MATLAB Tutorial

Chul Min Yeum

Assistant Professor Civil and Environmental Engineering University of Waterloo, Canada CIVE 497 – CIVE 700: Smart Structure Technology

Last updated: 2020-01-13

Variables and Assignments

- To store a value, use a variable
- One way to put a value(s) in a variable is with an <u>assignment statement</u>
- General form:

variable = expression

% variable = expression
a1 = 3
a2 = 5

Name	Value
a1	3
a2	5

- The order is important
 - Variable name on the left.
 - Assignment operator "=" (Note: this does NOT mean equality)

Expression on the right

Variable names

- Names must begin with a letter of the alphabet
- After that names can contain letters, digits, and the underscore character(_)
- You cannot use other character except for '_'
- MATLAB is case-sensitive
- Names should be <u>mnemonic</u> (they should make sense!)
- Use a workspace browser rather than type these command
- clear clears out variables and also functions

Example: Variable names

```
8val = 10; % error: must begin with a letter of the alphabet
col = 0; % error: must begin with a letter of the alphabet
row 3 = 1; % no error
row@3 = 10; % error: cannot contain characters other than underscore
col-03 = 10; % error: cannot contain characters other than underscore
% Following scripts have no error but the names should be mnemonic
asdf1 = 100; % no error
love = 10; % no error
aaaa3 = 10; % no error
```

```
% define a variable of 'gal'
gal = 100
```

Q: What value is in 'Ga1'?

Data Types

- Every expression and variable has an associated type, or class
 - Real numbers: single, double
 - Integer types: numbers in the names are the number of bits used to store a value of that type
 - Signed integers: int8, int16, int32, int64
 - Unsigned integers: uint8, uint16, uint32, uint64
 - Single characters and character vectors: char
 - Strings of characters: string
 - True/false: logical

The default type for numbers in MATLAB is double

Container

Example

- 2.145, 0.15893, 3.0, 2.45
- 10, 11, 24, 30, 400
- 'a', 'b', 'A', 'c'
- 0, 1

Constants

- In programming, variables are used for values that could change, or are not known in advance
- Constants are used when the value is known and is not updated in the program.
- Examples in MATLAB (these are actually functions that return constant values)
 - pi 3.14159....
 - i, j imaginary number
 - inf
 infinity
 - NaN stands for "not a number"; e.g. the result of 0/0

Example: Arithmetic Operation in MATLAB

If the car has a mass of 300kg and you push the car with an acceleration of 5, compute the force that is generated from the car in newton

% MATLAB as a calculator 300*5*0.0254

Name	Value
ans	38.1

```
% MATLAB as programming tool

inch2m = 0.0254; % inch to m
mass = 300; % kg
accel = 5; % inch/s/s

% force = mass(kg) * acceleration (m/s/s)
force = mass * accel * inch2m;
```

Name	Value
inch2m	0.0254
mass	300
accel	5
force	38.1

Operator Precedence

- A symbol that perform specific mathematical or logical manipulations.
- Precedence list (highest to lowest) so far:
 - () parentheses
 - ^ exponentiation
 - negation
 - *, /, \ all multiplication and division
 - +, addition and subtraction
- Nested parentheses: expressions in inner parentheses are evaluated first

```
val1 = (5 + 1)*2;
val2 = 10^2*3;
val3 = 10^(2+3);
val4 = 4-3*2;
val5 = 3*((4+3)*2);
```

Name	Value
val1	12
val2	300
val3	100000
val4	-2
val5	42

Relational Operator

The relational operators in MATLAB are:

```
    greater than
    less than
    greater than or equals
    less than or equals
```

== equality

 \sim inequality

The resulting type is logical 1 for true or 0 for false

```
% relation operator
ro1 = 3 < 4;
ro2 = 3 > 5;
ro3 = 3 == 5;
ro4 = 3 ~= 7;
ro5 = 3 <= 3;
ro6 = 3 >= 3;
```

Name	Value
ro1	1
ro2	0
ro3	0
ro4	1
ro5	1
ro6	1

Logical Operator

- The logical operators are:
 - | | or for scalars
 - & & and for scalars
 - ~ not
- Also, xor function which returns true if only one of the arguments is true
- Note that the logical operators are commutative
 - (e.g., $x \mid y$ is equivalent to $y \mid x$)
- The resulting type is logical 1 for true or 0 for false

Х	У
true	true
true	false
false	false

~X	х у	xor(x,y)			
false	true	true	false		
false	true	false	true		
true	false false		false		

Operator Precedence

```
Parentheses ()
```

Transpose (.'), power (.^), complex conjugate transpose ('), matrix power (^)

Multiplication (.*), right division (./), left division (.\), matrix multiplication (*), matrix right division (/), matrix left division (\)

Addition (+), subtraction (-)

Colon operator (:)

Less than (<), less than or equal to (<=), greater than (>), greater than or equal to (>=), equal to (==), not equal to (~=)

Short-circuit AND (&&)

Short-circuit OR (||)

```
lg1 = (3 < 4) < 4;

lg2 = 3 < (4 < 5);

lg3 = (3 > 5) + 3;

lg4 = (10 > 4) && (4 > 1);

lg5 = (10 < 4) && (4 < 1);

lg6 = ~((10 < 4) && (4 < 1));

lg7 = 2 < 3 + 4;
```

Name	Value
lg1	1
lg2	0
1g3	3
lg4	1
1g5	0
lg6	1
lg7	1

Example2: Operator Precedence

How to write a code to check if x lies in between 5 and 10. If yes, 1 and otherwise 0.

```
x1 = 6;

x2 = 11;

lg1 = (5<=x1) && (x1<=10)

lg2 = 5 <= x1 <=10;

lg3 = (5 <= x1) <=10;

lg4 = (5<=x2) && (x2<=10)

lg5 = 5<= x2 <=10;

lg6 = (5 <= x2) <=10;
```

Name	Value					
x1	6					
x2	11					
lg1	0					
lg2	1					
1g3	1					
lg4	0					
lg5	1					
lg6	1					

Array Operations

Array operations on two matrices A and B:

- These are applied term-by-term, or element-by-element
- The matrices must have the same dimensions (no! after R2016)
- In MATLAB:
 - addition/subtraction: A + B, A B
 - array multiplication: A .* B
 - array division: A./B, A.\B
 - array exponentiation A .^ 2
- Matrix multiplication: NOT an array operation

А	=	[2	2	2;	4	4	4;	6	6	6] ;		
В	=	[1	1	1;	2	2	2;	3	3	3];		
		= <i>i</i> = <i>i</i>	-	•								

2	2	2
4	4	4
6	6	6

Α

1	1	1
2	2	2
3	3	3

2	2	2

2	2	2
8	8	8
18	18	18

2	2	2
2	2	2
2	2	2

AmB

AdB

Matrix Multiplication: Dimensions

- Matrix multiplication is not an array operation
 - It does not mean multiplying term by term
- In MATLAB, the multiplication operator * performs matrix multiplication
- In order to be able to multiply a matrix A by a matrix B, the number of columns of A must be the same as the number of rows of B
- If the matrix A has dimensions m x n, that means that matrix B must have dimensions n x something; we will call it p
 - In mathematical notation, $[A]m \times n \ [B]n \times p$
 - We say that the *inner dimensions* must be the same
- The resulting matrix C has the same number of rows as A and the same number of columns as B
 - in other words, the outer dimensions m x p
 - In mathematical notation, $[A]m \times n [B]n \times p = [C]m \times p$.

This only defines the size of C

Matrix Times a Vector

A linear system of equations with coefficient matrix A, variable vector \vec{x} and constant term vector \vec{b} , can be expressed as

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$(m \times n) (n \times 1) = (m \times 1)$$

Compatibility – the number of columns in the matrix **must** equal the number of rows in the vector.

Example: Matrix Times a Vector

```
m1 = [1 1 1; 2 2 2; 3 3 3];
v1 = [2 \ 2 \ 2]';
c1 = m1*v1;
c21 = m1(1,:)*v1;
c22 = m1(2,:)*v1;
c23 = m1(3,:)*v1;
c2 = [c21; c22; c23];
```

$$m1(1,:) * v1 = c21$$

Matrix Times a Matrix

Matrix multiplication is an extension of matrix and vector multiplication. Consider the product of an $m \times n$ matrix A, and an $n \times p$ matrix B:

$$AB = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ b_{31} & b_{32} & \cdots & b_{3p} \\ \vdots & \vdots & & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{np} \end{bmatrix}$$

$$(m \times n)(n \times p) = (m \times p)$$

Compatibility – the number of columns in the first matrix **must** equal the number of rows in the second matrix.

Example: Matrix Times a Matrix

```
m1 = [1 2;3 4];

m2 = [1 2;2 1];

m3 = m1*m2;

m411 = m1(1,:)*m2(:,1);

m421 = m1(2,:)*m2(:,1);

m412 = m1(1,:)*m2(:,2);

m422 = m1(2,:)*m2(:,2);

m4 = [m411 m412;m421 m422];
```

$$\begin{bmatrix} 3 & 4 \\ \end{bmatrix} \times \begin{bmatrix} 2 \\ 1 \\ \end{bmatrix} = \begin{bmatrix} 11 \\ m1(1,:) \times m2(:,2) = m421 \end{bmatrix}$$

```
m2
  m1
                      m3
m1(1,:) * m2(:,1) =
m1(1,:) * m2(:,2) =
                      10
```

m1(2,:) * m2(:,2) =

m422

Example: Swapping Columns

Swap the 2nd and 3rd columns in mat1

1	2	3
4	5	6
7	8	9

1	3	2
4	6	5
7	9	8

Quiz

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{pmatrix} \qquad \begin{pmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \end{pmatrix} \qquad \begin{pmatrix} r_1 & r_2 & r_3 & r_4 \end{pmatrix} \qquad \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix}$$

B

mat f =

vec_c =

 $\begin{pmatrix} a_{11} r_1 + a_{21} r_2 + a_{31} r_3 + a_{41} r_4 \\ a_{12} r_1 + a_{22} r_2 + a_{32} r_3 + a_{42} r_4 \\ a_{13} r_1 + a_{23} r_2 + a_{33} r_3 + a_{43} r_4 \end{pmatrix} \begin{pmatrix} a_{11} c_1 + a_{12} c_2 + a_{13} c_3 \\ a_{21} c_1 + a_{22} c_2 + a_{23} c_3 \\ a_{31} c_1 + a_{32} c_2 + a_{33} c_3 \\ a_{41} c_1 + a_{42} c_2 + a_{43} c_3 \end{pmatrix}$

mat_g = $\begin{pmatrix} a_{11} b_{11} + a_{12} b_{21} & a_{11} b_{12} + a_{12} b_{22} \\ a_{21} b_{11} + a_{22} b_{21} & a_{21} b_{12} + a_{22} b_{22} \end{pmatrix}$

P.20

Linear Indexing

Linear indexing: only using one index into a matrix (MATLAB will unwind it column-by column)

A

1	5	9	5
12	თ	4	14
3	17	6	1
4	1	7	2

A(1)
A(2,3)
A(10)
A([10 12])
A([:4 7]
A(1:4)
A([1:4:13])

[1 12 3 4]'
[1 5 9 5]

Linear index of each cell in A

```
      1
      5
      9
      13

      2
      6
      10
      14

      3
      7
      11
      15

      4
      8
      12
      16
```

```
m1 = [1 2;3 4];

m2 = [1 2;3 4];

m1(1,1) = 3; % m2(1) = 3;

m1(1,:) = [3 4 5 6];

% m1([1 5 9 13]) = [3 4 5 6];
```

If-Statement

- The if statement is used to determine whether or not a statement or group of statements is to be executed
- General form:

```
if condition
    action
end
```

- the condition is any relational expression (True or False)
- the <u>action</u> is any number of valid statements (including, possibly, just one)
- If the condition is true, the action is executed <u>otherwise</u>, it is <u>skipped</u> <u>entirely</u>

Example 1: If-Statement

abs(x)

	Timas the absolute	value of
x1 = -3 xsign = 1;		
if x1<0 xsign = -1	;	
end v1 abs = vsic	rn*v1•	

