Package 'SIHR'

June 30, 2022

Type Package
Title Statistical Inference in High Dimensional Regression
Version 1.0.0
Author Prabrisha Rakshit, Zhenyu Wang, Zijian Guo, Tony Cai
Maintainer Zijian Guo <zijguo@stat.rutgers.edu></zijguo@stat.rutgers.edu>
Description Inference procedures in the high-dimensional setting for (1) linear functionals in generalized linear regression ('Cai et al.' (2019) <arxiv:1904.12891>, 'Guo et al.' (2020) <arxiv:2012.07133>, 'Cai et al.' (2021)), (2) quadratic functionals in linear regression ('Guo et al.' (2019) <arxiv:1909.01503>) (3) individual treatment effects in generalized linear regression.</arxiv:1909.01503></arxiv:2012.07133></arxiv:1904.12891>
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.2.0
<pre>URL https://github.com/prabrishar1/SIHR</pre>
Imports CVXR, glmnet, stats
R topics documented:
confint.ITE 2 confint.LF 2 confint.QF 3 ITE 4 LF 5 QF 7 summary.ITE 9 summary.LF 9 summary.QF 10
Index 11

2 confint.LF

confint.ITE	Confidence Intervals for Bias-corrected ITE Estimators
-------------	--

Description

Computes confidence intervals for bias-corrected estimators; Each row corresponds to a loading.

Usage

```
## S3 method for class 'ITE'
confint(obj, alpha = 0.05, alternative = c("two.sided", "less", "greater"))
```

Arguments

obj An object of class 'ITE', a result of a call to 'ITE'

alpha Level of significance to construct confidence interval (default=0.05)

alternative Indicates the alternative hypothesis to construct confidence interval and must be

one of "two.sided" (default), "less", or "greater".

Value

A matrix with columns giving lower and upper confidence limits for bias-corrected estimators.

Examples

```
## Not run:
##-- Continuing the ITE(.) example:
ci = confint(Est)
ci
## End(Not run)
```

confint.LF

Confidence Intervals for Bias-corrected LF Estimators

Description

Computes confidence intervals for bias-corrected estimators; Each row corresponds to a loading.

Usage

```
## S3 method for class 'LF'
confint(obj, alpha = 0.05, alternative = c("two.sided", "less", "greater"))
```

Arguments

obj An object of class 'LF', a result of a call to 'LF'

alpha Level of significance to construct confidence interval (default=0.05)

alternative Indicates the alternative hypothesis to construct confidence interval and must be

one of "two.sided" (default), "less", or "greater".

confint.QF 3

Value

A matrix with columns giving lower and upper confidence limits for bias-corrected estimators.

Examples

```
## Not run:
##-- Continuing the LF(.) example:
ci = confint(Est)
ci
## End(Not run)
```

confint.QF

Confidence Intervals for Bias-corrected QF Estimators

Description

Computes confidence intervals for bias-corrected estimators; Each row corresponds to a tau value.

Usage

```
## S3 method for class 'QF'
confint(obj, alpha = 0.05, alternative = c("two.sided", "less", "greater"))
```

Arguments

obj An object of class 'QF', a result of a call to 'QF'

alpha Level of significance to construct confidence interval (default=0.05)

alternative Indicates the alternative hypothesis to construct confidence interval and must be

one of "two.sided" (default), "less", or "greater".

Value

A matrix with columns giving lower and upper confidence limits for bias-corrected estimators, with rows corresponding to different tau.

Examples

```
## Not run:
##-- Continuing the QF(.) example:
ci = confint(Est)
ci
## End(Not run)
```

4 ITE

ITE	Inference for difference of linear combinations of the regression vec-
	tors in high dimensional generalized linear regressions

Description

Computes the bias-corrected estimator of the difference of linearcombinations of the regression vectors for the high dimensional generalized linear regressions and the corresponding standard error.

Usage

```
ITE(
  Х1,
  y1,
  Х2,
  y2,
  loading.mat,
  model = "linear",
  intercept = TRUE,
  intercept.loading = TRUE,
  lambda = NULL,
  mu = NULL,
  init.step = NULL,
  resol = 1.5,
  maxiter = 6,
  alpha = 0.05,
  verbose = TRUE
)
```

Arguments

X1	Design matrix for the first sample, of dimension $n_1 \times p$
y1	Outcome vector for the first sample, of length n_1
X2	Design matrix for the second sample, of dimension $n_2 \ge p$
y2	Outcome vector for the second sample, of length n_1
loading.mat	Loading matrix, nrow= p , each column corresponds to a loading of interest
model	The high dimensional regression model, either linear or logistic or logistic alternative or probit
intercept	Should intercept(s) be fitted for the initial estimators (default = TRUE)
intercept.loading	
	Should intercept be included for the loading (default = TRUE)
lambda	lambda The tuning parameter in fitting model (default = NULL)
mu	The dual tuning parameter used in the construction of the projection direction (default = $NULL$)
init.step	The initial step size used to compute mu; if set to NULL it is computed to be the number of steps (maxiter) to obtain the smallest mu

