NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS

with credits to Teo Wei Hao

MA2202 Algebra I

AY 2004/2005 Sem 2

Question 1

Let $a, b, c \in \mathbb{R} \setminus \{0\}$.

If
$$a, b < 0$$
, $(a * b) * c = ab^{-1}c = a * (b * c)$;
if $a < 0, b > 0$, $(a * b) * c = ab^{-1}c^{-1} = a * (b * c)$;
if $a > 0, b < 0$, $(a * b) * c = abc^{-1} = a * (b * c)$;
if $a, b > 0$, $(a * b) * c = abc = a * (b * c)$.

Thus $(\mathbb{R}\setminus\{0\},*)$ is associative.

We have 1 * a = a * 1 = a for all $a \in \mathbb{R} \setminus \{0\}$, thus $1 \in \mathbb{R} \setminus \{0\}$ is the identity in $(\mathbb{R} \setminus \{0\}, *)$.

For $a \in \mathbb{R} \setminus \{0\}$, we have $a^{-1} \in \mathbb{R} \setminus \{0\}$.

If a < 0, then we have a * a = 1, and so a is the inverse of a in $(\mathbb{R} \setminus \{0\}, *)$.

If a > 0, then we have $a^{-1} * a = a * a^{-1} = 1$, and so a^{-1} is the inverse of a in $(\mathbb{R} \setminus \{0\}, *)$.

Therefore, $(\mathbb{R}\setminus\{0\},*)$ is a group.

Question 2

Since $H \leq G$, H is non-empty and so K is also non-empty.

Now let $k_1, k_2 \in K$. Then there exists $h_1, h_2 \in H$ such that $k_1 = ah_1a^{-1}$ and $k_2 = ah_2a^{-1}$. Thus $k_1k_2^{-1} = \left(ah_1a^{-1}\right)\left(ah_2a^{-1}\right)^{-1} = ah_1a^{-1}ah_2^{-1}a^{-1} = a\left(h_1h_2^{-1}\right)a^{-1}$. Since $h_1h_2^{-1} \in H$, we have $a\left(h_1h_2^{-1}\right)a^{-1} \in K$, and so $K \leq G$.

Question 3

Let $h_1, h_2 \in H$, and |G| = n, $n \in \mathbb{Z}^+$, i.e. $n - 1 \in \mathbb{Z}_{\geq 0}$.

Then by consequence of Lagrange's Theorem, we have $h_2(h_2)^{n-1}=h_2^n=1_G$. Thus $h_2^{-1}=h_2^{n-1}$. Now since $h_2\in H$, $h_2^{n-1}\in H$, and since $h_1\in H$, $h_1h_2^{-1}=h_1h_2^{n-1}\in H$. Thus $H\leq G$.

Page: 1 of 3

Question 4

Since gcd(m, n) = d, there exists $s, t \in \mathbb{Z}$ such that sm + tn = d.

This give us $a^d = a^{sm+tn} = (a^m)^s + (a^n)^t = (a^m)^s \in \langle a^m \rangle$, i.e. $\langle a^d \rangle \subseteq \langle a^m \rangle$.

Also, there exists $k \in \mathbb{Z}$ such that kd = m.

This give us $a^m = a^{kd} = (a^d)^k \in \langle a^d \rangle$, i.e. $\langle a^m \rangle \subseteq \langle a^d \rangle$.

Thus $\langle a^m \rangle = \langle a^d \rangle$.

Question 5

Let $H = A_n \cap G \leq G$ (literally, H is the group of even permutations in G).

Assume that G-H is non-empty, i.e. there exists odd permutations in G. Let $g_1, g_2 \in G-H$. Since G is a group, $g_2^{-1}g_1 \in G$.

Also $\operatorname{sgn}(g_2^{-1}g_1) = \operatorname{sgn}(g_2)\operatorname{sgn}(g_1) = (-1)^2 = 1$, and thus $g_2^{-1}g_1 \in A_n$. Therefore $g_2^{-1}g_1 \in H$.

This give us $g_1H = g_2H$ for all $g_1, g_2 \in G - H$.

Thus there are only 2 left cosets of H, namely H and gH for some $g \in G - H$, i.e. [G:H] = 2.

Thus $|G - H| = \frac{1}{2}|G|$, i.e. exactly half of the elements of G are odd permutations.

Question 6

Since $H \leq G$, we have $1_G \in H$.

