Основные понятия теории множеств: 5/8

Станислав Олегович Сперанский

Санкт-Петербургский государственный университет

Санкт-Петербург 2019

Ч.у.м. и л.у.м.

Под частично упорядоченным множеством, или ч.у.м., понимается упорядоченная пара вида $\langle A,\leqslant \rangle$, где \leqslant — частичный порядок на A; в случае, когда \leqslant линейно, $\langle A,\leqslant \rangle$ называется линейно упорядоченным множеством, или л.у.м.

Вообще, (непустые) множества с заданными на них предикатами и функциями называются структурами. В роли метапеременных для структур выступают готические прописные буквы: \mathfrak{A} , \mathfrak{B} , \mathfrak{C} , ...

Olor Bb Lc Id In If Gy Gf Ti Jj RAIS Mu Mu Ov Pp Hoj Rr H 8 B 74 VI ii 200 Mono He yy 33

Пусть даны ч.у.м. $\mathfrak{A}=\langle A,\leqslant \rangle$ и непустое $S\subseteq A$. Говорят, что $a\in A$ является:

- ullet максимальным для S в $\mathfrak A$, если $a \in S$ и $\neg (\exists x \in S) \, a < x;$
- ullet минимальным для S в \mathfrak{A} , если $a \in S$ и $\neg (\exists x \in S) \, x < a$;
- ullet наибольшим для S в $\mathfrak A$, если $a\in S$ и $(\forall x\in S)x\leqslant a;$
- ullet наименьшим для S в \mathfrak{A} , если $a \in S$ и $(\forall x \in S)$ $a \leqslant x$.

При S=A уточнение «для S» опускают. Кроме того, a называют:

- верхней гранью для S в \mathfrak{A} , если $(\forall x \in S) x \leqslant a$;
- нижней гранью для S в \mathfrak{A} , если $(\forall x \in S)$ $a \leqslant x$;
- ullet супремумом для S в ${\mathfrak A}$, если a наим. верх. грань для S в ${\mathfrak A}$;
- инфимумом для S в \mathfrak{A} , если a наиб. ниж. грань для S в \mathfrak{A} .

Предложение

Пусть $\mathfrak A$ — ч.у.м. Тогда:

- i. существует не более одного наибольшего в ${\mathfrak A}$ элемента;
- іі. всякий наибольший в $\mathfrak A$ элемент является максимальным в $\mathfrak A$;
- iii. любые два различных максимальных в ${\mathfrak A}$ элемента несравнимы.

Аналогично для наименьших и минимальных элементов.

Предложение

Пусть $\mathfrak A$ — л.у.м. Тогда всякий максимальный в $\mathfrak A$ элемент является наибольшим в $\mathfrak A$ (и наоборот). Аналогично для минимальных и наименьших элементов.

Изоморфизмы между ч.у.м.

Пусть даны ч.у.м. $\mathfrak{A}=\langle A,\leqslant_A\rangle$ и $\mathfrak{B}=\langle B,\leqslant_B\rangle$. Будем говорить, что функция f из A в B сохраняет порядок, или является гомоморфизмом из \mathfrak{A} в \mathfrak{B} , если для любых $a_1,a_2\in A$

$$a_1 \leqslant_A a_2 \implies f(a_1) \leqslant_B f(a_2).$$
 (*)

Композиция гомоморфизмов снова является гомоморфизмом, как легко видеть. Инъективный гомоморфизм f из $\mathfrak A$ в $\mathfrak B$ называется вложением $\mathfrak A$ в $\mathfrak B$, если (*) усиливается до эквивалентности.

Предложение

Пусть даны л.у.м. $\mathfrak A$ и ч.у.м. $\mathfrak B$. Тогда всякий инъективный гомоморфизм из $\mathfrak A$ в $\mathfrak B$ является вложением $\mathfrak A$ в $\mathfrak B$.

Под изоморфизмом из $\mathfrak A$ на $\mathfrak B$ понимается сюръективное вложение $\mathfrak A$ в $\mathfrak B$. Говорят, что $\mathfrak A$ и $\mathfrak B$ изоморфны, и пишут $\mathfrak A \simeq \mathfrak B$, если существует изоморфизм из $\mathfrak A$ на $\mathfrak B$.

