br>660                                                                     |
| <211> 1430 <212> DNA <213> Homo <400> 40 aatttgaccc tctcccatgt tgcaagtgca ttctgtgttc gttcacccat ggttaaaccc gggacctctg gtgagccatc tgtgtgcccct aggcccatca ttcttagaga tccagacaag tactagctgg                                                                                                                                    | tacttccctc ttgatttgcc cttakacaaa tgtagcatca aggaagcagct ttggacaagctt tggacaaagg ggagccggga ctacctaaag atctaataaa gccacagact                                                                                                                                           | tctatctccc tgagatcaga gctaagacct ttcgtggtga tccctgtatt wcgacagatg tggggataga aaccatggrk cactaatgta ctcagagtaa gcacttcaga gcaagacact                                                                                                           | tatgggcttg tgacctgggg taaaatcagt gtgaagggag accagatcaa cctgtgagca aggtgggaga tctgagccat tgtgctgcca gaaaggacca tatccctgca gcttaccttt                                                                                                                                                                           | caacaccatg aacgtggctt aagaaagtat ctacctggac tgccacctcc gctctgcgac ggctgggttg tgacaagtgg ttgcctttca cagagaacat ttcagagcct cagtacaaga                                                                                                                                                                    | acgggcacat<br>gtacacacct<br>ctgtctctct<br>atctccgact<br>ccatgggtga<br>ccagaaaccg<br>aaagaggcat<br>ctgaataaga<br>aggggggaaa<br>ctggcctagc<br>atcttcttgg<br>gaatgaaaat                                                                 | 120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>660<br>720                                                                     |
| <211> 1430 <212> DNA <213> Homo <400> 40 aatttgaccc tctcccatgt tgcaagtgca tctgtgttc gttcacccat ggttaaaccc gggacctctg gtgagccatct tcttaggt tctccct aggcccatca tcttagaa tccagacaag tactagctg agcacaaca                                                                                                                        | tacttcctc ttgatttgcc cttakacaaa tgtagcatca aggaagcagc ggccaagctt tggacaaagg ggagccggga ctacctaaag atctaataaa gccacagact caaaatgtct gtgatcttg cacaaactc                                                                                                                | tctatctccc tgagatcaga gctaagacct ttcgtggtga tccctgtatt wcgacagatg tggggataga aaccatggrk cactaatgta ctcagagtaa gcacttcaga gcaagacact tcattaggat                                                                                                | tatgggcttg tgacctgggg taaaatcagt gtgaagggag accagatcaa cctgtgagca aggtgggaga tctgagccat tgtgctgcca gaaaggacca tatccctgca gcttaccttt tgaatgagaa                                                                                                                                                                | caacaccatg aacgtggctt aagaaagtat ctacctggac tgccacctcc gctctgcgac ggctgggttg tgacaagtgg ttgccttca cagagaacat ttcagagcct cagtacaaga gctgtgtga                                                                                                                                                           | acgggcacat gtacacacct ctgtctctct atctccgact ccatgggtga ccagaaaccg aaagaggcat ctgaataaga agggggaaa ctggcctagc atcttcttgg gaatgaaaat aatctcacag                                                                                        | 120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>600<br>660<br>720<br>780                                                       |
| <211> 1430 <212> DNA <213> Homo <400> 40 aatttgaccc tctcccatgt tgcaagtgca tctgtgttc gttcaccat ggttaaaccc gggacctctg gtgagccatg tgtgctccct aggccatca tcttagaga tccagacaag tactagctgc gagcacaacc catattcatt                                                                                                                   | tacttcctc ttgatttgcc cttakacaaa tgtagcatca aggaagcagc ggccaagctt tggacaaagg ggagccggga ctacctaaag atctaataaa gccacagact caaaatgct gtgatcttga cacaaaactg aattcactca                                                                                                    | tctatctccc tgagatcaga gctaagacct ttcgtggtga tccctgtatt wcgacagatg tggggataga aaccatggrk cactaatgta ctcagagtaa gcactcaga gcaagacact tcattaggat acaggtatt                                                                                       | tatgggcttg tgacctgggg taaaatcagt gtgaagggag accagatcaa cctgtgagca aggtgggaga tctgagccat tgtgctgcca gaaaggacca tatccctgca gcttaccttt tgaatgaga ctttagtagc                                                                                                                                                      | caacaccatg aacgtggctt aagaaagtat ctacctggac tgccacctcc gctctgcgac ggctgggttg tgacaagtgg ttgcctttca cagagaacat ttcagagcct cagtacaaga gctgtgtgga caggcatatt                                                                                                                                              | acgggcacat<br>gtacacacct<br>ctgtctctct<br>atctccgact<br>ccatgggtga<br>ccagaaaccg<br>aagaggcat<br>ctgaataaga<br>aggggggaaa<br>ctggcctagc<br>atcttcttgg<br>gaatgaaaat<br>aatctcacag                                                    | 120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>600<br>660<br>720<br>780<br>840                                                |
| <211> 1430 <212> DNA <213> Homo <400> 40 aatttgaccc tctcccatgt tgcaagtgca ttctgtgttc gttcacccat ggttaaaccc gggacctctg gtgagccatca tcttagaga tccagacaag tactagctga tactagctgc agcacaac tcttagaga tccagacaag tactagctgc gagcacaac agcacaac tactagctgc gagaacaacaac aggaacaacaac                                               | tacttcctc ttgatttgcc cttakacaaa tgtagcatca aggaagcagc ggccaagctt tggacaaagg ggagccggga ctacctaaag atctaataaa gccacagact caaaatgct gtgatcttga cacaaaactg aattcactca cagtgatcaa                                                                                         | tctatctccc tgagatcaga gctaagacct ttcgtggtga tccctgtatt wcgacagatg tggggataga aaccatggrk cactaatgta ctcagagtaa gcacttcaga gcaagacact tcattaggat acaggtatt acaggtatt aatatgcaaa                                                                 | tatgggcttg tgacctgggg taaaatcagt gtgaagggag accagatcaa cctgtgagca aggtgggaga tctgagccat tgtgctgcca gaaaggacca tatccctgca gcttaccttt tgaatgaga actttagtagc atctccacc                                                                                                                                           | caacaccatg aacgtggctt aagaaagtat ctacctggac tgccacctcc gctctgcgac ggctgggttg tgacaagtgg ttgcctttca cagagaacat ttcagagcct cagtacaaga gctgtgtgga caggcatatt tcatgaagct                                                                                                                                   | acgggcacat gtacacacct ctgtctctct atctccgact ccatgggtga ccagaaaccg aaagaggcat ctgaataaga agggggaaa ctggcctagc atcttcttgg gaatgaaaat aatctcacag tttaggtatt tacatgctag                                                                  | 120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>660<br>720<br>780<br>840<br>900                                                |
| <211> 1430 <212> DNA <213> Homo <400> 40 aatttgaccc tctcccatgt tgcaagtgca ttctgtgttc gttcacccat ggttaaaccc gggacctctg gtgagccatca tcttagaga tccagacaag tccagacaag tactagctg agcaccacc catattcatt gggaagacag tggggtagac                                                                                                      | sapiens  tacttcctc ttgatttgcc cttakacaaa tgtagcatca aggaagcagc tggccaagctt tggacaaagg ggagccggga ctacctaaag atctaataaa gccacagact caaaatgtct gtgatcttga cacaaaactg aattcactca cagtgatcaa actaaacatg                                                                   | tctatctccc tgagatcaga gctaagacct ttcgtggtga tccctgtatt wcgacagatg tggggataga aaccatggrk cactaatgta ctcagagtaa gcacttcaga gcaagacact tcattaggat acaggtatt aatatgcaaa cactgtggaa                                                                | tatgggcttg tgacctgggg taaaatcagt gtgaagggag accagatcaa cctgtgagca aggtgggaga tctgagccat tgtgctgcca gaaaggacca tatccctgca gcttaccttt tgaatgagaa ctttagtagc atctccacc tatggtagcc                                                                                                                                | caacaccatg aacgtggctt aagaaagtat ctacctggac tgccacctcc gctctgcgac tgacaagtgg ttgaccattca cagagaacat ttcagagcct cagtacaaga gctgtgtga caggcatatt tcatgaagct actagctaca                                                                                                                                   | acgggcacat gtacacacct ctgtctctct atctccgact ccatgggtga ccagaaaccg aaagaggcat ctgaataaga aggggggaaa ctggcctagc atcttcttgg gaatgaaaat aatctcacag tttaggtatt tacatgctag tgtggcattt                                                      | 120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>600<br>720<br>780<br>840<br>900                                                |
| <211> 1430 <212> DNA <213> Homo <400> 40 aatttgaccc tctcccatgt tgcaagtgca tctgtgttc gttcacccat ggttaaaccc gggacctctg gtgagcatca tcttagaga tccagacaag tccagacaag tactagctgg agcaccaacc catattcatt gggaagacag tggggtagac tattttaaat                                                                                           | tacttcctc ttgatttgcc cttakacaaa tgtagcatca aggaagcagc ggccaagctt tggacaaagg ggagccggga ctacctaaag atctaataaa gccacagact caaaatgtct gtgatcttga cacaaaactg aattcactca cagtgatca acatgatca cagtgatca                                                                     | tctatctccc tgagatcaga gctaagacct ttcgtggtga tccctgtatt wcgacagatg tggggataga aaccatggrk cactaatgta ctcagagtaa gcacttcaga gcaagacact tcattaggat aacaggtatt aatatgcaaa cactgtggaa taaataaaag                                                    | tatgggcttg tgacctgggg taaaatcagt gtgaagggag accagatcaa cctgtgagca aggtgggaga tctgagccat tgtgctgcca gaaaggacca tatccctgca gcttaccttt tgaatgaga cttagtagc atctccacc tatggtagc tatgtagc                                                                                                                          | caacaccatg aacgtggctt aagaaagtat ctacctggac tgccacctcc ggctgggttg tgacaagtgg ttgccttca cagagaacat ttcagagcct cagtacaaga gctgtgtgga caggcatatt tcatgaagct tcatgaagct tcatgaagct                                                                                                                         | acgggcacat gtacacacct ctgtctctct atctccgact ccatgggtga ccagaaaccg aaagaggcat ctgaataaga aggggggaaa ctggcctagc atcttcttgg gaatgaaaat aatctcacag ttaggtatt tacatgctag tgtggcattt cataccaccc                                            | 120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>600<br>780<br>840<br>900<br>960<br>1020                                        |
| <211> 1430 <212> DNA <213> Homo <400> 40 aatttgaccc tctcccatgt tgcaagtgca tctgtgttc gttcacccat ggttaaaccc gggacctctg gtgagccatca tcttagaga tccagacaag tactagctgg agcaccaacc catattcatt gggaggacat ttggggtagac tattttaaat agatttcaag                                                                                         | tacttccctc ttgatttgc cttakacaaa tgtagcatca aggaagcagc ggccaagctt tggacaaagg ggagccggga ctacctaaaaa gccacagact caaaatgtct gtgatcttga cacaaaactg aattcactca cagtgatcaa actaaacatg taattgaaat tgttccatag                                                                 | tctatctccc tgagatcaga gctaagacct ttcgtggtga tccctgtatt wcgacagatg tggggataga aaccatggrk cactaatgta ctcagagtaa gcacttcaga gcaagacact tcattaggat acatggatatt acatggatatt acatgtgat cactatggat cactatggat cactatggat cactatggat cacacacta        | tatgggcttg tgacctgggg taaaatcagt gtgaagggag accagatcaa cctgtgagca aggtgggaga tctgagccat tgtgctgcca gaaaggacca tatccctgca gcttaccttt tgaatgagaa cttagtagc atctccacc tatggtagca tatgtagca                                                                                                                       | caacaccatg aacgtggctt aagaaagtat ctacctggac tgccacctcc ggctgggttg tgacaagtgg ttgccttca cagagaacat ttcagagcct cagtacaaga gctgtgtgga caggcatatt tcatgagct tcatagagct tcatgagct tcattacaga                                                                                                                | acgggcacat gtacacacct ctgtcttct atctccgact ccatgggtga ccagaaaccg aaagaggcat ctgaataaga aggggggaaa ctggcctagc atcttcttgg gaatgaaaat aatctcacag tttaggtatt tacatgctag tggcattt cataccaccc catagmtata                                   | 120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>660<br>720<br>780<br>840<br>900<br>960<br>1020                                 |
| <211> 1430 <212> DNA <213> Homo <400> 40 aatttgaccc tctcccatgt tgcaagtgca tctgtgttc gttcacccat ggttaaaccc gggacctctg gtgagccatca tcttagaga tccagacaag tactagctga agcaccaacc catattcatt gggaagacag tggggtagac tatttaaat agatttcaag gaatatcttc                                                                                | tacttcctc ttgatttgc cttakacaa tgtagcatca aggaagcagc ggccaagctt tggacaaagg ggagccggga ctacctaaaa gccacagact caaaatgtct gtgatcttga cacaaaactg aattcactca cagtgatcaa actaaacatg taattgaaat tgttccatag atcactca                                                           | tctatctccc tgagatcaga gctaagacct ttcgtggtga tccctgtatt wcgacagatg tggggataga aaccatggrk cactaatgta ctcagagtaa gcacttcaga gcaagacact tcattaggat acaggtatt aatatgtaa catgtggaa acatgtggaa cacagtattt aatatgtgaa cacacacta aaatttctca            | tatgggcttg tgacctgggg taaaatcagt gtgaagggag accagatcaa cctgtgagca aggtgggaga tctgagccat tgtgctgcca gaaaggacca tatccctgca gcttacettt tgaatgagaa ctttagtagc atctccaccc tatggtagcc tagatgcattt                                                                                                                   | caacaccatg aacgtggctt aagaaagtat ctacctggac tgccacctcc ggctctgggttg tgacaagtgg ttgcctttca cagagaacat ttcagagcct cagtacaaga gctgtgtgga cagtacatt tcatgaagct tcatgaagct tcatgaagct tcatgaagct actgcatatt tcatgaagct actgcagataca ttcatgaagct actgcagtgcaca ttcatgaagct actgcagtaca tgttgcacaa ctgcagtggt | acgggcacat gtacacacct ctgtcttct atctccgact ccatgggtga ccagaaaccg aaagaggcat ctgaataaga aggggggaaa ctggcctagc atcttcttgg gaatgaaaat aatctcacag ttaggtatt tacatgctag tgtggcattt cataccaccc catagmtata caaacaagca                       | 120<br>180<br>240<br>300<br>360<br>420<br>480<br>660<br>720<br>780<br>840<br>900<br>960<br>1020<br>1080                                |
| <211> 1430 <212> DNA <213> Homo <400> 40 aatttgaccc tctcccatgt tgcaagtgca ttctgtgttc gttcacccat ggttaaaccc gggacctctg gtgagccatca tcttagaga tccagacaag tactagctga agcaccaacc catattcatt gggaagacag tggggtagac tatttaaat agatttcaag ggaatatcttc ggtaaattcttc                                                                 | tacttcctc ttgatttgcc cttakacaaa tgtagcatca aggaagcagc ggccaagctt tggacaaagg ggagccggga ctacctaaaa actaaataaa gccacagact caaaaatgtct gtgatcttga cacaaaactg aattcactca cagtgatcaa actaacatg taattgaaat tgttccatag atcactctga atactctga atatgacat                        | tctatctccc tgagatcaga gctaagacct ttcgtggtga tccctgtatt wcgacagatg tggggataga aaccatggrk cactaatgta ctcagagtaa gcacttcaga gcaagacact tcattaggat acaggtattt aatatgcaaa cactgtggaa taaataaaag ccacacca taagttactca                               | tatgggcttg tgacctgggg taaaatcagt gtgaagggag accagatcaa cctgtgagca aggtgggaga tctgagccat tgtgctgcca gaaaggacca tatccctgca gcttaccttt tgaatgagaa ctttagtagc atctccacc tatggtagc tatggtagc tggagaga tttagtagc ttagtagc ttagtagc tatggtagc tatggtagc tatggtagc tagatgc taagcagtg tagatgccgg                       | caacaccatg aacgtggctt aagaaagtat ctacctggac tgccacctcc gctctgcgac gctctgcgtg tgacaagtgg ttgcctttca cagagaacat ttcagagcct cagtacaaga gctgtgtga caggcatatt tcatgaagct actagctaca tttcccagt tgttgcaca ttttcccagt                                                                                          | acgggcacat gtacacacct ctgtctctct atctccgact ccatgggtga ccagaaaccg aaagaggcat ctgaataaga aggggggaaa ctggcctagc atcttcttgg gaatgaaaat aatctcacag tttaggtatt tacatgcatt cataccacc catagmtata caaacaagca aagaatgatg                      | 120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>660<br>720<br>780<br>840<br>900<br>960<br>1020<br>1080<br>1140                 |
| <211> 1430 <212> DNA <213> Homo <400> 40 aatttgaccc tctcccatgt tgcaagtgca tctgtgttc gttcacccat ggttaaaccc gggacctctg gtgagccatc tcttagaga tcttagaga tccagacaag tactagctg agcaccacc catattcatt gggaagacag tgggtagac tatttaaat agatttcaat ggtaaattct ggtaaattat tacaaagcat                                                    | tacttcctc ttgatttgcc cttakacaaa tgtagcatca aggaagcagc ggccaagctt tggacaaagg ggagccggga ctacctaaaa actaaaaactc caaaaactc gtgatcttga cacaaaactc aattcactca cagtgatcaa actaaacatg tattgacata actaacatg tattcactca cagtgatcaa actaacatg tattccctcaa atgactctgg atcactctga | tctatctccc tgagatcaga gctaagacct ttcgtggtga tccctgtatt wcgacagatg tggggataga aaccatggrk cactaatgta ctcagagtaa gcacttcaga gcaagacact tcattaggat acaggtatt aatatgcaaa cactgtggaa taaataaaag ccacaccta taggtgatga aagctgggag                     | tatgggcttg tgacctgggg taaaatcagt gtgaagggag accagatcaa cctgtgagca tctgagccat tgtgctgcca gaaaggacca tatccctgca gcttaccttt tgaatgagaa ctttagtagc atctccacc tatggtagc tatgtagct tgaatgaga tttggtagc tttagtagc tatgtagc taacattca gcagctacat tgggacagtg tagatgccgg                                                | caacaccatg aacgtggctt aagaaagtat ctacctggac tgccacctcc gctctgcgac ggctgggttg tgacaagtgg ttgcctttca cagagaacat ttcagagcct cagtacaaga gctgtgtgac actgcacat ttcatgaagct tcatgaagct actagctaca tttcccagt tgttgcaca ttttccagt tgttgcaca ctgtagggaa gtttcattat                                               | acgggcacat gtacacacct ctgtctctct atctccgact ccatgggtga ccagaaaccg aaagaggcat ctgaataaga aggggggaaa ctggcctagc atcttcttgg gaatgaaaat aatctcacag tttaggtatt tacatgctag tgtggcatt cataccacc catagmtata caaacaagca aagaatgatg acagaaagtg | 120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>660<br>720<br>780<br>840<br>900<br>960<br>1020<br>1080<br>1140<br>1200         |
| <211> 1430 <212> DNA <213> Homo <400> 40 aatttgaccc tctcccatgt tgcaagtgca tgttaacccat ggttaaaccc gggacctctg gtgagccatca tcttagaga tccagcaaca tcctagacaag tactagctgg agcaccacc catattcatt gggaagacag tggggtagac tattttaaat agatttcaag ggaatatttt ggtaaattat tggtaaattat tgcagggag tgcaggagac tggggtagac tattttaag tactagctgg | tacttcctc ttgatttgcc cttakacaaa tgtagcatca aggaagcagc ggccaagctt tggacaaagg ggagccggga ctacctaaaa actaaataaa gccacagact caaaaatgtct gtgatcttga cacaaaactg aattcactca cagtgatcaa actaacatg taattgaaat tgttccatag atcactctga atactctga atatgacat                        | tctatctccc tgagatcaga gctaagacct ttcgtggtga tccctgtatt wcgacagatg tggggataga aaccatggrk cactaatgta ctcagagtaa gcacttcaga gcaattcaga tcattaggat acatgtatt aatatgcaaa cactgtggaa taaataaaag ccacaccta aaattcca taggtgtatg aagctgggag ggtaagagga | tatgggcttg tgacctgggg taaaatcagt gtgaagggag accagatcaa cctgtgagca aggtgggaga tctgagccat tgtgctgcca gaaaggacca tatcctgca gcttaccttt tgaatgaga acttagtagc atctccacc tatggtagc tataccttt tgaatgaga tcttagtagc ttagtagc ttagtagc ttagtagc ttagtagc ttagtagc taaacattca gcagctacat tgggacagtg ttgggtgga tcacttgagc | caacaccatg aacgtggctt aagaaagtat ctacctggac tgccacctcc gctctgcgac ggctgggttg tgacaagtgg ttgcctttca cagagaacat ttcagagcct cagtcaaga gctgtgtgga caggcatatt tcatgaagct actagctaca ttttcccagt tgttgcacaa ctgcagtggt tgtagggga gtttcattat ctaggagttc                                                        | acgggcacat gtacacacct ctgtctctct atctccgact ccatgggtga ccagaaaccg aaagaggcat ctgaataaga aggggggaaa ctggcctagc atcttcttgg gaatgaaaat aatctcacag tttaggtatt tacatgctag tgtggcatt cataccacc catagmtata caaacaagca aagaatgatg acagaaagtg | 120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>660<br>720<br>780<br>840<br>900<br>960<br>1020<br>1080<br>1140<br>1260<br>1320 |

```
<210> 41
 <211> 1407
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> SITE
 <222> (353)
 <223> n equals a,t,g, or c
gcttaagatg aaaagttcct tttcttgtgt taatggatgg cacaactggc ataaaaggtc
attaaatgct aatagaccca cttgaggtat gctcgcttaa tggaggatta gagcaaaaca
                                                                       120
gacttaaaag accaacatgc cagttgtgcc atcccttaag atgaaaagtt ccttttcttg
                                                                       180
tgttaatgta caaagctttt cttttggcac tgacaactgt gttctacctg ggaattttga
                                                                       240
atagccattt tcatggctgt gtgttgtgta acacaaatgt ttttaaatgg tattctcacc
                                                                       300
cagtaggcca gctctccaaa cgttgcttag atgcttcaaa attagcatat ttnaagttta
                                                                       360
ccagtataaa ataccaatgc aactactcta catagccaaa tgtttgtaaa tcacgtctta
                                                                       420
ttttcctgak gtttttcact ccaccaaatc ttacaaatsr ttgaaagaaa tatattctaa
                                                                       480
cagtacgcac tgaatagtga aaataattag acattttaag aaccagagcc atagaattat
                                                                       540
tttaaattag tagaaaagag gagctatttc cgaatctata gaataaagta ccacctaaaa
                                                                       600
ctgaatttta tcatataasc aagtaatacc tattagtcat acctaaattt ttcagcactt
                                                                       660
cattcaatta aaatmcatga attttaaata ttttacatga tgtgaatagg catgataata
                                                                       720
cttttagtat aaaatctaaa ctttttccat ttatcagaaa tgataaaatc cagttaccac
                                                                       780
atatcacgtt tataaaatcc ttaattaaat gagtaacttc taaaatataa caatactaaa
                                                                       840
tatcacactg cgatggaggt cccaaatatg tggtctatca ccactgaatt catgtaatag
                                                                       900
ataagaaaaa aattagaggt ggatgtcttg ttttgtgtca tgaattacta aaatctctta
                                                                       960
gtagttgtgg tatatttttg agtaaaatta ccatttccag atttgagttt gaagggcttt
                                                                      1020
tatagtkgta ttttcctcct cactgttaat aatcataatc ctttttcagt attttagtgg
                                                                      1080
cctgaacaac tggtttatct acaatctcaa atcctaagtg tataattatg tgcatgttca
                                                                      1140
atacctcata taatacttgc tcaacagtat agtggtacca tggcattaag atggtgtttt
                                                                      1200
tgttctacat atttttcaat atttattctt tctatgttga aattatatca ggctttaccg
                                                                      1260
gtttttttag ttgtttaaat aagtaatatt ttcaaaagaa taaaataacc aatgatatct
                                                                      1320
cttggaataa tctgtaaaac gtagttataa aattctattt tctacttaga aaaaaaaaa
                                                                      1380
aaaaaaaaa aaaaaaaaa qqcqqcc
                                                                      1407
<210> 42
<211> 950
<212> DNA
<213> Homo sapiens
<400> 42
ggcacgaggt taccagcctg tttaattaca gcagacttcc cacttttctc ccacttagta
                                                                        60
tttccaattt gctgcttcct gaaacctagg aagaattgaa aattgtctag agaataagca
                                                                       120
tgccagattt gttaaatcag cgaccttatt ttatatatat ttctaagtca tggccatqqq
                                                                       180
catagaagct tctttttaa ttaagaagga aaaataaaaa tatgtgaaaa gaaagccata
                                                                       240
aaggtcattt tacacacatg taactccatg cacgaatgcc agtccttccc cttgtgtgtg
                                                                       300
cactigagac tagtictact actatectic aaaacecaag tgcatgaatt ccatgaagtt
                                                                       360
tttccccatt attctcattt taattttcct tctctgaaca actatgacat taatttatta
                                                                       420
cttaatcatg aattatggca tacaactccc taattgatgt ttgtgggttt ttttctcccc
                                                                       480
cagetagatt ttaattteet tgaagacaga agecatgete ttactgtget agaatatetg
                                                                       540
totocogtag otoctgacac agtgototgt gtatagaggg tgottgttgg otoaccaatt
                                                                       600
tgttctttac accaaatgcc cagggaaatc ttacatagag tttataccag gcaagaaaag
                                                                       660
gatatgetag attetecage tgecaaagae tggaatgtea etggtateea gteaceaeaa
                                                                       720
tototaggto cotoattttg ttottggtga gaaaggagca ctaaggagat ttogtoottg
                                                                      780
aaaaggcaga aagcaagtgt agtatcatct tgccatctag cttggaaatt aacacttgat
                                                                      840
cctaaattag gtaatcttcc cttcacatct cagagttttc caggcaacag acactcagta
                                                                      900
950
```

<210> 43 <211> 1004 <212> DNA

| <213> Homo sapier                      | ns               |            |            |            |              |
|----------------------------------------|------------------|------------|------------|------------|--------------|
|                                        |                  |            |            |            |              |
| <400> 43                               |                  |            |            |            |              |
| aatteggeae gageag                      |                  |            |            |            | 60           |
| aakkaaagag gctkct<br>aatgttataa agacag |                  |            |            |            | 120<br>180   |
| tttgcttttr atgttg                      |                  |            |            |            | 240          |
| tgctgcccca gaagag                      |                  |            |            |            | 300          |
| tgcacagcca tctcca                      |                  |            |            |            | 360          |
| acaaamccaa aataat                      |                  |            |            |            | 420          |
| ttaacaaatg tctgga                      |                  |            |            |            | 480          |
| gtaagtaaag ttggaa                      | attcc caagtcmaag | accatttgaa | tatttacaag | tagatttgag | 540          |
| gcaggaataa tacagg                      | ggtgg ccgcagggta | acaaattcta | ggcagcagat | ttacatgact | 600          |
| tgaggctatg ggctga                      |                  |            |            |            | <b>66</b> 0  |
| gactggaccc aatgtg                      |                  |            |            |            | 720          |
| ttattaacat actaaa                      |                  |            |            |            | 780          |
| atgtaaaaat ggatgg                      |                  |            |            |            | 840          |
| atattccact ccttgg                      |                  |            |            |            | 900          |
| tctcgggtat gcccga                      |                  |            |            | caatacatct | 960          |
| cttctttcac tatttg                      | jetga eteateettg | acttggttet | cgag       |            | 1004         |
|                                        |                  |            |            |            |              |
| <210> 44                               |                  |            |            |            |              |
| <211> 1681                             |                  |            |            |            |              |
| <212> DNA                              |                  |            |            |            |              |
| <213> Homo sapien                      | ıs               |            |            |            |              |
| -                                      |                  |            |            |            |              |
| <400> 44                               |                  |            |            |            |              |
| gaattcggca cgagtc                      |                  |            |            |            | 60           |
| cacaaaagt atgatg                       |                  |            |            |            | 120          |
| tgtagcatca ggggga                      |                  |            |            |            | 180          |
| taaggatmca aataaa                      |                  |            |            |            | 240          |
| agtttccamc aagaag                      |                  |            |            |            | 300          |
| gttttgatcc ccactg                      |                  |            |            |            | 360          |
| cagtagcgct tggcag                      |                  |            |            |            | 420          |
| attttgtcca agctaa                      |                  |            |            |            | 480          |
| ctaccacatt ggctac                      |                  |            |            |            | 540<br>600   |
| atggccaatc tgtgct                      |                  |            |            |            | 660          |
| gagaaatata gggtac                      |                  |            |            |            | 720          |
| caatgactgg acacca                      |                  |            |            |            | 780          |
| agttcagaga ggagaa                      |                  |            |            |            | 840          |
| gttttccccc tctcag                      |                  |            |            |            | 900          |
| ttccaagttt ctgtct                      | _                |            |            |            | 960          |
| aagcttcttt agtcat                      |                  |            |            |            | 1020         |
| agataatggc cctcag                      | ttaa gactagggaa  | agctattttg | cttgctgtat | tagcgcccta | 1080         |
| ttttagaata atccta                      | ttcc cttgattctt  | tagtatttac | aatttttcta | agtaccgatt | 1140         |
| atattttcta agtcaa                      | agtg gggtaaaatt  | agtgcattgt | atcctgttgt | tgccgctttc | 1200         |
| tggagtagtc agtctt                      |                  |            |            |            | 1260         |
| agcttgattc tttaaa                      |                  |            |            |            | 1320         |
| attaggagtg ttttac                      |                  |            |            |            | 1380         |
| cctccgagct gagagc                      |                  |            |            |            | 1440         |
| cacgttctca gccagg                      |                  |            |            |            | 1500         |
| gcaagaggga ggccct                      |                  |            |            |            | 1560         |
| agaaatagta actoto                      |                  |            |            |            | 1620         |
| tccccatcct aaaact                      | cacy addigadydd  | ccagcgacac | accygygyag | cagiggereg | 1680<br>1681 |
| a                                      |                  |            |            |            | 1001         |
|                                        |                  |            |            |            |              |
| <210> 45                               |                  |            |            |            |              |
| -210× 45                               |                  |            | •          |            |              |

<211> 1365 <212> DNA <213> Homo sapiens

| <400> 45                |             |             |            |                          |            |                    |
|-------------------------|-------------|-------------|------------|--------------------------|------------|--------------------|
| ggcacgaggg              | agaactgctt  | taattagcct  | aggtgaaaag | tagtcctagc               | agtgtaaata | 60<br>120          |
| tgtataatta              | gagttttcta  | atttcactgt  | gagateteta | acttttgagt               | ggcaaacaga | 180                |
| tcaagtcttt              | tgctcataga  | cttttttttt  | gggttattaa | aatgcaaaag               | cocttacttt | 240                |
| tttaataatg              | ccatactcca  | ctagigicag  | taccaacaa  | ggaatttgtt               | agaggagga  | 300                |
| ccccactgt               | tactgettea  | gittatagat  | ttottttata | gttcagaaat<br>cagacccatg | ttaccaatca | 360                |
| tttacccgtt              | etttgettgg  | tataeataat  | ttatttttta | tttttgataa               | ratoratato | 420                |
| tgtatgaact              | grycracact  | agttagtagt  | cttcttcaag | aagaaaacca               | attetttte  | 480                |
| aaaaataytt              | gergradaatt | agttagtagt  | ttcatttatt | tttaagccaa               | atgtcagcag | 540                |
| antactacta              | cttttatcta  | gtaattttga  | tatgtaagta | ttaatgcatt               | tttaaaagat | 600                |
| atchecatta              | aaacatotto  | ttcccagtgt  | cctacttata | atgctttgtt               | cagattttt  | 660                |
| gteadaceg               | agttagtaga  | ctagagagtat | atattqtqta | catgtgtcat               | tttagttagg | 720                |
| cattgtaggc              | caaatgtgat  | tataaatgaa  | gttgatgaac | attaattttg               | ttattagtga | 780                |
| oftttttgaa              | ttgtaaatgg  | atttccagtt  | taccttctgt | tgtctacagc               | ttttttaatt | 840                |
| ttaaggtttg              | actaattgta  | tccatctcat  | tgtacagtgt | tttagttgca               | agcagaaagt | 900                |
| agaatttggt              | ataaagcagg  | ttatttctat  | attgaaagga | gtacagttga               | aattgtagat | 960                |
| ttaagattgt              | taaaatcatg  | acaattctaa  | cttgtctatt | ctaacctatt               | gtgtacaatc | 1020               |
| tgattttta               | aaattgtaaa  | catgtatgat  | cttggtttca | tgtgtttttg               | aaagtgttat | 1080               |
| totttaaaaa              | atgaaaaaag  | catatctgct  | aaagagctgt | cagttttcat               | tactgactct | 1140               |
| gtaaaataca              | ctgttctttg  | tgtactgtgt  | gttattttgc | cagctgctgc               | attagccttc | 1200               |
| aaaagtattt              | ggaaacttaa  | gatgaactac  | atttcttgca | aagtacattc               | ctttctgtgg | 1260               |
| tattttgtcc              | tgtaactgaa  | gtatagtaat  | tattttatgg | aaatgttagc               | aattctgtac | 1320               |
| caactttgaa              | taaaatgaaa  | aatttataaa  | aaaaaaaaa  | aaaaa                    |            | 1365               |
|                         |             |             |            |                          |            |                    |
| .010: 46                |             |             |            |                          |            |                    |
| <210> 46                |             |             |            |                          |            | •                  |
| <211> 1137<br><212> DNA |             |             |            |                          |            |                    |
| <213> Homo              | caniens     |             |            |                          |            |                    |
| \215> Home              | Supremo     |             |            |                          |            |                    |
| <400> 46                |             |             |            |                          |            |                    |
| agacttttta              | tcaacctgaa  | gcacgttcta  | agtcgatggt | agaaagtgga               | cacccccaga | 60                 |
| agacactttt              | gcccagaaat  | ctctttcttc  | ctgacccctc | ttccccagag               | tgcccggaat | 120                |
| tccactgtca              | gaaatgcatt  | gtctgggtta  | aaaaacttaa | cacctgctat               | gatttcaaca | 180                |
| gtgtcaaaac              | aggatacgtc  | aaaactgggc  | gaggaggaaa | tgtatttggg               | ttctaggata | 240                |
| gtgaaagctc              | tattttttct  | acttttctgt  | attttccata | tttggtacaa               | tgagcacgta | 300                |
| cttagaacgg              | ttttagattt  | acgaaaatat  | gcaaacacag | tacagatagt               | tettgegtee | 360<br><b>4</b> 20 |
| cccatgccta              | gttcctctat  | tgctaacgtc  | tcaacgttag | tgtggtgcgt               | ttgttgtaat | 480                |
| gggtgaatga              | atattcgtgg  | gctgttatta  | aagtcagtgc | ttcaccccta               | acattactct | 540                |
| tttcctctta              | catecttttc  | cottccaaga  | tgcatccagg | atgccgcgtt               | atttttata  | 600                |
| tcacacttcc              | ttaggtteet  | cttggtatga  | cattttata  | gatttttttt               | aactgggtg  | 660                |
| atcttgacag              | ttcgaggagt  | tagtctagg   | atatacttt  | aatgttcttc<br>gggaggaaga | ccacagagat | 720                |
| tetggtggtt              | tataagaaga  | tegtactaag  | aaaaaattct | gccaacttga               | cttaccacto | 780                |
| ttactaataa              | ctttgagccc  | ccaactaaaa  | ttactccttt | gtaaagttac               | tcttttttc  | 840                |
| teettteeat              | actatatatt  | ttagaaggaa  | gtcactatgc | tgctccaagc               | aactcaagtt | 900                |
| tgatgatga               | ggagttccgc  | cccacctcct  | tgagggaga  | gtagctacat               | aaattacttg | 960                |
| gatttctca               | aggagatttg  | tctgtactcc  | cagtttatta | tataaataaa               | tgatttattt | 1020               |
| atattacagg              | gacccaggga  | tctttactgt  | atgctttggg | ttataatcca               | atggtacttt | 1080               |
| actttatage              | tcaagtatac  | tacttttaaa  | ttggaaaaaa | aaaaaaaaa                | aactcga    | 1137               |
|                         | _           |             |            |                          |            |                    |
|                         |             |             |            |                          |            |                    |
| <210> 47                |             |             |            |                          |            |                    |
| <211> 2763              |             |             |            |                          |            |                    |
| <212> DNA               |             |             |            |                          |            |                    |
| <213> Homo              | sapiens     |             |            |                          |            |                    |
| -400> 47                |             |             |            |                          |            |                    |
| <400> 47                | cctagaaaga  | tactttatet  | atottettt  | cacatagtgc               | ccagcttgca | 60                 |
| tasstatas               | ananaaatnt  | ataatcatat  | tttttacttt | tgtcttgtat               | atgtatgtat | 120                |
| attacatact              | ctagacacyc  | gaggcaaagc  | tcacctccca | tgtagcacat               | gaaatgcttg | 180                |
| taaattatta              | acattogaca  | ggtgaacagt  | agggcattac | atttgtgtga               | attaaatgtg | 240                |
|                         |             |             | 200        |                          |            |                    |
| aacttctgta              | ttacgttqcq  | gcgtcggcag  | tcctgcgttc | cctggagtaa               | ctgtacgtat | 300                |

```
ctgcctttgc tgggaagact gyggggctgc ctgtgttggc tggcgaccag caggattgct
                                                                      360
ccaggatttt gtgtttacct cgcgtgaagt tcagcacgtg ctgtcgtgta gtcagcttct
                                                                      420
actictaattt ctgttacagt tctgcaaagg taacctggag tttagaagtt aaaaaaaagc
                                                                      480
atgggatgtt ggatttgcac catttggagt ttctttaggg aagaaaagtt ttctgctttt
                                                                      540
ttatagaaaa tcatttcagt ctcccgaggt ctcatgctag caaattttga aataggattc
                                                                      600
taatcactga tttcaaatat taagcaaaat gtaaagcact ttaatttata gctatggtta
                                                                      660
taaacaggtt ttagatgttt caaatgactt gtccactgaa tgtcacttga ccttgataag
                                                                      720
aggccqcctq cacacagagc ccagttaatt ctccgcacct cggttgtgtg cttccgaatg
                                                                      780
ggctcactcc cgtggtggtg tttgagagcc aacaacacta cctcagagac gggtctttgg
                                                                      840
gaaactttgg gtctcactgt tgcctggctg gagcactttg gtttatagct ggaatactga
                                                                      900
gttcagttca gaaggcagga aagacagtca caccgacgtg tcctgaaggt gtaggctctc
                                                                      960
cacttaggcg cacaagctga cggctgcagc cagcaggccc cggtgacgag acacttccag
                                                                     1020
gtcttgtggt ggggacgcct ctcagtgcca gtcccgccac tgctgagtga gcctggtgtt
                                                                     1080
cttqccttct tggaaattac tgctcacctg gtatctgtac gttaatgttt Cttgctgagt
                                                                     1140
tacagttttg ataaagaggc tctcatttcc tgtgtcttgt atattcagtc ctttcaatac
                                                                     1200
gtccacctgg aggctcacca cttggagaga cacaggaagg taatatttac agctgtcatg
                                                                     1260
tqacatcccc aggtctttgt gttttgccct gttttacggt gaggtaggag ggaacccatc
                                                                     1320
tggggaccgg taggtgcagg tgcagtagga cgtgggactt ttggacccgt cctttggtgc
                                                                     1380
agetegecag ggatgagagg caceteceta ettgggtett caggagetgg tecaaggage
                                                                     1440
ttcgaatcta agtcatctag aatgaccctg aaatgactga cagccccggg cccaagaaaa
                                                                     1500
acccataacc acctcagatg gatctgacgt ggctaaggga caaacagcaa atatttcagt
                                                                     1560
cattttgatt ttacaaataa aaaatgtgtt gtgtttttgt ccgacattat ttcctgactg
                                                                     1620
cactgttctg agaatggagt ccacctggtc cctctggttg attagaatct caggtttcag
                                                                     1680
ctcctgctgt cctgagcgaa cttgcctgat gcagggctgt gctgtgtcca gatgttgctg
                                                                     1740
gggcctcact ttttctcttg gctggaggtc caattgccag agcctcccac actgcacata
                                                                     1800
caaaggtytg agcccagggc agcttctggg gccactgcac aggccacctg cttgggttcc
                                                                     1860
tcggagttta atttgaaagt ctgggtgtct taggatgatg gttaggaaca ttgaaaaatg
                                                                     1920
gctgcaaata gccaaatcaa acttaagaac cagatctctg ccagattaaa catttttgaa
                                                                     1980
gettttaaaa gteaatatte etagtggeea etgagtteea ggeacaetgg tgeeetttae
                                                                     2040
tgccacaget geteacettg tetggcaaac tggagggace teagaaactg gacteetgca
                                                                     2100
tgtccttggg ggcgcagccc tgtggtgctc aggcagagct ctcaggagcc ggggcacctt
                                                                     2160
gctgttcgct gctgttgtcgt cttctaatgt gagctcatcc actgctgctg cagcgtggtg
                                                                     2220
atcaggagtc acagacaaga tcggggatgg tgtgtgtgtg tgtgtgtgtg tgtgtgcacg
                                                                     2280
tgtgtgtggc taaattaagt catactgtca accacacgtg atctcgtctg aaacagtgtt
                                                                     2340
tggaagtggg aacagttttg tcctgtatgc tgatgtgtcc agaatttcat ttaatgatag
                                                                     2400
acggaaaatg tgtggttact gaaaactgta tatgatacag aatttcataa gagccatgct
                                                                     2460
gttgggcaaa gcaactettt ttcaaccact gctcatcagt ttctgtagag acaaaaacte
                                                                     2520
                                                                     2580
tgtacatatt ttggaatctg aagaatccta tgtaaatcat ttgttactta agtctgtgaa
aaacatattt ctttggagga aaatgtatgc atttataagt gttccatgga atcagttttt
                                                                     2640
attgtatcga tataattgtc tctaagtgtt gactgtcttc attgcaatat gaaattcatt
                                                                     2700
2760
                                                                     2763
cgc
<210> 48
<211> 1576
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (252)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (804)
<223> n equals a,t,g, or c
<400> 48
ctgctgctgt gtccctggtg gctgtgtttt gattggtcaa tgggctgcat ccccctcatt
                                                                       60
aagtccatca gcgactggag ggtaattgca cttgcagcac tctggttctg cctaattggc
                                                                      120
ctgatatgcc aagccctgtg ctctgaagac ggccacaaga gaaggatcct tactctgggc
                                                                      180
```

ctgggatttc tcgttatccc atttctcccc gcgagtaacc tgttcttccg agtgggcttc

```
300
gtggtcgcgg antgttcctc tacctcccca gcattgggta ctgtgtgctg ctgacttttg
gattcggagc cctgagcaaa cataccaaga aaaagaaact cattgccgct gtcgtgctgg
                                                                       360
gaatcttatt catcaacacg ctgagatgtg tgctgcgcac ggcgagtggc ggagtgagga
                                                                        420
acagetttte agaagtgete tgtetgtgtg teeceteaat gytaaggtte aetmeameat
                                                                        480
tggcaaaaac ctggctgata aaggcaacca gacagctgcc atcagatact accgggaagc
                                                                        540
tgtaagatta aatcccaagt atgttcatgc catgaataat cttggaaata tcttaaaaga
                                                                        600
aaggaatgag ctacaggaag ctgaggagct gctgtctttg gctgttcaaa tacagccaga
                                                                        660
ctttgccgct gcgtggatga atctaggcat agtgcagaat agcctgaaaa cggtttgaag
                                                                        720
                                                                        780
cagcagagca aaakttaccg gacagcaatt aaacacagaa gggaaatacc cmgactgtta
ctacaacctc gggcgtctgg taancgcggg gtgccctgtg cctgtggaag gaaagatggg
                                                                       840
ttattttyct tatttataat aaaatgacat agtgacaccc acctagccca tacattttat
                                                                        900
                                                                        960
aaagttcytt cacatgtttc tayctcattt gaaggtagct atttgattyc cttttgagta
attttttaaa gctctcatta gagagcagta cagtgtgaat tagtcaagtt taagaggtca
                                                                       1020
                                                                       1080
cccacgcaaa aggttaaacc caggaataaa ttaacatgtt aaagtcccgt ccgccctgta
aaacagcact ccaatgggta acttcctgat aaacatcagt ttctctgttt ttaaaacaag
                                                                       1140
aattgagtaa gaacagagat taaagtaaca aatycgtagt atgatttctg agctcccttg
                                                                       1200
ttctccttct tcaagggagc agagctcttc atctgcaggg agcatttccc ccaaaaaagg
                                                                       1260
cagctttgga gggcacggga tttatttgaa agggctttga cattatttgg tggaaataga
                                                                       1320
aaataacgtg ttctgtagta gctttatatt tttggttatt gacaggatgt ttacgaagat
                                                                       1380
                                                                       1440
ctgattgctc ttgattttct tgacaaaaat aaaatgagac acacacatag caaaattctt
taaacacgaa tggttgtctt ctccctataa tcaatcattt aatttggttt caagaaaaca
                                                                       1500
aatacatatg ttcctaatat atttagatgt attcaataaa cattgttaat taaaaaaaaa
                                                                       1560
                                                                       1576
aaaaaaaaa ctcgag
<210> 49
<211> 1348
<212> DNA
<213> Homo sapiens
gttaaaaaac atgtaaaacc gtatttatct tcgaattaca gtgttatgtg tttgaatggt
                                                                        60
tttagatgtt aaaaagtagc aaattgaaac ttaatgttta aagtctttgt taattgaaaa
                                                                       120
                                                                        180
attgatette aatagtggta etatttgeag tatgattegt teetttaatg tacataegta
tatattagta catacgagag tgatgttaga cctgtagaaa tgaaggtgtt gttttaattg
                                                                       240
aaaacattta tgtttatttt gctgatagtg tttgtatttt caaaaagtaa acaagttctg
                                                                        300
                                                                        360
tcaatatgtt tgaaaatttt taaagttgag ataaatagca tctcattttg taaaaataaa
aaatataaag atttaccata tgcgtttgca tcagaaaaga ctggaaggac atactcaaat
                                                                        420
gtcaacaatg attatctctg aatatgggat tatgggcaga tttttatatt ctttttactt
atctgtattt tcaaaaactt ctacagtaag tgaactgcat ttataatact gttttaaaag
                                                                        540
attgaaccac caaagataga ggttattaaa aattatatcc ctactcacat gattatagta
                                                                        600
attggattat tittggattt caagaaacat tagtattagt ttaagagaat gitgctatat
                                                                        660
gtaaagcatt gtactaaaaa ctatgggaga tatacagaag gaaaagatag cttactttca
                                                                        720
aggaagetgt atttcaaaaa atgtgtgtag aaagtgecag agtggcaagg aaatttgete
                                                                        780
                                                                        840
accagttate ceaeteetta atacagttte etggeaaate titgtitett tettagaeta
atacttggag acctatgtct ccttgtactc ttctttcaaa tctaactttg tttttttaat
                                                                       900
ggatcatgaa agataaattt ctgtaattga tgttttattc atagcatgaa gattttcctc
                                                                       960
taaactgttt cttccttttc tggtaatcat ttacagtggt ctttatgtta caatttgaaa
                                                                       1020
cacagtagaa gtacaaaaat atggccaggc gcggcggctc acgcctataa tcccagcact
                                                                       1080
ttgggaggcc aacgtgggtg gatcacttga gctggggagt tcaagaccag cttggtcaac
                                                                       1140
atggtgaaac cctgtctcta ctaaaaatac gaaaattagt cgggcgtggt ggcacatgcc
                                                                       1200
tgtaatccca gctgcttggg aggctgaggc acgagaatcg cttgaacatg ggaggtggag
                                                                       1260
                                                                       1320
gttgcagtga gccaaggttg caccactgca ctccagccta ggcaaccaag cgagactttg
                                                                       1348
tctcaaaaa aaaaaaaaa aaaaaaaa
<210> 50
<211> 1264
<212> DNA
<213> Homo sapiens
<400> 50
                                                                        60
gacccacgcg tecgeecacg egteegettt catteacatt cacaaagcaa acatetagta
catgicitic acticactit atgatagigt attggatgat tigggcatta cgatcacctc
                                                                       120
```

| ttaccacage              | acagaacata               | cattcttcaa  | cagcattaac  | ggagtttgcc | aagtgcatta  | 180        |
|-------------------------|--------------------------|-------------|-------------|------------|-------------|------------|
| aagaggtcac              | gtggagggta               | cgttcatatg  | aaacaatctg  | cagaaagtgg | ggtaagaaag  | 240        |
| ggcacatggc              | acagttaaag               | ttgtagaaat  | caaattacta  | tcattttttg | ttgccaaaac  | 300        |
| aaagtcttac              | atttaacccc               | cctttctacc  | accccctcc   | acacttcacg | tcagctacat  | 360        |
| agtttccaca              | gggtaattca               | ctaagagctt  | gtggagcttg  | gttttaaaat | ccttagcctg  | 420        |
| gtctgacttt              | aggcatagct               | tcagttcttc  | ttccgtgtcc  | tggtttcttg | ttcagtttta  | 480        |
| cttctaatcc              | accaccaaaa               | gaaatgtctg  | gctggtctca  | gctagagtct | atgtgtctta  | 540        |
| gagcatgtgt              | gcgtatctga               | ccatcatccc  | tgctctcatc  | tcagctccct | ccaggctgag  | 600        |
| caccggttcc              | ttttgtccca               | tacgtcatga  | agtccactat  | tgggaaacct | gtgcttccct  | 660        |
| ctccatggct              | taactccctg               | tcagtgtcgg  | agtgtataag  | aatgcttgta | aatactgtaa  | 720        |
| tatatttatt              | aatatttgaa               | aggcattcat  | tcagtggaca  | gtgggaatta | actctcccaa  | 780        |
| ggcaagtgaa              | aatgaatgat               | tgacgtacgt  | tgatttaaca  | atcttactag | attttaattc  | 840        |
| ttaaggattt              | caaatgaaac               | cagaaggtgg  | ttatgtaaga  | ggcttaaaat | gatettatgt  | 900<br>960 |
| ttaaagagat              | tctgttatta               | gcaccatgaa  | ctcgtactat  | gaaattttta | agectttat   | 1020       |
| ttttctaact              | atattactgt               | aggactggat  | attaggtgtc  | tataggaag  | tattanagan  | 1020       |
| tattgctgtt              | tgctaaagca               | aaatagcaga  | adactttgta  | tacycaaaac | cyctgaagga  | 1140       |
| ccatagagaa              | tgtgtactac               | tgcggggctt  | artactagget | attttagett | asantchtch  | 1200       |
| aggtattgct              | ggcattcagg<br>ttagagaaaa | gtgacatgat  | tttacatcaa  | aaaaaaaaa  | 222222222   | 1260       |
|                         | ttagagaaaa               | atadaatyyc  | ttttctattag | aaaaaaaaa  | aaaaaaaaaa  | 1264       |
| aaaa                    |                          |             |             |            |             | 1204       |
|                         |                          |             |             |            |             |            |
| <210> 51                |                          |             |             |            |             |            |
| <211> 1660              |                          |             |             |            |             |            |
| <211> 1000<br><212> DNA |                          |             |             |            |             |            |
| <213> Homo              | saniens                  |             |             |            |             |            |
| \213> 1101110           | Supremo                  |             |             |            |             |            |
| <400> 51                |                          |             |             |            |             |            |
| acccacacat              | ccgtatacat               | atctattagt  | atagtatete  | ttgaatgcga | ttttttctag  | 60         |
| aatgtgttct              | gctgatttgt               | tttagagcca  | tgagtgcaat  | ttatacacat | acatctattg  | 120        |
| ggaatgctca              | gaagttgttt               | actgatggaa  | gtgccttcag  | aagagtccgg | gaaccacttc  | 180        |
| ctaaggaagg              | aaagagctgg               | ccacagttag  | agcaagcctg  | cctggggccc | tgctctgtgt  | 240        |
| tccagctgca              | aactgcctgc               | atcatccctt  | cctgttactc  | ttccttcacc | tgagacagtc  | 300        |
| gaggccacag              | cgtcagccag               | ggccagagct  | gggatttgaa  | cccaggcact | cgggctccag  | 360        |
| agccacactg              | ccccagtgtg               | gggcttagtg  | gcggctcctg  | gccctgactg | aggggctgac  | 420        |
| tgaagcctgg              | tgagagcgtg               | ctgggtcagc  | ctctccctgg  | cgggaatcct | ctccgtccag  | 480        |
| tcttctaacc              | tagcagcctc               | acgtccacag  | agctgccttg  | tgaaactcag | cagagccctg  | 540        |
| gcttcctgca              | gagccgtgtt               | ctcccagcct  | gcttcatggc  | tccctggttg | agccaagctt  | 600        |
| gcggatccgt              | ggggtgaagg               | tacccgcacc  | gcctgggcct  | tagtggtatg | tacgggcctg  | 660        |
| catcgtgagc              | agcgggcggg               | ggcccaggca  | ggtgaggcag  | ctggccacaa | gggcagggcc  | 720        |
| cggcccccct              | cccaaggctg               | tgtctsatat  | tcttgagcct  | gttcgagttt | ccttttccaa  | 780        |
| gcctcctgtt              | ctcccacccc               | canccctgcc  | atgctgcagt  | gactaaatct | gtggttetea  | 840        |
| tccttggaga              | acacctgagt               | agctgctaca  | agetggeeae  | ageceagega | ccccgatgtg  | 900<br>960 |
| gttgggctgg              | gtgtggccag               | cagccagggc  | atcgggactt  | ttcgaagctc | ccaggtgact  | 1020       |
| caccggcagc              | tggggatgag               | aactgtcagg  | agggaaggcc  | agaagteeca | tggacgcaccc | 1020       |
| gaaaagcctc              | tagctccacc               | agtgaccagc  | teetggetgg  | tattangeta | gtcatcage   | 1140       |
| atcagggagg              | ctctggcctc               | tegeceteag  | getggggget  | accoancate | accaccata   | 1200       |
| acttggccag              | ttccgcctct               | tesatestes  | tagtagtaga  | tectatteta | acquegeate  | 1260       |
| agttcaccaa              | caaacacgat               | agagagatata | tattacata   | agggggggg  | aagcctggcg  | 1320       |
| atgaggccaa              | gagggaaaga<br>tgactcatgt | tattaattaa  | coacttage   | ccaaannton | cccctagacc  | 1380       |
| cagacgaaag              | gcatcacctg               | rgccaactdy  | agaatgaag   | attecearee | cccacctcan  | 1440       |
| agtggcctca              | cagagcatcc               | ctttaccasa  | ccatactgaac | aaacaaccac | gtgcatcacc  | 1500       |
| aagggtgtat              | aagagcaccc               | actttaaaac  | cttgaaggaa  | tcatcaaact | ctgggcctcg  | 1560       |
| atatactoss              | ccagggcgag               | acaaanacno  | catgeteete  | caagtggcct | ccaagattaa  | 1620       |
| atgaggaetg              | acttttaaaa               | aaaaaaaaaa  | aaaactcgag  |            | <u> </u>    | 1660       |
| acyaycaacy              | ucce cedada              |             |             |            |             |            |
|                         |                          |             |             |            |             |            |
| <210> 52                |                          |             |             |            |             |            |
| <211> 1678              |                          |             |             |            |             |            |
|                         |                          |             |             |            |             |            |

