

Report No: CCISE171000105

FCC REPORT

Applicant: Sun Cupid Technology (HK) Ltd.

Address of Applicant: 16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan,

Kowloon, Hong Kong.

Equipment Under Test (EUT)

Product Name: LTE mobile phone

Model No.: N5701L, G1

Trade mark: NUU

FCC ID: 2ADINN5701L

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 11 Oct., 2017

Date of Test: 11 Oct., to 31 Oct., 2017

Date of report issued: 01 Nov., 2017

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	01 Nov., 2017	Original

Tested by: Over them Date: 01 Nov., 2017

Test Engineer

Reviewed by: 01 Nov., 2017

Project Engineer

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
3	CON	TENTS	3
4	TES	Г SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	_
	5.1	GENERAL DESCRIPTION OF E.U.T	
	5.2	TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	
6	TES	FRESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	15
	6.5	Power Spectral Density	19
	6.6	BAND EDGE	
	6.7	Spurious Emission	
	6.7.1		
	6.7.2		
	6.8	FREQUENCY STABILITY	38
7	TES	SETUP PHOTO	40
8	EUT	CONSTRUCTIONAL DETAILS	41

4 Test Summary

15.203/15.407 (a) 15.207	Pass Pass
	Pass
45 407 () (4) (;)	
15.407 (a) (1) (iv)	Pass
15.407 (a) (5)	Pass
15.407 (a) (1) (iv)	Pass
15.407(b)	Pass
15.205/15.209	Pass
15.407(g)	Pass
	15.407 (a) (1) (iv) 15.407(b) 15.205/15.209

5 General Information

5.1 Client Information

Applicant:	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.
Manufacturer	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.
Factory:	SUNCUPID (ShenZhen) Electronic Ltd
Address:	Baolong Industrial City, Longgang District, Shenzhen Hi-Tech Road, Building 1, A7, China.

5.2 General Description of E.U.T.

Product Name:	LTE mobile phone
Model No.:	N5701L, G1
Operation Frequency:	Band 1: 5150MHz-5250MHz
Channel numbers:	Band 1: 802.11a/802.11n20: 4, 802.11n40: 2
Channel separation:	802.11a/802.11n20: 20MHz, 802.11n40: 40MHz
Modulation technology (IEEE 802.11a):	BPSK, QPSK, 16-QAM, 64-QAM
Modulation technology (IEEE 802.11n):	BPSK, QPSK, 16-QAM, 64-QAM
Data speed (IEEE 802.11a):	6Mbps, 9Mbps,12Mbps,18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n20):	MCS0: 6.5Mbps, MCS1:13Mbps, MCS2:19.5Mbps, MCS3:26Mbps, MCS4:39Mbps, MCS5:52Mbps, MCS6:58.5Mbps, MCS7:65Mbps
Data speed (IEEE 802.11n40):	MCS0:15Mbps, MCS1:30Mbps, MCS2:45Mbps, MCS3:60Mbps, MCS4:90Mbps, MCS5:120Mbps, MCS6:135Mbps, MCS7:150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.4 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2800mAh
AC adapter :	Model: TPA-46050150UU Input: AC100-240V, 50/60Hz, 0.3A Output: DC 5.0V, 1500mA
Remark:	Model No.: N5701L, G1 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.

Operation Frequency each of channel							
	Band 1						
802.11a/8	802.11a/802.11n20 802.11n40 /						
Channel	Frequency	Channel	Frequency	/	/		
36	5180MHz	38	5190MHz	/	1		
40	5200MHz	46	5230MHz				
44	5220MHz						
48	5240MHz						

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1						
802.11a/802.11n20 802.11n40			1n40	1		
Channel	Frequency	Channel	Frequency	/	/	
Lowest channel	5180MHz	Lowest channel	5190MHz	/	/	
Middle channel	5200MHz	Highest channel	5230MHz			
Highest channel	5240MHz					

5.3 Test environment and test mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Continuously transmitting mode	Continuously transmitting mode Keep the EUT in 100% duty cycle transmitting with modulation.			
We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:				
Per-scan all kind of data rate, and	d found the follow lis	t were the worst case.		
Mode		Data rate		
802.11a		6 Mbps		
802.11n20		6.5 Mbps		
802.11n40		15 Mbps		

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	4.56 dB (k=2)

