Elementary Number Theory

Thaqib Mo.

November 18, 2020

1 Integral Domains

Definition 1: Integral Domains

Let R be a commutative ring, then $a \in R$ is called the *zero divisor*, if there is some $b \in R$ with $b \neq 0$ for which ab = 0.

An Integral Domain is a commutative ring R, with $R \neq \{0\}$ such that 0 is the only zero divisor. If we have ab = 0 then either a = 0 or b = 0.

We can define Integral Domains in another equivalent way using the "cancellation law".

Theorem 1

A commutative ring $R \neq \{0\}$ is an integral domain if and only if for all $a, b, c \in R$ if $a \neq 0$ and

$$ab = ac$$

Then

$$b = c$$

Proof. Suppose R is an integral domain, and we have ab = ac and $a \neq 0$ then ab - ac = 0 and then a(b - c) = 0. Since R is an integral domain we must have b - c = 0 that implies b = c.

Now suppose R is a ring where the commutative property holds. Assume we have ab = 0 If a = 0 we are done, suppose $a \neq 0$ then

$$ab = a \cdot 0 \leadsto b = 0$$

Example 1. The ring \mathbb{Z} is an integral domain.

Example 2. The commutative rings \mathbb{Q}, \mathbb{R} are an integral domains.

The rings \mathbb{Q} and \mathbb{R} are more than rings. They are also *fields*.

Definition 2: Fields

A ring F is called a *field* if it is commutative, and if every non zero element in F has a multiplicative inverse. That means if $a \in F$ with $a \neq 0$ then we have $b \in F$ such that

$$ab = 1$$

For the fields \mathbb{Q}, \mathbb{R} if we have $r \in \mathbb{Q}$ then we also have $\frac{1}{r} \in \mathbb{Q}$ and $r \cdot \frac{1}{r} = 1$. The same applies for the field \mathbb{R} . The ring \mathbb{Z} is not a field since not every element has a multiplicative inverse.

Theorem 2

Every subring of a field is an integral domain. In particular, every field is an integral domain.

Proof. Let F be a field and R be a sub ring. Since \times in R and \times in F is the same, (R, \times) is commutative and R is a commutative ring. Now suppose we have $a, b \in R$ such that ab = 0. If a = 0 we are done. Assume $a \neq 0$ since this equation also holds in F then there is some $a^{-1} \in F$ such that $aa^{-1} = 1$ then we get

$$ab = 0$$

$$aba^{-1} = 0a^{-1}$$

$$b = 0$$

Example 3. If $n \ge 2$ is composite then $\mathbb{Z}/n\mathbb{Z}$ is not an integral domain. Since there is a factorization of n = ab then [a], [b] are both non zero elements with [a][b] = [ab] = [n] = [0]

Example 4. We define the ring of Gaussian integers denoted by $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$ where addition is given by

$$a + bi + c + di = (a + b) + (c + d)i$$

and multiplication is given by

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i$$

This is a subring is \mathbb{C} the complex numbers.

1.1 Basic Properties of Integral Domains

Theorem 3

If R is an integral domain then Char R = 0 or Char R is prime.

Proof. Suppose R is an integral domain and $\operatorname{Char} R \neq 0$ and $\operatorname{Char} R$ is not prime. Then if we have $\operatorname{Char} R = 1$, then R is the zero ring since 1 = 0, which is not possible due to the definition of integral domain. Now suppose $\operatorname{Char} R = n$ where n > 1 is not prime. Then we have n = ab then $a \cdot 1_R$ and $b \cdot 1_R$ are non zero elements but $(a \cdot 1)(b \cdot 1) = ab \cdot 1 = 0$ that contradicts the definition of an integral domain.

Note that this again shows that $\mathbb{Z}/n\mathbb{Z}$ is not an integral domain

Theorem 4

Every finite integral domain is a field.

Proof. Let R be an integral domain, and suppose |R| = n. Let $a \in R$ with $a \neq 0$ consider the multiplication map $\phi_a(r) = ar$ then ϕ is injective since if we have $\phi(r) = \phi(s)$ then ra = sa since R is an integral domain we can use the cancellation property to get r = s.

So we have an injective function $\phi: R \to R$. Since R is finite then this implies ϕ is surjective. Given that ϕ is injective we have $|\phi(R)| = n$. Since ϕ is surjective there must be some $b \in R$ such that $\phi(b) = 1$ which means ab = ba = 1 thus a has an multiplicative inverse in R. By definition R is a field.

