记 x^* 为准确值, x 为 x^* 的一个近似值 绝对误差 $e_p = |x-x^st|$ 相对误差 $e_r =$

相对误差限 $arepsilon_r = rac{arepsilon}{\left|x\right|} \geqslant rac{\left|x - x^*
ight|}{\left|x\right|} = \left|\frac{s + r}{s + r}\right|$ 条件数 $C_p = \left|rac{f(x) - f(ar{x})}{f(x)}\right| / \left|rac{\Delta x}{x}\right| pprox \left|rac{x f'(x)}{f(x)}\right|$ 本件数 $C_p = ig| rac{f(x)}{C_p} ig|$ $C_p \geqslant 10$ 就认为问题是病态的

四则运算误差限

 $arepsilon(\hat{p_1}+\hat{p_2})<=arepsilon(\hat{p_1})+arepsilon(\hat{p_2})$

 $arepsilon(\hat{p}_1\hat{p}_2)pprox |\hat{p}_1|arepsilon(\hat{p}_2)+|\hat{p}_2|arepsilon(\hat{p}_1)}{arepsilon(|\hat{p}_2|+|\hat{p}_2|arepsilon(\hat{p}_1)}) pprox |\hat{p}_1|arepsilon(\hat{p}_2)+|\hat{p}_2|arepsilon(\hat{p}_1)}$

 $\sqrt{p_2}/\sqrt{|\hat{p}_2|^2}$ 函数误差限 $\,arepsilon(f(\hat{p}))pprox|f'(\hat{p})|arepsilon(\hat{p})$

若近似数有 n 位有效数字,则可以写为 $\hat{p}=\pm 10^m imes(a_1+a_2 imes 10^{-1}+\ldots+$

其绝对误差限为 $|x-x^*|\leqslant rac{1}{2} imes 10^{m-n+1}$

其相対误差限 $\left| \frac{x-x^*}{r} \right| \leqslant arepsilon_r \leqslant \frac{10^{1-n}}{\sigma_r}$

 $p(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n = (\dots (a_0 x + a_1) x + \dots + a_{n-1}) x + \dots$ $a_0
eq 0$

 $b_i = b_{i-1}x^* + a_i, \quad i = 1, 2, ..., n,$ $=p(x^*)$ 为所求

多项式插值: $P(x)=a_0+a_1x+\cdots+a_n$ 第二章 插值

其系数由以下线性方程组确定

 $\begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix}$

 x_i 互异 \Rightarrow $\det oldsymbol{A}
eq 0 \Rightarrow$ 线性方程解唯一

拉格朗日插值: $L_n(x) = \sum_{n}^n y_k l_k(x)$

其中 $l_k(x) = \frac{\omega_{n+1} \cdot \zeta}{(x - x_k) \omega'_{n+1}(x_k)}$ $\omega'_{n+1}(x) = (x - x_0)(x - x_1) \dots (x - x_n)$ $\omega'_{n+1}(x_k) = (x_k - x_0)(x_k - x_1) \dots (x_k - x_{k-1})(x_k - x_{k+1}) \dots (x_k - x_n)$ 条項: $R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x), \xi \in (a,b)$

截断误差限: $|R_n(x)| \le \frac{M_{n+1}}{(n+1)!} |\omega_{n+1}(x)|$,其中 $M_{n+1} = \max_{a \le x \le b} \left| f^{(n+1)}(x) \right|$ 一**阶均差**: $f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x}$

K 阶均差: $f[x_0,x_1,\dots,x_k] = \frac{x_2-x_0}{f[x_1,x_2,\dots,x_k]-f[x_0,x_0]}$ **二阶均差**: $f[x_0,x_1,x_2] = \frac{x_1 - x_0}{f[x_1,x_2] - f[x_0,x_1]}$

 $f[x_0,x_1,\ldots,x_k] = \sum_{j=0}^n \frac{f(x_j)}{(x_j-x_0)\ldots(x_j-x_{j-1})(x_j-x_{j+1})\ldots(x_j-x_k)} \ f[x_0,x_1,\ldots,x_n] = rac{f^{(n)}(\xi)}{\sum\limits_{n=1}^n \xi}, \xi \in [a,b]$

チャップ n_1 かって n_1 かって n_2 ない n_3 ない n_4 ない n

其中 $a_i=f[x_0,x_1,\ldots,x_i]$ $a_n(x-x_0)\dots(x-x_{n-1})$

余顷: $R_n(x) = f[x,x_0,\ldots,x_n]\cdot(x-x_0)\cdots(x-x_n)$ 重节点均差: $f[x_0,x_0] = \lim_{x_1\to x_0}[x_0,x_1] = f'(x_0)$

n 阶重节点均差: $f[x_0,x_0,\dots,x_0]=\lim_{x_i\to x_0}f[x_0,x_1,\dots,x_n]=\frac{1}{n!}f^{(n)}(x_0)$ 泰勒插值多项式: $P_n(x)=f(x_0)+f'(x_0)(x-x_0)+\dots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$ 余项: $R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1}, \xi \in (a,b)$,也与之前余项在 $x_i o x_0$ 时

