Lineare Algebra SS2018

Dozent: Prof. Dr. Arno Fehm

3. Mai 2018

In halts verzeichn is

Ι	Enc	lomorphismen	1
	1	Eigenwerte	1
	2	Das charakteristische Polynom	4
	3	Diagonalisierbarkeit	6
	4	Trigonalisierbarkeit	9
	5	Das Minimalpolynom	11
	6	Nilpotente Endomorphismen	14
	7	Die JORDAN-Normalform	18
II	Ska	larprodukte	20
Ш	Dua	alität	21
IV	Mo	duln	22
An	hang	g	24
A	List	ten	24
	A.1	Liste der Theoreme	24
	A.2	Liste der benannten Sätze	25
Akr	onyn	ne	25

Kapitel I

Endomorphismen

In diesem Kapitel seien K ein Körper, $n \in \mathbb{N}$ eine natürliche Zahl, V ein n-dimensionaler K-VR und $f \in \operatorname{End}_K(V)$ ein Endomorphismus.

Das Ziel dieses Kapitels ist, die Geometrie von f besser zu verstehen und Basen zu finden, für die $M_B(f)$ eine besonders einfache oder kanonische Form hat.

1. Eigenwerte

▶ Bemerkung 1.1

Wir erinnern uns daran, dass $\operatorname{End}_K(V) = \operatorname{Hom}_K(V, V)$ sowohl einen K-VR als auch einen Ring bildet. Bei der Wahl einer Basis B von V wird $f \in \operatorname{End}_K(V)$ durch die Matrix $M_B(f) = M_B^B(f)$ beschrieben

■ Beispiel 1.2
$$\begin{pmatrix} 1 & 2 \\ K = \mathbb{R}, A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \in \operatorname{Mat}_2(\mathbb{R}), f = f_A \in \operatorname{End}_K(K^2)$$

$$A \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}, \ A \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\Rightarrow \text{ mit } B = \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right) \text{ ist } M_B(f) = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}.$$

Der Endomorphismus $f = f_A$ streckt also entlang der Achse $\mathbb{R} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ um den Faktor 3 und spiegelt

entlang der Achse $\mathbb{R} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

Definition 1.3 (Eigenwert, Eigenvektor, Eigenraum)

Sind $0 \neq x \in V$ und $\lambda \in K$ mit $f(x) = \lambda x$ so nennt man λ einen Eigenwert von f und x einen Eigenwektor von f zum Eigenwert λ . Der Eigenraum zu $\lambda \in K$ ist Eig $(f, \lambda) = \{x \in V \mid f(x) = \lambda x\}$.

▶ Bemerkung 1.4

Für jedes $\lambda \in K$ ist $\text{Eig}(f, \lambda)$ ein UVR von V, da

$$\begin{aligned} \operatorname{Eig}(f,\lambda) &= \{x \in V \mid f(x) = \lambda x\} \\ &= \{x \in V \mid f(x) - \lambda \cdot \operatorname{id}_V(x) = 0\} \\ &= \{x \in V \mid (f - \lambda \cdot \operatorname{id}_V)(x) = 0\} \\ &= \operatorname{Ker}(f - \lambda \cdot \operatorname{id}_V) \end{aligned}$$

und $f - \lambda \cdot id_V \in \operatorname{End}_K(V)$.

▶ Bemerkung 1.5

Achtung! Der Nullvektor ist nach Definition kein Eigenvektor, aber $\lambda=0$ kann ein Eigenwert sein, nämlich genau dann, wenn $f\notin \operatorname{Aut}_K(V)$, siehe Übung. Die Menge der Eigenvektoren zu λ ist also $\operatorname{Eig}(f,\lambda)\setminus\{0\}$ und λ ist genau dann ein Eigenwert von f, wenn $\operatorname{Eig}(f,\lambda)\neq\{0\}$.

■ Beispiel 1.6

Ist $A = \operatorname{diag}(\lambda_1, ..., \lambda_n)$ und $f = f_A \in \operatorname{End}_K(K^n)$, so sind $\lambda_1, ..., \lambda_n$ EW von f und jedes e_i ist ein EV zum EW λ_i .

Satz 1.7

Sei B eine Basis von V. Genau dann ist $M_B(f)$ eine Diagonalmatrix, wenn B aus EV von f besteht.

Beweis. Ist $B=(x_1,...x_n)$ eine Basis aus EV zu EW $\lambda_1,....,\lambda_n$, so ist $M_B(f)=\mathrm{diag}(\lambda_1,...,\lambda_n)$ und umge-

■ Beispiel 1.8

Sei $K = \mathbb{R}$, $V = \mathbb{R}^2$ und $f_{\alpha} \in \operatorname{End}_K(\mathbb{R}^2)$ die Drehung um den Winkel $\alpha \in [0, 2\pi)$

$$\Rightarrow M_{\mathcal{E}}(f_{\alpha}) = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$

Für $\alpha = 0$ hat $f_{\alpha} = \mathrm{id}_{\mathbb{R}^2}$ nur den EW 1.

Für $\alpha = \pi$ hat $f_{\alpha} = -\operatorname{id}_{\mathbb{R}^2}$ nur den EW -1.

Für $\alpha \neq 0, \pi$ hat f_{α} keine EW.

Lemma 1.9

Sind $\lambda_1, ..., \lambda_n$ paarweise verschiedene EW von f und ist x_i ein EV zu λ_i für i = 1, ..., m, so ist $(x_1,...,x_m)$ linear unabhängig.

Beweis. Induktion nach m

$$0 = (f - \lambda \cdot id_V) \left(\sum_{i=1}^m \mu_i x_i \right)$$
$$= \sum_{i=1}^m \mu_i (f(x_i) - \lambda_m \cdot x_i)$$
$$= \sum_{i=1}^{m-1} \mu_i (\lambda_i - \lambda_m) \cdot x_i$$

Nach IB ist $\mu_i(\lambda_i - \lambda_m) = 0$ für i = 1, ..., m - 1, da $\lambda_i \neq \lambda_m$ für $i \neq m$ also $\mu_i = 0$ für i = 1, ..., m - 1. Damit ist auch $\mu_m = 0$. Folglich ist $(x_1, ..., x_m)$ linear unabhängig.

Satz 1.10

Sind $\lambda_1, ..., \lambda_m \in K$ paarweise verschieden, so ist

$$\sum_{i=1}^{m} \operatorname{Eig}(f, \lambda_i) = \bigoplus_{i=0}^{m} \operatorname{Eig}(f, \lambda_i).$$

Beweis. Seien $x_i, y_i \in \text{Eig}(f, \lambda_i)$ für i = 1, ..., m. Ist $\sum_{i=1}^m x_i = \sum_{i=1}^m y_i$, so ist $\sum_{i=1}^m \underbrace{x_i - y_i} = 0$.

o. E. seien $z_i \neq 0$ für i=1,...,r und $z_i=0$ für i=r+1,...,m. Wäre r>0, so wären $(z_1,...,z_r)$ linear abhängig, aber $z_i = x_i - y_i \in \text{Eig}(f, \lambda_i) \setminus \{0\}$, im Widerspruch zu Lemma 1.9. Somit ist $x_i = y_i$ für alle i und folglich ist die Summe $\sum \text{Eig}(f, \lambda_i)$ direkt.

Definition 1.11 (EW und EV für Matrizen)

Sei $A \in \operatorname{Mat}_n(K)$. Man definiert Eigenwerte, Eigenvektoren, etc von A als Eigenwerte, Eigenvektoren von $f_A \in \operatorname{End}_K(K^n)$.

Satz 1.12

Sei B eine Basis von V und $\lambda \in K$. Genau dann ist λ ein EW von f, wenn λ ein EW von $A = M_B(f)$ ist. Insbesondere haben ähnliche Matrizen die selben EW.

