

1. Limite des ANN pour la classification des images
2. Construction et apprentissage d'un CNN
3. Visualisation d'un CNN

2

Ce qu'on va voir Contenu

- 1. Exemples d'architectures CNN
- 2. Data Augmentation
- 3. Transfer Learning
- 4. Generative Adversial Networks

3

$Quelques\ architectures\ CNN$

- LeNet (1998)
- AlexNet (2012)
- VGG-16 (2014)
- GoogleNet (2015)
- ResNet (2015)
- DenseNet(2016)

LeNet (1998)

- Architecture:
- o Conv
- o Pool
- o Conv
- o Pool
- o FC
- o FC

- \triangleright Les filtres de conv de 5 \times 5.
- \triangleright Pooling 2 × 2, *stride* 2.
- > Premier "template" d'un CNN avec succession de couches [conv, pool]
- > \approx 60000 parametres

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner, « <u>Gradient-Based Learning Applied to Document Recognition</u> »

5

AlexNet (2012)

- · Architecture:
- o Conv1
- o MaxPool1
- o Norm1
- o Conv2
- o MaxPool2
- o Norm2
- o Conv3
- o Conv4
- o Conv5
- o MaxPool3
- o FC6
- o FC7
- o FC8
- 224 Stride of 4 sa pooling 128 Max pooling 2048 2048 2048 2048 128 Max pooling 2048 2048 2048
- Premier à implémenter ReLu dans un CNN.
- Plusieurs couches Conv avant un pooling.

 $A lex\ Krizhevsky,\ Ilya\ Sutskever,\ Geoffrey\ Hinton\ «\ \underline{ImageNet\ Classification\ with\ Deep\ Convolutional\ Neural\ Networks})$

VGG (2014)

- > Architecture « plus profonde ».
- \triangleright Plusieurs couches Conv avec filtre de 3 × 3.
- > 138M parametres
- ➤ Version plus profonde VGG-19

		Softmax
		FC 1000
	Softmax	FC 4096
fc8	FC 1000	FC 4096
fc7	FC 4096	Pool
fc6	FC 4096	3x3 conv, 512
	Pool	3x3 conv, 512
conv5-3	3x3 conv, 512	3x3 conv, 512
conv5-2	3x3 conv, 512	3x3 conv, 512
conv5-1	3x3 conv, 512	Pool
	Pool	3x3 conv, 512
conv4-3	3x3 conv, 512	3x3 conv, 512
conv4-2	3x3 conv, 512	3x3 conv, 512
conv4-1	3x3 conv, 512	3x3 conv, 512
	Pool	Pool
conv3-2	3x3 conv, 256	3x3 conv, 256
conv3-1	3x3 conv, 256	3x3 conv, 256
	Pool	Pool
conv2-2	3x3 conv, 128	3x3 conv, 128
conv2-1	3x3 conv, 128	3x3 conv, 128
	Pool	Pool
conv1-2	3x3 conv, 64	3x3 conv, 64
conv1-1	3x3 conv, 64	3x3 conv, 64
	Input	Input
	VGG16	VGG19
C	1 7	

Karen Simonyan, Andrew Zisserman « <u>Very Deep Convolutional Networks for Large-Scale Image</u> »

7

GoogleNet (2014)

- ➤ 22 couches
- ➤ Module « inception »
- ➤ Seulement **5M paramètres**, **12**× **moins que AlexNet**

Szegedy, Christian, et al. "Going deeper with convolutions." *Proceedings of the IEEE conference on computer vision and pattern recognition.* 2015.

ጸ

GoogleNet (2014)

- GoogleNet (2014)
- > Appliquer des filtres parallèles de taille différentes
- o Conv $(1 \times 1), (3 \times 3), (5 \times 5)$
- o Pool (3×3)
- > Concaténer les features map ensemble.

Szegedy, Christian, et al. "Going deeper with convolutions." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2015.

