PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-279956

(43)Date of publication of application: 27.09.2002

(51)Int.CI.

H01M 2/16 H01M 10/40

(21)Application number: 2001-076913

(71)Applicant: SONY CORP

(22)Date of filing:

16.03.2001

(72)Inventor: YAMAGUCHI AKIRA

KOMARU TOKUO

NAGAMINE MASAYUKI

(54) NONAQUEOUS ELECTROLYTE BATTERY

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery which is superior in both productivity and cycle characteristics.

SOLUTION: In this nonaqueous electrolyte battery, having a positive electrode 2, a negative electrode 3, a nonaqueous electrolyte and a separator 4 disposed between the positive electrode 2 and the negative electrode 3, the separator 4 comprises two layers of fine porous membrane, and the average pore diameter of the fine porous membrane on the positive electrode side is set to be larger than the average pore diameter of the fine porous membrane on the negative electrode side.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-279956 (P2002-279956A)

(43)公開日 平成14年9月27日(2002.9.27)

(51) Int.Cl.?

識別記号

FΙ

テーマコード(参考)

H01M 2/16

10/40

H01M 2/16

L 5H021

10/40

Z 5H029

審査請求 未請求 請求項の数8 OL (全 10 頁)

(21)出願番号	特願2001-76913(P2001-76913)	(71) 出願人	000002185	
			ソニー株式会社	
(22)出顧日	平成13年3月16日(2001.3.16)	•	東京都品川区北品川6丁目7番35号	
		(72)発明者	山口 晃	
			福島県安達郡本宮町字樋ノ口2番地	ソニ
			一福島株式会社内	
		(72)発明者	小丸 篤雄	
			福島県安達郡本宮町字樋ノ口2番地	ソニ
			一福島株式会社内	

(74)代理人 100067736 弁理士 小池 晃 (外2名)

最終頁に続く

(54) 【発明の名称】 非水電解質電池

(57)【要約】

【課題】 生産性及びサイクル特性の何れにも優れる。 【解決手段】 正極2と、負極3と、非水電解質と、当 該正極2と当該負極3との間に配されるセパレータ4と を有する非水電解質電池において、上記セパレータ4が 2層の微多孔膜からなるとともに、当該正極側の微多孔 膜の平均孔径が当該負極側の微多孔膜の平均孔径より大 である。

【特許請求の範囲】

【請求項1】 正極と、負極と、非水電解質と、当該正極と当該負極との間に配されるセパレータとを有する非水電解質電池において、

上記セパレータが2層の微多孔膜からなるとともに、当該正極側の微多孔膜の平均孔径が当該負極側の微多孔膜の平均孔径より大であることを特徴とする非水電解質電池。

【請求項2】 上記負極は、リチウムをドープ及び脱ドープ可能な材料を含有することを特徴とする請求項1記載の非水電解質電池。

【請求項3】 上記正極側の微多孔膜の平均孔径をAとし、上記負極側の微多孔膜の平均孔径をBとしたとき、平均孔径の比A/Bは、1.2以上10以下の範囲内であることを特徴とする請求項1記載の非水電解質電池。

【請求項4】 上記セパレータにおいて、一方の微多孔 膜がポリプロピレンからなり、他方の微多孔膜がポリエ チレンからなることを特徴とする請求項1記載の非水電 解質電池。

【請求項5】 上記正極側の微多孔膜がポリエチレンからなり、上記負極側の微多孔膜がポリプロピレンからなることを特徴とする請求項4記載の非水電解質電池。

【請求項6】 正極と、負極と、非水電解質と、当該正極と当該負極との間に配されるセパレータとを有する非水電解質電池において、

上記セパレータが2層の微多孔膜からなり、当該負極側の微多孔膜の平均孔径が当該正極側の微多孔膜の平均孔径より大であるとともに、当該正極側の微多孔膜がポリプロピレンからなることを特徴とする非水電解質電池。

【請求項7】 上記負極は、リチウムをドープ及び脱ドープ可能な材料を含有することを特徴とする請求項6記載の非水電解質電池。

【請求項8】 上記正極側の微多孔膜の平均孔径をCとし、上記負極側の微多孔膜の平均孔径をDとしたとき、平均孔径の比C/Dは、0.1以上0.83以下の範囲内であることを特徴とする請求項6記載の非水電解質電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、正極と、負極と、 非水電解質と、当該正極と負極との間に配されたセパレ ータとを有する非水電解質電池に関する。

[0002]

【従来の技術】近年、カメラー体型VTR、携帯電話、ラップトップコンピュータ等のポータブル電子機器が多く登場し、その小型軽量化が図られている。そしてこれらの電子機器のポータブル電源として、電池、特に二次電池について、エネルギー密度を向上させるための研究開発が活発に進められている。中でもリチウムイオンニンな野池は、従来の水系質解薬ニな環池である鉛質池。こ

ッケルカドミウム電池と比較して大きなエネルギー密度 が得られるため、期待が大きい。

【0003】例えば、リチウムイオン二次電池等の非水電解質二次電池用セパレータとしては、ポリエチレン、ポリプロピレン等に代表されるようなポリオレフィン微多孔膜が使用されている。非水電解質二次電池用セパレータに用いられるポリオレフィン微多孔膜としては、その材料によって異なるものの、孔径が0.05 μ m~1 μ mであり、空孔率が45%前後であるものが使用されている。

【0004】このように、セパレータが多数の孔を有することにより、この孔中に電解液が入り込むことにより、この電解液を介して電池の充放電時にリチウムイオンが正極と負極との間を行き来できるものとなる。

[0005]

