第2章 化学反应的一般原理

第一节 化学反应的方向与限度

一 化学反应进度

1. 反应计量式

· 化学反应计量式表示化学反应中各物质的**数量关系**

化学反应计量式

$$0 = \sum_{\scriptscriptstyle \rm R} \nu_{\scriptscriptstyle \rm B} B$$

B: 反应物或生成物的化学式

 $\nu_{_{
m B}}$: 物质 B 的系数(化学计量数),**反应物为负,生成物为正**

· 同一种反应的系数可以按比例缩放,则化学计量数会变化

2.化学反应进度ξ

· 表示化学反应进行程度的物理量, 单位 mol

化学反应进度(定义式)

$$\mathrm{d}\xi = \nu_{\mathrm{B}}^{-1} \mathrm{d}n_{\mathrm{B}}$$

- 一般规定起始反应进度为 0,则 $\xi = \frac{\Delta n_{\rm B}}{\nu_{\rm B}}$
- ・意义:使得不管用哪个反应物还是生成物作计量,反应进度都是一致的 如反应中生成了 $\nu_{\rm B}$ mol B,则反应进度为 1 mol;反应进度为 2 mol 意味着生成了 $2\nu_{\rm B}$ mol B

· 与选择哪种物质无关, 而与化学反应**计量式写法**有关

二 热化学

1. 化学反应热效应

- ① 反应热
 - · 无非体积功的前提下, 化学反应吸收(正)或放出(负)的热量
- ② 两种反应热

· 定容热: 反应在体积恒定的容器中进行,此时反应热 Q_V 等于系统的内能变 ΔU

· 定压热:反应在压力恒定的容器中进行,此时反应热 Q_{0} 等于系统的焓变 ΔH

反应热之间的关系

$$Q_{b} = Q_{V} + \Delta n(g)RT$$

 $\Delta n(g)$: 对应反应进度前后**气体分子数**的变化

2. 反应焓变的类型

- ① 摩尔焓变△,Η,,,
 - · 反应进度为 1mol 时, 化学反应的焓变
- ② 标准摩尔反应焓△"Η""
 - · 标准态下, 反应进度为 1mol 时, 化学反应的焓变

标准态 指温度为T,压力为 p^{\odot} (100kPa)的状态(气体分压 p^{\odot} ,溶液浓度 $c^{\odot} = 1$ mol/L)

· 需要搭配热化学反应方程式使用, 若温度不是 298.15K, 必须要写出

热化学反应方程式 物质要标出状态,并在右侧写出反应焓变,如

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$
 $\Delta_r H_m^{\odot} = xxx kJ \cdot mol^{-1}$

- ③ 标准摩尔生成焓 △, H ๓
 - · 标准态下, 由参考状态单质生成 1mol 物质 B 的反应焓变

参考状态 标准态下单质最稳定的状态,如C是石墨,O是氧气,它们的摩尔生成焓为0

3. 反应焓变的计算

① 由盖斯定律计算

盖斯定律

若一个反应由其它反应线性组合得到,则该反应的焓变等于这些反应焓变的相同的线性组合

- · 已知反应 2, 3, 4······及其焓变,只要能看出 1 是 2, 3, 4······的组合,就能够计算 1 的焓变
- ·本质是状态函数的过程无关性质,因此不止焓变, ΔS 、 ΔG 等也可以使用盖斯定律
- ② 由标准摩尔生成焓计算
 - · 若反应 $0 = \sum_{\mathbf{B}} \nu_{\mathbf{B}} \mathbf{B}$ 中各物质的 $\Delta_{\mathbf{f}} H_{\mathbf{m}}^{\circ}$ 已知,则

由生成焓计算反应焓

$$\Delta_{\rm r} H_{\rm m}^{\odot} = \sum_{\rm B} \nu_{\rm B} \Delta_{\rm f} H_{\rm m}^{\odot}({\rm B})$$

三 化学反应的方向

1. 熵 S

- · 系统混乱度大小的度量
- ① 标准摩尔熵 S□
- · 由 0K 完美晶体 (**熵值为 0**) 到指定标准态的熵变
- ② 反应标准摩尔熵变 $\Delta_{r}S_{m}^{\circ}$
- · 标准态下反应的熵变

标准摩尔反应熵变的计算

$$\Delta_{\rm r} S_{\rm m}^{\scriptscriptstyle \odot} = \sum_{\rm B} \nu_{\rm B} S_{\rm m}^{\scriptscriptstyle \odot}({\rm B})$$

