Geometria B

Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2017/2018 7 giugno 2018

Lo studente che intende avvalersi del voto ottenuto alla prova intermedia svolga <u>solamente</u> gli esercizi n. 3 e n. 4. Il tempo a sua disposizione è di due ore.

Lo studente che non si avvale della prova intermedia svolga tutti e quattro gli esercizi. Il tempo a sua disposizione è di tre ore.

Ogni risposta deve essere adeguatamente motivata. Si terrà conto non solo della correttezza dei risultati, ma anche della completezza e chiarezza delle spiegazioni.

Attenzione. Il testo è composto da due pagine (la seconda pagina è sul retro di questo foglio).

Esercizio 1. Sia (X,τ) uno spazio topologico e sia S un sottoinsieme di X.

- (1a) Il sottoinsieme S di X è detto localmente chiuso in (X,τ) se, per ogni $x \in S$, esiste un intorno U_x di x in (X,τ) tale che l'insieme $S \cap U_x$ è chiuso nel sottospazio topologico (U_x,τ_{U_x}) di (X,τ) . Si dimostri che S è localmente chiuso in (X,τ) se e soltanto se esistono un chiuso C e un aperto A di (X,τ) tali che $S=C\cap A$.
- (1b) Si dimostri che se S è uguale all'unione finita di sottoinsiemi compatti di (X, τ) allora anche S è un sottoinsieme compatto di (X, τ) .
- (1c) Indichiamo con $(X \times X, \eta)$ il prodotto topologico di (X, τ) con se stesso. Supponiamo (X, τ) sia connesso e S sia un sottoinsieme proprio di X. Si dimostri che il complementare di $S \times S$ in $X \times X$ è un sottoinsieme connesso in $(X \times X, \eta)$.

SOLUZIONE: (1a) Supponiamo che $S = C \cap A$ per qualche chiuso C di X e per qualche aperto A di X. Per ogni $x \in S$, $x \in A$ e quindi $U_x := A$ è un intorno di x in (X, τ) . Inoltre $S \cap U_x = S \cap A = C \cap A = C \cap U_x$, dunque $S \cap U_x$ è chiuso rispetto alla topologia relativa di U_x .

Supponiamo ora che S sia localmente chiuso in (X,τ) . Sia $x \in S$ e sia U_x un intorno di x in (X,τ) tale che $S \cap U_x$ è chiuso rispetto alla topologia relativa di U_x . A meno di restringere U_x possiamo supporre che $U_x \in \tau$ (basta: scegliere $A_x \in \tau$ tale che $x \in A_x \subset U_x$; osservare che $S \cap A_x$ è chiuso in A_x in quanto è uguale all'intersezione tra A_x e il chiuso $S \cap U_x$ di U_x ; rinominare A_x come U_x). Osserviamo che, per ogni $x \in S$, $U_x \setminus S = U_x \setminus (S \cap U_x)$ è aperto in U_x . Poiché $U_x \in \tau$, si ha anche che $U_x \setminus S \in \tau$. Definiamo l'aperto A di (X,τ) ponendo $A := \bigcup_{x \in S} U_x$. Osserviamo che $S \subset A$ e $A \setminus S = \bigcup_{x \in S} (U_x \setminus S) \in \tau$. Segue che $A \setminus S$ è anche aperto in A (con la topologia relativa) ovvero S è chiuso in A. Dunque esiste un chiuso C di (X,τ) tale che $S = C \cap A$.

(1b) Sia $S = S_1 \cup S_2 \cup \ldots \cup S_n$ per qualche sottoinsieme compatto S_1, \ldots, S_n di (X, τ) e sia $\mathcal{A} = \{A_i\}_{i \in I}$ un ricoprimento aperto di S in (X, τ) . Per ogni $j \in \{1, \ldots, n\}$, \mathcal{A} è anche un ricoprimento aperto di S_j in (X, τ) e quindi esiste un sottoinsieme finito I_j di I tale che $S_j \subset \bigcup_{i \in I_j} A_i$. Definiamo il sottoinsieme finito I^* di I ponendo $I^* := \bigcup_{j=1}^n I_j$. La famiglia $\{A_i\}_{i \in I^*}$ è un sottoricoprimento finito di S in (X, τ) estratto da \mathcal{A} . Dunque S è compatto.