20

【発明が解決しようとする課題】しかしながら、セパレータの孔の孔径が大きいと、負極及び正極表面から脱落した活物質がセパレータの孔に入り込み、内部短絡を生じ易くなる。この結果、生産時での電池の不良率が高くなるといった問題を生じる。

【0006】そこで、セパレータの孔の孔径を小さくする方法が考えられるが、孔径を単に小さくしただけでは、セパレータから供給される電解液が電極表面において不足し、電池の充放電時にリチウムイオンが正極一負極間を行き来し難くなり、サイクル特性が劣化してしまう。

【0007】そこで本発明はこのような従来の実情に鑑みて提案されたものであり、生産性及びサイクル特性の何れにも優れる非水電解質電池を提供することを目的と30 する。

[0008]

【課題を解決するための手段】上述の目的を達成するために、本発明に係る非水電解質電池は、正極と、負極と、非水電解質と、当該正極と当該負極との間に配されるセパレータとを有する非水電解質電池において、上記セパレータが2層の微多孔膜からなるとともに、当該正極側の微多孔膜の平均孔径が当該負極側の微多孔膜の平均孔径より大であることを特徴とする。

【0009】以上のように構成された非水電解質電池では、セパレータの一方の電極側、すなわち正極側の微多 孔膜の平均孔径を相対的に大とし、負極側の微多孔膜の 平均孔径を相対的に小としている。セパレータ全体の平 均孔径を単に小さくしたのではなく、負極側の微多孔膜 の平均孔径を相対的に小さくしているため、負極及び正 極から脱落した活物質が孔の中に入り込むことに起因す る内部短絡を防止するとともに、セパレータにおけるイ オンの移動を円滑なものとする。

電池について、エネルギー密度を向上させるための研究 【0010】また、正極側の微多孔膜は、平均孔径が相開発が活発に進められている。中でもリチウムイオン二 対的に大とされているため、負極側に比べてより多くの次電池は、従来の水系電解液二次電池である鉛電池、ニ 50 非水電解質を保持することができる。このため、一般に

せる。

導電性に劣る正極に非水電解質が充分に供給され、正極 内でのイオン導電性を確保できる。

【0011】また、本発明に係る非水電解質電池におい ては、上述したようなセパレータと、リチウムをドープ 及び脱ドープ可能な材料を含有する負極とを組み合わせ て用いることが好ましい。リチウムをドープ及び脱ドー プ可能な材料を含有する負極は、電池の充放電時におけ る膨張収縮が激しいために活物質が脱落しやすく、内部 短絡を引き起こすといった不都合を有するが、本発明で はセパレータの負極側に平均孔径を小とされた微多孔膜 を使用しているため、当該負極に起因する内部短絡を防 止することができる。

【0012】また、本発明に係る非水電解質電池は、正 極と、負極と、非水電解質と、当該正極と当該負極との 間に配されるセパレータとを有する非水電解質電池にお いて、上記セパレータが2層の微多孔膜からなり、当該 負極側の微多孔膜の平均孔径が当該正極側の微多孔膜の 平均孔径より大であるとともに、当該正極側の微多孔膜 がポリプロピレンからなることを特徴とする。

【0013】以上のように構成された非水電解質電池で は、セパレータの一方の電極側、すなわち負極側の微多 孔膜の平均孔径を相対的に大とし、ポリプロピレンから なる正極側の微多孔膜の平均孔径を相対的に小としてい る。セパレータ全体の平均孔径を単に小さくしたのでは なく、正極側の微多孔膜の平均孔径を相対的に小さくし ているため、負極及び正極から脱落した活物質が孔の中 に入り込むことに起因する内部短絡を防止するととも に、セパレータにおけるイオンの移動を円滑なものとす る。

【0014】また、セパレータの正極側の微多孔膜が、 強度の強いポリプロピレンからなるため、充電時におけ る電極の膨張収縮によって正極側のセパレータの孔が潰 れたりすることが防止される。これにより、充放電サイ クルを繰り返しても、正極側のセパレータの孔径が維持 され、正極表面に充分な量の電解液が供給され、正極内 でのイオン導電性を確保できる。

[0015]

【発明の実施の形態】以下、本発明に係る非水電解質電 池について、図面を参照しながら詳細に説明する。

【0016】第1の実施の形態

まず、本実施の形態を適用した非水電解質二次電池の一 例について説明する。

【0017】図1に、非水電解質二次電池の断面構成を 示す。この非水電解質二次電池は、いわゆる円筒型と言 われるものであり、ほぼ中空円柱状の電池缶1の内部 に、正極活物質を有する帯状の正極2と負極活物質を有 する帯状の負極3とが、イオン透過性を有するセパレー タ4を介して多数回巻回された渦巻型電極体を有してい る。電池缶1は、例えばニッケルメッキが施された鉄に より構成されており、一端部が閉鎖され、他端部が開放 されている。また、電池缶1の内部には、渦巻型電極体 を挟み込むように周面に対して垂直に一対の絶縁板5. 6がそれぞれ配置されている。

【0018】電池缶1の開放端部には、電池蓋7と、こ の電池蓋7の内側に設けられた安全弁装置8及び熱感抵 抗素子 (Positive Temperature Coefficient ; P T C 素子) 9とが、封口ガスケット10を介してかしめられ ることにより取り付けられており、電池缶1の内部は密 閉されている。電池蓋7は、例えば電池缶1と同様の材 料により構成されている。安全弁装置8は、熱感抵抗素 子9を介して電池蓋7と電気的に接続されており、内部 短絡又は外部からの加熱等により電池の内圧が一定以上 となった場合に電池蓋7と渦巻型電極体との電気的接続 を切断する、いわゆる電流遮断機構を備えている。熱感 抵抗素子9は、温度が上昇すると抵抗値の増大により電 流を制限し、大電流による異常な発熱を防止するもので ある。封口ガスケット10は、例えば絶縁材料により構 成されており、表面にはアスファルトが塗布されてい る。