三次埃尔米特插值多项式

民和 $f(x_0),f(x_1),f(x_2),f'(x_1)$ 제 $P(x)=f(x_0)+f[x_0,x_1]\cdot(x-x_0)+f[x_0,x_1,x_2]\cdot(x-x_0)(x-x_1)+$

 $\sum_{k=0}^n a_k^*(\phi_k(x),f(x))$

127 0.0.1:5500/A3.html

余项: $R(x)=rac{1}{4!}f^{(4)}(\xi)(x-x_0)(x-x_1)^2(x-x_2)$, ξ 在 x_0,x_1,x_2 限定的范

两点三次埃尔米特插值多项式

已知 $f(x_0), f(x_1), f'(x_0), f'(x_1)$

 $\text{ MJ } P(x) = \left(1 + 2\frac{x - x_0}{x_1 - x_0}\right) \left(\frac{x - x_1}{x_0 - x_1}\right)^2 f(x_0) + \\ \left(1 + 2\frac{x - x_1}{x_0 - x_1}\right) \left(\frac{x - x_0}{x_1 - x_0}\right)^2 f(x_1) + (x - x_0) \left(\frac{x - x_1}{x_0 - x_1}\right)^2 f'(x_0) + (x - x_1) \left(\frac{x - x_0}{x_1 - x_0}\right)^2 f'(x_1)$

三次样条插值函数: $S_i(x) = a_i(x-x_i)^3 + b_i(x-x_i)^2 + c_i(x-x_i) + d_i, x \in$

记 h 为小区间长度, $M_i=S''(x_i), y_i=f(x_i)$,在区间 $[x_i,x_{i+1}]$ 上的 S(x) 为 $a_i=rac{M_{i+1}-M_i}{\sigma_i}$, $b_i=rac{M_i}{\sigma_i}$ h h f 有据条件解线性方程组得到: $M_i+4M_{i+1}+M_{i+2}$ $\overline{6(y_i-2y_{i+1}+y_{i+2})}$. $-rac{6h}{y_{i+1}-y_i}$, $rac{v_i=rac{2}{2}}{(M_{i+1}+rac{2}{2}M_i)h}$

 $-\frac{2y_{i+1}+y_{i+2})}{1\leqslant i\leqslant n-2}$ 第三章 逼近与拟合

范数:设S 是实数域上的线性空间, $x \in S$,如果存在值域为实数域的函数 $\|\cdot\|$

正定性: $\|x\|\geqslant 0$; $\|x\|=0$ 当且仅当 x=0齐次性: $\|\alpha x\| = |\alpha| \|x\|, \alpha \in R$

三角不等式: $\|x+y\|\leqslant \|x\|+\|y\|, x, y\in S$

就称 $\|\cdot\|$ 是线性空间S上的范数,S与 $\|\cdot\|$ 一起称为**赋范线性空间**,记为X对于 R^n 上的向量 $\mathbf{x}=(x_1,\cdots,x_n)^T$,三种常用范数

无穷范数 $\|\mathbf{x}\|_{\infty} = \max_{1 \leqslant i \leqslant n} |x_i|$

1-范数 $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$ 2-范数: $\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$

内积:设X 是数域K 上的线性空间, $\forall u,v\in X$ 。有K 中的一个数与其对 应,记为(u,v),其满足

 $(u+v,w)=(u,w)+(v,w), \forall w \in X$ $(lpha u,v)=lpha(u,v), orall lpha \in K$ (u,v)=(v,u)

则称 (u,v) 是 $X \perp u,v$ 的内积。定义了内积的线性空间称为**内积空间** $(u,u)\geqslant 0$; (u,u)=0 当目仅当 u=0

带权内积: $(\mathbf{x}, \mathbf{y}) = \sum_{i} \rho_i x_i y_i, \rho_i > 0$ 带权范数: $\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^{n}
ho_i x_i^2,
ho_i} > 0$

 $\rho(x)f(x)g(x)dx$ 函数范数: $\|f\|_2 = \sqrt{\int_a^{\cdot} \rho(x) f^2(x) dx}$ 函数内积: (f,g)=

 $\cdots (u_n, u_2)$ $u_i \in X$,称Gram 矩阵为: $[(u_1,u_1) \quad (u_2,u_1) \quad \cdots \quad (u_1,u_2) \quad (u_2,u_2) \quad \cdots \quad (u_1,u_2) \quad \cdots \quad (u_1,u_2) \quad \cdots \quad (u_2,u_2) \quad \cdots \quad (u_1,u_2) \quad \cdots \quad (u_2,u_2) \quad$ 若 X 是一个内积空间,