Finds the absolute value of x

```
x1 = 3
xsign = 1;

if x1<0
    xsign = -1;
end

x1_abs = xsign*x1;</pre>
```

abs(-3)

abs (2)

Name	Value
x1	-3
x1_abs	3
xsign	-1

Name	Value
x1	3
x1_abs	3
xsign	1

Example 2: If-Statement

sign(x)

	value of 0 if \mathbf{x} equals zero, value of 1 if \mathbf{x} is greater tha	
x1 = -3 $xsign = 0;$		x1 =
if x1<0 xsign = - end	1;	if x end
if x1>0 xsign = 1 end	;	if x end

Return -1 if x is less than zero, a

```
sign(-5)
                       -1
         sign(3)
         sign(0)
xsign = 0;
```

x1 = 3

if x1<0

if x1>0

xsign = -1;

```
Name
          Value
          -3
x1
xsign
          -1
```

end end	
Name	Value
x1	3
x1_abs	1

If-else Statement

- The **if-else** statement chooses between two actions
- General form:

```
if condition
    action1
else
    action2
end
```

• Only one action is executed; which one depends on the value of the condition (action1 if it is logical true or action2 if it is false)

Example 1: If-else Statement

```
x1 = -3;
xsign = 1;
if x1<0
    xsign = -1;
end
x1_abs = xsign*x1;
```

```
x1=-3;
if x1 < 3
    x1_abs = -1*x1;
else
    x1_abs = x1;
end</pre>
```

Name	Value
x1	-3
x1_abs	3
xsign	-1

Name	Value
x1	-3
x1_abs	3

Nested if-else Statements

 To choose from more than two actions, nested if-else statements can be used (an if or if-else statement as the action of another)

General form:

```
if condition1
    action1
else
    if condition2
        action2
    else
        action3
    end
end
```

Example: Nested if-else Statements

Q: If 'scalar1' is larger than 0 and less than 50, assign 10 to 'out1'. Otherwise, assign 5 to 'out1'.

```
scalar1 = 20;

if scalar1 > 0
    if scalar1<50
        out1 = 10;
    else
        out1 = 5;
    end
end</pre>
```

```
scalar1 = 20;

if (scalar1 > 0) && (scalar1 < 50)
   out1 = 10;
else
   out1 = 5;
end</pre>
```

if, if-else, if-elseif, if-elseif-else

if condition1

action1

end

if condition1 action1 else action2

end

end

action1 elseif condition2 action2

if condition1 if condition1

```
action1
elseif condition2
else
end
```


For-Loop Statement

- Used as a <u>counted</u> loop (We know how many times are repeated)
- Repeats an action a specified number of times
- An iterator or loop variable specifies how many times to repeat the action
- General form:

```
for loopvar = range
    action
end
```

- The range is specified by a vector.
- The action is repeated for every value of loopvar in the specified vector
- If it is desired to repeat the process of prompting the user and reading input a specified number of times (N), a for loop is used:

Example1: How For-Loop Works

```
1    sumv = 0;
2    for ii=1:3
3        sumv = sumv + ii;
4    end
5
```

Step	Operation	Workspace
1	line1: assign 0 to sumv	sumv → 0
2	line2: ii becomes 1	sumv \rightarrow 0, ii \rightarrow 1
3	line3: add sumv and ii, and assign the value to sumv	sumv \rightarrow 1, ii \rightarrow 1
4	line4: end	sumv \rightarrow 1, ii \rightarrow 1
5	go to line2 and ii becomes 2	sumv \rightarrow 1, ii \rightarrow 2
6	line3: add sum and ii, and assign the value to sumv	sumv \rightarrow 3,ii \rightarrow 2
7	line4: end	sumv \rightarrow 3,ii \rightarrow 2
8	go to line2 and ii becomes 3	sumv \rightarrow 3, ii \rightarrow 3
9	line3: add sum and ii, and assign the value to sumv	sumv \rightarrow 6, ii \rightarrow 3
10	line4: end	sumv \rightarrow 6, ii \rightarrow 3
11	no more value in range, and go to line5	sumv → 6,ii → 3

Example2: Summation Using For-Loop (continue)

Sum all values in a vector named 'vec' and assign the value to 'sumv'

```
1  vec = [1 3 7 11];
2  sumv = 0;
3  for ii=1:4
4   sumv = sumv + vec(ii);
5  end
```

```
1  vec = [1 3 7 11];
2  sumv = 0;
3  for ii=vec
4   sumv = sumv + ii;
5  end
```

```
for ii = 1:N
  % do something!
end
```

for loopvar = range
 action
end

Module 3: Loop statement

Q. Do we need ii?

Nested For-Loop Statement

- A nested for loop is one inside of (as the action of) another for loop
- General form of a nested for loop:

```
for loopvar1 = range1
    action1
    for loopvar2 = range2
        action2
    end
end
```

 The inner loop action is executed in its entirety for every value of the outer loop variable

Example1: How Nested For-Loop Works

```
1  mat1 = [1 2 3;4 5 6];
2  sumv = 0;
3  for ii=1:2
4    for jj=1:3
5     sumv = sumv + mat1(ii,jj);
6   end
7  end
```

```
1 2 3
4 5 6
```

mat1

Step	Operation	Workspace
1	line1: assign values to mat1	mat1 → [1 2 3;4 5 6]
2	line2: assign 0 to sumv	$mat1 \rightarrow [1 2 3; 4 5 6], sumv \rightarrow 0$
3	line3: ii becomes 1	ii \rightarrow 1, mat1 \rightarrow [1 2 3;4 5 6], sumv \rightarrow 0
4	line4: jj becomes 1	ii \rightarrow 1, jj \rightarrow 1, mat1 \rightarrow [1 2 3;4 5 6], sumv \rightarrow 0
5	line5: read a value at 1 row and 1 column in mat1, and add the value to ${\tt sumv}$	ii \rightarrow 1, jj \rightarrow 1, mat1 \rightarrow [1 2 3;4 5 6], sumv \rightarrow 1
6	line6: end	ii \rightarrow 1, jj \rightarrow 1, mat1 \rightarrow [1 2 3;4 5 6], sumv \rightarrow 1
7	line4: jj becomes 2	ii \rightarrow 1, jj \rightarrow 2, mat1 \rightarrow [1 2 3;4 5 6], sumv \rightarrow 1

