

Written exam IE1206 Embedded Electronics IF1330 Electrical principles Friday 1/6 2018 08.00-12.00

General Information

Examiner: Carl-Mikael Zetterling

Responsible teacher at exam: Saul Rodriguez Duenas 076-118 84 80 or

Panos Chaourani 073-145 49 42

All sheets that are handed in need **your name and personal number** written on them. **Mark every sheet** with the **problem it deals** with.

You cannot have more than one problem per sheet.

Aids: Calculator

The exam consists of 8 problems (5 points each) distributed over the 4 modules in the course:

Module 1: problem 1 and 2

Module 2: problem 3 and 4 Module 3: problem 5 and 6

Module 4: problem 7 and 8

To **pass the exam** requires at least **2 points** from each module and preliminary **20 points** in total. **Grades** are given as follows:

Points	<20	20-23	24-27	28-31	32-35	36-40
Grades	F	Е	D	С	В	A

The result will be announced before Thursday 21/6 2018.

1. The electrical power consumed in R_2 is 9 mW. What is the power in the voltage source V_A ? R_1 =2 k Ω , R_2 =1 k Ω , R_3 =10 k Ω , V_A =5 V, I_B =2 mA.

2. Determine the Norton equivalent circuit seen at A-B. $V_o\!\!=\!6~V,\,R_1\!\!=\!\!40~k\Omega,\,R_2\!\!=\!40~k\Omega,\,R_3\!\!=\!5~k\Omega,\,I_Q\!\!=\!\!0.1~mA.$

3. The Si diode has a threshold voltage V_T =0.7 V. I_o =2.05 mA, R_1 = 10 k Ω , R_2 = 2 k Ω . Determine the current I_2 .

4. Assume the operational amplifier is ideal. R_1 =10 k Ω , R_2 =5 k Ω , R_3 =2 k Ω .

- (A) Assuming operation in the linear region express V_{OUT} as a function of R_4 .
- (B) What resistance values are allowed for R_4 , be in order for the operational amplifier to operate in the linear region?

5. The switch has been closed for a long time. At t=0 s the switch opens. Determine the voltage V_C over the capacitor at t=3 μ s. V_o =5 V, V_1 =3 V, R_o =6 $k\Omega$, R_1 =3 $k\Omega$, C=1 nF.

6. The switch has been closed for a long time. At t=3 μ s the switch opens. Determine the time when the voltage V_L over the inductor is -5 V. V_o =10 V, R_o =1 $k\Omega$, R_1 =1 $k\Omega$.

7. Determine the steady state Thevenin equivalent circuit seen at A-B. Express V_{TH} as a function of time. $v_s(t)=4cos(\omega t+30^\circ)$ V, $\omega=\sqrt{3}\cdot 10^6 rad/s$. R=1 k Ω , C=1 nF, L=0.25 mH.

- 8. For the circuit below: $v_{in}(t)=10\cos(\omega t)$ V, R=10 k Ω , C=100 nF, L=10 μ H
 - (A) Is the circuit a band-pass or a band-reject filter? Motivate your answer.
 - (B) Determine $v_{out}(t)$ at the resonance frequency $\omega_o = \sqrt{\frac{1}{LC}}$
 - (C) What is the current $i_C(t)$ through the capacitor at the resonance frequency?

