AC - AC Converters

Dr. Suneel Kommuri

Email: Suneel.Kommuri@xjtlu.edu.cn

Dept. Electrical & Electronic Engineering

Outline

1. AC Voltage Controllers

- 1.1 Phase control
 - Resistive load
 - Inductive load
- 1.2 On-off control
 - Principles
 - Static switches (AC&DC)

2. Cycloconverters

- 2.1 Basic operation principle
- 2.2 Single phase system

Classification of AC to AC Converters

✓ Used to obtain a variable ac output voltage from a fixed ac source.

1. AC voltage control

In order to get variable AC voltage from an AC source, two Allows a current flow techniques are often used: in both directions

Phase control

- The strategy is to use anti-parallel connected thyristors or TRIACS (Triode AC Switch).
- Like AC-DC converters, the firing angle of the devices are controlled.
- The devices conduct for a portion of each cycle.

On-off/integral-cycle control

- The devices conduct some cycles in a period of time and then disconnect some cycles.
- The firing angle of devices is 0. But for some cycles, the firing pulses are turned off.
- Lower switching losses.

1. AC voltage control

The control strategies of AC voltage controllers are: 1) ON-OFF control or Integral cycle control, 2) Phase control.

1.1 Phase control (1-phase, half-wave-R Load)

- When T1 is forward biased during positive half-cycle, it is turned ON at a firing angle α .
- Negative half-cycle forward biases the diode D1 ($\omega t = \pi \rightarrow 2\pi$).
- Only positive half-cycle can be controlled, negative half-cycle cannot be controlled. (1-phase unidirectional voltage controller)

1.1 Phase control (1-phase, half-wave-R Load)

• The average value of output voltage, $V_o = \frac{1}{2\pi} \int_{\alpha}^{2\pi} V_m \sin \omega t \, dt = \frac{V_m}{2\pi} (\cos \alpha - 1)$

It is clear from the above expression that average output voltage can be controlled from 0 to $\frac{-V_m}{\pi}$.

• The rms value of output voltage, $V_{RMS} = \left[\frac{1}{2\pi} \int_{\alpha}^{2\pi} V_m^2 \sin^2 \omega t \, dt\right]^{1/2}$

$$=\frac{V_m}{2}\left[\frac{1}{\pi}\left\{(2\pi-\alpha)+\frac{\sin 2\alpha}{2}\right\}\right]^{1/2}$$

• RMS load current, $I_{RMS} = \frac{V_{RMS}}{R}$

1.1 Phase control (1-phase, full-wave-R Load)

- Positive half-cycle: T1 triggers at α and conducts from $\alpha \to \pi$.
- Negative half-cycle: T1 turns OFF & T2 triggers at $\pi + \alpha$ conducts until 2π .
- Also called, single-phase bidirectional voltage controller.

1.1 Phase control (1-phase, full-wave-R Load)

- RMS output voltage, $V_{RMS} = \left[\frac{1}{\pi} \int_{\alpha}^{\pi} V_m^2 \sin^2 \omega t \, dt\right]^{1/2} = \frac{V_m}{\sqrt{2}} \left[\frac{1}{\pi} \left(\pi \alpha + \frac{\sin 2\alpha}{2}\right)\right]^{1/2}$
- RMS load current, $I_{RMS} = \frac{V_{RMS}}{R}$

- Can be controlled from $\frac{V_m}{\sqrt{2}}$ to 0 by changing α from 0^0 to 180^0
- Average value of output voltage complete cycle and/or half cycle Check?

The gating circuits for T1 and T2 must be isolated – possible to have a common cathode for T1 and T2 by adding two diodes. T1, D1 conduct together during positive cycle; T2, D2 conduct during negative cycle.

 Conduction losses will increase and efficiency will drop, due to two devices conduct at the same time.

1.1 Phase control (1-phase, full-wave-RL Load)

- $[0 \rightarrow \pi]$: T1 is forward biased and will be triggered at α .
- At $\omega t = \pi$, load current is not zero because of inductance.
- $[\pi + \alpha \rightarrow \pi + \alpha + \gamma]$: Load current starts up in reversed direction through the load.

Quantitative analysis

Calculation to find termination/extinction angle β is similar to shown in Week 4, Half-wave controlled rectifier, Slide. 22.

$$\sin(\alpha - \varphi)e^{-\frac{\beta - \alpha}{\tan \varphi}} = \sin(\beta - \varphi)$$

with the knowledge of angles α and φ , the termination angle β can be calculated.