Example1: How Nested For-Loop Works

```
1  mat1 = [1 2 3;4 5 6];
2  sumv = 0;
3  for ii=1:2
4  for jj=1:3
5  sumv = sumv + mat1(ii,jj);
6  end
7  end
```

Step	Operation	Workspace
7	line5: read a value at 1 row and 2 column in mat1, and add the value to ${\tt sumv}$	ii \rightarrow 1, jj \rightarrow 2, mat1 \rightarrow [1 2 3;4 5 6], sumv \rightarrow 3
8	line6: end	ii \rightarrow 1, jj \rightarrow 2, mat1 \rightarrow [1 2 3;4 5 6], sumv \rightarrow 3
9	line4: jj becomes 3	ii \rightarrow 1, jj \rightarrow 3, mat1 \rightarrow [1 2 3;4 5 6], sumv \rightarrow 3
10	line5: read a value at 1 row and 3 column in mat1, and add the value to ${\tt sumv}$	ii \rightarrow 1, jj \rightarrow 3, mat1 \rightarrow [1 2 3;4 5 6], sumv \rightarrow 6
11	line6: end and line7: end	ii \rightarrow 1, jj \rightarrow 3, mat1 \rightarrow [1 2 3;4 5 6], sumv \rightarrow 6
12	line3: ii becomes 2	ii \rightarrow 2, jj \rightarrow 3, mat1 \rightarrow [1 2 3;4 5 6], sumv \rightarrow 6
13	line4: jj becomes 1	ii \rightarrow 2, jj \rightarrow 1, mat1 \rightarrow [1 2 3;4 5 6], sumv \rightarrow 6

Example1: How Nested For-Loop Works

```
1  mat1 = [1 2 3;4 5 6];
2  sumv = 0;
3  for ii=1:2
4    for jj=1:3
5     sumv = sumv + mat1(ii,jj);
6   end
7  end
```

Step	Operation	Workspace
14	line5: read a value at 1 row and 2 column in mat1, and add the value to ${\tt sumv}$	ii \rightarrow 2, jj \rightarrow 1, mat1 \rightarrow [1 2 3;4 5 6], sumv \rightarrow 10
15	line6: end	ii \rightarrow 2, jj \rightarrow 1, mat1 \rightarrow [1 2 3;4 5 6], sumv \rightarrow 10
16	line4: jj becomes 2	ii \rightarrow 2, jj \rightarrow 2, mat1 \rightarrow [1 2 3;4 5 6], sumv \rightarrow 10
17	line5: read a value at 1 row and 3 column in mat1, and add the value to ${\tt sumv}$	ii \rightarrow 2, jj \rightarrow 2, mat1 \rightarrow [1 2 3;4 5 6], sumv \rightarrow 15
18	line6: end	ii \rightarrow 2, jj \rightarrow 2, mat1 \rightarrow [1 2 3;4 5 6], sumv \rightarrow 15
19	line4: jj becomes 3	ii \rightarrow 2, jj \rightarrow 3, mat1 \rightarrow [1 2 3;4 5 6], sumv \rightarrow 15

Module 3: Loop statement

MATLAB Operator

Symbol	Role
+	Addition
_	Subtraction
*	Multiplication
/	Division
^	Matrix power
./	Element-wise right division
• *	Element-wise multiplication
• ^	Element-wise power
١	Transpose

Symbol	Role
==	Equal to
~=	Not equal to
>	Greater than
>=	Greater than or equal to
<	Less than
<=	Less than or equal to
& &	Logical AND (scalar logical)
	Logical OR (scalar logical)
~	Logical NOT
&	Logical AND (array)
	Logical OR (array)

Assign Value(s) to a Variable

variable = expression

```
val2 = 2; % scal

vec1 = [1 2 3 4]; % vector

vec3 = vec1-val2
```

- Conduct a 'minus' operation between a vector of 'vec1' and a scalar value 'val2'. This operation subtract 2 from each element in [1 2 3 4]. A resulting vector is [-1 0 1 2].
- Assign a resulting vector to 'vec3'. 'vec3' contains [-1 0 1 2].

Q: Matrix multiplication?

MATLAB Operator

```
val1 = 10; % scalar value
val2 = 2; % scalar value

vec1 = [1 2 3 4]; % vector

mat1 = [1 2; 3 4]; % matrix
mat2 = [5 6; 7 8]; % matrix
```

Operator
+
-
*
/
^
./

Scalar ★ Scalar
Vector ★ Scalar
Matrix ★ Scalar
Vector ★ Vector
Matrix ★ Matrix

★: Operator

1	2		5	6		_	2	2	
3	4		7	8		1	2	3	4
ma	t1	•	ma	t2	•		ve	c1	

val1 + val2	12
val1 * val2	20
val1 / val2	5
val1^val2	100
vec1*val1	[10 20 30 40]
vec1/val2	[0.5 1 1.5 2]
vec1 + val2	[3 4 5 6]
vec1 - val2	[-1 0 1 2]
<pre>mat1*val2 mat1/val2 mat1 + val2 mat1 - val2</pre>	[2 4; 6 8] [0.5 1; 1.5 2] [3 4; 5 6] [-1 0;1 2]
mat1 + mat2	[6 8; 10 12]
mat1 - mat2	[-4 -4;-4 -4]

MATLAB Operator

```
vec1 = [1 2]; % vector
vec2 = [1; 0]; % vector

mat1 = [1 2; 3 4]; % matrix
mat2 = [1 0; 0 1]; % matrix
```

Operator
+
-
*
/
^
./
.*
.^
_

Scalar ★ Scalar
Vector ★ Scalar
Matrix ★ Scalar
Vector ★ Vector
Matrix ★ Matrix

★: Operator

1	2	1	0		1
3	4	0	1		0
ma	t1	ma	t2	vec1	vec2

<pre>mat1*vec1 mat1*vec2 vec1*mat1 vec2*mat1</pre>	error [1; 3] [7 10] error
<pre>mat1*mat2 mat1*mat1 mat1^2</pre>	[1 2;3 4] [7 10;15 22] [7 10;15 22]
<pre>vec1.* vec2' mat1.*mat2 mat2./mat1 mat1.^2</pre>	[1 0] [1 0;0 4] [1 0;0 0.25] [1 4;9 16]
mat1.*vec2 mat1.*vec1	[1 2;0 0] [1 4;3 8]

Q. How to Change the Matrix A

Α

Module 4: Operator P.41

Α

MATLAB Implicitly Expands Element-wise Operations (Changed After R2016b)

Two inputs which are exactly the same size.

