Exercise 2.11

Introduction

This will work with the equation given in the book for the binomial coefficient. It helps calculate the probability.

```
In [8]:

    import numpy as np

            import matplotlib.pyplot as plt
            #Part A
            def binomial(n,k):
                if k ==0:
                    return 1
                else:
                    return int(np.math.factorial(n)/np.math.factorial(k)/np.math.factorial(n-k))
            #Part B
            print("Pascal's Triangle")
            for n in range(1,21):
                row = []
                for k in range(n+1):
                    row.append(binomial(n,k))
                print(np.array(row))
            print()
            #Part C
            num_tosses = 100
            heads = 60
            def probability(n,k):
                return binomial(n,k)/2**n
            print(f'Probability of {heads} heads in {num_tosses} tosses: {probability(num_tosses,
            total_probability = 0
            for head in range(heads, num_tosses+1):
                total_probability += probability(num_tosses,head)
            print(f'Probability of {heads} or more heads in {num_tosses} tosses: {total_probabili
```

```
Pascal's Triangle
[1 1]
[1 2 1]
[1 3 3 1]
[1 4 6 4 1]
[ 1 5 10 10 5 1]
    6 15 20 15 6 1]
    7 21 35 35 21 7 1]
    8 28 56 70 56 28 8 1]
  1
      9
         36 84 126 126 84 36
                                 9
                                    1]
    10 45 120 210 252 210 120 45
                                    10
                                         1]
   1 11 55 165 330 462 462 330 165
                                    55
                                             1]
  1 12 66 220 495 792 924 792 495 220
                                        66 12
                                                 1]
            78 286 715 1287 1716 1716 1287
                                             715 286
                                                        78
                                                             13
                                                                   1]
       13
   1
       14
            91 364 1001 2002 3003 3432 3003 2002 1001
                                                       364
                                                             91
                                                                  14
   1]
15 105 455 1365 3003 5005 6435 6435 5005 3003 1365
                                                            455
                                                                 105
   1
   15
        1]
[
         16
                         1820 4368 8008 11440 12870 11440
                                                                 4368
    1
              120
                    560
                                                            8008
  1820
        560
              120
                     16
                            1]
    1
         17
              136
                    680
                         2380
                               6188 12376 19448 24310 24310 19448 12376
  6188
       2380
              680
                    136
                           17
                                  1]
              153
                    816
                         3060
                               8568 18564 31824 43758 48620 43758 31824
    1
         18
18564 8568
             3060
                    816
                         153
                                 18
                                       1]
                         3876 11628 27132 50388 75582 92378 92378 75582
         19
              171
                    969
    1
 50388 27132 11628 3876
                          969
                                171
                                      19
                                             1]
                      1140
                             4845 15504 38760 77520 125970 167960
    1
           20
                190
 184756 167960 125970 77520 38760 15504
                                           4845
                                                  1140
                                                          190
                                                                  20
      1]
Probability of 60 heads in 100 tosses: 1.084%
```

Probability of 60 or more heads in 100 tosses: 2.844%

Conclusion

This was not terrible. It took a second for me to understand how to do part b. I think I did the right thing for part c by adding the probabilities together, but I don't know.

Exercise 3.1

Introduction

This will work with graphing from a data file.

Conclusion

The hard part of this for me was understanding the math in the exercise. I couldn't do it at first. I think the graph of the running average makes sense.

Exercise 2.10 (cont.)

Intro

This code will calculate binding energy for input values. Then highest binding energy per nucleon. The highest binding per nucleon for a given atomic number will be calculated. Lastly, The highest binding energy per nucleon for elements 1-100 will be found.

$$B = a_1 A - a_2 A^{\frac{2}{3}} - a_3 \frac{Z^2}{A^{\frac{1}{3}}} - a_4 \frac{(A - 2Z)^2}{A} + \frac{a_5}{A^{\frac{1}{2}}}$$

Now I am plotting binding energy per nucleon as a function of atomic number.

```
In [21]:

    import numpy as np

             import matplotlib.pyplot as plt
             def binding_energy(Z,A):
                 a1 = 15.8
                 a2 = 18.3
                 a3 = 0.714
                 a4 = 23.2
                 if A%2 ==0:
                     if Z%2 == 0:
                          a5 = 12 #a5 value depends on odd and even of A and Z
                     else:
                          a5 = -12
                 else:
                     a5 = 0
                 return a1*A-a2*A**(2/3)-a3*Z**2 / A**(1/3)-a4*(A-2*Z)**2/A+a5/A**(1/2) #Equation
             def maxBindingPerNucleon(Z):
                 maxBpN = 0
                 maxA = 0
                 for A in range(Z, 3*Z+1):
                     BpN = binding_energy(Z,A)/A #calculates binding energy and divides by # of r
                     if BpN> maxBpN: # If value calculated above is higher than max, it is the ne
                          maxBpN=BpN
                          maxA = A
                 return maxA #Returns the mass number with the highest bnding energy per nucleon
             #Part D
             maxZ = []
             for Z in range(1,101):
                 \#print(f'Z = \{Z\}, A = \{maxBindingPerNucleon(Z)\}, BpN = \{binding energy(Z, maxBinding\}\}
                 maxZ.append(binding_energy(Z,maxBindingPerNucleon(Z))/maxBindingPerNucleon(Z)) #
             #print()
             \#print(f'The\ maximum\ binding\ energy\ per\ nucleon\ occurs\ at\ Z=\{maxZ.index(max(maxZ))+\}
             plt.plot(range(1,101),maxZ)
             plt.title('Binding Energy per Nucleon v Atomic Number')
             plt.xlabel('Atomic Number')
             plt.ylabel('Binding Energy per Nucleon (MeV)')
             plt.show()
```


Conclusion

The graph is a lot like what is expected. There are some anomolies in nature that do not show up.

Ripples.py

```
from numpy import empty
             from pylab import imshow,gray,show, colorbar
             wavelength = 5.0
             k = 2*pi/wavelength
             xi0 = 1.0
             separation = 20.0  # Separation of centers in cm
side = 100.0  # Side of the square in cm
points = 500  # Number of grid points along each side
             spacing = side/points # Spacing of points in cm
             # Calculate the positions of the centers of the circles
             x1 = side/2 + separation/2
             y1 = side/2
             x2 = side/2 - separation/2
             y2 = side/2
             # Make an array to store the heights
             xi = empty([points,points],float)
             # Calculate the values in the array
             for i in range(points):
                  y = spacing*i
                  for j in range(points):
                      x = spacing*j
                      r1 = sqrt((x-x1)**2+(y-y1)**2)
                      r2 = sqrt((x-x2)**2+(y-y2)**2)
                      xi[i,j] = xi0*sin(k*r1) + xi0*sin(k*r2)
             # Make the plot
             imshow(xi,origin="lower",extent=[0,side,0,side])
              show()
```

