${ {\bf ME7224} \atop {\bf Modal\ Analysis\ of\ Mechanical\ Systems} \atop {\bf End\ Semester} }$

Indian Institute of Technology, Madras

Contents

1	Que	tion 1	2
	1.1	Part A	2
		.1.1 Plots	3
	1.2	Part B	5
		2.1 Results	Ę.
		.2.2 Plots	6
	1.3	Part C	6
		.3.1 Method	6
		.3.2 Code	8
		3.3 Plots	Ć
	1.4	Part D	10
		.4.1 Method	10
		.4.2 Code	10
		.4.3 Results	11
		4.4 Plots	11
2	Que	tion 2	12
	2.1	Part A	12
		2.1.1 Method	12
		2.1.2 Code	13
		2.1.3 Results	13
	2.2	Part B	14
		2.2.1 Results	15
	2.3	Part C	17
		2.3.1 Results	18
		2.3.2 Plots	18

1 Question 1

A cantilever beam has been tested using 8 points along its length. Point #1 is at the free end, and Point #8 is near the fixed support. The accelerance FRF data, H_{ij}^a for i=1 and $j=1,2,\ldots,8$ is available. Please note that this data has the units $\frac{m}{s^2(lbf)}$.

Code

```
1
       data = readmatrix('data.xlsx');
2
       \% data(:, 2:end) = data(:, 2:end)/4.448222;
3
4
       modes = data(:, 1);
       H11a = data(:, 2) + i .* data(:, 3);
5
       H11 = H11a ./ modes.^2;
6
7
       H12a = data(:, 4) + i .* data(:, 5);
8
       H12 = H12a ./ modes.^2;
9
       H13a = data(:, 6) + i .* data(:, 7);
10
       H13 = H13a ./ modes.^2;
       H14a = data(:, 8) + i .* data(:, 9);
11
12
       H14 = H14a ./ modes.^2;
13
       H15a = data(:, 10) + i .* data(:, 11);
14
       H15 = H15a ./ modes.^2;
15
       H16a = data(:, 12) + i .* data(:, 13);
16
       H16 = H16a ./ modes.^2;
17
       H17a = data(:, 14) + i .* data(:, 15);
       H17 = H17a ./ modes.^2;
18
       H18a = data(:, 16) + i .* data(:, 17);
19
20
       H18 = H18a ./ modes.^2;
```

1.1 Part A

Plot the magnitude as well as the real and imaginary parts of the receptance FRFs, H_{11} and H_{14} , for the frequency range $5 \le f \le 450$ Hz.

1.1.1 Plots

Figure 1.1: Receptance FRF $H_{11}(\omega)$ in the range $5 \le \omega \le 450$

Figure 1.2: Receptance FRF $H_{14}(\omega)$ in the range $5 \le \omega \le 450$

1.2 Part B

For the second and third modes, use peak-picking and circle fit SDoF methods to estimate the natural frequency, damping parameter (assume it is structural damping), and modal constants, plot the mode shapes.

1.2.1 Results

Mode	Method	H_{11}	H_{12}	H_{13}	H_{14}	H_{15}	H_{16}	H_{17}	H_{18}
Mode 1	Peak Picking	14.00	14.00	14.00	14.00	14.00	14.00	14.00	15.50
	Circle Fit	13.50	15.50	13.50	13.50	13.50	13.50	13.50	14.50
Mode 2	Peak Picking	96.00	96.50	96.00	96.00	96.00	96.00	96.00	96.00
	Circle Fit	95.50	95.50	95.00	95.00	95.00	95.00	95.00	95.00
Mode 3	Peak Picking	287.50	289.00	287.00	289.50	288.50	289.00	289.50	289.50
	Circle Fit	288.00	288.50	288.00	288.50	288.50	288.50	288.50	287.00

