

Deep Learning

4.2 Pooling

Dr. Konda Reddy Mopuri kmopuri@iittp.ac.in Dept. of CSE, IIT Tirupati

Dr. Konda Reddy Mopuri dlc-4.2/Pooling 1

Pooling

Groups multiple activations and replaces by a representative one

Pooling

- Groups multiple activations and replaces by a representative one
- ${f 2}$ Reduces the dimensionality of the signal ightarrow considers non-overlapping stride

Max Pooling

Standard in CNNs

Max Pooling

- Standard in CNNs
- Computes maximum value over a non-overlapping blocks in the input

Average Pooling

Computes the average of the receptive field

Pooling in 2D

Same as 1D, but the receptive field is 2D and non-overlapping

Figure credits: Preston Hoang and Quora

Pooling in 2D

Contrary to Convolution, Pooling applies channel wise

Pooling in 2D

- Contrary to Convolution, Pooling applies channel wise
- ② No reduction in number of channels, only spatial size reduction

Pooling provides weak invariance

Operation is invariant to any permutation within the block

Pooling provides weak invariance

- Operation is invariant to any permutation within the block
- Withstands deformations caused by local translations

F.max_pool2d(input, kernel_size, stride=None, padding=0,
dilation=1, ceil_mode=False, return_indices=False)

Applies max pooling on each of the channels separately

F.max_pool2d(input, kernel_size, stride=None, padding=0,
dilation=1, ceil_mode=False, return_indices=False)

- Applies max pooling on each of the channels separately
- ② input is $N \times C \times H \times W$ tensor

F.max_pool2d(input, kernel_size, stride=None, padding=0,
dilation=1, ceil_mode=False, return_indices=False)

- Applies max pooling on each of the channels separately
- ② input is $N \times C \times H \times W$ tensor
- lacksquare kernel_size is (h,w) or k

F.max_pool2d(input, kernel_size, stride=None, padding=0,
dilation=1, ceil_mode=False, return_indices=False)

- Applies max pooling on each of the channels separately
- 2 input is $N \times C \times H \times W$ tensor
- \P Result would be a tensor of size $N \times C \times \lfloor H/h \rfloor \times \lfloor W/w \rfloor$

Pooling in PyTorch

 $f ext{0}$ Default stride is the kernel size (for convolution, it is 1)

Pooling in PyTorch

- lacktriangle Default stride is the kernel size (for convolution, it is 1)
- 2 But, it can be modulated if required

Pooling in PyTorch

- $lue{1}$ Default stride is the kernel size (for convolution, it is 1)
- 2 But, it can be modulated if required
- 3 Default padding is zero

Pooling Layer in PyTorch


```
class torch.nn.MaxPool2d(kernel_size, stride=None,
padding=0, dilation=1, return_indices=False,
ceil mode=False)
```