Topics on scattering amplitudes

Yi-Jian $Du^{1a,b,c}$

E-mail: yijian.du@whu.edu.cn

ABSTRACT: This note covers various topics of scattering amplitudes, including the new conformal symmetry, off-shell extension of CHY, amplitudes in four dimensions, string theory and so on.

KEYWORDS: Amplitude Relation, Gauge invariance

^aDepartment of Physics, Wuhan University, No. 299 Bayi Road, Wuhan 430072, China

^bCollege of Science, Tibet University, No.10 Zangda East Road, Lasa, 850000, China

 $[^]c$ Suzhou Institute of Wuhan University, No.377 Linquan Street, Suzhou, 215123, China

 $^{^{1}\}mathrm{Corresponding}$ author

Contents		
1	Introduction	1
2	Preparations	1
	2.1 Decompositions of tree-level GR and color-ordered YM amplitudes	1
	2.2 The rule for bi-scalar amplitudes	2
	2.3 Refined graphic rule for GR and color-ordered YM amplitudes	4
3	New conformal symmetry	7
4	On off-shell extension	7
5	One-loop amplitudes	7
6	String amplitudes	7

1 Introduction

I write various new process on scattering amplitudes and problems deserve further study in this note.

2 Preparations

2.1 Decompositions of tree-level GR and color-ordered YM amplitudes

Gravitons as two copies of gluons. A tree-level scattering amplitude $M^{\text{GR}}(1,2,\ldots,n)$ for n gravitons is a rational function of Lorentz contractions of external polarization tensors $\epsilon_i^{\mu\nu}$ $(i=1,\ldots,n)$, where $\epsilon_i^{\mu\nu}$ is a traceless symmetric tensor which satisfies

$$k_{i\mu}\epsilon_i^{\mu\nu} = k_{i\nu}\epsilon_i^{\mu\nu} = 0. \tag{2.1}$$

In Yang-Mills (YM) theory, an external polarization (of a gluon) ϵ_i^{μ} carries only one Lorentz index and satisfies the condition

$$k_{i\,\mu} \cdot \epsilon_i^{\mu} = 0. \tag{2.2}$$

Thus it seems that a graviton polarization tensor may be written as two copies of gluon polarizations:

$$\epsilon_i^{\mu\nu} \to \frac{1}{2} (\epsilon_i^{\mu} \tilde{\epsilon}_i^{\nu} + \epsilon_i^{\mu} \tilde{\epsilon}_i^{\nu}) - \epsilon_i^{\mu} \epsilon_{i\mu}^{\text{[Eq:Polaization1]}}$$
 (2.3)

A polarization ϵ_i^{μ} depends on the choice of gauge and the corresponding momentum k_i^{μ} . Once we choose the same gauge for ϵ_i^{μ} and $\tilde{\epsilon}_i^{\nu}$, $\epsilon_i^{\mu}\tilde{\epsilon}_i^{\nu}$ is naturally a symmetric tensor. Furthermore, in four dimensions, one can always construct YM polarizations such that $\epsilon_i^{\mu}\epsilon_{i\mu}=0$. In this sense, we will use

$$\epsilon_i^{\mu\nu} \to \epsilon_i^{\mu} \tilde{\epsilon}_i^{\nu} ^{[\text{Eq:Polaization2}]}$$
 (2.4)

instead of eq. (2.3). In the following, all gravitons and gluons are treated as massless particles, thus we always have $k_i^2 = 0$ if we are considering the *on-shell amplitudes*. Another condition for momenta is momentum conservation $\sum_{i=1}^{n} k_i^{\mu} = 0$.

Decompositions of GR and YM amplitudes Tree-level scattering amplitudes for n gravitons can be written as

$$M^{\mathrm{GR}}(1,2,\ldots,n) = \sum_{\boldsymbol{\sigma} \in S_{n-2}} N_{1|\boldsymbol{\sigma}|n} A^{\mathrm{YM}}(1,\boldsymbol{\sigma},n),^{[\mathrm{Eq:ExpansionGR}]}$$
(2.5)

