Recitation 5: Attention & Transformers

Ekin Akyürek & Wei Fang

MIT 6.806-6.864 Spring 2021

Outline

Quick Review - RNN & seq2seq

Attention with RNN & seq2seq

Attention Variants

Transformers: Attention is all you need

- Produces hidden state h_t at each time step; can be viewed as summary up to time t
- Recurrent cell can contain gating mechanisms (e.g. GRU or LSTM)

seq2seq: Encoder-Decoder Framework

- An RNN to summarize inputs (encoder)
- Another RNN to produce predictions based on encoded summary

Outline

Quick Review - RNN & seq2sed

Attention with RNN & seq2seq

Attention Variants

Transformers: Attention is all you need

Attention with seq2seq

Attention with seq2seq

Attention with seq2seq

Outline

Quick Review - RNN & seq2seq

Attention with RNN & seq2seq

Attention Variants

Transformers: Attention is all you need

Attention

Attention: a function $f_{att}(h_i, h'_j)$ that produces an alignment/similarity score, could be parametrized (more commonly used, see below) or non-parametrized (eg. cosine similarity).

$$e_{ij} = f_{att}(h_i, h_j')$$
 alignment/similarity score $\alpha_{i:} = \text{softmax}(e_{i:})$ normalization $c_i = \sum_i \alpha_{ij} h_j$ pooled input by convex combination

Additive Attention (MLP)

1-layer MLP to calculate attention:

$$f_{\text{att}}(h_i, h_j') = \mathbf{v}^\top \tanh(W[h_i; h_j']) = \mathbf{v}^\top \tanh(W_{\text{left}} h_i + W_{\text{right}} h_j'),$$

where v, W are trainable.

Additive Attention (MLP)

1-layer MLP to calculate attention:

$$f_{\text{att}}(h_i, h_i') = \mathbf{v}^{\top} \tanh(W[h_i; h_i']) = \mathbf{v}^{\top} \tanh(W_{\text{left}} h_i + W_{\text{right}} h_i'),$$

where v, W are trainable.

Multiplicative Attention

bilinear function:

$$f_{\text{att}}(h_i, h'_j) = h_i^\top W h'_j,$$

where W is trainable. When W = I it becomes dot product.

Additive Attention (MLP)

1-layer MLP to calculate attention:

$$f_{att}(h_i, h_j') = \mathbf{v}^\top \tanh(W[h_i; h_j']) = \mathbf{v}^\top \tanh(W_{\text{left}} h_i + W_{\text{right}} h_j'),$$

where v, W are trainable.

Multiplicative Attention

bilinear function:

$$f_{\text{att}}(h_i, h'_i) = h_i^{\top} W h'_i,$$

where W is trainable. When W = I it becomes dot product.

 Complexity is similar, but in practice multiplicative is more efficient.

Additive Attention (MLP)

1-layer MLP to calculate attention:

$$f_{\text{att}}(h_i, h'_i) = v^{\top} \tanh(W[h_i; h'_i]) = v^{\top} \tanh(W_{\text{left}}h_i + W_{\text{right}}h'_i),$$

where v, W are trainable.

Multiplicative Attention

bilinear function:

$$f_{att}(h_i, h'_i) = h_i^\top W h'_i,$$

where W is trainable. When W = I it becomes dot product.

- Complexity is similar, but in practice multiplicative is more efficient.
- For small values of dimension d_h the two mechanisms perform similarly, additive attention outperforms dot product attention for larger values of d_h

Additive Attention (MLP)

1-layer MLP to calculate attention:

$$f_{\text{att}}(h_i, h_i') = v^{\top} \tanh(W[h_i; h_i']) = v^{\top} \tanh(W_{\text{left}}h_i + W_{\text{right}}h_i'),$$

where v, W are trainable.

Multiplicative Attention

bilinear function:

$$f_{\text{att}}(h_i, h'_i) = h_i^\top W h'_i,$$

where W is trainable. When W = I it becomes dot product.

