Reinforcement Learning in Financial Markets Trading Strategies

Ali Ghorbanpour - Saeed Zangeneh

Introduction

- The total market capitalization of the U.S. stock market is currently 46,199,811.4M \$
- Average daily trade volume approximately 1% of market cap
- Characteristics:
 - Dynamic, Uncertain and hard to predict
 - Dependant on diverse and multiple factors
 - Has so much social and economical effects

Introduction

- RL shows great performance in dynamic and complex environments
 - autonomous cars
 - robotics
- Lack of Supervised Data in the Stock Markets
- RL could also be leveraged in stock markets and automatic trading.

Problem Definition

- Develop an RL-based model that recommends a candidate portfolio with the highest value
- Aim to identify the most effective RL approach for portfolio optimization.
- Available Methods:
 - SAC
 - o PPO
 - DQN
 - o DDPG
 - A2C

Related works limitations

Numerical methods:

- a. Defining a deterministic way of market analysis
- b. Calculate factors for trading
- c. Lack of scalability and explainability with growth of markets' complexity

ML-based methods:

- a. They try to predict stock prices, not optimizing portfolios
- b. Example: Logistic Regression
- c. Hard to convert their results to trade actions
- d. Unaware of market-related parameters
 - i. Turbulence
 - ii. Risk factors
 - iii. Volatility factors

Framework: FinRL

The first open-source framework for financial reinforcement learning [4]

Proposed Method

- State
 - Available Cash
 - Current Prices of Each Stock
 - Current Holding of Each Stock
 - Widely used stock indicators such as
 - ADX: shows trends
 - RSI: shows overvalued undervalued condition
 - etc.
- Action
 - Trade Volume for Each Stock
- Reward
 - Portfolio Value after 1 Timestep
- Initial State:
 - 1M \$ Cash and 0 for all stocks
- Agents:
 - o SAC, PPO, DDPG, A2C, TD3.

Experiments and results

- We use DJ30 as Dataset
- Fetched from Yahoo Finance Platform
- Dow Jones
 - One of the most famous stock market indexes
 - Consists of 30 prominent worldwide companies
 - o Apple, Cisco, Boeing, Walmart,
 - Overall value of 11T \$
 - Daily Trade Volume of near 300 M \$

Evaluation & Results

Evaluation & Results

- RL results significantly better than baseline
 - \circ Baseline: 1M\$ > 2M\$
 - SAC, PPO: 1M\$ > 2.75M\$
- It performance follows the general market trends
- It can be an assistant to recommend some actions.

Limitations & Future Works

- There are some numerical methods who works as good as RL-based approaches
- While RL assistance in trading is a significant development, transitioning to a fully automated RL trader represents a substantial leap.
- The stock market data can have limited samples relative to the complexity of the problem resulting in poor performance in real-world scenarios.

- Adding more features to enrich our decision making process:
 - Using language models to digest stock and economy news
 - Adding more market indicators to features
 - Design RL algorithm with special focus on trading market

Thanks

Any Question?

References

[1] Xiong Z, Liu XY, Zhong S, Yang HB, Walid A. Practical Deep Reinforcement Learning Approach for Stock Trading (2023).

[2] Liang Z, Chen H, Zhu J, Jiang K, Li Y. Adversarial deep reinforcement learning in portfolio management. arXiv preprint arXiv:1808.09940. 2018 Aug 29.

[3] Jiang Z, Xu D, Liang J. A deep reinforcement learning framework for the financial portfolio management problem. arXiv preprint arXiv:1706.10059. 2017 June 30.

[4] https://github.com/AI4Finance-Foundation/FinRL-Tutorials/tree/master