- 2. 标准摩尔吉布斯自由能变 $\Delta_{r}G_{m}^{\circ}$ 的计算
 - ① 通过焓变与熵变计算

通过焓变与熵变计算

$$\Delta_{\mathbf{r}}G_{\mathbf{m}}^{\odot} = \Delta_{\mathbf{r}}H_{\mathbf{m}}^{\odot} - T\Delta_{\mathbf{r}}S_{\mathbf{m}}^{\odot}$$

- ·条件:恒温反应。焓变和熵变可以用 298.15K 的近似
- ② 通过标准摩尔生成吉布斯函数计算
 - ·标准摩尔生成吉布斯函数 $\Delta_i G_{\mathrm{m}}^{\circ}$:标准态下由参考状态单质生成 $1 \mathrm{mol}$ 物质 $\mathrm B$ 的 $\mathrm G$ 变

通过生成函数计算

$$\Delta_{\mathbf{r}}G_{\mathbf{m}}^{\odot} = \sum_{\mathbf{R}} \mathbf{v}_{\mathbf{B}}\Delta_{\mathbf{f}}G_{\mathbf{m}}^{\odot}(\mathbf{B})$$

- · 条件: 温度恒为 298.15K (其它温度不行)
- 3. 非标准态摩尔吉布斯自由能变 $\Delta_{r}G_{m}$ 的计算
 - ① 浓度商Q
 - ·任一时刻反应 $0 = \sum_{B} \nu_B B$ 中各组分的浓度或分压**除以标准浓度或压力**后按下式求积:

浓度商

$$Q = \prod_{\mathrm{B}} \left(\frac{c_{\mathrm{B}}}{c^{\odot}}\right)^{\nu_{\mathrm{B}}} \quad \mathrm{or} \quad Q = \prod_{\mathrm{B}} \left(\frac{p_{\mathrm{B}}}{p^{\odot}}\right)^{\nu_{\mathrm{E}}}$$

② 非标准态下的反应吉布斯函数变 $\Delta_{L}G_{LL}$

非标准态下反应摩尔吉布斯函数变

$$\Delta_{\mathbf{r}}G_{\mathbf{m}} = \Delta_{\mathbf{r}}G_{\mathbf{m}}^{\odot} + RT\ln Q$$

- 4. 反应方向判断
 - · 计算出 $\Delta_r G_m^{\odot}$ 或 $\Delta_r G_m$, 然后比较:

反应方向判断

$$\Delta_{\mathbf{r}}G_{\mathbf{m}}^{\circ}$$
 or $\Delta_{\mathbf{r}}G_{\mathbf{m}}$
$$\begin{cases} <0 & \mathbb{反}应自发 \\ =0 & \mathbb{F}\mathfrak{m} \\ >0 & \mathbb{逆}\mathbb{反}应自发 \end{cases}$$

例 1 试判断在 298.15K、标准态下,反应 CaCO₃(s) → CaO(s) + CO₂(g) 能否自发进行?

	CaCO ₃ (s)	CaO(s)	$\mathrm{CO}_2(\mathbf{g})$
$\Delta_{\mathrm{f}}H_{\mathrm{m}}^{\odot}(\mathrm{kJ}\cdot\mathrm{mol}^{-1})$	-1128.79	-604.03	-394.359
$S_{\mathrm{m}}^{\scriptscriptstyle{\bigcirc}}(\mathrm{J}\!\cdot\!\mathrm{mol}^{\scriptscriptstyle{-1}}\!\cdot\!\mathrm{K}^{\scriptscriptstyle{-1}})$	92.9	39.75	213.74
$\Delta_{\mathrm{f}}G_{\mathrm{m}}^{\scriptscriptstyle \odot}(\mathrm{kJ}\cdot\mathrm{mol}^{\scriptscriptstyle -1})$	-1206.92	-635.09	-393.509

解 方法一:使用 $\Delta_{\mathbf{r}}G_{\mathbf{m}}^{\circ} = \Delta_{\mathbf{r}}H_{\mathbf{m}}^{\circ} - T\Delta_{\mathbf{r}}S_{\mathbf{m}}^{\circ}$

$$\Delta_{\rm r} H_{\rm m}^{\odot} = \Delta_{\rm f} H_{\rm m}^{\odot}({\rm CaO}) + \Delta_{\rm f} H_{\rm m}^{\odot}({\rm CO}_2) - \Delta_{\rm f} H_{\rm m}^{\odot}({\rm CaCO}_3)$$

