A. Norme d'opérateur d'une matrice

1. \mathbb{R}^n est de dimension finie et \mathbb{S}^{n-1} est évidemment une partie bornée de \mathbb{R}^n .

C'est aussi une partie fermée ; en effet, l'application $x \mapsto ||x||$ est 1-lipschitzienne par la seconde inégalité triangulaire, donc elle est continue, puis S^{n-1} est l'image réciproque du fermé $\{1\}$ par cette dernière application.

Donc
$$S^{n-1}$$
 est un compact de \mathbb{R}^n .

On aurait pu prouver la fermeture par intersection d'une boule fermé et du complémentaire d'une boule ouverte.

 $x \mapsto \mathbf{M}x$ est continue sur \mathbb{R}^n à valeurs dans \mathbb{R}^n , car linéaire en dimension finie, et $y \mapsto \|y\|$ est continue sur \mathbb{R}^n à valeurs dans \mathbb{R} d'où $x \mapsto \|\mathbf{M}x\|$ est continue sur \mathbb{R}^n , en particulier sur le compact \mathbf{S}^{n-1} et à valeurs réelles.

Par le théorème des bornes atteintes, cette fonction admet un maximum ce qui justifie l'existence de $\|\mathbf{M}\|_{\mathrm{op}}$.

2. Soit M et N $\in \mathcal{M}_n(\mathbb{R})$. Soit $\lambda \in \mathbb{R}$. Montrons que $\begin{cases} (i) & \|\mathbf{M}\|_{\mathrm{op}} \text{ existe dans } \mathbb{R}^+ \\ (ii) & \|\lambda\mathbf{M}\|_{\mathrm{op}} = |\lambda| \cdot \|\mathbf{M}\|_{\mathrm{op}} \\ (iii) & \|\mathbf{M} + \mathbf{N}\|_{\mathrm{op}} \leqslant \|\mathbf{M}\|_{\mathrm{op}} + \|\mathbf{N}\|_{\mathrm{op}} \\ (iv) & \|\mathbf{M}\|_{\mathrm{op}} = 0 \Rightarrow \mathbf{M} = 0_{\mathcal{M}_n(\mathbb{R})} \end{cases}$

pour (i): D'après la question précédente $\|\mathbf{M}\|_{\mathrm{op}}$ est bien définie dans \mathbb{R}^+ car $\forall x \in \mathbf{S}^{n-1}$, $\|\mathbf{M}x\| \geqslant 0$ pour (ii):

Le théorème des bornes atteinte (dans 1), nous fournit $y \in S^{n-1}$ tel que $\|\lambda M\|_{op} = \|\lambda My\| = |\lambda| \|My\|$.

Ayant $\|My\| \leq \|M\|_{\text{op}}$ et $|\lambda| \geq 0$, on en déduit $\|\lambda M\|_{\text{op}} \leq |\lambda| \times \|M\|_{\text{op}}$.

Par ailleurs, il existe $z \in S^{n-1}$ tel que $\|\mathbf{M}\|_{op} = \|\mathbf{M}z\|$.

Alors $|\lambda| \times ||M||_{\text{op}} = |\lambda| \times ||Mz|| = ||\lambda Mz|| \le ||\lambda M||_{\text{op}}$

ce qui nous donne : $\|\lambda M\|_{op} = |\lambda| \times \|M\|_{op}$

pour (*iii*): Il existe $y \in S^{n-1}$ tel que $||M + N||_{op} = ||(M + N)y|| = ||My + Ny||$.

Par l'inégalité triangulaire puis par définition de $\|.\|_{\text{op}}$, $\|M + N\|_{\text{op}} \leq \|My\| + \|Ny\| \leq \|M\|_{\text{op}} + \|N\|_{\text{op}}$

pour (iv): On suppose que : $\|\mathbf{M}\|_{op} = 0$.

Alors l'ensemble $\{\|\mathbf{M}x\|, x \in \mathbf{S}^{n-1}\}$ est à la fois inclus dans \mathbb{R}^+ et majoré par 0.

Donc $\forall x \in S^{n-1}, Mx = 0.$

La base canonique (e_1, \ldots, e_n) de \mathbb{R}^n est formée de vecteurs de \mathbb{S}^{n-1}

donc $\forall k \in [1, n], Me_k = 0$. Or Me_k est aussi la k-ième colonne de M. Donc M = 0.

On a bien montré que $\boxed{\|\cdot\|_{\mathrm{op}}}$ est une norme de $\mathcal{M}_n(\mathbb{R})$

Soit x et $y \in \mathbb{R}^n$.

Si x = y, l'inégalité à démontrer est vraie car $0 \le 0$

 $\overline{\text{Si } x \neq y}$, alors $||x - y|| \neq 0$ et $\frac{1}{||x - y||}(x - y) \in \mathbf{S}^{n-1}$, donc:

$$\frac{1}{\|x-y\|} \|\mathbf{M}.(x-y)\| = \left\| \mathbf{M}. \frac{1}{\|x-y\|} (x-y) \right\| \le \|\mathbf{M}\|_{\text{op}}.$$

Comme ||x - y|| > 0, on obtient $||Mx - My|| \le ||M||_{\text{op}} ||x - y||$.

