(11) **EP 1 900 814 A1**

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: 19.03.2008 Bulletin 2008/12

(21) Application number: 06757198.4

(22) Date of filing: 09.06.2006

(51) Int Cl.:

C12N 15/09^(2006.01) A61P 31/00^(2006.01) A61K 39/395 (2006.01) C07K 16/00 (2006.01)

(86) International application number: PCT/JP2006/311575

(87) International publication number: WO 2006/132341 (14.12.2006 Gazette 2006/50)

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI
SK TR

(30) Priority: **10.06.2005 JP 2005171673 28.12.2005 JP 2005378639**

(71) Applicant: CHUGAI SEIYAKU KABUSHIKI KAISHA Tokyo, 115-8543 (JP)

(72) Inventors:

 IGAWA, Tomoyuki, CHUGAI SEIYAKU KABUSHIKI KAISHA Gotenba-shi, Shizuoka 4128513 (JP) TSUNODA, Hiroyuki, CHUGAI SEIYAKU KABUSHIKI KAISHA Gotenba-shi, Shizuoka4128513 (JP)

 KOBAYASHI, Takamitsu CHUGAI SEIYAKU K.K. Gotenba-shi, Shizuoka 4128513 (JP)

 KADONO, Shoujiro, CHUGAI SEIYAKU KABUSHIKI KAISHA Gotenba-shi, Shizuoka 4128513 (JP)

(74) Representative: Vossius & Partner Siebertstrasse 4 81675 München (DE)

(54) sc(Fv)2 SITE-DIRECTED MUTANT

(57) To solve the above-mentioned problems, the present inventors introduced site-specific mutations into sc(Fv)2 and examined the stabilizing effects on sc(Fv)2. As a result, they succeeded for the first time in significantly increasing the Tm value of sc(Fv)2 by amino acid

substitutions. Furthermore, they discovered that sc(Fv) 2 is stabilized by introducing site-specific mutations into sc(Fv)2.

Description

Technical Field

[0001] The present invention relates to site-specific mutants of sc(Fv)2, a minibody (low-molecular-weight antibody), and uses thereof.

Background Art

15

30

35

40

45

50

55

[0002] Developing and producing stable proteins with maintained functions and establishing their storage conditions are considered to be important in the formulation of biopharmaceuticals.

[0003] Proteins have different chemical properties from DNAs which handle genetic information, and their structures are flexible, which in other words means they are unstable. Even under physiological conditions, proteins are constantly in equilibrium between natural structure and disrupted structure (denatured structure).

[0004] Known pathways by which proteins generally degrade are: a degradation pathway accompanied by physical association of protein molecules such as formation of soluble multimers or production of precipitates/insoluble materials (Non-Patent Document 1); and a degradation pathway caused by chemical modifications through hydrolysis, deamidation reaction, methionine oxidation reaction, or such (Non-Patent Document 2). When developing proteins as pharmaceuticals, it is necessary to suppress both of these degradation pathways to a minimum and provide formulations in which the protein biological activity does not decrease during storage. Optimizing the pH of solutions, optimizing the type and concentration of buffers and salts, and optimizing the type and concentration of stabilizers are methods carried out for suppressing such degradation pathways to a minimum.

[0005] Known antibodies that can be used as pharmaceuticals are full-length antibodies, fragmented antibodies, minibodies, and such. It has been reported that a monomer-dimer equilibrium reaction takes place between two antibody molecules, and in antibody IgG molecules, monomers and dimers exist in a state of reversible equilibrium (Non-Patent Document 3). It is generally known that antibody molecules, including minibodies, readily aggregate and have very low stability (Non-Patent Document 4). When preparing antibody formulations, it is necessary to maintain antibodies in their monomeric state, which demonstrates activity in very high concentrations; therefore, formulating antibodies with secured stability has been considered a major challenge in developing antibodies as pharmaceuticals.

[0006] To develop protein pharmaceuticals having secured stability as pharmaceuticals, there are methods for increasing protein stability by optimizing formulation conditions such as those described above, and methods for enhancing the original stability of a protein by artificially introducing amino acid mutations to the primary sequence of a protein of interest. Various methods have been reported so far for improving the protein stability of a certain protein with known sequence by amino acid mutation (Non-Patent Documents 5, 6, and 7). For antibody molecules, sites (locations) of residues that strongly influence the stability in scFvs and stable amino acid residues for those locations have been reported from studies using scFvs which are single-chain antibodies of VH-VL (Non-Patent Documents 8, 9, 10, and 11). There are several reports that have actually improved the stability of scFv molecules by amino acid modification using these methods (Non-Patent Documents 12, 13, and 14).

[0007] Fab, Fv, scFv, sc(Fv)2, and such are known as antibody molecules with reduced molecular weights. Even for Fv and Fab which are fragmented antibody molecules from the same full-length IgG, Fab is known to have a different stability from Fv due to the presence of CH1 and CL. A similar situation holds for scFv: since CH1 and CL are absent in scFv, hydrophobic amino acids that are not exposed on the surface of Fab are exposed on the surface of scFv, causing its thermal stability to decrease; substitution of these residues by hydrophilic amino acids has been reported to improve stability in thermal acceleration assays (Non-Patent Document 7). Therefore, the sites (locations) of residues that influence stability and the stable residues are different in scFv and Fab, which are similar low-molecular-weight antibody molecules. Therefore, amino acid sites and amino acids affecting the stability of sc(Fv)2 may not necessarily match the amino acid sites and amino acids affecting the stability of scFvs that have been reported so far. To date, there are no reports on the sites (locations) of stability-affecting residues or stable residues in sc(Fv)2 molecules, and no investigation has been carried out so far for sc(Fv)2 to increase the stability of sc(Fv)2 by introducing site-specific amino acid mutations.

```
[Non-Patent Document 1] Int. J. Pharm., 2005, 289, 1-30.
```

[Non-Patent Document 2] Int. J. Pharm., 1999, 185, 129-188.

[Non-Patent Document 3] Biochemistry, 1999, 38, 13960-13967.

[Non-Patent Document 4] FEBS Letters, Volume 360, Issue 3, 1995, 247-250.

[Non-Patent Document 5] Current Opinion in Biotechnology, 2002, 13, 333-337.

[Non-Patent Document 6] J. Biotechnology, 2004, 113, 105-120.

[Non-Patent Document 7] Microbiol Mol Biol Rev., 2001, 65(1), 1-43.

[Non-Patent Document 8] J. Mol. Biol., 2003, 325, 531-553.

[Non-Patent Document 9] J. Mol. Biol., 2001, 305, 989-1010.

[Non-Patent Document 10] Methods, 2004, 184-199.

[Non-Patent Document 11] Protein Eng., 1997, 10(4), 435-44.

[Non-Patent Document 12] Biochemistry, 2003, 42, 1517-1528.

[Non-Patent Document 13] Int. J. Cancer, 2003, 107, 822-829.

[Non-Patent Document 14] Protein Engineering, 1997, 10(12), 1453-1459.

Disclosure of the Invention

5

20

30

35

40

45

50

55

Problems to be Solved by the Invention

[0008] The present invention was achieved in view of the above circumstances. The present invention is aimed to provide methods for stabilizing sc(Fv)2 or methods for suppressing aggregation of sc(Fv)2 molecules, which comprise the step of introducing site-specific mutations into sc(Fv)2; to provide sc(Fv)2s that have been stabilized by the introduction of site-specific mutations; to stabilize sc(Fv)2 by allocating specific amino acids to sites that affect the stability of sc(Fv)2.; to provide sc(Fv)2 with an increased Tm value; and to provide pharmaceutical compositions comprising stabilized sc(Fv)2, methods for producing the pharmaceutical compositions, and kits comprising the pharmaceutical compositions.

[Means for Solving the Problems]

[0009] To solve the above-mentioned problems, the present inventors introduced site-specific mutations into sc(Fv) 2 and examined the stabilizing effects on sc(Fv)2.

[0010] First, the present inventors measured the Tm values of humanized VB22B sc(Fv)2 site-specific mutants using Differential Scanning Calorimetry (DSC). As a result of carrying out amino acid modifications that increase the stability of hVB22B g-e sc(Fv)2, hVB22B u2-wz4 sc(Fv)2 whose Tm increased by 13.3 °C and hVB22B qwz5 whose Tm increased by 15.5 °C were obtained (Fig. 4). To date, there are no reports on the Tm value of sc(Fv)2 or on increasing the Tm value by modifying the amino acids of sc(Fv)2.

[0011] Next, thermal acceleration assays were performed on sc(Fv)2 site-specific mutants, and the stability of each sc(Fv)2 site-specific mutant was evaluated based on the temporal change in the ratio of residual monomers after thermal acceleration, which is calculated by measuring the monomer area by gel filtration chromatographic (SEC) analysis.

[0012] As a result, amino acid modifications that have stabilizing effects on sc(Fv)2 were discovered (Figs. 9-17 and 21-23).

[0013] Hence, through the present invention, the present inventors successfully increased the Tm of sc(Fv)2 by amino acid modification for the first time. Furthermore, the present inventors discovered that sc(Fv)2 is stabilized when site-specific mutations are introduced into sc(Fv)2, and thereby completed the present invention.

[0014] More specifically, the present invention provides the following:

- [1] a method for stabilizing an sc(Fv)2, wherein the method comprises the step of introducing a site-specific mutation into the sc(Fv)2;
- [2] a method for suppressing association between sc(Fv)2s, wherein the method comprises the step of introducing a site-specific mutation into the sc(Fv)2s;
- [3] a method for increasing the Tm value of an sc(Fv)2 by 10°C or more, wherein the method comprises the step of introducing a site-specific mutation into the sc(Fv)2:
- [4] the method of any one of [1] to [3], wherein the introduction of a site-specific mutation introduces a mutation to at least one amino acid selected from:
 - (a) the 48th amino acid in the heavy chain;
 - (b) the 65th amino acid in the heavy chain;
 - (c) the 7th amino acid in the light chain;
 - (d) the 8th amino acid in the light chain;
 - (e) the 36th amino acid in the light chain;
 - (f) the 43rd amino acid in the light chain;
 - (g) the 45th amino acid in the light chain;
 - (h) the 70th amino acid in the light chain;(i) the 81 st amino acid in the heavy chain;
 - (i) the 39th amino acid in the heavy chain; and
 - (k) the 38th amino acid in the light chain;

[5] the method of any one of [1] to [4], wherein the introduction of a site-specific mutation introduces at least one amino acid mutation selected from: (a) substitution of the 48th amino acid in the heavy chain to isoleucine; 5 (b) substitution of the 65th amino acid in the heavy chain to glycine; (c) substitution of the 7th amino acid in the light chain to serine; (d) substitution of the 8th amino acid in the light chain to proline; (e) substitution of the 36th amino acid in the light chain to phenylalanine; (f) substitution of the 43rd amino acid in the light chain to alanine; 10 (g) substitution of the 45th amino acid in the light chain to arginine; (h) substitution of the 70th amino acid in the light chain to aspartic acid; (i) substitution of the 81st amino acid in the heavy chain to glutamine; (j) substitution of the 39th amino acid in the heavy chain to glutamic acid or lysine; and (k) substitution of the 38th amino acid in the light chain to glutamic acid or lysine; 15 [6] a method for stabilizing an sc(Fv)2 by any one of the following methods: (a) a method for converting the 48th amino acid in the heavy chain to isoleucine; (b) a method for converting the 65th amino acid in the heavy chain to glycine; 20 (c) a method for converting the 7th amino acid in the light chain to serine; (d) a method for converting the 8th amino acid in the light chain to proline; (e) a method for converting the 36th amino acid in the light chain to phenylalanine; (f) a method for converting the 43rd amino acid in the light chain to alanine; (g) a method for converting the 45th amino acid in the light chain to arginine; 25 (h) a method for converting the 70th amino acid in the light chain to aspartic acid; (i) a method for converting the 81 st amino acid in the heavy chain to glutamine; (j) a method for converting the 39th amino acid in the heavy chain to glutamic acid or lysine; and (k) a method for converting the 38th amino acid in the light chain to glutamic acid or lysine; 30 [7] an sc(Fv)2 into which a mutation has been introduced to at least one amino acid selected from: (a) the 48th amino acid in the heavy chain; (b) the 65th amino acid in the heavy chain; (c) the 7th amino acid in the light chain; 35 (d) the 8th amino acid in the light chain; (e) the 36th amino acid in the light chain; (f) the 43rd amino acid in the light chain; (g) the 45th amino acid in the light chain; (h) the 70th amino acid in the light chain; 40 (i) the 81 st amino acid in the heavy chain; (j) the 39th amino acid in the heavy chain; and (k) the 38th amino acid in the light chain; [8] an sc(Fv)2 into which at least one amino acid mutation selected from the following (a) to (k) has been introduced: 45 (a) substitution of the 48th amino acid in the heavy chain to isoleucine; (b) substitution of the 65th amino acid in the heavy chain to glycine; (c) substitution of the 7th amino acid in the light chain to serine; (d) substitution of the 8th amino acid in the light chain to proline; 50 (e) substitution of the 36th amino acid in the light chain to phenylalanine; (f) substitution of the 43rd amino acid in the light chain to alanine; (g) substitution of the 45th amino acid in the light chain to arginine; (h) substitution of the 70th amino acid in the light chain to aspartic acid; (i) substitution of the 81 st amino acid in the heavy chain to glutamine; 55 (j) substitution of the 39th amino acid in the heavy chain to glutamic acid or lysine; and

[9] an sc(Fv)2 selected from:

(k) substitution of the 38th amino acid in the light chain to glutamic acid or lysine;

- (a) an sc(Fv)2 with isoleucine as the 48th amino acid in the heavy chain;
- (b) an sc(Fv)2 with glycine as the 65th amino acid in the heavy chain;
- (c) an sc(Fv)2 with serine as the 7th amino acid in the light chain;
- (d) an sc(Fv)2 with proline as the 8th amino acid in the light chain;
- (e) an sc(Fv)2 with phenylalanine as the 36th amino acid in the light chain;
- (f) an sc(Fv)2 with alanine as the 43rd amino acid in the light chain;
- (g) an sc(Fv)2 with arginine as the 45th amino acid in the light chain;
- (h) an sc(Fv)2 with aspartic acid as the 70th amino acid in the light chain;
- (i) an sc(Fv)2 with glutamine as the 81 st amino acid in the heavy chain;
- (j) a method for converting the 39th amino acid in the heavy chain to glutamic acid or lysine; and
- (k) a method for converting the 38th amino acid in the light chain to glutamic acid or lysine;

[10] an sc(Fv)2 whose Tm value is 55°C or higher;

- [11] an sc(Fv)2 whose Tm value has increased by 10°C or more by the introduction of a site-specific amino acid mutation, as compared with before the introduction;
- [12] a pharmaceutical composition comprising the sc(Fv)2 of any one of [7] to [11]; and
- [13] a method for producing the pharmaceutical composition of [12], wherein the method comprises the steps of:
 - (1) introducing the site-specific mutation of any one of [1] to [5] into the sc(Fv)2; and
 - (2) mixing with a pharmaceutically acceptable carrier.

Brief Description of the Drawings

[0015]

5

10

15

20

25

30

35

40

45

- Fig. 1 shows the result of evaluating the agonistic activity of hVB22B g-e sc(Fv)2 using BaF-human Mpl.
- Fig. 2 shows the result of evaluating the agonistic activity of hVB22B u2-wz4 sc(Fv)2 using BaF-human Mpl.
- Fig. 3 shows the result of evaluating the agonistic activity of hVB22B q-wz5 sc(Fv)2 using BaF-human MpI.
- Fig. 4 shows the Tm values for hVB22B g-e sc(Fv)2 and the site-specific mutants of this sc(Fv)2.
- Fig. 5 shows the change in the ratio of residual monomers, when lle on site 37 in the heavy chain of sc(Fv)2 was substituted to Val.
- Fig. 6 shows the change in the ratio of residual monomers when Pro on site 9 in the heavy chain of sc(Fv)2 was substituted to Ala.
- Fig. 7 shows the change in the ratio of residual monomers when Pro on site 9 in the heavy chain of sc(Fv)2 was substituted to Ser.
- Fig. 8 shows the change in the ratio of residual monomers when Leu on site 37 in the light chain of sc(Fv)2 was substituted to Gln.
- Fig. 9 shows the change in the ratio of residual monomers when Ala on site 8 in the light chain of sc(Fv)2 was substituted to Pro.
- Fig. 10 shows the change in the ratio of residual monomers when Val on site 65 in the heavy chain of sc(Fv)2 was substituted to Gly.
- Fig. 11 shows the change in the ratio of residual monomers, when Ser on site 43 in the light chain of sc(Fv)2 was substituted to Ala and Gln on site 45 in the light chain of sc(Fv)2 was substituted to Arg.
- Fig. 12 shows the change in the ratio of residual monomers when Tyr on site 36 in the light chain of sc(Fv)2 was substituted to Phe.
- Fig. 13 shows the change in the ratio of residual monomers when Ala on site 70 in the light chain of sc(Fv)2 was substituted to Asp.
- Fig. 14 shows the change in the ratio of residual monomers when Ala on site 7 in the light chain of sc(Fv)2 was substituted to Ser.
- Fig. 15 shows the change in the ratio of residual monomers when Gln on site 81 in the heavy chain of sc(Fv)2 was substituted to Glu.
 - Fig. 16 shows the change in the ratio of residual monomers when Arg on site 81 in the heavy chain of sc(Fv)2 was substituted to Glu.
 - Fig. 17 shows the change in the ratio of residual monomers when Met on site 48 in sc(Fv)2 was substituted to Ile.
 - Fig. 18 shows the processes for generating the sc(Fv)2 gene.
 - Fig. 19-A shows the VH amino acid sequences of sc(Fv)2 used in the Examples. The in the figure indicates that the amino acid sequence is the same as that of g-e.
 - Fig. 19-B shows continuation of the sequences in Fig. 19-A.

- Fig. 20-A shows the VL amino acid sequences of sc(Fv)2 used in the Examples. The in the figure indicates that the amino acid sequence is the same as that of g-e.
- Fig. 20-B shows continuation of the sequences in Fig. 20-A.
- Fig. 21 shows the results of gel filtration chromatography for u2-wz4, variant v1, and variant v3.
- Fig. 22 shows the results of DSC analysis for u2-wz4-purified peak 1, u2-wz4-purified peak 2, variant v1, and variant v3.
 - Fig. 23 shows the results of gel filtration chromatographic analysis in thermal acceleration tests for u2-wz4-purified peak 1, u2-wz4-purified peak 2, variant v1, and variant v3.

O Best Mode for Carrying Out the Invention

5

30

40

45

50

55

[0016] The present inventors discovered that the stability of sc(Fv)2 increases by introducing site-specific mutations. The present inventors also discovered that the stability of sc(Fv)2 increases by arranging specific amino acids at specific sites. The present invention is based on these findings.

15 **[0017]** The present invention relates to methods for stabilizing sc(Fv)2, which comprises the step of introducing site-specific mutations into sc(Fv)2.

[0018] In the methods of the present invention, "modifying" and "introducing mutations" into amino acid residues specifically refer to substituting the original amino acid residues (before modification) with other amino acid residues, deleting the original amino acid residues, adding new amino acid resides, and such, but preferably refer to substituting the original amino acid residues with other amino acid residues. The original amino acid sequences (before modification) as used in the present invention may be naturally derived sequences, or sequences to which amino acid substitutions, humanization, or such have already been performed. In the present description, "modifying" amino acid residues and "introducing mutations" of amino acid residues have the same meaning.

[0019] In the present invention, "introducing mutations" of amino acid residues can be carried out by modifying sc(Fv) 2-encoding DNAs.

[0020] In the present invention, when introducing mutations into the heavy chain (or light chain) of an sc(Fv)2, mutations may be introduced into both of the two heavy chains (or both of the two light chains) comprised in the sc(Fv)2, or mutations may be introduced into only one of the heavy chains (or light chains).

[0021] In the present invention, "modifying DNAs" means modifying DNAs according to amino acid residues introduced through "mutation introduction" in the present invention. More specifically, it refers to changing DNAs encoding the original amino acid residues into DNAs encoding amino acid residues introduced through modifications. Generally, it means performing gene manipulations or mutation treatments on original DNAs to insert, delete, or substitute at least one nucleotide to obtain codons encoding the amino acid residues of interest. In other words, codons encoding the original amino acid residues are substituted with codons encoding amino acid residues introduced through modifications. Such DNA modifications can be suitably carried out by those skilled in the art using known techniques such as site-specific mutagenesis or PCR mutagenesis.

[0022] In the present invention, the sites where the site-specific mutations are introduced are not particularly limited, and may be any site in sc(Fv)2, but are preferably any of the following sites:

- (a) the 48th amino acid in the heavy chain;
- (b) the 65th amino acid in the heavy chain;
- (c) the 7th amino acid in the light chain;
- (d) the 8th amino acid in the light chain;
- (e) the 36th amino acid in the light chain;
- (f) the 43rd amino acid in the light chain;
- (g) the 45th amino acid in the light chain;
- (h) the 70th amino acid in the light chain;
- (i) the 81 st amino acid in the heavy chain;
- (j) the 39th amino acid in the heavy chain; and
- (k) the 38th amino acid in the light chain.

[0023] The amino acids after the substitution are not particularly limited, and any amino acid substitution is acceptable, but preferred examples of amino acids after substitution include the following amino acids:

- (a) the 48th amino acid in the heavy chain: isoleucine;
- (b) the 65th amino acid in the heavy chain: glycine;
- (c) the 7th amino acid in the light chain: serine;
- (d) the 8th amino acid in the light chain: proline;

- (e) the 36th amino acid in the light chain: phenylalanine;
- (f) the 43rd amino acid in the light chain: alanine;

5

10

15

20

30

35

40

- (g) the 45th amino acid in the light chain: arginine;
- (h) the 70th amino acid in the light chain: aspartic acid;
- (i) the 81 st amino acid in the heavy chain: glutamine;
- (j) the 39th amino acid in the heavy chain: glutamic acid or lysine; and
- (k) the 38th amino acid in the light chain: glutamic acid or lysine.

[0024] Furthermore, the present invention relates to methods for stabilizing sc(Fv)2 by assigning specific amino acids to specific sites in sc(Fv)2. More specifically, it relates to methods for stabilizing sc(Fv)2 by any of the following methods:

- (a) a method for converting the 48th amino acid in the heavy chain to isoleucine;
- (b) a method for converting the 65th amino acid in the heavy chain to glycine;
- (c) a method for converting the 7th amino acid in the light chain to serine;
- (d) a method for converting the 8th amino acid in the light chain to proline;
- (e) a method for converting the 36th amino acid in the light chain to phenylalanine;
- (f) a method for converting the 43rd amino acid in the light chain to alanine;
- (g) a method for converting the 45th amino acid in the light chain to arginine;
- (h) a method for converting the 70th amino acid in the light chain to aspartic acid;
- (i) a method for converting the 81 st amino acid in the heavy chain to glutamine;
- (j) a method for converting the 39th amino acid in the heavy chain to glutamic acid or lysine; and
- (k) a method for converting the 38th amino acid in the light chain to glutamic acid or lysine.

[0025] In the present invention, sc(Fv)2 is an antibody in which two heavy chain variable regions ([VH]) and two light chain variable regions ([VL]) are linked using linkers or such to produce a single chain polypeptide (Hudson et al., J. Immunol. Methods 1999; 231:177-189). sc(Fv)2 can be produced, for example, by linking two scFvs (single chain Fvs) (Huston, J. S. et al., Proc. Natl. Acad. Sci. U.S.A. (1988) 85, 5879-5883; and Pluckthun "The Pharmacology of Monoclonal Antibodies" Vol.113 Rosenburg and Moore ed. Springer Verlag, New York, pp. 269-315, 1994) with a linker or such. Arbitrary peptide linkers that can be introduced by genetic engineering, or synthetic linkers, for example, those disclosed in Protein Engineering, 9(3), 299-305, 1996 can be used as linkers, but in the present invention, peptide linkers are preferable. The length of the peptide linkers is not particularly limited, and can be suitably selected according to the purpose by those skilled in the art; however, the length is generally 1 to 100 amino acids, preferably 5 to 30 amino acids, and particularly preferably 12 to 18 amino acids (for example, 15 amino acids).

[0026] The order of the two heavy chain variable regions and the two light chain variable regions that are linked is not particularly limited, and they may be placed in any order. Examples include the following arrangements:

```
[VH]-linker-[VL]-linker-[VH]-linker [VL]
[VL]-linker-[VH]-linker-[VL]
[VH]-linker-[VL]-linker-[VL]-linker-[VH]
[VH]-linker-[VH]-linker-[VL]-linker-[VH]
[VL]-linker-[VH]-linker-[VH]-linker-[VH]
```

[0027] In the present invention, sc(Fv)2 preferably has the [VH]-linker-[VL]-linker-[VH]-linker-[VL] arrangement.

45 [0028] Examples of amino acid sequences of the peptide linkers include the following sequences:

```
Ser
Gly-Ser
Gly-Gly-Ser
Ser-Gly-Gly
Ser-Gly-Gly
Gly-Gly-Gly-Ser (SEQ ID NO: 42)
Ser-Gly-Gly-Gly (SEQ ID NO: 43)
Gly-Gly-Gly-Gly-Ser (SEQ ID NO: 44)
Ser-Gly-Gly-Gly-Gly (SEQ ID NO: 45)

55
Gly-Gly-Gly-Gly-Gly-Ser (SEQ ID NO: 46)
Ser-Gly-Gly-Gly-Gly-Gly (SEQ ID NO: 47)
Gly-Gly-Gly-Gly-Gly-Gly-Gly-Ser (SEQ ID NO: 48)
Ser-Gly-Gly-Gly-Gly-Gly-Gly (SEQ ID NO: 49)
```

(Gly-Gly-Gly-Ser (SEQ ID NO: 44))n (Ser-Gly-Gly-Gly-Gly (SEQ ID NO: 45))n

where n is an integer of 1 or larger.

30

35

40

45

50

55

[0029] Synthetic linkers (chemical crosslinking agents) include crosslinking agents routinely used to crosslink peptides, for example, N-hydroxy succinimide (NHS), disuccinimidyl suberate (DSS), bis(sulfosuccinimidyl) suberate (BS3), dithio-bis(succinimidyl propionate) (DSP), dithiobis(sulfosuccinimidyl propionate) (DTSSP), ethylene glycol bis(succinimidyl succinate) (EGS), ethylene glycol bis(sulfosuccinimidyl succinate) (sulfo-EGS), disuccinimidyl tartrate (DST), disulfo-succinimidyl tartrate (sulfo-DST), bis[2-(succinimidoxycarbonyloxy)ethyl] sulfone (BSOCOES), and bis[2-(sulfosuccinimidoxycarbonyloxy)ethyl] sulfone (sulfo-BSOCOES). These crosslinking agents are commercially available.

[0030] In general, three linkers are required to link four antibody variable regions together. The linkers to be used may be of the same type or different types.

[0031] Amino acid sequences of the heavy chain variable regions or light chain variable regions may comprise substitutions, deletions, additions, and/or insertions. Moreover, so long as the heavy chain variable and light chain variable regions have, when assembled, the antigen-binding activity, a part may be deleted or other peptides may be added. Furthermore, the variable regions may also be humanized.

[0032] Methods for preparing polypeptides functionally equivalent to a certain polypeptide are well known to those skilled in the art, and include methods of introducing mutations into polypeptides. For example, those skilled in the art can prepare an antibody functionally equivalent to the antibodies of the present invention by introducing appropriate mutations into the antibody using site-directed mutagenesis (Hashimoto-Gotoh, T. et al. Gene 152, 271-275, (1995); Zoller, MJ, and Smith, M. Methods Enzymol. 100, 468-500, (1983); Kramer, W. et al., Nucleic Acids Res. 12, 9441-9456, (1984); Kramer, W. and Fritz HJ, Methods Enzymol. 154, 350-367, (1987); Kunkel, TA, Proc. Natl. Acad. Sci. USA. 82, 488-492, (1985); Kunkel, Methods Enzymol. 85, 2763-2766, (1988)), or such. Amino acid mutations may occur naturally. Thus, the present invention also comprises antibodies functionally equivalent to the antibodies of the present invention and comprising the amino acid sequences of these antibodies, in which one or more amino acids are mutated.

[0033] The number of amino acids that are mutated is not particularly limited. Generally, the number is 30 amino acids or less, preferably 15 amino acids or less, more preferably five amino acids or less (for example, three amino acids or less). The amino acid residues to be mutated are preferably mutated to other amino acids in which the properties of the amino acid side chains are maintained. Examples of amino acid side chain properties are: hydrophobic amino acids (A, I, L, M, F, P, W, Y, and V), hydrophilic amino acids (R, D, N, C, E, Q, G, H, K, S, and T), amino acids comprising the following side chains: aliphatic side chains (G, A, V, L, I, and P); hydroxyl-containing side chains (S, T, and Y); sulfur-containing side chains (C and M); carboxylic acid- and amide-containing side chains (D, N, E, and Q); basic side chains (R, K, and H); aromatic ring-containing side chains (H, F, Y, and W) (amino acids are represented by one-letter codes in parentheses). A polypeptide comprising a modified amino acid sequence, in which one or more amino acid residues is deleted, added, and/or replaced with other amino acids, is known to retain its original biological activity (Mark, D. F. et al., Proc. Natl. Acad. Sci. USA 81, 5662-5666 (1984); Zoller, M. J. & Smith, M. Nucleic Acids Research 10, 6487-6500 (1982); Wang, A. et al., Science 224, 1431-1433; Dalbadie-McFarland, G et al., Proc. Natl. Acad. Sci. USA 79, 6409-6413 (1982)). Furthermore, the amino acid sequences of antibody constant regions are known to those skilled in the art.

[0034] Chimeric antibodies are antibodies generated by combining sequences derived from different animals, for example, antibodies comprising variable regions of mouse antibody heavy and light chains and constant regions of human antibody heavy and light chains. Chimeric antibodies can be produced by known methods, for example, by linking DNAs encoding an antibody V region and DNAs encoding a human antibody C region, incorporating this into an expression vector, introducing the vector into a host, and then producing the antibody.

[0035] Humanized antibodies are also referred to as reshaped human antibodies. They are antibodies in which the complementarity determining regions (CDRs) of an antibody of a non-human mammal, for example a mouse, have been transferred to the CDRs of a human antibody, and general genetic recombination procedures for this are also known (see European Patent Application No. 125023 and WO 96/02576).

[0036] Specifically, DNA sequences designed to link mouse antibody CDRs to the framework region (FR) of a human antibody are synthesized by PCR, using as primers a number of oligonucleotides produced to comprise overlapping portions for the terminal regions of both the CDRs and FR (see methods described in WO 98/13388).

[0037] The human antibody framework regions that form favorable antigen-binding sites with the complementarity determining regions are selected as the framework regions to be linked via the CDRs. Amino acids in the framework region of the antibody variable region may be substituted as required such that the CDRs of the reshaped human antibody form suitable antigen-binding sites (Sato, K. et al., Cancer Res. (1993) 53, 851-856).

[0038] Human antibody constant regions are generally used for the constant regions of chimeric and humanized antibodies, and for example, Cγ1, Cγ2, Cγ3, and Cγ4 can be used for the H chain and Cκ and Cλ can be used for the L chain. [0039] Generally, chimeric antibodies comprise variable regions of an antibody derived from a non-human mammal and constant regions derived from a human antibody. On the other hand, humanized antibodies comprise complemen-

tarity determining regions of an antibody derived from a non-human animal, and framework regions and constant regions derived from a human antibody.

[0040] Amino acids in the variable regions (for example, FR) and constant regions can be, for example, substituted by other amino acids after producing the chimeric or humanized antibodies.

[0041] The origin of the variable regions in the chimeric antibodies or CDRs in the humanized antibodies is not particularly limited, and they may be derived from any animal. For example, sequences of mouse antibodies, rat antibodies, rabbit antibodies, camel antibodies, or such can be used.

10

30

35

40

45

50

55

[0042] sc(Fv)2 used in the present invention may be conjugated antibodies bound to various kinds of molecules such as polyethylene glycol (PEG), radioactive substances, and toxins. Such conjugated antibodies can be obtained by chemically modifying the obtained antibodies. Methods for modifying antibodies are already established in this field. These conjugated antibodies are also included in the sc(Fv)2 of the present invention.

[0043] sc(Fv)2 used in the present invention-may be bispecific antibodies (see for example, Journal of Immunology, 1994, 152, 5368-5374). Bispecific antibodies may recognize two different types of antigens or may recognize different epitopes on a same antigen.

[0044] sc(Fv)2 of the present invention may have a different protein, such as the Fc portion of IgG, fused to its N terminus or C terminus (Clinical Cancer Research, 2004, 10, 1274-1281). Proteins that are fused can be suitably selected by those skilled in the art.

[0045] sc(Fv)2 described above can be produced by methods known to those skilled in the art. Specifically, the DNA of an sc(Fv)2 of interest is incorporated into an expression vector. The DNA is incorporated into an expression vector such that it is expressed under the control of expression regulatory regions such as enhancers and promoters. Next, the antibody can be expressed by transforming host cells with the expression vector. Herein, suitable combinations of hosts and expression vectors can be used.

[0046] The vectors include, for example, M13 vectors, pUC vectors, pBR322, pBluescript, and pCR-Script. In addition to the above vectors, for example, pGEM-T, pDIRECT, and pT7 can also be used for the subcloning and excision of cDNAs.

[0047] In particular, when vectors are used to produce antibodies, expression vectors are useful. When an expression vector is expressed, for example, in *E. coli*, it should have the above characteristics in order to be amplified in *E. coli*. Additionally, when *E. coli*, such as JM109, DH5α, HB101, or XL1-Blue are used as the host, the vector must have a promoter that allows efficient expression of the desired gene in *E. coli*, for example, lacZ promoter (Ward et al. (1989) Nature 341:544-546; (1992) FASEB J. 6:2422-2427), araB promoter (Better et al. (1988) Science 240:1041-1043), or T7 promoter. Other examples of the vectors include pGEX-5X-1 (Pharmacia), "QIAexpress system" (QIAGEN), pEGFP, and pET (for which BL21, a strain expressing T7 RNA polymerase, is preferably used as the host).

[0048] Furthermore, the vectors may comprise a signal sequence for polypeptide secretion. When producing polypeptides into the periplasm of *E. coli*, the pelB signal sequence (Lei, S. P. et al. J. Bacteriol. 169:4379 (1987)) may be used as a signal sequence for polypeptide secretion. For example, calcium chloride methods or electroporation methods can be used to introduce vectors into host cells.

[0049] In addition to *E. coli*, examples of vectors for producing the polypeptides of the present invention include expression vectors derived from: mammals (e.g., pCDNA3 (Invitrogen), pEGF-BOS (Nucleic Acids Res. (1990) 18(17): 5322), pEF, pCDM8); insect cells (e.g., "Bac-to-BAC baculovirus expression system" (GIBCO-BRL), pBacPAK8); plants (e.g., pMH1, pMH2); animal viruses (e.g., pHSV, pMV, pAdexLcw); retroviruses (e.g., pZIPneo); yeasts (e.g., "Pichia Expression Kit" (Invitrogen), pNV11, SP-Q01); and *Bacillus subtilis* (e.g., pPL608, pKTH50).

[0050] In order to express proteins in animal cells such as CHO, COS, and NIH3T3 cells, the vector must have a promoter necessary for expression in such cells, for example, an SV40 promoter (Mulligan et al. (1979) Nature 277: 108), MMTV-LTR promoter, EF1α promoter (Mizushima et al. (1990) Nucleic Acids Res. 18:5322), CAG promoter (Gene (1991) 108:193), CMV promoter, etc.). It is further preferable that the vector also comprises a gene for selecting transformants (for example, a drug-resistance gene that allows selection by a drug such as neomycin and G418). Examples of vectors with such characteristics include pMAM, pDR2, pBK-RSV, pBK-CMV, pOPRSV, and pOP13.

