K を体、V を K-線形空間とする。

$$\Phi: V \to \operatorname{Hom}_K(\operatorname{Hom}_K(V, K), K) \quad v \mapsto (f \mapsto f(v)) \tag{1}$$

写像 Φ を上のように定義する。 $\Phi(v)(f) = f(v)$

- 1. Φ は *K*-線形写像である。
- 2. Φ は単射である。
- 3. V が有限生成の時、 Φ は全単射である。

$$\operatorname{Hom}_{K}(V, W) \stackrel{\operatorname{def}}{=} \{ f \mid f : V \to W \ (K-線形写像) \}$$
 (2)

 $(\lambda f+g)(v)=\lambda f(v)+g(v)$ と定義することによりにより $\operatorname{Hom}_K(V,W)$ は線形空間となる。

......

V. W:K-線形空間

写像 $f: V \to W$ が次の 2 つの条件を満たす時、K-線形写像という。

- 1. $x, y \in V$ について、f(x+y) = f(x) + f(y)
- 2. $x \in V$, $k \in K$ について、f(kx) = kf(x)

.....

写像 $f: V \to W$ について

f が単射である $\Leftrightarrow f(a)=f(b)$ であるなら a=b f が全射である $\Leftrightarrow {}^\forall w \in W$ に対し w=f(v) となる $v \in V$ が存在

1. Φ は *K*-線形写像である。

 $x,y \in V$ とする。 Φ は写像である為、

$$\Phi(x+y) \in \operatorname{Hom}_K(\operatorname{Hom}_K(V,K),K) \tag{3}$$

 $\Phi(x+y)$ は次のような線形写像である。

$$\Phi(x+y): \operatorname{Hom}_K(V,K) \to K \tag{4}$$

これより $\forall f \in \operatorname{Hom}_K(V,K)$ に対し

$$\Phi(x+y)(f) = f(x+y) \tag{5}$$

であり、f は線形写像であるので、f(x+y)=f(x)+f(y)。 $\Phi(x)(f)=f(x)$ 、 $\Phi(y)(f)=f(y)$ より

$$\Phi(x+y)(f) = \Phi(x)(f) + \Phi(y)(f) \tag{6}$$

この為、 $\Phi(x+y) = \Phi(x) + \Phi(y)$ となる事がわかる。

同様にして、 $k \in K$ に対し $\Phi(kx) = k\Phi(x)$ である為、 Φ は K-線形写像である。

.....

2. Φ は単射である。

 $v,w\in V$ に対し、 $\Phi(v)=\Phi(w)$ とする。 $\Phi(v)-\Phi(w)=0$ だが、 Φ の線形性から $\Phi(v)-\Phi(w)=\Phi(v-w)=0$ となる。

また、 $\forall f \in \operatorname{Hom}_K(V,K)$ に対し $\Phi(v-w)(f) = f(v-w)$ となる為、f(v-w) = 0 である。

もし、f が零写像であれば $V=\{\mathbf{0}\}$ であるので、 $v,w\in V$ から v=w である。

 $\operatorname{Hom}_K(V,K)$ の元として V の基底と標準内積を取る写像 f_e を考える。i 番目が 1 でそれ以外が 0 の基底で考えると $f_e(v-w)$ は i 番目の成分のみが取り出される。 $f_e(v-w)=0$ より v-w の i 成分は 0 である。すべての成分について同じように考えると v-w=0 ということが分かる。これにより v=w となり、 Φ は単射である。

.....

3. V が有限生成の時、 Φ は全単射である。

単射は示されているので、全射であることを示す。

V が有限生成であるので、次元を n とする。 $\dim_K V = n$

V の次元は写像 Φ のイメージとカーネルより次のようになる。

$$\dim_K V = \dim_K \operatorname{Im}\Phi + \dim_K \operatorname{Ker}\Phi = n \tag{7}$$

 Φ は単射であるので、 $\dim_K \operatorname{Ker} \Phi = 0$ である。

線形空間 V と $\operatorname{Hom}_K(V,K)$ は同じ次元である為、 $V^* = \operatorname{Hom}_K(V,K)$ と $\operatorname{Hom}_K(V^*,K)$ も同じ次元である。

 $\dim_K V = \dim_K \operatorname{Hom}_K(V,K) = \dim_K \operatorname{Hom}_K(\operatorname{Hom}_K(V,K),K) = n$ (8) これにより次の 2 つの次元が同じであることが分かる。

$$\dim_K \operatorname{Im}\Phi = \dim_K \operatorname{Hom}_K(\operatorname{Hom}_K(V, K), K) = n \tag{9}$$

ここから Φ の像は $\mathrm{Hom}_K(\mathrm{Hom}_K(V,K),K)$ は一致する事がわかり、 Φ が全射であることが分かる。

 Φ は全単射であるので、V と $\mathrm{Hom}_K(\mathrm{Hom}_K(V,K),K)$ は同型であることが分かる。

双対空間

K 上ベクトル空間 V に対し、線形写像 $V \to K$ 全体の集合 $\mathrm{Hom}_K(V,K)$ を双対ベクトル空間という。

V の次元が有限次元であれば

$$\dim_K V = \dim_K \operatorname{Hom}_K(V, K) \tag{10}$$

である。V の双対ベクトル空間を V^* で表す。

V の基底

$$\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix} \tag{11}$$

に対し、双対空間 V^* の基底は $\hat{e}_1,\ldots,\hat{e}_n$ とする。 \hat{e}_i は $\mathbf{v}\in V$ から i 番目を取り出す線形写像である。

例えば写像 \hat{e}_1 は次のような写像である。

$$\hat{e}_{1}\begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix}) = 1, \ \hat{e}_{1}\begin{pmatrix} 0\\1\\\vdots\\0 \end{pmatrix}) = 0, \ \dots, \hat{e}_{1}\begin{pmatrix} 0\\\vdots\\0\\1 \end{pmatrix}) = 0$$
 (12)