= $(-635.09) + (-393.509) - (-1206.92)$

$$= 178.32 \text{ kJ} \cdot \text{mol}^{-1}$$

$$\Delta_{r}S_{m}^{\circ} = S_{m}^{\circ}(\text{CaO}) + S_{m}^{\circ}(\text{CO}_{2}) - S_{m}^{\circ}(\text{CaCO}_{3})$$

$$= (39.75 + 213.74) - 92.9$$

$$= 160.6 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$$

$$\Delta_{r}G_{m}^{\circ}(298.15 \text{ K}) = \Delta_{r}H_{m}^{\circ}(298.15 \text{ K}) - 298.15 \text{ K} \times \Delta_{r}S_{m}^{\circ}(298.15 \text{ K})$$

$$\dot{\mathcal{T}} \ddot{\mathcal{T}} \ddot{\mathcal{T}} \ddot{\mathcal{T}} : \dot{\mathcal{T}} \dot{\mathcal{T}}$$

∴ 在 298.15K、标准态下,反应不能自发分解

 ${f M}$ 2 计算 723K、非标准态下,下列反应的 $\Delta_{r}G_{m}$,并判断反应自发进行的方向。

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$

分压/Pa 1.0×10^4 1.0×10^4 1.0×10^8

	$SO_2(g)$	$O_2(g)$	SO ₃ (g)
$S_{\mathrm{m}}^{\scriptscriptstyle \ominus}(J \cdot \mathrm{mol}^{\scriptscriptstyle -1} \cdot \mathrm{K}^{\scriptscriptstyle -1})$	248.22	205.138	256.76
$\Delta_{\mathrm{f}}H_{\mathrm{m}}^{\scriptscriptstyle{\odot}}(\mathrm{kJ}\!\cdot\!\mathrm{mol}^{\scriptscriptstyle{-1}})$	-296.83	0	-395.72

$$\begin{split} \mathbf{P} & \Delta_{r}H_{m}^{\circ} = 2\Delta_{f}H_{m}^{\circ}(SO3) - \left[2\Delta_{f}H_{m}^{\circ}(SO_{2}) + \Delta_{f}H_{m}^{\circ}(O_{2})\right] \\ &= \left[2\times(-395.72) - 2\times(-296.830)\right] = -197.78 \text{ kJ} \cdot \text{mol}^{-1} \\ \Delta_{r}S_{m}^{\circ} = 2S_{m}^{\circ}(SO_{3}) - \left[2S_{m}^{\circ}(SO_{2}) + S_{m}^{\circ}(O_{2})\right] \\ &= 2\times256.76 - \left[2\times248.22 + 205.138\right] = -188.06 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \\ \Delta_{r}G_{m}^{\circ} (723\text{K}) = \Delta_{r}H_{m}^{\circ} (723\text{K}) - T\Delta_{r}S_{m}^{\circ} (723\text{K}) \approx \Delta_{r}H_{m}^{\circ} (298\text{K}) - T\Delta_{r}S_{m}^{\circ} (298 \text{ K}) \\ &= \left[(-197.78\times10^{3}) - 723\times(-188.06)\right] = -61813 \text{ J} \cdot \text{mol}^{-1} \\ RT \ln Q = 8.314 \times 723 \ln \frac{\left[p(SO_{3})/p^{\circ}\right]^{2}}{\left[p(SO_{2})/p^{\circ}\right]^{2}\left[p(O_{2})/p^{\circ}\right]} \\ &= 8.314\times723 \ln \frac{\left[1.0\times10^{8}/1.0\times10^{5}\right]^{2}}{\left[1.0\times10^{4}/1.0\times10^{5}\right]^{2}\left[1.0\times10^{4}/1.0\times10^{5}\right]} = 124590.5 \text{ J} \cdot \text{mol}^{-1} \\ \vdots \quad \Delta C \left(723\text{K}\right) = \Delta C_{m}^{\circ}(723\text{K}) + BT^{1}_{m}O_{m} \left(6.1813 + 124590.5\right) = 62.777 \text{ J. L. s. l}^{-1} \times 124590.5 \end{split}$$

$$\text{...} \quad \Delta_{\rm r} G_{\rm m} \, (723 {\rm K}) \, = \, \Delta_{\rm r} G_{\rm m}^{\odot} \, (723 {\rm K}) \, + \, RT \ln Q \, = (-61813 \, + \, 124590.5) \, = \, 62.777 \, \, {\rm kJ \cdot mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, (123 {\rm K}) \, + \, RT \, {\rm mol}^{-1} \, > \, 0 \, {\rm Mpc} \, > \, 0 \, {\rm Mpc} \, >$$

