Научная проблема проекта «Электрический пробой»

Этап І

Королёв И. А., Кудряшов А. Н., Оганнисян Д. Б., Мугари А.

Содержание

1	Введение	5
2	Актуальность	6
3	Физические механизмы пробоя и роста стримеров	7
	3.1 Электрический разряд и стримеры	7
	3.2 Механизмы пробоя	8
4	Основные уравнения	9
	4.1 Уравнение Пуассона	9
	4.2 Уравнения движения заряженных частиц	9
	4.3 Уравнение непрерывности	10
	4.4 Модель ионизации (модель Тауна)	10
	4.5 Определение критического напряжения	11
5	Вычисление электрического потенциала методом итераций	12
6	Критерии и модели роста стримеров	13
	6.1 Статическое распределение потенциала	13
	6.2 Локальное поле на границе стримера	13
	6.3 Стохастический критерий роста	14
7	Методы численного моделирования	15
	7.1 Метод конечных разностей	15
	7.2 Методы Монте-Карло	15
	7.3 Сеточные модели	16
8	Выводы	17
Сг	писок литературы	18

Список иллюстраций

Список таблиц

1 Введение

Электрический пробой — это явление резкого увеличения проводимости диэлектрика при достижении критического напряжения. При этом происходит лавинное размножение носителей заряда, что приводит к быстрому снижению сопротивления материала и переходу его из изолятора в проводник.

Такие процессы наблюдаются как:

- В атмосфере (например, молния),
- **В технических устройствах** (между частями электрооборудования, на поверхности диэлектриков) [1].

Исследование электрического пробоя имеет практическое значение для:

- Повышения надёжности высоковольтных систем,
- Предотвращения коротких замыканий,
- Оптимизации конструкции изоляционных материалов.

2 Актуальность

Изучение электрического пробоя важно для:

- Электроэнергетики и линий передачи энергии
- Высоковольтного оборудования
- Электронных и силовых установок.

Понимание процессов пробоя позволяет:

- Разрабатывать материалы с повышенной устойчивостью
- Оптимизировать конструктивные решения
- Предотвращать аварийные ситуации за счёт контроля над критическими режимами работы.

3 Физические механизмы пробоя и роста стримеров

3.1 Электрический разряд и стримеры

Исторически искровой разряд изучался ещё с времён Франклина [2], а современные исследования показали, что развитие электрического разряда проходит через несколько этапов:

- **Коронный разряд.** При относительно низком напряжении возникает синевато-фиолетовое свечения на участках электродов с сильным полем.
- **Стримерная структура.** При дальнейшем увеличении напряжения образуются слабосветящиеся проводящие каналы (стримеры), которые могут разветвляться.

Согласно модели НПВ, рост стримеров определяется локальным электрическим полем, а вероятность роста ветви может аппроксимироваться зависимостью

$$p(E) \sim E^{\eta}$$

, где η – показатель роста [3].

• **Лидерное образование.** При определённых условиях стримеры превращаются в лидерные каналы – плазменные образования с очень высокой

проводимостью, продолжая электроды и способствуя переходу в искровой разряд.

3.2 Механизмы пробоя

Под воздействием сильного электрического поля в диэлектрике происходят:

- **Ионизация.** Электроны, ускоряясь полем, ионизируют молекулы среды, что приводит к лавинному размножению свободных носителей заряда.
- **Лавинное размножение.** Экспоненциальный рост числа заряженных частиц инициирует быстрый переход диэлектрика в проводящее состояние [4].
- **Формирование стримеров.** Локальное усиление поля за счёт накопления заряда способствует образованию разветвлённой структуры проводящих каналов.

4 Основные уравнения

4.1 Уравнение Пуассона

Электрическое поле в среде определяется через потенциал ϕ , который удовлетворяет уравнению Пуассона:

$$\nabla^2 \phi = -\frac{\rho}{\varepsilon}$$

где:

- ρ плотность заряда.
- ε диэлектрическая проницаемость среды.

Связь напряжённости электрического поля и потенциала выражается через градиент:

$$E = -\nabla \phi$$

4.2 Уравнения движения заряженных частиц

Движение носителей заряда (электронов и ионов) в электрическом поле описывается вторым законом Ньютона:

$$m\frac{dv}{dt} = qE - \mu v$$

где:

- *m* масса частицы.
- q заряд частицы.
- E вектор напряжённости электрического поля.
- μ коэффициент столкновений с молекулами среды (эффект торможения).
- v скорость частицы.

4.3 Уравнение непрерывности

Сохранение заряда описывается уравнением непрерывности:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot j = 0$$

где:

- ρ плотность заряда.
- j вектор плотности тока.

Для связи с электрическим полем используется закон Ома:

$$j = \sigma E$$

где σ — проводимость среды.

4.4 Модель ионизации (модель Тауна)

Вероятность ионизации при прохождении электронами через среду описывается экспоненциальным законом:

$$\alpha = A \exp\left(-\frac{B}{E}\right)$$

где:

• α — коэффициент ионизации.

- A и B эмпирические константы, зависящие от свойств среды.
- E напряжённость электрического поля.

4.5 Определение критического напряжения

Критическое напряжение пробоя U_{kp} определяется соотношением:

$$U_{\rm \kappa p} = E_{\rm \kappa p} \cdot d$$

где:

- $E_{\rm kp}$ критическая напряжённость поля.
- d расстояние между электродами или характерный размер области, в которой происходит пробой.