 $\begin{bmatrix} (u_1,u_n) & (u_2,u_n) & \cdots & (u_n,u_n) \end{bmatrix}$ Gram 矩阵非奇异的充要条件是 $\underbrace{u_1,u_2,\ldots,u_n}$ 线性无关

最佳平方逼近函数: $S^*(x) = \sum a_j \phi_j(x)$

 $\phi=span\{\phi_0(x),\phi_1(x),\ldots,\phi_n(x)\}$ 是 C[a,b]中的一个子集系数由称为**法方程**的线性方程组确定:

 $(f,\phi_0) \\ (f,\phi_1) \\ (f,\phi_2)$ 误差: $(\|\delta(x)\|_2)^2 = (f(x), f(x)) - (S^*(x), f(x)) = (\|f(\bar{x})\|_2)^2$ $\begin{bmatrix} (\phi_n,\phi_0) & (\phi_n,\phi_1) & \dots & (\phi_n,\phi_n) \end{bmatrix}$

 $f(x)x^kdx=d_k,\mathbf{a}=(a_0,a_1,\ldots,a_n)^T,\mathbf{d}=(d_0,d_m,\ldots,d_n)^T$,则法方程可 特别地,如果 $\phi_k(x)=x^k, \rho(x)\equiv 1, f(x)\in C[0,1]$,记 $(f(x),\phi_k(x))=$ 2024/7/9 23:14

其中 H 是Hilbert 矩阵:

 $egin{bmatrix} rac{1}{n+1} & rac{1}{n+2} & \cdots & rac{1}{2n+1} \end{bmatrix}$ Harr 条件: 设 $\phi_0(x),\ldots,\phi_n(x)\in C[a,b]$ 的任意线性组合在点集 $x_0,\ldots,x_m,m\geqslant n$ 上至多只有 n 个不同的零点。则称 $\phi_0(x),\ldots,\phi_n(x)$ 在这个点集上满足 Haar 条件。

最小二乘函数: $s^*(x) = \sum_j a_j \phi_j(x)$

系数 取 $\phi_k(x) = x^k$,满足 Haar 条件,对应法方程的系数矩阵非奇异,解存在。 a_k 可由下面的法方程解出:

$$\begin{bmatrix} \sum \rho_i & \sum \rho_i x_i & \dots & \sum \rho_i x_i^n \\ \sum \rho_i x_i & \sum \rho_i x_i^2 & \dots & \sum \rho_i x_i^{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ \sum \rho_i x_i^n & \sum \rho_i x_{n+1} & \dots & \sum \rho_i x_i^{2n} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} \sum \rho_i x_i y_i \\ \sum \rho_i x_i^2 y_i \\ \vdots \\ \sum \rho_i x_i^n y_i \end{bmatrix}$$

误差: $(\|\delta\|_2)^2 = \sum_{i=0}^m \rho(x_i)[s^*(x_i) - f(x_i)]^2$

施密特(Schmite)正文化过程: 若 $f_0(x),f_1(x),\ldots,f_n(x)$ 为 C[a,b] 上的一组 线性无关函数,则由它们可以得到 C[a,b] 上一组两两正文的函数 $g_n(x)=$

 $f_n(x) - \sum_{i=0}^{n-1} rac{(f_n,g_i)}{(g_i,g_i)} g_i(x)$

规范正交组: $e_k(x) = \frac{1}{\|g_k\|_2} g_k(x)$

正交多顷式:多项式空间 P_n 中一组线性无关函数 $\{x^k\}$ 经过施密特正交化过程得 到的一组多项式 $\{p_i(x)\}$

若 $\{p_i(x)\}$ 是 [a,b] 上权函数为 ho(x) 的正交多项式,则它们具有以下性质: $p_k(x)$ 是首项系数不为 0 的 k 次多项式

 $\{p_i(x)\}$ 是多项式空间 P_n 上的一组正交基 $p_n(x) = 0$ 在 [a,b] 上有 n 个单根

 $p_n(x)$ 与任一不高于 n-1 次的多项式正交

下面给出由不同的权函数,得到的不同正交多项式;

Legendre 多顷式, $t\in[-1,1]$, $\rho(t)=1$ $P_0(t)=1,\quad P_1(t)=t,\quad (k+1)P_{k+1}(t)=(2k+1)tP_k(t)-kP_{k-1}(t)$

Chebyshev 多顷式1, $t \in [-1,1]$, $\rho(t) = \frac{1}{\sqrt{1-t^2}}$ $P_0(t) = 1$, $P_1(t) = t$, $P_{k+1}(t) = 2tP_k(t) - P_{k-1}(t)$ Chebyshev 多顷式2, $t \in [-1,1]$, $\rho(t) = \sqrt{1-t^2}$ $P_0(t) = 1$, $P_1(t) = 2t$, $P_{k+1}(t) = 2tP_k(t) - P_{k-1}(t)$ Laguerre 多顷式, $t \in [0,\infty)$, $\rho(t) = e^{-t}$ $P_0(t) = 1$, $P_1(t) = 1 - t$, $P_{k+1}(t) = (2k+1-t)P_k(t) - k^2P_{k-1}(t)$

