COMPSCI/SFWRENG 2FA3

Discrete Mathematics with Applications II Winter 2020

Week 04 Exercises

Dr. William M. Farmer McMaster University

Revised: February 1, 2020

1. Prove that $(\mathcal{P}(S), \subset)$ is a strict partial order where S is a nonempty set and $\mathcal{P}(S)$ is the power set of S.

SOLUTION:

Proof Recall that a strict partial order (S, <) has the following definitions:

Irreflexivity: $\forall x \in S : \neg(x < x)$

Asymmetry: $\forall x, y \in S : x < y \Rightarrow \neg (y < x)$

Transitivity: $\forall x, y, z \in S$. $x < y \land y < z \Rightarrow x < z$

We'll prove all three of these properties for $(\mathcal{P}(S), \subset)$.

By definition
$$\forall s_1, s_2 \in \mathcal{P}(S)$$
 . $s_1 \subset s_2 \iff (\forall y \in s_1 : y \in s_2) \land (\exists x \in s_2 : x \notin s_1)$

Irreflexivity: $\forall s \in \mathcal{P}(S)$. $\neg(s \subset s)$. We proceed by contradiction:

$$\begin{array}{l} s \subset s \\ \Longleftrightarrow (\forall y \in s \ . \ y \in s) \land (\exists x \in s \ . \ x \not \in s) \\ \Rightarrow \exists x \in s \ . \ x \not \in s \\ \Rightarrow False \end{array} \qquad \begin{array}{l} \langle \text{definition of } \subset \rangle \\ \langle A \land B \Rightarrow B \rangle \\ \langle \text{obvious} \rangle \end{array}$$

We have a contradiction therefore $\neg(s \subset s)$. Alternatively, it is clearly irreflexive because no set is a proper subset of itself.

Asymmetry: $\forall s_1, s_2 \in \mathcal{P}(S)$. $s_1 \subset s_2 \Rightarrow \neg(s_2 \subset s_1)$.

$$s_{1} \subset s_{2}$$

$$\iff (\forall x \in s_{1} . x \in s_{2}) \land (\exists y \in s_{2} . y \notin s_{1}) \qquad \langle \text{definition of } \subset \rangle$$

$$\iff \neg(\exists x \in s_{1} . x \notin s_{2}) \land (\exists y \in s_{2} . y \notin s_{1}) \qquad \langle \text{definition of } \exists \rangle$$

$$\iff \neg(\exists x \in s_{1} . x \notin s_{2}) \land \neg(\forall y \in s_{2} . y \in s_{1}) \qquad \langle \text{definition of } \exists \rangle$$

$$\iff \neg((\exists x \in s_{1} . x \notin s_{2}) \lor (\forall y \in s_{2} . y \in s_{1})) \qquad \langle \text{De Morgan's} \rangle$$

$$\Rightarrow \neg((\exists x \in s_{1} . x \notin s_{2}) \land (\forall y \in s_{2} . y \in s_{1})) \qquad \langle \neg(A \lor B) \Rightarrow \neg(A \land B) \rangle$$

$$\iff \neg(s_{2} \subset s_{1}) \qquad \langle \text{definition of } \subseteq \rangle$$

Therefore $s_1 \subset s_2 \Rightarrow \neg(s_2 \subset s_1)$. Alternatively, it is clearly asymmetric because no set can be both a proper subset and a proper superset of another set.

Transitivity: $\forall s_1, s_2, s_3 \in \mathcal{P}(S)$. $s_1 \subset s_2 \land s_2 \subset s_3 \Rightarrow s_1 \subset s_3$. First we'll show $s_1 \subset s_2 \land s_2 \subset s_3 \Rightarrow \forall x \in s_1$. $x \in s_3$:

$$s_{1} \subset s_{2} \land s_{2} \subset s_{3}$$

$$\iff (\forall w \in s_{1} . w \in s_{2}) \land (\exists x \in s_{2} . x \notin s_{1})$$

$$\land (\forall y \in s_{2} . y \in s_{3}) \land (\exists z \in s_{3} . z \notin s_{2}) \qquad \langle \text{definition of } \subset \rangle$$

