# Algebra przemienna

notatki

March 14, 2023

Dygresja, która ma się przydać na zajęciach 15.03

Jak mamy pierścień R i na nim mamy Spec(R), to bierzemy element  $f \in R$ 

$$\widehat{\mathsf{f}}(\mathfrak{p}) := [\mathsf{f}]_{\mathfrak{p}} \in \mathsf{R/p}$$

i to ma przypominać wiązkę wektorową. Ewaluacja funkcji w punkcie.

Można też powiedzieć, że dla dowolnego ideału  $\mathfrak a$  mamy  $f(\mathfrak a) = [f]_{\mathfrak a} \in R/\mathfrak a$ , ale ten ideał  $\mathfrak a$  daje  $V(\mathfrak a)$  i to wygląda tak, jakbyśmy jaką funkcję na spektrum chcieli obciąć do  $V(\mathfrak a)$ .

Jeśli M jest R modułem, to konstrukcję wyżej możemy powtórzyć. To znaczy jeśli p jest ideałem pierwszym i jeśli weźmiemy

$$M \otimes_R R/\mathfrak{p}$$

to to jest naturalny R/p moduł.



Ponoć nie będą nam Boole potrzebne i Januszkiewicz uważa, że to jest szczególnie nudne.

Niech X będzie przestrzenią zwartą. Weźmy zbiór wszystkich ciągłych funkcji z X w pierścień  $\mathbb{Z}_2$  [F(X,  $\mathbb{Z}_2$ ]. Czy są fajne własności? f  $\circ$  f = f i f + f = 0, czyli to jest pierścień Boole'a.

Jakie ten pierścień ma ideały? Wszystkie ideały pierwsze są maksymalne (to jakieś zadanie było). Jeśli weźmiemy spójny podzbiór X, to wtedy  $F(X, \mathbb{Z}_2)$  musi być stały w pewnym miejscu. Czyli Spec(F) to zbiór składowych spójnych X.

Weźmy wszystkie funkcje ciągłe w  $\mathbb{Z}_2$  i zamieńmy te funkcje na jedną, solidną funkcję w  $\mathbb{Z}_2^R$ . Taka funkcja to nie jest włożenie, ale idzie na Im(X)  $\subseteq \mathbb{Z}_2^R$ 



$$\phi(\mathbf{x}) = (\psi_1(\mathbf{x}), \psi_2(\mathbf{x})$$

Czyli Spec( $F(X, \mathbb{Z}_2)$ ) = Im $\phi$ .

#### **ZADANIE 23**

(i)

Otwarte są z definicji, a dla domkniętości mówimy, że  $V(f) \sqcup V(1 - f) = X$ .

(ii)

$$X_{f_1} \cup ... \cup X_{f_n} = \left(\bigcap V(f_i)\right)^c = V(f_1,...,f_n)^c = V(f)^c = X_f$$

(iii)

Wskazówka to rozwiązuje.

(iv)

Kwasi-zwartość mamy, bo każde spektrum takie jest, więc pozostaje Hausdorff.

Bierzemy dwa punkty ze spektrum  $p_1, p_2 \in Spec(A)$ . Ideały pierwsze są maksymalne, czyli mamy  $f \in p_1 \setminus p_2$  i na odwrót, czyli  $g \in p_2 \setminus p_1$ . Weźmy

$$p_1 \in V(f) = \{\mathfrak{p} : f \in \mathfrak{p}\} \not\ni p_2.$$

I to jest zbiór otwarto domknięty, czyli jego dopełnienie jest otwartym otoczeniem p<sub>2</sub>.

#### **ZADANIE 24**

80% tego zadania to definicje, a potem jest część tego zadania gdzie przestajemy definiować i zaczynamy to robić.

#### **ZADANIE 25.**

Że bijekcja f  $\mapsto$  V(f) zachowuje operacje mnogościowe  $\cup$ ,  $\cap$ .

Generalnie zadanie jest nudne, ale fajnym wyzwaniem jest rozróżnic algebraicznie  $(\frac{1}{n}, 0)$  i  $(0, \frac{1}{n} + \frac{1}{m})$ .

#### **ZADANIE 26**

Jest zrobione w tych zadaniach i cała zabawa została nam zabrana.

### **ZADANIE 27**

Prawdopodobnie chodzi o to, że jeden zbiór może mieć bardzo dużo definiujących równań.

I to nawet chyba jest tak, że I(Zer)  $\supseteq \sqrt{\langle f_1,...,f_k \rangle}$ . Tutaj jest równość i to jest kwestia geometrii algebraicznej.

P(X) to jest jedna z dwoch rzeczy:

- 1.  $k[x_1,...,x_m]/\langle f_1,...,f_k \rangle$
- 2.  $k[x_1, ..., x_m]/I(Zer)$

P(X) to funkcje wielomianowe na Zer. (1) = (2).

