Matching the Blanks: Distributional Similarity for Relation Learning

Livio Baldini Soares Nicholas FitzGerald Jeffrey Ling* Tom Kwiatkowski Google Research

{liviobs, nfitz, jeffreyling, tomkwiat}@google.com

First: Better way to use BERT to extract relation

Figure 2: Illustration of losses used in our models. The left figure depicts a model suitable for supervised training, where the model is expected to classify over a predefined dictionary of relation types. The figure on the right depicts a pairwise similarity loss used for few-shot classification task.

Supporting Set							
(A) capital_of	(1) <i>London</i> is the capital of <i>the U.K.</i> (2) <i>Washington</i> is the capital of <i>the U.S.A.</i>						
(B) member₋of	 (1) Newton served as the president of the Royal Society. (2) Leibniz was a member of the Prussian Academy of Sciences. 						
(C) birth_name	(1) Samuel Langhorne Clemens, better known by his pen name Mark Twain, was an American writer. (2) Alexei Maximovich Peshkov, primarily known as Maxim Gorky, was a Russian and Soviet writer.						
Test Instance							
(A) or (B) or (C)	Euler was elected a foreign member of the Royal Swedish Academy of Sciences.						

Table 1: An example for a 3 way 2 shot scenario. Different colors indicate different entities, blue for head entity, and red for tail entity.

(a) STANDARD – [CLS]

(d) ENTITY MARKERS – [CLS]

(b) STANDARD – MENTION POOLING

(e) ENTITY MARKERS – MENTION POOL.

(c) POSITIONAL EMB. – MENTION POOL.

(f) ENTITY MARKERS – ENTITY START

		SemEval 2010		KBP37		TACRED		FewRel
		Ta	Task 8					5-way-1-shot
# training annotated examples		8,000 (6,5	500 for dev)	15,	916	68,120		44,800
# relation	n types		19	3	7	4	-2	100
		Dev F1	Test F1	Dev F1	Test F1	Dev F1 Test F1		Dev Acc.
Wang et al	. (2016)*	_	88.0	_	_	_	_	_
Zhang and Wa	ang (2015)*	_	79.6	_	58.8	_	_	_
Bilan and Ro	Bilan and Roth (2018)*		84.8	_	_	_	68.2	_
Han et al.	. (2018)	_	_	_	_	_	_	71.6
Input type	Output type							
STANDARD	[CLS]	71.6	_	41.3	_	23.4	_	85.2
STANDARD	MENTION POOL.	78.8	_	48.3	_	66.7	_	87.5
POSITIONAL EMB.	MENTION POOL.	79.1	_	32.5	_	63.9	_	87.5
ENTITY MARKERS	[CLS]	81.2	_	68.7	_	65.7	_	85.2
ENTITY MARKERS	MENTION POOL.	80.4 –		68.2	_	69.5	_	87.6
ENTITY MARKERS	ENTITY START	82.1	89.2	70	68.3	70.1	70.1	88.9

Second: Match the blank. Unsupervised pre-training for relation extraction.

declare that for any pair of relation statements \mathbf{r} and \mathbf{r}' , the inner product $f_{\theta}(\mathbf{r})^{\top}f_{\theta}(\mathbf{r}')$ should be high if the two relation statements, \mathbf{r} and \mathbf{r}' , express semantically similar relations. And, this inner product should be low if the two relation statements express semantically different relations.

$$p(l = 1 | \mathbf{r}, \mathbf{r}') = \frac{1}{1 + \exp f_{\theta}(\mathbf{r})^{\top} f_{\theta}(\mathbf{r}')}$$

$$\mathcal{L}(\mathcal{D}) = -\frac{1}{|\mathcal{D}|^2} \sum_{(\mathbf{r}, e_1, e_2) \in \mathcal{D}} \sum_{(\mathbf{r}', e'_1, e'_2) \in \mathcal{D}} (1)$$

$$\delta_{e_1, e'_1} \delta_{e_2, e'_2} \cdot \log p(l = 1 | \mathbf{r}, \mathbf{r}') + (1 - \delta_{e_1, e'_1} \delta_{e_2, e'_2}) \cdot \log(1 - p(l = 1 | \mathbf{r}, \mathbf{r}'))$$

