Learning from Future: A Novel Self-Training Framework for Semantic Segmentation

Ye $Du^{1,2}$ Yujun Shen³ Haochen Wang⁴ Jingjing Fei⁵ Wei Li⁵ Liwei Wu⁵ Rui Zhao^{5,6} Zehua Fu^{1,2} Qingjie Liu^{1,2*}

State Key Laboratory of Virtual Reality Technology and Systems, Beihang University
² Hangzhou Innovation Institute, Beihang University

The Chinese University of Hong Kong

⁴ Institute of Automation, Chinese Academy of Sciences ⁵ SenseTime Research

⁶ Qing Yuan Research Institute, Shanghai Jiao Tong University, Shanghai, China

NeurIPS 2022

Semi-Supervised Learning

Unsupervised Domain Adaptive(UDA)

Source Domain

Target Domain

test

Test on target domain

predict

available

unavailable

Distribution P

Distribution Q

Self-Training

SEMI-SUPERVISED SELF-TRAINING METHOD

An example of Self-Training

Basic Self-Training

这一形式的self-training— 般称作mean-teacher

每次迭代:

- 1. 对教师进行EMA更新
- 2. 教师网络产生伪标签
- 3. 学生网络监督式训练更新

学生网络的累积——教师

(a) Self-training

Given student θ_t and teacher ϕ_t at time t,

Confirmation bias

$$\phi_{t+1} = \mu \phi_t + (1-\mu)\theta_t$$
, EMA更新当前teacher $\theta_{t+1} = \theta_t - \gamma \nabla_{\theta} \left[\mathcal{L}(g_{\theta_t}(x_l), y_l) + \lambda \mathcal{L}(g_{\theta_t}(x_u), \hat{y}_u | \phi_{t+1}) \right]$, Student监督训练更新 teacher产生的伪标签

Self-Training

Teacher, a temporal ensemble of the supervised student.

(a) Self-training

Supervision signals from the current teacher

(b) Future-self-training

Supervision signals come from the future teacher

Naïve-FST

每次迭代:

- 1. 学生网络模拟更新一次
- 2. 教师网络EMA更新
- 3. 教师网络产生伪标签
- 4. 学生网络监督式训练更新

(b) Future-self-training

Given student θ_t and teacher ϕ_t at time t,

t 时刻的伪标签 模拟学生网络更新

教师网络"提前"
$$\phi_{t+1} = \mu \phi_t + (1 - \mu) \left(\theta_t - \gamma \nabla_\theta \left[\mathcal{L}(g_{\theta_t}(x_l), y_l) + \lambda \mathcal{L}(g_{\theta_t}(x_u), \hat{y}_u | \phi_t) \right] \right)$$
 更新一次 $\theta_{t+1} = \theta_t - \gamma \nabla_\theta \left[\mathcal{L}(g_{\theta_t}(x_l), y_l) + \lambda \mathcal{L}(g_{\theta_t}(x_u), \hat{y}_u | \phi_{t+1}) \right].$

t+1 时刻的伪标签

Naïve-FST

$$\phi_{t+1} = \mu \phi_t + (1 - \mu) \left(\theta_t - \gamma \nabla_{\theta} \left[\mathcal{L}(g_{\theta_t}(x_l), y_l) + \lambda \mathcal{L}(g_{\theta_t}(x_u), \hat{y}_u | \phi_t) \right] \right),$$

$$\theta_{t+1} = \theta_t - \gamma \nabla_{\theta} \left[\mathcal{L}(g_{\theta_t}(x_l), y_l) + \lambda \mathcal{L}(g_{\theta_t}(x_u), \hat{y}_u | \phi_{t+1}) \right].$$

对t时刻学生网络的EMA消失了!

