Determinants of Inflation in Denmark and a Panel Data analysis of Denmark and 4 other countries.

Section I: Introduction

Inflation is defined as the sustained rise in the general price level (Blanchard, Amighini, & Giavazzi, 2021, p. 577).

The negative effects of inflation are well documented. One such cost of inflation is the "shoe leather cost" (Mishkin & Posen, 1997, p. 3) – the extra cost needed to conduct day-to-day transactions rises to >1% of GDP when inflation rates rise above 100%. Another cost is that inflation induces overinvestment in the financial sector: as price instability increases, arbitrage opportunities grow (*ibid*, p. 4); the rise in the financial sector share of GDP increases by 1pp for every 10pp rise in inflation (English, 1999). This transfer of resources out of the productive sector can be "as large as a few percentage points of GDP and can even be seen at relatively low or moderate rates of inflation." (Mishkin & Posen, 1997, p. 4) Inflation is passed onto the population not only through increased prices – which reduce the purchasing power of an individual's income – but also through fiscal drag. Fiscal drag occurs when nominal income rises while real income and tax brackets remain frozen; as a result, income after tax decreases in real terms; Fischer (1994, p. 14) estimates that an inflation rate of 10% could put the social cost of fiscal drag at 2-3% of GNP.

Due to the misallocation of resources and damage to the standard of living caused by inflation, governments around the world have decided to specifically target low and stable inflation as a policy objective of their monetary authorities (Mishkin & Posen, 1997). To succeed, these monetary authorities must have a clear model for producing inflation forecasts (Masson, Savastano, & Sharma, 1997, p. 9), and must consequently understand the determinants of inflation. This paper will contribute to this understanding by estimating the relationship between inflation and past inflation, money supply, exchange rates, and global energy prices. I have chosen first to conduct a timeseries analysis of inflation, from Q1 2001 to Q4 2023, in Denmark, and then a panel data analysis of inflation in Denmark, Sweden, Iceland, Norway and the UK.

Section II will review existing evidence on the determinants of inflation and examine the models and specifications used. Section III will cover a timeseries summary and analysis of Denmark, estimating inflation as an ARMA model and then as an ARDL model. Section IV will cover a panel data analysis of inflation in the five countries. Section V will use a probit model to estimate the average marginal effects (AME) and marginal effects at average (MEA) of a change in energy price on the probability of a country achieving their inflation target.

Section II: Literature Review

Among economists, there are competing explanations for the fundamental causes of inflation. Friedman provides the well-known monetarist explanation where inflation is the result of money supply rising faster than output (Leeson & Palm, 2012, p. 3). This view is popular and the relationship between money supply growth and inflation has been examined by a number of studies.

Holod (2000) uses a VEC model to investigate the relationship between price level, exchange rate and money supply in Ukraine; a VEC rather than VAR model is used because evidence of

cointegration between the variables exists at a 5% significance level. Holod (2000) finds that the influence of money supply on inflation is not very strong, which he explains is due to concurrent fluctuations in the money demand.

Lim & Sek (2015) explore panel data on 28 countries by estimating inflation as an ARDL model against money supply (M4) and a number of other regressors. In high inflation countries, every 1% increase in the money supply is found to induce a 0.77% increase in inflation, in the long-run. In low-inflation countries, increased money supply does not have a significant effect in the long-run and decreases inflation in the short-run in low inflation countries.

Money growth leads to inflation by increasing aggregate demand, known as demand-pull inflation. On the other hand, cost-push inflation, which follows a reduction in aggregate supply, has also been examined in the literature. Cost-push inflation is typically caused by high factor prices (Ellahi, 2017, p. 3). Global energy prices are one example of a variable which should have such an effect on factor prices, and this view is supported by existing evidence.

Jatuporn (2024) and Liang & Long (2018) both estimated the impacts of global oil price changes on CPI and PPI using ARDL and NARDL models to analyse Thailand and China, respectively. Both found evidence of cointegration using the bounds cointegration methodology introduced by Perasan at al. (2001). Both studies find that ARDL models do not find evidence of long-run effects of oil price shocks on inflation, however NARDL models can capture the effects at a 1% significance level. Jatuporn (2024) finds: +1% change in oil price led to +0.147% CPI change; -1% change in oil price led to -0.115% CPI change. Liang & Long (2018) did not find significant long-run effects due to a drop in oil prices, but found a +1% change in oil price led to a +0.143% CPI change.

Finally, there is also a lot of evidence examining the effects of a currency's exchange rate on domestic prices. Movements in the exchange rate influence domestic prices through various channels, from direct effects on energy prices (discussed above) to indirect effects on import prices (Ha et al., 2019); this raises the price of inputs and thus the price of capital, reducing aggregate supply. The marginal effect of a 1% depreciation in the exchange rate on inflation is known as the exchange rate pass-through ratio (Ha et al., 2019, p. 271).

The exchange rate pass-through varies across countries and time (Ha, Kose, Ohnsorge, & Yilmazkuday, 2019, p. 284). Choudhri & Hakura (2001) estimated inflation as an ARDL model, using panel data of 71 countries. The explanatory variables were the nominal exchange rate and foreign CPI. No evidence of cointegration was found however the stationarity of the error term has not been settled (Choudhri & Hakura, 2001, p. 14). They find that the long-run pass-through rates in Denmark, Sweden, Norway, and the UK are 0.24, 0.03, 0.13, and 0.03, respectively – Iceland did not form part of the panel. They also determine that the main reason for cross-country variation in the pass-through rate is due to the different inflationary regimes between countries.

Section III: Timeseries variables, data and models

A. Data sources

The databases utilised are the IMF, OECD, Bank for International Statistics (BIS), and Federal Reserve Economic Data (FRED). CPI data was obtained from the IMF, money supply (M3) data from OECD, the exchange rate from BIS and global energy prices from FRED. The literature varies between using real effective exchange rates (Deniz, Tekce, & Yilmaz, 2016) and nominal effective exchange rates (Choudhri & Hakura, 2001; Campa & Goldberg, 2005) – in this paper I will use the nominal exchange rate following from Campa & Goldberg's (2005) model where it is the nominal rate that influences decision-makers at the microlevel. Any monthly data was converted into quarterly data by taking the value for the last month of each quarter.

B. Presenting and transforming the data

Table I contains the summary statistics for Denmark in the studied period (2000:1-2023:4). This includes the consumer price index (cpi) in 2015=100, money supply aggregate M4 (m), nominal effective exchange rate index (xr) in 2020=100, and the global energy price index (gep) in 2016=100.

	Table I			
Statistic	cpi	m	xr	gep
Mean	94.527	1271726.000	96.050	153.268
Median	96.967	1394929.000	96.120	148.764
S.D.	10.845	377165.800	3.815	64.919
Min	75.429	507134.000	85.430	61.703
Max	117.867	1922206.000	103.240	350.124
Obs	96	96	96	96

Figure I represents the variables visually in the studied period (2000:1-2023:4).

To reduce data variability and find elastic relationships (Jatuporn, 2024), all variables have been transformed into logarithmic functions (lcpi, lm, lxr, lgep).

C. Stationarity Testing

The Augmented Dickey-Fuller (ADF) test will be used to test for stationarity.

Each variable is first estimated as:

$$\Delta z_t = \gamma z_{t-1} + \sum_{i=1}^{i=p} \phi_i \Delta z_{t-i} + X + e_t$$

Where Z = [lcpi, lm, lmxr, lgep], p is the number of lagged, differenced, dependent variables to include to eliminate serial correlation, X is an array of variables that may or may not be added if the variable is exhibiting drifting or trending behaviour, and e_t is a stochastic error term.

To find the value of p, the Breusch-Godfrey (BG) test is used which to indicate how many lagged, differenced, dependent variables should be included to eliminate serial correlation. As all variables have non-zero means, they must have a drift/constant component. All variables – except lgep – appear to be increasing over time, and thus will also be testing with trend components.

First, all variables – other than lgep – are estimated using the ADF test with a trend term and then tested for serial correlation. lgep is only estimated with a drift. Once p was found¹,

Bibliography

Blanchard, O., Amighini, A., & Giavazzi, F. (2021). *Macroeconomics: A European Perspective*. Harlow: Pearson.

Campa, J. M., & Goldberg, L. S. (2005). EXCHANGE RATE PASS-THROUGH INTO IMPORT PRICES. *The Reveiw of Economics and Statistics*, 679-690.

Choudhri, E. U., & Hakura, D. S. (2001). Exchange Rate Pass-Through to Domestic Prices: Does the Inflationary Environment Matter? International Monetary Fund.

Deniz, P., Tekce, M., & Yilmaz, A. (2016). Investigating the Determinants of Inflation: A Panel Data Analysis. *International Journal of Financial Research*, 233-246.

Ellahi, N. (2017). The Determinants of Inflation in Pakistan: An Econometric Analysis. *The Romanian Economic Journal*, 2-12.

Engle, R. F., & Granger, C. W. (1987). Co-Integration and Error Correction: Representation, Estimation, and Testing. *Econometrica*, 251-276.

English, W. B. (1999). Inflation and financial sector size. *Journal of Monetary Economics*, 379-400.

Fischer, S. (1994). *Modern Approaches to Central Banking*. Cambridge, MA: National Bureau of Economic Research.

an ADF test with lags p and a trend (drift for lgep) term was estimated². Table II displays the value of p for each variable the BG test recommends to eliminate serial correlation, as well as the test statistic, 5% critical value and the MacKinnon approximate p-value from the ADF test.