Beweis. Dies folgt aus dem kommutativen Diagramm

$$K^{n} \xrightarrow{f_{A}} K^{n}$$

$$\Phi_{B} \downarrow \qquad \qquad \downarrow \Phi_{B}$$

$$V \xrightarrow{f} V$$

denn $f_A(x) = \lambda x \iff (\Phi_B \circ f_A)(x) = \Phi_B(\lambda x) \iff f(\Phi_B(x)) = \lambda \Phi_B(x)$. Ähnliche Matrizen beschreiben den selben Endomorphismus bezüglich verschiedener Basen, vgl. IV.4.1

2. Das charakteristische Polynom

Satz 2.1

Sei $\lambda \in K$. Genau dann ist λ ein EW von f, wenn $\det(\lambda \cdot id_V - f) = 0$.

Beweis. Da $\operatorname{Eig}(f,\lambda) = \operatorname{Ker}(\lambda \cdot \operatorname{id}_V - f)$ ist λ genau dann ein EW von f, wenn $\operatorname{dim}_K(\operatorname{Ker}(\lambda \cdot \operatorname{id}_V - f)) > 0$, also wenn $\lambda \cdot \mathrm{id}_V - f \notin \mathrm{Aut}_K(V)$. Nach IV.4.6 bedeutet dies, dass $\det(\lambda \cdot \mathrm{id}_V - f) = 0$

Definition 2.2 (charakteristisches Polynom)

Das charakteristische Polynom einer Matrix $A \in \operatorname{Mat}_n(K)$ ist die Determinante der Matrix $t \cdot \mathbb{1}_n$ – $A \in \operatorname{Mat}_n(K[t]).$

$$\chi_A(t) = \det(t \cdot \mathbb{1}_n - A) \in K[t]$$

Das charakteristische Polynom eines Endomorphismus $f \in \text{End}_K(V)$ ist $\chi_f(t) = \chi_{M_B(f)}(t)$, wobei B eine Basis von V ist.

Satz 2.3

Sind $A, B \in \operatorname{Mat}_n(K)$ mit $A \sim B$, so ist $\chi_A = \chi_B$. Insbesondere ist χ_f wohldefiniert.

Beweis. Ist $B = SAS^{-1}$ mit $S \in GL_n(K)$, so ist $t \cdot \mathbbm{1}_n - B = S(t \cdot \mathbbm{1}_n - A)S^{-1}$, also $t \cdot \mathbbm{1}_n - B \sim t \cdot \mathbbm{1}_n - A$ und ähnliche Matrizen haben die selben Determinante (IV.4.4).

Sind B, B' Basen von V, so sind $M_B(f) \sim M_{B'}(f)$, also $\chi_{M_B(f)} = \chi_{M_{B'}(f)}$

Lemma 2.4

Für $\lambda \in K$ ist $\chi_f(\lambda) = \det(\lambda \cdot id_V - f)$.

Beweis. Sei B eine Basis von V und $A = M_B(f) = (a_{ij})_{i,j}$. Dann ist $M_B(\lambda \cdot id_V - f) = \lambda \cdot \mathbb{1}_n - A$. Aus IV.2.8 und I.6.8 folgt $\det(t \cdot \mathbb{1}_n - A)(\lambda) = \det(\lambda \cdot \mathbb{1}_n - A)$. Folglich ist

$$\chi_f(\lambda) = \chi_A(\lambda)$$

$$= \det(t \cdot \mathbb{1}_n - A)(\lambda)$$

$$= \det(\lambda \cdot \mathbb{1}_n - A)$$

$$= \det(\lambda \cdot \mathrm{id}_V - f)$$

Sei $\dim_K(V) = n$ und $f \in \operatorname{End}_K(V)$. Dann ist $\chi_f(t) = \sum_{i=0}^n \alpha_i t^i$ ein Polynom vom Grad n mit

$$\alpha_n = 1$$

$$\alpha_{n-1} = -\operatorname{tr}(f)$$

$$\alpha_0 = (-1)^n \cdot \det(f)$$

Die Nullstellen von χ_f sind genau die EW von f.

Beweis. Sei B eine Basis von V und $A=M_B(f)=(a_{ij})_{i,j}$. Wir erinnern uns daran, dass $\operatorname{tr}(f)=\operatorname{tr}(A=f)$ $\sum_{i=1}^{n} a_{ii}. \text{ Es ist } \chi_f(t) = \det(t - 1_n - A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} (t\delta_{i,\sigma(i)} - a_{i,\sigma(i)}).$ Der Summand für $\underline{\sigma} = \operatorname{id} \operatorname{ist } \prod_{i=1}^{n} (t - a_{ii}) = t^n + \sum_{i=1}^{n} (-a_{ii})t^{n-1} + \dots + \prod_{i=1}^{n} (-a_{ii})$

Für $\sigma \neq id$ ist $\sigma(i) \neq i$ für mindestens zwei i, der entsprechende Summand hat also Grad höchstens n-2. Somit haben α_n und α_{n-1} die oben behauptete Form, und $\alpha_0 = \chi_A(0) = \det(-A) = (-1)^n \cdot \det(f)$.

Die Aussage über die Nullstellen von χ_f folgt aus Satz 2.1 und Lemma 2.4.

Folgerung 2.6

Ist $\dim_K(V) = n$, so hat f höchstens n Eigenwerte.

Beweis. Satz 2.5 und I.6.10 \Box

Definition 2.7 (normiertes Polynom)

Ein Polynom $0 \neq P \in K[t]$ mit Leitkoeffizient 1 heißt normiert.

■ Beispiel 2.8

- 1. Ist $A = (a_{ij})_{i,j}$ eine obere Dreiecksmatrix, so ist $\chi_A(t) = \prod_{i=1}^n (t a_{ii})$, vgl. IV.2.9.c Insbesondere ist $\chi_{1_n}(t) = (t-1)^n$, $\chi_0(t) = t^n$
- 2. Für eine Blockmatrix $A=\begin{pmatrix}A_1&B\\0&A_2\end{pmatrix}$ mit quadratischen Matrizen A_1,A_2 ist $\chi_A=\chi_{A_1}\cdot\chi_{A_2}$ vgl. IV.2.9.e
- 3. Für

$$\begin{pmatrix} 0 & \dots & \dots & 0 & -c_0 \\ 1 & \ddots & & \vdots & \vdots \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & \dots & 0 & 1 & 0 & -c_{n-1} \end{pmatrix} \quad c_0, \dots, c_{n-1} \in K$$

ist
$$\chi_A(t) = t^n + \sum_{i=0}^{n-1} c_i t^i$$

Man nennt diese Matrix die Begleitmatrix zum normierten Polynom $P=t^n+\sum_{i=0}^{n-1}c_it^i$ und schreibt $M_P:=A$

3. Diagonalisierbarkeit

Definition 3.1 (diagonalisierbar)

Man nennt f diagonalisierbar, wenn V eine Basis B besitzt, für die $M_B(f)$ eine Diagonalmatrix ist.

Lemma 3.2

Genau dann ist f diagonalisierbar, wenn

$$V = \sum_{\lambda \in K} \operatorname{Eig}(f, \lambda)$$

.

Beweis. (\Rightarrow): Ist B eine Basis aus EV von f (vgl. Satz 1.7), so ist $B \leq \bigcup_{\lambda \in K} \operatorname{Eig}(f, \lambda)$, also $V = \operatorname{span}_K(\bigcup_{\lambda \in K} \operatorname{Eig}(f, \lambda)) = \sum_{\lambda \in K} \operatorname{Eig}(f, \lambda)$.

 $\sum_{\lambda \in K} \operatorname{Eig}(f, \lambda).$ (\Leftarrow): Ist $V = \sum_{\lambda \in K} \operatorname{Eig}(f, \lambda)$, so gibt es $\lambda_1, ..., \lambda_n \in K$ mit $V = \sum_{i=1}^r \operatorname{Eig}(f, \lambda_i)$. Wir wählen Basen B_i von $\operatorname{Eig}(f, \lambda_i)$. Dann ist $\bigcup_{i=1}^r B_i$ ein endliches Erzeugendensystem von V, enthält also eine Basis von V (II.3.6). Diese besteht aus EV von f.

Satz 3.3

Ist $\dim_K(V) = n$, so hat f höchstens n Eigenwerte. Hat f genau n Eigenwerte, so ist f diagonalisierbar.

