Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа _	P3110	Дата и время измерений
Студент _	Щербаков Александр Валерьевич	Работа выполнена
Преподав	ватель Коробков Максим Петрович	Отчет принят

Рабочий протокол и отчет по лабараторной работе № 3.07

Изучение свойств ферромагнетика

1. Цель работы

Выявление зависимости магнитной проницаемости от напряженности магнитного поля.

- 2. Задачи решаемые при выполнении работы.
 - 1) Проведение измерений.
 - 2) Вычисление значений остаточной индукции и коэрцитивной силы.
 - 3) Построение графиков зависимостей

3. Объект исследования

Явление ферромагнетизма.

4. Метод эксперементального исследования

Прямые и косвенные многократные измерения.

5. Рабочие формулы и исходные данные

$$R_1 = 68 O M \pm 10 \%$$
 $R_2 = 470 O M \pm 10 \%$ $C_1 = 4,7 * 10^{(-8)} \Phi \pm 10 \%$ $S = 6,4 * 10^{(-5)} \pm 5 * 10^{(-6)} M^2$

6. Измерительные приборы

№ п/п	Наименование	Тип прибора	Измеряемый диапазон	Погрешность прибора
1	Осциллограф	Цифровой	0-1 Тл, 10-100 А/М	3%

7. Схема установки (перечень схем, которые составляют Приложение 1)

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

См табл.1, табл.2, табл.3

- 9. Расчет результатов косвенных измерений (таблицы, примеры расчетов) См табл.1, табл.2, табл.3
- 10. Расчет погрешности измерений (для прямых и косвенных измерений)

$$\varepsilon_p = \sqrt{\varepsilon_{R1}^2 + \varepsilon_{c1}^2 - \varepsilon_{R2}^2 + \varepsilon_{SL}^2} = 0.2 \qquad \Delta p = \varepsilon_p * p = 1,4 * 10^{(-4)} Bm$$

- 11. Графики (перечень графиков, которые составляют Приложение 2)
 - 1) Изображение петли гистерезиса.
 - 2) График начального намагничивания.
 - 3) График зависимости магнитной проницаемости от напряжённости магнитного поля.
- 12.Окончательные результаты

$$H_c = 27,51 \text{ A/M}$$
 $B_r = 0,2 \text{ Ta}$
 $H_m = 74,06 \text{ A/M}$ $B_m = 0.37 \text{ Ta}$

$$\mu_m = 4101,9 \ \Gamma_H/M$$
 $\mu_{max} = 4601,9 \ \Gamma_H/M$ $P = (3,96 \pm 0,74) * 10^{(-3)} Bm$

13. Выводы и анализ результатов работы

В ходе работы были получены: график кривой намагничивания, график зависимости магнитной проницаемости от напряженности магнитного поля образца, значения коэрцитивной силы и остаточной индукциии магнитной проницаемости в состоянии насыщения.

Приложение

Таблица 1.

Х, дел	Ү, дел	Н, А/м	В, Тл	
1 1.2		31.39	0.231	

Таблица 2.

Х, дел Ү, дел		Н, А/м	В, Тл	μ	
2.2	2	68.11	0.365	4103	

Таблица 3: Результаты прямых измерений и расчетов

U, B	Х, дел.	K_x , $\frac{\mathrm{B}}{\mathrm{дел}}$	H, A/M	Ү, дел.	$K_y, \frac{\mathrm{B}}{\mathrm{дел}}$	В, Тл	μ ξ ξ
20	2,3	0,1	70,23	27	0,05.	0,3 56	11124
19	2/1	6,1	64,28	.? 2,1	0,05	0,35	4.21
18	2	0,1	62,79	-12,0	0,05	0,339	4282
17	: 2,0	0,1	57,21	1,3 19.	0,05	0,323	4510
16	23 1,9	0,1	59,36	Z 1,8	0,05	0,31	4232
15	3 1,8	0,1	51,12	1,6	0,05	0,28	4210
14	131	0,05	48,36	: 1,17	0,05	0,269	4179
13	:2,9	0,05	47,12	.3,6	0,021	0,242	4162
12	2,7	0,05	42,92	3,3	0,02	0,218	4329
11	2,6	0,05	40,60	3,1	0,02	0,213	4202
10	2,5	0,05	34,58	2,9	0,02	0,195	4012
9	2,3	0,05	34,05	2,6	0,02	0, 188	3937
8	2,1	0,05	32,52	2,4	0,02	0,161	3782
7	2	0,03	29,13	2,2	0,02	0,142	3628
6	1,8	0,05	27,63	1,8	0,02	0,129	3212
To	1,7	0,05	25,05	2,9	0,0[0,12	3153

График 1. Кривая начального намагничивания

График 2. Зависимость магнитной проницаемости от напряжения магнитного поля

