Thinking in Columns, Not Rows

Eugene Meidinger DATABASE DEVELOPER

@sqlgene www.sqlgene.com

Two Uses for Databases

Applications designed for day to day use and frequent updates

OLAP
Applications designed for daily reporting and heavy reads

Optimizing for OLAP

Large number of rows

Repeated values

Need to quickly apply filters

Columnar databases are highly optimized for analytical reporting.

Columnar Databases

Thinking in Columns

Order ID	Order Date	Customer ID	Amount	Туре	State
10001	01/01/2018	1	\$2.00	Modest	PA
10002	01/01/2018	1	\$2.00	Sorcerous	WV
10003	01/01/2018	2	\$2.00	Stone	ОН
10004	01/01/2018	2	\$2.00	Tropical	PA
10005	01/01/2018	3	\$2.00	Marshy	WV
10006	01/01/2018	3	\$2.00	Meadow	ОН
10007	01/01/2018	4	\$2.00	Forest	PA

Row-store Databases

Order ID	Order Date	Customer ID	Amount	Туре	State
10001	01/01/2018	1	\$2.00	Modest	PA
10002	01/01/2018	1	\$2.00	Sorcerous	WV
10003	01/01/2018	2	\$2.00	Stone	ОН
10004	01/01/2018	2	\$2.00	Tropical	PA
10005	01/01/2018	3	\$2.00	Marshy	WV
10006	01/01/2018	3	\$2.00	Meadow	ОН
10007	01/01/2018	4	\$2.00	Forest	PA

Column-store Databases

Order ID	Order Date	Customer ID	Amount	Туре	State
10001	01/01/2018	1	\$2.00	Modest	PA
10002	01/01/2018	1	\$2.00	Sorcerous	WV
10003	01/01/2018	2	\$2.00	Stone	ОН
10004	01/01/2018	2	\$2.00	Tropical	PA
10005	01/01/2018	3	\$2.00	Marshy	WV
10006	01/01/2018	3	\$2.00	Meadow	ОН
10007	01/01/2018	4	\$2.00	Forest	PA

Column-store Databases

Order ID	Order Date	Customer ID	Amount	Туре	State
10001	01/01/2018	1	\$2.00	Modest	PA
10002	01/01/2018	1	\$2.00	Sorcerous	WV
10003	01/01/2018	2	\$2.00	Stone	ОН
10004	01/01/2018	2	\$2.00	Tropical	PA
10005	01/01/2018	3	\$2.00	Marshy	WV
10006	01/01/2018	3	\$2.00	Meadow	ОН
10007	01/01/2018	4	\$2.00	Forest	PA

Vertipaq

The engine used to store data as columns, alternatively known as xVelocity.

DirectQuery

The engine that translates DAX formulas into relational SQL queries.

Leveraging Timely On-premises Data with Power BI

Eugene Meidinger

Quick Review

Vertipaq

DirectQuery

Compression and Encoding

Types of Encoding

Value encoding

Dictionary encoding

Run-length encoding

Value Encoding

Dictionary Encoding

Color
1
2
2
3
3
3
3

Key	Color
1	Blue
2	Green
3	Red

Run-length Encoding

Columnar storage turns repeated values from a waste of space to an asset.

Demo

Visualizing run-length encoding
Comparing compression rates

Related				
1	1			
1	1			
1	1			
1	1			
2	2			
2	2			
Four 1s	Four 1s			
Four 2s	Four 2s			

Unrelated

Unique

a

b

C

d

e

f

g

h

Related			
Four 1s	Four 1s		
Four 2s Four 2s			

Unique a b C d e g h

Summary

OLAP is designed for reporting

Columnar databases are optimized for OLAP

Columnar storage plus encoding allows for great compression

