Villamosmérnök alapszak	F1	F2	F3	F4	M	E1	E2	E3	E4	E5	Összesen	Bónusz	
Fizika1													
2. vizsga, 2023. jan. 11.													

NÉV:

Neptun kód:

Előadó: Márkus □ / Sarkadi □ / Vizsgakurzus □

- 1. Az ábra szerinti toronydaru lényegében egy vízszintes és egy függőleges, d hosszúságú, m tömegű, merev, homogén rúdból épül fel. A daru egy 2m tömegű lapos talphoz rögzül, amely azonban nincs a talajhoz kötve. A daru csupán a szerencsés tömegeloszlásnak köszönhetően nem dől fel. A daru M terhet emel, a vízszintes rúd (gém) átellenes oldalán m_x ellensúly található.
 - a) Határozza meg a rendszer tömegközéppontjának helyvektorát koordinátás alakban egy olyan koordináta-rendszerben, melynek origója az ábrán jelölt O pont! (2)

2d/3

$$X_{TKP} = \frac{-\frac{2}{3}dM - \frac{d}{6}m + 0 \cdot m + \frac{d}{3}m_{X} + 0 \cdot 2m}{M + m + m_{X} + 2m} =$$

b) Maximálisan mekkora tömegű m_x ellensúly helyezhető el a darun, ha azt szeretnénk, hogy a daru akkor se dőljön fel, ha éppen nem emel terhet? (1,5)

TRP
$$M=0$$
 New döl fel, ha $\times TKP < \frac{d}{\epsilon}$

$$\frac{1}{3}m\chi - \frac{1}{6}m$$

$$\frac{1}{3}m\chi - \frac{1}{6}m$$

$$\frac{d}{6} \Rightarrow \frac{1}{3}m\chi - \frac{1}{6}m$$

$$\frac{d}{6} \Rightarrow \frac{1}{3}m\chi < \frac{5}{6}m$$

$$\frac{1}{6}m\chi < \frac{5}{6}m$$

$$\frac{d}{6}m\chi < \frac{5}{6}m$$

$$\frac{d}{6}m\chi < \frac{5}{6}m$$

c) A darut a b) feladatban meghatározott tömegű m_x ellensúllyal látjuk el. Maximálisan mekkora M teher emelhető fel a daruval anélkül, hogy a daru felborulna?(1,5)

TKP
$$M_{\chi}=5mV$$
 Nem dol fl, he $\times TKP$ $\rightarrow \frac{d}{6}$

$$-\frac{d}{6} \left\langle d \frac{\frac{1}{3}5m - \frac{1}{6}m - \frac{2}{3}M}{4m + 5m + M} \right\rangle \Rightarrow -\frac{9}{6}m - \frac{M}{6} \left\langle \frac{5}{3}m - \frac{1}{6}m - \frac{2}{3}M \right\rangle$$

$$\left(\frac{4}{6} - \frac{1}{6}\right)M \left\langle \left(\frac{10}{6} - \frac{1}{6} + \frac{9}{6}\right)m \right\rangle \Rightarrow 3M \left\langle 16m\right\rangle$$

$$M \left\langle 6m\right\rangle$$

a) Ábrán vázolja a lejtőn felfelé haladó golyóra ható erőket! (1)

b) Határozza meg a lejtőn felfelé guruló golyó tömegközéppontjának gyorsulását, (1) valamint a golyó

 b) Mekkora utat tesz meg a golyó a lejtőn felfelé addig a pontig, amíg a tömegközéppontja a legmagasabb helyzetbe kerül? (1)

$$a_{TKP} = \frac{\delta V}{\delta t} = -\frac{V_0}{t} \implies t = -\frac{V_0}{a_{TKP}} \qquad \delta = V_6 t + \frac{\alpha}{2} t^2$$

$$\delta = -V_6 \cdot \frac{V_0}{a_{TKP}} + \frac{a_{TKP}}{2} \cdot \frac{V_0^2}{a_{TKP}} = -\frac{V_0^2}{2a_{TKP}}$$

$$S = \frac{v_o^2}{2g(h-va-\mu\cos\alpha)}$$

 c) Legalább mekkora tapadási súrlódási együttható kell ahhoz, hogy a golyó tisztán gördüljön a lejtőn felfelé? (1)

$$\frac{5\mu g \cos x}{2R} = \frac{(\mu \cos x - H - \alpha)g}{R}$$

$$\frac{5\mu \cos x}{2} = \frac{\pi \sin x}{\pi \cos x} - \mu \cos x$$

$$\frac{7}{2}\mu \cos x = \sin x$$

$$\mu = \frac{2}{7} \frac{\sin x}{\cos x} = \frac{2}{7} \frac{tg}{g} d$$

 a) Rajzolja fel a golyóra ható erőket! (0,5) Írja fel a golyó tömegközéppontjának mozgásegyenletét, valamint a golyó tömegközéppontja körüli forgásának alapegyenletét adott φ szögkitérés esetén!

