# Introdução aos modelos DSGE

Produção Domiciliar e Ciclos de Negócio Reais (RBC)

João Ricardo Costa Filho

### Sobre modelos

Good ideas shine far more brightly when supported by good models

Avinash Dixit ("The making of Economic Policy", 1996, p. 17)

All models are wrong.

**George Box** 

Models are to be used, not believed. **Henri Theil** ("Principles of Econometrics", 1971, p. vi)

# A economia

Seguindo o capítulo 6 de Cooley and Prescott (1995), trabalharemos com **três** tipos de agentes representativos:

Famílias

- Famílias
  - Oferecem trabalho.

Seguindo o capítulo 6 de Cooley and Prescott (1995), trabalharemos com **três** tipos de agentes representativos:

#### Famílias

- Oferecem trabalho.
- Detêm o capital.

- Famílias
  - Oferecem trabalho.
  - Detêm o capital.
- Podem alocar o seu tempo de três formas:

- Famílias
  - Oferecem trabalho.
  - Detêm o capital.
- Podem alocar o seu tempo de três formas: trabalho no mercado,

- Famílias
  - Oferecem trabalho.
  - Detêm o capital.
- Podem alocar o seu tempo de três formas: trabalho no mercado, trabalho domiciliar

- Famílias
  - Oferecem trabalho.
  - Detêm o capital.
- Podem alocar o seu tempo de três formas: trabalho no mercado, trabalho domiciliar ou lazer.

- Famílias
  - Oferecem trabalho.
  - Detêm o capital.
- Podem alocar o seu tempo de três formas: trabalho no mercado, trabalho domiciliar ou lazer.
- Empresas

Seguindo o capítulo 6 de Cooley and Prescott (1995), trabalharemos com **três** tipos de agentes representativos:

#### Famílias

- Oferecem trabalho.
- Detêm o capital.
- Podem alocar o seu tempo de três formas: trabalho no mercado, trabalho domiciliar ou lazer.

### Empresas

Recrutam trabalhadores.

Seguindo o capítulo 6 de Cooley and Prescott (1995), trabalharemos com **três** tipos de agentes representativos:

#### Famílias

- Oferecem trabalho.
- Detêm o capital.
- Podem alocar o seu tempo de três formas: trabalho no mercado, trabalho domiciliar ou lazer.

### Empresas

- Recrutam trabalhadores.
  - Utilizam o estoque de capital.

- Famílias
  - Oferecem trabalho.
  - Detêm o capital.
- Podem alocar o seu tempo de três formas: trabalho no mercado, trabalho domiciliar ou lazer.
- Empresas
  - Recrutam trabalhadores.
    - Utilizam o estoque de capital.
- Governo

Seguindo o capítulo 6 de Cooley and Prescott (1995), trabalharemos com **três** tipos de agentes representativos:

#### Famílias

- Oferecem trabalho.
- Detêm o capital.
- Podem alocar o seu tempo de três formas: trabalho no mercado, trabalho domiciliar ou lazer.

### Empresas

- Recrutam trabalhadores.
  - Utilizam o estoque de capital.

#### Governo

 Tributa a renda (do capital e do trabalho) e realiza transferências (lump sum). "Bird's eye view"

Vamos introduzir o governo e a produção domiciliar no Fluxo Circular da Renda.

# **Famílias**

As famílias possuem preferências acerca do consumo de bens e serviços, *c*,

As famílias possuem preferências acerca do consumo de bens e serviços, c, (tanto aqueles adquiridos no mercado,  $c_M$ ,

As famílias possuem preferências acerca do consumo de bens e serviços, c, (tanto aqueles adquiridos no mercado,  $c_M$ , quanto aqueles produzidos no domicílio,  $c_H$ )

As famílias possuem preferências acerca do consumo de bens e serviços, c, (tanto aqueles adquiridos no mercado,  $c_M$ , quanto aqueles produzidos no domicílio,  $c_H$ ) e do lazer  $\ell$  de tal forma que maximizam a seguinte utilidade intertemporal:

As famílias possuem preferências acerca do consumo de bens e serviços, c, (tanto aqueles adquiridos no mercado,  $c_M$ , quanto aqueles produzidos no domicílio,  $c_H$ ) e do lazer  $\ell$  de tal forma que maximizam a seguinte utilidade intertemporal:

$$\max E_t \sum_{s=t}^{\infty} \beta^{t-s} u(c_s, \ell_s), \tag{1}$$

As famílias possuem preferências acerca do consumo de bens e serviços, c, (tanto aqueles adquiridos no mercado,  $c_M$ , quanto aqueles produzidos no domicílio,  $c_H$ ) e do lazer  $\ell$  de tal forma que maximizam a seguinte utilidade intertemporal:

$$\max E_t \sum_{s=t}^{\infty} \beta^{t-s} u(c_s, \ell_s), \tag{1}$$

s.a.

$$c_{M,t} + x_{M,t} + x_{Ht}$$

As famílias possuem preferências acerca do consumo de bens e serviços, c, (tanto aqueles adquiridos no mercado,  $c_M$ , quanto aqueles produzidos no domicílio,  $c_H$ ) e do lazer  $\ell$  de tal forma que maximizam a seguinte utilidade intertemporal:

$$\max E_t \sum_{s=t}^{\infty} \beta^{t-s} u(c_s, \ell_s), \tag{1}$$

s.a.

$$c_{M,t} + x_{M,t} + x_{Ht} = w_t(1 - \tau_H)h_{M,t} + r_t(1 - \tau_K) + \tau_K \delta_K k_{M,t} + T_t,$$
(2)

As famílias possuem preferências acerca do consumo de bens e serviços, c, (tanto aqueles adquiridos no mercado,  $c_M$ , quanto aqueles produzidos no domicílio,  $c_H$ ) e do lazer  $\ell$  de tal forma que maximizam a seguinte utilidade intertemporal:

$$\max E_t \sum_{s=t}^{\infty} \beta^{t-s} u(c_s, \ell_s), \tag{1}$$

s.a.

$$c_{M,t} + x_{M,t} + x_{Ht} = w_t(1 - \tau_H)h_{M,t} + r_t(1 - \tau_K) + \tau_K \delta_K k_{M,t} + T_t,$$
(2)

$$\ell_t = 1 - h_{M,t} - h_{H,t} \tag{3}$$

onde  $h_M$  representa as horas de atividade laboral no mercado e  $l_H$  as horas de trabalho domiciliar.

### **Preferências**

As famílias derivam utilidade tanto do consumo (c), quanto do lazer  $(\ell)$ , com base na seguinte função utilidade:

$$u(c_t, I_t) = b \ln c_t + (1 - b) \ln \ell_t \tag{4}$$

onde b é um parâmetro que mede o peso relativo de cada componente da função utilidade.

