# Kafka 性能测试实例

# 1.概述

在分布式实时数据流场景下,随着数据量的增长,对 Kafka 集群的性能和稳定性的要求也很高。本篇博客将从生产者和消费者两方面来做性能测试,针对具体的业务和数据量,来调优 Kafka 集群。

# 2.内容

# 2.1 测试环境

本次测试的环境信息由三台物理机组成,具体信息如下所示:

| 主机名 | Kafka 版本 | CPU  | 内存   | 磁盘    | 网卡 |
|-----|----------|------|------|-------|----|
| dn1 | 0.10.2.0 | 32 核 | 64GB | 12*4T | 千兆 |
| dn2 | 0.10.2.0 | 32 核 | 64GB | 12*4T | 千兆 |
| dn3 | 0.10.2.0 | 32 核 | 64GB | 12*4T | 千兆 |

# 2.2 测试工具

Kafka 系统提供了测试工具 kafka-producer-perf-test.sh 和 kafka-consumer-perf-test.sh,通过该工具可以对生产者性能和消费者性能进行测试,获取一组最佳的参数值,进而提升生产者的发送效率和消费者的读取效率。这里如果需要实现带有线程参数功能的工具,可以修改工具源代码,新建一个 kafka-producer-perf-test-0.8.sh 脚本,实现内容如下:

# 使用老版本的 ProducerPerformance 工具类 exec \$(dirname \$0)/kafka-run-class.sh kafka.tools.ProducerPerformance "\$@"

# 2.2.1 生产者测试参数

| 参数              | 说 明                        |
|-----------------|----------------------------|
| topic           | 指定生产者发送消息的主题               |
| num-records     | 测试时发送消息的总记录数               |
| throughput      | 最大消息吞吐量                    |
| producer-props  | 通过键值对的方式指定配置属性,多组配置属性用空格分隔 |
| producer.config | 加载生产者配置文件                  |
| record-size     | 每条消息字节大小                   |

# 2.2.2 消费者测试参数

| 参 数        | 说明                                    |  |  |
|------------|---------------------------------------|--|--|
| topic      | 指定消费者读取消息的主题                          |  |  |
| zookeeper  | 指定字符串连接 Zookeeper 集群来获取 Kafka 集群元数据信息 |  |  |
| threads    | 指定线程数                                 |  |  |
| messages   | 读取消息记录数                               |  |  |
| group      | 指定消费者组                                |  |  |
| batch-size | 执行批处理大小                               |  |  |

# 3.生产者测试

生产者测试,分别从线程数、分区数、副本数、Broker 数、同步与异步模式、批处理大小、消息长度大小、数据压缩等维度来进行。

# 3.1 线程数

创建一个拥有 6 个分区、1 个副本的 Topic,设置不同的线程数并发送相同的数据量,查看性能变化。测试脚本如下:

#### 

### # 创建主题

[hadoop@dn1  $\sim$ ]\$ kafka-topics.sh --create --zookeeper dn1:2181, dn2:2181,

dn3:2181 --topic test\_producer\_perf --partitions 6 --replication-factor 1

### # 设置1个线程数

[hadoop@dn1 ~] \$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test\_producer\_perf --threads 1 --broker-list dn1:9092, dn2:9092,

51Testing 软件测试网 www.51testing.com

dn3:9092

### # 设置 10 个线程数

[hadoop@dn1 ~] \$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test\_producer\_perf --threads 10 --broker-list dn1:9092, dn2:9092, dn3:9092

# # 设置 20 个线程数

[hadoop@dn1 ~] \$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test\_producer\_perf --threads 20 --broker-list dn1:9092, dn2:9092, dn3:9092

#### # 设置 25 个线程数

[hadoop@dn1 ~] \$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test\_producer\_perf --threads 25 --broker-list dn1:9092, dn2:9092, dn3:9092

### # 设置 30 个线程数

[hadoop@dn1 ~] \$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test\_producer\_perf --threads 30 --broker-list dn1:9092, dn2:9092, dn3:9092