where $N_{1,\boldsymbol{\sigma},n}$ are called BCJ numerators in DDM basis. In the above equation, $A^{\mathrm{YM}}(1,\boldsymbol{\sigma},n)$ denote color-ordered YM amplitudes, while $\boldsymbol{\sigma}$ denote the (n-2)! permutations (i.e. an element in S_{n-2}) of the external particles $2,3,\ldots,n-1$. In general, the numerator $N_{1|\boldsymbol{\sigma}|n}$ is a rational function of $k_i \cdot k_j$, $\epsilon_i \cdot k_j$ and $\epsilon_i \cdot \epsilon_j$, while the other copies of polarizations $\tilde{\epsilon_i}$ are included in the color ordered YM amplitudes $A^{\mathrm{YM}}(1,\boldsymbol{\sigma},n)$. A BCJ numerator $N_{1|\boldsymbol{\sigma}|n}$ does not have unique form because it is gauge dependent.

A color-ordered YM amplitude $A^{\text{YM}}(1, \boldsymbol{\sigma}, n)$ can be decomposed similarly:

$$A^{\text{YM}}(1, \boldsymbol{\sigma}, n) = \sum_{\boldsymbol{\rho} \in S_{n-2}} \widetilde{N}_{1|\boldsymbol{\rho}|n} A^{\text{BS}}(1, \boldsymbol{\sigma}, n|1, \boldsymbol{\rho}, n).^{\text{[Eq:ExpansionYM]}}$$
(2.6)

Here $\widetilde{N}_{1|\boldsymbol{\rho}|n}$ (the other copy of BCJ numerator) is a function of Lorentz contractions $\widetilde{\epsilon_i} \cdot \widetilde{\epsilon_j}$, $\widetilde{\epsilon_i} \cdot k_j$ and $k_i \cdot k_j$. $\widetilde{N}_{1|\boldsymbol{\rho}|n}$ can be constructed by a same rule with $N_{1|\boldsymbol{\rho}|n}$. The amplitude $A^{\mathrm{BS}}(1,\boldsymbol{\rho},n)$ is called bi-scalar amplitude which depends on both permutations $\boldsymbol{\sigma}$ and $\boldsymbol{\rho}$ and does not contain any polarization.

Inserting the eq. (2.6) into the gravity amplitude eq. (2.10), we get

$$M^{\mathrm{GR}}(1,2,\ldots,n) = \sum_{\boldsymbol{\sigma} \in S_{n-2}} \sum_{\boldsymbol{\rho} \in S_{n-2}} N_{1|\boldsymbol{\sigma}|n} A^{\mathrm{BS}}(1,\boldsymbol{\sigma},n|1,\boldsymbol{\rho},n) \widetilde{N}_{1|\boldsymbol{\rho}|n},^{[\mathrm{Eq:ExpansionGR1}]}$$
(2.7)

which expresses a gravity amplitude $M^{GR}(1, 2, ..., n)$ by bi-scalar ones associated with two copies of BCJ numerators. Apparently, information of all polarizations are included in the BCJ numerators.

2.2 The rule for bi-scalar amplitudes

Now we present the construction rule for bi-scalar amplitudes $A^{\text{BS}}(1, \boldsymbol{\sigma}, n | 1, \boldsymbol{\rho}, n)$. A bi-scalar amplitude is given by summing over all possible *trivalent Feynman diagrams* (i.e. diagrams constructed by only *cubic vertices*) that are allowed by both permutations $1, \boldsymbol{\sigma}, n$ and $1, \boldsymbol{\rho}, n$. Each diagram contributes the product

Figure 1. Two graphs which are related by exchanging two branches attached to a same cubic vertex must have opposite signs.

Figure 2. Both (a) and (b) are Feynman diagrams for $A^{BS}(1, 2, 3, 4|1, 2, 3, 4)$. Only (b) is allowed by $A^{BS}(1, 2, 3, 4|1, 3, 2, 4)$.

of propagators therein, with a proper sign. The sign is determined as follows: if two diagrams contribute the same propagators, they must be related by exchanging branches attached to cubic vertices. Such an exchanging introduces a minus sign (see Fig. 2). Consequently, if the number of such exchangings is even, the sign should be (+1), otherwise, (-1).

