10/537,484 (interference search)

EAST Search History

Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	71	(556/9).CCLS.	US-PGPUB	OR	OFF	2007/03/17 19:00
L2	120	(556/136).CCLS.	US-PGPUB	OR	OFF	2007/03/17 19:02
L3	33	(427/252).CCLS.	US-PGPUB	OR	OFF	2007/03/17 19:15

chain nodes:

12 13 14 15 16 17 21 22

ring nodes:

1 2 3 4 5 6 7 8 9 10 11

chain bonds:

1-21 6-22 12-13 12-14 12-15 16-17

ring bonds:

1-2 1-5 1-11 2-3 2-11 3-4 3-11 4-5 4-11 5-11 6-7 6-10 6-11 7-8 7-11 8-9 8-11 9-10 9-11 10-11

exact/norm bonds:

1-2 1-5 1-11 1-21 2-3 2-11 3-4 3-11 4-5 4-11 5-11 6-7 6-10 6-11 6-22 7-8 7-11 8-9 8-11 9-10 9-11 10-11 12-13 12-14 12-15

exact bonds:

16-17

G1:F,CF3,[*1],[*2]

Match level:

1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 7:Atom 8:Atom 9:Atom 10:Atom 11:Atom 12:CLASS 13:CLASS14:CLASS15:CLASS16:CLASS17:CLASS21:CLASS22:CLASS

10/537,484

(FILE 'HOME' ENTERED AT 18:34:11 ON 17 MAR 2007)

FILE 'REGISTRY' ENTERED AT 18:34:31 ON 17 MAR 2007 STRUCTURE UPLOADED

L1

=> d l1 L1 HAS NO ANSWERS

L1 ST

G1 Me, Et, n-Pr, i-Pr, n-Bu, i-Bu, s-Bu, t-Bu, CF3

Structure attributes must be viewed using STN Express query preparation.

=> s l1

SAMPLE SEARCH INITIATED 18:35:00 FILE 'REGISTRY'
SAMPLE SCREEN SEARCH COMPLETED - 297 TO ITERATE

100.0% PROCESSED 297 ITERATIONS

0 ANSWERS

SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE**

BATCH **COMPLETE**

PROJECTED ITERATIONS: 4907 TO 6973

PROJECTED ANSWERS: 0 TO 0

L2 0 SEA SSS SAM L1

=> s l1 full

FULL SEARCH INITIATED 18:35:06 FILE 'REGISTRY'
FULL SCREEN SEARCH COMPLETED - 5886 TO ITERATE

100.0% PROCESSED 5886 ITERATIONS 0 ANSWERS

SEARCH TIME: 00.00.01

L3 0 SEA SSS FUL L1

=> Uploading C:\Program Files\Stnexp\Queries\537484-2.str

L4 STRUCTURE UPLOADED

=> d his

(FILE 'HOME' ENTERED AT 18:34:11 ON 17 MAR 2007)

FILE 'REGISTRY' ENTERED AT 18:34:31 ON 17 MAR 2007

STRUCTURE UPLOADED L1

L20 S L1

L30 S L1 FULL

STRUCTURE UPLOADED L4

=> d 14

L4 HAS NO ANSWERS

L4

G1 Me, Et, n-Pr, i-Pr, n-Bu, i-Bu, s-Bu, t-Bu, CF3

Structure attributes must be viewed using STN Express query preparation.

0 ANSWERS

0 ANSWERS

=> s 14

SAMPLE SEARCH INITIATED 18:36:50 FILE 'REGISTRY' SAMPLE SCREEN SEARCH COMPLETED -297 TO ITERATE

100.0% PROCESSED 297 ITERATIONS

SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE**

> BATCH **COMPLETE**

PROJECTED ITERATIONS: 4907 TO 6973 0

PROJECTED ANSWERS: 0 TO

L5 O SEA SSS SAM L4

=> s 14 full

L6

FULL SEARCH INITIATED 18:36:56 FILE 'REGISTRY' FULL SCREEN SEARCH COMPLETED -5886 TO ITERATE

100.0% PROCESSED 5886 ITERATIONS

SEARCH TIME: 00.00.01

O SEA SSS FUL L4

10/537,484

(FILE 'HOME' ENTERED AT 18:42:31 ON 17 MAR 2007)

FILE 'REGISTRY' ENTERED AT 18:42:41 ON 17 MAR 2007
L1 STRUCTURE UPLOADED

=> d l1

L1 HAS NO ANSWERS

L1 STR

Structure diagram not available for display

Structure attributes must be viewed using STN Express query preparation.

