Probing the origin of 750 GeV diphoton excess with the precision measurements at the ILC

K. J. Bae, K. Hamaguchi, T. Moroi, K. Y, PLB 759 (2016) 575 [arXiv:1604.08307]

Keisuke Yanagi (Univ. of Tokyo)

Probing the

with the precision measurements at the ILC

K. J. Bae, K. Hamaguchi, T. Moroi, K. Y, PLB 759 (2016) 575 [arXiv:1604.08307]

Keisuke Yanagi (Univ. of Tokyo)

750 GeV Excess??

750 GeV Excess??

750 GeV Excess??

Precision measurement at the ILC

- The ILC is future electron-positron collider
- Center of Mass energy: $\sqrt{s} = 250 \text{GeV} 1 \text{TeV}$ (3TeV??)
- Clean environment compared with the LHC
- Even if $m>\sqrt{s}/2$, new particle affects SM process via loop correction

We focus on the differential cross section of $\,e^+e^- o f \bar{f}\,$

Motivations for indirect probe

Powerful method to search new heavy (non-colored) particles with large EW quantum number and/or large multiplicity

Examples

- Several models for the diphoton excess:
 SM + singlet scalar (750GeV) + charged scalars/fermions
- WIMP DM models [K. Harigaya et al., arXiv: 1504.03402] (Wino/Higgsino DM, Minimal DM...)
- Other BSM particles ...

Indirect method is widely applicable!

(even though the 750 GeV diphoton excess is dead)

Powerful method to search new heav with large EW quantum number and

Examples

• Several models for the diphoton excess:

SM + singlet scalar (750GeV) + charged scalars/fermions

Motivations for indirect probe

Powerful method to search new heavy (non-colored) particles with large EW quantum number and/or large multiplicity

Examples

- Several models for the diphoton excess:
 SM + singlet scalar (750GeV) + charged scalars/fermions
- WIMP DM models [K. Harigaya et al., arXiv: 1504.03402] (Wino/Higgsino DM, Minimal DM...)
- Other BSM particles ...

Indirect method is widely applicable!

(even though the 750 GeV diphoton excess is dead)

Setup

 $SU(3)\times SU(2) \perp \times U(1) \gamma$

- SM + N vector-like fermions ψ of mass m, and rep. (1, n, Y)
- $e^+e^- \rightarrow \mu^+\mu^-$ process

Define

$$\Delta \chi^2 = \sum_{i: \text{bins}} \frac{(N_i^{\text{SM}+\psi} - N_i^{\text{SM}})^2}{N_i^{\text{SM}} + (\epsilon N_i^{\text{SM}})^2}$$

• Bins: 10 uniform intervals for the scattering angle $\cos\theta \in [-1, 1]$

Setup

 $SU(3)\times SU(2) \perp \times U(1) \gamma$

- SM + N vector-like fermions ψ of mass m, and rep. (1, n, Y)
- $e^+e^- \rightarrow \mu^+\mu^-$ process

Define

$$\Delta \chi^2 = \sum_{i: \text{bins}} \frac{(N_i^{\text{SM}+\psi} - N_i^{\text{SM}})^2}{N_i^{\text{SM}} + (\epsilon N_i^{\text{SM}})^2}$$

• Bins: 10 uniform intervals for the scattering angle $\cos\theta \in [-1, 1]$

Setup

 $SU(3)\times SU(2) \perp \times U(1) \gamma$

- SM + N vector-like fermions ψ of mass m, and rep. (1, n, Y)
- $e^+e^- \rightarrow \mu^+\mu^-$ process

Define

$$\Delta \chi^2 = \sum_{i: \text{bins}} \frac{(N_i^{\text{SM}+\psi} - N_i^{\text{SM}})^2}{N_i^{\text{SM}} + (\epsilon N_i^{\text{SM}})^2}$$

Systematic uncertainty

• Bins: 10 uniform intervals for the scattering angle $\cos\theta \in [-1, 1]$

- · Expected mass reach (95% C.L.)
- New particle: SU(2) triplet (n=3), Y=0

$$\sqrt{s} = 1 \text{ TeV}$$

- $m > \sqrt{s}/2$ can be probed!
- (Shaded region is favored by the diphoton excess)

- · Expected mass reach (95% C.L.)
- New particle: SU(2) triplet (n=3), Y=0
- $\sqrt{s} = 1 \text{ TeV}$
- $m > \sqrt{s}/2$ can be probed!
- (Shaded region is favored by the diphoton excess)

How about quantum number of SU(2)_L×U(1)_Y?

