Algebraie Cycles
Sashe Beilinson.

$$X/C$$
 smooth projective

i $Z_{i}(X) \longrightarrow CH_{i}(X)$

S A' Eyeles mod rational equiv.

 $(H_{i}(X) \longrightarrow H_{21}(X; Z))$

· dim
$$X = 1$$
 CH. $(X) \xrightarrow{deg} Z$

$$H_{i}(X;\mathcal{C}) \longrightarrow \mathcal{N}'(X)^{*} \longrightarrow \mathcal{J}(X)$$
 $H_{i}(X;\mathcal{Z})$
 $H_{i}(X;\mathcal{Z})$
 $H_{i}(X;\mathcal{Z})$

CH(x)
$$\frac{\log_{20}}{\sqrt{2}}$$
 $\int_{Y} \varepsilon n'(x)^{*}$

Then din X=2, $H^{o}(X)$, $\Lambda^{2}(X)$ $\neq 0$. Then the Albi keened is not thin'al.

Pt (S. Bloch)

Lemma 1. implies that to every \mathbb{Z} and open $\phi \neq U \subset X$, the map $H^{\phi}(X \times X; \Omega) \longrightarrow H^{\phi}(U \times U)$ sends [6] to a nonzero class.

If $[G] = [Li \otimes A^{k}]$ $H^{2}(X) \otimes H^{2}(X) \longrightarrow H^{2}(U) \otimes H^{2}(U)$

 $\begin{array}{c} CCX \\ CHo(C) \xrightarrow{deg=0} (Ho(X) \xrightarrow{deg=0} Alb(X) \\ (Reformulation of Mutard's Ham) \\ For any came <math>CCX$, the map $CHo(C) \longrightarrow CHo(X)$ is $\underbrace{NoT} surjective. \end{array}$

Lema 2 (CX is any (une s.t. $(Ho(C) \rightarrow CHo(X))$ is surjective, then for a suff. small Eas. open $U \subset X$, the image of (O) in $H^{4}((X\backslash C)XU)$ is O.

Pt. - Spreading".

Is there a "-linear structure" on the coh. of an alg. can that determines the CH.(X)?

Dava 3

A drewy picture what "linear structure" moons:

alg. car.

We look for a topological space M s.t. to every X, there corresponds a fibration X

We also want a base point preM and an identification

Xy =>> X top.

XK (Ho(XK) dayo =>> A(b(X)(K)

Number field

[X X is an abel. town. for humber field

a, b e X [a+b]-[a]-[b]+[o] is rat. equil. to o.