Sparsity in Knowledge Graph Completion

Yang Yu

Knowledge Graph Completion Task Goal: Predicting Knowledge Instances

e.g., mining missing entities, relationships, or discovering new facts

```
(Beijing, capitalOf, ?) / (?, capitalOf, China), (Beijing, ?, China)

or confi = (Beijing, capitalOf, China)

(Entity, Predicate, ?)

Query

Answer
```

Main-stream Solutions

Embedding-based

Build Semantic Space for Both Entity and Relation

by Individual Fact

[1] Translating embeddings for modeling multi-relational data. NIPS. 2013 [2] Factorizing YAGO: scalable machine learning for linked data. YAGO. 2012

Path-based

Build Relation Feature

by Completed Path between Entities

[1] Random walk inference and learning in a large scale knowledge base. EMNLP. 2011 [2] Efficient and expressive knowledge base completion using subgraph feature extraction. EMNLP. 2015.

Rule-based

Generate rules

by Statistics

Sparsity

Imbalance data and Insufficient information

Incompleteness

Lack the important paths

View of Data

Sparsity:

stable sparse

Noise

Simple is better Figure 1: Triples are removed from FB15K to preserve relational density (stable, solid) or to increase sparsity (sparse, dotted). Sparse training sets have a pronounced impact on the learned embedding, as measured by HITS@10 on the test set.

Figure 3: Starting with a sparse training set, adding unreliable triples can help embedding performance recover if the noise level is low.

Sparsity and Noise: Where Knowledge Graph Embeddings Fall Short. EMNLP. 2017

How to measure sparsity?

$$Relation_Density = \frac{||T||}{||R||}$$
, $Entity_Density = \frac{2||T||}{||E||}$ [1]

Sparsity(e) =
$$1 - \frac{freq(e) - freq_{min}}{freq_{max} - freq_{min}}$$
 [2]

- [1] Sparsity and Noise: Where Knowledge Graph Embeddings Fall Short. EMNLP. 2017
- [2] Iteratively Learning Embeddings and Rules for Knowledge Graph Reasoning. WWW. 2019

TranSparse

- Use Sparse Matrix (Heterogenous)
- Two separate Matrix for head and tail entity (Unbalance)

Knowledge Graph Completion with Adaptive Sparse Transfer Matrix. AAAI. 2016

TranSparse

Share

set a sparse transfer matrix $M_r(\theta_r)$ and a translation vector r for each relation r (TransR+)

$$h_p = M_r(\theta_r)h$$
, $t_p = M_r(\theta_r)t$

where

$$\theta_r = 1 - (1 - \theta_{\min}) N_r / N_{r^*}$$

 N_r is the number of entity pairs about relation,

 N_{r^*} is the maximum number of N_r

 θ_{\min} is a hyper-parameter

Knowledge Graph Completion with Adaptive Sparse Transfer Matrix. AAAI. 2016

DacKGR

Anticipation Strategy

Inject the pre-trained model as anticipation information

Dynamic Completion

dynamically adds some additional relations

Dynamic Anticipation and Completion for Multi-Hop Reasoning over Sparse Knowledge Graph. EMNLP. 2020

DacKGR

Difference from Previous RL-based Works

Dynamic Anticipation

New state representation

$$s_t = [r_q; e_t; h_t] = > s_t = [e_p; r_q; e_t; h_t]$$

New Reward

Dynamic Completion

Dynamically augment the action space of each entity during reasoning process

Dynamic Anticipation and Completion for Multi-Hop Reasoning over Sparse Knowledge Graph. EMNLP. 2020

