Imitating the Typography From Classic Hindawi Journals (i.e., from 'Fixed Points as Nash Equilibria' (Torres-Martínez, 2006))

Pachá (https://pacha.dev)

July 12, 2023

This uses Lucida and Minion Pro.

Let $Y \subset \mathbb{R}^n$ be a convex set. A function $v : Y \to \mathbb{R}$ is *quasiconcave* if, for each $\lambda \in (0,1)$, we have $v(\lambda y_1 + (1 - \lambda y_2)) \ge \min\{v(y_1), v(y_2)\}$, for all $(y_1, y_2) \in Y \times Y$.

[Nash-2.] Given $\mathcal{G} = \{I, S_i, V^i\}$, suppose each set $S_i \in \mathcal{H}$ and that objective functions are continuous in its domain and quasiconcave in its own strategy. Then there is a Nash equilibrium for \mathcal{G} .

[*Kakutani.*] Given $X \in \mathcal{H}$, every closed-graph correspondence $\Phi : X \twoheadrightarrow X$, with $\Phi(x) \in \mathcal{H}$ for all $x \in X$, has a fixed point, provided that $\Phi(x) = \prod_{j=1}^m \pi_j^m(\Phi(x))$ for each $x \in X \subset \mathbb{R}^m$.

The article proves that $[Nash-2] \rightarrow [Kakutani]$.

Ok, sufficient display of math symbols.

See https://github.com/pachadotdev/varsityblues for a set of complete LaTeX templates to be used with R Markdown or Quarto.