TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN KHOA KHOA HỌC MÁY TÍNH

BÀI TẬP MÔN XỬ LÝ NGÔN NGỮ TỰ NHIÊN BÀI TẬP QUÁ TRÌNH 01

Giảng viên hướng dẫn: Nguyễn Đức Vũ

 $\mbox{Họ và tên} \mbox{ MSSV} \mbox{ Mã lớp} \mbox{Trần Đình Khánh Đăng} \mbox{ 22520195} \mbox{ CS221.P12}$

TP. Hồ Chí Minh, ngày 5 tháng 10 năm 2024

Bài tập 1

Chứng minh rằng tổng xác suất của tất cả các chuỗi có thể từ tập từ vựng $\mathcal V$ trong hai trường hợp sau:

• Không có từ kết thúc </s>: Mô hình ngôn ngữ có thể sinh chuỗi dài vô hạn.

$$\sum_{n=1}^{\infty} \sum_{x_{1:n}} P(x_{1:n}) = \infty \tag{1}$$

• Có từ kết thúc </s> Mô hình ngôn ngữ phải dừng lại việc sinh chuỗi bằng từ kết thúc câu </s>..

$$\sum_{n=1}^{\infty} \sum_{x_{1:n}} P(x_{1:n} < /s >) = 1$$
 (2)

Bài tập 1a

Ta có:

$$\begin{split} &\sum_{n=1}^{1} \sum_{x_{1:n}} P(x_{1:n}) = 1, \\ &\sum_{n=2}^{2} \sum_{x_{1:n}} P(x_{1:n}) = 1, \\ &\Leftrightarrow \sum_{n=1}^{2} \sum_{x_{1:n}} P(x_{1:n}) = 1 + 1 = 2, \\ &\text{và} \quad \sum_{n=1}^{3} \sum_{x_{1:n}} P(x_{1:n}) = 1 + 1 + 1 = 3, \end{split}$$

. . .

Giả sử:

$$\sum_{n=1}^{k} \sum_{x_{1:n}} P(x_{1:n}) = k,$$

Với một số $k \ge 1$. Ta cần chứng minh:

$$\sum_{n=1}^{k+1} \sum_{x_{1:n}} P(x_{1:n}) = k+1.$$

$$\sum_{n=k+1}^{k+1} \sum_{x_{1:n}} P(x_{1:n}) = 1,$$
Ta có
$$\sum_{n=1}^{k+1} \sum_{x_{1:n}} P(x_{1:n}) = \sum_{n=1}^{k} \sum_{x_{1:n}} P(x_{1:n}) + \sum_{n=k+1}^{k+1} \sum_{x_{1:n}} P(x_{1:n})$$

$$\Rightarrow \sum_{n=1}^{k+1} \sum_{x_{1:n}} P(x_{1:n}) = k+1 \text{ (DPCM)}$$

Theo quy nạp, ta có:

$$\sum_{n=1}^{\infty} \sum_{x_n} P(x_{1:n}) = \infty.$$

Bài tập 1b

Ta có

$$\sum_{n=1}^{\infty} \sum_{x_{1:n}} P(x_{1:n},) = 1$$

$$\Leftrightarrow \sum_{n=1}^{\infty} P() \sum_{x_{n}} P(x_{1:n}) = 1$$

hoặc
$$\Leftrightarrow \sum_{n=1}^{\infty} P(|x_{1:n}) \sum_{x_{1:n}} P(x_{1:n}) = 1$$
 (Trong trường hợp $P()$ và $P(x_{1:n})$ không độc lập)

Xét

$$\sum_{x_{1:n}} P(x_{1:n})$$

$$= \sum_{x_{1:n}} \prod_{i} P(x_{i})$$

$$= \sum_{x_{1}} \sum_{x_{2}} \dots \sum_{x_{n}} \prod_{i} P(x_{i})$$

$$= \sum_{x_{1}} \sum_{x_{2}} \dots \sum_{x_{n}} P(x_{1}) P(x_{2}) \dots P(x_{n})$$

$$= 1 \quad (3)$$

dễ thấy,

$$\sum_{n=1}^{\infty}P()=1 \ \ (4)$$

$$\sum_{n=1}^{\infty}P(|x_{1:n})=1 \ \ (\text{Trong trường hợp }P() và \ P(x_{1:n}) \text{ không độc lập})$$

Từ (3) và (4)
$$\Rightarrow \sum_{n=1}^{\infty} \sum_{x_{1:n}} P(x_{1:n} < /s >) = 1$$

Bài tập 2

Cho tập dữ liệu gồm nhiều văn bản thuộc các lớp $C = \{c_1, c_2, \dots, c_k\}$ và mỗi văn bản chứa các từ từ tập từ vựng \mathcal{V} . Hãy sử dụng phương pháp **MLE** để tính:

• Xác xuất tiên nghiệm của lớp c_i :

$$\hat{P}(c_j) = \frac{\text{count}(c_j)}{N_{doc}}$$

Trong đó:

[label= \bullet]count(c_i): số văn bản thuộc lớp c_i . N_{doc} : tổng số văn bản.

• Xác suất có điều kiện của từ w_i trong lớp c_i :

$$\hat{P}(w_i|c_j) = \frac{\text{count}(w_i, c_j)}{\sum_{w \in \mathcal{V}} \text{count}(w, c_j)}$$

Trong đó:

[label= \bullet]count (w_i, c_j) : số lần từ w_i xuất hiện trong lớp c_j . $\sum_{w \in \mathcal{V}} \text{count}(w, c_j)$: tổng số lần xuất hiện của tất cả các từ trong lớp c_j .

