CS60050 - MACHINE LEARNING ASSIGNMENT 2 DECISION TREES - PART 1

NAME: Himanshu Mundhra ROLL No.: 16CS10057

In this folder, we build a Decision Tree on a Small DataSet for Car Sales.

We have 4 features of 'price', 'maintenance', 'capacity', 'airbag' which take values in the form of strings/integers. Our Target Class 'profitable' takes a binary truth value, whether the car sale is profitable or not, given the features.

The presence of strings renders a need to normalise the data into numbers. We **Numerise** the Data in such a way that we assign values starting from 0 till we cover all the unique possible outcomes of a feature.

We use the criterion of **entropy** and **gini index** to grow a full tree and then use the testing data to report the accuracy of our trees compared to Scikit-Learn's models.

Numerised T	raining	DataSet
-------------	---------	---------

price		maintenance	capacity	airbag	profitable
0	1	1	0	0	1
1	1	2	1	1	0
2	1	0	1	0	0
3	2	2	1	0	0
4	2	2	1	1	1
5	2	0	0	1	0
6	0	2	1	1	1
7	0	0	0	1	0
8	0	0	2	1	1

Numerised Testing DataSet

price		maintenance	capacity	airbag	profitable
0	2	0	2	0	1
1	1	1	1	0	1

DECISION TREE using INFORMATION GAIN

DECISION TREE using GINI INDEX

```
maintenance = high
capacity = 2 :: "no"
capacity = 4 :: "no"
capacity = 5 :: "yes"
maintenance = low :: "yes"
maintenance = med
price = high :: "yes"
price = low :: "no"
price = med
airbag = no :: "no"
airbag = yes :: "yes"
```

Metrics at Root Node

	Self_InfoGain	SckLn_InfoGain	Self_GiniIndex	SckLn_GiniIndex
Root Impurity	0.991076	0.991076	0.493827	0.493827
Attribute Impurity	0.805012	0.848386	0.388889	0.416667
Impurity Reduction	0.186064	0.142690	0.104938	0.077160

Result on Training Dataset

==					
	Self_IG	SckLn_IG	Self_GI	SckLn_GI	Actual
0	yes	yes	yes	yes	yes
1	no	no	no	no	no
2	no	no	no	no	no
3	no	no	no	no	no
4	yes	yes	yes	yes	yes
5	no	no	no	no	no
6	yes	yes	yes	yes	yes
7	no	no	no	no	no
8	yes	yes	yes	yes	yes

Result on Testing Dataset

	Self_IG	SckLn_IG	Self_GI	SckLn_GI	Actual
0	yes	yes	yes	yes	yes
1	yes	yes	yes	no	yes

Accuracy on Training Dataset

Self_IG SckLn_IG Self_GI SckLn_GI 0 100.00% 100.00% 100.00% 100.00%

Accuracy on Testing Dataset

Self_IG SckLn_IG Self_GI SckLn_GI 0 100.00% 100.00% 100.00% 100.00%