Jeff Ford

Introduction

Main Theorer

Theorem :

i ilcorciii i

Proof of Main

Example

Visualizing the Wilson Plug

Jeff Ford

Auburn University jmf0032@auburn.edu

June 23, 2015

Overview

Introduction

Main Theore

I heorem

Proof of Mai

Evample

- 1 Introduction
- 2 Main Theorem
- 3 Theorem 1
- 4 Theorem 2
- **5** Proof of Main Theorem
- **6** Example

Jeff Ford

Introduction

Main Theore

Theorem

Theorem 2

Proof of Mai Theorem

Exampl

Motivation

In 1966, F.W. Wilson published a paper describing a method for modifying a C^{∞} vector field on a n-manifold with zero Euler characteristic. This was done in such a way that the minimal sets of the new vector field were a finite collection of (n-2)-tori. We investigate this construction, and see how it can be rendered visually by a computer, in a simple 3-dimensional case.

Introduction

Main Theorem

Theorem

Theorem 2

Proof of Ma

Exampl

Global definitions

- M^n will refer to a paracompact C^{∞} n-manifold, possibly with boundary, with zero Euler characteristic.
- F will refer to a non-singular vector field on M^n .
- $B^n = \{(x_1, x_2, \dots, x_{n-2}, r, \theta) : |x_i| \le 1, r \in [0, 1], \theta \in [0, 2\pi]\}$

Jeff Ford

Introduction

Main Theorem

Theorem

Theorem 2

Proof of Mai

Exampl

Main Theorem

Let F be a non-singular vector field on M^n with N a submanifold of M^n (dim N < n), to which F is transverse. Then for each integer $k \in [0, n-2]$, there is a C^{∞} vector field G on M^n which coincides with F near N and whose only limit sets are a denumerable collection of invariant k-tori, of which at most a finite number are contained in any compact subset of M^n .

Jeff Ford

Introduction

Main Theorem

Theorem

Theorem:

Proof of Ma Theorem

Exampl

Corollary

If M^n is a compact manifold with boundary, and F is a non-singular vector field on M^n transverse to the boundary, then there is a vector field G on M^n , which coincides with F near ∂M^n , and which has a finite collection of invariant (n-2)-tori as it's only limit sets.

Theorem 1

Proof of Ma

Example

Flow boxes

A flow box is a closed n-cell U and a diffeomorphism $h: B^n \to U$, with closed n-1 cells βU (the bottom), τU (the top) and σU (the sides), with F transverse inwards on βU , transverse outwards on τU , tangent to σU , and parallel throughout the interior of U.

- h must be transverse to F when restricted to the bottom of Bⁿ.
- Let ψ_t be the flow on U induced by F, and φ_t be the constant flow on B^n .
- There exists a positive c such that $\psi_{ct} \circ h(x) = h \circ \varphi_t(x)$
- We will generally omit h, and focus on the set U.

Jeff Ford

Introduction

Introduction

Theorem 1

i neorem .

Proof of M

Example

Flow boxes

If V is a subflow box, with $\beta V \subset \beta U$, $\tau V \subset \tau U$ and $\sigma V \subset Int U$, V is a *shrinkage* of U.

Jeff Ford

Introduction

Introduction

Theorem 1

i neorem .

Proof of M

Example

Flow boxes

If V is a subflow box, with $\beta V \subset \beta U$, $\tau V \subset \tau U$ and $\sigma V \subset Int U$, V is a *shrinkage* of U.

Jeff Ford

Introduction

Introduction

Theorem 1

Proof of Ma Theorem

Exampl

Flow boxes

If $S \subset M^n$, S saturates M^n if every trajectory of F intersects S both positively and negatively.

Example

Flow boxes

If $S \subset M^n$, S saturates M^n if every trajectory of F intersects S both positively and negatively.

$$\dot{x} = -2x - 3y \ \dot{y} = 3x - 2y$$

Example

Flow boxes

If $S \subset M^n$, S saturates M^n if every trajectory of F intersects S both positively and negatively.

$$\dot{x} = -2x - 3y \ \dot{y} = 3x - 2y$$

Jeff Ford

Introduction

Main Theore

Theorem 1

Proof of Ma Theorem

Exampl

Theorem 1

Let N be a submanifold of M^n (with dimension < n, and possibly with boundary), to which F is transverse. Then there exists two families of flow boxes, $\{U_i\}$ and $\{V_i\}$, such that

- **1** The U_i are disjoint, and do not intersect N.
- 2 For each i, V_i is a shrinkage of U_i .
- 3 Each compact subset of M^n intesects only a finite number of the U_i .
- **4** $\bigcup V_i$ saturates M^n .

