12.11.2004

# 日本国特許庁 JAPAN PATENT OFFICE

REO'D 13 JAN 2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application: 2003年11月17日

出 願 番 号 Application Number: 特願2003-387160

ST. 10/C]:

[JP2003-387160]

出 願 人 Applicant(s):

 $A_i^*$ 

松下電器産業株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年12月22日





特許願 【書類名】 2205050085 【整理番号】 特許庁長官殿 【あて先】 H01M 10/40 【国際特許分類】 大阪府守口市松下町1番1号 松下電池工業株式会社内 【発明者】 【住所又は居所】 竹内 崇 【氏名】 【発明者】 大阪府守口市松下町1番1号 松下電池工業株式会社内 【住所又は居所】 長崎 顕 【氏名】 【発明者】 大阪府守口市松下町1番1号 松下電池工業株式会社内 【住所又は居所】 芳澤 浩司 【氏名】 【特許出願人】 000005821 【識別番号】 松下電器產業株式会社 【氏名又は名称】 【代理人】 100072431 【識別番号】 【弁理士】 石井 和郎 【氏名又は名称】 【選任した代理人】 100117972 【識別番号】 【弁理士】 河崎 眞一 【氏名又は名称】 【手数料の表示】 066936 【予納台帳番号】 21,000円 【納付金額】 【提出物件の目録】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1 【物件名】

0114078

【包括委任状番号】

# 【書類名】特許請求の範囲

## 【請求項1】

(a) 正極、(b) 負極、(c) 前記正極と前記負極との間に介在するセパレータおよ び(d)電解液からなる非水電解液二次電池であって、

前記正極は、一般式:LixCo1-y-zMyLzO2で表される複合酸化物の粒子からなる 正極活物質を含み、前記一般式は、1≤x≤1.03、0.005≤y≤0.1および0 ≤ z ≤ 0. 05を満たし、元素Mは、Mg、Ti、MnおよびZnよりなる群から選ばれ る少なくとも1種であり、元素Lは、Al、Ni、Ca、Ba、Sr、YおよびZrより なる群から選ばれる少なくとも1種であり、

前記セパレータは、積層された複数の単層膜からなり、前記複数の単層膜は、いずれも 微多孔構造を有し、前記複数の単層膜から選ばれるとともに前記正極と対面する正極側単 層膜は、ポリプロピレンからなる非水電解液二次電池。

## 【請求項2】

前記正極側単層膜は、さらにポリエチレンを含み、前記ポリプロピレンと前記ポリエチ レンとの合計に占める前記ポリプロピレンの含有量が、60重量%以上である請求項1記 載の非水電解液二次電池。

## 【請求項3】

前記元素Mは、前記粒子中に均一に分布しており、元素Lは、前記粒子の内部よりも表 層部に多く分布している請求項1記載の非水電解液二次電池。

## 【請求項4】

前記粒子の半径を r とするとき、前記粒子の表面から 0.3 r 以内の領域には、前記粒 子の中心から0.3 r 以内の領域の1.2 倍以上の濃度で前記元素 L が分布している請求 項1記載の非水電解液二次電池。

## 【請求項5】

前記複数の単層膜から選ばれる少なくとも1つは、110~140℃の孔閉塞温度を有 する請求項1記載の非水電解液二次電池。

## 【請求項6】

前記110~140℃の孔閉塞温度を有する単層膜は、前記正極と対面することはなく 、ポリエチレンからなる請求項5記載の非水電解液二次電池。

## 【請求項7】

前記110~140℃の孔閉塞温度を有する単層膜は、さらにポリプロピレンを含み、 前記ポリエチレンと前記ポリプロピレンとの合計に占める前記ポリプロピレンの含有量が 、20重量%以下である請求項6記載の非水電解液二次電池。

前記複数の単層膜のうち、前記110~140℃の孔閉塞温度を有する少なくとも1つ 【請求項8】 の単層膜が占める厚みは、8 μ m以上である請求項5記載の非水電解液二次電池。

前記正極側単層膜の厚みは、0.2 μ m以上 5 μ m以下である請求項 1 記載の非水電解 液二次電池。

【請求項10】 前記複数の単層膜のうちの少なくとも1つは、押出成形により得られたシートを2方向 に延伸することにより製膜されている請求項1記載の非水電解液二次電池。

### 【請求項11】

前記正極側単層膜が、水銀圧入法により測定される全細孔体積における平均細孔径D1 を有し、前記110~140℃の孔閉塞温度を有する単層膜が、水銀圧入法により測定さ れる全細孔体積における平均細孔径D2を有するとき、D1<D2を満たす請求項6記載 の非水電解液二次電池。

充電終止電圧が4.3 V以上に設定された充電制御システムで充電する請求項1記載の 【請求項12】 非水電解液二次電池。

### 【書類名】明細書

【発明の名称】非水電解液二次電池

### 【技術分野】

[0001]

本発明は、非水電解液二次電池に関し、特にその正極とセパレータの改良に関する。 【背景技術】

### [0002]

近年、電話、パソコン、ビデオカメラなどの民生用電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型・軽量で、高エネルギー密度を有する二次電池への要望が高まっている。中でも、リチウム含有複合酸化物を正極活物質とし、リチウムイオンを吸蔵・放出可能な炭素材料やシリコン化合物、スズ化合物等を負極材料とし、正極と負極との間に介在するセパレータには、主としてポリエチレン(以下、PEと称する)やポリプロピレン(以下、PPと称する)などからなる微多孔膜を用い、LiBF4、LiPF6等のリチウム塩を溶解した非プロトン性の有機溶媒を電解液とする非水電解液二次電池の開発が盛んである。

#### [0003]

最近、携帯パソコンのCPUが高速化し、発熱量が増大している。また、長時間駆動の 要望も大きい。そこで、電源である非水電解液二次電池には、容量を増やすために充電電 圧の高電圧化が求められている。

#### [0004]

CPUの発熱による高温環境下で充電電圧を従来の4.2 Vよりも高くすると、非水電解液二次電池の特性劣化が激しくなる。そのような劣化を抑制するために、特にセパレータに関する技術開発が盛んである。セパレータには、主に、比較的融点の低いPE製の微多孔膜が用いられている。これは、電池温度が異常に上昇した際に、セパレータが溶融変形して正負極間の電気的遮断を迅速に行い、電池の安全性を確保するためである。

### [0005]

特許文献1には、正極の電位が4.2 V以上において、P E 製のセパレータが酸化され、ガス発生の一因となっていることが記載されている。その解決の手段として、セパレータに単層膜を少なくとも2層以上積層してなる微多孔構造を有する多層膜を用い、正極に対面する単層膜をP P 製の単層膜とすることが提案されている。

【特許文献1】特開2001-273880号公報

#### 【発明の開示】

【発明が解決しようとする課題】

### [0006]

特許文献1が開示する多層膜を用いた場合、ガス発生に関しては一定の効果を示すものの、高温・高電圧下に一定期間保持した後の放電特性の劣化抑制といった観点では、満足できる結果が得られていない。

#### 【課題を解決するための手段】

#### [0007]

#### [0008]

正極側単層膜は、さらにポリエチレンを含むことが好ましい。この場合、ポリプロピレ 出証特2004-3117182 ンとポリエチレンとの合計に占めるポリプロピレンの含有量は、60重量%以上であることが好ましい。正極側単層膜には、例えばポリプロピレンとポリエチレンとのブレンドポリマーを用いることができる。

#### [0009]

元素Mは、複合酸化物の粒子中に均一に分布しており、元素Lは、複合酸化物の粒子の内部よりも表層部に多く分布していることが好ましい。

例えば、複合酸化物の粒子の半径をrとするとき、前記粒子の表面から0.3 r以内の領域には、前記粒子の中心から0.3 r以内の領域の1.2倍以上の濃度で前記元素Lが分布していることが好ましい。

### [0010]

複数の単層膜から選ばれる少なくとも1つは、110~140℃の孔閉塞温度を有することが好ましい。なお、正極と対面する単層膜が110~140℃の孔閉塞温度を有してもよい。110~140℃の孔閉塞温度を有する単層膜が、正極と対面しない場合には、その単層膜はポリエチレンからなることが好ましい。

#### [0011]

110~140℃の孔閉塞温度を有する単層膜は、さらにポリプロピレンを含むことが好ましい。この場合、ポリエチレンとポリプロピレンとの合計に占めるポリプロピレンの含有量は、20重量%以下であることが好ましい。110~140℃の孔閉塞温度を有する単層膜には、例えばポリエチレンとポリプロピレンとのブレンドポリマーを用いることができる。

### [0012]

複数の単層膜のうち、110~140℃の孔閉塞温度を有する少なくとも1つの単層膜が占める厚みは、8μm以上であることが好ましい。

正極側単層膜の厚みは、0.2μm以上5μm以下であることが好ましい。

#### [0013]

前記複数の単層膜のうちの少なくとも1つは、押出成形により得られたシートを2方向 に延伸することにより製膜されていることが好ましい。

正極側単層膜が、水銀圧入法により測定される全細孔体積における平均細孔径D1を有し、前記110~140℃の孔閉塞温度を有する単層膜が、水銀圧入法により測定される全細孔体積における平均細孔径D2を有するとき、D1<D2を満たすことが好ましい。

#### 【発明の効果】

#### [0014]

本発明によれば、高温・高電圧下で使用する場合であっても、非水電解液二次電池の性能を維持することができ、安全性も同時に確保することができる。本発明は、非水電解液二次電池を充電終止電圧が4.3 V以上に設定された充電制御システムで充電する場合において、特に有用である。

#### 【発明を実施するための最良の形態】

#### [0015]

本発明の非水電解液二次電池は、(a)正極、(b)負極、(c)前記正極と前記負極との間に介在するセパレータおよび(d)電解液を具備し、かつ、以下の条件を満たす。

#### [0016]

### 条件 1

まず、正極は、一般式: $Li_xCo_{1-y-z}M_yL_zO_2$ で表される複合酸化物の粒子からなる正極活物質を含み、前記一般式は、 $1 \le x \le 1$ . 03、0.  $005 \le y \le 0$ . 1 および  $0 \le z \le 0$ . 05 を満たし、元素Mは、Mg、Ti、Mn およびZn よりなる群から選ばれる少なくとも1種であり、元素Lは、Al、Ni、Ca、Ba、Sr、Y およびZr よりなる群から選ばれる少なくとも1種である。

### [0017]

正極活物質において、元素Mは、LixCoO2の結晶をx≤0.5の高電圧充電状態で 安定化させると思われる。また、元素Lは、結晶中に存在して、結晶の安定化に寄与する

出証特2004-3117182

だけでなく、その一部が活物質粒子表面で、酸化物、炭酸化物もしくは水酸化物の形態で 存在し、電解液と活物質との反応を抑制すると思われる。

#### 条件 2

また、セパレータは、積層された複数の単層膜からなり、前記複数の単層膜は、いずれ も微多孔構造を有し、前記複数の単層膜から選ばれるとともに前記正極と対面する正極側 単層膜は、ポリプロピレン(PP)からなる。

#### [0019]

正極に対面する単層膜をPPからなるものとすることにより、セパレータの酸化が抑制 される。なお、セパレータに複数の単層膜からなる多層膜を用いる場合、PEからなる単 **層膜を多層膜に含めることが可能となり、比較的低温でいわゆるシャットダウン機能を発** 現させることができる。従って、電池の安全性を高めることができる。

### [0020]

上記条件1と条件2のどちらか一方を満たすだけでは、非水電解液二次電池の特性を改 善する効果は小さく、改良の余地がある。一方、条件1と条件2の両者を満たす場合には 、条件1と条件2が相乗的効果を奏し、高温・高電圧下における電池特性を改善する効果 が顕著となる。

