Valeurs propres, vecteurs propres et sous espaces propres

Dans ce qui suit, E est un espace vectoriel sur \mathbb{K} et u un endomorphisme de E.

Définition

- 1. On dit qu'un vecteur $x \in E$ est un vecteur propre de u si x est non nul et x et u(x) sont colinéaires.
- 2. On dit qu'un scalaire $\lambda \in \mathbb{K}$ est une valeur propre de u s'il existe un vecteur $non \ nul \ x$ de E tel que $u(x) = \lambda x$. Dans ce cas, on dit que x est un vecteur propre associé à la valeur propre λ .
- 3. On note $\sigma_{\mathbb{K}}(u)$ l'ensemble des valeurs propres de u dans \mathbb{K} . Cet ensemble s'appelle le spectre de u.
- 4. Si $\lambda \in \sigma_{\mathbb{K}}(u)$, on appelle sous espace propre associé à la valeur propre λ le sous-espace vectoriel de E donné par

$$E_{\lambda} := \ker(u - \lambda \mathrm{id}_E).$$

Pour des raisons de commodité, on posera, pour tout scalaire λ ,

$$E_{\lambda} := \ker(u - \lambda \mathrm{id}_E).$$

Proposition

Soit $\lambda \in \mathbb{K}$. Les assertions suivantes sont équivalents :

- 1. λ est une valeur propre de u
- 2. $E_{\lambda} \neq \{0_E\}$
- 3. $u \lambda i d_E$ n'est pas injectif
- 4. $\det(u \lambda i d_E) = 0$

Dans cas, $E_{\lambda} \setminus \{0_E\}$ est l'ensemble des vecteurs propres de u associés à λ .

Démonstration: Par définition, λ est une valeur propre de u si, et seulement si,

$$\exists x \in E \setminus \{0\}, \quad u(x) = \lambda x = \lambda id_E(x),$$

ce qui équivaut à,

$$\exists x \in E \setminus \{0\}, \quad (u - \lambda i d_E)(x) = 0$$

ce qui équivaut à,

$$E_{\lambda} = \ker(u - \lambda \mathrm{id}_E) \neq \{0\}.$$

ce qui équivaut à, $u - \lambda id_E$ n'est pas injectif, ou encore $\det(u - \lambda id_E) = 0$.

Exemple

Trouver les valeurs et vecteurs propres de l'endomorphisme u de \mathbb{R}^2 dont la matrice dans la base canonique $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$.

Un scalaire λ est une valeur propre de u si, et seulement si,

$$0 = \det(u - \lambda \mathrm{id}_E) = \begin{vmatrix} 1 - \lambda & 2 \\ 2 & 4 - \lambda \end{vmatrix} = \lambda^2 - 5\lambda = \lambda(5 - \lambda).$$

Donc u a deux valeurs propres $\lambda_1 = 0$ et $\lambda_2 = 5$. Cherchons les vecteurs propres de u associés à $\lambda_1 = 0$. $(x, y) \in E_0$, si et seulement si u(x, y) = 0, si et seulement si

$$\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + 2y \\ 2x + 4y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Ainsi E_0 est la droite vectorielle engendrée par $v_1 = (-2, 1)$.

De même, $(x,y) \in E_5$, si et seulement si $(u-5\mathrm{id})(x,y)=0$, si et seulement si

$$\begin{pmatrix} -4 & 2 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -4x + 2y \\ 2x - y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Ainsi E_5 est la droite vectorielle engendrée par $v_2 = (1,2)$. En outre, on remarque (v_1, v_2) est une base de \mathbb{R}^2 et la matrice de u dans cette base est la matrice diagonale $D = \begin{pmatrix} 0 & 0 \\ 0 & 5 \end{pmatrix}$.

Définition

Soit $u \in \mathcal{L}(E)$ un endomorphisme de E. On dit que u est **diagonalisable** si l'une des conditions équivalentes est vérifiée :

- 1. il existe une base de E formée de vecteurs propres de u,
- 2. il existe une base dans laquelle la matrice de u est diagonale.

