Aritmética para ICPC

Ramiro Lafuente¹ Fidel Schaposnik²

¹FaMAF & CIEM Universidad Nacional de Córdoba

²Facultad de Ciencias Exactas Universidad Nacional de La Plata

Training Camp ICPC 2012 FaMAF - Córdoba, Argentina

Contenidos

- Números naturales
 - Números primos y factorización
 - Algunas funciones que hay que conocer
- Aritmética modular
 - Operaciones básicas
 - ModExp
 - GCD
 - Teorema chino del resto
- Matrices
 - Notación y operaciones básicas
 - Matriz de adyacencias y caminos
 - Cadenas de Markov y otros problemas lineales
 - Resolución de sistemas lineales: eliminación de Gauss-Jordan

Contenidos

- Números naturales
 - Números primos y factorización
 - Algunas funciones que hay que conocer
- Aritmética modular
 - Operaciones básicas
 - ModExp
 - GCF
 - Teorema chino del resto
- Matrices
 - Notación y operaciones básicas
 - Matriz de adyacencias y caminos
 - Cadenas de Markov y otros problemas lineales
 - Resolución de sistemas lineales: eliminación de Gauss-Jordan

Recordamos que

 $p \in \mathbb{N}$ es primo \iff 1 y p son los únicos divisores de p en \mathbb{N}

Dado $n \in \mathbb{N}$, podemos factorizarlo de manera única como

$$n=p_1^{e_i}\dots p_k^{e_k}$$

- funciones [completamente] multiplicativas
- divisores de un número
- números primos y factorizaciones :-)

Recordamos que

 $p \in \mathbb{N}$ es primo \iff 1 y p son los únicos divisores de p en \mathbb{N}

Dado $n \in \mathbb{N}$, podemos factorizarlo de manera única como

$$n=p_1^{e_i}\dots p_k^{e_k}$$

- funciones [completamente] multiplicativas
- divisores de un número
- números primos y factorizaciones :-)

Recordamos que

 $p \in \mathbb{N}$ es primo \iff 1 y p son los únicos divisores de p en \mathbb{N}

Dado $n \in \mathbb{N}$, podemos factorizarlo de manera única como

$$n=p_1^{e_i}\dots p_k^{e_k}$$

- funciones [completamente] multiplicativas
- divisores de un número
- números primos y factorizaciones :-)

Recordamos que

 $p \in \mathbb{N}$ es primo \iff 1 y p son los únicos divisores de p en \mathbb{N}

Dado $n \in \mathbb{N}$, podemos factorizarlo de manera única como

$$n=p_1^{e_i}\dots p_k^{e_k}$$

- funciones [completamente] multiplicativas
- divisores de un número
- números primos y factorizaciones :-)

Queremos encontrar todos los números primos hasta un dado valor (por ejemplo, para factorizar m necesitamos todos los números primos hasta \sqrt{m}).

 Un algoritmo ingenuo: para cada n ∈ [2, MAXN), analizamos si es divisible por algún primo menor que √n de los ya encontrados. Con algunas optimizaciones:

```
1 p[0] = 2; P = 1;
2 for (i=3; i<MAXN; i+=2) {
3  bool isp = true;
4  for (j=1; isp && j<P && p[j]*p[j]<=i; j++)
5   if (i%p[j] == 0) isp = false;
6  if (isp) p[P++] = i;
7 }</pre>
```

Primer algoritmo para encontrar primos

Cada número requiere tiempo $\pi(\sqrt{n}) = \mathcal{O}\left(\sqrt{n}/\ln n\right)$, luego el algoritmo es supralineal.

Queremos encontrar todos los números primos hasta un dado valor (por ejemplo, para factorizar m necesitamos todos los números primos hasta \sqrt{m}).

 Un algoritmo ingenuo: para cada n ∈ [2, MAXN), analizamos si es divisible por algún primo menor que √n de los ya encontrados. Con algunas optimizaciones:

```
1 p[0] = 2; P = 1;
2 for (i=3; i<MAXN; i+=2) {
3  bool isp = true;
4  for (j=1; isp && j<P && p[j]*p[j]<=i; j++)
5    if (i%p[j] == 0) isp = false;
6   if (isp) p[P++] = i;
7 }</pre>
```

Primer algoritmo para encontrar primos

Cada número requiere tiempo $\pi(\sqrt{n}) = \mathcal{O}\left(\sqrt{n}/\ln n\right)$, luego el algoritmo es supralineal.

Queremos encontrar todos los números primos hasta un dado valor (por ejemplo, para factorizar m necesitamos todos los números primos hasta \sqrt{m}).

 Un algoritmo ingenuo: para cada n ∈ [2, MAXN), analizamos si es divisible por algún primo menor que √n de los ya encontrados. Con algunas optimizaciones:

```
1 p[0] = 2; P = 1;
2 for (i=3; i<MAXN; i+=2) {
3  bool isp = true;
4  for (j=1; isp && j<P && p[j]*p[j]<=i; j++)
5   if (i%p[j] == 0) isp = false;
6  if (isp) p[P++] = i;
7 }</pre>
```

Primer algoritmo para encontrar primos

Cada número requiere tiempo $\pi(\sqrt{n}) = \mathcal{O}\left(\sqrt{n}/\ln n\right)$, luego el algoritmo es supralineal.


```
5 6 7 8
   14
      15
          16
             17
                18
                       20 21
23
   24
      25
          26 27
                28
                   29
                       30 31
         36
33 34 35
             37
                38
                   39
                       40
                          41
   44
      45
         46
             47
                48
                   49
                       50
                          51
```

2	3	4	5	6⁄	7	8⁄	9	1/0	11
1/2	13	1/4	15	1/6	17	1/8	19	<i>2</i> 0	21
<i>2</i> /2	23	<i>2</i> /4	25	<i>2</i> ′6	27	<i>2</i> /8	29	3⁄0	31
<i>3</i> ⁄2	33	<i>3</i> ⁄4	35	<i>3</i> ′6	37	3⁄8	39	<i>4</i> ⁄0	41
<i>4</i> /2	43	44	45	46	47	4/8	49	5⁄0	51

2	3	4	5	6⁄	7	8⁄	9⁄	1/0	11
1/2	13	1/4	1/5	1/6	17	1/8	19	<i>2</i> 0	<i>2</i> 1
<i>2</i> /2	23	<i>2</i> 4	25	<i>2</i> ⁄6	<i>2</i> 7	<i>2</i> /8	29	3⁄0	31
<i>3</i> ⁄2	3⁄3	3 ⁄4	35	<i>3</i> ′6	37	<i>3</i> ⁄8	3⁄9	<i>4</i> /0	41
<i>4</i> /2	43	<i>4</i> 4	<i>4</i> /5	46	47	<i>4</i> /8	49	5⁄0	5 ⁄1

