

Лабораторная работа 2-6. Математика

А. Массовая проверка простоты

ограничение по времени на тест: 1.5 секунд ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Целое число $p \ge 2$ является простым, если у него нет делителей кроме 1 и p. Необходимо для всех чисел во входном файле проверить простые они или нет.

Входные данные

В первой строке задано число n (2 $\leq n \leq$ 500 000). В следующих n строках заданы числа a_i (2 $\leq a_i \leq$ 2 \cdot 10⁷), которые нужно проверить на простоту

Выходные данные

Для каждого числа во входном файле выведите на отдельной строке «YES» или «NO» в зависимости от того, простое оно или нет.

Пример

Пример	
входные данные	Скопировать
4 60 14 3	
55	
выходные данные	Скопировать
NO	
NO YES	
NO NO	
INO	

В. Массовое разложение на множители

ограничение по времени на тест: 0.5 секунд ограничение по памяти на тест: 64 мегабайта ввод: стандартный ввод вывод: стандартный вывод

Дано много чисел. Требуется разложить их все на простые множители.

Входные данные

В первой строке задано число n ($2 \le n \le 300000$). В следующих n строках заданы числа a_i ($2 \le a_i \le 10^6$), которые нужно разложить на множители.

Выходные данные

Для каждого числа выведите в отдельной строке разложение на простые множители в порядке возрастания множителей.

Пример

С. Большая проверка на простоту

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 64 мегабайта ввод: стандартный ввод вывод: стандартный вывод

Дано n натуральных чисел a_i . Определите для каждого числа, является ли оно простым.

Входные данные

Программа получает на вход число n, $1 \le n \le 1000$ и далее n чисел a_i , $1 \le a_i \le 10^{18}$.

Выходные данные

Если число a_i простое, программа должна вывести YES, для составного числа программа должна вывести NO.

Пример

ВХОДНЫЕ ДАННЫЕ

4
1
5
10
239

Выходные данные

Копировать

NO
YES
NO
YES

D. Китайская теорема

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 64 мегабайта ввод: стандартный ввод вывод: стандартный вывод

Решите в целых числах систему уравнений

Гарантируется, что n и m взаимно просты. Среди решений следует выбрать наименьшее неотрицательное число.

Входные данные

Входной файл содержит четыре целых числа a, b, n и m ($1 \le n, m \le 10^6, 0 \le a < n, 0 \le b < m$).

Выходные данные

В выходной файл выведите искомое наименьшее неотрицательное число X.

Примеры

Print Op.	
входные данные	Скопировать
1023	
выходные данные	Скопировать
3	
входные данные	Скопировать
3259	
выходные данные	Скопировать
38	

E. Взлом RSA

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 64 мегабайта ввод: стандартный ввод вывод: стандартный вывод

В 1977 году Ronald Linn Rivest, Adi Shamir и Leonard Adleman предложили новую криптографическую схему RSA, используемую до сих пор. RSA является криптосистемой с открытым ключом: зашифровать сообщение может кто угодно, знающий общеизвестный открытый ключ, а расшифровать сообщение — только тот, кто знает специальный секретный ключ.

Сообщениями в системе RSA являются числа из . Пусть M — исходное сообщение. Для его шифрования вычисляется значение (для этого необходимо только знание открытого ключа). Полученное зашифрованное сообщение C передается по каналу связи. Для его расшифровки необходимо вычислить значение , а для этого необходимо знание секретного ключа.

Вы перехватили зашифрованное сообщение C и знаете только открытый ключ: числа n и e. "Взломайте" RSA — расшифруйте сообщение на

основе только этих данных.

Входные данные

Программа получает на вход три натуральных числа: n, e, C, $n \le 10^9$, $e \le 10^9$, C < n. Числа n и e являются частью какой-то реальной схемы RSA, т.е. n является произведением двух простых и e взаимно просто с $\phi(n)$. Число e0 является результатом шифрования некоторого сообщения e1.

Выходные данные

Выведите одно число M ($0 \le M < n$), которое было зашифровано такой криптосхемой.

Примеры

·······	
входные данные	Скопировать
143	
113	
41	
выходные данные	Скопировать
123	
входные данные	Скопировать
9173503	
3	
4051753	
выходные данные	Скопировать
111111	

F. Задача для второклассника

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Вам даны два числа. Необходимо найти их произведение.

Входные данные

Входные данные состоят из двух строк, на каждой из которых находится целое одно **целое** число, длина которого не превосходит двухсот пятидесяти тысяч символов.

Выходные данные

Выведите произведение данных чисел.

Примеры

