L'électromagnétisme

I – Objectifs

- ♦ L'électromagnétisme est un des domaines les plus aboutis et les plus fondamentaux de la physique.
- ♦ En se limitant à la physique classique (par opposition à la physique quantique et à la relativité), les particules élémentaires n'ont que deux caractères intrinsèques : la masse et la charge.
- ♦ Si nous avons vu en mécanique un certain nombre d'applications qui mettent en œuvre l'aspect massique des objets (par l'inertie et la gravitation), nous allons désormais voir quelques implications de la charge des particules :
 - → en tant que source de champ (chapitres 1 et 2)
 - → en tant que point matériel subissant des forces engendrées par le champ (chapitre 7 de mécanique)
 - → en tant que description moléculaire de la matière (chapitre 3)
- ♦ Nous verrons aussi cette année que l'électromagnétisme permet d'expliquer l'électrocinétique. De même en 2^e année, l'électromagnétisme permettra d'expliquer les phénomènes optiques.

II – Limites

- ♦ Même si l'électromagnétisme a pu être incorporée à la fois à la mécanique quantique et à la relativité restreinte, pour notre part, nous nous contenterons d'une approche classique.
- ♦ Cela signifie que ce que nous étudierons :
 - → évoluera dans un domaine non microscopique (nous n'expliquerons pas comment un électron reste autour du noyau mais nous étudierons des mouvements d'électrons « dans le vide »)
 - \rightarrow des objets ou des particules qui ont des vitesses non relativistes (soit $v \leq c/3$)
- ♦ Et pour cette année, nous nous limiterons à des champs électrique et magnétique statiques (ie. indépendants du temps).

Électromagnétisme

Chapitre 3

Les dipôles électromagnétiques

Les dipôles électromagnétiques

Jusqu'à présent nous avons regardé comment le champ pouvait être créé par « des charges » sans que nous nous posions trop la question d'où venaient ces charges. Dans ce chapitre nous allons poser les bases d'un modèle qui permet de faire le lien entre champ électromagnétique et matière. Ce lien est double car il s'agit à la fois de pouvoir déterminer le champ créé par de la matière qui est globalement neutre mais localement chargée et à la fois de déterminer les actions que cette matière subit de la part d'un champ électromagnétique.

Nous découperons notre études en deux parties. Nous verrons tout d'abord le dipôle électrique, *ie.* le modèle permettant de décrire le comportement de la matière vis-à-vis du champ électrique et ensuite nous verrons tout naturellement le dipôle magnétique dont le nom permet de comprendre qu'il s'agit du modèle de la matière en rapport avec le champ magnétique.

I – Le dipôle électrostatique

I·1 – La modélisation

$I \cdot 1 \cdot i$ – ils sont partout

- ♦ Nous savons que la matière est globalement neutre car les atomes le sont : il faut une opération extérieure pour charger la matière ce qui correspond, au niveau atomique, à la capture ou à la cession d'un électron du nuage électronique d'un atome.
- ♦ Une fois la matière chargée, nous sommes ramenés, au niveau de l'interaction avec le champ (en tant que source active ou matière passive) aux cas étudiés dans les chapitres précédents.
- ♦ Que se passe-t-il dans le cas très fréquent où la matière reste globalement neutre?

* molécules polaires

- \diamond Certaines molécules globalement neutres peuvent néanmoins présenter une répartition de charges telle que le barycentre des charges positives δ^{\oplus} ne soit pas superposé au barycentre des charges négatives δ^{\ominus} .
- \diamond C'est le cas de molécules telles que HCl ou H_2O .

♦ Cet effet peut être du à des électronégativités différentes des différents atomes composant la molécules et / ou à la géométrie particulière de la molécule.

* atomes polarisables

- \diamond Au delà de ces molécules qui ont intrinsèquement des barycentres de charges δ^{\oplus} et δ^{\ominus} différents, quasiment toutes les molécules peuvent être déformées par un champ extérieur de telle sorte qu'elles aussi voient leurs barycentres δ^{\oplus} et δ^{\ominus} se distinguer.
- \Leftrightarrow Considérons ainsi une molécule parfaitement sphérique dont les barycentres δ^{\oplus} et δ^{\ominus} sont confondus et soumettons-le à un champ uniforme \vec{E} .

 \diamond Parce que les charges positives subissent une force dans le sens de \vec{E} alors que les charges négatives subissent une force dans le sens opposées, nous pouvons voir que globalement le champ \vec{E} a tendance à le déformer et, ainsi, à séparer les deux barycentres δ^{\oplus} et δ^{\ominus} .

$I \cdot 1 \cdot ii - \text{modèle simple}$

♦ Pour représenter une distribution de charges globalement neutre nous utiliserons le modèle dit du dipôle électrique.

Un $dip\^ole$ électrique est un ensemble de deux charges opposées ponctuelles distantes de a.

- \diamond Sauf précision contraire, nous prendrons toujours $a={\bf C}^{\rm te}$ mais rien ne l'oblige *a priori*. Dans ce cas, le dipôle est un dipôle électro**statique**.
- ♦ Toujours dans l'idée que ces dipôles vont modéliser des molécules, *ie.* des choses très petites à l'échelle mésoscopique et *a fortiori* à l'échelle macroscopique, nous pourrons toujours considérer que nous nous plaçons à de très grandes distances du dipôle.

 \Leftrightarrow Le but, dans un premier temps, va être de trouver le potentiel $V_{\rm dip}$ et le champ $\vec{E}_{\rm dip}$ créé par un dipôle dans l'approximation dipôlaire.

$I \cdot 2$ – Des champs plus faibles

$I \cdot 2 \cdot i$ – analyse

- ❖ Le dipôle est une distribution de type disque puisqu'elle n'admet qu'une invariance par rotation et pas d'invariance par translation.
- ♦ Ici nous pouvons utiliser le repérage cylindrique mais nous allons plutôt utiliser le repérage sphérique car nous savons déjà que l'intérêt du dipôle est d'être utilsé à très grande distance, ie. à une distance telle qu'il semble être ponctuel.
- \diamondsuit Nous pouvons donc en déduire que le potentiel ne dépend pas de l'angle φ et que le champ n'en dépendra pas non plus :

$$V(r,\theta,\varphi)$$
 et $\vec{E}(r,\theta,\varphi)$

 \diamondsuit Représentons la situation dans un plan méridien avec M quelconque.

- $\Leftrightarrow M$ étant quelconque :
 - \rightarrow le plan $\mathscr{P}(M,\vec{u}_r,\vec{u}_\theta)$ est plan de symétrie des sources
 - \rightarrow donc le plan $\mathscr{P}(M,\vec{u}_r,\vec{u}_\theta)$ est plan de symétrie du champ \vec{E}
 - \rightarrow donc $\vec{E}(M \in \mathscr{P})$ est tangent à \mathscr{P}
 - \rightarrow donc $\vec{E}(M \in \mathscr{P})$ est porté par \vec{u}_r et \vec{u}_{θ} .
- \Leftrightarrow Ici il n'y a pas assez d'invariance, nous allons donc d'abord calculer le potentiel pour ensuite en déduire le champ grâce à la relation $\vec{E} = -\overrightarrow{\text{grad}} V$.
- \diamondsuit Les grandeurs pertinentes : q pour la distribution, a pour la géométrie et ε_0 pour la structure.

$I \cdot 2 \cdot ii - d$ 'abord le potentiel

♦ Il s'agit du potentiel créé par deux charges donc cela donne tout de suite :

$$V(M) = \sum_{i} \frac{q_{i}}{4 \pi \varepsilon_{0} \|\overrightarrow{P_{i}M}\|} = \frac{q}{4 \pi \varepsilon_{0} AM} + \frac{(-q)}{4 \pi \varepsilon_{0} BM}$$

 \Leftrightarrow Calculons maintenant $\frac{1}{AM}$ et, pour cela, passons par AM^2 :

$$AM^{2} = \overrightarrow{AM}^{2} = \left(\overrightarrow{AO} + \overrightarrow{OM}\right)^{2}$$

$$= \overrightarrow{AO}^{2} + \overrightarrow{OM}^{2} + 2\overrightarrow{AO} \cdot \overrightarrow{OM} = AO^{2} + OM^{2} + 2\overrightarrow{AO} \cdot \overrightarrow{OM}$$

$$= \frac{a^{2}}{4} + r^{2} + 2 \times \frac{a}{2} \times r \times \cos(\pi - \theta) = \frac{a^{2}}{4} + r^{2} - 2 \times \frac{a}{2} \times r \times \cos\theta$$

$$= r^{2} \left(1 - \frac{a}{r} \cos\theta + \frac{a^{2}}{4r^{2}}\right)$$

 \Leftrightarrow Tenons compte maintenant de l'approximation dipôlaire $r\gg a$ qui nous permet de faire un développement limité au premier ordre du résultat précédent avec $\frac{a}{r}$ d'ordre 1 et $\frac{a^2}{r^2}$ d'ordre 2 :

$$\frac{1}{AM} = \left(AM^2\right)^{-1/2} = \frac{1}{r} \times \left(1 - \frac{a}{r}\cos\theta + \frac{a^2}{4r^2}\right)^{-1/2}$$

$$\stackrel{\text{DL}}{=} \frac{1}{r} \times \left(1 + \frac{a}{2r}\cos\theta\right)$$

