

Introduction

- Kidney disease is a global public health problem and is related to serious mortality.
- In 2019, number of cases worldwide was 69.7 million.
- The global prevalence of Kidney disease was 9.1% in 2019.

Diabetes

High blood pressure

Smoking

Obesity

BUSINESS PROBLEM

- Over 1.4 million patients receiving renal replacement therapy worldwide
- Lack of conclusive research on any early detection system based on lifestyle/behavioral factors
- Explore whether demographic and lifestyle factors can lead to prevention or early detection of kidney disease.

BUSINESS IMPACT

 Organizations in the healthcare space can benefit profoundly from this research and monitor early risk factors or risky behavioral patterns.

Approach and data Source

- Secondary Data
- The Behavioral Risk Factor Surveillance System data is a dataset available directly from the CDC website
- Published Yearly

Tools and Techniques

- Five predictive models utilized. These are
- logistic regression
- random forest
- decision tree
- SVM
- naive Bayes

Methodology

 Python utilized for data cleaning and only the variables relevant to this analysis will be retained

Expected Results

- From this project we intend to design a model which will forecast the early detection of chronic kidney disease.
- Determination of factors linked with kidney disease.
- Using Decision tree model, data set will be broken down into smaller subsets to identify useful data.

Data cleaning

- We replaced missing values with mean value
- Data imbalanced

Dealing with Imbalanced Dataset

Data cleaning contd.

- Data imbalanced
- 13,332 participants have kidney diseases and 340,269 participants do not have kidney diseases.
- Respondents who have kidney diseases are approximately four percent of the total.

Kidney Disease by State

<u> Kidney Disease Prediction - Sarwat Zabeen | Tableau Public</u>

Kidney Disease Vs Exercise

Race and Kidney disease

Sex and Kidney disease

Gender Distribution for Diseased Gender Distribution for No Disease

Education and Kidney disease

BMI and Kidney Disease

Logistic Regression Full Model

```
In [117]: #Split dataset into training and test object
          x_train, x_test, y_train, y_test=train_test_split(X, Y, random_state=1)
In [118]: x_train.shape
Out[118]: (24485, 12)
In [119]: #Create a Logistic Regression Object, perform Logistic Regression
          log reg=LogisticRegression(max iter=1200000)
          log reg.fit(x train, y train)
Out[119]: LogisticRegression(max iter=1200000)
In [120]: y_pred=log_reg.predict(x_test)
In [124]: print(confusion matrix(y test, y pred))
          print(accuracy score(y test, y pred)*100)
          [[3012 1044]
           [1628 2478]]
          67.26292575349179
```


Visualizing the tree(How Race is branching out)

RF model confusion matrix

	Disease Present	Disease Absent		
Detected by model	2177	1094		
Undetected by model	1283	1976		

SVM with C=100

```
In [51]: from sklearn.svm import SVC
         model = SVC(C=100)
In [52]: X = df_nostring.drop('CHCKDNY1', axis=1)
         Y = df_nostring['CHCKDNY1']
         x_train, x_test, y_train, y_test=train_test_split(X, Y, test_size=0.2)
In [53]: model.fit(x_train, y_train)
Out[53]: SVC(C=100)
In [54]: model.score(x_test, y_test)
Out[54]:
         0.650229709035222
```


Regularization and Overfitting

Try different hyperparameter

```
In [68]: #Try different hyperparameters
         #no. of grids in rf
         n estimators = [int(x) for x in np.linspace(start=10, stop=100, num=10)]
         criterion = ['gini', 'entropy']
         #no. of features to consider at every split
         max features=['auto', 'sqrt']
         #maximum number of levels in tree
         max_depth = [3,5,7,9,10]
         #minimum number of samples required to split a node
         min samples split = [2,4,6]
         #minimum number of samples required at each leaf node
         min samples leaf = [1, 2, 4]
         #method of selecting samples for training each tree
         bootstrap = [True, False]
```

In [69]: #create the new random grid

Best parameters


```
verbose=2)
In [79]: rf_grid.best_params_
Out[79]: {'bootstrap': True,
          'criterion': 'entropy',
          'max_depth': 7,
          'max_features': 'sqrt',
          'min_samples_leaf': 2,
          'min_samples_split': 2,
           'n_estimators': 70}
In [80]: rf_grid.score(x_train, y_train)
         rf grid.score(x_test, y_test)
Out[80]: 0.6839203675344564
```

NB output

ROC AUC

Rf_auc	75.5%
Nb_auc	71.4%
SVM_auc	71.1%

Let's compare Again

	LR Full Model	LR Reduced Model	Decision Tree	Random Forest	SVM	NB
Accuracy	67%	58%	64%	68.4%	65%	65%
False Positives	1044	2298	1494	1094	947	1364
False Negatives	1628	1077	2015	1283	1379	895

Oversampling Vs Undersampling

Advantages and disadvantages

Advantages:

- Does not discard potentially useful data
- Rich, more representative of the population

Disadvantages:

- Overfitting likely
- Increases learning time

Decision Tree

```
In [37]: from sklearn import tree
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.tree import export graphviz
In [44]: x train, x test, y train, y test = train test split(X, Y, test size=0.30, random state=15, stratify=Y
         model = tree.DecisionTreeClassifier()
         model = model.fit(x train, y train)
In [45]: from sklearn.metrics import confusion matrix
         from sklearn.metrics import accuracy_score
         y_predict=model.predict(x_test)
         print(confusion_matrix(y_test, y_predict))
         print(accuracy score(y test, y predict)*100)
         [[125146
                     605]
             9382 116368]]
         96.02904163402928
```

Results/Conclusion

- Likelihood of getting kidney disease can be predicted using factors such as sex, race, BMI, exercise, smoking, education, amount of sleep and employment status.
- Decision Tree is the most accurate model in making such predictions. However, should be used with caution since RF is lower

Direction for Future Work

- National Kidney Foundation highlights the important of drinking adequate water in preventing kidney disease
- It also cites too many OTC painkillers as a common cause of kidney disease
- CDC can incorporate these measures into BRFSS

