

From the INTERNATIONAL BUREAU

PCT

NOTICE INFORMING THE APPLICANT OF THE COMMUNICATION OF THE INTERNATIONAL APPLICATION TO THE DESIGNATED OFFICES

(PCT Rule 47.1(c), first sentence)

To:
LAUER, Dieter
Solvay Pharmaceuticals GmbH
Hans-Böckler-Allee 20
D-30173 Hannover
ALLEMAGNE

Date of mailing (day/month/year)

18 November 1999 (18.11.99)

Applicant's or agent's file reference

98.06-WO

IMPORTANT NOTICE

International application No. PCT/DE99/01417

International filing date (day/month/year)

Priority date (day/month/year)

10 May 1999 (10.05.99)

13 May 1998 (13.05.98)

Applicant

SOLVAY PHARMACEUTICALS GMBH et al

Notice is hereby given that the International Bureau has communicated, as provided in Article 20, the international application
to the following designated Offices on the date indicated above as the date of mailing of this Notice:
AU,CN,EP,IL,JP,KP,KR,US

In accordance with Rule 47.1(c), third sentence, those Offices will accept the present Notice as conclusive evidence that the communication of the international application has duly taken place on the date of mailing indicated above and no copy of the international application is required to be furnished by the applicant to the designated Office(s).

2. The following designated Offices have waived the requirement for such a communication at this time:

SE,SG,SI,SK,SL,TJ,TM,TR,TT,UA,UG,UZ,VN,YU,ZA,ZW
The communication will be made to those Offices only upon their request. Furthermore, those Offices do not require the applicant to furnish a copy of the international application (Rule 49.1(a-bis)).

 Enclosed with this Notice is a copy of the international application as published by the International Bureau on 18 November 1999 (18.11.99) under No. WO 99/58500

REMINDER REGARDING CHAPTER II (Article 31(2)(a) and Rule 54.2)

If the applicant wishes to postpone entry into the national phase until 30 months (or later in some Offices) from the priority date, a demand for international preliminary examination must be filed with the competent International Preliminary Examining Authority before the expiration of 19 months from the priority date.

It is the applicant's sole responsibility to monitor the 19-month time limit.

Note that only an applicant who is a national or resident of a PCT Contracting State which is bound by Chapter II has the right to file a demand for international preliminary examination.

REMINDER REGARDING ENTRY INTO THE NATIONAL PHASE (Article 22 or 39(1))

If the applicant wishes to proceed with the international application in the national phase, he must, within 20 months or 30 months, or later in some Offices, perform the acts referred to therein before each designated or elected Office.

For further important information on the time limits and acts to be performed for entering the national phase, see the Annex to Form PCT/IB/301 (Notification of Receipt of Record Copy) and Volume II of the PCT Applicant's Guide.

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Authorized officer

J. Zahra

Facsimile No. (41-22) 740.14.35

Telephone No. (41-22) 338.83.38

THIS PAGE BLANK (USPTO)

Continuation of Form PCT/IB/308

NOTICE INFORMING THE APPLICANT OF THE COMMUNICATION OF THE INTERNATIONAL APPLICATION TO THE DESIGNATED OFFICES

Date f mailing (day/month/year) 18 November 1999 (18.11.99)		IMPORTANT NOTICE					
Applicant's or agent's file reference	Interna	tional application No.		 			
98.06-WO		CT/DE99/01417	•				
				*			
The applicant is hereby notified that, at the ti nmendments under Article 19 has not yet expire declaration that the applicant does not wish to m	d and the International Bu	is Notice, the time limit ureau had received neit	under Rule 46. her such amen	for making dments nor a			
e de la companya de			•				
	•						
•							
		4					
		•					
·							
	·						
•							
·	·						

THIS PAGE BLANK (USPTO)

FATENT COOPERATION TREATY

To:

From the INTERNATIONAL BUREAU

PCT

NOTIFICATION OF ELECTION

(PCT Rule 61.2)

Assistant Commissioner for Patents United States Patent and Trademark Office Box PCT Washington, D.C.20231 ÉTATS-UNIS D'AMÉRIQUE

Date of mailing (day/month/year) 18 January 2000 (18.01.00)	in its capacity as elected Office
International application No. PCT/DE99/01417	Applicant's or agent's file reference 98.06-WO
International filing date (day/month/year) 10 May 1999 (10.05.99)	Priority date (day/month/year) 13 May 1998 (13.05.98)
Applicant	
REGGELIN, Michael et al	

1.	The designated Office is hereby notified of its election made:
	X in the demand filed with the International Preliminary Examining Authority on:
	18 November 1999 (18.11.99)
	in a notice effecting later election filed with the International Bureau on:
2.	The election X was
	was not
	made before the expiration of 19 months from the priority date or, where Rule 32 applies, within the time limit under Rule 32.2(b).

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland

Authorized officer

Diana Nissen

Telephone No.: (41-22) 338.83.38

Facsimile No.: (41-22) 740.14.35

THIS PAGE BLANK (USPTO)

PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C7D 207/12, 209/52, 291/04, C07C 381/10, C07F 7/10

(11) Internationale Veröffentlichungsnummer:

WO 99/58500

A1

(43) Internationales Veröffentlichungsdatum:

18. November 1999 (18.11.99)

(21) Iternationales Aktenzeichen:

PCT/DE99/01417

(22) Aternationales Anmeldedatum:

10. Mai 1999 (10.05.99)

(30)Prioritätsdaten:

198 21 418.9

13, Mai 1998 (13.05.98)

DE

(7) Anmelder (für alle Bestimmungsstaaten ausser US): SOLVAY PHARMACEUTICALS GMBH [DE/DE]; Hans-Böckler-Allee 20, D-30173 Hannover (DE).

2) Erfinder: und

- 5) Erfinder/Anmelder (nur für US): REGGELIN, Michael [DE/DE]; Steinbacherweg 7, D-65589 Hadamar (DE). HEINRICH, Timo [DE/DE]; Albert-Schweitzer-Strasse 4, D-63517 Rodenbach (DE). JUNKER, Bernd [DE/DE]; Joseph-Haydn-Strasse 32, D-65812 Bad Soden (DE). ANTEL, Jochen [DE/DE]; Lauenauerstrasse 63, D-31848 Bad Münder (DE). PREUSCHOFF, Ulf [DE/DE]; Meyerholzweg 5, D-29125 Uelzen (DE).
- (74) Anwalt: LAUER, Dieter; Solvay Pharmaceuticals GmbH, Hans-Böckler-Allee 20, D-30173 Hannover (DE).

(81) Bestimmungsstaaten: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.

- (54) Title: METHOD FOR STEREOCHEMICALLY CONTROLLED PRODUCTION OF ISOMERICALLY PURE HIGHLY SUBSTI-TUTED AZACYCLIC COMPOUNDS
- (54) Bezeichnung: VERFAHREN ZUR STEREOCHEMISCH KONTROLLIERTEN HERSTELLUNG ISOMERENREINER HOCHSUB-STITUIERTER AZACYCLISCHER VERBINDUNGEN

(57) Abstract

The invention relates to method for stereochemically controlled production of azacyclic compounds of general formula (I), whereby the substituents have the meaning cited in the description. The invention also relates to intermediate products of this method and to novel azacyclenes.

(57) Zusammenfassung

Es werden ein Verfahren zur stereochemisch kontrollierten Herstellung von azacyclischen Verbindungen der allgemeinen Formel (I), worin die Substituenten die in der Beschreibung angegebene Bedeutung besitzen sowie Zwischenprodukte dieses Verfahrens und neue Azacyclen beschrieben.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
ΑT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΑU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR .	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
СН	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	ZW	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumānien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

mid in Verfahren zur stereochemisch kontrollierten Herstellung azacyclischer Verbindungen.

THIS PAGE BLANK (USPTO)

WO 99/58500 PCT/DE99/01417

VERFAHREN ZUR STEREOCHEMISCH KONTROLLIERTEN HERSTELLUNG ISOMERENREINER HOCHSUBSTITUIERTER AZACYCLISCHER VERBINDUNGEN

Beschreibung

Die vorliegende Erfindung betrifft ein neues Verfahren zur stereochemisch kontrollierten Herstellung neuer und bekannter hochsubstituierter azacyclischer Verbindungen sowie neue Zwischenprodukte dieses Verfahrens. Weiterhin betrifft die Erfindung neue hochsubstituierte azacyclische Verbindungen, welche isomerenrein aufgebaut werden können und welche für zahlreiche Anwendungsgebiete nützliche Eigenschaften aufweisen.

Hochsubstituierte Stereoisomere von azacyclischen Verbindungen, insbesondere hochsubstituierte Derivate von Pyrrolidinen oder Piperidinen, stellen für zahlreiche Anwendungen nützliche Ausgangsstoffe dar und finden beispielsweise Verwendung als Bestandteile von chiralen Katalysatoren in der asymmetrischen Synthese (siehe z. B. Kobayashi et al., Chemistry Letters (= Chem. Lett.) (1991) 1341-1344), als Bestandteile biologisch aktiver Alkaloide (siehe z. B. Williams et al., Journal of Organic Chemistry (= JOC) <u>57</u> (1992) 6527-6532 und darin zitierte Referenzen; Jäger et al., Angewandte Chemie 102 (1990) 1180-1182) sowie als Bestandteile pharmakologisch interessanter Verbindungen (siehe z. B. Laschat et al., Synthesis 4 (1997) 475-479). Weiterhin weisen beispielsweise nach dem erfindungsgemäßen Verfahren herstellbare oder strukturell eng verwandte Decahydrochinoline und Pyrrolidine interessante physiologische Wirkungen auf (siehe z. B. Kuzmitskii et al., Vestsi Akad. Navuk BSSR, Ser. Khim. Navuk 3 (1979) 82-85/Chemical Abstracts Nr. 91:117158c; Lash et

al., Journal of Heterocyclic Chemistry 28 (1991) 1671-1676). Auch die Verwendung einiger vorstehend angegebener Pyrrolidine zur Herstellung von Porphyrin-Ringsystemen wird dort diskutiert. Aus den angegebenen Literaturstellen sind z. T. auch Verfahren zur Herstellung derartiger azacyclischer Verbindungen bekannt. Bestimmte Enantiomere dieser Verbindungen können nach den dort angegebenen Methoden üblicherweise mittels konventioneller Racemattrennung erhalten werden. Es sind aber auch nicht-erfindungsgemäße Herstellungsverfahren angegeben, nach denen ausgewählte Einzelverbindungen substituierter Azacyclen isomerenrein hergestellt werden können. Ein allgemeines Verfahren zur stereokontrollierten Synthese isomerenreiner hochsubstituierter Azacyclen ist aus den vorstehend angegebenen Literaturstellen nicht bekannt.

Weiterhin ist bereits die stereokontrollierte Synthese einiger Tetrahydrofuran-Derivate durch Umsetzung von 2-Alkenyl-Sulfoximiden mit 2-tert.-Butyldimethylsilyloxy-propanal (= TBS-Lactaldehyd) und nachfolgende Fluorid-induzierte Cyclisierung bekannt (siehe Reggelin et al., JACS 118 (1996) 4765-4777; Reggelin et al., Liebigs Annalen der Chemie/RECUEIL (1997) 1881-1886). Hochsubstituierte azacyclische Verbindungen können nach dem dort beschriebenen Verfahren jedoch nicht hergestellt werden.

Aus der Veröffentlichung im Internet unter der Adresse "www.iucr.ac.uk" von M. Bolte, Acta Crystallographica Section C, electronically published paper QA0017 [=(IUCr) Acta C Paper QA 0017] ist bereits die Verbindung (2S,3S,4S,5S)-(N-tert.-Butyloxycarbonyl)-2-benzyl-4,5-dimethyl-3-hydroxy-pyrrolidin bekannt. Die Herstellung dieser Verbindung wird in der angegebenen Veröffentlichung nicht beschrieben.

Aufgabe der vorliegenden Erfindung war es, ein Verfahren zur stereochemisch kontrollierten Herstellung neuer und bekannter hochsubstituierter azacyclischer Verbindungen zur Verfügung zu stellen, womit auch die Art und Anzahl der Substituenten in diesen Verbindungen breit variiert werden kann und welche isomerenrein aufgebaut werden können. Weiterhin war es Aufgabe der Erfindung, neue, insbesondere isomerenreine hochsubstituierte azacyclische Verbindungen für zahlreiche Anwendungsbereiche zur Verfügung zu stellen.

Es wurde nun überraschend gefunden, daß hochsubstituierte azacyclische Verbindungen, worin Art und Anzahl der Substituenten breit variierbar sind, in guter Ausbeute insbesondere isomerenrein aufgebaut werden können, wenn man nach einem erfindungsgemäßen Verfahren metallierte 2-Alkenylsulfoximid-Verbindungen mit N-geschützten α - oder β -Aminoaldehyden umsetzt, welche in α - und/oder in β -Stellung das in der Beschreibung angegebene Substitutionsmuster aufweisen können.

Gegenstand der Erfindung ist somit ein Verfahren zur stereochemisch kontrollierten Herstellung von Verbindungen der allgemeinen Formel I,

worin

n 0 oder 1 bedeutet,

R¹ Wasserstoff, C₁-C₆-Alkyl oder gegebenenfalls im Phenylring ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenyl-C₁-C₆-alkyl bedeutet und

R² Wasserstoff bedeutet, oder

 R^1 und R^2 gemeinsam eine doppelt gebundene Methylengruppe bedeuten, welche durch C_1 - C_5 -Alkyl oder gegebenenfalls im

Phenylring ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenyl- C_1 - C_5 -alkyl substituiert sein kann,

- R³ Wasserstoff bedeutet und
- R⁴ Wasserstoff, niederes Alkyl oder gegebenenfalls im Phenylring ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenylniederalkyl bedeutet, oder
- ${
 m R}^3$ und ${
 m R}^4$ auch gemeinsam eine ${
 m C}_2$ -Alkylenkette oder eine gegebenenfalls 1 bis 3 Doppelbindungen enthaltende ${
 m C}_3$ - ${
 m C}_6$ -Alkylenkette bedeutet, welche durch gegebenenfalls einoder zweifach durch niederes Alkyl substituiertes ${
 m C}_1$ - ${
 m C}_2$ -Alkylen überbrückt sein kann,
- Wasserstoff, niederes Alkyl, Hydroxy, niederes Alkoxy oder jeweils im Phenylring gegebenenfalls ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenylniederalkyl oder Phenylniederalkoxy bedeutet und
- R⁶ Wasserstoff bedeutet und
- R⁷ Wasserstoff bedeutet und
- Wasserstoff, Cyano, gegebenenfalls verestertes Carboxy, gegebenenfalls am Stickstoff ein- oder zweifach substituiertes Carbonylamino, ein gegebenenfalls ein- oder mehrfach ungesättigtes mono- oder bicyclisches Ringsystem mit 3 bis 10 Ringkohlenstoffatomen, dessen Ringkohlenstoffatome ein- oder mehrfach durch Stickstoff, Sauerstoff und/oder Schwefel ersetzt sein können und welches Ringsystem ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy, Hydroxy, Halogen oder durch eine niedere Alkylenkette, welche an zwei an benachbarte-Kohlenstoffatome des Ringsystems gebundene Sauerstoffatome gebunden ist, substituiert sein kann, bedeutet, oder auch für gegebenenfalls ein- oder mehrere Doppelbindun-

auch für gegebenenfalls ein- oder mehrere Doppelbindungen enthaltendes geradkettiges oder verzweigtes C_1 - C_{12} -

Alkyl stehen kann, welches ein- oder mehrfach durch Halogen, Hydroxy, niederes Alkoxy, gegebenenfalls verestertes Carboxy, Cyano, Mercapto, niederes Alkylthio, Amino, niederes Alkylamino, gegebenenfalls am Stickstoff ein- oder zweifach substituiertes Carbonylamino, ein gegebenenfalls ein- oder mehrfach ungesättigtes mono- oder bicyclisches Ringsystem mit 3 bis 10 Ringkohlenstoffatomen, dessen Ringkohlenstoffatome einoder mehrfach durch Stickstoff, Sauerstoff und/oder Schwefel ersetzt sein können und welches Ringsystem ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy, Hydroxy, Halogen oder durch eine niedere Alkylenkette, welche an zwei an benachbarte Kohlenstoffatome des Ringsystems gebundene Sauerstoffatome gebunden ist, substituiert sein kann, oder ${\tt R}^{\tt 5}$ und ${\tt R}^{\tt 8}$ auch gemeinsam mit den Kohlenstoffatomen, an welche sie gebunden sind, ein gegebenenfalls 1 bis 3 Doppelbindungen enthaltendes mono- oder bicyclisches Ringsystem mit 5 bis 10 Ringkohlenstoffatomen bilden können, dessen nicht die Substituenten R5 oder R8 tragende Kohlenstoffatome ein- oder mehrfach durch Schwefel, Sauerstoff und/oder Stickstoff ersetzt sein können, und welches gegebenenfalls ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy, niederes Haloalkoxy, Hydroxy, Halogen oder durch eine niedere Alkylenkette, welche an zwei an benachbarte Kohlenstoffatome des Ringsystems gebundene Sauerstoffatome gebunden ist, substituiert sein kann, oder R⁶ und R⁷ auch gemeinsam eine Bindung bilden können und R⁵ und R⁸ gemeinsam mit den Kohlenstoffatomen, an welche sie gebunden sind, ein aromatisches C6-Ringsystem bilden

R⁵ und R⁸ gemeinsam mit den Kohlenstoffatomen, an welche sie gebunden sind, ein aromatisches C₆-Ringsystem bilden können, welches mit 2 bis 4 weiteren Kohlenstoffatomen zu einem insgesamt 8 bis 10 Ringkohlenstoffatome enthaltenden bicyclischen Ringsystem mit insgesamt 3 bis 5 Doppelbindungen anelliert sein kann, wobei die nicht die Substituenten R⁵ und R⁸ tragenden Kohlenstoffatome

dieses C_6 - bis C_{10} -Ringsystems ein- oder mehrfach durch Schwefel, Sauerstoff und/oder Stickstoff ersetzt sein können und wobei dieses C_6 - bis C_{10} -Ringsystem gegebenenfalls ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy, niederes Haloalkoxy, Hydroxy, Halogen oder durch eine niedere Alkylenkette, welche an zwei an benachbarte Kohlenstoffatome des Ringsystems gebundene Sauerstoffatome gebunden ist, substituiert sein kann,

Wasserstoff, niederes Alkyl, gegebenenfalls im Phenylring ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenylniederalkyl oder eine Aminoschutzgruppe bedeutet, oder

 R^8 und R^9 auch gemeinsam eine C_3 - C_4 -Alkylenkette bilden können und

Y Sauerstoff oder NH bedeutet,

und deren Säureadditionssalzen, wobei gegebenenfalls vorhandene reaktive Gruppen in Verbindungen der Formel I durch geeignete Schutzgruppen blockiert sein können, dadurch gekennzeichnet, daß man

a) eine Verbindung der allgemeinen Formel II,

worin \mathbb{R}^3 und \mathbb{R}^4 obige Bedeutungen besitzen, \mathbb{R}^{101} die vorstehend für \mathbb{R}^1 angegebene Bedeutung mit Ausnahme einer gegebenenfalls substituierten Methylengruppe besitzt, Ar für gegebenenfalls ein- oder mehrfach durch niederes Al-

kyl substituiertes Phenyl steht, R¹⁰ niederes Alkyl oder gegebenenfalls im Phenylring einfach durch niederes Alkyl oder durch mit einer geeigneten Schutzgruppe geschütztes Hydroxy substituiertes Phenyl oder gegebenenfalls im Phenylring einfach durch niederes Alkyl substituiertes Phenylniederalkyl bedeutet und R¹¹⁰¹ für eine Silyl-Schutzgruppe steht, nacheinander mit einer zu deren Deprotonierung geeigneten Base, einem metallorganischen Reagenz der allgemeinen Formel VII,

$$XM^2(OR^{12})_3$$
 VII

worin X für Halogen steht, M^2 ein vierwertiges Übergangsmetall bedeutet und R^{12} für niederes Alkyl, Phenyl oder Phenylniederalkyl steht, und einem Stereoisomer einer Verbindung der allgemeinen Formel VIII,

$$\begin{array}{c|c}
O \\
| \\
C \\
C \\
(CR^{5}R^{6})_{n} \\
\downarrow \\
R^{13} - N \\
R^{801}
\end{array}$$
VIII

worin R^5 , R^6 , R^7 und n die obigen Bedeutungen besitzen, R^{801} die Bedeutung von R^8 besitzt, wobei allfällige reaktive Gruppen nötigenfalls durch basenstabile Schutzgruppen blockiert sind, R^{901} für Wasserstoff oder gemeinsam mit R^{801} für eine C_3 - C_4 -Alkylenkette steht und R^{13} eine Amino-Schutzgruppe bedeutet, welche bei ihrer Abspaltung ein Stickstoff-Nucleophil hinterläßt, umsetzt zu einem Stereoisomer einer Verbindung der allgemeinen Formel IX,

worin R^{101} , R^3 , R^4 , R^5 , R^6 , R^7 , R^{801} , R^{901} , R^{10} , R^{1101} , R^{12} , R^{13} , n, Ar und M^2 obige Bedeutungen besitzen,

b) die erhaltene Verbindung der Formel IX durch Behandlung mit einem zur Entfernung der Gruppe \mathbb{R}^{13} geeigneten Reagenz überführt in eine Verbindung der allgemeinen Formel Xa,

$$R^4$$
 $(CR^5R^6)_n$
 R^7
 R^{801}
 R^{101}
 R^{10}
 R^{10}

worin R¹⁰¹, R³, R⁴, R⁵, R⁶, R⁷, R⁸⁰¹, R⁹⁰¹, R¹⁰, n und Ar obige Bedeutungen besitzen und R¹¹ für Wasserstoff oder eine Silylschutzgruppe steht und, sofern R⁹⁰¹ für Wasserstoff steht, das Stickstoffatom im cyclischen Grundgerüst der entstandenen Verbindung der Formel Xa mit einer basenstabilen Schutzgruppe blockiert und eine gegebenenfalls noch vorhandene Silylschutzgruppe R¹¹ abspaltet, und

c) zur Herstellung einer Verbindung der allgemeinen Formel Ia

worin R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^{801} und n obige Bedeutungen besitzen und R^{902} für eine basenstabile Schutzgruppe oder gemeinsam mit R^{801} für eine C_3 - C_4 -Alkylenkette steht,

ca) eine erhaltene Verbindung der Formel Xa oder eine durch Abspaltung der Silylschutzgruppe R¹¹ entstandene Verbindung mit einem zur reduktiven Spaltung der Sulfonimidoyl-Alkyl-Bindung geeigneten Reagenz umsetzt, um eine Verbindung der allgemeinen Formel Ib,

worin R^{101} , R^3 , R^4 , R^5 , R^6 , R^7 , R^{801} , R^{902} und n obige Bedeutungen besitzen, zu erhalten, oder

cb) in einer erhaltenen Verbindung der Formel Xa, worin R¹⁰¹ nicht für Wasserstoff steht, die Sulfonimidoyl-Alkyl-Bindung nach elektrophiler Aktivierung der Sulfonimidoyl-Einheit unter den Bedingungen einer baseninduzierten Eliminierung spaltet, um eine Verbindung der allgemeinen Formel Ic,

$$R^{102}HC = CH$$
 $R^{102}HC = CH$
 $R^{102}HC = CH$

worin \mathbb{R}^3 , \mathbb{R}^4 , \mathbb{R}^5 , \mathbb{R}^6 , \mathbb{R}^7 , \mathbb{R}^{801} , \mathbb{R}^{902} und n obige Bedeutungen besitzen und \mathbb{R}^{102} für C_1 - C_5 -Alkyl steht oder für gegebenenfalls im Phenylring ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenylniederalkyl steht, dessen niedere Alkylenkette 1 bis 5 Kohlenstoffatome enthalten kann, zu erhalten,

und eine erhaltene Verbindung der Formel Ia gewünschtenfalls einmal oder mehrmals durch Umsetzung, jeweils unter Inversion der Konfiguration am Ringkohlenstoffatom in 3-Position der Verbindungen der Formel Ia, mit einem zur Wiedererzeugung einer OH-Gruppe oder zu Erzeugung einer NH2-Gruppe in der 3-Position geeigneten nucleophilen Reagenz umsetzt und/oder gewünschtenfalls allfällige Schutzgruppen in Verbindungen der Formel Ia wieder abspaltet und gewünschtenfalls die gegebenenfalls freigesetzte NH-Gruppe in 1-Position des cyclischen Grundgerüstes mit einem zur N-Alkylierung oder einem zur Amidbildung befähigten Reagenz umsetzt oder mit einer Aminoschutzgruppe blockiert, um Verbindungen der Formel I zu erhalten und freie Verbindungen der Formel I gewünschtenfalls zu Säureadditionssalzen umsetzt, oder Säureadditionssalze von Verbindungen der Formel I zu freien Verbindungen umsetzt. Weiterhin sind Gegenstand der Erfindung neue azacyclische Verbindungen.