Let us take the four-point BS amplitudes as examples. For the amplitude $A^{\text{BS}}(1,2,3,4|1,2,3,4)$, $\sigma = \rho = \{2,3\}$. The Feynman diagrams allowed by both permutations are shown by Fig. 2 (a) and (b). Therefore, the amplitude is

$$A^{BS}(1,2,3,4|1,2,3,4) = \frac{1}{s_{12}} + \frac{1}{s_{14}}.$$
(2.8)

Here, $s_{ij} \equiv (k_i + k_j)^2 = 2k_i \cdot k_j$.

Another four-point amplitude $A^{\mathrm{BS}}(1,2,3,4|1,3,2,4)$ is only given by Fig. 2 (b). This is because (i) both diagrams (a) and (b) in Fig. 2 are allowed by the permutation 1,2,3,4 (ii) the diagrams Fig. 2 (a), (b) when exchanging $2 \leftrightarrow 3$ are those allowed by the permutation 1,3,2,4. The common diagram of (i) and (ii) is only Fig. 2 (b) (although for (ii), we should exchange 2 and 3 in Fig. 2 (b), it contributes the

Figure 3. Line styles

same propagator $\frac{1}{s_{14}}$). The exchanging number is 1 for Fig. 2 (b). Thus

$$A^{BS}(1,2,3,4|1,3,2,4) = -\frac{1}{s_{14}}. (2.9)$$

Exercise-1 What are the Feynman diagrams for the following five-point bi-scalar amplitudes: $A^{\mathbf{BS}}(1,2,3,4,5|1,2,3,4,5)$, $A^{\mathbf{BS}}(1,4,3,2,5|1,3,2,4,5)$ and $A^{\mathbf{BS}}(1,2,3,4,5|1,4,3,2,5)$? Calculate these amplitudes.

2.3 Refined graphic rule for GR and color-ordered YM amplitudes

Instead of presenting a construction rule for the BCJ numerators with a permutation σ explicitly (although we are able to do this), we provide another expression of GR amplitude here:

$$M^{GR}(1,2,\ldots,n) = \sum_{\mathcal{F}} C^{[\mathcal{F}]} \left[\sum_{\boldsymbol{\sigma}^{\mathcal{F}}} A^{YM}(1,\boldsymbol{\sigma}^{\mathcal{F}},n) \right],^{[\text{Eq:ExpansionGR}]}$$
(2.10)

where all possible refined graphs \mathcal{F} have been summed over. For each graph, we have (i) a coefficient $C^{[\mathcal{F}]}$ which is a polynomial of factors $k_i \cdot k_j$, $\epsilon_i \cdot \epsilon_j$ and $\epsilon_i \cdot \epsilon_j$, (ii) a sum of amplitudes with permutations $\boldsymbol{\sigma}^{\mathcal{F}}$ that are allowed by this graph. When $M^{GR}(1,2,\ldots,n)$ on the LHS is replaced by the color-ordered YM amplitude $A^{YM}(1,\boldsymbol{\sigma},n)$ and $A^{YM}(1,\boldsymbol{\sigma}^{\mathcal{F}},n)$ on the RHS is replaced by the bi-scalar amplitude $A^{BS}(1,\boldsymbol{\sigma}^{\mathcal{F}},n|1,\boldsymbol{\rho},n)$, the expression eq. (2.10) becomes an expansion of YM amplitudes. We will explain the coefficients $C^{[\mathcal{F}]}$ and permutations $\boldsymbol{\sigma}^{\mathcal{F}}$ in detail.

Refined graphic rule

Reference order Consider each graviton as a node, define a reference order

$$\mathsf{R} = \{1, \rho(1), \dots, \rho(n-1), n\}, ^{[\text{Eq:ReferenceOrder}]}$$
(2.11)

where the two gravitons 1 and 2 are considered as the first and the last elements in R (of cause, you can chose other two elements instead). The permutation $\rho \equiv \{\rho(2), \rho(3), \dots, \rho(n-1)\}$ is an arbitrary permutation of 2, 3, ..., n-1. The position of each element in R is called its *weight*. Apparently, n is the highest-weight element and 1 is the lowest-weight one in $R = \{1, \rho(1), \dots, \rho(n-1), n\}$.

Nodes and line styles Every external particle is considered as a node. To construct a graph, we

Figure 4.

need to connect lines between nodes. There are three types of lines Fig. 3 (a), (b) and (c) which correspond to factors $\epsilon_a \cdot \epsilon_b$, $\epsilon_a \cdot k_b$ and $k_a \cdot k_b$.

