

Искусственный интеллект в науках о Земле

Михаил Криницкий

K.T.H.

Зав. лабораторией машинного обучения в науках о Земле МФТИ с.н.с. Института океанологии РАН им. П.П. Ширшова

ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ, МАШИННОЕ ОБУЧЕНИЕ, ГЛУБОКОЕ ОБУЧЕНИЕ

ARTIFICIAL INTELLIGENCE

Early artificial intelligence stirs excitement.

MACHINE LEARNING

Machine learning begins to flourish.

DEEP LEARNING

Deep learning breakthroughs drive Al boom.

PREVIOUSLY

ОЧЕНЬ КРАТКОЕ ВВЕДЕНИЕ В МЕТОДЫ МАШИННОГО ОБУЧЕНИЯ

КАК проводятся физические исследования?

анализ

результатов

Настоящая наука начинается с тех пор, как начинают измерять.
Точная наука немыслима без меры.
Д.И. Менделеев

PREVIOUSLY

ОЧЕНЬ КРАТКОЕ ВВЕДЕНИЕ В МЕТОДЫ МАШИННОГО ОБУЧЕНИЯ

Когда (человеку) непонятно, что происходит

все равно строим модель

обобщение ? введение абстракций ?

PREVIOUSLY

ОЧЕНЬ КРАТКОЕ ВВЕДЕНИЕ В МЕТОДЫ МАШИННОГО ОБУЧЕНИЯ

Когда (**человеку**) непонятно, что происходит все равно строим модель

- Для чего? Какова цель?
- Что у нас для этого есть?
- Какого рода модель?
- Какая должна быть модель?

- Оценить неизвестную(ые) величину(ы) $\{y_i\}$
- Данные измерений $\{x_i\}$
- $\mathcal{F}: \mathbb{X} \to \mathbb{Y}$
- Обобщающая. Достоверная (в каком смысле?)

Применимая.

Когда (**человеку**) непонятно, что происходит все равно строим модель

Методы машинного обучения

Искусственный интеллект

Теория Вапника-Червоненкиса

Статистическая теория восстановления зависимостей по эмпирическим данным

Машинный интеллект

PREVIOUSLY OYEHЬ КРАТКОЕ ВВЕДЕНИЕ В МЕТОДЫ МАШИННОГО ОБУЧЕНИЯ

строим модель **для решения задачи**

типы задач:

- ○«Обучение с учителем»
 - восстановление регрессии

что я хочу? — значение y

PREVIOUSLY OYEHЬ КРАТКОЕ ВВЕДЕНИЕ В МЕТОДЫ МАШИННОГО ОБУЧЕНИЯ

строим модель **для решения задачи**

типы задач:

- ○«Обучение с учителем»
 - восстановление регрессии
 - классификация

что я хочу? – метку класса (красный или синий?)

Понятия в МО

- Объекты/события
- Признаковое описание объектов/событий x случайная величина
- Реализация признакового описания для i-го объекта/события $oldsymbol{x_i}$
- Целевая переменная у случайная величина
- Реализация целевой переменной для i-го объекта/события y_i
- Множество возможных векторов признакового описания 💥
- Множество возможных значений (исходов) целевой переменной 📉
- Отображение $\mathcal{F} \colon \mathbb{X} \to \mathbb{Y}$ модель МО, иногда статистической или вероятностной природы

строим модель **для решения задачи**

типы задач:

- ○«Обучение с учителем»
 - восстановление регрессии
 - классификация
- о «Обучение без учителя»
 - поиск структуры в данных

что я хочу?

- метки групп
- знать, есть ли группы?
- сколько групп?

строим модель для решения задачи

типы задач:

- ○«Обучение с учителем»
 - восстановление регрессии
 - классификация
- о «Обучение без учителя»
 - кластеризация

что я хочу?

- метки групп
- знать, есть ли группы?
- сколько групп?

строим модель **для решения задачи**

типы задач:

- ○«Обучение с учителем»
 - восстановление регрессии
 - классификация
- о «Обучение без учителя»
 - кластеризация

Всегда ли есть решение? хоть какое-нибудь ДА

строим модель **для решения задачи**

типы задач:

- ○«Обучение с учителем»
 - восстановление регрессии
 - классификация
- о «Обучение без учителя»
 - кластеризация

Всегда ли есть решение, которое мне понравится?

строим модель **для решения задачи**

типы задач:

- ○«Обучение с учителем»
 - восстановление регрессии
 - классификация
- о «Обучение без учителя»
 - кластеризация

Всегда ли есть решение, которое мне понравится?

строим модель **для решения задачи**

типы задач:

- о «Обучение без учителя»
 - снижение размерности

что я хочу?

признаковое описание сниженной размерности

строим модель для решения задачи

типы задач:

- о «Обучение без учителя»
 - снижение размерности

что я хочу?

признаковое описание сниженной размерности

зачем?

- визуализация данных
- снижение вычислительных затрат
- борьба с «проклятием размерности»
- снижение уровня шума в данных

строим модель **для решения задачи**

типы задач:

- «Обучение с учителем»
 - восстановление регрессии
 - классификация
- о «Обучение без учителя»
 - Кластеризация
 - Снижение размерности
 - Аппроксимация распределения данных
- оДругие задачи: смежные, редкие, специальные.
 - самоконтролируемое обучение
 - с частичным привлечением учителя
 - обучение с подкреплением
 - выучивание меры различия (дистанции)
 - ...