Sofern in Verbindungen der Formel I oder in anderen im Rahmen der vorliegenden Erfindung beschriebenen Verbindungen

Substituenten niederes Alkyl bedeuten oder enthalten, kann dieses verzweigt oder unverzweigt sein und üblicherweise 1 bis 4 Kohlenstoffatome enthalten.

Sofern in den Definitionen der Substituenten von Verbindungen der Formel I oder der Formel X Substituentenbestandteile, beispielsweise an Phenylringe gebundene Reste, einoder mehrfach enthalten sein können, können diese üblicherweise ein- bis dreifach enthalten sein. Sofern in Verbindungen der vorliegenden Erfindung ein oder mehrere Kohlenstoffatome durch Heteroatome wie Sauerstoff, Schwefel oder Stickstoff ersetzt sein können, können üblicherweise ein bis drei Kohlenstoffatome durch Heteroatome ersetzt sein. Vorzugsweise kann ein Kohlenstoffatom durch ein Heteroatom ersetzt sein. Sofern Substituenten eine oder mehrere Doppelbindungen enthalten können, können cyclische Substituenten, je nach Ringgröße, üblicherweise 1 - 4 Doppelbindungen enthalten und können bevorzugt aromatische Systeme bilden. Aliphatische Substituenten können je nach Kettenlänge beispielsweise 1 bis 3 Doppelbindungen enthalten.

Vorzugsweise können Verbindungen der Formel Ia hergestellt werden, worin die Substituenten \mathbb{R}^1 und \mathbb{R}^2 jeweils für Wasserstoff stehen. Besonders bevorzugt können Verbindungn der allgemeinen Formel Ib hergestellt werden, insbesondere dann, wenn der Substituent \mathbb{R}^{101} Wasserstoff bedeutet.

Der Substituent R^3 kann vorzugsweise für Wasserstoff stehen oder kann gemeinsam mit R^4 eine gegebenenfalls überbrückte C_3 - C_6 -Alkylenkette bilden. Bevorzugt können solche Verbindungen der Formel I isomerenrein hergestellt werden, worin R^4 nicht Wasserstoff, sondern beispielsweise niederes Alkyl, bedeutet. Sofern R^4 eine andere Bedeutung als Wasserstoff besitzt, verläuft die Ringschlußreaktion zu Verbindungen der Formel Xa in Verfahrensschritt b) mit einer besonders hohen Selektivität und die aus den Verbindungen der Formel Xa

erhaltenen Verbindungen der Formel Ia und der Formel I können mit einem besonders geringen Anteil an Nebenprodukten erhalten werden. Sofern R³ und R⁴ gemeinsam für eine gegebenenfalls überbrückte C₃-C₆-Alkylenkette stehen, kann die Alkylenkette vorzugsweise 3 bis 4 Kohlenstoffatome enthalten. Sofern die Alkylenkette überbrückt ist, kann die überbrückende Kette vorzugsweise 1 Kohlenstoffatom besitzen, welches vorzugsweise durch Diniederalkyl substituiert sein kann. Insbesondere können R³ und R⁴ gemeinsam mit den Kohlenstoffatomen, woran sie gebunden sind, das 7,7-Dimethylbicyclo[3.1.1]heptan-System bilden.

Sofern der Substituent R8 gegebenenfalls verestertes Carboxy bedeutet oder enthält, kann die Carboxylgruppe mit üblichen, nicht sterisch gehinderten Alkoholen verestert sein, beispielsweise mit gegebenenfalls ein- oder mehrere Doppelbindungen enthaltenden cycloaliphatischen oder geradkettigen oder verzweigten aliphatischen C1-C6-Alkoholen, welche gegebenenfalls ein- oder mehrfach durch Halogen oder niederes Alkoxy substituiert sein können, oder auch mit gegebenenfalls im Phenylring ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituierten Phenylniederalkylalkoholen. Sofern R8 gegebenenfalls am Stickstoff ein- oder zweifach substituiertes Carbonylamino bedeutet oder enthält, kann die darin enthaltene Aminogruppe beispielsweise einfach substituiert sein durch C3-C8-Cyloalkylniederalkanoyl oder geradkettiges oder verzweigtes aliphatisches C₁-C₆-Alkanoyl, welche gegebenenfalls jeweils ein- oder mehrfach durch Halogen oder niederes Alkoxy substituiert sein können, oder die Aminogruppe kann einfach substituiert sein durch gegebenenfalls im Phenylring ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenylniederalkanoyl oder die Aminogruppe kann beispielsweise auch ein- oder zweifach substituiert sein durch C3-C8-Cycloalkylniederalkyl oder geradkettiges oder verzweigtes aliphatisches C₁-C₆-Alkyl, welche gegebenenfalls jeweils ein- oder mehrfach durch Halogen oder niederes Alkoxy substituiert sein können, gegebenenfalls im Phenylring ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenylniederalkyl oder die Aminogruppe kann beispielsweise mit einer geeigneten Aminoschutzgruppe geschützt sein. Sofern R⁸ ein gegebenenfalls substituiertes mono- oder bicyclisches Ringsystem mit 3 bis 10 Ringkohlenstoffatomen bedeutet oder enthält, kann dieses beispielsweise für Cyclopropyl, Cyclopentyl, Cyclohexyl, Phenyl, p-Bromphenyl oder 3-Indolyl stehen.

Beispiele für erfindungsgemäße Verbindungen der Formel I, Ia, Ib und/oder Ic, welche sich nach dem erfindungsgemäßen Verfahren problemlos herstellen lassen, weisen als Substituenten R⁸ bzw. R⁸⁰¹ Wasserstoff, Niederalkyl, Phenyl, Niederalkylphenyl oder Niederalkyloxyniederalkyl auf oder enthalten beispielsweise auch einen aus R⁸, bzw. R⁸⁰¹, R⁵, R⁶ und R⁷ gebildeten anellierten aromatischen 6-Ring. Ebenso lassen sich Verbindungen der Formeln I, Ia, Ib, und/oder Ic problemlos herstellen, worin R⁸⁰¹ gemeinsam mit R⁹⁰¹ eine C₃-C₄-Alkylenkette bildet.

Geeignete Schutzgruppen, welche in den im Rahmen der vorliegenden Erfindung angegebenen Verbindungen verwendet werden können, sind beispielsweise bekannt aus McOmie, "Protective Groups in Organic Chemistry", Plenum Press oder aus Green, Wuts, "Protective Groups in Organic Synthesis", Wiley Interscience Publication.

Die Deprotonierung von Verbindungen der Formel II mit geeigneten Basen und die Umsetzung der deprotonierten Verbindungen der Formel II mit metallorganischen Reagenzien der Formel VII und anschließend mit den Aminoaldehyden der Formel VIII zu den Verbindungen der Formel IX in Verfahrensschritt a) kann in einem unter den Reaktionsbedingungen inerten pola-

WO 99/58500

ren oder schwach polaren aprotischen Lösungsmittel, beispielsweise in cyclischen oder offenkettigen Niederalkylethern wie Diethylether (= Ether) oder Tetrahydrofuran (= THF), in niedermolekularen Polyethylenglykolethern wie Diethylendimethylether (= Diglyme) oder in substituierten Benzolen wie Toluol oder Xylol durchgeführt werden. Vorzugsweise können schwach polare Lösungsmittel wie substituierte Benzole, insbesondere Toluol, verwendet werden. Sofern Toluol als Lösungsmittel verwendet wird, werden besonders gute Ausbeuten der Produkte der Formel IX bzw. der daraus erhaltenen Produkte der Formel Xa erhalten. Vorteilhaft kann die Reaktion als Eintopf-Reaktion ausgeführt werden, indem man ein vorzugsweise isomerenreines 2-Alkenylsulfoximid der Formel II in einem vorstehend genannten geeigneten Lösungsmittel bei tiefer Temperatur, beispielsweise zwischen -100 °C und -50 °C, vorzugsweise bei -78 °C, etwa 5 bis 30 Minuten lang mit einer geeigneten Base deprotoniert, die deprotonierte Form der Verbindung der Formel II bei leicht erhöhter Temperatur, beispielsweise zwischen -20 °C und 10 °C, vorzugsweise bei 0 °C, mit einem metallorganischen Reagenz der Formel VII transmetalliert und anschließend wieder bei tiefer Temperatur, beispielsweise zwischen -100 °C und -50 °C, vorzugsweise bei -78 °C, das erhaltene Zwischenprodukt mit einem N-geschützten Aminoaldehyd der Formel VIII umsetzt. Als Basen zur Deprotonierung von Verbindungen der Formel II eignen sich vorzugsweise lithiierte Niederalkylverbindungen wie n-Butyllithium. Üblicherweise kann die Base in einem geringen Überschuß, beispielsweise im Molverhältnis von etwa 1:1,05 bis etwa 1:1,20, bezogen auf die Menge der eingesetzten Verbindung der Formel II, verwendet werden. In metallorganischen Reagenzien der Formel VII kann X für Halogen, vorzugsweise für Chlor stehen. Als vierwertiges Übergangsmetall ${\tt M}^2$ kann beispielsweise Zirkon, vorzugsweise aber Titan verwendet werden. Als Substituenten R12 eignen sich beispielsweise verzweigte und unverzweigte Niederalkylgruppen, vorzugsweise Isopropyl. Besonders bevorzugt kann als Verbindung der Formel VII Chlortris(isopropoxy)titan verwendet werden. Das metallorganische Reagenz wird vorteilhaft in einem geringen Überschuß, beispielsweise im Molverhältnis von etwa 1,1:1 bis 1,3:1, bezogen auf die eingesetzte Menge der Verbindung der Formel II, verwendet.

Die Verbindungen der Formel VIII stellen geschützte chirale α - oder β - Aminoaldehyde dar und können vorzugsweise isomerenrein eingesetzt werden. Als bei Ihrer Abspaltung ein nucleophiles Stickstoffatom in Verbindungen der Formel VIII erzeugende Schutzgruppen R¹³ eignen sich vorzugsweise basenlabile Schutzgruppen. Besonders bevorzugt kann die Fluoren-9-yl-methyloxycarbonyl-Schutzgruppe (= FMOC) als Gruppe R¹³ verwendet werden. Die Abspaltung der Schutzgruppe R¹³ und die Ringschlußreaktion können vorzugsweise in einem einzigen Reaktionsschritt erfolgen, sofern FMOC als Schutzgruppe eingesetzt wird.

In den Ausgangsverbindungen der Formel VIII besitzt der Substituent R801 die für R8 angegebene Bedeutung, wobei jedoch allenfalls im Substituenten R8 enthaltene reaktive Gruppen, beispielsweise Hydroxy, Amino, Mercapto oder Carboxy, jeweils durch an sich bekannte basenstabile Schutzgruppen, beispielsweise gegen nicht-nucleophile oder schwach-nucleophile Basen wie Pyridin stabile Schutzgruppen, blockiert sind, um unerwünschte Nebenreaktionen zu vermeiden. Isomerenreine Aminoaldehyde der Formel VIII sind bekannt oder können auf an sich bekannte Weise aus bekannten Verbindungen hergestellt werden. So können beispielsweise die Aldehyde der Formel VIII durch an sich bekannte schonende Oxidationsverfahren aus den zu den Aldehyden korrespondierenden primären Alkoholen erhalten werden. Alseschonende Oxidationsverfahren eignen sich solche Verfahren, welche keine Racemisierung der Chiralitätszentren in Verbindungen der Formel VIII verursachen, beispielsweise die Oxidation mit aktiviertem Oxalylchlorid (= Swern-Oxidation) oder auch die Oxidation mit 1,1,1-Tri-

acetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-on (= Periodinan; Dess-Martin-Oxidation, siehe z. B. J. C. Martin et al. JACS 113 (1991) 7277-7287; D. B. Dess, J. C. Martin, Journal of Organic Chemistry 48 (1983) 4155 - 4156). Sofern die Oxidation nach der vorstehend angegebenen Dess-Martin Methode erfolgt, kann ein Aminoaldehyd der Formel VIII nach einem in der vorstehenden Literatur angegebenen Verfahren oder einem hierzu analogen Verfahren hergestellt werden. Beispielsweise kann ein als Vorläufer für einen Aldehyd der Formel VIII in Frage kommender primärer Alkohol in einem dipolar-aprotischen Lösungsmittel, beispielsweise in einem halogenierten niederen Alkan wie Dichlormethan, mit einem geringen Überschuß des Triacetoxy-Periodinans, beispielsweise im Molverhältnis von etwa 1,2:1 bis etwa 1,4:1, bezogen auf die eingesetzte Verbindung der Formel VIII, umgesetzt werden. Die Reaktion kann bei Temperaturen zwischen -20 °C und Raumtemperatur, vorzugsweise bei 0 °C, durchgeführt werden.

Die zu den Aldehyden der Formel VIII korrespondierenden primären Alkohole sind bekannt oder können durch an sich bekannte Verfahren aus bekannten Vorläuferverbindungen hergestellt werden. Beispielsweise können die primären Alkohole durch an sich bekannte Reduktionsverfahren, beispielsweise durch Reduktion mit komplexen Alkalimetallhydriden wie Lithiumaluminiumhydrid, aus den entsprechenden freien Aminocarbonsäure-Vorläuferverbindungen hergestellt werden. Vorzugsweise sind Aminocarbonsäuren geeignet, welche bereits in isomerenreiner, beispielsweise enantiomerenreiner Form vorliegen, wie die an sich bekannten natürlich vorkommenden 20 proteinogenen α-Aminosäuren. Ebenso können kommerziell erhältliche, beispielsweise von der Firma ChiroTech, Cambridge, (Katalog "The ChiroChem™ Collection, Series 1, FMOC unnatural amino acids for medicinal and combinatorial chemists", SCRIP Nr. 2311/ 20.02.1998, Seite 15) erhältliche nicht-natürliche isomerenreine α-Aminosäuren verwendet werden. Zur Herstellung von Verbindungen der Formel I, worin n = 1 ist, kann zweckmäßigerweise von an sich, beispielsweise aus Nohira et al., Bulletin of the Chemical Society of Japan $\underline{43}$ (1970) 2230 ff., bekannten isomerenreinen β -Aminosäuren ausgegangen werden. Weiterhin können für die Erfindung geeignete isomerenreine β -Aminosäuren auch aus isomerenreinen α -Aminosäuren durch Homologisierung, beispielsweise durch Homologisierung nach Arndt-Eistert gemäß den Methoden von D. Seebach et al., Helvetica Chimica Acta (= HCA) $\underline{79}$ (1996) 913-941; 2043 ff. und Synlett (1997) 437 ff., hergestellt werden. α -chirale β -Aminosäuren, worin R⁵ eine andere Bedeutung als Wasserstoff besitzt, können auf an sich bekannte Weise, beispielsweise durch asymmetrische Alkylierung von chiralen Oxazolidinonen mit Chlormethylamiden nach der Methode von D. Seebach et al., Synlett (1997) 437 ff., oder auch nach anderen, an sich bekannten Methoden erhalten werden.

Die gewünschten Schutzgruppen R¹³ können nach an sich bekannten Methoden in Verbindungen der Formel VIII oder deren vorstehend genannten Vorläuferverbindungen eingeführt werden.

Im Verfahrensschritt a) entstehen durch die Reaktion zwischen einem chiralen Aminoaldehyd der Formel VIII und dem aus einem 2-Alkenylsulfoximid der Formel II durch Deprotonierung und Transmetallierung entstandenen chiralen Zwischenprodukt in den Vinylsulfoximiden der Formel IX zwei neue stereogene Kohlenstoffatome. Diese neuen stereogenen Kohlenstoffatome sind die Atome C-3 und C-4 in Verbindungen der Formel IX. Die Substituenten R^4 an C-4 und $OM^2(OR^{12})_3$ an C-3 nehmen bei der Bildung der Vinylsulfoximide der Formel IX nach dem erfindungsgemäßen Verfahren in der Regel mit hoher Selektivität von mindestens 95 % eine "anti"-Orientierung zueinander ein. Die Absolutkonfigurationen an den neu entstehenden Chiralitätszentren C-3 und C-4 werden hierbei während der Reaktion jeweils durch die Absolutkonfiguration am Schwefelatom in Verbindungen der Formel II im Sinne einer regio- und diastereokontrollierten Reaktion gesteuert. Sofern das Schwefelatom in Verbindungen der Formel II R-Konfiguration besitzt, wird die prochirale Carbonylgruppe in den Aldehyden der Formel VIII von der Si-Seite angegriffen. Sofern dagegen das Schwefelatom in Verbindungen der Formel II S-Konfiguration besitzt, wird die prochirale Carbonylgruppe in den Aldehyden der Formel VIII von der Re-Seite angegriffen. Durch die auf diese Weise festgelegte absolute Konfiguration der Verbindungen der Formel IX ist auch die Stereochemie der Verbindungen der Formeln Ia, Ib und Ic an den entsprechenden Chiralitätszentren als eine "cis"-Orientierung festgelegt. Die Absolutkonfiguration am chiralen Kohlenstoffatom eines Aminoaldehyds der Formel VIII hat kaum Einfluß auf die Stereochemie an den Kohlenstoffatomen C-3 und C-4 der Verbindungen der Formel IX.

Die Behandlung von Verbindungen der Formel IX mit einem zur Abspaltung der Schutzgruppe \mathbb{R}^{13} geeigneten Reagenz im Verfahrensschritt b) um Verbindungen der Formel Xa zu erhalten, kann direkt im Anschluß an Verfahrensschritt a) in situ auf an sich bekannte Weise erfolgen, ohne daß eine Isolierung der Verbindungen der Formel IX notwendig ist. Die Reaktion kann demgemäß in vorstehend angegebenen Lösungsmitteln und bei vorstehend angegebenen Temperaturen zwischen -100 °C und -50 °C, vorzugsweise bei -78 °C, durchgeführt werden. Basenlabile Schutzgruppen können beispielsweise mit an sich bekannten, in dem Reaktionsgemisch löslichen nicht-nucleophilen oder schwach nucleophilen organischen Basen abgespalten werden. Sofern die FMOC-Gruppe als Aminoschutzgruppe \mathbb{R}^{13} verwendet wird, ist Piperidin als Base zu deren Abspaltung bevorzugt. Üblicherweise wird die Base in einer überstöchiometrischen Menge eingesetzt, beispielsweise im Molverhältnis von etwa 5:1 bis etwa 15:1, vorzugsweise von etwa 10:1, bezogen auf die eingesetzte Menge an aus Verbindungen der Formel II entstandenen Verbindungen der Formel IX. Nach erfolgter Zugabe der Base kann zuerst auf 0 °C, später auf Raumtemperatur, aufgetaut werden und das Reaktionsgemisch kann in üblicher Weise aufgearbeitet werden, wobei gegebenenfalls ent7

standene Nebenprodukte auf an sich bekannte Weise, beispielsweise durch Kristallisieren und/oder Chromatographie abgetrennt werden können.

Durch die Abspaltung der Aminoschutzgruppe R¹³ aus Verbindungen der Formel IX, vorzugsweise durch deren baseninduzierte Abspaltung, wird eine Ringschlußreaktion zu Verbindungen der Formel Xa eingeleitet. Insbesondere für Verbindungen der Formel IX, worin R⁴ nicht für Wasserstoff steht, verläuft die Cyclisierungsreaktion in der Weise, daß der Sulfonimidoylrest in 5-Position der entstehenden Verbindung der Formel Xa vorzugsweise die "trans"-Stellung zur Hydroxylgruppe in 3-Position des entstehenden Ringgerüstes einnimmt.

In entstandenen Azacyclen, welche ein sekundäres Ring-Stickstoffatom enthalten, kann anschließend dieses Stickstoffatom auf an sich bekannte Weise mit einer Verbindung, welche eine zur Reaktion mit einem sekundären Amin geeignete Gruppe enthält, weiter umgesetzt werden. Beispielsweise kann eine Umsetzung des Stickstoffatoms mit an sich bekannten Carbonsäuren zur Ausbildung von Peptidbindungen erfolgen. Ebenso kann das vorgenannte Stickstoffatom auch auf an sich bekannte Weise, beispielsweise durch Umsetzung mit einem Alkylhalogenid wie einem Phenylniederalkylhalogenid, beispielsweise Benzylchlorid, alkyliert werden. Nach diesen vorstehend beschriebenen Methoden oder auf andere an sich bekannte Weise, kann das Stickstoffatom auch mit einer üblichen Aminoschutzgruppe, vorzugsweise einer basenstabilen Schutzgruppe, blokkiert werden. Insbesondere ist es vorteilhaft, das Ringstickstoffatom in Verbindungen der Formel Xa mit einer basenstabilen Schutzgruppe zu blockieren, wenn Verbindungen der Formel Ib hergestellt werden sollen. Als basenstabile Schutzgruppe eignen sich vorzugsweise ein Carbamat bildende Schutzgruppen, insbesondere die tert-Butyloxycarbonyl-Schutzgruppe (= BOC).

Aus Verbindungen der Formel Xa können allfällige Schutzgruppen gewünschtenfalls auch auf an sich bekannte Weise, gegebenenfalls selektiv, wieder abgespalten werden. So kann es insbesondere vorteilhaft sein, aus Verbindungen der Formel Xa eine gegebenenfalls nach dem Verfahrensschritt b) noch vorhandene Silylschutzgruppe R¹¹ vor der Umsetzung mit einem zur reduktiven Spaltung der Sulfonimidoyl-Alkyl-Bindung geeigneten Reagenz im Verfahrensschritt ca) auf an sich bekannte Weise abzuspalten, sofern diese Abspaltung der Silylschutzgruppe im Verfahrensschritt b) nicht spontan geschehen ist. Als Beispiel für eine Silylschutzgruppe, welche im Verfahrensschritt b) üblicherweise spontan abgespalten wird, ohne daß es einer zusätzlichen Behandlung bedarf, sei Trimethylsilyl (= TMS) genannt.

Verbindungen der Formel Xa oder aus Verbindungen der Formel Xa durch Abspaltung von Schutzgruppen erhältliche Verbindungen sind neue Verbindungen mit nützlichen Eigenschaften und können beispielsweise als Zwischenprodukte zur Herstellung von Verbindungen der Formel I dienen. Das (2S,3R,4R,5R,S_S)-2-Benzyl-3-hydroxy-5-{N-[(S)-1-hydroxy-3-methylbut-2-yl]-4-methylphenylsulfonimidoylmethyl}-4-methyl-1-(4-methylphenylsulfonyl)pyrrolidin ist bereits bekannt aus der Veröffentlichung im Internet unter der Adresse "www.iucr.ac.uk" von M. Bolte, Acta Crystallographica Section C, electronically published paper QA0019 [=(IUCr) Acta C Paper QA0019]. In der angegebenen Veröffentlichung ist jedoch kein Verfahren zur Herstellung dieser Verbindung angegeben.

