

第三屆 全国网络与信息安全防护峰会

对话·交流·合作

APT之特种木马检测

李薛

东巽科技(南京)有限公司

目录

1	APT与特种木马
2	了解特种木马
3	发现特种木马
4	工程实践

APT攻击事件频繁

APT (Advanced Persistent Threat)高级持续性威胁,是针

对特定组织所作的复杂且多方位的高级渗透攻击。

2009: 极光攻击

2011: 夜龙攻击

2013:媒体和银行瘫痪

2010:震网攻击核电站

2011: 三一 vs 中联

2013:棱镜计划(PRISM)

2011: 窃取RSA令牌种子

APT三要素

断链式防护理念

针对APT全生命周期链路上各关键环节进行截断式防御 全流量深入分析0Day/nDay漏洞、特种木马、渗透行为等技术手段及战法

典型APT过程

根据FireEye发布的2013年度APT攻击报告显示,通常情况下Web相关攻击发生次数是邮件攻击的五倍。

事件剖析

全球20多家高科技企业被波及,大量核心信息资产泄漏

控制补丁服务器,向终端推送木马程序。

THE PART OF THE PA

从终端尝试连接到服务器,成功后执 行破坏程序并执行。

定时激活数据毁灭功能,造成硬 盘数据永久性毁坏。

根本停不下来

利用漏洞植入特种木马

依靠特种木马记录密码

依靠特种木马进行监控

使用特种木马进行渗透

家族分布Top10

- 1.UnitedStates(125)
- 2.Canada(52)
- 3.Germany(45)
- 4. United Kingdom(43)
- 5.Japan(37)
- 6.Taiwan(35)
- 7.South Korea(34)
- 8.Israel(31)
- 9.Switzerland(22)
- 10.Turkey(21)

目录

1	APT与特种木马	(
2	了解特种木马	
3	发现特种木马	
4	工程实践	

特种木马的影响范围

- 2013年,国家应急中心监测发现我国境内1.5万台主机被特种木马控制,对我国关键基础设施和重要信息系统安全造成严重威胁。
- 国外知名反APT安全公司(FireEye) 调查的结论:超过95%的企业网络中有主机遭受过特种木马入侵,且特种木马样本检测率低于10%。

■ 赛门铁克高级副总裁:"杀毒软件已死。杀毒软件仅能拦截45%的网络 攻击"。

防火墙、IDS、IPS、防毒等传统防御产品无法遏制特种木马攻击。

特种木马的定义

特种木马,一般理解的是为了某次攻击行为特别定制的,针对某个系统、行业的,免杀能力、穿透性和隐藏性超强的远控木马。

从最近的APT事件中采集到的样本可以看出,特种木马多为各种漏洞和常见开源木马的结合。引用漏洞分类概念(从0Day到1Day再到nDay),可将特种木马定义为 ORAT、1RAT、nRAT。

特种木马特点

能够躲避一般管理员常 用的检测工具,使之能 够在系统中隐身

按通信方式分类

在目标本地绑定对 外开放端口,攻击 者可直接连接控制 目标主机进行远程 控制 由隐藏在目标主机上的木马服务端主动连接远程木马控制端。隐蔽性高,防火墙、IDS、IPS等难以防范

按功能分类

按需生产、谨慎使用

按寄宿方式分类

与蠕虫和病毒的技术相结合

- **操作系统** 运行在Windows、Linux、Mac OS、Android、IOS等操作系统下,可以 利用不同操作系统特性隐藏自身
- 2 应用程序 隐藏在浏览器、Java虚拟机、Ghost文件 等应用程序的应用环境中,利用应用复 杂性隐藏自身
- **硬件平台** 隐藏在硬盘、主板、网卡、路由器、芯 片等位置,这些地方的恶意代码检测手 段极其匮乏

常见特种木马

Dark Comet,作者Lesueur, 2012年7月因发现工具被使用于叙利亚 政府打击反政府分子的攻击中,故而宣布停止更新

GhOst RAT, 作者Cooldiyer, 2008年5月开源3.6版本后再无更新, 但至今仍有无数修改版本在流传

Poisonlyy, 2008年2月更新屏幕插件后再无跟新, 主版本停滞在2.3.2, 作者声称需要更多时间和动力来开发新版

Zeus/zbot, 2011年3月2.0.8.9版本源代码泄露后, 衍生出了诸多的变种和模仿者

Gh0st

Reset SSDT.