<sup>&</sup>lt;211> 1678 <212> DNA

<sup>&</sup>lt;213> Homo sapiens

<sup>&</sup>lt;400> 52

```
aattcggcac gagccaagct gcactattgg gaatggattg tggctgaaca gcaaatcaaa
120
ctaacaaacc ttgatgtacc agtccaatac catgtagcgc tgagtgataa agttaaaatg
                                                                       180
tgctgtgctt cccacccttg tcagagggaa gggtggctat gtgttatttt cactgtcttt
                                                                       240
ttgaaagtta cagtatgtgt tttcactttc gtgcagataa ctggaagtaa agcggcaaac
                                                                       300
agtgctatta catgctaaag ttaccttctc tttgtttttt gcatatctgg aattacacct
                                                                       360
ttaaagactg atatgaatca gtacggtcac tatacatttt atgatttttc tgtcatctta
                                                                       420
                                                                       480
aaattgtatg atcgtaacat tatttattac cacaaaacag caaaatcttc aatgtctaag
aaaactagct taaaatgttt aaatatagtt ctgattgggt attaattact tgattaagaa
                                                                       540
aaaattaaca ttatagatac tctggcatta cgcttctata ccttttaggt cttccttgca
                                                                       600
                                                                       660
atactggaac ataattcttt tgtgtagctc actattagcc agctaagttc atctttttaa
taccataaaa aggttatatg tacagttcct attttagctt gcttacaaag ggagcattat
                                                                       720
ttttatttaa agtattgcta gtaaatgatt tgtagaaact tggttttcta agcatagttc
                                                                       780
ttccataacc accttttgtt gtttgagcac aagggattct tttcctagtt ctatgtgttt
                                                                       840
gtttccctat atgcagtctt taaaggatta caacacttaa aattgaatgg acttgtgtca
                                                                       900
                                                                       960
agotttttgc atcatacatt ttttgaaaga tttttaaaaaa agoctacaac ttacatatgt
agtagaatca gccattgctc tgctcctggc atagagtcac ctgttatgtg gattaaatag
                                                                      1020
ttttaaaata catatttgaa gmcctttgag aatgctttag tgtttgattt gaaataaaag
                                                                      1080
gaaattttag caaggattaa agaaaaaagc tatcagctgt atgttaagag agactcttac
                                                                      1140
taacatgttg taaatattac aattcatgaa atgttattgt aagtctgtaa cttaattttt
                                                                      1200
tccctgtttt agttatacag gttggtttgg aaatttgtgt tttggcataa acaagtaaaa
                                                                      1260
tgtgcccatt ttatggkttc catgcttttg taatcctaaa aatattaatg tctagttgtt
                                                                      1320
ctatattata accacattty cgctctatgc aagcccttgg aacagaacat actcatcttc
                                                                      1380
atgtaggacc tatgaaaatt gtctattttt atctatatat ttaaagtttt ctaaaaatga
                                                                      1440
taaaaggtta ttacgaattt tgttgtacaa aatctgtaca aaaatctgtt tttacatcat
                                                                      1500
aatgcaagaa ttggaaattt ttctatggta gcctagttat ttgagcctgg tttcaatgtg
                                                                      1560
agaaccacgt ttactgttat tgtatttaat tttcttttcc ttttcaacaa tctcctaata
                                                                      1620
1678
<210> 53
<211> 1860
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (912)
<223> n equals a,t,g, or c
cctagctgtc cccctgagat gaagaaagag ctccctgttg acagctgcct gccccgctca
                                                                        60
                                                                       120
ctcgagcttc accctcagaa gatggatccc aagagacagc acattcagct cctgagcagc
ctgactgagt gcctgacggt ggaccccctc agtgccagcg tctggaggca gctgtaccct
                                                                       180
aagcacctgt cacagtccag cettetgetg kagcacttge teageteetg ggagcagatt
                                                                       240
                                                                       300
cccaagaagg tacagaagtc tttgcaagaa accattcagt ccctcaagct taccaaccag
gagctgctga ggaagggtag cagtaacaac caggatgtcg tcacctgtga catggcctgc
                                                                       360
aagggcctgt tgcagcaggt tcagggtcct cggctgccct ggacgcggct cctcctgttg
                                                                       420
ctgctggtct tcgctgtagg cttcctgtgc catgacctgc cggtcacaca gctccttcca
                                                                       480
ggctggctgg gggagacact gccgctctgg ggctcccacc tgctcaccgt ggtgcggccc
                                                                       540
                                                                       600
agettgcage tggcetggge teacaceaat gecacagtea getteettte tgcccactgt
gcctctcacc ttgcgtggtt tggtgacagt ctcaccagtc tctctcagag gctacagatc
                                                                       660
cageteceeg atteegtgaa teagetaete egetatetga gagagetgee cetgetttte
                                                                       720
                                                                       780
caccagaatg tgctgctgcc actgtggcac ctcttgcttg aggccctggc ctgggcccag
gagcactgcc atgaggcatg cagaggtgag gtgacctggg actgcatgaa gacacagctc agtgaggctg tccactggac ctggctttgc tacaggacat tacagtggct ttcttggact
                                                                       840
                                                                       900
gggcacttgc cntgatatec cagcagtagg coetgeette etggecaetg atttetgeat
                                                                       960
gggtagacca tccaagactg cagcgggtag aaggtggcag ttcttcatgg gagtcttttt
                                                                      1020
                                                                      1080
aacttggtgc ctgagttctc tcctaggcaa gtggccagtt gcctccacct cagttcttcc
atctttggtg gggacagggc ccagcagcat ctcagcctcc tacccacaat tccactgaac
                                                                      1140
acttttctgg ccctactgca catggccccc agcctccatc cttgtgctgg tagcctctca
                                                                      1200
caacteegee ettgeeetet geetteeact teetteeate teatttetaa acceeaaaca
                                                                      1260
gctcatctct aaaaagatag aactcccagc aggtggcttc tgtgttcttc tgacaaatga
                                                                      1320
                                                                      1380
ttcctgcttc tccagacttt agcagcctcc tgttcccatt cttggtcaca gctctagcca
```

```
cagcagaagg aaaggggctt ccagaagaat atagcaccgc attgggaaac agcagcctca
                                                                    1440
cctccacctg aagcctgggt gtggctgtca gtggacatgg ggagctggat ggaaatgcct
                                                                    1500
ctcacttcaa aatgcccagc ctgccccaaa tgcctctaag cccctccctg tcccctccct
                                                                   1560
tgtagtccta cttcttccaa ctttccattc cccatcatgc tgggggtctt ggtcacaagg
                                                                    1620
                                                                    1680
tgtgccttgg gcccagggaa ccctccatca acctgagaca ggactcagta tatggttctt
                                                                    1740
gggtatgccc taccaggtgg aataaaggac acagatttga tttctaraaa aaaaaaaaaa
                                                                   1800
                                                                    1860
<210> 54
<211> 1663
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (975)
<223> n equals a,t,g, or c
aattcggcag agttttctga tcagactctt tttattgttt tgtttttat aaacaagtct
                                                                      60
caggtggaaa aagaaagaaa gggaggagct agctctctgc cttctcagcc aattgaaatc
                                                                     120
gtggaaacca atgggcttca gctagcccca ctcatcactg ctggggggga aaagacatcc
                                                                     180
ctactcccct tccccgtggc actcatgata ttctcaatgc cccaacaagg gtcatcttgg
                                                                     240
ttcctctcgg cgtttctgtc ctggcctttg gctctggctc cggctctgac tccgactccg
                                                                     300
gctccggcca gggccccggg agcccctaga gctgctggag cccctggaag agttgctgcc
                                                                     360
ggccgtggaa catgtgctgg tgccctggcc ccgggacagg aagcttggtc tgctgtatgg
                                                                     420
gagecaggee tetteatetg ggtggageae eegetggget gecaggggea eggeetggae
                                                                     480
cgctttcctc tccccactgc gctcccgctc cagggaggac atgctgcctg ctgccctcag
                                                                     540
                                                                     600
ctctagggcc cagctcgcct cttcctctgg cggtggcaag ggtggtgggg gcaagtcccc
aggactgttc tccctcctgt agggaagagc cttgggtttc ttccggaatc gagcacgggg
                                                                     660
tccttgaagt gggggagtca tctccccatt cccctgccag gttctgcctg gggcactgct
                                                                     720
ggctgtgcta ggggcaggac tggggctgag gtggggtgag gctgcagggc cagcacccaa
                                                                     780
gccagcaggc ctcgcttcac ggatgcccag catgggctgg gatacactga gaggggaact
                                                                     840
                                                                     900
cggcccaagg ggcaccytcc tgggcatctg atggagatgg ggcatgtcag ttgggggctg
gggagggtca ggaggtgagg gtgtaagagt ggctgtggac tgctgtccat aggaaggtgt
                                                                     960
gggagagggg gtttnccttc gggatggggt gaccaggcac cctccactgg agctgggctc
                                                                    1020
                                                                    1080
cgtcaggtga cttctctcag gcattggcgg gcaccactcc tctggctctg agctgccctc
cagctcctcc teeggeeett etaggeaget eagtteacaa gaaggaggag gtgggggeag
                                                                    1140
                                                                    1200
ggcttctggc cagttcagag agggcatctg cacaggtttc cccagaaget tcactttgcc
tecettgget ceaetgtece eetggeteea etetggagga gegtaetgge tecagggace
                                                                    1260
cagatetect gagggatgtt gggggaagee eccatggaag gtetgeaget ecteeceege
                                                                    1320
tgggtcaatg gtgctataga caggaccete gecaggggeg geegtgeece tggeegtetg
                                                                    1380
agctagatac agggagattc ccgcttcgtt gtaatatctg tcgtccgggt caggattgct
                                                                    1440
agggcagcag cttcccctgg gttcctgggc cgaggggctt cgagatgggt ggggccacga
                                                                    1500
atctgccagc catgagtagg gggctttccg tcctcgaact tgccccttct ttatggagat
                                                                    1560
ggttgcaaag cctggcctcc tcgtggcgtc ttagaggcaa acgtcatcca gatcccgccc
                                                                    1620
cgtcttggcc cgcagccctc cctagtcctg gcagctcctc gag
                                                                    1663
<210> 55
<211> 1632
<212> DNA
<213> Homo sapiens
cccgccccgc ggcgcattgt gggatctgtc ggcttgtcag gtggtggagg aaaaggcgct
                                                                      60
ccgtcatggg gatccagacg agccccgtcc tgctggcctc cctgggggtg gggctggtca
                                                                     120
ctctgctcgg cctggctgtg ggctcctact tggttcggag gtcccgccgg cctcaggtca
                                                                     180
ctctcctgga ccccaatgaa aagtacctgc tacgactgct agacaagacg actgtgagcc
                                                                     240
accacactet ggggetgeet gtgggeaaac atatetacet etecaceega attgatggea
                                                                     300
gcctggtcat caggccatac actcctgtca ccagtgatga ggatcaaggc tatgtggatc
                                                                     360
                                                                     420
ttgtcatcaa qqtctacctg aagggtgtgc accccaaatt tcctgaggga gggaagatgt
```

| ctcagtacct  | ggatagcctg | aaggttgggg | atgtggtgga  | gtttcggggg               | ccaagcgggt | 480                   |
|-------------|------------|------------|-------------|--------------------------|------------|-----------------------|
| tgctcactta  | cactggaaaa | gggcatttta | acattcagcc  | caacaagaaa               | tctccaccag | 540                   |
| aaccccgagt  | ggcgaagaaa | ctgggaatga | ttgccggcgg  | gacaggaatc               | accccaatgc | 600                   |
| tacagctgat  | ccgggccatc | ctgaaagtcc | ctgaagatcc  | aacccagtgc               | tttctgcttt | 660                   |
| ttgccaacca  | gacagaaaag | gatatcatct | tgcgggagga  | cttagaggaa               | ctgcaggccc | 720                   |
| gctatcccaa  | tcgctttaag | ctctggttca | ctctggatca  | tcccccaaaa               | gattgggcct | 780                   |
| acagcaaggg  | ctttgtgact | gccgacatga | tccgggaaca  | cctgcccgct               | ccaggggatg | 840                   |
| atgtgctggt  | actgctttgt | gggccacccc | caatggtgca  | gctggcctgc               | catcccaact | 900                   |
| tggacaaact  | gggctactca | caaaagatgc | gattcaccta  | ctgagcatcc               | tccagcttcc | 960                   |
| ctggtgctgt  | tcgctgcagt | tgttccccat | cagtactcaa  | gcactataag               | gatagatte  | 1020<br>1080          |
| ctttcctcag  | agtttcaggt | gastagaa   | acacccagag  | ctgaaatctg<br>ctcagtcact | cettagatag | 1140                  |
|             |            |            |             | catggagcag               |            | 1200                  |
|             |            |            |             | tggctagttc               |            | 1260                  |
|             |            |            |             | gtctgtgcaa               |            | 1320                  |
|             |            |            |             | tgagtataag               |            | 1380                  |
|             |            |            |             | aggaaatgat               |            | 1440                  |
|             |            |            |             | tctcagcccc               |            | 1500                  |
| agagggaaac  | agctactgat | aatcgaaaac | tgctgtttgt  | ggcaggaacc               | cctggctgtg | 1560                  |
|             |            |            |             | aaaaaaaaa                |            | 1620                  |
| aaaaaactcg  | ag .       |            |             |                          |            | 1632                  |
|             |            |            |             |                          |            |                       |
|             |            |            |             |                          |            |                       |
| <210> 56    |            |            |             |                          |            |                       |
| <211> 2233  |            |            |             |                          |            |                       |
| <212> DNA   |            |            | •           |                          |            |                       |
| <213> Homo  | sapiens    |            |             |                          |            |                       |
| <400> 56    |            | •          |             |                          |            |                       |
|             | tgatttgata | tggtaagcag | taatatttaa  | aatggtgatg               | gtattcttct | 60                    |
|             |            |            |             | gccctggaag               |            | 120                   |
|             |            |            |             | agctctttac               |            | 180                   |
| gccccttct   | gggaaagccc | aaatgttcat | tctcatttga  | taggaacgag               | agtgaggatt | 240                   |
| tgaataagca  | ggaggttaag | tgcagggcag | tgcctgtctc  | tgtgtcgagc               | tcaatgttgt | 300                   |
|             | -          |            |             | agctcactcc               |            | 360                   |
|             | -          |            |             | ggggtcagct               |            | 420                   |
|             |            |            |             | aaggaagaaa               |            | 480                   |
| cctcaactct  | gcttttttta | gaatgaagaa | cagactagca  | aaatagcatt               | gecatacate | 540<br>600            |
| tcaaggcaga  | gagatgcgac | agggattgga | agccaggtaa  | ttggtcagga               | aacattctgg | 660                   |
|             |            |            |             | aaggaaatag               |            | 720                   |
| -           |            |            |             | agttagtggg<br>acacctagaa |            | 780                   |
|             |            |            |             | gagtctctgg               |            | 840                   |
| aaagaagaga  | aatatggctt | gcttagcaag | aatataagaa  | aggctttgag               | gaagaaaaga | 900                   |
|             |            |            |             | agcacaaaca               |            | 960                   |
| Caaccaaccc  | ctctqtqttt | ctgccacagt | caaacagtgc  | tcaaggaata               | tgaatacggc | 1020                  |
| tgtcctgatt  | gtgaaagaag | agaggggccc | gaggcaaagg  | aagctggcag               | gcagctcctg | 1080                  |
| ctgatcctcc  | agatgctagt | tgataaaggc | ccaatttcaa  | atgaaggttt               | tgaaagcaaa | 1140                  |
| aggacagtag  | gaacccggag | gcagggaatg | aatcacagga  | cttgggagcg               | ggtgtggggt | 1200                  |
| gaacctgaaa  | ttgagacagg | attaaaaacg | acctgtctga  | gatgggacag               | gggctggctt | 1260                  |
| gtttcacgga  | cttcaatgct | tctggcagca | atggggaaat  | tgggcaggct               | ggctatcata | 1320                  |
| ggaggctggg  | cacagaccct | gagcccaggg | gatggtacat  | tgagtagcca               | gtggccccgg | 1380                  |
| gtgaaagttc  | tgcagccaaa | aacaactggg | ggatgaggaa  | aaaaggaaaa               | attcaattct | 1440                  |
| agtctctccc  | attaagcccc | cttcccaatt | tgaagactgg  | cccaagaggc               | cttcgggaat | 1500                  |
| acccctcctg  | tcttccaccc | ttctcatcac | ttccctgtcc  | cttctctgtc               | CTTTCCCCCA | 1560                  |
| actetecece  | tcaagcccag | tctcgttgtc | accaaggett  | ctaggtgatt               | agagaatccc | 1620                  |
| acctcatctc  | cacctggaac | ectecctcca | antotagant  | cctagggata               | tasactatta | 1680<br>17 <b>4</b> 0 |
| cacccctgcc  | ccacctggaa | gggcctacag | tttttaataa  | gaaaaacctg<br>ctttttcttg | reataerte: | 1800                  |
| aacctcctgt  | ccggcggcat | taccacatac | caaggggga   | tctaggtata               | cantactac  | 1860                  |
| acadatatta  | ttgagttttt | castacases | treatment   | ggtaatttaa               | acttassat= | 1920                  |
| tcatccaasc  | anactanata | cattooctca | cacctgtgg   | cctagtactt               | taggaggggg | 1980                  |
| aggragarag  | atcacttgag | gtcaggagtt | caagactage  | ctggccaaca               | tggcgaaaca | 2040                  |
| ctatatatata | taaaaaaata | caaaaattag | ccggacgtgg  | tggcgggcgc               | ctgtaatccc | 2100                  |
| ,           |            |            | 20 - 3 - 22 | 22 200 0                 | -          |                       |
|             |            |            |             |                          |            |                       |

```
agctaccegg gaggetgagg gatgagaate gettgaacce aggagtegga ggttgcagtg
                                                                     2160
agccgagatc ccgccactgc actccagtat gggcagcaga atgagactcc atctcaaaaa
                                                                     2220
                                                                     2233
aaaaaaaaa aaa
<210> 57
<211> 1963
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (1540)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (1935)
<223> n equals a,t,g, or c
<400> 57
                                                                       60
ggcacgagct ttgaagagag agttcaagag ggcgtcatct accettccat gtgctggate
cgggactccc tggtcagcta catcaccaac ctgggcctct tcagcctggt gtttctgttc
                                                                      120
                                                                      180
aacatggcca tgctagccac catggtggtg cagatcctgc ggctgcgccc ccacacccaa
aaqtqqtcac atqtqctgac actgctgggc ctcagcctgg tccttggcct gccctgggcc
                                                                      240
ttgatcttct tctcctttgc ttctggcacc ttccagcttg tcgtcctcta ccttttcagc
                                                                      300
atcatcacct ccttccaagg cttcctcatc ttcatctggt actggtccat gcggctgcag
                                                                      360
gcccggggtg gcccctcccc tctgaagagc aactcagaca gcgccaggct ccccatcagc
                                                                      420
                                                                      480
tegggeagea cetegteeag cegeatetag geeteeagee cacetgeeca tgtgatgaag
cagagatgcg gcctcgtcgm acactgcctg tggcccccga gccmggccca gccccaggcc
                                                                      540
agtcagccgc agactttgga aagcccaacg accatggaga gatgggccgt tgccatggtg
                                                                      600
gacggaytcc cgggctgggc ttttgaattg gscttgggga ctactcggct ctcactcagc
                                                                      660
toccacggga ctcagaagtg cgccgccatg ctgcctaggg tactgtcccc acatctgtcc
                                                                      720
                                                                      780
caacccagct ggaggcctgg teteteetta yaacccetgg geccageeet cattgetggg
ggccaggcct tggatcttga gggtctggca catccttaat cctgtgcccc tgcctgggac
                                                                      840
                                                                      900
agaaatgtgg ctccagttgc tctgtctctc gtggtcaccc tgagggcact ctgcatcctc
tgtcatttta acctcaggtg gcacccaggg cgaatggggc ccagggcaga ccttcagggc
                                                                      960
cagagecetg geggaggaga ggeeetttge caggageaca geageagete geetaeetet
                                                                     1020
gageccagge ececteeete ceteageeee ecagteetee etecatette eetggggtte
                                                                     1080
tcctcctctc ccagggcctc cttgctcctt cgttcacagc tgggggtccc cgattccaat
                                                                     1140
gctgtttttt ggggagtggt ttccaggagc tgcctggtgt ctgctgtaaa tgtttgtcta
                                                                     1200
ctgcacaagc ctcggcctgc ccctgagcca ggctcggtac cgatgcgtgg gctgggctag
                                                                     1260
gtccctctgt ccatctgggc ctttgtatga gctgcattgc ccttgctcac cctgaccaag
                                                                     1320
cacacqcctc agaggggccc tcagcctctc ctgaagccct cttgtggcaa gaactgtgga
                                                                     1380
                                                                     1440
ccatgccagt cccgtctggt ttccatccca ccactccaag gactgagact gacctcctct
ggtgacactg gcctagrgcc tgacactctc ctaagaggtt ctctccaagc ccccaaatag
                                                                     1500
ctccaggcgc cctcggccgc ccatcatggt taattctgtn ccaacaaaca cacacgggta
                                                                     1560
gattgctggc ctgttgtagg tggtagggac acagatgacc gacctggtca ctcctcctgc
                                                                     1620
caacattcag totggtatgt gaggogtgog tgaagcaaga actootggag ctacagggac
                                                                     1680
agggagccat cattectgce tgggaateet ggaagaette etgeaggagt cagegttcaa
                                                                     1740
tcttgacctt gaagatggga aggatgttct ttttacgtac caattctttt gtcttttgat
                                                                     1800
attaaaaaga agtacatgtt cattgtagag aatttggaaa ctgtagaaga gaatcaagaa
                                                                     1860
1920
                                                                     1963
cgagggggg cccgntaccc aattcggcct ttggaaatga gat
<210> 58
<213> Homo sapiens
```

<211> 1267 <212> DNA <220> <221> SITE

<222> (1248)

```
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (1255)
<223> n equals a,t,g, or c
<400> 58
gctgcagcag actatgcaag ccatgctgca ctttgggggc cggctggccc agagccttcg
ggggacttcc aaggaagetg cttcagaccc ctctgactct ccaaaccttc ccacaccagg
                                                                     120
gagetggtgg gageagttga eccaggeete eegggtetat geetetgggg geactgaggg
                                                                     180
                                                                     240
ctttcctctt tcccgatggg caccggggcg tcatgggact gcagctgaag aaggtgcaca
ggagagaccc ctgcccacag atgagatggc accaggcagg ggcctctggt tgggaagact
                                                                     300
atttggagtg cctgggggcc ccgcagaaaa tgagaatgga gccctaaagt ccaggagacc
                                                                     360
                                                                     420
atctagctgg ctgcccccga cagtgagtgt gttggctctt gtgaagcggg gggcacctcc
cgagatgcct totoctcagg agottgaggo otcagoacco aggatggtgo aaacccatag
                                                                     480
ggcagtgcgg gctctctgtg atcacactgc tgcaagacct gaccagttga gcttccggcg
                                                                     540
tggggaagtg ctgcgtgtca tcaccacagt ggatgaggac tggctccgct gtgggcggga
                                                                     600
tggcatggag ggtctggtgc ctgtggggta tacctccctt gttctgtagc cctgggaccc
                                                                     660
                                                                     720
tttcctgcgt atgtgtctcc ttcctgtcac ctgggaatgg aatggccagt gaacaccatc
ccagaagcat tttccctctg caaaatgacg tttcttccca cgtctgtttc tgctaatatt
                                                                     780
taaaataaac tttccttctt ccctcctata cccacctgta aggtgaaatc tgctcttctt
                                                                     840
                                                                     900
ccaaatatat aaaaaaggaa ttgccctcca ggtaatccct ttcctttttc ccgtctatat
aagggaatgt ctteetteet atetatetge aaaatggaaa tetagacete ettetteate
                                                                     960
cataagtgga ctgtgccagt acaatacatg cctcagcccc caagcctaga aggacctcta
                                                                    1020
gtotocttoc tgtgtggaat ottocccact coatcoctco caagttgcot gtattgataa
                                                                    1080
tgtactcact catgctgtac taggtgctga agcctggaca cccttggtgg gtgggcctgt
                                                                    1140
                                                                    1200
1260
1267
ctttagt
<210> 59
<211> 1295
<212> DNA
<213> Homo sapiens
<400> 59
                                                                      60
ggcacgaget tgtcccaggm ctggagcage tgtggagaaa ctgggaggga agcccgtcca
gcctgattcc aagcccacat gctgctcaca ggtcaaggcc gagggactga tttttgccgg
                                                                     120
                                                                     180
totgactgga otcaagttac ttoccagtto ottgoagaga gotgtotttg tgagacagtg
tottgggtto tggaatgatg ggagoogtgo tttgcaaatg aggagtgatt gogtgotoat
                                                                     240
ctggcagctg gtgggtgtcc tgctggcatc aggcctgagc ggtgaccgtg ctcctctgat
                                                                     300
                                                                     360
tgtcctcact gcgtgtgaca aggcctgggc cactgtgtga gtcgtcttgc gctccatgaa
gcctggtgtc tgtgcagatg tgtgggtggc gttaaggttg ggggacattt gtctttcaca
                                                                     420
                                                                     480
ctggagaatg ggagtctgga gctggtgcta ctggtgagga agaggcccgg cctgctgcca
ggttcgccca caccttcccc ctggttgttg ggaaaaccaa ccttggaatg gccaaggcag gagatagcac ctccccggtg aagatccagg agctctcatg agctccacgt ggaaagatca
                                                                     540
                                                                     600
                                                                     660
aggatetgga gtetggagee etteaggeag caacteagtg accatgaace teagetetgt
ccacccggca cagcattgct gggagctgga cccgggaggc tgccggctcc agagtgagga
                                                                     720
gggtccagac catgcagaca atatgccctt tttctccaaa caccatttca agcaaacccg
                                                                     780
                                                                     840
caggitateet ccaeggetgt cageagette tegtagaget teteatagga eteatatggt
ggaatgtcga tccggttaaa gctgaaaaag gacaaaagag agtcaccgtg tgggcagtcc
                                                                     900
                                                                     960
agccctagga ccaacctcaa ggccaaggac aggcagtgag aaagacaggg tctcgctagg
ttgcccagge tgctctcaaa ctcctggcct caagtgaacc tcctgccttg ccctctcaac
                                                                    1020
gtgctgggag ccactgtgcc caatcaacac acagtaaagg ggaagctcat ttccagtatt
                                                                    1080
tgtgcaaaga aaaagacatc ctttaagaag ctatcgtagc aaaccaaaaa atacaaaatt
                                                                    1140
gtgacccaga ggatgtacag tgacttctgg ctttctaggg tgctgtggca ggtgctgtgg
                                                                    1200
                                                                    1260
1295
aaaaaaaaaa aaaaaaaaaa aaaaaaaaac tcgag
```

<210> 60 <211> 915 WO 99/58660 PCT/US99/09847

```
<212> DNA
<213> Homo sapiens
acceaegegt cegtgtteac agacagtagt tteaaagtgt gtaceaeatg aagttgeagt
                                                                    60
cttccaacct tccagccagt gtgtatggaa ataacctgaa ttgtattaat agcagttctt
                                                                   120
caatgtgggc ctgctggggg atgcttggtt gtattccgtt gtttgttccc tgggtgcccg
                                                                   180
tettgggeaa geatttetet ggatgteyet atttatgtgg caggtmacce tgetggattg
                                                                   240
cetteatetg tgtgeggaet eeetgtggae caactacage geetacaget aetttgaagt
                                                                   300
ggtcaccatt kgygacttga taatgawcct cgccttttac ctggtccacc tcttccgctt
                                                                   360
ctaccgcgtg ctcacctgta tcagctggcc cctgtcggta agagagtggt ctggcctgt
                                                                   420
cctccgcatg cacaagtcag gatgttagct agagtactga gacctgacag agtttttccc
                                                                   480
gtctgcccat ctcacctctt taaccattct ttgctgcctc tgccctgaat ttcctattgt
                                                                   540
ttggtggaca tctctgcttg atgtcctgct ggtttttaaa actcactttc cagctacaag
                                                                   600
aaggetgtgg etggeeggge geggtggete aegetggtaa teeeageact ttgggagget
                                                                   660
qaqqqqqqq gatcacqaqq tcaqqaqttc qaqaccacqq tqaaaccccq tctctactaa
                                                                   720
aaaatacaaa aaatcagccg ggcgtggtgg cgggtgcctg tagtcccagc tactcagaga
                                                                   780
ggctgaggca ggagaatggc gtgaacccgg gaggcggagc ttgcagtgag ccgagatcga
                                                                   840
900
aaaaagggcg gccgc
                                                                   915
<210> 61
<211> 1445
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (1047)
<223> n equals a,t,g, or c
60
gctcttttaa actatgagat actggacaga catgaggagg aactaccgtg tcacgtatca
                                                                   120
agtagtgttg ttatttctgt gcttctccct cctaacagaa tgtaaaacct ttgaacccag
                                                                   180
gtcagagagg tctttatttt catatcccct gtgatgtcta atttatttgg atttacagat
aaatgatcgg taaactttag aaacagcact ccagtttata gctctgtgct gtagacttac
                                                                   300
tgaacaacta cagtgaaacc aattcaaaaa gggatatttt gtattatgat ttagtctcct
                                                                   360
acttccaagg ctagttttta aggctgtgaa gggaagctga aaatgacaca gtgtttctgg
                                                                   420
gatgaccaga cagacactgt atccagagat gctgtctgcg cagcggggga tagtaaaccc
                                                                   480
cttagtacaa cattaattgg catggtggtt tatgagttaa tgtaatacca aatattaaca
                                                                   540
taaataaaaa tatatttaag tgataactaa gctggacata tatcttaaaa gacaactaca
                                                                   600
geccagaaaa caatgaacat tgttgteeta cagetatttt gteactgtga tgatacetaa
                                                                   660
ttttaatctt aaagggagct gatgtttata acctagaagt tgattttgat aacatttgag
                                                                   720
aaaacttcat aaagctggca caggtaacat atttagtttt gtatatctgc tgtccaattt
                                                                   780
qaqtetetaa aaattatett agaatgaata tgaaattege aggtataaag accaagtttt
                                                                   840
cagaaataaa aaatgtccaa gtactttgaa acatctattt ttcactcatt attcagccta
                                                                   900
ggatattagc acttgtgtcc ttgaacagag atgagaatgt ttgttatcca aagaccagga
                                                                   960
aggtcaccag ccaagggata tacagtcgtg cctcatcttc tgtgcctttg tattccttta
                                                                  1020
tgctttgtag cttaacaaaa ggttttncct tgtacttgtt aagtttccat atatttgtta
                                                                  1080
aatatatact tcacacttca cagttgctca tgtcagaaca gactattgaa aatgtaaacc
                                                                  1140
tggccaggca cggtgctcac gcctgtaatc ccagcacatt gggaggctga ggcaggcgga
                                                                  1200
tcacttgagg tcaggagttt gagaccagcc tggccaacat ggtgaaacct tgtatctgct
                                                                  1260
aaaaatgcca aaaaattagc taggcatagt ggtgcacgcc tataacccca gctacttggg
                                                                  1320
aggctgaggc aggagaattg cttgaaccca ggaggcggag gttgcagtga accaagatca
                                                                  1380
1440
ctcga
<210> 62
<211> 1100
```

<sup>&</sup>lt;212> DNA

<sup>&</sup>lt;213> Homo sapiens

```
<400> 62
ggtgactgct ccctagctgg tcatgaaaat tctcctcaag attattaaat cagggattat
                                                                        60
gtcttgtcca aatataagtg aaatattgtt tgtaacaatg ataagttact tggctttaca
                                                                        120
                                                                        180
ttttagtaac taccctttca tgtttcttta actcttgaaa tattttatta ggggttgagc
attcatgatg gtacctggaa gtcagcaatt tatggttttg gagatcagag taatttgaga
                                                                        240
aaactaagaa atgtatcaaa totgaaacct gtoocgotca ttggtocaaa attgaagaga
                                                                        300
aggtggccaa tttcttattg tcgggaactc aaaggttatt ccattccttt tatgggatct
                                                                        360
gatgtgtctg ttgtaaggag gactcaacgt tacttgtatg aaaatttaga ggaatcacca
                                                                        420
gttcagtatg ctgcgtatgt aactgtggga ggcatcacct ctgttattaa gctgatgttt
                                                                        480
gcaggacttt tctttttgtt ctttgtgagg tttggaattg gaaggcaact tctcataaaa
                                                                        540
                                                                        600
ttcccatggt tcttctcctt tggctatttt tcaaaacaag gcccaacaca aaaacagatt
gatgctgcct cattcacgct gacattcttt ggtcaaggat acagccaagg cactggtaca
                                                                        660
gataagaaca aaccaaatat caaaatttgt actcaggtga aaggaccaga ggctggctat
                                                                        720
gtggctaccc ccatagctat ggttcaggca gccatgactc ttctaagtga tgcttctcat
                                                                        780
ctgcctaagg cgggcggggt cttcacacct ggagcagctt tttccaaaac aaagttgatt
                                                                        840
gacagactca acaaacacgg tattgagttt agtgttatta gcagctctga agtctaaaca
                                                                        900
                                                                        960
ctggaagaat taactgaagt cataacgtgc gtgaattaac agcttctcta tttgatattt
gaaattette tgtaageetg tetgagtgta tgtggaaacg attgtcaaat ctaaaatate
                                                                       1020
tatatattaa aaagtaggaa attgtcctag cttaccctaa atttcaaaaa aaaaaaaaa
                                                                       1080
                                                                       1100
aaaaaaaaa gggcggccgc
<210> 63
<211> 1499
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (52)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (66)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (84)
<223> n equals a,t,g, or c
<400> 63
agcttattgc aaagacaaat gtttgaagtg tttgttgaga tttcctgttg tncttcctga
                                                                         60
ggcagncaca gcataagctc tttnaccctc tacttctcag cacataagct ttcttaccat
                                                                        120
                                                                        180
ctatcactgg agtcaggggt gaggggagga ccgcatgaca gttggttaat atacacttat
tttttggcaa aaacgttttc tctgggacca gaatgatctt gatactgaaa aaatttctag
                                                                        240
tgctagatcc tctttctaag tgtgaaagga cttatctgga atgctccaga atgatcccaa
                                                                        300
gtgttgagct gagagggacc tggcagcaga atctgattat tgaaaagtgg caattgttga
                                                                        360
tttattgaag acagaataat aactcagcag aactgttatg ttgagctgaa cccgacctcc
                                                                        420
ttcagccgaa tcatgcaaga atgcctgctg catggctgtt gctgctactt attaaggctt
                                                                        480
                                                                        540
qqtqttctqq qcacagtqca atgcatttct acatggttga tcctcacagc aaatgaacaa
cacaggetta aggaaacaag caacteteaa agteetgeag tgagtagage ttagetgttg
                                                                        600
gtagtcaaca tgccacgcga ttcggragtt gagcctgtct ccagaggtta gagatgttca
                                                                        660
                                                                        720
qtttcctctt aaggttctta cgtagatttt tttcatgact ttatctacat cctccttaaa
tttacgtttt tagtccttac tggctcttga tatcaccagt tttgttgtta ttagtaattt
                                                                        780
ctaactgccc taaatttgtc tgttttaaga ttcaagggat gatacctcag tctgttatct
                                                                        840
                                                                        900
ggaatatggt ttacaaatcc atttttctc ttcaaggctt tgaaaacatt gacattgtct
cctcctaaca tttttatttg tcttgcagac tcctaattta tttaatttat cgttaggaag
                                                                        960
acgaetttte tgtettttga tgattttage tgeeettete tagaeettge tgatteeatt
                                                                       1020
                                                                       1080
atctttacca agaattgaaa gtgaaagtgg catttgtcat agaatgccat ggtcttattc
caaagtatct taggatggaa caatacaagg cataatatgg ggtcagtgag gtttgttaca
                                                                       1140
cgagtgaatg accaacaaca ctactgtctg ttcaaaccca gtctgaaggg tgaatcagac
                                                                       1200
```

| gggttcettt ctctgcagat catggggcc ttgattgtgc ttgtggggttgcc atgtgtagaa agacaaaacac ctgaatgtg gccaggatg ctctggaaga agacaacacg ctgaatgtg gccaggatg ctctggaaga agacacacac accttacttt cctgaatctt cagctttgg ggtcgggaa atatttcca ccctccacc accttacttt cctgaatctt cagcttttgg ggtcggtaga atattttcca ggacatca accttacttt cctgaatctt cagcttttgg ggtcggtaga accatttttg ggacaatca atatttcg ggacaatca atattctgg gacaaacacac attcttgg gcctgaata atcattctg ggacaatca atcttctgag gcctcaacac actcacactt tccatctgaa accattctg ggacaatc atcttctgag gcctcaacac actcacactt tccatctgaa ttgcctccta gatatgaaga aaaaaaaaaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tggaaactgt<br>gaaggttgag                                                                                                                                                                                        | ccgtgagggt<br>gtgatcaaag<br>aatagttcag<br>attctggtgc<br>tgaaaagtgt                                                          | gggctccatg<br>agaccagagt<br>ttatattttt                                                                                                                                                                                                         | actttatgca<br>ctaagaccaa<br>gtggagctgg                                                                                                                                                                              | gggattcagt<br>tcaagaagaa<br>ttgtgagata                                                                                                                                                                                                | tggatcaatt<br>aaaggtcaag                                                                                                                                                                                                | 1260<br>1320<br>1380<br>1440<br>1499                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ggcacgaggc aggaaccgct aaacgagaca gacactggcg actcagagcc ccggatggt cotctgcagat categggccc ttgattgtc ttgtgggatt gtgtttcttc figggtccc atgttaagaa gagaaacacg ctgaatgctg gccaggatgc ctctgagaga gaagaggac agatccagat tatggagct gccaggatca ctctgagaga atatttccac ccctccacc accttactt cctgaatctt cagcttctga ggccaggatcattattcacactc cccacacttc ggacgattc accttctgag gccaggatcacttcact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <211> 655<br><212> DNA                                                                                                                                                                                          | sapiens                                                                                                                     |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                         |                                                                                                                                                                      |
| <pre>&lt;211&gt; 1446 &lt;212&gt; DNA &lt;213&gt; Homo sapiens  </pre> <pre>&lt;400&gt; 65 ggcacgagcg gaagtgcaac tcgaacttgg tcggggggg gatcccgaga gggaaagtca taacaaccgc acgagggagt tcgactggcg aactggaagg ccacgctcc tcccgcctgc cccttcagcc ctgtggctgg ggcagagctc agactgtctt ctgaagattg atgtctattt ccttgagctc tttaattttg ttgccaattt gggataacatt ggcacaaatc cagcagggag atgaactaat gaaaaaagat gaaccgcac ttgattcct gataaccctgg aatgatttga atgaactaat gaaaaaagat acacgcac ttgatttcct gataaccctgg aaggtttgaa tatgctttta atgaaaaggg acagttaaga cacataaaaa ctggggaacc atttgtttt aactaccggg aagattaca cagatggaac cagaaaagat acagaggactct aggaggagtct acagagatg ccacgagat acgaggaac acgagaaaagat acgaggctct aggaggagatc attaccgata tgtatatgag ctcctggaaa aggattgaa tcagtagatgc cactgagagt gaaccaaaga gtttacttt cagtagatgc cactgagagt gaaccaaaga gttttactt tatgagtgag gatgctttga caaatccaca gaagctgatg gttttaattc atggacagtg gaaggcagt gggctagaag acttattata aatgaagatc tggacagtgg ggctagaaga acttattata aatgaagatc tggacagtgg aggatgaaaaaaga gccgaagata cacgtacagt catcatctga aagaagatga aagaaaaga aagaattcta aagaagactga aagaaaaga aagaattcta aagaacaaca aagaaaaaga aagaacaaaa aagaacaaaa aagaacaaaa gaaccagcag ggtctcctga agaacatgca atctatgtt gggatcattt catagctcag gctgctgctg ggtctcctga agaacatgca atctatgtt gggatcattt catagctcag gctgctgctg ttttccttag agaacatgca atctatgtt gggatcattt catagctcag gctgctgctg agaactggtt tttccttag agaacatgca atctatgtt gggatcattt catagctcag gctgctgctg ttttttttttttttttttttttttttt</pre>                      | ggcacgaggc<br>gggttccttt<br>gtggttgccc<br>gaagagggac<br>atatttccac<br>agtcctggaa<br>aactattgga<br>accatttctg<br>ttgcctccta                                                                                      | ctctgcagat<br>atgttaagaa<br>agatccagat<br>cccctccacc<br>ctaacagtct<br>ccccaacttc<br>ggacgaattc<br>gatatgaaga<br>caccgtaaaga | catggggcc<br>gagaaacacg<br>tatggagcct<br>accttacttt<br>gcttccgaat<br>agagggtgca<br>atcttctgag<br>aaaagaaaat<br>tatggactct                                                                                                                      | ttgattgtgc<br>ctgaatgctg<br>gtccaggtca<br>cctgaatctt<br>gaaaaccccc<br>gcctctgaaa<br>gcctcacaca<br>gctgcagcta<br>agttcagttt                                                                                          | ttgtgggatt<br>gccaggatgc<br>ctgtaggtga<br>cagcttctgc<br>cttcatatta<br>gagactgtga<br>ctccacatct<br>cattcttgcc<br>tatatgcaat                                                                                                            | gtgtttete<br>ctctgagaga<br>ctcggtaata<br>ggtcgctgag<br>cagtattte<br>atctatatat<br>tccatctgaa<br>tctatcttct<br>ggatcactac                                                                                                | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>600<br>655                                                                                             |
| ggcacgagcg gaagtgcaac tcgaacttgg tcggggcgcg gatcccgaga gggaaagtca taacaaccgc acgaggagt tcgactggcg aactggaagg ccacgcctcc tcccgcctgc ccctcagcc ctgtggctgg ggcaaggctc agactgtctt ccttgagctc tttaattttg ttgccaattt ggataaacat ggcacaaatc cagcagggag actaacgactat tatgaactaat gaaaaaaga acagcgcctc ttgatttcct gatacctgg aaaggtttgaa actaccgcac tgaaagatt attatctagg atagatttga acgacacagctc ttgatttcct gataccctgg aaaggtttgaa actaccgcac tgaaagatt attatctagg aaaggtttgaa acatacacgga acagttaaga cacataaaaa ctggggaaacc atttgtttt aactaccgaga aagattaaca cagatggaac cagaaaagat acgagggaacc atttgtttt aactaccgaga aagattacac cagatggaac cagaaaagat acgagggcact aggaggagatc acacacagaata tgaatatgag caccaaaaga gttttactt tatgagtgag gatgctttga cagatagaatc cactgagagt gaaccaaaga gttttactt tatgagtgag gatgctttga gggctagaag acttatata aatgaagatc tggacagtgg cacacaggag gaagcgagt 66 gggctagaag acttatata aatgaagatc tggacagtgg cacacaagaa accgacag aagaaaaaga cacgtacagt catcatctga tagttcaga gaaccaacaga gaaccaacag aaagaacaaca aaagaacaaca aaagaacaaca aaagaacaaca aaagaacaaca aaagaacaaca aaagaacaaca aactatatag gaacaacaacacacacacacacacacacacacacaca | <211> 1446<br><212> DNA                                                                                                                                                                                         | sapiens                                                                                                                     |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                         |                                                                                                                                                                      |
| attgactgta tacaaccaac aagtgtatgg tgcaacagga gatccattga aaaccgttta taggactgta cgacaacccc aaatgcaagt gaccatgagc aactacaaat aggtatacat atgcatttga gctgaacaga ctttctgaca tataatttag tcaaaattgc tgtatttctt ccccttaaat ttatacataa tcagcttctt gtatggacc aaattggaga aatgtaattc agtagttggt gagaaataaa ggattgtgac ctctgtgtaa ttatcaggaa aaaaaaaaaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ggcacgagcg taacaaccgc cccttgagctc gtccagatga atgaactaat tatgcttta aactaccgga atcacgaata cagtagatgc caaatccaca gggctagaag aaagagctgt aagtagaaaa aaaacggga ggttctcctga agaatgtgt tgatcaaaca attgactgta taggactgta | acgagggagt<br>ctgtggctgg<br>tttaattttg<br>aaaagaaaag                                                                        | tcgactggcg ggcagagctc ttgccaattt actaccgcac gaaccgcctc acagttaaga cagatggaac ctcctggaaa gaaccaaaga gtttaattc aatgaagatc tatggagtaa cacgtacagt aaggttcta aggaaaaaag atctatgttt cacagctatg gatgctggga aagtgtatgg aaatgcagtc cttctgaca tcagcttctt | aactggaagg agactgtctt ggataaacat tgaatgattt tcacataaaaa cagaaaagat aggattgtaa gttttatctt atggtagtgg tggacatcaaa aagaacaaa aagaatcatctga aagaacataa aaggatgctttcg tgcacagga tgcatttcg tgcacagga tataatttag tatatttag | ccacycctcc ctgaagattg ggcacaaatc attatctagg gtagggaacc acgaggctct tttgaaaaaa tatgagtgag tgttgtcagg cacacagata tcccaatgaa tagatcagat gaaccgacgt attgtatatc catagctcag ttttgttgaa cttagctag ttttgttgaa cttagctag aactacaaaat tcaaaattga | tcccgcctgc atgtctattt cagcagggag atagatttga aatttgtttt aggagagatc gtatctattc gatgctttga gcagggcagt ccgtttatta aactatattg gaaccagcag gattctatg agagaaaatg gctgctgctg tggaacca tggaagaacca aaccgttta aggtatacat tgtattctt | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>660<br>720<br>780<br>840<br>900<br>960<br>1020<br>1080<br>1140<br>1260<br>1320<br>1320<br>1440<br>1446 |

<210> 66 <211> 670 <212> DNA

<213> Homo sapiens

| WO 33/300   | טט                       |            |             | • • • • • • |                  | •            |
|-------------|--------------------------|------------|-------------|-------------|------------------|--------------|
| •           |                          |            |             |             |                  | -            |
|             |                          |            | 37.         |             |                  |              |
|             |                          |            |             |             | er Selling again |              |
|             |                          |            |             |             |                  |              |
| <400> 66    |                          |            |             |             |                  |              |
| ancacaaaaa  | gcgctaaggg               | gaacaccccc | ttccccaggt  | cttttatttg  | tttaagttat       | 60           |
| tittacacaa  | atgactcttt               | tatatttaat | tcgatttcat  | tgcctccctt  | cttaaagcca       | 120          |
| acadoct cad | tttacaaacc               | tgtgagctac | tgttggctgc  | tgccctcctt  | cccagtgaaa       | 180          |
| ggtacaaagc  | aataagcatc               | atgcatcctc | cccttacccc  | tccaacaccc  | ctctgcctct       | 240<br>300   |
| ggctcaggtt  | gctcaaagca               | cagatcctct | cttaccccgt  | ccccaggttt  | gaaacacaca       | 360          |
| gcctcatttc  | aaggtgtagc               | caggttcccc | cgactttcct  | ctggyatata  | treceettet       | 420          |
| taagggggca  | aagagagccc<br>aaacgctcag | cetgggeete | atgatgggag  | taaaaattat  | gcaacgtggt       | 480          |
| cccccatca   | aaacgctcag               | agacyttyty | ccaggggggtg | cctcctacct  | tttcttttgt       | 540          |
| ccaaccggag  | cccttgggag               | ttttaattct | gttttgtact  | taccetatag  | ggcctccact       | 600          |
| acttttctat  | gggagacact               | cttaatttaa | cagatgagaa  | tattttgaaa  | aàaaaaaaaa       | 660          |
| aaaaaaaaaa  |                          |            |             |             |                  | 670          |
| aaaaaaaaaa  |                          |            |             |             |                  |              |
|             |                          |            |             |             |                  |              |
| <210> 67    |                          |            | ,           |             |                  |              |
| <211> 1692  |                          |            |             |             |                  | •            |
| <212> DNA   |                          |            |             |             |                  |              |
| <213> Homo  | sapiens                  |            | •           |             |                  |              |
|             |                          |            |             |             |                  |              |
| <400> 67    |                          |            | taasatasaa  | agagat caca | ccactgcact       | 60           |
| tgcagtccta  | gctactgggg<br>cgacagagag | aggtggaggc | cgcagcgagc  | aacaaaaccc  | aaaaataaag       | 120          |
| acagcctggg  | cgacagagag               | tcaacattto | ccttttcatt  | ctgagattac  | agttttctat       | 180          |
| aagtcatctt  | gadagaagee               | tctgacgttt | tttggtcaca  | gctgagccac  | tgcgtgaccc       | 240          |
| ccaccccacc  | ccacactcac               | tttactctag | gcaaagctgt  | actctgaaag  | ctggccccaa       | 300          |
| tagagagatt  | aggactgtgc               | ctgctcagaa | gtctgtgggt  | gcctcagaga  | agggcaacaa       | 360          |
| ccctaggctg  | gaccctagcc               | ttgagagtac | ttcctactgc  | cagagcccsc  | agatyycttc       | 420          |
| contractor. | agatactgcc               | agaagagcct | gcggtgcaca  | caccagaatc  | cgggtacttg       | 480          |
| gatgagaagg  | acacattact               | gatcaccttc | ctccaggcaa  | ccctgtcagt  | taaggactac       | 540          |
| agtcccgccc  | ccattatgta               | gatagggaaa | cagaggcaaa  | gaagttagga  | aactcgccca       | 600          |
| gaactctcag  | ctcatgaata               | aaaaagcaga | actaaaaccc  | agtgctctcc  | ctggctgggc       | 660          |
| aaacgtgtgg  | aagttgatgt               | gcctggttac | tgtttgtgct  | tegettatea  | taaccagtga       | 720          |
| cagcgtggtt  | agcactgttc               | gcctcaaggg | cagctgtgag  | gattacttgg  | gattgtcctg       | 780<br>840   |
| tggaaacact  | tcacatgcat               | attaactagg | agaaaagcca  | ceggagaacg  | gacaggaaaa       | 900          |
| gctctatcaa  | tcaccacagc<br>tttgctyagg | tagtetgace | aaccacataa  | actacttaat  | tagtagcgat       | 960          |
| agggaataca  | gctttatgga               | tcactacett | traatttgca  | aggeetgaaa  | ctgtccttag       | 1020         |
| cottototo   | aacccacagt               | accaatcacc | cttcacgcct  | cggccagcag  | aaagctcctc       | 1080         |
| atractorat  | cctcttgaga               | acttcagagg | ggtcaggtga  | cggtgactga  | gactgcctca       | 1140         |
| gtgatcacgc  | toggtgctat               | gagctgaaat | ctgggccaag  | ggcacagtaa  | gttcaggcag       | 1200         |
| ctagtatgtt  | taaaataact               | acttttcggg | agctaagcca  | tgaggacgta  | aaggcattaa       | 1260         |
| gaatgataga  | atggactttg               | gggactcagg | ggaaagggtt  | ggggtgaggg  | ataaaagggt       | 1320         |
| ccantotaca  | chacttaggt               | gatgggtgcc | ccaaaatcct  | ggaaatcacc  | gctaaagaac       | 1380         |
| ctcacqtaac  | caaacaccac               | ctgaacccca | aaaacctact  | gaaactttta  | aaaattaaaa       | 1440         |
| atacatacat  | aaaatagcta               | cttttactgc | tgtcaacagc  | atgttcctga  | aaaacgccgg       | 1500         |
| aattcaaact  | ttctggaggg               | cagctggtca | agaaacttat  | tcacgtcagg  | agttttctaa       | 1560<br>1620 |
| aatttgtttt  | taatgcttat               | tggtacttct | gcattagaag  | caactacaaa  | ggggggggg        | 1680         |
| _           | tttaaatgca               | aaaaaaaaa  | aaaaaaaLga  | cccccgaggg  | ggggcccggc       | 1692         |
| acccaattcg  | cc                       |            |             |             |                  | 1075         |
|             |                          |            |             |             |                  |              |
| <210> 68    |                          |            |             |             |                  |              |
| <211> 655   |                          |            |             |             |                  |              |
| <212> DNA   |                          |            |             |             |                  |              |
| <213> Homo  | sapiens                  |            |             |             |                  |              |
|             | _                        |            |             |             |                  |              |
| <400> 68    |                          |            |             |             |                  |              |
| gatgtagagc  | agactgagct               | catccatcat | gatttcttcg  | tgatattact  | gccaagcaga       | 60           |
| ttataaggtg  | aagtcaatgt               | gacaaaagga | aattcggcta  | aaagetteet  | gaagcctttt       | 120          |
| gatgctaagc  | agtccttctt               | ttgatattta | acacccatgg  | acataaactt  | attascarta       | 180<br>240   |
| ggtcgccatg  | gagttttgtt               | ttgttttgtt | tcgttttgtt  | agagecatet  | griadiagic       | 300          |
| ctgagtaccc  | atagagcctt<br>cattkgtctc | LEACEACECA | antattatat  | gratreacat  | trycttett        | 360          |
| tcaaaacttg  | cattkgtctc               | cccccgccc  | agigingingi | geacecacae  | 22,222222        | 200          |
|             |                          |            |             |             |                  |              |

```
ttttaaacaa ccctgcttat gtaacatcca Cattttctga cttacctttc aaacctgcca
                                                                       420
gaaagcagaa gtgatattta awacacttgg tatgttttat atatwgattc taatgataat
                                                                       480
gtttrgtcta agatggacct gacaaggcca ggcatrgtgg ttcaacagca ctttgagagg
                                                                       540
ctgaggcagg atgattgcct gagcctggga gttcaaggtt acagtgaact gtgatcacat
                                                                       600
655
<210> 69
<211> 1618
<212> DNA
<213> Homo sapiens
<400> 69
taacqcqcct qcaggtcgac actaqtqqat ccaaaqaatt sqqcacaqta aaaaaaaaaq
aaaaaaaaag aatactgcct cacatcaaat ggtctatgtt acttagtata tatgatcaag
                                                                       120
taacatgcag tcatcatcaa aactgtatta caatgtttag aagagtttcc tattgacaaa
                                                                       180
ataaataaaa tgtttctgct ttatgattaa ataaatccat cattgtttat gcatgattaa
                                                                       240
gttgcaaaaa gtttcagagg ttataaaggt tttaaagatg cttctatatc ctttggtttt
                                                                       300
gettttatet ttgaaattgg atacaaaage cacaatettt getgtgttgg aagatgtata
                                                                       360
ggaatagaaa catgaaaccc acaaacataa aggtttacct tgaagtggta gactttttaa
                                                                       420
aaatgagaac acttgaatta gaaatactga aagcttacca aaagtttgtc aaaccgggaa
                                                                       480
teaagaceta ttgtgtcgct catcettgac cecacateta etcactttee aacteetatg
                                                                       540
tagcaaatcc cctaaatacc tctcaaattt attcacttgt ctccatacct acagccatca
                                                                       600
atcactctcg tcaaagtcaa tgctgtctat taactggttc ttaaaattgc tacattcttt
                                                                       660
tetgtgcctc ggcttttact ccttactatc ctaaattcta tattcaggca gggtgattct
                                                                       720
tgtattggag acaaagagag agcacataga ccaaggtgtt ttggaaacag tcggccctcc
                                                                       780
ctatctgcag gttccacatc tgcagctcta accaactgca gatcaaaaat actgggaaga
                                                                      840
agtatataaa aacaaaataa tacaaataag aaacaacaca gtataacaat gatttacata
                                                                      900
gcatttacat tgtattagat ataagtactc tagaaatgat ttgaagtatt gtttgacact
                                                                      960
tgaacaacat gagggttagg gatgccaatc tcccccgcac acagtcaaaa atctgtgttt
                                                                     1020
aacttttgag ttcccaaaaa cttacctatt atccaattgt tgacaggaag ccttactgat
                                                                     1080
aatacagtca attaacacat attttgcacg tcatatatat tatatactgt attcctacaa
                                                                     1140
tgaagtaagc tagagaaaat gttaacaaaa ttataaagaa taaaacacat attttatata
                                                                     1200
cttttttaga gagagagttc tcactatctt tgcaaggctg gactcgaatt tctgggctca
                                                                     1260
agcaatcott ctgtctctgc ctcctgagta gctgggacta caggcacttg ctaccacacc
                                                                     1320
cagetectat atttattatt tattaagtgg aagtggatea tetteateet teteatette
                                                                     1380
aggtggagta ggctgaggag gagcagggag aagagggttg ggtgttgctg tctcaggggt
                                                                     1440
ggcagaggca gaagaaagta taagtgaacc catgcagttc aaacccatat tgttcaagta
                                                                     1500
tcagctgtaa acaggagggc gtgtataggt tatatgcaaa tattaaacca ctttatatga
                                                                     1560
gggacttggg catccatgaa ttttggcatt tagaggttcc tggaaccaat ccctcgag
                                                                     1618
<210> 70
<211> 1802
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (1790)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (1792)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (1801)
<223> n equals a,t,g, or c
gaatteqqea egagtetete teaettttqa aatgettatt attttaatga caataatgea
                                                                       60
```

```
gagagagaga gtatttttga atagacttaa gttttccttc aactaatgtc tccttggagg
                                                                      120
                                                                      180
acagaaatac aactaaaccc tctgtcaacg tgggtatgta tttttttact ttctattttt
caattagttc ttttatgttt tttcttctag tcattgttaa agctaccaat ggaccaagat
                                                                      240
atgttgtggg ttgtcgtcga caggtaatac tttatatttg tatagtgcct gatgattgac
                                                                       300
aaagcagttt catgtaagtk attgtctcya attcttgagg cwagcaggtg gagcatttat
                                                                      360
gcccataact cacaaggatg atttgttcag acatagctag ttattaacaa agcctgaatt
                                                                       420
                                                                       480
caamccatgg gctttgactc ctggcattcc gtactttcta ctgtattaca ttgtctcagt
cagatetgtt aatageeact tagaaataaa agtattttag aactggaaaa cagacatttt
                                                                       540
attttaatgt catttttaaa gaggacttaa aagtgttaga tatcatcagt tacctgtgtt
                                                                       600
                                                                       660
tatatttaga cattcagaac tgttacttat ggactgtacc atggcctaag ttaattttgt
atgaggtcat ttagattagg gtagggcaag ttgaaataat tctaaatttt attttacagt
                                                                      720
tatcaaagat gccaacaaat gacctcaagt cattcagtag tgtctgaaat caatttatgt
                                                                       780
                                                                       840
attattettt aggaagtgte ettagataat tettttaaat teattggaag agttttetet
gtttaattgt catttcaggt tcaggtttta aaacattcac agaacatggc tgtaagggag
                                                                       900
aatttaatcc aggaactata aatctcctat taggattttg cctagtatat aagcggttga
                                                                      960
                                                                     1020
cattttctaa gtcaaaatat tagataccta aactgacaag ggattttcat gtccctttca
gggctctgtg gatgccgaaa gttggcattt ctaagatatt tcaggttgca tgaggacaag
                                                                     1080
actgtatttg aagactaaaa aacattagaa aagccgaagt atatataagt tgagtatccc
                                                                     1140
ttatccaaaa tgcttgagcc agaaatgtgt tttagatttt ggcttttttt ttttcaggtt
                                                                     1200
ttagaatatt tgtgktgkac tggttgagca tycctaatta aaaaaaatca aaagtttgaa
                                                                      1260
atgeteegat gageatttte titgageate atgteageat teaaaaaatt teacattgkg
                                                                     1320
gagcattttg gattttcaga ttaagaatac tcagcctgka tttcctatag atgtaaacat
                                                                     1380
tgaaataget teatattgat tteteetett attttteaa gtaaceteae ttettageeg
                                                                      1440
                                                                     1500
ttttttcctt aattgttata ttaatcctag tgttttgcct atcttcctaa atttgaagct
ctttgtaaaa tcctgtgaca agtggtcagt aatttatatg attccgaaat tgtattggca
                                                                      1560
cgcagttttt taaactatta aaaagtaact tgggtcgggc ggggtggctc atgcctgtaa
                                                                     1620
toccagoact ttgggagget gaggtgggca gatcacgagg tcaggagatc aagaccagce
                                                                     1680
1740
                                                                     1800
aaaaaaaaaa aaactcgagg gggggcccgt acccaattcg ccctatagtn antatagtga
                                                                     1802
<210> 71
<211> 1292
<212> DNA
<213> Homo sapiens
<400> 71
ggatgataga tgatctgtaa atattttctc tcattccata ttcctctggc tccttttaag
                                                                       60
                                                                       120
atttttcttt atgtctggtt tcaaggaatt tgattttgtt gtgccctggt ggagtataag
ctttcttttg agttttttgc tcttgttgtt aagcttttgg agtttgtggg tttatacttt
                                                                      180
tcatcagatt tggaacatct ttggctatta tttctccaaa tagtcacaca tcgctcctcg
                                                                       240
                                                                       300
gattccagtt acatatatat tattaggttc ttgaagttgt cccatacctt actgatgctc
tgctcttttt ctttggtctt atatttgggt ttcatttgga tagtttttat ttctgtgtct
                                                                       360
tracattcac togtotttoc trotgotgtg tottgactgc tgctagttoc atccaatgta
                                                                       420
                                                                       480
tttcatttat atatctataa tttgtggttt gatagaaatg cagtgatgta gcaggtatca
ataaatactg ccttaatttg ttgcgaaaat ataacagatt cctgttctgt atgttagcta
                                                                       540
                                                                       600
aaaaggtatg caaaccaccc tgtatgtcat attaacattt atgtcccttt gtttccatgt
caacttttag tttctctgcc aaaacctaca tatgtttttt ttatatgatt attctacatt
                                                                       660
ttctgctgag agtggacatc tgcattagta gttctatgat atttgtttta taagttgcca
                                                                       720
                                                                      780
gaatggttgc tctgtttggc agactgcaga caaatattta tctatgattc gttgcatgat
atgaccatga ttttgctaca aaaaacttga aatagatttt aatattttct ttactattat
                                                                      840
                                                                       900
cagagagaga gctggattac ctgcaaaagt gtacttttgc ttattgctgt cattgataac
tragtgroup ctgggrgtgg tractggtat tacctroatg tgatcacttt ttgttcacta
                                                                      960
atgttaattt aaaaaatttt aggctgggcg caggtggctc acacctgtaa tcccagcact
                                                                      1020
ttgggaggcc gaggcagggg gatcatgagg tcaggagatc aagaccagcc tggccaacat
                                                                     1080
ggtgaaaccc agtctctact gaaaatacaa aaattagcct ggcatggtgg taagcgcctg
                                                                     1140
                                                                      1200
ttatgccagc tacttgggag gatgaggcag gagaatcgct tgaacctggg aggtggaggt
tgcagtgagc caagattgca ccattgcact ccagcctggg caacaagagc aaaactctgt
                                                                     1260
                                                                      1292
ctcaaaaaaa aaaaaaaaaa aaaaaaaaaa aa
```

