CpE 213 Digital Systems Design 8051 I/O Programming 8051 External Memory Access

Lecture 16 Monday 10/17/2005

Overview

- 8051 I/O port programming
- 8051 external memory access

8051 I/O Port Programming

8051 Block Diagram

Why Are I/O Ports Needed?

- Controllers need to get external inputs and produce external outputs.
- I/O ports serve this purpose.
- 8051 has 4 built-in I/O ports.
 - All ports have multiple functions (except P1)
- Too many ports increase pin-count and device
- cost.
- Too few make the microcontroller inadequate for complex control needs
- Ports are generally scarce and port usage and allotment are critical engineering decisions.
- To increase the number of ports for the 8051, use a parallel port interface chip, such as the 8255.

Tri-state Buffer Gate

- A tri-state buffer has the ability to provide three different output modes
 - current sinking ("low" logic level)
 - current sourcing ("high")
 - floating ("high-Z," or high-impedance).
- Such gates require an extra input terminal to control the "high-Z" mode, and this input is usually called the enable.

Internal I/O Port Structure

- 32 pins are allotted for 4 eight bit I/O ports.
- P0, P1, P2, P3
- At power-on all are _____ ports by default.

- To configure any port bit for input, write a 1 to the port bit.
 - Q=___, QB=___,M1=____,
 - Read_Pin asserted by read instruction

Port 0

Port 0 is dual-purpose:

Port P1

Port 1 is a ______ I/O port.

Port P2

Port 2 is dual-purpose:

Port P3

Port 3 is dual-purpose:

interrupt, timer/counter, external data read and write.

Hardware Specifications

- P0 is open drain.
 - Has to be pulled high by external 10K resistors.
 - Not needed if P0 is used for address/data lines.
- P1, P2, P3 have internal pull-ups.
- Port fan-out (number of devices it can drive) is limited.
 - Use buffers (74LS244, 74LS245, etc) to increase drive.
 - P1, P2, P3 can drive up to 4 LS-TTL inputs
 - P0 fan-out is dependent on the pull-up resistor value, limited by the max current it can sink on the output stage.

8051 I/O Port Instructions

 Ports can be read from and written to like normal registers

```
mov A, #55H ; can use A
mov P0, A ; write A to P0
mov P1, A
mov P2, #0AAH ; can use immediate mode
xlr P1, #0FFH ; read-modify-write (ex-or)
mov P0, #0FFH ; configure P0 for input
mov A, P0 ; read from P0
```

Ports can be bit-manipulated (are single bit-addressable) using cpl and setb instructions

```
■ cpl P1.2 ; complement bit 2 of Port1
■ setb P1.3 ; set bit 3 for Port1 to 1
■ clr P0.0 ; clear bit 0 of Port0
```

Input Quirks

- Port read instructions either
 - Read from the 8051 pins ("voltage" levels on the pins)
 - Read from an internal latch on the ports
- Writing 1 to the latch
 - Q=__, QB=__
 - M1
 - P1.x is available at tristate buffer
- Writing 0 to the latch
 - Q=___, QB=___
 - M1 _____
 - Input always gets 0
 - Can damage the port (M1) if P1.x is Vcc
 - Use 10K resistance between switch on P1.x and Vcc
 - Or use a SPST switch connected to GND

Input Quirks

- Instructions that read the pins (READ_PIN is asserted)
 - mov A, Px
 - jnb Px.y ...
 - jb Px.y ...
 - mov C, Px.y
- Instructions that read the latch (READ_LATCH is asserted)
 - They read the last output value and not the value on the pins
 - [anl, orl, xrl] Px
 - [jbc, djnz] Px.y, target
 - [cpl, clr, setb] Px.y
 - [inc, dec] Px

Switch on I/O Ports

- Case 1 (top left and right):
 - Gives a logic ____ on switch close
 - Current is 0.5ma on switch close
 - Pull-up needed if P0
- Case 2:
 - Gives a logic ___ on switch close
 - High current on switch close
- Case 3:
 - Can damage port if 0 is output

