Axiomas de Orden

Análisis Real

Axiomas de Orden

Existe un subconjunto no vacío \mathbb{P} de \mathbb{R} llamado el conjunto de los números reales positivos, que satisface las siguientes propiedades:

- 1. Si $a, b \in \mathbb{P}$ entonces $a + b \in \mathbb{P}$
- 2. Si $a, b \in \mathbb{P}$ entonces $a \cdot b \in \mathbb{P}$
- 3. Si $a \in \mathbb{R}$ entonces ocurre una y sólo una de las siguientes proposiciones:

$$a\in\mathbb{P}$$
 o $a=0$ o $-a\in\mathbb{P}$

De esta manera podemos definir el conjunto de los números reales negativos como el conjunto formado por los opuestos de los positivos, esto es: $\{-a : a \in \mathbb{P}\}$

1. Se dice que un número real a es no negativo si $a\in\mathbb{P}\cup\{0\}$

- 1. Se dice que un número real a es no negativo si $a \in \mathbb{P} \cup \{0\}$
- 2. Se dice que un número real a es no positivo si $-a \in \mathbb{P} \cup \{0\}$

- 1. Se dice que un número real a es no negativo si $a \in \mathbb{P} \cup \{0\}$
- 2. Se dice que un número real a es no positivo si $-a \in \mathbb{P} \cup \{0\}$

- 1. Se dice que un número real a es no negativo si $a \in \mathbb{P} \cup \{0\}$
- 2. Se dice que un número real a es no positivo si $-a \in \mathbb{P} \cup \{0\}$

1. Escribiremos a>0 para indicar que $a\in\mathbb{P}$

- 1. Se dice que un número real a es no negativo si $a \in \mathbb{P} \cup \{0\}$
- 2. Se dice que un número real a es no positivo si $-a \in \mathbb{P} \cup \{0\}$

- 1. Escribiremos a > 0 para indicar que $a \in \mathbb{P}$
- 2. Escribiremos $a \geq 0$ para indicar que $a \in \mathbb{P} \cup \{0\}$

- 1. Se dice que un número real a es no negativo si $a \in \mathbb{P} \cup \{0\}$
- 2. Se dice que un número real a es no positivo si $-a \in \mathbb{P} \cup \{0\}$

- 1. Escribiremos a > 0 para indicar que $a \in \mathbb{P}$
- 2. Escribiremos $a \geq 0$ para indicar que $a \in \mathbb{P} \cup \{0\}$
- 3. Escribiremos a < 0 para indicar que $-a \in \mathbb{P}$

- 1. Se dice que un número real a es no negativo si $a \in \mathbb{P} \cup \{0\}$
- 2. Se dice que un número real a es no positivo si $-a \in \mathbb{P} \cup \{0\}$

- 1. Escribiremos a > 0 para indicar que $a \in \mathbb{P}$
- 2. Escribiremos $a \geq 0$ para indicar que $a \in \mathbb{P} \cup \{0\}$
- 3. Escribiremos a < 0 para indicar que $-a \in \mathbb{P}$
- 4. Escribiremos $a \leq 0$ para indicar que $-a \in \mathbb{P} \cup \{0\}$

Definición

Sean a, b números reales

- 1. Se dice que a es menor que b o que b es mayor que a, lo cual se denota como a < b o b > a, si $a b \in \mathbb{P}$
- 2. Se dice que a es menor o igual que b o que b es mayor o igual que a, lo cual se denota como $a \le b$ o $b \ge a$, si $a-b \in \mathbb{P} \cup \{0\}$

Teorema

- 1. Si $a \in \mathbb{R}$ y $a \neq 0$ entonces $a^2 > 0$
- 2. 1 > 0
- 3. Si $n \in \mathbb{Z}_+$ entonces $n \geq 1$

Teorema

- 1. Si $a \in \mathbb{R}$ y $a \neq 0$ entonces $a^2 > 0$
- 2. 1 > 0
- 3. Si $n \in \mathbb{Z}_+$ entonces $n \ge 1$

Teorema (Otras propiedades)

Sean a, b, c, d números reales

- 1. Si a > b entonces a + c > b + c
- 2. Si a > b y c > 0 entonces entonces $a \cdot c > b \cdot c$
- 3. Si a > b y c < 0 entonces entonces $a \cdot c < b \cdot c$
- 4. Si a > 0 entonces $\frac{1}{a} > 0$
- 5. Si a > b y b > c entonces a > c

Ejercicios:

- 1. Sean a,b números reales tales que a < b , muestre que $a < \frac{1}{2}(a+b) < 2$
- 2. Sea b un número real tal que b>0, muestre que $0<\frac{1}{2}b< b$
- 3. Sean a,b números reales tales que $a\cdot b>0$. Muestre que uno y solo uno de los siguientes casos ocurre
 - 3.1 a > 0 y b > 0
 - 3.2 a < 0 y b < 0

Teorema (Arbitrariedad de ϵ)

Sea $a \in \mathbb{R}$ tal que $0 \le a < \epsilon$ para todo $\epsilon > 0$ entonces a = 0

Este resultado nos dice que el único número no negativo menor que todo número positivo es $0\,$

Ejercicios: Sean a, b números reales

- 1. Si $a \ge 0$ y $b \ge 0$ muestre que: a < b si y sólo si $a^2 < b^2$
- 2. Si a>-1 muestre que $(1+a)^n\geq 1+na$ para todo $n\in\mathbb{Z}_+.$ Desigualdad de Bernoulli

Valor Absoluto

Sea $a\in\mathbb{R}$, por tricotomia ocurre que a>0 o a=0 o -a>0. El valor absoluto de a, denotado por |a|, se define como el positivo de los números anteriores si $a\neq 0$ 0 0 si a=0

Teorema (Propiedades del Valor Absoluto)

Sean a, b números reales, entonces

- 1. $|a \cdot b| = |a| \cdot |b|$
- 2. $|a|^2 = a^2$
- 3. Sea $c \ge 0$, $|a| \le c$ si y sólo si $-c \le a \le c$
- 4. -|a| < a < |a|
- 5. Sea $x \in \mathbb{R}$ si $a \le x \le b$ entonces $|x| \le \max\{|a|, |b|\}$
- 6. $|a+b| \leq |a| + |b|$. Designaldad triangular
- 7. ||a| |b|| < |a b|
- 8. $|a+b| \ge |a| |b|$

MACC Matemáticas Aplicadas y Ciencias de la Computación