Report No: CCISE171000105

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	02-25-2017	02-24-2018	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	02-25-2017	02-24-2018	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	02-25-2017	02-24-2018	
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A	
Pre-amplifier	HP	8447D	2944A09358	02-25-2017	02-24-2018	
Pre-amplifier	CD	PAP-1G18	11804	02-25-2017	02-24-2018	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	02-25-2017	02-24-2018	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	02-25-2017	02-24-2018	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	02-25-2017	02-24-2018	
Cable	MICRO-COAX	MFR64639	K10742-5	02-25-2017	02-24-2018	
Cable	SUHNER	SUCOFLEX100	58193/4PE	02-25-2017	02-24-2018	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	02-25-2017	02-24-2018	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	02-25-2017	02-24-2018	
LISN	CHASE	MN2050D	1447	02-25-2017	02-24-2018	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2018	
Cable	HP	10503A	N/A	02-25-2017	02-24-2018	
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The WiFi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.4 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10: 2013				
Test Frequency Range:	150kHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kH	Z			
Limit:	Frequency range	Limit (dBuV)		
	(MHz)	Quasi-peak	·		
	0.15-0.5	66 to 56*	0.15-0.5		
	0.5-5	56	0.5-5		
	5-30	60	5-30		
	* Decreases with the loga				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). It provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 				
Test setup:	Reference Plane				
	LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane				
	Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m				
Test Instruments:	Refer to section 5.8 for d	etails			
Test mode:	Refer to section 5.3 for details.				
Test results:	Passed				

Measurement Data:

Line:

Trace: 15

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : LTE Mobil Phone Site Condition

EUT

Model : N5701L Test Mode : 5G WIFI mode
Power Rating : AC 120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Carey Remark

Kemark								
	Freq	Read Level	LISN Factor			Limit Line		Remark
	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
			18-	1		77.7		
1	0.437	17.05	-0.50	10.74	27.29	47.11	-19.82	Average
2	0.561	21.02	-0.49	10.76	31.29	46.00	-14.71	Average
3	0.630	30.23	-0.48	10.77	40.52	56.00	-15.48	QP
4	0.938	32.01	-0.49	10.85	42.37	56.00	-13.63	QP
5	1.184	32.76	-0.48	10.89	43.17	56.00	-12.83	QP
1 2 3 4 5 6 7 8	1.191	20.79	-0.48	10.89	31.20	46.00	-14.80	Average
7	2.707	32.25	-0.44	10.93	42.74	56.00	-13.26	QP
8	2.707	15.94	-0.44	10.93	26.43	46.00	-19.57	Average
9	3.509	14.89	-0.36	10.90	25.43	46.00	-20.57	Average
10	3.700	28.91	-0.34	10.90	39.47	56.00	-16.53	QP
11	5.058	14.32	-0.18	10.85	24.99	50.00	-25.01	Average
12	13.337	30.21	-0.45	10.91	40.67	60.00	-19.33	QP

Neutral:

Trace: 13

CCIS Shielding Room FCC PART15 B QP LISN NEUTRAL Site Condition

EUT LTE Mobil Phone

: N5701L Model

Test Mode : 5G WIFI mode Power Rating : AC 120/60Hz Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Carey

Remark

CMAIK	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	<u>dB</u>	dB	dBu₹	₫₿uѶ	<u>dB</u>	
1	0.186	18.54	-0.35	10.76	28.95	54.20	-25.25	Average
1 2 3	0.437	17.68	-0.31	10.74	28.11	47.11	-19.00	Average
3	0.567	18.77	-0.30	10.76	29.23	46.00	-16.77	Average
4 5 6 7 8 9	0.876	34.79	-0.29	10.83	45.33	56.00	-10.67	QP
5	0.933	36.40	-0.29	10.85	46.96	56.00	-9.04	QP
6	1.060	20.61	-0.29	10.88	31.20	46.00	-14.80	Average
7	1.191	20.33	-0.28	10.89	30.94	46.00	-15.06	Average
8	1.310	35.90	-0.28	10.90	46.52	56.00	-9.48	QP
9	2.678	32.93	-0.22	10.93	43.64	56.00	-12.36	QP
10	2.765	17.42	-0.21	10.93	28.14	46.00	-17.86	Average
11	3.547	32.44	-0.20	10.90	43.14	56.00	-12.86	QP
12	5.139	32.50	-0.18	10.85	43.17	60.00	-16.83	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv)
Test Method:	ANSI C63.10: 2013, KDB789033
Limit:	Band 1: 24dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