Bài tập 2a

 \bullet Đặt $\theta_j = P(c_j)$ là xác xuất của lớp c_j mà chúng ta muốn ước lượng.

Likelihood Function

Hàm khả năng cho số lượng tài liệu trong k lớp theo phân phối đa thức:

$$L(\theta_1, \theta_2, \dots, \theta_k) = \prod_{j=1}^k \theta_j^{\text{count}(c_j)}$$

Hàm Log-Likelihood

Lấy logarit của hàm khả năng, ta được hàm Log-likelihood:

$$\log L(\theta_1, \theta_2, \dots, \theta_k) = \sum_{j=1}^k \operatorname{count}(c_j) \log \theta_j$$

Ràng buộc xác suất

Vì θ_j đại diện cho xác suất, ta có ràng buộc:

$$\sum_{j=1}^{k} \theta_j = 1$$

Sử dụng Lagrange Multipliers

Chúng ta sử dụng một hệ số Lagrange λ để đưa ràng buộc vào bài toán cực đại hóa. Hàm Lagrangian là:

$$\mathcal{L} = \sum_{j=1}^{k} \operatorname{count}(c_j) \log \theta_j + \lambda \left(1 - \sum_{j=1}^{k} \theta_j \right)$$

Cực đại hóa Log-likelihood

Để cực đại hóa \mathcal{L} , ta lấy đạo hàm riêng theo từng θ_j và đặt bằng 0:

$$\frac{\partial \mathcal{L}}{\partial \theta_j} = \frac{\operatorname{count}(c_j)}{\theta_j} - \lambda = 0$$

Giải tìm θ_j :

$$\theta_j = \frac{\operatorname{count}(c_j)}{\lambda}$$

Giải cho λ

Sử dụng ràng buộc $\sum_{j=1}^k \theta_j = 1,$ ta có thể giải cho λ :

$$\sum_{j=1}^{k} \frac{\operatorname{count}(c_j)}{\lambda} = 1$$

$$\frac{1}{\lambda} \sum_{j=1}^{k} \operatorname{count}(c_j) = 1$$

Vì $\sum_{j=1}^{k} \operatorname{count}(c_j) = N_{doc}$, ta có:

$$\frac{N_{doc}}{\lambda} = 1 \quad \Rightarrow \quad \lambda = N_{doc}$$

Ước lượng cuối cùng cho θ_i

Thay $\lambda = N_{doc}$ vào biểu thức của θ_j :

$$\theta_j = \frac{\operatorname{count}(c_j)}{N_{doc}}$$

Kết luận

Vì vậy, Maximum Likelihood Estimate (MLE) cho xác suất của lớp c_j là:

$$\hat{P}(c_j) = \frac{\text{count}(c_j)}{N_{doc}}$$

Bài tập 2b

Chúng ta muốn ước lượng xác xuất có điều kiện $P(w_i \mid c_j)$, xác suất của từ w_i khi biết lớp c_j .

Likelihood Function

Likelihood Functionlà:

$$L(\theta_{w_i,c_j}) = \prod_{w \in V} \theta_{w,c_j}^{\text{count}(w,c_j)}$$

Hàm Log-Likelihood

Lấy log của hàm khả năng, ta được hàm Log-likelihood:

$$\log L(\theta_{w_i,c_j}) = \sum_{w \in V} \operatorname{count}(w,c_j) \log \theta_{w,c_j}$$

Cực đại hóa Log-Likelihood

Để cực đại hóa hàm Log-likelihood, ta áp dụng nguyên tắc MLE dưới ràng buộc:

$$\sum_{w \in V} \theta_{w,c_j} = 1$$

Sử dụng Lagrange multipliers, ta định nghĩa hàm Lagrangian:

$$\mathcal{L} = \sum_{w \in V} \operatorname{count}(w, c_j) \log \theta_{w, c_j} + \lambda \left(1 - \sum_{w \in V} \theta_{w, c_j} \right)$$

Lấy đạo hàm riêng theo θ_{w_i,c_i} và đặt bằng 0:

$$\frac{\partial \mathcal{L}}{\partial \theta_{w_i, c_j}} = \frac{\text{count}(w_i, c_j)}{\theta_{w_i, c_j}} - \lambda = 0$$

Giải ra θ_{w_i,c_j} :

$$\theta_{w_i, c_j} = \frac{\text{count}(w_i, c_j)}{\lambda}$$

Giải tìm λ

Sử dụng ràng buộc $\sum_{w \in V} \theta_{w,c_j} = 1$:

$$\sum_{w \in V} \frac{\operatorname{count}(w, c_j)}{\lambda} = 1$$

$$\frac{1}{\lambda} \sum_{w \in V} \operatorname{count}(w, c_j) = 1$$

Do đó, $\lambda = \sum_{w \in V} \operatorname{count}(w, c_j)$.

Ước lượng cuối cùng cho θ_j

Thay $\lambda = \sum_{w \in V} \operatorname{count}(w, c_j)$ vào biểu thức của θ_j :

$$\theta_j = \frac{\operatorname{count}(c_j)}{\sum_{w \in V} \operatorname{count}(w, c_j)}$$

Kết luận

Vì vậy, Maximum Likelihood Estimate (MLE) cho xác xuất có điều kiện của lớp c_j là:

$$\hat{P}(c_j) = \frac{\text{count}(c_j)}{\sum_{w \in V} \text{count}(w, c_j)}$$