Элементы функционального анализа

Определение. Линейное пространство V называется **евклидовым**, если каждой паре векторов \vec{x} и \vec{y} из пространства V поставлено в соответствие действительное число, обозначаемое (\vec{x}, \vec{y}) и удовлетворяющее следующим аксиомам:

1)
$$(\vec{x}, \vec{x}) \ge 0, \forall \vec{x} \in V$$
, и $(\vec{x}, \vec{x}) = 0 \Leftrightarrow \vec{x} = \vec{0}$;

2)
$$(\vec{x}, \vec{y}) = (\vec{y}, \vec{x}), \forall \vec{x}, \vec{y} \in V$$
;

3)
$$(\vec{x}_1 \oplus \vec{x}_2, \vec{y}) = (\vec{x}_1, \vec{y}) + (\vec{x}_2, \vec{y}), \forall \vec{x}_1, \vec{x}_2, \vec{y} \in V;$$

4)
$$(\alpha \otimes \vec{x}, \vec{y}) = \alpha(\vec{x}, \vec{y}), \forall \alpha \in R, \forall \vec{x}, \vec{y} \in V$$
.

Введенная операция называется **скалярным умножением векторов**, число (\vec{x}, \vec{y}) – **скалярным произведением векторов** \vec{x} и \vec{y} , а число (\vec{x}, \vec{x}) – **скалярным квадратом вектора** \vec{x} и обозначается \vec{x}^2 .

Пример 1.

Выясните, является ли пространство R^2 евклидовым пространством, если каждой паре векторов $\vec{x} = (x_1; x_2)$ и $\vec{y} = (y_1; y_2)$ поставлено в соответствие число (\vec{x}, \vec{y}) :

a)
$$(\vec{x}, \vec{y}) = 2x_1y_1 + 7x_1y_2 + 3x_2y_1 + x_2y_2$$
; 6) $(\vec{x}, \vec{y}) = 2x_1y_1 + x_1y_2 + x_2y_1 + 3x_2y_2$.

Решение.

a) Пусть
$$\vec{x} = (x_1; x_2), \ \vec{y} = (y_1; y_2), \ (\vec{x}, \vec{y}) = 2x_1y_1 + 7x_1y_2 + 3x_2y_1 + x_2y_2.$$

Вычислим (\vec{x}, \vec{x}) и проверим, верно ли $(\vec{x}, \vec{x}) \ge 0$, $\forall \vec{x} \in \mathbb{R}^2$. Получим $(\vec{x}, \vec{x}) = 2x_1^2 + 10x_1x_2 + x_2^2$.

Так как существует вектор, например, $\vec{x}_0 = (1;-1) \in R^2$, такой, что $(\vec{x}_0,\vec{x}_0) = 2 \cdot 1^2 + 10 \cdot 1 \cdot (-1) + (-1)^2 = -7 < 0$, то первая аксиома выполняется не для всех $\vec{x} \in R^2$.

Значит, число (\vec{x}, \vec{y}) не является скалярным произведением векторов в пространстве R^2 , поэтому R^2 с указанной операцией евклидовым пространством не является.

б) Покажем, что число (\vec{x}, \vec{y}) удовлетворяет четырем аксиомам.

1) По правилу $(\vec{x}, \vec{y}) = 2x_1y_1 + x_1y_2 + x_2y_1 + 3x_2y_2$ найдем (\vec{x}, \vec{x}) :

$$(\vec{x}, \vec{x}) = 2x_1^2 + 2x_1x_2 + 3x_2^2 = x_1^2 + x_1^2 + 2x_1x_2 + x_2^2 + 2x_2^2 = x_1^2 + (x_1 + x_2)^2 + 2x_2^2 \ge 0, \forall \vec{x} = (x_1; x_2) \in \mathbb{R}^2.$$

$$(x_1 = 0, x_2) = x_1^2 + 2x_1x_2 + 3x_2^2 = x_1^2 + x_1^2 + 2x_1x_2 + x_2^2 + 2x_2^2 = x_1^2 + (x_1 + x_2)^2 + 2x_2^2 \ge 0, \forall \vec{x} = (x_1; x_2) \in \mathbb{R}^2.$$

