$E_x = -400 \times 10^{-6}$ $E_y = +200 \times 10^{-6}$ $Y_{xy} = +800 \times 10^{-6}$ E = 200 GraM = 0.30

PROBLEM-1

Mohr's Circle for Strain

Scale: 1cm = 100 x 106

	Magnitude	Direction with x-axis Conticlockwise)
0C _E	100 × 10 6	1911 – 1919 f
RE	500×10-6	_
Emax	600 × 10-6	116.5°
Emin	-400 × 106	26.5 °
Ymar 2	500×10-6	161.5 °
Ymin 2	-500×106	71.5 °

State of strain of replane is denoted by a point $A \left(\mathcal{E}_{x}, \frac{Y_{xy}}{2} \right) \Rightarrow \{4,4\}$ State of strain of x-plane is denoted by point B $\left(\mathcal{E}_{y}, -\frac{Y_{xy}}{2} \right) \Rightarrow \left(2,-4 \right)$

Measure of OC = 1 cm

Measure of R (radius) = 5 cm

Maximum Principle Strain:

Emax = OC+R

= 6 cm

Minimum Principle Strain:

Emin = OC-R

= -4 cm

Maximum shearing strain:

R = 5cm

Minimum shearing strain:

-R = -5cm

Measure angle of 29: 20=53° 9 = 265

Mohr's Circle for Stress

Scale: 1 cm = 20 MPa

	Mognitude	Direction Con-	n with	x-axil		17
005	28.57 MPa	Was To	_	,	,	100
80	76.9 MPa		-	4	7.	
Sma!	105.47 MP	14.7	116.5°	4		
5min	-48.33 MPa		26.5 "	1		
Tmov	76.9 M Fa		161.5 °		Ĭ.	
Tmin	-76.9 MPa		71.5			
A	A STATE OF THE PARTY OF THE PAR	Colombia Col	Total Contract to Contract			-

Calculations:

$$R_{o} = R_{e} \times \frac{E}{1+M}$$

$$= 500 \times 10^{-6} \times 200 \times 10^{3}$$

$$0C_{\bullet} = \frac{C}{1-0.3}$$

$$= \frac{100\times10^{6}\times\frac{200\times10^{3}}{1-0.3}}{1-0.3}$$

Measure of
$$Q = 3.8$$
 cm

Measure of $Q = 3.8$ cm

Maximum Principle Stress

 $G_{max} = 0.00 + 2$

 $E_a = 400 \times 10^{-6}$ $E_b = -200 \times 10^{-6}$ $E_c = -100 \times 10^{-6}$ E = 200 Gra x = 0.30

PROBLE M - 2(a)

Mohr's Circle for Strain

Scale :- 1 cm = 100 x 10-6

	Magnitude	Direction with x-axis (anticlockwise)
OCE	150 × 10-6	4
RE	440 ×10-6	- 1
Emax	530 ×106	1525°
Emin	- 280 × 10-6	62.5
Ymai	+ 440×106	17.5
Ymin 2	- 440×10-6	107.5

Measure of $R_s = 4.4 \text{ cm}$ Measure of $R_s = 4.4 \text{ cm}$ Measure of $R_s = 5.9 \text{ cm}$ Measure of $R_s = 2.8 \text{ cm}$ Measure of $R_s = 4.4 \text{ cm}$ $R_s = 4.4 \text{ cm}$

Mohr's Circle for Stress Scale : - 1 cm = 20 MPa

	A Department of the	
	Mognitude	Direction with x-axis (anticlockwise)
Oce	42.85 MPa	
Ro	67.69 MPa	<u> </u>
S mar	110 MPa	152.5 1
ew! n	24 MPa	62.5
Tmax	67.69 MPa	17.5°
Trein	- 67.69 MPa	107.5°

Calculations :-

= 440×10-6 × 200×109

= 67.69 MPa

= $150 \times 10^{-6} \times 200 \times 10^{9}$

= 42.85 MPa

Measure of OC = 2.14 cm

Measure of R = 3.38 cm

Measure of one = 5.5 cm

Measure of omix = 1.2 cm

Measure of Trax = 3.38 cm

 $\mathcal{E}_{a} = 300 \times 10^{-6}$ $\mathcal{E}_{b} = 600 \times 10^{-6}$ $\mathcal{E}_{c} = 100 \times 10^{-6}$ $\mathcal{E} = 200 \times 10^{-6}$ $\mathcal{H} = 0.30$

PROBLEM-2(b)

