A preliminary analysis of the Bicincitta data

Vishal Sood Citiviz Sárl, Lausanne

 $\mathrm{May}~8,~2015$

Contents

0.1	Proble	ems in the Bicincitta data set from 2013	1
	0.1.1	Data	1
	0.1.2	Who are the users?	2
	0.1.3	Subnetworks for stations users, and transactions	2
	0.1.4	User addresses	4
0.2	Apper	ndix	6

0.1 Problems in the Bicincitta data set from 2013

There are problems with the Bicincitta data that we need to address before loading the data into a reliable and proper data-base. We will point out these problems using examples, and measure their magnitude using systematic analysis, and then speculate about the cause behind these problems.

0.1.1 Data

We load the data from JSONs provided to us by Bicincitta at the end of April 2015. The resulting data is in the form of lists of dictionaries.

```
a subnetwork is described by,
         id
        name
 a station is described by,
        latitude
        name
         id
        longitude
        {\tt subnetwork\_id}
 a user is described by
        {\tt subnetwork\_id}
         gender
        expires
        postal_code
        address
         id
a transaction is described by,
        direction
        user_id
         event_time
         {\tt created\_at}
         updated_at
```

station_id

The resulting dictionaries have ids that are UTF-8 strings. We change these to integers to make our work easier. The addersses in the user data are web-quotes, which we need to *unquote*. We will also unquote the station names, just to be safe. There are keys in a transaction that do not seem to correspond to the data, but refer to the time at which the data was loaded into the JSON provided to us. We will drop these variables, and change the *event_time* to a time object.

0.1.2 Who are the users?

The simplest question may be the fraction of females vs males,

Of all the users 60 percent are female and 39 percent males.

It would be interesting if 60% of the users were in fact female. However, as we will see later there seems to be a problem of user duplicacy biased towards females. This bias towards is much worse among the users for whome an address is available. More than ninety percent of the users with an available address in the data are female.

0.1.3 Subnetworks for stations users, and transactions

We have a data table for subnetworks, which contains the subnetwork's id and name. Both users and stations have been assigned a $subnetwork_id$ which should be an integer pointing to the id variable in the subnetwork table. We would expect all the subnetworks in this table to be conceptually equivalent. Thus the subnetworks PubliBike and Campus should refer to the same concept of a subnetwork. However a peek at the data hints against this assumption. It seems that there are two distinct concepts of a subnetwork in the subnetwork table. There are several lines of evidence leading us to this conclusion.

First of all, only 11 of the 18 subnetworks have a station assigned to them, and 7 have no stations (see table in the appendix).

While none of the stations have been assigned the subnetwork, most of the users are in subnetwork PubliBike,

Number of users from subnetwork PubliBike is 58927

The subnetworks thus appear to mean two different things:

- 1. a geographic subnetwork that has stations
- 2. an administrative subnetwork that is assigned to a user when she signs up.

So we assign each transaction an administrative and a geographic subnetwork. The administrative subnetwork is the subnetwork that the user of the transaction has been assigned, and the geographic subnetwork is the subnetwork that the station of the transaction has been assigned. So administratively, all the transactions are in PubliBike, while geographically they are in 11 different subnetworks. In the appendix we present a table for subnetworks, showing the number of transactions that fall in a subnetwork, both administratively and geographically, along with the number of users.

Looking at the actual number of users who have registered a transaction makes us question the validity of the user data base.

Fraction of users who have registered a transaction 0.10673152586

With only 10% users with registered transactions, where are the remaining 90% users from ? Are they left-overs from previous versions of the system? Or is there an error in the database? Additionally, all the users with the transactions have been assigned the subnetwork *PubliBike*.

0.1.4 User addresses

There are several problems associated with user addresses. We have already noticed, and fixed, that the provided addresses in the JSON have not been *unquoted* from their web encoding. Here we continue to explore other problems that may arise in the addresses.

We want to count the number of users at one address. Because the addresses have been provided as strings, we have to be able to aggregate all address strings that describe the same address. We have written a python function to do this task, which takes the address and postal-code strings to provide a combined string taking into account some empirical disambiguation criteria such as Av, Ave, for Avenue.