<210> 72 <211> 1054

```
<212> DNA
<213> Homo sapiens
ggcacgagtg tgtgtgtgtg tgtgtgtgt tgtctgtctg tgtgtctgtg tatgtgtatt
                                                                         60
totggctgtc tgttccattg ctctatatgt ctgtttttta tgctggtacc atactgtttt
                                                                        120
gattactgtt tagtaatgta ttttgaaatc aagacatgtg ggtacctcct gctttgttct
                                                                        180
ccttgtcaag attattccag gtcttttgtt gcttcttcat agacgaatta actgctgatt
                                                                        240
tatgaacttg aatattctga tttctttgac agttagttct cattgtaaat tgataaatta
                                                                        300
tcactctggt tttatacatc agtttttagc tatggctaat aacagtcttt cctcacaatt
                                                                        360
catatttagc atgttggcaa aatcatattt tggaacctgc aagacatagt ctctggtcta
                                                                        420
tagtaaatca agctgctagg ttgtagtctg acaacttgtg taatatttta gctctggatg
                                                                        480
atattaattt ttaagattat taaattttat ttttcagtgt tttacattga cagcaaaatt
                                                                        540
gagtgggaag tacatactaa tttttctgta tcttagaatt tctttgggat cattttaact
                                                                        600
attttaatgt tttaaatttt attgtgaatc tttttaagga aggctgagct gttgctacaa
                                                                        660
ctgtaaaata aatattetta aageaggeag tgatgateaa aatettgeea tttgaceatt
                                                                        720
aagctgctag aatatgagag tgataattta ggaatgagtt gattaaagaa aataacaaag
                                                                        780
tagtttacta aggaattaat aatagcaaat aaaaggttta acaaacaaca ataaatattc
                                                                        840
tgttgatatt gcaccttaac tttccatcat catcttggga gctgactttt ttgctgattt
                                                                        900
cattccgata agataagttc atttgaccac gtgattatta tttaatacat ctactgataa
                                                                        960
ctctataata gaaagtggca gattttagat aaagggtttg tgatttttaa ggttgatatt
                                                                       1020
                                                                       1054
aacaggtagt atcataaaaa aaaaaaaaaa aaaa
<210> 73
<211> 733
<212> DNA
<213> Homo sapiens
tgtgaccgat atctgcaraa ttcggcttat cgygaacctg gctttggygg acctgggact
                                                                         60
ggcactcact ctcccctttt gggcagccga gtcggcactg gactttcact ggcccttcgg
                                                                        120
aggtgccctc tgcaagatgg ttctgacggc cactgtcctc aacgtctatg ccagcatctt
                                                                        180
cctcatcaca gcgctgagcg ttgctcgcta ctgggtggtg gccatggctg cggggccagg
                                                                        240
cacccacctc tcactcttct gggcccgaat agccaccctg gcagtgtggg cggcggctgc
                                                                        300
                                                                        360
cctggtgacg gtgcccacag ctgtcttcgg ggtggarggt gargtgtgtg gtgtgcgcct
ttgcctgctg cgtttcccca gcaggtactg gctgggggcc taccagctgc agagggtggt
                                                                        420
getggettte atggtgeeet tgggegteat caccaccage tacetgetge tgetggeett
                                                                        480
cctgcagcgg cggcaacggc ggcggcagga cagcagggtc gtggcccgct ctgtccgcat
                                                                        540
cctggtggct tccttcttcc tctgctggtt tcccaaccat gtggtcactc tctggggtgt
                                                                        600
cctggtgaag tttgacctgg tgccctggaa cagtactttc tatactatcc agacgtatgt
                                                                        660
cttccctgtc actacttgct tggcacacag caatagctgc ctsaacccaw tagcytaygt
                                                                        720
                                                                        733
cttaagcmga att
<210> 74
<211> 785
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (716)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (731)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (772)
<223> n equals a,t,g, or c
```

```
<400> 74
 ctgcaggaat tcggcacgag gttttatcat ccaggatatg gtcactctca gtggcatatt
                                                                          60
 ccatgtgcat ctgataagga tgtatgttct gctcttcctg ggtaaagtgt tataaattca
                                                                          120
 aattgttgat aatgttcagg tcatctatat ccttaatggt tttctccctg attctttat
                                                                          180
 taactactga gagaagaata ttggcatgtc cacctataat tttgaattcg tctattttc
                                                                          240
 tttcagatct gtctgttttg ccttaaacat tccttatctt tcagaataat taaaagtaaa
                                                                          300
 aaaacattgt tacttgtttt ttccatttct gatgttctcc attttgttgc atagatccaa
                                                                         360
 gtttctgagc ttttaccctg tgaatcatag tcattttaaa tttcttgtca tatgtgagag
                                                                          420
 tttagttctg attactgctt tgtcttttca gattgtgttt tattgtgtat tttcacattc
                                                                          480
 cttgtaattt tttatgttaa aaaaattgtg tatgtgcmaa gctgaacata ggacagaaga
                                                                          540
 cactgaagta aatgttttca tgcttggaaa tgagcaggcc tttcctcctc ctctctttag
                                                                          600
 tcgtgggytt gtgcttgttt agttgagttg ggtttgaagt ttgktcacct ttggctttgg
                                                                          660
 gtctcctaac ctgactttct gtgtttcctg tgcactgctc ccaagataga aactgnttct
                                                                         720
 gggctatett neagttggaa tteettaett gattettate ageatgggtt angaagggaa
                                                                         780
                                                                         785
 <210> 75
 <211> 2341
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> SITE
 <222> (161)
 <223> n equals a,t,g, or c
 <220>
 <221> SITE
<222> (163)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (170)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (1229)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (2243)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (2309)
<223> n equals a,t,g, or c
gcccagttcc tcttgaaaag gcagagaatt tagacagaaa ttcaccaact gctttcttac
                                                                         60
agaaagtaaa ccaatttctg cttccagaaa aatggagtaa atgtattttg ccctattcct
                                                                        120
tctactaaga aaaactataa accctgaaca ttatatataa nanatatgan aactcagacc
                                                                        180
tggagagacc aaggcagatg tggtagggac ttmataaatt gtatagtgat gaatcctcta
                                                                        240
agttttcttt tctgctttat aatttgcaga cttttagctg aaaatgccat caacatagaa
                                                                        300
atactaacag gcacatatga gaatttccca acaaaagcct attattttag gcaaaggtca
                                                                        360
aggaaatagt ctaccaaggc agaaaacatt tcgacaataa ccactctact gtagtcaagt
                                                                        420
accacagaaa acactattac ctcaagtgaa gagcttagat ctttagayct tcataccagc
                                                                        480
caggctgtga caaggtgtcc caaccctcct ccagaatagt atctcagaat agcagaagtt
                                                                        540
ggaactttca tccccaactt gtggtaataa gcccctcact ctccttccac accttgatat
                                                                        600
```

```
42
```

```
gactggagag caaatgggga gctggatcta ctctaaaagc agcaatgaag aagcaccctc
                                                                      660
ctttccatac caggtggtgc ttgtggaggc catgtgggaa acagtaacaa gtcacttctt
                                                                      720
cctccgagac aggctatcag tggaggccca gtggtgaccc agaatccacc ctccagccag
                                                                      780
cagtaatgag gaacctccgc tgcctaggtg tcaacagaga ttgagaggaa acctttattt
                                                                      840
ctatcatcac ctggcagtaa tgcagtgtcc ctccctcact cccttgcctt gctggagtag
                                                                      900
tgtctgagga agctagctaa gacagaaaag gtaaataagt tctagagtct cataatgcct
                                                                      960
aaaatgtcct ggttcattta gaaatcattt ggtatacaaa gaaccaggaa aaatctcaac
                                                                     1020
ttgaatgtaa aaggtaatta gaagattcca gaacaaaaat gacaaagatg ttggaattat
                                                                     1080
tcagaaaata ttttaaagca gtcatcataa aaatgcttcc agtatattgs ttacaacata
                                                                     1140
tatgaamcaa atttaaaaaat tatctyagcc aaaaaattaa aatatwtgaa agaactgaat
                                                                     1200
ggacatttta gaactgaaac ttacaatanc cacataaaaa attcatgaag gtaagcagga
                                                                     1260
aaaaactata aacacagcct cagggacctg tagtattata actgaaggcc taatttttgt
                                                                     1320
gttatcagag tcccagaagg agagaagaaa tgggcaactt tgagaaaggt ctcaaagact
                                                                     1380
gaaaacttcc ttaatttggc aataggcaaa aacccacrga ttcctwaatt cargcaamcc
                                                                     1440
caaaatctct tagcactgta tcagaatacc atagaatggg tggtttatwa aaacaaaaat
                                                                     1500
gtgttgctca caatactgga ggctggaaga ccgtgatcag aatgccagca cagatgagtt
                                                                     1560
ctgctgaaga cattttttgg ctatagatgg acatcatctc attgtatcct cacatgttgg
                                                                     1620
agaaaagaaa aagatatoto ttgtotoott otcoototot otototott tttttttat
                                                                     1680
aaggcctctg atctcaacrt gagggcccca mmctcatrac ktartctaac cctaattacc
                                                                     1740
tcccaaaggc ctaacctcca aataacatca cattgaattt aggatgtcta catatgaatt
                                                                     1800
ttgaggggac acaaactttc agtgcataaa actaaccaag acaaacacaa agaatccaaa
                                                                     1860
ctaaggtata ccatggtaaa atatctgaaa attaaaagaa agaacaaatt ttgaaagcag
                                                                     1920
ctagaggaaa tagctcatct ataggagaga aaacaataca aatggaagca ggaaacatca
                                                                     1980
2040
ctttcaattc tggtttttat atctggtata tttgtctttt aggaatggaa gggctataaa
                                                                     2100
gacatttgat gaaagaaagc tgagaggatt tgtcaccaga aggtctrcct tttaaarrgg
                                                                     2160
ggctcaagar rrttctctat ccaggaaaaa aaaaagaaaa agtttaaaaa agaaacttta
                                                                     2220
aaacaccaga tttaaagaaa acncagtgga aagggaaaaa tgagtggctt catcttcctt
                                                                     2280
ttcctcttca gtttggtaga tttatttgnc cagctgaagt taaaattatg ccattatcag
                                                                     2340
                                                                     2341
<210> 76
<211> 1882
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (755)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (1237)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (1866)
<223> n equals a,t,g, or c
<400> 76
gcaagttttg tgtttggccc tcaataaact agtctctctg tacccctggc agggggtggg
                                                                      120
aggagtcctg ggggagctcc cttccaaatc ttacagggtg gtctgtttct tctttggata
ataatgatgt aatggctagt ctcttgagaa cttgctgtgt tccatacatt gtactaagca
                                                                      180
tttatttgga ttatctcatt aaatcttcac aatcacttta tttaacagat ggagaaatta
                                                                      240
aggcacatgg aacctaagtt gttcaaggtc atggagccag taagtgttag agccaagtcg
                                                                      300
tttggctcca gagcctgtgt tcttaactac tactttgtag tgtctttctt acatattagt
                                                                      360
tgggcctgtg tattgctagt tgaattcctc ttcccagtgg caggccttca cgtgtttgac
                                                                      420
catggttttc atgttctcca aacctcagtt ctctagattt gtactttggt aggtcatcat
                                                                      480
                                                                      540
tttccacaga tcctacctct ttaggtcaga aaatcttgcc agtttataaa gattctctgg
gactaactcc cacaaagcaa ggtcacaaga gatcaatgta caaatgaagc agttcagtga
                                                                      600
gtttgtctac cattctccat aagtacatgg grgacamctg atgattggaa ggtttggttc
                                                                      660
```

1560

1620

1680

1740 1800

```
acctcatggg agctgtgata teteacteae cacacagate tgetettetg agggaceate
                                                                      720
                                                                      780
ttgccaattt ccagagagtt gcagggatat taaanttttg cacattaagc ttcctcttc
caagetgsac atgggseetg ctacegkttg tgaamagtet tetagagtga tawaggttet
                                                                      840
agotttotta gttaagatog tattttotga taccactoco ttgtcacttt gcotgaaatg
                                                                      900
agaaactccc aacctcaact gcttttctag tctcttccaa tgaatgcctt ccaaagggct
                                                                      960
ggtgtcctcc agggtgtatt agttgttact aatttcatcc tccaaggctg atctgatttt
                                                                     1020
                                                                     1080
caagatotgt agagagacot tagtatattg cottgootgt accaaatmca gtoattatgg
cmcaggaaaa tctcaaatmc cttattggaa acccaggcaa atatttattt gaccttaatg
                                                                     1140
aaatgaaaaa gacattggat gcatacattt aaagaaaacc caaaactttg gaatctttac
                                                                     1200
caaggagggt atcttttgaa aaggacagkc tggaacnaag aacttgataa aatagaagta
                                                                     1260
aaggttgaca ctttttttt tttttttga gatctatatc actctgtcgc ccgggctgga
                                                                     1320
gtgtagtggc gtgatcttgg ctcactgaaa cctcggcctc ctgggtacag gtgattctca
                                                                     1380
tgcctcagcc tcctgagtag ctggcactat gggcatgtgc caccatgccc agctaatttt
                                                                     1440
kgtgtttttg gtggagacag ggttttaccg tgttggctag ctggtcctga cctcctggcc
                                                                     1500
                                                                     1560
tcaagtgatc cacccgactt ggcctcccaa agtgaaagtc ggcattacta gccctgttca
gcacatgaga cagggcactg gatggtgtct acctaatgat tttcaaccca ggggcccttg
                                                                     1620
gcccaagcgt atcactggta taaagggcct ctgccagcta atgtgagggt gagtgtggct
                                                                     1680
gttgtttcca tgagagaact cctgggagtt ctacactcag caaacgtttg ttgttggact
                                                                     1740
atgaaggcgg acacagattt tatacgaatt tgtaatgcta acatctagca taagaattgg
                                                                     1800
caaccataga aaatactacg tgtatatata tgtttatagt ctcaaaaaaa aaaaaaaaa
                                                                     1860
                                                                     1882
aaaaanaaaa aagggcggcc gc
<210> 77
<211> 2892
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (858)
<223> n equals a,t,g, or c
                                                                       60
agactotgag tocagotoog aagaggaaga ggaattoggt gtggttggaa atogototog
ctttgccaag ggagactatt tacgatgctg caagatctgt tatccgctct gtggttttgt
                                                                      120
catccttgct gcctgtgttg tggcctgtgt tggcttggtg tggatgcagg ttgctctcaa
                                                                      180
                                                                      240
ggaggatetg gatgeeetca aggaaaaatt tegaacaatg gaatetaate agaaaagete
attccaagaa atccccaaac ttaatgaaga actactcagc aagcaaaaac aacttgagaa
                                                                      300
gattgaatct ggagagatgg gtttgaacaa agtctggata aacatcacag aaatgaataa
                                                                      360
gcagatttct ctgttgactt ctgcagtgaa ccacctcaaa gccaatgtta agtcagctgc
                                                                      420
agacttgatt agcctgccta ccactgtaga gggacttcag aagagtgtag cttccattgg
                                                                      480
                                                                      540
cmatacttta aacagcgtcc atcttgctgt ggaagcacta cagaaaactg tggatgaaca
caagaaaacg atggaattac tgcagagtga tatgaatcag cacttettga aggagactee
                                                                      600
                                                                      660
tggaagcaac cagatcattc cgtcaccttc agccacatca gaacttgaca ataaaaccca
cagtgagaat ttgaaacaga tgggtgatag atctgccact ctgaaaagac agtctttgga
                                                                      720
tcaagtcacc aacagaacag atacagtaaa aatccaaagc ataaagaaag aaggatagtt
                                                                      780
ccaaattctc caggtatccc aagcttaaga gagraactcc agcttgatcc agtgctctta
                                                                      840
cmaacmaacc tgrgagenac mggcctccag agaccgccga tgargagcaa gtagagagtt
                                                                      900
cacatcaaag ccatcagcat tgccaaaatt ttcacagttt cttggagacc cagttgagaa
                                                                      960
                                                                     1020
agctgcccaa ctaagaccta tctccctacc aggagtttct agcactgaag atcttcagga
tttattccgc aagactggcc aggacgtgga tgggaagctg acctaccagg aaatctggac
                                                                     1080
ctccctaggt tctgctatgc cagaaccaga gagcttgaga gcatttgatt ccgatggaga
                                                                     1140
                                                                     1200
tggaagatac tcattcctgg agctaagggt agctttaggt atctagcttc atcaggcata
1260
atcagtecte tagtecteca aactactgta geagataett tgeeacettt taaettgttt
                                                                     1320
gaagaagcta tataaaagtt attttttaa agaagaagac cattttactt atgatgttca
                                                                     1380
```

gaaatctatg atttcctaca accagtaaga tcttacattt taaaattgcc agaaaaaaa

ttaaagccct ctttttttct ctttcctttt tttgagggga ggagacctta tcttttaaag ctgggaaatg tatatagaga gagaataagc cacttttata tttcacttaa atttgcctta

aattagctgc actttataga gactcagaaa atgtcttttc tttaaaagat aggccttttc

tgtttgtaaa tatttaaatg aaagaaagca ttgtgcatat tgtgtggaaa gtaggaagaa

tggttttgaa caggatatga acaaatgact tattaaaaat tgctgatctg gtgtaggtgg

cagetgaaac tacatecatg tetecataag gyatecetea aaggeecagg egetgecagg

```
gggtttgtcc tggtagctgg aggaaccgat ttcagggagt agacactgga gacaatactg
                                                                    1860
                                                                    1920
actocaggea tggetcatgg aagtaggatt etggttettt gtteetatte eetcagetaa
tcccaacctg ggaatcagag aagtcttggg gatttttctc atttttagta ctatttcagg
                                                                    1980
gtttatgagc ataaaaagtt atccattggg gagctccatt ttccctgctg agtgagctag
                                                                    2040
attgccttcc ccacccaccc acttaagtct gtcttaaagc cgtagctggc tcccaccacc
                                                                    2100
agtaccatct ccatttgaat ggcagggcta aattccccca gccattatct cacactgacc
                                                                    2160
                                                                    2220
acccagaget ttagaagaga getgtgette taattttgae ccagaaaace atacccettg
agattttacc tagaggctaa ccaagagcct aatatgtttc tctgggggat gactaaagcc
                                                                    2280
                                                                    2340
aaaaaggctg tgagatgaaa catgtgaaat aatattcagt ttccttacca ttaccagctc
agaagtagct agaggctttc tacccaaagg atgccaaagt atagcagggc aggcctggag
                                                                    2400
ctagggcctt cacatggtgg tagcaagttt ttcaaatcta atacaatcaa gtacaatact
                                                                    2460
tcctttaaat gcttctgtgg acctggcatg aaagatccct agattgaaag gaataatacc
                                                                    2520
tccatgtctc ctgtatgttg agtctagaat tgctgtgttg ttcttagaag cagtctttgg
                                                                    2580
gcaacaactt gaaaggggaa aaaaaaacta caaaaactta actttggtat aggccaagtc
                                                                    2640
agggagaaag tagagaaagc tgtcatgcca cagacttctt tagtggagat catttccttt
                                                                    2700
ttaactttgt tcaggttgcc cttcaccatg gatacagtcc ggtaccctta aacatttaag
                                                                    2760
ggctgttttt tttttcttta catgatgttc agcttggtat taaccaaact taaatttttt
                                                                    2820
                                                                    2880
2892
aagggggcc gc
<210> 78
<211> 1673
<212> DNA
<213> Homo sapiens
<400> 78
cggcacgagc tggaaatgaa atttgcccct gtttatatgt acctgtcttt tatttgcctc
                                                                     60
tgtctttttt attgcaactc aatagacaca caccattgct ttgtctctga ttatttggca
                                                                     120
                                                                     180
tttgaatcgt caatgaggga agcttttaca gaacttttga tactaataaa aggtgagtca
aatgttttaa aaaagatgca gaatcatcat ttatgtcaga gctactgact cacacttaaa
                                                                     240
ttgcagtgtt agcactgaaa aagaaatgta tatggatggg aatatagatt gcaggccaat
                                                                     300
taggacccct cttttgaagt tggaattgag ggatagctac tgttctcttc tatctttgag
                                                                     360
ggttaggaga actttattca gtgttgaata actgtattcc tcctgtttat taatgtttgt
                                                                     420
                                                                     480
tgtgggggtc ttctattcag cacccatctc tgcctgtcct gctcccccgc ccccagagga
ggatataata agaggcatgg gacaggggct tataataata agacatggga ggggttgatt
                                                                     540
acccagtgtc ttcaagtaac ttttacgaga gatttgaaat agccagcgat caatgcaaaa
                                                                     600
tagcaatggc cttggcagaa tttgcacata catactcaat gtttacagtt taaactctgg
                                                                     660
tgtcagacag ggtcatagtt accccgattg gatgcatccc atctctggtg cagaacctct
                                                                     720
aaaacttggg aaatcattga aagtcatctg cttattaaaa aagcagattc tcagactcac
                                                                     780
atcagactag gagaagtcct gagaaatcta aatttttagc acatgctttg ggggattctt
                                                                     840
                                                                     900
tacatcacgt gtgtttggga aactgtgctg attgatgtcc atggaaagca gcctcaggca
tggggagggg ctggaaaaga attatttagg tcagtttcgg gatcttagat tgtttcttgg
                                                                     960
ctacactggc cactttttaa agtgtgctta gaaagagtat gacacctttt taattttcaa
                                                                    1020
aaggacttgg gttcagtgta tgtccttatg ttaaagaaac agccctcttt gtagttactc
                                                                    1080
tagaaatagg tagaatggca gaaagagcgc tggctgtctg tgtttgaggc ctgttttgta
                                                                    1140
cttcatgtgg ccatgtggta tgggaacatc ctgggatttc tgtgagcctc tgtgaactca
                                                                    1200
gattccccat ctggaaaaca ggagtaacaa cactggttgg aacctttatg gagtgtaaat
                                                                    1260
                                                                    1320
aaagtgatag ctctttgtaa gcgacgaaga gccaggtcag tgtttaattt tattttctca
gaaatagtac tagttattaa ggcctttaac aaaaaaaaat ctttgaaaaag gctaatgggg
                                                                    1380
gcctggtata gtgtgtcatg cctgtaagcc cagcattttg gcaggctaaa ggggggagga
                                                                    1440
tcacttgagg ccaggagttt gagagcagcg tgggtaacat ggtgacatcc tgtctgtaca
                                                                    1500
aaaaataaaa acattagctg aatgtggtgg catgcgccta tagtcccagc tactcggaag
                                                                    1560
                                                                    1620
ctgaggtggg aagattgttt gagcccagga gggtgaggga agctataatt atgccactgt
1673
<210> 79
<211> 1461
<212> DNA
<213> Homo sapiens
ccacgcgtcc ggagagttat ggagaatgct gattttgatt attatgatgc cagatactga
```

```
gaatatetta catgtatett etgageagag ettetgttee acaaagttaa ateeatgett
                                                                       120
aatataattt ttgccaagta aattttagtc gattgcacct cagttgttga ttagtaaccc
                                                                       180
atcggcagta gaaagatggc agtgtttttt ccaggctgtt tgttcctcta agtatctaga
                                                                       240
cgaggccgag tcagccttat gggtctaaag ctgccaattt tcctgtggtt tctttatttc
                                                                       300
tttatccctt tatccagctg ctacttactg ctattgccac atttgccctc tggctcatgg
                                                                       360
gatagcatgc ttagcttccc ctgaggctac tgttaatgct tcctttttac tctgctggct
                                                                       420
ggaaatgtac ttggcatcct tagtcttaaa cctctcctcc ctcttttttc cacagacacc
                                                                       480
aggcacttaa gtagcacttt cagcctgcac cagttatcag tagtagcttt caacccctca
                                                                       540
tttctggtct ggtaactcag cacactgtcc caagagagct tgactaagcc aatttgcccc
                                                                       600
ctcttccctt cttcctctgt ctgttcatct ttcttttttc tttttcctac ccatccattt
                                                                       660
cottgactot cottttattt ttotottact ototttaato toocaaatga tttttttotg
                                                                       720
cttttagtat agcagatgcc ccagaattag gcagatactt gtaatacaaa ataaaacaat
                                                                       780
agtaaatttt aaaattaaac atttgctcaa gattggatca actaaaaaac gagtttattt
                                                                       840
tttatgactg gtctattcgc ccctttatgg ctataatgca gattttttgt attaaaagtg
                                                                       900
                                                                       960
tataggtttg tgtttttgtt ttttttgtgc ttttacataa agagttgtga agatcgtttt
tatgcaggcc tgctcattca agatgatctg tgatgtggga aaaaagtaaa atctttttct
                                                                      1020
agctaatgtt ttacaaggaa aaggaaagct acttttattt ttatttattt attttttac
                                                                       1080
atacaatgat togaatacac agtttgagtt atttttcaaa ctaactttct ctgaatatgc
                                                                      1140
tataaatgtt ggctgttcat ttttcaagta atggtttgta aacaactttt aggcattctt
                                                                      1200
agctaactaa tatttatgac caatagttta ggacataaag attataccta tgaattgggg
                                                                       1260
gatcaagaac agtaacagtg ctctgcaggc ctcgatcatt aactgccaac aaaatctaca
                                                                      1320
ggacaattcc aaatgtctgc aaaagaaaaa catgaaaaat tcatactgat aattatagat
                                                                      1380
                                                                      1440
cagaatcatt taaagccctt atctccttcc tcctctcatt tccctaatct taattctttc
ctctggaaaa aaaaaaaaa a
                                                                      1461
<210> 80
<211> 1517
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (1145)
<223> n equals a,t,g, or c
<400> 80
aggagaaact ctaaaaactg cagatattat ttcatgctat atgttccatc ctctgatgag
                                                                        60
aatgtgagga aagaaaattg tatcctgcat ggctgaaaat ggtcccctac aaaaatatca
                                                                       120,
tgttggacaa ctaatctgag atagtggtat ctctggaaag cagtttagca ctggtgagtt
                                                                       180
tggactttca tggcaggctg ccttggttca tatcttttgg taatgatact tatcctctgt
                                                                       240
                                                                       300
raggoccatt totttatttg tggaaatgaa gacaatagag tgottagata taatttagaa
caatgtccgt cacatagtaa acacgtaata aacggtagct cttattgtta ttattattac
                                                                       360
tattattacc ttgaagacag gggctctgtc ttgttcatca ttccatctcc agctcttagc
                                                                       420
acagtecetg geacaattea aacatgtatt tggatgaatg acaaataget actgaatatt
                                                                       480
tgccctgttc caagcattgt tagaggtaca tgggacaggg cagtgaacaa aacagacaaa
                                                                       540
acctcctgct gtctcagagt tcacactcta atggggagac ccaggcaatg aggaaataat
                                                                        600
taaaatatac aatgtgtctt atggcaataa atgacaaaga aaaataaagc agaggtgaga
                                                                       660
aacagtggca gtgttttggt gatcatttgc tttgcaacaa gccactcccc aaagttagtg
                                                                       720
gcctaaaaca atttaatcac agttcatgtt ctggctacaa caatacacat ccctctcatg
                                                                       780
tgcaaaatac actcactcct ccctcagagc ctcgtaccat taagggttca ggttcaaagc
                                                                       840
                                                                       900
ttaagatett ateetetgaa gtaggtttag ggacaaacaa gtetteteag gtaettette
tggggacaca gagacttgtg aactaaaaga caagttacct accttccaac acaactgaca
                                                                       960
tgcaatgggg atataggaaa agataatttc aataggcgct tctgtgcaaa agcgggggaa
                                                                       1020
atgagagtca ctcagcagtc acggttcata ttaatctaaa atctagccag gcatatatcc
                                                                       1080
caagtettee tgatgtgagg acaagaatta tttettgatt agggeteact twwtetettt
                                                                       1140
gaggntggtt cgcctcagct tttggatttg tcctctgaat catccttcct tgtctataaa
                                                                       1200
atgcatgtat atactcatac atacatagag agaaagagag agagagagag agagagactc
                                                                       1260
tgtcacgcag gctggagtgc aatggtgtga tctcagctca ctgcaaccta caactcctgg
                                                                       1320
gttcaagcaa ttctcctgtc tcagcctccc gagcacctgt agtccctgct actcaggagg
                                                                       1380
ctgaggcagg agaattgctt gaatccgaga ggcagaggtt gtcagtgagc agagattaca
                                                                      1440
                                                                       1500
ccactgcact ccagcttggg tgacagagca aggcttcatc tcaaaaaaaaa acaaaaaaaa
                                                                      1517
aaaaaaaaa ctcgtag
```

```
<210> 81
<211> 574
<212> DNA
<213> Homo sapiens
<400> 81
tagtagagcg cgtgtataga ggcagagagg agtgaagtcc acagttcctc tcctccaaga
                                                                        60
gcctgccgac catgcccgcg ggcgtgccca tgtccaccta cctgaaaatg ttcgcagcca
                                                                       120
                                                                       180
gtctcctggc catgtgcgca ggggcagaag tggtgcacag gtactaccga ccggacctga
caatacctga aattccacca aagcgtggag aactcaaaac ggagcttttg ggactgaaag
                                                                       240
aaagaaaaca caaacctcaa gtttctcaac aggaggaact taaataacta tgccaagaat
                                                                       300
tctqtgaaca atataagtct taaatatgta tttcttaatt tattgcatca aactacttgt
                                                                       360
                                                                       420
ccttaagcac ttagtctaat gctaactgca agaggaggtg ctcagtggat gtttagccga
tacgttgaaa tttaattacg gtttgattga tatttcttga aaactgccaa agcacatatc
                                                                       480
atcaaaccat ttcatgaata tggtttggaa gatgtttagt cttgaatata acgcgaaata
                                                                       540
gaatatttgt aagtctacta taaaaaaaaa aaaa
                                                                       574
<210> 82
<211> 1455
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (390)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (456)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (1100)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (1293)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (1409)
<223> n equals a,t,g, or c
<400> 82
ggtccacct ccccagggg cctcccagc ctccctctc acctcctgc ccccggaga
                                                                        60
tacctccaaa geeggtacge etgtteecag agtteggtga gtgetgeage caggagatgg
                                                                       120
ggctctgggt ggatggcctg ggatccctgg aatcaggcct ctggaaggta tgcaaggatc
                                                                       180
acacteettt etgtgeaage etgeeaceag eccaetgtgt ggeeceggge aggteacage
                                                                       240
                                                                       300
ctccctqagc gctattctct tcatcctcac aatggagaca gcacccacct ctctggcctc
ctgaccgtta agtgtggggc catggccggc tttgccagtt acccatggtc tgattttcca
                                                                       360
tggtgttggg tggtttgctt ttcttttkn ttttttttt tgagacagag cgagagtctg
                                                                       420
tctcaaaaaa aaagacaagt tgcagatgag ctgagntttg ggcagagcaa gcgggattct
                                                                       480
gatggggggt ggatgttgcg ctcgtcagca ggcaatagtt agttggttga gggttttgat
                                                                       540
camggggtag ctactgcctg ccccatttta tccagctctg tagttgctat agagttgcta
                                                                       600
gaaccttggc acatcactta tcagttttgt cacctcagat ggcttcttca ctacttgggg
                                                                       660
tgtctcctgg gtgtggggct ctccttcctg tggcctctgc tgactgcctg gcactggcac
                                                                       720
acatectet qtgagggag gaccaacggt ttttcccgtt tgttttctgc ttcctcgttt
                                                                       780
                                                                       840
aaccetecte gtettgtaag atgaatgtwe ttgtetetgt teactatgea gatgaggaet
```

```
ttgaggetca gagaegeeac taacttgeet ggteeaagee ttttgggeet eteaggetge
agccagcaat gctgcagtga agtttgcctg ggaggctgac cctaggagtc tgcaggcgtg
                                                                       960
ttaggacccc cgatctagaa gacagcagag atgtaggcca gggaggacca ataccgagca
                                                                      1020
totgagggca ggcacacoto agactgacca gaatacaaat gaattogagt cacttacaaa
                                                                      1080
caaagtggca taaggccagn cacagtggcc catgcctata atcccagcac tttcggaggc
                                                                      1140
cgaggtggga ggattgcttg aggccaacga tgtgagacca gcctgggcaa catagcaaga
                                                                      1200
cettgtetet acaaaaataa aaatteaaaa aagtggeatt taacacatae tttttttett
                                                                      1260
ttttttgaga cagarttttg ctctgtcccc cangctggag tgcaatggtg tgatctcggc
                                                                      1320
tcactgcaac ctccacctcc caggagaact gcttgaacct gggaggcggt tgcagtgagc
                                                                      1380
                                                                      1440
caagategea ceaetteact ecageetgna caaeggagea agaeteeate taaaaaaaaa
                                                                      1455
aaaaaaaaa ctcga
<210> 83
<211> 1640
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (687)
<223> n equals a,t,g, or C
<220>
<221> SITE
<222> (764)
<223> n equals a,t,g, or c
gtgagcactg gtttaagcac ctcatagact ggcatttctg cctcccacaa gataactgga
                                                                        60
cetggettag gaatetgaat ageageatge atggagtget tetatgtgte aageactgtt
                                                                       120
ttaagcacgt ttgaaataac tcacttcatt tgaaataact gagtctacat gatgactgta
                                                                       180
aaaggttggt totgttgtta cotgoatttt accgatgagg aaactgaago ottcagaagt
                                                                        240
geagteactt gtccagggcc acatagcagg ctgagatttg aaccgccagg ccttttgact
                                                                       300
ccagagetta cactettaac tecatteate tgetaagtee tteeetgtee tettgcaaga
                                                                        360
                                                                        420
tgccttaatc cagggattat caaacttttt cttaaaatca ggagaactca ttgcaaacca
attcatacct agattccaca gaatcaaaga tgcagccgag ttacccattg agctggagtg
                                                                        480
ggggcgtara attgccctgt ttggcctcct tsctgacatt gctgttccta ctgcagcctc
                                                                        540
                                                                        600
tgatgcttcc ccttggaggc tcccagaccc agttgggcaa ccacagtgtt gtccgtctgc
ttctcccagt tcagaggctc ggctttgccg aagtccctcc actcgaagtg gcacagagtt
                                                                        660
gaggtetett ccaggcacac tggcgtnece teactggget cetgtecetg cettggtcaa
                                                                        720
catcctggtg cgcactgggt gggtgactaa caacattttt gganttgtgg ctggagccca
                                                                       780
ggtgactact ccaaatcacg gttttccatt ctgtgtgaga tggcctcatg cctttctatg
                                                                        840
cctctgacag gcagttctct gaatttcgaa ggctcttgtc ttaagagact gtcagaagtc
                                                                       900
cctttggcaa gggactgtgg gcaaaccgcc cagcggctgt ggtcaattcc tctctctgat
                                                                       960
                                                                       1020
ggcagtagtg ctacctaggg ggccgcctgg gtgaaacggg cttttttgca tacttccaaa
ctggttccct gtagctaggg gaccaaacaa ttattgtctg aaccaagatg ctcctgagag
                                                                      1080
tgaagagaat gtaaagtgct cagtcctgga cagatggtat atatgatcgc cgtaaataca
                                                                       1140
gccagccctt gccagaagtg ggtctggaga aatggtgcgg gggggcgtga aaagggctta
                                                                      1200
caacccgcag tectgtgtet etgetaggtg aattggtage atcagteete actetgetta
                                                                       1260
ttcagaccaa aaaattgtta agttcttccc accaccacgg agcacagact tgattaagat
                                                                       1320
                                                                       1380
ccagaaaggt cagccgggtg cagtgacttg cgcctgtaat cccagcactt tgggaggccg
aggogggtgg ctcacttgag gtcaggagtt tgagaccagc ctggccaacc tggtaaaacc
                                                                       1440
                                                                      1500
ctgtctctac taaaaataca aaaattakcc asgcatggtg gcccatgcca taatcccagc
tactggcggg gctgaggcag gagaattgct tgaacccggg aggcgaaggt tgcagtgagc
                                                                      1560
tgagatcgtg ccatgcactc cagcctgggg gacagagtga gactctgtct caaaaaaaa
                                                                       1620
aaaaaaaaa aaaaactcga
                                                                       1640
```

<sup>&</sup>lt;210> 84

<sup>&</sup>lt;211> 525 <212> DNA

<sup>&</sup>lt;213> Homo sapiens

```
<400> 84
ggcacgagga gaactgatgg gggtggagag aagctccttg tgggaggaga gggaactacc
                                                                       60
agcagagece etectacege agacacagga teggagacaa cetecaaece cacetgeete
                                                                      120
ctgaagtgct gctgacatgc aactgcctta actttgccta cctggcctcc ttatgatccc
                                                                      180
cctccggcgt ggtatggttg gggggcttct tttgctgctg gccacggcaa acaagctgct
                                                                      240
                                                                      300
tgctgcttcc ttcagagacc tcatggatgt tcttacatgc ccccgacccc ggtagatggc
                                                                      360
tccctgttgt ttggggagcc tggaaggtgg ttatgccttt tggatgcagg agaggagcaa
gaaagagtgg agagggagaa tgggggagcc ggaccctgac ctccctgggt tctggttgga
                                                                      420
gatgaaaaaa ttagaagcat caggtctaag atcagcttct cttggaagca gagcctgaga
                                                                      480
                                                                      525
<210> 85
<211> 837
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (717)
<223> n equals a,t,g, or c
<400> 85
cactatagaa ggtacgcctg caggtaccgg tccggaattc ccgggtcgac ccacgcgtcc
                                                                       60
                                                                       120
gggtgggaga tgattggctc atggcggctg acgtccccct tgctggtctc gtgatagtga
gtgagcgctc atgggatctg gttgtttaga agcatgcagc acctcctgct tcactctctc
                                                                      180
                                                                       240
tgtctctcct gctccaccat ggccagaaac gtgcctgctt ccccttcgcc ttctgccgtg
                                                                      300
attgtcagtt tcytgaggsc tccccagcca tgcttcctgt acagcctgca raactgtgag
tcaattaaac ctcttttctt cataaattcc ccagtttcca gtagttcttt atagcagtgt
                                                                      360
                                                                       420
gaaaacagac taatggaccc ttctggttga aggaatgyag ccattctgct tgtttrasta
tktcctttct attcatctct atttccyggg aggtgtttat ccaagtgcaa taggagrtat
                                                                       480
                                                                       540
tggtgacygc asagtcccct cagtgttctg ctagtaaata gttgaaggtt gatcaktgat
ctycwgcrtt ttcagtctgg catggaaaag ccccyrtgya actggtaaag rtatcartaa
                                                                       600
gcaccaggag gtatctaaat ccaccaggag ccataggcat cacgttgacg tccatttacc
                                                                       660
                                                                       720
agtetteect ggcaagatte ttetgaattg tgetgeettg gccaaaagag gtatggnagg
ggctgggcrc agtggctyry gcctgtratc ccagcaggag ttcgagacca ggcaggagaa
                                                                       780
                                                                       837
tcactagcag agaatatgtc tccccaaccc ctctcaaaaa aaaaaaaggg cggccgc
<210> 86
<211> 1574
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (19)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (873)
<223> n equals a,t,g, or c
gtgatctttg taatatctnc tgttgtttct atgatatagg agctagggga agggggttgt
                                                                        60
ttgccttctt caggacctga ctggacagat ggacctggct caagcaacta ctctggatgc
                                                                       120
actttgctgt gtgggatgaa ctaaaagtgt ctgaattttg ctgataactt tataaaactc
                                                                       180
actatggcat gcttccctcc tggtgggccc taggatggat gacactcaag atactacaga
                                                                       240
tgtgggtgca ggcatgcaca cacacgatgg aatatggcca ttcctacaca ggtggggtag
                                                                       300
                                                                       360
agagtgggtc agcagcctgg cacctcacag aggtgggacc taagaggact catgattatg
cagagaattg gattgggtct ctgtcataga ttgagtaatc tcttccctta cctcaattcc
                                                                       420
                                                                       480
atctccaccc atctctacat ctgggcacag caacccagag atggccaaaa gcattcaagc
ctgggggaag atgtttgact attgctgctc ttcaccagaa cctcacacct ctcctgggac
                                                                       540
```

|                                                   |                          |                          |                          | ni, via kataji           | Tracking the second                     | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                   |                          |                          |                          | a property of            |                                         | BUTTON TO STATE OF THE STATE OF |
| WO 99/5866                                        | sn.                      | •                        |                          | 1 11 / 21                | مسلا منها                               | PCT/US99/09847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| WO 99/3000                                        | ,                        |                          |                          | 2 th 15                  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |                          |                          | 49                       |                          |                                         | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                   |                          |                          |                          | ÷                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |                          |                          |                          |                          | **.                                     | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| tggaaccctt                                        | cagtgggtgt               | gtggccagtt               | ttggaggctg.              | gaatgatggg               | ccagggtgta                              | 600<br>660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ggattcattc                                        | ggaatatete               | tacttggatc               | aattctggtc               | gccatcccca<br>atttcaagag | gatggaggcc                              | 720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| tcaagtgtgg                                        | gaacttcccc               | tactccctgg               | atgtgtgtac               | ctagcacact               | tccttctccc                              | 780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| accccttttt                                        | ccagttggat               | ttgtttttct               | gttctcttct.              | gtcctgtctt               | atactgcaac                              | 840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| tgtgtctcct                                        | aggggacaga               | tggccttctt               | tgncatcttc               | actctccacc               | cccagagagg                              | 900<br>960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| agtcagagcc                                        | gaaccctgat               | gagatacatt               | gtcttcctct               | ccctacaatq               | tgataatctc<br>cctctggggc                | 1020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| caaggcaccc                                        | attettettg               | ctatcctcca               | tcccccttga               | ggcttccact               | tttttttt                                | 1080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| tragacataa                                        | agctgggcat               | cagcaactgg               | cctgtggtga               | tgcaaagctg               | ctttgctctg .                            | 1140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| tatctggctg                                        | gactgatctg               | tctcacaaga               | agccatgagg               | ccatagggag               | aagctccctc                              | 1200<br>1260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| tccccttcat                                        | cttctgctcc               | ataggtggta               | gcaagaggag               | tacccagtta<br>ttttcattcc | aaccatctcc                              | 1320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ccccatata                                         | atgaatgcaa               | taaaactctg               | tgacaccagc               | aaccattgct               | ctttagaaat                              | 1380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| agattttctq                                        | atcatatggc               | tgatgtgtta               | tgggcagtat               | ggatgtcttc               | atttgttgct                              | 1440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| totatttttc                                        | atcttttttg               | ttttattaat               | aaaaatttat               | gtatttgctc               | ctgttactat                              | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                   |                          | attcaatcca               | aaaaaaaaa                | aaaaaaaaa                | aaaaaaaaa                               | 1560<br>1574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| aaaaaaact                                         | cgag                     |                          |                          |                          |                                         | 13/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <210> 87<br><211> 1628<br><212> DNA<br><213> Homo | sapiens                  |                          |                          |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <400> 87                                          |                          |                          |                          |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| tecetetete                                        | ctgcctgtgc               | tcaaacaccc               | acagagaact               | ctggaaggag               | aagaaaaaca                              | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| tacctctctc                                        | cttccccggc               | ctttccccac               | acacactgag               | gttgagaagc               | tgggaataaa                              | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| cagcgtccaa                                        | cacttttaaa               | tggcggtggc               | agctccagac               | aagggagaag               | ggaaggactg                              | 180<br>240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| agagaagaaa                                        | tactagaci                | aaattcaata               | gcattatacc               | gaacctttac<br>aagtgtttgg | gcaacggtgt                              | 300 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| agagacaata                                        | gtagagacaa               | gctacagctt               | tagacagtgg               | tagagagaag               | ctacaacttt                              | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| agettgtaga                                        | aacagctgtt               | gggtgttcag               | cagatgcagt               | ctaggtgcat               | gcaaacccac                              | 420<br>480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| tgtgtgcagc                                        | atgccttcac               | tctcacgaca               | agggagccag               | accttgtgtc               | agggetgge                               | 540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| tgaatattgc                                        | trtctctgtg               | gctcattcaca              | tttggggtat               | ctcagctaag<br>actcatacta | ctgagtctct                              | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| atgaaggagt                                        | gataagctgg               | gtcttcaatt               | tccaaatgtt               | taccaaactc               | ctactatgtg                              | 660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ccaagcacta                                        | ttcccactgc               | tttgagagct               | aacggtaaac               | aacaacagyg               | aaaaaacatg                              | 720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| taacatccca                                        | accagtgctt               | ctaaggattt               | aaaatatgct               | ggtacttatg               | actttattct                              | 780<br>840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| tacttctgta                                        | ttatagatat               | gtatatggct               | atcagetate               | tgtatatgta<br>catagcctac | tcatctctga                              | 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| taatttatat                                        | tttgtactca               | aatttctcga               | atacccctac               | caaatcattc               | teteeteett                              | 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| accaatatta                                        | taatgtccct               | gacaataaca               | taacaaaccc               | agctctaaca               | cctacagatt                              | 1020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| totttgagaa                                        | caaacaactt               | ctacatgcaa               | tttctttct                | atactcacca               | actggttttc                              | 1080<br>1140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ttcaacctcc                                        | tgcccaccct               | gtccagctca               | ggacatcaac               | aaccctttat<br>gactagttca | attaagaget                              | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| gaggtcagac                                        | aaacagctct               | gactttggaa               | gcaattgatt               | tgactgcctc               | tttggtcaca                              | 1260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| taaccagatt                                        | tacccataat               | tttttqcaaa               | cttggatgca               | tctttagata               | cagagcaatg                              | 1320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ctttggcatc                                        | Laggagagag               | ggttgttcct               | ggtgctgtca               | cttgtaccca               | ctctcctgtt                              | 1380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| tcctctccaa                                        | ctatgagtca               | cattttccct               | caatatctcc               | tatcttactt               | aaaacadaaa                              | 1440<br>1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| cagccctgac                                        | getttttgct               | gtatcacacc               | acctagaget               | aaacaaaaca<br>tggctagtga | acatgagcag                              | 1560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| accadadada<br>acctettetg<br>gggtggge              | aatcccacac               | atcagccatg               | ctcttgcagc               | catgtagagg               | agctggaggt                              | 1620<br>1628                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <210> 88<br><211> 1795<br><212> DNA<br><213> Homo | sapiens                  |                          |                          |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <400> 88                                          |                          |                          |                          |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ggcacgagaa                                        | caaactataa<br>ttccttacat | actacttacc<br>ttgtagagta | tgcatattgc<br>gaatgtgttt | tttactggga<br>tatgtctttt | aaaatcttag<br>attagtatag                | 60<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

1380

atgactggcc ctatatcatc taatagatag tccttttcat catggagatg aattattgtg

```
ggtccagagt tttgtatatg tctctaatcc tgctagggag tccaatcata cccttgtggt
                                                                     240
                                                                     300
cctatacttc agccacacag gctgcagctt tagtgacatc acacgtgtgg aaaccctctc
tagaggetea ceagateaat attteteetg aacetteaat acattatgat agatggeaca
                                                                     360
ctcagagtaa ttgtagttta ataaattctc ttcaataaat ggttctggaa aaacaatatc
                                                                     420
                                                                     480
tatatqcaqa aqaataqaaq aaqactqccc acttctaaca atatacaaaa atcaaatgaa
aattaaagaa ttaaatctaa gaccctgagc tatgaagcta ctacaagaaa actttgggaa
                                                                     540
aaatcttcag gacattgacc tgggcaaaga ttttttgagt aatactccat aagtacaggc
                                                                     600
aaccaaagca aaaaatgaac aaatgggatc acatcaagtt aaaaagcttc cacacaacaa
                                                                     660
agaaaacaat caaagtgaag agacaaccca cagaatggga gaaaatattt gcaaactacc
                                                                     720
catttgaatg ggattaataa tcagaatata tgaggagctc aaacaactct atagaaaaaa
                                                                     780
atataataat ctgatcaaaa aatgggcaaa agatttgagt agacattcct caaaagaaga
                                                                     840
                                                                     900
catqcaaatq gtaaacaaac atattgcgaa gtactcaaca tcactgatca tcagagaaat
gcagatcaaa aactacaatg agatatcatc tcatctcaat taaaatggct tctttttcca
                                                                     960
aaagagaggc aataactaat gctggtgaga atgggaagaa aaaaagaatc ctcatgcact
                                                                    1020
gttggtggga atataaacta gtaaaaccac tatggagaac agtttggagt ttcctcaaaa
                                                                    1080
aactaaaaat ggagctacta tataatccag caatttcacg cctgggtata tacccaaaag
                                                                    1140
aaaataaatc catgtatcaa agaaatattt gcactttcat atttgttgta gcaatgttca
                                                                    1200
caatagtcaa gatttggaag caacctgagt ccacaaacag ataaatgaat aaagaaaatg
                                                                    1260
                                                                    1320
tactatacac aatggagtta ctattcagcc atgaaaaaga atgagatgct atcatttgca
acaacataga tggaactgga agtcattgtg ttaagtgaaa taagccagaa acagaaagac
                                                                    1380
aaacatcaca tgtcctcact tatttgtggg atctaaaaat cagaacactt gaactcatgg
                                                                    1440
acatagagag tagaaggatg attaccagag gctgggaagg gtagtgggag gaaggtgggt
                                                                    1500
gttggggtga aggatgtggg gatggttaat gggtaccaaa aattgaatga ataaggccta
                                                                    1560
ctatttgata qcacaacagg ctgactacag ccaataatag tttaactaca ttttaaaata
                                                                    1620
actaagagta taattggatt gtttgtaaca caaagataaa tgcttgaggg gatggatgtc
                                                                    1680
tcattttcca ttatgtgatt attacacatt gcatgcctat ataaaacatc tcatatctca
                                                                    1740
                                                                   1795
<210> 89
<211> 1864
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (1844)
<223> n equals a,t,g, or c
<400> 89
cccaagccag ccatttatta caagaagcaa caggttattg acattacatg tttgaaaatt
ccctttggtc tttagggaaa ataaacagga agccaagatt tggagccttt gtaataagga
                                                                     120
cttcctqcaq aaagtctttt ctttactata attgagtaat tcatatttag agtcacatgt
                                                                     180
ccagtagcat ttctaatttt gagcattcac cttgctacct ttaaaaaaaca tctgagtttt
                                                                     240
aagtggcctt tttatcatca tacacatgtg catacaaaga agggacttgg cagtttaaaa
                                                                     300
gccacatata ttcactttta ttgccctaaa tttacatgaa acagacatac tggcaaactc
                                                                     360
acatattgct ggtgctaacc ttatatttca tagtgttggc atattcccct tttcttagat
                                                                     420
tottactccg aaatataggt acacatcctt tgctctgtgc agagggaatt acatcctttt
                                                                     480
tcctctccta caaaaacatg ctttattaag tatccatcat tactttcctt tatgctcgct
                                                                     540
                                                                     600
caatatgcaa tgtgctgtta ttctaccatg taccttaaat aaaggatgat ggcaaagtta
tttaccatgt agaaaccatt ttctttctag aaacaatagc tcagcctcac tgtagcagct
                                                                     660
ggcatgtgtg gtcaagtgga tagttgtact cttgcaagtt ggatttaata tcatatatac
                                                                     720
tggaccttca gactgttaaa aatcaatgta acctttttt attgctatgg caagcaatta
                                                                     780
gtatttcact gcacgtcttc catactaatg ttcatttcta aatcttatat gtaggcattt
                                                                     840
gttagttcca atgatttcct cactaatata acacttttta atgggaatct ttccacctac
                                                                     900
agccctggaa tgataatgct acagtaattc ttctgaattg actttttctt tcatcctgtc
                                                                     960
agctttggac aatatcccaa ttatggcagg gaacaggtgg ggaactaaga tcagttacaa
                                                                    1020
                                                                    1080
aaagttgtag atgtgtcaac tttgtatggc tgggatcact gtgcccaaac aaaacaggcg
aaatacctca gttaaaattt ttccatcaaa gtctttaaaa gaagagtata ctgaagaaag
                                                                    1140
1200
aaaatcaccc caaatttgca ctaaatacca atgaagtgtt attttgcttt agtagtcttc
                                                                    1260
tgagcaacaa actatgggga attctgkaaa amcatataaa aagtycaagm ctttttttt
                                                                    1320
```

aaatgaatga ttactatgtt aaatgcaaac ttttttttt ttttatttaa acaaacatac

П

```
acttctcctg gcaaggttat agatgattaa cctctgttca tagacttata tataaaacta
                                                                       1440
gagggttttt tgtttacttt tttaattttt caagtgcaat tgtttcttac acagacatta
                                                                       1500
ttactattaa attatcattt agccagttat ctgcaaatat atagtatgta ttgtctcttc
                                                                       1560
ttgtgacgtt tagtttaatt gcttatttta aagcagaaam attagttaca agtgtcttac
                                                                       1620
aatattttta ccaacagtaa agtagagact taatgaaaat accttagtgt gattttaata
                                                                       1680
taatttgcat attttagttg tataaagttt taatgtaaaa tgtccattat tgaagggaaa
                                                                       1740
agatetteca ataaaaaata eecacgaaaa aaaaaaaaaa aaaaagggeg geegetetag
                                                                       1800
aggatccaag cttacgtacg cgtgcatgcg acgtcatagc tctnaaaagg ggactccaga
                                                                       1860
                                                                       1864
actt
<210> 90
<211> 1983
<212> DNA
<213> Homo sapiens
<400> 90
gacgttgaag atgagaacaa gcagaagaaa caattggatt tctatgaaaa gaaaacagat
                                                                         60
                                                                        120
tggtgtacac ttacacaaat ttgtgcagat tatttgtcta gaaggaaagt catacaggtt
gggcagtctg gtcacaaaaa gggacagggg ttgagggggt tctggtgact gtgatgaagg
                                                                        180
cctcactctc aggcctccgg tcccactgaa ggtcagatga aaggtagtct tccctggcgg
                                                                        240
                                                                        300
ttgctgctgc cactgaatgg gccctaactt tgtcgtcttg tgtttgaatc ttctgcagga
cacgttagcg tatgccacag ctttgttgaa tgaaaaagag caatcaggaa gcagtaatgg
                                                                        360
gtcggagagt agtcctgcca atgagaacgg agacaggcat ctacagcagg tataacggtc
                                                                        420
                                                                        480
agcatgtcct tgtgtgcaaa gggcagcctt gctcttaagc tttccaaaaa gaatttccac
agctgaggga aaacaagatg cttcctctgg aatgtgagtc caaagagtta ccagcgctgc
                                                                        540
cctctagtga tctcagctca gcatatgcac taaccgtgtg tttacagggc tgagtagtgc
                                                                        600
tgcagtgtga agtgaatgga aggcctcgag gtgtttgtgg ctggccaccc tgatcagcct
                                                                        660
gcaggtagtc ccgatgaagc cagggcacag ggggattcgt tccagcttgt tcactttatt
                                                                        720
                                                                        780
ctgccttgcc aggttactga aagtccctcg tttgctctca ccagccttcc tggaaatgtg
gactettgaa agaaaagete eegtgetett gaagtatace tgettgeeag gggagteeaa
                                                                        840
gaaaattttg acatgtattt ttaaaaaaag aaaaaaaaac agctttaata ccaatcatta
                                                                        900
                                                                        960
tagtagaaaa agaaaataaa tatgtattga acacccactg tgtgcaaaca ctgaactaag
tgtcagttaa tcattacgtc tttccaatag tctgtaactt tccttaacag cagtctcctc
                                                                       1020
tgtggtccct tcacagtact tggtacagaa taggccccat taaatgaatg ttactgatgt
                                                                       1080
agtaggtgtc atttttttt aagtgttatc tttcggatcc tcataagcac tatgtgaggc
                                                                       1140
agctgtcacc ctgattttac agaaaggtaa ctgcagccca gcacagtgat gtgacttagc
                                                                       1200
ccaaggtcac tccacacatt acctcatcac ctacttcatt tgcagagaaa ataaaagctg
                                                                       1260
tcacaggaga gctcctgcgg ccactaattc ccaagcatct gcactgttct tgtstcctct
                                                                       1320
cctgtgacag tgggaagttt gcctctgtcc acccaaagcc cctagcgctc atccccgccc
                                                                       1380
accttggcag agctttgcgt tctaatgtgt atgtaactct tcaatatcca gaacgctyca
                                                                       1440
ccctgccaga cccttcccag cgacgtctca gcacactggt ttctcttctg ccctgtcaaa
                                                                       1500
gootototto tgoootgtca aagoototot totocotgtt goooctgoot tottttotot
                                                                       1560
                                                                       1620
totttgcago caaacttcga ctaattctct aaacttaact ttccccattt tottatctct
cactogotot toagootott cootgotaac tocotottot otocaactoa goagttgggg
                                                                       1680
tgacaggtgg cctgcagctt tcaggcctca tcttagccga ctgctcggca gcatctagcg
                                                                       1740
                                                                       1800
ctcctggcgc tcttcccgtt tgaaacacta ttccagggct ttcctgacac ttctctctcg
tagttttcct caaaccette tggetgttce ttetetgtet cettectagt actgeetett
                                                                       1860
ctggaccacc agtaaaggtt tgtggagtct ctaacctgta tcctcctgcc ctcactccat
                                                                       1920
attototocg cgtcgacgcg gccgcgaatt cccgggtcga cgagctcact agtcggcggc
                                                                       1980
                                                                       1983
<210> 91
<211> 1957
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (349)
<223> n equals a,t,g, or c
<400> 91
```

