Летний коллоквиум по математическому анализу

hse-ami-open-exams

Содержание

- 1 Первообразная и неопределенный интеграл. Определение и основные свойства (до замены переменной и интегрирования по частям).
- Первообразная и неопределенный интеграл. Определение и основные правила интегрирования: метод замены переменной и метод интегрирования по частям.
 3
- 3 Понятие элементарной функции и интегрируемости в элементарных функциях. Примеры функций, неинтегрируемых в элементарных функциях (без доказательства). Классы функций, интегрируемых в элементарных (без доказательства).

3

3

3

4

4

4

- 4 Многочлены и рациональные функции и интегрируемости в элементарных функциях. Примеры функций, неинтегрируемых в элементарных функциях (без доказательства). Классы функций, интегрируемых в элементарных (без доказательства).
- 5 Теорема о разложении рациональной функции в сумму простейших дробей (формулировка для общего случая, доказательство достаточно привести для случая, когда знаменатель не содержит неприводимых квадратных множителей).
- **6** Алгоритм интегрирования функций вида $\frac{Mx+N}{(x^2+bx+c)^n}$, где $b^2-4c<0, n\in\mathbb{N}$.
- 7 Рационализируемые интегралы. Алгоритм интегрирования функций вида $R(\cos x, \sin x)$ и $R(x, \sqrt[n]{\frac{ax+b}{cx+d}})$, где R(u,v) рациональная функция, $n \in \mathbb{N}, ad-bc \neq 0$.
- 8 Рационализируемые интегралы. Алгоритм интегрирования функций вида $R(x, \sqrt{ax^2 + bx + c})$, где R(u,v) рациональная функция. Нужно либо дать определение подстановок Эйлера, и объяснить, почему они работают, либо доказать, что у квадрики существует рациональная параметризация.
- 9 Определенный интеграл. Основные определения: разбиение отрезка, размеченное разбиение, интегральная сумма Римана, определенный интеграл Римана, верхняя и нижняя суммы Дарбу. Необходимое условие интегрируемости функции на отрезке. Пример ограниченной функции, которая интегрируема по Риману.
- 10 Критерий интегрируемости функции на отрезке (с доказательством и определением необходимых понятий).
- 11 Теорема об интегрируемости монотонной функции (с доказательством). Теорема об интегрируемости кусочно непрерывной функции (определение кусочно непрерывной функции и формулировка теоремы).
- 12 Теорема Кантора о функции, непрерывной на отрезке (с доказательством). Теорема об интегрируемости непрерывной функции на отрезке (с доказательством). 5
- 13 Основные свойства определенных интегралов (интеграл от 1, линейность, аддитивность, монотонность, интегрируемость модуля, произведения, арифметически обратной функции) без доказательств. Первая теорема о среднем и ее основное следствие.

14	ния. Теорема о производной интеграла с переменным верхним концом интегрирования.	5
15	Основная теорема интегрального исчисления (формула Ньютона-Лейбница).	5
16	Основные геометрические приложения определенного интеграла: площадь криволинейной трапеции (без доказательства), площадь криволинейного сектора (с доказательством), объем тела вращения (без доказательства).	5
17	Параметрически заданная кривая на плоскости. Определение длины кривой. Примеры неспрямляемых кривых. Теорема о спрямляемости (без доказательства).	5
18	Теорема о спрямляемости (основные идеи доказательства).	6
19	Несобственные интегралы. Определение для случая бесконечной функции и бесконечного предела интегрирования. Основные свойства (аддитивность, линейность, монотонность, формула Ньютона-Лейбница, интегрирование по частям, замена перементика»	c
	ной), без доказательств.	6
20	Теорема сравнения для несобственных интегралов и ее основное следствие о несобственных интегралах от эквивалентных функций.	6
21	Критерий Коши сходимости несобственного интеграла (без доказательства). Теорема о сходимости абсолютно сходящегося интеграла. Определение абсолютной и условной сходимости.	6
22	Признак Дирихле сходимости несобственного интеграла.	6
23	Метрическое пространство. Определение и примеры (основные метрики на \mathbb{R}^n , дискретная метрика, метрика Хэмминга).	6
24	Теорема о том, что евклидова метрика является метрикой.	6
25	Основные понятия, связанные с общими метрическими пространствами: открытые и замкнутые шары, предел последовательности точек метрического пространства, открытые множества, замкнутые множества. Примеры.	7
26	Понятие топологии на метрическом пространстве, основные свойства открытых и замкнутых множеств (без доказательств).	7
27	Определение эквивалентных метрик. Теорема об эквивалентности матрик d_1, d_2, d_∞ на \mathbb{R}^n . Как вычисляется предел последовательности точек в \mathbb{R}^n ?	7
28	Ограниченные последовательности в \mathbb{R}^n и сходящиеся последовательности в \mathbb{R}^n . Теорема Больцано-Вейерштрасса об ограниченной последовательности в \mathbb{R}^n .	7

