CS 511, Fall 2020, Handout 02

Natural Deduction and Examples of Natural Deduction in Propositional Logic

Assaf Kfoury

September 03, 2020

from **informal/common** reasoning to **formal** reasoning:

- ► IF the train arrives late AND there are NO taxis THEN John is late for the meeting
- John is NOT late for the meeting
- the train did arrive late
- ► THEREFORE there were taxis

from informal/common reasoning to formal reasoning:

- ► IF the train arrives late AND there are NO taxis
 THEN John is late for the meeting
- ► John is **NOT** late for the meeting
- the train did arrive late
- ► THEREFORE there were taxis

again symbolically:

$$\blacktriangleright \ (P \land \neg Q) \rightarrow R$$

- $\neg R$
- \triangleright P
- $\vdash Q$

more succintly:

$$P \wedge \neg Q \rightarrow R, \neg R, P \vdash Q$$

Formal Proof of the Sequent ***

a sequent (also called a judgment) is an expression of the form:

$$\varphi_1,\ldots,\varphi_n \vdash \psi$$

where:

- 1. $\varphi_1, \ldots, \varphi_n, \psi$ are well-formed formulas (also called wff's)
- 2. the symbol "⊢" is pronounced turnstile
- 3. the wff's $\varphi_1, \dots, \varphi_n$ to the left of " \vdash " are called the **premises** (also called **antecedents** or **hypotheses**)
- 4. the wff ψ to the right of " \vdash " is called the **conclusion** (also called **succedent**)

- a sequent is said to be valid (also deducible or derivable) if there is a formal proof for it
- a formal proof (also called deduction or derivation) is a sequence of wff's which starts with the premises of the sequent and finishes with the conclusion of the sequent:

where every wff in the deduction is obtained from the wff's preceding it using a proof rule

$$ightharpoonup \frac{\varphi \wedge \psi}{\varphi} \wedge \mathsf{E}_1$$

$$-\frac{\varphi \wedge \psi}{\psi}$$
 $\wedge \mathsf{E}_2$

$$\frac{\varphi}{\neg \neg \varphi}$$
 $\neg \neg |$

$$-\frac{\neg\neg\varphi}{}$$
 $\neg\neg$ E

(cannot be used in intuitionistic logic)

$$\qquad \qquad \frac{\varphi \qquad \varphi \rightarrow \psi}{\psi} \qquad \rightarrow \mathsf{E} \qquad \text{(or MP for Modus Ponens)}$$

$$\qquad \qquad \frac{\varphi \to \psi \qquad \neg \psi}{\neg \omega} \qquad \text{MT} \qquad \text{(for Modus Tollens)}$$

$$\qquad \qquad \frac{\varphi \qquad \varphi \rightarrow \psi}{\psi} \qquad \rightarrow \mathsf{E} \qquad \text{(or MP for Modus Ponens)}$$

$$\qquad \qquad \frac{\varphi \to \psi \qquad \neg \psi}{\neg \varphi} \qquad \text{MT} \qquad \text{(for Modus Tollens)}$$

open a box when you *introduce* an assumption (wff φ in rule \to I) close the box when you *discharge* the assumption you must close every box and discharge every assumption in order to complete a formal proof

Proof Rules Associated with Only One "¬" and with "⊥"

So far, we have an **elimination** rule and an **introduction** rule for double negation " $\neg\neg$ ", namely $\neg\neg E$ and $\neg\neg I$, but not for single negation " \neg ". We now compensate for this lack:

$$ightharpoonup rac{arphi}{|} \neg \mathsf{E} \quad (\text{ or } \mathsf{LNC} \text{ for } \mathsf{Law} \text{ of } \mathsf{Non-Contradiction})$$

where "\perp " (a single symbol) stands for "contradiction"

Proof Rules Associated with Only One "¬" and with "⊥"

So far, we have an **elimination** rule and an **introduction** rule for double negation " $\neg\neg$ ", namely $\neg\neg$ E and $\neg\neg$ I, but not for single negation " \neg ". We now compensate for this lack:

$$ightharpoonup rac{arphi}{|} \neg \mathsf{E} \quad (\text{ or } \mathsf{LNC} \text{ for } \mathsf{Law} \text{ of } \mathsf{Non-Contradiction})$$

where "\perp " (a single symbol) stands for "contradiction"

$$\begin{array}{c} \varphi \\ \vdots \\ \bot \\ \neg \varphi \end{array} \neg \mathbf{I}$$

$$\perp$$
 \perp \perp \perp ("if you can prove \perp , you can prove every wff")

Two Derived Proof Rules

The two following rules are derived rules -

the first from rules \rightarrow I, \neg I, \rightarrow E, and $\neg\neg$ E (see [LCS, pp 24-25]); the second from rules \lor I, \neg I, \neg E, and $\neg\neg$ E (see [LCS, pp 25-26]):

Because ¬¬E is rejected in intuitionistic logic, so are PBC and LEM

(a summary of all proof rules and some derived rules in [LCS, p. 27])

formal proof of the sequent $P \vdash Q \rightarrow (P \land Q)$

formal proof of the sequent $P \vdash Q \rightarrow (P \land Q)$

$$_3$$
 $P \wedge Q$

$$\wedge$$
I 1, 2

$$_4$$
 $Q \rightarrow (P \land Q)$

$$\rightarrow$$
I

formal proof of the sequent $P \to (Q \to R) \vdash P \land Q \to R$

formal proof of the sequent $P o (Q o R) \vdash P \land Q o R$

$$_1$$
 $P o (Q o R)$

2 <i>P</i> ∧ <i>Q</i>	
3 P	$\wedge E_1$ 2
$_4$ $Q o R$	→E 1,3
5 Q	$\wedge E_2$ 2
6 R	→E 4,5
$_7$ $P \wedge Q \rightarrow R$	\rightarrow l

formal proof of the sequent $P \land Q \rightarrow R \vdash P \rightarrow (Q \rightarrow R)$

formal proof of the sequent $P \land Q \rightarrow R \vdash P \rightarrow (Q \rightarrow R)$

$$_1$$
 $P \wedge Q \rightarrow R$

2 P	
3 Q	
$_4$ $P \wedge Q$	∧I 2, 3
5 R	→E 1,4
6 $Q o R$	\rightarrow I

$$_{7} P \rightarrow (Q \rightarrow R) \rightarrow \mathsf{I}$$

formal proof of the sequent $P o (Q o R) \vdash (P o Q) o (P o R)$

formal proof of the sequent $P o (Q o R) \vdash (P o Q) o (P o R)$

$$_1$$
 $P \rightarrow (Q \rightarrow R)$

$_{2}$ $P ightarrow Q$	
3 P	
4 Q	\rightarrow E 2, 3
$_{5}$ $Q ightarrow R$	→E 1,3
6 R	ightarrowE 5,4
$_7$ $P o R$	ightarrowI

$$8 \quad (P \to Q) \to (P \to R)$$

Formal Proof of the Initial Sequent:

► Initial Sequent

- $_{\scriptscriptstyle 1}$ $P \wedge \neg Q \rightarrow R$
- $_2$ $\neg R$
- $_3$ F
- $_4$ $\neg Q$
- $_5 P \wedge \neg Q$
- 6 R
- ₇ \perp
- 8 ¬¬Q
- 9 Q

- premise
- premise
- premise
- assume
- $\wedge I \ 3,4$
- \rightarrow E 1,5
- $\neg E 6, 2$
- \neg I
- $\neg \neg \mathsf{E} \ 8$

(THIS PAGE INTENTIONALLY LEFT BLANK)