

-2023上粉笔教资-

《信息技术》

信息和计算机基础 2/4

▶讲师:孙珍珍

※ 复习一下

第一节	信息及其特征 · · · · · · · · · · · · · · · · · · ·	3
第二节	信息技术概述・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
第三节	信息的获取 · · · · · · · · · · · · · · · · · · ·	6

Fb 粉笔 教师

0000

第四节信息的表示与编码

一、计算机中的数制

(一)基本概念

进制	数码	基数	位权
二进制	0、1	2	2 ⁱ
八进制	0、1、2、3、4、5、6、7	8	8 ⁱ
十进制	0、1、2、3、4、5、6、7、8、9	10	10 ⁱ
十六进制	0、1、2、3、4、5、6、7、8、9、 A、B、C、D、E、F	16	16 ⁱ

下列四组数应依次为二进制、八进制和十六进制,符合这个要求的是()。

- A.11, 77, 19
- B.10, 77, 5K
- C.12 , 77 , 10
- D.11, 78, 19

(二)进制的表示

P11

进制	后缀	表示形式 1	表示形式 2
二进制	B (Binary)	11011B	$(11011)_2$
八进制	O (Octal)	762O	(762) ₈
十进制	D (Decimal)	105D (或 105)	(105)10
十六进制	H (Hexadecimal)	6AH	(6A) ₁₆

说明: 十进制后缀的字母 D 可以省略不写。

二、进制转换

(一)R进制(非十进制)转换为十进制数

◆转换规则:按位权展开,然后将展开式**求**和

> (1011)₂

二、进制转换

- (一)R进制(非十进制)转换为十进制数
- ◆转换规则:按位权展开,然后将展开式求和
- $> (1011.01)_2$

> (123.4)₈

> (6A.8)₁₆

◆整数部分

▶转换规则:除基取余(除基数,保留余数;用商再除,商为0时停止,倒序取余)

P12

◆整数部分

▶转换规则:除基取余(除基数,保留余数;用商再除,商为0时停止,倒序取余)

【例2 (2)】 167D = _____O

P13

◆整数部分

▶转换规则:除基取余(除基数,保留余数;用商再除,商为0时停止,倒序取余)

◆小数部分

▶转换规则:乘基取整(乘基数,保留整数;去整再乘,点后为0停止,正序取整)

【例】167.3125D = <u>10100111.</u> E

◆小数部分

▶转换规则:乘基取整(乘基数,保留整数;去整再乘,点后为0停止,正序取整)

【例】167.3125D = <u>247.</u> O

◆小数部分

▶转换规则:乘基取整(乘基数,保留整数;去整再乘,点后为0停止,正序取整)

【例】167.3125D = <u>A7.</u> H

(2018下·初中)十进制数42减去十六进制数10,结果用二进制数表示是()。

A.10010

B.10110

C.11010

D.11100

(2020下·高中)若在无符号二进制整数1010后面加上三个0形成一个新的二进制整数1010000,则新数值是原来数值的()。

- A.8倍
- B.16倍
- C.100倍
- D.1000倍

(2022 上·高中) 某十进制正整数 n 转化为二进制数,该二进制末位是"0"。下列说法正确的是()。

- A.n 有可能是奇数也有可能是偶数
- B. 若该二进制数的位数为 4 位 , 则 n 的最大值为 15
- C. n 与 n +1 分别转换为二进制数,这两个二进制数的位数一定不同
- D. 该二进制数末位的"0"去掉后,再转换为十进制数,所得的值是n/2

1.二进制与八进制的转换

二进制	000	001	010	011	100	101	110	111
八进制	0	1	2	3	4	5	6	7

(1)二进制转八进制

【例3】(10100101.01011101)2

✓ 转换规则:三位合一位

(2)八进制转二进制

【例4】 (2 3.0 4)8

✓ 转换规则: 一位拆三位

2.二进制与十六进制的转换

二进制	0000	0001	0010	0011	0100	0101	0110	0111
十六进制	0	1	2	3	4	5	6	7
二进制	1000	1001	1010	1011	1100	1101	1110	1111
十六进制	8	9	A	В	С	D	Е	F

