信息论第三单元复习答案: 信源编码

基本概念

答案: 随机变量 X 的信源编码 C 是从 X 的取值空间 \mathcal{X} 到字母表 D 上字符串集合的映射:

$$C: \mathcal{X} \to D^*$$

其中 D* 表示 D 上所有有限长度字符串的集合。

答案:期望长度定义为:

1.

$$L(C) = \mathbb{E}[l(C(X))] = \sum_{x \in \mathcal{X}} p(x)l(c(x))$$

其中 l(c(x)) 是码字 c(x) 的长度。

1

答案:

3. (a) **奇异码**:不同符号可能映射到相同码字($\exists x \neq x' \ derug \ c(x) = c(x')$)

(b) **非奇异码**:不同符号映射到不同码字 $(x \neq x' \Rightarrow c(x) \neq c(x'))$

(c) **唯一可译码**:任意符号序列的编码结果唯一可解码(扩展编码也非奇异)

(d) **前缀码**: 无任何码字是另一个码字的前缀(c(x) 不是 c(x') 的前缀 $\forall x \neq x'$)

Kraft 不等式与 McMillan 定理

答案: 对于字母表 D(|D|=d) 上的前缀码,码长 $\{l_1,\ldots,l_n\}$ 满足:

$$\sum_{i=1}^{n} d^{-l_i} \le 1$$

4.

证明:考虑码树结构:

5. • 设最大码长为 l_{\max}

• 每个码字对应叶子节点,深度为 l_i

• 每个深度 l_i 的节点有 $d^{l_{\max}-l_i}$ 个子孙节点

• 所有码字的子孙节点互斥且总数不超过 $d^{l_{\max}}$

$$\sum_{i=1}^{n} d^{l_{\max}-l_i} \le d^{l_{\max}} \Rightarrow \sum_{i=1}^{n} d^{-l_i} \le 1 \quad \Box$$

证明: 构造性证明 (按码长递增分配码字):

6. **•** 设 $l_1 \leq l_2 \leq \cdots \leq l_n$

• 选择码字 c_i 满足:长度 l_i 且不是任何已分配码字的前缀

• 可用码字数: $d^{l_i} - \sum_{j=1}^{i-1} d^{l_i-l_j}$

• 由 Kraft 不等式: $d^{l_i} - \sum_{j=1}^{i-1} d^{l_i - l_j} \ge d^{l_i} (1 - \sum_{j=1}^{i-1} d^{-l_j}) > 0$ 口

答案: 对无限字母表 D, 前缀码存在当且仅当:

$$\sum_{i=1}^{\infty} |D|^{-l_i} \le 1$$

构造方法: 将码字映射到 [0,1) 区间,码字 c_i 对应区间:

$$\left[\sum_{j=1}^{i-1} |D|^{-l_j}, \sum_{j=1}^{i} |D|^{-l_j}\right)$$

7.

定理: 唯一可译码的码长必满足 Kraft 不等式。

证明:考虑扩展编码 C^k :

$$\left(\sum_{i=1}^{n} d^{-l_i}\right)^k = \sum_{m=kl_{\min}}^{kl_{\max}} N_m d^{-m}$$

$$\leq \sum_{m=kl_{\min}}^{kl_{\max}} d^m d^{-m}$$

$$= kl_{\max} - kl_{\min} + 1$$

其中 N_m 是长度为 m 的码字数。由唯一可译性 $N_m \leq d^m$, 故:

$$\left(\sum d^{-l_i}\right)^k \le k(l_{\max} - l_{\min}) + 1$$

当 $k \to \infty$ 时,左边指数增长,右边线性增长,故 $\sum d^{-l_i} \le 1$ 。 \square

8.

最优码长界与香农码

证明: 由相对熵非负性:

9.

$$L = \sum p_i l_i = \sum p_i \log_d \frac{1}{p_i}$$
$$= H_d(X)$$

且此时 Kraft 不等式取等号: $\sum d^{-l_i} = \sum p_i = 1$ 。 \square

10.

定义: 香农码取 $l_i = \lceil \log_d \frac{1}{p_i} \rceil$

证明:

• 上界:

$$l_i < \log_d \frac{1}{p_i} + 1$$

$$\Rightarrow L < \sum_i p_i \left(\log_d \frac{1}{p_i} + 1 \right)$$

$$= H_d(X) + 1$$

• 验证 Kraft 不等式:

$$\sum d^{-l_i} \le \sum d^{-\log_d(1/p_i)} = \sum p_i = 1 \quad \Box$$

哈夫曼编码

算法:

- 12. (a) 将符号按概率递减排序
 - (b) 合并概率最小的两个符号, 赋予 0/1 标签
 - (c) 将合并后的节点视为新符号(概率为和)
 - (d) 重复直到只剩一个节点
 - (e) 从根回溯得到码字

证明:

- 13. (a) 若存在 $p_i > p_k$ 但 $l_i > l_k$,交换码字可减小 L,矛盾
 - (b) 若最长码字唯一, 可缩短其长度而不破坏前缀性
 - (c) 最长码字对应概率最小的两个符号, 在最后一步合并

证明: (归纳法)

- 14. 基础: n = 2 时显然最优
 - **归纳**: 假设对 *n* 1 个符号最优
 - 设 x_1, x_2 是概率最小的两个符号,合并为 y

 - 对 S 构造码: $C(x_i) = C'(y) \cup \{i\}, i = 1, 2$
 - 期望长度关系: $L(C) = L(C') + p(x_1) + p(x_2)$
 - 若存在更优码 C^* , 通过交换可构造 S' 的更优码,矛盾 \square

比较:

15. • **香农码**: 构造简单, $L < H_d(X) + 1$,但实际冗余常大于 1

• 哈夫曼码: 最优前缀码, L 最小, 但构造复杂度 $O(n \log n)$

• 对均匀分布: 两者性能接近

• 对非均匀分布: 哈夫曼码显著优于香农码