2. Machine Learning

2.1 Supervised Learning Algorithms

2.1.2 Naive Bayes

סיווג בייסיאני הוא מודל המשתמש בחוק בייס על מנת לסווג אובייקט $x\in\mathbb{R}^n$ בעל n פיצ'רים לאחת מ-K קטגוריות אפשריות. יחד עם השימוש בחוק בייס, המודל מניח "נאיביות" – בהינתן סיווג של אובייקט מסוים, אין תלות בין אפשריות. יחד עם השימוש בחוק בייס, המודל מניח "נאיביות" הפיצ'רים השונים שלו.

נניח שיש מודל המקבל וקטור פיצ'רים בינאריים {כאב ראש, משתעל, חום גבוה}, ומסווג האם אדם בעל תכונות אלה חולה בשפעת או לא. באופן כללי ניתן לומר שיש תלות בין שיעול לבין חום גבוה, כלומר העובדה שיש לאדם חום מעלה את ההסתברות שהוא גם משתעל. למרות זאת, ניתן להניח באופן "נאיבי" שאם כבר יודעים שאדם חולה בשפעת, אז כבר אין יותר תלות בין היותו משתעל להיותו בעל חום. באופן פורמלי, אמנם סביר להניח שמתקיים בשפעת, אז כבר אין יותר תלות בין היותו משתעל להיותו ולקבל: p(שפעת|משתעל) = p(שפעת, חום|משתעל)

באופן כללי סיווג בייסיאני נאיבי מניח שבהינתן הסיווג של אובייקט מסוים, הפיצ'רים שלו בלתי תלויים. הנחה זו כמובן לא תמיד מדויקת, וממילא גם ערכי ההסתברויות הנובעים ממנה ומשמשים לסיווג אינם מדויקים, אך ההנחה מקלה מאוד על חישוב ההסתברויות של הסיווג הבייסיאני, ובמקרים רבים תחת ההנחה זו התקבלו תוצאות סיווג. הסיבה להצלחת המודל נעוצה בכך שבבעיית סיווג העיקר הוא למצוא את הסיווג הסביר ביותר לאובייקט (שפעת או לאשפעת לנבדק בדוגמה), ולאו דווקא לקבל הסתברות מדויקת לכל סיווג. במקרים רבים למרות שההסתברות הנובעת מההנחה הנאיבית אינה מדויקת עבור שני סיווגים אפשריים, היא בכל זאת שומרת על סדר ההסתברות שלהם.

נתבונן בוקטור פיצ'רים $(y_1,...y_k)$ ההתפלגוית שייך לאחת מ- $x \in \mathbb{R}^n = (x_1,...x_n)$ ההתפלגוית נתבונן בוקטור פיצ'רים בהנתן הסיווג $p(y_k)$ ידועה, ובנוסף ידועות ההתפלגויות המותנות של הפיצ'רים בהנתן הסיווג $p(y_k)$ הוא מקסימלי. בעזרת מהקטגוריות, כלומר למצוא את y_k שעבורו הביטוי y_k הוא מקסימלי. באופן פורמלי ניתן לנסח זאת כך:

$$y = \arg \max_{k} p(y_k|x)$$
, $k = 1 ... K$

בשביל למצוא את y_k האופטימלי ניתן להיעזר בחוק בייס:

$$p(y_k|x) = \frac{p(y_k, x)}{p(x)}$$

:מתקיים מארשרת לפי כלל השרשרת מתקיים שעבור המונה את y_k שעבור מספיק למצוא את אלוי ב-k, ולכן מספיק למצוא את

$$p(y_k, x) = p(y_k, x_1 \dots, x_n) = p(x_1 | y_k, x_2 \dots, x_n) \cdot p(y_k, x_2 \dots, x_n)$$

$$= p(x_1 | y_k, x_2 \dots, x_n) \cdot p(x_2 | y_k, x_3 \dots, x_n) \cdot p(y_k, x_3 \dots, x_n)$$

$$= \dots = p(x_1 | y_k, x_2 \dots, x_n) \cdot p(x_2 | y_k, x_3 \dots, x_n) \cdots p(x_{n-1} | y_k, x_n) \cdot p(x_n | y_k) p(y_k)$$

כעת נשתמש בהנחת הנאיביות, לפי בהינתן הסיווג y_k , אין תלות בין הפיצ'רים. לפי הנחה זו נוכל לפשט את הביטוי:

$$= p(x_1|y_k) \cdot p(x_2|y_k) \cdots p(x_{n-1}|y_k) \cdot p(x_n|y_k) p(y_k)$$
$$= p(y_k) \prod_{i=1}^{n} p(x_i|y_k)$$

בביטוי זה כל האיברים ידועים, ולכן כל שנותר זה רק להציב את הנתונים ולקבל את y_k עבורו ביטוי זה הכי גדול:

$$y = \arg \max_{k} p(y_k) \prod_{i=1}^{n} p(x_i|y_k)$$

בדוגמה שהובאה לעיל, הפיצ'רים קיבלו ערכים בדידים, ולכן היה ניתן לחשב את ההסתברות המותנית של כל פיצ'ר ערכים על ידי ספירת כמות הפעמים שמופיע כל פיצ'ר באוכלוסייה הנדגמת ולחלק בגודל המדגם. עבור ערכים על ידי ספירת כמות הפעמים של אדם וכדו'), אין אפשרות לחשב כך את ההסתברות המותנית. במקרים רציפים (כמו למשל מחיר מניה, גובה של אדם וכדו'), אין אפשרות לחשב כך את ההסתברות המותנית.

כאלה יש להניח התפלגות מסוימת עבור המדגם, ולחשב את הפרמטרים של ההתפלגות שיטות שונות (למשל בעזרת נראות מרבית – MLE). עבור מדגם המתפלג נורמלית, ההסתברות המותנית היא גאוסיאן:

$$p(x_i|y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} e^{-\frac{(x_i - \mu_y)^2}{2\sigma_y^2}}$$

כאשר μ_y, σ_y^2 הם הפרמטרים של ההתפלגות, וכאמור הם משוערכים בעזרת MLE או שיטת שערוך אחרת. אם μ_y, σ_y^2 ההתפלגות, ניתן להשתמש באלגוריתם עבור שערוך ההתפלגות. ניתן להשתמש באלגוריתם עבור שערוך ההתפלגות לא נורמלית, ניתן להשתמש באלגורים רציפים היא לבצע דיסקרטיזציה לערכים אותם הפיצ'רים גישה אחרת להתמודדות עם פיצ'רים היכולים לקבל ערכים רציפים היא לבצע דיסקרטיזציה לערכים אותם הפיצ'רים יכולים לקבל.

במקרה <u>המולטינומי</u>, בו ההתפלגות היא רב מימדית ומציינת תוצאה של סדרה בלתי תלויה, יש לחשב את הנראות באופן המתאים להתפלגות מולטינומית. בכדי להבין את החישוב נביא קודם בדוגמה – נניח ורוצים לבנות מודל סיווג באופן המתאים להתפלגות מפאם. נתונות 12 הודעות, מתוכן 8 אמיתיות ו-4 ספאם. כעת נניח וכל ההודעות מורכבות מאוסף של ארבע מילים, בהתפלגות הבאה:

Real (R) – {Dear, Friend, Lunch, Money} = $\{8, 5, 3, 1\}$.

Spam (S) – {Dear, Friend, Lunch, Money} = $\{2, 1, 0, 4\}$.

נחשב את הנראות – ההסתברות של כל מילה בהינתן הסיווג:

$$p(Dear|R) = \frac{8}{17}, p(\text{Friend}|R) = \frac{5}{17}, p(\text{Lunch}|R) = \frac{3}{17}, p(\text{Money}|R) = \frac{1}{17}$$
$$p(Dear|S) = \frac{2}{7}, p(\text{Friend}|S) = \frac{1}{7}, p(\text{Lunch}|S) = 0, p(\text{Money}|S) = \frac{4}{7}$$

כעת נבחן מה ההסתברות שהצירוף "Dear friend" הוא מהודעה אמיתית (הצירוף הוא למעשה התפלגות מולטינומית, כיוון שהוא מכיל שתי מילים שאין בין ההסתברויות שלהן קשר ישיר):

$$p(\text{Dear friend is R}) = p(R) \cdot p(Dear|R) \cdot p(Friend|R) = 0.67 \cdot 0.47 \cdot 0.29 = 0.09$$

 $p(\text{Dear friend is S}) = p(S) \cdot p(Dear|S) \cdot p(Friend|S) = 0.33 \cdot 0.29 \cdot 0.14 = 0.01$

ממספרים אלה ניתן להסיק שהצירוף "Dear friend" אינו ספאם.

באופן הבא: $x \in \mathbb{R}^n = (x_1, ... x_n)$ באופן מחושבת באופן הבא.

$$p(x|y_k) = \frac{(\sum_i x_i)!}{\prod_i x_i!} \prod_i p(y_{ki})^{x_i}$$

על הציר הלוגריתמי, בעזרת נוסחה זו ניתן לבנות מסווג לינארי:

$$p(y_k|x) = \frac{p(y_k, x)}{p(x)} \propto p(y_k) \cdot \prod_i p(y_{ki})^{x_i}$$

$$\to \log p(y_k|x) \propto \log p(y_k) \cdot \prod_i p(y_{ki})^{x_i} = \log p(y_k) + \sum_i x_i \cdot \log p(y_{ki}) \equiv b + w^T x$$

החיסרון בשימוש במסווג בייסיאני נאיבי בבעיות מולטינומיות נעוץ בכך שיש הרבה צירופים שלא מופיעים יחד בסט האימון, ולכן הנראות שלהם תמיד תהיה 0, מה שפוגם באמינות התוצאות.

מקרה דומה להתפלגות מולטינומית הוא מקרה בו הפיצ'רים הם משתני ברנולי, המקבלים ערכים בינאריים. במקרה זו הנראות הינה:

$$p(x|y_k) = \prod_{i=1}^{n} p_i^{x_i} (1 - p(y_{ki}))^{1 - x_i}$$

עבור דאטה לא מאוזן, ניתן להשתמש באלגוריתם שנקרא (Complement naive Bayes (CNB). לפי אלגוריתם זה, עבור דאטה לא מאוזן, ניתן להשתמש באלגוריתם שנקרא ($\arg\max_i p(y_k)\prod_{i=1}^n p(x_i|y_k)$ במקום לקחת את ($\min_i p(x_i|y_k)$ במקום לקחת את (ביתון היש אלגוריתם מון היש אלגוריתם מון היש אלגוריתם זה, ביתון היש אלגוריתם מון היש

$$\arg\min_{k} p(y_k) \prod_{i=1}^{n} \frac{1}{p(x_i|y_k)}$$

שימוש באלגוריתם זה הוכח כיעיל במקרים בהם הדאטה אינו מאוזן והביצועים של מסווגים בייסיאנים אחרים (גאוסיאני או מולטינומי) היה לא מספיק טוב.

2.1.3 K-Nearest Neighbors (K-NN)

אלגוריתם השכן הקרוב הינו אלגוריתם של למידה מונחית, בו נתונות מספר דוגמאות ובנוסף ידוע ה-label של כל אחת מהן. אלגוריתם זה מתאים הן לבעיות סיווג (שיוך נקודה חדשה למחלקה מסוימת) והן לבעיות רגרסיה (נתינת אחת מהן. אלגוריתם זה מתאים הינו מודל חסר פרמטרים, והוא מבצע סיווג לנתונים בעזרת הכרעת הרוב. ערך מאפיין לנקודה חדשה). האלגוריתם הינו מודל חסר פרמטרים, והוא מבצע סיווג לנתונים בעזרת הכרעת הרוב. עבור כל נקודה במדגם, המודל בוחן את ה-labels של K הנקודות הקרובות אליו ביותר, ומסווג את הנקודה לפי ה-label שקיבל את מרבית הקולות. מספר הנקודות הקרובות, K, הוא היפר-פרמטר שנקבע מראש.