9

ResNet (2015)

- Réseaux « Très Profond » (152 couches)
- ➤ Introduit le concept de « skip connection » dans le block residuel

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun « Deep Residual Learning for Image Recognition »

15

ResNet (2015)

- Problèmes avec les réseaux très profond:
- Empiler une suite de couche Conv => erreur de training élevée

- Problème d'optimisation de réseaux très profond!
- > Solution:
- > Ajouter des block residuels

Softmax
FC 1000
Pool
Pool
3x3 conv. 64
3x3 conv. 128
3x3 conv. 64

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun « Deep Residual Learning for Image Recognition »

DenseNet (2017)

• Simplifier les connexions entre les couches.

> Problèmes:

- Gradient vanishing pour des réseaux très profonds
- Nombres très élevé de paramètres à apprendre
- Pourquoi ne pas réutiliser les paramètres déjà appris sur les couches précédentes?

Huang, Gao, et al. "Densely connected convolutional networks." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2017.

DenseNet (2017)

➤ Différence avec le ResNet:

- Le ResNet **"somme"** la feature map de sortie avec sont entrée
- Le DenseNet "concatène" à la feature map de sortie son entrée. (et les dimensions ??)
- les DenseBlock assurent que les tailles des features maps restent compatibles, mais le n° filtre change.

≻ Comment?

- Transition layer: BN + 1×1 Conv + 2×2 pooling
- Growth rate: régularise la quantité d'information

Huang, Gao, et al. "Densely connected convolutional networks." *Proceedings of the IEEE conference on computer vision and pattern recognition.* 2017.

19

Data	at	$C\lambda$	777
	$e\iota$		/

Régularisation:Data augmentation

- · Problème:
- généraliser le modèle CNN sur des données qu'il n'a pas vu lors de l'entrainement.
- Solution:
 - > Régularisation par Dropout
 - Applicable sur les CNN aussi,
 - > Ajouter plus de données lors de la phase d'entrainement,
 - Solution couteuse: collecter et annoter les images est une taches fastidieuse.
 - Ajouter plus d'image ne règle pas toujours le problème de « sur-apprentissage ».
- Donc:
 - ➤ Ajouter des image *variées* lors de l'entrainement.

• Problème de sur-apprentissage 'over-fitting'

Training Loss and Accuracy on Dataset

Output

Training Loss and Accuracy on Dataset

Output

Data augmentation

- <u>Comment procéder</u> (la classe « ImageDataGenerator » de Keras)
 - > Un batch d'images est présenté en entrée à un objet ImageDataGenerator.
 - ➤ L'objet ImageDataGenerator applique une séries de transformation aléatoires sur ce batch
 - Le batch transformé est passé en entrée à un CNN pour l'entrainement.

- ☐ ImageDataGenerator ne retourne pas image originales + images transformées, mais seulement les image transformées.
- ☐ *Augmentation* In-place/on-the-fly car réalisée <u>lors</u> de l'entrainement du CNN et pas à priori.

31

Transfer Learning

Transfer Learning: motivation

- · Concevoir un nouveau modèle CNN demande beaucoup de données.
- Il est difficile d'avoir des données annotées.
- Entrainer une réseaux <u>« from scratch »</u> nécessite <u>beaucoup de calcul et de temps</u>.

33

ImageNet

Transfer Learning: en pratique

- > Feature Extractor
- **≻**Fine-tuning
- ➤ Fine-tuning+freeze

37

Feature extractor

- Réseau VGG16 « pre-entrainé » (généralement sur Imagenet)
- Utiliser le CNN comme un extracteur de caractéristiques
- => enlever les couche FCs,
- => passer une image dans le CNN.
- => récupérer son vecteur descripteur à la dernière couche (pooling ici)

Fine-tuning: feeze Réseau VGG16 « pre-entrainé » (généralement sur Imagenet) (CONV * 2) => POOL (CONV * 2) = POOL « geler » Finetuning que sur les premières les premières (CONV * 3) => POOL Entraimer couches couches car contiennent toutes les caractéristiques de bas niveaux couches (CONV * 3) => POOL (CONV * 3) = communes à toutes les représentations visuelles. (CONV * 3) => POOL Finetuning de bout-en-bout: réapprendre les poids sur la nouvelle Entrainer que (FC * 3) => SOFTMAX (FC * 3) => SOFTMAX les base, pas d'initialisation aléatoire **Couches FC** Output Labels Output Labels

