Formale Semantik 09. Tempus und Modalität

Roland Schäfer

Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena

Stets aktuelle Fassungen: https://github.com/rsling/VL-Semantik

Inhalt

Wie kann man Tempuslogik durch Verschieben von *i*-Indexen modellieren?

Wie kann man Tempuslogik durch Verschieben von *i*-Indexen modellieren?

Warum braucht man eine ausgeklügeltere Semantik von Tempus und Modalität?

Wie kann man Tempuslogik durch Verschieben von *i*-Indexen modellieren?

Warum braucht man eine ausgeklügeltere Semantik von Tempus und Modalität?

Wie kann/muss man den Auswertungshintergrund von Propositionen einschränken?

Wie kann man Tempuslogik durch Verschieben von *i*-Indexen modellieren?

Warum braucht man eine ausgeklügeltere Semantik von Tempus und Modalität?

Wie kann/muss man den Auswertungshintergrund von Propositionen einschränken?

Wie beeinflussen opake Kontexte (*glauben* usw.) die Satzbedeutung?

Wie kann man Tempuslogik durch Verschieben von *i*-Indexen modellieren?

Warum braucht man eine ausgeklügeltere Semantik von Tempus und Modalität?

Wie kann/muss man den Auswertungshintergrund von Propositionen einschränken?

Wie beeinflussen opake Kontexte (*glauben* usw.) die Satzbedeutung?

Texte für heute: Chierchia & McConnell-Ginet 2000: Kapitel 5

Tempus

Priors Tempusoperatoren | Was war, was wird sein, was heißt immer?

• ϕ | Präsens: Es ist jetzt (i_{now}) der Fall, dass ϕ .

- ϕ | Präsens: Es ist jetzt (i_{now}) der Fall, dass ϕ .
- $P\phi$ | Präteritum: Es war (zu einem $i < i_{now}$) der Fall, dass ϕ .

- ϕ | Präsens: Es ist jetzt (i_{now}) der Fall, dass ϕ .
- $P\phi$ | Präteritum: Es war (zu einem $i < i_{now}$) der Fall, dass ϕ .
- $\mathbf{F}\phi$ | Futur: Es wird (zu einem $i > i_{now}$) der Fall sein, dass ϕ .

- ϕ | Präsens: Es ist jetzt (i_{now}) der Fall, dass ϕ .
- $P\phi$ | Präteritum: Es war (zu einem $i < i_{now}$) der Fall, dass ϕ .
- $\mathbf{F}\phi$ | Futur: Es wird (zu einem $i > i_{now}$) der Fall sein, dass ϕ .
- $\mathbf{G}\phi = \neg \mathbf{F} \neg \phi$ | Es wird immer der Fall sein, dass ϕ .

- ϕ | Präsens: Es ist jetzt (i_{now}) der Fall, dass ϕ .
- P ϕ | Präteritum: Es war (zu einem $i < i_{now}$) der Fall, dass ϕ .
- $\mathbf{F}\phi$ | Futur: Es wird (zu einem $i > i_{now}$) der Fall sein, dass ϕ .
- $\mathbf{G}\phi = \neg \mathbf{F} \neg \phi$ | Es wird immer der Fall sein, dass ϕ .
- $\mathbf{H}\phi = \neg \mathbf{P} \neg \phi$ | Es war immer der Fall, dass ϕ .

Arno Schmidt ist gestorben. bzw. Arno Schmidt starb.

• Priorsche Formalisierung | PS(a)

- Priorsche Formalisierung | PS(a)
- Realtiv zu $\langle w, i \rangle$ (reale Welt jetzt) ist $\llbracket \mathbf{P} \mathcal{D}(a) \rrbracket^{\mathcal{M}, w, i, g} = 1$

- Priorsche Formalisierung | PS(a)
- Realtiv zu $\langle w, i \rangle$ (reale Welt jetzt) ist $\llbracket \mathbf{P} \mathcal{D}(a) \rrbracket^{\mathcal{M}, w, i, g} = 1$
 - ▶ wenn es ein i' gibt sodass i' < i äquivalent $\langle i', i \rangle \in <$

- Priorsche Formalisierung | PS(a)
- Realtiv zu $\langle w, i \rangle$ (reale Welt jetzt) ist $\llbracket \mathbf{P} \mathcal{D}(a) \rrbracket^{\mathcal{M}, w, i, g} = 1$
 - wenn es ein i' gibt sodass i' < i äquivalent ⟨i', i⟩ ∈ <</p>
 - ▶ sodass $\llbracket \textit{D}(\textit{a}) \rrbracket^{\mathcal{M},\textit{w},\textit{i}',\textit{g}} = 1$

