Scalable Learning of Probabilistic Circuits

Motivation

Given a selection of sushi...

...and people's preferences...

...how can we model this as a probability distribution...

$$\arg \max p(1^{st} =?, 2^{nd} =?, 3^{rd} =?, 4^{th} = \bigcirc, 5^{th} = \bigcirc)$$

$$p((\mathbf{3}^{\mathsf{rd}} = \bigcirc) \to \mathbf{1}^{\mathsf{st}} = \bigcirc) \lor \mathbf{2}^{\mathsf{nd}} = \bigcirc)$$

...and extract meaningful queries from it?

Motivation

Given a selection of sushi...

...and people's preferences...

Marginals

Conditionals

MPE

Logical events

...how can we model this as a probability distribution...

 $p(1^{st} = \bigcirc, 3^{rd} = \bigcirc)$

$$p(2^{nd} = P(1^{st} = P(1^{st}$$

 $\arg \max p(1^{st} =?, 2^{nd} =?, 3^{rd} =?, 4^{th} = 3, 5^{th} = 3$

$$p((\mathbf{3}^{\mathsf{rd}} = \bigcirc) \to \mathbf{1}^{\mathsf{st}} = \bigcirc) \lor \mathbf{2}^{\mathsf{nd}} = \bigcirc)$$

...and extract meaningful queries from it?

Probabilistic Circuits

Probabilistic Circuits – Smoothness

Definition 1 (Smoothness). *Every sum node child mentions the <u>same</u> variables.*

Probabilistic Circuits – Determinism

Definition 2 (Determinism).

At most one sum node child has a positive value.

Probabilistic Circuits – Decomposability

Definition 3 (Decomposability). *Every product node child mentions <u>different</u> variables.*

Probabilistic Circuits – Structured Decomposability

Definition 4 (Structured decomposability). *Every product node follows a vtree decomposition.*

Probabilistic Circuits – Tractability

Query	+Sm?	+Dec?	+Det?	+Str Dec?
Evidence	√	√	√	√
Marginals	X	✓	/	\checkmark
Conditionals	X	✓		\checkmark
MPE	X	X	\checkmark	\checkmark
Shannon Entropy*	X	X		\checkmark
Rényi Entropy*	X	X	\checkmark	\checkmark
Cross Entropy*	X	X	X	\checkmark
Kullback-Leibler Div*	X	X	X	\checkmark
Rényi's Alpha Div*	X	X	X	\checkmark
Cauchy-Schwarz Div*	X	X	X	\checkmark
Logical Events	X	X	X	\checkmark
Mutual Information*	X	X	X	✓

Probabilistic Circuits – Logic Circuits

$\overline{\Delta}$	B	\overline{C}	$\phi(\mathbf{x})$
			$\varphi(\mathbf{A})$
0	0	0	1
1	0	0	1
0	1	0	0
1	1	0	0
0	0	1	1
1	0	1	1
0	1	1	0
1	1	1	1

$$\phi(A, B, C) = (A \lor B) \land (\neg B \lor C)$$

Probabilistic Circuits – Support

\overline{A}	B	C	$\phi(\mathbf{x})$	$p(\mathbf{x})$
0	0	0	1	0.140
1	0	0	1	0.024
0	1	0	0	0.000
1	1	0	0	0.000
0	0	1	1	0.560
1	0	1	1	0.096
0	1	1	0	0.000
1	1	1	1	0.180

$$\phi(A, B, C) = (A \vee B) \wedge (\neg B \vee C)$$

Learning Probabilistic Circuits

Divide-and-Conquer Approaches (DIV)

- Usually recursive;
- Splits data by similarity and stat dep;
- Stat dep usually costly;
- Usually tree-shaped.

Incremental Approaches (INCR)

- · Requires an initial circuit;
- Grows from local transformations:
- Local transformations preserve properties;
- Searching for candidates to transform is costly.

Random Approaches (RAND)

- Fast;
- Randomly generates circuits;
- Data blind and data guided approaches exist;
- Usually relies on many hyperparams;
- · Worse performance.

 $\{D\}$

 $\{A,F\}$

 $\{B, E\}$

 $\{C,G\}$

 $\{B,D\}$

Learning Probabilistic Circuits

Divide-and-Conquer Approaches (DIV)

- Usually recursive;
- Splits data by similarity and stat dep;
- Stat dep usually costly;
- Usually tree-shaped.

