ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Московский институт электроники и математики

Пчелинцев Илья Игоревич

МАГНИТНЫЕ И ГЕОМЕТРИЧЕСКИЕ СВОЙСТВА МОДЕЛИ ИЗИНГА НА СЛУЧАЙНЫХ БЛУЖДАНИЯХ НА РЕШЕТКЕ

Выпускная квалификационная работа студента образовательной программы бакалавриата «Прикладная математика»

по направлению 01.03.04 Прикладная математика

Студент
 И. И. Пчелинцев

Руководитель ВКР Доцент, Е. В. Буровский

Содержание

1 Введение 1

1 Введение

Модель блуждания без самопересечений является одной и наоболее часто изучаемой моделью линейного полимера. Решёточная структура окружающей среды модели позволяет не только определять способы перемещения блуждания в пространстве, но и исследовать модификации, дополненные внутренним взаимодействием - например, между ближайшими парами мономеров. Базовым примером моделей с энергетической составляющей является взаимодействующее блуждание без самопересечений (далее - ISAW), чья энергия равна числу взаимодействий в системе. Сама система варьируется константой силы взаимодействия между узлами, и тем самым, в условии термального равновесия, можно выделить два основных конформационных состояния - схлопнутый клубок и вытянутая глобула - между которыми расположена точка фазового перехода. В работе [1] была доказана трикритичность модели.

Примером взаимодействия полимера со внешней средой можно назвать семейство адсорбирующих блужданий, вступающих в реакцию с некоторой поверхностью [5].

Возможно усложнение внутреннего взаймодействия, путём внедрения спиновой подсистемы в конформацию с сохранением условия связи между ближайшими узлами. Таким образом была получена модель Изинга на случайном блуждании без самоперечений (далее - IsingISAW). Предшествующая ей регулярная модель Изинга так же варьируется константой силы взаимодействия, под действием которой система проявляет парамагнетические ими ферромагнетические свойства. Часть исследований модели проводятся с использованием теории среднего поля - так были рассмотрены магнитные свойства модели IsingISAW с дополнительным внешним полем [4]. Однако, существуют некоторые наблюдаемые величины модели, тесно связанные как с магнитными, так и с конформационными свойствами, чьё исследование требует более статистического подхода. Так же важно учитывать многообразие решёточных структур: некоторые из них имеют слишком большую размерность для достижения аналитического решения, иные содержат внешне незначительные изменения по сравнению с ранее изученными аналогами, но в то же время их критические свойства оказываются полностью различны.

Основным способом исследования подобных моделей являются симуляции их подсистем алгоритмами Монте-Карло [6, 8, 11]. Задачи отличаются периодами релаксации конформационной и спиновой подсистемы. Условия симуляции одной из систем при фиксированном состоянии другой определяют задачи замороженного спинового или конформацинного беспорядка. Задача размороженного беспорядка, в свою очередь, задаётся условием равного периода релаксации обоих подсистем, и является менее изученной.

В прошлой работе [2] было проведено исследование критического поведения модели IsingISAW на квадратной решётке. Из основных результатов был определён непрерывный характер фазового перехода, а так же оценены критические показатели модели. Подобное исследование проводилось и для трёхмерной модели [3]. Также для квадратной решётки была рассмотрена новая геометрическая характеристика блуждания - доля узлов с фиксированным числом соседей. Одно из основных направлений данной выпускной квалификационной работы посвящено исследованию этой характеристики среди структурных модификаций модели IsingISAW на квадратных решётках при размерности d=2,3,4, а так же на треугольной 2D-решётке.

Ранее треугольная решётка была исследована в качестве модификации как взаимодействуего полимера ISAW [7], так и регулярной модели Изинга [9,10]. В данной работе также исследуется критическое поведение модели IsingISAW на треугольной решётке, а также уточняются результаты для взаимодействующего полимера ISAW.

[Абзац по содержанию следующих секций?]

Список литературы

- [1] P-G de Gennes. Scaling concepts in polymer physics. Cornell University Press, 1979.
- [2] Kamilla Faizullina, Ilya Pchelintsev, and Evgeni Burovski. Critical and geometric properties of magnetic polymers across the globule-coil transition. *Phys. Rev. E*, 104:054501, Nov 2021.
- [3] Damien Paul Foster and Debjyoti Majumdar. Critical behavior of magnetic polymers in two and three dimensions. *Physical Review E*, 104(2):024122, 2021.
- [4] T. Garel, H. Orland, and E. Orlandini. Phase diagram of magnetic polymers. Eur. Phys. J. B, 12:261–268, 1999.
- [5] Shelly Livne and Hagai Meirovitch. Computer simulation of long polymers adsorbed on a surface. i. corrections to scaling in an ideal chain. *The Journal of Chemical Physics*, 88(7):4498–4506, 1988.
- [6] Neal Madras and Alan D Sokal. The pivot algorithm: a highly efficient monte carlo method for the self-avoiding walk. *Journal of Statistical Physics*, 50(1):109–186, 1988.
- [7] V Privman. Study of the point by enumeration of self-avoiding walks on the triangular lattice. 19(16):3287–3297, nov 1986.
- [8] N. Prokof'ev and B. Svistunov. Worm algorithms for classical statistical models. Phys. Rev. Lett., 87:160601, Sep 2001.
- [9] W. Selke and L. N. Shchur. Critical binder cumulant in a two-dimensional anisotropic ising model with competing interactions. *Phys. Rev. E*, 80:042104, Oct 2009.
- [10] Walter Selke. Critical binder cumulant of two-dimensional ising models. *The European Physical Journal B-Condensed Matter and Complex Systems*, 51(2):223–228, 2006.
- [11] U. Wolff. Collective Monte Carlo updating for spin systems. *Phys. Rev. Lett.*, 62:361–364, Jan 1989.