浙江大学 物理实验报告

实验名称:	钢丝杨氏模量的测定
指导教师:	

 专业:
 竺可桢学院混合班

 班级:
 混合 1903 班

 姓名:
 徐圣泽

 学号:
 3190102721

实验日期: 3 月 27 日 星期 五 下午

一、 实验目的:

- 1、掌握钢丝杨氏模量测量的实验原理并熟悉实验操作
- 2、体会利用光杠杆测定微小形变的思想和方法
- 3、掌握最小二乘法处理数据的方法
- 4、选取最合适的方法处理数据并竭尽可能优化数据处理过程
- 5、分析实验结果并反思总结实验过程

二、 实验内容:

- 1、前期准备工作(熟悉仪器,仪器的调平:调整平台使之水平、调整光杠杆位置、调整平面镜的仰角使镜面垂直、调节望远镜目镜使叉丝清楚并调节聚焦旋钮瞄准标尺)
- 2、选择合适仪器(米尺)测量钢丝长度、光杠杆臂长、标尺到平面镜的水平距离并记录数据
- 3、选择合适仪器(螺旋测微计)多次测量钢丝直径并记录数据
- 4、依次增加 500g 的砝码, 直至 3500g, 记录每增加 500g 时望远镜中标尺的读数, 再依次减去砝码, 记录读数
- 5、数据处理,测得各已知物理量的平均值和不确定度,利用最小二乘法计算斜率 k 并得出 k 的不确定度
- 6、计算得到钢丝杨氏模量的平均值、不确定度和最终表达式
- 7、分析实验误差,回顾实验总结经验

三、 实验原理

1、 杨氏模量

本实验采用拉伸法测定杨氏模量,实验过程中需要利用光杠杆测定微小形变。任何物体在外力作用下都会发生形变,只要不超过某一限度,在外力撤走后形变会随之消失,这种形变称之为弹性形变。如果外力撤走后仍有形变,该形变为塑性形变。

本实验中的微小形变属于弹性形变。根据胡克定律,应力 F/S (即力与力所作用的面积之比) 和应变 $\Delta L/L$ (即长度或尺寸的变化与原来的长度或尺寸之比) 在定律成立范围之内是一个常数,即 $E=(F/S)/(\Delta L/L)$ 。在该式子中,E 就是此次实验要求得到的材料的杨氏模量,仅与材料的结构、化学成分及其加工制造方法有关。

2、光杠杆法测量原理

在样品截面积 S 上的作用应力为 F,测量引起的相对伸长量 Δ L/L,即可计算出材料的杨氏模量 E。因一般伸长量 Δ L 很小,故常采用光学放大法,将其放大,如用光杠杆测量 Δ L。

当杠杆支脚随被测物上升或下降微小距离 Δ L 时,镜面法线转过一个 θ 角,而入射到望远镜的光线转过 2θ 角,如图 2 所示。当 θ 很小时时, θ = $\tan\theta$ = $\Delta L/b$ 。

根据光的反射定律,反射角和入射角相等,故当镜面转动 θ 角时,反射光线转动 2θ 角,由图可知 $2\theta = \tan 2\theta = l/D$ 。

又有 $S = \pi d^2 / 4$,最后合并各个式子得到 E 的表达式为 $E = \frac{8DFL}{\pi d^2 bl}$ 。

3、数据处理的原理

列表记录数据,利用最小二乘法计算得到斜率 k 的平均值及其不确定度,再由不确定度均匀原理解得 E 的平均值和不确定度,最终确定钢丝杨氏模量 E 的表达式。

四、 实验仪器

光杠杆(包括支架、金属钢丝、平面镜),望远镜镜尺组,砝码,米尺,螺旋测微计

五、 实验数据原始记录

(1) 使用米尺测量光杠杆臂长、钢丝长度、标尺到平面镜的水平距离

物理量	物理量 光杠杆臂长 b		标尺到平面镜距离 D
数据(单位: m)	0.0712	1. 0055	1. 2209

表 $1 L \times D \times b$ 等物理量原始数据记录表

(2) 使用螺旋测微计测量钢丝直径,并将结果填入下表:

测量 6 次金属丝直径 d (单位: mm)

测量次数	1	2	3	4	5	6
钢丝直径	0. 299	0. 302	0.300	0. 303	0. 298	0. 299

表 2 金属丝直径 d 原始数据记录表

钢丝直径 6 次测量的平均值 d(单位: mm) 0.300

(3)增加(减少)砝码,测量钢丝的拉伸量,并将结果填入下表:

钢丝伸长量 r (单位: cm)

砝码质量	0.0kg	0. 5kg	1.0kg	1.5kg	2.0kg	2. 5kg	3.0kg	3.5kg
r(加砝码)	0.00	1. 15	2. 32	3. 50	4.69	5.88	7.04	8. 21
r(减砝码)	0.00	1.16	2. 33	3. 50	4. 69	5. 87	7.03	8. 21

表 3 增减砝码钢丝伸长量r 原始数据记录表

六、 实验数据处理和结果分析:

(1) 光杠杆臂长、钢丝长度、标尺到平面镜的水平距离的数据处理

米尺的仪器误差是 $\Delta_{\emptyset}=0.5mm$, $u_{\scriptscriptstyle B}=\frac{\Delta_{\emptyset}}{\sqrt{3}}$,又 $u_{\scriptscriptstyle A}=0$,由 $u=\sqrt{u_{\scriptscriptstyle A}^2+u_{\scriptscriptstyle B}^2}$ 得到u=0.289mm,故 $u_{\scriptscriptstyle b}=u_{\scriptscriptstyle L}=u_{\scriptscriptstyle D}=u$,

得到下表数据:

	钢丝长度L	距离 <i>D</i>	光杠杆臂长b
不确定度u(mm)	$u_L = 0.289$	$u_D = 0.289$	$u_b = 0.289$
物理量表达式	$L = (1005.5 \pm 0.3)mm$	$D = (1220.9 \pm 0.3)mm$	$b = (71.2 \pm 0.3)mm$

表 4L、D、b 等物理量数据处理记录表

(2) 钢丝直径 d 的数据处理

由公式
$$\overline{d} = \sum_{i=1}^{6} d_i$$
得到钢丝直径的平均值 $\overline{d} = 0.300mm$,由公式 $u_A = \sqrt{\frac{1}{6 \times (6-1)} \sum_{i=1}^{6} (d_i - \overline{d})^2}$ 得到 A 类不确定度

$$u_{A}=0.0019mm$$
 ,又 $\Delta_{\emptyset}=0.004mm$, $u_{B}=\frac{\Delta_{\emptyset}}{\sqrt{3}}$,解得 $u_{B}=0.0023mm$,最后得到 $u=\sqrt{u_{A}^{2}+u_{B}^{2}}=0.0030mm$,填入下表中。

相关量	平均值。	$u_{\scriptscriptstyle A}$	$u_{\scriptscriptstyle B}$	u_d	表达式
d	0.300	0.0019	0.0023	0.0030	(0.300 ± 0.003)

(3) 钢丝伸长量的数据处理

初始位置为 0, 计算得到七次依次增减砝码得到的标度尺示数(钢丝伸长量)的平均值并记录于下表:

######################################	УНЕ <u>Е</u> 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7					
实验组数	砝码质量(kg)	カF(N)	伸长量平均值-(mm)			
1	0.5	4.9	11.6			
2	1.0	9.8	23.2			
3	1.5	14.7	35.0			
4	2.0	19.6	46.9			
5	2.5	24.5	58.8			
6	3.0	29.4	70.4			
7	3.5	34.3	82.1			

