ANNEX I. Formulas

Value Description

Units

Cmax	Maximum capacity, obtained as an average of the last five values pF				
	of the curve in accumulation situation, equivalent to the capacity				
	of the oxide (C_{ox}) .				
Cmin	Minimum capacity, obtained as the minimum value of the curve.				
Dox	Oxide thickness.				
	$d_{ox} = \frac{\varepsilon_0 \cdot \varepsilon_{ox} \cdot S}{c_{max}}$				
Na	Substrate doping.				
	$ln\left(\frac{Na}{n_i}\right) - \frac{q2 \cdot ni \cdot W_m^2}{4 \cdot \varepsilon_S \cdot k \cdot T} \left(\frac{Na}{n_i}\right) = 0$				
	$W_m = \varepsilon_S \cdot \left(\frac{1}{C_{min}^{HF}} - \frac{1}{C_{max}}\right)$				
V_{FB}	Flat band voltage is the voltage for which the capacity is equal to V				
	the capacity of flat band (C _{FB}).				
	$C_{FB} = \frac{1}{\frac{1}{C_{ox}} + \frac{1}{C_{S_{FB}}}}$ $C_{S_{FB}} = \sqrt{\frac{q^2 \cdot \varepsilon_S \cdot N_A}{k \cdot T}}$				
Nss	Total charge density on the insulator.				
1		cm ⁻²			
	$Nss = (\Phi_{MS} - V_{FB}) \cdot \frac{c_{ox}}{q \cdot S}$				
Rs	$Nss = (\Phi_{MS} - V_{FB}) \cdot \frac{c_{ox}}{q \cdot s}$ Serial resistance.	Ω			
Rs	ų s				
Rs	Serial resistance.				
Rs	Serial resistance. $R_S = \frac{G_{acc}}{G_{acc}^2 + w^2 \cdot C_{acc}^2}$ $G_{acc}, C_{acc} = \text{Accumulation conductance and capacitance}$				
Rs	Serial resistance. $R_S = \frac{G_{acc}}{G_{acc}^2 + w^2 \cdot C_{acc}^2}$ $G_{acc}, C_{acc} = \text{Accumulation conductance and capacitance}$ Then the measured capacitance (C _m) and the measured				
Rs	Serial resistance. $R_S = \frac{G_{acc}}{G_{acc}^2 + w^2 \cdot C_{acc}^2}$ $G_{acc}, C_{acc} = \text{Accumulation conductance and capacitance}$				
Rs	Serial resistance. $R_{\mathcal{S}} = \frac{G_{acc}}{G_{acc}^2 + w^2 \cdot C_{acc}^2}$ $G_{acc}, C_{acc} = \text{Accumulation conductance and capacitance}$ Then the measured capacitance (C _m) and the measured conductance (G _m) are compensated for this obtained value of R _S				

ANNEX II. Layout information CNM1075

Layout capacitance chip
Chip overall dimensions are X=2790 um. Y=1950 um.

Chip	overall	dimensions	are	X = 2790	μm,	Y = 1950	μm.

CAP	Area (μm²)
A	980x980
В	480x480
С	180x180
D	120x120
E	80x80

Die CNM1075 with 6 capacitance chip, 2 diodes chip and 1 CBR metal chip Die overall dimensions are $X=8370~\mu m$, $Y=5850~\mu m$.

ANNEX III. Wafermap file

Wafermap used in cartography

Total of 141 capacitances

Home and origin detail

2790um x 1950um, DIE: 8370um x 5850um, 141 Chips , home & origin (X=8, Y=1)