Álgebra Lineal - LCC - LM - PM

2020

Práctica: CAPÍTULO 5 (SEGUNDA PARTE) - AUTOVECTORES Y AUTOVALORES

Salvo mención en contrario, los vectores se consideran en el espacio vectorial \mathbb{C}^n sobre \mathbb{C} , con el producto interno estándar.

1. Sean
$$x=\begin{bmatrix} 2-4i\\4i \end{bmatrix}$$
 e $y=\begin{bmatrix} 2+4i\\4i \end{bmatrix}$.

- a) Calcular ||x|| y ||y||.
- b) Hallar $x^H y$.
- 2. Dadas A y B dos matrices. Demostrar:

a)
$$(AB)^{H} = B^{H}A^{H}$$
.

b)
$$(A^H)^H = A$$
.

3. Dada
$$A = \begin{bmatrix} 1 & i & 0 \\ i & 0 & 1 \end{bmatrix}$$
:

- a) Escribir la matriz A^H y calcular $C = A^H A$.
- b) ¿Cuál es la relación entre C y C^H ?
- 4. Dada A matriz $m \times n$ de entradas complejas. Demostrar:
 - a) $A^H A$ siempre es una matriz hermitiana.
 - b) Si A es una matriz hermitiana entonces su diagonal tiene entradas reales.
- 5. Encontrar la descomposicin espectral de las siguientes matrices

$$P = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}, \ Q = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ R = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}.$$

- 6. Sea A una matriz hermitiana y S la matriz que diagonaliza a A. Probar que S puede ser elegida con sus columnas ortonormales.
- 7. Sea U una matriz $n \times n$ unitaria. Entonces:

a)
$$U^H U = U U^H = I$$
, es decir $U^{-1} = U^H$.

- b) Para todo $x \in \mathbb{C}^n$, ||Ux|| = ||x||.
- 8. Calcular la tercera columna de U de modo que dicha matriz resulte unitaria.

$$U = \begin{bmatrix} \frac{\sqrt{3}}{3} & \frac{i\sqrt{2}}{2} \\ \frac{\sqrt{3}}{3} & 0 \\ \frac{i\sqrt{3}}{3} & \frac{\sqrt{2}}{2} \end{bmatrix}.$$

- 9. Diagonalizar la matriz sesgada hermitiana $K = \begin{bmatrix} i & i \\ i & i \end{bmatrix}$ (esto es, describir M y Λ tales que $K = M^1 \Lambda M$).
- 10. Describir todas las matrices de tamaño 3×3 que simultáneamente son hermitianas, unitarias y diagonales.
- 11. Diagonalizar la siguiente matriz unitaria V y describir U y Λ tales que $V = U\Lambda U^H$.

$$V = \frac{\sqrt{3}}{3} \begin{bmatrix} 1 & 1-i \\ 1+i & -1 \end{bmatrix}.$$

- 12. Sea T la transformación en el plano xy que representa la reflexión a través de la recta y=x.
 - a) Hallar la matriz asociada a T respecto a la base estándar $\mathcal{B} = \{(1,0),(0,1)\}$, y también respecto a $\mathcal{B}' = \{(1,1),(1,-1)\}$.

- b) Verificar que las matrices halladas en el ítem anterior son semejantes.
- 13. Sea T una transformación lineal de un espacio vectorial de dimensión finita V en sí mismo y, \mathcal{B}_1 y \mathcal{B}_2 dos bases ordenadas de V. Sean A y B las matrices asociadas a T considerando las bases \mathcal{B}_1 y \mathcal{B}_2 respectivamente. Demostrar que A y B son semejantes.
 - Ayuda: Probar que $B = M^{-1}AM$ donde M es la matriz de cambio de base de \mathcal{B}_2 a \mathcal{B}_1 .
- 14. Sea T la proyección en \mathbb{R}^2 sobre la recta que pasa por el origen formando un ángulo θ con el eje x. Construir la matriz A asociada a T con la base canónica de \mathbb{R}^2 a partir de la matriz B asociada a T con una base que contiene un vector sobre la recta y un vector ortogonal a la recta.
- 15. Probar que la relación de semejanza entre matrices es una relación de equivalencia.
- $\text{16. Probar que las matrices } A = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \text{y } B = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix} \text{ son semejantes.}$
- 17. Sean A y B matrices semejantes. Probar que A y B tienen el mismo polinomio característico.
- 18. Probar que:
 - a) Si A es semejante a B entonces A^2 es semejante a B^2 .
 - b) Existen matrices A y B no semejantes tales que A^2 y B^2 son semejantes.