CSE 392: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2024 Lecture 8: Sketching, types of sketching matrices

UT Austin CSE 392 Feb, 2024 2 / 30

Outline

Gaussian sketching

2 AMM and JL moment

3 SRHT

4 Countsketch

UT Austin CSE 392 Feb, 2024 3 / 30

Recall: Embeddings

Embedding

A matrix $S \in \mathbb{R}^{m \times n}$ is an ϵ -embedding of set $\mathcal{P} \subset \mathbb{R}^n$ if, for all $y \in \mathcal{P}$,

$$\|Sy\|_2 = (1 \pm \epsilon)\|y\|_2.$$

We will call S a "sketching matrix".

UT Austin CSE 392 Feb, 2024

4/30

Gaussian sketching matrix

Vector embedding also known as Distributional JL Lemma.

Distributional JL

Let $\mathbf{S} \in \mathbb{R}^{m \times d}$ have independent entries $s_{ij} \sim \frac{1}{\sqrt{m}} \mathcal{N}(0,1)$. If $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any vector $\mathbf{y} \in \mathbb{R}^d$, $\epsilon \in (0,1]$, with probability $(1-\delta)$:

$$\|\mathbf{S}\mathbf{y}\|_2^2 = (1 \pm \epsilon)\|\mathbf{y}\|_2^2.$$

Gaussian sketching matrix

Vector embedding also known as Distributional JL Lemma.

Distributional JL

Let $\mathbf{S} \in \mathbb{R}^{m \times d}$ have independent entries $s_{ij} \sim \frac{1}{\sqrt{m}} \mathcal{N}(0,1)$. If $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any vector $\mathbf{y} \in \mathbb{R}^d$, $\epsilon \in (0,1]$, with probability $(1-\delta)$:

$$\|Sy\|_2^2 = (1 \pm \epsilon)\|y\|_2^2.$$

Proof: We know that $\mathbb{E}[\|S\boldsymbol{y}\|_2^2] = \|\boldsymbol{y}\|_2^2$. We have

$$\|m{S}m{y}\|_2^2 = rac{1}{m}\sum_{i=1}^m (\langle m{s}_i, m{y}
angle)^2 = rac{1}{m}\sum_{i=1}^m (\mathcal{N}(0, \|m{y}\|_2^2))^2$$

Chi-squared random variable with m degrees of freedom.

UT Austin CSE 392 Feb, 2024 5/30

Chi-squared random variable

Let z be a Chi-squared random variable with m degrees of freedom

$$\Pr\{|z - \mathbb{E}[z]| \ge \epsilon \mathbb{E}[z]\} \le 2 \exp(-\epsilon^2 m/8).$$

We have
$$\mathbb{E}[\mathbf{z}] = \mathbb{E}[\|\mathbf{S}\mathbf{y}\|_2^2] = \|\mathbf{y}\|_2^2$$
.

So, setting
$$m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$$
, we obtain the result.

Gaussian - JL property

JL Lemma

Let $\mathbf{S} \in \mathbb{R}^{m \times d}$ have independent entries $s_{ij} \sim \frac{1}{\sqrt{m}} \mathcal{N}(0,1)$. If $m = O\left(\frac{\log(n)}{\epsilon^2}\right)$, then for any set of n data points $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$, with probability at least 9/10:

$$(1 - \epsilon) \| \boldsymbol{x}_i - \boldsymbol{x}_j \|_2 \le \| \boldsymbol{S} \boldsymbol{x}_i - \boldsymbol{S} \boldsymbol{x}_j \|_2 \le (1 + \epsilon) \| \boldsymbol{x}_i - \boldsymbol{x}_j \|_2$$

UT Austin CSE 392 Feb, 2024 7 / 30

Gaussian - JL property

JL Lemma

Let $\mathbf{S} \in \mathbb{R}^{m \times d}$ have independent entries $s_{ij} \sim \frac{1}{\sqrt{m}} \mathcal{N}(0,1)$. If $m = O\left(\frac{\log(n)}{\epsilon^2}\right)$, then for any set of n data points $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$, with probability at least 9/10:

$$(1 - \epsilon) \| \boldsymbol{x}_i - \boldsymbol{x}_j \|_2 \le \| \boldsymbol{S} \boldsymbol{x}_i - \boldsymbol{S} \boldsymbol{x}_j \|_2 \le (1 + \epsilon) \| \boldsymbol{x}_i - \boldsymbol{x}_j \|_2$$