Incremental Approaches (INCR)

- · Requires an initial circuit;
- Grows from local transformations;
- Local transformations preserve properties;
- Searching for candidates to transform is costly.

Random Approaches (RAND)

- Fast;
- Randomly generates circuits;
- Data blind and data guided approaches exist;
- Usually relies on many hyperparams;
- Worse performance.

 $\{B, E\}$

 $\{C,G\}$

 $\{B,D\}$

 $\{A,F\}$

Learning Probabilistic Circuits

Divide-and-Conquer Approaches (DIV)

- Usually recursive;
- Splits data by similarity and stat dep;
- Stat dep usually costly;
- · Usually tree-shaped.

Incremental Approaches (INCR)

- · Requires an initial circuit;
- Grows from local transformations;
- Local transformations preserve properties;
- Searching for candidates to transform is costly.

Random Approaches (RAND)

- Fast;
- Randomly generates circuits;
- Data blind and data guided approaches exist;
- Usually relies on many hyperparams;
- Worse performance.

 $\{A,F\}$

Learning Probabilistic Circuits – Where are we right now?

Name	Class	Time Complexity	# hyperparams	Accepts logic?	Sm?	Dec?	Det?	Str Dec?	{0,1}?	№?	ℝ?	Reference
LEARNSPN	DIV	$egin{cases} \mathcal{O}\left(nkmc ight) & ext{, if sum} \ \mathcal{O}\left(nm^3 ight) & ext{, if product} \end{cases}$	≥ 2	Х	1	✓	X	X	1	✓	✓	Gens and Domingos [2013]
ID-SPN	DIV	$ \begin{cases} \mathcal{O}\left(nkmc\right) & \text{, if sum} \\ \mathcal{O}\left(nm^3\right) & \text{, if product} \\ \mathcal{O}\left(ic(rn+m)\right) & \text{, if input} \end{cases} $	$\geq 2+3$	×	1	1	×	×	1	✓	X	Rooshenas and Lowd [2014]
Prometheus	DIV	$\begin{cases} \mathcal{O}\left(nkmc\right) & \text{, if sum} \\ \mathcal{O}\left(m(\log m)^2\right) & \text{, if product} \end{cases}$	≥ 1	×	1	✓	X	×	1	✓	✓	Jaini et al. [2018a]
LEARNPSDD	INCR	$ \begin{cases} \mathcal{O}\left(m^2\right) & \text{, top-down vtree} \\ \mathcal{O}\left(m^4\right) & \text{, bottom-up vtree} \\ \mathcal{O}\left(i \mathcal{C} ^2\right) & \text{, circuit structure} \end{cases} $	1	✓	1	1	1	✓	1	Х	X	Liang et al. [2017]
STRUDEL	INCR	$ \begin{cases} \mathcal{O}\left(m^2n\right) & \text{, CLT + vtree} \\ \mathcal{O}\left(i\left(\mathcal{C} n+m^2\right)\right) & \text{, circuit structure} \end{cases} $	1	✓	1	✓	✓	✓	√	X	X	Dang et al. [2020]
RAT-SPN	RAND	$\mathcal{O}\left(rd(s+l)\right)$	4	×	1	✓	X	×	1	✓	✓	Peharz et al. [2020]
XPC	RAND	$\mathcal{O}\left(i(t+kn)+ikm^2n\right)$	3	X	1	✓	✓	✓	1	X	X	Mauro et al. [2021]
SAMPLEPSDD	RAND	$\begin{cases} \mathcal{O}\left(m\right) & \text{, random vtree} \\ \mathcal{O}\left(kc\log c + \log_2^2 k\right) & \text{, per call} \\ \left(\mathcal{O}\left(m^2\right) & \text{, top-down vtree} \right) \end{cases}$	1	✓	1	1	✓	✓	1	Х	Х	Geh and Mauá [2021]
LEARNRP	RAND	$ \begin{cases} \mathcal{O}\left(m^4\right) & \text{, top-down viree} \\ \mathcal{O}\left(knm\right) & \text{, per call} \end{cases} $	0	X	1	√	X	✓	1	√	√	To appear

Learning Probabilistic Circuits – Where are we right now?