2	3	4	(5)	6⁄	7	8⁄	9	1/0	11
1/2	13	1/4	1/5	1/6	17	1/8	19	<i>2</i> 0	<i>2</i> 1
<i>2</i> ⁄2	23	<i>2</i> 4	<i>2</i> /5	<i>2</i> ′6	<i>2</i> 7	<i>2</i> /8	29	3⁄0	31
<i>3</i> ⁄2	3⁄3	<i>3</i> ⁄4	<i>3</i> ⁄5	<i>3</i> ′6	37	<i>3</i> ⁄8	3⁄9	<i>4</i> ⁄0	41
4/2	43	44	4/5	46	47	4/8	49	5⁄0	5 ⁄1

2	3	4	(5)	6⁄	7	8⁄	9⁄	1/0	11
1/2	13	1/4	1/5	1/6	17	1/8	19	<i>2</i> 0	<i>2</i> 1
<i>2</i> /2	23	<i>2</i> 4	<i>2</i> 5	<i>2</i> ⁄6	<i>2</i> 7	<i>2</i> ⁄8	29	3⁄0	31
<i>3</i> ⁄2	3⁄3	<i>3</i> ′4	<i>3</i> ⁄5	<i>3</i> ⁄6	37	<i>3</i> ⁄8	<i>3</i> ⁄9	<i>4</i> /0	41
<i>4</i> /2	43	<i>4</i> 4	<i>4</i> /5	<i>4</i> /6	47	<i>4</i> /8	<i>4</i> /9	5 ⁄0	5 ⁄1

					7				
1/2	13	1/4	1/5	1/6	17	1/8	19	<i>2</i> 0	<i>2</i> 1
<i>2</i> 2	(23)	<i>2</i> ⁄4	<i>2</i> 5	<i>2</i> 6	<i>2</i> 7	<i>2</i> ⁄8	(29)	3⁄0	(31)
<i>3</i> ⁄2	3 /3	3 ⁄4	3 ⁄5	3 ⁄6	(37)	<i>3</i> ⁄8	3 ⁄9	<i>4</i> /0	(41)
<i>4</i> 2	(43)	<i>4</i> /4	<i>4</i> /5	<i>4</i> /6	(47)	<i>4</i> /8	<i>4</i> /9	5 ⁄0	5 ⁄1

El código correspondiente es

```
memset(isp, true, sizeof(isp));
for (i=2; i<MAXN; i++)
if (isp[i])
for (j=2*i; j<MAXN; j+=i)
isp[j] = false;</pre>
```

Criba de Eratóstenes

El tiempo de ejecución es $\mathcal{O}(N \log \log N)$, y puede ser llevado a $\mathcal{O}(N)$ con algunas optimizaciones.

El código correspondiente es

```
1 memset(isp, true, sizeof(isp));
2 for (i=2; i<MAXN; i++)
3    if (isp[i])
4    for (j=2*i; j<MAXN; j+=i)
5    isp[j] = false;</pre>
```

Criba de Eratóstenes

El tiempo de ejecución es $\mathcal{O}(N \log \log N)$, y puede ser llevado a $\mathcal{O}(N)$ con algunas optimizaciones.

Factorización usando la criba

La criba puede guardar más información:

```
1 memset(p, -1, sizeof(p));
2 for (i=4; i < MAXN; i+=2) p[i] = 2;
 for (i=3; i*i<MAXN; i+=2)
    if (p[i] == -1)
      for (j=i*i; j<MAXN; j+=2*i)
6
        p[j] = i;
```

Criba de Eratóstenes extendida y optimizada

Factorización usando la criba

La criba puede guardar más información:

```
1 memset(p, -1, sizeof(p));
2 for (i=4; i < MAXN; i+=2) p[i] = 2;
 for (i=3; i*i<MAXN; i+=2)
    if (p[i] == -1)
      for (j=i*i; j<MAXN; j+=2*i)
        p[j] = i;
```

Criba de Eratóstenes extendida y optimizada

Y entonces

```
int fact(int n, int f[]) {
    int F = 0:
    while (p[n] != -1) {
      f[F++] = p[n];
      n/=p[n];
    f[F++] = n;
    return F:
9
```

Factorización usando la criba

Contenidos

- Números naturales
 - Números primos y factorización
 - Algunas funciones que hay que conocer
- Aritmética modular
 - Operaciones básicas
 - ModExp
 - GCD
 - Teorema chino del resto
- Matrices
 - Notación y operaciones básicas
 - Matriz de adyacencias y caminos
 - Cadenas de Markov y otros problemas lineales
 - Resolución de sistemas lineales: eliminación de Gauss-Jordan

Funciones de teoría de números

Teniendo la factorización de un número *n*, podemos generar sus divisores, o calcular funciones de teoría de números:

• Función φ de Euler: $\varphi(n)$ es la cantidad de números menores o iguales que n que son coprimos con n. Se tiene

$$\varphi(n) = (p_1^{e_1} - p_1^{e_1-1}) \dots (p_k^{e_k} - p_k^{e_k-1})$$

La cantidad de divisores de n es

$$\sigma_0(n) = (e_1 + 1) \dots (e_k + 1)$$

(y fórmulas parecidas para $\sigma_m(n) = \sum_{d|n} d^m$)

Funciones de teoría de números

Teniendo la factorización de un número *n*, podemos generar sus divisores, o calcular funciones de teoría de números:

• Función φ de Euler: $\varphi(n)$ es la cantidad de números menores o iguales que n que son coprimos con n. Se tiene

$$\varphi(n) = (p_1^{e_1} - p_1^{e_1-1}) \dots (p_k^{e_k} - p_k^{e_k-1})$$

La cantidad de divisores de n es

$$\sigma_0(n) = (e_1 + 1) \dots (e_k + 1)$$

(y fórmulas parecidas para $\sigma_m(n) = \sum_{d|n} d^m$)

Funciones de teoría de números

Teniendo la factorización de un número *n*, podemos generar sus divisores, o calcular funciones de teoría de números:

• Función φ de Euler: $\varphi(n)$ es la cantidad de números menores o iguales que n que son coprimos con n. Se tiene

$$\varphi(n) = (p_1^{e_1} - p_1^{e_1-1}) \dots (p_k^{e_k} - p_k^{e_k-1})$$

La cantidad de divisores de n es

$$\sigma_0(n) = (e_1 + 1) \dots (e_k + 1)$$

(y fórmulas parecidas para $\sigma_m(n) = \sum_{d|n} d^m$)

Problemas

Algunos problemas para ir fijando ideas:

- SPOJ, p.2 *Prime Generator*: Encontrar todos los primos en el intervalo [M, N] con $1 \le M \le N \le 10^9$ y $N M \le 10^5$.
- SPOJ, p.526 *Divisors*: Encontrar todos los *N* tales que $\sigma_0(N) = p.q \text{ con } p \neq q \text{ primos y } N \leq 10^6.$
- CodeJam 2011, R2 *Expensive Dinner*: Calcular $\sum_{i=1}^{k} e_k 1$ para la factorización de MCM(1, ..., N) con $N \le 10^{12}$.