\mathbf{r}_A	In 1976, e ₁ (then of Bell Labs) published e ₂ , the first of his books on programming inspired by the Unix operating
L A	system.
n –	The "e ₂ " series spread the essence of "C/Unix thinking" with makeovers for Fortran and Pascal. e ₁ 's Ratfor was
$ \mathbf{r}_B $	eventually put in the public domain.
\mathbf{r}_C	e ₁ worked at Bell Labs alongside e ₃ creators Ken Thompson and Dennis Ritchie.
Mentions	e_1 = Brian Kernighan, e_2 = Software Tools, e_3 = Unix

70%: replace the mention with [BLANK]

	SemEval 2010	KBP37	TACRED
SOTA	84.8	58.8	68.2
BERT _{EM}	89.2	68.3	70.1
BERT _{EM} +MTB	89.5	69.3	71.5

	5-way 1-shot	5-way 5-shot	10-way 1-shot	10-way 5-shot
Proto Net	69.2	84.79	56.44	75.55
BERT _{EM} +MTB	93.9	97.1	89.2	94.3
Human	92.22	_	85.88	_

More Data, More Relations, More Context and More Openness: A Review and Outlook for Relation Extraction

Xu Han^{1*}, Tianyu Gao^{1*}, Yankai Lin^{2*}, Hao Peng¹, Yaoliang Yang¹, Chaojun Xiao¹, Zhiyuan Liu¹, Peng Li², Maosong Sun¹, Jie Zhou²

¹ State Key Lab on Intelligent Technology and Systems, Institute for Artificial Intelligence,

Department of Computer Science and Technology, Tsinghua University, Beijing, China ²Pattern Recognition Center, WeChat AI, Tencent Inc, China

Benchmark	Normal	ME	OE
Wiki80 (Acc)	0.861	0.631	0.763
TACRED (F-1)	0.666	0.211	0.412
NYT-10 (AUC)	0.349	0.216	0.185
Wiki-Distant (AUC)	0.222	0.145	0.173

The observation is contrary to human intuition: we classify the relations between given entities mainly from the text description, yet models learn more from their names. To make real progress in understanding how language expresses relational facts, this problem should be further investigated and more efforts are needed.

Our experiment: mask mention to avoid overfitting => not work

Document-level Representation Learning using Citation-informed Transformers

Arman Cohan $^{\dagger *}$ Sergey Feldman $^{\dagger *}$ Iz Beltagy † Doug Downey † Daniel S. Weld $^{\dagger, \ddagger}$

†Allen Institute for Artificial Intelligence

‡Paul G. Allen School of Computer Science & Engineering, University of Washington
{armanc, sergey, beltagy, dougd, danw}@allenai.org

Drawback of BERT => domain-specific pretrain => strong assumption

$$\mathcal{L} = \max \left\{ \left(d \left(\mathcal{P}^{Q}, \mathcal{P}^{+} \right) - d \left(\mathcal{P}^{Q}, \mathcal{P}^{-} \right) + m \right), 0 \right\}$$

K-BERT: Enabling Language Representation with Knowledge Graph

Weijie Liu¹, Peng Zhou², Zhe Zhao², Zhiruo Wang³, Qi Ju^{2,*}, Haotang Deng² and Ping Wang^{1,*}

¹Peking University, Beijing, China

²Tencent Research, Beijing, China

³Beijing Normal University, Beijing, China

- 1. Heterogeneous Embedding Space
- 2. Knowledge Noise

Inject the knowledge from KG into BERT

Figure 3: Structure of the sentence tree.

Embedding Representation

Table 1: Results of various models on sentence classification tasks on open-domain tasks (Acc. %)