Table II

Variable	Lags (p)	Test statistic	5% critical value	MacKinnon p-value
lcpi	5	-2.131	-3.460	0.5289

- Ha, J., Kose, M. A., Ohnsorge, F., & Yilmazkuday, H. (2019). Inflation and Exchange Rate Pass-Through. In J. Ha, M. A. Kose, & F. Ohnsorge, *Inflation in Emerging and Developing Economies: Evolution, Drivers, and Policies* (pp. 271-317). Washington DC: The World Bank.
- Holod, D. (2000). The Relationship between price level, money supply and exchange rate in Ukraine. Kyiv, Ukraine: National University of Kiev-Mohyla.
- Jatuporn, C. (2024). Assessing the impact of global oil prices on domestic price levels in Thailand: A nonlinear ARDL investigation. *Energy Nexus*.
- Leeson, R., & Palm, C. G. (2012). *Collected Works of Milton Friedman*. Retrieved from Hoover Institution Library & Archives: https://miltonfriedman.hoover.org/internal/media/dispatcher/271018/full
- Liang, J., & Long, S. (2018). Asymmetric and nonlinear pass-through of global crude oil price to China's PPI and CPI inflation. *Economic Research*, 240-251.
- Lim, Y. C., & Sek, S. K. (2015). An Examination on the Determinants of Inflation. *Journal of Economics, Business and Management*, 678-682.
- Masson, P. R., Savastano, M. A., & Sharma, S. (1997). *The Scope for Inflation Targeting in Developing Countries*. International Monetary Fund.
- Mishkin, F. S., & Posen, A. S. (1997). *Inflation Targeting: Lesson from four countries*. Cambridge, MA: National Bureau of Economic Research.
- Nasir, M. A., & Morgan, J. A. (2020). Paradox of Stationarity? A policy target dilemma for policymakers. *The Quarterly Review of Economics and Finance*.
- Pesaran, M. H., Yongcheol, S., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. *Journal of Applied Econometrics*, 289-326.
- Taylor, J. B. (2000). Low inflation, pass-through, and the pricing power of firms. *European Economic Review*, 1389-1408.

Appendix

Appendix 1

lm	0	-1.616	-3.455	0.7861
lxr	3	-3.271	-3.458	0.0712
lgep*	1	-2.743	-1.662	0.0059***

*** denotes the 1% significance level

 H_0 : Random walk with or without drift $*H_0$: Random walk with drift

We do not accept the alternate hypothesis that *lcpi*, *lm*, *lxr* are trend-stationary. We accept the alternate hypothesis that *lgep* stationary with drift.

lcpi, lm, and lxr are then re-estimated using the ADF test with a drift constant and tested for serial correlation³. Table III contains the new p, test statistic, 5% critical value and MacKinnon approximate p-value for this new estimation⁴.

-	-	7	1	T	77
- 1	Ta.	h	0	- /	,,

		10000 111		
Variable	Lags (p)	Test statistic	5% critical value	MacKinnon p-value
lcpi	5	-0.286	-1.663	0.3879
lm	0	-1.937	-1.661	0.0279**
lxr	4	-2.095	-1.663	0.0196**

** denotes the 5% significance level

*** denotes the 1% significance level

 H_0 : Random walk with drift

We accept the null hypothesis that lcpi is a random walk with drift, and accept the alternative hypothesis that lm and lxr are drift-stationary processes due to their non-zero means.

As lcpi is non-stationary, it is differenced (=dlcpi) and tested again for stationarity. Like before, serial correlation⁵ is tested and then an ADF test is used⁶. As dlcpi has a non-zero mean, tests are conducted using a **drift constant**. Results are shown in Table IV.

Table IV

Variable	Lags (p)	Test statistic	5% critical value	MacKinnon p-value
dlcpi	4	-4.114	-1.663	0.0000***

*** denotes the 1% significance level

We accept the alternate hypothesis that *dlcpi* is drift-stationary.

All stationary variables are displayed in Figure II.

⁴ Appendix 4

⁵ Appendix 5

⁶ Appendix 6

³ Appendix 3

D. Estimating inflation as an ARMA model

dlcpi will be estimated as an ARMA(p,q) model:

$$dlcpi_{t} = \alpha + \sum_{i=1}^{i=p} \beta_{i} dlcpi_{t-i} + \sum_{i=0}^{i=q} \gamma_{i} \epsilon_{t-i} + \epsilon_{t}$$

To select lags (p and q), I will be using the AIC and BIC up to a maximum of p = q = 2.

Table V

Model	ARMA Specification	AIC	BIC
1	(0,1)	-706.9376	-701.8299
2	(0,2)	-706.9988	-699.3292
3	(1,0)	-707.9764	-702.8686
4	(1,1)	-706.2838	-698.6222
5	(1,2)	-704.5892	-694.3737
6	(2,0)	-706.2211	-698.5594
7	(2,1)	-704.2863	-694.0708
8	(2,2)	-713.3489	-700.5795

Shown in Figure III and Table V, AIC selects model 8, ARMA(2,2), whereas SIC/BIC selects model 3, ARMA(1,0), i.e., a pure AR(1) model⁷. The regression results are given as:

Model 3:8

$$dlcpi_t = \beta_1 dlcpi_{t-1} + \epsilon_t$$

Variable	Coefficient (Robust Std. Err)	p-value
$dlcpi_{t-1}$	0.380355	0.000***
	(0.1405789)	

*** denotes the 1% significance level

Model 8:9

⁷ Appendix 7

(setting optimization to BHHH)
Iteration 0: Log pseudolikelihood = 355.98779
Iteration 1: Log pseudolikelihood = 355.98812
Iteration 2: Log pseudolikelihood = 355.98816
Iteration 3: Log pseudolikelihood = 355.98818
Iteration 4: Log pseudolikelihood = 355.98818

ARIMA regression

Sample: 2000q2	2 thru 2023q4			Number		=	95
				Wald ch	i2(1)	=	7.32
Log pseudolik	elihood = 355.	.9882		Prob >	chi2	=	0.0068
		Semirobust					
dlcpi	Coefficient	std. err.	z	P> z	[95%	conf.	interval]
	+						
dlcpi							
cons	.0046215	.0009386	4.92	0.000	.0027	819	.0064611
	,						
ARMA	İ						
ar	i						
L1.	1 .380355	.1405789	2.71	0.007	.1048	253	.6558846
		.1403703	2./1	0.007	.1040		.0338640
/sigma	.0057014	.0005091	11.20	0.000	.0047	1026	.0066993
/ Sigma	1 .005/014	.0003031	11.20	0.000	.0047	טכש	.0000993

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.

Appendix 9

⁸ Appendix 8

^{9 .} arima dlcpi, ar(1) robust

$dlcpi_t = \beta_1 dlcpi_{t-1} + \beta_t$	$\beta_2 dlcpi_{t-2} + \gamma_1 \epsilon_{t-2}$	$+\gamma_2\epsilon_{t-2}+\epsilon_t$
---	---	--------------------------------------

Variable	Coefficient	p-value
	(Robust Std. Err)	
$dlcpi_{t-1}$	-0.899534	0.000***
	(0.2194136)	
$dlcpi_{t-2}$	0.076611	0.688
	(0.221312)	
ϵ_{t-1}	1.427597	0.000***
	(0.1399993)	
ϵ_{t-2}	0.5024687	0.006***
, -	(0.1556634)	

*** denotes the 1% significance level

I will exercise discretion and choose model 8 to estimate *dlcpi* for two reasons. First, the extra parameters which it adds are mostly very significant and make intuitive sense; second, while the extra autoregressive term is insignificant, it likely decreases overall autocorrelation. This can be seen when estimating the correlogram for each model:

For these reasons, model 8, i.e., ARMA(2,2) is preferred for inflation estimation.

E. Estimating inflation as an ARDL model

dlcpi will be estimated as an ARDL model:

$$dlcpi_{t} = \alpha + \sum_{i=1}^{i=p} \beta_{i}dlcpi_{t-i} + \sum_{i=0}^{i=q} \gamma_{i}lm_{t-i} + \sum_{i=0}^{i=r} \delta_{i}lxr_{t-i} + \sum_{i=0}^{i=s} \kappa_{i}lgep_{t-i} + \epsilon_{t}$$

Specification selection, i.e., choosing p, q, r, s, will be done on the basis of AIC/BIC testing and prevalence of autocorrelation. All 54 possible specification combinations will be checked and the entire table of results is available in Appendix 10.

Model 11 is selected by both AIC and BIC, shown in Figure IV and Figure V. *Model 11:*

$$dlcpi_t = \beta_1 dlcpi_{t-1} + \gamma_1 lm_t + \gamma_2 lm_{t-1} + \delta_1 lxr_t + \kappa_1 lgep_t + \kappa_2 lgep_{t-1} + \epsilon_t$$

Variable	Coefficient	p-value
	(Robust Std. Err)	
$dlcpi_{t-1}$	0.250	0.012**
	(0.124)	
lm_t	0.0249	0.058*
v	(0.0102)	
lm_{t-1}	-0.0265	0.034**
V -	(0.00943)	
lxr_t	-0.0105	0.662
· ·	(0.0185)	

$lgep_t$	0.0176 (0.00316)	0.000***
$lgep_{t-1}$	-0.0134 (0.00277)	0.001***

Exchange rate fluctuations:

- There is reason to believe that an exchange rate peg can help to lower inflation.