Un poco de teoría de números

- SPOJ, p.5971 *LCM Sum*: Calcular (\leq 300000 veces) $\sum_{n=1}^{N} lcm(i, n)$ con $N \leq 10^{6}$.
- SER'08, p.H *GCD Determinant*: Dado $\{x_1, \ldots, x_N\}$, calcular det S con $S_{ij} = \gcd(x_i, x_j)$ y $N \le 10^3$.

Problemas

Algunos problemas para ir fijando ideas:

- SPOJ, p.2 *Prime Generator*: Encontrar todos los primos en el intervalo [M, N] con $1 \le M \le N \le 10^9$ y $N M \le 10^5$.
- SPOJ, p.526 *Divisors*: Encontrar todos los *N* tales que $\sigma_0(N) = p.q \text{ con } p \neq q \text{ primos y } N \leq 10^6.$
- CodeJam 2011, R2 *Expensive Dinner*: Calcular $\sum_{i=1}^{k} e_k 1$ para la factorización de MCM(1, ..., N) con $N \le 10^{12}$.

Un poco de teoría de números:

- SPOJ, p.5971 *LCM Sum*: Calcular (\leq 300000 veces) $\sum_{n=1}^{N} lcm(i, n) \text{ con } N \leq 10^{6}$.
- SER'08, p.H *GCD Determinant*: Dado $\{x_1, \ldots, x_N\}$, calcular det S con $S_{ij} = \gcd(x_i, x_j)$ y $N \le 10^3$.

Contenidos

- Números naturales
 - Números primos y factorización
 - Algunas funciones que hay que conocer
- Aritmética modular
 - Operaciones básicas
 - ModExp
 - GCF
 - Teorema chino del resto
- Matrices
 - Notación y operaciones básicas
 - Matriz de adyacencias y caminos
 - Cadenas de Markov y otros problemas lineales
 - Resolución de sistemas lineales: eliminación de Gauss-Jordan

Recordamos que dados $a, b \in \mathbb{Z}$ y $m \in \mathbb{N}$

 $a \equiv_m b \iff a \lor b$ tienen el mismo resto en la división por m

Para cada
$$a$$
 existe un único $r \in \{0, 1, \dots, m-1\}$ (el resto!) tal que $a \equiv_m r$,

$$a \equiv_m c y b \equiv_m d \implies a \pm b \equiv_m c \pm d$$

 $a \equiv_m c y b \equiv_m d \implies a.b \equiv_m c.d$

$$a/b \rightarrow a.b^{-1}$$
 con b^{-1} definido

$$b.b^{-1} = 1$$

Recordamos que dados $a, b \in \mathbb{Z}$ y $m \in \mathbb{N}$

 $a \equiv_m b \iff a \lor b$ tienen el mismo resto en la división por m Para cada a existe un único $r \in \{0, 1, \dots, m-1\}$ (el resto!) tal que $a \equiv_m r$.

a veces a r se lo llama "a módulo m".

$$a \equiv_m c y b \equiv_m d \implies a \pm b \equiv_m c \pm d$$

 $a \equiv_m c y b \equiv_m d \implies a.b \equiv_m c.d$

$$a/b \rightarrow a.b^{-1} \quad \text{con } b^{-1} \text{ definido por } b.b^{-1}$$

Recordamos que dados $a, b \in \mathbb{Z}$ y $m \in \mathbb{N}$

 $a \equiv_m b \iff a \lor b$ tienen el mismo resto en la división por m Para cada a existe un único $r \in \{0, 1, ..., m-1\}$ (el resto!) tal que $a \equiv_m r$.

a veces a r se lo llama "a módulo m".

Las operaciones de suma, resta y producto se llevan bien con la relación \equiv_m :

$$a \equiv_m c \ y \ b \equiv_m d \implies a \pm b \equiv_m c \pm d$$

 $a \equiv_m c \ y \ b \equiv_m d \implies a.b \equiv_m c.d$

Recordamos que dados $a, b \in \mathbb{Z}$ y $m \in \mathbb{N}$

 $a \equiv_m b \iff a \lor b$ tienen el mismo resto en la división por m

Para cada a existe un único $r \in \{0, 1, ..., m-1\}$ (el resto!) tal que

$$a \equiv_m r$$
,

a veces a r se lo llama "a módulo m".

Las operaciones de suma, resta y producto se llevan bien con la relación \equiv_m :

$$a \equiv_m c \ y \ b \equiv_m d \implies a \pm b \equiv_m c \pm d$$

 $a \equiv_m c \ y \ b \equiv_m d \implies a.b \equiv_m c.d$

La división se define como la inversa del producto, es decir que

$$a/b \quad \leadsto \quad a.b^{-1} \quad \text{con } b^{-1} \text{ definido por } \quad b.b^{-1} = 1$$

Contenidos

- Números naturales
 - Números primos y factorización
 - Algunas funciones que hay que conocer
- Aritmética modular
 - Operaciones básicas
 - ModExp
 - GCD
 - Teorema chino del resto
- Matrices
 - Notación y operaciones básicas
 - Matriz de adyacencias y caminos
 - Cadenas de Markov y otros problemas lineales
 - Resolución de sistemas lineales: eliminación de Gauss-Jordan

A veces podemos directamente evitar buscar los inversos: en MCA'07, p.C *Last Digit*, nos piden calcular el ultimo dígito no nulo de

$$\chi = {N \choose m_1 \dots m_M} = \frac{N!}{m_1! \dots m_M!} \quad \text{con} \quad \sum_{i=1}^M m_i = N \quad \text{y} \quad N \le 10^6$$

Podemos factorizar χ usando lo que ya aprendimos, y evaluarlo módulo 10 eliminando antes todos los factores 5 y una cantidad igual de factores 2. Necesitamos evaluar eficientemente a^b med m:

