

PADERBORN UNIVERSITY

OPTIMIZER ENSEMBLES

FOR AUTOMATED MACHINE

LEARNING

MASTER THESIS DEFENSE

Lukas Brandt

Paderborn, 07.10.2020

Optimizer Ensembles for Automated Machine Learning

Optimizer Ensembles for Automated Machine Learning

- 1) AutoML:
 - What?
 - Why?
 - How?
 - Problems?

Optimizer Ensembles for Automated Machine Learning

Approach of this thesis

- 1 AutoML:
 - What?
 - Why?
 - How?
 - Problems?

Optimizer Ensembles for Automated Machine Learning

Approach of this thesis

2 How?

1) AutoML:

- What?
- Why?
- How?
- Problems?

Optimizer Ensembles for Automated Machine Learning

Approach of this thesis

- 2 How?
- (3) Does it work?

- 1) AutoML:
 - What?
 - Why?
 - How?
 - Problems?

Lukas Brandt

)

Optimizer Ensembles for Automated Machine Learning

Approach of this thesis

- 2) How?
- 3 Does it work?
- 4) In conclusion?

- 1) AutoML:
 - What?
 - Why?
 - How?
 - Problems?

AutoML - What?

Tool to assist in machine learning / data science use-cases:

- User provides data in machine-readable format
- AutoML tool tries to find the best suited machine learning pipeline and parametrization for this data within a budget constraint

AutoML – Why?

For complex datasets, more sophisticated pipelines might be necessary:

ightarrow Domain knowledge and manual work would required for construction and configuration of pipelines without AutoML

Lukas Brandt 2 2 2 9

AutoML - How?

Workflow of a simplified AutoML tool:

AutoML - How?

Properties of the AutoML problem:

- Model selection and model configuration usually have enormous candidate spaces
- Relationship between candidates and evaluation scores is not analytically solvable
- Ideally, the next candidate selection should be based on the knowledge aggregated during previous model selection + model configuration iterations

 \rightarrow Black-box optimization problem

AutoML - How?

Approach of several established state-of-the-art AutoML tools:

- Combine model selection and model configuration spaces into one optimization space
- To make this feasible, allowed pipeline topologies are often heavily restricted
- A candidate of the space encodes the selected pipeline components as well as the configuration
- Utilize one black-box optimization algorithm for this combined space, e.g.
 Genetic Algorithms or Bayesian Optimization

AutoML - Problems?

1. Optimization space dimensionality:

- Dimensionality of model configuration space depends on the result of the model selection
- Optimization in a space with changing dimensionality is really hard/impossible

Thus, dimensionality of combined space has to be pre-definied:

- \circ Use a low dimensionality \to Maximum length of candidate pipelines and amount of parameters available for configuration is restricted
- ullet Use a high dimensionality o Optimization algorithms will struggle

AutoML - Problems?

2. No-Free-Lunch theorems:

"[...] if an algorithm does particularly well on average for one class of problems then it must do worse on average over the remaining problems" 1

ightarrow A single black-box optimization algorithm cannot be optimal for all AutoML problem classes (dataset, timeout, ...)

¹D. H. Wolpert and W. G. Macready. "No free lunch theorems for optimization" (1997)

AutoML – Problems?

Two recently published approaches started to tackle these problems:

- ReinBo: Model selection via reinforcement learning and decoupled model configuration via Bayesian optimization
- Mosaic: Model selection via MCTS and decoupled model configuration via Bayesian optimization

Dimensionality: Pipelines still have a maximum length and can only be linear, but the decoupled model configuration spaces can have an arbitrary dimensionality

No-Free-Lunch theorems: Two different optimization algorithms were applied in one approach. Thus, the tool is less restricted by the suitability of one optimization algorithm

Contribution of this thesis:

- Development of a method for AutoML via optimizer ensembles to approach both problems, caused by dimensionality and the No-Free-Lunch theorems, at once
- Model selection in this method should not restrict the pipeline length or allowed topology complexity
- Empirical evaluation of the approach

Dimensionality

Partition into model selection and model configuration spaces:

- 1. Reduce combined space to a model selection problem
- Create model configuration spaces individually deduced for each model selection result on-the-fly

 \rightarrow Pipeline topologies of the model selection space can have arbitrary length and complexity

No-Free-Lunch theorems:

Integrate several optimization algorithms into an ensemble to explore all and exploit the best suited one

 \rightarrow Since multiple optimizers work in the same space, use the priorly gathered knowledge about the optimization space landscape (warmstarting)