### [0021]

そもそも、高温・高電圧下に一定期間保持した後の放電特性の劣化は、次のように起こ ると考えられる。まず、正極活物質から放出された酸素と、セパレータとして用いている PE製微多孔膜から酸化により放出されたプロトンとが反応し、H2Oが生成する。次に 、生成したH2Oが、電解液の溶質として存在するLiPF6や電解液の主成分である鎖状 炭酸エステル、環状炭酸エステルを分解して、負極活物質の表面上にLiF、Li2CO3 、Li2〇等の被膜を形成する。その結果、負極活物質の表面に被膜が堆積し、リチウム イオンの負極活物質への吸蔵・放出反応が阻害され、放電特性が劣化すると考えられる。

H2Oの生成に関与するこれらの反応は、相互に作用し合うため、正極の改良のみを施 しても、PE製微多孔膜から発生するプロトンで、正極から酸素が比較的容易に引き抜か れる。また、逆に、正極が放出する活性酸素により、PEは容易に酸化されてHを放出す る。よって、両方を同時に改良する必要がある。

さらに、プロトンの発生は、PE製セパレータの酸化によるだけでなく、電解液を構成 する有機化合物、電池を組み立てる際に混入する水分、正極・負極に含まれる結着剤、負 極に含まれる炭素材料の表面官能基などの充放電時における電気分解によっても起こりう る。従って、セパレータをPEからPPに変更するだけでは、H2Oの生成反応を完全に 抑制することはできない。

#### [0023]

最初にセパレータの一般的な要求特性について説明する。

セパレータは、基本特性として、正極と負極との間で電子的な導通が起こらないように 絶縁を保つとともに、電解液を保持した状態でイオンを透過させる能力を有する。同時に セパレータは、化学的もしくは電気化学的に安定であり、電解液の保持能力に優れ、電 池製造時および使用時には一定の機械的強度を有することが望まれる。

#### [0024]

高エネルギー密度を有する非水電解液二次電池では、外部短絡が生じた場合、電池内に 大きな短絡電流が流れてジュール熱が発生し、電池内で異常な温度上昇を生じる。そこで 安全性を確保するためには、電池が異常に温度上昇した時に、微多孔構造を有するセパ レータがメルトダウンして、孔を閉塞することが望まれる。このような電流を遮断する機 能をシャットダウン機能という。

#### [0025]

一方で、電池は真夏の車中などに放置されるなど、高温環境下に曝される状況が想定さ れる。そのような状況を考慮すれば、100℃程度の環境下で電池としての機能を損失す ることは避けるべきである。従って、電池の温度が110~140℃の範囲において、シ ャットダウン機能が発現することが望まれる。

## [0026]

ここで、本発明で用いるセパレータについて詳しく説明する。

セパレータの酸化挙動において、PEが酸化され、プロトンを放出するには、PEが分 子軌道的に s p <sup>2</sup>混成軌道の平面形態を経る必要があると考えられる。この所見を元に、 本発明は、PEの主鎖の自由回転を抑制し、平面形態への移行を抑制することにも着眼し ている。PEが平面形態を取らなければ、PEの酸化は抑制されると考えられる。

PEの主鎖の自由回転を抑制するには、PEと側鎖を持つPPとを併用することが好ま しく、特にPEとPPとのプレンドポリマーを用いることが有効である。セパレータの酸 化を確実に抑制する観点から、PEとPPからなるセパレータにおいて、PEとPPとの 合計に占めるPPの含有量は、60重量%以上であることが好ましい。PPの含有量が6 0 重量%以上であれば、高温下もしくは正極の電位が4.3 V以上となるような高電圧下 においても、セパレータの酸化を有効に防止することができるが、PPの含有量が70重 量%以上であることが特に好ましい。なお、正極側単層膜としてPP単独からなる単層膜 を用いることもできるが、ある程度のシャットダウン特性を確保する観点から、PEが含 まれていることが望ましい。

一般的に、セパレータには、電池温度が異常上昇した際に溶融変形し、孔を閉塞するこ とにより、正負極間の電気的遮断を迅速に行い、電池の安全性を確保する特性(以下、シ ャットダウン特性と称す)が要求される。そこで、比較的融点の低いPE製の微多孔膜が 主にセパレータとして用いられる。

## [0029]

シャットダウン特性を確保する観点から、複数の単層膜からなるセパレータは、110 ~140℃の孔閉塞温度を有する単層膜を少なくとも1つ具備することが好ましい。11 0~140℃の孔閉塞温度を有する単層膜としては、PEからなる単層膜を用いることが できる。

PEからなる単層膜は、さらにPPを含むことができ、特にPEとPPとのブレンドポ リマーを用いることが有効である。ただし、PEとPPとの合計に占めるPPの含有量が 20重量%をこえると、シャットダウン特性が低下し、外部短絡時には、発熱温度の上昇 を防止する効果が低減する。

近年、電池の高容量化が求められており、その一手段として、セパレータを薄肉化させ 、電池における活物質の充填量を増加させることが求められている。しかし、セパレータ の厚みを減少させると、一般的にシャットダウン特性は低下する。このような理由から、 ジェリーロール型またはジェリーロール扁平型の電極群を採用する非水電解液二次電池に は、現状、16~30μmのセパレータが採用されている。本発明に係るセパレータにお いても、シャットダウン特性を考慮して厚みを決定する必要がある。

本発明では、シャットダウン特性を支配する単層膜、すなわち110~140℃の孔閉 塞温度を有する単層膜がセパレータに占める厚みは、全体として 8 μ m以上であることが 好ましい。一方、正極側単層膜の厚みとしては、例えば 0.2μm以上であれば十分にセ パレータの酸化を抑制する効果が得られるが、 0. 5 μ m以上であることが好ましい。た だし、シャットダウン特性を支配する単層膜の厚さを十分に確保するには、正極側単層膜 の厚みを 5 μ m以下とすることが好ましい。また、セパレータ全体の厚みは 3 0 μ m以下 であることが好ましく、髙容量と安全性を両立する観点からは、セパレータ全体の厚みを  $16~20~\mu$  mとすることが特に好ましい。

## [0033]

セパレータの酸化抑制と良好な放電特性を両立させる観点から、正極側単層膜の平均細 孔径D1と、110~140℃の孔閉塞温度を有する単層膜の平均細孔径D2は、D1< D 2 を満たすことが望ましい。D 2 ≤ D 1 になると、高負荷放電時における放電容量が低 下する傾向がある。

## [0034]

本発明で用いるセパレータの製造方法としては、例えば、種々の単層膜を別々に作製し た後、カレンダーロール等を通して熱圧延しながら複数の単層膜を貼り合わせる方法を採 用することが好ましい。また、多層ダイを使用して、共押出法により、ダイスから複数種 の溶融樹脂を押し出すと同時に貼り合わせる方法等を用いることもできる。複数の単層膜 からなるセパレータの生産性を考慮した場合、共押出法を用いて、ダイスから複数種の溶 融樹脂を押し出すと同時に貼り合わせる方法を採用することが好ましい。このような製造 法の一例として、特開2002-321323号公報に開示されている方法を挙げること ができる。この方法では、T-ダイからの共押出により、多層膜が成形されており、 $5~\mu$ m以下の単層膜を多層化することが可能である。

## [0035]

単層膜の製造方法としては、例えば湿式法や乾式法を用いることができる。

乾式法では、例えば、溶融させたポリオレフィン樹脂を、Tーダイの先端に装着した押 出し機やインフレーション成形機を用いてフィルム状に押出成形した後、アニール処理を 施し、結晶質部と非晶質部を形成させる。その後、得られたフィルムを、一軸多段ローラ ー等を用いて延伸することにより、微多孔構造を形成する。単層膜の厚みは、押出工程に おけるポリオレフィン樹脂の押出量を最適な値とすることにより、任意の値に制御するこ とができる。単層膜の細孔径は、延伸工程における一軸多段ローラーの各段におけるロー ラー速度を最適な値とすることにより、任意の値に制御することができる。

湿式法では、例えば、溶融させたポリオレフィン樹脂と有機液状物とを混錬して、先端 にTーダイを装着した二軸押出し機やインフレーション成形機を用いてフィルム状に押出 成形した後、有機液状物を抽出除去することにより、微多孔構造を形成する。単層膜の厚 みは、押出工程におけるポリオレフィン樹脂の押出量を最適な値とすることにより、任意 の値に制御することができる。単層膜の細孔径は、微多孔構造を形成する処理を行う前後 の少なくとも一方において、延伸処理を行うことにより、任意の値に制御することができ る。延伸処理は、縦方向もしくは横方向のどちらか1方向に、または縦横の2方向に行う ことが可能である。単層膜の機械的強度の観点からは、縦横の2方向に延伸を行うことが 好ましい。

より大きな細孔径を得る必要がある場合には、溶融させたポリオレフィン樹脂と、有機 液状物と、無機フィラーとを混錬して、同様にフィルムを形成した後、有機液状物と無機 フィラーとを抽出除去し、延伸処理を施すことにより得ることができる。

厚み30μm以下の薄肉のセパレータを用いてジェリーロール型またはジェリーロール 扁平型の電極群を構成する場合、極板の巻き取り工程において、セパレータが裂け、絶縁 不良を生じる場合がある。このような不良は、極板のエッジ部分に金属集電体のバリが存 在したり、異物がセパレータと極板との間に混入したりすることにより発生する。特に、 押出成形により得られたフィルムを1方向に延伸して製膜されたセパレータにおいて不良 が発生する傾向が強い。1方向に延伸して製膜されたセパレータは、延伸方向と垂直な方 向への機械的強度が弱いため、延伸方向に裂けやすい特性を有するためと考えられる。

そこで、セパレータの機械的強度を高めるために、単層膜のうちの少なくとも1つは、 押出成形により得られたシートを2方向に延伸して製膜された単層膜であることが好まし く、セパレータ全体が押出成形により得られたシートまたはその積層体を2方向に延伸し て製膜されていることが特に好ましい。

## [0040]

次に、本発明で用いる正極活物質について詳しく説明する。

正極活物質は、一般式:LixCo1-y-zMyLzO2で表される複合酸化物の粒子からな る。ここで、一般式は、 $1 \le x \le 1$ . 03、0.  $005 \le y \le 0$ . 1および $0 \le z \le 0$ . 05を満たし、元素Mは、Mg、Ti、MnおよびZnよりなる群から選ばれる少なくと も1種であり、元素Lは、Al、Ni、Ca、Ba、Sr、YおよびZrよりなる群から 選ばれる少なくとも1種である。

## [0041]

上記のx値は、充放電開始前の値であり、充放電により増減する。また、x<1では、 非水電解液二次電池の実質的な活物質であるLi量が少なく、正極活物質の容量が小さく なる傾向がある。一方、1.03<xでは、余剰Liが正極活物質の表面でLiO、Li 2 C O3 といったアルカリ性の化合物を形成し、高温保存時に、ガスの発生を促進する傾向 がある。また、y<0.005では、活物質の結晶を安定化させる元素Mの効果が小さく なり、0.1<yでは、活物質の容量低下の影響が大きくなる。さらに、0.05<zで は、活物質の結晶を安定化させるとともに電解液と活物質との反応を抑制する元素Lの効 果が小さくなる。

## [0042]

一般式:LixCo1-y-zMyLzO2で表される複合酸化物は、コバルト化合物と、リチ ウム化合物と、元素Mを含む化合物と、元素Lを含む化合物とを、所望の組成に応じて粉 砕混合し、焼成する方法や溶液反応により合成することができる。特に、焼成法が好まし く、焼成温度は、混合された化合物の一部が分解、溶融する温度である250~1500 ℃であればよい。