אלגוריתם השכן הקרוב הוא אחד המודל הנפוצים והפשוטים ביותר בלמידת מכונה, וכאמור בנוסף לסיווג הוא מתאים גם לבעיות רגרסיה. המודל יפעל בצורה דומה בשני המקרים, כאשר ברגרסיה יתבצע שקלול של ממוצע בין השכנים גם לבעיות רגרסיה. המודל יפעל בצורה דומה בשני המקרים, כאשר ברגרסיה יתבצע שקלול של המוצאה לא תהיה סיווג ל-label מסוים לפי הערך הנפוץ ביותר בקרב K השכנים. הקרובים, אלא חישוב ממוצע של כל ה-labels השכנים. התוצאה המתקבלת היא ערך רציף, המייצג את הערכים הקרובים, אלא חישוב ממוצע של כל ה-labels שכן מהתצפית בצורה שווה (uniform), וניתן לתת משקל שונה בסביבת התצפית. ניתן להתחשב במרחק של כל שכן מהתצפית בצורה שווה (distance), וניתן לנקודה אותה רוצים לחשב כך הוא יותר ישפיע עליה, ביחס של הופכי המרחק בין השכן לבין הנקודה (distance).

איור (a 2.1 סיווג בעזרת אלגוריתם K-NN: מסווגים את המרחב לאזורים בהתאם ל-K השכנים הקרובים ביותר, כך שאם תבוא נקודה חדשה היא תהיה מסווגת בהתאם לצבע של האזור שלה, הנקבע כאמור לפי השכנים הקרובים ביותר. ניתן לראות שיש הבדל בין ערכי אונים, וככל ש-K יותר גבוה ככה האזורים יותר חלקים ויש פחות מובלעות. (b) רגרסיה בעזרת אלגוריתם K-NN: קביעת ערך ה-K שנים, וככל ש-K השכנים הקרובים ביותר. ניתן לתת משקלים שווים לכל השכנים, או לתת משקל ביחס למרחק של כל שכן מהנקודה אותה רוצים לחשב.

לעיתים נאמר על המודל שהוא "עצלן". הסיבה לכך היא שבשלב האימון לא מתבצע תהליך משמעותי, מלבד השמה של המשתנים וה-labels כאובייקטים של המחלקה, כלומר כל נקודה משויכת למחלקה מסוימת. עקב כך, כל מדגם של המשתנים וה-labels כאובייקטים של המחזית, מה שעשוי להפוך את המודל לאיטי כאשר יש הרבה דאטה. למרות זאת, המודל נחשב לאחד המודלים הקלאסיים הבולטים, בזכות היתרונות שלו. הוא פשוט וקל לפירוש, עובד היטב עם מספר רב של מחלקות, ומתאים לבעיות רגרסיה וסיווג. בנוסף הוא נחשב אמין במיוחד, כיוון שהוא לא מניח הנחות לגבי התפלגות הנתונים (כמו רגרסיה לינארית למשל).

מנגד, יש לו מספר חסרונות. עקב העובדה שהוא דורש את כל נתוני האימון בשביל התחזית, הוא עשוי להיות איטי כאשר מדובר על דאטה עשיר. מסיבה זו הוא גם אינו יעיל מבחינת זיכרון. מכיוון שהמודל דורש את כל נתוני האימון לצורך המבחן, כושר ההכללה שלו עשוי להיפגם (Generalization). ניקח לדוגמה מורה של כיתה בבית ספר, המנסה לסווג את התלמידים למספר קבוצות. אם יעשה זאת לפי צבע שיער ועיניים, לדוגמא, סביר להניח שלא יתקשה בכך; אם לעומת זאת הוא ינסה לסווג לפי צבע שיער, עיניים, חולצה, מכנסיים, נעליים, וכו' – סביר שיתקל בקושי. במצב כזה, כל תלמיד רחוק מרעהו באופן שווה כיוון שאין שני תלמידים שזהים לחלוטין בכל הפרמטרים, מה שמקשה על חישוב המרחק. בעיה זו מכונה קללת הממדיות (Course of dimensionality), ולכן מומלץ להיעזר באמצעים להורדת המימד (Dimensionality reduction).

קושי נוסף הקיים במודל הוא הצורך בבחירת ה-K הנכון, מטלה שעשויה להיות לא קלה לעיתים. בכל מימוש של אלגוריתם השכן הקרוב, K הינו היפר-פרמטר שצריך להיקבע מראש. היפר פרמטר זה קובע את מספר הנקודות אשר האלגוריתם יתחשב בהן בעת בחירת סיווג התצפית. בחירת היפר-פרמטר קטן מידי, לדוגמה K=1, יכולה לגרום למצב בו המודל מותאם יתר על המידה לנתוני האימון, מה שמוביל לדיוק גבוה בנתוני האימון, ודיוק נמוך לגרום למצב בו המודל מותאם יתר על המידי, למשל K=100, נוצר המצב ההפוך – מודל שמתחשב יותר מדי בנתוני המבחן. מן העבר השני, כאשר K גבוה מידי, למשל K=100 אי-זוגי בגלל אופן הפעולה של האלגוריתם – הכרעת בדאטה ולא מצליח למצוא הכללה נכונה לסיווג. מומלץ לבחור K=100 אי-זוגי בגלל לתוצאה מוטעית, ולכן כדי להימנע מתיקו כדאי לבחור K=100 אי זוגי.

כמו אלגוריתמים רבים מבוססי מרחק, אלגוריתם השכן הקרוב רגיש לערכים קיצוניים (Outliers) ושימוש באלגוריתם ללא טיפול בערכים קיצוניים עשוי להוביל לתוצאות מוטות. מלבד זאת, חשוב לנרמל את הנתונים לפי שימוש במודל. הסיבה לכך היא שהאלגוריתם מבוסס מרחק; במצב זה, ייתכנו מרחקים בין תצפיות אשר עשויים להשפיע על החלטת המודל, למרות שמרחקים אלו הם חסרי משמעות לצורך הסיווג. דוגמה לכך היא משתנה שעושה שימוש ביחידות מידה שונות (מיילים/קילומטרים). ההחלטה האם להשתמש בקילומטרים או במיילים עלולה להטות את תוצאת המודל, למרות שבפועל לא השתנה דבר.

השיטה הנפוצה ביותר למדידת מרחק בין משתנים רציפים היא מרחק אוקלידי – עבור שתי נקודות במישור, המרחק ביניהם יחושב לפי הנוסחה: $d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$. במידה ומדובר במשתנים בדידים, כגון טקסט, ניתן להשתמש במטריקות אחרות כגון מרחק המינג, המודד את מספר השינויים הדרושים בכדי להפוך מחרוזת אחת למחרוזת שנייה, ובכך למדוד את הדמיון ביניהן.

לפני שימוש באלגוריתם השכן הקרוב, יש הכרח לוודא שהמחלקות מאוזנות. במידה ומספר דוגמאות האימון באחת המחלקות גבוה מאשר בשאר המחלקות, האלגוריתם ייטה לסווג למחלקה זאת. הסיבה לכך היא שבשל מספרן המחלקות גבוה מאשר בשאר המחלקות, האלגוריתם ייטה לסווג למחלקה זו צפויה להיות נפוצה הרבה יותר בקרב K השכנים של כל תצפית. הדבר עשוי להביא לתוצאות מוטות, ולכן יש לוודא מראש שאכן יש איזון בין המחלקות השונות.

2.1.4 Quadratic\Linear Discriminant Analysis (QDA\LDA)

סיווג של חונת, המניח שבהינתן סיווג של עוסף לסיווג של Quadratic Discriminant Analysis הינו מודל נוסף לסיווג של אובייקט מסוים – מתקבלת התפלגות נורמלית, כלומר בהינתן $y_k, k \in \{1, ..., K\}$

$$x|y_k \sim N(\mu_k, \Sigma_k)$$

ובאופן מפורש, עבור $x \in \mathbb{R}^{n \times d}$ הפילוג המותנה הוא:

$$p(x|y=k;\mu_k,\Sigma_k) = \frac{1}{\sqrt{(2\pi)^d |\Sigma_k|}} \exp\left(-\frac{1}{2}(x-\mu_k)^T \Sigma_k^{-1}(x-\mu_k)\right)$$

בעזרת הנחה זו, ניתן למצוא מסווג אופטימלי עבור $y = \arg\max_k p(y_k|x)$ בעזרת הנחה דו, ניתן למצוא מסווג אופטימלי

$$p(y_k|x) = \frac{p(x|y=k)p(y)}{p(x)}$$

 $p(y=k)=rac{\mathbb{1}_{y=k}}{n}$ במדגם label במדגם פי השכיחות על פי השכיחות על פי מתן לשערך ניתן p(y) ואת הביע (MLE) שכאמור מתפלג נורמלית, ניתן לשערך בעזרת הנראות מרבית p(x|y=k) שכאמור מתפלג נורמלית, ניתן לשערך בעזרת הנראות מרבית נסמן את הפרמטרים של המודל ב: $\theta=\{\mu_1,\Sigma_1,\dots,\mu_K,\Sigma_K\}$

$$\theta_{MLE} = \arg \max_{\theta} p(x|y) = \arg \max_{\theta} \log p(x|y;\theta)$$
$$= \arg \max_{\theta} \log \sum_{i=1}^{n} p(x_i|y_i;\theta)$$

ניתן לפרק את הסכום לפי ה-label של כל דגימה:

$$=\arg\max_{\theta}\log\sum_{i\in y_i=1}p(x_i|y_i=1;\theta)+\log\sum_{i\in y_i=1}p(x_i|y_i=2;\theta)+\cdots+\log\sum_{i\in y_i=K}p(x_i|y_i=K;\theta)$$

כעת בשביל לחשב פרמטרים עבור כל מספיק מספיק אמסיק עבור עבורן עבורן אדגימות כעת בשביל לחשב כעת עבור כל y_k

$$\theta_{k_{MLE}} = \arg \max_{\theta_k} \log \sum_{i \in y_i = k} p(x_i | y_i = k; \theta_k)$$

על ידי גזירה והשוואה ל-0 ניתן לחשב את הפרמטרים האופטימליים:

$$\mu_k = \frac{\sum_{i \in y_i = k} x_i}{\sum_i \mathbb{1}_{y_i = k}}$$

$$\Sigma_k = \frac{\sum_{i \in y_i = k} (x_i - \mu_k)(x_i - \mu_k)^T}{\sum_i \mathbb{1}_{y_i = k}}$$

ניתן לשים לב שהתוחלת μ_k היא למעשה ממוצע הדגימות עבורן y=k. בעזרת הפרמטרים המשוערכים ניתן לבנות את המסווג:

$$y = \arg \max_{k} p(y_{k}|x; \mu_{k}, \Sigma_{k}) = \arg \max_{k} \log p(x|y = k)p(y)$$
$$= \arg \max_{k} -\frac{1}{2} \log |\Sigma_{k}| -\frac{1}{2} (x - \mu_{k})^{T} \Sigma_{k}^{-1} (x - \mu_{k}) + \log p(y)$$

עבור המקרה בו מטריצת ה-covariance היא אלכסונית, כלומר אין תלות בין משתנים שונים, מתקבל המסווג הבייסיאני הגאוסיאני (תוצאה זו הגיונית כיוון שהמסווג הבייסיאני מניח שבהינתן סיווג של אובייקט מסוים אין יותר תלות בין המשתנים).

