Name: Manish Shivabhakti CE III year/II semester

Roll no: 63 Lab Report - 2

Task 1: Arithmetic logic unit (ALU) design

Components

Half Adder

A half-adder is a fundamental digital circuit used in computing and digital electronics to perform the addition of two single-bit binary numbers. It is the simplest form of an adder, forming the basic building block for more complex adder circuits like full adders and multibit adders.

Components of a Half Adder

Inputs: The half adder takes two single-bit binary inputs, often labeled as A and B.

Outputs: It produces two outputs:

Sum (S): The result of the binary addition of A and B.

Carry (C): The carry-out bit that indicates if there is an overflow from the sum.

Truth table

Inputs		Outputs		
Α	В	Sum	Carry	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

Full Adder

A full adder is an essential digital circuit used to perform the addition of binary numbers. Unlike a half adder, which can only add two single-bit numbers without considering a carry input, a full adder can add three single-bit numbers: two significant bits and an additional carry-in bit from a previous addition. This capability makes the full adder a crucial component for constructing multi-bit binary adders used in arithmetic logic units (ALUs) and other digital systems.

Components of a Full Adder

Inputs:

A: First binary digit.

B: Second binary digit.

Cin (Carry-in): Carry from the previous lower significant bit addition.

Outputs:

Sum (S): The result of the binary addition of A, B, and Cin.

Carry-out (Cout): The carry generated from the addition, which will be used as the carry-in for the next higher significant bit.

Circuit Diagram

Truth Table

Inputs			Outputs	
Α	В	C _{in}	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Multiplexer

A multiplexer, often abbreviated as MUX, is a fundamental digital component used in electronics to select one of many input signals and forward the selected input to a single output line. It functions as a data selector, allowing multiple input signals to share one device or resource, such as an analog-to-digital converter or a data bus, thereby reducing the number of required data paths.

Components and Functionality

Inputs: A multiplexer has multiple input lines.

Select Lines: It has a set of select lines or control lines. These select lines determine which input is connected to the output.

Output: A single output line that carries the signal from the selected input.

Circuit Diagram

Truth table

	Output		
S ₂	S ₁	So	Y
0	0	0	A ₀
0	0	1	A ₁
0	1	0	A ₂
0	1	1	A ₃
1	0	0	A ₄
1	0	1	A ₅
1	1	0	A ₆
1	1	1	A ₇

Arithmetic Logic Unit

Task 2: Design a Calculator

Components

ALU

Internal Circuit for ALU

Adder

MUX

Flags

Conclusion

Using the above components, the Calculator was designed using proteus.