3. <u>cas diagonale</u>: On suppose dans un premier temps que $M = diag(a_1, ..., a_n) \in D_n(\mathbb{R})$ avec $a_1, ..., a_n \in \mathbb{R}$. Je prends $k_0 \in [1, n]$ tel que $|a_{k_0}| = Max\{|\lambda|, \lambda \in \sigma(M)\}$ qui existe bien car $\sigma(M)$ est fini Soit $x = {}^t(x_1, ..., x_n) \in S^{n-1}$. On a $Mx = {}^t(a_1x_1, ..., a_nx_n)$ et donc

$$\|\mathbf{M}x\| = \sqrt{\sum_{1 \le i \le n} (a_i x_i)^2} = \sqrt{\sum_{1 \le i \le n} |a_i|^2 x_i^2} \le \sqrt{\sum_{1 \le i \le n} |a_{k_0}|^2 x_i^2} = |a_{k_0}| \|x\|$$

donc $\|\mathbf{M}x\| \leqslant |a_{k_0}|$ donc $|a_{k_0}|$ majore $\{\|\mathbf{M}x\|; x \in \mathbf{S}^{n-1}\}$

Je note (e_1,\ldots,e_n) la base canonique de \mathbb{R}^n qui est une base orthonormée pour la norme euclidienne $\|\cdot\|$

Ainsi on a $e_{k_0} \in S^{n-1}$ et $||Me_{k_0}|| = |a_{k_0}|||e_{k_0}|| = |a_{k_0}||$ et

d'où $\text{Max}\{|\lambda|, \lambda \in \sigma(\mathcal{M})\} = |a_{k_0}| = \max\{\|\mathcal{M}x\| \, ; x \in \mathcal{S}^{n-1}\} = \|\mathcal{M}\|_{\text{op}}$

cas symétrique : Je suppose maintenant que M est symétrique réelle,

Ainsi le théorème spectral nous fournit $D \in D_n(\mathbb{R})$ et $\Omega \in \mathcal{O}_n(\mathbb{R})$ tel que $M = \Omega D^t\Omega$

Comme M et D sont semblables, on a : $Max\{|\lambda|, \lambda \in \sigma(D)\} = Max\{|\lambda|, \lambda \in \sigma(M)\}$

De plus, $\{\|Mx\| : x \in S^{n-1}\} = \{\|\Omega D^{t}\Omega x\| : x \in S^{n-1}\}$

Les endomorphismes de \mathbb{R}^n $x \mapsto {}^t\Omega x$ et $x \mapsto \Omega x$ étant des isométries vectorielles on a

$$\{\|\mathbf{M}x\| : x \in \mathbf{S}^{n-1}\} = \{\|\Omega \mathbf{D}^{t}\Omega x\| : x \in \mathbf{S}^{n-1}\} = \{\|\mathbf{D}^{t}\Omega x\| : x \in \mathbf{S}^{n-1}\} = \{\|\mathbf{D}y\| : y \in \mathbf{S}^{n-1}\}$$

À l'aide du cas précédent :

$$\|\mathbf{M}\|_{\mathrm{op}} = \mathrm{Max}\{\|\mathbf{M}x\| \, ; x \in \mathbf{S}^{n-1}\} = \mathrm{Max}\{\|\mathbf{D}x\| \, ; x \in \mathbf{S}^{n-1}\} = \|\mathbf{D}\|_{\mathrm{op}} = \mathrm{Max}\{|\lambda|, \lambda \in \sigma(\mathbf{D})\}$$

On peut conclure alors que Si M est symétrique alors $Max\{|\lambda|, \lambda \in \sigma(M)\} = ||M||_{op}$

4. On a $rg(J_n) = 1$ (colonnes non nulles identiques) donc à l'aide du théorème du rang, $\dim Ker(J_n) = n - 1$. Si $n \ge 2$, alors 0 est valeur propre de J_n et $\dim(E_0(J_n)) = n - 1$.

De plus comme J_n est symétrique réelle, J_n est diagonalisable donc 0 est valeur propre de multiplicité n-1

De plus
$$J_n \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} = n \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$
 ce qui permet de prouver que n est valeur propre de J_n

Comme n - (n - 1) = 1 alors n est valeur propre de J_n de multiplicité 1 et donc $\dim(E_n(J_n)) = 1$

Si
$$n \geqslant 2$$
, alors $\sigma(J_n) = \{0, n\}$ et $\dim E_0(J_n) = n - 1$ et $\dim E_n(J_n) = 1$ et $\sigma(J_1) = \{1\}$ et $\dim E_1(J_1) = 1$

À l'aide de la question précédente, $\|J_n\|_{op} = n$

5. Comme en 3, on note (e_1, \ldots, e_n) la base canonique de \mathbb{R}^n .

On a
$$\|\mathbf{M}e_j\| = \left\|\sum_{k=1}^n \mathbf{M}_{k,j}e_k\right\| = \sqrt{\sum_{k=1}^n \mathbf{M}_{k,j}^2} \operatorname{car}\left(e_1,\ldots,e_n\right)$$
 est une base orthonormée

donc $|\mathcal{M}_{i,j}| \leq ||\mathcal{M}e_j|| \leq ||\mathcal{M}||_{\text{op}} \text{ car } e_j \in \mathcal{S}^{n-1}$