#### 

# 3.1.1 测试结果

| Kafka 节点数 | 线程数 | 分区数 | 副本数 | 每秒发送消息      | 消息大小(MB/s) |
|-----------|-----|-----|-----|-------------|------------|
| 3         | 1   | 6   | 1   | 44287.7642  | 4.2236     |
| 3         | 10  | 6   | 1   | 349113.2523 | 33.2940    |
| 3         | 20  | 6   | 1   | 523889.3546 | 49.9620    |
| 3         | 25  | 6   | 1   | 526094.2761 | 50.1723    |
| 3         | 30  | 6   | 1   | 493435.3104 | 47.0577    |

#### 3.1.2 结论

向一个拥有 6 个分区、1 个副本的 Topic 中,发送 500 万条消息记录时,随着线程数的增加,每秒发送的消息记录会逐渐增加。在线程数为 25 时,每秒发送的消息记录达到最佳值,随后再增加线程数,每秒发送的消息记录数反而会减少。

# 3.2 分区数

- (1) 新建一个拥有 12 个分区、1 个副本的主题;
- (2) 新建一个拥有 24 个分区、1 个副本的主题;
- (3) 向拥有 12 个分区、1 个副本的主题中发送相同数量的消息记录,查看性能变化;
- (4) 向拥有 24 个分区、1 个副本的主题中发送相同数量的消息记录,查看性能变化。

#### 执行命令如下:

# 创建一个拥有 12 个分区的主题

[hadoop@dn1 ~]\$ kafka-topics.sh --create --zookeeper dn1:2181, dn2:2181,

dn3:2181 --topic test\_producer\_perf\_p12 --partitions 12 --replication-factor 1

# 创建一个拥有 24 个分区的主题

[hadoop@dn1  $\sim$ ]\$ kafka-topics.sh --create --zookeeper dn1:2181, dn2:2181,

dn3:2181 --topic test\_producer\_perf\_p24 --partitions 24
--replication-factor 1

# 用一个线程发送数据到拥有 12 个分区的主题中

[hadoop@dn1 ~] \$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test\_producer\_perf\_p12 --threads 1 --broker-list dn1:9092,

dn2:9092, dn3:9092

# 用一个线程发送数据到拥有 24 个分区的主题中

[hadoop@dn1 ~] \$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test\_producer\_perf\_p24 --threads 1 --broker-list dn1:9092,

dn2:9092, dn3:9092

#### 3.2.1 测试结果

| Kafka 节点数 | 线程数 | 分区数 | 副本数 | 每秒发送消息     | 消息大小(MB/s) |
|-----------|-----|-----|-----|------------|------------|
| 3         | 1   | 6   | 1   | 44287.7642 | 4.2236     |
| 3         | 1   | 12  | 1   | 43373.7866 | 4.1364     |
| 3         | 1   | 24  | 1   | 33497.0900 | 3.1946     |

#### 3.2.2 结论

从测试结果来看,分区数越多,单线程生产者的吞吐量越小。

# 3.3 副本数

- (1) 创建一个拥有两个副本、6个分区的主题;
- (2) 创建一个拥有 3 个副本、6 个分区的主题:
- (3) 向拥有两个副本、6个分区的主题中发送相同数量的消息记录, 查看性能变化:
- (4)向拥有3个副本、6个分区的主题中发送相同数量的消息记录,查看性能变化;

执行命令如下:

51Testing 软件测试网 www.51testing.com

# 创建一个拥有两个副本、6个分区的主题

[hadoop@dn1 ~]\$ kafka-topics.sh --create --zookeeper dn1:2181, dn2:2181,

dn3:2181 --topic test\_producer\_perf\_r2 --partitions 6
--replication-factor 2

# 创建一个拥有3个副本、6个分区的主题

[hadoop@dn1 ~]\$ kafka-topics.sh --create --zookeeper dn1:2181, dn2:2181,

dn3:2181 --topic test\_producer\_perf\_r3 --partitions 6
--replication-factor 3

# 用 3 个线程发送数据到拥有两个副本的主题中

[hadoop@dn1 ~] \$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test\_producer\_perf\_r2 --threads 3 --broker-list dn1:9092, dn2:9092, dn3:9092

