Glass Pipette Preparation

Ethan Bai

Introduction

Many methods of injecting therapeutics to the brain, such as

• Intracerebral injections

Has its upsides, such as its precise targeting, however one major negative is the its invasive nature

Motivations

Thin tipped tools

Thin-tip glass pipette

Problems

- Affordability
 - Price of obtaining glass pipettes
 - Requires conversion of professional programmable pipette pullers (thousands of dollars)
- Accessibility
 - Non electrophysiological labs lack access to pipette pullers

3D Printing can drastically reduce the price

https://onlinelibrary.wiley.com/doi/full/10.1002/nep3.20

My Project: Processing and Calibrating Glass Pipettes

- Calibrating
- Trimming
- Beveling

Calibrating

- Different therapeutics to be injected are different sizes, so we must cater our pipettes to these needs
 - O Liquid delivery 20 μm
 - O Cell delivery 40-50 μm
- Determining where to cut pipette
 - Visible measuring scale in the microscope lens
 - Reticle
 - Allows measurement of items visible in the microscope

Reticle

Reticle

Microsoft Word used to create the reticle

- 1. Measure the diameter of the microscope lens
- 2. Create a circle of that diameter in word
 - Set height and width equal to the diameter
- 3. Convert desired length in microscope to actual length on the reticle
 - For 100x magnification, 20 μm * 100 = 2 mm
 - \circ 40 μ m * 100 = 4 mm
- 4. Create line of that length and center it in the circle with align tool
 - Multiple lines -> group first
- 5. Print out reticle on a clear film
- 6. Cut out the reticle
 - Cut out "ears" on the reticle so it's easy to take out of the microscope

Problem with Old Reticle

Problem:

- Intended lengths obtained from calculations were off
 - \circ Ex: The line for 20 μ m was actually 150 μ m through the microscope
 - Hidden lens within the microscope

Solution:

- 1. Calculate magnification factor
 - o Ex: 150/20 = 7.5
- 2. Divide length of the line on the reticle by magnification
 - o 2 mm/7.5 = 0.2667 mm

Trimming

Shining a bright light through one of the lenses projects a bright dot

Trimming Procedure:

- 1. Match the line on the reticle with the pipette to measure desired diameter
- 2. Turn off the microscope light and turn on the flashlight
- 3. Make a cut on the pipette where the bright dot is

Beveling

We can bevel the pipettes with a spinning hard drive disk

Put the tip on the surface of the disk very carefully at a small angle

- Too much force could break the tip
- Too large of an angle could result in a dull tip

Software

We can confirm if our measurements were correct using an app called imageJ.

- 1. Take screenshot of the grid on the slide
 - Each space is 10 μm
- 2. Draw a line from origin to any line on the scale
- 3. Calculate that distance in μm
- 4. Analyze -> Set Scale
 - Change known distance to calculated length
 - Change units to um
 - Check global

Thank You

Questions?