1.2 Divisibility and Associates

Definition 3: Divisibility arbitrary integral domain

Let R be an integral domain, and let $a, b \in R$ we say a divides b and denote it by $a \mid b$ if there is some $c \in R$ such that b = ac

For example, consider the Gaussian integers $\mathbb{Z}[i]$ and we say that 2+i divides 5 since 5=(2+i)(2-i). If F is a field and $a \in F$ with $a \neq 0$ then $a \mid b$ for any $b \in F$ since $b = a(a^{-1}b)$.

Proposition 1

Let R be an integral domain

- (1) For all $a \in R$, we have $a \mid a$.
- (2) If $a, b, c \in R$ such that $a \mid b$ and $b \mid c$ then $a \mid c$.
- (3) If $a, b, c \in R$ such that $a \mid b$ and $a \mid c$ then $a \mid (bx + cy)$ for all $x, y \in R$.

Proof. (1) Since $a = 1 \cdot a$ that means $a \mid a$.

(2) Given $a \mid b$ we know that b = ak for some $k \in R$ and we also have $c = b\ell$ for some $\ell \in R$. Then

$$c = b\ell = (ak)\ell = a(k\ell)$$

That means we have $a \mid c$.

(3) We know that b = ak and $c = a\ell$ for any $x, y \in R$ we have

$$bx + cy = akx + a\ell y = a(kx + \ell y)$$

Since $kx + \ell y \in R$ we have $a \mid bx + cy$

Note since the relation is reflexive and transitive we can define an equivalence relation $a \sim b$ if $a \mid b$ and $b \mid a$. if we have $a \sim b$ then we say a, b are associate in R.

We can also make another order relation on the set of equivalence classes under \sim by $[a]_{\sim} \mid [b]_{\sim}$ if $a \mid b$. This is well defined and the choice of representative does not matter.

Definition 4

Let R be a ring and then $r \in R$ is called *unit* of R if r has multiplicative inverse in R. The set of all unit of R is denoted by R^* .

This is same as the the group of units of the monoid (R, \times) .

Theorem 5

Let R be an integral domain. Given $a, b \in R$ we have $a \sim b$ if and only if a = ub for some $u \in R^*$

Proof. (\Rightarrow) First assume, $a \sim b$ then we have $a \mid b$ and $b \mid a$ so we have b = ak and $a = b\ell$ this leads to

$$b = ak = (b\ell)k = b(\ell k)$$

If we have b=0 then $a=b\ell=0\ell=0$ so we have $a=1\cdot b$ and we know that $1\in R^*$. Now consider the case $b\neq 0$, then $b\cdot 1=b(\ell k)$ applying the cancellation property we get $1=\ell k$ this means we have $\ell\in R^*$ so $a=\ell b$ where $\ell\in R$.

(\Leftarrow) Suppose a=ub this implies $b\mid a$ for some $u\in R^*$. Multiplying both sides by u^{-1} gives $u^{-1}a=u^{-1}ub\leadsto b=u^{-1}a$ so we have $a\mid b$.

We can apply this to the ring \mathbb{Z} and we get $a \sim b$ if and only if a = b or a = -b.

2 Division with Remainder and Greatest Common Divisor

2.1 Division with Remainder in \mathbb{Z}

Theorem 6: Quotient and Remainder in \mathbb{Z}

Let $a, b \in \mathbb{Z}$, with b > 0. Then there exists unique integers q, r with $0 \le r < b$ such that

$$a = \left(b \times \underbrace{q}_{\text{quotient}}\right) + \overbrace{r}^{\text{remainder}}$$

Proof. There are 2 cases. First let $a \ge 0$ and consider the set

$$S = \{ n \in \mathbb{N} : n = a - bq \text{ for some } q \in \mathbb{Z} \}$$

S is non empty since a=a-b(0) so we have $a \in S$. So by the Well ordering principle S has a least element. Let r be the least element of S. Then $r=a-bq \rightsquigarrow a=bq+r$. We need to check if $0 \le r < b$, we have $r \ge 0$ since r is a natural number. Now assume $r \ge b$ then $r-b \ge 0$ that means r-b=a-bq-b=a-b(q+1) that means we have $r-b \in S$ which is a contradiction since r was the least element. Thus we have $0 \le r < b$.