При этом
$$(\vec{x}, \vec{x}) = 0 \Leftrightarrow {x_1}^2 + (x_1 + x_2)^2 + 2{x_2}^2 = 0 \Leftrightarrow \begin{cases} x_1 = 0, \\ x_1 + x_2 = 0, \Leftrightarrow x_1 = x_2 = 0 \Leftrightarrow \vec{x} = \vec{0}. \\ x_2 = 0, \end{cases}$$

2) Найдем и сравним (\vec{x}, \vec{y}) и (\vec{y}, \vec{x}) , получим

$$(\vec{x}, \vec{y}) = 2x_1y_1 + x_1y_2 + x_2y_1 + 3x_2y_2, \ (\vec{y}, \vec{x}) = 2y_1x_1 + y_1x_2 + y_2x_1 + 3y_2x_2.$$

Так как $(\vec{x}, \vec{y}) = (\vec{y}, \vec{x}), \forall \vec{x}, \vec{y} \in \mathbb{R}^2$, то вторая аксиома выполняется.

3) Пусть $\vec{z}=(z_1;z_2)$ — произвольный вектор пространства R^2 . Найдем $(\vec{x}+\vec{y},\vec{z}),(\vec{x},\vec{z}),(\vec{y},\vec{z})$. Учитывая, что $\vec{x}+\vec{y}=(x_1+y_1,x_2+y_2)$, получим

$$(\vec{x} + \vec{y}, \vec{z}) = (x_1 + y_1) \cdot z_1 + (x_1 + y_1) \cdot z_2 + (x_2 + y_2) \cdot z_1 + 3(x_2 + y_2) \cdot z_2,$$

$$(\vec{x}, \vec{z}) = 2x_1z_1 + x_1z_2 + x_2z_1 + 3x_2z_2, (\vec{y}, \vec{z}) = 2y_1z_1 + y_1z_2 + y_2z_1 + 3y_2z_2.$$

Тогда $(\vec{x} + \vec{y}, \vec{z}) = (\vec{x}, \vec{z}) + (\vec{y}, \vec{z}), \forall \vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^2$, то есть аксиома 3 выполняется.

4) Найдем $(\lambda \vec{x}, \vec{y})$ и $\lambda(\vec{x}, \vec{y})$. Учитывая, что $\lambda \vec{x} = (\lambda x_1; \lambda x_2)$, получим

$$(\lambda \vec{x}, \vec{y}) = 2(\lambda x_1)y_1 + (\lambda x_1)y_2 + (\lambda x_2)y_1 + 3(\lambda x_2)y_2 = \lambda \cdot (2x_1y_1 + x_1y_2 + x_2y_1 + 3x_2y_2) = \lambda \cdot (\vec{x}, \vec{y}), \forall \vec{x}, \vec{y} \in R^2.$$
 Значит, аксиома 4 выполняется.

Следовательно, пространство R^2 становится евклидовым пространством после определения в нем операции скалярного произведения векторов по правилу $(\vec{x}, \vec{y}) = 2x_1y_1 + 7x_1y_2 + 3x_2y_1 + x_2y_2$.

Задание 1. Выясните, является ли пространство R^2 евклидовым пространством, если каждой паре векторов $\vec{x} = (x_1; x_2)$ и $\vec{y} = (y_1; y_2)$ поставлено в соответствие число (\vec{x}, \vec{y}) :

1.1.
$$(\vec{x}, \vec{y}) = x_1 y_1 + x_1 y_2 + x_2 y_1 - 3x_2 y_2$$
; **1.2.** $(\vec{x}, \vec{y}) = x_1 y_1 + 2x_1 y_2 + 2x_2 y_1 + 5x_2 y_2$;

1.3.
$$(\vec{x}, \vec{y}) = 5x_1y_1 - x_1y_2 - x_2y_1 + 3x_2y_2$$
; **1.4.** $(\vec{x}, \vec{y}) = x_1y_1 + 4x_1y_2 + x_2y_1 + 4x_2y_2$.

Ответы: 1.1. не является; 1.2. является; 1.3. является; 1.4. не является.

Задание 2. Выясните, является ли линейное пространство P_2 всех многочленов с действительными коэффициентами степени, не превосходящей 2, евклидовым пространством, если каждой паре многочленов f(x) и g(x) поставлено в соответствие число:

2.1.
$$(f,g) = f(-1) \cdot g(-1) + f(0) \cdot g(0) + f(1) \cdot g(1)$$
;

2.2.
$$(f,g) = f(1) \cdot g(1) + f(1) \cdot g(0) + f(0) \cdot g(1) + f(0) \cdot g(0)$$
.

