MAT2040

Tutorial 3

CUHK(SZ)

September 21, 2024

Consider a matrix $A \in \mathbb{R}^{m \times n}$ and a column vector $\mathbf{b} \in \mathbb{R}^{n \times 1}$:

(a) If there is a constant number i that is greater than 0 and no greater than n, such that $b_i \neq 0$, and $b_j = 0$ for $\forall j \neq i$.

Prove that $A\mathbf{b} = b_i \mathbf{a}_i$; (where \mathbf{a}_i represents the *i*-th column of A)

(b) If matrix
$$C = \begin{bmatrix} 2 & 2 & 4 & 1 \\ 3 & 1 & 7 & 2 \\ 9 & 4 & 5 & 1 \end{bmatrix}$$
,

and a diagnal matrix D = diag(3,5,4,2), find CD.

(CUHK(SZ)) MAT2040 September 21, 2024 2 / 13

(a) Let
$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$

We have $A\mathbf{b} = \begin{bmatrix} a_{11}b_1 + a_{12}b_2 + \cdots + a_{1n}b_n \\ a_{21}b_1 + a_{22}b_2 + \cdots + a_{2n}b_n \\ \vdots \\ a_{m1}b_1 + a_{m2}b_2 + \cdots + a_{mn}b_n \end{bmatrix}$

Since $b_j = 0$ for $\forall j \neq i$, $A\mathbf{b} = \begin{bmatrix} a_{1i}b_i \\ a_{2i}b_i \\ \vdots \\ a_{mi}b_i \end{bmatrix} = b_i \begin{bmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{mi} \end{bmatrix} = b_i \mathbf{a}_i$

(Or use definition II of Matrix-Vector Multiplication, $A\mathbf{b} = b_1\mathbf{a}_1 + b_2\mathbf{a}_2 + \cdots + b_n\mathbf{a}_n$, where $b_j = 0$ for $\forall j \neq i$)

(CUHK(SZ)) MAT2040 September 21, 2024 3 / 13

(b)
$$D = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
 from $D = \text{diag}(3,5,4,2)$

Recall that $CD = [C\mathbf{d}_1, C\mathbf{d}_2, C\mathbf{d}_3, C\mathbf{d}_4]$

Note that each \mathbf{d}_i has the same property as \mathbf{b} in question (a), In this case, we have $C\mathbf{d}_i = d_{ii}\mathbf{c}_i$, and we can then convert CD to:

$$CD = \begin{bmatrix} d_{11}\mathbf{c}_{1}, d_{22}\mathbf{c}_{2}, d_{33}\mathbf{c}_{3}, d_{44}\mathbf{c}_{4} \end{bmatrix}$$

$$= \begin{bmatrix} 3 \begin{bmatrix} 2 \\ 3 \\ 9 \end{bmatrix}, 5 \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}, 4 \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix}, 2 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} 6 & 10 & 16 & 2 \\ 9 & 5 & 28 & 4 \\ 27 & 20 & 20 & 2 \end{bmatrix}$$

(Calculating the product directly from C and D is also feasible)

CUHK(SZ)) MAT2040 September 21, 2024 4 / 13

Consider two symmetric matrices A and B, where $A^T = A$, $B^T = B$.

- (a) Is the matrix $A^2 B^2$ symmetric?
- (b) Is the matrix ABA symmetric?
- (c) Is the matrix *ABAB* symmetric?

CUHK(SZ)) MAT2040 September 21, 2024 5 / 13

(a) $(A^2 - B^2)^T = (A^2)^T - (B^2)^T = (A^T)^2 - (B^T)^2 = A^2 - B^2$

Therefore, matrix $A^2 - B^2$ is symmetric.

(b)

$$(ABA)^{T} = ((AB)A)^{T}$$
$$= A^{T}(AB)^{T}$$
$$= A^{T}B^{T}A^{T}$$
$$= ABA$$

Therefore, matrix ABA is symmetric.

6/13

(CUHK(SZ)) MAT2040 September 21, 2024

(c)

$$(ABAB)^{T} = ((AB)(AB))^{T}$$
$$= (AB)^{T}(AB)^{T}$$
$$= B^{T}A^{T}B^{T}A^{T}$$
$$= BABA$$

Since in general, $ABAB \neq BABA$,

therefore ABAB is not always symmetric.

(For instance, when
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, A and B are both symmetric, but $ABAB = \begin{bmatrix} 27 & 27 \\ 54 & 54 \end{bmatrix}$, which is not symmetric.)

Consider two column vectors
$$\mathbf{a}, \mathbf{b} \in \mathbb{R}^{3 \times 1}$$
, $\mathbf{ab}^T = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 6 & -3 \\ 2 & 4 & -2 \end{bmatrix}$.

Find the value of $\mathbf{a}^T \mathbf{b}$.

(CUHK(SZ)) MAT2040 September 21, 2024 8 / 13

Let

$$\mathbf{a} = \left[\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right], \mathbf{b} = \left[\begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array} \right]$$

We have

$$\mathbf{ab}^T = \begin{bmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 6 & -3 \\ 2 & 4 & -2 \end{bmatrix}$$

Therefore

$$\mathbf{a}^T \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 = 1 + 6 + (-2) = 5$$

(CUHK(SZ))

Consider matrix
$$A = \begin{bmatrix} 5 & 2 & 3 \\ -1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Is this matrix non-singular? if yes, what is the inverse of this matrix?

CUHK(SZ)) MAT2040 September 21, 2024 10 / 13

Assume that matrix A is non-singular,

there exists a matrix
$$A^{-1} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
 such that $AA^{-1} = I_3$

So we have

$$AA^{-1} = \begin{bmatrix} 5 & 2 & 3 \\ -1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$= \begin{bmatrix} 5a_{11} + 2a_{21} + 3a_{31} & 5a_{12} + 2a_{22} + 3a_{32} & 5a_{13} + 2a_{23} + 3a_{33} \\ -a_{11} - a_{21} & -a_{12} - a_{22} & -a_{13} - a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

11 / 13

If the equation holds,

$$\begin{cases} 5a_{11} + 2a_{21} + 3a_{31} = 1 \\ -a_{11} - a_{21} = 0 \\ a_{31} = 0 \end{cases}$$

$$\begin{cases} 5a_{12} + 2a_{22} + 3a_{32} = 0 \\ -a_{12} - a_{22} = 1 \\ a_{32} = 0 \end{cases}$$

$$\begin{cases} 5a_{13} + 2a_{23} + 3a_{33} = 0 \\ -a_{13} - a_{23} = 0 \\ a_{33} = 1 \end{cases}$$

UHK(SZ)) September 21, 2024 12 / 13

With these equations above, we can get

$$\begin{cases} a_{11} = \frac{1}{3} \\ a_{21} = -\frac{1}{3} \\ a_{31} = 0 \end{cases} \begin{cases} a_{12} = \frac{2}{3} \\ a_{22} = -\frac{5}{3} \\ a_{32} = 0 \end{cases} \begin{cases} a_{13} = -1 \\ a_{23} = 1 \\ a_{33} = 1 \end{cases}$$

So matrix A is non-singular, and the inverse

$$A^{-1} = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & -1\\ -\frac{1}{3} & -\frac{5}{3} & 1\\ 0 & 0 & 1 \end{bmatrix}$$

(CUHK(SZ)) MAT2040 September 21, 2024 13 / 13