Die reduktive Spaltung der Sulfonimidoyl-Alkyl-Bindung in einer erhaltenen Verbindung der Formel Xa oder in einer aus einer Verbindung der Formel Xa durch die vorstehend beschriebenen Umsetzungen am Ring-Stickstoffatom erhaltenen Verbindung im Verfahrensschritt ca) zur Herstellung von Verbindungen der Formel Ib, kann in einem vorstehend für die Umsetzung von Verbindungen der Formel II mit Verbindungen der

Formel VII angegebenen polaren oder schwach polaren Lösungsmittel oder in Gemischen dieser Lösungsmittel durchgeführt werden. Vorzugsweise kann THF verwendet werden. Die Reaktion kann bei Temperaturen zwischen -20 °C und Raumtemperatur, vorzugsweise bei 0 °C ausgeführt werden. Als Reagenzien zur Spaltung der Sulfonimidoyl-Alkyl-Bindung eignen sich beispielsweise Reduktionsmittel wie Raney-Nickel, Lithiumnaphthalenid oder Samarium-(II)-iodid. Vorzugsweise kann Samarium-(II)-iodid eingesetzt werden.

Sofern die Desulfurierung mit Samarium-(II)-iodid durchgeführt wird, kann dieses auf an sich bekannte Weise in situ aus Samarium und Diiodmethan erzeugt werden. Üblicherweise wird hierbei das Samarium-(II)-iodid in einer überstöchiometrischen Menge, beispielsweise in einem Molverhältnis von etwa 3:1 bis etwa 7:1, bezogen auf die eingesetzte Verbindung der Formel Xa, verwendet. Zur Durchführung der Reaktion gibt man dem Reaktionsgemisch aus Verbindung der Formel Xa und Samariumdiiodid eine Protonenquelle, wie eine in dem verwendeten Lösungsmittel lösliche protische Verbindung, in einer geeigneten Menge zu. Als Protonenquelle kann beispielsweise ein niederer Alkohol wie Methanol verwendet werden. Vorzugsweise wird wasserfreies Methanol verwendet. Eine geeignete Menge der Protonenquelle kann beispielsweise zwischen 2 und 5 Äquivalente, bezogen auf ein Äquivalent der in einer Verbindung der Formel Xa enthaltenen Menge an Schwefel, betragen. Besonders vorteilhaft können hierbei Verbindungen der Formel Xa eingesetzt werden, worin ein sekundäres Ringstickstoffatom durch eine Carbamat-Schutzgruppe, vorzugsweise die BOC-Schutzgruppe, blockiert ist.

Die Spaltung der Sulfonimidoyl-Alkyl-Bindung unter den Bedingungen einer baseninduzierten reduktiven Eliminierung in einer erhaltenen Verbindung der Formel Xa, worin R¹⁰¹ nicht Wasserstoff bedeutet, oder in einer aus einer Verbindung der Formel Xa durch die vorstehend beschriebenen Umsetzungen am

Ring-Stickstoffatom erhaltenen Verbindung im Verfahrensschritt ca) zur Herstellung von Verbindungen der Formel Ic, kann in einem vorstehend für die Umsetzung von Verbindungen der Formel II mit Verbindungen der Formel VII angegebenen polaren oder schwach polaren Lösungsmittel oder auch in einem teilhalogenierten Niederalkyl-Lösungsmittel wie Dichlormethan durchgeführt werden. Vorzugsweise kann Dichlormethan verwendet werden. Als Basen zur Spaltung der Sulfonimidoyl-Alkyl-Bindung durch β -Eliminierung eignen sich nicht-nucleophile organische Basen wie bicyclische Amidine, beispielsweise 1,5-Diazabicyclo[4.3.0]-5-nonen (= DBN) oder 1,8-Diazabicyclo[5.4.0]-7-undecen (= DBU). Vorzugsweise kann DBU verwendet werden. Zweckmäßigerweise wird die Reaktion so ausgeführt, daß die Sulfonimidoyl-Gruppe einer oben angegebenen Verbindung der Formel Xa auf an sich bekannte Weise elektrophil aktiviert wird. Hierzu kann die Verbindung der Formel Xa bei Temperaturen zwischen -25 °C und -15 °C mit einer zur Bildung einer guten Abgangsgruppe aus der Sulfonylgruppe geeigneten Verbindung oder mit einem Niederalkyloxonium-Tetrafluoroborat wie dem als "Meerwein-Salz" bekannten Trimethyloxonium-tetrafluoroborat, umgesetzt werden. Reagenzien, welche durch Angriff an der Sulfonylgruppe eine gute Abgangsgruppe bilden können, sind beispielsweise Ester oder Halogenide von Sulfonsäuren wie Methansulfonsäurechlorid, Trifluormethansulfonsäurechlorid, Trifluormethansulfonsäure-Methylester (= Methyl-Triflat) oder Trifluormethansulfonsäure-Trimethylsilylester (= TMS-Triflat). Vorzugsweise kann Methyl-Triflat eingesetzt werden. Üblicherweise läßt man das entstandene Reaktionsgemisch nach erfolgter Umsetzung auf Raumtemperatur auftauen und gibt anschließend die vorgenannte Base zu.

In den erhaltenen Verbindungen der Formel Ia ist die im Verfahrensschritt b) durch Ringschluß zu Verbindungen der Formel Xa entstandene relative Orientierung des Sulfonimidoyl-Substituenten in 5-Position und der Hydroxylgruppe in 23

3-Position als eine "trans"-Orientierung zueinander festgelegt. Verbindungen der Formel I, worin der Substituent YH in 3-Position Hydroxy oder Amino bedeuten kann und/oder worin die Substituenten YH in 3-Position und R^1 -CHR 2 - in 5-Position auch in "cis"-Orientierung zueinander stehen können, können gewünschtenfalls aus Verbindungen der Formel Ia durch eine ein- oder mehrmals durchgeführte, unter Inversion verlaufende, nucleophile Substitutionsreaktion am Ringkohlenstoffatom in 3-Position erhalten werden. Derartige nucleophile Substitutionsreaktionen sind an sich bekannt und können beispielsweise unter den Bedingungen einer Mitsunobu-Reaktion durchgeführt werden (siehe z. B. Mitsunobu, Synthesis 1 (1981) 1-28).

Sofern beispielsweise Verbindungen der Formel I gewünscht sind, worin YH für Hydroxy steht und worin die Substituenten OH in 3-Position und R^1 -CHR 2 - in 5-Position in "cis"-Orientierung zueinander stehen, kann zweckmäßig eine Mitsunobu-Reaktion in der Weise ausgeführt werden, daß man eine Lösung von einer Verbindung der Formel Ia, worin allenfalls weitere vorhandene Hydroxylgruppen durch Schutzgruppen blockiert sind, und von Triphenylphosphin, in einem unter den Reaktionsbedingungen inerten organischen Lösungsmittel wie einem cyclischen oder offenkettigen Niederalkylether, beispielsweise Diethylether oder THF, zu einer Vorlage einer Lösung von Diethylazodicarboxylat (= DEAD) und einer Säure, beispielsweise Phosphorsäure oder eine Carbonsäure wie Benzoesäure, hinzugegeben werden. Die Reaktion kann vorzugsweise bei Raumtemperatur ausgeführt werden. Der auf diese Weise erhaltene Ester einer gewünschten Verbindung der Formel I kann gewünschtenfalls anschließend noch auf an sich bekannte Weise gespalten werden, um die freie Hydroxylgruppe in der 3-Position zu erhalten.

Sofern beispielsweise Verbindungen der Formel I gewünscht sind, worin Y für NH steht und worin die Substituenten Amino in 3-Position und R¹-CHR²- in 5-Position in "cis"-Orientierung zueinander stehen, kann zweckmäßig eine Mitsunobu-Reaktion in der Weise ausgeführt werden, daß man eine Lösung von DEAD in einem vorstehend genannten inerten Lösungsmittel zu einer Vorlage einer Lösung von Triphenylphosphin, einer Verbindung der Formel Ia, worin allenfalls weitere vorhandene Hydroxylgruppen durch Schutzgruppen blockiert sind, und einem zur nucleophilen Substitution einer Hydroxylgruppe durch eine Aminogruppe in aliphatischen Resten geeigneten Reagenz wie Phthalimid, zugibt. Das entstandene Zwischenprodukt, beispielsweise ein N-substituiertes Phthalimid, kann dann in einem protischen Lösungsmittel wie einem niederen Alkanol, beispielsweise Ethanol, mit einem zur Freisetzung des entstandenen Amins der Formel I geeigneten Reagenz wie Hydrazin behandelt werden.

Sofern beispielsweise Verbindungen der Formel I gewünscht sind, worin Y für NH steht und worin die Substituenten YH in 3-Position und R¹-CHR²- in 5-Position in "trans"- Orientierung zueinander stehen, kann in einer vorstehend angegebenen Verbindung der Formel Ia zuerst eine oben beschriebene Inversion des Ringkohlenstoffatoms in 3-Position unter Erhalt des Hydroxy-Substituenten durchgeführt werden und an diesem Zwischenprodukt der Formel I kann dann noch eine oben beschrieben Substitution der Hydroxylgruppe durch eine Aminogruppe unter erneuter Inversion des Ringkohlenstoffatoms in 3-Position durchgeführt werden.

Die erhaltenen Verbindungen der Formel I können auf an sich bekannte Weise aus dem Reaktionsgemisch isoliert werden. Allfällige Schutzgruppen können gewünschtenfalls auf an sich bekannte Weise, gegebenenfalls selektiv, wieder abgespalten werden und die Gruppe YH kann gewünschtenfalls mit an sich bekannten Schutzgruppen blockiert werden. Die gegebenenfalls freigesetzte NH-Gruppe in 1-Position des cyclischen Grundgerüstes kann gewünschtenfalls mit vorstehend genannten, zur

N-Alkylierung oder zur Amidbildung befähigten, Reagenzien umgesetzt oder mit einer Aminoschutzgruppe blockiert werden. Gewünschtenfalls können Verbindungen der Formel I, welche basische Aminogruppen enthalten, auf an sich bekannte Weise in Säureadditionssalze überführt werden. Als Säuren eignen sich hierfür beispielsweise Mineralsäuren wie Salzsäure oder Schwefelsäure, oder organische Säuren wie Sulfonsäuren, beispielsweise Methylsulfonsäure oder p-Toluolsulfonsäure, oder Carboxylsäuren wie Essigsäure, Trifluoressigsäure, Weinsäure oder Citronensäure.

Die Verbindungen der allgemeinen Formeln Ia, Ib und Ic sind neue Verbindungen und stellen wertvolle Ausgangsstoffe, beispielsweise zur Herstellung chiraler Katalysatoren für die asymmetrische Synthese, für die Herstellung biologisch aktiver Alkaloide oder Porphyrine sowie für die Herstellung pharmakologisch interessanter Verbindungen dar.

Die Ausgangsverbindungen der Formel II können auf an sich bekannte Weise hergestellt werden.

Beispielsweise können Verbindungen der allgemeinen Formel IIa

$$Ar - S \\ \downarrow \\ R^{101} \\ CHR^4 \\ OR^{1101}$$

$$IIa$$

worin R¹⁰¹, R⁴, R¹⁰, R¹¹⁰¹ und Ar obige Bedeutungen besitzen, hergestellt werden, indem man ein Stereoisomer einer Verbindung der allgemeinen Formel III,

worin ${\rm Ar}$ und ${\rm R}^{10}$ obige Bedeutungen besitzen, mit einer ${\rm Ver}$ -bindung der allgemeinen Formel IV,

worin R^{101} und R^4 obige Bedeutungen besitzen und M^1 für eine einwertige, ein Alkalimetall oder ein Erdalkalimetall und ein Halogenatom enthaltende Gruppe steht, umsetzt und eine bei dieser Umsetzung allenfalls freiwerdende Hydroxylgruppe mit einer Silyl-Schutzgruppe R^{1101} blockiert.

Die Umsetzung eines Stereoisomers von cyclischen Sulfonimidaten der Formel III mit einem metallierten Alken der Formel IV zu einem isomerenreinen 2-Alkenylsulfoximid der Formel II kann in einem vorstehend für die Umsetzung von Verbindungen der Formel II mit Verbindungen der Formel VII angegebenen polaren oder schwach polaren aprotischen Lösungsmittel durchgeführt werden. Vorzugsweise kann THF verwendet werden. Die Reaktion kann ausgeführt werden, indem man die Reaktanden bei einer Temperatur von -100 °C bis -50 °C, vorzugsweise bei -78 °C, in einem vorstehend angegebenen Lösungsmittel vermischt und die entstandene Reaktionsmischung kurze Zeit, z. B. 2 bis 10 Minuten, bei der angegebenen Temperatur reagieren läßt und anschließend auf eine höhere Temperatur unterhalb der Raumtemperatur, beispielsweise auf -20 °C bis 0 °C, erwärmen läßt. Nötigenfalls kann zur Vervollständigung der Reaktion noch einige Zeit bei -20 °C bis 0 °C weitergerührt werden. Vorteilhaft ist es, die Verbindung der Formel

PCT/DE99/01417 WO 99/58500 27

IV in überstöchiometrischen Mengen einzusetzen. Beispielsweise können 1,5 bis 2,5 Mol einer Verbindung der Formel IV mit einem Mol einer Verbindung der Formel III umgesetzt werden.

In den cyclischen Sulfonimidaten der Formel III kann Ar vorzugsweise für 4-Methylphenyl (= p-Tolyl) stehen. R¹⁰ kann insbesondere Methyl, Isopropyl, Isobutyl oder Phenyl bedeuten und steht vorzugsweise für Isopropyl.

Um eine gewünschte stereochemisch kontrollierte Herstellung der Verbindungen der Formel I zu erzielen, sollten die Sulfonimidate der Formel III in isomerenreiner Form verwendet werden. Als isomerenrein soll im Rahmen der vorliegenden Erfindung grundsätzlich ein Isomerenüberschuß (= Enantiomerenüberschuß, ee oder Diastereoisomerenüberschuß, de) eines reinen Isomers von mindestens 95 % verstanden werden. In den im Rahmen der vorliegenden Erfindung angegebenen Formeln bezeichnet das "*"-(Sternchen) Zeichen jeweils ein Chiralitätszentrum, welches üblicherweise isomerenrein entsteht oder aus üblicherweise isomerenrein eingesetzten Edukten stammt. Sofern nicht-isomerenreine, beispielsweise racemische, Ausgangsverbindungen zur Herstellung von Verbindungen der Formel I verwendet werden, können nach dem erfindungsgemäßen Herstellungsverfahren natürlich auch Isomerengemische von Verbindungen der Formel I erhalten werden. Sofern Sulfonimidate der Formel III eingesetzt werden, worin das chirale Schwefelatom und das den Substituenten R10 tragende chirale Kohlenstoffatom unterschiedliche Absolutkonfigurationen aufweisen (d. h. wenn z. B. das Schwefelatom R-Konfiguration besitzt und das den Substituenten R¹⁰ tragende Kohlenstoffatom S-Konfiguration aufweist), werden besonders gute Ergebnisse bezüglich der stereochemischen Reinheit der Produkte der Formel I erzielt. Besonders bevorzugt können als Verbindungen der Formel III das (R_S)-4(R)-Isopropyl-2-p-tolyl-4,5-dihydro- $[1,2\lambda^6, 3]$ oxathiazol-2-oxid und das (S_S) -(4R)-Isopropyl-2-ptolyl-4,5-dihydro-[1,2λ6,3]-oxathiazol-2-oxid verwendet wer-

den. Die Ausdrücke R_S und S_S bezeichnen jeweils die Absolutkonfiguration am chiralen Schwefelatom. Sulfonimidate der Formel III sind beispielsweise bekannt aus Reggelin et al., Tetrahedron Letters (= TL) 33 (1992) 6959-6962 oder aus Reggelin et al., TL 36 (1995) 5885-5886 und können nach den dort jeweils angegebenen oder dazu analogen Verfahren isomerenrein hergestellt werden.

In den metallierten Verbindungen der Formel IV kann die einwertige Gruppe M¹ ein Alkalimetall, vorzugsweise Lithium, oder eine ein Erdalkalimetall und zusätzlich ein Halogenatom enthaltende Gruppe bedeuten. Als Erdalkalimetall ist Magnesium bevorzugt. Als Halogen kann Chlor, Brom oder Iod eingesetzt werden. Insbesondere können als metallierte Verbindungen der Formel IV an sich bekannte lithiierte Alkenylverbindungen oder an sich bekannte magnesiumorganische Alkenylverbindungen wie Alkenyl-Grignard-Reagenzien verwendet werden.

Üblicherweise wird eine bei der Umsetzung von Verbindungen der Formel III mit Verbindungen der Formel IV zu Verbindungen der Formel III freiwerdende Hydroxylgruppe mit einer geeigneten Silyl-Schutzgruppe R¹¹⁰¹ blockiert, um unerwünschte Folgereaktionen zu verhindern. Als Silyl-Schutzgruppe R¹¹⁰¹ in Verbindungen der Formel IIa kann vorzugsweise Trimethylsilyl (= TMS) verwendet werden.

Verbindungen der allgemeinen Formel IIb,

$$Ar - S = Ar - S = A$$

worin R^{101} , R^{10} , R^{1101} und Ar obige Bedeutungen besitzen und a Methylen bedeutet oder eine C_2 - C_5 -Alkylenkette bedeutet, welche durch gegebenenfalls ein- oder zweifach durch niederes Alkyl substituiertes C_1 - C_2 -Alkylen überbrückt sein kann, können beispielsweise hergestellt werden, indem man ein Stereoisomer einer Verbindung der allgemeinen Formel V,

$$Ar - S - CH_3$$

$$N \longrightarrow OR^{1101}$$

$$V$$

worin R¹⁰, R¹¹⁰¹ und Ar obige Bedeutungen besitzen, mit einer zu deren Deprotonierung geeigneten Base deprotoniert, die deprotonierte Verbindung der Formel V mit einer Verbindung der allgemeinen Formel VI,

worin a obige Bedeutung besitzt, umsetzt, und das erhaltene Zwischenprodukt nacheinander mit einem Reagenz, welches die Abspaltung des aus der Carbonylgruppe der Verbindung der Formel VI stammenden Sauerstoffatoms ermöglicht und mit einer vorstehend angegebenen, zur Deprotonierung einer Verbindung der Formel V geeigneten Base behandelt.

Die Reaktionsfolge zur Herstellung von Cycloalkenylmethyl-Sulfoximid-Verbindungen der Formel IIb durch Umsetzung von Verbindungen der Formel V mit Verbindungen der Formel VI kann zweckmäßig als Eintopf-Reaktionssequenz durchgeführt werden. Die Umsetzung eines Stereoisomers eines Methylsulfoximids der Formel V mit einer zu dessen Deprotonierung ge-

eigneten Base sowie die nachfolgenden Reaktionsschritte: Umsetzung der deprotonierten Verbindung der Formel V mit einer Verbindung der Formel VI, Behandlung des erhaltenen Zwischenproduktes mit einem Reagenz, welches die Abspaltung des aus der Carbonylgruppe der Verbindung der Formel VI stammenden Sauerstoffatoms ermöglicht und erneute Behandlung mit einer vorstehend angegebenen Base, sind an sich bekannt und können nach einem in Reggelin et al., JACS 118 (1996) 4765-4777, angegebenen oder hierzu analogen Verfahren durchgeführt werden. Die Gruppe Ar sowie der Substituent \mathbb{R}^{10} in Verbindungen der Formel V können die vorstehend für Verbindungen der Formel III angegebenen bevorzugten Bedeutungen besitzen. Als Silyl-Schutzgruppe \mathbb{R}^{1101} in Verbindungen der Formel V kann vorzugsweise tert.-Butyldimethylsilyl (= TBS) verwendet werden. Analog zu den vorstehend für Verbindungen der Formel III angegebenen bevorzugten stereochemischen Gegebenheiten können als Verbindungen der Formel V vorzugsweise das $[S_S,N(1S)]-N-[1-N]$ [[tert.-Butyldimethylsilyl)oxy]methyl]-2-methylpropyl]-Smethyl-S-(4-methylphenyl)sulfoximid und das $[R_S,N(1R)]-N-[1-R_S]$ [[tert.-Butyldimethylsilyl)oxy]methyl]-2-methylpropyl]-Smethyl-S-(4-methylphenyl)sulfoximid eingesetzt werden. Als Basen zur Deprotonierung von Verbindungen der Formel V eignen sich beispielsweise lithiierte Niederalkylverbindungen wie n-Butyllithium. Als Reagenzien, welche die Abspaltung von aus der Carbonylgruppe von Verbindungen der Formel VI stammenden Sauerstoffatomen ermöglichen, sind die vorstehend zur Bildung einer guten Abgangsgruppe durch Angriff am Sauerstoffatom der Sulfonylgruppe in Verbindungen der Formel Xa genannten Verbindungen geeignet. Bevorzugt kann TMS-Triflat eingesetzt werden.

Die alicyclischen Ketone der Formel VI sind bekannt. Beispielsweise können Cyclopentanon, Cyclohexanon oder Nopinon als Verbindungen der Formel VI eingesetzt werden. Sofern überbrückte cyclische Ketone als Verbindungen der Formel VI eingesetzt werden, ist es vorteilhaft, wenn die überbrückende

Alkylenkette wenigstens an eines der beiden in α -Stellung zur Carbonylgruppe stehenden Kohlenstoffatome gebunden ist. Auf diese Weise werden die Reaktionsprodukte stets unter kontrollierter Regioselektivität gebildet.

Eine andere Möglichkeit, Verbindungen der Formel IIb zu erhalten, ist die Umsetzung einer Verbindung der allgemeinen Formel XII,

worin a und Ph obige Bedeutungen besitzen, jeweils mit einem zu deren lithiierender Deselenierung geeigneten Reagenz und die nachfolgende Umsetzung des jeweils entstandenen deselenierten lithiierten Zwischenproduktes mit einem Stereoisomer einer Verbindung der Formel III.

Die selenierten Verbindungen der Formel XII können auf an sich bekannte Weise aus den korrespondierenden Allylalkoholen durch Halogenierung und nachfolgende reduzierende Selenierung erhalten werden. Beispielsweise können die Verbindungen der Formeln XII nach dem von Reggelin et al. in JACS 118 (1996) 4765 – 4777 angegebenen oder hierzu analogen Verfahren erhalten werden. Als Beispiel für einen Allylalkohol, welcher sich zur Herstellung von selenierten Verbindungen der Formel XII eignet, sei Myrtenol genannt.

Die Herstellung von Verbindungen der Formel IIb durch Umsetzung von Verbindungen der Formel XII mit Verbindungen der Formel III kann auf an sich bekannte Weise durchgeführt werden, beispielsweise nach der in der Veröffentlichung von Reggelin et al., JACS 118 (1996) 4765-4777 angegebenen Methode zur Herstellung von Cycloalkenylsulfoximid-Verbindungen, auf die hiermit ausdrücklich Bezug genommen wird.

In einer Variante der Erfindung können Verbindungen der Formel II, worin R¹⁰¹ eine andere Bedeutung als Wasserstoff besitzt, hergestellt werden, indem man Verbindungen der Formel II, worin R¹⁰¹ für Wasserstoff steht, mit einer hierfür geeigneten Base einfach deprotoniert und anschließend durch Umsetzung mit einer Verbindung der allgemeinen Formel XI,

 R^{103} —Z XI

worin R¹⁰³ die für R¹⁰¹ angegebene Bedeutung mit Ausnahme von Wasserstoff besitzt und Z für eine abspaltbare Fluchtgruppe steht, alkyliert. Als Basen für eine vorstehend angegebene Deprotonierung eignen sich beispielsweise lithiierte Niederalkylverbindungen wie n-Butyllithium. Als abspaltbare Fluchtgruppe Z in Verbindungen der Formel XI kann beispielsweise Halogen, vorzugsweise Brom oder Chlor, eingesetzt werden. Die Reaktion kann unter für diesen Reaktionstyp üblichen Reaktionsbedingungen durchgeführt werden.

Die nachfolgenden Beispiele sollen die Erfindung näher erläutern, ohne ihren Umfang zu beschränken.