Bibliography

- Blanchard, O., Amighini, A., & Giavazzi, F. (2021). *Macroeconomics: A European Perspective*. Harlow: Pearson.
- Campa, J. M., & Goldberg, L. S. (2005). EXCHANGE RATE PASS-THROUGH INTO IMPORT PRICES. *The Reveiw of Economics and Statistics*, 679-690.
- Choudhri, E. U., & Hakura, D. S. (2001). Exchange Rate Pass-Through to Domestic Prices: Does the Inflationary Environment Matter? International Monetary Fund.
- Deniz, P., Tekce, M., & Yilmaz, A. (2016). Investigating the Determinants of Inflation: A Panel Data Analysis. *International Journal of Financial Research*, 233-246.
- Ellahi, N. (2017). The Determinants of Inflation in Pakistan: An Econometric Analysis. *The Romanian Economic Journal*, 2-12.
- Engle, R. F., & Granger, C. W. (1987). Co-Integration and Error Correction: Representation, Estimation, and Testing. *Econometrica*, 251-276.
- English, W. B. (1999). Inflation and financial sector size. *Journal of Monetary Economics*, 379-400.
- Fischer, S. (1994). *Modern Approaches to Central Banking*. Cambridge, MA: National Bureau of Economic Research.
- Ha, J., Kose, M. A., Ohnsorge, F., & Yilmazkuday, H. (2019). Inflation and Exchange Rate Pass-Through. In J. Ha, M. A. Kose, & F. Ohnsorge, *Inflation in Emerging and Developing Economies: Evolution, Drivers, and Policies* (pp. 271-317). Washington DC: The World Bank.
- Holod, D. (2000). The Relationship between price level, money supply and exchange rate in Ukraine. Kyiv, Ukraine: National University of Kiev-Mohyla.
- Jatuporn, C. (2024). Assessing the impact of global oil prices on domestic price levels in Thailand: A nonlinear ARDL investigation. *Energy Nexus*.
- Leeson, R., & Palm, C. G. (2012). *Collected Works of Milton Friedman*. Retrieved from Hoover Institution Library & Archives: https://miltonfriedman.hoover.org/internal/media/dispatcher/271018/full
- Liang, J., & Long, S. (2018). Asymmetric and nonlinear pass-through of global crude oil price to China's PPI and CPI inflation. *Economic Research*, 240-251.

- Lim, Y. C., & Sek, S. K. (2015). An Examination on the Determinants of Inflation. *Journal of Economics, Business and Management*, 678-682.
- Masson, P. R., Savastano, M. A., & Sharma, S. (1997). *The Scope for Inflation Targeting in Developing Countries*. International Monetary Fund.
- Mishkin, F. S., & Posen, A. S. (1997). *Inflation Targeting: Lesson from four countries*. Cambridge, MA: National Bureau of Economic Research.
- Nasir, M. A., & Morgan, J. A. (2020). Paradox of Stationarity? A policy target dilemma for policymakers. *The Quarterly Review of Economics and Finance*.
- Pesaran, M. H., Yongcheol, S., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. *Journal of Applied Econometrics*, 289-326.
- Taylor, J. B. (2000). Low inflation, pass-through, and the pricing power of firms. *European Economic Review*, 1389-1408.

Appendix

Appendix 1

Estimated using a foreach loop in Stata. The name of the variable, e.g., lcpi, is at the top of each section followed by the results of the BG test looking at 4 lags of the error term, up to a maximum of 5 lags in the ADF test. Each variable section is then followed by a dashed line to indicate the next variable's estimation has begun. Output has been split into two columns to reduce pagination. The ADF test includes a **trend term**.

	.`v' trend 4) nomiss0 `lags'" D.`v' L(1/`lags') lags(1/4) nomiss0	D.`V' L.`v' trend	Lags: 1		l correlation	0.3428
stat bgodfrey, lags(1/ orvalues lags = 1/5 (display "Lags: quietly regress estat bgodfrey, isplay "*	4) nomiss0 `lags'" D.`v' L(1/`lags') lags(1/4) nomiss0	D.`v' L.`v' trend	-	M test for autocorn		
quietly regness estat bgodfrey, isplay "*	D.`v' L(1/`lags') lags(1/4) nomiss0	D.`v' L.`v' trend		. cest for autocolin	elation	
estat bgodfrey,	lags(1/4) nomiss0		lags(p)	chi2	df	Prob > chi2
	*"		1	1.045	1	0.3065
y IM test for autocorn			2	1.908	2	0.3851
v IM test for autocorn			3 4	2.318 2.432	3 4	0.5091 0.6568
/ IM test for autoconn			Lags: 2	H0: no seria	l correlation	
			Breusch-Godfrev LI	M test for autocorr	elation	
chi2	df	Prob > chi2				Prob > chi2
15.522	1	0.0001				
16.469 18.263	2 3	0.0003 0.0004	1 2	0.487 0.954	1 2	0.4852 0.6205
28.871	4	0.0000	3	1.118	3	0.7728 0.7442
v IM test for autocorr	elation		Lags: 3	H0: no seria	l correlation	
			lags(p)	chi2	df	Prob > chi2
0.112 2.358	1 2	0.7378 0.3076	1	0.674	1	0.4115
15.398	3	0.0015	2	0.680	2	0.7117
22.773	4	0.0001				0.6953 0.7278
H0: no seria	l correlation					
y LM test for autocorr	elation		Lags: 4			
		Proh > chi2				
			lags(p)	chi2	df	Prob > chi2
			1	0.048	1	0.8259
14.431	3	0.0024	2	0.884	2	0.6429
21.716			4	7.039	4	0.5358 0.1338
H0: no seria	l correlation		Logge E	H0: no seria	l correlation	
				M tost fon autoconn	olation	
chi2	df	Prob > chi2				Prob > chi2
13.099	1	0.0003				
						0.3668 0.3903
19.510	4	0.0006	3	6.664	3	0.0834 0.1010
H0: no seria	l correlation					
	-1-44				1 00.1 014010	
, 			Lags: 0			
			Breusch-Godfrev LI	M test for autocorr	elation	
10.241	1	0.0014				De-b112
9.600 9.516	3	0.0082 0.0232	lags(p)	ch12 	d †	Prob > chi2
13.602	4	0.0087	1	0.349	1	0.5548 0.5654
H0: no seria	l correlation		3	7.332	3	0.0620
	-1-+4		4			0.0393
			Lags: 1	no no seria	i connetation	
chi2	d f 	Prob > chi2				
0.712 0.758	1 2	0.3989 0.6844			df	Prob > chi2
4.798	3	0.1872				
5.159 			1 2	0.524 6.704	1 2	0.4692 0.0350
	l correlation		3	9.631	3	0.0220
*			4			0.0622
	-1-4:		Lags: 2	H0: no seria	ı correlation	
				M test for autocorr		
chi2	df 	Prob > chi2	lags(p)	chi2	df	Prob > chi2
			-o-\r/ I			
	H0: no seria y LM test for autocorr chi2 0.112 2.358 15.398 22.773 H0: no seria y LM test for autocorr chi2 2.284 15.294 14.431 21.716 H0: no seria y LM test for autocorr chi2 13.099 20.590 19.580 19.510 H0: no seria y LM test for autocorr chi2 13.602 H0: no seria y LM test for autocorr chi2 10.241 9.600 9.516 13.602 H0: no seria y LM test for autocorr chi2 10.712 0.758 4.798 5.159 H0: no seria	#0: no serial correlation chi2	LM test for autocorrelation	H8: no serial correlation Chi2 Of	H8: no serial correlation	H8: no serial correlation

