Портфолио №2

Мочеков Семён Сергеевич

1. Экспериментальное доказательство распределения Максвелла, проведенное Отто Штерном в 1920 году, было качественным подтверждением теории Максвелла. Штерн использовал вращающийся цилиндр для определения разброса молекул газа по скоростям. Принцип эксперимента был следующим:

Генерация молекулярных пучков: газ распылялся через узкое отверстие в высоковакуумную камеру, создавая молекулярные пучки.

Нагревание и испарение серебра: платиновая нить, покрытая серебром, располагалась вдоль цилиндра и нагревалась, заставляя серебро испаряться.

Осаждение серебра на внутренней поверхности цилиндра: проходя через узкую диафрагму, атомы серебра осаждались на внутренней поверхности цилиндра, стенки которого охлаждались для более быстрого осаждения.

Измерение смещения изображений: при неподвижном цилиндре на внутренней стенке цилиндра получалось резкое изображение щели, через которую проходили атомы. При вращении системы изображение становилось смещенным и размазанным.

Определение средней скорости молекул: измерялось смещение между изображениями, а затем по формулам определялась некоторая средняя скорость молекул.

Результаты эксперимента: Штерн получил скорости молекул, близкие к значениям наиболее вероятной и средней квадратичной скоростям. Это качественно согласовывалось с выводами теории Максвелла.

Схема опыта Ламмерта

1 - быстро вращающиеся диски, 2 - узкие щели, 3 - печь, 4 - коллиматор, 5 - траектория молекул, 6 - детектор

2. Кавитация - это явление образования пузырьков в жидкости в результате снижения давления до уровня, когда жидкость начинает испаряться. Эти пузырьки могут затем коллапсировать, создавая взрывоподобные волны, что может иметь как положительное, так и негативное влияние в различных механизмах.

Положительное влияние:

Ультразвуковая очистка медицинских инструментов:

Положительное влияние: В медицинской индустрии ультразвуковая очистка используется для дезинфекции и очистки инструментов. При образовании кавитационных пузырьков ультразвуковые волны обеспечивают интенсивное механическое воздействие на загрязнения, что позволяет эффективно удалять микроорганизмы и биологические остатки с поверхности инструментов без необходимости применения агрессивных химических веществ.

Улучшение производительности судовых пропеллеров:

Положительное влияние: В морской индустрии кавитация может быть использована для оптимизации производительности судовых пропеллеров. Путем управления формой и конфигурацией лопастей пропеллера можно создать условия для возникновения контролируемой кавитации, которая снижает гидродинамическое сопротивление и увеличивает эффективность движения судна.

Негативное влияние:

Повреждение насосов в промышленных системах:

Негативное влияние: В промышленных системах, таких как водоподготовка, кавитация может привести к серьезному износу и повреждению насосов. Когда жидкость быстро проходит через насос, давление может снижаться до уровня, при котором начинается кавитация. Пузырьки, образующиеся при кавитации, коллапсируют, создавая вибрацию и ударные волны, что приводит к повреждению лопастей насоса и снижению его производительности.

Износ гидравлических компонентов в автомобильных трансмиссиях:

Негативное влияние: В автомобильных трансмиссиях кавитация может возникать в масле из-за высоких скоростей и давлений. При кавитации микропузырьки образуются в масле и коллапсируют, создавая микроскопические потоки, которые могут вызвать износ и повреждения деталей трансмиссии, таких как шестерни и подшипники, что может привести к снижению долговечности и надежности трансмиссии.

3. Фазовые переходы первого рода:

В фазовых переходах первого рода происходит резкое изменение плотности или объема вещества при переходе из одной фазы в другую. Эти переходы сопровождаются изменением энтальпии системы, что означает, что энергия перехода не непрерывна.

Для них характерно:

Изменение объема: при фазовом переходе первого рода происходит резкое изменение объема вешества.

Изменение энтальпии: смена фаз сопровождается изменением энтальпии системы.

Необходимость тепла: часто для совершения перехода первого рода требуется поглощение или выделение тепла.

Примеры фазовых переходов первого рода:

Плавление льда: при повышении температуры льда до точки плавления происходит фазовый переход первого рода, в результате которого лед превращается в воду. Этот переход сопровождается поглощением тепла.

Испарение жидкости: при повышении температуры жидкости до ее точки кипения происходит фазовый переход первого рода, при котором жидкость превращается в пар. Этот процесс сопровождается поглощением тепла.

Кристаллизация пара: при снижении температуры пара до точки конденсации происходит фазовый переход первого рода, в результате которого пар превращается в жидкость. Этот переход сопровождается выделением тепла.

Фазовые переходы второго рода:

В фазовых переходах второго рода изменение объема или плотности вещества при переходе из одной фазы в другую происходит непрерывно. Энергия перехода остается непрерывной, что означает отсутствие резких изменений.

Для них характерно:

Непрерывность: при фазовом переходе второго рода изменение плотности или объема происходит непрерывно.

Изменение энтропии: смена фаз сопровождается изменением энтропии системы.

Непрерывность тепла: нет резкого изменения тепла при переходе между фазами.

Примеры фазовых переходов второго рода:

Ферромагнетик-парамагнетик: переход ферромагнетика в состояние парамагнетика происходит при повышении температуры выше точки Кюри. Этот переход сопровождается изменением магнитной восприимчивости, которая меняется непрерывно.

Переход жидкость-газ (критическая точка): при достижении критической точки жидкость и газ становятся неотличимыми, и происходит фазовый переход второго рода. В этой точке плотность жидкости и газа становится одинаковой, а объем непрерывно меняется с изменением температуры и давления.

Переход суперпроводник-нормальный проводник: при снижении температуры суперпроводника ниже критической точки происходит фазовый переход второго рода, при котором сопротивление материала исчезает. Этот переход сопровождается непрерывным изменением электрических свойств.

4. Реальные газы отличаются от идеальных газов своим поведением под воздействием высокого давления и/или низкой температуры. В идеальном газе молекулы считаются точечными частицами без объема и взаимодействий между ними. Однако в реальных газах молекулы имеют конечный объем и взаимодействуют друг с другом.

Отличия реальных газов от идеальных:

Объем молекул: В реальных газах молекулы имеют объем, который занимают в сосуде. Это приводит к тому, что при высокой плотности газа объем молекул становится значительным по сравнению с общим объемом газа.

Межмолекулярные взаимодействия: В реальных газах молекулы взаимодействуют между собой с помощью ван-дер-ваальсовских сил, которые проявляются на коротких расстояниях и слабее, чем силы кулоновского отталкивания. Молекулы газа сталкиваются между собой по типу упругого удара, а между столкновениями их движение считается равномерным и прямолинейным.

Уравнение Ван-дер-Ваальса - это модификация уравнения состояния идеального газа, учитывающая объем молекул и их взаимодействия. Оно имеет следующий вид:

$$(P+a(\frac{\nu}{V})^2)(V-b\nu)=\nu RT$$

Где а и b – константы, зависящие от конкретного газа.

Источники:

Экспериментальная проверка распределения Максвелла

Экспериментальная проверка распределения Максвелла

Термодинамика идеального и реального газов

ТПУ. Фазовые превращения

Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Том 5. Статистическая физика. Глава 6.

Brennen, C. E. (1995). Cavitation and bubble dynamics. Cambridge university press.