ST 56.3 ± 0.4 Naive-FST $\uparrow 0.1$ 56.4 ± 0.4 57.7 ± 0.6 Improved-FST $\uparrow 1.4$

$$\phi'_{t+1} = \mu \phi_t + (1 - \mu)\theta_t$$
,恢复对t时刻学生模型的EMA

Improved-FST
$$\phi_{t+1} = \mu' \phi'_{t+1} + (1 - \mu')(\theta_t - \gamma \nabla_{\theta} [\mathcal{L}(g_{\theta_t}(x_l), y_l) + \lambda \mathcal{L}(g_{\theta_t}(x_u), \hat{y}_u | \phi'_{t+1})]),$$

$$\theta_{t+1} = \theta_t - \gamma \nabla_{\theta} \left[\mathcal{L}(g_{\theta_t}(x_l), y_l) + \lambda \mathcal{L}(g_{\theta_t}(x_u), \hat{y}_u | \phi_{t+1}) \right],$$

two variants: FST-D & FST-W

当前时刻虚拟的学生和教师
$$\widetilde{ heta}_t = \mu \phi_t + (1-\mu) \theta_t$$
 当前时刻虚拟的学生和教师 $\widetilde{ heta}_t = \theta_t$

$$\widetilde{\theta}_{t+k+1} = \widetilde{\theta}_{t+k} - \gamma \nabla_{\widetilde{\theta}} [\mathcal{L}(g_{\widetilde{\theta}_{t+k}}(x_l), y_l) + \lambda \mathcal{L}(g_{\widetilde{\theta}_{t+k}}(x_u), \hat{y}_u | \widetilde{\phi}_{t+k})],$$

$$\widetilde{\phi}_{t+k+1} = \mu' \widetilde{\phi}_{t+k} + (1 - \mu') (\widetilde{\theta}_{t+k+1}),$$

FST-D D-deeper

使用同样的训练样本对t时刻的学生和教师虚拟更新k次得到t+k时刻的学生和教师

$$\phi_{t+1} = \widetilde{\phi}_{t+K},$$

使用上述虚拟的t+k时刻的教师

FST-W W-wider

$$\phi_{t+1} = \mu' \{ \mu \phi_t + (1 - \mu)\theta_t \} + (1 - \mu')(\theta_t - \frac{1}{N} \sum_{i=1}^N \gamma \nabla_{\theta} [\mathcal{L}(g_{\theta_t}(x_l^i), y_l^i) + \lambda \mathcal{L}(g_{\theta_t}(x_u^i), \hat{y}_u^i | \phi_t)]),$$

模拟N个不同学生网络,教师对N个虚拟学生进行EMA(虚拟学生网络初始都是 θ_t ,但当前用于更新的样本不同,产生不同的梯度)

Pseudo code in pytorch style

```
g_t.params = mu*g_t.params+(1-mu)*g_s.params
# cache the current student
g_{tmp} = g_{s.copy}()
# pseudo label prediction: for temp network
with no_grad():
    y_u = argmax(g_t.forward(x_u))
# train the temp model
loss_l = CrossEntropyLoss(g_tmp.forward(x_l), y_l)
loss_u = CrossEntropyLoss(g_tmp.forward(x_u), y_u)
loss_virtual = loss_1 + Lambda * loss_u  # calculate the loss for temp model
loss_virtual.backward()
update(g_tmp.params)
                        # SGD update: temp network
# momentum update with future student states
g_t.params = mu_prime * g_t.params + (1-mu_prime) * g_tmp.params
# pseudo label prediction: for student network
with no_grad():
    y_u = argmax(g_t.forward(x_u))
# train the student
loss_l = CrossEntropyLoss(g_s.forward(x_l), y_l)
loss_u = CrossEntropyLoss(g_s.forward(x_u), y_u)
loss = loss_l + Lambda * loss_u # calculate loss for student model
loss.backward()
update(g_s.params) # SGD update: student network
```

