IPEIO - Probabilidades e Estatística

Ano Lectivo 2017/18

1º Teste - 4 de abril de 2018 Duração: 1h15 horas

Resolução abreviada do 1º Teste

Versão 1

1.	Admita que A , B e C são	acontecimentos de um espac	ço de acontecimentos (Ω, \mathcal{F})	e que:
	$P\left(A\right)=0.2,P\left(B\right)=0.4,$	$P\left(A B\right) =0.3,P\left(A\cap C\right) =$	0.1 e os acontecimentos A ϵ	e C são independentes.

(a) V F P(C) = 0.3(0.3)

(b) V F P(B|A) = 0.6(0.3)

(c) V F P (A - C) = 0.1(0.3)

 $(E) \quad 0.1 = P(A \cap C) = P(A)P(C) = 0.2P(C) \Leftrightarrow P(C) = 1/2 = 0.5$

 $\boxed{\mathbb{V}} \ P\left(B|A\right) = \frac{P\left(B\cap A\right)}{P(A)} = \frac{P\left(A|B\right)P(B)}{P(A)} = 0.6$

 $\boxed{\mathbb{V}} P(A-C) = P(A) - P(A \cap C) = 0.1$

- 2. Numa determinada empresa de I&D, 60% dos seus colaboradores foram formados na FCT-NOVA. Sabe-se que quando um projecto é entregue a um colaborador formado na FCT-NOVA a probabilidade de ser concluido com sucesso é de 90%, já quando é entregue a um qualquer outro colaborador essa probabilidade
- (0.3)(a) Qual a probabilidade de um projecto ser concretizado com sucesso e por um colaborador formado na FCT-NOVA?

A 0.70

B 0.90

C 0.28

D 0.54

E Nenhuma das anteriores

(0.3)(b) Tendo sido distribuido de forma aleatória um novo projecto por entre os colaboradores da empresa, qual a probabilidade deste ser concretizado com sucesso?

A 0.82

B 0.90

C 0.62

D 0.78

E | Nenhuma das anteriores

(0.3)(c) Se um projecto tiver sido concluido com sucesso, qual a probabilidade de ter sido realizado por um colaborador formado na FCT-NOVA?

A 14/41

B 27/41

C 14/82

D 27/82

E Nenhuma das anteriores

(d) Se a empresa tiver um total de 100 colaboradores e 10 forem selecionados de forma aleatória para for-(0.3)marem uma equipa, o número de colaboradores formados na FCT-NOVA que participam nessa equipa é uma variável aleatória com distribuição:

E Nenhuma das anteriores

Considerem-se os acontecimentos: F-"colaborador formado na FCT" e S-"projecto concluído com sucesso". Informação:

• $P(F) = 0.6 \Rightarrow P(\overline{F}) = 0.4$

• P(S|F) = 0.9

• $P(S|\overline{F}) = 0.7$

 $P(S \cap F) = P(S|F) P(F) = 0.9 \times 0.6 = 0.54$

 \triangle $P(S) = P(S|F)P(F) + P(S|\overline{F})P(\overline{F}) = 0.82$

C Número de colaboradores formados na FCT numa amostra de dimensão 10, extraída sem reposição de uma população de dimensão 100 e onde 60 elementos têm a característica de interesse (ser formado na FCT) é uma v.a. com distribuição H(100, 60, 10).

