

MENDELIAN RANDOMIZATION AND MR-DoC2

HGEN619

Luis Castro-de-Araujo^a 11/28/2022

Virginia Institute for Psychiatric and Behavioral Genetics

^a Post-doc T32. luis.araujo@vcuhealth.org

Introduction to mendelian randomization

Sensitivity analysis in MR

Mixing with the DoC model

Bi-directional MR-DoC, MR-DoC2

INTRODUCTION TO MENDELIAN RANDOMIZATION

INTRO

- Problems with observational data
- Randomized controlled trials
- Mendelian Randomization (MR):
 - How it works
 - Core assumptions
 - Calculating causal effect estimates
- MR example
- Limitations of MR

THANKS DAVID EVANS

Lot's of slides borrowed from David Evans' talk¹

¹Evans, June 2021, "Introduction to Mendelian Randomization - Part 1," (Boulder 2021).

2

Figure 1: CHD risk according to duration of current Vitamin E supplement use compared to no use

²Rimm. (1993). "Vitamin E Consumption and the Risk of Coronary Heart Disease in Men." N Engl J Med.

3

 $^{^3}$ Millen, (2004), "Use of Vitamin, Mineral, Nonvitamin, and Nonmineral Supplements in the United States," 3 Am Diet Assoc.

VITAMIN E SUPPLEMENT USE AND RISK OF CORONARY HEART DISEASE

4

⁴Stampfer, (1993), "Vitamin E Consumption and the Risk of Coronary Disease in Women," N Engl J Med; Eric B. Rimm, Meir J. Stampfer, Alberto Ascherio, Edward Giovannucci, Graham A. Colditz, and Walter C. Willett, "Vitamin E Consumption and the Risk of Coronary Heart Disease in Men"; Eidelman, (2004), "Randomized Trials of Vitamin E in the Treatment and Prevention of Cardiovascular Disease," Arch Intern Med.

MANY OTHER EXAMPLES

- VITAMIN C, VITAMIN A, HRT,
- MANY DRUG TARGETS.....
- WHAT'S THE EXPLANATION?

VITAMIN E LEVELS AND CONFOUNDING RISK FACTORS:

- Childhood SES⁵
- Manual social class
- No car access
- State pension only
- Smoker
- Obese
- Daily alcohol
- Exercise

⁵Lawlor, (2004), "Those Confounded Vitamins," *Lancet*.

CLASSIC LIMITATIONS OF OBSERVATIONAL STUDIES

Confounding

Reverse causation

Bias

CAUSAL INFERENCE, GOLD STANDARD: RANDOMIZED CONTROLLED TRIAL⁷

⁶Camelia, 2017, "Mendelian Randomization," (VIPBG 2017).

⁷Camelia, 2017, "Mendelian Randomization," (VIPBG 2017).

THE NEED FOR OBSERVATIONAL STUDIES

Randomized Controlled Trials (RCTs):

- Not always ethical or practically feasible eg anything toxic
- Expensive, requires experimentation in humans
- Impractical for long follow up times
- Should only be conducted on interventions that show very strong
- observational evidence in humans

Observational studies:

- Association between environmental exposures and disease measured in observational designs (non-experimental) eg case-control studies or cohort studies
- Reliably assigning causality in these types of studies is very limited

THE WIDE APPLICABILITY OF MR

- Traditional Observational Epidemiological Studies**
- Behavior Genetics and the Social Sciences**
- Molecular Studies**
- Pharmacogenomics

WHAT DOES MR DO?

- Assess causal relationship between two variables**
- Estimate magnitude of causal effect**

How does it do this?

By harnessing Mendel's laws of inheritance

MENDEL'S LAWS OF INHERITANCE

Gregor Mendel

Mendel's Laws of Inheritance

- Segregation: alleles separate at meiosis and a randomly selected allele is transmitted to offspring
- Independent assortment: alleles for separate traits are transmitted independently of one another Mendel in 1862

ANALOGY RCT - MENDELIAN RANDOMIZATION9

⁸ Ibid.; Costet, (2008), "PCSK9 and LDL Cholesterol," Trends Biochem Sci.

