Résumé du cours d'optimisation (recherche d'extrémums)

Généralités

Soit $f: C \subset \mathbb{R}^n \to \mathbb{R}$ et $a \in C$.

D1 : On dit que a est un **minimum global** de f sur C si, pour tout $x \in C$, $f(a) \le f(x)$. L'ensemble des minimums de f sur C est noté $\operatorname{Arg}_C \min f$.

 $\mathbf{D2}$: On dit que a est un **minimum local** de f sur C s'il existe une boule ouverte B contenant a telle que a soit minimum global de f sur $B \cap C$.

Conditions suffisantes d'existence d'un minimum global si f est continue:

TH: Soit f une application continue de C dans \mathbb{R} .

- 1) Si C est compact, alors $Arg_C \min f$ est un compact non vide.
- 2) Si C est fermé et f coercive (c'est-à-dire $\lim_{\|x\|\to+\infty} f(x) = +\infty$), alors $\operatorname{Arg}_C \min f$ est un compact non vide.

Rappels de différentiabilité

 $\mathbf{D3}$: On dit que f est différentiable en a s'il existe une forme linéaire $d_a f$ telle que :

$$f(a+h) = f(a) + d_a f(h) + ||h|| \varepsilon(h)$$

si $a + h \in \Omega$, avec $\varepsilon(h) \to 0$ si $||h|| \to 0$.

Condition nécessaire (mais pas suffisante!) pour que f soit différentiable en a: les dérivées partielles $D_i f$ existent en a pour tout $i \in \{1, \dots, n\}$.

On a alors $d_a f(h) = \langle \nabla f(a), h \rangle$ où le vecteur $\nabla f(a) = (D_i f(a))_{1 \leq i \leq n}$ est le **gradient** de f en a.

 $\mathbf{D4}$: On dit que f est \mathbf{de} classe \mathcal{C}^1 en a si les dérivées partielles $D_i f$ de f existent dans un voisinage de a et sont continues en a.

Condition suffisante (mais pas nécessaire!) pour que f soit différentiable en a: $f \text{ est de classe } \mathcal{C}^1 \text{ en } a.$

D5: On dit que f est **de** classe C^2 en a si les dérivées partielles d'ordre 2 de f existent dans un voisinage de a et sont continues en a. On note $\nabla^2 f(a)$ et on appelle **Hessienne de** f **en** a, la matrice $(D_i D_j f(a))_{1 \le i,j \le n}$.

D'après le théorème de Schwarz, $D_i D_j f(a) = D_j D_i f(a)$ donc $\nabla^2 f(a)$ une matrice symétrique.

Formule de Taylor-Lagrange : $f(a+h) = f(a) + \langle \nabla f(a), h \rangle + \frac{1}{2} \langle \nabla^2 f(a)h, h \rangle + ||h||^2 \varepsilon(h)$ avec $\varepsilon(h) \to 0$ quand $||h|| \to 0$, si f est de classe \mathcal{C}^2 en a, et si $a+h \in \Omega$.

Optimisation des fonctions différentiables

1) Conditions nécessaires :

TH: Si f admet un minimum local en a en lequel elle est différentiable, alors $\nabla f(a) = 0$.

Les points a solutions de $\nabla f(a) = 0$ sont appelés **points critiques** de f (ou points stationnaires de f).

TH: Si f admet un minimum local en a et si f est de classe C^2 en a, alors $\langle \nabla^2 f(a)h, h \rangle \geq 0$ pour tout $h \in \mathbb{R}^n$, c'est-à-dire que les valeurs propres de la matrice $\nabla^2 f(a)$ sont positives.

