Internet Routing and Non-monotonic Reasoning

Anduo Wang and Zhijia Chen Temple University

the Internet

a loose federation of networks, also called autonomous systems (ASes)

Internet routing

determine a sequence of networks — path — a data packet will traverse in passing from the source to the destination

Internet routing

routing path established by distributed algorithm — border gateway protocol (BGP)

distributed route computation

routing path established by distributed algorithm—border gateway protocol (BGP)

alternative paths (BGP routes) to reach a destination through its neighbors (closer to the destination)

distributed route computation

routing path established by distributed algorithm—border gateway protocol (BGP)

step 2.AS x selects one single best path out of its available paths based on some measure of the paths

distributed route computation

routing path established by distributed algorithm—border gateway protocol (BGP)

its path (by appending itself) to other neighbors (farther away from the destination)

original Internet always selects the shortest paths — measure the paths by distance

shortest path routing always converge

all ASes guaranteed to agree upon some global policy-compliant path(s)

 most preferred possible for all ASes along the path

shortest path routing always converge

guaranteed to agree upon some global policy-compliant path(s) without coordination

- most preferred possible for all ASes along the path
- -form a routing tree

but, Internet routing

far beyond shortest paths computation on a graph

each network acting in their own self interests — monetary revenue, utilization, performance ...

Internet routing

maintaining AS-level path, modulated by AS policies

each ASes — 1,2,3 — prefer their clock-wise neighbor

cannot be simultaneously satisfied

- cannot be simultaneously satisfied
- lead to permanent oscillation

- cannot be simultaneously satisfied
- lead to permanent oscillation

- cannot be simultaneously satisfied
- lead to permanent oscillation

each ASes — 1,2,3 — prefer their clock-wise neighbor

- cannot be simultaneously satisfied
- lead to permanent oscillation

sufficient convergence condition

- no circular preference

existing approach: specialized but restricted combinatory structure, expert-guided manual reasoning

this talk

ASP offers a significantly better solution — accurate characterization, automated detection

shortest path policy revisited

Bellman-Ford equation $sp(x) = min_y \{x \circ sp(y)\}$

-sp(x) denotes the shortest path from x to a destination of interest

if $px = x \circ py$ is a shortest path, py must also be a shortest path

shortest path policy revisited

distributed shortest paths computation is monotonic

autonomous policies and non-monotonicity

autonomous policies and non-monotonicity

autonomous policies and non-monotonicity

distributed paths computation with autonomous policies can exhibit non-monotonic behavior

each ASes — 1,2,3 — prefer their clock-wise neighbor to reach the destination

modeling policy

- stable path problem (SPP) formalism
- an SPP instance S
 - S = (G,P,R)
 - G:AS graph with a prefixed destination owned by 0
 - P: permitted paths at each AS
 - R: path ranking function of each
 AS

each ASes — 1,2,3 — prefer their clock-wise neighbor to reach the destination

modeling policy

- stable path problem (SPP) formalism
- an SPP instance S
 - S = (G,P,R)
 - G:AS graph with a prefixed destination owned by 0
 - P: permitted paths at each AS
 - R: path ranking function of each
 AS

each ASes — 1,2,3 — prefer their clock-wise neighbor to reach the destination

modeling policy

- stable path problem (SPP) formalism
- an SPP instance S
 - S = (G,P,R)
 - G:AS graph with a prefixed destination owned by 0
 - P: permitted paths at each AS
 - R: path ranking function of eachAS

each ASes — 1,2,3 — prefer their clock-wise neighbor to reach the destination

two predicates r, b, and a tuple variable p

- -r(p) permitted paths
- -b(p) selected paths
- -p paths

generate permitted paths

- -as a direct path the destination
- -as learned from a neighbor AS

```
%% direct path as known fact(s)
r((2,0)).
%% an indirect path generated by route announcement from
a neighbor
r((2,3,0)) :- b((3,0)).
```


generate selected paths

- -as determined by the ranking function
 - for any p_i in a list of paths p₁,..., p_n ranked from the most preferred to the least preferred
 - add a rule b(p_i):- r(p_i), not r(p_{i+1}),..., not r(p_n)

```
%% ranking function of the permitted paths at AS2
b((2,0)) :- r((2,0)), not r((2,3,0)).
b((2,3,0)) :- r((2,3,0)).
```


constraint

- -only one path is selected as the best
 - for any p_i in the permitted paths $\{p_1, ..., p_n\}$, the presence of p_i will prevent the derivation of p_j , j≠i

```
%% only one permitted path can be selected as the best path = b((2,1,0)), b((2,0)).
```