通过重新从系统文件中读取ntoskrnl内核信息, 在驱动层重置SSDT表以屏蔽杀毒软件

Install Service.

搜索未被占用的服务名,并注册自身为系统服务,寄宿于svchost.exe服务进程

Start Service

启动工作线程初始化自身配置信息、模块插件等,获取并接管目标系统的各种计算机资源

Connect Gh0st.

使用TCP协议周期性期连接连接后台控制端程序,通过超时保活机制保持连接,使用Zlib解压/压缩并封装传递的真实数据

Command&Control

完成命令控制通道的搭建,远程控制端每次控制一种远程资源均建立一个新的Socket连接

PoisonIvy

Add Regedit or Regsvr ActiveX , Inject Process

选择使用修改注册表或注册ActiveX控件的方式完成自启动,并通过注入远程线程完成功能代码的隐蔽执行,同时利用进程的白名单特性绕过防火墙的拦截

Connect Poisonlyy for Command&Control

使用自定义格式的TCP协议一直保持长时间连接,有周期性的心跳信号,使用LZNT1压缩算法对交互数据进行压缩,各种连接操作均使用1个Socket连接进行通信

近期热点特种木马

SpyEye 俄罗斯黑客在美国服罪

融入Rootkit技术后进行APT攻击

Taidor和**LStudio** 广泛使用在CVE-2014-4114漏洞利用

Machete 攻击情报部门、军队、使馆等

美国国安局(NSA)工具库中的特种木马

2013年12月30日,德国《明镜周刊》发表题为《Shopping for Spy Gear: Catalog Advertises NSA Toolbox》的文章,揭秘NSA工具库已经攻破全球首屈一指的网络设备供应商、电脑供应商的安全防御设备或电子产品

BIOS木马

DEITYBOUNCE, 提供一个软件应 用利用主板的BIOS和利用系统管理模 块(System Management Mode)的漏 洞驻留在Dell的PowerEdge服务器上。

SWAP, 可利用刷新BIOS的方法注 入可执行代码到主板BIOS中去,在操 作系统启动过程中激活并插入控制代 码跟随运行。

受影响的包括Dell:

PowerEdge1850/2850/1950/2950

BIOS版本为:

A02、A05、A06的1.1.0、1.2.0或1.3.7

操作系统支持:

Windows Linux FreeBSD Solaris

文件系统支持:

Fat32 NTFS EXT2 EXT3 UFS 1.0

TOP SECRET//COMINT//REL TO USA, FVEY

SWAP **ANT Product Data**

SECRET//COMINT//REL TO USA, FVEY

(TS//SI//REL) SWAP provides : motherboard BIOS and the har execution before the Operating

DEITYBOUNCE

ANT Product Data

(TS//SI//REL) DEITYBOUNCE provides software application persistence on Dell PowerEdge servers by exploiting the motherboard BIOS and utilizing System Management Mode (SMM) to gain periodic execution while the Operating System

(TS//SI//REL) This technique s Windows, Linux, FreeBSD, or 5 EXT2, EXT3, or UFS 1.0.

(TS//SI//REL

(TS//SI//REL) Through remote flash the BIOS and TWISTEDK drive on a target machine in or installer). Once implanted, SW. configurable and will occur whe

Status: Released / Deployed. I Immediate Delivery

(TS//SI//REL) This technique supports multi-processor systems with RAID hardware and Microsoft Windows 2000, 2003, and XP. It currently targets Dell PowerEdge 1850/2850/1950/2950 RAID servers, using BIOS versions A02, A05, A06, 1.1.0, 1.2.0, or 1.3.7.

(TS//SI//REL) Through remote access or interdiction, ARKSTREAM is used to reflash the BIOS on a target machine to implant DEITYBOUNCE and its payload (the implant installer). Implantation via interdiction may be accomplished by nontechnical operator though use of a USB thumb drive. Once implanted, DEITYBOUNCE's frequency of execution (dropping the payload) is configurable and will occur when the target machine powers on.