♦ Nous trouvons de même

$$BM^2 = \overrightarrow{BM}^2 = \left(\overrightarrow{BO} + \overrightarrow{OM}\right)^2 = \frac{a^2}{4} + r^2 + ar\cos\theta = r^2\left(1 + \frac{a}{r}\cos\theta + \frac{a^2}{4r^2}\right)$$

♦ Puis avec l'approximation dipôlaire

$$\frac{1}{BM} = \left(AM^2\right)^{-1/2} \stackrel{\text{DL}}{=} \frac{1}{r} \times \left(1 - \frac{a}{2r}\cos\theta\right)$$

♦ Il n'y a plus qu'à rassembler le tout :

$$V(\mathit{M}) = \frac{q}{4\,\pi\,\varepsilon_0} \times \left(\frac{1}{AM} - \frac{1}{BM}\right) = \frac{q}{4\,\pi\,\varepsilon_0} \times \left(\cancel{1} + \frac{a}{2\,r}\,\cos\theta - \cancel{1} + \frac{a}{2\,r}\,\cos\theta\right)$$

♦ Et finalement nous aboutissons à

$$V(M) = \frac{q \, a \, \cos \theta}{4 \, \pi \, \varepsilon_0 \, r^2}$$

Le potentiel dipôlaire statique décroît en $\frac{1}{r^2}$.

$I \cdot 2 \cdot iii$ – puis le champ électrostatique

 \diamondsuit Utilisons la relation $\vec{E} = -\overrightarrow{\operatorname{grad}}\,V$ qui s'écrit ici, en coordonnées sphériques :

$$\vec{E} = -\frac{\partial V}{\partial r}\vec{u}_r - \frac{1}{r}\frac{\partial}{\partial \theta}\vec{u}_\theta - \underbrace{\frac{1}{r\sin\theta}\frac{\partial V}{\partial \varphi}}_{=0}\vec{u}_\varphi$$

♦ Nous trouvons ainsi :

$$\vec{E} = -\frac{-2 q a \cos \theta}{4 \pi \varepsilon_0 r^3} - \frac{1}{r} \times \frac{-q a \sin \theta}{4 \pi \varepsilon_0 r^2} = \frac{q a}{4 \pi \varepsilon_0 r^3} \times (2 \cos \theta \vec{u}_r + \sin \theta \vec{u}_\theta)$$

Le champ électrostatique dipôlaire décroît en $\frac{1}{r^3}$.

♦ Regardons ce que cela donne qualitativement.

- ♦ Nous pouvons tout d'abord constater que le champ « fuit » les charges positives.
- \diamondsuit De plus à $r = r_0$ fixé, nous pouvons constater que le champ est deux fois plus intense dans l'axe du dipôle que dans le plan médiateur.
- \Leftrightarrow Enfin nous pouvons aussi remarquer que pour $\theta = \pi/2$ le champ n'est porté que par \vec{u}_{θ} . C'est tout à fait normal étant donné que le plan médiateur est un plan d'antisymétrie des sources donc un plan d'antisymétrie du champ.

$I \cdot 2 \cdot iv$ – représentation topographique

♦ Cherchons l'expression analytique des isopotentielles et des lignes de champ.

* les isopotentielles

- \Leftrightarrow Une isopotentielle est telle que $V(M) = V_0 = \mathbb{C}^{\text{te}}$.
- \diamondsuit Ici nous allons chercher $r(\theta)$ tel que sur la courbe $r(\theta)$ nous ayons $V=V_0$. Cela donne

$$V_0 = \frac{q \, a \, \cos \theta}{4 \, \pi \, \varepsilon_0 \, r^2} \quad \rightsquigarrow \quad r^2 = \frac{q \, a \, \cos \theta}{4 \, \pi \, \varepsilon_0 \, V_0} \qquad \rightsquigarrow \qquad r(\theta) = \pm \sqrt{\frac{q \, a \, |\cos \theta|}{4 \, \pi \, \varepsilon_0 \, |V_0|}}$$

* les lignes de champ

\$\times\$ Une ligne de champ est telle qu'en tout point elle soit tangente au champ.

- \Leftrightarrow Nous avons donc en tout point $d\vec{\ell} = \lambda \vec{E}$ avec λ **totalement** inconnu (et inintéressant en plus!).
- \diamondsuit Comme $\mathrm{d}\vec{\ell}$ est un déplacement élémentaire en sphérique nous pouvons écrire

$$d\vec{\ell} = \lambda \vec{E} \quad \leadsto \quad \begin{pmatrix} dr \\ r d\theta \\ r \sin \theta d\varphi \end{pmatrix} = \lambda \begin{pmatrix} E_r \\ E_\theta \\ 0 \end{pmatrix}$$

♦ Cela donne tout d'abord

$$dr = \lambda E_r = \lambda \times \frac{2 q a \cos \theta}{4 \pi \varepsilon_0 r^3}$$
 et $r d\theta = \lambda E_\theta = \lambda \times \frac{q a \sin \theta}{4 \pi \varepsilon_0 r^3}$

 \diamondsuit En divisant ces deux relations pour éliminer λ nous obtenons

$$\frac{\mathrm{d}r}{r\,\mathrm{d}\theta} = 2\frac{\cos\theta}{\sin\theta} \qquad \rightsquigarrow \qquad \frac{\mathrm{d}r}{r} = 2\frac{\cos\theta}{\sin\theta}\,\mathrm{d}\theta$$

♦ Il s'agit d'une équation différentielle à variable séparables déjà séparée que nous pouvons primitiver

$$\ln \frac{r}{r_0} = 2 \ln |\sin \theta| \quad \rightsquigarrow \quad \frac{r}{r_0} = \sin^2 \theta \qquad \rightsquigarrow \qquad r = r_0 \sin^2 \theta$$

* Remarque: il est bien sûr totalement exclu d'apprendre ces expressions par cœur. Ces démonstrations ont été faites pour la méthode, non pour le résultat.

* graphiquement

- ♦ Sont tracées ci-dessous dans l'approximation dipôlaire :
 - → en rouge les isopotentielles
 - → en bleu les lignes de champ

♦ Nous pouvons constater que les différentes lignes se coupent bien à angle droit.

I·3 − Le tout en écriture intrinsèque

$I \cdot 3 \cdot i - loi$

* objectif

- \Rightarrow Le problème de l'expression $V(M)=\frac{q\,a\,\cos\theta}{4\,\pi\,\varepsilon_0\,r^2}$ est qu'elle dépend du repérage par l'intermédiaire de r et θ .
- \diamondsuit De plus cette loi dépend de a qui n'est pas une grandeur intéressante car à grande distance le dipôle est véritablement ponctuel!

* moment dipôlaire

Le moment dipôlaire d'un dipôle de charge q_A en A et q_B en B avec $q_A+q_B=0$ s'écrit : $\vec{p}\triangleq q_A \overrightarrow{BA}=q_B \overrightarrow{AB}$

Un moment dipôlaire s'exprime en C.m.

 \diamondsuit Comme $q_A = -q_B$, nous avons

$$q_A \overrightarrow{BA} = (-q_B) \overrightarrow{BA} = q_B \overrightarrow{AB}$$

Le moment dipôlaire est intrinsèque au dipôle.

 \diamondsuit Quand nous superposons le moment dipôlaire aux lignes de champs, nous pouvons voir que ces dernières « sortent » dans le sens de \vec{p} .

- ★ le potentiel en écriture intrinsèque
- ♦ Commençons par faire un schéma.

