Zynq Architecture

Objectives

> After completing this module, you will be able to:

- >> Identify the basic building blocks of the Zynq™ architecture processing system (PS)
- >> Describe the ARM Cortex-A9 processor memory space
- >> Connect the PS to the programmable logic (PL) through the AXI ports
- >> Generate clocking sources for the PL peripherals
- >> List the various AXI-based system architectural models
- >> Name the five AXI channels
- >> Describe the operation of the AXI streaming protocol

Outline

- > Zynq SoC (AP SoC)
- > Zynq SoC Processing System (PS)
- > Processor Peripherals
- > Clock, Reset, and Debug Features
- > AXI Interfaces
- > Summary

The PS and the PL

- > The Zynq-7000 SoC architecture consists of two major sections
 - » PS: Processing system
 - Dual ARM Cortex-A9 processor based
 - Single core versions also now available
 - Multiple peripherals
 - Hard silicon core
 - >> PL: Programmable logic
 - Shares the same 7 series programmable logic as
 - Artix[™]-based devices: Z-7010, Z-7015, and Z-7020 (high-range I/O banks only)
 - KintexTM-based devices: Z-7030, Z-7035, Z-7045, and Z-7100 (mix of high-range and high-performance I/O banks)
- > This section focuses on the PS

Zynq-7000 Family Highlights

> Complete ARM®-based processing system

- Application Processor Unit (APU)
 - Dual ARM Cortex[™]-A9 processor
 - Caches and support blocks
- >> Fully integrated memory controllers
- >> I/O peripherals

> Tightly integrated programmable logic

- Used to extend the processing system
- Scalable density and performance

> Flexible array of I/O

Zyng Architecture 12-5

- >> Wide range of external multi-standard I/O
- High-performance integrated serial transceivers

© Copyright 2018 Xilinx

>> Analog-to-digital converter inputs

EXILINX

Zynq-7000 SoC Block Diagram

PS Components

- > Application processing unit (APU)
- > I/O peripherals (IOP)
 - >> Multiplexed I/O (MIO), extended multiplexed I/O (EMIO)
- > Memory interfaces
- > PS interconnect
- > DMA
- > Timers
 - Public and private
- > General interrupt controller (GIC)
- > On-chip memory (OCM): RAM
- > Debug controller: CoreSight

Outline

- > Zynq All Programmable SoC (AP SoC)
- > Zynq SoC Processing System (PS)
- > Processor Peripherals
- > Clock, Reset, and Debug Features
- > AXI Interfaces
- > Summary

ARM Processor Architecture

> ARM Cortex-A9 processor implements the ARMv7-A architecture

- >> ARMv7 is the ARM Instruction Set Architecture (ISA)
- >> ARMv7-A: Application set that includes support for a Memory Management Unit (MMU)
- >> ARMv7-R: Real-time set that includes support for a Memory Protection Unit (MPU)
- >> ARMv7-M: Microcontroller set that is the smallest set

> The ARMv7 ISA includes the following types of instructions (for backwards compatibility)

- >> Thumb instructions: 16 bits; Thumb-2 instructions: 32 bits
- >> NEON: ARM's Single Instruction Multiple Data (SIMD) instructions

> ARM Advanced Microcontroller Bus Architecture (AMBA®) protocol

- AXI3: Third-generation ARM interface
- >> AXI4: Adding to the existing AXI definition (extended bursts, subsets)

> Cortex is the new family of processors

>> ARM family is older generation; Cortex is current; MMUs in Cortex processors and MPUs in ARM

ARM Cortex-A9 Processor Power

- > Dual-core processor cluster
- > 2.5 DMIP/MHz per processor
- > Harvard architecture
- > Self-contained 32KB L1 caches for instructions and data
- > External memory based 512KB L2 cache
- > Automatic cache coherency between processor cores
- > 1GHz operation (fastest speed grade)

ARM Cortex-A9 Processor Micro-Architecture

- Instruction pipeline supports out-oforder instruction issue and completion
- Register renaming to enable execution speculation
- Non-blocking memory system with load-store forwarding
- > Fast loop mode in instruction prefetch to lower power consumption

