Московский физико-технический институт

Лабораторная работа по общей физике

6.1 Эффект Мессбауэра

выполнил студент Б04-852 группы ФЭФМ Яромир Водзяновский

Содержание

1	Цель работы	2
2	Теория 2.1 Свободные ядра атомов	
3	Экспериментальаня установка	4
4	Ход работы 4.1 Измерение спектра источника и его анализ	

1 Цель работы

- С помощью метода доплеровского сдвига мессбауэрской линии поглощения исследвуется резонансное поглощение γ -лучей, испускаемых ядрами олова ^{119}Sn в соединении $BaSnO_3$ при комнатной температуре.
- Определить положение максимума резонансного поглощения, его величины, а также экспериментальной ширины линии $\Gamma_{\rm экс}$.
- Оценить время жизни возбужденного состояния ядра ^{119}Sn .

2 Теория

2.1 Свободные ядра атомов

Нуклоны в ядре могут находить на разных энергетических уровнях, самый низкий - усновной, а остальные - возбужденные. Ядра могут спонтанно переходить на более низкие энергитические уровни, вследстивие появится γ -излучение.

В отличие от основного уровня, все возбужденные уровни имеют конечную ширину. Если отложим по оси абсцисс энергию ядра, а по оси ординат - вероятность найти ядро в состоянии с данной жнергии, то ширина кривой, измеренная на половине высоты, называется шириной линии Γ и она связана со средним временем жизни τ возбужденного состояния:

$$\Gamma \cdot \tau \approx \hbar \tag{1}$$

Ядро также может поглотить фотон и перейти на более высокое состояние если энергия фотона равна разности энергий между состояниями. Этот процесс носит резонансный характер.

Не так просто обнаружить этот эффект, т.к. энергия E_{γ} , уносимая γ -квантом, оказывается меньше энергии E_0 перехода между уровнями. Также часть энергии уносится ядром, вследствие отдачи оно начинает двигаться в противоположную γ -кванту сторону.

По ЗСИ ядро получит импульс равный импульсу фотона, тогда энергия отдачи R:

$$R = \frac{p^2}{M_{\pi}} = \frac{E_{\gamma}^2}{2M_{\pi}c^2} \tag{2}$$

Для олова $E_0=23.8$ кэВ, $R\approx 2.5\cdot 10^{-3}$ эВ. На рис. 1 видно, как сдвигается линия поглощения вправо, а испускания - влево.

Резонансное поглощение возможно если спектры испускания и поглощения перекрываются:

$$2R \le \Gamma \tag{3}$$

Однако это условие почти никогда не выполняется для γ -переходов в свободных ядрах.

Можно компенсировать энергетический сдвиг с помощь/ эффекта Доплера. Для этого будем двигать излучающие и поглощающие ядра относительно друг друга со скоростью:

$$V = c \cdot 2R/E_{\gamma} \approx 60 \text{ m/c} \tag{4}$$

Ширина линии складывается из собственной и доплеровской ширины, основную роль играет доплеровская, связанная с тепловым движением атомов. Доплеровский сдвиг:

$$D = 2\sqrt{Rk_{\rm B}T} \approx 1.5 \cdot 10^{-2} \text{ sB} \tag{5}$$

Доплеровская ширина оказывается больше собтсвенной и больше сдвига R. В результате доплеровског уширения частично линии будут перекрываться (рис. 2) и будет доля γ -квантов, для которыз отдача R скомапенсирована и возможно резонансное поглощение.

Рис. 1: Энергетическое распределение, характеризующее возбужденное состояние (а), и я и и поглощения из-за отдачи.

Рис. 2: Перекрытие линий испускания и поглощения вследствие доплеровского сдвига

Рис. 3: Спектр упругого резонансного поглощения γ -квантов.

