# Universidade de São Paulo Escola de Artes, Ciências e Humanidades

ACH2016 - Inteligência Artificial

# RELATÓRIO ANÁLISE DE ALGORITMOS DE BUSCA

Daniel Augusto de Melo Moreira – 8122477

Felipe Brigatto - 7972602

Igor Oliveira Borges - 8122442

Marcelo Werneck Gaioso - 8061963

01 de outubro de 2014

#### Introdução

Esse exercício programa consiste na implementação de 6 métodos de busca para resolver o problema conhecido como *travessia perigosa* que visa reduzir o tempo de travessia.

#### **Buscas:**

- Profundidade
- Largura
- Custo Uniforme
- Profundidade Interativa
- Guloso
- A\*

É um quebra-cabeça lógico, no qual há pessoas do lado oeste da ponte, que anseiam chegar ao lado leste, contudo só podem atravessar duas de cada vez, cada uma possui um tempo de travessia que é dominado pelo parceiro de mais lento e é necessário retornar para trazer um artefato que é crucial para atravessar a ponte, comumente relatado como lanterna ou tocha.

A árvore completa é muito grande do problema, a depender da quantidade de pessoas modeladas, e por isto uma estratégia é ir permutando os caminhos válidos e gerando a árvore conforme explora o problema.

A seguir descrevemos formalmente o problema e três heurísticas que utilizamos para os algoritmos de busca informada, e então mostramos os resultados obtido por cada algoritmo em três casos testes propostos e os comparamos.

### Descrição do Problema

**Estados:** A quantidade de estados do problema é dada por:  $2^{n+1} - 2$ .

**Prova:** Suponha que os estados sejam definidos apenas pelas pessoas a oeste e leste da ponte (desconsiderando a localização da lanterna), dessa forma os estados podem ser representados pela combinação do conjunto inicial de pessoas posicionadas em um lado fixado e posicionando as demais no lado oposto.

Ex.: Considerando a Instancia 1 do problema e fixando o lado a oeste, então um estado intermediário é dado por uma das possíveis combinações de 2 pessoas retiradas do conjunto inicial e posicionando-as a oeste, e as demais a leste.

Assim, podemos calcular a quantidade de estados da seguinte maneira:

$$\sum_{i=0}^{n} C_{n,i} = 2^n$$

A igualdade do lado direito é obtida, pois a somatória representa a soma de uma linha do Triangulo de Pascal.

Agora, consideremos a representação total dos estados dado pelo problema, ou seja, adicionamos a localização da lanterna. Dessa forma, dado um estado da primeira suposição geraremos dois novos estados, um com a lanterna a oeste e outro a leste. Porém, pela descrição do problema podemos inferir que a lanterna não pode estar em um lado da ponte que não há pessoas, portanto devemos remover os estados inicial e final.

Concluindo, chegamos ao cálculo final da quantidade de estados do seguinte modo:

$$2^n \times 2 - 2 = 2^{n+1} - 2$$

Obs.: Para algumas instancias do problema a quantidade de estados percorridos pelos algoritmos de busca sempre será menor que o total devido a possibilidade de alguns estados apenas serem alcançados a partir do estado final.

### Definição

**Estado inicial:** Possui todas as pessoas do conjunto inicial e a lanterna posicionada no lado oeste da ponte e o conjunto vazio no lado leste.

**Ações:** Transportar i-ésima ou i-ésima e j-ésima, onde  $i \neq j$ , pessoa do conjunto de pessoas que possui a lanterna para o lado oposto da ponte.

**Modelo de transição:** As ações colocam a lanterna e as pessoas selecionadas no lado oposto.

**Teste de objetivo:** Verifica se não há pessoas no lado oeste (utilizada na implementação) ou se todas as pessoas estão do lado leste.

**Custo do caminho:** Cada transferência de pessoas possui o custo da pessoa que leva mais tempo para atravessar a ponte denotado por:  $\max(custo(i), custo(j))$ , assim o custo do caminho é definido pela somatória de cada transferência realizada.

#### Heurísticas

Demonstraremos a seguir que as heurísticas escolhidas para a resolução do problema e utilizadas pelos algoritmos guloso e A\* são admissíveis, ou seja,  $h(n) \le h^*(n)$ , para isso primeiro definimos as funções matemática que cada heurística representa.

A demonstração é feita na ordem invertida da definição das heurísticas, pois aumentamos a complexidade linearmente e portanto, é mais fácil demonstrar que uma é admissível em relação as anteriores do que compara-las ao custo original, o que nos obrigaria a repetir coisas já ditas.