ARM Cortex-A9 Processor Micro-Architecture

> Variable length, out-of-order, eight-stage, super-scalar instruction pipeline

- Advanced pre-fetch with parallel branch pipeline enabling early branch prediction and resolution
- >> Multi-issued into
 - Primary data processing pipeline
 - Secondary full data processing pipeline
 - Load-store pipeline
 - Compute engine (FPU/NEON) pipeline

> Speculative execution

- Supports virtual renaming of ARM physical registers to remove pipeline stalls due to data dependencies
- >> Increased processor utilization and hiding of memory latencies
- >> Increased performance by hardware unrolling of code loops
- Reduced interrupt latency via speculative entry to Interrupt Service Routine (ISR)

Processing System Interconnect (1)

> Programmable logic to memory

- >> Two ports to DDR
- >> One port to OCM SRAM

> Central interconnect

>> Enables other interconnects to communicate

> Peripheral master

USB, GigE, SDIO connects to DDR and PL via the central interconnect

> Peripheral slave

Position of the second seco

Processing System Interconnect (2)

> Processing system master

- >> Two ports from the processing system to programmable logic
- Sonnects the CPU block to common peripherals through the central interconnect

> Processing system slave

>> Two ports from programmable logic to the processing system

Memory Map

- The Cortex-A9 processor uses 32-bit addressing
- > PS peripherals and PL AXI slave interfaces are memory mapped to the Cortex-A9 processor cores
- > All AXI slave PL peripherals will be located between

4000_0000 and 7FFF_FFFF (connected to GP0) and

8000_0000 and BFFF_FFFF (connected to GP1)

FFFC_0000 to FFFF_FFFF
FD00_0000 to FFFB_FFFF
FC00_0000 to FCFF_FFFF
F8F0_3000 to FBFF_FFFF
F890_0000 to F8F0_2FFF
F801_0000 to F88F_FFFF
F800_1000 to F880_FFFF
F800_0C00 to F800_0FFF
F800_0000 to F800_0BFF
E600_0000 to F7FF_FFFF
E100_0000 to E5FF_FFFF
E030_0000 to E0FF_FFFF
E000_0000 to E02F_FFFF
C000_0000 to DFFF_FFFF
8000_0000 to BFFF_FFFF
4000_0000 to 7FFF_FFFF
0010_0000 to 3FFF_FFFF
0004_0000 to 000F_FFFF
0000 0000 to 0003 FFFF

F	OCM
F	Reserved
F	Quad SPI linear address
F	Reserved
F	CPU Private registers
F	Reserved
F	PS System registers,
F	Reserved
F	SLCR Registers
F	Reserved
F	SMC Memory
F	Reserved
F	IO Peripherals
F	Reserved
F	PL (MAXI_GP1)
F	PL (MAXI_GP0)
F	DDR (address not filtered by SCU)
F	DDR (address filtered by SCU)
F	ОСМ

Zynq SoC Memory Resources

- > On-chip memory (OCM)
 - >> RAM
 - >> Boot ROM
- > DDRx dynamic memory controller
 - >> Supports LPDDR2, DDR2, DDR3
- > Flash/static, memory controller
 - >> Supports SRAM, QSPI, NAND/NOR FLASH

PS Boots First

- > CPU0 boots from OCM ROM; CPU1 goes into a sleep state
- > On-chip boot loader in OCM ROM (Stage 0 boot)
- > Processor loads First Stage Boot Loader (FSBL) from external flash memory
 - >> NOR
 - >> NAND
 - >> Quad-SPI
 - >> SD Card
 - >> Load from JTAG; not a memory device—used for development/debug only
- > Boot source selected via package bootstrapping pins
- > Optional secure boot mode allows the loading of encrypted software from the flash boot memory

Configuring the PL

- > The programmable logic is configured after the PS boots
- Performed by application software accessing the hardware device configuration unit
 - » Bitstream image transferred
 - >> 100-MHz, 32-bit PCAP stream interface
 - Decryption/authentication hardware option for encrypted bitstreams
 - In secure boot mode, this option can be used for software memory load
 - Built-in DMA allows simultaneous PL configuration and OS memory loading

