实验三-超声波在固体中的传输

守拙

2023年6月17日

目录

目录

1 实验目的 1

1 实验目的

掌握超声波波速测量方法,观察声波转换及表面波,了解超声波来探测原理。

2 实验任务

以下计算所涉及的数据均汇总在数据处理部分。

2.1 声速测量

直探头-纵波声速测量

测量得到的底面回波峰位 $t_2 = 18.80 \mu s$, 表面回波峰位 $t_1 = 0.000 s$ 由此计算得纵波声速

$$c_{\text{GM}} = \frac{2R_2}{t_2 - t_1} = 6.38 \times 10^3 m/s$$

斜探头-横波声速

同直探头,测量得 R_1 弧面回波峰位 $(t_{R_1}=22.80\mu s)$ 和 R_2 弧面回波峰位 $t_{R_2}=41.60/\mu s$,由此计算得横波声速

$$c_{\mbox{$\not$$}} = \frac{2\Delta_R}{t_{R_1} - t_{R_2}} = 3.00 \times 10^3 m/s$$

杨氏模量和 Poisson 系数

测得纵波和横波声速后,可以计算杨氏模量和 Poisson 系数,如下所述

$$E = \frac{\rho c_{\rm S}^2 \left(3 T^2 - 4\right)}{T^2 - 1} \simeq 66 GPa$$

$$\sigma = \frac{T^2 - 2}{2(T^2 - 1)} \simeq 0.358$$

可变角探头-表面波声速

分两种测量方法

1. 固定法

$$c_s = \frac{2l_{EG}}{\Delta_t} = 3.56 \times 10^3 m/s$$

2 实验任务 2

2. 移动法

$$c_m = \frac{2l_{EI}}{t_2 - t_1} = 3.00 \times 10^3 m/s$$

相对误差为

$$\Delta_c = \frac{|c_m - c_s|}{c_m} = 18.6\%$$

可见固定法误差较大,主要来自于对入射点位置的估读误差。

2.2 超声波探测缺陷

2.2.1 扩散角测量

直探头扩散角

根据测量结果, 计算得到的直探头扩散角为

$$\theta = 2tan^{-1}\frac{x_2 - x_1}{2H_B} = 11.4^{\circ}$$

斜探头扩散角

$$\theta = 2\tan^{-1}\left(\frac{x_2 - x_1}{2l}\left(\cos\beta\right)^2\right)$$

其中折射角

$$\beta = \tan^{-1} \frac{x_B - x_A - (L_B - L_A)}{H_B - H_A} \approx \frac{\pi}{4}$$

超声入射点到探头前沿的距离

$$L_0 = H_B \tan \beta + L_B - x_B = 15.0cm$$

计算得到

$$\theta = 2 \tan^{-1} \left(\frac{x_2 - x_1}{2H_B} (\cos \beta)^2 \right) = 11.9^{\circ}$$

C的深度

计算得
$$h_c = \frac{1}{2}c_{\text{M}} \times (t_H - t_C) = 15.95cm$$

2.3 数据处理

2. 超声波探伤

3 原始数据 3

直探头——纵波		斜探头——横波		可变探头——表面波		
底面回波峰位 $(t_2/\mu s$)	表面回波峰位 (t_1/s)	R_1 回波峰位 $(t_{R_1}/\mu s)$	R_2 回波峰位 $(t_{R_2}/\mu s)$	探头角度。	探头位置 l_{EG}/mm	表面延时回波 $\Delta_t/\mu s$
18.80	0.000	22.80	41.60	65	48.0	27.00
/	/	/	/	探头移动距离 l_{EI}/mm	表面回波峰位 $(t_1/\mu s)$	表面回波峰位 $(t_2/\mu s)$
/	/	/	/	30.0	50.00	70.00

直探头一扩散角		直探头测缺陷 C		斜探头一扩散角	斜探头测缺陷 D	
x_0 x_1	r_1	x_2	底面波	缺陷波	$x_A = 2.5cm$	$x_A = 2.6cm$
	x_1		$(t_{ m H}-t_1)$	$(t_{ m C}-t_1)$	$x_B = 8.5cm$	$t_A = 24.00 \mu s$
4.90 4.40	5.40	19.00	14.00	$x_1 = 7.3cm$	$x_B = 8.5cm$	
				$x_2 = 9.4cm$	$t_B = 51.00 \mu s$	
						$x_D = 9.9cm$
						$t_D = 32.00 \mu s$

2.4 选做

$$H_{D} = \frac{\tau_{D}(H_{B} - H_{A}) - (H_{B}\tau_{A} - H_{A}\tau_{B})}{\tau_{B} - \tau_{A}} = 2.89cm$$

而

$$x_0 = \frac{H_A(x_B - L_B) - H_B(x_A - L_A)}{H_B - H_A} = 1.3cm$$

$$tan\beta = \frac{(x_B - L_B) - (x_A - L_A)}{H_B - H_A} = 0.97$$

$$L_D = (x_D + x_0) - H_D tan\beta = 8.4cm$$

综上, 缺陷 D 的位置为 (8.4, 2.89)cm

3 原始数据

3 原始数据 4