Wie immer: Marker von Tempus stehen nicht am Satzanfang

• Priorsche Tempusoperatoren als Modifikation von Wffs (Logik), also Sätzen (NL)

- Priorsche Tempusoperatoren als Modifikation von Wffs (Logik), also Sätzen (NL)
- GB-Ansätze mit Tempusanhebung in Position mit Satzskopus

- Priorsche Tempusoperatoren als Modifikation von Wffs (Logik), also Sätzen (NL)
- GB-Ansätze mit Tempusanhebung in Position mit Satzskopus
- TP/IP-Position motiviert durch Kopulas und Hilfsverben (im Englischen)

- Priorsche Tempusoperatoren als Modifikation von Wffs (Logik), also Sätzen (NL)
- GB-Ansätze mit Tempusanhebung in Position mit Satzskopus
- TP/IP-Position motiviert durch Kopulas und Hilfsverben (im Englischen)
 - He is stupid. aber Kare-wa bakarashi-i.

- Priorsche Tempusoperatoren als Modifikation von Wffs (Logik), also Sätzen (NL)
- GB-Ansätze mit Tempusanhebung in Position mit Satzskopus
- TP/IP-Position motiviert durch Kopulas und Hilfsverben (im Englischen)
 - ▶ He is stupid. aber Kare-wa bakarashi-i.
 - ► He was stupid. aber Kare-wa bakarashi-kat-ta.

- Priorsche Tempusoperatoren als Modifikation von Wffs (Logik), also Sätzen (NL)
- GB-Ansätze mit Tempusanhebung in Position mit Satzskopus
- TP/IP-Position motiviert durch Kopulas und Hilfsverben (im Englischen)
 - ▶ He is stupid. aber Kare-wa bakarashi-i.
 - ► He was stupid. aber Kare-wa bakarashi-kat-ta.
 - ▶ What; did you expect t;. aber Nani-o yokishi-ta-ka.

• T' \rightarrow T VP | Tempusmarkierung der VP über T-Kopf (T bzw. T°)

- T' \rightarrow T VP | Tempusmarkierung der VP über T-Kopf (T bzw. T°)
- TP → NP T' | Subjekt in TP/IP

- T' \rightarrow T VP | Tempusmarkierung der VP über T-Kopf (T bzw. T°)
- TP → NP T' | Subjekt in TP/IP
- ullet TP o TP conj TP | Satzverbindungen = TP-Verbindungen

- T' \rightarrow T VP | Tempusmarkierung der VP über T-Kopf (T bzw. T°)
- TP → NP T' | Subjekt in TP/IP
- ullet TP o TP conj TP | Satzverbindungen = TP-Verbindungen
- TP → neg TP | Satznegation

- T' \rightarrow T VP | Tempusmarkierung der VP über T-Kopf (T bzw. T°)
- TP → NP T' | Subjekt in TP/IP
- ullet TP o TP conj TP | Satzverbindungen = TP-Verbindungen
- TP \rightarrow neg TP | Satznegation
- [TP NP T VP] ⇒ [TP T NP VP] | Tempusanhebung (Linkssadjunktion!)

• Semantische Auswertung einer TP

- Semantische Auswertung einer TP
 - $\,\blacktriangleright\,$ Konkrete To | Hilfsverben mit Bedeutung P, F

- Semantische Auswertung einer TP
 - ► Konkrete T^o | Hilfsverben mit Bedeutung P, F
 - $\blacktriangleright \ \llbracket \mathbf{PTP} \rrbracket^{\mathcal{M},\mathsf{w},\mathsf{i},\mathsf{g}} = 1$

- Semantische Auswertung einer TP
 - ► Konkrete T^o | Hilfsverben mit Bedeutung P, F
 - $\blacktriangleright \ \left[\!\!\left[\mathbf{PTP}\right]\!\!\right]^{\mathcal{M},\mathsf{w},\mathsf{i},g} = 1$
 - wenn es mindestens ein i' gibt, für das i' < i,

- Semantische Auswertung einer TP
 - Konkrete T^o | Hilfsverben mit Bedeutung P, F
 - $\qquad \qquad \mathbf{PTP} \mathbb{I}^{\mathcal{M}, \mathbf{w}, i, g} = 1$
 - wenn es mindestens ein i' gibt, für das i' < i,
 - und sodass $\llbracket \mathit{TP} \rrbracket^{\mathcal{M},\mathsf{w},\mathsf{i}',g} = 1$

- Semantische Auswertung einer TP
 - ► Konkrete T^o | Hilfsverben mit Bedeutung P, F
 - $\qquad \qquad \mathbf{PTP} \mathbb{I}^{\mathcal{M}, \mathsf{w}, i, g} = 1$
 - wenn es mindestens ein i' gibt, für das i' < i,
 - und sodass $\llbracket TP \rrbracket^{\mathcal{M}, \mathbf{w}, \mathbf{i}', g} = 1$
- Valuation

