2006 年计算机数学基础

二、集合论与图论部分

1. 是。

证明: 首先证明对任何集合 X,Y,有 $Y = (X \cup Y) - (X - Y)$ 。这是因为:

$$Y = \varnothing \cup Y$$
 (同一律)
 $= (X \cap \sim X) \cup Y$ (矛盾律)
 $= (X \cup Y) \cap (\sim X \cup Y)$ (分配律)
 $= (X \cup Y) \cap \sim (X \cap \sim Y)$ (德·摩根律)
 $= (X \cup Y) - (X - Y)$ (补交转换律)
由题设和上述结论可知, $B = (A \cup B) - (A - B) = (A \cup C) - (A - C) = C$ 。

2.

- (1) 无解。反设存在集合 $X = \mathcal{P}(X)$,则由等势的性质有 $X \approx \mathcal{P}(X)$ 。这与康托定理矛盾。
- (2) 有解。 $A = \emptyset$ 即为一个解。¹
- 3. 由 $R^7 = R^{15}$ 和教材定理 2.18(2) 可知, $R^{2006} = R^{7+249*8+7} = R^{7+7} = R^{14}$ 。
- 4. t 的最大值为 k。

证明: 为表述方便,对任意一个由 k 个初级回路(有向或无向)组成的图,记这 k 个初级回路为 C_1, C_2, \cdots, C_k 。对任意给定的 k,令 $S_k = \{G \mid G$ 是由 k 个初级回路组成的图}。对任意 $G \in S_k$,令 f(G) 为"使 G 成为欧拉图所应添加的最少边数"(从而 f 是从 S_k 到自然数集的函数),则题目 所求即为 $t_{max} = \max f(S_k)$ 。

下面首先证明,对任意给定的 k,存在 $G \in S_k$,使得 f(G) = k (从而有 $t_{max} \ge k$)。

考虑这样的 $G \in S_k$,它所对应的初级回路组 C_1, C_2, \cdots, C_k 中,任何两个不同的初级回路 $C_i, C_j (i \neq j)$ 间都没有公共顶点。显然,这样的 G 有且仅有 k 个连通分支,这 k 个连通分支恰为上述 k 个初级回路。由初级回路的性质可知,G 中每个顶点的度数皆为偶数。设 E' 是一个使 $G' = G \cup E'$ 成为欧拉图的最小边集, $H = \langle V', E' \rangle$ 是 E' 的导出子图,则:

- (1) 要将两个连通分支连接起来,就需要添加一条横跨两个连通分支的边,所以 H 中的边必须覆盖到 G 的每一个连通分支(即,对每个连通分支 G_i ,都存在某条边 $e_j \in E'$,使得 e_j 的某个端点在 G_i 中),否则,若某个 G_i 中不含 E' 的任何端点,则在 G' 中, $V(G_i)$ 与 $V(G) V(G_i)$ 间仍然没有边,这与 G' 是连通图矛盾。由于各连通分支间没有公共顶点,所以 H 覆盖 k 个连通分支意味着 H 中至少有 k 个不同的顶点,即 |V'| > k。
 - (2) 由于 $G \cup H = G \cup E' = G'$ 是欧拉图, 所以 $G \cup H$ 中各顶点仍是偶数。又因为 G 与

 $^{^1}$ 可以证明,除空集外,任意有限集合都不是方程 $A=\cup A$ 的解。对于无限的情形则有许多解。详细分析见 1990 年离散真题七 1(2) 的解答。