Beweis. Ist λ ein EW von f, so ist $\dim_K(\text{Eig}(f,\lambda)) \geq 1$. Sind also $\lambda_1,...,\lambda_n$ paarweise verschiedene EW von f, so ist

$$n = \dim_{K}(V) \ge \dim_{K} \left(\sum_{i=1}^{m} \operatorname{Eig}(f, \lambda_{i}) \right)$$

$$\stackrel{\operatorname{Satz} \ 1.10}{=} \dim_{K} \left(\bigoplus_{i=0}^{m} \operatorname{Eig}(f, \lambda_{i}) \right)$$

$$= \sum_{i=1}^{m} \dim_{K} (\operatorname{Eig}(f, \lambda_{i}))$$

$$> m$$

Ist zudem m = n, so muss

$$\dim_K(V) = \dim_K(\sum_{i=1}^m \operatorname{Eig}(f, \lambda_i))$$
 sein, also
$$V = \sum_{i=1}^m \operatorname{Eig}(f, \lambda_i)$$

Nach Lemma 3.2 ist f genau dann diagonalisierbar.

Definition 3.4 (a teilt b)

Sei R ein kommutativer Ring mit seien $a, b \in R$. Man sagt, a <u>teilt</u> b (in Zeichen a|b), wenn es $x \in R$ mit b = ax gibt.

Definition 3.5 (Vielfachheit)

Für $0 \neq P \in K[t]$ und $\lambda \in K$ nennt man $\mu(P,\lambda) = \max\{r \in \mathbb{N}_{>0} \mid (t-r)^r | P\}$ die <u>Vielfachheit</u> der Nullstelle λ von P.

Lemma 3.6

Genau dann ist $\mu(P,\lambda) \geq 1$, wenn λ eine Nullstelle von P ist.

Beweis.
$$(\Rightarrow)$$
: $t - \lambda | P \Rightarrow P(t) = (t - \lambda) \cdot Q(t)$ mit $Q(t) \in K[t] \Rightarrow P(\lambda) = 0 \cdot Q(\lambda) = 0$. (\Leftarrow) : $P(\lambda) = 0 \stackrel{I.6.9}{=} t - \lambda | P(t) \Rightarrow \mu(P, \lambda) \ge 1$.

Lemma 3.7

Ist $P(t) = (t - \lambda)^r \cdot Q(t)$ mit $Q(t) \in K[t]$ und $Q(\lambda) \neq 0$, so ist $\mu(P, \lambda) = r$

Beweis. Offensichtlich ist $\mu(P,\lambda) \geq r$. Wäre $\mu(P,\lambda) \geq r+l$, so $(t-\lambda)^{r+l}|P(t)$ also $(t-\lambda)^r \cdot Q(t) = (t-\lambda)^{r+l} \cdot R(t)$ mit $R(t) \in K[t]$, folglich $t-\lambda|Q(t)$, insbesondere $Q(\lambda)=0$. (Denn wir dürfen kürzen: R ist nullteilerfrei, genau so wie K[t]). $(t-\lambda)^r (Q(t)-(t-\lambda)R(t))=0 \Rightarrow Q(t)=(t-\lambda)R(t).$

Lemma 3.8

Sind $P, Q, R \in K[t]$ mit PQ = PR, und ist $P \neq 0$, so ist Q = R.

Beweis.
$$PQ = PR \Rightarrow P(Q - R) = 0$$
 $\stackrel{K[t] \text{ nullteilerfrei}}{\Rightarrow} Q - R = 0, \text{ d.h. } Q = R.$

Lemma 3.9

Es ist $\sum_{\lambda \in K} \mu(P, \lambda) \leq \deg(P)$, mit Gleichheit genau dann, wenn P in Linearfaktoren zerfällt.

Beweis. Schreibe $P(t) = \prod_{\lambda \in K} (t-\lambda)^{r_{\lambda}} \cdot Q(t)$, wobei $Q(t) \in K[t]$ keine Nullstellen mehr besitzt. Nach Lemma 3.7 ist $\mu(P,\lambda) = r_{\lambda}$ für alle λ und somit $\deg(P) = \sum_{\lambda \in K} r_{\lambda} + \deg(Q) \geq \sum_{\lambda \in K} \mu(P,\lambda)$ mit Gleichheit genau dann, wenn $\deg(Q) = 0$, also $Q = c \in K$, d.h. genau dann, wenn $P(t) = c \cdot \prod_{\lambda \in K} (t-\lambda)^{r_{\lambda}}$.

Lemma 3.10

Für $\lambda \in K$ ist

$$\dim_K(\operatorname{Eig}(f,\lambda)) \ge \mu(x_f,\lambda)$$

Beweis. Ergänze eine Basis B von $\mathrm{Eig}(f,\lambda)$ zu einer Basis B von V. Dann ist

$$A = M_B(f) = \begin{pmatrix} \lambda \mathbb{1}_s & * \\ 0 & A' \end{pmatrix}$$

mit einer Matrix $A' \in \operatorname{Mat}_{n-s}(K)$, also $\chi_f(t) = \chi_A(t) \stackrel{\text{Beispiel 2.8}}{=} \chi_{\lambda 1} \cdot \chi_{A'}(t) = (t - \lambda)^s \cdot \chi_{A'}(t)$ und somit $\dim_K(\operatorname{Eig}(f,\lambda)) = s \leq \mu(x_f,\lambda)$.

Satz 3.11

Genau dann ist f diagonalisierbar, wenn χ_f in Linearfaktoren zerfällt und $\dim_K(\text{Eig}(f,\lambda)) = \mu(x_f,\lambda)$ für alle $\lambda \in K$.

Beweis. Es gilt

$$\dim_{K} \left(\sum_{\lambda \in K} \operatorname{Eig}(f, \lambda) \right) \stackrel{\operatorname{Satz} \ 1.10}{=} \dim_{K} \left(\bigoplus_{\lambda \in K} \operatorname{Eig}(f, \lambda) \right)$$

$$\stackrel{\operatorname{II}.4.12}{=} \sum_{\lambda \in K} \dim_{K} \left(\operatorname{Eig}(f, \lambda) \right)$$

$$\stackrel{\operatorname{Lemma} \ 3.10}{\leq} \sum_{\lambda \in K} \mu(\chi_{f}, \lambda) \tag{1}$$

$$\leq \deg(\chi_{f}) \tag{2}$$

Nach Lemma 3.2 ist f genau dann diagonalisierbar, wenn $\dim_K(\sum_{\lambda \in K} \mathrm{Eig}(f,\lambda)) = n$, also wenn bei (1) und (2) Gleichheit herrscht. Gleichheit bei (1) bedeutet $\dim_K(\mathrm{Eig}(f,\lambda)) = \mu(\chi_f,\lambda)$ für alle $\lambda \in K$, und Gleichheit bei (2) bedeutet nach Lemma 3.9, dass χ_f in Linearfaktoren zerfällt.

Definition 3.12 (algebraische und geometrische Vielfachheit)

Man nennt $\mu_a(f,\lambda) = \mu(\chi_f,\lambda)$ die <u>algebraische Vielfachheit</u> und $\mu_g(f,\lambda) = \dim_K(\text{Eig}(f,\lambda))$ die geometrische Vielfachheit des Eigenwertes λ von f.

▶ Bemerkung 3.13

Wieder nennt man $A \in \operatorname{Mat}_n(K)$ diagonalisierbar, wenn $f_A \in \operatorname{End}_K(K^n)$ diagonalisierbar ist, also wenn $A \sim D$ für eine Diagonalmatrix D.

4. Trigonalisierbarkeit

Definition 4.1

Man nennt f <u>trigonalisierbar</u>, wenn V eine Basis B besitzt, für die $M_B(f)$ eine obere Dreiecksmatrix ist.

■ Beispiel 4.2

Ist f diagonalisierbar, so ist f auch trigonalisierbar.

Lemma 4.3

Ist f trigonalisierbar, so zerfällt χ_f in Linearfaktoren.

Beweis. Klar aus Beispiel 2.8 und Satz 2.3.

Definition 4.4 (invariant)

Ein Untervektorraum $W \leq V$ ist f-invariant, wenn $f(W) \leq W$.

