# Trabalho Prático - Predição de Spam

# 1<sup>st</sup> Pedro Henrique Melo Araujo

Centro Tecnológico de Joinville (CTJ.)
Universidade Federal de Santa Catarina (UFSC.)
Joinville, Brasil
pedromeloaraujo1999@gmail.com

## I. INTRODUÇÃO

Esse trabalhou visou a implementação dos conceitos aprendidos na disciplina de aprendizado de maquina. Dessa forma, propôs-se a implementação de algoritmos para processamento e classificação do banco de dados *spambase* [1].

#### II. ANÁLISE EXPLORATÓRIA DA BASE DE DADOS

Inicialmente, foi analisado a distribuição de classes no banco de dados. Como pode ser visto em 1 as classes mostramse desbalanceadas.



Fig. 1. Distribuição de classes no banco de dados.

A análise dos atributos mostrou uma diferença de escala entre eles. Além disso, também pode ser observado a presença de linhas com valores repetidos que por inspeção visual do banco de dados constatou-se que eram formadas só por campos com zero. Logo, como pré-processamento dos dados foi proposto a normalização dos atributos e eliminação das linhas com campos totalmente nulos, uma vez que elas não representam informações pertinentes para o treino dos modelos.

#### III. MODELOS DE CLASSIFICAÇÃO

Os modelos escolhidos para classificação do banco de dados foram: SVM, KNN e MLP. A qualidade dos modelos foi baseada na técnica de validação cruzada aninhada com otimização de hiperparâmetros. Ou seja, os dados foram divididos em 5 partes nas quais uma seria para teste e as outras para treinamento. Em seguida, esse processo é realizado repetidamente até cobrir todo o conjunto de dados. Esse mesma estratégia é aplicada de forma aninhada em cada conjunto de treinamento só que visando a otimização do modelo. Logo, os dados são separados também em 5 partes sendo uma de validação, onde os hiperparâmetros serão avaliados, e as outras de treinamento.

A métrica *F-beta Score* foi utilizada para avaliar os modelos e decidir os melhores valores de hiperparâmetros na etapa de

validação. Essa métrica se baseia na média harmônica entre a precisão e o *Recall* que estão relacionados as predições corretas da classe positiva o que permite a construção de modelos que tem como objetivo principal não deixar passar *spams*. Além disso, essa métrica é mais adequada para bancos de dados desbalanceados como comentado na seção anterior.

O código realizado nos experimentos pode ser encontrado em https://github.com/PHM-araujo/Machine-Learning/blob/master/Practical\_work/Spam\_prediction.ipynb

#### A. SVM

Para o modelo *Support Vector Machine* os hiperparâmetros otimizados foram a penalidade para erros de classificação (C) e a distância de influência usada no *kernel* RBF (Gamma). Os valores testados na otimizados são apresentados em I.

TABLE I Valores dos hiperparâmetros usados na otimização

| C     | 1   | 10   | 100   |
|-------|-----|------|-------|
| Gamma | 0.1 | 0.01 | 0.001 |

Score na validação cruzada com otimização de parâmetros



Fig. 2. Valores do F-score com os parâmetros otimizados.

TABLE II F-SCORE COM OS VALORES ÓTIMOS

| Fold | C   | Gamma | F-score |
|------|-----|-------|---------|
| 1    | 10  | 0.01  | 0.924   |
| 2    | 100 | 0.001 | 0.917   |
| 3    | 10  | 0.01  | 0.903   |
| 4    | 10  | 0.01  | 0.932   |
| 5    | 10  | 0.01  | 0.923   |

Dessa forma, pode-se observar que os melhores valores de hiperparâmetros para C e Gamma são 10 e 0.01 respectivamente.

### B. KNN

Para o algoritmo *K nearest neighbors* os hiperparâmetros a serem otimizados foram o número de vizinhos mais próximos e a função de pesos usada relacionada a como os vizinhos influenciam na predição.

TABLE III Valores dos hiperparâmetros usados na otimização

| Λ | Núm. vizinhos | 5        | 10        | 50 |
|---|---------------|----------|-----------|----|
| F | unção de peso | Uniforme | distância |    |

Score na validação cruzada com otimização de parâmetros



Fig. 3. Valores do F-score com os parâmetros otimizados.

TABLE IV F-SCORE COM OS VALORES ÓTIMOS

| Fold | Núm. vizinhos | Função de peso | F-score |
|------|---------------|----------------|---------|
| 1    | 10            | distância      | 0.905   |
| 2    | 10            | distância      | 0.904   |
| 3    | 10            | distância      | 0.887   |
| 4    | 10            | distância      | 0.914   |
| 5    | 10            | distância      | 0.897   |

A partir de IV fica claro que os melhores valores de hiperparâmetros para o número de vizinhos e função de peso foram 10 e distância respectivamente.

#### C. MLP

No *Multi layer perceptron* os hiperparâmetros otimizados foram o números de neurônios em cada uma das três camadas, a função de ativação e a taxa de aprendizado.

TABLE V Valores dos hiperparâmetros usados na otimização

| Núm. de neurônios   | (150, 100, 50) | (100, 100, 100)      |
|---------------------|----------------|----------------------|
| Função de ativação  | relu           | tangente hiperbólico |
| Taxa de aprendizado | 0.001          | 0.01                 |

Score na validação cruzada com otimização de parâmetros



Fig. 4. Valores do F-score com os parâmetros otimizados.

#### TABLE VI F-SCORE COM OS VALORES ÓTIMOS

| Fold | Função ativação | Núm. neurônios  | Taxa de aprendizado | F-score |
|------|-----------------|-----------------|---------------------|---------|
| 1    | relu            | (150, 100, 50)  | 0.01                | 0.915   |
| 2    | relu            | (150, 100, 50)  | 0.001               | 0.929   |
| 3    | relu            | (100, 100, 100) | 0.001               | 0.901   |
| 4    | relu            | (100, 100, 100) | 0.01                | 0.942   |
| 5    | relu            | (100, 100, 100) | 0.001               | 0.918   |

A partir de VI fica evidente que os melhores valores de hiperparâmetros para o número de neurônios em cada camada escondida, função de ativação e taxa de aprendizado são 100, relu e 0.001 respectivamente.

#### REFERENCES

- [1] Hopkins,Mark, Reeber,Erik, Forman,George & Suermondt,Jaap. (1999). Spambase. UCI Machine Learning Repository. https://doi.org/10.24432/C53G6X.
- [2] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.
- [3] ONOPRISHVILI, Tornike. SpamBase Data Exploration & Analysis. 2021. Disponível em: https://medium.com/@tonop15/spambase-data-exploration-analysis-9a3d6d83ee78. Acesso em: 22 maio 2023.
- [4] JASKOWIAK, Pablo Andretta. Avaliação de desempenho de modelos de classificação e regressão. Joinville: Ppgese, 2023. 48 slides, color.