Démonstration : Supposons qu'il existe une base $\mathcal{B} = (v_1, \dots, v_n)$ de E formée de vecteurs propres de u. Plus explicitement, il existe des scalaires $\lambda_1, \dots, \lambda_n$ tels que

$$\forall i \in \{1, \dots, n\}, \quad u(v_i) = \lambda_i v_i.$$

La matrice de u dans cette base \mathcal{B} est la matrice diagonale

$$\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} \lambda_1 & 0 & \cdots & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \lambda_{n-1} & 0 \\ 0 & \cdots & \cdots & \lambda_n \end{pmatrix}.$$

Réciproquement, s'il existe une base $\mathcal{B} = (v_1, \dots, v_n)$ de E dans laquelle la matrice de u est la matrice diagonale ci-dessus alors

$$\forall i \in \{1, \dots, n\}, \quad u(v_i) = \lambda_i v_i.$$

Comme tous les v_i sont tous non nuls on déduit que \mathcal{B} est une base de E formée de vecteurs propres de u associés respectivement aux valeurs propres λ_i .

Exemple

L'endomorphisme u de \mathbb{R}^2 dont la matrice dans la base canonique est donnée par $A = \begin{pmatrix} 2 & 4 \\ 3 & 3 \end{pmatrix}$ est diagonalisable.

Un scalaire λ est une valeur propre de u si et seulement si $0 = \det(u - \lambda i d_E)$. Or

$$\det(u - \lambda \mathrm{id}_E) = \begin{vmatrix} 2 - \lambda & 4 \\ 3 & 3 - \lambda \end{vmatrix} = \lambda^2 - 5\lambda - 6 = (\lambda - 6)(\lambda + 1)$$

Donc les valeurs propres de u sont $\lambda_1 = -1$ et $\lambda_1 = 6$.

Cherchons le sous espace propre de u associé à $\lambda_1 = 6$. Soit $v = (x, y) \in \mathbb{R}^2$. $v \in E_6$ si, et seulement si, (u - 6id)(v) = 0 si, et seulement si,

$$\begin{pmatrix} -4 & 4 \\ 3 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -4x + 4y \\ 3x - 3y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Ainsi E_1 est la droite vectorielle engendrée par $v_1 = (1,1)$. De même, on trouve que E_{-1} est la droite vectorielle engendrée par $v_2 = (-4,3)$. De plus, (v_1, v_2) est une base de \mathbb{R}^2 dans laquelle la matrice de u est $\begin{pmatrix} 6 & 0 \\ 0 & -1 \end{pmatrix}$.

Définition

On dit que u est **trigonalisable** s'il existe une base \mathcal{B} de E dans laquelle la matrice de u est triangulaire de la forme

$$\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} \lambda_1 & * & \cdots & \cdots & * \\ 0 & \lambda_2 & * & \cdots & * \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \lambda_{n-1} & * \\ 0 & \cdots & \cdots & 0 & \lambda_n \end{pmatrix}$$

On remarque que si $\mathcal{B} = (v_1, \dots, v_n)$ alors la matrice de u dans $\mathcal{B} = (v_n, \dots, v_1)$ est de la forme

$$\operatorname{Mat}_{\mathcal{B}'}(u) = \begin{pmatrix} \lambda_n & 0 & \cdots & \cdots & 0 \\ * & \lambda_{n-1} & 0 & \cdots & 0 \\ * & * & \ddots & \ddots & \cdots \\ * & * & * & \lambda_2 & 0 \\ * & * & * & * & \lambda_1 \end{pmatrix}$$

Exemple

Soit u l'endomorphisme de \mathbb{R}^2 dont la matrice dans la base canonique $A = \begin{pmatrix} 5 & -1 \\ 4 & 1 \end{pmatrix}$. Montrer que u est trigonalisabe.