**Definição:** O conjunto em ordem decrescente de tempo de travessia das pessoas a oeste da ponte é representado por "O", e o i-ésimo elemento do conjunto é representado por "O<sub>i</sub>".

As heurísticas utilizadas são:

Heurística 1: A função de avaliação aplicada a um determinado estado é:

 $h(n) = \min(0)$ . A ideia da função é garantir o custo mínimo possível, porém é uma heurística que estima um valor muito longe do real.

Heurística 2: A função de avaliação aplicada a um determinado estado é:

 $h(n) = \max(0)$ . Essa função é derivada de um afrouxamento da regra de travessia, permitindo que todas as pessoas do lado oeste atravessem a ponte ao mesmo tempo com apenas uma única lanterna. Dessa forma, o custo é calculado pelo tempo de travessia do membro que possui o maior tempo de travessia do grupo.

Heurística 3: A função de avaliação aplicada a um determinado estado é:

 $h(n) = \sum_{i=0}^{(n/2)-1} \max(O_{2i} + O_{2i+1}) + O_{n-1} \times (n\%2)$ . Essa função é derivada de um afrouxamento da regra de travessia, permitindo lanternas suficientes para que vários grupos de duas pessoas, e eventualmente uma pessoa, atravessem ao mesmo tempo. Dessa forma, o custo é calculado pela somatória do tempo de travessia de cada grupo.

Ideia da prova: O custo real do caminho leva em consideração a necessidade de algumas pessoas terem de retornar para o lado oeste e portanto mesmo que o custo da volta fosse nulo ainda levaríamos mais tempo para concluir a travessia pois reduziríamos o conjunto de pessoas do lado oeste em um, quando a volta fosse necessária. Nesse caso teríamos que a solução ótima transportaria as pessoas de maior peso juntas (heurística 3), pois dessa forma amortizaria o peso da segunda mais pesada, e utilizaria os grupos de menor peso para transportarem a lanterna nas voltas.

Portanto, a solução ótima será composta pela heurística 3 adicionando os possíveis custos de transportar pessoas de volta a oeste. Então, a heurística 3 deve ser no máximo igual a solução ótima e consequentemente a heurística 3 é admissível.

As heurísticas 2 e 1 são obviamente menores ou iguais a heurística 3 e portanto são também admissíveis.

Concluindo,  $h_1(n) \le h_2(n) \le h_3(n) \le h^*(n)$  então todas as heurísticas são admissíveis.

## **RESULTADOS**

| Busca Largura     |              |             |                      |
|-------------------|--------------|-------------|----------------------|
| Custo Total       | Profundidade | Tempo (ms)* | Estados<br>Visitados |
| 17                | 5            | 4           | 26                   |
| 17                | 5            | 4           | 26                   |
| 17                | 5            | 4           | 26                   |
| 17                | 5            | 4           | 26                   |
| 17                | 5            | 4           | 26                   |
| Tempo médio (ms): |              | 4           |                      |

| Busca A* (x.custo+f.h1(x) <= y.custo+f.h1(y)) |              |             |                      |  |
|-----------------------------------------------|--------------|-------------|----------------------|--|
| Custo Total                                   | Profundidade | Tempo (ms)* | Estados<br>Visitados |  |
| 17                                            | 5            | 5           | 19                   |  |
| 17                                            | 5            | 4           | 19                   |  |
| 17                                            | 5            | 5           | 19                   |  |
| 17                                            | 5            | 4           | 19                   |  |
| 17                                            | 5            | 4           | 19                   |  |
| Tempo n                                       | nédio (ms):  | 4,4         |                      |  |

|             | <b>Busca Custo</b> | Uniforme    |         |
|-------------|--------------------|-------------|---------|
| Custo Total | Profundidade       | Tempo (ms)* | Estados |
| 17          | 5                  | 4           | 26      |
| 17          | 5                  | 4           | 26      |
| 17          | 5                  | 5           | 26      |
| 17          | 5                  | 5           | 26      |
| 17          | 5                  | 6           | 26      |
| Tempo r     | nédio (ms):        | 4,8         |         |