1 3.419 1 0.0644 Bre 2 6.294 2 0.0430 3 6.598 3 0.0859 4 9.380 4 9.380 4 0.0540 10.00 1.0	lags(p) 1 2 3 4	chi2 0.039 0.099 0.266 0.548	df 1 2 3 4 1 correlation elation	0.6093 0.8636 0.9718 0.9871 Prob > chi2 0.8443 0.9517 0.9664 0.9687
Peusch-Godfrey LM test for autocorrelation	4 lags(p) lags(p)	0.340 H0: no seria test for autocorr chi2 0.039 0.099 0.266 0.548 H0: no seria test for autocorr chi2 0.050 0.200 0.441	4 1 correlation elation df 1 2 3 4 1 correlation elation df	0.9871 Prob > chi 0.8443 0.9517 0.9664
lags(p) chi2 df	lags(p)	test for autocorr chi2 0.039 0.099 0.266 0.548 H0: no seria test for autocorr chi2 0.050 0.200 0.441	elation df 1 2 3 4 1 correlation elation df	0.8443 0.9517 0.9664
1 3.419 1 0.0644 Bre 2 6.294 2 0.0430 3 1 0.9540 4 1 0.0540 4 1 0.0540 4 1 0.0540 4 1 0.0540 4 1 0.0792 Bre 2 3.880 2 0.1496 4 1 0.0792 Bre 3 0.0859 4 0.0861	lags(p)	chi2 0.039 0.099 0.266 0.548 H0: no seria test for autocorr chi2 0.050 0.200 0.441	df 1 2 3 4 1 correlation elation	0.8443 0.9517 0.9664
2 6.294 2 0.0430 3 6.598 3 0.0859 3 0.0859 4 9.300 4 0.0540 H0: no serial correlation lags(p) chi2 df Prob > chi2 Lag 1 3.080 2 0.1496 3 7.488 3 0.0579 4 8.155 4 0.0861 H0: no serial correlation H0: no serial correlation lags(p) chi2 df Prob > chi2 Lag Chi2	lags(p) 1 2 3 4	chi2 0.039 0.099 0.266 0.548 H0: no seria test for autocorr chi2 0.050 0.200 0.441	df 1 2 3 4 1 correlation elation	0.8443 0.9517 0.9664
### ### ##############################	1	0.039 0.099 0.266 0.548 H0: no seria test for autocorr chi2 0.050 0.200 0.441	1 2 3 4 1 correlation	0.8443 0.9517 0.9664
reusch-Godfrey LM test for autocorrelation	2 3 4 sqs: 3 sqs: 3 lags(p) lags(p)	0.099 0.266 0.548 H0: no seria test for autocorr chi2 0.050 0.200 0.441	2 3 4 1 correlation	0.9517 0.9664
Peusch-Godfrey LM test for autocorrelation lags(p) chi2 df Prob > chi2 Lag 1 3.080 1 0.0792 Bre 2 3.800 2 0.1496 3 7.488 3 0.0579 4 8.155 4 0.0861 H0: no serial correlation ags: 5 Peusch-Godfrey LM test for autocorrelation lags(p) chi2 df Prob > chi2 Lag 1 1.058 1 0.3036 Bre 2 3.835 2 0.1470 3 4.354 3 0.2257	4 ags: 3 ags: 3 ags(p)	0.548 H0: no seria test for autocorr chi2 0.850 0.200 0.441	4 1 correlation elation	
lags(p) chi2 df	lags(p)	chi2 0.050 0.200 0.441	elation df	
1 3.080 1 0.0792 Bre 2 3.800 2 0.1496 3 7.488 3 0.0579 4 8.155 4 0.0861 4	lags(p)	chi2 0.050 0.200 0.441	df	
2 3.800 2 0.1496 3 7.488 3 0.0579 4 8.155 4 0.0861 H0: no serial correlation H9: serial correlation lags(p) chi2 df Prob > chi2 Lag 1 1.058 1 0.3036 Bre 2 3.835 2 0.1470 3 4.354 3 0.2257	lags(p) 1 2 3 4	chi2 0.050 0.200 0.441	df	
4 8.155 4 0.0861 H0: no serial correlation ags: 5 reusch-Godfrey LM test for autocorrelation lags(p) chi2 df Prob > chi2 Lag 1 1.058 1 0.3036 Bre 2 3.835 2 0.1470 3 4.354 3 0.2257	1 2 3 4	0.050 0.200 0.441		
H0: no serial correlation reusch-Godfrey LM test for autocorrelation lags(p) chi2 df Prob > chi2 Lag 1 1.058 1 0.3036 Bre 2 3.835 2 0.1470 3 4.354 3 0.2257	2 3 4	0.200 0.441		Prob > chi
Peusch-Godfrey LM test for autocorrelation lags(p) chi2 df Prob > chi2 Lag 1 1.058 1 0.3036 Bre 2 3.835 2 0.1470 3 4.354 3 0.2257	4 İ		1 2	0.8237 0.9049
lags(p) chi2 df Prob > chi2 Lag 1 1 .058 1 0.3036 Bre 2 3.835 2 0.1470 3 4.354 3 0.2257			3 4	0.9316 0.8566
1 1.058 1 0.3036 Bre 2 3.835 2 0.1470 3 4.354 3 0.2257	gs: 4		l correlation	
2 3.835 2 0.1470 3 4.354 3 0.2257		110 36114		
3 4.354 3 0.2257	eusch-Godfrey LM	test for autocorr		
4 4.601 4 0.3308	lags(p)	chi2	df	Prob > chi
the state of the s	1	0.104	1	0.7469
H0: no serial correlation	2 3	0.271 0.899	2 3	0.8732 0.8257
gep	4	0.923	4	0.9213
	gs: 5	H0: no seria	l correlation	
		test for autocorr	elation	
			df	Dook v shi
2 11370	lags(p)	chi2		Prob > chi
3 14.406 3 0.0024 4 14.619 4 0.0056	1 2	0.123 0.876	1 2	0.7254 0.6452
H0: no serial correlation	3 4	1.435 2.940	3 4	0.6974 0.5679
egs: 1		H0: no seria	l correlation	
reusch-Godfrey LM test for autocorrelation *				
Appendix 2 IDF test using trend term for lcpi,lm,lxr and drift term for lg	aan Hoviz	ontal linas a	ddad to split	outnut into
ariable sections.	yep. 110/12	oniai iines a	ииеи ю ѕрии (эшрш тю
dfuller lcpi, lags(5) trend				
ugmented Dickey-Fuller test for unit root				
ariable: lcpi Number of obs = 90				
Number of lags = 5				
0: Random walk with or without drift				
Dickey-Fuller				
Test critical value statistic 1% 5% 10%				
Z(t) -2.131 -4.062 -3.460 -3.156				
acKinnon approximate p-value for Z(t) = 0.5289 dfuller lm, trend				
acKinnon approximate p-value for Z(t) = 0.5289				
ackinnon approximate p-value for Z(t) = 0.5289 dfuller lm, trend ickey-Fuller test for unit root Number of obs = 95 ariable: lm Number of lags = 0				
acKinnon approximate p-value for Z(t) = 0.5289 dfuller lm, trend ickey-Fuller test for unit root Number of obs = 95				
ackinnon approximate p-value for Z(t) = 0.5289 dfuller lm, trend ickey-Fuller test for unit root Number of obs = 95 ariable: lm Number of lags = 0 2: Random walk with or without drift Dickey-Fuller				
ackinnon approximate p-value for Z(t) = 0.5289 dfuller lm, trend ickey-Fuller test for unit root Number of obs = 95 ariable: lm Number of lags = 0 3: Random walk with or without drift Dickey-Fuller Test critical value				
ackinnon approximate p-value for Z(t) = 0.5289 dfuller lm, trend ickey-Fuller test for unit root Number of obs = 95 ariable: lm Number of lags = 0 2: Random walk with or without drift Dickey-Fuller				

Augmented Dickey-Fuller test for unit root

Variable: lxr

Number of obs = 92 Number of lags = 3

			Dickey-Fuller	
	Test		critical value	
	statistic	1%	5%	10%
Z(t)	-3.271	-4.058	-3.458	-3.155
MacKinnon	approximate p-val	ue for Z(t)	= 0.0712.	

. dfuller lgep, lags(1) drift

Augmented Dickey-Fuller test for unit root

Variable: lgep Number of obs = 94 Number of lags = 1

H0: Random walk with drift, d = 0

Appendix 3

Estimated using a foreach loop in Stata. The name of the variable, e.g., lcpi, is at the top of each section followed by the results of the BG test looking at 4 lags of the error term, up to a maximum of 5 lags in the ADF test. Each variable section is then followed by a dashed line to indicate the next variable's estimation has begun. Output has been columnated to reduce pagination. The ADF test includes a **drift term**