Un scalaire λ est une valeur propre de u si, et seulement si,

$$0 = \det(u - \lambda i d_E) = \begin{vmatrix} 5 - \lambda & -1 \\ 4 & 1 - \lambda \end{vmatrix} = (\lambda^2 - 6\lambda + 9) = (\lambda - 3)^2.$$

Donc u a une seule valeur propre $\lambda = 3$. Cherchons les vecteurs propres de u associés à cette valeur propre. $(x, y) \in E_3$, si et seulement si (u - 3id)(x, y) = 0 si, et seulement si,

$$\begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x - y \\ 4x - 2y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Ainsi E_3 est la droite vectorielle engendrée par $e'_1 = (1, 2)$. Ainsi, on ne peut pas trouver de base formée de vecteurs propres de u et u n'est pas diagonalisable.

En prenant $e'_2 = (0, -1)$ la famille (e'_1, e'_2) est une base de E de plus

$$u(e'_2) = (1, -1) = 3(0, -1) + (1, 2) = 3e'_2 + e'_1.$$

Ainsi la matrice de u dans la base (e'_1, e'_2) est la matrice $J = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}$ et donc u est trigonalisable.

Exemple

L'endomorphisme u de \mathbb{R}^2 dont la matrice dans la base canonique

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}.$$

 $est\ diagonalisable.$

Un scalaire λ est une valeur propre de u si, et seulement si,

$$0 = \det(u - \lambda \mathrm{id}_E) = \begin{vmatrix} 1 - \lambda & 1 \\ 0 & 2 - \lambda \end{vmatrix} = (\lambda - 1)(\lambda - 2).$$

Ainsi u admet deux valeurs propres $\lambda_1 = 1$ et $\lambda_2 = 2$.

On trouve que E_1 est la droite engendrée par le vecteur $e_1 = (1,0)$, et E_2 est la droite engendrée par $e'_2 = (1,1)$ est un vecteur propre de u. De plus, la famille (e_1,e'_2) est une base de E et la matrice de u dans cette base est la matrice

 $D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}.$

Les projections

Soit F, G deux sous espaces vectoriels non réduits au vecteur nul et tels que

$$E = F \oplus G$$
.

Ainsi pour tout vecteur $x \in E$, il existe un unique $(x_F, x_G) \in F \times G$ tel que

$$x = x_F + x_G.$$

Soit p la projection de E sur F parallèlement à G. Il s'agit de l'endomorphisme de E défini par $p(x) = x_F$. On a

$$\begin{cases} p^2 &:= p \circ p = p \\ p(x) &= x & \text{pour tout} & x \in F \\ p(x) &= 0 & \text{pour tout} & x \in G \end{cases}$$

En particulier, tout vecteur non nul de F est un vecteur propre de p associé à la valeur propre 1 et tout vecteur non nul de G est un vecteur propre de p associé à la valeur propre 0.

En juxtaposant deux bases de F et de G on obtient une base de E formée de vecteurs propres de p dans laquelle la matrice de p est diagonale qui a des 0 puis des 1 sur sa diagonale. Finalement, p est diagonalisable.

Exercice:

Montrer que 1 et 0 sont les seules valeurs propres de p.

Solution : On sait que 1 et 0 sont des valeurs propres de p. Soit $\lambda \in \mathbb{K} \setminus \{1, 0\}$ et $x \in E_{\lambda} = \ker(p - \lambda \mathrm{id}_{E})$. Comme $p(x) = \lambda x$, on a :

$$x_F = p(x_F) + \underbrace{p(x_G)}_{=0} = p(x_F + x_G) = p(x) = \lambda x = \lambda x_F + \lambda x_G.$$

Ainsi

$$(1 - \lambda)x_F = \lambda x_G.$$

Comme $\lambda \notin \{1,0\}$, on déduit que $x_F \in F \cap G$ et $x_G \in F \cap G$ de sorte que $x_F = x_G = 0$, ou encore x = 0. Ainsi, pour tout $\lambda \in \mathbb{K} \setminus \{1,0\}, E_{\lambda} = \{0\}$ et λ n'est pas une valeur propre de p. Finalement, nous avons montré que

$$\sigma_{\mathbb{K}}(p) = \{0, 1\}$$

$$E_0 = \ker p = G \quad \text{et} \quad E_1 = \operatorname{Image}(p) = F$$

Les symétries

Soit F, G deux sous espaces vectoriels non réduits au vecteur nul et tels que

$$E = F \oplus G$$
.

