UNIVERSITY OF THE PUNJAB

Sixth Semester - 2018

<u>Examination: B.S. 4 Years Programme</u>

	Roll No.	
•		•
•		•

PAPER: Linear Algebra (MA) Course Code: IT-312 Part – II TIME ALLOWED: 2 Hrs. & 45 Mints. MAX. MARKS: 50

Attempt this Paper on Separate Answer Sheet provided.

Q. 2 SHORT QUESTIONS

(4x5 = 20 Marks)

(i) Determine the values of a for which the system of linear equations has no solution, exactly one solution and infinitely many solutions.

$$x + y + 7z = -7$$

$$2x + 3y + 17z = -16$$

$$x + 2y + (a^2 + 1)z = 3a$$
.

(ii)

Prove that
$$\begin{vmatrix} \frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{c} & a \\ b & b & \frac{c^2 + a^2}{c} \end{vmatrix} = 4ahc$$

- (iii) Show that the vectors (1,-2), and (3,-5) span the vector space \mathbb{R}^2
- (iv) Define $T: \mathbb{R}^3 \to \mathbb{R}^3$ by $T(x_1, x_2, x_3) = (-x_3, x_1, x_1 + x_3)$. Find N(T). Is T one-to-one?
- (v) Show that the matrix $\begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$ is involutery

SECTION-III

LONG QUESTIONS

(6x5 = 30 Marks)

- Q.3 If A and B are 3×3 matrices such that $\det(A^2B^3) = 108$ and $\det(A^3B^2) = 72$ then find $\det(2A)$ and $\det(B^{-1})$.
- Q.4 Find the real orthogonal matrix P for which $P^{-1}AP$ is orthogonal, where $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$
- Q.5 If possible, find the inverse of the matrix $\begin{bmatrix} 1 & 2 & -3 \\ 0 & -2 & 0 \\ -2 & -2 & 2 \end{bmatrix}$
- Q.6 Show that any finite dimensional vector space contains a basis.
- Q.7 Determine whether or not the given set of vectors is a basis of \mathbb{R}^3

$$\{(1,2,-1),(0,3,1),(1,-5,3)\}$$

UNIVERSITY OF THE PUNJAB

Sixth Semester - 2018

<u>Examination: B.S. 4 Years Programme</u>

TIME ALLOWED 15 M

PAPER: Linear Algebra (MA)
Course Code: IT-312 Part – I (Compulsory)

TIME ALLOWED: 15 Mints. MAX. MARKS: 10

Roll No.

Attempt this Paper on this Question Sheet only.

<u>Please encircle the correct option.</u> Each MCQ carries 1 Mark. This Paper will be collected back after expiry of time limit mentioned above.

Q. 1	MCQs (1x10 = 10 Marks)					
(i)	The set $S = \{(1,2),(2,3),(0,0)\}$ of vectors in \mathbb{R}^2 is					
(ii)	•	int (b) linearly dependent pospace $A = \{0\}$ is	. ,	(d) None of these		
	(a) {0}	(b) {1}		(d) None of these		
(iii) If A is a matrix of order 3×3 and $det(A) = -2$, then the value of $det(A) = -2$				3 <i>A</i>) is		
	(a) -24	(b) -6	(c) -27	(d) -54		
(iv)	A system of m homogeneous linear equations $Ax = 0$ in n variables has a non-trivial solution if and only if the rank of A is					
(v)	(a) equal to n	(b) less than n	(c) greater to n	(d) None of these		
()	The subspace of R^3 spanned by the vector (a, b, c) is					
	(a) $x = t$, $y = bt$, $z = c$		(b) $x = -at$, $y = -bt$,	z = -ct		
	(c) $x = at, y = bt, z =$		(d) None of these			
(vi)	The property \forall a, b \in R then $a+b \in R$ is called					
	(a) Associative property (b) Transitive property					
(vii)	(c) Closure property (d) None of these A linear transformation $T: U \to V$ is one-to-one if and only if					
	(a) $N(T) = \{0\}$	(b) $N(T) \neq \{0\}$	(c) $N(T) = \{1\}$	(d) $N(T) = \{-1\}$		
(viii)	Let R^3 be the vector space of all ordered triples of real numbers. Then the transformation $T: R^3 \to R^5$ defined by $T(x, y, z) = (x, y, 0)$ is a) Linear b) Not Linear c) Rational d) None of these					
(ix)	The dimension of <i>Ker</i>	,	c) Rational	d) None of these		
	(a) Rank	(b)Nullity (c) ba	sis (d)} n	one of these		
(x)	The characteristic polynomial of the matrix $\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$ is					
	(a) $p(\lambda) = (1 - \lambda)^2$	(b) $p(\lambda) = (2$	$(-\lambda)(3-\lambda)$			
	(c) $p(\lambda) = \lambda^2$	(d) None of t	hese			