

Aircraft Structures

Ing. Simon Bergé

Maitre assistant, ISIB

Section A3

The trussed aeroplane

Dawn of the aeroplane

Lilienthal glider, 1894

Chanute glider, 1896

Warren bridge truss

Pratt bridge truss

External brace / cantilever

1950s trussed aeroplanes

Global sizing of a typical trussed wing

(CS-23 certification)

Piper PA-18 Super Cub

Basic problem

- > Project guidelines
 - Your company plans to market an « old-timer » aeroplane, based on the famous Piper « Super Cub » (PA-18), but with updated engine technology.
 - You should perform a preliminary sizing of the wing structure.
 - The aeroplane is to be certified according to CS-23 standards (utility category).
 - ➤ Airfoil section is to be NACA 23015.

Reverse engineering

- SIB

- > Estimated performance data
 - Taken from the flight manuel
 - ➤ Maximum TO weight 1500 lbs
 - ➤ Wing span 35 feet
 - ➤ Wing chord 6 feet
 - ➤ Nominal stall speed 45 mph
 - Manoeuvring speed 95 mph
 - Maximum structural cruising speed 110 mph
 - Maximum diving speed 138 mph

Aerodynamic data

Expected speeds

- > Unit conversions
 - CS documents are still using knots
 - \rightarrow 1 mph = 1.609 344 km/h
 - > 1 kt = 1.852 km/h
 - \rightarrow 1 mph = 0.868 976 2 kt

Speeds	Reported	Minimal CS 23	Final
Stall	39 kts		
Maneuvring (VA)	83 kts		
Cruising (VC)	96 kts		
Diving (VD)	120 kts		

Load envelope

- ➤ Each CS prescribes a V-n diagram
 - Loads are aero: they depend on speed
 - Loads are inertial: they depend on maneuvers
- > Maneuvering envelope
 - ➤ Aka "V-n diagram"
 - Prescribes the *load factors* to withstand as a function of flight speed
 - > n = actual lift / weight

- W

➤ Typical CS-23 manoeuvring envelope

Masters en Sciences de l'Ingénieur Industriel - finalité Mécanique (Génies Mécanique et Aéronautique)

➤ CS-23 specifications

- Positive limit load factors
 - Normal and commuter

$$n_A^{+} = 2.1 + \frac{24\ 000}{W + 10\ 000}$$

- Utility nA + = 4.4
- Aerobatic nA + = 6.0
- Negative limit load factors
 - Normal and commuter nC- = 0.4 nA+; nD- = 0.0
 - Utility nC- = -0.4 nA+; nD- = -1.0
 - Aerobatic nC- = 0.5 nA+; nD- = 1.0

$$\rightarrow nA + = 4.4 : nA - = -1.76$$

- ➤ CS-23 specifications
 - Design cruising speed VC
 - VC [kts] may not be less than

$$V_{\rm c} < k \sqrt{W/S}$$
 , 16/42)
$$k = k_0 + \frac{k_{100} - k_{20}}{80} \, (W\!/\!S - 20)$$

- Normal, commuter, utility: k20 = 33.0; k100 = 28.6
- Aerobatic: k20 = 36.0; k100 = 28.6
- VC need not be greater than 0.9 VH (max lvl spd @ max pwr)

- $\gg W/S = 7.14 \text{ lb/ft2}$
- ightharpoonup Thus, k = 33.0 so VC > 88 kts
- \rightarrow We can choose VC = 95 kts

- ➤ CS-23 specifications
 - Design diving speed VD
 - May not be less than 1.25 VC
 - May not be less than k VC,min
 - Normal, commuter: k20 = 1.4; k100 = 1.35
 - Utility: k20 = 1.5; k100 = 1.35
 - Aerobatic: k20 = 1.55; k100 = 1.35

- VD > 1.25 Vc = 1.25 x 95 = 119 kts minimum
- VD > 1.50 Vc,min = 1.5 x 88 = 132 kts minimum

- ➤ CS-23 specifications
 - Design maneuvring speed VA
 - VA [kts] may not be less than

$$V_{\scriptscriptstyle S} \; \sqrt{{n_{\scriptscriptstyle A}}^+}$$

- VA need not be greater than VC
- Requires knowledge of the stall speed
- ➤Our design
 - NACA 23015 has maximum CL of 1.5
 - > VS can be estimated from baseline data
 - W = 1500 lb = 6675 N
 - S = 210 ft2 = 19.51 m2
 - VS = 19.3 m/s = 69.5 km/h = 37.5 kts so 39 kts is conservative

➤ CS-23 specifications

- Design speed for maximal gust intensity VB
 - Commuter category only

$$V_{\scriptscriptstyle S} \, \sqrt{{n_{\scriptscriptstyle A}}^+}$$

- May not be less than the minimum of:
 - the intersection between the line of maximal normal force coefficient (stall line) and the line of rough air gust intensity
 - the intersection between the stall line and the line of strong gust intensity
- VB need not be greater than VC
- ➤Our design
 - Irrelevant (utility category)

Final speed data

Results of CS-23 definitions of minimum speeds

➤ Note: CS-23 imposes VS < 61 kts.