[0051] In addition, to stably express a gene and amplify the gene copy number in cells, CHO cells that are defective in the nucleic acid synthesis pathway are introduced with a vector containing a DHFR gene (for example, pCHOI) to compensate for the defect, and the copy number is amplified using methotrexate (MTX). Alternatively, a COS cell, which carries an SV40 T antigen-expressing gene on its chromosome, can be transformed with a vector containing the SV40 replication origin (for example, pcD) for transient gene expression. The replication origins derived from polyoma virus, adenovirus, bovine papilloma virus (BPV), and such can be used. Furthermore, to increase the gene copy number in host cells, the expression vectors may comprise, as a selection marker, the aminoglycoside transferase (APH) gene, thymidine kinase (TK) gene, *E. coli* xanthine guanine phosphoribosyl transferase (Ecogpt) gene, dihydrofolate reductase (dhfr) gene, and such.

[0052] In the present invention, the term "stabilize" refers to suppressing aggregation caused by mutations. Suppression of aggregation does not have to be complete suppression of aggregation, and may simply be a decrease in the degree or percentage of aggregation. In the present invention, aggregation may be reversible or irreversible aggregation.

[0053] In the present invention, "aggregation" may be aggregation of sc(Fv)2 that takes place as time progresses, or it may be aggregation that takes place as sc(Fv)2 is produced in host cells or aggregation that takes place as sc(Fv)2 is secreted from host cells. Suppression of the decrease in sc(Fv)2 activity and suppression of the conversion to non-natural state are also considered to have the same meaning as the term "stabilization" of the present invention.

[0054] Whether stabilization has taken place or not can be measured by methods known to those skilled in the art. For example, whether aggregation was suppressed or not can be measured by methods described in the Examples. The degree of aggregation (percentage of aggregation) of antibody molecules can also be measured by methods known to those skilled in the art, such as the sedimentation equilibrium method (ultracentrifugation), osmotic pressure method, light scattering method, low-angle laser light scattering method, X-ray small angle scattering method, or gel filtration method.

10

30

35

40

45

50

55

[0055] Examples of a method for measuring the degree of aggregation (percentage of aggregation) of antibody molecules include methods using size exclusion chromatography (SEC), but it is not limited thereto.

[0056] The Tm value is known to serve as an indicator of protein stability in solution. Generally, the higher the temperature, the more unstable the proteins; therefore, as proteins are heated, degeneration and aggregation start to take place at a certain temperature, and proteins completely degenerate or aggregate at another temperature. The Tm value is the midpoint temperature in such a change, and it can generally be measured by optical analyses such as differential scanning calorimetry (DSC), change in temperature-dependent CD spectra, or such. When developing proteins as pharmaceuticals, it is known that highly stable formulations can be produced by selecting formulation conditions that give high Tm values (Pharm. Res. 1998 Feb; 15(2):200-8). Therefore, it is thought to facilitate the development into pharmaceutical formulations by creating mutants whose Tm value is increased by amino acid modification.

[0057] For such reasons, in the present invention, when the Tm value of an sc(Fv)2 molecule is increased, the sc(Fv) 2 can be considered to have been stabilized. Therefore, the present invention relates to methods for increasing the Tm value of an sc(Fv)2 by 10 °C or more, where the methods comprise the step of introducing site-specific mutations into the sc(Fv)2.

[0058] Whether the Tm value has increased or not can be examined by comparing the Tm value before amino acid modification with the Tm value after amino acid modification. The increase in the Tm value is not particularly limited so long as the Tm value after amino acid modification is higher than the Tm value before amino acid modification, but the increase is preferably 10°C or more, more preferably 13°C or more, and particularly preferably 15°C or more. The upper limit of the Tm value is not particularly limited, but it is generally 150°C or so.

[0059] Tm values can be measured by methods known to those skilled in the art, and for example, they can be measured by methods described in the Examples.

[0060] The number of amino acids that are modified to increase the Tm value is not particularly limited, and a single amino acid may be modified or multiple amino acids may be modified.

[0061] In the present invention, stabilization of sc(Fv)2 may be a temporary stabilization of sc(Fv)2 molecules, or it may be an eventual stabilization of sc(Fv)2 molecules after a certain period of time. More specifically, it may be a temporary maintenance of the activities as an sc(Fv)2 composition, or it may be an eventual maintenance of the sc(Fv)2 molecule activities after a certain period of time.

[0062] In the present invention, the activities are not particularly limited and may be any activities such as binding activity, neutralizing activity, cytotoxic activity, agonistic activity, antagonistic activity, enzyme activity, but binding activity or agonistic activity is preferred.

[0063] Agonistic activity is an activity that induces some kind of change in physiological activity after the binding of an antibody to an antigen, such as a receptor, which leads to signal transduction and such in cells. Without limitation, examples of the physiological activity include proliferation activity, survival activity, differentiation activity, transcriptional activity, membrane transport activity, binding activity, proteolytic activity, phosphorylation/dephosphorylation activity, redox activity, transfer activity, nucleolytic activity, dehydration activity, cell death-inducing activity, and apoptosis-inducing activity.

[0064] In the present invention, the antigens are not particularly limited, and may be any type of antigen. Examples of antigens include receptors, cancer antigens, MHC antigens, and differentiation antigens. Examples of receptors include receptors belonging to receptor families such as hematopoietic factor receptor family, cytokine receptor family, tyrosine kinase-type receptor family, TNF receptor family, G-protein coupled receptor family, GPI anchored-type receptor family, tyrosine phosphatase-type receptor family, adhesion factor family, and hormone receptor family.

[0065] Examples of specific receptors belonging to the above-mentioned receptor families include human and mouse erythropoietin (EPO) receptors, human and mouse granulocyte-colony stimulating factor (G-CSF) receptors, human and mouse thrombopoietin (TPO) receptors, human and mouse insulin receptors, human and mouse Flt-3 ligand receptors, human and mouse platelet-derived growth factor (PDGF) receptors, human and mouse interferon (IFN)- α or β receptors, human and mouse leptin receptors, human and mouse growth hormone (GH) receptors, human and mouse interleukin (IL)-10 receptors, human and mouse insulin-like growth factor (IGF)-I receptors, human and mouse leukemia inhibitory

factor (LIF) receptors, and human and mouse ciliary neurotrophic factor (CNTF) receptors.

[0066] Cancer antigens are antigens that are expressed as cells become malignant, and are also called tumor-specific antigens. Abnormal sugar chains that appear on cell surfaces or on protein molecules when cells become cancerous are also cancer antigens, and are specifically called sugar-chain cancer antigens. Examples of cancer antigens include CA19-9, CA15-3, and sialyl SSEA-1 (SLX).

[0067] MHC antigens are roughly classified into MHC class I antigens and MHC class II antigens. MHC class I antigens include HLA-A, -B, -C, -E, -F, -G, and -H, and MHC class II antigens include HLA-DR, -DQ, -and -DP.

[0068] Differentiation antigens include CD1, CD2, CD3, CD4, CD5, CD6, CD7, CD8, CD10, CD11a, CD11b, CD11c, CD13, CD14, CD15s, CD16, CD18, CD19, CD20, CD21, CD23, CD25, CD28, CD29, CD30, CD32, CD33, CD34, CD35, CD38, CD40, CD41a, CD41b, CD42a, CD42b, CD43, CD44, CD45, CD45RO, CD48, CD49a, CD49b, CD49c, CD49d, CD49e, CD49f, CD51, CD54, CD55, CD56, CD57, CD58, CD61, CD62E, CD62L, CD62P, CD64, CD69, CD71, CD73, CD95, CD102, CD106, CD122, CD126, CDw130.

[0069] Detection indicators used for measuring changes in activity can be used so long as quantitative and/or qualitative changes can be measured. For example, indicators for cell free systems (cell free assays), indicators for cell-based systems (cell-based assays), indicators for tissue-based systems, and indicators for biological systems can be used.

[0070] Enzymatic reactions, as well as quantitative and/or qualitative changes in proteins, DNAs, or RNAs can be used as indicators for cell free systems. For example, amino acid transfer reaction, sugar transfer reaction, dehydration reaction, dehydrogenation reaction, substrate cleaving-reaction, and such can be used for the enzymatic reactions. Protein phosphorylation, dephosphorylation, dimerization, multimerization, degradation, dissociation, and such, and DNA or RNA amplification, cleavage, and elongation can also be used. For example, phosphorylation of a protein present in the downstream of a signal transduction pathway can be used as a detection indicator.

[0071] Cell phenotypic changes, for example, quantitative and/or qualitative changes of produced substances, changes in proliferation activity, changes in cell number, changes in morphology, and changes in properties can be used as indicators for cell-based systems. Secretory proteins, surface antigens, intracellular proteins, mRNAs, and such can be used for produced substances. Formation of protrusions and/or change in the number of protrusions, change in flatness, change in the extent of elongation or in the horizontal to vertical ratio, change in cell size, change in internal structure, heteromorphy/homogeneity as a cell population, change in cell density, and such can be used for changes in morphology. Such changes in morphology can be confirmed through microscopic observations. Anchorage dependency, cytokine-dependent responsiveness, hormone dependence, drug resistance, cell motility, cell migration activity, pulsatility, change in intracellular substances, and such can be used for changes in properties. Cell motility includes cell infiltration activity and cell migration activity. Furthermore, for example, enzyme activity, mRNA level, amount of intracellular signaling molecules such as Ca²⁺ and cAMP, intracellular protein level, and such can be used for changes in intracellular substances. In the case of cell membrane receptors, changes in cell proliferation activity induced by receptor stimulation can be used as an indicator.

30

35

45

50

55

[0072] Functional changes based on the tissues used can be used as a detection indicator for tissue-based systems. Changes in tissue weight, hematologic changes such as change in the number of blood cells, changes in the protein level, enzyme activity, or amount of electrolytes, or changes in the circulatory system such as changes in blood pressure or heart rate can be used as indicators for biological systems.

[0073] Methods for measuring these detection indicators are not particularly limited, and absorbance, luminescence, coloring, fluorescence, radioactivity, fluorescence polarization, surface plasmon resonance signal, time-resolved fluorescence, mass, absorption spectrum, light scattering, fluorescence resonance energy transfer, and such can be used. These measurement methods are well known to those skilled in the art, and they can be suitably selected according to the purpose.

[0074] For example, absorption spectra can be measured with an ordinarily used photometer, plate reader, or such; luminescence can be measured with a luminometer or such; and fluorescence can be measured with a fluorometer or such. The mass can be measured using a mass spectrometer. Radioactivity can be measured using measuring instruments such as a gamma counter according to the type of radiation; fluorescence polarization can be measured using BEACON (TaKaRa); surface plasmon resonance signals can be measured using BIACORE; time resolved fluorescence, fluorescence resonance energy transfer, and such can be measured using ARVO or such. Flow cytometers and such can also be used for the measurements. Regarding these measurement methods, two or more detection indicators may be measured using one measurement method, and if they are simple, multiple detection indicators can be measured by performing two or more measurements simultaneously and/or sequentially. For example, fluorescence and fluorescence resonance energy transfer can be measured simultaneously on a fluorometer.

[0075] In the present invention, measurement of agonistic activity can be performed by methods known to those skilled in the art. For example, as described in the Examples, it is possible to determine by methods that measure the agonistic activity using cell proliferation as an indicator. More specifically, antibodies whose agonistic activity is to be measured are added to cells that show agonist-dependent proliferation and the cells are cultured. Then, the absorbance of a reagent such as WST-8, which exhibits a chromogenic reaction at a particular wavelength depending on the number of live cells

added, is measured, and agonistic activity can be measured using the obtained absorbance as an indicator.

[0076] Cells showing agonist-dependent proliferation can also be generated by methods known to those skilled in the art, and for example, when the antigen is a receptor emitting cell proliferation signal, cells expressing this receptor can be used. When the antigen is a receptor that does not emit any cell proliferation signal, a chimeric receptor comprising the intracellular region of a receptor emitting cell proliferation signal and the extracellular region of a receptor that does not emit any cell growth signal can be generated, and this chimeric receptor can be expressed in cells. Examples of a receptor that emits cell proliferation signal include the G-CSF receptor, mpl, neu, GM-CSF receptor, EPO receptor, ckit, and FLT-3. Examples of cells to express the receptors include BaF3, NFS60, FDCP-1, FDCP-2, CTLL-2, DA-1, and KT-3.

[0077] The present invention relates to sc(Fv)2 introduced with site-specific mutations.

[0078] In the present invention, the sites where the site-specific mutations are introduced are not particularly limited, and may be any site in sc(Fv)2, but preferably, they are any of the following sites:

- (a) the 48th amino acid in the heavy chain;
- (b) the 65th amino acid in the heavy chain;
- (c) the 7th amino acid in the light chain;
- (d) the 8th amino acid in the light chain;
- (e) the 36th amino acid in the light chain;
- (f) the 43rd amino acid in the light chain;
- (g) the 45th amino acid in the light chain;
- (h) the 70th amino acid in the light chain;
- (i) the 81 st amino acid in the heavy chain;
- (j) the 39th amino acid in the heavy chain; and
- (k) the 38th amino acid in the light chain.

[0079] The amino acids after substitution are not particularly limited, and substitution to any amino acid is acceptable, but preferred examples of amino acids after substitution are the following amino acids:

- (a) the 48th amino acid in the heavy chain: isoleucine;
- (b) the 65th amino acid in the heavy chain: glycine;
- (c) the 7th amino acid in the light chain: serine;
- (d) the 8th amino acid in the light chain: proline;
- (e) the 36th amino acid in the light chain: phenylalanine;
- (f) the 43rd amino acid in the light chain: alanine;
- (g) the 45th amino acid in the light chain: arginine;
- (h) the 70th amino acid in the light chain: aspartic acid;
- (i) the 81 st amino acid in the heavy chain: glutamine;
- (j) the 39th amino acid in the heavy chain: glutamic acid or lysine; and
- (k) the 38th amino acid in the light chain: glutamic acid or lysine.

[0080] Therefore, examples of a preferred embodiment of the sc(Fv)2 of the present invention include any of the following sc(Fv)2:

- (a) an sc(Fv)2 with the 48th amino acid in the heavy chain substituted;
- (b) an sc(Fv)2 with the 65th amino acid in the heavy chain substituted;
- (c) an sc(Fv)2 with the 7th amino acid in the light chain is substituted;
- (d) an sc(Fv)2 with the 8th amino acid in the light chain substituted;
- (e) an sc(Fv)2 with the 36th amino acid in the light chain substituted;
- (f) an sc(Fv)2 with the 43rd amino acid in the light chain substituted; (g) an sc(Fv)2 with the 45th amino acid in the light chain substituted;
- (h) an sc(Fv)2 with the 70th amino acid in the light chain substituted;
- (i) an sc(Fv)2 with the 81 st amino acid in the heavy chain substituted;
- (j) an sc(Fv)2 with the 39th amino acid in the heavy chain substituted; and
- (k) an sc(Fv)2 with the 38th amino acid in the light chain substituted.

[0081] Moreover, examples of a more preferred embodiment of the present invention include any of the following sc (Fv)2:

12

55

50

10

15

20

25

30

35

40

- (a) an sc(Fv)2 with the 48th amino acid in the heavy chain substituted to isoleucine;
- (b) an sc(Fv)2 with the 65th amino acid in the heavy chain substituted to glycine;
- (c) an sc(Fv)2 with the 7th amino acid in the light chain substituted to serine;
- (d) an sc(Fv)2 with the 8th amino acid in the light chain substituted to proline;
- (e) an sc(Fv)2 with the 36th amino acid in the light chain substituted to phenylalanine;
- (f) an sc(Fv)2 with the 43rd amino acid in the light chain substituted to alanine;
- (g) an sc(Fv)2 with the 45th amino acid in the light chain substituted to arginine;
- (h) an sc(Fv)2 with the 70th amino acid in the light chain substituted to aspartic acid;
- (i) an sc(Fv)2 with the 81 st amino acid in the heavy chain substituted to glutamine;
- (j) an sc(Fv)2 with the 39th amino acid in the heavy chain substituted to glutamic acid or lysine; and
- (k) an sc(Fv)2 with the 38th amino acid in the light chain substituted to glutamic acid or lysine.

[0082] Furthermore, the present invention relates to sc(Fv)2 in which specific amino acids are positioned at sites that affect the stability of sc(Fv)2. Specifically, the present invention relates to any of the following sc(Fv)2:

(a) an sc(Fv)2 with isoleucine as the 48th amino acid in the heavy chain;

5

10

15

20

25

30

35

40

45

50

55

- (a) an so(r v)2 with isoleucine as the 4oth animo acid in the heavy chain
- (b) an sc(Fv)2 with glycine as the 65th amino acid in the heavy chain;
- (c) an sc(Fv)2 with serine as the 7th amino acid in the light chain;
- (d) an sc(Fv)2 with proline as the 8th amino acid in the light chain;
- (e) an sc(Fv)2 with phenylalanine as the 36th amino acid in the light chain;
- (f) an sc(Fv)2 with alanine as the 43rd amino acid in the light chain;
- (g) an sc(Fv)2 with arginine as the 45th amino acid in the light chain;
- (h) an sc(Fv)2 with aspartic acid as the 70th amino acid in the light chain;
- (i) an sc(Fv)2 with glutamine as the 81 st amino acid in the heavy chain;
- (j) an sc(Fv)2 with glutamic acid or lysine as the 39th amino acid in the heavy chain; and
- (k) an sc(Fv)2 with glutamic acid or lysine as the 38th amino acid in the light chain.

[0083] The invention further relates to sc(Fv)2 that have high Tm values.

[0084] In the present invention, a high Tm value refers to a Tm value of 55°C or more, preferably 60°C or more, and more preferably 65°C or more.

[0085] Furthermore, the present invention provides sc(Fv)2, whose Tm value has been increased through introduction of site-specific amino acid mutations, by 10°C or more, preferably 13°C or more, and more preferably 15°C or more as compared with the Tm value before introduction of mutations.

[0086] The Tm values used in the present invention are Tm values measured under the same conditions as the conditions described in the Examples.

[0087] The sc(Fv)2 of the present invention are suitable for use as pharmaceutical compositions because they have excellent properties such as stability and suppressed aggregation. The sc(Fv)2 of the present invention may be any sc (Fv)2, and when they are used as pharmaceutical compositions, without being particularly limited thereto, they are preferably humanized, from the viewpoint of antigenicity against human.

[0088] The present invention relates to pharmaceutical compositions comprising an sc(Fv)2 of the present invention. Furthermore, the present invention relates to kits comprising such a pharmaceutical composition and a pharmaceutically acceptable carrier.

[0089] The pharmaceutical compositions and kits of the present invention may comprise pharmaceutically acceptable carriers. Examples of pharmaceutically acceptable carriers include sterilized water, physiological saline solution, stabilizers, excipients, antioxidants (such as ascorbic acid), buffers (such as phosphoric acid, citric acid, and other organic acids), antiseptics, surfactants (such as PEG and Tween), chelating agents (such as EDTA), and binders. They may also comprise other low-molecular-weight polypeptides; proteins such as serum albumin, gelatin, and immunoglobulins; amino acids such as glycine, glutamine, asparagine, arginine, and lysine; sugars and carbohydrates such as polysaccharides and monosaccharides; and sugar alcohols such as mannitol and sorbitol. When preparing aqueous solutions for injection, physiological saline solutions, and isotonic solutions comprising glucose or other adjuvants such as D-sorbitol, D-mannose, D-mannitol, and sodium chloride, may be used, and these can be used in combination with suitable solubilizers such as alcohols (for example, ethanol), polyalcohols (such as propylene glycols and PEGs), and non-ionic surfactants (for example, Polysorbate 80 and HCO-50).

[0090] If necessary, encapsulation into microcapsules (microcapsules made of hydroxymethylcellulose, gelatin, poly (methylmetacrylate), and such) or preparation into colloidal drug delivery systems (such as liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules) can be carried out (see for example, "Remington's Pharmaceutical Science 16th edition", Oslo Ed. (1980)). Methods for preparing the pharmaceutical agents as sustained-release pharmaceutical agents are also well known, and such methods may be applied to the present invention (Langer

et al., J. Biomed. Mater. Res. 1981, 15: 167-277; Langer, Chem. Tech. 1982, 12: 98-105; U.S. Patent No. 3,773,919; European Patent Application Publication (EP) No. 58,481; Sidman et al., Biopolymers 1983, 22: 547-556; EP 133,988). [0091] Administration to patients can be oral or parenteral administration, but is preferably parenteral administration. The form (dosage form) of the pharmaceutical composition of the present invention is not particularly limited, and examples of dosage form include injection, nasal administration, pulmonary administration, transdermal administration, freezedried, and solution; and a preferred example is a freeze-dried dosage form.

[0092] Freeze drying can be performed by methods well known to those skilled in the art (Pharm. Biotechnol., 2002, 13, 109-33; Int. J. Pharm. 2000, 203(1-2), 1-60; Pharm. Res. 1997, 14(8), 969-75). For example, a suitable amount of a solution is dispensed into a container such as a vial used for freeze-drying, and freeze drying is carried out in a freezer or freeze-dryer, or by immersion in a cooling medium such as acetone/dry ice, liquid nitrogen, or such.

[0093] Processes for making antibody formulations into high-concentration solution formulations can be carried out by methods well known to those skilled in the art. For example, as described in a Non-Patent Document (J. Pharm. Sc., 2004, 93(6), 1390-1402), a membrane concentration method using TFF membranes is usually used.

[0094] Examples of injection dosage forms include systemic or local administration by intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection, and such. Suitable methods of administration can be selected according to the age and symptoms of the patient. For example, the dosage for each administration can be selected within the range of 0.0001 mg to 1000 mg per kilogram of body weight. Alternatively, for example, the dosage can be selected within the range of 0.001 to 100000 mg/body for each patient. However, the present invention is not limited to these dosages, administration methods, and such.

[0095] The present invention relates to methods for producing pharmaceutical compositions comprising sc(Fv)2, which comprise the steps of: (1) introducing site-specific mutations into sc(Fv)2; and (2) mixing with pharmaceutically acceptable carriers.

[0096] Examples of pharmaceutically acceptable carriers include those described above.

[0097] The numbering of amino acid sites used in the present invention is based on the method by Kabat *et al.* (Kabat EA et al. 1991. Sequence of Proteins of Immunological Interest. NIH).

[0098] All prior art references cited herein are incorporated by reference into this description.

Examples

10

40

45

50

55

[0099] Hereinafter, the present invention will be specifically described with reference to the Examples, but it is not to be construed as being limited thereto.

[Example 1] Generation of humanized anti-human Mpl antibody sc(Fv)2

³⁵ **[0100]** The complementarity determining regions (hereinafter, CDRs) of the mouse anti-human Mpl antibody VB22B were grafted into a highly homologous human antibody framework region (hereinafter, FR) to generate a humanized VB22B variable region gene. Then, the H chain variable region and the L chain variable region were linked through a linker to prepare humanized VB22B sc(Fv)2 by the following method. The process for constructing the humanized VB22B sc(Fv)2 gene is shown in Fig. 18.

[0101] First, genes for the humanized VB22B variable regions were synthesized by assembly PCR. Specifically, synthetic oligo DNAs of about 50 bases were designed so that approximately 20 bases or so would hybridize, and these synthetic oligo DNAs were linked by PCR to prepare genes encoding each of the variable regions. Then, assembly PCR was used to site a nucleotide sequence encoding a linker comprising 15 amino acids (Gly₄Ser)₃ between the 3' end of the gene encoding the humanized VB22B H-chain variable region and the 5' end of the gene encoding the humanized VB22B L-chain variable region. In this construction process, the gene was designed such that the 5' end of the H chain comprises an EcoRI site and the nucleotide sequence encoding the 22nd and 23rd amino acids of the H chain is converted into a Pvull site. Furthermore, the single-chain humanized antibody gene was prepared so that it comprises a nucleotide sequence encoding a Notl site and if necessary, a FLAG sequence at the 3' end of the L chain. Next, a fragment to be inserted into the Pvull site of this single-chain humanized antibody gene was prepared. More specifically, it is a gene encoding a fragment that has a Pvull recognition sequence on both ends, and an N-terminus-deficient H chain variable region linked to the L chain variable region via a (Gly4Ser)3-comprising linker, which is further linked to a gene encoding the N-terminus of the H chain variable region and a nucleotide sequence encoding a (Gly4Ser)3-comprising linker. After digesting this gene fragment with Pvull, this was inserted into the Pvull site of the above-mentioned single-chain humanized antibody gene to produce a humanized antibody sc(Fv)2 gene. Site-specific amino acid mutations were introduced using a QuikChange Site-Directed Mutagenesis Kit (Stratagene) by following the manufacturer's protocol. Each of the completed sc(Fv)2 genes was cloned into the expression vector pCXND3. The VH amino acid sequence and VL amino acid sequence of sc(Fv)2 used in the present description are shown in Fig. 19-A, B and Fig. 20-A, B.

[0102] The expression vectors were introduced into CHO-DG44 cells by electroporation, and the cells were added to

CHO-S-SFMII medium (Invitrogen) containing 500 μg/mL Geneticin (Invitrogen) and selected to establish CHO expression cell lines. Culture supernatants of these stable expression cell lines were prepared and adsorbed onto an Anti-Flag M2 Affinity Gel (SIGMA-ALDRICH) column equilibrated with 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, and 0.05% Tween20, or in the case of non-Flag tagged sc(Fv)2, onto a column immobilized with the epitope MG10 (a fusion protein with GST of a 19 mer peptide comprising Gln213 to Ala 231 of human Mpl). Then, elution was carried out using 100 mM Glycine-HCl (pH 3.5). The eluted fractions were immediately neutralized with 1 M Tris-HCl (pH 8.0), and subjected-to gel filtration chromatography using a HiLoad 26/60 Superdex 200 pg (Amersham-Bioscience) column.

[Example 2] Evaluation of the TPO-like agonistic activity of the site-specific mutants of humanized VB22B sc(Fv)2

10

40

45

50

55

[0103] The TPO-like agonistic activity of hVB22B g-e sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 1, and the amino acid sequence is SEQ ID NO: 2), which is a humanized sc(Fv)2 of anti-Mpl antibody, and those of hVB22B u2-wz4 sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 3, and the amino acid sequence is SEQ ID NO: 4) and hVB22B q-wz5 sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 5, and the amino acid sequence is SEQ ID NO: 6), which are hVB22B g-e sc(Fv)2 into which site-directed mutations have been introduced, were evaluated using BaF-human Mpl cells which show TPO-dependent proliferation. Cells were washed twice with RPMI1640 containing 1% Fetal Bovine Serum (Invitrogen), then suspended at $4x \ 10^5$ cells/ml in RPMI 1640 containing 10% Fetal Bovine Serum, and this was aliquoted into 96-well plates at 60μ l/well. A 40- μ L aliquot of rhTPO (R&D) and purified samples prepared at various concentrations was added into each well, and these were incubated at $37\,^{\circ}$ C under 5% CO₂ for 24 hours. WST-8 reagent (Cell Count Reagent SF, Nacalai Tesque) was added at 10- μ L/well, and the absorbance at 450 nm (655 nm for the control) was measured using Benchmark Plus immediately after. Absorbance at 450 nm (655 nm for the control) was again measured after two hours of incubation. Since the WST-8 reagent gives a chromogenic reaction at 450 nm in accordance with the viable cell number, TPO-like agonistic activities were evaluated using the change in the absorbance during the two hours as an indicator.

[0104] As a result, as shown in Figs. 1, 2, and 3, site-specific mutants of humanized VB22B sc(Fv)2 showed an activity similar to hVB22B g-e sc(Fv)2 before introduction of the mutations and mouse VB22B sc(Fv)2.

[Example 3] Measurement of Tm values of the site-specific mutants of humanized VB22B sc(Fv)2

[0105] Tm values (denaturation midpoint temperatures) were measured using Differential Scanning Calorimetry (DSC) (N-DSC II, Applied Thermodynamics) for hVB22B g-e sc(Fv)2, as well as for hVB22B u2-wz4 sc(Fv)2 and hVB22B q-wz5 sc(Fv)2, which are hVB22B g-e sc(Fv)2 introduced with site-directed mutations. Each sc(Fv)2 was sufficiently dialyzed against 20 mM sodium citrate and 300 mM sodium chloride (pH 7.0), then the concentrations were adjusted to 44.4 μg/mL, denaturation curves were measured using DSC at a scanning speed of 1°C/min, and Tm values were calculated using the attached analytical software.

[0106] As a result, DSC curves as those shown in Fig. 4 were obtained, and the Tm values were 53.4°C for hVB22B g-e sc(Fv)2; 66.7°C for hVB22B u2wz4 sc(Fv)2; and 68.9°C for hVB22B qwz5 sc(Fv)2. By modifying the amino acids of hVB22B g-e sc(Fv)2 to improve its stability, hVB22B u2-wz4 sc(Fv)2 whose Tm value increased by 13.3°C and hVB22B q-wz5 sc(Fv)2 whose Tm value increased by 15.5°C were obtained. So far there are no reports on the Tm value of sc(Fv)2, or on increasing the Tm value through amino acid modification of sc(Fv)2. As indicated in Example 2, since the agonistic activity was the same before and after amino acid modification, the present inventors succeeded in considerably increasing the Tm value of sc(Fv)2 through amino acid modification without inhibiting antibody function.

[Example 4] Changes in the stability of sc(Fv)2 through introduction of site-specific mutations

[0107] Each sc(Fv)2 was sufficiently dialyzed against 20 mM sodium citrate and 300 mM sodium chloride (pH 7.5), then the concentrations were adjusted to 0.1 mg/mL, and thermal acceleration tests were carried out. The conditions for thermal acceleration are as shown on the horizontal axis of the following Figures. The monomer area was determined by gel filtration chromatography (SEC), and the stability of sc(Fv)2 was evaluated from the change in the ratio of residual monomers over time under each of the thermal acceleration conditions.

[0108] The ratio of residual monomers was calculated from "SEC monomer area of the thermal acceleration sample / SEC monomer area of the sample under initial conditions x 100". An increase of the ratio of residual monomers in the thermal acceleration test means improved stability.

[0109] The following amino acid modifications are those reported to have stabilizing effects for scFv, but nevertheless, similar amino acid modifications in sc(Fv)2 did not show any stabilizing effect and instead showed destabilization.

(1) H37 IIe→Val [hVB22B v-e sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 7, and the amino acid sequence is SEQ ID NO: 8) →hVB22B p-e sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 9 and the amino acid sequence is

SEQ ID NO: 10), Fig. 5]

5

10

15

20

25

30

35

40

45

50

55

The VH of humanized VB22B is classified into the VH1 subclass and H37 is positioned at the VH/VL interface which plays an important role in stability (J. Mol. Biol. 2001, 305, 989-1010). Since the canonical residue of H37 in the VH1 subclass is Val, modifying H37 from Ile to Val was considered to stabilize the VH/VL interface and improve stability. In fact, in a non-patent document (J. Immunol. Methods, 2003, 275, 31-40), stability is improved by modifying H37 from Met to the canonical residue Val. However, it was revealed that this leads to instead destabilization in sc (Fv)2 (Fig. 5).

(2) H9 Pro \rightarrow Ala [hVB22B q-wz sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 11, and the amino acid sequence is SEQ ID NO: 12) \rightarrow hVB22B q2-wz sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 13, and the amino acid sequence is SEQ ID NO: 14), Fig. 6]

The VH of humanized VB22B is classified into the VH1 subclass, and according to the structure classification described in a non-patent document (J. Mol. Biol. 2001, 309, 687-699), it is classified into type III. The canonical residue of H9 in VH1 is Ala, and according to a non-patent document (J. Mol. Biol. 2001, 309, 701-716), it is known that in all combinations, H9 is more stable as Ala or Gly than as Pro. Therefore, it was thought that stabilization would be accomplished by modifying the H9 of hVB22B q-wz sc(Fv)2 from Pro to Ala which is the canonical residue of type III. However, this was found to instead destabilize sc(Fv)2 (Fig. 6).

(3) H9 Pro \rightarrow Ser [hVB22B g-a sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 15, and the amino acid sequence is SEQ ID NO: 16) \rightarrow hVB22B h-a sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 17, and the amino acid sequence is SEQ ID NO: 18), Fig. 7]

A non-patent document (Protein Eng. 1997, 10(4), 435-444) has reported that in scFv, thermal stability increases by modifying hydrophobic amino acids at the V/C interface to hydrophilic amino acids. Since H9 is positioned at the V/C interface, substitution of the hydrophobic amino acid Pro to the hydrophilic amino acid Ser was thought to lead to stabilization. However, this was found to destabilize sc(Fv)2 instead (Fig. 7).

(4) L37 Leu→Gln [hVB22B q-wz3 sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 19, and the amino acid sequence is SEQ ID NO: 20) → hVB22B q-wz sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 11, and the amino acid sequence is SEQ ID NO: 12), Fig. 8]

It is indicated in a non-patent document (J. Mol. Biol. 2003, 325, 531-553) that a salt bridge in the VL domain is important for stability, and when L45 is Leu, hydrogen bonds between side chains are not formed and this leads to destabilization. Since L37 of hVB22B q-wz3 sc(Fv)2 is Leu which does not form hydrogen bonds, modification of L37 to Gln was thought to lead to formation of a hydrogen bond network and stabilization. However, this was found to destabilize sc(Fv)2 instead (Fig. 8).

Next, amino acid modifications that were reported to have stabilizing effects in scFv and also found to have stabilizing effects in sc(Fv)2 are described.

(5) L8 Ala→Pro [hVB22B p-z sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 21, and the amino acid sequence is SEQ ID NO: 22) → hVB22B p-wz sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 23, and the amino acid sequence is SEQ ID NO: 24), Fig. 9]

L8 is a site in the sequence that has a highly conserved cis-proline structure, and the presence of the cis-proline structure is known to contribute significantly to stability (J. Mol. Biol. 2001, 305, 989-1010). In fact, it is reported in a non-patent document (J. Mol. Biol. 1998, 283, 395-407) that when the L8 of scFv is Pro, this leads to stabilization. Since L8 was Ala in hVB22B p-z sc(Fv)2, when amino acid modification to Pro was performed, a stabilizing effect was observed (Fig. 9).

(6) H65 Val \rightarrow Gly [hVB22B g-a sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 15, and the amino acid sequence is SEQ ID NO: 16) \rightarrow hVB22B j-a sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 27, and the amino acid sequence is SEQ ID NO: 28), Fig. 10]

H65 is known to have a conserved positive φ angle because of the structure of the antibody, and it is reported that H65 is stable as Gly which can form a positive φ angle (J. Mol. Biol. 2001, 305, 989-1010). In fact, it is reported in a non-patent document (Biochemistry, 2003, 42(6), 1517-1528) that making H65 ofscFv from Ser to Gly leads to stabilization. Since H65 of hVB22B g-a sc(Fv)2 was Val, when this was modified to Gly, a stabilizing effect was observed (Fig. 10).

(7) L43 Ser→Ala, L45 Gln→Arg [hVB22B q-wz sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 11, and the amino acid sequence is SEQ ID NO: 12) → hVB22B q-wz5 sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 5, and the amino acid sequence is SEQ ID NO: 6), Fig. 11]

L45 is positioned at the core stabilized by charge interactions (charge core) present within the antibody, and it has been reported that this charge core influences the stability of scFv (J. Mol. Biol. 2003, 325, 531-553). However, there are no reports that directly showed the influence of two sites, L43 and L45, on stability. Therefore, when L43 and L45 of hVB22B q-wz sc(Fv)2 were modified to Ala and Arg, respectively, a stabilizing effect was observed (Fig. 11).

Furthermore, amino acid modifications whose stabilization effects have not been reported in scFv but were found

to have stabilizing effects in sc(Fv)2 are described.

5

10

15

20

25

30

35

40

45

50

55

(8) L36 Tyr \rightarrow Phe [hVB22B p-w sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 29, and the amino acid sequence is SEQ ID NO: 30) \rightarrow hVB22B p-wz sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 23, and the amino acid sequence is SEQ ID NO: 24), Fig. 12]

L36 is positioned at the VH/VL interface, but it is a site for which the influence on stability has not so far been examined even in scFv. In all subclasses, the canonical residue of L36 is Tyr. However, the hydrogen-bond partner for the hydroxyl group of Tyr at L36 is absent, and since hydroxyl groups in the inside which cannot form hydrogen bonds contribute to destabilization, amino acid modification from Tyr to Phe was carried out. Modification to Phe showed a stabilizing effect (Fig. 12).

(9) L70 Ala→Asp [hVB22B q-wz sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 11, and the amino acid sequence is SEQ ID NO: 12) → hVB22B q-wz2 sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 35, and the amino acid sequence is SEQ ID NO: 36), Fig. 13]

L70 is positioned on the surface of the molecule, but it is a site for which the influence on stability has not so far been examined even in scFv. Modification of L70 from Ala to Asp improved stability.

