

Quantitative Social Science Methods, I, Lecture Notes: Model Evaluation

Gary King¹
Institute for Quantitative Social Science
Harvard University

August 17, 2020

¹GaryKing.org

How Do You Know Which Model is Better?

Robust Standard Errors

A Better Way to Use Robust SEs: An Application

Evaluation by Out-of-Sample Forecast

- Your job: find the underlying (persistent) structure, not idiosyncratic features in your data
- Partition data: between training and test sets
- Fit model to training set; predict test set
- · Compare to truth for average prediction and full distribution
- E.g.: for Pr(y = 1) = 0.2, 20% in test set should be 1s
- · Best test sets: truly out-of-sample
- If world changes: model may fail anyway

See Trevor Hastie et al. 2001. The Elements of Statistical Learning, Springer, Fig 7.1

Other Methods of Evaluating Models

- Cross-validation
 - The idea: randomly select k observations as the "test set"; evaluate with rest of data as training; set aside another set of k observations; evaluate; Repeat; report performance averaged over subsets
 - Useful for small data sets; out-of-sample test sets are better
- Fit, in general: Look for all possible observable implications of a model, and compare to observations. (Think. Be creative here!)
- · Fit: continuous variables
 - The usual regression diagnostics
 - E.G., plots of $e = y \hat{y}$ by X, Y or \hat{y}
 - Check more than the means. E.g., plot e by \hat{y} and draw a line at 0 and at $\pm 1, 2$ se's. 66%, 95% of the observations should fall between the lines.
 - For graphics:
 - · transform bounded variables
 - · transform heteroskedastic results
 - · highlight key results; label everything

Binary Model Evaluation by ROC Curves

- Binary predictions require a normative decision
 - C: number of times more costly misclassifying 1 than 0
 - C must be chosen independently of the data
 - Justification: philosophy, policymaker survey, literature,...
 - Decision theory: choose Y = 1 when $\hat{\pi} > 1/(1 + C)$; 0 otherwise
 - If C = 1, predict y = 1 when $\hat{\pi} > 0.5$
 - If C = 2, predict y = 1 when $\hat{\pi} > 1/3$
 - Compute: (a) % of 1s correctly predicted; (b) % of 0s correctly predicted; (c) patterns in errors in different forecasts
- ROC (receiver-operator characteristic) curves
 - For every possible C: Compute %1s and %0s correctly predicted
 - Plot %1s by %0s correctly predicted
 - Overlay curves for several models
 - If one curve is above another the whole way, then it dominates, no matter your normative decision (about C)
 - Otherwise, one model is better than the other in only given specificed ranges of *C*

ROC Curve In Sample

In-sample ROC on left

(from Gary King and Langche Zeng. "Improving Forecasts of State Failure," *World Politics*, 2001)

ROC Curve Out-of-Sample

Out-of-sample ROC on left

Calibration for Evaluating Binary Models

- Sort estimated probabilities into bins of say 0.1 width: [0,0.1), [0.1,0.2),..., [0.9,1].
- In each bin, compute: (a) mean predictions (≈ 0.05, 0.15, etc.) and (b) the average fraction of 1s
- Plot (a) by (b) and look for systematic deviation from 45° line

In-sample calibration graph on right

How Do You Know Which Model is Better?

Robust Standard Errors

A Better Way to Use Robust SEs: An Application

Robust Standard Errors 9/19

Robust SEs

- Widely (mis)used: > 141,000 cites, + ≈ 1000/month
- Are: a way to estimate $V(\hat{\theta})$ with fewer assumptions
- Are Not: A way to estimate $V(\hat{\theta})$ without any assumptions
- · Are: useful when only some assumptions are violated
- Are Not: A way to inoculate yourself from criticism
- · When SEs and RSEs differ:
 - Best case
 - Some QOIs (β in regression): unbiased but inefficient
 - Other QOIs (Pr(Y > 0.6)): biased
 - Worst case
 - · Misspecification is more widespread
 - · All QOIs are biased
- · Are: A good test for misspecification