LF 5

resol	The factor by which mu is increased/decreased to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default = 1.5)
maxiter	Maximum number of steps along which mu is increased/decreased to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default $= 6$)
alpha	Level of significance to construct two-sided confidence interval (default = 0.05)
verbose	Should intermediate message(s) be printed (default = TRUE)

Value

est.plugin.vec The vector of plugin(biased) estimators for the linear combination of regression coefficients, length of ncol(loading.mat); corresponding to different column in loading.mat

est.debias.vec The vector of bias-corrected estimators for the linear combination of regression coefficients, length of ncol(loading.mat); corresponding to different column in loading.mat

se.vec The vector of standard errors of the bias-corrected estimators, length of ncol(loading.mat); corresponding to different column in loading.mat

ci.mat The matrix of two.sided confidence interval for the linear combination, of dimension ncol(loading.mat) x 2; the row corresponding to different column in loading.mat

Examples

```
X1 = matrix(rnorm(100*120), nrow=100, ncol=120)
y1 = -0.5 + X1[,1] * 0.5 + X1[,2] * 1 + rnorm(100)
X2 = matrix(rnorm(90*120), nrow=90, ncol=120)
y2 = -0.4 + X2[,1] * 0.48 + X2[,2] * 1.1 + rnorm(90)
loading.mat = cbind(c(1, 1, rep(0, 118), c(-0.5, -1, rep(0, 118))))
Est = ITE(X1, y1, X2, y2, loading.mat, model="linear")
Est$est.plugin.vec ## plugin(biased) estimators
Est$est.debias.vec ## bias-corrected estimators
Est$se.vec ## standard errors for bias-corrected estimators
Est$ci.mat ## two-sided confidence interval for bias-corrected estimators
## Not run:
summary(Est)
## End(Not run)
```

Inference for linear combination of the regression vector in high dimensional generalized linear regression

Description

LF

Inference for linear combination of the regression vector in high dimensional generalized linear regression

6 LF

Usage

```
LF(
    X,
    y,
    loading.mat,
    model = c("linear", "logistic", "logistic_alternative", "probit"),
    intercept = TRUE,
    intercept.loading = TRUE,
    lambda = NULL,
    mu = NULL,
    init.step = NULL,
    resol = 1.5,
    maxiter = 6,
    alpha = 0.05,
    verbose = TRUE
)
```

Arguments

X Design matrix, of dimension $n \times p$ y Outcome vector, of length n

loading matrix, nrow=p, each column corresponds to a loading of interest

model The high dimensional regression model, either linear or logistic or logistic_alternative

or probit

intercept Should intercept be fitted for the initial estimator (default = TRUE)

intercept.loading

Should intercept be included for the loading (default = TRUE)

lambda The tuning parameter in fitting model (default = NULL)

mu The dual tuning parameter used in the construction of the projection direction

(default = NULL)

init.step The initial step size used to compute mu; if set to NULL it is computed to be the

number of steps (maxiter) to obtain the smallest mu

resol The factor by which mu is increased/decreased to obtain the smallest mu such

that the dual optimization problem for constructing the projection direction con-

verges (default = 1.5)

maxiter Maximum number of steps along which mu is increased/decreased to obtain the

smallest mu such that the dual optimization problem for constructing the projec-

tion direction converges (default = 6)

alpha Level of significance to construct two-sided confidence interval (default = 0.05)

verbose Should intermediate message(s) be printed (default = TRUE)

Value

est.plugin.vec The vector of plugin(biased) estimators for the linear combination of regression coefficients, length of ncol(loading.mat); each corresponding to a loading of

interest

est.debias.vec The vector of bias-corrected estimators for the linear combination of regression

coefficients, length of ncol(loading.mat); each corresponding to a loading of

interest

QF 7

se.vec	The vector of standard errors of the bias-corrected estimators, length of ncol(loading.mat); each corresponding to a loading of interest
ci.mat	The matrix of two.sided confidence interval for the linear combination, of dimension ncol(loading.mat) x 2; each row corresponding to a loading of interest
proj.mat	The matrix of projection directions; each column corresponding to a loading of interest

Examples

```
X = matrix(rnorm(100*120), nrow=100, ncol=120)
y = -0.5 + X[,1] * 0.5 + X[,2] * 1 + rnorm(100)
loading.mat = cbind(c(1, 1, rep(0, 118), c(-0.5, -1, rep(0, 118))))
Est = LF(X, y, loading.mat, model="linear")
Est$est.plugin.vec ## plugin(biased) estimators
Est$est.debias.vec ## bias-corrected estimators
Est$se.vec ## standard errors for bias-corrected estimators
Est$ci.mat ## two-sided confidence interval for bias-corrected estimators
## Not run:
summary(Est)
## End(Not run)
```