Soit s la symétrie sur F parallèllement à G. Il s'agit de l'endomorphisme de E défini par

$$s(x) = x_F - x_G$$
.

En particulier,

$$\begin{cases} s^2 &:= s \circ s = \mathrm{id}_E \\ s(x) &= x & \text{pour tout} \quad x \in F \\ s(x) &= -x & \text{pour tout} \quad x \in G \end{cases}$$

Ainsi tout vecteur non nul de F est un vecteur propre de p associé à la valeur propre 1 et tout vecteur non nul de G est un vecteur propre de p associé à la valeur propre -1.

En juxtaposant deux bases de F et de G on obtient une base de E formée de vecteurs propres de s dans laquelle la matrice de s est diagonale qui a des 1 puis des -1 sur sa diagonale. Finalement, s est diagonalisable.

Exercice:

Montrer que -1 et 1 sont les seules valeurs propres de s.

Solution : On sait que -1 et 1 sont des valeurs propres de s. Soit $\lambda \in \mathbb{K} \setminus \{-1,1\}$ et $x \in E_{\lambda} = \ker(s - \lambda \mathrm{id}_E)$. Comme $s(x) = \lambda x$, on a

$$x_F - x_G = s(x_F) + s(x_G) = s(x_F + x_G) = s(x) = \lambda x = \lambda x_F + \lambda x_G.$$

Ainsi

$$(1-\lambda)x_F = (1+\lambda)x_G.$$

Comme λ est distincte de 1 et -1, $x_F \in F \cap G$ et $x_G \in F \cap G$ de sorte que $x_F = x_G = 0$, ou encore x = 0. Ainsi, pour tout $\lambda \in \mathbb{K} \setminus \{-1, 1\}, E_{\lambda} = \{0\}$ et λ n'est pas une valeur propre de s. Finalement, nous avons montré

$$\sigma_{\mathbb{K}}(s) = \{-1, 1\}$$

$$E_{-1} = G \quad \text{et} \quad E_1 = F$$

Les rotations

Soit u l'endomorphisme de \mathbb{R}^2 dont la matrice dans la base canonique est donnée par

$$A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \text{ pour un } \theta \in]0, \pi[.$$

Pour chaque $\lambda \in \mathbb{C}$ on a

$$\det(u - \lambda i d_E) = \begin{vmatrix} \cos \theta - \lambda & -\sin \theta \\ \sin \theta & \cos \theta - \lambda \end{vmatrix} = (\lambda - \cos \theta)^2 + \sin \theta^2 \neq 0$$

de sorte que $u-\lambda \mathrm{id}_E$ est bijective et u n'a aucune valeur propre réelle :

$$\sigma_{\mathbb{R}}(u) = \emptyset.$$

Remarque importante

Attention, si on travaille dans \mathbb{C} la situation peut changer drastiquement. En effet, soit u l'endomorphisme de \mathbb{C}^2 dont la matrice dans la base canonique est donnée par

$$A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} pour un \quad \theta \in]0, \pi[.$$

Pour chaque $\lambda \in \mathbb{C}$ on a

$$\det(u - \lambda i d_E) = \begin{vmatrix} \cos \theta - \lambda & -\sin \theta \\ \sin \theta & \cos \theta - \lambda \end{vmatrix} = (\lambda - \cos \theta)^2 + \sin \theta^2.$$

Ce déterminant s'annule si, et seulement si, $\lambda = e^{i\theta}$ ou $\lambda = e^{-i\theta}$. Autrement dit, E_{λ} est non réduit au vecteur nul si, et seulement si, $\lambda = e^{i\theta}$ ou $\lambda = e^{-i\theta}$. Ainsi

$$\sigma_{\mathbb{C}}(u) = \{e^{-i\theta}, e^{i\theta}\}.$$

Polynôme caractéristique d'un endomorphisme

Soit $\lambda \in \mathbb{K}$ et u un endomorphisme de E. On rappelle que

 λ est une valeur propre de $u \iff \det(u - \lambda id_E) = 0$.