Jeff Ford

Introduction

Main Theore

Theorem 1

Theorem 2

Proof of Ma Theorem

Exampl

Lemma 1.1

If X is compact and $\{U_i\}$ is an open cover of X, then there exists $\epsilon > 0$ such that any family $\{V_i\}$ of open sets with $d_H(X \setminus U_i, X \setminus V_i) < \epsilon$, covers X, where d_H indicates the Hausdorff distance.

Jeff Ford

Introduction

Main Theore

Theorem 1

T. 0

Proof of Ma Theorem

Exampl

Lemma 1.2

If X is σ -compact, and $\{U_i\}$ is a relatively compact open cover of X, then there is a continuous positive function $\varphi:X\to\mathbb{R}$, such that any family of open sets $\{V_i\}$ with $d_H(X\setminus U_i,X\setminus V_i)\leq \min \{\varphi|\overline{U_i}\}$ covers X.

Jeff Ford

Introduction

Main Theore

Theorem 1

Theorem 2

Proof of Ma Theorem

⊏xampı

Lemma 1.3

Let U be a flow box for F on M^n , and let N be the union of a finite collection of submanifolds with boundary, each with dimension less than n, to which F is transverse. Let W be a given neighborhood of U. Then there is a finite family of flow boxes in W whose interiors cover U, and whose tops and bottoms are disjoint from one another and from N.

Jeff Ford

Introduction

Main Theore

Theorem 1

Proof of Ma

THEOTEIN

Exampi

Lemma 1.4

Suppose that $\partial M^n = \emptyset$ and N is a submanifold of M^n , to which F is transverse. Then there is a covering of M^n by the interiors of a family of flow boxes satisfying:

- The tops and bottoms are disjoint from one another and from N.
- Only a finite number intersect any compact subset of M^n .

Jeff Ford

Introduction

Main Theore

Theorem 1

Theorem 2

Theorem

Exampl

Lemma 1.4

Suppose that $\partial M^n = \emptyset$ and N is a submanifold of M^n , to which F is transverse. Then there is a covering of M^n by the interiors of a family of flow boxes satisfying:

- The tops and bottoms are disjoint from one another and from N.
- Only a finite number intersect any compact subset of M^n .

If $\partial M^n \neq \emptyset$, sew a collar along the boundary of M^n to create a new manifold, M^* . Let $N = \partial M^n \subset M^*$, and the lemma holds.

leff Ford

Theorem 1

Sketch of proof of Theorem 1

• Let $\{W_i\}$ be a family of flow boxes, with tops and bottoms disjoint from each other and from N, and only a finite number of which intersect each compact subset of M^n , as in Lemma 1.4.

Jeff Ford

Theorem 1

Theorem :

Proof of Ma

Exampl

- Let $\{W_j\}$ be a family of flow boxes, with tops and bottoms disjoint from each other and from N, and only a finite number of which intersect each compact subset of M^n , as in Lemma 1.4.
- Let $\{Y_j\}$ be a cover of M^n , made up of shrinkages of each $\{W_j\}$, as in Lemma 1.2.

Jeff Ford

Introduction

Main Theore

Theorem 1

i neorem .

Proof of Ma

Exampl

- Let $\{W_j\}$ be a family of flow boxes, with tops and bottoms disjoint from each other and from N, and only a finite number of which intersect each compact subset of M^n , as in Lemma 1.4.
- Let $\{Y_j\}$ be a cover of M^n , made up of shrinkages of each $\{W_j\}$, as in Lemma 1.2.
- Let ψ_t be the flow induced by the restriction of F to W_i .

