Shukai Du Curriculum Vitae

Visiting Assistant Professor Email: sdu49@wisc.edu

Department of Mathematics Website: https://shukaidu.github.io

University of Wisconsin-Madison

RESEARCH INTERESTS

- Finite element and discontinuous Galerkin methods
- Scientific machine learning and data-driven methods
- Inverse and ill-posed problems
- Numerical methods for radiative transfer
- Electromagnetic and elastic/viscoelastic waves

EDUCATION

University of Delaware

• Ph.D in Applied Mathematics

May 2020

Advisor: Dr. Francisco-Javier Sayas

Thesis: Generalized projection-based error analysis of hybridizable discontinuous Galerkin methods

Wuhan University

• M.S. in Computational Mathematics

2015

• B.S. in Pure Mathematics

2012

PUBLICATIONS

Submitted

- 1. **S. Du**, and S. N. Stechmann. Element learning: a systematic approach of accelerating finite element-type methods via machine learning, with applications to radiative transfer. arXiv: 2308.02467.
- 2. **S. Du**, and S. N. Stechmann. A universal predictor-corrector approach for minimizing artifacts due to mesh refinement.

Peer-reviewed

- 3. **S. Du**, and S. N. Stechmann. Inverse radiative transfer with goal-oriented hp-adaptive mesh refinement: adaptive-mesh inversion. *Inverse Probl. 39 (2023), no. 11*. DOI: 10.1088/1361-6420/acf785
- 4. B. Cockburn, **S. Du**, M. A. Sánchez. A priori error analysis of new semidiscrete, Hamiltonian HDG methods for the time-dependent Maxwell's equations. *ESAIM: M2AN 57* (2023), no.4, 2097 2129.

DOI: 10.1051/m2an/2023048

- 5. **S. Du**, and S. N. Stechmann. Fast, low-memory numerical methods for radiative transfer via hp-adaptive mesh refinement. *J. Comput. Phys.* 480 (2023). DOI: 10.1016/j.jcp.2023.112021
- 6. B. Cockburn, **S. Du**, M. A. Sánchez. Combining finite element space-discretization with symplectic time-marching schemes for linear hamiltonian systems. *Front. Appl.*

Math. Stat. 9 (2023).

DOI: 10.3389/fams.2023.1165371

7. M. A. Sánchez, **S. Du**, B. Cockburn, N.-C. Nguyen, J. Peraire. Symplectic Hamiltonian finite element methods for electromagnetics. *Comput. Methods Appl. Mech. Engrg.* 396 (2022).

DOI: 10.1016/j.cma.2022.114969

8. B. Cockburn, M. A. Sánchez, **S. Du**. Discontinuous Galerkin methods with time-operators in their numerical traces for time-dependent electromagnetics. *Comput. Meth. Appl. Math.* (2022).

DOI: 10.1515/cmam-2021-0215

9. **S. Du**, and F.-J. Sayas. A note on devising HDG+ projections on polyhedral elements. *Math. Comp. 90 (2021), 65-79*.

DOI: 10.1090/mcom/3573

10. **S. Du**. HDG methods for Stokes equation based on strong symmetric stress formulations. *J. Sci. Comput.* 85, 8 (2020).

DOI: 10.1007/s10915-020-01309-7

11. **S. Du**, and F.-J. Sayas. A unified error analysis of hybridizable discontinuous Galerkin methods for the static Maxwell equations. *SIAM J. Numer. Anal.* 58 (2020), no. 2, 1367–1391.

DOI: 10.1137/19M1290966

12. **S. Du**, and F.-J. Sayas. New analytical tools for HDG in elasticity, with applications to elastodynamics. *Math. Comp. 89* (2020), 1745-1782.

DOI: 10.1090/mcom/3499

13. **S. Du**, and N. Du. A factorization of least-squares projection schemes for ill-posed problems. *Comput. Meth. Appl. Math. 20 (2020), no. 4, 783-798.*

DOI: 10.1515/cmam-2019-0173

14. T.S. Brown, **S. Du**, H. Eruslu, and F.-J. Sayas. Analysis of models for viscoelastic wave propagation. *Appl. Math. Nonlin. Sci. 3 (2018)*, no. 1, 55-96.

DOI: 10.21042/AMNS.2018.1.00006

Books

15. **S. Du**, and F.-J. Sayas. An invitation to the theory of the Hybridizable Discontinuous Galerkin Method. *SpringerBriefs in Mathematics* (2019).