| atttetetae                                                                                                                                                                                                                                                               | aattatttgg                                                                                                                          | ttcagtttta                                                                                                               | attttatctg                                                                                                                              | taacaatgat                                                                                                               | agtaattgct                                                                                                                          | 60                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                          | ctctcttctg                                                                                                                          |                                                                                                                          |                                                                                                                                         |                                                                                                                          |                                                                                                                                     | 120                                                               |
| aagtttgctg                                                                                                                                                                                                                                                               | acattgttgc                                                                                                                          | aaatgcttat                                                                                                               | cagaatgaat                                                                                                                              | cctatatttt                                                                                                               | tatttaaaat                                                                                                                          | 180                                                               |
|                                                                                                                                                                                                                                                                          | ttttcaatca                                                                                                                          |                                                                                                                          |                                                                                                                                         |                                                                                                                          |                                                                                                                                     | 240                                                               |
| gatacaggaa                                                                                                                                                                                                                                                               | aggaaatgga                                                                                                                          | gttgtggatg                                                                                                               | aaagccatgt                                                                                                                              | tagatgctgc                                                                                                               | cctagtacag                                                                                                                          | 300                                                               |
| acagaacctg                                                                                                                                                                                                                                                               | tgaaaaggta                                                                                                                          | aaggcttgta                                                                                                               | gaaaaaatga                                                                                                                              | tggtgattnc                                                                                                               | cacttccatt                                                                                                                          | 360                                                               |
|                                                                                                                                                                                                                                                                          | ccttgcaagt                                                                                                                          |                                                                                                                          |                                                                                                                                         |                                                                                                                          |                                                                                                                                     | 420                                                               |
| atgaaatcat                                                                                                                                                                                                                                                               | tttttcctca                                                                                                                          | gaaagcaagg                                                                                                               | atcaattcct                                                                                                                              | gttctgaatt                                                                                                               | aaattaatac                                                                                                                          | 480                                                               |
| acattttgtt                                                                                                                                                                                                                                                               | agtttgcgat                                                                                                                          | accacctaca                                                                                                               | tttttattcc                                                                                                                              | acttttcttc                                                                                                               | tttttcttct                                                                                                                          | 540                                                               |
| ttattcattt                                                                                                                                                                                                                                                               | tcacctatcg                                                                                                                          | gtgtactggg                                                                                                               | gtgaatccag                                                                                                                              | aatcctaaca                                                                                                               | ttcaaactga                                                                                                                          | 600                                                               |
| atgttctttc                                                                                                                                                                                                                                                               | ttcttacaga                                                                                                                          | attaccttta                                                                                                               | atttccggtg                                                                                                                              | agtacgtttt                                                                                                               | taattgttac                                                                                                                          | 660                                                               |
|                                                                                                                                                                                                                                                                          | cacagatttt                                                                                                                          |                                                                                                                          |                                                                                                                                         |                                                                                                                          |                                                                                                                                     | 720                                                               |
|                                                                                                                                                                                                                                                                          | tttttatgaa                                                                                                                          |                                                                                                                          |                                                                                                                                         |                                                                                                                          |                                                                                                                                     | 780<br>840                                                        |
|                                                                                                                                                                                                                                                                          | gaattacagt                                                                                                                          |                                                                                                                          |                                                                                                                                         |                                                                                                                          |                                                                                                                                     | 900                                                               |
|                                                                                                                                                                                                                                                                          | gtttttgtaa<br>cacttcttgg                                                                                                            |                                                                                                                          |                                                                                                                                         |                                                                                                                          |                                                                                                                                     | 960                                                               |
|                                                                                                                                                                                                                                                                          | atatagataa                                                                                                                          |                                                                                                                          |                                                                                                                                         |                                                                                                                          |                                                                                                                                     | 1020                                                              |
| cyccicgata                                                                                                                                                                                                                                                               | attttaatat                                                                                                                          | tetteagtat                                                                                                               | anctanttan                                                                                                                              | aggaaatctg                                                                                                               | atteteagae                                                                                                                          | 1080                                                              |
|                                                                                                                                                                                                                                                                          | caagtagtat                                                                                                                          |                                                                                                                          |                                                                                                                                         |                                                                                                                          |                                                                                                                                     | 1140                                                              |
|                                                                                                                                                                                                                                                                          | gatgcaagtt                                                                                                                          |                                                                                                                          |                                                                                                                                         |                                                                                                                          |                                                                                                                                     | 1200                                                              |
|                                                                                                                                                                                                                                                                          | atgctaatgt                                                                                                                          |                                                                                                                          |                                                                                                                                         |                                                                                                                          |                                                                                                                                     | 1260                                                              |
|                                                                                                                                                                                                                                                                          | ttgttmcagt                                                                                                                          |                                                                                                                          |                                                                                                                                         |                                                                                                                          |                                                                                                                                     | 1320                                                              |
|                                                                                                                                                                                                                                                                          | cttggctttt                                                                                                                          |                                                                                                                          |                                                                                                                                         |                                                                                                                          |                                                                                                                                     | 1380                                                              |
|                                                                                                                                                                                                                                                                          | atcaagtcta                                                                                                                          |                                                                                                                          |                                                                                                                                         |                                                                                                                          |                                                                                                                                     | 1440                                                              |
|                                                                                                                                                                                                                                                                          | aaaagagggt                                                                                                                          |                                                                                                                          |                                                                                                                                         |                                                                                                                          |                                                                                                                                     | 1500                                                              |
|                                                                                                                                                                                                                                                                          | catgcatatt                                                                                                                          |                                                                                                                          |                                                                                                                                         |                                                                                                                          |                                                                                                                                     | 1560                                                              |
| ttgcatgtgt                                                                                                                                                                                                                                                               | aaaaattacc                                                                                                                          | tgagtagcat                                                                                                               | aaagatgagg                                                                                                                              | tggttagcac                                                                                                               | tgataacgag                                                                                                                          | 1620                                                              |
| agaaaatgtg                                                                                                                                                                                                                                                               | taggtgaaga                                                                                                                          | gaattcattt                                                                                                               | aaaatcttca                                                                                                                              | ggctgagcat                                                                                                               | ggtggctcac                                                                                                                          | 1680                                                              |
|                                                                                                                                                                                                                                                                          | ctagcacttt                                                                                                                          |                                                                                                                          |                                                                                                                                         |                                                                                                                          |                                                                                                                                     | 1740                                                              |
|                                                                                                                                                                                                                                                                          | acatgatgaa                                                                                                                          |                                                                                                                          |                                                                                                                                         |                                                                                                                          |                                                                                                                                     | 1800                                                              |
|                                                                                                                                                                                                                                                                          | cttgtagtcc                                                                                                                          |                                                                                                                          |                                                                                                                                         |                                                                                                                          |                                                                                                                                     | 1860                                                              |
| aggaggttga                                                                                                                                                                                                                                                               | aactactata                                                                                                                          | anctataact                                                                                                               | ataaaaataa                                                                                                                              |                                                                                                                          |                                                                                                                                     | 1920                                                              |
|                                                                                                                                                                                                                                                                          |                                                                                                                                     |                                                                                                                          |                                                                                                                                         | accedageee                                                                                                               | ggacaacgga                                                                                                                          |                                                                   |
|                                                                                                                                                                                                                                                                          | gtcaaaaaaa                                                                                                                          |                                                                                                                          |                                                                                                                                         | accedageee                                                                                                               | ggacaacgga                                                                                                                          | 1957                                                              |
|                                                                                                                                                                                                                                                                          |                                                                                                                                     |                                                                                                                          |                                                                                                                                         | accedageee                                                                                                               | yyacaacyya                                                                                                                          |                                                                   |
| gtgagaccct                                                                                                                                                                                                                                                               |                                                                                                                                     |                                                                                                                          |                                                                                                                                         | acceageee                                                                                                                | ggacaacgga                                                                                                                          |                                                                   |
| gtgagaccct                                                                                                                                                                                                                                                               |                                                                                                                                     |                                                                                                                          |                                                                                                                                         | accedagece                                                                                                               | ggacaacgga                                                                                                                          |                                                                   |
| gtgagaccct<br><210> 92<br><211> 573                                                                                                                                                                                                                                      |                                                                                                                                     |                                                                                                                          |                                                                                                                                         | accedagece                                                                                                               | ggacaacgga                                                                                                                          |                                                                   |
| gtgagaccct<br><210> 92<br><211> 573<br><212> DNA                                                                                                                                                                                                                         | gtcaaaaaaa                                                                                                                          |                                                                                                                          |                                                                                                                                         | accedagece                                                                                                               | ggacaacgga                                                                                                                          |                                                                   |
| gtgagaccct<br><210> 92<br><211> 573                                                                                                                                                                                                                                      | gtcaaaaaaa                                                                                                                          |                                                                                                                          |                                                                                                                                         | accedagece                                                                                                               | ggacaacgga                                                                                                                          |                                                                   |
| gtgagaccct  <210> 92  <211> 573  <212> DNA  <213> Homo                                                                                                                                                                                                                   | gtcaaaaaaa                                                                                                                          |                                                                                                                          |                                                                                                                                         | acceageee                                                                                                                | ggacaacgga                                                                                                                          |                                                                   |
| gtgagaccct  <210> 92 <211> 573 <212> DNA <213> Homo <400> 92                                                                                                                                                                                                             | gtcaaaaaaa<br>sapiens                                                                                                               | aaaaaaaaa                                                                                                                | aactcga                                                                                                                                 |                                                                                                                          |                                                                                                                                     |                                                                   |
| gtgagaccct  <210> 92 <211> 573 <212> DNA <213> Homo <400> 92 ggcacgagtg                                                                                                                                                                                                  | gtcaaaaaaa<br>sapiens<br>aatattaact                                                                                                 | aaaaaaaaa<br>gtgttatttt                                                                                                  | aactcga                                                                                                                                 | ttaagcctta                                                                                                               | actcgccatt                                                                                                                          | 1957                                                              |
| gtgagaccct  <210> 92 <211> 573 <212> DNA <213> Homo  <400> 92 ggcacgagtg gatttaccag                                                                                                                                                                                      | gtcaaaaaaa<br>sapiens<br>aatattaact                                                                                                 | aaaaaaaaa<br>gtgttatttt<br>cctggggttt                                                                                    | aactcga tatacacttt ctttgcccat                                                                                                           | ttaagcctta<br>ggggttctct                                                                                                 | actcgccatt<br>gcccccaccc                                                                                                            | 1957<br>60                                                        |
| gtgagaccct  <210> 92 <211> 573 <212> DNA <213> Homo  <400> 92 ggcacgagtg gattaccag ccggcccttt                                                                                                                                                                            | gtcaaaaaaa<br>sapiens<br>aatattaact                                                                                                 | aaaaaaaaa<br>gtgttatttt<br>cctggggttt<br>cgtcgtctga                                                                      | aactcga tatacacttt ctttgcccat tactcagtat                                                                                                | ttaagcctta<br>ggggttctct<br>tgtagctttt                                                                                   | actegecatt<br>gececeaece<br>tgteegeatg                                                                                              | 1957<br>60<br>120                                                 |
| gtgagaccct  <210> 92 <211> 573 <212> DNA <213> Homo  <400> 92 ggcacgagtg gattaccag ccggccttt ttactcctg                                                                                                                                                                   | gtcaaaaaaa sapiens aatattaact tttaacgttt gtttgacttg                                                                                 | aaaaaaaaaa<br>gtgttatttt<br>cctggggttt<br>cgtcgtctga<br>gttatacata                                                       | aactcga tatacacttt ctttgcccat tactcagtat ctgttaacac                                                                                     | ttaagcctta<br>ggggttctct<br>tgtagctttt<br>ccctttgctt                                                                     | actegecatt<br>gececeacec<br>tgteegeatg<br>tttetatggg                                                                                | 1957<br>60<br>120<br>180<br>240<br>300                            |
| gtgagaccct  <210> 92 <211> 573 <212> DNA <213> Homo  <400> 92 ggaccagagtg gatttaccag ccggccttt ttactcctg acctccaggc                                                                                                                                                      | gtcaaaaaaa<br>sapiens<br>aatattaact<br>tttaacgttt<br>gtttgacttg<br>taaatacgct                                                       | gtgttatttt<br>cctggggttt<br>cgtcgtctga<br>gttatacata<br>agaactagtt                                                       | tatacacttt ctttgcccat tactcagtat ctgttaacac accttattaa                                                                                  | ttaagcetta<br>ggggttetet<br>tgtagetttt<br>ceetttgett<br>aaaagaaaaa                                                       | actegecatt<br>gececeaece<br>tgteegeatg<br>tttetatggg<br>acagtetgtt                                                                  | 60<br>120<br>180<br>240<br>300<br>360                             |
| gtgagacct  <210> 92 <211> 573 <212> DNA <213> Homo  <400> 92 ggcacgagtg gatttaccag ccggccttt ttactcctg acctccaggc ggcttctag aggaaggtag aggaaggtag                                                                                                                        | sapiens  aatattaact tttaacgttt gtttgacttg taaatacgct caccatattt tctgcatctt tttgcatctt                                               | gtgttatttt<br>cctggggttt<br>cgtcgtctga<br>gttatacata<br>ggaggcaggg<br>atttaaaaaa                                         | tatacacttt<br>ctttgcccat<br>tactcagtat<br>ctgttaataa<br>ctgttataa<br>aggtgaggg                                                          | ttaagcctta<br>ggggttctct<br>tgtagctttt<br>cctttgctt<br>aaaagaaaaa<br>aggtgccct<br>agcaaatgaa                             | actcgccatt<br>gcccccacc<br>tgtccgcatg<br>ttctatggg<br>acagtctgtt<br>cagacacttc<br>aatcaaatgt                                        | 1957<br>60<br>120<br>180<br>240<br>300<br>360<br>420              |
| gtgagaccct  <210> 92 <211> 573 <212> DNA <213> Homo  <400> 92 ggcacgagtg gatttaccag ccggccttt ttactcctg acctccaggc ggcttctcag gggttctcag gggaaggtag gggggaaga                                                                                                            | sapiens  aatattaact tttaacgttt gtttgacttg taaatacgct caccatattt tttgcatct tttgcatct cactaaaggg                                      | gtgttatttt cctggggttt cgtcgtctga gttatacata agaactagt ggaggcaggg atttaaaaaa ggcaagaaac                                   | tatacacttt ctttgcccat tactcagtat ctgttaacac accttattaa aggtgagggc ggagtgggg aaaggaatta                                                  | ttaagcctta<br>ggggttctct<br>tgtagctttt<br>ccctttgctt<br>aaaagaaaaa<br>aggtgcccct<br>agcaaatgaa<br>caaacctct              | actcgccatt<br>gcccccacc<br>tgtccgcatg<br>tttctatggg<br>acagtctgtt<br>cagacactt<br>aatcaaatgt<br>gctctttgta                          | 1957<br>60<br>120<br>180<br>240<br>300<br>360<br>420<br>480       |
| gtgagacctt  <210> 92 <211> 573 <212> DNA <213> Homo  <400> 92 ggcacgagtg gatttaccag ccggccttt ttactcctg acctcaggc ggcttctag aggaaggtag gggggaaaa ttctctgtt                                                                                                               | sapiens  aatattaact tttaacgttt gtttgacttg taaatacgct caccatattt tttgcatct tttgcatct cactaaaggg gtgaagaata                           | gtgttatttt cctggggttt cgtcgtctga gttatacata agaactagtt ggaggcaggg atttaaaaaa ggcaagaaac aactgtacct                       | tatacacttt ctttgcccat tactcagtat ctgttaacaa accttataa aggtgaggc ggagtgggg aaaggaatta gcacccggaa                                         | ttaagcctta<br>ggggttctct<br>tgtagctttt<br>ccctttgctt<br>aaaagaaaaa<br>aggtgcccct<br>agcaaatgaa<br>caaacctct              | actcgccatt<br>gcccccacc<br>tgtccgcatg<br>ttctatggg<br>acagtctgtt<br>cagacacttc<br>aatcaaatgt                                        | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540        |
| gtgagacctt  <210> 92 <211> 573 <212> DNA <213> Homo  <400> 92 ggcacgagtg gatttaccag ccggccttt ttactcctg acctcaggc ggcttctag aggaaggtag gggggaaaa ttctctgtt                                                                                                               | sapiens  aatattaact tttaacgttt gtttgacttg taaatacgct caccatattt tttgcatct tttgcatct cactaaaggg                                      | gtgttatttt cctggggttt cgtcgtctga gttatacata agaactagtt ggaggcaggg atttaaaaaa ggcaagaaac aactgtacct                       | tatacacttt ctttgcccat tactcagtat ctgttaacaa accttataa aggtgaggc ggagtgggg aaaggaatta gcacccggaa                                         | ttaagcctta<br>ggggttctct<br>tgtagctttt<br>ccctttgctt<br>aaaagaaaaa<br>aggtgcccct<br>agcaaatgaa<br>caaacctct              | actcgccatt<br>gcccccacc<br>tgtccgcatg<br>tttctatggg<br>acagtctgtt<br>cagacactt<br>aatcaaatgt<br>gctctttgta                          | 1957<br>60<br>120<br>180<br>240<br>300<br>360<br>420<br>480       |
| gtgagacctt  <210> 92 <211> 573 <212> DNA <213> Homo  <400> 92 ggcacgagtg gatttaccag ccggccttt ttactcctg acctcaggc ggcttctag aggaaggtag gggggaaaa ttctctgtt                                                                                                               | sapiens  aatattaact tttaacgttt gtttgacttg taaatacgct caccatattt tttgcatct tttgcatct cactaaaggg gtgaagaata                           | gtgttatttt cctggggttt cgtcgtctga gttatacata agaactagtt ggaggcaggg atttaaaaaa ggcaagaaac aactgtacct                       | tatacacttt ctttgcccat tactcagtat ctgttaacaa accttataa aggtgaggc ggagtgggg aaaggaatta gcacccggaa                                         | ttaagcctta<br>ggggttctct<br>tgtagctttt<br>ccctttgctt<br>aaaagaaaaa<br>aggtgcccct<br>agcaaatgaa<br>caaacctct              | actcgccatt<br>gcccccacc<br>tgtccgcatg<br>tttctatggg<br>acagtctgtt<br>cagacactt<br>aatcaaatgt<br>gctctttgta                          | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540        |
| gtgagacctt  <210> 92  <211> 573  <212> DNA  <213> Homo  <400> 92 ggcacgagtg gatttaccag ccggccttt ttactccttg acctccaggc ggcttctcag aggaaggtag ggggggaaaa tttcttgtt aaaaaaaaaa                                                                                             | sapiens  aatattaact tttaacgttt gtttgacttg taaatacgct caccatattt tttgcatct tttgcatct cactaaaggg gtgaagaata                           | gtgttatttt cctggggttt cgtcgtctga gttatacata agaactagtt ggaggcaggg atttaaaaaa ggcaagaaac aactgtacct                       | tatacacttt ctttgcccat tactcagtat ctgttaacaa accttataa aggtgaggc ggagtgggg aaaggaatta gcacccggaa                                         | ttaagcctta<br>ggggttctct<br>tgtagctttt<br>ccctttgctt<br>aaaagaaaaa<br>aggtgcccct<br>agcaaatgaa<br>caaacctct              | actcgccatt<br>gcccccacc<br>tgtccgcatg<br>tttctatggg<br>acagtctgtt<br>cagacactt<br>aatcaaatgt<br>gctctttgta                          | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540        |
| gtgagacct  <210> 92 <211> 573 <212> DNA <213> Homo  <400> 92 ggcacgagtg gattaccag ccggccttt ttactcctgt acctccaggc ggcttctcag aggaaggtag ggggggaaaa tttctctgtt aaaaaaaaaa                                                                                                 | sapiens  aatattaact tttaacgttt gtttgacttg taaatacgct caccatattt tttgcatct tttgcatct cactaaaggg gtgaagaata                           | gtgttatttt cctggggttt cgtcgtctga gttatacata agaactagtt ggaggcaggg atttaaaaaa ggcaagaaac aactgtacct                       | tatacacttt ctttgcccat tactcagtat ctgttaacaa accttataa aggtgaggc ggagtgggg aaaggaatta gcacccggaa                                         | ttaagcctta<br>ggggttctct<br>tgtagctttt<br>ccctttgctt<br>aaaagaaaaa<br>aggtgcccct<br>agcaaatgaa<br>caaacctct              | actcgccatt<br>gcccccacc<br>tgtccgcatg<br>tttctatggg<br>acagtctgtt<br>cagacactt<br>aatcaaatgt<br>gctctttgta                          | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540        |
| gtgagacct  <210> 92 <211> 573 <212> DNA <213> Homo  <400> 92 ggcacgagtg gatttaccag ccggccttt ttactcctgt tactccagg ggcttccag aggaaggtag gggggaaaa ttctctgtt aaaaaaaaaa                                                                                                    | sapiens  aatattaact tttaacgttt gtttgacttg taaatacgct caccatattt tttgcatct tttgcatct cactaaaggg gtgaagaata                           | gtgttatttt cctggggttt cgtcgtctga gttatacata agaactagtt ggaggcaggg atttaaaaaa ggcaagaaac aactgtacct                       | tatacacttt ctttgcccat tactcagtat ctgttaacaa accttataa aggtgaggc ggagtgggg aaaggaatta gcacccggaa                                         | ttaagcctta<br>ggggttctct<br>tgtagctttt<br>ccctttgctt<br>aaaagaaaaa<br>aggtgcccct<br>agcaaatgaa<br>caaacctct              | actcgccatt<br>gcccccacc<br>tgtccgcatg<br>tttctatggg<br>acagtctgtt<br>cagacactt<br>aatcaaatgt<br>gctctttgta                          | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540        |
| gtgagacct  <210> 92 <211> 573 <212> DNA <213> Homo  <400> 92 ggcacgagtg gatttaccag ccggccttt ttactcctgt tactccaggc ggcttctcag aggaaggtag gggggaaaa ttctctgtt aaaaaaaaaa                                                                                                  | sapiens  aatattaact tttaacgttt gtttgacttg taatacgct caccatatt tctgcatct tttgcatct cactaaaggg gtgaagaata aaaaaaaaaa                  | gtgttatttt cctggggttt cgtcgtctga gttatacata agaactagtt ggaggcaggg atttaaaaaa ggcaagaaac aactgtacct                       | tatacacttt ctttgcccat tactcagtat ctgttaacaa accttataa aggtgaggc ggagtgggg aaaggaatta gcacccggaa                                         | ttaagcctta<br>ggggttctct<br>tgtagctttt<br>ccctttgctt<br>aaaagaaaaa<br>aggtgcccct<br>agcaaatgaa<br>caaacctct              | actcgccatt<br>gcccccacc<br>tgtccgcatg<br>tttctatggg<br>acagtctgtt<br>cagacactt<br>aatcaaatgt<br>gctctttgta                          | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540        |
| gtgagacct  <210> 92 <211> 573 <212> DNA <213> Homo  <400> 92 ggcacgagtg gatttaccag ccggccttt ttactcctgt tactccagg ggcttccag aggaaggtag gggggaaaa ttctctgtt aaaaaaaaaa                                                                                                    | sapiens  aatattaact tttaacgttt gtttgacttg taatacgct caccatatt tctgcatct tttgcatct cactaaaggg gtgaagaata aaaaaaaaaa                  | gtgttatttt cctggggttt cgtcgtctga gttatacata agaactagtt ggaggcaggg atttaaaaaa ggcaagaaac aactgtacct                       | tatacacttt ctttgcccat tactcagtat ctgttaacaa accttataa aggtgaggc ggagtgggg aaaggaatta gcacccggaa                                         | ttaagcctta<br>ggggttctct<br>tgtagctttt<br>ccctttgctt<br>aaaagaaaaa<br>aggtgcccct<br>agcaaatgaa<br>caaacctct              | actcgccatt<br>gcccccacc<br>tgtccgcatg<br>tttctatggg<br>acagtctgtt<br>cagacactt<br>aatcaaatgt<br>gctctttgta                          | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540        |
| gtgagacct  <210> 92 <211> 573 <212> DNA <213> Homo  <400> 92 ggcacgagtg gatttaccag ccggccttt ttactcctg acctccaggc ggcttctcag aggaaggtag ggggggaaaa ttctctgt aaaaaaaaa  <210> 93 <211> 1212 <212> DNA <213> Homo                                                          | sapiens  aatattaact tttaacgttt gtttgacttg taatacgct caccatatt tctgcatct tttgcatct cactaaaggg gtgaagaata aaaaaaaaaa                  | gtgttatttt cctggggttt cgtcgtctga gttatacata agaactagtt ggaggcaggg atttaaaaaa ggcaagaaac aactgtacct                       | tatacacttt ctttgcccat tactcagtat ctgttaacaa accttataa aggtgaggc ggagtgggg aaaggaatta gcacccggaa                                         | ttaagcctta<br>ggggttctct<br>tgtagctttt<br>ccctttgctt<br>aaaagaaaaa<br>aggtgcccct<br>agcaaatgaa<br>caaacctct              | actcgccatt<br>gcccccacc<br>tgtccgcatg<br>tttctatggg<br>acagtctgtt<br>cagacactt<br>aatcaaatgt<br>gctctttgta                          | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540        |
| gtgagacct  <210> 92 <211> 573 <212> DNA <213> Homo  <400> 92 ggcacgagtg gatttaccag ccggccttt ttactcctg acctccaggc ggctctctctag aggaaggtag gggggaaaa ttctctgt aaaaaaaaa  <210> 93 <211> 1212 <212> DNA <213> Homo  <400> 93                                               | sapiens  aatattaact tttaacgttt gtttgacttg taaatacgct caccatattt tctgcatctt ttttgcatctt cactaaaggg gtgaagaata aaaaaaaaaa             | gtgttatttt cctggggttt cgtcgtctga gttatacata agaactagtt ggaggcaggt attaaaaaa ggcaagaaac aactgtacct aaaaaaaaaa             | tatacacttt ctttgcccat tactcagtat ctgttaacac accttattaa aggtgaggg ggagtgaggg aaaggaatta gcacccggaa aaa                                   | ttaagcctta<br>ggggttctct<br>tgtagctttt<br>ccctttgctt<br>aaaagaaaca<br>aggtgcccct<br>aggtgcccct<br>aaaccctct<br>aaaaaaaaa | actcgccatt<br>gcccccacc<br>tgtccgcatg<br>tttctatggg<br>acagtctgtt<br>cagacacttc<br>aatcaaattg<br>gctctttgta<br>aaaaaaaaa            | 60<br>120<br>180<br>240<br>300<br>420<br>480<br>540<br>573        |
| gtgagacct  <210> 92 <211> 573 <212> DNA <213> Homo  <400> 92 ggcacgagtg gattaccag ccggccttt ttactcctg acctccaggc ggcttctcag aggaaggtag gggggaaaa ttctctgtt aaaaaaaaa  <210> 93 <211> 1212 <212> DNA <213> Homo  <400> 93 gccctccca                                       | sapiens  aatattaact tttaacgtt gttagactg taatacgct caccatatt tctgcatct tttgcatct cactaaaggg gtgaagaata aaaaaaaaa  sapiens gctagaatga | gtgttatttt cctggggttt cctggggttt cgtcgtctga gttatacata agaactagtt ggaggcaggg atttaaaaaa ggcaagaaac aactgtacct aaaaaaaaaa | tatacacttt ctttgcccat tactcagtat ctgttaacac accttattaa aggtgagggc gggagtgggg aaaggaatta gcacccggaa aaa                                  | ttaagcctta ggggttctct tgtagctttt ccctttgctt aaaagaaaaa aggtgccct agcaaatgaa caaacctct aaaaaaaaaa                         | actegecatt<br>gececeaee<br>tyteegeatg<br>tttetatggg<br>acagtetgtt<br>cagacaette<br>aatcaaatgt<br>getetttgta<br>aaaaaaaaaa           | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540        |
| gtgagacct  <210> 92 <211> 573 <212> DNA <213> Homo  <400> 92 ggcacgagtg gatttaccag ccggccttt ttactcctgt tactccaggc ggcttctcag aggaaggtag gggggaaaa ttctctgtt aaaaaaaaaa                                                                                                  | sapiens  aatattaact tttaacgttt gtttgactgt taatacgtt tctgcatctt tctgcatct tttgcatct cactaaagg gtgaagaata aaaaaaaaaa                  | gtgttatttt cctggggttt cgtcgtctga gttatacata agaactagtt ggaggcaggg atttaaaaa ggcaagaaac aactgtacct aaaaaaaaaa             | tatacacttt ctttgcccat tactcagtat tctgttaacac accttattaa aggtgagggc gggagtgggg aaaggaatta gcacccggaa aaa aggcagggac ccatcagtaa           | ttaagcctta ggggttctct tgtagcttt ccctttgctt aaagaaaaa aggtgccct agcaaatgaa caaccctct aaaaaaaaaa                           | actegecatt gececeaece tgteegeatg ttettatggg acagtetgtt cagacaette aatcaaatgt getetttgta aaaaaaaaaa tatetetgaa catgtatgga            | 60<br>120<br>180<br>240<br>300<br>420<br>420<br>480<br>540<br>573 |
| gtgagacct  <210> 92 <211> 573 <212> DNA <213> Homo  <400> 92 ggcacgagtg gatttaccag ccggccttt ttactcctctg acctccaggc ggcttctcag aggaaggtag gggggaaaa ttctctgtt aaaaaaaaaa                                                                                                 | sapiens  aatattaact tttaacgttt gtttgactgt taatacgct caccatatt tctgcatct tttgcatct cactaaaggg gtgaagaata aaaaaaaaaa                  | gtgttatttt cctggggttt cgtcgtctga gttatacata agaactagtt ggaggcaggg atttaaaaaa ggcaagaaac aactgtacct aaaaaaaaaa            | tatacacttt ctttgcccat tactcagtat tactcagtat accttattaa aggtgagggc gggagtgggg aaaggaatta gcacccggaa aaa aggcagggac ccatcagtaa ttgttgctaa | ttaagcctta ggggttctct tgtagctttt ccctttgctt aaagaaaaa aggtgccct agcaaatgaa caaacctct aaaaaaaaaa                          | actegecatt gececeaece tgteegeatg ttetatggg acagtetgtt cagacaette aatcaaatgt getetttgta aaaaaaaaaa  tatetetgaa catgtatgga aagtatgtag | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>573 |
| gtgagacct  <210> 92 <211> 573 <212> DNA <213> Homo  <400> 92 ggcacgagtg gatttaccag ccggccttt ttactcctctg acctccaggc ggcttctcag aggaaggtag ggggggaaaa ttctctgtt aaaaaaaaa  <210> 93 <211> 1212 <212> DNA <213> Homo  <400> 93 gccctcccca tctctaggac taagggattt ataccagcca | sapiens  aatattaact tttaacgttt gtttgactgt taatacgct caccatatt tctgcatct tttgcatct cactaaaggg gtgaagaata aaaaaaaaaa                  | gtgttatttt cctggggttt cgtcgtctga gttatacata agaactagtt ggaggcaggg atttaaaaaa ggcaagaaac aactgtacct aaaaaaaaaa            | tatacacttt ctttgcccat tactcagtat ctgttaacaa aggtgagggc gggagtgggg aaaggaatta gcacccggaa aaa aggcagggac ccatcagtaa ttgttgctaa cgccctattg | ttaagcctta ggggttctct tgtagctttt cactagaaaaa aggtgccct agcaaatgaa caaacctct aaaaaaaaaa                                   | actcgccatt gcccccacc tgtccgcatg ttctatggg acagtctgtt cagacacttc aatcaaatgt gctctttgta aaaaaaaaaa                                    | 60<br>120<br>180<br>240<br>360<br>420<br>480<br>540<br>573        |

```
360
                                                                   420
cttcttctct cttcctacct ctgtctcttt ttctttcctt cccagtctcc ctcctctttc
ttttttcact tgtaggcttc tgttaattaa tcaatatggt acttattaag cactgagtca
                                                                   480
aatgtctaac actgtactgt atcctatgag aaatgaaata gaagcagatt gaagacatac
                                                                   540
cattacttga ggaatttaat attttattag coccttotto toaatggoot ttgtgotott
                                                                   600
ctggttctgg ttatctgtgt tcttttctgg ccttctgcct tgaccatttc ttttggcccc
                                                                   660
                                                                   720
tgccttggaa attagtacat aatttaccct cattttggct tcacatgatc cagctacagc
aagacccaaa taagaaaaga tgttacagcg acattgatga agttggtcta acacagaaac
                                                                   780
tgaaagagtg agagagacag aagaaagaag catgaagtag ggaatgagga gtagagaatg
                                                                   840
tcaccaacgg ggaattacat gtgaccaaaa aatcaaaaga ttatgactgg gtacatatga
                                                                   900
aaaataggta caggccaggt gtagtggctc acacctgtaa tcccagcact tggggaagcc
                                                                   960
gargtgggtg gattgcttga gcccaggagt ttgagaccag cctgggcaac atggtgaaac
                                                                 1020
cccatctcta caaaaaatmc aaaaattagc csggcatggt ggcacacaac tgtagtctca
                                                                 1080
gctactcagg aagctgaggt gggaagayca ttgagcccag raggcaragg ttgcagtgag
                                                                 1140
ctgtgatcct gccactgsac tccagcctgg gtgacagggc aagaccctgt ytmaaaaaaa
                                                                 1200
                                                                 1212
aaaaaaaaa aa
<210> 94
<211> 1144
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (849)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (865)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (1087)
<223> n equals a,t,g, or c
<400> 94
aattcggcac gagggacagt cagctaacta ggcaagtcac aatcttatat agcataatca
                                                                   60
tggaagtaac actccatcat ctttgctgtg ttctattggt tagaagcaag tcactaggct
                                                                  120
agcccatact actgggagag gattacacaa gaacatgtgg gtagaaatgg gaataacttc
                                                                  180
agctgtccaa caatcttaca ggtatatcct tcatcaatca ttagctataa gtaatattgg
                                                                   240
gtttccatta gtcaaagatc tgtgtgtcag caagccagga cttcaatatt ttttaaagat
                                                                  300
360
gctttgtgtt gtgtcttggt tttcctctct atgactttgc ttgttaycag cttagaaaaa
                                                                   420
actaacgcag gtggggtgat agcatggggc tgtatctcag tctctgtgca gacacaaact
                                                                   480
ttttcctctc ctaccagtta ccaaacattg tttattgcct gtaagctctg gaatcccaga
                                                                  540
aaactttagt tttaatcttt atcatcatca ttatcacata atttacatcc tagtttagat
                                                                  600
                                                                  660
ttggagcttg ttttagatta atackttaca gagtagtttt acatgaataa gcttaaacat
tttcccccga ttttagttct ctggcttacc agaaaaatga aaaacaacaa caacaaaatc
                                                                  720
cccaaaactg agaacccagg aatgatagac aacaaacttg tgttttaatt ttcatgattc
                                                                  780
tagttgttca acctgttttt ttgacactct gtatctgcat tcatttattc actaaaaaga
                                                                  840
tgcttagtna attgtaagta tcatnttagg cactgtgaat tcattgataa gatattctct
                                                                  900
ctctctctct ttttttcttt tgagatggag tctctgtctg ttgcccaggc tggagtacag
                                                                  960
tggcatgatc tcgtcggctc actgcagcct ctgcctcccg ggttcaatcc attctcctgc
                                                                 1020
ctcagctact ccagcggctg aggcagaaga attgcttgaa cctgggcagc ggaggttgca
                                                                 1080
1140
                                                                 1144
cgag
```

<sup>&</sup>lt;210> 95 <211> 1274

<sup>/ &</sup>lt;212> DNA

```
<213> Homo sapiens
<220>
<221> SITE
<222> (722)
<223> n equals a,t,g, or c
<400> 95
                                                                       60
agctgagtgt gcgagcgcca ggggttccag ctgcacgtcc caggctctcc agcgcgcggc
                                                                      120
aggccggggc gggacgagga gagctgcggg gacaacgcct gtggctgggt ccggagtgcg
ggtgcggcgc gggacaagcg ggcagcatgc tcagggcggt cgggagccta ctgcgccttg
                                                                      180
geogeggget aacagteege tgeggeeeeg gggegeetet egaggeeaeg egaeggeeeg
                                                                      240
caccggctct tccgccccgg ggtctcccct gctactccag cggcggggcc cccagcaatt
                                                                      300
ctgggcccca aggtcacggg gagattcacc gagtccccac gcagcgcagg ccttcgcagt
                                                                      360
                                                                      420
tegacaagaa aateetgetg tggacaggge gtttcaaate gatggaggag ateeegeete
ggatcccgcc agaaatgata gacaccgcaa gaaacaaagc tcgagtgaaa gcttgttaca
                                                                      480
                                                                      540
taatgattgg actcacaatt atcgcctgct ttgctgtgat agtgtcagcc aaaagggctg
                                                                      600
tagaacgaca tgaatcctta acaagttgga acttggcaaa gaaagctaag tgscgtgaag
aagctgcatt ggctgcacag gctaaagcta atgatattct aagtgacaaa gtgttcacct
                                                                      660
gaataccatc cctgtcatca gcaacagtag aagatgggaa aaatagaata tttaccaaaa
                                                                       720
tntctgccat ggttttattt tggtaacaag aagcacaatg tcttttttat ttttatttt
                                                                      780
tagtaaactt ttactgaagt ataccatgca ttcaaaaaagt ggacaaaact gtatacagtc
                                                                      840
                                                                      900
tgatagatat ttatgtcgtg aacacctgtg taaccactgc caaagtgaag atgtagaata
ttggcaacac ttcacagcct cattcctgcc ttttctcagc cattacctcc caaacatagc
                                                                      960
agtttttctg agtttcatca cctttgattc attttgcctg tttttgaact ttatataaat
                                                                      1020
ggatttatac attatgcact tgtgtgtgtg gattatttac ctgacagtta taaggttaat
                                                                      1080
ccacaaattg tgtgtaccat tagttcatcc attgtcattg ctgtattctg ttgtataaac
                                                                      1140
                                                                     1200
ataccacaat ttattttgat atttggcaca gtttctggcc actacatata atgctaaaat
1260
                                                                      1274
aaaaaaaact cgag
<210> 96
<211> 1780
<212> DNA
<213> Homo sapiens
<400> 96
tatttgggat tatactgaac ctatttgtcc aataacctga gttttcaaat aattttagtt
                                                                        60
ctataagtac tataattata taaatattaa tgaattcaga ttagctgaaa ggaaaaaaag
                                                                      120
tagaagcctg actacttggt gctaactact aaagattttg gcagaatcaa tgttggattt
                                                                       180
ggctttcctg tecettecce atgccagece eccagagtgt tetgcettgt getgeetece
                                                                       240
                                                                       300
ttcacckgga gtgccacacc cctctctctg ccagttcagc tcttcattct tcaaggcctg
accttgtctg accettgtgc ctctaaaccc gtggccccac ctctcttggg cacgagctat
                                                                      360
gtcaggtgat gtttgtgttt ttggttatgc ccatctccat agccagacca agcactctgg
                                                                       420
aagccagggt tgggtgctta tttatctgtt tgccatgcag aaaatatctt gcacaaaatt
                                                                       480
acctctgtta aggaatctga agctgaattt agtttggctg agtcagggtt gggttttttt
                                                                       540
                                                                       600
taaggggctg tggggtgaaa tgttgactgg aagccaccca caaacacaca cctgctggtt
                                                                       660
aggaaccegg ctgtgggtgg ttctgagctg tttggcttca ttgacagttt ctgattgccc
tgagcaccag gtctcatctt gcatctcatc ctggcctgga gaacattcag tttccttcca
                                                                       720
                                                                       780
accettecea cetttecece actecettgg aggaactgaa gttggggttg aggagageca
gatggctgga gtgggtattt gaaggtettt etgteacetg tteagtgtgg tetgeeceae
                                                                       840
ccctgctgac caagactgac tgaaatgtaa aataatacag accatctcaa ctcagaaagc
                                                                       900
tggcacattt ttgaaagccc aagtgtgggt aagtgcgtgg aacaacgata attcacactg
                                                                       960
ctttatgagt agaaattgtg agaaatattg tgccaggcaa tttgcaaaat cttggaaggt
                                                                      1020
tgtgtgcact taaccaccca gcaactactc ctggatgcat cctagagaag tgccatgtga
                                                                      1080
acagagaatg attttaagac ttcactgaag tattgtttag gtagcaagat tgggaaaagc
                                                                      1140
ctgcatttca tcagcagaag aatggataaa taaatgagtt gtttttggtc cttggaaagt
                                                                      1200
gaatatgaaa gagttacgtc tcaacacaga tagatgaaaa attatgctga gaaagttggt
                                                                      1260
gaagctacat acaaggtacc cttagtgtaa agttaagcat actgtgtacc tgtgggcacg
                                                                      1320
ttacttcaac ttgtttttca ctttttctgt aaaatgggat agtagtggca atctcacagg
                                                                      1380
gtgattgtgg gtgggggggt ggtcaatgaa gtaatgcatg taaaatgctt agaatagtgt
                                                                      1440
                                                                      1500
ctagcatgta agccttgtgg acatatagaa agtgttattg ttttgcacag taatctattt
tctgtggatt caaataatat gaaatgagta taaaatcatg tattggaacg atgtgtgcaa
                                                                      1560
```



|             |            |             |                  |              |            | -          |
|-------------|------------|-------------|------------------|--------------|------------|------------|
|             |            |             |                  | - taaaaaaaa  | tacatorocc | 1620       |
| gtcaccattc  | tgccttccta | aggcaggaga  | cctgatggat       | ccgggggggg   | cacacggggc |            |
| cttcagttgt  | gttttctttg | tttttttcta  | aaaattgatg       | cagaggcatc   | acaatgttaa | 1680       |
| gattttaaca  | gggtagtgtg | gtgggtactt  | tttaactgtt       | tgcttaaagt   | gtttcaaagt | 1740       |
| gattttaata  | 9990090909 | 505550000   |                  | •            | _          | 1780       |
| aaaaatattt  | cttaaaaaaa | aaaaaaaaa   | aaaaaaaaa        | *            |            | . 1700     |
|             |            |             | •                |              |            |            |
|             |            |             |                  |              |            |            |
| .010- 07    |            |             |                  |              |            |            |
| <210> 97    |            |             |                  |              |            |            |
| <211> 2065  |            |             |                  |              |            |            |
| <212> DNA   |            |             |                  |              |            |            |
|             | annione    |             |                  |              |            |            |
| <213> Homo  | Saprens    |             |                  |              |            |            |
|             |            |             |                  |              |            |            |
| <400> 97    |            |             | ,                |              | •          |            |
| ggcacgagat  | taaaaggcct | ttcaaaagaa  | tgggtttgaa       | aaactcagta   | ccctttaata | 60         |
| ggcacgagac  | tettteettt | tttcatttaa  | tataacatat       | ctattataac   | tatotttctt | 120        |
| catgtacatt  | tettteettt | LLLCalllaa  | Lycaacucge       | Cogcogcado   |            | 180        |
| aaatattatt  | ttaaggttat | gtgttcttta  | attatggtca       | aacacaaccc   | ggccaccaaa |            |
| aatgaaataa  | tagtttaaaa | caagtagctg  | ttactaagtg       | tgctaaaaat   | actcatttta | 240        |
|             | tagttttctt | agtatattat  | tataaattot       | accetaaate   | aggtacaaat | 300        |
| taattaatti  | Lagittitt  | agtatattut  | cacaaaccgc       | ****         | *****      | 360        |
| gtacacatca  | aaatgcccat | attgtatcta  | tctgtagtcg       | tttaatgtga   | actacacycy |            |
| aattttttc   | aaaattttac | taaccagaat  | tctgttatag       | gcacctaacc   | acgcagcatg | 420        |
| 2000000000  | cacaacacaa | tettaaaata  | ccttctgaat       | catcagatta   | aattatqctt | 480        |
| aggaaaacgg  | Cacaacacaa |             |                  | aatatttatt   | catatataac | 540        |
| catatgtttt  | tgcttttact | gtatttett   | aaaaacccca       | aacciccacc   | catgigicat |            |
| tggattaatt  | tatctgataa | tgtgtctcac  | aagaatctgt       | tagatcgttt   | attetteagt | 600        |
| tatactttaa  | atggtggggt | ggaagtttca  | ggtgaacaat       | ggataacaaa   | aagcaagtta | 660        |
| cycaccega   | tgaagaggat | 222         | 2252022025       | accassasta   | aaaaaaata  | 720        |
| tggaagattg  | tgaagaggat | ggaaaaaccg  | aacacaagac       | accadaque og |            | 780        |
| tcccattttt  | aataactata | ttctattatt  | ttataaatgt       | gtaataaagg   | ggtccctctt |            |
| tattggttgt  | tatcccctta | atctttggtc  | tttttcagta       | attttaagtt   | ttctgggatt | 840        |
|             | tataaaactt | atatttagac  | trtatettee       | tatggagttt   | tcacacttct | 900        |
| ttttttggtt  | Lataaaaccc | gegeedagae  | ****             | teasttteas   | taatttaatt | 960        |
| atagcacata  | tcctagtatc | tagtcatttc  | tgttttaata       | Lyaatttag    | Laacccaacc | _          |
| ttaatctggt  | gacatattaa | tcgaaaataa  | ggagtaatgt       | atacctccac   | atgtcctttc | 1020       |
| ttttatctt   | ctcttaaatt | cacaatatcc  | agtaggagtg       | gttattcaat   | ttcttcgtgg | 1080       |
| CCCCCGCCCC  | caaatgaagt | tagagaagta  | tactaatccc       | agraactato   | actcatctag | 1140       |
| ttttaatcat  | caaatgaagt | cayayaayca  | Lactaatett       | agenacency   |            | 1200       |
| gcatgttaag  | accataaagt | aattcaggaa  | actattttcc       | tgatttttaa   | ataactttta |            |
| grattatata  | acatctatcc | ttctqtttta  | gacatgcatt       | tcacatatag   | ttgaattcta | 1260       |
| gegeeaegea  | taattcattt | tacataatac  | ttcagagtac       | togatetaga   | atcaggette | 1320       |
| gattctaaya  | Laatttattt | cygy caacac | -t-t-st-st-st-st |              | tatastatat | 1380       |
| ctgaatttaa  | actcaggctc | cccattaact  | gtgtgtctgt       | gageceagee   | tettatetyt |            |
| aaaatggggc  | aacagtggca | ctcatcttaa  | agggttggat       | aataaaataa   | tgcatgtaag | 1440       |
| gagataaga   | tagtgcctgg | cacagaatta  | ctoctcaaat       | attagctatc   | gtattaatat | 1500       |
| gccctaagca  | cacactgatg | tacasttact  | attascasaa       | ctcattcttt   | aagcattctc | 1560       |
| tgcacttttg  | cacactyaty | Lacallice   | grigaciagg       | CCCCCCCC     |            | 1620       |
| catgcttaaa  | ccagttccat | aatccctagg  | cctgtactcc       | agggattgag   | accgaaagga |            |
| tcatttatgc  | catgtttctc | taaaagcatc  | attgctggaa       | gacttttgat   | aagtctgatg | 1680       |
|             | tattctcagg | ccttttttat  | agagtttaga       | aatgaagtat   | ttgaatcaat | 1740       |
| tyttttaagt  | cactectagg |             | haababaaaa       | annagagata   | actaceaate | 1800       |
| ttagtatctc  | ctttactatg | FFECTCCETT  | caaceceage       | Caaccccca    | cccgcaggca |            |
| aacccagcat  | tcattaagag | ctgggttggg  | gtactctatt       | ctgtatgcat   | cataatagct | 1860       |
| taacattatt  | tagtagctgt | aacttacagg  | tttaatgcta       | gatgaggatg   | tctcaagccg | 1920       |
| Lancactact  | tgtgtaaaaa | taataaaaa   | atcatctcat       | tantannaat   | tttttacttq | 1980       |
| tgagtgtgct  | tgtgtaaaaa | tggtggtaat  | accaccicgs       | cygcaygaac   |            | 2040       |
| aattgttatt  | ttgggaaaat | gttaacagat  | ttcttctgga       | taaagaaaat   | aaaccggacg |            |
|             | aaaaaaaaa  |             |                  |              |            | 2065       |
| acgeacuauu  | uuuuuuu    |             |                  |              |            |            |
|             |            |             |                  |              |            |            |
|             |            |             |                  |              |            |            |
| <210> 98    |            |             |                  |              |            |            |
|             |            |             |                  |              |            |            |
| <211> 1154  |            |             |                  |              |            |            |
| <212> DNA   |            |             |                  |              |            |            |
| <213> Homo  | sapiens    |             |                  |              |            |            |
|             | •          |             |                  |              |            |            |
| 400. 00     |            |             |                  |              |            |            |
| <400> 98    |            |             |                  |              |            | <b>C</b> 0 |
| ggcacgaggt  | gccgtgtgtg | tgtgcgtgtg  | taagtgtgca       | tgtgcataca   | cgcgcacgcc | 60         |
| tatagataca  | cacatctgtg | tatatata    | catgtgtgtg       | ctgcatgtct   | gtggggaggt | 120        |
|             | agagcgtgtg | acadetadas  | tttgcactct       | tacatactac   | cccagagacc | 180        |
| greereegrg  | agagegegeg | acayetyyya  |                  |              | antananata | 240        |
| acagcctggg  | caggccctga | ccttctgtgc  | cccgtgcatc       | gageeggtet   | gergegggrg |            |
| cctataacca  | ccaatgggga | actcgggtga  | gctggcagga       | gggtgtgccc   | agagccctgg | 300        |
| ctactactec  | tgccactcag | cacagetggg  | ccaggctgtt       | gccccagagg   | gcgtcagacg | 360        |
| Legicigical |            |             | 22244240         | Capathatha   | dacactttcc | 420        |
| tgaactttgg  | gaacatcttt | actorgence  | aaaycyayca       | Caaactatta   | bbank      |            |
| ccaaaatcca  | tgtgtttggg | gcgtcttccg  | gccatgccac       | acatctgtgt   | ttgcctggct | 480        |
| atttctacec  | cgagttccgt | ccacageceg  | agtttctatt       | gttttaagtc   | ttgagccctg | 540        |
| goccocycac  | -3-2-6-3   |             |                  |              |            |            |

| ttggagaggg<br>ggggaggggc<br>gtcctgggag<br>ctgtgctgag<br>gcaggcaggg<br>tgcccagagc<br>aggtttggag<br>gggctgccga | cacttctcat gagtttctgg ttggcaggag tgggcggggc tcaaaggagct tggcagagtc aggctttggg gaggaagacc gggaaggcct agct                                          | aagggggttc<br>caggtctggt<br>agctgggctc<br>cggaagctgg<br>ggactgaagg<br>atctgcctga<br>gcctgcggga<br>agtgttgctg | cccatgtgtc<br>gagaaagccc<br>ggggtgttaa<br>tgtgggccgg<br>tgagacccag<br>agcctgactg<br>aagggggctg<br>gagcctgtgg | tccagcgctt<br>tggccggggg<br>cagggtcctg<br>gtggggtgg<br>gcctgggcaa<br>tggcctgggt<br>tggagagaga<br>tggagagaga  | cctgcagtct<br>tggaggctca<br>cggggggact<br>gaaggtgggt<br>ggatgcggtg<br>ggggtaagga<br>ggctgaccga<br>cttggtgggt | 600<br>660<br>720<br>780<br>840<br>900<br>960<br>1020<br>1080<br>1140<br>1154 |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| <210> 99<br><211> 615<br><212> DNA<br><213> Homo                                                             | sapiens                                                                                                                                           |                                                                                                              |                                                                                                              |                                                                                                              |                                                                                                              |                                                                               |
| tgcctggctg<br>tggcggtgac<br>gctccatgcc<br>gcagtgtagg<br>ctcgcacaag<br>ccccgctggc<br>acgagtaygc<br>cgcrcggggc | agcagcgtgg<br>ctgggtgcta<br>agagtgtgca<br>aggaggagga<br>ktctacccat<br>gttcgaggcc<br>ccagargccc<br>atgcggggay<br>cgctccccac<br>agtgcgtttg<br>aattc | gagcttgtgg<br>gcacgaccag<br>ggagacacct<br>gtaacagatg<br>gagctcagac<br>ttcttcgagg<br>gaggacctgg<br>gtgccaccac | accactggct agtggctttt agagcctgcg aggaaaccaa ctgtggagca tgccctcacc agccgctgtg cgggccaccg                      | tgcctcactg<br>ctggctttgc<br>acaccatggc<br>ggagcacagt<br>gaagctgagt<br>sctgggcgcc<br>acgccgcccg<br>cggctcgtgt | tggttggtgg<br>ccgcccagct<br>tcgsctcgct<br>tatttactaa<br>gcgctgcagt<br>gtggacctgt<br>cgagaaacgc<br>aaaaactgtt | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>600<br>615      |
| <210> 100<br><211> 1624<br><212> DNA<br><213> Homo<br><220>                                                  | sapiens                                                                                                                                           |                                                                                                              |                                                                                                              |                                                                                                              |                                                                                                              |                                                                               |
| <221> SITE<br><222> (117)<br><223> n equ                                                                     | )<br>uals a,t,g,                                                                                                                                  | or c                                                                                                         |                                                                                                              |                                                                                                              |                                                                                                              |                                                                               |
| <400> 100                                                                                                    |                                                                                                                                                   |                                                                                                              |                                                                                                              |                                                                                                              |                                                                                                              |                                                                               |
| gttgtttct<br>tgacatattc<br>atgtgccagt<br>ttgtttggtc<br>acttttccaa<br>accttttgt<br>aaattttatt<br>ctaatatatt   | gaatagatcc<br>cacatacatt<br>cctgcatttc<br>atttctcaaa<br>ccatcccagg<br>gtttactaac<br>ccaatcattt<br>atataaaaat<br>atttaatatg<br>ttttgttatc          | taaagtcagg<br>catgtctgcc<br>tggtttacat<br>gattctgaat<br>aagtttgcca<br>aaamcaaatt<br>aagttttaat<br>ataaaactta | gcacatgcgt<br>tgtcctttag<br>cagaatcacc<br>caacaggttt<br>agttcccca<br>tttatataat<br>atatatata<br>tattaaatga   | cactgcttat<br>ataaacagta<br>tggaggactt<br>gcgatgggtc<br>gtttattacc<br>aagttttatt<br>taaaaagttt<br>aattttatgc | ttttcgnact<br>aaagtttccc<br>ttaagctaga<br>cagatagttt<br>attagaccat<br>tgtatgtaat<br>taataaatac<br>tgtyctcttg | 120<br>180<br>240<br>300<br>360<br>420<br>480<br>540                          |
| tgcctatttt aagagatttt tttaattata ttgccatgac                                                                  | ccacagtcaa<br>tttttaattc<br>aatgcatgac<br>aaaaaaaaaa                                                                                              | agcaattaca<br>actaaggtag<br>tggggagggg<br>agaagtagga                                                         | agagaattgt<br>agataaggag<br>gtattgtttt<br>aaatcccatg                                                         | tacaattacc<br>aatgtattaa<br>tgaataaaat<br>gaaatttatg                                                         | cagttatgtc<br>aataggatat<br>atgaggttat<br>.ttccttctaa                                                        | 660<br>720<br>780<br>840                                                      |
| cttttaaaac<br>tttatatccc<br>gtacggtggt<br>gaattttgtg<br>ttacaccata                                           | tacctaaaaa<br>cttaaatagg<br>gtgttggagc<br>agacagttgt<br>gaaatgctat                                                                                | atataattga<br>tacccatgaa<br>tggcttgtaa<br>caaattgttg<br>aagtgaagrc                                           | tttaaattat<br>gagattatga<br>tgtcttatga<br>ctagcttgaa<br>ctacctttcc                                           | atctcaatat<br>actacttgaa<br>gtgacaatcg<br>atctgcggca<br>cttaagagct                                           | tccccattct<br>ggtggagact<br>ttagtttgag<br>attggagtat<br>agttgttaaa                                           | 900<br>960<br>1020<br>1080<br>1140                                            |
| cctttaccag                                                                                                   | cataccactg<br>aagataaata                                                                                                                          | gaccttgtct                                                                                                   | aaaatttctt                                                                                                   | tgtgttccca                                                                                                   | gtgtcttgcc                                                                                                   | 1200<br>1260                                                                  |