⁹Ibid.; Costet, (2008), "PCSK9 and LDL Cholesterol," Trends Biochem Sci.

MENDELIAN RANDOMIZATION¹¹

- Uses genetic variants as instrumental variables
- Helps understand causation, but has strong assumptions
 - G (instrument) is robustly associated with X ("relevance");
 - G does not share common causes (C) with Y (Outcome) ("independence" or "exchangeability"); and
 - 3. G affects Y exclusively through its effect on X ("exclusion restriction").
- 4. No bidirectional causation between X and Y

¹⁰Richmond, (2022), "Mendelian Randomization," *Cold Spring Harb Perspect Med.*

¹¹Richmond, (2022), "Mendelian Randomization," Cold Spring Harb Perspect Med.

MENDELIAN RANDOMIZATION

- Depends on intruments sufficiently predictive of exposure¹²
- Psychiatric disorders polygenicity, weak instrument bias
- · Cause is (typically) assessed in one direction

Table 4. Extensions to the basic Mendelian randomization (MR) approach

Method	Description	Directedacyclicgraphs(DAGs)	Applications
Bidirectional or reciprocal MR (Timpson et al. 2011)	Used to evaluate the causal direction(s) of effect between two traits X and Y , with the use of valid instruments G_X and G_Y	$G_1 \longrightarrow X \longrightarrow Y$ $G_2 \longrightarrow Y \longrightarrow X$	Body mass index (BMI) and vitamin D (Vimaleswaran et al. 2013)

¹²Ibid.

WHY ARE GENETIC ASSOCIATIONS SPECIAL?

- Robustness to confounding due to Mendel's laws:
 - Law of segregation: inheritance of an allele is random and independent of environment etc
 - Law of independent assortment: genes for different traits segregate independently (assuming not in LD)
- The direction of causality is known always from SNP to trait
- Genetic variants are potentially very good instrumental variables
- Using genetic variants as IVs is a special case of IV analysis, known as Mendelian randomization

CALCULATING CAUSAL EFFECT ESTIMATES

TWO-STAGE LEAST SQUARES (2SLS)

- Stage 1: regress exposure on instrument and get predicted values
- Stage 2: use predicted exposure to predict the outcome

TWO-STAGE LEAST SQUARES (2SLS)14

Stage 1

$$X_i = \beta_0 + \beta_1 * GV_i + \epsilon_i$$

Regress exposure on GV & obtain predicted values

Stage 2

$$Y_i = g_0 + g_1 * \hat{X}_i + \epsilon_i$$

- Regress outcome on predicted exposure
 - g_1 difference in outcome per unit change in (genetically-predicted) exposure

needs to be done in one sample

¹³Minica Camelia, "Mendelian Randomization."
¹⁴Minica Camelia, "Mendelian Randomization."

CALCULATING CAUSAL EFFECT ESTIMATES

CALCULATING CAUSAL EFFECT ESTIMATES

MR CAN ALSO BE PERFORMED USING JUST THE RESULTS FROM GWAS

- Also known as two-sample MR, SMR, or MR with summary data etc
- Advantages:
 - The data is readily available, non-disclosive, free, open source-
 - The exposure and outcome might not be measured in the same sample
 - The sample size of the outcome variable, key to statistical power, is not limited by requiring overlapping measures of the exposure
- Disadvantages:
 - Some extensions of MR not possible, e.g. non-linear MR, use of GxE for negative controls, various sensitivity analyses

MR Example using CRP

- C-Reactive Protein (CRP) is a biomarker of inflammation
- It is associated with BMI, metabolic syndrome, CHD and a number of other diseases
- It is unclear whether these observational relationships are causal or due to confounding or reverse causality
- This question is important from the perspective of intervention and drug development

"BI-DIRECTIONAL MENDELIAN RANDOMIZATION":

