UM-SJTU JOINT INSTITUTE PHYSICS LABORATORY DATA SHEET (EXERCISE 3)

Name:	车~格
	L .

Name: **B.所**成版

Student ID: 1330910122

Group: ______

Date: <u>(0·2</u>4

NOTICE. Please remember to show the data sheet to your instructor before leaving the laboratory. The data sheet will not be accepted if the data are recorded with a pencil or modified with a correction fluid/tape. If a mistake is made in recording a datum item, cancel the wrong value by drawing a fine line through it, record the correct value legibly, and ask your instructor to confirm the correction. Please remember to take a record of the precision of the instruments used. You are required to hand in the original data with your lab report, so please keep the data sheet properly.

spri	ng 1 [<u>(m</u>] ± <u>0.02</u> [<u>mm</u>]	spri	ng 2 [cm] ± _0.02 [mn]	seri	ies []±
L_0	36.060	L_0	36.054	L_0	
L_1	38. 95Y	L_1	38.83o	L_1	
L_2	41.662	L_2	41.18	L_2	
L_3	44.446	L_3	44.424	L_3	
L_4	47.176	L_4	47.214	L_4	
L_5	80.02	L_5	50.01	L_5	
L_6	52.768	L_6	52.880	L_6	

Table 1. Spring constant measurement data.

Instructor's signature:	 Andrew of the Control	<u>/</u> *	
		,	

ten periods 😝 🐧 ± 9.00 horizontal incline 1 12.421 m_1 12-4211 12.3818 m₁ 12-388912414 12.634] m_2 12.6347 m_2 12.601/12.6348 17.826 m_3 12.8560 1281Hm3 12-8178 12.85 Bm3 13.0699 13.0689 13.03 m4 m_4 13.0388 13.0 11 114 13-7878 m_5 13. 2828 13.243 m5 25H 13.28H M5 15.4912 m_6 13-4548 m_6

Table 2. Measurement data for the T vs. M relation.

incline 2

 m_1

 m_2

12-3802 12.420]

12.6400

13.07 28

13.49 32

ten periods $[s] \pm 0.000$ cm ± 0.1 [cm] 1 5-0 13.0616 2 10.0 13.0689 3 12.0 13.0816 MU 4 20.0 13.0812 5 72.0 13.0823 6 30.0 13.0804

Table 3. Data for the T vs. A relation.

A [m] ± 0-1 $\Delta t \left[S \right] \pm 0.0000 S$ Cum 1 5-0 0.0454 $\overline{2}$ 10-0 0.02138 3 12-0 0.0144 <u> 10.0</u> 0.01081 25.0 0.00863 6 30.0 21100.0 [mn] ± 002 [mn] $x_{\mathrm{out}} \left[\underline{\mathbf{h}}_{\mathbf{h}} \right] \pm \underline{\mathbf{o} \cdot \mathbf{v}} \left[\underline{\mathbf{h}}_{\mathbf{m}} \right]$ 444 02.23 446 15.34 4.44 ケイン・カ

Table 4. Data for the v_{max}^2 vs. A^2 relation.

Instructor's signature:

m	[q] ± 0.0] [q]
1	479
2	9.50
3	14.26
4	19.09
5	23 %
6	28.63

Table 5. Weight measurement data.

object	with I-shape m_{obj} $[\underline{\mathbf{q}}] \pm \underline{\mu}$ $\underline{\mathbf{q}}$	
	119.18	
object	with U-shape $m_{ m obj}$ [9] \pm 0.01 [9	
128.54		
mass of springs 1 & 2 $m_{\rm spr1\&2}$ $\left[\begin{array}{c} \bullet \end{array} \right] \pm 0.01$		
	27.17	
equivalent mass $M_0 = m_{\rm obj} + \frac{1}{3} m_{\rm spr1\&2}$		
I-shape	128.24	
U-shape	OP-151	

Table 6. Mass measurement data.

 $In structor's \ signature:$