Status: Released / Deployed. Ready for Immediate Delivery

Unit Cost: \$0

S32221.

ved From: NSA/CSSM 1-52

SECRET//COMINT//REL TO USA, FVEY

硬盘木马

IRATMONK,隐藏于硬盘Firmware固件中,通过 MBR获取执行权限。能够对台式电脑、笔记本电脑 进行持久性控制。

支持品牌: Seagate希捷、Maxtor迈拓、Samsung三星、Western Digital西部数码

硬盘Firmware固件除存放在硬盘EROM或EPROM(可编程只读存储器)中之外,还有部分数据保存在负磁道上,可用专业工具升级更新。

硬盘是从外向内数的,0号磁道在最外面

负磁道

- CI 硬件信息
- FI生产厂家信息
- WE写错误记录表
- RE读错误记录表
- SI容量设定
- ZP区域分配信息

- PL永久缺陷表
- TS缺陷磁道表
- HS实际物理磁头数及排列顺序
- SM最高级加密状态及密码
- SU用户级加密状态及密码

目录

1	APT与特种木马	
2	了解特种木马	(
3	发现特种木马	
4	工程实践	

从流量中挖掘特种木马

采用大数据分析技术来检测APT攻击行为的设备。该设备部署在网络出口处采集网络通信数据,分析通信数据中的木马通信痕迹,识别木马特征和行为,在网络层实现对全网范围内木马识别与追踪。

木马检测

已知木马

将访问黑IP、黑域名、黑URL, 和匹配到木马流量特征的网络 行为定性为已知木马,即木马。

已知/未知木马

具有挂马、钓鱼、扫描等恶意 攻击行为的网页、IP、域名定 义为威胁源。

未知木马

具有已知木马行为、威胁源 特征以及网络攻击特征的事 件发现过程定义为行为分析。

木马检测

已知木马通信行为特征→已知木马

- 木马程序分为控制端和被控端两个部分,其中被控端用来植入到用户的电脑中,控制端会在公网上提供一个IP地址、域名或URL让被控端连接完成木马上线。
- 从木马程序样本中提取的IP、域名、URL形成黑名单库,同时提取通信流量内容作为木马流量特征,通过黑名单和流量特征的检测,识别网络中的已知木马。

木马通信特征码 黑IP 木马在网络通信过程中,有自定 木马进行网络通信,包括存 义的通信格式和内容,包括心跳 活告知、命令接收、文件传 包、控制命令、文件传输、视频 输、视频传输、更新等网络 监控等,存在于流量中的木马通 行为,远程连接的IP地址。 信行为。 黑域名 黑URL 木马进行网络通信,会将远程连 接的地址配置成域名形式,若无 真实的远程连接IP地址,或需要 固定IP使用,使用动态域名的形 从远程服务器上获取新的功能模 块文件、配置文件、更新信息, 式配置远程连接地址,木马通过 会以URL的形式请求相关信息。 解析域名可获得连接IP地址。

威胁分析

已知威胁源特征库→已知/未知的木马植入

- 网络中主动的或被动的通信行为,可能导致终端或服务器被植入木马、被黑客控制或信息泄露, 包括访问挂马页面、钓鱼页面,黑客远程扫描、脆弱点测试等行为。
- 铁穹系统将具有挂马、钓鱼、扫描等恶意攻击行为的网页、IP、域名定义为威胁源。

威胁IP

主动访问威胁IP可 能会致恶意代码下 载到本地执行。

威胁域名

主动访问威胁域名 可能会致恶意代码 下载到本地执行。

威胁URL

可能会致恶意代 码下载到本地执 行。

HTTP访问

主动访问威胁URL HTML页面存在挂 马代码,或存在 Shellcode,用户 点击访问之后会 使页面中的恶意 代码执行。

文件传输

具有恶意可执行文 件、黑客工具、漏 洞利用代码等网络 流量和文件定性为 文件传输威胁。

可疑邮件

利用冒名的方式 发送邮件,或在 邮件正文或附件 中含有恶意代码 的邮件。

行为分析

未知特征+未知通信行为→未知木马通信行为

- 以库特征的形式来识别木马通信行为,虽然精确性较高,但仅局限于已知木马的识别。
- 从已知木马行为、威胁源特征以及APT攻击事件总结出可用行为线索,用来发现未知木马和威胁。
- 铁穹系统将具有已知木马行为、威胁源特征以及APT特征的事件发现过程定义为行为分析。