QF

Inference for quadratic forms of the regression vector in high dimensional linear and logistic regressions

Description

Inference for quadratic forms of the regression vector in high dimensional linear and logistic regressions

Usage

```
QF(
    X,
    y,
    G,
    A = NULL,
    model = c("linear", "logistic", "logistic_alternative"),
    intercept = TRUE,
    tau.vec = c(0.5, 1),
    lambda = NULL,
    mu = NULL,
    init.step = NULL,
    resol = 1.5,
    maxiter = 6,
    alpha = 0.05,
    verbose = TRUE
)
```

QF

Arguments

X	Design matrix, of dimension $n \times p$
у	Outcome vector, of length n
G	The set of indices, G in the quadratic form
A	The matrix A in the quadratic form, of dimension $ G \times G $. If NULL A would be set as the $ G \times G $ submatrix of the population covariance matrix corresponding to the index set G (default = NULL)
model	$The \ high\ dimensional\ regression\ model, either\ linear\ or\ logistic\ or\ logistic_alternative$
intercept	Should intercept be fitted for the initial estimator (default = TRUE)
tau.vec	The vector of enlargement factors for asymptotic variance of the bias-corrected estimator to handle super-efficiency (default = $c(0.5,1)$)
lambda	The tuning parameter in fitting model (default = NULL)
mu	The dual tuning parameter used in the construction of the projection direction (default = NULL)
init.step	The initial step size used to compute mu; if set to NULL it is computed to be the number of steps (< maxiter) to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default = NULL)
resol	Resolution or the factor by which mu is increased/decreased to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default = 1.5)
maxiter	aximum number of steps along which mu is increased/decreased to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default = 6)
alpha	Level of significance to construct two-sided confidence interval (default = 0.05)
verbose	Should intermediate message(s) be printed (default = TRUE)

Value

est.plugin	The plugin(biased) estimator for the quadratic form of the regression vector restricted to G
est.debias	The bias-corrected estimator of the quadratic form of the regression vector
se.vec	The vector of standard errors of the bias-corrected estimator, length of tau.vec; corrsponding to different values of tau.vec
ci.mat	The matrix of two.sided confidence interval for the quadratic form of the regression vector; row corresponds to different values of tau.vec
proj	The projection direction

Examples

summary.ITE 9

```
Est$ci.mat ## two-sided confidence interval for bias-corrected estimator for each tau
## Not run:
summary(Est)
## End(Not run)
```

summary.ITE

Summarizing ITE

Description

'summary' method for class 'ITE'

Usage

```
## S3 method for class 'ITE'
summary(obj)
```

Arguments

obj

An object of class 'ITE', a result of a call to 'ITE'

Value

The function 'summary.ITE' computes and returns a list of summary statistics of ITE given 'obj'

output.est

a *ncol*(*loading.mat*) x 7 matrix with columns for the loading, plugin(biased) estimators, bias-corrected estimators, its standard error, z-statistic, corresponding (two-sided) p-value and significance stars; Each row corresponds to each loading.

Examples

```
## Not run:
##-- Continuing the ITE(.) example:
sEst = summary(Est)
sEst
## End(Not run)
```

summary.LF

Summarizing LF

Description

```
'summary' method for class 'LF'
```

Usage

```
## S3 method for class 'LF'
summary(obj)
```

10 summary.QF

Arguments

obj

An object of class 'LF', a result of a call to 'LF'

Value

The function 'summary.LF' computes and returns a list of summary statistics of LF given 'obj'

output.est

a ncol(loading.mat) x 7 matrix with columns for the loading, plugin(biased) estimators, bias-corrected estimators, its standard error, z-statistic, corresponding (two-sided) p-value and significance stars; Each row corresponds to each loading.

Examples

```
## Not run:
##-- Continuing the LF(.) example:
sEst = summary(Est)
sEst
## End(Not run)
```

summary.QF

Summarizing QF

Description

'summary' method for class 'QF'

Usage

```
## S3 method for class 'QF'
summary(obj)
```

Arguments

obj

An object of class 'QF', a result of a call to 'QF'

Value

The function 'summary.QF' computes and returns a list of summary statistics of LF given 'obj'

output.est

a length(tau.vec) x 7 matrix with columns for tau, plugin(biased) estimators, bias-corrected estimators, its standard error, z-statistic, corresponding (two-sided) p-value and significance stars; Each row corresponds to each tau.

Examples

```
## Not run:
##-- Continuing the QF(.) example:
sEst = summary(Est)
sEst
## End(Not run)
```

Index

```
confint.ITE, 2
confint.LF, 2
confint.QF, 3
ITE, 4
LF, 5
QF, 7
summary.ITE, 9
summary.LF, 9
summary.QF, 10
```