♦ Nous voyons alors tout de suite

$$q\,a\,\cos\theta = \vec{p}\cdot\vec{u}_r = \frac{\vec{p}\cdot\vec{r}}{r} \qquad \leadsto \qquad V(M) = \frac{\vec{p}\cdot\vec{r}}{4\,\pi\,\varepsilon_0\,r^3}$$

En écriture intrinsèque, le potentiel créé par un dipôle \vec{p} situé en D s'écrit

$$V_{\rm dip}(M) = \frac{\vec{p} \cdot \overrightarrow{DM}}{4 \pi \, \varepsilon_0 \, DM^3} \stackrel{\rm not}{=} \frac{\vec{p} \cdot \vec{r}}{4 \pi \, \varepsilon_0 \, r^3}$$

- * le champ en écriture intrinsèque
- ♦ Commençons par réécrire le champ avec le moment dipôlaire.

$$\vec{E} = \frac{q \, a}{4 \, \pi \, \varepsilon_0 \, r^3} \times \left(2 \, \cos \theta \, \vec{u}_r + \sin \theta \, \vec{u}_\theta \right) = \frac{p}{4 \, \pi \, \varepsilon_0 \, r^3} \times \left(2 \, \cos \theta \, \vec{u}_r + \sin \theta \, \vec{u}_\theta \right)$$

- \Leftrightarrow Remarquons ensuite que $\vec{p} = p \cos \theta \, \vec{u}_r p \sin \theta \, \vec{u}_{\theta}$.
- ♦ Nous pouvons alors écrire

$$\vec{E} = \frac{1}{4\pi\varepsilon_0 r^3} \times \left(3p\cos\theta \,\vec{u}_r - p\cos\theta \,\vec{u}_r + p\sin\theta \,\vec{u}_\theta\right) = \frac{1}{4\pi\varepsilon_0 r^3} \times \left(3p\cos\theta \,\vec{u}_r - \vec{p}\right)$$

 \Leftrightarrow Et avec $p \cos \theta = \vec{p} \cdot \vec{u}_r$ nous arrivons à :

$$\vec{E} = \frac{3 (\vec{p} \cdot \vec{u}_r) \vec{u}_r - \vec{p}}{4 \pi \varepsilon_0 r^3} = \frac{3 (\vec{p} \cdot \vec{r}) \vec{r} - r^2 \vec{p}}{4 \pi \varepsilon_0 r^5}$$

♦ Ce résultat n'est pas à connaître, mais à savoir reconnaitre et, surtout, à savoir qu'il existe.

$I \cdot 3 \cdot ii$ – valeurs numériques

♦ Étant donnés les ordres de grandeur des tailles et des charges des charges des molècules, leurs moments dipôlaires vaudront à peu près

$$p = q a = e \times r_0 = 1.6 \times 10^{-19} \times 10^{-10} = 10^{-29}$$

Pour les molécules, le moment dipôlaire est exprimé en debye (D) avec

$$1 D = \frac{1}{3} \cdot 10^{-29} C.m$$

- ♦ Quelques valeurs :
 - → pour $H_2O: p = 1.85 D$
 - \rightarrow pour NH₃ : p = 1.5 D
 - \rightarrow pour HCl : p = 1.08 D

I·4 – Idoinotons

$I \cdot 4 \cdot i$ - situation

 \Leftrightarrow Considérons un cercle glabalement neutre chargé pour moitié par la charge linéique $+\lambda$ et pour moitié opposée par la charge linéique $-\lambda$.

- ♦ Le but va être de chercher le champ créé par cette distribution en tout point de l'axe puis d'interpréter le résultat en terme de dipôle.
- ♦ Analyse physique :
 - → Ici la distribution n'est d'aucun type puisqu'il n'y a aucune invariance. Toutefois, vu que les charges se répartissent sur un cercle nous utiliserons un repérage polaire pour un point situé dessus.
 - \rightarrow Soit M un point de l'axe :
 - → Le plan $\mathscr{P}(M,\vec{u}_x,\vec{u}_z)$ contenant l'axe du cercle et passant entre les charges $+\lambda$ et $-\lambda$ est un plan d'antisymétrie des charges
 - \rightarrow donc le plan $\mathscr P$ est un plan d'antisymétrie de $\vec E$
 - \rightarrow donc $E(M \in \mathscr{P})$ est orthogonal à ce plan \mathscr{P}
 - \rightarrow donc $E(M \in \mathscr{P})$ est porté par \vec{u}_y .
 - → Finalement, pour M sur l'axe, nous avons $x_M = 0$, $y_M = 0$ et nous allégerons l'écriture en notant $V_{\text{axe}}(z) \stackrel{\text{not}}{=} V(0,0,z)$ et $E_{\text{axe}}(z) = E_y(0,0,z)$.
- \Rightarrow les grandeurs pertinentes sont λ pour la distribution, R pour la géométrie et ε_0 pour la structure \diamondsuit Analyse technique :
 - → le repérage est déjà choisi
 - → il n'y a pas suffisamment d'invariance pour utiliser le théorème de GAUSS, nous allons donc utiliser la loi de superposition en commençant par le potentiel.

$I \cdot 4 \cdot ii - d$ 'abord le potentiel

♦ Commençons par découper la distribution en petits morceaux.

♦ Comme il n'y a pas de charges à l'infini, nous pouvons utiliser la loi

$$V_{\text{axe}}(M) = \oint_{P \in \mathscr{C}} \frac{\lambda(P) \, \mathrm{d}\ell_P}{4 \pi \, \varepsilon_0 \, PM}$$

- ♦ Le signe « somme » se note avec un rond car la distribution est fermée.
- ♦ Comme il y a deux zones différentes, nous allons séparer le cercle & en deux morceaux : la moitié \mathscr{C}^{\oplus} sur laquelle il y a la charge $+\lambda$ et l'autre moitié $\mathscr{C} \ominus$ sur laquelle il y a la charge $-\lambda$.
- ♦ Nous avons donc, en séparant les sommes

$$\begin{split} V_{\text{axe}}(z) &= \int_{P \in \mathscr{C}^{\oplus}} \frac{+\lambda \, \mathrm{d}\ell_P}{4 \, \pi \, \varepsilon_0 \, PM} + \int_{P \in \mathscr{C}^{\ominus}} \frac{-\lambda \, \mathrm{d}\ell_P}{4 \, \pi \, \varepsilon_0 \, PM} \\ &= \int_{P \in \mathscr{C}^{\oplus}} \frac{+\lambda \, \mathrm{d}\ell_P}{4 \, \pi \, \varepsilon_0 \, \sqrt{R^2 + z^2}} - \int_{P \in \mathscr{C}^{\ominus}} \frac{+\lambda \, \mathrm{d}\ell_P}{4 \, \pi \, \varepsilon_0 \, \sqrt{R^2 + z^2}} \\ &= \frac{+\lambda \, \mathrm{d}\ell_P}{4 \, \pi \, \varepsilon_0 \, \sqrt{R^2 + z^2}} \times \left(\int_{P \in \mathscr{C}^{\oplus}} \, \mathrm{d}\ell_P - \int_{P \in \mathscr{C}^{\ominus}} \, \mathrm{d}\ell_P \right) \\ &= \frac{+\lambda \, \mathrm{d}\ell_P}{4 \, \pi \, \varepsilon_0 \, \sqrt{R^2 + z^2}} \times \left(\pi \, R - \pi \, R \right) \end{split}$$

- \Leftrightarrow Et nous trouvons $V_{\text{axe}}(z) = C^{\text{te}} = 0$.
- \Leftrightarrow Et malgré la relation $\vec{E} = -\overrightarrow{\text{grad}} V$ nous avons $\vec{E} \neq \vec{0}$.
- \Leftrightarrow La raison est que si nous avons $\vec{E} = -\overrightarrow{\text{grad}} V$ nous n'avons $\vec{E}_{\text{axe}} = -\overrightarrow{\text{grad}} V_{\text{axe}}$
- \diamondsuit En effet ici nous avons déterminé $V_{\text{axe}}(z) = V(0,0,z)$.
- \diamondsuit Nous savons de plus que le champ \vec{E} n'est porté que par \vec{u}_y donc la seule chose qui nous intéresse c'est de pouvoir calculer $\frac{\partial V}{\partial u}(x,y,z)$.
- \diamondsuit Or nous ne pouvons pas faire ce calcul puisque nous n'avons pas cherché la dépendance en y mais seulement celle en z.
- ♦ Nous pouvons aisément généraliser le résultat suivant :

Un plan d'antisymétrie des charges est un plan d'isopotentielle nulle.

