High-Dimensional Geometric Streaming in Polynomial Space

Taisuke Yasuda CMU

based on work with

David P. Woodruff
CMU

Setup

- Input: dataset with *n* points in *d* dimensions
- Question: how wide is my dataset in a given direction $x \in \mathbb{R}^d$?

Algorithms: Low Dimensions

- ullet In low dimensions: ε -kernels (Agarwal—Har-Peled—Varadarajan, 2004)
 - Subset of points approximating the width of every direction, up to $(1 + \varepsilon)$ factor

Algorithms: High Dimensions

- In high dimensions: **CANNOT** get better than \sqrt{d} approximation in poly(d) space!
- Matching algorithm: John ellipsoids (minimum-volume enclosing ellipsoids)

Challenge: Streaming Algorithms!

- Streaming setting: must support insertion of new points
- Not clear that John ellipsoids can be maintained

Concurrent work of (Makarychev—Manoj—Ovsiankin, 2022) shows guarantees for this algorithm, with a condition number dependence

Formal Statement

Streaming Width Estimation Problem.

- Input: stream $a_1, a_2, ..., a_n \in \mathbb{Z}^d$ with entries bounded by n^{100}
- Output: data structure $Q: \mathbb{R}^d \to \mathbb{R}_{\geq 0}$ s.t. for every $x \in \mathbb{R}^d$, width $(x) \leq Q(x) \leq \Delta \cdot \text{width}(x)$, width $(x) := \max_{i=1}^n |\langle a_i, x \rangle| = ||Ax||_{\infty}$
- Goal: $\Delta = \text{poly}(d, \log n)$, using $\text{poly}(d, \log n)$ bits of space

Theorem. There is a deterministic streaming algorithm which solves the **streaming width estimation problem** with $\Delta = O(\sqrt{d \log n})$ distortion, using $O(d^2 \log^2 n)$ bits of space.

Applications

- First poly(d, log n) space and poly(d, log n) distortion streaming algorithms for...
 - Robust width estimation
 - Convex hull estimation
 - John ellipsoid estimation
 - ℓ_p subspace embeddings
 - Volume maximization
 - Minimum-width spherical shell
 - Linear programming

• ...

High Level Plan: Subset Selection

 a_n

 a_2

• Our approach: select a subset of input points $S \subseteq [n]$ s.t.

$$||Ax||_{\infty} \le \Delta \cdot ||A_S x||_{\infty}$$

"The width of A in the x direction is at most Δ times that of A_S "

for every $x \in \mathbb{R}^d$

- This implies the result, since $||A_S x||_{\infty} \le ||A x||_{\infty}$ for every $x \in \mathbb{R}^d$
 - $Q(x) = \|A_S x\|_{\infty}$
- Question: how do we know when to include a_i in our subset?

First Attempt

• Update rule: $S' \leftarrow S \cup \{i\}$ if there exists $x \in \mathbb{R}^d$ s.t.

$$|\langle a_i, x \rangle| > \Delta \cdot ||A_S x||_{\infty}$$

"Include i if S does not capture row i up to Δ factor"

- Correctness: by definition
- Space complexity: ?????
- Problem: ℓ_{∞} has very little structure to work with...

Secret Sauce: Online Leverage Scores

• Leverage scores: largest fraction of ℓ_2 norm occupied by *i*th row of A

$$\tau_i(A) = \sup_{x \in \mathbb{R}^d} \frac{|\langle a_i, x \rangle|^2}{\|Ax\|_2^2}$$
 Key fact:
$$\sum_{i=1}^n \tau_i(A) = d$$

ullet Online leverage scores (Cohen—Musco—Pachocki, 2016): *i*th leverage score of A_i

$$\tau_i^{\text{OL}}(A) = \tau_i(A_i) = \sup_{x \in \mathbb{R}^d} \frac{|\langle a_i, x \rangle|^2}{\|A_i x\|_2^2}$$

Lemma [CMP16].
$$\sum_{i=1}^{n} \tau_i^{OL}(A) \le O(d \log \kappa^{OL})$$

Lemma [WY22].
$$\sum_{i=1}^{n} \tau_i^{OL}(A) \le O(d \log n)$$

Revised Attempt

• Update rule: $S' \leftarrow S \cup \{i\}$ if there exists $x \in \mathbb{R}^d$ s.t.

$$|\langle a_i, x \rangle| > \Delta ||A_S x||_{\infty} |\langle a_i, x \rangle| > ||A_S x||_{2}$$

- Observation: $||A_S x||_2 \le \sqrt{|S|} ||A_S x||_{\infty}$
 - If $|S| = \text{poly}(d, \log n)$, then we can replace $||A_S x||_{\infty}$ by $||A_S x||_2$!

Then,
$$2 \cdot |\langle a_i, x \rangle|^2$$

$$1 \le \frac{|\langle a_i, x \rangle|^2 + |\langle a_i, x \rangle|^2}{\|A_S x\|_2^2 + |\langle a_i, x \rangle|^2} \qquad \le 2 \cdot \sup_{x \in \mathbb{R}^d} \frac{\langle a_i, x \rangle^2}{\|A_{S'} x\|_2^2} \qquad \Longrightarrow \frac{1}{2} \le \tau_i^{\mathsf{OL}}(A_{S'})$$

$$\|A_{S'} x\|_2^2$$

This is the *i*th online leverage score of $A_{S'}$!

Revised Attempt

- We have shown:
 - Every row in A_S has online leverage score at least 1/2
 - The online leverage scores of A_S must sum to at most $O(d \log n)$

•
$$\Longrightarrow$$
 $|S| = O(d \log n)$

$$\bullet \implies \Delta \le \sqrt{|S|} = O(\sqrt{d \log n})$$

Lemma [WY22].
$$\sum_{i=1}^{n} \tau_i^{OL}(A) \le O(d \log n)$$

Theorem. There is a deterministic streaming algorithm which solves the streaming width estimation problem with $\Delta = O(\sqrt{d \log n})$, using $O(d^2 \log^2 n)$ bits of space.

Conclusion

- We obtain the first polynomial space algorithm for maintaining a width estimation data structure in a stream
- As a corollary, we obtain the first polynomial space algorithm for a variety of problems in streaming computational geometry
- Our techniques draw a novel connection between online numerical linear algebra and computational geometry, which may be of independent interest