Is it possible to discriminate different BSM particles?

Angular distribution

- The deviation of the differential cross section from SM
- $e^+e^- \rightarrow \mu^+\mu^-$ process
- Angular distribution is different for different quantum number

$$\Delta \chi^2 = \sum_{i: \text{bins}} \frac{(N_i^{\text{SM}+\psi} - N_i^{\text{SM}})^2}{N_i^{\text{SM}} + (\epsilon N_i^{\text{SM}})^2}$$

Angular distribution

- The deviation of the differential cross section from SM
- $e^+e^- \rightarrow \mu^+\mu^-$ process
- Angular distribution is different for different quantum number

$$\Delta \chi^2 = \sum_{i: \, \text{bins}} \frac{(N_i^{\text{SM}} + \psi - N_i^{\text{SM}})^2}{N_i^{\text{SM}} + (\epsilon N_i^{\text{SM}})^2}$$

$$\text{SM+}\psi'$$

$SU(2)_L vs. U(1)_Y$

- $\delta\Pi_{WW}$, $\delta\Pi_{BB}$ are the vacuum polarizations of new particles
- Each point corresponds to a new physics model
- SM+U(1)_Y or SM+SU(2)_L can be distinguished from models outside the contour at 95 % C.L.

 $\sqrt{s} = 1000.0 \text{ GeV}$

$SU(2)_{L}$ vs. $U(1)_{Y}$

- $\delta\Pi_{WW}$, $\delta\Pi_{BB}$ are the vacuum polarizations of new particles
- Each point corresponds to a new physics model
- SM+U(1)_Y or SM+SU(2)_L can be distinguished from models outside the contour at 95 % C.L.

$SU(2)_L vs. U(1)_Y$

- $\delta\Pi_{WW}$, $\delta\Pi_{BB}$ are the vacuum polarizations of new particles
- Each point corresponds to a new physics model
- SM+U(1)_Y or SM+SU(2)_L can be distinguished from models outside the contour at 95 % C.L.

$SU(2)_{L}$ vs. $U(1)_{Y}$

- $\delta\Pi_{WW}$, $\delta\Pi_{BB}$ are the vacuum polarizations of new particles
- Each point corresponds to a new physics model
- Integrated luminosity 1 ab⁻¹ and □
 3 ab⁻¹ are considered
- SM+U(1)_Y or SM+SU(2)_L can be distinguished from models outside the contour at 95 % C.L.

It is possible to discriminate SU(2)_L×U(1)_Y quantum number!

Summary

Precision measurement of the process $e^+e^- \to f\bar{f}$ provides a clue for the beyond standard physics.

- 1. We can probe new charged fermions **even when they are out of kinematical reach** at the ILC.
- 2. We can discriminate $SU(2)_L \times U(1)_Y$ quantum numbers of the new particles by studying the angular distribution at the ILC.

Backup

- · Expected mass reach (95% C.L.)
- New particle: SU(2) triplet (n=3), Y=0

$$\sqrt{s} = 1 \text{ TeV}$$

- $m > \sqrt{s}/2$ can be probed!
- (Shaded region is favored by the diphoton excess)

- · Expected mass reach (95% C.L.)
- New particle: SU(2) triplet (n=3), Y=0

$$\sqrt{s} = 1 \text{ TeV}$$

- $m > \sqrt{s}/2$ can be probed!
- (Shaded region is favored by the diphoton excess)

- · Expected mass reach (95% C.L.)
- New particle: SU(2) triplet (n=3), Y=0

$$\sqrt{s} = 1 \text{ TeV}$$

- $m > \sqrt{s}/2$ can be probed!
- (Shaded region is favored by the diphoton excess)

How about quantum number of SU(2)×U(1)?

Is it possible to discriminate different BSM models?

750 GeV diphoton Excess (1)

SM + singlet pseudo-scalar (750GeV) + charged scalars/fermions

$$\mathcal{L}_{\psi} = \sum_{i} \bar{\psi}_{i} (i \not \!\!\!D - m) \psi_{i} - i \sum_{i} y S \bar{\psi}_{i} \gamma_{5} \psi_{i}$$

Narrow width approximation:

$$\sigma(pp \to S \to \gamma \gamma) \simeq \frac{C_{gg}}{s \, m_S} \Gamma(S \to \gamma \gamma)$$

Assuming

$$\sqrt{s} = 13 \text{ TeV}$$
 $\sigma = 3 - 10 \text{ fb}$ $C_{gg} \simeq 2.1 \times 10^3$ $m_S = 750 \text{ GeV}$

Decay width

$$\Gamma(S \to \gamma \gamma) = 0.45 - 1.5 \text{ MeV}$$

is necessary.

