Tema 9

Planificación de Recursos

Objetivos

- Conocer el problema de la planificación con acceso concurrente a recursos compartidos en modo exclusivo
- 2. Conocer y entender el funcionamiento de distintos **algoritmos** de planificación de recursos

Índice

- 1. Interacción entre tareas
- 2. Inversión de prioridades
- 3. Protocolo de herencia de prioridades
- 4. Protocolos de techo de prioridad

1. Interacción entre tareas

Dependencia entre tareas

- Generalmente en un STR existe dependencia entre tareas
- Tipos de dependencias:
 - Restricciones de precedencia
 - Sincronización y comunicación
 - Restricciones de exclusión mútua para proteger recursos compartidos

1. Interacción entre tareas

Bloqueo entre tareas

- Los procesos interactúan mediante:
 - Datos compartidos
 - Paso de mensajes
- En ambos casos puede ocurrir que una tarea tenga que esperar un suceso de otra menos prioritaria
- Esta situación se denomina bloqueo

Índice

- 1. Interacción entre tareas
- 2. Inversión de prioridades
- 3. Protocolo de herencia de prioridades
- 4. Protocolos de techo de prioridad

El problema de la inversión de prioridad

- Un proceso está bloqueado cuando está esperando debido a otro de menor prioridad
- A este hecho se le denomina inversión de prioridad
- La inversión de prioridad no se puede eliminar completamente, pero es posible limitar su duración

Ejemplo de inversión de prioridad

Caso de estudio : Misión espacial Mars Pathfinder

https://mars.nasa.gov/mars-exploration/missions/pathfinder/

https://www.cs.unc.edu/~anderson/teach/comp790/papers/mars_pathfinder_long_version.html

Caso de estudio : Misión espacial Mars Pathfinder

https://www.rapitasystems.com/blog/what-really-happened-to-the-software-on-the-mars-pathfinder-spacecraft

Índice

- 1. Interacción entre tareas
- 2. Inversión de prioridades
- 3. Protocolo de herencia de prioridades
- 4. Protocolos de techo de prioridad

Herencia de prioridades

- Una forma de reducir la duración de los bloqueos es variar dinámicamente la prioridad de las tareas
 - Si la tarea τ_2 está bloqueando a la tarea τ_1 , entonces τ_2 se ejecutará **temporalmente** con la prioridad de τ_1
- En cada tarea se distingue entre:
 - una prioridad fija por defecto P_i, p.ej. asignada según RM
 - y una **prioridad activa p_i** asignada dinámicamente ($p_i > Pi$)
- La herencia de prioridad es transitiva
 - Si la tarea τ_3 bloquea a la tarea τ_2 , y τ_2 bloquea a la tarea τ_1 , entonces τ_3 hereda la prioridad de τ_1 a través de τ_2

Ejemplo de herencia de prioridades

En ejecución bloqueando Q

 \blacksquare En ejecución bloqueando V

En espera

Bloqueado

	P _i	Sec. Ejec.	r _i
$ au_1$	4	EEQVE	4
τ_2	3	EVVE	2
τ_3	2	EE	2
$ au_{4}$	1	EQQQQE	0

Herencia de prioridades en Ada

prioridad Activa = Mayor(prioridad Base, prioridad Heredada)

Duración herencia	Prioridad heredada
Activación de la tarea	La del padre
Ejecución de una operación protegida	Techo de prioridad del objeto protegido
Ejecución de una cita	la del cliente

Duración máxima de bloqueo

- El protocolo de herencia de prioridad limita el tiempo máximo de bloqueo de cada tarea
- Una tarea puede bloquearse por recursos a los que no accede
- Una tarea puede bloquearse aunque no acceda a ningún recurso
- La tarea de menor prioridad no sufre bloqueo

Cálculo de duración máxima de bloqueo

$$B_{i} = \sum_{k=1}^{K} utilizacion(k,i) C(k)$$

utilizacion(k,i) =
$$\begin{cases} \mathbf{1} & \text{si } \ni j : P_j < P_i \text{ y } \ni x : P_x \ge P_i; \text{ j,x usan recurso k} \\ \mathbf{0} & \text{en otro caso} \end{cases}$$

C(k) = duración de bloqueo del recurso k en el peor caso, por tareas de menor prioridad

	P _i	Sec. Ejec.	r _i
$ au_1$	4	EEQVE	4
τ_2	3	EVVE	2
$ au_3$	2	EE	2
$ au_4$	1	EQQQQE	0