表 6 增减砝码钢丝伸长量 r 数据处理记录表

在此特别感谢赵晨希同学的程序,利用最小二乘法的原理,简化了大量计算过程,程序运行结果如下:

l对x, y(注意xy的单位且对数不要小于3):7

y1 x2 y2 ... 3.2 14.7 35.0 19.6 46.9 24.5 58.8 29.4 70.4 34.3 82.1

确定度: 0.004212

图 最小二乘法程序运行结果

程序利用最小二乘法的原理求得 $y = 2.40x \pm 0.243$, 其中 $\overline{k} = 2.40$, 斜率 k 的 A 类不确定度为 $u_{a} = 0.00421$, B

类不确定度为
$$u_{\scriptscriptstyle B}=\frac{\Delta_{\scriptscriptstyle (\!\chi\!)}}{\sqrt{3}}=0.0577$$
,最后解得 $u_{\scriptscriptstyle k}=\sqrt{u_{\scriptscriptstyle A}^2+u_{\scriptscriptstyle B}^2}=0.0579$ 。

(4) 计算杨氏模量

由公式 $E=\frac{8LD}{md^2bk}$,此时代入各物理量的平均值解得 $\overline{E}=2.03\times10^{11}kg/(m\cdot s^2)$,由公式

$$\frac{u_E}{E} = \sqrt{(\frac{u_L}{L})^2 + (\frac{u_D}{D})^2 + (\frac{u_b}{b})^2 + (\frac{2u_d}{d})^2 + (\frac{u_k}{d})^2} = 0.0316, 故 u_E = 0.0641 \times 10^{11} kg/(m \cdot s^2), 最后得到杨氏模量 E$$

的表达式为 $E = \overline{E} \pm u_E = (2.03 \pm 0.06) \times 10^{11} kg / (m \cdot s^2)$

实验心得: 七、

思考题:

1、利用光杠杆把测微小长度 \(L 变成测 b, 光杠杆放大率为 2D/L, 根据此式能否以增加 D 减小 1 来提高放大率, 这样做有无好处?

答:有好处。由 $\triangle L=b1/(2D)$, 2D/1 越大, b 越大, 从刻度尺上读数的误差会减小, 使实验更精确。

2、上述方法有无限度?应该怎样考虑这个问题?

答: 虽然这种做法有好处,但也是有限度的。第一,望远镜的性质限制了光杠杆和尺的距离,超出范围无法看 清物体; 第二, 为了确保光杠杆立在平台上的稳定性, 需要保证光杠杆支脚尖到刀口的垂直距离足够大。因此, 实 际操作中应该综合考虑各种因素,通过多次实践找到最好的实验条件。

心得体会:

- 1、在本此钢丝杨氏模量实验的学习过程中,我大致达到了实验目标,完成了学习任务。
- 2、在本次实验原理的学习和具体的实际操作过程中,我深切体会到了将微小的不明显的实验现象放大的思想, 将微小的形变通过光杆法转变成肉眼可见的标度尺示数改变,从而能够更好地研究物理规律。
- 3、在数据处理的过程中,由于虚拟平台提供的砝码数量不够多,于是相较于需要较多组实验数据的逐差法, 我选择了更为合适的最小二乘法。在运用最小二乘法处理实验数据的过程中,通过编写代码运行程序的方法大大简 化了计算过程,在此也要十分感谢赵晨希同学的程序,节省了很多时间也避免了很多不必要的麻烦。
- 4、在实验的过程中,我发现虚拟平台仍有较多可以优化之处:①可以适当增加提供的砝码数量,这样可以得到更多组的数据,从而利用逐差法处理实验数据;②测量钢丝长度时能够将米尺贴近钢丝测量,在本次测量的过程中,需要目测判断米尺零刻度线与钢丝最上端是否齐平,容易造成较大的实验误差;③提供实验仪器的允差范围,否则在计算不确定度时对于仪器误差的计算不明确。
- 5、通过这个实验的学习和上一个密立根油滴实验的学习,我发现,在物理实验的学习过程中,能够灵活运用 其他学科的知识能够带来极大的便利。这一点也大大启发了我,目前多学科交叉学习和知识的融合是大势所趋,我 们要灵活运用自身所学,融会贯通,将已有的知识付诸实践,这样才能有更大的提升。