Table 1.1: SDoF Modal Analysis for f_r

Mode	Method	H_{11}	H_{12}	H_{13}	H_{14}	H_{15}	H_{16}	H_{17}	H_{18}
Mode 1	Peak Picking Circle Fit				0.0357 0.2058		0.0357 0.1091	0.0357 0.1975	0.2903 0.1052
Mode 2	Peak Picking Circle Fit				0.0104		0.0104 0.0158	0.0104 0.0158	0.0104 0.0211
Mode 3	Peak Picking Circle Fit	0.0157 0.0173	0.0156 0.0121	0.0070 0.0173	0.0104 0.0173	0.0173	0.0069	0.0173 0.0017	0.0104 0.0122

Table 1.2: SDoF Modal Analysis for d_r

Mode	Method	ϕ_{1r}	ϕ_{2r}	ϕ_{3r}	ϕ_{4r}	ϕ_{5r}	ϕ_{6r}	ϕ_{7r}	ϕ_{8r}
Mode 1	Peak Picking Circle Fit	2.3054 5.7582	2.3423 1.3857	1.3282 1.9541	0.9445 4.2664	0.8499 5.1329	0.0540 0.7970	0.1156 0.2532	0.0458 0.0471
Mode 2	Peak Picking Circle Fit	1.0992 1.3473	0.1446 0.2246	2.6906 3.4645	2.9583	3.0761 3.9954	2.4040 3.1275	0.9760 1.2590	$0.2750 \\ 0.4632$
Mode 3	Peak Picking Circle Fit	$0.3305 \\ 0.3923$	1.5430 1.3112	0.8332 2.4458	0.7398 0.9991	1.2738 0	1.7047 0	1.4384 0.0884	0.1988 0.1696

Table 1.3: SDoF Modal Analysis for $\phi_{jr}\phi_{kr}$ (Normalized by 2π)

1.2.2 Plots

Figure 1.3: SDoF Modal Analysis for Mode Shapes

1.3 Part C

Regenerate the accelerance FRFs from the fitted data (H_{11}^a and H_{15}^a) and check how good a fit it is with the experimental accelerance FRFs. The frequency range is $50 \le f \le 450$ Hz. Comment on the results obtained.

Both Peak Picking and Circle Fit estimates the correct natural frequencies, and damping with slight variation. The reconstructed FRF fits reasonably well near the resonance but not on the extremes.

1.3.1 Method

Peak Picking

The FRF $H_{jk}(\omega)$ near resonance frequency ω_r is given by

$$H_{jk}(\omega) = \frac{\phi_{jr}\phi_{kr}}{(\omega_r - \omega^2) + i\eta\omega_r\omega}$$

We find the value of ω_r is identified by locating the peak of $|H_{jk}(\omega)|$ around some interval $\omega_r - \epsilon \leq \omega \leq \omega_r + \epsilon$ for some $\epsilon \in \mathbb{R}$. The peak amplitude is give by

$$Peak = \left| \frac{\phi_{jr}\phi_{kr}}{\eta\omega_r^2} \right|$$

The half power points are subsequently obtained by finding the pre-image of the FRF function for value equal to $H_{jk}(\omega_{a,b}) = \frac{\mathrm{Peak}}{\sqrt{2}}$. The damping constant can be estimated as,

$$\eta \approx \frac{|\omega_a - \omega_b|}{\omega_r}$$

The modal constant is thus obtained as,

$$\phi_{jr}\phi_{kr} = \text{Peak} \times \eta\omega_r^2$$

Circle Fit

The FRF $H_{jk}(\omega)$ near resonance frequency ω_r is given by

$$H_{jk}(\omega) = \frac{\phi_{jr}\phi_{kr}}{(\omega_r - \omega^2) + i\eta\omega_r\omega}$$

The plot of $\operatorname{Re}\{H_{jk}(\omega)\}$ vs $\operatorname{Im}\{H_{jk}(\omega)\}$ resembles a circle. The peak rate is given by

$$\frac{d\theta}{d\omega^2} = \frac{-2}{\eta\omega_r^2 \left(1 + \tan(\frac{\theta}{2})^2\right)}$$

For structural damping, we have

$$\operatorname{Re}\{H_{jk}(\omega)\} = \frac{1}{\omega_r^2} \frac{\left(1 - \frac{\omega^2}{\omega_r^2}\right)}{\left(1 - \frac{\omega^2}{\omega_r^2}\right)^2 + \eta^2}$$
$$\operatorname{Im}\{H_{jk}(\omega)\} = \frac{1}{\omega_r^2} \frac{\eta}{\left(1 - \frac{\omega^2}{\omega_r^2}\right)^2 + \eta^2}$$

