OASIS - EDA and ML Prediction

Data and Library Setup

```
In [1]: import pandas as pd
   import seaborn as sns
   import numpy as np
   import matplotlib.pyplot as plt

In [2]: import os
   print(os.listdir("F:/Dementia Prediction/data"))

       ['oasis_cross-sectional.csv', 'oasis_longitudinal.csv']

In [3]: df = pd.read_csv('F:/Dementia Prediction/data/oasis_longitudinal.csv')
```

Exploratory Data Analysis

```
In [4]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 373 entries, 0 to 372
Data columns (total 15 columns):
# Column
               Non-Null Count Dtype
               -----
   Subject ID 373 non-null
1
    MRI ID
               373 non-null
               373 non-null
3 Visit
               373 non-null
4 MR Delay
              373 non-null
               373 non-null
                             object
 6
    Hand
               373 non-null
                              object
               373 non-null
    Age
                             int64
    EDUC
               373 non-null
9 SES
               354 non-null
                             float64
10 MMSE
               371 non-null
11 CDR
               373 non-null
                             float64
               373 non-null
                            int64
12 eTIV
               373 non-null
14 ASF
               373 non-null
                             float64
dtypes: float64(5), int64(5), object(5)
memory usage: 43.8+ KB
```

```
In [5]: print("Tota Rows and Columns (Rows,Columns) : ",df.shape)
#print first five rows of the dataset
df.head(5)
```

Tota Rows and Columns (Rows, Columns) : (373, 15)

	Subject ID	MRI ID	Group	Visit	MR Delay	M/F	Hand	Age	EDUC	SES	MMSE	CDR	eTIV	nWBV	ASF
0	OAS2_0001	OAS2_0001_MR1	Nondemented	1	0	М	R	87	14	2.0	27.0	0.0	1987	0.696	0.883
1	OAS2_0001	OAS2_0001_MR2	Nondemented	2	457	М	R	88	14	2.0	30.0	0.0	2004	0.681	0.876
2	OAS2_0002	OAS2_0002_MR1	Demented	1	0	М	R	75	12	NaN	23.0	0.5	1678	0.736	1.046
3	OAS2_0002	OAS2_0002_MR2	Demented	2	560	М	R	76	12	NaN	28.0	0.5	1738	0.713	1.010
4	OAS2 0002	OAS2 0002 MR3	Demented	3	1895	M	R	80	12	NaN	22.0	0.5	1698	0.701	1.034

```
In [6]: df.describe()
```

	Visit	MR Delay	Age	EDUC	SES	MMSE	CDR	eTIV	nWBV	ASF
count	373.000000	373.000000	373.000000	373.000000	354.000000	371.000000	373.000000	373.000000	373.000000	373.000000
mean	1.882038	595.104558	77.013405	14.597855	2.460452	27.342318	0.290885	1488.128686	0.729568	1.195461
std	0.922843	635.485118	7.640957	2.876339	1.134005	3.683244	0.374557	176.139286	0.037135	0.138092
min	1.000000	0.000000	60.000000	6.000000	1.000000	4.000000	0.000000	1106.000000	0.644000	0.876000
25%	1.000000	0.000000	71.000000	12.000000	2.000000	27.000000	0.000000	1357.000000	0.700000	1.099000
50%	2.000000	552.000000	77.000000	15.000000	2.000000	29.000000	0.000000	1470.000000	0.729000	1.194000
75%	2.000000	873.000000	82.000000	16.000000	3.000000	30.000000	0.500000	1597.000000	0.756000	1.293000
max	5.000000	2639.000000	98.000000	23.000000	5.000000	30.000000	2.000000	2004.000000	0.837000	1.587000

```
In [7]: df.isna().sum()
           Subject ID
           MRI ID
                         0
          Group
           Visit
          MR Delay
          M/F
          Hand
          Age
          EDUC
          SES
                        19
          MMSE
           eTIV
          nWBV
          dtype: int64
```

```
In [8]: sum(df.duplicated())
0
```

```
In [9]: df["SES"].fillna(df["SES"].median(), inplace=True)
    df["MMSE"].fillna(df["MMSE"].mean(), inplace=True)

In [10]: sns.set_style("whitegrid")
    ex_df = df.loc[df['Visit'] == 1]
    sns.countplot(x='Group', data=ex_df)
```

