

Machine Learning

Makine Öğrenmesi – 4

Overall Table of Contents

General Content

- Supervised Learnig Algorithm - Classisfication
- Supervised Algorithm practices Python application
- Projects Solutions

LOGISTIC REGRESSION

LOGISTIC REGRESSION

- **⊘** ihtimaller...
- **⊘** Avantajları...

İhtimaller	Rose'un Değerlendirmesi	
Gemi batmadan varır.	Süper!	
Gemi batar ama ikisi de kurtulur.	O da olur.	
Gemi batar ve ikisi de kurtulamaz.	Birkaç dakika önce intihara yeltenen Rose için	
Gemi batar, Jack kurtulur, Rose kurtulmaz.	üzerinde durulacak bir ihtimal değil.	
Gemi batar, Rose kurtulur, Jack kurtulamaz.	Fecaat!	

LOGISTIC REGRESSION

ihtimaliyetini inceleyelim

Supervised Learning

LOGISTIC REGRESSION

- sigmoid fonksiyonu → logit fonksiyonu → logistik regresyon süreci
- Titanic veri seti hakkında..

Sigmoid Fonksiyonu → Logit Fonksiyonu → Logistik Regresyon

$$y=\alpha_0+\beta_1 x$$

$$p(t) = \frac{1}{1 + e^{-t}}$$

$$p(x) = \frac{1}{1 + e^{-(\alpha_0 + \beta_1 x)}}$$

$$g(x) = \ln \frac{p(x)}{1 - p(x)} = \alpha_{\bullet} + \beta_1 x = y$$

Doğrusal regresyonda y hedef değişkeni x öznitelik değişkeni ile tahmin edilir. β katsayısı özniteliğin hedef değişken üzerindeki etkisini ya da hedef değişkendeki değişimlere katkısını gösterir.

Sigmoid fonksiyonu bir öznitelik değişkeninin değerlerini bir olayın olma olasılığına indirger. Değişkenin gözlem değerleri ne olursa olsun sigmoid fonksiyonu bunları 1 ve O'lara indirger.

Doğrusal regresyon fonksiyon kalıbının sigmoid fonksiyonu ile geliştirilmesi Logistik fonksiyonu, p(x), verir. Buna göre hedef değişkene konu olan bir olayın olması öznitelik değişkeninin hedef değişkene katkı yapma olasılığına bağlıdır.

Logit foksiyonu, g(x), ise aslında logistik fonksiyonun tersidir. Buna göre bir olayın olma olasılığı (hedef değişkenin doğru pozitif olması) özniteliklerin doğrusal kombinasyonuna bağlıdır.

Veri Setinin Açıklamaları:

PassengerId: Yolcu numaras

Survived: Kaza sonucu yolcunun kurtulup kurtulmadığı ile ilgili sınıf etiketi. 1: kurtuldu; 0: kurtulamadı. Bu etiket sadece eğitim setinde mevcuttur. Pclass: Bilet Sınıfı. Aynı zamanda sosyoekonomik statü indikatörü (1: Üst Sınıf,2: Orta Sınıf, 3: Alt Sınıf).

Names: Yolcunun adı ve soyadı

Sex: Yolcunun cinsiyeti (female: kadın; male: erkek)

SibSp: Yolcunun beraber seyahat ettikleri ailesindeki kişi sayısı. Kardeşler ve eşle rin toplam sayısı

Parch: Yolcunun beraber seyahat ettikleri ailesindeki kişi sayısı. Annesi, babası, çocukları. Eğer çocuk dadısı ile seyahat ediyorsa parch=0 olarak kaydedilmiştir. Ticket: Bilet numarası

Fare: Bilet ücreti

Embarked: Yolcunun gemiye bindiği liman (C: Cherbourg, Q:Queenstown S:Southampton)

LOGISTIC REGRESSION

Precision-recall curve (PRC) grafiği anlamı

ROC: Balanced Data PRC: Unbalanced data

Where are we?

DATA SCIENCE -

DECISION TREE (Karar Ağaçları Algoritmaları)

- € Eşik değeri, Kök ve yapraklar..

Supervised Learning

DECISION TREE (Karar Ağaçları Algoritmaları)

- Eşik değeri, Kök ve yapraklar...

DECISION TREE (Karar Ağaçları Algoritmaları)

- ❷ Pür-saf olması için nasıl bölünmeli

- Start at the root (with all training examples)
- 1. Select an attribute that best separates the classes
- 2. Split it into subsets (child nodes)
 - If the attribute value is categorical:
 - => select category(ies)
 - If the attribute is numerical:
 - => select a threshold
- 3. Are they pure (all samples from the same class)?
 - If yes: stop (training set is perfectly classified)
 - If no: select an attribute and split further, go to (3)

Classification: When you have a new data point, start at the root and traverse down the tree to get to the subset this new data point belongs to

DECISION TREE (Karar Ağaçları Algoritmaları) Root ve feature seçimi..

