Idea

Given: connected graph G=(V,E), startnode $s\in V$ **Idea**: Starting from s, search in all directions uniformly

- visit vertices u with distance $d_G(s,u)=1$, then with $d_G(s,u)=2$, and so on.
- traverse a BFS-tree T with root s: branches of T consist of shortest paths to s.
- to build T, assign the following values to each vertex u: $pre(u) \quad \text{predecessor of } u \text{ in the BFS-Tree } T$ $state(u) \quad \text{new (unvisited), labelled (visited),}$ saturated (all neighbours visited)
- store visited unsaturated vertices in a queue Q
- initially: Q empty, pre(u) not set, state(u) = new

Pseudo-Code

Properties

 \bullet time complexity

- $\begin{array}{ll} \bullet & \mathsf{Each} \ \mathsf{vertex} \ \mathsf{is} \ \mathsf{inserted} \ \mathsf{into} \ Q \ \mathsf{exactly} \ \mathsf{once} \\ \Theta(1) \ \mathsf{time} \ \mathsf{per} \ \mathsf{vertex} & \Rightarrow \Theta(n) \ \mathsf{for} \ \mathsf{all} \ \mathsf{vertices} \end{array}$
- After removal of a vertex u from Q, the algorithm goes through the adjacency-list of u:
 Θ(degree(u)) time for u ⇒ How much for all vertices?

Every edge contributes to exactly two lists

$$\Rightarrow \sum_{u \in V} \mathsf{degree}(u) = 2m \qquad \Rightarrow \Theta(m) \text{ for all vertices}$$

- \Rightarrow The whole algorithm: $\Theta(n+m)$ time in total
- space complexity

$$\Theta(n)$$
 for Q , +graph $\Rightarrow \Theta(n+m)$ space in total

Distance in Unweighted Graph

- All the shortest paths from some vertex u to s are coded in the BFS-tree T via the pre-pointers.
- distances to s can be easily computed during BFS:
 - $d_G(s,s) = 0$
 - $o d_G(s, u) = d_G(s, pre(u)) + 1$
- \Rightarrow Running BFS for n times (once for each vertex), one can compute the distances between any $u,v\in V$
 - \Rightarrow The distance-matrix of G can be computed in $\Theta(n\cdot m)$ time and $\Theta(n^2)$ space if G is connected.

Recognizing Bipartite Graphs

- [[Graphs]] are bipartite if 2-colorable
- \bullet combine this with [[Breadth-First Search]]

Algorithm:

- ullet Choose arbitrary vertex s and color it blue
- ullet Traverse G in BFS-Order, starting from s
- For each vertex u that is removed from the queue Q:
 - $\circ \ u$ is colored, w.l.o.g. say red
 - \circ check for all colored neighbors of u that they are blue. If no: return false
 - \circ color all uncolored neighbors of u in blue
- After processing all vertices: return true.

[[Shortest Path Algorithms]]