【0019】巻回電極体は、例えばセンターピン11を 中心にして巻回されている。巻回電極体の正極2にはア ルミニウム等よりなる正極リード12が接続されてお り、負極3にはニッケル等よりなる負極リード13が接 続されている。正極リード12は安全弁装置8に溶接さ れることにより電池蓋7と電気的に接続されており、負 極リード13は電池缶1に溶接され電気的に接続されて いる。また、正極2と負極3との間のセパレータ4に は、非水電解質として例えば電解液が含浸されている。 【0020】セパレータ4は、微小な孔を多数有する微 30 多孔膜からなり、正極2と負極3との間に配されること によりこれらの物理的接触を防ぐとともに、孔中に電解 液を保持すること、すなわちセパレータ4が電解液を吸

【0021】本実施の形態においては、セパレータ4 は、微多孔膜を2層積層してなる構造とされるととも に、正極側の微多孔膜の平均孔径が負極側の微多孔膜の 平均孔径より大とされている。

収することにより、充放電時にリチウムイオンを通過さ

【0022】このセパレータ4においては、セパレータ 4を構成する一方の微多孔膜、すなわち負極側の微多孔 40 膜の孔径が小とされている。このため、電極から脱落し た微小な活物質がセパレータ 4 の孔中に入り込むことに 起因する内部短絡を抑制し、電池の生産時の不良率を改 善可能とされる。

【0023】また、セパレータ4を構成する正極側の微 多孔膜の平均孔径が相対的に大とされているため、正極 側の微多孔膜の孔から充分量の電解液が正極2表面に供 給される。このため、一般に導電性に劣る材料からなる 正極2において、イオン導電性が良好なものとなり、低 50 温特性及びサイクル特性が向上する。

【0024】ここで、セパレータ4を構成する2層の微多孔膜として、平均孔径が互いに異なる微多孔膜を用いることが重要である。例えば、2層の微多孔膜の平均孔径をともに小さくしただけでは、セパレータにおけるリチウムイオンの移動が妨げられ、低温特性及びサイクル特性を損なうという問題を生じる。また、逆に、正極側の微多孔膜の平均孔径を小とし、負極側の微多孔膜の平均孔径を大とした場合、正極側の微多孔膜が保持する電解液の量が少なくなるため、正極の表面へのセパレータからの電解液の供給が不足する。一般に正極は導電性に劣る材料からなるため、負極において電解液が不足することによる低温特性及びサイクル特性の悪化は、負極に

【0025】以上のようなセパレータ4において、正極側の微多孔膜の平均孔径をAとし、負極側の微多孔膜の平均孔径をBとしたとき、平均孔径の比A/Bは、1.2以上10以下であることが好ましく、1.3以上9以下であることがより好ましい。2層の微多孔膜の平均孔径の比を上述した範囲内に規定することによって、生産時の電池の不良率の改善、低温特性及びサイクル特性の向上の効果をより確実に得ることができる。平均孔径の比A/Bが1.2未満である場合、低温特性及びサイクル特性が低下する虞がある。また、平均孔径の比A/Bが10を上回る場合、電池生産時の不良率が増加する虞がある。

おいて電解液が不足した場合に比べて著しいものとな

る。

【0026】セパレータ4の微多孔膜を構成する材料としては、例えばポリオレフィンを使用することが可能であり、正極側又は負極側の何れか一方の微多孔膜としてポリエチレンを用い、他方の微多孔膜としてポリプロピレンを用いることが好ましい。セパレータ4を構成する微多孔膜として、例えば2層ともにポリプロピレンを用いた場合、ポリプロピレンはポリエチレンよりも伸びが少ないために、電池素子が硬くなってしまう。これにより、電池素子全体への電解液の染み込み度合いが低下し、初期充電時において負極3へリチウムイオンが円滑に挿入せず、電池容量の低下を招く虞がある。

【0027】特に、正極側の微多孔膜としてポリエチレンを用い、負極側の微多孔膜としてポリプロピレンを用いることが好ましい。負極側に配する平均孔径の小さい微多孔膜として、高い強度を有するポリプロピレンを用いることにより、負極3の膨張及び収縮によるストレスのために孔が潰れたり食い込むこと等が抑制され、生産性、低温特性及びサイクル特性がさらに向上する。

【0028】正極2は、例えば正極活物質を含有する正極活物質層2aと正極集電体2bとを有している。正極集電体2bは、例えばアルミニウム等の金属箔により構成されている。正極活物質層2あは、例えば正極活物質と、グラファイト等の導電材と、ポリフッ化ビニリデン等の結着剤とを含有して構成されている。

【0029】正極活物質としては特に限定されるものではないが、充分な量のLiを含むことが好ましく、例えば一般式LiMxOy(ただし、式中MはCo、Ni、Mn、Fe、Al、V、Tiのうち少なくとも1種の元素を表す。)で表されるリチウムと遷移金属とを有する複合金属酸化物や、リチウムを含んだ層間化合物を用いて好適である。

【0030】負極3は、例えば負極活物質を含有する負極活物質層3aと負極集電体3bとを有している。負極 集電体3bは、例えば鋼等の金属箔により構成されている。

【0031】負極活物質としては、対リチウム金属2. 0V以下の電位で電気化学的にリチウムをドープ及び脱 ドープ可能な材料を用いることが好ましい。リチウムを ドープ及び脱ドープ可能な材料を用いた負極3は、例え ば金属リチウムを用いた負極3に比べて充放電時におけ る膨張収縮が激しく、負極活物質が脱落してセパレータ 4の孔に入り込みやすいという不都合がある。本発明で は、リチウムをドープ及び脱ドープ可能な材料を用いた 負極3と、以上のような負極側の微多孔膜の平均孔径が 小とされたセパレータ4とを組み合わせることにより、 負極活物質が脱落することに起因する内部短絡の発生が 防止され、生産性の向上を図ることが可能となる。

