FACULTAD DE INGENIERÍA, UNAM

LABORATORIO DE MICROCOMPUTADORASS

SEMESTRE 2023-2

GRUPO 11

PREVIO PRÁCTICA 7

PUERTO SERIE SCI(ASÍNCRONO)

NOMBRE DEL ALUMNO:

ARRIAGA MEJÍA JOSÉ CARLOS

PROFESOR

ING. ROMAN V. OSORIO COMPARAN

FECHA DE ENTREGA: 05 DE MAYO DE 2023 CALIFICACION

Objetivo

Familiarizar al alumno en el uso de una Interfaz de Comunicación Serie Asíncrona de un microcontrolador.

1.- Escribir, comentar y ensamblar el siguiente código

```
processor 16f877
    include <pl6f877.inc>
    ORG 0
    GOTC INICIO
    ORG 5
INICIO:
    BSF STATUS, RPO; Banco 01
    BCF STATUS, RP1
   BSF TXSTA, BRGH; Configura la velocidad de comunicación BRGH=0
   MOVLW D'129'
    MOVWF SPBRG; Baund rate de 2400
   BCF TXSTA, SYNC ; Desactiva comunicación sincrona
    BSF TXSTA, TXEN ; activa transmisión
    BCF STATUS, RPO ; Banco 00
    BSF RCSTA, SPEN ; habilita puerto serie
    BSF RCSTA, CREN ; activa la recepción continua en modo de comunicación asíncrona
    BTFSS PIR1, RCIF ; Verfifica si la recepción fue completa
    COTC RECIBE
    MOVF RCREG, W ; guarda el mesanje
    MOVWF TXREG ; manda el mensaje a transmisión
    BSF STATUS, RPO ; cambia a banco 01
TRASMITE:
   BTFSS TXSTA, TRMT ; verifica que se haya terminado de transmitir
    COTO TRASMITE
    BCF STATUS, RPO ; cambia a banco 00
    GOTO RECIBE
    END
```

3.- Realizar un programa que despliegue la siguiente cadena en una terminal. Ejemplo: Hola mundo

```
processor 16f877
include <pl6f877.inc>
   ORG 0
   COTC INICIO
   ORG 5
INICIO:
   BSF STATUS, RPO ; Cambiamos al banco 01
   BCF STATUS, RP1 ;
   BSF TXSTA, BRGH ; prende bit BRGH --> alta velocidad
   MOVLW D'129' ; W = 129, como BRGH = 1 => 129->9600 baudios
   MOVWF SPBRG ; se configura a 9600 baudios
   BCF TXSTA, SYNC ; apagamos bit SYNC --> modo asíncrono
   BSF TXSTA, TXEN ; prende bit TXEN --> habilita transmisión
   BCF STATUS, RPO ; cambiamos al banco 00
   BSF RCSTA, SPEN ; prende bit SPEN --> habilita el puerto serie
TRANS:
   MOVLW 'H' ; carga el valor de H a W
   MOVWF TXREG ; carga el registro de transferencia con W
   BSF STATUS, RPO ; cambiamos al banco 01
   BTFSS TXSTA, TRMT ; checa si se realizó la transmisión
   COTO TRANSMITE1 ; esperamos bandera transmisión
   BCF STATUS, RPO ; cambiamos al banco 00
   MOVLW 'O' ;
   MOVWE TXREG ;
   BSF STATUS, RPO ;
TRANSMITE2:
   BTFSS TXSTA, TRMT ;
   COTC TRANSMITE2 ;
   BCF STATUS, RPO ;
   MOVLW 'L' ;
   MOVWF TXREG ;
   BSF STATUS, RPO ;
TRANSMITE3:
   BTFSS TXSTA, TRMT ;
   GOTO TRANSMITES ;
   BCF STATUS, RPO ;
   MOVLW 'A' ;
   MOVWE TXREG ;
   BSF STATUS, RPO ;
```

```
TRANSMITE4:
   BTFSS TXSTA, TRMT ;
   COTC TRANSMITE4 ;
   BCF STATUS, RPO ;
   MOVUM ' ';
MOVWE TXREG ;
   BSF STATUS, RPO ;
TRANSMITES:
   BTFSS TXSTA, TRMT ;
   COTC TRANSMITES ;
   BCF STATUS, RPO ;
   MOVLW 'm' ;
   MOVWE TXREG ;
   BSF STATUS, RPO ;
TRANSMITE6:
   BTFSS TXSTA, TRMT ;
   COTC TRANSMITE6 ;
   BCF STATUS, RPO ;
   MOVLW 'u' ;
   MOVWE TXREG ;
                      TRANSMITE10:
   BSF STATUS, RPO ;
TRANSMITE7:
                        BTFSS TXSTA, TRMT ;
   BTFSS TXSTA, TRMT ;
                          GOTO TRANSMITE10 ;
   GOTC TRANSMITE7 ;
   BCF STATUS, RPO ;
                          BCF STATUS, RPO ;
   MOVLW 'n' ;
                          MOVLW d'10' ; salto de linea
   MOVWE TXREG ;
   BSF STATUS, RPO ;
                           MOVWE TXREG ;
TRANSMITE8:
                           BSF STATUS, RPO ;
   BTFSS TXSTA, TRMT ;
   GOTC TRANSMITES ;
                      TRANSMITE11:
   BCF STATUS, RPO ;
                           BTFSS TXSTA, TRMT ;
   MOVLW 'd' ;
   MOVWE TXREG ;
                            GOTC TRANSMITE11 ;
   BSF STATUS, RPO ;
                            BCF STATUS, RPO ;
TRANSMITE9:
   BTFSS TXSTA, TRMT ; FIN:
   GOTC TRANSMITE9 ;
                           GOTO FIN ; se queda en este ciclo para siempre
   BCF STATUS, RPO ;
                            ;GOTO TRANS ; solo transmite una vez
   MOVLW 'o' ;
   MOVWE TXREG ;
                            END
   BSF STATUS, RPO ;
```