עבור המקרה הבינארי, בו $y \in \{0,1\}$, מתקבל סיווג בצורה של משוואה ריבועית:

$$y = 1 \Leftrightarrow -\frac{1}{2}\log|\Sigma_1| - \frac{1}{2}(x - \mu_1)^T \Sigma_1^{-1}(x - \mu_1) + \log p(y = 1) > -\frac{1}{2}\log|\Sigma_0| - \frac{1}{2}(x - \mu_0)^T \Sigma_0^{-1}(x - \mu_0) + \log p(y = 0)$$

:נסמן

$$a = \frac{1}{2} (\Sigma_1^{-1} - \Sigma_0^{-1})$$

$$b = \Sigma_1^{-1} \mu_1 - \Sigma_0^{-1} \mu_0$$

$$c = \frac{1}{2} (\mu_0^T \Sigma_0^{-1} \mu_0 - \mu_1^T \Sigma_1^{-1} \mu_1) + \log \frac{p(y=1)}{p(y=0)} - \log \frac{\sqrt{\Sigma_1}}{\sqrt{\Sigma_0}}$$

ונקבל:

$$v = 1 \Leftrightarrow x^T a x + b^T x + c > 0$$

וזהו משטח הפרדה ריבועי.

ה-ינו מקרה פרטי של Quadratic Discriminant Analysis, בו מניחים כי מטריצת ה-Linear Discriminant Analysis הינו מקרה פרטי של במקרה זה מתקבל: $\Sigma_k = \Sigma$ במקרה זה לכל ה-labels, כלומר

$$\log p(x|y = k)p(y) = -\frac{1}{2}(x - \mu_k)^T \Sigma^{-1}(x - \mu_k) + \log p(y)$$

הביטוי $(x-\mu_k)^T \Sigma^{-1} (x-\mu_k)$ נקרא מרחק מהלונביס, והוא מבטא את מידת הקשר בין x לבין μ_k תוך כדי ($x-\mu_k$) נקרא ניתן להסתכל על מסווג בשונות של כל משתנה. למעשה ניתן להסתכל על מסווג המשייך אובייקט ל-label עבורו המרחק על פי מטריקת מהלונביס הוא הכי קטן. על ידי גזירה והשוואה ל-0 מתקבל השערוך:

$$\mu_k = \frac{\sum_{i \in y_i = k} x_i}{\sum_i \mathbb{1}_{y_i = k}}$$

$$\Sigma_k = \frac{1}{n} \sum_i (x_i - \mu_k) (x - \mu_k)^T$$

והמסווג המתקבל הינו:

$$y = \arg \max_{k} p(y_{k}|x; \mu_{k}, \Sigma)p(y) = \arg \max_{k} -\frac{1}{2}(x - \mu_{k})^{T} \Sigma^{-1}(x - \mu_{k}) + \log p(y = k)$$
$$= \arg \max_{k} -x^{T} \Sigma^{-1} \mu_{k} + \frac{1}{2} \mu_{k} \Sigma^{-1} \mu_{k} + \log p(y = k)$$

ניתן לסמן:

$$a = \Sigma^{-1} \mu_k$$

$$b = \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log p(y = k)$$

ומתקבל מסווג לינארי (ומכאן השם של האלגוריתם):

$$y = \arg\max_{k} ax^{T} + b$$

מסווג זה מחלק כל שני אזורים בעזרת מישור לינארי, כאשר בסך הכל יש K קווי הפרדה. עבור המקרה הבינארי מתקיים:

$$a = \Sigma^{-1}(\mu_1 - \mu_0)$$

$$b = \frac{1}{2}(\mu_0^T \Sigma^{-1} \mu_0 - \mu_1^T \Sigma^{-1} \mu_1) + \log \frac{p(y=1)}{p(y=0)}$$

והסיווג הינו:

$$y = 1 \Leftrightarrow a^T x + b > 0$$

אלגוריתם LDA פשוט יותר מאלגוריתם QDA כיוון שיש פחות פרמטרים לשערך, אך יש לו שני חסרונות עיקריים – DA אלגוריתם LDA הוא לא גמיש אלא לינארי, ובנוסף הוא מניח שמטריצת ה-covariance זהה לכל ה-labels, מה שיכול לגרום לשגיאות בסיווג. כדי להתמודד עם הבעיה השנייה ניתן להשתמש באלגוריתמים המנסים למצוא את מטריצת ה-Ledoit-Wolf estimator ו-Oracle Shrinkage Approximating).

באופן גרפי ניתן להסתכל על אלגוריתם LDA כמציאת כיוון ההפרדה בו יש את השונות הגדולה ביותר בין שתי התפלגויות נורמליות, ובנוסף יש בו את ההפרדה המקסימלית בין הקבוצות השונות. לאחר מציאת הקו האופטימלי, ניתן לחשב את ההתפלגויות של הקבוצות השונות כהתפלגויות נורמליות על הישר המאונך לקו ההפרדה:

איור 2.2 אלגוריתם LDA באופן גרפי: מציאת הכיוון של ההתפלגויות והטלת המידע על הציר האנכי לכיוון ההפרדה.

2.2 Unsupervised Learning Algorithms

2.2.1 K-means

אלגוריתם K-means הינו אלגוריתם של למידה לא מונחית, בו מתבצעת תחזית על נתונים כאשר ה-label אינו נתון. אלגוריתם זה מתאים לבעיות של חלוקה לאשכולות (Clustering), ובנוסף יכול לשמש בשלב הצגת וניקוי הנתונים אלגוריתם זה מתאים לבעיות של חלוקה לאשכולות (סנטרואיד - (WCSS)). עבור כל נקודה במדגם, המודל ממזער את סכום ריבוע המרחקים (WCSS) מכל מרכז אשכול (סנטרואיד הוא (centroid), ולאחר תהליך של התכנסות – נקבעים האשכולות והסנטרואידים הסופיים. מספר האשכולות הנדרש הוא היפר-פרמטר שנקבע מראש. כמו כל האלגוריתם השייכים ללמידה הבלתי-מונחית, ב-K-means לא מתבצע אימון, ולמעשה התחזית מתבצעת על כל הדאטה הנתון.

סנטרואיד הוא מונח מתחום הגיאומטריה, והוא מתאר את הממוצע האריתמטי של כל הנקודות שמתפרסות על פני צורה כלשהי. באופן אינטואיטיבי ניתן לחשוב על סנטרואיד כנקודת איזון של צורה גיאומטרית כלשהיא, כך שאם ננסה להניח צורה, משולש לדוגמא, באופן מאוזן, הסנטרואיד הוא הנקודה שבה המשולש יתאזן ולא ייפול לאחד הצדדים.

בפועל, סביר שהצורות איתן מתמודדים במציאות יותר מורכבות ממשולש. במצב כזה, הסנטרואיד יהיה הנקודה בה סכום המרחקים של כל נקודה באשכול מהסנטרואיד יהיה מינימלי. כלומר, המודל ימקם את מרכזו של כל אשכול כך שסכום המרחקים של כל הנקודות מהסנטרואיד יהיה נמוך ככל האפשר. למעשה, זוהי ההגדרה הבסיסית של -means אלגוריתם מבוסס סנטרואידים הממזער את סכום ריבוע המרחק של כל הנקודות באשכול. מדד זה נקרא WCSS, והוא מדד משמעותי ביותר בקרב אלגוריתמים שמבצעים חלוקה לאשכולות, K-means בפרט. הסיבה לחזקה במשוואה היא שאנו רוצים להגביר את ההשפעה של המרחק, מעין "עונש" לתצפיות רחוקות מהמרכז.

מדד WCSS הוא אחד הדרכים המקובלות ביותר להעריך את תוצאות החלוקה לאשכולות ב-K-means. היתרון של מדד זה הוא האפשרות לראות באופן כמותי את מידת ההצלחה של המודל, כלומר לקבל מספר ממשי שמכמת את מדד זה הוא האפשרות לראות באופן כמותי את מידת ההצלחה של המודל. מנגד, WCSS הוא מספר ללא תחום מסוים והוא דורש פרשנות, כיוון שהערך והמשמעות שלו משתנים ממודל למודל. ערך מסוים יכול להיחשב תוצאה טובה במקרה מסוים, ובמקרה אחר זאת עשויה להיחשב תוצאה רעה מאוד. ניתן להשוות WCSS בין מודלים אך ורק כאשר יש להם את אותו מספר אשכולות ואותו מספר תצפיות. באופן פורמלי, ערך זה מחושב באופן הבא:

$$WCSS = \sum_{j=1}^{k} \sum_{i=1}^{n} \left\| x_i^{(j)} - c_j \right\|^2$$

. כאשר K הוא מספר האשכולות, וn הוא מספר הנקודות במדגם K

ישנו trade-off בין השאיפה למזער את מדד ה-WCSS ובין מספר האשכולות הרצוי: ככל שמספר האשכולות גדול יותר, כך ה- WCSS יקטן. הדבר מתיישב עם ההיגיון – פיזור סנטרואידים רבים (כלומר, חלוקה ליותר אשכולות) על פני הנתונים יוביל לכך שבהכרח סכום המרחקים של התצפיות מהסנטרואידים יקטן או לא ישתנה. כיוון שתצפית משויכת לסנטרואיד הקרוב אליה ביותר, אם התווסף סנטרואיד שקרוב לנקודה מסוימת –ה-WCSS קטן. ואם הסנטרואיד רחוק מכל שאר הנקודות במדגם יותר מהסנטרואידים הקיימים – חלוקת התצפיות לאשכולות לא תשתנה, וערך ה-WCSS לא ישתנה.

לכן מצד אחד, נרצה לבחור K גדול שימזער את ה-WCSS; מצד שני, הסיבה שהשתמשנו ב-K-means מלכתחילה היא בכדי לפשט את הנתונים למספר סביר של אשכולות, כזה שיאפשר לנו לערוך אנליזה נוחה. שיטת המרפק (Elbow method) היא טכניקה שמשמשת לפתרון סוגייה זו. הרעיון הוא לבחור את ה-K הקטן ביותר שממנו השיפור

במדד ה- WCSS הוא מתון במידה סבירה. שיטה זו היא היוריסטית ואין דרך חד משמעית לקבוע שה-K הנבחר הוא האופטימלי. בדרך זו ניתן לשכנע מדוע ה-K שנבחר הוא הנכון, אך ההחלטה הסופית נתונה לשיקול דעתו של המשתמש.

3- מ-2 K שיטה היוריסטית למציאת מספר האשכולות האופטימלי. בדוגמה זו ניתן לראות שבמעבר של K מ-2 ל-3 בK שיטה היוריסטית למציאת מספר האשכולות האופטימלי. בדוגמה זו ניתן לראות שבמעבר של K מ-2 ל-4 לעומת זאת מוביל לשינוי זניח ב-K (וכך גם במעברים הבאים). לכן ניתן להסיק שבמקרה כזה בחירה של K = 3 הינה בחירה טובה.

כאמור, האלגוריתם מחלק את הנתונים לאשכולות בדרך שממזערת את סך ריבועי המרחקים של כל תצפית ממרכז האשכול. באופן פורמלי האלגוריתם מתבצע ב-4 שלבים:

- א. **אתחול:** המודל מציב את הסנטרואידים באופן רנדומלי.
- ב. שיוך: כל תצפית משויכת לסנטרואיד הקרוב אליה ביותר.
- ג. עדכון: הסנטרואיד מוזז שכך שה-WCSS של המודל ימוזער.
- ד. חזרה על שלבים ב, ג עד אשר הסנטרואידים לא זזים לאחר העדכון, כלומר יש התכנסות.

איור 2.4 איור אליה, ועדכון הסנטרואידים באופן רנדומלי. (b). שיוך כל נקודה לסנטרואיד הקרוב ביותר אליה, ועדכון הסנטרואידים (a .K-means איור a .WCSS מדד ה-a b אחזרה על a עד להתכנסות.

K-means ידוע בכך שהוא אלגוריתם פשוט ומהיר. לרוב, הבחירה הראשונה בפתרון בעיות של חלוקה לאשכולות K-means תהיה ב-K-means. עם זאת, לאלגוריתם ישנם גם חסרונות. ראשית, בחירת ה-K הנכון עשויה להוות אתגר במרבית מהקרים. בנוסף, האלגוריתם רגיש מאוד לערכים קיצוניים (Outliers). אופן הפעולה של האלגוריתם מאפשר לו ליצור אשכולות רק בצורה של ספירות, והדבר אינו אופטימלי בחלק מן המקרים.