Regression Model Variance Specification

- · Linear-normal regression model:
 - 1. $Y_i \sim N(\mu_i, \sigma^2)$ (systematic component)
 - 2. $\mu_i = X_i \beta$ (stochastic component)
 - 3. $Y_i \perp Y_j \mid X, \forall i \neq j$ (independence assumption)
- Equivalently: $Y_{n\times 1} \sim N(X_{n\times k_{k\times 1}}, \sum_{n\times n})$, where $\Sigma = \sigma^2 I$; that is:

$$\Sigma = \left(\begin{array}{cccc} \sigma_{11}^2 & \sigma_{12}^2 & \cdots & \sigma_{1n}^2 \\ \sigma_{21}^2 & \sigma_{22}^2 & \cdots & \sigma_{2n}^2 \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1}^2 & \sigma_{n2}^2 & \cdots & \sigma_{nn}^2 \end{array} \right) \left(\begin{array}{cccc} \sigma_{11}^2 & \sigma_{12}^2 & \cdots & \sigma_{1n}^2 \\ \sigma_{21}^2 & \sigma_{22}^2 & \cdots & \sigma_{2n}^2 \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1}^2 & \sigma_{n2}^2 & \cdots & \sigma_{nn}^2 \end{array} \right) \left(\begin{array}{cccc} \sigma_{11}^2 & 0 & \cdots \\ \sigma_{11}^2 & 0 & \cdots \\ \sigma_{21}^2 & \sigma_{22}^2 & \cdots & \sigma_{2n}^2 \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1}^2 & \sigma_{n2}^2 & \cdots & \sigma_{nn}^2 \end{array} \right) \left(\begin{array}{cccc} \sigma_{11}^2 & 0 & \cdots \\ 0 & \sigma_{22}^2 & \cdots \\ \vdots & \vdots & \ddots \\ 0 & 0 & \cdots \end{array} \right)$$

Variance matrix unconstrained Variance matrix unconstrained (includes covariances) Now assume independence (set covariances to zero) Still allows for heteroskedasticity Now assume independence and homoskedasticity Standard linear-normal regression model assumptions

What if $V(Y) = \Sigma \neq \sigma^2 I$ and we run a regression?

- Coefficients $b = Q^{-1}X'y$ (with Q = X'X) unbiased: $E(b) = E(Q^{-1}X'y) = Q^{-1}X'E(y) = Q^{-1}X'X\beta = \beta$
- True variance: $V(b) = V(Q^{-1}X'y) = Q^{-1}X'V(y)XQ^{-1} = Q^{-1}X'\Sigma XQ^{-1} \neq \sigma^2Q^{-1}$
- Usual estimate of $V(b) = \sigma^2 Q^{-1}$: biased
- Model sims are wrong! → other QOIs are biased
- Estimating all the unknowns in Σ : seems hopeless
- Key Insight: Need to estimate fewer parameters than it seems

•
$$V(b) = Q^{-1} \underbrace{X' \sum_{k \times n (n \times n) n \times k} X}_{k \times k} Q^{-1} = Q^{-1} \underbrace{G}_{k \times k} Q^{-1}$$
, with $k \ll n$

- Can estimate V(b) by replacing σ_i^2 with e_i^2 in Σ
- · Generalizes to any MLE model
- · Result: RSEs are statistically consistent
- · But: The model, sims, QOI estimates are still wrong

Model Misspecified

(point estimates biased)

Model Correct

(point estimates corre

The Goldilocks Region is not Idyllic

- · Only a few QOIs can be estimated
 - E.g., Y: Dem proportion of two-party vote
 - Can estimate: β
 - · Can't estimate:
 - probability the Democrat wins
 - · variation in the vote outcome
 - · vote predictions with CIs
 - We don't know: the substantive meaning of our results. How big are they, really?
 - We can't check: whether model implications are realistic
- Parts of the model are wrong: why do we think the rest is right?
- If SE≠RSE, we should: find missspecification, fix model, rerun until SE=RSE

How Do You Know Which Model is Better?

Robust Standard Errors

A Better Way to Use Robust SEs: An Application

Replication of Neumayer (ISQ, 2003)

- Claim: "Multilateral aid flows...exhibit a bias toward less populous countries."
- Method: Linear regression of multilateral aid flows on log-population, squared log-population, and control variables
- Result: Coefficient on log-population: -3.13
- Replication: Robust SE (0.72) twice classical SE (0.37)
 - → Clear evidence of misspecification
- Correction: Apply Box-Cox transformation of Y (like a log)
- New test: Robust SE (0.34) ≈ classical SE (0.32)
 - → No evidence of misspecification

Box-Cox Transformation makes Y Normal

Quiz: Is this a good test of the new specification?

Transformation of *Y*: Removes Heteroskedasticty

Results: Transformed Model, Opposite Results

Misspecification → bias

Quiz: Why are the CIs smaller for the correctly specified model?