Proof: Fix $i, j \in [d]$, let $\mathbf{y} = \mathbf{x}_i - \mathbf{x}_j$. By the Distributional JL Lemma, with probability $1 - \delta$:

$$\|S(x_i - x_j)\|_2^2 = (1 \pm \epsilon) \|x_i - x_j\|_2^2.$$

Set $\delta = 1/n^2$. Since there are $< n^2$ total i, j pairs, by a union bound we have that with probability 9/10, the above will hold for all i, j, for:

$$m = O\left(\frac{\log(n)}{\epsilon^2}\right).$$

UT Austin CSE 392 Feb, 2024 7/30

Gaussian - Subspace embedding

Subspace embedding

Let $\mathbf{S} \in \mathbb{R}^{m \times n}$ have independent entries $s_{ij} \sim \frac{1}{\sqrt{m}} \mathcal{N}(0,1)$. If $m = O\left(\frac{d \log(1/\delta)}{\epsilon^2}\right)$, then for a given $\mathbf{A} \in \mathbb{R}^{n \times d}$, with probability at least $1 - \delta$:

$$\|\mathbf{S}\mathbf{A}\mathbf{x}\|_2 = (1 \pm \epsilon)\|\mathbf{A}\mathbf{x}\|_2.$$

Embedding an *n*-dimensional subspace $\mathcal{U} \equiv span(\mathbf{A}) = span(\mathbf{U}) \subset \mathbb{R}^d$.

$$\|\mathbf{S}\mathbf{U}\mathbf{x}\|_2 = (1 \pm \epsilon)\|\mathbf{x}\|_2 \text{ or } \|\mathbf{U}^{\top}\mathbf{S}^{\top}\mathbf{S}\mathbf{U} - \mathbf{I}\|_2 \le \epsilon$$

UT Austin CSE 392 Feb, 2024 8/30

Recall the ϵ -Net argument.

We know $|\mathcal{N}(\epsilon)| \leq (1 + \frac{2}{\epsilon})^d$.

If S is distributional JL with failure probability δ' , taking union of the ϵ -net size, we get the result, with

$$m = O\left(\frac{d\log(1/\delta)}{\epsilon^2}\right).$$

UT Austin CSE 392 Feb, 2024 9 / 30

AMM to embedding

Given $\mathbf{A} \in \mathbb{R}^{n \times d}$ with $n \geq d$, rank $(\mathbf{A}) = r$; $\mathbf{B} \in \mathbb{R}^{d' \times n}$; $\epsilon, \delta > 0$. Let \mathbf{S} be chosen (with oblivious distribution) such that, with probability at least $1 - \delta$:

$$\|\boldsymbol{B}\boldsymbol{S}^{\top}\boldsymbol{S}\boldsymbol{A} - \boldsymbol{B}\boldsymbol{A}\|_{F} \leq \epsilon \|\boldsymbol{A}\|_{F} \|\boldsymbol{B}\|_{F}.$$

Then, S is an $\epsilon * r$ -embedding of span(A).

AMM to embedding

Given $\mathbf{A} \in \mathbb{R}^{n \times d}$ with $n \geq d$, rank $(\mathbf{A}) = r$; $\mathbf{B} \in \mathbb{R}^{d' \times n}$; $\epsilon, \delta > 0$. Let \mathbf{S} be chosen (with oblivious distribution) such that, with probability at least $1 - \delta$:

$$\|\boldsymbol{B}\boldsymbol{S}^{\top}\boldsymbol{S}\boldsymbol{A} - \boldsymbol{B}\boldsymbol{A}\|_{F} \le \epsilon \|\boldsymbol{A}\|_{F} \|\boldsymbol{B}\|_{F}.$$

Then, S is an $\epsilon * r$ -embedding of span(A).

