

Data engineering on Azure Databricks - workshop

Anagha Khanolkar Azure Cloud Solution Architects – Data and Al

Learn how to...

- Provision Azure resources blob storage, Azure SQL DB, Databricks
- Learn how to copy a public dataset into Azure
- Learn how to build a data engineering pipeline in Azure Databricks
- Learn how to automate a report jobset that integrates reports generated in Databricks into an RDBMS

The datasets

Transactional data

Yellow taxi trips (675 million) | 2009 - 2017 Green taxi trips (59 million) | 2013 - 2017 CSV

Schema varies between taxi types Schema varies across years ~30GB raw

Reference data

Trip months
Payment type
Rate code
Taxi zone
Trip type

Vendor

The Azure services

Utilities:

Azure Cloud Shell – for provisioning storage and copying data Azure SQL Database Query Explorer – cloud IDE for Azure SQL DB

The lab modules

Data copy With Azure Cloud Shell - Bash

Data load TODOs

- ☐ Launch cloud shell
- ☐ Create a resource group in US East 2
- ☐ Create a storage account
- ☐ Create blob storage containers
- ☐ Copy data for the workshop (details in doc)
- ☐ Upload a subset of the workshop data into staging directory

By now...

You should have the following set up in your subscription:

Azure services Provisioning, configuration

Provisioning TODOs

- ☐ Provision Azure SQL Database in the resource group (100 DTU)
- ☐ Create tables in the Azure SQL Database for batch job history & reports
- ☐ Provision Azure Databricks workspace in the resource group
- ☐ Launch workspace

By now...

You should have the following set up in your subscription:

Azure Databricks Provisioning, configuration

Provision cluster Azure Databricks – setup

Initialize workspace and create a cluster with the following specifications:

In the Spark config section, enter your storage account credentials-spark.hadoop.fs.azure.account.key.<storageaAccount>.blob.core.windows.net <key>

By now...

You should have the following set up in your subscription:

Azure Databricks Import workshop notebooks

Import workshop notebooks

https://nyctaxidew.blob.core.windows.net/workshop-dbc/nyc-taxi-workshop.dbc

You are done with setup!

You should have the following set up in your subscription:

Password for demo database

The password for the RDBMS demodbserver is: d@t@br1ck\$

Azure Databricks Preview of what's you'll be creating

Query-able Hive tables

On-demand/scheduled batch jobset

Hands on lab - Module 1

HOW TO

work with Hive, with DBFS, with remote databases

1.1. Mount blob storage

Why?

What's easier?

```
Option 1: wasbs URI
wasbs://storageContainer@storageAccount. blob.core.windows.net/<myDirectory>
Option 2: Mount point
/mnt/data/<myDirectory>
```

Mounting blob storage is an option with Azure Databricks 3.5 and above, and a general best practice.

It simplifies and secures accessing storage

1.1. Mount blob storage How to

Lets review the notebook – nyc-taxi-workshop/00-HowTo/00-MountBlobStorage.scala

In this notebook – we will mount a storage container, and access it using the mountpoint. We will also learn to refresh mountpoints and to unmount.

1.2. Downloading the original Yellow Taxi data How to

This is informational only

Lets review the notebook – nyc-taxi-workshop/00-HowTo/2-DownloadDataFromInternet.scala

1.3. Working with Hive & SparkSQL How to

Lets review the notebook – nyc-taxi-workshop/00-HowTo/3-UseSparkSQLWithHive.scala

In this notebook – we will create a text file locally (bash), load it to DBFS, create a hive table on it, and run queries using SQL

1.4. Working with remote databases/JDBC How to

Lets review the notebook – nyc-taxi-workshop/00-HowTo/4-WorkingWithRemoteDatabases.scala

In this notebook – we will query a remote Azure SQL database like it were a table created in Azure Databricks