动态域名

- 被木马利用作为连接地址的域名,通过该域名解析出实际的IP地址,动态域名一般没有固定的IP,但无论IP地址如何变化,都可以通过该动态域名解析出正确的连接地址。
- 通过动态域名后缀库的匹配, 统计网络中活跃的动态域名。

协议异常

- 为了躲避安全监控,木马常会 会采取利用正常的通信协议或 端口来进行伪装,有部分伪装 的内容与标准的协议不符。
- 统计协议和常见端口不匹配、HTTP协议、DNS协议、邮件类型协议等通信行为。

心跳

- 木马检测控制端是否存活的一 种方式,通常会间隔相同或不 同时间段与控制端进行通信。
- 间隔时间存在规律,且数据包 内容的相同的数据报文定性为 心跳数据。

行为分析

未知特征+未知通信行为→未知木马通信行为

- 以库特征的形式来识别木马通信行为,虽然精确性较高,但仅局限于已知木马的识别。
- 从已知木马行为、威胁源特征以及APT攻击事件总结出可用行为线索,用来发现未知木马和威胁。
- 铁穹系统将具有已知木马行为、威胁源特征以及APT特征的事件发现过程定义为行为分析。

非常见端口

- 木马一般会打开不常用的端口进行通信,或在获取系统权限进行远程控制时打开非常见端口进行控制。
- 统计所有通信端口, 并利用端口白名单机 制筛选出非常见端口。

规律域名统计

- 被木马利用作为连接 地址的域名,通过该 域名解析出实际的IP 地址,访问次数会十 分频繁,或仅有几次。
- 统计所有域名访问次数统计。

URL访问统计

- 被木马利用作为连接、 配置获取等作用的 URL,访问次数会十 分频繁,或仅有几次。
- 内网所有IP地址访问 URL的访问记录,并 记录网页源码,提供 下载分析。

流量异常

- 单个会话流量比超过X;
- 单个内网IP长期流量比 曲线突变;
- 单个内网IP传输总流量 超过5GB;
- 单个内网IP外联次数超 过X:
- 单个内网IP外联时长超过X。

事件关联

诸如异常流量、心跳、连接动态域名等这些事件本身并不足以认定木马通信 行为,一旦将这些事件通过其内在的联系进行关联,就能形成一整条证据链路, 能够判定木马攻击行为。

铁穹系统将各种木马行为、威胁源特征以及典型行为线索等进行事件关联分析,识别未知木马和未知威胁。

关联规则	长期跟踪木马攻击行为, 把攻击流程 凝练为关联规则
统计分析	根据攻击方式、频率、周期、尺度来分析攻击者的身份、角色等
模式发现	利用木马攻击独有的行为模式,从事件中寻找、推测和预测事件关联性

目录

1	APT与特种木马
2	了解特种木马
3	发现特种木马
4	工程实践

政策法规

公安部: 《信息系统安全等级保护基本要求》《信息系统安全等级保护测评要求》			
第三级	网络安全-入侵 防范(G3)	a) 应在网络边界处监视以下攻击行为:端口扫描、强力攻击、 木马后门攻击 、拒绝服务攻击、缓冲区溢出攻击、IP碎片攻击和网络蠕虫攻击等; b) 当检测到攻击行为时,记录攻击源IP、攻击类型、攻击目的、攻击时间,在发生严重入侵事件时应提供报警。	
	网络安全-恶意 代码防范(G3)	a) 应在 <mark>网络边界处对恶意代码进行检测</mark> 和清除; b) 应维护恶意代码库的升级和检测系统的更新。	