混合された化合物の焼成時間は  $1\sim 8$  0 時間であることが好ましい。焼成の雰囲気ガス は、酸化雰囲気であればよく、例えば空気中で焼成を行えばよい。焼成物は、粉砕され、 所定の粒度に調整され、正極活物質として用いられる。

前記コバルト化合物としては、酸化物、水酸化物等の無機塩を用いることができる。例 [0044] えば、炭酸コバルト、硝酸コバルト、酸化コバルト等を用いることができる。また、前記 リチウム化合物には、炭酸リチウム、水酸化リチウム、硝酸リチウム、硫酸リチウム、酸 化リチウムなどを用いることができる。なかでも炭酸リチウムおよび水酸化リチウムが、 環境面とコスト面で最も有利である。元素Mを含む化合物としても、同様に、酸化物、水 酸化物等の無機塩を用いることができる。例えば、Mgを含む化合物としては、炭酸マグ ネシウム、酸化マグネシウムなどを用いることができる。元素Lを含む化合物としても、 同様に、酸化物、水酸化物等の無機塩を用いることができる。例えば、Alを含む化合物 としては、水酸化アルミニウム、酸化アルミニウム、硝酸アルミニウム、フッ化アルミニ ウム、硫酸アルミニウムなどを用いることができる。

## [0045]

元素Mは、一般式:LixCol-y-zMyLzO2で表される複合酸化物の粒子中に均一に 分布しており、元素しは、前記粒子の内部よりも表層部に多く分布していることが望まし い。このような構成によれば、活物質のタップ密度の減少を防ぐとともに、元素Mと元素 Lの添加による効果を最大限に利用することが可能である。ここで、完全に均一に元素M が前記粒子中に分布している必要はない。粒子の内部における元素Mの分布と、粒子の表 層部における元素Mの分布とが実質的に同程度であればよい。一方、元素Lは、活物質の タップ密度の減少を防ぐ観点から、前記粒子の表層部に多く分布していることが望まれる 。具体的には、前記粒子の半径を r とするとき、前記粒子の表面から 0.3 r 以内の領域 には、前記粒子の中心から0.3 r 以内の領域の1.2 倍以上の濃度で前記元素 L が分布 していることが好ましい。

粒子半径 r には、活物質を構成する粒子全体の平均粒径の 1 / 2 の値を用いる。ここで

、平均粒径は、例えば電子顕微鏡観察を利用した計数法により測定されるFeret径を 用いることができる。

### [0047]

粒子の表面から0.3 r 以内および中心から0.3 r 以内の領域における元素濃度は、例えば以下の方法で測定可能である。まず、活物質をペレット状に成形し、ペレットの表面から0.3 r の深さまでの領域をスパッタリングして、その領域に含まれる元素の組成を決定する。その後、スパッタリングを続け、ペレットの表面から0.7 r の深さから1 r の深さまでの領域に含まれる元素の組成を決定する。こうして得られた組成から、所定元素の濃度もしくは濃度比を算出することができる。元素の組成は、二次イオン質量分析(S I M S)、飛行時間型質量分析(T O F - S I M S)、X 線光電子分析(E S C A)、オージェ分光分析、X 線マイクロ分析(E P M A)などにより決定することができる。

### [0048]

上記のような複合酸化物を得るためには、以下の二段階の工程(工程AおよびB)を有する製造方法を採用することが好ましい。

### (1) 工程A

工程Aでは、Mg、Ti、Mnおよび2nよりなる群から選択される少なくとも1種の元素Mと、Coとを含み、元素MとCoとが均一に分布している化合物Xを調製する。

化合物 X の調製方法は、特に限定されるものではないが、C o 塩と元素Mの塩とを溶解させた水溶液に、アルカリ水溶液を注いで、水酸化物を沈殿させる共沈法が好ましい。

### [0049]

次に、共沈法について説明する。共沈法では、以下の原材料を用いることができる。まず、Co塩には、硫酸コバルト、硝酸コバルトなどを用いることができる。これらは単独で用いてもよく、組み合わせて用いてもよい。これらのうちでは、特に硫酸コバルトが好ましい。

#### [0050]

元素Mの塩には、硫酸塩、硝酸塩、炭酸塩などを用いることができる。例えば、Mgの塩としては、硫酸マグネシウム、硝酸マグネシウム、水酸化マグネシウム、塩基性炭酸マグネシウム、塩化マグネシウム、フッ化マグネシウム、酢酸マグネシウム、硫化マグネシウム等を用いることができる。これらは単独で用いてもよく、組み合わせて用いてもよい。

#### [0051]

Co塩と元素Mの塩とを溶解させた水溶液におけるCo塩の濃度は、例えば0.5~2mol/Lであり、元素Mの塩の濃度は、例えば0.01~0.32mol/Lである。前記溶液に注ぐアルカリ水溶液のアルカリ濃度は、例えば10~50重量%である。アルカリ水溶液に溶解させるアルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどを用いることができる。Co塩と元素Mの塩とを溶解させた水溶液およびアルカリ水溶液の温度は、いずれも特に限定されないが、例えば20~60℃である。

#### [0052]

Co塩と元素Mの塩とを溶解させた水溶液に、その水溶液のpHがCoと元素Mが共沈するpH(一般的にはpH8以上)に制御されるように、アルカリ水溶液を連続的に滴下すると、Coと元素Mの共沈物である水酸化物が得られる。この水酸化物を、濾過、水洗、乾燥後、酸化雰囲気中で焼成すると、元素MとCoとが均一に分布している酸化物が得られる。

### [0053]

### (2) 工程B

工程Bでは、まず、A1、Ni、Ca、Ba、Sr、Yおよび<math>Zrよりなる群から選択される少なくとも1種の元素Lを含む化合物Yと、化合物Xと、リチウム化合物とを、混合する。元素Lを含む化合物Yには、例えば元素Lの水酸化物、酸化物、炭酸塩、硝酸塩などが適する。

### [0054]

例えば、Alを含む化合物としては、水酸化アルミニウム、酸化アルミニウム、硝酸ア ルミニウム、フッ化アルミニウム、硫酸アルミニウムなどを用いることができる。また、 Caを含む化合物としては、水酸化カルシウム、酸化カルシウムなどを用いることができ る。また、Baを含む化合物としては、水酸化バリウム、酸化バリウムなどを用いること ができる。また、Sェを含む化合物としては、水酸化ストロンチウム、酸化ストロンチウ ムなどを用いることができる。また、Yを含む化合物としては、水酸化イットリウム、酸 化イットリウムなどを用いることができる。また、Zrを含む化合物としては、硝酸ジル コニウム、水酸化ジルコニウム、酸化ジルコニウム、炭酸ジルコニウム、硫酸ジルコニウ ムなどを用いることができる。リチウム化合物には、炭酸リチウム、水酸化リチウム、硝 酸リチウム、硫酸リチウム、酸化リチウムなどを用いることができる。

## [0055]

次いで、得られた混合物を加熱することにより、LiとCoと元素Mと元素Lとを含む 複合酸化物を調製する。工程Bでは、前記混合物を800℃以上1050℃以下、さらに は900℃以上1050℃以下で加熱することが好ましい。加熱温度が800℃未満では 、LiとCoと元素Mと元素Lとを含む複合酸化物の結晶性が低くなり、それを用いた電 池の放電容量が小さくなる傾向がある。一方、加熱温度が1050℃をこえると、Liと Coと元素Mと元素Lとを含む複合酸化物の比表面積が低くなり、それを用いた電池の高 負荷特性が低くなる傾向がある。

前記混合物を800℃以上1050℃以下で加熱する前に、ロータリーキルンを用いて 、600℃以上750℃以下で前記混合物を予備加熱することが好ましい。このような2 段階の焼成法によれば、結晶性の高い活物質が得られるとともに、未反応物の残留を低減 することができる。なお、ロータリーキルンは、混合物を流動させながら加熱することが 可能であり、原材料同士の接触回数を増加させることができるため、反応性を向上させる ことができる。

## [0057]

次に、本発明で用いる負極および電解液について説明する。

負極および電解液には、従来から非水電解液二次電池の負極や電解液として用いられて いるものを、特に限定なく用いることができる。

負極を構成する主材料としては、リチウム、リチウム合金などの合金の他、金属間化合 物、炭素材料、有機化合物、無機化合物、金属錯体、有機高分子化合物等のリチウムイオ ンを吸蔵・放出できる化合物を用いることができる。これらは単独で用いてもよく、組み 合わせて用いてもよい。これらのなかでは、特に炭素材料が好ましい。

## [0058]

炭素材料の平均粒子サイズは  $0.1\sim60\mu$  mが好ましく、 $0.5\sim30\mu$  mが特に好 ましい。炭素材料の比表面積は  $1\sim 1$  0  $\mathrm{m}^2/\mathrm{g}$  であることが好ましい。なかでも炭素六 角平面の間隔 (doo2) が3.35~3.4Åであり、c軸方向の結晶子の大きさ (L c ) が100A以上である黒鉛が好ましい。

電解液としては、非水溶媒およびそれに溶解するリチウム塩からなるものが好ましく用 いられる。非水溶媒には、エチレンカーボネート、プロピレンカーボネートなどの環状炭 酸エステル、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート などの鎖状炭酸エステル、γーブチロラクトン、γーバレロラクトンなどの環状カルボン 酸エステルなどが好ましく用いられる。リチウム塩としては、LiPF6、LiBF4など が好ましく、これらは単独で、もしくは組み合わせて用いられる。

電池の形態については特に限定はなく、円筒形、偏平形および角形のいずれでもよい。 電池には、誤動作時にも安全を確保できるように、例えば、内圧開放型安全弁、電流遮断 型安全弁等を備えることが好ましい。

## [0061]

以下、本発明を実施例に基づいて具体的に説明する。 〈実施例1〉

まず、一般式:LixCol-y-zMyLzO2で表される複合酸化物におけるyおよびzの 数値範囲について検討した。数値 y および z が表 l に示す値を有する正極活物質を調製し た。これらを用いて実施例の電池A1~A15および比較例の電池B1~B4を作製した 。ここでは、x値は1に固定した。また、セパレータとして、市販されているPP/PE /PPの3層構造を有する厚さ25μmの微多孔膜(セルガード社製2300、以下、セ パレータC1と称する)を採用した。なお、PPはPP単独からなる単層膜、PEはPE 単独からなる単層膜の省略表記である。各単層膜の厚さは約8μmであり、それぞれ1方 向への延伸(1軸延伸)が行われている。

## [0062]

(a) 正極の作製

電池A1、A3~A6およびB3~B4に用いる正極活物質は、以下に述べる共沈法に より調製した。

#### 工程A

硫酸コバルトおよび硫酸マグネシウムを溶解させた金属塩水溶液を調製した。

前記金属塩水溶液における硫酸コバルトの濃度は1mol/Lとし、硫酸マグネシウム の濃度は表1に従って適宜調整した。攪拌下にある前記金属塩水溶液を50℃に維持し、 その中に、水酸化ナトリウムを30重量%含む水溶液をpH12になるように滴下して、 マグネシウム含有水酸化コバルトを沈殿させた。水酸化コバルトの沈殿を濾過して水洗し 、空気中で乾燥させ、次いで400℃で5時間焼成し、マグネシウム含有酸化コバルトを 得た。

[0063]

## 【表1】

[0064]

得られたマグネシウム含有酸化コバルトと、水酸化アルミニウムと、炭酸リチウムとを 工程B 、表1に従って、所定のモル比で混合した。Li:(Co+Mg+A1)は、モル比で1 :1とした。この混合物をロータリーキルンに入れ、空気雰囲気中で650℃で10時間 予備加熱した。次いで、予備加熱後の混合物を電気炉内で950℃まで2時間で昇温し、 950℃で10時間焼成した後、粉砕してレーザー回折法で得られる累積50%粒径が1  $0~\mu$ mの粉末状とすることにより、正極活物質を得た。

