CS57300 PURDUE UNIVERSITY JANUARY 10, 2019

DATA MINING

ANNOUNCEMENTS

- TA office hours (Location: HAAS G50):
 - Mahak Goindani (Monday 6-7pm)
 - Omkar Patil (Thursday 1-2pm)
 - Hao Ding (Friday 3-4pm)
- Assignment 1 is out! Due time: January 20 (Sunday) 11:59pm
 - You can not apply any extension days on this assignment!
 - Please complete this assignment independently!

PROBABILITY AND STATISTICS BASICS

MODELING UNCERTAINTY

- Necessary component of almost all data analysis
- Approaches to modeling uncertainty:
 - Fuzzy logic: form of many-valued logic that reasons with partial truth values
 - Possibility theory: reasons about the possibility and necessity of events to deal with incomplete information
 - Rough sets: represents imperfect knowledge via upper and lower bounds on "certain" information
 - Probability (focus in this course)

PROBABILITY

- Probability theory (some disagreement)
 - Concerned with interpretation of probability
 - ▶ 17th century: Pascal and Fermat develop probability theory to analyze games of chance
- Probability calculus (universal agreement)
 - Concerned with manipulation of mathematical representations
 - ▶ 1933: Kolmogorov states axioms of modern probability

PROBABILITY BASICS

- ▶ Basic element: Random variable (RV)
 - A variable whose possible values are outcomes of a random phenomenon
 - X refers to random variable; x refers to a value of that random variable
- Types of random variables
 - Discrete RV has a finite set of possible values
 - ▶ e.g., Is there a storm warning ∈ {Yes, No}
 - ▶ e.g., Tomorrow's weather ∈ {sunny, rainy, cloudy, snow}
 - Continuous RV can take any value within an interval
 - e.g., Temperature

PROBABILITY BASICS

- Sample space (S)
 - > Set of all possible outcomes of the random phenomenon
- Event
 - Any subset of outcomes contained in the sample space S
 - Nhen events A and B have no outcomes in common they are said to be mutually exclusive

Random variable(s)	Sample space	Example event
		Probability of 1
Two coin tosses	HH, HT, TH, TT	At least one H H
		and a TT are mutu
Select one card	2♥,2♦,,A♣ (52) A ca	A card of hearts lly exclusive and of H and a black card

Q: Think of some mutually exclusive events of the above example events?

AXIOMS OF PROBABILITY

For a sample space **S** with possible events **A**_S:

A function that associates real values with each event A is called a *probability function* if the following properties are satisfied:

- 1. $0 \le P(A) \le 1$ for every A
- 2. P(S) = 1
- 3. $P(A_1 \lor A_2 ... \lor A_{n \in S}) = P(A_1) + P(A_2) + ... + P(A_n)$

if $A_1, A_2, ..., A_n$ are pairwise mutually exclusive events

INTERPRETING PROBABILITIES

- Meaning of probability is focus of debate and controversy
- Two main views: Frequentist and Bayesian

FREQUENTIST VIEW

- Dominant perspective for last century
- Probability is an objective concept
 - Defined as the frequency of an event occurring under repeated trials in "same" situation

CALCULATING PROBABILITIES: FREQUENTIST

- Repeated experiments
 - Let *n* be the number of times an experiment is performed
 - Let n(A) be the number of outcomes in which A occurs
 - Then as $n \to \infty$ P(A) = n(A) / n
- Nhen the various outcomes of an experiment are equally likely (e.g., toss a fair die), the task of computing probability reduces to counting
 - ▶ Let *N* be size of sample space (i.e., number of simple outcomes)
 - ▶ Let N(A) be the number of outcomes contained in A
 - Then: P(A) = N(A) / N
- Limitation: Restricts application of probability to repeatable experiment
 - ▶ What's the probability of Trump being re-elected in 2020?

BAYESIAN VIEW

- Increasing importance over last decade
 - Due to increase in computational power that facilitates previously intractable calculations
- Probability is a subjective concept
 - Defined as individual degree-of-belief that event will occur
 - E.g., belief that we will have a rainy day tomorrow
- Dbserved data helps us to update and inform our prior beliefs

CALCULATING PROBABILITIES: BAYESIAN

- ▶ Begin with *prior* belief estimates: **P(A)**
 - ► E.g., Bob believed that the chance of raining tomorrow is 0.2 P(rainy)=0.2
- Update belief by conditioning on observed data through Bayes' theorem P(A|data) = P(data|A) P(A) / P(data)
 - But then Bob observed a storm warning on the weather channel. In the past the storm warning appeared on 40% of rainy days. Overall a storm warning was given on 1 out of 8 days. Bob updated his belief on the chance of raining tomorrow:

