Path-Finding Algorithms

Agenda

- Strongly Connected Components
- Finding Paths
 - Finding Any Path
 - Label-Setting Shortest Paths
 - <u>Label-Correcting Shortest Paths</u>
 - All-Pairs Shortest Paths
- <u>Transitivity</u>
- Shortest Path Modifications
- Summary
- Exercises

Strongly Connected Components

Finding Paths

- Finding Any Path
- Label-Setting Shortest Paths
- Label-Correcting Shortest Paths
- All-Pairs Shortest Paths

Finding Any Path

- To find a path from node A to node B:
 - 1. Find a spanning tree rooted at node A.
 - 2. Follow the reversed links in the spanning tree from node B to node A.
 - Reverse the order in which the links were followed.

Shortest Path Trees

 A shortest-path tree gives the shortest paths from the root node to any node in the

network

Label-Setting Shortest Paths

- Once set, a node's distance is never changed
- At each step, you add the link that gives the least total distance from the root to a node that is not in the tree

Label-Setting Algorithm

- 1. Set the start node's distance to 0 and mark it as in the tree.
- 2. Add the start node's links to a candidate list of links.
- 3. While the candidate list is not empty, loop through the list.
 - a. If a link leads to a node in the tree, remove the link from the candidate list.
 - b. Suppose link L leads $N_1 \rightarrow N_2$ and N_2 is not yet in the tree. If D_1 is the distance to node N_1 in the tree and C_L is the cost of the link, let $D_2 = N_1 + C_L$ be the possible distance for node N_1 that uses this link. As you loop over the links in the candidate list, keep track of the link L_{best} and node N_{best} that give the smallest possible distance D_{best} .
 - c. Set the distance for N_{best} to D_{best} and mark N_{best} as part of the shortest path tree.
 - d. For all links L leaving node N_{best} , if L leads to a node that is not yet in the tree, add L to the candidate list.

Label-Correcting Shortest Paths

 A node's distance may be updated later if a better path is found

Label-Correcting Algorithm

- 1. Set the start node's distance to 0 and mark it as in the tree.
- 2. Add the start node's links to a candidate list of links.
- 3. While the candidate list is not empty:
 - a. Consider the first link in the candidate list.
 - b. Calculate the distance to the link's destination node: <distance> = <source node distance> + <link cost>.
 - c. If the new distance is better than the destination node's current distance:
 - i. Update the destination node's distance.
 - ii. Add all the destination node's links to the candidate list.

All-Pairs Shortest Paths, Part 1

- Floyd–Warshall algorithm
- Two-dimensional array named Distance
- Distance[start_node, end_node] is the shortest distance between nodes start_node and end_node

All-Pairs Shortest Paths, Part 2

- Node via can improve a path if:
 - start_node → end_node
- Becomes:
 - start_node → via_node → end_node

All-Pairs Shortest Paths Algorithm

- Initialize the Distance array
- For via_node = 0, 1, 2, ..., N 1:
 - For every pair of nodes A \rightarrow B:
 - See if you can use via_node to improve the path to:
 A → via_node → B

All-Pairs Shortest Paths Code, Part 1

1. Initialize the Distance array:

- a. Set Distance[i, j] = infinity for all entries.
- b. Set Distance[i, i] = 0 for all i = 1 to N 1.
- c. If nodes i and j are connected by a link i → j, set Distance[i, j] to the cost of that link.

All-Pairs Shortest Paths Code, Part 2

2. Initialize the Via array:

- a. For all i and j:
 - i. If Distance[i, j] < infi nity, set Via[i, j] to j to indicate that the path from i to j goes via node j.
 - ii. Otherwise, set Via[i, j] to -1 to indicate that there is no path from node i to node j.

All-Pairs Shortest Paths Code, Part 3

2. Execute the following nested loops to find improvements:

All-Pairs Shortest Paths Example

Transitivity

- Transitive Reduction
- Transitive Closure

Shortest Path Modifications

- Shape Points
- Early Stopping
- Bidirectional Search
- Best-First Search
- Turn Penalties and Prohibitions

Summary

- Finding Paths
 - Finding Any Path
 - Label-Setting Shortest Paths
 - Label-Correcting Shortest Paths
 - All-Pairs Shortest Paths
- Transitivity
- Shortest Path Modifications

Exercises

- Chapter 13 Exercises 8 21, 23 26.
- Read Essential Algorithms, 2e Chapter 14
 pages 351 470. (Stop before the section
 "Network Cloning.")