Set $B = A^{\top}$, and since S is oblivious, let us assume A is orthonormal. Then,

$$\|\mathbf{A}^{\top}\mathbf{S}^{\top}\mathbf{S}\mathbf{A} - \mathbf{I}\|_{2} \leq \|\mathbf{A}^{\top}\mathbf{S}^{\top}\mathbf{S}\mathbf{A} - \mathbf{I}\|_{F} \leq \epsilon \|\mathbf{A}\|_{F}^{2} = \epsilon r.$$

UT Austin CSE 392 Feb, 2024 10 / 30

JL moment property

JL moment

A distribution on $\mathbf{S} \in \mathbb{R}^{m \times d}$, has the (ϵ, δ, ℓ) -JL moment property if for all $\mathbf{y} \in \mathbb{R}^d$ with $\|\mathbf{y}\|_2 = 1$,

$$\mathbb{E}_{\boldsymbol{S}}[|\|\boldsymbol{S}\boldsymbol{y}\|_2^2 - 1|^{\ell}] \le \epsilon^{\ell} \cdot \delta.$$

JL moment property

JL moment

A distribution on $\mathbf{S} \in \mathbb{R}^{m \times d}$, has the (ϵ, δ, ℓ) -JL moment property if for all $\mathbf{y} \in \mathbb{R}^d$ with $\|\mathbf{y}\|_2 = 1$,

$$\mathbb{E}_{\boldsymbol{S}}[|\|\boldsymbol{S}\boldsymbol{y}\|_2^2 - 1|^{\ell}] \le \epsilon^{\ell} \cdot \delta.$$

For $\ell = \delta = 1$, we get the vector embedding.

For $\ell = 2$, and if $\mathbb{E}[\|\mathbf{S}\mathbf{y}\|_2] = 1$ we have

$$\operatorname{Var}(\|\boldsymbol{S}\boldsymbol{y}\|_2^2) \le \epsilon^2 \delta$$
 or $sd(\|\boldsymbol{S}\boldsymbol{y}\|_2^2) \le \epsilon \sqrt{\delta}$.

JL moment and AMM

Given $\mathbf{A} \in \mathbb{R}^{n \times d}$; $\mathbf{B} \in \mathbb{R}^{d' \times n}$; $\epsilon, \delta > 0$. Let \mathbf{S} satisfy the (ϵ, δ, ℓ) -JL moment property for $\ell \geq 2$, then with probability at least $1 - \delta$:

$$\|\mathbf{B}\mathbf{S}^{\top}\mathbf{S}\mathbf{A} - \mathbf{B}\mathbf{A}\|_{F} \leq 3\epsilon \|\mathbf{A}\|_{F} \|\mathbf{B}\|_{F}.$$

UT Austin CSE 392 Feb, 2024 12 / 30

JL moment and AMM

Given $A \in \mathbb{R}^{n \times d}$: $B \in \mathbb{R}^{d' \times n}$: $\epsilon, \delta > 0$. Let S satisfy the (ϵ, δ, ℓ) -JL moment property for $\ell > 2$, then with probability at least $1 - \delta$:

$$\|\mathbf{B}\mathbf{S}^{\top}\mathbf{S}\mathbf{A} - \mathbf{B}\mathbf{A}\|_{F} \leq 3\epsilon \|\mathbf{A}\|_{F} \|\mathbf{B}\|_{F}.$$

Proof: See Theorem 2.8 in Dr. Woodruff's monograph.

For Gaussian sketch, with $\ell = 2$, JL moment is

$$\operatorname{Var}(\|\boldsymbol{S}\boldsymbol{y}\|_2^2) \le 2/m.$$

Since
$$Var(\frac{1}{m}\chi_m^2) = \frac{1}{m^2} Var(\chi_m^2) = 2m/m^2 = 2/m$$
.

Feb. 2024 12/30

Gaussian sketch and AMM

Given $\mathbf{A} \in \mathbb{R}^{n \times d}$; $\mathbf{B} \in \mathbb{R}^{d' \times n}$; $\epsilon, \delta > 0$.