For various values of γ and α, curves →
are obtained for different values of φ. Note
that the phase angle φ cannot exceed 90°.

- Pulse gating is, however, not suitable for RL loads.
- Larger the load inductance, the longer the switch conducts. If the firing pulse for the other switch arrives earlier than this switch turns off, then it may not be fired.
 - Continuous pulse firing: leads to more heating of the SCR gate and increases the size of pulse transformer.
 - High-frequency carrier gating: A train of pulses with short duration should be used to mitigate the above disadvantages.

1.2. On-off control

The main problem of phase control is the high THD.

On-off control

- The switch conducts for some cycles and then turn off for some cycles: duty cycle
- Zero-voltage/zero-current crossing to reduce the THD.
- Very good for applications having high mechanical inertia or high thermal time constant.

1.2.1 Basic On-off control

Duty cycle

$$k = \frac{n}{n+m}$$

1.2.1 Basic On-off control

The rms output voltage is

$$V_{RMS} = \sqrt{\frac{1}{2\pi} \frac{n}{n+m}} \int_0^{2\pi} V_m^2 \sin^2 \omega \, t \, d(\omega t) = \frac{V_m}{\sqrt{2}} \sqrt{\frac{n}{n+m}} = V_S \sqrt{k}$$

- RMS load current, $I_{RMS} = \frac{v_{RMS}}{R}$
- Power deliver to load

$$\frac{V_{RMS}^2}{R} = \frac{k.V_S^2}{R}$$

The input power factor is

$$f_P = \frac{V_{RMS}I_{RMS}}{V_SI_S} = \frac{V_{RMS}}{V_S} = \sqrt{k}$$

1.2.2 Static Switches

- Power semiconductor devices (like SCRs) which can be turned ON & OFF within few microseconds – fast acting static switch.
- The on-off control strategy can be easily extended to build static switches, which
 - Have very high switching speeds
 - Have no moving parts
 - Have no bouncing at the time of turning on
- Classified as: 1) ac switches, 2) dc switches based on input.
- AC switches may be single-phase or three-phase note that the switches are turned ON at zero-crossing of load current.

Review of SCR Commutation

- Natural or Line Commutation: In AC circuits, the turning-OFF, or commutation, of a SCR by supply voltage itself.
 - ✓ No requirement of external circuits for turning OFF the SCR.

- Forced Commutation: In some thyristor circuits, the input voltage is DC and the forward current of the thyristor is forced to zero by an additional circuit called commutation circuit to turn-OFF the thyristor.
 - ✓ The commutation circuit normally consists of a capacitor, an inductor, and one or more thyristor(s) and/or diode(s).

1.2.2 Single-phase AC switches

line/natural commutated

and

switches

act like

SCRs

Resistive load: T1 is triggered at $\omega t = 0, 2\pi, ...$ and T2 is triggered at $\omega t = \pi, 3\pi, ...$ when the load current waveform is passing through zero.

RL – load: Load current $\underline{i}_{\mathcal{O}}$ lags v_o by PF, $\varphi = \tan^{-1}\left(\frac{\omega L}{R}\right)$. T1 is triggered at $\omega t = \varphi, 2\pi + \varphi, \dots$ and T2 is triggered at $\omega t = \pi + \varphi, 3\pi + \varphi, \dots$

Xi'an Jiaotong-Liverpool University 西交利物浦大学

Resistive load:

zero-current crossing

Inductive load:

zero-current crossing

1.2.2 DC Switches

 The input voltage for DC switches is DC. Power semiconductor devices used may be transistors, thyristors or GTOs.

✓ If thyristors are used, they must be turned OFF by forced commutation as an integral part of dc switch.

 \checkmark Here, T1 is main thyristor and TA is the auxiliary thyristor. Capacitor C is charged to source voltage V_s with lower plate positive. When T1 is ON, current I_o flows from source to load through T1.

✓ For breaking dc circuit, TA is turned ON, capacitor C applies a reverse voltage across T1 turning it OFF.