Name	Class	Time Complexity	# hyperparams	Accepts logic?	Sm?	Dec?	Det?	Str Dec?	{0,1}?	№?	ℝ?	Reference
LEARNSPN	DIV	$\begin{cases} \mathcal{O}\left(nkmc\right) & \text{, if sum} \\ \mathcal{O}\left(nm^3\right) & \text{, if product} \end{cases}$	≥ 2	×	1	✓	X	X	✓	√	✓	Gens and Domingos [2013]
ID-SPN	DIV	$ \begin{cases} \mathcal{O}\left(nkmc\right) & \text{, if sum} \\ \mathcal{O}\left(nm^3\right) & \text{, if product} \\ \mathcal{O}\left(ic(rn+m)\right) & \text{, if input} \end{cases} $	$\geq 2+3$	X	1	✓	×	×	1	✓	X	Rooshenas and Lowd [2014]
Prometheus	DIV	$\begin{cases} \mathcal{O}\left(nkmc\right) & \text{, if sum} \\ \mathcal{O}\left(m(\log m)^2\right) & \text{, if product} \end{cases}$	≥ 1	×	1	✓	X	×	/	✓	✓	Jaini et al. [2018a]
LEARNPSDD	INCR	$ \begin{cases} \mathcal{O}\left(m^2\right) & \text{, top-down vtree} \\ \mathcal{O}\left(m^4\right) & \text{, bottom-up vtree} \\ \mathcal{O}\left(i \mathcal{C} ^2\right) & \text{, circuit structure} \end{cases} $	1	✓	1	1	1	✓	1	Х	Х	Liang et al. [2017]
STRUDEL	INCR	$ \begin{cases} \mathcal{O}\left(m^2n\right) & \text{, CLT + vtree} \\ \mathcal{O}\left(i\left(\mathcal{C} n+m^2\right)\right) & \text{, circuit structure} \end{cases} $	1	1	1	✓	✓	✓	✓	X	X	Dang et al. [2020]
RAT-SPN	RAND	$\mathcal{O}\left(rd(s+l)\right)$	4	×	1	√	X	×	1	✓	✓	Peharz et al. [2020]
XPC	RAND	$\mathcal{O}\left(i(t+kn)+ikm^2n\right)$	3	×	1	✓	✓	✓	1	X	X	Mauro et al. [2021]
\Rightarrow SAMPLEPSDD	RAND	$\begin{cases} \mathcal{O}\left(m\right) & \text{, random vtree} \\ \mathcal{O}\left(kc\log c + \log_2^2 k\right) & \text{, per call} \end{cases}$	1	√	1	1	1	✓	1	Х	Х	Geh and Mauá [2021]
LEARNRP	RAND	$\left\{ egin{array}{ll} \mathcal{O}\left(m^2 ight) & ext{, top-down vtree} \ \mathcal{O}\left(m^4 ight) & ext{, bottom-up vtree} \ \mathcal{O}\left(knm ight) & ext{, per call} \end{array} ight.$	0	Х	1	✓	X	✓	✓	✓	✓	To appear

A Logical Perspective

Motivation

Bob: 🥮

Carol:

If we assume

- n sushi types,
- k sized rankings with $k \leq n$,
- X_{ij} binary variables; i is sushi type, j is position in ranking;

then the total number of possible assignments of the $n \cdot k$ variables is 2^{nk} ...

...but many of these are zero probability assignments!

If we can embed total ranking constraints...

...we go down to <u>k!</u> total assignments!

Takeaway: models which exploit domain knowledge are much more efficient!

Example:

$$n = 3, k = 3$$

X_{11}	X_{12}	X_{13}	X_{21}	• • •	X_{33}	$p(\mathbf{x}) > 0$
0	0	0	0	0	0	0
1	0	0	0	0	0	0
0	1	0	0	0	0	0
1	1	0	0	0	0	0
0	0	1	0	0	0	0
:	:	:	÷	÷	:	:
0	1	1	1	1	1	0
1	1	1	1	1	1	0

Assignments: $2^{3\cdot 3} = 512$

Positive assignments: 3! = 6

Motivation

Existing approaches:

LEARNPSDD (Liang et al. [2017]):

- 🔀 Requires initial logic circuit encoding the support...
- Scales poorly to complex formulae and/or high dimension...
- Costly whole circuit evaluation at every iteration...
- Very good performance!

STRUDEL (Dang et al. [2020]):

- ☑ Constructs an initial structure (from a CLT)!
- But does not encode constraints...
- Scales to high dimension!
- As long as the circuit doesn't get too big...