B: 2-by-2

Result: 2-by-2

One input is a matrix, and the other is a column vector with the same number of rows.

A: 4-by-2

B: 4-by-1

6

.*

.

MATLAB Operator

```
val1 = 1; % scalar value
val2 = 2; % scalar value

vec1 = [1 2 3 4]; % vector
vec2 = [1 0 1 4]; % vector

mat1 = [1 2; 3 4]; % matrix
mat2 = [1 0; 5 4]; % matrix
```

Symbol	Role			
==	Equal to			
~=	Not equal to			
>	Greater than			
>=	Greater than or equal to			
<	Less than			
<=	Less than or equal to			

3	4		0	1	Γ.	1 0	1	4	vec2
ma	t1	I	ma	t2	' <u>L</u>	- 10	1 *	<u> </u>	VCCZ
vec	1== 1<=v 1 ~=	al2			[1	0 0 1 0 0 1	0]		
vec	1 == 1 >= 1 <	ve	c2		[1	0 0 1 1 0 0	1]		
	1 == 1 ~=	_				0;0 0;1			
mat	1 == 1 ~= 1 >=	ma	.t2		[0]	0;0 1;1 1;0	0]		
mat	1 == 1 == 1 >	[1	;2]		[1	1;0 0;0 0;1	0]		

vec1

2 3 4

MATLAB Operator

```
val1 = 1; val2 = 0;
vec1 = [1 0]; vec2 = [0 0];
mat1 = [1 1; 0 0];
mat2 = [1 0; 0 1];
```

Symbol	Role
& &	Logical AND (scalar logical)
	Logical OR (scalar logical)
~	Logical NOT
&	Logical AND (array)
	Logical OR (array)

1	1	1	0	1	0	vec1
0	0	0	1	0	0	vec2
ma	.t1	ma	t2	 	<u> </u>	

val1 && val1 val2 && val2 val1 val2	1 0 1
val2 val2 ~ val1 ~ val2	0 0 1
vec1 && val1 vec1 & val1 vec1 & val2 vec1 val2 vec2 val1	error [1 0] [0 0] [1 0] [1 1]
vec2 vec1 vec2 & vec1	[1 0] [0 0]
<pre>mat1 mat2 mat1 & mat2 mat1 & vec1 mat1 vec2</pre>	[1 1;0 1] [1 0;0 0] [1 0;0 0] [1 1;0 0]

p.44

Value Replacement

If values in 'vec1' are larger than 0 and less than 50, replace the values to 10. Otherwise, replace them to 5.

```
vec1 = [1 10 70 80 2]
```

```
vec1 = [1 10 70 80 2];
for ii=1:numel(vec1)
   testv = vec1(ii);
   if testv > 0
       if testv < 50
           replv = 10;
       else
           replv = 5;
       end
   else
       replv = 5;
   end
   vec1(ii) = replv;
end
```

```
vec1 = [1 10 70 80 2];
logi10 = and(vec1>0, vec1<50);
vec1(logi10) = 10;
vec1(~logi10) = 5;</pre>
```

```
'vec1' becomes
```

```
vec1 = [10 10 5 5 10]
```

Rounding Functions

Function	Description	Note
round(x)	Rounds x to the nearest integer	
fix (x)	Truncates x to the nearest integer toward zero.	
floor(x)	Rounds x to the nearest integer toward negative infinity.	0
ceil(x)	Rounds x to the nearest integer toward positive infinity.	0

Rounding Functions (Example 1)

	round	ceil	fix	floor
0.3	0	1	0	0
0.6	1	1	0	0
-0.3	0	0	0	-1
-0.6	-1	0	0	-1

Rounding Functions (Example 2)

```
x1 = -0.6;
x2 = -0.3;
x3 = 0.3;
x4 = 0.6;
x = [x1 x2 x3 x4];
x_ce = ceil(x);
x_fi = fix(x);
x_fl = floor(x);
x_ro = round(x);
```

Name	Value	
x1	-0.6	
x2	-0.3	
x3	0.3	
x4	0.3	
Х	[-0.6 -0.3 0.3 0.6]	
x_ce	[0 0 1 1]	
x_fi	[0 0 0 0]	
x_fl	[-1 -1 0 0]	
x_ro	[-1 0 0 1]	

Array Operations

- reshape changes dimensions of a matrix to any matrix with the same number of elements
- diag create diagonal matrix or get diagonal elements of matrix
- rot90 rotates a matrix 90 degrees counter-clockwise
- flipIr flips columns of a matrix from left to right
- flipud flips rows of a matrix up to down
- flip flips a row vector left to right, column vector or matrix up to down
- **repmat** replicates an entire matrix; it creates *m x n* copies of the matrix
- repelem replicates each element from a matrix in the dimensions specified

Example: Create and Index Arrays

```
mat1 = zeros(3,3)
mat2 = ones(3,3)

mat4 = ones(6,6);
mat5 = repmat(mat2, 2, 2);

mat6 = eye(3,3);
mat7 = diag(ones(3,1));
```

```
mat5 = 6 \times 6
                                                          1
1
                    1
mat6 = 3 \times 3
mat7 = 3 \times 3
```

Example: Combine and Transform Array (horcat, vertcat, cat)

```
mat01 = reshape(1:9, 3, 3);
mat02 = horzcat(mat01, mat01);
mat03 = cat(2, mat01, mat01);

mat05 = vertcat(mat01, mat01);
mat06 = cat(1, mat01, mat01);
```

```
mat01 = 3 \times 3
mat02 = 3 \times 6
mat03 = 3 \times 6
```