Hermite 多顷式, $t\in (-\infty,\infty)$, $ho(t)=e^-$

 $S^*(x) = \sum_{k=0}^n rac{(f,p_k)}{(p_k,p_k)} p_k(x)$,注意此时的积分区域为定义域,非定义域需做出相 如果拟合的时候,用的是正交多项式 $\left\{ p_i(x)
ight\}$,可以直接写出最佳平方逼近函数 $P_0(t)=1, \quad P_1(t)=2t, \quad P_{k+1}(t)=2tP_k(t)-2kP_{k-1}(t)$

对于一般的积分,有: $\int_a^b P(s)ds = \frac{b-a}{2} \int_{-1}^1 P(t)dt, \ s = \frac{b-a}{2}t + \frac{b+a}{2}$ 对于 Legendre 多项式,有: $\int_{-1}^1 P_j(t) P_k(t) dt = rac{2}{2k+1}, \ j=k$

第四章 数值积分微分

左矩形公式 $I \approx (b-a)\,f(a)$ 右矩形公式 $I \approx (b-a)\,f(b)$ 中点矩形公式 $I \approx (b-a)\,f\left(rac{a+b}{2}
ight)$

 $l_k(x)dx$ 余顷 $R[f]=\int_a^b \frac{f^{(n+1)}(\xi)}{(n+1)!}\omega_{n+1}(x)dx$,至少有n次代数精度 形如 $I_n=\sum^n A_k f(x_k)$ 的积分公式至少有 n 次代数精度的充要条件是:它是插 插值型求积公式 $I pprox I_n = \int_a^b L_n(x) dx = \sum_{k=0}^n A_k f(x_k)$, 其中 $A_k = \int_a^b L_n(x) dx = \int_a^b L_n(x) dx$

牛顿·柯特斯公式: $I pprox I_n = (b-a) \sum_{k=0}^n \mathbf{C}_k^{(n)} f(x_k)$

其中 $h = \frac{b-a}{\tilde{}}, x_k = a+kh$

柯特斯系数: $\mathbf{C}_k^{(n)} = \frac{(-1)^n}{k!(n-k)!\cdot n} \int_0^{\dots} \prod_{j=0,j
eq k} (t-j)dt$

$$\sum_{k=0}^{n} C_k^{(n)} = 1$$
 恒成立
株形公式 $I_1 = \frac{b-a}{2} [f(a)+f(b)]$ 条项 $R[f] = -\frac{(b-a)^3}{12} f''(\eta)$

権形公式 $I_1 = \frac{b-a}{2}[f(a)+f(b)]$ 条项 $R[f] = -\frac{(b-a)^3}{12}f''(\eta)$ 辛普森公式 $I_2 = \frac{b-a}{6}[f(a)+4f(\frac{a+b}{2})+f(b)]$ 条项 $R[f] = -\frac{(b-a)^5}{2880}f^{(4)}(\eta)$ **初時斯公式** $I_4 = \frac{b-a}{290}[7f(x_0)+32f(x_1)+12f(x_2)+32f(x_3)+7f(x_4)]$ 误 差 $R[f] = -\frac{(b-a)^4}{1935360}f^{(6)}(\eta), \eta \in (a,b)$

复化的梯形公式 $Ipprox T_n=rac{h}{2}[f(a)+2\sum_{k=1}^{n-1}f(x_k)+f(b)]$

复化的辛普森公式 $I \approx S_n = \frac{h}{6} [f(a) + 4 \sum_{k=0}^{n-1} f(x_{k+\frac{1}{2}}) + 2 \sum_{k=1}^{n-1} f(x_k) +$ 余项: $R_n[f] = -rac{b-a}{12}h^2f^{''}(\eta), \eta \in (a,b)$

 $f(v)_1, {}^{\omega_{k+\frac{1}{2}}} - rac{2}{450}$ 余顷: $R_n[f] = -rac{b-a}{180} \left(rac{h}{2}
ight)^4 f^{(4)}(\eta), \eta \in (a,b)$ $f(b)], x_{k+rac{1}{2}} = rac{x_k + x_{k+1}}{2}$

有 $\lim_{n\to\infty} T_n, S_n, C_n, R_n = I$,收敛速度从左到右依次加快

高斯-勒让德求积公式 $\int_{-1}^1 *f(x)\mathrm{d}xpprox \sum_{k=0}^n A_k f(x_k)$. 其中 x_k 为勒让德多项式的