(10) L7 Ala→Ser [hVB22B i-a-sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 25, and the amino acid sequence is SEQ ID NO: 26) → hVB22B i-e sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 31, and the amino acid sequence is SEQ ID NO: 32), Fig. 14]

L7 is positioned on the surface of the molecule, but it is a site for which the influence on stability has not so far been examined even in scFv. Modification of L7 from Ala to Ser improved stability.

(11) H81 Gln \rightarrow Glu [hVB22B i-a sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 25, and the amino acid sequence is SEQ ID NO: 26) \rightarrow hVB22B g-a sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 15, and the amino acid sequence is SEQ ID NO: 16), Fig. 15] or H81 Arg \rightarrow Glu [hVB22B u2-wz4 sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 3, and the amino acid sequence is SEQ ID NO: 4) \rightarrow hVB22B q-wz4 sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 33, and the amino acid sequence is SEQ ID NO: 34), Fig. 16]

H81 is an amino acid exposed on the surface, and so far, its influence on stability has not been reported even in scFv. It has been reported in a non-patent document (J. Mol. Biol. 2003, 325, 531-553) that the VH3 subclass shows higher stability compared to the VH1 subclass. It has also been reported in a non-patent document (Biochemistry, 2003, 42, 1517-1528) that, in an examination using scFv, stability is improved by modifying the amino acid so that it becomes a canonical residue of the VH3 subclass, and the canonical residue of H81 in the VH3 subclass is Gln. However, in sc(Fv)2, modification of H81 from Gln, which is a canonical residue in the VH3 subclass, to Glu improved stability.

(12) H48 Met \rightarrow Ile [hVB22B p-wz sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 23, and the amino acid sequence is SEQ ID NO: 24) \rightarrow hVB22B q-wz sc(Fv)2 (the nucleotide sequence is SEQ ID NO: 11, and the amino acid sequence is SEQ ID NO: 12), Fig. 17]

There are no reports so far on the influence of H48 on stability even in scFv. The VH1 subclass canonical residue is Met, but stability was improved by modifying H48 from Met to Ile (Fig. 17).

[0110] From the above results, it was found that amino acid modifications reported to improve stability in scFv do not necessarily have stabilizing effects in sc(Fv)2 (the mutants of (1)-(4)). This was thought so because the overall three dimensional structures of scFv and sc(Fv)2 are widely different, and the sequence sites that can contribute to stabilization are different in scFv and sc(Fv)2. From these modifications, the present inventors discovered sequence sites that can increase the stability in sc(Fv)2, and stable sequences (the mutants of(5)-(7)). Furthermore, the effects of amino acid modification in sc(Fv)2 at sites for which the influence on stability had not so far been reported in scFv were examined. As a result, sequence sites that improve stability were newly discovered (the mutants of (8)-(12)).

[Example 5] Generation of sc(Fv)2 with modified VH/VL interface

[0111] Gln on site 39 of VH (site 39 in the amino acid sequence of SEQ ID NO: 289 of WO2005/56604) and Gln on site 38 of VL (site 43 in the amino acid sequence of SEQ ID NO: 291 of WO2005/56604), which are amino acids forming the VH/VL interface of hVB22B u2-wz4 sc(Fv)2 (hereinafter, denoted as u2-wz4; the nucleotide sequence is SEQ ID NO: 3, and the amino acid sequence is SEQ ID NO: 4) used in Example 4, were modified as follows. u2-wz4 is linked in the order of [VH1]-linker-[VL2]-linker-[VH3]-linker-[VL4] with an amino acid linker sequence (GlyGlyGlyGlySer)x3 (SEQ ID NO: 37), and is transcribed and translated from the nucleotide sequence of SEQ ID NO: 3. First, the hVB22B u2-wz4(v1) sc(Fv)2 gene (hereinafter denoted as v1; the nucleotide sequence is SEQ ID NO: 38, and the amino acid sequence is SEQ ID NO: 39) was produced with Gln on site 39 of VH1 (genetic codon: CAG) modified to Glu (genetic codon: GAG), Gln on site 38 of VL2 (genetic codon: CAG) modified to Glu (genetic codon: CAG) modified to Lys (genetic codon: AAG), and Gln on site 38 of VL4 (genetic codon: CAG) modified to Lys (genetic codon: AAG). Furthermore, the hVB22B u2-wz4(v3) sc(Fv)2 gene (hereinafter denoted as v3; the nu-

cleotide sequence is SEQ ID NO: 40, and the amino acid sequence is SEQ ID NO: 41) was produced with Gln on site 39 of VH1 (genetic codon: CAG) modified to Glu (genetic codon: GAG), Gln on site 38 of VL2 (genetic codon: CAG) modified to Lys (genetic codon: AAG), Gln on site 39 ofVH3 (genetic codon: CAG) modified to Lys (genetic codon: AAG), and Gln on site 38 of VL4 (genetic codon: CAG) modified to Glu (genetic codon: GAG). Gene modification involved introducing point mutations using a QuikChange Site-Directed Mutagenesis Kit (STRATAGENE) by following the manufacturer's protocol. After confirming the nucleotide sequences of each of the genes, the DNA fragments were cloned into the expression vector pCXND3 to construct expression vectors, and stable expression cell lines were generated by introducing the genes into CHO-DG44 cells. Specifically, a mixture of the expression vector (20 μ g) and 0.75 mL of CHO-DG44 cells suspended in PBS (1 x 10⁷ cells/mL) was cooled on ice for ten minutes and transferred to a cuvette, then a pulse was applied at 1.5 kV and a capacitance of 25 μ FD using Gene Pulser Xcell (BioRad). After a recovery period of ten minutes at room temperature, cells subjected to electroporation treatment were added into CHO-S-SFMII medium (Invitrogen) containing 500 μ g/mL Geneticin (Invitrogen) and selected. A v1-producing CHO cell line and a v3-producing CHO cell line were established.

[0112] Since the VH/VL interface-modified sc(Fv)2s do not have an added Flag tag, purification from the culture supernatant was carried out using an MG10-GST fusion protein. MG10 (Gln213 to Ala231 of the amino acid sequence of human MpI) is an epitope recognized by VB22Bsc(Fv)2. The MG10-GST fusion protein was purified using Glutathione Sepharose 4B (Amersham Biosciences) according to the manufacturer's protocol. Further, the purified MG10-GST fusion protein was immobilized onto HiTrap NHS-activated HP (Amersham Biosciences) according to the manufacturer's protocol to prepare an affinity column. The culture supernatant of the v1-expressing CHO cell line or v3-expressing CHO cell line was applied to the MG10-GST fusion protein-immobilized column to adsorb v1 or v3, which were then eluted using 100 mM Glycine-HCI (pH 3.5), 0.01% Tween 80. The eluted fractions were immediately neutralized with 1 M Tris-HCI (pH7.4), and the monomeric molecules were purified by gel filtration chromatography using HiLoad 16/60 Superdex 200 pg (Amersham Biosciences). 20 mM citrate buffer (pH7.5) with 300 mM NaCl and 0.01% Tween 80 was used as a buffer for the gel filtration chromatography. The results of gel filtration chromatography shown in Fig. 21 revealed that dimers and larger aggregates in the culture supernatant decreased for variants v1 and v3, and the proportion of monomers increased from 59% for u2-wz4 before modification to 89% for v1 and 77% for v3. It is speculated that modification of amino acids at the VH/VL interface inhibited unfavorable associations through charge repulsion and promoted favorable association in variants v1 and v3. Accordingly, efficient expression of monomeric molecules was successfully accomplished by this association regulation.

[Example 6] Evaluation of the stability of VH/VL interface-modified sc(Fv)2

[0113] To evaluate the stability of u2-wz4-purified peak 1, u2-wz4-purified peak 2, variant v1, and variant v3, the denaturation midpoint temperature (Tm value) was measured using differential scanning calorimetry under the following conditions:

DSC: N-DSCII (Applied Thermodynamics)

Solution conditions: 20 mM sodium citrate, 300 mM NaCl, pH7.0

Protein concentration: 0.1 mg/mL Scanning speed: 1°C/minute

10

30

35

40

45

50

55

[0114] The results of each DSC measurement are shown in Fig. 22. The Tm values for u2-wz4-purified peak 2 and variant v1 were nearly the same as the unmodified form, and their stabilities were found to be the same. Between u2-wz4-purified peak 1 and variant v3, variant v3 showed a slightly lower stability. It has been reported that through regulation of interface by methods using the knobs-into-hole technique, for example, in the heterologous association of IgG CH3 domains, the Tm value for the unmodified CH3 domain was 80.4 °C, whereas the Tm value for the modified CH3 domain was 69.4 °C, thus the Tm value significantly decreased and stability decreased. In contrast, in the present invention, it was confirmed that aggregation can be regulated without decreasing stability.

[0115] Next, stability was evaluated by thermal acceleration tests under the following conditions for u2-wz4-purified peak 1 and u2-wz4-purified peak 2, as well as for the VH/VL interface-modified variants v1 and v3.

<Thermal acceleration conditions>

[0116] Solution conditions: 20 mM sodium citrate, pH 6.0

Protein concentration: 0.25 mg/mL

Acceleration conditions: 40°C - 6 days, 12 days

[0117] The thermal acceleration samples were analyzed by gel filtration chromatography and cation exchange chromatography under the following conditions.

[0118] As shown in Fig. 23, the results of gel filtration chromatography analysis confirmed that the ratio of residual monomers is nearly the same for u2-wz4-purified peak 2 and variant v1, and the stability against aggregation was nearly the same. The ratio of residual monomers was also nearly the same for u2-wz4-purified peak 1 and variant v3, and the stability against aggregation was nearly the same for both conformational isomers.

[0119] For VH/VL-interface regulation for obtaining a single chain antibody having the conformation of interest, a method which regulates the conformation of bispecific diabodies using the knobs-into-holes technique (Protein Sci. 1997 Apr; 6(4):781-8, Remodeling domain interfaces to enhance heterodimer formation, Zhu Z, Presta LG, Zapata G, Carter P) is known. It was reported that this method increased the percentage of formation of the heterodimeric conformation of interest from 72% to 92% by modifying amino acids at a total of four sites per VH/VL interface. In contrast, the present invention succeeded in obtaining the conformation of interest at a percentage of 100%, without lowering the thermal stability or stability of conformational isomers, by modifying amino acids at four sites.

Industrial Applicability

[0120] By introducing site-specific mutations into sc(Fv)2 or by positioning specific amino acids at specific sites, the aggregation reaction of sc(Fv)2 was suppressed, and it became possible to keep sc(Fv)2 in their monomeric state. To develop antibodies as pharmaceuticals, it is necessary to stably maintain each antibody molecule and to suppress association reactions during storage of formulation to a minimum. Since introduction of the site-specific mutations of the present invention can stabilize sc(Fv)2 in the production storage stage and suppress aggregation reactions, it is considered to be very useful when producing minibody formulations.

[0121] In pharmaceutical compositions comprising sc(Fv)2 that are stabilized by the methods of the present invention, since degeneration and association of antibody molecules are suppressed, the decrease in activity due to aggregation is suppressed compared to conventional sc(Fv)2 formulations; thus, these pharmaceutical compositions are expected to maintain potent activity.

SEQUENCE LISTING

5	<110> CHUGAI SEIYAKU KABUSHIKI KAISHA	
10	<120> sc(Fv)2 SITE-DIRECTED MUTANT	
	<130> C1-A0510Y1P	
15	<150> JP 2005-171673	
	<151> 2005-06-10	
	<150> JP 2005-378639	
20	<151> 2005-12-28	
	<160> 49	
25	<170> PatentIn version 3.3	
	<210> 1	
30	<211> 1572	
	<212> DNA	
	<213> Artificial	
35		
	<220>	
	<223> an artificially synthesized nucleotide sequence	
40	<400> 1	
		60
45	gtgcagctgg tgcagtctgg acctgaggtg aagaagcctg gggcctcagt gaaggtctcc 1	20
	tgcaaggott otggatacao ottoaccaao tootggatga actgggtgag gcagaggoot 1	80
50	ggaaagggtc ttgagtgggt tggacggatt tatcctggag atggagaaac tatctacaat 2	40
	gggaaattca gggtcagagt cacgattacc gcggacgaat ccacgagcac agcctacatg 3	00
55		

5	gagctgagca	gcctgagatc	tgaggacacg	gccgtgtatt	actgtgcgag	aggctatgat	360
	gattactcgt	ttgcttactg	gggccaggga	accacggtca	ccgtctcttc	aggtggtggt	420
10	ggatccggag	gtggtggatc	gggtggtgga	ggatcggata	ttgtgatgac	tcagtctgca	480
	ctctccctgc	ccgtcacccc	tggagagccg	gcctccatct	cctgcaggtc	tagtaagagt	540
15	ctcctgcata	gtaatggcaa	cacttacttg	tattggtacc	tgcagaagcc	agggcagtct	600
20	ccacagetcc	tgatctatcg	gatgtccaac	cttgcctcag	gggtccctga	caggttcagt	660
	ggcagtggat	caggcacagc	ttttacactg	aaaatcagca	gagtggaggc	tgaggatgtt	720
25	ggggtttatt	actgcatgca	acatatagaa	tatcctttta	cgttcggcca	agggaccaaa	780
	ctggaaatca	aaggaggtgg	tggatcgggt	ggtggtggtt	cgggaggcgg	tggatcgcag	840
30	gtgcagctgg	tgcagtctgg	acctgaggtg	aagaagootg	gggcctcagt	gaaggtctcc	900
05	tgcaaggctt	ctggatacac	cttcaccaac	tcctggatga	actgggtgag	gcagaggcct	960
35	ggaaagggtc	ttgagtgggt	tggacggatt	tatcctggag	atggagaaac	tatctacaat	1020
40	gggaaattca	gggtcagagt	cacgattacc	gcggacgaat	ccacgagcac	agcctacatg	1080
	gagctgagca	gcctgagatc	tgaggacacg	gccgtgtatt	actgtgcgag	aggctatgat	1140
45	gattactcgt	ttgcttactg	gggccaggga	accacggtca	ccgtctcttc	aggtggtggt	1200
	ggatccggag	gtggtggatc	gggtggtgga	ggatcggata	ttgtgatgac	tcagtctgca	1260
50	ctctccctgc	ccgtcacccc	tggagagccg	gcctccatct	cctgcaggtc	tagtaagagt	1320
<i>55</i>	ctcctgcata	gtaatggcaa	cacttacttg	tattggtacc	tgcagaagcc	agggcagtct	1380

5	ccacagetee tgatetateg gatgtecaac ettgeeteag gggteeetga caggtteagt	1440
	ggcagtggat caggcacagc ttttacactg aaaatcagca gagtggaggc tgaggatgtt 1	1500
10	ggggtttatt actgcatgca acatatagaa tatootttta ogttoggcca agggaccaaa 1	1560
	ctggaaatca aa 1	572
15		
	<210> 2	
20	<211> 524	
	<212> PRT <213> Artificial	
<i>25</i>	<220>	
	<pre><223> an artificially synthesized peptide sequence</pre>	
	<400> 2	
30	Met Asp Trp Thr Trp Arg Phe Leu Phe Val Val Aia Ala Aia Thr Gly	
	1 5 10 15	
35	Val Gin Ser Gin Val Gin Leu Val Gin Ser Giy Pro Giu Val Lys Lys	
	20 25 30	
40	Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe	
	35 40 45	
	Thr Asn Ser Trp Met Asn Trp Val Arg Gln Arg Pro Gly Lys Gly Leu	
45	50 55 60	
	Giu Trp Val Gly Arg lie Tyr Pro Gly Asp Gly Glu Thr lie Tyr Asn	
50	65 70 75 80	
	Gly Lys Phe Arg Val Arg Val Thr IIe Thr Ala Asp Glu Ser Thr Ser	
	85 90 95	
55		

5	Thr	Ala	Tyr	Met 100	Glu	Leu	Ser	Ser	Leu 105	Arg	Ser	Glu	Asp	110	Ala	Val
10	Tyr	Tyr	Cys 115	Ala	Arg	Gly	Tyr	Asp 120	Asp	Tyr	Ser	Phe	Ala 125	Tyr	Trp	Gly
15	Gin	Gly 130	Thr	Thr	Val	Thr	Va I 135	Ser	Ser	Gly	Gly	Gly 140	Gly	Ser	Gly	Gly
20	Gly 145	Gly	Ser	Gly	Gly	Gly 150	Gly	Ser	Asp	He	Va I 155	Met	Thr	GI n	Ser	Ala 160
25	Leu	Ser	Leu	Pro	Val 165	Thr	Pro	Gly	Glu	Pro 170	Ala	Ser	lle	Ser	Cys 175	Arg
25	Ser	Ser	Lys	Ser 180	Leu	Leu	His	Ser	Asn 185	Gly	Asn	Thr	Tyr	Leu 190	Tyr	Trp
30	Tyr	Leu	Gln 195	Lys	Pro	Gly	Gln	Ser 200	Pro	Gin	Leu	Leu	lle 205	Tyr	Arg	Met
35	Ser	Asn 210	Leu	Ala	Ser	Gly	Va I 215	Pro	Asp	Arg	Phe	Ser 220	Gly	Ser	Gly	Ser
40	Gly 225	Thr	Ala	Phe	Thr	Leu 230	Lys	lle	Ser	Arg	Va I 235	Glu	Ala	Glu	Asp	Va I 240
45	Gly	Val	Tyr	Tyr	Cys 245	Met	Gln	His	He	G I u 250	Tyr	Pro	Phe	Thr	Phe 255	Gly
50	Gin	Gly	Thr	Lys 260	Leu	Glu	lle	Lys	Gly 265	Gly	Gly	Gly	Ser	Gly 270	Gly	Gly
	Gly	Ser	Gly 275	Gly	Gly	Gly	Ser	GIn 280	Val	GIn	Leu	Val	GIn 285	Ser	Gly	Pro
55																

5	Glu	290		Lys	Pro	Gly	A1a 295		Val	Lys	Val	300		Lys	Ala	Ser
10	Gly 305		Thr	Phe	Thr	Asn 310		Trp	Met	Asn	Trp 315	Val	Arg	GIn	Arg	Pro 320
15	Gly	Lys	Gly	Leu	G I u 325	Trp	Val	Gly	Arg	11e 330	Tyr	Pro	Gly	Asp	Gly 335	Glu
20	Thr	lle	Tyr	Asn 340	Gly	Lys	Phe	Arg	Va I 345	Arg	Val	Thr	lle	Thr 350	Ala	Asp
25	Glu	Ser	Thr 355	Ser	Thr	Ala	Tyr	Met 360		Leu	Ser	Ser	Leu 365	Arg	Ser	Glu
25	Asp	Thr 370	Ala	Val	Tyr	Tyr	Cys 375	Ala	Arg	Gly	Tyr	A sp 380	Asp	Tyr	Ser	Phe
30	Ala 385	Tyr	Trp	Gly	Gin	Gly 390	Thr	Thr	Val	Thr	Va I 395	Ser	Ser	Gly	Gly	Gly 400
35	Gly	Ser	Gly	Gly	Gly 405	Gly	Ser	Gly	Gly	Gly 410	Gly	Ser	Asp	He	Va I 415	Met
40	Thr	GIn	Ser	Ala 420	Leu	Ser	Leu	Pro	Va I 425	Thr	Pro	Gly	Glu	Pro 430	Ala	Ser
45	lle	Ser	Cys 435	Arg	Ser	Ser	Lys		Leu	Leu	His	Ser	Asn 445	Gly	Asn	Thr
50	Tyr	Leu 450	Tyr	Trp	Tyr	Leu	GIn 455	Lys	Pro	Gly	Gin	Ser 460	Pro	Gln	Leu	Leu
	11e 465	Tyr	Arg	Met	Ser	Asn 470	Leu	Ala	Ser	Gly	Va I 475	Pro	Asp	Arg	Phe	Ser 480
55																

5	Gly Ser Gly Ser Gly Thr Ala Phe Thr Leu Lys IIe Ser Arg Val Glu 485 490 495	
10	Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His Ile Glu Tyr Pro 500 505 510	
15	Phe Thr Phe Gly Gln Gly Thr Lys Leu Glu IIe Lys 515 520	
20	<210> 3 <211> 1572 <212> DNA <213> Artificial	
25	<pre><220> <223> an artificially synthesized nucleotide sequence</pre>	
30	<400> 3 atggactgga cctggaggtt cctctttgtg gtggcagcag ctacaggtgt ccagtcccag	60
35	gtgcagctgg tgcagtctgg acctgaggtg aagaagcctg gggcctcagt gaaggtctcc	120
40	tgcaaggctt ctggatacac cttcaccaac tcctggatga actgggtgag gcagaggcct ggaaagggtc ttgagtggat tggacggatt tatcctggag atggagaaac tatctacaat	180 240
45	gggaaattca gggtcagagt cacgattacc gcggacgaat ccacgagcac agcctacatg	300
		360
50		420 480
55	22 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	.50

540	tagtaagagt	cctgcaggtc	gcctccatct	tggagagccg	ccgtcacccc	ctctccctgc
600	agggcagtct	tgcagaagcc	tattggttcc	cacttacttg	gtaatggcaa	ctcctgcata
660	caggttcagt	gggtccctga	cttgcctcag	gatgtccaac	tgatctatcg	ccacagetee
720	tgaggatgtt	gagtggaggc	aaaatcagca	ttttacactg	caggcacaga	ggcagtggat
780	agggaccaaa	cgttcggcca	tatccttta	acatatagaa	actgcatgca	ggggtttatt
840	tggatcgcag	cgggaggcgg	ggtggtggtt	tggatcgggt	aaggaggtgg	ctggaaatca
900	gaaggtctcc	gggcctcagt	aagaagcctg	acctgaggtg	tgcagtctgg	gtgcagctgg
960	gcagaggcct	actgggtgag	tcctggatga	cttcaccaac	ctggatacac	tgcaaggctt
1020	tatctacaat	atggagaaac	tatcctggag	tggacggatt	ttgagtggat	ggaaagggtc
1080	agcctacatg	ccacgagcac	gcggacgaat	cacgattacc	gggtcagagt	gggaaattca
1140	aggctatgat	actgtgcgag	gccgtgtatt	tgaggacacg	gcctgagatc	caactgagca
1200	aggtggtggt	ccgtctcttc	accacggtca	gggccaggga	ttgcttactg	gattactcgt
1260	tcagtctcca	ttgtgatgac	ggatoggata	gggtggtgga	gtggtggatc	ggatccggag
1320	tagtaagagt	cctgcaggtc	gcctccatct	tggagagccg	ccgtcacccc	ctctccctgc
1380	agggcagtct	tgcagaagcc	tattggttcc	cacttacttg	gtaatggcaa	ctcctgcata
1440	caggttcagt	gggtccctga	cttgcctcag	gatgtccaac	tgatctatcg	ccacagetee
1500	tgaggatgtt	gagtggaggc	aaaatcagca	ttttacactg	caggcacaga	ggcagtggat
1560	agggaccaaa	cgttcggcca	tatcctttta	acatatagaa	actgcatgca	ggggtttatt

	ctggaaatca aa	1572
5		
10	<210> 4 <211> 524 <212> PRT <213> Artificial	
15	<220> <223> an artificially synthesized peptide sequence	
20	<pre>Met Asp Trp Thr Trp Arg Phe Leu Phe Val Val Ala Ala Ala Thr Gly 1 5 10 15</pre>	
25	Val Gin Ser Gin Val Gin Leu Val Gin Ser Gly Pro Glu Val Lys Lys 20 25 30	
30	Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe 35 40 45	
35	Thr Asn Ser Trp Met Asn Trp Val Arg Gln Arg Pro Gly Lys Gly Leu 50 55 60	
40	Glu Trp ile Gly Arg lle Tyr Pro Gly Asp Gly Glu Thr ile Tyr Asn 65 70 75 80	
45	Gly Lys Phe Arg Val Arg Val Thr IIe Thr Ala Asp Glu Ser Thr Ser 85 90 95	
	Thr Ala Tyr Met Gin Leu Ser Ser Leu Arg Ser Giu Asp Thr Ala Val	
50	Tyr Tyr Cys Ala Arg Gly Tyr Asp Asp Tyr Ser Phe Ala Tyr Trp Gly 115 120 125	

5	Gln	130	Thr	Ihr	Val	Ihr	Va I 135	Ser	Ser	Gly	Gly	140	ыу	Ser	GIY	ыу
10	Gly 145	Gly	Ser	Gly	Gly	Gly 150	Gly	Ser	Asp	lle	Va l 155	Met	Thr	GIn	Ser	Pro 160
	Leu	Ser	Leu	Pro	Va I 165	Thr	Pro	Gly	Glu	Pro 170	Ala	Ser	lle	Ser	Cys 175	Arg
15	Ser	Ser	Lys	Ser 180	Leu	Leu	His	Ser	Asn 185	Gly	Asn	Thr	Tyr	Leu 190	Tyr	Trp
20	Phe	Leu	GIn 195	Lys	Pro	Gly	Gln	Ser 200	Pro	Gln	Leu	Leu	lle 205	Tyr	Arg	Met
25	Ser	Asn 210	Leu	Ala	Ser	Gly	Va I 215	Pro	Asp	Arg	Phe	Ser 220	Gly	Ser	Gly	Ser
30	Gly 225	Thr	Asp	Phe	Thr	Leu 230	Lys	He	Ser	Arg	Va I 235	Glu	Ala	Glu	Asp	Va I 240
35	Gly	Val	Tyr	Tyr	Cys 245	Met	Gln	His	He	GIu 250	Tyr	Pro	Phe	Thr	Phe 255	Gly
40	Gin	Gly	Thr	Lys 260	Leu	Glu	lle	Lys	Gly 265	Gly	Gly	Gly	Ser	Gly 270	Gly	Gly
45	Gly	Ser	Gly 275	Gly	Gly	Gly	Ser	GIn 280		Gin	Leu	Val	G n 285	Ser	Gly	Pro
40	Glu	Val 290	Lys	Lys	Pro	Gly	Ala 295	Ser	Val	Lys	Val	Ser 300	Cys	Lys	Ala	Ser
50	Gly 305	Tyr	Thr	Phe	Thr	Asn 310	Ser	Trp	Met	Asn	Trp 315	Val	Arg	Gln	Arg	Pro 320
55																

5	Gly	Lys	Gly	Leu	G1u 325	Trp	lle	G∣y	Arg	330		Pro	Gly	Asp	Gly 335	Glu
10	Thr	lle	Tyr	Asn 340	Gly	Lys	Phe	Arg	Va I 345	Arg	Val	Thr	lle	Thr 350	Ala	Asp
	Glu	Ser	Thr 355		Thr	Ala	Tyr	Met 360	Gln	Leu	Ser	Ser	Leu 365	Arg	Ser	Glu
15	Asp	Thr 370	Ala	Val	Tyr	Tyr	Cys 375	Ala	Arg	Gly	Tyr	Asp 380	Asp	Tyr	Ser	Phe
20	A1a 385	Tyr	Trp	Gly	Gln	Gly 390	Thr	Thr	Val	Thr	Va l 395	Ser	Ser	Gly	Gly	Gly 400
25	Gly	Ser	Gly	Gly	G y 405	Gly	Ser	Gly	Gly	Gly 410	Gly	Ser	Asp	He	Va I 415	Met
30	Thr	GIn	Ser	Pro 420	Leu	Ser	Leu	Pro	Va I 425	Thr	Pro	Gly	Glu	Pro 430	Ala	Ser
35	lle	Ser	Cys 435	Arg	Ser	Ser	Lys	Ser 440	Leu	Leu	His	Ser	Asn 445	Gly	Asn	Thr
40	Tyr	Leu 450	Tyr	Trp	Phe	Leu	GIn 455	Lys	Pro	Gly	GIn	Ser 460	Pro	Gln	Leu	Leu
45	11e 465	Tyr	Arg	Met	Ser	Asn 470	Leu	Ala	Ser	Gly	Va I 475	Pro	Asp	Arg	Phe	Ser 480
	Gly	Ser	Gly	Ser	Gly 485	Thr	Asp	Phe	Thr	Leu 490	Lys	He	Ser		Va l 495	Glu
50	Ala	Glu	Asp	Va i 500	Gly	Val	Tyr	Tyr	Cys 505	Met	Gln	His	lie	Glu 510	Tyr	Pro
55																

	Phe Thr Phe Gly Gln Gly Thr Lys Leu Glu lle Lys	
5	515 520	
	<210> 5	
10	<211> 1572	
	<212> DNA	
	<213> Artificial	
15		
	<220>	
	<223> an artificially synthesized nucleotide sequence	
00		
20	<400> 5	
	atggactgga cctggaggtt cctctttgtg gtggcagcag ctacaggtgt ccagtcccag	60
25	gtgcagctgg tgcagtctgg acctgaggtg aagaagcctg gggcctcagt gaaggtctcc	120
		455
	tgcaaggctt ctggatacac cttcaccaac tcctggatga actgggtgag gcagaggcct	180
30		040
	ggaaagggto ttgagtggat tggacggatt tatoctggag atggagaaac tatotacaat	240
	gggaaattca gggtcagagt cacgattacc gcggacgaat ccacgagcac agcctacatg	300
25	gggadalloa gggloagagl oaogallaoo goggaogaal ooaogagoao agootaoalg	000
35	gagotgagoa gootgagato tgaggacaog googtgtatt actgtgogag aggotatgat	360
	Prioritation Processing and Priority and Pri	
	gattactcgt ttgcttactg gggccaggga accacggtca ccgtctcttc aggtggtggt	420
40		
	ggatccggag gtggtggatc gggtggtgga ggatcggata ttgtgatgac tcagtctcca	480
45	ctctccctgc ccgtcacccc tggagagccg gcctccatct cctgcaggtc tagtaagagt	540
	ctcctgcata gtaatggcaa cacttacttg tattggttcc agcagaagcc agggcaggct	600
50		
50	ccacggetee tgatetateg gatgtecaae ettgeeteag gggteeetga caggtteagt	660
	ggcagtggat caggcacagc ttttacactg aaaatcagca gagtggaggc tgaggatgtt	720
55		

5	ggggtttatt	actgcatgca	acatatagaa	tatccttta	cgttcggcca	agggaccaaa	780
	ctggaaatca	aaggaggtgg	tggatcgggt	ggtggtggtt	cgggaggcgg	tggatcgcag	840
10	gtgcagctgg	tgcagtctgg	acctgaggtg	aagaagcctg	gggcctcagt	gaaggtctcc	900
45	tgcaaggctt	ctggatacac	cttcaccaac	tcctggatga	actgggtgag	gcagaggcct	960
15	ggaaagggtc	ttgagtggat	tggacggatt	tatcctggag	atggagaaac	tatctacaat	1020
20	gggaaattca	gggtcagagt	cacgattacc	gcggacgaat	ccacgagcac	agcctacatg	1080
	gagctgagca	gcctgagatc	tgaggacacg	gccgtgtatt	actgtgcgag	aggctatgat	1140
25	gattactcgt	ttgcttactg	gggccaggga	accacggtca	ccgtctcttc	aggtggtggt	1200
	ggatccggag	gtggtggatc	gggtggtgga	ggatcggata	ttgtgatgac	tcagtctcca	1260
30	ctctccctgc	ccgtcacccc	tggagagccg	gcctccatct	cctgcaggtc	tagtaagagt	1320
0.5	ctcctgcata	gtaatggcaa	cacttacttg	tattggttcc	agcagaagcc	agggcaggct	1380
35	ccacggctcc	tgatctatcg	gatgtccaac	cttgcctcag	gggtccctga	caggttcagt	1440
40	ggcagtggat	caggcacagc	ttttacactg	aaaatcagca	gagtggaggc	tgaggatgtt	1500
	ggggtttatt	actgcatgca	acatatagaa	tatccttta	cgttcggcca	agggaccaaa	1560
45	ctggaaatca	aa					1572

50

<210> 6

⟨211⟩ 524

<212> PRT

<213> Artificial

5	<220)>														
	<223	3> :	an ar	tifi	icia	llys	yntl	nesia	zed p	pept	ide :	seque	ence			
	<400	>	6													
10	Met	Asp	Trp	Thr	Trp	Arg	Phe	Leu	Phe	Va l	Val	Ala	Ala	Ala	Thr	Gly
	1				5					10					15	
15	Val	Gln	Ser	GIn	Val	Gln	Leu	Val	Gln	Ser	Gly	Pro	Glu	Val	Lys	Lys
				20					25					30		
	Pro	Gly	Ala	Ser	Val	Lys	Va۱	Ser	Cys	Lys	Ala	Ser	Gly	Tyr	Thr	Phe
20			35					40					45			
	Thr	Asn	Ser	Trp	Met	Asn	Trp	Val	Arg	Gln	Arg	Pro	Gly	Lys	Gly	Leu
25		50					55					60				
	Glu	Trp	He	Gly	Arg	He	Tyr	Pro	Gly	Asp	Gly	Glu	Thr	He	Tyr	Asn
20	65					70					75					80
30																
	Gly	Lys	Phe	Arg	Vai	Arg	Val	Thr	He	Thr	Ala	Asp	Glu	Ser	Thr	Ser
					85					90					95	
35																
	Thr	Ala	Tyr	Met	Glu	Leu	Ser	Ser		Arg	Ser	Glu	Asp		Ala	Val
				100					105					110		
40														_	_	
	Tyr	Tyr	Cys	Ala	Arg	Gly	Tyr		Asp	Tyr	Ser	Phe		Tyr	Trp	Gly
			115					120					125			
								_	_							
45	Gin		Thr	Thr	Val	Thr		Ser	Ser	Gly	Gly		Gly	Ser	Gly	Gly
		130					135					140				
	0/-	٥.	C	01	01	0.1	01	C	A		Ve I	Mark	Tt	C! =	C	D
50		Gly	Ser	Gly	GIY		GIY	Ser	Asp	116		Met	Inr	GIN	Ser	
	145					150					155					160
	٠	C	ا	D	Val	The	D.c.s	C.L.	CI	D	A 1 =	0	11-	C =	0	A
55	Leu	ser	Leu	רוט	vai	t i Ir	רוט	G I Y	GIU	rr u	на	ser	116	Ser	O y S	MIR
JJ																

					165					170					175	
5	Ser	Ser	Lys	Ser 180	Leu	Leu	His	Ser	Asn 185	Gly	Asn	Thr	Tyr	Leu 190	Tyr	Trp
10	Phe	Gln	GIn 195	Lys	Pro	Gly	Gin	Ala 200	Pro	Arg	Leu	Leu	11e 205	Tyr	Arg	Met
15	Ser	Asn 210	Leu	Ala	Ser	Gly	Va I 215	Pro	Asp	Arg	Phe	Ser 220	Gly	Ser	Gly	Ser
20	Gly 225	Thr	Ala	Phe	Thr	Leu 230	Lys	lle	Ser	Arg	Va I 235	Glu	Ala	Glu	Asp	Va I 240
25	Gly	Val	Tyr	Tyr	Cys 245	Met	Gln	His	He	G I u 250	Tyr	Pro	Phe	Thr	Phe 255	Gly
30	Gin	Gly	Thr	Lys 260	Leu	Glu	lie	Lys	Gly 265	Gly	Gly	Gly	Ser	Gly 270	Gly	Gly
35	Gly	Ser	Gly 275	Gly	Gly	Gly	Ser	GIn 280	Val	GIn	Leu	Val	GIn 285	Ser	Gly	Pro
	Glu	Va I 290	Lys	Lys	Pro	Gly	Ala 295	Ser	Val	Lys	Val	Ser 300	Cys	Lys	Ala	Ser
40	Gly 305	Tyr	Thr	Phe	Thr	Asn 310	Ser	Trp	Met	Asn	Trp 315	Val	Arg	Gln	Arg	Pro 320
45	Gly	Lys	Gly	Leu	G u 325	Trp	lle	Gly	Arg	lle 330	Tyr	Pro	Gly	Asp	Gly 335	Glu
50	Thr	lle	Tyr	Asn 340	Gly	Lys	Phe	Arg	Va I 345	Arg	Val	Thr	lle	Thr 350	Ala	Asp
55	Glu	Ser	Thr	Ser	Thr	Ala	Tyr	Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu

			355					360					365			
5	Asp	Thr 370	Ala	Val	Tyr	Tyr	Cys 375	Ala	Arg	Gly	Tyr	Asp 380	Asp	Tyr	Ser	Phe
10	Ala 385	Tyr	Trp	Gly	Gin	Gly 390	Thr	Thr	Val	Thr	Va I 395	Ser	Ser	Gly	Gly	Gly 400
15	Gly	Ser	Gly	Gly	Gly 405	Gly	Ser	Gly	Gly	Gly 410	Gly	Ser	Asp	lle	Va I 415	Met
20	Thr	Gin	Ser	Pro 420	Leu	Ser	Leu	Pro	Va I 425	Thr	Pro	Gly	Glu	Pro 430	Ala	Ser
25	lle	Ser	Cys 435	Arg	Ser	Ser	Lys	Ser 440	Leu	Leu	His	Ser	Asn 445	Gly	Asn	Thr
30	Tyr	Leu 450	Tyr	Trp	Phe	GIn	GIn 455	Lys	Pro	Gly	GIn	Ala 460	Pro	Arg	Leu	Leu
35	11e 465	Tyr	Arg	Met	Ser	Asn 470	Leu	Ala	Ser	Gly	Va I 475	Pro	Asp	Arg	Phe	Ser 480
	Gly	Ser	Gly	Ser	Gly 485	Thr	Ala	Phe	Thr	Leu 490	Lys	lle	Ser	Arg	Va I 495	Glu
40	Ala	Glu	Asp	Va I 500	Gly	Val	Tyr	Tyr	Cys 505	Met	GIn	His	lle	Glu 510	Tyr	Pro
45	Phe		Phe 515	Gly	Gin	Gly	Thr	Lys 520	Leu	Glu	lle	Lys				
50	<210 <211 <212	> 1	572 NA													
55			-													

(040)			•	•		•	- 1
<213>	Ar	t١	Ť	1	c	ıа	ıl

_	

<220>

<400> 7

10			
15			
?0			
?5			
3 <i>0</i>			
35			
10			
15			

 $\langle 223
angle$ an artificially synthesized nucleotide sequence

atggactgga cctggaggtt cctctttgtg gtggcagcag ctacaggtgt ccagtccag 60 gtgcagctgg tgcagtctgg acctgaggtg aagaagcctg gggcctcagt gaaggtctcc 120 tgcaaggctt ctggatacac cttcaccaac tcctggatga actggatcag gcagaggcct 180 ggaaagggtc ttgagtggat gggacggatt tatcctggag atggagaaac tatctacaat 240 gggaaattca gggtcagagt cacgattacc gcggacgaat ccacgagcac agcctacatg 300 gagctgagca gcctgagatc tgaggacacg gccgtgtatt actgtgcgag aggctatgat 360 gattactcgt ttgcttactg gggccaggga accacggtca ccgtctcttc aggtggtggt 420 ggatcoggag gtggtggatc gggtggtgga ggatcggata ttgtgatgac tcagtctgca 480 ctctcctgc ccgtcacccc tggagagccg gcctccatct cctgcaggtc tagtaagagt 540 ctcctgcata gtaatggcaa cacttacttg tattggtacc tgcagaagcc agggcagtct 600 ccacagctcc tgatctatcg gatgtccaac cttgcctcag gggtccctga caggttcagt 660 ggcagtggat caggcacagc ttttacactg aaaatcagca gagtggaggc tgaggatgtt 720 ggggtttatt actgcatgca acatatagaa tatcctttta cgttcggcca agggaccaaa 780 ctggaaatca aaggaggtgg tggatcgggt ggtggtggtt cgggaggcgg tggatcgcag 840

55

50

gtgcagctgg tgcagtctgg acctgaggtg aagaagcctg gggcctcagt gaaggtctcc

	tgcaaggett etggataca	c cttcaccaac tcctggatga	a actggatcag gcagaggcct	960
5	ggaaagggtc ttgagtgga	t gggacggatt tatcctggag	g atggagaaac tatctacaat	1020
10	gggaaattca gggtcagag	t cacgattacc gcggacgaat	ccacgagcac agcctacatg	1080
	gagotgagoa gootgagato	c tgaggacacg gccgtgtati	actgtgcgag aggctatgat	1140
15	gattactcgt ttgcttact	g gggccaggga accacggtca	cogtototto aggtggtggt	1200
	ggatccggag gtggtggatc	c gggtggtgga ggatcggata	ttgtgatgac tcagtctgca	1260
20	ctctccctgc ccgtcacccc	tggagagccg gcctccatct	cctgcaggtc tagtaagagt	1320
95	ctcctgcata gtaatggcaa	a cacttacttg tattggtacc	tgcagaagcc agggcagtct	1380
25	ccacagetcc tgatctatcg	g gatgtocaac cttgootcag	gggtccctga caggttcagt	1440
30	ggcagtggat caggcacago	ttttacactg aaaatcagca	gagtggaggc tgaggatgtt	1500
	ggggtttatt actgcatgca	acatatagaa tatootttta	cgttcggcca agggaccaaa	1560
35	ctggaaatca aa			1572
40	<210> 8			
	<211> 524			
	<212> PRT <213> Artificial			
45	(210) ALLITICIAT			
	<220>		•	
	<223> an artificial!	y synthesized peptide	sequence	
50	<400> 8			
	Met Asp Trp Thr Trp A	rg Phe Leu Phe Val Val	Ala Ala Ala Thr Gly	
	1 5	10	15	

5	Val	Gin	Ser	G1n 20	Val	GIN	Leu	Vai	25	Ser	GIY	Pro	Glu	30	Lys	Lys
10	Pro	Gly	Ala 35 -		Val	Lys	Val	Ser 40	Cys	Lys	Ala	Ser	Gly 45	Tyr	Thr	Phe
15	Thr	Asn 50	Ser	Trp	Met	Asn	Trp 55	He	Arg	Gin	Arg	Pro 60	Gly	Lys	Gly	Leu
20	G I u 65	Trp	Met	Gly	Arg	11e 70	Tyr	Pro	Gly	Asp	Gly 75	Glu	Thr	He	Tyr	Asn 80
	Gly	Lys	Phe	Arg	Va I 85	Arg	Val	Thr 	He	Thr 90	Ala	Asp	Glu	Ser	Thr 95	Ser
25	Thr	Ala	Tyr	Met 100	Glu	Leu	Ser	Ser	Leu 105	Arg	Ser	Glu	Asp	Thr 110	Ala	Val
30	Tyr	Tyr	Cys 115	Ala	Arg	Gly	Tyr	Asp 120	Asp	Tyr	Ser	Phe	Ala 125	Tyr	Trp	Gly
35	GIn	Gly 130	Thr	Thr	Val	Thr	Va I 135	Ser	Ser	Gly	Gly	Gly 140	Gly	Ser	Gly	Gly
40	Gly 145	Gly	Ser	Gly	Gly	Gly 150	Gly	Ser	Asp	lle	Va I 155	Met	Thr	GIn	Ser	Ala 160
45	Leu	Ser	Leu	Pro	Val 165	Thr	Pro	Gly	Glu	Pro 170		Ser	He	Ser	Cys 175	Arg
50	Ser	Ser	Lys	Ser 180	Leu	Leu	His	Ser	Asn 185	Gly	Asn	Thr	Tyr	Leu 190	Tyr	Trp
	Tyr	Leu	GIn 195	Lys	Pro	Gly	Gin	Ser 200	Pro	Gin	Leu	Leu	lle 205	Tyr	Arg	Met
55																

5	Ser	Asn 210	Leu	Ala	Ser	Gly	Va I 215	Pro	Asp	Arg	Phe	Ser 220	Gly	Ser	G∣y	Ser
10	Gly 225	Thr	Ala	Phe	Thr	Leu 230	Lys	He	Ser	Arg	Va I 235	Glu	Ala	Glu	Asp	Va I 240
15	Gly	Val	Tyr	Tyr	Cys 245	Met	Gln	His	lle	G u 250	Tyr	Pro	Phe	Thr	Phe 255	Gly
20	GIn	Gly	Thr	Lys 260	Leu	Glu	lle	Lys	Gly 265	Gly	Gly	Gly	Ser	Gly 270	Gly	Gly
	Gly	Ser	Gly 275	Gly	Gly	Gly	Ser	GIn 280	Val	Gin	Leu	Val	GIn 285	Ser	Gly	Pro
25	Glu	Val 290	Lys	Lys	Pro	Gly	Ala 295	Ser	Val	Lys	Val	Ser 300	Cys	Lys	Ala	Ser
30	Gly 305	Tyr	Thr	Phe	Thr	Asn 310	Ser	Trp	Met	Asn	Trp 315	lle	Arg	Gln	Arg	Pro 320
35	Gly	Lys	Gly	Leu	Glu 325	Trp	Met	Gly	Arg	11e 330	Tyr	Pro	Gly	Asp	Gly 335	Glu
40	Thr	lle	Tyr	Asn 340	Gly	Lys	Phe	Arg	Va I 345	Arg	Val	Thr	He	Thr 350	Ala	Asp
45	Glu	Ser	Thr 355	Ser	Thr	Ala	Tyr	Met 360		Leu	Ser	Ser	Leu 365	Arg	Ser	Glu
50	Asp	Thr 370	Ala	Val	Tyr	Tyr	Cys 375	Ala	Arg	Gly	Tyr	Asp 380	Asp	Tyr	Ser	Phe
55	Ala 385	Tyr	Trp	Gly	GIn	Gly 390	Thr	Thr	Val	Thr	Va I 395	Ser	Ser	Gly	Gly	Gly 400

5	Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp lle Val Met 405 410 415
10	Thr Gln Ser Ala Leu Ser Leu Pro Val Thr Pro Gly Glu Pro Ala Ser 420 425 430
15	He Ser Cys Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr 435 440 445
20	Tyr Leu Tyr Trp Tyr Leu Gln Lys Pro Gly Gln Ser Pro Gln Leu Leu 450 455 460
	Ile Tyr Arg Met Ser Asn Leu Ala Ser Gly Val Pro Asp Arg Phe Ser465470475480
25	Gly Ser Gly Ser Gly Thr Ala Phe Thr Leu Lys lie Ser Arg Val Glu 485 490 495
30	Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His Ile Glu Tyr Pro 500 505 510
35	Phe Thr Phe Gly Gln Gly Thr Lys Leu Glu lle Lys 515 520
40	<210> 9 <211> 1572
45	<212> DNA <213> Artificial
50	<pre><220> <223> an artificially synthesized nucleotide sequence</pre>
	<pre><400> 9 atggactgga cctggaggtt cctctttgtg gtggcagcag ctacaggtgt ccagtcccag 60</pre>
55	

5	gtgcagctgg	tgcagtctgg	acctgaggtg	aagaagcctg	gggcctcagt	gaaggtctcc	120
	tgcaaggott	ctggatacac	cttcaccaac	tcctggatga	actgggtgag	gcagaggcct	180
10	ggaaagggto	; ttgagtggat	gggacggatt	tatcctggag	atggagaaac	tatctacaat	240
	gggaaattca	gggtcagagt	cacgattacc	gcggacgaat	ccacgagcac	agcctacatg	300
15	gagotgagoa	a gootgagato	tgaggacacg	gccgtgtatt	actgtgcgag	aggctatgat	360
20	gattactogt	: ttgcttactg	gggccaggga	accacggtca	ccgtctcttc	aggtggtggt	420
	ggatooggag	gtggtggatc	gggtggtgga	ggatcggata	ttgtgatgac	tcagtctgca	480
<i>25</i>	ctctccctgc	ccgtcacccc	tggagagccg	gcctccatct	cctgcaggtc	tagtaagagt	540
	ctcctgcata	ı gtaatggcaa	cacttacttg	tattggtacc	tgcagaagcc	agggcagtct	600
30	ccacagete	: tgatctatcg	gatgtccaac	cttgcctcag	gggtccctga	caggttcagt	660
	ggcagtggat	caggcacagc	ttttacactg	aaaatcagca	gagtggaggc	tgaggatgtt	720
35	ggggtttatt	actgcatgca	acatatagaa	tatcctttta	cgttcggcca	agggaccaaa	780
40	ctggaaatca	ı aaggaggtgg	tggatcgggt	ggtggtggtt	cgggaggcgg	tggatcgcag	840
	gtgcagctgg	; tgcagtctgg	acctgaggtg	aagaagcctg	gggcctcagt	gaaggtctcc	900
45	tgcaaggctt	ctggatacac	cttcaccaac	tcctggatga	actgggtgag	gcagaggcct	960
	ggaaagggto	; ttgagtggat	gggacggatt	tatcctggag	atggagaaac	tatctacaat	1020
50	gggaaattca	ı gggtcagagt	cacgattacc	gcggacgaat	ccacgagcac	agcctacatg	1080
<i>55</i>	gagctgagca	gcctgagatc	tgaggacacg	gccgtgtatt	actgtgcgag	aggctatgat	1140
55							

5	gattactcgt ttgcttactg gggccaggga accacggtca ccgtctcttc aggtggtggt	1200
	ggatccggag gtggtggatc gggtggtgga ggatcggata ttgtgatgac tcagtctgca	1260
10	ctctccctgc ccgtcacccc tggagagccg gcctccatct cctgcaggtc tagtaagagt	1320
15	ctcctgcata gtaatggcaa cacttacttg tattggtacc tgcagaagcc agggcagtct	1380
15	ccacagetee tgatetateg gatgtecaae ettgeeteag gggteeetga eaggtteagt	1440
20	ggcagtggat caggcacagc ttttacactg aaaatcagca gagtggaggc tgaggatgtt	1500
	ggggtttatt actgcatgca acatatagaa tatcctttta cgttcggcca agggaccaaa	1560
25	ctggaaatca aa	1572
30	<210> 10	
	(211) 524	
	<212> PRT	
	<213> Artificial	
35	/aaa\	
	<220>	
	<223> an artificially synthesized peptide sequence	
40	<400> 10	
	Met Asp Trp Thr Trp Arg Phe Leu Phe Val Val Ala Ala Ala Thr Gly	
	1 5 10 15	
45		
	Val Gin Ser Gin Val Gin Leu Val Gin Ser Giy Pro Giu Val Lys Lys	
	20 25 30	
50		
	Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe	
	35 40 45	

5	Thr	Asn 50	Ser	Trp	Met	Asn	55	Val	Arg	GIN	Arg	60	Gly	Lys	ыу	Leu
10	61 u 65	Trp	Met	Gly	Arg	11e 70	Tyr	Pro	Gly	Asp	Gly 75	Glu	Thr	He	Tyr	Asn 80
	Gly	Lys	Phe	Arg	Va I 85	Arg	Val	⊺hr	lle	Thr 90	Ala	Asp	Glu	Ser	Thr 95	Ser
15	Thr	Ala	Tyr	Met 100	Gļu	Leu	Ser	Ser	Leu 105	Arg	Ser	Glu	Asp	Thr 110	Ala	Val
20	Tyr	Tyr	Cys 115	Ala	Arg	Gly	Tyr	Asp 120	Asp	Tyr	Ser	Phe	Ala 125	Tyr	Trp	Gly
25	Gin	Gly 130	Thr	Thr	Val	Thr	Va I 135	Ser	Ser	Gly	Gly	Gly 140	Gly	Ser	Gly	Gly
30	Gly 145	Gly	Ser	Gly	Gly	Gly 150	Gly	Ser	Asp	lle	Va l 155	Met	Thr	Gin	Ser	Ala 160
35	Leu	Ser	Leu	Pro	Val 165	Thr	Pro	Gly	Glu	Pro 170	Ala	Ser	lle	Ser	Cys 175	Arg
40	Ser	Ser	Lys	Ser 180	Leu	Leu	His	Ser	A sn 185	Gly	Asn	Thr	Tyr	Leu 190	Tyr	Trp
<i>45</i>	Tyr	Leu	GIn 195		Pro	Gly	Gln	Ser 200		Gin	Leu	Leu	11e 205		Arg	Met
	Ser	Asn 210	Leu	Ala	Ser	Gly	Va I 215	Pro	Asp	Arg	Phe	Ser 220	Gly	Ser	Gly	Ser
50	Gly 225	Thr	Ala	Phe	Thr	Leu 230	Lys	lie	Ser	Arg	Va I 235	Glu	Ala	Glu	Asp	Va I 240
55																

5	GIY	Vai	Tyr	lyr	245	Met	uin	nis	ile	250	Tyr	Pro	rne	Inr	255	ч
10	GIn	Gly	Thr	Lys 260	Leu	Glu	Пе	Lys	Gly 265	Gly	Gly	Gly	Ser	Gly 270	Gly	Gly
	Gly	Ser	Gly 275	Gly	Gly	Gly	Ser	GIn 280	Val	Gin	Leu	Val	G1n 285	Ser	Gly	Pro
15	Glu	Val 290	Lys	Lys	Pro	Gly	A a 295	Ser	Val	Lys	Val	Ser 300	Cys	Lys	Ala	Ser
20	Gly 305	Tyr	Thr	Phe	Thr	Asn 310	Ser	Trp	Met	Asn	Trp 315	Val	Arg	Gin	Arg	Pro 320
25	Gly	Lys	Gly	Leu	G I u 325	Trp	Met	Gly	Arg	11e 330	Tyr	Pro	Gly	Asp	Gly 335	Glu
30	Thr	He	Tyr	Asn 340	Gly	Lys	Phe	Arg	Va I 345	Arg	Val	Thr	He	Thr 350	Ala	Asp
35	Glu	Ser	Thr 355	Ser	Thr	Ala	Tyr	Met 360	Glu	Leu	Ser	Ser	Leu 365	Arg	Ser	Glu
40	Asp	Thr 370	Ala	Val	Tyr	Tyr	Cys 375	Ala	Arg	Gly	Tyr	Asp 380	Asp	Tyr	Ser	Phe
45	Ala 385	Tyr	Trp	Gly	GIn	Gly 390	Thr	Thr	Val	Thr	Va I 395	Ser	Ser	Gly	Gly	Gly 400
45	Gly	Ser	Gly	Gly	Gly 405	Gly	Ser	Gly	Gly	Gly 410	Gly	Ser	Asp	lle	Va I 415	Met
50	Thr	Gin	Ser	Ala 420	Leu	Ser	Leu	Pro	Va i 425	Thr	Pro	Gly	Glu	Pro 430	Ala	Ser
55																

_	lle Ser Cys Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr 435 440 445
5	400
	Tyr Leu Tyr Trp Tyr Leu Gin Lys Pro Gly Gin Ser Pro Gin Leu Leu
10	450 455 460
10	
	lie Tyr Arg Met Ser Asn Leu Ala Ser Gly Val Pro Asp Arg Phe Ser
	465 470 475 480
<i>15</i>	Gly Ser Gly Ser Gly Thr Ala Phe Thr Leu Lys lie Ser Arg Val Glu
	485 490 495
	400 400
20	Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gin His Ile Glu Tyr Pro
	500 505 510
25	Phe Thr Phe Gly Gin Gly Thr Lys Leu Glu IIe Lys
	515 520
30	
30	<210> 11
	<211> 1572
	<212> DNA
35	<213> Artificial
	(220\)
	<pre><220> <223> an artificially synthesized nucleotide sequence</pre>
40	AZZSZ AN AFEITIGIATTY SYNCHESTZEW MUCTEOLINE SEQUENCE
	<400> 11
	atggactgga cctggaggtt cctctttgtg gtggcagcag ctacaggtgt ccagtcccag 60
45	m m
	gtgcagctgg tgcagtctgg acctgaggtg aagaagcctg gggcctcagt gaaggtctcc 120
50	tgcaaggett ctggatacac etteaceaac teetggatga aetgggtgag geagaggeet 180
	ggaaagggtc ttgagtggat tggacggatt tatcctggag atggagaaac tatctacaat 240

gggaaattca	gggtcagagt	cacgattacc	gcggacgaat	ccacgagcac	agcctacatg	300
gagctgagca	gcctgagatc	tgaggacacg	gccgtgtatt	actgtgcgag	aggctatgat	360
gattactcgt	ttgcttactg	gggccaggga	accacggtca	ccgtctcttc	aggtggtggt	420
ggatccggag	gtggtggatc	gggtggtgga	ggatcggata	ttgtgatgac	tcagtctcca	480
ctctccctgc	ccgtcacccc	tggagagccg	gcctccatct	cctgcaggtc	tagtaagagt	540
ctcctgcata	gtaatggcaa	cacttacttg	tattggttcc	agcagaagcc	agggcagtct	600
ccacagetee	tgatctatcg	gatgtccaac	cttgcctcag	gggtccctga	caggttcagt	660
ggcagtggat	caggcacagc	ttttacactg	aaaatcagca	gagtggaggc	tgaggatgtt	720
ggggtttatt	actgcatgca	acatatagaa	tatcctttta	cgttcggcca	agggaccaaa	780
ctggaaatca	aaggaggtgg	tggatcgggt	ggtggtggtt	cgggaggcgg	tggatcgcag	840
gtgcagctgg	tgcagtctgg	acctgaggtg	aagaagcctg	gggcctcagt	gaaggtctcc	900
tgcaaggctt	ctggatacac	cttcaccaac	tcctggatga	actgggtgag	gcagaggcct	960
ggaaagggtc	ttgagtggat	tggacggatt	tatcctggag	atggagaaac	tatctacaat	1020
gggaaattca	gggtcagagt	cacgattacc	gcggacgaat	ccacgagcac	agcctacatg	1080
gagctgagca	gcctgagatc	tgaggacacg	gccgtgtatt	actgtgcgag	aggctatgat	1140
gattactcgt	ttgcttactg	gggccaggga	accacggtca	ccgtctcttc	aggtggtggt	1200
ggatccggag	gtggtggatc	gggtggtgga	ggatcggata	ttgtgatgac	tcagtctcca	1260
ctctccctgc	ccgtcacccc	tggagagccg	gcctccatct	cctgcaggtc	tagtaagagt	1320

	ctcctgcata gtaatggcaa cacttacttg tattggttcc agcagaagcc agggcagtct 1380
5	ccacagetee tgatetateg gatgtecaae ettgeeteag gggteeetga caggtteagt 1440
10	ggcagtggat caggcacagc ttttacactg aaaatcagca gagtggaggc tgaggatgtt 1500
	ggggtttatt actgcatgca acatatagaa tatcctttta cgttcggcca agggaccaaa 1560
15	ctggaaatca aa 1572
	(010) 10
20	<210> 12 <211> 524
	<212> PRT
	<213> Artificial
25	
	<pre><220> <223> an artificially synthesized peptide sequence</pre>
	(223) all al tilliciarry synthesized peptide sequence
30	<400> 12
	Met Asp Trp Thr Trp Arg Phe Leu Phe Val Val Ala Ala Ala Thr Gly
	1 5 10 15
35	Val Gin Ser Gin Val Gin Leu Val Gin Ser Giy Pro Giu Val Lys Lys
	20 25 30
40	
40	Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe
	35 40 45
4 5	Thr Asn Ser Trp Met Asn Trp Val Arg Gln Arg Pro Gly Lys Gly Leu
	50 55 60
50	Giu Trp Ile Giy Arg Ile Tyr Pro Giy Asp Giy Giu Thr Ile Tyr Asn
	65 70 75 80
	Gly Lys Phe Arg Val Arg Val Thr lle Thr Ala Asp Glu Ser Thr Ser
55	

					85					90					95	
5	Thr	Ala	Tyr	Met 100	Glu	Leu	Ser	Ser	Leu 105	Arg	Ser	Glu	Asp	Thr 110	Ala	Val
10	Tyr	Tyr	Cys 115	Ala	Arg	Gly	Tyr	Asp 120	Asp	Tyr	Ser	Phe	Ala 125	Tyr	Trp	Gly
15	GIn	Gly 130	Thr	Thr	Val	Thr	Val 135	Ser	Ser	Gly	Gly	Gly 140	Gly	Ser	G∣y	Gly
20	Gly 145	Gly	Ser	Gly	Gly	Gly 150	Gly	Ser	Asp	lle	Va I 155	Met	Thr	Gln	Ser	Pro 160
25	Leu	Ser	Leu	Pro	Val 165	Thr	Pro	Gly	Glu	Pro 170	Ala	Ser	lle	Ser	Cys 175	Arg
30	Ser	Ser	Lys	Ser 180	Leu	Leu	His	Ser	Asn 185	Gly	Asn	Thr	Tyr	Leu 190	Tyr	Trp
35	Phe	GIn	G n 195	Lys	Pro	Gly	GIn	Ser 200	Pro	Gin	Leu	Leu	11e 205	Tyr	Arg	Met
	Ser	Asn 210	Leu	Ala	Ser	Gly	Val 215	Pro	Asp	Arg	Phe	Ser 220	Gly	Ser	Gly	Ser
40	Gly 225	Thr	Ala	Phe	Thr	Leu 230	Lys	lle	Ser	Arg	Va I 235	Glu	Ala	Glu	Asp	Va I 240
45	Gly	Val	Tyr	Tyr	Cys 245	Met	GIn	His	He	G I u 250	Tyr	Pro	Phe	Thr	Phe 255	Gly
50	GIn	Gly	Thr	Lys 260	Leu	Glu	He	Lys	Gly 265	Gly	Gly	Gly	Ser	Gly 270	Gly	Gly
55	Gly	Ser	Gly	Gly	Gly	Gly	Ser	GIn	Val	GIn	Leu	Val	Gln	Ser	Gly	Pro

		275	2	280	285
5	Glu Val 290	Lys Lys Pa	Pro Gly Ala S 295	Ser Val Lys Val Ser 300	Cys Lys Ala Ser
10	Gly Tyr 305	Thr Phe Ti	hr Asn Ser 1 310	Trp Met Asn Trp Val 315	Arg Gln Arg Pro 320
15	Gly Lys		ilu Trp lle 0 25	Gly Arg lle Tyr Pro 330	Gly Asp Gly Glu 335 ·
20	Thr lle	Tyr Asn G 340	ily Lys Phe A	Arg Val Arg Val Thr 345	He Thr Ala Asp
25	Glu Ser	Thr Ser Ti		Met Glu Leu Ser Ser 360	Leu Arg Ser Glu 365
30	Asp Thr 370	Ala Val Ty	yr Tyr Cys A 375	Ala Arg Gly Tyr Asp 380	Asp Tyr Ser Phe
35	Ala Tyr 385	Trp Gly G	iin Gly Thr I 390	Thr Val Thr Val Ser 395	Ser Gly Gly Gly 400
40	Gly Ser		ily Gly Ser 6 05	Gly Gly Gly Ser 410	Asp lle Val Met 415
40	Thr Gin	Ser Pro Lo 420	eu Ser Leu F	Pro Val Thr Pro Gly 425	Glu Pro Ala Ser 430
45		Cys Arg So 435		Ser Leu Leu His Ser 140	Asn Gly Asn Thr 445
50	450		455	ys Pro Gly Gln Ser 460	
55	lle Tyr	Arg Met So	Ser Asn Leu A	Ala Ser Gly Val Pro	Asp Arg Phe Ser

	465	470	475	480
5	Gly Ser Gly Ser Gly 485		ı Lys lle Ser Arg Val	
10			: GIn His Ile Glu Tyr 510	
15		Gly Thr Lys Leu Glu 520		
20	<210> 13			
25	<211> 1572 <212> DNA <213> Artificial			
25	<220>			
30	<400> 13	lly synthesized nuc!		
35			gcag ctacaggtgt ccag	
40	tgcaaggott ctggatac	ac cttcaccaac tcctgg	atga actgggtgag gcag	aggcct 180
	ggaaagggtc ttgagtgg	at tggacggatt tatcct	ggag atggagaaac tatc	tacaat 240
45	gggaaattca gggtcaga	gt cacgattacc gcggac	gaat ccacgagcac agcc	tacatg 300
	gagotgagoa gootgaga	tc tgaggacacg gccgtg	tatt actgtgcgag aggc	tatgat 360
50	gattactogt ttgcttac	tg gggccaggga accacg	gtca ccgtctcttc aggt	ggtggt 420
55	ggatccggag gtggtgga	to gggtggtgga ggatog	gata ttgtgatgac tcag	totoca 480

5	ctctccctgc	ccgtcacccc	tggagagccg	gcctccatct	cctgcaggtc	tagtaagagt	540
	ctcctgcata	gtaatggcaa	cacttacttg	tattggttcc	agcagaagcc	agggcagtct	600
10	ccacagotoo	tgatctatcg	gatgtccaac	cttgcctcag	gggtccctga	caggttcagt	660
	ggcagtggat	caggcacagc	ttttacactg	aaaatcagca	gagtggaggc	tgaggatgtt	720
15	ggggtttatt	actgcatgca	acatatagaa	tatcctttta	cgttcggcca	agggaccaaa	780
20	ctggaaatca	aaggaggtgg	tggatcgggt	ggtggtggtt	cgggaggcgg	tggatcgcag	840
	gtgcagctgg	tgcagtctgg	agctgaggtg	aagaagcctg	gggcctcagt	gaaggtctcc	900
25	tgcaaggctt	ctggatacac	cttcaccaac	tcctggatga	actgggtgag	gcagaggcct	960
	ggaaagggto	ttgagtggat	tggacggatt	tatcctggag	atggagaaac	tatctacaat	1020
30	gggaaattca	gggtcagagt	cacgattacc	gcggacgaat	ccacgagcac	agcctacatg	1080
	gagctgagca	gcctgagatc	tgaggacacg	gccgtgtatt	actgtgcgag	aggctatgat	1140
35	gattactcgt	ttgcttactg	gggccaggga	accacggtca	ccgtctcttc	aggtggtggt	1200
40	ggatccggag	gtggtggatc	gggtggtgga	ggatcggata	ttgtgatgac	tcagtctcca	1260
	ctctccctgc	ccgtcacccc	tggagagccg	gcctccatct	cctgcaggtc	tagtaagagt	1320
45	ctcctgcata	gtaatggcaa	cacttacttg	tattggttcc	agcagaagcc	agggcagtct	1380
	ccacagctcc	tgatctatcg	gatgtccaac	cttgcctcag	gggtccctga	caggttcagt	1440
50	ggcagtggat	caggcacagc	ttttacactg	aaaatcagca	gagtggaggc	tgaggatgtt	1500
	ggggtttatt	actgcatgca	acatatagaa	tatcctttta	cgttcggcca	agggaccaaa	1560

5	ctgg	gaaa	tca a	aa													1572
	<210)> ·	14														
10	<211	> !	524														
	<212	2> 1	PRT														
	<213	3> /	Arti1	ficia	a I												
15																	
	<220	>															
	<223	3> ;	an ar	tif	icia	lly:	synth	nesiz	zed p	pept	ide :	seque	ence				
20	<400)>	14														
	Met	Asp	Trp	Thr	Trp	Arg	Phe	Leu	Phe	۷a۱	Val	Ala	Ala	Ala	Thr	Gly	
	1				5					10					15		
25																	
	Vai	GIn	Ser	Gln	Va!	GIn	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	
				20	•				25					30			
30																	
30	Pro	Gly	Ala	Ser	Val	Lys	Val	Ser	Cys	Lys	Ala	Ser		Tyr	Thr	Phe	
			35					40					45				
35	Thr		Ser	Trp	Met	Asn		Val	Arg	Gln	Arg		Gly	Lys	Gly	Leu	
		50					55					60					
		_		•			_		0.1		Q 1	0 1	T 1		-	A	
40		Irp	He	Gly	Arg		lyr	Pro	GIY	ASP		GIU	inr	iie	ıyr		
	65					70					75					80	
	Clu	1	Dh.	A	Vol	A = =	Val	The	I I o	The	Ala	Aan	61	Sor	The	Sar	
	ыу	Lys	Phe	Arg		Arg	vai	mr		90		ASp	GIU	361	95	Ser	
45					85					90					33		
	The	Ala	Tyr	Mat	Glu	Lau	Sor	Sar	يىم ا	Ara	Sor	Glu	Acn	Thr	د ا ۵	Val	
	1111	МІА	1 91	100	uiu	Leu	361	361	105	AI E	361	uiu	vah	110	ліа	141	
50				100					100					110			
	Tvr	Tvr	Cys	Ala	Arø	GIV	Tvr	Asp	Asn	Tvr	Ser	Phe	Ala	Tvr	Tro	GIV	
		. ,	115		, b	٠, ٢	. , ,	120	p	.,,	551		125		•	٠, ٧	
								0					0				

5	GIn	Gly 130	Thr	Thr	Val	Thr	Va I 135	Ser	Ser	Gly	Gly	61y 140	Gly	Ser	Gly	Gly
10	Gly 145	Gly	Ser	Gly	Gly	Gly 150	Gly	Ser	Asp	lle	Va I 155	Met	Thr	GIn	Ser	Pro 160
15	Leu	Ser	Leu	Pro	Val 165	Thr	Pro	Gly	Glu	Pro 17 0	Ala	Ser	lle	Ser	Cys 175	Arg
20	Ser	Ser	Lys	Ser 180	Leu	Leu	His	Ser	Asn 185	Gly	Asn	Thr	Tyr	Leu 190	Tyr	Trp
	Phe	GIn	GIn 195	Lys	Pro	Gly	GIn	Ser 200	Pro	Gln	Leu	Leu	11e 205	Tyr	Arg	Met
25	Ser	Asn 210	Leu	Ala	Ser	Gly	Va I 215	Pro	Asp	Arg	Phe	Ser 220	Gly	Ser	Gly	Ser
30	Gly 225	Thr	Ala	Phe	Thr	Leu 230	Lys	He	Ser	Arg	Va I 235	Glu	Ala	Glu	Asp	Va I 240
35	Gly	Val	Tyr	Tyr	Cys 245	Met	Gln	His	He	Glu 250	Tyr	Pro	Phe	Thr	Phe 255	Gly
40	Gln	Gly	Thr	Lys 260	Leu	Glu	ile	Lys	Gly 265	Gly	Gly	Gly	Ser	Gly 270	Gly	Gly
. 45	Gly	Ser	Gly 275	Gly	Gly	Gly	Ser	GIn 280	Val	GIn	Leu	Val	GIn 285	Ser	Gly	Ala
50	Glu	Va I 290	Lys	Lys	Pro	Gly	Ala 295	Ser	Val	Lys	Val	Ser 300	Cys	Lys	Ala	Ser
	Gly 305	Tyr	Thr	Phe	Thr	Asn 310	Ser	Trp	Met	Asn	Trp 315	Val	Arg	Gin	Arg	Pro 320
55																

5	Gly	Lys	Gly	Leu	Glu 325	Trp	lle	Gly	Arg	11e 330	Tyr	Pro	Gly	Asp	Gly 335	Glu
10	Thr	He	Tyr	Asn 340	Gly	Lys	Phe	Arg	Va I 345	Arg	Val	Thr	lle	Thr 350	Ala	Asp
15	Glu	Ser	Thr 355	Ser	Thr	Ala	Tyr	Met 360	Glu	Leu	Ser	Ser	Leu 365	Arg	Ser	Glu
20	Asp	Thr 370	Ala	Val	Tyr	Tyr	Cys 375	Ala	Arg	Gly	Tyr	Asp 380	Asp	Tyr	Ser	Phe
	Ala 385	Tyr	Trp	Gly	GIn	Gly 390	Thr	Thr	Val	Thr	Va I 395	Ser	Ser	Gly	Gly	Gly 400 _.
25	Gly	Ser	Gly	Gly	Gly 405	Gly	Ser	Gly	Gly	Gly 410	Gly	Ser	Asp	lle	Va I 415	Met
30	Thr	GIn	Ser	Pro 420	Leu	Ser	Leu	Pro	Va I 425	Thr	Pro	Gly	Glu	Pro 430	Ala	Ser
35	lle	Ser	Cys 435	Arg	Ser	Ser	Lys	Ser 440	Leu	Leu	His	Ser	Asn 445	Gly	Asn	Thr
40	Tyr	Leu 450	Tyr	Trp	Phe	GIn	GIn 455	Lys	Pro	Gly	GIn	Ser 460	Pro	Gin	Leu	Leu
45	11e 465	Tyr	Arg	Met	Ser	Asn 470	Leu	Ala	Ser	Gly	Va I 475	Pro	Asp	Arg	Phe	Ser 480
50	Gly	Ser	Gly	Ser	Gly 485	Thr	Ala	Phe	Thr	Leu 490	Lys	lle	Ser	Arg	Va I 495	Glu
55	Ala	Glu	Asp	Va I 500	Gly	Val	Tyr	Tyr	Cys 505	Met	Gin	His	He	Glu 510	Tyr	Pro

