4th year Review - Statistical Physics Perspectives on Learning in High Dimensions

Advisor: Surya Ganguli

Madhu Advani

Stanford University

April 6, 2014

Outline

Current Research

Optimal Tractable High Dimensional M-estimation

Future Directions

- LN and GLM extensions of M-estimation also Optimal Signal Processing (Structured Coefficients)
- Random Dimensionality Reduction
- Opening Phase transitions in clustering Behavior

Previous Research and Future Plan

- Review Paper
- 2 Timeline

Problem Setup

- Consider Statistical inference with N data points and P unknowns (predictors).
- (Easy) Classical Regime: $\kappa = P/N \to 0$
- (Hard) High Dimensional Regime: $\kappa = P/N \neq 0$

Outputs generated by: $y_i = \mathbf{X_i} \cdot \mathbf{w^0} + \epsilon_i$ $i \in [1, ..., N]$

- ullet We want to find $\mathbf{w^0} \in \mathcal{R}^P$
- ullet Noise ϵ not necessarily gaussian

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \left[\sum_{i} \rho \left(y_{i} - \mathbf{X}_{i} \cdot \mathbf{w} \right) \right]$$

E.g.
$$\rho(x) = x^2, |x|, -\ln f(x)$$

Maximum Likelihood

Classical vs High Dimensional Optimal M-estimation

Classical

- $N \to \infty$, $P/N = \kappa \to 0$
- $\rho_{opt} = -\log f$
- $\langle \langle (\hat{w}_i w_i^0)^2 \rangle \rangle \geq \frac{\kappa}{\int \frac{f'^2}{f}}$

High Dimensional

- $N, P \rightarrow \infty, P/N = \kappa \in [0, 1]$
- $\rho_{\mathrm{opt}}(x) = -\inf_y \left[\ln(\zeta_{\hat{q}_0}(y)) + \frac{(x-y)^2}{2\hat{q}_0} \right]$ $\zeta = f * \phi_{\hat{q}_0}$
- $\langle \langle (\hat{w}_i w_i^0)^2 \rangle \rangle \geq \frac{\kappa}{\int \frac{\zeta'^2}{\zeta}}$

Adding a Regularizer

$$P(\mathbf{w^0}|\mathbf{X},\mathbf{y}) = \frac{P(\mathbf{X},\mathbf{y}|\mathbf{w^0})P(\mathbf{w^0})}{P(\mathbf{X},\mathbf{y})}$$

Maximum a Priori

$$\hat{\mathbf{w}}_{\mathsf{MAP}} = \arg\min_{\mathbf{w}} \left[\sum_{i} -\log f(y_i - \mathbf{X}_i \cdot \mathbf{w}) + \sum_{j} -\log g(w_j) \right]$$

Regularized M-estimation

$$\hat{\mathbf{w}} = rg \min_{\mathbf{w}} \left[\sum_{i} \rho \left(y_i - \mathbf{X}_i \cdot \mathbf{w} \right) + \sum_{j} \sigma(w_j) \right]$$

Note separability. Solvable for convex strategy σ, ρ

Motivation

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \sum_{a} \rho(y_a - \mathbf{X_a} \cdot \mathbf{w}) + \sum_{i} \sigma(w_i)$$

Applications

- Maximum Likelihood (ML) and MAP commonly applied to High Dimensional Bio-informatics problems, where we should expect poor performance
- Deriving/Understanding the Optimal M-estimator has potential applications for statistical inference and signal processing.
- Tractability of this form of optimization popular: Compressed Sensing, LASSO, Elastic Net

Statistical Physics Formulation

Define a spin glass system to solve M-estimator inference

Spin Glass System

Define continuous spins $\mathbf{u} = \mathbf{w}^0 - \mathbf{w}$. Let the Energy of the system be a function of these spins

$$E_{\Lambda}(\mathbf{u}) = \sum_{i} \rho \left(\mathbf{X}_{i} \cdot \mathbf{u} + \epsilon_{i} \right) + \sum_{a} \sigma (w_{a}^{0} - u_{a})$$