- Complexity is similar, but in practice multiplicative is more efficient
- For small values of dimension d_h the two mechanisms perform similarly, additive attention outperforms dot product attention for larger values of d_h
- · One trick: scale multiplicative attention: $f_{att}(h_i, h'_j) = \frac{1}{\sqrt{d_h}} h_i^\top W h'_j$

Multi-head Attention

Multiple attentions in parallel:

$$f_{\text{att}}^{a}(h_{i}, h'_{j}) = h_{i}^{\top} W^{a} h'_{j},$$

$$f_{\text{att}}^{b}(h_{i}, h'_{j}) = h_{i}^{\top} W^{b} h'_{j},$$

$$\vdots$$

 W^a, W^b, \dots are trainable.

Multi-head Attention

Multiple attentions in parallel:

$$f_{att}^{a}(h_{i}, h'_{j}) = h_{i}^{\top} W^{a} h'_{j},$$

$$f_{att}^{b}(h_{i}, h'_{j}) = h_{i}^{\top} W^{b} h'_{j},$$

$$\vdots$$

 W^a, W^b, \dots are trainable.

Self-attention

Attend to lower layers (instead of decoder \rightarrow encoder)

Key-value attention

Splits each hidden state h_i into key k_i and value v_i : $h_i = [k_i; v_i]$. Keys are used to calculate attention, and values are used for pooling.

$$e_{ij} = f_{att}(\mathbf{k}_i, \mathbf{k}'_j)$$

$$\alpha_{i:} = \text{softmax}(e_{i:})$$

$$c_i = \sum_j \alpha_{ij} \mathbf{v}_j$$

Key-value attention

Splits each hidden state h_i into key k_i and value v_i : $h_i = [k_i; v_i]$. Keys are used to calculate attention, and values are used for pooling.

$$e_{ij} = f_{att}(\mathbf{k}_i, \mathbf{k}'_j)$$

 $\alpha_{i:} = \text{softmax}(e_{i:})$
 $c_i = \sum_j \alpha_{ij} \mathbf{v}_j$

Copy mechanism

Similarity scores e_{ij} or α_{ij} used directly for predicting output y_i .

$$s_j = f_{out}(h'_j, c_i)$$
 output layer $s'_i = \text{softmax}([s_j; e_{ij}])$ predict with concat of pred and attn scores

Can also use only attention scores (pointer network)

Outline

Quick Review - RNN & seq2seq

Attention with RNN & seq2seq

Attention Variants

Transformers: Attention is all you need!

· No recurrent layers; replace with self-attention layers

· No recurrent layers; replace with self-attention layers

- · No recurrent layers; replace with self-attention layers
- Without recurrence we have no ordering information, need to add positional encodings

- · No recurrent layers; replace with self-attention layers
- Without recurrence we have no ordering information, need to add positional encodings
- Multi-head self-attention layer

Core idea: multi-head + key-value + scaled dot-product attention

Core idea: multi-head + key-value + scaled dot-product attention

1. Do 2-3 in with *h* heads in parallel (params are not shared)

Core idea: multi-head + key-value + scaled dot-product attention

- 1. Do 2-3 in with h heads in parallel (params are not shared)
- 2. Instead of splitting input (from prev layer) $h_i^{(l-1)}$ into key-values, *project* to get key/value and, additionally, queries

$$q_i = h_i^{(l-1)} W_Q, k_i = h_i^{(l-1)} W_K, v_i = h_i^{(l-1)} W_V$$

Core idea: multi-head + key-value + scaled dot-product attention

- 1. Do 2-3 in with h heads in parallel (params are not shared)
- 2. Instead of splitting input (from prev layer) $h_i^{(l-1)}$ into key-values, *project* to get key/value and, additionally, queries

$$q_i = h_i^{(l-1)} W_Q, k_i = h_i^{(l-1)} W_K, v_i = h_i^{(l-1)} W_V$$

3. Recall scaled dot-product attention, but with q_i, k_i, v_i

$$e_{ij} = f_{att}(k_i, k'_j), \alpha_{i:} = \text{softmax}(e_{i:}), c_i = \sum_j \alpha_{ij} v_j$$

