AD-A031 522

RIA-76-U607

BRL

USADACS Technical Library
5 0712 01010315 7

AD

SARKI- RLP-L

TECHNICAL LIBRARY

MEMORANDUM REPORT NO. 2674

BLAST LOADING ON MODEL DUMMIES IN TWO-ROOM SHELTERS

George A. Coulter

September 1976

Approved for public release; distribution unlimited.

DTIC QUALITY INSPECTED 3

USA BALLISTIC RESEARCH LABORATORIES ABERDEEN PROVING GROUND, MARYLAND

Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22151.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
BRL Memorandum Report No. 2674	
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
BLAST LOADING ON MODEL DUMMIES IN TWO-ROOM	Final
SHELTERS	6. PERFORMING ORG, REPORT NUMBER
7. AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(a)
George A. Coulter	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
USA Ballistic Research Laboratories	Project Order No. DCPA 01-
Aberdeen Proving Ground, Maryland 21005	75-C-0285, Work Unit 1123C
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
US Army Materiel Development and Readiness Command 5001 Eisenhower Avenue	September 1976
Alexandria, Virginia 22333	13. NUMBER OF PAGES 151
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
Defense Civil Preparedness Agency Washington, D.C. 20301	UNCLASSIFIED
washington, b.d. 20001	15a, DECLASSIFICATION/DOWNGRADING SCHEDULE
	JUNEOUEE
Approved for public release: distribution unlimit	
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from	n Report)
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
Air Flow Model Dummies	
Blast Loading Translation Velocities Blast Shelter Fill Pressure	
20. ABSTRACT (Continue on reverse side it necessary and identity by block number) Experimental results obtained from the blast load scaled two-room shelters are given for 20 and 49% translational velocities of the model dummies are shelter configuration and the experimental overpre The results obtained are scaled up to give prediction.	ing of model dummies inside open front walls. The given as a function of essure levels of 3 - 10 psi.

SUMMARY

I. INTRODUCTION

The work reported here is a portion of a study requested by the Defense Civil Preparedness Agency under Project Order No. DCPA 01-75-C-0285, Work Unit 1123C entitled, "Blast Loading in Existing Structures."

An experiment is described in which shock waves enter a two-room shelter model. The resulting motion upon model dummies during the shockfilling process is shown by means of high speed photographs.

II. EXPERIMENT

A 1/12th scale two-room shelter model was exposed at the end of the Ballistic Research Laboratories' 24-Inch Shock Tube. Pressure transducers before the model and in the two rooms were used to record pressuretime histories of the input and fill pressures during exposure to the shock wave.

Motion of two model dummies in the front room was observed by means of high speed photography. Measurements of average translational velocities were made as a function of the front entrance area and input pressure. Entrances of 49 and 20% open were exposed in the 3 - 10 psi pressure range.

III. RESULTS AND CONCLUSIONS

Fill pressures of about equal to the reflected outside model pressure were measured inside the rooms. The shock tube had a length such that for the model volume to entrance area ratio chosen, the rooms would fill during the shock wave's flat portion of duration.

Translational velocities of the dummies were found to vary as a function of input pressure level, location within the room, and entrance area. Predicted pressure filling and translation parameters are given for full size shelters by scaling up the experiment to full size.

•
y
*

TABLE OF CONTENTS

		Page
	LIST OF ILLUSTRATIONS	5
	LIST OF TABLES	9
I.	INTRODUCTION	13
II.	EXPERIMENT	13
III.	RESULTS	17
	A. Pressure-Time Traces	17
	B. Motion of the Model Dummies	17
	C. Tables of Data	29
IV.	COMPUTER CODE PREDICTIONS	29
	A. Fill-Time Predictions	36
	B. Translation Parameters	36
٧.	SUMMARY AND CONCLUSIONS	48
	A. Summary of Experiment	48
	B. Predictions for Full Size Shelters	48
	REFERENCES	62
	APPENDICES	63
	A. High Speed Photographs	63
	B. Tables of Predicted Fill Parameters for Model	85
	C. Tables of Predicted Fill Parameters for Full Size Shelters	97
	D. Predicted Translation Parameters for Experimental Model	111
	E. Predicted Translation Parameters for Full Size Shelter	131
	DISTRIBUTION LIST	147

	and the same of th		
			.0
			. 1
			•
			8

LIST OF ILLUSTRATIONS

Figure		Page
1.	Two-Room Model Shelter	14
2.	Grid Lines Used for High Speed Photography	16
3.	Pressure-Time Traces - Case I, 3.7 psi	18
4.	Pressure-Time Traces - Case I, 7.4 psi	19
5.	Pressure-Time Traces - Case I, 11.4 psi	20
6.	Pressure-Time Traces - Case II, 3.7 psi	21
7.	Pressure-Time Traces - Case II, 10.9 psi	22
8.	Pressure-Time Traces - Case III, 3.3 psi	23
9.	Pressure-Time Traces - Case III, 7.3 psi	24
10.	Pressure-Time Traces - Case III, 10.6 psi	25
11.	49% Open Front-Prone on 6-inch Line, 7.5 psi	26
12.	49% Open Front-Standing on 6-inch Line, 7.4 psi	27
13.	Pressure-Fill Predictions - 49% Opening, 3.6 psi	39
14.	Pressure-Fill Predictions - 49% Opening, 7.5 psi	40
15.	Pressure-Fill Predictions - 49% Opening, 10.9 psi	41
16.	Pressure-Fill Predictions - 20% Opening, 3.5 psi	42
17.	Pressure-Fill Predictions - 20% Opening, 7.5 psi	43
18.	Pressure-Fill Predictions - 20% Opening, 10.9 psi	44
19.	Translational Velocity of Model Dummy as a Function of Location on Floor	49
20.	Fill Predictions for Full Size Shelter - 49% Opening, 3 psi	51
21.	Fill Predictions for Full Size Shelter - 49% Opening, 7 psi	52

LIST OF ILLUSTRATIONS

Figure		Page
22.	Fill Predictions for Full Size Shelter - 49% Opening, 10 psi	53
23.	Fill Predictions for Full Size Shelter - 20% Opening, 3 psi	54
24.	Fill Predictions for Full Size Shelter - 20% Opening, 7 psi	55
25.	Fill Predictions for Full Size Shelter - 20% Opening, 10 psi	56
26.	Predicted Translational Velocity for a 168-1b Man Prone at Entrance	60
27.	Predicted Translational Velocity for a 168-1b Man Standing at Entrance	61
A-1.	49% Open Front-Prone on 6-inch Line, 10.4 psi	65
A-2.	49% Open Front-Prone on 12-inch Line, 7.5 psi	66
A-3.	49% Open Front-Prone on 12-inch Line, 11.1 psi	67
A-4.	49% Open Front-Standing on 6-inch Line, 3.6 psi	68
A-5.	49% Open Front-Standing on 12-inch Line, 3.5 psi	69
A-6.	49% Open Front-Standing on 12-inch Line, 7.7 psi	70
A-7.	49% Open Front-Standing on 12-inch Line, 11.6 psi	71
A-8.	20% Open Front-Prone on 6-inch Line, 3.5 psi	73
A-9.	20% Open Front-Prone on 6-inch Line, 11.4 psi	74
A-10.	20% Open Front-Prone on 12-inch Line, 11.1 psi	75
A-11.	20% Open Front-Standing on 6-inch Line, 3.4 psi	76
A-12.	20% Open Front-Standing on 6-inch Line, 10.6 psi	77 ·
A-13.	20% Open Front-Standing on 12-inch Line, 11.1 psi	78
A-14.	20% Open Front-Standing on 18-inch Line, 3.7 psi	79

LIST OF ILLUSTRATIONS

Figure		Page
A-15.	20% Open Front-Standing on 18-inch Line, 10.6 psi	80 2
A-16.	20% Open Front - 47% Open Back-Prone on 12-inch Line, 7.3 psi	81
A-17.	20% Open Front - 47% Open Back-Prone on 12-inch Line, 10.6 psi	82 -
A-18.	20% Open Front - 47% Open Back-Standing on 12-inch Line, 3.5 psi	83
A-19.	20% Open Front - 47% Open Back-Standing on 12-inch Line, 7.6 psi	84

	1	
		(4)
		•
		•
		•

Table		Page	
Ι.	Data from Case I - 49% Open Front	. 30	
II.	Data from Case II - 20% Open Front	. 32	
III.	Data from Case III - 20% Open Front with 47% Open Back	. 34	
IV.	Comparison of Data from Cases I, II, and III	. 35	
V.	Fill-Time Prediction - 49% Open, 7.5 psi - Front Room	. 37	
VI.	Fill-Time Prediction - 49% Open, 7.5 psi - Rear Room	. 38	
VII.	Predicted Translation Parameters - Prone Position at Entrance - 49% Open, 7.5 psi	. 45	
VIII.	Predicted Translation Parameters - Standing Position at Entrance - 49% Open, 7.5 psi	. 46	
IX.	Summary of Model and Shelter Parameters	. 50	
х.	Predicted Translation Parameters - Prone at Entrance - 49% Open, 1-MT, 7 psi	. 57	
XI.	Predicted Translation Parameters - Standing at Entrance - 49% Open, 1-MT, 7 psi	. 58	
B-I.	Fill-Time Prediction - 49% Open, 3.6 psi - Front Room	. 87	
B-II.	Fill-Time Prediction - 49% Open, 3.6 psi - Rear Room	. 88	
B-III.	Fill-Time Prediction - 49% Open, 10.9 psi - Front Room	. 89	
B-IV.	Fill-Time Prediction - 49% Open, 10.9 psi - Rear Room	. 90	
B-V.	Fill-Time Prediction - 20% Open, 3.6 psi - Front Room	. 91	
B-VI.	Fill Time Prediction - 20% Open, 3.6 psi - Rear	. 92	

Table		Page
B-VII.	Fill-Time Prediction - 20% Open, 7.5 psi - Front Room	93
B-VIII.	Fill-Time Prediction - 20% Open, 7.5 psi - Rear Room	94
B-IX.	Fill-Time Prediction - 20% Open, 10.9 psi - Front Room	95
B-X.	Fill-Time Prediction - 20% Open, 10.9 psi - Rear Room	96
C-I.	Fill-Time Prediction - 49% Open, 3 psi - Front Room	99
C-II.	Fill-Time Prediction - 49% Open, 3 psi - Both Rooms	100
C-III.	Fill-Time Prediction - 49% Open, 7 psi - Front Room	101
C-IV.	Fill-Time Prediction - 49% Open, 7 psi - Both Rooms	102
C-V.	Fill-Time Prediction - 49% Open, 10 psi - Front Room	103
C-VI.	Fill-Time Prediction - 49% Open, 10 psi - Both Rooms	104
C-VII.	Fill-Time Prediction - 20% Open, 3 psi - Front Room	105
C-VIII.	Fill-Time Prediction - 20% Open, 3 psi - Both Rooms	106
C-IX.	Fill-Time Prediction - 20% Open, 7 psi - Front Room	107
C-X.	Fill-Time Prediction - 20% Open, 7 psi - Both Rooms	108
C-XI.	Fill-Time Prediction - 20% Open, 10 psi - Front Room	109
C-XII.	Fill-Time Prediction - 20% Open, 10 psi - Both Rooms	110

Table		Page
D-I.	Predicted Translation Parameters - Prone at Entrance - 49% Open, 3.6 psi	13
D-II.	Predicted Translation Parameters - Prone at Entrance - 49% Open, 10.9 psi	14
D-III.	Predicted Translation Parameters - Prone at Entrance - 20% Open, 3.6 psi	15
D-IV.	Predicted Translation Parameters - Prone at Entrance - 20% Open, 7.5 psi	17
D-V.	Predicted Translation Parameters - Prone at Entrance - 20% Open, 10.9 psi	19
D-VI.	Predicted Translation Parameters - Standing at Entrance - 49% Open, 3.6 psi	21 -
D-VII.	Predicted Translation Parameters - Standing at Entrance - 49% Open, 10.9 psi	22
O-VIII.	Predicted Translation Parameters - Standing at Entrance - 20% Open, 3.6 psi	24
D-IX.	Predicted Translation Parameters - Standing at Entrance - 20% Open, 7.5 psi	26
D-X.	Predicted Translation Parameters - Standing at Entrance - 20% Open, 10.9 psi	28
E-I.	Predicted Translation Parameters - Prone at Entrance - 49% Open, 1-MT, 3 psi	33
E-II.	Predicted Translation Parameters - Prone at Entrance - 49% Open, 1-MT, 10 psi	34
E-III.	Predicted Translation Parameters - Prone at Entrance - 20% Open, 1-MT, 3 psi	35
E-IV.	Predicted Translation Parameters - Prone at Entrance - 20% Open, 1-MT, 7 psi	36
E-V.	Predicted Translation Parameters - Prone at Entrance - 20% Open, 1-MT, 10 psi	.37

Table		Page
E-VI.	Predicted Translation Parameters - Standing at Entrance - 49% Open, 1-MT, 3 psi	139
E-VII.	Predicted Translation Parameters - Standing at Entrance - 49% Open, 1-MT, 10 psi	140 / 1
E-VIII.	Predicted Translation Parameters - Standing at Entrance - 20% Open, 1-MT, 3 psi	141
E-IX.	Predicted Translation Parameters - Standing at Entrance - 20% Open, 1-MT, 7 psi	142
E-X.	Predicted Translation Parameters - Standing at Entrance - 20% Open, 1-MT, 10 psi	144

I. INTRODUCTION

The work reported here is a portion of a study requested by the Defense Civil Preparedness Agency under Project Order No. DCPA 01-75-C-0285, Work Unit 1123C entitled "Blast Loading in Existing Structures."

Results of an experiment are described in which shock waves enter a two-room shelter model. The shock-filling process and related interior air flow effect upon model dummies was observed. The translation velocities of the model dummies are measured as a function of room entrance area and the shock pressure level used. See Reference 1 for a similar study for models of basement and mine shelters.

II. EXPERIMENT

The experiment was designed to model the case in which an incoming blast wave hits a multistory apartment house or office complex. It is assumed that the rooms being studied will receive full reflected blast wave pressure. Rarefactions from nearby rooms are not considered. Windows are assumed to break upon blast arrival. All walls are assumed intact. A 1/12th scale two-room shelter model was built and installed at the end of the BRL 24-inch shock tube. Figure 1 shows the three configurations chosen for the experiment. Entrance areas of 49% and 20% open front were used with the back closed. A third case was considered with a 20% open front and with the back 47% open. All walls were 1/2 inch thick except the front wall which was made 2-1/8 inch thick in order to mate to the shock tube end sections.

Pressure transducers of the ceramic crystal type (Susquehanna Instruments Model ST-2) coupled by BRL impedance converters to transient recorders (Biomation Model 802) were used to record on oscilloscopes (Tektronix Model 565 - with Polaroid cameras) the pressures at the locations shown in Figure 1-D. A high speed HYCAM camera on the left side recorded on film the motion of the model dummies inside the first room.

Figure 2 shows the grid floor plan for locating the model dummies before exposure to the shock waves. Shots were taken with the dummies positioned on grids (4, 6); (4, 12); (4, 18); (10, 6); (10, 12); and (10, 18). These are referred to as 6, 12, and 18 inch lines for the two dummies.

The model dummies were made of nylon material pinned together at the joints. All joints were tight enough to allow the model dummies to stand alone. The arms were loose enough to be free to rotate about

¹George A. Coulter, "Blast Loading in Shelter Models - Basement and Mine Shelters," Ballistic Research Laboratories Memorandum Report No. 2476, April 1975, AD A010322.

(A) 49% OPEN FRONT- CASE I

(B) 20% OPEN FRONT-CASE II

Figure 1. Two-Room Model Shelter

(C) 20% OPEN FRONT WITH 47% OPEN BACK-CASE III

(D) MODEL POSITION ON THE SHOCK TUBE

Figure 1. (Cont'd) Two-Room Model Shelter

Figure 2. Grid Lines Used for High Speed Photography

the shoulder joints. The weight of each model dummy was about 0.28 lbs (No. 1, 127.9 gm and No. 2, 129.8 gm). Both were about 7.5 inches tall.

Pressure-time traces, high speed pictures, and motion parameters for the model dummies are presented in the Result Section.

III. RESULTS

The results are presented in three parts. Part A shows the pressuretime traces from the four transducer locations, Part B describes the motion of the model dummies, and Part C lists the results in tabular form.

A. Pressure-Time Traces

The pressure-time traces are shown in Figures 3 - 10. Case I refers to a front opening of 49%, Case II refers to a front opening of 20%, and Case III refers to a front opening of 20% with a back wall opening of 47%. Positions 1 and 2, the upper picture, give the input and reflected traces respectively as the shock wave hit and reflected back from the outside front of the model. A decay near the front of the reflected trace, Position 2, shows the rarefaction effect as the model was filled with pressure. The discontinuious drop at the rear of the records is trace rewrite, not a pressure drop. Traces from Positions 3 and 4 are shown in the lower picture of each figure. A steady rise of pressure mixed with internal reflected peaks is typical for the fill traces. The greater the front opening, the faster is the fill process.

Figures 9 and 10, Position 4, illustrate the effect of the opening in the back wall. The first room, Position 3, tries to fill but the record from the second room shows a large rarefaction which decayed the pressure below the ambient value. Computer code predictions for the pressure filling are shown in Section IV-A.

B. Motion of the Model Dummies

Figures 11 and 12 are typical of the motion recorded by the high speed camera. Other examples are shown in Appendix A. The pictures were taken from the left side of the first room of the model, with the entrance to the front of the model dummies.

The prone position was recorded with the front of the heads at one of the cross lines. In Figure 11, for example, this is the line 6-inches from the entrance. Dummy No. 2 was located 4-inches from the right side wall and No. 1 was on the entrance center line. Distances from the wall were kept constant for each case but the distances from the front wall were varied; 6, 12, and 18 inches during the experiment. The same locations were also used for the shots when the dummies were standing. The dummies' body axes in this case were aligned over the

Figure 3. Pressure-Time Traces - Case I, 3.7 psi

(B) SHOT 24-75-158 POS. 3 & 4

Figure 4. Pressure-Time Traces - Case I, 7.4 psi

Figure 5. Pressure-Time Traces - Case I, 11.4 psi

Figure 6. Pressure-Time Traces - Case II, 3.7 psi

Figure 7. Pressure-Time Traces - Case II, 10.9 psi

Figure 8. Pressure-Time Traces - Case III, 3.3 psi

TIME, 5 MS/CM UPPER-INPUT LOWER-REFLECTED (A) SHOT 24-75-180 POS. 1 & 2

UPPER-FILL, FRONT LOWER-FILL REAR (B) SHOT 24-75-180 POS. 3 & 4

Figure 9. Pressure-Time Traces - Case III, 7.3 psi

Figure 10. Pressure-Time Traces - Case III, 10.6 psi

Figure 11. 49% Open Front-Prone on 6-inch Line, 7.5 psi

Figure 12. 49% Open Front-Standing on 6-inch Line, 7.4 psi

Figure 12. (Cont'd) 49% Open Front-Standing on 6-inch Line, 7.4 psi

floor grid intersections for the shots.

The frame time in milliseconds is calculated from the shock wave arrival inside of the front wall of the model. Distance moved across the floor grid lines divided by the frame time was calculated to give an average translational velocity along the model room. Arm rotation and whole body rotational velocity were calculated for several shots, as well.

Generally, the motion of the model dummies can be described as follows. In the prone position (Figure 11), No. 1 rotated up and backwards to rear of room. How fast and how far depends both on the pressure level and line location. No. 2 tended to move forward toward the front of the room with a rotation about the body length as well as a forward tumble.

In the standing position (Figure 12), No. 1 model dummy moved to rear of room in an almost upright position. Body bowed forward and the arms rotated backward. No. 2 rotated about the length of its body, moved somewhat to front of room, and fell into the right wall of the room. Again, pressure level and room location determined the magnitude of the velocities observed. The results are tabulated below.

C. Tables of Data

Tables I, II, and III list the results according to shot number, input pressure level, position, and location of the model dummies.

Table I lists the results for Case I - 49% open front, Table II for Case II - 20% open front, and Table III for Case III - 20% open front with 47% open back. The tables show values of translation from "little motion," < 1 ft/sec to about 50 ft/sec. Rotational velocities of the arms vary between a few rad/sec to about 200 rad/sec. Table IV summarizes the three separate model configurations for quick comparison.

IV. COMPUTER CODE PREDICTIONS

This section shows the results of room filling predictions made by a BRL computer program taken from Reference 2. The predicted flows are then utilized to calculate the motion parameters. The coefficients of drag used for the translation calculations are taken from Reference 3 for full size persons, and are assumed valid for the model dummies used as well.

²George A. Coulter, "Blast Loading in Existing Structures - Basement Models," Ballistic Research Laboratories Memorandum Report No. 2208, August 1972, AD 751769.

^{35.} F. Hoerner, "Fluid-Dynamic Drag," 148 Busteed Drive, Midland Park, New Jersey 07432, published by author, 1965.

Table I. Data from Case I - 49% Open Front

Shot Number	Input Pressure psi	Ambient Pressure psi	Ambient Temperature °C	Grid Line Position	Motion
24-75-129	3.8	14.9	20.2	Prone-6"	Omoved forward at 3 ft/sec
24-75-158	3.6	15.0	21.5	Prone-12"	Little motion
24-75-142	3.8	14.8	31.5	Prone-18"	Little motion
24-75-147	7.5	14.8	29.0	Prone-6"	Orotated up and back at 12-18 rad/sec Omoved to right wall at 9 ft/sec
25-75-146	7.5	14.8	28.9	Prone-12"	Omoved forward at 4 ft/sec
24-75-143	7.5	14.8	31.6	Prone-18"	Little motion
24-75-148	10.4	14.8	22.7	Prone-6"	<pre>Dmoved to rear at 4 ft/sec. Rotated up and back at 16-19 rad/sec Omoved forward at 5 ft/sec. Arms forward at 14 rad/sec</pre>
24-75-145	11.1	14.8	29.0	Prone-12"	Omoved to rear at 5 ft/sec. Body rotated up and back at 17-22 rad/sec Omoved forward at 7 ft/sec. Body rotated toward left at 22 rad/sec
24-75-159	10.9	15.0	21.6	Prone-12"	<pre>@moved forward at 6 ft/sec</pre>
24-75-144	11.3	14.8	25.7	Prone-18"	Little motion
24-75-149	3.6	14.8	24.6 St	tanding-6"	Omoved back, stand- ing, at 6 ft/sec Orotated left at 20 rad/sec

Table I. (Cont'd) Data from Case I - 49% Open Front

Shot Number	Input Pressure psi	Ambient Pressure psi	Ambient Temperature °C	Grid Line Position	Motion
24-75-151	3.5	14.8	22.4	Standing-12"	Omoved back standing at 3 ft/sec. Rotated to left at 8 rad/sec Orotated to left at 8 rad/sec
24-75-156	3.6	14.9	20.0	Standing-18"	<pre>①fell over ②remained standing</pre>
24-75-150	7.5	14.8	20.8	Standing-6"	Omoved back at 21ft/sec. Arms rotated backwards at 60-250 rad/sec Ohad arms rotated backwards at 75- 210 rad/sec. Body rotated left at 85 rad/sec
24-75-153	7.7	14.8	24.7	Standing-12"	Omoved back at 15 ft/sec. Arms rotated back at 34-84 rad/sec. Ohad body rotation to left of 36 rad/sec
24-75-157	7.7	14.9	23.0	Standing-18"	Omoved back at 8 ft/sec. Arms rotated at 14-60 rad/sec Ohad a body rota- tion of 25 rad/sec
24-75-154	11.6	14.8	27.4	Standing-12"	Omoved to rear at 25 ft/sec. Arms rotated backwards at 125-187 rad/sec
24-75-155	11.1	14.8	25.6	Standing-18"	Omoved to rear at 13 ft/sec. Arms rotated at 52- 151 rad/sec Orotated to left at 46 rad/sec.

NOTES: (1) Model dummy () was placed face down or standing on centerline of floor for all shots.

(2) Model dummy ② was placed on floor face down or standing 4 inches from right wall for all shots.

Table II. Data from Case II - 20% Open Front

Shot Number	Input Pressure psi	Ambient Pressure psi	Ambient Temperature °C	Grid Line Position	Motion
24-75-167	3.5	14.9	17.4	Prone-6"	<pre>9moved to rear at 2-3 ft/sec. 9rotated left at 8 rad/sec.</pre>
24-75-162	3.6	14.9	20.6	Prone-12"	Little motion
24-75-174	3.7	15.0	21.6	Prone-18"	Little motion
24-75-169	11.4	14.9	16.8	Prone-6"	<pre>①moved to rear at 12 ft/sec. ②rotated about body, face to left, at 17 rad/sec</pre>
24-75-165	11.1	14.9	16.0	Prone-12"	Omoved to rear at 9 ft/sec. Orotated upward at 19 rad/sec to hit ceiling.
24-75-172	10.9	15.0	22.5	Prone-18"	Omoved to rear at 12 ft/sec. Rotated up at 37 rad/sec. Omoved slowly forward and to right.
24-75-168	3.4	14.8	17.5	Standing-6"	Omoved to rear at 15 ft/sec. Arm rotated at 60-90 rad/sec. Omoved arm forward at 19-23 rad/sec.
24-75-163	3.6	14.9	16.0	Standing-12"	Omoved to rear at 12 ft/sec. Arm moved backward at 43-49 rad/sec/ Thad a body rotation to left of 14 rad/sec.
24-75-173	3.7	15.0	21.6	Standing-18"	<pre>①moved to rear at 11 ft/sec. ②moved slowly forward and fell down.</pre>
			32		

Table II. (Cont'd) Data From Case II - 20% Open Front

Shot	Input Pressure psi	Ambient Pressure psi	Ambient Temperature °C	Grid Line Position	Motion
24-75-170	10.6	14.9	13.5	Standing-6"	Omoved to rear at 47 ft/sec. Arm rotated back at 100-500 rad/sec. Ohad arm rotated forward at 109-154 rad/sec. The body rotated to 1eft and moved forward at 35-88 rad/sec.
24-75-164	11.1	14.9	16.0	Standing-12"	Omoved to rear at 40 ft/sec. Arm rotated to rear at 127-314 rad/sec Ohad a body rota- tion to left of 34-48 rad/sec.
24-75-171	10.6	14.9	15.2	Standing-18"	<pre>①had body rota- tion to left of 30-43 rad/sec. Arm rotated to rear at 50-127 rad/sec. Dummies interchanged for this shot.</pre>

Table III. Data from Case III - 20% Open Front with 47% Open Back

Shot Number	Input Pressure psi	Ambient Pressure psi	Ambient Temperature °C	Grid Line Position	Motion
24-75-179	3.3	14.9	13.0	Prone-12"	Omoved backward at 3 ft/sec. Rotated face to left at 25-50 rad/sec. Omoved forward at 2 ft/sec.
24-75-180	7.3	14.9	13.5	Prone-12"	Omoved to rear at 11 ft/sec. Rotated upward at 23-49 rad/sec. Omoved slowly to front.
24-75-181	10.6	14.9	15.7	Prone-12"	Omoved to rear at 37 ft/sec. Onot used. Orotated arm back at 151-218 rad/sec.
24-75-182	3.5	14.9	19.4	Standing-12"	@moved to rear at 16 ft/sec. Arm rotated to rear at 42 rad/sec. Dummy @ replaced ①.
24-75-183	7,6	14.9	19.5	Standing-12"	Omoved backwards at 28 ft/sec. Arm rotated to rear at 84-192 rad/sec.
24-75-184	10.8	14.9	19.2	Standing-12"	Omoved to rear at 37 ft/sec. Arm rotated to rear 151-218 rad/sec.

