

Электронное научное издание «Ученые заметки ТОГУ» 2020. Том 11. № 2. С. 323 – 327

Свидетельство
Эл M Φ C 77-39676 om 05.05.2010 http://pnu.edu.ru/ru/ejournal/about/ejournal@pnu.edu.ru

УДК 65.01

© 2020 г. **М. А. Сигитова**, канд. экон. наук, **А. И. Макеева**

(Тихоокеанский государственный университет, Хабаровск)

ПРИМЕНЕНИЕ ЭКОНОМИКО-МАТЕМАТИЧЕСКИХ МЕТОДОВ В УПРАВЛЕНИИ ЛОГИСТИЧЕСКИМИ ПРОЦЕССАМИ

В статье рассматривается применение математических методов и моделей в управлении логистическими процессами; рассматриваются виды моделей и использование экономико-математического моделирования при принятии управленческих решений в логистике.

Ключевые слова: цепи поставок, логистика, математические методы, модели, сети Петри, метод Саати

M. A. Sigitova, A. I. Makeeva APPLICATION OF ECONOMIC AND MATHEMATICAL METHODS IN MANAGEMENT OF LOGISTIC PROCESSES

The article discusses the use of mathematical methods and models in the management of logistics processes; the types of models and the use of economic and mathematical modeling when making managerial decisions in logistics are considered.

 ${\it Keywords:}$ supply chains, logistics, mathematical methods, models, Petri nets, Saati method

В развитии современной логистики применение математических методов и математическое моделирование всегда играло особую роль. В настоящее время распространенность математического аппарата, программного обеспечения, а также квалификация специалистов позволяет применять экономико-математический инструментарий не только в теоретических исследованиях, но и в деятельности хозяйствующих субъектов при решении повседневных логистических задач. При планировании и организации логистических процессов широко используются различные разделы математики — теория вероятности, математическая статистика, теория массового обслуживания, теория игр, линейное программирование и другой инструментарий.

Современные логистические процессы в виду их потоковой сущности можно выразить с помощью математической символики (массива цифр) с использованием компьютерных технологий, создавая имитационные математические модели, на основе которых возможен поиск оптимальных или приемлемых управленческих решений, анализ сложившейся ситуации с учетом возможных альтернатив. Все это позволяет повысить эффективность деятельности организации, выполнения отдельных логистических процессов, снизить затраты на управление материальным потоком.

При разработке математического аппарата для обоснования управленческих решений в логистике используются как натуральные, так и стоимостные показатели, однако именно последние отражают правило минимизации логистических затрат при соблюдении точных параметров поставки.

Процесс моделирования в управлении логистическими процессами и системами имеет следующую последовательность и представлен в виде алгоритма на рисунке 1 [5]:

Рис. 1. Процесс моделирования в логистике

На основе результатов анализа определяется качество и достоверность построен-

ной модели, а также эффективность выбранных методов принятия решений.

Авторы, исследующие логистические процессы и управление ими, систематизировали математические методы и модели по разным классификационным признакам. Например, В.С. Лукинский предложил разделить методы и модели на три класса в зависимости от степени определенности среды. В первый класс входят модели и методы, предназначенные для решения задач в условиях определенности, без ограничений со стороны внешней среды [3]. В эту группу можно отнести следующие методы и модели: выбор логистического посредника, прогнозирование требуемого количества сырья и материалов, определение текущего запаса на складе, модели для принятия управленческого решения «сделать или купить» и другие.

Второй класс включает модели, характеризующие задачи и процессы, осуществляемые в условиях риска и неопределенности, но без конкуренции. Для решения простых задач, таких как, оценку выполнения договорных обязательств, оценку надежности поставщика, применяют вероятностные модели. Метод «дерева решений» является одним из чаще используемых в условиях риска. Он позволяет представить картину поэтапного решения проблемы и предположить результаты каждого действия.

К третьему классу относят модели и методы решения логистических задач в условиях конкуренции. Данный инструментарий позволяет оценить логистическую деятельность предприятия с учетом конкуренции, прежде всего основываясь на теории игр, модели пяти конкурентных сил Майкла Портера.

Многие методы и модели были разработаны в XIXвеке и используются на предприятиях в настоящее время, видоизменяясь в зависимости от влияния факторов внешней и внутренней среды, адаптируясь с учетом вида деятельности и объемов продукции предприятия. Примером модификации является метод ABC-анализа, позволяющий осуществлять контроль и управление запасами, который вытекает из «правила 80/20» установленного В. Парето еще в 1897 году.

Одной из наиболее распространенных систем логистики является доставка груза«точно в срок» (JIT) для обеспечения которой были разработаны две модели: аналитическая и имитационная. Суть аналитической модели заключается в необходимости математического описания продолжительности логистического цикла с заданной доверительной вероятностью. Имитационная модель «точно в срок» для определения доверительного интервала опирается на метод статистических испытаний «Монте-Карло», основанном на использовании вероятностной математической модели в воспроизведении процесса. Эти методы совместно с применением компьютерного программирования позволяют воспроизвести любой процесс, на который влияют случайные факторы за счет моделирования случайных величин. Определение случайных величин осуществляется по коэффициенту вариации, который определяется с помощью законов распределения (нормальный, Вейбулла, гамма-распределения, экспоненциальный).

