Particle spectrograph

Wave operator and propagator

$(1_{2} + 7 \times (1_{1})$			$\sigma_0^{\sharp 1}$		$\tau_{0}^{\#1}$		$\tau_{0}^{\#2}$	$\sigma_{\scriptscriptstyle m C}^{\scriptscriptstyle \sharp}$	#1)		
$7 + \Gamma_2$	$\sigma_{0}^{\#1}$	+ - (1-	1 +2 k ²) ²		i √2 k +2 k ²) ²		0	C)		أ
	$ au_{0}^{\#1}$	+ - (1-	$i \sqrt{2} k$ $+2k^2)^2$	$\frac{}{t_1}$ $-\frac{}{(1)}$	$\frac{2k^2}{+2k^2)^2}$	t ₁	0	C)		$^{\ddagger 1}_{+} \dagger^{\alpha\beta}$
(τ ₀ ^{#2} †		0		0		0)	$ au_2^{\sharp}$	$\frac{1}{2}$ † † $\alpha\beta$
$(1 + 2 \times (1)^{-}$	$\sigma_0^{\#1}$	+	0		0		0	$\frac{1}{k^2}$	<u> </u>	$\sigma_2^{\#2}$	1 $^{\alpha eta \chi}$
+ L ₂₎	α									1	1
_	$f_{1}^{\#2}$	0	0	0	ikt ₁	0		0	0		
Ta vz±Ta	$f_{1^-}^{\#1}$	0	0	0	0	0		0	0		
3	$\omega_{1}^{\#2}{}_{lpha}$)	0	0	0	$\frac{t_1}{\sqrt{2}}$	0		0	0		Sour
	$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$-k^2 r_1 - \frac{t_1}{2}$	<u>t1</u>	7.7	0	$-ikt_1$		$\frac{\text{SO}(3)}{\tau_{0}^{\#2}} = 0$
	$f_{1}^{\#1}{}_{\alphaeta}$	$-\frac{ikt_1}{3\sqrt{2}}$	<u>i kt1</u> 3	$\frac{k^2 t_1}{3}$	- 0	0		0	0		$\frac{\tau_{0}^{\#1} - 2}{\tau_{1}^{\#2}}^{\alpha}$
	$\omega_{1}^{\#_{2}^{2}}$ J	$-\frac{t_1}{3\sqrt{2}}$	5 F	$-\frac{1}{3}$ $i k t_1$	0	0		0	0		$\frac{\tau_1^{\#1}\alpha}{\tau_1^{\#1}\alpha}$
	$\omega_{1}^{\#1}{}_{lphaeta}$ (6 6	$-\frac{t_1}{3\sqrt{2}}$	$\frac{i k t_1}{3 \sqrt{2}}$	0	0		0	0		$2 \sigma_1^{\#}$
		$\omega_1^{\#1} + \alpha^{eta}$	$\omega_1^{\#2} + ^{lphaeta}$	$f_{1+}^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{lpha}$	$\omega_1^{#2} + \alpha$	- - ;	$f_{1}^{\#_{1}} \dagger^{\alpha}$	$f_{1}^{\#2} \dagger^{\alpha}$		$\frac{\tau_2^{\#1}\alpha_l}{\text{Total}}$

Source constraints/gauge generators						
SO(3) irreps	Multiplicities					
$\tau_{0^{+}}^{\#2} == 0$	1					
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	1					
$\tau_1^{\#2\alpha} + 2ik \sigma_1^{\#2\alpha} == 0$	3					
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3					
$\tau_{1+}^{\#1}{}^{\alpha\beta} - 2 ik\sigma_{1+}^{\#1}{}^{\alpha\beta} == 0$	3					
$2 \sigma_{1+}^{\#1\alpha\beta} + \sigma_{1+}^{\#2\alpha\beta} == 0$	3					
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 ik\sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$	5					
Total constraints:	19					

 $\sigma_{2^{+}\alpha\beta}^{\#1}$

 $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

0

 $\tau_{2^{+}\alpha\beta}^{\#1}$

 $2i\sqrt{2}k$

 $(1+2k^2)^2t_1$

 $(1+2k^2)^2t_1$

0

 $\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$

0

 $\frac{-}{2 k^2 r_1 + t_1}$

 $\omega_{0^{\text{-}}}^{\#1}$

 $f_{0}^{\#1}$

 $\omega_{0}^{\#1}$

0

0

 $\sqrt{2} kt_1$

0

0

 $-2 k^2 t_1$

 $-i\sqrt{2}kt_1$

0

0

 $f_{0}^{#1} + f_{0}^{#2} + f_{0}^{#2} + f_{0}^{#2}$

0

$\omega_{2^{-}}^{\#1}\alpha\beta\chi$	0	0	$k^2 r_1 + \frac{t_1}{2}$
$f_{2}^{\#1}_{\alpha\beta}$	$-\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_{2}^{\#1}{}_{\alpha\beta}\ f_{2}^{\#1}{}_{\alpha\beta}$	$\frac{t_1}{2}$	$\frac{i k t_1}{\sqrt{2}}$	0
	$\omega_2^{\#1} +^{lphaeta}$	$f_2^{#1} + ^{\alpha\beta}$	$\omega_{2}^{#1} +^{lphaeta\chi}$

Massive and massless spectra

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$