Par conséquent, $Max\{|\mathbf{M}_{i,j}|, (i,j) \in [1,n]^2\} \leq ||\mathbf{M}||_{op}$

6. Soit $x \in \mathbb{S}^{n-1}$. On a

$$\|\mathbf{M}x\|^2 = \sum_{i=1}^n (\mathbf{M}x)_i^2 = \sum_{i=1}^n \left(\sum_{j=1}^n \mathbf{M}_{i,j}x_j\right)^2$$

Par inégalité de Cauchy-Schwarz dans \mathbb{R}^n , on a

$$\left(\sum_{j=1}^{n} M_{i,j} x_{j}\right)^{2} \leqslant \left(\sum_{j=1}^{n} M_{i,j}^{2}\right) \left(\sum_{j=1}^{n} x_{j}^{2}\right) = \sum_{j=1}^{n} M_{i,j}^{2}$$

On en déduit que

$$\|\mathbf{M}x\|^2 \leqslant \sum_{i=1}^n \sum_{j=1}^n \mathbf{M}_{i,j}^2$$

En passant à la racine carrée puis au maximum sur x, on a donc

$$\|\mathbf{M}\|_{op} \leqslant \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{M}_{i,j}^{2}}$$

Supposons qu'il y ait égalité. Il existe alors un $x \in S^{n-1}$ tel que pour tout i les vecteurs $(M_{i,1}, \ldots, M_{i,n})$ et x soient liés (cas d'égalité dans l'inégalité de Cauchy-Schwarz), c'est à dire que toutes les lignes de M sont proportionnelles à x. M est donc de rang ≤ 1 .

Réciproquement, si M est de rang ≤ 1 , toutes les lignes de M sont multiples d'un vecteur x de norme 1. Pour ce vecteur x, nos inégalités sont des égalités et le majorant trouvé est un maximum.

$$\|\mathbf{M}\|_{\text{op}} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} (\mathbf{M}_{i,j})^2} \text{ si et seulement si } \mathbf{rg}(\mathbf{M}) \leqslant 1$$

7. Soit
$$M \in \Sigma_n$$
. On a $||M||_{op} \leqslant \sqrt{\sum_{i=1}^n \sum_{j=1}^n (M_{i,j})^2} \leqslant \sqrt{\sum_{i=1}^n \sum_{j=1}^n 1} = \sqrt{n^2} \operatorname{donc} \left[||M||_{op} \leqslant n \right]$

Analyse: On suppose que $M \in \Sigma_n$ et $||M||_{op} = n$

comme
$$\|\mathbf{M}\|_{\text{op}} \leqslant \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} (\mathbf{M}_{i,j})^2} \leqslant n \text{ alors } \sum_{i=1}^{n} \sum_{j=1}^{n} (1 - \mathbf{M}_{i,j}^2) = 0$$

donc $\forall i, j \in [1, n], |M_{i,j}| = 1$

de plus d'après 6, $rg(M) \leq 1$ donc rg(M) = 1

Je note $M = (C_1 | \cdots | C_n)$ en colonne.

il existe $\beta_2, \ldots, \beta_n \in \{-1, 1\}$ tels que $\forall j \in [2, n], C_j = \beta_j C_1$

et il existe $\alpha_1, \ldots, \alpha_n \in \{-1, 1\}$ tel que $C_1 = {}^t\!(\alpha_1, \ldots, \alpha_n)$

et ainsi $\mathbf{M} = (\alpha_i \beta_j)_{1 \leq i,j \leq n}$ en ayant posé $\beta_1 = 1$

Synthèse: Prenons $M = (\alpha_i \beta_j)_{1 \leqslant i,j \leqslant n} \in \mathcal{M}_n(\mathbb{R})$ où $\beta_1 = 1$ et $\beta_2, \ldots, \beta_n, \alpha_1, \ldots, \alpha_n \in \{-1,1\}$ On a bien $M \in \Sigma_n$.

On a rg(M) = 1 donc d'après 6,
$$\|\mathbf{M}\|_{\text{op}} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} (\alpha_i \beta_j)^2} = n$$

Conclusion:

Les matrices M de
$$\Sigma_n$$
 telles que $\|\mathbf{M}\|_{\mathrm{op}} = n$ sont les matrices de la forme $\mathbf{M} = (\alpha_i \beta_j)_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ où $\beta_1 = 1$ et $\beta_2, \ldots, \beta_n, \alpha_1, \ldots, \alpha_n \in \{-1, 1\}$

De plus en posant $\beta_1 = 1$, l'application :

$$\{-1,1\}^{2n-1} \longrightarrow \Sigma_n$$

$$(\beta_2, \dots, \beta_n, \alpha_1, \dots, \alpha_n) \longmapsto (\alpha_i \beta_i)_{1 \le i, j \le n}$$

est surjective d'après ce qui précède.