mododromont But										
Band 1										
Mode	Test CH	Conducted Output power (dBm)	Limit (dBm)	Result						
	Lowest	-0.49	24.00	Pass						
802.11a	Middle	-0.06	24.00	Pass						
	Highest	-0.94	24.00	Pass						
	Lowest	-0.36	24.00	Pass						
802.11n20	Middle	-0.51	24.00	Pass						
	Highest	-0.47	24.00	Pass						
902 11 - 10	Lowest	-0.75	24.00	Pass						
802.11n40	Highest	-0.54	24.00	Pass						

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 E Section 15.407 (a) (5)						
Test Method:	ANSI C63.10:2013 and KDB 789033						
Limit:	Band 1: N/A (26dB Emission Bandwidth and 99% Occupy Bandwidth)						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.8 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Measurement Data:

Band 1:

Test Channel	26dB E	Emission Bandwidth (Limit	Popult		
rest Channel	802.11a 802.11n20 802.11n40		LITTIIL	Result		
Lowest	20.16	20.40	40.00			
Middle	20.16	20.40	N/A		PASS	
Highest	19.68	19.92	39.68			
Test Channel	99% (Occupy Bandwidth (I	Limit	Dogult		
rest Channel	802.11a	802.11n20	802.11n40	LIMIL	Result	
Lowest	17.12	18.00	36.32			
Middle	17.04	18.00		N/A	PASS	
Highest	17.12	18.00	36.32			

Test plot as follows: Band 1:

Highest channel

Highest channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv)				
Test Method:	ANSI C63.10:2013, KDB 789033				
Limit:	Band 1: 11 dBm/MHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

vicasai ciliciti Data.				
		Band 1		
Mode	Test CH	PSD (dBm)	Limit (dBm)	Result
	Lowest	-11.32	11.00	Pass
802.11a	Middle	-11.61	11.00	Pass
	Highest	-12.07	11.00	Pass
	Lowest	-11.84	11.00	Pass
802.11n20	Middle	-11.85	11.00	Pass
	Highest	-12.31	11.00	Pass
000 44 = 40	Lowest	-15.40	11.00	Pass
802.11n40	Highest	-15.19	11.00	Pass

Test plot as follows:

Band 1:

Date: 31.OCT.2017 11:27:14

Lowest channel

Nef 16.5 dbm Att 20 db SNT 20 mm 0.230040000 GHz

Middle channel

Date: 31.0CT.2017 11:27:26

Date: 31.OCT.2017 11:27:37

Date: 31.OCT.2017 11:28:38

Highest channel

Date: 31.0CT.2017 11:28:26

Lowest channel

Middle channel

Date: 31.OCT.2017 11:28:05

Highest channel

Test mode:802.11n40

Date: 31.0CT.2017 11:29:10

Lowest channel

Date: 31.0CT.2017 11:29:29

Highest channel

6.6 Band Edge

0.0 Band Luge								
Test Requirement:	FCC Part 15 E Secti	ion 15.407 (b)						
Test Method:	ANSI C63.10:2013,	ANSI C63.10:2013 , KDB 789033						
Receiver setup:	Detector	RBW	VBW	Remark				
·	Quasi-peak	120kHz	300kHz	Quasi-peak Value				
	RMS	1MHz	3MHz	Average Value				
Limit:	Band		V/m @3m)	Remark				
	Band 1		.20	Peak Value				
		S4.00 Average						
	Remark:							
	1. Band 1 limit:	D[dD==1 + 0E 0 + 00 +	0 dD: \//rr for E1	DD[dDm1 07dDm				
Test Procedure:	 The EUT was perthe ground at a to determine the second and a to determine the second and a to determine the second and antenna, which tower. The EUT was second antenna, which tower. The antenna he the ground to do Both horizontal make the meas For each suspers case and then the second the second and the second an	placed on the top 3 meter camber e position of the let 3 meters away was mounted or eight is varied frogetermine the maximum end emission, the antenna was rotatable was turnum reading. The er system was sewidth with Maximum testing of the EUT ed, then testing of the reported. Cigin would be re-termine of the total end of the testing o	of a rotating take. The table was highest radiation by from the interference of a variation of the top of a variations of the arizations of the top each to Peak Detection Hold Mode in peak mode would be stopped otherwise the ertested one by or	ference-receiving striable-height antenna four meters above the field strength, antenna are set to anged to its worst is from 1 meter to 4 grees to 360 degrees of Function and				
Test setup:	- Islam	(Turntable) Ground Re Test Receiver	Horn Artenna Antenna Antenna Artenna Artenna Artenna Controller	Tower				
Test Instruments:	Refer to section 5.8	for details	-					
Test mode:	Refer to section 5.3							
Test results:	Passed							

