COINS-Related Research at HP

Alison Chaiken
Applied Science Department
HP Labs
Palo Alto CA

- HP's interest in MEMS and biosensing
- Collaborations, focusing on COINS
- Future work

HP and **Nanomechanics**

MEMS were designed and developed with DARPA funding to support data storage projects.

Acc.V Spot Magn Det WD 1 mm 15.0 kV 3.0 27x SE 14.6 092702-3

HPL heated-tip cantilever

Bulk Si micro X-Y stages

Work of Peter Hartwell, Bob Walmsley and Uija Yoon at HP.

Agilent HP and Biosensing

X-y inkjet scanner for functionalizing MEMS devices

Goals:

- Leverage microfluidics expertise developed for inkjet technology.
- Build ties between microfluidics and computing businesses.
- Use hardware strengths to develop a broader "Wellness" strategy.

Outside collaborations: benefits and barriers

• As HP Labs becomes smaller, university collaborations become imperative.

• Ongoing work with:

- University of Puerto Rico (government funding);
- UC Davis (pending NSF proposal);
- MIT (HP-funded);
- Berkeley (HP-funded).
- Main problem: intellectual property agreements.
 - Preference for joining Centers;
 - HP belongs to COINS and CITRIS but not BSAC;
 - Hope that blanket agreement can be fashioned.
- **Principle:** HP will not pay to license patents that are developed as part of research we sponsor.

Education and outreach

HP strongly supports NSF and its educational mission:

- Dave Packard founded Silicon Valley Leadership Group in large part to support local education.
- This summer two HP-funded students will work on biosensing at UPR.
- Through CITRIS/COINS we are funding postdoc Lisa Biswal.
- HP supports service on NSF committees.
- What we desire from universities is trained engineers and new ideas, not product prototypes.

Collaboration with Prof. Majumdar via COINS

Temperature at which DNA denatures depends on length, degree of basepair matching, fraction which is GC — a useful added diagnostic to existing assay.

COINS project

Existing Cantilever Deflection Assay

Additional New Thermal Measurements (sketch)

Identifies degree of matching via Tm, similar to LightTyper.

Work of postdoc Lisa Biswal.

New Temperature-Scanning Apparatus at HP

Designed to optimize thermal uniformity and control.

Apparatus diagram

Test with water

Work of Henryk Birecki and Graeme Burward at HP.

Extension to DNA-Protein Binding

Idea: leverage existing UCB knowledge about DNA immobilization on cantilevers to study DNA-protein binding.

Importance: relevance to gene regulation via transcription factors.

Aptamer-DNA binding studied by NSF-supported Ellington group at U. Texas.

Vision for the Future

Ultimate goal: statistical mechanics insight into biomolecular thin films (including membranes) via Π -T-x phase diagrams.

NSF-supported work of Caffrey group, Ohio State University.

Concept: study cell constituents using nanomechanical sensors with dimensions similar to cells.

Future Work with COINS and Summary

- HP has many Wellness programs, some on biosensing.
- HP desires to leverage its existing inkjet, MEMS and computing expertise.
- Barriers to collaboration are mainly related to IP.
- IP concerns lead to preference for Center model.
- Proximity, overlap of interests and ease of interaction compel collaboration with COINS.