	Phe Thr Phe Gly Gin Gly Thr Lys Leu Glu lie Lys	
5	515 520	
	<210> 15	
10	<211> 1572	
	<212> DNA	
	<213> Artificial	
15		
	<220>	
	<223> an artificially synthesized nucleotide sequence	
20		
	<400> 15	
	atggactgga cotggaggtt cototttgtg gtggcagcag ctacaggtgt ccagtoccag	60
25	gtgcagctgg tgcagtctgg acctgaggtg aagaagcctg gggcctcagt gaaggtctcc	120
	giguaguigg iguagiuigg avoigaggig aagaaguuig ggguuluagi gaaggiuluu	120
	tgcaaggott ctggatacac cttcaccaac tootggatga actgggtgag gcagaggoot	180
20		,00
30	ggaaagggto ttgagtgggt tggacggatt tatcctggag atggagaaac tatctacaat	240
	gggaaattca gggtcagagt cacgattacc gcggacgaat ccacgagcac agcctacatg	300
35		
	gagotgagoa gootgagato tgaggacaog googtgtatt actgtgogag aggotatgat	360
40	gattactcgt tigcttactg gggccaggga accacggtca ccgtctcttc aggtggtggt	420
	ggatccggag gtggtggatc gggtggtgga ggatcggata ttgtgatgac tcaggctgca	480
45		
	ctctccctgc ccgtcacccc tggagagccg gcctccatct cctgcaggtc tagtaagagt	540
		000
50	ctcctgcata gtaatggcaa cacttacttg tattggtacc tgcagaagcc agggcagtct	600
	ccacagetee tgatetateg gatgtecaae ettgeeteag gggteeetga eaggtteagt	660
		500
55		

45		ggcagtggat o	caggcacagc	ttttacactg	aaaatcagca	gagtggaggc	tgaggatgtt	720
ggaaagggt totggatacac citcaccaac tootggatga acaggaggaa caggaggact 960 ggaaagggt tiggatacac citcaccaac tootggatga acaggaggaa cagagggcct 960 ggaaagggt tiggatgggt tggaacggat tatootggag atggaggaac tatotacaat 1020 gggaaagggt tiggatgggt taggacggat tatootggag atggaggaac agcotacatg 1080 gaggtaggca gcctgagat tagggacacg gccgggatat acaggagaac agcotacatg 1140 gaggtaggca gcctgagat tagggacacg gccgtgtatt actgtgcgag agggtatgat 1140 ggattactcgt tiggttactg gggccaggga accacggtca cogtototic aggtggtggt 1200 ggatcoggag giggtggatc gggtggtgga ggatcggata tigggatgac toaggccgca 1260 ctctccctgc ccgtcacccc tggagagccg gcctccatot cotgcaggtc tagtaagagt 1320 ccacagctcc tgatcatcg gatgtccaac citgcctcag gggtccctga caggtcagt 1440 ggccagtggat caggcacagc tittacactg aaaatcagca gagtggaggc tgaggatgtt 1500 ggggttatt actgcatgca acattactg aaaatcagca gagtggaggc tgaggatgtt 1500 ctggaaatca aa 1572 45 C10> 16 C210> 16 C210> 16 C211> 524	5	ggggtttatt a	actgcatgca	acatatagaa	tatcctttta	cgttcggcca	agggaccaaa	780
tgoagoteg tgoagtoteg acctgaggte aagaagooteg gegootoagt gaaggtotoo 900 tgoaaggett otggatacac ottoaccaac tootegatga actgegtag goagaggoot 960 ggaaagggto ttgagtgggt tggaoggatt tatooteggag atggagaaac tatotacaat 1020 gggaaattoa gggtoagagt cacgattacc goggacgaat ccacgagcac agcotacatg 1080 gagctgagca gcotgagato tgaggacacg gcogtgtatt actgtgcgag aggctatgat 1140 gattactogt ttgottactg gggooaggga accacggtoa cogtototto aggtggtggt 1200 ggatocggag gtggtggato gggtggtgga ggatoggata ttgtggatgac toaggcgga 1260 ctotocctgc ccgtcacccc tggagagoog gcotocatot cotgcaggto tagtagaggt 1320 ccacagotoc tgatotatog gatgtocaac ottgoctoag gggtocctga caggtcagt 1440 ggoagtggat caggcacago ttttacactg aaaatcagoa gagtggaggo tgaggatgtt 1500 ggggtttatt actgcatgoa acattactg aaaatcagoa gagtggaggo tgaggatgtt 1500 ggggtttatt actgcatgoa acattactga aaaatcagoa gagtggaggo tgaggaccaaa 1560 ctggaaatca aa 1572	10	ctggaaatca a	aaggaggtgg	tggatcgggt	ggtggtggtt	cgggaggcgg	tggatcgcag	840
ggaaagggto ttgagtgggt tggaoggatt tatootggag atggagaaac tatotacaat 1020 gggaaattca gggtcagagt cacgattacc goggacgaat ocaogagcac agcotacatg 1080 gagctgagca gcotgagatc tgaggacacg gcogtgtatt actgtgogag aggctatgat 1140 ggattactogt ttgottactg gggcoaggga accacggtca cogtotottc aggtggtggt 1200 ggatcoggag gtggtggatc gggtggtgga ggatcoggata ttgtgatgac toaggctgca 1260 ctctccctgc cogtcacccc tggagagcog gcotccatct octgoaggtc tagtaagagt 1320 ccacagotcc tgatctatcg gatgtccaac cttgcctcag gggtccga caggccagtct 1380 ccacagotcc tgatctatcg gatgtccaac cttgcctcag gggtccctga caggtcagt 1440 ggcagtggat caggcacagc ttttacactg aaaatcagca gagtgaggc tgaggatgt 1500 gggggtttatt actgcatgca acattatagaa tatcctttta cgttoggcca agggaccaaa 1560 ctggaaatca aa 1572	,,	gtgcagctgg t	tgcagtctgg	acctgaggtg	aagaagcctg	gggcctcagt	gaaggtctcc	900
gagaaattca gggtcagagt cacgattacc goggacgaat ocacgagcac agcotacatg 1080 gagctgagca gcctgagatc tgaggacacg gccgtgtatt actgtgogag aggctatgat 1140 ggatcacgg gtggtggatc ggggcaggga accacggtca cogtctctc aggtggtggt 1200 ggatccggag gtggtggatc gggtggtga ggatcggata ttgtgatgac tcaggctgca 1260 ctctccctgc ccgtcacccc tggagagcog gcctccatct cctgcaggtc tagtaagagt 1320 ccacagctcc tgatctatcg gatgtccaac cttgcctcag gggtccctga caggtccagt 1440 ggcagtggat caggcacagc ttttacactg aaaatcagca gagtggagcc tgaggatgtt 1500 ggggtttatt actgcatgca acattatagaa tatcctttta cgttcggcca agggaccaaa 1560 ctggaaatca aa 1572	15	tgcaaggctt o	ctggatacac	cttcaccaac	tcctggatga	actgggtgag	gcagaggcct	960
gagotgagoa gootgagato tgaggacacg googtgtatt actgtgcgag aggotatgat 1140 gattactogt ttgottactg gggocaggga accacggtoa cogtototto aggtggtggt 1200 ggatcoggag gtggtggato gggtggtgga ggatcggata ttgtgatgac toaggotgca 1260 ctotcoctgo cogtoaccco tggagagocg gcotocatot cotgoaggto tagtaagagt 1320 ctoctgoata gtaatggcaa cacttacttg tattggtaco tgoagaagoc agggcagtot 1380 ccacagotoc tgatctatog gatgtocaac ottgcotcag gggtocotga caggttoagt 1440 ggcagtggat caggoacago ttttacactg aaaatcagoa gagtggaggo tgaggatgt 1500 ggggtttatt actgoatgoa acatatagaa tatcotttta ogttoggoca agggaccaaa 1560 ctggaaatca aa 1572		ggaaagggtc t	ttgagtgggt	tggacggatt	tatcctggag	atggagaaac	tatctacaat	1020
gattactogt tigottactg gggccaggga accacggtca cogtcottc aggtggtggt 1200 ggatcoggag giggtggatc gggtgggag ggatcggata tigigatgac toaggctgca 1260 ctctccctgc cogtcacccc tggagagccg gcotccatct cotgcaggtc tagtaagagt 1320 ctcctgcata gtaatggcaa cacttacttg tattggtacc tgcagaagcc agggcagtct 1380 ccacagctcc tgatctatcg gatgtccaac citgcctcag gggtccctga caggitcagt 1440 ggcagtggat caggcacagc tittacactg aaaatcagca gagtggaggc tgaggatgtt 1500 ggggtttatt actgcatgca acatatagaa tatccttta cgitcggcca agggaccaaa 1560 ctggaaatca aa 1572	20	gggaaattca g	gggtcagagt	cacgattacc	gcggacgaat	ccacgagcac	agcctacatg	1080
gattactogt ttgcttactg gggccaggga accacggtca cogtctctc aggtggggt 1200 ggatcoggag gtggtggatc gggtggtga ggatcggata ttgtgatgac tcaggctgca 1260 ctctccctgc ccgtcacccc tggagagccg gcctccatct cctgcaggtc tagtaagagt 1320 ctcctgcata gtaatggcaa cacttacttg tattggtacc tgcagaagcc agggcagtct 1380 ccacagctcc tgatctatcg gatgtccaac cttgcctcag gggtccctga caggttcagt 1440 ggcagtggat caggcacagc ttttacactg aaaatcagca gagtggaggc tgaggatgtt 1500 ggggtttatt actgcatgca acatatagaa tatcctttta cgttcggcca agggaccaaa 1560 ctggaaatca aa 1572 50 <210> 16 <211> 524		gagctgagca g	gcctgagatc	tgaggacacg	gccgtgtatt	·actgtgcgag	aggctatgat	1140
ctctccctgc cogtcacccc tggagagccg gcctccatct cctgcaggtc tagtaagagt 1320 ctcctgcata gtaatggcaa cacttacttg tattggtacc tgcagaagcc agggcagtct 1380 ccacagctcc tgatctatcg gatgtccaac cttgcctcag gggtccctga caggttcagt 1440 ggcagtggat caggcacagc ttttacactg aaaatcagca gagtggaggc tgaggatgtt 1500 ggggtttatt actgcatgca acatatagaa tatcctttta cgttcggcca agggaccaaa 1560 ctggaaatca aa 1572 4210> 16 <211> 524	25	gattactcgt t	ttgottactg	gggccaggga	accacggtca	ccgtctcttc	aggtggtggt	1200
ctcctgcata gtaatggcaa cacttacttg tattggtacc tgcagaagcc agggcagtct 1380 ccacagotcc tgatctatcg gatgtccaac cttgcctcag gggtccctga caggttcagt 1440 ggcagtggat caggcacagc ttttacactg aaaatcagca gagtggaggc tgaggatgtt 1500 ggggtttatt actgcatgca acatatagaa tatcctttta cgttcggcca agggaccaaa 1560 ctggaaatca aa 1572 45 46 (210) 16 (211) 524	30	ggatccggag g	gtggtggatc	gggtggtgga	ggatcggata	ttgtgatgac	tcaggctgca	1260
ccacagotoc tgatctatog gatgtocaac ottgoctoag gggtocotga caggttoagt 1440 ggcagtggat caggoacago tittacactg aaaatcagoa gagtggaggo tgaggatgtt 1500 ggggtttatt actgoatgoa acatatagaa tatcotitta ogttoggoca agggaccaaa 1560 ctggaaatca aa 1572 (210) 16 (211) 524		ctctccctgc c	ccgtcacccc	tggagagccg	gcctccatct	cctgcaggtc	tagtaagagt	1320
ggcagtggat caggcacagc tittacactg aaaatcagca gagtggaggc tgaggatgtt 1500 ggggtttatt actgcatgca acatatagaa tatcctttta cgttcggcca agggaccaaa 1560 ctggaaatca aa 1572 200 4210> 16 <211> 524	35	ctcctgcata g	gtaatggcaa	cacttacttg	tattggtacc	tgcagaagcc	agggcagtct	1380
ggcagtggat caggcacagc tittacactg aaaatcagca gagtggaggc tgaggatgtt 1500 ggggtttatt actgcatgca acatatagaa tatcctttta cgttcggcca agggaccaaa 1560 ctggaaatca aa 1572 (210) 16 (211) 524		ccacagotoc t	tgatctatcg	gatgtccaac	cttgcctcag	gggtccctga	caggttcagt	1440
ctggaaatca aa 1572 50 <210> 16 <211> 524	40	ggcagtggat	caggcacagc	ttttacactg	aaaatcagca	gagtggaggc	tgaggatgtt	1500
50 <210> 16 <211> 524	45	ggggtttatt a	actgcatgca	acatatagaa	tatcctttta	cgttcggcca	agggaccaaa	1560
<210> 16 <211> 524	40	ctggaaatca a	аа					1572
	50	<210> 16						

	<213	s> <i>t</i>	Artif	icia	a I											
5	<220 <223		an ar	tifi	cial	lly s	ynth	nesiz	zed p	pepti	ide s	eque	ence			
10			16 Trp	Thr		Arg	Phe	Leu	Phe		Val	Ala	Ala	Ala		Gly
15	1 Val	Gln	Ser	G I n 20	5 Val	Gln	Leu	Val	GIn 25	10 Ser	Gly	Pro	Glu	Val	15 Lys	Lys
20	Pro	Gly	Ala 35	Ser	Val	Lys	Val	Ser 40	Cys	Lys	Ala	Ser	G y 45	Tyr	Thr	Phe
25	Thr	Asn 50	Ser	Trp	Met	Asn		Val	Arg	GIn	Arg	Pro 60	Gly	Lys	Gly	Leu
30	GIu 65	Trp	Val	Gly	Arg	11e 70	Tyr	Pro	Gly	Asp	Gly 75	Glu	Thr	lle	Tyr	Asn 80
35	Gly	Lys	Phe	Arg	Va I 85	Arg	Val	Thr	He	Thr 90	Ala	Asp	Glu	Ser	Thr 95	Ser
40	Thr	Ala	Tyr	Met 100	Glu	Leu	Ser	Ser	Leu 105	Arg	Ser	Glu	Asp	Thr 110	Ala	Val
_	Tyr	Tyr	Cys 115	Ala	Arg	Gly	Tyr	Asp 120	Asp	Tyr	Ser	Phe	Ala 125	Tyr	Trp	Gly
45	GIn	Gly 130	Thr	Thr	Val	Thr	Va I 135	Ser	Ser	Gly	Gly	Gly 140	Gly	Ser	Gly	Gly
50	Gly 145	Gly	Ser	Gly	Gly	Gly 150	Gly	Ser	Asp	I∣e	Val 155	Met	Thr	GIn	Ala	Ala 160

5	Leu	Ser	Leu	Pro	Val 165	Thr	Pro	Gly	Glu	Pro 170	Ala	Ser	lle	Ser	Cys 175	Arg
	Ser	Ser	Lys	Ser 180	Leu	Leu	His	Ser	Asn 185	Gly	Asn	Thr	Tyr	Leu 190	Tyr	Trp
10	Tyr	Leu	Gin 195	Lys	Pro	Gly	Gin	Ser 200	Pro	Gln	Leu	Leu	lle 205	Tyr	Arg	Met
15	Ser	Asn 210	Leu	Ala	Ser	Gly	Val 215	Pro	Asp	Arg	Phe	Ser 220	Gly	Ser	Gly	Ser
20	Gly 225	Thr	Ala	Phe	Thr	Leu 230	Lys	He	Ser	Arg	Val 235	Glu	Ala	Glu	Asp	Va I 240
25	Gly	Vai	Tyr	Tyr	Cys 245	Met	GIn	His	lle	G1u 250	Tyr	Pro	Phe	Thr	Phe 255	Gly
30	Gln	Gly	Thr	Lys 260	Leu	Glu	lle	Lys	Gly 265	Gly	Gly	Gly	Ser	Gly 270	Gly	G∣y
35	G∣y	Ser	Gly 275	Gly	Gly	Gly	Ser	GIn 280	Val	GIn	Leu	Val	GIn 285	Ser	Gly	Pro
40	Glu	Val 290	Lys	Lys	Pro	Gly	Ala 295	Ser	Val	Lys	Val	Ser 300	Cys	Lys	Ala	Ser
	Gly 305	Tyr	Thr	Phe	Thr	Asn 310	Ser	Trp	Met	Asn	Trp 315	Val	Arg	Gln	Arg	Pro 320
45	Gly	Lys	Gly	Leu	Glu 325	Trp	Val	Gly	Arg	11e 330	Tyr	Pro	Gly	Asp	Gly 335	Glu
50	Thr	lle	Tyr	Asn 340	Gly	Lys	Phe	Arg	Va I 345	Arg	Val	Thr		Thr 350	Ala	Asp

	Glu	Ser	Thr	Ser	Thr	Ala	Tyr	Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu
			355					360					365			
5																
	Asp	Thr	Ala	Val	Tyr	Tyr	Cys	Ala	Arg	Gly	Tyr	Asp	Asp	Tyr	Ser	Phe
		370					375					380				
10																
	Ala	Tyr	Trp	Gly	Gln	Gly	Thr	Thr	Val	Thr	Val	Ser	Ser	Gly	Gly	Gly
	385					390					395					400
15	Gly	Sar	GLV	GLV	Gly	GIV	Sar	Gly	Glv	Gly	GLV	Sar	Aen	ماا	Val	Met
	uly	961	uiy	uly		uly	561	uiy	uly		uly	001	лор	110	415	1110 C
					405					410					413	
						_		_			_	٥.	٥.	_		•
20	Thr	GIn	Ala		Leu	Ser	Leu	Pro		Thr	Pro	Gly	Glu		Ala	Ser
				420					425					430		
25	He	Ser	Cys	Arg	Ser	Ser	Lys	Ser	Leu	Leu	His	Ser	Asn	Gly	Asn	Thr
			435					440					445			
	Tyr	Leu	Tyr	Trp	Tyr	Leu	Gln	Lys	Pro	Gly	Gin	Ser	Pro	Gln	Leu	Leu
30		450					455					460				
	He	Tyr	Arg	Met	Ser	Asn	Leu	Ala	Ser	Gly	Val	Pro	Asp	Arg	Phe	Ser
	465					470					475					480
35																
	GLv	Sar	GLV	Ser	GIV	Thr	Δla	Phe	Thr	Leu	lve	He	Ser	Δrσ	Val	Glu
	u 1 y	001	uıy	001	485	,,,,,	Alu	1110	1111	490	Lyo	110	001	7 11 B	495	ulu
40					400					430					433	
		٥.			٥.		+ .	_	^		0 1.			0 1	T	D
	Ala	GIU	ASP		ыу	val	ıyr	ıyr		Met	GIN	HIS	He		ıyr	Pro
				500					505					510		
45																
	Phe	Thr	Phe	Gly	Gin	Gly	Thr	Lys	Leu	Glu	He	Lys				
			515					520								
50																
	<210)> 1	7													
	<211	> 1	572													
55																

	<212> DNA
5	<213> Artificial
	<220> <223> an artificially synthesized nucleotide sequence
10	<400> 17
	atggactgga cctggaggtt cctctttgtg gtggcagcag ctacaggtgt ccagtcccag 60
15	gtgcagctgg tgcagtctgg atctgaggtg aagaagcctg gggcctcagt gaaggtctcc 120
	tgcaaggctt ctggatacac cttcaccaac tcctggatga actgggtgag gcagaggcct 180
20	ggaaagggtc ttgagtgggt tggacggatt tatcctggag atggagaaac tatctacaat 240
25	gggaaattca gggtcagagt cacgattacc gcggacgaat ccacgagcac agcctacatg 300
	gagctgagca gcctgagatc tgaggacacg gccgtgtatt actgtgcgag aggctatgat 360
30	gattactcgt ttgcttactg gggccaggga accacggtca ccgtctcttc aggtggtggt 420
	ggatccggag gtggtggatc gggtggtgga ggatcggata ttgtgatgac tcaggctgca 480
35	ctctccctgc ccgtcacccc tggagagccg gcctccatct cctgcaggtc tagtaagagt 540
40	ctcctgcata gtaatggcaa cacttacttg tattggtacc tgcagaagcc agggcagtct 600
	ccacagetee tgatetateg gatgtecaae ettgeeteag gggteeetga eaggtteagt 660
45	ggcagtggat caggcacagc ttttacactg aaaatcagca gagtggaggc tgaggatgtt 720
	ggggtttatt actgcatgca acatatagaa tatcctttta cgttcggcca agggaccaaa 780
50	ctggaaatca aaggaggtgg tggatcgggt ggtggtggtt cgggaggcgg tggatcgcag 840
	gtgcagctgg tgcagtctgg atctgaggtg aagaagcctg gggcctcagt gaaggtctcc 900

5	tgcaaggctt ctggatacac cttcaccaac tcctggatga actgggtgag gcagaggcct	960
	ggaaagggtc ttgagtgggt tggacggatt tatcctggag atggagaaac tatctacaat	1020
10	gggaaattca gggtcagagt cacgattacc gcggacgaat ccacgagcac agcctacatg	1080
	gagotgagoa gootgagato tgaggacacg googtgtatt actgtgogag aggotatgat	1140
15	gattactcgt ttgcttactg gggccaggga accacggtca ccgtctcttc aggtggtggt	1200
	ggatccggag gtggtggatc gggtggtgga ggatcggata ttgtgatgac tcaggctgca	1260
20	ctctccctgc ccgtcacccc tggagagccg gcctccatct cctgcaggtc tagtaagagt	1320
25	ctcctgcata gtaatggcaa cacttacttg tattggtacc tgcagaagcc agggcagtct	1380
	ccacagctcc tgatctatcg gatgtccaac cttgcctcag gggtccctga caggttcagt	1440
30	ggcagtggat caggcacagc ttttacactg aaaatcagca gagtggaggc tgaggatgtt	1500
	ggggtttatt actgcatgca acatatagaa tatcctttta cgttcggcca agggaccaaa	1560
35	ctggaaatca aa	1572
40	<210> 18	
	<211> 524	
	<212> PRT	
45	<213> Artificial	
	⟨220⟩	
	<223> an artificially synthesized peptide sequence	
50		
	<400> 18	
	Met Asp Trp Thr Trp Arg Phe Leu Phe Val Val Ala Ala Thr Gly	

	1	5	10	15
5	Val Gin Ser Gin 20	n Val Gin Leu Val Gin 25	Ser Gly Ser Glu Va 30	
10	Pro Gly Ala Ser 35	Val Lys Val Ser Cys 40	Lys Ala Ser Gly Ty 45	r Thr Phe
15	Thr Asn Ser Tro	Met Asn Trp Val Arg 55	Gin Arg Pro Giy Ly 60	s Gly Leu
20	Glu Trp Val Gly 65	Arg lie Tyr Pro Gly 70	Asp Gly Glu Thr !! 75	e Tyr Asn 80
25		; Val Arg Val Thr lle 85	90	95
30	Thr Ala Tyr Met	: Glu Leu Ser Ser Leu) 105		
35	Tyr Tyr Cys Ala 115	a Arg Gly Tyr Asp Asp 120	Tyr Ser Phe Ala Ty 125	r Trp Gly
33	Gin Gly Thr Thr 130	Val Thr Val Ser Ser 135	Gly Gly Gly Gly Se	r Gly Gly
40	Gly Gly Ser Gly 145	Gly Gly Gly Ser Asp 150	lle Val Met Thr Gl 155	n Ala Ala 160
45	Leu Ser Leu Pro	Val Thr Pro Gly Glu 165	Pro Ala Ser Ile Se 170	r Cys Arg 175
50	Ser Ser Lys Ser 180	Leu Leu His Ser Asn 185		
55	Tyr Leu Gin Lys	s Pro Gly Gln Ser Pro	Gin Leu Leu lie Ty	r Arg Met

			195					200					205			
5		Asn 210	Leu	Ala	Ser	Gly	Va I 215	Pro	Asp	Arg	Phe	Ser 220	Gly	Ser	Gly	Ser
10	Gly 225	Thr	Ala	Phe	Thr	Leu 230	Lys	lle	Ser	Arg	Va I 235	Glu	Ala	Glu	Asp	Va I 240
15	Gly	Val	Tyr	Tyr	Cys 245	Met	GIn	His	lle	Glu 250	Tyr	Pro	Phe	Thr	Phe 255	Gly
20	Gin	Gly	Thr	Lys 260	Leu	Glu	lle	Lys	Gly 265	Gly	Gly	Gly	Ser	Gly 270	Gly	Gly
25			Gly 275					280					285			
30	Glu	Val 290	Lys	Lys	Pro	Gly	Ala 295	Ser	Val	Lys	Val	Ser 300	Cys	Lys	Ala	Ser
35	Gly 305	Tyr	Thr	Phe	Thr	Asn 310	Ser	Trp	Met	Asn	Trp 315	Val	Arg	GIn	Arg	Pro 320
	Gly	Lys	Gly	Leu	Glu 325	Trp	Val	Gly	Arg	11e 330	Tyr	Pro	Gly	Asp	G1y 335	Glu
40	Thr	lle	Tyr	Asn 340	Gly	Lys	Phe	Arg	Va I 345	Arg	Val	Thr	lle	Thr 350	Ala	Asp
45	Glu	Ser	Thr 355	Ser	Thr	Ala	Tyr	Met 360	Glu	Leu	Ser	Ser	Leu 365	Arg	Ser	Glu
50	Asp	Thr 370	Ala	Val	Tyr	Tyr	Cys 375	Ala	Arg	Gly	Tyr	Asp 380	Asp	Tyr	Ser	Phe
55	Ala	Tyr	Trp	Gly	GIn	Gly	Thr	Thr	Val	Thr	Val	Ser	Ser	Gly	Gly	Gly

	385	390	395	400
5	Gly Ser Gly Gly Gly 405	Gly Ser Gly Gly Glý 410	Gly Ser Asp lle Val	Met
10	Thr Gin Ala Ala Leu 420	Ser Leu Pro Val Thr 425	Pro Gly Glu Pro Ala 430	Ser
15	lle Ser Cys Arg Ser 435	Ser Lys Ser Leu Leu 440	His Ser Asn Gly Asn 445	Thr
20	Tyr Leu Tyr Trp Tyr 450	Leu Gin Lys Pro Gly 455	Gin Ser Pro Gin Leu 460	Leu
25	lle Tyr Arg Met Ser 465	Asn Leu Ala Ser Gly 470	Val Pro Asp Arg Phe 475	Ser 480
20	Gly Ser Gly Ser Gly 485	Thr Ala Phe Thr Leu 490	Lys lle Ser Arg Val 495	Glu
30	Ala Glu Asp Val Gly 500	Val Tyr Tyr Cys Met 505	Gln His lle Glu Tyr 510	Pro
35	Phe Thr Phe Gly Gln 515	Gly Thr Lys Leu Glu 520	lle Lys	
40	<210> 19			
45	<211> 1572 <212> DNA <213> Artificial			
50	<220> <223> an artificia	lly synthesized nucle	eotide sequence	
	<400> 19			
<i>55</i>				

	atggact	tgga cctggaggt	t cctctttgtg	gtggcagcag	ctacaggtgt	ccagtcccag	60
5	gtgcago	ctgg tgcagtctg	g acctgaggtg	aagaagcctg	gggcctcagt	gaaggtctcc	120
10	tgcaagg	gott otggataca	c cttcaccaac	tcctggatga	actgggtgag	gcagaggcct	180
70	ggaaagg	ggtc ttgagtgga	t tggacggatt	tatcctggag	atggagaaac	tatctacaat	240
15	gggaaat	ttca gggtcagag	t cacgattacc	gcggacgaat	ccacgagcac	agcctacatg	300
	gagctga	agca gcctgagat	c tgaggacacg	gccgtgtatt	actgtgcgag	aggctatgat	360
20	gattact	togt ttgottact	g gggccaggga	accacggtca	ccgtctcttc	aggtggtggt	420
	ggatocg	ggag gtggtggat	c gggtggtgga	ggatcggata	ttgtgatgac	tcagtctcca	480
25	ctctccc	ctgo cogtoacco	c tggagagccg	gcctccatct	cctgcaggtc	tagtaagagt	540
30	ctcctgo	cata gtaatggca	a cacttacttg	tattggttcc	tgcagaagcc	agggcagtct	600
	ccacago	ctcc tgatctato	g gatgtccaac	cttgcctcag	gggtccctga	caggttcagt	660
35	ggcagtg	ggat caggcacag	c ttttacactg	aaaatcagca	gagtggaggc	tgaggatgtt	720
	ggggttt	tatt actgcatgo	a acatatagaa	tatcctttta	cgttcggcca	agggaccaaa	780
40	ctggaaa	atca aaggaggtg	g tggatcgggt	ggtggtggtt	cgggaggcgg	tggatcgcag	840
45	gtgcago	ctgg tgcagtctg	g acctgaggtg	aagaagcctg	gggcctcagt	gaaggtctcc	900
45	tgcaagg	gott otggataca	c cttcaccaac	tcctggatga	actgggtgag	gcagaggcct	960
50	ggaaagg	ggtc ttgagtgga	t tggacggatt	tatcctggag	atggagaaac	tatctacaat	1020
	gggaaat	ttca gggtcagag	t cacgattacc	gcggacgaat	ccacgagcac	agcctacatg	1080

	gagotgagoa gootgagato tgaggacacg googtgtatt actgtgcgag aggotatgat 1140)
5	gattactcgt ttgcttactg gggccaggga accacggtca ccgtctcttc aggtggtggt 1200)
10	ggatccggag gtggtggatc gggtggtgga ggatcggata ttgtgatgac tcagtctcca 1260)
	ctctccctgc ccgtcacccc tggagagccg gcctccatct cctgcaggtc tagtaagagt 1320)
15	ctcctgcata gtaatggcaa cacttacttg tattggttcc tgcagaagcc agggcagtct 1380)
	ccacagctcc tgatctatcg gatgtccaac cttgcctcag gggtccctga caggttcagt 1440)
20	ggcagtggat caggcacagc tittacactg aaaatcagca gagtggaggc tgaggatgtt 1500)
25	ggggtttatt actgcatgca acatatagaa tatcctttta cgttcggcca agggaccaaa 1560)
25	ctggaaatca aa 1572	<u>}</u>
30	<210> 20	
	<211> 524	
	<212> PRT	
35	<213> Artificial	
	<220>	
40	<223> an artificially synthesized peptide sequence	
40	(100)	
	(400) 20 Met Asp Trp Thr Trp Arg Phe Leu Phe Val Val Ala Ala Ala Thr Gly	
45	1 5 10 15	
45		
	Val Gin Ser Gin Val Gin Leu Val Gin Ser Gly Pro Glu Val Lys Lys 20 25 30	
50		
	Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe 35 40 45	

5	Thr	Asn 50	Ser	Trp	Met	Asn	Trp 55	Val	Arg	GIn	Arg	60	Gly	Lys	Gly	Leu
10	GI u 65	Trp	lle	Gly	A rg	11e 70	Tyr	Pro	Gly	Asp	Gly 75	Glu	Thr	He	Tyr	Asn 80
15	Gly	Lys	Phe	Arg	Va I 85	Arg	Val	Thr	He	Thr 90	Ala	Asp	Glu	Ser	Thr 95	Ser
20	Thr	Ala	Tyr	Met 100	Glu	Leu	Ser	Ser	Leu 105	Arg	Ser	Glu	Asp	Thr 110	Ala	Val
20	Tyr		Cy s 115	Ala	Arg	Gly		Asp 120	Asp	Tyr	Ser	Phe	Ala 125	Tyr	Trp	Gly
25	Gln	Gly 130	Thr	Thr	Val	Thr	V a I 135	Ser	Ser	Gly	Gly	Gly 140	Gly	Ser	Gly	Gly
30	Gly 145	Gly	Ser	Gly	Gly	Gly 150	Gly	Ser	Asp	He	Va I 155	Met	Thr	Gin	Ser	Pro 160
35	Leu	Ser	Leu	Pro	Va I 165	Thr	Pro	Gly	Gl u	Pro 170	Ala	Ser	He	Ser	Cys 175	Arg
40	Ser	Ser	Lys	Ser 180	Leu	Leu	His	Ser	A sn 185	Gly	Asn	Thr	Tyr	Leu 190	Tyr	Trp
45	Phe	Leu	GIn 195	Lys	Pro	Gly	GIn	Ser 200	Pro	GIn	Leu	Leu	11e 205	Tyr	Arg	Met
50	Ser	Asn 210	Leu	Ala	Ser	Gly	Va I 215	Pro	Asp	Arg	Phe	Ser 220	Gly	Ser	Gly	Ser
	Gly 225	Thr	Ala	Phe	Thr	Leu 230	Lys	lle	Ser	Arg	Va I 235	Glu	Ala	Glu	Asp	Va I 240
<i>55</i>																

5	Gly	Val	Tyr	Tyr	Cys 245	Met	Gin	HIS	He	250	lyr	Pro	Phe	Inr	255	GIY
10	GIn	Gly	Thr	Lys 260	Leu	Glu	lle	Lys	Gly 265	Gly	Gly	Gly	Ser	Gly 270	Gly	Gly
15	Gly	Ser	Gly 275	Gly	Gly	Gly	Ser	GIn 280	Val	GIn	Leu	Val	GIn 285	Ser	Giy	Pro
20	Glu	Val 290	Lys	Lys	Pro	Gly	Ala 295	Ser	Val	Lys	Val	Ser 300	Cys	Lys	Ala	Ser
-	Gly 305	Tyr	Thr	Phe	Thr	Asn 310	Ser	Trp	Met	Asn	Trp 315	Val	Arg	GIn	Arg	Pro 320
25	Gly	Lys	Gly	Leu	Glu 325	Trp	lle	Gly	Arg	11e 330	Tyr	Pro	Gly	Asp	Gly 335	Glu
30	Thr	lle	Tyr	Asn 340	Gly	Lys	Phe	Arg	Va i 345	Arg	Val	Thr	He	Thr 350	Ala	Asp
35	Glu	Ser	Thr 355	Ser	Thr	Ala	Tyr	Met 360	Glu	Leu	Ser	Ser	Leu 365	Arg	Ser	Glu
40	Asp	Thr 370	Ala	Val	Tyr	Tyr	Cys 375	Ala	Arg	Gly	Tyr	Asp 380	Asp	Tyr	Ser	Phe
45	Ala 385	Tyr	Trp	Gly	Gin	Gly 390	Thr	Thr	Val	Thr	Va I 395	Ser	Ser	Gly	Gly	Gly 400
50	Gly	Ser	Gly	Gly	Gly 405	Gly	Ser	Gly	Gly	Gly 410	Gly	Ser	Asp	He	Val 415	Met
_	Thr	GIn	Ser	Pro 420	Leu	Ser	Leu	Pro	Va I 425	Thr	Pro	Gly	Glu	Pro 430	Ala	Ser
<i>55</i>																

5	He Ser Cys Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr 435 440 445
10	Tyr Leu Tyr Trp Phe Leu Gin Lys Pro Giy Gin Ser Pro Gin Leu Leu 450 455 460
15	lie Tyr Arg Met Ser Asn Leu Ala Ser Gly Val Pro Asp Arg Phe Ser 465 470 475 480
20	Gly Ser Gly Ser Gly Thr Ala Phe Thr Leu Lys IIe Ser Arg Val Glu 485 490 495
-	Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His !le Glu Tyr Pro 500 505 510
25	Phe Thr Phe Gly Gln Gly Thr Lys Leu Glu IIe Lys 515 520
30	<210> 21
35	<211> 1572 <212> DNA <213> Artificial
40	<220> <223> an artificially synthesized nucleotide sequence
45	<pre><400> 21 atggactgga cctggaggtt cctctttgtg gtggcagcag ctacaggtgt ccagtcccag 60</pre>
50	gtgcagctgg tgcagtctgg acctgaggtg aagaagcctg gggcctcagt gaaggtctcc 120
	tgcaaggctt ctggatacac cttcaccaac tcctggatga actgggtgag gcagaggcct 180
55	ggaaagggtc ttgagtggat gggacggatt tatcctggag atggagaaac tatctacaat 240