0.23692690.47862870.56888890.17132450.36076164 ± 0.9061798 ± 0.6612094 ± 0.9324695 \mathbf{n} x_k 2 0.34785480.55555560.88888890.65214522.0000001.000000 A_k ± 0.8611363 ± 0.3399810 ± 0.7745967 0.000000 0.000000 \mathbf{n} x_k

余项为 $R[f] = \frac{2^{2n+1}(n!)^4}{[(2n)!]^3(2n+1)} f^{(2n)}(\eta)$, $\eta \in (-1,1)$

高斯-拉盖尔求积公式 $\int_0^\infty e^{-x}*f(x)\mathrm{d}x pprox \sum_{k=0}^n A_k f(x_k)$. 其中 x_k 为拉盖尔多项 式的零点

A	0.5858864 0.	3.4142136 0.	0.4157746 0.	2.2942804 0.	602899450829 0.	0.3225477 0.	1.7457611 0.	4.5366203 0.	9.3950709 0.
A_k	0.8535534	0.1464466	0.7110930	0.2785177	0.0103893	0.6031541	0.3574187	0.0388879	0.0005393
u	5				9				
x_k	1,4134031	3.5964258	7.0858100	12.6408008	0.2228466	1.1889321	2.9927363	5.7751436	9.8374674
A_k	0.3986668	0.0759424	0.0036118	0.0002337	0.4589647	0.4170008	0.1133734	0.0103992	0.0002610

1/4

 $e^{-x^2} * f(x) dx \approx \sum_{k=0}^n A_k f(x_k)$. 其中 x_k 为赫尔米特 高斯-赫尔米特求积公式 多项式的零点

 A_k x_k u A_k x_k

0.7246296 0.1570673 0.0045300 0.4256073 0.0545156 0.0009172 0.8102646 ± 1.6735516 ± 0.4360774 ± 0.8162879 ± 2.6519614 ± 1.3358491 ± 2.3506050 0 9 0.8862269 0.2954090 0.8049141 0.3936193 0.0199532 1.8163590 0.0813128 0.9453087 ± 0.7071068 ± 1.2247449 ± 0.5246476 ± 0.9585725 ± 2.0201829 ± 1.6506801 0 4 က 2 0

向前差商公式 $f'(x) pprox rac{f(x+h)-f(x)}{h}$ 误差: $-rac{h}{2}f''(\xi)$

向后差商公式 $f'(x) pprox rac{f(x)-f'(x-h)}{h}$ 误差: $rac{h}{2}f''(\xi)$ f(x+h) - f(x-h) 误差: 中心差商公式 f'(x)pprox

含义, z_n z_n $-\frac{h^2}{6}f'''(\xi)$ 其中 $\varepsilon_1, \varepsilon_2$ 分别是 f(a+h), f(a-h) 的舍入误差

3点前向 $f'(x_i)pprox$

3点中间 $f'(x_i)pproxrac{f(x_{i+1})-f(x_{i-1})}{x_{i+1}-f(x_{i-1})}$

余项 $R[f']|_{x=x_k} = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega'_{n+1}(x_k)$ 插值型求导公式: $f'(x) = L'_n(x)$ 3点后向 $f'(x_i) \approx$

-直接法 第五章 线性方程组—

高斯消元法:通过基本变换,将增广矩阵转化为阶梯型矩阵 $[\mathbf{A}:\mathbf{b}] =$

者 $a_{kk}^{(k)}
eq 0$,则 $x_n = (b_k^{(k)} - \sum_{j=k+1}^n a_{kj}^{(k)} x_j)/(a_{kk}^{(k)})$

LU 分解: (Doolittle)高斯消元法的每一步初等变换相当于一个初等矩阵左乘原矩 所以 $\mathbf{A} = \mathbf{L}_1^{-1}\mathbf{L}_2^{-1} \ldots \mathbf{L}_{n-1}^{-1}\mathbf{U} = \mathbf{L}\mathbf{U}$,其中 \mathbf{L} 是下三角阵 阵,最终得到一个上三角阵 $L_{n-1}\ldots L_2L_1A=U$

 m_{n1} m_{n2} m_{n3} ... $\Gamma =$

则原方程组等价于 $\mathbf{U}\mathbf{x}=\mathbf{y},\mathbf{L}\mathbf{y}=\mathbf{b}$,这个方程组可按下述过程解出: $y_i = b_i - \sum_{k=1}^{i-1} t_{ik} y_k, \; x_i = (y_i - \sum_{k=i+1}^n u_{ik} x_k)/(u_{ii})$

Cholesky 分解后,类似 LU 分解的过程得到最终解

矩阵范数:如果矩阵 $\mathbf{A} \in R^{n \times n}$ 与某个非负的实值函数 $N(\mathbf{A}) = \|\mathbf{A}\|$ 满足正定 性、齐次性、三角不等式以及相容性,则称 $N(\mathbf{A})$ 是一个矩阵范数