בעיה נוספת יכולה להתעורר בבחירת המיקום הראשוני של הסנטרואידים – כיוון שהבחירה היא רנדומלית, ניתן להיקלע להתכנסות במינימום מקומי שהוא אינו המינימום הגלובלי. כדי להתמודד עם בעיה זה ניתן להשתמש באלגוריתם ++K. בשלב ראשון האלגוריתם בוחר למקם סנטרואיד אחד באופן רנדומלי. לכל תצפית, האלגוריתם מחשב את המרחק בין התצפית לסנטרואיד הקרוב אליה ביותר. לאחר מכן, תצפית רנדומלית נבחרת להיות הסנטרואיד החדש. התצפית נבחרת בהתאם להתפלגות משוקללת של המרחקים, כך שככל שתצפית יותר רחוקה – כך גובר הסיכוי שהיא תבחר. שני השלבים האחרונים נמשכים עד שנבחרו K סנטרואידים. כאשר כל הסנטרואידים מוקמו, מבצעים K++ מוביל להתכנסות מהיכוי להתכנס לאופטימום מקומי.

2.2.2 Mixture Models

אלגוריתם K-means מחלק n נקודות ל-K קבוצות על פי מרחק של כל נקודה ממרכז מסוים. בדומה ל-K-means אלגוריתם אלגוריתם mixture model הוא אלגוריתם של נקודות כשייכות אלגוריתם של התפלגויות שונות. המודל מניח שכל קבוצה היא למעשה דגימות של התפלגוות שונות. המודל מניח שכל קבוצה היא למעשה דגימות של התפלגוות מסוימת, וכל הדאטה הוא ערבוב דגימות ממספר התפלגויות. הקושי בשיטה זה הוא האתחול של כל קבוצה – כיצד ניתן לדעת על איזה דוגמאות לנסות ולמצוא התפלגות מסוימת? עקב בעיה זו, לעיתים משתמשים קודם באלגוריתם ניתן לדעת על איזה דוגמאות לנסות ולמצוא התפלגות מסוימת? עקב מנסים למצוא לכל קבוצה של נקודות התפלגות מסוימת.

ראשית נניח שיש k אשכולות, אזי נוכל לרשום את ההסתברות לכל אשכול:

$$p(y = i) = \alpha_i, i = 1, ... k$$

 $\sum_i \alpha_i = 1$ וכמובן לפי חוק ההסתברות השלמה מתקיים

בנוסף נניח שכל אשכול מתפלג נורמלית עם פרמטרים ($heta_i = (\mu_i, \sigma_i)$ בנוסף בניח שכל אשכול מתפלג נורמלית עם פרמטרים

$$x|y = i \sim \mathcal{N}(\mu_i, \sigma_i), i = 1 \dots k$$

אם מגיעה נקודה חדשה ורוצים לשייך אותה לאחד האשכולות, אז צריך למעשה למצוא את האשכול i שעבורו הביטוי p(y=i|x) הוא הכי גדול. לפי חוק בייס מתקיים:

$$p(y = i|x) = \frac{p(y = i) \cdot p(x|y = i)}{p(x)}$$

המכנה למעשה נתון, כיוון שההתפלגות של כל אשכול ידועה ונותר לחשב את המכנה:

$$f(x) = f(x; \theta) = \sum_i p(y = i) f(x|y = i) = \sum_i \alpha_i \mathcal{N}(x; \mu_i, \sigma_i)$$

ובסך הכל:

$$p(y = i|x) = \frac{\alpha_i \cdot \mathcal{N}(x; \mu_i, \sigma_i)}{\sum_j \alpha_j \mathcal{N}(x; \mu_j, \sigma_j)}$$

איור 2.5 (a ערובת של שני גאוסיאנים במימד אחד: בשלב ראשון מחלקים את הנקודות לשני אשכולות ומתאימים לכל אשכול התפלגות (a 2.5 מסוימת. במקרה זה אשכול אחד (מסומן בכחול) הותאם להתפלגות (a 2.5 (אשכול אחד (מסומן באדום) הותאם להתפלגות (a 2.5 התפלגות (a 2.5 אחד (מסומן באדום) הותאם להתפלגות במקרה זה אשכול אחד (מסומן בכחול אם a 2.14 באופן דומה, הנקודה a תסווג לאשכול הכחול אם a 2.14 שבתחום זה a 2.14 באדום אם a 2.14 באדום a 2.14 באדום a 2.14 באדום אם a 2.14 באדום a 2.14

כאמור, כדי לשייך נקודה חדשה x לאחד מהאשכולות, יש לבדוק את ערך ההתפלגות בנקודה החדשה. ההתפלגות שעבורה ההסתברות p(x) היא הגדולה ביותר, היא זאת שאליה תהיה משויכת הנקודה. ההתפלגויות יכולות להיות בחד מימד, אך הן יכולות להיות גם במימד יותר גבוה. למשל אם מסתכלים על מישור, ניתן להתאים לכל אשכול בחד מימד, אך הן יכולות להיות גם במימד יותר גבוה. למשל אם $X \sim \mathcal{N}(\mu, \Sigma)$ היא בעלת הצפיפות:

$$f_X(x_1,...,x_n) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} e^{-\frac{1}{2}(X-\mu)^T \Sigma^{-1}(X-\mu)}$$

.covariance-כאשר $|\Sigma|$ הוא הדטרמיננטה של מטריצת

covariance איור 2.6 תערובת של שני גאוסיאנים בדו-מימד: אשכול אחד מתאים לגאוסיאן עם וקטור תוחלות $\mu_1=[10,10]$ ומטריצת איור 2.6 תערובת של שני גאוסיאנים בדו-מימד: אשכול אחד מתאים לגאוסיאן עם וקטור תוחלות $\Sigma=\begin{bmatrix}2&0\\0&2\end{bmatrix}$:covariance נואשכול השני מתאים לגאוסיאן עם וקטור תוחלות, $\mu_1=[15,15]$ ומטריצת, והאשכול השני מתאים לגאוסיאן עם וקטור תוחלות $\mu_1=[15,15]$

כיוון שהאלגוריתם mixture model מספק התפלגויות, ניתן להשתמש בו כמודל גנרטיבי, כלומר מודל שיודע לייצר דוגמאות חדשות. לאחר התאמת התפלגות לכל אשכול, ניתן לדגום מההתפלגויות השונות ובכך לקבל דוגמאות חדשות.

2.2.3 Expectation-maximization (EM)

אלגוריתם מקסום התוחלת הינו שיטה איטרטיבית למציאת הפרמטרים האופטימליים של התפלגויות שונות, במקרים אלגוריתם מקסום התוחלת הינו שיטה איטרטיבית למציאת הפרמטרים. נתבונן על מקרה של Mixture of Gaussians, ונניח שיש אשכול מסוים בהם אין נוסחה סגורה למציאת הפרמטרים. נתבונן על מקרה של ומשויכות אליו n נקודות. כדי לחשב את ההתפלגות של אשכול זה המתפלג נורמלית עם תוחלת ושונות $\theta = (\mu, \sigma)$, ומשויכות אליו n נקודות. כדי לחשב את ההתפלגות המרבית:

$$L(\theta|x_1, ..., x_n) = \log \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} = \sum_{i=1}^{n} \log \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{(x_i - \mu)^2}{2\sigma^2}$$

כדי למצוא את הפרמטרים האופטימליים ניתן לגזור ולהשוות ל-0:

$$\frac{\partial L(\theta)}{\partial \mu} = \sum_{i=1}^{n} \frac{x_i - \mu}{\sigma^2} \to \mu_{MLE} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\frac{\partial L(\theta)}{\partial \sigma^2} = \frac{1}{2\sigma^2} \left(-n + \frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2 \right) \to \sigma_{MLE}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

כעת נניח ויש k אשכולות וכל אחד מתפלג נורמלית. כעת סט הפרמטרים אותם צריך להעריך הינו:

$$\theta = \{\mu_1, \dots, \mu_k, \sigma_1^2, \dots, \sigma_k^2, \alpha_1, \dots, \alpha_k\}$$

עבור מקרה זה, הלוג של פונקציית הנראות המרבית יהיה:

$$L(\theta|x_1, \dots, x_n) = \log \prod_{i=1}^n \sum_{j=1}^k \alpha_j \mathcal{N}(x_i, \mu_j, \sigma_j^2) = \sum_{i=1}^n \log \left(\sum_{j=1}^k \alpha_j \mathcal{N}(x_i, \mu_j, \sigma_j^2) \right)$$

אם נגזור ונשווה ל-0 נקבל בדומה למקרה הפשוט:

$$\sum_{i=1}^{n} \frac{1}{\sum_{j=1}^{k} \alpha_{j} \mathcal{N}(x_{i}, \mu_{j}, \sigma_{j}^{2})} \alpha_{j} \mathcal{N}(x_{i}, \mu_{j}, \sigma_{j}^{2}) \frac{(x_{i} - \mu_{j})}{\sigma_{j}^{2}} = 0$$

נוסחה זו אינה ניתנת לפתרון אנליטי, ולכן יש הכרח למצוא דרך אחרת בכדי לחשב את הפרמטרים האופטימליים של ההתפלגויות הרצויות. נתבונן בחלק מהביטוי שקיבלנו:

$$\frac{1}{\sum_{i=1}^{k} \alpha_i \mathcal{N}(x_i, \mu_i, \sigma_i^2)} \alpha_j \mathcal{N}(x_i, \mu_j, \sigma_j^2) = \frac{p(y_i = j) \cdot p(x_i | y = j)}{p(x_i)} = p(y_i = j | x_i) \equiv w_{ij}$$

קיבלנו למעשה את הפוסטריור, y_i (האשכול אליו רוצים לשייך את $(x_i$ אך הוא לא נתון אלא הוא חבוי. כדי לחשב את המבוקש ננחש ערך התחלתי ל- θ ובעזרתו נחשב את y_i , ואז בהינתן y_i נבצע עדכון לפרמטרים – נבחן מהו סט הפרמטרים שמסביר בצורה הטובה ביותר את האשכולות שהתקבלו בחישוב ה- y_i . באופן פורמלי שני השלבים מנוסחים כך:

 x_i נחשב את האשכול המתאים לכל נקודה, כלומר כל נקודה פרמטר θ נחשב את האשכול המתאים לכל נקודה, כלומר כל נקודה x_i נחשב תוחלת ובעזרתה נגדיר את הפונקציה y_i , כאשר y_i כאשר y_i פרמטר חדש ו- y_i הוא סט הפרמטרים הנוכחי:

$$Q(\theta, \theta_0) = \sum_{i=1}^{n} \sum_{j=1}^{k} p(y_i = j | x_i; \theta_0) \log p(y_i = j, x_i; \theta) = \sum_{i=1}^{n} \sum_{j=1}^{k} w_{ij} \log p(y_i = j, x_i; \theta)$$
$$\sum_{i=1}^{n} \mathbb{E}_{p(y_i | x_i; \theta_0)} \log p(y_i = j, x_i; \theta)$$

:שואז מעדכנים את θ_0 ל- θ_0 ואז מעדכנים את שיביא למקסימום את - M-step

$$\theta = \arg\max_{\theta} Q(\theta, \theta_0)$$
$$\theta_0 \leftarrow \theta$$

חוזרים על התהליך באופן איטרטיבי עד להתכנסות.

