- ◆ OSI stands for Open Systems Interconnection
- ♦ Has seven layers
- Specifies function of each layer...
- ...but does not specify exact services/protocols to use

- Application layer
 - User interface to networking services
 - Provides variety of commonly used functions
 - E.g., file transfer, e-mail, etc.
- Presentation layer
 - Handles formatting details for data
 - E.g., encryption, compression, stream formatting, etc.
- Session layer
 - Provides services to initiate, maintain & end connection b/w sender & receiver

- Transport layer
 - Provides end-to-end message delivery service
 - Controls rate of transfer & ensures network is not overloaded
 - → Flow control & congestion control
- Network layer
 - Controls actual transfer of unit of data through network
 - Determines path to take from source to destination (routing)
 - Forwards unit of data to next node/router in path
 - Shares congestion control responsibility

- Data link layer
 - Transmits data over link between two nodes
 - Performs error and flow control over link
 - Determines when computer has the right to access medium
 - Medium Access Control (MAC) sub-layer
- Physical layer
 - Consists of basic networking hardware
 - ◆ Transmits/receives raw bits over communication channel
 - Determines how connection is established
 - Determines mode of transmission

- Has four layers
 - Was used in ARPANET (research n/w sponsored by DoD)

- Named after two of its primary protocols
 - In this model, protocols are more important than strict layering
 - So, we will mention specific protocols in this context

- Application layer
 - Roughly covers functions of application, presentation & session layers in OSI model
 - Widely-used application layer protocols for user services
 - Simple Mail Transfer Protocol (SMTP)
 - Hypertext Transfer Protocol (HTTP)
 - ◆ File Transfer Protocol (FTP)

- Transport layer
 - Similar to transport layer in OSI model
 - Provides end-to-end message delivery service independent of underlying network
 - Can provide reliability if needed
 - ◆ Provides error control, flow control & congestion control
 - Widely used protocols
 - ◆ Transmission Control Protocol (TCP)
 - User Datagram Protocol (UDP)

- Internet layer
 - Roughly corresponds to network layer in OSI model
 - Responsible for sending units of data over network
 - Performs routing for units of data
 - Provides unreliable (best-effort) service
 - Data units could arrive out of order at destination
 - Principal, very widely used protocol
 - ◆ Internet Protocol (IP)

- Link layer
 - Roughly corresponds to data link & physical layers in OSI model
 - Responsible for moving data units over link between two hosts
 - Provides interface between hosts & transmission links
 - Includes protocols to describe local network topology

Discussion

- OSI model strength is model or layering itself
 - Excluding presentation & session layer
- Strength of TCP/IP model is its protocols
- Tanenbaum book considers hybrid model

Peer layer communication