Testing causality and reverse causation

LIMITATIONS TO MENDELIAN RANDOMIZATION

- 1. Population stratification
- 2. Canalisation ("Developmental compensation")
- 3. The existence of instruments
- 4. Power and "weak instrument bias"
- 5. Pleiotropy

POWER AND WEAK INSTRUMENTS

- Power:
 - Genetic variants explain very small amounts of phenotypic variance in a given trait
 - VERY large sample sizes are generally required
- Weak instruments:
 - Genetic variants that are weak proxies for the exposure Results in biased causal estimates from MR
- Different impact of the bias from weak instruments:
- Single Sample MR: to the confounded estimate
- Two-Sample MR: to the null

USING MULTIPLE GENETIC VARIANTS AS INSTRUMENTS

Figure 1. DAG for a Mendelian randomisation analysis using four genetic variants as instrumental variables for the effect of fat mass on bone mineral density.

- Allelic scores¹⁵
- Testing multiple variants individually
- Meta-analyse individual SNPs

¹⁵Palmer, (2012), "Using Multiple Genetic Variants as Instrumental Variables for Modifiable Risk Factors," Stat Methods Med Res.

CALCULATING POWER IN MENDELIAN RANDOMIZATION STUDIES

mRnd: Power calculations for Mendelian Randomization

LIMITATIONS TO MENDELIAN RANDOMIZATION

Pleiotropy

- · Genetic variant influences more than one trait
- Horizontal vs Vertical pleiotropy

SENSITIVITY ANALYSIS IN MR

INTRO

- Inverse variance weighted MR
- Heterogeneity tests
- Multivariable MR
- MR Egger
- MR Weighted Median
- MR Modal Estimator
- Steiger Filtering

INVERSE VARIANCE WEIGHTED (IVW) fIXED EFFECTS METHOD

- There is one underlying 'true' effect
- All deviations of sample effects from the 'true' effect are due to chance

$$w_{i} = \frac{1}{\text{var}(\beta_{i})}$$

$$\beta_{\text{pooled}} = \frac{\sum_{i=1}^{N} (w_{i} * \beta_{i})}{\sum_{i=1}^{N} (w_{i})}$$

$$\text{se}_{\text{pooled}} = \sqrt{\frac{1}{\sum_{i=1}^{N} (w_{i})}}$$

 For N studies, each study i contributes more to the meta-analysis if its standard error is lower

CALCULATE THE PVALUE

$$\chi_{df=1}^{2} = \frac{\beta_{\text{pooled}}^{2}}{\text{se}_{\text{pooled}}^{2}} = \frac{\left(\sum_{i=1}^{N} w_{i} * \beta_{i}\right)^{2}}{\sum_{i=1}^{N} w_{i}}$$
$$z = \frac{\beta_{\text{pooled}}}{\text{se}_{\text{pooled}}} = \frac{\sum_{i=1}^{N} w_{i} * \beta_{i}}{\sqrt{\sum_{i=1}^{N} w_{i}}}$$

FIXED EFFECTS IVW-MR AND WEIGHTED LINEAR REGRESSION

- IVW is equivalent to a weighted regression of SNP-outcome effects on SNP-exposure effects passing through the origin
- The weights are the inverse of the variance of the individual causal effect estimates
- The slope is the estimate of the causal effect

PERFORMING MR WITH SUMMARY STATISTICS

MR METHODS FOR HANDLING HORIZONTAL PLEIOTROPY

What is the problem?

- Mendelian Randomization (MR) uses genetic variants to test for causal relationships between phenotypic exposures and disease-related outcomes
- Due to the proliferation of GWAS, it is increasingly common for MR analyses to use large numbers of genetic variants
- Increased power but greater potential for pleiotropy
- Pleiotropic variants affect biological pathways other than the exposure under investigation and therefore can lead to biased causal estimates and false positives under the null

Two Sample MR:

Single Variants

Wald =
$$\frac{\text{Beta = GY}}{\text{Beta-GX}}$$

• Causal estimate using Wald method: $\frac{\beta \gamma_j}{\gamma_l}$ = β

Two Sample MR:

Multiple Variants

Causal estimate using IVW from

summarised data:
$$\frac{\sum_{j=1}^{J} \hat{\gamma}_j^2 \sigma_{\gamma_j}^{-2} \hat{\beta}_j}{\sum_{j=1}^{J} \hat{\gamma}_j^2 \sigma_{\gamma_j}^{-2}} = \beta$$

(Approximates TSLS)

where $\hat{\beta}_j = \frac{\hat{\Gamma}_j}{\hat{\gamma}_j}$ is the ratio method estimate for variant j, and σ_{Yj} is the standard error in the regression of the outcome on the jth genetic variant, assumed to be known.

