EMTH210 Tutorial 5: Differential Equations – Solutions

Preparation problems (homework)

1. (a) The auxiliary equation is

$$m^{2} + 6m + 5 = 0,$$

 $(m+1)(m+5) = 0 \implies m = -1, -5.$

The general solution is

$$y = c_1 e^{-x} + c_2 e^{-5x},$$
 $y(0) = 0 \implies c_1 = -c_2$
 $y' = -c_1 e^{-x} - 5c_2 e^{-5x}$ $y'(0) = 3 \implies -c_1 + 5c_1 = 3,$
 $\implies c_1 = \frac{3}{4}, c_2 = -\frac{3}{4}.$

So the solution is

$$y = \frac{3}{4}e^{-x} - \frac{3}{4}e^{-5x}.$$

(b) The auxiliary equation is

$$m^2 + 16 = 0 \implies m = \pm 4i$$
.

The general solution is

$$y = c_1 \cos 4x + c_2 \sin 4x$$
 $y(0) = 2 \implies c_1 = 2$
 $y' = -4c_1 \sin 4x + 4c_2 \cos 4x$ $y'(0) = -2 \implies c_2 = -\frac{1}{2}$.

So the solution is

$$y = 2\cos 4x - \frac{1}{2}\sin 4x.$$

(c) The auxiliary equation is

$$2m^2 - 2m + 1 = 0,$$

$$m^2 - m + \frac{1}{2} = 0$$

$$(m - \frac{1}{2})^2 + \frac{1}{4} = 0 \implies m = \frac{1}{2} \pm \frac{1}{2}i.$$

The general solution is

$$y = c_1 e^{\frac{x}{2}} \cos \frac{x}{2} + c_2 e^{\frac{x}{2}} \sin \frac{x}{2},$$

$$y(0) = -1 \implies c_1 = -1$$

$$y' = -\frac{1}{2} e^{\frac{x}{2}} \cos \frac{x}{2} + \frac{1}{2} e^{\frac{x}{2}} \sin \frac{x}{2} + \frac{1}{2} c_2 e^{\frac{x}{2}} \sin \frac{x}{2} + \frac{1}{2} c_2 e^{\frac{x}{2}} \cos \frac{x}{2}$$

$$y'(0) = 0 = -\frac{1}{2} + 0 + 0 + \frac{1}{2} c_2 \implies c_2 = 1.$$

So the solution is

$$y = -e^{\frac{x}{2}}\cos\frac{x}{2} + e^{\frac{x}{2}}\sin\frac{x}{2}.$$

2. The auxiliary equation is

$$m^2 + k^2 = 0 \implies m = \pm ki$$
.

The general solution is

$$y = c_1 \cos kx + c_2 \sin kx,$$

$$0 = y(0) = c_1$$

$$0 = y(\pi) = c_1 \sin k\pi$$

 $0 = y(\pi) = c_2 \sin k\pi.$

For nontrivial solutions $c_2 \neq 0$, so $k \in \mathbb{Z}$, and, since we only want positive values for k, k is a positive integer: $k \in \mathbb{Z}^+$.

3. (a) We follow the four rules (in your lecture notes!) to get the particular solution.

$$y'' + y = e^x \sin x$$
 Rule 1: $y_p = Ae^x \sin x$ Rule 2: no change Rule 3: $y_p = Ae^x \cos x + Be^x \sin x$ Rule 4: no change Rule 4: no change

(b)
$$y'' - y = x^{2}(e^{x} + e^{2x}) \qquad \text{Rule 1: } y_{p} = Ax^{2}e^{x} + Bx^{2}e^{2x}$$

$$\text{Rule 2:} \qquad y_{p} = (Ax^{2} + Bx + C)e^{x} + (Dx^{2} + Ex + F)e^{2x}$$

$$\text{Rule 3: no change}$$

$$y_{c} = c_{1}e^{x} + c_{2}e^{-x} \qquad \text{Rule 4:} \qquad y_{p} = (Ax^{2} + Bx + C)xe^{x} + (Dx^{2} + Ex + F)e^{2x}$$

