Name: _____

1. Let \mathbb{A} be a subspace of the vector space \mathbb{V} and let $|\alpha\rangle \in V$. Define Π_{α} and $\Pi_{\mathbb{A}}$.

Solution: We have

$$\Pi_{\alpha} = |\alpha\rangle \langle \alpha|$$
.

For the second part, let $\mathcal{B} = \{e_1, \dots, e_k\}$ be an orthonormal basis for \mathbb{A} in \mathbb{V} . Then

$$\Pi_{\mathbb{A}} = \sum_{i=1}^{k} |e_i\rangle \langle e_i| = \sum_{i=1}^{k} \Pi_{e_i}.$$