Introduction to Digital Logic EECS/CSE 31L

Assignment 2: 1-Bit ALU

Prepared by: Jack Melcher Student ID: 67574625

EECS Department Henry Samueli School of Engineering University of California, Irvine

January 28, 2015

1 Block Description

Take in two 1-bit values (a and b) and 4 select values in order to perform a variety of operations

2 Input/Output Port Description

Port name	Port size	Port Type	Description
A	1	IN	Value of first input
В	1	IN	Value of second input
Cin	1	INOUT	The carry in value
opsel	2 downto 0	IN	Determine which operation to perform in units
mode	1	OUT	Determine whether the output is from arithmetic
			operation or logic operation
output	1	OUT	The output value of operation
cout	1	OUT	The carry out value

3 Design Schematics

Truth Tables:

ALU Operations

Mode	OPSEL	Micro-	Description
		operation	
0	000	a+b	Add
0	001	a+b'	Sub with borrowed
			carry
0	010	a	Move
0	011	a+b'+1	Sub
0	100	a+1	increment
0	101	a-1	decrement
0	110	a+b+1	Add & Increment

1	000	a AND b	Bit-wise AND
1	001	a OR b	Bit-wise OR
1	010	a XOR b	Bit-wise Exclusive OR
1	011	a'	Compliment
1	101	shl a	1 Bit Shift Left

Cin table

Opsel	cin	Description
000	0	Add
001	1	Sub with borrowed carry
010	0	Move
011	1	Sub
100	1	increment
101	0	decrement
110	1	Add & Increment

Full Adder

In_0	In_1	Cin	Cout	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Two's Complement Full Adder/Subtractor

In_0	In_1	Cin	Cout	Sum
0	0	0	0	0
0	1	0	0	1
1	0	0	0	1
1	1	0	1	0
0	0	1	1	0
0	1	1	0	1
1	0	1	1	1
1	1	1	1	0

Boolean Expressions:

Full Adder

 $Sum = (A \oplus B) \oplus Cin$

 $Cout = (A)(B) + (Cin)(A \oplus B)$

Two's Complement Full Adder

 $Sum = (A \bigoplus (B \bigoplus Cin)) \bigoplus Cin$

 $Cout = (A)(B \oplus Cin) + ((Cin)(A \oplus (B \oplus Cin)))$

Design:

4 Compilation

Arithmetic unit

> Start Design Files Libraries

Console Errors 🔔 Warnings 🚜 Find in Files Results

Process "Behavioral Check Syntax" completed successfully

Design Summary

Ln 40 Col 1 VHDL

Logic Unit

Mux 2to1

ALU

Testbench

5 Elaboration

Assumptions:

Value of cin

- I change cin from an IN port type to an INOUT port type. This way I could assign it a specific value that correlated to the function.
- This was done in the ALU architecture

Arithmetic

- a+b is just the full adder
- a +b' is just the full adder and will only subtract properly with cin = 1
- a+b'+1 subtraction is like two's complement full adder/subtractor; cin = 1 and b XOR 1
- Move A will only work properly if cin = 0
- To properly increment a number a 1-bit, A = A, B = 0 and cin = 1
- To properly decrement a number a 1-bit, A = A, B = 1, and cin = 0
- To properly add and increment, A = A, B = B, and cin = 1
- For a+b+1 to work properly, cin = 1

Logic

• Because A is only 1-bit, when A is shifted left, a 0 is always shifted in its place.

Regarding how I wrote my vhdl code

- I wrote 4 components and then the top level ALU 1bit
- Arithmetic unit that selects vale of b
- Full adder to handle the addition/subtraction
- Logic unit that selects logic operation
- And a 2to1 mux that uses mode to pick the final output.

Errors and Challenges:

- I had to learn how to use multiple vhdl modules, signals, component declarations, and port mapping in order for my alu to function properly
- Ran into errors about with setting up proper signaling and connecting components properly
- I was confused on how to properly set cin value within ALU and not the testbench. I went through a lot of trial and error in order to figure this out. I ended up changing cin

Simulation Log:

Started: "Simulate Behavioral Model".