- Semantische Auswertung einer TP
 - Konkrete T^o | Hilfsverben mit Bedeutung P, F
 - $\qquad \qquad \mathbf{PTP} \mathbb{I}^{\mathcal{M}, \mathsf{w}, \mathsf{i}, \mathsf{g}} = 1$
 - wenn es mindestens ein i' gibt, für das i' < i,
 - und sodass $[TP]^{\mathcal{M}, \mathbf{w}, \mathbf{i}', \mathbf{g}} = 1$
- Valuation
 - ▶ *U* | Diksursuniversum, Quantifikationsdomäne

- Semantische Auswertung einer TP
 - Konkrete T^o | Hilfsverben mit Bedeutung P, F

 - wenn es mindestens ein i' gibt, für das i' < i,
 - und sodass $\llbracket \mathit{TP} \rrbracket^{\mathcal{M},\mathsf{w},\mathsf{i}',g} = 1$
- Valuation
 - ▶ U | Diksursuniversum, Quantifikationsdomäne
 - ightharpoonup V(eta) | Nicht-modal-temporale Auswertungsfunktion für alle eta außer Eigennamen

- Semantische Auswertung einer TP
 - ► Konkrete T^o | Hilfsverben mit Bedeutung P, F

 - wenn es mindestens ein i' gibt, für das i' < i,
 - und sodass $\llbracket \mathit{TP} \rrbracket^{\mathcal{M}, \mathsf{w}, \mathsf{i}', g} = 1$
- Valuation
 - ▶ U | Diksursuniversum, Quantifikationsdomäne
 - ightharpoonup V(eta) | Nicht-modal-temporale Auswertungsfunktion für alle eta außer Eigennamen
 - $V(\beta)(\langle w,i\rangle)$ | Modal-Temporale Auswertungsfunktion: Für jedes Prädikat eine Funktion von Welt-Zeit-Paaren zur Prädikatsmenge (Individuen, Tupel)

Modalität in sehr verschiedenen Erscheinungsformen

• I eat up to 100 nachos a minute. | Tempusformen

- I eat up to 100 nachos a minute. | Tempusformen
- Responderet alius minus sapienter. | Modus

- I eat up to 100 nachos a minute. | Tempusformen
- Responderet alius minus sapienter. | Modus
- Herr Webelhuth can look like Michael Moore. | Modalverben

- I eat up to 100 nachos a minute. | Tempusformen
- Responderet alius minus sapienter. | Modus
- Herr Webelhuth can look like Michael Moore. | Modalverben
- Maybe Herr Keydana will show up. | Adverben

- I eat up to 100 nachos a minute. | Tempusformen
- Responderet alius minus sapienter. | Modus
- Herr Webelhuth can look like Michael Moore. | Modalverben
- Maybe Herr Keydana will show up. | Adverben
- Frau Klenk is recognizable. | Affixe

Auswertung von Modalität vor einem Hintergrund von Welten

Auswertung von Modalität vor einem Hintergrund von Welten

 Modallogik | Auswertung von □ und ◊ relativ zu allen Welten Zumindest in einer einfachen Modallogik für Einsteiger

Auswertung von Modalität vor einem Hintergrund von Welten

- Modallogik | Auswertung von □ und ◊ relativ zu allen Welten
 Zumindest in einer einfachen Modallogik für Einsteiger
- Natürliche Sprache | Wir müssen gehen. usw. als ambige Sätze

Auswertung von Modalität vor einem Hintergrund von Welten

- Modallogik | Auswertung von □ und ◊ relativ zu allen Welten
 Zumindest in einer einfachen Modallogik für Einsteiger
- Natürliche Sprache | Wir müssen gehen. usw. als ambige Sätze
- Mehreren Lesarten je nach spezifischem Hintergrund von Welten

Agent Cooper cannot solve the mystery.

• Logische Form $|\neg \Diamond S(c, m)|$

- Logische Form $|\neg \Diamond S(c, m)|$
- Falsche Interpretation | Er könnte unter keinen Umständen das Rätsel lösen.

- Logische Form $|\neg \Diamond S(c, m)|$
- Falsche Interpretation | Er könnte unter keinen Umständen das Rätsel lösen.
- Korrekt | In den kontextuell salienten Hintergrundwelten verhindern Umstände die Lösung.

- Logische Form $|\neg \Diamond S(c, m)|$
- Falsche Interpretation | Er könnte unter keinen Umständen das Rätsel lösen.
- Korrekt | In den kontextuell salienten Hintergrundwelten verhindern Umstände die Lösung.
 - Cooper fehlen Informationen, sonst könnte er.