127.0.0.1:5500/A3.html

相容性: $\|\mathbf{A}\mathbf{x}\|\leqslant\|\mathbf{A}\|\|\mathbf{x}\|$ 。其中 $\|\mathbf{A}\|$ 矩阵范数, $\|\mathbf{A}\mathbf{x}\|,\|\mathbf{x}\|$ 是向量范数。只 有满足这个不等式,才说这个矩阵范数和这个向量范数是相容的

是某个向量范数。算子范数度量了矩阵 A 将向量 x 映射到新向量 Ax 的"放大"程

由不同的向量范数可以导出不同的算子范数:

1-范数:又称列范数,每一列中元素的绝对值之和的最大值 $\|\mathbf{A}\|_1$ = $\max_{1\leqslant j\leqslant n}\left\{\sum_{i=1}^n|a_{ij}|
ight\}$ 2-范数:又称谱范数 $\|\mathbf{A}\|_2=$

2-范数:又称谱范数 $\|\mathbf{A}\|_2 = \sqrt{\lambda_{max}}$,其中 λ_{max} 是矩阵 $\mathbf{A^TA}$ 最大特征值 无穷范数:又称行范数,每一行中元素的绝对值之和的最大值 $\|\mathbf{A}\|_\infty =$

其他种类的范数: F-**范数**: $\|\mathbf{A}\|_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_{ij}^2}$ **谱半径** $\rho(\mathbf{A}) = \max|\lambda_i|$,其中 λ_i 是 \mathbf{A} 的特征值 $\max_{1\leqslant i\leqslant n}\left\{\sum_{j=1}^n\left|a_{ij}
ight|
ight\}$

对矩阵的任何一种相容范数都有 $ho(\mathbf{A})\leqslant \|\mathbf{A}\|$

第六章 线性方程组——迭代法

A=M-N,其中 M 是可选择的非奇异矩阵于是得到迭代式 $x=M^{-1}Nx+M^{-1}b=Bx+f\Rightarrow x^{(k+1)}=Bx^{(k)}+f$ 对于线性方程组 Ax=b (A 是非奇异矩阵),对 A 进行矩阵分裂

一阶线性定常迭代法

即取 $\mathbf{M} = \mathbf{I}$

采用矩阵分裂: $\mathbf{A} = \mathbf{M} - \mathbf{N} = \mathbf{D} - (\mathbf{L} + \mathbf{U})$

其中 D 就是单独提出 A 的对角线, L, U 是 A 除去对角线后的下三角和上三角

 $\text{In} \ x^{(k+1)} = D^{-1}(L+U)x^{(k)} + D^{-1}b = B_Jx + f$ $\mathbf{x}^{(k+1)}$ 可由以下公式得到:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \Biggl(b_i - \sum_{j=1,j\neq i}^n a_{ij} x_j^{(k)} \Biggr)$$

 $\mathbf{x}^{(k+1)}$ 可由以下公式得到:

 $x_i^{(k+1)} = \frac{-1}{a_{ii}} (\sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} + \sum_{j=i+1}^n a_{ij} x_j^{(k)} - b_i)$

逐次超松驰迭代法(SOR)

引入松弛因子 $\omega,0<\omega<2$ 采用矩阵分裂: $\mathbf{A}=\mathbf{M}-\mathbf{N}=\frac{1}{\omega}(\mathbf{D}-\omega\mathbf{L})$

$$\begin{split} &\frac{1}{\omega}[(1-\omega)\mathbf{D}+\omega\mathbf{U}]\\ &\mathbb{E}[\mathbf{U}-\mathbf{D}]\mathbf{D}\mathbf{x}^{(\mathbf{k}+1)} = \mathbf{D}\mathbf{x}^{(\mathbf{k})} + \omega(\mathbf{b} + \mathbf{L}\mathbf{x}^{(\mathbf{k}+1)} + \mathbf{U}\mathbf{x}^{(\mathbf{k})} - \mathbf{D}\mathbf{x}^{(\mathbf{k})})\\ &\mathbf{x}^{(\mathbf{k}+1)} = (\mathbf{D}-\omega\mathbf{L})^{-1}\{(1-\omega)\mathbf{D} + \omega\mathbf{U}\}\mathbf{x}^{(\mathbf{k})} + \omega(\mathbf{D}-\omega\mathbf{L})^{-1}\mathbf{b}\\ &\mathbf{x}^{(\mathbf{k}+1)} \ \overline{\mathbf{j}} \ \overline$$

 $x_i^{(k+1)} = x_i^{(k)} + \omega \bigg(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i}^n a_{ij} x_j^{(k)} \bigg) / a_{ii}$