2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. } lcpi Lags: θ Breusch-Godfr 1 ags(p) 1 Breusch-Godfr 1 ags(p)		.`v' 4) nomiss0 `lags'" D.`v' L(1/`lags' lags(1/4) nomiss	
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. } lcpi Lags: θ Breusch-Godfr 1 ags(p) 1 Breusch-Godfr 1 ags(p)	display "'v'" display "Lags: 0" quietly regress D.`v' L estat bgodfrey, lags(1/ forvalues lags = 1/5 (.`v' 4) nomiss0 `lags'" D.`v' L(1/`lags' lags(1/4) nomiss	
3. 4. 5. 6. 7. 8. 9. 10. 11. 12. } lcpi lags: 0 Breusch-Godfr 1 ags(p) 1 Breusch-Godfr 1 lags(p)	display "lags: 0" quietly regress D.`v' L estat bgodfrey, lags(1/- forvalues lags = 1/5 {	4) nomiss0 `lags'" D.`v' L(1/`lags' lags(1/4) nomiss	
4. 5. 6. 7. 8. 9. 10. 11. 12. } lcpi lags: θ Breusch-Godfr 1 ags: 1 Breusch-Godfr 1 ags: 1 Breusch-Godfr	quietly regress D. `v' L estat bgodfrey, lags(1/, forvalues lags = 1/5 {	4) nomiss0 `lags'" D.`v' L(1/`lags' lags(1/4) nomiss	
5. 6. 7. 8. 9. 10. 11. 12. } lcpi lags: 0 3reusch-Godfr 1ags: 1 3reusch-Godfr lags(p)	estat bgodfrey, lags(1/forvalues lags = 1/5 { display "Lags: quietly regress estat bgodfrey, } display "*	4) nomiss0 `lags'" D.`v' L(1/`lags' lags(1/4) nomiss	
6. 7. 8. 9. 10. 11. 12. } icpi lags: θ Breusch-Godfr 2 3 4	forvalues lags = 1/5 { display "Lags: quietly regress estat bgodfrey, } display "*	`lags'" D.`v' L(1/`lags' lags(1/4) nomiss	
7. 8. 9. 10. 11. 12. } 1cpi 1ags: 0 3reusch-Godfr 1ags: 1 3 4 3-ags: 1 3reusch-Godfr	display "Lags: quietly regress estat bgodfrey, } display "*	D.`v' L(1/`lags' lags(1/4) nomiss	
8. 9. 10. 11. 12. }	quietly regress estat bgodfrey, } display "*	D.`v' L(1/`lags' lags(1/4) nomiss	
9. 10. 11. 11. 12. } !copi aags: 0 Breusch-Godfr 1ags(p) 1 2 3 4 .aags: 1 Breusch-Godfr 1ags(p)	quietly regress estat bgodfrey, } display "*	D.`v' L(1/`lags' lags(1/4) nomiss	
10. 11. 12. } !cpi lags: 0 Breusch-Godfr 1ags(p) 1 2 3 4 .ags: 1 Breusch-Godfr	estat bgodfrey, } display "*	lags(1/4) nomiss	
11. 12. } cpi ags: 0 dreusch-Godfr 2 3 4 4 dreusch-Godfr 1 ags: 1 dreusch-Godfr 1 ags(p) 1 2 3 4 dreusch-Godfr 1 ags(p) 1 ags(p)	} display "*		
11. 12. } cpi ags: 0 dreusch-Godfr 2 3 4 4 dreusch-Godfr 1 ags: 1 dreusch-Godfr 1 ags(p) 1 2 3 4 dreusch-Godfr 1 ags(p) 1 ags(p)	display "*	*"	
12. } cpi ags: 0 treusch-Godfr lags(p) 1 2 3 4 ags: 1 treusch-Godfr lags(p)			
.cpi ags: 0 ireusch-Godfr lags(p) 1 2 3 4 .ags: 1 ireusch-Godfr lags(p)	ey LM test for autocorr		
ags: θ Breusch-Godfr lags(p) 1 2 3 4 ags: 1 Breusch-Godfr lags(p)	ey LM test for autocorr		
lags(p) 1 2 3 4 .ags: 1 3reusch-Godfr	ey LM test for autocorr		
1ags(p) 1 2 3 4 Lags: 1 Breusch-Godfr			
1 2 3 4 Lags: 1	chi2	df	Prob > chi2
2 3 4 	13.451	1	0.0002
3 4 	14.315	2	0.0008
_ags: 1 Breusch-Godfr lags(p)	15.226	3	0.0016
ags: 1 Breusch-Godfr lags(p)	21.778	4	0.0002
lags(p)	H0: no seria		
lags(p)	ey LM test for autocorr		
		df	Prob > chi2
1	+ 0.300	1	0.5839
2	1.331	2	0.5139
3	9.225	3	0.0264
4	22.072	4	0.0002
	H0: no seria		
ags: 2	110. 110 301 14.	2 0011 01401011	
	ey LM test for autocorr		
lags(p)	chi2	df	Prob > chi2
1	+ 0.992	1	0.3193
=	8.887	2	0.0118
3	21.834	3	0.0001
4	21.661	4	0.0002
	H0: no seria	l correlation	
_ags: 3			
	ey LM test for autocorr		
lags(p)		df	Prob > chi2
1	7.893	1	0.0050
2	20.768	2	0.0000
3	20.442	3	0.0001
		4	0.0004
_ags: 4	20.547		

Breusch-Godfrey LM test for autocorrelation

1 15.204		,		
2 15.393 2 0.0005 3 15.608 3 0.0014 4 18.000 4 0.0012 H0: no serial correlation Lags: 5 Breusch-Godfrey LM test for autocorrelation 1 1.482 1 0.2235 2 1.910 2 0.3847 3 4.187 3 0.2420 4 5.560 4 0.2345 H0: no serial correlation *	lags(p)	chi2	df	Prob > chi2
3	1	15.204	1	0.0001
4 18.000 4 0.0012 H0: no serial correlation lags(p) chi2 df Prob > chi 1 1.482 1 0.2235 2 1.910 2 0.3847 3 4.187 3 0.2420 4 5.560 4 0.2345 H0: no serial correlation Lm ags: 0 Preusch-Godfrey LM test for autocorrelation lags(p) chi2 df Prob > chi 1 2.122 df Prob > chi 2 2.793 2 0.2474 3 3.303 3 0.3472 4 3.642 4 0.4566	2	15.393	2	0.0005
### H8: no serial correlation lags(p)	3	15.608		
ags: 5 lags(p) chi2 df Prob > chi	4	18.000	4	0.0012
lags(p) chi2 df	ags: 5	H0: no seria	l correlation	
1 1.482	reusch-Godfrey L	M test for autocorr	elation	
2 1.910 2 0.3847 3 0.2420 4 187 3 0.2420 4 5.560 4 0.2345	lags(p)	chi2	df	Prob > chi2
3 4.187 3 0.2420 4 5.560 4 0.2345 H0: no serial correlation mags: 0 reusch-Godfrey LM test for autocorrelation 1 2.122 1 0.1452 2 2.793 2 0.2474 3 3.303 3 0.3472 4 3.642 4 0.4566	1	1.482	1	0.2235
4 5.560 4 0.2345 H0: no serial correlation ** m ags: 0 reusch-Godfrey LM test for autocorrelation lags(p) chi2 df Prob > chi 1 2.122 1 0.1452 2 2.793 2 0.2474 3 3.303 3 0.3472 4 3.642 4 0.4566	2	1.910	2	0.3847
H0: no serial correlation # ags: 0 reusch-Godfrey LM test for autocorrelation lags(p) chi2 df Prob > chi 1 2.122 1 0.1452 2 2.793 2 0.2474 3 3.303 3 0.3472 4 3.642 4 0.4566	3	4.187	3	0.2420
# ags: 0 reusch-Godfrey LM test for autocorrelation lags(p) chi2 df Prob > chi 1 2.122 1 0.1452 2 2.793 2 0.2474 3 3.303 3 0.3472 4 3.642 4 0.4566	4	5.560	4	0.2345
ags: 0 lags(p) chi2 df Prob > chi 1 2.122 1 0.1452 2 2.793 2 0.2474 3 3.303 3 0.3472 4 3.642 4 0.4556		H0: no seria	l correlation	
ags: 0 Singuisting	' 	_*		
lags(p) chi2 df Prob > chi 1 2.122 1 0.1452 2 2.793 2 0.2474 3 3.303 3 0.3472 4 3.642 4 0.4566				
1 2.122	Breusch-Godfrey L	M test for autocorr	elation	
2 2.793 2 0.2474 3 3.303 3 0.3472 4 3.642 4 0.4566	lags(p)	chi2	df	Prob > chi2
3 3.303 3 0.3472 4 3.642 4 0.4566	1	2.122	1	0.1452
4 3.642 4 0.4566	2		2	
· 	з і	3.303	3	0.3472
H0: no serial correlation	4	3.642	4	0.4566
		H0: no seria	l correlation	
ags: 1	ags: 1			

gs: 1

chi2	df	Prob > chi2
0.715	1	0.3977
1.701	2	0.4272
1.824	3	0.6096
2.000	4	0.7357
	chi2 0.715 1.701 1.824	0.715 1 1.701 2 1.824 3

H0: no serial correlation

Breusch-Godfrey LM test for autocorrelation

Breusch-Godfrev LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	0.674	1	0.4118
2	0.850	2	0.6538
3	1.059	3	0.7870
4	2.289	4	0.6827

H0: no serial correlation s: 3

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	0.398	1	0.5281
2	0.463	2	0.7934

