Notes on Feller Condition

Dec. 32, 2999

1 Fokker-Planck Equation

Consider the following paraboic partial differential equation (PDE) [1]

$$\frac{\partial u(t,x)}{\partial t} = -\frac{\partial}{\partial x} \left((bx+c)u(t,x) \right) + \frac{\partial^2}{\partial x^2} \left(axu(t,x) \right), \tag{1}$$

with x > 0. This can be viewed as the corresponding Fokker-Planck equation for the Cox-Ingersoll-Ross (CIR) process

$$dx_t = \kappa(\theta - x_t)dt + \sigma\sqrt{x_t}dW_t, \tag{2}$$

with $a = \sigma^2/2$, $b = -\kappa$, and $c = \kappa \theta$.

We want to find the fundamental solution of the PDE (1), *i.e.*, the initial condition is given by

$$u(0,x) = \delta(x-y),\tag{3}$$

where $\delta(x)$ is the Dirac delta function. To this end, introduce the Laplace transform of u(t,x) as

$$v(t,\lambda) = \int_0^{+\infty} e^{-\lambda x} u(t,x),\tag{4}$$

for $\lambda > 0$. Consider the Laplace transform of the right hand side of Eq. (1),

$$\int_{0}^{+\infty} e^{-\lambda x} \left[(axu(t,x))_{xx} - ((bx+c)u(t,x))_{x} \right] dx$$

$$= e^{-\lambda x} \left[(axu(t,x))_{x} - ((bx+c)u(t,x)) \right]_{0}^{+\infty}$$

$$\lambda \int_{0}^{+\infty} e^{-\lambda x} \left[(axu(t,x))_{x} - ((bx+c)u(t,x)) \right] dx$$

$$= f(t) + \lambda (b - \lambda a) v_{s} - c\lambda v, \tag{5}$$

where

$$f(t) = \lim_{x \to 0} \left[(bx + c)u - (axu)_x \right], \tag{6}$$

is the flux at x = 0 and cannot be arbitrarily specified.

After the Laplace transform, Eq. (1) becomes

$$v_t + \lambda(\lambda a - b)v_s = f(t) - c\lambda v. \tag{7}$$

This first order PDE can be solved by the method of characteristics.

References

[1] W. Feller, Two Singular Diffusion Problems, Annals of Mathematics ${\bf 54},\,173$ (1951).