DacKGR

Model	FB15K-237-10%			FB15K-237-20%			FB15K-237-50%			NELL23K			WD-singer		
	MRR	@3	@10	MRR	@3	@10	MRR	@3	@10	MRR	@3	@10	MRR	@3	@10
TransE	10.5	15.9	27.9	12.3	18.0	31.3	17.7	23.4	40.4	8.4	10.9	24.7	21.0	32.1	44.6
DisMult	7.4	7.5	16.9	11.3	11.9	24.0	18.0	20.2	38.1	11.6	11.9	23.2	24.4	27.0	39.8
ConvE	24.5	26.2	39.1	26.1	28.3	41.8	31.3	<u>34.2</u>	<u>50.1</u>	<u>27.6</u>	<u>30.1</u>	46.4	<u>44.8</u>	<u>47.8</u>	56.9
TuckER	<u>25.2</u>	<u>27.2</u>	<u>40.4</u>	<u>26.6</u>	28.8	<u>42.8</u>	<u>31.4</u>	34.2	<u>50.1</u>	26.4	28.9	<u>46.7</u>	42.1	47.1	<u>57.1</u>
NeuralLP	7.9	7.2	13.8	11.2	11.2	17.9	18.2	19.2	24.6	12.2	13.1	26.3	31.9	33.4	48.2
NTP	8.3	11.4	16.9	17.3	16.1	21.7	22.2	23.1	30.7	13.2	14.9	24.1	29.2	31.1	44.2
MINERVA	7.8	7.8	12.2	15.9	16.4	22.7	23.0	24.0	31.1	15.0	15.2	25.4	33.5	37.4	44.9
MultiHopKG	13.6	14.6	21.6	23.0	25.2	35.5	29.2	31.7	44.9	17.8	18.8	29.7	35.6	41.1	47.5
CPL	11.1	12.2	16.8	17.5	18.4	25.7	26.4	28.5	36.8	-	-	-	34.2	40.1	46.3
DacKGR (sample)	21.8	23.9	33.7	24.7	27.2	39.1	29.3	32.0	45.7	20.1	21.6	33.2	38.1	42.3	50.6
DacKGR (top)	21.9	23.9	33.5	24.4	27.1	38.9	29.3	31.8	45.8	19.1	20.0	30.8	37.0	40.5	46.5
DacKGR (avg)	21.5	23.2	33.4	24.2	26.6	38.8	29.1	31.9	45.4	17.1	18.6	28.2	36.4	40.1	48.0

Table 3: Link prediction results on five datasets from Freebase, NELL and Wikidata. @3 and @10 denote Hits@3 and Hits@10 metrics, respectively. All metrics are multiplied by 100. The best score of multi-hop reasoning models is in **bold**, and the best score of embedding-based models is <u>underlined</u>.

Dynamic Anticipation and Completion for Multi-Hop Reasoning over Sparse Knowledge Graph. EMNLP. 2020

TRE (Transitive Relation Embedding)

Independent of entities

it learns strictly triangle relation pattern and does not generalize

Only need relation embedding

unable to predict true relations that have never or infrequently appeared in relation patterns

Interpretability

TRE

$$Confidence(r_{o}^{+}|r_{p}, r_{q}) = \frac{Freqency(r_{p}, r_{q}, r_{o}^{+})}{Freqency(r_{p}, r_{q})}$$

$$Confidence(r_{p}|r_{o}^{+}, r_{q}) = \frac{Freqency(r_{p}, r_{q}, r_{o}^{+})}{Freqency(r_{o}^{+}, r_{q})}$$

$$Confidence(r_{q}|r_{o}^{+}, r_{p}) = \frac{Freqency(r_{p}, r_{q}, r_{o}^{+})}{Freqency(r_{o}^{+}, r_{p})}$$

$$Confidence(r_{o}^{-}|r_{p}, r_{q}) = \frac{Freqency(r_{p}, r_{q}, r_{o}^{-})}{Freqency(r_{p}, r_{q}, r_{o}^{-})}$$

$$Confidence(r_{p}|r_{o}^{-}, r_{q}) = \frac{Freqency(r_{p}, r_{q}, r_{o}^{-})}{Freqency(r_{o}^{-}, r_{p})}$$

$$Confidence(r_{q}|r_{o}^{-}, r_{p}) = \frac{Freqency(r_{p}, r_{q}, r_{o}^{-})}{Freqency(r_{o}^{-}, r_{q})}$$

$$Confidence(r_{q}|r_{o}^{-}, r_{p}) = \frac{Freqency(r_{p}, r_{q}, r_{o}^{-})}{Freqency(r_{o}^{-}, r_{q})}$$

Figure 2: Triangle Pattern

On Completing Sparse Knowledge Base with Transitive Relation Embedding. AAAI. 2019

TRE

$$P(r_o^+|r_p, r_q) = \frac{exp(U_{r_o}^+ \overline{V_{r_p, r_q}})}{\sum_{r_k}^R [exp(\overline{U_{r_k}^+ T_{V_{r_p, r_q}}}) + exp(\overline{U_{r_k}^+ T_{V_{r_p, r_q}}})]}$$

$$P(r_o^-|r_p, r_q) = \frac{exp(\overline{U_{r_o}^+ T_{V_{r_p, r_q}}})}{\sum_{r_k}^R [exp(\overline{U_{r_k}^+ T_{V_{r_p, r_q}}}) + exp(\overline{U_{r_k}^+ T_{V_{r_p, r_q}}})]}$$

$$P(r_p|r_o^+, r_q) = \frac{exp(\overline{U_{r_o}^+ T_{V_{r_p, r_q}}})}{\sum_{r_k}^R exp(\overline{U_{r_o}^+ T_{V_{r_p, r_q}}})}$$

