Numerical Optimization

Lecture 4: Simplex Method (II)

王浩

信息科学与技术学院

Email: wanghao1@shanghaitech.edu.cn

本节内容

- 启动单纯形法:人工变量&辅助问题 辅助问题的最 优解与原问题可行解的关系
- 两阶段法-每个阶段的初始化及其解的情况
- 单纯形法的表格实现 重点
- 修正单纯形法 难点
 - ◆ 转轴后基本可行解的基与转轴前对应基的关系
 - ✔ 理论上的表现
 - ✔ 实际的实现
 - ◆ 转轴后的单纯形乘子与转轴前单纯形乘子的关系
 - **◆** 修正单纯形法的表格实现

数值最优化 ShanghaiTech-SIST-CS

1、Initialization (单纯形法的启动)

初始基本可行解-人工变量

- 目标: 判断 $Ax = b, x \ge 0$ 是否有解;
- 方法: 有解时, 去掉冗余方程, 找一个基本可行解;
 - ◆ 给有需要的行乘以-1,使得 $b \ge 0$
 - ◆引入人工变量(auxiliary variables): y_i , i = 1,...,m

辅助
$$x \in \mathbb{R}^n, \ y \in \mathbb{R}^m$$
 $i = 1$ $i = 1$

x = 0, y = b是基本可行解

◆以x = 0, y = b作为初始 BFS,利用单纯形法求解辅助问题假设最后得最优解(x',y'),最优值f',最优基B'

数值最优化 \$hanghaiTech-SIST-CS

得到原问题的基本可行解

- f' > 0,原问题无可行解!
- f' = 0, 原问题有可行解, 且x'是潜在的基本可行解!
 - ◆基变量中无人工变量 $\rightarrow x'$ 是BFS, B'是对应的基
 - ◆基变量中有人工变量→继续转轴,驱赶人工变量出基

假设第 i 个基变量是人工变量,且当前单纯形表第 i 行的前 n 个数据是 $(y_{i1}, y_{i2}, \dots, y_{in})$

 $(y_{i1}, y_{i2}, \cdots, y_{in}) \neq 0$ 以任一非零元为转轴元转轴 得辅助问题的一个新的最优**BFS**,且基变量中少1个人工变量!

 $(y_{i1}, y_{i2}, \cdots, y_{in}) = 0$ 第 i 个约束冗余; 删除单纯形表的第 i 行数据

5

数值最优化 ShanghaiTech-SIST-CS

例1. 给出下面系统的一个基本可行解,或者说明其无解

$$egin{array}{lll} 2x_1+&x_2+&2x_3=4,\ 3x_1+&3x_2+&x_3=3,\ x_1\geq 0,&x_2\geq 0,&x_3\geq 0. \end{array}$$

引入人工变量 $x_4 \ge 0$, $x_5 \ge 0$, 并在目标上"惩罚"人工变量,添加目标为: minimize $x_4 + x_5$

	x_1	$oldsymbol{x_2}$	x_3	x_4	x_5	b	辅助问题的
	2	1	2	1	0	4	初始表格!
	3	3	1	0	1	3	$x = (0, 0, 0, 4, 3)^{\mathrm{T}}$
$\overline{c^T}$	0	0	0	1	1	0	BES

	x_1	x_2	x_3	x_4	x_5	\boldsymbol{b}	
	2	1	2	1	0	4	第一张
	3	3	1	0	1	3	单纯形表
	<u>-5</u>	-4	-3	0	0	-7	
x_1	x_2	x_3	$oldsymbol{x}_4$	1	x_5	\boldsymbol{b}	
0	-1	4/3] 1	L —	2/3	2	
1	1	1/3	3 ()	1/3	1	第二张
0	1	-4/3	3 ()	5/3	-2	单纯形表

数值最优化 \$hanghaiTech-SIST-CS

	$\boldsymbol{x_2}$			$oldsymbol{x_5}$	
0	-3/4	1	3/4	-1/2	3/2
1	5/4	0	-1/4	1/2	1/2
0	0	0	1	1	0

辅助问题的最优值是0.

原问题的BFS:

$$x_1 = 1/2, \quad x_2 = 0, \quad x_3 = 3/2$$

例2. 利用两阶段法求解下面的问题

minimize
$$4x_1 + x_2 + x_3$$

subject to $2x_1 + x_2 + 2x_3 = 4$, $3x_1 + 3x_2 + x_3 = 3$, $x_1 > 0, x_2 > 0, x_3 > 0$

第Ⅰ阶段:辅助问题

minimize
$$x_4+x_5$$

subject to $2x_1+x_2+2x_3+x_4=4,$
 $3x_1+3x_2+x_3+x_5=3,$
 $x_1,x_2,x_3,x_4,x_5>0.$

辅助问题的最后一张单纯形表

	$\boldsymbol{x_2}$		x_4	$oldsymbol{x_5}$	\boldsymbol{b}
0	-3/4	1	3/4	-1/2	3/2
1	5/4	0	3/4 $-1/4$	1/2	1/2
			1		

原问题的初始表格:

	x_1	$\boldsymbol{x_2}$	x_3	\boldsymbol{b}
	0	-3/4 $5/4$	1	3/2
	1	5/4	0	1/2
$\overline{c^T}$	4	1	1	0

继续转轴.....