HETEROGENEITY

- We expect that each SNP represents an independent study, and each should give an unbiased (if imprecise) estimate of the causal effect of x on y
- Heterogeneity, where effect estimates are more different than expected due to standard errors, arises because at least some of the instruments are invalid
- Cochran's Q statistic

$$Q = \sum_{k=1}^{K} w_k \left(\hat{\beta}_k - \hat{\beta}_{IVW} \right)^2$$

n=6 instruments Expect Q = 5 if there is no heterogeneity Q is chi-square distributed with n-1 degrees of freedom

OPTION 1: REMOVE OUTLIERS

- Some SNPs might contribute to the majority of the heterogeneity
- If we assume these are the invalid instruments then the IVW estimate excluding them should be less biased
- However beware of:
 - Cherry picking remove outliers will artificially provide a more precise estimate
 - What if the outlier is the only valid instrument, and all the others are invalid?
- E.g. cis-variants for gene expression, DNA methylation, protein o levels. CRP levels are best instrumented by variants within the CRP gene region. Most other variants that come up in CRP GWAS are upstream effects related to inflammation

OPTION 2: MULTIVARIABLE MR

- We are testing for whether X1 has an influence on Y
- We know that some instruments for X1 also have influences on X2
- This opens up the possibility of horizontal pleiotropy biasing our estimate
- What is the X1-Y association adjusting for X2?

OPTION 3: FIT A MODEL THAT IS ROBUST TO SOME MODEL OF HORIZONTAL PLEIOTROPY

- IVW fixed effects estimate assumes all SNPs are valid instruments, and averages across them all
- IVW random effects model allows all SNPs to be drawn from a different distribution – the estimate is the same but the standard error is larger if there is any heterogeneity

MR Egger Regression: Central concept

- In Mendelian Randomization when multiple genetic variants are being used as IVs, Egger regression can:
- Identify the presence of 'directional' pleiotropy (biasing the IV estimate)
- provide a less biased causal estimate (in the presence of pleiotropy)
- However, MR Egger lacks power

INSIDE Assumption

Relaxing MRs assumptions
We explore the condition that the correlation between the genetic

We explore the condition that the correlation between the genetic associations with the exposure (the γ_j parameters) and the direct effects of the genetic variants on the outcome (the α_j parameters) is zero. We refer to the condition that the distributions of these parameters are independent as InSIDE (Instrument Strenght Independent of Direct Effect). It can be viewed as a weaker version of the exclusion restriction assumption.

$$\begin{aligned} Y_i &= \Gamma_j G_{ij} + \epsilon_{ij}^{\prime Y} \\ &= \left(\alpha_j + \beta \gamma_j\right) G_{ij} + \epsilon_{ij}^{\prime Y} \end{aligned}$$

- IVW MR the most powerful option, but assumes the absence of horizontal genetic pleiotropy
- MR Egger, Weighted Median and Modal based estimators relax the strict requirement of no horizontal pleiotropy, but at the cost of decreased statistical power
- Crucial to perform sensitivity analyses and obtain metrics regarding the likely reliability of the MR estimates

MIXING WITH THE DOC MODEL

INTRODUCTION

- Causal inference, gold standard: randomized controlled trial
- Not always feasible, ethics¹⁶
 - $lue{}$ E.g. exposure to trauma ightarrow substance abuse
- Mendelian randomization,¹⁷ helps with these cases.

¹⁶Ohlsson, (2020), "Applying Causal Inference Methods in Psychiatric Epidemiology," *JAMA Psychiatry*.

