Scaling properties of pain intensity ratings in paediatric populations using the Faces Pain Scale-revised

Alexander Avian

Institute for Medical Informatics,
Statistics and Documentation
29.11.2019

Insufficient pain assessment

• 2000: 4% - 7% of hospitals have a frequent pain assessment

Table 3. Percentage stating frequent use of pain measurement tools; absolute numbers within parentheses.

Age (y)	0-1	1–4	5–7	>7
Visual Analogue Scale	1% (2)	4% (6)	17% (26)	35% (54)
Faces scale	7% (10)	11% (18)	18% (28)	8% (13)
Behavioural observation scale	8% (11)	6% (10)	3% (5)	3% (5)
Total number of answers	146	158	153	153

• Acutal: 2/3 of the hospitals asses pain at least once a day

Introduction

An adequate assessment tool is crucial for effective pain management

Avian et al. 2016b

Introduction

- Numeric scales are too complex for children
- ➤ The Faces Pain Scale-revised (FPS-r) has been developed as a linear interval scale.
- > In research different approaches are used for analysis:
 - parametric analyses (e.g. Birnie et al., 2016)
 - nonparametric analyses (e.g. de Azevedo et al., 2014)

Introduction: Development of FPS-r

- 1. scroll back and forth through the facial expression
- 2. a number between the 0 and 5 endpoints (i.e. 1, 2, 3, or 4) and asked to adjust the facial expression until it was perceived to correspond to that scale value of pain intensity.
- 3. 20 trial per number
- 4. in sum 80 trials per respondent

Hicks et al. 2001 5

Introduction: Development of FPS-r

Fig. 2. Study 1: mean face selected (± 1 SEM) by hypothetical pain intensity level for FPS-R.

Aim of the Study

The primary aim of the current study was to evaluate the scale properties of the FPS-r and therefore assess whether the assumption that they have the properties of an interval scale holds.

Hicks et al. 2001 7

- > Analysis of responses:
 - response categories order
 - response category widths
 - fit of three different item response theory models for polytomous responses (Ostini and Nering, 2006).

Category response curves

- > Analysis of responses:
 - response categories order
 - response category widths
 - fit of three different item response theory models for polytomous responses (Ostini and Nering, 2006).

Category boundary curves

- > Analysis of responses:
 - response categories order
 - response category widths
 - fit of three different item response theory models for polytomous responses (Ostini and Nering, 2006).

> Three different samples

Sample		Pain items	n	Age (years)	f/m
1	Avian et al. 2016a	3	246	14.4 ± 2.0 range: 10 - 18	101/145
2	Avian et al. 2017	9	240	14.7 ± 1.9 range: 10 - 18	103/137
3	Avian et al. 2017	3	2266	13.3 ± 2.7 range: 4 - 18	1041/1200 (missing: 25)

Response category order

		ordered
Sample 1	Movement	yes
	Worst	yes
	At rest	yes
Sample 2	worst	yes
	getting up from bed	yes
	turning over in the bed	yes
	coughing	no
	lying in bed	yes
	eating	yes
	drinking	yes
Sample 3	Movement	yes
	Worst	yes
	At rest	yes

➤ Fit of three different item response theory models for polytomous responses

		AIC	AICc	BIC	SABIC	RSM vs. PCM sign. (df; χ²)
Study 1	RSM	1789.1	1789.7	1817.2	1791.8	.131 (8; 12.5)
	GRM	1779.5	1782.5	1842.6	1785.5	
	PCM	1792.6	1795.0	1848.7	1798.0	
Study 2	RSM	3120.3	3121.2	3155.1	3123.4	<.001 (12; 67.4)
	GRM	3062.7	3070.4	3160.1	3071.4	
	PCM	3076.9	3081.5	3153.4	3083.7	
Study 3	RSM	17107.5	17107.6	17153.3	17127.9	.052 (8; 15.4)
	GRM	16936.7	16937.0	17039.7	16982.5	
	PCM	17108.1	17108.4	17199.7	17148.9	

Conclusion

- > Responses to the FPS-r cannot be assumed interval scaled.
 - Nonparametric parameters (e.g. median, interquartile range) or the number of patients above/below a certain pain level should be used.
 - Parametric parameters (e.g. mean, standard deviation) for reporting FPS-r responses should not be used.
- > In children/adolescents no influence of age (data not shown)
- > Similar results in:
 - other pain scales (data not shown)
 - adults (data not shown)
- ➤ In general: Responses to pain scales cannot be assumed interval scaled. (e.g. numeric rating scale, FPS-r)

Avian, A; Messerer, B; Frey, A; Meissner, W; Weinberg, A; Ravekes, W; Berghold, A. Scaling properties of pain intensity ratings in paediatric populations using the Faces Pain Scale-revised: Secondary analyses of published data based on the item response theory. Int J Nurs Stud. 2018; 87:49-59

References

- Avian, A., Messerer, B., Weinberg, A., Meissner, W., Schneider, C., Berghold, A., 2016a. The impact of item order and sex on pain expression in children and adolescents. Health Psychol. 35, 483–491.
- Avian, A; Messerer, B; Wünsch, G; Weinberg, A; Kiesling, AS; Berghold, A. Postoperative paediatric pain prevalence: A retrospective analysis in a university teaching hospital. Int J Nurs Stud. 2016b; 62(7):36-43
- Avian, A., Messerer, B., Meissner, W., Sandner-Kiesling, A., Kammel, J., Labugger, M., Weinberg, A., Berghold, A.,
 2017. Using a worst pain intensity measure in children and adolescents. J. Adv. Nurs. 73, 1873–1883.
- Birnie, K.A., Chambers, C.T., Chorney, J., Fernandez, C.V., McGrath, P.J., 2016. Dyadic analysis of child and parent trait and state pain catastrophizing in the process of children's pain communication. Pain 157, 938–948.
- Bremerich DH, Neidhart G, Roth B, Kessker P, Behne M. Postoperative Schmerztherapie im Kindesalter. Ergebnisse einer reprsentativen Umfrage. Anaesthesist 2001a;50:102–12.
- de Azevedo, C.B., Carenzi, L.R., de Queiroz, D.L.C., Anselmo-Lima, W.T., Valera, F.C.P., Tamashiro, E., 2014. Clinical utility of PPPM and FPS-R to quantify post-tonsillectomy pain in children. Int. J. Pediatr. Otorhinolaryngol. 78, 296–299.
- Emons MI, Petzke F, Stamer UM, Meißner W, Koschwitz R, Erlenwein J. Current practice of acute pain management in children—a national follow-up survey in Germany. Pediatric Anesthesia 2016. 26 (2016) 883–890
- Hicks, C.L., von Baeyer, C.L., Spafford, P.A., van Korlaar, I., Goodenough, B., 2001. The faces Pain Scale revised: toward a common metric in pediatric pain measurement. Pain 93, 173–183.
- Karling M, Remstrom M, Ljungman G. Acute postoperative pain in children: a Swedish nationwide survey. Acta Paediatr 2002;91:660–6.
- Ostini, R., Nering, M.L., 2006. Polytomous Item Response Theory Models. Sage Publications, Thousand Oaks CA.
- Stamer UM, Mpasios N, Maier Ch, Stuber. Postoperative analgesia in children current practice in Germany. European Journal of Pain 9 (2005) 555–560.