FST-D implementation

```
self._record_model()
for _ in range(self.ahead_step): # look ahead
    self._update_ema(self.local_iter)
    optimizer.zero_grad()
    log_vars = self(**data_batch)
    optimizer.step()
    log vars.pop('loss', None)
```

ablation study of FST-D & FST-W on UDA

Method	mIoU	Δ
SourceOnly	34.3 ± 2.2	-
ST	56.3 ± 0.4	-
-	-	-
Naive-FST	56.4 ± 0.4	† 0.1
Improved-FST	57.7 ± 0.6	$\uparrow 1.4$
FST-W	56.8 ± 0.1	$\uparrow 0.5$
FST-D	59.8 ± 0.1	$\uparrow 3.5$

Method	Batch	mIoU	Δ
SourceOnly	$1 \times$	34.3 ± 2.2	-
ST	$1 \times$	56.3 ± 0.4	-
ST	$4 \times$	55.5 ± 0.4	$\downarrow 0.8$
Naive-FST	$1 \times$	58.7 ± 2.3	$\uparrow 2.3$
Improved-FST	$1 \times$	58.7 ± 0.7	$\uparrow 2.4$
FST-W	$1 \times$	59.3 ± 0.5	$\uparrow 3.0$
FST-D	$1 \times$	59.6 ± 1.4	\uparrow 3.3

Task: SYNTHIA -> Cityscapes

future from same data batch

future from different data batch

Discussing how to implement virtual update, using the same data or different data

Generalization on different backbones

Method	K	mIoU	Δ	Method	K	mIoU	Δ	Method	K	mIoU	Δ
ST	-	55.0 ± 0.9	-	ST	-	56.3 ± 0.4	-	ST	-	56.3 ± 0.8	-
FST	2	56.3 ± 1.0	$\uparrow 1.3$	FST	2	57.8 ± 1.3	$\uparrow 1.5$	FST	2	58.1 ± 3.1	$\uparrow 1.8$
FST	3	56.9 ± 0.5	† 1.9	FST	3	59.8 ± 0.1	$\uparrow 3.5$	FST	3	58.5 ± 0.7	$\uparrow 2.2$
FST	4	56.4 ± 0.9	$\uparrow 1.4$	FST	4	59.7 ± 0.8	$\uparrow 3.4$	FST	4	58.8 ± 1.0	↑ 2.5

(a) DeepLabV2 [11] w/ ResNet-50 [26]. (b) DeepLabV2 [11] w/ ResNet-101 [26].

mIoU

 59.9 ± 2.0

 62.5 ± 1.2

 62.5 ± 1.9

 62.6 ± 1.8

 Δ

 $\uparrow 2.6$

 $\uparrow 2.6$

↑ 2.7

(c) PSPNet [75] w/ ResNet-101 [26].

Task: SYNTHIA -> Cityscapes

Method	fethod K mIoU					
ST	-	61.3 ± 0.7	-			
FST	2	63.7 ± 2.0	$\uparrow 2.4$			
FST	3	64.3 ± 2.3	$\uparrow 3.0$			
FST	4	64.4 ± 2.0	↑ 3.1			

(e) UPerNet [66] w/ BEiT-B [6].

Method K Δ mIoU ST 68.3 ± 0.5 **FST** 69.1 ± 0.3 $\uparrow 0.8$ **FST** $\mathbf{69.3} \pm \mathbf{0.3}$ **† 1.0 FST** 68.8 ± 0.9 $\uparrow 0.5$

(d) UPerNet [66] w/ Swin-B [42].

(f) DAFormer [29] w/ MiT-B5 [67].

