AMENDMENT UNDER 37 C.F.R. § 1.111 Atty. Docket No.: Q77187

U.S. Appln. No.: 10/568,438

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the

application:

LISTING OF CLAIMS:

(currently amended): Cubic boron nitride containing magnesium, wherein the 1.

magnesium is contained in the cubic boron nitride crystal in an amount from 2×10^{-4} mol to $2\times$

10⁻² mol per 1 mol of cubic boron nitride, and the cubic boron nitride having a toughness index

in a range of 50 to 59.

2. (original): Cubic boron nitride as claimed in claim 1, wherein the cubic boron

nitride contains magnesium in an amount from 2×10⁻³ mol to 2×10⁻² mol per 1 mol of cubic

boron nitride.

3. (previously amended): Cubic boron nitride as claimed in claim 1, wherein the

cubic boron nitride contains magnesium in an amount from 2×10⁻³ mol to 5×10⁻³ mol per 1 mol

of cubic boron nitride.

4. (previously amended): Cubic boron nitride as claimed in claim 1, wherein a mean

particle size of the cubic boron nitride is 10 µm or less.

5. (original): A method for producing cubic boron nitride in which hexagonal boron

nitride is held in the presence of a catalyst substance under conditions in which cubic boron

nitride remains thermodynamically stable, to thereby cause hexagonal boron nitride to undergo a

2

AMENDMENT UNDER 37 C.F.R. § 1.111 Atty. Docket No.: Q77187

U.S. Appln. No.: 10/568,438

phase transition to form cubic boron nitride, wherein the catalyst substance contains a lithium source, a magnesium source, and a carbon source, and the catalyst substance contains magnesium atoms in an amount of 5 to 300 parts by mole, and carbon atoms in an amount of 0.5 to 30 parts by mole, based on 100 parts by mole of lithium atoms.

6. (original): A method for producing cubic boron nitride as claimed in claim 5, wherein the catalyst substance contains magnesium atoms in an amount of 100 to 300 parts by mole based on 100 parts by mole of lithium atoms.

- 7. (original): A method for producing cubic boron nitride as claimed in claim 5, wherein the catalyst substance contains magnesium atoms in an amount of 5 to 85 parts by mole based on 100 parts by mole of lithium atoms.
- 8. (previously amended): A method for producing cubic boron nitride as claimed in claim 5, wherein the lithium source is at least one selected from the group consisting of metallic lithium, lithium nitride, and lithium boronitride.
- 9. (previously amended): A method for producing cubic boron nitride as claimed in claim 5, wherein the magnesium source is at least one selected from the group consisting of metallic magnesium, magnesium nitride, and magnesium boronitride.
- 10. (previously amended): A method for producing cubic boron nitride as claimed in claim 5, wherein the hexagonal boron nitride has an oxygen content of 1 mass% or less.

AMENDMENT UNDER 37 C.F.R. § 1.111 Atty. Docket No.: Q77187

U.S. Appln. No.: 10/568,438

11. (currently amended): A method for producing cubic boron nitride as claimed in

claim 5, wherein the carbon source is at least one selected from the group consisting of graphite,

carbon black, amorphous carbon, and a hydrocarbon organic compound.

12. (previously amended): A method for producing cubic boron nitride as claimed in

claim 5, wherein the carbon source is in the form of powder.

13. (previously amended): A method for producing cubic boron nitride as claimed in

claim 5, wherein 2 to 50 parts by mass of the catalyst substance is added to 100 parts by mass of

the hexagonal boron nitride, and the hexagonal boron nitride containing the catalyst substance is

held under conditions in which cubic boron nitride remains thermodynamically stable so as to

cause the hexagonal boron nitride to undergo a phase transition to form cubic boron nitride.

14. (previously amended): A method for producing cubic boron nitride comprising a

step of pulverizing the cubic boron nitride as claimed in claim 1 so as to obtain cubic boron

nitride having a mean particle size of 10 µm or less.

15. (original): A method for producing cubic boron nitride as claimed in claim 14,

further comprising a step of classifying the pulverized cubic boron nitride so as to obtain cubic

boron nitride having a mean particle size of 10 µm or less.

16-21. (cancelled).

4

AMENDMENT UNDER 37 C.F.R. § 1.111

U.S. Appln. No.: 10/568,438

22. (new): A method for producing cubic boron nitride as claimed in claim 11, wherein the carbon source is at least one selected from the group consisting of graphite, carbon black, and amorphous carbon.

Atty. Docket No.: Q77187