

Filtering in the frequency domain

Alessandro Ilic Mezza February 2022

Filters

- A filter is a system that performs mathematical operations on an input signal to modify, reduce or enhance certain components or features of that signal
- Many ways to characterize different kinds of filters can be found in the signal processing literature
- In the following, we will focus on Linear Time-Invariant filters

Linear Time-Invariant Systems Continuous Time

- Let's start reviewing the continuous-time case
- Let $x: \mathbb{R} \to \mathbb{R}$ be the input signal of a time-continuous Linear Time-Invariant (LTI) system

LTI Properties

- LTI systems are defined by two properties:
 - Linearity: if an input $x_1(t)$ produces an output $y_1(t)$ and an input $x_2(t)$ produces an output $y_2(t)$, then the input $a_1x_1(t) + a_2x_2(t)$ produces the output $a_1y_1(t) + a_2y_2(t)$
 - Time Invariance: if an input x(t) produces an output y(t), then $x(t-t_0)$ produces the output $y(t-t_0)$
- where a_1 , a_2 , t_0 are real-valued scalars

Impulse Response

- These two properties determine that any LTI system can be fully characterized by its impulse response g(t)
- i.e. the output of the system due to the input $x(t) = \delta(t)$

Dirac Delta Function

• $\delta(t)$ is known as Dirac delta function

$$\delta(t) = \begin{cases} +\infty, & t = 0 \\ 0, & t \neq 0 \end{cases}$$

$$\int_{-\infty}^{\infty} \delta(t)dt = 1$$

• Note that this is not a function in the proper sense, but that's a rather intuitive way of expressing the analytical properties of $\delta(t)$

Linear Time-Invariant Systems Continuous Time

 LTI systems are usually defined by means of their Impulse Response (IR)

• Depending on g(t), an LTI system can be, e.g., a low-pass/high-pass filter, a reverberant room, a guitar cabinet...

Convolution Continuous Time

• Given an input signal x(t), the output of an LTI system y(t) can be obtained through convolution

$$y(t) = (x * g)(t) \coloneqq \int_{-\infty}^{\infty} x(u)g(t - u)du$$

Note that convolution is commutative

$$(x * g)(t) = (g * x)(t)$$

Convolution Continuous Time

- We express both functions by means of a dummy variable $u \in \mathbb{R}$ (corresponding to the time axis)
- We reverse one of the function in time, e.g.,

$$g(u) \rightarrow g(-u)$$

We shift the time-reversed function by a value t, i.e.,

$$g(-u) \rightarrow g(-u+t)$$

 The value of the convolution for a given time-offset t is computed by integrating over the dummy variable the product the two functions

Convolution Summary

Intuitively:

- Fix one of the two function in time, flip the other.
- Let the time-reversed function slide over the fixed one, i.e., let the time-offset t vary from $-\infty$ and $+\infty$,
- For each t, compute the area under the product of the overlapping sections.
- Note: convolution (x * g)(t) is a function of the time-offset t

Convolution An example

Convolution Note

- Notice that, since we have depicted both the convolved functions and the result of the convolution in the previous figures, the abscissae represents both the dummy variable u and the time-offset variable t
- Notice also that, if the two functions have finite support, the result of the convolution is zero for all those timeoffsets t for which the time-reversed "sliding" function does not overlap with the other

Convolution Theorem Continuous Time

- Given two square-integrable functions x(t) and g(t), let \mathcal{F} be the Fourier transform operator
- The convolution theorem states that

$$\mathcal{F}\{(x*g)(t)\} = \mathcal{F}\{x(t)\} \cdot \mathcal{F}\{g(t)\}$$

and equivalently

$$\mathcal{F}\{x(t)\cdot g(t)\} = \mathcal{F}\{x(t)\} * \mathcal{F}\{g(t)\}$$

 Convolution in the time domain corresponds to a product in the frequency domain and vice versa!

