

Instituto de Ciências da Saúde - ICS

FUNÇÕES INORGÂNICAS

Prof. Klélia

Klelia.carvalho@docente.unip.br

Química Inorgânica:

É aquela que classificam as substâncias inorgânicas em diferentes grupos, de acordo com as suas funções químicas.

Ácidos

Funções: Bases

Sais

Óxidos

Teoria de Arrhneius:

Ionização ≠ Dissociação

Solução Não Eletrolítica ou Molecular

Solução Eletrolítica ou Iônica

> Dissociação Iônica (Eletrolítica): Separa cargas.

É a separação dos íons de uma substância quando colocadas em água.

Solvatação: ocorre quando um composto iônico ou polar se dissolve em uma substância polar, sem formar uma nova substância. As moléculas do soluto são rodeadas pelo solvente.

➤ Dissociação Molecular: Separa moléculas.

≻lonização: É formar cargas.

HCI
$$\xrightarrow{\text{H}_2\text{O}}$$
 H⁺_(aq) + Cl⁻_(aq)

>Ácidos:

- São substâncias que em solução aquosa sofrem ionização liberando como cátions somente: **H**+ ou **HO**₃+

$$H_xA \xrightarrow{H_2O} H^+_{(aq.)} + A^-_{(aq.)}$$
 $HCl(g) \xrightarrow{H_2O} H^+(aq) + Cl^-(aq)$
 $HCl(g) + H_2O \longrightarrow H_3O^+(aq) + Cl^-(aq)$

√Nomenclaturas:

>Ácidos: • Hidrácidos

Oxiácidos

• Hidrácidos: Ácidos sem oxigênio na fórmula.

Ácidos + Nome do elemento + ÍDRICO

HF: Ácido fluorÍDRICO

Exs: • HCI: Ácido clorídrÍDRICO

HBr: Ácido bromÍDRICO

Oxiácidos: Ácidos com oxigênio

Cl, Br, I	S, Se	N, P, AS	C
Família 17	Família 16	Família 16	Família 16
HCIO ₃	H₂SO₄	HNO ₃	H ₂ CO ₃
Ácido ClorICO	Ácido SulfurICO	Ácido NítrICO	Ácido CarbônICO

✓ Com a variação do NOX:

Carga do Elemento

Exemplos:
$$H_2 \stackrel{+2}{\stackrel{+6}{\stackrel{-8}{=}}} \stackrel{-8}{\stackrel{=0}{\stackrel{-}{=}}} \stackrel{-8}{\stackrel{-6}{\stackrel{-8}{=}}} \stackrel{-9}{\stackrel{-2}{\stackrel{-2}{\stackrel{-2}{=}}}} \stackrel{\text{Acido Sulfurico}}{}$$

$$+1 +7 -8 =0$$
H Cl O₄
Ác

Ácido Perclórico

✓ Número de H ionizáveis:

É em função do número de H+ liberados por molécula ionizadas:

	Monoácidos	Diácidos	Triácidos	Tetrácido
Nº de H ⁺ por molécula ionizada	1 H+	2 H ⁺	3 H ⁺	4 H ⁺

Nos Hidrácidos: Todos os H presentes na molécula são ionizáveis.

Ácidos sem oxigênio na fórmula.

H — CI HCI

1 H ionizável

2 H ionizável

Nos Oxiácidos: Os H ionizáveis são somente os ligados a átomos de O:

	Monoácidos	Diácidos	Triácidos	Tetrácido
Nº de H ⁺ por molécula ionizada	1 H+	2 H ⁺	3 H ⁺	4 H ⁺

HCIO₄ Monoácido Ácido Perclórico

H2SO₄ Diácido Ácido Sulfúrico

> Bases ou Hidróxidos:

- São substâncias que em solução aquosa sofrem dissociação iônica, liberando como Único tipo de ânion as hidroxilas: **OH**-

NaOH
$$\stackrel{\text{H}_2\text{O}}{\longrightarrow}$$
 Na $^+$ _(aq.) + OH $^-$ _(aq.)

√ Os hidróxidos dos metais são compostos iônicos.

Sofrem dissociação iônica na presença de água.

NaOH = Hidróxido de Sódio

Exemplo:

Ca(OH)₂ = Hidróxido de Cálcio

✓ Os hidróxidos dos metais com variação de carga:

Exemplo:

Ferro: Fe +2 Fe(OH)2 Hidróxido de Ferro II

Hidróxido Ferroso

Fe⁺³ Fe(OH)₃ Hidróxido de Ferro III

Hidróxido Férrico

No NOX:

No Máx: Ico

No Min: Oso

√ Hidróxido de Amônio.