| Busca $A^*$ (x.custo+f.h2(x) < y.custo+f.h2(y)) |              |             |                      |  |
|-------------------------------------------------|--------------|-------------|----------------------|--|
| Custo Total                                     | Profundidade | Tempo (ms)* | Estados<br>Visitados |  |
| 17                                              | 5            | 5           | 19                   |  |
| 17                                              | 5            | 4           | 19                   |  |
| 17                                              | 5            | 4           | 19                   |  |
| 17                                              | 5            | 5           | 19                   |  |
| 17                                              | 5            | 4           | 19                   |  |
| Tempo n                                         | nédio (ms):  | 4,4         |                      |  |

| Busca A* (x.custo+f.h3(x) < y.custo+f.h3(y)) |              |             |                      |  |
|----------------------------------------------|--------------|-------------|----------------------|--|
| Custo Total                                  | Profundidade | Tempo (ms)* | Estados<br>Visitados |  |
| 17                                           | 5            | 4           | 19                   |  |
| 17                                           | 5            | 5           | 19                   |  |
| 17                                           | 5            | 6           | 19                   |  |
| 17                                           | 5            | 6           | 19                   |  |
| 17                                           | 5            | 6           | 19                   |  |
| Tempo n                                      | nédio (ms):  | 5,4         |                      |  |

**Imagem 1.** Tabelas de resultados de execução da instância 1. Os algoritmos Profundidade, Profundidade Iterativa e Guloso (três heurísticas) não encontraram solução para o máximo de minutos estipulado.

| Busca Largura     |              |             |                      |  |
|-------------------|--------------|-------------|----------------------|--|
| Custo Total       | Profundidade | Tempo (ms)* | Estados<br>Visitados |  |
| 104               | 17           | 164         | 2036                 |  |
| 104               | 17           | 163         | 2036                 |  |
| 104               | 17           | 163         | 2036                 |  |
| 104               | 17           | 164         | 2036                 |  |
| 104               | 17           | 159         | 2036                 |  |
| Tempo médio (ms): |              | 162,6       |                      |  |

| Custo Total       | Profundidade | Tempo (ms)* | Estados<br>Visitados |
|-------------------|--------------|-------------|----------------------|
| 104               | 17           | 161         | 1987                 |
| 104               | 17           | 166         | 1987                 |
| 104               | 17           | 180         | 1987                 |
| 104               | 17           | 196         | 1987                 |
| 104               | 17           | 203         | 1987                 |
| Tempo médio (ms): |              | 181,2       |                      |

| Busca Custo Uniforme |              |             |         |  |
|----------------------|--------------|-------------|---------|--|
| Custo Total          | Profundidade | Tempo (ms)* | Estados |  |
| 104                  | 17           | 156         | 2034    |  |
| 104                  | 17           | 162         | 2034    |  |
| 104                  | 17           | 164         | 2034    |  |
| 104                  | 17           | 163         | 2034    |  |
| 104                  | 17           | 157         | 2034    |  |
| Tempo médio (ms):    |              | 160,4       |         |  |

| Busca $A^*$ (x.custo+f.h2(x) < y.custo+f.h2(y)) |              |             |                      |  |
|-------------------------------------------------|--------------|-------------|----------------------|--|
| Custo Total                                     | Profundidade | Tempo (ms)* | Estados<br>Visitados |  |
| 104                                             | 17           | 178         | 2036                 |  |
| 104                                             | 17           | 168         | 2036                 |  |
| 104                                             | 17           | 165         | 2036                 |  |
| 104                                             | 17           | 177         | 2036                 |  |
| 104                                             | 17           | 154         | 2036                 |  |
| Tempo n                                         | nédio (ms):  | 168,4       |                      |  |

| Busca A     | * (x.custo+f.h3) | (x) < y.custo+f. | h3(y))               |
|-------------|------------------|------------------|----------------------|
| Custo Total | Profundidade     | Tempo (ms)*      | Estados<br>Visitados |
| 104         | 17               | 148              | 2036                 |
| 104         | 17               | 147              | 2036                 |
| 104         | 17               | 148              | 2036                 |
| 104         | 17               | 159              | 2036                 |
| 104         | 17               | 149              | 2036                 |
| Tempo n     | nédio (ms):      | 150,2            |                      |

**Imagem 2.** Tabelas de resultados de execução da instância 2. Os algoritmos Profundidade, Profundidade Iterativa e Guloso (três heurísticas) não encontraram solução para o máximo de minutos estipulado.