Warning: It's okay to write $Ax^2e^x + Bx^2e^{2x}$ as $Ax^2(e^x + B_1e^{2x})$, because then $B_1 = B/A$, and we still have all the same information (for $A \neq 0$). It's not okay to write $(Ax^2 + Bx + C)e^x + (Dx^2 + Ex + F)e^{2x}$ as $(Ax^2 + Bx + C)(e^x + D_1e^{2x})$, since that would make $D_1 = D/A$, $D_1 = E/B$ and $D_1 = F/C$, and we don't know enough to say that those three ratios are equal (for this question, for example, they're not). Some information has been lost.

4. (a)
$$y'' + 4y' + 3y = 8$$

The auxiliary equation is

$$m^2 + 4m + 3 = 0,$$

 $(m+1)(m+3) = 0 \implies m = -1, -3.$

So the complementary solution is

$$y_c = c_1 e^{-x} + c_2 e^{-3x}.$$

Next we follow the four rules to get the particular solution.

Rule 1:
$$y_p = A$$

Rules 2–4: no change
$$y_p' = y_p'' = 0$$

Substituting these into the DE gives

$$3A = 8 \implies A = \frac{8}{3},$$

$$y_p = \frac{8}{3},$$

$$\therefore y = y_c + y_p = c_1 e^{-x} + c_2 e^{-3x} + \frac{8}{3}.$$

This is a general solution. If we had initial or boundary conditions we could find out what c_1 and c_2 are for some specific situation.

(b)
$$y'' + y = 45xe^{2x}$$

$$aux. eq. is m^{2} + 1 = 0 \implies m = \pm i$$

$$y_{c} = c_{1}\cos x + c_{2}\sin x$$

$$Rule 1: y_{p} = Axe^{2x}$$

$$Rule 2: y_{p} = (Ax + B)e^{2x}$$

$$Rules 3-4: no change$$

$$y'_{p} = Ae^{2x} + 2(Ax + B)e^{2x}$$

$$y''_{p} = 2Ae^{2x} + 2Ae^{2x} + 4(Ax + B)e^{2x}$$

$$= 4Axe^{2x} + 4(A + B)e^{2x}$$

$$45xe^{2x} = y''_{p} + y_{p} = 4Axe^{2x} + 4(A + B)e^{2x} + (Ax + B)e^{2x}$$

$$= 5Axe^{2x} + (4A + 5B)e^{2x}$$

$$xe^{2x} \text{ terms:} 45 = 5A \implies A = 9$$

$$e^{2x} \text{ terms:} 45 = 5A \implies B = -\frac{4A}{5} = -\frac{36}{5}$$

$$\therefore y = y_{c} + y_{p} = c_{1}\cos x + c_{2}\sin x + \left(9x - \frac{36}{5}\right)e^{2x}$$
(c)
$$y'' - 4y' = 8x + 6$$

$$aux. eq. is m^{2} - 4m = 0 \implies m = 0, 4$$

$$y_{c} = c_{1} + c_{2}e^{4x}$$

$$Rule 1: y_{p} = Ax + B$$

$$Rules 2-3: no change$$

$$Rule 4: y_{p} = Ax^{2} + Bx$$

$$y'_{p} = 2Ax + B$$

$$y''_{p} = 2A$$

$$8x + 6 = y''_{p} - 4y'_{p} = 2A - 4(2Ax + B)$$

$$= -8Ax + (2A - 4B)$$

$$x \text{ terms:} 8 = -8A \implies A = -1$$

$$constant terms: 6 = 2A - 4B \implies B = \frac{6-2A}{-4} = \frac{8}{-4} = -2$$

$$\therefore y = y_{c} + y_{p} = c_{1} + c_{2}e^{4x} - x^{2} - 2x$$

Problems for the tutorial

5. (a) The auxiliary equation is

$$m^2 - 2m + 1 = 0,$$

 $(m-1)^2 = 0 \implies m = 1.$

The general solution is

$$y = c_1 e^x + c_2 x e^x,$$

 $1 = y(0) = c_1$
 $1 = y(1) = e + c_2 e \implies c_2 = \frac{1 - e}{e} = e^{-1} - 1.$