Exemple

Par exemple, si u est l'endomorphisme de \mathbb{K}^2 dont la matrice dans la base canonique est donnée par $A=\begin{pmatrix}5&1\\2&4\end{pmatrix}$ alors

$$\det(u - \lambda i d_E) = \lambda^2 - 9\lambda + 18 = (\lambda - 3)(\lambda - 6).$$

Finalement $\sigma_{\mathbb{K}}(u) = \{3, 6\}.$

Théorème

Soit u un endomorphisme d'un espace vectoriel E de dimension n sur \mathbb{K} . Pour tout scalaire λ , le déterminant $\det(u - \lambda i d_E)$ est un polynôme de degré n en λ de la forme

$$P_u(\lambda) := \det(u - \lambda i d_E) = (-1)^n \lambda^n + (-1)^{n-1} tr(u) \cdot \lambda^{n-1} + \dots + \det(u),$$

appelé le polynôme caractéristique de u. De plus,

$$\lambda \in \sigma_{\mathbb{K}}(u) \iff P_u(\lambda) = 0$$

Démonstration : Soit \mathcal{B} une base de E et $A = \operatorname{Mat}_{\mathcal{B}}(u)$. Ainsi

$$P_{u}(\lambda) = \det(A - \lambda I_{n}) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{n-1,1} & \cdots & \cdots & a_{n-1,n-1} - \lambda & a_{n-1,n} \\ a_{n1} & \cdots & \cdots & a_{n,n-1} & a_{n,n} - \lambda \end{vmatrix}.$$

Posons

$$b_{i,j} = \begin{cases} a_{i,j} & \text{si } i \neq j \\ a_{i,i} - \lambda & \text{si } i = j \end{cases}.$$

Ainsi,

$$P_{u}(\lambda) = \sum_{\sigma \in \mathcal{S}_{n}} \varepsilon(\sigma) b_{\sigma(1),1} \cdots b_{\sigma(n),n}$$

$$= b_{1,1} \cdots b_{n,n} + \sum_{\sigma \in \mathcal{S}_{n} \setminus \{id\}} \varepsilon(\sigma) b_{\sigma(1),1} \cdots b_{\sigma(n),n}.$$

Or

$$b_{1,1} \cdots b_{n,n} = (a_{11} - \lambda) \cdots (a_{nn} - \lambda)$$

$$= (-1)^n \lambda^n + (-1)^{n-1} (\sum_{i=1}^n a_{i,i}) \lambda^{n-1} + \text{termes d'ordre inférieurs}$$

$$= (-1)^n \lambda^n + (-1)^{n-1} \mathbf{tr}(\mathbf{u}) \cdot \lambda^{n-1} + \text{termes d'ordre inférieurs}.$$

Supposons que $\sigma \neq id$, i.e. il existe $i \in \{1, \dots, n\}$ tel que $\sigma(i) \neq i$. Alors il existe $j \neq i$ tel que $\sigma(j) \neq j$ (il suffit de prendre $j = \sigma(i)$ qui appartient au support de σ). Ainsi le produit

$$b_{\sigma(1),1}\cdots b_{\sigma(n),n}$$

contient au plus (n-2) termes de type $a_{k,k}-\lambda$, et donc ne contient que des puissances de λ plus petites que n-2.

Le terme de degré 0 quant à lui correspond à la valeur de P_u en $\lambda = 0$, c'est à dire

$$P_u(0) = \det(u)$$
.

Finalement, $P_u(\lambda)$ est un polynôme de degré $n = \dim(E)$ en λ et a la forme souhaitée.

Une conséquence immédiate de ce théorème est le résultat fondamental suivant :

Corollaire

Tout endomorphisme u d'un espace vectoriel E de dimension n sur $\mathbb K$ admet au plus n valeurs propres.

