COMPUTER SCIENCE

Database Management System

Transaction & Concurrency Control

TOPICS TO BE COVERED

Serializable Schedule

Conflict & View Serializable

Transaction Concept

ACID Ruperties.

Schedule.

Serial Schedule = 11 always Consistent

XION Serial Schedule

Serializable Schedule.

Sconflict Socializable /> Boric Concept of Suit

Ly View Socializable Checdence Graph Method

Ly Conflict Equal to My servial Scheehule

Testing for Conflict Serializability

Precdence Graph Method

Directed

Directed edge

Likeur Conflict In

When Conflict Instruction

Conflict Servializable. Cycle

Let T₁ transfer 100 Rs from A to B, and T₂ transfer 10% of the balance from A to B. Schedule 1 Schedule 2

T ₁	T ₂	T ₁	T ₂	
read (A) A: = A - 100 write (A) read (B) B: = B + 100 write (B) commit	read (A) temp := A * 0.1 A := A - temp write (A) read (B) B := B + temp write (B) Commit	read (A) A: = A - 100 write (A) read (B) B: = B + 100 write (B) commit	read (A) temp := A * 0.1 A := A - temp write (A) read (B) B := B + temp write (B) Commit A: 17 A: 33 GMSis-	3/3
$S_1 < T_1 T_2 >$		$S_2 < T_2$	T ₁ >	

Serial schedule in which T₁ is followed by T₂:

serial schedule where T2 is followed by T1

Schedule 3

T ₁	T ₂
read (A)	
A: = A - 100 write (A)	
Wille (11)	read (A)
	temp := A * 0.1
	A := A - temp
read (B)	write (A)
B: = B + 100	
write (B)	
commit	
A:1710	read (B) B := B + temp
B.3200	write (B)
Seistent	Commit
CONSISION, 7	2

Schedule 4

Sche	equie 4
T ₁	T ₂
read (A) A: = A - 100	
A A - 100	read (A)
	temp := A * 0.1
	A := A - temp
	write (A)
	1900
write (A)	+3300
read (B)	5200
B := B + 100	
write (B)	In wasistent
commit	
	read (B)
	B := B + temp
	write (B)
	Commit
	•

$$S_1$$
: $r_1(X)$; $r_1(Y)$; $r_2(X)$; $r_2(Y)$; $w_2(Y)$; $w_1(X)$

$$S_2$$
: $r_1(X)$; $r_2(X)$; $r_2(Y)$; $W_2(Y)$; $r_1(Y)$; $w_1(X)$

[2007: 2 Marks]

- A Both S₁ and S₂ are conflict serializable
- B S₁ is conflict serializable and S₂ is not conflict serializable
- S_1 is not conflict serializable and S_2 is conflict serializable
 - D Both S₁ and S₂ are not conflict serializable

Consider the following four schedules due to three transactions (indicated by the subscript) using read and write on a data item x, denoted by r(x) and w(x) respectively. Which one of them is conflict serializable?

Q.2

Consider the following four schedules due to three transactions (indicated by the subscript) using read and write on a data item x, denoted by r(x) and w(x) respectively. Which one of them is conflict serializable?

Consider the transactions T1, T2 and T3 and the schedules S1 and S2 given below.

```
T1: r1(X); r1(Z); w1(X); w1(Z)
```

- T2: r2(Y); r2(Z); w2(Z)
- T3: r3(Y); r3(X); w3(Y)
- S1: r1(X); r3(Y); r3(X); r2(Y); r2(Z); w3(Y); w2(Z); r1(Z); w1(X); w1(Z)
- S2: r1(X); r3(Y); r2(Y); r3(X); r1(Z); r2(Z); w3(Y); w1(X); w2(Z); w1(Z)

Which one of the following statements about the schedules is TRUE?

[GATE-2014-CS: 2M]

- A Only S1 is conflict-serializable.
- B Only S2 is conflict-serializable.
- C Both S1 and S2 are conflict-serializable.
- D Neither S1 nor S2 is conflict-serializable.

Let $r_i(z)$ and $w_i(z)$ denote read and write operations respectively on a data item by a transaction T_i . Consider the following two schedules.

$$S_1$$
: $r_1(x) r_1(y) r_2(x) r_2(y) w_2(y) w_1(x)$

$$S_2:r_1(x) r_2(x) r_2(y) w_2(y) r_1(y) w_1(x)$$

Which one of the following options is correct?