- Logische Form $|\neg \Diamond S(c, m)|$
- Falsche Interpretation | Er könnte unter keinen Umständen das Rätsel lösen.
- Korrekt | In den kontextuell salienten Hintergrundwelten verhindern Umstände die Lösung.
 - Cooper fehlen Informationen, sonst könnte er.
 - Cooper liegt angeschossen im Great Northern, sonst könnte er.

- Logische Form $|\neg \Diamond S(c, m)|$
- Falsche Interpretation | Er könnte unter keinen Umständen das Rätsel lösen.
- Korrekt | In den kontextuell salienten Hintergrundwelten verhindern Umstände die Lösung.
 - Cooper fehlen Informationen, sonst könnte er.
 - Cooper liegt angeschossen im Great Northern, sonst könnte er.
 - Usw.

Leo Johnson must be the murderer of Laura Palmer.

Leo Johnson must be the murderer of Laura Palmer.

• Bekannte Fakten/Wissenshintergrund legen den Schluss zwingend nah. Hier: Twin Peaks, Staffel 1, Folge 7

Leo Johnson must be the murderer of Laura Palmer.

- Bekannte Fakten/Wissenshintergrund legen den Schluss zwingend nah. Hier: Twin Peaks, Staffel 1, Folge 7
 - Leo ist eine gewalttätige Person.

Leo Johnson must be the murderer of Laura Palmer.

- Bekannte Fakten/Wissenshintergrund legen den Schluss zwingend nah. Hier: Twin Peaks, Staffel 1, Folge 7
 - Leo ist eine gewalttätige Person.
 - Leo schmuggelt Kokain nach TP, Laura war abhängig von K.

Epistemische Modalität

Leo Johnson must be the murderer of Laura Palmer.

- Bekannte Fakten/Wissenshintergrund legen den Schluss zwingend nah. Hier: Twin Peaks, Staffel 1, Folge 7
 - Leo ist eine gewalttätige Person.
 - Leo schmuggelt Kokain nach TP, Laura war abhängig von K.
 - ▶ Leo hat Verbindungen zu Jacques Renault, dem Barkeeper aus One Eyed Jack's, und Laura hat bei One Eyed Jack's gearbeitet.

Epistemische Modalität

Leo Johnson must be the murderer of Laura Palmer.

- Bekannte Fakten/Wissenshintergrund legen den Schluss zwingend nah. Hier: Twin Peaks, Staffel 1, Folge 7
 - Leo ist eine gewalttätige Person.
 - Leo schmuggelt Kokain nach TP, Laura war abhängig von K.
 - ► Leo hat Verbindungen zu Jacques Renault, dem Barkeeper aus One Eyed Jack's, und Laura hat bei One Eyed Jack's gearbeitet.
- Bekannte Fakten/der epistemische Hintergrund zur Reduktion des Hintergrunds möglicher Welten

Epistemische Modalität

Leo Johnson must be the murderer of Laura Palmer.

- Bekannte Fakten/Wissenshintergrund legen den Schluss zwingend nah. Hier: Twin Peaks, Staffel 1, Folge 7
 - Leo ist eine gewalttätige Person.
 - Leo schmuggelt Kokain nach TP, Laura war abhängig von K.
 - ► Leo hat Verbindungen zu Jacques Renault, dem Barkeeper aus One Eyed Jack's, und Laura hat bei One Eyed Jack's gearbeitet.
- Bekannte Fakten/der epistemische Hintergrund zur Reduktion des Hintergrunds möglicher Welten
- Bei Irrtum | Ein paar Welten zu viel entfernt

Agent Cooper must solve the mystery.

• Juristische/moralische Postulate fordern von Cooper eine Lösung. Hier: Twin Peaks, Staffel 1–2

- Juristische/moralische Postulate fordern von Cooper eine Lösung. Hier: Twin Peaks, Staffel 1–2
 - Cooper hat als FBI-Agent einen Eid geschworen und eine Dienstpflicht.

- Juristische/moralische Postulate fordern von Cooper eine Lösung. Hier: Twin Peaks, Staffel 1–2
 - Cooper hat als FBI-Agent einen Eid geschworen und eine Dienstpflicht.
 - ▶ Ohne Lösung könnte es weitere Opfer geben.

- Juristische/moralische Postulate fordern von Cooper eine Lösung. Hier: Twin Peaks, Staffel 1–2
 - Cooper hat als FBI-Agent einen Eid geschworen und eine Dienstpflicht.
 - ▶ Ohne Lösung könnte es weitere Opfer geben.
 - Es geht um Gut und Böse an sich, wir sind auf der Seite des Guten.