▶ Bemerkung 4.5

Ist W ein f-invarianter UVR von V, so ist $f|_W \in \text{End}_K(W)$.

■ Beispiel 4.6

- 1. V hat stets die f-invarianten UVR $W = \{0\}$ und W = V.
- 2. Jeder UVR $W \leq \text{Eig}(f, \lambda)$ ist f-invariant.
- 3. Ist $B = (x_1, ..., x_n)$ eine Basis von V, für die $M_B(f)$ eine obere Dreiecksmatrix ist, so sind alle UVR $W_i = \operatorname{span}_K(x_1, ..., x_i)$ f-invariant.
- 4. Sei $V=W\oplus U,\ B_1=(x_1,...,x_r)$ Basis von $W,\ B_2(x_{r+1},...,x_n)$ Basis von U und $B=(x_1,...,x_n)$. Ist W f-invariant, so ist

$$M_B(f) = \begin{pmatrix} M_{B_1}(f|_W) & * \\ 0 & * \end{pmatrix}$$

Sind W und U f-invariant, so ist

$$M_B(f) = \begin{pmatrix} M_{B_1}(f|_W) & 0\\ 0 & M_{B_2}(f|_U) \end{pmatrix}$$

Lemma 4.7

Ist $W \subset V$ ein f-invarianter UVR, so gilt $\chi_{f|_W}|\chi_f$. Hat W ein lineares Komplement U, dass auch f-invariant ist, so $\chi_f = \chi_{f|_W} \cdot \chi_{f|_U}$.

Beweis. Ergänze eine Basis $B_0=(x_1,...,x_r)$ von W zu einer Basis $B=(x_1,...,x_n)$ von V. Sei $A=M_B(f)$, $A_0=M_{B_0}(f|_W)$. Dann ist

$$A = \begin{pmatrix} A_0 & * \\ 0 & C \end{pmatrix} \quad C \in \operatorname{Mat}_{n-r}(K)$$

folglich $\chi_f = \chi_A = \chi_{A_0} \cdot \chi_C$, insbesondere $\chi_{f|_W}|\chi_f$. Ist auch $U = \operatorname{span}_K(x_{r+1}, ..., x_n)$ f-invariant, so ist

$$A = \begin{pmatrix} A_0 & 0 \\ 0 & C \end{pmatrix}$$

und folglich $\chi_f = \chi_A = \chi_{A_0} \cdot \chi_C = \chi_{f|_W} \cdot \chi_{f|_U}$.

Theorem 4.8

Genau dann ist f trigonalisierbar, wenn χ_f in Linearfaktoren zerfällt.

Beweis. (\Rightarrow) : Lemma 4.3

 (\Leftarrow) : Induktion nach $n = \dim_K(V)$.

n=1: trivial

 $\overline{n-1} \to n$: Nach Annahme ist $\chi_f(t) = \prod_{i=1}^n (t-\lambda_i)$ mit $\lambda_1,...,\lambda_n \in K$. Sei x_1 ein EV zum EW λ_1 . Dann ist $V_1 = K \cdot x_1$ ein f-invarianter UVR. Ergänze $B_1 = (x_1)$ zu einer Basis $B = (x_1,...,x_n)$ von V und setze $B_2 = (x_2,...,x_n), \ V_2 = \operatorname{span}_K(B_2). \ \underline{n-1} \to \underline{n}$: Nach Annahme ist $\chi_f(t) = \prod_{i=1}^n (t-\lambda_i)$ mit $\lambda_1,...,\lambda_n \in K$. Sei x_1 ein EV zum EW λ_1 . Dann ist $\overline{V_1} = K \cdot x_1$ ein f-invarianter UVR. Ergänze $B_1 = (x_1)$ zu einer Basis $B = (x_1,...,x_n)$ von V und setze $B_2 = (x_2,...,x_n), \ V_2 = \operatorname{span}_K(B_2)$.

$$\Rightarrow M_B(f) = \begin{pmatrix} \lambda_1 & * \\ 0 & A_2 \end{pmatrix} \quad A_2 \in \operatorname{Mat}_{n-1}(K)$$

$$\chi_f(t) = \chi_{\lambda_1 \mathbb{1}_1} \cdot \chi_{A_2} = (t - \lambda_1) \cdot \chi_{A_2}(t)$$

$$\stackrel{\text{Lemma 3.7}}{\Rightarrow} \chi_{A_2}(t) = \prod_{i=2}^{n} (t - \lambda_i)$$

Seien $\pi_1, \pi_2 \in \operatorname{End}_K(V)$ gegeben durch $M_B(\pi_1) = \operatorname{diag}(1, 0, ..., 0)$ und $M_B(\pi_2) = \operatorname{diag}(0, 1, ..., 1)$. Dann ist $\pi_1 + \pi_2 = \operatorname{id}_V$ und $f_i = \pi_1 \circ f$ ist $f = \operatorname{id}_V \circ f = f_1 + f_2$ und $f_2|_{V_2} \in \operatorname{End}_K(V_2)$. Nach Induktionshypothese ist $f_2|_{V_2}$ trigonalisierbar, da $M_B(f_2|_{V_2}) = A_2$, also $\chi_{f_2|_{V_2}} = \chi_{A_2}$. Dies bedeutet, es gibt also eine Basis $B_2' = (x_2', ..., x_n')$ von V_2 , für die $M_{B_2'}(f_2|_{V_2})$ eine obere Dreiecksmatrix ist. Somit ist für $B' = (x_1, x_2', ..., x_n')$ auch

$$M_{B'}(f) = M_{B'}(f_1) + M_{B'}(f_2)$$

$$= \begin{pmatrix} \lambda_1 & * \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & M_{B'_2}(f_2|_{V_2}) \end{pmatrix}$$

eine obere Dreiecksmatrix.

Folgerung 4.9

Ist K algebraisch abgeschlossen, so ist jedes $f \in \text{End}_K(V)$ trigonalisierbar.

Beweis. Ist K algebraisch abgeschlossen, so zerfällt nach I.6.14 jedes Polynom über K in Linearfaktoren, insbesondere also χ_f .

Folgerung 4.10

Ist V ein endlichdimensionaler \mathbb{C} -VR, so ist jedes $f \in \text{End}_{\mathbb{C}}(V)$ trigonalisierbar.

Beweis. Nach dem Fundamentalsatz der Algebra I.6.16 ist $\mathbb C$ algebraisch abgeschlossen.

5. Das Minimalpolynom

Definition 5.1

Für ein Polynom $P(t) = \sum_{i=0}^n c_i t^i \in K[t]$ definieren wir $P(f) = \sum_{i=0}^m c_i f^i \in \operatorname{End}_K(V)$, wobei $f^0 = \operatorname{id}_V, \ f^1 = f, \ f^2 = f \circ f, \dots$ Für ein Polynom $P(t) = \sum_{i=0}^n c_i t^i \in K[t]$ definieren wir $P(f) = \sum_{i=0}^m c_i f^i \in \operatorname{End}_K(V)$, wobei $f^0 = \operatorname{id}_V, \ f^1 = f, \ f^2 = f \circ f, \dots$

Analog definiert man P(A) für $A \in \operatorname{Mat}_n(K)$.

▶ Bemerkung 5.2 $\begin{cases} K[t] \to \operatorname{End}_K(V) \\ P \mapsto P(f) \end{cases}$ ist ein Homomorphismus von K-VR und Ringen. Sein Kern ist das Ideal

$$\mathcal{I}_f := \{ P \in K[t] \mid P(f) = 0 \}$$

und sein Bild ist der kommutative Unterring

$$K[f] := \{ P(f) \mid P \in K[t] \}$$

= span_K(f⁰, f¹, f², ...)

des (im Allgemeinen nicht kommutativen) Rings $\operatorname{End}_K(V)$.

Analog definiert man \mathcal{I}_A und $K[A] \leq \operatorname{Mat}_n(K)$.

