ANÁLISIS VECTORIAL II

SUMA DE VECTORES PARALELOS Y/O COLINEALES

Ejemplo:

Hallar el vector resultante para el sistema de vectores.

Sol.: En este caso procedemos del siguiente modo:

 Los que tienen el mismo sentido se suman, es decir:

$$\overline{A}$$
, \overline{C} y \overline{F} : \overline{A} + \overline{C} + \overline{F} = 2+1+5 = 8(\rightarrow)
 \overline{B} , \overline{D} y \overline{E} : \overline{B} + \overline{D} + \overline{E} = 3+1+3 = 7(\leftarrow)

■ Luego $\overline{R} = 8 - 7 = 1(\rightarrow)$ (Sentidos opuestos se restan).

Hallar el V. Resultante.

🥸 <u>Método del Paralelogramo</u>

Resuelve:

Este método se usa cuando dos vectores forman un ángulo diferente de cero entre sí.

Ejemplo:

Solución:

 En este caso vamos a trasladar a uno de los vectores en forma paralela para que su punto inicial concuerde con el otro.

 Ahora trazaremos paralelas a cada vector a partir de los extremos (punto final del vector) y la figura formada se llama:

Con ayuda de tu profesor encuentra el vector resultante (\overline{R}) .

Recuerda:

¡Ten cuidado! Si: A = 3
B = 5

⇒ R = 8
(¡Falso!)

Esto no se cumple siempre.

Si deseamos obtener el módulo del vector resultante usaremos:

Ejemplo: Hallar el módulo del V. Resultante Si: $\cos 60^{\circ} = \frac{1}{2}$

Solución:

Obs.:

Si: $\theta = 0^{\circ} \Rightarrow \frac{\overline{A}}{\overline{B}}$

A la resultante obtenida se le conoce como: _____

Si: $\theta = 180^{\circ} \Rightarrow \overline{B} \overline{A}$

A la resultante obtenida se le conoce como: _____

• Si: θ = 90° (Vectores Perpendiculares)

Teorema de:

Ejemplo: Si: $R_{m\acute{a}x}$ = 7 y $R_{m\'{i}n}$ = 1 para dos vectores.

Hallar el módulo del vector resultante cuando dichos vectores son perpendiculares.

Solución:

Si dos vectores tienen módulos iguales:

En este caso, R divide al ángulo en dos iguales, es decir, es una bisectriz.

Hallar el módulo de \overline{R} en función de x.

EJERCICIOS DE APLICACIÓN

Hallar el módulo del vector resultante en los siguientes casos:

1.

d) 5μ

e) 7µ

3.

4.

- Si la $R_{m\acute{a}x}$ de 2 vectores es 17 y la resultante 5. mínima 7. Hallar el módulo de dichos vectores.
 - a) 2 y 5
- b) 10 y 7
- c) 5 y 12

- d) 8 y 9
- e) 13 y 4

- Del problema anterior hallar el módulo de la resultante si los vectores son perpendiculares.
 - a) 10
- b) 11
- c) 12

- d) 13
- e) 14
- 7. Hallar el módulo del V. Resultante: $\cos 60^{\circ} = \frac{1}{2} \; ; \; \cos 120^{\circ} = -\frac{1}{2} \; .$
 - a) 10
 - b) 11
 - c) 12
 - d) 13
 - e) 14
- 8. Hallar el módulo del V. Resultante:
 - a) 8
 - b) 2
 - c) 7
 - d) 15
 - e) 14
- 5 80° 3 20°
- 9. Hallar el módulo del V. Resultante:
 - a) √13
 - b) √31
 - c) √46
 - d) 11
 - e) √93

10.

- a) √65
- b) √71
- c) √83
- d) √79
- e) √76

TAREA DOMICILIARIA Nº 4

1. Hallar el módulo del V. Resultante.

2.

e) 30

3.

- d) 6
- e) 8

a) 2

b) 3

c) 4

d) 5

e) 7

4.

- 5. Si: $R_{m\acute{a}x}$ = 14 y el $R_{m\acute{n}}$ = 2 para 2 vectores. Halle el módulo de cada vector.
 - a) 3 y 11
- b) 8 y 6
- c) 10 y 4

- d) 12 y 2
- e) 5 y 9