SAMPLEPSDD (Geh and Mauá [2021]):

- ✓ Scales to high dimension and complex formulae!
- ✓ Constructs a structure consistent with constraints!
- But does so by relaxing the formula...
- Performance varies on set bounds and vtree structure...

Common assumption: p_i are conjunctions of literals.

Problem: size of circuit is exponential in the size of p_i 's scope.

Solution: randomly sample a bounded number (k) of p_i

But: this violates structured decomposability:

 $\neg C \land D$ contains C, and $C \notin \mathbf{S}$ $\neg B \land \neg C \land D$ contains B and C, and $B, C \notin \mathbf{S}$

New solution: relax logical constraints ϕ

Now all s_i respect S

Apply **local transformations** for variety and size reduction

Experiments

Evaluation: we sample 30 PSDDs and use 5 ensemble strategies:

- Likelihood weighting (LLW),
- Uniform weights,
- Expectation-Maximization (EM),
- Stacking,
- ▼ Bayesian Model Combination (BMC);

comparing against STRUDEL, LEARNPSDD and LEARNSPN.

Datasets: we evaluate with 5 data + knowledge as logic constraints:

	Dataset	#vars	#train	ϕ 's size
\Rightarrow	LED	14	5000	23
\Rightarrow	LED + IMAGES	157	700	39899
	Sushi Ranking	100	3500	17413
	Sushi Top 5	10	3500	37
	Dota 2 Games	227	92650	1308

Our approach fares **better** with **fewer** data , yet remains **competitive** under **lots of data** .

Mattei et al. [2020], Kamishima [2003], Shen et al. [2017], Choi et al. [2015], Gens and Domingos [2013], Dang et al. [2020]

Experiments – LED

Experiments

Evaluation: we sample 30 PSDDs and use 5 ensemble strategies:

- Likelihood weighting (LLW),
- Uniform weights,
- Expectation-Maximization (EM),
- Stacking,
- ▼ Bayesian Model Combination (BMC);

comparing against STRUDEL, LEARNPSDD and LEARNSPN.

Datasets: we evaluate with 5 data + knowledge as logic constraints:

	Dataset	#vars	#train	ϕ 's size
\Rightarrow	LED	14	5000	23
\Rightarrow	LED + IMAGES	157	700	39899
	Sushi Ranking	100	3500	17413
	Sushi Top 5	10	3500	37
	Dota 2 Games	227	92650	1308

Our approach fares **better** with **fewer** data , yet remains **competitive** under **lots of data** .

Mattei et al. [2020], Kamishima [2003], Shen et al. [2017], Choi et al. [2015], Gens and Domingos [2013], Dang et al. [2020]

Experiments

Evaluation: we sample 30 PSDDs and use 5 ensemble strategies:

- Likelihood weighting (LLW),
- Uniform weights,
- Expectation-Maximization (EM),
- Stacking,
- ▼ Bayesian Model Combination (BMC);

comparing against STRUDEL, LEARNPSDD and LEARNSPN.

Datasets: we evaluate with 5 data + knowledge as logic constraints:

	Dataset	#vars	#train	ϕ 's size
	LED	14	5000	23
	LED + IMAGES	157	700	39899
\Rightarrow	Sushi Ranking	100	3500	17413
\Rightarrow	Sushi Top 5	10	3500	37
	Dota 2 Games	227	92650	1308

Our approach fares **better** with **fewer** data, yet remains **competitive** under **lots of data**.

Mattei et al. [2020], Kamishima [2003], Shen et al. [2017], Choi et al. [2015], Gens and Domingos [2013], Dang et al. [2020]

Experiments – Sushi Ranking

n sushi types and k rank positions

$$\alpha = \begin{pmatrix} X_{i1} \wedge \neg X_{i2} \wedge \cdots \wedge \neg X_{ik} \end{pmatrix} \qquad \beta = \begin{pmatrix} X_{1j} \wedge \neg X_{2j} \wedge \cdots \wedge \neg X_{nj} \end{pmatrix} \\ \vee (\neg X_{i1} \wedge X_{i2} \wedge \cdots \wedge \neg X_{ik}) \qquad \vee (\neg X_{1j} \wedge X_{2j} \wedge \cdots \wedge \neg X_{nj}) \\ \vdots \qquad \vdots \qquad \vdots \\ \vee (\neg X_{i1} \wedge \neg X_{i2} \wedge \cdots \wedge X_{ik}) \qquad \vdots \\ \text{Rank position} \qquad \qquad \text{Type uniqueness}$$