# 用 3 个线程发送数据到拥有 3 个副本的主题中

[hadoop@dn1 ~] \$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test\_producer\_perf\_r3 --threads 3 --broker-list dn1:9092, dn2:9092, dn3:9092



#### 3.3.1 测试结果

| Kafka 节点数 | 线程数 | 分区数 | 副本数 | 每秒发送消息      | 消息大小(MB/s) |
|-----------|-----|-----|-----|-------------|------------|
| 3         | 3   | 6   | 1   | 131309.3650 | 12.5226    |
| 3         | 3   | 6   | 2   | 83944.6972  | 8.0056     |
| 3         | 3   | 6   | 3   | 54205.8087  | 5.1696     |

# 3.3.2 结论

从测试结果来看,副本数越多,吞吐量越小。

#### 3.4 Broker 数量

通过增加 Broker 节点数量来查看性能变化, 脚本如下:

# Kafka 节点数为 4 个时, 异步发送消息记录

[hadoop@dn1 ~] \$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test\_producer\_perf\_b3 --threads 3 --broker-list dn1:9092, dn2:9092, dn3:9092, dn4:9092 --batch-size 3000 --request-timeout-ms 100000

# 3.4.1 测试结果

| Kafka 节点数 | 线程数 | 分区数 副本数 |   | 每秒发送消息      | 消息大小 (MB/s) |  |
|-----------|-----|---------|---|-------------|-------------|--|
| 3         | 3   | 6       | 3 | 133865.1709 | 12.7664     |  |
| 4         | 3   | 6       | 3 | 157878.0549 | 15.0564     |  |

# 3.4.2 结论

从测试结果来看,增加 Kafka Broker 数量,吞吐量会增加。

# 3.5 同步与异步模式

分别使用同步和异步模式发送相同数量的消息记录,查看性能变化。执行脚本如下:



# 创建一个有用3个副本、6个分区的主题

[hadoop@dn1  $\sim$ ]\$ kafka-topics.sh --create --zookeeper dn1:2181, dn2:2181,

dn3:2181 --topic test\_producer\_perf\_s2 --partitions 6
--replication-factor 3

### # 使用同步模式发送消息数据

### # 使用异步模式发送消息记录

[hadoop@dn1 ~] \$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test\_producer\_perf\_s2 --threads 3 --broker-list dn1:9092, dn2:9092, dn3:9092



# 3.5.1 测试结果

| 发送方式 | Kafka 节点数 | 线程数 | 分区数 | 副本数 | 每秒发送消息     | 消息大小 (MB/s) |
|------|-----------|-----|-----|-----|------------|-------------|
| 同步   | 3         | 3   | 6   | 3   | 17870.8838 | 1.6801      |
| 异步   | 3         | 3   | 6   | 3   | 51782.3277 | 4.8383      |

## 3.5.2 结论

从测试结果来看,使用异步模式发送消息数据,比使用同步模式发送消息数据,吞吐量是同步模式的 3 倍左右。

# 3.6 批处理大小

使用异步模式发送相同数量的消息数据,改变批处理量的大小,查看性能变化,执行脚本如下:

#### 

# # 以批处理模式发送, 大小为 1000 条

### # 以批处理模式发送, 大小为 3000 条

[hadoop@dn1 ~] \$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test\_producer\_perf\_s2 --threads 3 --broker-list dn1:9092, dn2:9092, dn3:9092 --batch-size 3000 --request-timeout-ms 100000

### # 以批处理模式发送, 大小为 5000 条

[hadoop@dn1~]\$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test\_producer\_perf\_s2 --threads 3 --broker-list dn1:9092, dn2:9092, dn3:9092 --batch-size 5000 --request-timeout-ms 100000

# # 以批处理模式发送,大小为 7000 条

[hadoop@dn1 ~] \$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test\_producer\_perf\_s2 --threads 3 --broker-list dn1:9092, dn2:9092, dn3:9092 --batch-size 7000 --request-timeout-ms 100000