- Juristische/moralische Postulate fordern von Cooper eine Lösung. Hier: Twin Peaks, Staffel 1–2
 - Cooper hat als FBI-Agent einen Eid geschworen und eine Dienstpflicht.
 - ▶ Ohne Lösung könnte es weitere Opfer geben.
 - Es geht um Gut und Böse an sich, wir sind auf der Seite des Guten.
- Der deontische Hintergrund zur Reduktion der Welten auf die moralisch/juristisch erwünschten

- Juristische/moralische Postulate fordern von Cooper eine Lösung. Hier: Twin Peaks, Staffel 1–2
 - Cooper hat als FBI-Agent einen Eid geschworen und eine Dienstpflicht.
 - ▶ Ohne Lösung könnte es weitere Opfer geben.
 - Es geht um Gut und Böse an sich, wir sind auf der Seite des Guten.
- Der deontische Hintergrund zur Reduktion der Welten auf die moralisch/juristisch erwünschten
- Oft kodifiziert | Zehn Gebote, BGB, StGB usw.

Welche Welten brachen wir gerade?

• Der jeweils relevante logische/epistemische/deontische Weltenhintergrund

- Der jeweils relevante logische/epistemische/deontische Weltenhintergrund
- Gegeben durch eine Funktion in $\wp W^{\wp W}$ bzw. $(\wp W \times I)^{(\wp W \times I)}$

- Der jeweils relevante logische/epistemische/deontische Weltenhintergrund
- Gegeben durch eine Funktion in $\wp W^{\wp W}$ bzw. $(\wp W \times I)^{(\wp W \times I)}$
- Bei Chierchia *g* | Warum?

- Der jeweils relevante logische/epistemische/deontische Weltenhintergrund
- Gegeben durch eine Funktion in $\wp W^{\wp W}$ bzw. $(\wp W \times I)^{(\wp W \times I)}$
- Bei Chierchia *g* | Warum?
- Interessant wäre die Frage, wie die Welten ausgewählt werden. Eine Funktion zu postulieren löst hier erstmal noch nicht viel.

Moreau glaubt, dass Ästhetizismus toll ist.

• In GB-artiger Syntax

- In GB-artiger Syntax
 - ightharpoonup CP ightharpoonup CIP

- In GB-artiger Syntax
 - ► CP → C IP
 - ► Theta-Rolle für die CP vom Matrixverb

- In GB-artiger Syntax
 - ► CP → C IP
 - Theta-Rolle f
 ür die CP vom Matrixverb
 - ► Einbettung von Infinitiven etwas komplizierter wegen PRO o. ä.

- In GB-artiger Syntax
 - ► CP → C IP
 - Theta-Rolle für die CP vom Matrixverb
 - ► Einbettung von Infinitiven etwas komplizierter wegen PRO o. ä.
- Semantik von Propositionalen Einstellungsverben wie glauben

- In GB-artiger Syntax
 - ► CP → C IP
 - Theta-Rolle für die CP vom Matrixverb
 - ► Einbettung von Infinitiven etwas komplizierter wegen PRO o. ä.
- Semantik von Propositionalen Einstellungsverben wie glauben
 - ▶ Inhalt der Einstellung | Eine vom Subjekt für wahr gehaltene Proposition

- In GB-artiger Syntax
 - ► CP → C IP
 - Theta-Rolle für die CP vom Matrixverb
 - ► Einbettung von Infinitiven etwas komplizierter wegen PRO o. ä.
- Semantik von Propositionalen Einstellungsverben wie glauben
 - ▶ Inhalt der Einstellung | Eine vom Subjekt für wahr gehaltene Proposition
 - Formal eine Menge von $\langle w_n, i_n \rangle$ aus dem Hintergrund des Sprechers

Propositionen (Mengen von $\langle w_j, i_j \rangle$) als First-Class Citizens der Logik

• Für Tupel von Individuen $u_n \in U$ und Propositionen $p_m \in \wp W \times I$

- Für Tupel von Individuen $u_n \in U$ und Propositionen $p_m \in \wp W \times I$
- $[glauben]^{\mathcal{M},w,i,g}$ als Funktion in $(U \times (\wp W \times I))^{(W \times I)}$

- Für Tupel von Individuen $u_n \in U$ und Propositionen $p_m \in \wp W \times I$
- $[glauben]^{\mathcal{M},w,i,g}$ als Funktion in $(U \times (\wp W \times I))^{(W \times I)}$
- Konkret von der Sprecher-Welt-Zeit-Koordinate $\langle w,i\rangle$ zu einem Tupel aus Glaubendem u_n und dem Inhalt des Glaubens p_m

- Für Tupel von Individuen $u_n \in U$ und Propositionen $p_m \in \wp W \times I$
- $[glauben]^{\mathcal{M},w,i,g}$ als Funktion in $(U \times (\wp W \times I))^{(W \times I)}$
- Konkret von der Sprecher-Welt-Zeit-Koordinate $\langle w,i\rangle$ zu einem Tupel aus Glaubendem u_n und dem Inhalt des Glaubens p_m
- Der Up-Operator | $\hat{\phi}$ sei die Intension des Ausdrucks ϕ .

