PSYCH 260/BBH 203

Cellular neuroscience

Rick O. Gilmore 2022-02-01 09:22:37

Prelude

(bbscottvids, 2009)

How to play EyeWire (03:56)

http://eyewire.org

Announcements

- Exam 1 next Thursday, 2/10
 - 40 questions
- Complete 1 "component/section" in EyeWire, earn 2 extra credit points.
 - Take screen shot, email to Iris via Canvas
 - Due before Friday, 2/11

Today's Topics

- Cells of the nervous system
 - Glia
 - Neurons
- How do these cells communicate?

Cells of the nervous system

We are human

- ~ 37 trillion (10^9) (Roy & Conroy, 2018) cells
- 10-100 trillion non-human cells (gut, skin/hair, bloodstream, etc.)

How many neurons and glia?

- Old "lore": ~100 billion neurons
- New estimate (Azevedo et al., 2009)
 - ~86 +/- 8 billion neurons
 - ~85 +/- 9 billion glia
- 100-500 trillion synapses, 1 billion/mm^3

Could you count to 170 billion?

- How many years to count to 170 billion?
- 60 s/min x 60 min/hr x 24 hrs/day x 365 days/ yr = 31,536,000 s/yr
- \cdot 1.7e11/31,536,000 = 5,390 years

Mass, Neurons, Non-Neurons

Figure 2.
Absolute mass, numbers of neurons, and numbers of nonneuronal cells in the entire adult human brain. Values are mean ± SD and refer to the two hemispheres together. B, billion.

(Azevedo et al., 2009)

Neurons by brain mass

Non-neuronal cells by brain mass

Summary

neurons doesn't scale with brain size/mass (most neurons in cerebellum)

glia+ cells scales with brain size/mass

How many neurons and glia?

"These findings challenge the common view that humans stand out from other primates in their brain composition and indicate that, with regard to numbers of neuronal and nonneuronal cells, the human brain is an isometrically scaled-up primate brain."

(Azevedo et al., 2009)

The Human Advantage

THE HUMAN ADVANTAGE

A NEW UNDERSTANDING

OF HOW OUR BRAIN

BECAME REMARKABLE

SUZANA HERCULANO-HOUZEL

Glia (neuroglia)

- · "Glia" means glue
- Functions
 - Structural support
 - Metabolic support
 - Brain development
 - Neural plasticity?

Astrocytes

- "Star-shaped"
- Physical and metabolic support
 - Blood/brain barrier
 - Regulate concentration of key ions (Ca++/K+) for neural communication
 - Regulate concentration of key neurotransmitters (e.g., glutamate)

Astrocytes

- Shape brain development, synaptic plasticity
- Regulate local blood flow (part of fMRI's blood oxygen-dependent BOLD response)
- Regulate/influence communication between neurons, (Bazargani & Attwell, 2016)
- Disruption linked to cognitive impairment, disease (Chung, Welsh, Barres, & Stevens, 2015)

Astrocytes

Myelinating cells

- Produce myelin or myelin sheath
 - White, fatty substance
 - Surrounds many neurons
 - The "white" in white matter
- Provide electrical/chemical insulation
- Make neuronal messages faster, less susceptible to noise

Types of myelin-producing cells

- Oligodendrocytes
 - In brain and spinal cord (CNS)
 - 1:many neurons
- Schwann cells
 - In PNS
 - 1:1 neuron
 - Facilitate neuro-regeneration
- Mnemonics: COPS/SPOC

Oligodendrocytes

Schwann Cells

Microglia

- Phagocytosis
- Clean-up damaged, dead tissue
- Prune synapses in normal development and disease
- Disruptions in microglia pruning -> impaired functional brain connectivity and social behavior, (Zhan et al., 2014)

Microglia

Neurons

Fun facts about neurons

- Specialized for electrical & chemical communication
- Post-mitotic don't divide
- Most born early in life, (Bhardwaj et al., 2006)
- Among longest-lived cells in body, may scale with organism lifespan (Magrassi, Leto, & Rossi, 2013)
- Can extend over long distances

