TRIANGLES Exercise 7.1

Contents

1	Problem	1
2	Construction	2
3	Solution	2

1 Problem

Q3. AD and BC are equal perpendiculars to a line segment. Show that CD bisects AB.

Figure 1:

2 Construction

The input parameters are the lengths a and c.

Symbol	Value	Description
а	4	AD=BC
С	3	OA=OB
θ	$\arctan\left(\frac{c}{a}\right)$	$\angle D = \angle C$
О	$\sqrt{a^2+c^2} \begin{pmatrix} \cos\theta\\ \sin\theta \end{pmatrix}$	Point O

3 Solution

Given:

$$AD = BC \tag{1}$$

$$\angle CBO = \angle DAO$$
 (2)

To prove:

$$\angle ODA = \angle OCB$$
 (3)

Proof

Given Vectors are
$$\mathbf{A} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 4 \\ 10 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 8 \\ 10 \end{pmatrix}, \mathbf{D} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 and $\mathbf{O} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$ The directional vectors are:

$$\mathbf{m_1} = \mathbf{O} - \mathbf{D} = \begin{pmatrix} 4 \\ 5 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \tag{4}$$

$$\mathbf{m_2} = \mathbf{D} - \mathbf{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 4 \\ 0 \end{pmatrix} = \begin{pmatrix} -4 \\ 0 \end{pmatrix} \tag{5}$$

The Normal vectors are:

$$\mathbf{n_1} = \mathbf{O} - \mathbf{C} = \begin{pmatrix} 4 \\ 5 \end{pmatrix} - \begin{pmatrix} 8 \\ 10 \end{pmatrix} = \begin{pmatrix} -4 \\ -5 \end{pmatrix} \tag{6}$$

$$\mathbf{n_2} = \mathbf{C} - \mathbf{B} = \begin{pmatrix} 8\\10 \end{pmatrix} - \begin{pmatrix} 4\\10 \end{pmatrix} = \begin{pmatrix} 4\\0 \end{pmatrix} \tag{7}$$

$$\theta_1 = \cos^{-1} \left(\frac{\mathbf{m_1}^T \mathbf{m_2}}{\|\mathbf{m_1}\| \|\mathbf{m_2}\|} \right) \tag{8}$$

$$\theta_2 = \cos^{-1}\left(\frac{\mathbf{n_1}^T \mathbf{n_2}}{\|\mathbf{n_1}\| \|\mathbf{n_2}\|}\right) \tag{9}$$

Substitue (4) and (5) in (8)

$$\theta_1 = \cos^{-1}\left(\frac{4 + 5\begin{pmatrix} -4 \\ 0 \end{pmatrix}}{25.61}\right) = \cos^{-1}\left(\frac{-16}{25.61}\right) \tag{10}$$

Substitue (6) and (7) in (9)

$$\theta_2 = \cos^{-1}\left(\frac{\left(-4 - 5\right)\binom{4}{0}}{25.61}\right) = \cos^{-1}\left(\frac{-16}{25.61}\right) \tag{11}$$

From the (10) and (11) $\theta_1=\theta_2$, so

$$\triangle OBC \cong \triangle OAD \tag{12}$$

$$OA = OB (13)$$