Band 1:

802.11a										
Test cl	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	47.49	31.38	7.05	41.93	47.35	68.20	-20.85	Horizontal		
5150.00	47.12	31.38	7.05	41.93	46.98	68.20	-21.22	Vertical		
				802.11a						
Test cl	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	37.96	31.38	7.05	41.93	37.82	54.00	-16.18	Horizontal		
5150.00	37.37	31.38	7.05	41.93	37.23	54.00	-16.77	Vertical		
				802.11a						
Test cl	hannel	Highest		Le	vel		Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	47.20	30.82	7.11	41.89	46.62	68.20	-21.58	Horizontal		
5350.00	46.75	30.82	7.11	41.89	46.17	68.20	-22.03	Vertical		
				802.11a						
Test cl	hannel		Highest		Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	37.51	30.82	7.11	41.89	36.93	54.00	-17.07	Horizontal		
5350.00	36.14	30.82	7.11	41.89	35.56	54.00	-18.44	Vertical		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT20												
Test ch	nannel		Lowest		Level Peak		Peak					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5150.00	47.36	31.38	7.05	41.93	47.22	68.20	-20.98	Horizontal				
5150.00	47.24	31.38	7.05	41.93	47.10	68.20	-21.10	Vertical				
			8	02.11n-HT20								
Test cl	hannel		Lowest		Le	vel	Av	rerage				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5150.00	37.51	31.38	7.05	41.93	37.37	54.00	-16.63	Horizontal				
5150.00	37.52	31.38	7.05	41.93	37.38	54.00	-16.62	Vertical				
	802.11n-HT20											
Test cl	hannel	Highest			Le	vel	F	Peak				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5350.00	47.68	30.82	7.11	41.89	47.10	68.20	-21.10	Horizontal				
5350.00	46.41	30.82	7.11	41.89	45.83	68.20	-22.37	Vertical				
			8	02.11n-HT20								
Test cl	hannel		Highest		Level		Av	rerage				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5350.00	37.17	30.82	7.11	41.89	36.59	54.00	-17.41	Horizontal				
5350.00	36.35	30.82	7.11	41.89	35.77	54.00	-18.23	Vertical				

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40									
Test cl	nannel		Lowest		Level Peak		Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	47.52	31.38	7.05	41.93	47.38	68.20	-20.82	Horizontal	
5150.00	47.55	31.38	7.05	41.93	47.41	68.20	-20.79	Vertical	
			8	02.11n-HT40)				
Test cl	nannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	37.33	31.38	7.05	41.93	37.19	54.00	-16.81	Horizontal	
5150.00	37.81	31.38	7.05	41.93	37.67	54.00	-16.33	Vertical	
			8	02.11n-HT40)				
Test ch	nannel	Highest			Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	47.50	30.82	7.11	41.89	46.92	68.20	-21.28	Horizontal	
5350.00	46.59	30.82	7.11	41.89	46.01	68.20	-22.19	Vertical	
			8	02.11n-HT40)				
Test cl	nannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	37.41	30.82	7.11	41.89	36.83	54.00	-17.17	Horizontal	
5350.00	36.16	30.82	7.11	41.89	35.58	54.00	-18.42	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