Macrostructure of neurons

- Dendrites
- Soma (cell body)
- Axons
- Terminal buttons (boutons)

Structure of neurons

Dendrites

- Branch-like "extrusions" from cell body
- Majority of input to neuron
- Cluster close to cell body/soma
- Usually receive info
- Passive (do not regenerate electrical signal) vs. active (regenerate signal)
- Spines

Dendrites

Dendritic Spines

Soma (cell body)

- Varied shapes
- Nucleus
 - Chromosomes
- Organelles
 - Mitochonrdria
 - Smooth and Rough Endoplasmic reticulum (ER)

Soma

Axons

- · Another branch-like "extrusion" from soma
- Extend farther than dendrites
- Usually transmit info

Axons

- Parts
 - Initial segment (closest to soma, unmyelinated)
 - Nodes of Ranvier (unmyelinated segments along axon)
 - Terminals, axon terminals, terminal buttons, synaptic terminals, synaptic boutons

Axons

Synaptic bouton (terminal button)

- Synapse (~5-10K per neuron)
- Presynaptic membrane (sending cell) and postsynaptic (receiving cell) membrane
- Synaptic cleft space between cells
- Synaptic vesicles
 - Pouches of neurotransmitters
- Autoreceptors (detect NTs); transporters (transport NTs across membrane)

Synaptic bouton (terminal button)

Classifying neurons

- Functional role
 - Input (sensory), output (motor/secretory), interneurons
- Anatomy
 - Unipolar
 - Bipolar
 - Multipolar

https://upload.wikimedia.org/wikipedia/commons/thumb/9 Neurons_uni_bi_multi_pseudouni.svg.pngg

Classifying neurons

- By specific anatomy
 - Pyramidal cells
 - Stellate cells
 - Purkinje cells
 - Granule cells

Neurons by type

Next time

How neurons communicate

References

- Azevedo, F. A., Carvalho, L. R., Grinberg, L. T., Farfel, J. M., Ferretti, R. E., Leite, R. E., ... others. (2009). Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. *Journal of Comparative Neurology*, *513*(5), 532–541.
- Bazargani, N., & Attwell, D. (2016). Astrocyte calcium signaling: The third wave. *Nature Neuroscience*, 19(2), 182–189. https://doi.org/10.1038/nn.4201
- bbscottvids. (2009, September). Neuronal migration. Youtube. Retrieved from https://www.youtube.com/watch?v=t-8bxeWqSV4
- Bhardwaj, R. D., Curtis, M. A., Spalding, K. L., Buchholz, B. A., Fink, D., Björk-Eriksson, T., ... Frisén, J. (2006). Neocortical neurogenesis in humans is restricted to development. *Proceedings of the National Academy of Sciences*, *103*(33), 12564–12568. https://doi.org/10.1073/pnas.0605177103
- Chung, W.-S., Welsh, C. A., Barres, B. A., & Stevens, B. (2015). Do glia drive synaptic and cognitive impairment in disease? *Nature Neuroscience*, *18*(11), 1539–1545. https://doi.org/10.1038/nn.4142
- Magrassi, L., Leto, K., & Rossi, F. (2013). Lifespan of neurons is uncoupled from organismal lifespan. *Proceedings of the National Academy of Sciences*, *110*(11), 4374–4379. https://doi.org/10.1073/pnas.1217505110
- Roy, A. L., & Conroy, R. S. (2018). Toward mapping the human body at a cellular resolution. *Molecular Biology of the Cell*, 29(15), 1779–1785. https://doi.org/10.1091/mbc.E18-04-0260
- Zhan, Y., Paolicelli, R. C., Sforazzini, F., Weinhard, L., Bolasco, G., Pagani, F., ... Gross, C. T. (2014). Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. *Nature Neuroscience*, *17*(3), 400–406. https://doi.org/10.1038/nn.3641