$I \cdot 4 \cdot iii$ – ensuite le champ

♦ Nous n'avons guère le choix, nous allons utiliser la loi de superposition des champs, en séparant, comme pour le potentiel, en deux parties \mathscr{C}^{\oplus} et \mathscr{C}^{\ominus}

$$\vec{E}axe(z) = \oint_{P \in \mathcal{C}} \frac{\lambda(P) \, \mathrm{d}\ell_P \, \overrightarrow{PM}}{4 \, \pi \, \varepsilon_0 \, PM^3} = \oint_{P \in \mathcal{C}^{\oplus}} \frac{+\lambda \, \mathrm{d}\ell_P \, \overrightarrow{PM}}{4 \, \pi \, \varepsilon_0 \, PM^3} + \oint_{P \in \mathcal{C}^{\ominus}} \frac{-\lambda \, \mathrm{d}\ell_P \, \overrightarrow{PM}}{4 \, \pi \, \varepsilon_0 \, PM^3}$$

- ♦ Géométriquement, nous voyons que :
 - $\rightarrow d\ell_P = R d\theta$

 - $\overrightarrow{PM} = -R \vec{u}_r + z \vec{u}_z$ $\rightarrow PM^3 = (R^2 + z^2)^{3/2}$
 - ightharpoonup comme nous voulons uniquement la composante sur \vec{u}_y nous pouvons d'ores et déjà ajouter

$$\vec{u}_r = \cos\theta \, \vec{u}_x + \sin\theta \, \vec{u}_\theta \quad \leadsto \quad \overrightarrow{PM} \cdot \vec{u}_y = -R \, \vec{u}_r \cdot \vec{u}_y = -R \, \sin\theta$$

 \diamondsuit Nous avons ainsi, en ne gardant que la composante non nulle sur \vec{u}_y

$$E_{\text{axe}} = \vec{E}axe(z) \cdot \vec{u}_y = \int_{\pi}^{2\pi} \frac{-\lambda R^2 \sin \theta}{4 \pi \varepsilon_0 (R^2 + z^2)^{3/2}} - \int_0^{\pi} \frac{-\lambda R^2 \sin \theta}{4 \pi \varepsilon_0 (R^2 + z^2)^{3/2}}$$
$$= \frac{\lambda R^2}{4 \pi \varepsilon_0 (R^2 + z^2)^{3/2}} \times \left(-\int_{\pi}^{2\pi} \sin \theta \, d\theta \int_0^{\pi} \sin \theta \, d\theta\right)$$

♦ Et ainsi :

$$\vec{E}_{\rm axe}(z) = \frac{\lambda R^2}{\pi \,\varepsilon_0 \left(R^2 + z^2\right)^{3/2}} \,\vec{u}_y$$

$I \cdot 4 \cdot iv$ – interprétation en terme de dipôle

* champ à grande distance

- \Leftrightarrow Plaçons nous à z tel que $z \gg R$.
- ♦ Alors le champ tend vers :

$$\vec{E}_{\text{dip,axe}}(z) = \frac{\lambda R^2}{\pi \, \varepsilon_0 \, z^3} \, \vec{u}_y$$

 \diamondsuit Nous retrouvons une décroissance en $\frac{1}{r^3}$ ce qui est conforme à un champ dipôlaire.

* dipôle équivalent

♦ représentons qualitativement le champ électrique en quelques points.

♦ Précédemment nous avions trouvé l'expression suivante du champ dipôlaire

$$\vec{E} = \frac{q \, a}{4 \, \pi \, \varepsilon_0 \, r^3} \times \left(2 \, \cos \theta \, \vec{u}_r + \sin \theta \, \vec{u}_\theta \right)$$

- \diamondsuit Ici nous sommes dans le cas où $\theta=\frac{\pi}{2}$ et r=z.
- ♦ Autrement dit, pour que l'analogie soit juste, il faut :

$$\frac{q \, a}{4 \, \pi \, \varepsilon_0 \, z^3} = \frac{\lambda \, R^2}{\pi \, \varepsilon_0 \, z^3} \qquad \rightsquigarrow \qquad q \, a = 4 \, \lambda \, R^2$$

- \Leftrightarrow En faisant le choix naturel de prendre $q = \lambda \pi R$ qui correspond à la totalité de la charge $+\lambda$ portée par \mathscr{C}^{\oplus} , nous arrivons à $a = \frac{4R}{\pi}$.
- \diamondsuit Le résultat précédent signifie qu'à grande distance la répartition précédente de charges se comporte comme un ensemble de deux charges ponctuelles séparées de $a = \frac{4R}{\pi}$.

★ retrouver l'équivalence d'avance

- ♦ Il est possible de trouver le champ dipôlaire créé par la distribution sans passer par le calcul exact.
- \diamond Pour cela il faut connaître à quelle dipôle (caractérisé par sa charge q et la distance a) est équivalent la distribution.

Dans l'approximation dipôlaire, le comportement d'un ensemble globalement neutre de charge est équivalent à celui de deux charges positives et négatives situées aux barucentres des charges positives et négatives et de charges les charges totales respectives.

- ♦ Nous admettrons ce résultat.
- ♦ Si les deux barycentres sont confondus¹, alors le champ n'est plus dipôlaire mais quadripôlaire . . . et c'est un autre problème.
- ♦ Regardons ce qu'il en est pour la distribution précédente.

trouver un barycentre

❖ Partons de l'expression de la cote du barycentre des masses pour deux points, barycentre appelé aussi « centre d'inertie »

$$z_G = \frac{m_1 z_1 + m_2 z_G}{m_1 + m_2} \qquad \Longrightarrow \qquad z_g = \frac{\sum m_i z_i}{\sum m_i}$$

- \diamondsuit Nous pouvons réécrire cette somme de manière continue avec $m_i z_i \longrightarrow \mathrm{d} m_P z_P$.
- ♦ Cela nous conduit à l'expression

$$z_G = \frac{\int_{P \in \mathscr{C}} z_P \, \mathrm{d}m_P}{\int_{P \in \mathscr{C}} \mathrm{d}m_P} = \frac{1}{m_{\text{tot}}} \times \int_{P \in \mathscr{C}} z_P \, \mathrm{d}m_P$$

♦ Pour une autre grandeur extensive, ici la charge au lieu de la masse, nous avons donc directement

$$z_G = \frac{1}{q_{\text{tot}}} \times \int_{P \in \mathscr{C}} z_P \, \mathrm{d}q_P$$

calcul et vérification

♦ Cherchons la cote du barycentre des charges d'un demi-cercle.

¹Exemple : deux charges identiques positives sur des sommets opposés d'un carré et deux charges négatives opposée sur les autres sommets.

- ♦ Avec les notations précédentes, nous avons
 - $\rightarrow z_P = R \sin \theta$
 - $dq_P = \lambda \, d\ell_P = \lambda \, R \, d\theta$
 - $\rightarrow q_{\rm tot} = \lambda \pi R$
- ♦ Cela nous mène à

$$z_G = \frac{1}{\lambda \pi R} \times \int_0^{\pi} \lambda R \, d\theta \, R \sin \theta = \frac{\lambda R^2}{\lambda \pi R} \times \int_0^{\pi} \sin \theta \, d\theta \qquad \rightsquigarrow \qquad z_G = \frac{2R}{\pi}$$

 \Leftrightarrow Et nous retrouvons bien le résultat précédent à savoir que dans le cas de l'approximation dipôlaire le cerceau est équivalent à deux charges $\lambda \pi R$ séparées de $2 \times \frac{2R}{\pi}$.

I·5 – Forces subies par un dipôle rigide

$I \cdot 5 \cdot i$ – rigidité d'un dipôle

Un dipôle est dit *rigide* lorsque la distance entre ses charges ne varie pas.

- ♦ Un dipôle rigide peut bouger, avancer, tourner sur lui-même, mais **pas** se déformer : tout se passe comme s'il s'agissait d'un solide.
- ♦ Un dipôle rigide permet de modéliser des molécules polaires.

$I \cdot 5 \cdot ii$ – résultante

- * champ uniforme
- \Leftrightarrow Représentons les deux charges modélisant le dipôle et calculons la résultante des forces exercées par le champ \vec{E}_0 uniforme

♦ La force totale s'écrit

$$\vec{f} = -q \vec{E}(B) + (+q) \vec{E}(A) = -q \vec{E}_0 + q \vec{E}_0 = \vec{0}$$

Dans un champ électrique uniforme un dipôle électrique subit une résultante de force nulle.

- * champ non uniforme
- loi
- ♦ Pour la résultante, le début est identique

$$\vec{f} = -q \vec{E}(B) + (+q) \vec{E}(A) = -q \vec{E}(B) + q \vec{E}(A)$$

 \diamondsuit Développons l'expression précédente en précisant les positions de B et A

$$\vec{r}_A = \overrightarrow{OA}$$
 et $\vec{r}_B = \overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} \stackrel{\text{not}}{=} \overrightarrow{OA} + \vec{a}$

♦ Nous avons ainsi

$$\vec{f} = -q \, \vec{E}(\vec{r}_B) + q \, \vec{E}(\vec{r}_A) = -q \, \vec{E}(\overrightarrow{OA} + \vec{a}) + q \, \vec{E}(\overrightarrow{OA}) = -q \, \left(E_x(\overrightarrow{OA} + \vec{a}) - E_x(\overrightarrow{OA}) \right) \, \vec{u}_x$$

$$-q \, \left(E_y(\overrightarrow{OA} + \vec{a}) - E_y(\overrightarrow{OA}) \right) \, \vec{u}_y$$

$$-q \, \left(E_z(\overrightarrow{OA} + \vec{a}) - E_z(\overrightarrow{OA}) \right) \, \vec{u}_z$$

