# ETL (Extract-Transform-Load)

**Big Data Analytics** 



### Pengenalan ETL (1)

- Sistem Extract-Transform-Load (ETL) adalah dasar dari pengolahan data khususnya Big Data.
- Sebuah sistem ETL yang baik akan mengekstrak data dari sumber, memberlakukan konsistensi standard dan kualitas data serta adaptif untuk menyesuaikan format data.
- Menyampaikan data dalam bentuk presentationready sehingga pengembang aplikasi dapat membuat aplikasi dan pengguna akhir dapat mengambil keputusan.

### Pengenalan ETL (2)

- Membangun system ETL adalah aktifitas di belakang layer yang tidak terlihat oleh pengguna akhir, menggunakan 70% sumber daya yang dibutuhkan untuk implementasi dan pemeliharaan Big Data.
- Sistem ETL terdiri dari:
  - Menghapus kesalahan dan mengkoreksi data yang hilang.
  - Menyediakan kepercayaan data yang terukur dan terdokumentasi.
  - Menangkap alur transaksi data untuk pengamanan.
  - Penyesuaian data yang berasal dari berbagai sumber data.
  - Struktur data yang bisa digunakan oleh aplikasi atau pengguna akhir.

## Bagan Alir ETL (1)



### Bagan Alir ETL (2)



#### **Kualitas Data (1)**

- Penerapan system ETL adalah untuk mendapatkan data dengan kualitas yang baik.
- Kualitas data dipengaruhi oleh:
  - Heteroginitas sumber data.
    - Perbedaan Teknologi
    - Perbedaan Platform
  - Data dengan ukuran yang besar yang dihasilkan setiap hari oleh suatu sumber data
  - Permasalahan yang dialami oleh suatu sumber data.

#### **Kualitas Data (2)**

- Permasalahan yang dialami:
  - Duplikasi data
  - Inkonsistensi data
  - Data ambigu
  - Data yang tidak lengkap
- Sehingga, dibutuhkan sistem ekstraksi dan pembersihan data untuk menghasilkan kualitas data yang baik.

#### **Kualitas Data (3)**

- Kualitas data yang baik merupakan asset yang sangat berharga. Sementara kualitas data yang buruk dapat membahayakan kredibilitas dan akurasi hasil pengolahan data.
- Kualitas data adalah sebuah persepsi atau penilaian kelayakan data untuk melayani tujuannya dalam konteks tertentu.

#### **Kualitas Data (4)**

- Parameter kualitas data:
  - Correctness/Accuracy: sejauh mana data dapat menggambarkan secara benar sebuah entitas nyata.
  - Consistency: Data memberikan satu versi kebenaran walau diperlakukan dalam kondisi yang berbeda.
  - Completeness: Sejauh mana atribut yang diinginkan bisa disediakan oleh data tersebut.
  - Timeliness: Ketepatan waktu dari kedatangan suatu data.
  - Metadata: Informasi mengenai data itu sendiri.

#### Extraction (1)

- Seperti yang ditunjukkan pada bagan alir, tahap pertama dari system ETL adalah Extraction (ekstraksi)
- Prinsip-prinsip dasar pada ekstraksi data adalah:
  - Volume data yang diambil berukuran besar.
  - Proses ekstraksi dilakukan secepat mungkin.
  - Proses ekstraksi dilakukan sebisa mungkin menjadi kecil.
  - Diharapkan, perubahan di sumber data seminimal mungkin.

#### Extraction (2)

- Sebelum melakukan ekstraksi data, diperlukan sebuah peta logika data yang menggambarkan relasi antara feature dari sumber data dan feature data yang akan diolah atau ditampilkan ke pengguna akhir.
- Dokumen ini menjadi panduan yang mengikat proses ETL dari awal hingga akhir.

#### Extraction (3)

- Langkah-langkah pembuatan peta logika data:
  - Memiliki perencanaan yang matang berlandaskan pada metadata.
  - Identifikasi kandidat-kandidat sumber data identifikasi sumber-sumber data yang dibutuhkan dalam pengambilan keputusan.
  - Analisa sumber data dengan aplikasi data-profiling Anomali data harus dapat dideteksi dan didokumentasi dengan baik.
  - Memahami kebutuhan data dan aturan bisnis pada bagian pengguna akhir.
  - Memahami model data dari tempat penyimpanan data.
  - Melakukan validasi formula dan proses perhitungan pada data.

#### Extraction (4)

- Komponen-komponen pada peta logika data:
  - Sumber data
  - Parameter-parameter sumber data
  - Parameter-parameter pada keluaran data
  - Transformasi



#### Transformation (1)

- Transformation data pada system ETL melingkupi aktifitas-aktifitas berikut:
  - Formatting dan standardisasi.
  - Mengubah ke angka atau teks tertentu atau format tanggal.
  - Terjemahkan data ke bentuk yang lain.
  - Agregasi atau merangkum data pada level yang lebih tinggi.

#### **Transformation (2)**

- Transformasi data juga melibatkan prinsipprinsip:
  - Leakage (kebocoran) terjadi ketika proses ETL mengunduh data secara lengkap dari sumber data, namut pada kenyataannya terdapat beberapa record yang hilang.
  - Recoverability (pemulihan) berarti bahwa proses ETL harus robust sehingga jika terjadi kegagalan, ini bisa segera dipulihkan tanpa kehilangan atau kerusakan data.

# Metode Logical Extraction (1)

- Terdapat dua metode logical extraction yaitu:
  - Full extraction
  - Incremental extraction



# Metode Logical Extraction (2)

- Full Extraction:
  - Pengambilan keseluruhan data dari sumber data.
  - Ekstrasi ini mereplikasi semua data pada sumber data, sehingga tidak diperlukan proses untuk melacak perubahan pada sumber data sejak ekstraksi sukses terakhir.



# Metode Logical Extraction (3)

- Incremental Extraction:
  - Pada titik tertentu dalam waktu, hanya data yang telah berubah sejak terdefinisi dengan baik yang akan diekstraksi.
  - Dalam kebanyakan kasus, menggunakan metode tertentu untuk menambahkan logika ekstraksi baru ke sumber data.



#### **Load** (1)

- Langkah terakhir dari system ETL adalah Load yang berupa:
  - Penyimpanan data ke data warehouse
  - Menampilkan data ke aplikasi atau pengguna akhir.
- Arsitektur ETL secara keseluruhan hingga tahap load adalah sebagai berikut:

