2^{a} Prova de Algoritmos e Estruturas de Dados I $\frac{21}{05}/2010$

Nos dois exercícios abaixo será analisada com maior peso sua capacidade de estruturar o programa, a divisão em procedimentos e funções, o uso de parâmetros, variáveis locais e globais, embora para obter a totalidade dos pontos o código também deverá estar implementado corretamente.

- 1. (70 pontos) Faça um programa completo em free Pascal que simule o tráfego em um trecho de uma rodovia de mão única, ou seja, uma rodovia na qual os veículos entram de um lado e saem do outro.
 - A rodovia é representada por um vetor com TAM_RODOVIA posições;
 - A simulação ocorre durante MAX_TEMPO iterações;
 - Através da chamada do procedimento

detecta_entrada(VAR tipo, placa, velocidade:INTEGER)

(que não deve ser implementado, apenas utilizado), o programador é informado sobre a ocorrência ou não da entrada de um veículo na rodovia, bem como o tipo do veículo, sua placa e sua respectiva velocidade, onde:

- tipo: 0 nenhuma nova entrada, 1 entrou automóvel, 2 entrou caminhão;
- placa: um número inteiro;
- velocidade: a velocidade de deslocamento do veículo (em posições/unidade de tempo).
- Veículos do tipo automóvel ocupam uma posição da rodovia. Caminhões ocupam duas posições.
- Quando veículos mais rápidos alcançam veículos mais lentos, os primeiros devem andar mais devagar, pois não podem ultrapassar.

A cada unidade de tempo em que algum veículo sair da rodovia, seu programa deve imprimir esta unidade de tempo e o número da placa do veículo que saiu.

Exemplo: (TAM_RODOVIA=7, MAX_TEMPO=10)

• Entrada:

• Representação gráfica:

- t=1:	35_{1}	35_1				
- t=2:		35_{1}	35_{1}			
- t=3:	27_4		35_{1}	35_{1}		
- t=4:			27_{4}	35_{1}	35_{1}	

- t=5:			27_{4}	35_{1}	35_{1}	
- t=6:	16_{2}			27_4	35_{1}	35_{1}
- t=7:		16_{2}			27_{4}	35_{1}
- t=8:				16_{2}		274
- t=9:						16_{2}
- t=10	:					

• Saída:

- t=8: 35 - t=9: 27 - t=10: 16

2. (30 pontos) Você deve incluir no enunciado da primeira questão a existência de uma pista de ultrapassagem. Agora, veículos mais rápidos podem mover-se para a pista de ultrapassagem ao alcançarem veículos mais lentos. Eles devem retornar à pista original assim que tiverem completado a ultrapassagem, retomando a velocidade original. Você deve escrever apenas os procedimentos modificados ou novos que levam em conta este novo fato.

Exemplo da nova saída para a entrada original:

• Representação gráfica:

• Saída:

- t=6: 27

- **t=8:** 35

- **t=10:** 16