	3. Considere a	seguinte fund		$\sigma(x) = \begin{cases} \frac{a}{b}, & x \in [0, x] \\ 0, & x \notin [0, x] \end{cases}$	[a,b]	
(0.4)	 (a)					
(0.4)	i. A $P(X \le 1)$ é:					
		$\boxed{\mathtt{A}}\ 1/5$	B 1/4	C 1/3	D 1/2	E Nenhuma das anteriores
(0.4)	ii. S	Sabendo que $\it H$	$E[X^2] = 4/3$, a var	iância de X é:		
		A 1/5	B 1/4	C 1/3	D 1/2	E Nenhuma das anteriores
	\overline{V} Com $a =$	= b = 1 temos	s que $\forall x \in \mathbb{R}, g(x)$	$\geq 0 \in \int_{-\infty}^{\infty} g(x)dx =$	$= \int_0^1 1 dx = 1, \log 0$	função densidade.
D Com $a = 1, b = 2$ temos que: $P(X \le 1) = \int_{-\infty}^{1} f(x)dx = \int_{0}^{1} 1/2dx = 1/2.$						
		$= E(X^2) - (I^2) = 4/3 - 1 = 0$		$X) = \int_{-\infty}^{\infty} x f(x) dx$	$x = \int_0^2 x/2dx =$	$1 e E(X^2) = 4/3 \text{ teremos}$
				recem no horário de dio de 2 por hora:	atendimento docer	nte é uma variável aleatória
(0.4) (a) A probabilidade de numa hora de atendimento docente não comparecer nenhum				nhum aluno é:		
	$oxedsymbol{A}$	-1	$lacksquare$ B e^{-2}	$\boxed{\mathbf{C}} e^{-3}$	\fbox{D} e^{-4}	E Nenhuma das anteriores
(0.4)	4) (b) Em duas horas, o número esperado de alunos a comparecerem ao atendimento docente é:					nto docente é:
	A 1		B 2	C 3	D 4	E Nenhuma das anteriores
(0.3) (c) A probabilidade, do tempo entre chegadas consecutivas de alunos a a 1 hora é:			e alunos ao horário	de atendimento, ser inferior		
	A	$\int_0^1 2e^{-2x} dx$	$\boxed{\mathbf{B}} \int_0^1 \frac{e^{-\frac{x}{2}}}{2} dx$	$\boxed{\mathbf{C}} \int_0^1 \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx$	$\boxed{\mathrm{D}} \int_{-\infty}^{1} \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx$	E Nenhuma das anteriores
	$oxed{\mathbb{B}}$ Seja X de Po	o número de a isson de valor	alunos que compar médio 2 , então X	ecem no atendimen $\lambda \sim P(2)$ pois $\lambda = E$	to docente por hora $C(X) = 2$. Assim, $F(X) = 2$.	a. Como X tem distribuição $C(X=0)=\frac{e^{-2}.2^0}{0!}=e^{-2}$
	D Se o nú	mero de alun	os que comparecei		locente por hora é	P(2), então em duas horas
	lacktriangle Se o número de alunos que comparecem no atendimento docente por hora é $P(2)$, então o tempo entre					
	chegae	das de alunos	é uma v.a. Y com	distribuição $Exp(2)$, logo $P(Y \le 1) =$	$\int_{-\infty}^{1} f(x)dx = \int_{0}^{1} 2e^{-2x} dx.$
	-	_		no resolver o 1ºtes minutos e desvio p		a variável aleatória X com os.

- (a) Calcule a probabilidade de um aluno terminar o teste em menos de 50 minutos. (0.4)
- (0.4)(b) Calcule o tempo t, após o qual apenas 2.5% dos alunos ainda não terminaram o teste.
- (c) Calcule a probabilidade de a média dos tempos de resolução do teste de 10 alunos ser superior a 60 (0.4)minutos.

(d) Suponha agora, que o tempo que cada teste leva a ser corrigido segue uma distribuição exponencial (0.4)de valor médio 15 minutos. Calcule a probabilidade aproximada do docente precisar de mais de 1600 minutos para corrigir um total de 100 testes.

(a) Recorde-se que se
$$X \sim N(\mu, \sigma^2) \Rightarrow Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$
, queremos:
$$P(X < 50) = P\left(\frac{X - 60}{5} \le \frac{50 - 60}{5}\right) = P\left(Z \le \frac{-10}{5}\right) = \Phi(-2) = 1 - \Phi(2) = 1 - 0.9772 = 0.0228$$

(b) Queremos determinar
$$t$$
 tal que: $P(X > t) = 0.025 \Leftrightarrow 1 - P(X \le t) = 0.025 \Leftrightarrow P\left(\frac{X - 60}{5} \le \frac{t - 60}{5}\right) = 0.975 \Leftrightarrow \Phi\left(\frac{t - 60}{5}\right) = 0.975 \Leftrightarrow \frac{t - 60}{5} = 1.96 \Leftrightarrow t = 60 + 5 \times 1.96 = 69.8$