Example: Combine and Transform Array (repelem)

```
mat08 = cat(2, ones(2,2), ones(2,2)+1);
mat09 = cat(1, mat08, mat08+2);
mat10 = repelem([1 2;3 4], 2, 2);
```

1	1
1	1

2	2
2	2

1	1	2	2
1	1	2	2

1	1	2	2
1	1	2	2

1	1	2	2
1	1	2	2
3	3	4	4
3	3	4	4

1 2 3 4

1	1	2
_		

1 1	2	2
-------	---	---

3	3	4	4
N	n	1	1

mat10

mat09

Example: Combine and Transform Array

```
mat1 = reshape(1:9, 3, 3)
mat2 = flip(mat1, 1)
mat3 = flipud(mat1)

mat4 = flip(mat1, 2)
mat5 = fliplr(mat1)

mat6 = transpose(mat1)
mat7 = mat1'
```

```
    1
    4
    7

    2
    5
    8

    3
    6
    9
```

mat1

3

6

9

3	6	9
2	5	8
1	4	7

mat.2

mat3

 $mat^{0} - fling$

mat8 = flipud(rot90(mat1))

123456789

7	4	1
8	5	2
9	6	3

mat5

mat6

5

8

mat7

mat8

Module 4: Operator

mat4

Cell Array

- A cell array is a type of data structure that can store different types of values in its elements
- A cell array could be a vector (row or column) or a matrix
- It is an array, so indices are used to refer to the elements

e.g., Store multiple values in different types or matrix in a single variable

Cell Array

- The syntax used to create a cell array is <u>curly braces { } instead of []</u>
- The direct method is to put values in the row(s) separated by commas or spaces, and to separate the rows with semicolons (so, same as other arrays) – the difference is using { } instead of []
- The cell function can also be used to preallocate by passing the dimensions of the cell array, e.g.
- cell(4,2)

Example: Containing Multiple Data Types

```
temp_st1 = [10 11; 12 15; 9 7];
temp_st2 = [12 13];
temp_st3 = [8 9; 11 12];

num_st1 = 3;
num_st2 = 1;
num_st3 = 2;

name_st1 = 'Kitchener';
name_st2 = 'Waterloo';
name_st3 = 'Guelph';
```

```
data_st{1,1} = [10 11; 12 15; 9 7];
data_st{2,1} = [12 13];
data_st{3,1} = [8 9; 11 12];

data_st{1,2} = 3;
data_st{2,2} = 1;
data_st{3,2} = 2;

data_st{1,3} = 'Kitchener';
data_st{2,3} = 'Waterloo';
data_st{3,3} = 'Guelph';
```

```
find([data_st{:,2}] == 2)
find(strcmp(data_st(:,3), 'Waterloo'))
2
```

Other benefit?

Structure Variables

- Structures store values of different types, in fields
- Fields are given names; they are referred to as
- structurename.fieldname using the dot operator
- Structure variables can be initialized using the struct function, which takes
 pairs of arguments (field name as a string followed by the value for that
 field)
- To print, disp will display all fields; fprintf can only print individual fields

Example: Containing Multiple Data Types

```
temp_st1 = [10 11; 12 15; 9 7];
temp_st2 = [12 13];
temp_st3 = [8 9; 11 12];

num_st1 = 3;
num_st2 = 1;
num_st3 = 2;

name_st1 = 'Kitchener';
name_st2 = 'Waterloo';
name_st3 = 'Guelph';
```

```
temp st\{1\} = [10 \ 11; \ 12 \ 15; \ 9 \ 7];
temp st{2} = [12 \ 13];
temp st{3} = [8 9; 11 12];
num st = [3 1 2];
name st{1} = 'Kitchener';
name st{2} = 'Waterloo';
name st{3} = 'Guelph';
data st.temp st = temp st;
data st.num st = num st;
data st.name st = name st;
```

Cell Arrays vs Structures

- Cell arrays are arrays, so they are indexed
 - That means that you can loop though the elements in a cell array or have MATLAB do that for you by using a vectorized code
- Structs are not indexed, so you cannot loop
 - However, the field names are mnemonic so it is more clear what is being stored in a struct
- For example:
 - variable{1} vs. variable.weight: which is more mnemonic?

Cell Arrays vs Structures

- Cell arrays are arrays, so they are indexed
 - That means that you can loop though the elements in a cell array or have MATLAB do that for you by using vectorized code
- Structs are not indexed, so you cannot loop
 - However, the field names are mnemonic so it is more clear what is being stored in a struct
- For example:
 - variable{1} vs. variable.weight: which is more mnemonic?

Numerical Technique

- · Algorithms that are used to obtain numerical solutions of a mathematical problem
- It is useful when no analytical solution exists or analytical solution is difficult to obtain.

$$f(x) = 2x + 3 f(x) = \log(x) * 2x + e^{3x} * x^{2/3}$$

$$f'(3)$$

Theory: Differentiation

The derivative is a measure of the rate at which a function is changing

The derivative of f(x) at x = a can be defined using limits as:

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

With a small change in notation, we can write that:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Instead of finding a derivate at every point in a function, we can find the derivative for a function f(x).

