Домашнее задание №10

Томинин Ярослав, 778 группа 19 ноября 2018 г. 1.

Рассмотрим наш язык. Разделим его на два множества:

- 1) Слова, в которых есть нарушение(слово содержит одно из подслов ba,cb,ca)
- 2) Слова, которые имеют вид $a^k b^z c^d$, причем одновременно k,z,d не равны друг другу

Утверждение: Каждое слово из языка принадлежит хотя бы одному множеству(факт того, что слово не принадлежит одновременно двум множествам оставим без доказательста, считая, что он сразу следует из построения)

Доказательство: От противного. Предположим, что нашлось такое слово из языка, которое не принадлежит ни одному множеству, тогда в нем нет нарушений и мы его можем представить в виде $a^k b^z c^d$, но это означает, что оно принадлежит второму множеству. Противоречие.

Рассмотрим следующие подмножества: подмножество состоит из слов вида $a^kb^zc^d$, где k>z(k>d,z>k,z>d,d>k,d>z). Эти шесть множест могут пересекаться друг с другом, но главное, что из объединение дает наше 2 множество.

Построим грамматики для каждого из шести подмножеств.

 Γ рамматика $G_1, k > z$

$$S_1 \to A_1 B_1 C_1$$

$$A_1 \to a A_1 | a$$

$$B_1 \to a B_1 b | \epsilon$$

$$C_1 \to c C_1 | \epsilon$$

Утвержение: данная грамматика выводит множество, состоящее из слов вида $a^kb^zc^d$, где k>z.

Доказательство: эта грамматика является конкатенацией трех грамматик, которые выводят языки $a^k, k>0; a^qb^q, q\geq 0; c^t, t\geq 0$. Поэтому их конкатенация выводит нужное множество.

Данное утверждение можно расширить на z>d,k< z,z< d грамматики, поэтому дли них мы не будем это доказывать.

 Γ рамматика $G_2, k > d$

$$S_2 \to A_2 C_2$$

$$A_2 \to a A_2 | a$$

$$B_2 \to B_2 b | \epsilon$$

$$C_2 \to a C_2 c | \epsilon | B_2$$

Идея этой грамматики заключается в том, что мы порождаем слово $a^k a^m C c^m, k > 0$ и потом можем заменить нетерминал С на В и вывести произвольное количество букв В. Эта грамматика выводит все слова из нашего 2 подмножества и при этом только их, так как нет нарушения и букв а точно больше, чем букв с. Это рассуждение распространяется на оставшееся множество. Грамматика $G_3, z > k$

$$S_3 \to A_3 B_3 C_3$$

$$A_3 \to a A_3 b | \epsilon$$

$$B_3 \to B_3 b | b$$

$$C_3 \to c C_3 | \epsilon$$

Γ рамматика $G_4, z > d$

$$S_4 \to A_4 B_4 C_4$$

$$A_4 \to a A_4 | \epsilon$$

$$B_4 \to B_4 b | b$$

$$C_4 \to b C_4 c | \epsilon$$

Грамматика $G_5, d > k$

$$S_5 \to A_5 C_5$$

$$A_5 \to a A_5 c |\epsilon| B_5$$

$$B_5 \to B_5 b |\epsilon|$$

$$C_5 \to C_5 c |c|$$

Γ рамматика $G_6, d > z$

$$S_6 \to A_6 B_6 C_6$$

$$A_6 \to a A_6 | \epsilon$$

$$B_6 \to b B_6 c | \epsilon$$

$$C_6 \to C_6 c | c$$

Построим грамматику для первого множества:

Грамматика G_7 , существует нарушение

$$S_7 \to A_7 ba A_7 |A_7 ca A_7| A_7 cb A_7$$

 $A_7 \to a A_7 |b A_7| cA_7 |\epsilon$

Эта грамматика является конкатенацией произвольного слова нарушения и произвольного слова, поэтому это и есть наше множество 1. В результате получим грамматику:

