Data Warehousing Logical Database Design

Esteban Zimányi ezimanyi@ulb.ac.be Slides by Toon Calders

Outline

- Logical Database Design
 - Star schema
 - Snowflake schema

Chapter 8 of Golfarelli & Rizzi

ROLAP

- Relational OLAP
 - OLAP layer built on top of relational database
 - Facts, dimensions, hierarchies encoded as relations
 - Multi-dimensional data warehouse data structure

- Also:
 - MOLAP: Multi-dimensional OLAP = native support for datacubes
 - HOLAP: Hybrid form

Example of a Star Schema

Star Schema

- Dimension tables are not normalized
 - No consistency problems (given your ETL is fine)
 - Avoids the need for joins
 - Use surrogate key
- Dimensions such as Date are materialized
- Key for the fact table consists of the foreign keys to the dimension tables
 - Although some discussion here; case dependent

Customer

Sales

20	\cap	\cap
20	U	U

CID	Name	Address
001	John	Dallas
002	Mary	Dallas
003	Pete	New York

CID	Product	Price
001	Gun	5\$
002	Beef	20\$
003	Lava lamp	150\$

Customer

Sales

	_	_
շ ೧	1	\cap
/()		u
		\sim

CID	Name	Address
001	John	New York
002	Mary	New York
004	Mark	Dallas

CID	Product	Price
001	Gun	15\$
004	Pork	15\$
004	Lava lamp	160\$

Star schema without surrogate key

Star schema with surrogate key

- Recall that data warehouse is non-volatile
 - Data can be updated
 - same customer, different address
 - discount gets assigned same code as earlier one
 - In operational database: overwrite
 - Not desirable in data warehouse
 - Incorrect data aggregation; when in 2010 querying sales in Dallas for 2000, John's purchases should count for Dallas, not New York

Snowflake Schema

Snowflake Scheme

- More normalized dimensions
 - Avoid redundancy
 - Reduce size of large dimension
 - Customer → City → Country
 - More efficient data insertion

- Disadvantages: need for joins
 - However, join on foreign key; tables index on primary key

Fact Constellation

- Multiple fact tables share the same dimensions
 - E.g., (part, customer) shares Customer with (supplier, customer)

Fact Constellation

- Reuse as much as possible existing dimensions
 - Populating a dimension requires quite some effort
 → Reuse
 - Makes it easier to combine different cubes
- Notion of a "conformed dimension"
 - Definition of customer, date, product, ... agreed upon by all departments
 - Makes it easier to integrate different data marts

Examples

Corresponding Star-Schema

Example

Optional Dimension

- Avoid the use of "null"
 - Confusing and non-descriptive
 - Special case for queries (null≠null)

Discount		
Key	Name	Start
0001	No discount	n/a
0002	Loyalty	Jan 2011
0003	Christmas	Dec 2012

Schema Database

Example

Example

Recursive Hierarchy

- Special type of hierarchy: user hierarchy
 - Encode using attribute "parent" (unique)
 - Do not use "child" (not unique)

Salesman
EmployeeKey
OLTP_EmpKey
Supervisor1Key Supervisor2Key Supervisor3Key

Multiple Arc – Option 1

Use bridge table

Multiple Arc – Option 2

Create artificial groups

Note: this is not a snowflake!

Summary

- Different types of aggregation operators
 - Distributive, algebraic, holistic

- Logical schemes for data warehouses
 - Star schema
 - Snowflake

Translation of conceptual model to tables