Exemple

Soit u l'endomorphisme de \mathbb{K}^2 dont la matrice dans la base canonique est donnée par

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

On a tr(u) = tr(A) = a + d. Le polynôme caractéristique de u est

$$P_u(\lambda) = \det(u - \lambda i d_E) = \begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix} = \lambda^2 - (a + d)\lambda + ad - bc$$
$$= \lambda^2 - \operatorname{tr}(A) \cdot \lambda + \det(A).$$

En particulier,

- 1. si $\Delta = (\operatorname{tr}(A))^2 4 \operatorname{det}(A) > 0$ alors u admet deux valeurs propres réelles distinctes.
- 2. si $\Delta = (\operatorname{tr}(A))^2 4 \operatorname{det}(A) = 0$ alors u admet une seule valeur propre réelle.
- 3. si $\Delta = (\operatorname{tr}(A))^2 4\operatorname{det}(A) < 0$ alors u n'admet aucune valeur propre si $\mathbb{K} = \mathbb{R}$. Par contre si $\mathbb{K} = \mathbb{C}$ alors u possède deux valeurs propres complexes distinctes.

Approche matricielle

Comme toute matrice $A \in M_n(\mathbb{K})$ peut être vue comme un endomorphisme de $M_{n,1}(\mathbb{K})$ qui à chaque vecteur colonne X associe AX. On peut reformuler les résultats de ce chapitre en termes des matrices. Dans la suite, pour alléger les notations, nous allons identifier l'espace vectoriel $M_{n,1}(\mathbb{K})$ avec \mathbb{K}^n .

Définition

Soit $A \in M_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$.

1. On dit que λ est une valeur propre de A s'il existe $X \in \mathbb{K}^n$ tel que

$$X \neq 0$$
 et $AX = \lambda X$.

Dans ce cas, on dit que X est un vecteur propre associé à la valeur propre λ . L'ensemble des valeurs propres de A se note $\sigma_{\mathbb{K}}(A)$.

2. L'espace propre $E_{\lambda}(A)$ associé à $\lambda \in \sigma_{\mathbb{K}}(A)$ est

$$E_{\lambda}(A) := \ker(A - \lambda I_n).$$

3. Le polynôme caractéristique P_A de A est

$$P_A(\lambda) = \det(A - \lambda I_n).$$

Voici quelques observations:

1. Soit $B = (e_1, \dots, e_n)$ une base d'un espace vectoriel E. Soit u un endomorphisme de E et A sa matrice dans la base B. Alors

$$P_A(\lambda) = P_u(\lambda)$$
 et $\sigma_{\mathbb{K}}(A) = \sigma_{\mathbb{K}}(u)$.

De plus,

$$X = \begin{pmatrix} x_1 \\ \cdots \\ x_n \end{pmatrix} \in E_{\lambda}(A) \iff x = x_1 e_1 + \cdots + x_n e_n \in E_{\lambda}(u).$$

2.

$$\lambda \in \sigma_{\mathbb{K}}(A) \iff P_A(\lambda) = \det(A - \lambda I_n) = 0.$$

- 3. Si A et B sont deux matrices semblables alors elles ont le même polynôme caractéristique, et donc $\sigma_{\mathbb{K}}(A) = \sigma_{\mathbb{K}}(B)$.
- 4. Soit A une matrice à coefficients réels. Comme élément de $M_n(\mathbb{R})$ elle représente un endomorphisme de l'espace réel \mathbb{R}^n alors que comme élément de $M_n(\mathbb{C})$ elle représente un endomorphisme de l'espace complexe \mathbb{C}^n . Dans le premier cas, son étude spectrale conduit à $\sigma_{\mathbb{R}}(A)$ le spectre réel de A alors que dans le second cas on aboutit à $\sigma_{\mathbb{C}}(A)$ le spectre complexe de A. Ces deux spectres sont liés par la relation

$$\sigma_{\mathbb{R}}(A) = \sigma_{\mathbb{C}}(A) \cap \mathbb{R}.$$

Exemple

Calculer le polynôme caractéristique de la matrice

$$A := \left(\begin{array}{ccc} 4 & 6 & 5 \\ 6 & 7 & 7 \\ -5 & -8 & -7 \end{array} \right)$$