עבור Mixture of Gaussians נוכל לחשב באופן מפורש את הביטויים:

$$Q(\theta, \theta_0) = \sum_{i=1}^{n} \sum_{j=1}^{k} w_{ij} \log p(y_i = j, x_i; \theta)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{k} w_{ij} \log p(y_i = j; \theta) + \sum_{i=1}^{n} \sum_{j=1}^{k} w_{ij} \log p(x_i | y_i = j; \theta)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{k} w_{ij} \log \alpha_j + \sum_{i=1}^{n} \sum_{j=1}^{k} w_{ij} \log \mathcal{N}(\mu_j, \sigma_j^2)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{k} w_{ij} \log \alpha_j - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{k} w_{ij} \left(\log \sigma_j^2 + \frac{(x_i - \mu_j)^2}{\sigma_j^2} \right)$$

וכעת ניתן לגזור ולמצוא אופטימום:

$$\hat{\alpha}_{j} = \frac{1}{n} \sum_{i=1}^{n} w_{ij}$$

$$\hat{\mu}_{j} = \frac{\sum_{i=1}^{n} w_{ij} x_{i}}{\sum_{i=1}^{n} w_{ij}}$$

$$\hat{\sigma}_{j}^{2} = \frac{\sum_{i=1}^{n} w_{ij} (x_{i} - \mu_{j})^{2}}{\sum_{i=1}^{n} w_{ij}}$$

עבור התפלגויות שונות שאינן בהכרח נורמליות יש לחזור לביטוי של $Q(heta, heta_0)$ ולבצע עבורו את האלגוריתם.

איור 2.7 20 איטרציות של אלגוריתם EM. מתחילים מניחוש אקראי של ההתפלגויות, ובכל איטרציה יש שיפור כך שההתפלגויות מייצגות בצורה יותר טובה את הדאטה המקורי.

 $\log p(x;\theta) \geq \log p(x;\theta_0)$ מתקיים: (θ,θ_0) מתקיים, כלומר שעבור בכל איטרציה, כלומר שעבור כל

$$\log p(x;\theta) = \sum_{y} p(y|x;\theta_0) \log p(x;\theta) = \sum_{y} p(y|x;\theta_0) \frac{\log p(x,y;\theta)}{\log p(y|x;\theta)}$$
$$= \sum_{y} p(y|x;\theta_0) (\log p(x,y;\theta) - \log p(y|x;\theta))$$
$$= \sum_{y} p(y|x;\theta_0) \log p(x,y;\theta) - p(y|x;\theta_0) \log p(y|x;\theta)$$

נשים לב שהאיבר הראשון הוא בדיוק $Q(heta, heta_0)$. האיבר השני לפי הגדרה הוא האנטרופיה של ההתפלגות נשים לב $p(x|y; heta_0)$

$$H(\theta, \theta_0) = -\sum_{y} p(y|x; \theta_0) \log p(y|x; \theta_0)$$

:כעת עבור שני ערכים שונים של θ מתקיים

$$\log p(x;\theta) - \log p(x;\theta_0) = Q(\theta,\theta_0) + H(\theta,\theta_0) - Q(\theta_0,\theta_0) - H(\theta_0,\theta_0)$$
$$= Q(\theta,\theta_0) - Q(\theta_0,\theta_0) + H(\theta,\theta_0) - H(\theta_0,\theta_0)$$

לכן: $H(\theta, \theta_0) \ge H(\theta_0, \theta_0)$ לכן, מתקיים לפי אי-שיוויון גיבס מתקיים

$$\log p(x;\theta) - \log p(x;\theta_0) \ge Q(\theta,\theta_0) - Q(\theta_0,\theta_0)$$

ולכן עבור כל עדכון של θ שמביא לאופטימום את $Q(\theta,\theta_0)-Q(\theta_0,\theta_0)$, הביטוי הביטוי אופטימום של שמביא לאופטימום את פולכן עבור כל עדכון של $\log p(x;\theta)$.

2.2.4 Hierarchical Clustering

אווא (הוא Hierarchical Clustering אלגוריתם למידה אווחית עבור חלוקת הקודות ל-n נקודות עבור שנוחית עבור חלוקת שונות: מחולק לשתי שיטות שונות:

שני אשכולות – agglomerative clustering – בשלב הראשוני מגדירים כל נקודה כאשכול, ואז בכל פעם מאחדים שני אשכולות ובכך מורידים את מספר האשכולות ב-1, עד שמגיעים ל-K אשכולות. האיחוד בכל שלב נעשה על ידי מציאת שני האשכולות הקרובים ביותר זה לזה ואיחודם לאשכול אחד. ראשית יש לבחור מטריקה לחישוב מרחק בין שתי נקודות (למשל מרחק אוקלידי, מרחק מנהטן ועוד), ולאחר מכן לחשב מרחק בין האשכולות, כאשר יש מספר דרכים להגדיר את המרחק הזה, למשל:

complete-linkage clustering: $\max\{d(a, b): a \in A, b \in B\}$.

single-linkage clustering: $min\{d(a, b): a \in A, b \in B\}$.

Unweighted average linkage clustering (UPGMA): $\frac{1}{|A| \cdot |B|} \sum_{a \in A} \sum_{b \in B} d(a, b)$.

Centroid linkage clustering (UPGMC): $||c_s - c_t||$ where c_s , c_t are centroids of clusters s, t, respectively.

עם התקדמות התהליך יש פחות אשכולות, כאשר האשכולות כבר לא מכילים נקודה אחת בלבד אלא הם הולכים וגדלים. שיטה זו מכונה "bottom-up" כיוון שבהתחלה כל נקודה הינה אשכול עצמאי ובכל צעד של האלגוריתם מספר האשכולות קטן באחד. במילים אחרות, האלגוריתם בונה את האשכולות ממצב שבו אין למעשה חלוקה לאשכולות למצב שבו נוצרים אשכולות ההולכים וגדלים.

divisive clustering — בשיטה זו מבצעים פעולה הפוכה — מסתכלים על כל הנקודות כאשכול אחד, ואז בכל שלב — divisive clustering בצעים חלוקה של אחד האשכולות לפי כלל חלוקה שנקבע מראש, עד שמגיעים ל-K אשכולות. כיוון שיש 2ⁿ דרכים מבצעים חלוקה של אחד האשכולות לפי כלל חלוקה שנקבע מראש, עד שמגיעים ל-Chique אחד מכל שלב. שיטה לחלק את המדגם, יש הכרח לנקוט בשיטות היוריסטיות כדי לקבוע את כלל החלוקה המתאים בכל שלב. שיטה מקובלת לביצוע החלקה נקראת (Divisive Analysis Clustering), ולפיה בכל שלב בוחרים את האשכול יחיד ובכל בעל השונות הכי גדולה ומחלקים אותו לשניים. שיטה זו מכונה "top-down" כיוון שבהתחלה יש אשכול יחיד ובכל צעד של האלגוריתם מתווסף עוד אשכול.

את התצוגה של האלגוריתם ניתן להראות בצורה נוחה באמצעות dendrogram – דיאגרמה הבנויה כעץ המייצג קשרים בין קבוצות.

איור 2.8 תצוגה של Hierarchical Clustering בעזרת בעזרת – divisive (a .dendrogram בעזרת Hierarchical Clustering איור 2.8 תצוגה של הינה אשכול עד שמגיעים למספר – agglomerative (b .(K=4 זה במקרה זה 4 בהתחלה כל נקודה הינה אשכולות הרצוי שני אשכולות הרצוי.

2.2.5 Local Outlier Factor (LOF)

אלגוריתם Local Outlier Factor הינו אלגוריתם של למידה לא מונחית למציאת נקודות חריגות (Outliers). האלגוריתם מחשב לכל נקודה ערך הנקרא (Local Outlier Factor (LOF), ועל פי ערך זה ניתן לקבוע עד כמה האלגוריתם מחשב לכל נקודה ערך הנקרא (Local Outlier Factor (LOF) ועל פי ערך זה ניתן לקבוע עד כמה הנקודה היא חלק מקבוצה או לחילופין חריגה ויוצאת דופן.

לאחר חישוב ה-k-distance של כל נקודה, מחשבים לכל נקודה (Local Reachability Density (LRD באופן הבא:

$$LRD_k(x_i) = \frac{1}{\sum_{x_j \in N_k(x_i)} \frac{RD(x_i, x_j)}{k}}$$

כאשר $RD(x_i,x_j)=\max\left(\mathbf{k}-\mathrm{distance}\left(\mathbf{x}_i,distance\left(x_i,x_j\right)\right)$ מחשב את ההופכי של ממוצע באר kר המרחקים בין kר השכנים הקרובים אליו. ככל שנקודה יותר קרובה ל-kר השכנים שלה כך ה-LRD שלה גדול באליה.

,LOF- של היחס הזה הוא ה- $N_k(x_i)$ של LRD- שלה היחס בין ה- x_i את היחס הזה הוא ה- x_i היחס הזה הוא ה-LRD שלה והוא מחושב באופן הבא:

$$LOF_k(x_i) = \frac{\sum_{x_j \in N_k(x_i)} LRD(x_j)}{k} \times \frac{1}{LRD(x_i)}$$

הביטוי הראשון במכפלה הוא ממוצע ה-LRD של k השכנים של נקודה x_i , ולאחר חישוב הממוצע מחלקים אותו ב-LOF של הנקודה x_i עצמה. אם הערכים קרובים, אז ה-LOF יהיה שווה בקירוב ל-1, ואם הנקודה x_i באמת לא שייכת LDF של הנקודות, אז ה-LRD שלה יהיה נמוך משמעותית מהממוצע של ה-LRD של השכנים שלה, וממילא ה-LAD שלה יהיה גבוה. אם עבור נקודה x_i מתקבל x_i מתקבל x_i שלה יהיה גבוה. אם עבור נקודה x_i מתקבל x_i

.k=2 כדי להמחיש את התהליך נסתכל על הסט הבא: $\{A=(0,0),B=(1,0),C=(1,1),\ D=(0,3)\}$, ונקבע A=(0,0),B=(1,0), ונקבע A=(0,0), ונקבע A=(0,0), ונקבע נחשב את ה-k-distance של כל נקודה במונחים של מרחק מנהטן:

$$k(A) = distance(A, C) = 2$$
 $k(B) = distance(B, A) = 1$
 $k(C) = distance(C, A) = 2$
 $k(D) = distance(D, C) = 3$

נחשב את ה-LRD:

$$LRD_2(A) = \frac{1}{\frac{RD(A,B) + RD(A,C)}{k}} = \frac{2}{1+2} = 0.667$$

$$LRD_2(B) = \frac{1}{\frac{RD(B,A) + RD(B,C)}{k}} = \frac{2}{2+2} = 0.5$$

$$LRD_2(C) = \frac{1}{\frac{RD(C,B) + RD(C,A)}{k}} = \frac{2}{1+2} = 0.667$$

$$LRD_2(A) = \frac{1}{\frac{RD(D,A) + RD(D,C)}{k}} = \frac{2}{3+3} = 0.334$$

ולבסוף נחשב את ה-LOF:

$$LOF_{2}(A) = \frac{LRD_{2}(B) + LRD_{2}(C)}{k} \times \frac{1}{LRD_{2}(A)} = 0.87$$

$$LOF_{2}(B) = \frac{LRD_{2}(A) + LRD_{2}(C)}{k} \times \frac{1}{LRD_{2}(B)} = 1.334$$

$$LOF_{2}(C) = \frac{LRD_{2}(B) + LRD_{2}(A)}{k} \times \frac{1}{LRD_{2}(C)} = 0.87$$

$$LOF_2(D) = \frac{LRD_2(A) + LRD_2(C)}{k} \times \frac{1}{LRD_2(D)} = 2$$

.outlier היא D כיוון ש-1 באופן יחסי לשאר הנקודות, נסיק כי נקודה $LOF_2(D)\gg 1$

k של LRD של כל נקודה לממוצע ה-Local Outlier Factor (LOF) איור 2.9 Local Outlier Factor (LOF) של בציאת נקודות חריגות על ידי השוואת ערך ה-LRD של LRD בציאת נקודה לממוצע ה-LRD השכנים שלה. ככל שה-LOF גדול יותר (העיגול הכחול), ככה הנקודה יותר רחוקה מאשכול של נקודות.