 $^{^{17}}$ Katikireddi, (2018), "Assessing Causal Relationships Using Genetic Proxies for Exposures," Addiction.

STRUCTURAL EQUATION MODELING - EQUIVALENCE TO 2SLS

- SEM solutions have been shown to recover exact estimates as 2SLS^a
 - less convergence in weak instruments
 - slightly worse performance in ML-SEM
- For a quick demonstration using OpenMx →

^a Maydeu-Olivares, (2019), "Instrumental Variables Two-Stage Least Squares (2SLS) Vs. Maximum Likelihood Structural Equation Modeling of Causal Effects in Linear Regression Models," Structural Equation Modeling: A Multidisciplinary Journal.

GENETIC VARIANT OR POLYGENIC SCORE?

- The use of instrumental PS is common in Mendelian randomization studies¹⁸.
- PS as an instrument is mathematically equivalent to a weighted mean of the results from individual SNPs.¹⁹

The twin-design case

 Use of structural equation modeling to complement mendelian randomization, inspired by Direction of Causation (DoC) model²⁰

¹⁸Burgess, April 2020, "Guidelines for Performing Mendelian Randomization Investigations," (2020).

¹⁹Dudbridge, (2021), "Polygenic Mendelian Randomization," Cold Spring Harb Perspect Med.

²⁰Minică, (2018), "Extending Causality Tests with Genetic Instruments," Behav Genet.

GENETIC VARIANT OR POLYGENIC SCORE?

- The use of instrumental PS is common in Mendelian randomization studies¹⁸.
- PS as an instrument is mathematically equivalent to a weighted mean of the results from individual SNPs.¹⁹

The twin-design case

- Use of structural equation modeling to complement mendelian randomization, inspired by Direction of Causation (DoC) model²⁰
- Same paper shows proof of equivalence to 2SLS

¹⁸Burgess, April 2020, "Guidelines for Performing Mendelian Randomization Investigations," (2020).

¹⁹Dudbridge, (2021), "Polygenic Mendelian Randomization," Cold Spring Harb Perspect Med.

²⁰Minică, (2018), "Extending Causality Tests with Genetic Instruments," Behav Genet.

CLASSIC DIRECTION OF CAUSATION MODEL - RECIPROCAL CAUSATION²²

Model specification

Path diagram representing a Bidirectional DoC for one twin.

- causal paths are estimated affording information from the cross-twin cross-trait correlations.
- Cross-twin covariance between additive genetic effects is 0.5 (not shown) for DZ twins, as DZs are expected to share 50% of the genetic effects.
- Standard SEM symbology is used.

²¹Heath, (1993), "Testing Hypotheses About Direction of Causation Using Cross-Sectional Family Data," Behav Genet.

CLASSIC DIRECTION OF CAUSATION

Model specification

Problems

- Not identified as depicted
- Bias at the phenotypic level^a
- Bias due to E confounding^b
- Better detection of cause with different variance component proportions for each phenotype^c

^a Gillespie, (2003), "Direction of Causation Modeling Between Cross-Sectional Measures of Parenting and Psychological Distress in Female Twins." *Behav Genet*.

^bRasmussen, (2019), "A Major Limitation of the Direction of Causation Model," *Twin Res Hum Genet*.

^cMaes, (2021), "Using Multimodel Inference/Model Averaging to Model Causes of Covariation Between Variables **54** in Twins," *Behav Genet*.