- (c) Com $X_i \sim N(60,5^2)$ o tempo de resolução do aluno $i,\ i=1,2,...,10$, podemos definir $\overline{X}_{10} = \frac{\sum_{i=1}^{10} X_i}{10}$ como sendo a média dos tempos de resolução dos 10 alunos. Queremos $P(\overline{X}_{10} > 60)$, mas como \overline{X}_{10} é uma combinação linear de v.a. com distribuição normal e independentes, então $\overline{X}_{10} \sim N\left(E(\overline{X}_{10}), V(\overline{X}_{10})\right)$ com $E(\overline{X}_{10}) = 60$ e $V(\overline{X}_{10}) = 25/10$. Teremos, $P(\overline{X}_{10} > 60) = 1 P(\overline{X}_{10} \le 60) = 1 P\left(\frac{\overline{X}_{10} 60}{\sqrt{2.5}} \le \frac{60 60}{\sqrt{2.5}}\right) = 1 \Phi(0) = 0.5$
- (d) Seja Y o tempo que um qualquer teste demora a ser corrigido, então Y tem distribuição Exponencial com E(Y)=15 mas também se sabe que $V(Y)=15^2$.

 Designe-se por Y_i o tempo de correção do i-ésimo teste, com i=1,...,100, e por S_{100} o tempo de correção do total dos 100 testes.

Temos que $\forall i = 1, ..., 100, E(Y_i) = 15$ e $V(Y_i) = 15^2$, mas como estamos nas condições do teorema limite central (v.a. i.i.d e n = 100 > 30), então temos que

$$Z = \frac{S_{100} - 100 \times 15}{\sqrt{100} \times 15} = \frac{S_{100} - 1500}{150} \stackrel{a}{\sim} N(0, 1)$$

pelo que

$$P(S_{100} > 1600) = 1 - P\left(\frac{S_{100} - 1500}{150} \le \frac{1600 - 1500}{150}\right) = 1 - P(Z \le 100/150) \approx 1 - \Phi(2/3) = 0.2514$$

Ano Lectivo 2017/18

 $1^{\rm o}$ Teste - 4 de abril de 2018 Duração: 1h15 horas

Resolução abreviada do 1º Teste

Versão 2

1. Admita que $A, B \in C$ são acontecimentos de um espaço de acontecimentos (Ω, \mathcal{F}) e que:

	P(A)	A(A) = 0.4, P(B) = 0	0.4, $P(A B) = 0.3$,	$P(A \cap C) = 0.1 \text{ e os}$	acontecimentos A	e C são independentes.	
(0.3) (0.3)	, ,	$ \begin{array}{c c} V & F P(C) = 0 \\ \hline V & F P(B A) \end{array} $					
(0.3)	\ /	V = P(B A) $V = P(A - C)$					
		. ,	$P(A)P(C) = 0.4P(\frac{A}{A}) = \frac{P(A B)P(B)}{P(A)}$	$C) \Leftrightarrow P(C) = 1/4 = \frac{0}{1}$	= 0.25		
	F	P(A-C) = P(A)	$-P\left(A\cap C\right)=0.3$				
	Sabe	e-se que quando un	n projecto é entregu		formado na FCT-N	s na FCT-NOVA. OVA a probabilidade de ser aborador essa probabilidade	
(0.3)	(a)	Qual a probabili FCT-NOVA?	dade de um project	to ser concretizado o	com sucesso e por t	um colaborador formado na	
		A 0.70	B 0.90	C 0.28	D 0.54	E Nenhuma das anteriores	
(0.3)	(b)		buido de forma alea leste ser concretizac		cto por entre os cola	aboradores da empresa, qual	
		$\boxed{\mathtt{A}}$ 0.82	B 0.90	C 0.62	D 0.78	E Nenhuma das anteriores	
(0.3)	(c)		tiver sido concluido ado na FCT-NOVA		a probabilidade de	e ter sido realizado por um	
		$\boxed{\texttt{A}}\ 12/39$	$ \boxed{ {\tt B} } \ 27/39 $	C 12/78	D 27/78	E Nenhuma das anteriores	
(0.3)	(d)	(d) Se a empresa tiver um total de 100 colaboradores e 10 forem selecionados de forma aleatória para formarem uma equipa, o número de colaboradores formados na FCT-NOVA que participam nessa equipa é uma variável aleatória com distribuição:					
		$\boxed{\textbf{A}} \ Bin(10,0.6)$	$\boxed{\mathbf{B}} \ Bin(100, 0.6)$	$\boxed{\mathbf{C}} H(100, 60, 10)$	$\boxed{\mathbf{D}} \ H(60,40,10)$	E Nenhuma das anteriore	
	Considerem-se os acontecimentos: F -"colaborador formado na FCT"e S -"projecto concluído com sucesso". Informação:						
	•	$P(F) = 0.6 \Rightarrow P$ P(S F) = 0.9 $P(S \overline{F}) = 0.6$	$(\overline{F}) = 0.4$				
	$\boxed{\texttt{D}} \ P\left(S \cap F\right) = P\left(S F\right)P\left(F\right) = 0.9 \times 0.6 = 0.54$						
	A	$P\left(\overline{F} S\right) = \frac{P\left(\overline{F}\cap P(S)\right)}{P(S)}$	$\frac{S)}{P(S)} = \frac{P(S \overline{F}) P(\overline{F})}{P(S)}$	$(\overline{7}) = 0.24/0.78 = 12/$	/39		

