## Procedure

## Step 1-2:

NOTE: The color and placement of channels in Figure 1 correspond to the placement and colors of channels in Figure 2



Figure 1: Circuit schematic of a Low Pass Filter

#### Sten 3

$$fc = \frac{1}{2\pi * RC} = \frac{1}{2\pi * 1984 * 18.8n} = 4135 Hz$$

| Table 1: Corner frequency Calculations | Frequency [Hz] | Frequency [rad/s] |  |
|----------------------------------------|----------------|-------------------|--|
| Measured                               | 4335           | 27238             |  |

### Step 4-6: RTB2004: 1333.100



Figure 2: Oscilloscope image of corner frequency of Figure 1

| Table 2: Varied Frequency and Voltage for Figure 1 | Frequency [rad/s] | Frequency [Hz] | Vin [Vpp] | Vo < Θ [Vpp] | Gain [V/V] | Gain [dB] |
|----------------------------------------------------|-------------------|----------------|-----------|--------------|------------|-----------|
|                                                    | 1257              | 200            | 1         | 4.1 <-3      | 4.1        | 12.256    |
| fr/10                                              | 2721              | 433            | 1         | 4.1 <-6      | 4.1        | 12.256    |
|                                                    | 3770              | 600            | 1         | 4.1 < -9     | 4.1        | 12.256    |
|                                                    | 5027              | 800            | 1         | 4 < -12      | 4          | 12.041    |
|                                                    | 6283              | 1000           | 1         | 4 < -15      | 4          | 12.041    |
|                                                    | 12566             | 2000           | 1         | 3.8 < -26    | 3.8        | 11.596    |
| fr                                                 | 27238             | 4335           | 1         | 3.06<-44     | 3.06       | 9.714     |
|                                                    | 37699             | 6000           | 1         | 2.5 < -55    | 2.5        | 7.959     |
|                                                    | 50266             | 8000           | 1         | 2.1 < -62    | 2.1        | 6.444     |
|                                                    | 62832             | 10,000         | 1         | 1.7<-67      | 1.7        | 4.609     |

|       | 125664 | 20,000  | 1 | .970 < -78 | 0.97  | -0.265  |
|-------|--------|---------|---|------------|-------|---------|
| fr*10 | 272376 | 43,350  | 1 | .480 < -84 | 0.48  | -6.375  |
|       | 376991 | 60,000  | 1 | .340 < -88 | 0.34  | -9.370  |
|       | 502655 | 80,000  | 1 | .254 < -88 | 0.254 | -11.903 |
|       | 628319 | 100,000 | 1 | .208 < -90 | 0.208 | -13.639 |

Step 7-10:



Figure 3: Bode plot of phase and magnitude for Figure 1 and Table 2 (Used Octave to create)



Figure 4: LTSpice simulation of with an AC sweep from 10 Hz to 1 MHz of Figure 1

If the positions of the resistor and capacitor in Figure 1 were switched, it would be a high pass filter instead of a low pass filter

# Step 11-12: NOTE: The color and placement of channels in Figure 5 correspond to the placement and colors of channels in Figure 6



Figure 5: Circuit schematic of a Bandpass Filter

Step 13-14: calc fr and Z 
$$fc = \frac{1}{2\pi * \sqrt{LC}} = \frac{1}{2\pi * \sqrt{99m * 18.8n}} = 3689 \ Hz$$
 
$$Zeq = R + Xc ||Xl| = 1984 + j * 23179 * 99 * 10^{-3}||\frac{1}{j * 23179 * 18.8 * 10^{-9}} = 1984 + j5.7 * 10^{7} \Omega$$

| Table 3: Calculated and measured frequency and impedance for Figure 5 at resonant frequency | Frequency [Hz] | Frequency [rad/s] | ${\sf Zeq}\ [\Omega]$       |
|---------------------------------------------------------------------------------------------|----------------|-------------------|-----------------------------|
| Expected                                                                                    | 3689           | 23179             | $1984 + j5.7 * 10^7 \Omega$ |
| Measured                                                                                    | 4322           | 27156             | 1984 - j7216.55 Ω           |





