Argumento Válido

Lógica de Predicados 2014/2

Profa: Daniela Scherer dos Santos daniela.santos37@ulbra.edu.br

Argumento → conjunto de enunciados ou afirmações sendo que um é a CONCLUSÃO e os demais são PREMISSAS;

- 1.Todos os homens são mortais.
- 2.Sócrates é homem.
- 3.Logo, Sócrates é mortal.

Afirmações 1 e 2 são as PREMISSAS; Afirmação 3 é a CONCLUSÃO

Passos para a transformação simbólica de um argumento:

- Cada premissa (P) é colocada em uma linha que recebe uma numeração, devendo iniciar no número 1;
- A conclusão (Q), precedida do símbolo , é a última proposição, devendo ser colocada na última linha;
- Cada proposição simples, que compõe as premissas e a conclusão, deve ser representada por uma letra minúscula (p, q, r, s,...) ou maiúscula (A, B, C, ...).

Exemplo: Se tivesse dinheiro, iria ao cinema. Se fosse ao cinema, me encontraria com Júlia. Não tenho dinheiro. Portanto, não me encontrarei com Júlia.

P1: Se tivesse dinheiro, iria ao cinema.

P2: Se fosse ao cinema, me encontraria com Júlia.

P3: Não tenho dinheiro.

Q: Não me encontrarei com Júlia.

Exemplo: Se tivesse dinheiro, iria ao cinema. Se fosse ao cinema, me encontraria com Júlia. Não tenho dinheiro. Portanto, não me encontrarei com Júlia.

P1: Se tivesse dinheiro, iria ao cinema.

P2: Se fosse ao cinema, me encontraria com Júlia.

P3: Não tenho dinheiro.

Q: Não me encontrarei com Júlia.

```
p = ter dinheiro
q = ir ao cinema
r = encontrar Júlia
```


Exemplo 1: Se tivesse dinheiro, iria ao cinema. Se fosse ao cinema, me encontraria com Júlia. Não tenho dinheiro. Portanto, não me encontrarei com Júlia.

P1: Se tivesse dinheiro, iria ao cinema.

P2: Se fosse ao cinema, me encontraria com Júlia.

P3: Não tenho dinheiro.

Q: Não me encontrarei com Júlia.

p = ter dinheiro
q = ir ao cinema
r = encontrar Júlia

Representação formal do argumento

1.
$$p \rightarrow q$$
2. $q \rightarrow r$
3. $\sim p$

Algumas expressões indicadoras de premissa e conclusão:

Premissas	Conclusão
Pois	portanto
Desde que	logo
como	Por conseguinte
porque	Dessa maneira
Assumindo que	consequentemente
Visto que	Assim sendo
Admitindo que	Segue que
Dado que	De modo que
Supondo que	Resulta que
Como consequência	então

Exemplo 2:

Se alguém é político, então faz promessas. Se alguém faz promessas, mente. Logo, se alguém é político, mente.

Se tomarmos:

A: alguém é político

B: alguém faz promessas

C: alguém mente

Teremos a seguinte forma de argumento:

Diz-se que um argumento é válido, se:

 A CONJUNÇÃO (^) das premissas implica a CONCLUSÃO, isto é:

$$((P_1)^{\land}(P_2)^{\land}(P_3)^{\land}...^{\land}(P_n)) \Rightarrow C$$

OU

• A fórmula ($(P_1) ^ (P_2) ^ (P_3) ^ ... ^ (P_n)) \rightarrow C$ é uma tautologia.

Se o argumento é válido, escrevemos:

$$P_1, P_2, P_3, \dots, P_n \mid C$$
 que se lê:
$$P_1, P_2, P_3, \dots, P_n \text{ acarretam C}$$

O símbolo , chamado de traço de asserção, afirma que a proposição à sua direita (C) pode ser deduzida utilizando como premissas somente as proposições que estão à sua esquerda.