Cette application est injective car les α_i sont déterminées par la première colonne et les β_i sont alors déterminés par un coefficient des colonnes correspondantes.

D'où le caractère bijectif de cette application.

donc il y a exactement 2^{2n-1} matrices M de Σ_n telles que $\|\mathbf{M}\|_{\text{op}} = n$

B. Variables aléatoires sous-gaussiennes

8. Soit $t \in \mathbb{R}$. D'après le cours, on a $e^t = \sum_{k=0}^{+\infty} \frac{t^k}{k!}$ et ainsi $e^{-t} = \sum_{k=0}^{+\infty} \frac{(-1)^k t^k}{k!}$ avec convergence absolue. Ainsi

$$\operatorname{ch}(t) = \sum_{k=0}^{+\infty} \frac{\left[1 + (-1)^k\right]t^k}{k!} = \sum_{\substack{k=0\\k \text{ pair}}}^{+\infty} \frac{\left[1 + (-1)^k\right]t^k}{k!} + \sum_{\substack{k=0\\k \text{ impair}}}^{+\infty} \frac{\left[1 + (-1)^k\right]t^k}{k!} = \sum_{n=0}^{+\infty} \frac{t^{2n}}{(2n)!}$$

on a couper en deux la somme et effectuer un changement d'indice bijectif car il s'agit de familles sommables. De plus

$$e^{\frac{t^2}{2}} = \sum_{n=0}^{+\infty} \frac{t^{2n}}{2^n \times n!}$$

or par récurrence immédiate, on a $\forall n \in \mathbb{N}, \ 0 < 2^n \times n! \leqslant (2n)!$ et on a aussi $\forall n \in \mathbb{N}, \ t^{2n} \geqslant 0$ donc

$$\forall n \in \mathbb{N}, \ \frac{t^{2n}}{(2n)!} \leqslant \frac{t^{2n}}{2^n \times n!}$$

ce qui permet de conclure que $ch(t) \leqslant exp\left(\frac{t^2}{2}\right)$

9. Soit $t \in \mathbb{R}$ et $x \in [-1,1]$. On a $\frac{1+x}{2} \ge 0$ et $\frac{1-x}{2} \ge 0$ et $\frac{1+x}{2} + \frac{1-x}{2} = 1$ La fonction exp étant convexe sur \mathbb{R} car de classe C^2 et exp" ≥ 0 .

On a t et $-t \in \mathbb{R}$, donc $\exp\left(\frac{1+x}{2}t + \frac{1-x}{2}(-t)\right) \leqslant \frac{1+x}{2}\exp(t) + \frac{1-x}{2}\exp(-t)$

d'où
$$\left[\exp(tx) \leqslant \frac{1+x}{2}\exp(t) + \frac{1-x}{2}\exp(-t)\right]$$
.

10. Soit $t \in \mathbb{R}$. On a $0 \leqslant \exp(tX) \leqslant e^{t} \frac{1+X}{2} + e^{-t} \frac{1-X}{2}$

Par hypothèse, X est d'espérance nulle, donc par linéarité

$$\mathbb{E}\left(e^{t}\frac{1+X}{2} + e^{-t}\frac{1-X}{2}\right) = \frac{e^{t}\mathbb{E}(1) + e^{-t}\mathbb{E}(1)}{2} + 0 + 0 = \operatorname{ch}(t)$$

Ainsi $e^{t} \frac{1+X}{2} + e^{-t} \frac{1-X}{2}$ est d'espérance finie et il en est de même pour $\exp(tX)$ et $\mathbb{E}(\exp(tX)) \leqslant \operatorname{ch}(t)$

Ayant également $\operatorname{ch}(t) \leqslant \operatorname{e}^{t^2/2}$ selon 8, on obtient $\mathbb{E}(\operatorname{e}^{tX}) \leqslant \operatorname{e}^{t^2/2}$ pour tout $t \in \mathbb{R}$

ce qui donne : X est 1-sous-gaussienne

Supposons maintenant que X est bornée par α , et posons $Y = \frac{1}{\alpha}X$.

Alors Y est centrée (linéarité de l'espérance) et bornée par 1.

Soit $t \in \mathbb{R}$. Alors $\alpha \times t \in \mathbb{R}$ et d'après ce qui précède, $\mathbb{E}(e^{\alpha t Y}) \leqslant \exp((\alpha t)^2/2)$, ainsi $\mathbb{E}(e^{tX}) \leqslant e^{\alpha^2 t^2/2}$

donc si X est bornée par α alors elle est α -sous-gaussienne

11. Soit $t \in \mathbb{R}$. L'indépendance mutuelle des variables aléatoires X_1, \ldots, X_n implique l'indépendance mutuelle des variables aléatoires $e^{t\mu_1 X_1}, \ldots, e^{t\mu_n X_n}$ par le lemme des coalitions, or elles sont d'espérances finies.