Determining files marked for global include in the design...

Running fuse...

Command Line: fuse -intstyle ise -incremental -lib secureip -o {C:/Users/Jack/Desktop/EECS

31L/hw2/assignment2_67574625/alu_1bit_testbench_isim_beh.exe} -pri

 $\{C:/Users/Jack/Desktop/EECS\ 31L/hw2/assignment2_67574625/alu_1bit_testbench_beh.prj\}$

work.alu_1bit_testbench {}

 $Running: C:\Xilinx\14.7\ISE_DS\ISE\bin\nt64\unwrapped\fuse.exe-intstyle is e-incremental-lib secure ip-o C:\Users\/Jack\/Desktop\/EECS$

31L/hw2/assignment2_67574625/alu_1bit_testbench_isim_beh.exe -prj

C:/Users/Jack/Desktop/EECS 31L/hw2/assignment2_67574625/alu_1bit_testbench_beh.prj work.alu_1bit_testbench

ISim P.20131013 (signature 0x7708f090)

Number of CPUs detected in this system: 4

Turning on mult-threading, number of parallel sub-compilation jobs: 8

Determining compilation order of HDL files

Parsing VHDL file "C:/Users/Jack/Desktop/EECS

31L/hw2/assignment2_67574625/mux2to1.vhd" into library work

Parsing VHDL file "C:/Users/Jack/Desktop/EECS

31L/hw2/assignment2_67574625/logic_unit.vhd" into library work

Parsing VHDL file "C:/Users/Jack/Desktop/EECS

31L/hw2/assignment2_67574625/full_adder.vhd" into library work

Parsing VHDL file "C:/Users/Jack/Desktop/EECS

31L/hw2/assignment2_67574625/arithmetic_unit.vhd" into library work

Parsing VHDL file "C:/Users/Jack/Desktop/EECS

31L/hw2/assignment2 67574625/alu 1bit.vhd" into library work

Parsing VHDL file "C:/Users/Jack/Desktop/EECS

31L/hw2/assignment2_67574625/alu_1bit_testbench.vhd" into library work

Starting static elaboration

Completed static elaboration

Compiling package standard

Compiling package std_logic_1164

Compiling package numeric std

Compiling architecture behavioral of entity logic unit [logic unit default]

Compiling architecture behavioral of entity arithmetic_unit [arithmetic_unit_default]

Compiling architecture behavioral of entity full_adder [full_adder_default]

Compiling architecture behavioral of entity mux2to1 [mux2to1_default]

Compiling architecture behavioral of entity alu_1bit [alu_1bit_default]

Compiling architecture behavior of entity alu_1bit_testbench

Time Resolution for simulation is 1ps.

Waiting for 1 sub-compilation(s) to finish...

Compiled 14 VHDL Units

Built simulation executable C:/Users/Jack/Desktop/EECS

31L/hw2/assignment2_67574625/alu_1bit_testbench_isim_beh.exe

Fuse Memory Usage: 35992 KB

Fuse CPU Usage: 576 ms

Launching ISim simulation engine GUI...

"C:/Users/Jack/Desktop/EECS

31L/hw2/assignment2_67574625/alu_1bit_testbench_isim_beh.exe" -intstyle ise -gui -tclbatch isim.cmd -wdb "C:/Users/Jack/Desktop/EECS

31L/hw2/assignment2_67574625/alu_1bit_testbench_isim_beh.wdb"

ISim simulation engine GUI launched successfully

Process "Simulate Behavioral Model" completed successfully

6 Waveforms

Full Waveform Snapshot 1

Full Waveform Snapshot 2

Snapshots of Waveforms

a+b

↓ cout
↓ clk_period

a+b'+1

a+1

a-1

a+b+1

Name	840 ns 850 ns
Ve a	
Va b	
Ū₂ cin	
▶ ■ opsel[2:0]	110
Ⅷ mode	
Ū₀ output	
Ve cout	
ใ⊌ clk_period	

a AND b

a OR b

a XOR b

shift left a

