Parallel Programs

- A parallel program is trying to run different threads "at the same time". In our language, the syntax of a parallel statement / program with n threads is $S \equiv [S_1 \parallel S_2 \parallel \cdots \parallel S_n]$. We say $[S_1 \parallel S_2 \parallel \cdots \parallel S_n]$ is the **parallel** composition of threads S_1, S_2, \ldots, S_n .
 - Each thread S_i in the composition should be non-parallel and deterministic: it is not legal to wright $S \equiv [S_1 \parallel [S_2 \parallel S_3]]$. We don't consider the combination of parallel statements and non-deterministic statements.
- Before we formally define the semantics of parallel programs, let's use a simple example to see the difference between sequential, parallel, and nondeterministic programs.
- 1. Find a post-condition for each of the following valid triples.
 - a) $\{x=5\} x := x+1; x := x*2 \{q\}$ It is quite easy to see that x=12 is a valid postcondition: we will finish two assignments in the given order. It is almost the strongest postcondition, we only omitted the initial value of x compared to $x_0=5 \land x_1=x_0+1 \land x=x_1*2$.
 - b) $\{x=5\}$ if $T \to x \coloneqq x+1 \square T \to x \coloneqq x*2$ fi $\{q\}$ Both arms have true guard, so we will execute two branches at the same time with equal probability. Thus, the postcondition is x=6 V x=10. As an aside, the strongest postcondition is $x_0=5$ $\land x=x_0+1$ V $x_0=5$ $\land x=x_0*2$.
 - c) $\{x=5\}$ $[x\coloneqq x+1 \parallel x\coloneqq x*2]$ $\{q\}$ Both threads will be executed "at the same time"; but some thread must be executed faster than the other in real life, and threads will be executed in any possible order. Thus, we might have x=12 if we execute $x\coloneqq x+1$ first, or we might have x=11 if we execute $x\coloneqq x*2$ first. Thus, x=11 x=12 is a valid postcondition here.
- The above example shows the difference between sequential, parallel, and nondeterministic programs.
 - o For a sequential statement, we execute each unit statement in the given order.
 - \circ For a nondeterministic **if fi** statement, we execute each arm at the same time with the same probability.
 - o For a parallel statement, all unit statements in the composition will be executed in any possible order. So parallel statements can be considered as a simulation of nondeterminism: $[x \coloneqq x + 1 \parallel x \coloneqq x * 2]$ can simulate if $T \to x \coloneqq x + 1$; $x \coloneqq x * 2 \square T \to x \coloneqq x * 2$; $x \coloneqq x + 1$ fi.
- Operational semantic of parallel statements: given $S \equiv [S_1 \parallel S_2 \parallel \cdots \parallel S_n]$, for each k = 1, 2, ..., n, if $\langle S_k, \sigma \rangle \rightarrow \langle T_k, \tau_k \rangle$, then $\langle [S_1 \parallel S_2 \parallel \cdots \parallel S_n], \sigma \rangle \rightarrow \langle [S_1 \parallel \cdots \parallel S_{k-1} \parallel T_k \parallel S_{k+1} \parallel \cdots \parallel S_n], \tau_k \rangle$. If we don't have any runtime error or divergence, the execution of S will end with configuration $\langle E \equiv [E \parallel E \parallel \cdots \parallel E], \tau \rangle$.
 - \circ Note that, from each configuration, we can go to at most n configurations in the next step.
 - \circ The notation \to^* and \to^k that we used in non-parallel program still works here.
 - Note that, $E \equiv [E \parallel E \parallel \cdots \parallel E]$. It is a common mistake to write $\langle [E \parallel E \parallel \cdots \parallel E], \tau \rangle \rightarrow \langle E, \tau \rangle$; we can write $\langle [E \parallel E \parallel \cdots \parallel E], \tau \rangle \rightarrow^0 \langle E, \tau \rangle$ since $E \equiv [E \parallel E \parallel \cdots \parallel E]$.
- Remember that **denotational semantics** of a statement in a state is the set of all possible terminating states (plus possibly the pseudo states \perp_d and \perp_e). It is the same for parallel statements.

2. Show the operational sematic for $\langle S, \sigma \rangle$ till the end where $S \equiv [x \coloneqq x + 1 \parallel x \coloneqq x * 2]$ and $\sigma = \{x = 5\}$. What is $M(S, \sigma)$?

$$\langle [x := x + 1 \parallel x := x * 2], \{x = 5\} \rangle$$
 $\langle [E \parallel x := x * 2], \{x = 6\} \rangle \langle [x := x + 1 \parallel E], \{x = 10\} \rangle$
 $\langle [E \parallel E], \{x = 12\} \rangle$
 $\langle [E \parallel E], \{x = 11\} \rangle$

- o $M(S, \sigma) = \{\{x = 12\}, \{x = 11\}\}$. Since parallel statements can be considered as a simulation of nondeterminism, it is still true that "If $M(S, \sigma)$ contains more than one states, then S is nondeterministic."
- At each configuration there might be more than one configuration that can be the next step, the operational semantics is usually a directed graph instead of a list, we call this graph an **evaluation graph** (as shown in example 2).
 - o While drawing an evaluation graph, we need to make sure that:
 - 1) Each vertex in the graph is a configuration and each configuration is *unique*.
 - 2) Each directed edge shows one step (or n steps if \to^n , or any number steps if \to^*) in the evaluation, and we don't allow multi-edge in the graph. In other words, if we go from one configuration to another twice, we only draw this edge once in the graph.
 - 3) All the possible executions need to be shown in the graph: if a thread composition has n threads, then there can be at most n outcoming edges from that node.

Let's see an example with three threads.

