

I Densely Connected ConvNets (DenseNet)

Figure 1: A 5-layer dense block with a growth rate of k=4. Each layer takes all preceding feature-maps as input.

ResNet의 아이디어를 계승하여 좋은 성능을 끌어낸 DenseNet을 알아보자.

FAST CAMPUS ONLINE 신제용 강사.

I DenseNet의 구조

Figure 2: A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred to as transition layers and change feature-map sizes via convolution and pooling.

DenseNet은 ResNet 아이디어의 연장선에 있으며, Dense Block을 제안하고 있다.

Dense Block 내에서는 ResNet과 같이 Pre-Activation 구조 (BN-ReLU-Conv)구조를 사용한다.

fast campus

FAST CAMPUS ONLINE

신제용 강사.

I Dense Block

Dense Block with Growth Rate k = 4

이리저리 연결된 Skip Connection이 자칫 복잡해 보일 수 있지만, 다른 관점에서 보면 이전 특징 맵에 누적해서 Concatenate하는 결과와 같다.

FAST CAMPUS ONLINE 신제용 강사.

I Bottleneck 구조

Bottleneck 구조

레이어가 깊어지면서 연산량이 급격히 증가하는 것을 막기 위해, 1x1 Conv를 이용한 Bottleneck Layer를 사용하였다.

FAST CAMPUS ONLINE

신제용 강사.

I DenseNet의 구현

Layers	Output Size	DenseNet-121	DenseNet-169	DenseNet-201	DenseNet-264
Convolution	112 × 112	7×7 conv, stride 2			
Pooling	56 × 56	3×3 max pool, stride 2			
Dense Block	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 6$
(1)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{3}$
Transition Layer	56 × 56	$1 \times 1 \text{ conv}$			
(1)	28×28	2×2 average pool, stride 2			
Dense Block	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$
(2)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} $	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} ^{12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} $	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{-12}$
Transition Layer	28×28	$1 \times 1 \text{ conv}$			
(2)	14 × 14	2×2 average pool, stride 2			
Dense Block	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 24$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 48$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 64$
(3)	14 × 14	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} ^{24}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} ^{32}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{3}$
Transition Layer	14 × 14	$1 \times 1 \text{ conv}$			
(3)	7 × 7	2×2 average pool, stride 2			
Dense Block	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 16$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 48$
(4)	/ ^ /	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} ^{32}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} ^{32}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{46}$
Classification	1 × 1	7×7 global average pool			
Layer		1000D fully-connected, softmax			

Table 1: DenseNet architectures for ImageNet. The growth rate for all the networks is k = 32. Note that each "conv" layer shown in the table corresponds the sequence BN-ReLU-Conv.

논문을 보고 이를 구현할 수 있는 능력을 키우다 보면, 자기만의 네트워크를 설계할 수 있다.

FAST CAMPUS ONLINE

신제용 강사.

