Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas Laboratorio de Física III.

Practica No.8 Campo Magnético.

OBJETIVOS.

- a) Obtener la ley de Coulomb magnética.
- b) Aprender a usar la balanza magnética para calcular la intensidad de un campo magnético.

INTRODUCCIÓN.

La llamada Ley de Coulomb Magnética, establece que la fuerza que se ejercen entre sí dos polos magnéticos de flujos ϕ y ϕ colocados a una distancia r, es tal que:

FIGURA 1

$$F \propto \frac{\Phi \Phi'}{r^2} \qquad \dots (1)$$

Y puede ser de atracción o repulsión, según sea la polaridad de los polos magnéticos.

La fuerza \mathbf{F} , que un campo magnético \mathbf{B} , ejerce sobre una carga puntual q que se mueve con una velocidad \mathbf{v} es tal que:

FIGURA 2.

De tal forma que la fuerza F, que un campo magnético **B** ejerce sobre un conductor de longitud l en el que circula una corriente i es tal que:

PROCEDIMIENTO EXPERIMENTAL.

Parte I

a) Con ayuda de la balanza de torsión estudiar la interacción entre dos polos magnéticos ϕ_0 y ϕ_1 , obtener los siguientes datos:

- r) Distancia entre $\phi_0 y \phi_1$
- x) Desplazamiento de la señal luminosa sobre la pantalla.
- ϕ_0) Polo montado en el rotor de la balanza.
- ϕ_1) Polo montado en el soporte fijo.
- b) Llene la siguiente tabla de datos.

r (cm)	x (cm)	x prom (cm)	r^2x
15			
20			
25			
30			

TABLA 1

- c) Con los datos anteriores observar que si: r² x es un valor constante
- d) El alumno podrá concluir que: $F \propto r^{-2}$.

Explique resultados.

Parte II

a) Con ayuda de la balanza de torsión estudiar la interacción entre tres polos magnéticos $\ \varphi_o$, φ_1 y φ_2

b) Obtenga los siguientes datos y llene la siguiente tabla.

 x_1) Interacción de ϕ_o con ϕ_1

 x_2) Interacción de ϕ_o con ϕ_2

X) Interacción de φ_o con φ_1 , φ_2

R	X_1	X _{1 prom}	X_2	X _{2 prom}	X	(X_1+X_2) pro	X
(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)
15							
20							
25							
30							

TABLA 2.

c) Con sus datos anteriores puede observar que si: $X = x_1 + x_2$, podrá concluir que la fuerza que se ejercen entre sí dos polos magnéticos es tal que:

$$F \propto \Phi \Phi'$$

d) Explique resultados.

Parte III.

Interacción del campo magnético de un electroimán con un conductor por el cual circula corriente.

a) Monte el arreglo experimental de la siguiente figura.

FIGURA 3.

- b) Sin energizar el circuito, obtenga el equilibrio de la balanza.
- c) Con las fuentes reguladas y los amperímetros aplique las corrientes indicadas en la tabla 3, para el electroimán y la balanza.
- d) Restablezca el equilibrio de la balanza mediante el juego de pesas a su disposición y anote sus mediciones en la tabla 3.
- e) Con los datos anteriores está en posibilidad de calcular el campo magnético generado en el electroimán, para cada corriente aplicada, anote sus datos.

	1			
1	2			
	3			
	4			
	1			
2	2			
	3			
	4			
	1			
3	2			
	3			
	4			
	1			
4	2			
	3			
	4			

- f) Con ayuda del gaússmetro mida el campo magnético del electroimán para cada corriente aplicada y anótelo en la tabla, compárelo con el obtenido por medio del experimento.
 - g) Finalmente explique resultados de la práctica.
- i .- Corriente en el electroimán
- i.- Corriente en el conductor.
- 1 = 2cm

EQUIPO

- 1.- Balanza magnética
- 2.- Fuente regulada 40 V, 10 A (2)
- 3.- Transformador desmontable (bobinas de 250 espiras)
- 4.- Reóstato de 8Ω , 8A (2)
- 5.- Amperimetro de carrete (2)
- 6.-Balanza de torsión y accesorios
- 7.- Gaussmetro
- 8.-Juego de pesas de 1mg a 1000mg
- 9.- Lámpara incandescente
- 10.- Transformador 127V/6V, 5A

ELABORÓ: PROF. ENRIQUE SALGADO RUÍZ