6.7.1 Restricted Band								
Test Requirement:	FCC Part15 E Se	ection 15.4	l07(b)					
Test Method:	ANSI C63.10: 20)13						
Test Frequency Range:	4.5 GHz to 5.15	GHz and 5	5.35GHz to 5.46G	Hz				
Test site:	Measurement Di	stance: 3n	า					
Receiver setup:	Frequency	Detecto		VBW	Remark			
	Above 1GHz	Peak RMS	1MHz 1MHz	3MHz 3MHz	Peak Value Average Value			
Limit:	Frequency		_imit (dBuV/m @3		Remark			
	Above 1GH		74.00	,	Peak Value			
			54.00		Average Value			
Test Procedure: Test setup:	the ground a to determine 2. The EUT was antenna, who tower. 3. The antenna the ground to Both horizon make the m 4. For each su case and the meters and to find the m 5. The test-red Specified Back. 6. If the emission the limit specifies of the EUT whave 10dB in the modern services and the limit specifies and the limit specifies and the limit specifies and the limit specifies are services.	at a 3 meters the position as set 3 meters as set 3 meters as set 3 meters as set 3 meters and version as set 3 meters and version as set 3 meters as set 3 meters as set 4 me	er camber. The taken of the highest eters away from the tounted on the top varied from one rate the maximum vertical polarization ont. In the end of the eading. In the end of the EUT in peaker the EUT in peaker the eterm of	ble was rotal radiation. The interference of a variable meter to four value of the soft the anticological was arranged heights from 0 degree at Detect Fuld Mode. The mode was a stopped and the meter to mode the emissione by one und then report to the control of the mode was a stopped and the meter the emissione by one und the meter the control of the mode was the emissione by one und the meter the control of the meter the control of the meter than the	r meters above field strength. enna are set to ed to its worst om 1 meter to 4 es to 360 degrees unction and 10dB lower than ad the peak values sions that did not using peak, quasi-			
	Test Receiver Arptier Controller							
Test Instruments:	Refer to section	5.8 for deta	ails					
Test mode:	Refer to section	5.3 for deta	ails					
Test results:	Passed							

Band 1:

802.11a

Test cl	nannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	47.08	29.30	6.80	42.05	44.42	74.00	-29.58	Horizontal
4500.00	46.52	29.30	6.80	42.05	43.86	74.00	-30.14	Vertical
Test cl	nannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	37.36	29.30	6.80	42.05	34.70	54.00	-19.30	Horizontal
4500.00	36.83	29.30	6.80	42.05	34.17	54.00	-19.83	Vertical
Test cl	nannel		Highest		Le	Level		Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	46.60	30.54	7.18	41.85	45.86	74.00	-28.14	Horizontal
5460.00	45.37	30.54	7.18	41.85	44.63	74.00	-29.37	Vertical
Test cl	nannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	36.79	30.54	7.18	41.85	36.05	54.00	-17.95	Horizontal
5460.00	35.86	30.54	7.18	41.85	35.12	54.00	-18.88	Vertical

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT20

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	47.68	29.30	6.80	42.05	45.02	74.00	-28.98	Horizontal
4500.00	46.31	29.30	6.80	42.05	43.65	74.00	-30.35	Vertical
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	37.85	29.30	6.80	42.05	35.19	54.00	-18.81	Horizontal
4500.00	36.54	29.30	6.80	42.05	33.88	54.00	-20.12	Vertical
Test cl	hannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	46.38	30.54	7.18	41.85	45.64	74.00	-28.36	Horizontal
5460.00	45.93	30.54	7.18	41.85	45.19	74.00	-28.81	Vertical
Test cl	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	36.35	30.54	7.18	41.85	35.61	54.00	-18.39	Horizontal
5460.00	35.88	30.54	7.18	41.85	35.14	54.00	-18.86	Vertical

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test cl	nannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	47.42	29.30	6.80	42.05	44.76	74.00	-29.24	Horizontal
4500.00	46.29	29.30	6.80	42.05	43.63	74.00	-30.37	Vertical
Test cl	nannel		Lowest		Le	vel	Av	rerage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	37.32	29.30	6.80	42.05	34.66	54.00	-19.34	Horizontal
4500.00	36.12	29.30	6.80	42.05	33.46	54.00	-20.54	Vertical
Test cl	nannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	46.46	30.54	7.18	41.85	45.72	74.00	-28.28	Horizontal
5460.00	45.33	30.54	7.18	41.85	44.59	74.00	-29.41	Vertical
Test cl	nannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	36.85	30.54	7.18	41.85	36.11	54.00	-17.89	Horizontal
5460.00	35.48	30.54	7.18	41.85	34.74	54.00	-19.26	Vertical

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions out of the Restricted Bands