[MCQ: 2021: 2M]

- A S_1 is conflict serializable, and S_2 is not conflict serializable.
- S_1 is not conflict serializable, and S_2 is conflict serializable.
- C Both S_1 and S_2 are conflict serializable.
- D Neither S₁ nor S₂ is conflict serializable.

Let $R_i(z)$ and $W_i(z)$ denote read and write operations on a data element z by a transaction Ti, respectively. Consider the schedule S with four transactions.

S: $R_4(x)$, $R_2(x)$, $R_3(x)$, $R_1(y)$, $W_1(y)$, $W_2(x)$, $W_3(y)$, $R_4(y)$

Which one of the following serial schedules is conflict equivalent to S? [2022: 2 Marks]

$$T_1 \rightarrow T_3 \rightarrow T_4 \rightarrow T_2$$

$$B \qquad T_1 \to T_4 \to T_3 \to T_2$$

$$C \qquad T_4 \to T_1 \to T_3 \to T_2$$

$$T_3 \rightarrow T_1 \rightarrow T_4 \rightarrow T_2$$

S: Ry(x) R2(x) R2(x) R1(y) W1(y) W2(x) W3(y) R4(y)

Conslict observation Paix.

S: Ry(x) R2(x) R3(x) R1(y) W1(y) W2(x) W3(y) Ry(y)

Consider the following transaction involving two bank accounts

read(x); x: = x - 50; write (x); read (y); y: = y + 50; write (y)

The constraint that the sum of the accounts x and y should remain constant is that of [2015(Set-2): 1 Marks]

A Atomicity

x and y.

- Consistency
 - C Isolation
 - D Durability

Which one of the following is NOT a part of the ACID properties of database transactions?

[GATE-2016-CS: 1M]

A Atomicity

B Consistency

C Isolation

Topological Sorting.

Serializability Order

The Schedule is Conflict Servializable (Acylic Precdence Graph) than Servializablity order indicate (tells) that Non servial Schedule is equivalent to Which Servial Schedule.

Topological Sorting

Serializability Order

Process (Traverse)

Stout from the vertex which having Indegree = 0.

than Delete that vertex & all Connecting edge from that vortex

& Repeat this Process untill Complete Graph [all vertex]
Traversed.

CT2, Ti7 is equivalent to Serval Schedule T2 followed by TI

CTI, T2, T3>

Stept Indegree = 0 7 I

CTI,

Geby Indegree = 0 7 I

CTI,

Now Indegree = 0 T3

<TI, T3,

Geby Indegree = 0 7 Ti

CTI,

Now Indegree = 0 T3

CTI, T3,

Now Inderree = 0 => Ty

CTI, T3, T4, T2) Ang

MCQ Q.8

Suppose a database schedule S involves transaction T_1, T_n . Construct the precedence graph of S with vertices representing the transactions and edges representing the conflicts. If S is serializable, which one of the following orderings of the vertices of the precedence graph is guaranteed to yield a serial schedule?

[GATE-2016-CS: 2M]

A Togical order

i-first order

1-first order

scending order of transaction indices

Consider the following schedule for transactions T1, T2 and T3:

Which one of the schedules below is the correct serialization of the above?

[GATE-2010-CS: 2M]

T1	Т3	Т3
Read(X)		
	Read (Y)	
		Read (Y)
	Write (Y)	
Write (X)		
		Write (X)
	Read (X)	
	Write (X)	

C
$$T2 \rightarrow T3 \rightarrow T1$$

D T3
$$\rightarrow$$
T1 \rightarrow T2

MCQ Q.10

Consider two transactions T_1 and T_2 , and four schedules S_1 , S_2 , S_3 , S_4 of T_1 and T_2 as given below:

```
T_1: R_1[x] W_1[x] W_1[y];
```

$$T_2$$
: $R_2[x] R_2[y] W_2[y]$;

$$S_1$$
: $R_1[x] R_2[x] R_2[y] W_1[x] W_1[y] W_2[y]$;

$$S_2$$
: $R_1[x] R_2[x] R_2[y] W_1[x] W_2[y] W_1[y];$

$$S_3$$
: $R_1[x] W_1[x] R_2[x] W_1[y] R_2[y] W_2[y]$;

$$S_4$$
: $R_2[x] R_2[y] R_1[x] W_1[x] W_1[y] W_2[y]$;

Which of the above schedules are conflict serializable?

[GATE-2009-CS: 2M]

Conflict Equivalence.