MR-DOC MODEL²⁴

X	aX	cX	eX	aY	cY	eΥ	ra	rc	re	b1	b2	g1	Id
fr	No												
fr	0	fr	fr	fr	Yes								
fr	0	fr	Yes										
fr	0	fr	fr	fr	fr	Yes							
fr	fr	0	fr	fr	0	fr	fr	0	fr	fr	fr	fr	No
fr	fr	fr	fr	fr	0	fr	fr	0	fr	fr	fr	fr	Yes
fr	fr	0	fr	fr	fr	fr	fr	0	fr	fr	fr	fr	No

х	aX	сХ	eX	aY	cY	eY	ra	rc	re	b1	b2	g1	Id
fr fr	fr O	fr fr	fr fr	fr fr	No Yes								
fr	fr	fr	0	fr	Yes								
fr fr	fr fr	fr O	fr fr	fr fr	fr O	fr fr	fr fr	0	fr fr	fr fr	fr fr	fr fr	Yes No
fr	fr	fr	fr	fr	0	fr	fr	0	fr	fr	fr	fr	Yes
fr	fr	0	fr	fr	fr	fr	fr	0	fr	fr	fr	fr	No

х	aX	cX	eX	aΥ	cY	eY	ra	rc	re	b1	b2	g1	Id
fr	No												
fr	0	fr	fr	fr	Yes								
fr	0	fr	Yes										
fr	0	fr	fr	fr	fr	Yes							
fr	fr	0	fr	fr	0	fr	fr	0	fr	fr	fr	fr	No
fr	fr	fr	fr	fr	0	fr	fr	0	fr	fr	fr	fr	Yes
fr	fr	0	fr	fr	fr	fr	fr	0	fr	fr	fr	fr	No

х	aX	cX	eX	aY	cY	eΥ	ra	rc	re	b1	b2	g1	Id
fr	No												
fr	0	fr	fr	fr	Yes								
fr	0	fr	Yes										
fr	0	fr	fr	fr	fr	Yes							
fr	fr	0	fr	fr	0	fr	fr	0	fr	fr	fr	fr	No
fr	fr	fr	fr	fr	0	fr	fr	0	fr	fr	fr	fr	Yes
fr	fr	0	fr	fr	fr	fr	fr	0	fr	fr	fr	fr	No

х	aX	cX	eX	aΥ	cY	eY	ra	rc	re	b1	b2	g1	Id
fr	No												
fr	0	fr	fr	fr	Yes								
fr	0	fr	Yes										
fr	0	fr	fr	fr	fr	Yes							
fr	fr	0	fr	fr	0	fr	fr	0	fr	fr	fr	fr	No
fr	fr	fr	fr	fr	0	fr	fr	0	fr	fr	fr	fr	Yes
fr	fr	0	fr	fr	fr	fr	fr	0	fr	fr	fr	fr	No

Figure 2: MR-DoC extension. Some confounding, not bidirectional. Not identified as depicted.

²⁵lbid.

²⁶lbid.

Model specification

²⁷Dolan, 2020, "Introducing Polygenic Risk Scores into the Twin Design," (Boulder 2020).

Modified MR-DOC

- Path diagram of the MR-DoC2 model for an individual.
- The model includes the effects of additive genetic (A), common environment (C) and specific environment (E) factors for both X and Y, and their effects may correlate (parameters ra, rc and re).

²⁸Dolan, 2020, "Introducing Polygenic Risk Scores into the Twin Design," (Boulder 2020).

RESULTS

Which parameters drive power?

Revisiting limitations

- Do we need phenotypes with distinct inheritance patterns
- What about measurement error at the phenotypic level?
- How robust it is regarding pleiotropy

WHICH PARAMETERS DRIVE POWER?30

Table 6: Variance explained in statistical power (non-centrality parameter; NCP) by model parameters.

	g1 = 0	g2 = 0	g1 = g2 = 0
g1	0.517	0.000	0.289
g2	0.000	0.517	0.289
b1	0.365	0.000	0.181
b3	0.000	0.365	0.181
ra	0.000	0.000	0.000
rc	0.000	0.000	0.000
re	0.002	0.002	0.000
rf	0.041	0.041	0.000
ay	0.002	0.000	0.001
ax	0.000	0.002	0.001
су	0.002	0.000	0.001
СХ	0.000	0.002	0.001
Total R2	0.929	0.929	0.945

- Distinct inheritance patterns from phenotypes - not needed
- b1, b2, g1, and g2 are what drives power
- slightly better power without C variance

²⁹Van der Sluis, (2008), "Power Calculations Using Exact Data Simulation," *Behav Genet*.