: 反应自发向左进行

四 化学平衡

·可逆反应可以双向进行,且进行到某一程度时宏观中止,形成化学平衡,此时 $\Delta_{\mathbf{r}}G_{\mathbf{m}}=0$

1. 平衡常数

· 反应达到平衡时, 各物质浓度或分压满足一定关系

① 实验平衡常数

・反应 $0 = \sum_{\mathbf{D}} \nu_{\mathbf{B}} \mathbf{B}$ 平衡时,各组分浓度或分压(称为**平衡浓度**或**平衡分压**)按下式求积:

实验平衡常数

$$K_{c} = \prod_{\mathrm{B}} (c_{\mathrm{B}})^{\nu_{\mathrm{B}}} \quad K_{p} = \prod_{\mathrm{B}} (p_{\mathrm{B}})^{\nu_{\mathrm{B}}}$$

· 溶剂、固体等不必列出

② 标准平衡常数

· 在实验平衡常数的基础上,各个平衡浓度或分压除以各自的标准态(也就是**平衡时的浓度商**)

标准平衡常数

· 也可根据 $\Delta_{r}G_{m}=0$ 得到:

由反应 G 变计算标准平衡常数

$$\Delta_{{\bf r}}G_{{\bf m}}^{\scriptscriptstyle \bigcirc} = -RT\ln K^{\scriptscriptstyle \bigcirc}$$

同时还能得到浓度商表示的方向判据:

反应方向判断

 $Q > K^{\circ}$ 正向进行 $Q = K^{\circ}$ 平衡 $Q < K^{\circ}$ 逆向进行

· 此外还有多重平衡规则

多重平衡规则

反应可以分解为若干反应的线性组合时,其标准平衡常数等于这些反应的平衡常数的相同线性组合 (但是原来的+变成×,−变成÷,×变成幂次)

2. 化学平衡计算

① 转化率

· 反应物转化为生成物的百分数

转化率

· 对于体积不变的系统, 可以直接用浓度求

② 化学平衡计算

· 情景: 已知反应的平衡常数、平衡转化率、反应进度、初始浓度中的某几个, 求剩余的几个

· 方法: 列三段式

		反应物		生成物
第一段	初始浓度一般为已知量	初始浓度		初始浓度
第二段	变化量满足化学计量关系	变化量(-)		变化量(+)
第三段	平衡浓度满足平衡常数	平衡浓度		平衡浓度
		满足物质守恒		满足物质守恒

一般我们会设反应物的变化量为未知量,然后表示出所有的浓度后列方程求解

例3 在 5.00L 容器中装有等物质的量的 PCl₃(g)和 Cl₂(g)。

523K 时,反应 $PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$ 达平衡时, $p(PCl_5) = p^{\odot}$, $K^{\odot} = 0.767$,求:

- ① 开始装入的 PCl₃和 Cl₂的物质的量;
- ② PCl₃的平衡转化率。
- 解 ① 设开始时 $p(PCl_3) = p(Cl_2) = x Pa$,列三段式 (单位均为 Pa):

PCl₃(g) + Cl₂(g)
$$\rightleftharpoons$$
 PCl₅(g)
始态 x x 0
变化量 $-p^{\circ}$ $-p^{\circ}$ + p°
终态 $x-p^{\circ}$ $x-p^{\circ}$ p°

∴
$$K^{\odot} = \frac{p^{\odot}}{[(x-p^{\odot})/p^{\odot}]^2} = 0.767$$
 解得 $x = 214155$ Pa

$$\therefore n(PCl_3) = n(Cl_2) = \frac{pV}{RT} = \frac{214155Pa \times 5.00 \times 10^{-3} \text{ m}^3}{8.314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \times 523 \text{K}} = 0.246 \text{mol}$$

