NLP Emoji Prediction Task: Model Comparison Report

1. Data Loading and Preprocessing

- Training Data: Loaded training data from train_emoji.csv.
- Test Data: Loaded test data from test_emoji.csv.
- Data Splitting: Split the training data into X_train and Y_train, and the test data into X_test and Y_test.
- Text Preprocessing:
 - Converted text to lowercase.
 - Tokenized sentences into words.
- One-Hot Encoding: Converted labels (Y_train and Y_test) into onehot vectors (Y_train_oh and Y_test_oh).

2. Word Embeddings and Preprocessing

- GloVe Embeddings: Loaded pre-trained GloVe word embeddings (glove.6B.50d.txt).
- Word Indices: Created word indices and mapped them to their respective GloVe vectors.
- Sentence to Indices Conversion: Implemented a function (sentences_to_indices) to convert sentences to indices based on the word embeddings.

3. Model Architecture

Model 1 (Emojify_model)

- Embedding Layer:
 - Used pre-trained GloVe embeddings.
- LSTM Layers:
 - First LSTM Layer:
 - * Units: 64
 - \ast Return Sequences: True
 - * Dropout: 0.5
 - * Regularization: L2 (0.05)
 - Second LSTM Layer:
 - * Units: 64
 - * Return Sequences: False
 - * Dropout: 0.5
 - * Regularization: None
- Dense Layer:

- Units: 5 (Number of classes)
- Activation: Softmax

Model 2 (Emojify_modelv2)

- Embedding Layer:
 - Used pre-trained GloVe embeddings.
- Bidirectional LSTM Layers:
 - First Bidirectional LSTM Layer:
 - * Units: 128
 - * Return Sequences: True
 - * Dropout: 0.5
 - * Regularization: L2 (0.01)
 - Second Bidirectional LSTM Layer:
 - * Units: 128
 - * Return Sequences: False
 - * Dropout: 0.5
 - * Regularization: None

4. Model Training

- Text to Indices Conversion: Applied the sentences_to_indices function to convert sentences to indices based on the word embeddings.
- Model Training Data: Trained both models on X_train_indices with corresponding labels (Y_train).
- Validation Data: Utilized early stopping with a validation set (X_val and y_val) to prevent overfitting.
- Training Parameters: 100 epochs, batch size of 32, Adam optimizer, and categorical crossentropy loss.

5. Model Evaluation

Model 1 Evaluation

- Test Data: Evaluated Model 1 on X_test_indices and Y_test_oh.
- Metrics: Obtained accuracy, precision, recall, and F1-score.

Model 2 Evaluation

- Test Data: Evaluated Model 2 on X_test_indices and Y_test_oh.
- Metrics: Obtained accuracy, precision, recall, and F1-score.

6. Model Comparison and Visualization

- Comparison Metrics: Accuracy, Precision, Recall, F1 Score.
- Comparison Plot: Bar chart comparing Model 1 and Model 2 across metrics.

7. Results

Model 1

• Train Accuracy: 0.9805

• Validation Accuracy: 0.9578

• Test Accuracy: 0.7809523940086365

Precision: 0.7756Recall: 0.7238F1 Score: 0.7204

Model 2

• Train Accuracy: 0.9773

• Validation Accuracy: 0.9513

• Test Accuracy: 0.7714285850524902

Precision: 0.7847Recall: 0.7524F1 Score 0.7507

Model Comparison

Figure 1: Model Comparison