So the solution is

$$y = e^x + (e^{-1} - 1)xe^x.$$

(b) The auxiliary equation is

$$m^2 + \pi^2 = 0 \implies m = \pm \pi i.$$

The general solution is

$$\begin{split} y &= c_1 \cos \pi x + c_2 \sin \pi x, \\ 1 &= y(0) = c_1 \\ 0 &= y(1) = \cos \pi + c_2 \sin \pi = -1 + 0 \implies \text{contradiction, no solutions exist.} \end{split}$$

(c) The auxiliary equation is

$$m^2 - 2m + 2 = 0,$$

 $(m-1)^2 + 1 = 0 \implies m = 1 \pm i.$

The general solution is

$$y = e^x(c_1 \cos x + c_2 \sin x),$$

$$0 = y(0) = c_1$$

$$0 = y(\pi) = e^{\pi}(0) \implies \text{no new information, so no restriction on } c_2.$$

So the solution is $y = c_2 e^x \sin x$, for any $c_2 \in \mathbb{R}$.

6. (a) $4y'' - 4y' + y = 12 + 8e^{\frac{x}{2}}$ $aux. \text{ eq. is } 4m^2 - 4m + 1 = 0$ $m^2 - m + \frac{1}{4} = 0$ $\left(m - \frac{1}{2}\right)^2 = 0 \implies m = \frac{1}{2}$ $y_c = c_1 e^{\frac{x}{2}} + c_2 x e^{\frac{x}{2}}$ $\text{Rule 1: } y_p = A + Be^{\frac{x}{2}}$ Rules 2-3: no change $\text{Rule 4: } y_p = A + Bx^2 e^{\frac{x}{2}}$ $y'_p = 2Bxe^{\frac{x}{2}} + \frac{1}{2}Bx^2 e^{\frac{x}{2}}$ $y''_p = 2Be^{\frac{x}{2}} + Bxe^{\frac{x}{2}} + Bxe^{\frac{x}{2}} + \frac{1}{4}Bx^2 e^{\frac{x}{2}}$ $= 2Be^{\frac{x}{2}} + 2Bxe^{\frac{x}{2}} + \frac{1}{4}Bx^2 e^{\frac{x}{2}}$

$$=8Be^{\frac{5}{2}}+A$$

$$constant terms: 12 = A$$

$$e^{\frac{5}{2}} terms: 8 = 8B \implies B = 1$$

$$\therefore y = y_c + y_p = c_1e^{\frac{5}{2}} + c_2xe^{\frac{5}{2}} + 12 + x^2e^{\frac{5}{2}}$$

$$= (c_1 + c_2x + x^2)e^{\frac{5}{2}} + 12$$
(b)
$$y''' + 4y' = 8 + 3 \sin x$$

$$aux. eq. is $m^3 + 4m = 0$

$$m(m^2 + 4) = 0 \implies m = 0, \pm 2i$$

$$y_e = c_1 + c_2 \cos 2x + c_3 \sin 2x$$

$$Rule 1: y_p = A + B \sin x$$

$$Rule 2: no change$$

$$Rule 3: y_p = A + B \cos x + C \sin x$$

$$Rule 4: y_p = Ax + B \cos x + C \sin x$$

$$y''_p = A - B \sin x + C \cos x$$

$$y''_p = B \sin x - C \cos x$$

$$y''_p = B \sin x - C \cos x + 4A - 4B \sin x + 4C \cos x$$

$$= 4A - 3B \sin x + 3C \cos x$$

$$constant terms: 8 = 4A \implies A = 2$$

$$\sin x terms: 3 = -3B \implies B = -1$$

$$\cos x terms: 0 = 3C \implies C = 0$$

$$\therefore y = y_c + y_p = c_1 + c_2 \cos 2x + c_3 \sin 2x + 2x - \cos x$$
(c)
$$y'' + 4y = 3 \sin 2x$$

