Основные алгоритмы. Домашняя работа 1 неделя

Зайнуллин Амир

8 февраля 2023 г.

Задача №1

- 1. Алгоритм выведет последовательность простых чисел от 2 до n. При каждой процедуре алгоритм записывает 1 в каждую ячейку, индекс которой кратен k. Следовательно, следующие процедуры будут игнорировать данные ячейки. Т.к k>1 то значит будет игнорировать все составные индексы, тогда будет выводит все простые индексы.
- 2. Рассмотрим одну процедуру. Сначала алгоритм доходит до первой нулевой ячейки от 2 до k индекса. Далее алгоритм идет по массиву дальше с шагом один и через каждые k клеток записывает в ячейку единицу Т.е за одну процедуру алгоритм обходит весь массив размером n-1. Количество выполненных процедур сколько простых чисел вывел. Допустим их количество p. Тогда временная сложность равна $(n-1) \cdot p$. Выполняется $1 \le p \le n$. Тогда оценки получаются равными $\Omega(n)$ и $O(n^2)$.
- 3. Да, т.к временная сложность $O(n^2)$.

Задача №2

- 1. Допустим, да. Тогда $\exists C>0, \exists n_0\in\mathbb{N}: \forall n>n_0 \quad n\leqslant C\cdot nlogn$ $\exists N\in\mathbb{N}: \forall n>N \quad 1\leqslant log(n)$ Знаем, что такое N существует $\exists N\in\mathbb{N}: \forall n>N \quad n\leqslant nlog(n)$ $\exists C=1: \forall n>N \quad n\leqslant nlog(n)$ Верно
- 2. Допустим, да. Тогда $\exists C > 0, \exists n_0 \in \mathbb{N} : \forall n > n_0 \quad nlog(n) \geqslant C \cdot n^{1+\varepsilon}$ $\exists C > 0, \exists n_0 \in \mathbb{N} : \forall n > n_0 \quad \frac{log(n)}{C} \geqslant n^{\varepsilon}$ $\exists C > 0 : \forall n > 1 \quad ln\left[\frac{log(n)}{C}\right] \geqslant \varepsilon \cdot ln(n)$ $\varepsilon \leqslant ln\left[\frac{log(n)}{C}\right] \cdot \frac{1}{ln(n)}$

Видно, что числитель возрастает медленне чем знаменатель, т.к числитель порядка $\ln(\log(n))$, а знаменатель $\ln(n)$). Значит правая часть будет убывать. Тогда неверно.

Задача №3

$$f(n) = O(n^{2}), g(n) = \Omega(1), g(n) = O(n), h(n) = \frac{f(n)}{g(n)}$$

$$\exists C_{1} > 0, \exists N_{1} \in \mathbb{N} : \forall n > N_{1} \quad f(n) \leqslant C_{1} \cdot n^{2}$$

$$\exists C_{2} > 0, \exists N_{2} \in \mathbb{N} : \forall n > N_{2} \quad g(n) \geqslant C_{2}$$

$$\exists C_{3} > 0, \exists N_{3} \in \mathbb{N} : \forall n > N_{3} \quad g(n) \leqslant C_{3} \cdot n$$

- 1. Если f(n) = nlogn g(n) = 1 $h(n) = nlogn = \Theta(nlog(n))$ Значит такое возможно
- 2. $h(n) = \frac{f(n)}{g(n)} \leqslant \frac{C_1 n^2}{C_2}$ Значит $h(n) = O(n^2)$. Значит пункт б невозможен
- 3. Верхнюю оценку мы дали. Нижняя оценку не можем, тк не знаем нижней оценки для f(n).

Задача №4

$$\sum_{i=1}^{n} i^{3/2} \leqslant \sum_{i=1}^{n} \sqrt{i^3 + 2i + 5} \leqslant \sum_{i=1}^{n} \sqrt{i^3 + 6i^3 + 12i + 8}$$

$$\sum_{i=1}^{n} i^{3/2} \leqslant \sum_{i=1}^{n} \sqrt{i^3 + 2i + 5} \leqslant \sum_{i=1}^{n} \sqrt{(i+2)^3}$$

$$\sum_{i=1}^{n} i^{3/2} \leqslant \sum_{i=1}^{n} \sqrt{i^3 + 2i + 5} \leqslant \sum_{i=1}^{n} (i+2)^{3/2}$$

Слагаемое слева из семинарской задачи равно $\Theta(n^{5/2})$. Аналогично справа $\Theta((n+2)^{5/2}) = \Theta(n^{5/2})$ Тогда ответ $\Theta(n^{5/2})$.

Задача №5

$$g(n)=\Theta(n^{100}),$$
 значит $\exists C_1,\ C2>0,\exists N\in\mathbb{N}: \forall n>N$ $C_1\cdot n^{100}\leqslant g(n)\leqslant C_2\cdot n^{100}$ $(3+o(1))^n+C_1n^{100}\leqslant (3+o(1))^n+\Theta(n^{100})\leqslant (3+o(1))^n+C_2n^{100}$ $\log\left[(3+o(1))^n\right]=n\cdot (3+o(1))$ $\log\left(Cn^{100}\right)=100\cdot \log(Cn)$

Так как log(n) = O(n), то вторым слагаемым можно будет пренебречь. $\log f(n) = n \cdot (3 + o(1)) = \Theta(n)$ Верно

Задача №7

$$7 \equiv 7 \mod(167)$$

 $7^3 \equiv 9 \mod(167)$
 $7^6 \equiv 81 \mod(167)$
 $7^{12} \equiv 48 \mod(167)$
 $7 \cdot 7^{12} \equiv 2 \mod(167)$

Ответ: 2

Задача №8

1.
$$T_{1}(1) = T_{1}(2) = T_{1}(3) = 1$$

 $T_{2}(1) = T_{2}(2) = T_{2}(3) = 1$
 $T_{1}(n) = T_{1}(n-1) + cn$
 $T_{1}(4) = T_{1}(3) + 4c = 1 + 4c$
 $T_{1}(5) = T_{1}(4) + 5c = 1 + 4c + 5c$
 $T_{1}(n) = 1 + 4c + 5c + \ldots + cn = 1 + c(4 + 5 + \ldots + n)$
 $= 1 + c \cdot \left[\frac{n(n+1)}{2} - 1 - 2 - 3 \right] = \theta(n^{2})$

2.

$$T_{2}(n) = T_{1}(n-1) + 4T_{2}(n-3)$$

$$k^{3} = k^{2} + 4$$

$$k^{3} - k^{2} - 4 = 0$$

$$(k-2)(k^{2} + k + 2) = 0$$

$$k = 2, k = k_{2}, k = k_{3}$$

$$T_{2}(n) = B_{1} \cdot 2^{n} + B_{2} \cdot k_{2}^{n} + B_{3} \cdot k_{3}^{n}$$

$$\log (T_{2}) = \theta (n)$$