יש שני אתגרים מרכזיים בשימוש באלגוריתם זה – ראשית יש לבחור k מתאים, כאשר k יחסית קטן יהיה טוב עבור נקודות רועשות, אך יכול להיות בעייתי במקרים בהם יש הרבה מאוד נקודות הצמודות אחת לשנייה, ונקודה שמעט רחוקה מאוסף תזוהה כחריגה למרות שהיא באמת כן שייכת אליו. k גדול לעומת זאת יתגבר על בעיה זו, אך הוא לא יזהה נקודות חריגות שנמצאות בקירוב לאשכולות של נקודות. מלבד אתגר זה, יש צורך לתת פרשנות לתוצאות המתקבלות, ולהחליט על סף מסוים שך LOF, שהחל ממנו נקודה מסווגת כחריגה. LOF קטן מ-1 הוא בוודאי לא outliner אך עבור ערכי LOF גדולים מ-1 אין כלל חד משמעי עבור איזה ערך הנקודה היא בסטטיסטיקות שונות היא לא. כדי להתמודד עם אתגרים אלו הוצעו הרחבות לשיטה המקורית, כמו למשל שימוש בסטטיסטיות העוזרות לתת המורידות את התלות בבחירת הערך k (Loop – Local Outlier Probability), או שיטות סטטיסטיות העוזרות לתת פרשנות לערכים המתקבלים (Interpreting and Unifying Outlier Scores).

2.3 Dimensionally Reduction

הורדת ממד (Dimensionality Reduction) הינה טרנספורמציה של דאטה ממימד גבוה למימד נמוך, כאשר נרצה שהורדת המימד לא תשנה באופן מהותי את מאפייני הדאטה המקורי. הורדת הממד של דאטה נתון נדרשת משתי סיבות עיקריות; הראשונה טכנית וקשורה לסיבוכיות גבוהה במערכת מרובת מימדים, ואילו הסיבה השנייה יותר עקרונית ומהותית – הורדת הממד של הדאטה קשורה לניסיון להבין מהם המשתנים העיקריים ומהם המשתנים המשניים, הפחות חשובים להבנת הדאטה (אלו שפחות מאפיינים דוגמא נתונה ביחס לדוגמאות אחרות). לעיתים המשניים, הפשתנים המשניים משפיעה לרעה על ביצועי המודל, למשל על ידי הוספת רעש ולא מידע. תופעה זו נקראת קללת הממדיות (curse of dimensionality). יתרון נוסף של הורדת ממד טמון בוויזואליזציה של המידע, כך שניתן להציגו על ידי 2 או 3 מימדים עיקריים, בעזרת גרף דו-ממדי או תלת-ממדי בהתאמה.

דוגמא למערכת מרובת מימדים יכולה להיות מדידת רמות חלבונים (פרוטאינים) של גנים (genes) המבוטאים בתא חי, כאשר כל ממד, או מאפיין (פיצ'ר), מתאים לגן אחר. באופן כללי, ייתכן ונמדדים בכל ניסוי מאות תאים, כאשר לכל חי, כאשר כל ממד, או מאפיין (פיצ'ר), מתאים לגן אחר. באופן כללי, ייתכן ונמדדים בכל (אלפי תאים ואלפי גנים. כמות עצומה זו של מידע במימד גבוה (אלפי תאים ואלפי גנים בכל תא) מאתגרת את המחקר – הן מבחינת זיהוי המאפיינים, או רמות הגנים המבוטאים, הרלוונטיים והמשפיעים ביותר, והן מבחינת ניסיון למדל את הדאטה בצורה כמה שיותר פשוטה. במחקר משנת 2007 נלקחו 105 דגימות של תאי סרטן שד, כאשר לכל דגימה (או דוגמה) נמדדו רמות התבטאות של 27,648 גנים שונים. כמובן שלנתח את המידע בצורה הגולמית זו משימה בלתי אפשרית, ויש הכרח לבצע עליו מניפולציה כלשהיא כדי שיהיה אפשר לעבוד איתו.

ישנן שיטות מרובות להורדת מימד לדאטה נתון, כאשר ניתן לסווגן לשני חלקים עיקריים: בחירת מאפיינים (feature), והטלת מאפיינים (features projection). השיטה הראשונה היא ניסיון לבחור את המאפיינים (המשתנים), והטלת מאפיינים מספק את המידע הנתון. השנייה, שבה עוסק פרק זה, נוקטת בגישה של הטלה, (המשתנים) המתארים באופן מספק את המידע הנתון. השניינים חדשים. חשוב להדגיש שבשיטת בחירת המאפיינים אנו טרנספורמציה, של המאפיינים הקיימים לסט של מאפיינים חדשים. בעצם משמיטים מאפיינים פחות רלוונטיים. בניגוד לכך, בשיטה שנדון כעת, שיטת הטלת המאפיינים, כל מאפיין חדש

הוא צירוף לינארי של כל האחרים, ולא רק של חלקם. כך, המאפיינים החדשים מכלילים, או לוקחים בחשבון, כל אחד מהמאפיינים הנמדדים המקוריים, ללא השמטה.

ניתן לבצע הטלת מאפיינים באמצעות טרנספורמציות ליניאריות או לא-ליניאריות. בפרק זה נעסוק בטרנספורמציה לא-ליניארית אחת, הנקראת ניתוח גורמים ראשיים (principle component analysis) ובשתי טרנספורמציות לא-ליניארית (t-SNE, UMAP). נציין שקיימות עוד טרנספורמציות, ליניאריות ולא-ליניאריות, שאינן יוזכרו כאן.

2.3.1 Principal Components Analysis (PCA)

כפי שהוזכר לעיל, ניתוח גורמים ראשיים מבוסס על טרנספורמציה ליניארית של המאפיינים הקיימים. הגורם הראשי הראשון (first principal component, PCA_1) הינו הצירוף ליניארי של המאפיינים הנתונים בעל השונות הגדולה (first principal component, PCA_1) הוא גם צירוף לינארי של המאפיינים הנתונים, ביותר. הגורם הראשי השני העדולה ביותר, ובנוסף דורשים ש- $PCA_1 \perp PCA_2 : PCA_1 : PCA_1 : PCA_1 : PCA_1 : PCA_1 : PCA_2 : PCA_1 : PCA_2 : PCA_1 : PCA_1 : PCA_2 : PCA_1 : PC$

לאחר שאפיינו את הגורמים הראשיים בהם אנו מעוניינים, עולה השאלה כיצד ניתן לבצע טרנספורמציה לינארית לאחר שאפיינו את הגורמים הראשיים האלו. נניח שבידינו דאטה $\hat{X} \in \mathbb{R}^{M imes N}$, כלומר נתונות M דוגמאות שבעזרתה ניתן למצוא את הגורמים הראשיים האלו. נניח שבידינו דאטה M=105 מאפיינים [למשל, עבור הדוגמא של תאי סרטן השד, נתון מידע מ-105 שונות, שכל אחת מהן היא בעלת M מאפיינים [למשל, עבור M=105 גנים שונים, כאשר עבור כל תא נמדדו רמות ביטוי של M=105 גנים שונים.] נסמן את מטריצת המאפיינים על

ידי
$$\vec{X}_m, m \in \{1, ..., M\}$$
, הינו נתוני המדידות של $\hat{X} = \begin{bmatrix} \vec{X}_1 \\ \vdots \\ \vec{X}_M \end{bmatrix} = \begin{bmatrix} \vec{X}^1, ..., \vec{X}^N \end{bmatrix} \in \mathbb{R}^{M \times N}$ ידי $\hat{X} = \begin{bmatrix} \vec{X}^1, ..., \vec{X}^N \end{bmatrix}$

המאפיינים השונים בדוגמא מספר m, ובהתאמה, וקטור עמודה $\vec{X}^n, n \in \{1, \dots, N\}$ (שימו לב לשינוי סימון, אינדקס עליון עבור וקטורי עמודה), הינו נתוני המדידות של מאפיין מסוים על כל הדוגמאות. נניח שממוצע המדידות עבור כל מאפיין הוא אפס, זאת אומרת שלכל מאפיין n-י מתקיים:

$$mean(\vec{X}^n) = \sum_{m=1}^{M} X_{m,n} = 0$$

מכיוון שכל עמודה של המטריצה מסמלת מדידת מאפיין מסוים במדידות שונות, סכום כל עמודה במטריצה \hat{X} הוא שכס. כעת, נרצה לבצע הטלה (טרנספורמציה) ליניארית, זאת אומרת נכפיל את מטריצה \hat{X} במטריצת משקלים \hat{W} :

$$\hat{T} = \hat{X} \cdot \hat{W}$$

:אם נסמן את השורה ה-m-ית במטריצה \widehat{T} על ידי

$$\vec{T}_m = \vec{X}_m \cdot \widehat{W}$$

K כאשר המטריצה $\widehat{\mathcal{T}}\in\mathbb{R}^{M imes K}$, כך ש $\widehat{\mathcal{T}}\in\mathbb{R}^{M imes K}$. הטלה זו מביאה לכך שלאחר הטרנספורמציה נשארים רק $\widehat{\mathcal{K}}\in\mathbb{R}^{N imes K}$ מאפיינים. כיוון שאנו מעוניינים בהורדת הממד, קרי הורדת מספר המאפיינים, נדרוש

את תהליך מציאת מטריצת המשקלים ניתן לנסח באופן פורמלי על ידי שלושה תנאים:

- $\|\widehat{W}^k\|^2 = \sum_{m=1}^M (W_{m,k})^2 = 1$ כל עמודה של מטריצת המשקלים הינה מנורמלת: (1
- $s_k^2 > s_{k+1}^2$ מקיימת: $s_k^2 = \left(\vec{T}^k\right)^T \vec{T}^k = \sum_{m=1}^M (T_{mk})^2$, השונות עבור המאפיין ה
 - \widehat{k},k' העמודות של \widehat{W} אורתוגונליות זו לזו, זאת אומרת אומרת $\widehat{W}_k \perp \widehat{W}_{k\prime}$ העמודות של אורתוגונליות זו לזו, זאת אומרת אומרת

נראה זאת באופן מפורש: נתחיל במציאת העמודה הראשונה $\widehat{\mathcal{M}}_1$. נדרוש:

$$\widehat{W}_1 = \underset{\|\widehat{W}\|=1}{\operatorname{argmax}}(s_1^2)$$

זאת אומרת:

$$\begin{split} \widehat{W}_1 &= \underset{\|\widehat{W}\|=1}{\operatorname{argmax}} (s_1^2) = \underset{\|\widehat{W}\|=1}{\operatorname{argmax}} \left(\left(\vec{T}^1 \right)^T \cdot \vec{T}^1 \right) = \underset{\|\widehat{W}\|=1}{\operatorname{argmax}} \left(\left(\hat{X} \widehat{W}^1 \right)^T \cdot \hat{X} \widehat{W}^1 \right) \\ &= \underset{\|\widehat{W}\|=1}{\operatorname{argmax}} \left(\left(\widehat{W}^1 \right)^T \left(\hat{X} \right)^T \cdot \hat{X} \widehat{W}^1 \right) \end{split}$$

ולכן העמודה הראשונה של מטריצת המשקלים \widehat{W}_1 נתונה על ידי:

$$\widehat{W}_1 = \underset{\|\widehat{W}\|=1}{\operatorname{argmax}} \left(\widehat{W}_1^T \cdot \widehat{\mathbf{S}} \cdot \widehat{W}_1 \right)$$

 $.\hat{S}=\left(\hat{X}
ight)^T\cdot\hat{X}$ הינה מטריצת השונות המשותפת (covariance), המוגדרת על ידי $\hat{S}\in\mathbb{R}^{(N imes N)}$ הטריצה $.S_{
u_1,
u_2}=\sum_{m=1}^M X_{
u_1,m}X_{m,
u_2}$ מטריצה זו, מסדר .N imes N, מגדירה את השונות המשותפת בין שני מאפיינים, כאשר .N imes N, מגדירה את השונות המשותפת (ולכן הרמיטית).

