

Curso: Ciências Contábeis

Disciplina: Métodos Quantitativos Aplicados à Contabilidade

Professor: Vicente Lima Crisóstomo **Estagiário Docente:** Bruno Goes Pinheiro

Monitor: Denny Ribeiro

Aluno(a):

Lista de Exercício Unidade 6

- 1) O que é um teste de significância? Qual sua finalidade?
- 2) O que vem a ser a proposição de hipóteses em um teste de significância? O que é uma hipótese em tais testes?
- 3) O que é nível de significância?
- 4) Que são testes de significância uni e bilaterais?
- 5) Comente sobre os erros possíveis que se pode cometer em um teste de significância.
- 6) Qual a relação entre o intervalo de confiança e o teste de significância?
- 7) O que vem a ser a estatística de teste calculada em um teste de significância?
- 8) Apresente esquematicamente os passos a serem seguido na realização de um teste de significância?
- 9) Apresente 5 exemplos de testes bilaterais e unilaterais. No caso unicaudal, diferencie entre cauda esquerda ou direita.
- 10) Um fabricante garante que a peça X tem vida útil de 50horas. Tanto o próprio fabricante como instituições externas à empresa podem testar a validade desta afirmação. Proponha hipóteses para testá-la considerando diferentes pontos de vista.
- 11) Quais os três tipos de testes de significância que podem ser realizados com relação à média de uma população?
- 12) Qual o formato geral do cálculo da estatística de teste para uma amostra em relação a um parâmetro alegado para a população? Qual a finalidade e "filosofia de utilização" deste teste?
- 13) Apresente a fórmula de cálculo da estatística de teste z e t para a comparação de uma média com relação a um valor alegado. Qual a diferença entre elas e por quê são duas estatísticas distintas?
- 14) Para cada situação a seguir, indique se deve utilizar-se um teste uni ou bilateral. Trace uma curva de distribuição de probabilidade z para ilustrar. Indique o intervalo de confiança em termos de z. a) H0: μ = 35; H1: μ ≠ 35; α = 0,10
- b) H0: $\mu = 55$; H1: $\mu > 55$; $\alpha = 0.05$
- c) H0: $\mu = 80$; H1: $\mu < 80$; $\alpha = 0.01$
- 15) A informação conhecida sobre certa espécie de peixe indica um desvio padrão de 10cm no comprimento. Pesquisas anteriores indicam um comprimento referencial médio de 90cm. Um pesquisador desconfia que este parâmetro não é válido. Então resolve fazer uma pesquisa. Sua amostra de 32 peixes apresenta uma média de 80cm de comprimento. Faça o trabalho dele para o teste de significância, passo a passo claramente. Comente os resultados.

16) Para as situações seguintes de comparação de uma média amostral com um valor alegado e desvio padrão populacional conhecido (Distribuição z), calcule as informações pedidas, e comente os resultados. Faça a proposição de H0 e H1.

	roposição de	поепі.	ı				I		
Teste	Bilateral								
N	média amostral	valor alegado	DP População	Grau de confiança	α	z	z teste	Media - valor alegado	DP da distr amostral
49	38000	40000	3500	90%	10%				
100	39700	40000	3500	95%					
47	41000	40000	3500		1%				
52	125	140	50	90%	10%				
63	156	140	50		5%				
70	132	140	50	99%	1%				
Teste	Unilateral								
N	média amostral	valor alegado	DP População	Grau de confiança	α	Z	z teste	média-valor alegado	DP da distr amostral
55	1050	1000	150	90%	10%				
48	900	1000	150	95%	5%				
49	1040	1000	150	99%	1%				
70	330	340	60	90%	10%				
52	349	340	60	95%	5%				
52	360	340	60	99%	1%				

17) Para as situações seguintes de comparação de uma média amostral com um valor alegado e desvio padrão populacional desconhecido (Distribuição t), calcule as informações pedidas, e comente os resultados. Faça a proposição de H0 e H1.

Teste Bilateral										
n	GL	média amostral	valor alegado	DP Amostral	Grau confiança	α	t	t teste	média-valor alegado	DP da distr amostral
41	40	350	340	30	90%	10%				
21	20	560	570	30	95%	5%				
30	29	1080	1100	50	99%	1%				
27	26	230	250	55	90%	10%				
17	16	9900	10000	160	95%	5%				
23	22	532	500	60	99%	1%				

Teste Unilateral										
n	GL	média amostral	valor alegado	DP Amostral	Grau de confiança	α	t	t teste	média-valor alegado	DP da distr amostral
41	40	120	100	70	90%	10%				
21	20	90	100	70	95%	5%				
30	29	73	100	70	99%	1%				
27	26	560	600	120	90%	10%				
17	16	870	900	70	95%	5%				
23	22	3250	3200	200	99%	1%				

- 18) Um pesquisador em educação está interessado em saber se o desempenho de alunos de escolas submetidas a duas diferentes técnicas de ensino têm desempenho distinto. O desempenho discente em um teste aplicado a alunos das duas escolas, 150 da escola A e 170 da escola B, indicou índices médios de desempenho de 6,0 e 5,9, para escolas A e B respectivamente. Os desvios padrões populacionais são conhecidos para o tipo de estudo, 0,5. Proponha H0 e H1. Comente o resultado.
- 19) Para as situações seguintes de comparação de duas médias amostrais e desvio padrão populacional conhecido (Distribuição z), calcule as informações pedidas, e comente os resultados. Faça a proposição de H0 e H1.

	поепі.										
Test	e Bilateral										
n1	média x1	DP pop 1	n2	méd x2	DP pop 2	Grau de confiança	α	Z	z teste	média x1 - x2	DP da distr amostral
36	20	3	36	18	3	90%	10%				
30	4	1	24	5	1,2	95%	5%				
45	50	5	41	53	6	99%	1%				
51	109	32	57	120	30	90%	10%				
Test	e Unilateral										
n	média x1	DP pop 1	n2	méd x2	DP pop 2	Grau de confiança	α	Z	z teste	média x1 - x2	DP da distr amostral
39	1010	30	38	1000	30	90%	10%				
59	39,5	1,5	63	40	1,7	95%	5%				
79	640	20	78	650	27	99%	1%				
30	128	15	32	120	23	90%	10%				
			•								

- 20) A comparação de médias de três ou mais amostras é feita através da técnica de análise de variâncias. Explique-a.
- 21) Para a análise de variâncias necessita-se conhecer os graus de liberdade do numerador e do denominador. Para cada situação a seguir calcule os dois graus de liberdade e, consulte o valor de F crítico na tabela da distribuição F para cada nível de significância especificado:

Número de amostras	tamanho da amostra	GL Numerador	GL Denominador	α(%)	F tabela
5	4			1	
5	4			5	
5	4			10	
3	10			1	
3	10			5	
3	10			10	
4	8			5	

22) Um banco faz uma pesquisa sobre o tempo de médio de espera por atendimento de cliente em suas agências para saber se há diferença entre elas. Faz a pesquisa em 3 agências, pesquisando 6 clientes em cada. Os valores da pesquisa são apresentados a seguir. Proponha as hipóteses de pesquisa (H0 e H1). Faça um teste de comparação de média entre as 3 agências. Comente os resultados.

cliente	ag1	ag2	ag3
1	20	15	29
2	15	20	17
3	17	23	24
4	21	19	26
5	22	17	20
6	19	22	18

23) O que é o teste de significância para proporções?