ASP formulation and oscillation detection


```
%% AS 2
%% direct path as known fact(s)
r((2,0)).
%% an indirect path generated by
route announcement from a neighbor
r((2,3,0)) :- b((3,0)).
%% ranking function of the permitted
paths
b((2,0)) := r((2,0)), not r((2,3,0)).
b((2,3,0)) :- r((2,3,0)).
%% only one permitted path can be
selected as the best path
:-b((2,1,0)), b((2,0)).
%% AS 3...
%% AS 1...
```

transcient oscillation

AS I and AS 2 each prefer paths through each other, AS 3 prefers a direct path (cyclic preference)

transcient oscillation

AS I and AS 2 each prefer paths through each other, AS 3 prefers a direct path (cyclic preference)

2 (stable) routing trees: depending on the orders of message exchanges, the routing system can converge to either path assignment; some ordering can cause permeant oscillation

2 ASP solutions, capturing the 2 stable rooting trees

convergence with circular preference

previous approach relying on the circular preference fails!

convergence with circular preference

previous approach relying on the circular preference fails!

I (stable) routing tree: the routing system always converges on the unique path assignment

main conjecture

#ASP solution	oscillation analysis
0	permanent oscillation
]	convergence
>	transient oscillation

promising — correct and scalable with various topologies and policies

- evaluate our ASP formulation with clingo
- -3.4GHz Intel Core i5 16G RAM

promising — correct and scalable with various topologies and policies

#	#	node/edge
nodes	edges	ratio
1000	5092	0.196
2000	10304	0.194
4000	20766	0.192
6000	31595	0.190
8000	42880	0.187
10000	54954	0.182

topology setup

- randomly generated by GT-ITM tool
 - 2 level hierarchical graph
 backbone providers
 and access networks
 - varying size —convenient for studyscalability

promising — correct and scalable with various topologies and policies

policy setup

- -embed in the topology three policy scenarios permanent oscillation (bad), converging (good), and transient oscilliation (disagree)
 - good: all nodes pick shortest paths to the destination
 - bad: embed circular path preferences of 3 nodes
 - disagree: embed circular path preferences of 2 nodes

promising — correct and scalable with various topologies and policies

analysis result

# clingo solutions	policy
	good
2	disagree
0	bad

promising — correct and scalable with various topologies and policies

analysis result

# clingo solutions	policy
	good
2	disagree
0	bad

promising — correct and scalable with various topologies and policies

clingo searching time for the disagree policy

-grows linearly from 6.578s to 34.786s

recap

routing oscillation and non-monotonic reasoning previous effort in the

previous effort in the networking community

- -manual analysis identify sufficient but *not* necessary condition
- home made combinatorial construct — circular preferences

recap

routing oscillation and non-monotonic reasoning

previous effort in the networking community

- manual analysis identify sufficient but not necessary condition
- home made combinatorial construct — circular preferences

an ASP approach

- -automated with ASP solver
- -accurate characterization

# ASP solution	oscillation analysis
0	permanent oscillation
	convergence
>	transient oscillation

moving forward

customized ASP

- explain oscillation and recommend fix
 - after detecting oscillations > I or 0 solution(s), locate a minimal set of rules responsible for the oscillation?
- optimize routing policies
 - minimize the size of the ASP formulation while preserving the same solution?
- -local evaluation
 - determine unique solution by examining policies at a subset of ASes?
- incremental evaluation
 - check whether a small modification can cause a converging system to oscillate?

moving forward

beyond liner-ranking path preferences

- -path preferences beyond linear ranking
 - Multi Exit Discriminator (MED)
- -verify common policy guideline
 - assume acyclic business relations (customer-provider), certain business relation based policy restrictions suppress oscillation
- analyze abstract policy
 - real-world policy often expressed as comparison of path metrics

beyond routing — LARGE scale distributed system

- networking oriented reasoning, tailored for distribution, aggregation, partitioning ...
- distributed programming and non-monotonicity

conclusion

the Internet

- understanding the collective behavior of a large distributed system is a long-standing challenge
- state of the art: primitive home made combinatorial tools

ASP — a powerful tool

- -a significantly better solution?
- customize ASP for networking?
- new ASP features with new networking problems?