$$Rule 1: y_p = A \sin 2x$$

$$Rule 2: no change$$

$$Rule 3: y_p = A \cos 2x + B \sin 2x$$

$$Rule 4: y_p = Ax \cos 2x + B \sin 2x$$

$$Rule 4: y_p = Ax \cos 2x + B \sin 2x$$

$$Rule 4: y_p = Ax \cos 2x + B \sin 2x$$

$$Rule 4: y_p = A \cos 2x + B \sin 2x$$

$$Rule 4: y_p = A \cos 2x + B \sin 2x$$

$$Ax \cos 2x + B \cos 2x + B \sin 2x$$

$$Ax \cos 2x + B \cos 2x$$$$

 $12 + 8e^{\frac{x}{2}} = 4y_n'' - 4y_n' + y = 8Be^{\frac{x}{2}} + 8Bxe^{\frac{x}{2}} + Bx^2e^{\frac{x}{2}} - 8Bxe^{\frac{x}{2}} - 2Bx^2e^{\frac{x}{2}} + A + Bx^2e^{\frac{x}{2}}$

7. (a)
$$y' - 2y = x^{2}e^{2x} \sin x \qquad \text{Rule 1: } y_{p} = Ax^{2}e^{2x} \sin x$$
 aux. eq. is $m - 2 = 0$
$$m = 2 \qquad \qquad \text{Rule 2: } y_{p} = (Ax^{2} + Bx + C)e^{2x} \sin x$$
 Rule 3: $y_{p} = (Ax^{2} + Bx + C)e^{2x} \cos x + (Dx^{2} + Ex + F)e^{2x} \sin x$ Rule 4: no change

(b)
$$y''' - y = e^{x}$$
 Rule 1: $y_p = Ae^{x}$ Rule 2: no change
$$m_1 = 1, m_2 = e^{\frac{2\pi}{3}i}, m_3 = e^{-\frac{2\pi}{3}i}$$
 Rule 3: no change
$$m_1 = 1, m_2 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i, m_3 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$
 Rule 4: $y_p = Axe^{x}$ Rule 4: $y_p = Axe^{x}$ Rule 4: $y_p = Axe^{x}$

If you haven't met complex roots before, here's what's going on. $m = re^{\theta i}$ for some r and θ , and $m^3 = 1 = 1e^{0i} = 1e^{(0+k2\pi)i}$ for any $k \in \mathbb{Z}$ (since going around any whole number of revolutions $(k2\pi)$ means you stay in the same place). Then,

$$m^{3} = (re^{\theta i})^{3} = 1 = 1e^{(0+k2\pi)i}$$

$$m = re^{\theta i} = \left(1e^{(0+k2\pi)i}\right)^{\frac{1}{3}}$$

$$= 1e^{\left(0+k\frac{2\pi}{3}\right)i}$$

$$\implies r = 1, \qquad \theta = k\frac{2\pi}{3}.$$

The simplest choices for k are $k=0,\pm 1$, so $\theta=0,\pm \frac{2\pi}{3}$. (Other choices of k will just give you the same 3 roots.)

8. The differential equation is

$$mx'' + kx = f_0 \cos \omega t$$
.

We can't use m in the auxiliary equation since it's already used in the DE, so let's use r. We have

$$mr^2 + k = 0,$$

 $\implies r = \pm \sqrt{\frac{k}{m}}i.$

So the complementary solution is

$$x_c = c_1 \cos \omega t + c_2 \sin \omega t.$$

Next we follow the four rules to get the particular solution.