11

5 Вычисление электрического потенциала методом итераций

В однородном диэлектрике, где отсутствуют свободные заряды, уравнение Пуассона переходит в уравнение Лапласа:

$$\nabla^2 \phi = 0$$

Для решения задачи в дискретном пространстве применяется метод конечных разностей. Рассмотрим двумерный случай на квадратной сетке с шагом h. Если потенциал в узлах обозначается как $\phi_{i,j}$, то разностная аппроксимация уравнения Лапласа имеет вид:

$$\phi_{i,j} = \frac{1}{4} \left(\phi_{i-1,j} + \phi_{i+1,j} + \phi_{i,j-1} + \phi_{i,j+1} \right)$$

Это уравнение (2.3) используется для итерационного расчёта потенциала. Начальные значения для внутренних узлов могут задаваться произвольно, а граничные условия определяются физической постановкой задачи (например, потенциал одного электрода равен нулю, а другого – приложенному напряжению). Итерационный процесс продолжается до сходимости.

6 Критерии и модели роста стримеров

При моделировании развития стримерной структуры в диэлектрике используются следующие идеи:

6.1 Статическое распределение потенциала

Предполагается, что если проводящий канал (стример) уже образовался, его потенциал равен потенциалу электрода. Таким образом, стримерная структура рассматривается как часть граничных условий, влияющих на распределение поля.

6.2 Локальное поле на границе стримера

Для вычисления поля на границе стримера используется разностная аппроксимация:

• Для горизонтальных и вертикальных звеньев:

$$|E| = \phi_B$$

• Для диагональных звеньев (учитывая геометрию):

$$|E| = \frac{\phi_B}{\sqrt{2}}$$

6.3 Стохастический критерий роста

Вероятность присоединения нового звена к разрядной структуре зависит от локального электрического поля. Одним из вариантов является степенная зависимость:

$$p(E) \sim E^{\eta}$$
,

где η — показатель роста, характеризующий свойства диэлектрика. Другие модели используют флуктуационный критерий, когда вероятность пробоя описывается функцией:

$$p(E) = \exp\left(\frac{E - E^*}{g}\right),\,$$

где E^* — пороговое значение напряжённости, а g — параметр, характеризующий флуктуации.

Также существуют модели, учитывающие стохастическое время запаздывания для каждого возможного звена, что позволяет моделировать многозвенные разряды с постоянным шагом по времени.

7 Методы численного моделирования

7.1 Метод конечных разностей

- **Цель:** Численное решение уравнения Пуассона (или Лапласа) для определения распределения потенциала ϕ в области.
- Суть метода: Область моделирования разбивается на сетку. Производные заменяются разностными выражениями, что позволяет вычислить потенциал в каждом узле с заданными граничными условиями. Итерационный процесс продолжается до достижения сходимости [1].

7.2 Методы Монте-Карло

- **Цель:** Моделирование случайного характера движения носителей заряда и ионизационных процессов, а также вероятностного выбора новых звеньев при росте стримерной структуры.
- **Суть метода:** На каждом шаге роста рассчитываются вероятности для всех потенциальных узлов, и с помощью случайного числа выбирается узел, к которому присоединяется новое звено. Такой метод позволяет учитывать стохастическую природу разрядного процесса [5].

7.3 Сеточные модели

- **Цель:** Моделирование пространственного роста разрядной структуры (стримеров) в диэлектрике.
- Суть метода: Сеточное моделирование основывается на разбиении пространства (двумерного или трёхмерного) на узлы, где рост происходит на основе локального распределения поля и вероятностных критериев. Модели могут быть однозвенными (выбирается одно звено за шаг) или многозвенными (несколько звеньев присоединяются за один шаг).

8 Выводы

1. Многофакторность пробоя:

• Электрический пробой определяется не только интенсивностью электрического поля, но и свойствами материала, геометрией электродов и внешними условиями (температура, влажность, давление).

2. Значимость математических моделей:

- Уравнение Пуассона (или Лапласа) позволяет точно описать распределение потенциала и выявить зоны с максимальной напряжённостью.
- Модели движения заряженных частиц и уравнение непрерывности обеспечивают комплексное описание динамики процесса.
- Модель ионизации (модель Тауна) и стохастические критерии роста стримеров позволяют смоделировать лавинное размножение носителей заряда и формирование разрядной структуры.

3. Роль численных методов:

- Метод конечных разностей эффективен для получения приближённого распределения потенциала.
- Методы Монте-Карло позволяют учитывать случайность процессов,
 что особенно важно при моделировании роста стримеров.
- Сеточные модели дают возможность изучать пространственную структуру разрядов, включая геометрию фигур Лихтенберга.

Список литературы

- 1. Медведев Д.А. и др. Моделирование физических процессов и явлений на ПК: Учебное пособие. Новосибирск: Новосибирский государственный университет, 2010. 101 с.
- 2. Келдыш Л.В. Электрический пробой в конденсированных средах. Москва: Наука, 1979. 220 с.
- 3. Фридман А.А., Фомин Н.А. Моделирование развития стримерных разрядов в газах // Журнал технической физики. 1995. Т. 65, № 2. С. 89–96.
- 4. Зуев В.Е. Физические основы пробоя диэлектриков. Санкт-Петербург: Политехника, 2008. 312 с.
- 5. Тыртышников А.Ю. и др. Сравнение алгоритмов DLA и RLA при моделировании пористых структур. НИИ «Центрпрограммсистем», 2017. 244 с.