Topic 02. Mechanics

- 1. The acceleration of a motorcycle is given by $a_x(t) = At Bt^2$, where $A = 1.50 \text{ m/s}^3$ and $B = 0.120 \text{ m/s}^4$. The motorcycle is at rest at the origin at time t = 0. (a) Find its position and velocity as functions of time. (b) Calculate the maximum velocity it attains.
- 2. An object is moving along the x-axis. At t = 0 it has velocity $v_{0x} = 20.0$ m/s. Starting at time t = 0 it has acceleration $a_x = -Ct$, where C has units of m/s³. (a) What is the value of C if the object stops in 8.00 s after t = 0? (b) For the value of C calculated in part (a), how far does the object travel during the 8.00 s?
- 3. At the instant t=0 a particle leaves the origin and moves in the positive direction of x-axis. Its velocity varies in time as $\vec{v} = \vec{v}_0(1 \frac{t}{\tau})$, where \vec{v}_0 is the initial velocity of a particle (its magnitude is $v_0 = 10.0$ cm/s) and $\tau = 5.0$ s. Find (a) the x coordinate of the particle at the instants 6.0, 10, and 20 s; (b) the instants of time when the particle is at the distance 10.0 cm from the origin; (c) the distance s covered by the particle during the first 4.0 and 8.0 s; draw the approximate plot s(t).
- 4. A radius vector of a particle varies in time as $\vec{r} = t(1 \alpha t)\vec{c}$, where \vec{c} is a constant vector and α is a constant positive factor. Find (a) the velocity \vec{v} and acceleration \vec{a} of the particle as the functions of time; (b) the time interval Δt needed to return to the initial position (we start the motion at t = 0), and the distance s covered during this time.
- 6. A ballon starts rising from the surface of the Earth. The ascending rate is constant and equal to v_0 . Due to the wind the balloon acquires the horizontal velocity component $v_x = \alpha y$ ($\alpha > 0$ is constant), where y is the height above the ground. Find (a) the horizontal displacement of the balloon x(y) as a function of height; (b) the total, tangential, and normal accelerations of the balloon as a function of height.
- 7. Two bars are placed next to each other on the inclined plane (with the angle of inclination α), as shown on Fig.1. The masses of the bars are m_1 and m_2 , and the friction coefficients are k_1 and k_2 ($k_1 > k_2$), respectively. Find (a) the reaction forces which the bars exert on each other in the process of motion; (b) the minimal value of the angle α at which the bars start sliding down.
- 8. A bar of mass m is pulled up along the inclined plane (with the angle of inclination α) by means of a thread (see Fig.2). The coefficient of kinetic friction is equal to k. Find the angle β (in respect to the inclined plane surface) so that the tenstion of the thread is minimal.
- 9. A particle moves along some trajectory from the initial point with $\vec{r}_1 = \hat{i} + 2\hat{j}$ to another point with $\vec{r}_2 = 2\hat{i} 3\hat{j}$ under the action of the force $\vec{F} = 3\hat{i} + 4\hat{j}$. Calculate the work done by the force \vec{F} , assuming that all numerical values have appropriate SI units.
- 10. A body of mass m is lifted up above the ground by means of a force $\vec{F} = 2(\alpha y 1)m\vec{g}$, where α is a positive constant. Find the work done by this force and the increase of the potential energy of the body after the first half of the ascent.
- 11. A rocket moves in the absence of any external force by means of a steady jet with constant velocity \vec{u} relative to the rocket. Find the velocity \vec{v} of the rocket at the instant when its mass is equal to m, if at the initial moment it possessed the mass m_0 and its velocity was equal to zero.
- 12. A patricle is placed into a planar force field with the potential energy $U(x,y) = -\alpha xy$ ($\alpha = 6.0 \text{ J/m}^2$). Calculate the magnitude of the force acting on the particle at the point where U = -0.24 J and the force is directed at $\theta = 15^{\circ}$ in respect to y-axis.
- 13. (ADVANCED) In the vertical jump, an athlete starts from a crouch and jumps upward as high as possible. Even the best athletes spend little more than 1.00 s in the air (their hang time). Treat the athlete as a particle and let y_{max} be his maximum height above the floor. To explain why he seems to hang in the air, calculate the ratio of the time he is above $y_{max}/2$ to the time it takes him to go from the floor to that height. Ignore air resistance.

- 14. (ADVANCED) A boat crosses the river with the velocity (relative to the water) which is n times less than the river flow velocity. At what angle to the stream direction should the boat move in order to minimize drifting? What is the answer in case n = 2.0?
- 15. (ADVANCED) A horizontal disc rotates with a constant angular velocity $\omega = 6.0$ rad/s around a vertical axis passing through its center. A small body of mass m = 0.50 kg moves along a diameter of the disc with a velocity v' = 50 cm/s which is constant relative to the disc. Find the force that the disc exerts on the body at the instant when it is located at the distance r = 30 cm from the axis of rotation.

 $\frac{1}{\alpha}$

(a) Figure 1 (problem 7)

m B

(b) Figure 2 (problem 8)