1.5. Working with storage How to

Lets review the notebook – nyc-taxi-workshop/00-HowTo/5-WorkingWithStorage.scala

In this notebook, we will work with DBFS file system commands

Recap of module

We learned how to -

- 1) Mount blob storage
- 2) Work with Hive and SparkSQL
- 3) Work with a remote SQL database
- 4) Work with Databricks File System (DBFS)

Hands on lab - Module 2

General setup

Mount blob storage

Create database

Common functions

2.1. Mount blob storage Workshop - setup

Lets review this notebooknyc-taxi-workshop/01-General/1-MountBlobStorage.scala

In this notebook, we create a function to mount blob storage and call it to mount several containers

2.2. Create database objects Workshop - setup

Lets review this notebooknyc-taxi-workshop/01-General/2-CreateDatabaseObjects.scala

In this notebook, -

- (1) We create a database taxi_db
- (2) We create a JDBC Hive table against the Azure SQL database table you set up during provisioning batch_job_history

2.3. Define common functions

Focus - reusability

Lets review this notebooknyc-taxi-workshop/01-General/3-CommonFunctions.scala

In this notebook, -We create a set of commonly used functions in a notebook for future use in the workshop

Recap of module

We completed-

- 1) Mounting blob storage
- 2) Creating a Hive database
- 3) Creating a Hive table definition for a remote Azure SQL database
- 4) Creating a set of commonly used functions in a notebook for future use in the workshop

Load dataset

3.1. Load reference data

Lets review this notebooknyc-taxi-workshop/02-LoadData/1-LoadReferenceData.scala

In this notebook, -

- (1) We load all the reference datasets read from staging Dir, save as parquet to ref Data Dir
- (2) Create Hive tables on top of them
- (3) Compute statistics

Trip months
Payment type
Rate code
Taxi zone
Trip type
Vendor

3.2. Load transactional data — Yellow Taxi

Lets review this notebooknyc-taxi-workshop/02-LoadData/2-LoadData-YellowTaxi.scala

In this notebook, -

- (1) We load yellow taxi data over several years—read from stagingDir, save as parquet to refDataDir
- (2) Create Hive tables on top of them
- (3) Compute statistics

To note: the schema of the dataset differs over years. We homogenize the schema in this notebook

3.3. Load transactional data — Green Taxi

Lets review this notebooknyc-taxi-workshop/02-LoadData/3-LoadData-GreenTaxi.scala

In this notebook, -

- (1) We load green taxi data over several years—read from stagingDir, save as parquet to refDataDir
- (2) Create Hive tables on top of them
- (3) Compute statistics

To note: the schema of the dataset differs over years. We homogenize the schema in this notebook

Recap of module

We completed-

- 1) Loading reference data and saving as parquet, with hive tables & stats
- 2) Loading yellow taxi and green taxi data, saving as parquet, with hive tables & stats

Transform data

4.1. Transform yellow taxi data

Lets review this notebooknyc-taxi-workshop/03-TransformData/1-TransformData-YellowTaxi.scala

In this notebook, -

- (1) We execute the notebook with common functions
- (2) Denormalize join yellow taxi with all reference datasets and persist to DBFS
- (3) Define Hive table for the transformed dataset (curated), create partitions (year, month)
- (4) Compute statistics

4.2. Transform green taxi data

Lets review this notebooknyc-taxi-workshop/03-TransformData/2-TransformData-GreenTaxi.scala

In this notebook, -

- (1) We execute the notebook with common functions
- (2) Denormalize join yellow taxi with all reference datasets and persist to DBFS
- (3) Define Hive table for the transformed dataset (curated), create partitions (year, month)
- (4) Compute statistics

Recap of module

We completed-

Denormalizing yellow and green trip taxi data – joining with reference data, and saving as parquet, and ran hive tables & stats

Create materialized view

5.1. Create materialized view

Lets review this notebooknyc-taxi-workshop/04-CreateMaterializedView/1-CreateMaterializedViews.scala In this notebook, -

