Datamaskiner og Digitalteknikk 2018 TDT4160

Sebastian Ellefsen

August 30, 2018

1 Forelesing 1 - Introduksjon

1.1 TL;DR

- Prosessorhastighet vokser mye raskere enn minnehastigheten, lager et "gap", behov for å "lure" maskinen til å tro at den er raskere enn den er.
- Maskiner brytes ned til et abstrakt hierarki.

2 Forelesing 2

Mikroarkitektur

2.1 Datamaskinsystemer

- To typer maskiner
 - Tradisjonelle datamaskiner
 - Integrerte ("embedded") maskiner

2.2 System og minnekart

• Pekere til forskjellige minneområder

ADR holder pekere til minneadresser i DATA, data kan da skrives til minne (WR) eller leses fra minne (RD)

2.3 CPU

- "Hjernen" i en datamaskin
- Hoveddeler
 - Control Unit
 - Aritmetisk-logisk enhet (ALU)
 - Register
 - * PC : Program counter Peker til den neste instruksjonen i Instruksjons Registeret
 - * MAR : Memory Address Register Lagrer adressen data enten vil hentes (fetch) fra eller skrives (write/send) til.
 - * MDR : Memory Data Register Lagrer data som flyttes til/fra primærminne
 - * Y-REG :
 - * MUX : (multiplexer?)
 - * IR : Instruction Register (Instruksjons Register) Lagrer instruksjonene som skal utføres
 - $\ast~$ R0 ... R(n-1) : General Purpose Registers (GPRs) / Generelle register Registre som brukes av instruksjonene
 - * TEMP Brukes til forskjellige formål av forskjellige produsenter
 - * Konstant-register Lagrer en del read-only konstanter, f.eks 0, 1, π etc.
- Register

- Programteller (PC) Adresse til neste instruksjon
- Instruksjonsregister (IR)
- Generelle registre (General Purpose Registers (GPRs))

2.4 Hvordan utføres et program

- Fetch-Execute cycle
- Programminne og Dataminne

2.5 Lager

Hovedminne / Main Memory

- RAM (Random Access Memory)
- To vanlige typer RAM
 - Statisk
 - * Rask
 - * Stor minecelle (Mange transistorer)
 - Dynamisk
 - * Ikke så rask
 - * Mindre minneareal
 - * Mer komplisert
 - $\ast\,$ Må ha "opplading" (bruker kondensatorer som kan lades ut)

Lagerhierarki (hastighet \downarrow / kapasitet \uparrow

- Register
- Cache
- Main Memory
- Magnetic DIsk
- Tape / Optical Disk

Nærmere CPU \rightarrow Raskere / mindre

2.5.1 Cache

Mean Access Time: $x + (1 - h) \cdot m$ Prøver gjette hvilke data man trenger

- c: cache access time
- m: main mamory acces time
- m: hit ratio

2.6 Busser og arkitektur

Busser forbinder komponenter.

2.7 Ytelse

Må velge hvilken metrikk vi bruker for måling av ytelse, avhengig av behov.

2.8 Paral6lellitet

- Essensielt for å øke ytelsen
- To typer parallellitet
 - -Instruksjonsnivåparallellitet (Instruction-Level Parallelism (ILP))
 - * Flere instruksjoner utføres samtidig
 - * Samlebånd (pipelining)
 - Prosessornivåparallellitet (Processor-Level Paralellism (PLP))
 - * Bruker flere prosessorer

Parallellitetstyper:

- Single Instruction, Multiple Data (SIMD): Array Processor
- Multiple Instructions, Multiple Data (MIMD): Multiprocessor