 $\phi = \alpha \wedge \beta$

Experiments – Sushi Top 5

n sushi types and k rank positions

Top
$$k$$
 out of n sushi $\equiv n$ -choose- k model $\equiv \text{cardinality } \text{Exactly}(k, n)$

$$\phi = \text{Exactly}(k, n) = \left(\sum_{X} X = k\right)$$

Experiments

Evaluation: we sample 30 PSDDs and use 5 ensemble strategies:

- Likelihood weighting (LLW),
- Uniform weights,
- Expectation-Maximization (EM),
- Stacking,
- ▼ Bayesian Model Combination (BMC);

comparing against STRUDEL, LEARNPSDD and LEARNSPN.

Datasets: we evaluate with 5 data + knowledge as logic constraints:

	Dataset	#vars	#train	ϕ 's size
	LED	14	5000	23
	LED + IMAGES	157	700	39899
\Rightarrow	Sushi Ranking	100	3500	17413
\Rightarrow	Sushi Top 5	10	3500	37
	Dota 2 Games	227	92650	1308

Our approach fares **better** with **fewer** data, yet remains **competitive** under **lots of data**.

Mattei et al. [2020], Kamishima [2003], Shen et al. [2017], Choi et al. [2015], Gens and Domingos [2013], Dang et al. [2020]

Experiments

Evaluation: we sample 30 PSDDs and use 5 ensemble strategies:

- Likelihood weighting (LLW),
- Uniform weights,
- Expectation-Maximization (EM),
- Stacking,
- ▼ Bayesian Model Combination (BMC);

comparing against STRUDEL, LEARNPSDD and LEARNSPN.

Datasets: we evaluate with 5 data + knowledge as logic constraints:

Dataset	#vars	#train	ϕ 's size
LED	14	5000	23
LED + IMAGES	157	700	39899
Sushi Ranking	100	3500	17413
Sushi Top 5	10	3500	37
Dota 2 Games	227	92650	1308

Our approach fares **better** with **fewer** data , yet remains **competitive** under **lots of data**

Mattei et al. [2020], Kamishima [2003], Shen et al. [2017], Choi et al. [2015], Gens and Domingos [2013], Dang et al. [2020]

Experiments – Dota 2 Games

$$\underline{\alpha = \text{Exactly}(k, n)}$$
Intractable as CNF

n characters, k for each team

$$\underbrace{\gamma = X_i \neq Y_j, \, \forall X_i, Y_j}_{\text{Intractable as BDD}}$$

$$\underbrace{X = X_i \neq Y_j, \forall X_i, Y_j}_{\text{ntractable as BDD}}$$

 $\beta = \text{Exactly}(k, n)$

$$\phi = \alpha \wedge \beta \wedge \gamma$$

Experiments

Evaluation: we sample 30 PSDDs and use 5 ensemble strategies:

- Likelihood weighting (LLW),
- Uniform weights,
- Expectation-Maximization (EM),
- Stacking,
- ▼ Bayesian Model Combination (BMC);

comparing against STRUDEL, LEARNPSDD and LEARNSPN.

Datasets: we evaluate with 5 data + knowledge as logic constraints:

Dataset	#vars	#train	ϕ 's size
LED	14	5000	23
LED + IMAGES	157	700	39899
Sushi Ranking	100	3500	17413
Sushi Top 5	10	3500	37
DOTA 2 GAMES	227	92650	1308

Our approach fares better with fewer data, yet remains competitive under lots of data

Mattei et al. [2020], Kamishima [2003], Shen et al. [2017], Choi et al. [2015], Gens and Domingos [2013], Dang et al. [2020]

SAMPLEPSDD – Experiments

Learning Probabilistic Circuits – Where are we right now?