Table IV. Comparison of Data from Cases I, II, and III

Case	Average Input Pressure psi 3.6	Prone	Grid Line Position in.	Motion 3 ft/sec
49% open front	3.0	Frone	12 18	< 1 ft/sec < 1 ft/sec
	7.5	Prone	6 12 18	9 ft/sec,12-18 rad/sec 4 ft/sec < 1 ft/sec
	10.9	Prone	6 12 18	5 ft/sec, 16-19 rad/sec 7 ft/sec, 17-22 rad/sec < 1 ft/sec
	3.6	Standing	6 12 18	6 ft/sec, 20 rad/sec 3 ft/sec, 8 rad/sec < 1 ft/sec
	7.5	Standing	6 12 18	21 ft/sec, 60-250 rad/sec 15 ft/sec, 34-84 rad/sec 8 ft/sec, 41-60 rad/sec
	10.9	Standing	12 18	25 ft/sec, 125-187 rad/sec 13 ft/sec, 52-151 rad/sec
II 20% open front	3.6	Prone	6 12 18	<pre>3 ft/sec, 8 rad/sec < 1 ft/sec < 1 ft/sec</pre>
	10.9	Prone	6 12 18	12 ft/sec, 17 rad/sec 9 ft/sec, 19 rad/sec 12 ft/sec, 37 rad/sec
	3.6	Standing	6 12 18	15 ft/sec, 60-90 rad/sec 12 ft/sec, 43-49 rad/sec 11 ft/sec
	10.9	Standing	6 12 18	47 ft/sec, 100-500 rad/sec 40 ft/sec, 127-314 rad/sec 33 ft/sec, 111-314 rad/sec
III	3.6	Prone	12	3 ft/sec, 25-50 rad/sec
20% open front and	7.5	Prone	12	11 ft/sec, 23-49 rad/sec
47% open back	10.9	Prone	12	37 ft/sec, 151-218 rad/sec
	3.6	Standing	12	16 ft/sec, 42 rad/sec
	7.5	Standing	12	28 ft/sec, 84-192 rad/sec
	10.9	Standing	12	37 ft/sec, 151-218 rad/sec

A. Fill-Time Predictions

Fill-time predictions were made by means of a computer code as noted above. Predictions were made in two ways. First, the shelter model was treated as if it consisted of the front room only. Then, it was treated as one large room equal to the volume of the two rooms. The fill predictions were then made for the cases of 49% open front for a small room and a large room, and 20% open front for a small room and large room. All cases for the model shelter were predicted for 3.6, 7.5, and 10.9 psi input pressure measured before reflection at the front of the model.

Table V shows a sample set of predictions. The first heading gives the input parameters of entrance area (ft^2), the room volume (ft^3), a time increment of calculation (sec), ambient pressure (psi), and density of the initial input shock wave level after reflection ($slugs/ft^3$).

The second heading gives the predicted fill parameters: time (sec), average room pressure (psi), average room density (slugs/ft 3), flow velocity at entrance (ft/sec), and the entrance dynamic pressure, Q (psi).

The complete predictions are presented in Appendix B. Plots of pressure-time for the rooms filling are shown in Figures 13 - 18. On each plot the dotted line represents the reflected shock wave as a step input; the solid line represents the predicted fill curve, and the x-symbols are the data points taken from the oscilloscope records. Most of the scatter is caused by the reflections of the internal diffracted shock waves as the room fills. The computer code predicts the average room pressure and does not allow for diffracted waves. A more elaborate three-dimensional hydrocode might be used if greater accuracy is required.

Fill parameters for full size room shelters are also tabulated in Appendix B and will be discussed later.

B. Translation Parameters

A simple stepwise calculation with a computer code (Ref. 1) was used to predict translation parameters for the model dummy when placed on the flow centerline of the front room.

The method used was to calculate the drag from the predicted room filling parameters - entrance flow velocity and density. Coefficients of drag times area (C_D A, ft^2) for a 168-1b man in the prone and standing positions were taken from Reference 3. They were also assumed to apply to a model dummy when scaled to its area. The dummy's translational acceleration, velocity, and distance were then calculated as a function of time by using the predicted dynamic pressure as a load for the C_D A of the dummy. Tables VII and VIII show some sample parameters. The remainder are given in Appendix D.

Table V. Fill-Time Prediction - 49% Open, 7.5 psi - Front Room

AREA1	VOLUME	TIME	PRESSURE	DENSITY
0.677E 00	0.34720nE 111	0.500000E-03	0.148UNUE U2	0.4076HUE-02
TIME	PRESSURE	DEN3	กร	NPT
SECONDS	PSI	UE-82/F4	FPS	PSI
	*	*		
0.500E-03	0.1530158 111	11.250851E-02	0.877436E U3	0.62C322E 01
0.100E-02 0.15UE-02	0.317435E H1	U.271689E=02	0.858604E 03	0.637225E 01
0.200E-02	0 485642E H1 0 647780E H1	U,292754E+02	0.81U434E U3	0.607997E 01
0.250E-02	0.8022695 01	11.313059E-02	0 732836E U3	0.529944E 01
0.300E-02	0.9478215 01	0.332405E=02 0.350633E=02	0 659832E U3	0.454644E 01
0.350E-02	0.108341E 02	0.367613E-02	0.591304E U3 0.527U43E U3	0.383857E U1
0.400E-02	0.120825E 112	11.383247E-02	0.466770E U3	0.318726E 01 0.259896E 01
0.450E-02	0,1321745 112	11.397459E-02	0.41U153E U3	
0.500E-32	0.1423425 112	0.410193E-02	0.356818E u3	0.20760UE 01 0.161828E 01
0.550E-02	U.151298E U2	0.4214U9E-02	0 306352E 113	0 122366F 111
0.600E-02	0.1590158 112	0.431072E-02	0.258301E U3	0.888991E Uu
0.650E-02	0,165469E H2	U.439155E-02	0,212152E U3	0.610713E 00
0.700E-02	0 170634E 112	11.445623E-02	0.167276E U3	0.385357E 011
0.750E-02	0,1744695 112	11.45U426E-02	0.122757E U3	1 20997 LE IIII
U_800E-32	0 176885E H2	u.453452E-02	0.766873E U2	0.826465E-01
0.850E-02	0.177399E 112	U.454095E=02	0.161927E u2	0.370453E-112
0-900E-02	ŭ,176490€ 112	11,452826E-02	-0.28674UE U2	0.129524E-01
0-950E-02 0-100E-01	0.1775745 112	11,454184E=02	0.342625E u2	0.165712F-01
0 1335-01	0,1764838 112	11 452662E-02	"(1.34422UE U2	0.185622F-01
0.105E-01 0.110E-01	0.177575E H2 0.176483E H2	U.454029E-02	0.344914E U2	0.167931E-01
0.115E-01	0 177575E 112	0.452506E-02	0,344401E U2	0.186755E-01
0.120E-01	0.176483E 112	0.453874E-02	0.34497UE U2	0.167985E-01
U.125E-01	0 177575E 112	0,452351E-02 0,453719E-02	0.344463E 112 0.345132E 112	0.186758E-01
0.130E-01	0.176483E U2	U.452197E-02	M - M - A - A - M - M - M - A	0 168046E=01
u-135E-01	0.1775755 02	0.453565E-02	0.345094E 02	0 186761E-U1
0.140E-01	0 176482E 112	U.452043E-02	"0.344586E U2	0.1681U6E-01 0.186765E-U1
U.145E-01	0,177575E 02	0.453411E-02	0.345156E U2	0.168166E-U1
0.150E-01	U.176482E 112	U.451889E-02	"II 344648E U2	0.186768E-01
0.155E-01	0.177575E 112	u.453257E-02	0.345218E U2	0.168227E-01
0.160F-01	0.176482E U2	U.451736E-02	-0.3447U9E U2	0.186771F-H1
0.165E-01	0,177575E 112	11.453105E-02	0.345280E 02	0.168287E-01
U.170E-01	0.176482E 112	U.451584E-U2	"0 344770E 112	0.186775E=01
0-175E-01	0 177575E 112	11.452952E-02	0.345341E 02	0,168346E=01
0.180E-01	0,176482E 112	U.451431E-02	-0.344832E U2	0,186778E-U1
0 185E-01	0.1775755 112	U.4528UUE-02	U.345402E U2	0_168406E-01
0-190E-01 0-195E-01	0.176481E H2	U, 451280E-02	-0.344892E 112	0.186781E-U1
0.200E-01	0 177575E H2 0 176481E H2	U. 452649E-02	0.345463E U2	0.168465E-01
0.205E=01	0.176481E 112 0.177575E 112	0 451129E-02	0.344953E U2	0.186785E-01
0	A * 1	0,452498E-02	0.345524E U2	0.168525E-111

Table VI. Fill-Time Prediction - 49% Open, 7.5 psi - Rear Room

			-	
AREA1	VOLUME	TIME	20500112-	BEN 81 - 11
0.677E 00	0.578700E 111		PRESSURE	DENSITY
0.00	0.5767000 111	u.500000E=03	0.148000E 02	0.407606E=02
2.40				
TIME	PRESSURE	DEN3	U.S.	DPT
SECONDS	PSI	UE-52/F4	FPS	PSI
				•
0.500E-03	0.918034E 110	0.242910E-02	(13877436E 113	0.620322E 111
6.10UE-02	0 1877632 111	11.255182E-02	0 8661375 03	6 6300005 01
0.150E-02	0.287905E III	11.267811E-02	0 866137E 113	0.630999E 111
0.200E-02	0,389343E HI	20/6112-02	0.854328E 113	n.648453E 111
0.250E-02	1 488846E	U.28U514E-02	0,824303E u3	0 621586F III
0.300E-02	J. 488845E H1	11.292975E-02	0.776486E U3	0 574726F 01
	0.586043E H1	11.305147E-02	0.731378E U3	0 528453E III
0.35UE-02	0.680662E 111	11.316989E=02	0.687463E U3	0.483247E III
0.40UE-02	0.772233E H1	11.328464E-02	0.64521UE U3	0.439497F UI
0 450E-02	0,860679E H1	0.339540E=02	0.604579E U3	0.397507E 01
0.500E-02	0 945718E 111	U.350190E-02	0,565520E U3	0.357505E U1
0,550E-02	0 102715E 112	11-350389E-02	0 527973E 03	
0.600E-02	0,110485E H2	11.370117E-02	0 4019775 07	n.319654E 01
U.650E-02	0.117864E 112		0.491873E U3	n 284058F n1
0.700E-02	0.124843E 112	11.379358E-02	0.457151E U3	0,250776E 01
0.750E-02	0.1240435 112	U.388098E-02	0.423731E u3	0,219826E U1
	0,131412E U2	11.396324E-02	0.391534E 03	0,191195E U1
0.800E-02	0.137563E u2	0,40402BE-02	0.36U48UE U3	0.1648465 111
0 850E-02	0,143291E u2	11,411201E-02	U.33U482E U3	1.146724E 111
0.900E-02	0.148591E H2	11.417838E-02	0.301455E U3	0.118762E H1
0.950E-02	0 153458E H2	U.423933E-U2	0.273309E U3	0. 988856E IIII
U_100E-01	0.157889E 112	1.429482E=02	0.245949E U3	0 810152F HH
0.105E-01	U.1618815 H2	11.434481E-02	0 219279E U3	0 45,7005 0
0.1138-01	0 1654312 112	11.438927E-02	6 1031025 03	0.650722E 00
0.115E-01	0 168535E H2	11.442814E-U2	0 1675715 U3	0,5098H2F IIII
0-120E-01	0.171189E 112	6 4461705 00	0.167571E U3	0.386682F IIII
U.125E-01		0.446138E-02	0:142277E 03	1,286726F HH
0.130E-01	0.173387E H2	0.448891E-U2	0.117131E U3	6.191404E 00
0 135E-01	0,175120E 112	0.451060E-02	0.918699E 112	0.118326E IIII
0.135E-01 0.140E-01	0.176369E 112	11,452625E-02	0.659996E U2	0.613033E-01
	0.177093E 112	11.453531E-02	0.381107E U2	0 204971F=111
0.145E-01	U.176839E 112	U.453164E-02	TO.138285E U2	0.301077E-02
U.150E-01	0.177205E 112	11.453635E-02	0.197714E U2	6.552224F-02
6.155E-01	0.1768145 112	0.453689E-02	0,205887E U2	
0-160E-01	0.177207E 112	0.453581E-02		0.667384F=112
U-165E-01	U. 176814E 112	ASTATTE 00	0.206670E U2	0.603365E=02
0.170E-01	0,177207E 112	0.453033E=02	-0.206529F U2	11.671468F=112
0.175E-01		11.453525E-U2	0 201665UE U2	(1 ₈ 603245F=112
	0.1768145 112	11.452977E-02	70,206540E H2	0.671462E-112
0.18UE-01	U.177267E 112	n.453469E=02	U_206663E 112	0.603324E=02
0.185E-01	0.176814E H2	U.452921E-U2	T0_206554E U2	9.6714665-02
0.190E-01	0 177207E 112	u.453413E-02	0.206677E 02	0.603402E=02
0.195E-01	0.176814E 112	11.452865E-02	TU.206567E U2	6.67147UF=112
0.200E-01	0.177207E H2	U.453357E-02	0,20669UE U2	6.60348UE-112
0.205E-01	U. 176814E 112	ii.452810E=02	"U_206581E U2	
U-210E-11	0.1772075 112	11.453302E=02	0.2067U3F U2	6 671475E-112
0.215E-01	0.176814E 112	U.452754E-02		0.603559E=02
0-220E-01		4530465 00	0.206594E U2	0.671479F=02
G.225E-01		11.453246E-02	0.206717E 02	0.603637E=U2
_	0.176814E H2	11.452698E-02	0 206607E 02	6,671484E-112
0 230E-01	0,177207E 112	11.45319UE=02	0.2u673UE U2	n.603715E=02
0.235E-01	U.176814E 112	11.452643E-02	"0.206621E U2	(1.671488E-112
0.240E-01	0.177207E H2	U.453135E-02	0.206743E U2	0.603793E-02
U_245E-01	00176814E H2	U.452588E-02	"0,206634E U2	0.671492E-02

(A) SHOT 24-75-158 FRONT ROOM

(B) SHOT 24-75-158 REAR ROOM

Figure 13. Pressure-Fill Predictions - 49% Opening, 3.6 psi

(A) SHOT 24-75-150 FRONT ROOM

(B) SHOT 24-75-150 REAR ROOM

Figure 14. Pressure-Fill Predictions - 49% Opening, 7.5 psi

FILL.TWO-ROOM MODEL

(B) SHOT 24-75-159 REAR ROOM

Figure 15. Pressure-Fill Predictions - 49% Opening, 10.9 psi

(A) SHOT 24-75-162 FRONT ROOM

(B) SHOT 24-75-162 REAR ROOM

Figure 16. Pressure-Fill Predictions - 20% Opening, 3.5 psi

(A) PREDICTED FRONT ROOM

(B) PREDICTED REAR ROOM

Figure 17. Pressure-Fill Predictions - 20% Opening, 7.5 psi

(A) SHOT 24-75-172 FRONT ROOM

FILL INC-ROCK SOUFL

(B) SHOT 24-75-172 REAR ROOM

Figure 18. Pressure-Fill Predictions - 20% Opening, 10.9 psi

Table VII. Predicted Translation Parameters - Prone Position at Entrance - 49% Open, 7.5 psi

TWO-ROOM HODEL-V/A-5.1FT

SHOT 24-75-150, 7,5PST

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SEC	ACCEL: FT/SEC/SEC
0.0015 0.0010 0.0015 0.0025 0.0025 0.0035 0.0035 0.0040 0.0045 0.0050	0.002 0.0015 0.0015 0.0016 0.0040 0.0056 0.0075 0.0094 0.0115 0.0159 0.0182	0.6625 1.3420 1.9891 2.5518 3.0334 3.4390 3.747 4.0476 4.2647 4.4332 4.5599 4.6513	1325,0051 1358,9100 1294,2264 1125,4648 963,1823 811,1976 671,4227 545,7249 434,2465 336,9275 253,5054 182,8577
0.0065 0.0070 0.0075	n n 206 n n 0229 n n 0253	4,7136 4,7523 4,7729	124,5201 77,3953 41,2552

TWO-ROOM MODEL-V/A=6.54FT

SHOT 24-75-150, 725PS1

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SEC	ACCEL -FT/SEC/SEC
0,0005	0,0002	0 6625	1325,0051
0,0010	0,0007	1,3354	1345,7464
0,0015	0.0015	2,0171	1363.5397
0,0020	0,0027	2,6777	1321,0794
0.0025	0,0042	3,2871	1218,8688
0,0030	0.0060	3.8462	1118,2196
0,0035	0,0080	4,3563	1020,2012
0,0040	0,0103	4,8192	925,6826
0,0045	0,0128	5,2367	835,0434
0,0050	0.0155	5,6112	748.9706
0,0055	0.0184	5,9451	667 8322
0,0060	0,0215	6,2409	591,6107
0,0065	0.0246	6.5011	520,4769
0,0070	0,0280	6,7284	454,5165
0.0075	0.0314	6,9252	393,6016
0,0080	0,0349	7.0942	337,9433
0.0085	0.0385	7 2377	287:1181
0.0090	n_0421	7.3583	241.0882
0.0095	0.0458	7,4580	199,4326
0,0100	0.0496	7,5391	162,1315
0.0105	0.0533	7 6036	129,1533
0,0110	0.0572	7,6537	100.0708
0,0115	0.0610	7,6911	74,8808
0.0120	0.0648	7.7178	53,3650
0.0125	n 0687	7,7354	35,3077
0.0130	0,0726	7,7459	20,9135

Table VIII. Predicted Translation Parameters - Standing Position at Entrance - 49% Open, 7.5 psi

TWO-ROOM MODEL-V/A=5.1FT

SHOT 24-75-150, 7.5PS1

TIME-SEC	DISTANCEFFT	VELUCITY-FT/SEC	ACCELFT/SEC/SEC
0.0005	0.0013	5.0962	10192.3473
0.3010	0.0051	10.2664	10340.5206
0.0015	0.0115	15.1298	9726.6587
0.0020	0.0201	19.2966	8333.7259
0.0025	0.0306	22.8055	7017.6688
0.0030	0.0427	25.7083	5805.7643
0.0035	0.0562	28.0640	4711.4057
0.0040	0.0707	29.9368	3745.5104
0.0045	0.0860	31.3894	2905.1568
0.0050	0.1020	32.4827	2186.5613
0.0055	0.1184	33.2752	1585.0039
0.3060	0.1352	33.8197	1089.1154
0.0065	0.1522	34.1664	693.4219
0.3070	0.1593	34.3605	388.1500
0.3075	0.1865	34.4459	170.8279

Table VIII. (Cont'd) Predicted Translation Parameters - Standing Position at Entrance - 49% Open, 7.5 psi

TWO-ROOM MODEL-V/4=8.54FT SHOT 24-75-150, 7.5PST

TIME-SEC	DISTANCE-FT	VELOCITY#FT/SFC	ACCEL -FT/SEC/SEC
0,0005	n;nn13	5,0962	10102,3473
0,0010	0.0051	10.2179	10243.3602
0 00:5	0.0115	15.3504	10264.9989
0.0020	0,0204	20,2627	0001 (000
0.0025	n n n 3 1 6	24,7331	9824.6298
n_nazn	0,0450	28,7755	8084,9374
กุ๊กกสิธิ	กรูกรถ3	32,4080	7264,9489
0,0040	1,1773	35 6519	6487,7338
0.0045	n n n n n n n n n n n n n n n n n n n	38,5286	5753,5103
0,0050	0.1158	41,0633	5069.2711
0,0055	1369	43 2806	4434,6606
0,0060	0,1590	45,2048	3848,3984
0,0065	0,1820	46,8605	3311,4246
0,0070	0.2058	48,2716	2822,2163
0,0075	u 53u5	49,4614	2379,5105
0.0080	0.2552	50,4527	1982,7477
0,0085	0.2806	51.2671	1628.5264
n nen	0.3064	51,9246	1315,1357
0.0095	0.3325	52,4442	1039,1599
0.0100	0.3588	52,8440	799,6025
0 0105	0.3853	53,1415	504.9012
0.0110	0.4120	53,3524	421,8093
0,0115	n,4387	53,4924	280,0587
0.0120	0.4654	53, 5763	167.8248
0.0125	0.4922	53,5181	83,5477
0.0130	0.5190	53 5322	28.3408
0.0135	0.5459	53,6332	1,9305
0.0140	0.5727	53.5374	8.3504

Figure 19 compares the maximum predicted translational velocity at the entrance with the average dummy velocities measured. The important thing to notice is that higher translational velocities are predicted and measured for the longer fill time as seen from the case for the 20% open front compared to the 49% open front.

V. SUMMARY AND CONCLUSIONS

This section will summarize the experiment and show some predictions for full size room shelters.

A. Summary of Experiment

A 1/12th scale two-room shelter model was exposed to shock waves for a reflected position at the end of the BRL 24-Inch Shock Tube. Dummy models were placed in the first room of the model shelter and the motion caused by the shock wave filling process was observed with a high speed camera.

Pressure-time fill records were recorded by transducers in both rooms of the shelter model. Computer code predictions of the filling process were made and compared to the experimental filling. Some translational parameters were predicted for the position near the entrance and compared to the observed motion of the model dummy which had been positioned on the centerline of the room.

Table IX summarizes the experimental cases tested and lists the cases of corresponding full size predictions. The latter are described in the next section.

B. Predictions for Full Size Shelters

Again, as for the shelter model, pressure-time filling predictions were made for a full size two-room shelter exposed to reflected blast pressure from an assumed 1-MT source. Reference 4 was used as a guide for an assumed wave form and duration at each of the input pressure levels of 3, 7, and 10 psi before reflection.

Figures 20 - 25 are plots of these input waves and the predicted pressure-time filling as given in the tables of Appendix C for other full size room shelters.

Again, as for the model dummy, maximum translation parameters for a 168-lb man were calculated for a position near the entrance. Tables X and XI list sample cases; the remaining tables are given in Appendix E.

⁴H. L. Brode, "A Review of Nuclear Explosion Phenomena Pertinent to Protective Construction," Rand Document No. R-425-PR ECD-AD 601139, Rand Corp., Los Angeles, California, May 1964.