 \diamond Comme a est très petit devant toutes les grandeurs caractéristiques du problème (notamment celle concernant la variation du champ électrique), nous pouvons écrire

$$E_x(\overrightarrow{OA} + \overrightarrow{a}) - E_x(\overrightarrow{OA}) = dE_x = \overrightarrow{\operatorname{grad}}(E_x) \cdot \overrightarrow{a}$$

♦ En effectuant cette opération sur les trois composantes, nous obtenons :

$$\vec{f} = -q \begin{pmatrix} dE_x \\ dE_y \\ dE_z \end{pmatrix} = -q \begin{pmatrix} \overrightarrow{grad}(E_x) \cdot \vec{a} \\ \overrightarrow{grad}(E_y) \cdot \vec{a} \\ \overrightarrow{grad}(E_z) \cdot \vec{a} \end{pmatrix}$$

$$= -q \times \vec{a} \cdot \begin{pmatrix} \overrightarrow{grad}(E_x) \\ \overrightarrow{grad}(E_y) \\ \overrightarrow{grad}(E_y) \\ \overrightarrow{grad}(E_z) \end{pmatrix} -q \times \vec{a} \cdot \overrightarrow{grad} \begin{pmatrix} E_x \\ E_y \\ E_z \end{pmatrix}$$

$$= -\left(q \vec{a} \cdot \overrightarrow{grad}\right) \vec{E}$$

 \Leftrightarrow Et avec $\vec{p} = q \vec{a}$ nous arrivons à

La force subie par un dipôle rigide \vec{p} plongé dans un champ \vec{E} non uniforme s'écrit

$$\vec{f} = \left(\vec{p} \cdot \overrightarrow{\text{grad}} \right) \vec{E}$$

- l'opérateur $(\vec{v} \cdot \overrightarrow{\text{grad}})$ est bien moins difficile qu'il n'y paraît **et** sera revu en 2^{e} année.

quer à chacune des composantes de \vec{E}

- \rightarrow avec $\vec{p} \cdot \left(\overrightarrow{\text{grad}} \vec{E}\right)$ qui n'a strictement aucune signification puisque le gradient doit agir sur un champ scalaire
- \Leftrightarrow En effectuant $\left(\vec{p} \cdot \overrightarrow{\text{grad}}\right)$ nous trouvons

$$p_x \frac{\partial}{\partial x} + p_y \frac{\partial}{\partial y} + p_z \frac{\partial}{\partial z}$$

♦ Cela signifie que, tout étant développé, nous avons

$$\vec{f} = - \left(p_x \frac{\partial E_x}{\partial x} + p_y \frac{\partial E_x}{\partial y} + p_z \frac{\partial E_x}{\partial z} \right)$$

$$p_x \frac{\partial E_y}{\partial x} + p_y \frac{\partial E_y}{\partial y} + p_z \frac{\partial E_y}{\partial z}$$

$$p_x \frac{\partial E_z}{\partial x} + p_y \frac{\partial E_z}{\partial y} + p_z \frac{\partial E_z}{\partial z} \right)$$

▶ Remarque: heureusement que dans les cas pratiques il y a **beaucoup** de simplifications!

interprétation

 \diamondsuit Considérons un champ porté par \vec{u}_x , ne dépendant que de \vec{u}_x et un dipôle \vec{p} porté lui aussi par \vec{u}_x .

$$\overrightarrow{f_B} \xrightarrow{-q} \xrightarrow{+q} \overrightarrow{f_A} \xrightarrow{\overrightarrow{U_x}}$$

♦ Nous avons alors

$$\vec{E} = E(x) \vec{u}_x \quad \leadsto \quad \left(\vec{p} \cdot \overrightarrow{\text{grad}} \right) = p_x \frac{\mathrm{d}}{\mathrm{d}x} \quad \leadsto \quad f_x = p_x \frac{\mathrm{d}E_x}{\mathrm{d}x}$$

- \Leftrightarrow Dans le cas représenté $p_x > 0$ et $\frac{\mathrm{d}E_x}{\mathrm{d}x} > 0$ donc $f_x > 0$: le dipôle est attiré vers la droite.
- ♦ Au niveau des charges nous pouvons constater que la charges positive est légèrement plus à droite que la charge négative donc elle subit une force légèrement plus intense.

Un dipôle orienté dans le sens du champ a tendance à se déplacer vers les zones de champ intense.

I.5.iii - moment

- * champ uniforme
- ♦ Reprenons la situation précédente et considérons le champ uniforme.

 \diamondsuit Calculons le moment par rapport à O des forces exercées par le champ électrique

$$\vec{M}_O(\vec{f}) = \overrightarrow{OA} \wedge \vec{f}_A + \overrightarrow{OB} \wedge \vec{f}_B \qquad = \overrightarrow{OA} \wedge (q \vec{E}_0) + \overrightarrow{OB} \wedge (-q \vec{E}_0)$$
$$= q (\overrightarrow{OA} - \overrightarrow{OB}) \wedge \vec{E}_0 \qquad q \overrightarrow{BA} \wedge \vec{E}_0$$

Le moment subit par un dipôle plongé dans un champ \vec{E} s'écrit $\vec{\mathcal{M}} = \vec{p} \wedge \vec{E}$

- ❖ Remarquons que ce moment est indépendant du point par rapport auquel il est calculé.
 - * champ non uniforme
- ♦ Il n'est pas utile de faire le cas où le champ n'est pas uniforme car le moment n'est pas nul avec un champ uniforme.
- ♦ La situation était différente pour le cas de la résultante qui était nulle avec un champ uniforme : nous n'avions pas eu le choix que de regarder le cas non uniforme.
 - * équilibre, interprétation
- ♦ Un dipôle est à l'équilibre lorsque le moment qu'il subit est nul.

Un dipôle subit un moment nul lorsque son moment dipôlaire \vec{p} est dans la même direction que le champ électrique.

♦ Prenons un dipôle aligné avec le champ mais de sens opposé et écartons-le de sa position d'équilibre.

$$\overrightarrow{p} \xrightarrow{\vec{E}} - \overrightarrow{p} \xrightarrow{\text{instable } \vec{E}}$$

- ♦ Nous voyons que le moment subi a tendance à rabattre encore davantage le dipôle sur le champ : la position d'équilibre est instable.
- \diamondsuit Pour un dipôle initialement dans le même sens que \vec{E} c'est le contraire : la position d'équilibre est stable.

Les dipôles ont tendance à pointer dans la même direction et dans le même sens que le champ \vec{E} .

$I \cdot 5 \cdot iv$ – bilan

- ♦ L'eau est composé de molécules polaires autrement dit, de dipôles.
- ♦ Prenons un bâton de plastique et électrisons-le par frottement.
- ♦ En rapprochant le bâton de l'eau, nous constatons que celle-ci est attirée.

- ♦ En fait il se passe les phénomènes suivants :
 - → les molécules d'eau arrivent de manière totalement désordonnée
 - → lorsque le champ électrique commence à se faire sentir, les molécules ont tendance à s'orienter dans la direction et le sens du champ
 - \Rightarrow les molécules plus ou moins alignées et dans le sens de \vec{E} sont attirées vers les zones de sens intenses c'est-à-dire vers le bâton : le filet d'eau est dévié
 - → la gravité aidant les molécules d'eau s'éloignent des zones de champ et les molécules perdent leurs orientations

I-6 – Point de vue énergétique pour un dipôle rigide

$I \cdot 6 \cdot i$ – l'énergie potentielle . . .

L'énergie potentielle que possède un dipôle rigide électrostatique s'écrit

$$E_{\rm p} = -\vec{p} \cdot \vec{E}$$

♦ La démonstration est simple, elle consiste à sommer les énergies potentielles des deux charges.

♦ Nous avons tout d'abord

$$E_{\rm p}({\rm dip}) = E_{\rm p}(A) + E_{\rm p}(B) = q V_A + (-q) V_B = q (V_A - V_B) = q dV_{BA}$$

 \Leftrightarrow À l'aide de la relation fondamentale du gradient et de la définition de v nous pouvons écrire

$$\mathrm{d}V_{BA} = (\overrightarrow{\mathrm{grad}}\,V) \cdot \overrightarrow{BA} \qquad \rightsquigarrow \qquad E_\mathrm{p}(\mathrm{dip}) = q\,\overrightarrow{BA} \cdot \overrightarrow{\mathrm{grad}}\,V = \vec{p} \cdot -\vec{E}$$

$I \cdot 6 \cdot ii - \dots$ permet de retrouver la force

♦ Partons de la définition d'une force conservative

$$\vec{f} = -\overrightarrow{\text{grad}} E_{\text{p}} = -\overrightarrow{\text{grad}} (\vec{p} \cdot \vec{E})$$

- \Leftrightarrow Pour que cette relation soit égale à $-\left(\overrightarrow{p}\cdot\overrightarrow{\text{grad}}\right)\overrightarrow{E}$ il **faut** que $\overrightarrow{p}=\overrightarrow{\mathbf{C}^{\text{te}}}.$
- ♦ Nous pouvons donc réécrire la force subie par un dipôle sous la forme

$$\vec{f} = -\overrightarrow{\operatorname{grad}} (\vec{p} \cdot \vec{E})_{|\vec{p} = \overrightarrow{\operatorname{Cst}}}$$

♦ Cette expression n'est pas forcément plus intéressante que l'autre, elle n'est donc donnée qu'à titre indicatif.

