

Data
Transformation III

Data Transformation III Info

- Finish Reading Chapter 3 and Practice the Code in R4DS
- Covers
 - The Pipe
 - Statistical Summaries
 - Grouped Summaries
 - Helpful Functions
- Builds Off Tutorial 3

- Useful for Combining Multiple
 Steps of Operations
- Represented by %>%
- Reads as "Then"
- Works Like a Composite Function From Algebra

$$f(x) = 3x + 4$$

 $g(x) = 2x$
 $h = 1$

OUT = h %>%
 $g()$ %>%
 $f()$

$$f(g(h)) = 3(2(1)) + 4 = 10$$
 OUT = 10

Chaining with the Pipe

```
{r}
                                                                   ∰ ¥ ▶
f.pipedream =
  # Acknowledge the Original Data
 flights %>%
  # Input Original Data and Perform Mutations
  mutate(dep_hr=dep_time\%/\%100+(dep_time\%\%100)/60,
         sched_dep_hr=sched_dep_time%/%100+(sched_dep_time%%100)/60.
         arr_hr = arr_time \frac{100}{100} + (arr_time \frac{100}{100}) \frac{60}{60}
         sched_arr_hr=sched_arr_time%/%100+(sched_arr_time%%100)/60,
         dep_delay_hr=dep_hr-sched_dep_hr,
         arr_delay_hr=arr_hr-sched_arr_hr,
         gain_hr=arr_delay_hr-dep_delay_hr,
         percent_gain_hr=percent_rank(gain_hr)) %>%
  #Input Modified Data and Select the Variables of Interest
  select(carrier.origin:distance.dep_delay_hr:percent_gain_hr) %>%
  #Input Modified Data and Sort According to Empirical %-iles
  arrange(desc(percent_gain_hr))
```

carrier	origin	dest	air_time	distance	dep_delay_hr	arr_delay_hr	gain_hr	percent_gain_hr
B6	JFK	BQN	NA	1576	-23.90000	3.333333	27.23333	1.0000000
B6	JFK	PSE	NA	1617	-23.65000	3.550000	27.20000	0.9999970
B6	JFK	PSE	NA	1617	-23.80000	2.950000	26.75000	0.9999939
B6	JFK	SJU	NA	1598	-23.58333	3.116667	26.70000	0.9999909
B6	JFK	PSE	NA	1617	-23.76667	2.483333	26.25000	0.9999878

HTML Table: knitr and kableExtra

Chaining with the Pipe

```
{r}
                                                              f.pipedream2 =
 # Acknowledge the Original Data
 flights %>%
 # Input Original Data and Perform Mutations
 mutate(dep_hr=dep_time\%/\%100+(dep_time\%\%100)/60,
         sched_dep_hr=sched_dep_time%/%100+(sched_dep_time%%100)/60,
         arr_hr=arr_time%/%100+(arr_time%%100)/60,
         sched_arr_hr=sched_arr_time%/%100+(sched_arr_time%%100)/60,
         dep_delay_hr=dep_hr-sched_dep_hr,
         arr_delay_hr=arr_hr-sched_arr_hr,
         gain_hr=arr_delay_hr-dep_delay_hr,
         percent_gain_hr=percent_rank(gain_hr)) %>%
 #Input Modified Data and Select the Variables of Interest
 select(carrier,origin:distance,dep_delay_hr:percent_gain_hr) %>%
 #Input Modified Data and Sort According to Empirical %-iles
 arrange(desc(percent_gain_hr)) %>%
 #Input Modified Data and Remove Flights Missing Air Time
 filter(!is.na(air_time))
```

carrier	origin	dest	air_time	distance	dep_delay_hr	arr_delay_hr	gain_hr	percent_gain_hr
B6	JFK	PSE	214	1617	-23.66667	1.133333	24.80000	0.9999848
B6	JFK	PSE	214	1617	-23.26667	1.500000	24.76667	0.9999817
B6	JFK	BQN	199	1576	-21.66667	3.050000	24.71667	0.9999787
B6	JFK	LAX	317	2475	-22.63333	2.050000	24.68333	0.9999726
B6	JFK	PSE	200	1617	-23.61667	1.066667	24.68333	0.9999726

