AMENDMENT TO THE SPECIFICATION

Please replace the paragraph beginning at page 4, line 23 with the following amended paragraph.

As one of ordinary skill in the art would recognize, the abovedescribed method can be practiced with a variety of GPCR-like receptors. For example, the GPCR-like receptor used in the screening method may be encoded by a polynucleotide having a sequence set forth in any one of SEQ ID NOS:43, 21, 45, 35, 7, 106, and 104. As noted above, such GPCR-like receptors may be used in screening assays designed to measure a GPCR-like receptor activity, including binding activity. Expressly contemplated are embodiments of the screening method comprising a GPCR-like receptor encoded by a polynucleotide comprising a sequence set forth in SEQ ID NO:43 and a peptide comprising a sequence selected from the group consisting of SEQ ID NOS:85, 86, 88, 89, and 118, wherein the peptide binds to the GPCR-like receptor. More particularly, a screening method wherein the GPCR-like receptor is encoded by a polynucleotide having the sequence set forth in SEQ ID NO:43 is provided. In an alternative embodiment, the GPCR-like receptor comprises a sequence set forth in SEQ ID NO:21 and the peptide comprises a sequence selected from the group consisting of SEQ ID NOS:78, 79, 80, 84, 87, 92, 98, 100, 120, 171, 143, 122, 123, 97, 85, 83, 101, 102, 93, 88, 91, 94, 93, 90, 152, 153, 154, 155, 156, 157, 80, 158, 119, 159, 160, 161, 162, 163 and 164. Another embodiment involves a GPCR-like receptor comprising a sequence set forth in SEQ ID NO:45 and a peptide comprising a sequence selected from the group consisting of SEQ ID NOS:86, 118, 125, 88, 126, 127, 128, 129, 102, 131, 100, 133, 92, 135, 136, 137, 87, 139, 91, 141 and 83. In yet another embodiment, the GPCR-like receptor comprises a sequence set forth in SEQ ID NO:35 and a peptide comprising a sequence selected from the group consisting of SEQ ID NOS:99, 97, 96, 77, 82, 81, 87, 100, 92, 80, 98, 120, 121, 79 and 84. In still another embodiment, the GPCR-like receptor comprises a sequence set forth in SEQ ID NO:7 and a peptide comprising a sequence selected from the group consisting of SEQ ID NOS:94, 103, 95, 101, 85, 79, 84, 87, 86, 80, 92, 100, and 180. Yet another embodiment involves a GPCR-like receptor comprising a sequence selected from the group consisting of SEQ ID NO:106 and a peptide comprising a sequence selected from the group consisting of SEQ ID NOS:80, 92, 98, 100, 120, 121, 79, 84, 136, 87 and 86. Still another one of the many embodiments of this aspect of the invention involves a GPCR-like receptor comprising a sequence set forth in SEQ ID NO:104 and a peptide comprising a sequence selected from the group consisting of SEQ ID NOS:80, 92, 98, 100, 120, 121, 79, 84, 136, 87, 86, 150, 151, 133, 165, 91, 166, 131 and 167.

Please replace the paragraph beginning at page 10, line 6 with the following amended paragraph.

The invention also provides an isolated polynucleotide encoding a GPCR-like receptor. Such polynucleotides may be selected from the group consisting of: (a) a polynucleotide comprising a nucleotide sequence encoding any one of the amino acid sequences set forth in SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 105, 107, 109, 111, 113, 115, 117, 177, and 179 (including the nucleotide sequences set forth in SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 104, 106, 108, 110, 112, 114, 116, 176, and 178); and (b) a polynucleotide which hybridizes under conditions of high stringency to the complement of the polynucleotide of (a). Exemplary conditions of high stringency are provided below. Such polynucleotides also include polynucleotides that exhibit at least 90%, at least 95%, at least 98%, at least 99% or at least 99.9% sequence identity to either a polynucleotide sequence disclosed in the sequence listing (i.e., SEQ ID NOS: 1, 3, 5, 7, 9, 11, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 104, 106, 108, 110, 112, 114, 116, 176 and 178) or to a polynucleotide encoding a GPCR-like receptor comprising one of the sequences disclosed in the sequence listing (i.e., SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 105, 107, 109, 111, 113, 115, 117, 177, and 179). Any one of the publicly available algorithms (e.g., the BLASTI program of GCG) for comparing sequences may be used in determining the degree of sequence similarity (including appropriate penalties for gap

