

第9讲-一阶逻辑的 永真推理系统

内容概要

公理 | 规则 | 一些上层定理

与G的等价定理

定义9.1. 设 \mathcal{L} 为一阶语言, A 为 \mathcal{L} 公式, $x_1, ..., x_n$ 为变元,则称 $\forall x_1 \forall x_2 ... \forall x_n . A$ 为 A 的全称化, 这里 n=0 时, $\forall x_1 \forall x_2 ... \forall x_n . A$ 为 A。

定义9.2. 一阶逻辑的 Hilbert 系统 PK 由以下公理与规则组成:

第一组: 命题演算公理 A01 - A12,这里 A, B, C 为任何公式; 第二组:

 $A13. \ \forall xA \to A\left[\frac{t}{x}\right]$

 $A14. \ A[\frac{t}{x}] \to \exists xA$

 $A15. A \rightarrow \forall xA,$ 这里 $x \notin FV(A)$

 $A16. \exists xA \to A,$ 这里 $x \notin FV(A)$

 $A17. \ \forall x(A \to B) \to (\forall xA \to \forall xB)$

A18. $\forall x(A \to B) \to (\exists xA \to \exists xB)$

第三组: 等词定理。

$$A19. x \doteq x$$

$$A20. (x_1 \doteq y_1) \rightarrow ...((x_n \doteq y_n) \rightarrow (f(x_1, ..., x_n) \doteq f(y_1, ..., y_n))),$$
 这里 f 为任何 n 元函数。

$$A21. (x_1 \doteq y_1) \to ...((x_n \doteq y_n) \to (P(x_1, ..., x_n) \to P(y_1, ..., y_n))),$$
这里 P 为任何 n 元谓词。

第四组:前面各组中公理的全称化。

规则:
$$MP \xrightarrow{A \to B A}$$

约定: 若 \mathcal{L} 中含等词 $\stackrel{\cdot}{=}$,则PK中有第三组公理且有时记PK为 PK_e 或 $PK_{\stackrel{\cdot}{=}}$ 。

定义9.3. 设 A 为公式, Γ 为公式集,

- (1) 在 PK 中由 Γ 推导 A (记为 $\Gamma \vdash_{PK} A$,简记 $\Gamma \vdash_{A}$) 指存在序列 $A_{1},...,A_{n}$ 使 A 为 A_{n} 且对任何 $i \leqslant n$ 有 (a) A_{i} 为公理
 - 或(b) $A_i \in \Gamma$
 - 或(c) 存在 j, k < i 使 A_j 为 $A_k \to A_i$, 这时称 A_i 由其前 A_j 和 A_k 实施 MP 而得。
 - (2) 称以上的 $A_1, ..., A_n$ 为 $\Gamma \vdash A$ 的证明过程其长为 n。
- (3) 当 $\Gamma \vdash A$ 可证时,称 A 为 Γ 定理,若 $\Gamma = \emptyset$,则称A为定理。
- $(4) Th(\Gamma) = \{A | \Gamma \vdash A\}$

在命题逻辑中的一些结果在 PK 中同样成立。 PK 的推理定理也同理可证。

定理9.4 若 Γ , $C \vdash A$,则 $\Gamma \vdash C \rightarrow A$ 。

在PK中进行推理时,我们需要证明一些上层定理(Metatheorem)。

定理9.5. 设 $x \notin FV(\Gamma)$, 若 $\Gamma \vdash A$, 则 $\Gamma \vdash \forall xA$

证明: 设 $\Gamma \vdash A$ 的证明过程为 $A_1, ..., A_n$,对n归纳证明 $\Gamma \vdash \forall x A$ 如下:

情况1. A_n 为公理,从而 $\forall x A_n$ 亦然,故 $\Gamma \vdash \forall x A$ 。

情况2. $A_n \in \Gamma$,从而 $x \notin FV(A_n)$,由 A15 知 $A_n \to \forall x A_n$,故 $\Gamma \vdash \forall x A$ 。