P(rainy|warning) = 0.4 * 0.2 / 0.125 = 0.64

▶ Even when the same data is observed, if people have different priors, they can end up with different posterior probability estimates P(A|data)

PROBABILITY DISTRIBUTION

- **Probability distribution** (i.e., probability mass function or probability density function) specifies the probability of observing every possible value of a random variable
- Discrete
 - Denotes probability that X will take on a particular value:

$$P(X=x)$$

- Continuous
 - Probability of any particular point is 0, have to consider probability within an interval:

$$P(a < X < b) = \int_{a}^{b} p(x)dx$$

JOINT PROBABILITY

Joint probability distribution for a set of random variables gives the probability of every atomic event on those random variables

E.g., P(Weather, Warning) = $a 4 \times 2$ matrix of values:

	sunny	rainy	cloudy	snow
warning = Y	0.005	0.08	0.02	0.02
warning = N	0.415	0.12	0.31	0.03

> Every question about events can be answered by the joint distribution

CONDITIONAL PROBABILITY

- Conditional (or posterior) probability: The probability of an event given that another event has happened
 - e.g., P(warning=Y | snow=T) = 0.4
 - Complete conditional distributions:

```
P(warning | snow) =

{P(warning = Y | snow = T), P(warning = N | snow = T)},

{P(warning = Y | snow = F), P(warning = N | snow = F)}
```

- If we know more, then we can update the probability by conditioning on more evidence
 - e.g., if windy is also given then $P(warning=Y \mid snow=T, windy=T) = 0.5$

CONDITIONAL PROBABILITY

Definition of conditional probability:

$$P(A|B) = \frac{P(A \land B)}{P(B)} \quad \text{if } P(B) > 0$$

Product rule gives an alternative formulation:

$$P(A \land B) = P(A|B)P(B)$$
$$= P(B|A)P(A)$$

Chain rule is derived by successive application of product rule:

$$P(X_{1},...,X_{n}) = P(X_{n}|X_{1},...,X_{n-1})P(X_{1},...,X_{n-1})$$

$$= P(X_{n}|X_{1},...,X_{n-1})P(X_{n-1}|X_{1},...,X_{n-2})P(X_{1},...,X_{n-2})$$

$$= ...$$

$$= \prod_{i=1}^{n} P(X_{i}|X_{1},...,X_{i-1})$$

MARGINAL PROBABILITY

- Marginal (or unconditional) probability corresponds to belief that event will occur regardless of conditioning events
- Marginalization: $P(A) = \sum_{b \in B} P(A,b)$ $= \sum_{b \in B} P(A|b)P(b)$

Example: What is P(cloudy)?

	sunny	rainy	cloudy	snow
warning = Y	0.005	0.08	0.02	0.02
warning = N	0.415	0.12	0.31	0.03

INDEPENDENCE

Two variables A and B are independent if knowing B tells you nothing about A and vice versa:

$$P(A|B) = P(A)$$
 or $P(B|A) = P(B)$ or $P(A, B) = P(A) P(B)$

Two variables A and B are **conditionally** independent given Z iff for all values of A, B, Z:

$$P(A, B | Z) = P(A | Z) P(B | Z)$$
 or $P(A | B, Z) = P(A | Z)$

Note: independence does not imply conditional independence or vice versa

EXAMPLE 1

- Conditional independence does not imply independence
- ► Gender and lung cancer are not independent $P(C \mid G) \neq P(C)$

• Gender and lung cancer are conditionally independent given smoking $P(C \mid G, S) = P(C \mid S)$

Why? Because gender indicates likelihood of smoking, and smoking causes cancer

EXAMPLE 2

- Independence does not imply conditional independence
- Sprinkler-on and raining are independent P(S | R) = P(S)

► Sprinkler-on and raining are not conditionally independent given grass is wet $P(S \mid R, W) \neq P(S \mid R)$

Why? Because once we know the grass is wet, if it's not raining, then the explanation for the grass being wet has to be the sprinkler Ref material - https://en.wikipedia.org/wiki/Joint probability distribution

MULTIVARIATE RV while a given person has a specific age, height and weight, the representation of these features of an unspecified person from within a group would be a random vector.

