EXERCICE 1

Les questions suivantes sont des questions de *cours*. Elles visent à tester votre apprentissage du cours et ne nécessitent pas de justification particulière.

- 1. Réciter les trois identités remarquables (peu importe l'ordre).
- 2. Soit *a* un nombre strictement positif. Combien l'équation $x^2 = a$ a-t-elle de solution(s)?
- **3.** Comment peut-on trouver les valeurs interdites d'un quotient comportant une expression littérale au dénominateur?
- 4. Quelles sont les caractéristiques qui permettent de définir un vecteur?
- 5. Donner la relation de Chasles reliant des vecteurs \overrightarrow{MN} , \overrightarrow{MO} et \overrightarrow{NO} .

EXERCICE 2

- 1. Développer et réduire l'expression (3+4x)(2x-5).
- **2.** Factoriser et réduire l'expression $4x^2 25 + (3 + 4x)(2x 5)$.
- 3. En utilisant les deux questions précédentes, résoudre l'équation $12x^2 14x 40 = 0$.
- **4.** En précisant la ou les valeurs interdites, résoudre l'équation $\frac{-3x-6}{(2x-5)(6x+8)} = 0$.

EXERCICE 3

- 1. Tracer un triangle ABC.
- **2.** a. Placer les points M et N tels que $\overrightarrow{AM} = \overrightarrow{AB} 2\overrightarrow{AC}$ et $\overrightarrow{AN} = -\frac{1}{2}\overrightarrow{AB} + \overrightarrow{AC}$.
 - **b.** Comment semblent être disposés A, M et N?
- 3. a. Montrer que $\overrightarrow{AM} = -2\overrightarrow{AN}$.
 - **b.** Que peut-on en déduire pour les points *A*, *M* et *N*? Justifier.
- **4. a.** Placer un point *D* tel que $\overrightarrow{AB} = \overrightarrow{CD}$.
 - **b.** Que peut-on dire du quadrilatère *ABDC*? Justifier.

EXERCICE 4

La figure ci-contre est composée de neuf triangles équilatéraux.

1. Dans chacun des cas, déterminer le nombre k.

a.
$$\overrightarrow{QP} = k\overrightarrow{LI}$$
.

c.
$$\overrightarrow{IP} = \overrightarrow{IJ} + k\overrightarrow{IN}$$
.

b.
$$\overrightarrow{PI} = k\overrightarrow{IR}$$
.

d.
$$\overrightarrow{LK} = \overrightarrow{LM} + k\overrightarrow{KM}$$
.

- **2. a. Question bonus.** Prouver que $\overrightarrow{IN} = \overrightarrow{OP}$.
 - **b.** Que peut-on en déduire pour les droites (IN) et (OP)? Justifier.

La calculatrice est autorisée.