(1c) Sia $p \in X \setminus S$. Osserviamo che $\{p\} \times X$ e $X \times \{p\}$ sono sottoinsiemi connessi di $(X \times X) \setminus (S \times S)$. Sia (x, y) un punto di $(X \times X) \setminus (S \times S)$, ovvero $(x, y) \in X \times X$ e $x \notin S$ oppure $y \notin S$. Proviamo che (x, y) è connesso con (p, p) in $(X \times X) \setminus (S \times S)$. Se $x \notin S$ allora il sottoinsieme $(X \times \{p\}) \cup (\{x\} \times X)$ di $(X \times X) \setminus (S \times S)$ è connesso in quanto unione dei connessi $X \times \{p\}$ e $\{x\} \times X$ che si toccano nel punto (x, p). Poiché $(X \times \{p\}) \cup (\{x\} \times X)$ contiene sia (x, y) che (p, p), questi due punti sono connessi in $(X \times X) \setminus (S \times S)$. Con ragionamenti simili si giunge alla stessa conclusione anche nel caso in cui $y \notin S$. Abbiamo così dimostrato che ogni punto di $(X \times X) \setminus (S \times S)$ è connesso con (p, p). Segue che $(X \times X) \setminus (S \times S)$ coincide con la componente connessa di (p, p) e quindi è connesso.

Esercizio 2. Sia τ la topologia euclidea su \mathbb{R} , sia η la topologia su \mathbb{R} avente come una base la famiglia $\{[a,b) \in \mathcal{P}(\mathbb{R}) \mid a,b \in \mathbb{R}, a < b\}$ e sia J l'intervallo $[0,+\infty)$ di \mathbb{R} . Definiamo la relazione di equivalenza \mathcal{R} su \mathbb{R} ponendo

$$x \mathcal{R} y$$
 se e soltanto se $|x| = |y|$.

Indichiamo con $\pi: J \to \mathbb{R}/\mathfrak{R}$ la restrizione a J della proiezione naturale, ovvero $\pi(x) := [x]_{\mathfrak{R}}$.

- (2a) Sia τ_J la topologia indotta da τ su J e sia $(\mathbb{R}/\mathfrak{R}, \tau')$ lo spazio topologico quaziente di (\mathbb{R}, τ) modulo \mathfrak{R} . Si dica, motivando la risposta, se l'applicazione $\pi: (J, \tau_J) \to (\mathbb{R}/\mathfrak{R}, \tau')$ è un omeomorfismo.
- (2b) Sia η_J la topologia indotta da η su J e sia $(\mathbb{R}/\mathfrak{R}, \eta')$ lo spazio topologico quaziente di (\mathbb{R}, η) modulo \mathfrak{R} . Si dica, motivando la risposta, se l'applicazione $\pi: (J, \eta_J) \to (\mathbb{R}/\mathfrak{R}, \eta')$ è un omeomorfismo.

SOLUZIONE: Sia $\Pi : \mathbb{R} \to \mathbb{R}/\mathfrak{R}$ la proiezione naturale al quoziente. Si ha che $\pi = \Pi|_J$ per definizione. Si osservi che π è bigettiva in quanto ogni \mathbb{R} -classe di equivalenza interseca J (quindi π è surgettiva) in un solo punto (quindi π è iniettiva).