Introduction

Main Theore

Theorem 1

Proof of M

Exampl

- Let {W_j} be a family of flow boxes, with tops and bottoms disjoint from each other and from N, and only a finite number of which intersect each compact subset of Mⁿ, as in Lemma 1.4.
- Let $\{Y_j\}$ be a cover of M^n , made up of shrinkages of each $\{W_j\}$, as in Lemma 1.2.
- Let ψ_t be the flow induced by the restriction of F to W_i .
- Choose ϵ_j such that the families $\{U_i\}$ and $\{V_i\}$ are disjoint, where

Jeff Ford

Theorem 1

Theorem 1

Proof of M Theorem

Example

- Let {W_j} be a family of flow boxes, with tops and bottoms disjoint from each other and from N, and only a finite number of which intersect each compact subset of Mⁿ, as in Lemma 1.4.
- Let $\{Y_j\}$ be a cover of M^n , made up of shrinkages of each $\{W_j\}$, as in Lemma 1.2.
- Let ψ_t be the flow induced by the restriction of F to W_i .
- Choose ϵ_j such that the families $\{U_i\}$ and $\{V_i\}$ are disjoint, where
 - $U_i = \{ \varphi_t | x \in \tau W_i \text{ and } |t| \le \epsilon_i \}$
 - $U_{-i} = \{ \varphi_t | x \in \beta W_i \text{ and } |t| \le \epsilon_i \}$
 - $V_i = \{ \varphi_t | x \in \tau Y_i \text{ and } |t| \le \epsilon_i \}$
 - $V_{-i} = \{ \varphi_t | x \in \beta Y_i \text{ and } |t| \le \epsilon_j \}$

Jeff Ford

Introduction

Main Theore

Theorem 1

Theorem 3

Proof of Ma Theorem

Exampl

Sketch of proof of Theorem 1

Then the U_i are disjoint and do not intersect N, each V_i is a shrinkage of U_i , only finitely many U_i intersect each compact subset of M^n , and as $\{Y_i\}$ covers M^n and Y_i is saturated by $\tau Y_i \cup \beta Y_i$, $\bigcup V_i$ saturates M^n . Theorem 1 follows.

Example

Mirror-image property

- If U is a flow box, let U_0 be a central hyperplane. A vector field F on U has the *mirror-image property* if the flow on the bottom half of U is the negative of the reflection of the flow on the top half of U.
- Let $F(x_1,...,x_n) = f_1 \frac{\partial}{\partial x_1} + \cdots + f_n \frac{\partial}{\partial x_n}$, then

$$f_1(x_1,\ldots,x_n)=f_1(-x_1,\ldots,x_n)$$

$$f_i(x_1,...,x_n) = -f_i(-x_1,...,x_n) \text{ for } i = 2,...,n.$$

Wilson Plug Jeff Ford

Main Theorem

Theorem :

Theorem 2

Proof of Ma Theorem

Example

Mirror-image property

Jeff Ford

Introduction

Main Theore

Theorem 1

Theorem 2

Proof of Mai

Example

Mirror-image property

Exampl

Theorem 2

Let U be a flow box of F and V a shrinkage of U. Then for each integer $k \in [0, n-2]$, there is a vector field F^k on U, satisfying

- 1 F^k coincides with F on a neighborhood of the boundary of U.
- 2 The only limit sets of F^k are a finite collection of invariant k—tori on which the restricted flow is minial.
- 3 Every trajectory of F^k which intersets $\tau V(\beta V)$ has its α -limit(ω -limit) set in U.
- $oldsymbol{4} F^k$ satisfies the mirror-image property.

Such a vector field F^k is called a k-annihilator for (U, V).

Jeff Ford

Introduction

Theorem 1

Theorem 2

Proof of Ma

Example

Special 0-annihilators

An annihilator on an n-dimensional flow box, which has as it's limit sets exactly 4 singular points, with Morse indices 0, 1, n-1 and n.

Jeff Ford

Introduction

Main Theore

Theorem

Theorem 2

i neorem

Example

Sketch of proof of Theorem 2

Begin with a flow box (U,h), and a shrinkage V of U which is disjoint from the image of the axis of B^n . Construct a special 0-annihilator system on a cross section of B^n homeomorphic to B^{n-1} , where all trajetories passing through are within some ϵ of the sides and the axis of B^n . Denote this F^t . Construct a field F^n , which is zero on a neighborhood of the axis of B^n and the boundary of B^n , which is ± 1 near the singular points of F^t , and which satisfies the mirror image property.