introductions). A preferred algorithm is the BLAST algorithm implemented at the GenBank website under the auspices of the National Center for Biotechnology Information (http://www.nebi.nlm.nih.gov/BLAST/) using default parameters. polynucleotide of the invention may be partially or wholly chemically synthesized and embraces an anti-sense polynucleotide which specifically hybridizes to the complement of one or more of the above-described polynucleotides. In related aspects, the invention comprehends vectors comprising these polynucleotides preferably operably linked to expression control sequences, including expression vectors, as well as non-native host cells transformed or transfected with a polynucleotide in accordance with the invention or a host cell transformed or transfected with a vector of the invention. All suitable native and non-native host cells are embraced by the invention, including mammalian cells (e.g., COS cells, CHO cells, HEK293 cells), insect cells (e.g., Drosophila melanogaster S2 cells, Spodoptera frugiperda Sf9 cells, High-5 cells), yeast cells, bacterial cells (e.g., E. coli) and helminthic cells. The suitability of a particular cell for use as a host cell in accordance with the invention will depend on the ability to introduce a polynucleotide of the invention into the cell by any known means of transformation or transfection. Preferred host cells will also be capable of stably maintaining the introduced polynucleotide and will present a minimum of obstacles to propagation.

30773/6223ND1US

Please substitute Table 5 as provided below for original Table 5 beginning on page 24, line 1.

Table 5
C. elegans FMRFamide-related peptides (FaRPs) and encoding genes

C. cieguns 1	Wilti annae related pe	Peracs (rakts) and encouning genes	
GENE AND	STRUCTURALLY	SEQ	PEPTIDES PREDICTED	SEQ
CHROMOSOME	CHARACTERIZED	ID.	FROM GENE	ID
NUMBER	FaRPs	NO:	TROM GENE	NO:
INGINIBLIC	Tand 3	110.		110.
FLP-1	SDPNFLRFa	181	KPNFMRYa	<u> 186</u>
	SADPNFLRFa	182	AGSDPNFLRFa	<u>187</u>
			SQPNFLRFa	183
	SQPNFLRFa	183	ASGDPNFLRFa	184
	ASGDPNFLRFa	184	SDPNFLRFa	181
	AAADPNFLRFa	185	AAADPNFLRFa	185
		100	SADPNFLRFa	182
			KPNFLRFa	188
			KI W EKI a	100
FLP-2			LRGEPIRFa	189
			SPREPIRFa	$\overline{190}$
FLP-3			SPLGTMRFa	<u>191</u>
			TPLGTMRFa	<u> 192</u>
			SAEPFGTMRFa	<u> 193</u>
			NPENDTPFGTMRFa	<u>194</u>
			ASEDALFGTMRFa	<u>195</u>
			EDGNAPFGTMRFa	196
			EAEEPLGTMRFa	197
			SADDSAPFGTMRFa	198
			NPLGTMRFa	199
			717 20 77 77 77	
FLP-4			PTFIRFa	<u>200</u>
			ASPSFIRFa	<u>201</u>
EL D 5		-	ADVDVEIDE	202
FLP-5			APKPKFIRFa	<u>202</u>
			AGAKFIRFa	<u>203</u>
			GAKFIRFa	<u>204</u>
FLP-6	KSAYMRFa	205	(6 copies) KSAYMRFa	205
111-0	KOA I WIKI a	200	(o copies) icon i initia	
FLP-7			(2 copies) TPMQRSSMVRFa	<u>206</u>
			(3 copies) SPMQRSSMVRFa	207
			SPMERSAMVRFa	208
			SPMDRSKMVRFa	209
•				
FLP-8			(3 copies) KNEFIRFa	<u>210</u>
ELDO	NDCENDE-	211	(2 porios) V DCEVDE-	211
FLP-9	KPSFVRFa	<u>211</u>	(2 copies) KPSFVRFa	<u>211</u>

30773/6223ND1US

FLP-10	QPKARSGYIRFa	212
FLP-11	AMRNALVRFa	213
	ASGGMRNALVRFa	214
	NGAPQPFVRFa	215
FLP-12	RNKFEFIRFa	<u>216</u>
FLP-13	SDRPTRAMDSPLIRFa	217
	(2 copies) AADGAPLIRFa	<u>218</u>
	(2 copies) APEASPFIRFa	219 220 221
	ASPSAPLIRFa	<u>220</u>
	SPSAVPLIRFa	<u>221</u>
	SAAAPLIRFa	<u>222</u>
	ASSAPLIRFa	223
FLP-14	(4 copies) KHEYLRFa	<u>224</u>
FLP-15	GGPQGPLRFa	225
	GPSGPLRFa	226
FLP-16	AQTFVRFa	227
	GQTFVRFa	<u>228</u>
FLP-17	(2 copies) KSAFVRFa	229
	KSQYIRFa	<u>230</u>
FLP-18	DFDGAMPGVLRFa	<u>231</u>
	. DMPGVLRFa	<u>232</u>
	KSVPGVLRFa	<u>233</u>
	SVPGVLRFa	<u>234</u>
	EIPGVLRFa	<u>235</u>
	SEVPGVLRFa	<u>236</u>
	DVPGVLRFa	<u>237</u>
	SVPGVLRFa	<u>238</u>
OTHER	TKFQDFLRFa	239
PUTATIVE	AMRNSLVRFa	<u>240</u>
FLP GENES	DYDFVRFa	<u>241</u>
	DGFVRFa	<u>242</u>
	AFFKNVLRFa ·	<u>243</u>

[&]quot;a" means amide.