É o resultado da ionização em água da amônia (NH3) que é um composto molecular.

$$NH_{3(g)} + H_2O_{(I)} \longrightarrow NH_4OH_{(aq.)} \longrightarrow NH_4^+_{(aq.)} + OH^-_{(aq.)}$$

✓ Número de OH ionizáveis:

É em função do número de OH-liberados por molécula ionizadas:

	Monobase	Dibase	Tribase	Tetrabase
N° de OH por molécula ionizada	1 OH ⁻	2 OH -	3 OH -	4 OH-

Exemplos:

NaOH Monobase

Ca (OH)₂
Dibase

Al (OH)₃
Tribase

> Sal:

É toda substância que, em solução aquosa, sofre dissociação, produzido pelo menos um cátion diferente do H⁺ e pelo menos um ânion diferente de OH⁻.

√Nomenclaturas:

2HCI + Fe(OH)₂ → FeCl₂ + 2H₂O No NOX: Cloreto de Ferro II No Máx: Ico **Cloreto Ferroso** No Min: Oso

Regra: ídrico ito **OSO** lco

ato

> Reação com Metais:

✓Os ácidos reagem com muitos metais e, nessa reação, produzem gás hidrogênio (H2) e um sal do metal.

> Reação com Carbonatos e Bicarbonatos:

à uma reação de um ácido com ânions que libera gás carbônico.

Óxidos:

É um composto binário, ou seja, formado por dois elementos, sendo um deles o Oxigênio.

E o oxigênio e o mais eletronegativo entre eles.

✓ Nomenclatura: De acordo com a ligação

1- Óxidos Moleculares: São os óxidos formados pela ligação do oxigênio a um Não Metal.

Prefixo que indica a quantidade de Oxigênio (mono, di, tri,..)

Óxido e prefixo que indica a quantidade do outro elemento (mono, di, tri,..)

+ Nome do elemento

Exemplos:

CO₂ = Dióxido de Carbono

Cl₂O₇ = Heptóxido de Dicloro

2- Óxidos iônicos: Óxidos formados por Metais, e neles o oxigênio apresenta carga -2.

Óxido de + Nome do Elemento

Exemplos:

Óxido de Sódio = Na₂ O

Óxido de Ferro III = $Fe_2 O_3$

✓ Classificação:

- Água
- De acordo com seu comportamento na presença de: **Base**
 - Ácido
- Óxidos Básicos: Apresentam caráter iônico, em que o metal geralmente terá carga +1 ou +2

➢ Óxidos Ácidos: Apresentam caráter covalente e geralmente são formados por não metais.

Outra Forma: Nox do elemento que irá se ligar ao Oxigênio

Se: Nox ≤ 3 → Óxido Básico

Se: Nox ≥ 4 Óxido Ácido

Na₂O

Exemplos: Al2O3

SO₃

➢ Óxidos Anfóteros: Comportam-se como óxidos básicos na presença de um ácido, e como óxidos ácidos na presença de uma base.

- Água

Ácido

CO = Monóxido de Carbono

NO = Monóxido de nitrogênio ou óxido nítrico

N2O = Monóxido de dinitrogênio ou óxido nitroso

Exemplos: CO + Hemoglobina

➢Óxidos Duplos ou Mistos: Resultam da combinação de dois óxidos do mesmo elemento.

Exemplos:

FeO + Fe2O3 = Fe3O4
$$\longrightarrow$$
 Magnetita
Óxido de ferro III \circ óxido \circ 2° óxido

- \triangleright **Peróxidos:** Apresentam em sua estrutura $(O_2)^{2-}$
 - Hidrogênio **H2O**2
 - Metais Alcalinos Na2O2
 - Metais Alcalinos terrosos CaO2
- ✓ Nos peróxidos cada oxigênio apresenta carga -1, e seu grupo característico é: (O₂)²-
 - ✓ Reações dos Peróxidos:
 - ✓Peróxido com H₂O = Base + Água Oxigenada

$$CaO_2 + 2 H_2O = Ca(OH)_2 + H_2O_2$$

✓Peróxido + Ácido = Sal + Água Oxigenada

 $CaO_2 + 2 HCI = CaCl_2 + H_2O_2$

OBRIGA