I·7 − Cas du dipôle non rigide

$I \cdot 7 \cdot i$ – molécule déformable

- ♦ Il s'agit d'une molécule dont la répartition des électrons est suffisamment symétrique pour que le barycentre associé se confonde avec le noyau.
- ♦ Dans un champ électrique, il y a une légère déformation du nuage électronique ce qui permet à la molécule d'acquérir un moment dipôlaire.

Le coefficient de polarisabilité α d'une entité (atome, molécule, ...) est défini par

$$\vec{p} = \alpha \, \varepsilon_0 \, \vec{E}$$

 $\alpha \text{ est en m}^3$

 \diamondsuit La dimension de α se retrouve aisément à partir de celle de E:

$$E = \frac{p}{\alpha \,\varepsilon_0} \equiv \frac{(C) \times (m)}{\varepsilon_0 \,(m)^3} \equiv \frac{(C)}{\varepsilon_0 \,(m)^2}$$

- ♦ Il s'agit bien là de la dimension du champ électrique.
- \Leftrightarrow Comme les dimensions à l'échelle des molécules sont de l'ordre de 10^{-10} m nous pouvons en déduire que pour les molécules $\alpha \simeq 10^{-30}$ m³.

$I \cdot 7 \cdot ii$ – la force peut se négocier ...

♦ En reprenant le même raisonnement que celui effectué pour le dipôle rigide, le lecteur pourra vérifier que la force s'écrit de la même manière.

La force subie par un dipôle \vec{p} plongé dans un champ \vec{E} non uniforme s'écrit

$$\vec{f} = \left(\vec{p} \cdot \overrightarrow{\text{grad}} \right) \vec{E}$$

$\text{I-7-}iii - \dots$ mais pas l'énergie potentielle

- \diamondsuit Prenons le cas simple où le champ n'est porté que par \vec{u}_x .
- \Leftrightarrow Nous avons alors $\vec{p} = \alpha \, \varepsilon_0 \, \vec{E}$ soit $p_x = \alpha \, \varepsilon_0 \, E_x$.
- ♦ Ainsi la force s'écrit

$$f_x = p_x \frac{dE_x}{dx} = \alpha \,\varepsilon_0 \,E_x \frac{dE_x}{dx} = \frac{d}{dx} \left(\frac{1}{2} \,\alpha \,\varepsilon_0 \,E_x^2 \right) = -\frac{d}{dx} \left(-\frac{1}{2} \,p_x \,E_x \right)$$

♦ Et cette relation est bien différente de

$$\vec{f} = -\overrightarrow{\text{grad}} E_{\text{p}}$$
 avec $E_{\text{p}} = -\frac{1}{2} \vec{p} \cdot \vec{E}$

II – Le dipôle magnétostatique

II·1 – Modélisation

$\text{II} \cdot 1 \cdot i$ - origine atomique

- ♦ Bien qu'il s'agisse de mécanique quantique, les électrons au sein d'un atome possèdent une sorte de mouvement.
- ♦ Or une charge en mouvement n'est autre qu'un courant électrique.
- ♦ Dans ces conditions, en tant que « courant électrique », l'électron sera à la fois source de champ magnétique et subira des forces de la part de celui-ci.
- ♦ Insistons : le concept de mouvement n'existe pas à l'échelle atomique. C'est seulement que, pour ce que nous allons traiter, « tout se passe comme si ». Alors faisons « comme si ».

$\text{II} \cdot 1 \cdot ii - \text{modèle simple}$

* une boucle de courant

- ♦ Nous modéliserons le « mouvement » d'un électron par un mouvement circulaire.
- ♦ Dans ces conditions, tout se passe comme s'il se comportant comme une spire circulaire de courant.

♦ Dans la suite, nous allons nous concentrer sur cette spire circulaire de courant en oubliant qu'il s'agit en fait d'un électron qui ne bouge pas vraiment mais que tout se passe comme si.

* grandeur caractéristique

Le $moment\ dipôlaire\ magnétique\ d'un\ dipôle\ magnétique\ s'écrit$

$$\mathcal{M} = i \times \vec{S}$$

où \vec{S} est le vecteur surface de la boucle de courant pris dans le sens de i.

- \diamondsuit Il faut remarquer la différence de vocabulaire entre « moment dipôlaire » et « moment dipôlaire magnétique ».
- ❖ Pour le premier, il faudrait en toute rigueur parler de « moment dipôlaire électrique » sauf que son utilisation est si courante que l'usage autorise le raccourci « moment dipôlaire » en sous-entendant « électrique » ;
- ❖ En revanche, pour le dipôle magnétique, il faudra **systématiquement** préciser « magnétique ». L'usage autorise le raccourci « moment magnétique » où cette fois est sous-entendu l'aspect « dipôlaire ».

Le moment dipôlaire magnétique est une grandeur intrinsèque.

♦ Considérons une boucle de courant dans laquelle circulaire un courant dont nous connaissons le sens et cherchons le moment magnétique que cela donne suivant le sens dans lequel nous fléchons la boucle.

- ♦ Nous voyons que dans les deux cas nous avons le même moment magnétique ce qui confirme bien le caractère intrinsèque de cette grandeur.
 - ★ approximation dipôlaire
- ❖ Tout comme le dipôle électrique, le dipôle magnétique va être étudié à grande distance.

L'approxition dipôlaire pour le dipôle magnétique consiste à étudier le dipôle à des distances très grandes devant le rayon de la boucle de courant.

II·2 – Source de champ

♦ L'objectif est de déterminer le champ magnétique dans tout l'espace créé par un dipôle magnétique à grande distance.

$II \cdot 2 \cdot i$ - situation, analyse

- ♦ Nous avons, comme pour le dipôle électrique, une distribution de type « disque » qui n'admet qu'une seule invariance par rotation.
- \diamondsuit Toutefois, comme nous allons étudier le dipôle à grande distance, celui-ci sera représenté par un point et, dans ces conditions, la distance $r_{\rm sph\acute{e}}$ paraît bien plus pertinente que la distance $r_{\rm cyl}$.

- ♦ Nous allons donc choisir les coordonnées sphérique.
- \Leftrightarrow Avec l'invariance par rotation, nous pouvons d'ores et déjà écrire que $\vec{B}(r,\theta \mathscr{D})$.
- \diamondsuit Les grandeurs pertinentes sont i pour la distribution, R pour la géométrie et μ_0 pour la structure.
- ♦ Étant donné le peu d'invariances, nous pouvons mettre de côté toute autre méthode que la loi de BIOT et SAVART.

$\text{II} \cdot 2 \cdot ii$ – une intégrale vectorielle . . .

 \diamond Commençons par bien poser les choses en prenant notamment le point M dans le plan $(O, \vec{u}_x, \vec{u}_z)$, ce qui ne particularise pas le résultat.

♦ La loi de Biot et Savart s'écrit

$$\vec{B}(M) = \oint_{P \in \mathscr{C}} \frac{\mu_0}{4\pi} \times \frac{i \, \mathrm{d}\vec{\ell}_P \wedge \overrightarrow{PM}}{PM^3}$$

- \diamondsuit Notons (x,0,z) les coordonnées de M et (X,Y,0) les coordonnées de P.
- ♦ De là, nous avons tout d'abord

$$d\vec{\ell}_P = \begin{pmatrix} dX \\ dY \\ 0 \end{pmatrix} \qquad \text{et} \qquad \overrightarrow{PM} = \begin{pmatrix} x - X \\ 0 - Y \\ z \end{pmatrix}$$

 \diamondsuit Nous pouvons alors exprimer PM^2

$$\begin{split} PM^2 &= (x-X)^2 + (-Y)^2 + z^2 &= x^2 + X^2 - 2xX + Y^2 + z^2 \\ &= (x^2 + z^2) + (X^2 + Y^2) - 2xX &= r^2 + R^2 - 2xX \end{split}$$

 \diamondsuit Nous avons ainsi, en utilisant l'approximation dipôlaire $r \gg R$

$$PM^{-3} = (PM^{2})^{-3/2} \qquad \left(r^{2} + R^{2} - 2xX\right)^{-3/2}$$

$$= r^{-3} \left(1 + \frac{R^{2}}{r^{2}} - \frac{2xX}{r^{2}}\right)^{-3/2} \stackrel{\text{DL}}{=} r^{-3} \left(1 + \left(-\frac{3}{2} \times \left(-\frac{2xX}{r^{2}}\right)\right)\right)$$

$$= r^{-3} \left(1 + \frac{3xX}{r^{2}}\right)$$

♦ Nous avons de plus

$$d\vec{\ell}_P \wedge \overrightarrow{PM} = \begin{pmatrix} dX \\ dY \\ 0 \end{pmatrix} \wedge \begin{pmatrix} x - X \\ -Y \\ z \end{pmatrix} = \begin{pmatrix} z \, dY \\ -z \, dX \\ -Y \, dX - (x - X) \, dY \end{pmatrix}$$