Addresses are not available for all the users.

Number of users with available address 21659 of which only 15446 unique

What fraction of unique addresses have multiple users?

0.230545124951

How many users at addresses with multiple users?

9774

which corresponds to a fraction of all users with available address,

0.451267371531

Multiple users at the same address could be actual multiple people, or multiple registrations by the same person, or a database error. We can consider as an example the address with the most multiplicity of 53,

address: via lambertenghi 1; 6900, number of users: 53

We could say more about the multiple users at the same address if we look at their transactions. However as it turns out, we do not have addresses for users who have registered transactions in the data.

0.2 Appendix

Table characterizing subnetworks id stations

	id	stations	$\mathtt{trxns_adm}$	$trxns_geo$	users
name					
La Cote	1	13	0	71292	0
Bulle	3	2	0	566	0
Les Lacs-Romont	4	9	0	4964	0
Bâle	5	0	0	0	0
Riviera	11	5	0	11576	0
Morges	15	0	0	0	0
Chablais	6	10	0	2377	3
Ouchy	16	0	0	0	3
Paradiso	17	0	0	0	3
Vevey	14	0	0	0	4
unknown	2011	0	0	0	152
unknown	2005	0	0	0	469
Valais Central	7	7	0	5077	530
Cern	18	0	0	0	721
Yverdon-les-Bains	8	9	0	33227	773
Agglo Fribourg	2	10	0	17630	810
Lausanne-Morges	9	11	0	12157	2183
Lugano-Paradiso	12	13	0	66415	3425
Campus	10	15	0	65853	15871
PubliBike	13	0	291134	0	58927

Table for addresses with multiple users $% \left(1\right) =\left(1\right) \left(1\right)$

rable for addresses wrom martiple about			
	females	males	users
address			
via lambertenghi 1; 6900	52	1	53
chemin des falaises 3; 1005	52	0	52
chemin des berges 12; 1022	41	0	41
avenue des bains 9; 1007	37	0	37
via monte carmen 4; 6900	33	0	33
route cantonale 33; 1025	25	0	25
via madonnetta 23; 6900	24	0	24
place du tunnel 17; 1005	23	0	23
avenue des bains 11; 1007	23	0	23
rue de genève 76; 1004	22	0	22
route cantonale 35; 1025	22	0	22
via zurigo 1; 6900	20	1	21
rue du valentin 27; 1004	19	0	19
route de chavannes 40; 1007	19	0	19
chemin de la prairie 60; 1007	18	0	18
etudiant unil en ã © change; 1015	16	0	16
chemin des triaudes; 1024	16	0	16
route de chavannes; 1007	15	0	15
rue de la blancherie 17; 1022	14	0	14
via zurigo 3; 6900	13	1	14
route de chavannes 46; 1007	13	0	13
route cantonale 37; 1025	13	0	13
cern;	10	3	13
route de chavannes 50; 1007	13	0	13
12 avenue de l'eglise anglaise; 1006	13	0	13
11 avenue des bains; 1007	12	0	12

92 avenue du tir fédéral; 1024	12	0	12
33 route cantonale; 1025	12	0	12
avenue de rhodanie 64b; 1007	12	0	12
chemin de rionza 5; 1020	12	0	12
rue de lausanne 11; 1020	12	0	12
chemin des triaudes 5; 1024	11	0	11
via buffi 13; 6900	11	0	11
avenue de rhodanie 64a; 1007	11	0	11
avenue de l'eglise anglaise 10; 1006	11	0	11
route de chavannes 44; 1007	11	0	11
18 chemin des triaudes; 1024	11	0	11
chemin de la prairie 62; 1007	11	0	11
via beltramina 10a; 6900	11	0	11
via fola 1; 6963	11	0	11
chemin des triaudes 11; 1024	11	0	11
route de chavannes 42; 1007	11	0	11
12 avenue de l'église anglaise; 1006	11	0	11
avenue de rhodanie 64; 1007	10	0	10
9 avenue des bains; 1007	10	0	10
etudiant unil;	10	0	10
rue de geneve 76; 1004	10	0	10
station 18; 1015	10	0	10