Le polynôme caractéristique de A est

$$P_{u}(\lambda) = \begin{vmatrix} 4-\lambda & 6 & 5 \\ 6 & 7-\lambda & 7 \\ -5 & -8 & -7-\lambda \end{vmatrix} = \begin{vmatrix} 4-\lambda & 6 & 5 \\ 6 & 7-\lambda & 7 \\ 5-\lambda & 5-\lambda & 5-\lambda \end{vmatrix} (L_{3} \sim L_{3} + L_{2} + L_{1})$$

$$= (5-\lambda) \begin{vmatrix} 4-\lambda & 6 & 5 \\ 6 & 7-\lambda & 7 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= (5-\lambda) \begin{vmatrix} -1-\lambda & 1 & 5 \\ -1 & -\lambda & 7 \\ 0 & 0 & 1 \end{vmatrix} (C_{1} \sim C_{1} - C_{3}, C_{2} \sim C_{2} - C_{3})$$

$$= (5-\lambda)(\lambda^{2} + \lambda + 1).$$

En particulier,

$$\sigma_{\mathbb{R}}(A) = \{5\} \text{ et } \sigma_{\mathbb{C}}(A) = \{5, j, j^2\}.$$

Matrice diagonalisabe

Définition

Soit $A \in M_n(\mathbb{K})$. On dit que A est diagonalisable dans $M_n(\mathbb{K})$ si A est semblable à une matrice diagonale, c-à-d s'il existe une matrice inversible $P \in M_n(\mathbb{K})$ telle que

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 & \cdots & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \lambda_{n-1} & 0 \\ 0 & \cdots & \cdots & \cdots & \lambda_n \end{pmatrix} = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$$

La matrice A est diagonalisable si, et seulement si, il existe une base (X_1, X_2, \dots, X_n) de \mathbb{K}^n formée de vecteurs propres de A, c-à-d pour les quels il existe des scalaires λ_i tels que $AX_i = \lambda_i X_i$. Dans ce cas, la matrice P dont les vecteurs colonnes sont les X_i vérifie

$$P^{-1}AP = \operatorname{diag}(\lambda_1, \cdots, \lambda_n).$$

Matrice trigonalisabe

Définition

Soit $A \in M_n(\mathbb{K})$. On dit que A est trigonalisable dans $M_n(\mathbb{K})$ si A est semblable à une matrice triangulaire, ou plus explicitement, s'il existe une matrice inversible $P \in M_n(\mathbb{K})$ telle que

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 & \cdots & \cdots & 0 \\ * & \lambda_2 & 0 & \cdots & 0 \\ * & * & \ddots & \ddots & \cdots \\ * & * & * & \lambda_{n-1} & 0 \\ * & * & * & * & \lambda_n \end{pmatrix}$$

On remarque que si on prend la matrice Q dont les colonnes sont obtenues en prenant celles de la matrice P ci-dessus dans l'ordre inverse alors Q est inversible et

$$Q^{-1}AQ = \begin{pmatrix} \lambda_1 & * & \cdots & * \\ 0 & \lambda_2 & * & \cdots & * \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \lambda_{n-1} & * \\ 0 & \cdots & \cdots & 0 & \lambda_n \end{pmatrix}$$

Supposons que A est trigonalisable. Alors, avec les notations de la définition ci-dessus,

$$P_A(X) = \prod_{i=1}^n (\lambda_i - X).$$

On dit que le polynôme P_A est scindé dans \mathbb{K} . En particulier, les coefficients diagonaux λ_i de la matrice triangulaire semblable à A sont les valeurs propres de A.

Proposition

Le polynôme caractéristique de toute matrice trigonalisable dans $M_n(\mathbb{K})$ est scindé dans \mathbb{K} . En particulier, si le polynôme caractéristique d'une matrice $M_n(\mathbb{K})$ n'est pas scindé sur \mathbb{K} alors A n'est pas trigonalisable dans $M_n(\mathbb{K})$.