Otherwise, if a < 0 then -a > 0 and the first part gives $q_0, r_0 \in \mathbb{Z}$ such that $-a = bq_0 + r_0$. Now if we have $r_0 = 0$ then $-a = bq_0 \rightsquigarrow a = b(-q_0)$. Otherwise if we have $r \neq 0$ then we can write

$$a = b(q_0) - r_0 = b(q_0) - b + b - r_0$$
$$= b(q_0 - 1) + b - r_0$$

We have $q = q_0 - q$ and $r = b - r_0$ both in \mathbb{Z} and $0 < b - r_0 < b$. we have proven the existence of r, q for all $a \in \mathbb{Z}$.

To prove uniqueness consider q', r' such that a = bq' + r' we have

$$r + bq = r' + bq'$$

This means we have r - r' = b(q - q') if we have q = q' then r = r' and we are done. Otherwise, if $q \neq q'$ taking the absolute values of both sides

$$|r - r'| = |b||q - q'| \ge b$$

But r, r' are both positive and strictly less than b, so $|r - r'| \ge b$ is a contradiction. So we must have $q' = q \to r = r'$.

2.2 Division with Remainder in $\mathbb{Z}[i]$

Definition 5: Norm

For $a + bi \in \mathbb{Z}[i]$ we define norm of a + bi written as N(a + bi) to be $a^2 + b^2 \in \mathbb{N}$

Example 5. Suppose we want to divide 2+i by 1+i with remainder then we must have

$$2 + i = (1 + i)\gamma + \delta$$

With $0 \ge N(\delta) < N(1+i)$. First we know that

$$\frac{2+i}{1+i} = \frac{3}{2} - \frac{1}{2}i$$

Now we have 4 choices to round this up to the nearest integer. We can so $\frac{3}{2} \to 2$ or 1 and for $\frac{-1}{2}$ we can do 0 or -1. Lets assume we take $\gamma = 2 + 0i$ then the remainder is

$$(2+i) - (1+i)2 = -i$$

This leads to (2+i) = (1+i)2 + (-i) this remainder is valid since N(-i) = 1 < N(1+i). We need to show that this works in general.

Theorem 7: Division with remainder in Gaussian integers

Let $\alpha, \beta \in \mathbb{Z}[i]$ then there exists $\gamma, \delta \in \mathbb{Z}[i]$ such that

$$\alpha = \beta \gamma + \delta$$

Proof. Let $\alpha = a + bi$ and $\beta = c + di$ performing division in \mathbb{C} we get

$$\frac{a+bi}{c+di} = \frac{(ac+bd) + (bc-ad)i}{c^2+d^2} = r+si$$

Now we choose $m, n \in \mathbb{Z}$ such that $|m-r| \leq \frac{1}{2}$ and $|n-s| \leq \frac{1}{2}$. Then let $\gamma = m+ni \in \mathbb{Z}[i]$ and set $\delta = \alpha - \beta \gamma$, so we have $\alpha = \beta \gamma + \delta$ but we need to show $0 \leq N(\delta) < N(\beta)$. We have $0 \leq N(\delta)$ holds by definition now consider

$$\delta = \alpha - \beta \gamma = \beta(r+si) - \beta(m+ni) = \beta((r-m) + (s-n)i)$$

Taking the complex absolute value and squaring $N(\delta) = |\delta|^2 = |\beta|^2 |(r-m) + (s-n)i|^2 = N(\beta)((r-m)^2 + (s-n)^2)$ Since we fixed $|r-m| \le \frac{1}{2}$ and $|s-n| \le \frac{1}{2}$ so we get $N(\delta) \le N(\beta)/2 < N(\beta)$

In division with remainder in $\mathbb{Z}[i]$ we loose the uniqueness property. Since we could have choose from 4 possible values of γ which leads to valid values for δ .

Definition 6

Let R be an integral domain, R has a division algorithm if there exists a function

$$d: R \setminus \{0\} \to \mathbb{N}$$

called the divisor function such that for $a, b \in R$ with $b \neq 0$ we have $q, r \in R$ such that

$$a = bq + r$$

Then either d(r) < d(b) or else r = 0

We have proven that both $\mathbb{Z}[i]$, \mathbb{Z} have division algorithm with divisor functions $d(\alpha) = N(\alpha)$ and $d(\alpha) = |\alpha|$ for integers.