(1) Határozza meg a golyó tömegközéppontjának

gyorsulását φ függvényében! (1)

gring = = = a

b) Fejezze ki a φ szögkitérés idő szerinti második deriváltját (változását) φ függvényében, (1) majd megfelelő közelítések alkalmazásával mutassa meg, hogy a φ szögkitérés közelítőleg harmonikusan oszcillál! Mekkora a rezgés periódusideje? (1,5)

$$-\frac{7}{7} = \alpha - \frac{1}{7}$$

$$= \frac{1}{7} = \frac{1}{7}$$
Ha Qhian: Wr $9 \approx 9$

$$= \frac{1}{7} = \frac{1}{7} = \frac{1}{7}$$

$$= \frac{1}{7} = \frac{1}{7} = \frac{1}{7} = \frac{1}{7}$$

$$= \frac{1}{7} = \frac{1}{7} =$$

4. Egy egyatomos ideális gázzal az ábrán látható P-V diagrammon egyenes szakasszal reprezentálható folyamatot hajtjuk végre. P_0 és V_0 adottak, továbbá ismert a gáz kezdeti T_0 hőmérséklete.

b) Mekkora V_l térfogat mellett lesz a gáz a legmelegebb az AB folyamat során? Mekkora ez a hőmérséklet? (1)

To PV They > PV = m/s

$$3RV - \frac{R}{V_0}V^2 = m + x \Rightarrow 3R_0 - \frac{R_0}{V_0}2V_0 = 0$$

$$\frac{3}{2} = \frac{V_1}{V_0} \qquad V_1 = \frac{3}{2}V_0$$

$$\frac{2P_0V_0=NRT_0}{\frac{3}{2}P_0\frac{3}{2}V_0=NRT_1}$$

$$\frac{8}{9}=\frac{T_0}{T_1}$$

$$T_1=\frac{9}{8}T_0$$

c) Tegyük fel, hogy a gáz egy adott V térfogattal jellemezhető állapotban van a folyamat során. Határozzuk meg, mennyit változik a gáz belső energiája, ha a gáz térfogata kicsiny ΔV mértékben megváltozik! (a nyomása pedig csökken az AB görbe által megszabott módon) (1)

$$E_{b} = \frac{3}{2} NRT = \frac{3}{2} PV = \frac{3}{2} \left(3P_{o} - \frac{P_{o}}{V_{o}} V \right) V = \frac{3}{2} P_{o} \left(3V - \frac{V^{2}}{V_{o}} \right)$$

$$E_{b}' = \frac{3}{2} P_{o} \left(3V + 3\Delta V - \frac{(V + \Delta V)^{2}}{V_{o}} \right) \qquad \Delta E_{b} = E_{b}' - E_{b}$$

$$\Delta E_{b} = \frac{3}{2} P_{o} \left(3V + \frac{V^{2}}{V_{o}} + 3V + 3\Delta V - \frac{V^{2}}{V_{o}} - \frac{2V\Delta V}{V_{o}} - \frac{\Delta V}{V_{o}} \right) = \frac{3}{2} P_{o} \left(3 - \frac{2V}{V_{o}} \right) \Delta V$$

$$V_{o} = \frac{3}{2} P_{o} \left(3V + \frac{V^{2}}{V_{o}} + 3V + 3\Delta V - \frac{V^{2}}{V_{o}} - \frac{2V\Delta V}{V_{o}} - \frac{\Delta V}{V_{o}} \right) = \frac{3}{2} P_{o} \left(3 - \frac{2V}{V_{o}} \right) \Delta V$$

d) Az AB folyamat során a gáz egy darabig hőt vesz fel, aztán pedig hőt ad le. Határozza meg azt a V_2 térfogatot, amelynél nagyobb térfogatok mellett már hőleadás zajlik a folyamat során! (2)

$$0 < \Delta Q = \Delta E_{\mu} + \Delta W_{gir} = \frac{3}{2} P_{0} \left(3 - \frac{2V_{2}}{V_{0}} \right) \Delta V + P_{0} \left(3 - \frac{V_{1}}{V_{0}} \right) \Delta V$$

$$P \cdot \Delta V$$

$$0 < \frac{9}{2} - 3 \frac{V_{1}}{V_{0}} + 3 - \frac{V_{1}}{V_{0}} \Rightarrow 4 \frac{V_{1}}{V_{0}} < \frac{15}{2}$$