Lemma 5.3

$$\mathcal{I}_f \neq \{0\}$$

Beweis. Wäre $\mathcal{I}_f = \{0\}$, so wäre $K[t] \to \operatorname{End}_K(V)$ injektiv, aber $\dim_K(K[t]) = \infty > n^2 = \dim_K(\operatorname{End}_K(V))$, ein Widerspruch.

Satz 5.4

Es gibt ein eindeutig bestimmtes normiertes Polynom $0 \neq P \in K[t]$ kleinsten Grades mit P(f) = 0. Dieses teilt jedes $Q \in K[t]$ mit Q(f) = 0.

Beweis. Nach Lemma 5.3 gibt es $0 \neq P \in K[t]$ mit P(f) = 0 von minimalem Grad d. Indem wir durch den Leitkoeffizienten von P teilen, können wir annehmen, dass P normiert ist.

Sei $Q \in \mathcal{I}_f$. Polynomdivision liefert $R, H \in K[t]$ mit $Q = P \cdot H + R$ und $\deg(R) < \deg(P) = d$. Es folgt $R(f) = \underbrace{Q(f)}_{} - \underbrace{P(f)}_{} \cdot H(f) = 0$. Aus der Minimalität von d folgt R = 0 und somit P|Q.

Ist Q zudem normiert vom Grad d, so ist H=1, also Q=P, was die Eindeutigkeit zeigt.

Definition 5.5 (Minimal polynom)

Das eindeutig bestimmte normierte Polynom $0 \neq P \in K[t]$ kleinsten Grades mit P(f) = 0 nennt man das Minimalpolynom P_f von f.

Analog definiert man das Minimalpolynom $P_A \in K[t]$ einer Matrix $A \in \operatorname{Mat}_n(K)$.

■ Beispiel 5.6

1.
$$A = \mathbb{1}_n$$
, $\chi_A(t) = (t-1)^n$, $P_A(t) = t-1$

2.
$$A = 0$$
, $\chi_A(t) = t^n$, $P_A(t) = t$

3. Ist $A = \operatorname{diag}(a_1,...,a_n)$ mit paarweise verschiedenen Eigenwerten $\lambda_1,...,\lambda_r$, so ist $\chi_A(t) = \prod_{i=1}^n (t-a_i) = \prod_{i=1}^n (t-\lambda_i)^{\mu_a(f_A,\lambda_i)}, P_A(t) = \prod_{i=1}^r (t-\lambda_i)$ und es folgt $\operatorname{deg}(P_A) \geq |\{a_1,...,a_n\}| = r$.

Definition 5.7 (f-zyklisch)

Ein f-invarianter UVR $W \leq V$ heißt f-zyklisch, wenn es ein $x \in W$ mit $W = \operatorname{span}_K(x, f(x), f^2(x), ...)$ gibt.

Lemma 5.8

Sei $x \in V$ und $x_i = f(x)$. Es gibt ein kleinstes k mit $x_k \in \text{span}_K(x_0, x_1, ..., x_{k-1})$, und $W = \text{span}_K(x_0, ..., x_{k-1})$ ein f-zyklischer UVR von V mit Basis $B = (x_0, ..., x_{k-1})$ und $M_B(f|_W) = M_{\chi_{f|_W}}$.

Beweis. Da $\dim_K(V) = n$ ist $(x_0, ..., x_n)$ linear abhängig, es gibt also ein kleinstes k mit $(x_0, ..., x_{k-1})$ linear unabhängig, aber $(x_0, ..., x_k)$ linear abhängig, folglich $x_k \in \operatorname{span}_K(x_0, ..., x_{k-1})$. Mit $x_k = f(x_{k-1}) = \sum_{i=0}^{k-1} -c_i x_i$ ist dann Da $\dim_K(V) = n$ ist $(x_0, ..., x_n)$ linear abhängig, es gibt also ein kleinstes k mit $(x_0, ..., x_{k-1})$ linear unabhängig, aber $(x_0, ..., x_k)$ linear abhängig, folglich $x_k \in \operatorname{span}_K(x_0, ..., x_{k-1})$. Mit $x_k = f(x_{k-1}) = \sum_{i=0}^{k-1} -c_i x_i$ ist dann

$$M_B(f|_W) = \begin{pmatrix} 0 & \dots & \dots & 0 & -c_0 \\ 1 & \ddots & & \vdots & \vdots \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & \dots & 0 & 1 & 0 & -c_{k-1} \end{pmatrix}$$

somit $\chi_{f|_W} = t^k + \sum_{i=0}^{k-1} c_i t^i$, also $M_B(f|_W) = M_{\chi_{f|_W}}$.

Theorem 5.9 (Satz von Cayley-Hamiltion)

Für $f \in \text{End}_K(V)$ ist $\chi_f(f) = 0$.

Beweis. Sei $x \in V$. Definiere $x_i = f^i(x)$ und $W = \operatorname{span}_K(x_0, ..., x_{k-1})$ wie in Lemma 5.8. Sei $\chi_{f|_W} = t^k + \sum_{i=0}^{k-1} c_i t^i$, also $f(x_{k-1}) = \sum_{i=0}^{k-1} -c_i x_i$. Wenden wir $\chi_{f|_W}(f) \in \operatorname{End}_K(V)$ auf x an, so erhalten wir Sei $x \in V$. Definiere $x_i = f^i(x)$ und $W = \operatorname{span}_K(x_0, ..., x_{k-1})$ wie in Lemma 5.8. Sei $\chi_{f|_W} = t^k + \sum_{i=0}^{k-1} c_i t^i$, also $f(x_{k-1}) = \sum_{i=0}^{k-1} -c_i x_i$. Wenden wir $\chi_{f|_W}(f) \in \operatorname{End}_K(V)$ auf x an, so erhalten wir

$$\chi_{f|W}(f)(x) = \left(f^k + \sum_{i=1}^{k-1} c_i f^i\right)(x)$$
$$= \sum_{i=1}^{k-1} -c_i x_i + \sum_{i=1}^{k-1} c_i x_i$$
$$= 0$$

Aus $\chi_{f|_W}|\chi_f$ (Beispiel 4.6) folgt somit $\chi_f(f)(x) = 0$, denn ist $\chi_f = Q \cdot \chi_{f|_W}$ mit $Q \in K[t]$, so ist $\chi_f(f) = Q(f) \circ \chi_{f|_W}(f)$, also $\chi_f(f)(x) = Q(f)(\underbrace{\chi_{f|_W}(f)(x)}_{=0}) = 0$. Da $x \in V$ beliebig war, folgt $\chi_f(f) = 0 \in \operatorname{End}_K(V)$. \square

Folgerung 5.10

Es gilt $P_f|\chi_f$. Insbesondere ist $\deg(P_f) \leq n$.

Beweis. Theorem 5.9 + Satz 5.4

▶ Bemerkung 5.11

Ist B eine Basis von V und $A = M_B(f)$, so ist $P_A = P_f$. Insbesondere ist $P_A = P_B$ für $A \sim B$. Als Spezialfall von Theorem 5.9 erhält man $\chi_A(A) = 0$ und $P_A|_{\chi_A}$.

▶ Bemerkung 5.12

Bemerkung 5.12 Der naheliegende "Beweis"
$$\chi_A = \det(t\mathbb{1}_n - A)(A) = \det(A\mathbb{1}_n - A) = \det(0) = 0$$
 ist falsch!

6. Nilpotente Endomorphismen

▶ Bemerkung 6.1

Für $f \in \operatorname{End}_K(V)$ sind

- $\bullet \ f\{0\} = \operatorname{Ker}(f^0) \subseteq \operatorname{Ker}(f^1) \subseteq \operatorname{Ker}(f^2) \subseteq \dots$
- $V = \operatorname{Im}(f^0) \supseteq \operatorname{Im}(f^1) \supseteq \operatorname{Im}(f^2) \supseteq \dots$

Folgen von UVR von V. Nach der Kern-Bild-Formel III.7.13 ist

$$\dim_K(\operatorname{Ker}(f^i)) + \dim_K(\operatorname{Im}(f^i)) = \dim_K(V) \quad \forall i$$

Da $\dim_K(V) = n < \infty$ gibt es ein d mit $\operatorname{Ker}(f^d) = \operatorname{Ker}(f^{d+i})$ und $\operatorname{Im}(f^d) = \operatorname{Im}(f^{d+i})$ für jedes $i \geq 0$.

