17. Metriche

Corso di Python per il Calcolo Scientifico

Outline

- Soglia di decisione
- Veri positivi, falsi negativi
- L'accuratezza
- La precisione
- Il recall
- Tuning della soglia di decisione
- Metriche per la regressione

Soglia di decisione

- La regressione logistica ci restituisce una probabilità
- Ad esempio:
 - Se $p(spam) = 0.99 \Rightarrow$ il messaggio è (ragionevolmente) di spam
 - Se $p(spam) = 0.08 \Rightarrow$ il messaggio è (ragionevolmente) legittimo
- Cosa accade per p(spam) = 0.54?
- Occorre impostare una soglia di decisione
- Questa dipende dal problema
 - La tentazione sarebbe di impostarla a 0.5, ma non sarebbe corretto!

Veri positivi, falsi negativi

- Spam: classe positiva
- Legittima: classe negativa
- TP: spam classificato come tale
- TN: legittime classificata come tale
- FP: legittima classificata come spam
- FN: spam classificato come legittima

True Positive (TP)

I modello classifica correttamente un campione di classe positiva

False Negative (FN)

Il modello classifica erroneamente un campione di classe negativa

False Positive (FP)

Il modello classifica erroneamente un campione di classe positiva

True Negative (TN)

Il modello classifica correttamente un campione di classe negativa

L'accuratezza (1)

- La prima metrica che possiamo usare per valutare un algoritmo è l'accuratezza (accuracy)
- È definita come la percentuale di predizioni corrette sul totale delle predizioni, ovvero:

$$AC = \frac{TP + TN}{TP + TN + FP + FN}$$

- Viene valutata in percentuale
- Dà una prima indicazione (non esaustiva) sulla bontà del nostro algoritmo
- In Scikit Learn si ottiene mediante il metodo accuracy_score

L'accuratezza (2)

- Numero totale di email: 100
- Spam: 10, di cui 5 individuate come tali
- Legittime: 90, di cui 5 segnalate come spam

$$AC = \frac{TP + TN}{TP + TN + FP + FN} = \frac{5 + 85}{5 + 85 + 5 + 5} = 0.90 = 90\%$$

- Tuttavia, il classificatore ha individuato correttamente soltanto il 50% delle email di spam
- Di conseguenza, l'accuratezza può non bastare

La precisione

 La precisione ci indica la proporzione di valori di classe positiva individuati correttamente

$$P = \frac{TP}{TP + FP}$$

Nel nostro caso:

$$P = \frac{5}{5+5} = 0.50 = 50\%$$

- Il classificatore ha quindi una precisione del 50%
- In pratica, la metà delle mail indicate come spam sono legittime
- Scikit Learn permette il calcolo della precisione con il metodo precision_score()

II recall

• Il **recall** ci indica la porzione di veri positivi identificati correttamente dall'algoritmo:

$$R = \frac{TP}{TP + FN}$$

Nel nostro caso:

$$R = \frac{5}{5+5} = 0.50 = 50\%$$

- Il classificatore ha quindi anche un recall del 50%.
- In pratica, la metà delle mail di spam sono indicate come legittime.
- Scikit Learn permette il calcolo della precisione con il metodo recall_score().

Tuning della soglia di decisione (1)

- L'efficacia del modello è deducibile congiuntamente dall'analisi congiunta di recall e precisione.
- Vediamo un esempio:

In questo caso:

$$P = \frac{TP}{TP + FP} = \frac{4}{4+1} = 80\%$$

$$R = \frac{TP}{TP + FN} = \frac{4}{4+2} = 66\%$$

Tuning della soglia di decisione (2)

Proviamo ad innalzare la soglia di decisione, portandola ad esempio al 75%.

In questo caso:

$$P = \frac{TP}{TP + FP} = \frac{3}{3} = 100\%$$

$$R = \frac{TP}{TP + FN} = \frac{3}{3 + 3} = 50\%$$

Tuning della soglia di decisione (3)

Proviamo ad abbassare la soglia di decisione, portandola ad esempio al 50%.

In questo caso:

$$P = \frac{TP}{TP + FP} = \frac{4}{4+3} \approx 57\%$$

$$R = \frac{TP}{TP + FN} = \frac{4}{4+2} = 66\%$$

Metriche per la regressione (1)

• Il **Mean Squared Error** definisce l'errore quadratico medio della predizione:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

- È implementato mediante la funzione mean_squared_error().
- È particolarmente sensibile al valore di y_i.
- Il **Mean Average Percentage Error** (**MAPE**) va a compensare parte dei limiti dell'MSE dividendo il discostamento tra il valore predetto e quello vero per quest'ultimo.

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \frac{|y_i - \widehat{y_i}|}{\max(\epsilon, y_i)} \%$$

Metriche per la regressione (2)

- È implementato in Scikit Learn con la funzione mean_absolute_percentage_error().
- Rispetto all'MSE introduce un termine di normalizzazione.
- Il coefficiente di determinazione R^2 permette di spiegare la varianza del modello.
- Indicando come varianza (o *variabilità*) di un fenomeno il modo in cui combina le feature in ingresso per dare un valore di regressione in uscita, un modello ad alto R^2 sarà in grado di modellare la maggior parte di questa variabilità, assicurando performance di fitting migliori rispetto a quelle di un modello a basso R^2 .
- Viene implementato in Scikit Learn con la funzione r2_score().

Domande?

42