	$oldsymbol{x_1}$		x_2	x_3	\boldsymbol{b}
	0	_;	3/4	1	3/2
	1	5	/4	0	1/2
r^T	0	-1	3/4	0	-7/2
		x_1	x_2	x_3	\boldsymbol{b}
		$\frac{x_1}{3/5}$	$egin{array}{c} x_2 \ 0 \end{array}$	$egin{array}{c} x_3 \ \hline 1 \ \end{array}$	$\frac{b}{9/5}$

原问题的最优解: $x_1 = 0$, $x_2 = 2/5$, $x_3 = 9/5$

两阶段法一可求解任意的线性规划问题

- 第Ⅰ阶段:启动单纯形法
 - ◆构造、求解辅助问题
 - ◆判断原问题不可行、或可行
 - ◆可行时,去掉冗余约束并找到BFS及其对应的规范形
- 第 Ⅱ 阶段:利用单纯形法求原问题
 - ◆从上述BFS出发,求解所给问题
 - ◆原问题无界或者有解

数值最优化 ShanghaiTech-SIST-CS

两阶段法的例子

$$egin{array}{ll} ext{minimize} & x_1-x_2 \ ext{subject to} & -x_1+2x_2+x_3=2 \ & -4x_1+4x_2-x_3=4 \ & -5x_1+6x_2=6 \ & x_1-x_3=0 \ & x_1,\ x_2,\ x_3\geq 0 \end{array}$$

大M法(Big M)

輔助
问题 subject to
$$Ax + y = b$$

 $x \ge 0, y \ge 0$

期中是M > 0给定的充分大的参数

2、Revised Simplex Method (修正单纯形法)

修正单纯形法(单纯形法的一种实现方式)

给定基B及对应BFS,即 $B^{-1}b$

$$A = [B \ N], \ x = (x_B^{\mathrm{T}}, \ x_N^{\mathrm{T}})^{\mathrm{T}}, \ c = (c_B^{\mathrm{T}}, c_N^{\mathrm{T}})^{\mathrm{T}}$$
 $ext{minimize} \quad c_B^{\mathrm{T}} x_B + c_N^{\mathrm{T}} x_N$
 $ext{subject to} \quad B x_B + N x_N = b$
 $ext{} x_B \geq 0, x_N \geq 0$

用非基变量表示基变量:

$$x_B + B^{-1}Nx_N = B^{-1}b \Longrightarrow x_B = B^{-1}b - B^{-1}Nx_N$$

用非基变量表示目标函数:

$$f=c_B^{
m T}B^{-1}b+(c_N^{
m T}-c_B^{
m T}B^{-1}N)x_N$$
vector of reduced costs $r_N^{
m T}=c_N^{
m T}-c_B^{
m T}B^{-1}N$

与基矩阵 B 对应的单纯形表

单纯形乘子

$$\begin{bmatrix}
B^{-1}A & B^{-1}b \\
\hline
c^{T} - c_{B}^{T}B^{-1}A & -c_{B}^{T}B^{-1}b
\end{bmatrix}
\lambda^{T} = c_{B}^{T}B^{-1}$$

重要事实:

- ◆ 单纯形法的迭代次数典型地为 $2m \sim 3m$
- ◆ 每次迭代需要的数据单纯形表的最后一行、某列、 最后一列
- ◆ 每次迭代所涉及运算的信息: B^{-1} , 𝒯, 以及原问题的信息

数值最优化 ShanghaiTech-SIST-CS

修正单纯形法的计算

• 每次迭代需要的数据

单纯形表的最后一行、中间某列和最后一列 $r_j=c_j-\lambda^Ta_j,\ y_q=B^{-1}a_q,\ \ ar{b}=B^{-1}b$ 其中 $\lambda^{\mathrm{T}}=c_B^TB^{-1}$ 核心计算: B^{-1}

• 核心问题

数值最优化 ShanghaiTech-SIST-CS

基的逆和单纯形乘子的转换

- 设旧基 $B = [a_1, ..., a_p, ..., a_n]$
- a_q 进基 a_p 出基后所得新基

$$\hat{B} = [a_1, \dots, a_{p-1}, a_{p+1}, a_m, a_q]$$

选定初始基
$$[a_1,\ldots,a_p,\ldots,a_m,\ldots,a_p,\ldots,I]$$
 旧基进基 $[e_1,\ldots,e_p,\ldots,e_m,\ldots,y_q,\ldots,\hat{B}^{-1}]$ 新基进基