Jeff Ford

14 · TI

Theorem

Theorem 2

Proof of Mai Theorem

Example

Sketch of proof of Theorem 2

Then $F = F^t + F^n$ satisfies the mirror image property, and each of the 4 singular points of F^t gives one periodic orbit in F. Then F is a special 1-annihilator system on B^n , and it's image under h is a 1-annihilator system on (U, V).

In higher dimensions, assume the existence of a k-2-annihilator, and proceed by induction.

Jeff Ford

Introduction

Main Theore

Theorem

Proof of Main

Theorem

Example

Proof of Main Theorem

Let $\{U_i\}$ and $\{V_i\}$ be familes of flow boxes as in Theorem 1. Into each U_i , glue a k-annihilator system for (U_i, V_i) , with the new vector field denoted G. If follows from the mirror-image property and the saturation property of $\bigcup V_i$ that any G-trajectory eventually enters some V_j positively and some V_l negatively. This trajectory must have it's α and ω limit sets as k-tori in U_j and U_l . Since only a finite number of the U_i intersect each compact subset of M^n , only a finite number of k-tori exist as limit sets of G.

Jeff Ford

Introduction

Main Theorer

Theorem

Theorem 2

Proof of M Theorem

Example

Flow on a solid torus

Let F be a non-singular vector field on M^n with N a submanifold of M^n (dim N < n), to which F is transverse.

Jeff Ford

Introduction

Main Theorem

Theorem

Theorem

Theorem

Example

Flow on a solid torus

- Discretize the torus
- Construct differential equations for the flow
- Render the flow in Sage

```
S^1 \times S^1
 Jeff Ford
              [(3,0,0),(\cos(1/10*\pi)+2,0,1/4*\sqrt{(5)}-1/4),(1/4*
               \sqrt{(5)} + 9/4, 0, \sin(1/5 * \pi), (\cos(3/10 * \pi) + 2, 0, 1/4 * \sqrt{(5)} + 1/4)
              1/4), (1/4 * \sqrt{(5)} + 7/4, 0, \sin(2/5 * \pi)), (2, 0, 1), (-1/4 * \sqrt{(5)} + 7/4, 0, \sin(2/5 * \pi))
               \sqrt{(5)} + 9/4, 0, \sin(3/5 * \pi), (\cos(7/10 * \pi) + 2, 0, 1/4 * \sqrt{(5)} + 1/4)
              1/4, (-1/4 * \sqrt{(5)} + 7/4, 0, \sin(4/5 * \pi)), (\cos(9/10 * \pi) +
              (2,0,1/4*\sqrt{(5)}-1/4),(1,0,0),(\cos(11/10*\pi)+2,0,-1/4*)
Example
              \sqrt{(5)} + 1/4, (-1/4 * \sqrt{(5)} + 7/4, 0, \sin(6/5 * \pi)), (\cos(13/10 * \pi))
              (\pi) + 2, 0, -1/4 * \sqrt{(5)} - 1/4), (-1/4 * \sqrt{(5)} + 9/4, 0, \sin(7/5) *
              (\pi)), (2,0,-1), (1/4*\sqrt{(5)}+7/4,0,\sin(8/5*\pi)), (\cos(17/10*)
              \pi) + 2, 0, -1/4 * \sqrt{(5)} - 1/4), (1/4 * \sqrt{(5)} + 9/4, 0, \sin(9/5) *
              (\pi)), (\cos(19/10*\pi) + 2, 0, -1/4*\sqrt{(5) + 1/4}), (3*\cos(1/10*\pi))
              \pi), 3/4*\sqrt{(5)}-3/4, 0), ((\cos(1/10*\pi)+2)*\cos(1/10*\pi), 1/4*
              (\sqrt{(5)}-1)*(\cos(1/10*\pi)+2), 1/4*\sqrt{(5)}-1/4), (1/4*(\sqrt{(5)}+
              9) * \cos(1/10 * \pi), 1/16 * (\sqrt{5}) + 9) * (\sqrt{5}) - 1, \sin(1/5 * \pi)
              (\pi)), ((\cos(3/10*\pi) + 2)*\cos(1/10*\pi), 1/4*(\sqrt{(5)} - 1)*
              (\cos(3/10*\pi)+2), 1/4*\sqrt{(5)}+1/4), (1/4*(\sqrt{(5)}+7)*
              \cos(1/10*\pi), 1/16*(\sqrt(5)+7)*(\sqrt(5)-1), \sin(2/5*\pi)), (2*
```

Jeff Ford

Introduction

Main Theore

Theorem

Theorem 2

Proof of Mair

Example

Parametric surface vs. Mesh

Jeff Ford

Introduction

Main Theorem

Theorem

Theorem

Proof of Ma

Example

Parametric surface vs. Mesh

Jeff Ford

Introduction

NA CONTRACTOR

Theorem '

Th.