Γ рамматикаG

$$S \rightarrow S_1 | S_2 | S_3 | S_4 | S_5 | S_6 | S_7$$

$$S_1 \rightarrow A_1 B_1 C_1$$

$$A_1 \rightarrow a A_1 | a$$

$$B_1 \rightarrow a B_1 b | \epsilon$$

$$C_1 \rightarrow c C_1 | \epsilon$$

$$S_2 \rightarrow A_2 C_2$$

$$A_2 \rightarrow a A_2 | a$$

$$B_2 \rightarrow B_2 b | \epsilon$$

$$C_2 \rightarrow a C_2 c | \epsilon | B_2$$

$$S_3 \rightarrow A_3 B_3 C_3$$

$$A_3 \rightarrow a A_3 b | \epsilon$$

$$B_3 \rightarrow B_3 b | b$$

$$C_3 \rightarrow c C_3 | \epsilon$$

$$S_4 \rightarrow A_4 B_4 C_4$$

$$A_4 \rightarrow a A_4 | \epsilon$$

$$B_4 \rightarrow B_4 b | b$$

$$C_4 \rightarrow b C_4 c | \epsilon$$

$$S_5 \rightarrow A_5 C_5$$

$$A_5 \rightarrow a A_5 c | \epsilon | B_5$$

$$B_5 \rightarrow B_5 b | \epsilon$$

$$C_5 \rightarrow C_5 c | c$$

$$S_6 \rightarrow A_6 B_6 C_6$$

$$A_6 \rightarrow a A_6 | \epsilon$$

$$B_6 \rightarrow b B_6 c | \epsilon$$

$$C_6 \rightarrow C_6 c | c$$

$$S_7 \rightarrow A_7 b a A_7 | A_7 c a A_7 | A_7 c b A_7$$

$$A_7 \rightarrow a A_7 | b A_7 | c A_7 | \epsilon$$

2.

Да, это КС-язык. Для того, чтобы это понять, достаточно его переписать в виде:

 $\{{}^nb^nb^mc^m|n,m\geq 0\}$

Мы знаем, что для языка a^nb^n грамматика выглядит так:

Γ рамматика G_1

$$S_1 \to aS_1b|\epsilon$$

Для языка $b^m c^m$ грамматика выглядит так: **Грамматика** G_2

$$S_2 \to bS_2c|\epsilon$$

Тогда их конкатенация и есть наш язык:

Γ рамматикаG

$$S \to S_1 S_2$$

$$S_1 \to a S_1 b | \epsilon$$

$$S_2 \to b S_2 c | \epsilon$$

3.

- 1) Поймем, что $A\setminus R=A\cap \overline{R}$. Так как регулярные языки замкнуты относительно дополнения и при этом мы можем строить кострукцию произведения для регулярного языка и КС-языка. Исходя из этого, полученный язык будет КС-языком.
- 2)Нет, это не верно.

Контрпример: $R = \sum^*$, $A = \overline{B}$, $B = uu|u \in \sum^*$. Так как мы доказывали, что А-КС-язык и мы так же доказывали, что В не является КС-языком. Результат будет равен В, который не является КС-языком. 3)Да, верно. Так как это КС-язык, то рассмотрим грамматику, если все слова α , находящиеся в грамматике справа заменить на α^R , то мы получим грамматику, которая будет выводить A^R .

4.

Напишем отрицание леммы о накачке:

 $\forall p \exists w \in L: |w| \geq p, \forall x, u, y, v, z: |uyv| \leq p; |uv| > 0, \exists i \geq 0: w_i = xu^i yv^i z \notin L$

Возьмем для произвольного р слово $w = a^{2p}a^pb^pa^{2p}$

Разбиением будем называть uyv.