■ Beispiel 6.2

 $f = f_A, A \in \operatorname{Mat}_2(K).$

•
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
: $\{0\} = \text{Ker}(f^0) = \text{Ker}(f^1) = \dots$

•
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
: $\{0\} = \text{Ker}(f^0) \subset \text{Ker}(f^1) = \text{Ker}(f^2) = \dots = \text{span}_K(e_2)$

•
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
: $\{0\} = \operatorname{Ker}(f^0) \subset \underbrace{\operatorname{Ker}(f^1)}_{=\operatorname{span}_K(e_1)} \subset \operatorname{Ker}(f^2) = \dots = K^2$

•
$$A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
: $\{0\} = \text{Ker}(f^0) \subset \text{Ker}(f^1) = \text{Ker}(f^2) = \dots = K^2$

Lemma 6.3

Seien $f, g \in \text{End}_K(V)$. Wenn f und g kommutieren, d.h. $f \circ g = g \circ f$, so sind die UVR Ker(g) und Im(g) f invariant.

Beweis. Ist $x \in \text{Ker}(f)$, so ist g(f(x)) = f(g(x)) = f(0) = 0, also $f(x) \in \text{Ker}(g)$. Für $g(x) \in \text{Im}(g)$ ist $f(g(x)) = g(f(x)) \in \text{Im}(g)$.

Satz 6.4 (Lemma von FITTING)

Seien $V_i = \text{Ker}(f^i)$, $W_i = \text{Im}(f^i)$, $d = \min\{i : V_i = V_{i+1}\}$. Dann sind

$$\{0\} = V_0 \subsetneq V_1 \subsetneq \dots \subsetneq V_d = V_{d+1} = \dots$$

$$V = W_0 \supsetneq W_1 \supsetneq \dots \supsetneq W_d = W_{d+1} = \dots$$

Folgen f-invarianter UVR und $V = V_d \oplus W_d$.

Beweis. Da f^i und f^j für beliebige i, j kommutieren, sind V_i und V_j nach Lemma 6.3 f-invariant für jedes i. Aus $\dim_K(V_i) + \dim_K(W_i) = n$ folgt $d = \min\{i : W_i = W_{i+1}\}$, insbesondere ist $\operatorname{Im}(f^d) = \operatorname{Im}(f^{d+1}) = f(\operatorname{Im}(f^d))$, somit $W_{d+i} = \operatorname{Im}(f^{d+i}) = W_d$ für $i \geq 0$, also auch $V_d = V_{d+i}$ für alle $i \geq 0$.

Insbesondere ist $f^d|_{W_d}: W_d \to W_{2d} = W_d$ surjektiv, also auch injektiv, also $V_d \cap W_d = \{0\}$. Aus der Dimensionsformel II.4.12 folgt dann $\dim_K(V_d + W_d) = \dim_K(V_d) + \dim_K(W_d) = \dim_K(V)$. Folglich ist $V_d + W_d = V$ und $V_d \cap W_d = \{0\}$, also $V = V_d \oplus W_d$.

Definition 6.5 (nilpotent)

Ein $f \in \text{End}_K(V)$ heißt <u>nilpotent</u>, wenn $f^k = 0$ für ein $k \in \mathbb{N}$. Analog heißt $A \in \text{Mat}_n(K)$ nilpotent, wenn $A^k = 0$ für $k \in \mathbb{N}$. Das kleinste k mit $f^k = 0$ bzw. A^k heißt die <u>Nilpotenzklasse</u> von f bzw. A.

Lemma 6.6

Ist f nilpotent, so gibt es eine Basis B von V, für die $M_B(f)$ eine strikte obere Dreiecksmatrix ist.

Beweis. Induktion nach $n = \dim_K(V)$.

$$n=1$$
: $f^k=0 \Rightarrow f=0$

 $\overline{n > 1}$: Sei k die Nilpotenzklasse von f und $U = \operatorname{Ker}(f^{k-1})$. Dann ist $U \subset V$. Da $f^k = f^{k-1} \circ f$ ist $f(V) \subset U$, insbesondere $f|_U \in \operatorname{End}_K(U)$. Da $f|_U$ nilpotent ist, gibt es nach I.H. eine Basis B_0 von U, für die $M_B(f|_U)$ eine strikte obere Dreiecksmatrix ist. Ergänze B_0 zu einer Basis B von V. Da $f(V) \subset U$ ist dann auch

$$M_B(f) = \begin{pmatrix} M_{B_0}(f|_U) & * \\ 0 & 0 \end{pmatrix}$$

eine strikte obere Dreiecksmatrix.

Satz 6.7

Für $f \in \text{End}_K(V)$ sind äquivalent:

- 1) f ist nilpotent
- 2) $f^n = 0$ für $n \in \mathbb{N}$
- 3) $P_f(t) = t^r$ für ein $r \le n$
- 4) $\chi_f(t) = t^n$
- 5) Es gibt eine Basis B von V, mit

$$M_B(f) = egin{pmatrix} 0 & * & \dots & * \\ & \ddots & \ddots & \vdots \\ & & \ddots & * \\ & & & 0 \end{pmatrix}$$

eine strikte obere Dreiecksmatrix ist.

Beweis.

- 1) \Rightarrow 5): Lemma 6.6
- 5) \Rightarrow 4): Beispiel 2.8
- 4) \Rightarrow 3): Nach Folgerung 5.10 ist $P_f|\chi_f = t^n$, also $t^n = P_f(t)Q(t)$ mit $Q \in K[t]$. Schreibe $P_f(t) = t^a \cdot P_1(t), Q(t) = t^b \cdot Q_1(t)$ mit $a, b \in \mathbb{N}, P_1, Q_1 \in K[t], P_1(0) \neq 0, Q_1(0) \neq 0$ $\stackrel{Lemma}{\Rightarrow} {}^{3.8}t^{n-(a+b)} = P_1(t)Q_1(t) \text{ und } (P_1Q_1)(0) \neq 0$ $\Rightarrow n (a+b) = 0 \Rightarrow P_1 = 1, \text{ somit } P_f(t) = t^a$
- 3) \Rightarrow 2): $t^r = 0$, $r \le n \Rightarrow f^n = 0$
- 2) \Rightarrow 1): nach Definition

Folgerung 6.8

Die Nilpotenzklasse eines nilpotenten Endomorphismus $f \in \operatorname{End}_K(V)$ ist höchstens $\dim_K(V)$.

Folgerung 6.9

Ist $d := \min\{i \mid \operatorname{Ker}(f^i) = \operatorname{Ker}(f^{i+1})\}$, so ist $d \leq \dim_K(\operatorname{Ker}(f)) = \mu_a(f, 0)$.

Beweis. Sei $V_d = \operatorname{Ker}(f^d)$, $W_d = \operatorname{Im}(f^d)$, $k = \dim_K(V_d)$. Da $V = V_d \oplus W_d$ ist $\chi_f = \chi_{f|_{V_d}} \cdot \chi_{f|_{W_d}}$. Da $f|_{V_d}$ nilpotent ist, ist $\chi_{f|_{V_d}} = t$ nach Satz 6.7. Da $f|_{W_d}$ injektiv ist, ist $\chi_{f|_{W_d}}(0) \neq 0$. Somit ist $\mu_a(f,0) = \mu(\chi_f,0) \stackrel{Lemma 3.6}{=} k$. Da $\dim_K(\operatorname{Ker}(f^d)) > \dots > \dim_K(\operatorname{Ker}(f)) > 0$ ist $k = \dim_K(\operatorname{Ker}(f^d)) \geq d$, falls d > 0, sonst klar.

▶ Bemerkung 6.10

Die Bedeutung nilpotenter Endomorphismen beim Finden geeigneter Basen ergibt sich aus der folgenden Beobachtung:

Ist A eine obere Dreiecksmatrix, so ist A = D + N, wobei D eine Diagonalmatrix ist und N eine strikte obere Dreiecksmatrix ist. Anders gesagt: Jeder trigonalisierbare Endomorphismus ist Summe aus einem diagonalisierbaren und einem nilpotenten Endomorphismus.