Test Requirement:	FCC Part15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 20	13							
Test Frequency Range:	30MHz to 40GHz	<u>,</u>							
Test site:	Measurement Dis	stance: 3	m						
Receiver setup:	Frequency	Detec	tor	RBW	VE	3W	Remark		
	30MHz-1GHz	Quasi-p	eak	100kHz	300)kHz	Quasi-peak Value		
	Above 1GHz	Peal		1MHz		ИHz	Peak Value		
		RMS		1MHz		/IHz	Average Value		
Limit:	Frequency		Lin	nit (dBuV/m @3	Sm)		Remark		
	30MHz-88MH			40.0			uasi-peak Value		
	88MHz-216M			43.5			uasi-peak Value		
	216MHz-960M			46.0			uasi-peak Value		
	960MHz-1GF	1Z		54.0		Q	uasi-peak Value		
	Above 1GH	z		68.20			Peak Value		
	Remark: 54.00 Average Value								
	Above 1GHz limit:								
	Above 1GH2 limit. $E[dB\mu V/m] = EIRP[dBm] + 95.2=68.2 \ dBuV/m, \text{ for } EIPR[dBm]=-27dBm.$								
Test Procedure:				e top of a rota					
rest i roccuire.							eter camber. The		
							on of the highest		
	radiation.								
				away from th					
	· ·	ich was i	mount	ed on the top	of a va	ariable [.]	height antenna		
	tower.	الفطاءة أمطا			-44-	. fa	t - v		
				aximum value			neters above the		
							e set to make the		
	measureme		μι ρυια	inzations of th	c and	illia ai	c set to make the		
			emissi	ion, the EUT v	vas ar	ranged	to its worst case		
							eter to 4 meters		
			ıs turn	ed from 0 deg	rees t	o 360 d	degrees to find the		
	maximum re	_							
				as set to Pea			ction and		
	Specified Bandwidth with Maximum Hold Mode. 6 If the emission level of the FUT in peak mode was 10dB lower than the								
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the								
				therwise the e					
	10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.								
Test setup:	Below 1GHz								

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) HORIZONTAL : LTE mobile phone Condition

EUT

Model : N5701L
Test mode : 5G WIFI Mode
Power Rating : AC 120V/60Hz
Environment : Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Carey

CHEMIN									
	Freq		Antenna Factor						Remark
_	MHz	dBu₹	— <u>dB</u> /m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	дв	
1	170.195	46.28	9.00	2.66	29.05	28.89	43.50	-14.61	QP
2	236.645	51.53	11.72	2.83	28.61	37.47	46.00	-8.53	QP
2	278.067	47.63	12.72	2.88	28.49	34.74	46.00	-11.26	QP
4	355.427	45.88	14.72	3.10	28.58	35.12	46.00	-10.88	QP
5 6	446.414	48.76	15.60	3.19	28.86	38.69	46.00	-7.31	QP
6	502.940	43.13	16.70	3.64	28.96	34.51	46.00	-11.49	QP

Vertical:

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) VERTICAL : LTE mobile phone Site Condition

EUT

REMARK

шини		Read	Antenna	Cable	Preamo		Limit	Over		
	Freq		Factor							
	MHz	dBu∜	dB/m	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		
1	36.127	37.60	11.90	1.07	29.94	20.63	40.00	-19.37	QP	
2	170.793	46.38	9.00	2.66	29.04	29.00	43.50	-14.50	QP	
3	242.525	49.42	11.92	2.82	28.58	35.58	46.00	-10.42	QP	
4	344.386	45.61	14.60	3.08	28.55	34.74	46.00	-11.26	QP	
1 2 3 4 5	452.720	46.18	15.58	3.22	28.88	36.10	46.00	-9.90	QP	
6	568.613	39.98	17.72	3.91	29.04	32.57	46.00	-13.43	QP	

Above 1GHz:

Band 1:

		802.1	1a mode Lov	west chann	el (Peak Val	ue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	47.30	36.95	9.82	41.97	57.41	68.20	-10.79	Vertical
10360.00	46.41	36.95	9.82	41.97	56.52	68.20	-11.68	Horizontal
		802.11a	mode Lowe	st channel	(Average V	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	37.07	36.95	9.82	41.97	47.18	54.00	-6.82	Vertical
10360.00	36.64	36.95	9.82	41.97	46.75	54.00	-7.25	Horizontal