=> s l1

SAMPLE SEARCH INITIATED 18:43:07 FILE 'REGISTRY'
SAMPLE SCREEN SEARCH COMPLETED - 1453 TO ITERATE

100.0% PROCESSED 1453 ITERATIONS

O ANSWERS

SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE**
BATCH **COMPLETE**

PROJECTED ITERATIONS: 26774 TO 31346
PROJECTED ANSWERS: 0 TO 0

L2 0 SEA SSS SAM L1

=> s l1 full

FULL SEARCH INITIATED 18:43:13 FILE 'REGISTRY'
FULL SCREEN SEARCH COMPLETED - 28802 TO ITERATE

100.0% PROCESSED 28802 ITERATIONS

5 ANSWERS

SEARCH TIME: 00.00.02

L3 5 SEA SSS FUL L1

=> fil caplus

COST IN U.S. DOLLARS
SINCE FILE TOTAL
ENTRY SESSION
FULL ESTIMATED COST
172.10
172.31

FILE 'CAPLUS' ENTERED AT 18:43:20 ON 17 MAR 2007 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2007 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 17 Mar 2007 VOL 146 ISS 13 FILE LAST UPDATED: 16 Mar 2007 (20070316/ED)

Effective October 17, 2005, revised CAS Information Use Policies apply.

They are available for your review at:

http://www.cas.org/infopolicy.html

=> s 13

L4 8 L3

=> d 1-8 bib abs

L4 ANSWER 1 OF 8 CAPLUS COPYRIGHT 2007 ACS on STN

AN 2005:253944 CAPLUS

DN 142:327289

TI Deposition of ruthenium-silicon mixed adhesion films between low dielectric-insulator and diffusion-barrier layers

IN Sakai, Tatsuya; Okada, Yukiko; Matsuki, Yasuo

PA JSR Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 18 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE		
PI JP 2005079468	A	20050324	JP 2003-310453	20030902		
PRAI JP 2003-310453		20030902	·			

OS MARPAT 142:327289

The title deposition of adhesive layer between a low dielec. insulator layer and Damascene-formed diffusion-barrier/circuit layers involves CVD or coating-annealing with reactants containing (1) Ru compds. and (2) cyclic silane compds. The Ru compds. may be (A) (cyclopentadienyl derivs.)2Ru, (B) Ru(CO)3, (C) (ACAC')3Ru (ACAC' = resonated ligand OC(R2)CC(R2)O; R2 = H, C1-6 alkyl, fluoroalkyl, hydroxyalkyl), and/or (D) (R3CO2)3Ru (R3 = C1-6 alkyl, fluoroalkyl, hydroxyalkyl). The deposition process provides a Ru-Si mixture adhesive film for effective adhesion in prevention of delamination between a low dielec. insulator layer and Damascene-formed diffusion-barrier/circuit layers.

- L4 ANSWER 2 OF 8 CAPLUS COPYRIGHT 2007 ACS on STN
- AN 2004:493925 CAPLUS
- DN 141:62428
- TI Ruthenium compound and process for producing metallic ruthenium film
- IN Sakai, Tatsuya; Okada, Sachiko; Matsuki, Yasuo
- PA JSR Corporation, Japan
- SO PCT Int. Appl., 38 pp.