Procedimento para testar a validade de um argumento (usando implicação lógica):

(a) construir a tabela verdade de

$$((P_1) \land (P_2) \land (P_3) \land \dots \land (P_n))$$

- (b) construir a tabela verdade da conclusão (C)
- (c) compara-se as tabelas:
 - se <u>não</u> houver implicação: o argumento é <u>falho</u>
 - se houver implicação: o argumento é <u>válido</u>

Procedimento para testar a validade de um argumento (usando a condicional):

(a) construir a tabela verdade para a fórmula

$$((P_1)^{\land}(P_2)^{\land}(P_3)^{\land}...^{\land}(P_n)) \rightarrow C$$

(b) se resultar uma <u>tautologia</u> o argumento é *válido*, caso contrário, o argumento é *falho*

Exemplo: O argumento p, $q \rightarrow r$, $\sim r$, $\sim q$ é válido?

Exemplo: O argumento p, $q \rightarrow r$, $\sim r$, $\sim q$ é válido?

Usando a tabela verdade testamos:

• Se ((p) $^{\wedge}$ (q \rightarrow r) $^{\wedge}$ (\sim r)) $\Rightarrow \sim q$

Exemplo: O argumento p, $q \rightarrow r$, $\sim r$, $\sim q$ é válido?

Usando a tabela verdade testamos:

• Se ((p) $^{\wedge}$ (q \rightarrow r) $^{\wedge}$ (\sim r)) $\Rightarrow \sim q$

OU então podemos testar

Se a fórmula ((p) ^ (q → r) ^ (~r)) → ~q é uma tautologia

15

Argumento: p, $q \rightarrow r$, $\sim r$, $\sim q$

$$((p) \land (q \rightarrow r) \land (\sim r)) \Rightarrow \sim q$$

(a) construir a tabela verdade de ((p) $^{\land}$ (q \rightarrow r) $^{\land}$ (\sim r))

р	q	r	~r	$q \rightarrow r$	p ^ (q → r)	p ^ (q → r)^~r
V	V	V	F	V	V	F
V	V	F	V	F	F	F
V	F	V	F	V	V	F
V	F	F	V	V	V	V
F	V	V	F	V	F	F
F	V	F	V	F	F	F
F	F	V	F	٧	F	F
	Е	Е	V	W	Е	Е

16

dos Santos

Argumento: p, $q \rightarrow r$, $\sim r$, $\sim q$

$$((p) \land (q \rightarrow r) \land (\sim r)) \Rightarrow \sim q$$

(a) construir a tabela verdade de ((p) ^ (q → r) ^ (~r))

(b) construir a tabela verdade da conclusão (~q)

р	q	r	~r	$\mathbf{q} \rightarrow \mathbf{r}$	p ^ (q → r)	p ^ (q → r)^~r	~q
V	V	V	F	V	V	F	F
V	V	F	V	F	F	F	F
V	F	V	F	V	V	F	V
V	F	F	V	V	V	V	V
F	V	V	F	V	F	F	F
F	V	F	V	F	F	F	F
F	F	V	F	V	F	F	V
Е	Е	Е	\/	1/	Е	Е	1/

17

Argumento: p, $q \rightarrow r$, $\sim r$, $\sim q$

$$((p) \land (q \rightarrow r) \land (\sim r)) \Rightarrow \sim q$$

- (c) compara-se as tabelas:
 - se <u>não</u> houver implicação: o argumento é <u>falho</u>
 - se houver implicação: o argumento é *válido*

р	q	r	~r	$q \rightarrow r$	p ^ (q → r)	p ^ (q → r)^ _r		~q
V	V	V	F	V	V	F		F
V	V	F	V	F	F	F		F
V	F	V	F	V	V	F		٧
V	F	F	V	V	V	V		٧
F	V	V	F	V	F	F		F
F	V	F	V	F	F	F		F
F	F	V	F	V	F	F		V

como não ocorreu VF (10) podemos dizer que $(p^{(q \rightarrow r)^{r}})$ implica em ~q

Portanto, o argumento É VÁLIDO.