Outline

- > Zynq All Programmable SoC (AP SoC)
- > Zynq SoC Processing System (PS)
- > Processor Peripherals
- > Clock, Reset, and Debug Features
- > AXI Interfaces
- > Summary

Input/Output Peripherals

- > Two GigE
- > Two USB
- > Two SPI
- > Two SD/SDIO
- > Two CAN
- > Two I2C
- > Two UART
- > Four 32-bit GPIOs
- > Static memories
 - NAND, NOR/SRAM, Quad SPI
- > Trace ports

Multiplexed I/O (MIO)

> External interface to PS I/O peripheral ports

- >> 54 dedicated package pins available
- >> Software configurable
 - Automatically added to bootloader by tools
- >> Not available for all peripheral ports
 - Some ports can only use EMIO

Extended Multiplexed I/O (EMIO)

> Extended interface to PS I/O peripheral ports

- >> EMIO: Peripheral port to programmable logic
- >> Alternative to using MIO
- Mandatory for some peripheral ports
- >> Facilitates
 - Connection to peripheral in programmable logic
 - Use of general I/O pins to supplement MIO pin usage
 - Alleviates competition for MIO pin usage

PS-PL Interfaces

> AXI high-performance slave ports (HP0-HP3)

- >> Configurable 32-bit or 64-bit data width
- Access to OCM and DDR only
- >> Conversion to processing system clock domain
- AXI FIFO Interface (AFI) are FIFOs (1KB) to smooth large data transfers

> AXI general-purpose ports (GP0-GP1)

- >> Two masters from PS to PL
- >> Two slaves from PL to PS
- >> 32-bit data width
- Conversation and sync to processing system clock domain

PS-PL Interfaces

- > One 64-bit accelerator coherence port (ACP) AXI slave interface to CPU memory
- > DMA, interrupts, events signals
 - >> Processor event bus for signaling event information to the CPU
 - >> PL peripheral IP interrupts to the PS general interrupt controller (GIC)
 - >> Four DMA channel RDY/ACK signals
- Extended multiplexed I/O (EMIO) allows PS peripheral ports access to PL logic and device I/O pins
- > Clock and resets
 - >> Four PS clock outputs to the PL with enable control
 - Four PS reset outputs to the PL
- > Configuration and miscellaneous

Outline

- > Zynq All Programmable SoC (AP SoC)
- > Zynq SoC Processing System (PS)
- > Processor Peripherals
- > Clock, Reset, and Debug Features
- > AXI Interfaces
- > Summary

PL Clocking Sources

- > PS clocks
 - >> PS clock source from external package pin
 - >> PS has three PLLs for clock generation
 - >> PS has four clock ports to PL
- > The PL has 7 series clocking resources
 - >> PL has a different clock source domain compared to the PS
 - >> The clock to PL can be sourced from external clock capable pins
 - >> Can use one of the four PS clocks as source
- Synchronizing the clock between PL and PS is taken care of by the architecture of the PS
- > PL cannot supply clock source to PS

Clocking the PL

PL Fabric Clock	Control Register	Mux Ctrl Field	Mux Ctrl Field	Divider 0 Ctrl Field	Divider 1 Ctrl Field	
PL Fabric 0	FPGA0 CLK CTRL	SRCSEL, 4	SRCSEL, 5	DIVISOR 0, 13:8	DIVISOR 1, 25:20	—► FCLKCLK0
PL Fabric 1	FPGA1_CLK_CTRL	SRCSEL, 4	SRCSEL, 5	DIVISOR 0, 13:8	DIVISOR 1, 25:20	→ FCLKCLK1
PL Fabric 2	FPGA2_CLK_CTRL	SRCSEL, 4	SRCSEL, 5	DIVISOR 0, 13:8	DIVISOR 1, 25:20	→ FCLKCLK2
PL Fabric 3	FPGA3_CLK_CTRL	SRCSEL, 4	SRCSEL, 5	DIVISOR 0, 13:8	DIVISOR 1, 25:20	→ FCLKCLK3

