MATH 2600 Sp 15

Problems: 1.3.10, 20; 1.4.12; 1.8-103 1.6.16; 1.7.11

1.3.10 Given: Model 3: $\frac{d^2x}{dt^2} = 32.2 - 0.00046 \left(\frac{dx}{dt}\right)^{4}$ r= 0.00046/D

P = 135.52 v = dx/dt V(0) = 0

Find: Show that dx = N = \[\frac{32.2}{V} \frac{e^{bt}}{e^{bt}+1} \]

Assumptions: None

Solution: d2x = dv = 32.2 - v v2 separable DE

=> du use PFE or table to integrate.

PTE (ofter slight rearrangement):

 $\frac{1}{r} \sqrt{\frac{A}{B^2} - v} + \frac{B}{\sqrt{32.2} + v} dv = \int dt$

1322 (A+B) + N(A-B) = 1 => A=B, A= ½√/32.2

 $\Rightarrow \frac{1}{2b} \left(\sqrt{\frac{1}{122} - \nu} + \sqrt{\frac{1}{122} + \nu} \right) d\nu = \int dt$

7 1 1 1 1 2 + 1 = t+c By v(0) = 0 = 0 = 0

Exponentiate > \frac{132.2}{\sqrt{2.2}-v} = e^{26t}

Solve for $V \Rightarrow V = \sqrt{\frac{32.2}{r}} \frac{e^{26t}}{e^{26t} + 1}$ 2?

1.3.20) Given: Models 2 and 3. Data in Table 2.

Find: Write program that takes D as input and returns approviate verm.

Assumptions: None

Solution: see R code HWZ.R

For 0.00025 < D < 0.004. Model 2 is closer for smaller values and Model 3 closer for larger values.

1.4.12 Given: from 10) P(0) =1 @ increments of at=1, probability of doubling is 0.75 P(t)= P(o)rt

Find: Tabulate population for t between 1 and 15.

Assumptions: none

Solution: See HW2. R for tabulation.

For model fit, we can use Excel's solver (see HW2.xlsx) or linear least squares method:

P(t) = rt since P(0) = 1. Pi is ith data pt.

=> (n-P(t) = t lnr

E(lar) = E (la Pi - tilnr) = sum of squared error

dE =-2 = ti (InPi-tilur) = 0 @ lur = \frac{15}{21} \xi \langle \langle \rangle \frac{5}{2} \xi \cdot \frac{5}{2} \xi \cdot \cdo

> r = exp(!stilnPi/sti2)

1.5.10) See HWZ.R

1.6.16/ See HWZ.R

1.7.11 Coiven: Inventory policy model:

r = rate items sold (6 days/week)

s = storage cost per item per day (7 days/week)

k = order cost X = Hitems in order

a) Make table like table 1 covering two weeks.
b) Write function that outputs yearly cost based on Find:

c) can function be used in prescriptive unaner?

Assumptions: Day 1 fells on Monday - 5

Solution: $\dot{r} = 20$, s = 0.05, k = 100, x = 100 per Table 1.

X/r = 5

3/3

1.	7.	ll	cont.	/
1.	t.	"	com.	1

. [. []		1 5	# 110	1
D .	N Kinn	ordering	146	Carrying cost
D37	Derivery	cost	inventory	for this day
M I	Yes	\$100	100	\$ 5
5 1	No	Ø	80	4
w 3	No	0	60	3
R 4	No	O	40	2
F 5	No	, 0	20	1
5 6	Yes	\$100	100	5
\$ 7	No	0	100	5
M B	No	0	80	4
т 9	No	0	60	3
W 10	No	0	40	2
RII	No	, 0	Zo	(
F 12	Yes	\$100	100	5
5 13	No	0	80	Lf
s 14	No	0	80	4

see HW2.R

It appears that optimum order size is 240.