Arbres de décision

Arbres de decisio

Module 5

Objectifs

Objectifs

- construire un arbre de décision aussi bien pour la régression que pour la classification
- combiner plusieurs arbres efficacement avec Random Forest

Arbres de décision

Introduction

Modèle de classification ou regréssion qui classe un input dans une de ses feuilles pour rendre sa prédiction :

Avantages

Les arbres de décision

- gèrent les inputs numériques comme catégoriels
- ne nécessitent pas que la variable d'output soit normalement distribuée (regression linéaire)
- sont interprétables
- sont très rapides durant l'inférence
- ne nécessitent pas de normalisation des données
- leur apprentissage est hautement parallèlisable
- \rightarrow Couteau-suisse du machine learning tabulaire.

Désavantages

- peuvent overfit les données, mais l'ensembling résoud ce problème
- sont sensibles aux déséquilibres de classe
- ightarrow Si les classes ne sont pas équilibrées, peut-être les resampler.

Arbres de classification

Arbres de régression

Apprendre un arbre de décision

Approche « top-down », procédure récursive :

- créer un nœud de départ qui contient toutes les instances du training set
- tant qu'il reste des nœuds non-traités :
 - choisir un nœud non traité
 - si le nœud remplit des conditions de feuille finale, ne rien faire
 - sinon, créer deux branches à partir du nœud non traité pour répartir les instances dans deux nouveaux nœuds

Conditions de feuilles finales : contient n_{min} éléments, est déjà à profondeur p_{max} , splitterait sans décroître assez l'entropie...

Décision rendue

En fonction de la tâche, une fois arrivé dans la feuille de fin :

Classification classe majoritaire

Régression moyenne des valeurs cibles

Splits possibles

Splits possibles d'une feature donnée :

Catégorielle chaque catégorie vs le reste

Ordinale/Continue milieu de chaque valeur ou quantiles

Évaluation de la qualité d'un split

En fonction de la tâche :

Régression coût si on rendait la moyenne des instances comme résultat

$$Loss = \sum |\hat{y} - y| \approx variance$$

Classification Entropie de Shannon :

$$Loss = -\sum_{x \in X} P_x * \log_2(P_x)$$

 $=0 \Rightarrow$ il n'y a pas d'incertitude maximale quand on a une distribution uniforme

Exemple — démarrage

ID, jardinage, jeux vidéos, chapeaux, âge

1	0	1	1	13
2	0	1	0	14
3	0	1	0	15
4	1	1	1	25
5	0	1	1	35
6	1	0	0	49
7	1	1	1	68
8	1	0	0	71
9	1	0	1	73

Première étape : création du nœud de départ

ID, jardinage, jeux vidéos, chapeaux, âge

Split du premier nœud. Il faut tester 3 splits. Split sur jardinage :

1, 2, 3, 4, 5, 6, 7, 8, 9 jardinage
$$\hat{y}$$
 jardinage \hat{y} jardinage $\hat{$

Loss totale: 122,3

ID, jardinage, jeux vidéos, chapeaux, âge

Split du premier nœud. Il faut tester 3 splits. Split sur jeux vidéos :

Loss totale: 123, 3

ID, jardinage, jeux vidéos, chapeaux, âge

Split du premier nœud. Il faut tester 3 splits. Split sur chapeaux :

1, 2, 3, 4, 5, 6, 7, 8, 9

chapeaux

1, 4, 5, 7, 9

$$\hat{y} = 42, 8$$
 $\hat{y} = 37, 25$
 $\hat{z} = 110, 8$
 $\hat{z} = 91$

Loss totale: 201,8

ID, jardinage, jeux vidéos, chapeaux, âge

1	0	1	1	13
2	0	1	0	14
3	0	1	0	15
4	1	1	1	25
5	0	1	1	35
6	1	0	0	49
7	1	1	1	68
8	1	0	0	71
9	1	0	1	73_

122,3 jardinage123,3 jeux vidéos201,8 chapeaux

ightarrow On split donc sur jardinage

ID, jardinage, jeux vidéos, chapeaux, âge

Γ1	0	1	1	13
2	0	1	0	14
3	0	1	0	15
4	1	1	1	25
5	0	1	1	35
6	1	0	0	49
7	1	1	1	68
8	1	0	0	71
9	1	0	1	73

Résultat après le premier split :

À vous de jouer!