### **Preferências**

As famílias derivam utilidade tanto do consumo (c), quanto do lazer  $(\ell)$ , com base na seguinte função utilidade:

$$u(c_t, l_t) = b \ln c_t + (1 - b) \ln \ell_t \tag{4}$$

onde *b* é um parâmetro que mede o peso relativo de cada componente da função utilidade. Elas combinam o consumo no mercado e o consumo domiciliar com uma função "CES":

$$c_t = \left[ac_{M,t}^e + (1-a)c_{H,t}^e\right]^{\frac{1}{e}} \tag{5}$$

onde  $\frac{1}{1-e}$  representa a elasticidade de substituição entre consumo no mercado e no domicílio e a é o peso dado ao consumo de bens produzidos no mercado.

# Produção domiciliar

As famílias as próprias responsáveis pela produção dos serviços domiciliares. Elas combinam capital e trabalho da seguinte forma:

### Produção domiciliar

As famílias as próprias responsáveis pela produção dos serviços domiciliares. Elas combinam capital e trabalho da seguinte forma:

$$c_{H,t} = k_{H,t}^{\eta} (z_{H,t} h_{H,t})^{1-\eta},$$
 (6)

onde  $z_{H,t}$  representa a produtividade do trabalho empregado na produção domiciliar,

## Produção domiciliar

As famílias as próprias responsáveis pela produção dos serviços domiciliares. Elas combinam capital e trabalho da seguinte forma:

$$c_{H,t} = k_{H,t}^{\eta} (z_{H,t} h_{H,t})^{1-\eta},$$
 (6)

onde  $z_{H,t}$  representa a produtividade do trabalho empregado na produção domiciliar, cuja dinâmica é dada por:

$$z_{H,t+1} = (1 - \rho_H) \bar{z}_H + \rho_H z_{H,t} + \epsilon_{H,t+1},$$
 (7)

onde 0 <  $\rho_{H}$  < 1.

A lei de movimento do estoque de capital utilizado no **mercado** é dada por:

$$k_{M,t+1} = (1 - \delta_M) k_{M,t} + x_{M,t}.$$
 (8)

A lei de movimento do estoque de capital utilizado no **mercado** é dada por:

$$k_{M,t+1} = (1 - \delta_M) k_{M,t} + x_{M,t}.$$
 (8)

A lei de movimento do estoque de capital utilizado no **mercado** é dada por:

$$k_{H,t+1} = (1 - \delta_H)k_{H,t} + x_{H,t}.$$
 (9)

A lei de movimento do estoque de capital utilizado no **mercado** é dada por:

 $k_{M,t+1} = (1 - \delta_M) k_{M,t} + x_{M,t}.$  (8)

A lei de movimento do estoque de capital utilizado no **mercado** é dada por:

$$k_{H,t+1} = (1 - \delta_H)k_{H,t} + x_{H,t}.$$
 (9)

O estoque total de capital e o investimento agregado da economia são dados por, respectivamente:

$$k_t = k_{M,t} + k_{H,t},$$
 (10)

A lei de movimento do estoque de capital utilizado no **mercado** é dada por:

$$k_{M,t+1} = (1 - \delta_M) k_{M,t} + x_{M,t}.$$
 (8)

A lei de movimento do estoque de capital utilizado no **mercado** é dada por:

$$k_{H,t+1} = (1 - \delta_H)k_{H,t} + x_{H,t}.$$
 (9)

O estoque total de capital e o investimento agregado da economia são dados por, respectivamente:

$$k_t = k_{M,t} + k_{H,t},$$
 (10)

$$x_t = x_{M,t} + x_{H,t}. \tag{11}$$

### Lagrangiano

A partir das equações (1), (2), (3), (4), (5), (6), (8) e (9), temos:

$$\begin{split} \mathcal{L} &= E_{t} \sum_{s=t}^{\infty} \beta^{t-s} \left\{ b \ln \left\{ \left[ a \left( w_{s} \left( 1 - \tau_{H} \right) h_{M,t} + r_{s} \left( 1 - \tau_{K} \right) k_{M,s} + \tau_{K} \delta_{M} k_{M,s} + T_{t} \right. \right. \right. \\ &\left. - \left( k_{M,s+1} - \left( 1 - \delta_{M} \right) k_{M,s} - \left( k_{H,s+1} - \left( 1 - \delta_{H} \right) k_{H,s} \right)^{e} + \left( 1 - a \left( k_{H,s}^{\eta} \left( z_{H,s} h_{H,s} \right)^{1-\eta} \right)^{e} \right) \right]^{\frac{1}{e}} \right\} \\ &\left. + \left( 1 - b \right) \ln \left( 1 - h_{M,s} - h_{H,s} \right) \right. \end{split}$$

$$\frac{\partial \mathcal{L}}{\partial h_{M,t}} = 0 \iff abC_t^{-e}c_{Mt}^{e-1}w_t(1-\tau_H) = (1-b)\frac{1}{\ell_t}, \quad (12)$$

$$\frac{\partial \mathcal{L}}{\partial h_{M,t}} = 0 \iff abC_t^{-e}c_{Mt}^{e-1}w_t(1-\tau_H) = (1-b)\frac{1}{\ell_t}, \quad (12)$$

$$\frac{\partial \mathcal{L}}{\partial h_{H,t}} = 0 \iff bc_t^{-e}c_{Ht}^e(1-a)(1-\eta)\frac{1}{h_{Ht}} = (1-b)\frac{1}{\ell_t}, \quad (13)$$

$$\frac{\partial \mathcal{L}}{\partial h_{M,t}} = 0 \iff abC_t^{-e}c_{Mt}^{e-1}w_t(1-\tau_H) = (1-b)\frac{1}{\ell_t}, \quad (12)$$

$$\frac{\partial \mathcal{L}}{\partial h_{H,t}} = 0 \iff bc_t^{-e}c_{Ht}^e(1-a)(1-\eta)\frac{1}{h_{Ht}} = (1-b)\frac{1}{\ell_t}, \quad (13)$$

$$\frac{\partial \mathcal{L}}{\partial k_{M,t}} = 0 \iff \beta E_t \left[c_{t+1}^{-e}c_{Mt+1}^{e-1}\right] \left(E_t \left[r_{t+1}\right] (1-\tau_K) + \tau_K \delta_M + (1-\delta_M) (14)$$

$$\frac{\partial \mathcal{L}}{\partial h_{M,t}} = 0 \iff abC_{t}^{-e}c_{Mt}^{e-1}w_{t}(1 - \tau_{H}) = (1 - b)\frac{1}{\ell_{t}}, \quad (12)$$

$$\frac{\partial \mathcal{L}}{\partial h_{H,t}} = 0 \iff bc_{t}^{-e}c_{Ht}^{e}(1 - a)(1 - \eta)\frac{1}{h_{Ht}} = (1 - b)\frac{1}{\ell_{t}}, \quad (13)$$

$$\frac{\partial \mathcal{L}}{\partial k_{M,t}} = 0 \iff \beta E_{t} \left[c_{t+1}^{-e}c_{Mt+1}^{e-1}\right] \left(E_{t} \left[r_{t+1}\right] (1 - \tau_{K}) + \tau_{K}\delta_{M} + (1 - \delta_{M})\right)$$