EWo

Santos

Argumento: p, $q \rightarrow r$, $\sim r$, $\sim q$

OU podemos testar se a Fórmula:

 $((p) \land (q \rightarrow r) \land (\sim r)) \rightarrow \sim q \text{ \'e uma tautologia}$

Argumento: p, $q \rightarrow r$, $\sim r$, $\sim q$

OU podemos testar se a Fórmula:

((p) ^ (q → r) ^ (~r)) → ~q é uma tautologia ✓ tautologia

р	q	r	~r	~q	$q \rightarrow r$	$p \land (q \rightarrow r)$	p ^ (q → r)^~r	(p ^ (q \rightarrow r) ^ ~r) \rightarrow ~q
V	V	V	F	F	V	V	F	V
V	V	F	V	F	F	F	F	V
V	F	V	F	V	V	V	F	V
V	F	F	V	V	V	V	V	V
F	V	V	F	F	V	F	F	V
F	V	F	V	F	F	F	F	V
F	F	V	F	V	V	F	F	V
F	F	F	V	V	V	F	F	V

Argumento: p, $q \rightarrow r$, $\sim r$, $\sim q$

OU podemos testar se a Fórmula:

((p) \wedge (q \rightarrow r) \wedge (\sim r)) \rightarrow \sim q uma tautologia \rightarrow tautologia


```
1. União (U)
                   É a implicação : (p \cdot q) \Rightarrow (p + q)
      ∴p + q
2. Modus Ponens (MP)
      p \rightarrow q
                   É a implicação : (p \rightarrow q) . p \Rightarrow q
      p
      ∴q
3. Modus Tolens (MT)
      p \rightarrow q
                   É a implicação : (p \rightarrow q) . q' \Rightarrow p'
      q'
      ∴p'
4. Adição (A)
                   É a implicação : p ⇒ p + q
```



```
5. Simplificação (S)pq É a implicação : (p . q) ⇒ p∴p
```

6. Silogismo Hipotético (SH)

```
p\to q q\to r \qquad \qquad \text{\'e a implicaç\~ao}: (p\to q) \;.\; (q\to r) \Rightarrow (p\to r) \therefore p\to r
```

7. Silogismo Disjuntivo (SD)

```
p + q
p' É a implicação : (p + q) \cdot p' \Rightarrow q
∴q
```


8. Regras do Bicondicional (BIC)

```
\begin{array}{ll} p \to q \\ q \to p & \text{\'e a implicação}: (p \to q) \ . \ (q \to p) \Rightarrow (p \leftrightarrow q) \\ \therefore p \leftrightarrow q \\ \\ \therefore (p \to q) \ . \ (q \to p) & \text{\'e a implicação}: p \leftrightarrow q \Rightarrow (p \to q) \ . \ (q \to p) \end{array}
```

9. Dilema Construtivo (DC)

```
\begin{array}{ll} p \to q \\ r \to s \\ p + r & \text{\'e a implicaç\~ao}: (p \to q) \ . \ (r \to s) \ . \ (p + r) \ \Rightarrow \ (q + s) \\ \therefore \ q + s \end{array}
```

10. Dilema Destrutivo (DD)

```
\begin{array}{ll} p \rightarrow q \\ r \rightarrow s \\ q' + s' & \text{\'e a implicaç\~ao} : (p \rightarrow q) \ . \ (r \rightarrow s) \ . \ (q' + s') \ \Rightarrow \ (p' + r') \\ \therefore \ p' + r' & \end{array}
```



```
11. Dupla Negação (DN)
      (p')'
               ou p
      ∴p ∴ (p')' É a implicação : (p')' \Rightarrow p ou p \Rightarrow (p')'
12. Regra da Absorção (RA)
      p \rightarrow q
      \therefore p \rightarrow (p \cdot q) É a implicação : p \rightarrow q \Rightarrow p \rightarrow (p \cdot q)
13. Simplificação Disjuntiva (S+)
      p + r
                         É a implicação : (p + r) \cdot (p + r') \Rightarrow p
      p + r'
      ∴p
```


Sugestão: Monte as tabelas-verdade de cada uma das regras anteriores para exercitar e provar sua validade.

Referências

DAGHLIAN, Jacob. Lógica e Álgebra de Boole. São Paulo: Editora Atlas, 1990.

