Эндогенность

Example 1. Эндогенность встречается в случае

- (а) ошибки измерения зависимой переменной у
- (b) ошибки измерения независимой переменной x
- (с) пропущенной переменной коррелированной с регрессором
- (d) одновременности

Example 2. Данные симулируются в соответствии с уравнением $Y = \beta_0 + \beta_1 X + \varepsilon$ со стохастическим X и нормально распределенной ошибкой $\varepsilon \sim \mathcal{N}(0,1)$ и истинным значением $\beta_2 = 3$. Однако, из-за ошибки программирования, X и ε положительно коррелированы, $\operatorname{Corr}(X,\varepsilon) = 0.5$. В предположении Var(X) = 9, найдите МНК оценку $\hat{\beta}_1$.

Example 3. Если истинная регрессия $Y=\beta_0+\beta_1X+\beta_2Z+\varepsilon$ и $\mathrm{Cov}(X,Z)<0$, в оцененной регрессии $Y=\beta_0+\beta_1X+\varepsilon$ оценка $\hat{\beta}_1$ будет

- (a) смещена вверх если $\beta_2 > 0$
- (b) смещена вверх если $\beta_2 < 0$
- (с) несмещенной
- (d) недостаточно информации

Example 4. В модели регрессии $Y = \beta_0 + \beta_1 X + \varepsilon$ переменная Y измеряется с ошибкой и $\beta_1 > 0$. В этом случае оценка $\hat{\beta}_1$ будет

- (а) состоятельной
- (b) смещенной вверх
- (с) смещенной вниз
- (d) недостаточно информации

Example 5. Предположим, зависимость доходаY от индивидуальных характеристик выглядит следующим образом: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 Z + \varepsilon$, где X_1 - образовнаие, X_2 - опыт и Z - мера таланта. Однако, талан невозможно измерить Z, но известно, что $\mathrm{Corr}(X_1,Z)>0$, $\mathrm{Corr}(X_2,Z)>0$, и $\mathrm{Corr}(Z,Y)>0$.

Оценивается модель $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$. Ожидается, что МНК оценки $\hat{\beta}_1$ и $\hat{\beta}_2$

- (а) выше, чем β_1 и β_2 и несостоятельны
- (b) выше, чем β_1 и β_2 и состоятельны.
- (a) ниже, чем β_1 и β_2 и несостоятельны
- (a) ниже, чем β_1 и β_2 и состоятельны.