Scientific Computing (MATH6183001)

Problem Set 4 - Regular Expressions and Non-Regular Languages

July 23, 2024

Solve totally 3 problems and at least one subproblem from each of the sections.

1 Regular Expressions

Problem 1. For each of the following languages, give two strings that are members and two strings that are not members — a total of four strings for each part. Assume the alphabet $\Sigma = \{a,b\}$ in all parts.

- a. a(ba)*b
- b. $\Sigma^* a \Sigma^* b \Sigma^* a \Sigma^*$
- c. $(a \cup ba \cup bb)\Sigma^*$

Problem 2. Convert the following regular expressions to nondeterministic finite automata.

- a. $(0 \cup 1)^*000(0 \cup 1)^*$
- b. $(((00)^*(11)) \cup 01)^*$
- c. $(0 \cup \epsilon)1^*$

Problem 3. Give regular expressions generating the following languages.

- a. $\{w \mid \text{the length of } w \text{ is at most } 5\}.$
- b. {w | w contains at least three 1s}.
- c. {w | w contains at least two 0s and at most one 1}.

Problem 4. Convert the following finite automata to regular expressions.

2 Non-Regular Languages and Pumping Lemma

Problem 5. Use the pumping lemma to show that the following languages are not regular.

- a. $A = \{www \mid w \in \{a, b\}^*\}$
- b. $\{0^n 1^m 0^n \mid m, n \ge 0\}$
- c. $\{wtw|w, t \in \{0,1\}^+\}$

Problem 6. For any string $w = w_1 w_2 ... w_n$, the reverse of w, written w^R , is the string w in reverse order, $w_n ... w_2 w_1$. For any language A, let $A^R = \{w^R | w \in A\}$. Show that if A is regular, so is A^R .

Problem 7. Let $\Sigma = \{1, 0\}$ and let $Y = \{w | w = x_1 0 x_2 0 ... 0 x_k \text{ for } k \geq 0, \text{ each } x_i \in 1^*, \text{ and } x_i \neq x_j \text{ for } i \neq j\}$. Prove that Y is not regular.