Convolution Theorem Continuous Time

- Namely, let $X(f) = \mathcal{F}\{x(t)\}$ and $G(f) = \mathcal{F}\{g(t)\}$ be the Fourier transforms of x(t) and g(t), respectively.
- Then,

$$y(t) = (x * g)(t) \stackrel{\mathcal{F}}{\leftrightarrow} Y(f) = X(f) \cdot G(f)$$

$$y(t) = x(t) \cdot g(t) \stackrel{\mathcal{F}}{\leftrightarrow} Y(f) = (X * G)(f)$$

s.t.

$$y(t) = \mathcal{F}^{-1}\{Y(f)\}$$

Filtering in the Frequency Domain Continuous Time

 Therefore, signal filtering can be performed in the frequency domain instead of computing the time-domain convolution

$$y(t) = (x * g)(t) \xrightarrow{\mathcal{F}} Y(f) = X(f) \cdot G(f)$$

 As an advantage, the integral required to compute the convolution becomes a simple multiplication

Towards Digital Filters

- We have seen how to filter continuous-time signals both in the frequency domain and via time-domain convolution
- In order to move towards digital filtering, we need a few basic signal processing concepts:
 - 1. The properties of the Dirac delta function
 - 2. The train of impulses (Dirac comb)
 - Sampling a time-domain signal
 - 4. Sampling the DTFT

Properties of the Dirac Delta Function

Multiplication by a Dirac delta:

$$x(t) \cdot \delta(t - t_0) = x(t_0) \cdot \delta(t - t_0)$$

Sifting property of the Dirac delta:

$$\int_{-\infty}^{\infty} x(t)\delta(t-t_0)\mathrm{d}t = x(t_0) \in \mathbb{R}$$

Convolution by a Dirac delta:

$$x(t) * \delta(t - t_0) = x(t - t_0)$$

• where $t_0 \in \mathbb{R}$

Properties of the Dirac Delta Function Product

Product by a Dirac delta function:

Properties of the Dirac Delta Function Convolution

Convolution by a Dirac delta function:

Train of Impulses

A train of impulses (also known as Dirac Comb) is defined as

$$\coprod_{T}(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

Alessandro Ilic Mezza

Train of Impulses Self-transforming Property

 Self-transforming property: The Fourier transform of a Dirac comb is still a Dirac Comb

$$\coprod_{T}(t) \xrightarrow{\mathcal{F}} \frac{1}{T} \coprod_{1/T}(f) = \frac{1}{T} \sum_{n=-\infty}^{\infty} \delta\left(f - n\frac{1}{T}\right)$$

Alessandro Ilic Mezza

Train of Impulses Visualization

Kronecker Delta

The discrete-time equivalent of the Dirac delta is known as the Kronecker delta:

$$\delta(n) = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$

Sifting property of the Kronecker delta:

$$\sum_{n=-\infty}^{\infty} x(n)\delta(n-m) = x(m) \in \mathbb{R}$$

Discrete-time Signals

- The train of impulses gives us an analytical way to express discrete-time signals
- In general, a discrete-time signal is a function x: Z → R
- However, it can also be seen as a sequence of values x(nT), $n \in \mathbb{Z}$, obtained by sampling a continuous-time signal $x_c(t)$ at regular intervals, i.e., every T seconds
- $T \in \mathbb{R}$ is called sampling period

Sampling in the Time Domain

This allow us to define sampling in time domain as

$$x(nT) = x_c(t) \cdot \coprod_T (t)$$

- $T \in \mathbb{R}$ (sampling period)
- $F_s = 1/T$ (sampling frequency)

Convolution Theorem Discrete Time

The convolution theorem for discrete-time signals is

$$y(nT) = (x * g)(nT) \xrightarrow{\text{DTFT}} Y(f) = X(f) \cdot G(f)$$
$$y(nT) = x(nT) \cdot g(nT) \xrightarrow{\text{DTFT}} Y(f) = (X * G)(f)$$

The latter relationship and the self-transforming property yields

$$x(nT) = x_c(t) \cdot \coprod_T(t) \xrightarrow{\text{DTFT}} X(f) = \frac{1}{T} (X_c * \coprod_{1/T})(f)$$

Effects of Sampling in the Time Domain

• Since convolution with a delta function $\delta(f - n/T)$ is equivalent to shifting a function by n/T, convolution with the Dirac comb corresponds to the replication or periodic summation of the spectrum $X_c(f)$

$$\frac{1}{T}\left(X_c * \coprod_{1/T}\right)(f) = \frac{1}{T}\sum_{n=-\infty}^{\infty} X_c\left(f - \frac{n}{T}\right)$$

• In other words, the spectrum $X_c(f)$ is replicated infinitely many times and each replica is shifted in the position of one of the Dirac delta functions in the comb, i.e., every integer multiple of $F_s = 1/T$

Effects of Sampling in the Time Domain

Effects of Sampling in the Time Domain

- The resulting spectrum of the discrete-time signal is periodic with period $F_s=1/T$
- This leads to an intuitive understanding of the inherent periodicity of the DTFT in the frequency domain...
- ...and to a natural formulation of the Nyquist-Shannon sampling theorem!