Figure 19. Translational Velocity of Model Dummy as a Function of Location on Floor

Table IX. Summary of Model and Shelter Parameters

Model or Shelter	Input Pressure, psi	Size	Entrance Area	Volume Area, ft	Fill Time,sec	Remarks
Model-Front Room 49% Open Front	3.6 7.5 10.9	30 x 10 x 10 in.	97.5 in ²	5.12	.0065 .0085 .0095	0.28 lb dummy
Model-Both Rooms 49% Open Front	3.6	50 x 20 x 10 in.	97.5 in ²	8.54	.0115	$C_D A = 0.013 \text{ ft}^2$ for prone.
	7.5 10.9				.014	$C_D A = 0.10 \text{ ft}^2$ for standing
Model-Front Room 20% Open Front	3.6 7.5 10.9	30 x 10 x 10 in.	40.0 in ²	12.5	.0175 .021 .023	
Model-Both Rooms 20% Open Front	3.6 7.5 10.9	50 x 20 x 10 in.	40.0 in ²	20.83	.029 .035 .038	
Full Size Shelter Front Room-49% Open Front	3.0 7.0 10.0	30 x 20 x 10 ft	97.5 ft ²	61.4	.075 .095 .100	168 1b man
Full Size Shelter Both Rooms-49% Open	3.0	50 x 20 x 10 ft	97.5 ft ²	102.5	.115	$C_D A = 1.2 \text{ ft}^2$ for prone
Front	7.0 10.0				.145	$C_D A = 9 \text{ ft}^2$ for standing
Full Size Shelter Front Room - 20% Open Front	3.0 7.0 10.0	30 x 20 x 10 ft	40 ft ²	150	.165 .195 .215	1-MT blast wave
Full Size Shelter Both Rooms - 20% Open Front	3.0 7.0 10.0	50 x 20 x 10 ft	40 ft ²	250	.255 .295 .315	

50

(A) FRONT ROOM

CHAMBER FILL-BR

(B) BOTH ROOMS

Figure 20. Fill Predictions for Full Size Shelter - 49% Opening, 3 psi

CHAMBER FILL-BRL

(B) BOTH ROOMS

Figure 21. Fill Predictions for Full Size Shelter - 49% Opening, 7 psi

CHAMBER FILL-BRL

(8) BOTH ROOMS

Figure 22. Fill Predictions for Full Size Shelter - 49% Opening, 10 psi

CHAMBER FILL-BRL

(B) BOTH ROOMS

Figure 23. Fill Predictions for Full Size Shelter - 20% Opening, 3 psi

CHAMBER FILL-BRL

Figure 24. Fill Predictions for Full Size Shelter - 20% Opening, 7 psi

(A) FRONT ROOM

CHAMBER FILL-BRL

(B) BOTH ROOMS

Figure 25. Fill Predictions for Full Size Shelter - 20% Opening, 10 psi

Table X. Predicted Translation Parameters - Prone at Entrance - 49% Open, 1-MT, 7 psi

TWO-ROOM SHELTER-V/A=61.5FT

1-MT, 7PSI

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SEC	ACCEL -FT/SEC/SEC
0 0100 0 0200 0 0300 0 0400 0 0500 0 0600	0100 0.0395 0.0861 0.1453 0.2136 0.2878 0.3656	1 9954 3 9151 5 3905 6 4632 7 1945 7 6512 7 8981	199,5441 191,9644 147,5407 107,2723 73,1246 45,6758

TWO-ROOM SHELTER-V/A=102.6FT

1-MT, 7PSI

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SEC	ACCEL: FT/SEC/SEC
0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0600 0.0700 0.0800	0100 0100 0100 0100 0100 0100 0100 010	1 9954 4 0222 5 8138 7 3276 8 5868 9 6097 10 4207 11 0456 11 5098	199.5441 202.6736 179.1606 151.3803 125.9230 102.2864 81.0994 62.4959 46.4177
0,1000 0,1100 0,1200 0,1300	0.7625 0.8820 1.0031 1.1252	11.8382 12.0534 12.1782 12.2332	32.8342 21.5273 12.4758 5.4969

Table XI. Predicted Translation Parameters - Standing at Entrance - 49% Open, 1-MT, 7 psi

TWO-ROOM SHELTER-V/A=51.5FT

1-MT, 7PSI

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SFC	ACCEL -FT/SEC/SFC
0.0100	0.0748	14,9658	1496.5894
0.0200	0.2040	28,8678	1300 1000
0,0300	0.6337	39.0644	1019.6611
0,0400	1,0594	46,0823	701,7892
0,0500	1,5426	50,5523	446,9988
0.0600	2,0608	53,0973	254,5065
0.0700	2.5977	54.2816	118.4241

TWO-ROOM SHELTER-V/A=102.6FT

1-MT, 7981

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SFC	ACCEL -FT/SEC/SEC
0,0100	0.0748	14,9658	1496,5804
0.0300	0 2 9 8 1 0 2 5 5 7 4	29.6797 42.1881	1471.3884 1250.8392
0,0400 0,0500	1,1209	52,3060 60,3334	1011,7947 802.7399
0,0600	2,3273 3,0156	66.5194 71.1368	618.5953 461.7414
0,0800 0,0900	3,7435 4,4993	74.4485	331,1705
0.1000	5,2733	76.5975 78.1086	224,8953
0.1100	6.0582 5.8487	78,8815 79,2053	77,2829 32,3845
0.1300	7.6410	79.2630	5.7717

Figures 26 and 27 show the translational velocity for the prone and standing positions for the man. They have been calculated for the full entrance flow conditions as a function of the percentage of open front.

Again, the predicted velocities are higher for the longer fill times as seen from the case for the 20% open front.

ACKNOWLEDGMENTS

The author wishes to thank Messrs. W. Matthews, K. Holbrook and L. Blair for the experimental work performed at the BRL 24-Inch Shock Tube,

Figure 26. Predicted Translational Velocity for a 168-1b Man Prone at Entrance

Figure 27. Predicted Translational Velocity for a 168-1b Man Standing at Entrance

REFERENCES

- 1. George A. Coulter, "Blast Loading in Shelter Models Basement and Mine Shelters," Ballistic Research Laboratories Memorandum Report No. 2476, April 1975, AD A010322.
- 2. George A. Coulter, "Blast Loading in Existing Structures Basement Models," Ballistic Research Laboratories Memorandum Report No. 2208, August 1972, AD 751769.
- 3. E. F. Hoerner, "Fluid-Dynamic Drag," 148 Busteed Drive, Midland Park, New Jersey 07432, published by author, 1965.
- 4. H. L. Brode, "A Review of Nuclear Explosion Phenomena Pertinent to Protective Construction," Rand Document No. R-425-PR ECD-AD 601139, Rand Corp., Los Angeles, California, May 1964.

APPENDIX A
HIGH SPEED PHOTOGRAPHS

Figure A-1. 49% Open Front-Prone on 6-inch Line, 10.4 psi

Figure A-2. 49% Open Front-Prone on 12-inch Line, 7.5 psi

Figure A-3. 49% Open Front-Prone on 12-inch Line, 11.1 psi

Figure A-4. 49% Open Front-Standing on 6-inch Line, 3.6 psi

Figure A-5. 49% Open Front-Standing on 12-inch Line, 3.5 psi

Figure A-6. 49% Open Front-Standing on 12-inch Line, 7.7 psi

Figure A-7. 49% Open Front-Standing on 12-inch Line, 11.6 psi

Figure A-7. (Cont'd) 49% Open Front-Standing on 12-inch Line, 11.6 psi

Figure A-8. 20% Open Front-Prone on 6-inch Line, 3.5 psi

Figure A-9. 20% Open Front-Prone on 6-inch Line, 11.4 psi

Figure A-10. 20% Open Front-Prone on 12-inch Line, 11.1 psi

Figure A-11. 20% Open Front-Standing on 6-inch Line, 3.4 psi

Figure A-12. 20% Open Front-Standing on 6-inch Line, 10.6 psi

Figure A-13. 20% Open Front-Standing on 12-inch Line, 11.1 psi

Figure A-14. 20% Open Front-Standing on 18-inch Line, 3.7 psi

Figure A-15. 20% Open Front-Standing on 18-inch Line, 10.6 psi

Figure A-16. 20% Open Front - 47% Open Back-Prone on 12-inch Line, 7.3 psi

Figure A-17. 20% Open Front-47% Open Back-Prone on 12-inch Line, 10.6 psi

Figure A-18. 20% Open Front - 47% Open Back-Standing on 12-inch Line, 3.5 psi

Figure A-19. 20% Open Front - 47% Open Back-Standing on 12-inch Line, 7.6 psi

APPENDIX B

TABLES OF PREDICTED FILL PARAMETERS FOR MODEL

	4
	•
	•

Table B-I. Fill-Time Prediction - 49% Open, 3.6 psi - Front Room

AREAL	VOLUME	TIME	PRESSURE	DENSITY
0.677E 00	0.347200E II1	0.500000E=03	0.15UHODE U2	0.318UNUE-112
TIME	PRESSURE	DEN3	ns.	DPT
SECONDS	PSI	UF-82/F4	FPS	PST
G. G. 11.		07 32774	7 7 3	r51
0 FOOF-07	0 1047415	0.0151045-00		
U.500E-03	0,1043418 01	11.245426E-02	0.631460E u3	0,324436F U1
0.100E-02	0 203017F H1	0.259069E-02	0.569171E U3	0 276556E 01
0-150E-02	0.2953938 11	0.271841E-02	0.51U587E U3	0.232249E 01
0.200E-02	0 295393E H1 0 380967E H1	11,283673E=02	0.455484E U3	0.191932E 01
0.250E-02	0 459358E H1	n,294511E-02	0.403597E U3	0 15579UE 01
0.300E-02	0.530275E m1	11.304316E-02	0.354625E U3	0.123837E 01
0.350E-02	0.593503E H1	U.313058E=02	0.308242E U3	0 959575E UII
0.4C0E-02	6,648873E 111			
0.45GE-02	0 6062485 111	11.32U714E-02	0.264092E U3	0.720049E Uu
	0.696248E u1 0.735487E u1	11.327264E-02	n. 221781E u3	0.517367E On
0.500E-02	U./3545/E III	0.332689E-02	0 180856E U3	0 349447E HH
0.55CE-02	8.766410E n1	11.336965E=02	0.14U734E U3	0.214293E 011
U_600E-02	O TRATCRE HI	11,340047E-02	0.100490E U3	0.116337E Uu
0.650E-02	6 801629E 111	11,341834E-02	0.578236E U2	0.36789LE-01
0.650E-02 0.700E-02	0.796894E H1	0.341131E-02	Th. 211131E U2	0.528821F-H2
0.750E-02	U_R036695 H1	0.342067E-02	0.302439E 112	0.1069066-01
G.RCGE-02	0,796894E H1 U,703669E H1 U,796558E H1	0.341012E-02	0,316772E U2	0.1191975-01
0.850E-02	0 803690E U1	0.341998E=02		0 1119175-01
0.900E-02	0.7965598 01		0.318397E U2	0.1118175-01
0 950E-02	2 803600E U	11.34U939E-02	U.317716E U2	0.119883F-01
	0 7045575 44	u.341925E=02	11.318402E U2	0.111821E-01
0.100E-01	0.803690E 01 0.796557E 01 0.803690E 01	0.34U866E=02	T0.317050E 02	0.119883E-01
0.105E-01	0 803693E H1	0.341852E-02	0.318437E U2	0.111845F-01
0.110E-01	0.7965565 11	11,34U794E-02	"0,317985E U2	0.119884E-01
0.115E-01	U,803699E II1	0.341780E-02	0.318473E U2	0.11187LE=01
0.120E-01	0.796555E H1	U.34U722E-02	-0.318020E U2	0.119885E=01
0.125E-01	0,803690E 01 0,796555E 01 0,803690E 01 0,796554E 01	0.341708E-02	0.318507E U2	0,111895F-01
0.130E-01	0.796555E U1	U.34065UE=02	-0.318054E U2	
0-135E~V1	0.803699E u.t	0.341636E-02		0 119886E-01
0.140E-01	0 706554F u.1		0.318542E H2	0.111919E=01
	0 7 90 7 6 0 4 5	U.340578E-02	-0.318989E U2	0:119887E-01
0.1458-01	0 803699€ H1	u.341565E-U2	D. 318577E 112	0.111943E-01
0-150E-01	0.796553E nl	0.340506E-02	TO 318124E U2	0,119888E-01
0.155E-01 0.160E-01	0 803699E H1	0.341493E-02	0.318612E 02	0_111968E-01
0.160E-01	0.796553E 01	0.340435E-02	"0.318158E U2	0.119889E-01
0.165E-01	0,8036996 01	11,341422E-02	0.318646E U2	0.111992E-01
0-17JE-01	0.796553E ui 0.803699E ui 0.796552E ui	0.340364E-02	"U_318192E U2	0_119889E=01
0.175E-01	0,80369nE ui	0.341351E=02	U.318681E U2	0,112016E-01
0-130E-01	0.796551E H1	11.340293E-02	T0 318227E 02	0.11989UE-01
u 185E-01	0 803690E H1	U.341280E-02	0.318715E 02	0.112040F-01
0-190E-01	0 796550E H1	0.34U222E-02		
0-195E-01			0.318261E 02	0,119891E-01
	0.803690E 111	0.341210E-02	U 318749E U2	0 112064E-01
0.200E-01	0.796550E H1	0.340152E-02	"0.318295E U2	0.119892E-01
0.205E-01	0,803699E 01	11.341139E-02	0.318783E U2	0 112088E-01
0,210E-01	0.796549E H1	u.340082E-02	"0.318329E U2	0.119893E-01
0.215E-01	J.803699€ H1	0.341069E-02	0.318817E U2	0 112112E-01
0.220E-01	J. 796548E 111	0.340012E-02	TU 318362E U2	0 119894E-01
0.225E-01	บ_ี่ 9036992 ห1	0.340999E-02	0.318851E U2	0.112136E-01
		4		Wal- 1

Table B-II. Fill-Time Prediction - 49% Open, 3.6 psi - Rear Room

AREA1	VOLUME	TIME	PRESSURE	DENSITY
0.677E 00	0.578709E 01	0.500000E=03	0.150000E 02	0.318UNGE-02
			0.1000000000000000000000000000000000000	0.0100000112
TIME	PRESSURE	DENT	110	201
		DEN3	U2	DPT
SECONDS	PST	UF-52/F4	FPS	PSI
-				
0.500E-03	0,626010E 110	0.239655E=02	0.631460E U3	0.324436F 01
0.1COE-02	0,123235E U1	U.248039E-02	0.594H15E U3	0 295607E 01
0.150E-C2	0.181757E u1	0.256130E=02	0.557946E U3	0.267988F 01
0.200E-02	0,238042E 111	0.263912E-02		
0.250E-02	0 2010825 (11		0,523211E 03	0,241697E 01
0.2301-02	0,291982E u1	11 . 271370E=02	0.489757E U3	0,216816E 01
0.300E-02	0,3434845 01	11.27849UE-02	0.457531E U3	0.193397F 01
0.350E-02	0.392472E U1 0.438881E U1	0.285264E-02	0 426471E U3	0.171467E 01
0.400E-02	0.438881E u1	1.291680E-02	0,396517E U3	0.151028E 01
0.450E-02	0 482656E H1 0 523754E H1	1).297732E-02	0.367602E U3	0,132071E 01
0.500E-02	0 523754F m1	0.303415E-02		
0.550E-02	0,562139E H1	0,308722E-02	0.339660E U3	0-114569F 01
0.600E-02	0 5077815 01		0.312622E U3	0.9848745. 00
0.650E-02	O STOSESE US	0,313650E-02	0.286416E U3	0.837846E NU
	0 8 03 003 5 11 1	11.318195E-02	0.260969E U3	0.704147F Du
0.700E-02	0.597781E U1 0.630656E U1 0.660745E U1 0.688027E U1	0,322355E-U2	0 236205E 03	0 583295E 011
6-750E-02	0 688027E U1	11,326127E=02	0.212045E 03	0.474807F Un
0.800E-02	0.712487E 01	0.329509E=02	0.188406E U3	0.378216F. Ou
0.850E-02	0.7341638 01	U.332498E=02	0,165193E H3	0.293079E 0u
0-900E-02	0.752855E III	0.335090E-02	0,142302E H3	6 2180085 00
0.950E-02	0.768769E u1			0.218998F 00
0.100E-01		11,337282E-02	0.119502E U3	0.155529E IIII
	0,781620E 01 0,791512E 01	1).339068E-02	11.969151E 112	0.1027065 00
0-105E-01	0.7919185 HI	0.340435E-02	0.739505E U2	0.6003840-01
0.110E-01	0.7982335 01	0.341364E=02	0.500343E U2	0.2762435-01
0.115E-01	U.801299E III	0.341788E=02	0.228018E U2	0.573763E-02
0.120E-01	0,798762E U1	11,341412E-02	TO 188406E 02	0.421541E-02
0.125E-01	0.8013288 01	0.341766E-02	0.190794E 02	0.401787F-02
0-130E-01	0,798763E 01	0.341385E-02		0 4310075-00
0 135E-01	0 8013385 01		TO 190634E 02	0.431083E-02
	0 801328E U1	U.34174UE-02	U.190737E U2	0.401549E-02
0-140E-01	0 798763E U1	0.341359E=02	-0.190640E U2	0.4316748-02
0-145E-01	0 801328E u1	0.341714E-02	0 190745E 02	0 401581E-02
0.15GE-01	0,798763E 111	U.341333E=02	TO 190647E U2	0.431075E-02
0-155E-01	0.801328E 01	0.341688E-02	0.190752E U2	0.401613E-02
0.150F-01	0.798763E III	0.341307E-02	0 190655E U2	0.4310768-02
0-165E-01	0.801328E U1	U.341661E-02	0.19H76UE U2	0.401645E-02
0.170E-01	0.798763E 01	0.341280E-02	0.190663E 112	0.4310786-02
0-175E-01	0.801328E m1	n,341635E-02	0.190768E U2	
G.180E-01	0.798762E u1	0.341254E-02		0.4016778-02
0.185E-01			-0.19067UE U2	0.431079E-02
	0.801328E 01	0.3416u9E=02	0 190775E 112	0.401709E-02
0-190E-01	0.798762E 111	0.341228E-02	T0 190678E U2	0.431U8UE-02
0-195E-01	0 801328E 11	0.341583E=02	U_190783E U2	0,401741E-U2
0,200E-01	0.798762E U1	0.341202E-02	0.19U685F U2	0.431u81E-02
0_205E-01	0.801328E U1	0,341557E-02	0.190790E U2	0.401773E-02
0.2108-01	0,798762E U1	0.341176E-02	0 190693E U2	0.431U82E-02
0 215E-01	0.8013288 01	0.341531E=02	0 19U798E U2	0.401805E-02
0-2206-01	U. 798762E 111	0.341150E-02	0 190700E U2	
0.2256-01	The second second			0.431083E-02
0.230E-01	0.831328E H1	0.341505E-02	0.190805E U2	0.401836E-U2
	0.798762E U1	u.341124E-02	0 190708E U2	0.431UB5E-02
0.2358-01	0 801328E U1	11.341479E-02	0 190813E U2	0.401868E-02
0.240E-01	0.798762E U1	U.341098E-02	T0 190715E 02	0.431U86E-02
0.245E-01	0 801328E m1	u.341453E-02	0 19082UE U2	0.40190UE-02

Table B-III. Fill-Time Prediction - 49% Open, 10.9 psi - Front Room

AREAL	YOLUME	TIME	PRESSURE	DENSITY
0.677E 00	0.34720 DE 111	11.5000u0E=03	0.15UHOUE U2	0.504006E=02
		Southern		
TIME	PRESSURE	DENS	0.5	NPT
SECTIONS	PSI	UE-52/F4	FPS	PSI
	Will the second of the	4		of Konstanting to a
0.500E-03	0,17453)E HI	11.252975E-02	0 972405E 03	0.761U22E 01
0-100E-02	0.364963E H1	U.276343E-02	0.955909E U3	0.795574E 01
0-150E-02	0.571922E II1	11.301106E-02	U 937911E U3	0.827147F D1
0-200E-02	0.795879E H1	U.327244E-02	0.918350E 03	0.8549125 01
0.250E-02	0.103712E 112	11.354723E-02	U.897183E U3	0 8780256 01
0.300E-02	0.127672E 112	11.381860E-02	0 824998E U3	
0.350E-02	0.1505235 112	11.437854E-02	0.740917E U3	0.797341E U1 0.685917E U1
0.400E-02	0.1723318 112	U.432440E-02	0.662124E U3	0.5797598 01
0.45UE-02	0.192667€ 112	U.4554u5E-02	0.588431E U3	0.481268E U1
0.500E-02	J. 211307€ #2	0.476584E-02	0.5195435 03	0 391890F 01
0.550E-02	U. 228321E 112	11.495854E-02	0.455087E 03	0.312317E 01
0.6005-02	0.243568E 112	U.513122E-02	U.394625E U3	0.242589E U1
0.650E-02	0,256987E 112	11.52832UE-02	0.337666E U3	0.182773E U1
0.700E-02	0.268533E 112	11,541397E-02	0.283667E U3	0.132117E 01
0.750E-92	0.278168E 112	11.552309E-02	0.232013E U3	0.901656E Nu
0-800E-02	0.285847E 112	0.561007E-02	U 181948E U3	0.563603E Nu
0.850E-92	0.291566E 112	u.567416E-02	U 132379E U3	0.302156E Du
0.900E-02	0.295006E 112	u.571372E-02	0.809839E U2	0.114127E 0u
0.950E-02	0.295039E 112	U.571417E-02	0.913885E UU	0,146157E-U4
0-100E-01	0.294692E H2	11,57U971E-02	"n Buu669E U1	0.127186E-02
0.105E-01	0.2957298 112	11.572146E-02	0 23916UE U2	0 100046E-01
0.110E-01	0.294229E 112	11.57U221E-U2	"0.345465E U2	0.236819E-01
0.115E-01	0.295869E H2	11.572079E-02	U.37849UE U2	0.250386E-01
0-120E-01	0.294231E 112	0.569977E-02	-0.377420E 02	0 2825588-01
0-125E-01	0.295869E 112	u.571832E=02	0.378072E 02	0.249833E-01
0.130E-01	0.294231E 112	U.56973UE-02	-0.377477E 112	0.282522E-U1
0.135E-01	0,295869E 112	0.571586E-02	0.378160E 02	0.24995UE-01
0.140E-01	0.294230E 112	11.569485E-02	"0 377563E U2	0.282529E-01
0.145E-01	0.295869E 112	U.571342E-02	0.378247E 02	0.250U64E-01
0.15UE-01	0.294230E 112	0.569241E-02	TI 377649E U2	0.282537E-01
0.155E-01	U. 295869E 112	U.571098E-02	0.378333E 02	0.250178E-01
0-160E-01	0.29423BE 112	0.568997E-02	-0.377735E 02	0.282544E-01
0-165E-01	0.295869E 112	11.57U855E-02	0.378419E U2	0.250291E-01
0-170E-01	0.294229E 112	0.568755E-U2	-U.377820E 02	0.282552E-01
0.175E-01	U 295869F 112	0.570612E-02	0 378504E U2	0.25U405E-01
0-180E-01	0.294229E 112	11.568513E=02	"0.377905E U2	0.282559E=01
0 185E-01	J. 295869E U2	U.57U371E-02	0.37859UE U2	0,250517E-01
0.190E-01	0.294229E 112	0.568272E-02	TO 377990E U2	0.282566E-01
0-195E-01	0.295869E U2	11,570130E-02	0.378675E U2	0.250630E-01
U-200E-01	0.29422BE 112	11.568U32E-02	"0.378075E U2	0,282573E-01
0.205E-01	0.295878E 112	0.569890E-02	0.37876UE U2	0.250742E=01
0.21CE-01	0.2942288 112	11.567792E-02	0.378159E U2	0.282586E-01
0-215E-01	U. 295879E U2	11.569651E-02	0.378845E U2	0-250854E-01
0 550E-01	J. 294228E 112	11.567554E-02	-0.378243E 02	0.282588E-01
0.2256-01	J. 29587 TE 112	11.559413E-02	0.378929E U2	0.250966E-U1

Table B-IV. Fill-Time Prediction - 49% Open, 10.9 psi - Rear Room

AREA1 0.677E 00	VOLUME 0.578700E ni	TIME 0.500000E=03	PRESSURE 0.150000E 02	DENSITY 0.504000E-02
TIME	PRESSURE	DEN3	U2	DPT
SECONOS	PSI	UE-52/F4	FPS	PST
0.500E-03	0.1047125 01	0.244184E-02	0 972405E 113	0.761022E 01
0.100E-02	0.2152015 111	11.257878E-02	0 962508E 113	0.782428E 01
0.150E-02	0,3316158 11	0.272084E-02	0.952U65E U3	0.802833E 01
0.200E-02	0.4540845 111	11.286799E-02	0.9411163E 113	0.822U52E 01
0.250E-02	0.582717E H1 0.717599E H1	11.302022E=02	0.929488E U3	0.83990LE 01
0.300E-02	0 0587005 111	11.317745E=02	0.917330E 03	0.856186E 01
0.350E-02	0.858788E U1	0.333966E=02	0 904582E U3	0.870720F. U1
0.400E-02 0.450E-02	0.100588E H2		0 889266E U3	0.879415E U1 0.8118U8E U1
0.500E-02	U.129141E 112		U. 78500UE U3	0 744759E U1
0.550E-02	U.142868E 112		0.735833E U3	0.67909UE U1
0.600E-02	0.1561525 112		0.688607E U3	0.615465E 01
0.6508-02	U.168981E 112		6.643277E U3	0.554406E 01
0.700E-02	0.181289E 112		0.599783E U3	0 49630GE 01
0.750E-02	0.193054E 112		0.55811578 113	0.441424E U1
0.800E-02	0.204251E 112		0.518018E U3	0.389956E 01
0.850E-02	0.214857E 112		n 479582E U3	0.341991E 01
0.900E-02	0,2248555 112	U.491364E-02	0 442657E U3	0.29756UF 01
0.950E-32	0.234232E 112		0.407146E U3	0.256541E 01
0.100E-01	0.242973E 112	ú.511882E=02	0.372948E U3	0.219173E 01
U-105E-01	0.25107BE 112	u.521053E-02	u 339960E u3	0 185065E U1
0-110E-01	0.258515€ 112		0.3081735 03	0.154206E 01
0.115E-01	0,265302E 112	u.537172E-02	11.277175E 113	0.126476E U1
0.120E-01	0,2714255 112	ii.544108E-02	0.24715UE 113	0.10175UE 01
0.125E-01	0.2768895 02		0.217872E U3	0.7996148 00
0.130E-01	0.281661E 112		11,189203E 113	6.608134E IIII
0.135E-01	0.2857615 112		U.16U985E U3	0.443782E III
0-140E-01	0.289172E II2		0 133018E U3	0.305637E 00
0.145E-01	0.2918808 112		n 105916E u3	0.191189E 011
0.150E-01	0.293861E 112		11.764724E 112	n.101828E 011
0 155E-01 0 160E-01	U.295057E 112		11.460511F U2	0.37U444E-U1
0.1656-01	0.29530BE U2		11,96774HE U1	0.185626E-U2
0.17UE-01	0.294723E U2		TH 221510E U2	0.973414E-02
0-175E-01	0.2953138 112		U. 226767E U2	0.8995116E-112
0 0 2 7 444 0 1	V			0 0 1 2 7 0 1 0 2

