

 ${\sf Gameboard}$

Maths

Integration - Trig Manipulations 1ii

Integration - Trig Manipulations 1ii

Use integration to find the exact value of $\int_{rac{\pi}{16}}^{rac{\pi}{8}} (9-6\cos^24x)\,\mathrm{d}x.$

The following symbols may be useful: pi

Used with permission from UCLES A-level Maths papers, 2003-2017.

 ${\sf Gameboard}$

Maths

Integration - Trig Manipulations 3ii

Integration - Trig Manipulations 3ii

Find
$$\int_0^{\frac{\pi}{4}} \frac{1-2\sin^2 x}{1+2\sin x\cos x} \mathrm{d}x$$
, giving your answer in the form $a\ln b$.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 36 - Integration by Parts & Differential Equations

Gameboard

Maths

Integration - Trig Manipulations 3i

Integration - Trig Manipulations 3i

Part A Simplify

Simplify as far as possible $\frac{1}{1-\tan x} - \frac{1}{1+\tan x}$.

The following symbols may be useful: x

Part B Integrate

Hence evaluate $\int_{\frac{\pi}{12}}^{\frac{\pi}{6}} \left(\frac{1}{1-\tan x} - \frac{1}{1+\tan x} \right) \mathrm{d}x$, giving your answer in the form $a \ln(b)$.

The following symbols may be useful: pi

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 36 - Integration by Parts & Differential Equations

 ${\sf Gameboard}$

Maths

Integration by Substitution 2i

Integration by Substitution 2i

Part A The substitution $x=a\sin\theta$

By using the substitution $x=a\sin\theta$, find the exact value of

$$\int_{rac{1}{2}a}^a\sqrt{(a^2-x^2)}dx$$

The following symbols may be useful: a, pi

Part B Area of a segment

The diagram shows the circle $x^2+y^2=a^2$ and the line $x=\frac{1}{2}a$. Find the area of the shaded region, giving your answer in an exact form.

The following symbols may be useful: a, pi

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 36 - Integration by Parts & Differential Equations

 ${\sf Gameboard}$

Maths

Integration by Parts 3ii

Integration by Parts 3ii

Evaluate $\int_0^{\frac{\pi}{2}} x \cos x \, \mathrm{d}x$, giving your answer in an exact form.

The following symbols may be useful: pi

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 36 - Integration by Parts & Differential Equations

<u>Home</u> <u>Gameboard</u>

Maths

Calculus Integration

Integration by Parts 6

Integration by Parts 6

Pre-Uni Maths for Science K4.3

Find, by integrating by parts twice, $\int_0^{\pi/3} \mathrm{e}^{-x} \sin x \mathrm{d}x$.

The following symbols may be useful: e, pi

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Single Maths 36 - Integration by Parts & Differential Equations

 ${\sf Gameboard}$

Maths

Integration by Parts 2ii

Integration by Parts 2ii

Find the exact value of $\int_1^8 \frac{1}{\sqrt[3]{x}} \ln(x) dx$, giving your answer in the form $A \ln(2) + B$, where A and B are constants to be found.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 36 - Integration by Parts & Differential Equations

Gameboard

Maths

Integration of Differential Equations 1ii

Integration of Differential Equations 1ii

The gradient of a curve at the point (x,y), where x>-2, is given by

$$rac{\mathrm{d}y}{\mathrm{d}x} = rac{1}{3y^2(x+2)}$$

The points (1,2) and (q,1.5) lie on the curve. Find the value of q, giving your answer correct to 3 significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 36 - Integration by Parts & Differential Equations

Home Game

Gameboard

Maths

Integration of Differential Equations 4i

Integration of Differential Equations 4i

Part A Derivative

If $y = \csc x$ then find an expression for $\frac{\mathrm{d}y}{\mathrm{d}x}$.

The following symbols may be useful: Derivative(y, x), arccose(), arccosec(), arccosec(),

Part B Solve

Solve the differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -\sin x \tan x \cot t$$

given that $x=\frac{\pi}{6}$ when $t=\frac{\pi}{2}$.

The following symbols may be useful: arccos(), arccosec(), arccosec(), arccosec(), arccosh(), arccosh(), arccoth(), arccoth(), arcsin(), arcsinh(), arctanh(), cos(), cosec(), cosech(), cosh(), coth(), coth(), ln(), log(), sec(), sech(), sin(), sinh(), t, tan(), tanh(), x

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 36 - Integration by Parts & Differential Equations

Home Gameboard Maths Constructing Differential Equations 1i

Constructing Differential Equations 1i

A cylindrical container has a height of $200 \, \mathrm{cm}$. The container was initially full of a chemical but there is a leak from a hole in the base (**Figure 1**). When the leak is noticed, the container is half-full and the level of the chemical is dropping at a rate of $1 \, \mathrm{cm \, min^{-1}}$.

It is required to find for how many minutes the container has been leaking. To model the situation it is assumed that, when the depth of the chemical remaining is x cm, the rate at which the level is dropping is proportional to \sqrt{x} .

Figure 1: Cylindrical container that is leaking from its base.

Part A Differential equation

The following symbols may be useful: Derivative(x, t), k, t, x

Part B Solve

Solve this differential equation, giving x in terms of t, the time in minutes since the leak began.

The following symbols may be useful: t, x

Part C Time

Calculate the length of time that the container has been leaking for. Give your answer to 3 significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.