Chaining with the Pipe


```
f.pipedream3 =

# Acknowledge the Modified Data
f.pipedream2 %>%

# Filter Based on Gain Variable
filter(abs(gain_hr)<10)</pre>
```

summarize()

Summarizing All Data

Both the histogram and the boxplot are made from summary statistics.

(Statistical Transformations in Ch. 3)

summarize()

Summarizing All Data

Using Tables

summarize()
 with
 group_by()

Summarizing Data by Groups

Using Graphics

summarize() with group_by()

Summarizing Data by Groups

Using Tables

```
`{r}
                                   # ≥ ▶
                                             origin
                                                      count
group.summary1 = f.pipedream3 %>%
                 group_by(origin) %>%
                 summarize(count=n())
                                             EWR
                                                     114682
group.summary2 =
                                             JFK
                                                     105243
  f.pipedream3 %>%
  group_by(origin) %>%
  summarize(
                                             LGA
                                                     100041
    n=n()
    min=min(gain_hr),
    Q1=quantile(gain_hr, 0.25),
    Q2=quantile(gain_hr, 0.5),
    Q3=quantile(gain_hr, 0.75),
    max=max(gain_hr),
    IQR=Q3-Q1,
    nLow=sum(gain_hr<Q1-1.5*IQR),
    propHigh=mean(gain_hr>Q3+1.5*IQR)
  ) %>%
  select(-IQR)
```

origin	n	min	♦ Q1	Q2	Q3	max	nLow	propHigh
EWR	114682	-1.8166667	-0.2666667	-0.1166667	0.0333333	2.500000	953	0.0294815
JFK	105243	-1.4500000	-0.3000000	-0.1333333	0.0333333	3.266667	710	0.0314510
LGA	100041	-0.9666667	-0.2666667	-0.1166667	0.0666667	3.016667	133	0.0277886

summarize() with group_by()

Multiple Groups

Using Graphics

summarize() with group_by()

Multiple Groups

Using Tables

origin	carrier	n	min	Q1	Q2	Q3	max
EWR	9E	1193	-0.6166667	-0.2166667	-0.1000000	0.0333333	1.5500000
EWR	AA	3326	-1.1666667	-0.3500000	-0.1833333	0.0125000	2.4666667
EWR	AS	704	-1.1666667	-0.5000000	-0.2833333	-0.0666667	1.0833333
EWR	B6	6275	-0.7500000	-0.2166667	-0.1000000	0.0500000	1.9333333
EWR	DL	4266	-0.9000000	-0.2166667	-0.0833333	0.0666667	1.9833333
EWR	EV	40571	-1.8166667	-0.2000000	-0.0833333	0.0666667	2.5000000
EWR	MQ	2086	-0.8166667	-0.2000000	-0.0500000	0.1000000	2.0833333
EWR	00	6	-0.2666667	-0.1791667	-0.0750000	0.1791667	0.4333333
EWR	UA	44390	-1.2333333	-0.3333333	-0.1833333	0.0000000	2.4333333
EWR	US	4322	-0.9833333	-0.2166667	-0.0833333	0.0833333	2.4500000
EWR	VX	1521	-1.2000000	-0.4166667	-0.2333333	0.0000000	1.1166667
EWR	WN	6022	-0.9666667	-0.2833333	-0.1333333	0.0166667	2.0833333
JFK	9E	13548	-1.0666667	-0.3666667	-0.2000000	-0.0166667	1.8666667
JFK	AA	13429	-1.1833333	-0.3500000	-0.1666667	0.0333333	2.2333333
JFK	B6	38920	-1.1500000	-0.2333333	-0.1000000	0.0666667	2.4333333
JFK	DL	20136	-1.3166667	-0.3833333	-0.2166667	-0.0166667	2.4333333
JFK	EV	1317	-0.4333333	-0.1500000	-0.0500000	0.0666667	1.6000000