Ainsi on a l'existence des membres et l'égalité :

$$\mathbb{E}\left(\exp\left(t\sum_{i=1}^{n}\mu_{i}X_{i}\right)\right) = \mathbb{E}\left(\prod_{i=1}^{n}\exp(t\mu_{i}X_{i})\right) = \prod_{i=1}^{n}\mathbb{E}(\exp(t\mu_{i}X_{i})).$$

Or, pour tout $i \in [1, n]$, on a $0 \leq \mathbb{E}(\exp(t\mu_i X_i)) \leq \exp(t^2 \mu_i^2 \alpha^2/2)$. Donc par produit :

$$\mathbb{E}\left(\exp\left(t\sum_{i=1}^n \mu_i \mathbf{X}_i\right)\right) \leqslant \prod_{i=1}^n \exp(t^2 \mu_i^2 \alpha^2/2) = \exp\left(\sum_{i=1}^n t^2 \mu_i^2 \alpha^2\right) = \exp\left(\alpha^2 \frac{t^2}{2}\right)$$

donc on a bien $\sum_{i=1}^{n} \mu_i X_i$ est α -sous-gaussienne.

12. Soit t > 0.

La variable aléatoire $\exp(tX)$ est à valeurs positives et d'espérance finie car X est sous-gaussienne Alors l'inégalité de Markov nous donne :

$$\frac{\mathbb{E}(\exp(tX))}{\exp(t\lambda)} \geqslant \mathbb{P}(\exp(tX) \geqslant \exp(t\lambda))$$

comme on a $\mathbb{E}(\exp(tX)) \leq \exp(\alpha^2 t^2/2)$ car X est α -sous-gaussienne et

l'égalité des événements : $(\exp(t\mathbf{X}) \geqslant \exp(t\lambda)) = (\mathbf{X} \geqslant \lambda)$ car $x \mapsto \exp(tx)$ est strictement croissante

Ainsi
$$\mathbb{P}(e^{tX} \geqslant e^{t\lambda}) \leqslant \exp(\alpha^2 t^2 / 2 - t\lambda)$$

En choisissant $t = \frac{\lambda}{\alpha^2}$ (qui est bien un réel strictement positif et qui est le minimum de $t \mapsto \alpha^2 t^2/2 - t\lambda$) dans l'inégalité précédente, on obtient :

$$\mathbb{P}(X \geqslant \lambda) \leqslant \exp\left(\frac{-\lambda^2}{2\alpha^2}\right).$$

Selon Q11, comme $(-1)^2 = 1$, alors -X est une variable aléatoire α -sous-gaussienne car X l'est.

En effet, si $t \in \mathbb{R}$, alors $-t \in \mathbb{R}$, donc $\mathbb{E}(\exp(-tX)) \leqslant \exp(\alpha^2(-t)^2/2)$, ce qui donne :

$$\mathbb{E}(\exp(t(-X))) \leqslant \exp(\alpha^2 t^2/2).$$

Ainsi, d'après ce qui précède, $\mathbb{P}(-X \geqslant \lambda) \leqslant \exp(-\lambda^2/(2\alpha^2))$.

Enfin, l'événement ($|X| \ge \lambda$) est la réunion disjointe des évènements ($X \ge \lambda$) et ($-X \ge \lambda$), donc la somme des deux inégalités précédemment obtenues fournit :

$$\boxed{\mathbb{P}(|\mathbf{X}| \geqslant \lambda) \leqslant 2 \exp\left(-\frac{\lambda^2}{2\alpha^2}\right)}.$$

13. \Rightarrow : Supposons que X est d'espérance finie.

Alors, l'inégalité $0 \leq \lfloor X \rfloor \leq X$ assure que $\lfloor X \rfloor$ est aussi d'espérance finie, et à valeurs dans \mathbb{N} .

D'après le résultat admis, la série $\sum_{k\geqslant 1}\mathbb{P}(\lfloor \mathbf{X}\rfloor\geqslant k)$ converge, et est de somme $\mathbb{E}(\lfloor \mathbf{X}\rfloor)$.

Or, pour tout entier naturel k et par définition de la partie entière, l'événement ($[X] \ge k$) est exactement l'événément ($X \ge k$).

Donc $\mathbb{P}(X \geqslant k) = \mathbb{P}(\lfloor X \rfloor \geqslant k)$ ce qui assure la convergence de la série $\sum_{k \geqslant 1} \mathbb{P}(X \geqslant k)$

et donne également : $\sum_{k=1}^{+\infty} \mathbb{P}(X \geqslant k) = \mathbb{E}(\lfloor X \rfloor)$.

L'inégalité $[X] \leq X \leq [X] + 1$, et la croissance et la linéarité de l'espérance fournissent alors l'inégalité souhaitée, en remarquant que $\mathbb{E}(1) = 1$:

$$\sum_{k=1}^{+\infty} \mathbb{P}(X \geqslant k) \leqslant \mathbb{E}(X) \leqslant 1 + \sum_{k=1}^{+\infty} \mathbb{P}(X \geqslant k)$$

 $\underline{\Leftarrow}$: Supposons que la série $\sum_{k=1}^{\infty} \mathbb{P}(\mathbf{X} \geqslant k)$ converge.

