

Please write clearly in	n block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	
	I declare this is my own work.

INTERNATIONAL AS PHYSICS

Unit 1 Mechanics, materials and atoms

Tuesday 5 January 2021

07:00 GMT

Time allowed: 2 hours

Materials

For this paper you must have:

- a Data and Formulae Booklet as a loose insert
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate
- a protractor.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12–25	
TOTAL	

	Section A	box
	Answer all questions in this section.	
0 1	State two precautions for the safe use of a gamma source in a school laboratory. [2 marks]	
	1	
	2	
		2
0 2 . 1	State what is meant by the rest energy of a particle. [1 mark]	
0 2.2	Calculate, in MeV , the rest energy of an electron.	
	rest energy = MeV	3

A tennis ball of mass $58\ \mathrm{g}$ has a rough surface.

A cricket ball of mass 160 g has a smooth surface.

Assume that the balls have the same diameter.

Both balls are dropped from the roof of a tall building at the same time and they fall through the air to the ground.

Sketch, on the axes below, graphs to show the variations with time t of the speed of each ball.

Label your graphs with a ${\bf T}$ for the tennis ball and a ${\bf C}$ for the cricket ball. No calculations are required.

[3 marks]

Turn over for the next question

Turn over ▶

0 4.1	An object is made to rotate by a couple acting about an axis through its cen mass.	tre of
	State what is meant by a couple.	[2 marks]
0 4.2	State how a single force applied to an object can cause the object to rotate.	[1 mark]

In the decay of a nucleus of nitrogen-12, an electron neutrino (ν_e) and another particle X are emitted from the nucleus.	OI
The decay is shown in the equation below.	
${}^{12}_{7}\text{N} \rightarrow {}^{-}_{6}\text{C} + \mathbf{X} + {}^{-}_{-}v_{e}$	
Identify X. [1 mark]	
$\mathbf{X} = \underline{\hspace{1cm}}$	
State the nucleon number of the nucleus produced by this decay. [1 mark]	
nucleon number =	
Complete below the missing data for the neutrino. [1 mark]	
$ u_{\rm e} $	
Explain why the existence of the neutrino was suggested before the particle was observed.	
[2 marks]	
	particle X are emitted from the nucleus. The decay is shown in the equation below.

Figure 1 shows the mast of a sailing boat.

A uniform horizontal beam PQ is attached by a pivot to the mast at Q. The beam is supported by a light inextensible rope attached to the top of the mast and to the free end of the beam at P.

The tension in the rope is T.

Figure 1

0 6 . 1 The mass of the beam is 12 kg.

Calculate T by taking moments about ${\bf Q}$.

[4 marks]

T = N

0 6.2

The end **P** of the beam is now raised by shortening the rope until it makes an angle of 90° to the beam as shown in **Figure 2**.

Figure 2

The magnitude of T varies as ${\bf P}$ is raised.

Explain the variation in the magnitude of T .	
Calculations are not required.	

Calculations are not required.	[2 marks]

Λ	7
U	•

In an experiment to determine the acceleration due to gravity, a steel ball is dropped from rest.

The time t taken for the ball to fall a distance h is measured for a range of values of h. All of the measurements are shown in **Table 1**.

Table 1

<i>h</i> / m	t/s
0.5	0.35
1.0	0.48
1.5	0.6
2.0	0.67

0 7.1	Describe three ways in which the procedure and the recording of results cou improved. Refer to Table 1 in your answer.	lld be
		[3 marks]
	1	
	2	
	3	
	3	

0 7. 2 Determine, using **Figure 3**, a value for the acceleration due to gravity.

[3 marks]

acceleration due to gravity = $m \ s^{-2}$

Question 7 continues on the next page

0 7.3	The best-fit line in Figure 3 does not go through the origin. Suggest a systematic error that could account for this.	[1 mark]	Do not write outside the box
0 7.4	Draw a labelled diagram of the arrangement of apparatus you would use to measure $\it t$ to an appropriate resolution.	[2 marks]	

A strand of spider web silk is tested by increasing the tension in it until it breaks. **Figure 4** shows a stress–strain graph for the strand.

Figure 4

0 8 . 1	Explain whether or not the graph in Figure 4 shows that the strand is elastic.
	[2 marks]

0 8.2 The original length of this strand is 1.8 cm.

Show that the length of the strand just before it breaks is approximately $10~{\rm cm}$. [2 marks]

Question 8 continues on the next page

|--|

The work done per unit volume in stretching the strand is equivalent to the area under a stress–strain curve.

The volume of the strand remains constant as it stretches.

The initial diameter of the strand is $8.0 \times 10^{-6} \ m.$

Determine the energy needed to break the strand.

[4 marks]

 $\mathsf{energy} = \qquad \qquad \mathsf{J}$

0 8 . 4

Figure 5 shows the spider's web.

Figure 5

An insect flies into the web. The kinetic energy of the insect is much greater than the value of energy calculated in Question **08.3**.

