

Számítógépes hálózatok #00 – Bemutatkozás, követelmények

2024. szeptember 10.

Naszlady Márton Bese

naszlady@itk.ppke.hu

#00/1 – Bemutatkozás

A számítógépes hálózatok tudománya

Ember alkotta tudomány; ha nem lenne hasznos, nem érdekelne minket ennyire...

Modern életünk alapvető szolgáltatásai ezen a tudáson alapszanak!

Példák:

- telekommunikáció, (mobilhálózatok)
- hírközlés, (hang, szöveg, kép átvitele: TV, telefon)
- erőforrások átvitele, (webes tartalmak, online videók, programok letöltése)
- felhőszolgáltatások, (adattárolás, biztonsági mentések, elosztott rendszerek)
- adatkommunikáció, (banki tranzakciók, tőzsdei adatok, eü. szolgáltatások)
- érzékelő hálózatok, (időjárási adatok, földrengés, Mars-szonda)
- IoT rendszerek, (hűtőszekrény, Alexa, okos öntözőrendszer, Ipar4.0 gyár)
- PAN rendszerek, (okosóra, okostelefon, okosautó, fülhallgató)
- stb.

Oktatók

Naszlady Márton Bese <naszlady@itk.ppke.hu>

Előadás: péntek, 10:15-12:00, Jedlik előadó

Csutak Balázs <csutak.balazs@itk.ppke.hu>

Gyakorlat: kedd, 16:15-19:00, 219-220 PC labor

Továbbá elérhetők vagyunk Teamsen és (egyeztetett időpontban) személyesen is.

Tárgy adatok

Tárgy neve: Számítógépes hálózatok

Tárgykód: P-ITSZT-0043 (SZT: Számítástechnika tárgycsoport – Dr. Nagy Zoltán)

Félév: 3. félévre ajánlott

Kreditérték: 5 kredit (vagyis 5×30 = 150 hallgatói tanulmányi munkaóra)

Óraszám: 2 óra előadás és 3 óra gyakorlat 13 héten keresztül

#00/2 – Tematika

Tematika

Cél: adatot átvinni (A) pontból (B) pontba

Ez nem triviális, mert...

- több pont is lehet az univerzumban, (honnan tudom, hogy ki kinek küld?)
- több útvonal is lehet két pont között, (melyiket válasszam?)
- több adatátvitel is történhet egyszerre, (interferencia, torlódás, ...)
- az adatok nagyon eltérők lehetnek méretben és időben, (email vs. 4K videó stream)
- megváltozhat az összeköttetések rendje, (pl. vezetékszakadás)
- megváltozhat a pontok száma vagy viselkedése, (pl. áramszünet)
- lehetnek sürgős és kevésbé sürgős közlések, (pl. cunami riasztás vs. Viagra reklám)
- vannak védendő és kevésbé titkos adatok (pl. banki tranzakció vs. Wikipédia cikk)
- stb.

8

Tematika

Azonosítani fogunk helyzeteket, megoldandó feladatokat.

(problémák felismerése, leírása egyezményes eszközökkel)

Elméleti megoldást adunk a feladatra a (diszkrét) matematika eszközeivel.

(logikai kifejezések, gráfok, határértékeket megadó kifejezések, algoritmusok)

Implementáljuk az elméleti megoldást programkódban, számtech eszközben.

(hardver, firmver, szoftver)

Elemezzük a megoldást a gyakorlatban, azonosítjuk az esetleges új feladatot.

(mérések, biztonsági kérdések, erőforrás-felhasználás stb.)

Tematika

Összesen 12 + 1 előadás és gyakorlat lesz a félév során az alábbi témakörökben:

#01 – Hálózatok alapvető működése	#07 – Transport layer protocols 2
#02 – Ethernet, PPP, PPPoE	#08 – FTP, SMTP, HTTP, www
#03 – VLAN, IP, ARP, RARP	#09 – DNS, IPv6
#04 – ICMP, Routing, NAT, VPN	#10 – Hálózati biztonság
#05 – BOOTP, DHCP, TFTP, PXE	#11 – Rádiós technológiák
#06 – Transport layer protocols 1	#12 – Overlay networks

10

#00/3 – Követelmények

Nyelvi követelmények

A számítástechnika nyelve az angol. Az oktatás nyelve a magyar.

Gyakoriak lesznek az angol szakkifejezések, amiket nem magyarítunk, mert egyrészt hülyén hangzanak, másrészt senki sem érti, hogy mire gondolunk.

