Ultra-Low Power PLL for Wake-up Receiver Applications

Specialization Project Progress - 4th Week

Cole Nielsen
Department of Electronic Systems, NTNU
20 September 2019 (Week 38)

This Week

Timeline Tasks

- Primary: Determine design requirements from modeling/simulation for Time to Digital Converter (TDC) and Digitally Controlled Oscillator (DCO).
 - For TDC:
 - Important criteria are resolution, linearity.
 - Quantization noise, dependent on resolution, is highly significant in PLL phase noise within loop bandwidth.
 - For DCO:
 - Important criteria are resolution, phase noise and monotonicity.

Simulation/Modeling

Approch

- My current full-PLL simulations are not generally stable.
 - Due to arbitrary choices for loop filter parameters not yielding a stable loop.
 - Next week plan is simulation / analysis / requirements definition of loop filter.
 - Will have to address issue of phase wrapping, fixed point resolution.

- Opted for mathematical-modelling of TDC, separate simulation of DCO.
 - Found straightforward model for TDC phase noise from Michael Perrott of MIT.
 - DCO simulation estimates quantization noise.
 - Will resume with full PLL simulation for loop filter and remainder of modeling.

Performance criteria

- Resolution set by frequency accuracy requirements, quantization noise.
- Quantization noise is manifested here as:
 - Reference spurs resulting from deterministic components of signal.
 - · A quasi-random noise signal when lock is achieved.
 - Results from stochastic toggling of \sim 1 LSB of DCO tuning word to track low frequency variations.
 - Rolloff of -20 dB/decade at low frequency (same as ring oscillator), -40 dB/decade at high frequencies.

Requirements based on reference spurs

- Worst case reference spur level.
 - DCO tuning word toggling up/down 1 LSB every reference cycle.
- With $f_0 = 2.4$ GHz, $f_{c/k} = 16$ MHz:
 - 52 kHz per LSB (i.e. K_{DCO}) is needed for a maximum -60 dBc reference spur level.

Requirements from steady state tracking of stochastic variation.

- In steady state, DCO tuning word will vary occassionaly by \sim 1 LSB to track stochastic frequency changes.
 - This generates noise and should be less than the thermal phase noise of DCO.
 - Very pessimistic estimate here (assumes abrupt frequency change). Abrupt frequency steps contribute 1/Δf dependent component to phase noise.
- Theoretical ring oscillator phase noise limit from [2]:

$$PN_{min}(\Delta f) = 10 \log 10 \left(\frac{7.33k_BT}{P} \left(\frac{f_0}{\Delta f} \right)^2 \right)$$
 (7)

- If $f_0 = 2.4$ GHz, $P = 50 \mu W$, $\Delta f = 1$ MHz, T = 293K,
 - \rightarrow PN < -84.7 dBc/Hz from this noise process.
 - LSB resolution of 50 kHz seems feasible.
 Will have to verify with full PLL sim to account for loop dynamics.

Accuracy and Linearity

- Frequency accuracy.
 - Indeterminate IF assumed for wake up receivers, so accuracy not so critical.
 - If RF bandwidth of receiver > PLL bandwidth, reasonable assumption is maximum frequency offset (accuracy) should be < PLL bandwidth.
 - Current PLL bandwidth spec is 100 kHz, suggested 50 kHz LSB step from quantization noise analysis is sufficient?
 - This is assuming accuracy is tied to DCO resolution.
- Linearity:
 - Integral non-linearity over the tuning DCO range is not important, so no spec for INL is suggested. Should be locally linear (constrains DNL).
 - Monotonicity is essential, so must strictly have DNL < 1 LSB.

TDC

Phase Noise Modeling

Based on a phase-domain model for PLL phase noise from Michael Perrot [1].

- $S_{\phi,out}(f)$ is the TDC phase noise component, N is the divider modulus, G(f) is the closed loop PLL transfer function, A(f) is the open loop transfer function, Δt_{del} is the TDC time resolution.
- G(0) = 1, and G(f) ≈ 1 for f ∈ [0, f_{CBW}], where f_{CBW} is the closed loop bandwidth.