לפי משפט המינימום-מקסימום (קורנט-פישר-ויל): עבור \hat{S} מטריצה הרמיטית (קורנט-פישר-ויל), בעלת ערכים עצמיים \hat{S} מטריצה החמיטים: $\lambda_1 \geq \cdots \geq \lambda_K$

$$\lambda_1 = \max_{\|\widehat{W}\|=1} \left(\widehat{(W^1)^T} \cdot \widehat{S} \cdot \widehat{W}^1 \right)$$

 $.\lambda_1: \hat{S}$ כאשר $\widehat{\mathcal{M}}^1$, הינו הערך העצמי המתאים לערך העצמי המקסימלי של

 $:\!\! ilde{X}$ כעת, כדי למצוא את הוקטור העצמי הבא, $\widehat{\mathcal{W}}^2$, והערך העצמי המתאים לו

$$\begin{split} \tilde{X} &= \hat{X} - \hat{X} \widehat{W}^1 \big(\widehat{W}^1 \big)^T \\ \widehat{W}^2 &= \underset{\|\widehat{W}\|=1}{\operatorname{argmax}} \big(\big(\vec{T}^2 \big)^T \cdot \vec{T}^2 \big) \\ &= \underset{\|\widehat{W}\|=1}{\operatorname{argmax}} \left(\big(\widehat{W}^2 \big)^T \big(\tilde{X} + \hat{X} \widehat{W}^1 \big(\widehat{W}^1 \big)^T \big)^T \cdot \left(\tilde{X} + \hat{X} \widehat{W}^1 \big(\widehat{W}^1 \big)^T \right) \widehat{W}^2 \right) \\ &= \underset{\|\widehat{W}\|=1}{\operatorname{argmax}} \left(\big(\widehat{W}^2 \big)^T \big(\tilde{X} \big)^T \cdot (\tilde{X}) \ \widehat{W}^2 \right) \end{split}$$

כאשר \widehat{W}^2 הינו הוקטור העצמי המתאים לערך העצמי המקסימלי של \widehat{X} , ובעצם הוא הערך העצמי השני בגודלו לערך העצמי המתאים לערך בעובדה כי $\widehat{W}^1 \perp \widehat{W}^2$. (בחישוב השתמשנו בעובדה כי $\widehat{W}^1 \perp \widehat{W}^2$).

באופן הבא: $ilde{X}$ באופה חדשה גנדיר מטריצה (גגדיר העצמי המתאים לו \hat{X} באופן הבא:

$$\begin{split} \tilde{\tilde{X}} &= \hat{X} - \sum_{i=1}^{k-1} \hat{X} \widehat{W}^{i} (\widehat{W}^{i})^{T} \\ \widehat{W}^{k} &= \underset{\|\widehat{W}\|=1}{\operatorname{argmax}} \left(\left(\widehat{W}^{k} \right)^{T} \left(\tilde{\tilde{X}} \right)^{T} \cdot (\tilde{\tilde{X}}) \, \widehat{W}^{k} \right) \end{split}$$

 $\hat{S} = \hat{X}^T \hat{X}$ הינו הערך העצמי המקסימלי ה-k-י של מטריצת השונות המשותפת λ_k

ניתן גם, באופן פשוט יותר, להשתמש בשיטת פירוק לערכים סינגולריים, כאשר נמצא את הפירוק המתאים למטריצת השונות המשותפת:

$$\hat{S} = \widehat{W} \cdot \widehat{\Lambda} \cdot \widehat{W}^T$$

- כאשר \hat{S} המסודרים לפי גודלם מהגדול לקטן הינם הערכים העצמיים אלכסונית, ו- $\Lambda_{ii}=\lambda_i$ הינם הערכים \hat{N} הינם הערכים לערכים \hat{M} מורכבת מווקטורי עמודה שהינם הווקטורים העצמיים המתאימים לערכים \hat{M}

העצמיים. הווקטורים העצמיים בהגדרתם הינם אורתוגונליים זה לזה, וכיוון ש $\|\widehat{W}^k\| = 1$ לכל k, הם בעצם אורתונורמליים.

 $: \widehat{X}$ לסיכום, על מנת למצוא את הגורמים הראשיים עבור המידע הנתון

- $\hat{X}^m = \hat{X}^m mean_n(\hat{X}^m)$ מרכז" את הנתונים כך שהממוצע עבור כל מאפיין הוא אפס:
 - מצא את מטריצת השונות המשותפת $\hat{X}=(\hat{X})^T\hat{X}$ מצא את מטריצת השונות המשותפת $\hat{S}=\widehat{W}\cdot\widehat{\Lambda}\cdot\widehat{W}^T$ מצא את
 - - $\widehat{T} = \widehat{X} \cdot \widehat{W}$ ד. חשב
 - $.PCA_k \equiv \overrightarrow{T}^k$ הגורמים הראשיים נתונים על ידי וקטורי העמודה

נציין שלשיטת הניתוח של גורמים ראשיים יש מספר מגבלות. ראשית, היא נותנת "משקל יתר" על מאפיינים שהשונות בהם גדולה, ללא קשר לחשיבותם, או ליחידות שבהן המאפיין נמדד (זאת אומרת לדוגמא שלגובה שנמדד בסנטימטרים יינתן "משקל" גבוה יותר מאשר גובה הנמדד במטרים). שנית, שיטת זו מניחה כי המדד החשוב הוא השונות המשותפת שהיא בעצם קורלציה לינארית בין שני משתנים, אולם ייתכן במערכות מסוימות שדווקא הקורלציה הלא-ליניארית היא החשובה יותר. כמו כן, לעיתים "מרכוז" המידע גורם לתוצאות לאבד ממשמעותן.

כדי להתגבר על המגבלות בשיטת ה-PCA שהצגנו לעיל פותחו שיטות נוספות או משלימות. לדוגמה, ניתן למזער את השפעת יחידות המידה על המאפיינים על ידי הפיכתם לחסרי יחידות. בנוסף, יש שיטות הלוקחות בחשבון קורלציות לא-לינאריות ,לדוגמא שיטת kernel PCA, או שיטות להתמודדות עם בעיית המרכוז על ידי דרישת משתנים חיוביים .(NMF)

לצורך המחשה נחזור לדוגמא שהזכרנו בתחילת פרק זה – מחקר שפורסם בשנת 2007 ובו נלקחו 105 דגימות של תאי סרטן שד, כאשר לכל דגימה נמדדו רמות התבטאות של 27,648 גנים שונים. לשם הדגמה, נשתמש בניתוח שפורסם כשנה לאחר מכן (ב-2008) על ידי אחד מעורכי המחקר המקורי. שם, החוקר מציג רמות של שני חלבונים; האחד בשם GATA3, והשני בשם XBP1, כאשר הוא מסווג את דגימות תאי הסרטן לפי סוג קולטני האסטרוגן שלהם (+ או -). כעת, על ידי "סיבוב" מערכת הצירים – בעזרת טרנספורמציה ליניארית PCA כפי שהוסבר לעיל – נמצא כי PCA_1 ניתן לסווג, ללא איבוד מידע רב, את מצב קולטני האסטרוגן בתאי סרטן השד על ידי הגורם הראשי הראשון כפי שניתן לראות באיור. יש לשים לב שהגורם הראשי הראשון, PCA₁, מכיל מידע משני החלבונים.

איור 2.10: a) רמות ביטוי של שתי חלבונים GATA3 (ציר ה-Y). קולטני אסטרוגן חיוביים או שלילים מסומנים באדום (a :2.10 ושחור בהתאמה. b) מציאת הגורמים הראשיים, וסיבוב מערכת הצירים. בהתאם לתיאוריה, ניתן להבחין כי השונות של המידע על גבי הציר החדש PCA_1 הינה מקסימלית. c) הצגת תוצאות המדידה כפונקציה של PCA_1 בלבד. בגרף זה ניתן לראות בבירור כיצד הורדת הממד מסייעת למצוא הבחנה פשוטה (בממד אחד) בין קולטני האסטרוגן.

<u>נספח: משפט המינימום- מקסימום (קורנט-פישר-ויל):</u>

עבור $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_M$ מטריצה ערכים ערכים ($S_{ij} = S_{ji}^*$) מטריצה הרמיטית $\hat{S} \in \mathbb{R}^{M imes M}$

$$\lambda_{m} = \min_{U} \left\{ \max_{\substack{\vec{x} \in U, \\ \|x\| = 1}} \left\{ x^{\dagger} S^{\dagger} x \middle| x \in U, x \neq 0 \right\} \middle| \dim(U) = M - m + 1 \right\}$$
$$= \min_{U} \left\{ \max_{\substack{\vec{x} \in U, \\ \vec{x} \in U, \\ x \neq 0}} \left\{ \frac{x^{\dagger} S^{\dagger} x}{x^{\dagger} x} \middle| x \in U, x \neq 0 \right\} \middle| \dim(U) = M - m + 1 \right\}$$

הערך העצמי המקסימלי מקיים:

$$\lambda_1 = \max_{\|\widehat{W}\|=1} \left(\widehat{(W}^1)^T \cdot \widehat{S} \cdot \widehat{W}^1 \right)$$

 $.\hat{S}$ כאשר \widehat{W}^1 , הינו הערך העצמי המתאים ל- λ_1 – ערך העצמי המקסימלי של

2.3.2 t-distributed Stochastic Neighbors Embedding (t-SNE)

אלגוריתם הורדת הממד PCA פועל באופן לינארי, מה שמקל על תהליך החישוב שלו, אך מגביל את יכולות ההכללה שלו. אלגוריתם אחר, לא לינארי, נקראת t-SNE, והוא מנסה לקחת את הדאטה בממד גבוה ועל ידי מידע סטטיסטי למפות אותו למערכת דו-ממדית או תלת-ממדית. לשם כך, נשתמש באותו מערך נתונים, $\hat{X} \in \mathbb{R}^{M \times N}$, כאשר M הוא מספר הדוגמאות, ו-N הוא מספר המאפיינים (או המשתנים). חשוב לשים לב כי כל מדידה מיוצגת על ידי וקטור שורה \hat{X} . הרעיון הכללי של השיטה הוא למפות את סט המדידות באופן כזה שמדידות דומות יותר, קרי מדידות "קרובות" יותר במרחב ה-N מימדי, יוצגו על ידי נקודות קרובות יותר במרחב חדש N-מימדי, כאשר לרוב X נסמן את המרחב המקורי ה-X ואת המרחב החדש ב-X, כאשר בשני המרחבים המדידות מוצגות על ידי נקודות בגרף פיזור (similarity). המטריקה המשמשת למדידת דמיון (similarity) בין שתי נקודות במרחב המקורי ה-M-ממדי, ההתפלגות הנורמלית המשותפת M-מינה:

$$P_{m_1,m_2} = \frac{Z_1^{-1}}{2N} \exp\left(-\frac{\left\|\vec{X}_{m_1} - \vec{X}_{m_2}\right\|^2}{2\sigma_1^2}\right) + \frac{Z_2^{-1}}{2N} \exp\left(-\frac{\left\|\vec{X}_{m_1} - \vec{X}_{m_2}\right\|^2}{2\sigma_2^2}\right)$$

כאשר σ_i נקרא פרפלקסיות (perplexity) והוא פרמטר שנקבע מראש, ו- \mathcal{Z} הינו קבוע הנורמליזציה, המוגדר על ידי (perplexity) נקרא פרפלקסיות ($\mathcal{Z}_i = \sum_{k \neq i} \exp\left(-\frac{\|\vec{X}_i - \vec{X}_k\|^2}{2\sigma_i^2}\right)$ עבור נקודות קרובות יותר, עבורן הביטוי $\vec{X}_{m_1} - \vec{X}_{m_2}$ קטן, ההסתברות $\vec{X}_{m_1} - \vec{X}_{m_2}$ עבור לעומת זאת כאשר הנקודות רחוקות זו מזו, כלומר $\vec{X}_{m_1} - \vec{X}_{m_2}$ גדול, \vec{X}_{m_2} שהנקודה שהנקודה של שכנה של \vec{X}_{m_2} קטנה מאוד עד אפסית.