Table V, Fill-Time Prediction - 20% Open, 3,6 psi - Front Room

AREA1	VOLUME		TIME	PRESSURE	DENSITY
0.277E 10	0.34720 PE	0.1	0.500000E=03	0.149000E U	2 0.318000F-02
TIME	PRESSURE		DEN3	U2	DPT
SECONDS	PST		UE-52/F4	FPS	PSI
0.500E-03	3.437093E	611	0.236991E=02	U.647999E U	3 0.337929E 01
0.1008-02	0 865309E		11.242861E-02	0.621861E U	3 0.3177118 01
0.150E-02	0,128414E		11.2486U2E-02	0.596389E U	
0.200E-02	0.169313E	1 1	11.2542U8E-02	U_571568E U	3 0.278906E 01
0.250E-02	0,209185E I	1 1	11.259673E=02	0.547385E 0	3 0,260405E 01
0.300E-02		11	11.254993E-02	0.523823E U	3 0.242549E 01
0.350E-02	0,2857088 (11.270162E-02	0.500865E U	
0.400E-02	U. 322292E I	11	11.275176E-02	0.478494E H	
0.450E-02	U. 357722E		U.280033E-02	0.456691E U	3 0.193048E 01
0.500E-02		1:1	0.284727E-02	0 435436E 0	
0.55UE-92		1 1	0.289258E-02	0.414709E U	
0.60UE-02		0.1	11.293621E-02	U 394489E U	
0.650E-02 0.700E-02	0.487457E 1	11	0.297815E-02	U.374757E 11	
0.700E-02		11	11.301838E-02	0.355490E U	3 0.124489E 01
0.75UE-02	0 5717705	11:	u.305689E-02	0.336667E U	3 0,112836E 01
0.A00E-62		1 1	11.309365E-02	0.318267E II	
0.9506-02	2	1	0.312866E-02	11,300266E 11	
0 900F-02	U, 621517E I	11	0,316191E-02	0.282643E U	
0-950E-02	0 644479E 1	. 4	u.319338E-02	0 265375E U	
0-100E-01			u 322307E-02	0.248439E U	
0-105E-01	Commence of	11	0.325098E=02	0.231811E U	
0 110E - 01 0 115E - 01		1	0.327710E=02 0.330141E=02	0.215469E U	3 0.489775E 00 3 0.422009E 00
0-120E-01		1	11.332392E-02	0.183539E U	
0.125E-01	U.754822E	11	U.334463E-02	0.167899E II	
0-130E-01		1	u.336351E-02	0 152439E U	
0.135E-81		11	0.338058E-02	0,137126E II	
0 140E-01		11	0.339581E=02	0.121926E U	
0-145E-01		1	0.34U920E-02	0.106795E U	
0.150E-01	The second second	11	11.342073E-02	0.916798E U	2 0 920039E-01
0 155E-01	0.817381E i		11.343038E=02	0.765H54E H	
0.16UE-01	U.823018E I	1 1	11.343810E-02	0.611536E U	2 0.411327E-01
0.155E-U1	0.823018E 1 0.827211E 1 0.82986DE 1	1 1	U.344385E-02	0.454H04E H	
0-170E-01	0.82986DE L	11	11.344748E=02	0 286548E U	
0.175E-01	0 830453E	11	U.344829E=02	0,640337E U	
0.18UE-01	0.829427E	1 1	U.344677E=02	TO.110816E U	2 0.147U14E-U2
0-185E-01	0.830628E	1 1	U.344841E=02	0 129733E U	2 0.185806E=U2
0.190E-01		1.1	11.344662E-02	"0.130459E U	2 0.203748F-02
0.195E-01		1 1	11.344R28E=02	0.13U527E U	2 0,188087E-02
0 20UE-01		11	U,344648E-02	TU.130495E U	2 0.203851E=02
0 2 U 5 E - U 1		1	11.344814E-02	0.130528E U	2 0.188U91E-02
0.210E-01		1	U.344634E-02	"0.130498E U	
0.215E-01		11	0.3448UUE-02	0,130531E U	
0.220E-01		11	11.344620E=02	TO 130500E U	
0_225E-01	U. 430628E II	11	U.344786E-02	0.130534E II	2 0.188107E-02

Table B-VI. Fill Time Prediction - 20% Open, 3.6 psi - Rear Room

AREA1 0.277E 00	VOLUME 0.578700E U1	TIME U.louGUGE-02	PRESSURF 0.149000E 02	nENSITY n_318GHUE=H2
TIME SECONDS	PRESSURE PS1	DEN3 UE-\$2/F4	II2 FPS	DPT PSI
SECONDS 0:100E-02 0:200E-02 0:300E-02 0:400E-02 0:500E-02 0:500E-02 0:700E-02 0:700E-02 0:100E-01 0:110E-01 0:120E-01 0:150E-01 0:150E-01 0:150E-01 0:150E-01 0:150E-01 0:150E-01 0:150E-01 0:150E-01 0:150E-01 0:200E-01	PSI 0.524482E U0 0.103608E U1 0.153393E U1 0.201725E U1 0.248540E U1 0.293772E U1 0.337372E U1 0.379292E U1 0.419493E U1 0.457941E 01 0.457941E 01 0.562495E U1 0.562495E U1 0.562495E U1 0.593681E U1 0.6623007E U1 0.6623007E U1 0.676034E U1 0.676034E U1 0.676034E U1 0.775356E U1	UE-S2/F4 10.238189E-U2 U.2452U1E-02 U.2452U1E-02 U.252025E-02 U.25865UE-02 U.25865UE-02 U.265067E-02 U.277243E-02 U.288499E-02 U.293769E-02 U.293769E-02 U.293769E-02 U.33573E-02 U.316395E-02 U.316395E-02 U.320158E-02 U.320158E-02 U.326909E-02 U.326909E-02 U.337277E-02 U.337277E-02 U.337277E-02 U.3340872E-02 U.342864E-U2 U.343380E-02 U.344736E-02 U.344860E-02	64799E U3 0 64799E U3 0 616653E U3 0 586259E U3 0 528232E U3 0 528232E U3 0 500543E U3 0 447663E U3 0 422406E U3 0 3789UE U3 0 374080E U3 0 374080E U3 0 36511E U3 0 264295E U3 0 264408E U3 0 213968E U3 0 223968E U3 0 204408E U3 0 166264E U3 0 17578E U3 0 110664E U3 0 129070E U3 0 110664E U3 0 1292597E U2 0 547254E U2 0 547254E U2 0 346064E U2	PSI 0.337929E 01 0.313682F 01 0.290208E 01 0.267585F 01 0.245875E 01 0.225121F 01 0.205354F 01 0.186593E 01 0.152109E 01 0.136377E 01 0.121635E 01 0.121635E 01 0.121635E 01 0.21635E 01 0.21635E 01 0.365939E 00 0.365939E 00 0.365939E 00 0.235225E 00 0.365939E 00 0.235225E 00 0.33529E 00 0.235225E 00 0.329653E-01 0.329653E-01 0.329653E-01 0.329653E-01 0.329653E-01 0.329653E-01 0.334486F-03
0.300E-01 0.310E-01 0.320E-01	0.830904E u1 0.830905E u1	0.344636E=02 0.344874E=02 0.344615E=02	TU 13570UE U2 0:155999E U2 TU:156564E U2	0.220454E=02 0.268638E=02 0.293449E=02
0.330E-01 0.340E-01 0.350E-01 0.360E-01 0.370E-01 0.380E-01 0.390E-01	0.830904E U1 0.829165E U1 0.830904E U1 0.829165E U1 0.829165E U1 0.829165E U1	0.344854E=02 0.344595E=02 0.344834E=02 0.344575E=02 0.344555E=02 0.344555E=02 0.344794E=02	0.15665UE U2 0.156595E U2 0.156653E U2 0.156658E U2 0.156605E U2 0.156605E U2	0.27u883E=02 0.293548F=02 0.27u895E=02 0.293549E=02 0.270912E=02 0.27u928E=02
0.400E-01	0.829165E ul	U.344535E-02	"0.1566U9E U2	0.29355UF=U2

Table B-VII, Fill-Time Prediction - 20% Open, 7.5 psi - Front Room

AREA1	VOLUME	TIME -	PRESSURF	DENSITY
0.277E 00	0.347269E H1		0.14900UE U2	0.410000E-02
TIME	PRESSURE	DEN3	U2	DPT
SECONDS	PSI	UE-52/F4	FPS	PSI
2.63		061006714	1.3	. 5.1
0.500E-03	U.634187E NU	0.239179E-02	6 8924775 07	6 4292405 04
0-100E-02	0.1288246 111		0.882473E U3	0.628248F N1
0.150E-02	U.196229E II1	0.247531E-02 0.256055E-02	0.874755E 03	0.635963E 01
0.2005-02	0.265637E u1	11.254748E=U2	0.866796E U3	0.6431128 111
0.250E-02	U.336595E H1	11.273564E-02	U.858594E U3	0.649656E U1
0.300F02	0.4067358 111	u.282278E-02	0 846030E 03	0 64922ÚF 01
0.350E-02	0,406735E H1 0,475931E H1	0.29UR75E-02	U_812954E U3	0,616656E 01
0.40UE-02	0.544060E H1		0.7811695E U3	0.5842028 01
0.450E-02		11.299340E-02	0 .749251E u3	0.552039E 01
	0.611014E H1	11.307658E=02	0 718614F U3	0.520327E 01
0.500E-02	0 6766895 111	0.315818E-02	0.688778E U3	0.4892113E 01
0.550E-02 0.600E-02	0.740993E U1 0.803840E U1	11,323RU7E-02	0.659729F U3	0.458786E 01
0.650E-02	U.865153E 111	u.331615E=02	0.631454E U3	0.429176E III
0.700E-02	0,9248635 111	U.339233E=02	0.603938E U3	0.4004558 01
0.75UE-02	0.982965E H1	0.353863E-02	0 577162E 03	0.372696E 111
0.300E-02	0.1039238 112		0.551107E 03	0.345932E U1
0 85UE-02	0.109377E U2	0.360860E-02	0.525754E U3	0.320222F 01
0.900E-0?	U.114650E H2	0.367637E-02 0.374189E-02	0.50108HE U3	0.295587E 01
0.95UE-02	0.1197398 112	1.38U5U9E=02	0 477061E 03	0 272045E 01
0.100E-01	0.124636E 112		0.453676E u3	0.2496U3E 01
0.105E-01	U.129343E 112	0.386595E=02 0.392443E=02	0.439898E 03 0.408704E 03	0.228264E 01
0.110E-01	0.1338545 02	0.398048E-02		0,208022E 01
0.115E-01	0,1381706 112	11.403410E-02	0.387067E 03 0.365961E 03	0.188866E 01
0.120E-01	U. 142285E 112	0.408524E-02	0.345361E U3	0 170781F 01
0-125E-01	J. 1462(2E 112	0.413396E-02	0.325238E U3	0.153749E U1
0.130E-01	0.1499175 112	0.418UU5E-02	0.365566E U3	0.122754F U1
0-135F-01	U.153429E 112	u.422368E-U2	0.286318E U3	0 1087435 01
0-140E-01	0.156737E II2	11.426478E=02	0.267465E II3	0 108743E 01 0 956886E 011
0.145E-01	U.159841E II2	11 43 U334E-02	0.248979E u3	0.835654E (III
0.15UE-01	U. 162739E 112	11.433935E-02	0.230831E 03	0.723472E (III
0.150E-01 0.155E-01	U.1654315 H2	11.437280E-02	U. 21299UE U3	0.6200868 00
0-160E-01	0,167916E 112	U.440367E-02	U.195427E U3	0.525253F UU
0-165E-01	U.170194E 112	0.443197E-02	0.178108E U3	0 43874UE IIII
0.17UE-01	0,172264E 112	0.445769E-02	0.160997E U3	0.36033CE 011
0.175E-01	0.174124E 112	11.448080E-02	U.144057E U3	0.289824E 011
0-180E-01	U.175774E 112	H.450130E-02	0.127241E U3	0 2270478 011
0.185E-01	U. 177212E U2	u.451917E-02	U.11U497E U3	0,171847E OH
0-190E-01	0.178435E II2	U.453437E-02	0.937538E U2	0.124104E On
U.195E-01	U.179443E 112	0.454688E-02	0.7691196E U2	0 837401E-01
0.200E-01	0.180227E 112	u.455663E=02	0.597938E U2	0.507267E=01
U-205E-01	0.180780E U2	U.456349E-02	0.42U429E U2	0.251217E-01
0.210E-01	U.181075E H2	0.456716E-02	0 224152E U2	0.714937E-02
0.215E-01	U. 180912E 112	11.456491E-U2	"II 123644E U2	0.242399E-U2
0.22UE-01	U.181099E 112	11.456722E-02	0.141708E U2	0.2858245-02
0.225E-01	U. 180912E 112	11.456464E=02	"1.141941E U2	n_319435F-02
U.230E-01	U.181098E 112	11.456696E=02	U.141996E U2	11.286985E-02

Table B-VIII, Fill-Time Prediction - 20% Open, 7.5 psi - Rear Room

0-100E-02	TIME PRESSURF
0-100E-02	
0.200E-02	PSI UE-S2/F4 FPS PSI
0.150E-01 0.114746E U2 0.374343E-02 0.481471F U3 0.160E-01 0.120847E U2 0.381922E-02 0.453247E U3	PSI
0.180E-01	32221E U2 U.396054E=02 U.39938UE U3 0.199693E U1 37486E U2 U.402596E=U2 U.373647E U3 U.177295E U1 32464E U2 U.408781E=02 U.348654E U3 U.156429E U1 37153E U2 U.4146U6E=U2 U.324355E U3 U.137V6UE U1 35652E U2 U.42968E=02 U.377643E U3 U.102652E U1 39458E U2 U.429894E=02 U.255133E U3 U.875246E UU
0.250E-01	0.6177E 0.2

Table B-IX. Fill-Time Prediction - 20% Open, 10.9 psi - Front Room

AREA1	VCLUME	TIME	PRESSURE	DENS ITY
0.277E 00	0.347200E C1	0.500000E-03	0.150000E 02	0.493000E-02
TIME	PRESSURE	DEN3	U2	DPT
	PSI	UE-S2/F4	FPS	PSI
SECONES 0.500E-03 0.100E-02 0.200E-02 0.200E-02 0.250E-02 0.300E-02 0.350E-02 0.450E-02 0.450E-02 0.550E-02 0.650E-02 0.650E-02 0.650E-02 0.750E-02 0.750E-02 0.850E-02 0.960E-02 0.960E-02 0.960E-02 0.100E-01 0.105E-01 0.115E-01 0.125E-01 0.135E-01 0.145E-01 0.155E-01 0.155E-01 0.155E-01 0.160E-01 0.175E-01 0.175E-01 0.175E-01 0.175E-01 0.175E-01 0.175E-01	PSI C.7C6C21E CC O.143825E C1 O.215713E C1 C.298306E O1 O.37964CE C1 O.463748E O1 C.55C656E O1 O.64C385E C1 O.732551E U1 O.E28362E C1 C.924545E C1 C.10155CE C2 O.111303E C2 O.12C497E C2 O.125516E C2 O.125516E C2 O.138346E C2 O.146774E C2 O.155388E C2 O.163577E C2 O.17532E C2 O.17532E C2 O.179244E C2 O.163577E C2 O.179244E C2 O.163577E C2 O.179244E C2 O.163577E C2 O.179244E C2 O.163577E C2 O.179244E C2 O.163576E C2 O.213924E C2 O.22C851E O2 O.213924E C2 O.22C851E O2 O.213924E C2 O.22C851E O2 O.236732E C2 O.236732E C2 O.236732E C2 O.236732E C2 O.241723E O2 O.241723E O2 O.241723E O2 O.246425E O2 O.2565566E C2 O.265566E C2	0.239911E-02 0.249C54E-C2 0.258430E-02 C.268U37E-02 0.277876E-02 0.287945E-02 0.308764E-02 0.319510E-02 0.319510E-02 0.330475E-02 0.352338E-02 0.363C36E-02 0.373553E-02 0.363C36E-02 0.373553E-02 0.383870E-02 0.463839E-02 0.463839E-02 0.413464E-02 0.422831E-02 0.422831E-02 0.422831E-02 0.422831E-02 0.427526E-02 0.465466E-02 0.473G99E-02 0.487425E-02 0.487425E-02 0.506509E-02 0.512218E-02 0.517597E-02 0.522644E-02 0.531738E-02 0.535783E-02	FPS 0.963021E 03 0.956166E 03 0.949056E 03 0.941687E 03 0.934055E 03 0.926157E 03 0.917990E 03 0.909552E 03 0.909552E 03 0.868508E 03 0.832929E 03 0.78274E 03 0.764537E 03 0.764537E 03 0.699780E 03 0.699780E 03 0.699780E 03 0.699780E 03 0.552978E 03 0.638549E 03 0.699780E 03 0.699780E 03 0.499838E 03 0.499838E 03 0.474361E 03 0.425446E 03 0.425446E 03 0.425446E 03 0.425446E 03 0.425446E 03 0.425448E 03 0.292823E 03 0.272443E 03 0.252468E 03 0.213587E 03 0.213587E 03 0.213587E 03 0.213587E 03 0.175884E 03	0.746977E 01 0.760974E 01 0.774501E 01 0.787503E 01 0.799920E 01 0.811696E 01 0.822772E 01 0.833089E 01 0.842589E 01 0.851216E 01 0.743383E 01 0.657084E 01 0.657084E 01 0.657084E 01 0.574474E 01 0.534935E 01 0.496723E 01 0.496723E 01 0.459922E 01 0.459922E 01 0.424596E 01 0.327830E 01 0.327830E 01 0.327830E 01 0.327830E 01 0.298696E 01 0.271121E 01 0.298696E 01 0.271121E 01 0.298696E 01 0.175987E 01
C.195E-01	0.271162E C2	0.545891E-02	0.157369E 03	0.415120E 00
C.205E-01	0.273513E C2	0.548580E-02	0.139014E 03	0.325392E 00
C.205E-01	0.275563E G2	0.550926E-02	0.120757E 03	0.246515E 00
C.210E-01	C.277310E C2	0.552924E-02	0.102521E 03	0.178297E 00
C.215E-01	C.278748E 02	0.554569E-02	0.841950E 02	0.120603E 00
C.220E-01	0.275872E 02	0.555855E-02	0.655941E 02	0.733769E-01
C.225E-01	C.28C667E 02	0.556764E-02	0.463335E 02	0.366803E-01
C.230E-01	C.281C99E 02	0.557258E-02	0.251348E 02	0.106085E-01
O.235E-01	0.28C877E 02	0.556972E-02	-0.128852E 02	0.321199E-02
O.240E-01	0.281139E 02	0.557271E-02	C.152450E 02	0.397758E-02

Table B-X. Fill-Time Prediction - 20% Open, 10.9 psi - Rear Room

AREA1	VCLUME	TIME	PRESSURF	DENSITY
0.277E 00	0.57870GE C1	0.100000E-02	0.150CCUE 02	0.4930G0E-02
T IME	PRESSURE	DEN3	U2	DPT
SECONDS	PSI	UE-S2/F4	FPS	
C.1COE-O2 G.2OOE-O2 G.2OOE-O2 G.3OOE-G2 G.4COE-O2 G.5OOE-O2 G.6OOE-O2 G.7COE-O2 G.8OOE-O2 G.9COE-O2 G.1OOE-O1 G.11OE-O1 G.11OE-O1 G.14OE-O1 G.14OE-O1 G.15OE-G1 G.14OE-O1 G.15OE-G1 G.17OE-O1 G.19OE-O1 G.19OE-O1 G.2OE-O1 G.2OE-O1 G.2OE-O1 G.2OE-O1 G.2OE-O1 G.2OE-O1 G.2OE-O1	0.847177E 00 0.173201E 01 0.265526E 01 0.361759E 01 0.461958E 01 0.566171E 01 0.674435E 01 0.786774E 01 0.902751E 01 0.101704E 02 0.112932E 02 0.123929E 02 0.123929E 02 0.145124E 02 0.145124E 02 0.155277E 02 0.174597E 02 0.174597E 02 0.174597E 02 0.183734E 02 0.192504E 02 0.200895E 02 0.208900E 02 0.216511E 02 0.223720E 02	0.241693E-02 0.252719E-02 0.264C77E-02 0.275769E-02 0.287791E-02 0.300141E-02 0.312814E-02 0.325806E-02 0.325806E-02 0.352146E-02 0.364988E-02 0.364988E-02 0.364988E-02 0.401611E-02 0.413425E-02 0.424669E-02 0.424669E-02 0.445976E-02 0.456007E-02 0.465606E-02 0.474762E-02 0.483467E-02 0.491714E-02	0.963021E 03 0.954795E 03 0.946203E 03 0.937238E 03 0.927894E 03 0.918164E 03 0.897532E 03 0.884053E 03 0.884053E 03 0.799164E 03 0.799164E 03 0.758697E 03 0.719531E 03 0.661645E 03 0.669599E 03 0.575369E 03	0.746977E 01 0.763659E 01 0.779655E 01 0.794868E 01 0.809199E 01 0.822548E 01 0.834814E 01 0.850747E 01 0.797496E 01 0.797496E 01 0.797496E 01 0.692279E 01 0.641141E 01 0.591425E 01 0.591425E 01 0.497226E 01 0.497226E 01 0.411103E 01 0.333785E 01 0.298510E 01 0.265486E 01 0.234686E 01
C.240E-01	0.230522E 02	0.499495E-02	0.365086E 03	0.2060678 U1
C.250E-C1	0.236914E 02	0.506805E-12	0.338626E 03	0.1795798 U1
C.260E-01 C.270E-01 C.280E-01 C.290E-01 C.300E-01 C.310E-01 C.320E-01 C.340E-01 C.350E-01 C.360E-01 C.360E-01 C.360E-01 C.390E-01 C.390E-01 C.400E-01	0.24289CE 02 0.248448E 02 0.253586E 02 0.25830GE 02 0.26259CE 02 0.26452E 02 0.269884E 02 0.272883E 02 0.275445E 02 0.277563E 02 0.279229E 02 0.280425E 02 0.281106E 02 0.28120CE 02	0.513641E-02 0.519999E-02 0.525876E-02 0.531268E-02 0.536175E-02 0.540592E-02 0.544518E-02 0.547949E-02 0.550879E-02 0.555208E-02 0.556575E-02 0.556999E-02 0.557422E-02	0.312898E 03 0.287843E 03 0.263401E 03 0.239512E 03 0.216111E 03 0.193129E 03 0.170491E 03 0.125878E 03 0.125878E 03 0.30654E 03 0.312136E 02 0.581203E 02 0.330554E 02 -0.133330E 02 0.179073E 02	0.1551625 01 0.1327535 01 0.1122876 01 0.936965E 00 0.769176E 00 0.618884E 00 0.485519E 00 0.368565E 00 0.267582E 00 0.182222E 00 0.112261E 00 0.576545E-01 0.186863E-01 0.343969E-02 0.548774E-02

APPENDIX C

TABLES OF PREDICTED FILL PARAMETERS FOR FULL SIZE SHELTERS

Table C-I. Fill-Time Prediction - 49% Open, 3 psi - Front Room

40541	4 D1 111 E	*** ** **	2050000	
AREA1 0.975F 02	VOLUME	TIME	PRESSURE	DENSITY
0.9131 02	0-600000E 04	0-100000E+01	0.147000E 02	0.302000E-02
TIME	PRESSURE	DEN3	U2	UPT
SECONDS	PSI	UE-52/F4	FP.S	PSI
		00.0271		
0.100E+01	0.149795F 01	0.254347E+02	0.565007E 03	0.257714E 01
0.200E-01	0-282373E 01	0-273254E-02	0.466921F 03	0.189633F 01
0.300E-01	0.395685E 01	0.289425E+02	0.377537F 03	0.130453F 01
0.400E-01	0.488304E 01	0.302652E+02	0.295297E 03	0.834626E 0U
0.500E-01	0.559041E 01	0.312762E+02	0.218017E 03	0.470960F 00
0-600E-01	0-606269E 01	0.319516E=02	0.142015E 03	0.204965F 00
0.700E-01	0.624510E 01	0.322127E ► 02	0.539978F 02	0.301231E-01
0.800F-01	0.602737E 01	0.318779F+02	-0.642795E 02	0.459923E-01
0.900E-01	0.612427E 01	0.320167E+02	0.287579 E 02	0.853362F-02
0.100E 00 0.110F 00	0.592342F 01 0.602790E 01	0.317079E + 02 0.318579E + 02	-0.596022F 02	0.393285E-01
0.120E 00	0.582572E 01	0.315471E+02	0.311646E 02 -0.602817E 02	0.993583E-02 0.400270E-01
0.130E 00	0.593019E 01	0.316973E=02	0.313096E 02	0.403270E-01 0.103448E-01
0.140E 00	0-572940E 01	0.313888E-02	-0.501478E 02	0.395493E-01
0 -150E 00	0.583475E 01	0.315404E + 02	0.317198E 02	0.102752E-01
0.160E 00	0.563503E 01	0.312336E+02	-0.601056E 02	0.393979E-01
0.170E 00	0-574109E 01	0.313864E -02	0.320831E 02	0.104772E-01
0-180E 00	0.554246E 01	0.310815E+02	-0.600498E 02	0.3913328-01
0.190F 00	0.564921E 01	0.312355E+02	0.324369E 02	0.105747E-01
0.200E 00	0.545166E 01	0.309322E +02	-0 .5 9 9 9 30 E 02	0.3897186-01
0.210E 00	0.555905E 01	0.310874E=02	0.327777F 02	0.109653F-01
0.550E 00	0.536256E 01	0.307859F-02	-0.599340E 02	0.385118F-01
0.530E 00	0-547055E 01	0.309421E+02	0.331070E 02	0.110496F-01
0.240E 00	0.527512E 01	0.306423E=02	-0.599734E 02	0.383540F-01
0.250E 00	0.538367E 01	0.307995€ -02	0.334248E 02	0_112277E-01
0.260F 00 0.270F 00	0.518928E 01	0.305014E+02	-0.598111E 02	0.380982E-01
0.280F 00	0.529836E 01 0.510500E 01	0.306595E ← 02 0.303631E ← 02	0.337310E 02 -0.597473E 02	0.113992F-01
0.290E 00	0.521456E 01	0.305222E+02	0.340267F 02	0.379446F-01 0.115648F-01
0.300E 00	0.502222E 01	0.302274E+02	-0.596822E 02	0.375933E-01
0.31 OF 00	0.513225E 01	0.303873E+02	0.343124E 02	0.117247F-01
0.320E 00	0.494092E 01	0-300941E+02	-0.596158E 02	0.373444F-01
0.330E 00	0.505137E 01	0.302549E ← 02	0.345884E 02	0.113790E-01
0.340E 00	0.486103E 01	0.299633E+02	-0.595490E 02	0.370987E-01
0.350E 00	0.497188E 01	0.301248E -02	0.348551F 02	0.120278F-01
0.360E 00	0-478252E 01	0.298348E-02	-0 -5 948 14E 02	0.3685588-01
0.370E 00	0.489374E 01	0.299970E-02	0.351129F 02	0.121714F-01
0.380F 00	0.470535E 01	0.297086E - 02	-0 .5 9 4 1 33 E 02	0.365159E-01
0.390E 00	0-481692E 01	0.298715F-02	0.353628E 02	0.123103E-01
0.400E 00	0-462948E 01	0.295846E202	-0.593449E 02	0.363791E-01
0.410E 00	0.474137E 01	0-297482E-02	0.356038E 02	0.124438E-01
0.420E 00	0.455487E 01	0.294628E - 02	-0.592759E 02	0.361451E-01
0.430F 00	0 466707E 01	0.296270E - 02	0-358369E 02	0.125725F-01
0-440E 00	0.448149E 01	0.293431E ► 02	-0.592066E 02	0.359142E-01

