Trabajo Práctico No. 7: Volumen y área de superficies de revolución

- 1. Considere las siguientes superficies de revolución, determine el eje de rotación y dos curvas generatrices $\mathcal C$ contenidas en planos coordenados distintos. Grafique.
 - a) $S: z = \sqrt{x^2 + y^2} 1$.
 - b) $S: e^{-(x^2+z^2)} = y$.
 - c) $S: \ln(y) + x^2 + z^2 = 0$.
 - d) $S : \cos(\sqrt{x^2 + y^2}) = z$.
- 2. Calcule el volumen de los sólidos correspondientes, obtenidos al girar las siguientes curvas sobre los ejes especificados. Grafique el sólido resultante:
 - a) $C: f(x) = \sqrt{1+x}$, entre $0 \le x \le 4$, alrededor del eje x.
 - b) $C: f(x) = x^2$, entre $0 \le x \le 4$, alrededor del eje x.
 - c) $C: f(y) = e^y$, entre $-10 \le y \le 10$, alrededor del eje y.
 - d) $C: f(y) = 4 y^2$, entre $0 \le y \le 2$, alrededor del eje y.
 - e) $\mathcal{C}: z=y^3$, entre $0 \le z \le 1$, alrededor del eje z.
 - f) $C: z = y^3$, entre $0 \le z \le 1$, alrededor del eje y.
- 3. Halle las fórmulas del volumen del cilindro y del cono, de radio R y altura h.
- 4. Dar las ecuaciones y calcular el área de las superficies indicadas en el ejercicio 2.
- 5. (Cuerno de Gabriel Torricelli, 1641) Considere la curva $\mathcal{C}:\frac{1}{x}$, con $x\geq 1$, rotando alrededor del eje x.
 - $a)\,$ Dar las ecuaciones de la superficie S de revolución resultante. Grafique.
 - b) Calcule el volumen V del sólido correspondiente con $1 \leq x \leq b$.
 - c) Calcule el área A de la superficie S con $1 \le x \le b$.
 - d) Observe que tanto el volumen V = V(b) y el área A = A(b) son funciones de b. Determine los límites de dichas funciones cuando $b \to +\infty$.
 - e) ¿Cómo se interpretan los resultados?