

Introduction

B Banerje

Hight-Weigh

D. G. Idio

23011111111101

Regression Analysis What and Why?

Buddhananda Banerjee

Department of Mathematics Centre for Excellence in Artificial Intelligence Indian Institute of Technology Kharagpur

bbanerjee@maths.iitkgp.ac.in

Example: Hight-Weight chart

Introduction

B Banerje

Hight-Weig

Computing 'g

Definition

SLR

Least squar

Estimation

Prediction

What is Considered the Right Weight for My Height?

*The table below has been updated to show both Metric and Imperial measurements i.e. Inches/Centimeters - Pounds/Kilograms.

Adults Weight to Height Ratio Chart		
Height	Female	Male
4' 6"	63/77 lb	63/77 lb
(137 cm)	(28.5/34.9 kg)	(28.5/34.9 kg)
4' 7"	68/83 lb	68/84 lb
(140 cm)	(30.8/37.6 kg)	(30.8/38.1 kg)
4' 8"	72/88 lb	74/90 lb
(142 cm)	(32.6/39.9 kg)	(33.5/40.8 kg)
4' 9"	77/94 lb	79/97 Ib
(145 cm)	(34.9/42.6 kg)	(35.8/43.9 kg)
4' 10"	81/99 lb	85/103 lb
(147 cm)	(36.4/44.9 kg)	(38.5/46.7 kg)
4' 11"	86/105 lb	90/110 lb
(150 cm)	(39/47.6 kg)	(40.8/49.9 kg)
5' 0"	90/110 lb	95/117 lb
(152 cm)	(40.8/49.9 kg)	(43.1/53 kg)
5' 1"	95/116 lb	101/123 lb
(155 cm)	(43.1/52.6 kg)	(45.8/55.8 kg)
5' 2"	99/121 lb	106/130 lb
(157 cm)	(44.9/54.9 kg)	(48.1/58.9 kg)
5' 3"	104/127 lb	112/136 lb
(160 cm)	(47.2/57.6 kg)	(50.8/61.6 kg)
5' 4"	108/132 lb	117/143 lb
(163 cm)	(49/59.9 kg)	(53/64.8 kg)

Example: Hight-Weight chart

Introduction

B Banerj

Hight-Weight

Obesit

Computing g

Treatment Effe

Definition

Deminion

SLR

Least squar

Estimation

Prediction

Adult Male and Female Height to Weight Ratio Chart ¹

Author: Disabled World: Contact: www.disabled-world.com

Published: 2017-11-30 : (Rev. 2020-03-05)

¹Ref: https://www.disabled-world.com/calculators-charts/height-weight.php

Weight-Hight regression

220

Introduction

Hight-Weight

200 Weight (pounds) 120 100 72 76 60 62 Height (inches) 74

Females

Figure: Weight vs Hight

Relationship between Height and Weight

IIT Kharagpur

4/22

Example: Obesity

Introduction B Banerjee

Hight-Weig

Computing 'g'

Definition SLR

Least square Estimation ■ Worldwide, at least 2.8 million people die each year as a result of being overweight or obese, and an estimated 35.8 million (2.3%) of global DALYs are caused by overweight or obesity. ²

- What are obesity and overweight?
 Overweight and obesity are defined as abnormal or excessive fat accumulation that may impair health.
- For adults, WHO defines overweight and obesity as follows:
 - overweight is a BMI greater than or equal to 25; and
 - obesity is a BMI greater than or equal to 30.
- Body mass index (BMI) is a simple index of weight-for-height that is commonly used to classify overweight and obesity in adults. It is defined as a person's weight in kilograms divided by the square of his height in meters (kg/m^2) .

Example: Obesity chart for girls (5-19yr)

Introduction

B Banerj

Hight-Weigh

Obesity

Computing 'g'

Treatment Eff

D - 0 - 141 - --

Definition

SLR

Estimation

Prediction

Example: Obesity chart for boys (5-19yrs)

Introduction

B Banerje

Hight-Weigh

Obesity

Computing 'g

Treatment Ef

Definition

Deminition

Least squar

Estillatio

What is the value of 'g'?

Introduction

B Banerje

Hight-Weig

Computing 'g'

Freatment E

Definiti

Least squar

Timbles of

Prodiction

Figure: Free fall

$$S = ut + \frac{1}{2}gt^2$$

Two treatment comparison

Introduction

B Banerie

Hight-Weigl

Computing 'g'

Treatment Effect

Definition

Least squar

Estimatio

Prediction

Figure: Linear Treatment effect model

Why regression?

Introduction

B Baneri

Hight-Weigh Obesity

Treatment Effect

Definition SLR

Least square Estimation Regression is a very natural attempt to answer many queries that come in human mind and scientistic work.

- The information we gather about a natural phenomena or a controlled experiment are often incomplete.
- Regression is one of the ways to make these information complete based on the available data.
- In other words, it an attempt to access beyond than that has been already observed.

Introduction

P Poporio

Hight-Weigh

Obesity

Computing g

.

Definition

Deminion

...

Least squar

Prediction

