MĚŘICÍ USMĚRŇOVAČ

Jakub Dvořák

22.10.2020

1 Úkol měření

- 1. Změřte závislost střední hodnoty výstupního proudu na efektivní hodnotě vstupního napětí polovodičového usměrňovače v Graetzově zapojení, zatíženého rezistorem R_1 = 100 Ω . Střední hodnotu výstupního proud určete z úbytku napětí na tomto odporu (zapojení dle obr. 1, rozsah stejnosměrného voltmetru V_1 nastavte 200 mV) a jeho průběh sledujte osciloskopem.
- 2. Před polovodičový usměrňovač v Graetzově zapojení zařaď te odporovou dekádu RD (viz obr. 2) a experimentálně nastavte hodnotu odporu RD takovou, aby z této kombinace vznikl střídavý číslicový voltmetr s rozsahem 2 V (rozsah stejnosměrného voltmetru V_1 nastavte 200 mV). Změřte závislost stejnosměrného výstupního napětí U_2 na efektivní hodnotě napětí vstupního. Průběh napětí na zatěžovacím rezistoru R_2 sledujte osciloskopem.
- 3. Voltmetr se stejným rozsahem jako v bodě 2 realizujte pomocí operačního zesilovače s usměrňovačem ve zpětné vazbě podle schématu na obr. 3a nebo 3b. Odvoď te příslušný vztah a vypočtěte hodnotu odporu RD tak, aby efektivní hodnotě vstupního napětí 1 V odpovídala střední hodnota napětí na rezistoru R₁ U_{R1} = 100 mV. Experimentálně dostavte hodnotu odporu R_D tak, aby byl tento požadavek skutečně splněn, a vysvětlete případný rozdíl oproti vypočtené hodnotě.
- 4. Opět změřte závislost stejnosměrného výstupního napětí na efektivní hodnotě napětí vstupního. Osciloskopem sledujte nejen průběh proudu, ale i průběh napětí na výstupu OZ. Vysvětlete funkci OZ jako zdroje proudu.

Poznámka: Každou závislost změřte v 7 bodech (pro napětí $U_2 = 5$; 10; 25; 50; 100; 150; 200 mV měřené voltmetrem V_2). Naměřené průběhy vyneste do společného grafu.

2 Schéma zapojení

Obrázek 1: Měření voltampérové charakteristiky usměrňovače zatíženého rezistorem R_1

Obrázek 2: Měření převodní charakteristiky sestaveného voltmetru s pasivním usměrňovačem

Obrázek 3: Zapojení sestaveného voltmetru s operačním usměrňovačem

3 Seznam použitých přístrojů

- V₁ Analogový voltmetr střídavý, tř přesnosti 1,5, rozsahy 2,4 V, 6 V
- V_1 Digitální multimetr DM-4418, rozsah 200 mV, přesnost (0,1 % z údaje + 4 digity)
- Osc Osciloskop GoldStar OS-9020G, 20 MHz
- P_1 Přípravek s dvoucestným usměrňovačem, zatěžovacím rezistorem R_1 a RC filtrem
- P₁2 Přípravek s operačním zesilovačem

4 Teoretický úvod

Při měření střídavého napětí je nutno průběh napětí usměrnit. Nejjednodušším způsobem je použití diod v můstku. Jejich nelineární VA charakteristika jim ale nedovoluje přesné měření v oblasti, kdy se napětí na diodách pohybuje pod, nebo v oblasti dopředného napětí. Tato vlastnost jde kompenzovat

předřadným odporem, čímž zlinearizujeme větší část u počátku, ale stále se jedná o nelineární charakteristiku. Měřící přístroje využívající diodového můstku často nemají při začátku rozsahu stupnici, jelikož nelze provést přesné měření. Řešením je použití můstku s operačním zesilovačem ve zpětné vazbě viz obr. 3.

Odpor odporové dekády R_D vypočítáme následovně:

$$\begin{split} \frac{U_2}{R_1} &= \frac{U_{1_S}}{R_D} \\ U_{ef} &= U_{str}/1, 11 \end{split}$$

- 5 Naměřené hodnoty
- 6 Zpracování naměřených hodnot
- 7 Závěrečné vyhodnocení

Seznam použité literatury a zdrojů informací

Seznam použitých internetových zdrojů

[1] Návod k laboratorní úloze