Stochastic Finance (M3, 2016–17) Mid-term Exam Mar 23, 2017

BM stands for Brownian motion. RN and RV stand for random number and random variable respectively.

1. [4 points] Standard BM

If B_t is a standard BM, determine whether each of the followings is a standard BM or not. Provide a brief reason for your answer.

- (a) $4B_{t/2}$
- (b) $tB_{1/t}$ with $B_0 = 1$
- (c) $2(B_{1+t/4} B_1)$
- (d) $\sqrt{t}Z$ for a standard normal RV Z

2. [2 points] Martingale related to BM

If B_t is a standard BM, find the value of the coefficient λ in order for each of the following expressions to be a martingale.

- (a) $B_{at}^2 \lambda t$
- (b) $\exp(-B_{at} + \lambda t)$

3. [3 pts] Average of BM path

If B_t for $0 \le t \le 1$ is a standard BM, what is the distribution of the average of the BM values observed at three different times, T = 1/3, 2/3 and 1,

$$A = \frac{1}{3} \left(B_{\frac{1}{3}} + B_{\frac{2}{3}} + B_1 \right)?$$

Please make sure to provide the mean and the standard deviation of the distribution.

4. [8 points] Generating RNs for correlated BMs

Throughout this problem, assume that X_t and Y_t are two independent standard BMs.

(a) Other than the examples we covered in the class, there are many ways to create standard BMs. A linear combination of the two BMs with the coefficients a and b,

$$W_t = aX_t + bY_t$$

is also a BM. (No need to prove it.) What is the condition for a and b under which W_t is a **standard** BM.

- (b) What is the correlation between X_t and W_t ? We have not defined the correlation of two BMs yet, so simply compute the correlation of the two distributions of the BMs at t = 1, i.e, X_1 and W_1 . (In fact, the correlation is same for any time t.) You do not have to use the answer of (a).
- (c) Assume that $\{z_k\}$ for $k=1,2,\cdots$ is a sequence of standard normal RVs, i.e., N(0,1), which are generated from computer (e.g., using Box-Muller algorithm). Use $\{z_k\}$ to generate RNs for X_t for a fixed time t.

(d) Assume that we have two standard BMs, X_t and W_t , which have correlation ρ . How can you generate the pairs of RNs for X_t and W_t for a fixed time t?

5. [3 points] Wald's equation

When $\{X_k\}$ are independent identically distributed random variable and N is a random variable taking positive integer values, Wald's equation says

$$E(X_1 + X_2 + \cdots + X_N) = E(N) E(X_1)$$

if either (i) N is independent from $\{X_k\}$ or (ii) N is a stopping time with respect to $\{X_k\}$.

Consider an example where $X_k = 0$ or 1 with 50% and 50% probability and N is given as

$$N = X_2 + 1.$$

Obviously, $E(X_k) = 1/2$ and E(N) = 1/2 + 1 = 3/2. Find $E(X_1 + X_2 + \cdots + X_N)$ and explain why Wald's equation does not hold in this example. If N is given instead as

$$N = X_1 + 1,$$

does Wald's equation hold? Is N a stopping time?

- 6. [5 points] Please circle the most appropriate item to you in each of the following questions.
 - (a) The difficulty of this course is (i) easy (ii) appropriate (iii) difficult.
 - (b) Compared to the other required courses in the 1st year, the load of this course is (i) lower (ii) similar (iii) higher.
 - (c) If this course was **not** a required course, you would (i) still register (ii) not register.
 - (d) Professor's preparation for the course and communication with students are (i) satisfactory (ii) acceptable (iii) unsatisfactory.
 - (e) To your opinion (not professor's), this course is going to be (i) useful (ii) not useful for your future career path.