$$\frac{\partial \mathcal{L}}{\partial k_{H,t}} = 0 \iff c_{t}^{-e}ac_{Mt}^{e-1} = \beta E_{t} \left[c_{t+1}^{-e}\right] \left(aE_{t} \left[c_{Mt+1}^{e-1}\right] (1 - \delta_{H}) + (1 - \delta_{H})\right)$$

$$\frac{\partial \mathcal{L}}{\partial k_{H,t}} = 0 \iff c_{t}^{-e}ac_{Mt}^{e-1} = \beta E_{t} \left[c_{t+1}^{-e}\right] \left(aE_{t} \left[c_{Mt+1}^{e-1}\right] (1 - \delta_{H}) + (1 - \delta_{H})\right)$$

$$\frac{\partial \mathcal{L}}{\partial k_{H,t}} = 0 \iff c_{t}^{-e}ac_{Mt}^{e-1} = \beta E_{t} \left[c_{t+1}^{-e}\right] \left(aE_{t} \left[c_{Mt+1}^{e-1}\right] (1 - \delta_{H}) + (1 - \delta_{H})\right)$$

$$\frac{\partial \mathcal{L}}{\partial k_{H,t}} = 0 \iff c_{t}^{-e}ac_{Mt}^{e-1} = \beta E_{t} \left[c_{t+1}^{-e}\right] \left(aE_{t} \left[c_{Mt+1}^{e-1}\right] (1 - \delta_{H}) + (1 - \delta_{H})\right)$$

$$\frac{\partial \mathcal{L}}{\partial k_{H,t}} = 0 \iff c_{t}^{-e}ac_{Mt}^{e-1} = \beta E_{t} \left[c_{t+1}^{-e}\right] \left(aE_{t} \left[c_{Mt+1}^{e-1}\right] (1 - \delta_{H}) + (1 - \delta_{H})\right)$$

$$\frac{\partial \mathcal{L}}{\partial k_{H,t}} = 0 \iff c_{t}^{-e}ac_{Mt}^{e-1} = \beta E_{t} \left[c_{t+1}^{-e}\right] \left(aE_{t} \left[c_{Mt+1}^{e-1}\right] (1 - \delta_{H}) + (1 - \delta_{H})$$

$$\frac{\partial \mathcal{L}}{\partial k_{H,t}} = 0 \iff c_{t}^{-e}ac_{Mt}^{e-1} = \beta E_{t} \left[c_{t+1}^{-e}\right] \left(aE_{t} \left[c_{Mt+1}^{e-1}\right] (1 - \delta_{H}) + (1 - \delta_{H})$$

$$\frac{\partial \mathcal{L}}{\partial k_{H,t}} = 0 \iff c_{t}^{-e}ac_{Mt}^{e-1} = \beta E_{t} \left[c_{t+1}^{-e}\right] \left(aE_{t} \left[c_{Mt+1}^{e-1}\right] (1 - \delta_{H}) + (1 - \delta_{H})$$

$$\frac{\partial \mathcal{L}}{\partial k_{H,t}} = 0 \iff c_{t}^{-e}ac_{Mt}^{e-1} = \beta E_{t} \left[c_{t+1}^{-e}\right] \left(aE_{t} \left[c_{Mt+1}^{e-1}\right] (1 - \delta_{H}) + (1 - \delta_{H})$$

$$\frac{\partial \mathcal{L}}{\partial h_{M,t}} = 0 \iff abC_{t}^{-e}c_{Mt}^{e-1}w_{t}(1 - \tau_{H}) = (1 - b)\frac{1}{\ell_{t}}, \quad (12)$$

$$\frac{\partial \mathcal{L}}{\partial h_{H,t}} = 0 \iff bc_{t}^{-e}c_{Ht}^{e}(1 - a)(1 - \eta)\frac{1}{h_{Ht}} = (1 - b)\frac{1}{\ell_{t}}, \quad (13)$$

$$\frac{\partial \mathcal{L}}{\partial k_{M,t}} = 0 \iff \beta E_{t} \left[c_{t+1}^{-e}c_{Mt+1}^{e-1}\right] \left(E_{t} \left[r_{t+1}\right] (1 - \tau_{K}) + \tau_{K}\delta_{M} + (1 - \delta_{M})\right)$$

$$\frac{\partial \mathcal{L}}{\partial k_{H,t}} = 0 \iff c_{t}^{-e}ac_{Mt}^{e-1} = \beta E_{t} \left[c_{t+1}^{-e}\right] \left(aE_{t} \left[c_{Mt+1}^{e-1}\right] (1 - \delta_{H}) + (1 - \delta_{H})\right)$$

$$\frac{\partial \mathcal{L}}{\partial k_{H,t}} = 0 \iff c_{t}^{-e}ac_{Mt}^{e-1} = \beta E_{t} \left[c_{t+1}^{-e}\right] \left(aE_{t} \left[c_{Mt+1}^{e-1}\right] (1 - \delta_{H}) + (1 - \delta_{H})\right)$$

$$\frac{\partial \mathcal{L}}{\partial k_{H,t}} = 0 \iff c_{t}^{-e}ac_{Mt}^{e-1} = \beta E_{t} \left[c_{t+1}^{-e}\right] \left(aE_{t} \left[c_{Mt+1}^{e-1}\right] (1 - \delta_{H}) + (1 - \delta_{H})\right)$$

$$\frac{\partial \mathcal{L}}{\partial k_{H,t}} = 0 \iff c_{t}^{-e}ac_{Mt}^{e-1} = \beta E_{t} \left[c_{t+1}^{-e}\right] \left(aE_{t} \left[c_{Mt+1}^{e-1}\right] (1 - \delta_{H}) + (1 - \delta_{H})\right)$$

$$\frac{\partial \mathcal{L}}{\partial k_{H,t}} = 0 \iff c_{t}^{-e}ac_{Mt}^{e-1} = \beta E_{t} \left[c_{t+1}^{-e}\right] \left(aE_{t} \left[c_{Mt+1}^{e-1}\right] (1 - \delta_{H}) + (1 - \delta_{H})\right)$$

$$\frac{\partial \mathcal{L}}{\partial k_{H,t}} = 0 \iff c_{t}^{-e}ac_{Mt}^{e-1} = \beta E_{t} \left[c_{t+1}^{-e}\right] \left(aE_{t} \left[c_{Mt+1}^{e-1}\right] (1 - \delta_{H}) + (1 - \delta_{H})$$

$$\frac{\partial \mathcal{L}}{\partial k_{H,t}} = 0 \iff c_{t}^{-e}ac_{Mt}^{e-1} = \beta E_{t} \left[c_{t+1}^{-e}\right] \left(aE_{t} \left[c_{Mt+1}^{e-1}\right] (1 - \delta_{H}) + (1 - \delta_{H})$$

$$\frac{\partial \mathcal{L}}{\partial k_{H,t}} = 0 \iff c_{t}^{-e}ac_{Mt}^{e-1} = \beta E_{t} \left[c_{t+1}^{-e}\right] \left(aE_{t} \left[c_{Mt+1}^{e-1}\right] (1 - \delta_{H}) + (1 - \delta_{H})$$

$$\frac{\partial \mathcal{L}}{\partial k_{H,t}} = 0 \iff c_{t}^{-e}ac_{Mt}^{e-1} = \beta E_{t} \left[c_{t+1}^{-e}\right] \left(aE_{t} \left[c_{Mt+1}^{e-1}\right] (1 - \delta_{H}) + (1 - \delta_{H})$$

