Date: 8/20/2024 Time: 5:08:37 PM

runfast_2024_mm_dd.dfw

#1: CaseMode := Sensitive

InputMode := Word #2:

time

t :∈ Real [0, ∞) #3:

cost reduction parameter

#4: $\rho \in \text{Real } (0, 1]$

interest bank pays to depositors

rd :∈ Real (0, ∞) #5:

probability of a run = investment failure

φ :∈ Real (0, 1) #6:

speed of fund withdrawal during a run

#7: σ :∈ Real (0, ∞)

Risky interest bank earns on investment

#8: rk :∈ Real (0, ∞)

bank investment return concavity parameter

#9: $\alpha : \in \text{Real} (0, 1)$

*** Section 3: The model

equation (1): amount withdrawn at t during a run

#10: $dt = 1 + rd - \sigma \cdot t$

equation (2): bank liquidity at t during a run

#11:
$$qt = q - \sigma \cdot t$$

time when bank becomesd insolvent

#12:
$$0 = q - \sigma \cdot tq$$

#13: SOLVE(0 = q -
$$\sigma \cdot \text{ti}$$
, tq)

eq (3)

#14:
$$tq = \frac{q}{\sigma}$$

eq (4): Bank profit (bottom: no run, prob 1-φ). Otherwise: upper: profit=0 with prob φ

#15: profit =
$$rk \cdot (1 - q)$$
 - rd

eq (5) top: Depositor welfare under a run and slow bailout tb \geq tq

#16: wds = rd -
$$\lambda \cdot (tbs - tq) \cdot (1 + rd - q)$$

eq (5) bottom: Depositor welfare under fast bailout and under no run

#17: wdf = rd

eq (6) top bailout cost tb < Tbar

#18:
$$cb = 1 + rd - q$$

eq (6) bottom: bailout cost tb \geq Tbar (reduced cost)

#19:
$$cb = \rho \cdot (1 + rd - q)$$

*** Section 4: Bailout policy

Date: 8/20/2024

eq (8): total welfare

#20: w = wd + profit - cb

** Subsection 4.1: Optimal bailout time (q is given)

Deriving Result 1 and eq (9)

eq (11) top: tb = Tbar (welfare under slow bailout)

#21: ws =
$$(rd - \lambda \cdot (\tau bar - tq) \cdot (1 + rd - q)) + 0 - \rho \cdot (1 + rd - q)$$

eq (11) bottom: tb < td (welfare under fast bailout)

#22:
$$wf = rd + 0 - (1 + rd - q)$$

ws - wf =

#23:
$$(rd - \lambda \cdot (\tau bar - tq) \cdot (1 + rd - q)) + 0 - \rho \cdot (1 + rd - q) - (rd + 0 - (1 + rd - q))$$

subs for tq

#24:
$$\left(rd - \lambda \cdot \left(\tau bar - \frac{q}{\sigma} \right) \cdot (1 + rd - q) \right) + 0 - \rho \cdot (1 + rd - q) - (rd + 0 - (1 + rd - q))$$

#25:
$$-\frac{\frac{2}{q \cdot \lambda - q \cdot (rd \cdot \lambda + \lambda \cdot (\sigma \cdot \tau bar + 1) + \rho \cdot \sigma - \sigma) + \sigma \cdot (rd \cdot (\lambda \cdot \tau bar + \rho - 1) + \lambda \cdot \tau bar + \rho - 1)}{\sigma}$$

 \geq 0 if

2 #26:
$$q \cdot \lambda - q \cdot (rd \cdot \lambda + \lambda \cdot (\sigma \cdot \tau bar + 1) + \rho \cdot \sigma - \sigma) + \sigma \cdot (rd \cdot (\lambda \cdot \tau bar + \rho - 1) + \lambda \cdot \tau bar + \rho - 1) \le 0$$

#27: SOLVE(q
$$\cdot \lambda$$
 - q·(rd· λ + λ ·(σ ·rbar + 1) + ρ · σ - σ) + σ ·(rd·(λ ·rbar + ρ - 1) + λ ·rbar + ρ - 1) \leq 0, q)

