Complex Networks miscellaneous

2019.1.31(Thu)

contents

Network embedding

- Deep learning & networks
 - Compression of deep neural networks
 - Graph neural networks
 - Community detection with autoencoders

Some references

Traditional network analysis vs network embedding

Peng Cui et al., "A Survey on Network Embedding"
IEEE Transactions on Knowledge and Data Engineering, 2017
https://arxiv.org/abs/1711.08752

Network embedding

- network -> vector
 - Similar vertices should be located closer
- beyond visualization

From "awesome network embedding" https://github.com/chihming/awesome-network-embedding

Why vectors?

• Pros:

- Many ML tools are available for vectors
- Attribute information of vertices (such as age, gender, affiliation, ...) can be combined with structural information

• Cons:

"Goodness" of network embedding is still controversial

Word2vec (Skip-gram)

many variations such as GloVe (https://nlp.stanford.edu/projects/glove/)

DeepWalk [Perozzi, KDD2014]

- A network is represented as the sequences of random walks on it
- Then the sequences are given to word2vec (Skip-gram) in order to get vectors
- Then the vectors are used for:

- Link prediction
- Community detection

(a) Input: Karate Graph

(b) Output: Representation

Pros & cons of network embedding

- Very powerful for some tasks
 - Classification
 - Link prediction
 - ML tasks in combination with node attributes
- Still not perfect:
 - embedding non-simple networks (dynamic, heterogeneous, signed, multiplex, ...) is not easy
 - Not good for some tasks (computing diameter, propagating info., searching, ...)
 - Comprehensibility (hard to visualize high-dimensional vectors)

Deep Neural Networks (DNNs)

Image recognition

Voice recognition

DNN models consume too much storage

- Size of commonly used DNNs
 - AlexNet 240MB
 - VGG 16 552MB
 - Inception V3 109MB
- Running models on the cloud has its own disadvantages
 - Network latency
 - Privacy

DNN Compression

- Can we achieve the same accuracy with smaller models?
- There are several approaches to obtain smaller models
 - Compressing pre-trained networks
 - Deep Compression (Han et al., 2016)
 - Designing of compact models
 - Squeezenet (landola et al, 2016)
 - MobileNets (Howard et al., 2017)

Deep Compression (Han et a., ICLR 2016)

- Commonly referred as state-of-the-art compression
- Requires specific custom hardware to leverage inferencing (Han et al., ISCA 2016)

Networks as the input to Neural Networks

- NN basically accepts vectors as its input
 - network embedding
 - graph convolution

Convolution on graph

- Convolution of images
 - aggregating pixels in a filter
- Convolution of graphs
 - (Graph Fourier transform)
 - aggregating neighbors of all rels
- Application
 - classification / link prediction
 - For structured data (such as chemical compounds)

"Modeling Relational Data with Graph Convolutional Networks" https://arxiv.org/abs/1703.06103

Community detection

 Based on vector representation (obtained from DeepWalk, LINE, ...)

Input

Some references

- SNAP: Stanford Network Analysis Project
 - http://snap.stanford.edu/
- Network Repository
 - http://networkrepository.com/
- Awesome network analysis
 - https://github.com/briatte/awesome-networkanalysis
- Social Network Analysis with Python and NetworkX
 - https://pydata.org/barcelona2017/schedule/presentation/7/