2.3 Greatest Common Divisor

Given integers a, b we need to find d dividing both a, b and we need to choose the largest such integer with this property. This can be generalized to any integral domain.

Definition 7: Greatest Common Divisor

Let R be an integral domain let $a, b \in R$ with $a, b \neq 0$ and element $d \in R$ is called the greatest common divisor $(\gcd(a, b))$ if:

#1 $d \mid a$ and $d \mid b$

#2 If $f \in R$ another common divisor of a, b such that $f \mid a$ and $f \mid b$ then $f \mid d$

The gcd of 2 elements may not be unique, rather it picks out a unique equivalence class with respect to the associate relation \sim . We can see that in the next theorem.

Theorem 8

Let R be an integral domain. Let $a, b \in R$ with $a, b \neq 0$. If d_1 and d_2 are both greatest common divisor of a, b then $d_1 \sim d_2$. Conversely if d_1 is a greatest common divisor of a, b then $d_1 \sim d_2$ where d_2 is another greatest common divisor.

Proof. Suppose d_1, d_2 are both greatest common divisor of a, b. Since d_1 is a common divisor of a, b and d_2 is the gcd we must have $d_1 \mid d_2$. By symmetry we also have $d_2 \mid d_1$ by definition of the relation we have $d_1 \sim d_2$

Now assume, d_1 is a gcd of a, b and that $d_2 \mid d_1$. Then $d_1 \mid d_2$ and $d_2 \mid d_1$. The transitive property gives $d_2 \mid a$ and $d_2 \mid b$. So d_2 is a common divisor of a, b. Now assume e another common divisor of a, b we must have $e \mid d_1$ again by transitivity we get $e \mid d_2$. Thus d_2 is a gcd of a, b by definition.

So gcd is not unique in integral domain. It picks out a unique equivalence class R/\sim . Then by theorem Theorem 5, if d is a greatest common divisor it takes the form ud for some chosen $u \in R^*$. So we can use the notation gcd(a,b) do denote the equivalence class of gcds.

For example in the ring \mathbb{Z} if d is one gcd of a, b then do is -d and it is the only other gdc.

3 The Euclidean Algorithm

Lemma 1

Let R be an integral domain. Suppose $a, b, q, r \in R$ such that

$$a = bq + r$$

Then some $d \in R$ is gcd of a, b if and only if it is the gcd of b, r. That is

$$\gcd(a,b) \sim \gcd(b,r)$$

Proof. Suppose gcd(a, b) = d then we have $d \mid a$ and $d \mid b$ it follows from Proposition 1 that

$$d \mid a + b(-q)$$

This is $d \mid r$ so d is a common divisor of both b, r. Now suppose e is a common divisor of b, r then $e \mid b$ and $e \mid b$ again we have

$$e \mid b \cdot q + r$$

So we have $e \mid a$ since e is a common divisor of both a,b then we have $e \mid d$. The same logic follows for the (\Leftarrow) case.

Now if we have a Integral Domain R with divisor function D we can use the above lemma to compute the gcd of $a, b \neq 0$. First we have

$$a = bq_0 + r_1$$

When $q_0, r_1 \in R$ by definition we have $r_1 = 0$ or $D(r_1) < D(b)$. If we have $r_1 = 0$ then we get $b \mid a$, then let e be another common divisor of a, b we have $e \mid a$ and $e \mid b$ by definition so $b = \gcd(a, b)$. Otherwise we use the lemma to get $\gcd(a, b) \sim \gcd(b, r_1)$ so the task is down to finding the gcd of b, r_1 .

We can repeat the procedure to get

$$b = r_1 q_1 + r_2$$

Again either $r_2 = 0$ then r_1 is the gcd or $D(r_2) < D(r_2)$ we again have $gcd(b, r_1) \sim gcd(r_1, r_2)$ we continue this process until we get a 0 remainder. So to outline this process we have

$$a = q_0b + r_1$$

$$b = r_1q_1 + r_2$$

$$r_1 = r_2q_2 + r_3$$

$$\vdots$$

$$r_{n-2} = r_{n-1}q_{n-1} + r_n$$

$$r_{n-1} = r_nq_n + 0$$

Since the sequence $D(r_1) > D(r_2) > D(r_3) > \cdots > D(r_{n-1})$ is a strictly decreasing sequence of natural numbers, it is bounded below by 0 and it must reach a zero remainder at some point. Using the lemma we get $gcd(a,b) = r_n$, this leads to the following theorem.