$$\Rightarrow (\forall w \in s_{1} . w \in s_{2}) \land (\forall y \in s_{2} . y \in s_{3}) \qquad \langle A \land B \Rightarrow A \rangle$$

$$\iff (\forall x . x \in s_{1} \Rightarrow x \in s_{2}) \land (\forall x . x \in s_{2} \Rightarrow x \in s_{3})$$

$$\iff \forall x . (x \in s_{1} \Rightarrow x \in s_{2}) \land (x \in s_{2} \Rightarrow x \in s_{3})$$

$$\Rightarrow \forall x . x \in s_{1} \Rightarrow x \in s_{3} \qquad \langle \text{transitivity of } \Rightarrow \rangle$$

Next we'll show $s_1 \subset s_2 \land s_2 \subset s_3 \Rightarrow \exists x \in s_3 . x \notin s_1$:

$$s_{1} \subset s_{2} \land s_{2} \subset s_{3}$$

$$\iff (\forall w \in s_{1} . w \in s_{2}) \land (\exists x \in s_{2} . x \notin s_{1})$$

$$\land (\forall y \in s_{2} . y \in s_{3}) \land (\exists z \in s_{3} . z \notin s_{2}) \quad \langle \text{definition of } \subset \rangle$$

$$\Rightarrow (\exists x \in s_{2} . x \notin s_{1}) \land (\forall y \in s_{2} . y \in s_{3}) \qquad \langle A \land B \Rightarrow A \rangle$$

$$\Rightarrow \exists x \in s_{2} . x \notin s_{1} \land x \in s_{3}$$

$$\Rightarrow \exists x \in s_{3} . x \notin s_{1}$$

Therefore

$$s_1 \subset s_2 \land s_2 \subset s_3 \Rightarrow (\forall x . x \in s_1 \Rightarrow x \in s_3)$$

and

$$s_1 \subset s_2 \land s_2 \subset s_3 \Rightarrow (\exists x \in s_3 . x \notin s_1).$$

Using the definition of \subset we can trivially see that these two implications mean that

$$s_1 \subset s_2 \land s_2 \subset s_3 \Rightarrow s_1 \subset s_3$$
.

Alternatively, it is clearly transitive because $s_1 \subset s_2$ and $s_2 \subset s_3$ means that each element of s_1 must also be in s_2 and so also in s_3 , and also that there is some element in s_2 that is not in s_1 , but is in s_3 .

2. Consider the weak partial order

$$P = (\{\{1\}, \{2\}, \{4\}, \{1, 2\}, \{1, 4\}, \{2, 4\}, \{3, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}, \subseteq).$$

a. Find the maximal elements in P.

SOLUTION:

The maximal elements in P are $\{1,2\}$, $\{1,3,4\}$, and $\{2,3,4\}$ as all other elements in P are "smaller" than at least one of these with respect to \subseteq and each of these are only "smaller" than themselves (e.g. $\{1,2\} \subseteq \{1,2\}$, but for all other elements, x: $\{1,2\} \not\subseteq x$).

b. Find the minimal elements in P.

SOLUTION:

The minimal elements in P are $\{1\}$, $\{2\}$, $\{4\}$ as all other elements in P are "greater" with respect to \subseteq and these are only "greater" than themselves.

c. Find the maximum element in P if it exists.

SOLUTION:

There is no maximum element in P, as the two maximal elements of P are not unique in P.

d. Find the minimum element in P if it exists.

SOLUTION:

There is no minimum element in P, as the three minimal elements of P are not unique in P.

e. Find all the upper bounds of $\{\{2\}, \{4\}\}\$ in P.

SOLUTION:

The upper bounds of $\{\{2\}, \{4\}\}$ in P, are $\{2, 4\}, \{2, 3, 4\}$ (*Note:* $\{1, 2\}, \{1, 4\}$ are **NOT** upper bounds on $\{\{2\}, \{4\}\}$, as an upper bound has to be larger with respect to \subseteq for **BOTH** $\{2\}$ and $\{4\}$.)

f. Find the least upper bound of $\{\{2\}, \{4\}\}\$ in P if it exists.