Suggest why the web is unlikely to break.

[1 mark]

0 9

A rock is ejected from point **O** on the side of a volcano and hits the sea at **P**. **Figure 6** shows the trajectory of the rock.

The mass of the rock is 3.70~kg and its initial speed is $250~m~s^{-1}$. **O** is 1600~m above sea level.

Assume that air resistance is negligible.

Figure 6

0 9.1 Show that the kinetic energy of the rock as it enters the sea at **P** is approximately 1.7×10^5 J.

[3 marks]

0 9 . **2** Show that the speed of the rock at **P** is approximately 300 m s^{-1} .

[1 mark]

Question 9 continues on the next page

	The horizontal component of velocity of the rock at ${\bf O}$ is $167~{\rm m~s^{-1}}.$	outs
0 9.3	Show that the vertical component of the velocity of the rock at ${\bf P}$ is approximately $260~{ m m~s}^{-1}$.	
	[2 marks	s]
0 9.4	The rock enters the sea at P at an angle of θ to the horizontal.	
	Calculate $ heta$.	
	[1 mark	KJ
	$ heta=$ $^{\circ}$	
0 9.5	The rock reaches its maximum height when it is exactly above the coastline.	
	Calculate D , the distance of P from the coastline.	_
	[3 marks	sj
	D.	1
	$D = \underline{\hspace{1cm}}$ n end of section a	n L

Section B

Answer all questions in this section.

1 0

Figure 7 shows a jet ski moving horizontally in a straight line.

The jet ski takes in water through an intake below the water line.

A pump ejects the water horizontally at high speed through a nozzle at the back of the jet ski.

The jet ski and rider have a combined mass of 521 kg.

Figure 7

1 $\boxed{\mathbf{0}}$. $\boxed{\mathbf{1}}$ The rider accelerates the jet ski uniformly from rest to its top speed of $27~\mathrm{m~s^{-1}}$ in a distance of $63~\mathrm{m}$.

Show that the resultant force accelerating the jet ski is approximately 3.0 kN.

[3 marks]

Question 10 continues on the next page

1 0 . 2	Explain, in terms of momentum, how the jet ski is propelled forwards.	[2 marks]	outside box
1 0.3	During the acceleration, the jet ski ejects $78\;\mathrm{kg}$ of water per second through nozzle.	the	
	Calculate the speed at which the water is ejected from the nozzle.	[2 marks]	
	speed =	m s ⁻¹	7

1 1

Figure 8 shows the apparatus used to verify the inverse-square law for gamma rays. The distance x between the source and a detector is measured.

The detector is connected to a counter timer and the count rate C is measured for different values of x.

Figure 8

A student suggests that C is given by $C = \frac{k}{x^2}$ where k is a constant.

1 1 . 1

The count rate was measured three times for x = 0.520 m.

Table 2 shows the data recorded.

Table 2

Elapsed time / minute	5.00	5.00	10.00
Total count	2246	2263	4458

Calculate the mean count rate in counts per minute.

[1 mark]

mean count rate = counts per minute

Question 11 continues on the next page

Figure 9 shows a plot of *C* against $\frac{1}{x^2}$ for all of the other measured values of *C* and *x*.

Figure 9

1 1.2 Plot, on **Figure 9**, your answer to Question **11.1**.

[1 mark]

1 1. 3 Draw a line of best fit on Figure 9.

[1 mark]

1 1.4	Determine the gradient of your best-fit line on Figure 9.	[3 marks]	outsid bo
	gradient = co	ounts min ⁻¹ m ²	
1 1.5	Explain whether or not Figure 9 supports the student's suggestion that	$t C = \frac{k}{r^2}$.	
		[1 mark]	
1 1.6	State the physical quantity represented by the intercept on the <i>y</i> -axis.	[1 mark]	
1 1.7	Determine the value of the intercept on the <i>y</i> -axis.	[1 mark]	
	value of the intercept = co	ounts per minute	9
	END OF SECTION B		

Section C

Each of the questions in this section is followed by four responses, **A**, **B**, **C** and **D**.

For each question select the best response.

,	one answer per question in the completely the compl	is allowed. fill in the circle alongside the appropriate answer.	
CORREC	T METHOD WF	RONG METHODS 👿 💿 😂 🏕	
If you v	vant to change your ansv	ver you must cross out your original answer as shown.	
If you v as show	_	er previously crossed out, ring the answer you now wish to	select
l.	ay do your working in the use additional pages for	blank space around each question but this will not be mark this working.	ked.
1 2	A 3 N force and a 4 N force are cope and a 4 N force are cope and a 4 N force are cope and a 4 N force and a 4	•	force
	What is a possible resu	Itant force on the object?	[1 mark]
	A 1 N	0	
	B 10 N	0	
	C 14 N	0	
	D 15 N	0	
1 3	What is not a possible		[1 mark]
	Α μJ	0	
	$\mathbf{B} \ \mathrm{kg} \ \mathrm{m} \ \mathrm{s}^{-2}$	0	
	C eV	0	
	D Ws		

What is the percentage uncertainty in the value of the *y*-intercept that can be deduced from this graph?

