

Background

- There are three methods to establish a classifier
 - a) Model a classification rule directly
 - Examples: k-NN, decision trees, perceptron, SVM
 - b) Model the probability of class memberships given input data
 - Example: multi-layered perceptron with the cross-entropy cost
 - c) Make a probabilistic model of data within each class
 - Examples: naive Bayes, model based classifiers
- a) and b) are examples of discriminative classification
- c) is an example of generative classification
- b) and c) are both examples of probabilistic classification

Things We'd Like to Do

- Spam Classification
 - Given an email, predict whether it is spam or not
- Medical Diagnosis
 - Given a list of symptoms, predict whether a patient has disease X or not
- Weather
 - Based on temperature, humidity, etc... predict if it will rain tomorrow

Bayesian Classification

- Problem statement:
 - Given features X₁,X₂,...,X_n
 - Predict a label Y

Another Application

Digit Recognition

 $X_1,...,X_n \in \{0,1\}$ (Black vs. White pixels)

 $Y \in \{5,6\}$ (predict whether a digit is a 5 or a 6)

The Bayes Classifier

A good strategy is to predict:

$$\operatorname{arg\,max}_{Y} P(Y|X_{1},\ldots,X_{n})$$

(for example: what is the probability that the image represents a 5 given its pixels?)

So ... How do we compute that?

The Bayes Classifier

Use Bayes Rule!

$$P(Y|X_1,\ldots,X_n) = \frac{P(X_1,\ldots,X_n|Y)P(Y)}{P(X_1,\ldots,X_n)}$$
Normalization Constant

 Why did this help? Well, we think that we might be able to specify how features are "generated" by the class label

The Bayes Classifier

• Let's expand this for our digit recognition task:

$$\frac{a}{a+b} + \frac{b}{a+b}$$

$$= \frac{a+b}{a+b} = \frac{a+b}{a+b}$$

$$P(Y = 5 | X_1, ..., X_n) = \frac{P(X_1, ..., X_n | Y = 5) P(Y = 5)}{P(X_1, ..., X_n | Y = 5) P(Y = 5) + P(X_1, ..., X_n | Y = 6) P(Y = 6)}$$

$$P(Y = 6 | X_1, ..., X_n) = \frac{P(X_1, ..., X_n | Y = 6) P(Y = 6)}{P(X_1, ..., X_n | Y = 5) P(Y = 5) + P(X_1, ..., X_n | Y = 6) P(Y = 6)}$$

 To classify, we'll simply compute these two probabilities and predict based on which one is greater

Probability Basics

- Prior, conditional and joint probability
 - ightharpoonupPrior probability: P(X)
 - Conditional probability: $P(X_1 | X_2), P(X_2 | X_1)$
 - Joint probability: $\mathbf{X} = (X_1, X_2), P(\mathbf{X}) = P(X_1, X_2)$
 - Relationship: $P(X_1, X_2) = P(X_2 \mid X_1)P(X_1) = P(X_1 \mid X_2)P(X_2)$
 - ✓ Independence: $P(X_2 | X_1) = P(X_2), P(X_1 | X_2) = P(X_1), P(X_1, X_2) = P(X_1)P(X_2)$
- Bayesian Rule

$$P(C \mid \mathbf{X}) = \frac{P(\mathbf{X} \mid C)P(C)}{P(\mathbf{X})}$$
 Posterior =
$$\frac{Likelihood \times Prior}{Evidence}$$

Naïve Bayes

P(X1/XL1X).P(X21x3...xn).P(X1).P(X1).P(X1).P(X1/X).P(X3/L)... ectelly = p(+1/c=ter). P(+1/c=ter). P(c)

Bayes classification

$$P(C \mid \mathbf{X}) \propto P(\mathbf{X} \mid C)P(C) = P(X_1, \dots, X_n \mid C)P(C)$$

Difficulty: learning the joint probability

- Naïve Bayes classification
 - Making the assumption that all input attributes are independent

$$P(X_{1}, X_{2}, \dots, X_{n} | C) = P(X_{1} | X_{2}, \dots, X_{n}; C) P(X_{2}, \dots, X_{n} | C)$$

$$= P(X_{1} | C) P(X_{2}, \dots, X_{n} | C)$$

$$= P(X_{1} | C) P(X_{2} | C) \dots P(X_{n} | C)$$

$$\frac{P(\zeta/x)}{P(\zeta/x)} = \prod_{i=1}^{N} P(x_i/c) \cdot P(i)$$

✓ *PlayTennis*: training examples

Example: 1 lay 10111115	Examp	le:	Play	Tenn	is
-------------------------	-------	-----	------	------	----

4	65
W.	,0
0	40

1	9785
ŕ	5 20

	Piu	iy tennis: tra	ning exa	mpies	•
Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No 🗕
D2	Sunny	Hot	High	Strong	No 🗕
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No 🛰
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

D 15

2 (85)

3 (40)

