V703

Das Geiger-Müller Zählrohr

Fritz Agildere fritz.agildere@udo.edu Amelie Strathmann amelie.strathmann@udo.edu

Durchführung: 25. April 2023 Abgabe:

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	2
2	Theorie	2
3	Durchführung	2
4	Auswertung4.1Fehlerrechnung4.2Kennlinie des Geiger-Müller-Zählrohrs	
5	Diskussion	4
Lit	iteratur	
Ar	nhang	

1 Zielsetzung

2 Theorie

3 Durchführung

4 Auswertung

Im Folgenden wird die Kennlinie des Geiger-Müller Zählrohrs bestimmt. Die Totzeit wird zunächst über die Zwei-Quellen-Methode und im Anschluss über das Osziloskop bestimmt.

4.1 Fehlerrechnung

Die Fehlerrechnung, für die Bestimmung der Messunsicherheiten, wird mit Uncertainties [1] gemacht. Für die Formel der Gauß Fehlerfortpflanzung ist gegeben durch

$$\Delta f = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial f}{\partial x_i}\right)^2 \cdot \left(\Delta x_i\right)^2}.$$
 (1)

Für den Mittelwert gilt

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i. \tag{2}$$

Der Fehler des Mittelwertes ist gegeben durch

$$\Delta \bar{x} = \frac{1}{\sqrt{N}} \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}.$$
 (3)

4.2 Kennlinie des Geiger-Müller-Zählrohrs

Die aufgenommenen Messwerte zur Bestimmung der Kennlinie des Geiger-Müller-Zählrohrs sind in der ??tab:kennlinie] dargestellt.

 ${\bf Tabelle~1:}~{\bf Mess daten~zur~Bestimmung~der~Kennlinie~des~Geiger-Müller-Z\"{a}hlrohrs$

U/V	N	$I/\mu A$
#U	N	Ι
330	17211	0.2
350	18298	0.2
370	18392	0.3
390	18818	0.4
410	18653	0.4
430	18946	0.5
450	18915	0.6
470	18905	0.7
490	18934	0.8
510	18970	0.8
530	19015	0.8
550	19336	0.9
570	19235	1
590	19174	1
610	19224	1.1
630	18991	1.2
650	19082	1.2
670	19548	1.3
690	19505	1.3
710	20031	1.4
730	20429	1.5
750	21666	1.6

5 Diskussion

Literatur

[1] Eric O. Lebigot. *Uncertainties: a Python package for calculations with uncertainties.* Version 2.4.6.1. URL: http://pythonhosted.org/uncertainties/.

Anhang