BÀI TẬP THỰC HÀNH MÔN TRÍ TUỆ NHÂN TẠO BÀI TOÁN GOM CỤM VỚI K-MEANS

Bài tập 1: Cho tập hợp các điểm có tọa độ sau:

(4, 21), (5, 19), (10, 24), (4, 17), (3, 16), (11, 25), (14, 24), (6, 22), (10, 21), (12, 21)

a. Hiển thị lên đồ thị với tập hợp màu như sau:

color = np.array(["red", "blue","blue", "yellow", "pink", "black", "orange",
"purple", "cyan", "magenta"])

b. Dùng phương pháp Elbow tính số cụm K-means:

```
from sklearn.cluster import KMeans
inertias = []

for i in range(1,11):
    kmeans = KMeans(n_clusters=i)
    kmeans.fit(data)
    inertias.append(kmeans.inertia_)

plt.plot(range(1,11), inertias, marker='o')
plt.title('Elbow method')
plt.xlabel('Number of clusters')
plt.ylabel('Inertia')
plt.show()|

Kêt quå:
```


Chọn số phân cụm là 2:

```
kmeans = KMeans(n_clusters=2)
kmeans.fit(data)

plt.scatter(x, y, c=kmeans.labels_)
plt.show()
Kết quả:
```


c. Tính các center point của từng cụm:

```
print('Centers found by scikit-learn:')
print(kmeans.cluster_centers_)
Kiểm chứng kết quả:
Contors found by scikit learn.
```

Centers found by scikit-learn:

```
[[ 4.4 19. ]
[11.4 23. ]]
```

Bài tập 2: Cho dữ liệu 'housing.csv' như sau:

(0) (A	В	С	D	Е	F	G	Н	I	J
	housing									
1	ongitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean_proximity
2	122.23	37.88	41.0	880.0	129.0	322.0	126.0	8.3252	452600.0	NEAR BAY
3	122.22	37.86	21.0	7099.0	1106.0	2401.0	1138.0	8.3014	358500.0	NEAR BAY
4	122.24	37.85	52.0	1467.0	190.0	496.0	177.0	7.2574	352100.0	NEAR BAY
5	122.25	37.85	52.0	1274.0	235.0	558.0	219.0	5.6431	341300.0	NEAR BAY
6	122.25	37.85	52.0	1627.0	280.0	565.0	259.0	3.8462	342200.0	NEAR BAY
7	122.25	37.85	52.0	919.0	213.0	413.0	193.0	4.0368	269700.0	NEAR BAY
8	122.25	37.84	52.0	2535.0	489.0	1094.0	514.0	3.6591	299200.0	NEAR BAY
9	122.25	37.84	52.0	3104.0	687.0	1157.0	647.0	3.12	241400.0	NEAR BAY
10	122.26	37.84	42.0	2555.0	665.0	1206.0	595.0	2.0804	226700.0	NEAR BAY
11	122.25	37.84	52.0	3549.0	707.0	1551.0	714.0	3.6912	261100.0	NEAR BAY
12	122.26	37.85	52.0	2202.0	434.0	910.0	402.0	3.2031	281500.0	NEAR BAY
13	122.26	37.85	52.0	3503.0	752.0	1504.0	734.0	3.2705	241800.0	NEAR BAY
14	122.26	37.85	52.0	2491.0	474.0	1098.0	468.0	3.075	213500.0	NEAR BAY
15	122.26	37.84	52.0	696.0	191.0	345.0	174.0	2.6736	191300.0	NEAR BAY
16	122.26	37.85	52.0	2643.0	626.0	1212.0	620.0	1.9167	159200.0	NEAR BAY
17	122.26	37.85	50.0	1120.0	283.0	697.0	264.0	2.125	140000.0	NEAR BAY
18	122.27	37.85	52.0	1966.0	347.0	793.0	331.0	2.775	152500.0	NEAR BAY
-									.=====	

- a. Tiến hành đọc housing.csv vào DataFrame df
- b. Hiển thị df
- c. Hiển thị tên các columns trong df
- d. Hiển thị số records dữ liệu trong df
- e. Dựa trên 'longitude' và 'latitude' để gom cụm các giá nhà 'median_house_value', tiến hành dùng matplotlib để hiển thị với x = 'longitude', y = 'latitude' và màu sắc sẽ phụ thuộc vào 'median_house_value':

```
import numpy as np
x = df['longitude'].to_numpy()
y = df['latitude'].to_numpy()
color = df['median_house_value'].to_numpy()
plt.scatter(x, y, c=color)
plt.colorbar()
plt.show()
```

Kết quả thu được:

Thư viện seaborn để hiển thị giá trị:

```
import seaborn as sns
sns.scatterplot(data = df, x = 'longitude', y = 'latitude', hue = 'median_house_value')
```

Kết quả thu được:

f. K-means trong scikitlearn

Chuẩn bị chia dữ liệu thành tỉ lệ train-test: 70%-30%

Tiền xử lý dữ liệu:

```
from sklearn import preprocessing

X_train_norm = preprocessing.normalize(X_train)
X_test_norm = preprocessing.normalize(X_test)
print(X_train_norm.shape)
print(X_test_norm.shape)
```

Quan sát kết quả trước và sau tiền xử lý.

Tiến hành huấn luyện bằng K-Means với số cụm = 5.

```
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters = 5, random_state = 0, n_init='auto')
kmeans.fit(X_train_norm)
```

Hiển thị kết quả huấn luyện:

```
plt.scatter(X_train['longitude'].to_numpy(), X_train['latitude'].to_numpy(), c=kmeans.labels_)
plt.colorbar()
plt.show()
```


Hoặc bằng seaborn:

```
sns.scatterplot(data = X_train, x = 'longitude', y = 'latitude', hue = kmeans.labels_)
```


g. Tiến hành kiểm thử:

```
y_pred = kmeans.predict(X_test_norm)
sns.scatterplot(data = X_test, x = 'longitude', y = 'latitude', hue = y_pred)
```

Hiển thị kết quả phân cụm với tập kiểm thử bằng matplotlib:

```
plt.scatter(X_test['longitude'].to_numpy(), X_test['latitude'].to_numpy(), c=y_pred)
plt.colorbar()
plt.show()
```

Bằng seaborn:

```
y_pred = kmeans.predict(X_test_norm)
sns.scatterplot(data = X_test, x = 'longitude', y = 'latitude', hue = y_pred)
```

Quan sát kết quả kiểm tra với cụm phân chia.

h. Xuất kết quả giá trị trung tâm mà K-Means tính được:

```
print('Centers found by scikit-learn:')
print(kmeans.cluster_centers_)

Két quả tính:

Centers found by scikit-learn:
[[ 0.27698887 -0.96087076]
[ 0.29345769 -0.95596888]
[ 0.31133094 -0.95029171]
[ 0.30047293 -0.95378665]
[ 0.27026045 -0.96278599]]
```

Bài tập 3: Với dataset ở bài tập 2, hãy tiến hành chia lại tập train-test theo tỉ lệ 80-20 và đảm bảo dữ liệu các class đều có trong tỉ lệ train-test này. Sau đó so sánh lại với kết quả bài 2 và kết quả mô phỏng giải thuật trên giấy.