2

2장. 개략적인 규모 추정

시스템 용량이나 성능 요구사항을 개략적으로 추정해보아야 한다.

개략적인 규모 추정(back-of-the-envelope estimation)

- 보편적으로 통용되는 성능 수치상에서 사고 실행(thought experiment)을 행하여 계산하는 행위
- 설계가 요구사항에 부합할 것인지 보기 위함

개략적 규모 추정을 효과적으로 하기 위해선 *규모 확장성 표현에 필요한 기본기 필요 (2의 제곱 수, 응답지연 값, 가용성에 관계된 수치*)

2의 제곱수

제대로 된 분산 시스템 데이터 계산 결과를 얻으려면 **데이터 볼륨의 단위를 2의 제곱수로 표현하는 방법**을 알아야 한다. (최소단위: 1Byte = 8bit)

2의 x 제곱	근사치	이름	축약형
10	1천	1킬로바이트	1KB
20	1백만	1메가바이트	1MB
30	10억	1기가바이트	1GB
40	1조	1테라바이트	1TB
50	1000조	1페타바이트	1PB

응답지연(latency)값

구글의 제프 딘은 2010년 통상적인 컴퓨터에서 구현된 연산들의 응답지연 값을 공개했다.

연산명	시간
L1 캐시 참조	0.5ns
분기 예측 오류(branch mispredict)	5ns
L2 캐시 참조	7ns
뮤텍스(mutex) 락/언락	100ns
주 메모리 참조	100ns
Zippy로 1 KB 압축	10,000ns = 10us
1 Gbps 네트워크로 2 KB 전송	20,000ns = 10us
메모리에서 1 MB 순차적으로 read	250,000ns = 250us
같은 데이터 센터 내에서 메시지 왕복 지연시간	500,000ns = 500us
디스크 탐색(seek)	10,000,000ns = 10ms
네트워크에서 1 MB 순차적으로 read	10,000,000ns = 10ms
디스크에서 1 MB 순차적으로 read	30,000,000ns = 30ms
한 패킷의 CA(캘리포니아)로부터 네덜란드까지의 왕복 지연 시간	150,000,000ns = 150ms

Numbers Every Programmer Should Know By Year

https://colin-scott.github.io/personal_website/research/interactive_latency.html

이 수를 알기 쉽게 시각화 한 사이트로 현재는 2020년도가 최신이다.

위의 수치들을 분석하여 아래와 같은 결론 도출

- 메모리는 빠르지만 디스크는 아직도 느리다.
- 디스크 탐색은 가능한 피하라
- 단순한 압축 알고리즘은 빠르다.
- 데이터를 인터넷으로 전송하기 전에 가능하면 압축하라
- 데이터 센터는 보통 여러 지역에 분산되어 있고, 센터들 간에 데이터를 주고받는 데는 시간 이 걸린다.

가용성에 관계된 수치

고가용성 (단위 : %): 시스템이 오랜 시간 동안 지속적으로 중단없이 운영될 수 있는지에 대한 능력

ex) 가용성 100% : 한 번도 중단된 적 없음 ⇒ 대부분 서비스는 99~100%의 가용성 갖는다.

SLA(Service Level Agreement)는 서비스 사업가와 고객 사이에 맺어진 합의로 서비스 가용 시간(uptime)이 기술되어 있다.

예제: 트위터 QPS와 저장소 요구량 추정 가정

- 월간 능동 사용자(monthly active user)는 3억명이다.
- 50%의 사용자가 트위터를 매일 사용한다.
- 평균적으로 각 사용자는 매일 2건의 트윗을 올린다.
- 미디어를 포함하는 트윗은 10% 정도다.
- 데이터는 5년간 보관된다.

추정

- QPS(Query Per Second) 추정치
 - 일단 능동 사용자(Daily Active User, DAU) = 3억 * 50% = 1.5억
 - QPS = 1.5억 * 2 트윗 / 24시간 / 3600초 = 약 3500
 - 최대 QPS = 3500 * 2 = 7000
- 미디어 저장을 위한 저장소 요구량
 - 。 평균 트윗 크기
 - tweet id에 64바이트
 - 텍스트에 140바이트
 - 미디어에 1MB
 - 미디어 저장소 요구량: 1.5억 * 3 * 10% * 1MB = 30TB/일
 - 。 5년간 미디어를 보관하기 위한 저장소 요구량 : 30TB * 365 * 5 = 약 55PB

팁

무작정 결과를 내는 것 보다 더 중요한 것은 문제를 풀어가는 올바른 절차 (문제 해결 능력)

- 적절한 근사치를 활용한 계산을 하자 (어려운 연산은 하지 말고 연산하는데 많은 시간을 쏟지는 말자)
- 면접에서 나온 가정들은 적어두자
- 단위를 붙이는 습관을 들이자. (모호함 방지 가능)
- QPS, 최대 QPS, 저장소 요구량, 캐시 요구량, 서버 수 등을 추정하는 것은 출제 빈도가 높은 개력적 규모 추정 문제이므로 연습하자.