可见
$$\hat{B}^{-1}$$
和 B^{-1} 之间关系为:
$$\hat{b}_{ij} = \begin{cases} b_{ij} - \frac{y_{iq}}{y_{pq}} b_{pj} & i \neq p \\ \frac{b_{pj}}{y_{pq}} & i = p \end{cases}$$

基的逆和单纯形乘子的转换

(1) $\hat{B}^{-1} = E_{pq}B^{-1}$, 其中 $E_{pq} = [e_1, \dots, e_{p-1}, v, e_{p+1}, \dots, e_m]$, 这里 e_i 表示第 i 个m维单位向量,向量 v 定义为

$$v_i = \begin{cases} -\frac{y_{iq}}{y_{pq}}, & \text{for } i \neq p \\ \frac{1}{y_{pq}}, & \text{for } i = p \end{cases}$$

(2) $\lambda^T = c_B^T B^{-1}$ 转轴后的单纯形乘子 $\hat{\lambda}^T = \lambda^T + \frac{r_q}{y_{pq}} u_p$,其中 u_p 表示 B^{-1} 的第p行

利用初等行变换可以实现上述基的逆和单纯形乘子的转换!

修正单纯形法的计算步骤

单纯形乘子

步0 给定BFS及对应的 B^{-1} . 计算 $\bar{b}=B^{-1}b$, $\lambda^T=c_B^TB^{-1}$

步1 计算 $r_N^T = c_N^T - \lambda^T N$. 如果 $r_N \ge 0$,停;得最优解.

步2 选取q满足 $\mathbf{r}_q = \min\{\mathbf{r}_j \mid \mathbf{r}_j < 0, j = 1,...,n\}$

步3 计算 $y_q = B^{-1}a_q$; 若 $y_q = (y_{1q}, y_{2q}, ..., y_{mq})^T \le 0$, 问题无界;否则,选p满足 $\frac{\bar{b}_p}{y_q} = \min\left\{\frac{\bar{b}_i}{y_{iq}} \mid y_{iq} > 0, i = 1,...,m\right\}$

步4 更新 B^{-1} , $B^{-1}b$ 和 λ^T , 返步1.

基于初等行变换(转轴运算)的数据更新

设转轴元是 y_{pq} ,则 a_q 进基 a_p 出基后

变量指标		B^{-1}		x_B	${oldsymbol y}_q$
i_1				${ar b}_1$	y_{1q}
:				:	•
i_p				$ar{b}_2$	\mathcal{Y}_{pq}
:				•	•
i_m				${ar b}_m$	\mathcal{Y}_{mq}
$oldsymbol{\lambda}^T$	λ_1	•••	λ_m	f	$-r_q$

以 y_{pq} 为转轴元,转轴后即得新基对应的数据!

数值最优化 ShanghaiTech-SIST-CS 22

例1 求解例

	b	a_6	a_5	a_4	a_3	a_2	$\overline{a_1}$
c = (-1, -1, -3, 0, 0, 0)	2	0	0	1	1	1	2
	_			0			
$\lambda^T = (0,0,0) \mathbf{B}^{-1} = (0,0,0)$	6	1	0	0	1	2	2

$$r_N^T = c_N^T - \lambda^T N = (-3, -1, -3)$$

变量		B^{-1}		x_B	y_1
4	1	0	0	2	2
5	0	1	0	5	1
6	0	0	1	6	2
$oldsymbol{\lambda}^{ ext{T}}$	0	0	0	0	3

转轴:

变量		B^{-1}		x_B	y_1
4	1	0	0	2	2
5	0	1	0	5	1
6	0	0	1	6	2
$\boldsymbol{\lambda^{\mathrm{T}}}$	0	0	0	0	3

变量		B^{-1}		x_B
1	$\frac{1}{2}$	0	0	1
5	$-\frac{1}{2}$	1	0	4
6	$-\bar{1}$	0	1	4
λ^{T}	$-\frac{3}{2}$	0	0	-3

计算
$$r_2 = \frac{1}{2}$$
, $r_3 = -\frac{3}{2}$, $r_4 = \frac{3}{2}$, $q = 3$
计算 $y_3 = \mathbf{B}^{-1}\mathbf{a}_3 = (\frac{1}{2}, \frac{5}{2}, 0)^T$

变量		B^{-1}		x_B	y_3
1	$rac{1}{2}$	0	0	1	$\frac{1}{2}$
5	$-rac{1}{2}$	1	0	4	$\left[rac{5}{2} ight]$
6	-1	0	1	4	0
$\lambda^{ ext{T}}$	$-rac{3}{2}$	0	0	-3	$\frac{3}{2}$