Alors, ayant $\mathbb{P}(\lfloor \mathbf{X} \rfloor \geqslant k) = \mathbb{P}(\mathbf{X} \geqslant k)$ pour tout k entier et $\lfloor \mathbf{X} \rfloor$ à valeur dans \mathbb{N} , la variable aléatoire $\lfloor \mathbf{X} \rfloor$ est d'espérance finie

donc $\lfloor \mathbf{X} \rfloor + 1$ également par linéarité

comme $0 \leqslant X \leqslant \lfloor X \rfloor + 1$, on en déduit que X est d'espérance finie.

X est d'espérance finie si et seulement si la série de terme génèral $\mathbb{P}(X \ge k)$ converge

Conclusion:

dans ce cas :
$$\sum_{k=1}^{+\infty} \mathbb{P}(X \geqslant k) \leqslant \mathbb{E}(X) \leqslant 1 + \sum_{k=1}^{+\infty} \mathbb{P}(X \geqslant k)$$

14. Soit $k \in \mathbb{N}^*$. Par stricte croissance de la fonction $t \in [1, +\infty[\mapsto \sqrt{\frac{2 \ln(t)}{\beta^2}} \in [0, +\infty[$, on a l'égalité des evénemements : $\left(\exp(\beta^2 \mathbf{X}^2/2) \geqslant k\right) = \left(|\mathbf{X}| \geqslant \sqrt{\frac{2 \ln(k)}{\beta^2}}\right)$

Si $k\geqslant 2$, alors $\sqrt{\frac{2\ln(k)}{\beta^2}}>0$ ce qui permet d'appliquer l'inégalité de la question ${\bf 12}$:

$$\mathbb{P}\left(\exp\left(\frac{\beta^2\mathbf{X}^2}{2}\right)\geqslant k\right)\leqslant 2\exp\left(-\frac{1}{2\alpha^2}\times\frac{2\ln(k)}{\beta^2}\right)=2k^{-\eta},$$

 $\operatorname{car} \eta = \alpha^{-2} \beta^{-2}.$

Si k=1, l'inégalité est vraie car $\mathbb{P}\left(\exp\left(\frac{\beta^2\mathbf{X}^2}{2}\right)\geqslant k\right)\leqslant 2$

dans tous les cas $\boxed{\mathbb{P}\left(\exp\left(\frac{\beta^2\mathbf{X}^2}{2}\right)\geqslant k\right)\leqslant 2k^{-\eta}}$

En supposant $0 < \alpha \beta < 1$, on a alors $1 < (\alpha \beta)^{-2} = \eta$ par stricte décroissance de $u \mapsto u^{-2}$ sur \mathbb{R}_+^*

d'où la convergence de la série $\sum_{k>1} \frac{1}{k^{\eta}}$. comme on a $0 \leqslant \mathbb{P}\left(\exp\left(\frac{\beta^2 X^2}{2}\right) \geqslant k\right) \leqslant \frac{2}{k^{\eta}}$

alors la série $\sum_{k\geqslant 1}\mathbb{P}\left(\exp\left(\frac{\beta^2\mathbf{X}^2}{2}\right)\geqslant k\right)$ converge par comparaison entre séries à termes positifs

D'après la question précédente, $\exp\left(\frac{\beta^2X^2}{2}\right)$ est donc d'espérance finie et :

$$\mathbb{E}\left(\exp\left(\frac{\beta^2 \mathbf{X}^2}{2}\right)\right) \leqslant 1 + \sum_{k=1}^{+\infty} \mathbb{P}\left(\exp\left(\frac{\beta^2 \mathbf{X}^2}{2}\right) \geqslant k\right) \leqslant 1 + \sum_{k=1}^{+\infty} \frac{2}{k^{\eta}}$$

On a bien $\mathbb{E}\left(\exp\left(\frac{\beta^2X^2}{2}\right)\right) \leqslant 1 + 2\zeta(\eta)$

C. Recouvrements de la sphère

15. Par l'absurde, on suppose qu'il n'existe pas de sous ensemble fini A de K tel que : $K \subset \bigcup_{a \in A} B_{a,\frac{\varepsilon}{2}}$.

On va construire par récurrence une suite $(a_k)_{k\geqslant 0}\in \mathcal{K}^{\mathbb{N}}$ telle que $\forall m,p\in\mathbb{N},\ m\neq p\Longrightarrow \|a_m-a_p\|>\frac{\varepsilon}{2}$ <u>Initialisation</u>: Je peux choisir $a_0\in\mathcal{K}$ car $\mathcal{K}\neq\emptyset$.

<u>Hérédité</u>: Soit $n \in \mathbb{N}$.

Je suppose avoir qu'il existe une suite finie $(a_k)_{0 \leqslant k \leqslant n}$ telle que $\forall m, p \in [0, n], \ m \neq p \Longrightarrow \|a_m - a_p\| > \frac{\varepsilon}{2}$.

Comme $\{a_k / 0 \le k \le n\}$ est fini, on a K $\not\subset \bigcup_{k=0}^n B_{a_k, \varepsilon/2}$. Ceci nous fournit $a_{n+1} \in K \setminus \left(\bigcup_{k=0}^n B_{a_k, \varepsilon/2}\right)$

Et donc $\forall m, p \in [0, n+1], m \neq p \Longrightarrow ||a_m - a_p|| > \frac{\varepsilon}{2}$.