2.1 Cycloconverters

- Converts input power at one frequency to output power at a different frequency with one-stage conversion.
- It can be used to eliminate the requirement of one or more intermediate converters.
 - ✓ Another name—direct frequency converter (as compared to AC-DC-AC frequency converter)
 - If the output frequency is greater than input frequency → step-up (forced)
 - If the output frequency is less than input frequency → step-down (natural)
- Applications of cycloconverters are:
 - ✓ Speed control of very high power ac drives
 - ✓ Industrial heating etc.,

2.2 Single-phase Cycloconverters (step-up)

- Two single-phase controlled converters bridge rectifiers
- Positive group $-T_{P1}$, T_{P2} , T_{P3} , T_{P4} ; Negative group $-T_{N1}$, T_{N2} , T_{N3} , T_{N4} .
- The output voltage and current are reversed in the negative direction.

2.2 Single-phase Cycloconverters (step-up)

During positive half-cycle:

$$\omega t = 0 \rightarrow T_{P1}, T_{P2}, T_{N1}, T_{N2}$$
 - forward $A - T_{P1} - P - Load - Q - T_{P2} - B$

At $\omega t_1 \rightarrow T_{P1}$, T_{P2} are turned OFF by forced commutation and gate signals are applied to T_{N1} , T_{N2} .

$$A - T_{N1} - Q - Load - P - T_{N2} - B$$
 Output voltage

At $\omega t_2 \rightarrow T_{N1}$, T_{N2} are turned OFF by forced commutation and gate signals are applied to T_{P1} , T_{P2} .

$$A - T_{P1} - P - Load - Q - T_{P2} - B$$

This process will continue for positive half-cycle.

During negative half-cycle:

$$\boldsymbol{\omega t} = \mathbf{0} \rightarrow T_{P3}, T_{P3}, T_{N3}, T_{N4} - \text{forward}$$

Conduction	
Conduction of thyristor	

T_{P1}	T_{N1}	T_{P1}	T_{N1}	T_{P3}	T_{N3}	T_{P3}	T_{N3}	T_{P1}	T_{N1}	T_{P1}	T_{N1}	T_{P3}	T_{N3}	T_{P3}	T_{N}
T_{P2}	T_{N1} T_{N2}	T_{P2}	T_{N2}	T_{P4}	T_{N4}	T_{P4}	T_{N4}	T_{P2}	T_{N2}	T_{P2}	T_{N2}	T_{P4}	T_{N4}	T_{P4}	T_{I}

Example

A single-phase half-wave ac voltage controller feeds a load of $R = 20 \Omega$ with an input voltage of 230 V, 50 Hz. Firing angle of thyristor is 45° . Determine (a) rms value of output voltage (b) power delivered to load and input pf and (c) average output voltage.

Solution: Here
$$V_s = 230 \ V$$
, $V_m = \sqrt{2} \times 230 \ V$, $\alpha = 45^0 = \frac{\pi}{4}$, $R = 20 \ \Omega$

a) The rms value of load voltage is (from Slide 7)

$$V_{RMS} = \frac{V_m}{2} \left[\frac{1}{\pi} \left\{ (2\pi - \alpha) + \frac{\sin 2\alpha}{2} \right\} \right]^{1/2}$$

$$= \frac{\sqrt{2} \times 230}{2} \left[\frac{1}{\pi} \left\{ \left(2\pi - \frac{\pi}{4} \right) + \frac{\sin 90}{2} \right\} \right]^{1/2} = 224.682V$$

Example

b) Rms value of load current, $I_{RMS} = \frac{V_{RMS}}{R} = \frac{224.682}{20} = 11.2341 A$

Load power,
$$P_{RMS} = I_{RMS}^2 \times R = 11.2341^2 \times 20 = 2524.1 W$$

RMS source current, $I_{S,RMS} = RMS$ load current, $I_{RMS} = 11.2341$ A

Input pf
$$=$$
 $\frac{V_{RMS}}{V_S} = \frac{2524.1}{230} = 0.9769$

c) Average output voltage, $V_o = \frac{V_m}{2\pi}(\cos \alpha - 1) = -15.17 V$

Summary

- The control strategies of AC voltage controllers are: 1) ON-OFF control or Integral cycle control, 2) Phase control.
- Single-phase half-wave AC voltage controller: Only positive half-cycle can be controlled, negative half-cycle cannot be controlled.
- Single-phase half-wave AC voltage controller: both positive and negative half-cycles can be controlled.
- Integral cycle/On-Off control: The switch conducts for some cycles and then turn off for some cycles: duty cycle
- Cycloconverter: Converts input power at one frequency to output power at a different frequency with one-stage conversion.
- Natural commutation (SCR turn-OFF by supply voltage itself) and forced commutation (SCR turn-OFF by an additional circuit).

See you in the next class (April 14th)

The End

