- iii) El sistema Ax = b tiene una solución única para cada *n*-vector **b**.
- iv) A es equivalente por renglones a la matriz identidad, I_n , de $n \times n$.
- v) A se puede expresar como el producto de matrices elementales.
- vi) La forma escalonada por renglones de A tiene n pivotes.
- vii) Las columnas (y renglones) de A son linealmente independientes.
- viii) det $A \neq 0$.
- ix) $\nu(A) = 0$.
- **x)** $\rho(A) = n$.
- xi) La transformación lineal T de \mathbb{R}^n en \mathbb{R}^n definida por $T\mathbf{x} = A\mathbf{x}$ es un isomorfismo.
- Sea $T: V \rightarrow W$ un isomorfismo:
 - i) Si v_1, v_2, \ldots, v_n genera a V, entonces Tv_1, Tv_2, \ldots, Tv_n genera a W.
 - ii) Si $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ son linealmente independientes en V, entonces $T\mathbf{v}_1, T\mathbf{v}_2, \dots, T\mathbf{v}_n$ son linealmente independentes en W.
 - iii) Si $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ es una base en V, entonces $\{T\mathbf{v}_1, T\mathbf{v}_2, \dots, T\mathbf{v}_n\}$ es una base en W.
 - iv) Si V tiene dimensión finita, entonces W tiene dimensión finita y dim $V = \dim W$.

AUTOEVALUACIÓN 7.4

Indique si los enunciados siguientes son verdaderos o falsos.

- I) Una transformación lineal de $\mathbb{R}^n \to \mathbb{R}^m$ con $n \neq m$ no puede ser 1-1 y sobre a la vez.
- II) Si dim V = 5 y dim W = 7, es posible encontrar un isomorfismo T de V en W.
- III) Si T es 1-1, entonces nu $T = \{0\}$.
- IV) Si T es un isomorfismo de un espacio vectorial V en \mathbb{R}^6 , entonces $\rho(T) = 6$.
- V) Si A_T es una matriz de transformación de un isomorfismo de \mathbb{R}^6 en \mathbb{R}^6 , entonces det $A_T \neq 0$.

Respuestas a la autoevaluación

- I) V
- II) F
- III) V
- IV) V
- V) V

PROBLEMAS 7.4

- **1.** Demuestre que $T: \mathbb{M}_{nn} \to \mathbb{M}_{nn}$ definida por $TA = A^{\top}$ es un isomorfismo.
- **2.** Demuestre que $T: \mathbb{R}^n \to \mathbb{R}^n$ es un isomorfismo si y sólo si A_T es invertible.
- *3. Sean V y W dos espacios vectoriales reales de dimensión n y sean B_1 y B_2 dos bases para V y W, respectivamente. Sea A_T la matriz de transformación relativa a las bases B_1 y B_2 . Demuestre que T: $V \to W$ es un isomorfismo si y sólo si det $A_T \ne 0$.
- **4.** Encuentre un isomorfismo entre D_n , las matrices diagonales de $n \times n$ con elementos reales, y \mathbb{R}^n . [Sugerencia: Analice primero el caso n = 2.]