Update-9

Asim Anand

March 2022

1 Production of radionuclides

Radionuclides found in nature, such as uranium and radium, are heavy elements with high toxicity and long half-life (over 1,000 years), so they are not used clinically. Radionuclides used in nuclear medicine are artificially produced by neutron bombardment or nuclear fission.

Many radionuclides are produced in nuclear reactors and cyclotrons. Generally, neutron-rich radioisotopes and those resulting from nuclear fission are produced in reactors (Table 1) and the neutron-poor radioisotopes are produced in cyclotrons (Table 2). There are about 30 radioisotopes produced by activation and 5 are reactor melt products. A list with 70 elements, their isotopes, half-lives, decay, main energy and applications can be found in the reference.

Table 1. 30 selected radionuclides produced by

nuclear fission.		
²¹³ bismuth	⁵⁹ iron	153samarium
131 caesium	²¹² lead	⁷⁵ selenium
¹³⁷ caesium	177lutetium	²⁴ sodium
51chromium	99molybdenum	89strontium
60cobalt-60	103palladium	99mtechnetium
165dysprosium	32phosphorus	²²⁷ thorium
169erbium	⁴² potassium	133xenon
¹⁶⁶ holmium	²²³ radium	169ytterbium
131iodine	186rhenium	177ytterbium
¹⁹² iridium	188rhenium	90yttrium

Table 2. 18 selected radionuclides produced by

cyclotrons. 3.	
²²⁵ actinium	67copper
211astatine	67gallium
²¹³ bismuth	127xenon
11carbon	111 indium
¹³ nitrogen	123iodine
15oxygen	124iodine
18fluorine	81mkrypton
57cobalt	82rubidium
⁶⁴ copper	²⁰¹ thallium

Figure 1: Image