3 4	1.657 2.587	3 4	0.6464 0.6292	Lags: 5		-1-4	
ags: 4	H0: no seria	l correlation			1 test for autocorr chi2		Prob > chi2
	M test for autocorr			1 2	0.713 2.754	1 2	0.3984 0.2523
lags(p)	chi2	df	Prob > chi2	3 4	2.880 3.511	3 4	0.4105 0.4762
1	0.115	1	0.7350				0.4702
2	1.354 2.863	2	0.5082 0.4132	*		al correlation	
4	6.626	4	0.1570	lgep			
	H0: no seria	l correlation		Lags: 0			
ags: 5				Breusch-Godfrey LM	1 test for autocorr		
reusch-Godfrey Li	M test for autocorr	elation		lags(p)	chi2	df	Prob > chi
lags(p)	chi2	df	Prob > chi2	1	13.833	1	0.0002
1	1.232	1	0.2671	2 3	13.977 13.824	2	0.0009 0.0032
2	2.450	2	0.2938	4	14.161	4	0.0068
3 4	6.109 9.148	3 4	0.1064 0.0575		H0: no seria	al correlation	
		l correlation		Lags: 1			
	*	1 (01) (12(10))			1 test for autocorr		
xr ags: 0				lags(p)	chi2	df	Prob > chi
reusch-Godfrey Li	M test for autocorr	elation		1	0.466	1	0.4950
			Door	2	0.453	2	0.7972
lags(p)	chi2	df 	Prob > chi2	3 4	0.350 0.449	3 4	0.9503 0.9783
1 2	0.143 0.873	1 2	0.7049 0.6464			l correlation	
3	5.573	3	0.1343	Lags: 2	ne. no seria	ii correlacion	
4	9.625	4	0.0472	Breusch-Godfrev II	1 test for autocorr	relation	
	H0: no seria	l correlation					
ags: 1				lags(p)	chi2	df 	Prob > chi
	M test for autocorr			1 2	0.004 0.076	1 2	0.9503 0.9625
lags(p)	chi2	df	Prob > chi2	3	0.277	3	0.9642
1	0.484	1	0.4866	4	0.451	4	0.9781
2	5.191	2	0.0746		H0: no seria	al correlation	
3 4	9.390 8.767	3 4	0.0245 0.0672	Lags: 3			
					1 test for autocorr		
ags: 2	HØ: NO SEria	l correlation		lags(p)	chi2	df	Prob > chi
reusch-Godfrey Li	M test for autocorr	elation		1	0.058	1	0.8101
				2	0.249	2	0.8831
lags(p)	chi2	df	Prob > chi2	3 4	0.401 1.012	3 4	0.9400 0.9080
1	4.962	1	0.0259				
2 3	9.383 11.411	2 3	0.0092 0.0097	Lags: 4	H0: no seria	l correlation	
4	10.156	4	0.0379	_			
	H0: no seria	l correlation		Breusch-Godfrey Li	1 test for autocorr	 .eTatiou	
ags: 3				lags(p)	chi2	df 	Prob > chi
reusch-Godfrey LI	M test for autocorr	elation		1	0.153	1	0.6956
lags(p)	chi2	df	Prob > chi2	2 3	0.275 0.972	2	0.8714 0.8080
			0.0006	4	1.621	4	0.8051
1 2	4.735 8.342	1 2	0.0296 0.0154		H0: no seria	al correlation	
3	8.134 10.126	3 4	0.0433	Lags: 5			
			0.0384	Breusch-Godfrey LM	1 test for autocorr	elation	
ags: 4	H0: no seria	l correlation		lags(p)	chi2	df	Prob > chi
	M test for autocorr			1 2	0.096 0.839	1 2	0.7564 0.6572
lags(p)	chi2	df	Prob > chi2	3	1.488	3	0.6850
1	3.883	1	0.0488	4		4	0.5402
2	4.222	2	0.1211	*		al correlation	
3 4	7.269 7.522	3 4	0.0638 0.1107	*			
		l connolation					
	ни: по seria	l correlation					

Appendix 4

ADF test using drift term for lcpi, lm, lxr. Horizontal lines added to split output into variable sections. . dfuller lcpi, lags(5) drift Augmented Dickey-Fuller test for unit root Variable: lcpi Number of obs = 90 Number of lags = 5 H0: Random walk with drift, d = 0t-distribution ----- critical value ----statistic 1% 5% 10% 10% -0.286 -2.372 -1.663 p-value for Z(t) = 0.3879. dfuller lm, drift Dickey-Fuller test for unit root Number of obs = 95 Variable: lm Number of lags = 0 H0: Random walk with drift, d = 0 t-distribution ----- critical value ------Test 5% statistic 1% 10% Z(t) -1.937 -2.367 -1.661 -1.291 p-value for Z(t) = 0.0279. dfuller lxr, lags(4) drift Augmented Dickey-Fuller test for unit root Variable: lxr Number of obs = 91 Number of lags = 4 HO: Random walk with drift, d = 0 τ-distribution ----- critical value ------1% 5% -2.371 -1.663 -1.292 -2.095 p-value for Z(t) = 0.0196Estimated using a foreach loop in Stata. The ADF test includes a drift term 0.0058 20.688 2 0.0000

10. 11. 12. } D.lcpi Lags: 0	display "*	*"	
Breusch-Godf	rey LM test for autocor		
lags(p)	chi2	df	Prob > chi2
1 2 3 4	0.261 1.283 8.876	1 2 3 4	0.6092 0.5265 0.0310 0.0002
	H0: no seri rey LM test for autocor		
lags(p)		df	Prob > chi2
1 2 3 4		1 2 3 4	0.3374 0.0140 0.0001 0.0002
Lags: 2 Breusch-Godf	H0: no seri	al correlation	
lags(p)	···	df	Prob > chi2

	M test for autocorr chi2		Prob > chi
	15.287	1	0.0001
2	15.647	2	0.0001
3	15.757	3	0.0013
4	18.242	4	0.0011
	M test for autocorr chi2	elation df	Prob > chi
1	1.411	1	0.2348
2	1.737	2	0.4197
3	4.249	3	0.2358
	5.497	4	0.2400
4			
4 gs: 5	H0: no seria	l correlation	
gs: 5	H0: no seria M test for autocorr		

H0: no serial correlation

ADF test using drift term for dlcpi.

```
. dfuller d.lcpi, lags(4) drift
```

Augmented Dickey-Fuller test for unit root

Variable: D.lcpi Number of obs = 90 Number of lags = 4

H0: Random walk with drift, d = 0

		t	t-distribution							
	Test	(critical value							
	statistic	1%	5%	10%						
Z(t)	-4.114	-2.372	-1.663	-1.292						

p-value for Z(t) = 0.0000

Appendix 7

eststo ARMA: arimasel d.lcpi, ar(2) ma(2)

Model1: AR(0) MA(1) Model2: AR(0) MA(2) Model3: AR(1) MA(0) Model4: AR(1) MA(1) Model5: AR(1) MA(2) Model6: AR(2) MA(0) Model7: AR(2) MA(1) Model8: AR(2) MA(2)

!	AR	MA	Nparm	LLF	AIC	SIC
Model1 Model2	0	1 2	2	355.4688 356.4954	-706.9376 -706.9908	-701.8299 -699.3292
Model3	1	0	2	355.9882	-707.9764	-702.8686
Model4 Model5	1	1 2	3 4	356.1419 356.2946	-706.2838 -704.5892	-698.6222 -694.3737
Model6 Model7	2 2	0 1	3 4	356.1105 356.1431	-706.2211 -704.2863	-698.5594 -694.0708
Model8	2	2	5	361.6745	-713.3489	-700.5795

Appendix 8

. arima dlcpi, ar(1) robust

(setting optimization to BHHH)

Setting optimization to Bhini)

Iteration 0: Log pseudolikelihood = 355.98779

Iteration 1: Log pseudolikelihood = 355.98812

Iteration 2: Log pseudolikelihood = 355.98816

Iteration 3: Log pseudolikelihood = 355.98817

Iteration 4: Log pseudolikelihood = 355.98818

ARIMA regression

Sample: 2000q2 thru 2023q4 Number of obs Wald chi2(1) Prob > chi2 7.32 Log pseudolikelihood = 355.9882 0.0068

	dlcpi	 Coefficient	Semirobust std. err.	z	P> z	[95% conf.	interval]
dlcpi	_cons	.0046215	.0009386	4.92	0.000	.0027819	.0064611
ARMA	ar L1.	.380355	.1405789	2.71	0.007	.1048253	.6558846
	/sigma	.0057014	.0005091	11.20	0.000	.0047036	.0066993

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.

Appendix 9

. arima dlcpi, ar(1/2) ma(1/2) robust

(setting optimization to BHHH)

Iteration 0: Log pseudolikelihood = 347.23067 Iteration 9: Log pseudolikelihood = 352.68152
Iteration 2: Log pseudolikelihood = 353.68017
Iteration 3: Log pseudolikelihood = 355.04277
Iteration 4: Log pseudolikelihood = 359.79432 (switching optimization to BFGS)
Iteration 5: Log pseudolikelihood = 361.0122
Iteration 6: Log pseudolikelihood = 361.10737
Iteration 7: Log pseudolikelihood = 361.39219
Iteration 8: Log pseudolikelihood = 361.61468 Iteration 9: Log pseudolikelihood = 361.65691 Iteration 10: Log pseudolikelihood = 361.65801 Iteration 11: Log pseudolikelihood = 361.67069 Iteration 12: Log pseudolikelihood = 361.67379 Iteration 13: Log pseudolikelihood = 361.67444

Iteration 14: Log pseudolikelihood = 361.67445

ARIMA regression

Sample: 2000q	·			Wald c	of obs		95 680.78
Log pseudolik	elihood = 361	.6745		Prob >	chi2	=	0.0000
dlcpi	 Coefficient	Semirobust std. err.	Z	P> z	[95% c	onf.	interval]
dlcpi	I						
_cons	.0045876	.0008768	5.23	0.000	.00286	91	.0063061
ARMA	i						
ar	ĺ						
L1.	8995348	.2194136	-4.10	0.000	-1.3295	78	4694921
L2.	.076611	.221312	0.35	0.729	35715	26	.5103746
ma	İ						
L1.	1.427597	.1399993	10.20	0.000	1.1532	.03	1.701991
L2.	.5024687	.1556634	3.23	0.001	.1973	74	.8075633
/sigma	.0053414	.0005515	9.68	0.000	.00426	05 05	.0064224

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.