2.2 Ядра атомов в кристаллической решетке

Энергия, необходимая для смещения ядра $10 \div 30$ эВ. При испускании γ -квантов с E < 1 МэВ энергия отдачи недостаточна для вырывания ядра из кристаллической решетки, энергия отдачи переходит в звуковые колебания, переносимые фононами. Процесс генерации фононов тем легче, чем их больше, то есть при больших температурах. В формуле (2) вместо массы ядра будет масса всего кристалла и энергия отдачи понизиться на $10 \div 20$ порядков и становится очень малой.

Эффект Мессбауэра - испускание и поглощение γ -квантов в твердых телах без рождения фононов. Вероятность эффекта оценивается выражением:

$$f = e^{-4\pi^2 \langle u^2 \rangle / \lambda^2} \tag{6}$$

 $\langle u^2 \rangle$ - среднеквадратичное смещение ядер в процессе тепловых колебаний решетки (в направлении вылеты γ -кванта), λ - длина волны излучения. Видно, что вероятность уменьшается с ростом температуры и растет с уменьшением длины волны.

Эффект Мессбауэра ограничен областью малых энергий γ -лучей ≈ 200 кэВ. Линия резонансного мессбауэрского поглощения не размыта тепловым движением и имеет малую ширину.

Отсутсвие доплеровского уширения из-за беспорядочноо теплового движения атомов связано с тем, что частота тепловых колебаний много больше, чем частота жизни мессбауэрских ядерных уровней, поэтому за время испускания γ -кванта ядро успевает много раз сменить направение скорости и среднее значени равно нулю.

Гамма излучение пропускается через резонансный поглотитель, где находятся ядра ^{119}Sn , тут происзодит взаимодествие квантов с электронами за счет фотоэффекта и эффекта Комптона и взаимодействие с ядрами. Интенсивность проходящего через поглотитель излучения уменьшается как:

$$e^{-n_e\sigma_e}e^{-nf\sigma(E)} \tag{7}$$

 n_e , n - число электронов и ядер поглотителя на 1 см 2 поглотителя, f - вероятность Мессбауэра, σ_e , $\sigma(E)$ - сечение взаимодействия с электронами среды и сечение резонансного поглощения. Сечения резонансного поглощения имеет вид лоренца:

$$\sigma(E) \propto \frac{(\Gamma/2)^2}{(E - E_0)^2 + (\Gamma/2)^2} \tag{8}$$

 E_0 - энергия ядерного перехода, Γ - естественная ширина линии. Излучение, прошедшее через поглотитель, регистрируется сцинтилляционным спектрометром.

Наблюдать резонансное поглощение будем используя метод доплеровского сдвига, для создания которого поглатителю будет сообщена скорость порядка миллиметра в секунду.

Ядра источника и поглотителя находятся в идентичных кристаллах при одной температуре, то их линии полностью перекрываются и максимум поглощения при нулевой скорости (рис. refp3)

Если ядра входят в состав химических соединений, то максимум линии поглощения будет наблюдаться при ненулевой скорости. Т к энергия ядерного перехода зависит от электростатических сил взаимодействия ядра с окружающими электронами, что сравнительно с шириной линии упругого резонансного поглощения. Смещение максимума линии легко замечается и называется химическим сдвигом.

Для источника и поглотителя из разынх хим. соединений смещение максимума по скорости:

$$v_p = \frac{\Delta E}{E_0} c \tag{9}$$

Величина амплитуды эффекта:

$$\varepsilon(v) = \frac{N(\infty) - N(v)}{N(\infty) - N_{\Phi}} \tag{10}$$

N(v) - скорость счета квантов прошедших через поглотитель при скорости $v,\ N(\infty)$ - скорость счета квантов при достаточно большой скорости, когда резонансное поглощение отсутсвиествует, N_{Φ} - скорость счета радиоактивного фона.