From geometry, we have

$$\tan(\theta) = \left| \frac{\operatorname{Im}\{H_{jk}(\omega)\}}{\operatorname{Re}\{H_{jk}(\omega)\}} \right|$$
$$\tan(\theta + \Delta\theta) = \left| \frac{\operatorname{Im}\{H_{jk}(\omega + \Delta\omega)\}}{\operatorname{Re}\{H_{jk}(\omega + \Delta\omega)\}} \right|$$

The rate is thus given by

$$\frac{\Delta \theta}{\Delta \omega^2} = 2 \times \frac{\arctan\left(\left|\frac{\operatorname{Im}\{H_{jk}(\omega + \Delta \omega)\}}{\operatorname{Re}\{H_{jk}(\omega + \Delta \omega)\}}\right|\right) - \arctan\left(\left|\frac{\operatorname{Im}\{H_{jk}(\omega)\}}{\operatorname{Re}\{H_{jk}(\omega)\}}\right|\right)}{\Delta \omega^2}$$

We find the value of ω_r is identified by locating the maxima of the sweep rate $\frac{d\theta}{d\omega^2}$ around some interval $\omega_r - \epsilon \leq \omega \leq \omega_r + \epsilon$ for some $\epsilon \in \mathbb{R}$. We sweep by 270° over FRFs to obtain points and draw the best fit circle to obtain the centre (x_c, y_c) and the radius R. The half power points can be obtained by taking the points which make

 90° with the centre and the resonance point.

$$(\operatorname{Re}\{H_{jk}(\omega_a)\}, \operatorname{Im}\{H_{jk}(\omega_a)\}) = (x_c + R\sin(\alpha), y_c - R\cos(\alpha))$$

$$(\operatorname{Re}\{H_{jk}(\omega_b)\}, \operatorname{Im}\{H_{jk}(\omega_b)\}) = (x_c - R\sin(\alpha), y_c + R\cos(\alpha))$$

With the corresponding pre-images ω_a and ω_b , the damping constant can be estimated as,

$$\eta \approx \frac{|\omega_a^2 - \omega_b^2|}{2\omega_r^2}$$

The modal constant is thus obtained as,

$$\phi_{ir}\phi_{kr} = 2R\omega_r^2\eta$$

Im(H)

(KIY)

Re(H)

(x/x1)

1.3.2 Code

Peak Picking

```
function [wr, dr, phijr_phikr] = peak_picking(H, w)
1
2
           H = abs(H);
3
           [peak, wr] = findpeaks(H, w);
4
           half_power = 1/sqrt(2) * peak;
           [r,c] = size(wr);
5
           if (r > 1) | (c > 1)
6
7
                wr = wr(end);
                half_power = half_power(end);
8
9
           end
10
           ind_wr = find(w==wr);
11
12
           ind_wa = find(min(abs(H(1:ind_wr)-half_power)) == abs(H
              (1:ind_wr)-half_power));
13
           ind_wb = find(min(abs(H(ind_wr:end)-half_power)) == abs
              (H(ind_wr:end)-half_power)) + ind_wr-1;
14
           wa = w(ind_wa);
           wb = w(ind_wb);
15
16
17
           dr = (wb-wa)/wr;
18
           phijr_phikr = peak * dr * wr^2;
19
       end
```