Outlook	Play=Yes	Play=No
Sunny	2/9	3/5
Overcast	4/9	0/5
Rain	3/9	2/5

Temperature	Play=Yes	Play=No
Hot	2/9	2/5
Mild	4/9	2/5
Cool	3/9	1/5

Humidity	Play=Yes	Play=No
High	3/9	4/5
Normal	6/9	1/5

Wind	Play=Yes	Play=No
Strong	3/9	3/5
Weak	6/9	2/5

$$P(\text{Play}=Yes) = 9/14$$

$$\sim P(\text{Play}=No) = 5/14$$

- Test Phase
 - Given a new instance,

Look up tables

$$P(Outlook=Sunny | Play=Yes) = 2/9 \qquad P(Outlook=Sunny | Play=No) = 3/5 \\ P(Temperature=Cool | Play=Yes) = 3/9 \qquad P(Temperature=Cool | Play==No) = 1/5 \\ P(Huminity=High | Play=Yes) = 3/9 \qquad P(Huminity=High | Play=No) = 4/5 \\ P(Wind=Strong | Play=Yes) = 3/9 \qquad P(Wind=Strong | Play=No) = 3/5 \\ P(Play=Yes) = 9/14 \qquad P(Play=No) = 5/14$$

play = ?

MAP rule

 $P(Yes \mid \mathbf{X}'): [P(Sunny \mid Yes)P(Cool \mid Yes)P(High \mid Yes)P(Strong \mid Yes)]P(Play=Yes) = \underline{0.0053}$ $P(No \mid \mathbf{X}'): [P(Sunny \mid No) P(Cool \mid No)P(High \mid No)P(Strong \mid No)]P(Play=No) = \underline{0.0206}$

Given the fact $P(Yes | \mathbf{x}') < P(No | \mathbf{x}')$, we label \mathbf{x}' to be "No".

$$P(Ye_1/x') = \frac{0.0053}{0.0053 + 0.0206} \qquad P(N_0/x') = \frac{0.0206}{0.0053 + 0.0206}$$

Conclusions

- Naïve Bayes based on the independence assumption
 - Training is very easy and fast; just requiring considering each attribute in each class separately
 - Test is straightforward; just looking up tables or calculating conditional probabilities with normal distributions
- A popular generative model
 - Performance competitive to most of state-of-the-art classifiers even in presence of violating independence assumption
 - Many successful applications, e.g., spam mail filtering
 - A good candidate of a base learner in ensemble learning
 - Apart from classification, naïve Bayes can do more...

Evaluating a Classification model:

1. Log Loss or Cross-Entropy Loss:

- It is used for evaluating the performance of a classifier, whose output is a probability value between the 0 and 1.
- For a good binary Classification model, the value of log loss should be near to 0.
- The value of log loss increases if the predicted value deviates from the actual value.
- The lower log loss represents the higher accuracy of the model.
- For Binary classification, cross-entropy can be calculated as:

1055

Loss = -(ylog(p)+(
$$\mathbf{1}$$
-y)log($\mathbf{1}$ -p))

Evaluating a Classification model:

2. Confusion Matrix:

- The confusion matrix provides us a matrix/table as output and describes the performance of the model.
- It is also known as the error matrix.
- The matrix consists of predictions result in a summarized form, which has a total number of correct predictions and incorrect predictions. The matrix looks like as below table:

ı		Actual Positive	Actual Negative
	Predicted Positive	True Positive -	False Positive
4	Predicted Negative	False Negative	True Negative _

$$Accuracy = \frac{TP + TN}{Total Population}$$

example confusion matrix for a binary classifier

		Predicted:	Predicted:
	n=165	NO	YES
1	Actual:		
	NO	50	10
4	Actual:		
	YES	5	100

166

n=165	Predicted: NO	Predicted: YES	
Actual:	NO	123	
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

- Accuracy: Overall, how often is the classifier correct?
 - (TP+TN)/total = (100+50)/165 = 0.91
- Misclassification Rate: Overall, how often is it wrong?
 - (FP+FN)/total = (10+5)/165 = 0.09
 - equivalent to 1 minus Accuracy
 - also known as "Error Rate"
- True Positive Rate: When it's actually yes, how often does it predict yes?
 - TP/actual yes = 100/105 = 0.95
 - also known as "Sensitivity" or "Recall"

- False Positive Rate: When it's actually no, how often does it predict yes?
 - FP/actual no = 10/60 = 0.17
- True Negative Rate: When it's actually no, how often does it predict no?
 - TN/actual no = 50/60 = 0.83
 - equivalent to 1 minus False Positive Rate
 - also known as "Specificity"

• TP/predicted yes = 100/110 = 0.91

Python Packages needed

- pandas
 - Data Analytics
- numpy
 - Numerical Computing
- matplotlib.pyplot
 - Plotting graphs
- sklearn
 - Classification and Regression Classes

Implementation Using sklearn

Let's go to Jupyter Notebook!