Lösung zu Zettel 11, Aufgaben 3 und 4

Jendrik Stelzner

30. Januar 2017

Aufgabe 1 Aufgabe 3

Die K-linearen Körperhomomorphismen $K(t) \to K(t)$ sind nach der universellen Eigeschaft des Quotientenkörpers genau die eindeutigen Fortsetzungen der K-linearen, injektiven Ringhomomorphismen $K[T] \to K(t)$.

Die K-linearen Ringhomomorphismen $K[T] \to K(t)$ sind genau die Einsetzhomomorphismen von Elementen aus K(t), wobei jedes Element einen anderen Einsetzhomomorphismus liefert; die injektiven Einsetzhomomorphismen entsprechen dabei genau den Elementen aus K(t), die transzendent über K sind. Nach Aufgabe 2 ist ein Element $q \in K(t)$ genau dann transzendent, wenn $q \notin K$.

Ingesamt erhalten wir, dass die K-linearen Körperhomomorphismen $K(t) \to K(t)$ genau die Abbildungen der Form $p \mapsto p(q)$ für $q \in K(t)$ mit $q \notin K$ sind.

Behauptung 1. Für ein Element $q \in K(t)$ gilt genau dann $q \notin K$, wenn q = (at+b)/(ct+d) für ein

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(K).$$

Beweis.

Ist $q \in K(t)$ mit $q \notin K$, so ist das Bild des Einsetzhomomorphismus

$$\varphi \colon K(t) \to K(t), \quad p \mapsto p(q)$$

genau K(q). Ist q=f/g mit teilerfremden $f,g\in K[T]$, so gilt nach Aufgabe 2, dass

$$[K(t):\operatorname{im}\varphi] = [K(t):K(q)] = \max\{\deg f,\deg g\}.$$

Folglich ist φ genau dann surjektiv, und damit bijektiv (denn Körperhomomorphismen sind immer injektiv), wenn $[K(t): \operatorname{im} \varphi] = 1$, wenn also f = at + b und g = ct + d mit $a \neq 0$ oder $c \neq 0$.

Für ein Element (at+b)/(ct+d) mit $c \neq 0$ oder $d \neq 0$ gilt

$$\begin{aligned} \frac{at+b}{ct+d} &\in K \\ \iff \frac{at+b}{ct+d} &= \lambda \quad \text{für ein } \lambda \in K \\ \iff at+b &= c\lambda t + d\lambda \quad \text{für ein } \lambda \in K \\ \iff \begin{cases} a &= c\lambda \\ b &= d\lambda \end{cases} \quad \text{für ein } \lambda \in K \\ \iff \begin{pmatrix} a \\ b \end{pmatrix} \text{ und } \begin{pmatrix} c \\ d \end{pmatrix} \text{ sind linear abhängig} \\ \iff \begin{pmatrix} a & b \\ c & d \end{pmatrix} \notin \text{GL}_2(K). \end{aligned}$$

Insgesamt erhalten wir somit, dass die K-linearen Körperautomorphismen $K(t) \to K(t)$ genau die Einsetzhomomorphismen von Elementen $q \in K(t)$ der Form q = (at+b)/(ct+d) mit

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}_2(K)$$

sind. Wir haben also eine surjektive Abbildung

$$\Phi\colon\operatorname{GL}_2(K)\to\operatorname{Gal}(K(t)/K),\quad \begin{pmatrix} a & b \\ c & d \end{pmatrix}\mapsto \left(p\mapsto p\left(\frac{at+b}{ct+d}\right)\right).$$

Diese Abbildung ist ein Gruppenantihomomorphismus, d.h. für alle $S_1, S_2 \in \mathrm{GL}_2(K)$ gilt $\Phi(S_1S_2) = \Phi(S_2)\Phi(S_1)$. Sind nämlich

$$S_1 = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 und $S_2 = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$,

so gilt

$$\begin{split} \Phi(S_1) \left(\Phi(S_2)(t) \right) &= \Phi(S_1) (\Phi(S_2)(t)) = \Phi(S_1) \left(\frac{a't + b'}{c't + d'} \right) = \frac{a'\Phi(S_1)(t) + b'}{c'\Phi(S_1) + d'} \\ &= \frac{a'\frac{at + b}{ct + d} + b'}{c'\frac{at + b}{ct + d} + d'} = \frac{a'(at + b) + b'(ct + d)}{c'(at + b) + d'(ct + d)} = \frac{(a'a + b'c)t + a'b + b'd}{(c'a + d'c)t + (c'b + d'd)} \\ &= \Phi\left(\begin{pmatrix} a'a + b'c & a'b + b'd \\ c'a + d'c & c'b + d'd \end{pmatrix} \right) (t) = \Phi(S_2S_1)(t). \end{split}$$

