Convection In A Box

Maximilian Williams

June 2021

The Problem

We will consider convection of a slow moving fluid in a box with a heat source on the bottom layer. We will format this problem using streamfunctions with the aim of solving it numerically,

The bousinesque Approximation

In the bousinique approximation we assume density flucations are small. This leads us to considering only density flucations when they are multiplies by a gravity term.

We begin with the NSE, equation 6. We approximate the density by

$$\rho = \rho_0 + \rho',\tag{1}$$

where ρ_0 is a constant reference density and $\rho' \ll \rho_0$ is a pertibution that depends on space. We similarly split pressure up by equation 2.

$$p = p_0 + p' \tag{2}$$

Applying equation 1 and 2, the Navier-Stokes equation reads:

$$(\rho_0 + \rho')\frac{\partial \vec{u}}{\partial t} + (\rho_0 + \rho')(\vec{u} \cdot \nabla)\vec{u} = (\rho_0 + \rho')\vec{g} - \nabla(p_0 + p') + \mu\nabla^2\vec{u}$$
(3)

By assuming \vec{u} is also first order, equation 3 to zeroth order produces:

$$\rho_0 \vec{q} = \nabla p_0, \tag{4}$$

and so to first order:

$$\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla)\vec{u} = \frac{\rho'}{\rho_0}\vec{g} - \frac{\nabla p'}{\rho_0} + \nu \nabla^2 \vec{u},\tag{5}$$

where $\mu = \rho \nu$.

And thats the bousinesque equation.

Equations

The navier stokes equation (equation 6) describes the conservation of momentum for an incompressable fluid.

$$\rho \frac{\partial \vec{u}}{\partial t} + \rho (\vec{u} \cdot \nabla) \vec{u} = \rho \vec{g} - \rho \nabla p + \mu \nabla^2 \vec{u}$$
 (6)

The density ρ is assumed to be a function of temperature T and governed by equation 7

$$\rho = \rho_0 (1 - \alpha (T - T_0)),\tag{7}$$

where α is a coeffeience of thermal expansion and ρ_0 and T_0 are reference densities and temperatures. The temperature is non constant, and modelled using equation ??

$$\frac{\partial T}{\partial t} + (\vec{u} \cdot \nabla)T = \kappa \nabla^2 T + \frac{Q}{C_p}, \tag{8}$$

where κ is the diffusion constant, C_p the specific heat capacity per volume and Q a heat source.

We apply the creeping flow approximation first, giving:

$$\rho \frac{\partial \vec{u}}{\partial t} = \rho \vec{g} - \nabla p + \mu \nabla^2 \vec{u} \tag{9}$$

Next we apply the bousinesque approximation giving:

$$\frac{\partial \vec{u}}{\partial t} = \frac{\rho'}{\rho} \vec{g} - \frac{\nabla p'}{\rho_0} + \nu \nabla^2 \vec{u} \tag{10}$$

We now aim to numerically solve equations 10, 8 and 7 using a finite difference scheme.

Streamfunction-vorticity formulation in cartesian coorindates

We consider the problem in 2D cartesian co-ordinates (x,y) with $\vec{u} = (u,v)$, where u and v are the x and v velocities of the fluid respectively. We define a streamfunction ψ by equation ??

$$u = -\frac{\partial \psi}{\partial y}, v = \frac{\partial \psi}{\partial x}.$$
 (11)

We also define the vorticity in the x-y plane ω by:

$$\omega = \nabla \times \vec{u} = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}.$$
 (12)

By these definitions of the streamfunction and vorticity we get the incompressability condition (equation ??) and the vorticity-streamfunction relation, equation 14:

$$0 = \frac{\partial^2 \psi}{\partial x \partial y} - \frac{\partial^2 \psi}{\partial x \partial y} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = \nabla \cdot \vec{u}$$
 (13)

$$\omega = \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2}.\tag{14}$$

Using the streamfunction we can immediately rewrite equation 8 as equation 15.

$$\frac{\partial T}{\partial t} - \frac{\partial \psi}{\partial y} \frac{\partial T}{\partial x} + \frac{\partial \psi}{\partial x} \frac{\partial T}{\partial y} = \kappa \nabla^2 T + \frac{Q}{C_p}$$
(15)

The streamfunction-vorticity equation for the Navier Stokes equation is a little more involved. We first split equation 10 into its components:

$$\frac{\partial u}{\partial t} = \frac{\rho'}{\rho_0} g_x - \frac{1}{\rho_0} \frac{\partial p'}{\partial x} + \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} \right) \tag{16}$$

and,

$$\frac{\partial v}{\partial t} = \frac{\rho'}{\rho_0} g_y - \frac{1}{\rho_0} \frac{\partial p'}{\partial y} + \nu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial x^2} \right). \tag{17}$$

Taking $\frac{\partial}{\partial x}$ of equation 17 and subtracting $\frac{\partial}{\partial y}$ of equation 16 we rearrange to get equation 18:

$$\frac{\partial w}{\partial t} = \frac{g_y}{\rho_0} \frac{\partial \rho'}{\partial x} - \frac{g_x}{\rho_0} \frac{\partial \rho'}{\partial y} + \nu \nabla^2 \omega \tag{18}$$

Equations 18 and 15 complete our streamfunction-vortivity description.

Boundry conditions