【0032】リチウムをドープ及び脱ドープ可能な材料としては、難黒鉛化性炭素、人造黒鉛、天然黒鉛、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス等)、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体(フェノール樹脂、フラン樹脂等を適当な温度で焼成し、炭素化したもの。)、炭素繊維、活性炭、カーボンブラック類等の炭素質材料等を例示できる。また、リチウムと合金を形成可能な金属及びその合金も使用可能である。また、酸化鉄、酸化ルテニウム、酸化モリブデン、酸化タングステン、酸化チタン、酸化スズ等の比較的卑な電位でリチウムをドープ及び脱ドープ可能な酸化物や、その他窒化物等も、同様に負極3として使用可能である。

【0033】非水電解質としては、非水溶媒に電解質塩を溶解させた非水電解液、電解質塩を含有した固体電解質、有機高分子に非水溶媒と電解質塩とを含浸させたゲル状電解質の何れも使用可能である。

【0034】これらのうち、非水電解液は、非水溶媒と電解質塩とを適宜組み合わせて調製されるものである。非水溶媒としてはこの種の電池に用いられるものを何れも使用可能であり、プロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、1,2ージメトキシエタン、1,2ージエトキシエタン、yープチロラクトン、テトラヒドロフラン、2ーメチルテトラヒドロフラン、1,3ージオキソラン、4ーメチルー1,3ージオ50キソラン、ジエチルエーテル、スルホラン、メチルスル

40

30

ホラン、アセトニトリル、プロピオニトリル、酢酸エス テル、酪酸エステル、プロピオン酸エステル等を例示で きる。

【0035】固体電解質としては、リチウムイオン導電 性を有する材料であれば無機固体電解質、高分子固体電 解質等、何れも使用可能である。具体的な無機固体電解 質としては、窒化リチウム、ヨウ化リチウム等が挙げら れる。高分子固体電解質は、電解質塩とそれを溶解する 高分子化合物とからなる。高分子化合物としては、ポリ (エチレンオキサイド) や同架橋体等のエーテル系高分 子、ポリ(メタクリレート)エステル系、アクリレート 系等を、単独若しくは分子中に共重合、又は混合して使 用可能である。

【0036】ゲル状電解質に用いられる有機高分子とし ては、有機溶媒を吸収してゲル化するものであれば、種 々の高分子を用いることができる。具体的な有機高分子 としては、ポリ(ビニリデンフルオロライド)やポリ (ビニリデンフルオロライド-co-ヘキサフルオロプ ロピレン)等のフッ素系高分子、ポリ(エチレンオキサ イド)や同架橋体等のエーテル系高分子、ポリ(アクリ ロニトリル)等を使用することができる。特に、酸化還 元安定性の観点では、フッ素系高分子を使用することが 好ましい。なお、これらの有機高分子は、電解質塩を含 有されることにより、イオン導電性が付与される。

【0037】電解質塩としては、例えば、LiPF6、 LiClO₄, LiAsF₆, LiBF₄, LiB (C 6 H 5) 4 、 C H 3 S O 3 L i 、 C F 3 S O 3 L i 、 L i C 1、L i B r 等を使用可能である。

【0038】本実施の形態に係る非水電解質二次電池を 製造する方法については、特に限定されない。例えば負 極3及び正極2を製造する方法としては、負極活物質又 は正極活物質に公知の結着剤等を添加し溶剤を加えて塗 布する方法、負極活物質又は正極活物質に公知の結着剤 等を添加し加熱して塗布する方法、活物質単独、又は活 物質、導電性材料、結着剤等を混合した混合物に、成型 等の処理を施して成型体電極を作製する方法等が挙げら れる。

【0039】より具体的には、負極活物質又は正極活物 質を結着剤、有機溶剤等と混合し、スラリー状にした 後、これを負極集電体又は正極集電体上に塗布し、乾燥 させることにより負極3又は正極2を作製できる。ま た、結着剤の有無にかかわらず、負極活物質又は正極活 物質に熱を加えた状態で加熱成型することにより、高い 強度を有する負極3又は正極2を作製することができ る。

【0040】また、上述の説明では、負極と正極との間 にセパレータを介して積層し、巻芯の周囲に多数回巻き 付けて巻回することにより作製される、いわゆる渦巻型 電極体を例に挙げたが、本発明はこれに限定されるもの ではない。例えば、本発明では、電極とセパレータを順 50 る。したがって、充放電時におけるイオンの移動が良好

次積層する方法によって作製された積層型の電池であっ ても構わない。また、角形電池を作製する際に、負極と 正極との間にセパレータを介して積層し、巻芯の周囲に 多数回巻き付けて巻回する方法を採用しても構わない。 【0041】以上の説明のように、本実施の形態によれ ば、セパレータが2層の微多孔膜からなるとともに、正 極側の微多孔膜の平均孔径が負極側の微多孔膜の平均孔 径よりも大とされている。これにより、電極から脱落し た活物質がセパレータの孔に入り込むことに起因する内 部短絡を抑制するとともに、セパレータにおけるイオン の移動を円滑なものとする。したがって、電極から脱落 した微小な活物質が孔中に入り込むことに起因する電池

【0042】また、本実施の形態によれば、正極側の微 多孔膜の平均孔径が相対的に大とされているため、一般 に導電性に劣る正極に充分量の電解液が供給され、正極 におけるイオン導電性が良好となる。したがって、低温 特性及びサイクル特性を向上させることができる。