2) Conditions suffisantes de minimum local:

 $\mathbf{TH}:$ Soit $f:\Omega\subset\mathbb{R}^n\to\mathbb{R}$ différentiable en a stationnaire. Dans les 2 cas suivants, f admet un minimum local en a:

- 1) f est de classe C^2 en a et les valeurs propres de $\nabla^2 f(a)$ sont strictement positives.
- 2) Il existe r > 0 tel que f soit de classe C^2 sur la boule B(a, r) et tel que, pour tout $h \in \mathbb{R}^n$, $\langle \nabla^2 f(x)h, h \rangle \geq 0$ pour tout $x \in B(a, r)$.

En pratique:

- On commence par déterminer le gradient.
- On déterminer ensuite les points où ce gradient s'annule.
- \bullet On détermine alors la hessienne de f en ces points.
- On étudie le signe des valeurs propres de la hessienne de f en ces points : si elles sont toutes positives, on a un minimum, si elles sont toutes négatives, on a un maximum, si on a des valeurs propres < 0 et d'autres > 0, il n'y a pas d'extrémums en ces points. (Pour n = 2, il suffit de connaître le signe du déterminant et de la trace pour conclure).
- Lorsqu'il y a au moins une valeur propre nulle, et les autres de même signe, il faut faire l'étude "à la main".

Cas des fonctions convexes

D6: Un sous-ensemble C de \mathbb{R}^n est dit **convexe** si, pour tout $(a,b) \in C^2$, $[a,b] \subset C$ (c'est-à-dire pour tout $\lambda \in [0,1]$, $\lambda a + (1-\lambda)b \in C$).

D7: Une fonction réelle f définie sur C convexe est dite **convexe** si, pour tout $(a,b) \in C^2$ et pour tout $\lambda \in [0,1]$, $f(\lambda a + (1-\lambda)b) \le \lambda f(a) + (1-\lambda)f(b)$.

Propriétés:

- Si C est un convexe de \mathbb{R}^n et $(f_i)_{i\in I}$, une famille quelconque de fonctions convexes alors
 - a) $\sup f_i$ est convexe;
 - b) si I est fini et si $(\lambda_i)_{i \in I}$ est une famille de réels positifs, alors $\sum_{i \in I} \lambda_i f_i$ est convexe.
- Si C est un convexe de \mathbb{R}^n , si f est une fonction convexe de C sur \mathbb{R} et si φ est une fonction convexe croissante sur \mathbb{R} , alors $\varphi \circ f$ est une fonction convexe.

Caractérisation des fonctions convexes de classe C^2

TH: Soit Ω un ouvert convexe de \mathbb{R}^n et f une fonction de Ω sur \mathbb{R} . Si f est de classe C^2 sur Ω , alors f est convexe sur Ω si et seulement si, pour tout $x \in \Omega$, les valeurs propres de $\nabla^2 f(x)$ sont positives.

Minimum global d'une fonction convexe.

TH: Soit C un convexe de \mathbb{R}^n , f une fonction convexe de C sur \mathbb{R} et $a \in C$, alors

- 1) un minimum local est un minimum global;
- 2) si f est de classe \mathcal{C}^1 sur C et si C est ouvert, alors $a \in \operatorname{Arg}_C \min f$ si et seulement si $\nabla f(a) = 0$.

Les relations de Kuhn-Tucker.

D8 Soit $X = \{x \in \mathbb{R}^n : \varphi_i(x) \leq 0 \text{ pour tout } i \in I\}$. Un arc de courbe Γ défini par $\gamma : \mathbb{R}_+ \to \mathbb{R}^n$ de classe C^1 est dit **admissible** en $\overline{x} \in X$ si $\gamma(0) = \overline{x}$ et si $\gamma(\theta) \in X$ pour θ assez petit. On appelle alors **direction admissible** en \overline{x} le vecteur $v = \gamma'(0)$.

On note $C(\overline{x})$ la fermeture du cône formé par l'ensemble des directions admissibles en \overline{x} .