Core idea: multi-head + key-value + scaled dot-product attention

- 1. Do 2-3 in with h heads in parallel (params are not shared)
- 2. Instead of splitting input (from prev layer) $h_i^{(l-1)}$ into key-values, *project* to get key/value and, additionally, queries

$$q_i = h_i^{(l-1)} W_Q, k_i = h_i^{(l-1)} W_K, v_i = h_i^{(l-1)} W_V$$

3. Recall scaled dot-product attention, but with q_i, k_i, v_i

$$e_{ij} = f_{att}(k_i, \mathbf{q'_j}), \alpha_{i:} = \text{softmax}(e_{i:}), c_i = \sum_j \alpha_{ij} v_j$$

Core idea: multi-head + key-value + scaled dot-product attention

- 1. Do 2-3 in with h heads in parallel (params are not shared)
- 2. Instead of splitting input (from prev layer) $h_i^{(l-1)}$ into key-values, *project* to get key/value and, additionally, queries

$$q_i = h_i^{(l-1)} W_Q, k_i = h_i^{(l-1)} W_K, v_i = h_i^{(l-1)} W_V$$

3. Recall scaled dot-product attention, but with q_i , k_i , v_i

$$e_{ij} = f_{att}(k_i, \mathbf{q}'_j), \alpha_{i:} = \text{softmax}(e_{i:}), c_i = \sum_j \alpha_{ij} v_j$$

Can be written in matrix form:

Attention(
$$K, Q, V$$
) = softmax($\frac{QK^{\top}}{\sqrt{d_k}}$) V

Core idea: multi-head + key-value + scaled dot-product attention

- 1. Do 2-3 in with h heads in parallel (params are not shared)
- 2. Instead of splitting input (from prev layer) $h_i^{(l-1)}$ into key-values, *project* to get key/value and, additionally, queries

$$q_i = h_i^{(l-1)} W_Q, k_i = h_i^{(l-1)} W_K, v_i = h_i^{(l-1)} W_V$$

3. Recall scaled dot-product attention, but with q_i , k_i , v_i

$$e_{ij} = f_{att}(k_i, \mathbf{q}'_j), \alpha_{i:} = \text{softmax}(e_{i:}), c_i = \sum_j \alpha_{ij} v_j$$

Can be written in matrix form:

Attention(
$$K, Q, V$$
) = softmax($\frac{QK^{\top}}{\sqrt{d_k}}$) V

 Concat pooled inputs from all heads and pass through linear

$$MultiHead(\cdot) = Concat(head_1, ..., head_h)W_O$$

· Residual connections & layer normalization

- · Residual connections & layer normalization
- Encoder layer can be substituted in for recurrent layers; can be stacked

- · Residual connections & layer normalization
- Encoder layer can be substituted in for recurrent layers; can be stacked
- For sequence tasks we only need encoders

- · Residual connections & layer normalization
- Encoder layer can be substituted in for recurrent layers; can be stacked
- For sequence tasks we only need encoders
- For seq2seq architectures, we need an additional decoder transformer with decoder layers

- · Residual connections & layer normalization
- Encoder layer can be substituted in for recurrent layers; can be stacked
- For sequence tasks we only need encoders
- For seq2seq architectures, we need an additional decoder transformer with decoder layers
- Decoding is auto-regressive; first multi-head attention in each layer needs to be masked

- · Residual connections & layer normalization
- Encoder layer can be substituted in for recurrent layers; can be stacked
- For sequence tasks we only need encoders
- For seq2seq architectures, we need an additional decoder transformer with decoder layers
- Decoding is auto-regressive; first multi-head attention in each layer needs to be masked

Useful Resources

- Blog post by Sebastian Ruder
- · Blog post by Lilian Weng
- The Annotated Transformer by Alexander Rush
- The Illustrated Transformer by Jay Alammar