COMP8760 - Lecture 3

Groups and Mutually Prime Numbers

Sanjay Bhattacherjee

University of Kent

Outline

Group

A set and an operation - an abstract algebraic structure.

Mutually Prime Numbers and the Set \mathbb{Z}_N^* The group that will be used in RSA!

Lagrange's Theorem and Fermat's Little Theorem

Key ideas to be used in RSA!

Study Material for Lecture 3

Book 1 Cryptography Made Simple
Author Nigel P. Smart.
Link to eBook

Section 1.1.1 Groups Section 1.1.3 Euler's Functions Section 1.1.4 Multiplicative Inverse Modulo NSection 1.1.5 The Set \mathbb{Z}_N^*

Mutually Prime Numbers

Definition

Two integers *a* and *b* are said to be mutually prime if there is no common factor between the two numbers other than 1.

Alternate form

Two integers a and b are said to be mutually prime if gcd(a, b) = 1.

Example: Mutually Prime

```
Are 14 and 21 mutually prime?
gcd(14, 21) = 7 which is > 1.
So, they are not mutually prime.
Are 110 and 273 mutually prime?
 gcd(273, 110) = gcd(110, 273 \mod 110)
                 = \gcd(110, 53)
                 = \gcd(53, 110 \mod 53)
                 = \gcd(53, 4)
                 = \gcd(4.53 \mod 4)
                 = \gcd(4, 1)
                 = \gcd(1, 4 \mod 1)
                 = \gcd(1,0)
So, they are mutually prime.
```


Euler's phi function: $\phi(n)$

Definition

Let n be a positive integer. We define $\phi(n)$ as the number of integers between 1 and n that are mutually prime to n.

Find the value of $\phi(16)$

n < 16	gcd(16, <i>n</i>)	-
1	1	-
2	2	
3	1	
4	4	
5	1	
6	2	
7	1	So 4(16) 0
8	8	So, $\phi(16) = 8$.
9	1	
10	2	
11	1	
12	4	
13	1	
14	2	
15	1	

This is a naive enumeration technique, and is costly!!! We have a very smart mathematical way!

Euler's phi function: $\phi(n)$

Another way for finding the value of $\phi(n)$:

1. Find the prime factorisation of *n*:

$$n = p_1^{\alpha_1} \times p_2^{\alpha_2} \times \ldots \times p_k^{\alpha_k}$$

2. Use the following formula

$$\phi(n) = n \prod_{i=1}^{k} \left(1 - \frac{1}{p_i} \right)$$

This formula can be proved using the principle of inclusion-exclusion.

Find the value of $\phi(100)$

We know
$$100 = \underbrace{2^2}_{\rho_1^{\alpha_1}} \times \underbrace{5^2}_{\rho_2^{\alpha_2}}$$

$$\phi(100) = 100 \prod_{i=1}^{2} \left(1 - \frac{1}{\rho_{i}}\right)$$

$$= 100 \left(1 - \frac{1}{\rho_{1}}\right) \left(1 - \frac{1}{\rho_{2}}\right)$$

$$= 100 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{5}\right)$$

$$= 100 \left(\frac{1}{2}\right) \left(\frac{4}{5}\right)$$

$$= 40.$$

Find the value of ϕ (1024)

We know
$$1024 = 2^{10} \int_{\rho_1^{\alpha_1}}$$

$$\phi(1024) = 1024 \prod_{i=1}^{1} \left(1 - \frac{1}{\rho_i}\right)$$

$$= 1024 \left(1 - \frac{1}{\rho_1}\right)$$

$$= 1024 \left(1 - \frac{1}{2}\right)$$

$$= 512.$$

The set \mathbb{Z}_N^*

Definition

For a positive integer N, we define \mathbb{Z}_N^* as the set of all integers between 1 and N that are mutually prime to N.

Examples

- $ightharpoonup \mathbb{Z}_3^{\star} = \{1, 2\}$
- $ightharpoonup \mathbb{Z}_4^* = \{1,3\}$
- $ightharpoonup \mathbb{Z}_5^{\star} = \{1, 2, 3, 4\}$
- $ightharpoonup \mathbb{Z}_6^{\star} = \{1, 5\}$
- $ightharpoonup \mathbb{Z}_{11}^{\star} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- $\mathbb{Z}_{12}^{\star} = \{1, 5, 7, 11\}$
- $\mathbb{Z}_{13}^{\star} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$

Multiplication (mod 5) in
$$\mathbb{Z}_5^{\star}$$

	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

Whenever we refer to addition or multiplication of elements from a set \mathbb{Z}_N or \mathbb{Z}_N^* , it will mean $+ \pmod{N}$ and $\times \pmod{N}$.