Die Numerierung der Ringatome in den Beispielsverbindungen, insbesondere der chiralen Kohlenstoffatome, bezieht sich auf die in der allgemeinen Formel I angegebene Numerierung der Ringatome.

Beispiel 1

(+)-(2S,3S,4S,5S)-2-Isobutyl-3-hydroxy-4,5-dimethyl-N-tert.-butoxycarbonyl-pyrrolidin

A) 6,0 g FMOC-Amino-geschützes S-2-Amino-4-methylpentanol (erhalten durch Lithiumaluminiumhydrid-Reduktion von Leucin) wurden unter Stickstoffatmosphäre und Wasseraus-

schluß in 100 ml Dichlormethan suspendiert und auf 0 °C gekühlt. Zu dieser Vorlage gab man in einer Portion 10,0 g 1,1,1-Triacetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-on (= Periodinan) als Feststoff hinzu und rührte die entstandene Reaktionsmischung zwei Stunden lang bei Raumtemperatur. Anschließend wurde die Reaktionsmischung auf eine mit 100 ml Ether überschichtete Lösung aus 130 ml einer 10%igen wäßrigen Natriumthiosulfatlösung und 360 ml einer gesättigten wäßrigen Natriumhydrogencarbonatlösung gegossen. Man extrahierte die wäßrige Phase einmal mit 100 ml Ether, wusch die vereinigten organischen Phasen mit einer gesättigten wäßrigen Kochsalzlösung und trocknete über Natriumsulfat. Das Lösungsmittel wurde unter vermindertem Druck eingedampft und der auf diese Weise erhaltene rohe FMOC-geschützte S-2-Amino-4-methylvaleraldehyd wurde ohne weitere Reinigung für die folgende Reaktion eingesetzt.

Zur Bestimmung der optischen Reinheit wurde ein Teil des erhaltenen Aldehyds durch Kristallisation aus Ether/Hexan isoliert. Der Enantiomerenüberschuß wurde durch
NMR-Spektroskopie unter Zugabe des chiralen Shift-Reagenzes Tris-[3-(heptafluoropropyl-hydroxymethylen)-dcamphorato]-praseodym (III) [= Pr(hfc)₃] bestimmt. Durch
Integration der basisliniengetrennten Signale der Aldehydprotonen konnte der Enantiomerenüberschuß (ee) zu
95 % ermittelt werden.

B) 1,82 g Magnesiumspäne wurden mit etwa 10 ml Diethylether überschichtet und durch Zugabe von 500 mg frisch destilliertem Crotylbromid aktiviert. Zu dieser Vorlage tropfte man eine Lösung von 10,0 g Crotylbromid (= cis/trans-1-Brom-2-Buten) in 100 ml Diethylether bei 0 °C unter Argonschutz und Feuchtigkeitsausschluß langsam zu. Das entstandene Gemisch wurde nach erfolgter Zugabe noch 30 Minuten lang zum Sieden erhitzt. Die entstandene

etherische Lösung von Crotylmagnesiumbromid wurde von nicht umgesetztem Magnesium abgetrennt und ohne weitere Aufarbeitung in Lösung direkt weiter umgesetzt.

Zur Gehaltsbestimmung der vorstehend hergestellten Grignard-Lösung wurde eine Lösung von 180 mg (-)-Menthol und einer Spatelspitze Phenanthrolin in 3,0 ml THF auf 0 °C abgekühlt. Durch Zugabe der Grignard-Lösung zu dieser Vorlage titrierte man bis zum Farbumschlag nach Rot und ermittelte durch Differenzwägung die benötigte Menge an Grignard-Lösung für die folgende Umsetzung. Aus dem Quotienten der eingewogenen Menthol-Menge in mmol und der Masse der zur Titration bis zum Farbumschlag benötigten Grignard-Lösung in g ergibt sich der Gehalt der Grignard-Lösung in mmol/g.

Zu einer auf -40 °C gekühlten Lösung von 2,3g (+)- (R_S) -C) 4(R)-Isopropyl-2-p-tolyl-4,5-dihydro[1,2 λ 6,3]oxathiazol-2-oxid in 40 ml THF wurden unter Argonschutz und Feuchtigkeitsausschluß 46 g der vorstehend erhaltenen Lösung von Crotylmagnesiumbromid, gelöst in 100 ml Diethylether, zugetropft. Nach vollendeter Zugabe wurde noch fünf Minuten lang bei der angegebenen Temperatur gerührt, bevor man die Reaktionsmischung auf 0 °C erwärmen ließ. Man rührte weitere 45 Minuten bei dieser Temperatur und gab dann 50 ml einer gesättigten wäßrigen Ammoniumchloridlösung hinzu. Die organische Phase wurde abgetrennt, die wäßrige Phase zweimal mit Ether extrahiert und die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet. Anschließend wurde das Lösungsmittel bei vermindertem Druck eingedampft und der Rückstand über Kieselgel chromatographiert (Laufmittel: anfangs Essigsäureethylester/n-Hexan 1:3 v/v, dessen Zusammensetzung kontinuierlich bis auf 3:1 verändert wurde). Man erhielt 1,4 g $(R_S,1R)-N-[1-(Hydroxymethyl)-2$ methylpropyl]-S-(2-butenyl)-p-toluolsulfoximid als farb-

- loses Öl, IR (Film) = 3440, 1220, 1115 cm⁻¹, optischer Drehwert $[\alpha]_D^{20}$ = + 3,3° (c = 0,5 in Dichlormethan).
- Zu einer auf 0 °C gekühlten Lösung von 1,4 g des vorste-D) hend erhaltenen Sulfoximids und 0,7 ml Ethyldimethylamin in 13 ml Dichlormethan wurden unter Argonschutz und Feuchtigkeitsausschluß 0,6 ml Chlortrimethylsilan zugetropft. Nach vollendeter Zugabe wurde noch 15 Minuten lang bei 0 °C weitergerührt. Anschließend ließ man auf Raumtemperatur auftauen und goß das Reaktionsgemisch nach vollständiger Umsetzung auf eine Mischung aus 25 ml Ether und 25 g Eis. Man extrahierte die wäßrige Phase 3 mal mit je 10 ml Ether, vereinigte die organische Phasen und trocknete sie über Magnesiumsulfat. Das Lösungsmittel wurde unter vermindertem Druck eingedampft und der verbleibende Rückstand wurde durch Chromatographie an Kieselgel (Laufmittel: Ether/n-Hexan 1:1 v/v) gereinigt. Man erhielt 1,75 g $(+)-(R_S,1R)-N-[1-(Trimethyl$ silyloxymethylpropyl)-2-methyl]-S-(2-butenyl)-p-toluolsulfoximid als farbloses Öl, IR (Film) = 1240, 1080, 840 cm⁻¹, optischer Drehwert $[\alpha]_D^{20} = +15,5^{\circ}$ (c = 1,0 in Dichlormethan).
- Eine Lösung von 1,47 g des vorstehend erhaltenen TMS-geschützten 2-Alkenylsulfoximids in 8 ml Toluol wurde auf -78 °C gekühlt und unter Argonschutz und Wasserausschluß mit 2,75 ml einer 1,6-molaren Lösung von n-Butyllithium in n-Hexan versetzt. Man ließ die Reaktionsmischung 15 Minuten lang bei der angegebenen Temperatur rühren und gab anschließend 4,8 ml einer 1-molaren Lösung von Chlortris(isopropoxy)titan in n-Hexan hinzu. Es wurde weitere 5 Minuten lang bei -78 °C gerührt, auf 0 °C aufgetaut und noch 30 Minuten lang bei 0 °C gerührt. Anschließend kühlte man das Reaktionsgemisch wieder auf -78 °C. Zu dieser Vorlage gab man eine Lösung von 2,8 g des vorstehend unter A) erhaltenen Aminoaldehyds in 8 ml

THF zu. Man ließ 60 Minuten lang bei -78 °C weiterrühren, gab 4 ml Piperidin hinzu und ließ auf 0 °C erwärmen. Nach 10 Stunden wurde das Reaktionsgemisch auf 120 ml einer mit 12 ml Essigsäureethylester (= EE) überschichteten, intensiv gerührten gesättigten Ammoniumcarbonatlösung gegossen. Man ließ dieses Gemisch 30 Minuten lang rühren und trennte anschließend die Phasen. Die organische Phase wurde mit 40 ml einer gesättigten Ammoniumchloridlösung gewaschen und die vereinigten wäßrigen Phasen wurden dreimal mit EE extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und das Lösungsmittel wurde unter vermindertem Druck eingedampft. Den verbleibenden Rückstand nahm man mit einer Suspension von 0,6 g Kaliumcarbonat in 10 ml Methanol auf und ließ 60 Minuten lang rühren. Dann wurde von nicht gelöstem Kaliumcarbonat abfiltriert und das Filtrat wurde auf 4 °C abgekühlt. Man filtrierte von ausgefallenem Feststoff ab, wusch mit wenig 4 °C kaltem Methanol nach und dampfte das Filtrat bei vermindertem Druck ein. Der erhaltene Rückstand wurde in 5 ml Toluol aufgenommen und über Kieselgel filtriert (Laufmittel: anfangs Ether/Hexan 1:3 v/v dann EE). Die polare, pyrrolidinhaltige Fraktion wurde eingeengt und in 4 ml Dioxan aufgenommen. Zu dieser Vorlage gab man 1,0 g Di-tert.butyl-dicarbonat [= (BOC)20] und eine Lösung von 0,7 g Natriumhydrogencarbonat in 8 ml Wasser zu. Man ließ 10 Stunden lang rühren, dampfte das Lösungsmittel unter vermindertem Druck ein und verteilte den verbleibenden Rückstand zwischen 5 ml Wasser und 10 ml Ether. Die wäßrige Phase wurde dreimal mit Ether extrahiert und die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet. Nach erneutem Eindampfen des Lösungsmittels unter vermindertem Druck wurde der erhaltene Rückstand durch Chromatographie an Kieselgel (Laufmittel: Ether/Hexan 3:1 v/v) gereinigt. Man erhielt 1,0 g $(R_S, 1'R, 2S, 3S, 4S, 5R) - N' - [(1-Hydroxymethyl) - 2-(methyl-$

propyl)]-S-4-hydroxy-3-methyl-2-(4-methylphenylsulfon-imidoylmethyl)-5-isobutyl-N-tert.-butoxycarbonyl-pyrrolidin als farblosen Schaum, optischer Drehwert $[\alpha]_D^{20}$ = -4° (c = 0,1 in Dichlormethan), IR (Film) = 3419, 1674, 1256, 1097 cm⁻¹.

Zu einer auf 0 °C gekühlten Suspension von 1,67 g Sama-F) rium in 40 ml THF wurden tropfenweise insgesamt 2,4 g Diiodmethan zugegeben. Nach erfolgter Zugabe wurde 15 Minuten lang bei 0 °C gerührt, bevor die Reaktionsmischung auf Raumtemperatur aufgetaut wurde. Man ließ weitere 60 Minuten lang bei Raumtemperatur rühren und gab dann eine Lösung von 1,0 g der vorstehend erhaltenen 2-Sulfonimidoylmethyl-Verbindung in einer Mischung aus 1,2 ml Methanol und 2,5 ml THF zu. Das Reaktionsgemisch wurde 4 Stunden lang gerührt und anschließend mit 110 ml gesättigter wäßriger Ammoniumchloridlösung versetzt. Nach der ersten Phasentrennung versetzte man die wäßrige Phase tropfenweise solange mit 0,5 N wäßriger Salzsäurelösung, bis die Phase aufklarte. Die wäßrige Phase wurde dreimal mit Ether extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und das Lösungsmittel wurde unter vermindertem Druck eingedampft. Chromatographie des verbleibenden Rückstandes an Kieselgel (Laufmittel: Ether/n-Hexan 3:1 v/v) lieferte 0,5 g der Titelverbindung als farblosen Feststoff, Fp. = 97 °C, optischer Drehwert $[\alpha]_{D}^{20}$ = + 66° (c = 1,0 in Dichlormethan).

Beispiel 2

(+)-(2S,3S,4S,5R)-3-Hydroxy-5-methyl-2-phenyl-(1-aza-N-tert.-butoxycarbonyl)-bicyclo[3.3.0]octan

A) Zu einer auf -78 °C gekühlten Lösung von 3,98 g (+)- R_S -4R-Isopropyl-2-p-tolyl-4,5-dihydro[1,2 λ^6 ,3]oxathiazol-2-

oxid in 40 ml THF wurden unter Argonschutz und Feuchtigkeitsausschluß 16,6 ml einer 1,6 molaren Lösung von Methyllithium in Hexan zugetropft. Nach vollendeter Zugabe wurde noch fünf Minuten lang bei der angegebenen Temperatur gerührt, bevor man die Reaktionsmischung auf 0 °C erwärmen ließ. Man rührte weitere 45 Minuten bei dieser Temperatur und gab dann 160 ml Ammoniumchlorid hinzu. Nach dem Abtrennen der organischen Phase extrahierte man die wäßrige Phase noch zweimal mit 20 ml Ether und trocknete die vereinigten organischen Phasen über Natriumsulfat. Das Lösungsmittel wurde anschließend unter vermindertem Druck eingedampft. Der verbleibende Rückstand wurde bei Raumtemperatur in 80 ml Dichlormethan gelöst und hierzu wurden 3,8 g tert.-Butyldimethylsilylchlorid, 0,6 g N, N-Dimethylaminopyridin und 2,4 g Ethyldimethylamin zugegeben und es wurde 18 Stunden lang gerührt. Dann goß man die Mischung auf 40 ml Eiswasser, trennte die organische Phase ab und extrahierte die wäßrige Phase dreimal mit je 20 ml Dichlormethan. Nach dem Trocknen der vereinigten organischen Phasen über Natriumsulfat wurde das Lösungsmittel unter vermindertem Druck eingedampft. Reinigung des Rückstandes über Kieselgel (Laufmittel: Ether/n-Hexan = 1:1 v/v) lieferte 6,0 g (-)- R_S -N(1R)-N-[1-((tert.-Butyldimethylsilyl)oxy)methyl-2-methylpropyl]-S-methyl-S-(4-methylphenyl)sulfoximid als farbloses $\ddot{O}l$, optischer Drehwert $[\alpha]_{D}^{20}$ =

B) Zu einer auf -78 °C gekühlten Lösung von 6,5 g des vorstehend erhaltenen Methylsulfoximids in 45 ml Toluol wurden unter Argonschutz und Feuchtigkeitsausschluß 12,45 ml einer 1,6-molaren Lösung von n-Buthyllithium in n-Hexan zugetropft. Man rührte 15 Minuten bei der angegebenen Temperatur und tropfte anschließend unverdünnt 2,2 g Cyclopentanon hinzu. Nach 10 Minuten ließ man die

 -43.2° (c = 0.8 in Dichlormethan); IR (Film) = 1230,

 1130 cm^{-1} .

Reaktionsmischung auf Raumtemperatur erwärmen. Es wurden weitere 30 Minuten bei dieser Temperatur gerührt, bevor man den Ansatz auf -78 °C kühlte und 9,2 g Trimethylsilyltrifluormethylsulfonat hinzutropfte. Nach fünf Minuten wurde auf Raumtemperatur erwärmt und weitere drei Stunden gerührt. Nachdem erneut auf -78 °C gekühlt worden war, wurden 24,9 ml einer 1,6-molaren Lösung von n-Buthyllithium in n-Hexan zugetropft. Nach drei Minuten Rühren bei der angegebenen Temperatur ließ man auf Raumtemperatur auftauen und rührte noch 18 Stunden lang. Man goß die Reaktionsmischung auf 160 ml einer gesättigten wäßrigen Ammoniumchloridlösung, extrahierte zweimal mit Essigester und trocknete die vereinigten organischen Phasen über Natriumsulfat. Das Lösungsmittel wurde unter vermindertem Druck eingedampft und der verbleibende Rückstand wurde über Kieselgel (Laufmittel: Ether/n-Hexan 1:6 v/v) gereinigt. Man erhielt 5,5 g (-)- R_S -N(1R)-N-[1-((tert.-Butyldimethylsilyl)oxy)methyl-2methylpropyl]-S-cyclopent-1-en-1-ylmethyl)-S-(4-methylphenyl)sulfoximid als farbloses Öl, optischer Drehwert $[\alpha]_D^{20} = -2.5^{\circ}$ (c = 1.6 in Dichlormethan), IR (Film) = 1240, 1120 cm⁻¹.

Auf die in vorstehend unter 1E) beschriebene Weise wurde eine Lösung von 2,95 g des vorstehend erhaltenen Cyclopentenylsulfoximids in 21 ml Toluol mit 4,8 ml einer 1,6-molaren Lösung von n-Buthyllithium in n-Hexan, 8,3 ml einer 1-molaren Lösung von Chlortris(isopropoxy)titan in n-Hexan, einer Lösung von 5,0 g FMOC-geschütztem S-α-Aminophenylethanal in 40 ml THF und 7 ml Piperidin umgesetzt. Chromatographie an Kieselgel (Laufmittel: Ether/n-Hexan = 1:3 v/v) lieferte 3,9 g (2S,3S,4S, 5R)-R_S-N(1R)-N-[1-((tert.-Butyldimethylsily1)oxy)methyl-2-methylpropyl]-3-hydroxy-2-phenyl-5-(4-methylphenylsulfonimidoylmethyl-2-azabicyclo-[3.3.0]octan. Optischer Drehwert [α]_D²⁰ = +2,8°,

(c = 0,6 in Dichlormethan); IR (Film) = 3443, 1251, 1103, 835 cm $^{-1}$.

- D) Zu einer Lösung von 3,9 g des vorstehend erhaltenen Bicyclus in 20 ml Dichlormethan und 40 ml Wasser wurden 0,45 g Natriumhydrogencarbonat und 3,0 g Di-tert.-butyldicarbonat zugegeben und 12 Stunden gerührt. Nach Eindampfen des Lösungsmittels unter vermindertem Druck wurde der erhaltene Rückstand zwischen 5 ml Wasser und 10 ml Ether verteilt. Die organische Phase wurde abgetrennt und die wäßrige Phase zweimal mit Ether extrahiert. Trocknung der vereinigten organischen Phasen über Natriumsulfat, Eindampfen des Lösungsmittels unter vermindertem Druck und Chromatographie des verbleibenden Rückstandes an Kieselgel (Laufmittel: Ether/n-Hexan = / 1:1 v/v) lieferte 4,39 g (-)-(2S,3S,4S,5S)-(- R_S -N(1R)-N-[1-((tert.butyldimethylsilyl)oxy)methyl-2-methylpropyl]-3-hydroxy-2-phenyl-5-(4-methylphenylsulfonimidoylmethyl-2-aza-(N-tert.-butoxycarbonyl)-bicyclo[3.3.0]octan, optischer Drehwert $[\alpha]_D^{20} = -6.2^{\circ}$ (c = 0.9 in Dichlormethan); IR (Film) = 3473, 1682, 1253, 837 cm⁻¹.
- Eine auf 0 °C gekühlte Lösung von 0,42 g des vorstehend erhaltenen, am Stickstoff geschützten Bicyclus in 6 ml THF wurde mit 0,25 g Tetrabutylammoniumfluorid versetzt, nach 15 Minuten auf Raumtemperatur erwärmt und dann für weitere 12 Stunden gerührt. Die Reaktionsmischung wurde auf 10 ml Wasser, welches mit 5 ml Ether überschichtet war, gegossen. Nach dem Abtrennen der organischen Phase extrahierte man die wäßrige Phase dreimal mit Ether, trocknete die vereinigten organischen Phasen über Natriumsulfat und dampfte das Lösungsmittel unter vermindertem Druck ein. Chromatographie an Kieselgel (Laufmittel: Essigester/n-Hexan = 1:1 v/v) lieferte 0,35 g

 (-)-(2S,3S,4S,5S)-R_S-N(1R)-N-[1-(hydroxymethyl)-2-methylpropyl]-3-hydroxy-2-phenyl-5-(4-methylphenylsulfon-

imidoylmethyl-2-aza-(N-tert.-butoxycarbonyl)-bi-cyclo[3.3.0]octan. $[\alpha]_D^{20}=-14,1^\circ$ (c = 2,7 in Dichlormethan); IR (Film) = 3473, 1681, 1252 cm⁻¹.

Zu einer auf 0 °C gekühlten Suspension von 0,56 g Sama-F) rium in 13 ml THF wurden tropfenweise insgesamt 0,84 g Diiodmethan zugegeben. Nach erfolgter Zugabe rührte man 15 Minuten lang bei der angegeben Temperatur, bevor die Reaktionsmischung auf Raumtemperatur aufgetaut wurde. Man ließ weitere 60 Minuten lang rühren und gab dann eine Lösung von 0,28 g der vorstehend erhaltenen N-BOC-5-Sulfonimidoyl-Verbindung in einer Mischung aus 1 ml Methanol und 2 ml THF zu. Die Reaktionsmischung wurde vier Stunden lang gerührt und anschließend auf 110 ml einer gesättigten Ammoniumchloridlösung gegeben. Nach dem Abtrennen der organischen Phase gab man zu der wäßrigen Phase so lange 0,5 N Salzsäurelösung hinzu, bis die Suspension aufgeklart war. Die klare wäßrige Phase wurde zweimal mit Ether extrahiert, die vereinigten organischen Phasen über Natriumsulfat getrocknet und das Lösungsmittel unter vermindertem Druck eingedampft. Chromatographie des verbliebenen Rückstandes an Kieselgel (Laufmittel: Ether/n-Hexan = 1:4 v/v) lieferte 0,11 g der Titelverbindung als farblosen Festkörper, Fp. = 176,8 °C, $[\alpha]_D^{20}$ = +50,7° (c = 0,56 in Dichlormethan); IR (Film) = 3439, 1661 cm $^{-1}$.

Beispiel 3

(+)-(2S,3R,4R,5S)-3-Hydroxy-5-methyl-2-phenyl-1-aza-(N-tert.-butoxycarbonyl)-bicyclo[3.3.0]octan

A) 6,3 g (-)- S_s -4R-Isopropyl-2-p-tolyl-4,5-dihydro- [1,2 λ 6,3]oxathiazol-2-oxid wurden mit 6,03 g tert.- Butyldimethylsilylchlorid entsprechend der in Beispiel 2A) beschriebenen Weise umgesetzt. Man erhielt 8,7 g

(+)- S_s -N(1R)-N-[1-((tert.-Butyldimethylsilyl)oxy)methyl-2-methylpropyl]-S-methyl-S-(4-methylphenyl)sulfoximid als farbloses Öl, optischer Drehwert [α]_D²⁰= +89,9° (c = 1,0 in Dichlormethan), IR (Film): 1251, 1134 cm⁻¹.