Table C-II. Fill-Time Prediction - 49% Open, 3 psi - Both Rooms

10541				
AREA1 0.975E 02	VOLUME	TIME	PRESSURE	DENSITY
0.9136 32	0.100000E 05	0.100000E>01	0.1470 COF 02	0-305000E-US
TIME	PRESSURE	DEN3	U2	DPT
SECONDS	PSI	UE-52/F4	EPS	PS I
	_		1.51 %	
0.100E-01	0.898773E 00	0.245808E+02	0.565007F 03	0.257714E 01
0-200F-01	0.173655E 01	0.257755F-02	0.505173F 03	0.214941F 01
0.300F+01	0.250852E 01	0.268773E+02	0.448749E 03	0.176066F 01
0.400E-01	0-321096E 01	0.278805F + 02	0-395446E 03	0.14128UE 01
0.500E-01	0.384096E 01	0.287809E -02	0.344920F 03	0.110599F 01
0.600E←01 0.700E←01	0.439618E 01	0.295749E+02	0.296774E 03	0.839250F 00
	0.487454E 01	0.302596E - 02	0.250536F 03	0.613851F 00
0-800F -01	0.527385E 01	0.308315E+02	0.205616F 03	0.418777E 00
0.900E-01 0.100E 00	0.559118E 01 0.582144E 01	0.312863E \= 02 0.316165E \= 02	0.161174F 03 0.115719E 03	0.261050F 00
0 -110E 30	0.595175E 01	0.318035F ÷ 02	0.550062E 02	0.135091F 00 0.432945F-01
0.120E 00	0.587724E 01	0.316888E ← 02	-0.370656F 02	0.151469E-01
0.130F 00	0.582779E 01	0.316126E ←02	-0.246646E 02	0.669685F-02
0.140E 00	0.578012E 01	0.315392E+02	-0.238331E 02	0.623073F-02
0.150E 00	0.573263E 01	0.314661E+02	-0.237974E 02	0.619768E-02
0.160E 00	0.568568E 01	0.313938E+02	-0.235843F 02	0.607312F-02
0.170F 00	0-563916E 01	0.313221E -02	-0.2341EDE 02	0.597406F-02
0.180F 00	0.559310E 01	0.312512E-02	-0.232417E 02	0.587110F-02
0.190F 00	0.554748E 01	0.311810E+02	-0.230725E 02	0.577288F-02
0.200F 00	0.550229E 01	0:311114E=02	-0.229027E 02	0.567549F-02
0.2105 00	0.545753E 01	0.310424E ÷02	-0.227374E 02	0.5581438-02
0.220F 00 0.230E 00	0.541320E 01 0.536928E 01	0.309742E - 02 0.309065E - 02	-0.225722F 02 -0.224105E 02	0.5488468-02
0.240E 00	0.532576E 01	0.308395E-02	-0.222504E 02	0.539826E-02 0.530983E-02
0.250F 00	0.528265E 01	0.307731E+02	-0.220916F 02	0.522312E-02
0.260E 00	0.523994E 01	0.307073E+02	-0.219370E 02	0.513912E-02
0.270E 00	0-519761E 01	0.306422E+02	-0 .217672E 02	0.5056035-02
0.280E 00	0 -515567E 01	0.305776F+02	-0.216315F 02	0.497577F-02
0.290E 00	0.511411E 01	0.305136E+02	-0.214805E 02	0.489627F-02
0.300F 00	0.507292E 01	0.304501E+02	-0.213334E 02	0.481933E-02
0.310F 00	0.503209E 01	0.303873E ÷02	-0.211868F 02	0.474348F-02
0.320E 00	0.499163E 01	0.303250F + 02	-0.210422F 02	0.465932E-02
0.330E 00 0.340E 00	0.495152E 01 0.491177E 01	0.302632E=02 0.302020E=02	-0.209003F 02	0.459738E-02
0.350F 00	0.487236E 01	0.301413F 202	-0 .2075 93 E 02	0.452612F-02 0.445734F-02
0.360E 00	0.4833298 01	0.300811E=02	-0.206217E 02 -0.204836E 02	0.445734E-02
0.370E 00	0.479455E 01	0.300215E+02	-0.203495E 02	0.432313F-02
0.380E 00	0-475615E 01	0.299623E>02	-0.202150E 02	0.425774E-02
0.390E 00	0-471807F 01	0-299037E+02	-0 -200830E 02	0.419406F-02
0.400E 00	0.468031F 01	0.298455E-02	-0 .199537F 02	0.413213E-02
0.410E 00	0.464287E 01	0.297879F + 02	-0.198241F 02	0.4U7U74F-02
0.420E 00	0.460573E 01	0.297307E≻02	-0.196984F 02	0.401153F-02

Table C-III. Fill-Time Prediction - 49% Open, 7 psi - Front Room

AREAL	VOLUNE	TIME	PRESSURE	DENSITY
0.975E 02	0.600000E 04	0.100000E+01	0.147000E 02	0.399000E-02
0.000				
TIME	PRESSURE	DEN 3	U2	UPT -
SECONDS	PSI	UE-52/F4	FP S	PS1
3.001100				1
0 .100E-01	0 -249691E 01	0.265577E +02	0.866177E 03	0.602930F 01
0.200E-01	0.516358E 01	0.299461F+02	0.805451 E 03	0.583174F 01
0.300F-01	0.762962F 01	0.330848E-02	0.673076E 03	0.451406E 01
0.400E-01	0.982794F 01	0.358873F-02	0.552790E 03	0.331026F 01
0.500F-01	0.117116F 02	0.382926E+02	0.443648E 03	0.229007E 01
0.600E-01	06132481E 02	0.402577F=02	0.343816E 03	0.144369F 01
0.700E-01	0.144113E 02	0.417478E -02	0.250388E 03	0.797241E 00
0.800E-01	0.151655E 02	0.427155E+02	0.1579298 03	0.326540F 00
0.900E+01	0-153517E 02	0.429547F+02	0.383404E 02	0.195002E-01
0.100E 00	0.149645E 02	0-424013E ►02	-0.798401F 02	0.944206F-01
0-110E 00	0.147861E 02	0.421463E -02	-0 .3 706 77 E 02	0.201988F-01
0 -1 20E 00	0 -146392F 02	0.419363E+02	-0.306893E 02	0.137687E-01
0.130E 00	0-144766F 02	0.417040E=02	-0.341315 E 02	0.169416F-01
0.140E 00	0.143272E 02	0-414904E+02	-0.315467E 02	0.143953F-01
0 -150E DO	0-141727F 02	0.412695E-02	-0 .328083E 02	0.154686[-01
0.160E 00	0-140246E 02	0.410578E+02	-0.315929E 02	0.1428718-01
0.17CE 00	0.138753F 02	0.408444E=02	-0.320243E 02	0.145042F-01
0.180E DO	0.137299E 02	0.406366E+02	-0.313523E 02	0.1392561-01
0 -190E 00	0.135848E 02	0.404292F-02	-0.3144 TIE 02	0.1393328-01
0.200E 00	0.134424F 02	0.402256E-02	-0.310109E 02	0.134858F-01
0.210E 00	0-133010E 02	0-400235E=02	-0.309496E 02	0.133649F-01
0.550E 00	0-131618F 02	0.398245E-02	-0.306298E 02	0.130246F-01
0.230E 00	0-130238E 02	0.396273E+02	-0.305070E 02	0.1295638-01
0.240E 00	0.128877E 02	0.394328E=02	-0.302402 E 02	0.125701E-01
0 -250E 00	0-127529E 02	0-392402F=02	-0-300897E 02	0.123843F-01
0.560E 00	0.126199E 02	0.3905 00E -02	-0.298561E 02	0.121333F-01
0.270F 00	0-124882F 02	0.388617E-02	-0.296903E 02	0.119410F-01
0.280£ 00	0.1235818 02	0.386758E-02	-0.294790F 02	0.117151E-01
D.290E 00	0.122293E 02	0.384917E-02	-0-293085 E 02	0.115246E-01
0 -300E 00	0-151050E 05	0.383098E+02	-0.291087F 02	0.113141F-01
0.310E 00	0-119761F 02	0-381298E - 02	-0.289417F 02	0.111319F-01
0.320E 00	0-118219E 05	0.379518E -02	-0.287497F 02	0.109332F-01
0.330F 00	0.117284E 02	0.377757E -02	-0 .285835E 02	0.107568E-01
0.340E 00	0.116065F 02	0.376015F+02	-0.294041E 02	0.105731E-01
0.350E 00	0.114859F 02	0.374291E=02	-0.282374E 02	0.104012F-01
0.360E 00	0-113666E 02	0-372586E+02	-0.280647E 02	0.102274E-01
0.370E 00	0.112485E 02	0.370898F-02	-0.279056E 02	0.100658E-01
0.380E 00	0.111316F 02	0.369227F 02	-0.277355E 02	0.989846F-02
0.390F 00	0.110159E 02	0.367574F+02	-0.275813E 02	0.9744735-02
0.40DE 00	0.1090158 02	0.365938E - 02	-0.274188E 02	0.9597198-02

Table C-IV. Fill-Time Prediction - 49% Open, 7 psi - Both Rooms

AREA1	VOLUME	TIME	PRESSURE	9ENSITY
0.975E 02	0-100000E 05	0.100000E=01	0.147000E 02	0.398000F-02
TIME	PRESSURE	DEN3	U2	UPT
SECONDS	PS J	UE-S2/F4	FP 5	PS1
0.100E + 01	0.149814E 01	0.252546E ← 02	0.856177F 03 0.845264F 03 0.770724F 03 0.690515F 03 0.614958F 03 0.543853F 03 0.476888F 03 0.413643F 03 0.353590F 03 0.296054F 03 0.240129F 03 0.126019F 03 0.531784F 02 -0.554441F 02	0.602930E 01
0.200F + 01	0.310112E 01	0.272989E ← 02		0.615380E 01
0.300E + 01	0.466779E 01	0.292929E ← 02		0.547305F 01
0.400E + 01	0.615616E 01	0.311904E ← 02		0.465600E 01
0.500E + 01	0.755140E 01	0.329720E ← 02		0.390172E 01
0.500E + 01	0.884164F 01	0.346221E ← 02		0.319607F 01
0.700E + 01	0.100176E 02	0.361286E ← 02		0.255842F 01
0.800E + 01	0.110721E 02	0.374815E ← 02		0.199302F 01
0.900E + 01	0.119994F 02	0.386731E ← 02		0.150044E 01
0.100E 00	0.127944E 02	0.396963E ← 02		0.107877E 01
0.110E 00	0.134518E 02	0.405438E ← 02		0.724731F 00
0.120E 00	0.134518E 02	0.412057E ← 02		0.434687F 00
0.130E 00	0.139645E 02	0.416638E ← 02		0.205631F 00
0.140E 00	0.144695E 02	0.415931E ← 02		0.369400E-01
0.150E 00	0.142842E 02	0.415931E ← 02		0.619599E-01
0.150E 00	0.141171E 02	0.413533E ← 02		0.505944F-01
0.170E 00	0.139605E 02	0.411285E + 02	-0.559423E 02	0.447831E-01
0.180E 00	0.138097E 02	0.409121E + 02	-0.541271E 02	0.417051E-01
0.190E 00	0.136625E 02	0.407008E + 02	-0.531243E 02	0.399675E-01
0.200E 00	0.135178F 02	0.404932E + 02	-0.524942E 02	0.389263E-01
0.210E 00	0.133751E 02	0.402884E + 02	-0.520231E 02	0.379400E-01

Table C-V. Fill-Time Prediction - 49% Open, 10 psi - Front Room

AREA1	VOLUME	TIME	PRESSURE	DENSITY
0.975E 02	0-600000F 04	0.100000E=01	0 -147000 F 02	0.471000F-02
TIME	PRESSURE PSI	DEN 3 UE-52/F4	U2 FPS	PSI
0.100F-01	0.274285E 01	0.26R195E = 02	0.940010 F 03	0.705908E 01
0.200F-01	0.586236E 01	0.306660F = 02	0.909200 F 03	0.747288F 01
0.300E-01	0.936816E 01	0.348252F = 02	0.874071 F 03	0.775788F 01
0.400F ←01	0.126546E 02	0.387252E ← 02	0.732442E 03	0.610367E 01
0.500E ←01	0.155892E 02	0.422151E ← 02	0.598162E 03	0.445055F 01
0.600E ←01	0.180983E 02	0.452055E ← 02	0.476574E 03	0.304525F 01
0.700E-01	0.201315F 02	0.476340F+02	0.355627F 03	0.189726E 01
0.800F-01	0.216480F 02	0.494492F+02	0.261749F 03	0.101542F 01
0.900E-01	0.225885F 02	0.505774E+02	0.157838F 03	0.380495F 00
0.100E 00	0.223672E 02	0.502772E+02	-0.365610F 02	0.234679F-01
0.110F 00	0.220806E 02	0.498884E+02	-0.476926E 02	0.395149F-01
0.120E 00	0.218190E 02	0.495337F-02	-0.438491F 02	0.332388F-01
0.130F 00	0.215562F 02	0.491772E+02	-0.443750E 02	0.33798UF-01
0.140E 00	0.212985E 02	0.488276E+02	-0.438386F 02	0.327512F-01
0.150E 00	0.210439F 02	0.484823E+02	-0.436056E 02	0.321738F-01
0.160E 00	0.207929E 02	0.481418E = 02	-0.432926F 02	0.314902F-01
0.170E 00	0.205453E 02	0.478060F + 02	-0.430078F 02	0.308599F-01
0.180E 00	0.203011E 02	0.474748E = 02	-0.427233F 02	0.302413E-01
0.190E 00	0.200601F 02	0.471479E+02	-0.424474F 02	0.295458F-01
0.200E 00	0.198223E 02	0.468254E+02	-0.421733F 02	0.290634F-01
0.210E 00	0.195377E 02	0.465071E+02	-0.419039F 02	0.284977F-01
0.220E 00	0-193561E 02	0.461930E = 02	-0.416418E 02	0.279516E-01
0.230E 00	0-191275F 02	0.458829E = 02	-0.413850E 02	0.274220E-01

Table C-VI. Fill-Time Prediction - 49% Open, 10 psi - Both Rooms

AREA1	VOLUME	TIME	PRESSURE	DENSITY
0.975F 02	0.100000E 05	0.100000E ← 01	0.147000E 02	0.47100UF-02
TIME	PRESSURE	DEN 3	U2	UPT
SECONDS	PSI	UE-52/F4	FPS	PS I
0.100F ÷01 0.200F ÷01 0.300F ÷01 0.400F ÷01 0.500F ÷01 0.500F ÷01 0.700F ÷01	0.164571E 01 0.342752E 01 0.534777E 01 0.740693E 01 0.943408E 01 0.113518E 02 0.131389E 02	0.254117E ← 02 0.276427E ← 02 0.299899E ← 02 0.324485E ← 02 0.348593E ← 02 0.371449E ← 02 0.392795E ← 02	0.940010E 03 0.92062bE 03 0.899602F 03 0.876880E 03 0.901844E 03 0.714025E 03	0.706908F 01 0.731451F 01 0.751493F 01 0.767762F 01 0.688426F 01 0.581192F 01
0.800E - 01	0.147788E 02	0.412423E ÷ 02	0.553717F 03	0.387052F 01
0.900E - 01	0.162583E 02	0.430170E ÷ 02	0.4805 P7E 03	0.303734E 01
0.100E 00	0.175673E 02	0.445905E ← 02	0.411460F 03	0.230566F 01
0.110E 00	0.186975E 02	0.459518E ÷ 02	0.345610F 03	0.167556F 01
0.120E 00	0.196409E 02	0.470905E ← 02	0.282052F 03	0.114374F 01
0.130E 00	0.203875E 02	0.479936E ÷ 02	0.2192 P6F 03	0.705240F 00
0.140F 00	0.209204E 02	0.486394E←02	0.154434E 03	0.355197F 00
0.150E 00	0.211913F 02	0.489684E←02	0.778196E 02	0.911663F-01
0.160F 00	0.209523E 02	0.486423E←02	-0.586293E 02	0.796936F-01
0.170E 00	0.207092E 02	0.483107E←02	-0.702788E 02	0.829947F-01
0.180F 00	0.204657E 02	0.479785E←02	-0.708900E 02	0.835613F-01
0.190E 00	0.202236E 02	0.476482E←02	-0.709879E 02	0.835136F-01
0.200E 00	0.199837E 02	0.473209E←02	-0.708214F 02	0.845522E-01
0.210E 00	0.197465E 02	0.469972F ←02	-0.705180E 02	0.812877F-01
0.220F 00	0.195121E 02	C.466774E ←02	-0.701468E 02	0.798883F-01
0.230F 00	0.192806E 02	0.463616E ←02	-0.697441E 02	0.784408F-01
0.240F 00	0.190521E 02	0.460497F ←02	-0.693270E 02	0.769856F-01
0.250E 00	0.188264E 02	0.457419F ←02	-0.589056E 02	0.755456E-01
0.260E 00	0.186036E 02	0.454379E ←02	-0.584872E 02	0.741363F-01
0.270F 00	0.183836E 02	0.451378 F → 02	-0.580746F 02	0.727631F-01
0.280E 00	0.181664E 02	0.448414 F → 02	-0.676670F 02	0.714236F-01
0.290E 00	0.179519E 02	0.4454 87 F → 02	-0.572654F 02	0.701188F-01
0.300E 00	0.177399E 02	0.442596 F → 02	-0.668721F 02	0.668527F-01
0.310F 00	0.175306E 02	0.439740 F → 02	-0.664869F 02	0.675236E-01
0.320E 00	0.173238E 02	0.436918 F → 02	-0.661075F 02	0.664261F-01
0.330E 00	0.171195E 02	0.434130 F → 02	-0.557344F 02	0.652603E-01
0.340F 00	0.169176E 02	0.431376F+02	-0.653697E 02	0.641296F-01
0.350F 00	0.167180E 02	0.428653E+02	-0.550125E 02	0.630310E-01
0.360F 00	0.165208E 02	0.425962E+02	-0.646605E 02	0.619599F-01
0.370F 00	0.163259E 02	0.423303E+02	-0.643147E 02	0.669169F-01
0.380F 00	0.161332E 02	0.420674F+02	-0.639767E 02	0.599045E-01
0.390E 00	0.159426E 02	0.418074E+02	-0.636452E 02	0.589197E-01
0.400E 00	0.157543E 02	0.415504E+02	-0.533186E 02	0.579588F-01

Table C-VII, Fill-Time Prediction - 20% Open, 3 psi - Front Room

AREA1	VOLUME	TIME	PRESSURE	DENSITY
0.400E 02	0.600000F 04	0.100000E-01	0.147000F 02	0.302000E-02
TIME	PRESSURE	DFN3	U2	UP1
SECONDS	PSI	UF-52/F4	FPS	PS I
0.100E→01 0.200E→01 0.300E→01 0.400E→01 0.500E→01 0.600E→01 0.700E→01 0.900E→01 0.100E 00 0.110E 00 0.120E 00 0.120E 00 0.140E 00 0.150E 00 0.160E 00 0.170E 00 0.170E 00 0.180E 00 0.190E 00 0.210E 00	0.614545E 00 0.120016F 01 0.175521E 01 0.227833F 01 0.227833F 01 0.322443F 01 0.364565E 01 0.403135E 01 0.469359E 01 0.469359E 01 0.496876E 01 0.520549E 01 0.556740F 01 0.556740F 01 0.571975E 01 0.566602E 01 0.566602E 01 0.556896E 01 0.556896E 01 0.556288E 01	0.241758F ≈ 02 0.250109E ≈ 02 0.258030F ≈ 02 0.265501E ≈ 02 0.272505E ≈ 02 0.279028E ≈ 02 0.285056E ≈ 02 0.295590E ≈ 02 0.300075E ≈ 02 0.300075E ≈ 02 0.304024E ≈ 02 0.312488E ≈ 02 0.314819E ≈ 02 0.313991E ≈ 02 0.312495E ≈ 02 0.312495E ≈ 02 0.311783E ≈ 02 0.311084E ≈ 02 0.311084E ≈ 02	0.565007F 03 0.523266F 03 0.483193F 03 0.483193F 03 0.444696F 03 0.407672F 03 0.372005F 03 0.37571F 03 0.37571F 03 0.304228F 03 0.271820F 03 0.271820F 03 0.240163F 03 0.178156F 03 0.178156F 03 0.115198F 03 0.115198F 03 0.115198F 03 0.395238F 02 0.385238F 02 -0.366321F 02 -0.366321F 02 -0.350441F 02 -0.341845F 02 -0.336760F 02	0.257714F 01 0.227604E 01 0.199351F 01 0.173040E 01 0.148713F 01 0.125373E 01 0.105994E 01 0.875295E 00 0.709206E 00 0.560995E 00 0.429969F 00 0.315471F 00 0.216936E 00 0.315471F 00 0.216936E 00 0.133972E 00 0.665019F-C1 0.151232E-01 0.170607F-01 0.125623E-01 0.125623E-01 0.125623E-01
0.220F 00	0.543273E 01	0.310394E ← 02	-0.333227F 02	0.119784F-01
0.230E 00	0.538844E 01	0.309711E ← 02	-0.330371F 02	0.117481E-01
0.240E 00	0.534460E 01	0.309035 F ← 02	-0.327809F 02	0.115414F-01

Table C-VIII. Fill-Time Prediction - 20% Open, 3 psi - Both Rooms

AREA1	VOLUME	TIME	PRESSURE	DENSITY
0.400E 02	0-100000F 05	0.100000E-01	0-1470COE 02	0.302000E-02
TIME	PRESSURE	DEN 3	U 2	UPT
	PST	UE -52/F4	FPS	PSI
0.100E ←01 0.200E −01 0.300E −01 0.400E −01 0.500E −01 0.500E −01 0.600E ←01 0.700E →01 0.900E +01 0.100E 00 0.110E 00 0.12GE 00 0.12GE 00 0.140E 00 0.150E 00 0.150E 00 0.160E 00 0.170E 00 0.180E 00 0.190E 00 0.200F 00 0.210F 00 0.220F 00 0.230F 00 0.250F 00	PSI 0.368727E 00 0.726440E 00 0.107276E 01 0.140735E 01 0.172992F 01 0.204018E 01 0.233790E 01 0.262286E 01 0.289488E 01 0.315377E 01 0.339936E 01 0.363152E 01 0.365008E 01 0.405490E 01 0.424583E 01 0.442268E 01 0.442268E 01 0.458527E 01 0.458527E 01 0.473335E 01 0.486663E 01 0.498473E 01 0.508712E 01 0.517302E 01 0.524122E 01 0.528934E 01 0.528934E 01 0.52897E 01 0.524788E 01 0.521229E 01 0.521229E 01 0.517511E 01	UE-52/F4 0.238255E→02 0.243356F⇒02 0.248298E⇔02 0.253077E⇔02 0.257687E⇔02 0.262124E⇔02 0.266385E⇔02 0.270467E⇔02 0.274365E⇔02 0.274365E⇔02 0.278078F⇔02 0.288078E⇔02 0.288078E⇔02 0.298661F⇔02 0.2996318E⇔02 0.2996318E⇔02 0.300796E⇒02 0.300796E⇒02 0.300796E⇒02 0.307145E⇔02 0.308131E⇔02 0.308828E⇔02 0.308167E⇔02 0.308167E⇔02 0.308167E⇔02 0.308167E⇔02 0.308167E⇔02 0.307043E⇔02	FP5 0.565007E 03 0.538911E 03 0.513452E 03 0.488612E 03 0.464366E 03 0.464366E 03 0.440690E 03 0.417558E 03 0.394942E 03 0.372812E 03 0.351136E 03 0.329879E 03 0.329879E 03 0.288472E 03 0.288472E 03 0.288472E 03 0.288472E 03 0.288472E 03 0.199115F 03 0.159396E 03 0.159396E 03 0.159396E 03 0.129104F 03 0.129104F 03 0.129104F 03 0.129104F 03 0.157990E 03 0.855113E 02 0.602316E 02 0.256288E 02 -0.361179E 02 -0.447118E 02 -0.447118E 02 -0.447718E 02	PSI 0.257714F 01 0.238643F 01 0.220289F 01 0.202679E 01 0.185828E 01 0.169750E 01 0.154447F 01 0.139921F 01 0.126165E 01 0.113173F 01 0.100933E 01 0.894322E 00 0.786547F 00 0.592058E 00 0.786547F 00 0.221209E 00 0.350510F 00 0.221209E 00 0.165763F 00 0.116409E 00 0.732167E-01 0.364145E-01 0.660436E-02 0.139803E-01 0.184103E-01 0.213411E-01 0.2333337E-01
0.300F 00	0.513690E 01	0.306453E ←02	-0.481867E 02	0.246874F-01
0.310E 00	0.509805E 01	0.305853E ←02	-0.491065E 02	0.255669E-01
0.320E 00	0.505881E 01	0.305246E ←02	-0.496998E 02	0.261557F-01
0.330E 00	0.501936E 01	0.304637E ←02	-0.500588E 02	0.264813E-01
0.340F 00 0.350F 00 0.360F 00 0.370F 00 0.380F 00 0.390F 00 0.400F 00	0.497984E 01 0.494036E 01 0.490099E 01 0.486177E 01 0.482276E 01 0.478399E 01 0.474547E 01 0.470722E 01	0.304026E*02 0.303417E*02 0.302808E*02 0.302202E*02 0.301600E*02 0.301001E*02 0.300406E*02 0.299815E*02	-0.502455 E 02 -0.503051 E 02 -0.502690 E 02 -0.501617 E 02 -0.500006 E 02 -0.497993 E 02 -0.495685 E 02 -0.493156 E 02	0.266254E-01 0.266349E-01 0.265434F-01 0.263776E-01 0.261565E-01 0.258951E-01 0.256054E-01 0.252954E-01