³⁰Van der Sluis, (2008), "Power Calculations Using Exact Data Simulation," Behav Genet.

FACTORIAL DESIGN SIMULATION - FACTORS

θ	Design 1 (ACE)	Design 2 (AE)	Design 3 (AE)
b1	$\sqrt{0.025}$, $\sqrt{0.05}$	$\sqrt{0.025}$, $\sqrt{0.05}$, $\sqrt{0.075}$	$-\sqrt{0.075}$, $-\sqrt{0.03}$, $\sqrt{0.03}$, $\sqrt{0.075}$
b3	$\sqrt{0.025}$, $\sqrt{0.05}$	$\sqrt{0.025}$, $\sqrt{0.05}$, $\sqrt{0.075}$	$-\sqrt{0.075}$, $-\sqrt{0.03}$, $\sqrt{0.03}$, $\sqrt{0.075}$
g1	$\sqrt{0.020}$, $\sqrt{0.05}$	$\sqrt{0.020}$, $\sqrt{0.04}$, $\sqrt{0.06}$	$-\sqrt{0.050}$, $-\sqrt{0.020}$, $\sqrt{0.050}$, $\sqrt{0.020}$
g2	$\sqrt{0.020}$, $\sqrt{0.05}$	$\sqrt{0.020}$, $\sqrt{0.04}$, $\sqrt{0.06}$	$-\sqrt{0.050}$, $-\sqrt{0.020}$, $\sqrt{0.050}$, $\sqrt{0.020}$
ra	0.25, 0.50	0.0, 0.25, 0.50	0.3
rc	0.25, 0.50	0	0
re	0.25, 0.50	0.0, 0.25, 0.50	0.3
rf	0.25, 0.50	0.0, 0.25, 0.50	0.3
ax	$\sqrt{0.10}$, $\sqrt{0.25}$	$\sqrt{0.10}$, $\sqrt{0.25}$	$\sqrt{0.5}$
ay	$\sqrt{0.10}$, $\sqrt{0.25}$	$\sqrt{0.10}$, $\sqrt{0.25}$	$\sqrt{0.3}$
cx	$\sqrt{0.10}$, $\sqrt{0.25}$	0	0
су	$\sqrt{0.10}$, $\sqrt{0.25}$	0	0
Total cells	2 ¹² =4096	3 ⁷ *2 ² = 8748	4 ⁴ =256

Parameter levels on the three factorial designs, with respective total number of cells for each design simulation. Also, ex was specified as as $\sqrt{1-ax^2-cx^2}$ and ey as $\sqrt{1-ay^2-cy^2}$.

REASONABLE SAMPLE SIZES IN RELEVANT SCENARIOS

A and C variances for the groups:

- 1. alcohol use (a 2 49%, c 2 10%) (Verhulst et al., 2015) and heart disease (a 2 22%, c 2 0%) (Wu et al., 2014);
- 2. BMI (a² 72%, c² 3%) (Rokholm et al., 2011) and major depression (a² 37%, c² 1%) (Scherrer et al., 2003); 3. cannabis use (a² 51%, c² 20%) (Verweij et al., 2010) and schizophrenia (a² 81%, c² 11%) (Sullivan et al.,
- 2003);
- 4. dyslipidemia (LDL) (a² 60%, c² 28%) (Zhang et al., 2010) and heart disease (a2 22%, c2 0%) (Wu et al., 2014).

REASONABLE SAMPLE SIZES IN RELEVANT SCENARIOS

A and C variances for the groups:

- 1. alcohol use (a² 49%, c² 10%) (Verhulst et al., 2015) and heart disease (a² 22%, c² 0%) (Wu et al., 2014);
- BMI (a² 72%, c² 3%) (Rokholm et al., 2011) and major depression (a² 37%, c² 1%) (Scherrer et al., 2003);
- cannabis use (a² 51%, c² 20%) (Verweij et al., 2010) and schizophrenia (a² 81%, c² 11%) (Sullivan et al., 2003);
- dyslipidemia (LDL) (a² 60%, c² 28%) (Zhang et al., 2010) and heart disease (a2 22%, c² 0%) (Wu et al., 2014).
 - Vertical lines were added to represent R2 for four PSs reported in recent papers: a, smoking (Pasman et al., 2022); b, BMI (Furlong and Klimentidis, 2020); c, LDL (Kuchenbaecker et al., 2019); d, attention deficit hyperactivity disorder (ADHD) (Demontis et al., 2019).