$$P(r_p|r_o^-, r_q) = \frac{exp(\overline{U_{r_o}^+ T_{V_{r_p, r_q}}})}{\sum_{r_k}^R exp(\overline{U_{r_o}^+ T_{V_{r_p, r_q}}})}}$$

$$P(r_q|r_o^+, r_p) = \frac{exp(\overline{U_{r_o}^+ T_{V_{r_p, r_q}}})}{\sum_{r_k}^R exp(\overline{U_{r_o}^+ T_{V_{r_p, r_q}}})}}$$

$$P(r_q|r_o^-, r_p) = \frac{exp(\overline{U_{r_o}^+ T_{V_{r_p, r_q}}})}{\sum_{r_k}^R exp(\overline{U_{r_o}^+ T_{V_{r_p, r_q}}})}}$$

$$P(r_q|r_o^-, r_p) = \frac{exp(\overline{U_{r_o}^+ T_{V_{r_p, r_q}}})}{\sum_{r_k}^R exp(\overline{U_{r_o}^+ T_{V_{r_p, r_q}}})}}$$

On Completing Sparse Knowledge Base with Transitive Relation Embedding. AAAI. 2019

IterE

Embedding Learning

Learn a awesome embedding model

Axiom Induction

Induce a set of axioms

Axiom Injection

New facts

Iteratively Learning Embeddings and Rules for Knowledge Graph Reasoning. WWW. 2019

IterE

Traverse and Selection Step 1: Generate Axioms

Object Property Axioms	Rule Form	According to Linear Map Assumption	Rule Conclusion
ReflexiveOP (r)	(x, r, x)	$\mathbf{v}_{x}\mathbf{M}_{r}=\mathbf{v}_{x}$	$\mathbf{M}_r = \mathbf{I}$
${\sf SymmetricOP}(r)$	$(y, r, x) \leftarrow (x, r, y)$	$\mathbf{v}_y \mathbf{M}_r = \mathbf{v}_x; \mathbf{v}_x \mathbf{M}_r = \mathbf{v}_y$	$\mathbf{M}_r \mathbf{M}_r = \mathbf{I}$
TransitiveOP (r)	$(x, r, z) \leftarrow (x, r, y), (y, r, z)$	$\mathbf{v}_{x}\mathbf{M}_{r}=\mathbf{v}_{z};\mathbf{v}_{x}\mathbf{M}_{r}=\mathbf{v}_{y},\ \mathbf{v}_{y}\mathbf{M}_{r}=\mathbf{v}_{z},$	$\mathbf{M}_r \mathbf{M}_r = \mathbf{M}_r$
EquivalentOP (r_1, r_2)	$(x, r_2, y) \leftarrow (x, r_1, y)$	$\mathbf{v}_{x}\mathbf{M}_{r_{2}}=\mathbf{v}_{y},\ \mathbf{v}_{x}\mathbf{M}_{r_{1}}=\mathbf{v}_{y}$	$\mathbf{M}_{r_1} = \mathbf{M}_{r_2}$
$subOP(r_1,r_2)$	$(x, r_2, y) \leftarrow (x, r_1, y)$	$\mathbf{v}_{x}\mathbf{M}_{r_{2}}=\mathbf{v}_{y},\ \mathbf{v}_{x}\mathbf{M}_{r_{1}}=\mathbf{v}_{y}$	$\mathbf{M}_{r_1} = \mathbf{M}_{r_2}$
inverseOP (r_1, r_2)	$(x, r_1, y) \leftarrow (y, r_2, x)$	$\mathbf{v}_{x}\mathbf{M}_{r_{1}}=\mathbf{v}_{y},\ \mathbf{v}_{y}\mathbf{M}_{r_{2}}=\mathbf{v}_{x}$	$\mathbf{M}_{r_1}\mathbf{M}_{r_2}=\mathbf{I}$
$subOP(OPChain(r_1,r_2),r)$	$(y_0, r, y_2) \leftarrow (y_0, r_1, y_1), (y_1, r_2, y_2)$	$\mathbf{v}_{y_0}\mathbf{M}_r = \mathbf{v}_{y_2}, \ \mathbf{v}_{y_0}\mathbf{M}_{r_1} = \mathbf{v}_{y_1}, \ \mathbf{v}_{y_1}\mathbf{M}_{r_2} = \mathbf{v}_{y_2}$	$\mathbf{M}_{r_1}\mathbf{M}_{r_2}=\mathbf{M}_r$

$$A(r, Var\{r', r''\})$$

Step 2: Complete Axioms

select k facts (e',r,e'') related with r, replace r',r'' with the relations that directly link to e',e''

Iteratively Learning Embeddings and Rules for Knowledge Graph Reasoning. WWW. 2019

IterE

Table 5: Link prediction results with MRR and Hit@n on WN18RR-sparse and FB15k-237-sparse. Underlined scores are the better ones between ANALOGY and IterE(ANALOGY). Boldface scores are the best results among all methods.