4.- Realizar un programa que ejecute el control indicado; el dato proviene a través del puerto serie:

DATO	ACCION	
Puerto Serie	Terminal 0 del puerto B (PB0)	
'0 '	0	
'1'	1	

Tabla 7.1 Control para activar y desactivar una señal

```
processor 16f877 ; Indica la versión de procesador
    include<pl6f877.inc> ; Incluye la librería del procesador
    ORG 0
    GOTO INICIO
   ORG 5
INICIO:
   BSF STATUS, RPO ; Cambiamos al banco 01
   BCF STATUS, RP1 ;
   MOVLW B'000000000'; configura al puerto B 8 bits salida
   MOVWF TRISE ; carga la configuracion
   BSF TXSTA, BRGH ; prende bit BRGH --> alta velocidad
   MOVLW D'129'; W=129, como BRGH=1 => 129->9600 baudios
   MOVWF SPBRG ; se configura a 9600 baudios
   BCF TXSTA, SYNC ; apagamos bit SYNC --> modo asíncrono
   BCF STATUS, RPO ; cambiamos al banco 00
   BSF RCSTA, SPEN ; prende bit SPEN --> habilita el puerto serie
   BSF RCSTA, CREN ; prende bit CREN --> haiblita recepcion
   BTFSS PIR1, RCIF ; espera en bucle a que termine recepción
   GOTO RECIBE
   BCF STATUS, Z
   MOVLW '0'
   SUBWF RCREG, W ; W = RCREG - W = RCREG - 0
   BTFSC STATUS, Z ;
   GOTO APAGA ; apaga salida
   BCF STATUS, Z
   MOVLW '1'
   SUBWF RCREG, W ; W = RCREG - W = RCREG - 1
   BTFSC STATUS, Z
   GOTO PRENDE ; prende salida
   COTC RECIBE ; se mantiene igual
APAGA:
   BCF PORTE, 0 ; se limpia bit 0 puerto b
   GOTO RECIBE
PRENDE:
   BSF PORTE, 0 ; se prende bit 0 puerto b
   GOTO RECIBE
    END
```

5.- Realizar un programa que ejecute el control indicado; la secuencia será reconocida cada que sea recibido el comando, usar retardos de ½ segundo entre cada estado generado:

DATO	ACCION	
Puerto Serie	Salida Puerto B	
'D' ó 'd'	10000000	
	01000000	
	00100000	
	00010000	
	00001000	
	00000100	
	00000010	
	0000001	
Tóʻi	0000001	
	00000010	
	00000100	
	00001000	
	00010000	
	00100000	
	01000000	
	10000000	

