

Multi-GPU implementation of finite-size particle in a pipe flow

HPC-Leapers: Xiao Xue^{1,2}, Felix Milan^{1,2}, Teodor Nikolov³

Mentors: Guray Ozen⁴, Paul Richmond⁵

- 1. Eindhoven University of Technology
- 2. University of Rome "Tor Vergata"
- 3. Juelich Supercomputing Centre
 - 4. NVIDIA
 - 5. University of Sheffield

CSCS

Lugano, 02.10.2018

Goal: Particles in complex flows

- Multi-GPU implementation for lattice Boltzmann
- Multi-GPU implementation for particle-fluid interaction and particle-particle interaction

A Gupta, HJH Clercx, F Toschi Communications in Computational Physics 23 (3), 665-684 2018

A Gupta, HJH Clercx, F Toschi The European Physical Journal E: Soft Matter 2018

A Gupta, HJH Clercx, F Toschi The European Physical Journal E 41 (3), 34 2018

Performance checks and optimisation

- Flow without particles (mini app)
 - single CPU speed up reference 1
 - single GPU optimization (block size, memory hierarchy, data layout): 1 GPU speed up 140
 - MPI parallelisation improved (halo exchange)
 - Multi-GPU optimization (CUDA aware MPI testing, halo exchange optimization): 4
 GPUS speed up 380
- Flow with particles (separate code)
 - Embed particle method in mini app
 - Algorithm design for finite-size particle(data layout, efficiently linking between neighboring cells)
 - single GPU particle algorithm to be tested and optimised (locally & daint)
 - Multi-GPU particle code optimisation on daint