Circle Fit

```
1
       function [wr, dr, phijr_phikr] = circle_fit(H, w)
2
            rh = real(H);
3
            ih = imag(H);
4
5
            slopes = zeros(size(w));
           for i = 1:1:size(w, 2)
6
                slopes(i) = abs(ih(i)/rh(i));
8
            end
9
            rate = zeros(size(w));
10
11
            for i = 1:1:size(w, 2)-1
12
                del_theta = (atan(slopes(i+1)) - atan(slopes(i)))
                   *2;
                del_w2 = w(i+1)^2 - w(i)^2;
13
14
                rate(i) = del_theta/del_w2;
15
            end
16
            [peak, wr] = findpeaks(rate, w);
17
18
            [r,c] = size(wr);
19
            if (r > 1) | (c > 1)
20
                wr = wr(end);
21
            end
```

```
22
           ind_wr = find(w==wr);
23
24
           yrxr = slopes(ind_wr);
25
           y1x1 = (yrxr-tan(deg2rad(135/2)))/(1+tan(deg2rad(135/2)))
              )*yrxr);
           ind_wa = find(min(abs(slopes(1:ind_wr)-y1x1)) == abs(
26
              slopes(1:ind_wr)-y1x1));
           ind_wb = find(min(abs(slopes(ind_wr:end)-y1x1)) == abs(
27
              slopes(ind_wr:end)-y1x1)) + ind_wr-1;
28
29
           x = rh(ind_wa:ind_wb); y = ih(ind_wa:ind_wb);
           x = x(:); y = y(:);
30
           a = [x y ones(size(x))] \setminus [-(x.^2+y.^2)];
31
32
           xc = -.5*a(1);
           yc = -.5*a(2);
34
                  sqrt((a(1)^2+a(2)^2)/4-a(3));
35
36
           alpha = atan((ih(ind_wr)-yc)/(rh(ind_wr)-xc));
           xa = xc + R*sin(alpha); ya = yc - R*cos(alpha);
38
           xb = xc - R*sin(alpha); yb = yc + R*cos(alpha);
39
           ind_wa = find(min(abs(slopes(1:ind_wr)-abs(ya/xa))) ==
40
              abs(slopes(1:ind_wr)-abs(ya/xa)));
41
           ind_wb = find(min(abs(slopes(ind_wr:end)-abs(yb/xb)))
              == abs(slopes(ind_wr:end)-abs(yb/xb))) + ind_wr-1;
42
           wa = w(ind_wa);
43
           wb = w(ind_wb);
44
           dr = (wb^2-wa^2)/(2*wr^2);
45
46
           phijr_phikr = 2 * R * wr^2 * dr;
47
       end
```

1.3.3 Plots

Figure 1.4: SDoF Fitting for H_{11}^a

Figure 1.5: SDoF Fitting for H_{15}^a

1.4 Part D

Find out the residual stiffness and mass for improving the fit for H_{12}^a and H_{16}^a .

1.4.1 Method

The reconstructed FRF accounting for the residues

$$H_{jk}(\omega) = \frac{-1}{\omega^2 M_{jk}^R} + \sum_{m=1}^N \frac{\phi_{jm}\phi_{km}}{(\omega_m^2 - \omega^2) + i\eta\omega_m\omega} + \frac{1}{K_{jk}^R}$$

where the residual mass and stiffness can be found out at low and high frequency measurements of the FRF respectively.

1.4.2 Code

```
function [mr, kr] = residual(H_actual, H_generated, w)
2
           H_actual = abs(H_actual);
3
           H_generated = abs(H_generated);
4
           length = floor(size(w, 2)/10);
           w_{low} = w(1:length);
5
6
           H_actual_low = H_actual(1:length);
7
           H_actual_low = H_actual_low(:);
8
           H_generated_low = H_generated(1:length);
9
           H_generated_low = H_generated_low(:);
           w_high = w(end-length:end);
11
           H_actual_high = H_actual(end-length:end);
12
13
           H_actual_high = H_actual_high(:);
           H_generated_high = H_generated(end-length:end);
14
           H_generated_high = H_generated_high(:);
15
16
           kr = 1/ mean((H_actual_high-H_generated_high));
17
           mr = mean(-1./w_low.^2) / (mean(H_actual_low-
18
              H_generated_low)-1/kr);
19
       end
```

1.4.3 Results

Method	Residue	H_{12}^a	H_{16}^a
Peak Picking	Mass Stiffness	$-4.5316 \times 10^{-5} \\ 0.3330$	-9.1850×10^{-5} -2.9780
Circle Fit	Mass Stiffness	$-5.9514 \times 10^{-5} \\ 0.3513$	9.3397×10^{-5} -1.0487

Table 1.4: SDoF Modal Analysis for d_{r}

1.4.4 Plots

Figure 1.6: Corrected SDoF Fitting for ${\cal H}^a_{12}$

Figure 1.7: Corrected SDoF Fitting for ${\cal H}^a_{16}$

2 Question 2

Use the same experimental data from the previous question and do the following.

