Introduction About the Data:

The dataset The goal is to predict price of given diamond (Regression Analysis).

There are 10 independent variables (including id):

- id : unique identifier of each diamond
- carat : Carat (ct.) refers to the unique unit of weight measurement used exclusively to weigh gemstones and diamonds.
- cut: Quality of Diamond Cut
- color: Color of Diamond
- clarity: Diamond clarity is a measure of the purity and rarity of the stone, graded by the visibility of these characteristics under 10-power magnification.
- depth: The depth of diamond is its height (in millimeters) measured from the culet (bottom tip) to the table (flat, top surface)
- table: A diamond's table is the facet which can be seen when the stone is viewed face up.
- x : Diamond X dimension
- y : Diamond Y dimension
- x : Diamond Z dimension

Target variable:

• price : Price of the given Diamond.

Read the Dataset

Read Dataset

```
import pandas as pd
df = pd.read_csv("./data/gemstone.csv")
df.head()
```

Out[]:		id	carat	cut	color	clarity	depth	table	х	У	Z	price
	0	0	1.52	Premium	F	VS2	62.2	58.0	7.27	7.33	4.55	13619
	1	1	2.03	Very Good	J	SI2	62.0	58.0	8.06	8.12	5.05	13387
	2	2	0.70	Ideal	G	VS1	61.2	57.0	5.69	5.73	3.50	2772
	3	3	0.32	Ideal	G	VS1	61.6	56.0	4.38	4.41	2.71	666
	4	4	1.70	Premium	G	VS2	62.6	59.0	7.65	7.61	4.77	14453

Dataset Info

```
In [ ]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 193573 entries, 0 to 193572
       Data columns (total 11 columns):
           Column
                    Non-Null Count
                                     Dtype
           id
                    193573 non-null int64
           carat
                    193573 non-null float64
                    193573 non-null object
           cut
           color
                    193573 non-null object
           clarity 193573 non-null object
           depth
                    193573 non-null float64
           table
                    193573 non-null float64
        7
                    193573 non-null float64
        8
                    193573 non-null float64
           У
                    193573 non-null float64
       10 price
                    193573 non-null int64
       dtypes: float64(6), int64(2), object(3)
       memory usage: 16.2+ MB
```

Drop id column as it is statistically insignificant

```
In [ ]: df = df.drop(labels=['id'],axis=1)
```

Check Missing Values in Dataset

```
In [ ]: df.isna().sum()
```

```
Out[]: carat
        cut
                   0
        color
        clarity
                   0
        depth
                   0
        table
                   0
                   0
                   0
        Z
        price
                   0
        dtype: int64
```

No Missing Values found in the dataset

Check Duplicates in Dataset

```
In [ ]: df.duplicated().sum()
Out[ ]: 0
```

No Duplicated data found

Descriptive Statistics

Numerical and Categorical columns seperation

```
In [ ]: numerical_columns = list(df.columns[df.dtypes!='object'])
    categorical_columns = list(df.columns[df.dtypes=='object'])
    print(f'Numerical Columns : {numerical_columns}')
    print(f'Categorical Columns : {categorical_columns}')

Numerical Columns : ['carat', 'depth', 'table', 'x', 'y', 'z', 'price']
    Categorical Columns : ['cut', 'color', 'clarity']
```

Numerical Columns Description

```
In [ ]: df.describe().T
```

Out

[]:		count	mean	std	min	25%	50%	75%	max
	carat	193573.0	0.790688	0.462688	0.2	0.40	0.70	1.03	3.50
	depth	193573.0	61.820574	1.081704	52.1	61.30	61.90	62.40	71.60
	table	193573.0	57.227675	1.918844	49.0	56.00	57.00	58.00	79.00
	х	193573.0	5.715312	1.109422	0.0	4.70	5.70	6.51	9.65
	у	193573.0	5.720094	1.102333	0.0	4.71	5.72	6.51	10.01
	z	193573.0	3.534246	0.688922	0.0	2.90	3.53	4.03	31.30
	price	193573.0	3969.155414	4034.374138	326.0	951.00	2401.00	5408.00	18818.00

