

ANNUAL TUNE-UP GUIDELINES

Standard procedures for the equipment tune-up performed by a qualified combustion tuner shall include:

Carter H. Strickland Jr. Commissioner

Angela Licata Deputy Commissioner of Sustainability

Michael Gilsenan Assistant Commissioner Environmental Compliance

59-17 Junction Boulevard Flushing, NY 11373

- (A) Inspection of the equipment. The equipment will be cleaned and any component be replaced as necessary.
 - o Cleaning and inspecting the burner and its components.
 - Inspection and cleaning, as necessary, of fireside and water-side surfaces of the boiler.
 - Checking all electrical and combustion control systems.
 - Inspection and repair of all valves (relief, safety, hydraulic, pneumatic, etc.).
 - o Inspection and repair of refractories.
 - o Cleaning and inspecting fan housing, blades, and inlet screens.
 - Cleaning of the breeching and chimney, etc.
- (B) Inspection of the flame pattern. The burner will be adjusted as necessary to optimize the flame pattern and should be consistent with the manufacturer's specifications, if available.
- (C) Optimize oxygen levels to 4-5% or to the manufacturer's specifications.
- (D) For optimum efficiency, maintain the operating stack temperature based on the manufacturer's recommendations.
- (E) Inspection of the air-to-fuel ratio control system. Ensure the system is calibrated and functioning properly. Adjust draft control and air flow as needed to reduce excessive stack temperatures.
- (F) The flame cannot impinge on any surface.
- (G) Measurement of O_2 levels in exhaust, combustion efficiency, draft adequacy, and smoke reading, before and after the tune-up.
- (H) All equipment should be tuned and calibrated as per manufacturer's specifications. Individual boiler needs may vary and could include additional items.

Economic benefits of increased Combustion Efficiency from 80% to 83%

Sample 5 MMBtu/hr Boiler		
Output	5,000,000	BTU/hr.
Heating value	140,000	BTU/hr.
Number of hours / year	2,000	Hr./yr.
Oil required @80% efficiency	45	GPH
Oil required @83% efficiency	43	GPH
Oil required @80% efficiency	89,286	gallons/yr.
Oil required @83% efficiency	86,059	gallons/yr.
Difference in Oil Consumption	3,227	gallons/yr.
% Reduction in Oil Consumption	4	%
Price of No. 2 Oil	\$4	per gallon
Total Cost of Oil@80% efficiency	\$357,143	per year
Total Cost of Oil@83% efficiency	\$344,234	per year
Cost saving	\$12,909	Per year

Table of Yearly Savings Based on Boiler Size and 3% Efficiency Increase

Boiler Size	Yearly Savings	
3 MMBtu/hr	\$7,745	
4 MMBtu/hr	\$10,327	
5 MMBtu/hr	\$12,909	
7 MMBtu/hr	\$18,072	
8 MMBtu/hr	\$20,654	
10 MMBtu/hr	\$25,818	
15 MMBtu/hr	\$38,726	
20 MMBtu/hr	\$51,635	