### Produção no mercado

Em um ambiente de **concorrência perfeita**, as empresas possuem a seguinte tecnologia de produção no mercado:

$$y_t = k_{M,t}^{\alpha} (z_{M,t} h_{M,t})^{1-\alpha},$$
 (16)

onde  $z_{M,t}$  representa a produtividade do trabalho empregado na produção no mercado,

## Produção no mercado

Em um ambiente de **concorrência perfeita**, as empresas possuem a seguinte tecnologia de produção no mercado:

$$y_t = k_{M,t}^{\alpha} (z_{M,t} h_{M,t})^{1-\alpha},$$
 (16)

onde  $z_{M,t}$  representa a produtividade do trabalho empregado na produção no mercado, cuja dinâmica é dada por:

$$z_{Mt+1} = (1 - \rho_M) \bar{z}_M + \rho_M z_{Mt} + \epsilon_{Mt+1}$$
 (17)

onde  $0 < \rho_{M} < 1$ .

## Problema de maximização

As empresas maximizam os seus lucros escolhendo a quantidade de insumos e tomando os preços como dados:

$$\max_{k_{Mt},h_{Mt}} \Pi_{t} = k_{Mt}^{\theta} (z_{Mt}h_{Mt})^{1-\theta} - w_{t}h_{Mt} - r_{t}k_{Mt}.$$

## Problema de maximização

As empresas maximizam os seus lucros escolhendo a quantidade de insumos e tomando os preços como dados:

$$\max_{k_{Mt},h_{Mt}} \Pi_{t} = k_{Mt}^{\theta} (z_{Mt}h_{Mt})^{1-\theta} - w_{t}h_{Mt} - r_{t}k_{Mt}.$$

$$\frac{\partial \Pi_t}{\partial h_{M,t}} = 0 \iff w_t = (1 - \alpha) \frac{y_t}{h_{M,t}},\tag{18}$$

## Problema de maximização

As empresas maximizam os seus lucros escolhendo a quantidade de insumos e tomando os preços como dados:

$$\max_{k_{Mt},h_{Mt}}\Pi_{t}=k_{Mt}^{\theta}\left(z_{Mt}h_{Mt}\right)^{1-\theta}-w_{t}h_{Mt}-r_{t}k_{Mt}.$$

$$\frac{\partial \Pi_t}{\partial h_{M,t}} = 0 \iff w_t = (1 - \alpha) \frac{y_t}{h_{M,t}},\tag{18}$$

$$\frac{\partial \Pi_t}{\partial k_t} = 0 \iff r_t = \alpha \frac{y_t}{k_{M,t}}.$$
 (19)

## Governo

### Orçamento, tributação e gastos

Sob a hipótese de um orçamento equilibrado em todo o período t, temos que o consumo do governo (G) é dado por

$$G_t = w_t h_{Mt} \tau_H + r_t k_{Mt} \tau_k - \tau_k \delta_k k_{Mt} - T_t$$
 (20)

onde  $\tau_h$  é a alíquota de imposto sobre a renda do trabalho,  $\tau_k$  a alíquota de imposto sobre a renda do capital e T o valor das transferências.

## Orçamento, tributação e gastos

Sob a hipótese de um orçamento equilibrado em todo o período t, temos que o consumo do governo (G) é dado por

$$G_t = w_t h_{Mt} \tau_H + r_t k_{Mt} \tau_k - \tau_k \delta_k k_{Mt} - T_t$$
 (20)

onde  $\tau_h$  é a alíquota de imposto sobre a renda do trabalho,  $\tau_k$  a alíquota de imposto sobre a renda do capital e T o valor das transferências. Os gastos do governo são determinados por:

$$\ln G_t = (1 - \rho_G) \ln \bar{G} + \rho_G \ln G_{t-1} + \varepsilon_t^G. \tag{21}$$

Da equação (2), temos que a restrição orçamentária das famílias é dada por:

Da equação (2), temos que a restrição orçamentária das famílias é dada por:

$$c_{M,t} + x_{M,t} + x_{Ht} = w_t(1 - \tau_H)h_{M,t} + r_t(1 - \tau_K) + \tau_K \delta_K k_{M,t} + T_t,$$
(2)

Da equação (2), temos que a restrição orçamentária das famílias é dada por:

$$c_{M,t} + x_{M,t} + x_{Ht} = w_t(1 - \tau_H)h_{M,t} + r_t(1 - \tau_K) + \tau_K \delta_K k_{M,t} + T_t,$$
(2)

e, com os resultados do problemas das empresas (equações 18 e 19)

Da equação (2), temos que a restrição orçamentária das famílias é dada por:

$$c_{M,t} + x_{M,t} + x_{Ht} = w_t(1 - \tau_H)h_{M,t} + r_t(1 - \tau_K) + \tau_K \delta_K k_{M,t} + T_t,$$
(2)

e, com os resultados do problemas das empresas (equações 18 e 19) e da restrição do governo

Da equação (2), temos que a restrição orçamentária das famílias é dada por:

$$c_{M,t} + x_{M,t} + x_{Ht} = w_t(1 - \tau_H)h_{M,t} + r_t(1 - \tau_K) + \tau_K \delta_K k_{M,t} + T_t,$$
(2)

e, com os resultados do problemas das empresas (equações 18 e 19) e da restrição do governo , temos que a produção de bens no mercado (y) é dividida entre consumo  $(c_M)$ , investimento (x) e gastos do governo:

Da equação (2), temos que a restrição orçamentária das famílias é dada por:

$$c_{M,t} + x_{M,t} + x_{Ht} = w_t(1 - \tau_H)h_{M,t} + r_t(1 - \tau_K) + \tau_K \delta_K k_{M,t} + T_t,$$
(2)

e, com os resultados do problemas das empresas (equações 18 e 19) e da restrição do governo , temos que a produção de bens no mercado (y) é dividida entre consumo  $(c_M)$ , investimento (x) e gastos do governo:

$$y_t = c_{Mt} + x_t + G_t (22)$$

• 
$$abc_t^{-e}c_{Mt}^{e-1}w_t(1-\tau_H)=(1-b)\frac{1}{\ell_t}$$

- $abc_t^{-e}c_{Mt}^{e-1}w_t(1-\tau_H)=(1-b)\frac{1}{\ell_t}$
- $bc_t^{-e}c_{Ht}^e(1-a)(1-\eta)\frac{1}{h_{Ht}} = (1-b)\frac{1}{\ell_t}$