750 GeV diphoton excess (2)

Functions

$$C_{gg} = (\pi^2/8) \int_0^1 dx_1 \int_0^1 dx_2 \delta(x_1 x_2 - m_S^2/s) g(x_1) g(x_2)$$

$$\Gamma(S \to \gamma \gamma) \simeq \frac{\alpha^2}{256\pi^3} m_S^3 \left[\frac{y}{m} \text{tr} Q^2 L \left(\frac{m_S^2}{4m^2} \right) \right]^2$$

$$L(\tau) = \begin{cases} 2\tau^{-2} \left(\tau + (\tau - 1) \arcsin^2 \sqrt{\tau}\right) & \text{for scalar } S, \\ 2\tau^{-1} \arcsin^2 \sqrt{\tau} & \text{for pseudo-scalar } S, \end{cases}$$

$$\operatorname{tr}Q^2 = N \left[\frac{n(n-1)(n+1)}{12} + nY^2 \right]$$

Vacuum polarization

$$\delta\Pi_{VV}(q^2, m^2) \equiv \frac{1}{2}g_V^2 C_{VV} I(q^2/m^2)$$

$$C_{WW} = \frac{4}{3}Nn(n-1)(n+1),$$

 $C_{BB} = 16nNY^{2}.$

$$I(x) \equiv \frac{1}{16\pi^2} \int_0^1 dy \ y(1-y) \ln(1-y(1-y)x)$$

for fermion

$$I(x) \equiv \frac{1}{16\pi^2} \int_0^1 dy \ (1-2y)^2 \ln(1-y(1-y)x)$$
 for scalar

Particle representation

Electromagnetic charge can be written as follows,

$$trQ^2 = \frac{1}{16} \left(C_{WW} + C_{BB} \right)$$

We parametrize the ratio of SU(2) and U(1) by

$$R_{21} \equiv C_{WW}/C_{BB} = \frac{n^2 - 1}{12Y^2}$$

Amplitudes (1)

 $e^+e^- \rightarrow \mu^+\mu^-$ matrix element

$$\mathcal{M}^{\mathrm{SM},\psi}(e_{h}^{-}e_{\bar{h}}^{+} \to \mu_{h'}^{-}\mu_{\bar{h}'}^{+}) = \sum_{V,V'=\gamma,Z} C_{e_{h}V} C_{\mu_{h'}V'} D_{VV'}^{\mathrm{SM},\psi}(s) [\bar{u}_{h'}\gamma^{\mu}v_{\bar{h}'}] [\bar{v}_{\bar{h}}\gamma_{\mu}u_{h}]$$

$$e^{-} \psi$$

$$\gamma,Z \qquad \gamma,Z \qquad \mu^{-}$$

$$e^{+} \qquad \psi \qquad \psi$$

$$\mu^{+}$$

Coupling to gauge boson

$$C_{e_L Z} = C_{\mu_L Z} = g_Z (-1/2 + \sin^2 \theta_W),$$

$$C_{e_R Z} = C_{\mu_R Z} = g_Z \sin^2 \theta_W,$$

$$C_{e_L \gamma} = C_{e_R \gamma} = C_{\mu_L \gamma} = C_{\mu_R \gamma} = -e \qquad g_Z = e/(\sin \theta_W \cos \theta_W)$$

Amplitude (2)

Photon and Z boson propagator

$$D_{VV'}^{SM}(q^2) = \frac{\delta_{VV'}}{q^2 - m_V^2},$$

$$D_{VV'}^{\psi}(q^2) = \frac{q^2}{(q^2 - m_V^2)(q^2 - m_{V'}^2)} \delta\Pi_{VV'}(q^2, m)$$

where,

$$\delta\Pi_{\gamma\gamma}(q^2, m) = \delta\Pi_{WW}(q^2, m)\sin^2\theta_W + \delta\Pi_{BB}(q^2, m)\cos^2\theta_W,$$

$$\delta\Pi_{ZZ}(q^2, m) = \delta\Pi_{WW}(q^2, m)\cos^2\theta_W + \delta\Pi_{BB}(q^2, m)\sin^2\theta_W,$$

$$\delta\Pi_{\gamma Z}(q^2, m) = \left[\delta\Pi_{WW}(q^2, m) - \delta\Pi_{BB}(q^2, m)\right]\sin\theta_W\cos\theta_W$$