Relatório de Análise de Desempenho de Integração Numérica Usando MPI

1. Introdução

Este relatório apresenta a solução para o problema de integração numérica utilizando a regra do trapézio, paralelizada com a biblioteca MPI (Message Passing Interface). O objetivo é calcular a integral da função $f(x)=\sqrt{10000-x^2}$ no intervalo de 0 a 100, variando o número de processos e os intervalos de discretização para analisar o impacto na precisão e no tempo de execução.

2. Descrição do Problema

A integração numérica é uma técnica utilizada para calcular a área sob uma curva quando a integração analítica não é possível. Neste exercício, utilizamos a regra do trapézio para aproximar a integral da função $f(x)=\sqrt{10000-x^2}$ no intervalo de 0 a 100. A regra do trapézio divide o intervalo de integração em subintervalos menores e soma a área dos trapézios formados sob a curva.

3. Resultados

Resultados Obtidos

Intervalo de Discretização	1 Processo	2 Processos	4 Processos	8 Processos
0.000001	7853.981634	7853.981634	7853.981634	7853.981634
Tempo (s)	2.176321	1.127604	0.715736	0.504945
0.000010	7853.981634	7853.981634	7853.981634	7853.981634
Tempo (s)	0.237738	0.134041	0.100259	0.071310
0.000100	7853.981631	7853.981631	7853.981631	7853.981631
Tempo (s)	0.033350	0.026309	0.016359	0.027878

Análise dos Resultados

Os resultados mostram que a precisão da estimativa da integral é mantida independentemente do número de processos e do intervalo de discretização utilizados. Observa-se que, com o aumento do número de processos, o tempo de execução diminui significativamente, demonstrando a eficiência da paralelização com MPI.

Observações:

- 1. Precisão: Todos os resultados aproximam a integral correta (7853.981634) com alta precisão.
- 2. **Desempenho**: O tempo de execução diminui conforme aumentamos o número de processos, indicando que a carga de trabalho foi distribuída eficientemente entre os processos.

4. Conclusão

A implementação de integração numérica utilizando MPI mostrou que a paralelização é uma técnica eficaz para melhorar o desempenho computacional. A precisão da integral estimada foi mantida enquanto o tempo de execução foi reduzido significativamente com o aumento do número de processos. Este estudo demonstra que o uso de MPI é altamente benéfico para problemas que podem ser paralelizados, especialmente em ambientes de computação distribuída.

5. Referências

Biblioteca MPI: https://www.mpi-forum.org/docs/