浙江大学 2006-2007 学年 秋冬 季学期

《计算理论》课程期末考试试卷

	开课学院	计算机	机学院 =	考试形式	:闭卷,	允许带 _		_入场	
考试时间: 2007 年 1 月 24 日,所需时间: 120 分钟,任课教师:									
考生姓名:			学	클:	专业:				
晒皮	1	9	2	1	F	C	7	0	光 八
题序	1	2	3	4	5	6	1	8	总分
得分									
评卷人									

Zhejiang University Theory of Computation, Fall-Winter 2006 Final Exam

- 1. (30%) Determine whether the following statements are true or false. If it is true write a \checkmark otherwise a \times in the bracket before the statement.
 - (a) () If a DFA M contains a self-loop on some state q, then M must accept an infinite language.
 - (b) () Let A and B be two regular languages, so is $A \oplus B$, where $A \oplus B = (A B) \cup (B A)$.
 - (c) () Let $L_1, L_2, \dots, L_i, \dots$ be all regular languages, so is $\bigcup_{i=1}^{\infty} L_i$.
 - (d) () Language $\{ucv \mid u,v \in \{a,b\}^* \text{ and } |u|=2|v|\}$ is context free.
 - (e) () Suppose that L is a context-free language and R is regular, L-R is context-free language.
 - (f) () Every computable function is primitive recursive.
 - (g) () The complement of every recursive enumerable language is recursive enumerable.
 - (h) () Let L be a language and there is a Turing machine M halts on x for every $x \in L$, then L is decidable.
 - (i) () If one can list the elements of a language in order, then the language must be recursive.
 - (j) () Languages $\{$ "M": Turing machine M accepts at least 2007 distinct inputs $\}$ is recursive enumerable.
- 2. (12%) Decide whether the following languages are regular or not and provide a formal proof for your answer.

(a) $L_1 = \{a^k u \mid u \in \{a, b\}^* \text{ and } u \text{ contains at least } k \text{ } a\text{'s, for } k \geq 1\}.$

(b) $L_2 = \{a^k u \mid u \in \{a, b\}^* \text{ and } u \text{ contains at most } k \text{ } a\text{'s, for } k \geq 1\}.$

3. **(12%)**

(a) Describe the language accepted by the following finite automaton;

(b) Give a Context-free Grammar for the language.

4. (14%) Consider the pushdown automaton $M = \{K, \Sigma, \Gamma, \Delta, s, F\}$ where $K = \{s, f\}, \Sigma = \{a, b\}, \Gamma = \{b\}, F = \{f\}$ and Δ is given by the following table

$$\begin{array}{c} (p,a,\beta),(q,\gamma) \\ \hline ((s,a,e),(f,e)) \\ ((s,b,e),(s,b)) \\ ((s,a,b),(s,b)) \\ ((s,e,e),(f,e)) \\ ((f,a,e),(f,e)) \\ ((f,b,e),(s,b)) \end{array}$$

- (a) Can PDA M accept string aababa?
- (b) Describe the language accepted by M;
- (c) Give a Turing machine that decides the same language.

5. (12%) Show the following function

$$f(x) = \begin{cases} x+1, & \text{if } x \text{ is odd} \\ 4x, & \text{if } x \text{ is even} \end{cases}$$

is primitive recursive.

6. (10%) Explain that why the following language

 $H = \{ M'' : \text{Turing machine M halts on empty string } e \}$

is recursively enumerable. An informal description suffices.

7. (10%) Let $K_0 = \{ \text{"}M\text{""}w\text{"} : M \text{ halts on input string } w \}$, $K_1 = \{ \text{"}M\text{"} : M \text{ halts on input string "}M\text{"} \}$. Try to sign languages K_0 , $\overline{K_1}$ and sets of languages recursive, context-free language and regular to the corresponding zone of the following figure: Note: r.e. is the set of recursive enumerable languages and CO-r.e. = $\{L: \text{complement of } L \text{ is r.e. } \}$.

