Generalize: Class size N (and N-sided die) sample of $n \leq N$ students

$$\mathbb{E}[T_n] = \sum_{i=1}^n \mathbb{E}[T_i] = \sum_{i=1}^n \frac{1}{iN} = N\sum_{i=1}^n \frac{1}{i}$$

Each interval is geometrically distributed $\mathbb{P}\left(T_{i}=t\right)=\frac{i}{N}\left(1-\frac{i}{N}\right)^{t_{i}-1}$

$$P(t_3) \sim \frac{i}{N} e^{-\frac{i}{N}t_3}$$
 = approx. exponential dist.

(ontinois)

Memoryless:
$$P(t_i | t_{i+1}) = P(t_i)$$

Cole-escent theory

Cole-escent theory

Generalize: Class size N (and N-sided die) sample of $n \leq N$ students

$$\mathbb{E}[T_n] = \sum_{i=1}^{n} \mathbb{E}[T_i] = \sum_{i=1}^{n} \frac{1}{iN} = N \sum_{i=1}^{n} \frac{1}{i}$$

Each interval is geometrically distributed $P(T_i = it) = \frac{i}{N} \left(1 - \frac{i}{N}\right)^{t_i-1}$ For large N: $P(t_i) \simeq \frac{i}{N} e^{-\frac{i}{N}t_i} \Rightarrow approx. expansional dist.$ Memoryluss:

P(t_i) $\simeq \frac{i}{N} e^{-\frac{i}{N}t_i}$ Continuous

Memoryluss:
$$P(t_i|t_{i+1}) = P(t_i)$$

Coalescent theory

Only slightly fancier

		Cole-escent	coalescent	
,	time	classes into the future	generations into the past	
	events	dice rolls, one student	coalescences, pairs of individuals	
V	rate of events v/; individuals	i Students uncalled N Class size		#pairs