| cttggacctt<br>tcagtttttg<br>gtgaataccc                                                                                                                                                                                                                                             | actaaatcac<br>aatcatttgc<br>tgtcggggag<br>actgggctaa<br>aacctattt<br>agaattaaaa                                                                                                                                                                                                                                                  | attttggaga<br>agggaaaaac<br>gtttcatatc<br>gaaaatagtg                                                                                                                                                                                                                                                         | aaatttttc<br>tatttgtctg<br>taaagcttgt<br>ttgtgtgaat                                                                                                                                                                                                                                                             | tgctttaaaa<br>tagttgcttt<br>cactaagaat<br>gctgtaagtg                                                                                                                                                                                                                                          | gtctgtaatt<br>ttgtgacaaa<br>tttcatttt<br>ttgtacatgt                                                                                                                                                                                                                                       | 1320<br>1380<br>1440<br>1500<br>1560<br>1620                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <210> 101<br><211> 1756<br><212> DNA<br><213> Homo                                                                                                                                                                                                                                 | sapiens                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                      |
| ttgaaggcag agagtgggca cctcagatta tctggcatgt ctgttcccac agtctgcgga ggcctgatgg cccccacaac ttcaactcct tgaaagatct atctgttc cacagatag gatgtttaa caagttctgg gaattgagcc ccatcctagc agtgtttgac gctataatat accaaaatat tctttttt taggggccat tatctcatct ggaaggagta tgtcagctt ttgttgac cagcttca | ttcctctcac aaaccatgtac cacagtatat aattccctga tggttgctcc agtggggctt caccagaact caagaggata aggagagact ctgttaagca ttcattcag tcactagtgca tacatgagtat tcctagctca cactattcct tagatgcctt caaggaggat ttctagttca ttctcttcct tagatgcctt caaggaggat atattaaaga aagttaggag tctcagatac tatatgagga ctgactgatg aagcaagtac aggaaacaaa tcaccaactc | tttggtttct gttgtggaat aatggaacag tttcaacctg gctatggcta gacctgggag gtactgctgg gcaataccca caagtttgac caattaagaa tccacaggtt actttgagtg caaagtagat ttttactgat aggtacctac tctttaaaag ctattctac cattgacact ttcttaaaag ctattctac actagatat ttttagtgt ttcagggcat ggagatggt acttgttct catgggtgt ataggaaagg aaaatacaag | tttgtatttc gacatcctga tcctaaccaa ctatttgaaa atgctgtact cgagtgagat cagaggtaag ggtccctcc tactttccca actattttgcg gagttagata atgcctgact atgatacaa atgcccgact agattccctg ctagatatca attgactttc ctcctctcc cttgaagct ttctcaattt gaaaatgtaa ccttactgt ttgtaaaggg agattgccaa agctgcccta ttggcatagg ggattgccaa agctgcccta | ccatagcacc gtgatccctc cacaggacag tggctccctt tgctgtatgt ctcaagttga ctgagactgg tcctcatgtt atggatttta ttccccactt attattacta agagataatg gtaaccagga ttttgaagt attttattgg ctagtcctgt tctttcttc tgatttcat tctctctctt tgatttcacatt actgaactat actgaactat actgaactat actgagcact gggggaatttc ctgtctttga | ttttactgtg cctggctggg gtattctcca caacatcttt gttccaggcg ccagtgatat caaaaatact ctcgaatact cttctaattg ttcaccaat tagaaggaat tcacttgtgg ccattccctt tgatatttcc cttccatgtc attcctgaca agagaaagat ttggtttttt gtctttatct ttcctcactt ttcttcacaa atagctttga cctggtaat aaaggtggt tagtcttct attcaggaga | 60<br>120<br>180<br>300<br>360<br>420<br>480<br>540<br>600<br>660<br>720<br>780<br>840<br>900<br>960<br>1020<br>1080<br>1140<br>1260<br>1320<br>1380<br>1440<br>1500<br>1560<br>1620 |
| agcaaactga<br>aaaaaaaaaa<br><210> 102<br><211> 1416<br><212> DNA<br><213> Homo                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                  | caaaaatcat                                                                                                                                                                                                                                                                                                   | cacagetatg                                                                                                                                                                                                                                                                                                      | gtgaaaccct                                                                                                                                                                                                                                                                                    | gtctctacaa                                                                                                                                                                                                                                                                                | 1740<br>1756                                                                                                                                                                         |
| <400> 102 tacatagtta ggctggcaat ataattcctt tttcttcaat ttttaatgtt acatgaaacc ttattatcca ccaatctgta tcactggaac gttttctta                                                                                                                                                             | ttcttttta ataaaacttc tgagaagcaa ttttttaaac gttaacatgc aacatctagg gcttaatcac aatctggttg tactttgcct actttgtgca aactgtcctc                                                                                                                                                                                                          | ctatgtacga<br>aagaacagta<br>acacaaaaag<br>atattattgc<br>gatggctgcc<br>agctcctcca<br>gcacaagttg<br>taatgcccat<br>tatagcgtgg                                                                                                                                                                                   | aaactcaaaa<br>caatgtttat<br>cttttctgta<br>atttatggat<br>ttctgagtgc<br>actgataact<br>gttttagcgt<br>gggctgtcag<br>gacctgccca                                                                                                                                                                                      | ataaccaaag<br>taacacgttt<br>cttagattgc<br>agtagtagat<br>tttacagatg<br>tcacatcatc<br>atttggaacc<br>ctcccaaggg<br>gaacaggtac                                                                                                                                                                    | tggcaagtga<br>cttcctgaat<br>tgtttgctgt<br>agtgtaatat<br>gcacgttctc<br>tgcagttatt<br>gtattttaaa<br>ctaagaccaa<br>tcaacaattt                                                                                                                                                                | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>600                                                                                                                    |

```
cccaaataca aacaaattcc attttaaatg gaatatatac actttagccc ccaaatgcag
                                                                       720
accagtgcac gtctgtgtag tttccgacta gtcacctggt aatagatcat tcctgtcatt
                                                                        780
cacaggetea gteccagete tattttteag tatettgaat caagttetet etectetaat
                                                                        840
                                                                        900
catggaagaa atagacccat aactagttat tttgggtaaa tgggagctat ttaaaaaatt
gatattttaa aagottaaat gaaatgttaa toaaatatga tttatgatta ttttotttot
                                                                        960
atgagtattc tttaattgtg gaaggcagtt tcttaggaag ggaacaaggg ttctctttta
                                                                       1020
caaccaaaag tttggtggtg gtttttttt cacaaaatta ttgagtttaa aaaaattgat
                                                                       1080
ggttgttttg catttcacct agtagcttat tcaatggttt gtttttctgc taaatgttaa
                                                                       1140
ccgtcaaaac ttgaattaat ttcttaattg ctatttctac ttcaggaatc ttaagaaaga
                                                                       1200
tggcttaacc cagtcagaag ggacaagcat aattttcttc catggctatt taagtaagta
                                                                      1260
                                                                       1320
ttaggagage tttcacgace atgetatage ttcctagtga egeagaattg gtaagaettg
tgtgatatat acatgtgtga cttgttacat atcatagcaa ctgtgtagtg ggaaggatgt
                                                                       1380
                                                                       1416
aaacagttcg atatcaagct tatcgatacc gtcgac
<210> 103
<211> 704
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (287)
<223> n equals a,t,g, or c
<400> 103
actgtgtctg tcttgtctct gatatttata tgccattatg tggcctctac tgccttagga
                                                                         60
                                                                        120
ttctaatgtt cccactaaga tcagctaact cagttccact acagtgttta ccaccatcat
ctctcgcaaa caaagacage cacttcagag ctcctaggaa atagtggtgc tcccatcatc
                                                                        180
attgcattcc ttaatsacat ggtgaaaatt aacaatggct aaggagcctt tgtgttttct
                                                                        240
                                                                        300
cctctacaat atgcccagga atttctggca ttttggccat cttattnata ggctattact
gaatttmagc ctmatcctmc caaattatta atgccaaaat attaactctt gattcttagg
                                                                        360
tgagtgcacc catgccaata aatttgccat gatctaacct taaatgtatt ctcatatatg
                                                                        420
ctgtccaagt ttctrctgat taaaatggca aggcctttag ttctcctaca taggttttct
                                                                        480
                                                                        540
ctctccagag aaggcctcaa ttctctgact aggctatgtt gggatataac tggaggcact
aataggtagt agggtaaatt ctttatttta ttatttttgg agacagggag ggtcttgctt
                                                                        600
tgttcagact ggagtgcagt ggtgtgatca tggctcattg caactttgaa ctcctgggcg
                                                                        660
                                                                        704
acagagcaag actccatctc aaaaaaaaaa aaaaaaaac tcga
<210> 104
<211> 1259
<212> DNA
<213> Homo sapiens
<400> 104
gacggggacc agagcacgtt cctggctgca gaggccacaa gtcacgctgt ctctgagagc
                                                                         60
cacggtggcc tcatctctct gccataaact tgccaattat cctgctgctg cctcattgac
                                                                        120
                                                                        180
ttcgcaccca ctcttccctc tggaacagag gacactctcg ccagctctcc ccatggcgga
tccttgtcta gggtcaggcc tctgctccaa agtcacccct ggggacacct tctctgacca
                                                                        240
gcccctcatt cctatggcct catgctgttt ttatttcttc ctaggactta gcacgtatcc
                                                                        300
                                                                        360
tagaaattaa cctgctggta tatcctgttt cttgtctgtc tctttccagt ggaatgtcac
catcgcccag gtggggattt ttgtgtgttt tgttcactgc tgtacamcca gcccccagca
                                                                        420
                                                                        480
cagogsotgt ccaggacaag tgcccagtaa acacttggga agcaatgcaa gcgtgcgtgc
atggataagt awttctttss cagatgaggg ggctaaggtt cagagaaggc cctgggggtc
                                                                        540
tcagactcat agcccagtgc tctttctgct gacacgccct ggtctctggg gcagtttgtt
                                                                        600
gcctgttcag caacaaagag ggtgtgcctc gttaggggtc ctgcgtgcga atcgcagtcc
                                                                        660
ctgcgtgtct tggctggagg tmacmaccct ytctgctcca gggcctgtaa ttaccactta
                                                                        720
ccctggtcaa tgggtccgag agattmccct tgtaggcagg gctgtggcca gggtgctcac
                                                                        780
ctggccccca gsaggtccca tgggcactgt ctggccgggc ttcatggctg acattccagg
                                                                        840
                                                                        900
tacatttcta gccctgggct gccatgggca gagggtgggg agagggtcgt gggcttcagg
ctggacaaac cagtcagcct tcccagctgg gccgcctgac cacccacttc ctgtggggct
                                                                        960
ccttgaggcc tggagggtgg agggggtctc tgttcaaccc ccacccatgc cctcttccct
                                                                       1020
tototocoto ggcaggtcyt cocagcagyt cotgcaaaca gaccoccgac ccaagcoott
                                                                       1080
```

| ggtcttccag aaat                                                                                                                                                                                                                 | etgecae caetgetget<br>sececte tecacaetea<br>sacagea aaaaaaaaa                                                                                                                                                                                               | gccagaggga                                                                                                                                                                                                                                                                                                                      | gctattaaaa                                                                                                                                                                                                                                                                                                                              | ctgtgggcca                                                                                                                                                                                                                                                                                                                       | 11 <b>4</b> 0<br>1200<br>1259                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <210> 105<br><211> 1804<br><212> DNA<br><213> Homo sapi                                                                                                                                                                         | Lens                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                        |
| aggggcttct tgggggctcatatt gcct tcctgttcat gcga agggtgct acgcactatt tatt                                                                                                                                                         | cgketce ttggaggagggggggggggggggggggggggggggggg                                                                                                                                                                                                              | gggtccgcg gtgcgctgcg agattttaag catcgagcg cctcttctgc tctacttttc ctacgacca gtgtaagctg tttagtgagc tgagacggag agaatagac accacgggg actagactc tgcaagttca aacagaatga kcttggctgc aaatggarg gctaggctat gcaacatgat gcaacatgat gcaacatgat gcaacatgat gcaacatgat tacaaaaac ttacaaaaac gtgggcatcc catcatttgt gcatcttt ttatgatgtt actcaggttt | gccatggcct ctcatcttct agccccatag atctgcttcc attatgttcc tatcacttct ccggtggtca gccttctatc tcttaacgca aggtgcattt ccggcaggca ccctgcgtgt tcctagagca tcctagagca ccctgagaga aatgagttcc cccagagtca ccaagactct ggctggargg tttcagctga caaggtgtta agagtcttta cccagacagc ggcagccagg actgtttagg ttgggtggg ttggggga taaattgggc acaatacacag atgaatggtg | tcactttcgc tcgccatctg accagtgcaa ttctgcgaaa ttgtgtgcgca ggaggtattt tgaatgccga tcctctcctt aagaccatgc ctgctggtga gtcagactga ctgtgtcacc cttctgagca gaattgctgc tgggagtgga aggccaagtc tgttgtggat ggaggggta gttctccacc aatgcaaatc tcagagctca aagtgagaca tcagacttga gttattctaa tcgacrttgag gttattgctgd acaatgattt gctatttata tttgtgtagc | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>660<br>720<br>780<br>840<br>900<br>960<br>1020<br>1080<br>1140<br>1200<br>1320<br>1380<br>1440<br>1500<br>1680<br>1740<br>1800<br>1804 |
| ttacaattga gact<br>catttagttc agaa<br>acctcaaggt tgaa<br>gaggacgaak agga<br>cgcaccttgc tggt<br>ggcagcattt cctg<br>gtccaggtgg tgcc<br>tttgggcggc ctcg<br>gaagagaagc ttcg<br>gttcctaca agcg<br>agtgggcctg gcca<br>cggcgatgga cgtc | ens  tccccc gggctgcagg gctaac ccctacett tccagt cagactctgg gcagaa gaataaggag gaggag acgccgtgag catcgc ggttgtcatg gaacga ctttgtcac tgagag cagcgtggtg gctagc cttgatgtac agcagc tgaagatgag aacag attctttggg tcctgt ggtatgttt caggtc ccggctcctg ggagct gcggaagcc | gaaggatca caacttttag aaggataagt cgggacgacc agcetcetga gaagtetacc cgaatgcagg ctgaatatcg aaatgccctg ccgtctggcc tgctggaaag                                                                                                                                                                                                         | acggattgtt gtggtacttt cgaaggggaa agatgtaccg atgctctcag ccaagggcga tgcaccctgg ttgcacatat aggccaagga tactctgtgg gggatgactg cgttgatggg                                                                                                                                                                                                     | gttgaaacaa<br>ctattttaac<br>ggcgcctgaa<br>agagcggctg<br>caccagcgga<br>ggtgcagcgc<br>agccgtggtg<br>tgacaagttt<br>caggatccca<br>ggatgacggy<br>gaggcaccgc                                                                                                                                                                           | 60<br>120<br>180<br>240<br>300<br>420<br>480<br>540<br>600<br>660<br>720<br>780<br>840                                                                                                 |

| gtcatcccct ggtggtggaa<br>ggctgctgtg aaacatttta<br>agcaaaactc c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gcaagacgac<br>atgcttcgac                                                                                                                                                                                                                                                                                                                                                                 | ggcccctgac<br>ttttttttc                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gtgcagccac<br>ttccagcctg                                                                                                                                                                                                                                                                    | acacagaaaa<br>gagcaacaag                                                                                                                                                                                                | 900<br>960<br>971                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <210> 107<br><211> 821<br><212> DNA<br><213> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                              |
| <pre>&lt;400&gt; 107 gttttgagtg tgtgaattac aactgttcca ctccactcca ctagtaataa ttggtttgcg atatagaatc agctgagctt tgtaattttt ttcccatagg agtttttggtg gaacaggtgg gattttggtg cacctgtcat tcatgtgtat gaactccacc cacaagtccc caaagtccat tcacacaact tattataatt taatttaagat aaccttatgc gggttagatt catggtatt agtaactttc cattggtatt aaaatgtgca caagaagaag</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | agtgagtcca<br>taatacaaag<br>tcagaaatgg<br>cttttaaaaa<br>tttttggtta<br>gtgagcagta<br>ttatggtag<br>tatatgatct<br>tataagtaag<br>aagtaattat<br>tgataagagc<br>ctatgtcttt                                                                                                                                                                                                                      | taggcagaat<br>ttctactggg<br>tgaaagggtg<br>atattcatga<br>catgataagt<br>tgaactctac<br>tcttatccct<br>ttatgccttt<br>ccagcattgg<br>tagtcatcat<br>taaatactat<br>taggcttaca                                                                                                                                                                                                                                                                                                       | tgagttatgg tagtgatgtt gtaatagtca ggttctttt tcttcagtgg tttatgtgta cacccactcc acatcttcac atatagttgt cccaaaaaaa catgagtgct gatacttttt                                                                                                                                                          | ggagagcggc<br>gtagaagttc<br>taacttagat<br>ttatttcaat<br>tgatttctga<br>gtcttatccc<br>tgcccttccc<br>agtttagctc<br>attccattat<br>agggagaaca<br>gtcagtctgt                                                                  | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>660<br>720<br>780<br>821                                                                                                       |
| <210> 108<br><211> 1779<br><212> DNA<br><213> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                              |
| <pre>&lt;400&gt; 108     aggaatacat     tgccagcagc     ggtgatggtg     gtggcaggtg     tacctacgta     cacatccgtc     cacatcgtc     ccacctga     cggccactga     gccacctga     cggctcaaat     tcctcaatga     ggtgcctga     ggtgccctga     agagcaataa     ggccccctga     gadcaagaccc     gtgattcact     gccaccgctc     tccacatga     ggtgcctga     tgccactgac     gtgattcact     gccaccgctc     tcaagaccc     gtgattcact     gccaccgctc     gccactgtctc     ggatgtatg     gacgataagg     gacttccca     ggatgtatg     gacgataagg     gactcccca     ctttccttg     ggatgtgatg     gacattgatg     gacattaagg     gcctcccca     ctttccttg     ggagagctgg     gatctgagt     aatctcct     atcacagga     gctctgagt     gacttgagt     gacttgagt     gacaccca     cttttcctt     ccgtaggg     gacttgagt     gacaccca     ttcaccttct     tcctttaccc     ttgcttgcat     tttattttat     tggggcacca     agccaagccca     agtcctcaagga     ctggtatgg     ggtcagtgt     ggtcagtgt     cactgacca     ctgggggaat     tttattttat     tggggcacca     agtcctcaagga     ctgggtatgg     ggtcagtgt     ctggtatgga     ctggactgaa     ctgcaccaagcccaagcccaagcccaagccaagcccaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagccacaagcacacacacaccac</pre> | g agetetetga<br>g tagtagtget<br>g gtagcaacca<br>ggeatgtga<br>e catcagagga<br>t tagcacctga<br>c taccgaggag<br>accteccagge<br>acccageett<br>t tgtggtetgg<br>c cetaggaga<br>g ccataggaca<br>cceteccag<br>gteetetgaa<br>tecetecca<br>gggetgeetg<br>atceteccat<br>gggetgeetg<br>atcetecat<br>gagattgtg<br>cttagcagga<br>ttttttaagga<br>ttttttaagga<br>ttttttaagga<br>ccagcattgg<br>gagacagcag | a tgtcacceto gattctageo gattctageo getcetgggo caccetggtg caagcaggtg caagaaagco ctgcgttcto gttcaccgtct gtactccgaa gcaccacg caggaggca caggaggcaa caggagttcaaa gcagctcta caggagttcaa caggagttcaa caggagttcaa caggagttcaa caggagttcaa caggagttcaa caggagttcaa cagggcago tcaagggcag ctgtggttct gagagttcaa cagggcagca cagggcagca ctgtggttct aaagggtgtc tcaagggcag tggccttcaag | attgagggtg ttggtcctag gcagccaag gagggagagag agcctggccag agatgaaact tgaacattac tgaacattac tgagccact tcaggcccct tcaattaccg tcaggaggag gtatggcgc tcaggtagaa gcatggtct gactgtcgc tcaggaggag agatgaaggag tcaggaggag tcaggaggag tcaggaggag agatgctccc tcaggaggag agatgctccc tcagcatggc cagaccctct | g tgggtaatga g cttggctctc cagcaggcga g gcaaccccga gcaaccccga catcactgtg ggataccgtg cgacaactgt cagcacctgt cagcactcttg ccatgtgcct ccatgttctc cctagtatt tctcctttat agggtggaaa tccccttctc atgaggatgt aagctcagtg caggagaggag | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>600<br>720<br>780<br>840<br>900<br>960<br>1020<br>1080<br>1140<br>1260<br>1320<br>1380<br>1440<br>1500<br>1560<br>1620<br>1680 |

```
<210> 109
<211> 1518
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (1146)
<223> n equals a,t,g, or c
<400> 109
 aggagaaact ctaaaaactg cagatattat ttcatgctat atgttccatc ctctgatgag
                                                                       120
 aatgtqagqa aagaaaattg tatcctgcat ggctgaaaat ggtcccctac aaaaatatca
 tgttggacaa ctaatctgag atagtggtat ctctggaaag cagtttagca ctggtgagtt
                                                                       180
 tggactttca tggcaggctg ccttggttca tatcttttgg taatgatact tatcctctgt
                                                                       240
raggeceatt tetttatttg tggaaatgaa gacaatagag tgettagata taatttasca
                                                                       300
 acaatgtccg tcacatagta aacacgtaat aaacggtagc tcttattgtt attattatta
                                                                       360
 ctattattac cttgaagaca ggggctctgt cttgttcatc attccatctc cagctcttag
                                                                       420
cacagteect ggcacaatte aaacatgtat ttggatgaat gacaaatage tactgaatat
                                                                       480
 ttgccctgtt ccaagcattg ttagaggtac atgggacagg gcagtgaaca aaacagacaa
                                                                       540
 aacctcctqc tqtctcagag ttcacactct aatggggaga cccaggcaat gaggaaataa
                                                                       600
 ttaaaatata caatgtgtct tatggcaata aatgacaaag aaaaataaag cagaggtgag
                                                                       660
 aaacagtggc agtgttttgg tgatcatttg ctttgcaaca agccactccc caaagttagt
                                                                       720
ggcctaaaac aatttaatca cagttcatgt totggctaca acaatacaca tocctotcat
                                                                       780
gtgcaaaata cactcactcc tccctcagag cctcgtacca ttaagggttc aggttcaaag
                                                                       840
 cttaagatet tateetetga agtaggttta gggacaaaca agtettetea ggtaettett
                                                                       900
                                                                       960
ctggggacac agagacttgt gaactaaaag acaagttacc taccttccaa cacaactgac
 atqcaatggq gatataggaa aagataattt caataggcgc ttctgtgcaa aagcggggga
                                                                      1020
 aatgagagtc actcagcagt cacggttcat attaatctaa aatctagcca ggcatatatc
                                                                      1080
                                                                      1140
 ccaagtette etgatgtgag gacaagaatt atttettgat tagggeteae ttwwtetett
 tgaggntggt tcgcctcagc ttttggattt gtcctctgaa tcatccttcc ttgtctataa
                                                                      1200
 aatgcatgta tatactcata catacataga gagaaagaga gagagagaga gagagagact
                                                                      1260
 ctgtcacgca ggctggagtg caatggtgtg atctcagctc actgcaacct acaactcctg
                                                                      1320
 ggttcaagca attotoctgt ctcagcotco cgagcacctg tagtccctgc tactcaggag
                                                                      1380
 gctgaggcag gagaattgct tgaatccgag aggcagaggt tgtcagtgag cagagattac
                                                                      1440
                                                                      1500
 accactgcac tccagcttgg gtgacagagc aaggcttcat ctcaaaaaaaa gacaaaaaaa
                                                                      1518
 aaaaaaaaa actcgtag
<210> 110
<211> 921
<212> DNA
<213> Homo sapiens
<400> 110
 ggcacgagac gccgtgagcg ggacgaccag atgtaccgag agcggctgcg caccttgctg
                                                                       120
 qtcatcqcqq ttgtcatgag cctcctgaat gctctcagca ccagcggagg cagcatttcc
                                                                       180
 tggaacgact ttgtccacga gatgctggcc aagggcgagg tgcagcgcgt ccaggtggtg
 cctgagagcg acgtggtgga agtctacctg caccctggag ccgtggtgtt tgggcggcct
                                                                       240
                                                                       300
 cggctagcct tgatgtaccg aatgcagttg caaatattga caagtttgaa gagaagcttc
 gagcagctga agatgagctg aatatcgagg ccaaggacag gatcccagtt tcctacaagc
                                                                       360
 gaacaggatt ctttgggaaa tgccctgtac tctgtgggga tgacggtagt gggcctggcc
                                                                       420
 atcctgtggt atgttttccg tctggccggg atgactggag gcaccgccgg cgatggacgt
                                                                       480
 ccatgtcccg gctcctgtgc tggaaagcgt tgatggggag cgtcggcgct gaccacacgc
                                                                       540
 gggagetgeg gaageecage ggtteacaca ggeeteectt caaegtagte ateceetggt
                                                                       600
 ggtggaagca agacgacggc ccctgacgtg cagccacaca cagaaaaggc tgctgtgaac
                                                                       660
 attttatgct tcgacttttt ttttcttcag agacagggtg tcgttctgtc gcccaggctg
                                                                       720
                                                                       780
 gagtgcagtg ccaccatcat agetcactge agectecace tectaggete aagetteeta
 agtagttggg actcaagget tgagtcacca tgccaggete tgtttttca gtctgtgaaa
                                                                       840
 900
                                                                       921
 aaaaaaaaa aaaaaaaaa a
```

<210> 111 <211> 244 <212> PRT <213> Homo sapiens <220> <221> SITE

<222> (244) <223> Xaa equals stop translation

Ala Trp Asp Thr Pro Thr Ile Val Ser Arg Lys Glu Trp Gly Ala Arg 20 25 30

Pro Leu Ala Cys Arg Ala Leu Leu Thr Leu Pro Val Ala Tyr Ile Ile 35 40 45

Thr Asp Gln Leu Pro Gly Met Gln Cys Gln Gln Gln Ser Val Cys Ser

Gln Met Leu Arg Gly Leu Gln Ser His Ser Val Tyr Thr Ile Gly Trp 65 70 75 80

Cys Asp Val Ala Tyr Asn Phe Leu Val Gly Asp Asp Gly Arg Val Tyr 85 90 95

Glu Gly Val Gly Trp Asn Ile Gln Gly Leu His Thr Gln Gly Tyr Asn 100 105 110

Asn Ile Ser Leu Gly Ile Ala Phe Phe Gly Asn Lys Ile Ser Ser Ser 115 120 125

Pro Ser Pro Ala Ala Leu Ser Ala Ala Glu Gly Leu Ile Ser Tyr Ala 130 135 140

Ile Gln Lys Gly His Leu Ser Pro Arg Tyr Ile Gln Pro Leu Leu Leu 145 150 150 160

Lys Glu Glu Thr Cys Leu Asp Pro Gln His Pro Val Met Pro Arg Lys 165 170 175

Val Cys Pro Asn Ile Ile Lys Arg Ser Ala Trp Glu Ala Arg Glu Thr

His Cys Pro Lys Met Asn Leu Pro Ala Lys Tyr Val Ile Ile Ile His 195 200 205

Thr Ala Gly Thr Ser Cys Thr Val Ser Thr Asp Cys Gln Thr Val Val 210 215 220

Arg Asn Ile Gln Ser Phe His Met Asp Thr Arg Asn Phe Cys Asp Ile 225 230 235 240

Gly Tyr Gln Xaa

<210> 112

<211> 42

<212> PRT

<213> Homo sapiens

```
<220>
 <221> SITE
 <222> (42)
 <223> Xaa equals stop translation
 Met Lys Arg Arg Glu Met Thr Gln Phe Leu Leu Ser Leu Val Ala Leu
 Asn Cys Cys Ser Ile Ser Leu Gly Arg Leu Thr Tyr Pro Gly Gly Phe
                                  25
 His Leu Lys Leu Asp Pro Leu Glu Leu Xaa
 <210> 113
 <211> 527
 <212> PRT
 <213> Homo sapiens
<220>
 <221> SITE
 <222> (466)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (527)
<223> Xaa equals stop translation
<400> 113
Met Ala Ala Leu Thr Ile Ala Thr Gly Thr Gly Asn Trp Phe Ser Ala
Leu Ala Leu Gly Val Thr Leu Leu Lys Cys Leu Leu Ile Pro Thr Tyr
His Ser Thr Asp Phe Glu Val His Arg Asn Trp Leu Ala Ile Thr His
Ser Leu Pro Ile Ser Gln Trp Tyr Tyr Glu Ala Thr Ser Glu Trp Thr
Leu Asp Tyr Pro Pro Phe Phe Ala Trp Phe Glu Tyr Ile Leu Ser His
Val Ala Lys Tyr Phe Asp Gln Glu Met Leu Asn Val His Asn Leu Asn
Tyr Ser Ser Ser Arg Thr Leu Leu Phe Gln Arg Phe Ser Val Ile Phe
Met Asp Val Leu Phe Val Tyr Ala Val Arg Glu Cys Cys Lys Cys Ile
Asp Gly Lys Lys Val Gly Lys Glu Leu Thr Glu Lys Pro Lys Phe Ile
Leu Ser Val Leu Leu Trp Asn Phe Gly Leu Leu Ile Val Asp His
                    150
                                        155
```

Ile His Phe Gln Tyr Asn Gly Phe Leu Phe Gly Leu Met Leu Leu Ser

|            |            |            |            | 165        |            |                   |            |                   | 170        |            |            |            |            | 175        |            |
|------------|------------|------------|------------|------------|------------|-------------------|------------|-------------------|------------|------------|------------|------------|------------|------------|------------|
| Ile        | Ala        | Arg        | Leu<br>180 | Phe        | Gln        | Lys               | Arg        | His<br>185        | Met        | Glu        | Gly        | Ala        | Phe<br>190 | Leu        | Phe        |
| Ala        | Val        | Leu<br>195 | Leu        | His        | Phe        | Lys               | His<br>200 | Ile               | Tyr        | Leu        | Tyr        | Val<br>205 | Ala        | Pro        | Ala        |
| Tyr        | Gly<br>210 | Val        | Tyr        | Leu        | Leu        | Arg<br>215        | Ser        | Tyr               | Cys        | Phe        | Thr<br>220 | Ala        | Asn        | Lys        | Pro        |
| Asp<br>225 | Gly        | Ser        | Ile        | Arg        | Trp<br>230 | Lys               | Ser        | Phe               | Ser        | Phe<br>235 | Val        | Arg        | Va1        | Ile        | Ser<br>240 |
| Leu        | Gly        | Leu        | Val        | Val<br>245 | Phe        | Leu               | Val        | Ser               | Ala<br>250 | Leu        | Ser        | Leu        | Gly        | Pro<br>255 | Phe        |
| Leu        | Ala        | Leu        | Asn<br>260 | Gln        | Leu        | Pro               | Gln        | Val<br>265        | Phe        | Ser        | Arg        | Leu        | Phe<br>270 | Pro        | Phe        |
| Lys        | Arg        | Gly<br>275 | Leu        | Cys        | His        | Ala               | Tyr<br>280 | Trp               | A1a        | Pro        | Asn        | Phe<br>285 | Trp        | Ala        | Leu        |
| Tyr        | Asn<br>290 | Ala        | Leu        | Asp        | Lys        | <b>Val</b><br>295 | Leu        | Ser               | Val        | Ile        | Gly<br>300 | Leu        | Lys        | Leu        | Lys        |
| Phe<br>305 | Leu        | Asp        | Pro        | Asn        | Asn<br>310 | Ile               | Pro        | Lys               | Ala        | Ser<br>315 | Met        | Thr        | Ser        | Gly        | Leu<br>320 |
| Val        | Gln        | Gln        | Phe        | Gln<br>325 | His        | Thr               | Val        | Leu               | Pro<br>330 | Ser        | Val        | Thr        | Pro        | Leu<br>335 | Ala        |
| Thr        | Leu        | Ile        | Cys<br>340 | Thr        | Leu        | Ile               | Ala        | Ile<br>345        | Leu        | Pro        | Ser        | Ile        | Phe<br>350 | Суѕ        | Leu        |
| Trp        | Phe        | Lys<br>355 | Pro        | Gln        | Gly        | Pro               | Arg<br>360 | Gly               | Phe        | Leu        | Arg        | Cys<br>365 | Leu        | Thr        | Leu        |
| Cys        | A1a<br>370 |            | Ser        | Ser        | Phe        | Met<br>375        | Phe        | Gly               | Trp        | His        | Val<br>380 | His        | Glu        | Lys        | Ala        |
| Ile<br>385 | Leu        | Leu        | Ala        | Ile        | Leu<br>390 | Pro               | Met        | Ser               | Leu        | Leu<br>395 |            | Val        | Gly        | Lys        | A1a        |
| Gly        | Asp        | Ala        | Ser        | 11e<br>405 | Phe        | Leu               | Ile        | Leu               | Thr<br>410 | Thr        | Thr        | Gly        | His        | Tyr<br>415 | Ser        |
| Leu        | Phe        | Pro        | Leu<br>420 | Leu        | Phe        | Thr               | Ala        | Pro<br>425        |            | Leu        | Pro        | Ile        | Lys<br>430 | Ile        | Leu        |
| Leu        | Met        | Leu<br>435 | Leu        | Phe        | Thr        | Ile               | Tyr<br>440 | Ser               | Ile        | Ser        | Ser        | Leu<br>445 | Lys        | Thr        | Leu        |
| Phe        | Arg<br>450 | Lys        | Glu        | Lys        | Pro        | Leu<br>455        | Phe        | Asn               | Trp        | Met        | Glu<br>460 | Thr        | Phe        | Tyr        | Leu        |
| Leu<br>465 | Xaa        | Leu        | Gly        | Pro        | Leu<br>470 | Glu               | Val        | Cys               | Cys        | Glu<br>475 | Phe        | Val        | Phe        | Pro        | Phe<br>480 |
| Thr        | Ser        | Trp        | Lys        | Val<br>485 | Lys        | Tyr               | Pro        | Phe               | Ile<br>490 |            | Leu        | Leu        | Leu        | Thr<br>495 | Sei        |
| Val        | Tyr        | Cys        | Ala<br>500 | Val        | Gly        | Ile               | Thr        | <b>Tyr</b><br>505 |            | Trp        | Phe        | Lys        | Leu<br>510 | Tyr        | Va]        |

```
Ser Val Leu Ile Asp Ser Ala Ile Gly Lys Thr Lys Lys Gln Xaa
         515
                             520
                                                  525
 <210> 114
 <211> 354
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> SITE
 <222> (98)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (100)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (109)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (123)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (129)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (131)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (159)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (169)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (171)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (172)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (175)
<223> Xaa equals any of the naturally occurring L-amino acids
```

```
<220>
<221> SITE
<222> (183)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (188)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (189)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (225)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (229)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (231)
<223> Xaa equals any of the naturally occurring L-amino acids
Met Glu Asp Gly Val Leu Lys Glu Gly Phe Leu Val Lys Arg Gly His
Ile Val His Asn Trp Lys Ala Arg Trp Phe Ile Leu Arg Gln Asn Thr
Leu Val Tyr Tyr Lys Leu Glu Gly Gly Arg Arg Val Thr Pro Pro Lys
Gly Arg Ile Leu Leu Asp Gly Cys Thr Ile Thr Cys Pro Cys Leu Glu
Tyr Glu Asn Arg Pro Leu Leu Ile Lys Leu Lys Thr Gln Thr Ser Thr
Glu Tyr Phe Leu Glu Ala Cys Ser Arg Glu Glu Ala Gly Cys Leu Gly
Leu Xaa Arg Xaa Pro Gly Leu Phe Met Gln Gly Ser Xaa Gly Lys Val
           100
Gln Gln Leu His Ser Leu Arg Asn Ser Phe Xaa Leu Pro Pro His Ile
                            120
Xaa Leu Xaa Arg Ile Val Asp Lys Met His Asp Ser Asn Thr Gly Ile
                        135
Arg Ser Ser Pro Asn Met Glu Gln Arg Ser Thr Tyr Lys Lys Xaa Phe
145
Leu Gly Ser Ser Leu Val Asp Trp Xaa Ile Xaa Xaa Ser Phe Xaa Gly
```

Ser Arg Leu Glu Ala Val Xaa Leu Ala Ser Met Xaa Xaa Glu Glu Asn 180 185 190

Phe Leu Arg Ser Val Ala Val Arg Cys Met Gly Gly Ile Arg Ser Gly 195 200 205

Asp Leu Ala Glu Gln Phe Leu Asp Asp Ser Thr Ala Leu Tyr Thr Phe 210 215 220

Ser Thr Val Glu Leu Ser Gly Thr Val Val Lys Gln Gly Tyr Leu Ala 245 250 255

Lys Gln Gly His Lys Arg Lys Asn Trp Lys Val Arg Arg Phe Val Leu 260 265 270

Arg Lys Asp Pro Ala Phe Leu His Tyr Tyr Asp Pro Ser Lys Glu Glu 275 280 285

Asn Arg Pro Val Gly Gly Phe Ser Leu Arg Gly Ser Leu Val Ser Ala 290 295 300

Leu Glu Asp Asn Gly Val Pro Thr Gly Val Lys Gly Asn Val Gln Gly 305 310 315 320

Asn Leu Phe Lys Val Ile Thr Lys Asp Asp Thr His Tyr Tyr Ile Gln 325 330 335

Ala Ser Ser Lys Ala Glu Arg Ala Glu Trp Ile Glu Ala Ile Lys Lys 340 345 350

Leu Thr

<210> 115

<211> 64

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (64)

<223> Xaa equals stop translation

<400> 115

Met Trp Lys Arg Val Cys Val Cys Val Phe Leu Tyr Ile Ala Trp Val 1 5 10 15

Gln Leu Trp Met Cys Ala Lys Glu Cys Glu Cys Val Cys Val Cys Val

Lys Gly Ser Val Leu Glu Pro Thr Ser Val Cys Cys Glu Ser Gly Lys

Arg Val Gly Glu Gly Arg Glu Met Leu Thr Leu Val Gly Ala Gly Xaa
50 60

```
<210> 116
 <211> 310
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> SITE
 <222> (129)
 <223> Xaa equals any of the naturally occurring L-amino acids
 <221> SITE
 <222> (178)
 <223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (187)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (262)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (308)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (310)
<223> Xaa equals stop translation
<400> 116
Met Phe Thr Ile Lys Leu Leu Phe Ile Val Pro Leu Val Ile Ser
                                     10
Ser Arg Ile Asp Gln Asp Asn Ser Ser Phe Asp Ser Leu Ser Pro Glu
Pro Lys Ser Arg Phe Ala Met Leu Asp Asp Val Lys Ile Leu Ala Asn
                             40
Gly Leu Leu Gln Leu Gly His Gly Leu Lys Asp Phe Val His Lys Thr
                         55
Lys Gly Gln Ile Asn Asp Ile Phe Gln Lys Leu Asn Ile Phe Asp Gln
Ser Phe Tyr Asp Leu Ser Leu Gln Thr Ser Glu Ile Lys Glu Glu Glu
Lys Glu Leu Arg Arg Thr Thr Tyr Lys Leu Gln Val Lys Asn Glu Glu
                               105
Val Lys Asn Met Ser Leu Glu Leu Asn Ser Lys Leu Glu Ser Leu Leu
                           120
Xaa Glu Lys Ile Leu Leu Gln Gln Lys Val Lys Tyr Leu Glu Gln
   130
                       135
                                           140
```

Leu Thr Asn Leu Ile Gln Asn Gln Pro Glu Thr Pro Glu His Pro Glu Val Thr Ser Leu Lys Thr Phe Val Glu Lys Gln Asp Asn Ser Ile Lys 165 170 Asp Xaa Leu Gln Thr Val Glu Asp Gln Tyr Xaa Gln Leu Asn Gln Gln His Ser Gln Ile Lys Glu Ile Glu Asn Gln Leu Arg Arg Thr Ser Ile Gln Glu Pro Thr Glu Ile Ser Leu Ser Ser Lys Pro Arg Ala Pro Arg 215 Thr Thr Pro Phe Leu Gln Leu Asn Glu Ile Arg Asn Val Lys His Asp 225 230 Gly Ile Pro Ala Glu Cys Thr Thr Ile Tyr Asn Arg Gly Glu His Thr Ser Gly Met Tyr Ala Xaa Arg Pro Ser Asn Ser Gln Val Phe His Val 265 Tyr Cys Asp Val Ile Ser Gly Ser Pro Trp Thr Leu Ile Gln His Arg 280 Ile Asp Gly Ser Gln Asn Phe Asn Glu Thr Trp Glu Asn Tyr Lys Tyr Gly Phe Gly Xaa Ala Xaa 305 <210> 117 <211> 212 <212> PRT <213> Homo sapiens <220> <221> SITE <222> (99) <223> Xaa equals any of the naturally occurring L-amino acids <220> <221> SITE <222> (212) <223> Xaa equals stop translation <400> 117 Met Ala Asn Ala Gly Leu Gln Leu Leu Gly Phe Ile Leu Ala Phe Leu Gly Trp Ile Gly Ala Ile Val Ser Thr Ala Leu Pro Gln Trp Arg Ile Tyr Ser Tyr Ala Gly Asp Asn Ile Val Thr Ala Gln Ala Met Tyr Glu 40 Gly Leu Trp Met Ser Cys Val Ser Gln Ser Thr Gly Gln Ile Gln Cys Lys Val Phe Asp Ser Leu Leu Asn Leu Ser Ser Thr Leu Gln Ala Thr

<400> 119

Arg Ala Leu Met Val Val Gly Ile Leu Leu Gly Val Ile Ala Ile Phe 85 Val Ala Xaa Val Gly Met Lys Cys Met Lys Cys Leu Glu Asp Asp Glu 105 Val Gln Lys Met Arg Met Ala Val Ile Gly Gly Ala Ile Phe Leu Leu Ala Gly Leu Ala Ile Leu Val Ala Thr Ala Trp Tyr Gly Asn Arg Ile 135 Val Gln Glu Phe Tyr Asp Pro Met Thr Pro Val Asn Ala Arg Tyr Glu Phe Gly Gln Ala Leu Phe Thr Gly Trp Ala Ala Ala Ser Leu Cys Leu Leu Gly Gly Ala Leu Leu Cys Cys Ser Cys Pro Arg Lys Thr Thr Ser 185 Tyr Pro Thr Pro Arg Pro Tyr Pro Lys Pro Ala Pro Ser Ser Gly Lys 195 200 Asp Tyr Val Xaa 210 <210> 118 <211> 51 <212> PRT <213> Homo sapiens <220> <221> SITE <222> (51) <223> Xaa equals stop translation <400> 118 Met Ala Pro Leu Trp Thr Leu Arg Pro Val Leu Val Trp Thr Thr Pro Thr Ser Met Gly Glu Val Ser Pro Trp Leu Thr Ser Thr Val Met Ala 25 Lys Trp Thr Ser Ser Met Ala Thr Gly Met Ala Pro Thr Ala Ser Ile Cys Arg Xaa 50 <210> 119 <211> 263 <212> PRT <213> Homo sapiens <220> <221> SITE <222> (263) <223> Xaa equals stop translation

Met Leu Phe Ser Ala Leu Leu Leu Glu Val Ile Trp Ile Leu Ala Ala 1 5 10 15

Asp Gly Gly Gln His Trp Thr Tyr Glu Gly Pro His Gly Gln Asp His

Trp Pro Ala Ser Tyr Pro Glu Cys Gly Asn Asn Ala Gln Ser Pro Ile 35 40 45

Asp Ile Gln Thr Asp Ser Val Thr Phe Asp Pro Asp Leu Pro Ala Leu
50 55 60

Gln Pro His Gly Tyr Asp Gln Pro Gly Thr Glu Pro Leu Asp Leu His 65 70 75 80

Asn Asn Gly His Thr Val Gln Leu Ser Leu Pro Ser Thr Leu Tyr Leu 85 90 95

Gly Gly Leu Pro Arg Lys Tyr Val Ala Ala Gln Leu His Leu His Trp 100 105 110

Gly Gln Lys Gly Ser Pro Gly Gly Ser Glu His Gln Ile Asn Ser Glu 115 120 125

Ala Thr Phe Ala Glu Leu His Ile Val His Tyr Asp Ser Asp Ser Tyr 130 140

Asp Ser Leu Ser Glu Ala Ala Glu Arg Pro Gln Gly Leu Ala Val Leu 145 150 155 160

Gly Ile Leu Ile Glu Leu Glu Lys Leu Gln Gly Thr Leu Phe Ser Thr 165 170 175

Glu Glu Glu Pro Ser Lys Leu Leu Val Gln Asn Tyr Arg Ala Leu Gln 180 185 190

Pro Leu Asn Gln Arg Met Val Phe Ala Ser Phe Ile Gln Ala Gly Ser 195 200 205

Ser Tyr Thr Thr Gly Glu Met Leu Ser Leu Gly Val Gly Ile Leu Val 210 215 220

Gly Cys Leu Cys Leu Leu Leu Ala Val Tyr Phe Ile Ala Arg Lys Ile 225 230 235 240

Arg Lys Lys Arg Leu Glu Asn Arg Lys Ser Val Val Phe Thr Ser Ala 245 250 255

Gln Ala Thr Thr Glu Ala Xaa

<210> 120

<211> 270

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (27)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 120

Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys Trp Tyr Lys

| 1                                                                      |              |            |            | ,          |            |            |            |            | 10                |                    |            |            |            | 13         |            |
|------------------------------------------------------------------------|--------------|------------|------------|------------|------------|------------|------------|------------|-------------------|--------------------|------------|------------|------------|------------|------------|
| Tyr                                                                    | Leu          | Leu        | Phe<br>20  | Ser        | Tyr        | Asn        | Ile        | Ile<br>25  | Phe               | Xaa                | Leu        | Ala        | Gly<br>30  | Val        | Val        |
| Phe                                                                    | Leu          | Gly<br>35  | Val        | Gly        | Leu        | Trp        | Ala<br>40  | Trp        | Ser               | Glu                | Lys        | Gly<br>45  | Val        | Leu        | Ser        |
| Asp                                                                    | Leu<br>50    | Thr        | Lys        | Val        | Thr        | Arg<br>55  | Met        | His        | Gly               | Ile                | Asp<br>60  | Pro        | Val        | Val        | Leu        |
| Val<br>65                                                              | Leu          | Met        | Val        | Gly        | Val<br>70  | Va1        | Met        | Phe        | Thr               | Leu<br>75          | Gly        | Phe        | Ala        | Gly        | Суs<br>80  |
| Val                                                                    | Gly          | Ala        | Leu        | Arg<br>85  | Glu        | Asn        | Ile        | Cys        | Leu<br>90         | Leu                | Asn        | Phe        | Phe        | Суs<br>95  | Gly        |
| Thr                                                                    | Ile          | Val        | Leu<br>100 | Ile        | Phe        | Phe        | Leu        | Glu<br>105 | Leu               | Ala                | Val        | Ala        | Val<br>110 | Leu        | Ala        |
| Phe                                                                    | Leu          | Phe<br>115 | Gln        | Asp        | Trp        | Val        | Arg<br>120 | Asp        | Arg               | Phe                | Arg        | Glu<br>125 | Phe        | Phe        | Glu        |
| Ser                                                                    | Asn<br>130   | Ile        | Lys        | Ser        | Tyr        | Arg<br>135 | Asp        | Asp        | Ile               | Asp                | Leu<br>140 | Gln        | Asn        | Leu        | Ile        |
| Asp<br>145                                                             | Ser          | Leu        | Gln        | Lys        | Ala<br>150 | Asn        | Gln        | Cys        | Cys               | Gly<br><b>1</b> 55 | Ala        | Tyr        | Gly        | Pro        | Glu<br>160 |
| Asp                                                                    | Trp          | Asp        | Leu        | Asn<br>165 | Val        | Tyr        | Phe        | Asn        | Cys<br>170        | Ser                | Gly        | Ala        | Ser        | Tyr<br>175 | Ser        |
| Arg                                                                    | Glu          | Lys        | Cys<br>180 | Gly        | Val        | Pro        | Phe        | Ser<br>185 | Cys               | Cys                | Val        | Pro        | Asp<br>190 | Pro        | Ala        |
| Gln                                                                    | Lys          | Val<br>195 | Val        | Asn        | Thr        | Gln        | Cys<br>200 | Gly        | Tyr               | Asp                | Val        | Arg<br>205 | Ile        | Gln        | Leu        |
| Lys                                                                    | Ser<br>210   | Lys        | Trp        | Asp        | Glu        | Ser<br>215 | Ile        | Phe        | Thr               | Lys                | Gly<br>220 | Cys        | Ile        | Gln        | Ala        |
| Leu<br>225                                                             | Glu          | Ser        | Trp        | Leu        | Pro<br>230 | Arg        | Asn        | Ile        | Tyr               | 11e<br>235         | Val        | Ala        | Gly        | Val        | Phe<br>240 |
| Ile                                                                    | Ala          | Ile        | Ser        | Leu<br>245 | Leu        | Gln        | Ile        | Phe        | Gly<br>250        | Ile                | Phe        | Leu        | Ala        | Arg<br>255 | Thr        |
| Leu                                                                    | Ile          | Ser        | Asp<br>260 | Ile        | Glu        | Ala        | Val        | Lys<br>265 | Ala               | Gly                | His        | His        | Phe<br>270 |            |            |
| <210> 121<br><211> 92<br><212> PRT<br><213> Homo sapiens               |              |            |            |            |            |            |            |            |                   |                    |            |            |            |            |            |
| <220><br><221> SITE<br><222> (92)<br><223> Xaa equals stop translation |              |            |            |            |            |            |            |            |                   |                    |            |            |            |            |            |
|                                                                        | )> 12<br>Leu |            | Cys        | Gly<br>5   | Gly        | Arg        | Gly        | Leu        | <b>Le</b> u<br>10 | Leu                | Gly        | Leu        | Ala        | Val<br>15  | Ala        |

Ala Ala Ala Val Met Ala Ala Arg Leu Met Gly Trp Trp Gly Pro Arg
20 25 30

Ala Gly Phe Arg Leu Phe Ile Pro Glu Glu Leu Ser Arg Tyr Arg Gly
35 40 45

Gly Pro Gly Asp Pro Gly Leu Tyr Leu Ala Leu Leu Gly Arg Val Tyr
50 55 60

Asp Val Ser Ser Gly Arg Ser Thr Thr Ser Leu Gly Pro Thr Ile Ala 65 70 75 80

Ala Ser Gln Ala Glu Thr His Pro Glu Leu Ser Xaa 85 90

<210> 122

<211> 223

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (120)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (223)

<223> Xaa equals stop translation

<400> 122

Met Leu Trp Leu Leu Phe Phe Leu Val Thr Ala Ile His Ala Glu Leu 1 5 10 15

Cys Gln Pro Gly Ala Glu Asn Ala Phe Lys Val Arg Leu Ser Ile Arg 20 25 30

Thr Ala Leu Gly Asp Lys Ala Tyr Ala Trp Asp Thr Asn Glu Glu Tyr 35 40 45

Leu Phe Lys Ala Met Val Ala Phe Ser Met Arg Lys Val Pro Asn Arg 50 55 60

Glu Ala Thr Glu Ile Ser His Val Leu Leu Cys Asn Val Thr Gln Arg 65 70 75 80

Val Ser Phe Trp Phe Val Val Thr Asp Pro Ser Lys Asn His Thr Leu 85 90 95

Pro Ala Val Glu Val Gln Ser Ala Ile Arg Met Asn Lys Asn Arg Ile 100 105 110

Asn Asn Ala Phe Phe Leu Asn Xaa Gln Thr Leu Glu Phe Leu Lys Ile 115 120 125

Pro Ser Thr Leu Ala Pro Pro Met Asp Pro Ser Val Pro Ile Trp Ile 130 135 140

Ile Ile Phe Gly Val Ile Phe Cys Ile Ile Ile Val Ala Ile Ala Leu

Leu Ile Leu Ser Gly Ile Trp Gln Arg Arg Arg Lys Asn Lys Glu Pro

170

17:

Ser Glu Val Asp Asp Ala Glu Asp Lys Cys Glu Asn Met Ile Thr Ile 180 185 190

Glu Asn Gly Ile Pro Ser Asp Pro Leu Asp Met Lys Gly Gly His Ile 195 200 205

Asn Asp Ala Phe Met Thr Glu Asp Glu Arg Leu Thr Pro Leu Xaa 210 215 220

<210> 123

<211> 202

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (202)

<223> Xaa equals stop translation

<400> 123

Met Phe Phe Leu Gly Ala Val Leu Cys Leu Ser Phe Ser Trp Leu Phe 1 5 10

His Thr Val Tyr Cys His Ser Glu Lys Val Ser Arg Thr Phe Ser Lys 20 25 30

Leu Asp Tyr Ser Gly Ile Ala Leu Leu Ile Met Gly Ser Phe Val Pro 35 40 45

Trp Leu Tyr Tyr Ser Phe Tyr Cys Ser Pro Gln Pro Arg Leu Ile Tyr 50 55 60

Leu Ser Ile Val Cys Val Leu Gly Ile Ser Ala Ile Ile Val Ala Gln 65 70 75 80

Trp Asp Arg Phe Ala Thr Pro Lys His Arg Gln Thr Arg Ala Gly Val 85 90 95

Phe Leu Gly Leu Gly Leu Ser Gly Val Val Pro Thr Met His Phe Thr

Ile Ala Glu Gly Phe Val Lys Ala Thr Thr Val Gly Gln Met Gly Trp 115 120 125

Phe Phe Leu Met Ala Val Met Tyr Ile Thr Gly Ala Gly Leu Tyr Ala 130 135 140

Ala Arg Ile Pro Glu Arg Phe Phe Pro Gly Lys Phe Asp Ile Trp Phe 145 150 155 160

Gln Ser His Gln Ile Phe His Val Leu Val Val Ala Ala Phe Val 165 170 175

His Phe Tyr Gly Val Ser Asn Leu Gln Glu Phe Arg Tyr Gly Leu Glu 180 185 190

Gly Gly Cys Thr Asp Asp Thr Leu Leu Xaa 195 200

<210> 124

```
<211> 47
  <212> PRT
  <213> Homo sapiens
  <220>
 <221> SITE
  <222> (47)
 <223> Xaa equals stop translation
 Met Gly Arg Gln Ala Leu Leu Leu Leu Ala Leu Cys Ala Thr Gly Ala
 Gln Gly Leu Tyr Phe His Ile Gly Glu Thr Glu Lys Arg Cys Phe Ile
 Glu Glu Ile Pro Asp Glu Thr Met Val Ile Gly Gln Ala Gly Xaa
                              40
 <210> 125
 <211> 306
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> SITE
 <222> (11)
 <223> Xaa equals any of the naturally occurring L-amino acids
 <220>
 <221> SITE
 <222> (306)
 <223> Xaa equals stop translation
 <400> 125
Met Ala Leu Cys Ala Leu Thr Arg Ala Leu Xaa Ser Leu Asn Leu Ala
Pro Pro Thr Val Ala Ala Pro Ala Pro Ser Leu Phe Pro Ala Ala Gln
Met Met Asn Asn Gly Leu Leu Gln Gln Pro Ser Ala Leu Met Leu Leu
Pro Cys Arg Pro Val Leu Thr Ser Val Ala Leu Asn Ala Asn Phe Val
                         55
Ser Trp Lys Ser Arg Thr Lys Tyr Thr Ile Thr Pro Val Lys Met Arg
 65
Lys Ser Gly Gly Arg Asp His Thr Gly Arg Ile Arg Val His Gly Ile
Gly Gly Gly His Lys Gln Arg Tyr Arg Met Ile Asp Phe Leu Arg Phe
Arg Pro Glu Glu Thr Lys Ser Gly Pro Phe Glu Glu Lys Val Ile Gln
Val Arg Tyr Asp Pro Cys Arg Ser Ala Asp Ile Ala Leu Val Ala Gly
```

Gly Ser Arg Lys Arg Trp Ile Ile Ala Thr Glu Asn Met Gln Ala Gly

. 76

| 145                                                      |              |            |            |            | 150        |            |            |            |            | 155        |            |            |            |            | 160                 |
|----------------------------------------------------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|---------------------|
|                                                          | Thr          | Ile        | Leu        |            |            | Asn        | His        | Ile        | -          |            | Met        | Ala        | Val        |            | Ala                 |
|                                                          |              |            |            | 165        |            |            |            |            | 170        |            |            |            |            | 175        |                     |
| Arg                                                      | Glu          | Gly        | Asp<br>180 |            | His        | Pro        | Leu        | Gly<br>185 | Ala        | Leu        | Pro        | Val        | Gly<br>190 | Thr        | Leu                 |
| Ile                                                      | Asn          | Asn<br>195 | Val        | Glu        | Ser        | Glu        | Pro<br>200 |            | Arg        | Gly        | Ala        | Gln<br>205 | Туr        | Ile        | Arg                 |
| Ala                                                      | Ala<br>210   | Gly        | Thr        | Cys        | Gly        | Val<br>215 | Leu        | Leu        | Arg        | Lys        | Val<br>220 | Asn        | Gly        | Thr        | Ala                 |
| Ile<br>225                                               | Ile          | Gln        | Leu        | Pro        | Ser<br>230 | Lys        | Arg        | Gln        | Met        | Gln<br>235 | Val        | Leu        | Glu        | Thr        | Cys<br>2 <b>4</b> 0 |
| Val                                                      | Ala          | Thr        | Val        | Gly<br>245 | Arg        | Val        | Ser        | Asn        | Val<br>250 | Asp        | His        | Asn        | Lys        | Arg<br>255 | Val                 |
| Ile                                                      | Gly          | Lys        | Ala<br>260 | Gly        | Arg        | Asn        | Arg        | Trp<br>265 | Leu        | Gly        | Lys        | Arg        | Pro<br>270 | Asn        | Ser                 |
| Gly                                                      | Arg          | Trp<br>275 | His        | Arg        | Lys        | Gly        | Gly<br>280 | Trp        | Ala        | Gly        | Arg        | Lys<br>285 | Ile        | Arg        | Pro                 |
| Leu                                                      | Pro<br>290   | Pro        | Met        | Lys        | Ser        | Tyr<br>295 | Val        | Lys        | Leu        | Pro        | Ser<br>300 | Ala        | Ser        | Ala        | Gln                 |
| Ser<br>305                                               | Xaa          |            |            |            |            |            |            |            |            |            |            |            |            |            |                     |
| <210> 126<br><211> 82<br><212> PRT<br><213> Homo sapiens |              |            |            |            |            |            |            |            |            |            |            |            |            |            |                     |
| <220> <221> SITE <222> (82)                              |              |            |            |            |            |            |            |            |            |            |            |            |            |            |                     |
| <223> Xaa equals stop translation                        |              |            |            |            |            |            |            |            |            |            |            |            |            |            |                     |
|                                                          | )> 12<br>Asn |            | Leu        | Met<br>5   | Phe        | Gln        | Asp        | Leu        | Leu<br>10  | Cys        | Сув        | Leu        | Cys        | Leu<br>15  | Phe                 |
| Val                                                      | Ile          | Gly        | Leu<br>20  | Ile        | Ser        | Leu        |            | Arg<br>25  | Lys        | Thr        | Tyr        | Ser        | Cys<br>30  | Val        | Asn                 |
| Leu                                                      | Cys          | Lys<br>35  | Val        | Met        | Leu        | Pro        | Val<br>40  | Lys        | Lys        | Tyr        | Ser        | Thr<br>45  | Val        | Ser        | Thr                 |
| Val                                                      | Leu<br>50    | Cys        | Arg        | Asn        | Met        | Lys<br>55  | Leu        | Asn        | Gly        | Lys        | Asn<br>60  | Val        | Leu        | Met        | Phe                 |
| <b>Val 6</b> 5                                           | Val          | Met        | Leu        | Leu        | Gly<br>70  | Gln        | Trp        | Met        | Gly        | Lys<br>75  | Leu        | Pro        | Lys        | Leu        | Ser<br>80           |
| Pro                                                      | Xaa          |            |            |            |            |            |            |            |            |            |            |            |            |            |                     |

```
<211> 243
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (88)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (139)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (243)
<223> Xaa equals stop translation
<400> 127
Met Glu Gln Ala Arg Lys Ser Ser Thr Val Ser Leu Leu Ile Thr Val
Leu Phe Ala Val Ala Phe Ser Val Leu Leu Ser Cys Lys Asp His
Val Gly Tyr Ile Phe Thr Thr Asp Arg Asp Ile Ile Asn Leu Val Ala
Gln Val Val Pro Ile Tyr Ala Val Ser His Leu Phe Glu Ala Leu Ala
Cys Thr Ser Gly Gly Val Leu Arg Gly Ser Gly Asn Gln Lys Val Gly
Ala Ile Val Asn Thr Ile Gly Xaa Tyr Val Val Gly Leu Pro Ile Gly
Ile Ala Leu Met Phe Ala Thr Thr Leu Gly Val Met Gly Leu Trp Ser
Gly Ile Ile Cys Thr Val Phe Gln Ala Val Cys Phe Leu Gly Phe
Ile Ile Gln Leu Asn Trp Lys Lys Ala Cys Xaa Gln Ala Gln Val His
Ala Asn Leu Lys Val Asn Asn Val Pro Arg Ser Gly Asn Ser Ala Leu
Pro Gln Asp Pro Leu His Pro Gly Cys Pro Glu Asn Leu Glu Gly Ile
                                   170
Leu Thr Asn Asp Val Gly Lys Thr Gly Glu Pro Gln Ser Asp Gln Gln
Met Arg Gln Glu Pro Leu Pro Glu His Pro Gln Asp Gly Ala Lys
Leu Ser Arg Lys Gln Leu Val Leu Arg Arg Gly Leu Leu Leu Gly
Val Phe Leu Ile Leu Leu Val Gly Ile Leu Val Arg Phe Tyr Val Arg
                   230
                                        235
```