[1 mark]

A 0.5%

0

B 0.9%

0

C 5%

0

D 9%

0

- 1 5
- A ball is dropped onto a horizontal floor.

The ball bounces twice. The ball loses some energy each time it bounces. Ignore the effect of air resistance and the time that the ball is in contact with the floor.

Which graph shows the variation of velocity v of the ball with time t?

[1 mark]

Α

В

C

D

Α

	_
0	

В

С

D

1 6 The diagram shows an aircraft and the forces acting on it.

The lengths of the arrows indicate the magnitude of the forces.

Which row describes the horizontal and vertical components of velocity of the aircraft?

[1 mark]

	Horizontal component of velocity	Vertical component of velocity	
Α	constant to the left	constant downwards	O
В	constant to the left	increasing downwards	C
С	increasing to the left	constant downwards	0
D	increasing to the left	increasing downwards	0

Turn over for the next question

 $oxed{1}$ **7** A force F acts on an object.

The graph shows the variation of F with time t.

What is the impulse received by the object during the time shown by the graph?

[1 mark]

- **A** 2.5 kg m s^{-1}
- 0
- **B** 10 kg m s^{-1}
- 0
- $\textbf{C}~30~kg~m~s^{-1}$
- 0
- $\textbf{D}~100~kg~m~s^{-1}$
- 0

1 8

When a single spring of stiffness k is stretched by a force F, the extension is Δl . The diagram shows a network of six single springs of stiffness k being stretched by a force 2F.

What is the total extension of the network of springs?

[1 mark]

 $\mathbf{A} \ \frac{4}{3} \Delta l$

0

 $\mathbf{B} \ \frac{3}{2} \Delta l$

0

 \mathbf{C} $3\Delta l$

0

D $6\Delta l$

0

Turn over for the next question

		26		
1 9	When an elevator of mass $400~\mathrm{kg}$ raises a load of mass $900~\mathrm{kg}$ the efficiency is 60% . The useful work done by the elevator is the work done in lifting the load. When moving through a height h , the total energy input to the elevator is $3.4 \times 10^5~\mathrm{J}$.			
	What	is <i>h</i> ?		
				[1 mark]
	A 16	m		
	B 23	m		
	C 44	m		
	D 64	m		
2 0	The table shows observations and deductions from the Rutherford scattering expendence of the compact of the com			
		Observation	Deduction	
	A	a small number of alpha particles are deviated through angles of more than 90°	atomic nuclei are very small	0
	В	many alpha particles are deviated through angles of more than 90°	atomic nuclei carry a positive charge	0
	С	copper foil deflects particles through greater angles than gold foil	a copper nucleus contains more nucleons than a gold nucleus	0
	D	a minority of alpha particles pass through the foil without deviation	atomic nuclei are small and positively charged	0

2 1 Which pair of particles has the same magnitude of specific charge?

[1 mark]

- **A** ${}_{2}^{3}$ He nucleus and ${}_{1}^{3}$ H nucleus
- **B** $\frac{2}{1}$ H nucleus and $\frac{1}{1}$ H nucleus
- C proton and positron
- **D** beta particle and positron
- **2 2** Which row shows two particles that can mutually annihilate and the energy produced in their annihilation?

[1 mark]

	1st particle	2nd particle	Energy produced / MeV	
A	proton	proton	1860	0
В	proton	proton	930	0
С	proton	antiproton	1860	0
D	proton	antiproton	930	0

Turn over for the next question

2 3 A detector is placed near a source of radiation.

The total count rate C is plotted against time.

The background count rate is 40 counts per minute.

What is the half-life of the source?

[1 mark]

A 1.9 h

0

B 3.3 h

0

C 5.2 h

0

D 8.8 h

2 4	A detector is placed near to a radioactiv Absorbers are placed between S and th The table shows the corrected count rat present.	e detector.	outside box absorbers
	Absorber	Corrected count rate / counts s ⁻¹	
	none	480	
	one sheet of thin card	340	
	4 mm of aluminium	340	
	What is emitted from S ?		[1 mark]
	A α radiation only		
	B α and β radiations only		
	$\mathbf{C} \ \alpha \ \text{and} \ \gamma \ \text{radiations only}$		
	D α , β and γ radiations		
2 5	Which statement concerning backgroun	d radiation is correct?	[1 mark]
	A Background radiation is made up of a	alpha, beta and gamma radiation only.	0

END OF QUESTIONS

B All background radiation comes from naturally occurring sources.

C Some background radiation comes from sources not on the Earth.

D All background radiation can be absorbed by a lead screen.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2021 Oxford International AQA Examinations and its licensors. All rights reserved.

