

Course Project

Housing Price Prediction

[1]. Wang Tianqi 1401213465

[2]. Matta Uma Maheswara Reddy 1601213442

- * Data Description
- * Feature Engineering
- * Regression Models
- * Conclusion

Data Description

- Variable to be predicted: SalePrice
- Dataset Size
- * Train: 1460 Test: 1458
- * Features
- * Numerical: 36 Categorical: 43
- * Metrics
- Root-Mean-Squared-Error (RMSE)
- * Goal
- * To predict the SalePrice and minimize the RMSE

Data Description

* Numerical

Variable	Description		
GrLivArea	Above grade (ground) living area square feet		
YearBuilt	Original construction date		
TotRmsAbvGrd	Total rooms above grade (does not include bathrooms)		
LotArea	Lot size in square feet		
1stFlrSF	First Floor square feet		
FullBath	Full bathrooms above grade		
TotRmsAbvGrd	Total rooms above grade (does not include bathrooms)		
Fireplaces	Number of fireplaces		

* Categorical

Variable	Description		
OverallQual	Rates the overall material and finish of the house		
Overallcond	Rates the overall condition of the house		
MSZoning	Identifies the general zoning classification of the sale		
Utilities	Type of utilities available		
HouseStyle	Style of dwelling		
Exterior1st	Exterior covering on house		
Foundation	Type of foundation		
Heating	Type of heating		

Feature Engineering

Missing Value

- Five features have over 50%
 missing values, so we delete
 those features
- * Replace the numeric missing value (Nan) with mean of their column

Feature Engineering

- Categorical Features
 - Create dummy variables
- Numerical Features
- Unskew some those highly skewed features (Skewness>1)
- ♦ SalePrice → Log Transformation

Feature Engineering

Correlation Analysis

* Feature Reduction

- * Manually pick five features
- * PCA
- * Regularization

Regression Models

- Linear Regression
- Decision Tree Regression
- * Random Forest Regression
- Gradient Boosting Regression
- Linear Regression with Regularization
- Lasso; Ridge;

Regression Models

Model	All Feature	PCA	Selected Feature
Linear Regression	0.1652	0.1495	0.1834
Gradient Boosting	0.1253	0.1743	0.1857
Decision Tree	0.2051	0.2858	0.2499
Random Forest	0.1529	0.2083	0.1962
Ridge	0.1273	0.1495	0.1834
Lasso	0.1231	0.1492	0.1834

Conclusion

* The best fit model is Lasso with all features, the model eventually picked 110 variables and eliminated the other 178 variables

* Potential Improvement

- Use GridSearchCV to better fit our parameters
- * Go deeper about feature engineering
- * Further process about outliers