Эконометрика, 2020-2021, 2 модуль Семинар 3 9.11.20

ДЛЯ

Группы Э_Б2018_Э_3 Семинарист О.А.Демидова

Дамми (фиктивные) переменные и тест Чоу

Материалы из учебника О.Демидовой и Д.Малахова «Эконометрика. Учебник и практикум»

Задача 7.1. Оцененная зависимость почасовой оплаты труда индивида У (измеряется в долларах в час) от результатов выпускного теста Х (измеряется в баллах) и пола (D фиктивная переменная, равная 1 для мужчин и 0 для женщин) имеет вид:

$$\hat{Y} = 2 + 3.7X + 2.4D.$$

Все коэффициенты являются значимыми при уровне значимости 1%.

При одинаковых результатах теста почасовая оплата мужчин выше почасовой оплаты женщин на

1) 0.024 \$

2) 2.4 \$ 3) 0.024 % 4) 2.4%

Задача 7.2.

Оцененная зависимость почасовой оплаты труда американцев Y (измеряется в долларах) от стажа их работы X (измеряется в годах); пола, описываемого с помощью фиктивной переменной D_1 , равной 1 для мужчин и 0 для женщин; расовой принадлежности, описываемой с помощью фиктивной переменной D2, равной 1 для светлокожих и 0 для темнокожих американцев, имеет вид:

$$\hat{Y} = 4 + 0.8X + 0.04D_1 - 0.01D_2$$

Все коэффициенты являются значимыми при уровне значимости 1%.

Чему равна почасовая оплата труда темнокожих американцев при пятилетнем стаже работы?

Залача 7.3.

Зависимость расходов на продукты питания от располагаемого дохода X имеет вид:

$$\hat{Y} = 2 + 0.6X + 0.07D_1X,$$

где D_1 – фиктивная переменная, равная 1 для городских и 0 для сельских жителей.

- а) Коэффициент наклона в линейной зависимости для сельских жителей равен
- 1) 0,67 2) 0,6 3) 0,53
- б) Если вместо D_1 использовать переменную D_2 , равную 0 для городских и 1 для сельских жителей, то зависимость примет вид:

1)
$$\hat{Y} = 2 + 0.67X - 0.07D_2X$$

2)
$$\hat{Y} = 2 + 0.67X + 0.07D_2X$$

3)
$$\hat{Y} = 2 + 0.6X - 0.07D_2X$$

4)
$$\hat{Y} = 2.07 + 0.6X - 0.07D_2X$$
.

Задача. Оценена зависимость расходов потребителей на газ и электричество У в США в 1977 - 1999 г.г. в постоянных ценах I квартала 1977г. от времени (t = 1 для 1977 г., t = 2

для 1978 г. и т.д.) с учетом сезонных факторов ($D_i = 1$, если наблюдение относится к i-му кварталу и 0 иначе, i = 1,...,4):

$$\hat{Y} = 8 + 0.1t - 3D_2 - 2.6D_3 - 2D_4$$

Если в качестве выделенной категории будет выбран не первый квартал, а второй, то уравнение регрессии примет вид

1)
$$\hat{Y} = 5 + 0.1t + 3D_1 + 0.4D_3 + D_4$$

2)
$$\hat{Y} = 8 + 0.1t - 3D_1 - 2.6D_3 - 2D_4$$

3)
$$\hat{Y} = 5 + 0.1t - 3D_1 - 2.6D_3 - 2D_4$$

4)
$$\hat{Y} = 5 + 0.1t - 3D_2 - 0.4D_3 - D_4$$

Задача 7.5.

По данным для 570 индивидуумов оценили зависимость длительности обучения индивидуума S от способностей индивидуума, описываемых обобщенной переменной ASVABC и пола индивидуума, описываемого с помощью фиктивной переменной MALE (равной 1 для мужчин и 0 для женщин) с помощью двух регрессий:

$$\hat{S} = 6.12 + 0.147 \cdot ASVAB, RSS_1 = 2099, 9$$

$$\hat{S} = 6.72 + 0.137 \cdot ASVAB - 1.035 \cdot MALE + 0.0166 \cdot (MALE \cdot ASVABC), RSS_2 = 2090, 98$$

Зависит ли длительность обучения от пола индивидуума и почему?

Задача 7.6.

По квартальным данным 1960-1976 г.г. была оценена модель с тремя объясняющими факторами:

$$\overline{Y} = 1.03 + 0.1X_1 - 4.45X_2 + 0.26X_3$$
, $ESS = 103.5$, $RSS = 17.48$.

При добавлении в модель трех сезонных dummy – переменных значение ESS увеличилось до 107.3.

Проверить гипотезу о наличии сезонности.