(2a) L'applicazione $\pi: (J, \tau_J) \to (\mathbb{R}/\mathfrak{R}, \tau')$ è continua e bigettiva. Proviamo che π è aperta e quindi è un omeomorfismo. Ricordiamo che la famiglia \mathcal{B} dei sottoinsiemi nonvuoti di J che si ottengono intersecando J con gli intervalli (a, b) con $a, b \in \mathbb{R}$ e a < b, ovvero la famiglia

$$\{[0,b) \in \mathcal{P}(J) \mid b \in \mathbb{R}, b > 0\} \cup \{(a,b) \in \mathcal{P}(\mathbb{R}) \mid a,b \in \mathbb{R}, b > a > 0\},\$$

è una base di τ_J . Dunque per provare che π è aperta, è sufficiente far vedere che $\pi([0,b)) \in \tau'$ (ovvero che $\Pi^{-1}(\pi([0,b))) \in \tau$) se b > 0 e $\pi((a,b)) \in \tau'$ (ovvero che $\Pi^{-1}(\pi([a,b))) \in \tau$) se b > a > 0. Osserviamo che $\Pi^{-1}(\pi([0,b))) = \Pi^{-1}(\Pi([0,b))) = (-b,b) \in \tau$ e $\Pi^{-1}(\pi([a,b))) = \Pi^{-1}(\Pi([a,b))) = (-b,-a) \cup (a,b) \in \tau$. Segue che π è aperta, e quindi è un omeomorfismo.

(2b) L'applicazione $\pi: (J, \eta_J) \to (\mathbb{R}/\mathfrak{R}, \eta')$ è continua e bigettiva, ma non è aperta. Infatti $\Pi^{-1}(\pi([1,2))) = \Pi^{-1}(\Pi([1,2))) = (-2,-1] \cup [1,2) \notin \eta$ (infatti -1 non è un punto interno a $(-2,-1] \cup [1,2)$ in (\mathbb{R},η)). In questo caso π non è un omeomorfismo.

Esercizio 3. Si consideri lo spazio topologico X ottenuto identificando le curve a e b come in figura. I vertici sono tutti identificati nel punto P.

- (3a) Si mostri che X ha una struttura di CW-complesso con una 0-cella, tre 1-celle e due 2-celle. Se ne deduca che X è omotopicamente equivalente a $S^2 \vee S^1 \vee S^1$.
- (3b) Si calcoli il gruppo fondamentale di X.

SOLUZIONE: (3a) Si consideri lo spazio X' omeomorfo a X in cui al posto del quadrato si ha un disco con quattro archi identificati a coppie $a \in b$.

Si consideri ora lo spazio X' come la vista dall'alto di un tronco di cono. X' è dunque omeomorfo al tronco di cono privato della base inferiore (contenente solo la superficie laterale e la base superiore). Unendo il punto P sulla base inferiore col punto P su quella superiore si ottiene un terzo laccio c. La struttura di CW-complesso si ottiene ora prendendo: il punto P come unica 0-cella, a, b, c come 1-celle, la base superiore (il disco piccolo) e la superficie laterale del tronco di cono come 2-celle.

Sia ora A il sottocomplesso chiuso contraibile formato dal disco piccolo (la base superiore) con il suo bordo b e il punto P.

Si ha $X \sim X/A$ e X/A è lo spazio ottenuto da un disco chiuso con due lati identificati (le due copie del laccio a), il cui estremo P va identificato con un punto interno (poiché il disco piccolo si contrae su P). Si tratta dunque di una sfera con tre punti Q_1, Q_2, Q_3 da identificare. Siano ora α un segmento da Q_1 a Q_2 e α' un segmento da Q_2 a Q_3 (che si possono 'aggiungere' a X/A ottenendo uno spazio omotopicamente equivalente).

Sia inoltre β un cammino da Q_1 a Q_2 e β' un cammino da Q_2 a Q_3 sulla sfera. Contraendo prima β e poi β' , si ottiene che $X/A \sim S^2 \vee S^1 \vee S^1$.

