Unit 10: D.C. circuits:

Subunit 10.2: Kirchhoff's laws:

Topical Question No: 1

36 In deriving a formula for the combined resistance of three different resistors in series, Kirchhoff's laws are used.

Which physics principle is involved in this derivation?

- A the conservation of charge
- B the direction of the flow of charge is from negative to positive
- C the potential difference across each resistor is the same
- **D** the current varies in each resistor, in proportion to the resistor value

Topical Question No: 2

35 Two batteries are connected together, as shown.

Battery 1 has electromotive force (e.m.f.) 12 V and internal resistance $0.3\,\Omega$.

Battery 2 has e.m.f. 9 V and internal resistance 0.1Ω .

What are the e.m.f. and the internal resistance of a single battery that has the same effect as the combination?

	e.m.f./V	internal resistance/ Ω
A	3	0.2
В	3	0.4
С	21	0.2
D	21	0.4

35 In deriving a formula for the combined resistance of three different resistors in series, Kirchhoff's laws are used.

Which physics principle is involved in this derivation?

- A the conservation of charge
- B the direction of the flow of charge is from negative to positive
- C the potential difference across each resistor is the same
- D the current varies in each resistor, in proportion to the resistor value

Space for working

Topical Question No: 4

37 In the circuit shown, the ammeters have negligible resistance and the voltmeters have infinite resistance.

The readings on the meters are I_1 , I_2 , V_1 and V_2 , as labelled on the diagram.

Which statement is correct?

- **A** $I_1 > I_2$ and $V_1 > V_2$
- **B** $I_1 > I_2$ and $V_1 < V_2$
- **C** $I_1 < I_2 \text{ and } V_1 > V_2$
- **D** $I_1 < I_2 \text{ and } V_1 < V_2$

Space for working

34 Two cells with electromotive forces E_1 and E_2 and internal resistances r_1 and r_2 are connected to a resistor R as shown.

The terminal potential difference across cell 1 is zero.

Which expression gives the resistance of resistor R?

- **A** $\frac{E_2r_1 E_1r_2}{E_1}$ **B** $\frac{E_2r_1 E_1r_2}{E_2}$ **C** $\frac{E_1r_2 E_2r_1}{E_1}$ **D** $\frac{E_1r_2 E_2r_1}{E_2}$

Answer Key

- 1. N/A
- 2. B
- 3. N/A
- 4. N/A
- 5. N/A