1 Results

Definition 1. (Interference) Given two sets U, W, we say U k-interferes with W if

$$|U \cap W| \ge \frac{|W|}{k} \tag{1}$$

for some $k \in (0, |W|]$

Corollary 2. If |U| = |W|, then U k-interferes with W if and only if W k-interferes with U.

We restrict the upper range of k to |W| for convenience, as beyond that all values of $\frac{|W|}{k}$ will be less than 1.

Definition 3. $((\mathbf{r}, \mathbf{T}, \mathbf{k})$ -Subgraph capacity) Given a vertex set $V = \{v_1, ..., v_n\}$, the (r, T, k)-subgraph capacity of V is the maximum number of subgraphs of size r subject to the constraint that for any randomly generated subgraph U of size r,

$$\mathbb{E}[X] \le T \tag{2}$$

where X is the number of interferences caused by adding U to the existing collection of subgraphs.

Lemma 4. Given a vertex set V with n vertices and two subsets U, W of size r, the probability that U k-interferes with W is

$$\sum_{y=\left\lceil\frac{r}{k}\right\rceil}^{r} \frac{\binom{r}{y}\binom{n-r}{r-y}}{\binom{n}{r}}$$

Proof. if $V = \{v_1, ..., v_n\}$, we can represent a subset U as a vector of length n, u defined by

$$u_i = \begin{cases} 1 & \text{if } v_i \in U \\ 0 & \text{if } v_i \notin U \end{cases}$$

With this representation, U, W intersect at the indices where both vectors u, w have a 1. Let Y be a random variable denoting the number of indices where both u, w have a 1. Then

$$P(Y=y) = \frac{\binom{r}{y} \binom{n-r}{r-y}}{\binom{n}{r}} \tag{3}$$

This follows from the fact that given the first array U, we already know where the 1's are located. We can pick the y intersecting 1's for the second array in $\binom{r}{y}$ ways implicitly placing 0's in the remaining spots. We then fill the remaining n-r indices corresponding to the 0's with r-y 1's in the first array in $\binom{n-r}{r-y}$ ways. Finally we divide by the total number of possible subgraphs $\binom{n}{r}$. Then the probability that U k-interferes with W is

$$\sum_{y=\lceil \frac{r}{L} \rceil}^{r} \frac{\binom{r}{y} \binom{n-r}{r-y}}{\binom{n}{r}} \tag{4}$$

Theorem 5. Given a vertex set V with n vertices, the (r,T,k)-subgraph capacity of V is

$$\left[\frac{T}{\sum_{y=\lceil \frac{r}{k} \rceil}^{r} \frac{\binom{r}{y} \binom{n-r}{r-y}}{\binom{n}{r}}} + 1 \right]$$

Proof. Let M-1 be the number of subgraphs of size r currently generated. Add an arbitrary subgraph U of size r. From lemma 4., we know that the probability of U k-interfering with another subgraph is $\sum_{y=\left\lceil\frac{r}{k}\right\rceil}^{r}\frac{\binom{r}{y}\binom{n-r}{r-y}}{\binom{n}{r}}$. This can be interpreted as the expected number of additional k-interferences U will cause with one subgraph. Since there are M-1 other subgraphs, the expected number of k-interferences by adding U is

$$\sum_{y=\left\lceil\frac{r}{k}\right\rceil}^{r} \frac{\binom{r}{y}\binom{n-r}{r-y}}{\binom{n}{r}} (M-1) \tag{5}$$

From equation (2), we have

$$\sum_{y=\left\lceil \frac{r}{k}\right\rceil}^{r} \frac{\binom{r}{y}\binom{n-r}{r-y}}{\binom{n}{r}} (M-1) \le T \implies M \le \frac{T}{\sum_{y=\left\lceil \frac{r}{k}\right\rceil}^{r} \binom{r}{y}\binom{n-r}{r-y}} + 1 \tag{6}$$

The (r, T, k)-subgraph capacity of V is the largest integer M that satisfies equation (6).

1

Alternate proof. Suppose we have M subgraphs in the collection. Pick two subgraphs U, W. From lemma 4., we know that the probability of U k-interfering with W is $\sum_{y=\left\lceil\frac{r}{k}\right\rceil}^{r}\frac{\binom{r}{y}\binom{n-r}{r-y}}{\binom{n}{r}}$. Since all subgraphs have the same size, this is the probability that U, W pair will cause 2 k-interferences. So the expected number of interferences caused by one pair is

$$2\sum_{y=\left\lceil\frac{r}{k}\right\rceil}^{r} \frac{\binom{r}{y}\binom{n-r}{r-y}}{\binom{n}{r}}$$

We know that there are $\binom{M}{2} = M(M-1)/2$ such pairings so the expected number of total interferences is

$$2\frac{M(M-1)}{2} \sum_{y=\lceil \frac{r}{k} \rceil}^{r} \frac{\binom{r}{y} \binom{n-r}{r-y}}{\binom{n}{r}} = M(M-1) \sum_{y=\lceil \frac{r}{k} \rceil}^{r} \frac{\binom{r}{y} \binom{n-r}{r-y}}{\binom{n}{r}}$$

Since there are M subgraphs, the expected number of interferences due to one subgraph is

$$\frac{M(M-1)}{M} \sum_{y=\left\lceil \frac{r}{k} \right\rceil}^{r} \frac{\binom{r}{y} \binom{n-r}{r-y}}{\binom{n}{r}} = (M-1) \sum_{y=\left\lceil \frac{r}{k} \right\rceil}^{r} \frac{\binom{r}{y} \binom{n-r}{r-y}}{\binom{n}{r}}$$

From equation (2), we have

$$(M-1)\sum_{y=\left\lceil\frac{r}{k}\right\rceil}^{r} \frac{\binom{r}{y}\binom{n-r}{r-y}}{\binom{n}{r}} \le T \implies M \le \frac{T}{\sum_{y=\left\lceil\frac{r}{k}\right\rceil}^{r} \frac{\binom{r}{y}\binom{n-r}{r-y}}{\binom{n}{r}}} + 1 \tag{7}$$

The (r, T, k)-subgraph capacity of V is the largest integer M that satisfies equation (6).