#28:
$$\frac{\sigma \cdot (\lambda \cdot \tau bar + \rho - 1)}{\lambda} \leq q \leq rd + 1 \vee rd + 1 \leq q \leq \frac{\sigma \cdot (\lambda \cdot \tau bar + \rho - 1)}{\lambda}$$

eq (9) and Result 1

#29:
$$\frac{\sigma \cdot (\lambda \cdot \tau bar + \rho - 1)}{\lambda} \leq q$$

Deriving Assumption 2 and eq (7) showing that qtitle is between 0 and 1

#30:
$$\frac{\sigma \cdot (\lambda \cdot \tau bar + \rho - 1)}{\lambda} < 1$$

#31: SOLVE
$$\left(\frac{\sigma \cdot (\lambda \cdot \tau bar + \rho - 1)}{\lambda} < 1, \tau bar\right)$$

#32:
$$\tau bar < \frac{\lambda - \sigma \cdot (\rho - 1)}{\lambda \cdot \sigma}$$

#33:
$$\frac{\sigma \cdot (\lambda \cdot \tau bar + \rho - 1)}{\lambda} > 0$$

#34: SOLVE
$$\left(\frac{\sigma \cdot (\lambda \cdot \tau bar + \rho - 1)}{\lambda} > 0, \tau bar\right)$$

#35:
$$\tau bar > \frac{1 - \rho}{\lambda}$$

difference between upper bound and lower bound (nonempty interval) because

Date: 8/20/2024

#36:
$$\frac{\lambda - \sigma \cdot (\rho - 1)}{\lambda \cdot \sigma} - \frac{1 - \rho}{\lambda}$$

#37:

$$\frac{1}{\sigma} > 0$$

** Subsection 4.2: Effect of faster runs on optimal bailout time go back to eq (9) q_tilde to prove Result 2

#38:
$$\frac{\sigma \cdot (\lambda \cdot \tau bar + \rho - 1)}{\lambda} = q_{tilde}$$

#39:
$$\frac{d}{d\sigma} = \frac{\sigma \cdot (\lambda \cdot \tau bar + \rho - 1)}{\lambda}$$

#40:

> 0 if [Yes, by Assumption 2]

#41: $\lambda \cdot \tau bar + \rho - 1 > 0$

#42: SOLVE($\lambda \cdot \tau$ bar + ρ - 1 > 0, τ bar)

#43:

$$\tau$$
bar > $\frac{1 - \rho}{\lambda}$

*** Section 5: Optimal liquidity requirement

eq (12): Expected total welfare

#44: $ew = \phi \cdot w run + (1 - \phi) \cdot w no run$

eq (13) computing qmax

#45:
$$\frac{qmax}{\sigma} = \tau bar$$

#46: SOLVE
$$\left(\frac{\text{qmax}}{\sigma} = \tau \text{bar, qmax}\right)$$

#47: $qmax = \sigma \cdot \tau bar$

eq (14)

#48: w_no_run = rd + rk
$$\cdot$$
(1 - q) - rd + 0

#49:
$$w_{no} = rk \cdot (1 - q)$$

w_run for high q: q > q_tilde. top of eq (15)

#50: w_run_high_q = (rd -
$$\lambda \cdot (\tau bar - tq) \cdot (1 + rd - q)$$
) + 0 - $\rho \cdot (1 + rd - q)$

#51: w_run_high_q =
$$\left(rd - \lambda \cdot \left(\tau bar - \frac{q}{\sigma} \right) \cdot (1 + rd - q) \right) + 0 - \rho \cdot (1 + rd - q)$$

w_run for low q: $q < q_{tilde}$. bottom of eq (15)

#52:
$$w_run_low_q = rd + 0 - (1 + rd - q)$$

#53:
$$w_run_low_q = q - 1$$

* Proof of Result 3:

max ew for $q \ge q_{tilde}$ by adding 14 to top part of (15)

Date: 8/20/2024

#54:
$$\operatorname{ew} = \phi \cdot \left(\left(\operatorname{rd} - \lambda \cdot \left(\operatorname{rbar} - \frac{q}{\sigma} \right) \cdot (1 + \operatorname{rd} - q) \right) + 0 - \rho \cdot (1 + \operatorname{rd} - q) \right) + (1 - \phi) \cdot (\operatorname{rk} \cdot (1 - q)^{\alpha}) \right)$$
#55: $\frac{d}{dq} \left(\operatorname{ew} = \phi \cdot \left(\left(\operatorname{rd} - \lambda \cdot \left(\operatorname{rbar} - \frac{q}{\sigma} \right) \cdot (1 + \operatorname{rd} - q) \right) + 0 - \rho \cdot (1 + \operatorname{rd} - q) \right) + (1 - \phi) \cdot (\operatorname{rk} \cdot (1 - q)^{\alpha}) \right)$