Effects of Sampling Dualities

- Discretizing in the time domain corresponds to introducing a periodicity in the frequency domain...
- ...and vice versa: sampling in the frequency domain corresponds to introducing a periodicity in the time domain
- This aspect is critical as computers cannot deal with continuous frequency and thus the DTFT cannot be implemented in practice

Sampling the DTFT

• Recall the definition of the DTFT – periodic with period $F_s = 1/T$

$$X(f) = \sum_{n=-\infty}^{\infty} x(nT)e^{-j2\pi f nT}$$

• We can now sample X(f) with a sampling step equal to 1/NT

$$X(f)\Big|_{f=\frac{k}{NT}} = \sum_{n=-\infty}^{\infty} x(nT)e^{-j2\pi\frac{k}{NT}(nT)}$$

Sampling the DTFT

- Note: $f = \frac{k}{NT}$ is so that when k = N, then f = 1/T, i.e., equal to the periodicity of X(f)
- In fact, each period of the DTFT is sampled with N equidistant points: $f \in [0, F_s) \rightarrow k = 0, ..., N 1$
- Notably, due to discretization in the frequency domain, the inverse transform of the sampled DTFT ends up being a periodic signal with period NT

Discrete Fourier Transform (DFT)

 By assuming T = 1 and limiting the sum to a single period both in the time and the frequency domain, we obtain the definition of the Discrete Fourier Transform (DFT)

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi}{N}kn}, \qquad k = 0, ..., N-1$$

• Often, the substitution $\omega_k \coloneqq 2\pi k/N$ is applied. We can thus write the DTF of x(n) as

$$X(\omega_k) = \sum_{n=0}^{N-1} x(n)e^{-j\omega_k n}$$

The Effects of the DFT In short

- In short, the need for a numerical computation of the Fourier transform requires discrete time and discrete frequency → DFT
- Because of sampling, we end up dealing with a periodic repetition of the spectrum in the frequency domain...
- ...as well as with a periodic repetition of the signal in time domain

The Effects of the DFT On Aperiodic Signals

- However, not all discrete-time signals are periodic!
- Periodicity is a (necessary) nuisance introduced by the computation of the DFT itself
- Imagine having a discrete-time signal x(n) of length N (i.e., nonzero only for $n \in [0, N-1]$) obtained with a sampling frequency $F_s = 1/T$
- Note that such a signal is indeed aperiodic!

The Effects of the DFT On Aperiodic Signals

- If we compute the DFT of this signal, however, we should cope with the fact that:
 - the resulting spectrum is F_s -periodic
 - the signal has implicitly become NT-periodic in the time domain
- Therefore, the Inverse DFT (IDFT) yields a periodic repetition of the original signal
- Fortunately, we can usually limit the result of the IDFT to just a single period – i.e., the original N samples – as within such interval the periodic repetition corresponds to the original signal (deperiodization)

The Effects of the DFT Caveats

- However, if we perform some processing in the frequency domain, we should be rather careful in order to obtain the desired time-domain signal via IDFT in spite of the periodicity we have introduced
- In particular, we are going to see which precautions to take if one wants to exploit the convolution theorem to perform filtering in the frequency domain similarly to what we saw for continuous-time signals
- Note: in the following, to stress that the results are independent on the sampling rate, we will consider T=1 without loss of generality

Direct Convolution Discrete Time

• In general, the response of a digital filter with finite impulse response g(n) can be obtained by means of direct convolution

$$y(n) = (x * g)(n) = \sum_{m=-\infty}^{\infty} x(m)g(n-m)$$

• If x(n) is nonzero only for $n \in [0, N-1]$ (as it is the case for most real-life signals) then the formula becomes

$$y(n) = (x * g)(n) = \sum_{m=0}^{N-1} x(m)g(n-m)$$

Filtering in the Frequency Domain Complexity

- In the latter case, the complexity of computing the direct convolution in time domain is $O(N^2)$
- Thus, to save up on computation time, we would like to perform the convolution as a multiplication in the frequency domain as we have seen for continuous-time signals...
- Indeed, a fast implementation known as Fast Fourier
 Transform (FFT) allows to compute the DFT with a complexity of O(NlogN)

