We consider each sort on a 0-indexed array A of n elements.

1. Selection Sort

On the i^{th} iteration (beginning with 0), we pass through the array from A_i to A_{n-1} to find the smallest value. Thus, the number of operations is given by

$$(n-1) + (n-2) + \ldots + 2 + 1 = \frac{n(n-1)}{2}$$

A selection sort is therefore $O(n^2)$.

2. Insertion Sort

On the i^{th} iteration (beginning with 0), we place A_{i+1} in the correct position relative to the first i+1 elements. In the **worst case**, the array will be in reverse-order, and elements A_0 through A_i must be shifted one to the right, with A_{i+1} being placed at the beginning of the array. That is a total of

$$1+2+\ldots+(n-2)+(n-1)=\frac{n(n-1)}{2}$$

operations. An insertion sort is therefore $O(n^2)$ in the worst case.

In the **best case**, the array is already sorted and we only need to pass through the array once, in which case the sort is O(n).

3. Merge Sort

The number of recursive calls to the merge sort will be $\lceil \log(n) \rceil$. At each step, the number of operations in merging the sublists will be proportional to the number of elements. Thus, a merge sort is $O(n \log(n))$.

4. Quick Sort

For each level the number of operations will be O(n). In the **worst case**, the pivot will be the least or greatest value of each array, and thus there will be n levels, giving an $O(n^2)$ performance. In the **average** and **best case**, the number of levels will be $O(\log(n))$, and the performance is therefore $O(n\log(n))$.

In summary:

Name	Best	Average	Worst
Selection Sort	$O(n^2)$	$O(n^2)$	$O(n^2)$
Insertion Sort	O(n)	$O(n^2)$	$O(n^2)$
Merge Sort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$
Quick Sort	$O(n \log n)$	$O(n \log n)$	$O(n^2)$