Let $\mathbf{S} \in \mathbb{R}^{m \times n}$ have independent entries $s_{ij} \sim \frac{1}{\sqrt{m}} \mathcal{N}(0,1)$ and $m = O(\epsilon^{-2} \delta^{-1})$, then with probability at least $1 - \delta$:

$$\|\boldsymbol{B}\boldsymbol{S}^{\top}\boldsymbol{S}\boldsymbol{A} - \boldsymbol{B}\boldsymbol{A}\|_{F} \le \epsilon \|\boldsymbol{A}\|_{F} \|\boldsymbol{B}\|_{F}.$$

We set $2/m \le \epsilon^2 \delta/6$.

UT Austin CSE 392 Feb, 2024 13 / 30

Gaussian sketch and AMM

Given $\mathbf{A} \in \mathbb{R}^{n \times d}$; $\mathbf{B} \in \mathbb{R}^{d' \times n}$; $\epsilon, \delta > 0$.

Let $\mathbf{S} \in \mathbb{R}^{m \times n}$ have independent entries $s_{ij} \sim \frac{1}{\sqrt{m}} \mathcal{N}(0,1)$ and $m = O(\epsilon^{-2} \delta^{-1})$, then with probability at least $1 - \delta$:

$$\|\boldsymbol{B}\boldsymbol{S}^{\top}\boldsymbol{S}\boldsymbol{A} - \boldsymbol{B}\boldsymbol{A}\|_{F} \leq \epsilon \|\boldsymbol{A}\|_{F} \|\boldsymbol{B}\|_{F}.$$

We set $2/m \le \epsilon^2 \delta/6$.

Consider $\ell = \Theta(\log(1/\delta))$. Then, the ℓ -th central moment of χ_m^2 is of the form $2^{\ell}(c_1m^{\ell/2}+c_2)$. So, if we choose $m=O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, we have:

$$\frac{2^{\ell}}{m^{\ell/2}} = \epsilon^{\ell} 2^{\ell/2} (2/\ell)^{\ell/2} \le \epsilon^{\ell} \delta.$$

UT Austin CSE 392 Feb, 2024 13 / 30

Two approaches

We have seen two approaches to go from vector embeddings to subspace embeddings. Let $\|\boldsymbol{U}\|_F^2 = d$, rank (\boldsymbol{A}) .

• Using ϵ -nets:

$$\Pr[\|\boldsymbol{U}^{\top}\boldsymbol{S}^{\top}\boldsymbol{S}\boldsymbol{U} - \boldsymbol{I}\|_{\mathcal{N}_{\epsilon}} \ge \epsilon] \le C^{d}e^{-m\epsilon^{2}}$$

$$\implies \Pr[\|\boldsymbol{U}^{\top}\boldsymbol{S}^{\top}\boldsymbol{S}\boldsymbol{U} - \boldsymbol{I}\|_{2} \ge 2\epsilon] \le C^{d}e^{-m\epsilon^{2}}$$

• using JL moment:

$$\begin{aligned} & \left\| \frac{1}{d} \| \boldsymbol{U}^{\top} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{U} - \boldsymbol{I} \|_{2} \right\|_{\ell}^{\ell} \leq \epsilon^{\ell} \delta \\ \Longrightarrow & \Pr[\frac{1}{d} \| \boldsymbol{U}^{\top} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{U} - \boldsymbol{I} \|_{2} \geq \epsilon] \leq \delta \end{aligned}$$

UT Austin CSE 392 Feb, 2024 14/30

SHRT: Subsampled Randomized Hadamard Transform

Original JL:

- S is picked to be random matrix (orthogonal columns), i.i.d entries.
- Computing SA takes O(mnd) time.

Faster scheme: pick a random orthogonal matrix, but:

- fewer random bits.
- faster to apply.