[0065]

電池A2に用いる正極活物質は、工程Aを経た後、水酸化アルミニウムを添加しなかっ たこと以外は、工程Bと同様のプロセスを経て得た。

電池B1に用いる正極活物質は、硫酸マグネシウムを添加しなかったこと以外は、工程 Aと同様のプロセスを経た後、水酸化アルミニウムを添加しなかったこと以外は、工程B と同様のプロセスを経て得た。

電池B2に用いる正極活物質は、硫酸マグネシウムを添加しなかったこと以外は、工程 Aと同様のプロセスを経た後、工程Bを経て得た。

電池A7~A12に用いる正極活物質は、工程Aを経た後、水酸化アルミニウムの代わ りに所定元素の水酸化物(水酸化ニッケル、水酸化カルシウム、水酸化バリウム、水酸化 ストロンチウムまたは水酸化イットリウム)または硝酸塩(硝酸ジルコニウム)を用いた こと以外は、工程Bと同様のプロセスを経て得た。

電池A13~A15に用いる正極活物質は、硫酸マグネシウムの代わりに所定元素の硫 酸塩(硫酸マンガン、硫酸亜鉛または硫酸チタン)を用いたこと以外は、工程Aと同様の プロセスを経た後、工程Bと同様のプロセスを経て得た。

100重量部の所定の正極活物質に、導電剤として3重量部のアセチレンブラックと、 結着剤として3重量部のポリフッ化ビニリデンとを混合して、正極合剤とし、これをN-メチルー2-ピロリドンに分散させてスラリー状の正極合剤ペーストを得た。この正極合 剤ペーストを、乾燥後に所定重量になるように集電体となる厚さ20μmのアルミニウム 箱の両面に塗布し、乾燥後、圧延し、所定寸法に裁断して、厚さ170μmの正極を得た

## [0067]

## (b) 負極の作製

平均粒子径が約20μmになるように粉砕・分級した100重量部の鱗片状黒鉛に、結 着剤としてスチレン/ブタジエンゴムを3重量部と、カルボキシメチルセルロースを1重 量%含む水溶液100重量部とを加え、撹拌・混合し、スラリー状の負極合剤ペーストを 得た。この負極合剤ペーストを、乾燥後に所定重量になるように集電体となる厚さ 1 5 μ mの銅箔の両面に塗布し、乾燥後、圧延し、所定寸法に裁断して、厚さ165μm負極を 得た。

## [0068]

(c) 電池の組立て 所定の正極と、上記負極を用いて、円筒形非水電解液二次電池(直径18mm、高さ6 5 mm) を組み立てた。図1に、本実施例で作製した円筒形電池の縦断面図を示す。上記 電池は以下のようにして組み立てた。

まず、所定の正極5と負極6のそれぞれの集電体に、それぞれアルミニウム製正極リー ド5 a およびニッケル製負極リード6 a を取り付けた後、セパレータ7としてセパレータ C1を介して巻回し、ジェリーロール型の電極群を構成した。電極群の上部と下部にPP 製の絶縁板8aおよび8bを配し、負極リード6aをニッケルめっきした鉄製の電池ケー ス1に溶接すると共に、正極リード5 aを内圧作動型の安全弁を有する封口板2に溶接し て、電池ケース1の内部に収納した。その後、電池ケースの内部に非水電解液を減圧方式 により注入した。最後に、電池ケース1の開口端部をガスケット3を介して封口板2にか しめることにより電池を完成させた。

非水電解液には、エチレンカーボネートとエチルメチルカーボネートとの体積比1:3 の混合溶媒100重量部にビニレンカーボネート2重量部を加え、1.0 mol/Lの濃 度になるようにLiPF6を溶解したものを用いた。

## [0070]

#### [定格電池容量]

環境温度20℃で、各電池の充放電サイクル試験を行い、定格電池容量を評価した。こ の際、充電は、400mAの定電流で電池電圧が4.2Vに達するまで行った後、4.2

出証特2004-3117182

Vの定電圧で2時間の充電を行った。また、放電は、400mAの定電流で電池電圧が3 .0Vに達するまで行った。上述した充放電条件により充放電サイクル試験を行い、2サ イクル目の放電から見積もった電池容量を定格電池容量として、表1に示す。

## [0071]

表1に示すように、Mg、Alを添加することにより、定格電池容量は低下する傾向に ある。これは、Mg、Alは、電池の充放電反応、つまり正極活物質に含有される金属元 素の酸化還元反応に寄与しないためであり、添加量を増加させると定格電池容量が減少す る。本発明の実施例に示す電池の場合、実用上、好ましくは1650mAhの定格電池容 量が必要である。以上を勘案すると、一般式:LixCo1-y-zMyLzO2において、元素 Mの添加量を表すyおよびzは、 $0.005 \le y \le 0.1$ および $0 \le z \le 0.05$ を満た すことが必要となる。

## [0072]

## [定電圧保存後回復率]

次に、高温・高電圧下における保存による放電特性の劣化程度を評価するために、定電 圧保存後回復率を見積もった。各電池を上述した条件で、2サイクル充放電を行い、定格 電池容量を見積もった後、20℃環境下、充電を400mAの定電流で電池電圧が4.2 Vに達するまで行い、その後、4.2Vの定電圧で2時間の充電を行った。

それから、見積もった定格電池容量の2時間放電率(0.5℃相当)の電流値(例えば [0073] 定格電池容量が1000mAhの場合、500mA)で定電流放電を電池電圧が3.0V に達するまで行った。このとき得られた放電電池容量を3サイクル目放電容量とした。

[0074] さらに、電池を環境温度60℃下に6時間放置し、電池温度が60℃に達していること を確認した後、環境温度60℃で、充電を400mAの定電流で電池電圧が表1に示す所 定の値(4.2 V、4.3 Vまたは4.4 V)に達するまで行った後、所定の定電圧で1 68時間の充電を行った。

充電完了後、環境温度60℃で、400mAの電流値で3.0Vに達するまで放電を行 った後、環境温度20℃下に6時間放置し、電池温度が20℃に達していることを確認し た後、充電を400mAの定電流で電池電圧が4.2Vに達するまで行い、その後、4. 2 Vの定電圧で2時間の充電を行った。

## [0076]

それから、見積もった定格電池容量の2時間放電率(0.5C相当)の電流値で定電流 放電を電池電圧が3.0 Vに達するまで行った。このとき得られた放電電池容量を5サイ クル目放電容量とした。

定電圧保存後回復率は、3サイクル目放電容量に対する5サイクル目放電容量の比率、 すなわち計算式:

(5サイクル目放電容量/3サイクル目放電容量)×100(%)

により得られる値とした。得られた結果を表1に示す。

表1の結果から、比較例の電池B1に対して、MgおよびAlを添加した本発明の実施 例の電池A1~A15は、一般的に現在の携帯パソコンで用いられる4.2V充電状態に おける定電圧保存後回復率(以下、単に回復率という)が改善していることがわかる。

また、比較例の電池B1に対して、A1だけを添加した比較例の電池B2は、4.2V 定電圧保存後の回復率の向上は見られるが、4.3 Vもしくは4.4 Vの高電圧の場合の 効果が小さい。一方で、Mgだけを添加した電池A2は、4.3Vもしくは4.4Vとい った高電圧の場合でも効果が現れている。このような結果から、Mgは必須の元素であり 、Alは、Mgと共に存在することで相乗効果を示すことがわかる。

## [0080]

さらに、今後、さらなる高容量化の手段の一つとして、4.3 Vや4.4 Vといった充 電電圧の高電圧化が考えられる。このことを考慮した場合、想定される使用電圧における 回復率は、70%以上であることが望まれる。表1の結果から、実施例の電池A1~A1 5の構成とすることで、4.3 V使用は可能だと考えられ、実施例の電池A4~A6もし くはA8の構成とすることで、4.4 V使用も可能だと考えられる。

## [0081]

以上、本検討により、Mgの添加量に関して、好ましい範囲は、0.005≤y≤0. 1であり、より好ましくは 0.5≦ y ≤ 0.1であることがわかった。同様に、A 1 の添 加量に関して、好ましい範囲は、0≤z≤0.05であり、より好ましくは0.01≤z **≤0.05であることがわかった。** 

## [0082]

## 《実施例2》

次に、正極活物質における元素Mおよび元素Lの粒子中での分布状態が、高温・高電圧 下の保存による放電特性の劣化に与える影響について検討した。ここでは、正極活物質で あるLixCo1-y-zMyLzO2における元素MとしてMg、元素LとしてA1を採用し、 x=1、y=0. 05、z=0. 01とした。表2に示す元素Mおよび元素Lの添加法( 共沈法または外添法)を用いて正極活物質を調製した。これらを用いて実施例の電池A4 、A16、A17を作製した。実施例の電池A4は、先述した実施例1の電池A4と同じ ものであり、工程Aが共沈法、工程Bが外添法に相当する。また、セパレータとして、セ パレータC1を用いた。

[0083]

【表2】

|            |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |          | 古名同省           | (70)     |
|------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|----------|----------------|----------|
|            | Mar.                                                                            | ΔΙΟ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |        |          | <b>正</b> 电上    | (20)     |
| <u> </u>   | LICO0. 941VIBO. 057VI                                                           | 2. 05~0. 01 °Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | セパラーダ | 尼布電泊布里 | <u>L</u> | VA A VC A VO A | \ \V \ V |
| 三          | がおがっ                                                                            | 41张TA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | (mAh)  |          | +. O.          |          |
|            | NB<br>NB<br>NB<br>NB<br>NB<br>NB<br>NB<br>NB<br>NB<br>NB<br>NB<br>NB<br>NB<br>N | STATE OF THE PARTY |       |        |          |                | 1        |
|            | † <del>†</del> †                                                                | は決ま                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5     | 1757   | 96       | - 6            | 77       |
| <b>A4</b>  | 一大沢沢                                                                            | ンド族は                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )     |        |          | 3              |          |
|            |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (     | 1770   | 50       | ဘ              | 200      |
| 9 + 4      |                                                                                 | 一                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5     | 01     | 3        |                |          |
| AIO        | X 12/K                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        | מ        | ά              | 56       |
|            | がまる                                                                             | 人形形                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2     | 7/52   | 20       | 5              |          |
| \<br> <br> | とを表は                                                                            | 1 10m lan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |        |          |                |          |
|            |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |          |                |          |

電池A16に用いる正極活物質は、以下に述べる共沈法を採用して調整した。

硫酸コバルト、硫酸マグネシウムおよび硫酸アルミニウムを溶解させた金属塩水溶液を 調製した。前記金属塩水溶液における硫酸コバルトの濃度は1mol/Lとし、硫酸マグ ネシウムおよび硫酸アルミニウムの濃度は、最終的に正極活物質としてy=0.05、z = 0. 01となるように適宜調整した。

### [0085]

攪拌下にある前記金属塩水溶液を50℃に維持し、その中に、水酸化ナトリウムを30 重量%含む水溶液をpH12になるように滴下して、マグネシウム/アルミニウム含有水 酸化コバルトを沈殿させた。

水酸化コバルトの沈殿を濾過して水洗し、空気中で乾燥させ、次いで400℃で5時間 焼成し、マグネシウム/アルミニウム含有酸化コバルトを得た。

## [0087]

得られたマグネシウム/アルミニウム含有酸化コバルトと、炭酸リチウムとを、Li: (Co+Mg+Al)=1:1となるモル比で混合した。この混合物をロータリーキルン に入れ、空気雰囲気中で650℃で10時間予備加熱した。次いで、予備加熱後の混合物 を電気炉内で950℃まで2時間で昇温し、950℃で10時間焼成した後、粉砕してレ ーザー回折法で得られる累積 5 0 %粒径が 1 0 μ mの粉末状とすることにより、正極活物 質を得た。

