Elementi Di Informatica E Programmazione

Prof. Andrea Loreggia

Cos'è un sistema operativo

- Il software può essere diviso in due grandi classi:
 - i programmi di sistema, che gestiscono le funzionalità del sistema di calcolo
 - i programmi applicativi, che risolvono i problemi degli utenti
- L'insieme dei programmi di sistema viene comunemente identificato con il nome di Sistema Operativo (SO)
- Definizione: Un sistema operativo è un programma che controlla l'esecuzione dei programmi applicativi ed agisce come interfaccia fra le applicazioni e l'hardware del calcolatore

Percezione del sistema operativo

- Per l'utente, la percezione del calcolatore dipende dall'interfaccia del SO
 - SO progettato pensando alla facilità d'uso
 - Qualche attenzione alle prestazioni
 - Scarsa attenzione all'utilizzo delle risorse
- Dal punto di vista del sistema di calcolo...
 - Il SO viene percepito come un gestore di risorse (CPU, RAM, I/O) e come un programma di controllo
 - Arbitra l'esecuzione dei programmi utente
- Non c'è uniformità nel definire cosa fa parte/non compete del/al SO

Il SO come macchina estesa

 Visione a strati delle componenti hardware/software che compongo un sistema di elaborazione

Il SO come macchina estesa

- Il SO può essere inteso come uno strumento che virtualizza le caratteristiche dell'hardware sottostante, offrendo all'utente la visione di una macchina astratta più potente e più semplice da utilizzare di quella fisicamente disponibile
- In questa visione, un SO...
 - ...nasconde a programmatori/utenti i dettagli dell'hardware e fornisce un'interfaccia conveniente e facile da usare
 - ...agisce come intermediario tra programmatore/utente e hardware
- Parole chiave
 - Indipendenza dall'hardware
 - Comodità d'uso
 - Programmabilità

Il SO come macchina estesa

• L'utente è in grado di utilizzare la macchina fisica senza conoscere i dettagli della sua struttura interna e del suo funzionamento

- 1. Hardware fornisce le risorse fondamentali di calcolo (CPU, memoria, device di I/O)
- 2. Sistema Operativo controlla e coordina l'utilizzo delle risorse hardware da parte dei programmi applicativi dell'utente
- 3. Programmi Applicativi definiscono le modalità di utilizzo delle risorse del sistema, per risolvere i problemi di calcolo degli utenti (compilatori, database, video game, programmi gestionali)
- 4. Utenti persone, altri macchinari, altri elaboratori

Visione "a cipolla" del sistema di calcolo

Architettura del sistema operativo

- I SO sono costituiti da un insieme di moduli, ciascuno dedicato a svolgere una determinata funzione
- I vari moduli del SO interagiscono tra loro secondo regole precise, al fine di realizzare le funzionalità di base della macchina

 L'insieme dei moduli per la gestione della CPU e della memoria centrale è il kernel

Compiti del sistema operativo

- Gestione dei processi
- Gestione della memoria principale
- Gestione della memoria di massa (file system)
- Realizzazione dell'interfaccia utente
- Protezione e sicurezza

La gestione dei processi

- Un processo è un programma in esecuzione
 - Un processo utilizza le risorse fornite dal sistema di elaborazione per assolvere ai propri compiti
 - La terminazione di un processo prevede il recupero di tutte le risorse riutilizzabili ad esso precedentemente allocate
- Normalmente, in un sistema vi sono molti processi, di alcuni utenti, e alcuni sistemi operativi, che vengono eseguiti in concorrenza su una o più CPU
- La concorrenza è ottenuta effettuando il multiplexing delle CPU fra i vari processi

La gestione dei processi

- Il sistema operativo è responsabile delle seguenti attività riguardanti la gestione dei processi:
 - creazione e terminazione dei processi
 - sospensione e riattivazione dei processi
 - gestione dei deadlock
 - comunicazione tra processi
 - sincronizzazione tra processi
- Il gestore dei processi "realizza" una macchina virtuale in cui ciascun programma opera come se avesse a disposizione un'unità di elaborazione dedicata