严格对角占优矩阵

满足条件 $\sum_{j=1,j\neq i}^n |a_{ij}| < |a_{ii}|$, $i=1,2,\cdots,n$,则称矩阵A是严格对角占

雅可比迭代法和高斯-赛格尔迭代法都收敛

迭代法收敛充要条件: $ho(\mathbf{B}) < 1$, 此时对任意初始向量 $\mathbf{x}^{(0)}$ $(x_1^{(0)}, x_2^{(0)}, \ldots, x_n^{(0)})^T$,会收敛到真实解

用到矩阵分裂时,还要求 ${f D}$ 非奇异 另一个充分条件:对于迭代法 ${f x}^{(k+1)}={f B}{f x}^{(k)}+{f f}$ 如果有 ${f B}$ 的某种算子范数 $|\mathbf{B}| = q < 1$,则迭代法全局收敛,且有

 $\|x^* - x^{(k)}\| \le q^k \|x^* - x^{(0)}\|$ $\|x^* - x^{(k)}\| \le \frac{q}{1 - q} \|x^{(k)} - x^{(k-1)}\|$ $\|x^*-x^{(k)}\| \leq \frac{q^n}{1-q} \|x^{(1)}-x^{(0)}\|$

第七章 非线性方程组求根 二分法的误差:

 $|x_k - x^*| \leqslant (b_k - a_k)/2 = (b - a)/2^{k+1} \quad (k = 0, 1, 2 \dots)$

设迭代函数 $\phi(x) \in C[a,b]$,并目 不动点的存在性

(2) $\exists 0 \leq L < 1$, 使得 $\forall x,y \in [a,b]$,都有 $|\phi(x) - \phi(y)| \leq L|x-y|$ 那么 $\phi(x)$ 在 [a,b] 上存在唯一的不动点 x^* (1) $\forall x \in [a,b]$,都有 $\phi(x) \in [a,b]$

上述定理的第二个条件可用 $|\phi'(x)| \leq L < 1$ 代替

 $|x_k-x^*|\leqslant rac{L^{-}}{1-L}|x_1-x_0|$ $|ec{\mathbf{x}}||x_k-x^*|\leqslant rac{L}{1-L}|x_k-x_{k-1}|$ 局部收敛性

者 $\phi'(x)$ 在 x^* 的某邻域内连续,且 $|\phi'(x^*)| < 1$,则迭代法是局部收敛的.

误差 $e_k=x_k-x^*$,若 $\lim_{k\to\infty}\frac{e_{k+1}}{e_k^p}=C$, $C\neq 0$,则迭代过程 p 阶收敛如果迭代函数在不动点 x^* 附近有 p 阶连续导数且 $\phi'(x^*)=\phi''(x^*)=\cdots=$ $\phi^{(p-1)}(x^*)=0,\quad \phi^{(p)}(x^*)
eq 0$,那么迭代过程在 x^* 附近 $_p$ 阶收敛 斯特芬森迭代法: $x_{k+1}=\psi(x_k),\psi(x)=x-rac{[\phi(x)-x]^2}{\phi(\phi(x))-2\phi(x)+x}$

牛顿法: $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$

简化牛顿法: $x_{k+1} = x_k - \frac{J(x_k)}{f'(x_0)}$ 牛頓下山法: $x_{k+1} = x_k - \lambda \frac{f(x_k)}{f'(x_k)}$ 每一次迭代从 $\lambda = 1$ 开始试算,不断令 λ 减半直到满足 $|f(x_{k+1})| < |f(x_k)|$

重根情形下的牛顿法: 若 $f(x)=(x-x^st)^nh(x)$ 改为 $x_{k+1}=x_k-mrac{f(x_k)}{f'(x_k)}$ 仍然是平方收敛的

令 $\mu(x) = f(x)/f'(x)$ 对其用牛顿法得: $x_{k+1} = x_k - \frac{f(x_k)f'(x_k)}{[f'(x_k)]^2 - f(x_k)f''(x_k)}$ 单点弦截法 (割线法) : $x_{k+1} = x_k - \frac{J(x_k)}{f(x_k) - f(x_0)} (x_k - x_0)$ 两点弦截法: $x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1})$

可取两端点为初始值

 $\int y'=f(x,y), x\in [x_0,b]$ 一阶常微分方程初值问题

 $y(x_0)=y_0$

前向欧拉法: $y_{n+1} = y_n + hf(x_n, y_n)$, 局部截断误差 $T_{n+1} = \frac{h^2}{2}y''(x_n) +$ **則普希茲条件**: $|f(x,y_1) - \dot{f}(x,y_2)| \leqslant L|y_1 - y_2|, L > 0$

后向欧拉法: $y_{n+1} = y_n + hf(x_{n+1},y_{n+1})$,局部截断误差 $T_{n+1} = y_n + hf(x_{n+1},y_{n+1})$ $\frac{h^{z}}{2}y''(x_{n})+O(h^{3})$