Предложение

Для всех ч.у.м. \mathfrak{A} , \mathfrak{B} и \mathfrak{C} верно следующее:

- a. $\mathfrak{A} \simeq \mathfrak{A}$;
- b. если $\mathfrak{A} \simeq \mathfrak{B}$, то $\mathfrak{B} \simeq \mathfrak{A}$;
- с. если $\mathfrak{A}\simeq\mathfrak{B}$ и $\mathfrak{B}\simeq\mathfrak{C}$, то $\mathfrak{A}\simeq\mathfrak{C}$.

Изоморфизмы из $\mathfrak A$ на $\mathfrak A$ называют автоморфизмами $\mathfrak A$. Их можно воспринимать как «абстрактные симметрии».

Базовые преобразования над ч.у.м.

I. Пусть даны ч.у.м. $\mathfrak{A}=\langle A,\leqslant
angle$ и $S\subseteq A$. Возьмём

$$\leq_{\mathbf{S}} := \leq \cap S \times S.$$

Тогда $\langle S, \leqslant_S \rangle$ — ч.у.м., которое называют индуцированным в \mathfrak{A} по S. При этом из л.у.м. всегда получится л.у.м.

II. Пусть даны ч.у.м. $\mathfrak{A}=\langle A,\leqslant_A\rangle$ и $\mathfrak{B}=\langle B,\leqslant_B\rangle$, причём A и B не пересекаются. Возьмём

$$\leq := \leq_A \cup \leq_B \cup A \times B.$$

Тогда $\langle A \cup B, \leqslant \rangle$ — ч.у.м., которое будет обозначаться $\mathfrak{A} \oplus \mathfrak{B}$. При этом из двух л.у.м. всегда получится л.у.м.

III. Пусть даны ч.у.м. $\mathfrak{A}=\langle A,\leqslant_A\rangle$ и $\mathfrak{B}=\langle B,\leqslant_B\rangle.$ Определим \leqslant на $A\times B$ по правилу

$$\langle a_1,b_1 \rangle \leqslant \langle a_2,b_2 \rangle$$
 : \iff $a_1 \leqslant_A a_2$ u $b_1 \leqslant_B b_2$.

Тогда $\langle A \times B, \leqslant \rangle$ — ч.у.м., где \leqslant традиционно называют покоординатным порядком. Разумеется, даже в случае, когда \leqslant_A и \leqslant_B были линейными, \leqslant может оказаться нелинейным.

IV. Модифицируем предыдущую конструкцию, сделав одну из координат главной. Например, вторую:

$$\langle a_1,b_1
angle\leqslant \langle a_2,b_2
angle$$
 : \Longleftrightarrow $b_1<_B b_2$ или $(b_1=b_2$ и $a_1\leqslant_A a_2).$

Тогда $\langle A \times B, \leqslant \rangle$ — ч.у.м., которое мы будем обозначать $\mathfrak{A} \otimes \mathfrak{B}$. При этом из двух л.у.м. всегда получится л.у.м.

Трансфинитная индукция и фундированность

Говорят, что для ч.у.м. $\mathfrak{A} = \langle A, \leqslant \rangle$ верен принцип трансфинитной индукции, если для всякого $X \subseteq A$,

$$\forall x \in A ((\forall y < x) \ y \in X \rightarrow x \in X) \longrightarrow X = A.$$

Кроме того, будем говорить, что для $\mathfrak A$ верен принцип минимального элемента, если для любого $X\subseteq A$,

$$X \neq \emptyset \longrightarrow \exists x \in X ((\forall y \in X) y \nleq x);$$

такого рода ч.у.м. называют фундированными.

Теорема

Для ч.у.м. $\mathfrak A$ верен принцип трансфинитной индукции тогда и только тогда, когда $\mathfrak A$ фундировано.

Доказательство (путём переписывания).

