

Prediction of Airline Passenger Satisfaction using Classification Models

Done By: Nisreen Alsayegh & Eman Alshehri

OUTLINE

- Introduction
- Tools
- Workflow
- Data
- EDA-Analysis
- Models
- Conclusion

Introduction

- In this project, we are going to work on a dataset contains an airline passenger satisfaction survey.
- The aim of this project is to build a classification models to predict passenger satisfaction and identify which model is outperformed based on accuracy.

Goals

- Build a classification models to predict passenger satisfaction.
- Choose the model that give us the best predict.

Workflow

Loading Data

EDA

Building Models

Choosing the best Model

Data Description:

•We used the dataset from https://www.kaggle.com

•The dataset contains 129880 rows and 25 columns

Cleaning Data:

By removing Null, outliers and unwanted columns.

The data Becomes: 116885 Rows, 23 columns

Convert some numerical data in to categorical.

Convert categorical data to dummies:

Before: 116885 Rows, 23 columns

After: 116885 Rows, 28 columns

Removing unwanted columns.

Before: 116885 Rows, 28 columns

After: 116885 Rows, 25 columns

EDA - Analysis

Models:

After Grid Search for the best hyperparameters

After tuning the hyperparameters manually

	KNN Model	Logistic Regression	Decision Tree	Random Forest		XGBoosting	Naive Bayes	SVM Model	Gradient Boosting
Training	100.00%	89.99%	95.46%	100.00%	Training	99.95%	88.24%	95.79%	100.00%
validation	92.93%	89.07%	94.54%	95.83%	validation	95.83%	86.91%	94.94%	95.81%

Data Splitting:

Training 90 %

Validation Te 5%

Testing 5%

Models:

After feature engineering

	Polynomial Random Forest D=2	Polynomial Random Forest	Polynomial XGBClassifier	Polynomial XGBClassifier
Training	100.00%	D=3 100.00%	D=2 100.00%	D=3 100.00%
validation	96.10%	95.91%	95.91%	95.89%

Ensemble:

Stacking Classifier:

Testing our best model:

Confusion Matrix with labels

Random forest classifier D=2

Conclusion

After building different models, Polynomial Random Forest degree=2 has the highest score in validation stage.

Future work:

- Collect more data
- Explore different models

THANK YOU