2009 School Year

Graduate School Entrance Examination Problem Booklet

Mathematics

Examination Time: 10:00 to 12:30

Instructions

- 1. Do not open this problem booklet until the start of the examination is announced.
- 2. If you find missing, misplaced, and/or unclearly printed pages in the problem booklet, ask the examiner.
- 3. Answer all of three problems appearing in this booklet, in Japanese or English.
- 4. You are given three answer sheets. You must use a separate answer sheet for each problem. You may continue to write your answer on the back of the answer sheet if you cannot conclude it on the front.
- 5. Fill the designated blanks at the top of each answer sheet with your examinee's number and the problem number you are to answer.
- 6. The blank pages are provided for rough work. Do not detach them from this problem booklet.
- 7. An answer sheet is regarded as invalid if you write marks and/or symbols and/or words unrelated to the answer on it.
- 8. Do not take the answer sheets and the problem booklet out of the examination room.

Examinee's number	No.
-------------------	-----

Fill this box with your examinee's number.

(blank page for rough work)

Problem 1

Suppose that three-dimensional column vectors \boldsymbol{x}_n satisfy the recurrence equation:

$$x_n = Ax_{n-1} + u$$
 $(n = 1, 2, ...),$

where

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & a \\ 0 & a & a^2 \end{pmatrix}, \quad \boldsymbol{u} = \begin{pmatrix} b \\ c \\ 0 \end{pmatrix} \quad \text{and} \quad \boldsymbol{x}_0 = \begin{pmatrix} 0 \\ 0 \\ d \end{pmatrix}.$$

Let a, b, c and d be real constants and assume $a \neq 0$. Answer the following questions.

- (1) Express the eigenvalues of A with a.
- (2) Express A's eigenvectors p, q and r with a. Let p and r correspond to the largest and the smallest eigenvalues, respectively, and set $||p|| = ||r|| = \frac{1}{\sqrt{a^2 + 1}}$ and ||q|| = 1.
- (3) Express \boldsymbol{u} and \boldsymbol{x}_0 as linear combinations of \boldsymbol{p} , \boldsymbol{q} and \boldsymbol{r} .
- (4) Suppose $\mathbf{x}_n = \alpha_n \mathbf{p} + \beta_n \mathbf{q} + \gamma_n \mathbf{r}$. Describe α_n , β_n and γ_n using α_{n-1} , β_{n-1} and γ_{n-1} .
- (5) Obtain x_n .
- (6) Suppose that θ_n denotes the angle between \boldsymbol{x}_n and vector \boldsymbol{s} , where

$$s = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
.

Describe a necessary and sufficient condition on $a,\ b,\ c$ and d for $\lim_{n\to\infty}\theta_n=0$.

Problem 2

Consider a system whose temperature is controlled by a heater.

Let x(t) denote the temperature of the system at time t. While the switch of the heater is off, temperature x(t) follows the differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -x. \tag{*}$$

While the switch of the heater is on, temperature x(t) follows the differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 1 - x. \tag{**}$$

First, consider the behavior of the system when the switch is kept intact.

(1) Find the solutions of the differential equations (*) and (**) with the initial condition $x(0) = x_0$.

Next, given the thresholds θ_0 and θ_1 for the temperature that satisfy $0 < \theta_0 < \theta_1 < 1$, consider automatically manipulating the switch according to the following rule to keep the temperature between θ_0 and θ_1 . Turn on the switch when the temperature is not higher than θ_0 and the switch is off. Turn off the switch when the temperature is not lower than θ_1 and the switch is on. Otherwise, keep the switch intact.

Assume that the temperature x_0 at time 0 is higher than θ_0 , and the switch is off at time 0.

- (2) Find time t_1 when the switch is turned on for the first time after time 0.
- (3) The temperature evolves periodically after time t_1 . Find the period, τ .
- (4) Consider the time average of the temperature during one period, $\bar{x} = \frac{1}{\tau} \int_{t_1}^{t_1+\tau} x(t) dt$, and the mean of the thresholds, $\bar{\theta} = \frac{\theta_0 + \theta_1}{2}$. The difference between these values $\bar{x} \bar{\theta} = \frac{1}{\tau} \int_{t_1}^{t_1+\tau} (x(t) \bar{\theta}) dt$ can be expressed with a certain function $f(x, \bar{\theta})$ as follows:

$$\bar{x} - \bar{\theta} = \frac{1}{\tau} \int_{\theta_0}^{\theta_1} f(x, \bar{\theta}) \mathrm{d}x.$$

Find the function $f(x, \bar{\theta})$.

(5) Suppose that θ_0 and θ_1 are varied so that the mean $\bar{\theta}$ takes a constant value. Prove that if $\bar{\theta} < \frac{1}{2}$, then $(\bar{x} - \bar{\theta})\tau$ monotonically decreases as $w = \frac{\theta_1 - \theta_0}{2}$ increases.

Problem 3

Answer the following questions concerning random walk of a particle. The particle moves to an adjacent point with the equal probability at one time.

As shown in Fig. 3.1, consider points with integer coordinates in the range of $0 \le x \le n$ $(n \ge 2)$ on the x-axis. Random walk terminates when the particle arrives at x = 0 or x = n. $P_n(k)$ represents the probability that the particle at x = k $(0 \le k \le n)$ terminates its random walk by arriving at x = n.

Figure 3.1

- (1) For $1 \le k \le n-1$, describe $P_n(k)$ using $P_n(k-1)$ and $P_n(k+1)$.
- (2) Calculate $P_3(2)$ using the facts $P_3(0) = 0$ and $P_3(3) = 1$.
- (3) Find $P_n(k)$.
- (4) Let $T_n(k)$ represent the average number of steps the particle at $x = k \ (0 \le k \le n)$ makes before it terminates its random walk. Find $T_n(k)$.

As shown in Fig. 3.2, consider points with integer coordinates in the range of $-2 \le x \le 4$ on the x-axis and $-2 \le y \le 3$ on the y-axis. For example, the adjacent points of (0,1) are (0,2) and (0,0), and those of the origin (0,0) are (1,0), (0,1), (-1,0) and (0,-1). Random walk terminates when the particle arrives at one of (x,y) = (4,0), (0,3), (-2,0) and (0,-2).

Figure 3.2

- (5) Calculate the probability $P_{(4,0)}$ that the particle at the origin (0,0) terminates its random walk by arriving at (x,y)=(4,0).
- (6) Calculate the average number of steps T that the particle at the origin (0,0) makes before it terminates its random walk.

(blank page for rough work)

(blank page for rough work)