(network bridge → hálózati híd)

Vannak (sajnos?) magyarított kifejezések, ezt is angolul fogjuk használni.

 $(alapértelmezett átjáró \rightarrow default gateway)$

A szakkifejezések angol nyelven való használata és a rövidítésekben előforduló szavak megértése szükséges lesz majd.

Előzetes ismeretek

Bevezetés a számítástechnikába

- szám- és adatábrázolás bitekkel (bináris, hexadecimális, ASCII, Unicode)
- Linux operációs rendszeren való magabiztos munkavégzés (bash parancsok)
- számítógép mibenléte (memória, processzor, perifériák, operációs rendszer feladata)

Bevezetés a programozásba II.

- magabiztos C++ tudás, a fordítási hibák értelmezésének képessége
- mutatók (pointer) ismerete, összefüggése a memóriában tárolt bitekkel

Lineáris algebra és diszkrét matematika (nem előkövetelmény, de könnyíti a megértést)

- gráf fogalma, gráfok fajtái (fa, kör, teljes gráf; (irányított) élek)
- gráf algoritmusok (bejárások, gráf és mátrix kapcsolata, útkeresések, vágások)

Félév közbeni követelmények

Jelenlét: A TVSz alapján a kötelező tárgyak esetében legalább 75%.

Kiemelkedő eredményű hallgatóknak nem kötelező előadásra járni.

Követelmény: legfeljebb 3-3 hiányzás előadásról és gyakorlatról (katalógus)

RöpZH-k:

A gyakorlatok elején kifejtős vagy feleletválasztós kérdések az adott gyakorlatot megelőző előadás anyagából.

Pontozás: minden röpZH-n 0–4 pont szerezhető

Követelmény: az aláíráshoz legalább összesen 25 pontot kell szerezni

Lásd még a vizsgánál a villámkérdések részt!

Laborfeladat: mindegyik gyakorlaton lesznek feladatok, ezeket a gyakorlatvezető utasításai szerint kell megcsinálni.

Pontozás: ACK / NAK (elfogadva vagy sem)

Követelmény: az aláíráshoz legalább összesen 9 elfogadott labor kell.

Pluszpont, szorgalmi feladatok, megajánlott jegy

Az előadások során az okos kérdésekre és válaszokra pluszpont jár. **Pluszpont:**

A pontok felhasználhatók a röpZH-n elvesztett pontok pótlására.

Szorgalmi:

A félév során összesen 3 + 1 opcionális szorgalmi feladat lesz. A beadott feladatok számától függően többféle kimenetel lehet:

Beadott feladatok száma < 3 esetén:

Az egyes feladatok pluszpontnak számítanak (megoldás minőségétől függ).

Beadott feladatok száma == 3 esetén:

Elérhetővé válik az utolsó feladat. Mind a 4 feladat megoldása esetén megajánlott jegy szerezhető.

Megajánlott: Csak jó (4) és jeles (5) megajánlott jegy adható. Ha a szorgalmik megoldási minősége más jegyet eredményezne, akkor az oktatók döntése alapján az előadáson szerzett pluszpontok a megajánlott jegyhez figyelembe vehetők, vagy a szorgalmik a vizsgán pluszpontnak számolhatók el.

Vizsgakövetelmények

A tárgy kollokviumos (vizsgát kell tenni). A vizsga szóbeli, és két részből áll; az első (beugró) rész a **villámkérdések**:

Azokból a témakörökből, ahol a vonatkozó röpZH-n nem született magabiztos tudást tükröző eredmény, villámkérdésekre kell felelni:

0 pont: 2 db rövid és 2 db hosszú kérdés

1 pont: 1 db rövid és 1 db hosszú kérdés

2 pont: 1 db rövid kérdés

3-4 pont: nincs villámkérdés a témakörből

A rövid kérdésre néhány szavas választ kell adni (pl. mit rövidít egy adott kifejezés). A hosszú kérdésre néhány mondatban kell felelni (pl. mi egy adott algoritmus lényege).

A beugró akkor sikeres, ha a feltett hosszú kérdések mindegyikére helyes választ kapok.

A rövid kérdésekre adott helyes válasz nem feltétele a sikeres vizsgának, az csak a jobb vizsgajegyhez segít hozzá.

Vizsgakövetelmények

A villámkérdések sikeres teljesítése után a vizsga második része a **problémamegoldás** feladat lesz.