Fast JL: Using Subsampled Randomized Hadamard Transform (SRHT)

SRHT

The SRHT is a matrix PHD, where

- $D \in \mathbb{R}^{n \times n}$ is diagonal matrix with i.i.d ± 1 on diagonal
- $\boldsymbol{H} \in \mathbb{R}^{n \times n}$ is a Hadamard matrix
- $P \in \mathbb{R}^{m \times n}$ uniformly samples the rows of HD.

$$\underbrace{\begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 1 \end{bmatrix}}_{P} \underbrace{\begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & -1 & 1 & \cdots & -1 \\ 1 & 1 & -1 & \cdots & -1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & -1 & -1 & \cdots & 1 \end{bmatrix}}_{\sqrt{n}H} \underbrace{\begin{bmatrix} \pm 1 & 0 & 0 & \cdots & 0 \\ 0 & \pm 1 & 0 & \cdots & 0 \\ 0 & 0 & \pm 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \pm 1 \end{bmatrix}}_{D}$$

Hadamard matrices

Hadamard matrices have recursive structure.

- Let $\mathbf{H}_0 \in \mathbb{R}^{1 \times 1}$ be [1].
- Let $\mathbf{H}_{i+1} = \frac{1}{\sqrt{2}} \begin{bmatrix} \mathbf{H}_i & \mathbf{H}_i \\ \mathbf{H}_i & -\mathbf{H}_i \end{bmatrix}$ for $i \geq 0$.

So,

In general, \mathbf{H}_k is $2^k \times 2^k$ matrix with ± 1 entries scaled by $1/2^{k/2}$.

UT Austin CSE 392 Feb, 2024 17/30

Hadamard properties

• Hadamard matrices are orthogonal.

$$\boldsymbol{H}_i^{\top} \boldsymbol{H}_i = \boldsymbol{H}_i^2 = \boldsymbol{I}.$$

- For any $x \in \mathbb{R}^n$, $n = 2^k$, we have $||Hx||_2 = ||x||_2$, also $||HDx||_2 = ||x||_2$.
- Matvecs $\mathbf{H}\mathbf{x}$ can be computed in $O(n \log n)$ time for $\mathbf{x} \in \mathbb{R}^n$, $n = 2^k$.

Suppose
$$\boldsymbol{x} = \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix} \in \mathbb{R}^{2^k}$$
, where $\boldsymbol{x}_1, \boldsymbol{x}_2 \in \mathbb{R}^{2^{k-1}}$.

Then,
$$\mathbf{H}_{i+1}\mathbf{x} = \begin{bmatrix} \mathbf{H}_{i}\mathbf{x}_{1} + \mathbf{H}_{i}\mathbf{x}_{2} \\ \mathbf{H}_{i}\mathbf{x}_{1} - \mathbf{H}_{i}\mathbf{x}_{2} \end{bmatrix}$$
.

So, we can compute $H_{i+1}x$ in linear time from H_ix_1, H_ix_2 .

UT Austin CSE 392 Feb. 2024 18/30

Randomized Hadamard analysis

SHRT mixing lemma

Let \boldsymbol{H} be an $(n \times n)$ Hadamard matrix and \boldsymbol{D} a random ± 1 diagonal matrix. Let $\boldsymbol{z} = \boldsymbol{H}\boldsymbol{D}\boldsymbol{x}$ for $\boldsymbol{x} \in \mathbb{R}^n$. With probability $1 - \delta$, for all i simultaneously,

$$z_i^2 \le \frac{c \log(n/\delta)}{n} \|\boldsymbol{z}\|_2^2.$$

for some fixed constant c.

The vector is very close to uniform with high probability.

$$\|\boldsymbol{z}\|_{2}^{2} = \|\boldsymbol{H}\boldsymbol{D}\boldsymbol{x}\|_{2}^{2} = \|\boldsymbol{x}\|_{2}^{2}.$$

Randomized Hadamard analysis

 z_i is a random variable with mean 0 and variance $\|\boldsymbol{x}\|_2^2/n$, which is a sum of independent random variables.

Can apply Bernstein type concentration inequality to prove the bound:

Rademacher Concentration

Let r_1, \ldots, r_n be Rademacher random variables (i.e. uniform ± 1 's). Then for any vector $\mathbf{a} \in \mathbb{R}^n$,

$$\Pr\left[\sum_{i=1}^{n} r_i a_i \ge t \|\boldsymbol{a}\|_2\right] \le e^{-t^2/2}$$

 $z_i = \boldsymbol{h}_i^{\top} \boldsymbol{D} \boldsymbol{x}$ and let $\boldsymbol{h}_i^{\top} \boldsymbol{D} = \frac{2}{\sqrt{n}} [r_1, r_2, \dots, r_n]$, where r_i 's are random ± 1 's.