Name	Class	Time Complexity	# hyperparams	Accepts logic?	Sm?	Dec?	Det?	Str Dec?	{0,1}?	№?	ℝ?	Reference
LEARNSPN	DIV	$\left\{ egin{aligned} \mathcal{O}\left(nkmc ight) & ext{, if sum} \ \mathcal{O}\left(nm^3 ight) & ext{, if product} \end{aligned} ight.$	≥ 2	×	1	✓	X	X	1	✓	✓	Gens and Domingos [2013]
ID-SPN	DIV	$ \begin{cases} \mathcal{O}\left(nkmc\right) & \text{, if sum} \\ \mathcal{O}\left(nm^3\right) & \text{, if product} \\ \mathcal{O}\left(ic(rn+m)\right) & \text{, if input} \end{cases} $	$\geq 2+3$	×	1	1	X	×	✓	✓	X	Rooshenas and Lowd [2014]
Prometheus	DIV	$\begin{cases} \mathcal{O}\left(nkmc\right) & \text{, if sum} \\ \mathcal{O}\left(m(\log m)^2\right) & \text{, if product} \end{cases}$	≥ 1	×	1	✓	X	×	1	✓	✓	Jaini et al. [2018a]
LEARNPSDD	INCR	$ \begin{cases} \mathcal{O}\left(m^2\right) & \text{, top-down vtree} \\ \mathcal{O}\left(m^4\right) & \text{, bottom-up vtree} \\ \mathcal{O}\left(i \mathcal{C} ^2\right) & \text{, circuit structure} \end{cases} $	1	1	1	✓	✓	✓	1	X	X	Liang et al. [2017]
STRUDEL	INCR	$ \begin{cases} \mathcal{O}\left(m^2n\right) & \text{, CLT + vtree} \\ \mathcal{O}\left(i\left(\mathcal{C} n+m^2\right)\right) & \text{, circuit structure} \end{cases} $	1	✓	1	✓	✓	✓	√	X	X	Dang et al. [2020]
RAT-SPN	RAND	$\mathcal{O}\left(rd(s+l)\right)$	4	×	1	✓	X	X	1	✓	✓	Peharz et al. [2020]
XPC	RAND	$\mathcal{O}\left(i(t+kn)+ikm^2n\right)$	3	X	1	✓	✓	✓	1	X	X	Mauro et al. [2021]
SAMPLEPSDD	RAND	$\begin{cases} \mathcal{O}\left(m\right) & \text{, random vtree} \\ \mathcal{O}\left(kc\log c + \log_2^2 k\right) & \text{, per call} \end{cases}$	1	✓	1	1	1	✓	1	Х	Х	Geh and Mauá [2021]
⇒ LEARNRP	RAND	$\left\{ egin{array}{ll} \mathcal{O}\left(m^2 ight) & \text{, top-down vtree} \\ \mathcal{O}\left(m^4 ight) & \text{, bottom-up vtree} \\ \mathcal{O}\left(knm ight) & \text{, per call} \end{array} ight.$	0	Х	1	✓	X	✓	✓	√	√	To appear

A Data Perspective

Motivation

Density Estimation Trees...

- ✓ ...are fast;
- ✓ ...are interpretable;
- ✓ ...are (somewhat) explainable;
- ✓ ...have extensive literature coverage;
- ...are not so expressive;
- ...only accept marginalization queries;
- ...are not so accurate;

...but are subsumed by circuits!

Learn DETs ⊂ Learn PCs?

Can we take advantage of known learning procedures in DETs and transplant them to more general circuits?

Random Projections

Random projections

If the data has *intrinsic dimension* d, then with constant probability the part of the data at level d or higher of the tree has average diameter less than half of the data.

Random Projections

If the data has *intrinsic dimension* d, then with constant probability the part of the data at level d or higher of the tree has average diameter less than half of the data.

LearnRP

LearnRP

$$\mathbf{A}(x, y, z) = \begin{bmatrix} x & y & z \end{bmatrix} \cdot \underbrace{\begin{bmatrix} -0.31 \\ -0.40 \\ 0.85 \end{bmatrix}}_{q} + \underbrace{1}_{\theta}$$

 $w_{\mathbf{A}}$: probability of $\mathbf{A}(\mathbf{x}) > 0$

LearnRP

Parameter Optimization

Expectation-Maximization (EM)

• Full EM (dataset D)

$$w_{\mathbf{B}} \propto w_{\mathbf{B}} \cdot \sum_{\mathbf{x} \in \mathbf{D}} \frac{1}{p_{\mathbf{A}}(\mathbf{x})} \cdot \frac{\partial p_{\mathbf{A}}(\mathbf{x})}{\partial p_{\mathbf{B}}(\mathbf{x})} \cdot p_{\mathbf{C}}(\mathbf{x})$$