|             | Busca Largura     |             |                      |  |
|-------------|-------------------|-------------|----------------------|--|
| Custo Total | Profundidade      | Tempo (ms)* | Estados<br>Visitados |  |
| 182         | 27                | 11507       | 49136                |  |
| 182         | 27                | 11442       | 49136                |  |
| 182         | 27                | 11248       | 49136                |  |
| 182         | 27                | 11158       | 49136                |  |
| 182         | 27                | 10753       | 49136                |  |
| Tempo m     | Tempo médio (ms): |             |                      |  |

| Busca A     | (x.custo+f.h1(x) | <= y.custo+i.ni | -(Y))                |
|-------------|------------------|-----------------|----------------------|
| Custo Total | Profundidade     | Tempo (ms)*     | Estados<br>Visitados |
| 182         | 27               | 10459           | 48960                |
| 182         | 27               | 10444           | 48960                |
| 182         | 27               | 11945           | 48960                |
| 182         | 27               | 10759           | 48960                |
| 182         | 27               | 10375           | 48960                |
| Tempo m     | édio (ms):       | 10796,4         |                      |

|             | Busca Custo Ur | iforme      |         |
|-------------|----------------|-------------|---------|
| Custo Total | Profundidade   | Tempo (ms)* | Estados |
| 182         | 27             | 10903       | 49108   |
| 182         | 27             | 10676       | 49108   |
| 182         | 27             | 10695       | 49108   |
| 182         | 27             | 10658       | 49108   |
| 182         | 27             | 10933       | 49108   |
| Tempo m     | édio (ms):     | 10773       |         |

| Busca A* (x.custo+f.h2(x) < y.custo+f.h2(y)) |              |             |                      |  |
|----------------------------------------------|--------------|-------------|----------------------|--|
| Custo Total                                  | Profundidade | Tempo (ms)* | Estados<br>Visitados |  |
| 182                                          | 27           | 11732       | 48960                |  |
| 182                                          | 27           | 11008       | 48960                |  |
| 182                                          | 27           | 11298       | 48960                |  |
| 182                                          | 27           | 10324       | 48960                |  |
| 182                                          | 27           | 10919       | 48960                |  |
| Tempo médio (ms):                            |              | 11056,2     |                      |  |

| Busca A*    | (x.custo+f.h3(x) | < y.custo+f.h3 | (y))                 |
|-------------|------------------|----------------|----------------------|
| Custo Total | Profundidade     | Tempo (ms)*    | Estados<br>Visitados |
| 182         | 27               | 10502          | 48960                |
| 182         | 27               | 10764          | 48960                |
| 182         | 27               | 11151          | 48960                |
| 182         | 27               | 10722          | 48960                |
| 182         | 27               | 10420          | 48960                |
| Tempo m     | édio (ms):       | 10711,8        |                      |

**Imagem 3.** Tabelas de resultados de execução da instância 3. Os algoritmos Profundidade, Profundidade Iterativa e Guloso (três heurísticas) não encontraram solução para o máximo de minutos estipulado.

### EXPERIMENTO ADICIONAL

Com finalidade de testar os algoritmos de Profundidade, Profundidade Interativa e as três heurísticas também no Guloso. Relaxamos o valor Max de aceitabilidade de uma solução recebida como parâmetro a fim de testar as buscas que não encontram solução ótima.

Max=24

|             | Busca Profundidade |             |                      |  |  |
|-------------|--------------------|-------------|----------------------|--|--|
| Custo Total | Profundidade       | Tempo (ms)* | Estados<br>Visitados |  |  |
| 19          | 5                  | 0           | 7                    |  |  |
| 19          | 5                  | 1           | 7                    |  |  |
| 19          | 5                  | 1           | 7                    |  |  |
| 19          | 5                  | 1           | 7                    |  |  |
| 19          | 5                  | 1           | 7                    |  |  |
| Tempo r     | médio (ms)         | 0,8         |                      |  |  |

| Busca Profundidade Iterativa |              |             |                      |  |
|------------------------------|--------------|-------------|----------------------|--|
| Custo Total                  | Profundidade | Tempo (ms)* | Estados<br>Visitados |  |
| 19                           | 5            | 6           | 7                    |  |
| 19                           | 5            | 5           | 7                    |  |
| 19                           | 5            | 4           | 7                    |  |
| 19                           | 5            | 6           | 7                    |  |
| 19                           | 5            | 7           | 7                    |  |
| Tempo                        | médio (ms)   | 5,6         |                      |  |