3 כעת, כפי שהוזכר לעיל, נרצה למפות את סט המדידות: $\begin{bmatrix} \vec{X}_1 \\ \vdots \\ \vec{X}_M \end{bmatrix} o \begin{bmatrix} \vec{Y}_1 \\ \vdots \\ \vec{Y}_M \end{bmatrix}$ מר, כפי שהוזכר לעיל, נרצה למפות את סט המדידות: $\begin{bmatrix} \vec{Y}_1 \\ \vdots \\ \vec{Y}_M \end{bmatrix}$

ממדים). בנוסף, נדרוש שנקודות דומות ("שכנות") במרחב \mathcal{X} , ישארו שכנות לאחר המיפוי למרחב \mathcal{Y} . מתברר, t שפונקציית ההסתברות המותנית, המתאימה לתיאור דמיון בין נקודות שכנות במרחב החדש \mathcal{Y} , הינה התפלגות לבחור בפונקציות הסתברות אלו בהמשך). כך, הנקראת גם התפלגות סטודנט עם דרגת חופש אחת (נדון ברעיון לבחור בפונקציות הסתברות אלו בהמשך). כך, נכמת את הדמיון בין m_1 לבין m_2 , על ידי ההסתברות המשותפת m_1 המוגדרת באופן הבא:

$$Q_{m_1, m_2} = 3^{-1} \frac{1}{1 + \|\vec{Y}_{m_1} - \vec{Y}_{m_2}\|^2}$$

. כאשר $\mathfrak{Z} = \sum_{k \neq j} \left(1 + \left\| \overrightarrow{Y}_k - \overrightarrow{Y}_j \right\|^2 \right)^{-1}$ כאשר

המיפוי בין מרחב המקורי ${\mathcal X}$ לבין המרחב החדש ${\mathcal Y}$ הוא מיטבי אם הוא "משמר" את השכנות של נקודות (מדידות) המיפוי בין שתי Kullback-Leibler divergence קרובות. לשם כך נגדיר את פונקציית המחיר על ידי המפלנויותי

$$C = \mathcal{D}_{KL}(P|Q) \equiv \sum_{m_1} \sum_{m_2} P_{m_1, m_2} \log \left(\frac{P_{m_1, m_2}}{Q_{m_1, m_2}} \right)$$

 $ec{Y}_{m_i}$ נרצה למצוא את הוקטור בגרדיאנט לפי פונקציית המחיר מינימלית, ולשם כך נשתמש בגרדיאנט לפי $ec{Y}_{m_i}$ עבורו פונקציית המחיר מינימלית, ולשם כך נשתמש בגרדיאנט לפי $ec{Y}_{M}$

$$\begin{split} \frac{\delta C}{\delta \vec{Y}_{m_i}} &= \frac{\delta}{\delta \vec{Y}_{m_i}} \left[\sum_{m_1} P_{m_1, m_i} \log \left(\frac{P_{m_1, m_i}}{Q_{m_1, m_i}} \right) + \sum_{m_2} P_{m_1, m_2} \log \left(\frac{P_{m_i, m_2}}{Q_{m_i, m_2}} \right) \right] \\ &= 4 \sum_{m_1} \left(P_{m_1, m_i} - Q_{m_1, m_i} \right) \left(1 + \left\| \vec{Y}_{m_1} - \vec{Y}_{m_i} \right\|^2 \right)^{-1} \left(\vec{Y}_{m_1} - \vec{Y}_{m_i} \right) \end{split}$$

,gradient descent חישוב המינימום באופן אנליטי לא תמיד אפשרי או לא תמיד יעיל, ולכן מקובל להשתמש בשיטת שהינה שיטה איטרטיבית למציאת המינימום של פונקציה (פירוט על שיטה זו ווריאציות שונות שלה מופיע בחלק 4.3.5). עבור הורדת הממד, חישוב המינימום בעזרת שיטה זו יעשה באופן הבא:

- $X \in \mathbb{R}^{M \times N}$ א. אתחול: * נתוו
- σ^2 פרמטר לפונקציית הדמיון: בחירת השונות *
- lpha(t) בחירת פרמטרים לאופטימיזציה: קצב הלמידה η מומנטום *
 - P_{m_1,m_2} ב. חשב את
- אתחל את המיפוי $y^{(0)}=\{\vec{Y_1},\vec{Y_2},...\vec{Y_M}\}\sim N(0,s\hat{l_M})$ אתחל את המיפוי אתחל את המיפוי [.מטריצת יחידה \hat{l}_M . ($s=10^{-4}$ נניח קטן, נניח s) s וסטיית תקן (מטריצת יחידה s) גאוסיאנית עם ממוצע
 - :t עבור איטרציה
 - Q_{m_1,m_2} חשב את *

 - $\dfrac{\delta c}{\delta y}$ חשב את הגרדיאנט של פונקציית המחיר * $y^{(t)}=y^{(t-1)}+\eta\dfrac{\delta c}{\delta y}+lpha(t)[y^{(t-1)}-y^{(t-2)}]$ עדכן: *

נעיר כי בשפות תכנות רבות, האלגוריתם עצמו כבר מוגדר על ידי פונקציות מובנות, ויש רק להגדיר את הפרמטרים

במאמר המקורי שהציג את השיטה הובאה דוגמה של שימוש באלגוריתם עבור הטלה של הספרות 0 עד 9, המיוצגות על ידי תמונות בממד גבוה $\mathbb{R}^{28 imes28}$, למרחב דו ממדי. בדוגמה זו נלקחו 6,000 תמונות של ספרות ומיפו אותן למרחב דו-ממדי. במרחב זה ניתן לראות בבירור כיצד כל תמונה מופתה לאזור אחר, כיוון שבפועל נוצרו עשרה אשכולות שונים, המובחנים בצורה ברורה אחד מהשני. בייצוג הדו-ממדי אין משמעות לצירים, כיוון שבאלגוריתם זה יש חשיבות רק למרחק היחסי בין הנקודות.

מכילה t-SNE על ידי שיטת (MNIST) איור 2: הצגה (ויזואליזציה) דו-ממדית של מערך נתונים עבור כתב-יד של ספרות כאלו, כאשר (מדידות) פיקסלים בגווני אפור) ומסווגת להיות ספרה בין 0 ל-9. באיור מוצגות (מדידות מדידות) כאלו, כאשר $28 \times 28 = 784$ צבעים שונים מייצגים ספרות שונות. מלבד ההבחנה בין הספרות, ניתן לראות שספרות דומות קרובות זו לזו גם במרחב החדש (למשל הספרה 1 קרובה לספרה 7, שבתורה קרובה לספרה 9).

כאמור, פונקציית הדמיון בין שתי נקודות במרחב המקורי הינה הפילוג הנורמלי המשותף של שתי הנקודות, ואילו במרחב החדש פונקציית הדמיוו הינה התפלגות t. שתי הערות חשובות על בחירות אלו:

א. סימטריה:

פונקציית הדמיון הגאוסיאנית בין שתי נקודות במרחב \mathcal{X} הינה פונקציה סימטרית, כלומר $P_{m_1,m_2}=P_{m_2,m_1}$. אולם ניתן להגדיר גם פונקציית דמיון א-סימטרית, המבוססת על התפלגות מותנת (במקום התפלגות משותפת). הפונקציה המותנת נתונה על ידי:

$$P_{m_1|m_2} = \mathcal{Z}_2^{-1} \exp\left(-\frac{\|\vec{X}_{m_1} - \vec{X}_{m_2}\|^2}{2\sigma_2^2}\right)$$

:כך ש

$$P_{m_1,m_2} = \frac{P_{m_1|m_2} + P_{m_2|m_1}}{2N}$$

ב. בחירת פונקציית הדמיון במקום פונקציית t:

באלגוריתם שתואר, פונקציית הדמיון בין שתי נקודות במרחב ה- \mathcal{Y} נתונה על ידי התפלגות t. ניתן להגדיר גם פונקציה אחרת, למשל את פונקציית דמיון גאוסיאנית עבור שתי מדידות במרחב \mathcal{Y} . שיטה זו נקראת SNE, והגרדיאנט של פונקציית המחיר במקרה זה נתונה על ידי:

$$\frac{\delta C}{\delta \vec{Y}_{m_i}} = 4 \sum_{m_1} (P_{m_1, m_i} - Q_{m_1, m_i}) (\vec{Y}_{m_1} - \vec{Y}_{m_i})$$

ג. אולם, פונקציית דמיון גאוסיאנית במרחב \mathcal{Y} יכולה לגרום לכך שנקודות לא מאוד קרובות במרחב \mathcal{X} , ימופו לנקודות קרובות במרחב \mathcal{Y} , כיוון שהגאוסיאן בעצם גורם לאטרקטור (משיכה) יחסית חזק בין שתי נקודות, גם במקרים בהם הנקודות אינן מאוד קרובות. לעומת זאת, כאשר פונקציית הדמיון הינה התפלגות סטודנט \mathcal{Y} כך שהינה התפלגות עם זנב כבד יותר, שתי נקודות שאינן מאוד קרובות ימופו בצורה ראויה למרחב \mathcal{Y} שאינן "נמשכות" או מתקרבות זו לזו. שיטה אחרת, הנקראת UNI-SNE, מציעה להשתמש בהתפלגות אחידה, אך גם לה חסרון דומה ל-SNE, כאשר שתי נקודות לא מאוד דומות זו לזו, אינן "דוחות" אחת את השנייה. באופן אינטואיטיבי, ניתן לחשוב על גרדיאנט פונקציית המחיר כשדה כוח, ועל פונקציית המחיר בתור פוטנציאל, כך שהכוח הפועל הוא בעצם כוח קפיץ.

לשיטת t-SNE יש שלוש מגבלות עיקריות

- א. הורדת ממד: השיטה משמשת לוויזואליזציה של מידע ממימד גבוה בדו-ממד או תלת-ממד. אולם, באופן עקרוני, ייתכן ונרצה להוריד את המימד לא לשם הצגתו, אלא לצרכים אחרים, כאשר המימד החדש הינו גדול מ-3. ייתכן ובממד גבוה פונקציית התפלגות סטודנט t עם דרגת חופש אחת, אשר לה משקל גבוה יחסית במרחקים גבוהים, לא תשמר את המבנה של המידע המקורי. לכן, כאשר נרצה להוריד למימד גבוה מ-3, פונקציית התפלגות t עם יותר מדרגת חופש אחת מתאימות יותר.
- ב. קללת הממדיות: t-SNE מבוססת על מאפיינים מקומיים בין נקודות. השיטה מטריקת מרחק אוקלידית, ובכך מניחה לינאריות מקומית על גבי היריעה המתמטית בה מתקיימות הנקודות. אולם, במערך נתונים בו המימד הפנימי גבוה, שיטת t-SNE עלולה להיכשל כיוון שהנחת הלינאריות לא מתקיימת. למרות שישנן מספר שיטות למזער תופעה זו, עדיין, בהגדרה, כאשר המימד הפנימי גבוה, לא ניתן להוריד מימד כך שמבנה המידע ישמר באופו מלא.
- ג. פונקציית מחיר לא קעורה: הרבה שיטות למידה מבוססות על פונקציית הפסד קעורה, כך שתיאורטית מציאת אופטימיזציה (יחידה) לפונקציה זו אפשרית תמיד. אולם, בשיטת t-SNE, פונקציית המחיר אינה קעורה, והפתרון המתקבל על ידי האופטימיזציה משתנה בהתאם לפרמטרים הנבחרים.

References
Naïve Bayes:
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://scikit-learn.org/stable/modules/naive_bayes.html
K-NN:
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
EM:
https://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/13_mog.pdf
https://stephens999.github.io/fiveMinuteStats/intro_to_em.html

Hierarchical Clustering:

https://www.datanovia.com/en/lessons/agglomerative-hierarchical-clustering/

LOF:

 $\underline{https://towards datascience.com/local-outlier-factor-lof-algorithm-for-outlier-identification-8efb887d9843}$

PCA:

Saal, L.H. et al. (2007). Proc. Natl. Acad. Sci. USA 104, 7564–7569.