### 3.6.1 测试结果

| 批处理大小 | Kafka 节点数 | 线程数 | 分区数 | 副本数 | 每秒发送消息      | 消息大小(MB/s) |
|-------|-----------|-----|-----|-----|-------------|------------|
| 1000  | 3         | 3   | 6   | 1   | 191204.5124 | 18.2347    |
| 3000  | 3         | 3   | 6   | 1   | 234796.8068 | 22.3920    |
| 5000  | 3         | 3   | 6   | 1   | 238015.8043 | 22.6990    |
| 7000  | 3         | 3   | 6   | 1   | 219076.5605 | 20.8919    |

#### 3.6.2 结论

从测试的结果来看,发送的消息随着批处理大小增加而增加。当批处理大小增加到 3000~5000 时,吞吐量达到最佳值。而后再增加批处理大小,吞吐量的性能会下降。

# 3.7 消息长度的大小

改变消息的长度大小,查看性能变化,执行脚本如下:



### # 发送消息,长度为100字节

[hadoop@dn1~]\$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test\_producer\_perf\_s2 --threads 3 --broker-list dn1:9092, dn2:9092, dn3:9092 --batch-size 3000 --request-timeout-ms 100000 --message-size 100

# # 发送消息,长度为200字节

[hadoop@dn1 ~] \$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test\_producer\_perf\_s2 --threads 3 --broker-list dn1:9092, dn2:9092, dn3:9092 --batch-size 3000 --request-timeout-ms 100000 --message-size 200

# # 发送消息,长度为500字节

[hadoop@dn1 ~] \$ kafka-producer-perf-test-0.8.sh --messages 5000000 --topics test\_producer\_perf\_s2 --threads 3 --broker-list dn1:9092, dn2:9092, dn3:9092 --batch-size 3000 --request-timeout-ms 100000 --message-size 500

#### 

### 3.7.1 测试结果

| 消息长度 | Kafka 节点数 | 线程数 | 分区数 | 副本数 | 每秒发送消息      | 消息大小(MB/s) |
|------|-----------|-----|-----|-----|-------------|------------|
| 100  | 3         | 3   | 6   | 1   | 234796.8086 | 22.3920    |
| 200  | 3         | 3   | 6   | 1   | 202765.6434 | 38.6745    |
| 500  | 3         | 3   | 6   | 1   | 117602.7378 | 56.0774    |

#### 3.7.2 结论

从测试结果来看,随着消息长度的增加,每秒所能发送的消息数量逐渐减少 (nMsg/sec)。但是,每秒发送的消息的总大小(MB/sec),会随着消息长度的增加而增加。

# 4.消费者测试

消费者测试,可以从线程数、分区数、副本数等维度来进行测试。

# 4.1 线程数

创建一个拥有 6 个分区、1 个备份的 Topic,用不同的线程数读取相同的数据量,查看性能变化。测试脚本如下:



# 创建主题

```
[hadoop@dn1 ~] $ kafka-topics. sh --create --zookeeper dn1:2181,
dn2:2181,
 dn3:2181 --topic test consumer perf --partitions 6 --replication-
factor 1
# 设置1个线程数
[hadoop@dn1 ~] $ kafka-consumer-perf-test.sh - zookeeper
 dn1:2181, dn2:2181, dn3:2181 --messages 5000000 --topic
test consumer perf
 --group g1 --threads 1
# 设置3个线程数
[hadoop@dn1 ~] $ kafka-consumer-perf-test.sh - zookeeper
 dn1:2181, dn2:2181, dn3:2181 --messages 5000000 --topic
test consumer perf
 --group g2 --threads 3
# 设置6个线程数
[hadoop@dn1 ~] $ kafka-consumer-perf-test.sh - zookeeper
 dn1:2181, dn2:2181, dn3:2181 --messages 5000000 --topic
test consumer perf
--group g3 --threads 6
```

### 4.1.1 测试结果

| Kafka 节点数 | 线程数 | 分区数 | 副本数 | 每秒读取消息      | 消息大小(MB/s) |
|-----------|-----|-----|-----|-------------|------------|
| 3         | 1   | 6   | 1   | 934404.4104 | 89.1117    |
| 3         | 3   | 6   | 1   | 974229.8206 | 93.0951    |
| 3         | 6   | 6   | 1   | 1043623.043 | 99.5276    |