We use a general symbol ★ to denote both these operations.

So,
$$\star$$
 could denote + (mod 5) or \times (mod 5).

Let us denote the set like \mathbb{Z}_5 or \mathbb{Z}_5^* as G.

Addition (mod 5) in \mathbb{Z}_5

	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	1 2 3 4 0	1	2	3

Multiplication (mod 5) in \mathbb{Z}_5^*

	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	2 4 1 3	2	1

► Closure:

For any two elements $x, y \in G$,

$$x \star y \in G$$
.

Associativity:

For any three elements $x, y, z \in G$,

$$X \star (y \star z) = (X \star y) \star z.$$

Addition (mod 5) in \mathbb{Z}_5

	0	1	2	3	4
0	0	1	2	3	4
-1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	1 2 3 4 0	1	2	3

Multiplication (mod 5) in \mathbb{Z}_5^*

	1	2	3	4
1	1	2	3	4
2	2	4	1	3
2 3 4	2 3 4	1	4	2
4	4	3	2	1

▶ Identity: (unique for every \star)
There is a unique element $e \in G$ such that, for all $x \in G$,

$$x \star e = x$$
.

The additive identity is 0 and the multiplicative identity is 1.

► Inverse: For any element $x \in G$, there is a unique $\bar{x} \in G$ such that,

$$x \star \bar{x} = e$$
.

Addition (mod 5) in \mathbb{Z}_5

	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	3 4 0 1 2	3

Multiplication (mod 5) in \mathbb{Z}_5^*

	1	2	3	4
1	1	2	3	4
2	2	4	1	3
1 2 3 4	3	1	4	2
4	2 3 4	3	2	1

Commutativity:

For any two elements $x, y \in G$,

$$X \star y = y \star X$$
.

Distributivity:

For any three elements $x, y, z \in G$,

$$(x + y) \times z = (x \times z) + (y \times z).$$

Group

A group is a pair (G, \star) that satisfies the following properties.

Closure:

For any two elements $x, y \in G$,

$$x \star y \in G$$
.

Associativity:

For any three elements $x, y, z \in G$,

$$X \star (y \star z) = (X \star y) \star z.$$

▶ Identity: (unique for every \star)
There is a unique element $e \in G$ such that, for all $x \in G$,

$$x \star e = x$$
.

Inverse:

For any element $x \in G$, there is a unique $\bar{x} \in G$ such that,

$$x \star \bar{x} = e$$
.

Group: Example 1

 $(\mathbb{Z}_{10}, + \pmod{10})$ satisfies all the properties and hence is a group.

The set The operation

► Closure:

For any two elements $x, y \in \mathbb{Z}_{10}$, $x + y \pmod{10} \in \mathbb{Z}_{10}$.

Examples:

$$3+2=5\ (\mathrm{mod}\ 10)\in\mathbb{Z}_{10}.$$

$$3+3=6 \; (\text{mod } 10) \in \mathbb{Z}_{10}.$$

$$9+3=2\ (\text{mod }10)\in \mathbb{Z}_{10}.$$

$$9+1=0 \ (\text{mod } 10) \in \mathbb{Z}_{10}.$$

Associativity:

For any three elements $x, y, z \in \mathbb{Z}_{10}$, $x + (y + z) \pmod{10} = (x + y) + z \pmod{10}$.

Examples:

$$1 + (2 + 3) \pmod{10} = (1 + 2) + 3 \pmod{10}$$
.

$$9 + (8 + 7) \pmod{10} = (9 + 8) + 7 \pmod{10}$$
.

$$1 + (7 + 8) \pmod{10} = (1 + 7) + 8 \pmod{10}$$
.

$$0 + (7 + 8) \pmod{10} = (0 + 7) + 8 \pmod{10}$$
.

Group: Example 1

 $(\mathbb{Z}_{10}, + \pmod{10})$ satisfies all the properties and hence is a group.

The set The operation

► Identity:

The element $0 \in \mathbb{Z}_{10}$ is unique. For all $x \in \mathbb{Z}_{10}$, $x + 0 \pmod{10} = x$.

$$0+0 \pmod{10}=0$$
.

$$1 + 0 \pmod{10} = 1$$
.

÷

$$9+0 \pmod{10}=9$$
.