- B) Auf die in vorstehend unter 2B) beschriebene Weise wurde eine Lösung von 8,04 g des vorstehend erhaltenen Methylsulfoximids in 65 ml THF mit 16,3 ml einer 1,6 molaren Lösung von n-Butyllithium in n-Hexan 3,1 ml Cyclopentanon, 9,83 ml Trimethylsilyltrifluormethansulfonat und weiteren 27,19 ml einer 1,6 molaren Lösung von n-Butyllithium in n-Hexan umgesetzt. Chromatographie an Kieselgel (Laufmittel: Ether/n-Hexan = 1:6 v/v) lieferte 7,057 g (+) S_s -N((1R)-N-[1-((tert.-Butyldimethylsilyl)oxy)methyl-2-methylpropyl]-S-cyclopent-1-en-1-ylmethyl)-S-(4-methylphenyl)sulfoximid als farbloses Öl, optischer Drehwert [α] $_D^{20}$ = +54,7° (c = 1,35 in Dichlormethan), IR = 1251, 1131-1.
- C) Auf die in vorstehend unter 1E) beschriebene Weise wurde eine Lösung von 3,17 g des vorstehend erhaltenen Cyclopentenylsulfoximids in 22 ml Toluol mit 5,6 ml einer 1,6-molaren Lösung von n-Butyllithium in n-Hexan, 11,2 ml einer 1-molaren Lösung von Chlortris(isopropoxy)titan in n-Hexan, einer Lösung von 4,0 g FMOC-geschütztem S-α-Aminophenylethanol in 20 ml THF und 7,4 ml Piperidin umgesetzt. Chromatographie an Kieselgel (Laufmittel: Ether/n-Hexan = 1:1 v/v) lieferte 2,4 g (2S, 3R, 4R, 5S)-S_S-N(1R)-N-[1-((tert.-Butyldimethylsilyl)oxy)methyl-2-methylpropyl]-3-hydroxy-2-phenyl-5(4-methylphenylsulfonimidoylmethyl-2-azabicyclo[3.3.0]octan.
- D) Zu einer Lösung von 1,58 g des vorstehend erhaltenen Bicyclus in 17 ml Dioxan und 4 ml Wasser wurden 0,35 g Natriumhydrogencarbonat und 1,21 g Di-tert.-butyldicarbonat zugegeben und 12 Stunden gerührt. Nach Eindampfen

des Lösungsmittels unter vermindertem Druck wurde der erhaltene Rückstand zwischen 5 ml Wasser und 10 ml Ether verteilt. Die organische Phase wurde abgetrennt und die wäßrige Phase zweimal mit Ether extrahiert. Trocknung der vereinigten organischen Phasen über Natriumsulfat, Eindampfen des Lösungsmittels unter vermindertem Druck und Chromatographie des verbleibenden Rückstandes an Kieselgel (Laufmittel: Ether/n-Hexan 1:1 v/v) lieferte 1,52 g (+)-(2S,3R,4R,5S)-S_s-N(1R)-N-[1-((tert.-Butyldimethylsilyl)oxy)methyl-2-methylpropyl]-3-hydroxy-2-phenyl-5-(4-methylphenylsulfonimidoylmethyl-(2-aza-Ntert.-butoxycarbonyl)-bicyclo[3.3.0]octan, optischer Drehwert [α]_D²⁰= +63,2° (c = 1,0 in Dichlormethan); IR (Film) = 3473, 1694, 1254, 836 cm⁻¹.

- Eine auf 0 °C gekühlte Lösung von 1,52 g des vorstehend E) erhaltenen, am Stickstoff geschützten Bicyclus in 14 ml THF wurde mit 1,43 g Tetrabutylammoniumfluorid versetzt, nach 15 Minuten auf Raumtemperatur erwärmt und dann für weitere 12 Stunden gerührt. Die Reaktionsmischung wurde auf 30 ml Wasser, welches mit 20 ml Ether überschichtet war, gegossen. Nach Abtrennung der organischen Phase extrahierte man die wäßrige Phase dreimal mit Ether, trocknete die organische Phase über Natriumsulfat und dampfte das Lösungsmittel unter vermindertem Druck ein. Chromatographie an Kieselgel (Laufmittel: Essigester/n-Hexan = 1:3 v/v) lieferte 0,96 g (+)-(2S,3R,4R,5S)-S_S-N(1R)-N-[1-hydroxymethyl-2-methylpropyl]-3-hydroxy-2phenyl-5-(4-methylphenylsulfonimidoylmethyl-(2-aza-Ntert.-butoxycarbonyl)-bicyclo[3.3.0]octan, optischer Drehwert $[\alpha]_D^{20} = +54.3^{\circ}$ (c = 1.03 in Dichlormethan; IR $(Film) = 3446, 1690, 1239 cm^{-1}.$
- F) Zu einer Suspension von 2,04 g Samarium in 95 ml THF gab man bei Raumtemperatur 3,4 g Diiodmethan und ließ 60 Minuten rühren. Dann gab man eine Lösung von 0,955 g der

vorstehend erhaltenen 5-Sulfonimidoyl-Verbindung in einer Mischung aus 1,7 ml Methanol und 3,4 ml THF zu. Die Reaktionsmischung wurde 16 Stunden lang gerührt und anschließend auf 100 ml Wasser gegeben. Zu dem Gemisch gab man so lange 0,5 N Salzsäurelösung hinzu, bis die Suspension aufgeklart war. Die Phasen wurden getrennt und die wäßrige Phase wurde zweimal mit Ether extrahiert, die vereinigten organischen Phasen über Natriumsulfat getrocknet und das Lösungsmittel unter vermindertem Druck eingedampft. Chromatographie des verbleibenden Rückstandes an Kieselgel (Laufmittel: Ether/n-Hexan = 1:3 v/v) lieferte 0,43 g der Titelverbindung als farbloses, erstarrendes Öl (Schaum), optischer Drehwert $[\alpha]_D^{20} = +34,5^\circ$ (c = 1,01 in Dichlormethan; IR (Film) = 3447, 1669 cm⁻¹.

Beispiel 4

(-) - (2S, 3R, 4R, 5S) -3-Hydroxy-5-methyl-2-phenyl-1-azabicyclo-[3.3.0]octan

205 mg (+)-(2S,3R,4R,5S)-3-Hydroxy-5-methyl-2-phenyl-1-aza-(N-tert.-butoxycarbonyl)-bicyclo[3.3.0]octan (Herstellung siehe Beispiel 3) wurden unter Argonatmosphäre und Feuchtigkeitsausschluß in einem Gemisch, bestehend aus 1,61 ml einer 4,0 M Chlortrimethylsilan-Lösung in Dichlormethan und 4,84 ml einer 4,0 M Phenol-Lösung in Dichlormethan, gelöst und 20 Minuten lang bei Raumtemperatur gerührt. Anschließend wurde auf 10 ml einer 10%igen wäßrigen Natronlauge gegossen, die organische Phase abgetrennt, die wäßrige Phase noch 2 mal mit jeweils 5 ml Dichlormethan und einmal mit 5 ml Ether extrahiert und die vereinigten organischen Phasen wurden über Magnesiumsulfat getrocknet. Das Lösungsmittel wurde unter vermindertem Druck eingedampft und der Rückstand wurde über Kieselgel gereinigt (Laufmittel: Essigester/n-Hexan 10:1 v/v). Man er-

hielt 113 mg kristalline Titelverbindung, Fp. = 84,5 °C, optischer Drehwert $[\alpha]_D^{20} = -46,4^\circ$ (c = 1,04 in Dichlormethan).

Beispiel 5

(+) - (2S, 3S, 4R, 5S) - 3 - Amino - 5 - methyl - 2 - phenyl - 1 - aza - (N - tert. - butoxycarbonyl) - bicyclo[3.3.0] octan

- A) Zu einer Lösung von 200 mg (-)-(2S,3R,4R,5S)-3-Hydroxy-5-methyl-2-phenyl-1-azabicyclo[3.3.0]octan in 1,5 ml THF wurden bei Raumtemperatur unter Argonatmosphäre und Feuchtigkeitsausschluß 241 mg Triphenylphosphin und 135 mg Phthalimid gegeben. Anschließend gab man innerhalb von 2 min. 0,14 ml DEAD zu. Nach 10 Stunden Reaktionszeit dampfte man das Lösungsmittel unter vermindertem Druck ein und nahm den Rückstand in 5 ml Ether auf. Nach Abfiltrieren von ungelöstem Rückstand und Eindampfen des Lösungsmittels unter vermindertem Druck erhielt man das (2S,3S,4R,5S)-5-Methyl-2-phenyl-3-phthalimido-1-azabicyclo[3.3.0]octan als Rohprodukt, welches ohne weitere Reinigung für die nachfolgende Reaktion verwendet wurde.
- B) 174 mg des vorstehend erhaltenen Rohproduktes wurden in 3 ml Dioxan gelöst. Zu dieser Vorlage gab man 220 mg Ditert.-butyldicarbonat und 63 mg Natriumhydrogencarbonat sowie 0,5 ml Wasser zu und rührte das entstandene Gemisch 16 Stunden lang bei Raumtemperatur. Das Lösungsmittel wurde unter vermindertem Druck eingedampft und der verbliebene Rückstand wurde in Wasser und Ether aufgenommen. Man trennte die Phasen und extrahierte die wäßrige Phase 2 malmit jeweils 5 ml Ether. Die vereinigten organischen Phasen wurden über Magnesiumsulfat getrocknet, bevor das Lösungsmittel unter vermindertem Druck eingedampft wurde. Chromatographie des verbliebenen Rückstandes an Kieselgel (Laufmittel: Ether/n-Hexan

1:3 v/v) lieferte 115 mg öliges (2S,3S,4R,5S)-5-Methyl-2-phenyl-3-phthalimido-1-aza-(N-tert.-butoxycarbonyl)-bicyclo[3.3.0]octan.

Eine Lösung von 115 mg des vorstehend erhaltenen Phthalimido-bicyclo[3.3.0]octans in 2 ml Ethanol wurde mit 400 mg Hydrazinhydrat (24%ig) versetzt und das entstandene Gemisch wurde 8 Stunden lang zum Rückfluß erhitzt. Man dampfte das Lösungsmittel unter vermindertem Druck ein, nahm den verbliebenen Rückstand in 10 ml Ether auf und extrahierte die organische Phase mit 10 ml einer 10%igen wäßrigen Natronlauge. Die wäßrige Phase wurde 2 mal mit jeweils 10 ml Ether extrahiert und die vereinigten organischen Phasen wurden über Magnesiumsulfat getrocknet. Man dampfte das Lösungsmittel unter vermindertem Druck ab und erhielt 74 mg kristalline Titelverbindung, Fp. = 92,1 °C, $[\alpha]_D^{20}$ = +24,1° (c = 1,0 in Dichlormethan).

Nach den vorstehend angegebenen Methoden können auch die in der nachfolgenden Tabelle angegebenen Verbindungen der Formel I hergestellt werden.

In der Tabelle werden folgende Abkürzungen verwendet:

i-Bu = Isobutyl

Bn = Benzyl

BOC = tert.-Butyloxycarbonyl

TBOM = tert.-Butyloxymethyl

Ph = Phenyl

Z. = Zersetzung beim Erhitzen

N.N. = Eintrag nicht besetzt

N.N. H <th>BBD</th> <th>n1</th> <th>R2</th> <th>R3</th> <th>R4</th> <th>R 25</th> <th>a o</th> <th>7.H</th> <th>Rв</th> <th>R⁹</th> <th>Abs</th> <th>Absolutkonfig C-Atom Nr.</th> <th>Jutkonfig C-Atom Nr</th> <th></th> <th>da r</th> <th>X</th> <th>u</th> <th>Pp.</th> <th>[a] ^D20</th>	BBD	n1	R 2	R3	R4	R 25	a o	7.H	Rв	R ⁹	Abs	Absolutkonfig C-Atom Nr.	Jutkonfig C-Atom Nr		da r	X	u	Pp.	[a] ^D 20
M.N. H											1	1							
H H H H H H H H H H H H H H H H H H H	9	N	N.									1				†	\dagger	- 1	- 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	H	×	н	Ħ	1	1	н	Bn	BOC	S	-	ద	1	씸	0			37,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	H	Ħ	H	н	ı	1	н	i-Bu	BOC	S	ı	Ж	-	ĸ	0	0	Öl	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	H	H	н	Ħ	1	ı	H	TBOM	BOC	S	1	æ	1	DC.	0	0	115,7	_ 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	Ħ	H	ж	CH3	ı	ı	H	Bn	BOC	ß		ĸ	R	ద	0	0	127,8	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	Ħ	H	H	CH,	1	1	н	TBOM	BOC	ß	ı	ద	ĸ	ద	0	0	Öl	+14,8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	Ħ	H	H	H	1	1	н	Bn	вос	S	ı	တ	ı	ß	0	0	107,7	+6,5
H H H H TBOM BOC S - S 0 0 93,1 +1,1 H H H H H H BN BN S - S 0 0 93,1 +26,2 H H H H H H H BN BN S - S 0 0 93,1 +26,2 H H H H H H H BN BN S - S 0 0 91,0 -20,0 H H H H BN BN S - S 0 0 117,2 -0.0 H <th< th=""><th>13</th><td>Ħ</td><td>E</td><td>H</td><td>н</td><td>1</td><td>,</td><td>H</td><td>i-Bu</td><td>вос</td><td>S</td><td>ı</td><td>ß</td><td>i</td><td>S</td><td>0</td><td>0</td><td>Öl</td><td>-37,3</td></th<>	13	Ħ	E	H	н	1	,	H	i-Bu	вос	S	ı	ß	i	S	0	0	Öl	-37,3
H H H CH3 - H EN BOC S - S S S S O 0 91,0 +26,0 H H H i-Bu BOC S - S S O 0 91,0 +20,0 H H H H H BOC S - S O 0 187,2 -20,0 H H H H BOC S - S R S O 0 187,2 -20,0 H H H H BOC S - S R S O 0 187,2 -20,0 H	1.4	æ	Ħ	. ж	Н		-	Ħ	TBOM	<u> </u>	ß	1	လ	ı	S	0	0		+1,8
H H CH3 - H Ti-Bu BOC S - R R O 97,0 -20,0 H H H CH2 - H TBOM BOC S - R R S O 0 187,2 -20,0 H H H BN BN H S - R R S O 0 187,2 -20,0 H H - H BN BN H R R S O 0 187,2 -20,0 H H H H H H H H H R R S O 0 117,2 -60,0 H	15	H	Ħ	H	CH,	1		æ	Bn	вос	S	1	ß	ß	ß	0	0	91,0	+26,7
	16	Ħ	H	Ħ	CH,	1	,	Ħ	i-Bu	вос	S	1	ᄶ	ĸ	ĸ	0	0	97,0	-20,0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.7	Ħ	Ħ	H	CH,	,	1	Ħ	TBOM		ß	ı	S	Я	ß	0	0	187,2	-20,8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.8	Ħ	H	- (CH	[2] 3-	1	1	H	Bn	ВОС	ß	ı	ж	Ж	ß	0	0	1	+8,2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	H	E	(CE)	[2] 3-	ı	1	н	Bn	н	ß	i	ĸ	Ж	ຜ	0	0	17,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	Ħ	H	(CB) -		Ħ	Ħ	H	н	н	ı	,	S	24	S	0			
H H H - (CH ₂) ₃ - = CH-CH=CH-CH= H R R S O 1	21	H	Ħ	ED) -		Ħ	Ħ	Ħ	Н	Н	-	ı	ß	Ж	ß	0	Н		
H H H - (CH ₂) ₃ H Bn BOC S - S S NH O HCl-Salz (Z. S C CH ₂) ₃ H Bn H S - S S NH O HCl-Salz (Z. S C CH ₂) ₃ - H H H H H BOC - S S R S O 1 O 1 O 1-7,7	22	Ħ	H	(E) -		ျ	H-CH)-H)=	H:	н	1	1	Я	ጸ	S	0	н		
H H H - (CH ₂) ₃ H Bn H S - S S NH 0 HC1-Salz (Z H H H - (CH ₂) ₃ - H H H H BOC - S R S O 1 Ö1 -17, H H - (CH ₂) ₄ - H H H H BOC - S R S O 1 Ö1 -19,	23	H	H	- (CE	, .	ı	ı	H	Bn	BOC	S	1	ß	ß	വ	Ħ	0	4	+48,9
H H - (CH ₂) ₃ - H H H H BOC - S R S O 1 Ö1 -17, H H - (CH ₂) ₄ - H H H BOC - S R S O 1 Ö1 -19,	24	Ħ	H	- (CE		ı	1	Ħ	Bn	Н	S	i	ß	S	S	HN	0	HC1-Sa	Z) z
H H -(CH ₂),- H H H H BOC S R S O 1 Ö1 -19,	25	н	н	E) -		Н	Ħ	н	н	BOC	ı	1	ß	ĸ	ß	0	디	Öl	17,
	26	H	Ħ	- (C		н	H	Н	н	BOC	ı	ı	S	R	S	0	н	öl	19,

Patentansprüche

1. Verfahren zur stereochemisch kontrollierten Herstellung von Verbindungen der allgemeinen Formel I,

worin

n 0 oder 1 bedeutet,

Wasserstoff, C₁-C₆-Alkyl oder gegebenenfalls im Phenylring ein- oder mehrfach durch niederes Alkyl, niederes Haloal-kyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenyl-C₁-C₆-alkyl bedeutet und

R² Wasserstoff bedeutet, oder

 R^1 und R^2 gemeinsam eine doppelt gebundene Methylengruppe bedeuten, welche durch C_1 - C_5 -Alkyl oder gegebenenfalls im Phenylring ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenyl- C_1 - C_5 -alkyl substituiert sein kann,

R³ Wasserstoff bedeutet und

- R⁴ Wasserstoff, niederes Alkyl oder gegebenenfalls im Phenylring ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenylniederalkyl bedeutet, oder
- ${
 m R}^3$ und ${
 m R}^4$ auch gemeinsam eine ${
 m C}_2$ -Alkylenkette oder eine gegebenenfalls 1 bis 3 Doppelbindungen enthaltende ${
 m C}_3$ - ${
 m C}_6$ -Alkylenkette bedeutet, welche durch gegebenenfalls ein- oder zweifach durch niederes Alkyl substituiertes ${
 m C}_1$ - ${
 m C}_2$ -Alkylen überbrückt sein kann,
- R⁵ Wasserstoff, niederes Alkyl, Hydroxy, niederes Alkoxy oder jeweils, im Phenylring gegebenenfalls ein- oder mehrfach

durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenylniederalkyl oder Phenylniederalkoxy bedeutet und

- R⁶ Wasserstoff bedeutet und
- R⁷ Wasserstoff bedeutet und
- Wasserstoff, Cyano, gegebenenfalls verestertes Carboxy, R⁸ gegebenenfalls am Stickstoff ein- oder zweifach substituiertes Carbonylamino, ein gegebenenfalls ein- oder mehrfach ungesättigtes mono- oder bicyclisches Ringsystem mit 3 bis 10 Ringkohlenstoffatomen, dessen Ringkohlenstoffatome einoder mehrfach durch Stickstoff, Sauerstoff und/oder Schwefel ersetzt sein können und welches Ringsystem ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy, Hydroxy, Halogen oder durch eine niedere Alkylenkette, welche an zwei an benachbarte Kohlenstoffatome des Ringsystems gebundene Sauerstoffatome gebunden ist, substituiert sein kann, bedeutet, oder auch für gegebenenfalls ein- oder mehrere Doppelbindungen enthaltendes geradkettiges oder verzweigtes C1-C12-Alkyl stehen kann, welches ein- oder mehrfach durch Halogen, Hydroxy, niederes Alkoxy, gegebenenfalls verestertes Carboxy, Cyano, Mercapto, niederes Alkylthio, Amino, niederes Alkylamino, gegebenenfalls am Stickstoff ein- oder zweifach substituiertes Carbonylamino, ein gegebenenfalls ein- oder mehrfach ungesättigtes mono- oder bicyclisches Ringsystem mit 3 bis 10 Ringkohlenstoffatomen, dessen Ringkohlenstoffatome ein- oder mehrfach durch Stickstoff, Sauerstoff und/oder Schwefel ersetzt sein können und welches Ringsystem ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy, Hydroxy, Halogen oder durch eine niedere Alkylenkette, welche an zwei an benachbarte Kohlenstoffatome des Ringsystems gebundene Sauerstoffatome gebunden ist, substituiert sein kann, oder

 ${\tt R}^5$ und ${\tt R}^8$ auch gemeinsam mit den Kohlenstoffatomen, an welche sie gebunden sind, ein gegebenenfalls 1 bis 3 Doppelbindungen

enthaltendes mono- oder bicyclisches Ringsystem mit 5 bis 10 Ringkohlenstoffatomen bilden können, dessen nicht die Substituenten R⁵ oder R⁸ tragende Kohlenstoffatome einoder mehrfach durch Schwefel, Sauerstoff und/oder Stickstoff ersetzt sein können, und welches gegebenenfalls einoder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy, niederes Haloalkoxy, Hydroxy, Halogen oder durch eine niedere Alkylenkette, welche an zwei an benachbarte Kohlenstoffatome des Ringsystems gebundene Sauerstoffatome gebunden ist, substituiert sein kann, oder R⁶ und R⁷ auch gemeinsam eine Bindung bilden können und

- R⁵ und R⁸ gemeinsam mit den Kohlenstoffatomen, an welche sie gebunden sind, ein aromatisches C₆-Ringsystem bilden können, welches mit 2 bis 4 weiteren Kohlenstoffatomen zu einem insgesamt 8 bis 10 Ringkohlenstoffatome enthaltenden bicyclischen Ringsystem mit insgesamt 3 bis 5 Doppelbindungen anelliert sein kann, wobei die nicht die Substituenten R⁵ oder R⁸ tragenden Kohlenstoffatome dieses C₆- bis C₁₀-Ringsystems ein- oder mehrfach durch Schwefel, Sauerstoff und/oder Stickstoff ersetzt sein können und wobei dieses C₆- bis C₁₀-Ringsystem gegebenenfalls ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy, niederes Haloalkoxy, Hydroxy, Halogen oder durch eine niedere Alkylenkette, welche an zwei an benachbarte Kohlenstoffatome des Ringsystems gebundene Sauerstoffatome gebunden ist, substituiert sein kann,
- R9 Wasserstoff, niederes Alkyl, gegebenenfalls im Phenylring ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenylniederalkyl oder eine Aminoschutzgruppe bedeutet, oder
- R^8 und R^9 auch gemeinsam eine C_3 - C_4 -Alkylenkette bilden können und
- Y Sauerstoff oder NH bedeutet,

und deren Säureadditionssalzen, wobei gegebenenfalls vorhandene reaktive Gruppen in Verbindungen der Formel I durch geeignete Schutzgruppen blockiert sein können, dadurch gekennzeichnet, daß man

a) eine Verbindung der allgemeinen Formel II,

worin R^3 und R^4 obige Bedeutungen besitzen, R^{101} die vorstehend für R^1 angegebene Bedeutung mit Ausnahme einer gegebenenfalls substituierten Methylengruppe besitzt, Ar für gegebenenfalls ein- oder mehrfach durch niederes Alkyl substituiertes Phenyl steht, R^{10} niederes Alkyl oder gegebenenfalls im Phenylring einfach durch niederes Alkyl oder durch mit einer geeigneten Schutzgruppe geschütztes Hydroxy substituiertes Phenyl oder gegebenenfalls im Phenylring einfach durch niederes Alkyl substituiertes Phenylniederalkyl bedeutet und R^{1101} für eine Silyl-Schutzgruppe steht,

52

nacheinander mit einer zu deren Deprotonierung geeigneten Base, einem metallorganischen Reagenz der allgemeinen Formel VII,

$$XM^2(OR^{12})_3$$
 VII

worin X für Halogen steht, M² ein vierwertiges Übergangsmetall bedeutet und R12 für niederes Alkyl, Phenyl oder Phenylniederalkyl steht, und einem Stereoisomer einer Verbindung der allgemeinen Formel VIII,

worin R⁵, R⁶, R⁷ und n die obigen Bedeutungen besitzen, R⁸⁰¹ die Bedeutung von R⁸ besitzt, wobei allfällige reaktive Gruppen nötigenfalls durch basenstabile Schutzgruppen blockiert sind, R901 für Wasserstoff oder gemeinsam mit R801 für eine C_3-C_4 -Alkylenkette steht und R^{13} eine Amino-Schutzgruppe bedeutet, welche bei ihrer Abspaltung ein Stickstoff-Nucleophil hinterläßt, umsetzt zu einem Stereoisomer einer Verbindung der allgemeinen Formel IX,

53

worin R^{101} , R^3 , R^4 , R^5 , R^6 , R^7 , R^{801} , R^{901} , R^{10} , R^{1101} , R^{12} , R^{13} , n, Ar und M^2 obige Bedeutungen besitzen,

b) die erhaltene Verbindung der Formel IX durch Behandlung mit einem zur Entfernung der Gruppe R¹³ geeigneten Reagenz überführt in eine Verbindung der allgemeinen Formel Xa,

$$R^{4}$$
 R^{4}
 R^{4}
 R^{4}
 R^{5}
 R^{6}
 R^{7}
 R^{801}
 R^{101}
 R^{10}
 R^{10}
 R^{10}

worin R^{101} , R^3 , R^4 , R^5 , R^6 , R^7 , R^{801} , R^{901} , R^{10} n und Ar obige Bedeutungen besitzen und R^{11} für Wasserstoff oder eine Silylschutzgruppe steht und, sofern R^{901} für Wasserstoff steht, das Stickstoffatom im cyclischen Grundgerüst der entstandenen Verbindung der Formel Xa mit einer basenstabilen Schutzgruppe blockiert und eine gegebenenfalls noch vorhandene Silylschutzgruppe R^{11} abspaltet, und

c) zur Herstellung einer Verbindung der allgemeinen Formel Ia

worin R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^{801} und n obige Bedeutungen besitzen und R^{902} für eine basenstabile Schutzgruppe oder gemeinsam mit R^{801} für eine C_3-C_4 -Alkylenkette steht,

ca) eine erhaltene Verbindung der Formel Xa oder eine durch Abspaltung der Silylschutzgruppe R¹¹ entstandene Verbindung mit einem zur reduktiven Spaltung der Sulfonimidoyl-Alkyl-Bindung geeigneten Reagenz umsetzt, um eine Verbindung der allgemeinen Formel Ib,

worin R^{101} , R^3 , R^4 , R^5 , R^6 , R^7 , R^{801} , R^{902} und n obige Bedeutungen besitzen, zu erhalten, oder

cb) in einer erhaltenen Verbindung der Formel Xa, worin R¹⁰¹
nicht für Wasserstoff steht, die Sulfonimidoyl-AlkylBindung nach elektrophiler Aktivierung der SulfonimidoylEinheit unter den Bedingungen einer baseninduzierten
Eliminierung spaltet, um eine Verbindung der allgemeinen
Formel Ic,

$$R^{102}HC = CH$$
 R^{902}
 $R^{102}HC = CH$
 $R^{102}HC = CH$

worin R^3 , R^4 , R^5 , R^6 , R^7 , R^{801} , R^{902} und n obige Bedeutungen besitzen und R^{102} für C_1 - C_5 -Alkyl steht oder für gegebenenfalls im Phenylring ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder

55

niederes Haloalkoxy substituiertes Phenylniederalkyl steht, dessen niedere Alkylenkette 1 bis 5 Kohlenstoffatome enthalten kann, zu erhalten,

und eine erhaltene Verbindung der Formel Ia gewünschtenfalls einmal oder mehrmals durch Umsetzung, jeweils unter Inversion der Konfiguration am Ringkohlenstoffatom in 3-Position der Verbindungen der Formel Ia, mit einem zur Wiedererzeugung einer OH-Gruppe oder zu Erzeugung einer NH2-Gruppe in der 3-Position geeigneten nucleophilen Reagenz umsetzt und/oder gewünschtenfalls allfällige Schutzgruppen in Verbindungen der Formel Ia wieder abspaltet und gewünschtenfalls die gegebenenfalls freigesetzte NH-Gruppe in 1-Position des cyclischen Grundgerüstes mit einem zur N-Alkylierung oder einem zur Amidbildung befähigten Reagenz umsetzt oder mit einer Aminoschutzgruppe blockiert, um Verbindungen der Formel I zu erhalten und freie Verbindungen der Formel I gewünschtenfalls zu Säureadditionssalzen umsetzt oder Säureadditionssalze von Verbindungen der Formel I zu freien Verbindungen umsetzt.

