TRIGONOMETRY Chapter 03

Sector Circular

SECTOR CIRCULAR Y SUS APLICACIONES

SECTOR CIRCULAR

Porción de un círculo delimitada por dos radios y un arco de circunferencia.

Donde:

- R: radio de la circunferencia
- θ : N° de radianes del ángulo central ($0 < \theta \le 2\pi$)
- L: longitud del arco AB

Se cumple:
$$\mathbf{L} = \mathbf{\theta} \cdot \mathbf{R}$$

PROPIEDADES DE LONGITUD DE ARCO

$$\frac{L_1}{L_2} = \frac{R_1}{R_2}$$

PROPIEDADES DE LONGITUD DE ARCO

ÁREA DEL SECTOR CIRCULAR

Siendo S el área de la región del sector circular AOB sombreado:

$$S = \frac{\theta \cdot R^2}{2}$$

$$S = \frac{L \cdot R}{2}$$

$$S = \frac{L^2}{2\theta}$$

1. Calcule la longitud del arco AB en el gráfico mostrado.

Recordamo

S

Longitud de arco (L):

$$L = \theta \cdot R$$

Resolución

Convertimos 45° a radianes:

$$45^{\circ} <> 45^{\circ} \left(\frac{\pi \text{ rad}}{180^{\circ}}\right) <> \frac{\pi}{4} \text{ rad}$$

Reemplazamos en la fórmula:

$$\mathbf{L} = \mathbf{\theta} \cdot \mathbf{R}$$

$$\rightarrow L = \frac{\pi}{\cancel{4}} \cdot \cancel{16} \text{ m}$$

$$L = 4\pi \text{ m}$$

2. Del gráfico, calcule el valor de L.

Recordamo

$$\frac{L_1}{L_2} = \frac{R_1}{R_2}$$

Resolución

Analizamos el gráfico:

Por propiedad:

$$\frac{L}{8\pi \text{ m}} \neq \frac{6 \text{ m}}{16 \text{ m}}$$

$$8L = 24\pi \, \text{m}$$

$$L = 3\pi \,\mathrm{m}$$

3. Del gráfico, reduzca

$$M = \frac{5L_1 + 2L_2 + L_3}{L_3 - L_1}$$

Recordamo

Del gráfico,

$$L_1 = L^3 L_2 = 2L L_3 = 3L$$

por

Resolución

Reemplazamos en la expresión:

$$\rightarrow M = \frac{5(L) + 2(2L) + (3L)}{(3L) - (L)}$$

$$M = \frac{5L + 4L + 3L}{2L}$$

$$M = \frac{12L}{2L} \qquad ... M = 6$$

4. Del gráfico, calcule x + y.

Resolución

Analizamos el gráfico:

Por propiedad:

$$\bigcirc$$
 COD: $x = 3 u$

$$\triangleleft$$
 AOB: (x) + 2 u = y \rightarrow $y = 5 u$

$$\therefore x + y = 8 u$$

5. Del gráfico, calcule el área de la región sombreada.

A A L L = R

Resolución

Analizamos el sector AOB:

Calculamos el área sombreada (S):

Tenemos: $\theta = 1$ r = 3 u

$$\rightarrow \mathbf{S} = \frac{\mathbf{\theta} \cdot \mathbf{r}^2}{2} = \frac{1 \cdot 3^2}{2} = \frac{9}{2} \quad \mathbf{S} = \mathbf{S}$$

6. Calcule el área de la región que determina el borde de una puerta de vaivén al girar un ángulo de 160g sabiendo que dicho borde mide 100 cm.

Resolución

Se observa que la región determinada es un sector circular:

$$4 central = 160^g$$

$$R = 100 cm$$

$$radiantes \left(\frac{\pi \ rad}{200^g}\right) <> \frac{4\pi}{5} rad$$

Calculamos el área del sector circular (S):

$$\rightarrow \mathbf{S} = \frac{\mathbf{\theta} \cdot \mathbf{R}^2}{2} = \frac{\frac{4\pi}{5} \cdot 100^2}{2} = \frac{8000 \,\pi}{2}$$

••
$$S = 4000\pi \text{ cm}^2$$

7. Choper, un experimentado piloto de carrera, desea saber el costo del asfaltado de una pista circular, tal como se muestra en la figura sabiendo que por m² pagará \$500 ¿Cuánto será el costo total?

Resolución

Del sector circular AOB, se tiene:

$$L = 15 \text{ m} \qquad R = 20 \text{ m}$$

Calculamos el área de la pista circular (S):

Calculamos el costo total (CT) del asfaltado:

$$CT = Costo/m^2 \cdot Total m^2$$

$$CT = (\$500)(150)$$

$$CT = $75000$$