# 4.1.2 结论

随着线程数的增加,每秒读取的消息记录会逐渐增加。在线程数与消费主题的分区相等时,吞吐量达到最佳值。随后,再增加线程数,新增的线程数将会处于空闲状态,对提升消费者程序的吞吐量没有帮助。

# 4.2 分区数

新建一个 Topic, 改变它的分区数, 读取相同数量的消息记录, 查看性能变化, 执行脚本如下:



# 创建一个拥有 12 个分区的主题

```
[hadoop@dn1 ~] $ kafka-topics.sh --create --zookeeper dn1:2181,
dn2:2181,
dn3:2181 --topic test consumer perf p12 --partitions 12
--replication-factor 1
# 创建一个拥有 24 个分区的主题
[hadoop@dn1 ~] $ kafka-topics. sh --create --zookeeper dn1:2181,
dn3:2181 --topic test_consumer_perf_p24 --partitions 24
--replication-factor 1
# 用一个线程读取数据到拥有 12 个分区的主题中
[hadoop@dn1 ~] $ kafka-consumer-perf-test.sh - zookeeper
dn1:2181, dn2:2181, dn3:2181 --messages 5000000 - topic
test consumer perf p12 --group g2 --threads 1
# 用一个线程读取数据到拥有 12 个分区的主题中
[hadoop@dn1 ~] $ kafka-consumer-perf-test.sh - zookeeper
dn1:2181, dn2:2181, dn3:2181 --messages 5000000 - topic
test consumer perf p24 --group g3 --threads 1
```

### 4.2.1 测试结果

| Kafka 节点数 | 线程数 | 分区数 | 副本数 | 每秒读取消息      | 消息大小 (MB/s) |
|-----------|-----|-----|-----|-------------|-------------|
| 3         | 1   | 6   | 1   | 934404.4104 | 89.1117     |
| 3         | 1   | 12  | 1   | 905354.5725 | 85.7119     |
| 3         | 1   | 24  | 1   | 887605.3472 | 82.1391     |

### 4.2.2 结论

当分区数增加时,如果线程数保持不变,则消费者程序的吞吐量性能会下降。

# 4.3 副本数

新建 Topic,改变 Topic 的副本数,读取相同数量的消息记录,查看性能变化,执行脚本如下:

```
# 创建一个有用两个副本、6 个分区的主题
[hadoop@dn1~]$ kafka-topics.sh --create --zookeeper dn1:2181,
dn2:2181,
dn3:2181 - topic test_consumer_perf_r2 --partitions 6
--replication-factor 2
```

```
# 创建一个有 3 个副本、6 个分区的主题
[hadoop@dn1 ~]$ kafka-topics.sh --create --zookeeper dn1:2181,
dn2:2181,
dn3:2181 - topic test_consumer_perf_r3 --partitions 6
--replication-factor 3

# 用 3 个线程读取数据到拥有两个副本的主题中
[hadoop@dn1 ~]$ kafka-consumer-perf-test.sh - zookeeper dn1:2181
, dn2:2181, dn3:2181 --messages 5000000 - topic
test_consumer_perf_r2_--group g2 --threads 3

# 用 3 个线程读取数据到拥有 3 个副本的主题中
[hadoop@dn1 ~]$ kafka-consumer-perf-test.sh --zookeeper dn1:2181
, dn2:2181, dn3:2181 --messages 5000000 - topic
test_consumer_perf_r3_--group g3 --threads 3
```

### 4.3.1 测试结果

| Kafka 节点数 | 线程数 | 分区数 | 副本数 | 每秒读取消息      | 消息大小(MB/s) |
|-----------|-----|-----|-----|-------------|------------|
| 3         | 3   | 6   | 1   | 963390.7514 | 91.8761    |
| 3         | 3   | 6   | 2   | 963481.6523 | 91.9761    |
| 3         | 3   | 6   | 3   | 963241.8404 | 91.7727    |

### 4.3.2 结论

副本数对消费者程序的吞吐量影响较小,消费者程序是从 Topic 的每个分区的 Leader 上读取数据的,而与副本数无关。

# 5.总结

Kafka 性能测试步骤并不复杂,大家可以根据实际的测试环境、数据量,通过对生产者和消费者不同维度的测试,来获取一组最佳的调优参数值。