变量		x_B		
1	$\frac{3}{5}$	$-\frac{1}{5}$	0	$\frac{1}{5}$
3	$-\frac{1}{5}$	$\frac{2}{5}$	0	$\frac{8}{5}$
6	-1	0	1	4
λ^{T}	$-\frac{6}{5}$	$-\frac{3}{5}$	0	$-rac{27}{5}$

计算:
$$r_2 = \frac{7}{5}$$
, $r_3 = \frac{6}{5}$, $r_4 = \frac{3}{5}$

最优值:
$$z^* = -27/5$$

最优解:
$$\mathbf{x}^* = (\frac{1}{5}, 0, \frac{8}{5}, 0, 0, 4)^T$$

变量有界形式 (另一种标准型)

• 施加上下界约束

min
$$c^T x$$

s.t. $Ax = b$
 $l \le x \le u$

• 同样可以定义基本解、基本可行解、设计 simplex method等(见[1] 3.5节)

数值最优化 ShanghaiTech-SIST-CS

3、Complexity (单纯形法的复杂度)

单纯形法的效率

有效性问题: 给定一个问题, 求解它需要多长时间(时间复杂度)? 求解它需要多少存储空间(空间复杂度)? 两种解答

- ➤ 平均情况(average case): 典型问题需要多少时间
 - 从数学上研究很困难
 - 经验研究
- ➤最坏情况(worst case): 最难的问题需要多少时间
 - 数学上是可处理的
 - 有限值

度量(measures)

度量规模(measures of size) - 问题的度量

- > 约束的个数 m 和/或者变量的个数 n
- \rightarrow 数据个数mn
- ➤ 非零数据的个数
- ➤ 尺寸,比如以bytes为单位

度量时间(measuring time) -算法的度量

- > 迭代次数
- > 每次迭代的算术运算次数
- ➤ 每次算术运算的时间(依赖于硬件)

数值最优化 ShanghaiTech-SIST-CS

Klee-Minty问题(1972)

maximize
$$\sum_{i=1}^{n} 2^{n-i}x_i$$
 subject to $2\sum_{i=1}^{j-1} 2^{j-i}x_i + x_j \leq 100^{j-1}, \ j=1,2,\cdots,n$ $x_i \geq 0, \qquad i=1,2,\cdots,n$ $n=3$ Hz: maximize $4x_1 + 2x_2 + x_3$ subject to $x_1 \qquad \leq \qquad 1$ $4x_1 + x_2 \qquad \leq \qquad 100$ $8x_1 + 4x_2 + x_3 \qquad \leq \qquad 10000$ $x_1, \ x_2, \ x_3 \qquad \geq \qquad 0$

扭曲的立方体(A distorted Cube)

约束集是如下立方体的 稍微(minor)扭曲:

$$0 \le x_1 \le 1$$

$$0 \le x_2 \le 100$$

•

$$0 \le x_n \le 100^{n-1}$$

指数 (Exponential)

Klee-Minty的问题说明:

- 当求解具有 n 个变量和约束的问题时,最小系数规则有可能需要 $2^n 1$ 次转轴(因此遍历了扭曲立方体的 2^n 个顶点)
- 假设 1 秒钟迭代 1000 次, 求解这个问题需要 400 亿年; 宇宙的估计年龄是 137 亿年.
- 然而每天求解的问题中,变量在10,000到100,000之间 的很普遍.

Worst case analysis is just that: worst case.

数值最优化 ShanghaiTech-SIST-CS

复杂度(Complexity)		n	n^2	n^3	2^{n}
		1	1	1	1
		2	4	8	4
排序: $O(n \log n)$		3	9	27	8
矩阵乘以向量: $O(n^2)$		4 5	$\frac{16}{25}$	$64 \\ 125$	$\frac{16}{32}$
矩阵乘以矩阵: $O(n^3)$ 解线性方程组: $O(n^3)$		6	36	$\frac{125}{216}$	$\frac{32}{64}$
		7	47	343	128
		8	64	512	256
VS. 1 - VS.		9	81	729	$\bf 512$
		10	100	1000	$\boldsymbol{1024}$
单纯形法:		12	144	1728	4096
➤ 最坏情况: $O(n^22^n)$		14	196	2744	16384
		16	256	4096	65536
\rightarrow 平均情况: $O(n^3)$		18	$\bf 324$	$\bf 5832$	262144
➢问题:是否存在求解线性规划的		20	400	8000	$\boldsymbol{1048576}$
		22	484	10648	4194304
方法,它的最坏性能分析是多项式		${\bf 24}$	576	13824	16777216
的?		26	676	17576	67108864
н э•		28	784	$\bf 21952$	268435456
		30	900	$\boldsymbol{27000}$	1073741824
为信最优化 	线性规划		Shanghai	Tech-SIST-CS	34