IISER Kolkata Problem Sheet VI

MA 1101: Mathematics I

Problem 1.

Use the (ϵ, δ) -definition to prove the existence or non-existence of the following limits.

- (i) $f: \mathbb{R} \to \mathbb{R}$, f(x) := [x]; $\lim_{x \to 0} f(x)$.
- (ii) $f: \mathbb{R} \to \mathbb{R}$, $f(x) := [x] \left[\frac{x}{3}\right]$; $\lim_{x \to 0} f(x)$.
- (iii) $f: \mathbb{R} \to \mathbb{R}$, $f(x) := \frac{x^3 8}{x 2}$ if $x \neq 2$, 0 at x = 0; $\lim_{x \to 2} f(x)$.
- (iv) $f: \mathbb{R} \to \mathbb{R}$, $f(x) := x \sin \frac{1}{x}$ if $x \neq 0$, 0 at x = 0; $\lim_{x \to 0} f(x)$.
- (v) $f : \mathbb{R} \to \mathbb{R}$, $f(x) := \frac{x}{|x|}$ if $x \neq 0$, 0 at x = 0;, $\lim_{x \to 0} f(x)$.

Problem 2.

Let $-\infty < a < b < \infty$, let $f, g: (a, b) \to \mathbb{R}$ and let $x_0 \in [a, b]$. Let us suppose that $\lim_{x \to x_0} f(x)$ exists and that $\lim_{x \to x_0} f(x) \neq 0$. Prove that, for some $\delta > 0$,

$$f(x) \neq 0$$
, for all $x \in (x_0 - \delta, x_0 + \delta)$, $x \neq x_0$.

Problem 3.

Let $-\infty < a < b < \infty$, let $f, g: (a, b) \to \mathbb{R}$ and let $x_0 \in [a, b]$. Let us suppose that $\lim_{x \to x_0} f(x)$, $\lim_{x \to x_0} g(x)$ exist and we write

$$L := \lim_{x \to x_0} f(x), \ M := \lim_{x \to x_0} g(x).$$

Show that

- (i) $\lim_{x \to x_0} (f(x) + g(x)) = L + M$.
- (ii) For all $\alpha \in \mathbb{R}$, $\lim_{x \to x_0} (\alpha f(x)) = \alpha L$.
- (iii) $\lim_{x\to x_0} f(x)g(x) = LM$.
- (iv) If $M \neq 0$,

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{L}{M}.$$