

UPENDRA GOSAVI

Data Scientist

About Me

I'm a passionate Data Scientist and Analyst with strong analytical skills. I'm always exploring and implementing cutting-edge

technologies like **Machine Learning**, **Python**, **Power BI**, **Excel**, **NLP**, **Deep Learning** and **MySQL**. I thrive on unleashing my talent and using it to its full potential. My focus is always on practical solutions that can improve technology and management.

As a Computer Science expert, I'm results-oriented and highly motivated to gather, analyze, and interpret data sets. I have a keen understanding of business needs and excel at gathering client requirements. Let me help you harness the power of data to drive your business forward!

ISF Analytica and Informatica (Data Scientist)

Professional Experience

April 2023 - Present

Key responsibilities:

- Utilized Looker Studio and Bashboard to develop interactive dashboards for EasyLearn platform.
- Created SQL views and queries for data extraction and manipulation.
- Conducted data analysis using statistical techniques to gain insights for EasyLearn platform.
- Collaborated with data science team and received mentorship.
- Pre-processed and cleaned data for analysis and reporting.
- Developed skills in Looker Studio, Bashboard, SQL, and data analysis.

Ai-Variant (Data Scientist As Intern)

Sep 2022 - feb 2023 (6 Months)

Key responsibilities:

- Pre-processed the data to prepare it for analysis.
- Analyzed the data using statistical techniques to gain insights.
- Gained practical experience working on other data science projects throughout the internship.
- Developed valuable skills that will help prepare for a career in data science.
- Collaborated with a team of data scientists and received mentorship from experienced professionals.

Wipro (IT-Support) oct 2019 - aug 2021

Key responsibilities:

- Troubleshooting technical issues related to hardware, software, and networking.
- Providing excellent customer service to end-users.
- Documenting technical support activities for accurate record-keeping.
- Providing remote support using tools to assist users remotely.
- Effective time management to handle multiple requests.
- Adaptable and flexible to changing priorities and evolving technologies.
- Basic understanding of IT infrastructure to troubleshoot network-related issues.

MY CONTACT

- ✓ upendrasgosavil@gmail.com
- 8689809107
- Thane, Mumbai, Maharashtra

\bigcirc

GITHUB

https://github.com/007kakashi

LINKEDIN

www.linkedin.com/in/upendra-gosavi-4068a2195

SKILLS

- Programming languages: Python, SQL, and other languages relevant to data science.
- Data manipulation and analysis: Experience with data cleaning, transformation, and analysis.
- Statistical modeling: Familiarity with statistical modeling techniques, such as regression analysis and time series forecasting.
- Machine learning: Experience with supervised and unsupervised machine learning techniques.
- Data visualization: Proficiency with data visualization tools like Power BI, Seaborn or Matplotlib.

Education Background

- EXCEL'R SOLUTION
- july 2022 Feb 2023 Course of Data Science & Data Analyst
- NAVJEEVAN EDUCATION SOCIETY POLYTECHNIC
- 2014 -2019 Diploma In Information Technology

PROJECTS

Customer Churn

- Data collection and preprocessing: Collect relevant data from various sources, clean and preprocess the data. Handle missing
 values and encode categorical variables.
- Exploratory data analysis (EDA): Perform EDA to understand the data and relationships between features and the target variable.
- Feature engineering: Create new features that can be relevant to the problem statement.
- **Model selection:** Choose the appropriate algorithm(s) for the problem. This may include supervised learning algorithms such as logistic regression, decision trees, random forest, or neural networks.
- **Model training:** Split the data into training and validation sets, train the model using the training set, and tune the model parameters to achieve optimal performance.
- **Model evaluation:** Evaluate the performance of the model on the validation set. Use appropriate metrics such as accuracy, precision, recall, or F1 score.
- Model deployment: Deploy the trained model in a production environment for real-world predictions.

Sentiment Analysis

- **Data collection:** Collect the necessary data from the e-commerce website by web scraping. This includes extracting the product name, customer reviews, and ratings.
- **Data preprocessing:** Preprocess the data by cleaning it, removing unwanted characters, and transforming the data into a format suitable for NLP algorithms.
- Exploratory data analysis (EDA): Perform EDA to get insights into the data, such as identifying the most frequent words in the reviews and their sentiment.
- Feature engineering: Create new features from the existing ones that may be relevant to the problem. This may include creating a bag of words or TF-IDF matrix.
- **Model selection:** Choose the appropriate NLP algorithm(s) for the problem. This may include sentiment analysis algorithms such as Naive Bayes, Logistic Regression, or Support Vector Machines.
- **Model training:** Split the data into training and testing sets and train the model using the training set. Tune the model parameters to achieve optimal performance.
- **Model evaluation:** Evaluate the performance of the model on the testing set. Use appropriate metrics such as accuracy, precision, recall, or Fl score.
- Model deployment: Deploy the trained model to predict the sentiment of new reviews.

Leaf Desease Detector

- Data collection: Gathered a comprehensive dataset comprising images of both healthy and diseased leaves from various sources, including field photographs.
- **Data preprocessing:** Preprocess the data by resizing the images, normalizing pixel values, and splitting the data into training, validation, and testing sets.
- Model architecture selection: Choose the appropriate CNN architecture for the problem, such as VGG, ResNet, or Inception.
- **Model training:** Train the model using the training set, using techniques such as data augmentation, transfer learning, or fine-tuning.
- **Model evaluation:** Evaluate the performance of the model on the validation and testing sets using metrics such as accuracy, precision, recall, or F1 score.
- Model deployment: Deploy the trained model in a production environment to detect leaf diseases automatically.