Ответ: 2.1. является; 2.2. не является.

Задание 3. Выясните, является ли линейное пространство M_2 всех матриц второго порядка евклидовым пространством, если каждой паре матриц $A = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$ и $B = \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix}$ поставлено в соответствие число:

3.1.
$$(A, B) = a_1 \cdot a_2 - b_1 \cdot b_2 + c_1 \cdot c_2 - d_1 \cdot d_2$$
; **3.2.** $(A, B) = a_1 \cdot b_2 + a_2 \cdot b_1 - c_1 \cdot d_2 - c_2 \cdot d_1$.

Ответ: 3.1. не является; 3.2. не является.

Определение. Система векторов $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n, n \ge 2$, в евклидовом пространстве называется **ортогональной**, если эти векторы попарно ортогональны, то есть $(\vec{x}_i, \vec{x}_j) = 0, \forall i \ne j; i, j, = 1, 2, ... n$.

Определение. Вектор \vec{x} называется **нормированным или единичным**, если $\|\vec{x}\| = 1$.

Если
$$\vec{x} \neq \vec{0}$$
, то существует два нормированных вектора $\vec{x}_1^0 = \frac{\vec{x}}{\|\vec{x}\|}$ и $\vec{x}_2^0 = -\frac{\vec{x}}{\|\vec{x}\|}$.

Нахождение для данного вектора нормированного вектора по указанным формулам называется **нормированием** данного **вектора**, а множитель $\mu = \pm \frac{1}{\|\vec{x}\|}$ — **нормирующим множителем**.

Определение. Система векторов $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n, n \ge 2$, в евклидовом пространстве называется **ортонормированной**, если она ортогональна и каждый вектор является нормированным, то есть

$$(\vec{x}_i, \vec{x}_j) = \begin{cases} 0, \forall i \neq j, \\ 1, \forall i = j, \end{cases} i, j, = 1, 2, \dots n.$$

Определение. Базис евклидова пространства называется ортогональным, если базисные векторы составляют ортогональную систему векторов.

Определение. Базис евклидова пространства называется ортонормированным, если базисные векторы составляют ортонормированную систему векторов.

Теорема (процесс ортогонализации Грама-Шмидта).

В любом n-мерном евклидовом пространстве, $n \ge 2$, существует ортонормированный базис.

Пример 2. В пространстве R^3 задан базис $\vec{x}_1 = (1;-1;1), \vec{x}_2 = (2;-3;4), \vec{x}_3 = (2;2;6)$. Постройте по данному базису ортонормированный.

Решение. 1. Построим сначала ортогональный базис $\vec{y}_1, \vec{y}_2, \vec{y}_3$.

Пусть $\vec{y}_1 = \vec{x}_1 = (1;-1;1)$.

Положим
$$\vec{y}_2 = \vec{x}_2 + \lambda_1^2 \vec{y}_1$$
, где $\lambda_1^2 = -\frac{(\vec{y}_1, \vec{x}_2)}{(\vec{y}_1, \vec{y}_1)}$. Найдем λ_1^2 , получим

$$\lambda_1^2 = -\frac{(\vec{y}_1, \vec{x}_2)}{(\vec{y}_1, \vec{y}_1)} = -\frac{1 \cdot 2 + (-1) \cdot (-3) + 1 \cdot 4}{1^2 + (-1)^2 + 1^2} = -3.$$

Тогда

$$\vec{y}_2 = \vec{x}_2 + \lambda_1^2 \vec{y}_1 = (2; -3; 4) - 3 \cdot (1; -1; 1) = (2; -3; 4) - (3; -3; 3) = (-1; 0; 1).$$

Пусть теперь $\vec{y}_3 = \vec{x}_3 + \lambda_1^3 \vec{y}_1 + \lambda_2^3 \vec{y}_2$, где $\lambda_1^3 = -\frac{(\vec{y}_1, \vec{x}_3)}{(\vec{y}_1, \vec{y}_1)}$, $\lambda_2^3 = -\frac{(\vec{y}_2, \vec{x}_3)}{(\vec{y}_2, \vec{y}_2)}$.