- La evaluación directa es $\mathcal{O}(b)$, que es demasiado lento.
- Si escribimos a b en binario, $b = c_0 2^0 + \cdots + c_{\log b} 2^{\log b}$, podemos evaluar a^b en $\mathcal{O}(\log b)$

$$a^b = \prod_{i=0, c_i \neq 0}^{\log b} a^{2^i}$$

A veces podemos directamente evitar buscar los inversos: en MCA'07, p.C *Last Digit*, nos piden calcular el ultimo dígito no nulo de

$$\chi = {N \choose m_1 \dots m_M} = \frac{N!}{m_1! \dots m_M!} \quad \text{con} \quad \sum_{i=1}^M m_i = N \quad \text{y} \quad N \le 10^6$$

Podemos factorizar χ usando lo que ya aprendimos, y evaluarlo módulo 10 eliminando antes todos los factores 5 y una cantidad igual de factores 2. Necesitamos evaluar eficientemente a^b mod m:

- La evaluación directa es $\mathcal{O}(b)$, que es demasiado lento.
- Si escribimos a b en binario, $b = c_0 2^0 + \cdots + c_{\log b} 2^{\log b}$, podemos evaluar a^b en $\mathcal{O}(\log b)$

$$a^b = \prod_{i=0, c_i \neq 0}^{\log b} a^{2^i}$$

A veces podemos directamente evitar buscar los inversos: en MCA'07, p.C *Last Digit*, nos piden calcular el ultimo dígito no nulo de

$$\chi = {N \choose m_1 \dots m_M} = \frac{N!}{m_1! \dots m_M!} \quad \text{con} \quad \sum_{i=1}^M m_i = N \quad \text{y} \quad N \le 10^6$$

Podemos factorizar χ usando lo que ya aprendimos, y evaluarlo módulo 10 eliminando antes todos los factores 5 y una cantidad igual de factores 2. Necesitamos evaluar eficientemente a^b mod m:

- La evaluación directa es $\mathcal{O}(b)$, que es demasiado lento.
- Si escribimos a b en binario, $b = c_0 2^0 + \cdots + c_{\log b} 2^{\log b}$, podemos evaluar a^b en $\mathcal{O}(\log b)$

$$a^b = \prod_{i=0, c_i \neq 0}^{\log b} a^{2^i}$$

A veces podemos directamente evitar buscar los inversos: en MCA'07, p.C *Last Digit*, nos piden calcular el ultimo dígito no nulo de

$$\chi = {N \choose m_1 \dots m_M} = \frac{N!}{m_1! \dots m_M!} \quad \text{con} \quad \sum_{i=1}^M m_i = N \quad \text{y} \quad N \le 10^6$$

Podemos factorizar χ usando lo que ya aprendimos, y evaluarlo módulo 10 eliminando antes todos los factores 5 y una cantidad igual de factores 2. Necesitamos evaluar eficientemente a^b mod m:

- La evaluación directa es $\mathcal{O}(b)$, que es demasiado lento.
- Si escribimos a b en binario, $b = c_0 2^0 + \cdots + c_{\log b} 2^{\log b}$, podemos evaluar a^b en $\mathcal{O}(\log b)$

$$a^b = \prod_{i=0, c_i \neq 0}^{\log b} a^{2^i}$$

Modexp (código)

```
tint modexp(tint a, tint b) {
   tint RES = 1;
   while (b > 0) {
    if ((b&1) == 1) RES = (RES*a) %MOD;
    b >>= 1;
    a = (a*a) %MOD;
   }
   return RES;
}
```

Modexp

MCA'07, p.C Last Digit

```
1 int calc(int N, int m[], int M) {
    int i, RES;
4
    memset(e, 0, sizeof(e));
5
    e[N]++;
6
    for (i=0; i < M; i++) if (m[i] > 1) e[m[i]] - -;
    for (i=MAXN-2; i>=0; i--) e[i] += e[i+1];
9
    RES = 1:
0
    for (i=MAXN-1; i>=0; i--)
      if (p[i] != -1) {
        e[i/p[i]] += e[i];
        e[p[i]] += e[i];
        e[i] = 0:
    e[2] -= e[5]; e[5] = 0;
6
8
    for (i=2; i<MAXN; i++)
      if (e[i] != 0) RES = (RES*modexp(i, e[i]))%MOD;
    return RES:
0
```

MCA'07, p.C Last Digit

Recordar la sucesión de Fibonacci:

$$F_0 = F_1 = 1,$$
 $F_n = F_{n-1} + F_{n-2},$ $n \ge 2.$

Cómo calcular F_n eficientemente? Usando ModExp.

Idea:

$$V_n = (F_{n+1}, F_n) \quad \leadsto \begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix}$$

Recordar la sucesión de Fibonacci:

$$F_0 = F_1 = 1,$$
 $F_n = F_{n-1} + F_{n-2},$ $n \ge 2.$

Cómo calcular F_n eficientemente? Usando ModExp.

Idea:

$$V_n = (F_{n+1}, F_n) \quad \leadsto \begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix}$$

Recordar la sucesión de Fibonacci:

$$F_0 = F_1 = 1,$$
 $F_n = F_{n-1} + F_{n-2},$ $n \ge 2.$

$$V_n = (F_{n+1}, F_n) \quad \rightsquigarrow \begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix}$$

Recordar la sucesión de Fibonacci:

$$F_0 = F_1 = 1,$$
 $F_n = F_{n-1} + F_{n-2},$ $n \ge 2.$

$$V_n = (F_{n+1}, F_n) \quad \rightsquigarrow V_n = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} V_{n-1}$$

Recordar la sucesión de Fibonacci:

$$F_0 = F_1 = 1,$$
 $F_n = F_{n-1} + F_{n-2},$ $n \ge 2.$

$$V_n = (F_{n+1}, F_n) \quad \rightsquigarrow V_n = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} V_{n-1}$$

$$\rightsquigarrow V_n = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n V_0$$

Recordar la sucesión de Fibonacci:

$$F_0 = F_1 = 1,$$
 $F_n = F_{n-1} + F_{n-2},$ $n \ge 2.$

$$V_n = (F_{n+1}, F_n) \quad \rightsquigarrow V_n = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} V_{n-1}$$

$$\rightsquigarrow V_n = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Contenidos

- Números naturales
 - Números primos y factorización
 - Algunas funciones que hay que conocer
- Aritmética modular
 - Operaciones básicas
 - ModExp
 - GCD
 - Teorema chino del resto
- Matrices
 - Notación y operaciones básicas
 - Matriz de adyacencias y caminos
 - Cadenas de Markov y otros problemas lineales
 - Resolución de sistemas lineales: eliminación de Gauss-Jordan

GCD

El máximo común divisor entre a y b es es el mayor d tal que d|a y d|b. Observamos que

$$a = q.b + r$$
, $0 \le r < |b| \implies \gcd(a, b) = \gcd(b, r)$

Y tenemos entonces

```
1 int gcd(int a, int b) {
2    if (b == 0) return a;
3    return gcd(b, a%);
4 }
```

Algoritmo de Euclides

Puede verse que $gcd(F_{n+1}, F_n)$ requiere exactamente n operaciones (siendo F_n los números de Fibonacci). Como los F_n crecen exponencialmente, y son la peor entrada posible para el algoritmo, el tiempo es $\mathcal{O}(\log n)$.