Clock Generation (Using Zynq Tab)

- The Clock Generator allows configuration of PLL components for both the PS and PL
 - >> One input reference clock
- > Access GUI by clicking the Clock Generation Block, or select from Navigator
- Configure the PS Peripheral Clock in the Zynq tab
 - >> PS uses a dedicated PLL clock
 - PS I/O peripherals use the I/O PLL clock and ARM PLL

IP Integrator – Advanced Clocking in Zynq

- Basic Clocking allows selection of desired frequency
 - Tools will auto calculate nearest achievable frequency
- Advanced clocking allows access to clock multiply and divide values for various PLLs in the Zynq PS
- > Provides more control for user

Zynq Resets

> Internal resets

- >> Power-on reset (POR)
- >> Watchdog resets from the three watchdog timers
- >> Secure violation reset

> PS resets

- >> External reset: PS_SRST_B
- >> Warm reset: SRSTB

> PL resets

- >> Four reset outputs from PS to PL
- >> FCLK_RESET[3:0]

E XILINX.

Outline

- > Zynq All Programmable SoC (AP SoC)
- > Zynq SoC Processing System (PS)
- > Processor Peripherals
- > Clock, Reset, and Debug Features
- > AXI Interfaces
- > Summary

AXI is Part of ARM's AMBA

Older Performance Newer

AMBA: Advanced Microcontroller Bus Architecture

AXI: Advanced Extensible Interface

AXI is Part of AMBA

Basic AXI Signaling – 5 Channels

- 1. Read Address Channel
- 2. Read Data Channel

- 3. Write Address Channel
- 4. Write Data Channel
- **5.** Write Response Channel

Read address channel

The AXI Interface - AXI4-Lite

> No burst

- > Data width 32 or 64 only
 - >> Xilinx IP only supports 32-bits
- > Very small footprint
- Bridging to AXI4 handled automatically by AXI_Interconnect (if needed)

AXI4-Lite Read

AXI4-Lite Write

The AXI Interface - AXI4

- Sometimes called "Full AXI" or "AXI Memory Mapped"
- > Single address multiple data
 - >> Burst up to 256 data beats
- > Data Width parameterizable
 - >> 1024 bits

The AXI Interface—AXI4-Stream

- No address channel, no read and write, always just master to slave
 - >> Effectively an AXI4 "write data" channel
- > Unlimited burst length
 - >> AXI4 max 256
 - >> AXI4-Lite does not burst
- Virtually same signaling as AXI Data Channels
 - Protocol allows merging, packing, width conversion
 - Supports sparse, continuous, aligned, unaligned streams

Streaming Applications

> May not have packets

- >> E.g. Digital up converter
 - No concept of address
 - Free-running data (in this case)
 - In this situation, AXI4-Stream would optimize to a very simple interface

> May have packets

- >> E.g. PCle
 - Their packets may contain different information
 - Typically bridge logic of some sort is needed

Outline

- > Zynq All Programmable SoC (AP SoC)
- > Zynq SoC Processing System (PS)
- > Processor Peripherals
- > Clock, Reset, and Debug Features
- > AXI Interfaces
- > Summary

Summary

- > The Zynq-7000 processing platform is a system on a chip (SoC) processor with embedded programmable logic
- > The processing system (PS) is the hard silicon dual core consisting of
 - >> APU and list components
 - Two Cortex-A9 processors
 - NEON co-processor
 - General interrupt controller (GIC)
 - General and watchdog timers
 - >> I/O peripherals
 - >> External memory interfaces

Summary

- > The programmable logic (PL) consists of Xilinx "7 series" technology (28nm)AXI is an interface providing high performance through point-to-point connection
- > AXI has separate, independent read and write interfaces implemented with channels
- > The AXI4 interface offers improvements over AXI3 and defines
 - >> Full AXI memory mapped
 - >> AXI Lite
 - >> AXI Stream
- > Tightly coupled AXI ports interface the PL and PS for maximum performance
- > The PS boots from a selection of external memory devices
- > The PL is configured by and after the PS boots