Figure 6: Oscilloscope image at resonant frequency for Figure 5

| Table 4: Varied Frequency and Voltage for Figure 5 | Frequency [rad/s] | Frequency [Hz] | Vin [Vpp] | Vo < Θ [mVpp] | Gain [V/V] | Gain [dB] |
|----------------------------------------------------|-------------------|----------------|-----------|---------------|------------|-----------|
|                                                    | 628               | 100            | 1         | 44 < 34       | 0.044      | -27.131   |
|                                                    | 1257              | 200            | 1         | 63 < 52       | 0.063      | -24.013   |
| fr/10                                              | 2716              | 432.2          | 1         | 118<66        | 0.118      | -18.562   |
|                                                    | 3770              | 600            | 1         | 159 < 68      | 0.159      | -15.972   |
|                                                    | 5027              | 800            | 1         | 211 < 68      | 0.211      | -13.514   |
|                                                    | 6283              | 1000           | 1         | 265 < 66      | 0.265      | -11.535   |
|                                                    | 12566             | 2000           | 1         | 563 < 51      | 0.563      | -4.990    |
| fr                                                 | 27155             | 4322           | 1         | 1030< -6      | 1.03       | 0.257     |
|                                                    | 37699             | 6000           | 1         | 858 < -35     | 0.858      | -1.330    |
|                                                    | 50266             | 8000           | 1         | 645 < -52     | 0.645      | -3.809    |
|                                                    | 62832             | 10,000         | 1         | 509 <-61      | 0.509      | -5.866    |
|                                                    | 125664            | 20,000         | 1         | 248 < -76     | 0.248      | -12.111   |

| fr*10 | 271559 | 43,220  | 1 | 116 < -84 | 0.116 | -18.711 |
|-------|--------|---------|---|-----------|-------|---------|
|       | 376991 | 60,000  | 1 | 85 < -87  | 0.085 | -21.412 |
|       | 502655 | 80,000  | 1 | 64 < -88  | 0.064 | -23.876 |
|       | 628319 | 100,000 | 1 | 52 < -89  | 0.052 | -25.680 |



Figure 7: Bode plot of phase and magnitude for Figure 5 and Table 4 (Used Octave to create)



Figure 8: LTSpice simulation of with an AC sweep from 10 Hz to 1 MHz of Figure 5

Determine filter bandwidth from Figure 7:  $3000\,6000$ 

On Figure 7, find the points on the bode plot where there is a 3dB change from the resonant frequency. In this case we get the values f1 = 3000 Hz and f2 = 6000 Hz.

 $B = 2\pi * (f2-f1) = 18,8496 \text{ rad/s}$ 

Notch Filter:



Figure 9: Circuit schematic of a Notch Filter

$$fc = \frac{1}{4\pi * R_N * C_N} = \frac{1}{4\pi * 13.35k * 205n} = 58.15 Hz$$

| Table 5: Calculated corner frequency | Frequency [Hz] | Frequency [rad/s] |  |
|--------------------------------------|----------------|-------------------|--|
| Expected                             | 58.15          | 365.37            |  |



| Table 6: Varied Frequency and Voltage for Figure 9 | Frequency [rad/s] | Frequency [Hz] | Vin [Vpp] | Vo < Θ [mVpp] | Gain [V/V] | Gain [dB] |
|----------------------------------------------------|-------------------|----------------|-----------|---------------|------------|-----------|
|                                                    | 13                | 2              | 1         | 990 <-7       | 0.990      | -0.087    |
|                                                    | 25                | 4              | 1         | 966 < -15     | 0.966      | -0.300    |
| fr/10                                              | 37                | 5.82           | 1         | 933 < -21     | 0.933      | -0.602    |
|                                                    | 50                | 8              | 1         | 882 < -28     | 0.882      | -1.091    |
|                                                    | 63                | 10             | 1         | 829 < -34     | 0.829      | -1.629    |
|                                                    | 126               | 20             | 1         | 564 < -55     | 0.564      | -4.974    |
|                                                    | 251               | 40             | 1         | 220 < -76     | 0.220      | -13.152   |
| fr                                                 | 371               | 58.15          | 1         | 33 <-86       | 0.033      | -29.630   |
|                                                    | 503               | 80             | 1         | 132 < 78      | 0.132      | -17.589   |
|                                                    | 628               | 100            | 1         | 243 < 74      | 0.243      | -12.288   |
|                                                    | 1257              | 200            | 1         | 587 < 53      | 0.587      | -4.627    |
|                                                    | 2513              | 400            | 1         | 841 < 32      | 0.841      | -1.504    |
| fr*10                                              | 3707              | 581.5          | 1         | 920 < 23      | 0.920      | -0.724    |
|                                                    | 5027              | 800            | 1         | 961 < 17      | 0.961      | -0.346    |

|  | 6283  | 1000 | 1 | 982 < 14 | 0.982 | -0.158 |
|--|-------|------|---|----------|-------|--------|
|  | 12566 | 2000 | 1 | 1032 < 7 | 1.032 | 0.274  |



Figure 11: Bode plot of phase and magnitude for Figure 9 and Table 6 (Used Octave to create)



Figure 12: LTSpice simulation of with an AC sweep from 10 Hz to 1 MHz of Figure 9