- 2. Verfahren nach Anspruch 1 zur Herstellung von Verbindungen der allgemeinen Formel Ia gemäß Anspruch 1, worin die R^1R^2 CH-Gruppe in 5-Position des cyclischen Grundgerüstes und die Hydroxy-Gruppe in 3-Position des cyclischen Grundgerüstes jeweils in trans-Stellung zueinander stehen und worin der Substituent R^4 in 4-Position und die Hydroxy-Gruppe in 3-Position des cyclischen Grundgerüstes jeweils in cis-Stellung zueinander stehen, gewünschtenfalls gefolgt von der Abspaltung gegebenenfalls vorhandener Schutzgruppen R^{801} und/oder R^{902} aus Verbindungen der allgemeinen Formel Ia.
- 3. Verfahren nach Anspruch 2 zur Herstellung von Verbindungen der allgemeinen Formel Ib gemäß Anspruch 1.

56

- 4. Verfahren nach einem der vorstehenden Ansprüche, worin als Aminoschutzgruppe R¹³ in Verbindungen der Formel VIII eine basenlabile Schutzgruppe verwendet wird und worin im Verfahrensschritt b) als Reagenz zur Entfernung der Schutzgruppe R¹³ eine Base verwendet wird.
- 5. Verfahren nach Anspruch 4, worin die basenlabile Schutzgruppe der Fluoren-9-yl-methyloxycarbonyl-Rest ist.
- 6. Verfahren nach Anspruch 5, worin als Base Piperidin verwendet wird.
- 7. Verfahren nach Anspruch 1, worin wenigstens in Verfahrensschritt a) Toluol als Lösungsmittel verwendet wird.
- 8. Verfahren nach Anspruch 1, worin im Verfahrensschritt ca) als Reagenz für die reduktive Spaltung der Sulfonimidoyl-Alkyl Bindung in Verbindungen der allgemeinen Formel Xa Samarium-II-iodid verwendet wird.
- 9. Verfahren nach Anspruch 1, worin in den Verbindungen der allgemeinen Formeln I, Ia, Ib, Ic, II, IX und Xa jeweils R⁴ nicht Wasserstoff bedeutet.
- 10. Verfahren nach Anspruch 1, worin als Silylschutzgruppe R¹¹⁰¹ tert.-Butyldimethylsilyl oder Trimethylsilyl verwendet wird.
- 11. Verbindungen der allgemeinen Formel Ia gemäß Anspruch 1, worin die R^1R^2CH -Gruppe in 5-Position des cyclischen Grundgerüstes und die Hydroxy-Gruppe in 3-Position des cyclischen Grundgerüstes jeweils in trans-Stellung zueinander stehen und worin der Substituent R^4 in 4-Position und die Hydroxy-Gruppe in 3-Position des cyclischen Grundgerüstes jeweils in cis-Stellung zueinander stehen und durch Abspaltung von gegebenenfalls ent-

haltenen Schutzgruppen \mathbb{R}^{801} oder Aminoschutzgruppen \mathbb{R}^{902} aus den Verbindungen der Formel Ia erhältliche freie Verbindungen.

- 12. Verbindungen nach Anspruch 11 der allgemeinen Formel Ib, gemäß Anspruch 1.
- 13. Verbindungen nach Anspruch 11 oder 12, worin \mathbb{R}^4 nicht Wasserstoff bedeutet.
- 14. Verbindungen nach Anspruch 13, welche einen Isomerenüberschuß von mindestens 95 % aufweisen.
- 15. Verbindungen nach einem der Ansprüche 11 bis 14, worin R^{801} Wasserstoff, Niederalkyl, Phenyl, Phenylniederalkyl oder Niederalkoxyniederalkyl bedeutet, oder R^6 und R^7 gemeinsam eine Bindung bilden und R^5 und R^{801} gemeinsam mit den Kohlenstoffatomen, an welche sie gebunden sind, ein aromatisches C_6 -Ringsystem bilden oder worin R^{801} gemeinsam mit R^{901} eine C_3 - C_4 -Alkylenkette bildet.
- 16. Verbindungen nach Anspruch 11, worin \mathbb{R}^1 und \mathbb{R}^2 jeweils Wasserstoff bedeuten oder gemeinsam für die Methylengruppe stehen.
- 17. Verbindungen der allgemeinen Formel Ib nach Anspruch 12, worin \mathbb{R}^{101} für Wasserstoff steht.
- 18. Verbindungen der allgemeinen Formel Xa nach Anspruch 1, sowie durch Entfernung von gegebenenfalls vorhandenen Schutzgruppen aus Verbindungen der Formel Xa erhältliche Verbindungen und Säureadditionssalze von freien Aminen der Formel Xa, worin jeweils der schwefelhaltige Substituent in 5-Position und die Hydroxy-Gruppe in 3-Position des cyclischen Grundgerüstes in trans-Stellung zueinander stehen und worin der Substituent R⁴ in

58

4-Position und die Hydroxy-Gruppe in 3-Position des cyclischen Grundgerüstes jeweils in cis-Stellung zueinander stehen.

- 19. Verbindungen der allgemeinen Formel Xa nach Anspruch 18, welche ein sekundäres Stickstoffatom im cyclischen Grundgerüst enthalten, welches durch die tert.-Butoxycarbonyl-Schutzgruppe geschützt ist.
- 20. Verbindungen der allgemeinen Formel Xa nach Anspruch 18, worin ${\bf R}^{901}$ Wasserstoff bedeutet oder gemeinsam mit ${\bf R}^{801}$ eine ${\bf C}_3$ ${\bf C}_4$ -Alkylenkette bildet.
- 21. Verwendung von Samarium-(II)-iodid zur reduktiven Desulfurierung von Alkyl-Sulfonimidoyl-Verbindungen der allgemeinen Formel Xa aus Anspruch 1.
- 22. Verwendung von $(R_S)-4(S)$ -Isopropyl-2-p-toluoyl-4,5-di-hydro[1,2 λ^6 ,3]oxathiazol-2-oxid $(S_S)-4(S)$ -Isopropyl-2-p-toluoyl-4,5-dihydro[1,2 λ^6 ,3]oxathiazol-2-oxid, $(R_S)-4(R)$ -Isopropyl-2-p-toluoyl-4,5-dihydro[1,2 λ^6 ,3]oxathiazol-2-oxid und von $(S_S)-4(R)$ -Isopropyl-2-p-toluoyl-4,5-dihydro[1,2 λ^6 ,3]-oxathiazol-2-oxid in Verfahren zur stereochemisch kontrollierten Herstellung azacyclischer Verbindungen.
- 23. Verwendung von $[S_S,N(1S)]-N-[1-[[tert.-Butyldimethyl-silyl)oxy]methyl]-2-methylpropyl]-S-methyl-S-(4-methylphenyl)-sulfoximid und von <math>[R_S,N(1R)]-N-[1-[[tert.-Butyldimethylsilyl)-oxy]methyl]-2-methylpropyl]-S-methyl-S-(4-methylphenyl)sulfoximid in Verfahren zur stereochemisch kontrollierten Herstellung azacyclischer Verbindungen.$

GEÄNDERTE ANSPRÜCHE

[beim Internationalen Büro am 22. November 1999 (22.11.99) eingegangen; ursprüngliche Ansprüche 1-23 durch Ansprüche 1-20 ersetzt (11 Seiten)]

1. Verfahren zur stereochemisch kontrollierten Herstellung von Verbindungen der allgemeinen Formel Ia',

worin die R^1R^2 CH-Gruppe in 5-Position des cyclischen Grundgerüstes und die Hydroxy-Gruppe in 3-Position des cyclischen Grundgerüstes jeweils in trans-Stellung zueinander stehen und worin der Substituent R^4 in 4-Position und die Hydroxy-Gruppe in 3-Position des cyclischen Grundgerüstes jeweils in cis-Stellung zueinander stehen und worin

- n 0 oder 1 bedeutet,
- Wasserstoff, C₁-C₆-Alkyl oder gegebenenfalls im Phenylring ein- oder mehrfach durch niederes Alkyl, niederes Haloal-kyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenyl-C₁-C₆-alkyl bedeutet und
- R² Wasserstoff bedeutet, oder
- R^1 und R^2 gemeinsam eine doppelt gebundene Methylengruppe bedeuten, welche durch C_1 - C_5 -Alkyl oder gegebenenfalls im Phenylring ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenyl- C_1 - C_5 -alkyl substituiert sein kann,
- R³ Wasserstoff bedeutet und
- R⁴ Wasserstoff, niederes Alkyl oder gegebenenfalls im Phenylring ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenylniederalkyl bedeutet, oder

- ${
 m R}^3$ und ${
 m R}^4$ auch gemeinsam eine C₂-Alkylenkette oder eine gegebenenfalls 1 bis 3 Doppelbindungen enthaltende C₃-C₆-Alkylenkette bedeutet, welche durch gegebenenfalls ein- oder zweifach durch niederes Alkyl substituiertes C₁-C₂-Alkylen überbrückt sein kann,
- R⁵ Wasserstoff, niederes Alkyl, Hydroxy, niederes Alkoxy oder jeweils, im Phenylring gegebenenfalls ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenylniederalkyl oder Phenylniederalkoxy bedeutet und
- R⁶ Wasserstoff bedeutet und
- R⁷ Wasserstoff bedeutet und
- R^8 Wasserstoff, Cyano, gegebenenfalls verestertes Carboxy, gegebenenfalls am Stickstoff ein- oder zweifach substituiertes Carbonylamino, ein gegebenenfalls ein- oder mehrfach ungesättigtes mono- oder bicyclisches Ringsystem mit 3 bis 10 Ringkohlenstoffatomen, dessen Ringkohlenstoffatome einoder mehrfach durch Stickstoff, Sauerstoff und/oder Schwefel ersetzt sein können und welches Ringsystem ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy, Hydroxy, Halogen oder durch eine niedere Alkylenkette, welche an zwei an benachbarte Kohlenstoffatome des Ringsystems gebundene Sauerstoffatome gebunden ist, substituiert sein kann, bedeutet, oder auch für gegebenenfalls ein- oder mehrere Doppelbindungen enthaltendes geradkettiges oder verzweigtes C₁-C₁₂-Alkyl stehen kann, welches ein- oder mehrfach durch Halogen, Hydroxy, niederes Alkoxy, gegebenenfalls verestertes Carboxy, Cyano, Mercapto, niederes Alkylthio, Amino, niederes Alkylamino, gegebenenfalls am Stickstoff ein- oder zweifach substituiertes Carbonylamino, ein gegebenenfalls ein- oder mehrfach ungesättigtes mono- oder bicyclisches Ringsystem mit 3 bis 10 Ringkohlenstoffatomen, dessen Ringkohlenstoffatome ein- oder mehrfach durch Stickstoff, Sauerstoff und/oder Schwefel ersetzt sein können und welches Ring-

system ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy, Hydroxy, Halogen oder durch eine niedere Alkylenkette, welche an zwei an benachbarte Kohlenstoffatome des Ringsystems gebundene Sauerstoffatome gebunden ist, substituiert sein kann, oder

R⁵ und R⁸ auch gemeinsam mit den Kohlenstoffatomen, an welche sie gebunden sind, ein gegebenenfalls 1 bis 3 Doppelbindungen enthaltendes mono- oder bicyclisches Ringsystem mit 5 bis 10 Ringkohlenstoffatomen bilden können, dessen nicht die Substituenten R⁵ oder R⁸ tragende Kohlenstoffatome einoder mehrfach durch Schwefel, Sauerstoff und/oder Stickstoff ersetzt sein können, und welches gegebenenfalls einoder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy, niederes Haloalkoxy, Hydroxy, Halogen oder durch eine niedere Alkylenkette, welche an zwei an benachbarte Kohlenstoffatome des Ringsystems gebundene Sauerstoffatome gebunden ist, substituiert sein kann, oder

 \mathbb{R}^6 und \mathbb{R}^7 auch gemeinsam eine Bindung bilden können und

R⁵ und R⁸ gemeinsam mit den Kohlenstoffatomen, an welche sie gebunden sind, ein aromatisches C₆-Ringsystem bilden können, welches mit 2 bis 4 weiteren Kohlenstoffatomen zu einem insgesamt 8 bis 10 Ringkohlenstoffatome enthaltenden bicyclischen Ringsystem mit insgesamt 3 bis 5 Doppelbindungen anelliert sein kann, wobei die nicht die Substituenten R⁵ oder R⁸ tragenden Kohlenstoffatome dieses C₆- bis C₁₀-Ringsystems ein- oder mehrfach durch Schwefel, Sauerstoff und/oder Stickstoff ersetzt sein können und wobei dieses C₆- bis C₁₀-Ringsystem gegebenenfalls ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy, niederes Haloalkoxy, Hydroxy, Halogen oder durch eine niedere Alkylenkette, welche an zwei an benachbarte Kohlenstoffatome des Ringsystems gebundene Sauerstoffatome gebunden ist, substituiert sein kann, und

R⁹ Wasserstoff, niederes Alkyl, gegebenenfalls im Phenylring ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenylniederalkyl oder eine Aminoschutzgruppe bedeutet, oder

 ${\bf R}^{\bf 8}$ und ${\bf R}^{\bf 9}$ auch gemeinsam eine ${\bf C}_3 - {\bf C}_4 - {\bf Alkylenkette}$ bilden können

und deren Säureadditionssalzen, wobei gegebenenfalls vorhandene reaktive Gruppen in Verbindungen der Formel Ia' durch geeignete Schutzgruppen blockiert sein können, dadurch gekennzeichnet, daß man

a) eine Verbindung der allgemeinen Formel II,

worin R^3 und R^4 obige Bedeutungen besitzen, R^{101} die vorstehend für R^1 angegebene Bedeutung mit Ausnahme einer gegebenenfalls substituierten Methylengruppe besitzt, Ar für gegebenenfalls ein- oder mehrfach durch niederes Alkyl substituiertes Phenyl steht, R^{10} niederes Alkyl oder gegebenenfalls im Phenylring einfach durch niederes Alkyl oder durch mit einer geeigneten Schutzgruppe geschütztes Hydroxy substituiertes Phenyl oder gegebenenfalls im Phenylring einfach durch niederes Alkyl substituiertes Phenylniederalkyl bedeutet und R^{1101} für eine Silyl-Schutzgruppe steht,

nacheinander mit einer zu deren Deprotonierung geeigneten Base, einem metallorganischen Reagenz der allgemeinen Formel VII,

VΠ

Y

worin X für Halogen steht, M^2 ein vierwertiges Übergangsmetall bedeutet und R^{12} für niederes Alkyl, Phenyl oder Phenylniederalkyl steht, und einem Stereoisomer einer Verbindung der allgemeinen Formel VIII,

worin R^5 , R^6 , R^7 und n die obigen Bedeutungen besitzen, R^{801} die Bedeutung von R^8 besitzt, wobei allfällige reaktive Gruppen nötigenfalls durch basenstabile Schutzgruppen blockiert sind, R^{901} für Wasserstoff oder gemeinsam mit R^{801} für eine C_3 - C_4 -Alkylenkette steht und R^{13} eine Amino-Schutzgruppe bedeutet, welche bei ihrer Abspaltung ein Stickstoff-Nucleophil hinterläßt, umsetzt zu einem Stereoisomer einer Verbindung der allgemeinen Formel IX,

worin R^{101} , R^3 , R^4 , R^5 , R^6 , R^7 , R^{801} , R^{901} , R^{10} , R^{1101} , R^{12} , R^{13} , n, Ar und M^2 obige Bedeutungen besitzen,

b) die erhaltene Verbindung der Formel IX durch Behandlung mit einem zur Entfernung der Gruppe R¹³ geeigneten Reagenz überführt in eine Verbindung der allgemeinen Formel Xa,

Ar
$$=$$
 R^{101} R^{101}

worin R^{101} , R^3 , R^4 , R^5 , R^6 , R^7 , R^{801} , R^{901} , R^{10} , n und Ar obige Bedeutungen besitzen und R^{11} für Wasserstoff oder eine Silylschutzgruppe steht und, sofern R^{901} für Wasserstoff steht, das Stickstoffatom im cyclischen Grundgerüst der entstandenen Verbindung der Formel Xa mit einer basenstabilen Schutzgruppe blockiert und eine gegebenenfalls noch vorhandene Silylschutzgruppe R^{11} abspaltet, und

c) zur Herstellung einer Verbindung der allgemeinen Formel Ia

worin R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^{801} und n obige Bedeutungen besitzen und R^{902} für eine basenstabile Schutzgruppe oder gemeinsam mit R^{801} für eine C_3-C_4 -Alkylenkette steht,

ca) eine erhaltene Verbindung der Formel Xa oder eine durch Abspaltung der Silylschutzgruppe R¹¹ entstandene Verbindung mit einem zur reduktiven Spaltung der Sulfonimidoyl-

Ĭ

Alkyl-Bindung geeigneten Reagenz umsetzt, um eine Verbindung der allgemeinen Formel Ib,

worin \mathbb{R}^{101} , \mathbb{R}^3 , \mathbb{R}^4 , \mathbb{R}^5 , \mathbb{R}^6 , \mathbb{R}^7 , \mathbb{R}^{801} , \mathbb{R}^{902} und n obige Bedeutungen besitzen, zu erhalten, oder

cb) in einer erhaltenen Verbindung der Formel Xa, worin R¹⁰¹ nicht für Wasserstoff steht, die Sulfonimidoyl-Alkyl-Bindung nach elektrophiler Aktivierung der Sulfonimidoyl-Einheit unter den Bedingungen einer baseninduzierten Eliminierung spaltet, um eine Verbindung der allgemeinen Formel Ic,

$$R^{4}$$
 R^{4}
 R^{4}
 R^{5}
 R^{6}
 R^{7}
 R^{102}
 R^{102}
 R^{902}
 R^{102}
 R^{102}
 R^{102}
 R^{102}

worin R^3 , R^4 , R^5 , R^6 , R^7 , R^{801} , R^{902} und n obige Bedeutungen besitzen und R^{102} für C_1 - C_5 -Alkyl steht oder für gegebenenfalls im Phenylring ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenylniederalkyl steht, dessen niedere Alkylenkette 1 bis 5 Kohlenstoffatome enthalten kann, zu erhalten,

und gewünschtenfalls allfällige Schutzgruppen in Verbindungen der Formel Ia wieder abspaltet und gewünschtenfalls die gegebenenfalls freigesetzte NH-Gruppe in 1-Position des cyclischen Grundgerüstes mit einem zur N-Alkylierung oder einem zur Amidbildung befähigten Reagenz umsetzt oder mit einer Aminoschutzgruppe blockiert, um Verbindungen der Formel Ia' zu erhalten und freie Verbindungen der Formel Ia' gewünschtenfalls zu Säureadditionssalzen umsetzt oder Säureadditionssalze von Verbindungen der Formel Ia' zu freien Verbindungen umsetzt.

- 2. Verfahren nach Anspruch 1 zur Herstellung von Verbindungen der allgemeinen Formel Ib sowie der hieraus durch Abspaltung allenfalls vorhandener Schutzgruppen und durch Umsetzung der allenfalls freien NH-Gruppe in 1-Position des cyclischen Grundgerüstes mit einem zur N-Alkylierung oder zur Amidbildung befähigten Reagenz oder durch Blockierung der vorgenannten, allenfalls freien NH-Gruppe mit einer Aminoschutzgruppe oder durch Überführung der vorgenannten, allenfalls freien NH-Gruppe in ein Säureadditionssalz erhältlichen Verbindungen, gemäß Anspruch 1.
- 3. Verfahren nach Anspruch 1, worin als Aminoschutzgruppe R¹³ in Verbindungen der Formel VIII eine basenlabile Schutzgruppe verwendet wird und worin im Verfahrensschritt b) als Reagenz zur Entfernung der Schutzgruppe R¹³ eine Base verwendet wird.
- 4. Verfahren nach Anspruch 3, worin die basenlabile Schutz-gruppe der Fluoren-9-yl-methyloxycarbonyl-Rest ist.
- 5. Verfahren nach Anspruch 4, worin als Base Piperidin verwendet wird.
- 6. Verfahren nach Anspruch 1, worin wenigstens in Verfahrensschritt a) Toluol als Lösungsmittel verwendet wird.

