```
import pandas as pd
from sklearn.linear_model import LogisticRegression
import numpy as np
```

ins=pd.read_csv('/content/test.csv')

ins.head()

_										
→		id	Gender	Age	Driving_License	Region_Code	Previously_Insured	Vehicle_Age	Vehicle_Damage	Annual_Premi
	0	381110	Male	25	1	11	1	< 1 Year	No	357
	1	381111	Male	40	1	28	0	1-2 Year	Yes	337
	2	381112	Male	47	1	28	0	1-2 Year	Yes	400
	3	381113	Male	24	1	27	1	< 1 Year	Yes	373
	4	381114	Male	27	1	28	1	< 1 Year	No	59(

ins.isnull().sum()

ins.info()

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 127037 entries, 0 to 127036
 Data columns (total 11 columns):

Data	COTUMNS (COCAT II COI	uiii 13 <i>)</i> •	
#	Column	Non-Null Count	Dtype
0	id	127037 non-null	int64
1	Gender	127037 non-null	object
2	Age	127037 non-null	int64
3	Driving_License	127037 non-null	int64
4	Region_Code	127037 non-null	int64
5	Previously_Insured	127037 non-null	int64
6	Vehicle_Age	127037 non-null	object
7	Vehicle_Damage	127037 non-null	object
8	Annual_Premium	127037 non-null	int64
9	Policy_Sales_Channel	127037 non-null	int64
10	Vintage	127037 non-null	int64

```
dtypes: int64(8), object(3)
memory usage: 10.7+ MB
```

```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
ins['Gen']=le.fit_transform(ins['Gender'])
ins.head()
```

→		id	Gender	Age	Driving_License	Region_Code	Previously_Insured	Vehicle_Age	Vehicle_Damage	Annual_Premi
	0	381110	Male	25	1	11	1	< 1 Year	No	357
	1	381111	Male	40	1	28	0	1-2 Year	Yes	337
	2	381112	Male	47	1	28	0	1-2 Year	Yes	400
	3	381113	Male	24	1	27	1	< 1 Year	Yes	373
	4	381114	Male	27	1	28	1	< 1 Year	No	59(

```
le1=LabelEncoder()
ins['Veh_age']=le.fit_transform(ins['Vehicle_Age'])
ins.head()
```

_		id	Gender	Age	Driving_License	Region_Code	Previously_Insured	Vehicle_Age	Vehicle_Damage	Annual_Premi
	0	381110	Male	25	1	11	1	< 1 Year	No	357
	1	381111	Male	40	1	28	0	1-2 Year	Yes	337
	2	381112	Male	47	1	28	0	1-2 Year	Yes	400
	3	381113	Male	24	1	27	1	< 1 Year	Yes	373
	4	381114	Male	27	1	28	1	< 1 Year	No	59(

```
log=LogisticRegression()
a=ins[['id','Driving_License','Veh_age','Annual_Premium']]
b=ins['Vehicle_Damage']
log.fit(a,b)
\overline{2}
      ▼ LogisticRegression ① ?
     LogisticRegression()
id=int(input("Enter your id:"))
Driving_License=int(input("Enter your Driving_License:"))
Veh_age=int(input("Enter your Veh_age:"))
Annual_Premium=int(input("Enter your Annual_Premium:"))
predict=log.predict([[id,Driving_License,Veh_age,Annual_Premium]])
print(predict)
Enter your id:301115
     Enter your Driving_License:1
     Enter your Veh_age:3
     Enter your Annual_Premium:45000
     ['No']
```

log.score(a,b)

0.6439383801569621

from sklearn.metrics import accuracy_score
preval=log.predict(a)
accuracy_score(b,preval)

0.6439383801569621