Table C-IX. Fill-Time Prediction - 20% Open, 7 psi - Front Room

AREA1	VOLUME	TIME	PRESSURE	DENSITY
0.400F 02	0.600000E 04	0.100000E=01	0.147000 E 02	0.398U00F-02
TIME	PRESSURE	DEN 3	U2	DPT
SECONDS	PSI	UE - S 2 / F 4	FPS	PS1
SECONDS 0.100E ←01 0.200E ←01 0.300E ←01 0.400E ←01 0.500E ←01 0.600E −01 0.700E ←01 0.900E ←01 0.100E 00 0.120E 00 0.120E 00 0.140E 00 0.140E 00 0.150E 00 0.160E 00 0.160E 00 0.180E 00 0.190E 00 0.200E 00	PSI 0.102437E 01 0.209750E 01 0.319028E 01 0.424990E 01 0.527063E 01 0.624751E 01 0.717630E 01 0.887593E 01 0.887593E 01 0.964126E 01 0.103473E 02 0.109923E 02 0.115746E 02 0.120925E 02 0.125441E 02 0.129272E 02 0.132383E 02 0.134710F 02 0.136108E 02 0.135366E 02			
0.210F 00 0.220E 00 0.230F 00 0.240E 00 0.250E 00 0.260E 00 0.270F 00 0.280E 00 0.290E 00 0.310E 00 0.310E 00 0.320E 00 0.330E 00 0.340E 00 0.350E 00	0.134316E 02 0.133139E 02 0.131895E 02 0.130612E 02 0.129311E 02 0.128000E 02 0.126688E 02 0.125380E 02 0.124079E 02 0.12787E 02 0.121506E 02 0.120237E 02 0.118979E 02 0.117734E 02 0.116502E 02	0.405479E+02 0.403783E+02 0.401989E+02 0.400141E+02 0.398265F+02 0.396376E+02 0.396485E+02 0.39600E+02 0.390725E+02 0.388863E+02 0.387016E+02 0.385186E+02 0.383373E+02 0.381579E+02 0.379802E+02	-0.559486 E 02 -0.630190 E 02 -0.669697 E 02 -0.6693225 E 02 -0.707309 E 02 -0.715398 E 02 -0.719515 E 02 -0.720957 E 02 -0.718900 E 02 -0.713265 E 02 -0.713265 E 02 -0.709748 E 02 -0.705983 E 02 -0.702048 E 02	0.440641F-01 0.555713E-01 0.625724E-01 0.625724F-01 0.667249F-01 0.703795E-01 0.703795E-01 0.703781E-01 0.703781E-01 0.697209F-01 0.689058E-01 0.679667F-01 0.659861E-01 0.649510E-01
0.360E 00	0.115282F 02	0.378044E+02	-0.698014E 02	0.639117F-01
0.370E 00	0.114075F 02	0.376305E+02	-0.593944E 02	0.628600F-01
0.380E 00	0.112880F 02	0.374583E+02	-0.589854E 02	0.618586F-01

Table C-X. Fill-Time Prediction - 20% Open, 7 psi - Both Rooms

AREAL	VOLUME	TIME	PRES SURE	DENS ITY
0.400E 02	0-100000E 05	0.100000F-01	0.147000E 02	0.398000E-02
TIME	PRESSURF	DEN3	U2	DPT
SECONDS	PSI	UE-52/F4	FP S	PS I
0-100E-01	0.614623F 00	0.241019E+02	0.856177E 03	0.602930F 01
0.200E-01 0.300E-01	0-124638E 01 0-189512E 01	0.249184 F ► 02 0.257491 F ► 02	0.856534E 03 0.846604E 03	0.607084F 01 0.610464E 01
U.400F-01	0.254772E 01	0.265810E-02	0.824111E 03	0.595169E 01
0.500E+01	0.318702F 01	0.273974E+02	0.786639E 03	0.557424F 01
0.600F-01	0.381164E 01	0-281962E+02	0.750066E 03	0.520144F 01
0.700E-01	0.442035E 01	0.289760E-02	0.714386E 03	0.463547F 01
0.800E-01	0.501200E 01	0.297351E+02	0.579589F 03	0.447818F 01
0.900F-01	0.558559F 01	0.304722F-02	0 .645653E 03	0.4131138 01
0.100E 00	0-614018E 01	0-311860E+02	0.512575F 03	0.379559F 01
0.110E 00	0.667496E 01	0.318753E-02	0.580315F 03	0.347261F 01
0.150E 00	0.718919E 01	0.325392E+02	0.54885UE 03	0.315296F 01
0.130E 00	0.768222F 01	0.331767E-02	0.518146F 03	0.285725F 01
0.140E 00	0.815345F 01	0.337869E -02	0-488166E 03	0.259587E 01
0 -1 50E 00	0.860237E 01	0.343691E-02	0.458870F 03	0.231907F 01
0.160F 00	0.902851E 01	0.349226E+02	0.430210F 03	0.205695F 01
0.170E 00	0-943143E 01	0.354467E-02	0.402133E 03	0.162949F 01
0.180E 00	0-981072E 01	0.359408E = 02	0.3745 PO E 03	0.160656F 01
0 -1 90E 00	0.101660F 02	0.364043E+02	0.347483F 03	0.139804F 01
0.200E 00 0.210E 00	0-104969E 02 0-108029E 02	0.368366E + 02 0.372370E + 02	0.320762E 03	0.120360F 01
0.210E 00	0.110836E 02	0.376048E+02	0.294325E 03 0.268057F 03	0.102299F 01 0.855889F 00
0.230E 00	0-113385E 02	0.379392E+02	0.241814E 03	0.701974E 00
0.240E 00	0.115668E 02	0.382392E - 02	0.215405E 03	0.560947E 00
0.250E 00	0.117677E 02	0.385035E + 02	0.189562E 03	0.432538F 00
0 .260F 00	0-119397F 02	0.387301E-02	0.150873E 03	0.315555E 00
0.270F 00	0-120809E 02	0.389165E+02	0.131636E 03	0.212932F 00
0.280F 00	0-121878E 02	0.390577E-02	0.993832E 02	0.121831F 00
0.290E 00	0.122520E 02	C.391426E+02	0.595800 F 02	0.439103E-01
0.300E 00	0-122120E 02	0.390846E+02	-0.371121F 02	0.185908E-01
0.310F 00	0.121488E 02	0.389928E+02	-0.589735F 02	0.470176E-01
0.320E 00	0-120732F 02	0-388830E=02	-0.707430E 02	0.673852E-01
0.330E 00	0-119894F 02	0.387613E ► 02	-0.788291E 02	0.833248E-01
G.340F 00	0-118995E 02	0.386307E+02	-0.848516F 02	0.961378F-01
0.350E 00 0.360E 00	0.118051F 02	0.384936 E → 02	-0.895209E 02	0.106555E 00
0.360E 00	0.117072E 02	0.383514E *02 0.382053E *02	-0.932257F 02	0.115063F 00
0.380E 00	0.116066E 02 0.115039E 02	0.380562E÷02	-0.962069E 02 -0.986234E 02	0.122013F 00
0.390E 00	0.113996E 02	0.379048F=02	-0.100589F 03	0.127666E 00 0.132231F 00
0.4005 00	0.112942E 02	0.377516E ► 02	-0.190389F 03	0.135875F 00
0.410E 00	0.111878E 02	0.375971E+02	-0.103480F 03	0.138734F 00
			00.077101 03	300033777 170

Table C-XI. Fill-Time Prediction - 20% Open, 10 psi - Front Room

AREA1	VOLUME	TIME	PRESSURE	DENSITY
0.400E 02	0.600000E 04	0.100000E=01	0.147000E 02	0.471000F-02
TIME	PRESSURE	DEN 3	U 2	UPT
SECONDS	PS I	UE-S2/F4	E P 5	PS1
0.100E→01 0.200E→01 0.300E→01 0.400E→01 0.500E→01 0.500E→01 0.600E→01 0.700E→01 0.800E→01 0.900E→01 0.100E 00 0.110E 00 0.120E 00 0.120E 00 0.140E 00 0.150E 00 0.150E 00 0.160E 00 0.170E 00 0.160E 00 0.170E 00 0.20E 00 0.210E 00 0.220E 00 0.220E 00 0.230E 00 0.240E 00 0.250E 00 0.250E 00 0.260E 00 0.270E 00 0.260E 00 0.270E 00 0.270E 00 0.280E 00 0.290E 00 0.310E 00 0.310E 00 0.310E 00 0.320E 00 0.330E 00 0.330E 00 0.330E 00	0.112527E 01 0.231370E 01 0.356594E 01 0.488221E 01 0.626226E 01 0.765818E 01 0.900574E 01 0.102970E 02 0.115252E 02 0.126845E 02 0.137701E 02 0.147781E 02 0.157050E 02 0.165479E 02 0.177014E 02 0.177714E 02 0.185462E 02 0.194000E 02 0.196591E 02 0.196591E 02 0.197529E 02 0.197529E 02 0.197529E 02 0.197529E 02 0.198598E 02 0.198080E 02 0.188080E 02 0.188080E 02 0.188080E 02 0.185998E 02 0.1879713E 02 0.1879713E 02 0.177630E 02 0.177630E 02 0.175559E 02 0.173504E 02 0.171467E 02	0.247439E → 02 0.262433E → 02 0.277971E → 02 0.294038E → 02 0.310613E ← 02 0.327250E → 02 0.343346E → 02 0.358802E → 02 0.373534E ← 02 0.387469E → 02 0.400545E → 02 0.423923E → 02 0.423923E → 02 0.434139E → 02 0.443325E ← 02 0.458452E → 02 0.468892E → 02 0.468892E → 02 0.472070E → 02 0.468892E → 02 0.473223E → 02 0.47323E → 02 0.46883E → 02	0.940010E 03 0.926049E 03 0.911281E 03 0.895687E 03 0.879250E 03 0.840609E 03 0.776637E 03 0.656391E 03 0.599983E 03 0.545899E 03 0.493976E 03 0.395782E 03 0.395782E 03 0.395782E 03 0.395782E 03 0.3190E 03 0.212429E 03 0.165310E 03 0.113437E 03 0.165310E 03 0.113437E 03 0.113437E 03 0.113437E 03 0.1745E 02 -0.897675E 02 -0.9897675E 02 -0.996882E 02 -0.9952442E 02 -0.959751E 02 -0.965830E 02 -0.965830E 02 -0.965870E 02 -0.965870E 02 -0.965870E 02 -0.965870E 02	0.705908F 01 0.723181F 01 0.723181F 01 0.737474E 01 0.749523F 01 0.759072E 01 0.759072F 01 0.575771F 01 0.575771F 01 0.503636F 01 0.435460F 01 0.371803F 01 0.313013E 01 0.259265F 01 0.210606F 01 0.128197F 01 0.941611F 00 0.646673F 00 0.395632F 00 0.187775E 00 0.395632F 00 0.187775E 00 0.245757F-01 0.819996E-01 0.104424E 00 0.119268E 00 0.129255F 00 0.135907E 00 0.143180E 00 0.143987E 00 0.143987F 00 0.143987F 00 0.143987F 00 0.143987F 00 0.143987F 00 0.143954F 00 0.143954F 00 0.14397F 00 0.143954F 00 0.143954F 00 0.143955F 00
0.350F 00	0.169449E 02	0.434654E←02	-0.959872E 02	0.138596F 00
0.360E 00	0.167450E 02	0.431909E←02	-0.956427E 02	0.136754E 00
0.370E 00	0.165472E 02	0.429191F←02	-0.952636E 02	0.134826F 00
0.380E 00	0.163514E 02	0.426502E←02	-0.948573E 02	0.132647F 00
0.390E 00	0.161577E 02	0.423842E←02	-0.944319E 02	0.130845F 00
0.400F 00	0.159661E 02	0.421210E←02	-0.939930E 02	0.128833F 00

Table C-XII. Fill-Time Prediction - 20% Open, 10 psi - Both Rooms

AREA1 0.400E 02	VOLUME 0-100000E 05	TIME 0.100000E=01	PRESSURE 0 -147000 E 02	DENSITY 0.471000E-02
TIME SECONDS	PRESSURE PS I	DEN 3 UE-52/F4	U 2 FP S	UPT PSI
		UE-52/F4 0.241663E→02 0.259569E→02 0.259569E→02 0.268805E→02 0.278223E→02 0.287818E→02 0.297586E→02 0.307518E→02 0.317278E→02 0.326815E←02 0.336106E→02 0.345131E→02 0.345131E→02 0.345131E→02 0.362306E→02 0.378208E→02 0.378208E→02 0.399439E→02 0.495774E→02 0.405774E→02 0.411720E→02 0.422412E→02 0.422412E→02 0.435288E→02 0.435288E→02 0.435288E→02 0.435288E→02 0.435288E→02 0.438680E→02 0.441585E→02	FPS 0.9400 10 F 03 0.930738 F 03 0.921151 F 03 0.911245 E 03 0.91014 E 03 0.979566 F 03 0.868343 E 03 0.828686 F 03 0.787819 E 03 0.747956 E 03 0.747956 E 03 0.747956 E 03 0.571189 E 03 0.571189 E 03 0.563076 E 03 0.563076 E 03 0.528775 E 03 0.495263 E 03 0.398835 E 03 0.357747 E 03 0.398835 E 03 0.357747 E 03 0.37142 E 03 0.37142 E 03 0.37142 E 03 0.37639 E 03 0.276399 E 03 0.276399 E 03 0.276399 E 03 0.214920 F 03 0.214920 F 03	PSI 0.706908F 01 0.715620F 01 0.723517E 01 0.730538F 01 0.736622F 01 0.741710F 01 0.745747E 01 0.749679F 01 0.702040F 01 0.652202F 01 0.652202F 01 0.603261E 01 0.555502E 01 0.509168F 01 0.421519E 01 0.341427E 01 0.304417F 01 0.249483F 01 0.236638E 01 0.236638E 01 0.177173F 01 0.150501F 01 0.125821F 01 0.125821F 01 0.103087F 01 0.822555F 00 0.632834E 00 0.461373E 00
0.300F 00 0.310F 00 0.320F 00	0-172152E 02 0-173582E 02 0-174401E 02 0-173776E 02	0.443965F+02 0.445752E+02 0.446778E+02 0.445909E+02	0.149078E 03 0.111446E 03 0.638177E 02 -0.487845E 02	0.308000F 00 0.172667F 00 0.568660E-01 0.368273F-01
0.330F 00 0.340E 00 0.350F 00 0.360F 00 0.370F 00	0-172840E 02 0-171724E 02 0-170484E 02 0-169149E 02 0-167742E 02	0.444607E ← 02 0.443057E ← 02 0.441332E ← 02 0.439478F ← 02 0.437522E ← 02	-0.733882E 02 -0.878877E 02 -0.982904E 02 -0.106315E 03 -0.112747E 03	0.829166F-01 0.119282E 00 0.147129F 00 0.171173F 00
0.380E 00 0.390E 00 0.400E 00	0.166278E 02 0.164768E 02 0.163220E 02	0.437522E ← 02 0.435486 F ← 02 0.433386 E ← 02 0.431236 F ← 02	-0.112747E 03 -0.118025E 03 -0.122421E 03 -0.126121E 03	0.191426E 00 0.209574E 00 0.223115E 00 0.235446E 00

APPENDIX D

PREDICTED TRANSLATION PARAMETERS FOR EXPERIMENTAL MODEL

Table D-I. Predicted Translation Parameters - Prone at Entrance - 49% Open, 3.6 psi

TWO-ROOM MODEL-V/A=5.1FT

SHOT 24-75-158, 3-6PSI

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SEC	ACCEL = FT/SEC/SEC
0,0005	0,0001	0.3465	692,9416
0,0010	0,0003	0 6415	590,0994
0.0015	0,0007	0.8889	494,7132
0.0020	0.0012	1,0930	408,2619
0,0025	0.0018	1 2584	330,7273
0.0030	0,0025	1 3896	262,5059
0.0035	0,0032	1,4912	203,1498
0.0040	0,0039	1.5672	151,9977
0,0045	0.0047	1.6216	108,8187
0,0050	0,0056	1 6582	73,1846
0,0055	0.0064	1 6805	44.5978
0.0060	0,0072	1.6918	22,6858
0.0065	0.0081	1.6956	7.4316

TWO-ROOM MODEL-V/A=8.54FT

SHOT 24-75-158, 3.6PST

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SEC	ACCEL -FT/SEC/SEC
0,0005	0,0001	0.3465	692,9416
0,0010	0.0003	0,6618	630,6762
0,0015	0,0007	0.9474	571,0880
0,0020	0,0013	1.2045	514,3852
0.0025	0.0019	1,4349	460,7789
0.0030	0.0027	1.6402	410,4718
0,0035	0.0036	1.8219	363,4553
0.0040	0.0045	1,9817	319,5085
0,0045	0.0055	2,1212	279,0434
0,0050	0.0066	2,2420	241,6573
0,0055	0,0078	2,3457	207,3008
0.0060	0.0090	2,4336	175,9866
0,0065	0.0102	2.5074	147.4947
0,0070	0,0115	2,5683	121,8131
0,0075	0.0128	2.6178	98,9351
0.0080	0.0141	2,6570	78,4328
0,0085	0.0154	2,6872	60.5181
0,0000	0 0168	2,7097	44,9656
0.0095	0.0181	2,7256	31,7770
0,0100	0.0195	2,7360	20,7381
0,0105	0.0503	2,7419	11,8516
0.0110	0.0223	2.7446	5.3256

Table D-II. Predicted Translation Parameters - Prone at Entrance - 49% Open, 10.9 psi

TWO-ROOM MODEL-V/A=5.1FT

SHOT 24-75-159, 10.9PSI

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SEC	ACCEL = FT/SEC/SEC
0 0005 0 0010 0 0015 0 0020 0 0025	0,0002 0,0008 0,0019 0,0034 0,0053	0 8 8 1 2 8 1 8 6 5 1 0 2 8 5 4 1 1 3 4 4 8 8 4 8 3 7 8 9	1625 ₃ 5504 1696 ₂ 4279 1760 ₂ 1534 1815 ₂ 4478 1860 ₂ 1744
0.0030 0.0035 0.0040 0.0045 0.0050	0.0077 0.0105 0.0136 0.0170 0.0207	5,2208 5,9424 6,5499 7,0518	1683,9064 1443,2277 1214,9321 1003,8355
0 0 0 0 5 5 0 0 0 0 6 5 0 0 0 7 0 0 0 7 5 0 0 0 8 0	0.025 0.0245 0.0284 0.0325 0.0366 0.0408	7,4583 7,7803 8,0287 8,2141 8,3466 8,4357	813,0308 643,9319 496,8004 370,8699 264,9650 178,1326
0.0000		8.4901 ODEL-V/A=8.54FT	108.8254

SHOT 24-75-159, 10.9PSI

TIME-SEC	DISTANCE-FT	VELOCITY+FT/SEC	ACCEL:-FT/SEC/SEC
0,0005	0,0002	0.8128	1625,5504
0.0010	0,0008	1,6470	1668,3566
0.0015	0,0019	2,5013	1708,7171
0.0020	0,0033	3,3745	1746,4056
0,0025	0.0052	4.2648	1780.5826
0,0030	0.0076	5,1704	1811,2319
0,0035	0.0104	6,0893	1837,7472
0 0 0 0 4 0	n:nï37	7,0151	1851,6261
0.0045	0.0174	7,8670	1703,7149
0,0050	0,0215	8.6458	1557,6734
0.0055	0,0260	9,3533	1415,0005
0,0060	0,0309	9.9920	1277.4344
0,0065	0.0360	10,5649	1145,8081
0,0070	0.0414	11,0755	1021,1070
0,0075	0.0471	11,5274	903,7635
0,0080	0.0529	11.9245	794.3247
0,0085	0.0529 0.0590	12,2708	692,5814
0,0090	0.0652	12,5703	598,9027
0.0095	0,0715	12,8267	512,7894
0,0100	0,0780	13,0440	434,6444
0.0105	0.0846	13,2259	363,7979
0,0110	0,0912	13,3759	299,9978
0,0115	0.0979	13,4975	243,1730
0.0120	0.1047	13,5939	192,9014
0,0125	0,1115	13,6683	148.7404
0.0130	0,1184	13,7236	110,6379
0.0135	n.1253	13.7628	78.3971
0.0140	0.1321	13.7886	
-	4 2 0 2 4	10.7000	51.5729

Table D-III. Predicted Translation Parameters - Prone at Entrance - 20% Open, 3.6 psi

TWO-ROOM HODEL-V/A=12.5FT

SHOT 24-75-162, 336PSI

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SEC	ACCEL:-FT/SEC/SEC
0,0005	0,0001	0.3609	721,7786
0,0010	0.004	0 6998	677,8319
0,0015	0,0008	1.0173	635.0327
0.0050	0.0014	1.3141	593,5968
0,0025	0,0021	1.5909	553 5143
0.0030	0,0030	1.8483	514,7919
0,0035	0.0039	2,0872	477.8476
0.0040	0,0050	2.3083	442,2518
0,0045	0.0062	2,5123	408.0011
0,0050	0.0075	2,7001	375,5171
0.0055	0.0089	2,5724	344.5910
0,0060	0.0104	3 0300	315,2028
0 8 0 0 6 5	0.0120	3,1737	287,3647
0,0070	0.0136	3,3042	261,0646
0.0075	0.0153	3,4222	236 1868
0.0080	0.0170	3,5286	212,6471
0,0085	0,0188	3,6239	190,7258
0,0090	0.0206	3,709n	170.1232
0,0095	0.0225	3,7844	150 8285
0,0100	0.0244	3,8508	132,8385
0.0105	0.0263	3,9089	116,1499
0 0110	0.0283	3.9593	100,7598
0,0115	0,0303	4,0025	86,4611
0,0120	0.0323	4,0392	73,4546
0.0130	0.0364	4.1007	61.5004

Table D-III. (Cont'd) Predicted Translation Parameters - Prone at Entrance - 20% Open, 3.6 psi

TWO-ROOM MODEL-V/A=20.83FT SHOT 24-75-162, 3.6PSI

TIME=SEC	DISTANCE-FT	VELOCITY+FT/SEC	ACCEL -FT/SEC/SEC
0,0010	0,0004	0,7218	721,7786
0,0020	0.0014	1,3901	668,2803
0.0030	0.0031	2,0070	616,8991
0,0040	0.0054	2,5744	567,4144
0.0050	0.0082	3 0944	520,0415
0.0060	0.0116	3.5692	474.7648
0,0070	0.0154	3,5692 4,0010	431,7860
0,0080	0.0196	4,3923	391 3053
0.0090	0.0241	4,7452	352,9007
0,0100	0.0290	5,0621	316,9575
0,0110	0.0342	5,3452	283 0682
0.0120	0,0397	5,5968	283,0682
0,0130	0.0454	5,8190	251,6295
0,0140	0,0513	6,0141	222,2216
0.0150	0.0574	6.1839	195,0300
0,0160	0,0637	6,3305	169,8341 146,6240
0,0170	0.0701	6,4559	125.3901
0.0180	0,0766	6.5619	
0,0190	0.0832	6,6501	105,9254 88,2110
0.0200	0.0899	6,7225	72.4451
0.0210	0,0966	6,7807	
0 0220	0,1034	6 8262	58,2156
0.0230	0,1103	6,8608	45,5089
0.0240	0.1171	6.8858	34.5234
0.0250	0.1240	6.9027	25.0505 16.8943

Table D-IV. Predicted Translation Parameters - Prone at Entrance - 20% Open, 7.5 psi

