Unconstrained Optimization

Consider the minimization problem

$$min_{x \in R^n} f(x)$$

- **Definition**: $x^* \in \mathbb{R}^n$ is said to be a
 - global minima of f if $f(x^*) \le f(x)$ for all $x \in R^n$.
 - a strict global minima of f if $f(x^*) < f(x)$ for all $x \in R^n$.
 - a local minima of f if ther exists a neighbourhood of x^* ($N(x^*, \varepsilon), \varepsilon > 0$) such that $f(x^*) \le f(x)$ for all $x \in N(x^*, \varepsilon)$.
- If f is a convex function then every local minima of f is a global minima of f.
- If f is a strict convex function then f has unique minima.

• **Descent direction:** Suppose $f: R^n \to R$ be a continuous function. $d \in R^n$ is said to be a decent direction of f at x if there exists $\overline{\alpha} > 0$ such that $f(x + \alpha d) < f(x)$

for all $\alpha \in (0, \overline{\alpha})$.

Example: Suppose $f(x) = x_1^2 + x_1^2$ and $x = (1,1)^T$. $d = (-4,1)^T$ is a descent direction of f at x since $f(x + \alpha d) < f(x)$

for all $\alpha \in (0, 0.3)$.

• x^* is a local minima of f if and only if there does not exist any descent direction of f at x^* .

• Suppose $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. If $\nabla f(x)^T d < 0$ for some $d \in \mathbb{R}^n$ then d is a descent direction of f at x.

In the previous example
$$\nabla f(x) = \begin{pmatrix} 2x_1 \\ 2x_2 \end{pmatrix}$$
. So $\nabla f \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$

Cleary
$$\left(\nabla f \begin{pmatrix} 1 \\ 1 \end{pmatrix}\right)^T d = \begin{pmatrix} 2 \\ 2 \end{pmatrix}^T \begin{pmatrix} -4 \\ 1 \end{pmatrix} = -8 + 2 = -6 < 0$$

Hence $d = \begin{pmatrix} -4 \\ 1 \end{pmatrix}$ is a descent direction of f at $x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

• First order necessary condition: Suppose $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. If $x^* \in \mathbb{R}^n$ is a local minima of f then $\nabla f(x^*) = 0$.

Proof: Suppose $x^* \in \mathbb{R}^n$ is a local minima of f and $\nabla f(x^*) \neq 0$.

Let $d = -\nabla f(x^*)$. Then

$$\left(\nabla f(x^*)\right)^T d = -\left(\nabla f(x^*)\right)^T \nabla f(x^*) = -\left|\left|\nabla f(x^*)\right|\right|^2 < 0.$$

This implies d is a descent of f at x^* . Hence there exists $\alpha > 0$ such that $f(x^* + \alpha d) < f(x^*)$. This contradicts that x^* is a local minima of f.

• For
$$f(x) = x_1^2 + x_1^2$$
 then $x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ is a local minima. Clearly $\nabla f(x^*) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

- Note that $\nabla f(x^*) = 0$ does not imply x^* is a local minima of f.
- For example let $f(x) = x_1^2 + x_1^3$ then $\nabla f(x) = \begin{pmatrix} 2x_1 \\ 3x_2^2 \end{pmatrix}$. For $x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ we have $\nabla f(x^*) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. But $x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ is not a local minima of f since $f\left(\begin{pmatrix} 0 \\ -0.01 \end{pmatrix}\right) = -0.0000001 < f\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}\right)$.
- Suppose $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function and $\nabla f(x^*) = 0$ for some $x^* \in \mathbb{R}^n$. Then x^* is said to be a stationary point of f.
- Clearly every local minima is a stationary point but every stationary point is not a local minima.

- **Second order sufficient condition:** Suppose $f: \mathbb{R}^n \to \mathbb{R}$ be a twice differentiable function. If for $x^* \in \mathbb{R}^n \nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive definite, then x^* is a local minima of f.
- For example suppose

For example suppose
$$f(x) = 4x_1^2 + x_2^2 - 2x_1x_2$$
Then $\nabla f(x) = \begin{pmatrix} 8x_1 - 2x_2 \\ -2x_1 + 2x_2 \end{pmatrix}$ and $\nabla^2 f(x) = \begin{pmatrix} 8 & -2 \\ -2 & 2 \end{pmatrix}$
Clearly for $x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\nabla f(x^*) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and $\nabla^2 f(x^*) = \begin{pmatrix} 8 & -2 \\ -2 & 2 \end{pmatrix}$

Clearly for
$$x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, $\nabla f(x^*) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and $\nabla^2 f(x^*) = \begin{pmatrix} 8 \\ -2 \end{pmatrix}$

which is positive definite since leading principle minors of (8) 0) and 12(>0).