 $t = \sqrt{\log(n/\delta)}$ and apply union bounds over all n entries.

UT Austin CSE 392 Feb, 2024 20 / 30

Fast JL

The Fast JL Lemma

Let $S = PHD \in \mathbb{R}^{m \times n}$ be a subsampled randomized Hadamard transform with $m = O\left(\frac{\log(n/\delta)\log(1/\delta)}{\epsilon^2}\right)$. Then for any fixed $\boldsymbol{x} \in \mathbb{R}^n$. With probability $1 - \delta$,

$$\|Sx\|_2^2 = (1 \pm \epsilon) \|x\|_2^2.$$

Proof: Apply Hoeffding's inequality for the sum of m entries.

SRHT embeddings

SRHT - subspace embedding

For $S = PHD \in \mathbb{R}^{m \times n}$ and $A \in \mathbb{R}^{n \times d}$, if $m = O\left(\frac{d \log(n/\delta) \log(1/\delta)}{\epsilon^2}\right)$, then with probability at least $1 - \delta$:

$$\|\mathbf{S}\mathbf{A}\mathbf{x}\|_2 = (1 \pm \epsilon)\|\mathbf{A}\mathbf{x}\|_2.$$

We can compute the sketch SA in $O(mn \log(d))$ time.

UT Austin CSE 392 Feb, 2024 22 / 30

Faster Embeddings: Countsketch

- Gaussian sketching matrix is goods, but is expensive to apply.
- SRHT is faster, but for dense matrices.
- Sparse Embeddings: Adaption of CountSketch from streaming algorithms.
- \bullet **S** is of the form:

$$\begin{bmatrix} 0 & -1 & 0 & 0 & \cdots & 0 \\ +1 & 0 & 0 & +1 & \cdots & 0 \\ 0 & 0 & -1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & -1 \end{bmatrix}$$

- One random ± 1 per column.
- Row A_{i*} of A contributes $\pm A_{i*}$ to one of the rows of SA.

Sparse Embeddings

• Sparse sketching matrix: For $i \in [n]$, pick uniformly and independently: $h_i \in [m]$, $s_i \in \{-1, +1\}$, and define $\mathbf{S} \in \mathbb{R}^{m \times n}$ as:

$$S_{h_i,i} \to s_i \text{ for } i \in [n],$$

and $S_{i,i} \to 0$ otherwise.

ullet s is a sign (Radamacher) vector. The vector $m{h}$ hashes to m "hash buckets". That is,

$$\boldsymbol{S}_{j*} = \sum_{i:h_i = j} s_i \boldsymbol{e}_i^\top,$$

and so

$$[SA]_{j*} = \sum_{i:h_i=j} s_i e_i^{\top} A = \sum_{i:h_i=j} s_i A_{i*}.$$

• Fast sketching: Can compute SA in O(nnz(A)) time.

- If s is a sign (Radamacher) vector, then $\mathbb{E}[s^{\top}y] = ||y||_2^2$.
- For y = Ax, each row of S:
 (a) collects a subset of entries y_i 's; (b) applies the signs, and (c) adds
- $\mathbb{E}[\|Sy\|_2^2] = \|y\|_2^2$.

Variance of Countsketch

For $S \in \mathbb{R}^{m \times n}$ a sparse sketching distribution, and $y \in \mathbb{R}^n$ a unit vector,

$$\operatorname{Var}[\|\boldsymbol{S}\boldsymbol{y}\|_2^2] \le \frac{3}{m}.$$

Variance of Countsketch

For $S \in \mathbb{R}^{m \times n}$ a sparse sketching distribution, and $y \in \mathbb{R}^n$ a unit vector,

$$\operatorname{Var}[\|\boldsymbol{S}\boldsymbol{y}\|_2^2] \le \frac{3}{m}.$$

Proof: Let z = Sy. We have $\mathbb{E}[||z||_2^2] =$

$$Var[\|z\|_{2}^{2}] =$$

Variance of Countsketch

For $S \in \mathbb{R}^{m \times n}$ a sparse sketching distribution, and $y \in \mathbb{R}^n$ a unit vector,