Ile Gln Xaa

| <210> | 128  |        |
|-------|------|--------|
| <211> | 285  |        |
| <212> |      |        |
| <213> | Homo | sapien |

<400> 128
Met Val Val Ala Gly Val Val Val Leu Ile Leu Ala Leu Val Leu Ala
10 15

Trp Leu Ser Thr Tyr Val Ala Asp Ser Gly Ser Asn Gln Leu Leu Gly

Ala Ile Val Ser Ala Gly Asp Thr Ser Val Leu His Leu Gly His Val 35 40 45

Asp His Leu Val Ala Gly Gln Gly Asn Pro Glu Pro Thr Glu Leu Pro 50 55 60

His Pro Ser Glu Gly Asn Asp Glu Lys Ala Glu Glu Ala Gly Glu Gly 65 70 75 80

Arg Gly Asp Ser Thr Gly Glu Ala Gly Ala Gly Gly Gly Val Glu Pro 85 90 95

Ser Leu Glu His Leu Leu Asp Ile Gln Gly Leu Pro Lys Arg Gln Ala 100 105 110

Gly Ala Gly Ser Ser Ser Pro Glu Ala Pro Leu Arg Ser Glu Asp Ser 115 120 125

Thr Cys Leu Pro Pro Ser Pro Gly Leu Ile Thr Val Arg Leu Lys Phe 130 135 140

Leu Asn Asp Thr Glu Glu Leu Ala Val Ala Arg Pro Glu Asp Thr Val 145 150 155 160

Gly Ala Leu Lys Ser Lys Tyr Phe Pro Gly Gln Glu Ser Gln Met Lys 165 170 175

Leu Ile Tyr Gln Gly Arg Leu Leu Gln Asp Pro Ala Arg Thr Leu Arg 180 185 190

Ser Leu Asn Ile Thr Asp Asn Cys Val Ile His Cys His Arg Ser Pro 195 200 205

Pro Gly Ser Ala Val Pro Gly Pro Ser Ala Ser Leu Ala Pro Ser Ala 210 215 220

Thr Glu Pro Pro Ser Leu Gly Val Asn Val Gly Ser Leu Met Val Pro 225 230 235 240

Val Phe Val Val Leu Leu Gly Val Val Trp Tyr Phe Arg Ile Asn Tyr 245 250 255

Arg Gln Phe Phe Thr Ala Pro Ala Thr Val Ser Leu Val Gly Val Thr  $\cdot$  260 265 270

Val Phe Phe Ser Phe Leu Val Phe Gly Met Tyr Gly Arg 275 280 285 WO 99/58660 PCT/US99/09847

79

<210> 129 <211> 158 <212> PRT <213> Homo sapiens <220> <221> SITE <222> (114) <223> Xaa equals any of the naturally occurring L-amino acids <220> <221> SITE <222> (119) <223> Xaa equals any of the naturally occurring L-amino acids <221> SITE <222> (120) <223> Xaa equals any of the naturally occurring L-amino acids <220> <221> SITE <222> (121) <223> Xaa equals any of the naturally occurring L-amino acids <220> <221> SITE <222> (158) <223> Xaa equals stop translation <400> 129 Met Asp Ala Met Ile Leu Leu Asn Val Leu Ala Leu Thr Arg Leu Ala Lys Ala Ala Ala Thr Asn Phe Val Ala Gln Gly Arg Gly Thr Ile Ile Asn Ile Gly Ser Ile Val Ala Leu Ala Pro Lys Val Leu Asn Gly Val 40 Tyr Gly Gly Thr Lys Ala Phe Val Gln Ala Phe Ser Glu Ser Leu Gln His Glu Leu Ser Asp Lys Gly Val Val Val Gln Val Val Leu Pro Gly Ala Thr Ala Thr Glu Phe Trp Asp Ile Ala Gly Leu Pro Val Lys Gln Pro Ala Gly Ser His Gly Asp Asp His Arg Lys Pro Gly Gly Arg Arg 105 Pro Xaa Arg Pro Cys Pro Xaa Xaa Xaa Val Thr Ile Pro Ser Leu Pro Asp Ser Ala Asp Trp Asp Thr Thr Asn Ala Arg Gly Trp Pro Trp Val 135 Arg Thr Cys Arg Thr Val Asn Pro Pro Leu Val Met Gly Xaa 150

```
<210> 130
<211> 309
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (87)
<223> Xaa equals any of the naturally occurring L-amino acids
<221> SITE
<222> (185)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (309)
<223> Xaa equals stop translation
<400> 130
Met Pro Val Pro Trp Phe Leu Leu Ser Leu Ala Leu Gly Arg Ser Pro
Val Val Leu Ser Leu Glu Arg Leu Val Gly Pro Gln Asp Ala Thr His
Cys Ser Pro Gly Leu Ser Cys Arg Leu Trp Asp Ser Asp Ile Leu Cys
Leu Pro Gly Asp Ile Val Pro Ala Pro Gly Pro Val Leu Ala Pro Thr
His Leu Gln Thr Glu Leu Val Leu Arg Cys Gln Lys Glu Thr Asp Cys
Asp Leu Cys Leu Arg Val Xaa Val His Leu Ala Val His Gly His Trp
Glu Glu Pro Glu Asp Glu Glu Lys Phe Gly Gly Ala Ala Asp Leu Gly
                                105
Val Glu Glu Pro Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu Ser
Phe Gln Ala Tyr Pro Thr Ala Arg Cys Val Leu Leu Glu Val Gln Val
                       135
Pro Ala Ala Leu Val Gln Phe Gly Gln Ser Val Gly Ser Val Val Tyr
                    150
Asp Cys Phe Glu Ala Ala Leu Gly Ser Glu Val Arg Ile Trp Ser Tyr
                                    170
Thr Gln Pro Arg Tyr Glu Lys Glu Xaa Asn His Thr Gln Gln Leu Pro
Asp Cys Arg Gly Leu Glu Val Trp Asn Ser Ile Pro Ser Cys Trp Ala
                            200
Leu Pro Trp Leu Asn Val Ser Ala Asp Gly Asp Asn Val His Leu Val
Leu Asn Val Ser Glu Glu Gln His Phe Gly Leu Ser Leu Tyr Trp Asn
```

225 230 235 Gln Val Gln Gly Pro Pro Lys Pro Arg Trp His Lys Asn Leu Thr Gly Pro Gln Ile Ile Thr Leu Asn His Thr Asp Leu Val Pro Cys Leu Cys Ile Gln Val Trp Pro Leu Glu Pro Asp Ser Val Arg Arg Thr Ser Ala 280 Pro Ser Gly Arg Thr Pro Ala His Thr Arg Thr Ser Gly Lys Pro Pro Asp Cys Asp Cys Xaa 305 <210> 131 <211> 509 <212> PRT <213> Homo sapiens <220> <221> SITE <222> (509) <223> Xaa equals stop translation <400> 131 Met Asp Pro Lys Leu Gly Arg Met Ala Ala Ser Leu Leu Ala Val Leu Leu Leu Leu Leu Glu Arg Gly Met Phe Ser Ser Pro Ser Pro Pro Pro Ala Leu Leu Glu Lys Val Phe Gln Tyr Ile Asp Leu His Gln Asp Glu Phe Val Gln Thr Leu Lys Glu Trp Val Ala Ile Glu Ser Asp Ser Val Gln Pro Val Pro Arg Phe Arg Gln Glu Leu Phe Arg Met Met Ala Val Ala Ala Asp Thr Leu Gln Arg Leu Gly Ala Arg Val Ala Ser Val Asp Met Gly Pro Gln Gln Leu Pro Asp Gly Gln Ser Leu Pro Ile Pro 105 Pro Val Ile Leu Ala Glu Leu Gly Ser Asp Pro Thr Lys Gly Thr Val Cys Phe Tyr Gly His Leu Asp Val Gln Pro Ala Asp Arg Gly Asp Gly Trp Leu Thr Asp Pro Tyr Val Leu Thr Glu Val Asp Gly Lys Leu Tyr Gly Arg Gly Ala Thr Asp Asn Lys Gly Pro Val Leu Ala Trp Ile Asn 165 Ala Val Ser Ala Phe Arg Ala Leu Glu Gln Asp Leu Pro Val Asn Ile 185

Lys Phe Ile Ile Glu Gly Met Glu Glu Ala Gly Ser Val Ala Leu Glu 200

Glu Leu Val Glu Lys Glu Lys Asp Arg Phe Phe Ser Gly Val Asp Tyr

Ile Val Ile Ser Asp Asn Leu Trp Ile Ser Gln Arg Lys Pro Ala Ile

Thr Tyr Gly Thr Arg Gly Asn Ser Tyr Phe Met Val Glu Val Lys Cys

Arg Asp Gln Asp Phe His Ser Gly Thr Phe Gly Gly Ile Leu His Glu 265

Pro Met Ala Asp Leu Val Ala Leu Leu Gly Ser Leu Val Asp Ser Ser 280

Gly His Ile Leu Val Pro Gly Ile Tyr Asp Glu Val Val Pro Leu Thr

Glu Glu Glu Ile Asn Thr Tyr Lys Ala Ile His Leu Asp Leu Glu Glu

Tyr Arg Asn Ser Ser Arg Val Glu Lys Phe Leu Phe Asp Thr Lys Glu

Glu Ile Leu Met His Leu Trp Arg Tyr Pro Ser Leu Ser Ile His Gly

Ile Glu Gly Ala Phe Asp Glu Pro Gly Thr Lys Thr Val Ile Pro Gly

Arg Val Ile Gly Lys Phe Ser Ile Arg Leu Val Pro His Met Asn Val 375

Ser Ala Val Glu Lys Gln Val Thr Arg His Leu Glu Asp Val Phe Ser

Lys Arg Asn Ser Ser Asn Lys Met Val Val Ser Met Thr Leu Gly Leu

His Pro Trp Ile Ala Asn Ile Asp Asp Thr Gln Tyr Leu Ala Ala Lys

Arg Ala Ile Arg Thr Val Phe Gly Thr Glu Pro Asp Met Ile Arg Asp 440

Gly Ser Thr Ile Pro Ile Ala Lys Met Phe Gln Glu Ile Val His Lys 455

Ser Val Val Leu Ile Pro Leu Gly Ala Val Asp Asp Gly Glu His Ser 475

Gln Asn Glu Lys Ile Asn Arg Trp Asn Tyr Ile Glu Gly Thr Lys Leu 490

Phe Ala Ala Phe Phe Leu Glu Met Ala Gln Leu His Xaa 505

<210> 132

<211> 507

```
<212> PRT
 <213> Homo sapiens
 <220>
 <221> SITE
 <222> (65)
 <223> Xaa equals any of the naturally occurring L-amino acids
 <220>
 <221> SITE
 <222> (112)
 <223> Xaa equals any of the naturally occurring L-amino acids
 <220>
 <221> SITE
 <222> (423)
 <223> Xaa equals any of the naturally occurring L-amino acids
 <220>
 <221> SITE
 <222> (425)
 <223> Xaa equals any of the naturally occurring L-amino acids
 <220>
 <221> SITE
 <222> (507)
 <223> Xaa equals stop translation
 Met Gly Met Arg Arg His Ser Leu Met Leu Leu Pro Trp Trp Leu Gly
Ala Ala Gly Arg Lys Glu Cys His Arg Glu Gln Leu Val Ala Ala Val
Glu Val Thr Glu Gln Glu Thr Lys Val Pro Lys Lys Thr Val Ile Ile
Glu Glu Thr Ile Thr Thr Val Val Lys Ser Pro Arg Gly Gln Arg Arg
Xaa Pro Ser Lys Ser Pro Ser Arg Ser Pro Ser Arg Cys Ser Ala Ser
Pro Leu Arg Pro Gly Leu Leu Ala Pro Asp Leu Leu Tyr Leu Pro Gly
Ala Gly Gln Pro Arg Arg Pro Glu Ala Glu Pro Gly Gln Lys Pro Xaa
                                105
Val Pro Thr Leu Tyr Val Thr Glu Ala Glu Ala His Ser Pro Ala Leu
Pro Gly Leu Ser Gly Pro Gln Pro Lys Trp Val Glu Val Glu Glu Thr
                        135
                                            140
Ile Glu Val Arg Val Lys Lys Met Gly Pro Gln Gly Val Ser Pro Thr
Thr Glu Val Pro Arg Ser Ser Ser Gly His Leu Phe Thr Leu Pro Gly
Ala Thr Pro Gly Gly Asp Pro Asn Ser Asn Asn Ser Asn Asn Lys Leu
                                185
```

Leu Ala Gln Glu Ala Trp Ala Gln Gly Thr Ala Met Val Gly Val Arg Glu Pro Leu Val Phe Arg Val Asp Ala Arg Gly Ser Val Asp Trp Ala 215 Ala Ser Gly Met Gly Ser Leu Glu Glu Glu Gly Thr Met Glu Glu Ala 235 Gly Glu Glu Glu Gly Glu Asp Gly Asp Ala Phe Val Thr Glu Glu Ser Gln Asp Thr His Ser Leu Gly Asp Arg Asp Pro Lys Ile Leu Thr His 265 Asn Gly Arg Met Leu Thr Leu Ala Asp Leu Glu Asp Tyr Val Pro Gly Glu Gly Glu Thr Phe His Cys Gly Gly Pro Gly Pro Gly Ala Pro Asp Asp Pro Pro Cys Glu Val Ser Val Ile Gln Arg Glu Ile Gly Glu Pro Thr Val Gly Ser Leu Cys Cys Ser Ala Trp Gly Met His Trp Val Pro Glu Ala Leu Ser Ala Ser Leu Gly Leu Ser Pro Val Gly Arg His His 345 Arg Asp Pro Arg Ser Val Ala Leu Arg Ala Pro Pro Ser Ser Cys Gly Arg Pro Arg Leu Gly Leu Trp Ala Val Leu Pro Gly Arg Ser Leu Ser Ala Pro Ala Ser Gly Val Leu Arg Thr Val Ala Arg Ala Ala Ser Pro 390 Gln Ser Phe Pro Pro Arg Pro Ser Thr Ser Gly Gln Trp Gly Arg Arg 410 Ser Pro Phe Thr Ser Val Xaa Gly Xaa Gly Pro Ser Tyr Leu Thr Gln 425 Leu Gln Pro Gly Gly Leu Gly Gly Ala Cys Asn Val Gly Met Thr Gly Ser Lys Thr Ser Ala Leu Gly Cys Phe Leu Ser Ala Trp Gln Glu Pro Gln Asp Cys Gly Arg Arg Met Trp Pro Trp Ala Phe Val Leu Phe Pro His Gly Pro Gly Pro Ser Leu Leu Ala Pro Ala Thr Ala Ala Arg Pro 490 485

<210> 133 <211> 49

Asp Met Ala Leu Pro Leu Leu Gln Ser Trp Xaa

505

Tringpourse of the con-

```
85
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> SITE
 <222> (49)
 <223> Xaa equals stop translation
 <400> 133
Met Arg Leu Leu Leu Leu Leu Val Ala Ala Ser Ala Met Val Arg
                                     10
Ser Glu Ala Ser Ala Asn Leu Gly Gly Val Pro Ser Lys Arg Leu Lys
Met Gln Tyr Ala Thr Gly Pro Leu Leu Lys Phe Gln Ile Cys Val Ser
Xaa
<210> 134
<211> 131
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (64)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (65)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (131)
<223> Xaa equals stop translation
<400> 134
Met Leu Met Pro Val His Phe Leu Leu Leu Leu Leu Leu Leu Gly
                                     10
Gly Pro Arg Thr Gly Leu Pro His Lys Phe Tyr Lys Ala Lys Pro Ile
Phe Ser Cys Leu Asn Thr Ala Leu Ser Glu Ala Glu Lys Gly Gln Trp
Glu Asp Ala Ser Leu Leu Ser Lys Arg Ser Phe His Tyr Leu Arg Xaa
                        55
Xaa Thr Pro Leu Arg Glu Arg Arg Arg Arg Ala Lys Arg Lys Arg Leu
```

Ser Pro Ser Leu Gly Pro Gly Val Glu Pro Glu Ala Pro Gly Thr Asp 85 90 95

Thr Cys Pro Lys His Ser Pro Gly Glu Ser His Ala Arg Thr Arg Pro

. 86

```
Arg Val Pro Thr Ala Pro Ser Ser Pro Cys Pro Ser Thr Ser Pro Pro
                           120
Thr Ser Xaa
   130
<210> 135
<211> 44
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (25)
<223> Xaa equals any of the naturally occurring L-amino acids
<221> SITE
<222> (29)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (44)
<223> Xaa equals stop translation
<400> 135
Met Ala Phe Leu Gln Ser Ala Ser Tyr Val Met Val Ile Leu Cys Ala
                                     10
Cys Val Ile Ile Ile Gly Ile Leu Xaa Tyr Ala Phe Xaa Phe Glu Thr
Leu Ser Pro Lys Lys Arg Arg Asp Ile Glu Ile Xaa
<210> 136
<211> 92
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (92)
<223> Xaa equals stop translation
Met Gln Leu Ile Glu Ser Arg Phe His Phe Arg Cys Val Trp Ile Leu
His Leu Leu Ala Leu Phe Ser Thr Trp Pro Pro Lys Asp Pro Glu Gly
Ser Pro Pro Ser Ala Thr Ser Ser Pro Leu Thr Pro His Leu Ser Leu
Thr Leu Pro Phe Lys Gln Ala Pro Val Ser Asn Val Ser Ser Ala Ile
His Val Met Leu Asp Lys Ser Val Ser Leu Ser Glu Ile Gln Phe Ser
```

His Met Pro Asn Gly Lys Arg Ala Ser Thr Leu Xaa 85

<210> 137

<211> 267

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (267)

<223> Xaa equals stop translation

<400> 137

Met Glu Leu Leu Thr Ala Leu Leu Arg Leu Phe Leu Ser Arg Pro Ala 1 5 10 15

Glu Cys Gln Asp Met Leu Gly Arg Leu Leu Tyr Tyr Cys Ile Glu Glu 20 25 30

Glu Lys Asp Met Ala Val Arg Asp Arg Gly Leu Phe Tyr Tyr Arg Leu 35 40 45

Leu Leu Val Gly Ile Asp Glu Val Lys Arg Ile Leu Cys Ser Pro Lys 50 55 60

Ser Asp Pro Thr Leu Gly Leu Leu Glu Asp Pro Ala Glu Arg Pro Val 65 70 75 80

Asn Ser Trp Ala Ser Asp Phe Asn Thr Leu Val Pro Val Tyr Gly Lys  $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95 \hspace{1.5cm}$ 

Ala His Trp Ala Thr Ile Ser Lys Cys Gln Gly Ala Glu Arg Cys Asp 100 105 110

Pro Glu Leu Pro Lys Thr Ser Ser Phe Ala Ala Ser Gly Pro Leu Ile 115 120 125

Pro Glu Glu Asn Lys Glu Arg Val Gln Glu Leu Pro Asp Ser Gly Ala 130 135 140

Leu Met Leu Val Pro Asn Arg Gln Leu Thr Ala Asp Tyr Phe Glu Lys 145 · 150 155 160

Thr Trp Leu Ser Leu Lys Val Ala His Gln Gln Val Leu Pro Trp Arg 165 170 175

Gly Glu Phe His Pro Asp Thr Leu Gln Met Ala Leu Gln Val Val Asn 180 185 190

Ile Gln Thr Ile Ala Met Ser Arg Ala Gly Ser Arg Pro Trp Lys Ala 195 200 205

Tyr Leu Ser Ala Gln Asp Asp Thr Gly Cys Leu Phe Leu Thr Glu Leu 210 215 220

Leu Leu Glu Pro Gly Asn Ser Glu Met Gln Ile Ser Val Lys Gln Asn 225 230 235 240

Glu Ala Arg Thr Glu Thr Leu Asn Ser Phe Ile Ser Val Leu Glu Thr 245 250 255

Val Ile Gly Thr Ile Glu Glu Ile Lys Ser Xaa

260 265

<210> 138

<211> 434

<212> PRT

<213> Homo sapiens

<400> 138

Met Ala Pro Glu Gly Leu Val Pro Ala Val Leu Trp Gly Leu Ser Leu

Phe Leu Asn Leu Pro Gly Pro Ile Trp Leu Gln Pro Ser Pro Pro Pro

Gln Ser Ser Pro Pro Pro Gln Pro His Pro Cys His Thr Cys Arg Gly

Leu Val Asp Ser Phe Asn Lys Gly Leu Glu Arg Thr Ile Arg Asp Asn

Phe Gly Gly Gly Asn Thr Ala Trp Glu Glu Glu Asn Leu Ser Lys Tyr

Lys Asp Ser Glu Thr Arg Leu Val Glu Val Leu Glu Gly Val Cys Ser

Lys Ser Asp Phe Glu Cys His Arg Leu Leu Glu Leu Ser Glu Glu Leu 105

Val Glu Ser Trp Trp Phe His Lys Gln Gln Glu Ala Pro Asp Leu Phe

Gln Trp Leu Cys Ser Asp Ser Leu Lys Leu Cys Cys Pro Ala Gly Thr

Phe Gly Pro Ser Cys Leu Pro Cys Pro Gly Gly Thr Glu Arg Pro Cys 150

Gly Gly Tyr Gly Gln Cys Glu Gly Glu Gly Thr Arg Gly Gly Ser Gly

His Cys Asp Cys Gln Ala Gly Tyr Gly Glu Ala Cys Gly Gln Cys

Gly Leu Gly Tyr Phe Glu Ala Glu Arg Asn Ala Ser His Leu Val Cys 200

Ser Ala Cys Phe Gly Pro Cys Ala Arg Cys Ser Gly Pro Glu Glu Ser

Asn Cys Leu Gln Cys Lys Lys Gly Trp Ala Leu His His Leu Lys Cys

Val Asp Ile Asp Glu Cys Gly Thr Glu Gly Ala Asn Cys Gly Ala Asp

Gln Phe Cys Val Asn Thr Glu Gly Ser Tyr Glu Cys Arg Asp Cys Ala 265

Lys Ala Cys Leu Gly Cys Met Gly Ala Gly Pro Gly Arg Cys Lys Lys

Cys Ser Pro Gly Tyr Gln Gln Val Gly Ser Lys Cys Leu Asp Val Asp

295 290 300 Glu Cys Glu Thr Glu Val Cys Pro Gly Glu Asn Lys Gln Cys Glu Asn 310 Thr Glu Gly Gly Tyr Arg Cys Ile Cys Ala Glu Gly Tyr Lys Gln Met 325 330 Glu Gly Ile Cys Val Lys Glu Gln Ile Pro Gly Ala Phe Pro Ile Leu 345 Thr Asp Leu Thr Pro Glu Thr Thr Arg Arg Trp Lys Leu Gly Ser His 360 Pro His Ser Thr Tyr Val Lys Met Lys Met Gln Arg Asp Glu Ala Thr Phe Pro Gly Leu Tyr Gly Lys Gln Val Ala Lys Leu Gly Ser Gln Ser 390 395 Arg Gln Ser Asp Arg Gly Thr Arg Leu Ile His Val Ile Asn Ala Leu Pro Pro Thr Cys Pro Pro Gln Lys Lys Lys Lys Lys Lys Lys Gly 425 Gly Arg <210> 139 <211> 237 <212> PRT <213> Homo sapiens <220> <221> SITE <222> (55) <223> Xaa equals any of the naturally occurring L-amino acids <220> <221> SITE <222> (237) <223> Xaa equals stop translation <400> 139 Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Leu Arg Phe Leu Phe Leu Gly Leu Ser Ala Leu Ala Pro Pro Ser Arg Ala Gln Leu Gln Leu His Leu Pro Ala Asn Arg Leu Gln Ala Val Glu Gly Gly Val Val Leu Pro Ala Trp Tyr Xaa Leu His Gly Glu Val Ser Ser Ser Gln Pro Trp Glu Val Pro Phe Val Met Trp Phe Phe Lys Gln Lys Glu Lys Glu Asp Gln Val Leu Ser Tyr Ile Asn Gly Val Thr Thr Ser Lys Pro

Gly Trp Gly Xaa

100

Gly Val Ser Leu Val Tyr Ser Met Pro Ser Arg Asn Leu Ser Leu Arg 105 Leu Glu Gly Leu Gln Glu Lys Asp Ser Gly Pro Tyr Ser Cys Ser Val 120 Asn Val Gln Asp Lys Gln Gly Lys Ser Arg Gly His Ser Ile Lys Thr Leu Glu Leu Asn Val Leu Val Pro Pro Ala Pro Pro Ser Cys Arg Leu Gln Gly Val Pro His Val Gly Ala Asn Val Thr Leu Ser Cys Gln Ser Pro Arg Ser Lys Pro Ala Val Gln Tyr Gln Trp Asp Arg Gln Leu Pro Ser Phe Gln Thr Phe Phe Ala Pro Ala Leu Asp Val Ile Arg Gly Ser Leu Ser Leu Thr Asn Leu Ser Ser Ser Met Ala Gly Val Tyr Val Cys 215 Lys Ala His Asn Glu Val Gly Thr Ala Asn Val Met Xaa <210> 140 <211> 100 <212> PRT <213> Homo sapiens <220> <221> SITE <222> (78) <223> Xaa equals any of the naturally occurring L-amino acids <220> <221> SITE <222> (100) <223> Xaa equals stop translation <400> 140 Met Thr Trp Gly Thr Trp Leu Val His Thr Phe Leu Cys Ser Val Ala Ser Ala Lys Thr Leu Lys Ser Val Arg Lys Tyr Leu Ser Leu Cys Ser Pro Ile Gly Ser Ser Phe Val Val Ser Glu Gly Ser Tyr Leu Asp Ile Ser Asp Trp Leu Asn Pro Ala Lys Leu Ser Leu Tyr Tyr Gln Ile Asn Ala Thr Ser Pro Trp Val Arg Asp Leu Cys Gly Gln Arg Xaa Thr Asp 70 Ala Cys Glu Gln Leu Cys Asp Pro Glu Thr Gly Glu Pro Trp Glu Pro

a management of the second

```
<210> 141
<211> 70
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (56)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (70)
<223> Xaa equals stop translation
Met Tyr Lys Ala Phe Leu Leu Ala Leu Thr Thr Val Phe Tyr Leu Gly
Ile Leu Asn Ser His Phe His Gly Cys Val Leu Cys Asn Thr Asn Val
Phe Lys Trp Tyr Ser His Pro Val Gly Gln Leu Ser Lys Arg Cys Leu
Asp Ala Ser Lys Leu Ala Tyr Xaa Lys Phe Thr Ser Ile Lys Tyr Gln
                         55
Cys Asn Tyr Ser Thr Xaa
<210> 142
<211> 62
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (62)
<223> Xaa equals stop translation
<400> 142
Met His Glu Cys Gln Ser Phe Pro Leu Cys Val His Leu Arg Leu Val
Leu Leu Ser Phe Lys Thr Gln Val His Glu Phe His Glu Val Phe
                                25
Pro His Tyr Ser His Phe Asn Phe Pro Ser Leu Asn Asn Tyr Asp Ile
                            40
Asn Leu Leu Asn His Glu Leu Trp His Thr Thr Pro Xaa
                        55
<210> 143
<211> 89
<212> PRT
<213> Homo sapiens
<220>
```

```
<221> SITE
<222> (73)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (89)
<223> Xaa equals stop translation
<400> 143
Met Asn Leu Val Gly Phe Cys Leu Phe Ile Cys Leu Leu Met Leu
Leu Leu Leu Leu Phe Ser Lys Phe Ser Ile Val Glu Lys Tyr Ala
Ala Pro Glu Glu Met Ile Gly His Ser Pro Ala Trp Cys Trp Thr Leu
Ser Ser Leu Ala Gln Pro Ser Pro Asp Leu Ser Val Tyr Leu Thr Leu
Val Phe Tyr Ile Leu Gln Arg Gln Xaa Gln Asn Asn Pro Asn Leu Thr
 65
Gln Ile Pro Gly Ile His Leu Ile Xaa
                 85
<210> 144
<211> 79
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (40)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (46)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (60)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (79)
<223> Xaa equals stop translation
<400> 144
Met Met Gly Asn Asp Leu Leu His Leu Val Phe Leu Gln Leu Ser Leu
Gly Val Ala Ser Gly Gly Trp Ile Leu Trp Pro Leu Arg Arg Leu Gly
                                  25
Gly Ala His Thr Ser Lys Asp Xaa Asn Lys Asn Gly His Xaa Val His
                             40
```

```
Cys Leu Val Ile Thr Asn Glu Pro Leu Val Ser Xaa Lys Lys Ile Gly 50 55 60
```

Leu Ser Ser Pro His Thr Cys Pro Ser Thr Leu Gln Gln Phe Xaa 65 70 75

<210> 145

<211> 91

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (91)

<223> Xaa equals stop translation

<400> 145

Met Met Val Trp Asn Leu Phe Pro Cys Phe Pro Pro Leu Leu Leu Leu 1 5 10 15

Gln Phe Ile Asp Cys Gln Gln Ser Ser Glu Ile Glu Gln Gly Phe Thr 20 25 30

Arg Ser Leu Leu Gly His Pro Ile Phe Phe Cys Pro Asp Pro Cys Trp 35 40 45

Gln Ser Cys Met Asn Cys Val Ile Leu Leu Ser Ala Phe Phe Leu
50 55 60

Phe Asp Lys Met Asp Ile Lys Asn Ser Cys Cys Ala Lys Val Ser Ser 65 70 75 80

Leu Leu Gln Glu Glu Asn Gln Phe Phe Xaa 85 90

<210> 146

<211> 69

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (69)

<223> Xaa equals stop translation

<400> 146

Met Tyr Leu Gly Ser Arg Ile Val Lys Ala Leu Phe Phe Leu Leu Phe 1 5 10 15

Cys Ile Phe His Ile Trp Tyr Asn Glu His Val Leu Arg Thr Val Leu 20 25 30

Asp Leu Arg Lys Tyr Ala Asn Thr Val Gln Ile Val Leu Ala Ser Pro

Met Pro Ser Ser Ser Ile Ala Asn Val Ser Thr Leu Val Trp Cys Val 50 60

Cys Cys Asn Gly Xaa

65

```
<210> 147
<211> 44
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (44)
<223> Xaa equals stop translation
<400> 147
Met Lys Cys Thr Glu Lys Cys Val Val Val Phe Phe Thr Phe Val Leu
Tyr Met Tyr Val Tyr Trp Val Leu Trp Ala Val Glu Ala Lys Leu Thr
Ser His Val Ala His Glu Met Leu Val Ser Cys Xaa
<210> 148
<211> 85
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (71)
<223> Xaa equals any of the naturally occurring L-amino acids
<221> SITE
<222> (85)
<223> Xaa equals stop translation
Met Gly Cys Ile Pro Leu Ile Lys Ser Ile Ser Asp Trp Arg Val Ile
Ala Leu Ala Ala Leu Trp Phe Cys Leu Ile Gly Leu Ile Cys Gln Ala
                                 25
Leu Cys Ser Glu Asp Gly His Lys Arg Arg Ile Leu Thr Leu Gly Leu
                             40
Gly Phe Leu Val Ile Pro Phe Leu Pro Ala Ser Asn Leu Phe Phe Arg
Val Gly Phe Val Val Ala Xaa Cys Ser Ser Thr Ser Pro Ala Leu Gly
Thr Val Cys Cys Xaa
<210> 149
<211> 64
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (64)
```

```
<223> Xaa equals stop translation
```

<400> 149

Met Phe Ile Leu Leu Ile Val Phe Val Phe Ser Lys Ser Lys Gln Val 1 5 10 15

Leu Ser Ile Cys Leu Lys Ile Phe Lys Val Glu Ile Asn Ser Ile Ser 20 25 30

Phe Cys Lys Asn Lys Lys Tyr Lys Asp Leu Pro Tyr Ala Phe Ala Ser 35 40 45

Glu Lys Thr Gly Arg Thr Tyr Ser Asn Val Asn Asn Asp Tyr Leu Xaa 50 55 60

<210> 150

<211> 62

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (62)

<223> Xaa equals stop translation

<400> 150

Met Ile Val Tyr Trp Met Ile Trp Ala Leu Arg Ser Pro Leu Thr Thr 1 5 10 15

Ala Gln Asn Ile His Ser Ser Thr Ala Leu Thr Glu Phe Ala Lys Cys 20 25 30

Ile Lys Glu Val Thr Trp Arg Val Arg Ser Tyr Glu Thr Ile Cys Arg 35 40 45

Lys Trp Gly Lys Lys Gly His Met Ala Gln Leu Lys Leu Xaa 50 60

<210> 151

<211> 83

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (83)

<223> Xaa equals stop translation

<400> 151

Met Arg Phe Phe Leu Glu Cys Val Leu Leu Ile Cys Phe Arg Ala Met

1 5 10 15

Ser Ala Ile Tyr Thr His Thr Ser Ile Gly Asn Ala Gln Lys Leu Phe  $\frac{20}{20}$ 

Thr Asp Gly Ser Ala Phe Arg Arg Val Arg Glu Pro Leu Pro Lys Glu
35 40 45

Gly Lys Ser Trp Pro Gln Leu Glu Gln Ala Cys Leu Gly Pro Cys Ser

60 55 50

Val Phe Gln Leu Gln Thr Ala Cys Ile Ile Pro Ser Cys Tyr Ser Ser 70

Phe Thr Xaa

<210> 152

<211> 47

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (47)

<223> Xaa equals stop translation

<400> 152

Met Cys Cys Ala Ser His Pro Cys Gln Arg Glu Gly Trp Leu Cys Val 10

Ile Phe Thr Val Phe Leu Lys Val Thr Val Cys'Val Phe Thr Phe Val

Gln Ile Thr Gly Ser Lys Ala Ala Asn Ser Ala Ile Thr Cys Xaa

<210> 153

<211> 188

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (188)

<223> Xaa equals stop translation

<400> 153

Met Ala Cys Lys Gly Leu Leu Gln Gln Val Gln Gly Pro Arg Leu Pro

Trp Thr Arg Leu Leu Leu Leu Leu Val Phe Ala Val Gly Phe Leu

Cys His Asp Leu Pro Val Thr Gln Leu Leu Pro Gly Trp Leu Gly Glu

Thr Leu Pro Leu Trp Gly Ser His Leu Leu Thr Val Val Arg Pro Ser 55

Leu Gln Leu Ala Trp Ala His Thr Asn Ala Thr Val Ser Phe Leu Ser

Ala His Cys Ala Ser His Leu Ala Trp Phe Gly Asp Ser Leu Thr Ser

Leu Ser Gln Arg Leu Gln Ile Gln Leu Pro Asp Ser Val Asn Gln Leu 105 100

Leu Arg Tyr Leu Arg Glu Leu Pro Leu Leu Phe His Gln Asn Val Leu 120

<400> 155

```
Leu Pro Leu Trp His Leu Leu Clu Ala Leu Ala Trp Ala Gln Glu
     130 135
                             140
 His Cys His Glu Ala Cys Arg Gly Glu Val Thr Trp Asp Cys Met Lys
                   150
 Thr Gln Leu Ser Glu Ala Val His Trp Thr Trp Leu Cys Tyr Arg Thr
 Leu Gln Trp Leu Ser Trp Thr Gly His Leu Pro Xaa
             180
 <210> 154
 <211> 114
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> SITE
 <222> (114)
 <223> Xaa equals stop translation
 <400> 154
 Met Ile Phe Ser Met Pro Gln Gln Gly Ser Ser Trp Phe Leu Ser Ala
Phe Leu Ser Trp Pro Leu Ala Leu Ala Pro Ala Leu Thr Pro Thr Pro
Ala Pro Ala Arg Ala Pro Gly Ala Pro Arg Ala Ala Gly Ala Pro Gly
Arg Val Ala Ala Gly Arg Gly Thr Cys Ala Gly Ala Leu Ala Pro Gly
Gln Glu Ala Trp Ser Ala Val Trp Glu Pro Gly Leu Phe Ile Trp Val
Glu His Pro Leu Gly Cys Gln Gly His Gly Leu Asp Arg Phe Pro Leu
Pro Thr Ala Leu Pro Leu Gln Gly Gly His Ala Ala Cys Cys Pro Gln
                               105
Leu Xaa
<210> 155
<211> 293
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (293)
<223> Xaa equals stop translation
```

Met Gly Ile Gln Thr Ser Pro Val Leu Leu Ala Ser Leu Gly Val Gly

10

Leu Val Thr Leu Leu Gly Leu Ala Val Gly Ser Tyr Leu Val Arg Arg 20 25 30

Ser Arg Arg Pro Gln Val Thr Leu Leu Asp Pro Asn Glu Lys Tyr Leu 35 40 45

Leu Arg Leu Leu Asp Lys Thr Thr Val Ser His His Thr Leu Gly Leu 50 55 60

Pro Val Gly Lys His Ile Tyr Leu Ser Thr Arg Ile Asp Gly Ser Leu 65 70 75 80

Val Ile Arg Pro Tyr Thr Pro Val Thr Ser Asp Glu Asp Gln Gly Tyr

Val Asp Leu Val Ile Lys Val Tyr Leu Lys Gly Val His Pro Lys Phe 100 105 110

Pro Glu Gly Gly Lys Met Ser Gln Tyr Leu Asp Ser Leu Lys Val Gly

Asp Val Val Glu Phe Arg Gly Pro Ser Gly Leu Leu Thr Tyr Thr Gly

Lys Gly His Phe Asn Ile Gln Pro Asn Lys Lys Ser Pro Pro Glu Pro 145 150 155 160

Arg Val Ala Lys Lys Leu Gly Met Ile Ala Gly Gly Thr Gly Ile Thr 165 170 175

Pro Met Leu Gln Leu Ile Arg Ala Ile Leu Lys Val Pro Glu Asp Pro

Thr Gln Cys Phe Leu Leu Phe Ala Asn Gln Thr Glu Lys Asp Ile Ile

Leu Arg Glu Asp Leu Glu Glu Leu Gln Ala Arg Tyr Pro Asn Arg Phe 210 215 220

Lys Leu Trp Phe Thr Leu Asp His Pro Pro Lys Asp Trp Ala Tyr Ser 225 230 235 240

Lys Gly Phe Val Thr Ala Asp Met Ile Arg Glu His Leu Pro Ala Pro

Gly Asp Asp Val Leu Val Leu Cys Gly Pro Pro Pro Met Val Gln

Leu Ala Cys His Pro Asn Leu Asp Lys Leu Gly Tyr Ser Gln Lys Met 275 280 285

Arg Phe Thr Tyr Xaa 290

<210> 156

<211> 87

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (87)

<223> Xaa equals stop translation

Met Val Met Val Phe Phe Leu Thr Phe Ser Gly Ser His Gly Cys Val Pro Thr Ser Gln Pro Trp Lys Asp Ala Glu Asp Gln Val Gly Cys Val . 25 His Ala Val Ala Trp Val Asn Ser Ala Leu Tyr Thr Val Leu Cys Pro 40 Phe Leu Gly Lys Pro Lys Cys Ser Phe Ser Phe Asp Arg Asn Glu Ser Glu Asp Leu Asn Lys Gln Glu Val Lys Cys Arg Ala Val Pro Val Ser 65 70 75 80 Val Ser Ser Ser Met Leu Xaa 85 <210> 157 <211> 107 <212> PRT <213> Homo sapiens <220> <221> SITE <222> (107) <223> Xaa equals stop translation <400> 157 Met Leu Ala Thr Met Val Val Gln Ile Leu Arg Leu Arg Pro His Thr 10 Gln Lys Trp Ser His Val Leu Thr Leu Leu Gly Leu Ser Leu Val Leu Gly Leu Pro Trp Ala Leu Ile Phe Phe Ser Phe Ala Ser Gly Thr Phe Gln Leu Val Val Leu Tyr Leu Phe Ser Ile Ile Thr Ser Phe Gln Gly Phe Leu Ile Phe Ile Trp Tyr Trp Ser Met Arg Leu Gln Ala Arg Gly Gly Pro Ser Pro Leu Lys Ser Asn Ser Asp Ser Ala Arg Leu Pro Ile 90 Ser Ser Gly Ser Thr Ser Ser Ser Arg Ile Xaa 100 <210> 158 <211> 59

<211> 59
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (59)
<223> Xaa equals stop translation

ţ

```
<400> 158
Met Ala Trp Arg Val Trp Cys Leu Trp Gly Ile Pro Pro Leu Phe Cys
Ser Pro Gly Thr Leu Ser Cys Val Cys Val Ser Phe Leu Ser Pro Gly
Asn Gly Met Ala Ser Glu His His Pro Arg Ser Ile Phe Pro Leu Gln
Asn Asp Val Ser Ser His Val Cys Phe Cys Xaa
                         55
<210> 159
<211> 41
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (41)
<223> Xaa equals stop translation
<400> 159
Met Arg Ser Asp Cys Val Leu Ile Trp Gln Leu Val Gly Val Leu Leu
Ala Ser Gly Leu Ser Gly Asp Arg Ala Pro Leu Ile Val Leu Thr Ala
Cys Asp Lys Ala Trp Ala Thr Val Xaa
<210> 160
<211> 66
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (29)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (35)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (63)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (64)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (66)
<223> Xaa equals stop translation
```

```
<400> 160
 Met Trp Ala Cys Trp Gly Met Leu Gly Cys Ile Pro Leu Phe Val Pro
Trp Val Pro Val Leu Gly Lys His Phe Ser Gly Cys Xaa Tyr Leu Cys
Gly Arg Xaa Pro Cys Trp Ile Ala Phe Ile Cys Val Arg Thr Pro Cys
Gly Pro Thr Thr Ala Pro Thr Ala Thr Leu Lys Trp Ser Pro Xaa Xaa
Thr Xaa
<210> 161
<211> 47
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (47)
<223> Xaa equals stop translation
<400> 161
Met Arg Tyr Trp Thr Asp Met Arg Arg Asn Tyr Arg Val Thr Tyr Gln
Val Val Leu Leu Phe Leu Cys Phe Ser Leu Leu Thr Glu Cys Lys Thr
Phe Glu Pro Arg Ser Glu Arg Ser Leu Phe Ser Tyr Pro Leu Xaa
<210> 162
<211> 141
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (141)
<223> Xaa equals stop translation
<400> 162
Met Phe Ala Gly Leu Phe Phe Leu Phe Phe Val Arg Phe Gly Ile Gly
Arg Gln Leu Leu Ile Lys Phe Pro Trp Phe Phe Ser Phe Gly Tyr Phe
                             25
Ser Lys Gln Gly Pro Thr Gln Lys Gln Ile Asp Ala Ala Ser Phe Thr
Leu Thr Phe Phe Gly Gln Gly Tyr Ser Gln Gly Thr Gly Thr Asp Lys
Asn Lys Pro Asn Ile Lys Ile Cys Thr Gln Val Lys Gly Pro Glu Ala
```

Gly Tyr Val Ala Thr Pro Ile Ala Met Val Gln Ala Ala Met Thr Leu 90

Leu Ser Asp Ala Ser His Leu Pro Lys Ala Gly Gly Val Phe Thr Pro

Gly Ala Ala Phe Ser Lys Thr Lys Leu Ile Asp Arg Leu Asn Lys His 120

Gly Ile Glu Phe Ser Val Ile Ser Ser Ser Glu Val Xaa 135

<210> 163

<211> 54

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (54)

<223> Xaa equals stop translation

Met Gln Glu Cys Leu Leu His Gly Cys Cys Cys Tyr Leu Leu Arg Leu 15

Gly Val Leu Gly Thr Val Gln Cys Ile Ser Thr Trp Leu Ile Leu Thr

Ala Asn Glu Gln His Arg Leu Lys Glu Thr Ser Asn Ser Gln Ser Pro

Ala Val Ser Arg Ala Xaa 50

<210> 164

<211> 168

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (168)

<223> Xaa equals stop translation

Met Cys Gly Phe Leu Ser Leu Gln Ile Met Gly Pro Leu Ile Val Leu

Val Gly Leu Cys Phe Phe Val Val Ala His Val Lys Lys Arg Asn Thr . 25

Leu Asn Ala Gly Gln Asp Ala Ser Glu Arg Glu Glu Gly Gln Ile Gln

Ile Met Glu Pro Val Gln Val Thr Val Gly Asp Ser Val Ile Ile Phe

Pro Pro Pro Pro Pro Tyr Phe Pro Glu Ser Ser Ala Ser Ala Val

चित्रकेष्ट्राच्या । जन्म

Ala Glu Ser Pro Gly Thr Asn Ser Leu Leu Pro Asn Glu Asn Pro Pro 90 **9**5 . . Ser Tyr Tyr Ser Ile Phe Asn Tyr Gly Thr Pro Thr Ser Glu Gly Ala 105 Ala Ser Glu Arg Asp Cys Glu Ser Ile Tyr Thr Ile Ser Gly Thr Asn 120 Ser Ser Ser Glu Ala Ser His Thr Pro His Leu Pro Ser Glu Leu Pro Pro Arg Tyr Glu Glu Lys Glu Asn Ala Ala Ala Thr Phe Leu Pro Leu 150 155 Ser Ser Glu Pro Ser Pro Pro Xaa 165 <210> 165 <211> 63 <212> PRT <213> Homo sapiens <220> <221> SITE <222> (63) <223> Xaa equals stop translation <400> 165 Met Ser Ile Ser Leu Ser Ser Leu Ile Leu Leu Pro Ile Trp Ile Asn Met Ala Gln Ile Gln Gln Gly Gly Pro Asp Glu Lys Glu Lys Thr Thr Ala Leu Lys Asp Leu Leu Ser Arg Ile Asp Leu Asp Glu Leu Met Lys Lys Asp Glu Pro Pro Leu Asp Phe Leu Ile Pro Trp Lys Val Xaa <210> 166 <211> 114 <212> PRT <213> Homo sapiens <220> <221> SITE <222> (114) <223> Xaa equals stop translation

<400> 166

Met His Pro Pro Leu Thr Pro Pro Thr Pro Leu Cys Leu Trp Leu Arg
1 5 10 15

Leu Leu Lys Ala Gln Ile Leu Ser Tyr Pro Val Pro Arg Phe Glu Thr

His Ser Leu Ile Ser Arg Cys Ser Gln Val Pro Pro Thr Phe Leu Trp

Asp Ile Lys Lys Gly Val Arg Gly Gln Arg Glu Pro Ser Gly Pro Leu

```
55
    50
Leu Pro Tyr Thr Leu His Cys Pro Phe Ser Pro His Gln Asn Ala Gln
                    70
Arg Arg Cys Asp Asp Ala Thr Glu Asp Tyr Ala Thr Trp Ser Asn Arg
                                     90
Ser Gly Gln His Asp Gln Leu Ser Arg Gly Cys Leu Leu Pro Phe Leu
Leu Xaa
<210> 167
<211> 62
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (37)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (39)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (62)
<223> Xaa equals stop translation
<400> 167
Met Gly Arg Leu Gly Leu Cys Leu Leu Arg Ser Leu Trp Val Pro Gln
Arg Arg Ala Thr Thr Leu Gly Trp Thr Leu Ala Leu Arg Val Leu Pro
Thr Ala Arg Ala Xaa Arg Xaa Leu Pro Val Ala Ala Asp Thr Ala Arg
                             40
Arg Ala Cys Gly Ala His Thr Arg Ile Arg Val Leu Gly Xaa
<210> 168
<211> 42
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (41)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (42)
<223> Xaa equals stop translation
```

<400> 168 Met Asp Ile Asn Phe Cys Leu Arg Gly Arg His Gly Val Leu Phe Cys Phe Val Leu Phe Cys Phe Cys His Leu Leu Thr Val Leu Ser Thr His 25 Arg Ala Phe Tyr Tyr Leu Ser Ala Xaa Xaa 40 <210> 169 <211> 43 <212> PRT <213> Homo sapiens <220> <221> SITE <222> (43) <223> Xaa equals stop translation <400> 169 Met Ile Lys Leu Gln Lys Val Ser Glu Val Ile Lys Val Leu Lys Met 5 10 Leu Leu Tyr Pro Leu Val Leu Leu Leu Ser Leu Lys Leu Asp Thr Lys 25 Ala Thr Ile Phe Ala Val Leu Glu Asp Val Xaa 35 40 <210> 170 <211> 48 <212> PRT <213> Homo sapiens <220> <221> SITE <222> (48) <223> Xaa equals stop translation <400> 170 Met Tyr Phe Phe Thr Phe Tyr Phe Ser Ile Ser Ser Phe Met Phe Phe

Leu Leu Val Ile Val Lys Ala Thr Asn Gly Pro Arg Tyr Val Val Gly

Cys Arg Arg Gln Val Ile Leu Tyr Ile Cys Ile Val Pro Asp Asp Xaa 35 40 45

<210> 171 <211> 51 <212> PRT <213> Homo sapiens <220> <221> SITE <222> (51) <223> Xaa equals stop translation

11

```
<400> 171
Met Ser Gly Phe Lys Glu Phe Asp Phe Val Val Pro Trp Trp Ser Ile
Ser Phe Leu Leu Ser Phe Leu Leu Leu Leu Ser Phe Trp Ser Leu
Trp Val Tyr Thr Phe His Gln Ile Trp Asn Ile Phe Gly Tyr Tyr Phe
Ser Lys Xaa
     50
<210> 172
<211> 57
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (57)
<223> Xaa equals stop translation
<400> 172
Met Cys Ile Ser Gly Cys Leu Phe His Cys Ser Ile Cys Leu Phe Phe
Met Leu Val Pro Tyr Cys Phe Asp Tyr Cys Leu Val Met Tyr Phe Glu
Ile Lys Thr Cys Gly Tyr Leu Leu Cys Ser Pro Cys Gln Asp Tyr
Ser Arg Ser Phe Val Ala Ser Ser Xaa
<210> 173
<211> 170
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (163)
<223> Xaa equals any of the naturally occurring L-amino acids
<400> 173
Met Ala Ala Gly Pro Gly Thr His Leu Ser Leu Phe Trp Ala Arg Ile
Ala Thr Leu Ala Val Trp Ala Ala Ala Ala Leu Val Thr Val Pro Thr
Ala Val Phe Gly Val Glu Gly Glu Val Cys Gly Val Arg Leu Cys Leu
Leu Arg Phe Pro Ser Arg Tyr Trp Leu Gly Ala Tyr Gln Leu Gln Arg
Val Val Leu Ala Phe Met Val Pro Leu Gly Val Ile Thr Thr Ser Tyr
```

WO 99/58660 PCT/US99/09847

107

```
65
                                        75
Leu Leu Leu Ala Phe Leu Gln Arg Arg Gln Arg Arg Gln Asp
Ser Arg Val Val Ala Arg Ser Val Arg Ile Leu Val Ala Ser Phe Phe
                              105
Leu Cys Trp Phe Pro Asn His Val Val Thr Leu Trp Gly Val Leu Val
                    120
Lys Phe Asp Leu Val Pro Trp Asn Ser Thr Phe Tyr Thr Ile Gln Thr
                      135
Tyr Val Phe Pro Val Thr Thr Cys Leu Ala His Ser Asn Ser Cys Leu
                  150
                                 155
Asn Pro Xaa Ala Tyr Val Leu Ser Arg Ile
                165
<210> 174
<211> 45
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (45)
<223> Xaa equals stop translation
<400> 174
Met Phe Arg Ser Ser Ile Ser Leu Met Val Phe Ser Leu Ile Leu Leu
Leu Thr Thr Glu Arg Arg Ile Leu Ala Cys Pro Pro Ile Ile Leu Asn
Ser Ser Ile Phe Leu Ser Asp Leu Ser Val Leu Pro Xaa
<210> 175
<211> 47
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (47)
<223> Xaa equals stop translation
<400> 175
Met Asn Pro Leu Ser Phe Leu Phe Cys Phe Ile Ile Cys Arg Leu Leu
                                   10
Ala Glu Asn Ala Ile Asn Ile Glu Ile Leu Thr Gly Thr Tyr Glu Asn
Phe Pro Thr Lys Ala Tyr Tyr Phe Arg Gln Arg Ser Arg Lys Xaa
                            40
```

<210> 176

```
<211> 42
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (42)
<223> Xaa equals stop translation
<400> 176
Met Ala Ser Leu Leu Arg Thr Cys Cys Val Pro Tyr Ile Val Leu Ser
                                     10
Ile Tyr Leu Asp Tyr Leu Ile Lys Ser Ser Gln Ser Leu Tyr Leu Thr
                                 25
Asp Gly Glu Ile Lys Ala His Gly Thr Xaa
<210> 177
<211> 48
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (48)
<223> Xaa equals stop translation
<400> 177
Met Leu Gln Asp Leu Leu Ser Ala Leu Trp Phe Cys His Pro Cys Cys
Leu Cys Cys Gly Leu Cys Trp Leu Gly Val Asp Ala Gly Cys Ser Gln
Gly Gly Ser Gly Cys Pro Gln Gly Lys Ile Ser Asn Asn Gly Ile Xaa
<210> 178
<211> 71
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
 <222> (71)
 <223> Xaa equals stop translation
Met Lys Phe Ala Pro Val Tyr Met Tyr Leu Ser Phe Ile Cys Leu Cys
Leu Phe Tyr Cys Asn Ser Ile Asp Thr His His Cys Phe Val Ser Asp
```

Tyr Leu Ala Phe Glu Ser Ser Met Arg Glu Ala Phe Thr Glu Leu Leu
35 40 45

```
Ile Leu Ile Lys Gly Glu Ser Asn Val Leu Lys Lys Met Gln Asn His
                        55
His Leu Cys Gln Ser Tyr Xaa
<210> 179
<211> 42
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (42)
<223> Xaa equals stop translation
<400> 179
Met Gly Leu Lys Leu Pro Ile Phe Leu Trp Phe Leu Tyr Phe Phe Ile
Pro Leu Ser Ser Cys Tyr Leu Leu Leu Pro His Leu Pro Ser Gly
Ser Trp Asp Ser Met Leu Ser Phe Pro Xaa
<210> 180
<211> 92
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (18)
<223> Xaa equals any of the naturally occurring L-amino acids
Met Ala Gly Cys Leu Gly Ser Tyr Leu Leu Val Met Ile Leu Ile Leu
Cys Xaa Ala His Phe Phe Ile Cys Gly Asn Glu Asp Asn Arg Val Leu
Arg Tyr Asn Leu Glu Gln Cys Pro Ser His Ser Lys His Val Ile Asn
Gly Ser Ser Tyr Cys Tyr Tyr Tyr Tyr Tyr Tyr Tyr Leu Glu Asp Arg
Gly Ser Val Leu Phe Ile Ile Pro Ser Pro Ala Leu Ser Thr Val Pro
Gly Thr Ile Gln Thr Cys Ile Trp Met Asn Asp Lys
                 85
<210> 181
<211> 72
<212> PRT
<213> Homo sapiens
<220>
```

<220>

```
<221> SITE
<222> (72)
<223> Xaa equals stop translation
<400> 181
Met Pro Ala Gly Val Pro Met Ser Thr Tyr Leu Lys Met Phe Ala Ala
Ser Leu Leu Ala Met Cys Ala Gly Ala Glu Val Val His Arg Tyr Tyr
Arg Pro Asp Leu Thr Ile Pro Glu Ile Pro Pro Lys Arg Gly Glu Leu
        35
Lys Thr Glu Leu Leu Gly Leu Lys Glu Arg Lys His Lys Pro Gln Val
                         55
Ser Gln Gln Glu Glu Leu Lys Xaa
<210> 182
<211> 67
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (23)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (45)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (67)
<223> Xaa equals stop translation
<400> 182
Met Ala Gly Phe Ala Ser Tyr Pro Trp Ser Asp Phe Pro Trp Cys Trp
Val Val Cys Phe Ser Phe Xaa Phe Phe Phe Leu Arg Gln Ser Glu Ser
Leu Ser Gln Lys Lys Arg Gln Val Ala Asp Glu Leu Xaa Phe Gly Gln
                             40
Ser Lys Arg Asp Ser Asp Gly Gly Trp Met Leu Arg Ser Ser Ala Gly
Asn Ser Xaa
65
<210> 183
<211> 71
<212> PRT
<213> Homo sapiens
```

```
<221> SITE
 <222> (14)
 <223> Xaa equals any of the naturally occurring L-amino acids
 <220>
 <221> SITE
 <222> (21)
 <223> Xaa equals any of the naturally occurring L-amino acids
<220>
 <221> SITE
 <222> (71)
 <223> Xaa equals stop translation
<400> 183
Met Gln Pro Ser Tyr Pro Leu Ser Trp Ser Gly Gly Val Xaa Leu Pro
                  5
Cys Leu Ala Ser Xaa Leu Thr Leu Leu Phe Leu Leu Gln Pro Leu Met
Leu Pro Leu Gly Gly Ser Gln Thr Gln Leu Gly Asn His Ser Val Val
                             40
Arg Leu Leu Pro Val Gln Arg Leu Gly Phe Ala Glu Val Pro Pro
Leu Glu Val Ala Gln Ser Xaa
<210> 184
<211> 41
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (41)
<223> Xaa equals stop translation
<400> 184
Met Ile Pro Leu Arg Arg Gly Met Val Gly Gly Leu Leu Leu Leu
Ala Thr Ala Asn Lys Leu Leu Ala Ala Ser Phe Arg Asp Leu Met Asp
Val Leu Thr Cys Pro Arg Pro Arg Xaa
<210> 185
<211> 67
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (36)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
```

```
<222> (67)
<223> Xaa equals stop translation
Met Gln His Leu Leu Leu His Ser Leu Cys Leu Ser Cys Ser Thr Met
                                    10
Ala Arg Asn Val Pro Ala Ser Pro Ser Pro Ser Ala Val Ile Val Ser
Phe Leu Arg Xaa Pro Gln Pro Cys Phe Leu Tyr Ser Leu Gln Asn Cys
                             40
Glu Ser Ile Lys Pro Leu Phe Phe Ile Asn Ser Pro Val Ser Ser Ser
                        55
                             .
Ser Leu Xaa
<210> 186
<211> 67
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (67)
<223> Xaa equals stop translation
<400> 186
Met Leu Pro Ser Trp Trp Ala Leu Gly Trp Met Thr Leu Lys Ile Leu
Gln Met Trp Val Gln Ala Cys Thr His Thr Met Glu Tyr Gly His Ser
Tyr Thr Gly Gly Val Glu Ser Gly Ser Ala Ala Trp His Leu Thr Glu
Val Gly Pro Lys Arg Thr His Asp Tyr Ala Glu Asn Trp Ile Gly Ser
                         55
Leu Ser Xaa
 65
<210> 187
<211> 49
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (49)
<223> Xaa equals stop translation
<400> 187
Met His Phe Ser Val Ala His Ser Ile Trp Gly Ile Leu Ile Leu Leu
Ser Leu Tyr Glu Gly Val Ile Ser Trp Val Phe Asn Phe Gln Met Phe
```