Proof of Ma

Example

Parametric surface vs. Mesh

Jeff Ford

Introduction

Main Theorem

Theorem 1

Theorem

Proof of N

Example

Parametric surface vs. Mesh

Jeff Ford

Example

Periodic flow

$$\dot{x} = -y$$
 $\dot{y} = x$

$$\dot{y} = x$$

$$\dot{z}=0$$

Jeff Ford

Example

Periodic flow

$$\dot{x} = -y$$
 $\dot{y} = x$

$$\dot{y} = x$$

$$\dot{z}=0$$

Example

Periodic flow

$$\dot{x} = -y$$
 $\dot{y} = x$

$$\dot{y} = x$$

$$\dot{z}=0$$

Jeff Ford

Introduction

Main Theorem

Theorem

Proof of Ma Theorem

Example

- Let M^n be a solid torus, and $N = \partial M^n$, and F the periodic flow.
- ullet A gluing of the cylinder into the torus gives a flow box U.

Wilson Plug Jeff Ford

Main Theorem

Theorem

Proof of Ma

Theorem

Example

- Let M^n be a solid torus, and $N = \partial M^n$, and F the periodic flow.
- A gluing of the cylinder into the torus gives a flow box U.
- For each $p \in (U \setminus N)$, choose subflow box V_p , with horizontal top and bottom disjoint from N.

Wilson Plug Jeff Ford

Introduction

Main Theore

Theorem

Proof of Ma Theorem

Example

- Let M^n be a solid torus, and $N = \partial M^n$, and F the periodic flow.
- A gluing of the cylinder into the torus gives a flow box U.
- For each $p \in (U \setminus N)$, choose subflow box V_p , with horizontal top and bottom disjoint from N.
- Do the same for $p \in (U \cap N)$, which can occur since F is transverse to N.

Jeff Ford

Introduction

ivialii i lieore

Theorem

Proof of Ma Theorem

Example

- Let M^n be a solid torus, and $N = \partial M^n$, and F the periodic flow.
- A gluing of the cylinder into the torus gives a flow box U.
- For each $p \in (U \setminus N)$, choose subflow box V_p , with horizontal top and bottom disjoint from N.
- Do the same for $p \in (U \cap N)$, which can occur since F is transverse to N.
- The set of all V_p covers M^n , and so does a finite set V_1, \ldots, V_m .

Jeff Ford

Introduction

Main Theore

Theorem

Proof of Ma Theorem

Example

- Let M^n be a solid torus, and $N = \partial M^n$, and F the periodic flow.
- A gluing of the cylinder into the torus gives a flow box U.
- For each $p \in (U \setminus N)$, choose subflow box V_p , with horizontal top and bottom disjoint from N.
- Do the same for $p \in (U \cap N)$, which can occur since F is transverse to N.
- The set of all V_p covers M^n , and so does a finite set V_1, \ldots, V_m .
- Since the tops and bottoms are horizontal, let $V_i = [a_i, b_i] \times D^1$.

Example

- Let M^n be a solid torus, and $N = \partial M^n$, and F the periodic flow.
- A gluing of the cylinder into the torus gives a flow box U.
- For each $p \in (U \setminus N)$, choose subflow box V_p , with horizontal top and bottom disjoint from N.
- Do the same for $p \in (U \cap N)$, which can occur since F is transverse to N.
- The set of all V_p covers M^n , and so does a finite set V_1, \ldots, V_m .
- Since the tops and bottoms are horizontal, let $V_i = [a_i, b_i] \times D^1$.
- Define $U_i = [a_i c_i, b_i + d_i] \times D^1$
- For appropriate small choices of c_i and d_i , the boxes will have disjoint tops and bottoms.

e de la companya de

Main Theorem

Theorem

Theorem

Proof of M Theorem

Example

Modifying the vector field

Then for each integer $k \in [0, n-2]$, there is a C^{∞} vector field G on M^n which coincides with F near N and whose only limit sets are a denumerable collection of invariant k-tori, of which at most a finite number are contained in any compact subset of M^n .

