CURSO: TELECOMUNICACIONES DIGITALES (EL186) LABORATORIO DE SIMULACIÓN 3

En el presente trabajo se llevará a cabo la simulación de la etapa que corresponde a la codificación y decodificación de bloque Hamming (7,4). El modulador a emplear es BPSK. La idea es simular (mediante lenguaje C o Python) el proceso de codificación y decodificación, calcular el BER (Bit Error Rate) correspondiente a diferentes valores de relación señal a ruido γ_b , y comparar estos resultados con la curva teórica de la probabilidad de error P_b del sistema codificado. Asimismo, comparar dichos resultados con los del sistema sin codificar.

- 1. Instrucciones para caso sin codificar
- 1.1 Curva teórica Pub vs. yub

Graficar la curva teórica P_{ub} vs. γ_{ub} del sistema de modulación BPSK (es decir, programar la expresión matemática de P_{ub}), para valores de γ_{ub} en el rango de 2 a 10 dB. Tenga en cuenta que para BPSK:

$$P_{\mathrm{ub}} = Q(\sqrt{2\gamma_{\mathrm{ub}}}), \qquad \gamma_{\mathrm{ub}} = \frac{E_{\mathrm{b}}}{\eta}, \quad \eta = 2\sigma^{2}$$

- 1.2 Graficar curva del BER vs. yub
 - a) Generar mediante un programa (en lenguaje C, Python, etc.), una secuencia muy larga (por ejemplo, un millón) de valores 1 y 0, que representan a los bits entrantes al codificador.
 - b) Generar ruido Gaussiano con valor medio nulo y un determinado valor de varianza σ^2 , el cual está relacionado a un valor específico de γ_{ub} .
 - c) Para dicho valor σ^2 , se obtendrá un valor específico de Bit Error Rate (BER), el cual deberá coincidir aproximadamente con el valor de P_{ub} correspondiente al valor γ_{ub} referido en b) (para ello es importante lo de la secuencia muy larga de valores 1 y 0), tal como se muestra en la Figura 1 mostrada a continuación (las X son los valores del BER₁ a BER₅):

Figura 1. Pub y BER vs. γub: caso sin codificar

d) Considere $E_b=1$, para todos los casos.

1.3 Pasos a seguir:

 a) Considere el cálculo del BER para un rango de 2 a 10 dB, en pasos de 2 dB. Así, para 2 dB:

$$2 (dB) = 10 \log \gamma_{\rm ub}, \ \gamma_{\rm ub} = 10^{2/10} = 1,584, \ \gamma_{\rm ub} = \frac{E_{\rm b}}{\eta}$$

$$\sigma^2 = \frac{1}{2\gamma_{\rm ub}}, \ \sigma^2 = 1/(2 \times 1,584), \ \sigma^2 = 0,316$$

- b) Genere ruido Gaussiano (AWGN), con varianza σ^2 =0,316. Ver tabla de varianzas del ruido filtrado σ^2 (para BPSK) en diapositivas del curso (Unidad 2, sesión 13).
- c) Produzca una secuencia aleatoria de valores 1 y 0 equiprobables (se debe generar una secuencia muy larga) de entrada al modulador BPSK.
- d) Genere la secuencia de valores correspondiente a la secuencia binaria anterior, en la salida del bloque DEM. Compare dichos valores (en primer lugar sin sumarle el ruido Gaussiano), con el umbral óptimo V_{opt}=0, a fin de confirmar que se recupera la información de manera correcta.
- e) Tenga en cuenta que los valores muestreados en el caso de BPSK (salida del DEM) son +1 ó -1, según se haya transmitido los bits 1 ó 0. Por lo tanto, (asumiendo una secuencia corta como ejemplo):

Secuencia binaria aleatoria (entrada al MOD)	0	1	1	1	1	0	0	0
Salida del S/H del DEM	-1	+1	+1	+1	+1	-1	-1	-1
Salida del comparador (entrada al DEM)	0	1	1	1	1	0	0	0

f) A continuación, adicione el valor de ruido AWGN generado tal como se indico antes, a la muestra de salida del S/H. En tal caso, un ejemplo de señal de salida del comparador sería:

Secuencia binaria	0	1	1	1	1	0	0	0
Amplitud de ruido n	0,2	-0,3	-1,1	0,3	-0,5	0,2	-0,8	0,1
Salida del S/H del DEM	-0,8	0,7	-0,1	1,3	0,5	-0,8	-1,8	-0,9
Salida del comparador	0	1	0	1	1	0	0	0

Se observa la existencia de un error, de allí que (para este ejemplo):

$$BER_1 = \frac{1}{8} = 1,25 \, \boxed{10}^{10}$$

- g) Repita para los demás valores: 4, 6, 8 y 10 dB. Tenga presente que para cada valor de γ_b se obtendrá un nuevo valor de σ^2 . Similarmente, para cada caso deberá generar nuevamente la secuencia larga de valores 0 y 1.
- 2. Instrucciones para caso con codificación de bloque
- 2.1 Curva teórica P_b vs. γ_b

Graficar la curva teórica P_b vs. γ_b del sistema con codificación de bloque y modulación BPSK. Es decir, programar la expresión matemática de P_b , para valores de γ_b en el rango de 2 a 10 dB.

- 2.2 Curva del BER vs. γ_b (caso con codificación de bloque)
 - a) Inserte el codificador de bloque de Hamming (7,4). Para ello se utilizará el método de la matriz generadora G. Ello implica que los valores 1 y 0 a la entrada del codificador se convierten en nuevos valores 1 y 0 codificados. Estos últimos son los que en el demodulador darán lugar a la secuencia de valores de salida del S/H.
 - b) Siga los mismos pasos contenidos en 1.2
 - c) Siga los mismos pasos contenidos en 1.3
 - d) Decodifique la secuencia a través de la técnica del vector síndrome. Obtenga el BER a la salida del decodificador, graficando los puntos respectivos.
- 2.3 El resultado a obtener se ilustra en la Figura 2, en donde las X de color rojo (BER_{c1}, etc.) reflejan un mejor resultado que las X de color negro del sistema sin codificar (BER_{u1}, etc.). A fin de comparar los resultados con y sin codificación se deberán superponer los gráficos tal como se muestra:

Figura 2. Pb y BERc, Pub y BERu

3. Presentación del trabajo

El trabajo se presentará <u>en archivo digital</u>, en formato de informe con el siguiente contenido:

- i. Explicación teórica de la codificación y decodificación con las expresiones matemáticas correspondientes.
- ii. Código de las expresiones matemáticas y comentario que facilite la lectura y revisión del código. Cada parte del trabajo identificará al autor del mismo.
- iii. Gráficos de los resultados obtenidos.
- iv. Conclusiones con interpretación de resultados

4. Evaluación y calificación

Componente	Informe (digital)	Exposición	Preguntas		
Puntaje (*)	6 p (G)	7 p (I)	7 p (I)		
Criterios	Explicación teórica. (2 p) Programa (comentado) desarrollado por cada integrante con resultados. (2p) Comentarios de cada resultado y conclusiones. (2 p)	conclusiones. (2 p)	1. Pregunta1 (3,5 p) 2. Pregunta 2 (3,5 p)		
¿Cuándo?	semana 13, sesión 23				

^{(*):} G: grupal, I: individual