

Data Privacy and Security

Project Ideas

Asst. Prof. M. Emre Gürsoy www.memregursoy.com

General Advice

- Choose something that you'll enjoy
 - You're devoting a long time to it
 - Your course grade depends heavily on it (40%+5%)
- Choose something that'll be useful for you
 - Think about whether you want to have a «Github portfolio» or «research experience»
 - If you're already doing research, think about how your project may benefit from your domain expertise
- If you want a long-term outcome (publication, app, research credits in future semesters, ...), let me know
 - You're already putting a lot of work into your project
 - Can decide to go the extra mile (depends)
 - But your project should be shaped accordingly

General Advice

- Make weekly progress throughout the semester
 - Impossible to do 3 months of work in 3 weeks
 - If something doesn't go according to plan, you can change sooner rather than later
- Think about how much help you'll need from me
 - I have more knowledge and expertise in some topics compared to others
 - If you choose these topics, I can help more
 - E.g.: project numbers 2, 4, 6, 8, 9, 10, 11, 12
 - Instead, if you choose topics in which I don't have as much expertise, I can't help with the technical details (eg: acoustics, genomics) – you're on your own

Acoustic Keyloggers

- We type our passwords using a keyboard
 - Assume a shared computer with a keyboard
- Keylogger: software or hardware that logs keystrokes
 - Each key on your keyboard makes a slightly different sound -> acoustics
 - Humans have average typing speed (or motion)
 - Sounds+speed can be used to create a keylogger

Record key voices from shared keyboard at attack training time ML model outputs which keys the victim typed based on the acoustics

Acoustic Keyloggers

- Suitable for students who have knowledge/interest in acoustics, machine learning, signal processing.
 - Need to extract relevant acoustic and motion / keystroke frequency features from signals.
- You can record key sounds on your keyboard + your group members' keyboards (proof-of-concept).
 - One ML model for each keyboard
- Even more interesting:
 - Apple Magic keyboard
 - Portable keyboards
 - New gaming keyboards

Biometric Authentication

- Human body emits physiological signals
 - BCG, ECG, SCG, ...
 - Often unique from human-to-human

- Can biological signals be used as biometrics?
 - Applications: smartwatch, fitbit, fitness devices
 - Signal processing + machine learning
- Data sources:
 - UnoViS: https://www.medit.hia.rwth-aachen.de/publikationen/unovis/
 - PhysioNet: https://physionet.org/
 - WISDM: https://archive.ics.uci.edu/ml/datasets/WISDM+Smartphone+an-d+Smartwatch+Activity+and+Biometrics+Dataset+

Profile Matching

- A user has profiles on multiple social media sites:
 - A professional Facebook account with their name
 - An anonymous Twitter account (casual/activist)
- Profile matching: Match the user's anonymous Twitter account with their non-anonymous Facebook account
- How?
 - Photos
 - Workplace/education
 - Cross-posted content
 - Friend lists
 - Writing style

ML w/ Anonymized Data

Typical ML pipeline:

Training data

Anonymization generalizes the training data:

Zip	Age	Nationality	Disease
13053	28	Russian	Heart
13068	29	American	Heart
13068	21	Japanese	Flu
13053	23	American	Flu
14853	50	Indian	Cancer
14853	55	Russian	Heart
14850	4 7	American	Flu
14850	59	American	Flu

Zip	Age	Nationality	Disease
130**	<30	*	Heart
130**	<30	*	Heart
130**	<30	*	Flu
130**	<30	*	Flu
1485*	>40	*	Cancer
1485*	>40	*	Heart
1485*	>40	*	Flu
1485*	>40	*	Flu

ML w/ Anonymized Data

- How can we use the anonymized data for ML?
 - Some values are generalized: 13053 → 130**
 - Some values are suppressed (nationality)
- Should we generalize test data as well?
- Should we «re-construct» anonymized data?
- What design decisions/assumptions do we need to make?
- What is the accuracy impact of training ML models on anonymized data vs non-anonymized data?
 - Usually generalization and suppression cause information loss, thus accuracy is reduced

Anonymization vs ML Attacks

- ML attacks via carefully crafted test queries:
 - Membership inference attacks was Alice's data used in training the ML model?
 - Model inversion attacks reconstruct the original database from query answers

E	Zip 13053 13068	Age 28 29 21	Nationality Russian American Japanese	Disease Heart Heart Flu
E	13053 14853 14853 14850	23 50 55 47	American Indian Russian American	Flu Cancer Heart Flu
Г	14850	59	American	Flu

Maliciously crafted queries

Can we thwart these attacks by building the ML model on anonymized data (rather than the original training data)?

- Training-time attack on ML
 - Training data contains malicious records
 - If we directly train a ML model on malicious data, we may end up with low accuracy (or bad behavior)
 - Remember the Gmail spam filter example?

