Code-Specific Questions and Answers

Data Loading and Initial Exploration

- 1. What is the purpose of data = pd.read_csv('uber.csv')?
 - This line loads the Uber dataset into a pandas DataFrame, allowing us to manipulate and analyze the data.
- 2. Why did you use data.dropna(inplace=True) immediately after loading the data?
 - Dropping rows with missing values (NaNs) ensures that we only work with complete data, which helps prevent issues during model training and evaluation.
- 3. What does data.head() do?
 - o data.head() displays the first few rows of the dataset, allowing us to quickly inspect its structure, data types, and sample values.
- 4. What is the role of column_names = data.columns?
 - This line retrieves the column names in the dataset and stores them in column_names, which can be useful for referencing or verifying column names in the dataset.
- 5. What is the purpose of data.info()?
 - data.info() provides a concise summary of the DataFrame, including data types, number of non-null values, and memory usage, which helps us understand the dataset's structure and check for missing data.

Dropping Unnecessary Columns

- 6. What does data.drop(columns=['Unnamed: 0', 'key'], inplace=True) achieve?
 - This line removes the Unnamed: 0 and key columns from the DataFrame, as they
 do not contain information useful for predicting fares.

Handling Missing Values

- 7. Why did you use data.isnull().sum() after dropping unnecessary columns?
 - data.isnull().sum() checks for any remaining missing values in each column, ensuring that no incomplete data remains in the dataset.

Date and Time Processing

- 8. Why did you convert pickup_datetime to datetime format using pd.to_datetime?
 - Converting pickup_datetime to datetime format allows us to easily extract components like the hour, day, and month, which may influence fare prices.
- 9. Explain data['hour'] = data['pickup_datetime'].dt.hour.
 - This line extracts the hour from pickup_datetime and stores it in a new column hour, which can help identify time-based patterns in fares.
- 10. Why did you drop the pickup_datetime column?

 After extracting time-based features (hour, day, month), pickup_datetime was no longer needed, so it was dropped to reduce dataset complexity.

Feature Scaling

- 11. What is the purpose of scaler = StandardScaler()?
 - StandardScaler standardizes numerical features to have a mean of 0 and a standard deviation of 1, which helps improve the performance and convergence of many machine learning algorithms.
- 12. Why did you select only certain columns for scaling in data[numerical_features] = scaler.fit_transform(data[numerical_features])?
 - Only numerical features (fare_amount, pickup_longitude, pickup_latitude, dropoff_longitude, dropoff_latitude, passenger_count) were scaled, as scaling categorical data or date-related columns is generally not meaningful.

Splitting Data into Features and Target

- 13. What does X = data.drop('fare_amount', axis=1) do?
 - This line assigns all columns except fare_amount to X (features), as fare_amount is the target variable we aim to predict.
- 14. Why is y = data['fare_amount'] defined separately from X?
 - y is set to fare_amount, the target variable, so we can use it independently when training the model to predict this variable based on the features in X.
- 15. What is the purpose of train_test_split(X, y, test_size=0.2, random_state=42)?
 - This function splits the data into 80% training and 20% test sets to evaluate the model's performance on unseen data. Setting random_state=42 ensures the split is reproducible.

Outlier Analysis

- 16. What does sns.boxplot(x=data['fare_amount']) visualize?
 - This line generates a boxplot of fare_amount, helping us identify outliers in fare values, which can impact model training.

Correlation Matrix and Heatmap

- 17. Why did you use data.corr() to create a correlation matrix?
 - The correlation matrix reveals relationships between variables, helping us identify which features may strongly influence the target (fare_amount).
- 18. Explain the purpose of sns.heatmap(corr_matrix, annot=True, cmap='coolwarm').
 - This line visualizes the correlation matrix as a heatmap, with annotations for values. The color gradient helps quickly identify positive and negative correlations.

Model Training and Prediction

19. What does linear_model = LinearRegression() achieve?

- This line initializes a Linear Regression model, which assumes a linear relationship between features and fare_amount.
- 20. What does rf_model = RandomForestRegressor(n_estimators=100, random_state=42) do?
 - This line initializes a Random Forest model with 100 decision trees (n_estimators=100), a powerful method for capturing non-linear patterns in the data.
- 21. Why is fit called on both linear_model and rf_model with X_train and y_train?
 - The fit method trains each model on the training data (X_train and y_train), allowing them to learn patterns that will be used to predict fare_amount on new data.

Model Evaluation

- 22. What is y_pred_linear = linear_model.predict(X_test) used for?
 - This line generates predictions from the Linear Regression model on the test data, allowing us to evaluate its performance.
- 23. Explain the purpose of r2_score, mean_squared_error, and mean_absolute_error.
 - These metrics evaluate model performance:
 - r2_score measures how well the model explains the variance in the target variable.
 - mean_squared_error calculates the average squared difference between predictions and actual values.
 - mean_absolute_error computes the average absolute error in predictions, giving a straightforward measure of prediction accuracy.
- 24. Why do you print metrics for both Linear Regression and Random Forest models?
 - Printing both models' metrics allows for a performance comparison. Generally, a higher R² and lower RMSE and MAE indicate a better model.
- 25. What conclusions did you draw from comparing r2, RMSE, and MAE between the two models?
 - By comparing these metrics, we can identify which model performed better in terms of predictive accuracy and suitability for Uber fare prediction.