		W	/N18-spa	rse		FB15k-sparse					
	MRR	MRR	Hit@1	Hit@3	Hit10	MRR	MRR	Hit@1	Hit@3	Hit10	
	(filter)	(raw)	(filter)	(filter)	(filter)	(filter)	(raw)	(filter)	(filter)	(filter)	
TransE[3]	41.8	33.5	10.2	71.1	84.7	39.8	25.5	25.8	48.6	64.5	
DistMult[47]	73.8	55.8	59.3	87.5	93.1	60.0	32.4	61.8	65.1	75.9	
ComplEx[35]	91.1	67.7	89.0	93.3	94.4	61.6	32.7	54.0	65.7	76.1	
ANALOGY[23]	91.3	67.5	89.0	93.4	94.4	62.0	33.1	54.3	66.1	76.3	
IterE(ANALOGY)	90.1	67.5	87.0	93.1	<u>94.8</u>	61.3	35.9	52.9	66.2	<u>76.7</u>	
<pre>IterE(ANALOGY) + axioms</pre>	91.3	78.9	89.1	93.5	94.8	62.8	38.8	55.1	67.3	77.1	
	I	T473	IAODD			FB15k-237-sparse					
	l	WI	N18RR-sp	oarse			FBI	5K-237-8	parse		
	MRR	MRR	Hit@1	Hit@3	Hit10	MRR	MRR	Hit@1	Parse Hit@3	Hit10	
	MRR (filter)				Hit10 (filter)	MRR (filter)			•	Hit10 (filter)	
TransE[3]		MRR	Hit@1	Hit@3			MRR	Hit@1	Hit@3		
TransE[3] DistMult[47]	(filter)	MRR (raw)	Hit@1 (filter)	Hit@3 (filter)	(filter)	(filter)	MRR (raw)	Hit@1 (filter)	Hit@3 (filter)	(filter)	
	(filter) 14.6	MRR (raw) 12.4	Hit@1 (filter)	Hit@3 (filter) 24.7	(filter) 28.8	(filter) 23.8	MRR (raw) 15.6	Hit@1 (filter) 16.4	Hit@3 (filter) 26.1	(filter) 38.5	
DistMult[47]	(filter) 14.6 25.5	MRR (raw) 12.4 20.8	Hit@1 (filter) 3.4 23.8	Hit@3 (filter) 24.7 26.0	(filter) 28.8 22.5	(filter) 23.8 20.4	MRR (raw) 15.6 12.9	Hit@1 (filter) 16.4 12.8	Hit@3 (filter) 26.1 22.6	(filter) 38.5 36.2	
DistMult[47] ComplEx[35]	(filter) 14.6 25.5 25.9	MRR (raw) 12.4 20.8 21.4	Hit@1 (filter) 3.4 23.8 24.6	Hit@3 (filter) 24.7 26.0 26.2	28.8 22.5 28.6	(filter) 23.8 20.4 19.7	MRR (raw) 15.6 12.9 13.3	Hit@1 (filter) 16.4 12.8 12.0	Hit@3 (filter) 26.1 22.6 21.7	(filter) 38.5 36.2 35.4	

pLogic

$$p_w(O,H) = rac{1}{Z} exp(\sum_l w_l n_l(O,H))$$

$$log p_w(O) \ge E_{q_{\theta}(H)}[log p_w(O, H) - log q_{\theta}(H)]$$

ExpressGNN*

Efficient Probabilistic Logic Reasoning with Graph Neural Networks. ICLR. 2020

ExpressGNN*

Table 3: Performance on FB15K-237 with varied training set size.