SOLUTION:

Out of the two upper bounds $\{2,4\},\{2,3,4\},\{2,4\}\subseteq\{2,3,4\}$, so $\{2,4\}$ is the least upper bound.

g. Find all the lower bounds of $\{\{1, 3, 4\}, \{2, 3, 4\}\}\)$ in P.

SOLUTION:

The lower bounds of $\{\{1, 3, 4\}, \{2, 3, 4\}\}$ are $\{4\}, \{3, 4\}$.

h. Find the greater lower bound of $\{\{1,3,4\},\{2,3,4\}\}$ in P if it exists.

SOLUTION:

Out of the two lower bounds, $\{4\} \subseteq \{3,4\}$, so $\{3,4\}$ is the greatest lower bound.

3. Let (U, I) where I is the binary relation such that $a \ I \ b$ iff a = b. Show that (U, I) is a weak partial order and not a weak total order.

SOLUTION:

The relation of a weak partial order is reflexive, antisymmetric and transitive. So we must show that I has these properties.

- $\forall x \in U$. (xIx), since x = x.
- $\forall x, y \in U$. $xIy \land yIx \Rightarrow x = y$, I is equality.
- $\forall x, y, z \in U$. $xIy \land yIz \Rightarrow xIz$, since equality is transitive.

We have shown that (U, I) is a weak partial order. To show that (U, I) is not a weak total order, we observe that I is not total, since total means: $\forall x, y \in U$. $xIy \vee yIx$ but if $x \neq y$, we have neither xIy nor yIx.

(Note: we have implicitly assumed that there are at least two individuals of sort U! Otherwise (U, I) would be a weak total order)

4. Let $(\mathbb{Q} \cup \{-\infty, +\infty\}, <)$ be the strict total order such that < is the same as $<_{\text{rat}}$ on \mathbb{Q} and $-\infty$ and $+\infty$ are minimum and maximum elements, respectively, of $(\mathbb{Q} \cup \{-\infty, +\infty\}, <)$. Prove that

$$(\mathbb{Q} \cup \{-\infty, +\infty\}, <)$$

is dense without assuming that $(\mathbb{Q}, <_{\text{rat}})$ is dense.

SOLUTION: We recall the definition of dense:

A set S is dense if and only if, for any interval $(a, b) \subseteq S$ where a < b, there exists a $c \in S$ such that a < c < b

We can express this as a predicate:

$$dense(S) \equiv \forall a, b \in S . a < b \Rightarrow (\exists c \in S . a < c \land c < b)$$

Now, we must show the predicate: dense($\mathbb{Q} \cup \{-\infty, +\infty\}$) holds.

We observe 4 cases:

- a. $a = -\infty, b = +\infty$: Let c = 2. Therefore a < c < b.
- b. $a = -\infty, b = \frac{x}{y}$ for $x, y \in \mathbb{N}$ (therefore $b \in \mathbb{Q}$): Let $c = \frac{x}{2y}$. Therefore $a < c = \frac{x}{2y} = \frac{b}{2} < b$.
- c. $a = \frac{x}{y}, b = +\infty$ for $x, y \in \mathbb{N}$ (therefore $a \in \mathbb{Q}$): Let $c = \frac{2x}{y}$. Therefore $a < 2a = \frac{2x}{y} = c < b$.
- d. $a = \frac{x}{y}, b = \frac{m}{n}$ for $x, y, m, n \in \mathbb{N}$ (therefore $a, b \in \mathbb{Q}$): Let $c = \frac{2xn+1}{2yn}$. Note $a = \frac{xn}{yn}, b = \frac{my}{yn}$ and therefore: xn < my and $xn < xn + 1 \le my$ since $my, xn \in \mathbb{N}$. Therefore $a = \frac{x}{y} = \frac{2xn}{2yn} < \frac{2xn+1}{2yn} < \frac{2xn+2}{2yn} = \frac{2(xn+1)}{2yn} \le \frac{2my}{2yn} = \frac{m}{n}$.
- 5. Let (S, <) be a strict total order such that there exist $a, b \in S$ with a < b (i.e., S has at least two members). Show that, if (S, <) is dense, then (S, <) is not a well-order.