На опыте измеренная $\Gamma_{\text{эксп}}$ - результат наложения линий источника и поглотителя, в идеальных условиях ширина линии равна удвоенной естественной ширине 2Γ . Увеличение толщины поглотителя заметно уширяет резонансную линию, тк:

- Кванты, энергия которых вблизи максимума линии уже сильно поглощаются в тонких и ширина почти не имеет значения.
- Уширение лини может происходить и вследствие самопоглощения квантов в источнике.
- Аппаратурное уширение вибрации источника
- Неравномерность скорости перемещения поглотителя

3 Экспериментальаня установка

Рис. 4. Блок-схема установки для наблюдения эффекта Мессбауэра: 9 — эксцентрик, С — сцинтилляционный кристалл NaI(Tl), У — усилитель, АА — одноканальный амплитудный анализатор, 9BM — персональный компьютер, Γ — генератор для питания двигателя, РД-09 — двигатель с редуктором, BCB — высоковольтный стабилизированный выпрямитель

Рис. 4

В работе используется источник γ -квантов радиоактивный изотоп олова ^{119m}Sn в виде соединения $BaSnO_3$, распадается с излучением гамма-квантов ≈ 65 кэВ, переходя на первый возбужденный уровень (рис. 5). При переходе с первого уровня на основной излучается γ -квант 23.8 кэВ.

Рис. 5: Схема распада ^{119}Sn (a) ; спектр излучения источника $BaSnO_3$

На рис. 56, показан спектр излучения источника. Видны также размытые пики на 100 кэВ и 300 кэВ. Для наблюдения эффекта нужно выделить основную линию из общего излучения, установив окно амплитудного анализатора.

4 Ход работы

4.1 Измерение спектра источника и его анализ

Цель - подобрать настройки анализатора импульса так, чтобы детектировались только γ -кванты с энергией 23.8 кэB, исходящие от источника

- 1. Включим установку, все настроим. Установим ширину окна
- 2. Установим ширину окна 0.5 В
- 3. Измерим интенсивность излучения (скорость счета) двигая окно от 0 до 9.5 В
- 4. Результат занесем в таблицу 1 и нанесем на график (рис. 6)
- 5. Сделаем фит функцией Лоренца (Распределение Коши):

$$f(x) = \frac{1}{\pi \gamma \left(1 + \left(\frac{x - x_0}{\gamma}\right)^2\right)} \tag{11}$$

Но в нашем случае немног модернезируем его, чтомы можно было сделать фит:

$$f(x) = b - \frac{a}{1 + \left(\frac{x-d}{c/\alpha}\right)^2} \tag{12}$$

Где α - некий коэффициент определяющий вместе с коэффициентом c полуширину на полувысоте, α подбирается каждый раз исходя из прикидывания полуширины, чтобы помочь алгоритму подобрать коэффициенты. В итоге $2 \cdot c/\alpha = \Gamma_{\text{экс}}$. Коэффициент b определяет высоту аппроксимационной кривой. d - есть химический сдвиг.

Таблина 1

N, c^{-1}	674.6	270	386	919.3	1982.7	3375.3	4593.1	4787.1	3833.1	2405.3
U, B	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
N, c^{-1}	1205.9	538.4	215.8	109.4	79.8	55.9	46.4	36.6	29.7	
U, B	5.5	6	6.5	7	7.5	8	8.5	9	9.5	

6. По графику понимаем, что большгая часть нужных нам квантов лежит в диапазоне от 2 до 6 В.

4.2 Измерение резонансного поглощения

Цель - измерить резонансное поглощение для 4х образцов

- 1. Время измерения 20 секунд.
- 2. Измерим фон = 14 1/c
- 3. Занесем в таблиуц 2 параметры фитов:

Таблица 2

Поглотитель	a	σ_a , %	b, c^{-1}	σ_b , %	с, мм/с	σ_c , %	d, мм/с	σ_d , %	α
1	-3138.14	7.54	40332.52	0.25	-1.46	14.99	2.366	2.49	2
2	-3304.33	2.94	20085.86	0.19	0.32	5.50	2.31	0.84	0.5
3	-1873.44	4.89	8715.93	0.38	1.67	7.59	2.40	5.27	2
4	-12250.20	1.34	32588.94	0.06	0.92	1.42	-0.02	13.77	1

Рис. 6: Измеренный спектр источника

4. По полученным параметрам аппроксимации определим следующие величины (таблица 3):