- Für Tupel von Individuen $u_n \in U$ und Propositionen $p_m \in \wp W \times I$
- $[glauben]^{\mathcal{M},w,i,g}$ als Funktion in $(U \times (\wp W \times I))^{(W \times I)}$
- Konkret von der Sprecher-Welt-Zeit-Koordinate $\langle w,i\rangle$ zu einem Tupel aus Glaubendem u_n und dem Inhalt des Glaubens p_m
- Der Up-Operator | $\hat{\phi}$ sei die Intension des Ausdrucks ϕ .
- $G(m, ^T(\ddot{a}))$ oder lesbarer Glaubt(moreau, ^Toll(\ddot{a} sthetizismus))

- Für Tupel von Individuen $u_n \in U$ und Propositionen $p_m \in \wp W \times I$
- $\llbracket glauben \rrbracket^{\mathcal{M},w,i,g}$ als Funktion in $(U \times (\wp W \times I))^{(W \times I)}$
- Konkret von der Sprecher-Welt-Zeit-Koordinate $\langle w,i\rangle$ zu einem Tupel aus Glaubendem u_n und dem Inhalt des Glaubens p_m
- Der Up-Operator | $\hat{\phi}$ sei die Intension des Ausdrucks ϕ .
- $G(m, ^T(\ddot{a}))$ oder lesbarer Glaubt(moreau, ^Toll(ästhetizismus))
- Wahr, wenn es jetzt ein Tupel aus Moreau und einer Menge Welten gibt, in denen Ästhetizismus toll ist, sodass diese Welten Teil des Weltenhintergrunds von Moreau sind.

- Für Tupel von Individuen $u_n \in U$ und Propositionen $p_m \in \wp W \times I$
- $\llbracket glauben \rrbracket^{\mathcal{M},w,i,g}$ als Funktion in $(U \times (\wp W \times I))^{(W \times I)}$
- Konkret von der Sprecher-Welt-Zeit-Koordinate $\langle w,i\rangle$ zu einem Tupel aus Glaubendem u_n und dem Inhalt des Glaubens p_m
- Der Up-Operator | $\hat{\phi}$ sei die Intension des Ausdrucks ϕ .
- $G(m, ^T(\ddot{a}))$ oder lesbarer Glaubt(moreau, ^Toll(ästhetizismus))
- Wahr, wenn es jetzt ein Tupel aus Moreau und einer Menge Welten gibt, in denen Ästhetizismus toll ist, sodass diese Welten Teil des Weltenhintergrunds von Moreau sind.
- Gelöstes Problem | "Wahrheitswert" des Glaubensinhalts

Der Up-Operator ^

Propositionen (Mengen von $\langle w_i, i_i \rangle$) als First-Class Citizens der Logik

- Für Tupel von Individuen $u_n \in U$ und Propositionen $p_m \in \wp W \times I$
- $\llbracket glauben \rrbracket^{\mathcal{M},w,i,g}$ als Funktion in $(U \times (\wp W \times I))^{(W \times I)}$
- Konkret von der Sprecher-Welt-Zeit-Koordinate $\langle w, i \rangle$ zu einem Tupel aus Glaubendem u_n und dem Inhalt des Glaubens p_m
- Der Up-Operator | $\hat{\phi}$ sei die Intension des Ausdrucks ϕ .
- $G(m, ^T(\ddot{a}))$ oder lesbarer Glaubt(moreau, ^Toll(ästhetizismus))
- Wahr, wenn es jetzt ein Tupel aus Moreau und einer Menge Welten gibt, in denen Ästhetizismus toll ist, sodass diese Welten Teil des Weltenhintergrunds von Moreau sind.
- Gelöstes Problem | "Wahrheitswert" des Glaubensinhalts
- Verben wie glauben fordern eine Proposition als Argument!

Ralph believes that the guy from the beach is a spy.

• Ralph kennt B. J. Ortcutt als netten Typen vom Strand.

- Ralph kennt B. J. Ortcutt als netten Typen vom Strand.
- Abends sieht er einen dubiosen Typen mit Hut im Dunkeln in einer Seitenstraße.