GCD

El máximo común divisor entre a y b es es el mayor d tal que d|a y d|b. Observamos que

$$a = q.b + r$$
, $0 \le r < |b| \implies \gcd(a, b) = \gcd(b, r)$

Y tenemos entonces

```
1 int gcd(int a, int b) {
2    if (b == 0) return a;
3    return gcd(b, a%);
4 }
```

Algoritmo de Euclides

Puede verse que $gcd(F_{n+1}, F_n)$ requiere exactamente n operaciones (siendo F_n los números de Fibonacci). Como los F_n crecen exponencialmente, y son la peor entrada posible para el algoritmo, el tiempo es $\mathcal{O}(\log n)$.

Extensión del GCD

Puede verse que

$$gcd(a, m) = 1 \iff 1 = a.x + m.y$$

Entonces $x \equiv_m a^{-1}$, de modo que a tiene inverso módulo m si y sólo si

Extensión del GCD

Puede verse que

$$gcd(a, m) = 1 \iff 1 = a.x + m.y$$

Entonces $x \equiv_m a^{-1}$, de modo que a tiene inverso módulo m si y sólo si gcd(a, m) = 1. [Corolario: \mathbb{Z}_p es un cuerpo.] Para encontrar $x \in \mathcal{Y}$, los

Extensión del GCD

Puede verse que

$$gcd(a, m) = 1 \iff 1 = a.x + m.y$$

Entonces $x \equiv_m a^{-1}$, de modo que *a* tiene inverso módulo *m* si y sólo si gcd(a, m) = 1. [Corolario: \mathbb{Z}_p es un cuerpo.] Para encontrar x e y, los rastreamos a través del algoritmo de Euclides:

```
pii egcd(int a, int b) {
    if (b == 0) return make_pair(1, 0);
    else {
      pii RES = egcd(b, a\%);
      return make_pair(RES.second, RES.first -RES.second*(a/b));
7
8
 int inv(int n, int m) {
    pii EGCD = egcd(n, m);
    return ( (EGCD. first %m)+m) %m;
```

Algoritmo de Euclides extendido e inverso módulo m

Contenidos

- Números naturales
 - Números primos y factorización
 - Algunas funciones que hay que conocer
- Aritmética modular
 - Operaciones básicas
 - ModExp
 - GCD
 - Teorema chino del resto
- Matrices
 - Notación y operaciones básicas
 - Matriz de adyacencias y caminos
 - Cadenas de Markov y otros problemas lineales
 - Resolución de sistemas lineales: eliminación de Gauss-Jordan

Teorema chino del resto

Dado un conjunto de condiciones

$$x \equiv a_i \mod n_i$$
 para $i = 1, \dots, k$ con $\gcd(n_i, n_j) = 1$ $\forall i \neq j$

existe un único $x \mod N = n_1 \dots n_k$ que satisface todas las ecuaciones simultáneamente. Podemos construirlo considerando

$$m_i = \prod_{j \neq i} n_j \implies \gcd(n_i, m_i) = 1$$

Llamando $\bar{m}_i = m_i^{-1} \mod n_i$, armamos

$$x \equiv \sum_{i=1}^{k} \bar{m}_i m_i a_i \mod N$$

Teorema chino del resto

Dado un conjunto de condiciones

$$x \equiv a_i \mod n_i$$
 para $i = 1, \dots, k$ con $\gcd(n_i, n_j) = 1 \quad \forall i \neq j$

existe un único $x \mod N = n_1 \dots n_k$ que satisface todas las ecuaciones simultáneamente. Podemos construirlo considerando

$$m_i = \prod_{j \neq i} n_j \implies \gcd(n_i, m_i) = 1$$

Llamando $\bar{m}_i = m_i^{-1} \mod n_i$, armamos

$$x \equiv \sum_{i=1}^k \bar{m}_i m_i a_i \mod N$$

Teorema chino del resto (código)

```
int tcr(int n[], int a[], int k) {
    int i, tmp, MOD, RES;
   MOD = 1;
    for (i=0; i< k; i++) MOD *= n[i];
    RES = 0;
    for (i=0; i< k; i++) {
      tmp = MOD/n[i];
      tmp *= inv(tmp, n[i]);
      RES += (tmp*a[i]) %MOD;
    return RES%MOD:
4
```

Teorema chino del resto

Ejercicios (2)

- TCO'10 Round 1, p.2 TwoRegisters: Muchas veces el algoritmo de GCD aparece en problemas que no tienen demasiado que ver con teoría de números ;-)
- CEPC'08, p.I Counting heaps: Calcular el número (módulo M) de asignaciones de los valores $\{1, \ldots, N\}$ a los $N \le 5,10^5$ nodos de un árbol que respetan la condición de min-heap.
- WF Warmup I, p.C *Code Feat*: Aplicar el teorema chino del resto con $k \le 9$ y $a_i \in \left\{a_i^{(1)}, \dots, a_i^{(A_i)}\right\}$ siendo $A_i \le 100$.

Contenidos

- Números naturales
 - Números primos y factorización
 - Algunas funciones que hay que conocer
- Aritmética modular
 - Operaciones básicas
 - ModExp
 - GCE
 - Teorema chino del resto
- Matrices
 - Notación y operaciones básicas
 - Matriz de adyacencias y caminos
 - Cadenas de Markov y otros problemas lineales
 - Resolución de sistemas lineales: eliminación de Gauss-Jordan

Matrices

Una matriz de $N \times M$ es un arreglo de N filas y M columnas de elementos. Podemos definir la suma y la resta de matrices en forma natural $(\mathcal{O}(N.M))$:

$$A \pm B = C \iff C_{ij} = A_{ij} \pm B_{ij}$$

El producto de matrices se define como $(\mathcal{O}(N.M.L))$

$$A_{N \times M} \cdot A_{M \times L} = C_{N \times L} \qquad \Longleftrightarrow \qquad C_{ij} = \sum_{k=1}^{M} A_{ik}.B_{kj}$$

