Алгоритмические композиции

Задача 1. Рассмотрим семейство алгоритмов вида $a(x) = \text{sign}(\alpha_0 + \alpha_1 f_1(x) + \dots + \alpha_k f_k(x))$, где f_1, \dots, f_k — правила Decision Stump. Можно ли с помощью алгоритма из этого семейства выделить квадрат на плоскости $\{(x^1, x^2)|0 < x^1 < 1, 0 < x^2 < 1\}$?

Задача 2. Рассмотрим семейство алгоритмов вида $a(x) = \text{sign}(f_1(x^1) + f_2(x^2) + \dots + f_n(x^n)),$ где $x = (x^1, x^2, \dots, x^n)$, а f_1, f_2, \dots, f_n — произвольные одномерные функции. Любое ли открытое множество в \mathbb{R}^n можно описать алгоритмом из этого семейства?

Задача 3. Рассмотрим выборку, изображенную на рисунке 1, где «х» и «о» обозначают объекты положительного и отрицательного классов. Будем обучать на этой выборке алгоритм AdaBoost, в котором в качестве базовых алгоритмов выступают Decision Stump.

- 1. Нарисуйте разделяющую поверхность первого построенного базового алгоритма. Отметьте «положительную» и «отрицательную» полуплоскости.
- 2. Какой объект будет иметь самый большой вес после первой итерации? Чему равен этот вес?
- 3. Чему равно значение функционала взвешенной ошибки для первого базового алгоритма после пересчета весов объектов? (Требуется посчитать явно, пользоваться задачей 4 нельзя.)
- 4. Нарисуйте разделяющую поверхность второго построенного базового алгоритма. Отметьте «положительную» и «отрицательную» полуплоскости.
- 5. Можно ли подобрать веса α_1, α_2 для двух уже построенных базовых алгоритмов так, чтобы композиция из этих алгоритмов с такими весами была корректна на обучающей выборке?

Рис. 1.

Задача 4. Чему на каждой итерации алгоритма AdaBoost равно значение функционала взвешенной ошибки для базового алгоритма, добавленного на этой итерации, после пересчета весов объектов.

Задача 5. Сформулировать и выписать решение бустинга для задачи регрессии.

Задача 6. Сформулировать и выписать решение бустинга для задачи многоклассовой классификации.