- Ralph kennt B. J. Ortcutt als netten Typen vom Strand.
- Abends sieht er einen dubiosen Typen mit Hut im Dunkeln in einer Seitenstraße.
- Der Typ ist Ortcutt, der in der Kneipe in Verkleidung eine Show abziehen will.

- Ralph kennt B. J. Ortcutt als netten Typen vom Strand.
- Abends sieht er einen dubiosen Typen mit Hut im Dunkeln in einer Seitenstraße.
- Der Typ ist Ortcutt, der in der Kneipe in Verkleidung eine Show abziehen will.
- Aber Ralph erkennt ihn nicht.

Ralph believes that the guy from the beach is a spy.

• Ist der obige Satz wahr oder falsch?

- Ist der obige Satz wahr oder falsch?
- Wahr! Ortcutt und der dubiose Typ sind dasselbe Individuum.

- Ist der obige Satz wahr oder falsch?
- Wahr! Ortcutt und der dubiose Typ sind dasselbe Individuum.
- Falsch! Ralph weiß das nicht und glaubt auch nicht daran.

- Ist der obige Satz wahr oder falsch?
- Wahr! Ortcutt und der dubiose Typ sind dasselbe Individuum.
- Falsch! Ralph weiß das nicht und glaubt auch nicht daran.
- Ist Ralph wahnsinnig oder nicht ganz normal?

- Ist der obige Satz wahr oder falsch?
- Wahr! Ortcutt und der dubiose Typ sind dasselbe Individuum.
- Falsch! Ralph weiß das nicht und glaubt auch nicht daran.
- Ist Ralph wahnsinnig oder nicht ganz normal?
- Oder können Sätze gleichzeitig wahr und falsch sein?

Russells Interpretation definiter Singular-NPs

the $\stackrel{def}{=} \lambda Q \lambda P \left[\exists x \left[Q(x) \wedge P(x) \right] \wedge \forall y \left[Q(y) \leftrightarrow y = x \right] \right]$ Beispiel | Q für Queen of England und P für is bald

Russells Interpretation definiter Singular-NPs

the
$$\stackrel{def}{=} \lambda Q \lambda P \left[\exists x \left[Q(x) \wedge P(x) \right] \wedge \forall y \left[Q(y) \leftrightarrow y = x \right] \right]$$

Beispiel | Q für Queen of England und P für is bald

• In einem Bewegungsansatz

the
$$\stackrel{def}{=} \lambda Q \lambda P \left[\exists x \left[Q(x) \wedge P(x) \right] \wedge \forall y \left[Q(y) \leftrightarrow y = x \right] \right]$$

Beispiel | Q für Queen of England und P für is bald

- In einem Bewegungsansatz
 - Quantorenbewegung an einbettende oder eingebettete IP

```
the \stackrel{def}{=} \lambda Q \lambda P \left[ \exists x \left[ Q(x) \land P(x) \right] \land \forall y \left[ Q(y) \leftrightarrow y = x \right] \right]
Beispiel | Q für Queen of England und P für is bald
```

- In einem Bewegungsansatz
 - Quantorenbewegung an einbettende oder eingebettete IP
 - ▶ $[_{IP}$ the guy from the beach; $[_{IP}$ Ralph believes $[_{CP}$ that x_i is a spy]]]

```
the \stackrel{def}{=} \lambda Q \lambda P \left[ \exists x \left[ Q(x) \land P(x) \right] \land \forall y \left[ Q(y) \leftrightarrow y = x \right] \right]
Beispiel | Q für Queen of England und P für is bald
```

- In einem Bewegungsansatz
 - Quantorenbewegung an einbettende oder eingebettete IP
 - [$_{IP}$ the guy from the beach $_i$ [$_{IP}$ Ralph believes [$_{CP}$ that x_i is a spy]]]
 - ▶ Ralph believes [$_{CP}$ that [$_{IP}$ the guy from the beach; [$_{IP}$ x; is a spy]]]

```
the \stackrel{def}{=} \lambda Q \lambda P \left[ \exists x \left[ Q(x) \land P(x) \right] \land \forall y \left[ Q(y) \leftrightarrow y = x \right] \right]
Beispiel | Q für Queen of England und P für is bald
```

- In einem Bewegungsansatz
 - Quantorenbewegung an einbettende oder eingebettete IP
 - ▶ $[_{IP}$ the guy from the beach; $[_{IP}$ Ralph believes $[_{CP}$ that x_i is a spy]]]
 - ▶ Ralph believes [$_{CP}$ that [$_{IP}$ the guy from the beach; [$_{IP}$ x_i is a spy]]]
- Zwei Lesarten automatisch verfügbar

```
the \stackrel{def}{=} \lambda Q \lambda P \left[ \exists x \left[ Q(x) \land P(x) \right] \land \forall y \left[ Q(y) \leftrightarrow y = x \right] \right]
Beispiel | Q für Queen of England und P für is bald
```