Mohr's Circle for Strain

Scale: $-1 cm = 100 \times 10^{-6}$

,	Magnitude	Direction with n-axis Canticlackwise)
O CE	100×10-6	· · · · · · · · · · · · · · · · · · ·
RE	420× 10-6	- E
Emax	620×10-6	38°
E _{min}	-210 X156	-52°
1 max	420 × 10-6	-97
Ymin 2	-420 × 10-6	-7°

Measure of OC = 1 cm

Measure of $R_E = 4.2 \text{ cm}$ Measure of $E_{max} = 6.2 \text{ cm}$ Measure of $E_{min} = 2.1 \text{ cm}$ Measure of $E_{max} = 4.2 \text{ cm}$ $E_{max} = 4.2$

Mohr's Circle for Stress Scale: - 1cm = 20MPa

	Magnitude	Direction with n-axis (anticlack wise)
00.	28.57 MPa	-
Re	64.61 MPa	
Smo,	94 MPa	38°
· 5 min	- 36 MPa	- 25,
Trnax	64.61 MPa	-37*
Tmin	-64.61 MPa	- 7°

Calculations

Ro = RE X E

= 420×106 × 200×109

= 64.61 MPa

 $OC_e = OC_E \times \frac{E}{1-M}$

= 100×10e × 500×100

= 28.57 MPa

Measure of R=323cm Measure of OC=1.42cm Measure of Smor = 47cm

Measure of Smin = 1.8 cm

Measure of Tron = 3.23c

Mohr's Circle for Stress Scale: - 1cm = 20MPa

	Mognitude	Direction with x-axis (antidatuse)
00-	28.57 MPa	j
Ro	64 61 MPa	-
omo,	94 MPa	38°
·6 min	- 36 MPa	- 23"
Tras	64.61 MPa	-37*
Tmin	-64.61 MPa	-7°

Calculations

REFREX E

= 420×106 × 200×109

= 64.61 MPa

 $0C_{\epsilon} = 0C_{\epsilon} \times \frac{\epsilon}{1-\mu}$

= 100x106 x 200x10

= 28.57 MPa

Measure of R = 323 cm Measure of OC = 1.42 cm Measure of $\sigma_{mo.} = 47$ cm

reasure of smin = ... con

 $\mathcal{E}_{a} = 300 \times 10^{6}$ $\mathcal{E}_{b} = -400 \times 10^{6}$ $\mathcal{E}_{c} = 100 \times 10^{6}$ $\mathcal{E} = 200 \text{ Gr}_{a}$ $\mathcal{M} = 0.30$

PROBLEM-2 (c)

MOHR'S CIRCLE FOR STRAIN

2
Measure of Oc=200
Measure of R = 64cm
Measure of Emax = 840
Measure of Emin = 43 cm
Measure of Your = 640
20= 8°°
0 = 40°

	Magnitude	Direction with x-axis	
0 C _E	200×10-6	7.00	
PE	640×10-6		
Emax	840 × 10-6	140	
Emin .	430 ×10-6	50°	
Ymar 2	640 ×10-6	5°	
Ymin 2	-640×10-6	95°	

MOHR'S CIRCLE FOR STRESS SCALE :- 1 cm = 20 MPa

	Mognitude	Direction with x-axis
000	57.142 MPa	e de la companya del companya de la companya del companya de la co
Ps	38.461 MPa	
Thay	154 MPa	140°
5min	- 42 MPa	5°°
Tree	38.461 MPa	5 °
Tmin	-98.461 MPa	35°

CALCULATIONS

$$E_{\sigma} = P_{\varepsilon} \times \frac{E}{1 + \pi}$$

= 640×10 6 × 200×10 9

$$OC_{\sigma} = OC_{\xi} \times \frac{E}{1-\mu}$$

$$= 200\times10^{6} \times \frac{200\times10^{9}}{0.7}$$

$$= 57.142 \text{ MPa}$$
Measure of $R = 4.9 \text{ cm}$
Measure of $OC = 2.8 \text{ cm}$

Measure of Tran = 4.9cm

Measure of Smin = 21 cm

30/1/1

PROBLEM - 3(a)

SPACE DIAGRAM

SCALE: - 10 mm = 40 mm

MOHR'S CIRCLE

ACInn, Iny) , B(Iyy, - Iny)