5	gggaaa	attca gggtca	gagt cacgatt	acc gcggacgaa	at ccacgagcac	agcctacatg	300
	gagctį	gagca gcctga	gatc tgaggac	acg googtgtat	tt actgtgcgag	aggctatgat	360
10	gatta	ctcgt ttgctt	actg gggccag	gga accacggto	ca cogtototto	aggtggtggt	420
	ggato	cggag gtggtg	gatc gggtggt	gga ggatcggat	ta ttgtgatgac	tcagtctgca	480
15	ctctco	cctgc ccgtca	cccc tggagag	ccg gcctccato	ct cotgoaggto	tagtaagagt	540
20	ctcctg	gcata gtaatg	gcaa cacttac	ttg tattggttd	cc agcagaagcc	agggcagtct	600
	ccaca	gctcc tgatct	atcg gatgtcc	aac cttgcctca	ag gggtccctga	caggttcagt	660
<i>25</i>	ggcagt	tggat caggca	cago ttttaca	ctg aaaatcago	ca gagtggaggc	tgaggatgtt	720
	ggggt1	ttatt actgca	tgca acatata	gaa tatccttti	ta cgttcggcca	agggaccaaa	780
30	ctggaa	aatca aaggag	gtgg tggatcg	ggt ggtggtggt	t cgggaggcgg	tggatcgcag	840
	gtgcag	gctgg tgcagt	ctgg acctgag	gtg aagaagcct	g gggcctcagt	gaaggtctcc	900
35	tgcaag	ggctt ctggat	acac cttcacca	aac tootggatg	ga actgggtgag	gcagaggcct	960
40	ggaaag	gggtc ttgagt	ggat gggacgga	att tatcctgga	ng atggagaaac	tatctacaat	1020
	gggaaa	attca gggtca	gagt cacgatta	acc gcggacgaa	it ccacgagcac	agcctacatg	1080
45	gagctg	gagca gootga	gatc tgaggaca	acg gccgtgtat	t actgtgcgag	aggctatgat	1140
	gattac	ctogt ttgott	actg gggccagg	gga accacggto	a cogtototto	aggtggtggt	1200
50	ggatco	ggag gtggtg	gatc gggtggtg	gga ggatcggat	a ttgtgatgac	tcagtctgca	1260
55	ctctcc	cctgc ccgtca	cccc tggagago	ccg gootcoato	t cctgcaggtc	tagtaagagt	1320

5	ctcctgcata gtaatggcaa cacttacttg tattggttcc agcagaagcc agggcagtct	1380
	ccacagetee tgatetateg gatgtecaae ettgeeteag gggteeetga caggtteagt	1440
10	ggcagtggat caggcacagc ttttacactg aaaatcagca gagtggaggc tgaggatgtt	1500
	ggggtttatt actgcatgca acatatagaa tatcctttta cgttcggcca agggaccaaa	1560
15	ctggaaatca aa	1572
20	<210≻ 22	
	<211> 524	
	<212> PRT	
25	<213> Artificial	
	<220≻	
	<223> an artificially synthesized peptide sequence	
	<223> an artificially synthesized peptide sequence	
30	(223) an artificially synthesized peptide sequence	
30	<400> 22	
30		
<i>30</i>	<400> 22	
	<400> 22 Met Asp Trp Thr Trp Arg Phe Leu Phe Val Val Ala Ala Ala Thr Gly	
	<pre><400> 22 Met Asp Trp Thr Trp Arg Phe Leu Phe Val Val Ala Ala Ala Thr Gly 1 5 10 15</pre>	
	<400> 22 Met Asp Trp Thr Trp Arg Phe Leu Phe Val Val Ala Ala Ala Thr Gly 1 5 10 15 Val Gin Ser Gin Val Gin Leu Val Gin Ser Gly Pro Glu Val Lys Lys	
35	<400> 22 Met Asp Trp Thr Trp Arg Phe Leu Phe Val Val Ala Ala Ala Thr Gly 1 5 10 15 Val Gin Ser Gin Val Gin Leu Val Gin Ser Gly Pro Glu Val Lys Lys	
35	\(\text{400} \rangle 22 \) Met Asp Trp Thr Trp Arg Phe Leu Phe Val Val Ala Ala Ala Thr Gly \(1 \) \(5 \) \(10 \) \(15 \) Val Gln Ser Gln Val Gln Leu Val Gln Ser Gly Pro Glu Val Lys Lys \(20 \) \(25 \) \(30 \)	
35	Met Asp Trp Thr Trp Arg Phe Leu Phe Val Val Ala Ala Ala Thr Gly 1 5 10 15 Val Gln Ser Gln Val Gln Leu Val Gln Ser Gly Pro Glu Val Lys Lys 20 25 30 Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe 35 40 45	
<i>35 40</i>	(400> 22 Met Asp Trp Thr Trp Arg Phe Leu Phe Val Val Ala Ala Ala Thr Gly 1 5 10 15 Val Gin Ser Gin Val Gin Leu Val Gin Ser Gly Pro Glu Val Lys Lys 20 25 30 Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe 35 40 45 Thr Asn Ser Trp Met Asn Trp Val Arg Gin Arg Pro Gly Lys Gly Leu	
<i>35 40</i>	Met Asp Trp Thr Trp Arg Phe Leu Phe Val Val Ala Ala Ala Thr Gly 1 5 10 15 Val Gln Ser Gln Val Gln Leu Val Gln Ser Gly Pro Glu Val Lys Lys 20 25 30 Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe 35 40 45	
<i>35 40</i>	(400) 22 Met Asp Trp Thr Trp Arg Phe Leu Phe Val Val Ala Ala Ala Thr Gly 1 5 10 15 Val Gin Ser Gin Val Gin Leu Val Gin Ser Gly Pro Glu Val Lys Lys 20 25 30 Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe 35 40 45 Thr Asn Ser Trp Met Asn Trp Val Arg Gin Arg Pro Gly Lys Gly Leu 50 55 60	
35 40 45	(400> 22 Met Asp Trp Thr Trp Arg Phe Leu Phe Val Val Ala Ala Ala Thr Gly 1 5 10 15 Val Gin Ser Gin Val Gin Leu Val Gin Ser Gly Pro Glu Val Lys Lys 20 25 30 Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe 35 40 45 Thr Asn Ser Trp Met Asn Trp Val Arg Gin Arg Pro Gly Lys Gly Leu	

5	Gly	Lys	Phe	Arg	Va I 85	Arg	Val	Thr	lle	Thr 90	Ala	Asp	Glu	Ser	Thr 95	Ser
10	Thr	Ala	Tyr	Met 100	Glu	Leu	Ser	Ser	Leu 105	Arg	Ser	Glu	Asp	Thr 110	Ala	Val
	Tyr	Tyr	Cys 115	Ala	Arg	Gly	Tyr	Asp 120	Asp	Tyr	Ser	Phe	Ala 125	Tyr	Trp	Gly
15	Gin	Gly 130	Thr	Thr	Val	Thr	Va I 135	Ser	Ser	Gly	Gly	G y	Gly	Ser	Gly	Gly
20	Gly 145	Gly	Ser	Gly	Gly	Gly 150	Gly	Ser	Asp	lle	Va I 155	Met	Thr	Gin	Ser	Ala 160
25	Leu	Ser	Leu	Pro	Val 165	Thr	Pro	Gly	Glu	Pro 170	Ala	Ser	lle	Ser	Cys 175	Arg
30	Ser	Ser	Lys	Ser 180	Leu	Leu	His	Ser	Asn 185	Gly	Asn	Thr	Tyr	Leu 190	Tyr	Trp
35	Phe	Gin	GIn 195	Lys	Pro	Gly	GIn	Ser 200	Pro	GIn	Leu	Leu	lle 205	Tyr	Arg	Met
40	Ser	Asn 210	Leu	Ala	Ser	Gly	Va I 215	Pro	Asp	Arg	Phe	Ser 220	Gly	Ser	Gly	Ser
45	Gly 225	Thr	Ala	Phe	Thr	Leu 230	Lys	lle	Ser	Arg	Va I 235	Głu	Ala	Glu	Asp	Va I 240
45	Gly	Val	Tyr	Tyr	Cys 245	Met	GIn	His	lle	GI u 250	Tyr	Pro	Phe	Thr	Phe 255	Gly
50	GIn	Gly	Thr	Lys 260	Leu	Glu	lle	Lys	Gly 265	Gly	Gly	Gly	Ser	Gly 270	Gly	Gly

5	Gly	Ser	Gly 275	Gly	Gly	Gly	Ser	GIn 280	Val	GIn	Leu	Val	GIn 285	Ser	Gly	Pro
	Glu		Lys	Lys	Pro	Gly		Ser	Val	Lys	Val		Cys	Lys	Ala	Ser
10	Clv	290	The	Pho	The	Aon	295	Trn	Mot	Asn	Trn	300 Val	Ara	Glo	Ara	Pro
	305	I yr	1111	LINE	1111	310	361	пр	ine c	VOII	315	Vai	AI B		AI B	320
15	Gly	Lys	Gly	Leu	Glu 325	Trp	Met	Gly	Arg	11e 330	Tyr	Pro	Gly	Asp	Gly 335	Glu
20	Thr	lle	Tyr	Asn 340	Gly	Lys	Phe	Arg	Va I 345	Arg	Val	Thr	lle	Thr 350	Ala	Asp
25	Glu	Ser	Thr 355	Ser	Thr	Ala	Tyr	Met 360	Glu	Leu	Ser	Ser	Leu 365	Arg	Ser	Glu
30	Asp	Thr 370	Ala	Val	Tyr	Tyr	Cys 375	Ala	Arg	Gly	Tyr	Asp 380	Asp	Tyr	Ser	Phe
35	Ala 385	Tyr	Trp	Gly	GIn	Gly 390	Thr	Thr	Val	Thr	Va I 395	Ser	Ser	Gly	Gly	Gly 400
40	Gly	Ser	Gly	Gly	Gly 405	Gly	Ser	Gly	Gly	Gly 410	Gly	Ser	Asp	lle	Va I 415	Met
	Thr	Gln	Ser	A I a 420	Leu	Ser	Leu	Pro	Va I 425	Thr	Pro	Gly	Glu	Pro 430	Ala	Ser
45	He	Ser	Cys 435	Arg	Ser	Ser	Lys	Ser 440	Leu	Leu	His	Ser	Asn 445	Gly	Asn	Thr
50	Tyr	Leu 450	Tyr	Trp	Phe	GIn	GIn 455	Lys	Pro	Gly	Gln	Ser 460	Pro	GIn	Leu	Leu
55																

	lle Tyr Arg Met Ser Asn Leu Ala Ser Gly Val Pro Asp Arg Phe Ser
	465 470 475 480
5	
	Gly Ser Gly Ser Gly Thr Ala Phe Thr Leu Lys lle Ser Arg Val Glu
	485 490 495
	400
10	
	Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His Ile Glu Tyr Pro
	500 505 510
15	
,0	Phe Thr Phe Gly Gln Gly Thr Lys Leu Glu lle Lys
	515 520
20	
	⟨210⟩ 23
	<211> 1572
	<212> DNA
25	<pre><213> Artificial</pre>
	(210) Al CITTOTAL
	(000)
00	<220>
30	<223> an artificially synthesized nucleotide sequence
	<400> 23
35	atggactgga cctggaggtt cctctttgtg gtggcagcag ctacaggtgt ccagtcccag 60
	gtgcagctgg tgcagtctgg acctgaggtg aagaagcctg gggcctcagt gaaggtctcc 120
40	tgcaaggctt ctggatacac cttcaccaac tcctggatga actgggtgag gcagaggcct 180
	ggaaagggtc ttgagtggat gggacggatt tatcctggag atggagaaac tatctacaat 240
45	
45	gggaaattca gggtcagagt cacgattacc gcggacgaat ccacgagcac agcctacatg 300
	gagotgagoa gootgagato tgaggacaog googtgtatt actgtgogag aggotatgat 360
50	gagotgagoa gootgagato tgaggaoaog googtgtatt aotgtgogag aggotatgat ooo
	gattactcgt ttgcttactg gggccaggga accacggtca ccgtctcttc aggtggtggt 420
	gattactcgt ttgcttactg gggccaggga accacggtca ccgtctcttc aggtggtggt 420

	ggatccggag	gtggtggatc	gggtggtgga	ggatcggata	ttgtgatgac	tcagtctcca	480
5	ctctccctgc	ccgtcacccc	tggagagccg	gcctccatct	cctgcaggtc	tagtaagagt	540
10	ctcctgcata	gtaatggcaa	cacttacttg	tattggttcc	agcagaagcc	agggcagtct	600
,,	ccacagctcc	tgatctatcg	gatgtccaac	cttgcctcag	gggtccctga	caggttcagt	660
15	ggcagtggat	caggcacagc	ttttacactg	aaaatcagca	gagtggaggc	tgaggatgtt	720
g	ggggtttatt	actgcatgca	acatatagaa	tatcctttta	cgttcggcca	agggaccaaa	780
20	ctggaaatca	aaggaggtgg	tggatcgggt	ggtggtggtt	cgggaggcgg	tggatcgcag	840
	gtgcagctgg	tgcagtctgg	acctgaggtg	aagaagcctg	gggcctcagt	gaaggtctcc	900
25	tgcaaggctt	ctggatacac	cttcaccaac	tcctggatga	actgggtgag	gcagaggcct	960
30	ggaaagggtc	ttgagtggat	gggacggatt	tatcctggag	atggagaaac	tatctacaat	1020
	gggaaattca	gggtcagagt	cacgattacc	gcggacgaat	ccacgagcac	agcctacatg	1080
35	gagctgagca	gcctgagatc	tgaggacacg	gccgtgtatt	actgtgcgag	aggctatgat	1140
	gattactcgt	ttgcttactg	gggccaggġa	accacggtca	ccgtctcttc	aggtggtggt	1200
40	ggatccggag	gtggtggatc	gggtggtgga	ggatcggata	ttgtgatgac	tcagtctcca	1260
	ctctccctgc	ccgtcacccc	tggagagccg	goctccatct	cctgcaggtc	tagtaagagt	1320
45	ctcctgcata	gtaatggcaa	cacttacttg	tattggttcc	agcagaagcc	agggcagtct	1380
50	ccacagctcc	tgatctatcg	gatgtccaac	cttgcctcag	gggtccctga	caggttcagt	1440
	ggcagtggat	caggcacagc	ttitacactg	aaaatcagca	gagtggaggc	tgaggatgtt	1500

	ggggtttatt actgcatgca acatatagaa tatcctttta cgttcggcca agggaccaaa	1560
5	ctggaaatca aa	1572
10	<210> 24 <211> 524	
15	<212> PRT <213> Artificial	
20	<pre><220> <223> an artificially synthesized peptide sequence</pre>	
20	<400> 24 Met Asp Trp Thr Trp Arg Phe Leu Phe Val Val Ala Ala Thr Gly	
25	1 5 10 15 Val Gin Ser Gin Val Gin Leu Val Gin Ser Gly Pro Giu Val Lys Lys	
30	20 25 30 Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe	
35	35 40 45 Thr Asn Ser Trp Met Asn Trp Val Arg Gin Arg Pro Gly Lys Gly Leu	
40	50 55 60	
	Glu Trp Met Gly Arg lie Tyr Pro Gly Asp Gly Glu Thr Ile Tyr Asn 65 70 75 80	
45	Gly Lys Phe Arg Val Arg Val Thr IIe Thr Ala Asp Glu Ser Thr Ser 85 90 95	
50	Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val 100 105 110	
55	Tyr Tyr Cys Ala Arg Gly Tyr Asp Asp Tyr Ser Phe Ala Tyr Trp Gly	

		115		120		125
5	Gin Giy 130	Thr Thr	Val Thr	Val Ser S	Ser Gly Gly Gly 140	Gly Ser Gly Gly
10	Gly Gly 145	Ser Gly	Gly Gly 150	Gly Ser A	Asp lle Val Met 155	Thr Gin Ser Pro
15	Leu Ser	Leu Pro	Val Thr	Pro Gly G	ilu Pro Ala Ser 170	lle Ser Cys Arg
20	Ser Ser	Lys Ser 180	Leu Leu		Asn Gly Asn Thr 85	Tyr Leu Tyr Trp 190
25	Phe Gin	Gin Lys 195	Pro Gly	GIn Ser P 200		lle Tyr Arg Met 205
30	Ser Asn 210	Leu Ala	Ser Gly	Val Pro A	Asp Arg Phe Ser 220	Gly Ser Gly Ser
25	Gly Thr 225	Ala Phe	Thr Leu 230	Lys lle S	Ser Arg Val Glu 235	Ala Glu Asp Val 240
35	Gly Val	Tyr Tyr	Cys Met 245	GIn His 1	le Glu Tyr Pro 250	Phe Thr Phe Gly 255
40	Gin Gly	Thr Lys 260			aly Gly Gly Gly 265	Ser Gly Gly Gly 270
45	Gly Ser	Gly Gly 275	Gly Gly	Ser GIn V	/al Gin Leu Vai	Gin Ser Gly Pro 285
50	Glu Val 290	Lys Lys	Pro Gly	Ala Ser V 295	/al Lys Val Ser 300	Cys Lys Ala Ser
55	Gly Tyr	Thr Phe	Thr Asn	Ser Trp M	Met Asn Trp Val	Arg Gin Arg Pro

	305		31	0	315		320
5	Gly Ly	s Gly Leu	Glu Tr 325	p Met Gly	Arg ile Tyr 330	Pro Gly Asp	Gly Glu 335
10	Thr II	e Tyr Asr 340		s Phe Arg	Val Arg Val 345	Thr lie Thr	Ala Asp
15	Glu Sei	Thr Ser	Thr Al	a Tyr Met 360	Glu Leu Ser	Ser Leu Arg 365	Ser Glu
20	Asp Thi		Tyr Ty	r Cys Ala 375	Arg Gly Tyr	Asp Asp Tyr 380	Ser Phe
25	Ala Tyr 385	r Trp Gly	Gln GI;		Val-Thr Val	Ser Ser Gly	Gly Gly 400
30	Gly Ser	Gly Gly	Gly Gly 405	y Ser Gly	Gly Gly Gly 410	Ser Asp Ile	Val Met 415
	Thr Glr	Ser Pro 420	Leu Sei	r Leu Pro	Val Thr Pro	Gly Glu Pro 430	Ala Ser
35	lle Ser	Cys Arg	Ser Sei	r Lys Ser 440	Leu Leu His	Ser Asn Gly 445	Asn Thr
40	Tyr Leu 450		Phe Glr	n Gin Lys 455	Pro Gly Gln	Ser Pro Gin	Leu Leu
45	lle Tyr 465	Arg Met	Ser Asr 470		Ser Gly Val 475	Pro Asp Arg	Phe Ser 480
50	Gly Ser	Gly Ser	Gly Thr	Ala Phe	Thr Leu Lys	lle Ser Arg	Val Glu 495
55	Ala Glu	Asp Val	Gly Val	l Tyr Tyr	Cys Met Gin	His IIe Glu	Tyr Pro

	500	505	510	
5	Phe Thr Phe Gly Gln 6	Gly Thr Lys Leu Glu II 520	e Lys	
10				
	<210> 25			
15	<211> 1572 <212> DNA <213> Artificial			
20	<220> <223> an artificial	y synthesized nucleot	ide sequence	
25	<400> 25		g ctacaggtgt ccagtcccag	60
	gtgcagctgg tgcagtctgg	acctgaggtg aagaagcct	g gggcctcagt gaaggtctcc	120
30	tgcaaggctt ctggatacac	cttcaccaac tootggatg	a actgggtgag gcagaggcct	180
	ggaaagggtc ttgagtgggt	tggacggatt tatcctgga	g atggagaaac tatctacaat	240
35	gggaaattca gggtcagagt	cacgattacc gcggacgaa	t ccacgagcac agcctacatg	300
40	aggotgagoa gootgagato	tgaggacacg gccgtgtat	t actgtgcgag aggctatgat	360
v	gattactcgt ttgcttactg	gggccaggga accacggtc	a cogtototto aggtggtggt	420
45	ggatccggag gtggtggatc	gggtggtgga ggatcggata	a ttgtgatgac tcaggctgca	480
	ctctccctgc ccgtcacccc	tggagagccg gcctccatc	t cctgcaggtc tagtaagagt	540
50	ctcctgcata gtaatggcaa	cacttacttg tattggtace	c tgcagaagcc agggcagtct	600
55	ccacagctcc tgatctatcg	gatgtccaac cttgcctca	g gggtccctga caggttcagt	660

5	ggcagtggat	: caggcacagc	ttttacactg	aaaatcagca	gagtggaggc	tgaggatgtt	720
	gggg ttta tt	actgcatgca	acatatagaa	tatcctttta	cgttcggcca	agggaccaaa	780
10	ctggaaatca	aaggaggtgg	tggatcgggt	ggtggtggtt	cgggaggcgg	tggatcgcag	840
	gtgcagctgg	tgcagtctgg	acctgaggtg	aagaagcctg	gggcctcagt	gaaggtctcc	900
15	tgcaaggctt	ctggatacac	cttcaccaac	tcctggatga	actgggtgag	gcagaggcct	960
20	ggaaagggto	ttgagtgggt	tggacggatt	tatcctggag	atggagaaac	tatctacaat	1020
	gggaaattca	gggtcagagt	cacgattacc	gcggacgaat	ccacgagcac	agcctacatg	1080
25	aggctgagca	gcctgagatc	tgaggacacg	gccgtgtatt	actgtgcgag	aggctatgat	1140
	gattactcgt	ttgcttactg	gggccaggga	accacggtca	ccgtctcttc	aggtggtggt	1200
30	ggatccggag	gtggtggatc	gggtggtgga	ggatoggata	ttgtgatgac	tcaggctgca	1260
	ctctccctgc	ccgtcacccc	tggagagccg	gcctccatct	cctgcaggtc	tagtaagagt	1320
35	ctcctgcata	gtaatggcaa	cacttacttg	tattggtacc	tgcagaagcc	agggcagtct	1380
40	ccacagctcc	tgatctatcg	gatgtccaac	cttgcctcag	gggtccctga	caggttcagt	1440
	ggcagtggat	caggcacagc	ttttacactg	aaaatcagca	gagtggaggc	tgaggatgtt	1500
45	ggggtttatt	actgcatgca	acatatag aa	tatoctttta	cgttcggcca	agggaccaaa	1560
	ctggaaatca	aa					1572
50							
	<210≻ 26						
	<211> 524						

	<212>	PRT												
-	<213>	Artific	cial											
5														
	<220>													
	<223>	an art	ificia	llys	synth	nesiz	zed p	pept	ide s	seque	ence			
10	(400)	••												
	<400> Met Asp		or Tro	Ara	Pho	ينم ا	Phe	Val	Val	Δla	Δla	Δla	Thr	GIV
	1	II P II	" 11 P 5	AIG	1116	LCu	1110	10	,,,	AIG	Α.Δ	A.u	15	u, ,
15	•													
	Val Gin	Ser G	In Val	GIn	Leu	Val	GIn	Ser	Gly	Pro	Glu	Val	Lys	Lys
		20)				25					30		
20														
	Pro Gly	Ala S	er Val	Lys	Val	Ser	Cys	Lys	Ala	Ser	Gly	Tyr	Thr	Phe
		35				40					45			
25	*				T	M = 1	A	01-	A	D	C1	1	C L.	1
	Thr Asn 50	Ser II	тр мет	ASN	1rp 55	vai	Arg	GIN	Arg	60	шу	Lys	ч	Leu
	30				55					50				
30	Glu Trp	Val G	ly Arg	ile	Tyr	Pro	Gly	Asp	Gly	Glu	Thr	lle	Tyr	Asn
	65			70					75					80
35	Gly Lys	Phe A	g Val	Arg	Val	Thr	He	Thr	Ala	Asp	Glu	Ser	Thr	Ser
			85					90					95	
	-·	~				•		A	.	01		Th	A 1 =	V-1
40	Thr Ala			Leu	ser	Ser	105	Arg	ser	GIU	ASP	110	AIZ	vai
			00				103					110		
	Tyr Tyr	Cys A	a Arg	Gly	Tyr	Asp	Asp	Tyr	Ser	Phe	Ala	Tyr	Trp	Gly
45		115				120					125			
	Gin Gly	Thr Th	nr Val	Thr	Val	Ser	Ser	Gly	Gly	Gly	Gly	Ser	Gly	Gly
50	130				135					140				
						_								
	Gly Gly	Ser G	y Gly		Gly	Ser	Asp	He		Met	Ihr	GIN	Ala	
55	145			150					155					160
55														

5	Leu	Ser	Leu	Pro	165	Ihr	Pro	Gily	GIU	170	Ala	Ser	Пе	Ser	175	Arg
10	Ser	Ser	Lys	Ser 180	Leu	Leu	His	Ser	A sn 185	Gly	Asn	Thr	Tyr	Leu 190	Tyr	Trp
15	Tyr	Leu	G In 195	Lys	Pro	Gly	GIn	Ser 200	Pro	Gln	Leu	Leu	lle 205	Tyr	Arg	Met
20	Ser	Asn 210	Leu	Ala	Ser	Gly	Va I 215	Pro	Asp	Arg	Phe	Ser 220	Gly	Ser	Gly	Ser
20	Gly 225	Thr	Ala	Phe	Thr	Leu 230	Lys	He	Ser	Arg	Va I 235	Glu	Ala	Glu	Asp	Va I 240
25	Gly	Val	Tyr	Tyr	Cys 245	Met	GIn	His	He	GIu 250	Tyr	Pro	Phe	Thr	Phe 255	Gly
30	GIn	Gly	Thr	Lys 260	Leu	Glu	lle	Lys	Gly 265	Gly	Gly	Gly	Ser	Gly 270	Gly	Gly
35	Gly	Ser	Gly 275	Gly	Gly	Gly	Ser	GIn 280	Val	GIn	Leu	Val	GIn 285	Ser	Gly	Pro
40	Glu	Va I 290	Lys	Lys	Pro	Gly	Ala 295	Ser	Val	Lys	Val	Ser 300	Cys	Lys	Ala	Ser
45	Gly 305	Tyr	Thr	Phe	Thr	Asn 310	Ser	Trp	Met	Asn	Trp 315	Va I	Arg	GIn	Arg	Pro 320
50	Gly	Lys	Gly	Leu	G1u 325	Trp	Val	Gly	Arg	11e 330	Tyr	Pro	Gly	Asp	Gly 335	Glu
_	Thr	He	Tyr	Asn 340	Gly	Lys	Phe	Arg	Va I 345	Arg	Val	Thr	lle	Thr 350	Ala	Asp
<i>55</i>																

5	Glu	Ser	Thr 355	Ser	Thr	Ala	Tyr	Met 360	Arg	Leu	Ser	Ser	Leu 365	Arg	Ser	Glu
10	Asp	Thr 370	Ala	Val	Tyr	Tyr	Cys 375	Ala	Arg	Gly	Tyr	Asp 380	Asp	Tyr	Ser	Phe
15	Ala 385		Trp	Gly	Gln	Gly 390	Thr	Thr	Val	Thr	Va I 395	Ser	Ser	Gly	Gly	Gly 400
20	Gly	Ser	Gly	Gly	Gly 405	Gly	Ser	Gly	Gly	Gly 410	Gly	Ser	Asp	lle	Va I 415	Met
20	Thr	Gln	Ala	Ala 420	Leu	Ser	Leu	Pro	Va I 425	Thr	Pro	Gly	Glu	Pro 430	Ala	Ser
25	lie	Ser	Cys 435	Arg	Ser	Ser	Lys	Ser 440	Leu	Leu	His	Ser	A sn 445	Gly	Asn	Thr
30	Tyr	Leu 450	Tyr	Trp	Tyr	Leu	GIn 455	Lys	Pro	Gly	GIn	Ser 460	Pro	Gln	Leu	Leu
35	lle 465	Tyr	Arg	Met	Ser	A sn 470	Leu	Ala	Ser	Gly	Va I 475	Pro	Asp	Arg	Phe	Ser 480
40	Gly	Ser	Gly	Ser	Gly 485	Thr	Ala	Phe	Thr	Leu 490	Lys	lle	Ser	Arg	Va I 495	Glu
45	Ala	Glu	Asp	Va I 500	Gly	Val	Tyr	Tyr	Cys 505	Met	GIn	His	ile	Glu 510	Tyr	Pro
50	Phe	Thr	Phe 515	Gly	Gln	Gly	Thr	Lys 520	Leu	Glu	lle	Lys				
	<210)> 2	<u>!</u> 7													

	<211> 1572	
5	<212> DNA	
	<213> Artificial	
	<220>	
	<pre><223> an artificially synthesized nucleotide sequence</pre>	
	<400> 27	
15	atggactgga cctggaggtt cctctttgtg gtggcagcag ctacaggtgt ccagtcccag	60
	gtgcagctgg tgcagtctgg acctgaggtg aagaagcctg gggcctcagt gaaggtctcc 12	20
20	tgcaaggctt ctggatacac cttcaccaac tcctggatga actgggtgag gcagaggcct 18	30
	LEGGARGOLL GLEGGALAGA GLEGGAGGA LOS LEGGAGGA LOS	
	ggaaagggtc ttgagtgggt tggacggatt tatcctggag atggagaaac tatctacaat 24	40
<i>25</i>		
	gggaaattca ggggcagagt cacgattacc gcggacgaat ccacgagcac agcctacatg 30	00
	2	20
30	gagctgagca gcctgagatc tgaggacacg gccgtgtatt actgtgcgag aggctatgat 30	60
	gattactcgt ttgcttactg gggccaggga accacggtca ccgtctcttc aggtggtggt 43	20
	Eartractor Libertucto esservisia de la constante de la constan	
35	ggatccggag gtggtggatc gggtggtgga ggatcggata ttgtgatgac tcaggctgca 4	80
	ctctccctgc ccgtcacccc tggagagccg gcctccatct cctgcaggtc tagtaagagt 5	40
40	6	00
	ctcctgcata gtaatggcaa cacttacttg tattggtacc tgcagaagcc agggcagtct 6	,,,
	ccacagetee tgatetateg gatgtecaae ettgeeteag gggteeetga eaggtteagt 6	60
45		
	ggcagtggat caggcacagc ttttacactg aaaatcagca gagtggaggc tgaggatgtt 7	20
50	ggggtttatt actgcatgca acatatagaa tatcctttta cgttcggcca agggaccaaa 7	80
		40
	ctggaaatca aaggaggtgg tggatcgggt ggtggtggtt cgggaggcgg tggatcgcag 8	→ U

	gtgcagctgg	tgcagtctgg	acctgaggtg	aagaagcctg	gggcctcagt	gaaggtctcc	900
5	tgcaaggctt	ctggatacac	cttcaccaac	tcctggatga	actgggtgag	gcagaggcct	960
10	ggaaagggtc	ttgagtgggt	tggacggatt	tatcctggag	atggagaaac	tatctacaat	1020
	gggaaattca	ggggcagagt	cacgattacc	gcggacgaat	ccacgagcac	agcctacatg	1080
15	gagctgagca	gcctgagatc	tgaggacacg	gccgtgtatt	actgtgcgag	aggctatgat	1140
	gattactcgt	ttgcttactg	gggccaggga	accacggtca	ccgtctcttc	aggtggtggt	1200
20	ggatccggag	gtggtggatc	gggtggtgga	ggatcggata	ttgtgatgac	tcaggctgca	1260
	ctctccctgc	ccgtcacccc	tggagagccg	gcctccatct	cctgcaggtc	tagtaagagt	1320
25	ctcctgcata	gtaatggcaa	cacttacttg	tattggtacc	tgcagaagcc	agggcagtct	1380
30	ccacagctcc	tgatctatcg	gatgtccaac	cttgcctcag	gggtccctga	caggttcagt	1440
	ggcagtggat	caggcacagc	ttttacactg	aaaatcagca	gagtggaggc	tgaggatgtt	1500
35	ggggtttatt	actgcatgca	acatatagaa	tatcctttta	cgttcggcca	agggaccaaa	1560
	ctggaaatca	aa					1572
40							
	<21 0 > 28						
	<211> 524					•	
45	<212> PRT		•				
	<213> Art	ificial					
	<220>						
50	<223> an a	artificially	y synthesize	ed peptide s	sequence		
	<400> 28						

5	Met 1	Asp	ırp	Inr	1rp 5	arg	Pne	Leu	rne	10	vai	АТА	АТА	Ala	15	ч
10	Val	GIn	Ser	GIn 20	Val	Gln	Leu	Val	G1n 25	Ser	Gly	Pro	Glu	Va I 30	Lys	Lys
	Pro	Gly	Ala 35	Ser	Val	Lys	Val	Ser 40	Cys	Lys	Ala	Ser	Gly 45	Tyr	Thr	Phe
15	Thr	Asn 50	Ser	Trp	Met	Asn	Trp 55	Val	Arg	GIn	Arg	Pro 60	Gly	Lys	Gly	Leu
20	GIu 65	Trp	Val	Gly	Arg	11e 70	Tyr	Pro	Gly	Asp	Gly 75	Glu	Thr	lle	Tyr	Asn 80
25	Gly	Lys	Phe	Arg	Gly 85	Arg	Val	Thr	He	Thr 90	Ala	Asp	G lu	Ser	Thr 95	Ser
30	Thr	Ala	Tyr	Met 100	G lu	Leu	Ser	Ser	Leu 105	Arg	Ser	Glu	Asp	Thr 110	Ala	Val
35	Tyr	Tyr	Cys 115	Ala	Arg	Gly	Tyr	Asp 120	Asp	Tyr	Ser	Phe	Ala 125	Tyr	Trp	Gly
40	GIn	Gly 130	Thr	Thr	Val	Thr	Va I 135	Ser	Ser	Gly	Gly	Gly 140	Gly	Ser	Gly	Gly
	Gly 145	Gly	Ser	Gly	Gly	Gly 150	Gly	Ser	Asp	He	Va I 155	Met	Thr	GIn	Ala	Ala 160
45	Leu	Ser	Leu	Pro	Va I 165	Thr	Pro	Gly	Glu	Pro 170	Ala	Ser	lle	Ser	C ys 175	Arg
50	Ser	Ser	Lys	Ser 180	Leu	Leu	His	Ser	A sn 185	Gly	Asn	Thr	Tyr	Leu 190	Tyr	Trp

	Tyr	Leu	Gln	Lys	Pro	Gly	Gln	Ser	Pro	Gln	Leu	Leu	He	Tyr	Arg	Met
F			195					200					205			
5																
	Ser	Asn	Leu	Ala	Ser	Gly	Val	Pro	Asp	Arg	Phe	Ser	Gly	Ser	Gly	Ser
		210					215		•	_		220	•		_	
40		210					213					220				
10																
	Gly	Thr	Ala	Phe	Thr	Leu	Lys	He	Ser	Arg	Val	Glu	Ala	Glu	Asp	Val
	225					230					235					240
15	GIV	Val	Tvr	Tyr	Cvs	Met	Gln	His	He	Glu	Tvr	Pro	Phe	Thr	Phe	Glv
	,			.,.	245					250					255	
					245					230					233	
20	GIn	Gly	Thr	Lys	Leu	Glu	lle	Lys	Gly	Gly	Gly	Gly	Ser	Gly	G∣y	Gly
				260					265					270		
					_											
	GIV	Ser	GIV	Gly	Giv	Giv	Ser	GIn	Val	GIn	Leu	Val	Gln	Ser	Glv	Pro
25	,		275	,	,			280					285			
			2/3					200					200			
	Glu	Val	Lys	Lys	Pro	Gly	Ala	Ser	Val	Lys	Val	Ser	Cys	Lys	Ala	Ser
30		290					295					300				
	GIV	Tvr	Thr	Phe	Thr	Asn	Ser	Tro	Met	Asn	Trp	Val	Arg	GIn	Arg	Pro
	305					310					315					320
35	303	•				310					313					320
									•							
	Gly	Lys	Gly	Leu	Glu	Trp	Val	Gly	Arg	He	Tyr	Pro	Gly	Asp	Gly	Glu
					325					330					335	
40																
	Thr	He	Tvr	Asn	Glv	Lvs	Phe	Arg	GIV	Arg	Val	Thr	Пe	Thr	Ala	Asp
				340		_,_		•	345	0				350		
				340					345					330		
45																
	Glu	Ser	Thr	Ser	Thr	Ala	Tyr	Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu
			355					360					365			
50	Asn	Thr	Ala	Val	Tvr	Tvr	Cvs	Ala	Arg	Glv	Tvr	Asp	Asn	Tvr	Ser	Phe
				,	.,.	. , .	-		8	3	-,-					
		370					375					380				