<matplotlib.axes._subplots.AxesSubplot at 0x235af669790>


```
In [11]: ex_df['Group'] = ex_df['Group'].replace(['Converted'], ['Demented'])
    df['Group'] = df['Group'].replace(['Converted'], ['Demented'])
    sns.countplot(x='Group', data=ex_df)
```

<ipython-input-11-f052a051643f>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy ex_df['Group'] = ex_df['Group'].replace(['Converted'], ['Demented'])

<matplotlib.axes._subplots.AxesSubplot at 0x235afdfd220>


```
In [12]:
       def bar_chart(feature):
           Demented = ex_df[ex_df['Group']=='Demented'][feature].value_counts()
           Nondemented = ex_df[ex_df['Group'] == 'Nondemented'][feature].value_counts()
           df_bar = pd.DataFrame([Demented, Nondemented])
           df_bar.index = ['Demented','Nondemented']
           df_bar.plot(kind='bar',stacked=True, figsize=(8,5))
           print(df_bar)
       # Gender and Group (Female=0, Male=1)
       bar_chart('M/F')
       plt.xlabel('Group',fontsize=13)
       plt.xticks(rotation=0,fontsize=12)
       plt.ylabel('Number of patients',fontsize=13)
       plt.legend()
       plt.title('Gender and Demented rate',fontsize=14)
         Demented
                  40 38
         Nondemented 22 50
```

Text(0.5, 1.0, 'Gender and Demented rate')


```
In [13]:
       def bar_chart(feature):
           Demented = ex df[ex df['Group']=='Demented'][feature].value counts()
           Nondemented = ex_df[ex_df['Group'] == 'Nondemented'][feature].value_counts()
           df_bar = pd.DataFrame([Demented, Nondemented])
           df_bar.index = ['Demented', 'Nondemented']
           df bar.plot(kind='bar',stacked=True, figsize=(8,5))
           print(df_bar)
       # Gender and Group (Female=0, Male=1)
       bar_chart('M/F')
       plt.xlabel('Group',fontsize=13)
       plt.xticks(rotation=0,fontsize=12)
       plt.ylabel('Number of patients',fontsize=13)
       plt.legend()
       plt.title('Gender and Demented rate',fontsize=14)
         Demented
                  40 38
         Nondemented 22 50
```

Text(0.5, 1.0, 'Gender and Demented rate')

CDR (Clinical Dementia Rating): Ratings are assigned on a 0–5 point scale, (0 = absent; 0.5 = questionable; 1= present, but mild; 2 = moderate; 3 = severe; 4 = profound; 5 = terminal). A global summary score is obtained, leading to the use of the CDR for grouping patients on severity of dementia.

CDR By Gender

```
In [14]: plt.figure(figsize=(10,5))
    sns.violinplot(x='M/F', y='CDR', data=df)
    plt.title('Violin plots of CDR by Gender',fontsize=14)
    plt.xlabel('Gender',fontsize=13)
    plt.ylabel('CDR',fontsize=13)
    plt.show()
```