②
$$\alpha(PCl_3) = \frac{100000}{214155} \times 100\% = 47.0\%$$

3. 化学平衡的移动

- ① 浓度的影响
 - · 增大反应物浓度或减小生成物浓度, 平衡向右移动
- ② 压力的影响
 - · 增大系统压力, 平衡向气体分子数减小的方向移动
 - · 恒温**恒压**下引入惰性气体,平衡向气体分子数增大的方向移动 恒温**恒容**下引入惰性气体,平衡不移动
- ③ 温度的影响
 - · 温度通过改变平衡常数大小来影响平衡
 - · 放热反应升高温度平衡向左移动, 吸热反应则相反

温度对平衡常数的影响

$$\ln \frac{K_1^{\Theta}}{K_2^{\Theta}} = -\frac{\Delta_{\mathrm{r}} H_{\mathrm{m}}^{\Theta}}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

第二节 化学反应速率

一 反应速率相关概念

1. 反应速率

· 单位体积内化学反应进度随时间的变化率,对于体积不变的反应,更常用物质 B 的浓度来表示:

反应速率的浓度定义

$$v = \frac{1}{v_{\rm p}} \times \frac{\mathrm{d}c_{\rm B}}{\mathrm{d}t}$$

2. 半衰期 t_{1/2}

· 反应物消耗一半所需时间

3.基元反应

- · 由反应物分子直接碰撞发生作用生成产物的反应, 是其它复杂反应的基本组成部分
- · 方程式真实反映实际情况,不可以按比例缩放
- · 反应速率遵守质量作用定律

质量作用定律

$$aA + bB + \cdots \rightarrow \cdots \quad v = kc_A^a c_B^b$$

4. 反应级数

· 部分反应的速率方程与质量作用定律具有相同的形式, 称为n级反应

n 级反应速率方程

$$aA + bB + \cdots \rightarrow \cdots$$
 $v = kc_A^{\alpha} c_B^{\beta}$ $n = \alpha + \beta + \cdots$

- · 各组分的反应级数不一定等于各自的计量数
- · 反应级数n: 各组分反应级数之和, 一般有 $0\sim3$ 级反应

速率常数 k:浓度无关的比例系数,单位与反应级数有关

n 级反应速率常数的单位

$$k = (\text{mol} \cdot \mathbf{L}^{-1})^{1-n} \cdot \mathbf{s}^{-1}$$

二 一级反应相关计算

1. 一级反应计算

速率方程(微分式)	积分式	半衰期
$v = kc_{\rm A}$	$\ln c_{\rm A} = -kt + \ln c_0$	$t_{1/2} = \frac{\ln 2}{k}$

2.零级反应计算

速率方程(微分式)	积分式	半衰期
v = k	$c_{\rm A} = c_0 - kt$	$t_{1/2} = \frac{c_0}{2k}$

- · 若反应级数没有告知,要注意从题干中抓取线索(如速率常数的单位)
- · 剩余问题只要根据题干和积分式列方程即可逐一求解

三 温度与活化能

1. 反应速率与温度的关系

· 温度通过影响速率常数影响反应速率

阿伦尼乌斯方程

$$k = Ae^{-\frac{E}{RT}}$$

- · 反应活化能越高, 温度对速率常数的影响越大
- · 由此可以通过某温度的 k 来计算另一温度的 k

速率常数与温度的关系

$$\ln \frac{k_1}{k_2} = -\frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

2. 反应历程与活化能

· 过渡态理论认为反应物到产物要经历一个高能量的中间态, 克服活化能, 如图

· 由活化能也能够计算反应焓变

反应活化能计算焓变

$$\Delta_{\rm r} H_{\rm m} = E_1 - E_2$$

3. 催化剂的作用

- · 催化剂可以加快或减慢反应速率, 但不影响平衡
- **例 4** 在已知反应 $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$ 在 318 K 时的反应速率常数 $k_1 = 4.98 \times 10^{-4} \, \mathrm{s}^{-1}$,反应的 活化能 $E_s = 102 \, \mathrm{kJ \cdot mol^{-1}}$ 。
 - (1) 判断上述反应的反应级数;
 - (2) 计算上述反应在 338 K 时的反应速率常数 k2 和半衰期。
- \mathbf{H} (1) 由 k 的单位 \mathbf{s}^{-1} , 该反应为一级反应
 - (2) 由 $\ln \frac{k_1}{k_2} = -\frac{E_a}{R} \left(\frac{1}{T_1} \frac{1}{T_2} \right)$ 解得 $k_2 = 4.88 \times 10^{-3} \,\mathrm{s}^{-1}$,因此半衰期 $t_{1/2} = \frac{\ln 2}{k_2} = 142 \,\mathrm{s}$