Thus $a = a1_G \in aH \subseteq bK$, i.e. there exists $k_1 \in K$ such that $a = bk_1$. Therefore $a^{-1}b = k_1^{-1}$.

Now for all $h \in H$, there exists $k_2 \in K$ such that $ah = bk_2$. This give us $h = a^{-1}bk_2 = k_1^{-1}k_2 \in K$. Thus $H \subseteq K$.

Question 7

Let $C_p = \{g \in G \mid g \text{ has order } p\}$. Since G is finite, let there be $t \in \mathbb{Z}^+$ distinct cyclic subgroups of G with order p, namely H_1, H_2, \ldots, H_t .

Now let $f: C_p \to \{H_i \mid i \in 1, 2, ..., t\}$ such that $f(a) = \langle a \rangle$.

We notice that f is a well-defined function, since for each $a \in C_p$, a is the generator of exactly one cyclic subgroup of order p, which give us f(a) to be defined and unique.

Now since the H_i 's are cyclic groups of order p, all its $\varphi(p) = p - 1$ generators are in C_p . This give us $|f^{-1}[H_i]| = p - 1$. Therefore, $|C_p| = \sum_{i=1}^t |f^{-1}[H_i]| = t(p-1)$, and so $(p-1) | C_p$.

Note: We need G to be a finite group.

Else, we can consider $G = (\mathbb{Z}/p\mathbb{Z})[x]$, i.e. the infinite group of all polynomials over $\mathbb{Z}/p\mathbb{Z}$, with normal polynomial addition as the equipped binary operation. Then there are infinitely many elements in G whose order is p (e.g. every elements in the infinite set $\{x^n \mid n \in \mathbb{Z}^+\}$ has order p).

Question 8

Let $h \in H$, $k \in K$.

Since $H \triangleleft G$, $h^{-1} \in H$ and $k \in G$, there exists $h_1 \in H$ such that $kh^{-1}k^{-1} = h_1$.

This give us $hkh^{-1}k^{-1} = hh_1 \in H$.

Similarly, since $K \triangleleft G$, $k \in K$ and $h \in G$, there exists $k_1 \in K$ such that $hkh^{-1} = k_1$.

This give us $hkh^{-1}k^{-1} = k_1k^{-1} \in K$.

Thus, $hkh^{-1}k^{-1} \in H \cap K = \{1_G\}$. This implies that

$$hkh^{-1}k^{-1} = 1_G$$
$$hk = kh.$$

Page: 2 of 3

Question 9

If n is odd, then gcd(2, n) = 1. Thus $\varphi(2n) = \varphi(2)\varphi(n) = \varphi(n)$.

If n is even, then let $n = 2^s t$, where $s, t \in \mathbb{Z}^+$ with t being odd. Using the fact that $\varphi(2^k) = 2^{k-1}$ for $k \in \mathbb{Z}^+$, we get

$$\begin{array}{rcl} \varphi(2n) & = & \varphi\left(2^{s+1}\right)\varphi(t) \\ & = & 2\varphi\left(2^{s}\right)\varphi(t) \\ & = & 2\varphi\left(2^{s}t\right) = 2\varphi(n). \end{array}$$

Question 10

There are $\varphi(\varphi(31)) = \varphi(30) = 8$ primitive roots of 31. Now, $30 = 2 \times 3 \times 5$. Since,

> $3^{6} \not\equiv 1 \mod 31;$ $3^{10} \not\equiv 1 \mod 31;$ $3^{15} \not\equiv 1 \mod 31,$

we conclude that 3 is a primitive root of unity modulo 31.

Now $(\mathbb{Z}/30\mathbb{Z})^* = \{[1]_{30}, [7]_{30}, [11]_{30}, [13]_{30}, [17]_{30}, [19]_{30}, [23]_{30}, [29]_{30}\}.$ Since,

 $3^7 \equiv 17 \mod 31;$ $3^{11} \equiv 13 \mod 31;$ $3^{13} \equiv 24 \mod 31;$ $3^{17} \equiv 22 \mod 31;$ $3^{19} \equiv 12 \mod 31;$ $3^{23} \equiv 11 \mod 31;$ $3^{29} \equiv 21 \mod 31,$

Page: 3 of 3

we have the primitive roots of unity modulo 31 to be 3, 11, 12, 13, 17, 21, 22, 24.