Total N	Vo.	of Questions : 8]	SEAT No. :						
PB3624		[6261]-29	[Total	No. of Pag	es :3				
		S.E. (E & TC)							
		DATA STRUCTURES AND ALGO	DRITHMS						
	(2019 Pattern) (Semester-III) (204184)								
			_0 .10 .)						
Time: 2½ Hours]			[N]	Iax. Marks	: 70				
		ons to the candidates:	0.0						
1)		Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.	2.8.						
2) 3)		Neat diagrams must be drawn wherever necessary. Figures to the right indicates full marks.							
<i>4</i>)		Use of Calculator is followed.							
5)		Assume suitable data if necessary.	9						
0)		Tissume quitagree data y necessary.							
O(1)	. \	Compare Stools and Ougue What are the or	duant drag of	aiman,1am an	10110				
Q1) a	l)	Compare Stack and Queue. What are the ac	ivallyages of	circulai qi					
		overliner queue?	NX.		[6]				
h		Write a function PUSH and POP in C' for s	b.	alzad liet	[6]				
U	"	write a function FOSH and FOF hove for s	stack using in	ikeu iist.	[6]				
c	:)	What are the applications of Queue? Explain	two applicatio	ons in detai	1. [5]				
		OR							
Q2) a	l)	Write a short note on circular queue. Compa	re it with line	ear queue.	[5]				
b)	Convert the following prefix expression in	to infix form	. Show all	the				
		steps and stack contents.		,	[6]				
				Š	.0-				
		*-A/BC-/AKL							
С	:)	Write ADD and DETETE function in 'C' for	r Queue using	garray	[6]				
		Ψ		\$					
				× ´					
			0,00						
Q3) a	l)	Compare array and linked list.	Q W		[5]				
			7, 10,						
b)	Write a 'C' function to delete a number from	n singly linked	d list.	[6]				
		C) ^y	20						
c	:)	Explain doubly linked list (DLL). What are	the advantage	es of DLL	over				
		SLL.	· ·		[6]				
		OR							
				370	T.O.				
		\searrow		P	<i>T.O.</i>				

<i>Q4</i>)	a)	Draw and explain circular linked list. State the limitations of single link list.	ked [5]
	b)	Write 'C' function to insert a number at end in to the single linked list.	[6]
	c)	Differentiate singly linked list and doubly linked list.	[6]
Q 5)	a)	Construct Binary search tree of the following. MAR, OCT, JAN, APR, NOV, FEB, MAY, DEC, JUN, AUG, JUL, S	[6]
	b)	Write a pseudo code to search an element in binary search tree usi	
	c)	Explain with suitable example how binary tree can be represented using:	[6]
	•	ii) Linked List	
Q6)	a)	Define BST? Create a BST for the following data:	[6]
		14,15,4,9,7,18,3,5,7.	2
	b)	Define binary tree. Name and explain with suitable example the following terms	ing [6]
		 i) Root node ii) Left sub tree and right sub tree iii) Depth of tree 	
		ii) Left sub tree and right sub tree	
		iii) Depth of tree	
	c)	Construct the binary search tree from the following elements:	[6]
		15,4,16,8,2,18,14	
		Also show preorder, inorder and postorder traversal for the same	
[626	51]-2	2 8	

- What is MST? Explain with suitable example Kruskal's Algorithm to b) find out MST. **[6]**
- Define DFS and BFS graph with example. c)

[6]

OR

Q8) a) Explain Kruskal algorithm? Find the minimum spanning tree for below figure Using Kruskal's Algorithm **[6]**

Explain Dijkstra's algorithm with example. b)

[6]

Explain with suitable example the techniques to represent a graph.

Note: consider graph of minimum 6 vertices **[6]** c)