111 + GATE PYQ

Conflict Equivalent Schedule

Two schedule are said to be conflict equivalent, if all conflicting operations in both the schedules <u>must be executed</u> in the same

 $S_1: R_1(A) W_1(A) R_2(A) W_2(A) R_1(B) W_1(B)$

 $S_2: R_1(A) W_1(A) R_2(A) R_1(B) W_2(A) W_1(B)$

R(A)

W(A)

R(B)

W(B)

(T2)

R(A)

W(A)

R(A) - W(A): TIOTS

WIA) - RIA): T-) T2

WA)-WIA): TI -> TZ

R1(A)-W2(A): TI→T2

WI(A) - R2(A): TI -) T2

W(A) - N2(A): TT-> T2

R(A)

R(A)

R(B)

W(B)

R(A)-W(A): Ti-> T2

W(A)-P(A): TI-> T2

WA)-WA): TI-) T2

R1(A)-W2(A): Ti->To

WI(A) - R2(A): Tinta

W(A)-W2(A): TI-) TE

is Conflict Equipolent to Sa

Consider a schedule of transactions T₁ and T₂:

T ₁	A		RC		wB		WD	Commit	
T ₂	RB	WB		RD		WC			Commit

Here, RX stands for "Read(X)" and WX stands for "Write(X)". Which one of the following schedules is conflict equivalent to the above schedule?

[2020: 2 Marks]

	T ₁					RA	RC	WD	WB	Commit	
A	T ₂	RB	WB	RD	WC						Commit
	T ₁				RA	RC	WD	WB		Commit	
В	T ₂	RB	WB	RD					WC		Commit
	T ₁	RA	RC	WD	WB					Commit	
C	T ₂					RB	WB	RD	wc		Commit
	Ti	RA	RC	WD	WB					Commit	
D	T ₂		FI			RB	WP	RD	WC	9	Commit

Conflict Serializable.

- 1) BASIC Concept (Sweetbirg of Non Conflict Instruction)
- 2) Testing [Precdence Grooph Method] => CNC

Conflict Serializable

A schedule is said to be conflict serializable if it is conflict equivalent to a serial schedule.

Same conflicting operation order S_1	RI(A) - W2(A) W(A) - R2(A) in C1 &
S_1	81(B)-W2(B)
: Its {C ₁ } conflict	oticula)-B(B)

T ₁	T ₂	T ₁	T ₂
read(A) write(A)	read(A) write(A)	read(A) write(A) read(B) write(B)	81(A) - W2(A W1(A) - R2 (A W1(A) - W2 (A 61(B) - W2(B) W1(B) - R2(B) W1(B) - W2(B)
read(B) write(B)	read(B) write(B)	,	read(A) write(A) read(B) write(B)
(CL		S _L

TIR Ty form a cycle

CNC cycle Not-Conflict

Important Point 1:

- If S₁, S₂ Schedule are conflict equal then precedence graph of S₁ and S₂ must be same.
- 2.) If S₁ and S₂ have same precedence graph then S₁ and S₂ may or may not conflict equal.

 $S_1: R_1(A) W_1(A) R_2(A) W_2(A) R_1(B) W_1(B)$

 S_2 : $R_1(A) W_1(A) R_2(A) R_1(B) W_2(A) W_1(B)$

2		
3)	R(A)	
	W(A)	
		0

K(B)

W(B)

RIA) - WIA): TI-252 WIA) - RIA): T-) T2

WAI-WIAI: TISTE

 $\omega(A)$ R1(A)-W2(A): TI→T2

WI(A) - R2(A): TI -> T2

W(A) - N2(A): TT-> T2

R(A) R(A)

R(B)

W(B)

R(A)-W(A): T-> T2 W(A)-P(A): T-> T2 WA)-WA): TI-) T2

R1(A)-W2(A): Tiosta

WI(A) - R2(A): Ti-1/2

W(A)-W2(A): TI-) TE

is Conflict Equivalent to Sa

serializable

A Schedule is socializable is either it is

Conflict Serializable or View Serializable of Both.

The Schedule is Conflict Serializable (Acylie Graph) than already

it is View Serializable.

Not Exhaust is Not-conflict Serializable (CNC) than it-May or

(Not Conflict Bet)

· It Schedule is view Serializable then Schedule

is serializable [consistent]

Schedule is Not Conflict & Not View then Schedule Non Scrializable Schedule [In Consistent]

In already liew Sortisfy View Satisfy View Fail (Not Satisfy)
Serializable Not Serializable.

serializable

Conflict Serializable 2) View Serializable

On each (1) Initial Read
Data Item (2) Final Write

(3) Updated Read (Write-Read)
Sequence

