

ELEMENTOS DE ÁLGEBRA

(2do cuatrimestre de 2022)

TRABAJO PRÁCTICO N°9: Sistemas de Ecuaciones Lineales

RESPUESTAS

- 1. Cada una de las ecuaciones lineales de los sistemas dados representan gráficamente una recta a las que llamaremos L y T. Además, llamaremos S al conjunto solución del sistema.
 - a) $S = \{(-7, 2)\}$. Las rectas L y T se cortan en el punto (-7, 2).
 - b) $S = \{ (-1 + 2y, y) : y \in \mathbb{R} \}$. Las rectas L y T son coincidentes.
 - c) $S = \emptyset$. Las rectas L y T son paralelas.
- 2. Dado un sistema de tres ecuaciones lineales y dos incógnitas, cada una de las ecuaciones del sistema representa gráficamente una recta a las que llamaremos L, R y T. Además, llamaremos S al conjunto solución del sistema. Las posibles soluciones son:
 - Las tres rectas se cortan en el punto P. El sistema es compatible determinado y $S = \{P\}$.
 - Las rectas L y T son coincidentes y R las corta en el punto P. El sistema es compatible determinado y $S = \{P\}$.
 - Las tres rectas L, R y T son coincidentes. El sistema es compatible indeterminado y S = L = R = T.
 - Las rectas L, R y T son paralelas dos a dos. El sistema es incompatible y $S = \emptyset$.
 - Las rectas L y R son coincidentes y T es paralela a ambas. El sistema es incompatible y $S = \emptyset$.
 - Las rectas L y R son paralelas y T corta a ambas. El sistema es incompatible y $S = \emptyset$.
 - Las rectas L, R y T se cortan dos a dos. El sistema es incompatible y $S = \emptyset$.

3.

a) $S = \{ (9 + 5x_2, x_2) : x_2 \in \mathbb{R} \}.$

Tres posibles soluciones particulares: (9, 0), (14, 1) y (4, -1).

b) $S = \{ (a, b, \frac{1}{2} - 2a + 5b) : a, b \in \mathbb{R} \}.$

Tres posibles soluciones particulares: $(0, 0, \frac{1}{2})$, $(1, 1, \frac{7}{2})$ y $(0, -1, -\frac{9}{2})$.

c) $S = \{ (6 + 2y - z + 4w, y, z, w) : y, z, w \in \mathbb{R} \}.$

Tres posibles soluciones particulares: (6, 0, 0, 0), (10, 0, 0, 1) y (4, -1, 0, 0).

4.

a)
$$\begin{cases} 2x & -y = 0 \\ x & +3y = 2 \end{cases}$$
 b)
$$\begin{cases} x + 3y - 2z = 0 \\ 3x - 6y + z = 7 \\ -2x + 4y = -3 \end{cases}$$
 c)
$$\begin{cases} -2x + 2z = 7 \\ 4x - y = 5 \end{cases}$$

5.
$$a = 3 \land b = -1$$

6.

- a) $S = \{ (0, 1, 1) \}$
- b) $S = \{(-z, 0, z) : z \in \mathbb{R}\}$. Dos posibles soluciones particulares: (-3, 0, 3) y (0, 0, 0).
- c) $S = \emptyset$
- d) $S = \{ (1 + z + 2w, 2 2z + w, z, w) : z, w \in \mathbb{R} \}.$ Dos posibles soluciones particulares: (1, 2, 0, 0) y (2, 0, 1, 0).
- e) $S = \{ (-2, 3, 1) \}$
- f) $S = \{ (0, 0, 0) \}$

7.

- a) Incompatible
- b) Compatible determinado. $S = \{ (-8, 0, 7) \}$
- c) Incompatible
- d) Compatible indeterminado. $S = \{ (5 + 2x_3, -1 3x_3, x_3) : x_3 \in \mathbb{R} \}$
- e) Compatible indeterminado. $S = \{ (1, 2 2x_4, -3x_4, x_4) : x_4 \in \mathbb{R} \}$
- f) Compatible determinado. $S = \{ (4, -9, 2) \}$

8.

- a) Compatible Determinado $\forall a \in \mathbb{R} \{-1, 1\}$. Compatible Indeterminado si a = 1. Incompatible si a = -1.
- b) Compatible Determinado $\forall a \in \mathbb{R} \{-2, 2\}$. Compatible Indeterminado si a = -2. Incompatible si a = 2.
- c) Compatible Determinado $\forall a \in \mathbb{R} \{2\}$. Compatible Indeterminado si a = 2. $\nexists a \in \mathbb{R}$ para que el sistema sea Incompatible.
- d) Compatible Determinado $\forall a \in \mathbb{R} \{1\}$. Compatible Indeterminado si a = 1. $\nexists a \in \mathbb{R}$ para que el sistema sea Incompatible.
- e) Compatible Determinado $\forall a \in \mathbb{R} \{1, 3\}$. Compatible Indeterminado si a = 3. Incompatible si a = 1.
- f) Compatible Determinado $\forall a \in \mathbb{R} \{-5, 0, 5\}$. Compatible Indeterminado si $a = 0 \lor a = -5$. Incompatible si a = 5.

- $g) \not \exists \, a \in \mathbb{R}$ para que el sistema sea Compatible Determinado.
 - Compatible Indeterminado $\forall a \in \mathbb{R} \{1\}.$

Incompatible si a = 1.

- 9. $X = \begin{bmatrix} 2/7 \\ 4/7 \end{bmatrix}$
- 10.
- $a) \quad \begin{bmatrix} 3 & 12 & 9 \\ 2 & 5 & 4 \\ -1 & 3 & 2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ -5 \end{bmatrix}$

Es posible resolver lo utilizando inversibilidad de matrices y $S = \{(3, -2, 2)\}.$

 $b) \begin{bmatrix} 2 & -1 & -2 \\ 0 & 2 & -1 \\ 2 & -5 & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$

NO es posible resolver lo aplicando inversibilidad de matrices, $S=\emptyset.$

- 11.
- a) Verdadera.
- c) Verdadera.

b) Falsa.

d) Verdadera.

- 12.
- a) Verdadera.
- e) Verdadera.
- i) Falsa.

- b) Verdadera.
- f) Verdadera.
- j) Verdadera.

c) Falsa.

g) Falsa.

k) Falsa.

d) Falsa.

- h) Verdadera.
- l) Verdadera.