## GENDER WAGE GAP ANALYSIS

HOANG DANG (HMD62)
GRACE LANG (GEL53)

## DATA & INITIAL ANALYSIS

### **DATASET:**

The dataset used is the Current Population Survey (CPS) taken from the Gender Pay Gap Dataset on Kaggle<sup>1</sup>

The current population survey is sponsored jointly by the U.S. Census Bureau and the U.S. Bureau of Labor statistics<sup>2</sup>

It contains 234 features and 344k rows from 1981 to 2013. The features detail information about a person including gender, age, employment, education, salary, etc.

### **DATA CLEANING:**

- To make the data more usable, we removed columns with a lot of N/As.
   Most of them are already redundant (converted industry codes, education codes, etc.), so they can be ignored without much impact to our analysis.
- For columns that should be kept, any N/A entries were removed, which only account for < 1% of the dataset.</li>
- We also removed columns with extreme class imbalance (either all 1's or 0's) because they provide no real information on how they interact with our response variables.

### **RESPONSE VARIABLES:**

| CONTINUOUS                             | BINARY                                                                 |
|----------------------------------------|------------------------------------------------------------------------|
| Annual income adjusted to 2010 dollars | Whether someone is making above the median income in 2020 <sup>3</sup> |

### **DATA EXPLORATION:**





Income is right skewed

**Education level is correlated with salary** 

### **DATA EXPLORATION:**



Females make less than males in every industry

### **DATA EXPLORATION:**



Gender wage gap is prevalent over all years, but smaller in recent time

### **CORRELATIONS:**

- Most strongly positively correlated with annual income: uhrswork, adv, ft, manager, and lawyerphysician.
- Most strongly negatively correlated with annual income: LEHS, female, foodcare, officeadmin, and hisp.



### Is the income difference between genders significant?

### **Permutation Test: Difference in Medians**

# 250 - test statistic 200 - 150 - 100 - 50 - 2500 0 2500 5000 7500 10000 12500 differences (median)

#### Permutation test: Difference in Means



**P-value = 0.0** 

P-value = 0.0

### **REGRESSION ANALYSIS**

### **LINEAR REGRESSION:**

- Strongest positive effect on annual income: uhrswork, adv, manager, head, and age (p < 0.05).</li>
- Strongest negative effect on annual income: LEHS, female, Education, northcentral, and hisp (p < 0.05).</li>



### **LOGISTIC REGRESSION:**

- Strongest positive effect on whether someone makes above/below the median income: uhrswork, ft, head, manager, spouse (p < 0.05).</li>
- Strongest negative effect on whether someone makes above/below the median income: LEHS, female, Education, hisp, and not\_metro (p < 0.05).</li>



### **PREDICTION MODEL - CONTINUOUS:**

| OLS Model                                                              | MSE (CV)    |
|------------------------------------------------------------------------|-------------|
| With all features                                                      | 985,861,721 |
| With all features and standardized data                                | 985,861,721 |
| Using Lasso for feature-selection on all features                      | 985,861,721 |
| With all features + 2-way interactions                                 | 909,463,049 |
| Using FSR for feature-selection on all features + 2-way interactions   | 921,114,815 |
| Using Lasso for feature-selection on all features + 2-way interactions | 909,011,818 |

### **PREDICTION MODEL - BINARY:**

| Logistic Regression Model                    | Total 0-1 Loss (CV) | Average 0-1 Loss (CV) |
|----------------------------------------------|---------------------|-----------------------|
| With all features                            | 57,251              | 11,450.2              |
| With all features + 2-way interactions       | 55,454              | 11,090.8              |
| Lasso with all features                      | 57,176              | 11,435.2              |
| Lasso with all features + 2-way interactions | 55,332              | 11,066.4              |
| Ridge with all features                      | 57,164              | 11,432.8              |
| Ridge with all features + 2-way interactions | 55,331              | 11,066.2              |

### **MODEL TEST ACCURACY:**

| OLS (CONTINUOUS)                                      | LOGISTIC (BINARY)                                                    |
|-------------------------------------------------------|----------------------------------------------------------------------|
| MSE from predicting the mean: 1,542,374,689           | Misclassification rate from predicting the most common class: 46.76% |
| MSE using best model: 902,771,509 (41.5% improvement) | Misclassification rate using best model: 23.27% (50.2% improvement)  |

### **CONCLUSION:**

- Through the regression analysis, we controlled for certain factors like race, education, and location in order to get at the causal effects
- If ignorability holds, we saw a decrease in salary of **5253.59 corresponding to gender** 
  - This would represent biased hiring practices
- However, we cannot assume ignorability, because there are idiosyncrasies not accounted for by the covariates
  - For example, there is no data on an individual's upbringing. We would like to have data on opportunity afforded to a person by their parent's education and socioeconomic status, as well as what type of school district they went to growing up

### **NEXT STEPS:**

- We can explore splitting income into brackets and predicting whether a person will fall into a particular bracket to improve accuracy.
- If time and resources permitted, we would like to explore more transformations of the features and see how they would improve model performance.
- We would also include higher-order interactions because it could be the case that income is affected by more than 2 factors combined.
- We would also look for more recent data, and remove data from older years in order to analyze the gender wage gap solely in recent time

