

TMA4180

Optimisation I Spring 2017

Norwegian University of Science and Technology Department of Mathematical Sciences

Solutions to exercise set 3

- a) $\nabla f = Qx b$ and $\nabla^2 f = Q$ from calculus. Since Q is symmetric positive definite (SPD), it follows that f is strictly convex on \mathbb{R}^n , and as such, there is at most one global minimum of f. Furthermore, this global minimum x^* must be a stationary point satisfying $\nabla f(x^*) = 0$. We conclude that $x^* = Q^{-1}b$, since Q is invertible (all eigenvalues of Q are positive, and hence, different from zero).
 - b) Newton's method reads

$$x_{k+1} = x_k + p_k,$$

where $p_k = -(\nabla^2 f_k)^{-1} \nabla f_k$, with $\nabla f_k := \nabla f(x_k)$, and $\nabla^2 f_k := \nabla^2 f(x_k)$. Therefore, given any x_0 , we find that

$$x_1 = x_0 - Q^{-1}(Qx_0 - b) = Q^{-1}b = x^*,$$

that is, Newton's method converges after one step.

c) With chosen direction p_k in position x_k , and selected preliminary step length α and some parameter $c_1 \in (0,1)$, backtracking line search iteratively reduces α until

$$f(x_k + \alpha p_k) \le f(x_k) + c_1 \alpha \nabla f_k^{\top} p_k. \tag{*}$$

In our case,

$$f(x_k + \alpha p_k) = f(x_k) + \alpha \nabla f_k^{\top} p_k + \frac{1}{2} \alpha^2 p_k^{\top} \nabla^2 f_k p_k$$

by exact Taylor expansion (f is a quadratic form), and

$$p_k^{\top} \nabla^2 f_k \, p_k = -\nabla f_k^{\top} (\nabla^2 f_k)^{-\top} \nabla^2 f_k \, p_k = -\nabla f_k^{\top} p_k,$$

because $\nabla^2 f$ (and its inverse) is symmetric. Inserting these expressions into (\star) yields that

$$\left(1 - \frac{\alpha}{2}\right) \alpha \nabla f_k^{\top} p_k \le c_1 \alpha \nabla f_k^{\top} p_k.$$

Now, since p_k is a descent direction (Q is SPD), this gives the criterion

$$c_1 \le 1 - \frac{\alpha}{2}.$$

Hence, if $\alpha = 1$, then $c_1 \le 1/2$ is required, and, conversely, if $c_1 \le 1/2$, then the method accepts step lengths $\alpha \le 2(1 - c_1)$; in particular, $\alpha = 1$ is OK.

2 a)
$$\nabla f = (4x - 2y + 6x^2 + 4x^3, 2y - 2x)$$
 and

$$\nabla^2 f = \begin{bmatrix} 4 + 12x + 12x^2 & -2 \\ -2 & 2 \end{bmatrix},$$

Hence, stationary points satisfy y = x by the first component of ∇f , while the second component yields that $0 = 2x(1 + 3x + 2x^2) = x(x+1)(2x+1)$. Thus critical points of f are (0,0), $(-\frac{1}{2},-\frac{1}{2})$, and (-1,-1). Now,

$$\nabla^2 f(0,0) = \begin{bmatrix} 4 & -2 \\ -2 & 2 \end{bmatrix} = \nabla^2 f(-1,-1) \quad \text{and} \quad \nabla^2 f(-\frac{1}{2}, -\frac{1}{2}) = \begin{bmatrix} 1 & -2 \\ -2 & 2 \end{bmatrix}$$

has eigenvalues $3 \pm \sqrt{5} > 0$ and $(3 \pm \sqrt{17})/2$ (one positive, and one negative), respectively. We conclude that (0,0), and (-1,-1) are strict local minima, while $(-\frac{1}{2},-\frac{1}{2})$ is a saddle point. Moreover, since $\nabla^2 f$ remains SPD both for x>0 and x<-1 (the value of y is irrelevant), it follows that (0,0) and (-1,-1) are the only candidates for global minima. Evaluating f(0,0)=0=f(-1,-1), shows that both are global minimisers of f.

b) Gradient descent method equals $(x_{k+1}, y_{k+1}) = (x_k, y_k) + p_k$, with $p_k = -\nabla f_k$. Starting with preliminary step length α , $\rho = 1/2$, and $c_1 = 1/4$, we accept a new step provided

$$f((x_0, y_0) + \alpha p_0) \le f(x_0, y_0) + c\alpha \nabla f(x_0, y_0)^{\top} p_0 = 1 - 2\alpha$$

using that $p_0 = -\nabla f(x_0, y_0) = (2, -2)$.

Beginning with $\alpha = 1$, we reject the first try since $f((x_0, y_0) + \alpha p_0) = 13 > -1$. Reducing to $\alpha \leftarrow \rho \alpha = 1/2$, still gives rejection, but $\alpha = 1/4$ succeeds, because $f((x_0, y_0) + \alpha p_0) = 1/16 \le 1/2$. Hence, we put $(x_1, y_1) = (-\frac{1}{2}, -\frac{1}{2})$, and proceed with a new round. However, (x_1, y_1) is a critical (saddle) point for f, so the gradient method stops here, thereby failing to converge to a minimiser.

c) Similarly as in b), the backtracking acceptance criterion for Newton's method reads

$$f((x_0, y_0) + \alpha p_0) \le f(x_0, y_0) + c\alpha \nabla f(x_0, y_0)^{\top} p_0 = 1 - \frac{1}{2}\alpha,$$

since $p_0 = -\nabla^2 f(x_0, y_0)^{-1} \nabla f(x_0, y_0) = (0, -1)$ and $c_1 = 1/4$. Starting with $\alpha = 1$, we have $f((x_0, y_0) + \alpha p_0) = 0 \le 1/2$, so the step is accepted. We then put $(x_1, y_1) = (x_0, y_0) + p_0 = (-1, -1)$. This point is a global minimiser, the conclusion being that Newton's method converged in one step.

3 See file tma4180s17 = x03 = 3.m on the website.