Intercepts of the Quadratic

 $\triangle = \sqrt{b^2 - 4ac}$

Casel: $\Delta > 0$ $j_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a} \text{ computes the } j - \text{intercepts of multiplicity 1.}$ u(0) = c computes the single u - intercept.

Given a quadratic $u(j) = a j^2 + b j + c$ compute its discriminant \triangle :

Example 1.

$$u(j) = -3j^{2} + 14j + 24 \text{ compute its discriminant } \triangle:$$

$$\triangle=484>0$$
 $j_{1,2}=-rac{4}{3}$,6 $u\left(0\right)=24$ u-intercept.

-300

-400

-500

Case2:
$$\Delta=0$$

$$j_{1,2}=\frac{-b\pm\sqrt{b^2-4\,ac}}{2a}=\frac{-b\pm0}{2a}=\frac{-b}{2a} \text{ single } j\text{-intercept of multiplicity } 2.$$
Example 2.
$$u(j)=3\ j^2+42\ j+147 \text{ compute its discriminant } \Delta:$$

$$\Delta=0$$

$$j_{1,2}=-7,-7$$

$$u(0)=147\ u\text{-intercept.}$$

u(0)=-490 u-intercept.

 $u(j) = -9j^2 + 126j - 490$ compute its discriminant \triangle :

However there is a u-intercept.

Example 3.

 $\triangle = -1764 < 0$