Let a pipeline topology p be given by some model selection method:

- Best suited optimizer has to be chosen for a model configuration of p
- Suitability could be influenced by several factors:
 - Input dataset
 - Model configuration optimization landscape for the components of p
 - Presented warmstarting data
- Suitability is unknown without a large study beforehand

Optimizer selection:

- Intelligent try-and-error approach is required
- o Formalize turn-wise optimizer choice as a Multi-Armed Bandit problem
- Within a sufficient number of turns, most Multi-Armed Bandit algorithms should be able to balance exploration and exploitation of optimizers to exploit the best suited one sufficiently

For example:

Hyperband might be exploited the most for a PCA + KNN pipeline

If PCA + KNN + Hyperband yielded good results, could for example PCA be a good pre-processor choice in general?

→ If this can be assumed, other combinations of PCA with classifier and model configuration optimizer should be explored as well

Lukas Brandt

22

- A Multi-Armed Bandit algorithm that is designed for these assumed hierarchical dependencies is the UCT algorithm, as for instance applied in an MCTS
- Now, MCTS could be used to combine model selection and selecting an optimizer for the model configuration of each model selection result into a single task

The search graph has the following structure:

- Create a model selection search graph as an HTN planning graph (see ML-Plan approach¹)
- This graph has leaf nodes, where a complete pipeline topology can be deduced (*Pipeline nodes*)
- One child node for each optimization algorithm is attached to all pipeline nodes (Optimizer nodes)

¹F. Mohr, M. Wever, E. Hüllermeier. "ML-Plan: Automated machine learning via hierarchical planning" (2018)

This graph is now searched with an MCTS in the following manner:

- Pipeline nodes store model configuration space of their pipeline and results of previous evaluations for warmstarting
- \circ MCTS expands optimizer node or Monte-Carlo simulation ends in optimizer node \to Model configuration Optimization run with a certain optimization budget is started
- AutoML time budget is spent → Best found pipeline topology + parametrization is returned as a result

In the context of this thesis, Optimizer Ensembles are a combination of:

- Different optimization algorithms explored and exploited as a hierarchical Multi-Armed Bandit problem for all pipelines
- Sharing of gathered optimization landscape knowledge and utilizing it via warmstarting

- A reference implementation was developed in Python for an evaluation
- Pipelines are constructed from scikit-learn components
- Utilized optimizers were: Genetic Algorithm, SMAC, Hyperband, Random Search, Discretization Search (i.e. model configuration method of ML-Plan)

Reference implementation is used to answer two research questions:

- 1. Is this approach competitive with other state-of-the-art approaches?
- 2. Based on the idea of automatically exploring and exploiting the suitability of optimizers, can knowledge be extrapolated from this?

1. State-of-the-art benchmark

- 9 Datasets (Car, Cifar-10, Dexter, Dorothea, Kr-vs-Kp, Semeion, Waveform, Wine quality, Yeast)
- o 30 Random seeds
- AutoML timeout: 1h
- Node evaluation timeout: 5 Minutes
- Benchmark approaches:
 - auto-sklearn
 - ML-Plan
 - Mosaic
 - TPOT
- AutoML solution space: auto-sklearn space

Analysis of the benchmark approaches in regards of significant improvements or deteriorations via Welch's t-tests with p=0.05

	Improvement	Deterioration	No significant difference
auto-sklearn	7	0	2
ML-Plan	4	5	0
Mosaic	6	0	3
TPOT	4	1	4

2. Optimizer suitability

Correlations between dataset properties and optimizer utilization for all datasets

Dataset properties:

- Instances
- Features
- Classes
- Dimensionality
- Autocorrelation
- Minority Class
- Majority Class

Optimizer utilization metrics:

- Relative
- Absolute
- Ranking

Coefficient of Spearman's rank correlation: $-0.1662 \le \rho \le 0.2286$

Optimizer Ensembles – In conclusion?

MCTS model selection in an HTN planning graph + Optimizer Ensemble model configuration with warmstarting was partially competitive

1

It could close the gap to the current state-of-the-art with improvements in the form of future work and additional research

Optimizer Ensembles – In conclusion?

Possible future work for improvements:

- Adjust configuration dynamically during the search (Monte-Carlo simulations, Optimizer time budget, warmstarting, ...)
- Evaluate different MCTS policies or other search algorithms
- Evaluate different optimization algorithms to form the ensemble

Thank you for your attention!

Any questions or feedback?