DOI: 10.1007/978-3-030-27230-2

TEACHING

Lecturer

• Linear Algebra and Differential Equations (Math320)

Spring 2023

Teaching Assistant

Analytic Geometry and Calculus C (Math243)
Analytic Geometry and Calculus B (Math242)

2016&2017 Fall 2017 Spring

• Calculus I (Math221)

2018 Spring

• Review of Advanced Mathematical Problems

(summer courses offered to incoming graduate students)

2018 Fall

International Teaching Assistant (ITA) training program

• Graduated with the highest category of scores (category I)

Summer 2015

• GEMS summer research project

PRESENTATION

Talks

aik	S	
1.	Element learning: a systematic approach of accelerating finite element-type	emethods
	with applications to radiative transfer	
	Numerical analysis and PDE seminar, U of Delaware	Sep 2023
2.	Energy-conserving discontinuous Galerkin methods with time-operators in t	heir traces
	for time-dependent electromagnetics	
	17th UCNCCM, Albuquerque, NM	July 2023
3.	Fast, low-memory methods for radiative transfer through hp-adaptive me	esh refine
	ment	
	13th AIMS meeting, Wilmington, NC	June 2023
4.	Three-dimensional radiative transfer: fast, low-memory numerical methods	S
	Collective Madison Meeting, Madison, WI	Aug 2022
5.	Unified analysis of HDG methods for the static Maxwell equations	C
	CILAMCE-PANACM 2021, Brazil	Nov 2021
6.	Generalized projection-based error analysis of hybridizable discontinuou	s Galerkir
	(HDG) methods	
	CEDYA2021, Spain	June 2021
7.	Projection-based analysis of hybridizable discontinuous Galerkin (HDG) me	ethods
	Wenbo Li Prize Talk, U of Delaware	Feb 2020
8.	Unified analysis of HDG methods for the static Maxwell equations	
	SIAM CSE2021, Virtual Meeting	Mar 2021
9.	New analysis techniques of HDG+ method	
	SIAM Sectional Meeting, Iowa State U	Oct 2019
10.	Uniform-in-time optimal convergent HDG method for	
	transient elastic waves with strong symmetric stress formulation	
	WAVES2019, TU Wien, Vienna	Aug 2019
11.	Hybridizable Discontinuous Galerkin schemes for elastic waves	0
	ICIAM2019, Valencia	July 2019
12.	HDG for transient elastic waves	•
	WONAPDE2019, U of Concepcion	Jan 2019
13.	Projection-based analysis of HDG methods with reduced stabilization	
	· · ·	May 2019
14.	Projection-based error analysis of HDG methods for transient elastic waves	J
	FEM Circus, U of Delaware	Nov 2018
15.	Devising a tailored projection for a new HDG method in linear elasticity	
	FEM Circus, U of Tennessee	Mar 2018
16.	A new HDG projection and its applications	3 - 4
	Mid-Atlantic Numerical Analysis Day, Temple U	Nov 2017
		/

Poster presentation

Fast, low-memory numerical methods for radiative transfer: forward and inverse problems
 New Trends in Computational and Data Sciences, Caltech
 Dec 2022

JOURNAL REFEREE

- Journal of Scientific Computing
- SIAM Multiscale Modelling and Simulation
- ESAIM: Mathematical Modelling and Numerical Analysis
- Frontiers in Applied Mathematics and Statistics

AWARDS AND HONORS

Wenbo Li Prize	2020
University Doctoral Fellowship Award at the University of Delaware	2019
ICIAM2019 travel grant	2019
Graduate Enrichment Fellowship at the University of Delaware	2018
GEMS project fund at the University of Delaware	Summer 2016
National Scholarship for Graduate Students of China	2013
People's Scholarship of Wuhan University	2011
Outstanding Student of Wuhan University	2009-2011

CODING PROJECTS

Fast, low-memory methods for radiative transfer

2020 - current

- Build a cell-based structured adaptive mesh refinement (AMR) data structure
- Implement discontinuous Galerkin (DG) methods with hp-adaptivity for the full radiative transfer equation

Hybridizable Discontinuous Galerkin (HDG) methods 2016 - 2020 (based on HDG3D library: github.com/team-pancho/HDG3D)

- Build Matlab codes of high order HDG methods on computing cluster for transient elastic/viscoelastic waves and Maxwell equations
- Write documentation with detailed implementation procedures for HDG methods for Maxwell equations

Finite Element Method (FEM)

2016

(based on Team Pancho FEM library: team-pancho.github.io)

• Build Matlab codes of high order FEM methods on computing cluster for simulation of viscoelastic waves.

Multiscale modeling

2013 - 2015

• Implement algorithms to calculate Cauchy stress tensor based on micro-scale molecular dynamics information

COMPUTER SKILLS

Theory

Data Structures • Algorithm • Object Oriented Programming

Languages & Software Matlab • Python • C • C++ • Fortran • openMPI • LISP • Linux Shell

Last update: September 23, 2023