Найдем λ_1^3, λ_2^3 :

$$\lambda_1^3 = -\frac{(\vec{y}_1, \vec{x}_3)}{(\vec{y}_1, \vec{y}_1)} = -\frac{1 \cdot 2 + (-1) \cdot 2 + 1 \cdot 6}{1^2 + (-1)^2 + 1^2} = -2, \quad \lambda_2^3 = -\frac{(\vec{y}_2, \vec{x}_3)}{(\vec{y}_2, \vec{y}_2)} = -\frac{(-1) \cdot 2 + 0 \cdot 2 + 1 \cdot 6}{(-1)^2 + 0^2 + 1^2} = -2.$$

Тогда

$$\vec{y}_3 = \vec{x}_3 + \lambda_1^3 \vec{y}_1 + \lambda_2^3 \vec{y}_2 = (2;2;6) - 2 \cdot (1;-1;1) - 2 \cdot (-1;0;1) = (2;4;2).$$

2. По ортогональному базису $\vec{y}_1, \vec{y}_2, \vec{y}_3$ построим ортонормированный базис $\vec{e}_1, \vec{e}_2, \vec{e}_3$.

Нормируя векторы
$$\vec{y}_1, \vec{y}_2, \vec{y}_3$$
, получим

$$\vec{e}_{1} = \frac{\vec{y}_{1}}{\|y_{1}\|} = \frac{(1;-1;1)}{\sqrt{1^{2} + (-1)^{2} + 1^{2}}} = \left(\frac{1}{\sqrt{3}}; -\frac{1}{\sqrt{3}}; \frac{1}{\sqrt{3}}\right), \ \vec{e}_{2} = \frac{\vec{y}_{2}}{\|y_{2}\|} = \frac{(-1;0;1)}{\sqrt{(-1)^{2} + 0^{2} + 1^{2}}} = \left(-\frac{1}{\sqrt{2}};0; \frac{1}{\sqrt{2}}\right),$$

$$\vec{e}_{3} = \frac{\vec{y}_{3}}{\|y_{3}\|} = \frac{(2;4;2)}{\sqrt{2^{2} + 4^{2} + 4^{2}}} = \left(\frac{1}{\sqrt{6}}; \frac{2}{\sqrt{6}}; \frac{1}{\sqrt{6}}\right).$$

Задание 4. В пространстве R^3 задан базис. Постройте по данному базису ортонормированный базис.

4.1.
$$\vec{x}_1 = (1;2;3), \vec{x}_2 = (0;3;-2), \vec{x}_3 = (0;1;-1);$$
 4.2. $\vec{x}_1 = (1;2;3), \vec{x}_2 = (0;2;0), \vec{x}_3 = (0;0;3);$

4.3.
$$\vec{x}_1 = (1;-1;1), \vec{x}_2 = (0;1;1), \vec{x}_3 = (-2;1;3).$$

Ответ: 2.1.
$$\vec{e}_1 \left(\frac{1}{\sqrt{14}}; \frac{2}{\sqrt{14}}; \frac{3}{\sqrt{14}} \right), \ \vec{e}_2 \left(0; \frac{3}{\sqrt{13}}; -\frac{2}{\sqrt{13}} \right) \vec{e}_3 \left(\frac{13}{\sqrt{182}}; -\frac{2}{\sqrt{182}}; -\frac{3}{\sqrt{182}} \right);$$

2.2.
$$\vec{e}_1 \left(\frac{1}{\sqrt{14}}; \frac{2}{\sqrt{14}}; \frac{3}{\sqrt{14}} \right), \ \vec{e}_2 \left(-\frac{1}{\sqrt{35}}; \frac{5}{\sqrt{35}}; -\frac{3}{\sqrt{35}} \right) \vec{e}_3 \left(-\frac{3}{\sqrt{10}}; 0; \frac{1}{\sqrt{10}} \right);$$

2.3.
$$\vec{e}_1 \left(\frac{1}{\sqrt{3}}; -\frac{1}{\sqrt{3}}; \frac{1}{\sqrt{3}} \right), \ \vec{e}_2 \left(0; \frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}} \right) \vec{e}_3 \left(-\frac{2}{\sqrt{6}}; -\frac{1}{\sqrt{6}}; \frac{1}{\sqrt{6}} \right).$$