

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	22/01/2020	12:00

Espacio para la etiqueta identificativa con el código personal del **estudiante**.

Examen

Este enunciado corresponde también a las siguientes asignaturas:

• 81.518 - Fundamentos de computadores

Ficha técnica del examen

- Comprueba que el código y el nombre de la asignatura corresponden a la asignatura matriculada.
- Debes pegar una sola etiqueta de estudiante en el espacio correspondiente de esta hoja.
- No se puede añadir hojas adicionales, ni realizar el examen en lápiz o rotulador grueso.
- Tiempo total: 2 horas Valor de cada pregunta: Prob. 1: 10%; Prob. 2: 35%; Prob. 3: 35%; Prob. 4: 10%
- En el caso de que los estudiantes puedan consultar algún material durante el examen, ¿cuáles son?:
- En el caso de poder usar calculadora, de que tipo? NINGUNA
- En el caso de que haya preguntas tipo test: ¿descuentan las respuestas erróneas? NO ¿Cuánto?

Indicaciones específicas

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	22/01/2020	12:00

Enunciados

PROBLEMA 1 [20%]

a) [10%] Dados los valores B = 111011 y C = 011001, que representan dos números binarios enteros expresados en complemento a 2 con 6 bits, calculad C - B usando el mismo formato. ¿Se produce desbordamiento?

Para restar en Ca2, convertimos la operación C – B en C + (-B), cambiando el signo de B, esto es, complementando bit a bit y sumando 1 al resultado

$$-B = 000100 + 1 = 000101$$

Ahora hacemos la suma:

1 (acarreo 000101 (-B +011001 (C 011110

El resultado será: 011110

No se produce desbordamiento porque hemos sumado dos números positivos y el resultado es positivo

b) [10%] Dado el formato de coma flotante siguiente:

S	Ex	oonente			Mantisa	
13	12		8	7		0

Donde:

- El bit de signo, S, vale 0 para cantidades positivas y 1 para negativas.
- El exponente se representa en exceso a 16.
- Hay bit implícito.
- La mantisa está normalizada en la forma 1,X.

Dado el número binario 01010101010101 codificado en este formato de coma flotante, indicad qué número decimal representa.

El número representado es positivo porque el bit S es 0.

Los 5 bits del exponente son $10101_{(2)}$, si aplicamos TFN obtenemos $1\cdot 2^4 + 0\cdot 2^3 + 1\cdot 2^2 + 0\cdot 2^1 + 1\cdot 2^0 = 16 + 4 + 1 = 21_{(10)}$. Cómo usamos la representación exceso a 16, tenemos que restar 16 y el exponente es 5

Los ocho bits de la mantisa son 01010101, como hay bit implícito y la mantisa está normalizada en la forma 1,X, tenemos que la mantisa es: 1,01010101

Si juntamos la mantisa y el exponente obtenemos $1,01010101\cdot 2^5 = 101010,101_{(2)}$

Ahora aplicando TFN, obtenemos:

$$101010,101_{(2)} = 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 + 1 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3}$$
$$= 32 + 8 + 2 + 0,5 + 0,125 = 42,625_{(10)}$$

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	22/01/2020	12:00

Como S = 0, el resultado es: $+42,625_{(10)}$

PROBLEMA 2 [35%]

a) [15%] Escribid la expresión algebraica mínima a dos niveles de la función g, obteniéndola mediante el método de Karnaugh.

X	у	Z	W	g
0	0	0	0	Χ
0	0	0	1	1
0	0	1	0	Χ
0	0 0 0 0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	Χ
1	0	1	1	1
1	1	0	0	1
0 0 0 0 0 0 0 0 1 1 1 1 1 1	1 0 0 0 0 1 1	0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1	X 1 X 0 1 0 0 0 0 0 X 1 1 0 X 1
1	1	1	0	Χ
1	1	1	1	1

El mapa de Karnaugh para la función *g* es el siguiente:

De este mapa obtenemos la expresión mínima siguiente:

g = y z' w' + x' y' z' + x z'

b) [20%] Dado el circuito lógico combinacional siguiente:

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	22/01/2020	12:00

Se pide rellenar la tabla de verdad siguiente, que especifica las salidas x, y, z, w en función de las entradas a, b, c. Hay que calcular previamente los valores intermedios indicados en la tabla.

Nota: No hace falta que expliquéis textualmente como obtenéis el valor de cada señal.

En primer lugar, escribiremos la expresión algebraica correspondiente a cada punto intermedio y la simplificaremos aplicando las leyes de De Morgan siempre que sea posible.