- $abc_t^{-e}c_{Mt}^{e-1}w_t(1-\tau_H)=(1-b)\frac{1}{\ell_t}$
- $bc_t^{-e}c_{Ht}^e(1-a)(1-\eta)\frac{1}{h_{Ht}} = (1-b)\frac{1}{\ell_t}$
- $\beta E_t \left[ c_{t+1}^{-e} c_{Mt+1}^{e-1} \right] \left( E_t \left[ r_{t+1} \right] (1 \tau_K) + \tau_K \delta_M + (1 \delta_M) \right) = c_t^{-e} c_{Mt}^{e-1}$

• 
$$abc_t^{-e}c_{Mt}^{e-1}w_t(1-\tau_H)=(1-b)\frac{1}{\ell_t}$$

• 
$$bc_t^{-e}c_{Ht}^e(1-a)(1-\eta)\frac{1}{h_{Ht}} = (1-b)\frac{1}{\ell_t}$$

• 
$$\beta E_t \left[ c_{t+1}^{-e} c_{Mt+1}^{e-1} \right] \left( E_t \left[ r_{t+1} \right] (1 - \tau_K) + \tau_K \delta_M + (1 - \delta_M) \right) = c_t^{-e} c_{Mt}^{e-1}$$

$$c_t^{-e}ac_{Mt}^{e-1}=$$

$$\beta E_{t} \left[ c_{t+1}^{-e} \right] \left( a E_{t} \left[ c_{Mt+1}^{e-1} \right] (1 - \delta_{H}) + (1 - a) E_{t} \left[ c_{Ht+1}^{e} \right] (1 - \eta) \frac{1}{k_{Ht+1}} \right)$$

■ 
$$abc_t^{-e}c_{Mt}^{e-1}w_t(1-\tau_H) = (1-b)\frac{1}{\ell_t}$$
  
■  $bc_t^{-e}c_{Ht}^e(1-a)(1-\eta)\frac{1}{h_{Ht}} = (1-b)\frac{1}{\ell_t}$   
■  $\beta E_t \left[c_{t+1}^{-e}c_{Mt+1}^{e-1}\right] \left(E_t \left[r_{t+1}\right](1-\tau_K) + \tau_K \delta_M + (1-\delta_M)\right) =$ 

$$c_t^{-e}c_{Mt}^{e-1}$$
•  $c_t^{-e}ac_{Mt}^{e-1} =$ 

$$\beta E_{t} \left[ c_{t+1}^{-e} \right] \left( a E_{t} \left[ c_{Mt+1}^{e-1} \right] (1 - \delta_{H}) + (1 - a) E_{t} \left[ c_{Ht+1}^{e} \right] (1 - \eta) \frac{1}{k_{Ht+1}} \right)$$

$$c_{H,t} = k_{H,t}^{\eta} (z_{H,t} h_{H,t})^{1-\eta}$$

#### Famílias

$$bc_t^{-e}c_{Ht}^e(1-a)(1-\eta)\frac{1}{h_{Ht}} = (1-b)\frac{1}{\ell_t}$$

$$\beta E_t \left[c_{t+1}^{-e}c_{Mt+1}^{e-1}\right] \left(E_t \left[r_{t+1}\right] (1-\tau_K) + \tau_K \delta_M + (1-\delta_M)\right) = c_t^{-e}c_{Mt}^{e-1}$$

• 
$$c_t^{-e} a c_{Mt}^{e-1} =$$

$$\beta E_t \left[ c_{t+1}^{-e} \right] \left( a E_t \left[ c_{Mt+1}^{e-1} \right] (1 - \delta_H) + (1 - a) E_t \left[ c_{Ht+1}^{e} \right] (1 - \eta) \frac{1}{k_{Ht+1}} \right)$$

$$c_{t+1} = k^{\eta} \left( 7 + b_{t+1} \right)^{1-\eta}$$

• 
$$c_{H,t} = k_{H,t}^{\eta} (z_{H,t} h_{H,t})^{1-\eta}$$

• 
$$c_t = \left[ac_{M,t}^e + (1-a)c_{H,t}^e\right]^{\frac{1}{e}}$$

•  $abc_t^{-e}c_{Mt}^{e-1}w_t(1-\tau_H)=(1-b)\frac{1}{\ell}$ 

• 
$$abc_t^{-e}c_{Mt}^{e-1}w_t(1-\tau_H)=(1-b)\frac{1}{\ell_t}$$

• 
$$bc_t^{-e}c_{Ht}^e(1-a)(1-\eta)\frac{1}{h_{Ht}}=(1-b)\frac{1}{\ell_t}$$

• 
$$\beta E_t \left[ c_{t+1}^{-e} c_{Mt+1}^{e-1} \right] \left( E_t \left[ r_{t+1} \right] (1 - \tau_K) + \tau_K \delta_M + (1 - \delta_M) \right) = c_t^{-e} c_{Mt}^{e-1}$$

$$c_t^{-e}ac_{Mt}^{e-1} =$$

$$\beta E_t \left[ c_{t+1}^{-e} \right] \left( a E_t \left[ c_{Mt+1}^{e-1} \right] (1 - \delta_H) + (1 - a) E_t \left[ c_{Ht+1}^{e} \right] (1 - \eta) \frac{1}{k_{Ht+1}} \right)$$

• 
$$c_{H,t} = k_{H,t}^{\eta} (z_{H,t} h_{H,t})^{1-\eta}$$

• 
$$c_t = \left[ac_{M,t}^e + (1-a)c_{H,t}^e\right]^{\frac{1}{e}}$$

• 
$$k_{M,t+1} = (1 - \delta_M) k_{M,t} + x_{M,t}$$

• 
$$abc_t^{-e}c_{Mt}^{e-1}w_t(1-\tau_H)=(1-b)\frac{1}{\ell_t}$$

• 
$$bc_t^{-e}c_{Ht}^e(1-a)(1-\eta)\frac{1}{h_{Ht}} = (1-b)\frac{1}{\ell_t}$$

• 
$$\beta E_t \left[ c_{t+1}^{-e} c_{Mt+1}^{e-1} \right] \left( E_t \left[ r_{t+1} \right] (1 - \tau_K) + \tau_K \delta_M + (1 - \delta_M) \right) = c_t^{-e} c_{Mt}^{e-1}$$

$$c_t^{-e}ac_{Mt}^{e-1}=$$

$$\beta E_t \left[ c_{t+1}^{-e} \right] \left( a E_t \left[ c_{Mt+1}^{e-1} \right] (1 - \delta_H) + (1 - a) E_t \left[ c_{Ht+1}^{e} \right] (1 - \eta) \frac{1}{k_{Ht+1}} \right)$$