Пусть $X \subseteq A$. Обозначим $A \setminus X$ через X. Тогда

$$\forall x \in A ((\forall y < x) y \in X \to x \in X) \to X = A \iff X \neq A \to \neg \forall x \in A ((\forall y < x) y \in X \to x \in X) \iff X \neq A \to \exists x \in A \neg ((\forall y < x) y \in X \to x \in X) \iff X \neq A \to \exists x \in A ((\forall y < x) y \in X \land x \notin X) \iff X \neq A \to \exists x \in A ((\forall y \notin X) y \notin x \land x \notin X) \iff \overline{X} \neq \emptyset \to \exists x \in \overline{X} ((\forall y \in \overline{X}) y \notin x)$$

(это чистая логика). Стало быть, принцип трансфинитной индукции для $\mathfrak A$ равносилен принципу минимального элемента для $\mathfrak A$.

Нетрудно проверить следующее.

- I. Пусть даны фундированные ч.у.м. $\mathfrak A$ и $\mathfrak B$, причём $A\cap B=\varnothing$. Тогда $\mathfrak A\oplus \mathfrak B$ будет фундированным ч.у.м.
- II. Пусть даны фундированные ч.у.м. $\mathfrak A$ и $\mathfrak B$. Тогда $\mathfrak A \otimes \mathfrak B$ будет фундированным ч.у.м.

На самом деле, операции \oplus и \otimes тесным образом связаны со сложением и умножением ординалов, о которых пойдёт речь позже.

Фундированные л.у.м. ещё называют вполне упорядоченными множествами, или в.у.м., а соответствующие им (линейные) порядки — полными порядками. В частности, все ординалы будут в.у.м.

Некоторые результаты о в.у.м.

Пусть дано в.у.м. $\mathfrak{A}=\langle A,\leqslant \rangle$. Мы будем называть $S\subseteq A$ начальным сегментом \mathfrak{A} , если для любых $a_1,a_2\in A$,

$$a_1\leqslant a_2$$
 u $a_2\in S$ \Longrightarrow $a_1\in S$.

В частности, легко видеть, что для каждого $a \in A$ множество

$$[0, a)_{\mathfrak{A}} := \{ x \in A \mid x < a \}$$

является начальным сегментом ${\mathfrak A}$. Когда ясно, о каком ${\mathfrak A}$ идёт речь, нижний индекс $\cdot_{{\mathfrak A}}$ обычно опускается.

Предложение

Пусть $\mathfrak{A} -$ в.у.м., а S -начальный сегмент \mathfrak{A} , отличный от A. Тогда существует и единственный а $\in A$ такой, что S = [0, a).

Обозначим через $\mathsf{IS}_\mathfrak{A}$ множество всех начальных сегментов в.у.м. \mathfrak{A} , отличных от A, и определим

$$\subseteq_{\mathsf{IS}_{\mathfrak{A}}} := \{(U, V) \in \mathsf{IS}_{\mathfrak{A}} \times \mathsf{IS}_{\mathfrak{A}} \mid U \subseteq V\}.$$

Разумеется, $\subseteq_{\mathsf{IS}_\mathfrak{A}}$ является частичным порядком на $\mathsf{IS}_\mathfrak{A}$. Более того:

Предложение

Для каждого в.у.м. $\mathfrak A$ верно $\mathfrak A \simeq \langle \mathsf{IS}_{\mathfrak A}, \subseteq_{\mathsf{IS}_{\mathfrak A}} \rangle$.

Доказательство.

Рассмотрим $f:A \to \mathsf{IS}_\mathfrak{A}$, действующую по правилу

$$f(a) := [0, a).$$

Нетрудно проверить, что она будет нужным изоморфизмом.

Предложение

Пусть $\mathfrak A -$ в.у.м., а f -вложение из $\mathfrak A$ в $\mathfrak A$ (или «строго возрастающая функция из A в A»). Тогда f (а) \geqslant а для всех $a \in A$.

Доказательство.

Рассмотрим

$$X := \{ a \in A \mid f(a) < a \}.$$

Предположим, что $X \neq \varnothing$. Пусть a' — наименьший элемент для X в $\mathfrak A$. Тогда f(a') < a', поэтому f(f(a')) < f(a'). В итоге $f(a') \in X$, но f(a') < a'. Противоречие.

Следствие

Для каждого в.у.м. $\mathfrak A$ единственным автоморфизмом $\mathfrak A$ является id_A .

Доказательство.