Para matrices cuadradas (a partir de ahora, trabajamos en $N \times N$), tiene sentido preguntarse si existe la inversa multiplicativa de una matriz A. Resulta que si det $A \neq 0$, la inversa existe y se tiene

$$A \cdot A^{-1} = 1 = A^{-1} \cdot A$$

Matrices

Una matriz de $N \times M$ es un arreglo de N filas y M columnas de elementos. Podemos definir la suma y la resta de matrices en forma natural $(\mathcal{O}(N.M))$:

$$A \pm B = C \iff C_{ij} = A_{ij} \pm B_{ij}$$

El producto de matrices se define como $(\mathcal{O}(N.M.L))$

$$A_{N\times M}\cdot A_{M\times L}=C_{N\times L}\qquad\Longleftrightarrow\qquad C_{ij}=\sum_{k=1}^MA_{ik}.B_{kj}$$

Para matrices cuadradas (a partir de ahora, trabajamos en $N \times N$), tiene sentido preguntarse si existe la inversa multiplicativa de una matriz A. Resulta que si det $A \neq 0$, la inversa existe y se tiene

$$A\cdot A^{-1}=\mathbb{1}=A^{-1}\cdot A$$

Contenidos

- Números naturales
 - Números primos y factorización
 - Algunas funciones que hay que conocer
- Aritmética modular
 - Operaciones básicas
 - ModExp
 - GCF
 - Teorema chino del resto
- Matrices
 - Notación y operaciones básicas
 - Matriz de adyacencias y caminos
 - Cadenas de Markov y otros problemas lineales
 - Resolución de sistemas lineales: eliminación de Gauss-Jordan

Uno de los usos que podemos darle a las matrices es el de representar las aristas de un grafo. Para una grafo de N nodos, una matriz $A_{N\times N}$ puede tener en A_{ij} :

- el costo de la arista que va del nodo i al j (∞ si la arista no existe).
- la cantidad de aristas que van del nodo *i* al *j* (0 si no hay).

En este último caso, $(A^2)_{ij} = \sum_k A_{ik} A_{kj}$ es la cantidad de caminos con exactamente dos aristas que van del nodo i al j. Esto puede generalizarse para A^n , que entonces contiene la cantidad de caminos con exactamente n aristas entre los pares de nodos del grafo original. Podemos calcular A^n usando una version adaptada de modexp en $\mathcal{O}(N^3 \log n)$. Hay algoritmos más eficientes para multiplicar (el algoritmo de Strassen es $\mathcal{O}(N^{2,807})$, y el de Coppersmith—Winograd es $\mathcal{O}(N^{2,376})$), pero no necesariamente conviene usarlos en una competencia...

Uno de los usos que podemos darle a las matrices es el de representar las aristas de un grafo. Para una grafo de N nodos, una matriz $A_{N\times N}$ puede tener en A_{ij} :

- el costo de la arista que va del nodo i al j (∞ si la arista no existe).
- la cantidad de aristas que van del nodo *i* al *j* (0 si no hay).

En este último caso, $(A^2)_{ij} = \sum_k A_{ik} A_{kj}$ es la cantidad de caminos cor exactamente dos aristas que van del nodo i al j. Esto puede generalizarse para A^n , que entonces contiene la cantidad de caminos con exactamente n aristas entre los pares de nodos del grafo original. Podemos calcular A^n usando una version adaptada de modexp en $\mathcal{O}(N^3 \log n)$. Hay algoritmos más eficientes para multiplicar (el algoritmo de Strassen es $\mathcal{O}(N^{2,807})$, y el de Coppersmith—Winograd es $\mathcal{O}(N^{2,376})$), pero no necesariamente conviene usarlos en una competencia...

Uno de los usos que podemos darle a las matrices es el de representar las aristas de un grafo. Para una grafo de N nodos, una matriz $A_{N\times N}$ puede tener en A_{ij} :

- el costo de la arista que va del nodo i al j (∞ si la arista no existe).
- la cantidad de aristas que van del nodo *i* al *j* (0 si no hay).

En este último caso, $(A^2)_{ij} = \sum_k A_{ik} A_{kj}$ es la cantidad de caminos cor exactamente dos aristas que van del nodo i al j. Esto puede generalizarse para A^n , que entonces contiene la cantidad de caminos con exactamente n aristas entre los pares de nodos del grafo original. Podemos calcular A^n usando una version adaptada de modexp en $\mathcal{O}(N^3 \log n)$. Hay algoritmos más eficientes para multiplicar (el algoritmo de Strassen es $\mathcal{O}(N^{2,807})$, y el de Coppersmith—Winograd es $\mathcal{O}(N^{2,376})$), pero no necesariamente conviene usarlos en una competencia...

Uno de los usos que podemos darle a las matrices es el de representar las aristas de un grafo. Para una grafo de N nodos, una matriz $A_{N\times N}$ puede tener en A_{ij} :

- el costo de la arista que va del nodo i al j (∞ si la arista no existe).
- la cantidad de aristas que van del nodo *i* al *j* (0 si no hay).

En este último caso, $(A^2)_{ij} = \sum_k A_{ik} A_{kj}$ es la cantidad de caminos con exactamente dos aristas que van del nodo i al j. Esto puede generalizarse para A^n , que entonces contiene la cantidad de caminos con exactamente n aristas entre los pares de nodos del grafo original.

Podemos calcular A^n usando una version adaptada de modexp en $\mathcal{O}(N^3 \log n)$. Hay algoritmos más eficientes para multiplicar (el algoritmo de Strassen es $\mathcal{O}(N^{2,807})$, y el de Coppersmith—Winograd es $\mathcal{O}(N^{2,376})$), pero no necesariamente conviene usarlos en una competencia...

Uno de los usos que podemos darle a las matrices es el de representar las aristas de un grafo. Para una grafo de N nodos, una matriz $A_{N\times N}$ puede tener en A_{ij} :

- el costo de la arista que va del nodo i al j (∞ si la arista no existe).
- la cantidad de aristas que van del nodo i al j (0 si no hay).

En este último caso, $(A^2)_{ij} = \sum_k A_{ik} A_{kj}$ es la cantidad de caminos con exactamente dos aristas que van del nodo i al j. Esto puede generalizarse para A^n , que entonces contiene la cantidad de caminos con exactamente n aristas entre los pares de nodos del grafo original. Podemos calcular A^n usando una version adaptada de modexp en $\mathcal{O}(N^3 \log n)$. Hay algoritmos más eficientes para multiplicar (el algoritmo de Strassen es $\mathcal{O}(N^{2,807})$, y el de Coppersmith—Winograd es $\mathcal{O}(N^{2,376})$), pero no necesariamente conviene usarlos en una competencia...