Theorem 9

Let R be an integral domain with a division algorithm. Given any two non zero elements $a, b \in R$ gcd(a, b) exists.

3.1 Extended Euclidean Algorithm

We can utilize the euclidean algorithm to compute the solutions to linear equations. Suppose we have an integral domain R with division algorithm and non-zero $a, b \in R$. Suppose we have $\gcd(a, b) = d$ we can find $x, y \in R$ such that

$$ax + by = d$$

After running the euclidean algorithm we get

$$a = q_0b + r_1$$

$$b = r_1q_1 + r_2$$

$$r_1 = r_2q_2 + r_3$$

$$\vdots$$

$$r_{n-2} = r_{n-1}q_{n-1} + r_n$$

With the last step with zero remainder left out.

We can reverse the order of these equations and isolate the remainder in each one to get

$$r_{n} = r_{n-2} - r_{n-1}q_{n-1}$$

$$r_{n-1} = r_{n-3} - r_{n-2}q_{n-2}$$

$$\vdots$$

$$r_{2} = b - r_{1}q_{1}$$

$$r_{1} = a - q_{0}b$$

We focus on the first 2 equations

$$r_n = r_{n-2} - r_{n-1}q_{n-1}$$
$$r_{n-1} = r_{n-3} - r_{n-2}q_{n-2}$$

We can substitute r_{n-1} from the second equation in the first equation to get an equation in the form $r_{n-1} = r_{n-2}x + r_{n-3}y$ then we can use RHS from the third equation for r_{n-2} to get $r_{n-3}x + r_{n-4}y$ then we keep on repeating this until the final equation. This leads to the following theorem

Theorem 10

Let R be in integral domain with a division algorithm and let $a,b \in R$ with $a,b \neq 0$. If $d = \gcd(a,b)$ then there exists $x,y \in R$ such that

$$ax + by = d$$

4 Linear Diophantine Equations and Linear Congruences

4.1 Linear Diophantine Equations in Two Variables

Suppose R is an integral domain with a division algorithm given $a, b, c \in R$ a Linear Diophantine Equations in Two Variables is an equation of the form

$$ax + by = c$$

With $x, y \in R$, there are two main questions

- (1) Does a solution to the equation exist?
- (2) If yes, can we find **all** the solutions?

Theorem 11

Let $a, b, c \in R$ where R is an integral domain with both a, b not being zero. If there is a solution to the equation

$$ax + by = c$$

Then

$$gcd(a,b) \mid c$$

Proof. Let $d = \gcd(a, b)$, by definition $d \mid a$ and $d \mid b$ so we must have

$$d \mid ax + by \leadsto d \mid c$$

Theorem 12

Let $a, b, c \in R$ where R is an integral domain with both a, b not being zero. Suppose $gcd(a, b) \mid c$ then the equation

$$ax + by = c$$

has a solution with $x, y \in R$

Proof. Let $d = \gcd(a, b)$ this exists, by Theorem 9. Moreover by Theorem 10 there exists $x_0, y_0 \in R$ such that

$$ax_0 + by_0 = d$$

Since $d \mid c$ we have c = kd we get

$$c = kd = k(ax_0 + by_0) = a(kx_0) + b(ky_0)$$

4.2 Divisibility Results

To solve linear Diophantine equations, it is necessary to establish a few results on divisibility.

Theorem 13

Suppose R is an integral domain with a division algorithm suppose we are given $a,b,c\in R$. If $a\mid bc$ and $1\sim\gcd(a,b)$ then $a\mid c$

Proof. Given $a \mid bc$ we know that bc = ak, then since gcd(a, b) = 1 we have x, y such that

$$ax + by = 1$$

Then we have

$$acx + bcy = c$$

Now since bc = ak we get

$$acx + aky = c$$

$$a(cx + ky) = c$$

Which means $a \mid c$

Lemma 2

Let R be an integral domain with division algorithm and suppose we have $a, b \in R$ not both zero. Suppose $d = \gcd(a, b)$ then we have

$$a = a_0 d , b = b_0 d$$

Then $gcd(a_0, b_0) \sim 1$

Proof. The equation

$$ax + by = d$$

always has a solution so we have

$$a_0 dx + b_0 dy = d$$

This leads to

$$a_0x + b_0y = 1$$

This means $\gcd(a_0,b_0)\mid 1$ and $1\mid \gcd(a_0,b_0)$ holds. So we have $\gcd(a_0,b_0)\sim 1$.