Please replace the paragraph beginning at page 31, line 9 with the following amended paragraph.

The Wormpep database, containing all of the predicted protein sequences encoded by the *C. elegans* genome, used in these studies, was obtained through the Sanger Centre Web site (http://www.sanger.ac.uk/Projects/C_elegans/). Wormpep versions 13 (2/13/98) through 23 (released September 4, 2000). This database contains 19,430 protein sequences, including 388 splice variants. *C. elegans* genomic DNA sequences were accessed through ACEDB (Release WS3 4-25). The databases were searched and manipulated using programs from the Wisconsin Package GCG programs.

Please replace the paragraph beginning at page 73, line 19 with the following amended paragraph.

Based on analyses to date, the invertebrate GPCR-like receptors do not appear to have highly similar sequences in other organisms, such as vertebrates and plants. However, receptors bearing lower levels of similarity, e.g., 55%, 60%, 65%, 70%, 75%, 80%, 85%, and preferably 90%, 95%, 98%, 99% and more preferably 99.5% similarity to a GPCR-like receptor amino acid sequence disclosed herein are also contemplated by the invention. Analogously, the invention comprehends receptor-encoding polynucleotides exhibiting 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, and preferably 95%, 98%, 99% and more preferably 99.5% similarity to a polynucleotide disclosed herein. Similarities can be determined using any of a variety of algorithms known in the art, with the BLAST algorithm implemented at the GenBank website (http://www.nebi.nlm.nih.gov/BLAST/) under the auspices of the National Center for Biotechnology Information, using default parameters, being preferred. These receptor sequences are anticipated to be useful in a variety of contexts. For example, it is expected that vertebrate, and more particularly mammalian, receptor sequences showing some similarity to the invertebrate GPCR-like receptors will be useful in diagnosing, and treating, a variety of neurological ailments or conditions.

Please substitute Table 6 as provided below for original Table 6 beginning on page 34, line 9.

Table 6

Q ID NO: TM1	1				TM3	(3)	TM4	14	TMS	15	TM6	91/	TM7	47
start end st	end	st	start	end	start	end	start	end	start	end	start	end	start	end
47 71 83	71 83	83		109	121	142	161	181	213	233	262	282	298	321
47 71 8		∞	83	109	121	142	161	181	213	233	277	297	313	336
42 66 7			78	104	116	137	158	178	204	224	320	340	351	374
26 50 6)	62	88	100	121	140	160	196	216	252	272	285	308
28 52	52		64	90	102	123	142	162	192	212	256	276	293	316
40 64	64		76	102	114	135	154	174	212	232	272	292	305	328
12 36	36		48	74	85	106	126.	146	178	198	229	249	263	286
27 51	51		63	68	101	122	141	161	192	212	278	298	322	345
30 54	54		99	92	104	125	146	166	194	214	244	264	283	306
51 75	75		87	113	125	146	167	187	239	259	330	350	368	391
25 49	46		61	87	99	120	139	159	189	209	246	799	286	309
38 62	62		74	100	112	133	157	177	207	227	255	275	291	314
38 62	62		74	100	112	133	157	177	207	227	255	275	291	314
38 62	62	L	74	100	112	133	157	177	207	227	255	275	291	314
38 62	62		74	100	112	133	157	177	207	227	255	275	291	314
	51		63	68	101	122	141	161	190	210	276	296	320	343
30 54	54		65	91	103	124	143	163	198	218	254	274	299	322
62 86	98		86	124	136	157	176	196	235	255	285	305	321	344
29 53	53		65	16	103	124	143	163	193	213	250	270	287	310
36 60	09		72	86	110	131	150	170	220	240	274	294	306	329
10 34	34		46	72	84	105	126	146	185	205	282	302	320	343
26 80	80		92	118	130	151.	170	190	228	248	287	307	324	347
26 80	08		92	118	130	151	170	190	228	248	287	307	324	347
44 68	89		79	105	117	138	159	179	215	235	283	303	323	346
76 100	100		112	138	151	172	193	213	249	569	336	356	373	396
55 79	62		95	121	132	153	173	193	233	253	279	299	319	342
21 45	45		64	90	101	122	142	162	203	223	249	269	287	310
51 75	75		87	113	128	149	170	189	223	243	279	565	316	339
51 75	75		87	113	128	149	170	189	223	243.	279	539	316	339
OED ID MOS	r													

Where "SIN" refers to SEQ ID NOS.