Es gilt ker $\varphi = K^{\times}I$, denn

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \ker \varphi \iff \varphi \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) = \mathrm{id}$$

$$\iff \varphi \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) (t) = t$$

$$\iff \frac{at+b}{ct+d} = t$$

$$\iff at+b=ct^2+dt$$

$$\iff a=d,b=c=0.$$

Somit induziert φ einen Antiisomorphismus von Gruppen

$$\operatorname{PGL}_2(K) \to \operatorname{Gal}(K(t)/K), \quad \overline{\begin{pmatrix} a & b \\ c & d \end{pmatrix}} \mapsto \varphi\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right).$$

Aufgabe 2

Es sei

$$C_n(K) := \{ \omega \in K \mid \omega^2 = 1 \}$$

die Gruppe der n-ten Einheitswurzeln in K; es handelt sich um eine Untergruppe von K^{\times} . Für alle $\omega \in C_n(K)$ ist das Element $\omega t \in K(t)$ transzendent, da $\omega t \notin K$. Somit gibt es für jedes $\omega \in C_n(K)$ einen Körperhomomorphismus

$$\sigma_{\omega} \colon K(t) \to K(t), \quad p(t) \mapsto p(\omega t).$$

Es gilt $\omega_1=\mathrm{id}_{K(t)}$, und für alle $\omega_1,\omega_2\in C_n(K)$ gilt $\sigma_{\omega_1}\circ\sigma_{\omega_2}=\sigma_{\omega_1\omega_2}$. Daraus folgt, dass $\{\sigma_\omega\mid\omega\in C_n(K)\}$ ein Untergruppe von $\mathrm{Aut}(K(t))$ ist, und die Abbildung

$$\Phi \colon C_n(K) \to \operatorname{Aut}(K(t)), \quad \omega \mapsto \sigma_\omega$$

ein Gruppenhomomorphismus ist. Da $\phi(\omega)(t)=\sigma_\omega(t)=\omega t$ ist ϕ injektiv. Wir zeigen, dass im $\phi=\mathrm{Gal}(K(t)/K(t^n))$; damit liefert die Zuordnung $\omega\mapsto\sigma_\omega$ einen Isomorphismus $C_n(K)\to\mathrm{Gal}(K(t)/K(t^n))$.

Es gilt im $\Phi \subseteq \operatorname{Gal}(K(t)/K(t^n))$, denn für jedes $\omega \in C_n(K)$ gilt

$$\sigma_{\omega}(t^n) = \sigma_{\omega}(t)^n = (\omega t)^n = \omega^n t^n = t^n$$

und somit $\sigma_{\omega}|_{K(t^n)} = \mathrm{id}_{K(t^n)}$.

Die Surjektivität von Φ nach $Gal(K(t)/K(t^n))$ ergibt sich aus der folgenden Aussage:

Behauptung 2. Ist
$$P \in K(t)$$
 mit $P^n = t^n$, so ist $P = \omega t$ mit $\omega \in C_n(K)$.

Beweis. Es sei $\mathcal{P}\subseteq K[T]$ ein Repräsentantensystem der Primelemente von K[T]. Wir können o.B.d.A. davon ausgehen, dass $t\in\mathcal{P}$. Dann gibt es eine eindeutige Darstellung

$$P = \omega \prod_{p \in \mathcal{P}} p^{\nu_p}$$

mit $\omega \in K^{\times}$ und $\nu_p \in \mathbb{Z}$ für alle $p \in \mathcal{P}$, wobei $\nu_p = 0$ für fast alle $p \in \mathcal{P}$. Es gilt

$$t^n = P^n = \omega^n \prod_{p \in \mathcal{P}} p^{n\nu_p} = \omega^n t^{n\nu_t} \prod_{p \in \mathcal{P} \backslash \{t\}} p^{n\nu_p}$$

und aus der Eindeutigkeit der Darstellung von t^n ergibt sich, dass $\omega^n=1, \nu_t=1$ und $\nu_p=0$ für alle $\in \mathcal{P}\setminus\{t\}$. Also ist $P=\omega t$ mit $\omega\in C_n(K)$.

Die Galoisgruppe der Körpererweiterung $K(t)/K(t^n)$ ist also die Gruppe der n-ten Einheitswurzeln. Nach Aufgabe 2 gilt $[K(t):K(t^n)]=n$ (das Minimalpolynom von t über $K(t^n)$ ist $X-t^n\in K(t^n)[X]$), also st $K(t)/K(t^n)$ genau dann galoisch, wenn $|C_n(K)|=n$. Da $C_n(K)$ die Nullstellenmenge des Polynoms $X^n-1\in K[X]$ ist, gilt dies genau dann, wenn das Polynom $X^n-1\in K[X]$ vollständig in Linearfaktoren zerfällt, und alle Nullstellen paarweise verschieden sind, d.h. wenn das Polynom zerfällt und seperabel ist.

Gilt $p := \operatorname{char}(K) > 0$ und $n = p^r$, so gilt

$$X^{n} - 1 = X^{p^{r}} - 1^{p^{r}} = (X - 1)^{p_{r}}.$$

In diesem Fall ist also $\operatorname{Gal}(K(t)/K(t^n)) \cong C_n(K) \cong 1$.