Задача 7.7.

По данным для 570 индивидуумов оценили зависимость почасовой заработной платы EARN от длительности обучения S и от способностей индивидуума, описываемых обобщенной переменной ASVABC:

• по общей выборке

$$EARN = -9.96 + 0.93 S + 0.21 ASVABC$$
 $RSS_1 = 32189.36$

• а также отдельно для мужчин

$$EARN = -7.23 + 1.01S + 0.35 ASVABC$$
 $RSS_2 = 15223.7$

• и женщин

$$EARN = -11.4 + 0.81S + 0.14 ASVABC$$
 $RSS_3 = 10231.24$

Можно ли считать, что эта зависимость одинакова для мужчин и женщин?

Упражнение. Зависимость длительности обучения индивида от его способностей и длительности обучения родителей

Для выполнения приведенных ниже упражнений используются данные файла Dougherty.dta.

Переменные:

EARNINGS – почасовая заработная плата индивида,

S – длительность обучения индивида, SM - длительность обучения мамы индивида,

SF длительность обучения отца индивида,

ASVABC – обобщенный показатель способностей индивида, рассчитанный по результатам тестов,

MALE – дамми переменная, равная 1 для мужчин и 0 для женщин,

ETHBLACK - дамми переменная, равная 1 для афроамериканцев и 0 иначе,

ETHHISP - дамми переменная, равная 1 для испаноязычных и 0 иначе и др.

Используя указанные (и по желанию другие) пременные, определите, влияет ли пол и раса на заработную плату.

Задания для самостоятельного решения

Упражнение 7.2.

В статистическом пакете Stata 14, по данным файла flats.dta, используя переменные price_metr, livesp, kitsp, dist, metrdist, floors, walk, (где price_metr - стоимость квадратного метра однокомнатной квартиры, описание остальных переменных дано в приложении, определите, одинакова ли зависимость для двух групп квартир (для которых время пути от метро дано в минутах пешком и для которых время пути от метро дано в минутах езды на транспорте).

- 1) С помощью оценки регрессии вида (7.4),
- 2) С помощью теста Чоу.

Используйте 5% процентный уровень значимости.

Рекомендации.

1) Для оценки регрессии с варьирующимися коэффициентами наклона для двух групп переменных создадим новые переменные, которые являются перемножением (cross-terms) переменных livesp, kitsp, dist, metrdist, floors и переменной walk (объясните, для чего это нужно):

2)

```
. gen livesp_walk= livesp* walk
```

. gen kitsp_walk= kitsp* walk

. gen dist walk= dist* walk

. gen metrdist walk= metrdist* walk

. gen floors walk= floors* walk

Оцените новую регрессию с включенными cross-terms переменными:

```
. reg price_meter livesp kitsp dist metrdist floors walk livesp_walk kitsp_walk dist walk metrdist walk floors walk,
```

Проверим одновременную значимость всех коэффициентов переменных, содержащих walk, воспользовавшись командой test:

```
test livesp walk= kitsp walk= dist walk= metrdist walk= floors walk= walk=0,
```

3) Проведем тест Чоу, оцениваем одну и ту же форму модели а) для всех квартир, б) для квартир, до которых время пути от метро дано в минутах пешим шагом, и в) для квартир, для которых время в пути дано в минутах езды на автомобиле.

Модель по данным для всех квартир можно оценить с помощью команды:

```
reg price meter livesp kitsp dist metrdist floors,
```

Coxраним RSS с помощью команды scalar rssp=e(rss).

Модель для квартир, до которых время пути от метро дано в минутах пешим шагом можно оценить с помощью команды:

```
. reg price meter livesp kitsp dist metrdist floors if walk==1,
```

Coxраним RSS с помощью команды scalar rss1=e(rss).

Модель для квартир, до которых время пути от метро дано в минутах езды можно оценить с помощью команды:

```
. reg price meter livesp kitsp dist metrdist floors if walk==0,
```

Coxраним RSS с помощью команды scalar rss2=e(rss).

Используя RSS из оцененных регрессий, рассчитаем тестовую F – статистику:

- . scalar F=((rssp-rss1-rss2)/6)/((rss1+rss2)/(773-2*6))
- . display F

20.060314

Для нахождения p-value для F-статистики используйте команду di Ftail(6, 761, 20.060314)

Упражнение 7.3.

Используя статистический пакет Stata, по данным файла nlsw88.dta (эта база данных встроена в статистический пакет Stata, сделать ее активной можно выбрав File->Example Datasets...-> Example Datasets Installed in Stata, описание можно найти, нажав на describe (также описание переменных дано в Приложении 1),

1) Оцените модель $wage_i = \beta_0 + \beta_1 \cdot \text{hours}_i + \beta_2 \cdot \text{ttl_exp}_i + \beta_3 \cdot \text{temure}_i + \beta_4 \cdot \text{union}_i + u_i$, i = 1, ..., n.