Пусть f — автоморфизм \mathfrak{A} . Очевидно, f^{-1} также будет автоморфизмом \mathfrak{A} . Стало быть, для каждого $a \in A$ верно $f(a) \geqslant a$ и $f^{-1}(a) \geqslant a$, а значит, $f(a) \geqslant a$ и $a \geqslant f(a)$, откуда f(a) = a.

Следствие

Для любых в.у.м. $\mathfrak A$ и $\mathfrak B$ имеется не более одного изом-ма из $\mathfrak A$ на $\mathfrak B$.

Доказательство.

Пусть f и g — изоморфизмы из $\mathfrak A$ на $\mathfrak B$. Разумеется, $f\circ g^{-1}$ — автоморфизм $\mathfrak A$. Поэтому $f\circ g^{-1}=\mathrm{id}_A$, откуда f=g.

Порой удобно (хотя и не совсем правильно) отождествлять начальные сегменты данного в.у.м. $\mathfrak A$ с теми в.у.м., которые эти сегменты индуцируют в $\mathfrak A$. Это не должно приводить к путанице.

Лемма

Никакой собств. нач. сегмент в.у.м. $\mathfrak A$ не может быть изоморфен $\mathfrak A$.

Доказательство.

Пусть f — изоморфизм из $\mathfrak A$ на некоторый собственный начальный сегмент $\mathfrak A$. Тогда range (f)=[0,a) для подходящего $a\in A$. Поэтому f(a)< a. Противоречие с предложением выше.

Теорема (о сравнении в.у.м.)

Для любых в.у.м. $\mathfrak A$ и $\mathfrak B$ имеет место ровно один из трёх случаев:

- Я и В изоморфны;
- іі. $\mathfrak A$ изоморфно собственному начальному сегменту $\mathfrak B$;
- ііі. $\mathfrak B$ изоморфно собственному начальному сегменту $\mathfrak A$.

При этом в (іі–ііі) соответствующие собственные начальные сегменты определяются однозначно.

Доказательство.

Единственность сегментов в (ii–iii), а также то, что (i–iii) взаимно исключают друг друга, нетрудно вывести из леммы выше.

. . .

Доказательство (продолжение).

Теперь покажем, что один из трёх случаев обязан иметь место. Для этого рассмотрим

$$\xi := \{(a,b) \in A \times B \mid [0,a)_{\mathfrak{A}} \text{ и } [0,b)_{\mathfrak{B}} \text{ изоморфны}\}.$$

Используя лемму выше, нетрудно показать, что ξ и ξ^{-1} будут функциональны. Понятно, что изоморфизмы в.у.м. переводят начальные сегменты в начальные сегменты. В частности:

- если f является изоморфизмом из $[0,a)_{\mathfrak{A}}$ на $[0,b)_{\mathfrak{B}}$, и $a'<_{A}a$, то $f\upharpoonright_{[0,a')}$ будет изоморфизмом из $[0,a')_{\mathfrak{A}}$ на $[0,f(a'))_{\mathfrak{B}}$;
- если f является изоморфизмом из $[0,b)_{\mathfrak{B}}$ на $[0,a)_{\mathfrak{A}}$, и $b'<_B b$, то $f\upharpoonright_{[0,b')}$ будет изоморфизмом из $[0,b')_{\mathfrak{B}}$ на $[0,f(b'))_{\mathfrak{A}}$.

4 D > 4 A > 4 B > 4 B > B = 40 Q Q

Доказательство (окончание).

Значит, $\operatorname{dom}(\xi)$ и $\operatorname{range}(\xi)$ окажутся начальными сегментами $\mathfrak A$ и $\mathfrak B$ соответственно, и для любых $a_1,a_2\in\operatorname{dom}(\xi)$,

$$a_1 <_A a_2 \iff \xi(a_1) <_B \xi(a_2).$$

Стало быть, ξ является изоморфизмом из dom (ξ) на range (ξ) . Если dom $(\xi) \neq A$ и range $(\xi) \neq B$, то найдутся $a \in A$ и $b \in B$ такие, что

$$dom(\xi) = [0, a)$$
 u $range(\xi) = [0, b),$

однако тогда $(a,b) \in \xi$ — противоречие. Следовательно, $\mathrm{dom}\,(\xi) = A$ или $\mathrm{range}\,(\xi) = B$, откуда получается нужный результат.