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 can be written as $f'(x) = \frac{d}{dx}f(x) = \frac{dy}{dx}$

For one point

For a function

Theory: Tangent Lines

We can find the equation of a tangent line to f(x) at point (a, f(x)). Recall the general equation of a line y = mx + b where m is the slope and b is the y-intercept. The slope of the tangent line found by m = f'(a)

Given two points on a line, the slope can be found using:

$$Slope = \frac{y_2 - y_1}{x_2 - x_1}$$

From there, the equation of a line can be found using:

$$y - y_1 = m(x - x_1)$$

Theory: Differentiation 1 – Symbolic Way

Example: Find the derivative of:

$$f(x) = \sqrt{x^2 + 1}$$

$$f(x) = \sqrt{u} \to u = x^2 + 1$$

$$f'(x) = \frac{1}{2}u^{\frac{1}{2}} * (2x)$$

$$f'(x) = \frac{2x}{2\sqrt{u}} = \frac{x}{\sqrt{x^2 + 1}}$$

syms x
fx = sqrt(x^2 + 1);
fxp = diff(fx);

fxp
fxp_2 = subs(fxp, x, 2)
double(fxp_2)

$$fxp = \frac{x}{\sqrt{x^2 + 1}}$$

$$\frac{2\sqrt{5}}{5}$$

fxp 2 =

ans =
$$0.8944$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Theory: Differentiation 1 – Numerical Way

Example: Find the derivative of:

$$f(x) = \sqrt{x^2 + 1}$$

$$f(x) = \sqrt{u} \to u = x^2 + 1$$

$$f'(x) = \frac{1}{2}u^{\frac{1}{2}} * (2x)$$

$$f'(x) = \frac{2x}{2\sqrt{u}} = \frac{x}{\sqrt{x^2 + 1}}$$

ans = 0.8944

function
$$fx = diff_ex1(x)$$

 $fx = sqrt(x^2 + 1);$
end

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Theory: L'Hôpital's Rule

L'Hôpital's Rule is a way of solving certain limits of an **indeterminant** form.

In order to apply L'Hôpitals rule the limit must be:

- 1. A ratio, like $\frac{f(x)}{g(x)}$
- 2. Indeterminate

So, L'Hôpitals rule can be applied to limits of the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$.

If f(x) and g(x) are different functions and if $\lim_{x\to a}\frac{f(x)}{g(x)}$ is indeterminate, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Example: L'Hôpital's Rule

Example: Find the following using L'Hôpital's rule

$$1. \lim_{x \to 1} \frac{\ln(x)}{x - 1} \Rightarrow \frac{0}{0}$$

Using L'Hôpital's rule =
$$\lim_{x\to 1} \frac{\frac{1}{x}}{1} = 1$$

$$2. \lim_{x \to \infty} \frac{e^x}{x^2} \Rightarrow \frac{0}{0}$$

Using L'Hôpitlals rule =
$$\lim_{x\to\infty} \frac{e^x}{2x} = \lim_{x\to\infty} \frac{e^x}{2} = \infty$$

Example: L'Hopitals Rule (Script)

```
tol = 10^{-4};
x = 10;
val1 = sin(x)/x
                                               val1 = -0.0544
x = 10;
if abs(x)<tol
    x = tol;
end
val2 = sin(x)/x
                                               val2 = -0.0544
x = 0;
if abs(x)<tol</pre>
    x = tol;
end
val3 = sin(x)/x
                                               val3 = 1.0000
x = 0;
val4 = cos(x)
                                               val4 = 1
```

Theory: Point-Slope Equation of a Line

$$y - y_1 = m(x - x_1)$$

 (X_1, Y_1) is a **known** point

m is the slope of the line

(X, Y) is any other point on the line

Slope m =
$$\frac{\text{change in y}}{\text{change in x}}$$
 = $\frac{y - y_1}{x - x_1}$

Starting with the slope:
$$\frac{y - y_1}{x - x_1} =$$

we rearrange it like this:

$$\frac{y-y_1}{x-x_1} = m(x-x_1)$$

to get this:

$$y - y_1 = m(x - x_1)$$

https://www.mathsisfun.com/algebra/line-equation-point-slope.html

Theory: Newton's Method

Newton's Method is a way successively finding better and better approximations to the roots of a function. The slope of tangent line L is f'(x) so its equation is:

$$y - f(x_1) = f'(x_1)(x - x_1)$$

To find the roots, we need to find the x-intercepts where y =0. so we assume x_L is where y = 0,

$$0 - f(x_1) = f'(x_1)(x_2 - x_1)$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

We call x_2 the second approximation to r, but what if we want x_2 to be even more accurate?

Newton's Method for Approximating Roots

This process can be repeated for x_1, x_2, x_3 ...

In general, if the n^{th} approximation is x_n and $f'(x_n) \neq 0$, then the next approximation x_{n+1} is:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Example: Newton's Method 1

Example: Use Newton's Method to find a root:

$$f(x) = x^6 - 2$$
$$f'(x) = 6x^5$$

We can apply Newton's method to solve for the root y=0. $x_1=1$ (Initial Guess)

$$x_2 = 1 - \frac{f(1)}{f'(1)} = 1 - \frac{1^6 - 2}{6(1^5)} \approx 1.16666667$$

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} \approx 1.12644368$$

$$x_4 = x_3 - \frac{f(x_3)}{f'(x_3)} \approx 1.12249707$$

$$x_5 = x_4 - \frac{f(x_4)}{f'(x_4)} \approx 1.12246205$$

$$x_6 = x_5 - \frac{f(x_5)}{f'(x_5)} \approx 1.12246205$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Example: Root Finding 1


```
% plot a graph
x = -10:0.01:6;
V = (X-2) \cdot (X+6);
figure(1);
line([0 0 ], [-20 60], 'color', ...
    'k', 'Linewidth', 3); hold on; % y-axis
line([min(x) max(x)], [0 0], 'color', ...
    'k', 'Linewidth', 3); % x-axis
plot(x, y, 'b', 'LineWidth',3); % graph
plot(2, 0, 'or', 'LineWidth',5);
plot(-6, 0, 'or', 'LineWidth',5); hold off
xlabel('\bf X-axis')
ylabel('\bf Y-axis')
xticks(-10:2:6);
xticklabels({'-10', '-8', '-6', '-4', ...
    '-2'.'0'.'2'. '4'.'6'})
set(gca, 'fontsize', 13)
xlim([-10 6])
grid on;
```

Example: Root Finding 1 (Simulation)

function fx = myfun(x)

fx = (x-2) .* (x + 6);

end

$$f(x) = x^2 - 4x - 12$$
function fxp = myfunp(x)

fxp = 2*x + 4;

f'(x) = $2x - 4$
end

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$x2 = 2.6429$$

 $x3 = 2.0445$
 $x4 = 2.0002$
 $x5 = 2.0000$

Theory: Integral

Integration is the technique of determining the **area under a curve**. This process is **opposite the process of differentiation**.

