Foundations of Neural Networks

September 28, 2025

Contents

1 Artificial Neuron Model (Perceptron)

The perceptron is the simplest artificial neuron. It computes a linear combination of inputs and passes the result through a step function to obtain a binary output. Formally, for input vector $\mathbf{x} = [x_1, \dots, x_d]^\top$, weight vector $\mathbf{w} = [w_1, \dots, w_d]^\top$, and bias b, the perceptron output is

$$y = \operatorname{sign}\left(\mathbf{w}^{\top}\mathbf{x} + b\right),\tag{1}$$

where sign(z) = 1 if $z \ge 0$ and -1 otherwise. The hyperplane $\mathbf{w}^{\top}\mathbf{x} + b = 0$ partitions the input space into two classes.

1.1 Learning Rule

The classic perceptron learning algorithm performs stochastic gradient descent on the hinge-like loss by updating weights when a mistake occurs on a labeled example (\mathbf{x}, t) with $t \in \{-1, 1\}$. The update reads

$$\mathbf{w} \leftarrow \mathbf{w} + \eta t \mathbf{x}, \quad b \leftarrow b + \eta t,$$
 (2)

with learning rate $\eta > 0$. The update encourages the decision boundary to move toward correctly classifying the mispredicted point. Convergence is guaranteed if the data are linearly separable.

1.2 Geometric Intuition

Figure ?? illustrates the perceptron decision boundary and the signed distances of points from the separating hyperplane.

Figure 1: Perceptron decision boundary separating two classes with margin intuition.

2 Multilayer Perceptron (MLP) and Forward Propagation

An MLP stacks layers of perceptrons with differentiable activation functions, enabling the model to approximate complex nonlinear mappings. Given an L-layer MLP, the computation proceeds layer by layer:

$$\mathbf{a}^{(1)} = \mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)}, \qquad \qquad \mathbf{h}^{(1)} = \phi^{(1)}(\mathbf{a}^{(1)}), \qquad (3)$$

$$\mathbf{a}^{(\ell)} = \mathbf{W}^{(\ell)} \mathbf{h}^{(\ell-1)} + \mathbf{b}^{(\ell)}, \qquad \qquad \mathbf{h}^{(\ell)} = \phi^{(\ell)} (\mathbf{a}^{(\ell)}), \tag{4}$$

$$\hat{\mathbf{y}} = \mathbf{h}^{(L)},\tag{5}$$

where $\phi^{(\ell)}$ denotes the element-wise activation of layer ℓ .

2.1 Forward Propagation Algorithm

Forward propagation evaluates the network efficiently by reusing intermediate results.

Listing 1: Forward pass for a dense MLP.

```
import numpy as np

def forward_pass(weights, biases, activations, x):
    h = x
    for W, b, act in zip(weights, biases, activations):
        a = W @ h + b
        h = act(a)
    return h
```

2.2 Expressive Power

The universal approximation theorem states that a feedforward network with a single hidden layer containing a finite number of neurons can approximate any continuous function on compact subsets of \mathbb{R}^n given appropriate activation functions. Deeper networks reduce the number of neurons required by reusing intermediate abstractions.

Figure 2: Forward propagation through an MLP with highlighted linear maps and activations.

3 Activation Functions

Activation functions inject nonlinearity, enabling neural networks to model complex relationships. Figure ?? compares several common activations.

3.1 Sigmoid

The logistic sigmoid maps real numbers to (0,1):

$$\sigma(z) = \frac{1}{1 + e^{-z}}, \quad \sigma'(z) = \sigma(z)(1 - \sigma(z)). \tag{6}$$

It saturates for large |z|, which can slow training.

3.2 Hyperbolic Tangent

The tanh activation rescales the sigmoid to (-1,1) and is zero-centered:

$$\tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}, \quad \frac{d}{dz} \tanh(z) = 1 - \tanh^2(z).$$
 (7)

3.3 Rectified Linear Unit (ReLU)

ReLU is defined as

$$ReLU(z) = max(0, z), \quad ReLU'(z) = \begin{cases} 1, & z > 0, \\ 0, & z < 0. \end{cases}$$
 (8)

It accelerates convergence but suffers from "dead" neurons when z < 0 persistently.

3.4 Leaky ReLU

Leaky ReLU mitigates dead neurons by allowing a small slope for negative inputs:

LeakyReLU(z) =
$$\begin{cases} z, & z \ge 0, \\ \alpha z, & z < 0, \end{cases}$$
 (9)

with $\alpha \approx 0.01$.

3.5 Gaussian Error Linear Unit (GELU)

GELU weights inputs by their magnitude and probability under a standard Gaussian:

GELU(z) =
$$z\Phi(z) = \frac{z}{2} \left[1 + \operatorname{erf}\left(\frac{z}{\sqrt{2}}\right) \right],$$
 (10)

where Φ is the Gaussian cumulative distribution function and erf is the error function. GELU maintains smooth derivatives, facilitating optimization in transformer architectures.

Figure 3: Comparison of common activation functions.

4 Loss Functions

Loss functions quantify the discrepancy between predictions and targets, guiding gradient-based optimization.

4.1 Mean Squared Error (MSE)

For regression with targets t_i and predictions \hat{y}_i , the MSE is

$$\mathcal{L}_{MSE} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - t_i)^2.$$
 (11)

The gradient with respect to \hat{y}_i is $\frac{2}{N}(\hat{y}_i - t_i)$.

4.2 Cross-Entropy Loss

For binary classification with targets $t_i \in \{0, 1\}$ and predicted probabilities p_i , the binary cross-entropy loss reads

$$\mathcal{L}_{BCE} = -\frac{1}{N} \sum_{i=1}^{N} \left[t_i \log p_i + (1 - t_i) \log(1 - p_i) \right].$$
 (12)

When combined with the logistic sigmoid, this loss aligns the gradient with the negative log-likelihood of a Bernoulli distribution.

For multi-class classification with softmax outputs $p_{i,k}$ over classes k, the categorical cross-entropy is

$$\mathcal{L}_{CE} = -\frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{K} t_{i,k} \log p_{i,k},$$
(13)

where $t_{i,k}$ is the one-hot target.

4.3 Huber Loss

The Huber loss interpolates between L1 and L2 losses, offering robustness to outliers while retaining differentiability at the origin:

$$\mathcal{L}_{\delta}(r) = \begin{cases} \frac{1}{2}r^2, & |r| \leq \delta, \\ \delta(|r| - \frac{1}{2}\delta), & |r| > \delta, \end{cases}$$

$$\tag{14}$$

where $r = \hat{y} - t$ and δ controls the transition point.

Figure 4: Shapes of MSE, cross-entropy (binary log-loss), and Huber losses.

5 Practical Considerations

- Initialization: Proper weight initialization (e.g., Xavier or He) prevents activations from vanishing or exploding.
- Normalization: Batch or layer normalization stabilizes training by controlling activation statistics.

- Optimization: Adaptive optimizers (Adam, RMSprop) adjust learning rates per parameter.
- Regularization: Techniques such as dropout, weight decay, or early stopping combat overfitting.