	Ala Tyr Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly
5	385 390 395 400
3	
	Gly Ser Gly Gly Gly Gly Gly Gly Gly Ser Asp lle Val Met
	405 410 415
10	
	Thr Gin Ala Ala Leu Ser Leu Pro Val Thr Pro Gly Glu Pro Ala Ser
	420 425 430
15	_
	lle Ser Cys Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr
	435 440 445
00	
20	Tyr Leu Tyr Trp Tyr Leu Gin Lys Pro Gly Gin Ser Pro Gin Leu Leu
	450 455 460
	The Are Het Con Ann Lou Ale Con Clu Val Dre Ann Are Dho Con
25	lie Tyr Arg Met Ser Asn Leu Ala Ser Gly Val Pro Asp Arg Phe Ser 465 470 475 480
	465 470 475 480
	Gly Ser Gly Ser Gly Thr Ala Phe Thr Leu Lys ile Ser Arg Val Glu
30	485 490 495
	100
	Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His ile Glu Tyr Pro
0.5	500 505 510
35	
	Phe Thr Phe Gly Gln Gly Thr Lys Leu Glu IIe Lys
	515 520
40	
	,
	<210> 29
45	<211> 1572
	<212> DNA
	<213> Artificial
50	
50	<220>
	<223> an artificially synthesized nucleotide sequence

<400>	29

5	atggactgg:	a cctggaggtt	cctctttgtg	gtggcagcag	ctacaggtgt	ccagtcccag	60
	gtgcagctg	g tgcagtctgg	acctgaggtg	aagaagcctg	gggcctcagt	gaaggtctcc	120
10	tgcaaggct	t ctggatacac	cttcaccaac	tcctggatga	actgggtgag	gcagaggcct	180
	ggaaagggto	c ttgagtggat	gggacggatt	tatcctggag	atggagaaac	tatctacaat	240
15	gggaaattc	a gggtcagagt	cacgattacc	gcggacgaat	ccacgagcac	agcctacatg	300
20	gagotgago	a gootgagato	tgaggacacg	gccgtgtatt	actgtgcgag	aggctatgat	360
	gattactcg	t ttgcttactg	gggccaggga	accacggtca	ccgtctcttc	aggtggtggt	420
25	ggatccgga	g gtggtggatc	gggtggtgga	ggatcggata	ttgtgatgac	tcagtctcca	480
	ctctccctgc	ccgtcacccc	tggagagccg	gcctccatct	cctgcaggtc	tagtaagagt	540
30	ctcctgcata	a gtaatggcaa	cacttacttg	tattggttcc	agcagaagcc	agggcagtct	600
	ccacagoto	c tgatctatcg	gatgtccaac	cttgcctcag	gggtccctga	caggttcagt	660
35	ggcagtggat	t caggcacagc	ttttacactg	aaaatcagca	gagtggaggc	tgaggatgtt	720
40	ggggtttati	t actgcatgca	acatatagaa	tatcctttta	cgttcggcca	agggaccaaa	780
	ctggaaatca	a aaggaggtgg	tggatcgggt	ggtggtggtt	cgggaggcgg	tggatcgcag	840
45	gtgcagctgg	g tgcagtctgg	acctgaggtg	aagaagcctg	gggcctcagt	gaaggtctcc	900
	tgcaaggcti	t ctggatacac	cttcaccaac	tcctggatga	actgggtgag	gcagaggcct	960
50	ggaaagggto	; ttgagtggat	gggacggatt	tatcctggag	atggagaaac	tatctacaat	1020
	gggaaattca	a gggtcagagt	cacgattacc	goggaogaat	ccacgagcac	agcctacatg	1080

5	gagotgagoa gootgagato tgaggacacg googtgtatt actgtgogag aggotatgat	1140
	gattactcgt tigcttactg gggccaggga accacggtca ccgtctcttc aggtggtggt	1200
10	ggatccggag gtggtggatc gggtggtgga ggatcggata ttgtgatgac tcagtctcca	1260
	ctctccctgc ccgtcacccc tggagagccg gcctccatct cctgcaggtc tagtaagagt	1320
15	ctcctgcata gtaatggcaa cacttacttg tattggttcc agcagaagcc agggcagtct	1380
20	ccacagctcc tgatctatcg gatgtccaac cttgcctcag gggtccctga caggttcagt	1440
	ggcagtggat caggcacagc ttttacactg aaaatcagca gagtggaggc tgaggatgtt	1500
25	ggggtttatt actgcatgca acatatagaa tatcctttta cgttcggcca agggaccaaa	1560
	ctggaaatca aa	1572
30		
	⟨210⟩ 30	
	<211> 524	
35	<212> PRT	
	<213> Artificial	
40	⟨220⟩	
40	<pre><223> an artificially synthesized peptide sequence</pre>	
	< 400> 30	
45	Met Asp Trp Thr Trp Arg Phe Leu Phe Val Val Ala Ala Ala Thr Gly	
	1 5 10 15	
50	Val Gin Ser Gin Val Gin Leu Val Gin Ser Giy Pro Giu Vai Lys Lys	
	20 25 30	
	Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe	

		35		40		45
5	Thr Asn 50	Ser Trp	Met Asn	Trp Val	Arg Gin Arg	Pro Gly Lys Gly Leu 60
10	Glu Trp 65	Met Gly	Arg lle 70	Tyr Pro	Gly Asp Gly 75	Glu Thr lle Tyr Asn 80
15	Gly Lys	Phe Arg	Val Arg 85	Val Thr	lle Thr Ala 90	Asp Glu Ser Thr Ser 95
20	Thr Ala	Tyr Met 100	Glu Leu	Ser Ser	Leu Arg Ser 105	Glu Asp Thr Ala Val
25	Tyr Tyr	Cys Ala 115	Arg Gly	Tyr Asp 120	Asp Tyr Ser	Phe Ala Tyr Trp Gly 125
	Gin Gly		Val Thr	Val Ser 135	Ser Gly Gly	Gly Gly Ser Gly Gly 140
	Gly Gly 145	Ser Gly	Gly Gly 150	Gly Ser	Asp lle Val 155	Met Thr Gin Ser Pro 160
35	Leu Ser	Leu Pro	Val Thr	Pro Gly	Glu Pro Ala 170	Ser lle Ser Cys Arg 175
40	Ser Ser	Lys Ser		His Ser	Asn Gly Asn 185	Thr Tyr Leu Tyr Trp 190
45	Tyr Leu	Gin Lys	Pro Gly	GIn Ser 200	Pro Gin Leu	Leu lle Tyr Arg Met 205
50	Ser Asn 210		Ser Gly	Val Pro 215	Asp Arg Phe	Ser Gly Ser Gly Ser 220
55	Gly Thr	Ala Phe	Thr Leu	Lys Ile	Ser Arg Val	Giu Ala Giu Asp Val

	225				230					235					240
5	Gly V	al Tyr	Tyr	Cys 245	Met	Gin	His	He	Glu 250	Tyr	Pro	Phe	Thr	Phe 255	Gly
10	GIn G	ly Thr	Lys 260	Leu	Glu	lle	Lys	Gly 265	Gly	Gly	Gly	Ser	Gly 270	Gly	Gly
15	Gly S	er Gly 275	Gly	Gly	Gly	Ser	GIn 280	Val	Gln	Leu	Vai	GIn 285	Ser	Gly	Pro
20		al Lys 90	Lys	Pro	Gly	Ala 295	Ser	Val	Lys	Val	Ser 300	Cys	Lys	Ala	Ser
25	Gly T 305	yr Thr	Phe	Thr	A sn 3 10	Ser	Trp	Met	Asn	Trp 315	Val	Arg	Gin	Arg	Pro 320
30	Gly L	ys Gly	Leu	Glu 325	Trp	Met	Gly	Arg	11e 330	Tyr	Pro	Gly	Asp	Gly 335	Glu
	Thr i	le Tyr	Asn 340	Gly	Lys	Phe	Arg	Va I 345	Arg	Val	Thr	ile	Thr 350	Ala	Asp
35	Glu S	er Thr 355	Ser	Thr	Ala	Tyr	Met 360	Glu	Leu	Ser	Ser	Leu 365	Arg	Ser	Glu
40		hr Ala 70	Val	Tyr	Tyr	Cys 375	Ala	Arg	Gly	Tyr	Asp 380	Asp	Tyr	Ser	Phe
45	Ala T 385	yr Trp	Gly	GIn	Gly 390		Thr	Val	Thr	Va I 395	Ser	Ser	Gly	Gly	Gly 400
50	Gly S	er Gly	Gly	Gly 405	Gly	Ser	Gly	Gly	Gly 410	Gly	Ser	Asp	He	Va I 415	Met
55	Thr G	iln Ser	Pro	Leu	Ser	Leu	Pro	Val	Thr	Pro	Gly	Glu	Pro	Ala	Ser

	420 425 430
5	lle Ser Cys Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr 435 440 445
10	Tyr Leu Tyr Trp Tyr Leu Gin Lys Pro Giy Gin Ser Pro Gin Leu Leu 450 455 460
15	lle Tyr Arg Met Ser Asn Leu Ala Ser Gly Val Pro Asp Arg Phe Ser 465 470 475 480
20	Gly Ser Gly Ser Gly Thr Ala Phe Thr Leu Lys IIe Ser Arg Val Glu 485 490 495
25	Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His Ile Glu Tyr Pro 500 505 510
30	Phe Thr Phe Gly Gln Gly Thr Lys Leu Glu lie Lys 515 520
35	<210> 31 <211> 1602 <212> DNA <213> Artificial
40	<220> <223> an artificially synthesized nucleotide sequence
45	<pre><400> 31 atggactgga cctggaggtt cctctttgtg gtggcagcag ctacaggtgt ccagtcccag 60</pre>
50	gtgcagctgg tgcagtctgg acctgaggtg aagaagcctg gggcctcagt gaaggtctcc 120
55	tgcaaggctt ctggatacac cttcaccaac tcctggatga actgggtgag gcagaggcct 180

240	tatctacaat	atggagaaac	tatcctggag	tggacggatt	ttgagtgggt	ggaaagggtc	
300	agcctacatg	ccacgagcac	gcggacgaat	cacgattacc	gggtcagagt	gggaaattca	
360	aggctatgat	actgtgcgag	gccgtgtatt	tgaggacacg	gcctgagatc	aggctgagca	
420	aggtggtggt	ccgtctcttc	accacggtca	gggccaggga	ttgcttactg	gattactcgt	
480	tcagtctgca	ttgtgatgac	ggatcggata	gggtggtgga	gtggtggatc	ggatccggag	
540	tagtaagagt	cctgcaggtc	gcctccatct	tggagagccg	ccgtcacccc	ctctccctgc	
600	agggcagtct	tgcagaagcc	tattggtacc	cacttacttg	gtaatggcaa	ctcctgcata	
660-	caggttcagt	gggtccctga	cttgcctcag	gatgtccaac	tgatctatcg	ccacagctcc	
720	tgaggatgtt	gagtggaggc	aaaatcagca	ttttacactg	caggcacagc	ggcagtggat	
780	agggaccaaa	cgttcggcca	tatcctttta	acatatagaa	actgcatgca	ggggtttatt	
840	tggatcgcag	cgggaggcgg	ggtggtggtt	tggatcgggt	aaggaggtgg	ctggaaatca	
900	gaaggtotoo	gggcctcagt	aagaagcctg	acctgaggtg	tgcagtctgg	gtgcagctgg	
960	gcagaggcct	actgggtgag	tcctggatga	cttcaccaac	ctggatacac	tgcaaggctt	
1020	tatctacaat	atggagaaac	tatcctggag	tggacggatt	ttgagtgggt	ggaaagggtc	
1080	agcctacatg	ccacgagcac	gcggacgaat	cacgattacc	gggtcagagt	gggaaattca	
1140	aggctatgat	actgtgcgag	gccgtgtatt	tgaggacacg	gcctgagatc	aggctgagca	
1200	aggtggtggt	ccgtctcttc	accacggtca	gggccaggga	ttgcttactg	gattactcgt	
1260	tcagtctgca	ttgtgatgac	ggatcggata	gggtggtgga	gtggtggatc	ggatccggag	

	ctctccctgc ccgtcacccc tggagagccg gcctccatct cctgcaggtc tagtaagagt 132	0
5	ctcctgcata gtaatggcaa cacttacttg tattggtacc tgcagaagcc agggcagtct 138	0
10	ccacagetee tgatetateg gatgtecaae ettgeeteag gggteeetga eaggtteagt 144	0
	ggcagtggat caggcacagc ttttacactg aaaatcagca gagtggaggc tgaggatgtt 150	0
15	ggggtttatt actgcatgca acatatagaa tatcctttta cgttcggcca agggaccaaa 156	0
	ctggaaatca aagactacaa ggatgacgac gataagtgat aa 160	2
20		
	<210> 32	
	⟨211⟩ 524	
25	<212> PRT	
	<pre><213> Artificial</pre>	
	(000)	
30	<220>	
	<pre><223> an artificially synthesized peptide sequence</pre>	
	<400> 32	
<i>35</i>	Met Asp Trp Thr Trp Arg Phe Leu Phe Val Val Ala Ala Thr Gly	
	1 5 10 15	
	•	
40	Val Gin Ser Gin Val Gin Leu Val Gin Ser Gly Pro Glu Val Lys Lys	
40	20 25 30	
	Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe	
45	35 40 45	
	Thr Asn Ser Trp Met Asn Trp Val Arg Gln Arg Pro Gly Lys Gly Leu	
	50 55 60	
50		
	Glu Trp Val Gly Arg lle Tyr Pro Gly Asp Gly Glu Thr lle Tyr Asn	
	65 70 75 80	
55		

5	Gly	Lys	Phe	Arg	Va I 85	Arg	Vai	inr	He	90	АІа	ASP	GIU	Ser	95	Ser
10	Thr	Ala	Tyr	Met 100	Arg	Leu	Ser	Ser	Leu 105	Arg	Ser	Glu	Asp	Thr 110	Ala	Val
15	Tyr	Tyr	Cys 115	Ala	Arg	Gly	Tyr	Asp 120	Asp	Tyr	Ser	Phe	Ala 125	Tyr	Trp	Gly
99	GIn	Gly 130	Thr	Thr	Val	Thr	Va I 135	Ser	Ser	Gly	Gly	Gly 140	Gly	Ser	Gly	Gly
20	Gly 145	Gly	Ser	Gly	Gly	Gly 150	Gly	Ser	Asp	lle	Va I 155	Met	Thr	GIn	Ala	Ala 160
25	Leu	Ser	Leu	Pro	Va I 165	Thr	Pro	Gly	Glu	Pro 170	Aia	Ser	lle	Ser	Cys 175	Arg
30	Ser	Ser	Lys	Ser 180	Leu	Leu	His	Ser	Asn 185	Gly	Asn	Thr	Tyr	Leu 190	Tyr	Trp
35	Tyr	Leu	GIn 195	Lys	Pro	Gly	GIn	Ser 200	Pro	Gln	Leu	Leu	lle 205	Tyr	Arg	Met
40	Ser	Asn 210	Leu	Ala	Ser	Gly	Va I 215	Pro	Asp	Arg	Phe	Ser 220	Gly	Ser	Gly	Ser
45	Gly 225	Thr	Ala	Phe	Thr	Leu 230	Lys	lle	Ser	Arg	Va I 235	Glu	Ala	Glu	Asp	Va I 240
50	Gly	Val	Tyr	Tyr	Cys 245	Met	GIn	His	He	Glu 250	Tyr	Pro	Phe	Thr	Phe 255	Gly
	GIn	Gly	Thr	Lys 260	Leu	Glu	He	Lys	Gly 265	Gly	Gly	Gly	Ser	Gly 270	Gly	Gly
<i>55</i>																

5	Gly	Ser	Gly 275		Gly	Gly	Ser	GIn 280		GIn	Leu	Val	G1n 285		Gly	Pro
10	Glu	Va I 290		Lys	Pro	Gly	Ala 295	Ser	Val	Lys	Va!	Ser 300		Lys	Ala	Ser
15	Gly 305	Tyr	Thr	Phe	Thr	Asn 310		Trp	Met	Asn	Trp 315		Arg	GIn	Arg	Pro 320
20	Gly	Lys	Gly	Leu	G1u 325	Trp	Val	Gly	Arg	11e 330	Tyr	Pro	Gly	Asp	Gly 335	Glu
	Thr	He	Tyr	Asn 340	Gly	Lys	Phe	Arg	Va I 345	Arg	Val	Thr	ile	Thr 350	Ala	Asp
25	Glu	Ser	Thr 355	Ser	Thr	Ala	Tyr	Met 360	Arg	Leu	Ser	Ser	Leu 365	Arg	Ser	Glu
30	Asp	Thr 370	Ala	Val	Tyr	Tyr	Cys 375	Ala	Arg	Gly	Tyr	Asp 380	Asp	Tyr	Ser	Phe
35	Ala 385	Tyr	Trp	Gly	GIn	Gly 390	Thr	Thr	Val	Thr	Va I 395	Ser	Ser	Gly	Gly	Gly 400
40	Gly	Ser	Gly	Gly	Gly 405	Gly	Ser	Gly	Gly	Gly 410	Gly	Ser	Asp	He	Va I 415	Met
45	Thr	GIn	Ala	Ala 420	Leu	Ser	Leu	Pro	Va I≀ 425	Thr	Pro	Gly	Glu	Pro 430	Ala	Ser
50	lie	Ser	Cys 435	Arg	Ser	Ser	Lys	Ser 440	Leu	Leu	His	Ser	Asn 445	Gly	Asn	Thr
	Tyr	Leu 450	Tyr	Trp	Tyr	Leu	Gln 455	Lys	Pro	Gly	Gln	Ser 460	Pro	Gln	Leu	Leu
55																

5	lie Tyr Arg Met Ser Asn Leu Ala Ser Gly Val Pro Asp Arg Phe Ser 465 470 475 480
10	Gly Ser Gly Ser Gly Thr Ala Phe Thr Leu Lys lle Ser Arg Val Glu 485 490 495
15	Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His lle Glu Tyr Pro 500 505 510
20	Phe Thr Phe Gly Gln Gly Thr Lys Leu Glu lle Lys 515 520
	<210> 33
25	<pre><210/ 33 </pre> <pre><211> 1572 </pre> <pre><212> DNA </pre> <pre><213> Artificial</pre>
30	<220> <223> an artificially synthesized nucleotide sequence
35	<pre><400> 33 atggactgga cctggaggtt cctctttgtg gtggcagcag ctacaggtgt ccagtcccag 60</pre>
40	gtgcagctgg tgcagtctgg acctgaggtg aagaagcctg gggcctcagt gaaggtctcc 120
	tgcaaggctt ctggatacac cttcaccaac tcctggatga actgggtgag gcagaggcct 180
45	ggaaagggtc ttgagtggat tggacggatt tatcctggag atggagaaac tatctacaat 240
	gggaaattca gggtcagagt cacgattacc gcggacgaat ccacgagcac agcctacatg 300
50	gagctgagca gcctgagatc tgaggacacg gccgtgtatt actgtgcgag aggctatgat 360
55	gattactogt ttgcttactg gggccaggga accacggtca ccgtctcttc aggtggtggt 420

5	ggatccggag	gtggtggatc	gggtggtgga	ggatcggata	ttgtgatgac	tcagtctcca	480
	ctctccctgc	ccgtcacccc	tggagagccg	gcctccatct	cctgcaggtc	tagtaagagt	540
10	ctcctgcata	gtaatggcaa	cacttacttg	tattggttcc	tgcagaagcc	agggcagtct	600
	ccacagetee	tgatctatcg	gatgtccaac	cttgcctcag	gggtccctga	caggttcagt	660
15	ggcagtggat	caggcacaga	ttttacactg	aaaatcagca	gagtggaggc	tgaggatgtt	720
20	ggggtttatt	actgcatgca	acatatagaa	tatccttta	cgttcggcca	agggaccaaa	780
	ctggaaatca	aaggaggtgg	tggatcgggt	ggtggtggtt	cgggaggcgg	tggatcgcag	840
25	gtgcagctgg	tgcagtctgg	acctgaggtg	aagaagcctg	gggcctcagt	gaaggtctcc	900
	tgcaaggctt	ctggatacac	cttcaccaac	tcctggatga	actgggtgag	gcagaggcct	960
30	ggaaagggto	ttgagtggat	tggacggatt	tatcctggag	atggagaaac	tatctacaat	1020
05	gggaaattca	gggtcagagt	cacgattacc	gcggacgaat	ccacgagcac	agcctacatg	1080
35	gagctgagca	gcctgagatc	tgaggacacg	gccgtgtatt	actgtgcgag	aggctatgat	1140
40	gattactcgt	ttgcttactg	gggccaggga	accacggtca	ccgtctcttc	aggtggtggt	1200
	ggatccggag	gtggtggatc	gggtggtgga	ggatcggata	ttgtgatgac	tcagtctcca	1260
45	ctctccctgc	ccgtcacccc	tggagagccg	gcctccatct	cctgcaggtc	tagtaagagt	1320
	ctcctgcata	gtaatggcaa	cacttacttg	tattggttcc	tgcagaagcc	agggcagtct	1380
50	ccacagetee	tgatctatcg	gatgtccaac	cttgcctcag	gggtccctga	caggttcagt	1440
<i>55</i>	ggcagtggat	caggcacaga	ttttacactg	aaaatcagca	gagtggaggc	tgaggatgtt	1500

5	ggggtttatt actgcatgca acatatagaa tatcctttta cgttcggcca agggaccaaa 15	60
	ctggaaatca aa 15	72
10		
	<210> 34	
	<211> 524	
15	<212> PRT	
	<213> Artificial	
	⟨220⟩	
20	<pre><223> an artificially synthesized peptide sequence</pre>	
	<400> 34	
25	Met Asp Trp Thr Trp Arg Phe Leu Phe Val Val Ala Ala Ala Thr Gly	
	1 5 10 15	
30	Val Gin Ser Gin Val Gin Leu Val Gin Ser Gly Pro Giu Val Lys Lys	
50	20 25 30	
	Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe	
35	35 40 45	
	Thr Asn Ser Trp Met Asn Trp Val Arg Gin Arg Pro Gly Lys Gly Leu	
40	50 55 60	
	Giu Trp lie Giy Arg lie Tyr Pro Giy Asp Giy Giu Thr lie Tyr Asn	
	65 70 75 80	
45		
	Gly Lys Phe Arg Val Arg Val Thr lle Thr Ala Asp Glu Ser Thr Ser	
	85 90 95	
50		
	Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val	
	100 105 110	

5	Tyr	Tyr	Cys 115	Ala	Arg	Gly	Tyr	120	Asp	lyr	Ser	Phe	125	lyr	Irp	ыу
	Gln	Gly	Thr	Thr	Val	Thr	Val	Ser	Ser	Gly	Gly	Gly	Gly	Ser	Gly	Gly
10		130					135					140				
	Gly 145	Gly	Ser	Gly	Gly	Gly 150	Gly	Ser	Asp	He	Va I 155	Met	Thr	GIn	Ser	Pro 1 60
15	Leu	Ser	Leu	Pro	Va I 165	Thr	Pro	Gly	Glu	Pro 170	Ala	Ser	He	Ser	Cys 175	Arg
20	Ser	Ser	Lys	Ser 180	Leu	Leu	His	Ser	Asn 185	Gly	A sn	Thr	Tyr	Leu 190	Tyr	Trp
25	Phe	Leu	GIn 195	Lys	Pro	Gly		Ser 200	Pro	GIn	Leu	Leu	11e 205	Tyr	Arg	Met
30	Ser	Asn 210	Leu	Ala	Ser	Gly	Va I 215	Pro	Asp	Arg	Phe	Ser 220	Gly	Ser	Gly	Ser
35	Gly 225	Thr	Asp	Phe	Thr	Leu 230	Lys	He	Ser	Arg	Va I 235	Glu	Ala	Glu	Asp	Va I 240
40	Gly	Val	Tyr	Tyr	Cys 245	Met	Gin	His	lle	G I u 250	Tyr	Pro	Phe	Thr	Phe 255	Gly
45	GIn	Gly	Thr	Lys 260	Leu	Glu	He	Lys	Gly 265	Gly	Gly	Gly	Ser	Gly 270	Gly	Gly
	Gly	Ser	Gly 275	Gly	Gly	Gly	Ser	GIn 280	Val	GIn	Leu	Val	GIn 285	Ser	Gly	Pro
50	Glu	Val 290	Lys	Lys	Pro	Gly	Ala 295	Ser	Val	Lys	Val	Ser 300	Cys	Lys	Ala	Ser

	alv Glu
Gly Lys Gly Leu Glu Trp lle Gly Arg lle Tyr Pro Gly Asp G 325 330 3	335
Thr lie Tyr Asn Gly Lys Phe Arg Val Arg Val Thr lie Thr A	Ala Asp
Glu Ser Thr Ser Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg S 355 360 365	Ser Glu
Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Tyr Asp Asp Tyr S 370 375 380	Ser Phe
Ala Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Gly G 385 390 395	Gly Gly 400
Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asp lle V 405 410 4	/al Met 115
Thr Gin Ser Pro Leu Ser Leu Pro Val Thr Pro Gly Glu Pro A 420 425 430	Ala Ser
Ile Ser Cys Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly A 435 440 445	Asn Thr
Tyr Leu Tyr Trp Phe Leu Gin Lys Pro Gly Gin Ser Pro Gin L 450 455 460	_eu Leu
ile Tyr Arg Met Ser Asn Leu Ala Ser Gly Val Pro Asp Arg F 465 470 475	he Ser 480
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys IIe Ser Arg V 485 490 4	/al Glu 195

5	Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His He Glu Tyr Pro 500 505 510	
10	Phe Thr Phe Gly Gln Gly Thr Lys Leu Glu IIe Lys 515 520	
15	<210> 35 <211> 1572 <212> DNA <213> Artificial	
20	<220> <223> an artificially synthesized nucleotide sequence	
25	<400> 35 atggactgga cctggaggtt cctctttgtg gtggcagcag ctacaggtgt ccagtcccag	60
30	gtgcagctgg tgcagtctgg acctgaggtg aagaagcctg gggcctcagt gaaggtctcc	120
05		180 240
35	3321233834 4-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	300
40	gagctgagca gcctgagatc tgaggacacg gccgtgtatt actgtgcgag aggctatgat	360
45	gattactcgt ttgcttactg gggccaggga accacggtca ccgtctcttc aggtggtggt	420
	ggatccggag gtggtggatc gggtggtgga ggatcggata ttgtgatgac tcagtctcca	480
50		540
55	ctcctgcata gtaatggcaa cacttacttg tattggttcc agcagaagcc agggcagtct	

	ccacagoto	tgatctatcg	gatgtccaac	cttgcctcag	gggtccctga	caggttcagt	660
5	ggcagtgga	t caggcacaga	ttttacactg	aaaatcagca	gagtggaggc	tgaggatgtt	720
10	ggggtttati	t actgcatgca	acatatagaa	tatcctttta	cgttcggcca	agggaccaaa	780
	ctggaaatca	a aaggaggtgg	tggatcgggt	ggtggtggtt	cgggaggcgg	tggatcgcag	840
15	gtgcagctgg	g tgcagtctgg	acctgaggtg	aagaagcctg	gggcctcagt	gaaggtctcc	900
	tgcaaggctt	ctggatacac	cttcaccaac	tcctggatga	actgggtgag	gcagaggcct	960
20	gg aaa gggto	: ttgagtggat	tggacggatt	tatcctggag	atggagaaac	tatctacaat	1020
<i>25</i>	gggaaattca	gggtcagagt	cacgattacc	gcggacgaat	ccacgagcac	agcctacatg	1080
	gagotgagoa	gcctgagatc	tgaggacacg	gccgtgtatt	actgtgcgag	aggctatgat	1140
30	gattactcgt	ttgcttactg	gggccaggga	accacggtca	ccgtctcttc	aggtggtggt	1200
	ggatccggag	gtggtggatc	gggtggtgga	ggatcggata	ttgtgatgac	tcagtctcca	1260
35	ctctccctgc	ccgtcacccc	tggagagccg	gcctccatct	cctgcaggtc	tagtaagagt	1320
10	ctcctgcata	gtaatggcaa	cacttacttg	tattggttcc	agcagaagcc	agggcagtct	1380
40	ccacagetee	tgatctatcg	gatgtccaac	cttgcctcag	gggtccctga	caggttcagt	1440
45	ggcagtggat	caggcacaga	ttttacactg	aaaatcagca	gagtggaggc	tgaggatgtt	1500
	ggggtttatt	actgcatgca	acatatagaa	tatcctttta	cgttcggcca	agggaccaaa	1560
50	ctggaaatca	aa					1572

<210> 36

	<211	> 5	524													
5	<212	:> F	PRT													
	<213	s> 1	Artif	ficia	3 [
	<220)>														
10	<223	3> a	an ar	rtifi	cia	llys	yntł	nesiz	zed p	ept	ide s	seque	ence			
	<400	> 3	36													
15	Met	Asp	Trp	Thr	Trp	Arg	Phe	Leu	Phe	Val	Val	Ala	Ala	Ala	Thr	Gly
	1				5					10					15	
20	Val	Gin	Ser	Gln	Val	Gln	Leu	Va!	GIn	Ser	Gly	Pro	Glи	Val	Lys	Lys
20				20					25					30		
	Pro	Gly	Ala	Ser	Val	Lys	Val	Ser	Cys	Lys	Ala	Ser	Gly	Tyr	Thr	Phe
25			35					40					45			
	Thr	Asn	Ser	Trp	Met	Asn	Trp	۷a۱	Arg	Gln	Arg	Pro	Gly	Lys	Gly	Leu
30		50					55					60				
	Glu	Trp	lle	Gly	Arg	Пe	Tyr	Pro	Gly	Asp		Glu	Thr	He	Tyr	
0.5	65					70					75					80
35										_				_	- .	_
	Gly	Lys	Phe	Arg		Arg	Val	Thr	He		Ala	Asp	Glu	Ser		Ser
					85					90					95	
40	- .		_		0.1		0	٥		A	C	C1		Tha	41-	V-1
	Inr	Ala	Tyr		GIU	Leu	Ser	ser		Arg	Ser	diu	ASP	110	на	Vai
				100					105					110		
45	Tue	T	Cys	Ala	1-0	GLV	Tur	Aen	Acn	Tvr	Sor	Phe	Δla	Tvr	Trn	GIV
	ıyı	ıyı	115	Ala	AIG	uly	1 7 1	120	ASP	. , .	001	1110	125	. , .	p	u.,
			113					120					120			
50	Gln	Glv	Thr	Thr	Val	Thr	Val	Ser	Ser	GIV	Glv	Glv	Glv	Ser	Glv	Gly
50	4 111	130	••••	, ,	1		135			,	,	140				
		. 55														
	Glv	GIv	Ser	Giv	Glv	GIv	Giv	Ser	Asp	He	Val	Met	Thr	GIn	Ser	Pro
55		,		•	•		•		•							

	145					150					155					160
5	Leu	Ser	Leu	Pro	Va I 165	Thr	Pro	Gly	Glu	Pro 170	Ala	Ser	He	Ser	Cys 175	Arg
10	Ser	Ser	Lys	Ser 180	Leu	Leu	His	Ser	A sn 185	Gly	Asn	Thr	Tyr	Leu 190	Tyr	Trp
15	Phe	Gin	GIn 195	Lys	Pro	Gly	GIn	Ser 200	Pro	Gln	Leu	Leu	11e 205	Tyr	Arg	Met
20	Ser	Asn 210	Leu	Ala	Ser	Gly	Va I 215	Pro	Asp	Arg	Phe	Ser 220	Gly	Ser	Gly	Ser
25	Gly 225	Thr	Asp	Phe	Thr	Leu 230	Lys	lle	Ser	Arg	Va I 235	Glu	Ala	Glu	Asp	Va I 240
30	Gly	Val	Tyr	Tyr	Cys 245	Met	Gln	His	lle	Glu 250	Tyr	Pro	Phe	Thr	Phe 255	Gly
35	GIn	Gly	Thr	Lys 260	Leu	Glu	lle	Lys	Gly 265	Gly	Gly	Gly	Ser	Gly 270	Gly	Gly
	Gly	Ser	Gly 275	Gly	Gly	Gly	Ser	GIn 280	Val	GIn	Leu	Val	GIn 285	Ser	Gly	Pro
40	Glu	Val 290	Lys	Lys	Pro	Gly	Ala 295	Ser	Val	Lys	Val	Ser 300	Cys	Lys	Ala	Ser
	Gly 305	Tyr	Thr	Phe	Thr	Asn 310	Ser	Trp	Met	Asn	Trp 315	Val	Arg	GIn	Arg	Pro 320
50	Gly	Lys	Gly		Glu 325	Trp	lle	G∣y		lle 330	Tyr	Pro	Gly	Asp	Gly 335	Glu
55	Thr	lle	Tyr	Asn	Gly	Lys	Phe	Arg	Val	Arg	Val	Thr	He	Thr	Ala	Asp

				340					345					350		
5	Glu	Ser	Thr 355		Thr	Ala	Tyr	Met 360		Leu	Ser	Ser	Leu 365		Ser	Glu
10	Asp	Thr 370		Val	Tyr	Tyr	Cys 375	Ala	Arg	Gly	Tyr	Asp 380	Asp	Tyr	Ser	Phe
15	Ala 385		Trp	Gly	GIn	Gly 390	Thr	Thr	Val	Thr	Va I 395	Ser	Ser	Gly	Gly	Gly 400
20	Gly	Ser	Gly	Gly	Gly 405	Gly	Ser	Gly	Gly	G y	Gly	Ser	Asp	lle	Va I 415	Met
25	Thr	GIn	Ser	Pro 420	Leu	Ser	Leu	Pro	Vá I 425	Thr	Pro	Gly	Glu	Pro 430	Ala	Ser
30	lle	Ser	Cys 435	Arg	Ser	Ser	Lys	Ser 440	Leu	Leu	His	Ser	Asn 445	Gly	Asn	Thr
35	Tyr	Leu 450	Tyr	Trp	Phe	GIn	GIn 455	Lys	Pro	Gly	GIn	Ser 460	Pro	Gln	Leu	Leu
	11e 465	Tyr	Arg	Met	Ser	Asn 470	Leu	Ala	Ser	Gly	Va I 475	Pro	Asp	Arg	Phe	Ser 480
40	Gly	Ser	Gly	Ser	Gly 485	Thr	Asp	Phe	Thr	Leu 490	Lys	lle	Ser	Arg	Va I 495	Glu
45	Ala	Glu	Asp	Va I 500	Gly	Val	Tyr		Cys 505	Met	Gln	His	He	Glu 510	Tyr	Pro
50	Phe	Thr	Phe 515	Gly	GIn	Gly		Lys 520	Leu	Glu	lle	Lys				

	<210> 37	
5	<211> 15	
3	<212> PRT	
	<213> Artificial	
10	(000)	
	<pre><220> <223> An artificially synthesized linker sequence</pre>	
	(223) All artificially synthesized Thines sequence	
15	<400> 37	
75	Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser	
	1 5 10 15	
00		
20	(010) 00	
	<210> 38 <211> 1572	
	<212> DNA	
25	<213> Mus musculus	
	(270) IIIdo IIIdoda, do	
	<400> 38	
30	atggactgga cctggaggtt cctctttgtg gtggcagcag ctacaggtgt ccagtcccag	60
	gtgcagctgg tgcagtctgg acctgaggtg aagaagcctg gggcctcagt gaaggtctcc	120
35	tgcaaggott otggatacao ottoaccaao tootggatga actgggtgag ggagaggoot	180
	tguaaggutt otggatauau uttuutuuau tootggatga aotgggtgag ggugaggoot	100
	ggaaagggto ttgagtggat tggacggatt tatootggag atggagaaac tatotacaat	240
40		
	gggaaattca gggtcagagt cacgattacc gcggacgaat ccacgagcac agcctacatg	300
45	caactgagca gootgagato tgaggacacg googtgtatt actgtgcgag aggotatgat	360
	gattactogt tigottactg gggccaggga accaeggtca cogtototto aggtggtggt	420
50	ggatccggag gtggtggatc gggtggtgga ggatcggata ttgtgatgac tcagtctcca	480
	ctctccctgc ccgtcacccc tggagagccg gcctccatct cctgcaggtc tagtaagagt	540
<i>55</i>		