• Minibatch EM (batch $\mathbf{M} \subset \mathbf{D}$)

$$w_{\mathbf{B}} \propto w_{\mathbf{B}} \cdot \sum_{\mathbf{x} \in \mathbf{M}} \frac{1}{p_{\mathbf{A}}(\mathbf{x})} \cdot \frac{\partial p_{\mathbf{A}}(\mathbf{x})}{\partial p_{\mathbf{B}}(\mathbf{x})} \cdot p_{\mathbf{C}}(\mathbf{x})$$

LEARNRP-100: LEARNRP + 100 itrs of minibatch

LEARNRP-F: LEARNRP-100 + 30 itrs of full

LEARNRP - Datasets

Dataset	Vars	Train	Test	Domain	Dataset	Vars	Train	Test	Domain
ACCIDENTS	111	12758	2551	$\{0,1\}$	NLTCS	16	16181	3236	$\overline{\{0,1\}}$
AD	1556	2461	491	$\{0, 1\}$	PLANTS	69	17412	3482	$\{0, 1\}$
AUDIO	100	15000	3000	$\{0,1\}$	PUMSB-STAR	163	12262	2452	$\{0, 1\}$
BBC	1058	1670	330	$\{0, 1\}$	EACHMOVIE	500	4524	591	$\{0, 1\}$
NETFLIX	100	15000	3000	$\{0, 1\}$	RETAIL	135	22041	4408	$\{0, 1\}$
BOOK	500	8700	1739	$\{0,1\}$	ABALONE	8	3760	417	\mathbb{R}
20-NEWSGRP	910	11293	3764	$\{0, 1\}$	CA	22	7373	819	\mathbb{R}
REUTERS-52	889	6532	1540	$\{0,1\}$	QUAKE	4	1961	217	\mathbb{R}
WEBKB	839	2803	838	$\{0,1\}$	SENSORLESS	48	52659	5850	\mathbb{R}
DNA	180	1600	1186	$\{0,1\}$	BANKNOTE	4	1235	137	\mathbb{R}
JESTER	100	9000	4116	$\{0, 1\}$	FLOWSIZE	3	1358674	150963	\mathbb{R}
KDD	65	180092	34955	$\{0,1\}$	KINEMATICS	8	7373	819	\mathbb{R}
KOSAREK	190	33375	6675	$\{0,1\}$	IRIS	4	90	10	\mathbb{R}
MSNBC	17	291326	58265	$\{0,1\}$	OLDFAITH	2	245	27	\mathbb{R}
MSWEB	294	29441	5000	$\{0,1\}$	CHEMDIABET	3	131	14	\mathbb{R}

Dataset	LEARNSPN	STRUDEL	LEARNPSDD	XPC	PROMETHEUS	LEARNRP-F	LEARNRP-100
ACCIDENTS	-30.03	-28.73	-30.16	-31.02	-27.91	-28.66	-28.81
AD	-19.73	<u>-16.38</u>	-31.78	-15.50	-23.96	-19.26	-19.99
AUDIO	-40.50	-41.50	<u>-39.94</u>	-40.91	-39.80	-40.27	-40.30
BBC	-250.68	-254.41	-253.19	-248.34	<u>-248.50</u>	-254.15	-251.57
NETFLIX	-57.02	-58.69	-55.71	-57.58	<u>-56.47</u>	-57.02	-57.03
BOOK	-35.88	-34.99	-34.97	-34.75	-34.40	<u>-33.56</u>	-33.41
20-NEWSGRP	-155.92	-154.47	-155.97	-153.75	-154.17	<u>-152.63</u>	-152.34
REUTERS-52	-85.06	-86.22	-89.61	<u>-84.70</u>	-84.59	-85.69	-85.76
WEBKB	-158.20	-155.33	-161.09	-153.67	-155.21	<u>-153.52</u>	-151.80
DNA	-82.52	-86.22	-88.01	-86.61	-84.45	<u>-83.57</u>	-83.62
JESTER	-75.98	-55.03	-51.29	-53.43	<u>-52.80</u>	-52.92	-52.86
KDD	-2.18	-2.13	-2.11	-2.15	<u>-2.12</u>	-2.14	-2.14
KOSAREK	-10.98	-10.68	-10.52	-10.77	<u>-10.59</u>	-10.62	-10.66
MSNBC	<u>-6.11</u>	-6.04	-6.04	-6.18	-6.04	-6.33	-6.35
MSWEB	-10.25	-9.71	-9.89	-9.93	<u>-9.86</u>	-9.90	-9.93
NLTCS	-6.11	-6.06	-5.99	-6.05	<u>-6.01</u>	-6.22	-6.27
PLANTS	-12.97	-12.98	-13.02	-14.19	-12.81	-13.77	-13.81
PUMSB-STAR	-24.78	<u>-24.12</u>	-26.12	-26.06	-22.75	-26.12	-26.33
EACHMOVIE	-52.48	-53.67	-58.01	-54.82	-51.49	<u>-51.41</u>	-50.95
RETAIL	-11.04	<u>-10.81</u>	-10.72	-10.94	-10.87	-10.84	-10.86
Avg. Rank	4.83 ± 1.89	4.30 ± 1.92	$ 4.03\pm2.57 $	4.62 ± 1.88	$\textbf{2.50} \pm \textbf{1.43}$	3.62 ± 1.47	4.10 ± 1.98
Pos. (mean)	7th	5th	3rd	6th	1st	<u>2nd</u>	4th