不良が低減され、生産性に優れたものとなる。

【0043】なお、上述の説明では、円筒型の非水電解 質二次電池を例に挙げたが、電池の形状については特に 限定されることなく、角型、コイン型、ボタン型、ラミ ネート型等の種々の形状をとることが可能である。ま た、本発明は、一次電池であっても二次電池であっても 適用可能である。

【0044】第2の実施の形態

つぎに、本発明を適用した第2の実施の形態について説 明する。

【0045】本実施の形態に係る非水電解質二次電池 は、用いるセパレータが異なること以外は図1に示すよ うな上述した第1の実施の形態に係る非水電解質二次電 池と同様の構成を有している。このため、ここではその 他の構成の説明を省略する。

【0046】そして、本実施の形態では、セパレータ は、微多孔膜を2層積層してなる構造とされ、負極側の 微多孔膜の平均孔径が正極側の微多孔膜の平均孔径より 大とされるとともに、正極側の微多孔膜がポリプロピレ ンからなるものである。

【0047】このセパレータにおいては、セパレータを 構成する一方の微多孔膜、すなわち正極側の微多孔膜の 孔径が小とされている。このため、電極から脱落した微 小な活物質がセパレータの孔中に入り込むことに起因す る内部短絡を抑制し、電池の生産時の不良率を改善可能 とされる。また、正極側の微多孔膜は、高い強度を有す るポリプロピレンからなるため、電池の生産時の不良率 を改善可能とされる。

【0048】また、セパレータを構成する負極側の微多 孔膜の平均孔径が相対的に大とされているため、充放電 時における負極の膨張収縮によって微多孔膜が圧縮され たとしても、微多孔膜の孔が目詰まりを起こしにくくな

20

なものとなり、サイクル特性に優れたものとなる。

【0049】ここで、セパレータを構成する2層の微多 孔膜として、平均孔径が互いに異なる微多孔膜を用いる ことが重要である。例えば、2層の微多孔膜の平均孔径 をともに小さくしただけでは、リチウムイオンの透過性 が低下し、低温特性及びサイクル特性を損なうという問 題を生じる。

【0050】以上のようなセパレータにおいて、正極側の微多孔膜の平均孔径をCとし、負極側の微多孔膜の平均孔径をDとしたとき、平均孔径の比C/Dは、0.1以上0.83以下であることが好ましく、0.2以上0.8以下であることがより好ましい。2層の微多孔膜の平均孔径の比を以上の範囲内に規定することによって、生産時の電池の不良率の改善及びサイクル特性の向上の効果をより確実に得ることができる。平均孔径の比C/Dが0.1未満である場合、サイクル特性が低下する虞がある。また、平均孔径の比C/Dが0.83を上回る場合、電池生産時の不良率が増加する虞がある。

【0051】セパレータの微多孔膜を構成する材料としては、例えばポリオレフィンを使用することが可能であり、正極側又は負極側の何れか一方の微多孔膜としてポリエチレンを用い、他方の微多孔膜としてポリプロピレンを用いることが好ましい。セパレータを構成する微多孔膜として、例えば2層ともにポリプロピレンを用いた場合、ポリプロピレンはポリエチレンよりも伸びが少ないために、電池素子が硬くなってしまう。これにより、電池素子全体への電解液の染み込み度合いが低下し、初期充電時において負極へリチウムイオンが円滑に挿入せず、電池容量の低下を招く虞がある。

【0052】以上の説明のように、本実施の形態によれ 30 ば、セパレータが2層の微多孔膜からなり、負極側の微多孔膜の平均孔径が正極側の微多孔膜の平均孔径よりも大とされるとともに、正極側の微多孔膜がポリプロピレンからなる。これにより、セパレータを構成する負極側の微多孔膜の平均孔径が相対的に大とされているため、充放電時における負極の膨張収縮によって微多孔膜が圧縮されたとしても、微多孔膜の孔が目詰まりを起こしにくくなる。したがって、充放電時におけるイオンの移動が良好なものとなり、サイクル特性に優れたものとなる。

【0053】また、本実施の形態によれば、電極から脱落した微小な活物質が孔中に入り込むことに起因する電池不良が低減されるとともに、正極側のセパレータが強度の高いポリプロピレンからなるため、生産性に優れたものとなる。

[0054]

【実施例】以下、本発明を適用した具体的な実施例について、実験結果に基づいて説明する。

【0055】〈実験1〉まず、セパレータが2層の微多 孔膜からなるとともに、正極側の微多孔膜の平均孔径が 50 負極側の当該微多孔膜の平均孔径より大である場合について検討した。

【0056】サンプル1

まず、以下のようにして負極を作製した。

【0057】フィラーとなる石炭系コークス100重量部に対し、バインダーとなるコールタール系ピッチを30重量部加え、約100℃にて混合した後、プレスにて圧縮成型し、炭素成型体の前駆体を得た。この前駆体を1000℃以下で熱処理して得た炭素材料成型体に、さらに200℃以下で溶融させたバインダーピッチを含浸し、1000℃以下で熱処理するといったいわゆるピッチ含浸/焼成工程を数回繰り返した。その後、この炭素成型体を不活性雰囲気で2800℃にて熱処理し、黒鉛化成型体を得た後、粉砕分級し、試料粉末を作製した。

【0058】なお、このとき得られた黒鉛材料について X線回折測定を行った結果、 (002) 面の面間隔が 0.337nmであり、 (002) 面の c 軸結晶子厚みが50.0nmであり、ピクノメータ法による真密度が 2.23であり、BET法による比表面積が1.6m²/gであり、レーザ回折法による粒度分布は平均粒径が 33.0 μ mであり、累積10%粒径が13.3 μ mであり、累積50%粒径が30.6 μ mであり、累積90%粒径が55.7 μ mであり、黒鉛粒子の破壊強度の平均値が7.1kgf/mm²であり、嵩密度が0.98g/cm³であった。