Ĭ

- 7. Verfahren nach Anspruch 1, worin im Verfahrensschritt ca) als Reagenz für die reduktive Spaltung der Sulfonimidoyl-Alkyl Bindung in Verbindungen der allgemeinen Formel Xa Samarium-II-iodid verwendet wird.
- 8. Verfahren nach Anspruch 1, worin in den Verbindungen der allgemeinen Formeln Ia', Ia, Ib, Ic, II, IX und Xa jeweils \mathbb{R}^4 nicht Wasserstoff bedeutet.
- 9. Verfahren nach Anspruch 1, worin als Silylschutzgruppe ${\bf R}^{1101}$ tert.-Butyldimethylsilyl oder Trimethylsilyl verwendet wird.
- 10. Verbindungen der allgemeinen Formel Ia' gemäß Anspruch 1, dadurch gekennzeichnet, daß \mathbb{R}^4 nicht Wasserstoff bedeutet.
- 11. Verbindungen der allgemeinen Formel Ia' nach Anspruch 10, welche einen Isomerenüberschuß von mindestens 95 % aufweisen.
- 12. Verbindungen der allgemeinen Formel Ia' nach einem der Ansprüche 10 oder 11, worin R⁸ Wasserstoff, Niederalkyl, Phenyl, Phenylniederalkyl oder Niederalkoxyniederalkyl bedeutet, oder R⁶ und R⁷ gemeinsam eine Bindung bilden und R⁵ und R⁸ gemeinsam mit den Kohlenstoffatomen, an welche sie gebunden sind, ein aromatisches C_6 -Ringsystem bilden oder worin R⁸ gemeinsam mit R⁹ eine C_3 - C_4 -Alkylenkette bildet.
- 13. Verbindungen nach einem der Ansprüche 10 bis 12 der allgemeinen Formel Ib, gemäß Anspruch 2 und der daraus gemäß Anspruch 2 erhältlichen Verbindungen.
- 14. Verbindungen der allgemeinen Formel I nach Anspruch 13, worin \mathbb{R}^{101} für Wasserstoff steht.

- 15. Verbindungen der allgemeinen Formel Xa nach Anspruch 1, sowie durch Entfernung von gegebenenfalls vorhandenen Schutzgruppen aus Verbindungen der Formel Xa erhältliche Verbindungen und Säureadditionssalze von freien Aminen der Formel Xa, worin jeweils der schwefelhaltige Substituent in 5-Position und die Hydroxy-Gruppe in 3-Position des cyclischen Grundgerüstes in trans-Stellung zueinander stehen und worin der Substituent R⁴ in 4-Position und die Hydroxy-Gruppe in 3-Position des cyclischen Grundgerüstes jeweils in cis-Stellung zueinander stehen.
- 16. Verbindungen der allgemeinen Formel Xa nach Anspruch 15, welche ein sekundäres Stickstoffatom im cyclischen Grundgerüst enthalten, welches durch die tert.-Butoxycarbonyl-Schutzgruppe geschützt ist.
- 17. Verbindungen der allgemeinen Formel Xa nach Anspruch 14, worin $\rm R^{901}$ Wasserstoff bedeutet oder gemeinsam mit $\rm R^{801}$ eine $\rm C_3-C_4$ -Alkylenkette bildet.
- 18. Verwendung von Samarium-(II)-iodid zur reduktiven Desulfurierung von Alkyl-Sulfonimidoyl-Verbindungen der allgemeinen Formel Xa aus Anspruch 1.
- 19. Verwendung von $(R_S)-4(S)-Isopropyl-2-p-toluoyl-4,5-di-hydro[1,2<math>\lambda^6$,3]oxathiazol-2-oxid $(S_S)-4(S)-Isopropyl-2-p-toluoyl-4,5-dihydro[1,2<math>\lambda^6$,3]oxathiazol-2-oxid, $(R_S)-4(R)-Isopropyl-2-p-toluoyl-4,5-dihydro[1,2<math>\lambda^6$,3]oxathiazol-2-oxid und von $(S_S)-4(R)-Isopropyl-2-p-toluoyl-4,5-dihydro[1,2<math>\lambda^6$,3]-oxathiazol-2-oxid in Verfahren zur stereochemisch kontrollierten Herstellung azacyclischer Verbindungen.
- 20. Verwendung von $[S_S,N(1S)]-N-[1-[[tert.-Butyldimethyl-silyl)oxy]methyl]-2-methylpropyl]-S-methyl-S-(4-methylphenyl)-sulfoximid und von <math>[R_S,N(1R)]-N-[1-[[tert.-Butyldimethylsilyl)-oxy]methyl]-2-methylpropyl]-S-methyl-S-(4-methylphenyl)sulfoxi-$

VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS

INTERNATIONALER RECHERCHENBERICHT

(Artikel 18 sowie Regeln 43 und 44 PCT)

Aktenzeichen des Anmelders oder Anwalts	WEITERES		lie Übermittlung des internationalen Formblatt PCT/ISA/220) sowie, soweit				
98.06-W0 VORGEHEN zutreffend, nachstehender Punkt 5							
Internationales Aktenzeichen	Internationales Anmel (Tag/Monat/Jahr)	dedatum ,	(Frühestes) Prioritätsdatum (Tag/Monat/Jahr)				
PCT/DE 99/01417	10/05/1	999	13/05/1998				
Anmelder	<u> </u>						
SOLVAY PHARMACEUTICALS GMBH	let al.						
Dieser internationale Recherchenbericht wurd Artikel 18 übermittelt. Eine Kopie wird dem Int			erstellt und wird dem Anmelder gemäß				
Dieser internationale Recherchenbericht umfa [X] Darüber hinaus liegt ihm jew		Blätter. iesem Bericht genannter	n Unterlagen zum Stand der Technik bei.				
1. Grundlage des Berichts							
 a. Hinsichtlich der Sprache ist die inte durchgeführt worden, in der sie eing 							
Die internationale Recherch Anmeldung (Regel 23.1 b))		einer bei der Behörde ei	ngereichten Übersetzung der internationalen				
 b. Hinsichtlich der in der internationale Recherche auf der Grundlage des S in der internationalen Anme 	Sequenzprotokolls durch	geführt worden, das	Aminosäuresequenz ist die internationale				
zusammen mit der internatio	onalen Anmeldung in co	mputerlesbarer Form eir	ngereicht worden ist.				
bei der Behörde nachträglic	bei der Behörde nachträglich in schriftlicher Form eingereicht worden ist.						
bei der Behörde nachträglic	bei der Behörde nachträglich in computerlesbarer Form eingereicht worden ist.						
Die Erklärung, daß das nachträglich eingereichte schriftliche Sequenzprotokoll nicht über den Offenbarungsgehalt der internationalen Anmeldung im Anmeldezeitpunkt hinausgeht, wurde vorgelegt.							
Die Erklärung, daß die in co wurde vorgelegt.	mputerlesbarer Form er	faßten Informationen de	m schriftlichen Sequenzprotokoll entsprechen,				
2. X Bestimmte Ansprüche hal	ben sich als nicht rech	erchierbar erwiesen (s	iehe Feld I).				
3. Mangelnde Einheitlichkeit	der Erfindung (siehe F	Feld II).					
Hinsichtlich der Bezeichnung der Erfin	idung						
wird der vom Anmelder eing	gereichte Wortlaut genel	nmigt.					
X wurde der Wortlaut von der							
VERFAHREN ZUR STEREOCHE HOCHSSUBSTITUIERTER AZA			LUNG ISOMERENREINER				
5. Hinsichtlich der Zusammenfassung							
wird der vom Anmelder eing wurde der Wortlaut nach Re Anmelder kann der Behörde Recherchenberichts eine St	egel 38.2b) in der in Feld e innerhalb eines Monat	d III angegebenen Fassu	ng von der Behörde festgesetzt. Der Absendung dieses internationalen				
6. Folgende Abbildung der Zeichnungen	ist mit der Zusammenfa	ssung zu veröffentlichen	: Abb. Nr				
wie vom Anmelder vorgescl	hlagen		keine der Abb.				
weil der Anmelder selbst ke	ine Abbildung vorgesch	lagen hat.					
weil diese Abbildung die Eri	findung besser kennzeid	chnet.					

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/DE 99/01417

Peld 1 Benjerkungen zu den Ansprüchen, die sich als hicht recherchierbal erwiesen haben (1 onsetzeng von 1 drikt z dur blatt 1)
Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:
1. Ansprüche Nr. weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
2. X Ansprüche Nr. 11, 12, 15–17
weil'sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich siehe Zusatzblatt WEITERE ANGABEN PCT/ISA/210
3. Ansprüche Nr. weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.
Feld II Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)
Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:
Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.
2. Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
3. Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser
internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.
4. Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recher-chenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:
Bemerkungen hinsichtlich eines Widerspruchs Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.
Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

WEITERE ANGABEN

PCT/ISA/ 210

Fortsetzung von Feld I.2

Ansprüche Nr.: 11,12,15-17

Im Hinblick auf die extrem breit abgefassten Markush Ansprüche 11-17 wurde die internationale recherche unter Berücksichtigung der PCT Richtlinien für die Recherche (PCT/GL/2), C-III, Paragraph 2:1, 2:3 in Zusammenhang mit 3:7 gesehen und Regel 33:3 PCT durchgeführt, d.h. es wurde besonderes Gewicht auf das erfinderische Konzept gelegt, welches durch die in den Beispielen erwähnten Verbindungen illustriert wird.

Trotzdem, ergab die Recherche für Ansprüche 11,12,15-17 in ihrer Anfangsphase eine sehr große Zahl neuheitsschädlicher Dokumente. Diese Zahl ist so groß, daß sich unmöglich feststellen lässt, für was in der Gesamtheit der Patentansprüche eventuell nach zu Recht Schutz begehrt werden könnte (Art. 6 PCT). Aus diesen Gründen erscheint eine sinnvolle Recherche über den gesamten Bereich der Patentansprüche 11,12,15-17 unmöglich.

Die internationale Recherche für Ansprüche 13,14 ist, soweit das möglich und vertretbar war, als vollständig dahingehend anzusehen, dass der Gegenstand der Ansprüche uneingeschränkt umfasst ist.

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/DE 99/01417 a. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 6 C07D207/12 C07D209/52 C07C381/10 C07F7/10 C07D291/04 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 6 C07D C07C C07F Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Betr. Anspruch Nr. Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Kategorie® COMINS, DANIEL L. ET AL: "Regio- and 11,12, X 15-17 stereoselective addition of nucleophiles to 1-phenoxycarbonyl-2,3-dihydropyridinium HETEROCYCLES (1994), 37(2), 1121-40, XP002119392 Verbindung 12 BEAK, PETER ET AL: ".alpha.-Lithioamine 11,12, X synthetic equivalents: syntheses of 15-17 diastereoisomers from Boc derivatives of cyclic amines" J. ORG. CHEM. (1993), 58(5), 1109-17, XP002119393 Verbindung 63 Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Siehe Anhang Patentfamilie Χ "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, Anmeldung nicht kollidiert, sondern nur zum Verständnis des der aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden "Y kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung veromentlichung von besonderer bedeutung; die beanspruchte Erfindu kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist dem beanspruchten Prioritätsdatum veröffentlicht worden ist Absendedatum des internationalen Recherchenberichts Datum des Abschlusses der internationalen Recherche 05/11/1999 21. Oktober 1999 Bevollmächtigter Bediensteter Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2

2

NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016

De Jong, B

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/DE 99/01417

	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	TORII, SIGERU ET AL: "Facile access to 6-methoxy-1,2,3,6-tetrahydro- and 4-hydroxy-1,2,3,4- tetrahydropyridines by electrochemical haloalkoxylation-dehydrohalogenation sequence as a key operation" SYNTHESIS (1987), (3), 242-5, XP002119394 Verbindung 7b; Seite 244, rechte Spalte	11,12, 15-17
X	CHEMICAL ABSTRACTS, vol. 81, no. 23, 9. Dezember 1974 (1974-12-09) Columbus, Ohio, US; abstract no. 151295, MELESHINA, A. M. ET AL: "Calculation of the effect of substituents on the vibrational spectra of alpha.— and.beta.—isomers of 2,6—dimethyl—4—hydroxy—1,2,3,4—tetrahydroquinolines" XP002119399 Zusammenfassung & ZH. PRIKL. SPEKTROSK. (1974), 21(2), 286-90,	11,15-17
X	SCHINDLER, OTHMAR ET AL: "Stereochemistry of the intermediates (aldol bases) of the Doebner-von Miller quinoline synthesis" HELV. CHIM. ACTA (1970), 53(4), 776-9, XP002119395 das ganze Dokument	11,15-17
X	EP 0 558 443 A (CIBA GEIGY AG) 1. September 1993 (1993-09-01) Beispiel 2B	11,12, 15-17
X	EP 0 394 991 A (FUJISAWA PHARMACEUTICAL CO) 31. Oktober 1990 (1990-10-31) Seite 44, Zeile 6	11,12, 15-17
A	REGGELIN, MICHAEL ET AL: "Metalated 2-Alkenylsulfoximines: Efficient Solutions for Asymmetric d3-Synthons" J. AM. CHEM. SOC. (1996), 118(20), 4765-77, XP002119396 in der Anmeldung erwähnt das ganze Dokument /	1,21-23

2

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/DE 99/01417

		E 99/0141/
C.(Fortsetz Kategorie°	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
		22
A	REGGELIN, MICHAEL ET AL: "One-pot synthesis of (S)-4-isopropyl-2-p-toluene-4,5-dihydro-'1,2.lambda.6,3!oxathiazole 2-oxides: efficient precursors of optically active sulfoximines" TETRAHEDRON LETT. (1992), 33(46), 6959-62, XP002119397 das ganze Dokument	22
Р,Х	REGGELIN, MICHAEL ET AL: "Metalated 2-Alkenylsulfoximides in asymmetric synthesis: diastereoselective preparation of highly substituted pyrrolidine derivatives" ANGEW. CHEM., INT. ED. (1998), 37(20), 2883-2886, XP002119398 das ganze Dokument	1-23

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/DE 99/01417

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 0558443 A	01-09-1993	AU 3298193 A CA 2089533 A JP 6009558 A US 5322852 A ZA 9301064 A	19-08-1993 18-08-1993 18-01-1994 21-06-1994 17-08-1993
EP 0394991 A	31-10-1990	AT 110076 T CA 2015360 A DE 69011569 D DE 69011569 T JP 2300187 A US 5102877 A	15-09-1994 28-10-1990 22-09-1994 08-12-1994 12-12-1990 07-04-1992

VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS

PCT

REC'D 03 JUL 2000

INTERNATIONALER VORLÄUFIGER PRÜFUNGSBERICHT

PC'

(Artikel 36 und Regel 70 PCT)

			(Altikel 30 ullu F	iege		'' <i>'</i>	
Aktenzeiche		Anmelders oder Anwalts	WEITERES VORGE	IEN		ilung über die Übersendur Prüfungsbericht (Formbla	
Internationa	es Ak	tenzeichen	Internationales Anmeldedat	tum <i>(Ta</i>	g/Monat/Jahr)	Prioritätsdatum (Tag/M	onat/Tag)
PCT/DE9	9/01	417	10/05/1999			13/05/1998	
Internationa C07D207		entklassification (IPK) oder	l nationale Klassifikation und IF	PK		1	
Anmelder							
SOLVAY	PHA	RMACEUTICALS GM	IBH et al.				_
			ifungsbericht wurde von d elder gemäß Artikel 36 üb			onale vorläufigen Prüft	ung beauftragte
2. Diese	r BEF	RICHT umfaßt insgesam	t 7 Blätter einschließlich d	dieses	Deckblatts.		
ui B	nd/od ehörd	er Zeichnungen, die geä	ANLAGEN bei; dabei han ändert wurden und diesem ichtigungen (siehe Regel '	n Beric	ht zugrunde	liegen, und/oder Blätt	er mit vor dies r
l	×	icht enthält Angaben zu Grundlage des Bericht					
 !		Priorität	Gutachtens über Neuheit	ortine	doricobo Täti	iakoit und aowarhliche	Anwandhark it
III IV		Mangelnde Einheitlich		, emin	ensche rad	igkeit und geweibliche	Anwendban k
V	⊠	Begründete Feststellu	ng nach Artikel 35(2) hinsi arkeit; Unterlagen und Erk	chtlich därung	der Neuheit en zur Stütz	t, der erfinderische Tät zung dieser Feststellun	igkeit und der Ig
VI	\boxtimes	Bestimmte angeführte	Unterlagen				
VII		Bestimmte Mängel der	internationalen Anmeldur	ng			
VIII	⊠	Bestimmte Bemerkung	gen zur internationalen An	meldu	ng		
Datum der	Einrei	chung des Antrags		Datum	der Fertiastell	ung dieses Berichts	
Datum der Einreichung des Antrags 18/11/1999		3 0. 06. 00		5. 00			
	auftra	nschrift der mit der internati gten Behörde:	onalen vorläufigen	Bevolln	nächtigter Bed	liensteter	STATE STATE OF STATE
<u></u>	D-8	opäisches Patentamt 0298 München . +49 89 2399 - 0 Tx: 52365	S6 enmu d	Traeg	ler-Goelde	I, M	
1		. +49 89 2399 - U IX; 5230; · . 40 80 2300 - 4465	~ spille d	T -1 A:	40.00.0000	0070	SAN SOME BAR

INTERNATIONALER VORLÄUFIGER **PRÜFUNGSBERICHT**

Internationales Aktenzeichen PCT/DE99/01417

	1.	Gru	ndlag	e di s	Berichts
--	----	-----	-------	--------	----------

1. Dieser Bericht wurde erstellt auf der Grundlage (Ersatzblätter, die dem Anmeldeamt auf eine Aufforderung nach Artikel 14 hin vorgelegt wurden, gelten im Rahmen dieses Berichts als "ursprünglich eingereicht" und sind ihm nicht beigefügt, weil sie keine Änderungen enthalten.): Beschreibung, Seiten: ursprüngliche Fassung 1-47 Patentansprüche, Nr.: eingegangen am 26/05/2000 mit Schreiben vom 24/05/2000 1-16 2. Aufgrund der Änderungen sind folgende Unterlagen fortgefallen: Seiten: ☐ Beschreibung, ☐ Ansprūche, Nr.: □ Zeichnungen, Blatt: 3. Dieser Bericht ist ohne Berücksichtigung (von einigen) der Änderungen erstellt worden, da diese aus den angegebenen Gründen nach Auffassung der Behörde über den Offenbarungsgehalt in der ursprünglich eingereichten Fassung hinausgehen (Regel 70.2(c)): 4. Etwaige zusätzliche Bemerkungen: V. Begründete Feststellung nach Artikel 35(2) hinsichtlich der Neuheit, der erfinderischen Tätigkeit und d r gewerblichen Anwendbarkeit; Unterlagen und Erklärungen zur Stützung dieser Feststellung 1. Feststellung Ja: Ansprüche 1-16 Neuheit (N) Nein: Ansprüche Ansprüche 1-16 Erfinderische Tätigkeit (ET) Ja: Nein: Ansprüche Ja: Ansprüche 1-16 Gewerbliche Anwendbarkeit (GA) Nein: Ansprüche

2. Unterlagen und Erklärungen

sieh Beiblatt

INTERNATIONALER VORLÄUFIGER PRÜFUNGSBERICHT

Internationales Aktenzeichen PCT/DE99/01417

VI. Bestimmte angeführte Unterlagen

- Bestimmte veröffentlichte Unterlagen (Regel 70.10) und / oder
- 2. Nicht-schriftliche Offenbarungen (Regel 70.9) siehe Beiblatt

VIII. Bestimmte Bemerkungen zur internationalen Anmeldung

Zur Klarheit der Patentansprüche, der Beschreibung und der Zeichnungen oder zu der Frage, ob die Ansprüche in vollem Umfang durch die Beschreibung gestützt werden, ist folgendes zu bemerken:

siehe Beiblatt

re item V:

Stand der Technik 1.

Die Vorläufige Internationale Sachprüfung bezieht sich auf die im Internationalen Recherchenbericht zitierten Dokumente:

Heterocycles 1994, <u>37</u> (2), 1121-1140	D1
J. Org. Chem. 1993, <u>58</u> (5), 109-1117	D2
Synthesis 1987, <u>3</u> , 242-245	D3
Chem. Abs. <u>81</u> (23), abs. no.: 151295	D4
Helv. Chim. Acta 1970, <u>53</u> (4), 776-779	D5
EP-A 0558 443	D6
EP-A 0394 991	D7
J. Am. Chem. Soc. 1996, <u>118</u> (20), 4765-4777	D8
Tetrahedron Lett. 1992, 33 (46), 6959-6962	D9.

Die vorliegende Anmeldung offenbart Verfahren zur stereochemisch kontrollierten Herstellung von Pyrrolidinen und Piperidinen der Formel la' (Ansprüche 1 bis 10), Zwischenprodukte der Formel Xa (Ansprüche 11-13), die Verwendung von Samarium-(II)-jodid in den anmeldungsgemäßen Verfahren (Anspruch 14) und die Verwendung bestimmter Oxathiazol-2-oxide und bestimmter Sulfoximide in Verfahren zur stereochemisch kontrollierten Herstellung azacyclischer Verbindungen gemäß Anspruch 1.

Dokument D4 befaßt sich mit Vibrationsspektren von Tetrahydrochinolinen und D7 offenbart Lactamantibiotika und Zwischenprodukte dafür. Die Dokumente des Standes der Technik D1-D3, D5 und D6 offenbaren Azacyclen, (stereoselektive, D1 und D2) Verfahren zur ihrer Herstellung (D1-D3 und D6) und die Stereochemie von Tetrahydrochinaldinen (D5). Die Dokumente D8 und D9 offenbaren die Herstellung (D8 und D9) und Verwendung von optisch aktiven 2-Alkenylsulfoximiden zur stereochemisch kontrollierten Hydroxyalkylierung mit Aldehyden mit großem Diastereomerenüberschuß (D8). Aus Versuchen zur Strukturaufklärung in D8 ist weiterhin bekannt, daß wenn als Aldehyde α-chirale Lactaldehyde verwendet werden, diese γ-Hydroxyvinylsulfoximine intramolekular Fluorid-induziert zu Tetrahydrofuranderivaten mit der Sulfonimidoyl-

methylgruppe in Position 2 cyclisiert werden können.

2. Neuheit

Die in den Dokumenten D1-D3 und D5-D7 offenbarten Verfahren zur Herstellung von Azacyclen unterscheiden sich von dem gemäß Anspruch 1 durch die Edukte, Reagentien und die Reaktionswege. Die Dokumente D4, D8 und D9 betreffen keine Verfahren zur Herstellung von Azacyclen. Der Anmeldungsgegenstand der Ansprüche 1 bis 10, die Zwischenprodukte gemäß den Ansprüchen 11 bis 13 und die Verwendung von Samariumjodid gemäß Anspruch 14 im anmeldunggemäßen Verfahren kann daher bezüglich des zitierten Standes der Technik den Erfordernissen von Art. 33 (2) EPÜ genügend betrachtet werden.

Die Verwendung von bestimmten Oxathiazol-2-oxiden und Sulfoximiden gemäß den Ansprüchen 15 und 16 kann als den Erfordernissen von Art. 33 (2) PCT genügend betrachtet werden, da sich diese Verwendungen auf Verfahren gemäß Anspruch 1 mit den dort offenbarten technischen Merkmalen beziehen.

3. Erfinderische Tätigkeit

a, Das anmeldungsgemäße Verfahren zur stereochemisch kontrollierten Herstellung bestimmter Azacyclen der Formel Ia' ist gekennzeichnet durch Reaktion eines 2-Alkenylsulfoximids der Formel II mit einem metallorganischen Reagenz der Formel VII und einem chiralem Aminoaldehyd der Formel VIII, resultierend in Verbindungen der Formel IX. Diese werden cyclisiert zu Verbindungen der Formel Xa und anschließend die Sulfonimidoylgruppe abgespalten.

Da die Dokumente D1 bis D3 und D5 bis D7 ebenfalls Azacyclen und ihre Herstellung betreffen, sind diese Dokumente als nächster Stand der Technik zu betrachten. Die in diesen Dokumenten offenbarten Verfahren unterscheiden sich erheblich vom anmeldungsgemäßen Verfahren, i.e. durch die Wahl der Edukte, Reagentien und den Reaktionsweg. Dokument D8 ist in sofern als relevant anzusehen, als auch dort die Verwendung von optisch aktiven 2-Alkenylsulfoximiden zur stereochemisch kontrollierten Hydroxyalkylierung mit Aldehyden mit großem Diastereomerenüberschuß offenbart ist. Diese Aldehyde haben entweder einen aliphatischen oder aromatischen

Kohlenwasserstoffresten oder sind α -chirale Lactaldehyde. Bei der Strukturaufklärung der Reaktionsprodukte mit besagten Lactaldehyden wurde gemäß D8 gefunden, daß diese y-Hydroxyvinylsulfoximine intramolekular Fluorid-induziert cyclisiert werden können zu hochsubstituierten Tetrahydrofuranderivaten, i.e. wenn der Aldehydrest eine Hydroxygruppe enthält wie z.B. in 2-Hydroxypropanalderivaten.