Tabla 7.2 Secuencia de control

```
processor 16f877 ; Indica la versión de procesador
   include <pl6f877.inc> ; Incluye la librería del procesador
   valor1 equ h'21'
   valor2 equ h'22'
   valor3 equ h'23'
   ctel equ 50
   cte2 equ .200
   cte3 equ .82
   ORG 0
   COTC INICIO
   ORG 5
INICIO:
   BSF STATUS, RPO ; Cambiamos al banco 01
   BCF STATUS, RP1 ;
   MOVLW B'000000000'; configura al puerto B como 8 salidas
   MOVWF TRISE ; carga la configuracion
   BSF TXSTA, BRGH ; prende bit BRGH --> alta velocidad
   MOVLW D'129'; W=129, como BRGH=1 => 129->9600 baudios
   MOVWF SPBRG ; se configura a 9600 baudios
   BCF TXSTA, SYNC ; apagamos bit SYNC --> modo asíncrono
   BCF STATUS, RPO ; cambiamos al banco 00
   BSF RCSTA, SPEN ; prende bit SPEN --> habilita el puerto serie
   BSF RCSTA, CREN ; prende bit CREN --> haiblita recepcion
RECIBE:
   BTFSS PIR1, RCIF ; espera en bucle a que termine recepción
    GOTC RECIBE ; vuelve a esperar
    BCF STATUS, Z ; limpia bandera zero
   MOVLW 'D' ; W <-- 'D'
   SUBWF RCREG, W ; W = RCREG - W = RCREG - D
   BTFSC STATUS, Z ; checa si la resta fue 0 y char fue D
   COTC DERECHA ; CORRIMIENTO DERECHA
   BCF STATUS, Z ; limpia Z
   MOVLW 'd' ; W <-- 'd'
    SUBWE RCREG, W ; W = RCREG - W = RCREG - d
    BTFSC STATUS, Z ; checa si la resta fue 0 y char fue i
   GOTO DERECHA ; CORRIMIENTO DERECHA
   BCF STATUS, Z
   MOVLW 'I'
   SUBWF RCREG, W ; W = RCREG - W = RCREG - I
   BTFSC STATUS, Z ; checa si la resta fue 0 y char fue I
    GOTC IZQUIERDA ; CORRIMIENTO IZQUIERDA
    BCF STATUS, Z
   MOVLW '1'
    SUBWF RCREG, W ; W = RCREG - W = RCREG - i
   BTFSC STATUS, Z ; checa si la resta fue 0 y char fue i
    COTC IZQUIERDA ; CORRIMIENTO IZQUIERDA
```

```
GOTC RECIBE ; va a recibir siguiente char
   DERECHA:
   BCF STATUS, C ; limpia carry
   MOVLW b'100000000';
   MOVWF PORTE ; carga 100000000 en el puerto b
CORRDER:
   CALL RETARDO
   RRF PORTE ; corrimiento derecha
   BTFSS STATUS, C ; checa si se desborda
    GOTO CORRDER ; vuelve a otro corrimiento
   COTO RECIBE ; va a recibir siguiente char
IZQUIERDA:
   BCF STATUS, C ; limpia carry
   MOVLW b'00000001';
   MOVWF PORTE ; carga 00000001 en el puerto b
CORRIZO:
   CALL RETARDO
   RLF PORTE ; corrimiento izquierda
   BTFSS STATUS, C ; checa si se desborda
   GOTC CORRIZC ; vuelve a otro corrimiento
   GOTO RECIBE ; va a recibir siguiente char
RETARDO ; subrutina de retardo
   MOVLW ctel
   MOVWF valor1
   MOVLW cte2
   MOVWF valor2
   MOVLW cte3
   MOVWF valor3
   DECFSZ valor3
   GOTC uno
   DECFSZ valor2
   COTC dos
   DECFSZ valor1
   GOTO tres
   RETURN
    END
```

6.- Descargar la aplicación practica 7. apk e instalar en su dispositivo móvil (Android), realizar un programa para el microcontrolador, de manera que reciba el comando a través del puerto serie, con conexión inalámbrica (bluetooth), par que genere el control indicado en la tabla 7.4; usar la asignación mostrada en la tabla 7.3.

Notas importantes:

- a. El dato que recibe es el código ASCCI del carácter transmitido.
- b. Para vincularse con el dispositivo Bluetooth deberá comprobar su identificador.
- c. Considerar la ubicación de las señales de control y los valores encontrados en la práctica 5.

MOTOR2				
PC2	PB3	PB2		
ENABLE M2	DIR1 M2	DIR2 M2		

MOTOR1				
PC1	PB1	PB0		
ENABLE_M1	DIR1_M1	DIR2 M1		

Tabla 7.3. Asignación de señales de control de los motores de CD.

Comando	ACCION		
Puerto serie	MOTOR M1	MOTOR M2	
'S'	PARO	PARO	
'A'	DERECHA	DERECHA	
'T'	IZQUIERDA	IZQUIERDA	
'D'	DERECHA	IZQUIERDA	
'I'	IZQUIERDA	DERECHA	

Tabla 7.4 Control de motores, comunicación serie

Control de motores P76 Proyecto PAPIME PE109719 S CONECTAR DESCONECTAR SALIR