- Normally each element of a random vector is a real number of random variable X is a set $X_1, X_2, ..., X_p$ of random variables
 - Joint density function: $P(\mathbf{x}) = P(x_1, x_2, ..., x_p)$
 - Marginal density function: the density of any subset of the complete set of variables, e.g.,: $P(x_1) = \sum p(x_1, x_2, x_3)$

 x_2,x_3

Conditional density function: the density of a subset conditioned on particular values of the others, e.g.,:

 $P(x_1|x_2,x_3) = \frac{p(x_1,x_2,x_3)}{p(x_2,x_3)}$

EXPECTATION

Denotes the expected value or mean value of a random variable X

Discrete

$$E[X] = \sum x \cdot p(x)$$

Continuous

$$E[X] = \int_{x}^{x} x \cdot p(x) dx$$

Expectation of a function

$$E[h(X)] = \sum_{x} h(x) \cdot p(x)$$
$$E[aX + b] = \sum_{x} h(x) \cdot p(x) + b$$

Linearity of expectation

$$E[X+Y] = E[X] + E[Y]$$

VARIANCE

- Denotes the squared deviation of X from its mean
- Variance

$$Var(X) = E[(x - E[X])^2]^{\text{Expand }(x-E[X])^2}$$

= $E[X^2] - (E[X])^2$

Standard deviation

$$\sigma = \sqrt{Var(X)}$$

Variance of a function

$$Var(aX + b) = a^2 \cdot Var(X) \frac{\text{E[(aX+b-E[ax+b])^2]}}{\text{a^2E[X-E[X]^2]}}$$

$$Var(h(X)) = \sum_{x} (h(x) - E[h(x)])^2 \cdot p(x)$$

COMMON DISTRIBUTIONS

- Bernoulli
- Binomial
- Multinomial
- Poisson
- Normal

BERNOULLI

- ▶ Binary variable (0/1) that takes the value of 1 with probability p
 - ▶ E.g., Outcome of a fair coin toss is Bernoulli with p=0.5

$$P(x) = p^{x}(1-p)^{1-x}$$

$$E[X] = 1(p) + 0(1-p) = p$$

$$Var(X) = E[X^{2}] - (E[X])^{2}$$

$$= 1^{2}(p) + 0^{2}(1-p) - p^{2}$$

$$= p(1-p)$$

BINOMIAL

Describes the number of successful outcomes in n independent Bernoulli(p) trials

ref:https://mourafiq.com/2016/02/01/intuition-behind-binomial-distribution.html

▶ E.g., Number of heads in a sequence of 10 tosses of a fair coin is Binomial with n=10 and p=0.5

$$P(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

$$E[X] = np$$

$$Var[X] = np(1-p)$$

MULTINOMIAL

- Generalization of binomial to k possible outcomes; outcome i has probability p_i of occurring
 - E.g., Number of {diamonds, clubs, hearts, spades} in a sequence of 10 random draw of cards (with replacement) is multinomial
- Let X_i denote the number of times the i-th outcome occurs in n trials:

$$P(x_1, ...x_k) = \binom{n}{x_1, ...x_k} p_1^{x_1} p_2^{x_2} ... p_k^{x_k}$$
$$E[X_i] = np_i$$
$$Var(X_i) = np_i (1 - p_i)$$

POISSON

https://mourafiq.com/2016/02/05/intuition-behind-poisson-distribution.html

Describes the probability of a given number of events occurring in a fixed interval of time (or space), given an average arrival rate (λ) and independent events that occur randomly over time (or space)

E.g., Given an average of 4 power failures per winter, what is the probability that

there will be more than 7 failures this winter?

$$P(x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

$$\lambda = E[X] = Var[X]$$

NORMAL (GAUSSIAN)

https://towardsdatascience.com/ understanding-the-central-limit-theor

- Important distribution gives wellknown bell shape
- Central limit theorem:
 - Distribution of the mean of n samples becomes normally distributed as n ↑, regardless of the distribution of the underlying population

understanding-the-central-limit-theorem-642473c63ad8 stribution gives well-
$$P(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

$$E[X] = \mu$$

$$Var(X) = \sigma^2$$

COVARIANCE AND CORRELATION

COVARIANCE

Measures how variables X and Y vary together:

$$COV(X, Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

- Positive if large values of X are associated with large values of Y
- Negative if large values of X are associated with small values of Y

Measures linear relationship

COVARIANCE

For discrete random variable pair (X, Y) that can take on the values of (x_{i, y_i}) for i=1, ..., n with equal probabilities 1/n:

$$COV(X, Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - E[X])(y_i - E[Y])$$

- Covariance matrix (Σ)
 - Symmetric matrix of covariances for p variables
 - $\sum_{ij} = COV(X_i, X_j)$

CORRELATION COEFFICIENT

- Covariance depends on ranges of X_j and X_k
- Correlation standardizes covariance by dividing through standard deviations

$$\rho(X_j, X_k) = \frac{\frac{1}{n} \sum_{i=1}^n \left(x_{ij} - \bar{X}_j \right) \left(x_{ik} - \bar{X}_k \right)}{\sigma_{X_j} \sigma_{X_k}}$$

- Correlation matrix
 - Symmetric matrix of correlations for p variables
 - What values are on the diagonal?

NEXT CLASS

Review basic knowledge on linear algebra