В настоящее время большое распространение получили графические модели потоковых процессов. Плюсом сетевых моделей в описании и управлении логистическими процессами является то, что используемые в них абстракции приближены к интуитивному представлению о характере процессов на предприятии. Благодаря наглядному преставлению процесса алгоритм легко воспринимается и обеспечивает возможность использования разных методов анализа и управления.

Некоторые компании для моделирования альтернативных бизнес-процессов, а также построении цепей поставок в производстве и продвижении продукта на рынке используют сети Петри. Сети Петри были представлены в 1962 и заслужили признание за возможность представления различных объектов, которые присутствуют в разных системах и описывают взаимосвязи параллельно-работающих процессов [2]. Применение

сетей Петри характерно для предприятий химической, пищевой, фармацевтической и лёгкой промышленности, где важно сочетание звеньев логистической цепи, бесперебойное обеспечение сырьем и материалами, а также позволяет выбрать оптимальные способы доставки [4].

Очень важную роль математические методы играют при определении местоположения распределительного склада. К ним относят методы вычисления центра тяжести, начисления баллов, сетевые модели «Манхэттенское расстояние», «Кратчайшее расстояние».

Математические методы также помогают решать задачи в управлении транспортным процессом на предприятии. К таким задачам можно отнести:

- выбор транспортного режима подразумевает определения способа транспортировки (интермодальная, унимодальная, смешанная перевозка) и вида транспорта (железнодорожный, автомобильный) и транспортного средства [6];
- формирование рациональных маршрутов (маятниковый, кольцевой) в зависимости от количества и месторасположения пунктов погрузки и разгрузки, вида грузов, пропускной способности пунктов погрузки-разгрузки, тип подвижного состава и тд.
 - выбор перевозчика для доставки продукции.

При решении этих задач можно использовать метод иерархий Саати, основанный на оптимизации критериев интегральной оценки. Метод анализа иерархий заключается в использовании парных сравнений, при этом оценка опирается не только на субъективное экспертное суждение, но и на собранную объективную информацию, составляющую «шкалу относительной важности», на основе которой можно определить степень превосходства. Все расчеты представлены в таблицах и матрицах где наглядно видно, как расположены критерии, предпочтительность каждого и конкретный результат.

Основным плюсом метода анализа иерархий Саати является возможность оценки влияния качественных и количественных показателей без приведения в сопоставимый вид, что требуется для многих математических методов; данный метод позволяет провести анализ, составить рейтинг и в результате выбрать наилучшую альтернативу с невысокими трудозатратами. Например, при определении вида транспортного средства эксперт выделяет критерии: стоимость, время доставки, время оформления доставки, надежность соблюдения графика и т.д. К минусам можно отнести то, что оценка проводится конкретными экспертами и результаты носят субъективный характер в сравнении с полностью математическим инструментарием. Впрочем, влияние разработчика привносит субъективность при использовании эконометрического прогнозирования и других методов.

При оптимизации маршрутов возможно использование задачи коммивояжёра, позволяющей определить порядок доставки грузов в различные пункты с соблюдением установленных параметров. Для решения данной задачи используется перебор различных циклов [1].

Достаточно широкий спектр применения нашли эконометрические модели на основе корреляционно-регрессионного анализа, прежде всего, для определения спроса на готовую продукцию и соответствующей потребности в закупаемых материальные ресурсы. В краткосрочной перспективе для определения объемов требуемой продукции, сырья и материалов применяют методы экстраполяции временных рядов, включая экспоненциальное сглаживание, построение тренда, учет сезонности, цикличности и др.

В зависимости от основного вида деятельности математические модели и методы меняются, подстраиваясь под конкретные показатели, цели и задачи предприятия. Применение экономико-математических методов позволяют снизить затраты на транспортировку грузов, увеличить время доставки и сократить простои.

Список литературы

- [1] Богданов А. И. Математические методы и модели в логистике: монография / А. А. Селезнев. СПб.: ФГБОУВО «СПбГУПТД», 2019. 105 с.
- [2] Гулягина О. С. Применение математического моделирования при построении логистических цепей / О. С. Гулягина //Технологический аудит и резервы производства. 2014. С. 223 227.
- [3] Лукинский В. С. Модели и методы теории логистики: Учебное пособие. 2-е изд. / Под ред. В. С. Лукинского. СПб.: Питер, 2008. 448 е.: ил. (Серия «Учебное пособие»).
- [4] Мальков М.В. Сети Петри и Моделирование/ М. В. Мальков, С. Н. Малыгина // Сборник научных трудов. 2010.
- [5] Плоткин Б. К. Экономико-математические методы и модели в коммерческой деятельности и логистике/Б.К. Плоткин, Л.А. Делюкин //Учебник. СПб.: 2015.
- [6] Рассадников Е. Ю. Модифицированный метод иерархии Саати для задачи выбора транспортного режим/Е. Ю. Рассадников //ФГБОУ ВПО «Уфимский государственный авиационный технический университет» (УГАТУ). − 2014. Т. 18, № 5 (66). С. 146 − 152...