The construction of graphs Graphs are constructed as follows:

- (i) Grouping nodes We divide the gravitons 1, ..., n into several sets such that (a) the highest- and the lowest-weight elements in the reference order eq. (2.11) are always in a same group, (b) every group must contains at least two elements. Exercise-2: Supposing that the reference order for 4-point amplitude is $R = \{1, 2, 3, 4\}$, what are the possible groupings?
- (ii) Constructing components for each group of elements Given a grouping, for the set containing the highest-weight and the lowest-weight elements 1, n (for example the set $\{1, 5, 8, 10\}$ in Fig. 4), find out a path (which may passes through other nodes in this group) from n to 1 (for example the path in Fig. 4 is $10 \to 5 \to 8 \to 1$) and connect arbitrary two adjacent nodes on this path via a type-1 line (for example the nodes 5 and 8 are connected by a type-1 line), which is called the kernel. Any other pair of adjacent nodes on this path are connected by a type-2 line (Fig. 3 (b)) whose arrow points to the kernel (for example, the 1,8 nodes and the 10, 5 nodes are connected by type-2 lines (with arrows pointing to the kernel) respectively). We also connect other nodes in this set arbitrarily via type-2 lines pointing towards those nodes (except the node n) on the path from n and 1. Then all nodes in this set form a fully connected tree graph, which is called a component. For a set which does not contain 1 and n (for example the set {2,3,4,6,7,9} in Fig. 4), pick out arbitrary two elements (in Fig. 4 the elements 3 and 4) and connect them by a type-1 line (the kernel). Other nodes in this set point towards the kernel via type-2 lines in an arbitrary way. Then nodes in this set also form a fully connected tree graph (a component). A graph with a given grouping and a given configuration of components for each set in this grouping is called a skeleton (for example, Fig. 4 is a skeleton for 10-point amplitude). Apparently, each skeleton consists of at least one component. Exercise-3: Find out all possible skeletons for four-point amplitudes.

- (iii) Weights of components, the top and the bottom sides of components Each component is separated into two parts by its kernel. We define the *top side* by the part which containing the highest-weight node in this component. The opposite side is called the *bottom side*. For example, if the reference order is defined by the regular order $R = \{1, 2, 3, ..., 9, 10\}$, the top side of components containing 2, 3, 4, 6, 7, 9 in Fig. 4 is the part \mathscr{B} , while the bottom side is the part \mathscr{A} . The top side of the component containing 1, 5, 8, 10 is \mathscr{D} , while the bottom side is \mathscr{C} . We define the *weight of each component* by the weight of its highest-weight node.
- (vi) From skeletons to fully connected graphs If a skeleton has only one component, it is already a connected graph. If a skeleton consists of more than one mutually disjoint components, we should connect these components, via type-3 lines, in a proper way to form a fully connected tree graph.
 - **Step-1**, we arrange those components, which does not contain 1 and n, into an ordered set $\mathsf{R}^{\mathscr{C}} = \{\mathscr{C}_1, \mathscr{C}_1, \dots, \mathscr{C}_N\}$ (the reference order for components) according to their weights. We define the component containing the node 1 as the root part \mathcal{R} .
 - **Step-2** Pick out the highest weight component \mathscr{C}_N and other components $\mathscr{C}_{i_1}, \ldots, \mathscr{C}_{i_j}$ arbitrarily and construct a chain of components towards the root part $\mathsf{R}^\mathscr{C}$ as follows:

$$\mathbb{CH} = \left[(\mathscr{C}_N)_t - (\mathscr{C}_N)_b \leftrightarrow (\mathscr{C}_{i_j})_{t(\text{ or } b)} - (\mathscr{C}_{i_j})_{b(\text{ or } t)} \leftrightarrow \cdots \leftrightarrow (\mathscr{C}_{i_1})_{t(\text{ or } b)} - (\mathscr{C}_{i_1})_{b(\text{ or } t)} \leftrightarrow \mathcal{R} \setminus \{n\} \right].^{[\text{Eq:Chain}]}$$