Pour les endomorphismes, soit E un espace vectoriel sur \mathbb{K} et $u \in \mathcal{L}(E)$. Si le polynôme caractéristique de u n'est pas scindé sur \mathbb{K} alors u n'est pas trigonalisable. Nous allons montrer plus tard que nous avons en fait la réciproque aussi : l'endomorphisme u est trigonalisable si, et seulement si, son polynôme caractéristique est scindé dans \mathbb{K}

Exemple

La matrice $A := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in M_2(\mathbb{K})$ est-elle diagonalisable? trigonalisable?

Le polynôme caractéristique de A:

$$P_A(\lambda) := \begin{vmatrix} -\lambda & 1 \\ -1 & -\lambda \end{vmatrix} = \lambda^2 + 1$$

Ainsi

- 1. Si $\mathbb{K} = \mathbb{R}$ alors $\sigma_{\mathbb{R}}(A) = \emptyset$. Donc n'est donc pas trigonalisable ni diagonalisable.
- 2. Par contre, si $\mathbb{K} = \mathbb{C}$ alors $\sigma_{\mathbb{C}}(A) = \{-i, i\}$. De plus, un calcul simple montre que

$$E_{\pm i} = \text{Vect}(v_{\pm}) \quad \text{avec} \quad v_{\pm} = \begin{pmatrix} \pm 1 \\ i \end{pmatrix}.$$

On vérifie que (v_+, v_-) est une base de \mathbb{K}^2 et donc A est diagonalisable :

$$\underbrace{\frac{1}{2} \begin{pmatrix} 1 & -i \\ -1 & -i \end{pmatrix}}_{P^{-1}} \underbrace{\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} 1 & -1 \\ i & i \end{pmatrix}}_{P} = \underbrace{\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}}_{D}$$

Exemple

La matrice
$$A := \begin{pmatrix} 3 & 5 & 4 \\ 5 & 6 & 6 \\ -5 & -8 & -7 \end{pmatrix}$$
 est-elle trigonalisable?

Le polynôme caractéristique de A:

$$P_{A}(\lambda) := \begin{vmatrix} 3-\lambda & 5 & 4 \\ 5 & 6-\lambda & 6 \\ -5 & -8 & -7-\lambda \end{vmatrix} = \begin{vmatrix} 3-\lambda & 5 & 4 \\ 5 & 6-\lambda & 6 \\ 3-\lambda & 3-\lambda & 3-\lambda \end{vmatrix}$$
$$= (3-\lambda) \begin{vmatrix} 3-\lambda & 5 & 4 \\ 5 & 6-\lambda & 6 \\ 1 & 1 & 1 \end{vmatrix} = (1-\lambda) \begin{vmatrix} -1-\lambda & 1 & 4 \\ -1 & -\lambda & 6 \\ 0 & 0 & 1 \end{vmatrix}$$
$$= (3-\lambda)(\lambda^{2}+\lambda+1)$$

Ainsi A n'est pas trigonalisable dans $\mathbb R$ car son polynôme caractéristique n'est pas scindé. Par contre, A est trigonalisable dans $\mathbb C$:

$$P_A(\lambda) = (3 - \lambda)(j - \lambda)(j^2 - \lambda).$$

En fait, on peut montrer que A est diagonalisable dans \mathbb{C} .

Remarque

- 1. D'après le théorème de d'Alembert-Gauss tout polynôme à coefficients dans \mathbb{C} est scindé. Ainsi la proposition précédente n'est utile pour nous que dans le cas réel.
- 2. Avoir un polynôme caractéristique scindé est nécessaire pour qu'un endomorphisme u soit diagonalisable, mais elle est loin d'être suffisante. Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique

$$A = \operatorname{Mat}_{B}(u) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

On a $P_u(\lambda) = \lambda^2$ est scindé, pourtant u n'est pas diagonalisable, car sinon la matrice serait semblable à la matrice nulle de sorte qu'elle même serait nulle ce qui est absurde.

Nous allons montrer qu'un endomorphisme u est trigonalisable si, et seulement si, son polynôme caractéristique est scindé.