Appendix 10

	L.Dlepi	L2.Dlcpi	lm	k	lgep	L.lgep	L2.lgep	L.lxr	L2.lxr	L.lm	L2.lm	cons	N	aic
Dlepi	L.Dlcpi 0.278* (0.136)	2.	-0.00451 (0.00236	0.00884 (0.0207)	0.00495							0.00164 (0.0782)	94	-701.8
Dlcpi	0.284* (0.129)		-0.00451 -0.00219 (0.00236) (0.00220)	-0.00258 (0.0198)	0.00495** 0.0166*** (0.00167) (0.00312)	-0.0129* (0.00283						0.0273 (0.0769)	94	-710.4 -695.1
Dlepi	0.317 [*] (0.132)		-0.00310) (0.00230)	(0.00119	* 0.0185*** () (0.00350)	-0.0129*** -0.0197*** (0.00283) (0.00525)	0.00536 (0.00352)					0.0202	94	-709.8 -692.0
Dlcpi	0.278* (0.137)) -0.0045	0.00930 (0.0429)	0.00495 0.0016	5) **	9	-0.0005 (0.0477)				0.00196 (0.0844)	94	-699.8
Dlepi	0.283 [*] (0.130)		-0.00450 -0.00182 (0.00259) (0.00245)	0.0130 (0.0416)	0.00495** 0.0168*** (0.00169) (0.00318)	-0.0131* (0.00283		-0.000564 -0.0192 (0.0477) (0.0450)				0.0386	94	-708.5
Dlepi	0.316 [*] (0.133)		-0.00274) (0.00253)	0.0158 (0.0425)	* 0.0188*** (0.00350)	-0.0131*** -0.0198*** (0.00283) (0.00519)	0.00532 (0.00354)	-0.0181 (0.0459)				0.0309	94	-708.0
Dlepi	0.280 [*] (0.137)		+ -0.0054 5) (0.0025)	0.0121 (0.0429)	** 0.00464)) (0.0016	*	5	-0.0460 (0.0596)	0.0534 (0.0418)			-0.0330 (0.0889)	94	-681.1
Dlepi	0.285* (0.131)		-0.00541* -0.00252 (0.00258) (0.00249)	0.0148	0.00464** 0.0163*** (0.00168) (0.00318)	-0.0128*** (0.00277) (-0.0506 (0.0564)	0.0375			0.0133	94	-707.2 -686.8
Dlepi	0.321 [*] (0.134)		$-0.00451 -0.00219 -0.00310 -0.00450 -0.00182 -0.00274 -0.00541^* -0.00252 -0.00359 -0.0200 \\ (0.00236) (0.00220) (0.00230) (0.00259) (0.00245) (0.00253) (0.00258) (0.00249) (0.00257) (0.0106)$	0.0181 (0.0424)	0.00495^{**} 0.0166^{***} 0.0185^{***} 0.00495^{**} 0.0168^{***} 0.0188^{***} 0.00464^{**} 0.0163^{***} 0.0183^{***} 0.00550^{**} 0.0176^{***} 0.0191^{***} 0.00552^{**} 0.0180^{***} 0.0194^{***} 0.00520^{**} 0.0174^{***} 0.00167) (0.00312) (0.00350) (0.00150) (0.00318) (0.00350) (0.00168) (0.00318) (0.00318) (0.00318) (0.00318) (0.00173) (0.00316) (0.00173) (0.00316) (0.00173) (0.00173) (0.00173)	-0.0128*** -0.0199*** (0.00277) (0.00507)	0.00565 (0.00349)	-0.0536 (0.0572)	0.0424 (0.0410)			0.00164	94	-706.8 -683.9
Dlepi	0.247 (0.130)		7) (0.0106	0.00200 (0.0203)	** 0.00550 5) (0.0017.	7)	9		-	-0.0241 (0.0098		0.0240 (0.0768)	94	-703.4 -688.1
Dlepi	0.250* (0.124)		0.0249* (0.0102)	-0.0105 (0.0185)	0.00550** 0.0176*** (0.00173) (0.00316)	-0.0134* (0.00277				* -0.0265* 2) (0.00943		0.0529	94	-713.2 -695.4
Dlepi	0.278 [*] (0.127)		0.0227* (0.0105)	-0.00715 (0.0186)	** 0.0191*** 5) (0.00345)	-0.0134*** -0.0187*** (0.00277) (0.00506)	0.00418 (0.00343)			$-0.0241^* -0.0265^{**} -0.0250^* -0.0242^* -0.0269^{**} -0.0254^* -0.0253^* -0.0276^{**} \\ (0.00982) \ (0.00943) \ (0.00957) \ (0.00980) \ (0.00959) \ (0.00970) \ (0.0101) \ (0.00989)$		0.0459 (0.0714)	94	-712.2 -691.8
Dlepi	0.246 (0.131)		0.0202	5 0.00653	** 0.00552 5) (0.0017	5)	3	-0.00556 (0.0462)		* -0.0242* 7) (0.00980)		0.0273	94	-701.4 -683.6
Dlepi	0.249 [*] (0.124)		0.0258 [*] (0.0104)	0.0101	0.00552** 0.0180*** (0.00174) (0.00325)	-0.0137* (0.00279		6 -0.0256) (0.0428)		* -0.0269*** 0) (0.00959)		0.0684	94	-711.5 -691.2
Dlepi	0.276 [*] (0.127)		0.0236 [*] (0.0107)	0.0124 (0.0401)	** 0.0194*** 5) (0.00348)	-0.0137*** -0.0188*** (0.00279) (0.00500)	0.00411 (0.00345)	-0.0243 (0.0438)		* -0.0254* b) (0.00970)		0.0607	94	-710.4 -687.6
Dlcpi	0.248 (0.132)		0.0203	0.00953 (0.0421)	** 0.00520 8) (0.0017:)) **	3	-0.0569 (0.0591)	0.0602	, -0.0253*)) (0.0101)		-0.0109	94	-700.9
Dlepi	0.250* (0.125)		0.0257* (0.0105)	0.0122	0.00520** 0.0174*** (0.00173) (0.00325)	-0.0133**** (0.00275)		-0.0628 (0.0554)	0.0442	* -0.0276* (0.00989		0.0393	94	-710.5 -687.6
Dlepi	0.280* (0.128)		0.0233 [*] (0.0108)	0.0148 (0.0400)		*** -0.0189*** 5) (0.00488)	0.00445 (0.00338)	-0.0644 (0.0566)	0.0477 (0.0403)			0.0286 (0.0816)	94	-709.5 -684.1
Dlepi	0.227 (0.141)		0.0192 (0.0107)		* 0.00584) (0.00175	*	9			-0.0261* -0.0134 (0.01000) (0.0164)	-0.00990 (0.0114)	0.0339 (0.0781)	94	-701.9 -684.1
Dlepi	0.223 (0.133)		0.0239* (0.0102)	-0.000623 -0.0145 (0.0206) (0.0186)	0.00584** 0.0184*** (0.00175) (0.00319)	-0.0138* (0.00279				-0.0117 (0.0155)	(0.0138	0.0675 (0.0734)	94	-712.5 -692.1
Dlepi	0.250 (0.137)		0.0219 [*] (0.0105)	-0.0112 (0.0187)	* 0.0198***) (0.00345)	-0.0138*** -0.0186*** (0.00279) (0.00510)	0.00388 (0.00345)			-0.0111 (0.0155)	-0.0131 (0.0107)	0.0602 (0.0727)	94	-688.4
Dlepi	0.227 (0.142)		0.0194 (0.0107)	0.00423 (0.0432)	* 0.00587	•	0	-0.00597 (0.0473)			-0.00992 (0.0115)	0.0374 (0.0836)	94	-700.0
Dlepi	0.221 (0.133)		0.0249* (0.0104)	0.00692 (0.0397)	0.00587** 0.0188*** (0.00177) (0.00327)	-0.0140* (0.00278		-0.0267 (0.0439)		-0.0135 -0.0119 (0.0164) (0.0157)	(0.0139	0.0838 (0.0771)	94	-710.8
Dlepi	0.248 (0.138)		0.0228 [*] (0.0107)	0.00922 (0.0405)	* 0.0201***) (0.00347)	-0.0140*** -0.0188*** (0.00278) (0.00504)	0.00380 (0.00348)	-0.0255 (0.0448)		-0.0113 (0.0157)	-0.0132 (0.0108)	0.0760 (0.0766)	94	-709.6 -684.2
Dlcpi	0.231 (0.143)		0.0196	0.00738 (0.0429)	* 0.00551	•	0	-0.0551 (0.0592)	0.0576 (0.0413)	-0.0158 (0.0171)	-0.00874 (0.0117)	-0.00035 (0.0893)	94	-676.5
Dlepi	0.224 (0.134)		0.0249 [*] (0.0106)	0.00904	0.00551** 0.0182*** (0.00177) (0.00326)	-0.0137* (0.00273		-0.0603 (0.0551)	0.0399 (0.0405)	-0.0136 (0.0163)	4 -0.0130 (0.0111)	-0.000359 0.0565 (0.0893) (0.0853)	94	-709.6 -684.2
Dlcpi	0.254 (0.139)		0.0226 [*] (0.0109)	0.0117 (0.0403)	$0.0189^{***} 0.00584^{**} 0.0184^{***} 0.0198^{***} 0.00587^{**} 0.0188^{***} 0.0201^{***} 0.00551^{**} 0.0182^{***} 0.0196^{***} 0.00526^{**} \\ (0.00344) (0.00175) (0.00319) (0.00345) (0.00177) (0.00327) (0.00347) (0.00177) (0.00326) (0.00342) (0.00173)$	-0.0137*** -0.0188*** (0.00273) (0.00491)	0.00414 (0.00341)	-0.0620 (0.0567)	0.0435 (0.0410)	-0.0131 (0.0164)	-0.0122 (0.0112)	0.0455 (0.0851)	94	-708.5 -680.5
Dlcpi	0.327* (0.145)	-0.107 (0.0847)	-0.00492* (0.00241)	0.00501 (0.0213)	** 0.00526 ^{**} 2) (0.00173)	*	9	-				0.0236 (0.0813)	93	-693.3 -678.1

