

```
(b) From equation (3)
       CBi = CAi + CBO - CAO - (4)
   from equation (4) & (1) we get
                                                     [2 Marks]
       CAj-1 = CAj + KZ CAj (CAj + CBO - CAO)
    => KZCAi2 + (KZ(CBO-CAO)+1) CAi - CAi-1=0
          a chi2+ 13 Chi + 2=0
   . So, Q= K7; B= K7 (CBO-CAO)+1 7=- CAi-1
    :. CAi = - B + VB2-AOX.D
            =-KZ (CBO-CMO)+1 .± (KZ(CBO-CMO)+1)2 + AKZ CMi-1
KZ
          0, -K7 (CBO-CAO) +1 + \ [K7 (CBO-CAO) +1) + AKZ (A) [2 Norki)

CA; = -K7 (CBO-CAO) +1 + \ [K7 (CBO-CAO) +1) + AKZ (A) [2 Norki)
       CAT YO
```

-

Solution for Quiz-12

Due Date - 25-03-2019 Max Marks - 10

soln:

For benzene toluene mixture at 80°C.

For benzene:

$$log PB = A - B$$
 $T+C$

for toluene:

$$\log P_t^{V} = A - \frac{B}{T+C}$$

$$= 6.9533 - 1343.9$$

$$80+219.35$$

For XB = 0.5, XT = 0.5

$$f_{B} = 0.5 \times 0.998 = 0.4991$$

 $f_{t} = 0.5 \times 0.3829 = 0.1914$

Also,
$$y_8 = \frac{\rho_8}{\rho_{total}} = 0.722$$

$$y_t = \frac{p_t}{p_{total}} = 0.277$$

Calculations for other mole fractions:

\mathcal{K}_{B}	PB X 10-3 (atm)	×t.	Pt ×10-3 (atm)	Ptotal X10 3 (atm)	y B	9t
0	0	1	382.9	382.9	0.224	1
0.1	999.8	0.9	344.61	44441	0.224	0.775
0.2	199.6	0.8	306.32	505.92	D-651	0.605
0.3	299.4	0.7	268.03	564.43	0.527	0.472

0.4	399.2	0.6	229.74	628-94	0-634	0.365
0.5	499	0.5	19145	690.45	0.722	0.277
0.6	598.8	0.4	153-16	751-96	0.796	0.203
0.7	698.6	0.3	114.87	813.47	0.858	0.141
0.8	798.4	0.2	76.58	874.98	0.912	0.087
0.9	898.2	0.1	38.29	936.49	0.959	0.04
1.0	998	0	0	998	1	0
Pressure (Part ahu) of benzene	0,0) 0-1 0-2	0.3 0.4	os os ot or or	8 0.9 1.0 J benzene	Scale: X axis Yaxis: 1 1 1 1 1 1 1 1 1 1 1 1 1	
			7(1			2.0

13.1. Basis: 1 hr.

Assume ideal gas

PV=NRT V=200 m3 = 200 x 1000L; T=273 K.

 $\Rightarrow N = \frac{PV}{RT} = \frac{1.200 \times 10^3}{0.0821 \times 273.15} = 8918.3 \times 8919 \text{ mol.}$

From Antoine equation

 $|\log_{10}P_{50}^{*}=A-\frac{B}{T+C}|$ =7 $(\log_{10}P_{50}^{*}=8.07131-\frac{1730.63}{233.426+90}$ [90°C] _ []]

=> p = 525.266. atm mm Hg. = 0.69 atm

of OC. Log 10 Po = 8.07131 - 1730.63 033.426

P" = 4.542 mm Hq. = 5.9 x103 atm - [1]

nput.

relative humidity. , so, partial pressure of water= 200 At input. 50%

50, P30 = 4420 P

 $P_{90} = \frac{0.69}{2^{*}R} = 0.0345$

.. noe at Proprie = 0.0345 + 8919 mol = 307.7 × 308 mol

Assumption: (1) stre steam is sorturated after cooling

(2) No our Loss.

at o°c (output)

Pro = Partial pressure of water = Po = 5.9 x10 3 atm Pair = Ptotal - Pro = 1-5.9 ×10-3 = 0.9941 atm.

Pair. Ytotal = nair RT >> Vtotal = 8611 x 0.0821 x 273.15 = 8011 mol __[1] = 194253 l. _[1]

Nair = ntotal - nw

Pw. Ytotal = Nw RT . [in condensed steam]

 $\Rightarrow n_{10} = \frac{5.9 \times 10^{-3} \times 194253}{0.0821 \times 273.15} = 51.1 \text{ mol } \times 52 \text{ mol.} - 1.1$

308-52 = 256 mol conde of water condensed.

256 mil/hr will condense. — [1]

13.2. Input steam.

Molal humidity = Pw *100 1. = 3.571. [1]

Ptotal - Pw

Absolute humidity = PW MIN X 100 %. [Pair) Hair MA = 18.02

= 2.22 %

Percentage humidity = $\frac{Pw/(Ptotal-Pw)}{(Pvo/(Ptotal-Pw))} \times (00\%)$ [1] = 48.17 %.

Output Steam.

Molal humidity = 8.001. 0.594 / [1]
Absolute humidity = 88.801. 0.369 / [1]
Percentage humidity = 100%.

200 m³ (STB/m) condensor.

50:1 (RH) condensor.

Steam 100:7. (RH)

Condensed water

90:0/10 bow

Other methods are also accepted.

For calculation error 2 marks deducted.

For conceptual error 3/4 warks deducted.