Test de planificabilidad con bloqueos

Test de tiempos de respuesta (cuando $D_i \leq T_i$):

$$\forall i, R_i = C_i + B_i + \sum_{j \in hp(i)} \left[\frac{R_i}{T_j} \right] \cdot C_j \le D_i$$

Este test es condición suficiente

Ejemplo con acceso anidado

En ejecución normal

En ejecución bloqueando Q

 \blacksquare En ejecución bloqueando V

____ En espera

Bloqueado

	P _i	Sec. Ejec.	r _i
$ au_1$	3	EQE	5
τ_2	2	EVE	3
τ_3	1	EQVVVQE	0

Inconvenientes del protocolo

Se pueden formar bloqueos encadenados

No previene interbloqueos (deadlocks)

	P _i	Sec. Ejec.	r _i
τ_1	2	EVQVE	t ₁
$ au_2$	1	EQQVQE	t _o

Índice

- 1. Interacción entre tareas
- 2. Inversión de prioridades
- 3. Protocolo de herencia de prioridades
- 4. Protocolos de techo de prioridad

Ventajas

- Previene la formación de
 - bloqueos encadenados
 - deadlocks
- Un proceso de alta prioridad puede ser bloqueado como máximo en una sola ocasión en cada activación

OCPP (Original Ceiling Priority Protocol)

- Cada tarea tiene una prioridad estática
 - asignada por defecto
- Cada recurso tiene un techo de prioridad asignado
 - máxima prioridad de las tareas que lo pueden usar
- - Cada tarea tiene una prioridad dinámica máximo entre su propia prioridad estática y cualquiera que herede debido a que bloquea a tareas más prioritarias

Una tarea puede **bloquear** un recurso solamente si su prioridad dinámica es mayor que el techo de cualquier recurso actualmente bloqueado por otras tareas

Ejemplo de OCPP

En ejecución bloqueano	do V
------------------------	------

En espera

Bloqueado

	P _i	Sec. Ejec.	r _i
$ au_1$	4	EEQVE	4
τ_2	3	EVVE	2
τ_3	2	EE	2
$ au_4$	1	EQQQQE	0

Duración máxima de bloqueo

La duración máxima del bloqueo con un protocolo OCPP de una determinada tarea es el tiempo de ejecución de la sección crítica mayor que puede bloquear dicha tarea

$$B_i = \max_{k=1}^{K} \text{ utilizacion(k,i) C(k)}$$

Ejercicio: calcula el bloqueo máximo para cada una de las tareas del ejemplo anterior

ICPP (Immediate Ceiling Priority Protocol)

- Cada tarea tiene una prioridad estática
 - asignada por defecto
- Cada recurso tiene un techo de prioridad asignado
 - máxima prioridad de las tareas que lo pueden usar
- Cada tarea tiene una prioridad dinámica
 - máximo entre su prioridad estática y los valores "techo" de cualquier recurso que en ese momento tenga bloqueado

Ejemplo de ICPP

	En eje	ecución	blog	ueando	Q
--	--------	---------	------	--------	---

En ejecución bloqueando	V
-------------------------	---

En esper

	P _i	Sec. Ejec.	r _i
$ au_1$	4	EEQVE	4
τ_2	3	EVVE	2
$ au_3$	2	EE	2
$ au_4$	1	EQQQQE	0

ICPP en Ada

Pragma Locking_Policy(Ceiling_Locking)

- A los objetos protegidos se les puede asignar una prioridad utilizando el pragma Priority
- Esta prioridad debe ser mayor o igual que las prioridades de las tareas que usan el objeto protegido

ICPP vs OCPP

- El tiempo de respuesta en el peor de los casos se calcula igual que para OCPP
- Es más fácil de implementar que un OCPP
- Provoca menos cambios de contexto
- Requiere más "cambios" de prioridad (OCPP solamente cambia la prioridad si ocurre un bloqueo real)

Conclusiones

- Generalmente en STR las dependencias entre tareas son necesarias para realizar actividades de control
- Los bloqueos no se pueden evitar pero utilizando determinados protocolos se puede limitar el tiempo máximo de bloqueo de cada tarea
- Los protocolos de techo de prioridad previenen la formación de bloqueos encadenados e interbloqueos

Bibliografía Recomendada

Sistemas de tiempo real y lenguajes de programación (3º edición)

Alan Burns and Andy Wellings

Addison Wesley (2002)

Capítulo 13 (Apartados 13.10 y 13.11)

Hard real-time computing systems (Second edition)

Giorgio C. Buttazzo

Kluwer Academic Publishers (2004)

Capítulo 7 (excepto apartado 7.5)

Otras fuentes de información

Manual de Referencia de Ada2005

? Anexo: D.3