$$V_{1} < \frac{15}{8} V_{0}$$

Kiegészítendő mondatok

Egészítse ki az alábbi hiányos mondatokat úgy a megfelelő szavakkal, szókapcsolatokkal, matematikai kifejezésekkel (skalár-vektor megkülönböztetés), hogy azok a Fizikal tantárgy színvonalának megfelelő, fizikailag helyes állításokat fogalmazzanak meg! 1. Az inercia rendszer olyan wonathartatan rendszer. melyben érvényes a tehetetlenség törvénye. 2. Ferdén elhajított tömegpont potenciális energiája akkor a legnagyobb, amikor a pillanatnyi sebességvektora vivintes irányú. 3. Egy Holdon játszódó sci-fit forgatnak. A földi stúdióban felvett filmet, (melyen egy azt az illúziót keltse, mintha az a Holdon játszódna. (gFöld=6gHold) 4. Egyenletesen lassuló körmozgást végző test eredő gyorsulásvektora és sebességvektora által bezárt szög ... hagzolt mint 90°. 5. A Déli-sarkon nyugvó testre nem hat centrifugalis erő. 6. Egy bolygó tömege 16-szor akkora, mint a Földé, sugara pedig 2-szer akkora, mint a Földé. A a Földön. 7. A Napból a bolygóhoz húzott sugár szones idelézől alatt súrol. 8. Pontrendszer Lungulzusa állandó, ha a pontrendszerre ható külső erők eredője nulla. 9. A csillapítási tényező SI mértékegysége: 1/5 10. A mindkét végén nyitott síp alaphangjának és első felharmonikusának frekvencia-aránya: 1:2 11. Egy pörgettyű felfüggesztési pontja, és tömegközéppontja nem esik egybe. A pörgettyű tengelye nem függőleges. A pörgettyű tengelye egy kúppalást mentén mozog. A mozgás neve precemia 12. Egy pontrendszer perdületének idő szerinti deriváltja (változása) egyenlő a pontrendrem hoti halso eril tredo forgationy omatilairel 13. A P-V diagram adott pontján áthaladó izoterma-görbe meredekségének abszolút értéke huselt-, mint az ugyanazon ponton áthaladó adiabata-görbéé. 14. Egy test belső energiájának megváltozása egyenlő a testtel közölt hő, valamint a testen veguts unung összegével.

15. A hőszivattyúk P-V diagramon ábrázolt körfolyamatának körüljárási iránya az óramutató

járásával ellentete irányú.

Kifejtendő kérdések

Tömör, lényegre törő, vázlatszerű, fizikailag és matematikailag pontos válaszokat várunk. Ha szükséges, rajzoljon magyarázó ábrákat!

Íria fel egy általános ferde hajítás hely-idő, valamint sebesség-idő függyényeit koordinátás alakban! A koordináta-rendszert, a hajítás pályáját, valamint a bevezetett fizikai mennyiségeket ábrán vázolja! (2) Írjon fel algebrai egyenletet, melynek megoldása a földetérés időpontját adja eredményül! (1)

Egy mondatban definiálja az I. kozmikus sebesség fogalmát, (0,5) majd ábra és levezetés segítségével határozza meg egy M tömegű, R sugarú bolygó felszínén az I. kozmikus sebességet! (1). Egy mondatban definiálja a II. kozmikus sebesség fogalmát, (0,5) majd ábra és levezetés segítségével határozza meg egy M tömegű, R sugarú bolygó felszínén a II. kozmikus sebességet! (1).

· Korsebessez: A bolgó körül R sugam körpályán kningő toneg pout benileti sebessige.

$$\Sigma F = m\alpha \Rightarrow F_g = m\alpha_{qp}$$

 $\gamma \frac{Mm}{3} = m\frac{v_1^2}{3}$

$$Y \frac{Mm}{R^2} = m \frac{v_I^2}{R}$$
 $v_I = \sqrt{\frac{YM}{R}}$

· A bolygo februrerol nosen ubereggel inditots timegpoint sepas vigtelen tovol Semilui a bolygotól

3. Egy egydimeziós hullámtérben transzverzális hullámok terjednek x irányban. A rezgés kitérése y irányú. Írja fel a hullámegyenletet, valamint az egyenlet harmonikus megoldását megadó y(x,t) függvényt! (1) Nevezze meg az összefüggésben szereplő fizikai mennyiségeket! (1) Hogyan módosul az y(x,t) függvény, ha a hullám a –x irányban terjed? (1)

Hollamoreisus megoldis

$$\frac{d^2y}{dt^2} = C^2 \frac{d^2y}{dx^2}$$
 $\Delta: amplituide'$
 $\omega = \frac{2\pi T}{T} \quad \text{Lo, fusurain}$
 $t = \frac{\pi T}{\lambda} : \text{hullammain}$
 $t = CT : \text{h$

 Fogalmazza meg az ekvipartíció tételét! (1) Vezessen le összefüggést, mely megadja a gázrészecskék átlagos sebességének nagyságát a hőmérséklet függvényében! (1) Értelmezze egy kétatomos gázmolekula szabadsági fokainak számát! (1)

 Nevezze meg a höterjedés formáit (1,5), és értelmezze, hogy az egyes hőterjedési folyamatok milyen közegben valósulhatnak meg! (1,5)

- Hösuginas: közeg nelktil is megorlint.

- Hoverete's: korez missiges

- Hi aramba: csas applofos és légnemi soragben.