This in turn induces an equilibrium probability distribution on the state

$$P_G(\mathbf{u}) = \frac{e^{-\beta E_{\Lambda}(\mathbf{u})}}{Z_{\Lambda}}$$
 $Z_{\Lambda} = \int e^{-\beta E_{\Lambda}(\mathbf{u})} du$

$$\lim_{\beta \to \infty} P_G(\mathbf{u}) = \delta \left(\mathbf{u} - \mathbf{w}^0 + \mathbf{\hat{w}} \right)$$

Replica Solution

Coupled Equations Relating Order Parameters

$$\left\langle \left\langle \left(\mathsf{prox}_{c\rho} \left(\sqrt{q}z + \epsilon \right) - \sqrt{q}z - \epsilon \right)^2 \right\rangle \right\rangle_{z,\epsilon} = \kappa q$$

$$\left\langle \left\langle \left(\mathsf{prox}_{c\rho}' \left(\sqrt{q}z + \epsilon \right) \right) \right\rangle_{z,\epsilon} = 1 - \kappa$$

- $X_{ij} \in \mathcal{N}(0, 1/P)$
- ullet ho convex
- $\epsilon_i \sim f$ iid

Proximal Map

Definition

$$prox_f(x) = \arg\min_{y} \left[\frac{(x-y)^2}{2} + f(y) \right]$$
$$= [I + \partial f]^{-1}(x)$$

Put an example (soft thresholding) here

Analytic Estimator Error

How to choose ρ to minimize q?

$$\begin{split} \left< \left< \left(\mathsf{prox}_{c\rho} \left(\sqrt{q}z + \epsilon \right) - \sqrt{q}z - \epsilon \right)^2 \right> \right>_{z,\epsilon} &= \kappa q \\ \\ \left< \left< \mathsf{prox}_{c\rho}' \left(\sqrt{q}z + \epsilon \right) \right> \right>_{z,\epsilon} &= 1 - \kappa \end{split}$$

Optimal Unregularized M-estimator

Optimal M-estimator

$$\rho_{\text{opt}}(x) = -\inf_{y} \left[\ln(\zeta_{\hat{q}}(y)) + \frac{(x-y)^2}{2\hat{q}} \right] \qquad \zeta_{\hat{q}} = f * \phi_{\hat{q}}$$

$$\hat{q} = \min q$$
 s.t. $qI_q = \kappa$ $I_q = \int_{-\infty}^{\infty} \frac{\zeta_q'^2(y)}{\zeta_q(y)} dy$

- ullet \hat{q} best possible asymptotic MSE for a convex M-estimator is \hat{q}
- Under log-concave noise f assumption ρ_{opt} is the optimal loss.
- Note: not maximum likelihood, and the ρ varies with dimensionality κ .

Optimal Unregularized M-estimator

Regularized M-estimation

$$y_i = \mathbf{X}_i \cdot \mathbf{w^0} + \epsilon_i \qquad \qquad w_j^0 \sim g, \epsilon_i \sim f$$

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \sum_{a} \rho(y_a - \mathbf{X}_a \cdot \mathbf{w}) + \sum_{i} \sigma(w_i)$$

Regularized M-estimation

Optimal Inference

$$\rho_{\text{opt}}^{R}(x) = -\inf_{y} \left[\ln(\zeta_{\tilde{q}_{0}}(y)) + \frac{(x-y)^{2}}{2\tilde{q}_{0}} \right]$$

$$\sigma_{\text{opt}}^{R}(x) = -\frac{\tilde{q}_{0}}{\tilde{a}}\inf_{y} \left[\ln(\xi_{\tilde{a}}(y)) + \frac{(x-y)^{2}}{2\tilde{a}} \right]$$

$$\tilde{q}_0, \tilde{a}=\arg\min_{q_0,a}q_0$$
 s.t.
$$al_{q_0}=\kappa, \quad a^2J_a=a-q_0$$

- \tilde{q}_0 , \tilde{a} are smoothing parameters
- \tilde{q}_0 is the asymptotic MSE
- f, g log concave

Unregularized M-estimator

M-estimator Comparison

$$\begin{split} \rho_{\mathsf{MAP}}(x) &= \frac{x^2}{2} \qquad \sigma_{\mathsf{MAP}}(x) = |x| \\ \rho_{\mathsf{Ridge}}(x) &= \frac{x^2}{2} \qquad \sigma_{\mathsf{Ridge}}(x) = \frac{x^2}{2} \end{split}$$

