Method card 5

Course: statistics

Topic: Common discrete distributions 2024-2025

For each distribution, you will find

- some model example
- the PMF
- expectation and variance

You will also find important and useful formula.

Bernoulli distribution: $X \rightsquigarrow \mathcal{B}(p), p \in [0, 1]$

Examples of use: 2 outcomes, Head and Tails, success and fail, yes or no, male or female, etc.

State space: $\{0,1\}$

 $PMF: p_X(1) = p, p_X(0) = 1 - p$

Moments: $\mathbb{E}[X] = p, \mathbb{V}[X] = p(1-p)$

Rademacher distribution: $X \rightsquigarrow \mathcal{R}(p), p \in [0, 1]$

Examples of use: same as Bernoulli but with a different parametrization

State space: $\{-1,1\}$

PMF: $p_X(1) = p, p_X(-1) = 1 - p$

Moments: $\mathbb{E}[X] = 2p - 1$, $\mathbb{V}[X] = 4p(1-p)$

Uniform distribution: $X \rightsquigarrow \mathcal{U}(\{1,...,n\}), n \in \mathbb{N}^*$

Example of use: selection of 1 element among n with equal probability

State space: $\{1, ..., n\}$

PMF: $p_X(k) = \frac{1}{n}$ for $k \in \{1, ..., n\}$

Moments: $\mathbb{E}[X] = \frac{n+1}{2}$, $\mathbb{V}[X] = \frac{n^2-1}{12}$

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}, \quad \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

Hypergeometric distribution: $X \rightsquigarrow \mathcal{H}(n, N_1, N_2), n, N_1, N_2 \in \mathbb{N}^*, n \leq N_1 + N_2$

Example of use: Counting the red tokens when drawing **WITHOUT** replacement n tokens out of an urn which has respectively N_1 and N_2 red and blue tokens.

State space: $\{0, ..., n\}$

 $PMF: \text{ For } k \in \{0,...,n\}, \ p_X(k) = \frac{\binom{N_1}{k}\binom{N_2}{n-k}}{\binom{N_1+N_2}{n}} \text{ with the convention } \binom{N}{k} = 0 \text{ if } k > N$ $Moments: \ \mathbb{E}\left[X\right] = n\frac{N_1}{N_1+N_2}, \ \mathbb{V}\left[X\right] = n\frac{N_1}{N_1+N_2}\frac{N_2}{N_1+N_2}\frac{N_1+N_2-n}{N_1+N_2-1}$

$$\sum_{k=0}^{n} \binom{N_1}{k} \binom{N_2}{n-k} = \binom{N_1+N_2}{n}, \quad \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$$

Binomial distribution: $X \rightsquigarrow \mathcal{B}(n,p), n \in \mathbb{N}^*, p \in [0,1]$

Example of use: Counting the red tokens when drawing **WITH** replacement n tokens out of an urn which has a proportion p of red tokens.

State space: $\{0,...,n\}$

PMF: For $k \in \{0, ..., n\}$, $p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$

 $Moments: \ \mathbb{E}\left[X\right] = np, \, \mathbb{V}\left[X\right] = np(1-p)$

$$\sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k} = (a+b)^n$$

Geometric distribution: $X \leadsto \mathcal{G}(p), p \in [0,1]$

Example of use: First occurrence of a success when trying infinitely many times the same two-outcomes experiment.

State space: \mathbb{N}^*

PMF: For $k \in \mathbb{N}^*$, $p_X(k) = (1-p)^{k-1}p$

 $Moments: \ \mathbb{E}\left[X\right] = \frac{1}{p}, \, \mathbb{V}\left[X\right] = \frac{1-p}{p^2}$

$$\sum_{k=0}^{+\infty} \gamma^k = \frac{1}{1-\gamma}, \quad \sum_{k=1}^{+\infty} k \gamma^{k-1} = \frac{1}{(1-\gamma)^2}, \quad \sum_{k=2}^{+\infty} k(k-1) \gamma^{k-2} = \frac{2}{(1-\gamma)^3}$$

Poisson distribution: $X \rightsquigarrow \mathcal{P}(\lambda), \ \lambda > 0$

Example of use: Number of occurrence of an event whose average frequency is λ per unit.

State space: \mathbb{N}

PMF: For $k \in \mathbb{N}$, $p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}$

Moments: $\mathbb{E}[X] = \lambda$, $\mathbb{V}[X] = \lambda$

$$\sum_{k=0}^{+\infty} \frac{\lambda^k}{k!} = \sum_{k=1}^{+\infty} k \frac{\lambda^{k-1}}{k!} = \sum_{k=2}^{+\infty} k(k-1) \frac{\lambda^{k-2}}{k!} = e^{\lambda}$$