2.1 Part A

Use the rational fraction polynomial (RFP) method (based on orthogonal polynomials) to extract the natural frequencies, damping ratios (assume viscous damping), and mode shape parameters, in the frequency range $5 \le f \le 125$ Hz using the receptance FRFs. Assume m=2 for this exercise.

2.1.1 Method

Writing FRF as rational fraction polynomial form,

$$H_{ij}(\omega_i) = \frac{\sum_{k=0}^{2 \times m-1} c_k \phi_k^+(\omega_i)}{\sum_{k=0}^{2 \times m} d_k \theta_k^+(\omega_i)}$$

where the polymomials ϕ_k^+ and θ_k^+ are orthogonal in the sense

$$\sum_{i=1}^{L} \phi_{j}^{+}(\omega_{i})^{*} \phi_{k}^{+}(\omega_{i}) = \delta_{jk} \qquad \sum_{i=1}^{L} |H_{j1}(\omega_{i})|^{2} \theta_{j}^{+}(\omega_{i})^{*} \theta_{k}^{+}(\omega_{i}) = \delta_{jk}$$

The coefficients c_k and d_k are determined by minimizing the error

$$\{\varepsilon_{ij}\}=[P]\{c\}-[T_{ij}]\{d\}-\{w_{ij}\}$$

where

$$[P] = \begin{bmatrix} \phi_0^+(\omega_1) & \phi_1^+(\omega_1) & \dots & \phi_{2m-1}^+(\omega_1) \\ \phi_0^+(\omega_2) & \phi_1^+(\omega_2) & \dots & \phi_{2m-1}^+(\omega_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0^+(\omega_L) & \phi_1^+(\omega_L) & \dots & \phi_{2m-1}^+(\omega_L) \end{bmatrix}$$

$$[T] = \begin{bmatrix} H_{ij}(\omega_1)\phi_0^+(\omega_1) & H_{ij}(\omega_1)\phi_1^+(\omega_1) & \dots & H_{ij}(\omega_1)\phi_{2m-1}^+(\omega_1) \\ H_{ij}(\omega_2)\phi_0^+(\omega_2) & H_{ij}(\omega_2)\phi_1^+(\omega_2) & \dots & H_{ij}(\omega_2)\phi_{2m-1}^+(\omega_2) \\ \vdots & \vdots & \ddots & \vdots \\ H_{ij}(\omega_L)\phi_0^+(\omega_L) & H_{ij}(\omega_L)\phi_1^+(\omega_L) & \dots & H_{ij}(\omega_L)\phi_{2m-1}^+(\omega_L) \end{bmatrix}$$

$$\{w_{ij}\} = \begin{cases} H_{ij}(\omega_1)\phi_{2m}^+(\omega_1) \\ H_{ij}(\omega_2)\phi_{2m}^+(\omega_2) \\ \vdots \\ H_{ij}(\omega_L)\phi_{2m}^+(\omega_L) \end{cases}$$

$$\{c\} = \begin{cases} c_0 \\ c_1 \\ \vdots \\ c_{2m-1} \end{cases} \qquad \qquad \{d\} = \begin{cases} d_0 \\ d_1 \\ \vdots \\ d_{2m-1} \end{cases} \qquad \qquad d_{2m} =$$

The minimization of error ε leads to

$$\begin{bmatrix} [I] & [X] \\ [X^T] & [I] \end{bmatrix} \begin{Bmatrix} \{c\} \\ \{d\} \end{Bmatrix} = \begin{Bmatrix} \{g\} \\ \{0\} \end{Bmatrix}$$

where $[X] = \text{Re}\{[P]^*[T]\}$ and $\{h\} = \text{Re}\{[P]^*\{w\}\}$ and $[I] = [I]_{2m-1 \times 2m-1}$.