93 -701.7 -684.0	0.0599 (0.0776)						-0.0135*** (0.00310)	0.0171*** (0.00329)	-0.0102 (0.0204)	-0.00199 (0.00229)	0.00320 (0.0884)	0.301* (0.131)	Dlcpi
93 -701.3 -681.1	0.0529 (0.0752)					0.00559 (0.00352)	** -0.0205***) (0.00548)	* 0.0190***) (0.00368)	-0.00618 (0.0199)	-0.00300 (0.00240)	-0.00731 (0.0904)	0.340* (0.134)	Dlcpi
93 -691.3 -673.6	0.0211 (0.0865)				0.00531 (0.0487)	J	· ;	* 0.00524*) (0.00175			-0.106 (0.0861)	0.327* (0.145)	Dlcpi
93 -699.7 -679.5	0.0633 (0.0811)				-0.00693 (0.0451)		-0.0136*** (0.00310)	0.00524** 0.0171*** (0.00175) (0.00333)	0.000544 -0.00440 (0.0445) (0.0420)	-0.00501 -0.00186 (0.00264) (0.00253)	0.00238 (0.0889)	0.301 [*] (0.133)	Dlcpi
93 -699.3 -676.5	0.0557 (0.0788)				-0.00555 (0.0460)	0.00557 (0.00354)	-0.0136*** -0.0205*** (0.00310) (0.00548)	* 0.0191***) (0.00368)	-0.00157 (0.0427)	-0.00290 (0.00262)	-0.00795 (0.0910)	0.339* (0.135)	Dlcpi
93 -690.5 -670.2	-0.0135 (0.0913)			0.0530 (0.0418)	-0.0397 (0.0604)			0.00493**	0.00328 (0.0447)	-0.00590* (0.00266)	-0.106 (0.0869)	0.329 [*] (0.147)	Dlcpi
93 -698.3 -675.5	0.0382 (0.0877)			0.0368 (0.0413)	-0.0379 (0.0572)		-0.0132*** (0.00304)	* 0.0166***) (0.00333)	-0.00237 (0.0422)	-0.00590* -0.00256 (0.00266) (0.00260)	0.000231	0.303 [*] (0.134)	Dlcpi
93 -698.1 -672.8	0.0264 (0.0865)			0.0421 (0.0415)	-0.0409 (0.0582)	0.00591	*-0.0205*** (0.00532)	0.0186***	0.000922 (0.0429)		-0.0110 (0.0920)	0.344 [*] (0.138)	Dlcpi
93 -693.8 -676.1	0.0386 (0.0817)		-0.0208* (0.0104)				· .	* 0.00561*) (0.00176	-0.000310 -0.0182 (0.0214) (0.0198	-0.00376 0.0164 (0.00271) (0.0112)	-0.0692 (0.0887)	0.284 [*] (0.140)	Dlcpi
93 -704.3 -684.0	0.0821 (0.0754)		-0.0266* (0.0101)				-0.0146*** (0.00297)	0.00561** 0.0185*** (0.00176) (0.00330)	0-0.0182 (0.0198)	0.0255* (0.0110)	0.0611	0.245 (0.124)	Dlcpi
93 -703.2 -680.4	0.0752 (0.0741)		-0.0247* (0.0102)			0.00419 (0.00353)	-0.0146*** -0.0198*** (0.00297) (0.00525)	0.0198*** (0.00357)	-0.0146 (0.0198)	0.0228* (0.0114)	0.0490 (0.0924)	0.278 [*] (0.128)	Dlcpi
93 -691.8 -671.5	0.0385		-0.0208* (0.0104)		0.000225 (0.0480)		*	* 0.00561*) (0.00178	-0.00049 (0.0450)	0.0164 (0.0113)	-0.0692 (0.0896)	0.284 [*] (0.141)	Dlcpi
93 -702.4 -679.6	0.0895 (0.0781)		-0.0269* (0.0103)		0.000225 -0.0146 (0.0480) (0.0438)		-0.0148*** (0.00298)	0.00561** 0.0186*** (0.00178) (0.00336)	-0.000497 -0.00618 (0.0450) (0.0414)	0.0261* (0.0113)	0.0600 (0.0905)	0.244 (0.125)	Dlcpi
93 -701.3 -675.9	0.0819 (0.0771)		-0.0250* (0.0104)		-0.0130 (0.0447)	0.00415 (0.00355)	-0.0148*** -0.0198*** (0.00298) (0.00523)	* 0.0200*** (0.00359)	-0.00394 (0.0420)	0.0233* (0.0116)	0.0481 (0.0923)	0.277* (0.130)	Dlcpi
93 -691.3 -668.5	0.000912 0.0609 (0.0904) (0.0854		-0.0220* (0.0107)	0.0590 (0.0410)	-0.0502 (0.0608)			* 0.00529**) (0.00176)	0.00249 (0.0453)	0.0166 (0.0114)	-0.0661 (0.0904)	0.285* (0.142)	Dlcpi
93 -701.2 -675.9	0.0609 (0.0854)		-0.0276* (0.0105)	0.0429 (0.0395)	-0.0509 (0.0561)		-0.0144*** (0.00293)	** 0.0181***) (0.00337)	-0.00386 (0.0416)	0.0260* (0.0114)	0.0590 (0.0907)	0.245 (0.126)	Dlcpi
93 -700.3 -672.4	0.0502 (0.0848)		-0.0256* (0.0106)	0.0465 (0.0402)	-0.0522 (0.0575)	0.00449 (0.00348)	-0.0144*** -0.0198*** (0.00293) (0.00508)	0.0195*** (0.00356)	-0.00124 (0.0421)	0.0230 (0.0117)	0.0461 (0.0923)	0.281* (0.132)	Dlcpi
93 -692.5 -672.2	0.0485 (0.0828)	-0.0107 (0.0114)	-0.00908 (0.0169)				•	0.00601*	-0.00287 (0.0217)	0.0153 (0.0114)	-0.0780 (0.0891)	0.266 (0.149)	Dlcpi
93 -703.4 -680.6	0.0950 (0.0760)	-0.0131 (0.0107)	-0.0123 (0.0163)				-0.0149*** (0.00300) (** 0.0192*** 8) (0.00334)	-0.0216 (0.0197)	0.0243* (0.0111)	0.0523 (0.0916)	0.222 (0.132)	Dlcpi
93 -702.2 -676.9	0.0879 (0.0750)	-0.0124 (0.0107)	-0.0112 (0.0163)			0.00394 (0.00353)	-0.0149*** -0.0197*** (0.00300) (0.00531)	0.0204*** (0.00359)	-0.0181 (0.0197)	0.0218 (0.0115)	0.0414 (0.0932)	0.255 (0.138)	Dlcpi
93 -690.5 -667.7	0.0489 (0.0869)	-0.0107 (0.0115)	-0.00909 (0.0169)		-0.00072 (0.0493)			0.00601	-0.00226 (0.0463)	0.0153 (0.0114)	-0.0781 (0.0899)	0.266 (0.151)	Dlcpi
93 -701.5 -676.2	0.103 (0.0793)	-0.0132 (0.0109)	-0.0125 (0.0164)		-0.000725 -0.0160 (0.0493) (0.0449)		-0.0150*** (0.00299)	0.00601** 0.0193*** (0.00181) (0.00340)	-0.00226 -0.00845 (0.0463) (0.0418)	0.0249* (0.0113)	0.0511 (0.0913)	0.221 (0.134)	Dlcpi
93 -700.3 -672.5	0.0954 (0.0786)	-0.0125 (0.0108)	-0.0114 (0.0164)		-0.0144 (0.0459)	0.00389 (0.00357)	-0.0150*** -0.0197*** (0.00299) (0.00528)	* 0.0206 ^{***}) (0.00361)	-0.00624 (0.0424)	0.0224 (0.0117)	0.0404 (0.0929)	0.253 (0.140)	Dlcpi
93 -689.8 -664.5	0.0119 (0.0926)	-0.00946 (0.0116)	-0.0115 (0.0176)	0.0562 (0.0414)	-0.0486 (0.0609)	-		0.00566		0.0157 (0.0117)	-0.0742 (0.0908)	0.269 (0.152)	Dlcpi
93 -700.2 -672.4	0.0762 (0.0874)	-0.0123 (0.0111)	-0.0141 (0.0169)	0.0390 (0.0400)	-0.0489 (0.0559)		-0.0146** (0.00294)	0.0199^{***} 0.00524^{**} 0.0171^{***} 0.0191^{***} 0.00493^{**} 0.0166^{***} 0.0186^{***} 0.00561^{**} 0.0185^{***} 0.00561^{**} 0.0198^{***} 0.00561^{**} 0.0186^{***} 0.00261^{**} 0.00260^{***} 0.00260^{***} 0.00200^{***}	0.000787 -0.00619 (0.0462) (0.0418)	0.0249* (0.0115)	0.0507 (0.0914)	0.223 (0.135)	Dlcpi
93 -699.2 -668.8	0.0653 (0.0872)	-0.0115 (0.0112)	-0.0130	0.0426 (0.0407)	-0.0503 (0.0576)	0.00422 (0.00350)	-0.0146*** -0.0198*** (0.00294) (0.00513)	* 0.0201***) (0.00357)	-0.00358 (0.0424)	0.0222	0.0391 (0.0929)	0.258 (0.142)	Dlcpi