2021 年秋季学期算法基础期末考试(样卷)

学号 ______ 姓名 _____

主定理: $\Diamond a \ge 1$ 和 b > 1 是常数, f(n) 是一个函数, T(n) 是定义在非负整数上的递归式:

$$T(n) = aT(n/b) + f(n)$$

其中我们将 n/b 解释为 $\lfloor n/b \rfloor$ 或 $\lceil n/b \rceil$ 。那么 T(n) 有如下渐进界:

- 1. 若对某个常数 $\varepsilon > 0$ 有 $f(n) = O(n^{\log_b a \varepsilon})$,则 $T(n) = \Theta(n^{\log_b a})$ 。
- 2. 若对整数 $k \ge 0$ 有 $f(n) = \Theta(n^{\log_b a} \lg^k n)$,则 $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$ 。
- 3. 若对某个常数 $\varepsilon > 0$ 有 $f(n) = \Omega(n^{\log_b a + \varepsilon})$,且对某个常数 c < 1 和所有足够大的 n 有 $af(n/b) \le cf(n)$,则 $T(n) = \Theta(f(n))$ 。

Master Theorem: Let $a \ge 1$ and b > 1 be constants and f(n) be a function. Let T(n) be defined on the nonnegative integers by the following recurrence

$$T(n) = aT(n/b) + f(n)$$

Notice that here n/b can be interpreted as either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) can be bounded asymptotically as follows:

- 1. If there exists a constant $\varepsilon > 0$ such that $f(n) = O(n^{\log_b a \varepsilon})$ then $T(n) = \Theta(n^{\log_b a})$.
- 2. If there exists an integer $k \ge 0$ such that $f(n) = \Theta(n^{\log_b a} \lg^k n)$ then $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$.
- 3. If there exists a constant $\varepsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \varepsilon})$, and if $af(n/b) \le cf(n)$ for some constant c < 1, then $T(n) = \Theta(f(n))$.
- 一、判断题(根据表述判断正误,并简要说明理由;每题6分,共30分)。
- 1. (T, F) 递归式 $T(n) = 3T(\frac{n}{2}) + n \lg n$ 的解为 $T(n) = \Theta(n^{\lg 3})$ 。

2. (**T**, **F**) 对于一个无序的数组, 可以在 O(n) 的时间内求出, 从这数组的第 $\lfloor \sqrt{n} \rfloor$ 小的数到第 $2 \lfloor \sqrt{n} \rfloor$ 小的数的所有数之和。

3. (**T**, **F**) 对于一个含有 n 个点以及 m 条边的有向图,其中所有的边的权重都大于 0,那么可以在 $O(mn+n^2 \lg n)$ 的时间内求出所有点对之间的最短路径。

4. (\mathbf{T} , \mathbf{F}) $2-SAT$ (可满足性) 问题和 $3-SAT$ 问题均属于 NPC 问题,其中 $3-SAT$ 问题是 $NP-hard$ 难度的,而 $2-SAT$ 问题可在多项式时间内求解。
5. (\mathbf{T} , \mathbf{F}) 多项式时间近似模式(PTAS)是这样一种近似算法:它的输入除了该问题的实例外,还有一个值 $\epsilon>0$,使得对于任何固定的 ϵ ,该模式是一个 $(1+\epsilon)$ 的近似算法并且都以其输入实例规模 n 的多项式时间运行。
二、 简答题 (根据题目要求写出解答过程;每题 10 分,共 40 分)。 1. 分治策略 (Divide-and-Conquer) 是我们在算法设计中经常用到的方法。同时,递归式与分治方法紧密相关,它可以用来刻画分治算法的运行时间。请说明何为分治策略以及你所知道的求解递归式的方法。
2. 数据库中存储了大小为 n , 取值范围在 0 到 750 区间的整数数组,要求数据库对该数组做某种线性时间的预处理,使得对于任意的统计某个区间 $[a,b],a,b\in[0,k]$ 元素个数的查询需求,该数据库可以在 $O(1)$ 时间内返回结果。
3. 对于 n 件物品,背包容量为 W 的 $0/1$ 背包问题,其中第 i 件物品的价值为 v_i ,重量为 w_i 。请写出用动态规划求解该问题的时间复杂度,并解释为什么该算法被称为伪多项式时间算法。

4. 计算 KMP 算法中对应于模式 P = ababbabbabbabbabbabb 的前缀函数 π .

- 三、综合题(根据题目要求写出解答过程;每题15分,共30分)。
- **1.** 给定一排共 n 堆石子,其中第 i 堆石子的个数为 a_i ,现在需要将石子合并为一堆,每次操作只允许合并相邻的两堆石子,代价为被合并的两堆石子的个数之和。
- (1) 请使用动态规划(Dynamic Programming)的方法求合并石子的最小代价,列出状态转移方程并分析时间复杂度。
- (2) 假设合并操作可以合并任意两堆石子(即不需要相邻),请设计一种渐进时间复杂度为 $O(n \lg n)$ 的 算法求解合并石子的最小代价。

- **2.** 给定一个无向图 G = (V, E),假设其所有边的权重各不相同。我们定义一个第二小生成树: 假设 \mathcal{T} 是图 G 的所有生成树的集合,T 是图 G 的最小生成树,那么图 G 的第二小生成树 T_2 满足 $w(T_2) = \min_{T' \in \mathcal{T} T} w(T')$,其中 w(T') 代表了生成树 T' 的权重之和。
- (1) 请给出一个例子,说明第二小生成树不是唯一的。
- (2) 请证明, 存在边 (u,v) ∈ T 和边 (x,y) ∉ T 满足 T-(u,v)+(x,y) 是图 G 的一棵第二小生成树。

四、附加题 (根据题目要求写出解答过程; 每题 10 分, 共 10 分)。

在旅行商问题 (TSP) 中,给定平面 n 个点作为输入,希望求出连接所有点的最短巡游路线。这个问题是 NP-Hard 问题。

为了简化 TSP 问题,我们限制巡游路线为双调巡游 (bitonic tours),即从最左边的点开始,严格向右前进直到最右端的点,然后调头严格向左前进,直至回到起始点。下图是一个 n=7 的平面图的两种双调巡游的方案。

设计一个 $O(n^2)$ 时间的最优双调巡游路线算法(路线长度最短)。你可以认为任何两个点的 x 坐标均不同,且所有实数运算都花费单位时间。