$$(2.12)$$

Here, a subscript t or b denotes the top or bottom side of the corresponding component. The notation '-' between two sides of a component denotes the kernel. A ' \leftrightarrow ' denotes the type-3 line between two nodes in the corresponding regions. For example the ' \leftrightarrow ' between $(\mathscr{C}_N)_b$ and $(\mathscr{C}_{i_j})_{t(\text{or }b)}$ means that we connect arbitrary nodes x, y ($x \in (\mathscr{C}_N)_b$, $y \in (\mathscr{C}_{i_j})_{t(\text{or }b)}$) by a type-3 line. $\mathcal{R} \setminus \{n\}$ is used to recall that n cannot be considered as a root. Note that all the kernels of the components $\mathscr{C}_N, \mathscr{C}_{i_j}, \ldots, \mathscr{C}_{i_1}$ in eq. (2.12) on this chain are passed through by the path that starts from the highest-weight element in \mathscr{C}_N and ends at the node 1! After this construction, we redefine the reference order $\mathsf{R}^\mathscr{C}$ and the root part \mathcal{R} :

$$\mathsf{R}^{\mathscr{C}} \to \mathsf{R}^{\mathscr{C}} \setminus \{\mathscr{C}_1, \mathscr{C}_1, \dots, \mathscr{C}_N\}, \mathcal{R} \to \mathcal{R} \cup \{\mathscr{C}_1, \mathscr{C}_1, \dots, \mathscr{C}_N\}.$$
 (2.13)

- Step-3 Repeating Step-2 until the ordered set $R^{\mathscr{C}}$ becomes empty. Then a fully connected graph is produced.

All possible graphs (i.e. all possible groupings, all possible skeletons for a given grouping, all possible graphs constructed from a given skeleton) produced along the above line together are all graphs \mathcal{F} in eq. (2.10)! Exercise-4: Construct all possible graphs for 4-point amplitudes!

(Hint: classify the graphs according to the number of components. Although the above construction rule seems very complicated, it is not hard to treat the 4-point case.)

The factor $C^{[\mathcal{F}]}$ and permutations $\sigma^{\mathcal{F}}$ The factor $C^{[\mathcal{F}]}$ is given by the product of all lines (defined by Fig. 3) inside a graph with a proper sign $(-1)^{\mathcal{N}(\mathcal{F})}$ where $\mathcal{N}(\mathcal{F})$ is the total number of arrows pointing away from the node 1. The permutations $1, \sigma^{\mathcal{F}}, n$ are determined by: (i) 1 and n are always considered as the first and the last elements, (ii) if x and y are two adjacent elements and x is nearer to the node 1 than y, the relative orders of them must satisfy $(\sigma^{\mathcal{F}})^{-1}(x) < (\sigma^{\mathcal{F}})^{-1}(y)^{-1}$. (iii) If two substructures are attached to a same node, we should shuffle the permutations corresponding to these two substructures together. As an example, if we connect the nodes 3 and 8 in Fig. 4 via a type-3 line, the factor $C^{[\mathcal{F}]}$ is given by

$$\left[(-\epsilon_1 \cdot k_8)(\epsilon_5 \cdot \epsilon_8)(\epsilon_{10} \cdot k_5) \right] (k_3 \cdot k_8) \left[(\epsilon_2 \cdot k_3)(\epsilon_3 \cdot \epsilon_4)(\epsilon_6 \cdot k_4)(\epsilon_9 \cdot k_6)(\epsilon_7 \cdot k_6) \right]$$
(2.14)

and the permutations $\sigma^{\mathcal{F}}$ are given by

$$\sigma^{\mathcal{F}} \in \{\{8,5\} \sqcup \{3,\{2\} \sqcup \{4,6,\{9\} \sqcup \{7\}\}\}\}\}.$$
 (2.15)

Exercise-5: Write down the coefficients $C^{[\mathcal{F}]}$ and all amplitudes $A(1, \sigma^{\mathcal{F}}, n)$ for all the graphs \mathcal{F} constructed in Exercise-4.

- 3 New conformal symmetry
- 4 On off-shell extension
- 5 One-loop amplitudes
- 6 String amplitudes

References

¹Here we use $\sigma^{-1}(x)$ to denote the position of x in the permutation $\boldsymbol{\sigma}$