D9: Si $x \in X$, on note $I(x) = \{i \in I ; \varphi_i(x) = 0\}$ et on appelle I(x) l'ensemble des **contraintes** saturées en x. On pose $C^*(x) = \{w \in \mathbb{R}^n ; \langle \nabla \varphi_i(x), w \rangle \leq 0$ pour tout $i \in I(x)\}$.

 $\mathbf{TH}:$ On a $C(x)\subset C^*(x)$ mais la réciproque est fausse en général.

D10: On dit que les contraintes sont **qualifiées** en x si $C(x) = C^*(x)$.

Lemme admis : Pour que (QC) soit vérifiée en tout point x de X, il suffit que les φ_i soient linéaires, ou convexes si X est d'intérieur non vide.

Pour que (QC) soit vérifiée en \overline{x} , il suffit que la famille $(\nabla \varphi_i(\overline{x}))_{i \in I(\overline{x})}$ soit libre.

TH: Kuhn-Tucker

Si f admet un minimum en $\overline{x} \in X = \{x : \varphi_i(x) \le 0 \text{ pour tout } i \in I\}$, et si les contraintes sont qualifiées en \overline{x} , alors il existe une famille $(\lambda_i(\overline{x}))_{i\in I}$ de réels positifs ou nuls tels que :

$$\begin{cases} \nabla f(\overline{x}) + \sum_{i \in I} \lambda_i(\overline{x}) \nabla \varphi_i(\overline{x}) = 0 \\ \lambda_i(\overline{x}) \varphi_i(\overline{x}) = 0 \text{ pour tout } i \in I \\ \varphi_i(\overline{x}) \le 0 \text{ pour tout } i \in I \end{cases}$$

Interprétation : les contraintes déterminent les "bords" du domaine. $\varphi(x) = 0$ signifie que x est sur le "bord" déterminé par φ . Si $\varphi(x) \neq 0$, le λ correspondant est nul et le gradient n'intervient pas dans la première relation.

En pratique : Soit aucune contrainte n'est saturée (tous les λ_i sont alors nuls et on a un point critique), soit le point est sur un bord. Si une seule contrainte est saturée, on peut utiliser la première relation ; sinon, il est souvent plus simple de déterminer directement l'intersection de deux bords...

Extension à des problèmes avec en plus des contraintes d'égalités

On note ici $X = \{x \in \mathbb{R}^n : \varphi_i(x) \le 0 \text{ pour tout } i \in I \text{ et } \psi_i(x) = 0 \text{ pour tout } j \in J\}.$

TH: Si f admet sur X un minimum en \overline{x} en lequel les contraintes sont qualifiées, alors il existe des nombres positifs ou nuls $\lambda_i(\overline{x})$ pour $i \in I$ et des nombres $\mu_j(\overline{x})$ (non nécessairement positifs) pour $j \in J$ tels que :

$$\left\{ \begin{array}{l} \nabla f(\overline{x}) + \sum\limits_{i \in I} \lambda_i(\overline{x}) \nabla \varphi_i(\overline{x}) + \sum\limits_{j \in J} \mu_j(\overline{x}) \nabla \psi_j(\overline{x}) = 0 \\ \lambda_i(\overline{x}) \varphi_i(\overline{x}) = 0 \text{ pour tout } i \in I \\ \varphi_i(\overline{x}) \leq 0 \text{ et } \psi_j(\overline{x}) = 0 \text{ pour tout } i \in I \text{ et pour tout } j \in J. \end{array} \right.$$

On note ici $X = \{x \in \mathbb{R}^n ; \psi_j(x) = 0 \text{ pour tout } j \in J\}.$

 \mathbf{TH} : Si f admet sur X un minimum en \overline{x} en lequel les contraintes sont qualifiées, alors il existe une famille de nombres $(\mu_i(\overline{x}))_{i\in J}$ (non nécessairement positifs) telle que :

$$\nabla f(\overline{x}) + \sum_{j \in J} \mu_j(\overline{x}) \nabla \psi_j(\overline{x}) = 0.$$