Примеры ML/DL/AI в задачах наук о Земле

Прикладные

- Статистический даунскейлинг
- Краткосрочный и сверхкраткосрочный нейросетевой прогноз (погоды, погоды в океане, ледовой обстановки, рядов натурных измерений)

(Поиск структуры в данных)

Поисковые

- Выявление экстремальных и аномальных событий, объектов
- Оценка тенденций их возникновения

(Генеративные модели)

• Нейросетевая оценка качества гидродинамического моделирования

• Статистический даунскейлинг

Масштабирование динамики течений

Масштабирование скорости ветра

• Статистический даунскейлинг

Масштабирование скорости ветра

^{*} Rezvov, V. Y., M. Krinitskiy, and S. Gulev. "Approximation of high-resolution surface wind speed in the North Atlantic using discriminative and generative neural models based on RAS-NAAD 40-year hindcast." The 6th International Workshop on Deep Learning in Computational Physics. 2022.

• Статистический даунскейлинг с использованием фундаментальных нейросетевых моделей

1. Microsoft ClimaX ^{1,*} – Jan'2023, UCLA (USA)	1.40625
2. FengWu ^{2,*} – Apr'2023, China (6 организаций)	0.25°
3. PanGu ^{3,*} – July'2023, Huawei (China)	0.25°
4. FuXi ^{4,*} – Jun'2023, Fudan University (China)	0.25°
5. FourCastNet ^{5,*} – Feb'2022, NVIDIA	0.25°
6. GraphCast ^{6,*} – Nov'2023, Google	0.25°
7. W-MAE ^{7,*} – Apr'2023, UEST (China)	0.25°

Контролируемое обучение: пример

Идентификация мезомасштабных конвективных систем

Данные Д33 (Meteosat, MSG4), Европейская территория России

Контролируемое обучение: пример

Идентификация мезомасштабных конвективных систем

Анализ и интерпретация данных наблюдений

Прикладные

- Определение характеристик ветрового волнения по данным судового радара
- Определение характеристик облачности по данным визуальной съемки
- Прогноз характеристик возвратной миграции нерки

• Определение реактоспособности субстрата в активных центрах гидролаз для определения эффективности активации различных систем: комплексов бактериальной металло-β-лактамазы NDM-1 и L1 с антибиотиком имипенема, а также комплексов капралактама и капралактона с липазой CALB

Анализ и интерпретация данных наблюдений

Характеристики ветрового волнения по данным навигационного радара

Анализ и интерпретация данных наблюдений

Характеристики ветрового волнения по данным навигационного радара

Прогноз рядов измерений

Прогноз характеристик возвратной миграции нерки в устье р. Фрейзер

Перспективные типы задач: прикладные

- Анализ данных дистанционного зондирования (спутникового базирования, судового, БПЛА) решение прикладных задач в постановке контролируемого обучения
- Анализ данных полевых измерений
 - заполнение пропусков во временных рядах, в пространственно распределенных данных
 - восстановление климатических рядов по косвенным измерениям
- Статистическое масштабирование геофизических полей
- Статистический прогноз (краткосрочный: погоды, ледовой обстановки, рядов измерений)

Перспективные типы задач: поисковые

- Выявление паттернов (динамических, пространственных) В КЛИМАТИЧЕСКИХ И ПОГОДНЫХ данных
- Выявление аномалий в климатических, погодных данных
- Предварительное самоконтролируемое обучение нейросетевых моделей для последующего решения широкого круга прикладных задач
- (Обучение?) исследование свойств фундаментальных климатических, погодных моделей
- Усвоение данных в моделировании атмосферы, океана
- Выучивание нейросетевой меры качества воспроизведения динамики климата, динамики атмосферы, океана
- Идентификация ДУЧП климатических моделей с использованием нейросетей
- Внедрение физических ограничений в нейросетевое моделирование климатических процессов в атмосфере, океане

Неконтролируемое обучение

Выявление структуры состояний стратосферного полярного вихря

Figure 1: (a) Examples from the dataset of PV states (HGT values only, normalized)

Krinitskiy M. A., Zyulyaeva Y. A., Gulev S. K. Clustering of polar vortex states using convolutional autoencoders // in Proceedings of the V International Conference on Information Technologies and High-Performance Computing, Khabarovsk, Russia, September 16-19. 2019.C. 52–61.

Неконтролируемое обучение

Выявление структуры состояний стратосферного полярного вихря

Krinitskiy M. A., Zyulyaeva Y. A., Gulev S. K. Clustering of polar vortex states using convolutional autoencoders // in Proceedings of the V International Conference on Information Technologies and High-Performance Computing, Khabarovsk, Russia, September 16-19. 2019.C. 52–61.

Активация субстрата

Нуклеофил:

- H_2O
- OH-
- OH (Ser, Thr)
- SH (Cys)

Энергия Гиббса

Цель работы:

Разработка свёрточной нейронной сети, проводящей бинарную классификацию наличия субстрата активации активных центрах гидролаз, применение ДЛЯ определения эффективности активации различных систем: комплексов бактериальной металло-βлактамазы NDM-1 и L1 с антибиотиком имипенема, а также комплексов капралактама капралактона липазой CALB.

Координата реакции

Контролируемое обучение

Реактоспособность субстрата по картам лапласиана эл. плотности