A problémamegoldás során egy (a való életből származó) helyzetet kell elemezni, megmutatni annak a tanultakhoz kapcsolódó vonatkozásait, és a vizsgáztatóval átbeszélve a lehetőségeket, szakmai szempontból korrekt javaslatot kell tenni a megoldásra.

Néhány példa ilyen problémára:

- XY betelefonál a szolgáltatóhoz, hogy elment az internet az otthonában...
- Az ABC cég szeretne egy saját honlapot üzemeltetni...
- Túlterheléses támadás alatt áll a PQR bank, amit ki kéne védeni...
- Gonosz hekkerként el kell lopnunk a vonaton utazó utasok személyes adatait...

#00/4 – Hogyan kell ezt megtanulni?

Hogyan eszel meg egy kenyeret?

Hogyan eszel meg egy kenyeret?

Természetes és mesterséges tudományok

Természet alkotta rendszer

Ember alkotta rendszer

eleve adott --> megértés

fel kell találni --> *létrehozás*

Egymásra gyakorlot hatás

<-- inspiráció -->

<-- "jövőbelátás" -->

(kvázi a bionika lényege)

https://www.ck12.org/c/biology/peripheral-nervous-system/lesson/The-Peripheral-Nervous-System-Advanced-BIO-ADV/https://www.linkedin.com/pulse/cable-management-just-beautiful-thingits-necessary-thing-polanco

Jó praktikák

Ha nem érted, kérdezz bátran!

Nincs buta kérdés; még nem kell érteni hozzá. Közös feladat, hogy együtt megértsük és megtanuljuk. Mi hoztuk létre ezt a tudományt, valami logikus indoka biztosan van annak, hogy miért úgy csináljuk.

Készülj óráról órára!

Sok dolog van, ami egymásra épül; könnyebben átlátsz egy bonyolult implementációt, ha ismered az általa kezelt problémát és az elméleti megoldást.

A rendszeres tanulással és gyakorlással általában jobban rögzül a tudás, mintha csak gyorsan átfutod a diákat a vizsga előtti napon.

Jó praktikák

Használd a megszerzett tudást!

Nézz körül a környezetedben és fedezd fel a tanultakat a valóságban!

Miért lassú a net a koliban? Mi történik, ha a gépteremben bekapcsolsz egy PC-t?
Mik azok a fehér dobozok a falon, amiken villog egy LED? Mi van írva az aknafedélre az utcán?
Honnan tudja a Google, hogy milyen nyelven jelenítse meg az oldalt? Sok mobilnetet fogyaszt a TikTok?
Mekkora össz-sávszélesség kell egy panelházban, hogy mindenki egyszerre tudjon híradót nézni?

Taníts másokat!

Ha azt hiszed, hogy érted egy probléma vagy megoldás mibenlétét, akkor próbáld meg elmagyarázni azt valakinek, aki még nem hallott róla!

Az együtt tanulás az egyik legjobb módja a fejlődésnek.

Összefoglaló és kifejezetten fontos diák

Használd a fejezetvégi összefoglalást!

Az előadásokban az egyes részeket összefoglaló dia zárja, amin a fejezet legfontosabb fogalmai vannak felsorolva. Ezeket mindenképpen tudni kell a röpZH-n és a vizsgán is.

Vannak kifejezetten fontos diák

A kifejezetten fontos diákat a jobb felső sarokban lévő felkiáltójel jelzi.

Pont úgy, mint ennél a diánál.

Olvasd a jegyzetet!

Az előadások anyagából írásos jegyzet is elérhető.

Olvasd el, nagyban segíti a megértést!

Tanulást segítő erőforrások

Diasorok: Az előadás előtti nap este a Moodle kurzusba feltöltve.

Jegyzet: Az előadást követően a Moodle kurzusba feltöltve.

Szakirodalom: [1] A. Tanenbaum, N. Feamster, and D. Wetherall, *Computer Networks*, *Global Edition*, 6th ed. Pearson Education, 2021

[2] P. L. Dordal, *An Introduction to Computer Networks, Release 2.0.11*, Loyola University Chicago, 2023

Népi gyűjtés: balma14, bolle, heihe oldalakon, drive-on, discordon stb. Nem mindig és minden helyes ezekben az anyagokban!

Korábbi anyagok: A Moodle rendszerben elérhetők a korábbi félévek anyagai: 2023/24/1 2022/23/1 2021/22/1 2020/21/1

VÉGE

Pázmány Péter Katolikus Egyetem

Információs Technológiai és Bionikai Kar