Thr Lys Leu Leu Cys Ala Lys His Tyr Ser His Cys Phe Glu Ser 35 40 45

Xaa

<210> 188

<211> 67

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (67)

<223> Xaa equals stop translation

<400> 188

Met Ser Leu Ile Leu Leu Gly Ser Pro Ile Ile Pro Leu Trp Ser Tyr 1 5 10 15

Thr Ser Ala Thr Gln Ala Ala Ala Leu Val Thr Ser His Val Trp Lys
20 25 30

Pro Ser Leu Glu Ala His Gln Ile Asn Ile Ser Pro Glu Pro Ser Ile 35 40 45

His Tyr Asp Arg Trp His Thr Gln Ser Asn Cys Ser Leu Ile Asn Ser 50 55 60

Leu Gln Xaa

65

<210> 189

<211> 58

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (58)

<223> Xaa equals stop translation

<400> 189

Met Lys Gln Thr Tyr Trp Gln Thr His Ile Leu Leu Val Leu Thr Leu

1 5 10 15

Tyr Phe Ile Val Leu Ala Tyr Ser Pro Phe Leu Arg Phe Leu Leu Arg 20 25 30

As Ile Gly Thr His Pro Leu Leu Cys Ala Glu Gly Ile Thr Ser Phe 35 40 45

Phe Leu Ser Tyr Lys Asn Met Leu Tyr Xaa 50 55

<210> 190

<211> 53

<212> PRT

<213> Homo sapiens

<220>

```
<221> SITE
<222> (53)
<223> Xaa equals stop translation
Met Gly Pro Asn Phe Val Val Leu Cys Leu Asn Leu Leu Gln Asp Thr
Leu Ala Tyr Ala Thr Ala Leu Leu Asn Glu Lys Glu Gln Ser Gly Ser
                                 25
Ser Asn Gly Ser Glu Ser Ser Pro Ala Asn Glu Asn Gly Asp Arg His
                             40
Leu Gln Gln Val Xaa
     50
<210> 191
<211> 44
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (44)
<223> Xaa equals stop translation
Met Ile Val Ile Ala Val Ser Leu Ser Leu Phe Cys Asp Val Val Ser
Ser Glu Cys Met Ser Cys Phe Thr Pro Lys Phe Ala Asp Ile Val Ala
                                 25
Asn Ala Tyr Gln Asn Glu Ser Tyr Ile Phe Ile Xaa
<210> 192
<211> 53
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (53)
<223> Xaa equals stop translation
Met Leu Leu Pro Val Asn Thr Leu Leu Tyr Ile Leu Leu Thr Pro Leu
                 5 ·
Cys Phe Phe Tyr Gly Thr Ser Arg Pro Pro Tyr Leu Glu Leu Val Thr
Leu Leu Lys Lys Lys Gln Ser Val Gly Phe Ser Val Cys Ile Leu
 Glu Ala Gly Arg Xaa
     50
```

<210> 193

```
<211> 41
 <212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (41)
<223> Xaa equals stop translation
<400> 193
Met Ile Ile Val Leu Phe Ser Leu Ser Phe Leu Pro Leu Leu Pro Ser
Leu Leu Ser Ser Tyr Leu Cys Leu Phe Phe Pro Ser Gln Ser
                                 25
Pro Ser Ser Phe Phe Phe His Leu Xaa
<210> 194
<211> 72
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (25)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (72)
<223> Xaa equals stop translation
<400> 194
Met Thr Glu Gly His Val Phe Cys Phe Ala Leu Cys Cys Val Leu Val
Phe Leu Ser Met Thr Leu Leu Val Xaa Ser Leu Glu Lys Thr Asn Ala
Gly Gly Val Ile Ala Trp Gly Cys Ile Ser Val Ser Val Gln Thr Gln
Thr Phe Ser Ser Pro Thr Ser Tyr Gln Thr Leu Phe Ile Ala Cys Lys
Leu Trp Asn Pro Arg Lys Leu Xaa
<210> 195
<211> 60
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (37)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
```

```
<222> (60)
<223> Xaa equals stop translation
<400> 195
Met Ile Gly Leu Thr Ile Ile Ala Cys Phe Ala Val Ile Val Ser Ala
                                    10
Lys Arg Ala Val Glu Arg His Glu Ser Leu Thr Ser Trp Asn Leu Ala
Lys Lys Ala Lys Xaa Arg Glu Glu Ala Ala Leu Ala Ala Gln Ala Lys
                            40
Ala Asn Asp Ile Leu Ser Asp Lys Val Phe Thr Xaa
                         55
<210> 196
<211> 81
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (81)
<223> Xaa equals stop translation
<400> 196
Met Leu Thr Gly Ser His Pro Gln Thr His Thr Cys Trp Leu Gly Thr
Arg Leu Trp Val Val Leu Ser Cys Leu Ala Ser Leu Thr Val Ser Asp
Cys Pro Glu His Gln Val Ser Ser Cys Ile Ser Ser Trp Pro Gly Glu
                             40
His Ser Val Ser Phe Gln Pro Phe Pro Phe Pro His Ser Leu Gly
Gly Thr Glu Val Gly Val Glu Glu Ser Gln Met Ala Gly Val Gly Ile
 65
Xaa
<210> 197
<211> 79
 <212> PRT
<213> Homo sapiens
 <220>
 <221> SITE
 <222> (79)
 <223> Xaa equals stop translation
Met Leu His Met Phe Leu Leu Leu Tyr Phe Phe Lys Asn Ser Lys
                                      10
 Ser Leu Phe Met Cys His Trp Ile Asn Leu Ser Asp Asn Val Ser His
```

WO 99/58660 PCT/US99/09847

117

Lys Asn Leu Leu Asp Arg Leu Phe Phe Ser Cys Thr Leu Asn Gly Gly 40 Val Glu Val Ser Gly Glu Gln Trp Ile Thr Lys Ser Lys Leu Trp Lys 55 Ile Val Lys Arg Met Glu Lys Leu Asn Thr Arg Tyr Gln Lys Xaa 70 <210> 198 <211> 116 <212> PRT <213> Homo sapiens <220> <221> SITE <222> (116) <223> Xaa equals stop translation <400> 198 Met Cys Met Ser Val Gly Ala His Ile Cys Val Cys Wat Cys Val Leu His Val Cys Gly Glu Val Ser Ser Val Arg Ala Cys Asp Ser Trp Asp Leu His Ser Cys Val Leu Pro Gln Arg Pro Gln Pro Gly Gln Ala Leu Thr Phe Cys Ala Pro Cys Ile Glu Pro Val Cys Cys Gly Cys Leu Trp Pro Pro Met Gly Asn Ser Gly Glu Leu Ala Gly Gly Cys Ala Gln Ser Pro Gly Cys Cys Tyr Cys His Ser Ala Gln Leu Gly Gln Ala Val Ala Pro Glu Gly Val Arg Arg Glu Leu Trp Glu His Leu Tyr Ser Val Leu Lys Xaa 115 <210> 199 <211> 51 <212> PRT <213> Homo sapiens <220> <221> SITE <222> (51) <223> Xaa equals stop translation Met Pro Gly Cys Trp Val Leu Glu Leu Val Asp His Trp Leu Ala Ser Leu Trp Leu Val Val Ala Val Thr Glu Cys Ala Ala Arg Pro Glu Trp

Leu Phe Trp Leu Cys Pro Pro Ser Cys Ser Met Pro Gly Gly Gly

```
45
                             40
        35
Asp Thr Xaa
    50
<210> 200
<211> 58
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (58)
<223> Xaa equals stop translation
Met Lys Phe Tyr Ala Val Leu Leu Ser Ile Cys Leu Leu Leu Ser Cys
Trp Cys Ala Cys His Val Arg Asp Cys Asn Leu Ile Cys Leu Phe Ser
                                25
Thr Val Lys Ala Ile Thr Arg Glu Leu Leu Gln Leu Pro Ser Tyr Val
                             40
Lys Arg Phe Phe Phe Asn Ser Leu Arg Xaa
<210> 201
<211> 57
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (57)
<223> Xaa equals stop translation
<400> 201
Met Leu Val Ala Pro Phe Asn Leu Leu Phe Glu Met Ala Pro Phe Asn
Ile Phe Leu Phe Pro Gln Trp Gly Leu Leu Trp Leu Met Leu Tyr Leu
Leu Tyr Val Phe Gln Ala Ser Leu Arg Thr Pro Glu Leu Thr Trp Glu
Arg Val Arg Ser Gln Val Asp Gln Xaa
     50
 <210> 202
 <211> 50
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> SITE
 <222> (50)
 <223> Xaa equals stop translation
```

```
<400> 202
Met Leu Leu Thr Cys Ile Leu Leu His Leu Trp Ile Val Val Asp Ser
Val Ile Tyr Met Lys Pro Thr Ser Arg Asp Gly Cys Leu Leu Ser Ala
Leu Gln Met Ala Arg Ser Leu Ile Ile Gln Leu Asn His Ser Ser Ser
                             40
Asn Xaa
     50
<210> 203
<211> 45
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (45)
<223> Xaa equals stop translation
<400> 203
Met Pro Leu Cys Gly Leu Tyr Cys Leu Arg Ile Leu Met Phe Pro Leu
Arg Ser Ala Asn Ser Val Pro Leu Gln Cys Leu Pro Pro Ser Ser Leu
                                 25
Ala Asn Lys Asp Ser His Phe Arg Ala Pro Arg Lys Xaa 35 40
<210> 204
<211> 45
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (18)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (25)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (45)
<223> Xaa equals stop translation
<400> 204
Met Ser Pro Ser Pro Arg Trp Gly Phe Leu Cys Val Leu Phe Thr Ala
Val Xaa Pro Ala Pro Ser Thr Ala Xaa Val Gln Asp Lys Cys Pro Val
Asn Thr Trp Glu Ala Met Gln Ala Cys Val His Gly Xaa
```

<210> 205

```
<211> 161
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (136)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (161)
<223> Xaa equals stop translation
<400> 205
Met Ala Phe Thr Phe Ala Ala Phe Cys Tyr Met Leu Ser Leu Val Leu
Cys Ala Ala Leu Ile Phe Phe Ala Ile Trp His Ile Ile Ala Phe Asp
Glu Leu Arg Thr Asp Phe Lys Ser Pro Ile Asp Gln Cys Asn Pro Val
His Ala Arg Glu Arg Leu Arg Asn Ile Glu Arg Ile Cys Phe Leu Leu
Arg Lys Leu Val Leu Pro Glu Tyr Ser Ile His Ser Leu Phe Cys Ile
Met Phe Leu Cys Ala Gln Glu Trp Leu Thr Leu Gly Leu Asn Val Pro
Leu Leu Phe Tyr His Phe Trp Arg Tyr Phe His Cys Pro Ala Asp Ser
Ser Glu Leu Ala Tyr Asp Pro Pro Val Val Met Asn Ala Asp Thr Leu
                            120
Ser Tyr Cys Gln Lys Glu Ala Xaa Cys Lys Leu Ala Phe Tyr Leu Leu
                        135
Ser Phe Phe Tyr Tyr Leu Tyr Cys Met Ile Tyr Thr Leu Val Ser Ser
145
Xaa
<210> 206
<211> 198
<212> PRT
<213> Homo sapiens
Met Tyr Arg Glu Arg Leu Arg Thr Leu Leu Val Ile Ala Val Val Met
Ser Leu Leu Asn Ala Leu Ser Thr Ser Gly Gly Ser Ile Ser Trp Asn
```

Asp Phe Val His Glu Met Leu Ala Lys Gly Glu Val Gln Arg Val Gln 35 40 45

Val Val Pro Glu Ser Asp Val Val Glu Val Tyr Leu His Pro Gly Ala 50 55 60

Val Val Phe Gly Arg Pro Arg Leu Ala Leu Met Tyr Arg Met Gln Val 65 70 75 80

Ala Asn Ile Asp Lys Phe Glu Glu Lys Leu Arg Ala Ala Glu Asp Glu 85 90 95

Leu Asn Ile Glu Ala Lys Asp Arg Ile Pro Val Ser Tyr Lys Arg Thr 100 105 110

Gly Phe Phe Gly Lys Cys Pro Val Leu Cys Gly Asp Asp Gly Ser Gly 115 120 125

Pro Gly His Pro Val Val Cys Phe Pro Ser Gly Arg Asp Asp Trp Arg 130 135 140

His Arg Arg Arg Trp Thr Ser Arg Ser Arg Leu Leu Cys Trp Lys Ala 145 150 155 160

Leu Met Gly Ser Val Gly Ala Asp His Thr Arg Glu Leu Arg Lys Pro 165 170 175

Ser Gly Ser His Arg Pro Pro Phe Asn Val Val Ile Pro Trp Trp 180 185 190

Lys Gln Asp Asp Gly Pro 195

<210> 207

<211> 60

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (60)

<223> Xaa equals stop translation

<400> 207

Met Asn Ser Thr Leu Cys Val Val Leu Ser Leu Met Cys Met Asn Ser 1 5 10 15

Thr Leu Cys Val Val Leu Ser Leu Thr His Ser Cys Pro Ser Pro Gln
20 25 30

Val Pro Lys Val His Tyr Met Ile Phe Met Pro Leu His Leu His Ser 35 40 45

Leu Ala Leu Thr Gln Leu Ile Ile Ile Tyr Lys Xaa 50 55 60

<210> 208

<211> 82

<212> PRT

<213> Homo sapiens

<220>

```
<221> SITE
<222> (82)
<223> Xaa equals stop translation
Met Val Val Ala Gly Val Val Leu Ile Leu Ala Leu Val Leu Ala
Trp Leu Ser Thr Tyr Val Ala Asp Ser Gly Ser Asn Gln Leu Leu Gly
                                 25
Ala Ile Val Ser Ala Gly Asp Thr Ser Val Leu His Leu Gly His Val
Asp His Leu Val Ala Gly Gln Gly Asn Pro Glu Pro Thr Glu Leu Pro
His Pro Ser Glu Asp Lys Gln Val Gln Ala Ala Val Gln Arg Pro
Pro Xaa
<210> 209
<211> 43
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (18)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (37)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (43)
<223> Xaa equals stop translation
Met Ala Gly Cys Leu Gly Ser Tyr Leu Leu Val Met Ile Leu Ile Leu
Cys Xaa Ala His Phe Phe Ile Cys Gly Asn Glu Asp Asn Arg Val Leu
Arg Tyr Asn Leu Xaa Thr Met Ser Val Thr Xaa
                             40
<210> 210
<211> 97
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (97)
<223> Xaa equals stop translation
```

<400> 210 Met Tyr Arg Glu Arg Leu Arg Thr Leu Leu Val Ile Ala Val Val Met Ser Leu Leu Asn Ala Leu Ser Thr Ser Gly Gly Ser Ile Ser Trp Asn Asp Phe Val His Glu Met Leu Ala Lys Gly Glu Val Gln Arg Val Gln Val Val Pro Glu Ser Asp Val Val Glu Val Tyr Leu His Pro Gly Ala Val Val Phe Gly Arg Pro Arg Leu Ala Leu Met Tyr Arg Met Gln Leu Gln Ile Leu Thr Ser Leu Lys Arg Ser Phe Glu Gln Leu Lys Met Ser Xaa <210> 211 <211> 22 <212> PRT <213> Homo sapiens <400> 211 Trp Ala Gly Thr Gln Glu Pro Thr Gly Leu Pro Ser Thr Leu Ser Arg Ser Glu Ser Trp Asp His <210> 212 <211> 171 <212> PRT <213> Homo sapiens Glu Ile Ile His Asn Leu Pro Thr Ser Arg Met Ala Ala Arg Thr Lys Lys Lys Asn Asp Ile Ile Asn Ile Lys Val Pro Ala Asp Cys Asn Thr Arg Met Ser Tyr Tyr Tyr Lys Gly Ser Gly Lys Arg Gly Glu Met Glu Ser Trp Leu Val Met Ser Ser Trp Ser Ile Leu Asp Phe Glu Phe Leu Glu Ala Arg Pro Gln Leu Phe Asn Leu Val Tyr Thr Glu His Ser Thr 65 70 75 80

Tyr Ser Gly Arg His Tyr Thr Arg Glu Arg Gly Gly Phe Met Val Phe

Lys Asn Ser Tyr Ser Gln Leu Leu Leu Lys Arg Lys Asp Ser Leu Cys

105

Ala Phe Ile Gln Pro Met Ala Leu Asn Ile Ile His Val Pro Met Ser 115 120

Ser Lys Cys Ile Phe Pro Ala Gln Ser Gly Pro Ser Thr Phe Arg Ser 135

Leu Trp Trp Cys Pro His Pro Ile Ser Lys Cys Gln Leu Gly Leu Tyr 155 145 150

Ser Ser Gln Ile Arg Asp Ile Pro Tyr Leu Ala 165

<210> 213

<211> 35

<212> PRT

<213> Homo sapiens

<400> 213

Glu Ile Ile His Asn Leu Pro Thr Ser Arg Met Ala Ala Arg Thr Lys

Lys Lys Asn Asp Ile Ile Asn Ile Lys Val Pro Ala Asp Cys Asn Thr 25 20

Arg Met Ser 35

<210> 214

<211> 36

<212> PRT

<213> Homo sapiens

<400> 214

Tyr Tyr Tyr Lys Gly Ser Gly Lys Arg Gly Glu Met Glu Ser Trp Leu

Val Met Ser Ser Trp Ser Ile Leu Asp Phe Glu Phe Leu Glu Ala Arg

Pro Gln Leu Phe 35

<210> 215

<211> 36

<212> PRT

<213> Homo sapiens

<400> 215

Asn Leu Val Tyr Thr Glu His Ser Thr Tyr Ser Gly Arg His Tyr Thr

Arg Glu Arg Gly Gly Phe Met Val Phe Lys Asn Ser Tyr Ser Gln Leu 25 20

Leu Leu Lys Arg 35

<210> 216 <211> 35

<212> PRT

<213> Homo sapiens

<400> 216

Lys Asp Ser Leu Cys Ala Phe Ile Gln Pro Met Ala Leu Asn Ile Ile 1 5 10 15

His Val Pro Met Ser Ser Lys Cys Ile Phe Pro Ala Gln Ser Gly Pro 20 25 30

Ser Thr Phe

<210> 217

<211> 29

<212> PRT

<213> Homo sapiens

<400> 217

Arg Ser Leu Trp Trp Cys Pro His Pro Ile Ser Lys Cys Gln Leu Gly
1 5 10 15

Leu Tyr Ser Ser Gln Ile Arg Asp Ile Pro Tyr Leu Ala 20 25

<210> 218

<211> 460

<212> PRT

<213> Homo sapiens

<400> 218

Met Phe Thr Ile Lys Leu Leu Phe Ile Val Pro Leu Val Ile Ser

Ser Arg Ile Asp Gln Asp Asn Ser Ser Phe Asp Ser Leu Ser Pro Glu  $20 \\ 25 \\ 30$ 

Pro Lys Ser Arg Phe Ala Met Leu Asp Asp Val Lys Ile Leu Ala Asn  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Gly Leu Leu Gln Leu Gly His Gly Leu Lys Asp Phe Val His Lys Thr 50 55 60

Lys Gly Gln Ile Asn Asp Ile Phe Gln Lys Leu Asn Ile Phe Asp Gln 65 70 75 80

Ser Phe Tyr Asp Leu Ser Leu Gln Thr Ser Glu Ile Lys Glu Glu Glu 85 90 95

Lys Glu Leu Arg Arg Thr Thr Tyr Lys Leu Gln Val Lys Asn Glu Glu 100 105 110

Val Lys Asn Met Ser Leu Glu Leu Asn Ser Lys Leu Glu Ser Leu Leu 115 120 125

Glu Glu Lys Ile Leu Leu Gln Gln Lys Val Lys Tyr Leu Glu Gln 130 135 140

Leu Thr Asn Leu Ile Gln Asn Gln Pro Glu Thr Pro Glu His Pro Glu 145 150 155 160

Val Thr Ser Leu Lys Thr Phe Val Glu Lys Gln Asp Asn Ser Ile Lys 165 170 175 Asp Leu Leu Gln Thr Val Glu Asp Gln Tyr Lys Gln Leu Asn Gln Gln 180 His Ser Gln Ile Lys Glu Ile Glu Asn Gln Leu Arg Arg Thr Ser Ile 200 Gln Glu Pro Thr Glu Ile Ser Leu Ser Ser Lys Pro Arg Ala Pro Arg Thr Thr Pro Phe Leu Gln Leu Asn Glu Ile Arg Asn Val Lys His Asp Gly Ile Pro Ala Glu Cys Thr Thr Ile Tyr Asn Arg Gly Glu His Thr Ser Gly Met Tyr Ala Ile Arg Pro Ser Asn Ser Gln Val Phe His Val 265 Tyr Cys Asp Val Ile Ser Gly Ser Pro Trp Thr Leu Ile Gln His Arg 280 Ile Asp Gly Ser Gln Asn Phe Asn Glu Thr Trp Glu Asn Tyr Lys Tyr Gly Phe Gly Arg Leu Asp Gly Glu Phe Trp Leu Gly Leu Glu Lys Ile 315 310 Tyr Ser Ile Val Lys Gln Ser Asn Tyr Val Leu Arg Ile Glu Leu Glu 330 Asp Trp Lys Asp Asn Lys His Tyr Ile Glu Tyr Ser Phe Tyr Leu Gly 345 Asn His Glu Thr Asn Tyr Thr Leu His Leu Val Ala Ile Thr Gly Asn Val Pro Asn Ala Ile Pro Glu Asn Lys Asp Leu Val Phe Ser Thr Trp 375 Asp His Lys Ala Lys Gly His Phe Asn Cys Pro Glu Gly Tyr Ser Gly Gly Trp Trp His Asp Glu Cys Gly Glu Asn Asn Leu Asn Gly Lys 410 Tyr Asn Lys Pro Arg Ala Lys Ser Lys Pro Glu Arg Arg Arg Gly Leu Ser Trp Lys Ser Gln Asn Gly Arg Leu Tyr Ser Ile Lys Ser Thr Lys 440 Met Leu Ile His Pro Thr Asp Ser Glu Ser Phe Glu <210> 219 <211> 37 <212> PRT <213> Homo sapiens <400> 219 Met Phe Thr Ile Lys Leu Leu Leu Phe Ile Val Pro Leu Val Ile Ser WO 99/58660 PCT/US99/09847

```
Ser Arg Ile Asp Gln Asp Asn Ser Ser Phe Asp Ser Leu Ser Pro Glu
                 . 25
Pro Lys Ser Arg Phe
<210> 220
<211> 34
<212> PRT
<213> Homo sapiens
<400> 220
Ala Met Leu Asp Asp Val Lys Ile Leu Ala Asn Gly Leu Leu Gln Leu
Gly His Gly Leu Lys Asp Phe Val His Lys Thr Lys Gly Gln Ile Asn
             20
                                 25
                                                    30
Asp Ile
<210> 221
<211> 35
<212> PRT
<213> Homo sapiens
<400> 221
Phe Gln Lys Leu Asn Ile Phe Asp Gln Ser Phe Tyr Asp Leu Ser Leu
                                    10
Gln Thr Ser Glu Ile Lys Glu Glu Glu Lys Glu Leu Arg Arg Thr Thr
Tyr Lys Leu
        35
<210> 222
<211> 36
<212> PRT
<213> Homo sapiens
<400> 222
Gln Val Lys Asn Glu Glu Val Lys Asn Met Ser Leu Glu Leu Asn Ser
                                   10
Lys Leu Glu Ser Leu Leu Glu Glu Lys Ile Leu Leu Gln Gln Lys Val
                                25
Lys Tyr Leu Glu
       35
<210> 223
<211> 36
<212> PRT
<213> Homo sapiens
<400> 223
Glu Gln Leu Thr Asn Leu Ile Gln Asn Gln Pro Glu Thr Pro Glu His
                 5
                                    10
```

```
Pro Glu Val Thr Ser Leu Lys Thr Phe Val Glu Lys Gln Asp Asn Ser
                                  25
                                                      30
             20
Ile Lys Asp Leu
         35
<210> 224
<211> 35
<212> PRT
<213> Homo sapiens
<400> 224
Leu Gln Thr Val Glu Asp Gln Tyr Lys Gln Leu Asn Gln Gln His Ser
                                     1.0
Gln Ile Lys Glu Ile Glu Asn Gln Leu Arg Arg Thr Ser Ile Gln Glu
                                  25
Pro Thr Glu
         35
<210> 225
<211> 35
<212> PRT
<213> Homo sapiens
<400> 225
Ile Ser Leu Ser Ser Lys Pro Arg Ala Pro Arg Thr Thr Pro Phe Leu
                                     10
Gln Leu Asn Glu Ile Arg Asn Val Lys His Asp Gly Ile Pro Ala Glu
Cys Thr Thr
<210> 226
<211> 36
<212> PRT
<213> Homo sapiens
<400> 226
Ile Tyr Asn Arg Gly Glu His Thr Ser Gly Met Tyr Ala Ile Arg Pro
Ser Asn Ser Gln Val Phe His Val Tyr Cys Asp Val Ile Ser Gly Ser
Pro Trp Thr Leu
        35
<210> 227
<211> 36
<212> PRT
<213> Homo sapiens
<400> 227
Ile Gln His Arg Ile Asp Gly Ser Gln Asn Phe Asn Glu Thr Trp Glu
                  5
                                     10
```

PCT/US99/09847

WO 99/58660

129

```
Asn Tyr Lys Tyr Gly Phe Gly Arg Leu Asp Gly Glu Phe Trp Leu Gly
                                 25
             20
Leu Glu Lys Ile
        35
```

<210> 228 <211> 35 <212> PRT <213> Homo sapiens

<400> 228 Tyr Ser Ile Val Lys Gln Ser Asn Tyr Val Leu Arg Ile Glu Leu Glu 10

Asp Trp Lys Asp Asn Lys His Tyr Ile Glu Tyr Ser Phe Tyr Leu Gly 25

Asn His Glu 35

<210> 229 <211> 35 <212> PRT <213> Homo sapiens

<400> 229 Thr Asn Tyr Thr Leu His Leu Val Ala Ile Thr Gly Asn Val Pro Asn 10

Ala Ile Pro Glu Asn Lys Asp Leu Val Phe Ser Thr Trp Asp His Lys 20 25

Ala Lys Gly 35

<210> 230 <211> 36 <212> PRT <213> Homo sapiens

<400> 230 His Phe Asn Cys Pro Glu Gly Tyr Ser Gly Gly Trp Trp His Asp 10

Glu Cys Gly Glu Asn Asn Leu Asn Gly Lys Tyr Asn Lys Pro Arg Ala

10

Lys Ser Lys Pro 35

<210> 231 <211> 34 <212> PRT <213> Homo sapiens <400> 231 Glu Arg Arg Arg Gly Leu Ser Trp Lys Ser Gln Asn Gly Arg Leu Tyr 5

Ser Ile Lys Ser Thr Lys Met Leu Ile His Pro Thr Asp Ser Glu Ser 20

Phe Glu

<210> 232

<211> 36

<212> PRT

<213> Homo sapiens

<400> 232

Leu Pro Pro Arg Gly Pro Ala Thr Phe Gly Ser Pro Gly Cys Pro Pro

Ala Asn Ser Pro Pro Ser Ala Pro Ala Thr Pro Glu Pro Ala Arg Ala

Pro Glu Arg Val 35

<210> 233

<211> 44

<212> PRT

<213> Homo sapiens

<400> 233

Gly Thr Arg Ala Gly Val Ser Lys Tyr Thr Gly Gly Arg Gly Val Thr

Trp Ala Pro Ser Ser Ala Ala Val Pro Arg Ile Ser Ser Ala Thr Met 25

Arg Met Gly Leu Thr Ser Phe Ser Thr Thr Gly Ala

<210> 234

<211> 306

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (293)

<223> Xaa equals any of the naturally occurring L-amino acids

Trp Gln Ser Gly His Arg Leu Trp Gln Leu Glu Trp Pro Pro Pro

Leu Ser Ala Asp Glu His Pro Trp Glu Gly Pro Leu Pro Gly Thr Ser

Pro Ser Pro Lys Phe Ser Met Pro Ser Pro Val Pro His Gly His His

Arg Pro Thr Leu Thr Met Thr Arg Ser Trp Arg Ile Phe Phe Asn Asn 55

Ile Ala Tyr Arg Ser Ser Ser Ala Asn Arg Leu Phe Arg Val Ile Arg

PCT/US99/09847 WO 99/58660

131

Arg Glu His Gly Asp Pro Leu Ile Glu Glu Leu Asn Pro Gly Asp Ala Leu Glu Pro Glu Gly Arg Gly Thr Gly Gly Val Val Thr Asp Phe Asp 105 Gly Asp Gly Met Leu Asp Leu Ile Leu Ser His Gly Glu Ser Met Ala Gln Pro Leu Ser Val Phe Arg Gly Asn Gln Gly Phe Asn Asn Asn Trp Leu Arg Val Val Pro Arg Thr Arg Phe Gly Ala Phe Ala Arg Gly Ala Lys Val Val Leu Tyr Thr Lys Lys Ser Gly Ala His Leu Arg Ile Ile 170 Asp Gly Gly Ser Gly Tyr Leu Cys Glu Met Glu Pro Val Ala His Phe 185 Gly Leu Gly Lys Asp Glu Ala Ser Ser Val Glu Val Thr Trp Pro Asp 200 Gly Lys Met Val Ser Arg Asn Val Ala Ser Gly Glu Met Asn Ser Val 215 Leu Glu Ile Leu Tyr Pro Arg Asp Glu Asp Thr Leu Gln Asp Pro Ala 235 Pro Leu Glu Cys Gly Gln Gly Phe Ser Gln Gln Glu Asn Gly His Cys 250 Met Asp Thr Asn Glu Cys Ile Gln Phe Pro Phe Val Cys Pro Arg Asp 265 Lys Pro Val Cys Val Asn Thr Tyr Gly Ser Tyr Arg Cys Arg Thr Asn Lys Lys Cys Ser Xaa Gly Leu Arg Val Pro Thr Arg Met Ala His Thr Gly Leu 305 <210> 235 <212> PRT <213> Homo sapiens

<211> 36

<400> 235

Trp Gln Ser Gly His Arg Leu Trp Gln Leu Glu Trp Pro Pro Pro Pro

Leu Ser Ala Asp Glu His Pro Trp Glu Gly Pro Leu Pro Gly Thr Ser

Pro Ser Pro Lys

PCT/US99/09847

WO 99/58660

132

```
<210> 236
<211> 35
<212> PRT
<213> Homo sapiens
<400> 236
Phe Ser Met Pro Ser Pro Val Pro His Gly His His Arg Pro Thr Leu
Thr Met Thr Arg Ser Trp Arg Ile Phe Phe Asn Asn Ile Ala Tyr Arg
                                 25
Ser Ser Ser
        35
<210> 237
<211> 37
<212> PRT
<213> Homo sapiens
<400> 237
Ala Asn Arg Leu Phe Arg Val Ile Arg Arg Glu His Gly Asp Pro Leu
Ile Glu Glu Leu Asn Pro Gly Asp Ala Leu Glu Pro Glu Gly Arg Gly
                                25
Thr Gly Gly Val Val
        35
<210> 238
<211> 34
<212> PRT
<213> Homo sapiens
<400> 238
Thr Asp Phe Asp Gly Asp Gly Met Leu Asp Leu Ile Leu Ser His Gly
Glu Ser Met Ala Gln Pro Leu Ser Val Phe Arg Gly Asn Gln Gly Phe
Asn Asn
<210> 239
<211> 35
<212> PRT
<213> Homo sapiens
<400> 239
Asn Trp Leu Arg Val Val Pro Arg Thr Arg Phe Gly Ala Phe Ala Arg
```

Gly Ala Lys Val Val Leu Tyr Thr Lys Lys Ser Gly Ala His Leu Arg 25

Ile Ile Asp

LIKETUS S. . . . STEETSSTATES S. . . . .

```
<210> 240
 <211> 36
 <212> PRT
 <213> Homo sapiens
 <400> 240
 Gly Gly Ser Gly Tyr Leu Cys Glu Met Glu Pro Val Ala His Phe Gly
Leu Gly Lys Asp Glu Ala Ser Ser Val Glu Val Thr Trp Pro Asp Gly
                                  25
                                                      30
Lys Met Val Ser
         35
<210> 241
<211> 35
<212> PRT
<213> Homo sapiens
<400> 241
Arg Asn Val Ala Ser Gly Glu Met Asn Ser Val Leu Glu Ile Leu Tyr
                                     10
Pro Arg Asp Glu Asp Thr Leu Gln Asp Pro Ala Pro Leu Glu Cys Gly
                                25
                                                    30
Gln Gly Phe
<210> 242
<211> 36
<212> PRT
<213> Homo sapiens
<400> 242
Ser Gln Gln Glu Asn Gly His Cys Met Asp Thr Asn Glu Cys Ile Gln
Phe Pro Phe Val Cys Pro Arg Asp Lys Pro Val Cys Val Asn Thr Tyr
                                 25
Gly Ser Tyr Arg
        35
<210> 243
<211> 22
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (9)
<223> Xaa equals any of the naturally occurring L-amino acids
<400> 243
Cys Arg Thr Asn Lys Lys Cys Ser Xaa Gly Leu Arg Val Pro Thr Arg
```

10

Met Ala His Thr Gly Leu 20

```
<210> 244
<211> 9
<212> PRT
<213> Homo sapiens
<400> 244
Gln Ser Pro Ile Asp Ile Gln Thr Asp
<210> 245
<211> 18
<212> PRT
<213> Homo sapiens
<400> 245
Leu His Asn Asn Gly His Thr Val Gln Leu Ser Leu Pro Ser Thr Leu
Tyr Leu
<210> 246
<211> 11
<212> PRT
<213> Homo sapiens
Tyr Val Ala Ala Gln Leu His Leu His Trp Gly
                 5
<210> 247
<211> 11
<212> PRT
<213> Homo sapiens
<400> 247
Ala Glu Leu His Ile Val His Tyr Asp Ser Asp
<210> 248
<211> 16
<212> PRT
 <213> Homo sapiens
 <400> 248
 Gly Gln His Trp Thr Tyr Glu Gly Pro His Gly Gln Asp His Trp Pro
 <210> 249
 <211> 14
 <212> PRT
 <213 > Homo sapiens
 <400> 249
```

```
Gln Ser Pro Ile Asp Ile Gln Thr Asp Ser Val Thr Phe Asp
<210> 250
<211> 15
<212> PRT
<213> Homo sapiens
<400> 250
Leu His Asn Asn Gly His Thr Val Gln Leu Ser Leu Pro Ser Thr
  1
                                     10
<210> 251
<211> 12
<212> PRT
<213> Homo sapiens
<400> 251
Lys Tyr Val Ala Ala Gln Leu His Leu His Trp Gly
                 5
<210> 252
<211> 13
<212> PRT
<213> Homo sapiens
<400> 252
Ala Glu Leu His Ile Val His Tyr Asp Ser Asp Ser Tyr
                  5
                                     10
<210> 253
<211> 1667
<212> DNA
<213> Homo sapiens
<400> 253
GGCCGCGCG CCGCTGCCGC CGCCGCGCG GATTCTGCTT CTCAGAAGAT GCACTATTAT
                                                                         60
AGATACTCTA ACGCCAAGGT CAGCTGCTGG TACAAGTACC TCCTTTTCAG CTACAACATC
                                                                        120
ATCTTCTGAT TGGCTGGAGT TGTCTTCCTT GGAGTCGGGC TGTGGGCATG GAGCGAAAAG
                                                                        180
GGTGTGCTGT CCGACCTCAC CAAAGTGACC CGGATGCATG GAATCGACCC TGTGGTGCTG
                                                                        240
GTCCTGATGG TGGGCGTGGT GATGTTCACC CTGGGGTTCG CCGGCTGCGT GGGGGCTCTG
                                                                        300
CGGGAGAATA TCTGCTTGCT CAACTTTTTC TGTGGCACCA TCGTGCTCAT CTTCTTCCTG
                                                                        360
GAGCTGGCTG TGGCCGTGCT GGCCTTCCTG TTCCAGGACT GGGTGAGGGA CCGGTTCCGG
                                                                        420
GAGTTCTTCG AGAGCAACAT CAAGTCCTAC CGGGACGATA TCGATCTGCA AAACCTCATC
                                                                        480
GACTCCCTTC AGAAAGCTAA CCAGTGCTGT GGCGCATATG GCCCTGAAAG ACTGGGACCT
                                                                        540
CAGACGTCTA CTTCAATTGC AGCGGTGCCA GCTACAGCCG AGAGAATGCG GGGTCCCCTT
                                                                        600
CTCCTGCTGC GTGCCAGATC CTGCGCAAAA AGTTGTGAAC ACACAGTGTG GATATGATGT
                                                                       660
CAGGATTCAG CTGAAGAGCA AGTGGGATGA GTCCATCTTC ACGAAAGGCT GCATCCAGGC
                                                                       720
```

| GCTGGAAAGC | TGGCTCCCGC | GGAACATTTA          | CATTGTGGCT | GGCGTCTTCA | TCGCCATCTC | 780  |
|------------|------------|---------------------|------------|------------|------------|------|
| GCTGTTGCAG | ATATTTGGCA | TCTTCCTGGC          | AAGGACGCTG | ATCTCAGACA | TCGAGGCAGT | 840  |
| GAAGGCCGGC | CATCACTTCT | GAGGAGCAGA          | GTTGAGGGAG | CCGAGCTGAG | CCACGCTGGG | 900  |
| AGGCCAGAGC | CTTTCTCTGC | CATCAGCCCT          | ACGTCCAGAG | GGAGAGGAGC | CGACACCCCC | 960  |
| AGAGCCAGTG | CCCCATCTTA | AGCATCAGCG          | TGACGTGACC | TCTCTGTTTC | TGCTTGCTGG | 1020 |
| TGCTGAAGAC | CAAGGGTCCC | CCTTGTTACC          | TGCCCAAACT | TGTGACTGCA | TCCCTCTGGA | 1080 |
| GTCTACCCAG | AGACAGAGAA | TGTGTCTTTA          | TGTGGGAGTG | GTGACTCTGA | AAGACAGAGA | 1140 |
| GGGCTCCTGT | GGCTGCCAGG | AGGGCTTGAC          | TCAGACCCCC | TGCAGCTCAA | GCATGTCTGC | 1200 |
| AGGACACCTG | GTCCCCCTCT | CCCAGTGGCA          | TCCCAAACAT | CTGCTTTGGG | TCCATCCCAC | 1260 |
| ATCTGTGGGT | GGGCCCGTGG | GTAAGAAGGG          | AACCCCACAG | GCGTGGAACA | GGGCATCCTC | 1320 |
| TCTCCCATCC | AAGCAAAGCC | AGCATGGGGG          | CCTGCCCGTA | ACGGGAGGCG | GACGTGGCCC | 1380 |
| CGCTGGGCCT | CTGAGTGCCA | GCGCAGTCTG          | CTGGGACATG | CACATATCAG | GGGTTGTTTG | 1440 |
| CAGGATCCTC | AGCCATGTTC | aag <b>t</b> gaagta | AGCCTGAGCC | AGTGCGTGGA | CTGGTGCCAC | 1500 |
| GGGAGTGCCT | TGTCCACTGT | CCCCCTGTGT          | CCACCAGCTA | TTCTCCTGGC | GCCGGAACTG | 1560 |
| CCTCTGGTCT | TGATAGCATT | AAGCCCTGAT          | TGGCCGGTGG | CGCGGTGGGC | ATGGTTCTTC | 1620 |
| ACTGAGAGCC | GGCTCTCCTT | TTCTTAAAGT          | GTGTAAATAG | TTTATTT    |            | 1667 |

<210> 254

<211> 270

<212> PRT

<213> Homo sapiens

<400> 254

Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys Trp Tyr Lys

1 5 10 15

Tyr Leu Leu Phe Ser Tyr Asn Ile Ile Phe Trp Leu Ala Gly Val Val 20 25 30

Phe Leu Gly Val Gly Leu Trp Ala Trp Ser Glu Lys Gly Val Leu Ser 35 40 45

Asp Leu Thr Lys Val Thr Arg Met His Gly Ile Asp Pro Val Val Leu 50 60

Val Leu Met Val Gly Val Val Met Phe Thr Leu Gly Phe Ala Gly Cys 65 70 75 80

Val Gly Ala Leu Arg Glu Asn Ile Cys Leu Leu Asn Phe Phe Cys Gly 85 90 95

Thr Ile Val Leu Ile Phe Phe Leu Glu Leu Ala Val Ala Val Leu Ala 100 105 110

Phe Leu Phe Gln Asp Trp Val Arg Asp Arg Phe Arg Glu Phe Phe Glu 115 120 125

Ser Asn Ile Lys Ser Tyr Arg Asp Asp Ile Asp Leu Gln Asn Leu Ile 130 135 140

Asp Ser Leu Gln Lys Ala Asn Gln Cys Cys Gly Ala Tyr Gly Pro Glu 145 150 155 160

Asp Trp Asp Leu Asn Val Tyr Phe Asn Cys Ser Gly Ala Ser Tyr Ser 165 170 175

Arg Glu Lys Cys Gly Val Pro Phe Ser Cys Cys Val Pro Asp Pro Ala 180 185 190

Gln Lys Val Val Asn Thr Gln Cys Gly Tyr Asp Val Arg Ile Gln Leu 195 200 205

Lys Ser Lys Trp Asp Glu Ser Ile Phe Thr Lys Gly Cys Ile Gln Ala 210 215 220

Leu Glu Ser Trp Leu Pro Arg Asn Ile Tyr Ile Val Ala Gly Val Phe 225 230 235 240

Ile Ala Ile Ser Leu Leu Gl<br/>n Ile Phe Gly Ile Phe Leu Ala Arg Thr\$245\$ 250 <br/> 255

Leu Ile Ser Asp Ile Glu Ala Val Lys Ala Gly His His Phe 260 265 270

<210> 255

WO 99/58660

<211> 277

<212> PRT

<213> Homo sapiens

<400> 255

Ser Gly Asn Leu Gly Ser Ala Asp Gly Trp Ala Tyr Ile Asp Val Glu
1 5 10 15

Val Arg Arg Pro Trp Ala Phe Val Gly Pro Gly Cys Ser Arg Ser Ser 20 25 30

Gly Asn Gly Ser Thr Ala Tyr Gly Leu Val Gly Ser Pro Arg Trp Leu
35 40 45

Ser Pro Phe His Thr Gly Gly Ala Val Ser Leu Pro Arg Arg Pro Arg 50 55 60

Gly Pro Gly Pro Val Leu Gly Val Ala Arg Pro Cys Leu Arg Cys Val 65 70 75 80

Leu Arg Pro Glu His Tyr Glu Pro Gly Ser His Tyr Ser Gly Phe Ala 85 90 95

Gly Arg Asp Ala Ser Arg Ala Phe Val Thr Gly Asp Cys Ser Glu Ala 100 105 110

Gly Leu Val Asp Asp Val Ser Asp Leu Ser Ala Ala Glu Met Leu Thr 115 120 125

Leu His Asn Trp Leu Ser Phe Tyr Glu Lys Asn Tyr Val Cys Val Gly 130 135 140

Arg Val Thr Gly Arg Phe Tyr Gly Glu Asp Gly Leu Pro Thr Pro Ala 145 150 155 160

Leu Thr G1n Val Glu Ala Ala Ile Thr Arg Gly Leu Glu Ala Asn Lys 165 170 175

Leu Gln Leu Gln Glu Lys Gln Thr Phe Pro Pro Cys Asn Ala Glu Trp
180 185 190

Ser Ser Ala Arg Gly Ser Arg Leu Trp Cys Ser Gln Lys Ser Gly Gly

Val Ser Arg Asp Trp Ile Gly Val Pro Arg Lys Leu Tyr Lys Pro Gly 210 215 220

Ala Lys Glu Pro Arg Cys Val Cys Val Arg Thr Thr Gly Pro Pro Ser 225 230 235 240

Gly Gln Met Pro Asp Asn Pro Pro His Arg Asn Arg Gly Asp Leu Asp 245 250 255

His Pro Asn Leu Ala Glu Tyr Thr Gly Cys Pro Pro Leu Ala Ile Thr 260 265 270

Cys Ser Phe Pro Leu 275

<210> 256

<211> 36

<212> PRT

<213> Homo sapiens

<400> 256

Ser Gly Asn Leu Gly Ser Ala Asp Gly Trp Ala Tyr Ile Asp Val Glu 1 5 10 15

Val Arg Arg Pro Trp Ala Phe Val Gly Pro Gly Cys Ser Arg Ser Ser 20 25 30

Gly Asn Gly Ser 35

<210> 257

<211> 36

<212> PRT

<213> Homo sapiens

<400> 257

Thr Ala Tyr Gly Leu Val Gly Ser Pro Arg Trp Leu Ser Pro Phe His 1 5 10 15

Thr Gly Gly Ala Val Ser Leu Pro Arg Arg Pro Arg Gly Pro Gly Pro 20 . 25 30

Val Leu Gly Val

<210> 258

<211> 36

<212> PRT

<213> Homo sapiens

<400> 258

Ala Arg Pro Cys Leu Arg Cys Val Leu Arg Pro Glu His Tyr Glu Pro

1 10 . 15 Gly Ser His Tyr Ser Gly Phe Ala Gly Arg Asp Ala Ser Arg Ala Phe 25 Val Thr Gly Asp 35 <210> 259 <211> 36 <212> PRT <213> Homo sapiens <400> 259 Cys Ser Glu Ala Gly Leu Val Asp Asp Val Ser Asp Leu Ser Ala Ala Glu Met Leu Thr Leu His Asn Trp Leu Ser Phe Tyr Glu Lys Asn Tyr 25 Val Cys Val Gly 35 <210> 260 <211> 36 <212> PRT <213> Homo sapiens <400> 260 Arg Val Thr Gly Arg Phe Tyr Gly Glu Asp Gly Leu Pro Thr Pro Ala Leu Thr Gln Val Glu Ala Ala Ile Thr Arg Gly Leu Glu Ala Asn Lys Leu Gln Leu Gln 35 <210> 261 <211> 36 <212> PRT <213> Homo sapiens <400> 261 Glu Lys Gln Thr Phe Pro Pro Cys Asn Ala Glu Trp Ser Ser Ala Arg Gly Ser Arg Leu Trp Cys Ser Gln Lys Ser Gly Gly Val Ser Arg Asp 20 25 Trp Ile Gly Val 35 <210> 262 <211> 29 <212> PRT <213> Homo sapiens <400> 262 Pro Arg Lys Leu Tyr Lys Pro Gly Ala Lys Glu Pro Arg Cys Val Cys

WO 99/58660 PCT/US99/09847

. 140

```
10
                 5
                                                        15
Val Arg Thr Thr Gly Pro Pro Ser Gly Gln Met Pro Asp
<210> 263
<211> 32
<212> PRT
<213> Homo sapiens
<400> 263
Asn Pro Pro His Arg Asn Arg Gly Asp Leu Asp His Pro Asn Leu Ala
Glu Tyr Thr Gly Cys Pro Pro Leu Ala Ile Thr Cys Ser Phe Pro Leu
                    25
<210> 264
<211> 15
<212> PRT
<213> Homo sapiens
Arg Asp Asn Asp Tyr Leu Leu His Gly His Arg Pro Pro Met Phe
<210> 265
<211> 24
<212> PRT
<213> Homo sapiens
<400> 265
Ser Phe Arg Ala Cys Phe Lys Ser Ile Phe Arg Ile His Thr Glu Thr
Gly Asn Ile Trp Thr His Leu Leu
            20
<210> 266
<211> 29
<212> PRT
<213> Homo sapiens
<400> 266
Gly Phe Val Leu Phe Leu Phe Leu Gly Ile Leu Thr Met Leu Arg Pro
                                   10
Asn Met Tyr Phe Met Ala Pro Leu Gln Glu Lys Val Val
            20
                                25
<210> 267
<211> 457
<212> PRT
<213> Homo sapiens
<400> 267
```

Thr Gly Pro Glu Phe Pro Gly Ser Asn Ser Thr Val Ala Arg Arg Ile Lys Asp Leu Ala Ala Asp Ile Glu Glu Glu Leu Val Cys Arg Leu Lys Ile Cys Asp Gly Phe Ser Leu Gln Leu Asp Glu Ser Ala Asp Val Ser Gly Leu Ala Val Leu Leu Val Phe Val Arg Tyr Arg Phe Asn Lys Ser Ile Glu Glu Asp Leu Leu Cys Glu Ser Leu Gln Ser Asn Ala Thr Gly Glu Glu Ile Phe Asn Cys Ile Asn Ser Phe Met Gln Lys His Glu Ile Glu Trp Glu Lys Cys Val Asp Val Cys Ser Asp Ala Ser Arg Ala Val Asp Gly Lys Ile Ala Glu Ala Val Thr Leu Ile Lys Tyr Val Ala 120 Pro Glu Ser Thr Ser Ser His Cys Leu Leu Tyr Arg His Ala Leu Ala Val Lys Ile Met Pro Thr Ser Leu Lys Asn Val Leu Asp Gln Ala Val Gln Ile Ile Asn Tyr Ile Lys Ala Arg Pro His Gln Ser Arg Leu Leu Lys Ile Leu Cys Glu Glu Met Gly Ala Gln His Thr Ala Leu Leu Leu 185 Asn Thr Glu Val Arg Trp Leu Ser Arg Gly Lys Val Leu Val Arg Leu 200 Phe Glu Leu Arg Arg Glu Leu Leu Val Phe Met Asp Ser Ala Phe Arg 215 Leu Ser Asp Cys Leu Thr Asn Ser Ser Trp Leu Leu Arg Leu Ala Tyr Leu Ala Asp Ile Phe Thr Lys Leu Asn Glu Val Asn Leu Ser Met Gln 250 Gly Lys Asn Val Thr Val Phe Thr Val Phe Asp Lys Met Ser Ser Leu Leu Arg Lys Leu Glu Phe Trp Ala Ser Ser Val Glu Glu Asn Phe Asp Cys Phe Pro Thr Leu Ser Asp Phe Leu Thr Glu Ile Asn Ser Thr Val Asp Lys Asp Ile Cys Ser Ala Ile Val Gln His Leu Arg Gly Leu Arg Ala Thr Leu Leu Lys Tyr Phe Pro Val Thr Asn Asp Asn Asn Ala 330 Trp Val Arg Asn Pro Phe Thr Val Thr Val Lys Pro Ala Ser Leu Val

345 350 340 Ala Arg Asp Tyr Glu Ser Leu Ile Asp Leu Thr Ser Asp Ser Gln Val 360 Lys Gln Asn Phe Ser Glu Leu Ser Leu Asn Asp Phe Trp Ser Ser Leu 375 Ile Gln Glu Tyr Pro Ser Ile Ala Arg Arg Ala Val Arg Val Leu Leu 385 Pro Phe Ala Thr Met His Leu Cys Glu Thr Gly Phe Ser Tyr Tyr Ala Ala Thr Lys Thr Lys Tyr Arg Lys Arg Leu Asp Ala Ala Pro His Met 425 Arg Ile Arg Leu Ser Asn Ile Thr Pro Asn Ile Lys Arg Ile Cys Asp 440 Lys Lys Thr Gln Lys His Cys Ser His 455 <210> 268 <211> 31 <212> PRT <213> Homo sapiens <400> 268 Asp Ile Glu Glu Glu Leu Val Cys Arg Leu Lys Ile Cys Asp Gly Phe 10 Ser Leu Gln Leu Asp Glu Ser Ala Asp Val Ser Gly Leu Ala Val <210> 269 <211> 36 <212> PRT <213> Homo sapiens <400> 269 Asn Ser Phe Met Gln Lys His Glu Ile Glu Trp Glu Lys Cys Val Asp Val Cys Ser Asp Ala Ser Arg Ala Val Asp Gly Lys Ile Ala Glu Ala Val Thr Leu Ile 35 <210> 270 <211> 36 <212> PRT <213> Homo sapiens <400> 270 Leu Asp Gln Ala Val Gln Ile Ile Asn Tyr Ile Lys Ala Arg Pro His Gln Ser Arg Leu Leu Lys Ile Leu Cys Glu Glu Met Gly Ala Gln His

```
Thr Ala Leu Leu
     35
 <210> 271
 <211> 49
 <212> PRT
 <213> Homo sapiens
 <400> 271
 Ser Ala Phe Arg Leu Ser Asp Cys Leu Thr Asn Ser Ser Trp Leu Leu
 Arg Leu Ala Tyr Leu Ala Asp Ile Phe Thr Lys Leu Asn Glu Val Asn
 Leu Ser Met Gln Gly Lys Asn Val Thr Val Phe Thr Val Phe Asp Lys
                         40
 Met
 <210> 272
 <211> 32
 <212> PRT
 <213> Homo sapiens
 <400> 272
 Ser Asp Phe Leu Thr Glu Ile Asn Ser Thr Val Asp Lys Asp Ile Cys
                                    10
 Ser Ala Ile Val Gln His Leu Arg Gly Leu Arg Ala Thr Leu Leu Lys
<210> 273
<211> 38
<212> PRT
<213> Homo sapiens
<400> 273
Ser Asp Ser Gln Val Lys Gln Asn Phe Ser Glu Leu Ser Leu Asn Asp
                        . 10
Phe Trp Ser Ser Leu Ile Gln Glu Tyr Pro Ser Ile Ala Arg Arg Ala
                                25
Val Arg Val Leu Leu Pro.
        35
<210> 274
<211> 26
<212> PRT
<213> Homo sapiens
<400> 274
Asp Ser Arg Ile Ser Leu Leu Val Asn Asn Ala Gly Val Gly Ala Thr
                 5
                                   10
```

```
Ala Ser Leu Leu Glu Ser Asp Ala Asp Lys 20 25
```

<210> 275

<211> 146

<212> PRT

<213> Homo sapiens

<400> 275

Gly Thr Pro Ala Gly Thr Gly Pro Glu Phe Pro Gly Arg Pro Thr Arg 1 5 10 15

Pro Ser Arg Thr Glu Ser Ala Gln Thr Thr Gln His Ser Pro Leu Arg

Pro Leu Trp Arg Leu Lys Arg Asp Ser Ser Pro Cys His Pro Gln Thr 35 40 45

Arg Ala Asp Trp Gly Val Cys Pro Pro Trp Gly Gly Ala Ala Gln Gly 50 55 60

Leu Arg Pro Gly Cys His Leu Ala Pro Arg Arg Cys Leu Cys Pro Gly 65 70 75 80

Ser Cys Cys Pro Trp His Trp Ala Glu Ala Gln Trp Ser Phe Leu Trp 85 90 95

Arg Gly Leu Trp Gly Leu Arg Thr Leu Pro Thr Ala Leu Arg Ala Ser 100 105 110

Pro Ala Ala Ser Gly Thr Val Thr Tyr Ser Ala Cys Leu Gly Thr Ser 115 120 125

Cys Leu Leu Arg Ala Pro Cys Trp Arg Leu Arg Thr Cys Arg Gln Ser 130 135 140

Trp Cys

145

<210> 276

<211> 28

<212> PRT

<213> Homo sapiens

<400> 276

Gly Thr Pro Ala Gly Thr Gly Pro Glu Phe Pro Gly Arg Pro Thr Arg 1 5 10 15

Pro Ser Arg Thr Glu Ser Ala Gln Thr Thr Gln His 20 25

<210> 277

<211> 30

<212> PRT

<213> Homo sapiens

<400> 277

Ser Pro Leu Arg Pro Leu Trp Arg Leu Lys Arg Asp Ser Ser Pro Cys 1 5 10 15

His Pro Gln Thr Arg Ala Asp Trp Gly Val Cys Pro Pro Trp 25 30 <210> 278 <211> 30 <212> PRT <213> Homo sapiens <400> 278 Gly Gly Ala Ala Gln Gly Leu Arg Pro Gly Cys His Leu Ala Pro Arg 10 . Arg Cys Leu Cys Pro Gly Ser Cys Cys Pro Trp His Trp Ala 25 <210> 279 <211> 30 <212> PRT <213> Homo sapiens <400> 279 Glu Ala Gln Trp Ser Phe Leu Trp Arg Gly Leu Trp Gly Leu Arg Thr Leu Pro Thr Ala Leu Arg Ala Ser Pro Ala Ala Ser Gly Thr 20 <210> 280 <211> 28 <212> PRT <213> Homo sapiens <400> 280 Val Thr Tyr Ser Ala Cys Leu Gly Thr Ser Cys Leu Leu Arg Ala Pro Cys Trp Arg Leu Arg Thr Cys Arg Gln Ser Trp Cys 20 <210> 281 <211> 11 <212> PRT <213> Homo sapiens <400> 281 Pro Pro Arg Pro Ser Thr Ser Gly Gln Trp Gly