Categorical Columns Description

In []:	<pre>: df[categorical_columns].describe().T</pre>						
Out[]:		count	unique	top	freq		
	cut	193573	5	Ideal	92454		
	color	193573	7	G	44391		
	clarity	193573	8	SI1	53272		

All unique values in dataset

```
df.nunique()
                     248
Out[]: carat
                       5
         cut
         color
                       7
         clarity
                       8
         depth
                     153
         table
                     108
                     522
                     521
                     349
         price
                    8738
         dtype: int64
```

Univariate Analysis with Visualisation

Univariate Analysis of Numerical Variables

```
import seaborn as sb
import matplotlib.pyplot as plt
plt.figure(figsize=(10,10))
plt.subplots_adjust(top = 0.99, bottom=0.01, hspace=0.5, wspace=0.5)
x = 1
for i in numerical_columns:
    sb.histplot(data = df, x = i, kde=True)
    plt.title(i)
    print('\n')
    plt.show()
```


Univariate analysis for categorical variables

```
In [ ]:
    for i in categorical_columns:
        df[i].value_counts().plot(kind='bar', xlabel = i , ylabel='value counts', title
        print('\n')
        plt.show()
```


Bivariate Analysis with Visualisation

Correlation heatmap

Pairplot

```
In [ ]: sb.pairplot(df,diag_kind='kde')
   plt.show()
```


Categorical Features vs Target Feature Price Boxplot

```
In [ ]: for i in categorical_columns:
    sb.boxplot(data=df, x=i , y='price')
    plt.show()
```


Ordinal Mapping of categorical features

It is observed that the categorical variables 'cut', 'color' and 'clarity' are ordinal in nature

Creating Mapper for each categorical variable

```
In [ ]: cut_mapper = {"Fair":1, "Good":2, "Very Good":3 , "Premium":4 ,"Ideal":5}
    clarity_mapper = {"I1":1,"SI2":2 ,"SI1":3 ,"VS2":4 , "VS1":5 , "VVS2":6 , "VVS1":7
    color_mapper = {"D":1 ,"E":2 ,"F":3 , "G":4 ,"H":5 , "I":6, "J":7}
```

Applying the mapper to the dataframe

```
In [ ]: df['cut'] = df['cut'].replace(cut_mapper)
    df['clarity'] = df['clarity'].replace(clarity_mapper)
    df['color'] = df['color'].replace(color_mapper)
In [ ]: df.head()
```

Out[]:		carat	cut	color	clarity	depth	table	X	У	Z	price
	0	1.52	4	3	4	62.2	58.0	7.27	7.33	4.55	13619
	1	2.03	3	7	2	62.0	58.0	8.06	8.12	5.05	13387
	2	0.70	5	4	5	61.2	57.0	5.69	5.73	3.50	2772
	3	0.32	5	4	5	61.6	56.0	4.38	4.41	2.71	666
	4	1.70	4	4	4	62.6	59.0	7.65	7.61	4.77	14453

Mutual Information Scores

Seperating X and Y

```
In [ ]: X = df.drop(labels=['price'],axis=1)
Y = df[['price']]
```

Calculating Mutual Information scores for regression

```
In []: from sklearn.feature_selection import mutual_info_regression
    mi_scores = mutual_info_regression(X,Y.values.flatten(),random_state=42)
    mi_scores = pd.Series(mi_scores, name="MI Scores",index=X.columns)
    mi_scores = mi_scores.sort_values(ascending=False)

In []: import numpy as np

def plot_mi_scores(scores):
    scores = scores.sort_values(ascending=True)
    width = np.arange(len(scores))
    ticks = list(scores.index)
    plt.barh(width, scores)
    plt.yticks(width, ticks)
    plt.title("Mutual Information Scores")
    plt.show()
```

Visualizing Mutual Information Scores

```
In [ ]: print(mi_scores)
    plt.figure(dpi=100, figsize=(8, 5))
    plot_mi_scores(mi_scores)
```

carat	1.825115
X	1.674011
у	1.666632
z	1.615992
clarity	0.397911
color	0.285518
table	0.109664
cut	0.092104
depth	0.045643

Name: MI Scores, dtype: float64

Mutual Information Scores

Conclusion: Above shows that carat and x, y, z are most important features to predict the price of a gemstone