Проинтерпретируйте значение оценки коэффициента перед переменной *union*.

2) Проанализируйте, нужно ли оценивать модель

$$wage_i = \beta_0 + \beta_1 \cdot hours_i + \beta_2 \cdot ttl_exp_i + \beta_3 \cdot tenure_i + u_i$$

отдельно для тех женщин, которые состоят в союзе и для тех, которые не состоят.

Решение.

1) Заметим, что в базе данных значение union переменной union соответствует 1, значение nonunion соответствует 0, пропуски в значениях переменных обозначаются как "." (соответствующие наблюдения выкидываются).

Оценим искомую модель с помощью команды:

reg wage hours ttl_exp tenure union, получим:

Source	l SS	df	MS		Number of obs	= 186	57
	+				F(4, 1862)	= 84.0	7 (
Model	4961.07427	4 1	240.26857		Prob > F	= 0.000	0 (
Residual	27470.4872	1862 1	4.7532155		R-squared	= 0.153	30
	+				Adj R-squared	= 0.151	.2
Total	32431.5615	1866	17.380258		Root MSE	= 3.84	11
_					[95% Conf.		
	+						
hours	.0191089	.009211	2.07	0.038	.0010436	.037174	13
ttl_exp	.2785683	.024306	11.46	0.000	.2308978	.326238	39
tenure	.0468629	.019612	2.39	0.017	.0083988	.085326	59
union	1.190311	.208529	5.71	0.000	.7813344	1.59928	37
_cons	2.691105	.39289	6.85	0.000	1.920542	3.46166	57

Из результатов оценки модели, можно заметить, что если респондент состоит в профсоюзе, то при прочих равных его почасовая зарплата выше на 1.190311 долл. (коэффициент при переменной union значим на любом адекватном уровне значимости).

2) Теперь проанализируем, нужно ли оценивать вышеуказанную модель отдельно для каждой подвыборки.

Для этого создадим переменные, которые являются перемножением регрессоров и дамми-переменной:

- . gen hours_union=hours*union
 (369 missing values generated)
- . gen ttl_exp_union=ttl_exp*union
 (368 missing values generated)
- . gen tenure_union=tenure*union
 (378 missing values generated)

Оценим регрессию, включив в нее вновь созданные переменные:

reg wage hours ttl_exp tenure union hours_union ttl_exp_union tenure_union, получим:

Source	SS	df	MS		Number of obs	= 1867
					F(7, 1859)	= 50.31
Model	5165.36882	7 737	.909831		Prob > F	= 0.0000
Residual	27266.1926	1859 14.	6671289		R-squared	= 0.1593
					Adj R-squared	= 0.1561
Total	32431.5615	1866 17	.380258		Root MSE	= 3.8298
wage	Coef.	Std. Err	. t	P> t	[95% Conf	. Interval]
hours	.0356629	.0103232	3.45	0.001	.0154165	.0559093
ttl_exp	.282476	.0273754	10.32	0.000	.2287863	.3361656
tenure	.0449328	.0228423	1.97	0.049	.0001335	.0897322
union	4.483446	.9768301	4.59	0.000	2.567647	6.399245
hours_union	080646	.0226316	-3.56	0.000	125032	0362599
ttl_exp_union	0235813	.0588922	-0.40	0.689	139083	.0919204
tenure_union	.0148574	.0446927	0.33	0.740	0727958	.1025106
_cons	2.036556	.4369703	4.66	0.000	1.179552	2.89356

Проверим совместную значимость переменных, содержащих union с помощью команды:

```
. test union=hours_union=ttl_exp_union=tenure_union=0
```

```
(1) union - hours union = 0
```

- (2) union ttl_exp_union = 0
- (3) union tenure_union = 0
- (4) union = 0

$$F(4, 1859) = 11.68$$

 $Prob > F = 0.0000$

Так как p-value соответствующей тестовой статистики равно 0, то оценки всех коэффициентов совместно отличны от нуля и необходимо оценивать модели для двух подвыборок отдельно, что мы и сделаем ниже.

