4- Grammaire

- Comment définir rigoureusement un langage ?
 - En donnant des règles (syntaxiques) de « grammaire »
 - Qui explicitent comment construire les mots sur l'alphabet
 - Définition « constructive » du langage
 - Intuitivement, il faut pour cela 4 composants
 - Un alphabet
 - Les règles de construction, dites de « production »
 - Pour exprimer ces règles, un ensemble de symboles spécifiques
 - Parmi les symboles spécifiques, un symbole particulier à partir duquel toute construction commence
 - NB : On verra qu'il existe d'autres moyens pour définir les langages

17

Grammaires : définition

- Une grammaire G est un quadruplet <X, N, P, S> où:
 - X est un ensemble fini de terminaux (l'alphabet)
 - N est un ensemble fini de <u>non terminaux</u> (avec N \cap X = \emptyset)
 - P est un ensemble fini de <u>règles de production</u> (règles de réécriture)
 - $P = \{ \alpha \to \beta \text{ où } \\ \alpha \text{ est une séquence non vide de symboles de l'ensemble } N \cup X \\ \beta \text{ est une séquence non vide de symboles de l'ensemble } N \cup X \\ \text{ou } \beta = \lambda \}$
 - La signification intuitive de $\alpha \to \beta$ est que la partie gauche α de la règle peut être remplacée par la partie droite β
 - En pratique, nous manipulerons des grammaires t.q. $\alpha \in N$
 - C.-à-d. uniquement 1 non terminal en partie gauche des règles
 - Les règles peuvent être récursives
 - S ∈ N appelé <u>axiome</u>

Grammaires : définition

- 0
 - Dérivation
 - Soient
 - $G = \langle N, X, P, S \rangle$
 - $W_1 \in (N \cup X)^* \setminus \{\lambda\}$
 - $W_2 \in (N \cup X)^*$
 - On dit que $\underline{w_1}$ se dérive en une étape en $\underline{w_2}$ (ou que $\underline{w_2}$ dérive directement de $\underline{w_1}$), noté $\underline{w_1} \Rightarrow \underline{w_2}$, si $\exists x,y \in (N \cup X)^*$ tels que $\underline{w_1} = x u y$ et $\underline{w_2} = x v y$ et si la règle $\underline{u} \to v \in P$
 - On dit que w₁ se dérive (en un nombre quelconque d'étapes) en w₂, noté w₁ ⇒* w₂,

```
si w_1 = w_2
ou si \exists w_3 \in (N \cup X)^* t.q. w_1 \Rightarrow w_3 \text{ et } w_3 \Rightarrow^* w_2
```

19

Grammaires : définition

- Langage « <u>engendré</u> » par une grammaire
 - Soit G = <N, X, P, S>
 - Le <u>langage engendré par la grammaire G</u>, noté L(G), est l'ensemble des mots {w ∈ X^{*} / S ⇒^{*} w}

Grammaires : définition

- Arbres de dérivation
 - Soit $G = \langle N, X, P, S \rangle$ et $w \in L(G)$
 - Un arbre de dérivation du mot w est une représentation (structurelle, non séquentielle) des dérivations de w à partir de S
 - Aux feuilles d'un arbre de dérivation, il n'y a que des terminaux ! (on dit que l'arbre est clos)
 - Rq: L(G) est l'ensemble des mots de X* qui admettent un arbre de dérivation

21

Grammaires : définition

- Ambiguïté
 - Une grammaire est <u>ambiguë</u> si ∃ w ∈ L(G) qui admet au moins deux arbres de dérivations différents
 - Rq: En pratique, les grammaires ambiguës posent problème puisqu'un mot peut être « compris » de plusieurs façons différentes
 - $2 \times 3 + 4$

Égalité sur les langages

- Soient
 - Une grammaire G
 - G engendre un langage noté L(G)
 - Un langage L
- Comment montrer que L(G) = L?
 - Par « double inclusion » c.-à-d.
 - $L \subseteq L(G)$
 - Par ex., par récurrence sur la longueur (ou ...) des mots
 - L(G) ⊆ L
 - Par ex., par récurrence sur le nombre d'utilisation d'une ou des règles

23

Hiérarchie de Chomsky

- Classification des grammaires donc des langages
 - En fonction de leur complexité
- Grammaire « context-free »
 - Les règles sont de la forme

$$A \to \beta$$
 avec $A \in N$
(et $\beta \in (N \cup X)^*$)

- Grammaire « linéaire à droite »
 - Les règles sont de la forme $A \rightarrow a \ B \mid \lambda \qquad \text{avec } A, B \in N$ et $a \in X$

Langages contextuels

Langages algébriques

Langages réguliers