

United International University (UIU) Dept. of Computer Science & Engineering (CSE)

Class Test II:: Trimester: Summer - 2019

Course Code: CSI 415, Course Title: Pattern Recognition, Sec: B Total Marks: 20 Duration: 30 Minutes

Answer all questions. Figures are in the right-hand margin indicates full marks.

Question 1:

20

Find the Attribute-Value and Class-Value (AVC) Table for the attribute, A, (where A, is Income if the last digit of your Student ID is odd number else it will be Age). Then please find the Gain Ratio of the attribute, Ai Please write the necessary equations for finding Gain Ratio.

Training Data Table:

No.	Income	Age	Education	Marital Status	Usage
1	Low	Old	University	Married	Low
2	Medium	Young	College	Single	Medium
3	Low	Old	University	Married	Low.
4	High	Young	University	Single	High
5	Low	Old	University	Married	Low .
6	High	Young	College	Single	Medtum
7	Medium	Young	College	Married	Medium
8	Medium	Old	High School	Single	Lows
)	High	Old	University	Single	High
0	Low	Old	High School	Married	Low.
1	Medium	Young	College	Married	Meditan
2	Medium	Old	High School	Single	Los
3	High	Old	University	Single	High
1	Low	Old	High School	Married	Low
	Medium	Young	College	Married	Medium

Page -> 1

	1000	Medium	High		
old	7	0	2	9	-
Toung	0	5	1	6	

The formulas

a. Info (D) =
$$-\sum_{i=1}^{n} P_i \log_2 P_i$$

b. Info (D) = $\sum_{j=1}^{n} \frac{|D_j|}{|D|} \times Info (D)$

d.
$$SPIIL Info(D) = -\sum_{j=1}^{n} \frac{|D_{j}|}{|D|} \times \log_{2} \left(\frac{|D_{j}|}{|D|}\right)$$

The Calculation

Info (D) =
$$-\frac{7}{15} \log_2(\frac{7}{15}) - \frac{5}{15} \log_2(\frac{5}{15}) - \frac{3}{15} \log_2(\frac{3}{15})$$

= $-0.46 \log_2(0.46) - 0.33 \log_2(0.33) - 0.2 \log_2(0.2)$
= $-0.46 \times (-1.12) - 0.33 \times (-1.59) - 0.2 \times (-2.32)$
= $1.50.39$

$$Indo _{Age}^{(0)} = \frac{\frac{9}{15} \times \left(-\frac{7}{9} \log_{2}(79) - \frac{9}{9} \log_{2}(99) - \frac{2}{9} \log_{2}(79)\right)}{01d} + \frac{\frac{6}{15} \times \left(-\frac{9}{6} \log_{2}(96) - \frac{5}{6} \log_{2}(56) - \frac{1}{6} \log_{2}(16)\right)}{10 \text{ ung}}$$

$$= 0.6 \left(-0.77 \log_{2}(9.77) - 0\log_{2}(9) - 0.22 \log_{2}(9.27)\right) + 0.9 \left(-0\log_{2}(9) - 0.83 \log_{2}(9.83) - 0.16 \log_{2}(9.16)\right)$$

$$SPIII Imp _{Age}(D) = \frac{-\frac{9}{15} \log_2(\frac{9}{15})}{\log_2(0.6)} - \frac{6}{15} \log_2(6/15)}$$

$$= -0.6 \log_2(0.6) - 0.4 \log_2(0.4)$$

$$= -0.6 \times (-0.73) - 0.4 \times (-1.32)$$

$$= 0.966$$

Hooking	MHY	Jacone .	Column Values	(Making An	1C- 16
To T		100	Medium	High	1
Income	Ton	5	0	0	5
9	Medium	2	4	0	
Values	High	0	21	3	
alen P		Ŧ	45	3	

The Journales

a.
$$\operatorname{Indo}(D) = -\frac{n}{\sum_{i=1}^{n} \operatorname{Pi} \log_{2} P_{i}}$$
b. $\operatorname{Indo}(D) = \frac{n}{\sum_{j=1}^{n} \frac{\operatorname{ID}_{j} 1}{\operatorname{ID}_{j}}} \times \operatorname{Indo}(D)$
c. $\operatorname{Gain}(A) = \operatorname{Indo}(D) - \operatorname{Indo}_{A}(D)$
d. $\operatorname{Split}(\operatorname{Indo}_{A}(D)) = -\frac{n}{\sum_{j=1}^{n} \frac{\operatorname{ID}_{j} 1}{\operatorname{ID}_{j}}} \times \log_{2}(\frac{\operatorname{ID}_{j} 1}{\operatorname{ID}_{j}})$
e. $\operatorname{Gain}(A) = \frac{\operatorname{Gain}(A)}{\operatorname{Split}(\operatorname{Indo}_{A}(D))}$

The Calculation

$$\int_{15}^{15} dc = \frac{5}{15} \times \left(-\frac{5}{5} \log_{2}(5/5) - \frac{0}{65} \log_{2}(0/5) - \frac{0}{5} \log_{2}(0/5)\right) + \frac{6}{15} \times \left(-\frac{2}{6} \log_{2}(2/6) - \frac{9}{6} \log_{2}(9/6) - \frac{0}{6} \log_{2}(0/6)\right) + \frac{4}{15} \times \left(-\frac{0}{4} \log_{2}(0/4) - \frac{1}{4} \log_{2}(1/4) - \frac{3}{4} \log_{2}(9/4)\right)$$

$$+ \frac{1}{15} \times \left(-\frac{0}{4} \log_{2}(0/4) - \frac{1}{4} \log_{2}(1/4) - \frac{3}{4} \log_{2}(9/4)\right)$$

$$+ \log_{15} \left(-\frac{1}{4} \log_{2}(0/4) - \frac{1}{4} \log_{2}(1/4) - \frac{3}{4} \log_{2}(9/4)\right)$$

=-0.33 x (-1.59) -0.4 x (-1.37) - 0.26 x (-1.94)

= 0.52 + 0.528 + 0.50 44

= 1.5524