8051 External Memory Access

8051 Memory Expansion

- Some applications require more memory than the onchip resources of a microcontroller provide.
- The 8051 architecture provides expansion capabilities in form of _____ external code memory space and ____ external data memory space.
- Peripheral interface ICs can also be added to expand the I/O capability.
- These become part of the external data memory space using memory-mapped I/O.
 - Memory-Mapped I/O: A method of input/output that addresses each I/O device as a memory location selected by a ____-bit address.
- The only drawback of using external code or data memory is the _____ of parallel I/O ports.
 - The I/O function of port __ and port __ is disabled.

External Memory

- When external memory is used:
 - Port ____ is unavailable as an I/O port. It becomes a multiplexed address (A0 - A7) and data (D0 - D7) bus.
 - Port _____ is usually (but not always) employed for the high-byte of the address bus.
 - Control signals to be used:
 - ALE (Address Latch Enable): to latch the low byte of an address during access to external memory.
 - EA (External Access): tied low to access program code memory from external ROM.
 - PSEN (Program Store Enable): used as the read signal for external program memory.
 - RD (Read): read signal to access external data memory.
 - WR (Write): write signal to access external data memory.

External Bus Expansion

External Program Memory Access

External Program Memory Access

- External Program Memory is accessed under two conditions:
 - Whenever the signal EA is active (i.e. tied LOW), or
 - Whenever the program counter (PC) contains an address greater than the size of its internal program memory.
- Accesses to external program memory use the signal PSEN (program store enable) as the read strobe.
- Fetches from external program memory always use a 16-bit address. Thus all 8 bits of port 2 are dedicated to an output function and cannot be used for general purpose I/O.

Timing Sequence for External Program Memory Access

- Output a stable address:
 - Output the high byte of the address on the address bus (port ____).
 - Raise the _____ line.
 - Output the low byte of the address on the data bus (port ____).
 - Lower the _____ to latch the low address byte.
- For a code memory read:
 - Lower _____.
 - Read data supplied by code memory on data bus (port ____).
 - Raise _____.

8051 External ROM Read Cycle

External Data Memory Access

- 64K byte address space.
- Indirectly addressable via R0 and R1 in 256 byte segments.
- Entire space in indirectly addressable via the data pointer DPTR.

External Data Memory Access

- Access to external data memory uses RD or WR (alternate functions of P3.7 and P3.6) to strobe the memory.
- Access to external data memory can use either a 16-bit address (MOVX @ DPTR) or an 8-bit address (MOVX @ Ri).
- One byte addresses are often used in conjunction with one or more other I/O lines to page the RAM.
 - Using port lines to page RAM is an economical way to use external memory since any port lines not used for paging can be used for normal I/O functions.

Timing Sequence for External Data Memory Access

- Output a stable address:
 - Output the high byte of the address on the address bus (port ____).
 - Raise the _____ line.
 - Output the low byte of the address on the data bus (port ___).
 - Lower the ALE to latch the low address byte.
- For an external data memory read:
 - Lower _____.
 - Read data from external data memory on data bus (port 0).
 - Raise ____.

Timing Sequence for External Data Memory Access

- Output a stable address:
 - Output the high byte of the address on the address bus (port 2).
 - Raise the ____ line.
 - Output the low byte of the address on the data bus (port ____).
 - Lower the _____ to latch the low address byte.
- For an external data memory write:
 - Output data to data bus (port ___).
 - Lower _____.
 - Raise _____.

8051 External RAM Read Cycle

8051 External RAM Write Cycle

Interface to 64K EPROM

Interface to 8K EPROM Only

Note: the remaining 3 lines of Port 2 CANNOT be used for I/O

Accessing external data memory.

If the program memory is internal, the other bits of port2 are available as I/O.

8051 with expanded RAM and ROM

8051 shared control program/data space

For Wednesday

- Review today's lecture notes.
- Review Chapter 4, Section 8.3, and Appendix C.
- Read Sections 14.3 and 14.4.