Таблица 3

Поглотитель	Хим сдвиг, мм/с	Хим сдвиг, эВ	$\Gamma_{\text{эксп}}, \text{ мм/c}$	$\Gamma_{\text{эксп}}, \text{э} \text{B}$
1	2.366	$1.87 \cdot 10^{-7}$	1.46	$1.16 \cdot 10^{-7}$
2	2.31	$1.83 \cdot 10^{-7}$	1.28	$1.05 \cdot 10^{-7}$
3	2.40	$1.9 \cdot 10^{-7}$	1.67	$1.32 \cdot 10^{-7}$
4	-0.02	$1.58 \cdot 10^{-9}$	0.04	$3.17 \cdot 10^{-9}$

Величина зимического сдвига в эВ:

$$\Delta E = E \frac{v}{c} \tag{13}$$

E=23.8 кэ ${
m B}$

Экспериментальная ширина линии $\Gamma_{\text{эксп}}$ в эВ:

$$\Gamma_{\rm эксп} = 2\Gamma = E \frac{v}{c} \tag{14}$$

Рис. 7: Резонансное поглощение на 1-м образце

Рис. 8: Резонансное поглощение на 2-м образце

Рис. 9: Резонансное поглощение на 3-м образце

Рис. 10: Резонансное поглощение на 4-м образце

	N1	v1	N2	v2	N3	v 3	N4	v4
0	40245.0	-1.76	20027.0	-1.76	8632.0	-1.76	25258.5	-0.78
1	38288.0	2.15	18182.0	1.79	7485.0	1.79	25726.9	0.79
2	40272.0	-1.53	20020.0	-2.17	8672.0	-1.57	27310.6	-1.08
3	39090.0	1.56	16748.0	2.19	7891.0	1.61	27585.5	1.09
4	40250.0	-2.00	20093.0	-1.51	8665.0	-2.01	28697.6	-1.39
5	37042.0	2.02	18932.0	1.56	7010.0	2.03	28928.6	1.39
6	40207.0	-2.43	20014.0	-1.99	8687.0	-2.41	29348.6	-1.54
7	36854.0	2.43	17193.0	2.03	6928.0	2.42	29447.4	1.54
8	40214.0	-2.81	20111.0	-2.43	8636.0	-2.83	29371.0	-1.55
9	38248.0	2.82	17065.0	2.45	7513.0	3.23	29527.0	1.59
10	40326.0	-3.18	20124.0	-2.81	8667.0	-3.19	30480.0	-2.02
11	39027.0	3.18	18090.0	2.81	7870.0	3.19	30511.0	2.04
12	40306.0	-3.53	20079.0	-3.16	8641.0	-3.51	31011.0	-2.40
13	39305.0	3.53	18784.0	3.17	8048.0	3.51	31103.0	2.43
14	40300.0	-3.88	20088.0	-3.52	8667.0	-3.87	31401.0	-2.80
15	39686.0	3.88	19163.0	3.53	8338.0	3.86	31309.0	2.80
16	40321.0	-4.25	20051.0	-3.90	8673.0	-4.19	31664.0	-3.19
17	39774.0	4.24	19376.0	3.89	8338.0	4.18	31565.0	3.18
18	40419.0	-4.59	20001.0	-4.25	8728.0	-4.50	31836.0	-3.53
19	39982.0	4.55	19636.0	4.27	8413.0	4.46	31799.0	3.53
20	NaN	NaN	20120.0	-4.60	NaN	NaN	31895.0	-3.91
21	NaN	NaN	19736.0	4.59	NaN	NaN	31910.0	3.88
22	NaN	NaN	NaN	NaN	NaN	NaN	32085.0	-4.24
23	NaN	NaN	NaN	NaN	NaN	NaN	32036.0	4.21
24	NaN	NaN	NaN	NaN	NaN	NaN	32138.0	-4.57
25	NaN	NaN	NaN	NaN	NaN	NaN	32138.0	4.54

Рис. 11: Общие данные поглощения