CDR By Age

```
In [15]: plt.figure(figsize=(10,5))
    sns.violinplot(x='CDR', y='Age', data=df)
    plt.title('Violin plot of Age by CDR',fontsize=14)
    plt.xlabel('CDR',fontsize=13)
    plt.ylabel('Age',fontsize=13)
    plt.show()
```



```
In [16]:
        def outliers_iqr(ys):
             quartile_1, quartile_3 = np.percentile(ys, [25, 75])
             iqr = quartile_3 - quartile_1
             lower_bound = quartile_1 - (iqr * 1.5)
             upper_bound = quartile_3 + (iqr * 1.5)
             return np.where((ys > upper_bound) | (ys < lower_bound))</pre>
        list_atributes = ['MR Delay','EDUC', "SES", "MMSE", 'eTIV', "nWBV", "ASF"]
        print("Outliers: \n")
        for item in list_atributes:
             print(item,': ',outliers_iqr(df[item]))
          Outliers:
          MR Delay: (array([ 32, 71, 75, 153, 159, 160, 265, 369], dtype=int64),)
          EDUC : (array([107, 108, 109], dtype=int64),)
          SES: (array([136, 137, 138, 161, 162, 179, 180], dtype=int64),)
          MMSE: (array([ 4, 25, 26, 43, 44, 51, 52, 60, 88, 89, 90, 93, 94,
                97, 98, 99, 100, 101, 105, 106, 138, 162, 172, 173, 184, 185,
                186, 222, 225, 226, 231, 232, 234, 251, 299, 300, 316, 317, 328,
                332, 360, 366], dtype=int64),)
          eTIV : (array([0, 1], dtype=int64),)
          nWBV : (array([], dtype=int64),)
          ASF : (array([282], dtype=int64),)
```

```
In [17]:
       from pylab import rcParams
       rcParams['figure.figsize'] = 8,5
       cols = ['Age','MR Delay', 'EDUC', 'SES', 'MMSE', 'CDR','eTIV','nWBV','ASF']
       x=df.fillna('')
       sns_plot = sns.pairplot(x[cols])
```



```
fig, axes = plt.subplots(2,3,figsize = (16,6))
fig.suptitle("Box Plot",fontsize=14)
sns.set_style("whitegrid")
sns.boxplot(data=df['SES'], orient="v",width=0.4, palette="colorblind",ax = axes[0][0]);
sns.boxplot(data=df['EDUC'], orient="v",width=0.4, palette="colorblind",ax = axes[0][1]);
sns.boxplot(data=df['MMSE'], orient="v",width=0.4, palette="colorblind",ax = axes[0][2]);
sns.boxplot(data=df['CDR'], orient="v",width=0.4, palette="colorblind",ax = axes[1][0]);
sns.boxplot(data=df['eTIV'], orient="v",width=0.4, palette="colorblind",ax = axes[1][1]);
sns.boxplot(data=df['ASF'], orient="v",width=0.4, palette="colorblind",ax = axes[1][2]);
```



```
In [19]: #convet the charecter data into numeric
    group_map = {"Demented": 1, "Nondemented": 0}

df['Group'] = df['Group'].map(group_map)
    df['M/F'] = df['M/F'].replace(['F','M'], [0,1])

In [20]: def plot_correlation_map( df ):
        corr = df.corr()
        _ , ax = plt.subplots( figsize = ( 12 , 10 ) )
        cmap = sns.diverging_palette( 240 , 10 , as_cmap = True )
        _ = sns.heatmap(corr,cmap = cmap,square=True, cbar_kws={ 'shrink' : .9 }, ax=ax, annot = True,
        annot_kws = { 'fontsize' : 12 })
```

In [21]: plot_correlation_map(df)

Prediction task using Machine Learning (TBD)

```
In [22]: # Encode columns into numeric
    from sklearn.preprocessing import LabelEncoder
    for column in df.columns:
        le = LabelEncoder()
        df[column] = le.fit_transform(df[column])

In [23]: from sklearn.model_selection import train_test_split
    feature_col_names = ["M/F", "Age", "EDUC", "SES", "MMSE", "eTIV", "nWBV", "ASF"]
    predicted_class_names = ['Group']

X = df[feature_col_names].values
    y = df[predicted_class_names].values

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=42)
```

```
In [24]:
       from sklearn import metrics
       def plot confusion metrix(y test,model test):
           cm = metrics.confusion_matrix(y_test, model_test)
           plt.figure(1)
           plt.clf()
           plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Wistia)
           classNames = ['Nondemented','Demented']
           plt.title('Confusion Matrix')
           plt.ylabel('True label')
           plt.xlabel('Predicted label')
           tick_marks = np.arange(len(classNames))
           plt.xticks(tick marks, classNames)
           plt.yticks(tick marks, classNames)
           s = [['TN', 'FP'], ['FN', 'TP']]
           for i in range(2):
               for j in range(2):
                   plt.text(j,i, str(s[i][j])+" = "+str(cm[i][j]))
           plt.show()
In [25]: from sklearn.metrics import roc_curve, auc
       def report_performance(model):
           model test = model.predict(X test)
           print("\n\nConfusion Matrix:")
           print("{0}".format(metrics.confusion matrix(y test, model test)))
           print("\n\nClassification Report: ")
           print(metrics.classification_report(y_test, model_test))
           #cm = metrics.confusion_matrix(y_test, model_test)
           plot confusion metrix(y test, model test)
       total fpr = {}
       total_tpr = {}
       def roc curves(model):
           predictions test = model.predict(X test)
           fpr, tpr, thresholds = roc curve(predictions test,y test)
           roc_auc = auc(fpr, tpr)
           total fpr[str((str(model).split('(')[0]))] = fpr
           total_tpr[str((str(model).split('(')[0]))] = tpr
           plt.figure()
           plt.plot(fpr, tpr, color='darkorange', lw=1, label='ROC curve (area = %0.2f)' % roc_auc)
           plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
           plt.xlim([0.0, 1.0])
           plt.ylim([0.0, 1.05])
           plt.xlabel('False Positive Rate')
           plt.ylabel('True Positive Rate')
           plt.title('Receiver operating characteristic')
           plt.legend(loc="lower right")
           plt.show()
In [26]: total_accuracy = {}
       def accuracy(model):
           pred = model.predict(X test)
           accu = metrics.accuracy_score(y_test,pred)
           print("\nAcuuracy Of the Model: ",accu,"\n\n")
           total accuracy[str((str(model).split('(')[0]))] = accu
```