$$\operatorname{Var}[\|\boldsymbol{S}\boldsymbol{y}\|_2^2] \le \frac{3}{m}.$$

Proof: Let
$$z = Sy$$
. We have $\mathbb{E}[||z||_2^2] =$

$$\mathrm{Var}[\|\boldsymbol{z}\|_2^2] =$$

$$\mathbb{E}[\|oldsymbol{z}\|_2^4] =$$

Variance of Countsketch

For $S \in \mathbb{R}^{m \times n}$ a sparse sketching distribution, and $y \in \mathbb{R}^n$ a unit vector,

$$\operatorname{Var}[\|\boldsymbol{S}\boldsymbol{y}\|_2^2] \le \frac{3}{m}.$$

Proof: Let z = Sy. We have $\mathbb{E}[||z||_2^2] =$

$$\mathrm{Var}[\|\boldsymbol{z}\|_2^2] =$$

$$\mathbb{E}[\|oldsymbol{z}\|_2^4] =$$

$$\mathbb{E}_{s,h}[z_j^4] =$$

Countsketch Embedding

Countsketch - subspace embedding

For $\mathbf{S} \in \mathbb{R}^{m \times n}$ a countsketch matrix and $\mathbf{A} \in \mathbb{R}^{n \times d}$, if $m = O\left(\frac{d^2}{\delta \epsilon^2}\right)$, then with probability at least $1 - \delta$:

$$\|\mathbf{S}\mathbf{A}\mathbf{x}\|_2 = (1 \pm \epsilon)\|\mathbf{A}\mathbf{x}\|_2.$$

Countsketch Embedding

Countsketch - subspace embedding

For $\mathbf{S} \in \mathbb{R}^{m \times n}$ a countsketch matrix and $\mathbf{A} \in \mathbb{R}^{n \times d}$, if $m = O\left(\frac{d^2}{\delta \epsilon^2}\right)$, then with probability at least $1 - \delta$:

$$||\mathbf{S}\mathbf{A}\mathbf{x}||_2 = (1 \pm \epsilon)||\mathbf{A}\mathbf{x}||_2.$$

We use the AMM and JL moment result.

We have $Var[\|\boldsymbol{S}\boldsymbol{y}\|_2^2] \leq \frac{K}{m}$.

If $\frac{K}{m} \leq \epsilon^2 \delta$, we know **S** is ϵd -embedding with probability at least $1 - \delta$.

Types of sketching matrices

Sketching matrix	Sketch size m	Cost to sketch SA
JL - i.i.d subGaussians	$m = O\left(\frac{d\log(1/\delta)}{\epsilon^2}\right)$	O(mnd)
Fast JL -SRHT	$m = O\left(\frac{d\log(d)\log(1/\delta)}{\epsilon^2}\right)$	$O(mn\log(d))$
Countsketch	$m = O\left(\frac{d^2}{\delta \epsilon^2}\right)$	$O(nnz(m{A})$

We have other sparse embeddings where nnz per column is > 1, e...g, OSNAPs, sparse graphs.

 $\text{Can improve } m = O\left(\frac{d\log(d)\log(1/\delta)}{\epsilon^2}\right) \text{ with } s = \Theta(\log(1/\delta)) \text{ nonzero entries per column}.$

UT Austin CSE 392 Feb, 2024 28 / 30

Further Reading:

- Woodruff, David P. "Sketching as a tool for numerical linear algebra." Foundations and Trends® in Theoretical Computer Science 10.1–2 (2014): 1-157.
- Kane, Daniel M., and Jelani Nelson. "Sparser johnson-lindenstrauss transforms." Journal of the ACM (JACM) 61.1 (2014): 1-23.
- Tropp, Joel A. "Improved analysis of the subsampled randomized Hadamard transform." Advances in Adaptive Data Analysis 3.01n02 (2011): 115-126.

UT Austin CSE 392 Feb, 2024 29 / 30

 ${\bf Questions?}$