Jeff Ford

Introduction

Main Theorem

Theorem

Theorem

Theorem

Example

Modifying the vector field

- Construct a 0-annihilator on B²
- Extend the 0-annihilator on B^2 to a 1-annihilator on B^3

Jeff Ford

Introduction

Therman

I heorem

Proof of Mai

Example

0-annihilator on B^2

Starting with $B^2=[-1,1]^2$, construct a field with 4 singular points, with appropriate Morse indicies. It's easy to choose (0,-1/2) as a sink, (0,-1/4) and (0,1/4) as saddles, and (0,1/2) as a source.

Jeff Ford

Introduction

Theorem :

I heorem 1

Proof of Mai Theorem

Example

0-annihilator on B^2

Starting with $B^2=[-1,1]^2$, construct a field with 4 singular points, with appropriate Morse indicies. It's easy to choose (0,-1/2) as a sink, (0,-1/4) and (0,1/4) as saddles, and (0,1/2) as a source.

Example

0-annihilator on B^2

A system that works is

$$\dot{x} = (x^2 - 1)(y^2 - 1)xy$$

$$\dot{y} = (x^2 + (y - 3/8)^2 - 1/64)(x^2 + (y + 3/8)^2 - 1/64)$$

Jeff Ford

Introduction

I heorem

Proof of Ma

Example

0-annihilator on B^2

A system that works is

$$\dot{x} = (x^2 - 1)(y^2 - 1)xy$$

$$\dot{y} = (x^2 + (y - 3/8)^2 - 1/64)(x^2 + (y + 3/8)^2 - 1/64)$$

Jeff Ford

Introduction

Main Theorem

Theorem

Theorem 3

Proof of Ma Theorem

Example

1-annihilator on B^3

Begin with the 0-annihilator on B^2 described above, then construct a new field, which is zero on the boundary and axis of B^3 , and ± 1 in the ϵ -neighborhood of the singular points of the 0-annihilator.

Jeff Ford

Introduction

Main Theorem

Theorem

Proof of Ma

Example

1-annihilator on B^3

$$h(x) = \begin{cases} e^{-\frac{1}{1+x^2}} & \text{if} & |x| < 1\\ 0 & \text{otherwise} \end{cases}$$

$$v_1(r) = \begin{cases} h(r-1) & \text{if} & r \in [0,1]\\ h(1-r) & \text{otherwise} \end{cases}$$

$$v_2(z) = \begin{cases} h(1-4z) & \text{if} & z \in [0,1/4]\\ h(8z-2) & \text{if} & z \in [1/4,3/8]\\ 1-h(|3-8z|) & \text{if} & z \in [3/8,1/2]\\ h(2z-1) & \text{otherwise} \end{cases}$$

Introduction

Main Theorer

Theorem

Theorem 2

Theorem

Example

Let Y denote the 0-anihilator on B^2 . For our vector field, if $z \ge 0$, we use

$$G = (v_1(r)v_2(z)y + Y(r,z), v_1(r)v_2(z)x + Y(r,z), g(r,z))$$

otherwise, use

$$G = (-v_1(r)v_2(|z|)y + Y(r,z), -v_1(r)v_2(|z|)x + Y(r,z), g(r,z))$$

Jeff Ford

Introduction

Main Theorem

Theorem

Theorem '

Proof of Ma

Example

1-annihilator on B^3

Wilson Plug Jeff Ford

Introduction

Main Theorem

Theorem

Theorem 2

Theorem

Example

leff Ford

Example

A rest point free dynamical system on \mathbb{R}^3 with uniformly bounded trajectories

References

Fund. Math. 114 (1981), 229-234

K. Kuperberg and C. Reed

S. Lefschetz

Differential Equations: Geometric Theory, Second Edition Dover Phoenix Editions, New York (1963)

I. Tamura

Topology of Foliations: An Introduction AMS Translations of Mathematical Monographs, Providence (1992)

F. W. Wilson

On the minimal sets of non-singular vector fields Ann. of Math. 84, (1966), 529-536.

Jeff Ford

Introduction

Main Theore

Theorem 1

Theorem:

Proof of Mai

Example

Questions?