

Swiss Institute of Bioinformatics

BIOLOGY-INFORMED MULTIOMICS DATA INTEGRATION AND VISUALIZATION

Dataset and data structure

Deepak Tanwar

June 16-17, 2025

Learning outcomes

- Know about the datasets used in this course
- Introduction to data structures:
 - SummarizedExperiment
 - Granges

Dataset for the course

Neural tube development in mouse

In mouse embryonic development, the neural tube is a crucial structure that forms the central nervous system, encompassing the brain and spinal cord.

Neural Plate Development in Mouse (E11.5-E15.5)

E11.5

E12.5

E13.5

E14.5

E15.5

Neural tube closed Primary brain vesicles formed Spinal cord patterning Gliogenesis starts

Cortical plate emerges Gliogenesis starts

Cortical layers form Commissural tracts develop Synaptogenesis begins

Synaptogenesis begins

Multiomics datasets from mouse neural tube development

Gene expression data in a data.frame

*	Sample1 [‡]	Sample2 ‡	Sample3 [‡]
GeneA	5.2	6.0	5.5
GeneB	3.8	4.1	3.9
GeneC	7.1	6.8	7.3

data.frame: rownames

data.frame: colnames

*	Sample1 [‡]	Sample2 [‡]	Sample3 [‡]
GeneA	5.2	6.0	5.5
GeneB	3.8	4.1	3.9
GeneC	7.1	6.8	7.3

Data format for ATAC/ ChIP sequencing data

*	Sample1 [‡]	Sample2 [‡]	Sample3 [‡]
Peak1	120	130	125
Peak2	85	90	88
Peak3	200	210	205

Genomic Ranges snapshot

```
> gr = exons(TxDb.Hsapiens.UCSC.hg19.knownGene); gr
GRanges with 289969 ranges and 1 metadata column:
           segnames
                                  ranges strand
                                                       exon_id
              <Rle>
                               <IRanges> <Rle>
                                                     <integer>
       [1]
               chr1
                          [11874, 12227]
       [2]
                          [12595, 12721]
               chr1
       [3]
               chr1
                          [12613, 12721]
               chrY [59358329, 59359508]
  Г2899671
                                                        277748
               chrY [59360007, 59360115]
                                                        277749
  [289968]
  [289969]
               chrY [59360501, 59360854]
                                                        277750
  seqinfo: 93 sequences (1 circular) from hg19 genome
```

```
GRanges
length(gr); gr[1:5]
seqnames(gr)
start(gr)
end(gr)
width(gr)
strand(gr)
```

```
DataFrame
  mcols(gr)
  gr$exon_id
```

```
Seqinfo
  seqlevels(gr)
  seqlengths(gr)
  genome(gr)
```


Exercise 1

Thank you

DATA SCIENTISTS FOR LIFE sib.swiss

