CRIPTOANÁLISE

Virgilius Santos <virgilius.santos@acad.pucrs.br>

Pontifícia Universidade Católica do Rio Grande do Sul – Escola Politécnica – Curso de Engenharia de Software Av. Ipiranga, 6681 Prédio 32 Sala 505 – Bairro Partenon – CEP 90619-900 – Porto Alegre – RS

23 de abril de 2020

RESUMO

Este artigo irá descrever como conseguimos decifrar um texto encontrando a chave usando o índice de coincidência e em seguida decodificando usando a cifra de Vigenère.

1 INTRODUÇÃO

O objetivo deste trabalho é aplicar os conhecimentos sobre criptoanálise.

Usando a linguagem Swift criamos um framework capaz de receber um texto codificado, buscar uma chave de criptografia usando o índice de coincidência e por fim decifrar o texto com essa chave.

2 ALGORITMO

O Algoritmo foi desenvolvido em torno de duas funções a primeira buscar a chave usada para codificar, e a segunda função usada para decodificar o texto.

2.1 Buscar a Chave

Essa função foi feita para, usando o índice de coincidências, encontrar a chave de encriptação.

Para fazer isso primeiramente ela precisa que o texto seja transformado em uma lista de caracteres A.

A seguir mostrarmos o algoritmo que usamos para contar a frequência dos caracteres:

```
para (começo: Inteiro = 0, começo <passo, começo ++) {
    dictArray = [[Char: Int]]
    dict = [Char: Int]
    dictArray.adicionar(dict)
    para (posição: Inteiro = começo, posição < A.tamanho, posição += passo) {
        dict[A[posição]] += 1
    }
}</pre>
```

Esse dict é um dicionário onde a chave é um caractere encontrado no texto e o valor é o número de vezes que ele aparece.

O dictArray é uma lista formada com os dicionários gerados com a variação dos passos.

Um exemplo para a palavra "celularidade" e passo igual a 2:

```
A = [c, e, l, u, l, a, r, i, d, a, d, e], passo = 2;

dictArray = [[c: 1, l: 2, r: 1, d: 2], [e: 2, u: 1, a: 2, i: 1]]
```

Dessa forma garantimos que no dicionário de caracteres apareçam apenas os caracteres que ocorrem naquele passo usado.

Em seguida calculamos o índice de coincidência para cada dicionário da lista de dicionários e tiramos uma média para saber o valor do índice de coincidência daquele passo.

Para fazer o cálculo do índice de coincidência usamos a função a seguir:

$$\mathbf{IC} = rac{\displaystyle\sum_{i=1}^{c} n_i (n_i - 1)}{N(N-1)/c}$$

Figura 1 - índice de coincidência

Onde n_i é cada valor do dict, N é o somatório de todos os valores do dict e c = 26 que é o número de caracteres do nosso alfabeto. Para facilitar usamos sem normalizar o denominador, ou seja, não dividimos o denominador por c (Índice da coincidência, Wikipédia 2020).

Para encontrarmos a chave fazemos o cálculo dos índices de coincidência para passos variando de 1 a 10 e escolhemos o que mais se aproxima do valor ideal, para textos em inglês o valor é 0.0667 e para textos em português o valor é 0.072723.

Ao determinarmos o índice de coincidência mais próximo, pegamos da lista de dicionários de caracteres daquele índice o caracter mais frequente e convertemos ele usando o caractere mais frequente da língua, no caso do inglês e português usamos "e" junto com a matriz de Vigenère inversa, explicaremos essa matriz a seguir.

Matriz Vigenère Inversa 2.2

Para facilitar o trabalho dentro de algoritmo na hora de decodificar o texto, geramos uma matriz de Vigenère onde os valores estão como índices das colunas e os índices estão como valores na matriz.