Supervised Learning

DECISION TREE (Karar Ağaçları Algoritmaları)

- **@** Information Gain Entropy
- Gini index (Gini Impurity Index)

Information Gain Entrophy Örnek

Supervised Learning

DECISION TREE (Karar Ağaçları Algoritmaları)

- We have the second of the s
 - **⊘** Criterion (Gini Entrophy)

sklearn.tree.DecisionTreeClassifier

sklearn.tree.DecisionTreeClassifier(*, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, presort='deprecate(param_grid = {


```
'max_depth': np.arange(3, 10),
  'criterion': ['gini', 'entropy'],
  'min_samples_split': range(10,500,20)}
# Hiper parametre optimizasyon modeli:
grid_DT = GridSearchCV(DecisionTreeClassifier(), param_grid, cv=cv)
# Model olusturma:
grid_DT.fit(X, y)
sifier(ccp_alpha=0.0, class_weight=None,
```

En 1yi Parametreler: DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gin1',

max_depth=3, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=30, min_weight_fraction_leaf=0.0, presort='deprecated', random_state=None, splitter='best')

Izgara Aramasındaki Optimum Hiperparametreler: {'criterion': 'gini', 'max_depth': 3,
'min_samples_split': 30}

DECISION TREE (Karar Ağaçları Algoritmaları)

Whyperparameters (Criterion ve max_depth)

Grafize edilmesi

Impurity Criterion

Gini Index

Entropy

$$I_G = 1 - \sum_{j=1}^c p_j^2$$
 p; proportion of the samples that belongs to class c for a particular

$$I_H = -\sum_{j=1}^c p_j log_2(p_j)$$
 g, proportion of the samples that belongs to class c for a particular node.

This is the the definition of entropy for all non-empty classes (p. 4.0). The entropy is 0 if all samples at a node belong to the

Supervised Learning

DECISION TREE

- Hyperparameters (Criterion ve max_depth)
- **@** Grafize edilmesi
- Karar ağacının yorumu

DECISION TREE

P>EMA10 ise 1, değilse 0 atandı. 1 Al 0.5'in altında sadece SAT sinvalleri ve sinyali, 0 sat sinyali olmak üzere tüm üzerinde de AL sinyalleri gözlemler P EMA10 isimli öznitelik bulunmaktadır. değişkeni altında seri haline getirildi. Kök boğumundaki P_EMA10≤0.5 Gözlemler 0 ve 1'lerden oluştuğundan şartının sağlanması durumunda yatırım kararı <u>SATı m</u> yönünde tersi Karar ağacı algoritması ayrım eşiğini doğal olarak 0.5 olarak belirledi. durumda da Alım yönünde olacaktır. MACD_MACDS≤0.5 MACD MACDS≤0.5 Doğru. Doğru Yanlış EMA10_EMA30≤0.5 EMA10 EMA30≤0.5 ➤ P_EMA10≤0.5 ise ve MACD_MACDS≤0.5 ise ▶ P_EMA10≤0.5 değilse ve MACD_MACDS≤0.5 ise AL ➤ P_EMA10≤0.5 değilse ve MACD_MACDS≤0.5 ➤ P_EMA10≤0.5 ise ve MACD_MACDS≤0.5 ise değilse ve EMA10_EMA30 ≤0.5 ise AL >> P_EMA10≤0.5 değilse ve MACD_MACDS≤0.5 ve EMA10_EMA30 ≤0.5 ise SAT ➤ P_EMA10≤0.5 ise ve MACD_MACDS≤0.5 değilse ve EMA10_EMA30 ≤0.5 ise SAT değilse ve EMA10_EMA30 ≤0.5 değilse AL

➤ P_EMA10≤0.5 ise ve MACD_MACDS≤0.5 değilse ve EMA10_EMA30 ≤0.5 değilse SAT

Supervised Learning

DECISION TREE

- Decision tree son hususlar
 - Avantaj
 - Dezavatajları

> Exploratory Data Analysis and Visualization

Machine Learning

- Train | Test Split
 - X_train, X_test, y_train, y_test = train_test_split()
- Scalling (if needed)
 - scaler = scaler_name()
 - scaler.fit_transform(X_train)
 - scaler.transform(X_test)

Modelling

- model = model_name().fit(X_train, y_train)
- y_pred = model.predict(X_test)
- y_pred_proba = model.predict_proba(X_test)

Model Performance

- Regression => r2_score, MAE, MSE, RMSE
- Classification => accuracy, recall, precision, f1_score (confusion_matrix, classification_report)
- Cross Validate => cross_val_score, cross_validate

Tunning (if needed)

- grid_param = {}
- GridsearchCV(grid_param)
- Final Model
 - model = model_name().fit(X, y)

Model Deployment

SUPPORT VECTOR MACHINES (SVM)

Kernel Trick adımlar

Koordinat		1 Boyutlu	2 Boyutlu	3 Boyutlu
y ekseni	x ekseni	x + y	$x \times y$	$x^2 + y^2$
0	8	8	0	64
1	5	6	5	26
3	5	. 8	15	34
5	4	9	20	41
8	0	8	0	64

Supervised Learning

SUPPORT VECTOR MACHINES (SVM)

Kernel Trick adımlar

	Large Gamma	Small Gamma	Large C	Small C
Variance	Low	High	High	Low
Bias	High	Low	Low	High
		х1		
X2		X1		X2

Supervised Learning - SVM

SUPPORT VECTOR MACHINES (SVM)

- - Linear Kernels
 - Polynomial Kernels
 - **⊘** RBF Kernels

Do you have any questions?

Send it to us! We hope you learned something new.