Inverse:

For any element $x \in \mathbb{Z}_{10}$, there is a unique $\bar{x} \in \mathbb{Z}_{10}$ such that, $x + \bar{x} \pmod{10} = 0$. Examples:

$$3+7 \pmod{10}=0$$
.

$$4 + 6 \pmod{10} = 0$$
.

$$5 + 5 \pmod{10} = 0$$
.

Abelian Group

A group pair (G, \star) is abelian if it satisfies the following property as well.

Commutativity:

For any two elements $x, y \in G$,

$$x \star y = y \star x$$
.

In other words, a commutative group is called abelian.

$$\mathbb{Z}_{12} = \{0, 1, 2, 3, \dots, 11\}$$

For $a,b\in\mathbb{Z}_{12}$, the following table shows all possible $a\times b=a\cdot b$ (except 0's) (We use the notations \times and \cdot interchangeably to denote multiplication.)

а	1	2	3	4	5	6	7	8	9	10	11
b											
1	1	2	3	4	5	6	7	8	9	10	11
2	2	4	6	8	10	0	2	4	6	8	10
3	3	6	9	0	3	6	9	0	3	6	9
4	4	8	0	4	8	0	4	8	0	4	8
5	5	10	3	8	1	6	11	4	9	2	7
6	6	0	6	0	6	0	6	0	6	0	6
7	7	2	9	4	11	6	1	8	3	10	5
8	8	4	0	8	4	0	8	4	0	8	4
9	9	6	3	0	9	6	3	0	9	6	3
10	10	8	6	4	2	0	10	8	6	4	2
11	11	10	9	8	7	6	5	4	3	2	1

Note that the rows of $\mathbb{Z}_{12}^* = \{1, 5, 7, 11\}$ have the element 1 but no 0, while the other rows have 0 but not 1.

$$\mathbb{Z}_{12}^{\star} = \{1, 5, 7, 11\}$$

So,

а	1	2	3	4	5	6	7	8	9	10	11
b											
1	1	2	3	4	5	6	7	8	9	10	11
2	2	4	6	8	10	0	2	4	6	8	10
3	3	6	9	0	3	6	9	0	3	6	9
4	4	8	0	4	8	0	4	8	0	4	8
5	5	10	3	8	1	6	11	4	9	2	7
6	6	0	6	0	6	0	6	0	6	0	6
7	7	2	9	4	11	6	1	8	3	10	5
8	8	4	0	8	4	0	8	4	0	8	4
9	9	6	3	0	9	6	3	0	9	6	3
10	10	8	6	4	2	0	10	8	6	4	2
11	11	10	9	8	7	6	5	4	3	2	1

 \mathbb{Z}_{12}^* is the set of elements in \mathbb{Z}_{12} that are mutually prime with 12. In other words, for all $a \in \mathbb{Z}_{12}^*$,

$$gcd(a, 12) = 1.$$

Note that only if $a \in \mathbb{Z}_{12}^{\star}$, then there is a solution to the equation

$$a \cdot x = 1$$
.

In other words, only elements in $\{1, 5, 7, 11\}$ have multiplicative inverses!

$$\mathbb{Z}_{13}^{\star} = \{1, 2, 3, \dots, 12\}$$

Here,

а	1	2	3	4	5	6	7	8	9	10	11	12
b												
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	1	3	5	7	9	11
3	3	6	9	12	2	5	8	11	1	4	7	10
4	4	8	12	3	7	11	2	6	10	1	5	9
5	5	10	2	7	12	4	9	1	6	11	3	8
6	6	12	5	11	4	10	3	9	2	8	1	7
7	7	1	8	2	9	3	10	4	11	5	12	6
8	8	3	11	6	1	9	4	12	7	2	10	5
9	9	5	1	10	6	2	11	7	3	12	8	4
10	10	7	4	1	11	8	5	2	12	9	6	3
11	11	9	7	5	3	1	12	10	8	6	4	2
12	12	11	10	9	8	7	6	5	4	3	2	1

▶ All positive integers between 1 and 12 are mutually prime with 13. In other words, for all $a \in \mathbb{Z}_{13}^*$,

$$gcd(a, 13) = 1.$$

▶ All elements in {1,2,...,12} have multiplicative inverses!

\mathbb{Z}_N^* is a Multiplicative Abelian Group

It satisfies the following properties with respect to modular multiplication.