C Número de colaboradores formados na FCT numa amostra de dimensão 10, extraída sem reposição de uma população de dimensão 100 e onde 60 elementos têm a característica de interesse (ser formado na

FCT) é uma v.a. com distribuição H(100, 60, 10).

	3. Considere a seguinte fu		$g\left(x\right) = \begin{cases} \frac{a}{b}, & x \in \\ 0, & x \notin \end{cases}$	[0, b] $[0, b]$		
(0.4)	 (a)					
(0.4)	i. A $P(X \le 1)$	é:				
	$\boxed{\mathtt{A}}\ 1/5$	B 1/4	C 1/3	D 1/2	E Nenhuma das anteriores	
(0.4)	ii. Sabendo que	$E[X^2] = 16/3$, a v	variância de X é:			
	$\boxed{\mathtt{A}}\ 1/3$	$\boxed{\mathtt{B}}$ 2/3	C 1	D 4/3	E Nenhuma das anteriores	
	$\boxed{\mathbb{V}}$ Com $a=b=1$ teme	os que $\forall x \in \mathbb{R}, g(x)$	$0 \ge 0 \in \int_{-\infty}^{\infty} g(x)dx$	$= \int_0^1 1 dx = 1, \log \alpha$	o função densidade.	
	lacksquare Com $a=1,b=4$ te	mos que: $P(X \le 1$	$f(x) = \int_{-\infty}^{1} f(x)dx = 0$	$\int_0^1 1/4dx = 1/4.$		
	$DV(X) = E(X^2) - V(X) = 16/3 - 4$		$(X) = \int_{-\infty}^{\infty} x f(x) dx$	$dx = \int_0^4 x/4dx = 1$	$2 e E(X^2) = 16/3 \text{ teremos}$	
	4. O número de alunos de com distribuição de Po			le atendimento doce	ente é uma variável aleatória	
(0.4)	(a) A probabilidade o	le numa hora de at	sendimento docente	não comparecer ne	nhum aluno é:	
	$lacksquare$ A e^{-1}	$\boxed{\mathtt{B}} e^{-2}$	$\boxed{\mathbf{C}} e^{-3}$	$\boxed{\mathrm{D}} e^{-4}$	E Nenhuma das anteriores	
(0.4)	(b) Em duas horas, o	número esperado	de alunos a compar	recerem ao atendime	ento docente é:	
	A 8	B 6	C 4	D 2	E Nenhuma das anteriores	
(0.3)	(c) A probabilidade, a 1 hora é:	do tempo entre che	gadas consecutivas	de alunos ao horário	de atendimento, ser inferior	
	$\boxed{\mathbf{A}} \int_0^1 2e^{-2x} dx$	$\boxed{\mathbf{B}} \int_0^1 3e^{-3x} dx$	$\boxed{\mathbf{C}} \int_0^1 \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx$	$\boxed{\mathbf{D}} \int_{-\infty}^{1} \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx$	E Nenhuma das anteriores	
	© Seja X o número de alunos que comparecem no atendimento docente por hora. Como X tem distribuição de Poisson de valor médio 3, então $X \sim P(3)$ pois $\lambda = E(X) = 3$. Assim, $P(X = 0) = \frac{e^{-3} \cdot 3^0}{0!} = e^{-3}$					
	B Se o número de alu	nos que comparece	em no atendimento		P(3), então em duas horas	
	\blacksquare Se o número de alunos que comparecem no atendimento docente por hora é $P(3)$, então o tempo entre					
	chegadas de aluno	s é uma v.a. Y con	n distribuição $Exp(3)$	B), logo $P(Y \le 1) =$	$\int_{-\infty}^{1} f(x)dx = \int_{0}^{1} 3e^{-3x} dx.$	
	5. O tempo necessário pa distribuição normal de				na variável aleatória X com os.	
(0.4)	(a) Calcule a probabi	lidade de um aluno	o terminar o teste e	em menos de 50 min	utos.	
(0.4)	(b) Calcule o tempo					
(0.4)	(c) Calcule a probab	ilidade de a média	dos tempos de res	solução do teste de	10 alunos ser superior a 60	