【0059】上記試料粉末を90重量部と、結着材としてポリフッ化ビニリデン(PVDF)を10重量部とを混合して負極合剤を調製し、溶剤となるN-メチルピロリドンに分散させてスラリー(ペースト)状にした。

0 【0060】次に、負極合剤スラリーを負極集電体の両面に塗布し、乾燥させた後、一定圧力で圧縮成型して帯状の負極を作製した。なお、負極集電体としては厚さ10μmの帯状の銅箔を用いた。

【0061】つぎに、正極を作製した。

【0062】炭酸リチウム0.5モルと炭酸コバルト1モルとを混合し、この混合物を空気中、温度950℃で5時間焼成した。得られた材料についてX線回折測定を行った結果、JCPDSファイルに登録されたLiCoO2のピークと良く一致していた。

40 【0063】得られたLiCoO2を粉砕し、平均粒径が19 μ mの粉末とした。このLiCoO2粉末95重量部と、炭酸リチウム粉末5重量部とを混合した。この混合物を91重量部と、導電材として鱗片状黒鉛を6重量部と、結着剤としてポリフッ化ビニリデンを3重量部とを混合して正極合剤を調製し、N-メチルピロリドンに分散させてスラリー(ペースト)状にした。

【0064】次に、正極合剤スラリーを正極集電体の両面に塗布し、乾燥させた後、一定圧力で圧縮成型して帯状の正極を作製した。なお、正極集電体としては厚さ20μmの帯状のアルミニウム箔を用いた。

【0065】つぎに、以上のように作製された帯状の負極と帯状の正極とを、平均孔径が0.5 μ mであり、厚さ15 μ mの微多孔性ポリエチレンと、平均孔径が0.1 μ mであり、厚さ15 μ mの微多孔性ポリエチレンとの2層からなるセパレータを介して、負極、セパレータ、正極、セパレータの順に積層してから多数回巻回し、外径18 μ mの渦巻型電極体を作製した。なお、平均孔径が0.5 μ mである微多孔性ポリエチレンは正極と接触させ、平均孔径が0.1 μ mの微多孔性ポリエチレンは負極と接触させた。また、セパレータの平均孔径は水銀ポロシメータで測定した。

【0066】この渦巻型電極体を、ニッケルメッキを施した鉄製の電池缶に収納した。そして渦巻型電極体の上限両面に絶縁板を配設し、アルミニウム製正極リードを正極集電体から導出して電池蓋に、ニッケル製極リードを負極集電体から導出して電池缶に溶接した。

【0067】この電池缶の中に、重量混合比がLiPF6:エチレンカーボネート:ジメチルカーボネート=10:40:50である電解液を注入した。

【0068】次に、アスファルトで表面を塗布した絶縁 20 封口ガスケットを介して電池缶をかしめることにより、 電流遮断機構を有する安全弁装置、PTC素子、及び電 池蓋を固定し、電池内の気密性を保持させ、直径18m m、高さ65mmの円筒型非水電解質二次電池を作製し た。

[0069] サンプル2~サンプル8

セパレータを構成する2層の微多孔膜として、下記の表1に示すような材料及び平均孔径を有するものを用いたこと以外は、サンプル1と同様にしてサンプル2~サンプル7の非水電解質二次電池を作製した。

【0070】以上のように作製されたサンプル1~サンプル7の非水電解質二次電池について、不良率、室温での電池容量、低温特性及びサイクル特性の評価を行った。

【0071】1. 不良率

各サンプルの電池を100個用意し、これらに対して電池を作製してから5時間以内に23℃雰囲気中、上限電圧4.2V、電流0.3A、10時間の条件で定電流定電圧充電を行った後、23℃雰囲気中で1ヶ月間保存した。これらの電池に対して0CV測定を行い、4.15V以下の電池を不良品とした。

【0072】2. 電池容量

上述した不良率の測定で、1ヶ月間保存後において良品と判別された各電池に対して、23℃恒温槽中で、上限電圧4.2V、電流1A、3時間の条件で定電流定電圧充電を行った後、0.8Aの定電流放電を終止電圧3.0Vまで行い、このときの電池容量を測定した。

【0073】3. 低温特性

各電池に対して、23℃恒温槽中で、上限電圧4.2 V、電流1A、3時間の条件で定電流定電圧充電を行った後、0.8Aの定電流放電を終止電圧3.0 Vまで行った。その後、上限電圧4.2 V、電流1A、3時間の条件で定電流定電圧充電を行った。その後、-20℃の恒温槽中で3時間放置した後、0.8Aの定電流放電を終止電圧3.0 Vまで行い、このときの電池容量を測定した。

【0074】4. サイクル特性

各電池に対して、常温中で、上限電圧4.2 V、電流1 A、3時間の条件で定電流定電圧充電を行った後、0.8 Aの定電流放電を終止電圧3.0 Vまで行った。このような充放電サイクルを250サイクル行い、1サイクル目の放電容量を100%としたときの250サイクル目の放電容量を計算し、容量維持率とした。

30 【0075】以上の評価結果を、下記の表1に示す。なお、表1中、ポリプロピレンをPPと表し、ポリエチレンをPEと表した。

[0076]

