Chapitre 1

Suites numériques

1 Définitions

Définition. On appelle suite de nombres réels toute application u d'une partie I de \mathbb{N} dans \mathbb{R} . On désigne souvent par $(u_n)_{n\in I}$ ou (u_n) la suite u.

Le terme u_n s'appelle terme général de la suite (u_n) .

Une suite peut être donnée :

Soit explicitement :

$$u_n = f(n)$$

où f est une application d'une partie de $\mathbb N$ dans $\mathbb R$.

Exemples:

• $u_n = \frac{1}{n^2 + 1}$ est définie pour $n \in \mathbb{N}$.

On a $u_0 = 1$, $u_1 = \frac{1}{2}$, $u_2 = \frac{1}{5}$,...

• $v_n = \frac{1}{n}$ est définie pour $n \ge 1$.

On a $v_1 = 1$, $v_2 = \frac{1}{2}$,

Soit par récurrence :

$$\begin{cases} u_{n+1} = f(u_n) \\ u_0 \text{ donn\'e}. \end{cases}$$

Cette relation de récurrence permet de calculer le terme de rang n+1 en fonction du terme précédent de rang n.

1

Exemple:

$$\bullet \quad \left\{ \begin{array}{l} u_{n+1} = 5u_n + 2 \\ u_0 = 3. \end{array} \right.$$

On a
$$u_1 = 5u_0 + 2 = 17$$
, $u_2 = 5u_1 + 2 = 87$, ...

Remarque:

Les suites que l'on rencontre le plus fréquemment en mathématiques financières sont les suites arithmétiques et les suites géométriques. Nous en rappellerons ici les propriétés les plus importantes.

2 Suites arithmétiques

Définition. On appelle suite arithmétique de premier terme u_0 et de raison r, la suite (u_n) définie par :

$$u_{n+1} = u_n + r$$
 pour tout $n \in \mathbb{N}$

Proposition. Si (u_n) est une suite arithmétique de premier terme u_0 et de raison r, alors

$$u_n = u_0 + rn$$
 pour tout $n \in \mathbb{N}$

Remarque:

$$u_n = u_1 + r(n-1)$$

$$u_n = u_p + r(n-p)$$

Proposition. Soit (u_n) une suite arithmétique de raison r. La somme S_n des n+1 premiers termes de (u_n) est donnée par :

$$S_n = \sum_{k=0}^n u_k = u_0 + u_1 + \dots + u_n = (n+1)\frac{u_0 + u_n}{2}$$

Ce résultat permet de trouver la somme S_n d'une suite arithmétique en utilisant le premier terme et le dernier terme.

Remarque : De façon générale

$$S_n = \sum_{k=p}^n u_k = u_p + u_{p+1} + \dots + u_n = (n-p+1)\frac{u_p + u_n}{2}$$

Exemple: On considère la suite donnée par

$$\begin{cases} u_{n+1} = u_n + 3 \\ u_0 = 2 \end{cases}$$

Il s'agit d'une suite arithmétique de raison r=3 et de premier terme $u_0=2$.

Calculons par exemple les termes u_5, u_{20} et u_{100} :

$$u_5 = u_0 + r \times 5 = 2 + 3 \times 5 = 17.$$

$$u_{30} = u_0 + r \times 30 = 2 + 3 \times 30 = 92.$$

$$u_{100} = u_0 + r \times 100 = 2 + 3 \times 100 = 302.$$

On peut calculer u_{100} autrement :

$$u_{100} = u_5 + r(100 - 5) = 17 + 3(100 - 5) = 302.$$

Calculons par exemple les sommes $u_0 + u_1 + ... + u_{30}$ et $u_5 + u_8 + ... + u_{100}$:

$$u_0 + u_1 + \dots + u_{30} = (30+1)\frac{u_0 + u_{30}}{2} = (30+1)\frac{2+92}{2} = 1457$$

$$u_0 + u_1 + \dots + u_{30} = (30+1)\frac{u_0 + u_{30}}{2} = (30+1)\frac{2+92}{2} = 1 \ 457.$$

$$u_5 + u_8 + \dots + u_{100} = (100-5+1)\frac{u_5 + u_{100}}{2} = (100-5+1)\frac{17+302}{2} = 15 \ 312.$$

Exemple: La somme des n premiers entiers naturels:

$$1 + 2 + 3 + ... + n$$

est la somme des n+1 premiers termes de la suite arithmétique de premier terme $u_0 = 0$ et de raison r = 1. On a donc :

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

3 Suites géométriques

Définition. On appelle suite géométrique de premier terme u_0 et de raison q, la suite (u_n) définie par :

$$u_{n+1} = qu_n$$
 pour tout $n \in \mathbb{N}$

Proposition. Si (u_n) est une suite géométrique de premier terme u_0 et de raison q, alors

$$u_n = u_0 q^n$$
 pour tout $n \in \mathbb{N}$

Remarque:

$$u_n = u_1 q^{n-1}$$

$$u_n = u_p q^{n-p}$$

Proposition. Soit (u_n) une suite géométrique de raison q. La somme S_n des n+1 premiers termes de (u_n) est donnée par :

$$S_n = \sum_{k=0}^n u_k = u_0 + u_1 + \dots + u_n = u_0 \frac{q^{n+1} - 1}{q - 1}$$
 si $q \neq 1$

Remarque : De façon générale

$$S_n = \sum_{k=n}^n u_k = u_p + u_{p+1} + \dots + u_n = u_p \frac{q^{n-p+1} - 1}{q-1}$$
 si $q \neq 1$

Exemple : On considère la suite donnée par

$$\begin{cases} u_{n+1} = 3u_n \\ u_0 = 2 \end{cases}$$

Il s'agit d'une suite géométrique de raison q=3 et de premier terme $u_0=2$. Calculons par exemple les termes u_2, u_4 :

$$u_2 = u_0 q^2 = 2 \times 3^2 = 18.$$

 $u_4 = u_0 q^4 = 2 \times 3^4 = 162.$

Calculons par exemple les sommes $u_0 + u_1 + ... + u_4$ et $u_2 + u_3 + ... + u_{10}$:

$$u_0 + u_1 + \dots + u_4 = u_0 \frac{q^{4+1} - 1}{q - 1} = 2\frac{3^5 - 1}{2} = 3^5 - 1.$$

 $u_2 + u_3 + \dots + u_{10} = u_2 \frac{q^{10-2+1} - 1}{q - 1} = 18\frac{3^9 - 1}{2} = 9(3^9 - 1).$

Exemple : Considérons la suite géométrique de premier terme $u_0 = 1$ et de raison $q \neq 1$. On a donc :

$$1 + q + q^{2} + \dots + q^{n} = \frac{q^{n+1} - 1}{q - 1}$$