情况3. A_n 由 A_i (其为 $A_j \to A_n$)与 A_j 实施MP而得且 i, j < n。 由 I.H. 知 $\Gamma \vdash \forall x (A_j \to A_n), \Gamma \vdash \forall x A_j$ 。 又由 A17 知, $\Gamma \vdash \forall x (A_j \to A_n) \to (\forall x A_j \to \forall x A_n)$, 故 $\Gamma \vdash \forall x A$ 。

定理9.6. 设常元 c 不在 Γ, A 中出现,若 $\Gamma \vdash A[\frac{c}{x}]$,则 $\Gamma \vdash \forall x A$ 。 并且在 $\Gamma \vdash \forall x A$ 的证明过程中可不出现 c。 证明留作习题。

定理9.7. 设常元 c 不在 Γ, A, B 中出现且 $x \notin FV(B)$,

若 Γ , $A[\frac{c}{x}] \vdash B$,则 Γ , $\exists xA \vdash B$ 。

并且在 Γ , $\exists xA \vdash B$ 的证明过程中可不出现 c。

证明: 因为 Γ , $A[\frac{c}{r}] \vdash B$

- ⇒ $\Gamma \vdash A\left[\frac{c}{r}\right] \to B$ (推理定理)
- $\Rightarrow \Gamma \vdash \forall x (A \rightarrow B)$ (定理 9.6)
- $\Rightarrow \Gamma \vdash \exists xA \rightarrow \exists xB \text{ (A18)}$
- $\Rightarrow \Gamma, \exists xA \vdash \exists xB \quad (A16 : \exists xB \rightarrow B)$
- $\Rightarrow \Gamma, \exists xA \vdash B$

所以 Γ , $\exists xA \vdash B$ 成立。

命题9.8. 设 $x \notin FV(\Gamma)$,

$$(1) \vdash \neg \forall x A \to \exists x \neg A$$

$$(2) \vdash \neg \exists x A \rightarrow \forall x \neg A$$

$$(3) \vdash \forall x \neg A \rightarrow \neg \exists x A$$

$$(4) \vdash \exists x \neg A \rightarrow \neg \forall x A$$

证明: (1) 采用倒推法

$$\vdash \neg \forall x A \rightarrow \exists x \neg A$$

$$\leftarrow \vdash \neg \exists x \neg A \rightarrow \forall x A$$

$$\Leftarrow \neg \exists x \neg A \vdash \forall x A$$

$$\leftarrow \neg \exists x \neg A \vdash A\left[\frac{c}{x}\right] \ ($$
 定理 9.6 $)$

$$\Leftarrow \neg A[\frac{c}{x}] \vdash \exists x \neg A$$

$$\Leftarrow \vdash \neg A\left[\frac{c}{x}\right] \to \exists x \neg A \text{ (A14)}$$

(2) 与(1)同理。

$$(3) \vdash \forall x \neg A \rightarrow \neg \exists x A$$

$$\leftarrow \forall x \neg A \vdash \neg \exists x A$$

$$\Leftarrow \exists xA \vdash \neg \forall x \neg A$$

$$\Leftarrow A\left[\frac{c}{x}\right] \vdash \neg \forall x \neg A \text{ (c为新变元)}$$

$$\Leftarrow \forall x \neg A \vdash \neg A[\frac{c}{x}]$$

$$\leftarrow \vdash \forall x \neg A \rightarrow \neg A\left[\frac{c}{x}\right] \text{ (A13)}$$

事实上,我们有

$$\vdash \forall x.A \leftrightarrow \neg \exists x \neg A = \exists$$

$$\vdash \exists x A \leftrightarrow \neg \forall x \neg A$$
,

定理9.9. 设 A 为公式,若 $\vdash_{PK} A$ 可证,则 $\vdash A$ 在 G 中可证。 证明:设 $\vdash_{PK} A$ 可证,对 $\vdash_{PK} A$ 的证明长度归纳来证 $\vdash A$ 在G中可证。 情况1. A 为公理。

- (1.1) A 为 A01 A12, 如前处理。
- (1.2) 当 A 为 A13 时:

- (1.3) 当 A 为 A14 时,与(1.2)同理。
- (1.4) 当 A 为 A15 时,这里 $x \notin FV(A)$

$$\frac{A \vdash A}{A \vdash \forall xA} \, \forall R \\ \vdash A \to \forall xA \to R$$

(1.5) 当 A 为 A16 时,与(1.4)同理可证。

(1.6) 当 A 为 A17

$$\frac{B, A \vdash B \quad A \vdash A, B}{A \to B, A \vdash B} \to L$$

$$\forall x (A \to B), \forall x A, A \to B, A \vdash B$$

∀L两次

$$\frac{\forall x(A \to B), \forall xA \vdash B}{\forall x(A \to B), \forall xA \vdash \forall xB} \forall R$$

$$\frac{\forall x(A \to B), \forall xA \vdash \forall xB}{\vdash \forall x(A \to B) \to (\forall xA \to \forall xB)} \to R \overline{\bowtie} \chi$$

- (1.7) 当 A 为 A18,与 A17 同理可证(习题)
- (1.8) 当 A 为 A19 21 ,在 G_{\pm} 中显而易见 A 可证。

情况2. 当 A 由 $B \rightarrow A$ 和 B 实施 MP 而得,如前处理。

与上讲定理8.5类似,我们有

定理9.10. 若 $\Gamma \vdash \Delta$ 在 G 中可证,则 $\Gamma \vdash \overline{\Delta}$ 在 PK 中可证。

证明: 对 $\Gamma \vdash \Delta$ 的证明结构作归纳来证明 $\Gamma \vdash \overline{\Delta}$ 在 PK 中可证。

情况1. $\Gamma \vdash \Delta$ 为公理。如前处理。

情况2. $\Gamma \vdash \Delta$ 由实施规则而得。

(2.1) 对于命题演算的规则,如前处理。

(2.2) 设
$$\forall L : \frac{\Gamma, A[\frac{t}{x}], \forall xA \vdash \Delta}{\Gamma, \forall xA \vdash \Delta}$$

由 I.H. 知 $\Gamma, A[\frac{t}{x}], \forall xA \vdash \overline{\Delta}$ 在 PK 中可证。

 $\therefore \forall xA \vdash A\left[\frac{t}{x}\right]$ 在 PK 中可证

 \therefore Γ, $\forall xA \vdash \overline{\Delta}$ 在 PK 中可证。

$$(2.3) \ \ \forall R : \frac{\Gamma \vdash A[\frac{y}{x}], \Delta}{\Gamma \vdash \forall x A, \Delta}$$

由 I.H. 知 $\Gamma \vdash A\left[\frac{y}{x}\right] \lor \overline{\Delta}$ 在 PK 中可证。

从而 $\Gamma, \neg \overline{\Delta} \vdash A[\frac{y}{x}]$,故由定理 $9.6 \Gamma, \neg \overline{\Delta} \vdash \forall x.A$ 可证,因此 $\Gamma \vdash (\forall x.A) \lor \overline{\Delta}$ 在 PK 中可证。

$$(2.4) \ \exists L : \frac{\Gamma, A[\frac{y}{x}] \vdash \Delta}{\Gamma, \exists x A \vdash \Delta}$$

由 I.H. 可知 $\Gamma, A[\frac{y}{x}] \vdash \overline{\Delta}$ 可证从而 $\Gamma, A[\frac{c}{x}] \vdash \overline{\Delta}$ 可证, 这里 c 为新常元,

由定理9.7知 Γ , $\exists xA \vdash \overline{\Delta}$ 在 PK 中可证。

$$(2.5) \exists R : \frac{\Gamma \vdash A\left[\frac{t}{x}\right], \exists x A, \Delta}{\Gamma \vdash \exists x A, \Delta}$$

与(2.2)同理可证。

由以上两个命题即得

定理9.11. 设 A 为公式,

 $\vdash A$ 在 G 中可证 $\Leftrightarrow A$ 在 PK 中可证,

从而 G 与 PK 等价。

本讲小结

NAND THE UNIVERSE

- 公理和规则;
- 一些上层定理;
- PK 与 *G* 的定价性。

The End of Lecture 9