4.3 The General Solution of a Linear Diophantine Equation

Theorem 14

Let R be an integral domain with a division algorithm. Let $a, b, c \in R$ such that both a, b are not zero and let $d = \gcd(a, b)$. Assume that $d \mid c$. Also we write $a = a_0 d$ and $b = b_0 d$ then the equation

$$ax + by = c$$

complete set of solutions are

$$(x,y) = (x_0 + kb_0, y_0 - ka_0)$$

Where $k \in R$ is arbitrary and (x_0, y_0) is a particular solution.

Proof. Let (x_0, y_0) be a particular solution to ax + by = c which exists since $gcd(a, b) \mid c$. Suppose we have another solution (x_1, y_1) then we know that

$$ax_0 + by_0 = c$$

$$ax_1 + by_1 = c$$

Then we get

$$a(x_1 - x_0) + b(y_1 - y_0) = 0$$

We have $a = a_0 d$ and $b = b_0 d$

$$a_0d(x_1 - x_0) + b_0d(y_1 - y_0) = 0$$

Applying the cancellation law in the integral domain leads to

$$a_0(x_1 - x_0) = -b_0(y_1 - y_0)$$

Then we have $b_0 \mid a_0(x_1 - x_0)$, but we have $gcd(a_0, b_0) \sim 1$ by Lemma 2 so we get $b_0 \mid (x_1 - x_0)$ this means we have $x_1 - x_0 = kb_0$ this means we have $x_1 = x_0 + kb_0$. Using this substitution we have

$$a_0kb_0 = -b_0(y_1 - y_0)$$

This means we have $ka_0 = y_0 - y_1$ this gives $y_1 = y_0 - ka_0$. So we have if (x_0, y_0) is a solution then so is $(x_0 + kb_0, y_0 - ka_0)$.

Conversely we can also check that every ordered pair $(x_1, y_1) = (x_0 + kb_0, y_0 - ka_0)$ is a solution then we have

$$ax_1 + by_1 = a(x_0 + kb_0) + b(y_0 - ka_0) = ax_0 + by_0 + k(ab_0 - ba_0) = c + k(da_0b_0 - db_0a_0) = c$$

4.4 Multiplicative Inverses in $\mathbb{Z}/n\mathbb{Z}$

Using Diophantine equation we can construct a procedure for calculating multiplicative inverse of an element when it exists in $\mathbb{Z}/n\mathbb{Z}$. Suppose we have $[a] \in \mathbb{Z}/n\mathbb{Z}$ Then some [x] is the inverse if and only if [a][x] = [1] this means we have

$$ax \equiv 1 \bmod n$$

This is equivalent to $n \mid 1 - ax$ this means we have 1 - ax = ny so we have

$$ax + ny = 1$$

Thus finding multiplicative inverse we can find the inverse. Moreover it exists if and only if $\gcd(a,n)=1$. In the case where n=p is prime then $[a] \in \mathbb{Z}/p\mathbb{Z}$ such that $[a] \neq [0]$, then $\gcd(a,p)=1$, because we have $a \nmid p$ so there are no common divisors other than 1. This proves that every non-zero element in $\mathbb{Z}/p\mathbb{Z}$ has an inverse therefore it is a field.

Example 6. Suppose we want to find inverse of $[5] \in \mathbb{Z}/13\mathbb{Z}$ this means we have to solve

$$5x + 13y = 1$$

So we run the euclidean algorithm to get

$$13 = 5(2) + 3$$

$$5 = 3 + 2$$

$$3 = 2 + 1$$

$$2 = 1 \cdot 2$$

So we have gcd(5,13) = 1 and $[5]^{-1}$ exists. Now we can use the back substitution to get

$$1 = 3 - 2$$

$$2 = 5 - 3$$

$$3 = 13 - 5(2)$$

Making the substitution we get

$$1 = 3 - 2 \cdot 1$$

$$= 3 - (5 - 3) \cdot 1 \cdot 1$$

$$= 3 \cdot 2 - 5$$

$$= (13 - 5(2)) \cdot 2 - 5 \cdot 1$$

$$= 13 \cdot 2 - 5 \cdot 5$$

So the solution is x = -5 so we have $[5]^{-1} = [-5] = [8]$