Př: Vyřešte rovnici:

$$3\cos 2x + \cos x = 1 - 4'\sin^2 x$$

Př: Vyřešte rovnici:

$$\sin x + \sin 2x = \operatorname{tg} x$$

§9. Vzdálenost

Def: Nechť $A, B \in \mathbb{E}_3$. $Vzdáleností dvou bodů A,B nazýváme délku úsečky AB a označujeme ji <math>\rho(A, B)$.

Pozn: Vzdálenost bodů A, B je tedy reálné číslo $\rho(A, B) = |AB|$.

Pozn: Vzdálenost $\rho(A,B)$ můžeme považovat za zobrazení $\rho:\mathbb{E}_3\times\mathbb{E}_3\to\mathbb{R}$, které má vlastnosti: $\forall A,B,C\in\mathbb{E}_3$:

1. $\rho(A, B) \ge 0$, přičemž $\rho(A, B) = 0 \Leftrightarrow A = B$

2. $\rho(A, B) = \rho(B, A)$

3. $\rho(A,B)+\rho(B,C)\geq\rho(A,C),$ přičemž rovnost nastává $\Leftrightarrow B\in AC$

Pozn: Uvedené vlastnosti se používají při axiomatické definici vzdálenosti.

Def: Necť $A \in \mathbb{E}_3$ je bod $\alpha \subset \mathbb{E}_3$ je rovina. $Kolmým \ průmětem \ bodu \ A \ do \ roviny \ \alpha \ nazýváme \ bod \ A_0 \ definovaný takto:$

• $A \in \alpha \Rightarrow A_0 = A$

• $A \notin \alpha \Rightarrow A_0 \Rightarrow \cap \alpha, p \perp \alpha, A \in p$

V.9.1.: Nechť $A \in \mathbb{E}_3$ je bod, $\alpha \subset \mathbb{E}_3$ je rovina. Pak platí: $\rho(A, \alpha) = \min\{\rho A, X, X \in \alpha\}$

Př: Vypočtěte vzdálenost V od podstavy pravidelného čtyřbokého jehlanu ABCDV, je li $|AB|=a, |\sphericalangle VAB|=\frac{\pi}{3}$:

 $\frac{i}{a\sqrt{2}}$ 2

Def: Necť $A \in \mathbb{E}_3$ je bod $p \subset \mathbb{E}_3$ je přímka.

 $Kolmým \ průmětem bodu A na přímku p nazýváme bod<math display="inline">A_0$ definovaný takto:

• $A \in p \Rightarrow A_0 = A$

• $A \not\in p \Rightarrow A_0 \in p \cap \alpha, p \perp \alpha, A \in p$

V.9.2.: Nechť $A \in \mathbb{E}_3$ je bod, $p \subset \mathbb{E}_3$ je přímmka. Pak platí: $\rho(A, \alpha) = \min\{\rho A, X, X \in p\}$

Př: Vypočítejte vzdálenost bodu A od přímky VC v pravidelném čtyřbokém jehlanu ABCV, je li $|AB|=a,\,|AV|=s$

V.9.3.: Nechť $\alpha, \beta \subset \mathbb{E}_3$ jsou dvě rovnoběžné roviny. Pak platí: $\forall A, B \in \alpha : \rho(A, \beta) = \rho(B, \beta)$

Def: Nechť $\alpha, \beta \subset \mathbb{E}_3$ jsou dvě rovnoběžné roviny. Pak *vzdáleností dvou rovnoběžných rovin* α, β) definujeme takto: $\rho(\alpha, \beta)$, $A\alpha$ je libovolný bod.

Pozn: 1)

•
$$\alpha = \beta \Rightarrow \rho(\alpha, \beta) = 0$$

- $\bullet\,$ Vzdálenosti různoběžných rovin klademe hodnotu 0.
- Př: Vypočtěte vzdálenost $\rho(F, \overleftrightarrow{BEG})$ v pravidelném čtyřbokém hranolu (kvádru) ABCDEFGH, kde |AB| = |CD| = a, |AE| = b:
 - \bullet Porovnáním objemů $BEGT, BGFE.\ V_{BGEF} =$
 - $\bullet\,$ Porovnáním obsahůBSF
 - \bullet Pomocí podobných $\triangle BSF$ a $\triangle FF_0S$

$$\frac{ab}{\sqrt{a^2+2b^2}}$$