Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subjectele se notează astfel: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Problemele Prolog vor fi rezolvate în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 3. Problemele Lisp vor fi rezolvate în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).
- A. Fie următoarea definiție de funcție în LISP

 (DEFUN F(L1 L2)

 (APPEND (F (CAR L1) L2)

 (COND

 ((NULL L1) (CDR L2))

 (T (LIST (F (CAR L1) L2) (CAR L2)))

)

Rescrieți această definiție pentru a evita dublul apel recursiv (F (CAR L1) L2). Nu redefiniți funcția. Nu folosiți SET, SETQ, SETF. Justificați răspunsul.

В.	Dându-se	e o listă diferen	i eterogei ta dintre	nă forma cel mai n	tă din nu nic maxir	umere și n din su	i liste li bliste s	iniare ii cel m	nevide nai mar	de n e dintr	umere, re valor	se cer ile mini	e un me dir	program 1 subliste	SWI- e. Se r	PROLOG presupune	care să e că lista
	calculeze de intrare	e conține	e cel puțir	o sublist	ă. <u>De ex</u>	<u>cemplu</u> ,	pentru	i lista [[4, 2, 1	.8], 7,	2, -3, [6, 9, 11	l, 3], ⁴	1, [5, 9,	19]] r	ezultatul	va fi 6.

C. Dându-se o listă formată din numere întregi, să se genereze în PROLOG lista aranjamentelor cu **N** elemente care se termină cu o valoare impară și au suma **S** dată. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru lista L=[2,7,4,5,3], N=2 și $S=7 \Rightarrow [[2,5], [4,3]]$ (nu neapărat în această ordine)

D. Un arbore n-ar se reprezintă în LISP astfel (nod subarbore1 subarbore2)
Se cere să se înlocuiască nodurile de pe nivelul **k** din arbore cu o valoare **e** dată. Nivelul rădăcinii se consideră a fi 0. Se va folosi o funcție MAP.

Exemplu pentru arborele (a (b (g)) (c (d (e)) (f))) și **e**=h

- a) k=2 => (a (b (h)) (c (h (e)) (h))) b) k=4 => (a (b (g)) (c (d (e)) (f)))