CALCULATIONS

$$n_3 = 100 \, \text{mm}$$
 $y_3 = 250 \, \text{mm}$

$$\bar{\chi} = \frac{A_1 H_1 + A_2 H_2 + A_3 H_2}{A_1 + A_2 + A_3}$$

$$\overline{Y} = A_1 Y_1 + A_2 Y_2 + A_3 Y_3$$

$$A_1 + A_2 + A_3$$

$$\bar{y} = 130 \, \text{mm}$$

$$x - axis : I_{nn} = \frac{1}{12} 200 \times 260^3 - 2 \times \frac{1}{12} y 90 \times 220^3$$

$$I_{yy} = 2 \times \frac{1}{12} \times 20 \times 200^{3} + \frac{1}{12} \times 220 \times 20^{3}$$

*11.7	Result	6/3
Component	Value X1480.14 cm4	Direction
ОС	8140.77	Bana .
7,	13321.26	0.
I ₂	2679.05	90"
P,	5328.5	45°
b,*	-5328.5	135°
R	5 328 . 5	-

PROBLEM-3(b)

SPACE DIAGRAM

SCALE :- 10 mm = 40 mm

MOHR'S CIRCLE

A(6,0) , B(4.34,0)

CALCULATIONS

 $x_1 = 100 \, \text{mm}$ $y_1 = 10 \, \text{mm}$

M2 = 100 mm

42= 130 mm

A = 20x200 = 4000 mm2

Az = 240x20 = 4800 mm2

 $\bar{x} = \frac{A_1 x_1 + A_2 x_2}{A_1 + A_2} = \frac{4000 \times 100 + 4700 \times 100}{4600 + 4800}$

x = 100 mm

$$\bar{y} = \frac{A_1 y_1 + A_2 y_2}{A_1 + A_2} = \frac{4000 \times 10 + 4800 \times 140}{4000 + 4800}$$

= 80.9 anm

Iyy = 12 x 20x2003 + 12 x203 x240

,= 1333.33 + 160

Ivy = 1349.33 cm4

N-axis: Junit = 103 cmu

y-axis = tunit = 10 = cm | Tan = 1 x 203 x 200 + 20 x 200 x (80.9-10)2 + 12 x2403 x 20 + 20x240 x (140-80.9)

= 6004.7 cm4

= flablin"

Try = O Cas centraid of both tectangle lies on centroidal axis)

Component	Value × 103 cm4 .	Direction
00	\$800 cm4	
1,	6004.7 cm4	10.
Т _а	1349:33 cm4	1.90
P,	72300 cm4	45
Pa	-72300 cm4	1350
R	72300 cm4	112

PROBLEM - 3 (c)

SPACE DIAGRAM

SCALE :- 10 mm = 40 mm

MOHR'S CIRCLE

A (In, Iny), B (Ivy, -Iv) A (21192, - 2.10), B (1.4725, 2.10) Scale: 1-avis: 1cm = 2×103 cm4 Iny avis: 2cm = 2×103 cm4

RESULT

	TOTAL CONTRACTOR OF THE PROPERTY OF THE PROPER	TOTAL TOTAL
Component	value x 2×103 cm4	Direction
OC	3800 cm4	- 77
I,	9 200 cm4	23.5
Τ ₂	800 cm4	113.5
Pı	4400 cm 4	68.5
P ₂	- 4400 cm4	158.5
R	4400 cm	- <u>- </u>
Commence of the Commence of th		

CALCULATIONS :-

 $x_1 = 190 \text{ mm}$ $x_2 = 70 \text{ mm}$

n2 = 130 mm

y, = 10 mm

y = 135 mm

A, = 2800 mm2

A2 = 4600 mm2

A3 = 2800 mm2

 $\overline{\gamma_L} = \frac{A_1 \times_1 + A_2 \times_2 + A_3 \times_3}{A_1 + A_2 + A_3}$

= 2800 ×190 + 4600 ×130 + 2800 × 70 2800 + 4600 + 2800

7 = 130 mm = 13 cm

 $\overline{y} = \frac{A_1y_1 + A_2y_2 + A_3y_3}{A_1 + A_2 + A_3}$

= 2800×10 + 4600×135 + 2100 ×260 28 50 + 4600 + 28 50

Y = 135 mm = 13.5 cm

.. centroid (13, 13.5)

Inn = In, + In2 + In3

 $= \frac{140 \times 20^{3}}{12} + 2800 (10 - 135)^{2} + \frac{20 \times 20^{3}}{12} + \frac{1}{12}$

4600 (135-131)2+ 140×203+ 1800 (260-135)

Tnx = 4.384 × 103 cm4

Tyy = Iy, + Ty2 + Ty3

 $= \frac{20\times100^{3} + 2800\left(190 - 130\right)^{2} + \frac{230\times20^{3}}{12} + \frac{20\times100^{3}}{12}$