Разбиение этого слова может лежать в a^{2p} , тогда мы накачаем несколько а и так как количество букв изменится, то слово х будет содержать только а, а x^R (на самом деле это не x^R , мы просто называем так третью

часть слова) справа точно будет содержать b, поэтому слово не принадлежит языку.

Если разбиение лежит между a^{2p} и a^p , то проделаем то же самое и получим слово не из языка.

Если разбиение между a^p и b^p , то возьмем i=2, тогда длина увеличится меньше, чем на р, поэтому х будет содержать только a, а x^R (на самом деле это не x^R , мы просто называем так третью часть слова) справа точно будет содержать b, поэтому слово не принадлежит языку.

Если разбиение между b^p и a^p , то тогда разбиение имеет вид: $a^{2p}a^pb^quyva^w$. Возможны следующие случаи:

и содержит и b, и а(при этом v пустое) v содержит и b, и а(при этом и пустое)

в и и v содержатся либо только a, либо только b

Обоснуем: если не выполняется третье и в u,v не могут быть одновременно а и b(так как есть только один переход от b к а), то получается, что либо u, либо v -пустое слово, а другое содержит и а, и b.(так как оба пустых быть не может по лемме о накачке) А это и есть 1,2 утверждения. То есть все возможные варианты лежат в этих трех случаях.

В первом случае возьмем i=3p(длина каждой трети станет не меньше, чем 4p), тогда заметим, что количество букв а справа до первой буквы b равно p(причем эта буква b точно входит в третью треть слова). А количество букв а слева до первой b равно 3p. Следовательно, мы нашли слово, которое не принадлежит языку.

Во втором случае проделаем все то же самое и прийдем к тому же противоречию.

В третьем случае, если u,v содержат одинаковые буквы, то в случае, если они оба содержат а, выберем i=6p(длина каждой трети станет не меньше, чем 4p), тогда в правой трети будут только а, а в левой после 3p символов а будет стоять b. Поэтому слово будет не принадлежать языку. Если u,v содержат буквы b, то выберем i=6p(длина каждой трети станет не меньше, чем 4p), тогда в правой части будет идти p букв а, а потом бужет стоять b, а левой части первыми 3p буквыми будут а. Поэтому слово не принадлежит языку.

Рассмотрим случай, когда в u,v по отдельности содержат только один тип символов, но при этом они содержат разные символы. Тогда мы точно знаем, что и содержит b, а v содержит a. Наше слово имеет вид $a^{2p}a^pb^{p-q}b^qa^{2p-r}a^r, |u|=q; |v|=r$

Тогда , выбирая i=kp+1, получим слово $a^{2p}a^pb^{p(1+kq)}a^{p(2+kr)}$ Если r=0, то q точно больше 0, и если мы возьмем k=6, то длина слова будет не меньше, чем 12p, заметим, что в правой трети справа стоит 2p букв a, a потом b, a в левой трети слева стоит 3p букв a, a потом b. Поэтому слово

не принадлежит языку.

Если $r \neq 0$, то выберем k=6p,то длина слова будет не меньше, чем 12p, и правая треть состоит только из a, a левая содержит b. Следовательно слово не принадлежит языку.

Следовательно язык не является регулярным.

5.

Вычислим	FIRST

F_i	Е	Т	F	E'	T'
F_0	\oslash	\oslash	\oslash	ϵ	ϵ
F_1	\oslash	\Diamond	(,id	$\epsilon, +$	$ imes,\epsilon$
F_2	\oslash	(,id	(,id	$\epsilon, +$	$ imes,\epsilon$
F_3	(,id)	(,id	(,id	$\epsilon, +$	$ imes,\epsilon$

Теперь вычислим FOLLOW

F_i	Е	Т	F	E'	T'
F_0	\oslash	\oslash	\oslash	\oslash	\Diamond
F_1)	+	×	\Diamond	\Diamond
F_2)	+,)	$\times, +$)	+
F_3)	+,)	$\times, +,)$)	+,)
F_4)	+,)	$\times, +,)$)	+,)