Filtering in the Frequency Domain Complexity

Idea

- Compute the FFT of both x(n) and $g(n) \rightarrow O(N \log N)$
- Compute the product $X(\omega_k) \cdot G(\omega_k) \rightarrow O(N)$
- Compute the IFFT of $Y(\omega_k)$ \rightarrow O($N \log N$)
- If N is big enough ($N \ge 128$ is a good a rule of thumb), it is thus preferable to perform the filtering via FFT instead of the direct convolution

Circular Convolution Theorem

 However, the discrete version of the convolution theorem (also known as circular convolution theorem) is defined as

$$y(n) = (x \circledast g)(n) \leftrightarrow Y(\omega_k) = X(\omega_k) \cdot G(\omega_k)$$

Where * denotes the cyclic convolution

$$(x \circledast g)(n) = \sum_{m=0}^{N-1} x_N(m)g(n-m)$$

- where $x_N(n)$ is a periodic signal of period N
- and g(n) is the filter impulse response

Circular Convolution Theorem

- By recalling that computing the DFT implicitly introduces a time-domain periodicity of N samples, it is readily clear why the circular convolution theorem is given in terms of cyclic convolution
- Having to deal with such a periodicity ("circularity") means that we should pay more attention in the discrete case with respect to the continuous case!

Filtering in the Frequency Domain Convolution Length

- The result of a convolution is longer than the convolved signal x(n)
- Imagine a short sound (e.g., a hand clap) fed to a digital reverb (long impulse response, e.g., 10000 samples)
- The result of such filtering will be way longer than the original sound!

Filtering in the Frequency Domain Zero padding

- Namely, if the signal x(n) and the impulse response g(n) are N_x and N_g samples long, respectively
- Then the convolution y(t) will be of length $N_y = N_x + N_g 1$
- Therefore, we must add enough zeros (zero-padding) to x(n) and g(n) so that their length is N_y or longer (usually a power of 2 in order to exploit the efficiency of the FFT)
- If we don't do that, some of our convolution terms "wrap around" and add back upon the others!

Filtering in the Frequency Domain Time-domain Aliasing

- Zero-padding x(n) up to a length N_y before computing the FFT implies that the time-domain periodicity we are introducing is actually of period N_y instead of N_x
- Then, having computed $Y(\omega_k) = X(\omega_k) \cdot G(\omega_k)$ via a simple multiplication, we can now take the IFFT and truncate the resulting y(n) within a single period of length N_y
- This way, we obtain the same result as the one of a direct convolution while avoiding unwanted "artifacts" and saving up on computation time

Example of Time-domain Aliasing No Zero-padding

Example of Time-domain Aliasing No Zero-padding

Example of Time-domain Aliasing No Zero-padding

Avoid Time-domain Aliasing Zero-padding

Avoid Time-domain Aliasing Zero-padding

No time-domain aliasing!

Filtering in the Frequency Domain Time-domain Aliasing

- These "artifacts" can be thought as time-domain aliasing
- In other terms, enlarging the period from N_x up to N_y in time domain corresponds to having more samples (closer spacing) in the discrete frequency domain
- This can be thought of as a higher "sampling rate" in the frequency domain note that we are now sampling the frequency axis with a sampling interval $\frac{1}{N_{\nu}} < \frac{1}{N_{\chi}}$ (since $N_{y} > N_{\chi}$)
- If we have a high enough sampling rate, we can avoid time-domain aliasing – analogously to the Nyquist-Shannon sampling theorem!

Filtering in the Frequency Domain Problems

- Problem: There are some situations where it is not practical to perform the convolution of two signals using a single FFT:
 - N_x is very large
 - Real-time applications
 - We can't wait until the signal ends
- Solution: The Overlap-And-Add (OLA) algorithm!

Overlap-And-Add (OLA)

- Idea: Process the signal one block at a time
- Algorithm:
 - 1. Chop up the input signal x(n) by windowing
 - Perform FFT convolution on each block separately
 - Make sure we put it all back together correctly!
- The latter aspect is ensured by the so-called Constant Overlap-And-Add (COLA) condition

Overlap-And-Add (OLA) Windowing

- Let w(n) be a zero-phase window of length M
- The block extraction is performed as follows:

$$x_m(n) \coloneqq x(n) \cdot w(n - mR)$$

- where $m \in \mathbb{Z}$ is the frame index and $R \in \mathbb{N}$ is the hop size
- Intuitively, we let the window w(n) "slide" over the signal x(n)
- The hop size R corresponds to the number of samples the m-th window is shifted with respect to the (m-1)-th