CODEN: PIXXD2

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.				KIND DATE			APPLICATION NO.					DATE				
						-									_		
ΡI	WO 2004050947				A1 20040617			WO 2003-JP11848						20030917			
	W:	ΑE,	AG,	AL,	AM,	ΑT,	AU,	AZ,	BA,	BB,	BG,	BR,	BY,	BZ,	CA,	CH,	CN,
		CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FI,	GB,	GD,	GE,
		GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	KE,	KG,	KR,	ΚZ,	LC,	LK,	LR,	LS,
		LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NI,	NO,	ΝZ,	OM,	PG,
		PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	SY,	ТJ,	TM,	TN,	TR,
		TT,	ΤZ,	UA,	ŪĠ,	US,	UΖ,	VC,	VN,	YU,	ZA,	ZM,	ZW				
	RW:	GH,	GM,	KE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	ŪĠ,	ZM,	ZW,	AM,	AZ,	BY,
		KG,	KZ,	MD,	RU,	TJ,	TM,	AT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,
		FI,	FR,	GB,	GR,	·HU,	IE,	IT,	LU,	MC,	NL,	PT,	RO,	SE,	SI,	SK,	TR,
		BF,	ВJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	MR,	ΝE,	SN,	TD,	TG
	JP 2005	JP 2005060814			Α		2005	0310		JP 2	003-	3181	33		20	0030	910
	AU 2003272881				A1		20040623 AU 2003-272881						20030917				
	US 2006	2401	90		A1		2006	1026	1	US 2	005-	5374	84		20	0050	603

PRAI JP 2002-350951 A 20021203 JP 2003-282385 A 20030730 WO 2003-JP11848 W 20030917 OS MARPAT 141:62428 GI

X²
Ru
X¹ I

ARu compound capable of forming filmy metallic Ru of good quality; and a process for producing a metallic Ru film which comprises using the Ru compound to produce the film by CVD are described. The Ru compound as a material for CVD is represented by (I), where X1,2 = H, F, trifluoromethyl, pentafluoroethyl, or SiR1-3, and R1-3 = C1-10 hydrocarbon group, Ru(OCOR4)3, where R4 = trifluoromethyl and C1-10 hydrocarbon group, or YRuHnLm, where Y = cyclopentadienyl, cyclohexadienyl, cycloheptadienyl, cyclooctadienyl, butadienyl, or 2,3-dimethyl-1,3-butadienyl, L = carbonyl, Me, or ethenyl, n = 1-4, m = 0-2, n + m = 3 or 4.

ζ

RE.CNT 9 THERE ARE 9 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

- L4 ANSWER 3 OF 8 CAPLUS COPYRIGHT 2007 ACS on STN
- AN 2002:743394 CAPLUS
- DN 137:370207
- TI Molecular Structure of Ru(η -C5Me5)(η -C5F5) by Gas-Phase Electron Diffraction and Density Functional Theory
- AU Johnston, Blair F.; Rankin, David W. H.; Robertson, Heather E.; Hughes, Russell P.; Lomprey, Jeffrey R.
- CS Department of Chemistry, University of Edinburgh, Edinburgh, EH9 3JJ, UK
- SO Organometallics (2002), 21(22), 4840-4846 CODEN: ORGND7; ISSN: 0276-7333
- PB American Chemical Society
- DT Journal
- LA English
- AB The structure of Ru(C5Me5) (C5F5) was determined by gas-phase electron diffraction and d. functional theory. Comparison structures of the known compds. Ru(C5H5)2 and Ru(C5F5) (C5H5), as well as the unknown compound Ru(C5F5)2, also were determined by d. functional theory.
- RE.CNT 42 THERE ARE 42 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT
- L4 ANSWER 4 OF 8 CAPLUS COPYRIGHT 2007 ACS on STN
- AN 1996:591079 CAPLUS
- DN 125:276161
- TI Synthesis and properties of perfluoroferrocene and perfluororuthenocene. A potential class of high temperature materials
- AU Winter, C. H.
- CS Dept. Chem., Wayne State Univ., Detroit, MI, USA
- SO Report (1995), Order No. AD-A307650, 17 pp. Avail.: NTIS From: Gov. Rep. Announce. Index (U. S.) 1996, 96(19), Abstr. No. 19-00,395
- DT Report
- LA English