Model			MRF	}		Hits@10					
Wiodei	0%	5%	10%	20%	100%	0%	5%	10%	20%	100%	
MLN	-	-	-	-	0.10	-	-	-	-	16.0	
NTN	0.09	0.10	0.10	0.11	0.13	17.9	19.3	19.1	19.6	23.9	
Neural LP	0.01	0.13	0.15	0.16	0.24	1.5	23.2	24.7	26.4	36.2	
DistMult	0.23	0.24	0.24	0.24	0.31	40.0	40.4	40.7	41.4	48.5	
ComplEx	0.24	0.24	0.24	0.25	0.32	41.1	41.3	41.9	42.5	51.1	
TransE	0.24	0.25	0.25	0.25	0.33	42.7	43.1	43.4	43.9	52.7	
RotatE	0.25	0.25	0.25	0.26	0.34	42.6	43.0	43.5	44.1	53.1	
pLogicNet	-	-	-	-	0.33	-	-	-	-	52.8	
ExpressGNN-E ExpressGNN-EM		0.42 0.42			0.45 0.49			53.3 55.3	55.2 55.6	57.3 60.8	

Efficient Probabilistic Logic Reasoning with Graph Neural Networks. ICLR. 2020

pGAT

Probabilistic Logic Graph Attention Networks for Reasoning. WWW. 2020

pGAT

Table 1: Results of link prediction on test sets of FB15K-237 and WN18RR respectively. The best scores are in bold. The second best scores are underlined.

Method	MR	MRR	H@1	H@3	H@10	MR	MRR	H@1	H@3	H@10
TransE [5]	323	0.279	19.8	37.6	44.1	2300	0.243	4.27	44.1	53.2
DistMult [27]	512	0.281	19.9	30.1	44.6	7000	0.444	41.2	47	50.4
ComplEx [24]	546	0.278	19.4	29.7	45	7882	0.449	40.9	46.9	50.4
RotatE [20]	185	0.297	20.5	32.8	48.0	3277	0.470	42.2	48.8	56.5
ConvE [8]	245	0.312	22.5	34.1	49.7	4464	0.456	41.9	47	53.1
ConvKB [13]	216	0.289	19.8	32.4	47.1	1295	0.265	5.82	44.5	55.8
R-GCN[19]	600	0.164	10	18.1	30	6700	0.123	20.7	13.7	8
KBAT [11]	204	0.431	35.5	46.2	<u>57.8</u>	1970	0.431	35.2	47.3	<u>57.4</u>
BLP [7]	1985	0.092	6.2	9.8	15.0	12051	0.254	18.7	31.3	35.8
MLN [17]	1980	0.098	6.7	10.3	16.0	11549	0.259	19.1	32.2	36.1
pLogicNet [16]	173	0.330	23.1	36.9	52.8	3436	0.230	1.5	41.1	53.1
pLogicNet* [16]	173	0.332	23.7	36.7	52.4	3408	0.441	39.8	44.6	53.7
pGAT	<u>181</u>	0.457	37.7	49.4	60.9	<u>1868</u>	<u>0.459</u>	39.5	48.9	57.8

MCC

Graph Densification and GCN:

add synthetic edge <u>sim</u> learning from graph structure

Knowledge from PTM

transfer learning from language to knowledge graphs

Commonsense Knowledge Base Completion with Structural and Semantic Context. AAAI. 2020

MCC

Knowledge from PTM

Phrase from natural language

Graph structure

Relation-aware GCN + Att

Densification:

Add synthetic edge *sim* depend on PTM

Fusion:

Progressive masking

Commonsense Knowledge Base Completion with Structural and Semantic Context. AAAI. 2020

MCC

		CN-10	0K		ATOMIC				
	MRR	HITS@1	@3	@10	MRR	HITS@1	@3	@10	
DISTMULT	8.97	4.51	9.76	17.44	12.39	9.24	15.18	18.30	
COMPLEX	11.40	7.42	12.45	19.01	14.24	13.27	14.13	15.96	
CONVE	20.88	13.97	22.91	34.02	10.07	8.24	10.29	13.37	
CONVTRANSE	18.68	7.87	23.87	38.95	12.94	12.92	12.95	12.98	
COMET-NORMALIZED	6.07	0.08	2.92	21.17	3.36*	0.00*	2.15*	15.75*	
COMET-TOTAL	6.21	0.00	0.00	24.00	4.91*	0.00*	2.40*	21.60*	
BERT + CONVTRANSE	49.56	38.12	55.5	71.54	12.33	10.21	12.78	16.20	
GCN + CONVTRANSE	29.80	21.25	33.04	47.50	13.12	10.70	13.74	17.68	
SIM + GCN + CONVTRANSE	30.03	21.33	33.46	46.75	13.88	11.50	14.44	18.38	
GCN + BERT + CONVTRANSE	50.38	38.79	56.46	72.96	10.8	9.04	11.21	14.10	
SIM + GCN + BERT + CONVTRANSE	51.11	39.42	59.58	73.59	10.33	8.41	10.79	13.86	

Future Work

Entity-independent Settings and Inductive Settings

Explore efficient ways to find rules or grounding