Useful Summary Functions

- Measures of Center
 - mean()
 - median()
 - mode()
- Measures of Spread
 - var()
 - sd()
 - IQR()
 - mad()
- Measures of Rank
 - min()
 - max()
 - quantile()

Useful Summary Functions

- Measures of Position
 - Order Matters
 - first() = x[1]
 - last() = x[length(x)]
 - nth(k) = x[k]
- Counts
 - n()
 - n_distinct()
- Counts/Proportions for Logical
 - sum()
 - mean()
 - Example
 - sum(x>10)
 - mean(x>10)

Flight Accuracy

- Accurate Flight Means
 - Departure Delay = 0
 - Arrival Delay = 0
- Bad Metric

$$\begin{aligned} Accuracy &= delay_{dep} + delay_{arr} \\ Accuracy &= (delay_{dep} + delay_{arr})/2 \end{aligned}$$

Good Metrics

$$Accuracy = |delay_{dep}| + |delay_{arr}|$$

$$Accuracy = \sqrt{delay_{dep}^2 + delay_{arr}^2}$$

Table First, Graphics Second

Summary Table

- Step 1: Accuracy Variable
- Step 2: Grouping
- Step 3: Summarize Info
 - Mean
 - Standard Error
 - Lower Bound (95% CI)
 - Upper Bound (95% CI)

```
accuracy<-
  f.pipedream3 %>%
  transmute(carrier,origin,
    accuracy=abs(dep_delay_hr)+abs(arr_delay_hr)) %>%
  group_by(carrier,origin) %>%
  summarize(n=n(),
    avg=mean(accuracy,na.rm=T),
    se=sd(accuracy,na.rm=T)/sqrt(n),
    low=avg-2*se,
    high=avg+2*se
)
```


Sorted by Average Accuracy

Best Carriers/Origin

```
head(arrange(accuracy,avg),5)
 A tibble: 5 x 7
# Groups:
           carrier [3]
  carrier origin
                                      low
                                           high
                                 se
                         avg
  <chr>
          <chr> <int> <db1>
                              <db1> <db1> <db1>
 US
          EWR
                 4322 0.505 0.0123 0.481 0.530
              2960 0.509 0.0152 0.479 0.539
          JFK
 US
 US
                 12517 0.544 0.0121 0.520 0.569
          LGA
                   342 0.556 0.0362 0.483 0.628
          JFK
 HA
 UΑ
                  4367 0.591 0.0173 0.556 0.625
          JFK
```

Worst Carriers/Origin

```
head(arrange(accuracy,desc(avg)),5)
A tibble: 5 \times 7
Groups:
           carrier [4]
carrier origin
                                        low
                                              high
                     n
                         avq
                                  se
                <int> <db1>
<chr>
         <chr>
                              \langle db 1 \rangle
                                      <db1> <db1>
                             0.737
                                     -0.334 2.61
00
         EWR
                 8086 0.986 0.0265
                                      0.933 1.04
ΕV
         LGA
                                      0.835 1.07
        LGA
                  542 0.954 0.0597
YV
                 3136 0.952 0.0545
                                      0.843 1.06
FL
         LGA
                40571 0.952 0.0125
                                      0.927 0.977
ΕV
         EWR
```


95% Confidence Intervals

Carrier "OO" Creates a Visual Problem Due to Small Sample Size

95% Confidence Intervals

```
ggplot(filter(accuracy,carrier!="00")) +
geom_point(aes(x=carrier,y=avg)) +
geom_errorbar(aes(x=carrier,ymin=low,ymax=high)) +
facet_grid(origin~.)
```


Closing?

Disperse and Make Reasonable Decisions