- i1: (c' XOR ab)'. Cuando ab=0 valdrá c y cuando ab=1 valdrá c'.
- i2: (ab OR c)'. Cuando ab=0 valdrá c' y cuando ab=1 valdrá 0.
- $x: ((i1 \cdot 1) \cdot i2)' = (i1 \cdot i2)'.$
- *i*5: *a*' dado que la entrada *B* del sumador siempre vale 1.
- i4: Si a=0, valdrá b XOR c. Si a=1, valdrá (b XOR c)'.
- i3: bc + cin(b XOR c) = bc + a(bc XOR c). Siempre que bc=1 valdrá 1. Si no, siempre que a=1 valdrá b XOR c. El resto de casos valdrá 0.
- [z,y] es la salida de la ROM la cual contiene los valores 2,1,0,3 en las direcciones 0,1,2,3. La señal que llega a la entrada de direcciones de la ROM es [i4, i5].
- *w*: *i*3

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	22/01/2020	12:00

La tabla quedará así:

а	b	С	<i>i</i> 1	i2	<i>i</i> 3	i4	<i>i</i> 5	X	У	Z	W
0	0	0	0	1	0	0	1	1	1	0	0
0	0	1	1	0	0	1	1	1	1	1	0
0	1	0	0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	1	1	1	0	1
1	0	0	0	1	0	1	0	1	0	0	0
1	0	1	1	0	1	0	0	1	0	1	1
1	1	0	1	0	1	0	0	1	0	1	1
1	1	1	0	0	1	1	0	1	0	0	1

PROBLEMA 3 [35%]

a) [15%] Sea el circuito secuencial siguiente, en el que la memoria ROM tiene el contenido que se muestra en la tabla (las direcciones de la Ah a la Fh contienen 00h).

Dirección	Contenido	
0h	08h	
1h	00h	
2h	13h	
3h	1Bh	
4h	06h	
5h	26h	
6h	22h	
7h	12h	

Página 5 de 9

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	22/01/2020	12:00

8h	1Dh
9h	25h
Ah	00h
Fh	00h

Dibujad el grafo de estados que expresa el funcionamiento del circuito de acuerdo con el modelo de Moore.

Expresamos el contenido de la memoria ROM en una tabla de excitaciones, que contiene las transiciones entre estados y las salidas en cada estado:

Dirección	Estado in	Contenido	Estado+ out
0h	000 0	08h	001 000
1h	000 1	00h	000 000
2h	001 0	13h	010 011
3h	001 1	1Bh	011 011
4h	010 0	06h	000 110
5h	010 1	26h	100 110
6h	011 0	22h	110 010
7h	011 1	12h	010 010
8h	100 0	1Dh	011 101
9h	100 1	25h	100 101
Ah	101 0	00h	•••

El contenido de las palabras a partir de la dirección Ah, que guardarían las transiciones desde los estados *E*5-*E*7, no es relevante, puesto que ninguna transición lleva a dichos estados. Es decir, no existen.

El grafo de estados, por lo tanto, es el siguiente:

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	22/01/2020	12:00

b) [20%] Dado el circuito secuencial siguiente, cuya memoria ROM tiene el contenido indicado en la tabla::

Dirección	Contenido		
0000h	A303h		
0001h	0550h		
0002h	7777h		
0003h	C0B0h		
0004h	0000h		
0005h	BADAh		

Rellenad el cronograma siguiente:

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	22/01/2020	12:00

El cronograma quedará tal y como se muestra a continuación:

El registro RA es un contador y, una vez la señal *ini* se pone a cero, a cada ciclo de reloj se incrementa en una unidad. La salida *M* muestra el contenido de la ROM en la dirección especificada por RA y, por lo tanto, a cada ciclo de reloj muestra consecutivamente cada una de las palabras de la ROM.

Finalmente, RB se carga con un valor que viene del multiplexor, que está controlado por los bits $m_{15:14}$. En el instante t_1 $m_{15} = 1$ y $m_{14} = 0$ (ya que M=A303h), y por lo tanto RB se carga con el valor de M. En el instante t_2 $m_{15} = 0$ y $m_{14} = 0$, y por lo tanto RB se carga con RB << 1; si desplazamos A303h una

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	22/01/2020	12:00

posición a la izquierda obtendremos 4606h. En el instante t_3 $m_{15} = 0$ y $m_{14} = 1$, y por lo tanto RB se carga con el contenido de RA. Y en el instante t_4 $m_{15} = 1$ y m $_{14} = 1$, y por lo tanto RB se cargaría con el valor 0000h. Pero en este caso $(m_{15} \cdot m_{14})' = 0$, y esa es la expresión conectada a la entrada *load* del registro RB, por lo que no se cargará ningún valor en él.

PROBLEMA 4 [10%]

- a) [5%] ¿Qué conjunto de registros tiene el camino de datos de un procesador mínimo con arquitectura de Von Neumann como el YASP?
 - Contador de programa (PC), registro de instrucciones (IR), registro temporal de memoria (MBR), registro de direcciones (MAR), acumulador (A) y registro auxiliar (X).
- b) [5%] ¿Cuáles son los elementos en que se organiza la arquitectura básica de un computador?
 - Periféricos de entrada, periféricos de salida, periféricos de entrada/salida y procesador.