Intermediate Value Theorem Project

Quinn Oveson and Carter Hastings $\label{eq:June 13} \text{June 13, 2025}$

0.1 Definitions

Definition 1 (Sequence). A sequence, denoted a or $\{a_n\}$, is a function $a: \mathbb{N} \to \mathbb{R}$.

Definition 2 (Convergence). A sequence $\{a_n\}$ converges to $L \in \mathbb{R}$ if for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $|a_n - L| < \varepsilon$. We say $\{a_n\}$ converges if there exists $L \in \mathbb{R}$ such that $\{a_n\}$ converges to L.

0.2 Theorems

Theorem 3 (Limit Laws). Let $C \in \mathbb{R}$. Suppose $\{a_n\}$ converges to L and $\{b_n\}$ converges to K. Then

```
 \begin{array}{l} \textit{(i)} \ \{Ca_n\} \ \textit{converges to} \ CL \\ \textit{(ii)} \ \{a_n+b_n\} \ \textit{converges to} \ L+K \end{array}
```

Theorem 4 (Smale 1958). There is a homotopy of immersions of \mathbb{S}^2 into \mathbb{R}^3 from the inclusion map to the antipodal map $a: q \mapsto -q$.

Proof. This obviously follows from what we did so far. Testing changing my branch \Box