Ejercicio 1

Sebastián Jaroszewicz

5 de febrero de 2019

1. Enunciado

Sea un campo ϕ sobre tres puntos distintos de una recta $\{x_1, x_2, x_3\}$ de manera tal que podemos definir $\phi_1 = \phi(x_1), \phi_2 = \phi(x_2), \phi_3 = \phi(x_3)$. Sea también

$$\cos a = -6\phi_1^2 - 6\phi_2^2 - 6\phi_3^2 - \sqrt{2}\phi_1\phi_2 - \sqrt{2}\phi_2\phi_3$$

Se pide:

a) Encontrar la matriz A tal que

$$\left(\phi_1\phi_2\phi_3\right)A\begin{pmatrix}\phi_1\\\phi_2\\\phi_3\end{pmatrix}=\cos a$$

b) Diagonalizar la matriz A. Esto implica encontrar una matriz M y un conjunto de autovalores λ_i que permitan pasar de las variables ϕ_i a las ψ_i de la siguiente manera

$$\begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{pmatrix} = M \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix}$$

c) Mostrar que

$$\cos a = -5\psi_1^2 - 6\psi_2^2 - 7\psi_3^2$$

2. Solución

a) Dado que tenemos definido el campo en tres puntos la matriz A tendrá dimensiones 3×3 . La misma puede ser encontrado planteando la ecuación

$$(\phi_1 \phi_2 \phi_3) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{pmatrix} = -6\phi_1^2 - 6\phi_2^2 - 6\phi_3^2 - \sqrt{2}\phi_1 \phi_2 - \sqrt{2}\phi_2 \phi_3$$

e igualando los coeficientes de igual orden de ambos miembros para asi poder despejar los coeficientes de la matriz. Pero haciedno uso del hecho de que buscamos una matriz simétrica podemos ahorrarnos muchas cuentas con el siguiente razonamiento:

Mirando la ecuación anterior podemos observar que en los términos de $\cos a$ del tipo ϕ_i^2 sólo intervienen los coeficientes a_{ii} de A, con lo que rapidamente podemos identificar la diagonal de la matriz: $a_{11} = -6$ viendo que -6 es el coeficiente que acompaña a ϕ_1^2 . De manera análoga llegamos a que $a_{22} = -6$ y $a_{33} = -6$.

Para los valores que estan fuera de la diagonal usamos el hecho de que en los términos del tipo $\phi_i\phi_j$ intervienen los coeficientes a_{ij} y a_{ji} . Como la matriz es simétrica reparimos "medio valor" de cosa para cada uno. Esto lo hacemos, por ejemplo, de la siguiente manera, eel cuarto t érmino de cosa aparecen ϕ_1/phi_2 acompañados por el valor $-\sqrt{2}$, esto quiere decir que los coeficientes de A que nos interesan son el a_{12} y el a_21 . Por lo tanto le asiganmos $-\sqrt{2}/2$ a cada uno de ellos. De manera similar procedemos con el uítimo término de cosa. En definitiva la matriz A queda

$$A = \begin{pmatrix} -6 & -\sqrt{2}/2 & 0\\ -\sqrt{2}/2 & -6 & -\sqrt{2}/2\\ 0 & -\sqrt{2}/2 & -6 \end{pmatrix}$$

 a_{13} y a_{31} son iguales a cero porque en cosa no aparecen términos del tipo $\phi_1\phi_3$.

b) Para diagonlizar A debemos encontrar las raíces del polinomio definido por la ecuación que resulta de plantear

$$Av = \lambda v$$

donde v es un vector propio

$$\begin{vmatrix} -6 - \lambda & -\sqrt{2}/2 & 0\\ -\sqrt{2}/2 & -6 - \lambda & -\sqrt{2}/2\\ 0 & -\sqrt{2}/2 & -6 - \lambda \end{vmatrix} = 0$$

Desarrollando el determinante obtenemos

$$(-6-\lambda)\left[(-6-\lambda)^2 - \left(\frac{\sqrt{2}}{2}\right)^2\right] + \frac{\sqrt{2}}{2}\left[\frac{-\sqrt{2}}{2}(-6-\lambda)\right] = 0$$

Sacando $(-6 - \lambda)$ factor común y distribuyendo llegamos a

$$(6+\lambda)\left[1-(6+\lambda)^2\right]=0$$

que tiene como soluciones $\lambda_1 = -5$, $\lambda_1 = -6$, y $\lambda_1 = -7$ Con lo que tenemos los tres valores propios de la matriz A