Rules 1–2: $x_p = B \cos \omega t$.

Rule 3: $x_p = A \sin \omega t + B \cos \omega t$.

Rule 4: $x_p = t(A\sin\omega t + B\cos\omega t)$.

 $x_p' = \omega t (A\cos\omega t - B\sin\omega t) + A\sin\omega t + B\cos\omega t = (A\omega t + B)\cos\omega t + (A - B\omega t)\sin\omega t.$

 $x_p'' = A\omega\cos\omega t - \omega(A\omega t + B)\sin\omega t + \omega(A - B\omega t)\cos\omega t - B\omega\sin\omega t$

 $= (2A\omega - B\omega^2 t)\cos\omega t - (A\omega^2 t + 2B\omega)\sin\omega t.$

Substituting these into the DE gives

$$m[(2A\omega - B\omega^2 t)\cos\omega t - (A\omega^2 t + 2B\omega)\sin\omega t] + kt(A\sin\omega t + B\cos\omega t) = f_0\cos\omega t,$$

$$\implies 2Am\omega = f_0, \quad 2Bm\omega = 0$$
(you may also check that $\omega^2 = \frac{k}{m}$ implies that the other coefficients are zero)
$$\implies A = \frac{f_0}{2m\omega}, \quad B = 0.$$

$$\therefore x = x_c + x_p = c_1\cos\omega t + c_2\sin\omega t + \frac{f_0}{2m\omega}t\sin\omega t.$$

This is a general solution. If we had initial or boundary conditions we could find out what c_1 and c_2 are for some specific situation.

9. With the given values of L, R, C, and E(t), the differential equation becomes

$$Q'' + 40Q' + 625Q = 100 \cos 10t$$
aux. eq. is $m^2 + 40m + 625 = 0 \implies m = -20 \pm 15i$

$$\therefore \qquad Q_c = e^{-20t}(c_1 \cos 15t + c_2 \sin 15t)$$
Rules 1-2: $Q_p = A \cos 10t$
Rules 3-4: $Q_p = A \cos 10t + B \sin 10t$

$$Q'_p = -10A \sin 10t + 10B \cos 10t$$

$$Q''_p = -100A \cos 10t - 100B \sin 10t$$

$$100 \cos 10t = Q'' + 40Q' + 625Q$$

$$= -100A \cos 10t - 100B \sin 10t + 40(-10A \sin 10t + 10B \cos 10t)$$

$$+ 625(A \cos 10t + B \sin 10t)$$

$$= (525A + 400B) \cos 10t + (525B - 400A) \sin 10t$$
Comparing $\cos 10t$ terms: $525A + 400B = 100$

$$\sin 10t \text{ terms: } 525B - 400A = 0$$

$$\therefore A = \frac{84}{697}, B = \frac{64}{697} \implies Q_p = \frac{1}{697}(84 \cos 10t + 64 \sin 10t),$$

and the general solution is

$$Q = Q_c + Q_p = e^{-20t}(c_1 \cos 15t + c_2 \sin 15t) + \frac{1}{697}(84 \cos 10t + 64 \sin 10t).$$

The boundary conditions

$$Q(0) = 0 \implies Q(0) = c_1 + \frac{84}{697} = 0 \implies c_1 = -\frac{84}{697},$$

$$Q\left(\frac{\pi}{10}\right) = 0 \implies Q\left(\frac{\pi}{10}\right) = -e^{-2\pi}c_2 - \frac{84}{697} = 0 \implies c_2 = -\frac{84e^{2\pi}}{697}.$$

Hence the formula for the charge is

$$Q(t) = \frac{1}{697} (84\cos 10t + 64\sin 10t) - \frac{84e^{-20t}}{697} (\cos 15t + e^{2\pi}\sin 15t).$$