Applications of MoS₂ as a Two-Dimensional Materials Beyond Graphene

Kraig Andrews

Wayne State University kraig.andrews@wayne.edu

April 21, 2015

Overview

Origins and Discovery of Graphene

MoS₂ and TMDs as Materials Beyond Graphene

Properties of MoS₂

Synthesis of MoS₂

Applications of MoS₂ in FETs

Outlook & Conclusion

Search for new Materials

Figure: The Intel 8080 introduced in 1974 consisted of approximately 5,000 transistors

Figure: The Intel Core i7 in 2008 consisted of approximately 731 million transistors

[Grifantini, 2008]

Discovery of Graphene

Figure: [Riken, 2012]

- 1985 suggestion of 1-D structure of carbon
- Several theoretical studies on formation of single layer of graphite
- 2004 Geim et al. isolate single layer of carbon atoms

Properties of Graphene

Figure: Electronic band structure of graphene [Fuhrer, 2010].

- Band Gap
- Mobility
- Young's Modulus
- Drawbacks
- "Relativistic" properties

MoS_2

Transistion Metal Dichalcogenides (TMDs)

- Renewed research in the last decade
- Instrinsic semiconductor

- Metal atom M
 - Mo, W, Nb, Re, Ni, or V
- 2 chalcogenide atoms X₂
 - S, Se, Te

Figure: Bulk MoS₂ crystal [Wang, 2012].

Properties of MoS₂

- Monolayer MoS₂
 - Direct Band Gap 1.8 eV
 - Young's Modulus 270 GPa
- Bulk MoS₂
 - Indirect Band Gap 1.3 eV
 - ullet Young's Modulus 240 ${
 m eV}$

Micromechanical Exfoliation of MoS₂

Figure: Bulk MoS₂ crystal [Wang, 2012].

Figure: Image of MoS₂ [Li, 2014].

Figure: Example of layering in MoS₂ flakes [Radisavljevic, 2011].

MoS₂ in FETs

Figure: Schematic of FET with monolayer MoS_2 .

- High on/off ratio
- Mobility of monolayer ${
 m MoS}_2$ at room temperature $\sim 0.1-10.0\,{
 m cm}^2{
 m V}^{-1}{
 m s}^{-1}$
- Mobility of bulk MoS_2 $\sim 100 \, \mathrm{cm}^2 \mathrm{V}^{-1} \mathrm{s}^{-1}$.

MoS₂ in FETs Continued

- Increased mobility with use of HfO₂ dielectric
- Mobility increased to $\sim 200\,\mathrm{cm^2V^{-1}s^{-1}}$
- Drawbacks & problems still remain

Figure: Detailed schematic of MoS₂ FET

Outlook and Conclusion

- Improving mobility in MoS₂ FETs
- Other materials

References

Fuhrer, M.S. (2010)

Graphene: Ribbions piece-by-piece

Nature Materials (9), 611-612.

Grifantini, K. (2008)

Moore's Law

MIT Technology Review http://www.technologyreview.com/photoessay/411485/moores-law/.

Riken (2012)

Successful Development of a Precision Graphene Production Control Method (Press Release)

Wang, Q.H. and Zadeh, K.K. and Kis, A. and Coleman, J.N. and Strano, M.S. (2012)

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides

Nature Nanotechnology (7), 699–712.

References

Li, H. and Wu, J. and Yin, Z. and Zhang, H. (2014)

Preperation and applications of mechanically exfoliated single-layer and multilayer MoS_2 and WSe_2 nanosheets

Accounts of Chemical Research 47(4), 1067–1075.

Radisavljevic et al. (2011)

Single-Layer MoS₂ transistors

Nature Nanotechnology (6), 447–500