【表1】

	正極側	負極側	平均	正極側	負極側		室温	-20°C	250サイクル
1	平均孔径	平均孔径	孔径比			不良率	電池容量	電池容量	容量維持率
	(μm)	(µ m)	A/B	材料	材料		(mAh)	(mAh)	(%)
サンブル1	0.5	0.1	5	PE	PE	1/100	1601	680	77
サンプル2	0.2	0.1	2	PE	PE	1/100	1601	661	73
サンブル3	0.5	0.1	5	PE	PP	0/100	1600	675	92
サンブル4	0.5	0.1	5	PP	PE	1/100	1601	674	80
サンプル5	0.5	0.1	5	PP	PP	0/100	1589	661	80
サンブル6	0.1	0.5	0.5	PE	PE	6/100	1600	630	62
サンブルフ	0.1	0.1	1	PE	PE	1/100	1599	550	59
サンプル8	0.5	0.5	1	PE	PE	14/100	1598	760	84

【0077】表1から、セパレータが2層の微多孔膜か らなり、正極側の微多孔膜の平均孔径が負極側の微多孔 膜の平均孔径より大とされているサンプル1~サンプル 20 5は、不良率、室温での電池容量、低温特件及びサイク ル特性の何れについても良好な値を示し、生産性及び電 池特性に優れることがわかった。

【0078】これに対して、正極側の微多孔膜及び負極 側の微多孔膜がポリエチレンからなるとともに、正極側 の微多孔膜の平均孔径が負極側の微多孔膜の平均孔径よ り小とされているサンプル6は、電池の不良率が高い値 を示した。これは、正極よりも負極の方が充電時の電極 の膨張が大きいために活物質が脱落しやすく、これによ り内部短絡を生じたためと思われる。また、正極側と負 30 電池を作製した。 極側とで平均孔径の等しい微多孔膜を用いた場合、サン プル1~サンプル5に比べて、サンプル7では低温特性 及びサイクル特性に劣り、サンプル8では不良率が高い 値を示した。

【0079】また、サンプル1~サンプル5の中でも、 サンプル3は最も優れた評価結果であった。このことか ら、正極側の微多孔膜としてポリエチレンを用い、負極*

- *側の微多孔膜としてポリプロピレンを用いることが好ま しいことがわかった。
- 【0080】〈実験2〉つぎに、セパレータが2層の微 多孔膜からなるとともに、正極側の微多孔膜の平均孔径 が負極側の当該微多孔膜の平均孔径より大である場合に おいて、好ましい平均孔径の比について検討した。

【0081】サンプル9~サンプル14

下記の表2に示すような平均孔径を有する微多孔膜をセ パレータの正極側として用い、負極側の微多孔膜の平均 孔径をAとし、正極側の微多孔膜の平均孔径をBとした ときに、平均孔径の比A/Bを表2に示すような値とし たこと以外は、サンプル1と同様にして非水電解質二次

【0082】以上のように作製したサンプル9~サンプ ル14について、実験1と同様にして、不良率、室温で の電池容量、低温特性及びサイクル特性の評価を行っ た。以上の評価結果を下記の表2に示す。

[0083]

【表2】

	正極側 平均孔径	負極側 平均孔径	平均 孔径比	正極側 セパレータ	負極側 セパレータ	不良率	室温 電池容量	-20℃ 電池容量	250サイクル 容量維持率
	(µm)	(µm)	A/B	材料	材料		(mAh)	(mAh)	(96)
サンブル9	0.12	0.1	1.2	PE	PE	1/100	1602	630	71
サンプル10		0.1	1.3	PE	PE	1/100	1600	645	72
サンブル11		0.1	7	PE	PE	1/100	1599	698	80
サンブル12		0.1	9	PE	PE	2/100	1601	705	82
サンブル13		0.1	10	PE	PE	3/100	1600	714	84
サンプル14	1.5	0.1	15	PE	PE	39/100	1600	786	88

【0084】表2から、平均孔径の比A/Bが1.2以 上10以下の範囲内にあるサンプル9~サンプル13 は、平均孔径の比A/Bが15であるサンプル14に比 べて、不良率がより良好な値を示すことがわかった。ま

を示すことから、平均孔径の比A/Bは1.3以上9以 下であることがより好ましいことがわかった。

【0085】〈実験3〉つぎに、セパレータが2層の微 多孔膜からなり、負極極側の微多孔膜の平均孔径が正極 た、サンプル10~サンプル12は、さらに良好な結果 50 側の当該微多孔膜の平均孔径より大であるとともに、正

極側の微多孔膜がポリプロピレンからなる場合について 検討した。

【0086】サンプル15及びサンプル16

セパレータを構成する2層の微多孔膜として、下記の表 3に示すような材料及び平均孔径を有するものを用いた こと以外は、サンプル1と同様にしてサンプル15及び サンプル16の非水電解質二次電池を作製した。

*【0087】以上のように作製したサンプル15及びサ ンプル16について、実験1と同様にして、不良率、室 温での電池容量、低温特性及びサイクル特性の評価を行 った。以上の評価結果を、サンプル6~サンプル8の結 果を併せて下記の表3に示す。

16

[8800]

【表3】

	正極倒 平均孔径 (μm)	負極倒 平均孔径 (μm)	平均 孔径比 A/B	正極側セパレータ材料	負極側 セパレータ 材料	不良率	室温 電池容量 (mAh)	—20℃ 電池容量 (mAh)	250サイクル 容量維持率 (%)
サンプル15		0.5	0.5	PP	PE	2/100	1600	615	78
サンブル16	0.1	0.5	0.5	PE	PP	2/100	1600	620	70
サンブル6	0.1	0.5	0.5	PE	PE	6/100	1600	530	62
サンブルフ	0.1	0.1	1	PE	PE	1/100	1599	550	59
サンブル8	0.5	0.5	1	PE	PE	14/100	1598	760	84