• 
$$c_{H,t} = k_{H,t}^{\eta} (z_{H,t} h_{H,t})^{1-\eta}$$

• 
$$c_t = \left[ac_{M,t}^e + (1-a)c_{H,t}^e\right]^{\frac{1}{e}}$$

• 
$$k_{M,t+1} = (1 - \delta_M) k_{M,t} + x_{M,t}$$

• 
$$k_{H,t+1} = (1 - \delta_H)k_{H,t} + x_{H,t}$$

• 
$$abc_t^{-e}c_{Mt}^{e-1}w_t(1-\tau_H)=(1-b)\frac{1}{\ell_t}$$

• 
$$bc_t^{-e}c_{Ht}^e(1-a)(1-\eta)\frac{1}{h_{Ht}}=(1-b)\frac{1}{\ell_t}$$

• 
$$\beta E_t \left[ c_{t+1}^{-e} c_{Mt+1}^{e-1} \right] \left( E_t \left[ r_{t+1} \right] (1 - \tau_K) + \tau_K \delta_M + (1 - \delta_M) \right) = c_t^{-e} c_{Mt}^{e-1}$$

• 
$$c_t^{-e}ac_{Mt}^{e-1} =$$

$$\beta E_{t} \left[ c_{t+1}^{-e} \right] \left( a E_{t} \left[ c_{Mt+1}^{e-1} \right] (1 - \delta_{H}) + (1 - a) E_{t} \left[ c_{Ht+1}^{e} \right] (1 - \eta) \frac{1}{k_{Ht+1}} \right)$$

• 
$$c_{H,t} = k_{H,t}^{\eta} (z_{H,t} h_{H,t})^{1-\eta}$$

• 
$$c_t = [ac_{M,t}^e + (1-a)c_{H,t}^e]^{\frac{1}{e}}$$

• 
$$k_{M,t+1} = (1 - \delta_M) k_{M,t} + x_{M,t}$$

• 
$$k_{H,t+1} = (1 - \delta_H)k_{H,t} + x_{H,t}$$

• 
$$\ell_t = 1 - h_{M,t} - h_{H,t}$$

• 
$$abc_t^{-e}c_{Mt}^{e-1}w_t(1-\tau_H)=(1-b)\frac{1}{\ell_t}$$

• 
$$bc_t^{-e}c_{Ht}^e(1-a)(1-\eta)\frac{1}{h_{Ht}}=(1-b)\frac{1}{\ell_t}$$

• 
$$\beta E_t \left[ c_{t+1}^{-e} c_{Mt+1}^{e-1} \right] \left( E_t \left[ r_{t+1} \right] (1 - \tau_K) + \tau_K \delta_M + (1 - \delta_M) \right) = c_t^{-e} c_{Mt}^{e-1}$$

• 
$$c_t^{-e}ac_{Mt}^{e-1}=$$

$$\beta E_t \left[ c_{t+1}^{-e} \right] \left( a E_t \left[ c_{Mt+1}^{e-1} \right] (1 - \delta_H) + (1 - a) E_t \left[ c_{Ht+1}^{e} \right] (1 - \eta) \frac{1}{k_{Ht+1}} \right)$$

• 
$$c_{H,t} = k_{H,t}^{\eta} (z_{H,t} h_{H,t})^{1-\eta}$$

• 
$$c_t = [ac_{M,t}^e + (1-a)c_{H,t}^e]^{\frac{1}{e}}$$

• 
$$k_{M,t+1} = (1 - \delta_M) k_{M,t} + x_{M,t}$$

• 
$$k_{H,t+1} = (1 - \delta_H)k_{H,t} + x_{H,t}$$

• 
$$\ell_t = 1 - h_{M,t} - h_{H,t}$$

$$x_t = x_{M,t} + x_{H,t}$$

- $\alpha \frac{y_t}{k_{M,t}} = r_t$   $(1 \alpha) \frac{y_t}{h_{M,t}} = w_t$

- $\alpha \frac{y_t}{k_{M,t}} = r_t$   $(1 \alpha) \frac{y_t}{h_{M,t}} = w_t$
- $y_t = k_{M,t}^{\alpha} (z_{M,t} h_{M,t})^{1-\alpha}$

#### Empresas

$$\bullet (1-\alpha)\frac{y_t}{h_{M,t}} = w_t$$

• 
$$y_t = k_{M,t}^{\alpha} (z_{M,t} h_{M,t})^{1-\alpha}$$

#### Governo

• 
$$G_t = (1 - \rho_G)\bar{G} + \rho_G G_{t-1} + \varepsilon_t^G$$

#### Empresas

- $(1-\alpha)\frac{y_t}{h_{M,t}} = w_t$
- $y_t = k_{M,t}^{\alpha} (z_{M,t} h_{M,t})^{1-\alpha}$
- Governo

• 
$$G_t = (1 - \rho_G)\bar{G} + \rho_G G_{t-1} + \varepsilon_t^G$$

- Restrição de recursos
  - $y_t = c_{Mt} + x_t + G_t$

#### Empresas

$$\bullet (1-\alpha)\frac{y_t}{h_{M,t}} = w_t$$

• 
$$y_t = k_{M,t}^{\alpha} (z_{M,t} h_{M,t})^{1-\alpha}$$

#### Governo

• 
$$G_t = (1 - \rho_G)\bar{G} + \rho_G G_{t-1} + \varepsilon_t^G$$

- Restrição de recursos
  - $y_t = c_{Mt} + x_t + G_t$
- Leis de movimento das produtividades

#### Empresas

$$(1-\alpha)\frac{y_t}{h_{M,t}} = w_t$$

• 
$$y_t = k_{M,t}^{\alpha} (z_{M,t} h_{M,t})^{1-\alpha}$$

#### Governo

• 
$$G_t = (1 - \rho_G)\bar{G} + \rho_G G_{t-1} + \varepsilon_t^G$$

#### Restrição de recursos

$$V_t = c_{Mt} + x_t + G_t$$

#### Leis de movimento das produtividades

• 
$$z_{Mt+1} = (1 - \rho_M) \bar{z}_M + \rho_M z_{Mt} + \epsilon_{Mt+1}$$

#### Empresas

$$\bullet (1-\alpha)\frac{y_t}{h_{M,t}} = w_t$$

• 
$$y_t = k_{M,t}^{\alpha} (z_{M,t} h_{M,t})^{1-\alpha}$$

#### Governo

• 
$$G_t = (1 - \rho_G)\bar{G} + \rho_G G_{t-1} + \varepsilon_t^G$$

#### Restrição de recursos

$$V_t = c_{Mt} + x_t + G_t$$

#### Leis de movimento das produtividades

$$z_{Mt+1} = (1 - \rho_M) \bar{z}_M + \rho_M z_{Mt} + \epsilon_{Mt+1}$$

• 
$$z_{Ht+1} = (1 - \rho_H) \bar{z}_H + \rho_M z_{Ht} + \epsilon_{Ht+1}$$

## Equilíbrio Estacionário

Podemos aproveitar as equações (17) e (7) para normalizarmos  $\bar{z}_M = \bar{z}_H = 1$  e a equação (21) calibrar  $\overline{G} = g_s \times \bar{y}$  como função do PIB em equilíbrio e  $\bar{h}_M$  e  $\bar{h}_H$  com base nos dados.

Podemos aproveitar as equações (17) e (7) para normalizarmos  $\bar{z}_M = \bar{z}_H = 1$  e a equação (21) calibrar  $\overline{G} = g_s \times \bar{y}$  como função do PIB em equilíbrio e  $\bar{h}_M$  e  $\bar{h}_H$  com base nos dados.