- Preparation of decafluoroferrocene and decafluororuthenocene from permetalated precursors, preparation of mono- and disubstituted perfluorometallocenes and evaluation of the thermal characteristics of polymers and oligomers derived from the perfluorometallocenes are reported. The preparation of permercurated, perlithiated, permagnesited, perzincated, and peraluminated cyclopentadienyl complexes were examined with the reactions of these species with simple electrophiles. Permercurated metallocenes cannot be fluorinated to give decafluorometallocenes. Most fluorinating agents are not strong enough to react with the permercurated metallocenes, while very strong fluorinating agents destroy the metallocenes. More reactive C-metal bonds would require less reactive fluorinating agents, which might lead to a successful preparation of decafluorometallocenes. It has so far not been possible to find that right combination of permetalated metallocene and electrophilic fluorinating agents that gives the perfluorometallocene.
- L4 ANSWER 5 OF 8 CAPLUS COPYRIGHT 2007 ACS on STN
- AN 1995:806948 CAPLUS
- DN 123:340365
- TI Electrochemical Studies of Organometallic Complexes with
 Tetra-n-butylammonium Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate as
 the Electrolyte. X-ray Crystal Structure of [C5(CF3)Me4]Fe(C5H5)
- AU Gassman, Paul G.; Sowa, John R., Jr.; Hill, Michael G.; Mann, Kent R.
- CS Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
- SO Organometallics (1995), 14(10), 4879-85 CODEN: ORGND7; ISSN: 0276-7333
- PB American Chemical Society
- DT Journal
- LA English
- AB The tetra-n-butylammonium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (TBA+TFPB-) electrolyte/CH2Cl2 solvent system improves the electrochem. reversibility of pentamethylcyclopentadienyl (Cp*) ruthenocenes, Cp*RuCp' (Cp' = fluorenyl, indenyl, cyclopentadienyl (Cp), acetylcyclopentadienyl, pentachlorocyclopentadienyl), as indicated by ip,c/ip,a ratios of 0.79-1.0 as determined by cyclic voltammetry. The quasi-reversible potentials (E°') of the Cp*RuCp' complexes and the complete series of Group 8 Cp2M and Cp*2M complexes (M = Fe, Ru, Os) are also reported in TBA+TFPB-/CH2Cl2. A study of the E°' values of Group 8 complexes containing the (trifluoromethyl)tetramethylcyclopentadienyl (Cp.thermod.) ligand indicate that the Cp.thermod. complexes are slightly (0.06-0.08 V per Cp.thermod.) more difficult to oxidize than the cyclopentadienyl (Cp) derivs. The structure of [C5(CF3)Me4]Fe(C5H5) was determined at -101° by a single-crystal x-ray diffraction study. The structure shows eclipsed Cp.thermod. and Cp rings, and the Fe to Cp.thermod. centroid distance (1.643 Å) is slightly shorter than the Fe to Cp centroid distance (1.651 Å); otherwise, no extreme differences in the coordination of the Cp.thermod. and Cp rings are noted. An IR spectroelectrochem. study of trans-[Cp.thermod.Fe(CO)2]2 shows that it is electrochem. oxidized to trans-[Cp.thermod.Fe(CO)2]2+ in TBA+TFPB-/CH2Cl2.
- L4 ANSWER 6 OF 8 CAPLUS COPYRIGHT 2007 ACS on STN
- AN 1994:54700 CAPLUS
- DN 120:54700
- TI Preparation of 1,2,3,4-tetraalkyl-5-perfluoroalkylcyclopentadiene and bis(perfluoroalkyl)trialkylcyclopentadiene and their transition metal complexes
- IN Gassman, Paul G.; Sowa, John R.; Mickelson, John W.
- PA USA
- SO U.S., 10 pp. CODEN: USXXAM
- DT Patent
- LA English
- FAN.CNT 1

PI US 5245064 PRAI US 1992-929959 OS MARPAT 120:54700

US 1992-929959 19920814

GI

$$R^{5}$$
 R^{2}
 R^{2}
 R^{3}
 R^{3}
 R^{4}
 R^{3}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{6