Definition 6.11 (JORDAN-Matrix)

Für $k \in \mathbb{N}$ definieren wir die JORDAN-Matrix

$$J_{k} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \dots & \dots & \dots & 0 \end{pmatrix} \in \operatorname{Mat}_{k}(K)$$

weiter setzen wir für $\lambda \in K$ $J_k(\lambda) := \lambda \mathbb{1} + J_k$.

Lemma 6.12

Die JORDAN-Matrix J_k ist nilpotent von Nilpotenzklasse k.

Beweis. Es ist
$$(J_k)^r = (\delta_{i+r,j})_{i,j}$$
 für $r \ge 1$.

Satz 6.13

Ist f nilpotent von Nilpotenzklasse k, so gibt es eindeutig bestimmte $r_1, ..., r_k \in \mathbb{N}_{>0}$ mit $\sum_{d=1}^k dr_d = n$ und eine Basis B von V mit

$$M_B(f) = \operatorname{diag}(\underbrace{J_k,...,J_k}_{r_k \text{ viele}},...,\underbrace{J_1,...,J_1}_{r_1 \text{ viele}})$$

Beweis. Sei $U_i = \operatorname{Ker}(f^i)$. Nach Satz 6.4 haben wir eine Folge $\{0\} = U_0 \subset U_1 \subset ... \subset U_k = V$ mit $f(U_i) \subseteq U_{i-1}$ für alle i > 0.

Wir konstruieren eine Zerlegung $V = \bigoplus_{d=1}^k W_d$ mit $U_i = U_{i-1} \oplus W_i$, $f(W_i) \subseteq W_{i-1}$, $f|_{W_d}$ injektiv für i > 1.

$$V = U_k$$

$$V = U_{k-1} \oplus W_k$$

$$V = U_{k-2} \oplus W_{k-1} \oplus W_k$$

$$\vdots$$

$$V = U_0 \oplus W_1 \oplus \dots \oplus W_k$$

Wähle W_k mit $V = U_k = U_{k-1} \oplus W_k$. Ist k > 1, so ist $W_k \cap \operatorname{Ker}(f) \subseteq W_k \cap U_{k-1} = \{0\}$, also $f|_{W_k}$ ist injektiv. Des weiteren ist $f(W_k) \subseteq U_{k-1}$ und aus $W_k \cap U_{k-1} = \{0\}$ folgt $f(W_k) \cap U_{k-2} = \{0\}$. Wir können deshalb W_{k-1} mit $U_{k-1} = U_{k-2} \oplus W_{k-1}$ und $f(W_k) \subseteq W_{k-1}$ wählen. Somit ist $V = U_{k-1} \oplus W_k = U_{k-2} \oplus W_{k-1} \oplus W_k$. Wir setzen dies fort und erhalten $V = U_0 \oplus W_1 \oplus \ldots \oplus W_k$ mit $f(W_i) \subseteq W_{i-1}$ und $f|_{W_i}$ injektiv für i > 1, wobei $U_0 = \{0\}$ und $W_1 = \operatorname{Ker}(f)$.

Sie $r_d = \dim_K(W_d) - \dim_K(W_{d+1})$, wobei wir $W_{k+1} = \{0\}$. Wähle nun eine Basis $(x_{k,1}, ..., x_{k,r_k})$ von W_k . Ist k > 1, so ist $f|_{W_k}$ injektiv und wir können $(f(x_{k,1}), ..., f(x_{k,r_k}))$ durch Elemente $x_{k-1,1}, ..., x_{k-1,r_{k-1}}$ zu einer Basis von W_{k-1} ergänzen, und so weiter.

Da
$$V = \bigoplus_{d=1}^{k} W_d$$
 ist

$$B = \{f^{i}(x_{d,j}) \mid d = 1, ..., k, j = 1, ..., r_{d}, i = 0, ..., d - 1\}$$

eine Basis von V, die bei geeigneter Anordnung das Gewünschte leistet.

Es bleibt zu zeigen, dass $r_1, ..., r_k$ eindeutig bestimmt sind. Ist B_0 eine Basis, für die $M_{B_0}(f)$ in der gewünschten Form ist, so ist

$$\dim_{K}(U_{1}) = \sum_{d=1}^{k} r_{d}$$

$$\dim_{K}(U_{2}) = \sum_{d=2}^{k} r_{d} + \sum_{d=1}^{k} r_{d}$$

$$\vdots$$

$$\dim_{K}(U_{k}) = \sum_{d=k}^{k} r_{d} + \dots + \sum_{d=1}^{k} r_{d}$$

woraus man sieht, dass $r_1, ..., r_k$ durch $U_1, ..., U_k$, also durch f eindeutig bestimmt.

Beispiel 6.14 Sei
$$f = f_A$$
 mit $A = \begin{pmatrix} 0 & 1 & 3 \\ & 0 & 2 \\ & & 0 \end{pmatrix} \in \operatorname{Mat}_3(\mathbb{R})$

$$A^2 = \begin{pmatrix} 0 & 0 & 2 \\ & 0 & 0 \\ & & 0 \end{pmatrix}, A^3 = 0$$

 $\Rightarrow k = 3, U_0 = \{0\}, U_1 = \mathbb{R}e_1, U_2 = \mathbb{R}e_1 + \mathbb{R}e_2, U_3 = V.$

Wähle W_3 mit $V=U_3=U_2\oplus W_3$, z.B. $W_3=\mathbb{R}e_3$.

Wähle W_2 mit $U_2 = U_1 \oplus W_2$ und $f(W_3) \subseteq W_2$, also

$$W_2 = \mathbb{R} \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}$$

Setze $W_1 = U_1 = \text{Ker}(f) = \mathbb{R}e_1 \Rightarrow \text{Basis } B = (f^2(e_3), f(e_3), e_3)$

$$M_B(f) = \begin{pmatrix} 0 & 1 & 0 \\ & 0 & 1 \\ & & 0 \end{pmatrix}$$

7. Die Jordan-Normalform

Definition 7.1 (Hauptraum)

Der Hauptraum von f zum EW λ der Vielfachheit $r = \mu_a(f, \lambda)$ ist

$$\operatorname{Hau}(f,\lambda) = \operatorname{Ker}\left((f - \lambda \operatorname{id}_V)^r\right)$$

Lemma 7.2

 $\operatorname{Hau}(f,\lambda)$ ist ein f-invarianter UVR der Dimension $\dim_K(\operatorname{Hau}(f,\lambda)) = \mu_a(f,\lambda)$, auf dem $f - \lambda \operatorname{id}_V$ nilpotent ist und $\chi_{f|_{\operatorname{Hau}(f,\lambda)}} = (t-\lambda)^{\mu_a(f,\lambda)}$

Beweis. f kommutiert sowohl mit f als auch mit id_V , somit auch mit $(f - \lambda \mathrm{id}_V)^r$. Die f-Invarianz von $U = \mathrm{Hau}(f,\lambda)$ folgt aus Lemma 6.3. Nach Folgerung 6.9 ist $\mathrm{dim}_K(U) = \mu_a(f - \lambda \mathrm{id}_V,0)$ und $\mathrm{da}\ \chi_f(t) = \chi_{f-\lambda\,\mathrm{id}_V}(t-\lambda)$ ist $\mu_a(f,\lambda) = \mu(\chi_f,\lambda) = \mu_a(f - \lambda\,\mathrm{id}_V,0)$. Da $f - \lambda\,\mathrm{id}_V|_U$ nilpotent ist $\chi_{f-\lambda\,\mathrm{id}_V|_U}(t) = t^r$, somit $\chi_{f|_U}(t) = (t-\lambda)^r$.

Satz 7.3 (Hauptraumzerlegung)

Ist $\chi_f(t) = \prod_{i=1}^m (t - \lambda_i)^{r_i}$ mit $\lambda_1, ..., \lambda_m \in K$ paarweise verschieden und $r_1, ..., r_m \in \mathbb{N}$, so ist $V = \bigoplus_{i=1}^m V_i$ mit $V_i = \text{Hau}(f, \lambda_i)$ eine Zerlegung in f-invariante UVR und für jedes i ist $\chi_{f|_{V_i}}(t) = (t - \lambda_i)^{r_i}$.