Will be doing the ML using the following models:

- GAUSSIAN CLASSIFIER
- SVC
- Decision Tree
- XGBoost
- Gradient Boost
- Bagging
- Adaboost
- Random Forest
- LGBM
- · Naive Bayes

```
In [29]:

from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn import metrics
from xgboost import XGBClassifier
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import BaggingClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GridSearchCV
from sklearn.model_selection import GridSearchCV
from sklearn.naive_bayes import GaussianNB
```

```
In [30]:
       rfc=RandomForestClassifier(criterion='gini', max_depth=8, max_features='auto', n_estimators=200)
       param_grid = {
           'n_estimators': [200],
           'max_features': ['auto'],
           'max_depth' : [4,5,6,7,8],
           'criterion' :['gini']
       }
       #CV_rfc = GridSearchCV(estimator=rfc, param_grid=param_grid, cv= 5,scoring = 'roc_auc')
       rfc.fit(X_train, y_train.ravel())
       #print("Best parameters set found on development set:")
       #print(rfc.best_params_)
       report_performance(rfc)
       roc_curves(rfc)
       accuracy(rfc)
       feat_importances = pd.Series(rfc.feature_importances_, index=feature_col_names)
       feat_importances.nlargest(8).plot(kind='barh')
       plt.title("Feature Importance:")
       plt.show()
```

Confusion Matrix: [[43 9] [10 50]]

Classificat	ion Report:			
	precision	recall	f1-score	support
	0 0.81	0.83	0.82	52
	1 0.85	0.83	0.84	60
accurac	у		0.83	112
macro av	g 0.83	0.83	0.83	112
weighted av	g 0.83	0.83	0.83	112


```
In [31]: svm = SVC(kernel="linear", C=0.1,random_state=0)
    svm.fit(X_train, y_train.ravel())
    report_performance(svm)
    roc_curves(svm)
    accuracy(svm)
```

Confusion Matrix:

[[46 6]

[19 41]]

Classification	Report:
----------------	---------

		precision	recall	f1-score	support				
	0	0.71	0.88	0.79	52				
	1	0.87	0.68	0.77	60				
accui	racy			0.78	112				
macro	avg	0.79	0.78	0.78	112				
weighted	avg	0.80	0.78	0.78	112				


```
In [32]: clf_dtc = DecisionTreeClassifier(criterion='entropy',max_depth=5,random_state=0)
    clf_dtc.fit(X_train, y_train.ravel())
    report_performance(clf_dtc)
    roc_curves(clf_dtc)
    accuracy(clf_dtc)
    #importances = clf.feature_importances_

feat_importances = pd.Series(clf_dtc.feature_importances_, index=feature_col_names)
    feat_importances.nlargest(8).plot(kind='barh')
    plt.title("Feature Importance:")
    plt.show()
```

Confusion Matrix: [[43 9] [14 46]]

Classification Report:								
	precision	recall	f1-score	support				
6	0.75	0.83	0.79	52				
1	0.84	0.77	0.80	60				
accuracy	,		0.79	112				
macro avg	0.80	0.80	0.79	112				
weighted avg	0.80	0.79	0.79	112				

Confusion Matrix: [[44 8] [10 50]]