- 1 Первообразная и неопределенный интеграл. Определение и основные свойства (до замены переменной и интегрирования по частям).
- 2 Первообразная и неопределенный интеграл. Определение и основные правила интегрирования: метод замены переменной и метод интегрирования по частям.
- 3 Понятие элементарной функции и интегрируемости в элементарных функциях. Примеры функций, неинтегрируемых в элементарных функциях (без доказательства). Классы функций, интегрируемых в элементарных (без доказательства).
- 4 Многочлены и рациональные функции и интегрируемости в элементарных функциях. Примеры функций, неинтегрируемых в элементарных функциях (без доказательства). Классы функций, интегрируемых в элементарных (без доказательства).
- 5 Теорема о разложении рациональной функции в сумму простейших дробей (формулировка для общего случая, доказательство достаточно привести для случая, когда знаменатель не содержит неприводимых квадратных множителей).
- 6 Алгоритм интегрирования функций вида $\frac{Mx+N}{(x^2+bx+c)^n}$, где $b^2-4c < 0, n \in \mathbb{N}$.

- 7 Рационализируемые интегралы. Алгоритм интегрирования функций вида $R(\cos x,\sin x)$ и $R(x,\sqrt[n]{\frac{ax+b}{cx+d}})$, где R(u,v) рациональная функция, $n\in\mathbb{N}, ad-bc\neq 0$.
- 8 Рационализируемые интегралы. Алгоритм интегрирования функций вида $R(x, \sqrt{ax^2 + bx + c})$, где R(u, v) рациональная функция. Нужно либо дать определение подстановок Эйлера, и объяснить, почему они работают, либо доказать, что у квадрики существует рациональная параметризация.
- 9 Определенный интеграл. Основные определения: разбиение отрезка, размеченное разбиение, интегральная сумма Римана, определенный интеграл Римана, верхняя и нижняя суммы Дарбу. Необходимое условие интегрируемости функции на отрезке. Пример ограниченной функции, которая интегрируема по Риману.
- 10 Критерий интегрируемости функции на отрезке (с доказательством и определением необходимых понятий).
- 11 Теорема об интегрируемости монотонной функции (с доказательством). Теорема об интегрируемости кусочно непрерывной функции (определение кусочно непрерывной функции и формулировка теоремы).

- 12 Теорема Кантора о функции, непрерывной на отрезке (с доказательством). Теорема об интегрируемости непрерывной функции на отрезке (с доказательством).
- 13 Основные свойства определенных интегралов (интеграл от 1, линейность, аддитивность, монотонность, интегрируемость модуля, произведения, арифметически обратной функции) без доказательств. Первая теорема о среднем и ее основное следствие.
- 14 Определенный интеграл с переменным верхним (или нижним) концом интегрирования. Теорема о производной интеграла с переменным верхним концом интегрирования.
- 15 Основная теорема интегрального исчисления (формула Ньютона-Лейбница).
- 16 Основные геометрические приложения определенного интеграла: площадь криволинейной трапеции (без доказательства), площадь криволинейного сектора (с доказательством), объем тела вращения (без доказательства).
- 17 Параметрически заданная кривая на плоскости. Определение длины кривой. Примеры неспрямляемых кривых. Теорема о спрямляемости (без доказательства).

- 18 Теорема о спрямляемости (основные идеи доказательства).
- 19 Несобственные интегралы. Определение для случая бесконечной функции и бесконечного предела интегрирования. Основные свойства (аддитивность, линейность, монотонность, формула Ньютона-Лейбница, интегрирование по частям, замена переменной), без доказательств.
- 20 Теорема сравнения для несобственных интегралов и ее основное следствие о несобственных интегралах от эквивалентных функций.
- 21 Критерий Коши сходимости несобственного интеграла (без доказательства). Теорема о сходимости абсолютно сходящегося интеграла. Определение абсолютной и условной сходимости.
- 22 Признак Дирихле сходимости несобственного интеграла.
- 23 Метрическое пространство. Определение и примеры (основные метрики на \mathbb{R}^n , дискретная метрика, метрика Хэмминга).
- 24 Теорема о том, что евклидова метрика является метрикой.

- 25 Основные понятия, связанные с общими метрическими пространствами: открытые и замкнутые шары, предел последовательности точек метрического пространства, открытые множества, замкнутые множества. Примеры.
- 26 Понятие топологии на метрическом пространстве, основные свойства открытых и замкнутых множеств (без доказательств).
- 27 Определение эквивалентных метрик. Теорема об эквивалентности матрик d_1, d_2, d_{∞} на \mathbb{R}^n . Как вычисляется предел последовательности точек в \mathbb{R}^n ?
- 28 Ограниченные последовательности в \mathbb{R}^n и сходящиеся последовательности в \mathbb{R}^n . Теорема Больцано-Вейерштрасса об ограниченной последовательности в \mathbb{R}^n .