K

Method

ST

FST

FST

FST

Superparameter analysis of FST-D and FST-W

Method	Backbone	K	mIoU	Δ
ST	ResNet-101	-	56.3 ± 0.4	-
FST-D	ResNet-101	2	58.6 ± 0.4	$\uparrow 2.3$
FST-D	ResNet-101	3	59.6 ± 1.4	$\uparrow 3.3$
FST-D	ResNet-101	4	59.8 ± 2.0	↑ 3.5

Method	Backbone	N	mIoU	Δ
ST	ResNet-101	-	56.3 ± 0.4	-
FST-W	ResNet-101	2	58.5 ± 1.6	$\uparrow 2.2$
FST-W	ResNet-101	3	59.3 ± 0.5	$\uparrow 3.0$
FST-W	ResNet-101	4	58.6 ± 2.0	$\uparrow 2.3$

Task: SYNTHIA -> Cityscapes

FST-D using different K

K means the steps ahead

FST-W using different N

N means the num of different student ensembled

Semi-supervised semantic segmentation on Pascal VOC 2012

	F	PSPNet [75		Dee	pLabV2 [11]	Dee	pLabV3+	[12]
Method	1/16	1/8	1/4	1/16	1/8	1/4	1/16	1/8	1/4
ST FST (ours)	65.47	72.24 72.77		68.45 69.43	72.54 73.18	76.21 76.32	73.31 73.88	74.20 76.07	77.78 78.10
$\frac{131 \text{ (ours)}}{\Delta}$	l		$0.43 \uparrow $						

UDA semantic segmentation

Method	Road	S.walk	Build.	Wall	Fence	Pole	T.light	Sign	Veget.	Terrain	Sky	Person	Rider	Car	Truck	Bus	Train	M.bike	Bike	mIoU
							GTA	V [48]	ightarrow Ci	ityscap	pes [15	5]								
SourceOnly ProDA [73] CPSL [35] DAFormer [29] FST (ours)	87.8 92.3 95.7	59.9	79.7 84.9 89.4	$\frac{45.7}{53.5}$	44.8 29.7 48.1	45.6 52.8 49.6	53.5 61.5 55.8	53.5 59.5 <u>59.4</u>	88.6 87.9 89.9	45.2 41.5 47.9	$82.1 \\ 85.0 \\ \underline{92.5}$	70.7 73.0 72.2	$39.2 \\ 35.5 \\ \underline{44.7}$	88.8 90.4 92.3	45.5 48.7 74.5		$\begin{array}{c} 2.9 \\ 1.0 \\ 26.3 \\ \underline{65.1} \\ 74.4 \end{array}$	55.9	56.4 53.9 <u>61.8</u>	57.5 60.8
						5	SYNT	HIA [4	49] →	Cityso	capes [[15]								
SourceOnly ProDA [73] CPSL [35] DAFormer [29] FST (ours)	1	$\frac{\overline{43.9}}{40.7}$	85.5	37.1 33.6 41.5	1.3 0.6 0.3 6.5 7.3	<u>50.0</u>	57.4	37.0 37.2 54.6	$\frac{87.8}{86.0}$	- - - -	84.4 88.5 89.8	74.2 79.0	$\begin{matrix} 32.0 \\ \textbf{48.2} \end{matrix}$	90.6 87.2	- - - -	38.1 51.1 49.4 <u>53.2</u> 58.6	- - - -		61.7	

Performance on semi-supervised semantic segmentation

Method	1/16	1/8	1/4
SupOnly [†]	67.87	71.55	75.80
CutMix [†] [18] CCT [47] GCT [32] CPS [13]	$71.66 \\ 71.86 \\ 70.90 \\ \underline{72.18}$	75.51 73.68 73.29 <u>75.83</u>	77.33 76.51 76.66 77.55
FST (ours)	73.88	76.07	78.10

Method	1/16	1/8	1/4
SupOnly [†]	65.74	72.53	74.43
CutMix [†] [18] CCT [47] GCT [32] CPS [13]	67.06 69.32 66.75 70.50	71.83 74.12 72.66 75.71	76.36 75.99 76.11 77.41
FST (ours)	71.03	<u>75.36</u>	76.61

(b) Cityscapes [15].

All competitors are methods with improvement on basic framework. With any improvement tricks like strong data augmentation or contrastive learning.

⁽a) PASCAL VOC 2012 [17].

Effect of FST on improving pseudo-label quality and performance.

Visualization