Proof By assumption, there are $a, b \in S$ with a < b. Assume (S, <) is dense. We will show that (S, <) is not a well-order. Define the infinite sequence c_0, c_1, c_2, \ldots of members of S by natural number recursion as follows:

- a. c_0 is some member of S such that $a < c_0 < b$. We know c_0 exists since (S, <) is dense.
- b. If n > 0, then c_n is some member of S such that $a < c_n < c_{n-1}$. We know c_n exists since (S, <) is dense.

By construction,

$$c_0 > c_1 > c_2 > \cdots$$
.

- (S,<) is thus not Noetherian since there is an infinite descending sequence of members of S. (S,<) is not Noetherian implies (S,<) is not a well-order.
- 6. Consider the mathematical structure $(L, <_L)$ where L is a list of integers and $<_L$ is the binary relation on L defined by:

$$[a_0, a_1, \dots, a_n] <^* [b_0, b_1, \dots, b_n] \text{ iff } \left(\sum_{i=0}^n a_i\right) < \left(\sum_{i=0}^n b_i\right).$$

Prove that $(L, <_L)$ is a strict partial order that is not a strict total order.

SOLUTION:

Proof We need to prove the following statements about $(L, <_L)$:

Irreflexivity: $\forall \ell \in L . \neg (\ell <_L \ell)$ Asymmetry: $\forall \ell, k \in L . \ell <_L k \Rightarrow \neg (k <_L \ell)$ Transitivity: $\forall \ell, k, j \in L . \ell <_L k \land k <_L j \Rightarrow \ell <_L j$

Anti-Trichotomous: $\exists \ell, k \in L . \neg (\ell <_L k) \land \neg (\ell = k) \land \neg (k <_L \ell)^{\dagger}$

†: Logically negate the definition of Trichotomy, then apply De Morgan's Law to reach the above definition.

Irreflexivity:

For any $\ell \in L$, we have:

Asymmetry:

For any $\ell, k \in L$ satisfying $\ell <_L k$, we have:

$$\neg (k <_L \ell) \qquad \qquad \langle \text{Definition of Asymmetry} \rangle$$

$$\equiv \neg \left(\left(\sum_{i=0}^{|k|} k_i \right) < \left(\sum_{i=0}^{|\ell|} \ell_i \right) \right) \qquad \qquad \langle \text{Definition of } <_L \rangle$$

$$\equiv true \qquad \qquad \langle \text{Asymmetry of } < \text{ with Assumption } \ell <_L k, \text{ Def. of } <_L \rangle$$

Transitivity:

For any $\ell, k, j \in L$ satisfying $\ell <_L k \land k <_L j$, we have:

$$\begin{array}{l} \ell <_L j & \langle \text{Definition of Transitivity} \rangle \\ \equiv \left(\sum_{i=0}^{|\ell|} \ell_i \right) < \left(\sum_{i=0}^{|j|} j_i \right) & \langle \text{Definition of } <_L \rangle \\ \equiv true & \langle \text{Transitivity of } < \text{ with Assumption, Def. of } <_L \rangle \end{array}$$

Anti-Trichotomy:

7. Construct a strict partial order (U, <) such that U is infinite, < is well founded, and (U, <) is not a total order (and thus $(L, <_L)$ is not a well-order).

SOLUTION:

Let $U \equiv \mathbb{N} \times \mathbb{N}$.

For clarity we rename < as $<_2$ and use < as normal.

Let
$$(x_1, x_2) <_2 (y_1, y_2) \iff x_1 < y_1 \land x_2 < y_2$$
.

- a. $(\mathbb{N} \times \mathbb{N}, <_2)$ is a strict partial order: Strict partial orders are irreflexive, asymmetric, and transitive.
 - Irreflexive:
 We proceed by contradiction.

$$(x_1, x_2) <_2 (x_1, x_2)$$
 \(\text{negated definition of irreflexive}\) \(\Rightarrow x_1 < x_1\) \(\Rightarrow \text{partial application of definition of } <_2\) \(\Rightarrow False\) \(\lambda(\mathbb{N}, <)\) is irreflexive\)