工信部: 《移动互联网恶意程序监测与处置机制》、关于印发《木马和僵尸网络监测与处置机制》通知		
	11.	1、威胁较大的 木马和僵尸网络IP 地址、端口、发现时间、所属基础电信运营企业。 2、木马和僵尸网络使用的恶意域名。 3、木马和僵尸网络的规模和潜在危害。
《移动互联网恶意 第六条 移动通信运营企业、CNCERT应不断提高移动互联网 <mark>恶意程序的样本捕获和监测处置</mark> 程序监测与处置机 制》		

中国人民银行:《网上银行系统信息安全通用规范》(JRT 0068-2012)			
服务器端安全:基本要求	网络安全-入侵防范	部署入侵检测系统/入侵防御系统(IDS/IPS),对网络异常流量进行监控, 监控并记录以下攻击行为:端口扫描、强力攻击、木马后门攻击、拒绝服务 攻击、缓冲区溢出攻击、IP碎片攻击和网络蠕虫攻击等。	
	网络安全-恶意代码防范	在网络边界部署入侵检测/防护系统、防病毒网关等防病毒设备, <mark>对恶意代</mark> 码进行检测和消除。应定期对恶意代码防护设备进行代码库升级和系统更新。	

检测的难点

• 即便不考虑检测隐藏在各种硬件设备中的特种木马,也同样是困难重重

网络复杂

因终端设备多且网络结构复杂,故人工上机检测和协调部门统一部署终端检测软件都不轻松

缺少工具

杀毒软件不可靠,特种木马都是已经经过免杀 处理过的,已经具备绕过杀软的能力

任务量大

需分析的日志量巨大,需要专业人员使用 专业工具进行针对性分析才能有成效

一种点面结合的解决方法

Discovery

网关出口处的网络检测

通过在网关处分析网络流量,以大数据的方法统计和识别特种 木马的通信行为模型,判断可疑通信在内网的IP地址,从而定 位到内网终端.

可疑终端上机检测

使用各种ARK工具针对性挖掘可疑通信的发起源,逐项检查进程、注册表、服务、文件、网络、系统、日志等,并尝试分析感染源.

目标定位

样本采集

03 取取

取证和溯源

取证时先尽可能的保留环境避免触发自毁机制,还需注意被擦除、隐藏、加密的数据,采样完成后可进行溯源分析.

处理方法及安全建议

分析清楚特种木马的存活机制之后,就可以针对性的提供处理方法了, 不过大多时候都是建议先封存再更换终端设备.

解决方案

特种木马的溯源分析

取证难

逆向难

溯源线索

行为习惯也是用于辅助分辨特种木马家族产地的一个重要线索

寻找第一跳的背后

线索

人肉搜索

通过猜测特种木马的二进制文件中遗留的各种信息,再结合搜索引擎和各种互联网资源等对攻击者进行人肉搜索,确定攻击者或制造者身份。

灰网

陷阱钓鱼

在网络中或终端上布设陷阱,等待攻击者将陷阱取回查看。一旦攻击者未注意数据处理的环境安全性,就可以获取到攻击者的真实网络地址信息。

反制

主动攻击

通过口令猜解、网络攻击、 溢出特种木马控制端程序 等方法获得后台管理权后 再进一步分析,或者尝试 分析控制后台的交互IP和 流量讲出方向。

Luck Outwit Attack

应用案例

用户需求:

检测集团总公司和子公司内网中可能存在网络安全威胁,降低信息泄密风险。

部署说明:

- 在集团分公司和总公司外网的网络出口交 换机处旁路部署铁穹iDome采集设备;
- 在总公司部署分析设备和管控设备,完成 对集团全网的安全威胁检测。

用户收益:

- 发现总公司核心服务器感染了两个后门程序,并被创建了hack和hacker两个用户。
- 一分公司业务应用服务器感染多个木马,严重的恶意LPK劫持程序将全盘感染,并发现多个黑 客工具,此服务器被黑客控制并利用。
- 在提供详细的网络威胁检测报告,从报告中可了解到集团总公司和分公司的安全防御不足,报 告中同时提出了网络安全防御系统的建设方案为用户提供参考。

Thank You!

谢谗