5	ctcctgcat	a gtaatggcaa	cacttacttg	tattggttcc	tggagaagcc	agggcagtct	600
	ccaca goto	c tgatctatcg	gatgtccaac	cttgcctcag	gggtccctga	caggttcagt	660
10	ggcagtgga	it caggcacaga	ttttacactg	aaaatcagca	gagtggaggc	tgaggatgtt	720
15	ggggtttat	t actgcatgca	acatatagaa	tatcctttta	cgttcggcca	agggaccaaa	780
	ctggaaato	a aaggaggtgg	tggatcgggt	ggtggtggtt	cgggaggcgg	tggatcgcag	840
20	gtgcagctg	g tgcagtctgg	acctgaggtg	aagaagcctg	gggcctcagt	gaaggtctcc	900
	tgcaaggct	t ctggatacac	cttcaccaac	tcctggatga	actgggtgag	gaagaggcct	960
25	ggaaagggt	c ttgagtggat	tggacggatt	tatcctggag	atggagaaac	tatctacaat	1020
30	gggaaatto	a gggtcagagt	cacgattacc	gcggacgaat	ccacgagcac	agcctacatg	1080
	caactgago	a gootgagato	tgaggacacg	gccgtgtatt	actgtgcgag	aggctatgat	1140
35	gattactcg	t ttgcttactg	gggccaggga	accacggtca	ccgtctcttc	aggtggtggt	1200
	ggatccgga	g gtggtggatc	gggtggtgga	ggatcggata	ttgtgatgac	tcagtctcca	1260
40	ctctccctg	c ccgtcacccc	tggagagccg	gcctccatct	cctgcaggtc	tagtaagagt	1320
	ctcctgcat	a gtaatggcaa	cacttacttg	tattggttcc	tgaagaagcc	agggcagtct	1380
45	ccacagete	c tgatctatcg	gatgtccaac	cttgcctcag	gggtccctga	caggttcagt	1440
50	ggcagtgga	t caggcacaga	ttttacactg	aaaatcagca	gagtggaggc	tgaggatgtt	1500
	ggggtttat	t actgcatgca	acatatagaa	tatcctttta	cgttcggcca	agggaccaaa	1560
<i>55</i>	ctggaaatc	a aa					1572

	<210> 39
5	⟨211⟩ ⋅ 524
	<212> PRT
	<213> Mus musculus
	•
10	<400> 39
	Met Asp Trp Thr Trp Arg Phe Leu Phe Val Val Ala Ala Ala Thr Gly
15	1 5 10 15
	Val Gin Ser Gin Val Gin Leu Val Gin Ser Giy Pro Giu Val Lys Lys
	20 25 30
20	
	Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe
	35 . 40 45
25	
	Thr Asn Ser Trp Met Asn Trp Val Arg Glu Arg Pro Gly Lys Gly Leu
	50 55 60
30	Glu Trp lle Gly Arg lle Tyr Pro Gly Asp Gly Glu Thr lle Tyr Asn
	65 70 75 80
35	Gly Lys Phe Arg Val Arg Val Thr lie Thr Ala Asp Glu Ser Thr Ser
	85 90 95
	55 50
	The Ale Too Net Ole Lee Con Con Lee Age Con Ole Age The Ale Vol
40	Thr Ala Tyr Met Gin Leu Ser Ser Leu Arg Ser Giu Asp Thr Ala Val
	100 105 110
45	Tyr Tyr Cys Ala Arg Gly Tyr Asp Asp Tyr Ser Phe Ala Tyr Trp Gly
	115 120 125
	Gin Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly
50	130 135 140
	Gly Gly Ser Gly Gly Gly Ser Asp Ile Val Met Thr Gln Ser Pro
55	

	145					150					155					160
5	Leu	Ser	Leu	Pro	Val 165	Thr	Pro	Gly	Glu	Pro 170	Ala	Ser	lle	Ser	Cys 175	Arg
10	Ser	Ser	Lys	Ser 180	Leu	Leu	His	Ser	A sn 185	Gly	Asn	Thr	Tyr	Leu 190	Tyr	Trp
15	Phe	Leu	GIU 195	Lys	Pro	Gly	GIn	Ser 200	Pro	GIn	Leu	Leu	11e 205	Tyr	Arg	Met
20	Ser	Asn 210	Leu	Ala	Ser	Gly	Va I 215	Pro	Asp	Arg	Phe	Ser 220	Gly	Ser	Gly	Ser
. 25	Gly 225	Thr	Asp	Phe	Thr	Leu 230	Lys	He	Ser	Arg	Va I 235	Glu	Ala	Glu	Asp	Va I 240
30	Gly	Val	Tyr	Tyr	Cys 245	Met	GIn	His	He	Glu 250	Tyr	Pro	Phe	Thr	Phe 255	Gly
	Gln	Gly	Thr	Lys 260	Leu	Glu	lle	Lys	Gly 265	Gly	Gly	Gly	Ser	Gly 270	Gly	Gly
35	Gly	Ser	Gly 275	Gly	Gly	Gly	Ser	G1n 280	Val	Gin	Leu	Val	GIn 285	Ser	Gly	Pro
40	Glu	Val 290	Lys	Lys	Pro	Gly	Ala 295		Val	Lys	Val	Ser 300	Cys	Lys	Ala	Ser
45	Gly 305	Tyr	Thr	Phe	Thr	Asn 310	Ser	Trp	Met	Asn	Trp 315	Val	Arg	Lys	Arg	Pro 320
50	Gly	Lys	Gly	Leu	G1u 325	Trp	lle	Gly	Arg	lle 330	Tyr	Pro	Gly	Asp	Gly 335	Glu
55	Thr	He	Tyr	Asn	Gly	Lys	Phe	Arg	Val	Arg	Val	Thr	He	Thr	Ala	Asp

				340					345					350		
5	Glu	Ser	Thr 355	Ser	Thr	Ala	Tyr	Met 360	GIn	Leu	Ser	Ser	Leu 365	Arg	Ser	Glu
10	Asp	Thr 370	Ala	Val	Tyr	Tyr	Cys 375	Ala	Arg	Gly	Tyr	Asp 380	Asp	Tyr	Ser	Phe
15	Ala 385	Tyr	Trp	Gly	GIn	Gly 390	Thr	Thr	Val	Thr	Va! 395	Ser	Ser	Gly	Gly	Gly 400
20	Gly	Ser	Gly	Gly	Gly 405	Gly	Ser	Gly	Gly	Gly 410	Gly	Ser	Asp	lle	Va I 415	Met
25	Thr	Gin	Ser	Pro 420	Leu	Ser	Leu	Pro	Va l 425	Thr	Pro	Gly	Glu	Pro 430	Ala	Ser
30	He	Ser	Cys 435	Arg	Ser	Ser	Lys	Ser 440	Leu	Leu	His	Ser	Asn 445	Gly	Asn	Thr
05	Tyr	Leu 450	Tyr	Trp	Phe	Leu	Lys 455	Lys	Pro	Gly	G In	Ser 460	Pro	GI n	Leu	Leu
35	11e 465	Tyr	Arg	Met	Ser	Asn 470	Leu	Ala	Ser	Gly	Va 1 475	Pro	Asp	Arg	Phe	Ser 480
40	Gly	Ser	Gly	Ser	Gly 485	Thr	Asp	Phe	Thr	Leu 4 90	Lys	lle	Ser	Arg	Va I 495	Glu
45	Ala	Glu	Asp	Val 500	Gly	Val	Tyr	Tyr	Cys 505	Met	GIn	His	lle	Glu 510	Tyr	Pro
50	Phe	Thr	Phe 515	Gly	GIn	Gly	Thr	Lys 520	Leu	Glu	lle	Lys				,

	<210> 40						
_	<211> 1 572						
5	<212> DNA						
	<213> Mus m	nusculus					
10	<400> 40						
	atggactgga c	ctggaggtt	cctctttgtg	gtggcagcag	ctacaggtgt	ccagtcccag	60
15	gtgcagctgg t	gcagtctgg	acctgaggtg	aagaagcctg	gggcctcagt	gaaggtctcc	120
	tgcaaggctt c	tggatacac	cttcaccaac	tcctggatga	actgggtgag	ggagaggcct	180
20	ggaaagggtc t	tgagtggat	tggacggatt	tatcctggag	atggagaaac	tatctacaat	240
<i>2</i> 5	gggaaattca g	ggtcagagt	cacgattacc	gcggacgaat	ccacgagcac	agcctacatg	300
	caactgagca g	cctgagatc	tgaggacacg	gccgtgtatt	actgtgcgag	aggctatgat	360
30	gattactcgt t						420
	ggatccggag g	tggtggatc	gggtggtgga	ggatcggata	ttgtgatgac	tcagtctcca	480
35	ctctccctgc c	cgtcacccc	tggagagccg	gcctccatct	cctgcaggtc	tagtaagagt	540
	ctcctgcata g	taatggcaa	cacttacttg	tattggttcc	tgaagaagcc	agggcagtct	600
40	ccacagotoc t	gatctatcg	gatgtccaac	cttgcctcag	gggtccctga	caggttcagt	660
45	ggcagtggat c	aggcacaga	ttttacactg	aaaatcagca	gagtggaggc	tgaggatgtt	720
	ggggtttatt a	ctgcatgca	acatatagaa	tatcctttta	cgttcggcca	agggaccaaa	780
50	ctggaaatca a	aggaggtgg	tggatcgggt	ggtggtggtt	cgggaggcgg	tggatcgcag	840
	gtgcagctgg t	gcagtctgg	acctgaggtg	aagaagcctg	gggcctcagt	gaaggtctcc	900

	tgcaaggctt	ctggatacac	cttcaccaac	tcctggatga	actgggtgag	gaagaggcct	960
5	ggaaagggtc	ttgagtggat	tggacggatt	tatcctggag	atggagaaac	tatctacaat	1020
	gggaaattca	gggtcagagt	cacgattacc	gcggacgaat	ccacgagcac	agcctacatg	1080
10	caactgagca	gcctgagatc	tgaggacacg	gccgtgtatt	actgtgcgag	aggctatgat	1140
15	gattactcgt	ttgcttactg	gggccaggga	accacggtca	ccgtctcttc	aggtggtggt	1200
	ggatccggag	gtggtggatc	gggtggtgga	ggatcggata	ttgtgatgac	tcagtctcca	1260
20	ctctccctgc	ccgtcacccc	tggagagccg	gcctccatct	cctgcaggtc	tagtaagagt	1320
	ctcctgcata	gtaatggcaa	cacttacttg	tattggttcc	tggagaagcc	agggcagtct	1380
25	ccacagctcc	tgatctatcg	gatgtccaac	cttgcctcag	gggtccctga	caggttcagt	1440
30	ggcagtggat	caggcacaga	ttttacactg	aaaatcagca	gagtggaggc	tgaggatgtt	1500
	ggggtttatt	actgcatgca	acatatagaa	tatcctttta	cgttcggcca	agggaccaaa	1560
35	ctggaaatca	aa					1572
				i,			
40	<210> ·41 <211> 524						
	<212> PRT						
	<213> Mus	musculus					
45							
	<400> 41						
	_		g Phe Leu I	Phe Val Val	Ala Ala Ala		
50	1	5		10		15	
	Val Gin Ser	Gin Val Gi	n Leu Val (Gin Ser Gly	Pro Giu Val	Lys Lys	
		20	:	25	30		

5	Pro	Gly	A a 35	Ser	Val	Lys	Val	Ser 40	Cys	Lys	Ala	Ser	45	lyr	Ihr	Phe
10	Thr	Asn 50	Ser	Trp	Met	Asn	Trp 55	Val	Arg	Glu	Arg	Pro 60	Gly	Lys	Gly	Leu
15	G I u 65	Trp	lle	Gly	Arg	11e 70	Tyr	Pro	Gly	A sp	Gly 75	Glu	Thr	He	Tyr	Asn 80
	Gly	Lys	Phe	Arg	Va I 85	Arg	Val	Thr	lle	Thr 90	Ala	Asp	Glu	Ser	Thr 95	Ser
20	Thr	Ala	Tyr	Met 100	Gln	Leu	Ser	Ser	Leu 105-		Ser 	Glu 	Asp	Thr 110	Ala	Val
25	Tyr	Tyr	Cys 115	Ala	Arg	Gly	Tyr	A sp 120	A sp	Tyr	Ser	Phe	Ala 125	Tyr	Trp	Gly
30	G In	Gly 130	Thr	Thr	Val	Thr	Va I 135	Ser	Ser	Gly	Gljy	Gly 140	Gly	Ser	Gly	Gly
35	Gly 145	Gly	Ser	Gly	Gly	Gly 150	Gly	Ser	Asp	He	Va I 155	Met	Thr	GIn	Ser	Pro 160
40	Leu	Ser	Leu	Pro	Val 165	Thr	Pro	Gly	Glu	Pro 170	Ala	Ser	He	Ser	Cys 175	Arg
45	Ser	Ser	Lys	Ser 180	Leu	Leu	His	Ser	Asn 185	Gly	Åsn	Thr	Tyr	Leu 190	Tyr	Trp
50	Phe	Leu	Lys 195	Lys	Pro	Gly	Gln	Ser 200	Pro	GIn	Leu	Leu	lle 205	Tyr	Arg	Met
	Ser	Asn 210	Leu	Ala	Ser	Gly	Va I 215	Pro	Asp	Arg	Phe	Ser 220	Gly	Ser	Gly	Ser
55		-														

5	Gly 225	Thr	Asp	Phe	Thr	Leu 230	Lys	lle	Ser	Arg	Va I 235	Glu	Ala	Glu	Asp	Va I 240
10	Gly	Val	Tyr	Tyr	Cys 245	Met	Gln	His	lle	Glu 250	Tyr	Pro	Phe	Thr	Phe 255	Gly
15	Gln	Gly	Thr	Lys 260	Leu	Glu	lle	Lys	Gly 265	Gly	Gly	Gly	Ser	Giy 270	Gly	Gly
	Gly	Ser	Gly 275	Gly	Gly	Gly	Ser	GIn 280	Val	Gln	Leu	Val	GIn 285	Ser	Gly	Pro
20	Glu	Va I 290	Lys	Lys		Gly			Val	Lys	Val	Ser 300	Cys	Lys	Ala	Ser
25	Gly 305	Tyr	Thr	Phe	Thr	Asn 310	Ser	Trp	Met	Asn	Trp 315	Val	Arg	Lys	Arg	Pro 320
30	Gly	Lys	Gly	Leu	Glu 325	Trp	He	Gly	Arg	lle 330	Tyr	Pro	Gly	Asp	G y 335	Glu
35	Thr	He	Tyr	Asn 340	Gly	Lys	Phe	Arg	Va I 345	Arg	Val	Thr	He	Thr 350	Ala	Asp
40	Glu	Ser	Thr 355	Ser	Thr	Ala	Tyr	Met 360	Gŀn	Leu	Ser	Ser	Leu 365	Arg	Ser	Glu
45	Asp	Thr 370	Ala	Val	Tyr	Tyr	Cys 375	Ala	Arg	Gly	Tyr	Asp 380	Asp	Tyr	Ser	Phe
50	Ala 385	Tyr	Trp	Gly	Gln	G∣y 390	Thr	Thr	Val	Thr	Va I 395	Ser	Ser	Gly		Gly 400
66	Gly	Ser	Gly	Gly	Giy 405	Gly	Ser	Gly	Gly	Gly 410	Gly	Ser	A sp		Va I 415	Met
<i>55</i>																

5	Thr Gir		ro Leu 20	Ser Le		Val Thr 425	Pro GI		Pro Ala 430	Ser
10	lle Ser	Cys A 435	arg Ser	Ser Lys	440	Leu Leu	His Se	445	Gly Asn	Thr
15	Tyr Leu 450		rp Phe	Leu Glu 455		Pro Gly	GIn Se 46		GIn Leu	Leu
20	lle Tyr	Arg M	let Ser	Asn Let 470	ı Ala :	Ser Gly	Val Pr 475	o Asp	Arg Phe	Ser 480
	Gly Ser	Gly S	er Gly 485	Thr Asp	Phe '	Thr Leu 490		e Ser	Arg Val 495	Glu
25	Ala Glu		al Gly	Val Tyr		Cys Met 5 05	GIn Hi		Glu Tyr 510	Pro
30	Phe Thr	Phe G 515	ly Gin	Gly Thr	Lys (Leu Glu	lle Ly	S		
35		42								
40	<21 2 >	4 PRT Artifi	cial							
45	<220> <223>	An art	ificial	ly synt	hesize	ed pept	ide sequ	ience		
50	<400> Gly Gly 1		er							

	<210>	43
	<211>	4
5	<212>	PRT
	⟨213⟩	Artificial
10	<220>	
	<223>	An artificially synthesized peptide sequence
15	<400>	43
	Ser Gly	y Gly Gly
	1	
20		
	<210>	
	<211>	
25	<212>	
	<213>	Artificial
30	<220>	
	<223>	An artificially synthesized peptide sequence
	()	
	<400>	
35		y Gly Gly Ser
	1	5
40	<210>	AE.
	<211>	
	<212>	
45		Artificial
	(210)	
	⟨220⟩	
		An artificially synthesized peptide sequence
50		
	<400>	45
	Ser Gly	Gly Gly Gly
55		

	1	5
5		
	/	
	<210>	
	<211>	
10	<212>	
	<213>	Artificial
	(200)	
15	<220>	
	(223)	An artificially synthesized peptide sequence
	<400>	46
20	Gly Gly	y Gly Gly Ger
	1	5
		*
25		
	<210>	47
	<211>	6
	<212>	PRT
30	<213>	Artificial
	⟨220⟩	
35	<223>	An artificially synthesized peptide sequence
	<400>	47
		y Gly Gly Gly
40	1	5
45	<210>	48
	<211>	7
	<212>	PRT
50	<213>	Artificial
	⟨220⟩	
55	<223>	An artificially synthesized peptide sequence

<400> 48 5 Gly Gly Gly Gly Gly Ser 5 10 <210> 49 <211> 7 15 ⟨212⟩ PRT <213> Artificial 20 <220> An artificially synthesized peptide sequence <400> 49 25 Ser Gly Gly Gly Gly Gly 5 30 Claims 35 1. A method for stabilizing an sc(Fv)2, wherein the method comprises the step of introducing a site-specific mutation into the sc(Fv)2. 2. A method for suppressing association between sc(Fv)2s, wherein the method comprises the step of introducing a 40 site-specific mutation into the sc(Fv)2s. 3. A method for increasing the Tm value of an sc(Fv)2 by 10°C or more, wherein the method comprises the step of introducing a site-specific mutation into the sc(Fv)2.

119

4. The method of any one of claims 1 to 3, wherein the introduction of a site-specific mutation introduces a mutation

45

50

55

to at least one amino acid selected from:

(a) the 48th amino acid in the heavy chain; (b) the 65th amino acid in the heavy chain;

(c) the 7th amino acid in the light chain;(d) the 8th amino acid in the light chain;(e) the 36th amino acid in the light chain;(f) the 43rd amino acid in the light chain;(g) the 45th amino acid in the light chain;

(h) the 70th amino acid in the light chain;(i) the 81 st amino acid in the heavy chain;(j) the 39th amino acid in the heavy chain; and(k) the 38th amino acid in the light chain.

- EP 1 900 814 A1 5. The method of any one of claims 1 to 4, wherein the introduction of a site-specific mutation introduces at least one amino acid mutation selected from: (a) substitution of the 48th amino acid in the heavy chain to isoleucine; (b) substitution of the 65th amino acid in the heavy chain to glycine; (c) substitution of the 7th amino acid in the light chain to serine; (d) substitution of the 8th amino acid in the light chain to proline; (e) substitution of the 36th amino acid in the light chain to phenylalanine; (f) substitution of the 43rd amino acid in the light chain to alanine; (g) substitution of the 45th amino acid in the light chain to arginine; (h) substitution of the 70th amino acid in the light chain to aspartic acid; (i) substitution of the 81 st amino acid in the heavy chain to glutamine; (j) substitution of the 39th amino acid in the heavy chain to glutamic acid or lysine; and (k) substitution of the 38th amino acid in the light chain to glutamic acid or lysine. 6. A method for stabilizing an sc(Fv)2 by any one of the following methods: (a) a method for converting the 48th amino acid in the heavy chain to isoleucine; (b) a method for converting the 65th amino acid in the heavy chain to glycine; (c) a method for converting the 7th amino acid in the light chain to serine; (d) a method for converting the 8th amino acid in the light chain to proline; (e) a method for converting the 36th amino acid in the light chain to phenylalanine; (f) a method for converting the 43rd amino acid in the light chain to alanine; (g) a method for converting the 45th amino acid in the light chain to arginine; (h) a method for converting the 70th amino acid in the light chain to aspartic acid; (i) a method for converting the 81 st amino acid in the heavy chain to glutamine; (j) a method for converting the 39th amino acid in the heavy chain to glutamic acid or lysine; and (k) a method for converting the 38th amino acid in the light chain to glutamic acid or lysine. 7. An sc(Fv)2 into which a mutation has been introduced to at least one amino acid selected from: (a) the 48th amino acid in the heavy chain; (b) the 65th amino acid in the heavy chain; (c) the 7th amino acid in the light chain; (d) the 8th amino acid in the light chain; (e) the 36th amino acid in the light chain; (f) the 43rd amino acid in the light chain; (g) the 45th amino acid in the light chain; (h) the 70th amino acid in the light chain; (i) the 81 st amino acid in the heavy chain; (j) the 39th amino acid in the heavy chain; and (k) the 38th amino acid in the light chain. 8. An sc(Fv)2 into which at least one amino acid mutation selected from the following (a) to (k) has been introduced:
 - (a) substitution of the 48th amino acid in the heavy chain to isoleucine;
 - (b) substitution of the 65th amino acid in the heavy chain to glycine;
 - (c) substitution of the 7th amino acid in the light chain to serine;
 - (d) substitution of the 8th amino acid in the light chain to proline;
 - (e) substitution of the 36th amino acid in the light chain to phenylalanine;
 - (f) substitution of the 43rd amino acid in the light chain to alanine;
 - (g) substitution of the 45th amino acid in the light chain to arginine;
 - (h) substitution of the 70th amino acid in the light chain to aspartic acid;
 - (i) substitution of the 81 st amino acid in the heavy chain to glutamine;
 - (j) substitution of the 39th amino acid in the heavy chain to glutamic acid or lysine; and
 - (k) substitution of the 38th amino acid in the light chain to glutamic acid or lysine.
 - 9. An sc(Fv)2 selected from:

5

10

15

20

25

30

35

40

45

50

(a) an sc(Fv)2 with isoleucine as the 48th amino acid in the heavy chain; (b) an sc(Fv)2 with glycine as the 65th amino acid in the heavy chain; (c) an sc(Fv)2 with serine as the 7th amino acid in the light chain; (d) an sc(Fv)2 with proline as the 8th amino acid in the light chain; (e) an sc(Fv)2 with phenylalanine as the 36th amino acid in the light chain; 5 (f) an sc(Fv)2 with alanine as the 43rd amino acid in the light chain; (g) an sc(Fv)2 with arginine as the 45th amino acid in the light chain; (h) an sc(Fv)2 with aspartic acid as the 70th amino acid in the light chain; (i) an sc(Fv)2 with glutamine as the 81 st amino acid in the heavy chain; (j) an sc(Fv)2 with glutamic acid or lysine as the 39th amino acid in the heavy chain; and 10 (k) an sc(Fv)2 with glutamic acid or lysine as the 38th amino acid in the light chain. 10. An sc(Fv)2 whose Tm value is 55°C or higher. 15 11. An sc(Fv)2 whose Tm value has increased by 10°C or more by the introduction of a site specific amino acid mutation, as compared with before the introduction. 12. A pharmaceutical composition comprising the sc(Fv)2 of any one of claims 7 to 11. 20 13. A method for producing the pharmaceutical composition of claim 12, wherein the method comprises the steps of: (1) introducing the site-specific mutation of any one of claims 1 to 5 into the sc(Fv)2; and (2) mixing with a pharmaceutically acceptable carrier. 25 30 35 40 45 50 55

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 15

FIG. 16

FIG. 17

FIG. 18

	FR1	CDR1	FR2	CDR2
Kabat	3	} 	4	299
No.	123456789012345678901234567890	12345	67890123456789	012A3456789012345
ID NO:	QVQLVQSGPEVKKPGASVKVSCKASGYTFT	NSWMN	WVRQRPGKGLEWVG	RIYPGDGETIYNGKFRV
ID NO:		1 1 1		
:0N QI		1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
:0N QI		 - - -		9
ID NO:				
ID ·NO:		 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
:0N QI		 - - -	-W	
:0 10		1 1	-MI-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
:0N QI		1	-W	
:0N QI		 	-W	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
:0N QI		1 1 1	-WW-	
:0N GI	A	1 1 1	-I	
:0N GI		1 1	-I	
ID NO:		1	~I~	
:0N GI		!!!!	- H	
ID NO:		1 1 1		
(SEQ ID NO: 6) q-wz5		1 1	- I	
ID NO:		1	-I	

FIG. 19-A

FR3	CDR3	FR4				
Kabat	67890123456789012345678901234 56	0	11 34567890123			
g - e			WGQGTTVTVSS	(SEO	ID NO:	2)
g-a				(SEQ	ID NO:	16)
h-a				(SEO	S S S	18)
j-a				(SEO	ID NO:	28)
i-a				(SEO	:0N GI	26)
р. 1.		1		(SE0	: S S C	32)
p-e		1 1 1 1		(SE0	S 0:	9
V-6		1 1 1 1 1		(SEO	S Q	8
M-d		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		(SEO	: 	30)
z-d		1 1 1 1 1 1 1 1		(SE0	S Q	22)
zm-d		1		(SEO	: 	24)
q2-wz		 - - - - - -		(SEO	: -	14)
d-wz			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(SEO	: 의	12)
q-wz2				(SEO	S	36)
q-wz3				(SEO	: 	20)
q-wz4		* *		(SEO	을 으	34)
q-wz5			1 1 1 1 1 1 1 1	(SEO	: !	(9
u2-wz4		 		(SEO	: : : : :	4

FIG. 19-B

			FR1	CDR1	FR2	CDR2
		Kabat	12	3	4	5
		No.	12345678901234567890123	45678901ABCDE234	567890123456789	0123456
9	5)	g-e	DIVMTQSALSLPVTPGEPASISC	RSSKSLLHSNGNTYLY	WYLQKPGQSPQLLIY	RMSNLAS
<u> </u>	16)	g-a	AA			1 1 1 1
\Box	18	h-a	A		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1
	28)	j-a	A		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1
\Box	26)	i-a	A			1 1 1 1
<u>_</u>		i-e				
\Box		p-e		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		v~e				1 1 1 1
(SEQ ID NO:	30	ж-Q				
<u></u>		z-d			-FQ	1
9		p-wz			-FQ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
<u></u>		q2-wz			-FQ	1 1 1 1
2		d-wz			-FQ	
<u></u>		q-wz2			-FQ	1
<u>_</u>		q-wz3				1 1 1 1
\Box	34)	q-wz4				1
<u> </u>	(9	q-wz5			-FQA-R	1 1 1
9	4	u2-wz4			F	1 1 1

FIG. 20-A

	, c					
		CDR3	FR4			
Kabat	8119	6-	10			
No.	78901234567890123456789012345678	901234567	8901234567			
g-e	GVPDRFSGSGSGTAFTLKISRVEAEDVGVYYC	MOHIEYPFT	FGQGTKLEIK	(SE0	ID 80:	7
g-a				(SE0	ID NO:	16)
h-a				(SE0	ID NO:	18)
j-a				(SE0	ID N0:	28)
i-a	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	! ! ! ! ! !	(SEO	ID NO:	(92
- e		 		(SEO	ID NO:	32)
p-e		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(SEO	 	<u>6</u>
V - 6		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		(SE0	.0 □	8
M-Q	5			(SE0	:0 10	30
p-z		1 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(SEO	ID NO:	22)
b-wz			† † 	(SEO	ID NO:	24)
q2-wz			 	(SEO	9 0	14)
d-wz			1 1 1 1 1 1 1 1	(SE0	₩ Ω	12)
q-wz2				(SEO	ID NO:	36)
q-wz3				(SEO	.e ≥	(02
q-wz4			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(SEO	: -	34)
q-wz5		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		(SEO		6
u2-wz4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		(SE0	ID NO:	4

FIG. 20-B

FIG. 21

FIG. 22

FIG. 23

INTERNATIONAL SEARCH REPORT International application No. PCT/JP2006/311575 A. CLASSIFICATION OF SUBJECT MATTER C12N15/09(2006.01)i, A61K39/395(2006.01)i, A61P31/00(2006.01)i, C07K16/00 (2006.01) i According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C12N15/09, A61K39/395, A61P31/00, C07K16/00 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) BIOSIS/WPI(DIALOG), JSTPlus(JDream2) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Y WO 01/79494 A1 (Chugai Pharmaceutical Co., 1-13 Ltd.), 25 October, 2001 (25.10.01), Full text (Family: none) Y WO 02/33073 A1 (Chugai Pharmaceutical Co., 1-13 Ltd.). 25 April, 2002 (25.04.02), Full text & EP 1327681 A1 Hudson P. J. et al., High avidity scFv 1 - 13Y multimers; diabodies and triabodies, J. Immunol. Methods, 1999, Vol.231, No.1-2, p.177-89 X Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "T" document defining the general state of the art which is not considered to be of particular relevance "E" "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone earlier application or patent but published on or after the international filing document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "[." "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination "O" document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search 13 September, 2006 (13.09.06) Date of mailing of the international search report 26 September, 2006 (26.09.06)

Facsimile No.
Form PCT/ISA/210 (second sheet) (April 2005)

Japanese Patent Office

Name and mailing address of the ISA/

Authorized officer

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2006/311575

		PCT/JP2	006/311575
C (Continuation)	DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No		Relevant to claim No.
Υ	Ewert S. et al., Structure-based improve of the biophysical properties of immunog VH domains with a generalizable approach Biochemistry, 2003, Vol.42, No.6, p.1517	lobulin	1-13
Y	Biochemistry, 2003, Vol.42, No.6, p.1517 Arndt M. A. et al., Generation of a high stable, internalizing anti-CD22 single-c Fv fragment for targeting non-Hodgkin's lymphoma, Int. J. Cancer, 2003, Vol.107, p.822-9	ly hain	1-13

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2006/311575

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)		
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: 1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:		
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:		
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).		
Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)		
This International Searching Authority found multiple inventions in this international application, as follows: The "special technical feature" of claim 1 resides in a method for stabilizing sc(Fv) ₂ comprising introducing a site-directed mutation into the sc(Fv) ₂ , and the "special technical feature" of claim 10 resides in sc(Fv) ₂ having an Tm value of 55°C or higher. Since it does not appear that there is a technical relationship between these inventions involving one or more of the same or corresponding special technical features, these inventions are not considered to be so linked as to form a single general inventive concept.		
As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.		
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.		
As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:		
No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:		
Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable,		
the payment of a protest fee The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation. No protest accompanied the payment of additional search fees.		

Form PCT/ISA/210 (continuation of first sheet (2)) (April 2005)

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- EP 125023 A [0035]
- WO 9602576 A [0035]
- WO 9813388 A [0036]
- US 3773919 A [0090]

- EP 58481 A [0090]
- EP 133988 A [0090]
- WO 200556604 A [0111] [0111]

Non-patent literature cited in the description

- Int. J. Pharm., 2005, vol. 289, 1-30 [0007]
- Int. J. Pharm., 1999, vol. 185, 129-188 [0007]
- Biochemistry, 1999, vol. 38, 13960-13967 [0007]
- FEBS Letters, 1995, vol. 360 (3), 247-250 [0007]
- Current Opinion in Biotechnology, 2002, vol. 13, 333-337 [0007]
- J. Biotechnology, 2004, vol. 113, 105-120 [0007]
- Microbiol Mol Biol Rev., 2001, vol. 65 (1), 1-43 [0007]
- J. Mol. Biol., 2003, vol. 325, 531-553 [0007] [0109] [0109] [0109]
- J. Mol. Biol., 2001, vol. 305, 989-1010 [0007] [0109]
 [0109] [0109]
- Methods, 2004, 184-199 [0007]
- Protein Eng., 1997, vol. 10 (4), 435-44 [0007]
- Biochemistry, 2003, vol. 42, 1517-1528 [0007] [0109]
- Int. J. Cancer, 2003, vol. 107, 822-829 [0007]
- Protein Engineering, 1997, vol. 10 (12), 1453-1459
 [0007]
- HUDSON et al. J. Immunol. Methods, 1999, vol. 231, 177-189 [0025]
- HUSTON, J. S. et al. Proc. Natl. Acad. Sci. U.S.A., 1988, vol. 85, 5879-5883 [0025]
- PLUCKTHUN. The Pharmacology of Monoclonal Antibodies, 1994, vol. 113, 269-315 [0025]
- Protein Engineering, 1996, vol. 9 (3), 299-305 [0025]
- HASHIMOTO-GOTOH, T. et al. Gene, 1995, vol. 152, 271-275 [0032]
- ZOLLER, MJ; SMITH, M. Methods Enzymol., 1983, vol. 100, 468-500 [0032]
- KRAMER, W. et al. Nucleic Acids Res., 1984, vol. 12, 9441-9456 [0032]
- KRAMER, W.; FRITZ HJ. Methods Enzymol., 1987, vol. 154, 350-367 [0032]
- KUNKEL, TA. Proc. Natl. Acad. Sci. USA., 1985, vol. 82, 488-492 [0032]
- KUNKEL. *Methods Enzymol.,* 1988, vol. 85, 2763-2766 [0032]
- MARK, D. F. et al. Proc. Natl. Acad. Sci. USA, 1984, vol. 81, 5662-5666 [0033]

- ZOLLER, M. J.; SMITH, M. Nucleic Acids Research, 1982, vol. 10, 6487-6500 [0033]
- WANG, A. et al. Science, vol. 224, 1431-1433 [0033]
- DALBADIE-MCFARLAND, G et al. Proc. Natl. Acad. Sci. USA, 1982, vol. 79, 6409-6413 [0033]
- SATO, K. et al. Cancer Res., 1993, vol. 53, 851-856
 [0037]
- Journal of Immunology, 1994, vol. 152, 5368-5374
 [0043]
- Clinical Cancer Research, 2004, vol. 10, 1274-1281
 [0044]
- WARD et al. Nature, 1989, vol. 341, 544-546 [0047]
- FASEB J., 1992, vol. 6, 2422-2427 [0047]
- BETTER et al. Science, 1988, vol. 240, 1041-1043 [0047]
- LEI, S. P. et al. J. Bacteriol., 1987, vol. 169, 4379 [0048]
- Nucleic Acids Res., 1990, vol. 18 (17), 5322 [0049]
- MULLIGAN et al. Nature, 1979, vol. 277, 108 [0050]
- MIZUSHIMA et al. Nucleic Acids Res., 1990, vol. 18, 5322 [0050]
- Gene, 1991, vol. 108, 193 [0050]
- Pharm. Res., February 1998, vol. 15 (2), 200-8
 [0056]
- Remington's Pharmaceutical Science. 1980 [0090]
- LANGER et al. J. Biomed. Mater. Res., 1981, vol. 15, 167-277 [0090]
- LANGER. Chem. Tech., 1982, vol. 12, 98-105 [0090]
- SIDMAN et al. Biopolymers, 1983, vol. 22, 547-556 [0090]
- Pharm. Biotechnol., 2002, vol. 13, 109-33 [0092]
- Int. J. Pharm., 2000, vol. 203 (1-2), 1-60 [0092]
- Pharm. Res., 1997, vol. 14 (8), 969-75 [0092]
- J. Pharm. Sc., 2004, vol. 93 (6), 1390-1402 [0093]
- KABAT EA et al. Sequence of Proteins of Immunological Interest. NIH, 1991 [0097]
- J. Immunol. Methods, 2003, vol. 275, 31-40 [0109]
- J. Mol. Biol., 2001, vol. 309, 687-699 [0109]
- *J. Mol. Biol.*, 2001, vol. 309, 701-716 **[0109]**
- Protein Eng., 1997, vol. 10 (4), 435-444 [0109]
- *J. Mol. Biol.,* 1998, vol. 283, 395-407 **[0109]**

• Biochemistry, 2003, vol. 42 (6), 1517-1528 [0109] • Protein Sci., April 1997, vol. 6 (4), 781-8 [0119]