El siguene paso consiste en obtener los vectores propios, para esto resolvemos la siguiente ecuación para los tres valores propios.

$$\begin{pmatrix} -6 - \lambda & -\sqrt{2}/2 & 0\\ -\sqrt{2}/2 & -6 - \lambda & -\sqrt{2}/2\\ 0 & -\sqrt{2}/2 & -6 - \lambda \end{pmatrix} \begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = 0$$

Reemplazando por $\lambda = -5$ tenemos

$$\begin{pmatrix} -1 & -\sqrt{2}/2 & 0\\ -\sqrt{2}/2 & -1 & -\sqrt{2}/2\\ 0 & -\sqrt{2}/2 & -1 \end{pmatrix} \begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = 0$$

Como el sistema es indeterminado podemos usar solo las ecuaciones que se obtienen con la primera y la tercer fila de la matriz

$$-x1 - \frac{\sqrt{2}}{2}x_2 = 0$$
$$-\frac{\sqrt{2}}{2}x_2 - x_3 = 0$$

de donde obtenemos el siguiente vector propio: $\tilde{v}_1 = \left(-\frac{\sqrt{2}}{2} \quad 1 \quad -\frac{\sqrt{2}}{2}\right)$ que normalizado queda $v_1 = \frac{1}{2} \begin{pmatrix} -1 & \sqrt{2} & -1 \end{pmatrix}$ Repitiendo lo anterior para los restantes valores de λ completamos el conjunto de vectores propios normalizados. A λ_2 le corresponde el vector $v_2 = -\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$ y a λ_3 le corresponde el vector $v_3 = \begin{pmatrix} \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} \end{pmatrix}$

Por lo tanto la matriz M será (ponemos los vectores propios ordenados en columnas)

$$M = \begin{pmatrix} -\frac{1}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{2} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} \end{pmatrix}$$

c) Planteamos

$$\begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{pmatrix} = M \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix}$$

Obteniendo las siguientes relaciones:

$$\phi_1 = -\frac{1}{2}\psi_1 - \frac{\sqrt{2}}{2}\psi_2 + \frac{1}{2}\psi_3$$

$$\phi_2 = \frac{1}{\sqrt{2}}\psi_1 + 0 + \frac{1}{\sqrt{2}}\psi_3$$

$$\phi_3 = -\frac{1}{2}\psi_1 + \frac{\sqrt{2}}{2}\psi_2 + \frac{1}{2}\psi_3$$

Ahora reemplazamos estas expresiones para los ϕ_i en $\cos a$ obteniedo de esta manera una expresión para cosa en términos de los ψ_i . Por comodidad y claridad de lectura vamos a escribir los cinco términos por separado:

$$-6\phi_1^2 = -6\left(-\frac{1}{2}\psi_1 - \frac{1}{\sqrt{2}}\psi_2 + \frac{1}{2}\psi_3\right)^2$$

$$-6\phi_2^2 = -6\left(\frac{1}{\sqrt{2}}\psi_1 + \frac{1}{\sqrt{2}}\psi_3\right)^2$$

$$-6\phi_3^2 = -6\left(-\frac{1}{2}\psi_1 + \frac{1}{\sqrt{2}}\psi_2 + \frac{1}{2}\psi_3\right)^2$$

$$-\sqrt{2}\phi_1\phi_2 = -\sqrt{2}\left(-\frac{1}{2}\psi_1 - \frac{1}{\sqrt{2}}\psi_2 + \frac{1}{2}\psi_3\right)\left(\frac{1}{\sqrt{2}}\psi_1 + \frac{1}{\sqrt{2}}\psi_3\right)$$

$$-\sqrt{2}\phi_2\phi_3 = -\sqrt{2}\left(\frac{1}{\sqrt{2}}\psi_1 + \frac{1}{\sqrt{2}}\psi_3\right)\left(-\frac{1}{2}\psi_1 + \frac{\sqrt{2}}{2}\psi_2 + \frac{1}{2}\psi_3\right)$$

Ya tenemos a *cosa* en función de las nuevas variables. Ahora solo resta desarroollar las expresiones, agrupar y cancelar los términos que se anulan entre si con lo que finalmente se llega a

$$cosa = -5\psi_1^2 - 6\psi_2^2 - 7\psi_3^2 = \lambda_1\psi_1^2 + \lambda_2\psi_x^2 + \lambda_3\psi_3^2$$