電池A17に用いる正極活物質は、以下に述べる外添法を採用して調製した。

酸化コバルト、炭酸マグネシウム、水酸化アルミニウムおよび炭酸リチウムを、モル比 でLi:Co:Al:Mg=1:0.94:0.01:0.05となるように混合した。 この混合物をロータリーキルンに入れ、空気雰囲気中で650℃で10時間予備加熱した 。次いで、予備加熱後の混合物を電気炉内で950℃まで2時間で昇温し、950℃で1 0時間焼成した後、粉砕してレーザー回折法で得られる累積 5 0 %粒径が 1 0 μ mの粉末 状とすることにより、正極活物質を得た。

電池A4、A16およびA17に用いる正極活物質中のMgおよびAlの分布状態を、 二次イオン質量分析(SIMS)、飛行時間型質量分析(TOF-SIMS)、X線光電 子分析(ESCA)、オージェ分光分析およびX線マイクロ分析(EPMA)により調べ

## [0090]

[正極活物質粒子断面の分析]

測定用の試料は、各活物質を、エポキシ樹脂と混合し、硬化させたのち、硬化物を切断 、研磨して調製した。この試料を、上記分析法で面分析して表層部と中心部の元素分布お よび濃度分布を測定した。

## [0091]

[正極活物質粒子表面からの深さ方向の分析]

粒子表面からの深さ方向の分析には、スパッタリングを採用した。また、特に粒子表面 の分析は、TOF-SIMS測定を中心に行った。

その結果、電池A4に用いる正極活物質中では、活物質粒子の表層部(粒子半径をrと するとき、表面から 0.3 r 以内の領域) に、中心部(粒子半径を r とするとき、中心か ら0.3 r 以内の領域)の約2倍の濃度でA 1 が分布していることがわかった。一方、M gは、活物質粒子中に均質に分布していた。

また、電池A16に用いる正極活物質中では、MgおよびAlは、活物質粒子中に均質 に分布していた。

一方、電池A17に用いる正極活物質中では、活物質粒子の表層部(粒子半径をrとす 出証特2004-3117182 るとき、表面から0.3r以内の領域)に、中心部(粒子半径をrとするとき、中心から 0. 3 r 以内の領域)の約 2 倍の濃度でA l 、約 l . 5 倍の濃度でM g が分布しているこ とがわかった。すなわち、AlとMgの両者が、活物質粒子の表層部に偏在していた。 これらの正極活物質を用いて、実施例1と同様の円筒形非水電解液二次電池を作製し、 実施例1と同様に評価した。その結果を表2に示す。

A 1 を外添法で添加した正極活物質を用いた電池A 4 に対して、A 1 を共沈法で添加し た正極活物質を用いた電池A16は、定格電池容量が幾分低下していることがわかる。電 池Al6に用いた正極活物質は、Co、Mg、Alを同時に共沈させて調製されているた め、調製時に取り込んだ硫酸イオンが合成後の活物質に残り、容量低下を引き起こしたも のと考えられる。

また、電池A16は、電池A4に対して、定電圧保存後回復率が幾分低下している。そ の傾向は、特に、充電電圧を4.3V、4.4Vにした時に明確化している。正極活物質 粒子の表層部に存在するA1量が、電池A4に用いた正極活物質より少ないため、高温・ 高電圧保存時、酸素の放出抑制の程度が幾分低くなっているためと考えられる。

Mgを共沈法で添加した正極活物質を用いた電池A4に対して、Mgを外添法で添加し た正極活物質を用いた電池A17の定格電池容量は、ほぼ同程度であるが、定電圧保存後 回復率が低下している。その傾向は、特に、充電電圧を4.3 V、4.4 Vにした時に明 確化している。電池A17に用いた正極活物質中には、Mgが均質に分散していないため 、4.3Vや4.4Vといった高電圧時、高温保存すると、活物質粒子の一部が崩壊し、 酸素を放出しやすい状態にあると考えられる。

以上、本検討から得られた知見から、Mgは、正極活物質粒子中に均一に分布しており 、Alは、前記粒子の内部よりも表層部に多く分布していることが好ましいことがわかっ

## [0098]

### 《実施例3》

正極活物質組成と正極に対面するセパレータの材質との組み合わせが、高温・高電圧下 の保存による放電特性の劣化に与える影響について検討した。ここでは、表3に従って正 極活物質とセパレータとを組み合わせ、実施例の電池A4および比較例の電池B1、B5 およびB6を作製した。電池A4、B1は、実施例1で作製した電池A4、B1と同じも のである。

## [0099]

【表3】

|        |                                       |            |                 |       |                   | (10)  |
|--------|---------------------------------------|------------|-----------------|-------|-------------------|-------|
|        |                                       |            | 1               | 定電圧的  | 定電圧保存後凹復率         | (%) 掛 |
| 電池     | 正極活物質                                 | セパレータ      | 定格電光容庫<br>(mAh) | 4. 2V | 4. 2V 4. 3V 4. 4V | 4. 4\ |
|        |                                       |            |                 | 90    | 91                | 72    |
|        | 1 :00 Mg 2. Alo 0.00                  | ပ          | /6/1            | 90    | ,                 |       |
| A4     | LICO, 941150, 037 01 2                |            | C I             | 00    | 69                | 15    |
| 1      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <b>C</b> 5 | 8G/L            | 0     | 70                |       |
| က<br>က | LICO0, 9414150, 057 "0. 01 - 2        |            |                 | 70    | 20                | 28    |
| Š      | l iCoO                                | 5          | 181/            | 0/    | 3                 |       |
| מ      | 7                                     |            | 0,00            | 7.1   | 33                | വ     |
| n      | Lic <sub>o</sub> O <sub>3</sub>       | C2         | 818             | -     |                   |       |
| 2<br>1 |                                       |            |                 |       |                   |       |

電池B5は、正極活物質として、電池A4と同じ物を用い、セパレータとして市販され ているPE単独からなる単層構造を有する厚さ27μmの微多孔膜(セルガード社製k8 49、以下、セパレータC2と称する)を採用したこと以外は、実施例1と同様の円筒形 非水電解液二次電池を作製した。

## [0101]

電池B6は、正極活物質として、電池B1と同じ物を用い、セパレータC2を採用した こと以外は、実施例1と同様の円筒形非水電解液二次電池を作製した。

## [0102]

これらの電池を実施例1と同様に評価した。その結果を表3に示す。

正極活物質にLiCoO2を用い、PE単独からなるセパレータC2を用いた比較例の 電池B6は、回復率が実施例の電池A4に比べ著しく低い。これは、正極活物質からの酸 素放出およびセパレータからの水素の放出が抑制されていないため、H2Oが生成し、負 極表面に厚い被膜層を形成したためと考えられる。

比較例の電池B5およびB1も、実施例の電池A4と比べると、回復率が低い。電池B 5 は、正極からの酸素放出は抑制されているが、セパレータからの水素放出は抑制されて いない。一方、電池B1は、セパレータからの水素放出は抑制されているが、正極からの 酸素放出は抑制されていない。このため、電池A4に比べるとH2〇の生成量が多いと考 えられ、結果として回復率が低下したものと思われる。

以上、本検討より、良好な回復率を得るためには、正極活物質として元素Mと元素Lを 含む活物質(LiCoo.94 Mg0.05 Alo.01 O2)を用い、セパレータとして正極側単層 膜がPPからなる微多孔膜を用いる必要があることがわかった。

## [0105]

正極側単層膜において、高温・高電圧下で、セパレータの酸化を抑制するために必要と 《実施例4》 なるPPの量を検討した。この検討を行うために、多層膜構造のセパレータとして、セパ レータC3~7を作製した。多層膜の構成をA/B/Aの3層構造とした。単層膜Aには 、PPとPEのブレンドポリマーを用いた。ブレンドポリマーにおけるPPとPEとの混 合割合は、表4に示す値とした。また、単層膜Bには、PEを用いた。これらを用いて実 施例の電池A18~22を作製した。

## [0106]

|        |          | ·          |                |                |         |             | 無関語なの  | 当時間日の  | 1 88 th |
|--------|----------|------------|----------------|----------------|---------|-------------|--------|--------|---------|
|        | 車<br>層膜A | の組成        | セパレーターを大の同な    | 単層膜Aの<br>風み    | 単層膜Bの厚み | 透気度         | 中古畬九徐  | 中均細孔径  | 七还搬消政   |
| セパータ   |          |            | H Harriston    |                |         | 0000        | (2011) | (w ")  | (၃)     |
|        | 100      | DE (1.404) | ( <i>" "</i> ) | (m n)          | (m #)   | (sec/100mi) | וווא   | )<br>) |         |
|        | PP(WE%)  | 늬          | )<br> <br>     |                |         | 007         | 0      | 90 0   | 134     |
| 8      | 5        | c          | 26. 1          | 0.9            | 14. 1   | 480         |        |        | 5       |
| 3      | 2        | ,          |                |                |         | Q 11 1      | 200    | 0.07   | 134     |
|        | 0        | 00         | 24.6           | 9.4            | 14. 8   | 450         | 3      |        |         |
| 5      | 2        | 23         |                |                |         | 30,         | 90     | 0 07   | 134     |
|        | 3        | ~          | 24 4           | 4.6            | 15.2    | 430         | 3      | ;      |         |
| ၌<br>— | 20       | 2          |                |                |         | 007         | 90 0   | 0.08   | 134     |
| 1      | 40       | 00         | 25. 4          | ر<br>ارن<br>ان | 15.4    | 450         | 3      |        |         |
| 3      | 2        | 2          |                | ,              | ,       | 001         | 90 0   | 0.08   | 134     |
| 5      | 00       | 80         | 25. 2          | က်<br>လ        | 14.0    | 450         | ,      |        |         |
| 3      | 2        |            |                |                |         |             |        |        |         |

# [0107]

(a) セパレータC3の作製

単層膜Aを作製するための原料として、PP35重量部および流動パラフィン65重量 部を溶融混錬した。また、単層膜Bを作製するための原料として、PE45重量部および 流動パラフィン55重量部を溶融混錬した。それぞれの溶融混錬された原料を、先端に3

層共押出用Tーダイを装着した2台の押出機でそれぞれ押出し、厚さ1000μmの3層 構造を有するシートを作製した。このとき2台の押出機におけるそれぞれの樹脂の押出量 は、最終的に単層膜A、Bの厚みが表4の値となるように調製した。このシートを116 ℃に加熱された幅出機内で、同時に縦横の2方向に延伸した後、メチルエチルケトン中に 浸漬し、流動パラフィンを抽出除去し、乾燥させて、厚さ26.1 μ mのセパレータC3 を得た。

## [0108]

# (b) セパレータC4の作製

単層膜Aを作製するための原料として、PP32重量部、PE8重量部および流動パラ フィン60重量部を溶融混錬したものを用いたこと以外は、セパレータC3を作製したの と同様にして、厚さ24.6μmのセパレータC4を得た。

## [0109]

# (c) セパレータC5の作製

単層膜Aを作製するための原料として、PP24重量部、PE16重量部および流動パ ラフィン 6 0 重量部を溶融混錬したものを用いたこと以外は、セパレータ C 3 を作製した のと同様にして、厚さ24.4 $\mu$ mのセパレータC5を得た。

## [0110]

# (d) セパレータC6の作製

単層膜Aを作製するための原料として、PP16重量部、PE24重量部および流動パ ラフィン60重量部を溶融混錬したものを用いたこと以外は、セパレータC3を作製した のと同様にして、厚さ25.4 $\mu$ mのセパレータC6を得た。