| Bu          | ısca Gulosa (f.h | $1(x) \le f.h1(y)$ |                      |
|-------------|------------------|--------------------|----------------------|
| Custo Total | Profundidade     | Tempo (ms)*        | Estados<br>Visitados |
| 20          | 5                | 6                  | 18                   |
| 20          | 5                | 6                  | 18                   |
| 20          | 5                | 5                  | 18                   |
| 20          | 5                | 6                  | 18                   |
| 20          | 5                | 6                  | 18                   |
| Tempo r     | médio (ms)       | 5,8                |                      |

| В           | usca Gulosa (f.ł | 12(x) < f.h2(y) | 1                    |
|-------------|------------------|-----------------|----------------------|
| Custo Total | Profundidade     | Tempo (ms)*     | Estados<br>Visitados |
| 24          | 5                | 4               | 6                    |
| 24          | 5                | 4               | 6                    |
| 24          | 5                | 5               | 6                    |
| 24          | 5                | 3               | 6                    |
| 24          | 5                | 4               | 6                    |
| Tempo       | médio (ms)       | 4               |                      |

| В           | usca Gulosa (f.) | n3(x) < f.h3(y)) |                      |
|-------------|------------------|------------------|----------------------|
| Custo Total | Profundidade     | Tempo (ms)*      | Estados<br>Visitados |
| 20          | 5                | 4                | 8                    |
| 20          | 5                | 4                | 8                    |
| 20          | 5                | 3                | 8                    |
| 20          | 5                | 3                | 8                    |
| 20          | 5                | 3                | 8                    |
| Tempo r     | médio (ms)       | 3,4              |                      |

**Imagem 4.** Algoritmos da Instância 1 que não encontraram soluções. O tempo máximo foi alterado para efeito de comparação entre todos os algoritmos.

|             | Busca Profu  | ındidade    |                      |
|-------------|--------------|-------------|----------------------|
| Custo Total | Profundidade | Tempo (ms)* | Estados<br>Visitados |
| 134         | 17           | 3           | 19                   |
| 134         | 17           | 2           | 19                   |
| 134         | 17           | 3           | 19                   |
| 134         | 17           | 2           | 19                   |
| 134         | 17           | 2           | 19                   |
| Tempo       | médio (ms)   | 2,4         |                      |

| Custo Total | Profundidade | Tempo (ms)* | Estados<br>Visitados |
|-------------|--------------|-------------|----------------------|
| 204         | 19           | 233         | 475                  |
| 204         | 19           | 323         | 475                  |
| 204         | 19           | 239         | 475                  |
| 204         | 19           | 262         | 475                  |
| 204         | 19           | 299         | 475                  |
| Tempor      | nédio (ms)   | 271,2       |                      |

| E           | Busca Profundio | dade Iterativa |                      |
|-------------|-----------------|----------------|----------------------|
| Custo Total | Profundidade    | Tempo (ms)*    | Estados<br>Visitados |
| 134         | 17              | 893            | 19                   |
| 134         | 17              | 839            | 19                   |
| 134         | 17              | 829            | 19                   |
| 134         | 17              | 860            | 19                   |
| 134         | 17              | 862            | 19                   |
| Tempo r     | médio (ms)      | 856,6          |                      |

| Busca Gulosa (f.h3(x) < f.h3(y)) |              |             |                      |  |
|----------------------------------|--------------|-------------|----------------------|--|
| Custo Total                      | Profundidade | Tempo (ms)* | Estados<br>Visitados |  |
| 136                              | 17           | 55          | 59                   |  |
| 136                              | 17           | 54          | 59                   |  |
| 136                              | 17           | 54          | 59                   |  |
| 136                              | 17           | 58          | 59                   |  |
| 136                              | 17           | 57          | 59                   |  |
| Tempo r                          | médio (ms)   | 55,6        |                      |  |

| According to the | usca Gulosa (f.)<br>Profundidade |      | Estados<br>Visitados |
|------------------|----------------------------------|------|----------------------|
| 202              | 17                               | 30   | 18                   |
| 202              | 17                               | 31   | 18                   |
| 202              | 17                               | 35   | 18                   |
| 202              | 17                               | 31   | 18                   |
| 202              | 17                               | 31   | 18                   |
| Tempo médio (ms) |                                  | 31,6 |                      |

**Imagem 5.** Algoritmos da Instância 2 que não encontraram soluções. O tempo máximo foi alterado para efeito de comparação entre todos os algoritmos.

