DIGITAL LOGIC

LECTURE-19

Code conversion

- The availability of a large variety of codes for the same discrete elements of information results in the use of different codes by different digital systems.
- A conversion circuit must be inserted between the two systems if each uses different codes for the same information.
- Thus, a code converter is a circuit that makes the two systems compatible even though each uses a different binary code.

- o To convert from binary code A to binary code B, the input lines must supply the bit combination of elements as specified by code A and the output lines must generate the corresponding bit combination of code B. A combinational circuit performs this transformation by means of <u>logic gates</u>.
- The design procedure will be illustrated by an example that converts binary coded decimal (BCD) to the excess-3 code for the decimal digits.

Truth Table for Code Conversion Example

	Inpu		Output Excess-3 Code				
A	В	C	D	w	X	y	Z
0	0	0	0	0	0	1	1
O	0	0	1	0	1	0	0
O	0	1	0	0	1	0	1
O	0	1	1	0	1	1	0
O	1	0	0	0	1	1	1
O	1	0	1	1	O	0	0
O	1	1	0	1	O	0	1
O	1	1	1	1	O	1	0
1	0	0	0	1	O	1	1
1	0	0	1	1	1	0	0

We designate the four input binary variables by the symbols A, B, C, and D, and the four output variables by w, x, y, and z.

Maps for BCD-to-excess-3 code converter

1	00	01	11	10
00	1	m ₁	1	m ₂
01	1	m _s	1	m ₆
11	×	m _D	m _n	m ₁₄
10	70,	m _q	m _{ii}	m ₁₀

$$z = D'$$

$$y = CD + C'D'$$

$$w = A + BC + BD$$

So, finally the output expression are as follows:

$$z = D'$$

 $y = CD + C'D' = CD + (C + D)'$
 $x = B'C + B'D + BC'D' = B'(C + D) + BC'D'$
 $= B'(C + D) + B(C + D)'$
 $w = A + BC + BD = A + B(C + D)$

Logic diagram for BCD-to-excess-3 code converter

Design a combinational circuit that converts a four-bit binary number to a four bit Gray code.

The gray code is a non-weighted code. The successive gray code differs in one-bit position only that means it is a unit distance code. It is also referred as a cyclic code. It is not suitable for arithmetic operations. It is the most popular of the unit distance codes. It is also a reflective code. An n-bit Gray code can be obtained by reflecting an n-1 bit code about an axis after 2n-1 rows and putting the MSB of 0 above the axis and the MSB of 1 below the axis. Reflection of the 4 bits binary to gray code conversion table is given below:

The Truth Table for binary –Gray Code Convertor Circuit

Decimal Number	4 bit Binary Number	4 bit Gray Code
	ABCD	$G_1G_2G_3G_4$
0	0000	0000
1	0001	0001
2	0010	0 0 1 1
3	0011	0010
4	0100	0110
5	0101	0 1 1 1
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1 1 0 1	1011
14	1110	1001
15	1111	1000

$$G_2 = B\overline{C} + \overline{B}C = B \oplus C$$

$$G_3 = \overline{A}B + A\overline{B} = A \oplus B$$

$$G_1 = \overline{C}D + C\overline{D} = C \oplus D$$

Logic Diagram for Binary – Gray Code Convertor

Design a code converter that converts a decimal digit from "8, 4, -2, -1" code to BCD.

The Truth Tabl

	8	4	-2	-1	8	4	2	1
	Α	В	С	D	w	x	у	z
0	0	О	0	0	0	0	О	О
1	0	1	1	1	0	0	0	1
2	O	1	1	0	0	0	1	O
3	0	1	0	1	0	0	1	1
4	0	1	О	О	0	1	O	0
5	1	О	1	1	0	1	O	1
6	1	О	1	0	0	1	1	0
7	1	0	О	1	0	1	1	1
8	1	0	0	0	1	0	0	0
9	1	1	1	1	1	0	0	1

$$\mathbf{w} = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C}'\mathbf{D}'$$

				•	-
	AB\CD	00	01	11	10
	00		\sqrt{X}	X	\sqrt{x}
	01		1		1
A	11	X	X		X
	10		1		1

$$y = C'D + CD'$$

$$x = B'C + B'D + BC'D'$$

and
$$z = D$$

THANK YOU