Overlap-And-Add (OLA) Perfect Reconstruction

- For this frame-by-frame spectral processing to work, we must be able to reconstruct x(n) from the individual overlapping frames
- This can be written as

$$x(n) = \sum_{m=-\infty}^{\infty} x_m(n) = \sum_{m=-\infty}^{\infty} x(n) \cdot w(n-mR) = x(n) \cdot \sum_{m=-\infty}^{\infty} w(n-mR)$$

It follows that

$$x(n) = \sum_{m=-\infty}^{\infty} x_m(n) \quad \stackrel{\text{if and only if}}{\Longleftrightarrow} \quad \sum_{m=-\infty}^{\infty} w(n - mR) = 1$$

COLA Condition

• The right-hand term is the so-called Constant Overlap-and-Add (COLA) condition on the analysis window w(n)

$$\sum_{m=-\infty}^{\infty} w(n - mR) = 1$$

• Example: Triangular window with R = M/2 (50% overlap)

COLA Condition

 There is no constraint on the window type, provided that the window overlap-adds to a constant for the hop size used

Examples:

- Rectangular window at 0% overlap (R = M)
- Triangular (Bartlett) window at 50% overlap* (R = M/2)
- Hann or Hamming window at 50% overlap* (R = M/2)
- Hann or Hamming window at 75% overlap* (R = M/4)
- ...
- Any window with R = 1 ("sliding FFT")

^{*} M even

Filtering in Frequency Domain via OLA

- We would like to perform convolution in the frequency domain via FFT using OLA
- This is achieved by applying the convolution theorem to each windowed block $x_m(n)$
- As discussed above, to avoid time-domain aliasing, we need to zero-pad each block up to a length of $N_y = N_g + M 1$
- Where N_g is the length of the filter response and M is the length of the window

Filtering in Frequency Domain via OLA Algorithm

The OLA algorithm

• Each m-th block $x_m(n)$ is translated back to the origin by shifting it by mR

$$\tilde{\chi}_m(n) \coloneqq \chi_m(n + mR)$$

- We zero-pad $\tilde{x}_m(n)$ and g(n) up to a total length of N_g+M-1 samples
- We compute the convolution as the product of the FFTs

$$\tilde{Y}_m(\omega_k) = \tilde{X}_m(\omega_k) \cdot G(\omega_k)$$

Filtering in Frequency Domain via OLA Algorithm

We take the IFFT of the result

$$\tilde{y}_m(n) = IFFT\{\tilde{Y}_m(\omega_k)\}$$

• Then, $\tilde{y}_m(n)$ is shifted back by -mR

$$y_m(n) = \tilde{y}_m(n - mR)$$

 Finally, the filtered signal is reconstructed as the sum of every overlapping frames obtained as described above

$$y(n) = \sum_{m=-\infty}^{\infty} y_m(n)$$

Filtering in Frequency Domain via OLA Remarks

- The reconstruction is perfect as long as we have satisfied
 - The COLA condition on w(n)
 - The anti-aliasing (zero-padding) condition on $\tilde{x}_m(n)$ and g(n)
- Additionally, notice that $m \in \mathbb{Z}$ in $y(n) = \sum_{m=-\infty}^{\infty} y_m(n)$
- However, for casual signals with limited support, the values of m are usually limited to those for which the sliding window and the signal support do overlap $\rightarrow m = 0, 1, 2, ..., \left[\frac{N_x M}{R} + 1\right]$

Filtering in Frequency Domain via OLA Example

Short-time Analysis

- OLA offers a good insight into a broader family of techniques known as short-time analysis or time-frequency analysis
- These techniques study a signal in both the time and frequency domains simultaneously
- The main idea is to window a signal in time and then to compute the spectrum of each frame in order to analyze the temporal evolution of the frequency content or to perform frame-wise spectral processing
- One of the most basic forms of time-frequency analysis is the short-time Fourier transform (STFT)

Short-Time Fourier Transform Example: Guitar Tone

Short-Time Fourier Transform Example: Guitar Tone

Low E Guitar Recording

Short-Time Fourier Transform Example: Guitar Tone

References

- J.O. Smith, Lecture notes: <u>https://www-ccrma.standford.edu/~jos/sasp/</u>
- In particular, the section on FIR filters: https://ccrma.stanford.edu/~jos/sasp/Audio_FIR_Filters.html
- Meinard Müller, "Fundamentals of Music Processing",
 Springer, 2015, https://doi.org/10.1007/978-3-319-21945-5
 see Chapter 2 for a great review of Fourier Analysis.