- In einem Bewegungsansatz
 - Quantorenbewegung an einbettende oder eingebettete IP
 - [$_{IP}$ the guy from the beach $_i$ [$_{IP}$ Ralph believes [$_{CP}$ that x_i is a spy]]]
 - ▶ Ralph believes [$_{CP}$ that [$_{IP}$ the guy from the beach; [$_{IP}$ x; is a spy]]]
- Zwei Lesarten automatisch verfügbar
 - ▶ De re-Lesart | Wahr! Denn für den Typen vom Strand gilt ...

```
the \stackrel{def}{=} \lambda Q \lambda P \left[ \exists x \left[ Q(x) \land P(x) \right] \land \forall y \left[ Q(y) \leftrightarrow y = x \right] \right]
Beispiel | Q für Queen of England und P für is bald
```

- In einem Bewegungsansatz
 - Quantorenbewegung an einbettende oder eingebettete IP
 - ► [_{IP} the guy from the beach_i [_{IP} Ralph believes [_{CP} that x_i is a spy]]]
 - ▶ Ralph believes [$_{CP}$ that [$_{IP}$ the guy from the beach; [$_{IP}$ x; is a spy]]]
- Zwei Lesarten automatisch verfügbar
 - De re-Lesart | Wahr! Denn für den Typen vom Strand gilt ...
 - De dicto-Lesart | Falsch! Denn Ralph glaubt, dass ...

Yuri Gagarin might not have been the first man in space.

Yuri Gagarin might not have been the first man in space.

Erinnerung | In einem naiven Ansatz: YG könnte auch nicht YG gewesen sein.

• Namen sind rigide und bezeichnen immer dasselbe Individuum! (Kripke)

Yuri Gagarin might not have been the first man in space.

- Namen sind rigide und bezeichnen immer dasselbe Individuum! (Kripke)
- \(\rightarrow \text{THE(first-man-in-space)(not-be-Gagarin)} \)

Yuri Gagarin might not have been the first man in space.

- Namen sind rigide und bezeichnen immer dasselbe Individuum! (Kripke)
- \(\rightarrow \text{THE(first-man-in-space)(not-be-Gagarin)} \)
 - ▶ In irgendeiner Welt ist YG (rigide) nicht der erste Mensch auf dem Mond (nicht-rigide).

Yuri Gagarin might not have been the first man in space.

- Namen sind rigide und bezeichnen immer dasselbe Individuum! (Kripke)
- \(\rightarrow \text{THE(first-man-in-space)(not-be-Gagarin)} \)
 - ▶ In irgendeiner Welt ist YG (rigide) nicht der erste Mensch auf dem Mond (nicht-rigide).
- THE(first-man-in-space)(◊[not-be-Gagarin])

Yuri Gagarin might not have been the first man in space.

- Namen sind rigide und bezeichnen immer dasselbe Individuum! (Kripke)
- \(\rightarrow \text{THE(first-man-in-space)(not-be-Gagarin)} \)
 - ▶ In irgendeiner Welt ist YG (rigide) nicht der erste Mensch auf dem Mond (nicht-rigide).
- THE(first-man-in-space)(◊[not-be-Gagarin])
 - ▶ Der erste Mensch auf dem Mond (= YG) war in einer zugänglichen Welt nicht YG.

Yuri Gagarin might not have been the first man in space.

- Namen sind rigide und bezeichnen immer dasselbe Individuum! (Kripke)
- \(\rightarrow \text{THE(first-man-in-space)(not-be-Gagarin)} \)
 - ▶ In irgendeiner Welt ist YG (rigide) nicht der erste Mensch auf dem Mond (nicht-rigide).
- THE(first-man-in-space)(\(\rightarrow\)[not-be-Gagarin])
 - ▶ Der erste Mensch auf dem Mond (= YG) war in einer zugänglichen Welt nicht YG.
 - Diese Lesart ist auszuschließen. S. Chierchia, Dowty usw.

<u>Lit</u>eratur I

Chierchia, Gennaro & Sally McConnell-Ginet. 2000. *Meaning and grammar: An introduction to semantics*. 2. Aufl. Cambridge, MA: MIT Press.

Autor

Kontakt

Prof. Dr. Roland Schäfer Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena Fürstengraben 30 07743 Jena

https://rolandschaefer.netroland.schaefer@uni-jena.de

Lizenz

Creative Commons BY-SA-3.0-DE

Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Deutschland zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie

http://creativecommons.org/licenses/by-sa/3.0/de/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.