(3b) Per (3a) $\pi(X, x_0) \simeq \pi(S^2 \vee S^1 \vee S^1, x_0) \simeq \mathbb{Z} * \mathbb{Z}$. L'ultimo isomorfismo si può ottenere ad esempio applicando il teorema di Seifert-Van Kampen.

Esercizio 4. (4a) Si calcoli il seguente integrale improprio mediante il teorema dei residui:

$$I = \int_{-\infty}^{\infty} \frac{x-1}{x^3 - 1} dx.$$

- (4b) Si consideri il polinomio $p(z)=z^4+3z^2+z+1$. Sia A l'intersezione del disco chiuso $\{z\in\mathbb{C}:|z|\leq 1\}$ con il semipiano $\{z\in\mathbb{C}:\mathrm{Im}(z)>0\}$.
 - 1. Mostrare che p ha due radici nel disco chiuso $\{z \in \mathbb{C} : |z| \leq 1\}$ e nessuna di esse è reale.
 - 2. Mostrare che p ha una sola radice in A.

SOLUZIONE: (4a) La funzione meromorfa $h(z) = \frac{z-1}{z^3-1}$ ha tre singolarità nelle 3 radici cubiche di 1: una eliminabile per z=1 e due semplici per $z_{\pm 1}=(-1\pm i\sqrt{3})/2$. Posso quindi considerare al posto di h la funzione meromorfa $f(z)=1/(z^2+z+1)$. Si consideri la curva γ ottenuta prendendo il segmento reale [-R,R] e la semicirconferenza di centro l'origine e raggio R contenuta nel semipiano superiore. Solo il polo $z_1=(-1+\sqrt{3})/2$ è interno alla curva γ (per R grandi), per cui il Teorema dei residui fornisce l'integrale: $I=2\pi i\operatorname{Res}_{z_1}(f)$.

Si osservi che la condizione per applicare il risultato generale è soddisfatta: per $|z| \geq 2$ si ha

$$\left| \frac{1}{z^2 + z + 1} \right| \le \frac{1}{|z|^2 \left(1 + \frac{1}{|z|} + \frac{1}{|z|^2} \right)} \le \frac{4}{|z|^2}$$

Il residuo in z_1 vale $\frac{1}{i\sqrt{3}}$, poiché $f(z)=1/((z-z_1)(z-z_2)$ e quindi $\mathrm{Res}_{z_1}(f)=1/(z_1-z_2)=\frac{1}{i\sqrt{3}}$. Dunque $I=2\pi i\frac{1}{i\sqrt{3}}=\frac{2\pi}{\sqrt{3}}$.

(4b) Applichiamo il principio di Rouché sul disco aperto $D_{\epsilon} = \{z \in \mathbb{C} : |z| = 1 + \epsilon\}$, con $\epsilon > 0$, e sia γ il suo bordo. Per $|z| = 1 + \epsilon$ vale

$$|p - 3z^2| = |z^4 + z + 1| \le |z|^4 + |z| + 1 = (1 + \epsilon)^4 + (1 + \epsilon) + 1 < 3(1 + \epsilon)^2 = |3z^2|$$

per ogni ϵ sufficientemente piccolo (infatti la funzione reale $(f(x) = x^4 + x + 1 - 3x^2$ si annulla per x = 1 ed è negativa per x > 1 vicini a 1, essendo f'(1) = -1 < 0). Quindi ogni disco D_{ϵ} contiene 2 radici di p e D, che è l'intersezione dei dischi aperti D_{ϵ} , contiene 2 radici di p.

Le radici non sono reali: $p(-1) \neq 0$, $p(1) \neq 0$ e per $x \in (0,1)$ vale: $p(x) = x^4 + 3x^2 + x + 1 \ge x + 1 > 0$.

Il polinomio p ha coefficienti reali e quindi le sue radici sono reali o complesse coniugate: quindi p ha una sola radice in $A \subset \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$.