Algèbre

Révisions d'algèbre linéaire

Cf. cours MAT-1200. Donner quelques reférences.

Notons M, N et P des matrices de taille $n \times m$, A et B des matrices carrées et I_n la matrice identités, de dimension $n \times n$, et u et v des vecteurs colonnes de taille n.

Propriétés de l'inverse

$$(AB)^{-1} = B^{-1}A^{-1}$$

Propriétés du déterminant

$$\begin{split} \det(A^\top) &= \det(A) \\ \det(A^{-1}) &= 1/\det(A) \\ \det(AB) &= \det(A)\det(B) \end{split}$$

Propriétés de la trace

$$tr(A + B) = tr(A) + tr(B)$$
$$tr(MN) = tr(NM)$$

Propriété de matrices :

- Soit A une matrice symmétrique de dimension $n \times n$. A est définie positive si elle est positive et inversible, c'est-à-dire si $u^{\top}Au > 0$ pour tout $x \in \mathbb{R}^n$ tel que $x \neq 0$.
- Soit A une matrice carrée à valeur dans \mathbb{R} . A est orthogonal si $A^{\top}A = AA^{\top} = I_n$.

Valeurs et vecteurs propres :

— Soit A une matrice carrée de dimension $n \times n$. On dit que λ est une valeur propre de A si il existe un vecteur $u \neq 0 \in \mathbb{R}^n$ tel que

$$Au = \lambda u$$
.

Le vecteur u est appelé vecteur propre correspondant à la valeur propre λ et l'ensemble des nombres réels λ satisfaisant l'équation est appelé spectre de la matrice A et noté $\operatorname{sp}(A)$.

- Si u est un vecteur propre de A correspondant à une valeur propre λ , alors $cu, c \neq 0 \in \mathbb{R}$ sera également un vecteur propre de A correspondant à λ .
- Si A est symmétrique et u_1 et u_2 sont des vecteurs propres correspondant à des valeurs propres différentes de A, alors u_1 et u_2 sont orthogonaux, *i.e.* $u_1^{\top}u_2 = 0$.
- Si A a comme valeurs propres (réelles, mais pas forcément distinctes) $\lambda_1, \dots, \lambda_n$, alors

$$\mathbf{A} = \prod_{i=1}^n \lambda_i \quad \text{et} \quad \mathrm{tr}(A) = \sum_{i=1}^n \lambda_i.$$

- Si A est symmétrique, **toutes** ses valeurs propres sont réelles.
- Si A est définie positive, alors toutes ses valeurs propres sont positives.

Diagonalisation de matrices :

— Soit A une matrice carrée de dimension $n \times n$. On dit que A est diagonalisable s'il existe une matrice carrée $n \times n$ non-singulière P et une matrice $n \times n$ diagonale D telles que

$$P^{-1}AP = D \leftrightarrow A = PDP^{-1}$$
.

Toute matrice carrée symmétrique est diagonalisable part une matrice orthogonal P.

Théorème de décomposition spectrale :

Soit A une matrice carrée symmétrique de dimension $n \times n$ et ses n valeurs propres $\lambda_1, \dots, \lambda_n$. Alors il existe une matrice orthogonal P telle que

$$A = P\Lambda P^\top, \quad \text{où} \quad \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$$

Si A admet n valeurs propres positives distinctes, alors on peut prendre P comme la matrice dont la ke coloone est le vacteur propre normé correspondant à la ke valeur propre λ_k .

Soit deux matrices symétriques, A et M, comment déterminer le vecteur u tel que $u^{T}Au$ soit maximal, sachant que $u^{T}Mu = 1$? Il faut prendre u comment le vecteur propre de $M^{-1}A$ associé à λ la valeur propre maximale de $M^{-1}A$. On obtient ainsi

$$u^{\top}Au = u^{\top}\lambda Mu = \lambda U^{\top}Mu = \lambda.$$