Speeds	Reported	Minimal CS 23	Final
Stall	39 kts	61 kts	39 kts
Maneuvring (VA)	83 kts	82 kts	82 kts
Cruising (VC)	96 kts	88 kts	95 kts
Diving (VD)	120 kts	132 kts	132 kts

➤ Typical CS-23 gust envelope

➤ CS-23 specifications

Gust velocities for low-altitude (up to 20 000 ft)

• Rough air: 66 fps (20.12 m/s)

• Strong gust: 50 fps (15.24 m/s)

• Weak gust: 25 fps (7.62 m/s)

Gust velocities for high-altitude (above 50 000 ft)

• Rough air: 38 fps (11.58 m/s)

• Strong gust: 25 fps (7.62 m/s)

• Weak gust: 12.5 fps (3.81 m/s)

Gust velocities at intermediate altitudes

Linear interpolation between low- and high- bounds

➤ CS-23 specifications

- Gust lines equation (all SI units):
 - Based on the alleviated sharpedged gust analysis concept
 - Gust alleviation factor kg: given as a function of the aeroplane mass ratio µg

$$n_G = 1 \pm \frac{k_g \rho_0 U_g V a}{2 (W/S)}$$

$$k_g = \frac{0.88 \,\mu_g}{5.3 \,+ \mu_g}$$

- Gust loads specifications:
 - Weak gust to be accounted for at VD;
 - Strong gust to be accounted for at VC;
 - Rough air gust to be accounted for at VB for commuter category only

$$\mu_g = \frac{2 \ (W/S)}{\rho \ c \ a \ g}$$

Wing lift data

$$ao = 0.1/^{\circ} = 5.729 / \text{rad}$$

$$> Cl = 0.1 \text{ a} + 0.1$$

$$ightharpoonup Cl, max = 1.5 \text{ (approx.)}$$

$$>$$
 AR = 5.83

$$> a = 4.365 / \text{ rad}$$

$$\mu g = 7.128$$

$$kg = 0.505$$

$$>$$
 nweak = 1 + 0.03 V

$$> nstrong = 1 + 0.06 \text{ V}$$

$$n_G = 1 \pm \frac{k_g \rho_0 U_g V a}{2 (W/S)}$$

$$\mu_g = \frac{2 (W/S)}{\rho \ c \ a \ g}$$

$$k_g = \frac{0.88 \, \mu_g}{5.3 + \mu_g}$$

Final envelope

Loads for VA case

- > Profile drag data
 - The VA condition is at maximum lift coefficient
 - Vst = 39 kts = 20.0 m/s
 - CL, max = 1.40
 - Cd, f = 0.018
- Moment data
 - CL, max = 1.40
 - Cm,ac = -0.007

Loads for VA case

- ➤ Lift load
 - \rightarrow Load factor = 4.4
 - \rightarrow Lift = 4.4 x 6675 N = 29370 N
- ➤ Moment load
 - VA = 82 kts = 42.2 m/s
 - > c = 6 ft = 1.82 m
 - > Pitching moment = 271 Nm

Loads for VA case

- ➤ Drag load
 - > Shape drag
 - VA = 82 kts = 42.2 m/s
 - $CD_0 = Cd_0 f = 0.018$
 - ➤ Induced drag
 - Aspect ratio 5.83, Oswald efficiency 0.845
 - CL, max = 1.40
 - CD, i = 0.1266
 - \rightarrow Total drag = 3033 N

Structural loads

- > Simplified approach
 - Neglect wing actual geometry
 - Consider only aircraft angle of attack
 - CL = 0.0762 a + 0.1
 - Angle of attack at maximum CL is 17°
 - Transform loads in structural reference frame
 - $N = L \cos a + D \sin a = 28973 \text{ N}$
 - $T = D \cos a L \sin a = -5686 \text{ N}$
 - « drag » (force tangent to airfoil) is negative; this is called « antidrag »

Structural loads

- ➤ Load summary
 - \rightarrow Lift = 29370 N
 - ightharpoonup Drag = 3033 N
 - ➤ Pitching moment = 271 Nm
- > Actual wing geometry
 - > Wing dihedral angle 3°, no twist
 - > Wing angle of incidence t.b.c. (about 0.5°)
 - Detailed geometry follows

Proposed structural layout

Approximate loading

ISIB —

- Hypothesis for preliminary design
 - Load normal to wing surface (positive in lift)
 - Constant from WBL 12 to strut hinge (D and I)
 - Linear decrease from strut hinge to tip (WBL 210)
 - Tip value is half of root value
 - Applied at the aerodynamic centre (25% c)
 - Load tangent to wing surface (positive in drag)
 - Spanwise constant from WBL 12 to WBL 210
 - Applied on the rear beam
 - Pitching moment (positive nose up)
 - Spanwise constant

Distributed loading

- ➤ Load summary
 - > Perpendicular to wing surface
 - Constant distributed force 20 lb/in to strut end
 - Decreasing distributed force to 10 lb/in outboard
 - ➤ In-plane loads
 - Constant distributed force –2.2 lb/in (antidrag!!)
 - Aerodynamic pitching moment
 - Constant distributed moment –6.5 lb in/in
 - Reference point for moment is AC (25% chord)