Lecture 9: Graph Algorithms (III)

Dr. Tsung-Wei Huang
Department of Electrical and Computer Engineering
University of Utah, Salt Lake City, UT

Maximum Flow

- ☐ Find a maximum feasible s-t flow in a graph
 - \square s is a source node and t is a target (sink) node
 - ☐ Each edge is associated with a capacity
 - ☐ Flow at each edge cannot exceed its capacity

Problem Formulation

■ Network flow problem

- \square A flow network G=(V,E): a directed graph, where each edge (u,v) \in E has a nonnegative capacity c(u,v)>=0.
- \square If $(u,v) \notin E$, we can assume that c(u,v)=0.
- □ two distinct vertices :a source s and a sink t.

Flow Constraint

- \Box G=(V,E): a flow network with capacity function c.
- \square s -- the source and t -- the sink.
- \Box A flow f(u, v) in G must satisfy
 - 1. Capacity constraint
 - For all $u,v \in V$, we require $f(u, v) \le c(u, v)$.
 - 2. Flow conservation
 - For all $u \in V-\{s, t\}$, we require

$$\sum_{e.in.v} f(e) = \sum_{e.out.v} f(e)$$

a+b=d+c

Objective

- ☐ The quantity f (u, v) is called the net flow from vertex u to vertex v.
- ☐ The value of a flow is defined as

$$|f| = \sum_{v \in V} f(s, v)$$

- ☐ The total flow from source to any other vertices.
- ☐ The same as the total flow from any vertices to the sink.

A flow f in G with value |f| = 19

So ...

- ☐ Given a flow network G with source s and sink t
- ☐ Find a flow of maximum flow value from s to t.
- ☐ How to solve it efficiently?
 - ☐ Brute force ...?

Ford-Fulkerson Framework

```
FORD-FULKERSON-FRAMEWORK(G, s, t)
initialize flow f to 0
while there exists an augmenting path p
   do augment flow f along p
return f
```

Why Framework not Algorithm?

The framework is iterative ☐ Try to find a flow if it exists Iterates the procedure until no more exists Augmenting flow has different implementations Each implementation is a different algorithm Edmonds-Karp, Dinic's blocking algorithm, Push-relabel, etc. Augmenting flow is equivalent to finding a path \square u \rightarrow v is connected if there remains capacity (non-zero) \square u \rightarrow v is disconnected if the capacity is zero

What is the Time Complexity?

☐ Assume inner loop applies DFS ■ Each DFS iteration contributes O(V+E) ☐ Need "max-flow" iterations FORD-FULKERSON-FRAMEWORK(G, s, t) initialize flow f to 0 while there exists an augmenting path p do augment flow f along p return f

☐ What is the maximum flow?

☐ Let's do DFS to augment flow: iter1 finds flow 1

□ Update remaining capacity

☐ Let's do DFS to augment flow: iter2 finds flow 1

□ Update remaining capacity

☐ Can we augment any flow through DFS?

☐ Maximum flow: 2

What is the Problem?

- ☐ DFS has no order guarantee!
 - Order you visit vertices is up to the graph data structure
 - ☐ Different orders may update capacity differently
 - In turn affect the solution

```
procedure DFS(G, v) is
    label v as discovered
    for all directed edges from v to w that are in G.adjacentEdges(v) do
        if vertex w is not labeled as discovered then
            recursively call DFS(G, w)
```

The order each vertex visited by DFS depends on the graph data structure!

☐ DFS finds another route in the first iteration

□ Update remaining capacity

☐ DFS to augment the flow? Maximum flow = 1?

Residual Network

- ☐ Residual network defines edges to admit net flow
 - ☐ The amount of additional net flow from u to v before exceeding the capacity c(u,v) is the residual capacity of (u,v), given by:
 - In the regular direction: c_f(u,v)=c(u,v)-f(u,v)
 - In the opposite direction: $c_f(v, u)=c(v, u)+f(u, v)$.
- ☐ If you flow f from A to B
 - ☐ Subtract the regular direction capacity from f
 - ☐ Add f to the opposite direction capacity

☐ DFS augments a unit flow in the first iteration

☐ Update the residual network

☐ Residual network gives a chance to "circle back"

☐ DFS augments another unit flow in the second iter

□ Update residual network

☐ Maximum flow: 2

☐ Residual network gives us a way to circle flow back

Initial

(a) Maximum flow: 4

(b) Maximum flow: 4 + 7

(c) Maximum flow: 4 + 7 + 8

Code Snippet

```
while(1) {
  // ... initialize BFS storage
  while(!BFS.empty()) {
    now = BFS.front();
    for(next=0; next<n; next++) {</pre>
       if(visited[next])continue;
      if(mat[now][next]-flow[now][next]>0) { // Positive direction
         p[next] = now, visited[next] = true;
         BFS.push(next);
       else if(flow[next][now]>0) {
                                          // Opposite direction
          p[next] = -now, visited[next] = true;
          BFS.push(next);
    BFS.pop();
 if(!visited[sink]) break; //If not find the augmenting path.
  for(minf=INF, i=sink; i!=source; i=abs(p[i])) {
    if(p[i]>=0) minf = min(minf, mat[p[i]][i]-flow[p[i]][i]);
    else minf = min(minf, flow[i][-p[i]]);
    for(i=sink; i!=source; i=abs(p[i])) {
      if(p[i] \ge 0) flow[p[i]][i] += minf;
      else flow[i][-p[i]] -= minf;
  for(i=0; i<n; i++) MAX FLOW += flow[source][i];</pre>
  return MAX_FLOW;
```

Bipartite Matching

- ☐ A matching in a *Bipartite Graph* is a set of the edges chosen in such a way that no two edges share an endpoint.
- ☐ A maximum matching is a matching of maximum size (maximum number of edges).
- In a maximum matching, if any edge is added to it, it is no longer a matching. There can be more than one maximum matchings for a given Bipartite Graph.

Tremendous real applications ...

Maximum Bipartite Matching

Maximum Bipartite Matching

s-t Cut

☐ A s-t cut of a graph G consists of an edge set E such that G - E separate s and t in two components

Minimum s-t Cut

☐ The s-t cut set with the minimum cut weight

Minimum s-t Cut

☐ The s-t cut set with the minimum weight

Observation

- Can we give upper bounds on the maximum flow value before finding any augmenting paths?
 - One possible upper bound is the total capacity of the arcs leaving the source:
 - Another upper bound is the total capacity of the arcs entering the sink:

Ideally, this upper bound is equal to the maximum flow value.

Thus, we could recognize that the algorithm output is optimal simply by comparing the flow value with the upper bound.

- ☐ Find the upper bound of the flow value
 - \square Choice 1: S \rightarrow A, S \rightarrow B (cut weight 8+3 = 11)
 - \square Choice 2: A \rightarrow C, S \rightarrow B (cut weight 3+2 = 5)
 - \square Choice 3: C \rightarrow T, D \rightarrow T (cut weight 4+3 = 7)

☐ Maximum flow: 5

- ☐ Residual network tells us the separation!
 - ☐ For brevity, we only show normal directions

☐ All nodes reachable from s belong to the same side!

- ☐ We can do another traversal to find the partition
 - ☐ Cut on s side: {S, A}
 - ☐ Cut on t side: {B, C, D, T}

Summary

- Maximum flow
- **☐** Bipartite matching
- ☐ Minimum s-t cut