TWO-ROOM MODEL-V/A-12.5FT

PREDICTED, 7.5PSI

0.0005	TIME-SEC	DISTANCE-FT	VELOCITY-FT/SEC	ACCEL:-FT/SEC/SEC
0.0015 0.0015 2.0274 1356.4211 0.0025 0.0042 3.4085 1381.1170 0.0035 0.0083 4.7145 1306.0241 0.0045 0.0136 5.8784 1163.9135 0.0055 0.0200 6.9051 1026.6481 0.0065 0.0273 7.8012 896.1694 0.0075 0.0355 8.5752 773.9370 0.0085 0.0444 9.2361 660.9580 0.0095 0.0539 9.7939 557.7972 0.0105 0.0539 9.7939 557.7972 0.0115 0.0744 10.6401 381.4223 0.0125 0.0852 10.9475 307.4206 0.0135 0.0963 11.1905 242.9363 0.0145 0.1076 11.3773 186.8307 0.0155 0.1190 11.5161 138.8110 0.0175 0.1422 11.7134 98.6430 0.0195 0.1658 11.7924 39.5224	0.0005	0.0002	0.6709	1341.8801
0.0025 0.0042 3.4085 1381.1170 0.0035 0.0083 4.7145 1306.0241 0.0045 0.0136 5.8784 1163.9135 0.0055 0.0200 6.9051 1026.6481 0.0065 0.0273 7.8012 896.1694 0.0075 0.0355 8.5752 773.9370 0.0085 0.0444 9.2361 660.9580 0.0095 0.0539 9.7939 557.7972 0.0105 0.0539 9.7939 557.7972 0.0115 0.0640 10.2587 464.7657 0.0125 0.0852 10.9475 307.4206 0.0135 0.0852 10.9475 307.4206 0.0145 0.1076 11.3773 186.8307 0.0155 0.1190 11.5161 138.8110 0.0175 0.1658 11.7134 98.6430 0.0195 0.1658 11.7924 39.5224	0.0015			
0.0035 0.0083 4.7145 1306.0241 0.0045 0.0136 5.8784 1163.9135 0.0055 0.0200 6.9051 1026.6481 0.0065 0.0273 7.8012 896.1694 0.0075 0.0355 8.5752 773.9370 0.0085 0.0444 9.2361 660.9580 0.0095 0.0539 9.7939 557.7972 0.0105 0.0640 10.2587 464.7657 0.0115 0.0744 10.6401 381.4223 0.0125 0.0852 10.9475 307.4206 0.0135 0.0963 11.1905 242.9363 0.0145 0.1076 11.3773 186.8307 0.0155 0.1190 11.5161 138.8110 0.0175 0.1422 11.7134 98.6430 0.0195 0.1658 11.7924 39.5224				
0 0045 0 0136 5 8784 1163 9135 0 0055 0 0200 6 9051 1026 6481 0 0065 0 0273 7 8012 896 1694 0 0075 0 0355 8 5752 773 9370 0 0085 0 0444 9 2361 660 9580 0 0095 0 0539 9 7939 557 7972 0 0105 0 0640 10 2587 464 7657 0 0115 0 0744 10 6401 381 4223 0 0125 0 0852 10 9475 307 4206 0 0135 0 0963 11 1905 242 9363 0 0145 0 1076 11 3773 186 8307 0 0155 0 1190 11 5161 138 8110 0 0175 0 1422 11 7134 98 6430 0 0195 0 1658 11 7924 39 5224				
0 0055 0 0200 6 9051 1026 6481 0 0065 0 0273 7 8012 896 1694 0 0075 0 0355 8 5752 773 9370 0 0085 0 0444 9 2361 660 9580 0 0095 0 0539 9 7939 557 7972 0 0105 0 0640 10 2587 464 7657 0 0115 0 0744 10 6401 381 4223 0 0125 0 0852 10 9475 307 4206 0 0135 0 0963 11 1905 242 9363 0 0145 0 1076 11 3773 186 8307 0 0155 0 1190 11 5161 138 8110 0 0175 0 1422 11 7134 98 6430 0 0195 0 1658 11 7924 39 5224				
0 0065 0 0273 7 8012 896 1694 0 0075 0 0355 8 5752 773 9370 0 0085 0 0444 9 2361 660 9580 0 0095 0 0539 9 7939 557 7972 0 0105 0 0640 10 2587 464 7657 0 0115 0 0744 10 6401 381 4223 0 0125 0 0852 10 9475 307 4206 0 0135 0 0963 11 1905 242 9363 0 0145 0 1076 11 3773 186 8307 0 0155 0 1190 11 5161 138 8110 0 0175 0 1422 11 7134 98 6430 0 0195 0 1658 11 7924 39 5224				
0 0075				
0 0085				
0 0095				
0.0105 0.0640 10.2587 464.7657 0.0115 0.0744 10.6401 381.4223 0.0125 0.0852 10.9475 307.4206 0.0135 0.0963 11.1905 242.9363 0.0145 0.1076 11.3773 186.8307 0.0155 0.1190 11.5161 138.8110 0.0175 0.1422 11.7134 98.6430 0.0195 0.1658 11.7924 39.5224				
0.0115 0.0744 10.6401 381.4223 0.0125 0.0852 10.9475 307.4206 0.0135 0.0963 11.1905 242.9363 0.0145 0.1076 11.3773 186.8307 0.0155 0.1190 11.5161 138.8110 0.0175 0.1422 11.7134 98.6430 0.0195 0.1658 11.7924 39.5224			9,7939	557,7972
0.0115 0.0744 10.6401 381.4223 0.0125 0.0852 10.9475 307.4206 0.0135 0.0963 11.1905 242.9363 0.0145 0.1076 11.3773 186.8307 0.0155 0.1190 11.5161 138.8110 0.0175 0.1422 11.7134 98.6430 0.0195 0.1658 11.7924 39.5224			10,2587	464.7657
0 0125 0 0852 10 9475 307 4206 0 0135 0 0963 11 1905 242 9363 0 0145 0 1076 11 3773 186 8307 0 0155 0 1190 11 5161 138 8110 0 0175 0 1422 11 7134 98 6430 0 0195 0 1658 11 7924 39 5224	0.0115	0.0744		
0 0135	0.0125			
0.0145 0.1076 11.3773 186.8307 0.0155 0.1190 11.5161 138.8110 0.0175 0.1422 11.7134 98.6430 0.0195 0.1658 11.7924 39.5224		0.0963		
0,0155				7
0,0175				
0.0195 0.1658 11.7924 39.5224				
				98,6430
0 0000	0.0195	n 1658	11,7924	39,5224
	0.0200	0.1716		

Table D-IV. (Cont'd) Predicted Translation Parameters - Prone at Entrance - 20% Open, 7.5 psi

TWO-ROOM MODEL-V/A=20.83FT

PREDICTED, 7.5PST

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SEC	ACCEL:-FT/SEC/SEC
0,0030	0,0060	4 0256	1341 8801
0,0040	0,0108	5,4074	1381,8066
0.0050	0.0168	6,7215	1314,0636
0 0060	0.0242	7,9482	1226.71114
0,0070	0327	9,0889	1140,7013
0,0080	n 0423	10,1454	1056,4648
0,0090	0.0529	11,1203	974.8829
0.0100	0.0645	12,0163	896,0636
0.0110	0,0769	12,8366	820,3018
0.0150	0,0901	13,5848	748,1591
0.0130	0.1041	14,2640	679,2468
0.0140	0.1186	14,8784	614.3228
0,0160	n ₂ 1495	15,9838	552,7364
0.0180	n 1823	16.8655	440,8359
0.0200	0.2168	17,5529	343.6872
0,0210	0.2344	17,8133	260,4733
0.0220	0.2524	18,0370	223,6788
0.0230	0 2705	18,2272	190,2029
0.0240	0,2888	18,3870	159,8204
0.0250	0.3073	18,5194	132,3385
0.0270	0.3445	18,7348	107,7044
0,0290	0.3821	18,8674	66,3260
0,0310	0.4199	18,9379	35,2179
0.0320	0.4389	18,9516	13,7207
0.0330	n.4578	18.9582	6.5857

Table D-V. Predicted Translation Parameters - Prone at Entrance - 20% Open, 10.9 psi

TWO-ROOM MODEL-V/A=12.5FT

SHOT 24-75-172, 10.9PS1

TIME+SEC	DISTANCE-FT	VELOCITY-FT/SEC	ACCEL:-FT/SEC/SEC	
0,0010	0,0008	1,5956	1595 6454	
0,0020	0.0032	3,2433	1647,6479	
0,0035	0.0100	5,7883	1696,7029	
0.0045	0.0167	7.5444	1756,0464	
0.0050	0,0207	8,4374	1786,1092	
0,0055	0.0251	9,3083	1741,6149	
0,0060	0,0299	10,1294	1642,3134	
0,0070	0.0409	11,6749	1545,4998	
0,0080	0,0532	13,0320	1357,1050	
0,0090	0.0668	14.2087	1176,6556	
0,0095	0.0741	14,7139	1010,3987	
0,0105	0.0892	15,6449	931,0713	
0.0115	0.1053	16,4288	783,8353	
0.0125	n 1220	17,0793	650,4862	
0,0135	n_1394	17.5101	530.8769	
0,0145	n ₂ 1572	18,037n	426,8877	
0 0155	n 1754	18,3713	334.2801	
0,0165	0.1939	18,5263	254,9788	
0,0175	n 2126	18,8151	188,7941	
0.0185	0 2315	18,9471	131,9690	
0.0195	n 2505	19,0335	86,4197	
0.0205	0.2695	19.0841	50.6739	

Table D-V. (Cont'd) Predicted Translation Parameters - Prone at Entrance - 20% Open, 10.9 psi

TWO-ROOM MODEL-V/A-20.83FT

SHOT 24-75-172, 10.9PST

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SEC	ACCEL -FT/SEC/SEC
0.0020	0,0129	3,1913 6,5005	1595.6454 1654.6274
0,0060	0.0293 0.0526	9,9069 13,3940	1703.1934 1743.5291
0,0090 0,0100 0,0110	0.0669 0.0828 0.1004	15,155n 16,7941 18,3144	1760,9783 1639,1480 1520,3317
0,0120	n 1194 n 1398	19,7191	1404 6318 1291 8596
0.0140 0.0150 0.0170	0 2 1 6 1 4 0 2 1 8 4 1	22,1931 23,2709	1182,2074 1077,7306 978,1943
0 0190	n 2326 n 2847 n 3395	25,2273 26,8154 28,0788	794,0485 631,7162
0.0230 0.0250	0 3967 0 4555	29.0566 29.7946	488,9138 368,9940
0,0290 0,0310 0,0330	035769 086388 087012	30,8647 31,1011 31,2359	267,5278 118,1675 67,4289
0.0350	0.7637 0.7950	31,2980	31.0174 8.3127
0.0370	0.8263	31.3085	2.2730

Table D-VI. Predicted Translation Parameters - Standing at Entrance - 49% Open, 3.6 psi

TWO-ROOM MODEL-V/A=5.1FT

SHOT 24-75-158, 3.6PST

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SFC	ACCEL:-FT/SEC/SEC
0,0005	0.0007	2,6652	5330,3199
0,0016	0.0026	4,9158	4501,3255
0,0015	0,0055	6,7859	3740,0757
0,0020	0.0093	8.3143	3056,9082
0.0025	0.0137	9,5396	2450,5851
0,0030	0.0187	10,5008	1922,4486
0.0035	0.0242	11,2348	1467,9110
0.0040	0.0299	11,7752	1080,7767
0.0045	n 1359	12,1543	758,3314
0,0650	0.0420	12,4020	497,1527
0.055	n n 4 8 3	12.5480	290.0891
0.0060	0.0546	12,5164	136,8077
0.0065	0.0609	12.5346	36.4193

TWO-RODM MODEL-V/A=8.54FT

SHOT 24-75-158, 3.6PS1

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SEC	ACCELFT/SEC/SEC
0.0005	0.0007	2.6652	5330.3199
0.0010	0.0026	5.0717	4813.0101
0.0015	0.0057	7.2330	4322.6217
0.0020	0.0098	9.1632	3860.3550
0.0025	0.0148	10.8770	3427.5999
0.0030	0.0206	12.3896	3025.2521
0.0035	0.0271	13.7159	2652.7347
0.3040	0.0343	14.8699	2307.8985
0.3345	0.0420	15.8664	1993.0917
0.0050	0.0501	16.7196	1706.3308
0.0055	0.0586	17.4420	1444.7934
0.3060	0.0675	18.0466	1209.1382
0.0065	0.0767	18.5452	997.3249
0.0070	0.0860	18.9496	808.6674
0.0075	0.0956	19.2710	642.7684
0.0000	0.1053	19.5191	496.2968
0.0085	0.1151	19.7045	370.7665
0.3090	0.1250	19.8364	263.9155
0.3095	0.1349	19.9244	175.8202
0.0100	0.1449	19.9768	104.8250
0.0105	0.1549	20.0023	51.0773
0.0110	0.1649	20.0103	15.9436

Table D-VII, Predicted Translation Parameters - Standing at Entrance - 49% Open, 10.9 psi

TWU-ROOM MODEL-V/A=5.1FT

SHOT 24-75-159, 10.9PSI

TIME-SEC	DISTANCE-FT	VELUCITY-FT/SEC	ACCELFT/SEC/SEC
0.7005	0.0016	6.2521	12504.2339
0.0010	0.0063	12.6991	12893.9678
0.0015	0.0143	19.3017	13205.1049
0.0020	0.0256	26.0162	13429.1540
0.0025	0.0403	32.7917	13550.9765
0.0030	0.0582	38.7997	12015.9394
0.0035	0.0789	43.8239	10048.4013
0.3340	0.1018	47.9395	8231.1460
0.3045	0.1266	51.2366	6594.2865
0.0050	0.1529	53.8138	5154.3345
0.0055	0.1803	55.7720	3916.4913
0 -0060	0.2085	57.2089	2873.8400
0.0065	0.2374	58.2159	2013.8707
0.3070	0.2667	58.8770	1322.1737
0.0075	0.2962	59.2704	786.7797
0.0080	0.3259	59.4671	393.5639

Table D-VII. (Cont'd) Predicted Translation Parameters - Standing at Entrance - 49% Open, 10.9 psi

TWO-ROOM MODEL-V/A=8.54FT

SHOT 24-75-159, 10.9PS1

TIME-SEC	DISTANCEFFT	VELOCITY-FT/SEC	ACCELFT/SEC/SEC
0.0005	0.0016	6.2521	12504.2339
0.0010	0.0063	12.5943	12684.4280
0.0015	0.0142	19.0109	12833.1373
0.3020	0.0253	25.4852	12948.6320
0.0025	0.0397	31.9982	13025.8753
0.0030	0.0573	38.5305	13064.6448
0.0035	0.0782	45.0618	13062.6561
0.3340	0.1024	51.5405	12957.2971
0.0045	0.1296	57.3764	11671.8572
0.0050	0.1596	62.5931	10433.4391
0.0055	0.1920	67.2193	9252.4989
0.0060	0.2267	71.2905	8142.3502
0.0065	0.2632	74.8441	7107.0979
0.0070	0.3014	77.9188	6149.5440
0.3375	0.3410	80.5549	5272.0821
0.0080	0.3818	82.7919	4474.0482
0.0085	0.4237	84.6685	3753.0961
0.0090	0.4664	86.2229	3108.8644
0.3095	0.5098	87.4900	2534.2037
0.0100	0.5538	88.5053	2030. 52 70
0.0105	0.5983	89.3009	1591.2250
0.3110	0.6431	89.9072	1212.5700
0.3115	0.6882	90.3528	891.2774
0.0120	0.7334	90.6648	624.0519
0.0125	0.7788	90.8683	406.9461
0.7130	0.8243	90.9872	237.8751
0.0135	0.8698	91.0450	115.4911
0.0140	0.9153	91.0533	36.6587

Table D-VIII. Predicted Translation Parameters - Standing at Entrance - 20% Open, 3.6 psi

TWO-ROOM MODEL-V/A=12.5FT

SHOT 24-75-162, 3.6PS1

DISTANCE-FT	VELOCITY-FT/SEC	ACCELFT/SEC/SEC
0.0007	2.7761	5552.1427
0.0027	5.3626	5173.1036
0.0060	7.7664	4807.4894
0.0105	9.9949	4456.9889
0.0160	12.0553	4120.9434
0.0225	13.9552	3799.6532
0.0299	15.7031	3495.8051
0.0381	17.3060	3205.8952
0.0472	18.7708	2929.6744
0.0569	20.1059	2670.0393
0.0672	21.3186	2425.5548
0.0782	22.4162	2195.0698
0.0896	23.4058	1979.1950
0.1015	24.2944	1777.2199
0.1139	25.0881	1587.3637
0.1266	25.7937	1411.3295
0.1397	26.4178	1248.0441
0.1530	26.9660	1096.5750
0.1666	27.4442	956.3215
0.1804	27.8578	827.0967
0.1945	28.2121	708.7197
0.2086	28.5126	601.0126
0.2230	28.7640	50 2 . 66 55
0.2374	28.9713	414.6352
0.2665	29.3054	334.0833
	0.0007 0.0027 0.0060 0.0105 0.0160 0.0225 0.0299 0.0381 0.0472 0.0569 0.0672 0.0782 0.0896 0.1015 0.1139 0.1266 0.1397 0.1530 0.1666 0.1804 0.1945 0.2086 0.2230 0.2374	0.0007 2.7761 0.0027 5.3626 0.0060 7.7664 0.0105 9.9949 0.0160 12.0553 0.0225 13.9552 0.0299 15.7031 0.0381 17.3060 0.0472 18.7708 0.0569 20.1059 0.0672 21.3186 0.0782 22.4162 0.0896 23.4058 0.1015 24.2944 0.1139 25.0881 0.1266 25.7937 0.1397 26.4178 0.1530 26.9660 0.1666 27.4442 0.1945 28.2121 0.2086 28.5126 0.2374 28.9713

Table D-VIII. (Cont'd) Predicted Translation Parameters - Standing at Entrance - 20% Open, 3.6 psi

TWO-ROOM MODEL-V/A=20.83FT

SHOT 24-75-162, 3.6PSI

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SEC	ACCELFT/SEC/SEC
0.0010	0.0028	5.5521	5552.1427
0.0020	0.0109	10.6112	5059.0520
0.3030	0.0238	15.2055	4594.2684
0.0040	0.0410	19.3608	4155.3062
0.3350	0.0623	23.1043	3743.4854
0.3360	0.0871	26.4618	3357.5050
0.0070	0.1150	29.4598	2997.9963
0.0080	0.1458	32.1253	2665.5398
0.0090	0.1791	34.4821	2356.8181
0.0100	0.2146	36.5547	2072.6304
0.0110	0.2521	38.3652	1810.4930
0.0120	0.2913	39.9371	1571.8797
0.0130	0.3319	41.2908	1353.7007
0.0140	0.3737	42.4468	1156.0140
0.0150	0.4167	43.4236	976.7188
0.0160	0.4605	44.2388	815.2234
0.3170	0.5051	44.9097	670.9661
0.3180	0.5503	45.4523	542.5428
0.0190	0.5959	45.8813	429.0128
0.3500	0.6420	46.2125	331.2070
0.0210	0.6883	46.4591	246.5564
0.0550	0.7349	46.6335	174.4585
0.0230	0.7815	46.7493	115.7791
0.0240	0.8283	46.8185	69.1855
0.0250	0.8752	46.8524	33.8933

Table D-IX. Predicted Translation Parameters - Standing at Entrance - 20% Open, 7.5 psi

TWO-ROOM MODEL-V/A=12.5FT PREDICTED, 7.5PSI

TIME-SEC	DISTANCEFT	VELOCITY-FT/SEC	ACCELFT/SEC/SEC
0.3005	0.0013	5-1611	10 322 . 1547
0.3015	0.0116	15.4863	10325.1793
0.0025	0.0322	25.7718	10 28 5 . 56 55
0.0035	0.0628	35.2576	9485.7489
0.0045	0.1021	43.4717	8214.1646
0.3055	0.1491	50.4974	7025.6258
0.0065	0.2026	56.4307	5933.3465
0.3075	0.2615	61.3750	4944.2967
0.0085	0.3249	65.4361	4061.0947
0.0095	0.3920	68.7187	3282.6470
0.0105	0.4620	71.3235	2604.7301
0.0115	0.5343	73.3453	2021.8314
0.3125	0.6084	74.8702	1524.9235
0.0135	C.6838	75.9829	1112.7185
0.0145	0.7602	7.6.7563	773.3276
0.0155	0.8372	77.2575	501.2694
0.0175	0.9923	77.8444	29 3 . 43 96
0.0195	1.1481	77.9380	46.7841
0.0200	1.1871	77.9438	11.6747

Table D-IX. (Cont'd) Predicted Translation Parameters - Standing at Entrance - 20% Open, 7.5 psi

TWO-ROOM MODEL-V/A=20.83FT

PREDICTED, 7.5PSI

DISTANCEFT	VELOCITY-FT/SEC	ACCELFT/SEC/SEC
0.0464	30.9665	10 322 . 1547
0.0824	40.9150	9948.5269
0.1279	50.1378	9222.8344
0.1822	58.5149	8377.0952
0.2445	66.0882	7573.2521
0.3140	72.8995	6811.3646
0.3900	78.9978	6098.3032
0.4717	84.4267	5428.8850
0.5585	89.2342	4807.4353
0.6499	93.4678	4233.6382
0.7452	97.1726	3704.8419
0.8440	100.3946	3221.9322
1.0503	105.9521	2778.7861
1.2663	109.9715	2009.6942
1.4890	112.7540	1391.2510
1.6022	113.6608	906.7993
1.7162	114.3707	70 9 . 86 09
1.8308	114.9112	540.5508
1.9460	115.3080	396.7678
2.0614	115.5854	277.3818
2.2929	115.9466	180.6175
2.5249	116-0474	50.3821
2.7570	116.0490	0.7886
	0.0464 0.0824 0.1279 0.1822 0.2445 0.3140 0.3900 0.4717 0.5585 0.6499 0.7452 0.8440 1.0503 1.2663 1.4890 1.6022 1.7162 1.8308 1.9460 2.0614 2.2929 2.5249	0.0464 30.9665 0.0824 40.9150 0.1279 50.1378 0.1822 58.5149 0.2445 66.0882 0.3140 72.8995 0.3900 78.9978 0.4717 84.4267 0.5585 89.2342 0.6499 93.4678 0.7452 97.1726 0.8440 100.3946 1.0503 105.9521 1.2663 109.9715 1.4890 112.7540 1.6022 113.6608 1.7162 114.3707 1.8308 114.9112 1.9460 115.3080 2.0614 115.5854 2.2929 115.9466

Table D-X. Predicted Translation Parameters - Standing at Entrance - 20% Open, 10.9 psi

TWO-ROUM MODEL-V/A=12.5FT

SHOT 24-75-172, 10.9PSI

TIME-SEC	DISTANCE - T	VELOCITY-FT/SEC	ACCELFT/SEC/SEC
0.3010	0.0061	12.2742	12274.1954
0.0020	0.0246	24.6584	12384.1822
0.0035	0.0756	43.3223	12442.6040
0.3045	0.1251	55.6967	12374.4561
0.0050	0.1545	61.8138	12234.0438
0.0055	0.1868	67.6783	11729.0103
0.0060	0.2220	73.0993	10842.1405
0.3370	0.3001	83.0938	9994.4337
0.0080	0.3874	91.4846	8390.8681
0.0090	0.4824	98.4114	6926.7429
0.0095	0.5323	101.2299	5636.9728
0.0105	0.6360	106.2775	5047.6280
0.0115	0.7443	110.2646	3987.1499
0.0125	0.8561	113.3397	3075.0548
0.0135	0.9706	115.6412	2301.4907
0.0145	1.0871	117.3096	1668.4287
0.0155	1.2050	118.4537	1144.1245
0.0165	1.3238	119.1872	733.4403
0.0175	1.4432	119.6145	427.3088
0.0185	1.5629	119.8171	202.6146
0.0195	1.6827	119.8816	64.4622
0.0205	1.8026	119.8852	3.6535

Table D-X. (Cont'd) Predicted Translation Parameters - Standing at Entrance - 20% Open, 10.9 psi

TWO-ROOM MODEL-V/A=20.83FT

SHOT 24-75-172, 10.9PST

TIME-SEC	DISTANCEFFT	VELOCITY-FT/SEC	ACCELFT/SEC/SEC
0.3320	0.0245	24.5484	12274.1954
0.0040	0.0979	48.8351	12143.3579
0.3060	0.2194	72.6124	11888.6502
0.0080	0.3877	95.6947	11 541 - 13 44
0.2090	0.4889	106.7074	11012.7194
0.3100	0.6005	116.5708	9863.4359
0.0110	0.7215	125.3588	8787.9990
0.0120	0.8507	133.1464	7787.5925
0.0130	0.9873	139.9968	6850.3464
0.0140	1.1303	145.9786	5981.8208
0.0150	1.2789	151.1697	5 19 1 • 11 26
0.0170	1.5901	160.1018	4466.0270
0.0190	1.9168	166.5178	3208.0123
0.3210	2.2542	170.9226	2202.4215
0.0230	2.5989	173.7522	1414.7833
0.3250	2.9481	175.4183	833.0388
0.3290	3.6531	177.0873	417.2467
0.3310	4.0073	177.1292	20.9668
0.0330	4.3616	177.1469	8.8519

	- 110-110				 9.76	
						1.0
						- 1
-7						÷
						*

APPENDIX E

PREDICTED TRANSLATION PARAMETERS FOR FULL SIZE SHELTERS

w

Table E-I. Predicted Translation Parameters - Prone at Entrance - 49% Open, 1-MT, 3 psi

TWO-ROOM SHELTER-V/A=61.5FT

1-MT, 3PS1

TIME-SEC	DISTANCEFFT	VELOCITY-FT/SEC	ACCEL = FT/SEC/SEC
0.0100 0.0200 0.0300 0.0300 0.0400 0.0500	0.0159 0.0328 0.0532 0.0532 0.0757 0.0993	0.8529 1.4748 1.9028 2.1755 2.3281 2.3937 2.4027	85,2919 62,1832 42,8066 27,2642 15,2648 6,5544 0,9033

TWO-ROOM SHELTER-V/A=102.6FT

1-MT, 3PSI

TIME-SEC	DISTANCE-FT	VELOCITY+FT/SEC	ACCEL = FT/SEC/SEC
0 0100 0 0200 0 0300 0 0400 0 0500	00043 00163 00348 00586	0 8529 1 5617 2 1404 2 6028 2 9632	85,2919 70,8787 57,8660 46,2439 36,0350
0,0000 0,0700 0,0800 0,0800 0,0900	1174 11507 11857 12218 1.2585	3,2351 3,4319 3,5659 3,6483 3,6904	27,1957 19,6832 13,3911 8,2454 4,2111

Table E-II. Predicted Translation Parameters - Prone at Entrance - 49% Open, 1-MT, 10 psi

TWO-ROOM SHELTER-V/A=61.5FT

1-MT, 10PSI

TIME-SEC	DISTANCELFT	VELOCITY-FT/SEC	ACCEL FT/SEC/SEC
0,0100	0,0117	2,3397	233,9653
0,0200	0,0474	4,7992	245,9563
0,0300	0,1081	7,3392	253,9989
0,0400	0,1914	9,3157	197,6504
0,0500	0,2917	10,7427	142,7039
0.0600	n 4n39	11,7020	95,9255
	n 5238	12,2872	58,5233

TWO-ROOM SHELTER-V/A=102.6FT

1-MT, 10PSI

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SEC	ACCEL:-FT/SEC/SEC
0,0100	0.0117	2,3397	233,9653
0,0300	0.0471	4.7474 7.2086	240,7793 246,1186
0,0400	0 1915 0 2996	9.7057 11.9258	249,7061
0,0600	n.4282 n.5736	13.7817 15,2974	185.5919 151.5699
0.0800	n,7326 n,9023	16,5044 17,4373	120,6953 93,2946
0.1000	1,0801	18,1331 18,6275	69,5807 49,4347
0.1300	1 ₃ 4519 1 ₆ 6424	18,9547 19,1470	32,7178 19.2309

