Nom:	DM5							
Prénom:	APP	ANA	REA	VAL	СОМ	RCO		
EXERCICE 1 – Tremplin	A1.1	ANA	KEA	VAL	COM	Reo		
1. $v(t) = v_A - g \sin \alpha \times t$.			••		••			
2. $v_l = \sqrt{2gR\cos\alpha} = 5.8 \mathrm{m \cdot s^{-1}}.$		••						
3. $t_B = \frac{v_A - \sqrt{v_A^2 - v_l^2}}{g \sin \alpha}$.			••					
4. $v_B = \sqrt{v_A^2 - v_l^2}$.			•					
5. Selon $\overrightarrow{e_r}: -mR\dot{\theta}^2 = -mg\cos\theta + R_N$.			••		•			
Selon $\overrightarrow{e_{\theta}}: mR\ddot{\theta} = mg\sin\theta$.								
6. $\dot{\theta} = \sqrt{\frac{v_B^2}{R^2} + \frac{2g}{R}(\cos\alpha - \cos\theta)}$.		••						
7. $R_N = -\frac{mv_B^2}{R} + mg(3\cos\theta - 2\cos\alpha)$.			••					
8. $v_B < \sqrt{Rg\cos\alpha} \text{ et } v_A < \sqrt{3Rg\cos\alpha} = 7.1 \text{ m} \cdot \text{s}^{-1}.$		•••						
9. $\theta_d = \arccos\left(\frac{v_A^2}{3Rg}\right) = 34^\circ$.		••			•			
Présentation de la copie					••			
Total	APP	ANA	REA	VAL	сом	RCO		
Nombre total de points	0	9	9	0	6	0		
Nombre de points obtenus								
Commentaires:	$\eta =$	%;	$\tau =$	%;		/24		

Nom:	DM5							
Prénom:	APP	ANA	REA	VAL	сом	RCO		
EXERCICE 2 – Tremplin								
1. $v(t) = v_A - g \sin \alpha \times t$.			••		••			
2. $v_l = \sqrt{2gR\cos\alpha} = 5.8 \mathrm{m \cdot s^{-1}}.$		••						
3. $t_B = rac{v_A - \sqrt{v_A^2 - v_l^2}}{g \sin lpha}$.			••					
4. $v_B = \sqrt{v_A^2 - v_l^2}$.			•					
5. Selon $\overrightarrow{e_r}: -mR\dot{\theta}^2 = -mg\cos\theta + R_N$.			••		•			
Selon $\overrightarrow{e_{\theta}} : mR\hat{\theta} = mg\sin\theta$.								
6. $\dot{\theta} = \sqrt{\frac{v_B^2}{R^2} + \frac{2g}{R}(\cos\alpha - \cos\theta)}$.		••						
7. $R_N = -\frac{mv_B^2}{R} + mg(3\cos\theta - 2\cos\alpha).$			••					
8. $v_B < \sqrt{Rg\cos\alpha} \text{ et } v_A < \sqrt{3Rg\cos\alpha} = 7.1 \text{ m} \cdot \text{s}^{-1}$.		•••						
9. $\theta_d = \arccos\left(\frac{v_A^2}{3Rg}\right) = 34^\circ$.		••			•			
Présentation de la copie					••			
Total	APP	ANA	REA	VAL	сом	RCO		
Nombre total de points	0	9	9	0	6	0		
Nombre de points obtenus								
Commentaires:	$\eta =$	%;	$\tau =$	%;		/24		