$$x_{1}y \in \xi^{+}$$
 $y_{1}y \in \xi^{+}$
 $y_{2}y \in \xi^{+}$
 $y_{3}y \in \xi^{+}$
 $y_{4}y \in \xi^{+}$
 $y_{5}y \in \xi$

If L is a language over the alphabet Σ , and x and y are strings in Σ^* , then x and y are distinguishable with respect to L, or L-distinguishable, if there is a string $z \in \Sigma^*$ such that either $xz \in L$ and $yz \notin L$, or $xz \notin L$ and $yz \in L$. A string z having this property is said to distinguish x and y with respect to L. An equivalent formulation is to say that x and y are L-distinguishable if $L/x \neq L/y$, where

$$L/x = \{ z \in \Sigma^* \mid xz \in L \}$$

The two strings x and y are L-indistinguishable if L/x = L/y, which means that for every $z \in \Sigma^*$, $xz \in L$ if and only if $yz \in L$.

The strings in a set $S \subseteq \Sigma^*$ are pairwise L-distinguishable if for every pair x, y of distinct strings in S, x and y are L-distinguishable.

Suppose $M = (Q, \Sigma, q_0, A, \delta)$ is an FA accepting the language $L \subseteq \Sigma^*$. If x and y are two strings in Σ^* that are L-distinguishable, then $\delta^*(q_0, x) \neq \delta^*(q_0, y)$. For every $n \geq 2$, if there is a set of n pairwise L-distinguishable strings in Σ^* , then Q must contain at least n states.

Proof

If x and y are L-distinguishable, then for some string z, one of the strings xz, yz is in L and the other isn't. Because M accepts L, this means that one of the states $\delta^*(q_0, xz)$, $\delta^*(q_0, yz)$ is an accepting state and the other isn't. In particular,

$$\delta^*(q_0, xz) \neq \delta^*(q_0, yz)$$

According to Exercise 2.5, however,

$$\delta^*(q_0, xz) = \delta^*(\delta^*(q_0, x), z)$$

 $\delta^*(q_0, yz) = \delta^*(\delta^*(q_0, y), z)$

Because the left sides are different, the right sides must be also, and so $\delta^*(q_0, x) \neq \delta^*(q_0, y)$.

The second statement in the theorem follows from the first: If M had fewer than n states, then at least two of the n strings would cause M to end up in the same state, but this is impossible if the two strings are L-distinguishable.

For Every Pair x, y of Distinct Strings in {a,b}*, x and y Are Distinguishable with Respect to Pal

Case-I.
$$x \neq y$$
 $|x| = |y|$
 $1Z \in \mathbb{Z}^{+}$, $Z = x^{ev}$ $x \geq GL$
 $1Z = ab$
 $1Z = ba$
 $1Z = ba$

For Every Pair x, y of Distinct Strings in {a,b}*, x and y Are Distinguishable with Respect to Pal

Case-II
$$x \neq y$$
 [rack] and x is

not a prefix of y
 $x = ab$ $y = bbb$
 $z = x^{rev} = ab$ $ba \in Pa$
 $z = y^{rev} = bbb$ $a \notin Pa$

For Every Pair x, y of Distinct Strings in $\{a,b\}^*$, x and y Are Distinguishable with Respect to Pal

Case- TIT
$$|x| < |y|$$
 or is a Predix of y $x = ab$ $y = aba$ $y_1 = x + y_2 = a$
 $\exists 1 \ y_2$
 $\exists 1 \ y_2$
 $\exists 2 \ c \ e^x$, $z = 6 \ e^{x}$
 $x = 2 - 26 \ e^{x}$
 $= ababba \in Pal$
 $y = 4 - 26 \ e^{x}$
 $= ababba \notin Pal$

For Every Pair x, y of Distinct Strings in {a,b}*, x and y Are Distinguishable with Respect to Pal

First suppose that $x \neq y$ and |x| = |y|. Then x', the reverse of x, distinguishes the two with respect to Pal, because $xx' \in Pal$ and $yx' \notin Pal$. If $|x| \neq |y|$, we assume x is shorter. If x is not a prefix of y, then $xx' \in Pal$ and $yx' \notin Pal$. If x is a prefix of y, then y = xz for some nonnull string z. If we choose the symbol σ (either a or b) so that $z\sigma$ is not a palindrome, then $x\sigma x' \in Pal$ and $y\sigma x' = xz\sigma x' \notin Pal$.

An explanation for this property of Pal is easy to find. If a computer is trying to accept Pal, has read the string x, and starts to receive the symbols of another string z, it can't be expected to decide whether z is the reverse of x unless it can actually remember every symbol of x. The only thing a finite automaton M can remember is what state it's in, and there are only a finite number of states. If x is a sufficiently long string, remembering every symbol of x is too much to expect of M.

Suppose n is a positive integer, and L_n is the language of strings in $\{a,b\}^*$ with at least n symbols and an a in the nth position from the end. $\gamma = 2$

Suppose n is a positive integer, and L_n is the language of strings in $\{a,b\}^*$ with at least n symbols and an a in the nth position from the end.

Figure 2.25

An FA accepting L_n in the case n=2.