LEARNRP – Learning Curves

LEARNRP - Random Initializations

Dataset	Vars	SRBMs	oSLRAU	GBMMs	iGMMs	GMMs	PROMETHEUS	iSPTs	LEARNRP	Size
ABALONE	8	-2.28	-0.94	-1.17		-4.65	-0.85		-3.58	317
BANKNOTE	4	-2.76	-1.39	-4.64		-4.32	<u>-1.96</u>		-4.27	79
CA	22	-4.95	<u>21.19</u>	3.42		-7.33	27.82		9.48	2675
KINEMATICS	8	-5.55	-11.13	-11.20		-11.15	-11.12		<u>-10.16</u>	319
QUAKE	4	-2.38	-1.21	-3.76		-4.09	<u>-1.50</u>		-1.63	79
SENSORLESS	48	-26.91	60.72	8.56		-34.14	62.03		17.52	12650
CHEMDIABET	3				-3.02	-18.49	-2.59	-2.88	-19.06	47
FLOWSIZE	3	-0.79	<u>15.32</u>	5.72		2.27	18.03		2.83	49
OLDFAITH	2				-1.73	-4.18	-1.48	<u>-1.70</u>	-4.26	19
IRIS	4	_	_	_	-3.94	<u>-2.26</u>	-1.06	-3.74	-3.14	79

In conclusion

Contributions

Literature review

- Systematic review of literature;
- Taxonomy of popular algorithms;
- Complexity analysis;
- Pros and cons.

SAMPLEPSDD

- · Consistent with a relaxation of a formula;
- Relaxation as a function of vtree and sampling;
- Compromise between tractability and consistency;
- Ensembles mitigate relaxation.

LEARNRP

- Simple strategy;
- Inspiration from known DET literature;
- Orders of magnitude faster;
- Competitive performance.

Contributions

Literature review

- Systematic review of literature;
- Taxonomy of popular algorithms;
- Complexity analysis;
- · Pros and cons.

SAN	I PL	EΡ	SD	D
-----	-------------	----	----	---

- · Consistent with a relaxation of a formula;
- Relaxation as a function of vtree and sampling;
- Compromise between tractability and consistency;
- Ensembles mitigate relaxation.

LEARNRP

- Simple strategy;
- Inspiration from known DET literature;
- Orders of magnitude faster;
- Competitive performance.

A	B	C	$p(\mathbf{x})$
0	0	0	0.1
0	1	0	0.1
1	0	0	0.2
1	0	1	0.6

$$\phi(A, B, C) = (A \to \neg B) \land (C \to A)$$

Contributions

Literature review

- Systematic review of literature;
- Taxonomy of popular algorithms;
- Complexity analysis;
- · Pros and cons.

SAMPLEPSDD

- · Consistent with a relaxation of a formula;
- Relaxation as a function of vtree and sampling;
- Compromise between tractability and consistency;
- Ensembles mitigate relaxation.

LEARNRP

- · Simple strategy;
- Inspiration from known DET literature;
- Orders of magnitude faster;
- Competitive performance.

$$\mathbf{B}(x,y) = \begin{bmatrix} x & y \end{bmatrix} \cdot \begin{bmatrix} 1.10 \\ -1.00 \end{bmatrix} - 2.43$$

