

Prof. Seungchul Lee Industrial AI Lab.

Supervised Learning

Discriminative model

The discriminative model learns how to classify input to its class.

Unsupervised Learning

Generative model

Probability Distribution

Probability density function

There is a $p_{data}(x)$ that represents the distribution of actual images.

Probability Density Estimation Problem

• If $P_{model}(x)$ can be estimated as close to $P_{data}(x)$, then data can be generated by sampling from $P_{model}(x)$

Generative Models from Lower Dimension

- Learn transformation via a neural network
- Start by sampling the code vector z from a fixed, simple distribution (e.g. uniform distribution or Gaussian distribution)
- Then this code vector is passed as input to a deterministic generator network G, which produces an output sample x = G(z)

Deterministic Transformation (by Network)

• 1-dimensional example:

- Remember
 - Network does not generate distribution, but
 - It maps known distribution to target distribution

- In generative modeling, we'd like to train a network that models a distribution, such as a distribution over images.
- GANs do not work with any explicit density function!
 - Instead, take game-theoretic approach

Turing Test

- One way to judge the quality of the model is to sample from it.
- GANs are based on a very different idea:
 - Model to produce samples which are indistinguishable from the real data, as judged by a discriminator network whose job is to tell real from fake

- The idea behind Generative Adversarial Networks (GANs): train two different networks
 - Generator network: try to produce realistic-looking samples
 - Discriminator network: try to distinguish between real and fake data
- The generator network tries to fool the discriminator network

Analogous to Turing Test

Analogous to Turing Test

Intuition for GAN

Discriminator Perspective (1/2)

Discriminator Perspective (2/2)

Generator Perspective

실시간 강의자료

[VAE 모델 개요도 및 Loss]

[GAN 모델 개요도 및 Loss]

• Step 1

: 고정된 입력에서 데이터 1개 생성

• Step 2

: 고정된 입력에서 데이터 다수 생성

• Step 3

: 입력의 특징으로 latent vector 구성

POSTECH

• Step 4

: Latent vector with simple distribution (e.g. uniform distribution or Gaussian distribution)

• Step 5

: KL-divergence

```
generation_loss = mean(square(generated_image - real_image))
latent_loss = KL-Divergence(latent_variable, unit_gaussian)
loss = generation_loss + latent_loss
```


VAE vs GAN

Model	Optimization	Image Quality	Generalization
VAE	 Stochastic gradient descent Converge to local minimum Easier 	SmoothBlurry	Tend to remember input images
GAN	 Alternating stochastic gradient descent Converge to saddle points Harder Model collapsing Unstable convergence 	SharpArtifact	Generate new unseen images

GAN Implementation in TensorFlow

TensorFlow Implementation

Generator

```
generator = tf.keras.models.Sequential([
    tf.keras.layers.Dense(units = 256, input_dim = 100, activation = 'relu'),
    tf.keras.layers.Dense(units = 784, activation = 'sigmoid')
])
```


Discriminator

```
discriminator = tf.keras.models.Sequential([
    tf.keras.layers.Dense(units = 256, input_dim = 784, activation = 'relu'),
    tf.keras.layers.Dense(units = 1, activation = 'sigmoid'),
])
```

Assume x is MNIST (784 dimension)

Discriminator

Combined

```
combined_input = tf.keras.layers.Input(shape = (100,))
generated = generator(combined_input)
discriminator.trainable = False
combined_output = discriminator(generated)

combined = tf.keras.models.Model(inputs = combined_input, outputs = combined_output)
```


Training: Discriminator

Forward, Bac


```
n iter = 5000
batch size = 50
fake = np.zeros(batch_size)
real = np.ones(batch size)
for i in range(n_iter):
    # Train Discriminator
   noise = make_noise(batch_size)
   generated images = generator.predict(noise)
   idx = np.random.randint(0, train_x.shape[0], batch_size)
    real_images = train_x[idx]
   D_loss_real = discriminator.train_on_batch(real_images, real)
   D_loss_fake = discriminator.train_on_batch(generated_images, fake)
   D loss = D loss real + D loss fake
    # Train Generator
   noise = make_noise(batch_size)
   G_loss = combined.train_on_batch(noise, real)
```

Training: Generator

Train the generator to deceive the discriminator

Forward, Backwai


```
n iter = 5000
batch size = 50
fake = np.zeros(batch_size)
real = np.ones(batch size)
for i in range(n_iter):
   # Train Discriminator
   noise = make_noise(batch_size)
   generated images = generator.predict(noise)
   idx = np.random.randint(0, train_x.shape[0], batch_size)
    real_images = train_x[idx]
   D_loss_real = discriminator.train_on_batch(real_images, real)
   D_loss_fake = discriminator.train_on_batch(generated_images, fake)
   D_loss = D_loss_real + D_loss_fake
   # Train Generator
   noise = make_noise(batch_size)
   G_loss = combined.train_on_batch(noise, real)
```

Generated Images

Discriminator Loss: 0.371719628572464

Generator Loss: 2.474647283554077

Discriminator Loss: 0.38926680386066437

Generator Loss: 2.30230712890625