- Closure:
 - For any two elements $x, y \in \mathbb{Z}_N^*$,

$$x \cdot y \in \mathbb{Z}_N^{\star}$$

Associativity:

For any three elements $x, y, z \in \mathbb{Z}_N^*$,

$$x\cdot (y\cdot z)=(x\cdot y)\cdot z$$

► Identity:

The element $1 \in \mathbb{Z}_N^{\star}$ is the identity such that, for all $x \in \mathbb{Z}_N^{\star}$,

$$x \cdot 1 = x$$

Inverse:

For any element $x \in \mathbb{Z}_N^{\star}$, there is a unique $\bar{x} \in \mathbb{Z}_N^{\star}$ such that,

$$x \cdot \bar{x} = 1$$

Commutativity:

For any two elements $x, y \in \mathbb{Z}_N^{\star}$,


```
Group: (\underbrace{\mathbb{Z}_{11}^{\star}}_{\text{The set}}, \underbrace{\times \text{ (mod 11)}}_{\text{The operation}})
```

where the set $\mathbb{Z}_{11}^{\star} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

Closure:

For any two elements $x, y \in \mathbb{Z}_{11}^{\star}$, $x \times y \pmod{11} \in \mathbb{Z}_{11}^{\star}$.

Examples:
$$3\times 2 = 6 \text{ (mod 11)} \in \mathbb{Z}_{11}^{\star}.$$

$$3 \times 4 = 1 \pmod{11} \in \mathbb{Z}_{11}^{\star}.$$

 $9 \times 3 = 5 \pmod{11} \in \mathbb{Z}_{11}^{\star}.$

$$9\times 1=9\ (\text{mod }11)\in \mathbb{Z}_{11}^{\star}.$$

Associativity:

For any three elements $x, y, z \in \mathbb{Z}_{11}^*$, $x \times (y \times z) \pmod{11} = (x \times y) \times z \pmod{11}$.

$$1 \times (2 \times 3) \pmod{11} = (1 \times 2) \times 3 \pmod{11}$$
.

$$9 \times (8 \times 7) \pmod{11} = (9 \times 8) \times 7 \pmod{11}$$
.

$$1 \times (7 \times 8) \pmod{11} = (1 \times 7) \times 8 \pmod{11}$$
.

$$0\times(7\times8)\ (\text{mod }11)=(0\times7)\times8\ (\text{mod }11).$$


```
Group: ( \underline{\mathbb{Z}_{11}^{\star}}, \underline{\times \text{ (mod 11)}})
```

The set The operation

 $(\mathbb{Z}_{11}^{\star}, \times (\text{mod } 11))$ satisfies all four properties and hence is a group.

The set The operation

► Identity:

The element $1 \in \mathbb{Z}_{11}^*$ is unique. For all $x \in \mathbb{Z}_{11}^*$, $x \times 1 \pmod{11} = x$.

$$0 \times 1 \pmod{11} = 0.$$

$$1 \times 1 \pmod{11} = 1.$$

$$9 \times 1 \pmod{11} = 9$$
.

Inverse:

For any element $x \in \mathbb{Z}_{1}^{\star}$, there is a unique $\bar{x} \in \mathbb{Z}_{1}^{\star}$ such that, $x \times \bar{x} \pmod{11} = 1$. Examples:

$$3 \times 7 \pmod{11} = 1$$
.

 $5 \times 5 \pmod{11} = 1$.

$$4 \times 6 \pmod{11} = 1.$$

$$\phi(N)$$
 elements in \mathbb{Z}_N^*

We note here that,

The group \mathbb{Z}_N^* has all elements of \mathbb{Z}_N that are mutually prime to N.

We recollect here that,

 $\phi(\textit{N})$ is the number of integers between 1 and N that are mutually prime to N.

In other words,

$$|\mathbb{Z}_{\mathsf{N}}^{\star}| = \phi(\mathsf{N}).$$

Lagrange's Theorem

Theorem

For any $a \in G$,

$$a^{|G|} = 1$$
.

Corollary

We apply this Theorem to the group \mathbb{Z}_N^* . For any $a \in \mathbb{Z}_N^*$,

 $a^{\phi(N)}=1.$

Fermat's Little Theorem

Theorem

Let p be a prime number and a be an integer. Then,

$$a^p = a \mod p$$
.

Proof Idea.

In Lagrange's Theorem, consider the group $(Z_p^{\star} = \{1, 2, \dots, p-1\}.$

For any $a \in \mathbb{Z}_p^{\star}$,

$$a^{p-1}=1 \mod p$$
.

And hence,

$$a^p = a \mod p$$
.

Summary

Group

Abstract algebraic structure containing a set and an operation.

Mutually Prime Numbers and the Set \mathbb{Z}_N^{\star}

The group that will be used in RSA!

Lagrange's Theorem and Fermat's Little Theorem

Key ideas to be used in RSA!

Thank you for your kind attention!