(d) Suponha agora, que o tempo que cada teste leva a ser corrigido segue uma distribuição exponencial de valor médio 15 minutos. Calcule a probabilidade **aproximada** do docente precisar de mais de 1600

minutos.

minutos para corrigir um total de 100 testes.

(0.4)

(a) Recorde-se que se
$$X \sim N(\mu, \sigma^2) \Rightarrow Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$
, queremos:
$$P(X < 50) = P\left(\frac{X - 60}{5} \le \frac{50 - 60}{5}\right) = P\left(Z \le \frac{-10}{5}\right) = \Phi(-2) = 1 - \Phi(2) = 1 - 0.9772 = 0.0228$$

(b) Queremos determinar
$$t$$
 tal que: $P(X > t) = 0.025 \Leftrightarrow 1 - P(X \le t) = 0.025 \Leftrightarrow P\left(\frac{X - 60}{5} \le \frac{t - 60}{5}\right) = 0.975 \Leftrightarrow \Phi\left(\frac{t - 60}{5}\right) = 0.975 \Leftrightarrow \frac{t - 60}{5} = 1.96 \Leftrightarrow t = 60 + 5 \times 1.96 = 69.8$

- (c) Com $X_i \sim N(60,5^2)$ o tempo de resolução do aluno $i,\ i=1,2,...,10$, podemos definir $\overline{X}_{10} = \frac{\sum_{i=1}^{10} X_i}{10}$ como sendo a média dos tempos de resolução dos 10 alunos. Queremos $P(\overline{X}_{10} > 60)$, mas como \overline{X}_{10} é uma combinação linear de v.a. com distribuição normal e independentes, então $\overline{X}_{10} \sim N\left(E(\overline{X}_{10}), V(\overline{X}_{10})\right)$ com $E(\overline{X}_{10}) = 60$ e $V(\overline{X}_{10}) = 25/10$. Teremos, $P(\overline{X}_{10} > 60) = 1 P(\overline{X}_{10} \le 60) = 1 P\left(\frac{\overline{X}_{10} 60}{\sqrt{2.5}} \le \frac{60 60}{\sqrt{2.5}}\right) = 1 \Phi(0) = 0.5$
- (d) Seja Y o tempo que um qualquer teste demora a ser corrigido, então Y tem distribuição Exponencial com E(Y)=15 mas também se sabe que $V(Y)=15^2$.

 Designe-se por Y_i o tempo de correção do i-ésimo teste, com i=1,...,100, e por S_{100} o tempo de correção do total dos 100 testes.

Temos que $\forall i = 1, ..., 100, E(Y_i) = 15$ e $V(Y_i) = 15^2$, mas como estamos nas condições do teorema limite central (v.a. i.i.d e n = 100 > 30), então temos que

$$Z = \frac{S_{100} - 100 \times 15}{\sqrt{100} \times 15} = \frac{S_{100} - 1500}{150} \stackrel{a}{\sim} N(0, 1)$$

pelo que

$$P(S_{100} > 1600) = 1 - P\left(\frac{S_{100} - 1500}{150} \le \frac{1600 - 1500}{150}\right) = 1 - P(Z \le 100/150) \approx 1 - \Phi(2/3) = 0.2514$$