Analisi III

Riassunto da: "Analisi Matematica 2 - Claudio Canuto, Anita Tabacco"

Corso di Laurea in Fisica - Corso A Università degli studi di Torino, Torino Settembre 2024

Indice

1	Successioni di funzioni	2
	1.1 Limiti di successioni	2
2	Serie di funzioni	3
	Convergenza della serie	3

1 Successioni di funzioni

1.1 Limiti di successioni

Definizione: Convergenza puntuale	
Definizione: Convergenza uniforme	
esempio 1	
esempio 2	
esempio 3	
Teorema 1	
– dimostrazione: –	
Teorema 2	

esempio 4

Teorema

2 Serie di funzioni

Presa $(f_n)_n$ successione di funzioni, $f_n:A\subseteq\mathbb{R}\to\mathbb{R}$ (o \mathbb{C}), chiamiamo **serie di funzioni**, indicata con

$$\sum_{n} f_n(x)$$

la successione delle ridotte

$$S_N = \sum_{n=1}^N f_n(x)$$

Convergenza della serie Diciamo che la serie converge (puntualmente o uniformemente) su un insieme $E \subseteq A$ se lo fa la successione delle ridotte. Si andrà quindi a studiare il limite di S_N che chiamiamo somma della serie.

Teorema 1S

Data $f: A \subseteq \mathbb{R} \to \mathbb{R}$, se

- f_n continue su $E \subseteq A$;
- $\sum_n f_n$ converge uniformemente su $E \subseteq A$ alla somma S(x)

Allora S(x) è continua su E.

Teorema 2S

Data $f: A \subseteq \mathbb{R} \to \mathbb{R}$ e $E = [a, b] \subseteq \mathbb{R}$, se

- f_n continue su $E \subseteq A$;
- $\sum_n f_n$ converge uniformemente su $E \subseteq A$ alla somma S(x)

Allora

$$\int_{a}^{b} \sum f_{n}(x) dx = \sum \int_{a}^{b} f_{n}(x) dx$$

Definizione:

 $I_s=\left\{x \ \ \text{la serie considerata} \sum f_n(x) \text{converge semplicemente}\right\}$ per la serie $\sum x^n$ si ha che $I_s=(-1,1)$

 $I_a = \{x \mid \text{la serie considerata} \sum |f_n(x)| \text{converge semplicemente} \}$

-Teorema: m-test o criterio di convergenza totale

Date

- $(f_n)_n$ successione di funzioni su $E \subseteq \mathbb{R}$ (o in \mathbb{C});
- $(m_n)_n \subseteq \mathbb{R}$ successione di numeri reali positivi.

tali che

- (H_1) $|f_n(x)| \le m_n \ \forall x \in E, \ \forall n;$
- (H_2) $\sum m_n(x) < +\infty$.

Allora la serie $\sum f_n(x)$ converge assolutamente in ongi punto di E è uniformemente su E \Longrightarrow la serie converge totalmente.