Resolva o problema do carteiro chinês para os grafos a seguir.

a)

b)

c)

e)

Se há apenas dois vértices ímpares, há uma única forma de pareá-los. Porém, nos casos em que há mais vértices ímpares, o número de possibilidades cresce exponencialmente. Por exemplo, se existem 4 vértices ímpares, temos 3 formas de pareá-los (verifique isso).

Number of odd vertices	Number of possible pairings
2	1
4	$3 \times 1 = 3$
6	$5\times3\times1=15$
8	$7 \times 5 \times 3 \times 1 = 105$
10	$9 \times 7 \times 5 \times 3 \times 1 = 945$
n	$(n-1)\times(n-3)\times(n-5)\ldots\times 1$

Resolva o problema do carteiro chinês para os grafos a seguir. Note que eles possuem 4 vértices ímpares.

