Exercise 3

Holo

Friday 19th January, 2024

Exercise 1.

Assume that Ω is star domain at $\mathfrak{B} \in \mathbb{C}$, $T(z_1, z_2, z_3)^* \subseteq \Omega$, $z^{\circ} \in \Delta(z_1, z_2, z_3) \setminus T(z_1, z_2, z_3)^*$.

Let L be the line segment that starts at \mathfrak{B} passes through z° (that is, continuing $I(\mathfrak{B}, z^{\circ})$ in the direction of z°).

Because z° is inside of the circle, the line L must intersect (uniquely) with $\partial \Delta(z_1, z_2, z_3) = T(z_1, z_2, z_3)^*$ after passing through z° (and maybe one time before that), let z^{\bullet} be that intersection.

Because Ω is star domain at \mathscr{B} we have that $I(\mathscr{B}, z^{\bullet})^* \subseteq \Omega$, but of course we have that $z^{\circ} \in I(\mathscr{B}, z^{\bullet})^*$.

Exercise 2.

Because γ is a finite sum of continuously differential curves, we can split the integral to finite sum of f over continuously differential curves (connecting at the endpoints), so it is enough to prove the required for γ a continuously differential curve.

We know that $\int_{\gamma} f(z)dz = \int_{0}^{1} f(\gamma(z))\gamma'(z)dz$.

Because φ is strictly increasing, hence injective and we have that φ' is strictly positive, hence we can plug it in the formula for change of variables.

$$\dots = \int_0^1 f(\gamma(\varphi(z)))\gamma'(\varphi(z))\varphi'(z)dz = \int_0^1 f(\gamma \circ \varphi(z))(\gamma \circ \varphi)'(z)dz = \int_{\gamma \circ \varphi} f(z)dz$$

Exercise 3.

We defined $L(\gamma)$ the supremum of the length of the possible polygonal chain approximation.

For a given a polygonal chain characterized by the partition $P = [0 = p_0, \dots, p_n = 1]$ we have $L(\gamma, P) = \sum_{i=0}^{n-1} |\gamma(p_{i+1}) - \gamma(p_i)| \le \sum_{i=0}^{n-1} K|p_{i+1} - p_i| = K$, hence the supremum of all such approximations is $\le K$.

Exercise 4.

First we note that $\int_{T(x,y,w)} = \int_{3I(x,y)} + \int_{\frac{1}{3}+3I(y,w)} + \int_{\frac{2}{3}+3I(w,x)}$, where $s+v\times I(a,b)$ is I(a,b) accelerated by v starting at s.

Hence
$$\int_{T(x,y,z)} \overline{z} dz = \int_{3I(x,y)} f(z) dz + \int_{\frac{1}{3}+3I(y,w)} f(z) dz + \int_{\frac{2}{3}+3I(w,x)} f(z) dz$$
 is

$$\int_{3I(x,y)} f(z)dz = \int_{0}^{\frac{1}{3}} f((3I(x,y))(z))(3I(x,y))'(z)dz$$

$$\int_{\frac{1}{3} + \frac{3}{I}(y,w)} f(z)dz = \int_{\frac{1}{3}}^{\frac{2}{3}} f\left(\left(\frac{1}{3} + 3I(y,w)\right)(z)\right) \left(\frac{1}{3} + 3I(y,w)\right)'(z)dz$$

$$\int_{\frac{2}{3} + \frac{3}{I}(w,x)} f(z)dz = \int_{\frac{2}{3}}^{1} f\left(\left(\frac{2}{3} + 3I(w,x)\right)(z)\right) \left(\frac{2}{3} + 3I(w,x)\right)'(z)dz$$

Let $x = 0, y = a, z = ib, f(z) = \overline{z}$, and notice that (I(0, a))'(t) = a, (I(a, ib))'(t) = ib - a, (I(ib, 0))'(t) = -ib, and the rest is a simple polynomial integration to show that the integral is indeed iab.

Exercise 5.

Part 5.1.

We remember that $\frac{\partial f}{\partial x} = u_x + iv_x$, $\frac{\partial f}{\partial y} = u_y + iv_y$ so plugging this in the operator:

$$\begin{split} \frac{\partial f}{\partial z} &= \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) \\ &= \frac{1}{2} \left(u_x + i v_x - i u_y + v_y \right) \\ &= \frac{1}{2} \left((u_x + v_y) + i (v_x - u_y) \right) \\ &\stackrel{\text{CR}}{=} \frac{1}{2} \left((u_x + u_x) + i (v_x + v_x) \right) = u_x + i v_x \\ &= \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) \\ &= \frac{1}{2} \left(u_x + i v_x + i u_y - v_y \right) \\ &= \frac{1}{2} \left((u_x - v_y) + i (v_x + u_y) \right) \\ &\stackrel{\text{CR}}{=} \frac{1}{2} \left((u_x - u_x) + i (v_x - v_x) \right) \\ &= 0 \end{split}$$

Part 5.2.

Let g=u'+iv'=u(x,-y)+iv(x,-y) Calculating $\frac{\partial g}{\partial x}(x,y)=u'_x+v'_x=u_x(x,-y)+iv_x(x,-y)$ and $\frac{\partial g}{\partial y}(x,y)=u'_y+v'_y=-u_y(x,-y)-iv_x(x,-y)=-(u_y(x,-y)+iv_x(x,-y))$ immediately shows that the 2 operators we define switch roles on g.

Exercise 6.

Part 6.1.

Obviously $f' \equiv 0$ implies that $u' = v' \equiv 0$, from the result on u, v as functions from $\mathbb{R}^2 \to \mathbb{R}$ we get that u, v are constants, but then f = u + iv is also a constant.

Part 6.2.

If $f''\Omega \subseteq \mathbb{R}$, then in particular we have that $v \equiv 0$, hence $v_x = v_y \equiv 0$, but from Cauchy-Riemann we get that $u_x = v_y \equiv 0$ and that $u_y = -v_x \equiv 0$ which implies that $u' = v' \equiv 0$ and so $f' \equiv 0$.

Exercise 7.

Let $\gamma_R:[0,1]\to\mathbb{C}:t\mapsto R\exp(i\pi\cdot t)$ and look at the integral $\int_{\gamma_R}f(z)dz=\int_0^1f(R\exp(i\pi\cdot t))i\pi R\exp(i\pi\cdot t)dt$ Setting $f(z)=\exp(iz)/z^2$ we get

$$\int_{\gamma_R} \exp(iz)/z^2 dz = \int_0^1 \frac{\exp(i(R\exp(i\pi \cdot t)))}{(R\exp(i\pi \cdot t))^2} i\pi R \exp(i\pi \cdot t) dt = \frac{i\pi}{R} \int_0^1 \frac{\exp(i(R\exp(i\pi \cdot t)))}{\exp(i\pi \cdot t)} dt$$

Noticing that $|\exp(i(R\exp(i\pi \cdot t)))|$ is bounded by M that is independent of R, so $\left|\int_{\gamma_R} \exp(iz)/z^2 dz\right| \leq \left|\frac{i\pi M}{R} \int_0^1 \frac{1}{\exp(i\pi \cdot t)} dt\right|$ which obviously goes to 0 as R grows.