Transfer Learning: quand faire? Taille de la nouvelle base Nouvelle base (grande, différente) à la base originale ⇒ Entrainer le réseau « from scratch » (initialisation aléatoire). ⇒ Fine tuning de toutes les couches à partir des poids pré-appris. Similarité avec la base originale

43

Taille de la nouvelle base Nouvelle base (grande, similaire) à la base originale ⇒ Fine tuning de toutes les couches. On a bcp de données pas de risque de surapprentissage. Similarité avec la base originale

Transfer Learning: quand faire?

Taille de la nouvelle base

Nouvelle base (*grande, différente*) à la base originale

- ⇒ Entrainer le réseau « from scratch » (initialisation aléatoire).
- ⇒ Fine tuning de toutes les couches à partir des poids pré-appris.

Nouvelle base (*grande, similaire*) à la base originale

⇒ Fine tuning de toutes les couches. On a bcp de données pas de risque de surapprentissage.

Similarité avec la base originale

Nouvelle base (*petite, différente*) de la base originale

- ⇒ Essayer le data augmentation; avoir plus de données
- ⇒ Entrainer un classifieur linéaire (SVM) sur des caractéristiques extraite des premières couches du réseaux.

Nouvelle base (*petite, similaire*) à la base originale

- ⇒ Fine tuning cause un sur-apprentissage car pas bcp de données.
- ⇒ Extracteur de caractéristiques suivi d'un classifieurs linéaire (SVM).

47

Références

- https://towardsdatascience.com/image-classification-in-10-minutes-with-mnist-dataset-54c35b77a38d
- http://scs.ryerson.ca/~aharley/vis/conv/flat.html
- https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721
- http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus 1.pdf
- http://cs231n.github.io/assets/conv-demo/index.html
- http://cs231n.github.io/convolutional-networks/
- https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
- http://neuralnetworksanddeeplearning.com/chap1.html
- $\bullet \quad \underline{http://cedric.cnam.fr/vertigo/Cours/ml2/preambule.html}$
- http://cs231n.github.io/convolutional-networks/#case
- https://www.learnopencv.com/number-of-parameters-and-tensor-sizesin-convolutional-neural-network/
- https://medium.com/@RaghavPrabhu/cnn-architectures-lenet-alexnetvgg-googlenet-and-resnet-7c81c017b848
- https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d#a253
- https://www.youtube.com/watch?v=c1RBQzKsDCk&list=PLkDaE6sCZn6 Gl29AoE31iwdVwSG-KnDzF&index=17&t=0s&pbjreload=10

Références

- http://cs231n.github.io/convolutional-networks/#case
- https://www.learnopencv.com/number-of-parameters-and-tensor-sizes-inconvolutional-neural-network/
- https://medium.com/@RaghavPrabhu/cnn-architectures-lenet-alexnet-vgggooglenet-and-resnet-7c81c017b848
- https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d#a253
- https://www.youtube.com/watch?v=c1RBQzKsDCk&list=PLkDaE6sCZn6Gl29A oE31iwdVwSG-KnDzF&index=17&t=0s&pbjreload=10
- https://www.pyimagesearch.com/2019/07/08/keras-imagedatageneratorand-data-augmentation/
- https://machinelearningmastery.com/how-to-configure-image-dataaugmentation-when-training-deep-learning-neural-networks/
- https://keras.io/preprocessing/image/
- https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transferlearning-with-real-world-applications-in-deep-learning-212bf3b2f27a
- http://cs231n.github.io/transfer-learning/
- https://towardsdatascience.com/what-is-deep-transfer-learning-and-why-is-it-becoming-so-popular-91acdcc2717a
- https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
- http://cedric.cnam.fr/vertigo/Cours/ml2/docs/coursDeep5.pdf