Classification	on Report:			
	precision	recall	f1-score	support
0	0.81	0.85	0.83	52
1	0.86	0.83	0.85	60
accuracy			0.84	112
macro avg	0.84	0.84	0.84	112
weighted avg	0.84	0.84	0.84	112


```
In [34]: from sklearn import svm, tree, linear_model, neighbors, naive_bayes, ensemble, discriminant_analys is, gaussian_process from xgboost import XGBClassifier from sklearn.preprocessing import LabelEncoder from sklearn import feature_selection from sklearn import model_selection
```

```
In [35]:
       vote_est = [('etc',ensemble.ExtraTreesClassifier()),
                   ('gb',GradientBoostingClassifier()),
                   ('abc', AdaBoostClassifier()),
           ('rfc', ensemble.RandomForestClassifier(criterion='gini', max_depth=8, max_features='auto', n_
       estimators=200)),
           #('svc', svm.SVC(probability=True)),
           #('xgb', XGBClassifier()),
                   ('lbgm',LGBMClassifier())
       vote hard = ensemble.VotingClassifier(estimators = vote est , voting = 'hard')
       vote_hard_cv = model_selection.cross_validate(vote_hard, X_train, y_train.ravel())
       vote_hard.fit(X_train, y_train.ravel())
       report performance(vote hard)
       roc_curves(vote_hard)
       accuracy(vote_hard)
       #pred = vote hard.predict(X test)
       #accu = metrics.accuracy_score(y_test,pred)
       #print("\nAcuuracy Of the Model: ",accu,"\n\n")
       vote_soft = ensemble.VotingClassifier(estimators = vote_est , voting = 'soft')
       vote_soft_cv = model_selection.cross_validate(vote_soft, X_train, y_train.ravel())
       vote_soft.fit(X_train, y_train.ravel())
       report performance(vote soft)
       roc_curves(vote_soft)
       accuracy(vote soft)
       #pred = vote_soft.predict(X_test)
       #accu = metrics.accuracy_score(y_test,pred)
       #print("\nAcuuracy Of the Model: ",accu,"\n\n")
```

Confusion Matrix: [[44 8] [10 50]]

Classification	on Report:			
	precision	recall	f1-score	support
0	0.81	0.85	0.83	52
1	0.86	0.83	0.85	60
accuracy			0.84	112
macro avg	0.84	0.84	0.84	112
weighted avg	0.84	0.84	0.84	112

Acuuracy Of the Model: 0.8392857142857143

Confusion Matrix:

[[44 8] [11 49]]

Classification Report:

	precision	recall	f1-score	support
0	0.80	0.85	0.82	52
1	0.86	0.82	0.84	60
accuracy			0.83	112
macro avg	0.83	0.83	0.83	112
weighted avg	0.83	0.83	0.83	112

Acuuracy Of the Model: 0.8303571428571429

In [36]: clfs =[ExtraTreesClassifier(),GradientBoostingClassifier(),AdaBoostClassifier()]

```
In [37]: for model in clfs:
    print(str(model).split('(')[0],": ")
    model.fit(X_train,y_train.ravel())
    X = pd.DataFrame(X_train)
    report_performance(model)
    roc_curves(model)
    accuracy(model)
```

ExtraTreesClassifier :

Confusion Matrix:

[[46 6] [9 51]]

Classification Report:

	precision	recall	f1-score	support
0	0.84	0.88	0.86	52
1	0.89	0.85	0.87	60
accuracy			0.87	112
macro avg	0.87	0.87	0.87	112
weighted avg	0.87	0.87	0.87	112

Acuuracy Of the Model: 0.8660714285714286

${\tt GradientBoostingClassifier}:$

Confusion Matrix:

[[45 7] [10 50]]

Classification Report:

Classificación Report.							
	precision	recall	f1-score	support			
0	0.82	0.87	0.84	52			
1	0.88	0.83	0.85	60			
accuracy			0.85	112			
macro avg	0.85	0.85	0.85	112			
weighted avg	0.85	0.85	0.85	112			

Acuuracy Of the Model: 0.8482142857142857

${\tt AdaBoostClassifier} :$

Confusion Matrix:

[[41 11] [11 49]]

	precision	recall	f1-score	support
0	0.70	0.70	0.70	
0	0.79	0.79	0.79	52
1	0.82	0.82	0.82	60
accuracy			0.80	112
macro avg	0.80	0.80	0.80	112
weighted avg	0.80	0.80	0.80	112

<matplotlib.legend.Legend at 0x235b65eceb0>

_ . .