Table E-III. Predicted Translation Parameters - Prone at Entrance - 20% Open, 1-MT, 3 psi

TWO-ROOM SHELTER-V/A=150FT

1-MT, 3PSI

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SEC	ACCEL :- FT/SEC/SEC	
0.0100	0.0043	0.8529	85,2919	
0,0200	n n 165 n 0359	1,6037 2,2592	75,0789 65,5483	
0,0400 0,0500	0,0613 0,0920	2,8258	56,6622 48,5160	
0,0600	n.1271 n.1661	3,7217 4,0646	41 0717 34 2899	
0,0800	0.2081	4.3462	28,1657	
0 1000	n 2527 n 2993	4.5732	22,6958 17,8430	
0,1100	0,3475 0,3969	4,8873	13,5697	
0.1300	0.4471	5.0526	6.6866	

TWO-ROOM SHELTER-V/A=250FT

1-MT, 3PSI

TIME-SEC DISTANCE-FT VELOCITY-FT/SFC ACCELFT 0,0100	
0,0100 0,0043 0,8529 85,2919	
0.0200 0.067 1.6401 78.7173	
1,0401	
0,0300 0,0368 2,3645 72,4414	
0.0400 0.0637 3.0288 66.4295	
0,0500 0,0970 3,6356 60,6797	
0,0600 0,1362 4,1882 55,2575	
0,0700 0,1805 4,6888 50,0608	
0,0800 0,2297 5,1406 45,1860	
0,0900 0,2831 5,5466 40,5981	
0,1000 0,3404 5,9092 36,2624	
0,1100 0,4011 6,2310 32,1771	
0,1200 0,4648 6,5148 28,3750	
0,1300 0,5312 6,7630 24,8196	
0,1400 0,5999 6,9784 21,5415	
0,1500 0,6706 7,1631 18,4745	
0,1600 0,7431 7,3196 15,6514	
0,1700 0,8169 7,4500 13,0351	
0.1800 0.8919 7.5569 10.6918	
0,1900 0,9679 7,6421 8,5233	
0,2000 1,0447 7,7078 6,5623	
0,2100 1,1220 7,7561 4,8375	
0.2200 1.1997 7.7890 3.2896	

Table E-IV. Predicted Translation Parameters - Prone at Entrance - 20% Open, 1-MT, 7 psi

THO-ROOM SHELTER-V/A=150FT

1-MT, 7PSI

TIME-SEC	DISTANCE-FY	VELOCITY+FT/SEC	ACCEL -FT/SEC/SEC
0.0100	0,0100	1,9954	199,5441
0.0200	0.0400	4,0082	201,2781
0,0300	0.0898	5 9530	194.4772
0.0400	0.1580	7.6960	174,2989
0.0500	0,2427	9,2432	154,7234
0,0600	0.3420	10.6030	135,9819
0,0700	0,4539	11,7860	118,2919
0.0800	0.5769	12,8038	101,7807
0.0900	0,7092	13,6690	86,5266
0,1000	0.8495	14,3946	72.5552
0 1100	0.9965	14,9934	59,8837
0.1200	1,1488	15,4787	48,5284
0.1300	1,3156	15,8624	38,3738
0,1400	1,4657	16,1569	29,4491
0.1500	1.6283	16,3734	21,6510
0.1600	1.7928	16.5231	14.9703

TWO-ROOM SHELTER-V/A=250FT

1-MT, 7PSI

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SFC	ACCEL -FT/SEC/SEC
0.0100	0,0100	1,9954	199.5441
0,0200	0.0399	3,9952	199,9783
0.0300	0.0899	5,9960	200,0792
0,0400	n 1595	7,9360	193,9980
0,0500	0.2479	9,7428	180,6791
0,0600	0.3537	11,4185	167,5679
0,0700	n.4757	12,9664	154,7953
0,0800	0.6125	14,3908	142,4347
0,0900	n 7629	15,6957	130,4971
0,1000	n 9258	16,8864	119,0633
0,1100	1,1001	17,9676	108,1189
0,1200	1.2846	18,9443	97.6699
0,1300	1,4785	19,8224	87,8179
0,1400	1,6806	20,6076	78,5138
0,1500	1,8902	21,3050	69,7414
0,1600	2.1063	21,9203	61,5362
0 1700	2,3282	22,4589	53,8507
0,1800	2,5551	22,9263	46,7418
0,1900	2,7864	23,3274	40.1108
0,2000	3,0214	23,6676	34,0227
0.2100	3,2595	23,9516	28,4031
0,2200	3,5001	24 1844	23,2790
0 2300	3,7429	24.3707	18,5233
0.2400	3 9873	24.5148	14.4177
0.2500	4,2330	24,6218	10,6929
0 2600	4,4796	24,6957	7,3977
0,2700	4.7268	24,7412	4.5496
0.2800	4.9743	24.7633	2.2052
			m # C 1111 m

Table E-V. Predicted Translation Parameters - Prone at Entrance - 20% Open, 1-MT, 10 psi

TWO-ROOM SHELTER-V/A=150FT

1-MT, 10PSI

TIME-SEC	DISTANCEFFT	VELOCITY-FT/SEC	ACCEL :- FT/SEC/SEC
0,0100	0.0117	2,3397	233,9653
0.0200	0.0470	4,7207	238,1056
0.0300	0.1063	7,1353	241,4637
0.0400	0.1898	9,5749	243,9506
0.0500	0,2979	12,0302	245,5365
0.0600	0,4299	14,3692	233,8936
0.0700	0.5839	16,4412	207,2025
0.0800	0,7574	18,2558	181,4659
0.0900	0.9478	19.8263	157.0491
0,1000	1,1528	21,1688	134,2423
0.1100	1.3701	22,3006	113,1805
0.1200	1,5978	23,2400	93,9410
0.1300	1,8341	24,0058	76,5798
0.1400	2.0772	24,5161	61,0386
0.1500	2,3257	.25,0894	47,3225
0,1600	2,5784	25,4425	35,3158
0,1700	2,8340	25,6925	25,0000
0,1800	3,0918	25,8553	16.2751
0.1900	3,3508	25.9465	9.1207

Table E-V. (Cont'd) Predicted Translation Parameters - Prone at Entrance - 20% Open, 1-MT, 10 psi

TWO-ROOM SHELTER-V/A=250FT

1-HT, 10PSI

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SEC	ACCEL -FT/SEC/SEC
0,0100	0 8 0 1 1 7	2 3397	233,9653
0,0200	0.0469	4 6959	235,6233
0,0300	0,1057	7,0654	236,9539
0.0400	0.1882	9,4447	237,9285
0,0500	0,2946	11,8302	238,5520
0.0600	0.4248	14,2181	238.7853
0.0700	n 5790	16,6042	238,6091
0,0800	n 7569	18,9848	238,0626
0,0900	0,9578	21,1991	221,4282
0,1000	1.1800	23,2386	203,9543
0,1100	1,4217	25,1035	186,4915
0.1200	1,6813	26,8090	170,5503
0.1300	1,9571	28,3569	154,7846
0,1400	2,2477	29,7539	139,6975
0.1500	2,5515	31,0077	125,3885
0,1600	2,8671	32,1262	111,8481
0,1700	3,1934	33,1169	99,0672
0.1800	3,5289	33,9881	87,1152
0,1900	3 8726	34,7479	75,9797
0,2000	4,2233	35,4037	65,5878
0,2100	4,5802	35,9639	56,0220
0,2200	4 9422	36,4360	47,2098
0,2300	5,3085	36,8273	39,1292
0,2400	5,6783	37.1451	31.7739
0,2500	6,0511	37,3966	25,1486
0,2600	6,4260	37,5884	19,1827
0,2700	6,8026	37,7277	13,9346
0.2800	7.1803	37.8211	9.3381

Table E-VI. Predicted Translation Parameters - Standing at Entrance - 49% Open, 1-MT, 3 psi

TWO-ROOM SHELTER-V/A=61.5FT

1-MT, 3PSI

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SFC	ACCEL -FT/SEC/SEC
0,0100	0,0320 0,1187	6,3969	639.6894
0.0300	0.2434 0.3926	10,9452	454.8307 304.3345
0.0500	1,5562	15,8605 16,8583	187,1995 99,7800
0,0600	n.7267 n.8994	17,2487	39.0396

TWO-ROOM SHELTER-V/A=102.6FT

1-MT, 3PSI

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SEC	ACCEL:-FT/SEC/SEC
0 0 1 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0	0.1219 0.2586 0.4320	5,3969 11,5929 15,7340 18,9584	639,6894 519,6036 414,1-032 322,4446
0,0500 0,0600 0,0700 0,0800 0,0900 0,1000	0,6338 0,8567 1,0947 1,3430 1,5974 1,8552	21,3997 23,1821 24,4210 25,2203 25,6745 25,8743	244.1335 178.2358 123.8923 79.9271 45.4163 19.9842

Table E-VII. Predicted Translation Parameters - Standing at Entrance - 49% Open, 1-MT, 10 psi

TWO-ROOM SHELTER-V/A=61.5FT

1-MT, 10PST

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SEC	ACCEL FT/SEC/SEC
0,0100	0 0877	17,5474	1754,7399
0.0200	0.3521	35,3283	1778,0865
0.0200	0.7935	52,9466	1761,8350
0,0400	1.3873	65,8115	1286.4868
0 ត្តិ១ភពថ	2.0883	74,4010	858,9516
0 0600	2.3585	79,6218	522.0800
0.0700	3.5685	82.3774	275,5636

TWI-ROOM SHELTER-V/A=102.6FT

1-MT, 10PSI

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SFC	ACCEL -FT/SEC/SEC
0,0100	0.0877 -	17,5474	1754,7399
0.0200	1 3504	34,9809	1743.3542
0,0300	0.7860	52.1424	1716.1503
0.0400	1,3911	68,8716	1672,9153
0.0500	2,1503	82,9795	1410,7928
0.0600	3 0355	94,0623	1108,2737
0,0700	4.0183	102,4976	843,5371
0,0800	5.0743	108,6930	619.5347
0,0900	6,1829	113,0359	434,2933
0.1000	7.3276	115,8977	286.1830
0,1100	8.4952	117,6136	171,5897
0.1200	9 5757	118,4893	87,5688
0.1300	10.8521	118.8038	31.4442

Table E-VIII. Predicted Translation Parameters - Standing at Entrance - 20% Open, 1-MT, 3 psi

TWO-ROOM SHELTER-V/A=150FT

1-MT, 3PSI

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SFC	ACCEL: FT/SEC/SEC
0,0200	n n n 3 2 n n 1 2 3 5	6 3969	639,6894 550,9442
0,0300	n.2661 n.4520	16,6094	470 3037 397 1095
0,0500 0,0600	0.6744 0.9271	23,8980	331,7549 273,6195
0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0	1.2045 1.5019 1.8150	28,8546 30,6216	222,0410
0,1000	2,1401	31,9951 33,0301 33,7767	137,3496 103,5057 74,6619
0.1200	2.8144	34.2816 34.5915	50.4836 30.9949

TWO-ROOM SHELTER-V/A=250FT

1-MT, 3PSI

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SFC	ACCEL -FT/SEC/SEC
0.0100	0-0320	6.3969	639 6894
0,0200	1.1249	12,1780	578,1138
0.0300	0,2727	17,3864	520 8354
0,0400	1.4599	22,0604	467.3982
0,0500	0.7114	26,2365	417,6119
0,0600	0,9924	29,9550	371.8561
0,0700	1,3084	33,2467	329 1653
0,0800	1,5553	36,1474	200,0703
0,0900	2,1295	38,5891	254,1696
0,1000	2,4275	40,9000	221,0907
0.1100	2.8460	42.8071	190.7066
0.1200	3,2822	44,4392	163,2078
0.1300	3,7335	45,8207	138,1580
0.1400	4 1975	46,9773	115,6613
0,1500	4.6721	47.9295	95.2107
0.1600	5,1552	48,6995	77,0067
0.1700	5,6452	49,3059	60,6355
0.1800	6.1406	49.7714	46.5519
0,1900	5,6400	50,1122	34,0820
u*Suuu	7.1423	50.3466	23.4405
0.5100	7.6465	50,4936	14,6965
0.2200	8.1518	50.5702	7-6656

Table E-IX. Predicted Translation Parameters - Standing at Entrance - 20% Open, 1-MT, 7 psi

TWO-ROOM SHELTER-V/A=150FT

1-MT, 7PSI

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SFC	ACCEL -FT/SEC/SEC
utuu	0.0748	14,7658	1496.5804
0.0200	0.2976	29 5883	1462.2509
0.0300	0.6617	43.2400	1365.1722
0,0400	1,1530	55,0036	1176,3565
0.0500	1.7531	65,0243	1002,0652
0.0600	2,4455	73,4563	843.2077
0,0700	3,2151	80,4572	760,0849
กุกลกก	4.0483	86.1852	572.8058
0.0900	4 9332	90,7911	41.0.5905
0,1000	5,8592	94,4140	362,8756
0.1100	6.8174	97,2081	278, 9215
0.1200	7,7998	99,2846	207.6473
6.1300	9,3001	100,7623	147,7675
0.1400	9,8126	101,7527	99,0412
0.1500	10,8332	102 3541	60.1382
0.1600	11.8582	102.5625	30.8461

Table E-IX. (Cont'd) Predicted Translation Parameters - Standing at Entrance - 20% Open, 1-MT, 7 psi

TWO-ROOM SHELTER-V/A=250FT

1-MT, 7PSI

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SEC	ACCEL -FT/SEC/SEC
0.0100	0-0748	14,9658	1406,5804
0.0200	0,2972	29,5024	1453,6575
0.0300	0.6626	43.5927	1409.0272
0,0400	1,1646	56 8016	1320,8913
0,0500	1.7919	68 6606	1185.8991
0,0600	2,5315	79,2530	1059,2480
0,0700	3.3711	88.5666	941.3557
0.0800	4.2994	96.9922	832,5643
0.0900	5,3059	104,3090	731,6747
0,1000	6.3810	110,7035	639,4552
0,1100	7,5157	116,2528	554,9226
11,1200	8,7022	121.0328	478,0036
0,1300	9,9329	125,1143	408,1533
0.1400	11.2013	128,5677	345,3358
0,1500	12,5014	131,4549	288,7251
0,1600	13.8279	133,3394	238.4484
0.1700	15,1760	135,7756	193,6175
0,1800	15,5414	137,3182	154,2557
0.1900	17,9206	138,5144	119,6213
0,2000	19,3102	139,4144	00.0002
0.2100	20,7076	140,0610	64.6616
0.2200	22.1104	140,4970	43,6061
0,2300	23.5167	140.7644	26.7354
0.2400	24,9250	140,9015	13.7086
0,2500	26.3343	140,9521	5.0660
0.2600	27.7139	140,9575	0.5330
0.2700	29,1535	140,9654	0.7931
0.2800	30.5635	141.0372	7.1838

Table E-X. Predicted Translation Parameters - Standing at Entrance - 20% Open, 1-MT, 10 psi

TWO-ROOM SHELTER-V/A=150FT

1-MT, INPST

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SEC	ACCEL -FT/SEC/SEC
ultuu	0.0877	17,5474	1754,7399
11,0200	n.3495	34,7998	1725.2355
0.0300	0.7819	51,6781	1687,8301
0,0400	1.3808	68.1064	1642.8372
0,0500	2.1414	84,0126	1590,6195
0,0600	3,0539	98,4996	1448,6944
0.0700	4,0997	110,6425	1214,2909
0.0800	5,2562	120,6607	1001,8244
n • u 9 u u	6,5034	128,7866	812,5871
0 1000	7,8236	135,2572	647, 1625
0.1100	9.2013	140.2873	503,0077
0.1200	10,6232	144.0914	380,4074
0,1300	12,0780	146,8669	277.5489
0,1400	13,5563	148.7939	192,7009
0,1500	15,0505	150.0407	124.6814
0.1600	15,5545	150,7605	71,9845
0.1700	18,0638	151,0992	33,8652
0.1800	19,5753	151,1964	9.7190
0.1900	21.0873	151.1973	0.0910

Table E-X. (Cont'd) Predicted Translation Parameters - Standing at Entrance - 20% Open, 1-MT, 10 psi

TWO-ROOM SHELTER-V/A=250FT

1-MT, 10PSI

TIME-SEC	DISTANCE-FT	VELOCITY-FT/SEC	ACCEL -FT/SEC/SEC
0,0100	0.0877	17.5474	1754.7399
0.0200	0.3486	34.5294	1708,2045
0,0300	0.7779	51.2263	1659.6894
0.0400	1,3706	67,3197	1609.3344
0.500	2,1217	82,8947	1557,5053
0.0600	3,0258	97.9323	1503.7550
0.0700	4,0776	112,4184	1448,6115
11 * U B 11 U	5,2714	125,3448	1392,6421
0.0900	6,5966	138 6930	1234,8204
0.1000	8.0376	149,4995	1080,6469
0.1100	9.5786	158,7144	921,4918
0.1200	11.2063	166,8240	811.0535
0,1300	12,9003	173,7617	693,6719
0.1400	14,6763	179,5407	587,9003
0.1500	16,4973	184,5699	492,9188
0,1600	19,3634	188,5494	407 9553
0.1700	20.2665	191,9727	332.3274
0.1800	22,1996	194,5346	266,1953
0.1900	24.1564	196,7229	208,8217
0 \$ 5000	26,1315	198,3098	158,6926
0.2100	28.1204	199,4741	116.4285
0.2200	30,1192	200 2866	81,2556
0,2300	32,1247	200 8121	52,5503
0.2400	34,1344	201.1134	30,1270
0,2500	36,1462	201,2533	13,9870
0,2600	38,1589	201,2917	3.8470
0.2700	40,1718	201,2920	0,0235
0.2800	42.1849	201.3218	2.9819

No. of		No. of	
Copies	Organization	Copies	Organization
12	Commander Defense Documentation Center ATTN: DDC-TCA Cameron Station Alexandria, VA 22314	1	Commander US Army Missile Command ATTN: DRSMI-R Redstone Arsenal, AL 35809
1	Director Institute for Defense Analysis ATTN: Dr. A. Sachs 400 Army-Navy Drive Arlington, VA 22202		Commander US Army Tank Automotive Development Command ATTN: DRDTA-RWL Warren, MI 48090
2	Director Defense Nuclear Agency ATTN: STSP (SPLN) Mr. J. Kelso STAP (APTL), Lib Washington, DC 20305	2	Commander US Army Mobility Equipment Research & Development Command ATTN: Tech Docu Cen, Bldg 315 DRSME-RZT Fort Belvoir, VA 22060 Commander
1	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMA-ST		US Army Armament Command Rock Island, IL 61202 Commander
	5001 Eisenhower Avenue Alexandria, VA 22333		US Army Harry Diamond Labs ATTN: DRXDO-TI 2800 Powder Mill Road
	Commander US Army Aviation Systems Comma ATTN: DRSAV-E 12th and Spruce Streets St. Louis, MO 63166	1	Adelphi, MD 20783 Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SA
	Director US Army Air Mobility Research and Development Laboratory		White Sands Missile Range NM 88002
	Ames Research Center Moffett Field, CA 94035		Commander US Army Materials and Mechanics Research Center
	Commander US Army Electronics Command ATTN: DRSEL-RD		ATTN: DRXMR-ATL Watertown, MA 02172
	Fort Monmouth, NJ 07703		Commander US Army Natick Research and Development Command ATTN: Dr. D. Sieling, DRXRE Natick, MA 01762

No. o		No. of Copies	
50	Defense Civil Preparedness Agency Research and Engineering ATTN: Admin Office Washington, DC 20301	1	Director Office of Administration Program Planning and Control ATTN: Mr. Bert Greenglass Dept of Housing & Urban Dvlp Washington, DC 20410
3	Agency ATTN: Rsch Dir, Mr. Sisson Tech Svc, Dir Mr. J. Roembke Mr. H. Wakabayashi	1	Office of the Chief of Engineers ATTN: Mr. Roy T. Spurlock Department of the Army Washington, DC 20314
1	Washington, DC 20310 Director DARCOM Field Safety Activity	1	Chief of Engineers ATTN: ENGME-RD Department of the Army Washington, DC 20314
	ATTN: DRXOS-ES Charlestown, IN 47111	3	Commander US Naval Air Systems Command
1	Deputy Assistant Secretary of the Army (R&D) ATTN: Asst for Rsch	,	ATTN: AIR-604 Washington, DC 20360
1	Washington, DC 20310 HQDA (DAEN, ENGME-RD) Washington, DC 20310	1	Commander US Naval Facilities Eng Command ATTN: R&D Code 0322C Washington, DC 20390
2	Commander US Army Engineer Waterways Experiment Station ATTN: Docu Lib Nucl Wpns Eff Br P.O. Box 631 Vicksburg, MS 39180	3	Commander US Naval Ordnance Systems Command ATTN: ORD-0632 ORD-035 ORD-5524 Washington, DC 20390 Commander
1	Advisory Committee on Civil Defense National Academy of Sciences 2101 Constitution Avenue, NW	3	US Naval Supply Systems Command ATTN: Code 0652 Washington, DC 20390
	Washington, DC 20418	1	Chief of Naval Personnel ATTN: Code Pers M12 Department of the Navy Washington, DC 20360

No. of		o. of	
1	Chief of Naval Research Department of the Navy Washington, DC 20360	1	Agbabian Associates ATTN: Mr. Curtil Lang 250 North Nash Street El Segundo, CA 90245
1	Commander US Naval Civil Engineering Lab ATTN: Library Port Hueneme, CA 93401	1	Agbabian-Jacobsen Associates 8943 South Sepulveda Boulevard Los Angeles, CA 90045
1	AFWL (SUL) Kirtland AFB, NM 87117	1	Chairman, Coordinating Committee on Civil Defense American Society of
1	AFWL (Civil Eng Div) Kirtland AFB, NM 87117		Civil Engineers ATTN: Mr. A. Caster 2864 McFarlan Park Drive
1	Civil Engineering Center AF/PRECE		Cincinnati, OH 45211
2	Wright-Patterson AFB, OH 45433 Headquarters US Energy Research and Development Administration Dept of Military Applications Division of Biology and Medicine ATTN: Civil Eff Br Mr. L. J. Deal Dr. Rudolf J. Engelmann		Bell Telephone Laboratories ATTN: Mr. E. Witt Mr. R. Mayo Mr. J. Foss Whippany Road Whippany, NJ 07981 The Dikewood Corporation University Research Park 1009 Bradbury Drive, SE Albuquerque, NM 87106
1	Washington, DC 20545 Oak Ridge National Laboratory Civil Defense Research Project ATTN: Librarian		Eberle Smith Associates, Inc. ATTN: Mr. Lyndon Welch 950 West Fort Street Detroit, MI 48226
	P.O. Box X Oak Ridge, TN 37830	1	Environmental Sciences Associates ATTN: Mr. Paul Zigman
1	President National Academy of Sciences National Research Council Advisory Committee on Civil Defense ATTN: Mr. R. Park 2101 Constitution Avenue, NW Washington, DC 20418	1	770 Airport Road Burlingame, CA 94010 General American Transportation Corporation General American Research Div 7449 North Natchez Avenue Niles, IL 60648

No. Copi		No. of Copies	
1	President-Director Lovelace Foundation ATTN: Dr. S. White 5200 Gibson Boulevard, SE Albuquerque, NM 87108		Pennsylvania State University ATTN: Prof R. Kummer 101 Eng A University Park, PA 16802
2	The Rand Corporation ATTN: Dr. H. Brode Document Library 1700 Main Street Santa Monica, CA 90401		Purdue University Purdue Research Foundation School of Civil Engineering ATTN: Mr. M. Scott Civil Engineering Building Lafayette, IN 47907
2	Sandia Laboratories ATTN: Dir 5412, L. Vortman Dept 5230, Dr. Mehl P.O. Box 5800 Albuquerque, NM 87115		Purdue University Nuclear Engineering Department ATTN: Prof Robert Baily Duncan Annex Lafayette, IN 47907
1	Scientific Services, Inc. ATTN: Mr. Charles Wilton 830 Charter Street Redwood City, CA 94063		Research Triangle Institute ATTN: Edward L. Hill Milton D. Wright P.O. Box 12194 Research Triangle Park
2	URS Research Company ATTN: Library William H. Van Horn 155 Bovet Road San Mateo, CA 94402	1	NC 27709 San Jose State College Department of Civil Engineering ATTN: Dr. R. Spicker San Jose, CA 95114
1	George Washington University School of Engineering and Applied Science Nuclear Defense Design Center ATTN: Prof R. Fox Washington, DC 20006		Stanford Research Institute ATTN: Dr. S. Martin Dr. H. Murphy Mr. C. Wiehle 333 Ravenswood Avenue Menlo Park, CA 94025
2	IIT Research Institute ATTN: Mr. A. Longinow Mr. T. Waterman 10 West 35th Street Chicago, IL 60616	1	University of Arizona OCD Professional Advisory Service ATTN: Miss N. Barberii Tucson, AZ 85721

No. of Copies Organization

- University of Colorado School of Architecture ATTN: Prof G. Vetter Boulder, CO 80302
- University of Florida
 Department of Mechanical
 Engineering
 ATTN: Prof J. Samuel
 Gainesville, FL 32601
- 1 University of Illinois ATTN: Dr. W. Hall 111 Talbot Laboratory Urbana, IL 61803
- University of Massachusetts School of Engineering ATTN: Dr. M. P. White Amherst, MA 01002
- University of Washington
 Department of Civil Engineering
 ATTN: Prof W. Miller
 307 More Hall
 Seattle, WA 98105
- 1 Worcester Polytechnic Institute Department of Civil Engineering ATTN: Prof C. Koontz Worcester, MA 01609

Aberdeen Proving Ground

Marine Corps Ln Ofc Dir, USAMSAA

No.	
a)	
	vid .
	•