Contenidos

- Números naturales
 - Números primos y factorización
 - Algunas funciones que hay que conocer
- Aritmética modular
 - Operaciones básicas
 - ModExp
 - GCE
 - Teorema chino del resto
- Matrices
 - Notación y operaciones básicas
 - Matriz de adyacencias y caminos
 - Cadenas de Markov y otros problemas lineales
 - Resolución de sistemas lineales: eliminación de Gauss-Jordan

Cadenas de Markov

Si tenemos un sistema con un conjunto de estados $\{S_i\}$, con probabilidad p_{ij} conocida de efectuar una transición del estado i al estado j, los estados terminales $\{S_k\}$ son aquellos en los que $\sum_i p_{ki} = 0$. ¿Cuál es el tiempo esperado E_i para alcanzar un estado terminal desde el estado S_i ?

Para los estados terminales, claramente

$$E_k = 0$$

Para los demas estados

$$E_i = 1 + \sum_i p_{ij}.E_j$$

Es decir que debemos resolver un sistema de ecuaciones sobre los tiempos esperados.

Cadenas de Markov

Si tenemos un sistema con un conjunto de estados $\{S_i\}$, con probabilidad p_{ij} conocida de efectuar una transición del estado i al estado j, los estados terminales $\{S_k\}$ son aquellos en los que $\sum_i p_{ki} = 0$. ¿Cuál es el tiempo esperado E_i para alcanzar un estado terminal desde el estado S_i ?

Para los estados terminales, claramente

$$E_k = 0$$

Para los demas estados

$$E_i = 1 + \sum_j p_{ij}.E_j$$

Es decir que debemos resolver un sistema de ecuaciones sobre los tiempos esperados.

Cadenas de Markov

Si tenemos un sistema con un conjunto de estados $\{S_i\}$, con probabilidad p_{ij} conocida de efectuar una transición del estado i al estado j, los estados terminales $\{S_k\}$ son aquellos en los que $\sum_i p_{ki} = 0$. ¿Cuál es el tiempo esperado E_i para alcanzar un estado terminal desde el estado S_i ?

Para los estados terminales, claramente

$$E_k = 0$$

Para los demas estados

$$E_i = 1 + \sum_j p_{ij}.E_j$$

Es decir que debemos resolver un sistema de ecuaciones sobre los tiempos esperados.

Otros problemas lineales

También aparecen sistemas de ecuaciones en problemas de geometría computacional: *Joe's Triangular Gardens* (NA-GNY'08) pide hallar la elipse tangente a un triángulo en los puntos medios de sus lados:

Una elipse queda definida por $ax^2 + bxy + cy^2 + dx + ey + f = 0$ con $b^2 - 4ac < 0$, de modo que tenemos 5 parámetros que definen la elipse (a, b, c, d, e y f).

Otros problemas lineales

También aparecen sistemas de ecuaciones en problemas de geometría computacional: *Joe's Triangular Gardens* (NA-GNY'08) pide hallar la elipse tangente a un triángulo en los puntos medios de sus lados:

Una elipse queda definida por $ax^2 + bxy + cy^2 + dx + ey + f = 0$ con $b^2 - 4ac < 0$, de modo que tenemos 5 parámetros que definen la elipse (a, b, c, d, e y f).

Otros problemas lineales (cont.)

Si (x_i^m, y_i^m) con i = 1, 2, 3 son los puntos medios de los lados del triángulo, tenemos 3 ecuaciones de intersección

$$a(x_i^m)^2 + b x_i^m y_i^m + c(y_i^m)^2 + d x_i^m + e y_i^m + f = 0$$

y 2 ecuaciones de tangencia (derivando implícitamente para dos lados no verticales)

$$2ax_i^m + b(y_i^m + x_i^m y'(x_i^m, y_i^m)) + 2cy_i^m y'(x_i^m, y_i^m) + d + ey'(x_i^m, y_i^m) = 0$$

Los valores de las derivadas son simplemente las pendientes de los correspondientes lados del tríangulo: $y'(x_i^m, y_i^m) = \frac{\Delta y_i}{\Delta x_i}$.

Si resolvemos el sistema de 5 ecuaciones con 5 incógnitas, la solución al problema está prácticamente dada.

Otros problemas lineales (cont.)

Si (x_i^m, y_i^m) con i = 1, 2, 3 son los puntos medios de los lados del triángulo, tenemos 3 ecuaciones de intersección

$$a(x_i^m)^2 + b x_i^m y_i^m + c(y_i^m)^2 + d x_i^m + e y_i^m + f = 0$$

y 2 ecuaciones de tangencia (derivando implícitamente para dos lados no verticales)

$$2ax_i^m + b(y_i^m + x_i^m y'(x_i^m, y_i^m)) + 2cy_i^m y'(x_i^m, y_i^m) + d + ey'(x_i^m, y_i^m) = 0$$

Los valores de las derivadas son simplemente las pendientes de los correspondientes lados del tríangulo: $y'(x_i^m, y_i^m) = \frac{\Delta y_i}{\Delta x_i}$.

Si resolvemos el sistema de 5 ecuaciones con 5 incógnitas, la solución al problema está prácticamente dada.

Contenidos

- Números naturales
 - Números primos y factorización
 - Algunas funciones que hay que conocer
- Aritmética modular
 - Operaciones básicas
 - ModExp
 - GCE
 - Teorema chino del resto
- Matrices
 - Notación y operaciones básicas
 - Matriz de adyacencias y caminos
 - Cadenas de Markov y otros problemas lineales
 - Resolución de sistemas lineales: eliminación de Gauss-Jordan

Sistemas de ecuaciones

Un sistema de ecuaciones sobre N variables

$$a_{11} x_1 + \cdots + a_{1N} x_N = b_1$$

 \vdots
 $a_{N1} x_1 + \cdots + a_N x_N = b_N$

Puede representarse matricialmente como

$$A\vec{x} = \vec{b}$$
 \iff $\begin{pmatrix} a_{11} & \cdots & a_{1N} \\ \vdots & \ddots & \vdots \\ a_{N1} & \cdots & a_{NN} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_N \end{pmatrix}$

Resolver el sistema consiste en encontrar la inversa A^{-1} , porque entonces $\vec{x} = A^{-1}\vec{b}$. Podemos resolver varios sistemas de ecuaciones con diferentes términos independientes \vec{b}_i armando una matriz B con los vectores \vec{b}_i como sus columnas. Entonces $X = A^{-1}B$ y observamos que si $B \mapsto 1$, $X \mapsto A^{-1}$.