Simplifying, we have

$$[[I] - [X]^T [X]] \{d\} = -[X]^T h$$
$$\{c\} = \{h\} - [X] \{d\}$$

The natural frequencies ω_n are determined by identifying the poles p_n and the modal constants from the residues r_n of the rational fraction polynomial.

$$H_{ij}(\omega) = \frac{\sum_{k=0}^{2 \times m-1} c_k \phi_k^+(\omega)}{\sum_{k=0}^{2 \times m} d_k \theta_k^+(\omega)} = \sum_{n=0}^{m} \frac{r_n}{\omega^2 - p_n^2}$$

2.1.2 Code

The RFP was computed by the method described in [1] using the code shared on Moodle.

2.1.3 Results

$H_{ij}(\omega)$	Method	Natural Frequencies
$H_{11}(\omega)$	RFP $(m=2)$	14.1093, 95.4778
$H_{12}(\omega)$	RFP $(m=2)$	$14.1234,\ 82.0227$
$H_{13}(\omega)$	RFP $(m=2)$	14.1722, 95.8854
$H_{14}(\omega)$	RFP $(m=2)$	14.2129, 95.8901
$H_{15}(\omega)$	RFP $(m=2)$	14.1533, 95.8726
$H_{16}(\omega)$	RFP $(m=2)$	14.1116, 95.8623
$H_{17}(\omega)$	RFP $(m=2)$	13.0223, 95.8796
$H_{18}(\omega)$	RFP $(m=2)$	12.0126, 95.9112

Table 2.1: MDoF Modal Analysis for f_r

$H_{ij}(\omega)$	Method	Damping Coefficients
$H_{11}(\omega)$	RFP $(m=2)$	0.0096, 0.0050
$H_{12}(\omega)$	RFP $(m=2)$	0.0108, 0.0090
$H_{13}(\omega)$	RFP $(m=2)$	0.0108, 0.0090
$H_{14}(\omega)$	RFP $(m=2)$	0.0110, 0.0039
$H_{15}(\omega)$	RFP $(m=2)$	0.0091, 0.0044
$H_{16}(\omega)$	RFP $(m=2)$	0.0114, 0.0041
$H_{17}(\omega)$	RFP $(m=2)$	0.0253, 0.0043
$H_{18}(\omega)$	RFP $(m=2)$	0.0206, 0.0044

Table 2.2: MDoF Modal Analysis for d_r

$H_{ij}(\omega)$	Method	Mode Shapes
$H_{11}(\omega)$	RFP $(m=2)$	4.5011, 1.1439
$H_{12}(\omega)$	RFP $(m=2)$	4.5683, 0.2283
$H_{13}(\omega)$	RFP $(m=2)$	2.7933, 2.2860
$H_{14}(\omega)$	RFP $(m=2)$	2.3158, 2.6622
$H_{15}(\omega)$	RFP $(m=2)$	1.6808, 2.9461
$H_{16}(\omega)$	RFP $(m=2)$	0.8037, 2.2607
$H_{17}(\omega)$	RFP $(m=2)$	0.2436, 0.9457
$H_{18}(\omega)$	RFP $(m=2)$	0.0528, 0.2660

Table 2.3: MDoF Modal Analysis for $\phi_{ir}\phi_{jr}$ (Normalized by 2π)

2.2 Part B

Now vary m from 3 to 6 and generate the parameters as before. Comment on the results you obtain.

The plot of the measured FRF shows two significant peaks in the frequency range. The RFP extraction for m > 2 leads to erroneous modes, which are amplified (unlike the extraction on a forward problem) due to the presence of noise during measurement.