8

TDC

Phase Noise Modeling

- Naive estimate for TDC time resolution:
 - Phase noise flat within closed-loop bandwidth. This component dominates power
 of the integrated phase noise a PLL with low TDC-resolution.
 - Use Residual frequency modulation equation and equation 2 (TDC phase noise) to estimate Δt_{del} . Integrate in f \in [0, f_{CBW}]

$$\Delta f_{RFM} = 2 \int_{f_a}^{f_b} f^2 * PN(f) df \tag{4}$$

- With f_{Clk} = 16 MHz, N = 150 (for 2.4 GHz synthesis), Δf_{RFM} < 107 kHz to meet BER requirement, and f_{CBW} = 100 kHz. (PLL presumed to have very low TDC resolution)
 - Δt_{del} < 3.8 ns
 - Phase noise of TDC below f_{CBW} is -47.7 dBc/Hz
 - Equates to minimum of 16.4 quantization steps for TDC (4.03 bits).
 - Assumptions of high phase noise and low resolution appear valid.

Specification (unchanged)

System Performance Targets

Parameter	Value	Unit	Notes
Frequency	2.4-2.4835	GHz	2.4G ISM Band
Ref. frequency	16	MHz	Yields 6 channels
Power	≤ 100	μW	
Residual FM	≤ 107	kHz _{RMS}	BER \leq 1e-2, f_{dev} = \pm 250 KHz
Initial Lock Time	≤ 50	μ S	Upon cold start
Re-lock Time	≤ 5	μ S	Coming out of standby
Bandwidth	100	kHz	(nominally), tunable

Additionally: PLL output should support IQ sampling at LO frequency.

Specification (new)

PLL Component Performance Targets

Parameter	Value	Unit	Notes
DCO LSB Resolution	≤ 50	kHz	Determined from quantization noise.
DCO DNL	< 1	LSB	Ensures monotonicity
TDC Resolution	≤ 3.8	ns	
TDC Resolution (bits)	≥ 4.03	bits	

Architecture (unchanged)

Block Diagram

Power Targets

DCO	TDC	Divider	Other	SUM
70 μW	20 μW	10 μW	$<<$ 1 μ W	100 μW

Autumn Timeline

Week Number	Dates	Tasks	Outcomes
36	2.9 - 8.9	Review PLL Design	Refreshed Knowledge
37	9.9 - 15.9	Modeling/simulation (set up)	-
38	16.9 - 22.9	Modeling/simulation	TDC/DCO Requirements
39	23.9 - 29.9	Modeling/simulation	Loop Filter/Digital Algorithms
40	30.9 - 6.10	Modeling/simulation	Ideal (ahdlLib?) implementation in Cadence of PLL
41	7.10 - 13.10	Circuit Research	DCO/Divider topologies
42	14.10 - 20.10	Circuit Research	TDC/other topologies
43	21.10 - 27.10	Circuit Implementation	Digital logic (schematic)
44	28.10 - 3.11	Circuit Implementation	DCO (schematic)
45	4.11 - 10.11	Circuit Implementation	Divider/other (schematic)
46	11.11 - 17.11	Circuit Implementation (TDC)	
47	18.11 - 24.11	Circuit Implementation (TDC)	TDC (schematic)
48	25.11 - 1.12	Full Circuit testing	Testbenches, find bugs, design fixes
49	2.12 - 8.12	Full Circuit testing	Design Fixes/iteration
50	9.12 - 15.12	-	-

^{*}I will write the report simultaneously with the work.

Project Phases

Autumn 2019

- System modeling and simulation.
 - · Learn PLL theory in detail
 - Evaluate feasability of PLL architectures (counter, TDC-based)
 - Determine requirements for TDC/DCO/Divider/logic (bits of resolution, accuracy etc) to meet PLL performance specifications.
 - Determine digital logic for loop filter, validate stability and lock time performance.
- Research ultra-low power circuit topologies to implement system components that will meet determined requirements.
- Translate component-level specifications into schematic-level circuit designs.
 - Try, fail, try again until functional at schematic level.
 - I expect the TDC to be difficult.

Project Phases (continued)

Spring 2020

- Finalize schematic-level design.
- Estabilish thorough tests for PLL performance (automated?) to help in layout.
- Layout of PLL.
 - Design iteration until design specs met.
 - · Probably very time consuming.
- Full characterization/validation of design performance.
 - Comprehensive Corners/Monte-Carlo testing (time consuming??)
 - More design iteration if new issues crop up...
- Thesis paper writing.

Project Phases (continued)

Spring 2020

[1] "Digital Frequency Synthesizers", Michael Perrott, 2019. http://www.cppsim.com/PLL_Lectures/day4_am.pdf

[2] "Minimum Achievable Phase Noise of RC Oscillators", Navid et al. 2005