第3回 行列とその演算

本日の講義の目標

目標 3

- 行列の定義について理解し、"行"や"列"などの用語を覚える.
- 行列の演算(和,スカラー倍,積)について理解する.

行列の定義

定義 3.1

m,n を自然数とする. mn 個の数 (スカラー) a_{ij} ($1 \le i \le m, 1 \le j \le n$) を以下 のようにならべ() または [] でくくったものをm 行n 列の行列(または $m \times n$ 行 列) という:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \quad \text{\sharp \mathcal{T}} \mathsf{\sharp} \quad \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

この
$$a_{ij}$$
 を A の (i,j) 成分という. 行列の横のならび $\begin{pmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{pmatrix}$ を A の行といい, 上から i 番目の行を第 i 行という. また縦のならび $\begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix}$ を A の

列といい, 左から j 番目の列を第 j **列**という. A に対し, (m,n) を A の型 (または サイズ)という.

行列の例と特別な行列

例 3.2

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 0 \end{pmatrix}$$
 は 2×3 行列 $(2$ 行 3 列の行列) である. A の第 2 行は $(4$ 5 $0)$ であり、第 3 列は $\begin{pmatrix} 3 \\ 0 \end{pmatrix}$ であり、 A の $(2,1)$ 成分は 4 、 $(1,3)$ 成分は 3 である.

行列を表すとき, 通常 A, B, C, \ldots などのアルファベットの大文字を用いる. 文字は自由に選んで良いが, O と E は特別な行列に割り当てられる (cf. 定義 3.3).

定義 3.3

全ての成分が 0 に等しい行列 O を**零行列**という. m=n を満たす行列 A を (n次) **正方行列**という. 正方行列のうち, **対角成分**が 1 で残りの成分が 0 の行列 Eを**単位行列**という.

$$O = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & & \vdots \\ 0 & \dots & 0 \end{pmatrix} \qquad E = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

行列の演算

 a_{ij} を (i,j) 成分とする $m \times n$ 行列 A を $A = (a_{ij})$ と表す.例えば n 次正方行列 (a_{ij}) を $a_{ij} = 1$ (i = j) かつ $a_{ij} = 0$ $(i \neq j)$ により定めれば, (a_{ij}) は単位行列 E (定義 3.3) に等しい.

定義 3.4 (行列の和とスカラー倍)

サイズ $(=m \times n)$ の等しい行列 $A=(a_{ij})$ と $B=(b_{ij})$ に対し、和 A+B を

$$A + B =: \begin{pmatrix} a_{11} + b_{11} & \cdots & a_{1n} + b_{1n} \\ \vdots & & \vdots \\ a_{m1} + b_{m1} & \cdots & a_{mn} + b_{mn} \end{pmatrix} = (a_{ij} + b_{ij})$$

により定義し、スカラー λ に対し λA を

$$\lambda A = \begin{pmatrix} \lambda a_{11} & \cdots & \lambda a_{1n} \\ \vdots & & \vdots \\ \lambda a_{m1} & \cdots & \lambda a_{mn} \end{pmatrix} = (\lambda a_{ij})$$

により定義する.

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 1 & 0 \end{pmatrix}$$
 かつ $B = \begin{pmatrix} -1 & 0 & 2 \\ -2 & 0 & 1 \end{pmatrix}$ のとき、

 $2A + 3B = 2\begin{pmatrix} 2 & 0 & 1 \\ 3 & 1 & 0 \end{pmatrix} + 3\begin{pmatrix} -1 & 0 & 2 \\ -2 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 8 \\ 0 & 2 & 3 \end{pmatrix}.$ 行列 A と行列 B の積は, A の列数と B の行数が等しいときにのみ定義される.

定義 3.6 (行列の積)

定義 3.6 (行列の槓)
$$m \times n$$
 行列 $A = (a_{ij})$ と $n \times l$ 行列 $B = (b_{jk})$ に対し, $m \times l$ 行列 $AB = (c_{ij})$ を

$$c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{in}b_{nj}$$

$$AB = \begin{pmatrix} \vdots \\ a_{i1} & \cdots & a_{in} \end{pmatrix} \begin{pmatrix} b_{1j} \\ \vdots \\ b_{nj} \end{pmatrix} = \begin{pmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{pmatrix}$$

AB の (i,j) 成分 c_{ij} は A の第 i 行 \mathbf{a}_i と B の第 j 列の \mathbf{b}_i の内積 $\mathbf{a}_i \cdot \mathbf{b}_i$ に等しい.

例 3.7

$$A = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 0 \end{pmatrix} \mathcal{O} \succeq \mathfrak{F},$$

$$AB = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \times 0 + (-2) \times 1 & 1 \times 1 + (-2) \times (-1) & 1 \times 0 + (-2) \times 0 \\ 0 \times 0 + 1 \times 1 & 0 \times 1 + 1 \times (-1) & 0 \times 0 + 1 \times 0 \end{pmatrix}$$

$$= \begin{pmatrix} -2 & 3 & 0 \\ 1 & -1 & 0 \end{pmatrix}$$

B の列の数 (= 3) と A の行の数 (= 2) が異なるため, 積 BA は**定義されない**.

行列の演算も数の演算とよく似た性質をもつが、いくつかの"著しく"異なる性質があるので注意する:

- 和, 差, 積が定義されるとは限らない (A, B の型に依存する). (cf. 例 3.7)
- 積 AB と BA がともに定義されたとしても、一般には $AB \neq BA$ である.

例題 3.8

$$A = \begin{pmatrix} 1 & -2 \\ 3 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 4 \\ 5 & 7 \end{pmatrix}$ のとき, 積 AB と積 BA を計算せよ.

解答)

$$AB = \begin{pmatrix} 1 & -2 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ 5 & 7 \end{pmatrix} = \begin{pmatrix} -8 & -10 \\ 16 & 26 \end{pmatrix}.$$
$$BA = \begin{pmatrix} 2 & 4 \\ 5 & 7 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} 14 & 4 \\ 26 & 4 \end{pmatrix}.$$

行列の演算の性質

結合律や分配律などの"数"の持つ演算の性質は行列でも成立する.

- A + B = B + A, A + O = A
- (A+B)+C=A+(B+C) (和に関する結合律)
- AE = EA = A, AO = O, OA = O
- (AB)C = A(BC) (積に関する結合律)
- 0A = O, 1A = A, (ab)A = a(bA), (aA)B = a(AB)
- a(A + B) = aA + aB, (a + b)A = aA + bA,
- A(B+C) = AB + AC, (A+B)C = AC + BC (分配律)