<210> 283

<400> 282

<210> 282 <211> 11 <212> PRT

<213> Homo sapiens

Arg Arg Ser Pro Phe Thr Ser Ala Gln Thr Gly

WO 99/58660

146

```
<211> 23
```

<212> PRT

<213> Homo sapiens

Gly Thr Gly Trp Asp Phe Gly Leu Ala Ala Val Cys Leu Arg Ala Ala

Glu Val Ala Gly Ser Phe Lys 20

<210> 284

<211> 146

<212> PRT

<213> Homo sapiens

<400> 284

Gly Tyr Arg Arg Val Phe Glu Glu Tyr Met Arg Val Ile Ser Gln Arg

Tyr Pro Asp Ile Arg Ile Glu Gly Glu Asn Tyr Leu Pro Gln Pro Ile

Tyr Arg His Ile Ala Ser Phe Leu Ser Val Phe Lys Leu Val Leu Ile

Gly Leu Ile Ile Val Gly Lys Asp Pro Phe Ala Phe Phe Gly Met Gln

Ala Pro Ser Ile Trp Gln Trp Gly Gln Glu Asn Lys Val Tyr Ala Cys

Met Met Val Phe Phe Leu Ser Asn Met Ile Glu Asn Gln Cys Met Ser

Thr Gly Ala Phe Glu Ile Thr Leu Asn Asp Val Pro Val Trp Ser Lys 105

Leu Glu Ser Gly His Leu Pro Ser Met Gln Gln Leu Val Gln Ile Leu

Asp Asn Glu Met Lys Leu Asn Val His Met Asp Ser Ile Pro His His 135

Arg Ser 145

<210> 285

<211> 34

<212> PRT

<213> Homo sapiens

<400> 285

Gly Tyr Arg Arg Val Phe Glu Glu Tyr Met Arg Val Ile Ser Gln Arg

Tyr Pro Asp Ile Arg Ile Glu Gly Glu Asn Tyr Leu Pro Gln Pro Ile

Tyr Arg

```
<210> 286
 <211> 34
 <212> PRT
 <213> Homo sapiens
 <400> 286
 His Ile Ala Ser Phe Leu Ser Val Phe Lys Leu Val Leu Ile Gly Leu
                                     10
Ile Ile Val Gly Lys Asp Pro Phe Ala Phe Phe Gly Met Gln Ala Pro
             20
                                 25
Ser Ile
<210> 287
<211> 34
<212> PRT
<213> Homo sapiens
<400> 287
Trp Gln Trp Gly Gln Glu Asn Lys Val Tyr Ala Cys Met Met Val Phe
Phe Leu Ser Asn Met Ile Glu Asn Gln Cys Met Ser Thr Gly Ala Phe
                        _ 25
Glu Ile
<210> 288
<211> 36
<212> PRT
<213> Homo sapiens
<400> 288
Thr Leu Asn Asp Val Pro Val Trp Ser Lys Leu Glu Ser Gly His Leu
                                    10
Pro Ser Met Gln Gln Leu Val Gln Ile Leu Asp Asn Glu Met Lys Leu
                                25
Asn Val His Met
 35
<210> 289
,<211> 8
<212> PRT
<213> Homo sapiens
<400> 289
Asp Ser Ile Pro His His Arg Ser
<210> 290
<211> 30
<212> PRT
<213> Homo sapiens
```

<400> 290 Gly Arg Ala Arg Gly Arg Pro Pro Gly Pro Glu Ala Ala Pro Ala Ser Leu Ser Val Ser Leu Arg Arg Glu Val His Ser Arg Gly Glu <210> 291 <211> 389 <212> PRT <213> Homo sapiens <400> 291 Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Leu Arg Phe Leu Phe Leu Gly Leu Ser Ala Leu Ala Pro Pro Ser Arg Ala Gln Leu Gln Leu His Leu Pro Ala Asn Arg Leu Gln Ala Val Glu Gly Gly Val Val Leu Pro Ala Trp Tyr Thr Leu His Gly Glu Val Ser Ser Ser Gln Pro Trp Glu Val Pro Phe Val Met Trp Phe Phe Lys Gln Lys Glu Lys Glu Asp Gln Val Leu Ser Tyr Ile Asn Gly Val Thr Thr Ser Lys Pro Gly Val Ser Leu Val Tyr Ser Met Pro Ser Arg Asn Leu Ser Leu Arg Leu Glu Gly Leu Gln Glu Lys Asp Ser Gly Pro Tyr Ser Cys Ser Val Asn Val Gln Asn Lys Gln Gly Lys Ser Arg Gly His Ser Ile Lys Thr 135 Leu Glu Leu Asn Val Leu Val Pro Pro Ala Pro Pro Ser Cys Arg Leu Gln Gly Val Pro His Val Gly Ala Asn Val Thr Leu Ser Cys Gln Ser 170 Pro Arg Ser Lys Pro Ala Val Gln Tyr Gln Trp Asp Arg Gln Leu Pro 185 Ser Phe Gln Thr Phe Phe Ala Pro Ala Leu Asp Val Ile Arg Gly Ser 200 Leu Ser Leu Thr Asn Leu Ser Ser Ser Met Ala Gly Val Tyr Val Cys Lys Ala His Asn Glu Val Gly Thr Ala Gln Cys Asn Val Thr Leu Glu Val Ser Thr Gly Pro Gly Ala Ala Val Val Ala Gly Ala Val Val Gly

Thr Leu Val Gly Leu Gly Leu Leu Ala Gly Leu Val Leu Leu Tyr His 265

and the state of t

149

Arg Arg Gly Lys Ala Leu Glu Glu Pro Ala Asn Asp Ile Lys Glu Asp 275 280 285

Ala Ile Ala Pro Arg Thr Leu Pro Trp Pro Lys Ser Ser Asp Thr Ile 290 295 300

Ser Lys Asn Gly Thr Leu Ser Ser Val Thr Ser Ala Arg Ala Leu Arg 305 310 315 320

Pro Pro His Gly Pro Pro Arg Pro Gly Ala Leu Thr Pro Thr Pro Ser 325 330 335

Leu Ser Ser Gln Ala Leu Pro Ser Pro Arg Leu Pro Thr Thr Asp Gly 340 345 350

Ala His Pro Gln Pro Ile Ser Pro Ile Pro Gly Gly Val Ser Ser Ser 355 360 . 365

Gly Leu Ser Arg Met Gly Ala Val Pro Val Met Val Pro Ala Gln Ser 370 375 380

Gln Ala Gly Ser Leu 385

<210> 292

<211> 35

<212> PRT

<213> Homo sapiens

<400> 292

Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Leu Arg Phe Leu
1 5 10 15

Phe Leu Gly Leu Ser Ala Leu Ala Pro Pro Ser Arg Ala Gln Leu Gln 20 25 30

Leu His Leu

35

<210> 293

<211> 35

<212> PRT

<213> Homo sapiens

<400> 293

Pro Ala Asn Arg Leu Gln Ala Val Glu Gly Gly Glu Val Val Leu Pro
1 5 10 15

Ala Trp Tyr Thr Leu His Gly Glu Val Ser Ser Ser Gln Pro Trp Glu 20 25 30

Val Pro Phe

35

<210> 294

<211> 35

<212> PRT

<213> Homo sapiens

<400> 294

Val Met Trp Phe Phe Lys Gln Lys Glu Lys Glu Asp Gln Val Leu Ser Tyr Ile Asn Gly Val Thr Thr Ser Lys Pro Gly Val Ser Leu Val Tyr 25 Ser Met Pro <210> 295 <211> 35 <212> PRT <213> Homo sapiens <400> 295 Ser Arg Asn Leu Ser Leu Arg Leu Glu Gly Leu Gln Glu Lys Asp Ser Gly Pro Tyr Ser Cys Ser Val Asn Val Gln Asn Lys Gln Gly Lys Ser Arg Gly His 35 <210> 296 <211> 35 <212> PRT <213> Homo sapiens <400> 296 Ser Ile Lys Thr Leu Glu Leu Asn Val Leu Val Pro Pro Ala Pro Pro Ser Cys Arg Leu Gln Gly Val Pro His Val Gly Ala Asn Val Thr Leu 25 Ser Cys Gln 35 <210> 297 <211> 35 <212> PRT <213> Homo sapiens <400> 297 Ser Pro Arg Ser Lys Pro Ala Val Gln Tyr Gln Trp Asp Arg Gln Leu Pro Ser Phe Gln Thr Phe Phe Ala Pro Ala Leu Asp Val Ile Arg Gly Ser Leu Ser <210> 298 <211> 35 <212> PRT <213> Homo sapiens <400> 298

```
Leu Thr Asn Leu Ser Ser Ser Met Ala Gly Val Tyr Val Cys Lys Ala
1 5 10 15
```

His Asn Glu Val Gly Thr Ala Gln Cys Asn Val Thr Leu Glu Val Ser 20 25 30

Thr Gly Pro

<210> 299

<211> 35

<212> PRT

<213> Homo sapiens

<400> 299

Gly Ala Ala Val Val Ala Gly Ala Val Val Gly Thr Leu Val Gly Leu  $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$ 

Gly Leu Leu Ala Gly Leu Val Leu Leu Tyr His Arg Arg Gly Lys Ala  $20 \hspace{1cm} 25 \hspace{1cm} 30$ 

Leu Glu Glu

35

<210> 300

<211> 35

<212> PRT

<213> Homo sapiens

<400> 300

Pro Ala Asn Asp Ile Lys Glu Asp Ala Ile Ala Pro Arg Thr Leu Pro
1 5 10 15

Trp Pro Lys Ser Ser Asp Thr Ile Ser Lys Asn Gly Thr Leu Ser Ser 20 25 30

Val Thr Ser

35

<210> 301

<211> 35

<212> PRT

<213> Homo sapiens

<400> 301

Ala Arg Ala Leu Arg Pro Pro His Gly Pro Pro Arg Pro Gly Ala Leu 1 5 10 15

Thr Pro Thr Pro Ser Leu Ser Ser Gln Ala Leu Pro Ser Pro Arg Leu 20 25 30

Pro Thr Thr

35

<210> 302

<211> 39

<212> PRT

<213> Homo sapiens

<400> 302

Asp Gly Ala His Pro Gln Pro Ile Ser Pro Ile Pro Gly Gly Val Ser Ser Ser Gly Leu Ser Arg Met Gly Ala Val Pro Val Met Val Pro Ala 25 Gln Ser Gln Ala Gly Ser Leu 35 <210> 303 <211> 27 <212> PRT <213> Homo sapiens <400> 303 Gly Ser Ser Phe Val Val Ser Glu Gly Ser Tyr Leu Asp Ile Ser Asp Trp Leu Asn Pro Ala Lys Leu Ser Leu Tyr Tyr 20 <210> 304 <211> 12 <212> PRT <213> Homo sapiens <400> 304 Leu Asp Ile Ser Asp Trp Leu Asn Pro Ala Lys Leu 5 <210> 305 <211> 11 <212> PRT <213> Homo sapiens <400> 305 Ser Asp Trp Leu Asn Pro Ala Lys Leu Ser Leu <210> 306 <211> 11 <212> PRT <213> Homo sapiens <400> 306 Ser Asp Trp Leu Asn Pro Ala Lys Leu Ser Leu <210> 307 <211> 27 <212> PRT <213> Homo sapiens <400> 307 Gly Ser Ser Phe Val Val Ser Glu Gly Ser Tyr Leu Asp Ile Ser Asp Trp Leu Asn Pro Ala Lys Leu Ser Leu Tyr Tyr

PCT/US99/09847

```
<210> 308
<211> 12
<212> PRT
<213> Homo sapiens
<400> 308
Leu Asp Ile Ser Asp Trp Leu Asn Pro Ala Lys Leu 1 5 10
<210> 309
<211> 11
<212> PRT
<213> Homo sapiens
<400> 309
Ser Asp Trp Leu Asn Pro Ala Lys Leu Ser Leu
<210> 310
<211> 13
<212> PRT
<213> Homo sapiens
<400> 310
Asp Ala Cys Glu Gln Leu Cys Asp Pro Glu Thr Gly Glu
<210> 311
<211> 21
<212> PRT
<213> Homo sapiens
<400> 311
Glu Gly Lys Ile Lys Ile Cys Glu Lys Lys Ala Ile Lys Val Ile Leu
1 5 10 15
His Thr Cys Asn Ser
<210> 312
<211> 23
<212> PRT
<213> Homo sapiens
<400> 312
Asn Ser Ala Arg Val Glu Phe Phe Ile Pro Pro Leu Arg Ile Thr Gln
Lys Val Arg Ser Thr Lys Ser
<210> 313
<211> 123
<212> PRT
<213> Homo sapiens
<400> 313
```

Met Met Val Trp Asn Leu Phe Pro Cys Phe Pro Pro Leu Leu Leu

Gln Phe Ile Asp Cys Gln Gln Ser Ser Glu Ile Glu Gln Gly Phe Thr

Arg Ser Leu Leu Gly His Pro Ile Phe Phe Cys Pro Asp Pro Cys Trp

Gln Ser Cys Met Asn Cys Val Ile Leu Ser Val Leu Ser Phe Phe

Leu Ile Arg Trp Ile Ser Lys Ile Val Ala Val Gln Lys Leu Glu Ser

Ser Ser Arg Arg Lys Pro Ile Leu Phe Leu Ile Ile Ser Cys Glu Ile

Ala Ser Phe Ile His Leu Phe Leu Ser Gln Met Ser Ala Glu Cys Cys

Cys Phe Tyr Leu Val Ile Leu Ile Cys Lys Tyr 115

<210> 314

<211> 28

<212> PRT

<213> Homo sapiens

<400> 314

Met Met Val Trp Asn Leu Phe Pro Cys Phe Pro Pro Leu Leu Leu

Gln Phe Ile Asp Cys Gln Gln Ser Ser Glu Ile Glu 20

<210> 315

<211> 28

<212> PRT

<213> Homo sapiens

Gln Gly Phe Thr Arg Ser Leu Leu Gly His Pro Ile Phe Phe Cys Pro

Asp Pro Cys Trp Gln Ser Cys Met Asn Cys Val Ile

<210> 316

<211> 35

<212> PRT

<213> Homo sapiens

<400> 316

Leu Ser Val Leu Ser Phe Phe Phe Leu Ile Arg Trp Ile Ser Lys Ile 10

Val Ala Val Gln Lys Leu Glu Ser Ser Ser Arg Arg Lys Pro Ile Leu

Phe Leu Ile

35

<210> 317 <211> 32

<212> PRT

<213> Homo sapiens

<400> 317

Ile Ser Cys Glu Ile Ala Ser Phe Ile His Leu Phe Leu Ser Gln Met
1 5 10 15

Ser Ala Glu Cys Cys Cys Phe Tyr Leu Val Ile Leu Ile Cys Lys Tyr \$20\$ \$25\$ \$30

<210> 318

<211> 59

<212> PRT

<213> Homo sapiens

<400> 318

Lys Val Asp Thr Pro Arg Arg His Phe Cys Pro Glu Ile Ser Phe Phe 1 5 10 15

Leu Thr Pro Leu Pro Gln Ser Ala Arg Asn Ser Thr Val Arg Asn Ala
20 25 30

Leu Ser Gly Leu Lys Asn Leu Thr Pro Ala Met II'e Ser Thr Val Ser 40 45

Lys Gln Asp Thr Ser Lys Leu Gly Glu Glu Glu 50

<210> 319

<211> 13

<212> PRT

<213> Homo sapiens

<400> 319

Leu Leu Cys Pro Trp Trp Leu Cys Phe Asp Trp Ser 1 5 10

<210> 320

<211> 270

<212> PRT

<213> Homo sapiens

<400> 320

Met Gly Cys Ile Pro Leu Ile Lys Ser Ile Ser Asp Trp Arg Val Ile

Ala Leu Ala Ala Leu Trp Phe Cys Leu Ile Gly Leu Ile Cys Gln Ala 20 25 30

Leu Cys Ser Glu Asp Gly His Lys Arg Arg Ile Leu Thr Leu Gly Leu 35 40 45

Gly Phe Leu Val Ile Pro Phe Leu Pro Ala Ser Asn Leu Phe Phe Arg

55 50 Val Gly Phe Val Val Ala Glu Cys Val Leu Tyr Leu Pro Ser Ile Gly Tyr Cys Val Leu Leu Thr Phe Gly Phe Gly Ala Leu Ser Lys His Thr Lys Lys Lys Leu Ile Ala Ala Val Val Leu Gly Ile Leu Phe Ile Asn Thr Leu Arg Cys Val Leu Arg Thr Ala Lys Trp Arg Ser Glu Glu Gln Leu Phe Arg Ser Ala Leu Ser Val Cys Pro Leu Asn Ala Lys Val His Tyr Asn Ile Gly Lys Asn Leu Ala Asp Lys Gly Asn Gln Thr Ala Ala Ile Arg Tyr Tyr Arg Glu Ala Val Arg Leu Asn Pro Lys Tyr Val 170 His Ala Met Asn Asn Leu Gly Asn Ile Leu Lys Glu Arg Asn Glu Leu 185 Gln Glu Ala Glu Glu Leu Leu Ser Leu Ala Val Gln Ile Gln Pro Asp Phe Ala Ala Trp Met Asn Leu Gly Ile Val Gln Asn Ser Leu Lys 215 Arg Phe Glu Thr Ala Glu Gln Asn Tyr Arg Thr Ala Ile Lys His Arg Arg Lys Tyr Pro Asp Cys Tyr Tyr Asn Leu Gly Arg Leu Val Arg Thr Gly Cys Pro Val Pro Val Glu Gly Lys Met Gly Tyr Phe Ser <210> 321 <211> 38 <212> PRT <213> Homo sapiens <400> 321 Met Gly Cys Ile Pro Leu Ile Lys Ser Ile Ser Asp Trp Arg Val Ile 5 . 10 Ala Leu Ala Ala Leu Trp Phe Cys Leu Ile Gly Leu Ile Cys Gln Ala Leu Cys Ser Glu Asp Gly <210> 322 <211> 38 <212> PRT <213> Homo sapiens <400> 322

His Lys Arg Arg Ile Leu Thr Leu Gly Leu Gly Phe Leu Val Ile Pro 1 5 10 15

Phe Leu Pro Ala Ser Asn Leu Phe Phe Arg Val Gly Phe Val Val Ala 20 25 30

Glu Cys Val Leu Tyr Leu 35

<210> 323

<211> 38

<212> PRT

<213> Homo sapiens

<400> 323

Pro Ser Ile Gly Tyr Cys Val Leu Leu Thr Phe Gly Phe Gly Ala Leu 1 5 10 15

Ser Lys His Thr Lys Lys Lys Leu Ile Ala Ala Val Val Leu Gly 20  $^{\prime\prime}$  25

Ile Leu Phe Ile Asn Thr 35

<210> 324

<211> 38

<212> PRT

<213> Homo sapiens

<400> 324

Pro Ser Ile Gly Tyr Cys Val Leu Leu Thr Phe Gly Phe Gly Ala Leu  $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$ 

Ser Lys His Thr Lys Lys Lys Leu Ile Ala Ala Val Val Leu Gly 20 25 30

Ile Leu Phe Ile Asn Thr 35

<210> 325

<211> 38

<212> PRT

<213> Homo sapiens

<400> 325

Leu Arg Cys Val Leu Arg Thr Ala Lys Trp Arg Ser Glu Glu Gln Leu 1 5 10 15

Phe Arg Ser Ala Leu Ser Val Cys Pro Leu Asn Ala Lys Val His Tyr 20 25 30

Asn Ile Gly Lys Asn Leu

<210> 326

<211> 38

<212> PRT

<213> Homo sapiens

<400> 326

WO 99/58660 PCT/US99/09847

158

```
Ala Asp Lys Gly Asn Gln Thr Ala Ala Ile Arg Tyr Tyr Arg Glu Ala
Val Arg Leu Asn Pro Lys Tyr Val His Ala Met Asn Asn Leu Gly Asn
                                25
Ile Leu Lys Glu Arg Asn
         35
<210> 327
<211> 38
<212> PRT
<213> Homo sapiens
<400> 327
Glu Leu Gln Glu Ala Glu Glu Leu Leu Ser Leu Ala Val Gln Ile Gln
Pro Asp Phe Ala Ala Ala Trp Met Asn Leu Gly Ile Val Gln Asn Ser
                                 25
Leu Lys Arg Phe Glu Thr
        35
<210> 328
<211> 42
<212> PRT
<213> Homo sapiens
<400> 328
Ala Glu Gln Asn Tyr Arg Thr Ala Ile Lys His Arg Arg Lys Tyr Pro
Asp Cys Tyr Tyr Asn Leu Gly Arg Leu Val Arg Thr Gly Cys Pro Val
Pro Val Glu Gly Lys Met Gly Tyr Phe Ser
<210> 329
<211> 26
 <212> PRT
 <213> Homo sapiens
 <400> 329
Pro Thr Arg Pro Pro Thr Arg Pro Leu Ser Phe Thr Phe Thr Lys Gln
 Thr Ser Ser Thr Cys Leu Ser Leu His Phe
            20 .
 <210> 330
 <211> 50
 <212> PRT
 <213> Homo sapiens
 <400> 330
 Leu Glu Cys Val Leu Leu Ile Cys Phe Arg Ala Met Ser Ala Ile Tyr
```

```
Thr His Thr Ser Ile Gly Asn Ala Gln Lys Leu Phe Thr Asp Gly Ser 20 25 30
```

Ala Phe Arg Arg Val Arg Glu Pro Leu Pro Lys Glu Gly Lys Ser Trp 35 40 45

Pro Gln 50

<210> 331

<211> 22

<212> PRT

<213> Homo sapiens

<400> 331

Lys Gln Asn Leu Thr Asn Leu Asp Val Pro Val Gln Tyr His Val Ala f 1 5 10 15

Leu Ser Asp Lys Val Lys
20

<210> 332

<211> 117

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (71)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 332

Pro Ser Cys Pro Pro Glu Met Lys Lys Glu Leu Pro Val Asp Ser Cys

1 5 10 15

Leu Pro Arg Ser Leu Glu Leu His Pro Gln Lys Met Asp Pro Lys Arg 20 25 30

Gln His Ile Gln Leu Leu Ser Ser Leu Thr Glu Cys Leu Thr Val Asp 35 40 45

Pro Leu Ser Ala Ser Val Trp Arg Gln Leu Tyr Pro Lys His Leu Ser 50 60

Gln Ser Ser Leu Leu Leu Xaa His Leu Leu Ser Ser Trp Glu Gln Ile 65 70 75 80

Pro Lys Lys Val Gln Lys Ser Leu Gln Glu Thr Ile Gln Ser Leu Lys

Leu Thr Asn Gln Glu Leu Leu Arg Lys Gly Ser Ser Asn Asn Gln Asp 100 105 110

Val Val Thr Cys Asp 115

<210> 333

<211> 103

<212> PRT

<213> Homo sapiens

160 <400> 333 Lys Ala Pro Tyr Ser Trp Leu Ala Asp Ser Trp Pro His Pro Ser Arg Ser Pro Ser Ala Gln Glu Pro Arg Gly Ser Cys Cys Pro Ser Asn Pro Asp Pro Asp Asp Arg Tyr Tyr Asn Glu Ala Gly Ile Ser Leu Tyr Leu Ala Gln Thr Ala Arg Gly Thr Ala Ala Pro Gly Glu Gly Pro Val Tyr 55 Ser Thr Ile Asp Pro Ala Gly Glu Glu Leu Gln Thr Phe His Gly Gly 70 Phe Pro Gln His Pro Ser Gly Asp Leu Gly Pro Trp Ser Gln Tyr Ala

Pro Pro Glu Trp Ser Gln Gly 100

<210> 334 <211> 43 <212> PRT <213> Homo sapiens

<400> 334 Leu Gln Gln Thr Met Gln Ala Met Leu His Phe Gly Gly Arg Leu Ala

Gln Ser Leu Arg Gly Thr Ser Lys Glu Ala Ala Ser Asp Pro Ser Asp 25

Ser Pro Asn Leu Pro Thr Pro Gly Ser Trp Trp

<210> 335 <211> 45 <212> PRT <213> Homo sapiens

<400> 335 Glu Gln Leu Thr Gln Ala Ser Arg Val Tyr Ala Ser Gly Gly Thr Glu

Gly Phe Pro Leu Ser Arg Trp Ala Pro Gly Arg His Gly Thr Ala Ala 25 2.0

Glu Glu Gly Ala Gln Glu Arg Pro Leu Pro Thr Asp Glu

<210> 336 <211> 45 <212> PRT <213> Homo sapiens

<400> 336 Met Ala Pro Gly Arg Gly Leu Trp Leu Gly Arg Leu Phe Gly Val Pro WO 99/58660

PCT/US99/09847

THE PARTY OF THE P

161

Gly Gly Pro Ala Glu Asn Glu Asn Gly Ala Leu Lys Ser Arg Arg Pro 20 25 30

Ser Ser Trp Leu Pro Pro Thr Val Ser Val Leu Ala Leu
35 40 45

<210> 337

<211> 44

<212> PRT

<213> Homo sapiens

<400> 337

Val Lys Arg Gly Ala Pro Pro Glu Met Pro Ser Pro Gln Glu Leu Glu

1 5 10 15

Ala Ser Ala Pro Arg Met Val Gln Thr His Arg Ala Val Arg Ala Leu  $20 \hspace{1cm} 25 \hspace{1cm} \cdot \hspace{1cm} 30$ 

Cys Asp His Thr Ala Ala Arg Pro Asp Gln Leu Ser 35 40

<210> 338

<211> 38

<212> PRT

<213> Homo sapiens

<400> 338

Phe Arg Arg Gly Glu Val Leu Arg Val Ile Thr Thr Val Asp Glu Asp 1 5 10 15

Trp Leu Arg Cys Gly Arg Asp Gly Met Glu Gly Leu Val Pro Val Gly 20 25 30

Tyr Thr Ser Leu Val Leu 35

<210> 339

<211> 215

<212> PRT

<213> Homo sapiens

<400> 339

Leu Gln Gln Thr Met Gln Ala Met Leu His Phe Gly Gly Arg Leu Ala 1 5 10 15

Gln Ser Leu Arg Gly Thr Ser Lys Glu Ala Ala Ser Asp Pro Ser Asp 20 25 30

Ser Pro Asn Leu Pro Thr Pro Gly Ser Trp Trp Glu Gln Leu Thr Gln 35 40 45

Ala Ser Arg Val Tyr Ala Ser Gly Gly Thr Glu Gly Phe Pro Leu Ser 50 55 60

Arg Trp Ala Pro Gly Arg His Gly Thr Ala Ala Glu Glu Gly Ala Gln
65 70 75 80

Glu Arg Pro Leu Pro Thr Asp Glu Met Ala Pro Gly Arg Gly Leu Trp

Leu Gly Arg Leu Phe Gly Val Pro Gly Gly Pro Ala Glu Asn Glu Asn

100 105 110 Gly Ala Leu Lys Ser Arg Arg Pro Ser Ser Trp Leu Pro Pro Thr Val 120 Ser Val Leu Ala Leu Val Lys Arg Gly Ala Pro Pro Glu Met Pro Ser 135 Pro Gln Glu Leu Glu Ala Ser Ala Pro Arg Met Val Gln Thr His Arg 150 Ala Val Arg Ala Leu Cys Asp His Thr Ala Ala Arg Pro Asp Gln Leu Ser Phe Arg Arg Gly Glu Val Leu Arg Val Ile Thr Thr Val Asp Glu 185 Asp Trp Leu Arg Cys Gly Arg Asp Gly Met Glu Gly Leu Val Pro Val 200 Gly Tyr Thr Ser Leu Val Leu 210 <210> 340 <211> 72 <212> PRT <213> Homo sapiens <220> <221> SITE <222> (7) <223> Xaa equals any of the naturally occurring L-amino acids <400> 340 Ala Arg Ala Cys Pro Arg Xaa Gly Ala Ala Val Glu Lys Leu Gly Gly Lys Pro Val Gln Pro Asp Ser Lys Pro Thr Cys Cys Ser Gln Val Lys Ala Glu Gly Leu Ile Phe Ala Gly Leu Thr Gly Leu Lys Leu Leu Pro Ser Ser Leu Gln Arg Ala Val Phe Val Arg Gln Cys Leu Gly Phe Trp Asn Asp Gly Ser Arg Ala Leu Gln 65 <210> 341 <211> 31 <212> PRT <213> Homo sapiens <400> 341 Phe Gln Ser Val Tyr His Met Lys Leu Gln Ser Ser Asn Leu Pro Ala Ser Val Tyr Gly Asn Asn Leu Asn Cys Ile Asn Ser Ser Ser

WO 99/58660

```
<210> 342
 <211> 37
 <212> PRT
 <213> Homo sapiens
 <400> 342
 Phe Asp Phe Ile Ala Ser Leu Leu Lys Ala Asn Arg Leu Ser Leu Gln
 Thr Cys Glu Leu Leu Leu Ala Ala Leu Leu Pro Ser Glu Arg Tyr
 Lys Ala Ile Ser Ile
   35
 <210> 343
 <211> 25
 <212> PRT
 <213> Homo sapiens
 <400> 343
Ile Asp Leu Ser Phe Pro Ser Thr Asn Val Ser Leu Glu Asp Arg Asn
                         10
Thr Thr Lys Pro Ser Val Asn Val Gly
             20
<210> 344
<211> 15
<212> PRT
<213> Homo sapiens
<400> 344
Leu Asn Ile Leu Ile Ser Leu Thr Val Ser Ser His Cys Lys Leu
<210> 345
<211> 13
<212> PRT
<213> Homo sapiens
<400> 345
Ile Asn Tyr His Ser Gly Phe Ile His Gln Phe Leu Ala
<210> 346
<211> 11
<212> PRT
<213> Homo sapiens
<400> 346
Met Ala Asn Asn Ser Leu Ser Ser Gln Phe Ile
<210> 347
<211> 46
<212> PRT
<213> Homo sapiens
```

Ø

```
<400> 347
Pro Phe Trp Ala Ala Glu Ser Ala Leu Asp Phe His Trp Pro Phe Gly
Gly Ala Leu Cys Lys Met Val Leu Thr Ala Thr Val Leu Asn Val Tyr
Ala Ser Ile Phe Leu Ile Thr Ala Leu Ser Val Ala Arg Tyr
                             40
<210> 348
<211> 12
<212> PRT
<213> Homo sapiens
Thr His Ala Asp Lys Asn Gln Val Arg Asn Ser Asn
                                     10
<210> 349
<211> 15
<212> PRT
<213> Homo sapiens
<400> 349
Gln Phe Leu Ser Trp Glu Gln Cys Thr Gly Asn Thr Glu Ser Gln
                                    10
<210> 350
<211> 13
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (9)
<223> Xaa equals any of the naturally occurring L-amino acids
<400> 350
Val Arg Arg Pro Lys Ala Lys Gly Xaa Gln Thr Ser Asn
<210> 351
<211> 19
<212> PRT
<213> Homo sapiens
<400> 351
Pro Thr Gln Leu Asn Lys His Lys Pro Thr Thr Lys Glu Arg Arg Arg
Lys Gly Leu
<210> 352
<211> 9
<212> PRT
<213> Homo sapiens
```

```
<400> 352
 Leu Ile Ser Lys His Glu Asn Ile Tyr
<210> 353
 <211> 27
 <212> PRT
 <213> Homo sapiens
<220>
 <221> SITE
<222> (5)
<223> Xaa equals any of the naturally occurring L-amino acids
<221> SITE
<222> (6)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (8)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (22)
<223> Xaa equals any of the naturally occurring L-amino acids
<400> 353
Thr Leu Tyr Ile Xaa Xaa Met Xaa Thr Gln Thr Trp Arg Asp Gln Gly
Arg Cys Gly Arg Asp Xaa Ile Asn Cys Ile Val
<210> 354
<211> 33
<212> PRT
<213> Homo sapiens
<400> 354
Ser Leu Cys Thr Pro Gly Arg Gly Trp Glu Glu Ser Trp Gly Ser Ser
Leu Pro Asn Leu Thr Gly Trp Ser Val Ser Ser Leu Asp Asn Asn Asp
Val
<210> 355
<211> 204
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (107)
<223> Xaa equals any of the naturally occurring L-amino acids
```

WO 99/58660

166

<400> 355 Met Gln Val Ala Leu Lys Glu Asp Leu Asp Ala Leu Lys Glu Lys Phe Arg Thr Met Glu Ser Asn Gln Lys Ser Ser Phe Gln Glu Ile Pro Lys

Leu Asn Glu Glu Leu Leu Ser Lys Gln Lys Gln Leu Glu Lys Ile Glu

Ser Gly Glu Met Gly Leu Asn Lys Val Trp Ile Asn Ile Thr Glu Met

Asn Lys Gln Ile Ser Leu Leu Thr Ser Ala Val Asn His Leu Lys Ala

Asn Val Lys Ser Ala Ala Asp Leu Ile Ser Leu Pro Thr Thr Val Glu

Gly Leu Gln Lys Ser Val Ala Ser Ile Gly Xaa Thr Leu Asn Ser Val 105

His Leu Ala Val Glu Ala Leu Gln Lys Thr Val Asp Glu His Lys Lys

Thr Met Glu Leu Leu Gln Ser Asp Met Asn Gln His Phe Leu Lys Glu 135

Thr Pro Gly Ser Asn Gln Ile Ile Pro Ser Pro Ser Ala Thr Ser Glu 155

Leu Asp Asn Lys Thr His Ser Glu Asn Leu Lys Gln Met Gly Asp Arg 170

Ser Ala Thr Leu Lys Arg Gln Ser Leu Asp Gln Vai Thr Asn Arg Thr 185

Asp Thr Val Lys Ile Gln Ser Ile Lys Lys Glu Gly 200 195

<210> 356 <211> 43

<212> PRT

<213> Homo sapiens

Met Gln Val Ala Leu Lys Glu Asp Leu Asp Ala Leu Lys Glu Lys Phe

Arg Thr Met Glu Ser Asn Gln Lys Ser Ser Phe Gln Glu Ile Pro Lys

Leu Asn Glu Glu Leu Leu Ser Lys Gln Lys Gln

<210> 357

<211> 43

<212> PRT

<213> Homo sapiens

Leu Glu Lys Ile Glu Ser Gly Glu Met Gly Leu Asn Lys Val Trp Ile

1 1 St. Martin Co.

1 5 10 15

Asn Ile Thr Glu Met Asn Lys Gln Ile Ser Leu Leu Thr Ser Ala Val
20 25 30

Asn His Leu Lys Ala Asn Val Lys Ser Ala Ala 35 40

<210> 358

<211> .43

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (21)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 358

Asp Leu Ile Ser Leu Pro Thr Thr Val Glu Gly Leu Gln Lys Ser Val

1 10 15

Ala Ser Ile Gly Xaa Thr Leu Asn Ser Val His Leu Ala Val Glu Ala
20 25 30

Leu Gln Lys Thr Val Asp Glu His Lys Lys Thr 35 40

**<210>** 359

<211> 43

<212> PRT

<213> Homo sapiens

<400> 359

Met Glu Leu Leu Gln Ser Asp Met Asn Gln His Phe Leu Lys Glu Thr  $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$ 

Pro Gly Ser Asn Gln Ile Ile Pro Ser Pro Ser Ala Thr Ser Glu Leu 20 25 30

Asp Asn Lys Thr His Ser Glu Asn Leu Lys Gln
35 40

<210> 360

<211> 32

<212> PRT

<213> Homo sapiens

<400> 360

Met Gly Asp Arg Ser Ala Thr Leu Lys Arg Gln Ser Leu Asp Gln Val

Thr Asn Arg Thr Asp Thr Val Lys Ile Gln Ser Ile Lys Lys Glu Gly
20 25 30

<210> 361

<211> 12

```
<212> PRT
<213> Homo sapiens

<400> 361
Ser Pro Gln Phe Leu Ser Ser Lys Ser Leu Pro Thr
1 5 10

<210> 362
<211> 107
<212> PRT
<213> Homo sapiens

<400> 362
```

Gly Pro Pro Ser Pro Arg Gly Leu Pro Ser Leu Pro Leu His Leu Pro 1 5 10 15

Ala Pro Arg Arg Tyr Leu Gln Ser Arg Tyr Ala Cys Ser Gln Ser Ser 20 25 30

Val Ser Ala Ala Ala Arg Arg Trp Gly Ser Gly Trp Met Ala Trp Asp 35 40 45

Pro Trp Asn Gln Ala Ser Gly Arg Tyr Ala Arg Ile Thr Leu Leu Ser 50 55 60

Val Gln Ala Cys His Gln Pro Thr Val Trp Pro Arg Ala Gly His Ser 65 70 75 80

Leu Pro Glu Arg Tyr Ser Leu His Pro His Asn Gly Asp Ser Thr His 85 90 95

Leu Ser Gly Leu Leu Thr Val Lys Cys Gly Ala 100 105

<210> 363 <211> 37 <212> PRT <213> Homo sapiens

<400> 363
Gly Pro Pro Ser Pro Arg Gly Leu Pro Ser Leu Pro Leu His Leu Pro
1 5 10 15

Ala Pro Arg Arg Tyr Leu Gln Ser Arg Tyr Ala Cys Ser Gln Ser Ser 20 25 30

Val Ser Ala Ala Ala

<210> 364 <211> 33 <212> PRT <213> Homo sapiens

Ser Gly Arg Tyr Ala Arg Ile Thr Leu Leu Ser Val Gln Ala Cys His 20 . 25 . 30

Gln

```
<210> 365
<211> 37
<212> PRT
<213> Homo sapiens
<400> 365
```

Pro Thr Val Trp Pro Arg Ala Gly His Ser Leu Pro Glu Arg Tyr Ser 1 5 10 15

Leu His Pro His Asn Gly Asp Ser Thr His Leu Ser Gly Leu Leu Thr  $20 \ 25 \ 30$ 

Val Lys Cys Gly Ala 35

```
<210> 366
<211> 18
<212> PRT
<213> Homo sapiens
```

<400> 366
Asn Gln Glu Asn Ser Leu Gln Thr Asn Ser Tyr Leu Asp Ser Thr Glu
1 5 10 15

Ser Lys

```
<210> 367
<211> 31
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (17)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (19)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (30)
<223> Xaa equals any of the naturally occurring L-amino acids
<400> 367
Gln Lys Arg Ala Cys Phe Pro Phe Ala Phe Cys Arg Asp Cys Gln Phe
```

Xaa Glu Xaa Ser Pro Ala Met Leu Pro Val Gln Pro Ala Xaa Leu

25

<210> 368 <211> 11 <212> PRT

WO 99/58660 PCT/US99/09847

57

```
<213> Homo sapiens
<400> 368
'Val Ser Ala His Gly Ile Trp Leu Phe Arg Ser
<210> 369
<211> 49
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (35)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (37)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (48)
<223> Xaa equals any of the naturally occurring L-amino acids
<400> 369
Lys His Ala Ala Pro Pro Ala Ser Leu Ser Leu Ser Leu Leu Leu His
His Gly Gln Lys Arg Ala Cys Phe Pro Phe Ala Phe Cys Arg Asp Cys
Gln Phe Xaa Glu Xaa Ser Pro Ala Met Leu Pro Val Gln Pro Ala Xaa
                             40
Leu
<210> 370
<211> 12
<212> PRT
<213> Homo sapiens
<400> 370
Ile Pro Glu Glu Ala Ser Cys Phe Pro Ser Ala Val
<210> 371
<211> 17
<212> PRT
<213> Homo sapiens
<400> 371
Glu Ile Leu Phe Gly Lys Leu Lys Ser Lys Ala Ala Leu Cys Thr Gln
 1
                                     10
Gly
```

<211> 11

```
<210> 372
 <211> 19
<212> PRT
 <213> Homo sapiens
 <400> 372
 His Ala Asp Arg Tyr Thr Cys Cys Arg Cys Leu Ser Pro Phe Ser Leu
                                      10
 Ala Gly Leu
 <210> 373
 <211> 15
 <212> PRT
 <213> Homo sapiens
 <400> 373
 Leu Ser Asp Pro Leu Leu Leu Pro Asp Cys Ser Phe Ser Phe Asn
                   5
                                      10
 <210> 374
 <211> 25
 <212> PRT
 <213> Homo sapiens
 <400> 374
Lys Ala Val Ala Tyr Ala Asn Val Ser Cys Arg Arg Phe Lys His Lys
                                     10
Thr Thr Lys Leu Gly Pro Ile Gln Trp
              20
<210> 375
<211> 26
<212> PRT
<213> Homo sapiens
<400> 375
Pro Ser Ser Gln Ser Pro Glu Pro Pro Gln Pro Leu Ser Leu Phe Val
Thr Arg Leu Pro Asn Leu Tyr Asp Phe Pro
             20
<210> 376
<211> 19
<212> PRT
<213> Homo sapiens
<400> 376
Ser Arg Gln Ile Ile Cys Thr Asn Leu Cys Lys Cys Thr Pro Ile Cys
Phe Leu Phe
<210> 377
```

```
<212> PRT
<213> Homo sapiens
<400> 377
Met Leu Leu Pro Val Asn Thr Leu Leu Tyr Ile
1 5
                      10
<210> 378
<211> 14
<212> PRT
<213> Homo sapiens
<400> 378
Leu Leu Thr Pro Leu Cys Phe Phe Tyr Gly Thr Ser Arg Pro
1
<210> 379
<211> 7
<212> PRT
<213> Homo sapiens
<400> 379
Pro Tyr Leu Glu Leu Val Thr
<210> 380
<211> 13
<212> PRT
<213> Homo sapiens
<400> 380
Leu Leu Lys Lys Lys Gln Ser Val Gly Phe Ser Val
 1
<210> 381
<211> 7
<212> PRT
<213> Homo sapiens
<400> 381
Cys Ile Leu Glu Ala Gly Arg
<210> 382
<211> 11
<212> PRT
<213> Homo sapiens .
<400> 382
Met Gly Phe Ser Ala Pro Thr Pro Gly Pro Leu
                5
<210> 383
<211> 11
<212> PRT
<213> Homo sapiens
<400> 383
```

MISSING TO THE PARTY OF THE PAR

```
Phe Asp Leu Arg Arg Leu Ile Leu Ser Ile Val
                                      10
   1
                   5
 <210> 384
 <211> 17
 <212> PRT
 <213> Homo sapiens
 <400> 384
 Ala Phe Cys Pro His Val Thr Pro Cys Lys Tyr Ala Val Ile His Thr
  1
                   5
                                      10
 Val
 <210> 385
 <211> 11
 <212> PRT
 <213> Homo sapiens
 <400> 385
 Asn Thr Pro Leu Leu Phe Leu Trp Asp Leu Gln
 <210> 386
 <211> 17
 <212> PRT
 <213> Homo sapiens
<400> 386
Ala Thr Ile Phe Arg Thr Ser Tyr Leu Ile Lys Lys Glu Lys Thr Val
                                  10
Cys
<210> 387
<211> 17
<212> PRT
<213> Homo sapiens
<400> 387
Trp Leu Leu Ser Leu His Leu Gly Gly Arg Glu Val Arg Ala Gly Ala
                  5
.Pro
<210> 388
<211> 11
<212> PRT
<213> Homo sapiens
<400> 388
Gln Thr Leu Gln Glu Gly Ser Leu His Ser Ile
<210> 389
```

<211> 95 <212> PRT <213> Homo sapiens

<400> 389

Met Gly Phe Ser Ala Pro Thr Pro Gly Pro Leu Phe Asp Leu Arg Arg 1 5 10 15

Leu Ile Leu Ser Ile Val Ala Phe Cys Pro His Val Thr Pro Cys Lys 20 25 . 30

Tyr Ala Val Ile His Thr Val Asn Thr Pro Leu Leu Phe Leu Trp Asp 35 40 45

Leu Gln Ala Thr Ile Phe Arg Thr Ser Tyr Leu Ile Lys Lys Glu Lys 50 55 60

Thr Val Cys Trp Leu Leu Ser Leu His Leu Gly Gly Arg Glu Val Arg 65 70 75 80

Ala Gly Ala Pro Gln Thr Leu Gln Glu Gly Ser Leu His Ser Ile 85 90 95

<210> 390 <211> 33 <212> PRT <213> Homo sapiens

<400> 390
Tyr Trp Val Ser Ile Ser Gln Arg Ser Val Cys Gln Gln Ala Arg Thr
1 5 10 15

Ser Ile Phe Phe Lys Asp Gly Leu Ser Arg Glu Lys Tyr Ser Asn Asn 20 25 30

Gly

<210> 391 <211> 160 <212> PRT <213> Homo sapiens

<400> 391
Leu Ser Val Arg Ala Pro Gly Val Pro Ala Ala Arg Pro Arg Leu Ser

Ser Ala Arg Gln Ala Gly Ala Gly Arg Gly Glu Leu Arg Gly Gln Arg 20 25 30

Leu Trp Leu Gly Pro Glu Cys Gly Cys Gly Ala Gly Gln Ala Gly Ser 35 40 45

Met Leu Arg Ala Val Gly Ser Leu Leu Arg Leu Gly Arg Gly Leu Thr 50 55 60

Val Arg Cys Gly Pro Gly Ala Pro Leu Glu Ala Thr Arg Arg Pro Ala 65 70 75 80

Pro Ala Leu Pro Pro Arg Gly Leu Pro Cys Tyr Ser Ser Gly Gly Ala 85 90 95

WO 99/58660 PCT/US99/09847

175

Pro Ser Asn Ser Gly Pro Gln Gly His Gly Glu Ile His Arg Val Pro 105

Thr Gln Arg Arg Pro Ser Gln Phe Asp Lys Lys Ile Leu Leu Trp Thr 120

Gly Arg Phe Lys Ser Met Glu Glu Ile Pro Pro Arg Ile Pro Pro Glu 135

Met Ile Asp Thr Ala Arg Asn Lys Ala Arg Val Lys Ala Cys Tyr Ile

<210> 392

<211> 36

1

<212> PRT

<213> Homo sapiens

<400> 392

Leu Ser Val Arg Ala Pro Gly Val Pro Ala Ala Arg Pro Arg Leu Ser 5 10

Ser Ala Arg Gln Ala Gly Ala Gly Arg Gly Glu Leu Arg Gly Gln Arg 25

Leu Trp Leu Gly 35

<210> 393

<211> 34

<212> PRT

<213> Homo sapiens

Pro Glu Cys Gly Cys Gly Ala Gly Gln Ala Gly Ser Met Leu Arg Ala

Val Gly Ser Leu Leu Arg Leu Gly Arg Gly Leu Thr Val Arg Cys Gly

Pro Gly

<210> 394

<211> 34

<212> PRT

<213> Homo sapiens

<400> 394

Ala Pro Leu Glu Ala Thr Arg Arg Pro Ala Pro Ala Leu Pro Pro Arg

Gly Leu Pro Cys Tyr Ser Ser Gly Gly Ala Pro Ser Asn Ser Gly Pro 25

Gln Gly

```
<210> 395
<211> 27
<212> PRT
<213> Homo sapiens
His Gly Glu Ile His Arg Val Pro Thr Gln Arg Arg Pro Ser Gln Phe
Asp Lys Lys Ile Leu Leu Trp Thr Gly Arg Phe
<210> 396
<211> 29
<212> PRT
<213> Homo sapiens
<400> 396
Lys Ser Met Glu Glu Ile Pro Pro Arg Ile Pro Pro Glu Met Ile Asp
Thr Ala Arg Asn Lys Ala Arg Val Lys Ala Cys Tyr Ile
            20
<210> 397
<211> 9
<212> PRT
<213> Homo sapiens
<400> 397
Glu Leu Ala Ile Gly Glu Ser Cys Ser
<210> 398
<211> 17
<212> PRT
<213> Homo sapiens
<400> 398
Pro Val Ile Trp Pro Asp Gly Lys Arg Ile Val Leu Leu Ala Glu Val
1
                                   10
Ser
<210> 399
<211> 10
<212> PRT
<213> Homo sapiens
<400> 399
Cys Phe Leu Ser Val Ser Phe Gln Trp Asn
1 5
<210> 400
<211> 17
<212> PRT
<213> Homo sapiens
```

```
<400> 400
 Val Thr Ile Ala Gln Val Gly Ile Phe Val Cys Phe Val His Cys Cys
                                      10
                                                           15
 Thr
 <210> 401
 <211> 17
 <212> PRT
 <213> Homo sapiens
 <400> 401
 Pro Gly Gln Val Pro Ser Lys His Leu Gly Ser Asn Ala Ser Val Arg
                                      10
 Ala
 <210> 402
 <211> 22
 <212> PRT
 <213> Homo sapiens
 <400> 402
Asp Glu Gly Ala Lys Val Gln Arg Arg Pro Trp Gly Ser Gln Thr His
Ser Pro Val Leu Phe Leu
            20
<210> 403
<211> 18
<212> PRT
<213> Homo sapiens
<400> 403
Leu Thr Arg Pro Gly Leu Trp Gly Ser Leu Leu Pro Val Gln Gln Gln
                                    10
Arg Gly
<210> 404
<211> 15
<212> PRT
<213> Homo sapiens
<400> 404
Cys Ala Ser Leu Gly Val Leu Arg Ala Asn Arg Ser Pro Cys Val
                                    10
<210> 405
<211> 18
<212> PRT
<213> Homo sapiens
<400> 405
Ser Trp Leu Glu Val Thr Thr Leu Ser Ala Pro Gly Pro Val Ile Thr
```

WO 99/58660 PCT/US99/09847

```
15
                . 5
                                    10
1
Thr Tyr
<210> 406
<211> 18
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (9)
<223> Xaa equals any of the naturally occurring L-amino acids
<400> 406
Pro Gly Gln Trp Val Arg Glu Ile Xaa Leu Val Gly Arg Ala Val Ala
                                     10
 1
Arg Val
<210> 407
<211> 16
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (6)
<223> Xaa equals any of the naturally occurring L-amino acids
<400> 407
Leu Thr Trp Pro Pro Xaa Gly Pro Met Gly Thr Val Trp Pro Gly Phe
<210> 408
<211> 17
<212> PRT
<213> Homo sapiens
<400> 408
Met Ala Asp Ile Pro Gly Thr Phe Leu Ala Leu Gly Cys His Gly Gln
                                    10
               5
 1
Arg
 <210> 409
 <211> 15
 <212> PRT
 <213> Homo sapiens
 <400> 409
 Val Gly Arg Gly Ser Trp Ala Ser Gly Trp Thr Asn Gln Ser Ala
                                    10
```

Constants of the

179

<210> 410
<211> 16
<212> PRT
<213> Homo sapiens
<400> 410
Pro Asp His Pro Leu Pro Val Gly Leu Leu Glu Ala Trp Arg Val Glu
1 5 10 15

Glu Asp Glu Xaa Glu Arg Arg Arg Arg Glu Arg Asp Asp Gln 85 90

Lys Gln Lys Asn Lys Glu Lys Asp Lys Ser Lys Gly Lys Ala Pro Glu

<210> 412 <211> 12 <212> PRT <213> Homo sapiens

<400> 412
Phe Leu Arg Phe Trp Cys Thr Cys His Val Ser Ser
1 5 10

International application No. PCT/US99/09847

| A. CLASSIFICATION OF SUBJECT MATTER                                                                                                       |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|--|
|                                                                                                                                           | IPC(6) :C12N 15/00, 15/12; C07K 14/00, 14/435 US CL :435/69.1, 320.1, 325; 536/23.5; 530/350                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |  |  |
| According to In                                                                                                                           | stemational Patent Classification (IPC) or to both na                                                                                                                           | ational classification and IPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                               |  |  |
|                                                                                                                                           | SEARCHED                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |  |  |
| Minimum documentation searched (classification system followed by classification symbols)                                                 |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |  |  |
| U.S. : 435                                                                                                                                | /69.1, 320.1, 325; 536/23.5; 530/350                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |  |  |
|                                                                                                                                           |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |  |  |
| Documentation                                                                                                                             | searched other than minimum documentation to the                                                                                                                                | extent that such documents are included                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in the fields searched                                        |  |  |
| Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |  |  |
|                                                                                                                                           | nbak-EST, Swissprot                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |  |  |
| C. DOCUM                                                                                                                                  | IENTS CONSIDERED TO BE RELEVANT                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |  |  |
| Category*                                                                                                                                 | Citation of document, with indication, where app                                                                                                                                | ropriate, of the relevant passages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Relevant to claim No.                                         |  |  |
| n                                                                                                                                         | KUSTIKOVA et al. Cloning of the tag7 gene expressed in metastatic mouse tumors. Genetika. May 1996, Vol. 32, No. 5, pages 621-628, Figure 3.                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-2, 7-11, 14-16                                              |  |  |
| 'n                                                                                                                                        | KISELEV et al. Molecular cloning and characterization of the mouse tag7 gene encoding a novel cytokine. J. Biol. Chem. July 1998, Vol. 273, No. 9, pages 18633-18639, Figure 1. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-2, 7-11, 14-16                                              |  |  |
| iı                                                                                                                                        | KANG et al. A peptidoglycan recommunity conserved from insects to hum JSA. August 1998, Vol. 95, pages 10                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-2, 7-11, 14-16                                              |  |  |
| X Further                                                                                                                                 | documents are listed in the continuation of Box C.                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |  |  |
| Special categories of cited documents.                                                                                                    |                                                                                                                                                                                 | date and not in conflict with the app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lication but cited to understand                              |  |  |
| *A* document defining the general state of the art which is not considered to be of particular relevance                                  |                                                                                                                                                                                 | the principle or theory underlying the   *X* document of particular relevance; the   the principle or theory underlying the   the principle or the principle or the   the   the principle or the   the principle or the   the principle or   the principle or the   the principle or the   the principle or   the principle or   the principle or   the principle or   the   the principle or   the   the principle or   the   the principle or   the   the   the principle or   the   the   the   the   th | 1                                                             |  |  |
| *E* earlier document published on or after the international filing date                                                                  |                                                                                                                                                                                 | considered novel or cannot be considered novel or cannot be considered when the document is taken alone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ered to involve an inventive step                             |  |  |
| *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other |                                                                                                                                                                                 | "Y" document of particular relevance; il                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                               |  |  |
| special reason (as specified)  *O* document referring to an oral disclosure, use, exhibition or other means                               |                                                                                                                                                                                 | considered to involve an inventive combined with one or more other subeing obvious to a person skilled in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e step when the document is<br>th documents, such combination |  |  |
|                                                                                                                                           | nent published prior to the international filing date but later than                                                                                                            | "&" document member of the same pater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nt family                                                     |  |  |
| Date of the actual completion of the international search                                                                                 |                                                                                                                                                                                 | Date of mailing of the international search report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                               |  |  |
| 16 AUGUST 1999                                                                                                                            |                                                                                                                                                                                 | <b>10</b> SEP 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                               |  |  |
| Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231                                                                     |                                                                                                                                                                                 | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tor                                                           |  |  |
| Facsimile No. (703) 305-3230                                                                                                              |                                                                                                                                                                                 | Telephone No. (703) 308-0196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                               |  |  |



International application No. PCT/US99/09847

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                         | Relevant to claim No  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| -awgury   | Cimaton of Accounting with indication, where appropriate, of the refevant passages                                                         | Note and the claim No |
| X         | Database on GENESEQ, Accession Number W23723, SELSTED ME., Murine granulocyte peptide A precursor (antimicrobial MGP-A), 18 February 1998. | 1-2, 7-11, 14-16      |
| X,P       | Database on GENBANK, Accession Number AC002559, EVANS et al. Homo sapiens chromosome 10 PAC clone pDJ205g22. 13 November 1998.             | 1-2, 7-11, 14-16      |
| X         | Database on GENBANK, Accession Number AA594742, NCI-CGAP . no03g09s1 Homo sapiens cDNA clone.                                              | 1-2,7-11, 14-16       |
| •         |                                                                                                                                            |                       |
|           |                                                                                                                                            |                       |
|           |                                                                                                                                            |                       |
|           |                                                                                                                                            |                       |
|           |                                                                                                                                            |                       |
|           |                                                                                                                                            |                       |
|           |                                                                                                                                            |                       |
|           |                                                                                                                                            |                       |
|           |                                                                                                                                            |                       |
|           |                                                                                                                                            | ·                     |



International application No. PCT/US99/09847

| Box 1 Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)                                                                                                                                                                                    |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:                                                                                                                                                          |  |  |  |
| Claims Nos.:     because they relate to subject matter not required to be searched by this Authority, namely:                                                                                                                                                                              |  |  |  |
| 2. Claims Nos.:  because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:                                                             |  |  |  |
| 3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).                                                                                                                                                    |  |  |  |
| Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)                                                                                                                                                                                            |  |  |  |
| This International Searching Authority found multiple inventions in this international application, as follows:                                                                                                                                                                            |  |  |  |
| Please See Extra Sheet.                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                                                                                                                                                                                                                            |  |  |  |
| 1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.                                                                                                                                                |  |  |  |
| 2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.                                                                                                                                    |  |  |  |
| 3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:                                                                                    |  |  |  |
| 4. X No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:  1-12, 14-16 and 21, as they apply to SEQ ID No:11 and SEQ ID No:111 |  |  |  |
| Remark on Protest  The additional search fees were accompanied by the applicant's protest.                                                                                                                                                                                                 |  |  |  |
| No protest accompanied the payment of additional search fees.                                                                                                                                                                                                                              |  |  |  |



International application No. PCT/US99/09847

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claims 1-12, 14-16 and 21, drawn to a polynucleotide fragment of SEQ ID No:11, a polynucleotide encoding a polypeptide fragment of SEQ ID No:111, a vector, a method of making a host cell, a host cell, a polypeptide, a method of making a polypeptide, and a gene.

Group II, claim 13, drawn to an antibody.

Group III, claim 17, drawn to a method of treating or preventing a medical condition.

Group IV, claims 18-19, drawn to a method of diagnosis.

Group V, claim 20, drawn to a method of identifying a binding partner.

Group VI, claim 22, drawn to a method of identifying an activity in a biological assay.

Group VII, claim 23, drawn to a product.

The inventions listed as Groups I-VII do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: pursuant to 37 CFR 1.475(d), this Authority considers that the main invention in the instant application comprises the first recited product, which is the polynucleotide fragment of SEQ ID No:11, the polynucleotide encoding the polypeptide of SEQ ID No:111, and the first recited method of using that product, namely in the process of making a recombinant cell.

Note that there is no method of making the polynucleotide. Also included in this group is the product made, namely the encoded polypeptide, and vector, host cell, method of making the polypeptide, and gene. Further, pursuant to 37 CFR 1.475 (b)-(d), the ISA/US considers that the materially and functionally dissimilar products of Group II and VII, and the additional methods of Groups III-VI do not correspond to the main invention. This Authority therefore considers that the several inventions do not share a special technical feature within the meaning of PCT Rule 13.2 and thus do not relate to a single general inventive concept within the meaning of PCT rule 13.1.