To find the area under a curve, we divide the curve into many equal segments of equal width. Each rectangle is multiplied by it's corresponding y-value to get the area of that rectangle. The rectangle's areas are summed for the total area under that curve segment:

- Left endpoints can be used so that the rectangular segments give an underestimation
- Right endpoints can be used so that the rectangular segments give an overestimation

• Center endpoints can be used to try and balance the error from overestimations and underestimations

How can you make your estimation even more accurate? Take smaller segments!

Theory: Integral

The Definite Integral

If f is defined for $a \le x \le b$, we divide the interval [a,b] into n segments of equal width $\Delta x = \frac{b-a}{n}$.

We let $x_0 = a, x_1, x_2, ..., x_n = b$ be the endpoints of these segments and let $x_1^*, x_2^*, x_3^*, ..., x_n^*$ be sample points in these segments such that x_i^* lies in the i^{th} segment. This means that the definite integral from a to b is:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

Recall that,

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \text{ and } \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{4} \text{ and } \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$$

Example: Definite Integral

Solve the following definite integral using the definition of the definite integral:

$$\int_0^3 (x^3 - 6x) \, dx$$

$$\int_0^3 (x^3 - 6x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x$$
$$\Delta x = \frac{3}{n}, x_i = \frac{3i}{n}$$

$$\Rightarrow \lim_{n \to \infty} \sum_{i=1}^{n} f\left(\frac{3i}{n}\right) \frac{3}{n}
\Rightarrow \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left[\left(\frac{3i}{n}\right)^{3} - 6\left(\frac{3i}{n}\right) \right]
\Rightarrow \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left[\frac{27i^{3}}{n^{3}} - \frac{18i}{n} \right]
\Rightarrow \lim_{n \to \infty} \left[\left(\frac{81}{n^{4}}\right) \sum_{i=1}^{n} i^{3} - \frac{54}{n^{2}} \sum_{i=1}^{n} i \right]
\Rightarrow \lim_{n \to \infty} \left[\left(\frac{81}{n^{4}}\right) \left(\frac{n(n+1)}{2}\right)^{2} - \frac{54}{n^{2}} \left(\frac{n(n+1)}{2}\right) \right]
\Rightarrow \lim_{n \to \infty} \left[\left(\frac{81}{n^{4}}\right) \left(\frac{n^{2}+n}{2}\right)^{2} - \frac{54}{n^{2}} \left(\frac{n^{2}+n}{2}\right) \right]
\Rightarrow \lim_{n \to \infty} \left[\left(\frac{81}{n^{4}}\right) \left(\frac{n^{4}+2n^{3}+n^{2}}{4}\right) - \frac{54}{n^{2}} \left(\frac{n^{2}+n}{2}\right) \right]
\Rightarrow \lim_{n \to \infty} \left[\frac{81}{n^{4}} - \frac{54}{n^{2}} = \frac{-27}{n^{2}} \right]$$

Example: Integral (graph)


```
% plot a graph
x = 0:0.01:3
V = X.^3 - 6;
figure(1);
line([0 0 ], [-20 25], 'color', ...
    'k', 'Linewidth', 3); hold on; % y-axis
line([min(x) max(x)], [0 0], 'color', ...
    'k', 'Linewidth', 3); % x-axis
plot(x, v, 'b', 'LineWidth',3); % graph
area(x, y, 'FaceColor', 'y'); % filled area
xlabel('\bf X-axis')
ylabel('\bf Y-axis')
xticks(0:0.5:3);
xticklabels({'0','0.5','1','1.5', '2', '2.5', '3'})
set(gca, 'fontsize', 13)
xlim([0 3]);
ylim([-20 25])
grid on;
```

Example: Integral (Symbolic)

```
syms x
y = x^3 -6*x;
int_y_ab = int(y, 0, 3)
double(int_y_ab)
```

int_y_ab =
$$-\frac{27}{4}$$
 ans = -6.7500

Example: Integral (Numeric 1)

```
n = 10000;
        a = 0;
                                                                       function fx = myfun(x)
        b = 3;
        del x = (b-a)/n;
        area fx = 0;
                                                                       end
        for ii=1:n
             x star = a + del x*ii;
             area fx = area fx + myfun(x star)*del x;
10
        end
11
        area fx
12
                                                                    Approximation of the Area under y = x^3-6x
13
        error est = area fx - (-27/4)
```

$$f(x) = x^3 - 6x$$

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

 $area_fx = -6.7486$

error_est = 0.0014

Example: Integral (Numeric 2)

```
n = 10000;
        a = 0;
                                                                    function fx = myfun(x)
        b = 3;
        del x = (b-a)/n;
                                                                    fx = x^3 - 6*x;
        area fx = 0;
                                                                    end
        for ii=1:n-1
             x star1 = a + del x*ii;
             x star2 = a + del x*(ii+1);
             area fx = area fx + (myfun(x star2) + myfun(x star1))/2*del x;
10
11
        end
12
        area fx
13
14
        error est = area fx - (-27/4)
                                                           f(x_{i+1})
area fx = -6.7500
                                                            f(x_i)
error est = 4.7250e-07
                                                                        X_{i+1}
```

Example: Integral (Numeric 1 vs Numeric 2)

```
n = 10000;
        a = 0;
                                                                 function fx = myfun(x)
        b = 3;
        del x = (b-a)/n;
                                                                 fx = x^3 - 6*x;
        area fx1 = 0;
                                                                 end
        for ii=1:n
            x star = a + del x*ii;
            area fx1 = area fx1 + myfun(x star)*del x;
10
        end
11
12
        area fx2 = 0;
13
        for ii=1:n-1
14
            x  star1 = a + del x*ii;
15
            x star2 = a + del x*(ii+1);
16
            area fx2 = area fx2 + (myfun(x star2) + myfun(x star1))/2*del x;
17
        end
18
19
        area fx1
                                                           area fx1 = -6.7486
20
        area fx2
                                                           area fx2 = -6.7500
21
22
        error est1 = area fx1 - (-27/4)
23
        error est2 = area fx2 - (-27/4)
                                                           error_est1 = 0.0014
24
                                                           error est2 = 4.7250e-07
```

Module 6: Numerical technique

p.81