#56:
$$0 = \text{rk} \cdot \alpha \cdot (1 - q) \qquad \cdot (\varphi - 1) - \frac{\varphi \cdot (2 \cdot q \cdot \lambda - \text{rd} \cdot \lambda - \lambda \cdot (\sigma \cdot \tau \text{bar} + 1) - \rho \cdot \sigma)}{\sigma}$$

Above FOC cannot be explicitly solved for q

$$\#57: \quad \frac{d}{dq} \frac{d}{dq} \left(ew = \phi \cdot \left(\left(rd - \lambda \cdot \left(rbar - \frac{q}{\sigma} \right) \cdot (1 + rd - q) \right) + 0 - \rho \cdot (1 + rd - q) \right) + (1 - \phi) \cdot (rk \cdot (1 - q)) \right)$$

#58:
$$0 > \mathsf{rk} \cdot \alpha \cdot (1 - \varphi) \cdot (1 - q) \qquad \cdot (\alpha - 1) - \frac{2 \cdot \lambda \cdot \varphi}{\sigma}$$

Use IFT to evaluate $dq/d\sigma = - dF/d\sigma div dF/dq$

$$\#59 \colon \begin{array}{c} d \\ -d\sigma \end{array} \left(\begin{matrix} \kappa \cdot \alpha \cdot (1-q) \\ \begin{matrix} \kappa \cdot \alpha \cdot (1-q) \end{matrix} \right) - \begin{matrix} \phi \cdot (2 \cdot q \cdot \lambda - rd \cdot \lambda - \lambda \cdot (\sigma \cdot \tau bar + 1) - \rho \cdot \sigma) \end{matrix} \right)$$

#60:
$$\frac{\lambda \cdot \phi \cdot (2 \cdot q - rd - 1)}{2}$$

#61:
$$\frac{d}{da} \left(rk \cdot \alpha \cdot (1-q) - \frac{\varphi \cdot (2 \cdot q \cdot \lambda - rd \cdot \lambda - \lambda \cdot (\sigma \cdot \tau bar + 1) - \rho \cdot \sigma)}{\varphi \cdot (\varphi - 1) - \varphi \cdot (\varphi - 1)} \right)$$

Hence $dq/d\sigma =$

#63:
$$-\frac{\frac{\lambda \cdot \phi \cdot (2 \cdot q - rd - 1)}{2}}{rk \cdot \alpha \cdot (1 - \phi) \cdot (1 - q)}$$

$$\frac{\alpha - 2}{\cdot (\alpha - 1) - \frac{2 \cdot \lambda \cdot \phi}{\sigma}}$$

denominator < 0, Hence, $dq/d\sigma$ < 0 if

#64:
$$\frac{\lambda \cdot \phi \cdot (2 \cdot q - rd - 1)}{2} < 0$$

#65:
$$SOLVE \left(\frac{\lambda \cdot \phi \cdot (2 \cdot q - rd - 1)}{2} < 0, q \right)$$

#66:
$$q < \frac{rd + 1}{2}$$

#67: SOLVE
$$\left(q < \frac{rd + 1}{2}, rd\right)$$

#68:
$$rd > 2 \cdot q - 1$$

max ew for q < q_tilde by adding (14) to top part of (15). Proof of Result 3, Appendix A

#69:
$$ew = \phi \cdot (q - 1) + (1 - \phi) \cdot (rk \cdot (1 - q))$$

#70:
$$\frac{d}{dq} (ew = \phi \cdot (q - 1) + (1 - \phi) \cdot (rk \cdot (1 - q)))$$

eq (A.1)

#71:
$$\alpha - 1$$

$$0 = rk \cdot \alpha \cdot (1 - q) \quad \cdot (\varphi - 1) + \varphi$$

#72:
$$\frac{d}{dq} \frac{d}{dq} (ew = \phi \cdot (q - 1) + (1 - \phi) \cdot (rk \cdot (1 - q)))$$

#73:
$$\alpha - 2$$

$$0 > \text{rk} \cdot \alpha \cdot (1 - \phi) \cdot (1 - q) \qquad \cdot (\alpha - 1)$$

#74: SOLVE(0 =
$$rk \cdot \alpha \cdot (1 - q)$$
 $\cdot (\varphi - 1) + \varphi, q$)

eq (16)

#75:
$$q = 1 - \left(\frac{rk \cdot \alpha \cdot (1 - \phi)}{\phi}\right)^{1/(1 - \alpha)}$$