• Asymmetric:

$$(x_1, x_2) <_2 (y_1, y_2)$$

 $\Rightarrow x_1 < y_1$ \(\rightarrow \text{partial application of definition of } <_2 \rangle
 $\Rightarrow \neg (y_1 < x_1)$ \(\langle (\mathbb{N}, <)\) is asymmetric\(\rightarrow \tau \cdot (y_1, y_2) <_2 (x_1, x_2))\) \(\text{\text{trivial with } <_2 definition}\)

Therefore $(x_1, x_2) <_2 (y_1, y_2) \Rightarrow \neg((y_1, y_2) <_2 (x_1, x_2)).$

• Transitive:

$$(x_1, x_2) <_2 (y_1, y_2) \land (y_1, y_2) <_2 (z_1, z_2)$$

$$\Rightarrow x_1 < y_1 \land x_2 < y_2 \land y_1 < z_1 \land y_2 < z_2 \qquad \langle \text{definition of } <_2 \rangle$$

$$\Rightarrow x_1 < y_1 < z_1 \land x_2 < y_2 < z_2 \qquad \langle \text{rearranging} \rangle$$

$$\Rightarrow x_1 < z_1 \land x_2 < z_2 \qquad \langle (\mathbb{N}, <) \text{ is transitive} \rangle$$

$$\Rightarrow (x_1, x_2) <_2 (z_1, z_2) \qquad \langle \text{definition of } <_2 \rangle$$

Therefore
$$(x_1, x_2) <_2 (y_1, y_2) \land (y_1, y_2) <_2 (z_1, z_2) \Rightarrow (x_1, x_2) <_2 (z_1, z_2)$$
.

Therefore our order is a strict partial order.

b. $(\mathbb{N} \times \mathbb{N}, <_2)$ is infinite:

We know \mathbb{N} is infinite so clearly $\mathbb{N} \times \mathbb{N}$ is infinite (we can construct an infinite list of some of the members of $\mathbb{N} \times \mathbb{N}$ by pairing $x \in \mathbb{N}$ with itself for all such x).

c. $(\mathbb{N} \times \mathbb{N}, <_2)$ is well founded:

It is well founded if every nonempty subset of $\mathbb{N} \times \mathbb{N}$ has a $<_2$ -minimal element. In other words,

$$\forall S \subseteq (\mathbb{N} \times \mathbb{N}) \setminus \emptyset$$
. $\exists (y_1, y_2) \in S$. $\forall (x_1, x_2) \in \mathbb{N} \times \mathbb{N}$. $(x_1, x_2) \in S \Rightarrow \neg ((x_1, x_2) <_2 (y_1, y_2))$

We proceed by weak induction on the size of the nonempty subset.

Base Case:

The nonempty subset has 1 element. The 1 element is the minimal element and it is "less" than all 0 other elements.

Inductive Step:

Assume that subsets of size n have a minimal element and that the minimal element is "less" than all other elements.

Prove that subsets of size n+1 have a minimal element and that the minimal element is "less" than all other elements:

Split a subset of size n + 1 into a set of size n and a set of size 1. Let x be the minimal element of the set of size n which we know exists by the induction hypothesis.

Let y be the single element in the set of size 1.

In the original subset of size n + 1, either x or y is a minimal element.

If $x <_2 y$, then x is a minimal element because no element is "less" than x, x is also "less" than all other elements.

If $y <_2 x$, then y is a minimal element because we have shown that $<_2$ is transitive and therefore y is "less" than all other elements because it is "less" than x which is less than all others excluding y and this makes y minimal because $<_2$ is asymmetric. Therefore our order is well founded.

(Note: If we had not included in the induction hypothesis that the minimal element was "less" than all others, we would not have known that in the case of $y <_2 x$ that $\neg(z <_2 y)$ for all $z \in \mathbb{N} \times \mathbb{N}$, instead we would only know that $\neg(z <_2 x)$ for all $z \in \mathbb{N} \times \mathbb{N}$ where $z \neq y$ and that $\neg(x <_2 y)$. I.e. it would be plausible that x was not "less" than y, but that other things were "less" than y despite not being "less" than y

d. $(\mathbb{N} \times \mathbb{N}, <_2)$ is not a total order:

Strict total orders have the properties of strict partial orders, but are also trichotomous so we must show $(\mathbb{N} \times \mathbb{N}, <_2)$ is not trichotomous:

$$\forall (x_1, x_2), (y_1, y_2) \in \mathbb{N} \times \mathbb{N} .$$

$$\neg ((x_1, x_2) <_2 (y_1, y_2) \lor (y_1, y_2) <_2 (x_1, x_2) \lor (x_1, x_2) = (y_1, y_2))$$

$$\text{Try } (x_1, x_2) = (3, 2), \ (y_1, y_2) = (2, 3):$$

$$\neg ((3, 2) <_2 (2, 3) \lor (2, 3) <_2 (3, 2) \lor (3, 2) = (2, 3))$$

$$\iff \neg (False \lor False \lor False)$$

$$\iff True$$

Therefore our order is not a strict total order.

Therefore $(\mathbb{N} \times \mathbb{N}, <_2)$ meets the given criteria.

8. Let Type be the inductive set (representing \mathcal{B} -types) defined in the lectures. Define $a(\alpha)$ be the number of \mathbb{B} and Base constructors occurring in α and $b(\alpha)$ be the number of Function and Product constructors occurring in α . Prove by structural induction that, for all $\alpha \in \mathsf{Type}$,

$$a(\alpha) \le b(\alpha) + 1.$$

SOLUTION:

Proof Let $P(\alpha) \equiv a(\alpha) \leq b(\alpha) + 1$. We will prove $P(\alpha)$ for all $\alpha \in \mathsf{Type}$ by structural induction.

Base case: $\alpha = \mathbb{B}$ or $\alpha \in \mathcal{B}$. We need to prove $P(\alpha)$.

$$a(\alpha)$$
 $\langle \text{LHS of } P(\alpha) \rangle$
 ≤ 1 $\langle \text{definition of } a \rangle$
 $= 0 + 1$ $\langle \text{arithmetic} \rangle$
 $= b(\alpha) + 1$ $\langle \text{definition of } b; \text{ RHS of } P(\alpha) \rangle$

So $P(\alpha)$ holds.

Induction step: $\alpha = C(\beta_1, \beta_2)$ where C is Function or Product and $\beta_1, \beta_2 \in \text{Type}$. Assume $P(\beta_1)$ and $P(\beta_2)$. We need to prove $P(\alpha)$.

$$a(C(\beta_1, \beta_2)) \qquad \langle \text{LHS of } P(\alpha) \rangle$$

$$= a(\beta_1) + a(\beta_2) \qquad \langle \text{definition of } a \rangle$$

$$\leq (b(\beta_1) + 1) + (b(\beta_2) + 1) \qquad \langle \text{induction hypothesis} \rangle$$

$$= (1 + b(\beta_1) + b(\beta_2)) + 1 \qquad \langle \text{arithmetic} \rangle$$

$$= b(C(\beta_1, \beta_2)) + 1 \qquad \langle \text{definition of } b; \text{ RHS of } P(\alpha) \rangle$$

So $P(\alpha)$ holds.

Therefore, $P(\alpha)$ holds for all $\alpha \in \mathsf{Type}$ by structural induction.

9. Construct a signature of MSFOL that is suitable for formalizing real number arithmetic.

SOLUTION:

Let $\Sigma = (\mathcal{B}, \mathcal{C}, \mathcal{F}, \mathcal{P}, \tau)$ be the MSFOL signature that is suitable for arithmetic over \mathbb{R} . Then:

$$\begin{split} \mathcal{B} &= \{\mathbb{R}\} \\ \mathcal{C} &= \{0,1\} \\ \mathcal{F} &= \{+,*,-,\div\} \end{split}$$

 $\mathcal{P} = \{=,<\}$

Where τ maps the set $\mathcal{C} \cup \mathcal{F} \cup \mathcal{P}$ to \mathcal{B} as follows:

$$\tau(0) = \mathbb{R}$$

$$\tau(1) = \mathbb{R}$$

$$\tau(+) = \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

$$\tau(-) = \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

$$\tau(*) = \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

$$\tau(\div) = \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

$$\tau(=) = \mathbb{R} \times \mathbb{R} \to \mathbb{B}$$

$$\tau(<) = \mathbb{R} \times \mathbb{R} \to \mathbb{B}$$