Модель для профсоюзных рабочих:

. reg wage hours tenure ttl_exp if union==1

460	obs =	umber d			df	SS	-	Source
19.63	156) =	'(3 ,	_				-+-	
0.0000	=	rob > I	2	304.7	5 3	914.38551	1	Model

	Residual	1	7079.67078	456	15.5	5255938		R-squared	=	0.1144
-		+-						Adj R-squared	=	0.1086
	Total	1	7994.05629	459	17.4	4162447		Root MSE	=	3.9403
-										
	wage		Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
-		+-								
	hours	1	0449831	.020	721	-2.17	0.030	0857037		0042625
	tenure	1	.0597902	.0395	226	1.51	0.131	0178788		1374593
	ttl_exp	1	.2588947	.0536	471	4.83	0.000	.1534685		3643209
	_cons	1	6.520002	.8988	477	7.25	0.000	4.753605	8	.286399

Модель для респондентов, не состоящих в профсоюзе:

. reg wage hours ttl_exp tenure if union==0

Source	l SS	df	MS		Number of obs	=	1407
	+				F(3, 1403)	=	81.47
Model	3516.54058	3 11	72.18019		Prob > F	=	0.0000
Residual	20186.5219	1403 14	.3881125		R-squared	=	0.1484
	+				Adj R-squared	=	0.1465
Total	23703.0624	1406 16	.8585081		Root MSE	=	3.7932
	Coef.	Std. Err	. t	P> t	[95% Conf.	Int	cerval]
	Coef.	Std. Err	. t	P> t		Int	cerval]
wage	Coef.	Std. Err	. t	P> t	[95% Conf.	Int	cerval]
wage hours	Coef.	Std. Err	. t	P> t 0.001	[95% Conf.	Int	cerval]
wage hours ttl_exp	Coef. + .0356629	Std. Err .0102246 .0271137	. t3.49 10.42	P> t 0.001 0.000	[95% Conf.	Int	.05572
wage hours ttl_exp tenure	Coef. + .0356629 .282476 .0449328	Std. Err .0102246 .0271137	. t3.49 10.42 1.99	P> t 0.001 0.000 0.047	[95% Conf. .0156058 .2292881	Int	.05572 3356638

Стоит сделать важное замечание. При проведении теста Чоу необходимо сначала определить оптимальную модель для всей выборки, а затем уже проводить сам тест.

Исходя из простого сопоставления результатов оценки этих моделей, можно заключить, что результаты сильно отличаются для двух подвыборок, что свидетельствует о корректности проведенного теста.

Задание 7.4.

В приведенных ниже таблицах содержатся результаты оценивания функции спроса на молоко (в таблице 1 по всем наблюдениям, в таблице 2 — по наблюдениям для сельской местности, в таблице 3 — для городской местности).

Переменные:

buymilk – стоимость молока, купленного семьей за последние 7 дней (в руб.), income – доход семьи за месяц,

prmilk - цена 1 л молока (в руб.),

status — тип населенного пункта (1 - областной центр, 2 - город, 3 - поселок городского типа, 4 - село),

Таблица 1.

reg buymilk_c inc pr_milk

Source	SS	df	MS	Numb	er of obs = 2127
Model Residual Total	7855703.78 8841601.29 16697305.1	2124 4	927851.89 162.71247 853.85939	Prob R-sq	uared = 0.4705 R-squared = 0.4700
buymilk_c	Coef.	Std. Err	. t	P> t	[95% Conf. Interval]
inc pr_milk _cons	.0002428 .8768133 32.96319	.0000762 .02023 1.746953	43.34	0.001 0.000 0.000	.0000934 .0003922 .837140 .9164859 29.53727 36.38911

Таблица 2.

reg buymilk_c inc pr_milk if status==4

Source	SS	df	MS		er of obs = 348
Model Residual 	3184511.16 1720236.56	2 15 345 49	92255.58 86.19293 134.7197	R-sq Adj	2, 785) = 319.33 > F = 0.0000 quared = 0.6493 R-squared = 0.6472 MSE = 70.613
buymilk_c	Coef.	Std. Err	. t	P> t	[95% Conf. Interval]
inc pr_milk _cons	.0002418 .9387025 32.57962	.0002566 .0371628 4.539265	25.26	0.347 0.000 0.000	0002629 .0007465 .8656084 1.011797 23.65151 41.50774

Таблица 3.

reg buymilk_c inc pr_milk if status==1 status==2 status==3

Source	SS 	df 	MS		Number of obs = 1779 F(2, 785) = 586.49	
Model Residual			4458.12		Prob > F = 0.0000 R-squared = 0.3978 Adj R-squared = 0.3971	
Total	11788339.9	1778 663	0.11241		Root MSE = 63.225	
buymilk_c		Std. Err.			•	
inc pr_milk _cons	.0002451 .8425161 33.35554	.0000793 .0246925 1.894483	3.09 34.12 17.61	0.002 0.000 0.000	.0000896 .0004006 .7940866 .8909456 29.63989 37.07119	

Можно ли считать зависимость спроса на молоко от его цены и дохода единой для городской и сельской местности? Ответ обоснуйте подходящим тестом.