 \Rightarrow no effect of σ !!! [this is confirmed in Figure 6]

Result 4 and Appendix: measuring the effect σ on EW(high q) < or > EW(low q)

analyzing for which q: EW(high q) > EW(low q) eq (A.2)

#76:
$$\phi \cdot \left(\left(rd - \lambda \cdot \left(rd - \frac{q}{\sigma} \right) \cdot (1 + rd - q) \right) + 0 - \rho \cdot (1 + rd - q) \right) + (1 - \phi) \cdot \left(rk \cdot (1 - q) \right) \ge \phi \cdot (q - 1) + q \cdot (q - q) \right)$$

Date: 8/20/2024 Time: 5:08:37 PM

$$(1 - \phi) \cdot (rk \cdot (1 - q))$$

#77:
$$\phi \cdot \left(\left(rd - \lambda \cdot \left(rbar - \frac{q}{\sigma} \right) \cdot (1 + rd - q) \right) + 0 - \rho \cdot (1 + rd - q) \right) + (1 - \phi) \cdot (rk \cdot (1 - q)) = \phi \cdot (q - 1) + (1 - \phi) \cdot (rk \cdot (1 - q)) \right)$$

#78: SOLVE
$$\left(\phi \cdot \left(\left(rd - \lambda \cdot \left(rbar - \frac{q}{\sigma} \right) \cdot (1 + rd - q) \right) + 0 - \rho \cdot (1 + rd - q) \right) + (1 - \phi) \cdot (rk \cdot (1 - q)) \right) = \phi \cdot (q - q) + (1 - \phi) \cdot (rk \cdot (1 - q)) + (1 - \phi) \cdot$$

#79:
$$q = rd + 1 \lor q = \frac{\sigma \cdot (\lambda \cdot \tau bar + \rho - 1)}{\lambda}$$

do it again in a different way:

#80:
$$\phi \cdot \left(\left(rd - \lambda \cdot \left(rd - \frac{q}{\sigma} \right) \cdot (1 + rd - q) \right) + 0 - \rho \cdot (1 + rd - q) \right) + (1 - \phi) \cdot \left(rk \cdot (1 - q)^{\circ} \right) \ge \phi \cdot (q - 1) + \left((1 - \phi) \cdot (rk \cdot (1 - q)^{\circ}) \right)$$

delete the right hand terms on both sides:

#81:
$$\phi \cdot \left(\left(rd - \lambda \cdot \left(rd - \frac{q}{\sigma} \right) \cdot (1 + rd - q) \right) + 0 - \rho \cdot (1 + rd - q) \right) \ge \phi \cdot (q - 1)$$

delete ϕ both sides

#82:
$$\left(\operatorname{rd} - \lambda \cdot \left(\operatorname{\taubar} - \frac{q}{\sigma}\right) \cdot (1 + \operatorname{rd} - q)\right) + 0 - \rho \cdot (1 + \operatorname{rd} - q) \ge q - 1$$

#83:
$$rd - \lambda \cdot \left(\tau bar - \frac{q}{\sigma}\right) \cdot (1 + rd - q) + 0 - \rho \cdot (1 + rd - q) \ge q - 1$$

#84:
$$\left(rd - \lambda \cdot \left(\tau bar - \frac{q}{\sigma} \right) \cdot (1 + rd - q) + 0 - \rho \cdot (1 + rd - q) \right) - (q - 1) \ge 0$$

$$\#85: \quad \mathsf{SOLVE}\left(\left(\mathsf{rd} \,-\, \lambda \cdot \left(\mathsf{\tau bar} \,-\, \frac{\mathsf{q}}{\sigma}\right) \cdot (1\,+\,\mathsf{rd}\,-\,\mathsf{q})\,+\,0\,-\,\rho \cdot (1\,+\,\mathsf{rd}\,-\,\mathsf{q})\right)\,-\,(\mathsf{q}\,-\,1)\,\geq\,0\,,\,\,\mathsf{q}\right)$$

#86:
$$\frac{\sigma \cdot (\lambda \cdot \tau bar + \rho - 1)}{\lambda} \leq q \leq rd + 1 \vee rd + 1 \leq q \leq \frac{\sigma \cdot (\lambda \cdot \tau bar + \rho - 1)}{\lambda}$$

#87:
$$\frac{\sigma \cdot (\lambda \cdot \tau bar + \rho - 1)}{\lambda} \leq q$$