## [0111]

# (e) セパレータC7の作製

単層膜Aを作製するための原料として、PP8重量部、PE32重量部および流動パラ フィン60重量部を溶融混錬したものを用いたこと以外は、セパレータC3を作製したの と同様にして、厚さ25.2 $\mu$ mのセパレータC7を得た。

得られたセパレータC3~C7の諸特性を以下の方法で調べた。評価結果を表4に示す

## [0112]

A/B/Aの3層構造を有するセパレータの切断断面を、走査電子顕微鏡(日立製作所 [膜厚] (株) 製のS-4500) を用いて撮影した。得られた電子顕微鏡写真から、セパレータ 全体の厚み、単層膜Aおよび単層膜Bの厚みを測定した。

## [0113]

JIS P8117に準拠し、ガーレー式デンソメーター(東洋精機製作所(株)製) [透気度] を用い、表線目盛り0~100までに要する時間を測定した。

## [0114]

## [平均細孔径]

A/B/Aの3層構造を有するセパレータを、物理的に引き剥がして単層膜A、単層膜 Bを得た後、水銀ポロシメーター(島津製作所(株)製のオートポアIII9410)を 用いた水銀圧入法により細孔分布を測定し、膜内の全細孔体積に対する平均細孔径を見積 もった。

### [0115]

電解液にエチレンカーボネートとプロピレンカーボネートとの体積比1:1の混合溶媒 [孔閉塞温度] に1mo1/Lの濃度になるようにLiPF6を溶解したものを用いたこと以外は、特開 2002-321323号公報で開示されているのと同様の公知の方法を用いて測定した 。すなわち、孔閉塞温度は、一対の平板電極で挟持され、電解液を含浸させたセパレータ の温度を2℃/minの速度にて昇温させ、このときのセパレータの電気抵抗の変化を測 定し、電気抵抗値が1000Ωに達する時の温度と定義した。なお、電気抵抗値は1kH zの交流にて測定した。

## [0116]

次いで、正極活物質として、実施例1の電池A4と同じLiCoo.94Mgo.05Alo.01 O2を採用し、セパレータC3~C7を用いたこと以外は、実施例1と同様の円筒形非水 電解液二次電池を作製した。

これらの電池を実施例1と同様に評価した。結果を表5に示す。さらに、電池の45℃ でのサイクル特性を評価するために容量維持率を測定した。

## [0117]

### [容量維持率]

ここでは、定格電池容量を測定後、環境温度45℃で、電池の充放電サイクル試験を実 施した。前記充放電サイクル試験において、充電では、定格電池容量の1時間放電率(1 C相当) の電流値で、電池電圧が4. 2 V に達するまで、定電流充電を行った後、さらに 、4.2Vの定電圧で2時間充電を行った。放電では、定格電池容量の1時間放電率(1 C相当) の電流値で定電流放電を電池電圧が3.0Vに達するまで行った。

## [0118]

先述した充放電条件において、500回の充放電サイクルを行った後、環境温度20℃ で、先述した定格電池容量の評価で用いた条件で、1サイクルの充放電を行い、このとき 得られた放電容量をサイクル試験後の定格電池容量とした。容量維持率は、初期の定格電 池容量に対する45℃でのサイクル試験後の定格電池容量の比率、すなわち計算式:

(サイクル試験後の定格電池容量/サイクル試験前の定格電池容量)×100(%) から得られる値とした。結果を表5に示す。

## [0119]

## 【表5】

|        |                                                     |       |             |       |           |       | はは、インナンので |
|--------|-----------------------------------------------------|-------|-------------|-------|-----------|-------|-----------|
|        |                                                     |       | E           | 定電圧包  | 定電压保存徴凹復率 | (S)   | 120000    |
| 景      | 正極活物質                                               | セパレータ | 定格電池容庫(二/4) | 4. 2V | 4. 3V     | 4. 4V | 容量維持率(%)  |
| )<br>} |                                                     |       | (IIVIII)    |       |           | 1     | 75        |
|        |                                                     | 3     | 1755        | 96    | 9         | 7/    | 2         |
| A18    | LiCo <sub>0, 94</sub> ME <sub>0, 05</sub> Alo, 0102 | 3     |             |       | 3         | 7.4   | ις<br>α   |
|        |                                                     | 2     | 1757        | 96    | 08        | -     | 3         |
| A19    | LICO <sub>0, 94</sub> ME0, 05A10, 01-02             |       |             |       | 9         | 7     | 87        |
|        |                                                     | ני    | 1758        | 92    | S<br>X    | 2     |           |
| A20    | LiCoo, 94MBo, 05A10, 0172                           | 3     |             |       | 10        | 17    | 200       |
|        | N. C.                                               | 90    | 1756        | 82    | CO        |       |           |
| B21    | LICO <sub>0. 94</sub> MEO. 05~10. 01~2              | 3     |             | 00    | 63        | 16    | 79        |
| 000    | 1 iCo 2 Mgo 05 Alo 0102                             | C2    | /6/1        | 45    |           |       |           |
| 770    | - CO. 84: - CO. |       |             |       |           |       |           |
|        |                                                     |       |             |       |           |       |           |

また、図2に、単層膜A中に含まれるPPの含有量と4.2V、4.3 Vおよび4.4 [0120] V充電における回復率との関係を示す。図2から、いずれの充電電圧においても、PPの 含有量が60重量%以上となる範囲で、回復率が向上していることがわかる。

上述の結果は、正極と対面する単層膜が、60重量%以上のPPを含有するPPとPE とのプレンドポリマーであれば、プロピレン単独からなる単層膜でなくても、セパレータ の酸化を極めて有効に抑制することができることを示すものである。PEとPPとのプレンドポリマーの酸化が抑制される理由については、明確ではないが、単層膜がPPとPEとの混合物においては、PPの持つメチル基の立体障害により、PEの主鎖の自由回転が起き難く、結果として水素の脱離反応が起き難くなるものと考えられる。

### [0122]

A/B/Aの3層構造を有する微多孔膜において、単層膜AがPP単独からなる電池A 18は、幾分45℃でのサイクル特性(容量維持率)が低下した。原因は明らかではないが、PP単独のみで構成された単層膜AとPPとPEとのブレンドポリマーで構成された単層膜Aとでは、細孔構造に違いがあり、これが性能の差異となって表れたものとも考えられる。一方、単層膜A中に含まれるPPの含有量が40重量%以下となる場合にも、幾分、容量維持率が低下した。45℃という高温環境下でのサイクル試験であるため、セバレータの酸化の影響がでたものと考えられる。

### [0123]

以上、本検討より、正極側単層膜に、PP単独製、好ましくは60重量%以上のPPを含有するPPとPEとのプレンドポリマーを用いれば、セパレータの酸化を極めて有効に抑制できること、高温でのサイクル特性が向上すること、4.2 V以上の高温・高電圧下の保存後にも十分な放電特性を有する非水電解液二次電池を構成できることがわかった。

#### [0124]

なお、単層膜AがPP単独からなるセパレータC3は、溶融時の粘度が高いため、本実施例のような湿式の2軸延伸法で量産を行う場合には延伸に時間がかかり、生産速度が遅くなる傾向がある。それに対し、PEを5重量%以上含むブレンドポリマーは、粘度が低くなって、生産速度も改善される。よって、量産速度を考慮すれば、PEを5重量%以上含むブレンドポリマーを用いることが好ましい。

### [0125]

### 〈実施例5〉

本発明における多層構造を有するセパレータにおいて、シャットダウン特性の観点から、PEを主成分とした単層膜の必要性を検討した。この検討を行うために多層膜構造のセパレータとして、セパレータC8~C10を作製した。多層膜の構成はA/B/Aの3層構造とした。単層膜Aには、PPとPEとのブレンドポリマーを用い、PPとPEとの混合割合は、重量比で80:20とした。単層膜Bにも、PPとPEとのブレンドポリマーを用い、PPとPEとの混合割合は、表6に示す値とした。実施例4で用いたセパレータC4、C8~C10を用いて、実施例の電池A19、A23~25を作製した。なお、電池A19は、実施例4で作製したものと同じである。

#### [0126]

|      | 用層膜Bの       | 組成        | セパレーターサルサータークサルの日か | セパレータ 単層膜Aの MAT Expension 1975 | 単層膜Bの<br>厚み | 透気度          | 単層膜Aの<br>平均額孔径 | 単層膜Aの 単層膜Bの<br>平均細孔径 平均細孔径 | 孔閉塞温度 |
|------|-------------|-----------|--------------------|--------------------------------|-------------|--------------|----------------|----------------------------|-------|
| 4.81 | く。<br>ト     | į         | 田体の呼ば              | Ja#                            |             |              | ·              |                            | (3)   |
| \    |             | (,0, ,1,0 | (11)               | (W #)                          | (m n)       | (sec/100ml)  | (mm)           | (mm)                       | 3     |
|      | PP(wt%) PE( | PE(WX%)   | (WT%) ( M III)     |                                |             | 037          | 0.05           | 90.0                       | 140   |
|      | 3           | 00        | 24.8               | 4.8                            | 15.2        | 400          | 3              |                            |       |
| ဗ္ဗ  | 20          | 000       | 2 + 2              |                                | ,           | 007          | 0 04           | 90.0                       | 142   |
| 8    | 40          | 9         | 25. 3              | ري<br>1                        | 15. 1       | 1.00<br>0.00 | ,              | 1                          |       |
| 3    | 2           | 3         |                    |                                | 17.0        | 510          | 0.04           | 0.05                       | 154   |
| 010  | 08          | 20        | 25.8               | 4.4                            | 2.          |              |                |                            |       |
|      |             |           |                    |                                |             |              |                |                            |       |

[0127]

(a) セパレータC8の作製

単層膜Aを作製するための原料として、PP32重量部、PE8重量部および流動パラ フィン60重量部を溶融混錬した。また、単層膜Bを作製するための原料として、PP9 重量部、PE36重量部および流動パラフィン55重量部を溶融混錬した。それぞれの溶

出証特2004-3117182

融混錬した原料を、先端に3層共押出用 $T-ダイを装着した2台の押出機でそれぞれ押出し、厚さ1000μmの3層構造を有するシートを作製した。このとき2台の押出機におけるそれぞれの樹脂の押出量は、最終的に単層膜A、Bの厚みが表4の値となるように調整した。このシートを116<math>\mathbb C$ に加熱された幅出機内で、同時に縦横の2方向に延伸した後、メチルエチルケトン中に浸漬し、流動パラフィンを抽出除去し、乾燥させて厚さ24 $\mathbb R$ μmのセパレータ $\mathbb R$ 08 $\mathbb R$ 100セパレータ $\mathbb R$ 100 を得た。

### [0128]

#### (b) セパレータC9の作製

単層膜Bを作製するための原料として、PP18重量部、PE27重量部および流動パラフィン55重量部を溶融混錬したものを用いたこと以外は、セパレータC8を作製したのと同様にして、厚さ25.3 $\mu$ mのセパレータC9を得た。

### [0129]

### (c) セパレータC10の作製

単層膜Bを作製するための原料として、PP28重量部、PE7重量部および流動パラフィン65重量部を溶融混錬したものを用いたこと以外は、セパレータC8を作製したのと同様にして、厚さ25.8μmのセパレータC10を得た。

### [0130]

得られたセパレータC8~C10を実施例4と同様に評価した。評価結果を表6に示す。単層膜Bに含まれるPPの割合が増加するに従って、孔閉塞温度が上昇している。

#### [0131]

次いで、正極活物質として、実施例1の電池A4と同じLiCo0.94Mg0.05Al0.01 O2を採用し、セパレータC4、C8~C10を用いたこと以外は、実施例1と同様の円 筒形非水電解液二次電池を作製した。