- (1) We execute the notebook with common functions
- (2) We add columns to yellow taxi data to match green taxi data
- (3) Do a union all on yellow and green taxi curated datasets and persist to DBFS
- (4) Define Hive table for the transformed dataset (curated), create partitions (taxi type, year, month)
- (5) Compute statistics

Generate a report with visualization

6.1. Generate report

Lets review this notebooknyc-taxi-workshop/05-GenerateReports/Report-1.scala

In this notebook, we will run several reports and visualize-

- 1. Trip count by taxi type
- 2. Revenue including tips by taxi type
- 3. Revenue share by taxi type
- 4. Trip count trend between 2013 and 2016
- 5. Trip count trend by month, by taxi type, for 2016
- 6. Average trip distance by taxi type

6.1. Generate report

- 7. Average trip amount by taxi type
- 8. Trips with no tip, by taxi type
- 9. Trips with no charge, by taxi type
- 10. Trips by payment type
- 11. Trip trend by pickup hour for yellow taxi in 2016
- 12. Top 3 yellow taxi pickup-dropoff zones for 2016

Batch job automation

7.1. Global vars and functions

Lets review the notebooknyc-taxi-workshop/06-BatchJob/GlobalVarsAndMethods.scala

In this notebook-

- (1) We define JDBC credentials
- (2) We create a function to generate a batch_ID by querying the batch_job_history table in Azure SQL database

7.2. Report 1

Lets review the notebooknyc-taxi-workshop/06-BatchJob/Report-1.scala

In this notebook-

- (1) We create a dataframe a simple report trips by year
- (2) Persist the data to Azure SQL database table trips_by_year

7.3. Report 2

Lets review the notebooknyc-taxi-workshop/06-BatchJob/Report-2.scala

In this notebook-

- (1) We create a dataframe a simple report trips by hour
- (2) Persist the data to Azure SQL database table trips_by_hour

7.4. Workflow

Lets review the notebooknyc-taxi-workshop/06-BatchJob/Workflow.scala

This is a notebook workflow spec and in this we –

- (1) Execute the GlobalVarsAndFunctions notebook
- (2) We generate batch ID by calling a method from #1
- (3) We insert start time into batch_job_history, execute notebook Report-1, then insert completion time into the RDBMS table

7.4. Workflow

- (4) If #3 completed successfully, we repeat #3 for Report-2
- (5) If #4 completed successfully, we exit with a pass status
- (6) We create a batch job in which we call workflow.scala and do multiple ad-hoc executions

4

a

NYCTaxiReportJobSet

< All Jobs

NYCTaxiReportJobSet

× Delete

Job ID: 14

Task: Notebook at /Users/ankhanol@microsoft.com/nyc-taxi/06-BatchJob/Workflow - Edit / Remove

Parameters: Edit

Dependent Libraries: Add

Cluster: bhoomi (224 GB, Running, 4.0 beta (Scala 2.11)) Edit

Schedule: None Edit

Advanced ▶

Active runs

Run	Start Time	Launched	Duration
Run Now / Run Now With Diffe	rent Parameters		

Completed in past 60 days

Latest successful run (refreshes automatically)

< Previous 20

Run	Start Time	Launched	Duration
Run 10	2018-02-19 16:26:55 CST	Manually	54s
Run 9	2018-02-19 16:25:38 CST	Manually	54s
Run 8	2018-02-19 16:13:05 CST	Manually	52s

Machine Learning Workshop - preview

<u>Lecture/discussion</u>:

Data science process Data science lexicon – level set

<u>Lab</u>:

Use case: Flight delay prediction

Technologies/Services:

- (1) Azure Machine Learning (AML) Studio we will learn how to predict flight delays using AML ingest, cleanse, dedupe, train, test, operational model, batch score
- (2) Spark ML we will repeat the exact same experiment in Spark ML dataframe API for a more scalable solution

We will discuss how we can operationalize a Spark model trained in Databricks on the Azure ML platform

Q & A

- 1. Terminate your cluster
- 2. Any questions?

Note: you will use the same cluster next week for the machine learning on Databricks workshop