1) a) Nech f:
$$A ag{b}$$
 je liniarne zobrazenie.

Mnozina, $Ker(f) = \{\vec{x} \leq A : f(\vec{x}) = 0\} \Rightarrow jadio$

Mnozina, $Im(f) = \{\vec{y} \leq B : f(\vec{x}) = \vec{y}, \vec{x} \in A\vec{y} \Rightarrow obraz$
 $dim(A) = dim(Ker(f)) + dim(Im(f))$

b) $B: R^3 \to R^2$
 $B(x_1, x_2, x_3) = (x_1 + x_2 + x_3, x_1 - x_2 - x_1 + x_2)$
 $Im(f)$
 $\begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 2 & 1 & -4 & 1 \\ 0 & 0 & 0 & -2 & 1 & 0 \end{pmatrix}$
 $b = -c$
 $Im(f) = \{(a_1 - c, c) : a_1 c \in R\vec{y}, ked \ dim(B) = 3, dim(Im(B)) = 2$
 $Ker(f) \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & -2 & 1 & 0 & 0 \end{pmatrix}$, hned vierne povedat ze dim($Ker(B)$)=1

 $M^2 \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} \Rightarrow Vypocitame Vlaste hodnoty, a nech $a_1 = 4$.

 $postrelogieme$ zistit comm sa revnaim un a us aby sine vedel: povedat ze kedy je ta matrical dia yonali zovateľna

 $\begin{pmatrix} 1 - 2 & 1 \\ 0 & 4 - 2 & 0 \\ 1 & 2 & 1 - 2 \end{pmatrix}$
 $Au = \begin{pmatrix} 1 - 2 & 1 \\ 0 & 4 - 2 & 0 \\ 1 & 2 & 1 - 2 \end{pmatrix}$
 $det(Aa) = (1 - 2) \cdot det(4 - 2 \cdot 0) - 2 \cdot det(0 \cdot 0) + 1 \cdot det(0 \cdot 4 - 2)$
 $= \begin{pmatrix} 1 - 2 & 1 \\ -2 & 1 & -2 \end{pmatrix} \cdot det(4 - 2 \cdot 0) - 2 \cdot det(4 - 2)$
 $= \begin{pmatrix} 1 - 2 & 1 \\ -2 & 1 & -2 \end{pmatrix} \cdot det(4 - 2 \cdot 0) - 2 \cdot det(4 - 2)$
 $= \begin{pmatrix} 1 - 2 & 1 \\ -2 & 1 & -2 \end{pmatrix} \cdot det(4 - 2 \cdot 0) - 2 \cdot det(4 - 2)$
 $= \begin{pmatrix} 1 - 2 & 1 \\ -2 & 1 & -2 \end{pmatrix} \cdot det(4 - 2 \cdot 0) - 2 \cdot det(4 - 2)$
 $= \begin{pmatrix} 1 - 2 & 1 \\ -2 & 1 & -2 \end{pmatrix} \cdot det(4 - 2 \cdot 0) - 2 \cdot det(4 - 2)$
 $= \begin{pmatrix} 1 - 2 & 1 \\ -2 & 1 & -2 \end{pmatrix} \cdot det(4 - 2 \cdot 0) - 2 \cdot det(4 - 2)$
 $= \begin{pmatrix} 1 - 2 & 1 \\ -2 & 1 & -2 \end{pmatrix} \cdot det(4 - 2 \cdot 0) - 2 \cdot det(4 - 2)$
 $= \begin{pmatrix} 1 - 2 & 1 \\ -2 & 1 & -2 \end{pmatrix} \cdot det(4 - 2 \cdot 0) - 2 \cdot det(4 - 2)$
 $= \begin{pmatrix} 1 - 2 & 1 \\ -2 & 1 & -2 \end{pmatrix} \cdot det(4 - 2 \cdot 0) - 2 \cdot det(4 - 2)$
 $= \begin{pmatrix} 1 - 2 & 1 \\ -2 & 1 & -2 \end{pmatrix} \cdot det(4 - 2 \cdot 0) - 2 \cdot det(4 - 2 \cdot 0)$
 $= \begin{pmatrix} 1 & 1 & 1 \\ -2 & 1 & -2 \end{pmatrix} \cdot det(4 - 2 \cdot 0) - 2 \cdot det(4 - 2 \cdot 0)$
 $= \begin{pmatrix} 1 & 1 & 1 \\ -2 & 1 & -2 \end{pmatrix} \cdot det(4 - 2 \cdot 0) - 2 \cdot det(4 - 2 \cdot 0)$
 $= \begin{pmatrix} 1 & 1 & 1 & 2 \\ -2 & 1 & 2 \end{pmatrix} \cdot det(4 - 2 \cdot 0) - 2 \cdot det(4 - 2 \cdot 0)$
 $= \begin{pmatrix} 1 & 1 & 1 \\ -2 & 1 & 2 \end{pmatrix} \cdot det(4 - 2 \cdot 0) - 2 \cdot det(4 - 2 \cdot 0)$
 $= \begin{pmatrix} 1 & 1 & 1 \\ -2 & 1 & 2 \end{pmatrix} \cdot det(4 - 2 \cdot 0) - 2 \cdot det(4 -$$

s toho vieme povetati že a E R- E0,23, lebo ak by a : E0,23 tak kratnosti

Vlastnych čísiel sa nebude roznatí rozmernost: vlastneho podpriestora