【0089】表3から、セパレータが2層の微多孔膜か らなり、負極極側の微多孔膜の平均孔径が正極側の当該 微多孔膜の平均孔径より大であるとともに、正極側の微 率、室温での電池容量、低温特性及びサイクル特性の何 れについても良好な値を示し、生産性及び電池特性に優 れることがわかった。

【0090】これに対して、正極側の微多孔膜がポリエ チレンからなるサンプル16はサイクル特性に劣ってい た。

【0091】また、正極側の微多孔膜及び負極側の微多 孔膜がポリエチレンからなるとともに、正極側の微多孔 膜の平均孔径が負極側の微多孔膜の平均孔径より小とさ れているサンプル6は、サンプル15に比べて電池の不 30 良率が高い値を示した。これは、正極よりも負極の方が 充電時の電極の膨張が大きいために活物質が脱落しやす く、これにより内部短絡を生じたためと思われる。ま た、正極側と負極側とで平均孔径の等しい微多孔膜を用 いた場合、サンプル15に比べて、サンプル7では低温 特性及びサイクル特性に劣り、サンプル8では不良率が※

※髙い値を示した。

【0092】〈実験4〉つぎに、セパレータが2層の微 多孔膜からなるとともに、負極極側の微多孔膜の平均孔 多孔膜がポリプロピレンからなるサンプル15は、不良 20 径が正極側の当該微多孔膜の平均孔径より大であるとと もに、正極側の微多孔膜がポリプロピレンからなる場合 において、好ましい平均孔径の比について検討した。

【0093】サンプル17~サンプル21

下記の表 4 に示すような平均孔径を有する微多孔膜をセ パレータの正極側として用い、負極側の微多孔膜の平均 孔径をCとし、正極側の微多孔膜の平均孔径をDとした ときに、平均孔径の比C/Dを表4に示すような値とし たこと以外は、サンプル1と同様にして非水電解質二次 電池を作製した。

【0094】以上のように作製したサンプル17~サン プル21について、実験1と同様にして、不良率、室温 での電池容量、低温特性及びサイクル特性の評価を行っ た。以上の評価結果を下記の表 4 に示す。

[0095]

【表 4 】

	正極倒	負極側	平均	正極側	負極側		室温	−20°C	250サイクル
1	平均孔径	平均孔径	孔径比	セパレータ	セパレータ	不良率	電池容量	電池容量	容量維持率
	(µm)	(µm)	A/B	材料	材料		(mAh)	(mAh)	(%)
サンブル17		0.12	0.83	PP	PE	0/100	1602	622	70
サンプル18		0.13	0.77	PP	PE	0/100	1602	637	73
サンブル19		0.9	0.11	PP	PE	3/100	1600	650	84
サンブル20	0.1	1	0.1	PP	PE	3/100	1601	661	85
サンブル21	0.1	1.5	0.067	PP	PE	13/100	1599	780	88

【0096】表4から、平均孔径の比C/Dが0.1以 上0.83以下の範囲内にあるサンプル17~サンプル 20は、平均孔径の比C/Dが0.067であるサンプ ル21に比べて、不良率がより良好な値を示すことがわ かった。また、不良率、室温での電池容量、低温特性及 びサイクル特性の何れについても、さらに良好な結果を

以下であることがより好ましいことがわかった。

[0097]

【発明の効果】以上の説明からも明らかなように、本発 明に係る非水電解質電池では、セパレータが2層の微多 孔膜からなるとともに、正極側の微多孔膜の平均孔径が 負極側の微多孔膜の平均孔径よりも大とされている。こ 得るためには、平均孔径の比C/Dは0.2以上0.8 50 れにより、負極及び正極から脱落した活物質が孔の中に

入り込むことに起因する内部短絡を防止することができる。したがって、本発明によれば、生産性の向上を実現 可能である。

【0098】また、本発明によれば、セパレータにおけるイオンの移動が円滑なものとなり、一般に導電性に劣る正極に非水電解質が充分に供給され、正極内でのイオン導電性を確保できる。したがって、本発明によれば、低温特性及びサイクル特性に優れた非水電解質電池を提供することが可能である。

【0099】また、本発明に係る非水電解質電池では、セパレータが2層の微多孔膜からなり、負極側の微多孔膜の平均孔径が正極側の微多孔膜の平均孔径よりも大とされるとともに、正極側の微多孔膜がポリプロピレンからなる。これにより、負極及び正極から脱落した活物質が孔の中に入り込むことに起因する内部短絡を防止することができる。したがって、本発明によれば、生産性の

向上を実現可能である。

【0100】また、セパレータの正極側の微多孔膜が、強度の強いポリプロピレンからなるため、充放電サイクルを繰り返しても、正極側のセパレータの孔径が維持され、正極表面に充分な量の電解液が供給され、正極内でのイオン導電性を確保できる。したがって、本発明によれば、サイクル特性に優れた非水電解質電池を提供することが可能である。

18

【図面の簡単な説明】

10 【図1】本発明を適用した非水電解質二次電池の一構成 例を示す縦断面図である。

【符号の説明】

1 電池缶、2 正極、3 負極、4 セパレータ、 5,6 絶縁板、7 電池蓋、8 安全弁装置、9 熱 感抵抗素子、10 封口ガスケット、11 センターピ ン、12 正極リード、13 負極リード

[図1]

フロントページの続き

(72)発明者 永峰 政幸

福島県安達郡本宮町字樋ノ口2番地 ソニ 一福島株式会社内 F ターム(参考) 5H021 AA06 CC04 CC08 EE04 HH03 HH10

> 5H029 AJ05 AJ06 AJ12 AJ14 AK03 AL01 AL02 AL06 AL07 AL08 AL12 AM02 AM03 AM04 AM05 AM07 AM16 BJ02 BJ14 DJ04 DJ12 DJ14 EJ12 HJ06 HJ12