+ 2800 (70-130)2

Tyy = 2.945×103 cm4

 $I_{Ny} = I_{Ny_1} + I_{Ny_2} + I_{Ny_3}$

= 2800 (190-130)(10-135) + 4600 (130-130)

(135 - 135) + 2800 (70 - 130) (260 - 135)

Tny = -4.2 × 203 cm4

ton $2\Theta_p = \frac{2 T_{ny}}{T_{n-1y}} = \frac{-2 \times 4.2 \times 10^3}{4.384 \times 10^3 - 2.94 \times 10^3} = -$

Dp = 23.50

PROBLEM - 3 (a)

SPACE DIAGRAM

SCALE :- 10 mm = 40 mm

MOHR'S CIRCL

scale : 1cm = 2×103 cm4 I-ayis:

•	RESULT	
Component	value x 2 x io 3 cm4	Direction
٥٥	11000 cm4	_
I,	15310 cm4	0
12	6540 cm4	3.8°
Pı	4400 cm4	45°
P ₂	- 4400 cm4	135
R	4400 cm4	

CALCULATIONS - 9

x, = 80 mm

N3 = 33.95 mm

N2 = 80 mm

ny = 126.05 mm

y, = 253.95 mm

y2 = 110 mm

42 = 33.95 mm

yu = 33.35 mm

A, = 10053.1 mm2 A2 = 35200 mm2

A4 = A3 = T x802 = 5026.55 mm2

x = Aini+ Azxz+Azxz+Aunu A, + A2 + A3+A4

= 10053.1x80 + 35200x20 + 502655 x(33 35 + 12605) 100531+35200 +5026.55+5026.65

X = 80 mm = 8 cm

Y = A141 + A242 + A242 + A470 A1+ A2 + A2 + A4

= 10053.1x253.35+35200x110 + 5026.55(33.35+33.35)

150531 + 35200 + 2×5026.55

y = 172.81mm = 17.286 cm

Inn = In, + In2 + Ing + Ing

= 0.11 x 804 + 10053.1x (253.95 - 172.8)2+

160×2203+35200 (110-172.8)2-0055×804-

5026.55 (33.95-172.8)2 - 0.055 ×804-5026. 55 C 33.95 - 172 8)2

In = 15.31×103 cm4

 $1_{yy} = 1_{y_1} + 1_{y_2} + 1_{y_3} + 1_{y_4}$

= 0.393 × 80" + 220× 1603 - 0.055 × 80" X2

- 5026.25 (32.35-80)2-5026.57 (126.05-80)2

3yy = 6.54×103 cm4

Iny = 0 Las controid of all chapes lies on centroidal axis)

The state of the s

PROBLEM - 3 (e)

SPACE DIAGRAM

SCALE : 10 mm = 20 mm

MOHR'S CIRCLE

B(2,2)

Scale: X-axis = 1cm = 5cm4 Y-axis : 1em = 5em4

DESUIT

	RESULT	
Component	Value x 5	Direction (Anticlockwin
00	2015 cm4	
1,	35 cm4	157.5
7 2	6.25 cm 4	67.5°
۴,	14.5 cm4	22.5
ρ,	- 14,5 cm4	11 2 .5 °
R	IU.S cm 4	

CALCULATIONS:-

 $x_1 = 20$ mm $x_2 = 5$ mm

 $y_1 = 5 \text{ mm}$ $y_2 = 35 \text{ mm}$

A = 400 mm2 A = 500 mm2

$$\bar{y}_1 = A_1 y_1 + A_2 y_2$$

$$A_1 + A_2$$

7 = 11.67 mm

$$\overline{y} = \frac{A_1 v_1 + A_2 v_2}{A_1 + A_2} = \frac{400 \times 5 + 500 \times 35}{400 + 500}$$

$$T_{xx} = T_{x}, + T_{x_2}$$

$$= \frac{40 \times 10^3}{12} + 400 (5 - 21.67)^2$$

$$+ \frac{10 \times 50^3}{12} + 500 (35 - 21.67)^2$$

$$T_{yy} = T_{y_1} + T_{y_2}$$

$$= \frac{10 \times 10^3}{12} + 100 (20 - 11.67)^2 + \frac{10^3 \times 50}{12} + 500 (5 - 21.67)^2$$

$$T_{NY} = T_{NY}, + T_{NY}$$

$$= 400 (8.3) (16.67)$$

$$+ 500 (-6.67) (-13.33)$$
 $T_{NY} = 10 \text{ cm}^{3}$

$$ton 20p = \frac{21m}{1m-1y} = 45°$$