Models\Datasets	Book_	review	Chnsenticorp		Shopping		Weibo		XNLI		LCQMC	
Models Datasets	Dev	Test	Dev	Test	Dev	Test	Dev	Test	Dev	Test	Dev	Test
Pre-trainied on WikiZh by Google.												
Google BERT	88.3	87.5	93.3	94.3	96.7	96.3	98.2	98.3	76.0	75.4	88.4	86.2
K-BERT (HowNet)	88.6	87.2	94.6	95.6	97.1	97.0	98.3	98.3	76.8	76.1	88.9	86.9
K-BERT (CN-DBpedia)	88.6	87.3	93.9	95.3	96.6	96.5	98.3	98.3	76.5	76.0	88.6	87.0
		Pro	e-trained	on Wikiz	Zh and V	VebtextZ	th by us.					
Our BERT	88.6	87.9	94.8	95.7	96.9	97.1	98.2	98.2	77.0	76.3	89.0	86.7
K-BERT (HowNet)	88.5	87.4	95.4	95.6	96.9	96.9	98.3	98.4	77.2	77.0	89.2	87.1
K-BERT (CN-DBpedia)	88.8	87.9	95.0	95.8	97.1	97.0	98.3	98.3	76.2	75.9	89.0	86.9

Table 2: Results of various models on NLPCC-DBQA $(MRR\ \%)$ and MSRA-NER $(F1\ \%)$.

Madala Datasata	NLPC	C-DBQA	MSRA	A-NER				
Models\Datasets	Dev	Test	Dev	Test				
Pre-trained on WikiZh by Google.								
Google BERT	93.4	93.3	94.5	93.6				
K-BERT (HowNet)	93.2	93.1	95.8	94.5				
K-BERT (CN-DBpedia)	94.5	94.3	96.6	95.7				
Pre-trained on WikiZh and WebtextZh by us.								
Our BERT	93.3	93.6	95.7	94.6				
K-BERT (HowNet)	93.2	93.1	96.3	95.6				
K-BERT (CN-DBpedia)	93.6	94.2	96.4	95.6				

Table 3: Results of various models on specific-domain tasks (%).

Table 3. Results of various models on specific-domain tasks (%).													
Models\Datasets	Finance_Q&A			L	Law_Q&A			Finance_NER			Medicine_NER		
Widueis (Datasets	P.	R.	F1	<i>P</i> .	R.	F1	<i>P</i> .	R.	F1	<i>P</i> .	R.	F1	
			Pre-trai	ned on '	WikiZh	by Goog	gle.						
Google BERT	81.9	86.0	83.9	83.1	90.1	86.4	84.8	87.4	86.1	91.9	93.1	92.5	
K-BERT (HowNet)	83.3	84.4	83.9	83.7	91.2	87.3	86.3	89.0	87.6	93.2	93.3	93.3	
K-BERT (CN-DBpedia)	81.5	88.6	84.9	82.1	93.8	87.5	86.1	88.7	87.4	93.9	93.8	93.8	
K-BERT (MedicalKG)	-	-	-	-	-	-	-	-	-	94.0	94.4	94.2	
		Pre-ti	rained o	n WikiZ	Zh and V	Vebtext2	Zh by us	S.					
Our BERT	82.1	86.5	84.2	83.2	91.7	87.2	84.9	87.4	86.1	91.8	93.5	92.7	
K-BERT (HowNet)	82.8	85.8	84.3	83.0	92.4	87.5	86.3	88.5	87.3	93.5	93.8	93.7	
K-BERT (CN-DBpedia)	81.9	87.1	84.4	83.1	92.6	87.6	86.3	88.6	87.4	93.9	94.3	94.1	
K-BERT (MedicalKG)	-	-	-	-	-	-	-	-	-	94.1	94.3	94.2	

- 1. 跑实验,写paper, 进度40%
- 2. 在CDR数据集上尝试,效果不佳。猜测原因可能是 a) 数据集规模较小,train/dev/test各500个doc; b) 类别简单,只有Chemical和Disease,且关系类型只有一种 就是Chemical->Disease; c) 生化领域

- 3. 衡量模型inter-sentence information aggregation 和 relation inference能力。
- ⇒ Subset of DocRED dev set
- ⇒ evaluation metric?
- ⇒ doc -> relation labels
- ⇒ 1. inter-sentence relation; 2. intra-sentence relation
- ⇒ Recall容易计算,模型预测出来属于1的inter-sentence relation / # inter-sent relation
- ⇒ how to define precison? 模型预测出来的relation中,可能有inter-sent的,也有intra-sent的,还有无中生有的,如何计算presion呢?
- ⇒ 其他指标?

4. Model: Encode/mention-level graph Aggregation/entity-level graph Inference/Classfify

GAIN: Graph Aggregation & Inference Network for Document-level Relation Extraction

No pain, No GAIN: ~