Da equação de Euler (14), temos:

Podemos aproveitar as equações (17) e (7) para normalizarmos  $\bar{z}_M = \bar{z}_H = 1$  e a equação (21) calibrar  $\overline{G} = g_s \times \bar{y}$  como função do PIB em equilíbrio e  $\bar{h}_M$  e  $\bar{h}_H$  com base nos dados.

Da equação de Euler (14), temos:

$$\bar{r} = \frac{\left(\frac{1}{\beta} + \delta_M - 1 - \tau_K \delta_M\right)}{(1 - \tau_K)}.$$

Podemos aproveitar as equações (17) e (7) para normalizarmos  $\bar{z}_M = \bar{z}_H = 1$  e a equação (21) calibrar  $\overline{G} = g_s \times \bar{y}$  como função do PIB em equilíbrio e  $\bar{h}_M$  e  $\bar{h}_H$  com base nos dados.

Da equação de Euler (14), temos:

$$\bar{r} = \frac{\left(\frac{1}{\beta} + \delta_{M} - 1 - \tau_{K}\delta_{M}\right)}{(1 - \tau_{K})}.$$

Note que  $\partial \bar{r}/\partial \tau_{\mathcal{K}} > 0$ .

A partir da equação de demanda por capital (19), temos:

$$\frac{\bar{y}}{\bar{k}_{M}} = \frac{\bar{r}}{\alpha}$$

$$\bar{y} = \bar{k}_{M}^{\alpha} (\bar{h}_{M})^{1-\alpha} \iff$$

Dado que

A partir da equação de demanda por capital (19), temos:

$$\frac{\bar{y}}{\bar{k}_M} = \frac{\bar{r}}{\alpha}$$
 Dado que 
$$\bar{y} = \bar{k}_M^{\alpha} \left(\bar{h}_M\right)^{1-\alpha} \Longleftrightarrow \frac{\bar{y}}{\bar{k}_M} = \left(\frac{\bar{h}_M}{\bar{k}_M}\right)^{1-\alpha}$$

A partir da equação de demanda por capital (19), temos:

Dado que 
$$\begin{split} \frac{\bar{y}}{\bar{k}_M} &= \frac{\bar{r}}{\alpha} \\ \bar{y} &= \bar{k}_M^\alpha \left(\bar{h}_M\right)^{1-\alpha} \iff \\ \frac{\bar{y}}{\bar{k}_M} &= \left(\frac{\bar{h}_M}{\bar{k}_M}\right)^{1-\alpha} \\ \left(\frac{\bar{h}_M}{\bar{k}_M}\right)^{1-\alpha} &= \frac{\bar{r}}{\alpha} \end{split}$$

A partir da equação de demanda por capital (19), temos:

 $\frac{y}{\bar{k}_{M}} = \frac{\bar{r}}{\alpha}$  $\bar{y} = \bar{k}_M^{\alpha} \left( \bar{h}_M \right)^{1-\alpha} \iff$ Dado que  $\frac{\bar{y}}{\bar{k}_{\mathcal{M}}} = \left(\frac{\bar{h}_{\mathcal{M}}}{\bar{k}_{\mathcal{M}}}\right)^{1-\alpha}$  $\left(\frac{\bar{h}_M}{\bar{k}_M}\right)^{1-\alpha} = \frac{\bar{r}}{\alpha}$  $ar{k}_{M} = ar{h}_{M} \left(rac{ar{r}}{lpha}
ight)^{rac{1}{lpha-1}}$ 

A partir da equação de demanda por capital (19), temos:

Dado que 
$$\begin{split} \frac{\bar{y}}{\bar{k}_M} &= \frac{\bar{r}}{\alpha} \\ \bar{y} &= \bar{k}_M^{\alpha} \left( \bar{h}_M \right)^{1-\alpha} \iff \\ \frac{\bar{y}}{\bar{k}_M} &= \left( \frac{\bar{h}_M}{\bar{k}_M} \right)^{1-\alpha} \\ \left( \frac{\bar{h}_M}{\bar{k}_M} \right)^{1-\alpha} &= \frac{\bar{r}}{\alpha} \\ \bar{k}_M &= \bar{h}_M \left( \frac{\bar{r}}{\alpha} \right)^{\frac{1}{\alpha-1}} \end{split}$$

Note que  $\partial \bar{k}_M/\partial \tau_K < 0$ .

$$\bar{y}=\bar{k}_M^{\alpha}\bar{h}_M^{1-lpha},$$

$$\bar{y} = \bar{k}_M^{\alpha} \bar{h}_M^{1-\alpha},$$

$$\bar{x}_{M} = \delta_{M}\bar{k}_{M}$$

$$ar{y} = ar{k}_M^lpha ar{h}_M^{1-lpha},$$
  $ar{x}_M = \delta_M ar{k}_M$   $ar{w} = (1-lpha) rac{ar{y}}{ar{h}_M}$ 

$$ar{y} = ar{k}_M^{lpha} ar{h}_M^{1-lpha},$$
  $ar{x}_M = \delta_M ar{k}_M$   $ar{w} = (1-lpha) rac{ar{y}}{ar{h}_M}$   $ar{\ell} = 1 - ar{h}_M - ar{h}_H$ 

Ao dividirmos a equação (12) pela equação (13), temos:

$$\frac{a\bar{c}_{M}^{e-1}\bar{w}\left(1-\tau_{H}\right)}{(1-a)\bar{c}_{H}^{e}(1-\eta)} = \frac{1}{\bar{h}_{H}} \iff \left(\frac{\bar{c}_{M}^{e-1}}{\bar{c}_{H}^{e}}\right) = \frac{(1-a)(1-\eta)}{a\bar{h}_{H}\bar{w}\left(1-\tau_{H}\right)}$$

Ao dividirmos a equação (12) pela equação (13), temos:

$$\frac{a\bar{c}_{M}^{e-1}\bar{w}(1-\tau_{H})}{(1-a)\bar{c}_{H}^{e}(1-\eta)} = \frac{1}{\bar{h}_{H}} \iff$$

$$\left(\frac{\bar{c}_{M}^{e-1}}{\bar{c}_{H}^{e}}\right) = \frac{(1-a)(1-\eta)}{a\bar{h}_{H}\bar{w}(1-\tau_{H})}$$