これらの電池の定格電池容量と回復率を、実施例1と同様に測定すると共に、以下の方法で外部短絡試験を行った。結果を表7に示す。

### [0132]

### [外部短絡試験]

充電状態にした各電池を、環境温度20℃で、30mΩの外部回路を用いて短絡させた。電池ケースの側面に熱電対をアラミドテープで固定し、熱電対は温度計に接続した。短絡開始時からの電池の温度変化を連続的に測定することにより、電池の最高到達温度を見積もって、安全性の指標とした。なお、充電状態は、400mAの定電流で電池電圧が4.2 Vに達するまで行った後、4.2 Vの定電圧で2時間の充電を行って得た。

#### [0133]

## 【表7】

|     |                                     |       |                 | OWIT /6     | <b>占部口位存然回名取</b> | (35)   | A 如佑忽點略                      |
|-----|-------------------------------------|-------|-----------------|-------------|------------------|--------|------------------------------|
|     |                                     |       |                 | 不用压力        | THEFT            | )<br>} | 7 F DIS ALIND BANKS          |
| 制   | 正極活物質                               | セパレータ | 定格智治谷軍<br>(mAh) | 4. 2V       | 4. 3V            | 4. 4\  | 4. 2V 4. 3V 4. 4V 最高到達温度(°C) |
|     |                                     |       |                 |             | 3                | 7      | 138                          |
|     | O. 14                               | C4    | 1757            | 96          | 90               | -      | 200                          |
| A18 | A19   LICO0, 94MEO, 05MO, 01-2      |       |                 |             | 00               | 7      | 145                          |
|     | O. JA M. CO.                        | œ     | 1755            | 96          | 88               | 2      | 2                            |
| A23 | A23   LICO, 94WEO, 05C10, 01 2      | 3     |                 |             | 3                | 1      | דעד                          |
|     | O. 10                               | 60    | 1756            | 0<br>0<br>0 | 68<br>88         | 0/     | 2                            |
| A24 | AZ4   UCO0. 94 W 80. 05 C 0. 01 C 2 |       |                 |             | 2.0              | 00     | 166                          |
| 100 | Lico Me a Ala 010                   | C10   | 1753            | 36          | à                | B      | 3                            |
| AZO | AZ3 LICO, 941150, 0310. 01 2        |       |                 |             |                  |        |                              |

表7に示すいずれの電池においても、発火・発煙に至ることは無く、各電池は最高温度 [0134] に達した後、最終的には20℃まで電池温度は低下した。

また、セパレータC4、C8~C10の孔閉塞温度と、これらのセパレータを用いた電 池の外部短絡時の最高到達温度との関係を図3に示す。さらに、セパレータC4、C8~ C10の単層膜Bに含まれるPPの割合(重量%)と、これらのセパレータを用いた電池 の外部短絡時の最高到達温度との関係を図4に示す。

### [0135]

図3から、セパレータの孔閉塞温度が上昇すると、それに伴って外部短絡時の最高到達温度も上昇することがわかる。安全性の観点から、外部短絡時の電池温度は、150℃以下とすることが好ましく、より好ましくは145℃以下である。そのためには、孔閉塞温度を140℃以下とすることが好ましいことがわかる。

#### [0136]

図4から、単層膜B中のPPの含有量が増えるに従って、外部短絡時の最高到達温度が高くなることがわかる。これは、PEに比べて融点の高いPPの含有量が増えるに従って、より高温までセパレータの細孔形状が維持されるためである。結果として、PPの含有量が増加すると、シャットダウン特性が低下する。図4より、PPとPEとのブレンドポリマーを用いて外部短絡時の電池温度を145℃以下とするためには、単層膜Bに含まれるPPの含有量を20重量%以下とすればよいことがわかる。

#### [0137]

以上、本検討より、複数の単層膜を積層してなるセパレータにおいて、孔閉塞温度が 1 4 0 ℃以下である単層膜を少なくとも 1 層含ませることにより、より安全性の高い非水電解液二次電池を提供することができることがわかった。

#### [0138]

なお、先述したように、電池を高温環境下で使用する観点から、孔閉塞温度は、少なくとも110℃以上とすることが望まれる。上記検討は、PE単独からなる単層膜または20重量%以下のPPを含有するPPとPEとのプレンドポリマーからなる単層膜は、110~140℃の孔閉塞温度を有することも示している。

### [0139]

### 〈実施例6〉

セパレータの耐酸化性を支配する正極側単層膜の厚みと、シャットダウン特性を支配する孔閉塞温度が110~140℃である単層膜の厚みについて検討した。この検討を行うために、多層膜構造のセパレータC11~C15を作製した。多層膜の構成はA/B/Aの3層構造とした。単層膜Aには、PPとPEとのブレンドポリマーを用い、PPとPEとの混合割合は、重量比で80:20とした。単層膜BにはPE単独からなる単層膜を用いた。実施例4で用いたセパレータC4、C11~C15を用いて、実施例の電池A19、A26~30を作製した。なお、電池A19は、実施例4で作製したものと同じである。さらに、比較例として、PE単独からなる単層構造のセパレータC2を用いた電池B5を作製した。なお、電池B5は、実施例3で作製したものと同じである。

### [0140]

### (a) セパレータC11~15の作製

単層膜Aを作製するための原料として、PP32重量部、PE8重量部および流動パラフィン60重量部を溶融混錬した。また、単層膜Bを作製するための原料として、PE45重量部および流動パラフィン55重量部を溶融混錬した。それぞれの溶融混錬した原料を、先端に3層共押出用T-ダイを装着した2台の押出機でそれぞれ押出し、厚さ1000 $\mu$ mの3層構造を有するシートを作製した。このとき2台の押出機におけるそれぞれの樹脂の押出量は、最終的に単層膜A、Bの厚みが表8の値となるように調整した。このシートを116℃に加熱された幅出機内で、同時に縦横の2方向に延伸した後、メチルエチルケトン中に浸漬し、流動パラフィンを抽出除去し、乾燥させて厚さ25 $\mu$ m程度のセパレータC11~15を得た。

#### [0141]

【表8】

|          |             |             |                      |               |                        |                                                                                                       | 1     |
|----------|-------------|-------------|----------------------|---------------|------------------------|-------------------------------------------------------------------------------------------------------|-------|
|          | セパレーターを休の匣み | 単層膜Aの<br>厚み | 単層膜Aの 単層膜Bの<br>厚み 厚み | 极风极           | 単層膜Aの   中<br>中均額孔径   □ | 年<br>暦<br>時<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日 | 孔閉塞温度 |
| もろうしゃ    |             |             | ĺ                    | (12001)       | (w")                   | (m //)                                                                                                | (၃)   |
|          | (mm)        | (m #)       | (m #)                | (sec/ Loonil) | (1114)                 |                                                                                                       |       |
|          | 1 70        | 0 7         | ت<br>ب               | 590           | 0.04                   | 0.05                                                                                                  | 136   |
| 5        | 7 . + 7     | 9. /        |                      |               | 3                      | 90 0                                                                                                  | 7     |
| 0.70     | 1 10        | 0 8         | 0                    | 530           | 0.04                   | 0.00                                                                                                  | 134   |
| 2 2      | 7           | ,           |                      |               | 90                     | 700                                                                                                   | 7     |
| 212      | 24 6        | 2. 1        | 20. 4                | 440           | 0.00                   | 0.0                                                                                                   | 40-   |
| 2        | ,           |             |                      |               | 90 0                   | 0 07                                                                                                  | 134   |
| 7.5      | 0<br>2<br>0 | 0           | 24. 2                | 014           | 9                      | 3                                                                                                     | 10    |
| <u>+</u> | 10.51       |             |                      |               | 0                      | 80                                                                                                    | 101   |
| 715      | 24 5        | 0.          | 24. 1                | 380           | 0.0                    | 5                                                                                                     | 10-   |
| 2        |             |             |                      |               |                        |                                                                                                       |       |

[0142]

得られたセパレータC11~C15を実施例4と同様に評価した。評価結果を表8に示 す。C 1 1 の孔閉塞温度は 1 3 6 ℃となったが、C 1 2 ~ C 1 5 の孔閉塞温度は C 4 と同 じく134℃であった。

[0143]

次に、正極活物質として、実施例 1 の電池 A 4 と同じ L i C 0 0.94 M g 0.05 A 1 0.01 O 2を採用し、セパレータC4、C11~C15を用いたこと以外は、実施例1と同様の円 筒形非水電解液二次電池を作製した。これらの電池を、実施例5と同様に評価した。結果 を表りに示す。

[0144]

|        |                                                                  |       |                                                  | としまれ                                                          | 1在绘画络     | (6%)  | 日本的名字語                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------|------------------------------------------------------------------|-------|--------------------------------------------------|---------------------------------------------------------------|-----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                                                  |       | E CLASSIC ALL ALL ALL ALL ALL ALL ALL ALL ALL AL | <b>定電圧</b> 加                                                  | 定電圧体件核凹域平 | - 1   | 7) TO THE PART OF |
| 爾光     | 正極活物質                                                            | セパレータ | 定格電池や国<br>(mah)                                  | 4. 2V                                                         | 4.30      | 4. 4\ | 最高到達温度(°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| į      |                                                                  |       | AIIOIII)                                         | 2                                                             | ä         | 89    | 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3      |                                                                  | C11   | 1751                                             | 94                                                            | 00        | 3     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| AZO    | LICO0, 9419150.                                                  |       | 1753                                             | 95                                                            | 86        | 2     | 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 497    | LiCo, 94Mgo, 05Alo, 0102                                         | C1Z   | 20./-                                            |                                                               |           |       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                                                  | 5     | 1757                                             | 92                                                            | 06        | 7     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| A19    | LiCo <sub>0, 94</sub> Mg <sub>0, 05</sub> A <sub>10, 01</sub> V2 | 5     |                                                  | ֓֞֜֜֜֜֜֜֓֓֓֓֓֓֓֓֓֟֜֜֟֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֜֜֡֓֓֡֓֡֡֡֡֓֡֓֡֓֡֡֡֡֡֡֡֡ |           | 7.0   | 137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                                                  | 610   | 1759                                             | 92                                                            | _<br>D    | 7/    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A28    | LiCo <sub>0. 94</sub> Mgo. 05Alo. 01V2                           |       |                                                  |                                                               | 100       | 60    | 137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | N. Ci.                                                           | C14   | 1756                                             | 92                                                            | 82        | 60    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| A29    | LICO <sub>0. 94</sub> IVIBO. 05~10. 01~2                         |       | 001                                              | ă                                                             | 76        | 29    | 137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| V 20   | Lico MEn 05Alo 0102                                              | C15   | 1/80                                             | 3                                                             |           |       | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | 0. 94                                                            |       | 1758                                             | 80                                                            | 62        | 15    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| a<br>R | LiCon ad Mgo, 05 Alo. 0102                                       | SS    | 200/1                                            |                                                               |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3      |                                                                  |       |                                                  |                                                               |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

単層膜Aの厚みと、定電圧保存後回復率との関係を図5に示す。また、単層膜Bの厚み と、外部短絡時の最高到達温度との関係を図6に示す。

図 5 から、単層膜Αの厚みが 0. 2 μ m以上あれば、回復率が 4. 2 V 、 4. 3 V およ び4.4 Vのいずれの電圧状態においても向上することがわかる。これは、単層膜Aの厚 みが  $0.2 \mu$  m以上あれば、セパレータの酸化を抑制できることを示すものと考えられる