♦ Et donc

$$\frac{d\vec{\ell}_P \wedge \overrightarrow{PM}}{PM^3} = \frac{1}{r^3} \left(1 + \frac{3xX}{r^2} \right) \times \begin{pmatrix} z \, dY \\ -z \, dX \\ -Y \, dX - (x - X) \, dY \end{pmatrix}$$

♦ Finalement le champ magnétique s'écrit

$$\vec{B}(M) = \frac{\mu_0 i}{4 \pi r^3} \times \left(\oint_{P \in \mathscr{C}} \left(1 + \frac{3 x X}{r^2} \right) z \, dY \, \vec{u}_x \right.$$

$$+ \oint_{P \in \mathscr{C}} \left(1 + \frac{3 x X}{r^2} \right) \left(-z \, dX \right) \vec{u}_y$$

$$+ \oint_{P \in \mathscr{C}} \left(1 + \frac{3 x X}{r^2} \right) \times \left(-Y \, dX - (x - X) \, dX \right) \vec{u}_Z \right)$$

$\text{II} \cdot 2 \cdot iii - \dots$ donne 7 intégrales scalaires \dots

- * décompte
- \Leftrightarrow Seuls X et Y varient puisque relatifs à P alors que x et z sont constants.
- ♦ Nous avons donc 7 intégrales à calculer :

$$\rightarrow$$
 sur $\vec{u}_x : I_1 = \oint_{P \in \mathscr{C}} dY$ et $I_2 = \oint_{P \in \mathscr{C}} X dY$

$$\rightarrow$$
 sur $\vec{u}_y : I_3 = \oint_{P \in \mathscr{L}} dX$ et $I_4 = \oint_{P \in \mathscr{L}} X dX$

$$\Rightarrow \operatorname{sur} \vec{u}_z : I_5 = \oint_{P \in \mathscr{C}} Y \, \mathrm{d}X \; ; \; I_6 = \oint_{P \in \mathscr{C}} X \, Y \, \mathrm{d}X \; \operatorname{et}I_7 = \oint_{P \in \mathscr{C}} X^2 \, \mathrm{d}Y$$

★ calcul

- \diamondsuit Maintenant qu'il faut *effectivement* les calculer, il est évident que le repérage polaire pour P est plus adapté.
- ♦ Avec le schéma ci-dessous, nous avons donc :

$$\begin{cases} X = R \cos \alpha \\ Y = R \sin \alpha \end{cases} \longrightarrow \begin{cases} dX = -R \sin \alpha \, d\alpha \\ dY = R \cos \alpha \, d\alpha \end{cases}$$

- ♦ Nous pouvons donc procéder aux substitutions et aux calculs.
- \Leftrightarrow Pour I_1 , nous avons

$$I_1 = \oint_{P \in \mathscr{C}} dY = \int_0^{2\pi} R \cos \alpha \, d\alpha = 0$$

 \diamondsuit Pour $I_2,$ nous avons, en notant $S=\pi\,R^2$

$$I_2 = \oint_{P \in \mathscr{C}} X \, dY = \int_0^{2\pi} R^2 \cos^2 \alpha \, d\alpha = \frac{R^2}{2} \times 2\pi = S$$

 \Leftrightarrow Pour I_3

$$I_3 = \oint_{P \in \mathscr{C}} dX = \int_0^{2\pi} -R \sin \alpha \, d\alpha = 0$$

 \Leftrightarrow Pour I_4

$$I_4 = \oint_{P \in \mathscr{C}} X \, dX = \int_0^{2\pi} -R^2 \cos \alpha \sin \alpha \, d\alpha = \left[\frac{R^2}{2} \cos^2 \alpha \right]_0^{2\pi} = 0$$

 \Leftrightarrow Pour I_5 , toujours avec $S = \pi R^2$

$$I_5 = \oint_{P \in \mathscr{C}} Y \, dX = \int_0^{2\pi} -R^2 \sin^2 \alpha \, d\alpha = -S$$

 \Leftrightarrow Pour I_6 ensuite

$$I_{6} = \oint_{P \in \mathscr{C}} X Y \, dX = \int_{0}^{2\pi} -R^{3} \cos \alpha \, \sin^{2} \alpha \, d\alpha = \left[-\frac{R^{3}}{3} \, \sin^{3} \alpha \right]_{0}^{2\pi} = 0$$

 \Leftrightarrow Et enfin pour I_7

$$I_7 = \oint_{P \in \mathscr{L}} X^2 \, dY = \int_0^{2\pi} -R^3 \cos^3 \alpha \, d\alpha = \int_0^{2\pi} -R^3 (1 - \sin^2 \alpha) \cos \alpha \, d\alpha = 0$$

- * rassemblement
- ♦ Finalement il reste

$$\vec{B}(M) = \frac{\mu_0 i}{4 \pi r^3} \times \begin{pmatrix} \frac{3 x}{r^2} z \times S \\ 0 \\ +S + S - \frac{3 x^2}{r^2} \times S \end{pmatrix} = \frac{\mu_0 i S}{4 \pi r^3} \times \begin{pmatrix} \frac{3 x z}{r^2} \\ 0 \\ +2 - \frac{3 x^2}{r^2} \end{pmatrix}$$

$ext{II} \cdot 2 \cdot iv - \dots$ pour un résultat déjà vu

- ♦ Il faut maintenant réécrire tout cela avec les coordonnées choisies initialement à savoir les coordonnées sphériques.
- ♦ Représentons-les.

♦ Nous avons ainsi

$$\vec{u}_x = \sin \theta \, \vec{u}_r + \cos \theta \, \vec{u}_\theta \\ = \frac{x}{r} \, \vec{u}_r + \frac{z}{r} \, \vec{u}_\theta$$
 et
$$= \frac{z}{r} \, \vec{u}_r - \sin \theta \, \vec{u}_\theta \\ = \frac{z}{r} \, \vec{u}_r - \frac{x}{r} \, \vec{u}_\theta$$
 et

♦ Cela donne donc, en remplaçant

$$\begin{split} \vec{B}(M) &= \frac{\mu_0 \, i \, S}{4 \, \pi \, r^3} \times \left(\frac{3 \, x \, z}{r^2} \times \left(\frac{x}{r} \, \vec{u}_r + \frac{z}{r} \, \vec{u}_\theta \right) + \left(2 - \frac{3 \, x^2}{r^2} \right) \times \left(\frac{z}{r} \, \vec{u}_r - \frac{x}{r} \, \vec{u}_\theta \right) \right) \\ &= \frac{\mu_0 \, i \, S}{4 \, \pi \, r^3} \times \left(\left(\frac{3 \, x \, z}{r^2} + \frac{2 \, z}{r} - \frac{3 \, x \, z}{r^2} \right) \, \vec{u}_r + \left(\frac{3 \, x \, (z^2 + x^2)}{r^3} - \frac{2 \, x}{r} \right) \, \vec{u}_\theta \right) \\ &= \frac{\mu_0 \, i \, S}{4 \, \pi \, r^3} \times \left(\frac{2 \, z}{r} \, \vec{u}_r + \frac{x}{r} \, \vec{u}_\theta \right) \end{split}$$

 \Leftrightarrow Ce qui donne, en notant $\mathcal{M} = i S$

$$\vec{B}(M) = \frac{\mu_0 \, \mathscr{M}}{4 \, \pi \, r^3} \times \left(2 \, \cos \theta \, \vec{u}_r + \sin \theta \, \vec{u}_\theta \right)$$

Fonctionnellement les champs dipôlaires magnétique et électrique sont rigoureusement identiques.

♦ En particulier nous pouvons écrire tout de suite en écriture intrinsèque

$$\vec{B}(M) = \frac{\mu_0}{4\pi} \times \frac{3(\vec{M} \cdot \vec{r})\vec{r} - r^2\vec{M}}{r^5}$$

$II \cdot 2 \cdot v - topographie$

- * avec l'approximation dipôlaire
- ♦ Le champ magnétique étant identique, nous pouvons tracer immédiatement les lignes de champ.

* hors approximation dipôlaire

♦ Bien que les lignes de champs électrique et magnétique soient identiques à grande distance pour les dipôles éponymes, la situation est, en revanche, bien différente à courte distance.