3. Show the operational sematic for $\langle S, \sigma \rangle$ where $S \equiv [x \coloneqq x + 1 \parallel x \coloneqq x * 2 \parallel x \coloneqq x * 2]$ and $\sigma = \{x = 5\}$. Calculate $M(S, \sigma)$.

• $M(S, \sigma) = \{ \{x = 21\}, \{x = 22\}, \{x = 24\} \}$

Then let's see an example with loop.

4. Let $W \equiv$ while x = 0 do $[x \coloneqq 0 \parallel x \coloneqq 1]$ od. Draw evaluation graph for $\langle x \coloneqq 0; W, \sigma \rangle$, and calculate $M(x \coloneqq 0; W, \sigma)$.

- From the graph we can see that $M(S, \sigma) = \{\bot_d, \sigma[x \mapsto 1]\}$
- O We can see that W could diverge on σ: in each iteration if we execute x = 1 first, then we will end up with x = 0 and we will go to another iteration.
- O We call x = 0 a race condition in parallel program, which is an unwanted condition that might appear after executing a parallel program when we look for total correctness. In other words, a race condition in parallel program is a condition that might cause divergence / runtime error or doesn't satisfy the postcondition.
- 5. Does each of the following triples have race conditions?
 - a) $\{T\}$ [$x = 0 \parallel x = 1$] $\{x > 0\}$ Yes. We can get x = 0 if we execute the first thread after the second thread, it doesn't satisfy the postcondition, so it is unwanted.
 - b) $\{T\} [x = 0 | x = 1] \{x \ge 0\}$ No.
 - c) $\{T\}$ [$x \coloneqq 0 \parallel x \coloneqq 1$]; $z = 0 \div x \{z = 0\}$ Yes. x = 0 is unwanted.

Disjoint Parallel Program

6. Draw the evaluation graph for configuration $\langle [x \coloneqq v \parallel y \coloneqq v * 2 \parallel z \coloneqq v + 1], \sigma \rangle$ where $\sigma(v) = \alpha$, and v, x, y, z are different variables.

- o In this example, although the program is parallel (a simulation of nondeterministic), it generates the same state no matter what execution paths it uses. So, it has the same output as $M(x := v; y := v * 2; z := v + 1, \sigma)$.
- The program in the above example is a **disjoint parallel program**. Disjoint parallel programs model the situation that multiple threads share readable memory but not writable memory. For every variable *x* in a disjoint parallel program, there are two situations:
 - a) All threads can read x and no threads can write x. In example 6, every thread reads v and no thread writes v.
 - b) At most 1 thread can read and write x, and other threads can neither read nor write x. In example 6, the first thread writes x so other threads can neither read nor write x.
- We care about disjoint parallel programs because can use the sequential rule (will be introduced in the next lecture) to come up with a state for denotational semantics without overthinking about the execution order (like in Example 6).
- For statement S, we define that:
 - o vars(S) = the set of variables in S. (We either read or write these variables in S)
 - o change(S) = the set of variables appears on the left-hand side of assignments in S. (We write these variables in S)

We say thread S_i interferes with S_i if $change(S_i) \cap vars(S_i) \neq \emptyset$.

We say threads S_i and S_i are **disjoint**, if $change(S_i) \cap vars(S_i) = change(S_i) \cap vars(S_i) = \emptyset$.

- If for $0 < i \neq j \leq n$, S_i and S_j are disjoint, then we say threads $S_1, S_2, ..., S_n$ are **pairwise disjoint**, and we say $[S_1 \parallel S_2 \parallel \cdots \parallel S_n]$ is a disjoint parallel composition and also a disjoint parallel program.
- 7. Determine whether the following threads are disjoint.
 - a. $S_1 \equiv a \coloneqq a + x$ and $S_2 \equiv y \coloneqq y + x$ Yes. $vars(S_1) = \{a, x\}$ and $change(S_2) = \{y\}$, then $vars(S_1) \cap change(S_2) = \emptyset$; $changes(S_1) = \{a\}$ and $vars(S_2) = \{y, x\}$, then $vars(S_2) \cap change(S_1) = \emptyset$.
 - b. $S_1 \equiv a \coloneqq x \text{ and } S_2 \equiv x \coloneqq c$ No, $vars(S_1) = \{a, x\}$ and $change(S_2) = \{x\}$, then $change(S_2) \cap vars(S_1) \neq \emptyset$; thus S_2 interferes with
 - c. $S_1 \equiv x \coloneqq a + 1$ and $S_2 \equiv x \coloneqq b + 1$ No, both S_1 and S_2 write x, so they interfere with each other.
- 8. Is the program $S \equiv [S_1 \parallel S_2 \parallel S_3]$ a disjoint parallel program? Here, we have

$$S_1 \equiv a := v; \ v := c + b$$

$$S_2 \equiv \text{if } b > 0 \text{ then } b \coloneqq c * b \text{ else } c \coloneqq c * 2 \text{ fi}$$

 $S_3 \equiv \text{while } d \ge 0 \text{ do } d \coloneqq d \div 2 - c \text{ od}$

$$S_3 \equiv$$
 while $d \ge 0$ do $d := d \div 2 - c$ od

We can come up with the following table:

i	j	$vars(S_i)$	$changes(S_j)$	S_j interferes with S_i ?
1	2	a, v, c, b	<i>b</i> , <i>c</i>	Yes
2	1	<i>b</i> , <i>c</i>	a, v	No
1	3	a, v, c, b	d	No
3	1	d, c	a, v	No
2	3	<i>b</i> , <i>c</i>	d	No
3	2	d, c	<i>b</i> , <i>c</i>	Yes

To sum up, S_2 interferes with both S_1 and S_3 , thus the program S is not disjoint parallel.