	FTN – Katedra za telekomunikacije i obradu sig
Digitalne modulacije	
	OQAM (<i>Offset</i> QPSK)

OQAM

Digitalne modulacije 2/20

Uvod

- OQAM je modifikacija QAM modulacije, nastala sa ciljem da se smanji maksimalna promena faze koja može da se dogodi na prelazu između susednih signalizacionih intervala
 - Promena faze na prelazima između susednih intervala uzrokuje skokovitu promenu amplitude
 - Za realizaciju pojedinih prenosnih sistema koriste se nelinearni elementi
 - Primer transponderi u satelitskim sistemima
 - Skokovite promene amplitude u signalu na ulazu transpondera uzrokuju da signall na izlazu transpondera bude značajno šireg spektra nego ulazni signal
 - Ovaj efekat je nepovoljan i potrebno ga je minimizovati
 - Zato se u praksi, u pojedinim situacijama, umesto QPSK koristi OQPSK modulacija

Digitalne modulacije

QPSK

 QPSK signal nastaje kao kombinacija dva binarna polarna ASK signala, jedan je sa nosiocem u fazi, a drugi sa nosiocem u kvadraturi:

$$s_m(t) = s_{m_1}(t) + s_{m_2}(t)$$

$$s_{m_1}(t) = s_1(t)\cos(2\pi f_0 t)$$

$$s_{m_1}(t) = s_2(t)\sin(2\pi f_0 t)$$

- s₁(t) i s₂(t) su modulišući signali u osnovnom opsegu – binarni polarni NRZ signali
 - Radi jednostavnosti, uzećemo da su amplitude modulišućih signala ±1

Konstelacija QPSK signala:

 Uz simbole u konstelaciji prikazane su odgovarajuće vrednosti amplituda modulišućih signala

4/20

Digitalne modulacije

- Kod QPSK, dozvoljen je "prelaz" iz bilo kog simbola u konstelaciji u bilo koji drugi simbol
 - tj, moguće je da u narednom signalizacionom intervalu signal dobije bilo koju vrednost faze (iz skupa dozvoljenih vrednosti)
 - Maksimalna promena vrednosti faze je stoga π
 - Do ove promene dolazi ukoliko se simultano promene vredosti amplituda oba modulišuća signala, npr:
 - **■** (1,-1) ↔ (-1,1)
 - **■** (1,1) ↔ (-1,-1)

Digitalne modulacije 5/20

OQPSK

- OQPSK modulacija je modifikacija QPSK kod koje su modulišući signali pomereni za polovinu signalizacionog intervala
 - Odatle i termin offset u imenu modulacije
- Ovim se postiže da promene amplitude kod oba modulišuća signala nisu simultane, nego se na polovini signalizacionog intervala menja samo jedna od njih
 - Posmatrano na konstelacionom dijagramu, to znači da su dozvoljeni samo prelazi:

•
$$(-1,-1) \rightarrow (-1,1) i (-1,-1) \rightarrow (1,-1)$$

•
$$(-1,1) \rightarrow (-1,-1) i (-1,1) \rightarrow (1,1)$$

•
$$(1,1) \rightarrow (1,-1) i (1,1) \rightarrow (-1,1)$$

→ dozvoljeni prelazi

- Maksimalna promena vrednosti faze je $\frac{\pi}{2}$
 - Manje nego kod QPSK
- Stoga su i skokovite promene amplitude kod OQPSK manje nego kod QPSK

Digitalne modulacije

6/20

Primer (preuzet sa wikipedia.org)

- Neka se prenosi informaciona sekvenca 1,1,0,0,0,1,1,0
- Informaciona sekvena se deli na dva modulišuća signala, jedan u fazi, drugi u kvadraturi
 - Neparni biti se prenose prvim signalom, parni drugim signalom
 - Amplitude modulišućih signala su:
 - Komponenta u fazi (označena se I, in-phase): 1,-1,-1,1
 - Komponenta u kvadraturi (označena se Q, quadrature)1,-1,1,-1
- Vremenski oblik QPSK signala je:

Digitalne modulacije

7/20

Primer

Vremenski oblik OQPKS signala je:

Digitalne modulacije

8/20

