Geocomputation Spatial Queries and Geometric Operations

Module outline

W1	Reproducible Spatial Analysis
W2	Spatial Queries and Geometric Operations
W3	Point Pattern Analysis
W4	Spatial Autocorrelation
W5	Spatial Models
W6	Raster Data Analysis
W7	Geodemographic Classification
W8	Accessibility Analysis
W9	Beyond the Choropleth
W10	Complex Visualisations

Core Spatial Analysis

Applied Spatial Analysis

Data Visualisation

This week

- Spatial properties.
- Attribute joins.
- Spatial operations.

Spatial properties

- Spatial data often requires performing mathematical operations on spatial properties.
- Key properties include areas of and distances between spatial objects.
- There are diverse ways to conceptualise and work with these properties depending on the analytical context and available data.

Distance

Area

Area

Area

Spatial features

- Features: Objects created in a spatial dataset, representing geographic entities such as points, lines, or polygons.
- Attributes: Characteristics or properties of features, often stored as data in GIS, describing specific details about the feature.

Characteristics of a point vector in a GIS data model:

- Single XY location (coordinate).
- Has no area.
- Has no length.
- Geometry consists of a single node or vertex.
- Used for: discrete features or events.

FeatureID	Туре	Height
0030	Ent	500

Characteristics of a polyline vector in a GIS data model:

- Series of XY locations (coordinates) that form a line.
- Has no area.
- Has a length.
- Has a direction (importance when it comes to roads, rivers, etc.).
- Can be connected to other polyline vectors to form a network.
- Geometry consists of two nodes (start node and end node) and can have one or more vertices.
- Used for: features without an area but with a length.

FeatureID	Туре	Length
0040	Bicycle lane	1,500

FeatureID	Туре	Length
0040	Bicycle lane	1,650

FeatureID	Туре	Length
0040	Bicycle lane	600
0041	Bicycle lane	1,050

Polygon vector

Characteristics of a polyline vector in a GIS data model:

- Series of XY locations (coordinates) to form an enclosed region.
- Has an area.
- Has no length.
- Geometry consists of at least three nodes or vertices whereby the first node or vertex connects with the last one.
- Used for: features with enclosed regions such as buildings and administrative areas.

Polygon vector

FeatureID	Туре	Area
0050	University building	2000

Representation

Representing the North-West Wing Building

GeoID	Population
GEO0030	540
GEO0031	320

FeatureID	GeoID
0050	GEO0030

FeatureID	GeoID
0050	GEO0030

GeoID	Population
GEO0030	540
GEO0031	320

FeatureID	GeoID
0050	GEO0030

GeoID	Population
GEO0030	540
GEO0031	320

GEO0030

FeatureID	GeoID	Population
0050	GEO0030	540

Spatial data formats

```
## Simple feature collection with 100 features and 6 fields
## geometry type:
                    MULTIPOLYGON
## dimension:
                   XY
## bbox:
                    xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965
## epsg (SRID):
                  4267
## proj4string:
                  +proj=longlat +datum=NAD27 +no defs
## precision: double (default; no precision model)
## First 3 features:
##
     BIR74 SID74 NWBIR74 BIR79 SID79 NWBIR79
                                                                           geom
## 1
      1091
                       10
                           1364
                                             19 MULTIPOLYGON(((-81.47275543...
## 2
       487
                0
                       10
                            542
                                             12 MULTIPOLYGON(((-81.23989105...
                5
                          3616
                                           260 MULTIPOLYGON(((-80.45634460...
     3188
                      208
## 3
                                                                  Simple feature geometry (sfg)
                                Simple feature
                                            Simple feature geometry list-colum (sfc)
```

Spatial data formats

- Several commonly used file formats that store spatial data exist.
- Different file formats for vector data and raster data.
- Common vector formats: shapefile, GeoJSON, GeoPackage
- Common raster formats: GeoTIFF, GeoPackage

Shapefiles

- Perhaps the most (in)famous file format.
- Widely used, despite being outdated, especially limitations of .dbf format.
- A shapefile is not a single file, but a collection of files of which at least three are needed for the data to be displayed in GIS software.

Shapefiles

- .shp contains the feature geometry. *Mandatory*.
- .shx index file which stores the position of the feature's ID in the .shp file.

 Mandatory.
- .dbf stores alle attribute information associated with the records. *Mandatory.*
- .prj contains the coordinate system information and projection. *Optional but not really.*
- .xml general metadata. *Optional.*
- .cpg encoding information. Optional.
- .sbn optimisation file for spatial queries. Optional.

Shapefiles

GeoPackage

- A GeoPackage is an open, standards-based, platform-independent, portable, selfdescribing, compact format for transferring geospatial data.
- It stores spatial data layer as a single file, based upon an SQLite database.
- How to spot in the wild: .gpkg

Spatial operations

Spatial operations

- Spatial relationships describe how the exteriors, interiors, and boundaries of different geometries interact, often referred to as topological relationships.
- Spatial operations make use of these spatial relationships between spatial objects to combine, identify, extract information.
- Difference between spatial queries and geometric operations.

Attribute query

Spatial query

NAME
Androscoggin
Cumberland
Franklin
Hancock
Kennebec
Knox
Lincoln
Oxford
Penobscot
Piscataquis
Sagadahoc
Somerset
Waldo
York

ESRI. 2025. Buffer (Analysis). [online] https://pro.arcgis.com/en/pro-app/latest/tool-reference/analysis/buffer.htm

RStudio

Conclusion

- The core of spatial analysis comes down to conducting spatial queries and executing geometric operations.
- Spatial analysis relies therewith on the spatial properties of an object as well as on the spatial relationships both *within* and *between* spatial objects.

Questions

Justin van Dijk j.t.vandijk@ucl.ac.uk