2.2.1 Results

$H_{ij}(\omega)$	Method	Natural Frequencies
$H_{11}(\omega)$	RFP $(m=5)$	10.4415, 14.3382, 96.0472 7.8463, 14.2598, 96.0438, 111.4589 6.7488, 14.2377, 61.2456, 96.0431, 118.0244 5.5579, 14.2337, 45.6187, 96.0414, 105.536, 120.9981
$H_{12}(\omega)$	RFP $(m=4)$ RFP $(m=5)$	11.6811, 14.3327, 96.2046 9.9952, 14.2578, 89.2128, 96.4994 8.5518, 14.2217, 60.1191, 96.1887, 115.8381 7.3057, 14.2207, 46.9128, 84.9083, 96.241, 119.8048
$H_{13}(\omega)$	RFP $(m=4)$ RFP $(m=5)$	14.1738, 95.7515, 103.9853 14.1713, 26.6875, 95.863, 123.419 12.8401, 14.2751, 95.7326, 97.2494, 124.7085 9.3758, 14.2147, 63.8863, 95.8436, 101.1223, 124.802
$H_{14}(\omega)$	RFP $(m=4)$	14.214, 61.0498, 95.9033 14.1929, 21.2834, 95.8749, 109.6208 13.4766, 14.4151, 90.3101, 95.9212, 116.4271 10.9149, 14.2456, 69.7619, 95.8632, 103.3689, 119.95
$H_{15}(\omega)$,	14.1354, 51.0337, 95.8316 11.4857, 14.3851, 95.8497, 116.4295 9.2496, 14.2628, 95.8137, 101.0025, 119.33 7.5253, 14.2454, 65.4945, 95.8427, 109.855, 121.4306
$H_{16}(\omega)$	RFP $(m=4)$	13.7488, 20.2463, 95.8402 7.7017, 14.4188, 95.8597, 104.9106 5.4098, 14.281, 77.4557, 95.8423, 115.6755 5.1684, 14.2576, 65.9829, 95.8567, 101.8442, 120.3223
$H_{17}(\omega)$	RFP $(m=4)$ RFP $(m=5)$	7.4936, 15.9643, 95.851 4.4817, 15.0437, 95.863, 96.2197 8.6306, 14.325, 64.4705, 95.8562, 120.23 3.9129, 14.221, 62.6247, 95.8698, 104.0425, 122.0378
$H_{18}(\omega)$	RFP $(m=4)$ RFP $(m=5)$	11.074, 29.9839, 95.8904 9.7669, 18.367, 81.1508, 95.8858 4.7747, 14.3965, 64.0019, 95.8801, 115.923 5.5471, 14.2363, 63.6071, 95.8833, 100.6198, 118.4792

Table 2.4: MDoF Modal Analysis for f_r

$H_{ij}(\omega)$	Method	Damping Coefficients
$H_{11}(\omega)$	RFP $(m = 3)$ RFP $(m = 4)$ RFP $(m = 5)$ RFP $(m = 6)$	-0.0689, 0.0084, 0.0051, 0.0003 -0.2316, 0.0082, -0.0036, 0.005, 0.0003
$H_{12}(\omega)$	RFP $(m = 3)$ RFP $(m = 4)$ RFP $(m = 5)$ RFP $(m = 6)$	
$H_{13}(\omega)$	RFP $(m = 3)$ RFP $(m = 4)$ RFP $(m = 5)$ RFP $(m = 6)$	0.01, 0.0029, 0.0033 0.011, 0.0145, 0.0037, 0.0003 0.0114, 0.0041, 0.0042, -0.0001, 0.0006 -0.0512, 0.0085, -0.0089, 0.0039, 0.0007, 0.0004
$H_{14}(\omega)$	RFP $(m = 3)$ RFP $(m = 4)$ RFP $(m = 5)$ RFP $(m = 6)$	
$H_{15}(\omega)$	RFP $(m = 3)$ RFP $(m = 4)$ RFP $(m = 5)$ RFP $(m = 6)$	0.0091, 0.0742, 0.0045 0.1228, 0.0197, 0.0042, 0.0054 -0.0196, 0.0076, 0.0036, 0.0204, 0.0039 -0.1645, 0.008, 0.0151, 0.0041, 0.0029, 0.0022
$H_{16}(\omega)$	RFP $(m = 3)$ RFP $(m = 4)$ RFP $(m = 5)$ RFP $(m = 6)$	-0.5751, 0.0114, 0.015, 0.0041, -0.0034
$H_{17}(\omega)$	RFP $(m=4)$ RFP $(m=5)$	0.2257, 0.23, 0.0041 -0.7355, 0.0408, 0.0062, -0.0118 -1, 0.0255, 0.0743, 0.0041, 0.0072 -0.67, 0.0235, 0.0742, 0.0042, 0.003, 0.0086
$H_{18}(\omega)$	RFP $(m=4)$ RFP $(m=5)$	-0.0138, 0.0812, 0.0041 -0.1419, -0.0093, -0.0057, 0.0042 -0.4379, 0.0256, 0.0458, 0.0042, 0.0011 -0.116, 0.0222, 0.0475, 0.0042, -0.0359, 0.0031