Beweis. Induktion nach m.

 $m=1: r_1=n \overset{Lemma}{\Rightarrow} \overset{7.2}{\Rightarrow} V=V_1.$

 $\overline{m-1} \to m$: Nach Satz 6.4 ist $V = V_1 \oplus W_1$ mit $W_1 = \operatorname{Im}((f-\lambda_i \operatorname{id}_V)^r)$ eine Zerlegung in f-invariante UVR mit $\overline{\dim}_K(V_1) = r_1$, $\overline{\dim}_K(W_1) = n - r_1$. Somit ist $\chi_f = \chi_{f|_{V_1}} \cdot \chi_{f|_{W_1}}$ und $\chi_{f|_{V_1}} \stackrel{Lemma 7.2}{=} (t-\lambda_1)^{r_1}$ also $\chi_{f|_{W_1}} = \prod_{i=2}^m (t-\lambda_i)^{r_i}$. Nach I.H. ist also $W_1 = \bigoplus_{i=2}^m \operatorname{Hau}(f|_{W_1},\lambda_i)$. Es ist für $i \geq 2$ $\operatorname{Hau}(f|_{W_1},\lambda_i) \subseteq \operatorname{Hau}(f,\lambda_i) = V_i$ und da $\overline{\dim}_K(\operatorname{Hau}(f|_{W_1},\lambda_i)) = r_i = \overline{\dim}_K(\operatorname{Hau}(f,\lambda_i))$ gilt Gleichheit. Damit ist

$$V = V_1 \oplus W_1$$

$$= V_1 \oplus \bigoplus_{i=2}^m \operatorname{Hau}(f|_{W_1}, \lambda_i)$$

$$= V_1 \oplus \bigoplus_{i=2}^m V_i$$

$$= \bigoplus_{i=1}^m V_i$$

■ Beispiel 734
$$A = \begin{pmatrix} 1 & 4 \\ 2 \end{pmatrix} \in \operatorname{Mat}_{3}(\mathbb{R}), f = f_{A}$$

$$\chi_{A}(t) = (t-1)^{2}(t-2) \Rightarrow \mathbb{R}^{3} = \underbrace{\operatorname{Hau}(f,1) \oplus \operatorname{Hau}(f,2)}_{\dim \mathbb{R}^{2}}$$

$$\operatorname{Hau}(f,1) = \operatorname{Ker}((f-\operatorname{id})^{2}) = L((A-1)^{2},0)$$

$$\operatorname{Hau}(f,2) = \operatorname{Ker}(f-2\operatorname{id}) = \operatorname{Eig}(f,2) = L(A-2\mathbb{I},0)$$

$$A - \mathbb{1} = \begin{pmatrix} 0 & 3 \\ -1 & 4 \\ 0 \end{pmatrix}, (A-1)^{2} = \begin{pmatrix} 0 & 12 \\ 0 & 4 \\ 1 \end{pmatrix} \Rightarrow \operatorname{Hau}(f,1) = \mathbb{R}e_{1} + \mathbb{R}e_{2}$$

$$A - 2\mathbb{1} = \begin{pmatrix} -1 & 3 \\ -1 & 4 \\ 0 \end{pmatrix} \operatorname{Hau}(f,2) = \mathbb{R} \begin{pmatrix} 12 \\ 4 \\ 1 \end{pmatrix}$$

Mit
$$B = \left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 12 \\ 4 \\ 1 \end{pmatrix} \right)$$
 ist

$$M_B(f) = \begin{pmatrix} \begin{pmatrix} 1 & 3 \\ & 1 \end{pmatrix} & \\ & & 2 \end{pmatrix}$$

Theorem 7.5 (JORDAN-Normalform)

Sei $f \in \operatorname{End}_K(V)$ ein Endomorphismus, dessen charakteristisches Polynom χ_f in Linearfaktoren zerfällt. Dann gibt es $r \in \mathbb{N}$, $\mu_1,...,\mu_r \in K$ und $k_1,...,k_r \in \mathbb{N}$ mit $\sum_{i=1}^r k_i = \dim_K(V)$ und eine Basis B von V mit

$$M_B(f) = \text{diag}(J_{k_1}(\mu_1), ..., J_{k_r}(\mu_r))$$

Die Paare $(\mu_1, k_1), ..., (\mu_r, k_r)$ heißen die <u>JORDAN-Invarianten</u> von f und sind bis auf Reihenfolge eindeutig bestimmt.

Beweis. Schreibe $\chi_f(t) = \prod_{i=1}^m (t - \lambda_i)^{r_i}$ mit $\lambda_1, ..., \lambda_m \in K$ paarweise verschieden, $r_i \in \mathbb{N}$. Sei $V_i = \text{Hau}(f, \lambda_i)$. Nach Satz 7.3 ist $V = \bigoplus_{i=1}^m V_i$ eine Zerlegung in f-invariante UVR. Für jedes i wenden wir Satz 6.13 auf $(f - \lambda_i \operatorname{id}_V)|_{V_i}$ an und erhalten eine Basis B_i von V_i und $k_{i,1} \geq ... \geq k_{i,s_i}$ mit

$$M_B((f - \lambda_i \operatorname{id})|_{V_i}) = \operatorname{diag}(J_{k_{i,1}}, ..., J_{k_{i,s_i}})$$

Es folgt $M_{B_i}(f|_{V_i}) = M_{B_i}(\lambda_i \operatorname{id}_{V_i}) + M_{B_i}((f - \lambda_i \operatorname{id}_{V})|_{V_i})$. Ist nun B die Vereinigung der B_i , so hat $M_B(f)$ die gewünschte Form. Die Eindeutigkeit der JORDAN-Invarianten folgt aus der Eindeutigkeit der $k_{i,j}$ in Lemma 6.3.

▶ Bemerkung 7.6

Ist K algebraisch abgeschlossen, so haben wir nun eine (bis auf Permutationen) eindeutige Normalform für Endomorphismen $f \in \operatorname{End}_K(V)$ gefunden. Aus ihr lassen sich viele Eigenschaften des Endomorphismus leicht ablesen.

Folgerung 7.7

Sei $f \in \operatorname{End}_K(V)$ trigonalisierbar mit $\chi_f(t) = \prod_{i=1}^m (t - \lambda_i)^{\mu_a(f,\lambda_i)}, \ P_f(t) = \prod_{i=1}^m (t - \lambda_i)^{d_i}$ und Jordan-Invarianten $(\mu_1, k_1), \dots, (\mu_r, k_r)$. Mit $J_i = \{j \mid \mu_j = \lambda_i\}$ ist dann

$$\mu_g(f, \lambda_i) = |J_i|$$

$$\mu_a(f, \lambda_i) = \sum_{j \in J_i} k_j$$

$$d_i = \max\{k_i \mid j \in J_i\}$$

Beweis. • μ_a : klar, da $\chi_f(t) = \prod_{j=1}^r (t - \mu_j)^{k_j} = \prod_{i=1}^m (t - \lambda_i)^{\mu_a(f, \lambda_i)}$

- μ_g : lese Basis von $\text{Eig}(f, \lambda_i)$ aus JORDAN-NF: Jeder Block $J_{k_j}(\lambda_i)$ liefert ein Element der Basis.
- d_i : folgt, da J_{k_j} nilpotent von Nilpotenzklasse k_j ist (Lemma 6.12).

Kapitel II Skalarprodukte

Kapitel III $Dualit\ddot{a}t$

Kapitel IVModuln

Anhang A: Listen

A.1. Liste der Theoreme

Theorem 4.8	:		10
Theorem 5.9	:	Satz von Cayley-Hamiltion	12
Theorem 7.5	:	JORDAN-Normalform	19

A.2. Liste der benannten Sätze

Satz 6.4	:	Lemma von Fitting			•	•	•	•			•	 •			•			•	•	1	4
Satz 7.3	:	Hauptraumzerlegung																		1	8