Die der Anmeludng zugrunde liegenden Aufgabe ist daher in der Bereitstellung eines weieren Verfahrens zur stereochemisch kontrollierten Herstellung von Azacyclen zu sehen. Die Lösung kan im Lichte der relevanten Dokumente als erfinderisch betrachtet werden, da die Dokumente D1 bis D3 und D5 bis D7 dem Fachmann keine Anregung zum anmeldungsgemäßen Verfahren hätten geben können. In Dokument D8 ist zwar ebenfalls die die Verwendung von optisch aktiven 2-Alkenylsulfoximiden zur stereochemisch kontrollierten Hydroxyalkylierung mit Aldehyden mit großem Diastereomerenüberschuß offenbart, diese Aldehyde haben aber entweder einen aliphatischen oder aromatischen Kohlenwasserstoffrest oder sind α -chirale Lactaldehyde. Die Tatsache, daß im Zuge einer Strukturaufklärung der Reaktionsprodukte mit besagten Lactaldehyden eine Fluorid-induzierte intramolekulare Cyclisierung zu hochsubstituierten Tetrahydrofuranderivaten gefunden wurde, die allerdings in D8 immer noch Sulfonimidoylrest enthalten, hätte den Fachmann nicht zwingend Anregung zur Übertragung dieses Reaktionsmechanismus auf die Herstellung von hochsubstituierten Azacyclen gemäß Formel la' mit abgespaltenem Sulfonimidoylrest gegeben, i.e. der Fachmann hätte aus aus Dokument D8 nicht hätte die Lehre ziehen können, die α chirale Lactaldehyde als Edukte durch die entsprechenden Aminoaldehyde zu ersetzen und die Reaktionsbedingungen entsprechend zu verändern um zu den Azacyclen gemäß Anspruch 1 zu kommen. Die Lösung dieser Aufgabe kann daher als erfinderisch betrachtet werden. Der Anmeldungsgegenstand der Ansprüche 1 bis 10 und 11 bis 14 kann daher als den Erfordernissen von Art. 33 (3) PCT genügend betrachtet werden.

Die Verwendung gemäß den Ansprüchen 15 und 16 kann ebenfalls als den b, Erfordernissen von Art. 33 (3) PCT betrachtet werden, als sich diese Verwendung auf Verfahren gemäß Anspruch 1 mit den dort offenbarten technischen Merkamlen bezieht.

PAGE BLANK (USPTO)

4. Industrielle Anwendbarkeit

Degegen sind keine Bedenken zu erheben, da die anmeldungsgemäßen Verfahren zu industriell verwertbaren Verbindungen führen.

£

re item VI:

Der Anmelder wird darauf aufmerksam gemacht, daß für den Teil der vorliegenden Anmeldung, der die Priorität nicht in Anspruch nehemen kann, das Dokument D10 (Angew. Chem. 1998, 37 (20), 2883-2886) relevant für die Beurteilung von Neuheit und erfinderischer Tätigkeit wäre.

re item VIII:

1. Ansprüche

- a, Der Anmelder wird darauf aufmerksam gemacht, daß gemäß Art. 6 PCT alle Verfahrensparameter wie e.g. Reaktionstemperaturen, -zeiten, Lösungsmittel, Menge und Art der Reaktionsteilnehmer, die für das anmeldungsgemäße Verfahren essentiel sein sollten, in Anspruch 1 präsent sein müssen.
- b, Die Ausdrücke "niederes Alkyl (in niederes Alkyl, Alkoxy, Haloalkoxy usw.)" und "wobei gegebenfalls vorhandene reaktive Gruppen in Verbindungen der Formel la' durch geeignete Schutzgruppen blockiert sein können", in den Definitionen von Anspruch 1 und 10 bis 13 ohne genauere Angaben unbestimmt sind und keine offensichtlichen Modifikationen oder Äquivalente der Beispiele aus der Beschreibung repräsentieren. Sie erfüllen daher nicht die Erfordernisse von Art. 6 PCT.

KC9806W022

48

Patentansprüche

1. Verfahren zur stereochemisch kontrollierten Herstellung von Verbindungen der allgemeinen Formel Ia',

worin die R¹R²CH-Gruppe in 5-Position des cyclischen Grundgerüstes und die Hydroxy-Gruppe in 3-Position des cyclischen Grundgerüstes jeweils in trans-Stellung zueinander stehen und worin der Substituent R⁴ in 4-Position und die Hydroxy-Gruppe in 3-Position des cyclischen Grundgerüstes jeweils in cis-Stellung zueinander stehen und worin

- n 0 oder 1 bedeutet,
- R¹ Wasserstoff, C₁-C₆-Alkyl oder gegebenenfalls im Phenylring ein- bis dreifach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenyl-C₁-C₆-alkyl bedeutet und
- R² Wasserstoff bedeutet, oder
- R^1 und R^2 gemeinsam eine doppelt gebundene Methylengruppe bedeuten, welche durch C_1 - C_5 -Alkyl oder gegebenenfalls im Phenylring ein- bis dreifach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenyl- C_1 - C_5 -alkyl substituiert sein kann,
- R³ Wasserstoff bedeutet und
- R4 Wasserstoff, niederes Alkyl oder gegebenenfalls im Phenylring ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenylniederalkyl bedeutet, oder

- ${
 m R}^3$ und ${
 m R}^4$ auch gemeinsam eine C2-Alkylenkette oder eine gegeben-enfalls 1 bis 3 Doppelbindungen enthaltende C3-C6-Alkylenkette bedeutet, welche durch gegebenenfalls ein- oder zweifach durch niederes Alkyl substituiertes C1-C2-Alkylen überbrückt sein kann,
- Wasserstoff, niederes Alkyl, Hydroxy, niederes Alkoxy oder jeweils, im Phenylring gegebenenfalls ein- bis dreifach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenylniederalkyl oder Phenylniederalkoxy bedeutet und
- R⁶ Wasserstoff bedeutet und
- R⁷ Wasserstoff bedeutet und
- R^8 Wasserstoff, Cyano, gegebenenfalls mit gegebenenfalls ein bis drei Doppelbindungen enthaltenden cycloaliphatischen oder geradkettigen oder verzweigten aliphatischen C1-C6-Alkoholen, welche gegebenenfalls ein- bis dreifach durch Halogen oder niederes Alkoxy substituiert sind, oder auch mit gegebenenfalls im Phenylring ein- bis dreifach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituierten Phenylniederalkoholen verestertes Carboxy, gegebenenfalls am Stickstoff einfach durch C3-C8-Cycloalkylniederalkanoyl oder geradkettiges oder verzweigtes aliphatisches C1-C6-Alkanoyl, welche jeweils gegebenenfalls ein- bis dreifach durch Halogen oder niederes Alkoxy substituiert sind, oder durch gegebenenfalls im Phenylring ein- bis dreifach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenylniederalkanoyl, oder am Stickstoff ein- oder zweifach durch C3-C8-Cycloalkylniederalkyl oder geradkettiges oder verzweigtes aliphatisches C_1 - C_6 -Alkyl, welche jeweils gegebenenfalls ein- bis dreifach durch Halogen oder niederes Alkoxy substituiert sind, oder durch gegebenenfalls im Phenylring ein- bis dreifach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenylniederalkyl, oder

auch am Stickstoff mit einer geeigneten Aminoschutzgruppe substituiertes Carbonylamino, ein gegebenenfalls ein- bis vierfach ungesättigtes mono- oder bicyclisches Ringsystem mit 3 bis 10 Ringkohlenstoffatomen, dessen Ringkohlenstoffatome ein- bis dreifach durch Stickstoff, Sauerstoff und/oder Schwefel ersetzt sein können und welches Ringsystem ein- bis dreifach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy, Hydroxy, Halogen oder durch eine niedere Alkylenkette, welche an zwei an benachbarte Kohlenstoffatome des Ringsystems gebundene Sauerstoffatome gebunden ist, substituiert sein kann, bedeutet, oder auch für gegebenenfalls eine bis drei Doppelbindungen enthaltendes geradkettiges oder verzweigtes C_1 - C_{12} -Alkyl stehen kann, welches ein- bis dreifach durch Halogen, Hydroxy, niederes Alkoxy, gegebenenfalls mit gegebenenfalls ein bis drei Doppelbindungen enthaltenden cycloaliphatischen oder geradkettigen oder verzweigten aliphatischen C1-C6-Alkoholen, welche gegebenenfalls ein- bis dreifach durch Halogen oder niederes Alkoxy substituiert sind, oder auch mit gegebenenfalls im Phenylring ein- bis dreifach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituierten Phenylniederalkoholen verestertes Carboxy, Cyano, Mercapto, niederes Alkylthio, Amino, niederes Alkylamino, gegebenenfalls am Stickstoff einfach durch C3-C8-Cycloalkylniederalkanoyl oder geradkettiges oder verzweigtes aliphatisches C_1 - C_6 -Alkanoyl, welche jeweils gegebenenfalls ein- bis dreifach durch Halogen oder niederes Alkoxy substituiert sind, oder durch gegebenenfalls im Phenylring ein- bis dreifach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenylniederalkanoyl, oder am Stickstoff ein- oder zweifach durch C3-C8-Cycloalkylniederalkyl oder geradkettiges oder verzweigtes aliphatisches C_1 - C_6 -Alkyl, welche jeweils gegebenenfalls ein- bis dreifach durch Halogen oder niederes Alkoxy substituiert sind, oder durch gegebenen-

falls im Phenylring ein- bis dreifach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenylniederalkyl, oder auch am Stickstoff mit einer geeigneten Aminoschutzgruppe substituiertes Carbonylamino, ein gegebenenfalls ein- bis vierfach ungesättigtes mono- oder bicyclisches Ringsystem mit 3 bis 10 Ringkohlenstoffatomen, dessen Ringkohlenstoffatome ein-bis dreifach durch Stickstoff, Sauerstoff und/oder Schwefel ersetzt sein können und welches Ringsystem ein- bis dreifach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy, Hydroxy, Halogen oder durch eine niedere Alkylenkette, welche an zwei an benachbarte Kohlenstoffatome des Ringsystems gebundene Sauerstoffatome gebunden ist, substituiert sein kann, oder

R⁵ und R⁸ auch gemeinsam mit den Kohlenstoffatomen, an welche sie gebunden sind, ein gegebenenfalls 1 bis 3 Doppelbindungen enthaltendes mono- oder bicyclisches Ringsystem mit 5 bis 10 Ringkohlenstoffatomen bilden können, dessen nicht die Substituenten R⁵ oder R⁸ tragende Kohlenstoffatome ein- bis dreifach durch Schwefel, Sauerstoff und/oder Stickstoff ersetzt sein können, und welches gegebenenfalls ein- bis dreifach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy, niederes Haloalkoxy, Hydroxy, Halogen oder durch eine niedere Alkylenkette, welche an zwei an benachbarte Kohlenstoffatome des Ringsystems gebundene Sauerstoffatome gebunden ist, substituiert sein kann, oder

R⁶ und R⁷ auch gemeinsam eine Bindung bilden können und
R⁵ und R⁸ gemeinsam mit den Kohlenstoffatomen, an welche sie gebunden sind, ein aromatisches C₆-Ringsystem bilden können, welches mit 2 bis 4 weiteren Kohlenstoffatomen zu einem insgesamt 8 bis 10 Ringkohlenstoffatome enthaltenden bicyclischen Ringsystem mit insgesamt 3 bis 5 Doppelbindungen anelliert sein kann, wobei die nicht die Substituenten R⁵ oder R⁸ tragenden Kohlenstoffatome dieses C₆-C₁₀-Ringsystems ein- bis dreifach durch Schwefel, Sauerstoff

und/oder Stickstoff ersetzt sein können und wobei dieses C_6 - C_{10} -Ringsystem gegebenenfalls ein- bis dreifach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy, niederes Haloalkoxy, Hydroxy, Halogen oder durch eine niedere Alkylenkette, welche an zwei an benachbarte Kohlenstoffatome des Ringsystems gebundene Sauerstoffatome gebunden ist, substituiert sein kann, und

Wasserstoff, niederes Alkyl, gegebenenfalls im Phenylring ein- bis dreifach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenylniederalkyl oder eine Aminoschutzgruppe bedeutet, oder

 ${\bf R}^{8}$ und ${\bf R}^{9}$ auch gemeinsam eine ${\bf C}_{3}-{\bf C}_{4}-{\bf Alkylenkette}$ bilden können

und deren Säureadditionssalzen, wobei gegebenenfalls vorhandene reaktive Gruppen in Verbindungen der Formel Ia' durch geeignete Schutzgruppen blockiert sein können, dadurch gekennzeichnet, daß man

a) eine Verbindung der allgemeinen Formel II,

worin \mathbb{R}^3 und \mathbb{R}^4 obige Bedeutungen besitzen, \mathbb{R}^{101} die vorstehend für \mathbb{R}^1 angegebene Bedeutung mit Ausnahme einer gegebenenfalls substituierten Methylengruppe besitzt, Ar für gegebenenfalls ein- bis dreifach durch niederes Alkyl substituiertes Phenyl steht, \mathbb{R}^{10} niederes Alkyl oder gegebenenfalls im Phenylring einfach durch niederes Alkyl oder durch mit einer geeigneten Schutzgruppe geschütztes Hydroxy substitu-

iertes Phenyl oder gegebenenfalls im Phenylring einfach durch niederes Alkyl substituiertes Phenylniederalkyl bedeutet und R^{1101} für eine Silyl-Schutzgruppe steht,

nacheinander mit einer zu deren Deprotonierung geeigneten Base, einem metallorganischen Reagenz der allgemeinen Formel VII.

$$XM^2(OR^{12})_3$$
 VII

worin X für Halogen steht, M^2 ein vierwertiges Übergangsmetall bedeutet und R^{12} für niederes Alkyl, Phenyl oder Phenylniederalkyl steht, und einem Stereoisomer einer Verbindung der allgemeinen Formel VIII,

worin R^5 , R^6 , R^7 und n die obigen Bedeutungen besitzen, R^{801} die Bedeutung von R^8 besitzt, wobei allfällige reaktive Gruppen nötigenfalls durch basenstabile Schutzgruppen blockiert sind, R^{901} für Wasserstoff oder gemeinsam mit R^{801} für eine C_3 - C_4 -Alkylenkette steht und R^{13} eine Amino-Schutzgruppe bedeutet, welche bei ihrer Abspaltung ein Stickstoff-Nucleophil hinterläßt, umsetzt zu einem Stereoisomer einer Verbindung der allgemeinen Formel IX,

•

worin \mathbb{R}^{101} , \mathbb{R}^3 , \mathbb{R}^4 , \mathbb{R}^5 , \mathbb{R}^6 , \mathbb{R}^7 , \mathbb{R}^{801} , \mathbb{R}^{901} , \mathbb{R}^{10} , \mathbb{R}^{1101} , \mathbb{R}^{12} , \mathbb{R}^{13} , n, Ar und \mathbb{M}^2 obige Bedeutungen besitzen,

b) die erhaltene Verbindung der Formel IX durch Behandlung mit einem zur Entfernung der Gruppe R¹³ geeigneten Reagenz überführt in eine Verbindung der allgemeinen Formel Xa,

$$R^4$$
 R^4
 R^4
 R^5
 R^7
 R^{801}
 R^{101}
 R^{10}
 R^{10}

worin R^{101} , R^3 , R^4 , R^5 , R^6 , R^7 , R^{801} , R^{901} , R^{10} , n und Ar obige Bedeutungen besitzen und R^{11} für Wasserstoff oder eine Silylschutzgruppe steht und, sofern R^{901} für Wasserstoff steht, das Stickstoffatom im cyclischen Grundgerüst der entstandenen Verbindung der Formel Xa mit einer basenstabilen Schutzgruppe blockiert und eine gegebenenfalls noch vorhandene Silylschutzgruppe R^{11} abspaltet, und

OLON WAY OF SHAME OF

c) zur Herstellung einer Verbindung der allgemeinen Formel Ia

worin R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^{801} und n obige Bedeutungen besitzen und R^{902} für eine basenstabile Schutzgruppe oder gemeinsam mit R^{801} für eine C_3 - C_4 -Alkylenkette steht,

ca) eine erhaltene Verbindung der Formel Xa oder eine durch Abspaltung der Silylschutzgruppe R¹¹ entstandene Verbindung mit einem zur reduktiven Spaltung der Sulfonimidoyl-Alkyl-Bindung geeigneten Reagenz umsetzt, um eine Verbindung der allgemeinen Formel Ib,

worin \mathbb{R}^{101} , \mathbb{R}^3 , \mathbb{R}^4 , \mathbb{R}^5 , \mathbb{R}^6 , \mathbb{R}^7 , \mathbb{R}^{801} , \mathbb{R}^{902} und n obige Bedeutungen besitzen, zu erhalten, oder

cb) in einer erhaltenen Verbindung der Formel Xa, worin R¹⁰¹ nicht für Wasserstoff steht, die Sulfonimidoyl-Alkyl-Bindung nach elektrophiler Aktivierung der Sulfonimidoyl-Einheit unter den Bedingungen einer baseninduzierten Eliminierung spaltet, um eine Verbindung der allgemeinen Formel Ic,

H OH R^4 * $(CR^5R^6)_n$ R^8 * R^{801} R^{801}

56

worin R^3 , R^4 , R^5 , R^6 , R^7 , R^{801} , R^{902} und n obige Bedeutungen besitzen und R^{102} für C_1 - C_5 -Alkyl steht oder für gegebenenfalls im Phenylring ein- oder mehrfach durch niederes Alkyl, niederes Haloalkyl, niederes Alkoxy oder niederes Haloalkoxy substituiertes Phenylniederalkyl steht, dessen niedere Alkylenkette 1 bis 5 Kohlenstoffatome enthalten kann, zu erhalten,

und gewünschtenfalls allfällige Schutzgruppen in Verbindungen der Formel Ia wieder abspaltet und gewünschtenfalls die gegebenenfalls freigesetzte NH-Gruppe in 1-Position des cyclischen Grundgerüstes mit einem zur N-Alkylierung oder einem zur Amidbildung befähigten Reagenz umsetzt oder mit einer Aminoschutzgruppe blockiert, um Verbindungen der Formel Ia' zu erhalten.

- 2. Verfahren nach Anspruch 1 zur Herstellung von Verbindungen der allgemeinen Formel Ib sowie der hieraus durch Abspaltung allenfalls vorhandener Schutzgruppen und durch Umsetzung der allenfalls freien NH-Gruppe in 1-Position des cyclischen Grundgerüstes mit einem zur N-Alkylierung oder zur Amidbildung befähigten Reagenz oder durch Blockierung der vorgenannten, allenfalls freien NH-Gruppe mit einer Aminoschutzgruppe erhältlichen Verbindungen, gemäß Anspruch 1.
- 3. Verfahren nach Anspruch 1, worin als Aminoschutzgruppe \mathbb{R}^{13} in Verbindungen der Formel VIII eine basenlabile Schutzgruppe

verwendet wird und worin im Verfahrensschritt b) als Reagenz zur Entfernung der Schutzgruppe R¹³ eine Base verwendet wird.

- 4. Verfahren nach Anspruch 3, worin die basenlabile Schutzgruppe der Fluoren-9-yl-methyloxycarbonyl-Rest ist.
- 5. Verfahren nach Anspruch 4, worin als Base Piperidin verwendet wird.
- 6. Verfahren nach Anspruch 1, worin wenigstens in Verfahrensschritt a) Toluol als Lösungsmittel verwendet wird.
- 7. Verfahren nach Anspruch 1, worin im Verfahrensschritt ca) als Reagenz für die reduktive Spaltung der Sulfonimidoyl-Alkyl Bindung in Verbindungen der allgemeinen Formel Xa Samarium-II-iodid verwendet wird.
- 8. Verfahren nach Anspruch 1, worin in den Verbindungen der allgemeinen Formeln Ia', Ia, Ib, Ic, II, IX und Xa jeweils R⁴ nicht Wasserstoff bedeutet.
- 9. Verfahren nach Anspruch 1, worin als Silylschutzgruppe R¹¹⁰¹ tert.-Butyldimethylsilyl oder Trimethylsilyl verwendet wird.
- 10. Verfahren nach Anspruch 1 zur Herstellung von Verbindungen der allgemeinen Formel Ia¹, worin R⁸ Wasserstoff, Niederalkyl, Phenyl, Phenylniederalkyl oder Niederalkoxyniederalkyl bedeutet, oder R⁶ und R⁷ gemeinsam eine Bindung bilden und R⁵ und R⁸ gemeinsam mit den Kohlenstoffatomen, an welche sie gebunden sind, ein aromatisches C_6 -Ringsystem bilden oder worin R⁸ gemeinsam mit R⁹ eine C_3 - C_4 -Alkylenkette bildet.
- 11. Verbindungen der allgemeinen Formel Xa nach Anspruch 1, sowie durch Entfernung von gegebenenfalls vorhandenen Schutz-

gruppen aus Verbindungen der Formel Xa erhältliche Verbindungen und Säureadditionssalze von freien Aminen der Formel Xa, worin jeweils der schwefelhaltige Substituent in 5-Position und die Hydroxy-Gruppe in 3-Position des cyclischen Grundgerüstes in trans-Stellung zueinander stehen und worin der Substituent R⁴ in 4-Position und die Hydroxy-Gruppe in 3-Position des cyclischen Grundgerüstes jeweils in cis-Stellung zueinander stehen.

- 12. Verbindungen der allgemeinen Formel Xa nach Anspruch 11, welche ein sekundäres Stickstoffatom im cyclischen Grundgerüst enthalten, welches durch die tert.-Butoxycarbonyl-Schutzgruppe geschützt ist.
- 13. Verbindungen der allgemeinen Formel Xa nach Anspruch 12, worin ${\bf R}^{901}$ Wasserstoff bedeutet oder gemeinsam mit ${\bf R}^{801}$ eine ${\bf C}_3$ ${\bf C}_4$ -Alkylenkette bildet.
- 14. Verwendung von Samarium-(II)-iodid zur reduktiven Desulfurierung von Alkyl-Sulfonimidoyl-Verbindungen der allgemeinen Formel Xa aus Anspruch 1.
- 15. Verwendung von $(R_S)-4(S)$ -Isopropyl-2-p-toluoyl-4,5-di-hydro[1,2 λ^6 ,3]oxathiazol-2-oxid $(S_S)-4(S)$ -Isopropyl-2-p-toluoyl-4,5-dihydro[1,2 λ^6 ,3]oxathiazol-2-oxid, $(R_S)-4(R)$ -Isopropyl-2-p-toluoyl-4,5-dihydro[1,2 λ^6 ,3]oxathiazol-2-oxid und von $(S_S)-4(R)$ -Isopropyl-2-p-toluoyl-4,5-dihydro[1,2 λ^6 ,3]-oxathiazol-2-oxid in Verfahren zur stereochemisch kontrollierten Herstellung azacyclischer Verbindungen nach Anspruch 1.
- 16. Verwendung von $[S_S,N(1S)]-N-[1-[[tert.-Butyldimethyl-silyl)oxy]methyl]-2-methylpropyl]-S-methyl-S-(4-methylphenyl)-sulfoximid und von <math>[R_S,N(1R)]-N-[1-[[tert.-Butyldimethylsilyl)-oxy]methyl]-2-methylpropyl]-S-methyl-S-(4-methylphenyl)sulfoximid in Verfahren zur stereochemisch kontrollierten Herstellung azacyclischer Verbindungen nach Anspruch 1.$