Conclusion : J'ai ainsi construit une suite à valeurs dans K ayant la propriété voulue.

Comme K est compact, ceci nous fournit une suite extraite $(a_{\varphi(n)})$ convergente.

Ainsi la suite $(\|a_{\varphi(n+1)} - a_{\varphi(n)}\|)_{n \geqslant 0}$ converge vers 0 or $\forall n \in \mathbb{N}, \|a_{\varphi(n+1)} - a_{\varphi(n)}\| > \frac{\varepsilon}{2}$ donc $\varepsilon = 0$ ce qui est absurde!

il existe un sous ensemble fini A de K tel que : K $\subset \bigcup_{a \in \mathcal{A}} \mathcal{B}_{a,\frac{\varepsilon}{2}}$

16. On considère un sous ensemble fini A de K tel que : K $\subset \bigcup_{a \in A} B_{a,\frac{\varepsilon}{2}}$.

Comme les boules $B(a, \varepsilon/2)$ recouvrent K quand a décrit A, chaque élément x de Λ est dans au moins une des boules. On peut ainsi construire

une application
$$f: \Lambda \longrightarrow A$$
 telle que $\forall x \in \Lambda, x \in B_{f(x),\frac{\varepsilon}{2}}$

Soit $x, y \in \Lambda$ tels que $x \neq y$.

On a donc $||x-y|| > \varepsilon$ ainsi $y \notin B_{f(x),\frac{\varepsilon}{2}}$ car $x \in B_{f(x),\frac{\varepsilon}{2}}$

donc $f(x) \neq f(y)$

On vient de montrer que l'application $f:\Lambda\longrightarrow \mathbf{A}$ est injective or \mathbf{A} est fini

donc Λ est fini et $Card(\Lambda) \leq Card(\Lambda)$

Soit une telle partie Λ de K ayant un cardinal maximal.

Par l'absurde si on avait $K \not\subset \bigcup_{a \in \Lambda} B_{a,\varepsilon}$, ceci nous fournirait $a \in K \setminus \left(\bigcup_{a \in \Lambda} B_{a,\varepsilon}\right)$

Ainsi $\Lambda \cup \{a\} \subset K$ et $\forall x, y \in \Lambda \cup \{a\}, \ x \neq y \Rightarrow \|x - y\| > \varepsilon$ et $\operatorname{Card}(\Lambda) < \operatorname{Card}(\Lambda \cup \{a\})$

Absurde avec le caractère maximal du cardinal de Λ

Ainsi Si Λ est de cardinal maximal alors $\mathcal{K} \subset \bigcup_{a \in \Lambda} \mathcal{B}_{a,\varepsilon}$

17. Soit $a \in \Lambda$. Soit $x \in \mathcal{B}_{a,\varepsilon/2}$. Comme $a \in \mathcal{S}^{n-1}$, on a par l'inégalité triangulaire :

$$||x|| \leqslant ||x - a|| + ||a|| \leqslant \frac{\varepsilon}{2} + 1,$$

Ainsi $B_{a,\varepsilon/2} \subset B_{0,1+\varepsilon/2}$.

Par ailleurs, donnons-nous $a \neq b$ dans Λ et supposons qu'il existe un $x \in \mathcal{B}_{a,\varepsilon/2} \cap \mathcal{B}_{b,\varepsilon/2}$. Alors par l'inégalité triangulaire on aurait :

$$||b - a|| \le ||b - x|| + ||x - a|| \le \varepsilon,$$

ce qui est absurde. Donc les $B_{a,\varepsilon/2}$ sont deux à deux disjointes pour $a\in\Lambda$. Puisque Λ est fini, on peut écrire :

$$\mu\left(\mathbf{B}_{0,1+\varepsilon/2}\right) \geqslant \mu\left(\bigcup_{a \in \Lambda} \mathbf{B}_{a,\varepsilon/2}\right) = \sum_{a \in \Lambda} \mu\left(\mathbf{B}_{a,\varepsilon/2}\right).$$

On en déduit : $\left(1 + \frac{\varepsilon}{2}\right)^n \geqslant \left(\frac{\varepsilon}{2}\right)^n \times \operatorname{card} \Lambda$ ainsi $\left[\operatorname{card} \Lambda \leqslant \left(\frac{2 + \varepsilon}{\varepsilon}\right)^n\right]$

18. Pour utiliser $\mathbf{Q16}$, on a besoin de l'existence d'un Λ de cardinal maximal.

On considère alors $\Gamma = \left\{ \operatorname{card}\left(\Lambda\right) / \Lambda \text{ fini et } \Lambda \subset \mathbf{S}^{n-1} \text{ et } \left(\forall x, y \in \Lambda, \ x \neq y \Rightarrow \|x - y\| > \frac{1}{2} \right) \right\}$

 Γ est une partie de $\mathbb N$ non vide, car $0 \in \Gamma$ et majorée par $\left(\frac{2+\frac{1}{2}}{\frac{1}{2}}\right)^n = 5^n$ avec la question précédente en $\varepsilon = \frac{1}{2}$ Ainsi Γ admet un plus grand élément $\mathbb M$

il existe alors Λ_n partie de cardinal M du compact S^{n-1} telle que $\forall x, y \in \Lambda_n, \ x \neq y \Rightarrow ||x-y|| > \frac{1}{2}$ donc Λ_n est de cardinal maximal en appliquant **Q16**, au compact $K = S^{n-1}$.

