Introduction to Differential Equations Assignment # 1

Date Given: April 11, 2022 Date Due: April 18, 2022

P1. (3 points) Draw a direction field for the differential equation y' = y(4 - y). Based on the direction field, determine the behavior of y as $t \to \infty$. If this behavior depends on the initial value of y at t = 0, describe the dependency. Note that in this problem the equation is not linear (is not of the form y' = ay + b), and the behavior of the solution is somewhat more complicated than for the equations in the text.

Solution: Note that y(0) = 0 for y = 0 and y = 4. The two equilibrium solutions are y(t) = 0 and y(t) = 4. Based on the direction field, y' > 0 for 0 < y < 4; thus solutions with initial values greater than 0 and less that 4 converge to the solution y(t) = 4. For y > 4, the slopes are negative, and hence solutions with initial values greater than 4 all decrease toward the solution y(t) = 4. For y < 0, the slopes are all negative; thus solutions with initial values less than 0 diverge from the solution y(t) = 0. (see Figure 1).

Figure 1: Illustration to problem P1: the direction field (left) and integral curves (right) in the field.

P2. (2 points) Draw a direction field for the differential equation y' = t + 2y. Based on the direction field, determine the behavior of y as $t \to \infty$. If this behavior depends on the initial value of y at t = 0, describe the dependency.

Solution: All solutions (except y(0) = -1/4) diverge from the solution y(t) = -t/2 - 1/4 and approach $\pm \infty$ (see Figure 2).

Figure 2: Illustration to problem P2: the direction field (left) and integral curves (right) in the field.

P3. (2 points) Solve each of the following initial value problems and plot the solutions for several values of y_0 .

(a)
$$dy/dt = y - 5$$
, $y(0) = y_0$.

Then describe in a few words the behavior of the solution.

Solution: The differential equation can be rewritten as

$$\frac{\mathrm{d}y}{y-5} = \mathrm{d}t.$$

Integrating both sides of this equation results in $\ln |y-5|=t+c_1$, or, equivalently, $y-5=ce^t$. Applying the initial condition $y(0)=y_0$ results in the specification of the constant as $c=y_0-5$. Hence the solution is $y(t)=5+(y_0-5)e^t$.

All solutions appear to diverge from the equilibrium solution y(t) = 5 (see Figure 3).

Figure 3: Illustration to problem P3: solutions for different y_0 and (optional graph) the same integral curves in the direction field.

P4. (3 points) Determine the order of the differential equation

(a)
$$(1+y^2)\frac{d^2y}{dt^2} + \frac{dy}{dt} + y = e^t;$$

(b)
$$\frac{\mathrm{d}y}{\mathrm{d}t} + ty^2 = 0;$$

(c)
$$\frac{\mathrm{d}^3 y}{\mathrm{d}t^3} + t \frac{\mathrm{d}y}{\mathrm{d}t} + y \cos^2 t = t^3;$$

also state whether it is linear or nonlinear.

Solution:

- (a) The differential equation has 2nd order since the highest derivative in the equation is of order 2. The equation is nonlinear due to the nonlinear term y^2 (as well as due to the term y^2 multiplying the y'' term).
- (b) The differential equation has 1st order since the highest derivative in the equation is of order 1. The equation is nonlinear due to the nonlinear term y^2 .
- (c) The differential equation has 3rd order since the highest derivative in the equation is of order 3. The equation is linear because the left hand side is a linear function of y and its derivatives, and the right hand side is only a function of t.