ONLINE BIORXIV. BEGE³²

MR-DoC2: bidirectional causal modeling with instrumental variables and data from relatives

👵 Luis FS Castro-de-Araujo, 💿 Madhurbain Singh, Yi (Daniel) Zhou, Philip Vinh. Brad Verhulst. (D) Conor V Dolan (D) Michael C Neale

doi: https://doi.org/10.1101/2022.03.14.484271

This article is a preprint and has not been certified by peer review [what does this mean?].

Abstract Full Text Info/History

Preview PDF

Abstract

Establishing causal associations is an essential step towards developing interventions for psychiatric, substance use and many other disorders. While randomized controlled trials (RCTs) are considered the gold standard for causal inference, they are unethical in many scenarios. Mendelian randomization (MR) can instead be used, but both methods focus on

³¹Castro-de-Araujo, (2022), "MR-DoC2."

³²Castro-de-Araujo, (2022), "MR-DoC2."

BI-DIRECTIONAL MR-DOC, MR-DOC2

CONCLUSION

MR-DoC2

- Can complement MR within twin studies framework with a bidirectional causal model
- Improves on some limitations of classic DoC

Future directions

Apply MR-DoC2 to real data

ACKNOWLEDGEMENTS

Team

- Madhur Singh.
- Daniel Zhou.
- Philip Vinh.
- Brad Verhulst.
- Conor V Dolan.
- Michael C Neale.
- NIH grant no R01 DA049867 and 5T32MH-020030

Contact

• THANK YOU

REVISITING LIMITATIONS: ERROR AT THE PHENOTYPIC LEVEL

$\theta = \{b1 = c(sqrt(.05), sqrt(.1), sqrt(.15)), b3 = c(sqrt(.05), sqrt(.1), sqrt(.15)), g1 = c(sqrt(.05), sqrt(.1), sqrt(.15)), g2 = c(sqrt(.05), sqrt(.1), sqrt(.15)), abs = .05, ass = 0.05, cbs = 0.05, css = 0.05, ra = .224, rc = .224, re = .224, rf = .224, re = .224, rf = .224, re = .$

Reliability

```
relB = var(B) / {var(B) + var(errorB)}
relS = var(S) / {var(S) + var(errorS)}
```

- power reduces
- but no bias in estimation of b1, b3, g1, g2

OTHER TYPES OF PLEIOTROPY NOT INCLUDED IN THE MODEL

NOT ROBUST TO PLEIOTROPY (B2 AND B4 !=0)

The red lines indicate the observed mean of the distribution of the estimated v while the blue lines indicated the simulated value for the parameter. If the red line is on the right of the blue line, then the parameter is overestimated and if the red line is on the left of the blue line the parameter is underestimated.

Results from simulation with 1024 replications, with variation on the factor level of b2 and b4 (0, $\sqrt{.001}$, $\sqrt{.002}$, $\sqrt{.003}$, $\sqrt{.004}$).

Power Simulations³⁴

 Power simulations typically involve simulating many datasets corresponding to one true model and calculating the proportion of simulations where a given effect is significant.

Exact data simulation

- 1. choosing a set of parameter values for the model shown in Figure 2;
- 2. exact data simulation, with arbitrary N=1,000 MZ pairs and N=1,000 DZ twin pairs;
- 3. fitting the true model using ML estimation in OpenMx;
- 4. fitting the false model by fixing one or more parameters to zero and refitting the model: and
- 5. calculating the NCP and the power to reject the false model restrictions.
 - Regressing the NCP on the parameters to work out which ones are important wrt nower