|                  | Busca Profu  | ındidade    |                      |
|------------------|--------------|-------------|----------------------|
| Custo Total      | Profundidade | Tempo (ms)* | Estados<br>Visitados |
| 277              | 27           | 5           | 29                   |
| 277              | 27           | 6           | 29                   |
| 277              | 27           | 3           | 29                   |
| 277              | 27           | 4           | 29                   |
| 277              | 27           | 5           | 29                   |
| Tempo médio (ms) |              | 4,6         |                      |

| Busca Profundidade Iterativa |              |             |                      |  |
|------------------------------|--------------|-------------|----------------------|--|
| Custo Total                  | Profundidade | Tempo (ms)* | Estados<br>Visitados |  |
| 277                          | 27           | 9570        | 29                   |  |
| 277                          | 27           | 9601        | 29                   |  |
| 277                          | 27           | 9522        | 29                   |  |
| 277                          | 27           | 9565        | 29                   |  |
| 277                          | 27           | 9498        | 29                   |  |
| Tempo médio (ms)             |              | 9551,2      |                      |  |

| Custo Total      | Profundidade | Tempo (ms)* | Estados<br>Visitados |
|------------------|--------------|-------------|----------------------|
| 318              | 27           | 6455        | 31740                |
| 318              | 27           | 6511        | 31740                |
| 318              | 27           | 6500        | 31740                |
| 318              | 27           | 6563        | 31740                |
| 318              | 27           | 6541        | 31740                |
| Tempo médio (ms) |              | 6514        |                      |

| Custo Total      | Profundidade | Tempo (ms)* | Estados<br>Visitados |
|------------------|--------------|-------------|----------------------|
| 466              | 27           | 278         | 128                  |
| 466              | 27           | 284         | 128                  |
| 466              | 27           | 297         | 128                  |
| 466              | 27           | 251         | 128                  |
| 466              | 27           | 262         | 128                  |
| Tempo médio (ms) |              | 274,4       |                      |

| В                | usca Gulosa (f.h | 13(x) < f.h3(y) |                      |
|------------------|------------------|-----------------|----------------------|
| Custo Total      | Profundidade     | Tempo (ms)*     | Estados<br>Visitados |
| 298              | 27               | 356             | 233                  |
| 298              | 27               | 364             | 233                  |
| 298              | 27               | 340             | 233                  |
| 298              | 27               | 344             | 233                  |
| 298              | 27               | 344             | 233                  |
| Tempo médio (ms) |                  | 349,6           |                      |

**Imagem 6.** Algoritmos da Instância 3 que não encontraram soluções. O tempo máximo foi alterado para efeito de comparação entre todos os algoritmos.

# **GRÁFICOS**



Gráfico 1. Análise da instância 1 por algoritmo.



Gráfico 2. Análise da instância 2 por algoritmo.



**Gráfico 3.** Análise da instância 3 por algoritmo.



Gráfico 4. Análise do custo total por instância, relaxado o critério de aceitação da solução.



**Gráfico 5.** Análise dos custos computacionais nos três testes nos principais algoritmos que resolveram ambos.

# CONSIDERAÇÕES FINAIS

Os algoritmos de busca cega Profundidade e Profundidade Interativa quase sempre não retornam a solução ótima, bem como na informada o algoritmo guloso também não o alcança, e mesmo nos casos testes aplicados não garantiram tal resultado conforme já esperado. Realizamos testes para estes com critério Max ampliado apenas para mostrar a satisfatibilidade dos algoritmos apresentados, uma vez que eles não encontram o ótimo, apresentamos o custo deste estado parcial que pode chegar a dobrar o obtido pelo melhor caminho, a fim de mensurar o quão distante estão da solução otimal.

As buscas em Largura, Custo Uniforme e A\* se mostraram eficiente nos testes aplicados sempre encontrando a solução ótima para o problema.

A criação e o aprimoramento de heurísticas é uma estratégia que visa melhorar a eficiência das buscas informadas, e reduzir seu custo computacional.

Em relação ao custo do caminho as três heurística apresentadas funcionam bem para a busca A\* com destaque pra Heurística 3, que também é a melhor na busca Gulosa.

Problemas de busca de caminho podem até parecer simples *a priori*, mas revelam certa complexidade ao possuir um grande número de estados e de nós gerados em suas permutações, de forma que os algoritmos precisem ser adaptados para exigência de performance visando tentar achar a melhor solução possível dada uma restrição de tempo.

**Anexo 1.** Diagrama de Classes (UML) do Exercício Programa implementado.