Da equação (15), temos:

$$\begin{split} \bar{c}^{-e} a \bar{c}_M^{e-1} &= \beta \bar{c}^{-e} \left( a \bar{c}_M^{e-1} \left( 1 - \delta_H \right) + \left( 1 - a \right) \bar{c}_H^e (1 - \eta) \frac{1}{\bar{k}_H} \right) \iff \\ \left( \frac{\bar{c}_M^{e-1}}{\bar{c}_H^e} \right) &= \frac{\beta (1 - a) (1 - \eta)}{a \left( 1 - \beta \left( 1 - \delta_H \right) \right) \bar{k}_h} \end{split}$$

$$\bar{k}_{H} = \frac{\beta \bar{h}_{H} \bar{w} \left(1 - \tau_{H}\right)}{\left(1 - \beta \left(1 - \delta_{H}\right)\right) \left(1 - \eta\right)}$$

$$\bar{k}_{H} = \frac{\beta \bar{h}_{H} \bar{w} \left(1 - \tau_{H}\right)}{\left(1 - \beta \left(1 - \delta_{H}\right)\right) \left(1 - \eta\right)}$$
$$\bar{c}_{H} = \bar{k}_{H}^{\eta} \bar{h}_{H}^{1 - \eta}$$

$$\bar{k}_{H} = \frac{\beta \bar{h}_{H} \bar{w} (1 - \tau_{H})}{(1 - \beta (1 - \delta_{H})) (1 - \eta)}$$
$$\bar{c}_{H} = \bar{k}_{H}^{\eta} \bar{h}_{H}^{1 - \eta}$$
$$\bar{x}_{H} = \delta_{H} \bar{k}_{H}$$

$$\bar{k}_{H} = \frac{\beta \bar{h}_{H} \bar{w} (1 - \tau_{H})}{(1 - \beta (1 - \delta_{H})) (1 - \eta)}$$

$$\bar{c}_{H} = \bar{k}_{H}^{\eta} \bar{h}_{H}^{1 - \eta}$$

$$\bar{x}_{H} = \delta_{H} \bar{k}_{H}$$

$$\bar{x} = \bar{x}_{M} + \bar{x}_{H}$$

$$\bar{k}_{H} = \frac{\beta \bar{h}_{H} \bar{w} (1 - \tau_{H})}{(1 - \beta (1 - \delta_{H})) (1 - \eta)}$$

$$\bar{c}_{H} = \bar{k}_{H}^{\eta} \bar{h}_{H}^{1 - \eta}$$

$$\bar{x}_{H} = \delta_{H} \bar{k}_{H}$$

$$\bar{x} = \bar{x}_{M} + \bar{x}_{H}$$

$$\overline{G} = g_{s} \bar{y}$$

$$\begin{split} \bar{k}_H &= \frac{\beta \bar{h}_H \bar{w} \left(1 - \tau_H\right)}{\left(1 - \beta \left(1 - \delta_H\right)\right) \left(1 - \eta\right)} \\ \bar{c}_H &= \bar{k}_H^{\eta} \bar{h}_H^{1 - \eta} \\ \bar{x}_H &= \delta_H \bar{k}_H \\ \bar{x} &= \bar{x}_M + \bar{x}_H \\ \overline{G} &= g_s \bar{y} \\ \bar{c}_M &= \left(1 - g_s\right) \bar{y} - \bar{x} \end{split}$$

$$\bar{k}_{H} = \frac{\beta h_{H}\bar{w} (1 - \tau_{H})}{(1 - \beta (1 - \delta_{H})) (1 - \eta)}$$

$$\bar{c}_{H} = \bar{k}_{H}^{\eta} \bar{h}_{H}^{1 - \eta}$$

$$\bar{x}_{H} = \delta_{H} \bar{k}_{H}$$

$$\bar{x} = \bar{x}_{M} + \bar{x}_{H}$$

$$\bar{G} = g_{s}\bar{y}$$

$$\bar{c}_{M} = (1 - g_{s}) \bar{y} - \bar{x}$$

$$\bar{c} = [a\bar{c}_{M}^{e} + (1 - a)\bar{c}_{H}^{e}]^{\frac{1}{e}}$$

Da equação (12), temos:

$$b=\frac{\varphi}{a\bar{c}^e+\varphi},$$

onde  $\varphi = \left[\bar{\ell}\bar{c}_M^{e-1}\bar{w}\left(1-\tau_H\right)\right]^{-1}$ . E, finalmente, ao substituirmos  $\bar{c} = \left[a\bar{c}_M^e + (1-a)\bar{c}_H^e\right]^{\frac{1}{e}}$  na equação (13), considerando o resultado acima, obtemos:

$$a=\frac{\varphi}{\kappa+\varphi},$$

onde  $\kappa = \bar{h}_H \left[ \bar{\ell} \bar{c}_H^e (1 - \eta) \right]^{-1}$ .

#### Parâmetros do nosso modelo

|                          |        | D 1.7                                                              |
|--------------------------|--------|--------------------------------------------------------------------|
| Parâmetro                | Valor  | Descrição                                                          |
| α                        | 0.44   | Participação do capital na função de produção.                     |
| β                        | 0.97   | Fator de desconto.                                                 |
| $\delta_{M}$             | 0.05   | Taxa de depreciação do capital do mercado.                         |
| $\rho_{M}$               | 0.9    | Coeficiente AR da produtividade no mercado.                        |
| ρн                       | 0.95   | Coeficiente AR da produtividade no domicílio                       |
| $\rho_G$                 | 0.8    | Coeficiente AR dos gastos do governo.                              |
| $\sigma_{\varepsilon_G}$ | 0.01   | Desvio-padrão dos erros do processo dos gastos do governo          |
| $\bar{z}_M$              | 1      | Nível da produtividade no mercado no equilíbrio estacionário.      |
| $\bar{z}_H$              | 1      | Nível da produtividade no domicílio no equilíbrio estacionário.    |
| $g_s$                    | 0.2    | Proporção dos gastos do governo no PIB no equilíbrio estacionário. |
| $	au_{\mathcal{K}}$      | 0.25   | Alíquota do imposto sobre a renda do capital.                      |
| $	au_H$                  | 0.34   | Alíquota do imposto sobre a renda do trabalho.                     |
| $\delta_H$               | 0.05   | Taxa de depreciação do capital do domicílio.                       |
| η                        | 0.3245 | Participação do capital na função de produção do domicílio.        |
| $ar{h}_{\mathcal{M}}$    | 0.33   | Horas trabalhadas no mercado no equilíbrio estacionário.           |
| $\bar{h}_H$              | 0.25   | Horas trabalhadas no domicílio no equilíbrio estacionário.         |

# Simulação

## Gastos do governo



- Choque positivo de 1% (acima do equilíbrio estacionário).
- Comportamento auto-regressivo.







#### IRFs em perspectiva



- PIB e investimento não são "hump-shaped".
- O consumo cai pouco, investimento tem queda maior, inicialmente.
- O PIB aumenta menos do que 1% inicialmente.

## Política fiscal antecipada

## Anúncio ("news shock")

Como simular uma política fiscal antecipada? Assuma que o governo anunciou em t que irá aumentar os seus gastos em t+3. Como podemos implementar isso no Dynare? (Dica: lembre-se que o anúncio foi **inesperado** e que esse efeito leva trës períodos para impactar os gastos.)

#### Gastos do governo



- Choque positivo de 1% (acima do equilíbrio estacionário).
- Comportamento auto-regressivo.







#### Referências i

Cooley, Thomas F, and Edward C Prescott. 1995. *Frontiers of Business Cycle Research*. Vol. 3. Princeton University Press Princeton, NJ.