COMPUTER SCIENCE

Computer Organization and Architecture

Introduction of COA

Lecture_01

Introduction of COA

102 Instruction Cycle

COA:

LIST time 12th Bass PLZ

Basic

PYQ'S: 121+ PYQ'S

+ We Mind Set

GATE COA Syllabus

- Introduction of COA
- Instruction format & Addressing mode

(9 to 11 Marks)

- ALU, Datapath & Control Unit
- Floating point Representation
 - Cache Memory
- Pipelining
- Secondary Memory & I/O Interface

Introduction of COA

- Introduction
- Components of Computer
- Types of Registers
- Instruction cycle
- Memory Concept
- Byte & word addressable
- System Bus

Introduction format & Addressing mode

- Instruction concept
- Machine Instruction
- Instruction format
- Expand opcode technique
- Addressing modes concept
- Types of addressing modes
 - ISA ISA

ALU, Datapath & Control unit

- Data path
- Micro Instruction
- Micro Program
- Control Unit Design

Cache Memory

] 50 + Maxles.

Pw

- Memory Concept
- Types of Memory Organization
- Cache Memory
 - Cache Organization
 - Mapping Technique
 - Replacement Algorithm
 - Updating Technique & Multilevel Cache

Pipelining

- Pipeline concept
- Pipeline Types
- Performance Evaluation
- Dependencies in pipeline
 - Structural Dependency
 - Data Dependency
 - Control Dependency
- Pipeline Hazards

Secondary Memory & I/O Interface

- Disk Concept
- Disk Structure
- Disk Access time
- I/O Interface & its type

Books

Computer Generation:

		Ist	IInd	TI TO	IVLI
		1942-1955	1955-1964	1965-1974	1974-Regent
	Components	Vaccumme Tube	Transistar	T.C [Integrate Chip	VISI 4 ULS I
	Language	Mochine Language	Assembly Language.	H.L.L, OOP'S RDBMS	

(Nove)

The Digit Computer was ENIAC in 1943.

Electronic Nymerical and Integrator Computel.

[Computer Architecture]
It deals with

[Computer Organization]
It deals with

Instruction

Addressing Mode

ALU

Pipeline (Internal Design)

How various memory & I/O (Input Output) interact with System (Memory Organization I/O organization)

Computer Architecture is a Attributes which is visible to Programmer. Goeals with How the Feature will Implemented.

- · Instruction
- . Number of bit Required to Represent the Data
- . Addressing Mode 2 etc.

Note Intel X86 has Same Architecture but Dibbelent organization

Intel X86

Have the same Architecture

But Different organization (How features)

are Implement

Component of computer.

Component of Computer

Component of Computer

1) Program Counter:[PC]: PC Contain the Starting address of
the Next Instruction to be executed (Fetched)

2) AR MAR [Mennoy Address Register]: MAR Contain the Mennoy
Address Used for either
PATA

Pead & write operation

3) DR MDR MBR [Memory Bulber Register]: Hold the Instruction or DATA.

(9) IR [Instruction Register]: It contain the Instruction which is consently executed by the CPU:

WHY Instruction in IR? Because Instruction Format is Breakfined in IR.

(5) AC [Accomplator]: Contain the temporary Regult of ALU operation

OR) First operand (DATA) of ALU operation

6 GPR [General Purpose Register]

3 SP [Stack Pointer]

(B) PSW (Program Status Word).

WHY MAR ? : Connected to Address Line.

WHY MBR ? : Connected to Dato line.

SYSTEMBUS

- 1) Address line
- 2) Data line.
- 3 Control Line.

(I) PC[Program Counter]: PC contain the Starting Address of the Next Instruction to be fetch (Execute).

MAR[Memory Address Register]: That contain the address of Memory location used for either Read or Write Operation.

MBR[Memory Buffer Register]:

That contain Instruction & Data

0r

MDR[Memory Data Register]

AC[Accumulator]:

That contain temporary Result (or) first Operand (DATA) of ALU operation

Example: ADD[4000] $AC \leftarrow AC + M(4000)$

GPR [General Purpose Register]: That is used for process the data.

PSW(Program Status Register)/ It store the status of the ALU Result Flag Register:

Stack Pointer (SP Register): Contain the TOS (Top of the Stack) address.

Component of Computer

- (1) CPU
- (2) Memory
- (3) Input/output

The Process Required for each Instruction Execution.

OR)

Instruction cycle describe the execution sequence of the Instruction.

Instruction ayde Contain & Sub Cycle.

- 1) Fetch Cycle.
- 2) Execute Cycle Decode

 Execute.

1) Fetch cycle! To Fetch (bring) the Instruction

From Memory to CPU. [MEM to CPU[IR].

At the end of Fetch Cycle PC [Program Counter] is incremented, Now PC will denote Next Instruction. Starting Address.

Component of Computer Fetch Cycle: Al ckt MBR I/0 3 AC (I): LOAD [6000] 1000 ACEM[6000] 1000 (LOAD (6000) 'GPR' 100 PC Cl ckt Instructions Memory LOAD: 2 & (Rea Data STORE: Memory MAR, IR 1 WAD (5000) Address Memory Decode

2) Execute cycle: To Process (to execute) the Fetched Instruction.

Decode [Analysis of the Instruction]
WHAT OPCODE, How Many operand, Where Gerand are available.

Execute. (Processing & Result Storage).

[6000]

- 1) Fetch cycle (Mann to CPU (IR)
- 2) Execute cycle.

The process required to execute the Instruction.

(or)

Instruction cycle describe the execution sequence of the instruction.

Instruction Cycle contain 2 sub cycle.

- 1) Fetch cycle
- 2) Execute cycle

Decode

Execute

Steps in Instruction Cycle

MEM to CPU (IR).

Fetch Cycle

- At the beginning of each instruction cycle the processor fetches an instruction form memory
- The program counter (PC) holds the address of the instruction to be fetched next
- The processor increments the PC after each instruction fetch so that it will fetch the next instruction in sequence
- The fetched instruction is loaded into the instruction register (IR)
- The processor interprets the instruction and performs the required action.

BASIC INSTRUCTION CYCLE