Il problema dei 5 filosofi

- Un filosofo alterna una fase di riflessione e una fase in cui mangia
- Per mangiare ha bisogno di poter accedere ad entrambe le forchette adiacenti in modo esclusivo
- Deadlock: ogni filosofo tiene in mano una forchetta senza mai riuscire a prendere l'altra
- Starvation: se uno dei filosofi non riesce mai a prendere entrambe le forchette

Deadlock

Processi che si bloccano a vicenda nell'esecuzione

- Condizioni necessarie perchè si verifichi un deadlock
 - Competizione per l'uso esclusivo di risorse
 - Risorse richieste parzialmente
 - Risorsa allocate e non rilasciabile forzatamente

Process Administration

 Scheduler: aggiunge un nuovo processo da eseguire e rimuove I processi completati

• Dispatcher: controlla l'allocazione dei quanti di tempo assegnati ai processi

• La fine di un quanto di tempo è segnalato da un interrupt.

Time-sharing tra due processi

La gestione dei processi

- Il gestore dei processi è il modulo che si occupa del controllo, della sincronizzazione, dell'interruzione e della riattivazione dei programmi in esecuzione cui viene assegnato un processore
- La gestione dei processi viene compiuta secondo modalità diverse, in funzione del tipo di utilizzo cui il sistema è rivolto
- Il programma che si occupa della distribuzione del tempo di CPU tra i vari processi attivi, decidendone l'avvicendamento, è chiamato scheduler
- Nel caso di sistemi multiprocessore, lo scheduler si occupa anche di gestire la cooperazione tra le diverse CPU presenti nel sistema (bilanciandone il carico)

Ciclo di vita dei processi

Sistemi mono-tasking

- I SO che gestiscono l'esecuzione di un solo programma per volta (un solo processo) sono detti mono

 tasking
- Non è possibile sospendere un processo per assegnare la CPU ad un altro

Sistemi multi-tasking

• I SO che permettono l'esecuzione contemporanea di più programmi sono detti multi-tasking o multi-programmati

• Un programma può essere interrotto e la CPU passata a un

altro programma

C

Tempo di utilizzo della CPU

Tempo di attesa di eventi esterni

Tmulti-tasking Tmono-tasking

Time-sharing: diagramma temporale

Gestione della memoria principale

- La memoria principale...
 - ...è un "array" di byte indirizzabili singolarmente
 - …è un deposito di dati facilmente accessibile e condiviso tra la CPU ed i dispositivi di I/O
- Il SO è responsabile delle seguenti attività riguardanti la gestione della memoria principale:
 - Tenere traccia di quali parti della memoria sono usate e da chi
 - Decidere quali processi caricare quando diventa disponibile spazio in memoria
 - Allocare e deallocare lo spazio di memoria quando necessario
- Il gestore di memoria "realizza" una macchina virtuale in cui ciascun programma opera come se avesse a disposizione una memoria dedicata

Gestione della memoria principale

- L'organizzazione e la gestione della memoria centrale è uno degli aspetti più critici nel disegno di un SO
- Il gestore della memoria è quel modulo del SO incaricato di assegnare la memoria ai task (per eseguire un task è necessario che il suo codice sia caricato in memoria)
- La complessità del gestore della memoria dipende dal tipo di SO
- Nei SO multi–tasking, più programmi possono essere caricati contemporaneamente in memoria
- Problema: come allocare lo spazio in maniera ottimale?

Paginazione

0000x Programma A Programma A Programma A Programma E Programma F Programma D Programma F

Memoria

Gestione del file system

- Il file è l'astrazione informatica di un archivio di dati
 - Il concetto di file è indipendente dal mezzo sul quale viene memorizzato (che ha caratteristiche proprie e propria organizzazione fisica)
- Un file system è composto da un insieme di file
- Il SO è responsabile delle seguenti attività riguardanti la gestione del file system:
 - Creazione e cancellazione di file
 - Creazione e cancellazione di directory
 - Manipolazione di file e directory
 - Codifica del file system sulla memoria secondaria