(1)二进制转十六进制

【例5】(1111111000111.100101011

✓ 转换规则:四位合一位

(2)十六进制转二进制

【例6】 (8 9 F C D . A B 2)₁₆

✓ 转换规则: 一位拆四位

(2020下·初中)将十六进制数 10A.C 转换为二进制数,下列正确的是()

A.100001010.11

B.10101010.11

C.101010101100

D.1000010101100

- (2022下·初中)下列关于二进制的说法正确的是()。
- A.二进制数 1110101 对应的十六进制数是E1
- B.二进制数1110中末位数码0对应的权值是2
- C.若二进制末位为0,则该数对应的十六进制数末位也是0
- D.若二进制数1110去掉末位数码0,则新数111是原数1110的1/2

三、数据及信息数字化

(一)数据

- ▶数据包括数值、字符、图形、图像、声音和视频等
- 产在计算机内任何形式的数据都用二进制数表示
- ▶单位
 - ✓ 位(bit、b):存放的1位二进制数,是数据的最小单位
 - ✓字节(Byte、B):由8个二进制位组成,是存储的基本单位
- ▶不同单位之间的转换
 - √b B KB MB GB TB

(二)信息数字化

》将数据转化成二进制表示

在计算机中,存储容量为1MB,指的是()。

A.1024乘1024乘2024个字

B.1024乘1024个字节

C.1000乘1000个字

D.1000乘1000个字节

(2017下·初高中)模拟某十字路口车道通行状态的编码如图中控制码表所示,每个车道用一个 指示灯指示通行。若某一时段允许中间2个车道直行对应的控制码如图中右图所示,则某一时段 允许车辆直行和右转,但不允许车辆左转的控制码应该是(

A.01110101

B.01111111

C.11010101

D.11111101

控制编码

四、二进制数的运算

(一)逻辑运算

与	或	非	异或
0 & 0 = 0	0 0 = 0	~ 0 = 1	0 ^ 0 = 0
0 & 1 = 0	0 1 = 1	~ 1 = 0	0 ^ 1 = 1
1 & 0 = 0	1 0 = 1		1 ^ 0 = 1
1 & 1 = 1	1 1 = 1		1 ^ 1 = 0
全1为1	全0为0	取反	不同为1

【例】(1101)2 & | ^ (1011)2

(2018上·初中)二进制数1101和1001进行逻辑"或"运算的结果是()。

A.1001

B.1011

C.1101

D.1111

(二)算术运算

加法	减法	乘法	除法
0+0=0	0-0=0	0×0=0	$0 \div 0 = 0$
0+1=1	10-1=1	0×1=0	$0 \div 1 = 0$
1+0=1	1-0=1	1×0=0	1÷0 (×)
1+1= 10	1-1=0	1×1=1	1÷1 = 1
逢二进一	高一当二		

【例】(1001)2 + (1011)2

【例】(1101)2 - (1011)2

【例】(111)₂ × (110)₂

【例】 (111011)₂ ÷ (1011)₂

(2019上·高中)二进制运算规则为:1+1=10,1×1=1。那么二进制算式11×11等于()。

- A. 121
- B. 1001
- C. 1011
- D. 1111

加法	减法	乘法	除法			
0+0=0	0-0=0	0×0=0	$0 \div 0 = 0$			
0+1=1	0-1=1	0×1=0	$0 \div 1 = 0$			
1+0=1	1-0=1	1×0=0	1÷0 (×)			
1+1= 0	1-1=0	1×1=1	1÷1 = 1			
不进位、不借位						

【例】(1001)₂ + - (1011)₂

【例】(111)₂ × (110)₂

【例】 (111011)₂ ÷ (1011)₂

(2021下·初中)若二进制数M=10110100, P=1101, 进行模2除法运算M/P, 运算结果的余数

是()。

A.001

B.010

C.011

D.100

有疑问没?等你吖

第四节	信息的表示和编码1	0
	P21 ~ P33	
第五节	计算机新技术及应用 ·······2	4

Fb 粉笔 數师