Sistemas de ecuaciones

Un sistema de ecuaciones sobre N variables

$$a_{11} x_1 + \cdots + a_{1N} x_N = b_1$$

 \vdots
 $a_{N1} x_1 + \cdots + a_N x_N = b_N$

Puede representarse matricialmente como

$$A\vec{x} = \vec{b}$$
 \iff $\begin{pmatrix} a_{11} & \cdots & a_{1N} \\ \vdots & \ddots & \vdots \\ a_{N1} & \cdots & a_{NN} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_N \end{pmatrix}$

Resolver el sistema consiste en encontrar la inversa A^{-1} , porque entonces $\vec{x} = A^{-1}\vec{b}$. Podemos resolver varios sistemas de ecuaciones con diferentes términos independientes \vec{b}_i armando una matriz B con los vectores \vec{b}_i como sus columnas. Entonces $X = A^{-1}B$ y observamos que si $B \mapsto 1$, $X \mapsto A^{-1}$.

Sistemas de ecuaciones (cont.)

Para resolver un sistema a mano, despejamos una variable de una ecuación y la usamos para eliminar las apariciones de esa variable en las demás ecuaciones, trabajando simultáneamente con los términos independientes. Para eso podemos:

- Multiplicar o dividir una ecuación (fila) por un número.
- Sumar o restar una ecuación (fila) a otra.
- Intercambiar dos filas (no modifica las ecuaciones).

El algoritmo de Gauss-Jordan consiste en formalizar este procedimiento con un sólo cuidado: para reducir el error numérico, las variables se despejan de las ecuaciones en las que aparecen con el coeficiente más grande en valor absoluto en cada paso (llamamos a esto el *pivoteo*).

Sistemas de ecuaciones (cont.)

Para resolver un sistema a mano, despejamos una variable de una ecuación y la usamos para eliminar las apariciones de esa variable en las demás ecuaciones, trabajando simultáneamente con los términos independientes. Para eso podemos:

- Multiplicar o dividir una ecuación (fila) por un número.
- Sumar o restar una ecuación (fila) a otra.
- Intercambiar dos filas (no modifica las ecuaciones).

El algoritmo de Gauss-Jordan consiste en formalizar este procedimiento con un sólo cuidado: para reducir el error numérico, las variables se despejan de las ecuaciones en las que aparecen con el coeficiente más grande en valor absoluto en cada paso (llamamos a esto el *pivoteo*).

Eliminación de Gauss-Jordan

```
bool invert (double **A, double **B, int N) {
     int i, j, k, jmax; double tmp;
     for (i=1; i \le N; i++)
       imax = i: //Maximo el. de A en la col. i con fila >= i
       for (i=i+1: i \le N: i++)
6
         if (abs(A[i][i]) > abs(A[jmax][i])) jmax = j;
       for (j=1; j<=N; j++) {//Intercambiar las filas i y jmax
         swap(A[i][i], A[imax][i]); swap(B[i][i], B[imax][i]);
10
11
12
       // Controlar que la matriz sea invertible
13
       if (abs(A[i][i]) < EPS) return false;</pre>
14
15
       tmp = A[i][i]: // Normalizar la fila i
16
       for (i=1; i \le N; i++) { A[i][i] /= tmp; B[i][i] /= tmp; }
17
       //Eliminar los valores no nulos de la columna i
18
19
       for (i=1; i<=N; i++) {
         if (i == j) continue;
         tmp = A[i][i];
         for (k=1; k \le N; k++)
           A[j][k] -= A[i][k]*tmp; B[j][k] -= B[i][k]*tmp;
24
25
26
27
     return true:
28
```

Eliminación de Gauss-Jordan

Eliminación de Gauss-Jordan para matrices bidiagonales

El algoritmo de Gauss-Jordan claramente es $\mathcal{O}(N^3)$. Puede verse que si sabemos multiplicar dos matrices de $N \times N$ en $\mathcal{O}(T(N))$, podemos invertir una matriz o calcular su determinante en el mismo tiempo asintótico.

En general, en lugar de optimizar el algoritmo general conviene aprovechar alguna propiedad particular de las matrices que queremos invertir: podemos invertir una matriz bidiagonal o tridiagonal (con elementos diagonales no nulos) en $\mathcal{O}(N)$.

```
\begin{pmatrix} a_{11} & a_{12} & 0 & 0 & 0 & \dots & 0 \\ a_{21} & a_{22} & a_{23} & 0 & 0 & \dots & 0 \\ 0 & a_{32} & a_{33} & a_{34} & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & & \dots & & 0 & a_{NN-1} & a_{NN} \end{pmatrix}
```

Eliminación de Gauss-Jordan para matrices bidiagonales

El algoritmo de Gauss-Jordan claramente es $\mathcal{O}(N^3)$. Puede verse que si sabemos multiplicar dos matrices de $N \times N$ en $\mathcal{O}(T(N))$, podemos invertir una matriz o calcular su determinante en el mismo tiempo asintótico.

En general, en lugar de optimizar el algoritmo general conviene aprovechar alguna propiedad particular de las matrices que queremos invertir: podemos invertir una matriz bidiagonal o tridiagonal (con elementos diagonales no nulos) en $\mathcal{O}(N)$.

$$\begin{pmatrix} a_{11} & a_{12} & 0 & 0 & 0 & \dots & 0 \\ a_{21} & a_{22} & a_{23} & 0 & 0 & \dots & 0 \\ 0 & a_{32} & a_{33} & a_{34} & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & & \dots & & 0 & a_{NN-1} & a_{NN} \end{pmatrix}$$

Problemas (3)

Para implementar y poner a prueba lo que hablamos

- SWERC'08, p.B First Knight
- SPOJ, p.339 Recursive Sequence

Algunos problemas entretenidos

- TC SRM 443, p.3 ShuffledPlaylist: Contar la cantidad de caminos en un grafo, con un poco de imaginación...
- TCO'08 Semifinal Room 2, p.3 ColorfulBalls
- CodeForces BR24, p.D *Broken robot*: Calcular el tiempo esperado para llegar a la ultima fila desde una posición arbitraria de una grilla de $N \times N$ con $N \le 10^3$, cuando podemos en cada paso quedarnos quietos, movernos a los lados o hacia abajo con ciertas probabilidades dadas.

Problemas (3)

Para implementar y poner a prueba lo que hablamos

- SWERC'08, p.B First Knight
- SPOJ, p.339 Recursive Sequence

Algunos problemas entretenidos

- TC SRM 443, p.3 ShuffledPlaylist: Contar la cantidad de caminos en un grafo, con un poco de imaginación...
- TCO'08 Semifinal Room 2, p.3 ColorfulBalls
- CodeForces BR24, p.D Broken robot: Calcular el tiempo esperado para llegar a la ultima fila desde una posición arbitraria de una grilla de N × N con N ≤ 10³, cuando podemos en cada paso quedarnos quietos, movernos a los lados o hacia abajo con ciertas probabilidades dadas.

Suerte en San Petesburgo!