	802.11a mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	45.73	36.96	9.85	41.95	55.92	68.20	-12.28	Vertical			
10400.00	45.80	36.96	9.85	41.95	55.99	68.20	-12.21	Horizontal			
		802.11	a mode Midd	le channel	(Average V	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	35.54	36.96	9.85	41.95	45.73	54.00	-8.27	Vertical			
10400.00	35.35	36.96	9.85	41.95	45.54	54.00	-8.46	Horizontal			

	802.11a mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	46.42	37.00	9.96	41.88	56.87	68.20	-11.33	Vertical			
10480.00	45.32	37.00	9.96	41.88	55.77	68.20	-12.43	Horizontal			
		802.11a	mode Highe	est channe	l (Average V	'alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	36.90	37.00	9.96	41.88	47.35	54.00	-6.65	Vertical			
10480.00	35.91	37.00	9.96	41.88	46.36	54.00	-7.64	Horizontal			

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n20 mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	47.23	36.95	9.82	41.97	57.34	68.20	-10.86	Vertical			
10360.00	46.83	36.95	9.82	41.97	56.94	68.20	-11.26	Horizontal			
		802.11n2	20 mode Low	est chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	37.51	36.95	9.82	41.97	47.62	54.00	-6.38	Vertical			
10360.00	36.66	36.95	9.82	41.97	46.77	54.00	-7.23	Horizontal			

		802.11	n20 mode M	liddle chan	nel (Peak Va	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	45.56	36.96	9.85	41.95	55.75	68.20	-12.45	Vertical
10400.00	45.89	36.96	9.85	41.95	56.08	68.20	-12.12	Horizontal
		802.11n2	20 mode Mid	dle channe	el (Average '	√alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	35.24	36.96	9.85	41.95	45.43	54.00	-8.57	Vertical
10400.00	35.45	36.96	9.85	41.95	45.64	54.00	-8.36	Horizontal

802.11n20 mode Highest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	50.11	37.00	9.96	41.88	60.56	68.20	-7.64	Vertical
10480.00	50.06	37.00	9.96	41.88	60.51	68.20	-7.69	Horizontal
	802.11n20 mode Highest channel (Average Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	41.12	37.00	9.96	41.88	51.57	54.00	-2.43	Vertical
10480.00	40.27	37.00	9.96	41.88	50.72	54.00	-3.28	Horizontal

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

802.11n40 mode Lowest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	47.30	36.96	9.85	41.95	57.48	68.20	-10.72	Vertical
10380.00	46.34	36.96	9.85	41.95	56.52	68.20	-11.68	Horizontal
	802.11n40 mode Lowest channel (Average Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	37.79	36.96	9.85	41.95	47.97	54.00	-6.03	Vertical
10380.00	36.32	36.96	9.85	41.95	46.50	54.00	-7.50	Horizontal

802.11n40 mode Highest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	46.24	36.97	9.89	41.93	56.51	68.20	-11.69	Vertical
10460.00	46.67	36.97	9.89	41.93	56.94	68.20	-11.26	Horizontal
	802.11n40 mode Highest channel (Average Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	36.26	36.97	9.89	41.93	46.53	54.00	-7.47	Vertical
10460.00	36.88	36.97	9.89	41.93	47.15	54.00	-6.85	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.8 Frequency stability

Test Poquirement:	FCC Part15 E Section 15.407 (g)			
Test Requirement:	,0,			
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.			
Test setup:	Temperature Chamber			
	Spectrum analyzer EUT Variable Power Supply Note: Measurement setup for testing on Antenna connector			
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data (the worst channel):

Band 1:

Voltage vs. Frequency Stability (Lowest channel=5180MHz)

Test conditions			
Temp(℃)	Voltage(ac)	Frequency(MHz)	Max. Deviation (ppm)
	4.35V	5179.997795	0.43
20	3.80V	5179.974623	4.90
	3.50V	5179.963557	7.04

Temperature vs. Frequency Stability (Lowest channel=5180MHz)

Test conditions		F======(NALL=)	May Davistian (num)		
Voltage(dc)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)		
	-30	5179.986896	2.53		
	-20	5179.986952	0.51		
	-10	5179.995296	0.91		
	0	5179.967489	6.28		
3.8V	10	5179.989526	2.02		
	20	5179.995239	0.92		
	30	5179.975697	4.69		
	40	5179.964628	6.83		
	50	5179.975539	4.72		