。また、単層膜Aの厚みを $5\mu$ m以上としても、回復率は、それ以上、向上しないことが わかる。

## [0146]

一方、図 6 から、単層膜Bの厚みを 1 5 µ mより薄くした場合、外部短絡時の最高温度 は上昇することがわかる。これは、単層膜Bの厚みを15μmより薄くした場合、シャッ トダウン機能が低下するためと考えられる。図6から、外部短絡時の最高温度を145℃ 以下に抑えるためには、単層膜Bの厚みを $8\mu$ m以上とすることが好ましいことがわかる

## [0147]

以上、本検討より、回復率と安全性の両立の観点から、単層膜Aの厚みは 0.2~5 μ mとすることが好ましく、単層膜Bの厚みは $8\mu$  m以上とすることが好ましいことがわか った。

## [0148]

## 《実施例7》

セパレータの製造工程における延伸方法が電池の生産性に与える影響について検討した 。ここでは、セパレータを構成する単層膜のすべてが1方向に延伸されて製膜されたセパ レータC1と、セパレータを構成する単層膜のすべてが2方向に延伸されて製膜されたセ パレータC4とを用い、絶縁検査を行った。検査方法を以下に説明する。

## [0149]

## [絶縁検査]

まず、被検体を以下のように作製した。正極活物質としてLiCo0.94Mg0.05Alo. 01〇2を用い、セパレータC1を用いて、実施例1の電池A4と同様のジェリーロール型 の電極群を構成した。また、正極活物質としてLiCo<sub>0.94</sub>Mg<sub>0.05</sub>Al<sub>0.01</sub>O<sub>2</sub>を用い 、セパレータC4を用いて、実施例4の電池A19と同様のジェリーロール型の電極群を 構成した。各電極群の上部と下部にPP製の絶縁板を配し、負極リードをニッケルメッキ した鉄製の電池ケースに溶接し、被検体を作製した。

次いで、絶縁検査を行った。検査には、250V、50MΩの絶縁抵抗計を用い、前記 被検体の正極リードと電池ケースとの間に250Vの電圧を印加した。このとき、抵抗値 が10MΩ以下のものを絶縁不良とし、製造個数に対する不良数を不良率とした。各被検 体はそれぞれ10000個作製した。検査の結果を表10に示す。

# [0151]

## 【表10】

| セパレータ | 被検体の<br>製造個数 | 不良個数 | 不良率(%) |
|-------|--------------|------|--------|
| C1    | 10000        | 14   | 0. 14  |
| C4    | 10000        | 0    | 0      |

表10の結果から、単層膜のすべてが1方向に延伸されて製膜されたセパレータC1を 用いた被検体より、単層膜のすべてが2方向に延伸されて製膜されたセパレータC4を用 いた被検体の方が、絶縁不良率が低いことがわかる。

以上より、生産性の観点から、セパレータとして用いる多層膜は、2方向に延伸されて 製膜された単層膜を用いて作製することが好ましいことがわかった。

## [0153]

正極側単層膜Aと孔閉塞温度が110~140℃である単層膜Bの平均細孔径の関係に 《実施例8》 ついて検討した。この検討を行うために、多層膜構造のセパレータC16およびC17を 作製した。多層膜の構成はA/B/Aの3層構造とした。単層膜Aには、PPとPEとのプレンドポリマーを用い、PPとPEとの混合割合は、重量比で80:20とした。単層膜Bには、PE単独からなる単層膜を用いた。実施例4で用いたセパレータC4、C16およびC17を用いて、実施例の電池A19、A31およびA32を作製した。なお、電池A19は、実施例4で作製したものと同じである。

#### [0154]

### (a) セパレータC16の作製

単層膜Aを作製するための原料として、PP32重量部、PE8重量部%および流動パラフィン60重量部を溶融混錬した。また、単層膜Bを作製するための原料として、PE55重量部および流動パラフィン45重量部を溶融混錬した。それぞれの溶融混錬した原料を、先端に3層共押出用T-ダ1を装着した2台の押出機でそれぞれ押出し、厚さ100 $\mu$ mの3層構造を有するシートを作製した。このとき2台の押出機におけるそれぞれの樹脂の押出量は、最終的に単層膜A、Bの厚みが表8の値となるように調整した。このシートを116℃に加熱された幅出機内で、同時に縦横の2方向に延伸した後、メチルエチルケトン中に浸漬し、流動パラフィンを抽出除去し、乾燥させて厚さ24.7 $\mu$ mのセパレータC16を得た。

### [0155]

### (b) セパレータC17の作製

単層膜Bを作製するための原料として、PE65重量部および流動パラフィン35重量部を溶融混錬したものを用いたこと以外は、セパレータC16を作製したのと同様にして、厚さ24.9μmのセパレータC17を得た。

### [0156]

得られたセパレータC16およびC17を実施例4と同様に評価した。評価結果を表11に示す。単層膜Bの原料において、流動パラフィンに対するPEの重量割合をセパレータC4に対して増加させたセパレータC16およびC17は、平均細孔径がセパレータC4に比べ小さくなると共に、透気度も大きな値を示した。

### [0157]

【表11】

|       |            | Γ       |         |                                             | お阪路への    | 油幅語の                 |       |
|-------|------------|---------|---------|---------------------------------------------|----------|----------------------|-------|
|       | セパレータ 単層膜A | 6       | 単層膜Bの厚み | 透気度                                         | 中面版でが出た。 | 中面联入 十個次 中均額孔條 中均額孔條 | 九別恭通戾 |
| ナペラーダ | 年体の呼か      |         | į.      |                                             |          |                      | (3,)  |
|       |            | ( " " ) | ( " m)  | $(\text{sec}/100\text{ml})$ $(\mu\text{m})$ | (m #)    | ( m m )              | 3     |
|       | (EE)       | (ELM)   | ) I I   |                                             |          |                      | 701   |
|       |            |         | 0 27    | טטנ                                         | 0.05     | 0.04                 | +0-   |
| 018   | 24. 7      | 4. /    | ၁. ၁    | 200                                         |          |                      | 707   |
| 25    |            |         | ,       | 610                                         | 0 05     | 0.03                 | 101   |
| 7.7   | 0 70       |         | 14./    | 200                                         |          |                      |       |
| 5     | 7. 7       |         |         |                                             |          |                      |       |
|       |            |         |         |                                             |          |                      |       |

## [0158]

次に、セパレータC16およびC17を用いたこと以外、実施例1の電池A4と同様の 円筒形非水電解液二次電池を作製した。これらの電池を用い、実施例1で行った定格電池 容量と以下に説明する高負荷放電維持率の評価を行った。結果を表12に示す。

## [0159]

# [高負荷放電維持率]

定格電池容量を測定後、再度充電し、得られた定格電池容量の0.5時間放電率(2℃ 相当)の電流値で定電流放電を電池電圧が3.0Vに達するまで行った。なお、充電は、 400mAの定電流値で電池電圧が4.2Vに達するまで行った後、4.2Vの定電圧で 2時間の充電を行った。

高負荷放電維持率は、定格電池容量に対する0.5時間率の放電で得られる容量の比率 、すなわち計算式:

(0.5時間率の電流値における放電容量/定格電池容量)×100(%) により得られる値とした。放電負荷特性の指標として、こうして得られる高負荷放電維持 率を用いた。

## [0160]

### 【表12】

| 電池  | 正極活物質                                                                        | セパレータ | 定格電池容量<br>(mAh) | 高負荷放電維持率 (%) |
|-----|------------------------------------------------------------------------------|-------|-----------------|--------------|
|     | Alon Alon On                                                                 | C4    | 1757            | 94           |
| A19 | LICOD, 84M80. 05Alo, 01O2                                                    |       | 1755            | 89           |
| A31 | LiCo <sub>0, 94</sub> Mg <sub>0, 05</sub> Al <sub>0, 01</sub> O <sub>2</sub> |       | 1752            | 83           |
| A32 | LiCo <sub>0, 94</sub> Mg <sub>0, 05</sub> Al <sub>0, 01</sub> O <sub>2</sub> | C17   | 1/52            | 1            |

## [0161]

表12において、正極側単層膜Aの平均細孔径をD1、孔閉塞温度が110~140℃ である単層膜Bの平均細孔径をD2とするとき、D1<D2の関係にあるセパレータC4 を用いた電池A19に対して、D1>D2の関係にあるセパレータC16およびC17を 用いた電池A31およびA32は、高負荷放電維持率が低下している。このことから、高 負荷放電時には、単層膜Bが、負極側から正極側へ拡散するリチウムイオンの動きを律速 させている可能性があると考えられる。

## [0 1 6 2]

以上、本検討より、高負荷放電時の電池特性の観点から、正極側単層膜Aの平均細孔径 をD1、孔閉塞温度が110~140℃である単層膜Bの平均細孔径をD2とするとき、 D1<D2とすることが好ましいことがわかった。

## 【産業上の利用可能性】

## [0 1 6 3]

以上のように、本発明によれば、高温・高電圧下で使用する場合であっても、性能を維 持することに優れ、かつ、安全性に優れた非水電解液二次電池を提供することができる。 【図面の簡単な説明】

## [0164]

- 【図1.】本発明の円筒形電池の縦断面図である。
- 【図2】実施例4にかかるセパレータの単層膜A中に含まれるポリプロピレンの含有 量と定電圧保存後回復率との関係を示す図である。
- 【図3】実施例5にかかるセパレータの孔閉塞温度と外部短絡時の最高到達温度との 関係を示す図である。
- 【図4】実施例5にかかるセパレータの単層膜B中に含まれるポリプロピレンの含有 量と外部短絡時の最高到達温度との関係を示す図である。
- 【図 5 】実施例 6 にかかるセパレータの単層膜 A の厚みと定電圧保存後回復率との関 係を示す図である。
- 【図6】実施例6にかかるセパレータの単層膜Bの厚みと外部短絡時の最高到達温度

との関係を示す図である。

# 【符号の説明】

- [0165]
- 1 電池ケース
- 2 封口板
- 3 ガスケット
- 5 正極
- 5 a 正極リード
- 6 負極
- 6 a 負極リード
- 7 セパレータ
- 8 a 上部絶縁板
- 8 b 下部絶縁板









【図3】





出証特2004-3117182



出証特2004-3117182



## 【書類名】要約書

【要約】

高温・高電圧下で使用する場合でも、性能を維持することに優れ、かつ、安全 【課題】 性に優れた非水電解液二次電池を提供する。

【解決手段】 正極、負極、前記正極と前記負極との間に介在するセパレータおよび電解 液からなる非水電解液二次電池であって、前記正極は、一般式:LixCol-y-zMyLzO 2で表される複合酸化物の粒子からなる正極活物質を含み、前記一般式は、1≤x≤1. 03、0.005≤y≤0.1および0≤z≤0.05を満たし、元素Mは、Mg、Ti 、MnおよびZnよりなる群から選ばれる少なくとも1種であり、元素Lは、Al、Ni 、Ca、Ba、Sr、YおよびZrよりなる群から選ばれる少なくとも1種であり、前記 セパレータは、積層された複数の単層膜からなり、前記複数の単層膜は、いずれも微多孔 構造を有し、前記複数の単層膜から選ばれるとともに前記正極と対面する正極側単層膜は 、ポリプロピレンからなる非水電解液二次電池。

【選択図】図1

特願2003-387160

ページ: 1/E

# 認定・付加情報

特許出願の番号 特願2003-387160

受付番号 50301898584

書類名 特許願

担当官 第五担当上席 0094

作成日 平成15年11月18日

<認定情報・付加情報>

【提出日】 平成15年11月17日

特願2003-387160

出願人履歴情報

識別番号

[000005821]

1. 変更年月日 [変更理由] 住 所

氏 名

1990年 8月28日

新規登録

大阪府門真市大字門真1006番地

松下電器産業株式会社