Routing 1: Traveling Salesman Problem

- Well solved problem
 - in practice and in approximation
 - not in theory

Routing Alternatives

TSP

- Problem: find connected sequence through all nodes of a graph that minimizes total arc cost
 - Termed a tour since returns to starting node
 - Subroutine in most vehicle routing problems
 - Node sequence can represent a route only if all pickups and/or deliveries occur at a single node (depot)

Node sequence = permutation + start node

1 2 3 4 5 6	1	_
-------------	---	---

$$n = 6 \Rightarrow (n-1)! = 120$$
 possible solutions

TSP

• TSP can be solved by a mix of *construction* and *improvement* procedures

- BIP formulation has an exponential number of constraints to eliminate subtours (⇒ column generation techniques)
- Asymmetric: only best-known solutions for large n

$$(n-1)!$$
 $n=13 \Rightarrow \approx \frac{1}{2}$ billion solutions

Symmetric: solved to optimal using BIP

$$c_{ij} = c_{ji} \Rightarrow \frac{(n-1)!}{2}$$
 solutions

Note: n-1 because starting node of a route is arbitrary

• Euclidean: arcs costs = distance between nodes

TSP Construction

 Construction easy since any permutation is feasible and can then be improved

Spacefilling Curve

Sequence determined by 2: 0.021 sorting position along 1-D 3: 0.154 line covering 2-D space 1: 0.471 4: 0.783

Bartholdi, John J., and Loren K. Platzman. "Heuristics Based on Spacefilling Curves for Combinatorial Problems in Euclidean Space." *Management Science*, vol. 34, no. 3, 1988, pp. 291–305. *JSTOR*, www.jstor.org/stable/2632046. Accessed 20 Oct. 2020.

Two-Opt Improvement

Sequences considered at end to verify local optimum: n nodes $\Rightarrow \sum_{j=3}^{n-1} (1) + \sum_{i=2}^{n-2} \sum_{j=i+2}^{n} (1) = \frac{n(n-3)}{2} = 9$ for n = 6

Ex: Two-Opt Improvement

Order in which twoopt considers each sequence:

```
38
                   39
   1 4 3 2 5 6 1 32
   1 3 4 2 5 6 1 31
   1 4 3 2 5 6 1 32
   1 2 4 3 5 6 1 31
  1 5 2 4 3 6 1 21
                   21
        2 5 3 6 1 32
10: 1 3 4 2 5 6 1 31
11:
   1 5 4 2 3 6 1 12
12:
                   34
13:
                1 40
        2 4 5 6 1
                   39
15:
        2 4 3 6 1 21
16:
   1 5 3 2 4 6 1 30
17: 1 5 6 3 2 4 1 31
18:
   1 5 4 3 2 6 1 13
19:
                   18
20: 1 5 4 2 6 3 1
                   20
```

D:	1	2	3	4	5	6	
-:- 1:		 8		 9	 1	 5	
2:	3	0	1	5	4	2	
3:	9	2	0	3	1	1	
4:	8	2	1	0	10	6	
5:	6	7	10	1	0	10	
6:	6	2	5	2	1	0	
NT / NT /							

Note: Not symmetric

Local optimal sequence

Sequences considered at end to verify

local optimum: n nodes \Rightarrow

$$\sum_{j=3}^{n-1} (1) + \sum_{i=2}^{n-2} \sum_{j=i+2}^{n} (1) = \frac{n(n-3)}{2} = 9 \text{ for } n = 6$$

Expected Two-Customer Route Distance

Know: the expected distance from center of a circle, $d_a \approx \frac{2r}{3}$, and the expected angle

between angle between two points is 90° (?); let area $a = \pi$ so that radius r = 1

and expected distance of an m = 2 customer route is $2\left(\frac{2}{3}\right) + \sqrt{2\left(\frac{2}{3}\right)^2} = \frac{2}{3}\left(2 + \sqrt{2}\right)$.


```
span = 360; n = 1e6;
x = rand(n,1)*span; y = rand(n,1)*span;
absDiffDeg = @(a,b) \min(360 - \max(a-b,360), \max(a-b,360));
ang = absDiffDeg(x,y); % Abs difference between two angles
vdisp('min(ang),max(ang),mean(ang)')
    min(ang) max(ang) mean(ang)
               180.00
                          90.02
span = 180; n = 1e6;
x = rand(n,1)*span; y = rand(n,1)*span;
absDiffDeg = @(a,b) \min(360 - mod(a-b,360), mod(a-b,360));
ang = absDiffDeg(x,y); % Abs difference between two angles
vdisp('min(ang),max(ang),mean(ang)')
    min(ang) max(ang) mean(ang)
     0.0002
                          59.98
```

Expected Route Distance

Given m customers in an area a, the density is s = m/a, and the expected distance between customers is $s^{-0.5} = \sqrt{a/m}$, resulting in an estimated total route distance that is proportional to $\varphi m \sqrt{a/m}$. Use known route distance for m = 2 to determine φ :

For
$$a = \pi$$
 and $m = 2$, $\varphi 2\sqrt{\frac{\pi}{2}} = \frac{2}{3}(2 + \sqrt{2}) \Rightarrow \varphi = \frac{2(\sqrt{2} + 1)}{3\sqrt{\pi}} \approx 0.9$, so that

 $\left|\hat{d}_{m}^{TSP}\right| = 0.9 \sqrt{ma}$, for routes passing through the center (DC) of a circular region.

:	m	Simulated	Estimate
-:-			
1:	2	2.26	2.26
2:	5	3.79	3.57
3:	10	5.20	5.04
4:	20	7.02	7.13
5:	50	10.95	11.28
6:	100	15.50	15.95
7:	200	22.09	22.56
8:	500	35.07	35.67
9:	1,000	49.87	50.44

Ex: Tour of NC

Expected Tour Distance

```
@show a = sum(df.ALAND) + sum(df.AWATER)
@show TC<sup>E</sup> = 0.9sqrt(nrow(df)*a)
@show TC°
TC<sup>E</sup>/TC°

a = sum(df.ALAND) + sum(df.AWATER) = 53818.55899999994
TC<sup>E</sup> = 0.9 * sqrt(nrow(df) * a) = 2087.8944606947925
TC° = 2141.2129756166273
0.9750989203180594
```