Jest jeszcze mała uwaga, że klasy abstrakcji  $[x_1], [x_2], ..., [x_m]$  generują P(X) jak k-algebrę.

Co się stanie, jeśli weźmiemy  $\mathfrak{m}\subseteq P(X)$ ? Jeśli mamy  $x\in Zer$ , to mamy  $\mathfrak{m}_X< P(X)$ . Jeśli weźmiemy punkt, w którym wszystkie f znikają, to dostajemy homomorfizm ewaluacji, którego jądro to ker(ev<sub>X</sub>).

Oni mówią, że odwzorowanie Zer  $\ni x \mapsto \mathfrak{m}_x$  jest iniekcją. Jeśli  $x = [a_1, ..., a_m]$  i  $y = [b_1, ..., b_m]$  i one są różne na którejś współrzędnej, to chcemy znaleźć funkcję, która w x znika, a w y nie znika i odwrotnie.

Suriektywnośc tego odworowania natomiast jest tym samym co równość I(Zer) =  $\sqrt{\langle f_1,...,f_k \rangle}$ . To jest etap, na którym potrzebujemy algebraicznej domkniętości k.

### **ZADANIE 28**

Czytanie ze zrozumieniem.

Praca domowa: przegooglować Jacobian Conjecture.

Wiemy co to są odwzorowania  $k^m \to k^n$ . Jeżeli n to jest 1, to są wielomiany. Teraz chcemy o  $k^m \supseteq V \to W \subseteq k^n$  i taki odwzorowanie jest affiniczne, jeśli znajdę fajne  $k^m \to k^n$ . Jeśli funkcja znika na W, to chcę, żeby ona po przeprowadzeniu z powrotem znikała na V. Te strzałki  $k^m \to k^n$  to n wielomianów m zmiennych.

I w sumie to tutaj zgubiłam uwagę.

# COŚ O FUNKTORACH POCHODNYCH

Mamy moduł M i możemy założyć, że jest on skończenie generowany i jest on Noetherowski. Jeśli tak jest, to on ma rezorwenta, a ten rezorwenta ma jadro:

$$0 \longleftarrow M \longleftarrow R^{k_1} \longleftarrow R^{k_2} \longleftarrow R^{k_3} \longleftarrow ... \qquad \text{$<$-$ dokładna rezolwenta wolna}$$

Powiedzmy, że mamy jakiś funktor, to wtedy

$$0 \longleftarrow F(M) \longleftarrow F(R^{k_1}) \longleftarrow F(R^{k_2}) \longleftarrow \dots \qquad \text{$<$-$ kompleks zależny od rezolwenty}$$

Coś, co nie zależy od rezolwenty to jest funktor pochodny i to, czy to są homologie czy nie to nie jest ważne, ważne żeby było rezolwenty w to nie involve.

Popatrzmy na konretne funktory. Weźmy sobie k-moduł M, na który działa grupa G. Innymi słowy, mamy  $G \to \operatorname{Aut}_k(M)$ , czyli k[G]. Jak już coś takiego mamy, to możemy przypisać M  $\stackrel{\phi}{\to}$  M<sub>G</sub>, gdzie M<sub>G</sub> to jest największy taki obiekt, że G działa na niego trywialnie. i  $\phi(gm) = g\phi(m) = \phi(m)$ 

Szukamy jądra w M, które przez  $\phi$  przejdzie na zero: m – gm = 0 dla wszystkich g. Czyli bierzemy podmoduł (m – gm) i koniec:

$$M_G = M/\langle m - mg \rangle$$

Ta konstrukcja nazywa się koniezmiennikami.

Jest też inna konstrukcja, która nazywa się niezmiennikami. Bierzemy M i szukamy modułu

$$M^{G} \xrightarrow{\phi} M$$

takiego, że G działa trywialnie.

$$M^{G} = (Im\phi) = \{m : gm = m\}$$

Czyli tutaj mamy niezmienniki i to jest istotnie dualne do koniezmienników.

Teraz chcemy zrobić funktory pochodne, pytanie jak?

Chcemy wybudować rezolwentę w kategorii k-G-modułów (jak to się pisze xd)

$$H^{0} * G, M) = M^{G}$$

$$H_0(G, M) = M_G$$

i pierwszy funktor pochodny

homologie G o współczynnikach w M.

H<sup>0</sup>(G, M) jest dwufunktorialny, czyli z jednej strony mówi coś o G, a z drugiej mówi coś o M.

N, M sa skończenie generowane

\* \* \*\* I ŻYLI DŁUGO I SZCZEŚLIWIE I WSZYSTKO IM KOMUTOWAŁO \* \* \*\*