Hence $x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ is a local minima of f.

Since f is a convex function $x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ is a global minima of f.

Since f is a strictly convex function $x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ is the unique global minima of f.

Descent methods:

Input: Unconstrained objective function (f) and initial approximation (x^0)

Output: An approximate stationary point (x^*)

Algorithm:

- Step 0 (Initialization): Supply f, x^0 , $\varepsilon > 0$ and other related scalars. Set $k \coloneqq 0$.
- Step 1 (Optimality check): If $||f(x^k)|| < \varepsilon$. Otherwise go to Step 2.
- Step 2 (Descent direction): Find a suitable descent direction d^k .
- Step 3 (Step length): Select a suitable step length $\alpha_k>0$ such that $f(x^k+\alpha_k d^k)< f(x^k)$
- Step 4 (Update): Update $x^{k+1} = x^k + \alpha_k d^k$. Set $k \coloneqq k+1$ and go to Step 1.

Selection of step length

• Exact line search: Suppose d^k be a descent direction of f at x^k . Step length α_k is as

$$\alpha_k = argmin_{\alpha > 0} f(x^k + \alpha d^k)$$

• Suppose $f(x) = x_1^2 + x_1^2$. $d^k = \begin{pmatrix} -4 \\ 1 \end{pmatrix}$ is a descent direction of f at $x^k = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Using exact line search

$$\alpha_k = argmin_{\alpha > 0} (1 - 4\alpha)^2 + (1 + \alpha)^2$$

Suppose $f(\alpha) = (1 - 4\alpha)^2 + (1 + \alpha)^2$. For min of $f(\alpha)$, $f'(\alpha) = 0$.

This implies
$$-8(1-4\alpha) + 2(1+\alpha) = 0$$
, i.e $\alpha = \frac{6}{34} = 0.1765$

Clearly
$$f\left(\binom{1}{1} + 0.1765 \binom{-4}{1}\right) = 1.4706 < f\left(\binom{1}{1}\right)$$
.

- Inexact line search:
 - In exact line search, we have to solve an optimization problem at every iteration. This is computationally expensive.
 - Inexact line search techniques are developed to overcome these limitations.
 - We have to select step length to ensure:
 - Sufficient decrease in objective function
 - Step length not too small
 - Following **Armijo condition** ensures sufficient decrease in objective function $f(x + \alpha d) \le f(x) + \alpha \beta_1 \nabla f(x)^T d$, $0 < \beta_1 < 1$ (1)
 - Wolfe condition ensure that step length is not too small $\nabla f(x + \alpha d)^T d \ge \beta_2 \nabla f(x)^T d$, $\beta_1 < \beta_2 < 1$ (2)
 - Backtracking line search:
 - Set α : = 1
 - While either (1) or (2) does hold update α : = αr for some $r \in (0,1)$.

- Suppose $f(x) = 4x_1^2 + x_2^2$. At $x^0 = (1,1)^T$, $d = (-1,2)^T$ is a descent direction of f since $\nabla f(x^0)^T d = (8,2) \binom{-1}{2} = -4 < 0$.
- Set $\beta_1 = 10^{-4}$, $\beta_2 = 0.9$ and r = 0.5.
- For $\alpha = 1$,

$$f(x^0 + \alpha d) - \{f(x^0) + \alpha \beta_1 \nabla f(x^0)^T d\} = 4.0004 > 0$$

Hence Armijo condition does not hold for $\alpha=1$. So update $\alpha=1*0.5=0.5$

• For $\alpha = 0.5$

$$f(x^{0} + \alpha d) - \left\{ f(x^{0}) + \alpha \beta_{1} \nabla f(x^{0})^{T} d \right\} = 0.0002$$

Hence Armijo condition does not hold for $\alpha=0.5$. So update $\alpha=0.5*0.5=0.25$

• For $\alpha = 0.25$

$$f(x^0 + \alpha d) - \{f(x^0) + \alpha \beta_1 \nabla f(x^0)^T d\} = -0.4999$$

Hence Armijo condition holds for $\alpha = 0.25$.

• Next verify Wolfe condition for $\alpha = 0.25$.

$$\nabla f(x^0 + 0.25d)^T d - \beta_2 \nabla f(x^0)^T d = 3.6 > 0$$

- Hence Armijo-Wolfe conditions are satisfied for $\alpha = 0.25$.
- Select $\alpha = 0.25$ and proceed further.