Limiter l'overfit

Fait par :

- la profondeur maximum
- le nombre minimum d'instances dans chaque feuille
- une baisse d'entropie maximale à chaque split
- le nombre minimum d'instances pour split
- le pruning

Random Forest

Introduction

- les arbres de décision overfit facilement
- ils sont rapides à apprendre
- en combiner beaucoup est faisable et réduit la variance
- ightarrow création d'une forêt (ensemble d'arbres) aléatoire

But

Produire des arbres décorrélés et moyenner leurs prédictions pour réduire la variance.

Outil 1 — bagging (row sampling)

Boostrap aggregating (Bagging) :

- tirer un échantillon du dataset avec replacement
- entraı̂ner un arbre sur cet échantillon
- répéter B fois

Le bagging s'appelle aussi row sampling.

Outil 2 — random subspace method (column sampling)

- à chaque split, considérer seulement un sous-ensemble des features
- valeurs conseillées :
 - classification : $|\sqrt{m}|$ features par split
 - regréssion : $\left|\frac{m}{3}\right|$ features par split, 5 exemples par node minimum

Random Forest

Random Forest

- Pas de sur-apprentissage en augmentant le nombre d'arbres
- Une fois appris, le modèle est très rapide

Conclusion

Conclusion

- les arbres sont interprétables, rapides à entraîner, combinables.
- random forest combine des arbres faibles en un prédicteur versatile

Gradient boosted trees

Introduction

Arbres qui s'améliorent successivement.

quant dare.com/what-is-the-difference-between-bagging-and-boosting/

Approximation 1

- 1. partir d'un arbre grossier
- 2. entraîner un nouvel arbre sur les résiduels du premier
- 3. concaténer le nouvel arbre au premier
- 4. goto 2.

Quel est l'effet d'entraîner sur les résiduels?

Approximation 2

- 1. partir d'un arbre grossier
- 2. entraîner un nouvel arbre sur les pseudo-résiduels du premier
- 3. concaténer le nouvel arbre au premier
- 4. goto 2.

Pseudo-résiduels

- chosir une fonction de coût.
- calculer les pas de descente de gradient étant donné les couples (ŷ_i, y_i)
- se servir de ces valeurs comme de résiduels
- ightarrow Intérêt : pouvoir utiliser n'importe quel loss dérivable.

Approximation 3

- 1. partir d'un arbre grossier
- 2. entraîner un nouvel arbre sur les pseudo-résiduels du premier
- 3. calculer un multiplicateur pour que l'arbre produit minimise le coût
- 4. concaténer le nouvel arbre au premier
- 5. goto 2.

Véritable modèle

- 1. partir d'un arbre grossier
- 2. entraîner un nouvel arbre sur les pseudo-résiduels du premier
- 3. calculer un multiplicateur pour que l'arbre produit minimise le coût
- 4. appliquer un learning rate
- 5. concaténer le nouvel arbre au premier
- 6. goto 2.

Idée à retenir

- séquence d'arbres qui s'entrainent à corriger les erreurs de l'arbre d'avant
- modélisation de la correction de l'erreur par un pas de descente de gradient pour plus de flexibilité.

Extensions

- row sampling
- column sampling
- tree structure cost

Avantages

- modèle extrêmement performant et versatile
- entrainement parallélisable

Désavantages

Sujet à l'overfit si pas assez régularisé (tree structure cost) et randomisé (row & column sampling)