Skewing Gmail's spam filter using fake spam/non-spam reports

A data poisoning (data pollution) attack

- Medical domain is considering ML-powered solutions
- Three sources of poisoning:
 - (1) Malicious adversaries
 - (2) Erroneous/imprecise measurements
 - (3) Inherent errors in medical testing type-I and type-II
- These all cause medical data to be imperfect
- What happens when imperfect data is used for training a ML model in the medical domain?
 - Study different causes of imperfection (1-2-3 above)
 - Different ML models (DT, NB, DNN, SVM, kNN, ...)
 - Different datasets and classification tasks

- Create new poisoning attack strategies for:
 - Association rule learning (ARL)
 - Recommender systems
 - Time-series analytics/forecasting algorithms
 - **-** ...
- You should study the popular algorithms for whichever task you choose (eg: FP-growth, Apriori for ARL)
- Then determine how you can «fool» the algorithms with as few data insertions/deletions/modifications as possible (ie: as little poisoning as possible)
- Do better than the naive baseline of adding/deleting whatever record that contains your target rule

- Naive baseline attack:
 - I want to reduce conf(bread => butter)
 - I remove t₄ reduces supp(bread, butter)
 - Or I add many transactions like t₅ increases supp(bread)

```
conf(bread => butter)
= supp(bread,butter) / supp(bread)
= 0.2 / 0.6
= 1/3
```

Trans. ID	Bought Items	
t_1	milk, bread	
t ₂	butter	
t ₃	beer, diapers	
$t_{\scriptscriptstyle{4}}$	milk, bread, butter	
t ₅	bread	

Federated Poisoning

- Federated learning (FL):
 - https://en.wikipedia.org/wiki/Federated_learning

What if one or more nodes are malicious, and they train on poisoned data? → FEDERATED POISONING

«Data poisoning attacks against federated learning systems» – V. Tolpegin et al. Georgia Tech 2nd year undergrad student, year-long research project, received undergrad research award @ Georgia Tech, final paper published in A-level conference in September 2020.

Federated Poisoning

- In our prior work, we showed the effectiveness of federated poisoning on image classification
 - Popular task for neural networks these days
- But FL is / will be used in many other areas:
 - Gboard on Android Google Keyboard
 - Digital health
 - IoT and Industry 4.0
 - NLP, sentiment analysis
 - (1) Investigate the impact of federated poisoning in new application areas
- (2) Find more effective federated poisoning attack strategies (or application-specific strategies)

Federated Poisoning

- Find defenses against federated poisoning
 - Can we separate malicious clients' updates from nonmalicious clients' updates?
 - Can we use strategies from data privacy literature (eg: differential privacy) or distributed systems literature? (eg: Byzantine fault tolerance)

Malicious participants' updates

Note: Federated learning experiments rely on neural networks, which take a long time to simulate on commodity hardware.

DP System Design

 Differential privacy (DP) is a popular privacy definition for privacy-preserving analysis of sensitive data:

- You can implement a system with this architecture for many kinds of data: medical data, genomics, education data, web statistics, location data...
 - Most of these are relevant especially due to COVID!

DP System Design

Advice:

- (1) Make sure you have large enough datasets
 - Tens or hundreds of thousands of records
 - Better if you have 2-3 datasets, each becomes a different experiment
 - Look for datasets online
- (2) You can build your system using existing libraries or code them on your own
 - https://github.com/IBM/differential-privacy-library (IBM)
 - <u>https://opendifferentialprivacy.github.io/</u> (Microsoft+Harvard)
 - https://github.com/google/differential-privacy (Google)
- (3) Think about what statistics + services you may offer to analysts with differential privacy
 - Use them as proof-of-concept demonstrations for your system
 - Non-private accuracy vs private accuracy

Local DP (LDP)

- Local Differential Privacy (LDP) is used by major tech companies to collect user data.
 - Apple iOS devices MacOS, iPhone, ...
 - Microsoft Windows
 - Google Chrome

- ...

Apple's 'Differential Privacy' Is About Collecting Your Data—But Not Your Data

Microsoft Research Blog

Collecting telemetry data privately

Local DP (LDP)

- Frequency estimation: a fundamental primitive
 - Each user has one or more items from domain D
 - Estimate the frequency (supp) of each item in D

Local DP (LDP)

 There are many protocols for finding heavy hitters (top-k popular items) with LDP

- But how about low-frequency items?
 - The «opposite» of heavy hitters
 - Discovering unused items
 - Which series/movies do Netflix users NOT prefer to watch?

- Finding bottom-k items
- Finding items w/ frequency lower than threshold T

LDP on Graphs

- Graphs often encode relationships which are sensitive
- Perturb neighbor lists with LDP to hide relationships
 - A's perturbed neighbor list says she's not friends w/ B
 - But how about B's perturbed neighbor list??

 Another privacy leakage: A must know which users exist in the network in order to construct her neighbor list

Bias + Fairness

- Tangentially related topic to privacy + security
 - Acceptable as course project
- As AI/ML becomes pervasive, algorithmic bias and dataset bias become important
 - Criminal justice: should a defendent receive bail?
 - Black persons are more likely to be wrongly labeled as «high-risk» and be denied bail

	White	Black
Wrongly Labeled High-Risk	23.5%	44.9%
Wrongly Labeled Low-Risk	47.7%	28.0%

Bias + Fairness

- Many metrics to measure bias and fairness
- Many methods to make «biased» ML methods «unbiased»
- Suitable for benchmarking or finding new applications:
 - https://github.com/Trusted-AI/AIF360
 - https://github.com/dssg/aequitas
 - ... many more

Q & A