CS 771A: Intro to Machine Learning, IIT Kanpur				Quiz I (28 Jan 2025)		
Name	MELBO				20 marks	
Roll No	250007	Dept.	AWSM		Page 1 of 2	

Instructions:

- 1. This question paper contains 1 page (2 sides of paper). Please verify.
- 2. Write your name, roll number, department above in block letters neatly with ink.
- 3. Write your final answers neatly with a blue/black pen. Pencil marks may get smudged.
- 4. Don't overwrite/scratch answers especially in MCQ such cases may get straight 0 marks.
- 5. Do not rush to fill in answers. You have enough time to solve this quiz.

Q1. (True-False) Write T or F for True/False in the box on the right and a brief justification in the space below. Note: $L \in \mathbb{R}^{2 \times 2}$ is not necessarily positive semidefinite. (3 x (1+2) = 9 marks)

For any $\mathbf{w} \in \mathbb{R}^2$, $b \in \mathbb{R}$, $L \in \mathbb{R}^{2 \times 2}$, the set $\{\mathbf{x} \in \mathbb{R}^2 : \mathbf{w}^\top (L\mathbf{x}) + b = 0\}$ is either a line or the entire \mathbb{R}^2 or else empty. If **T**, give a brief proof. If **F**, give a counterexample.

Т

The set is simply $\{\mathbf{x} \in \mathbb{R}^2 : \mathbf{v}^\top \mathbf{x} + b = 0\}$ for $\mathbf{v} = L^\top \mathbf{w}$. If $\mathbf{v} \neq \mathbf{0}$ then the set is a line (that passes through the origin if b = 0). If $\mathbf{v} = \mathbf{0}$ and b = 0 too then the set is the entire \mathbb{R}^2 . If $\mathbf{v} = \mathbf{0}$ but $b \neq 0$ then the set is empty. Please note that proof-by-example or proof-by-picture are not admissible.

For any $L \in \mathbb{R}^{2 \times 2}$ and any convex set $\mathcal{C} \subset \mathbb{R}^2$, if we define $\mathcal{D} \stackrel{\text{def}}{=} \{\mathbf{x} \in \mathbb{R}^2 : L\mathbf{x} \in \mathcal{C}\}$, then \mathcal{D} is always convex or empty. If \mathbf{T} , give a brief proof. If \mathbf{F} , give a counterexample.

Т

Suppose $\mathbf{x}, \mathbf{y} \in \mathcal{D}$ i.e. $L\mathbf{x} \in \mathcal{C}$ and $L\mathbf{y} \in \mathcal{C}$. Since \mathcal{C} is convex, this means that $\frac{1}{2}(L\mathbf{x} + L\mathbf{y}) \in \mathcal{C}$. However, that means that $L\left(\frac{\mathbf{x}+\mathbf{y}}{2}\right) \in \mathcal{C}$ i.e. $\frac{\mathbf{x}+\mathbf{y}}{2} \in \mathcal{D}$. By midpoint convexity, we have shown that the set \mathcal{D} is convex. Please note that proof-by-example or proof-by-picture are not admissible.

If circles are sets of points of the form $\{\mathbf{x} \in \mathbb{R}^2 : \|\mathbf{x}\|_2 = r\}$ for some $r \geq 0$, then for any $L \in \mathbb{R}^{2 \times 2}$, the set $\{\mathbf{x} \in \mathbb{R}^2 : \|L\mathbf{x}\|_2 = 1\}$ is either a circle or else empty. If **T**, give a brief proof. If **F**, give a counterexample (where it is non-empty but not a circle).

F

Consider $L = \mathbf{1}\mathbf{1}^{\mathsf{T}}$ the all-ones matrix. The set is $\left\{\mathbf{x} \in \mathbb{R}^2 \colon |\mathbf{1}^{\mathsf{T}}\mathbf{x}| = \frac{1}{\sqrt{2}}\right\}$ as $\|\mathbf{1}\mathbf{1}^{\mathsf{T}}\mathbf{x}\|_2 = \sqrt{2} \cdot |\mathbf{1}^{\mathsf{T}}\mathbf{x}|$ The set of points where $|\mathbf{1}^{\mathsf{T}}\mathbf{x}| = \frac{1}{\sqrt{2}}$ is a pair of lines since they correspond to the two lines,

namely $\mathbf{1}^{\mathsf{T}}\mathbf{x} = \frac{1}{\sqrt{2}}$ and $\mathbf{1}^{\mathsf{T}}\mathbf{x} = -\frac{1}{\sqrt{2}}$. Thus, this set is clearly not a circle. Other examples exist e.g., if L is a diagonal matrix with unequal entries then the set becomes an oblong ellipse and not a circle. Note that $L = \mathbf{00}^{\mathsf{T}}$, i.e. the all-zero matrix is not a valid counterexample since in that case the set would be empty, and the question demands a counterexample with a non-empty set.

Q2. (Subcalculus) Melba came across a function $f: \mathbb{R} \to \mathbb{R}$ described on the right and wants to analyse its properties. For parts a,b,c,d, **fill only one circle**. For parts d,e, **answer**

$$f(x) = \begin{cases} -x & x \le 0 \\ -\ln(1+x) & 0 < x \le 1 \\ -\ln(2) & 1 < x \end{cases}$$

in the space provided. No proofs/derivations needed in any part. Note: the subdifferential at a point is a set in general (singleton set if the func. is differentiable at that point). $(1 \times 6 = 6 \text{ marks})$

Q4. (Too many prototypes) Melbu has a learning-with-prototypes (LwP) model for a binary problem with two labels + and - and 2D features. Every point on the circle $\{\mathbf{x} \in \mathbb{R}^2 : ||\mathbf{x}||_2 = 1\}$ is a - prototype and every point on the circle $\{\mathbf{x} \in \mathbb{R}^2 : ||\mathbf{x}||_2 = 2\}$ is a + prototype. Write down the equation for the decision boundary of this classifier and give justification below. (2 + 3 = 5 marks)

Write equation of decision boundary here $\left\| \mathbf{x} \right\|_2 = 1.5$

Give justification here

Polar coordinates make life simpler here. The squared Euclidean distance between two points (r, θ) and (s, ϕ) is

$$r^2 + s^2 - 2rs \cdot \cos(\theta - \phi)$$

Using the above, we deduce that for a point (r, θ) , the squared distance to the closest + prototype is $(r-2)^2$ and the squared distance to the closest – prototype is $(r-1)^2$.

The decision boundary is situated where these two are equal i.e.