Table 2.5: MDoF Modal Analysis for d_{r}

$H_{ij}(\omega)$	Method	Mode Shapes
$H_{11}(\omega)$	RFP $(m=5)$	0.7674, 4.5016, 1.1609 0.9607, 4.6933, 1.1704, 0.0101 1.2175, 4.9379, 0.0344, 1.1687, 0.0015 5.5579, 14.2337, 45.6187, 96.0414, 105.536, 120.9981
$H_{12}(\omega)$	RFP $(m=5)$	3.1264, 1.0481, 0.239 1.0967, 2.9088, 0.073, 0.2104 0.4231, 4.0871, 0.052, 0.2436, 0.008 7.3057, 14.2207, 46.9128, 84.9083, 96.241, 119.8048
$H_{13}(\omega)$	RFP $(m=4)$ RFP $(m=5)$	2.8621, 1.8745, 0.2779 3.1042, 0.2989, 2.2696, 0.0232 1.1107, 1.6654, 2.3871, 0.4678, 0.0276 9.3758, 14.2147, 63.8863, 95.8436, 101.1223, 124.802
$H_{14}(\omega)$	RFP $(m=4)$ RFP $(m=5)$	2.3746, 0.1095, 2.6961 2.4519, 0.2017, 2.7104, 0.0482 1.408, 0.8717, 0.0726, 2.6836, 0.0086 10.9149, 14.2456, 69.7619, 95.8632, 103.3689, 119.95
$H_{15}(\omega)$	RFP $(m=4)$ RFP $(m=5)$	1.7601, 0.3562, 2.9358 0.9125, 2.384, 2.8724, 0.0754 0.0662, 1.6138, 2.7218, 0.2781, 0.0456 7.5253, 14.2454, 65.4945, 95.8427, 109.855, 121.4306
$H_{16}(\omega)$	RFP $(m=4)$	0.5872, 0.9113, 2.2235 0.9297, 1.4581, 2.2273, 0.0434 0.4708, 1.0614, 0.0574, 2.2422, 0.0135 5.1684, 14.2576, 65.9829, 95.8567, 101.8442, 120.3223
$H_{17}(\omega)$	RFP $(m=4)$ RFP $(m=5)$	1.51, 1.4554, 0.9115 0.7837, 0.6977, 0.9521, 0.2494 1.0887, 0.4404, 0.0567, 0.9073, 0.0053 3.9129, 14.221, 62.6247, 95.8698, 104.0425, 122.0378
$H_{18}(\omega)$	RFP $(m=4)$ RFP $(m=5)$	0.0661, 0.0608, 0.2542 0.1774, 0.1501, 0.0304, 0.2505 0.1372, 0.1249, 0.0346, 0.2544, 0.0025 5.5471, 14.2363, 63.6071, 95.8833, 100.6198, 118.4792

Table 2.6: MDoF Modal Analysis for $\phi_{ir}\phi_{jr}$ (Normalized by $2\pi)$

2.3 Part C

Regenerate the accelerance FRFs and compare it with experimental data for H_{11} and H_{17} and comment on your results.

2.3.1 Results

The RFP method performs better for H_{11} but fails to capture the system's behavior of H_{17} for small frequencies. With the increase in m, the RFP fit for H_{17} improves. The erroneous mode shapes can be eliminated by estimating the variance of the mode shapes.

2.3.2 Plots

Figure 2.1: MDoF Fitting for H_{11}

Figure 2.2: MDoF Fitting for H_{17}

References

[1] M. H. Richardson and D. L. Formenti, "Parameter estimation from frequency response measurements using rational fraction polynomials," in 1ºIMAC Conference, (Orlando, FL), 1982.