On obtient une partie Λ_n de \mathbf{S}^{n-1} de cardinal majorée $\mathbf{5}^n$ telle que $\mathbf{S}^{n-1} \subset \bigcup_{a \in \Lambda_n} \mathbf{B}_{a,\frac{1}{2}}$

D. Norme d'une matrice aléatoire

19. Soit
$$i \in [1, n]$$
. On a $y_i = \sum_{j=1}^n \mathbf{M}_{i,j}^{(n)} x_j$, avec $\sum_{j=1}^n x_j^2 = 1$.

De plus, les variables aléatoires $(M_{i,1}^{(n)}, \dots, M_{i,n}^{(n)})$ sont mutuellement indépendantes, car elles forment une sous-famille d'une famille de variables aléatoires mutuellement indépendantes.

La question 11 permet de conclure que y_i est α -sous-gaussienne.

L'inégalité d'Orlicz (admise à la fin de la partie montre alors que :

$$\forall i \in [1, n], \ \mathrm{E}\left(\mathrm{e}^{\gamma y_i^2}\right) \leqslant 5.$$

L'indépendance mutuelle des $\mathbf{M}_{i,j}^{(n)}$ fournit l'indépendance mutuelle des y_i , par le lemme des coalitions car chaque y_i s'écrit comme combinaison linéaire des $\mathbf{M}_{i,j}^{(n)}$, et les différentes combinaisons linéaires ont des supports deux à deux disjoints.

Donc par produit on obtient : $\mathbb{E}\left(e^{\gamma \|y\|^2}\right) \leqslant 5^n$.

Soit maintenant r > 0. Par stricte croissance de l'exponentielle et stricte positivité de γ on a :

$$P(||y|| \ge r\sqrt{n}) = P\left(e^{\gamma||y||^2} \ge e^{\gamma r^2 n}\right).$$

Puis en utilisant l'inégalité de Markov il vient : $\boxed{{\bf P}(\|y\|\geqslant r\sqrt{n})\leqslant (5{\rm e}^{-\gamma r^2})^n}$

20. Soit r > 0 tel que $\|\mathbf{M}^{(n)}\|_{\text{op}} \ge 2r\sqrt{n}$.

La question 1) nous fournit $t \in S^{n-1}$ tel que : $\|\mathbf{M}^{(n)}t\| = \|\mathbf{M}^{(n)}\|_{\text{op}}$

La question 18) nous fournit $a \in \Lambda_n$ tel que : $t \in B_{a,1/2}$.

Par la question 2), on a :

$$\|\mathbf{M}^{(n)}\|_{\text{op}} \le \|\mathbf{M}^{(n)}t - \mathbf{M}^{(n)}a\| + \|\mathbf{M}^{(n)}a\| \le \frac{1}{2}\|\mathbf{M}^{(n)}\|_{\text{op}} + \|\mathbf{M}^{(n)}a\|,$$

Ainsi $\|\mathbf{M}^{(n)}a\| \ge \frac{1}{2} \|\mathbf{M}^{(n)}\|_{\text{op}}$.

On a montré que : $\|\mathbf{M}^{(n)}\|_{\text{op}} \ge 2r\sqrt{n}$ implique l'existence d'un $a \in \Lambda_n$ tel que $\|\mathbf{M}^{(n)}a\| \ge r\sqrt{n}$

Comme on a l'inclusion des événements :

$$\left(\|\mathbf{M}^{(n)}\|_{\mathrm{op}} \geqslant 2r\sqrt{n}\right) \subset \bigcup_{a \in \Lambda_n} \left(\|\mathbf{M}^{(n)}a\| \geqslant r\sqrt{n}\right)$$

et comme Λ_n est fini, on obtient :

$$\begin{split} \mathrm{P}(\|\mathrm{M}^{(n)}\|_{\mathrm{op}} \geqslant 2r\sqrt{n}) &\leqslant \sum_{a \in \Lambda_n} \mathrm{P}\left(\|\mathrm{M}^{(n)}a\| \geqslant r\sqrt{n}\right) \\ &\leqslant \sum_{a \in \Lambda_n} \left(5\mathrm{e}^{-\gamma r^2}\right)^n \qquad \text{d'après 19} \\ &= \left(5\mathrm{e}^{-\gamma r^2}\right)^n \times \operatorname{card}\Lambda_n \\ &\mathrm{P}(\|\mathrm{M}^{(n)}\|_{\mathrm{op}} \leqslant \left(25\mathrm{e}^{-\gamma r^2}\right)^n \qquad \text{d'après 18}. \end{split}$$