

Contrôle continu de statique

Dispositif de pesée

Le système se compose de deux leviers horizontaux (AC) et (OE)
On considère le système à l'équilibre (leviers (AC) et (OE) horizontaux)

$$\overrightarrow{AB} = \mathbf{a}.\overrightarrow{x}; \overrightarrow{BC} = \mathbf{b}.\overrightarrow{x}; \overrightarrow{OB} = \mathbf{L}.\overrightarrow{y};$$

$$\overrightarrow{OD} = \mathbf{c}.\overrightarrow{x}; \overrightarrow{OE} = \mathbf{d}.\overrightarrow{x}$$

$$\left\{T_{F_1}\right\} = \begin{cases} \overrightarrow{F_1} = -F_1.\overrightarrow{y} \\ \overrightarrow{M_{A_{F_1}}} = \overrightarrow{0} \end{cases}$$

$$\left\{T_{F_2}\right\} = \begin{cases} \overrightarrow{F_2} = -F_2.\overrightarrow{y} \\ \overrightarrow{M_{E_{F_2}}} = \overrightarrow{0} \end{cases}$$

Questions

- 1) Réaliser le graphe des liaisons du système en précisant le nom des liaisons, le centre ainsi que l'axe principal
- 2) Ecrire le torseur statique de la liaison en B $\{T_B\}$ dans la base $(\vec{x}, \vec{y}, \vec{z})$
- 3) Ecrire le torseur statique de la liaison en C $\{T_C\}$ dans la base $(\vec{x}, \vec{y}, \vec{z})$
- 4) Ecrire le torseur statique de la liaison en O $\{T_0\}$ dans la base $(\vec{x}, \vec{y}, \vec{z})$
- 5) Ecrire le torseur statique de la liaison en D $\{T_D\}$ dans la base $(\vec{x}, \vec{y}, \vec{z})$

Rappel: Le torseur $\{\tau_{(2 \to 1)}\}$ associé à l'action mécanique exercée en A, par un solide 2 sur un solide 1 sera noté :

$$\left\{ \mathcal{T}_{(2 \to 1)} \right\} = \left\{ \begin{matrix} \overrightarrow{R_{2 \to 1}} \\ \overrightarrow{M_{A_{2 \to 1}}} \end{matrix} \right\} = \left\{ \begin{matrix} \overrightarrow{R_{2 \to 1}} \\ \overrightarrow{M_{A_{2 \to 1}}} \end{matrix} = \begin{matrix} X_{21} \cdot \overrightarrow{x} + Y_{21} \cdot \overrightarrow{y} + Z_{21} \cdot \overrightarrow{z} \\ Y_{21} \cdot \overrightarrow{M_{21}} \end{matrix} \right\} = \left\{ \begin{matrix} X_{21} & L_{21} \\ Y_{21} & M_{21} \\ Z_{21} & N_{21} \end{matrix} \right\}$$

- 6) Démontrer que les composantes X_C , X_D , Z_C , Z_D sont nulles et que $Y_C = Y_D$
- 7) Ecrire le torseur statique de la liaison en C exprimé au point B dans la base (\vec{x} , \vec{y} , \vec{z})
- 8) Ecrire le torseur $\{T_{F_1}\}$ exprimé au point B dans la base $(\vec{x}, \vec{y}, \vec{z})$
- 9) Ecrire le torseur statique de la liaison en D exprimé au point O dans la base (\vec{x} , \vec{y} , \vec{z})
- 10) Ecrire le torseur $\{T_{F_2}\}$ exprimé au point O dans la base $(\vec{x}, \vec{y}, \vec{z})$
- 11) Isoler le levier (1), faire le bilan des actions mécaniques qui lui sont appliquées et appliquez le principe fondamental de la statique en précisant les conditions nécessaires
- 12) Etablir les équations de projection sur Ox, Oy et Oz
- 13) Résoudre ces équations puis établir une relation entre Y_C , F_1 , a et b
- 14) Isoler le levier (3), faire le bilan des actions mécaniques qui lui sont appliquées et appliquez le principe fondamental de la statique en précisant les conditions nécessaires
- 15) Etablir les équations de projection sur Ox, Oy et Oz
- 16) Résoudre ces équations puis établir une relation entre Y_D , F_2 , c et d
- 17) A partir des résultats des questions 13) et 16) en déduire une relation entre F₁, F₂, a, b, c et d