 $O(h^3)$

梯形方法: $y_{n+1}=y_n+rac{h}{2}[f(x_n,y_n)+f(x_{n+1},y_{n+1})]$,局部截断误差 $T_{n+1}=$ $-rac{h^3}{12}y'''(x_n)+O(h^4)$ 改进欧拉法(Heun 法)

 $y_c = y_n + hf(x_{n+1}, y_p)$ $y_p = y_n + hf(x_n, y_n)$ $y_{n+1} = \frac{y_p + y_c}{2}$

r 级显式龙格-库塔公式

$$egin{align*} y_{n+1} &= y_n + h\phi(x_n, y_n, h) = y_n + h\sum_{i=1}^r c_i K_i \ K_1 &= f(x_n, y_n) \ K_i &= f(x_n + \lambda_i h, y_n + h\sum_{j=1}^{i-1} \mu_{ij} K_j), \quad i = 2, \dots, r \end{cases}$$

二於 R-K 公式 (中点公式)

$$egin{cases} y_{n+1} = y_n + h K_2 \ K_1 = f(x_n, y_n) \ K_2 = f(x_n + rac{h}{2}, y_n + rac{h}{2} K_1) \end{cases}$$

三於 R-K 公式 (库塔公式)

$$egin{aligned} y_{n+1} &= y_n + rac{h}{6}(K_1 + 4K_2 + K_3), \ K_1 &= f(x_n, y_n) \ K_2 &= f\left(x_n + rac{h}{2}, y_n + rac{h}{2}K_1
ight) \ K_3 &= f(x_n + h, y_n - hK_1 + 2hK_2) \end{aligned}$$

四陀 R-K 公式

$$egin{align} egin{align} y_{n+1} &= y_n + rac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4) \ K_1 &= f(x_n, y_n) \ egin{align} K_2 &= f(x_n + rac{h}{2}, y_n + rac{h}{2}K_1) \ K_3 &= f(x_n + rac{h}{2}, y_n + rac{h}{2}K_2) \ K_4 &= f(x_n + h, y_n + hK_3) \ \end{pmatrix}$$

线性多步法: $y_{n+k} = \sum_{i=0}^{k-1} \alpha_i y_{n+i} + h \sum_{i=0}^{k} \beta_i f_{n+i}, f_{n+i} = f(x_{n+i}, y_{n+i})$ $\beta_k \neq 0$ 隐式 k 步法; 否则为显示多步法

局部截断误差: $T_{n+k}=c_{p+1}h^{p+1}y^{(p+1)}(x_n)+O(h^{p+2})$ 阿当姆斯显式公式

が 数	阶数	公式	c_{p+1}
~	_	$y_{n+1} = y_n + hf_n$	1 12
2	2	$y_{n+2} = y_{n+1} + \frac{h}{2}(3f_{n+1} - f_n)$	5 12
3	8	$y_{n+3} = y_{n+2} + rac{h}{12}(23f_{n+2} - 16f_{n+1} + 5f_n)$	က∣∞
4	4	$y_{n+4} = y_{n+3} + rac{h}{24}(55f_{n+3} - 59f_{n+2} + 37f_{n+1} - 9f_n)$	$\frac{251}{720}$

阿当姆斯隐式公式

光を数	阶数	公司	c_{p+1}
_	2	$y_{n+1} = y_n + \frac{h}{2}(f_{n+1} + f_n)$	$-\frac{1}{12}$
2	က	$y_{n+2} = y_{n+1} + \frac{h}{12}(5f_{n+2} + 8f_{n+1} - f_n)$	$-\frac{1}{24}$
8	4	$y_{n+3} = y_{n+2} + rac{h}{24}(9f_{n+3} + 19f_{n+2} - 5f_{n+1} + f_n)$	$-\frac{19}{720}$
4	5	$y_{n+4} = y_{n+3} + rac{h}{720}(251f_{n+4} + 646f_{n+3} - 264f_{n+2} + 106f_{n+1} - 19f_n)$	$-\frac{3}{160}$

米尔尼方法 $y_{n+4} = y_n + \frac{4h}{3}(2f_{n+3} - f_{n+2} + 2f_{n+1})$ 局部截断误差 $T_{n+4} = \frac{14}{45}h^5y^{(5)}(x_n) + O(h^6)$ 辛普森方法 $y_{n+2} = y_n + \frac{h}{4}(f_n + 4f_{n+1} + f_{n+2}).$ 局部截断误差 $T_{n+2} = -\frac{h^3}{90}y^{(5)}(x_n) + O(h^6).$

汉明方法 $y_{n+3}=\frac{1}{8}(9y_{n+2}-y_n)+\frac{3h}{8}(f_{n+3}+2f_{n+2}-f_{n+1})$ 局部截断误差 $T_{n+3} = -rac{h^5}{40}y^{(5)}(x_n) + O(h^6).$

127.0.0.1:5500/A3.html 3/4