Graphique 1

Graphique 2

- ♦ Sont représentés :
 - → sur le graphique 1, les lignes de champ magnétique près d'une boucle de courant
 - → sur le graphique 2, les lignes de champ magnétique près de deux charges opposées

* une analogie explicable

- ♦ Le fait que les lignes de champ se ressemblent furieusement est explicable.
- ♦ En effet loin des sources il n'y a ni courant ni charges, donc la zone est vide.
- \diamond Or le théorème de GAUSS implique que dans une zone vide de l'espace le flux de \vec{E} soit toujours nul ... comme l'est celui du champ magnétique.
- \diamondsuit De même le théorème d'Ampère implique que dans une zone vide de l'espace la circulation de \vec{B} soit toujours nulle . . . comme l'est celle du champ électrique.
- ❖ Finalement nous sommes face à deux champs qui obéissent aux mêmes lois, il est donc normal ou au moins pas très surprenant, qu'ils soient similaires.

II·3 – Actions subies

$II \cdot 3 \cdot i$ – origine physique

Les forces de LAPLACE sont à l'orgine des forces subies par le dipôle magnétique.

- ♦ Bien sûr, cela est vrai dans le modèle de la boucle de courant car, encore une fois, au niveau atomique . . .
- ♦ Regardons d'un peu plus près ce qui se passe.

 \Leftrightarrow Comme la force de LAPLACE s'écrit, sur chaque portion de la boucle $d\vec{f}_L = i d\vec{\ell} \wedge \vec{B}$ et en notant \vec{u}_z la direction du vecteur surface \vec{S} , nous pouvons constater que la composante intéressante du champ magnétique est B_r .

Pour qu'un dipôle magnétique subisse une force, il faut des lignes de champ magnétiques évasées, ie. un champ magnétique non uniforme.

$II \cdot 3 \cdot ii$ – des résultats analogues

♦ Nous allons faire directement l'analogie suivante

$$\vec{B} \longleftrightarrow \vec{E} ; \qquad \vec{\mathcal{M}} \longleftrightarrow \vec{p} \qquad \text{et} \qquad \frac{\mu_0}{4\pi} \longleftrightarrow \frac{1}{4\pi \,\varepsilon_0}$$

- * résultante
- \diamondsuit Nous pouvons écrire tout de suite

Un dipôle magnétique subit, dans un champ magnétique \vec{B} une force

$$\vec{f} = -\left(\vec{\mathcal{M}} \cdot \overrightarrow{\operatorname{grad}}\right) \vec{B}$$

Un dipôle magnétique qui pointe dans le sens du champ magnétique est attiré vers les zones de champ intense.

* moment

Un dipôle magnétique subit, dans un champ magnétique \vec{B} un moment $\vec{\Gamma} = \mathscr{M} \wedge \vec{B}$

Les dipôles magnétiques ont tendance à pointer dans la même direction et le même sens que le champ magnétique.

- \diamondsuit Donc globalement, les dipôles magnétiques, tout comme les dipôles électriques, s'orientent dans le sens de \vec{B} puis sont attirés vers les zones de champ intense.
 - ★ énergie potentielle
- ♦ Encore par analogie

Un dipôle magnétique plongé dans un champ \vec{B} possède l'énergie potentielle $E_{\rm p} = -\vec{\mathcal{M}} \cdot \vec{B}$

- ★ tout ça pour la chimie
- ♦ L'interaction dipôle magnétique champ magnétique est au cœur du fonctionnement de la RMN (Résonance Magnétique Nucléaire) appelé maintenant IRM (Imagerie par Résonance Magnétique).
- ♦ Le but d'une IRM est de sonder la matière pour en déterminer ses constituants.
- ♦ C'est très utilisé aussi en médecine pour imager le fonctionnement du cerveau.

Les dipôles électromagnétiques

Au niveau du cours

- * Les définitions
- ♦ Sont à savoir :
 - → approximation dipôlaire
 - → dipôle rigide
 - → moment dipôle électrique, dipôle magnétique
 - **★** Les grandeurs
- ♦ Connaître la dimension / l'unité d'un moment dipôlaire électrique, d'un moment dipôlaire magnétique
 - ★ Les lois
- ♦ Connaître :
 - → l'expression du potentiel créé par un dipôle électrostatique
 - → la force subie par un dipôle électrique, un dipôle magnétique
 - → le moment subi par un dipôle électrique, un dipôle magnétique
 - → l'énergie potentielle d'un dipôle électrique, un dipôle magnétique
 - * la phénoménologie
- ♦ Connaître :
 - \rightarrow la dépendance en r du potentiel dipôlaire, du champ dipôlaire
 - → l'allure des isopentielles et des lignes de champ créées par un dipôle électrique
 - → l'allure des lignes de champ créées par un dipôle magnétique
 - → l'effet des actions des champs électrique et magnétique sur les dipôles
 - ★ les exemples fondamentaux
- ♦ Savoir retrouver le potentiel et le champ électrique créé par un dipôle électrostatique.

Au niveau des savoir-faire

- * petits gestes
- ♦ Il faut savoir :
 - → exprimer un moment dipôlaire
 - → repérer si une distribution de charges peut constituer ou non un dipôle
 - → adapter l'expression intrinsèque du potentiel dipôlaire à une situation quelconque
 - * exercices classiques

Table des matières

Ι	Le e	Le dipôle électrostatique					
	$I \cdot 1$	La mod	élisation				
		$I \cdot 1 \cdot i$	ils sont partout				
			molécules polaires				
			atomes polarisables				
		$I \cdot 1 \cdot ii$	modèle simple				
	$I \cdot 2$	Des cha	mps plus faibles				
		$I \cdot 2 \cdot i$	analyse				
		$I \cdot 2 \cdot ii$	d'abord le potentiel				
		$I \!\cdot\! 2 \!\cdot\! iii$	puis le champ électrostatique				
		$I \cdot 2 \cdot iv$	représentation topographique				
			les isopotentielles				
			les lignes de champ				
			graphiquement				
	I-3	Le tout	en écriture intrinsèque				
		$I \cdot 3 \cdot i$	loi				
			objectif				
			moment dipôlaire				
			le potentiel en écriture intrinsèque				
			le champ en écriture intrinsèque				
		$I \cdot 3 \cdot ii$	valeurs numériques				
	$I \cdot 4$	Idoinote	ons				
		$I \cdot 4 \cdot i$	situation				
		$I \cdot 4 \cdot ii$	d'abord le potentiel				
		$\text{I-}4 \cdot iii$	ensuite le champ				
		${\rm I}\!\cdot\! 4\!\cdot\! iv$	interprétation en terme de dipôle				
			champ à grande distance				
			dipôle équivalent				
			retrouver l'équivalence d'avance				
	I.5	Forces s	subies par un dipôle rigide				
		$I \cdot 5 \cdot i$	rigidité d'un dipôle				
		$I \cdot 5 \cdot ii$	résultante				
			champ uniforme				
			champ non uniforme				
		$I \cdot 5 \cdot iii$	moment				
			champ uniforme				
			champ non uniforme				
			équilibre, interprétation				
		$I \cdot 5 \cdot iv$	bilan				
	I-6	Point de	e vue énergétique pour un dipôle rigide				
		$I \cdot 6 \cdot i$	l'énergie potentielle				
		$\text{I-}6\!\cdot\!ii$	permet de retrouver la force				
	I.7	Cas du	dipôle non rigide				
		${\rm I}\!\cdot\! 7\!\cdot\! i$	molécule déformable				
		${\rm I}\!\cdot\! 7\!\cdot\! ii$	la force peut se négocier				
		${\rm I}\!\cdot\! 7\!\cdot\! iii$	mais pas l'énergie potentielle				

II	Le d	Le dipôle magnétostatique					
		-	ation	20			
		$\text{II} \cdot 1 \cdot i$	origine atomique				
		$\text{II}\!\cdot\!1\!\cdot\!ii$	modèle simple	20			
			une boucle de courant	20			
			grandeur caractéristique	20			
			approximation dipôlaire	21			
	$II \cdot 2$	Source of	de champ	21			
		$II \cdot 2 \cdot i$	situation, analyse	21			
		$II \cdot 2 \cdot ii$	une intégrale vectorielle	22			
		$\text{II-}2 \cdot iii$	donne 7 intégrales scalaires	23			
			$\ {\rm d\'ecompte} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	23			
			calcul	24			
			rassemblement	25			
		$II \cdot 2 \cdot iv$	pour un résultat déjà vu	25			
		$II \cdot 2 \cdot v$	topographie	26			
			avec l'approximation dipôlaire	26			
			hors approximation dipôlaire	26			
			une analogie explicable	27			
	$II \cdot 3$	Actions	subies	27			
		$II \cdot 3 \cdot i$	origine physique	27			
		$II \cdot 3 \cdot ii$	des résultats analogues	27			
			résultante	27			
			moment	28			
			énergie potentielle	28			
			tout ca pour la chimie	28			