A matriz normal seria como a figura mostrada a seguir:

	Α	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z
Α	Α	В	C	D	Е	F	G	Н	1	J	Κ	L	М	Ν	О	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z
В	В	С	D	Е	F	G	Н	1	J	Κ	L	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α
C	С	D	Ε	F	G	Н	1	J	Κ	L	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В
D	D	Ε	F	G	Н	1	J	Κ	L	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	C
Ε	Ε	F	G	Н	1	J	Κ	L	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D
F	F	G	Н	1	J	Κ	L	М	Ν	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z	Α	В	С	D	Е
G	G	Н	1	J	Κ	L	Μ	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Ζ	Α	В	С	D	Ε	F
Н	Н	1	J	Κ	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Ζ	Α	В	С	D	Е	F	G
Τ	Τ	J	Κ	L	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н
J	J	Κ	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	1
K	Κ	L	Μ	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	Τ	J
L	L	М	Ν	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	1	J	K
Μ	М	Ν	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	Τ	J	Κ	L
Ν	N	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Е	F	G	Н	1	J	Κ	L	Μ
0	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	Τ	J	Κ	L	М	Ν
Р	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	1	J	Κ	L	М	Ν	0
Q	Q	R	S	Т	U	V	W	Х	Υ	Z	Α	В	С	D	Ε	F	G	Н	Ι	J	Κ	L	М	Ν	0	Р
R	R	S	Τ	U	٧	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	1	J	Κ	L	М	N	0	Р	Q
S	S	Т	U	٧	W	Х	Υ	Z	Α	В	С	D	Ε	F	G	Н	1	J	K	L	М	Ν	0	Р	Q	R
Т	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Е	F	G	Н	Τ	J	K	L	М	N	0	Р	Q	R	S
U	U	٧	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	Τ	J	Κ	L	Μ	Ν	0	Ρ	Q	R	S	Т
V	٧	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	1	J	K	L	М	Ν	0	Р	Q	R	S	Т	U
W	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	Τ	J	Κ	L	М	Ν	0	Ρ	Q	R	S	Т	U	٧
X	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	1	J	K	L	Μ	N	0	Р	Q	R	S	Т	U	٧	W
Υ	Υ	Z	Α	В	С	D	Ε	F	G	Н	Ι	J	K	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Χ
Z	Z	Α	В	С	D	Е	F	G	Н	1	J	K	L	Μ	N	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ
								Fi	gu	ra	2 -	M	at	riz	Vi	ige	nè	re								

Já na matriz invertida seria como a imagem a seguir:

Figura 3 - Matriz Vigenère Invertida

Essa matriz permite que se eu tiver uma letra da chave e o valor cifrado consigo decifrar mais rapidamente.

2.3 Decodificação

A decodificação do texto é feita parecida com a decodificação da chave, mas no lugar do caractere mais frequente, usamos a chave, ou seja, para cada valor do texto, usamos a chave daquela posição para decodificar.

3 CONCLUSÃO

Neste artigo usamos o índice de coincidência para encontrar o tamanho da chave e a letra mais frequente da língua do texto para decodificar a chave, usando esta chave decodificamos todo o texto e imprimimos o terminal.

Durante o desenvolvimento vimos que não era uma boa prática partir o texto em trechos menores, porque isso impactava diretamente a performance do algoritmo, já que era criadas várias palavras em memória. Pra resolver esse problema, convertemos o texto pra uma lista de caracteres e apenas percorremos esta lista.

Outro ponto importante é que para ver as letras mais frequentes estava criando dicionários com todas as letras do alfabeto, mas ao fazer isso também pesava durante o processo para gerar os índices de coincidência.

Por fim o ultimo ganho veio com a matriz de Vigenère invertida, que reduziu a decodificação para uma busca O(1).

Para confirmar os resultados usamos algumas ferramentas online e também criamos testes unitários tanto para validarem as funções criadas, quando para verificar a performance do algoritmo, sendo que para um texto grande disponibilizado o tempo caiu de alguns minutos partindo o texto em pedaços menores, para menos de 4 segundos quando passamos a percorrer a lista de caracteres.

4 REFERÊNCIA:

https://pt.qwe.wiki/wiki/Index_of_coincidence