Gestione del file system

- Il gestore del file system è il modulo del SO incaricato di gestire le informazioni memorizzate sui dispositivi di memoria di massa
- Il gestore del file system deve garantire la correttezza e la coerenza delle informazioni
- Nei sistemi multi-utente, fornisce meccanismi di protezione per consentire agli utenti di proteggere i propri dati dall'accesso di altri utenti non autorizzati
- Le funzioni tipiche del gestore del file system sono:
 - Fornire un meccanismo per l'identificazione dei file
 - Fornire metodi opportuni di accesso ai dati
 - Rendere trasparente la struttura fisica del supporto di memorizzazione
 - Implementare meccanismi di protezione dei dati

Organizzazione del file system

 Quasi tutti i SO utilizzano un'organizzazione gerarchica del file system

• L'elemento utilizzato per raggruppare più file insieme è la directory

• L'insieme gerarchico delle directory e dei file può essere rappresentato attraverso un grafo (un albero nei SO più datati) delle directory

La gestione dei dispositivi di I/O

- La gestione dell'I/O richiede:
 - Un'interfaccia comune per la gestione dei device driver
 - Un insieme di driver per dispositivi hardware specifici
 - Un sistema di gestione di buffer per il caching delle informazioni
- Il gestore dei dispositivi di I/O è il modulo del SO incaricato di assegnare i dispositivi ai task che ne fanno richiesta e di controllare i dispositivi stessi

La gestione dei dispositivi di I/O

- Da esso dipende la qualità e il tipo di periferiche riconosciute dal sistema
- Il gestore delle periferiche offre all'utente una versione astratta delle periferiche hardware; l'utente ha a disposizione un insieme di procedure standard di alto livello per leggere/scrivere da/su una periferica che "percepisce" come dedicata

Device driver

- Il controllo dei dispositivi di I/O avviene attraverso speciali moduli software, detti device driver
- I device driver sono spesso realizzati dai produttori dei dispositivi stessi, che ne conoscono le caratteristiche fisiche in maniera approfondita
- I device driver implementano le seguenti funzioni:
 - Rendono trasparenti le caratteristiche fisiche tipiche di ogni dispositivo
 - Gestiscono la comunicazione dei segnali verso i dispositivi
 - Gestiscono i conflitti, nel caso in cui due o più task vogliano accedere contemporaneamente allo stesso dispositivo

L'interfaccia utente

- Tutti i SO implementano meccanismi per facilitare l'utilizzo del sistema di calcolo da parte degli utenti
- L'insieme di tali meccanismi di accesso al computer prende il nome di interfaccia utente
- Serve per...
 - ...attivare un programma, terminare un programma, etc.
 - ...interagire con le componenti del sistema operativo (gestore dei processi, file system, etc.)

Protezione e sicurezza

- Protezione è il meccanismo usato per controllare l'accesso da parte di processi e/o utenti a risorse del sistema di calcolo
- Sicurezza è il meccanismo di difesa implementato dal sistema per proteggersi da attacchi interni ed esterni
 - Denial-of-service, worm, virus, hacker

Protezione e sicurezza

- In prima istanza, il sistema distingue gli utenti, per determinare chi può fare cosa
 - L'identità utente (user ID) include nome dell'utente e numero associato uno per ciascun utente
 - L'user ID garantisce l'associazione corretta di file e processi all'utente e ne regola la manipolazione
 - L'identificativo di gruppo permette inoltre ad un insieme di utenti di accedere correttamente ad un gruppo di risorse comuni (file e processi)

Protezione e sicurezza

• In Linux...

-rw-rw-r	1 pbg	staff	31200	Sep 3 08:30	intro.ps
drwx	5 pbg	staff	512	Jul 8 09.33	private/
drwxrwxr-x	2 pbg	staff	512	Jul 8 09:35	doc/
drwxrwx	2 pbg	student	512	Aug 3 14:13	student-proj/
-rw-rr	1 pbg	staff	9423	Feb 24 2003	program.c
-rwxr-xr-x	1 pbg	staff	20471	Feb 24 2003	program
drwxxx	4 pbg	faculty	512	Jul 31 10:31	lib/
drwx	3 pbg	staff	1024	Aug 29 06:52	mail/
drwxrwxrwx	3 pbg	staff	512	Jul 8 09:35	test/