The preparation of title cyclopentadienes I (R1 = C1-5 perfluoroalkyl; R2, R3 = C1-5 perfluoroalkyl, C1-5 alkyl; R4, R5 = C1-5 alkyl) with no more than two R1, R2, and R3 can be C1-5 perfluoroalkyl and their transition metal complexes is described. Thus, lithiation of cis-2-bromo-2-butene with lithium wire in Et2O followed by treatment with CF3CO2Et and acidic workup gave MeCH:CMeC(OH)(CF3)CMe:CHMe which on cyclization with MeSO3H in CH2C12 gave title cyclopentadiene I (R1 = CF3, R2-R5 = Me). Reaction of I (R1 = CF3, R2-R5 = Me) with Co2(CO)8 in the presence of 1,3-cyclohexadiene in CH2C12 gave 14% cobalt complex II.

- L4 ANSWER 7 OF 8 CAPLUS COPYRIGHT 2007 ACS on STN
- AN 1993:7176 CAPLUS
- DN 118:7176
- TI Parameter scale for substituent effects in cyclopentadienyl complexes based on gas-phase electron-transfer equilibrium studies of ruthenocene derivatives

19930914

- AU Ryan, Matthew F.; Siedle, Allen R.; Burk, Mark J.; Richardson, David E.
- CS Dep. Chem., Univ. Florida, Gainesville, FL, 32611, USA
- SO Organometallics (1992), 11(12), 4231-7 CODEN: ORGND7; ISSN: 0276-7333
- DT Journal
- LA English
- AB Gas-phase electron transfer equilibrium (ETE) studies have been used to obtain the free energies of ionization at 350 K for a number of ruthenocene derivs., LL'Ru, where L and L' are derivs. of the $\eta 5$ -cyclopentadienyl ligand
- (Cp). Equilibrium consts. were determined by using Fourier transform ion cyclotron

resonance mass spectrometry. Various metallocene and organic reference compds. have been used to establish the free energies of ionization (ΔGi°), and the derived values cover a range from .apprx.135 to 195 kcal mol-1. A parameter scale (γ) for Cp substituent effects is derived from the data by assigning anchor parameters to Cp and $\eta \text{5-pentamethylcyclopentadienyl}$ (Cp'). The ETE results suggest that L = fluorenyl does not stabilize the oxidation of Cp'RuL to the extent that L = Cp' does, with the effect of L = Flu being .apprx.65% of the Cp' effect. The consistency of the calculated free energies of ionization based on the assumption of ligand additivity is within .apprx.3 kcal mol-1. The potential usefulness of the γ parameters in correlation and prediction of Cp substituent effects in organometallic reactivity and catalysis is considered.

- L4 ANSWER 8 OF 8 CAPLUS COPYRIGHT 2007 ACS on STN
- AN 1992:490485 CAPLUS
- DN 117:90485
- TI 1,2,3,4-Tetramethyl-5-(trifluoromethyl)cyclopentadienide: a unique ligand

with the steric properties of pentamethylcyclopentadienide and the electronic properties of cyclopentadienide

- AU Gassman, Paul G.; Mickelson, John W.; Sowa, John R., Jr.
- CS Dep. Chem., Univ. Minnesota, Minneapolis, MN, 55455, USA
- SO Journal of the American Chemical Society (1992), 114(17), 6942-4. CODEN: JACSAT; ISSN: 0002-7863
- DT Journal
- LA English
- OS CASREACT 117:90485
- 1,2,3,4-Tetramethyl-5-(trifluoromethyl)cyclopentadiene (Cp.thermod.H) was prepared from cis-2-bromo-2-butene by lithiation, and reaction of cis-2-lithio-2-butene with Et trifluoroacetate (82% yield), followed by cyclodehydration with methanesulfonic acid (82% yield). Complexes of Cp.thermod. with iron, ruthenium, osmium, and rhodium were prepared These complexes were compared to the corresponding pentamethylcyclopentadienide (Cp*) and cyclopentadienide (Cp) complexes through x-ray photoelectron spectroscopic measurement of the transition metal inner shell electron binding energies. Although sterically comparable to Cp*, Cp.thermod. is electronically identical to Cp based on the observation that the binding energies of the inner shell electrons of iron, ruthenium, osmium, and rhodium in their resp. complexes are identical.