

Syllabus

B. Tech Computer Engineering (Second Year Semester III and IV)

From: Academic Year 2019 – 20 (KJSCE 2018 CBGS Pattern)

Approved by Academic Council 18/05/2019 SY B. Tech. /COMP/ Revision 2.0

K. J. Somaiya College of Engineering, Vidyavihar, Mumbai – 77 (Autonomous College Affiliated to University of Mumbai)

It is notified for information of all concerned that the Board of Studies at its meeting held on April 30, 2019 and the subsequent meeting of the Academic Council held on May 18, 2019 amended the syllabus of SY B. Tech Computer Engineering and same be brought in to force from Academic Year 2019-20 with immediate effect.

Preamble

Academic Autonomy conferred by the University of Mumbai from the Academic Year 2014-15, gave us the freedom to develop and implement our own curriculum KJSCE2014 with features such as inclusion of choice based Interdisciplinary Course (IDC), Audit Courses, Add on Credit Courses, Exposure Courses, etc. Distinct assessment and evaluation methods were also designed based on focus of individual course. And the outcome of this entire exercises; either by way of student placements or the feedback received from all stakeholders is quite encouraging.

At present, Industry is moving towards Industrial revolution 4.0. Knowing very well that every country's education system forms the basis of its progress and the groundwork for its future, we need to be making engineering graduates equipped to take industrial challenges. A common feature in successful education systems is the balance between tradition and the capacity to be flexible and able to adapt to current social trends. To achieve this, AICTE has taken necessary initiative in January 2018 by introducing model syllabus for undergraduate courses having a focus on the changing industrial scenario.

Our new revision in syllabus *KJSCE2018*, introduced from the academic year 2018-19, has been designed based on the revised AICTE guidelines as well as various accrediting bodies.

The said syllabus is a result of expert advice from members of Board of studies and Academic Council; both having due representation from academia as well as appropriate industries. Subsequently faculty members of the college have put in efforts to document it in the form which has been presented here.

Some of the highlights of the *KJSCE2018* syllabus are: Introduction of wide choice for branch specific electives, more number of open or interdisciplinary electives, opportunity for internships, etc. Courses like Object Oriented Programming Methodology, Open Source Laboratory and Digital Design are designed as laboratory oriented courses and pay more attention to hands-on learning.

Focus of academic processes in KJSCE is such that, by the time student completes the requirements of the degree, he/ she will be able to acquire attributes required for profession as an engineer. Outcomes are defined to acquire these attributes which lead to development of curriculum, pedagogy and assessment tools. These tools need to be updated based on experiences of teacher and learner. Hence teaching -learning -evaluation paradigm is going to be a mix of traditional as well as use of ICT tools. Role of the faculty member changes from tutor to trainer / instructor/ facilitator / mentor based on the outcomes targeted.

For measuring learning outcomes of students, traditional methods like tests, laboratory work and End Semester Examinations (ESE) are implemented. Continuous Assessment (CA) is carried out through two tests and internal assessment (IA) like quizzes, case studies, mini projects etc. These IA tools not only contribute to marks but also enables the student to learn through solutions discussed, improvisations suggested, feedbacks given by faculty members. Through these assessment methods students get opportunity for reading research papers, presenting ideas and working in a team.

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Since the assessments are distributed throughout the term the learning process is continuously monitored and graded.

The Department of Computer Engineering courses focus on thrust areas of Department. These areas are Intelligent System and Data Processing, Network System and Security, Image Analysis and Interpretation and System & Software Engineering.

College promotes co-curricular, extra-curricular activities as well as sports; making life outside classroom exciting and rewarding. What makes these activities very effective is the fact that these do not focus only on winning trophies but try to nurture generic skills such as leadership, effective communication, teamwork etc. which are essential skills for a bright professional career.

Along with my colleagues, I welcome you to Department of Computer Engineering and look forward to lead you towards professional career.

Dr. Deepak Sharma Head Department of Computer Engineering

Vision:

To become a center of excellence in discipline of Computer Engineering for developing technically adept professionals with ethical and leadership qualities in service of society.

Mission:

- Provide sound technical foundation in Computer Engineering through comprehensive curriculum and application oriented learning.
- Provide ambience for professional growth and lifelong learning for adapting to challenges in rapidly changing technology
- Inculcate social and ethical values and leadership qualities.

Program Educational Outcomes (PEO)

PEO	Description
PEO 1	Solve problems in diverse fields using knowledge of Computer Engineering.
PEO 2	Excel in professional career, exhibit leadership qualities with ethics &soft skills
PEO 3	Pursue higher education, research or entrepreneurship, engage in professional
	development, adapt to emerging technologies

Program Outcomes (PO):

Engineering Graduates will be able to:

PO	Description
PO 1	Engineering knowledge:
	Apply the knowledge of mathematics, science, engineering fundamentals, and an
	engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis:
	Identify, formulate, review research literature, and analyze complex engineering
	problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3	Design/development of solutions:
	Design solutions for complex engineering problems and design system components or
	processes that meet the specified needs with appropriate consideration for the public
	health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems:
	Use research-based knowledge and research methods including design of experiments,
	analysis and interpretation of data, and synthesis of the information to provide valid
	conclusions.
PO 5	Modern tool usage:
	Create, select, and apply appropriate techniques, resources, and modern engineering
	and IT tools including prediction and modeling to complex engineering activities with
	an understanding of the limitations.
PO 6	The engineer and society:
	Apply reasoning informed by the contextual knowledge to assess societal, health,
	safety, legal and cultural issues and the consequent responsibilities relevant to the
	professional engineering practice.

	Department of Computer Engineering
PO 7	Environment and sustainability:
	Understand the impact of the professional engineering solutions in societal and
	environmental contexts, and demonstrate the knowledge of, and need for sustainable
	development.
PO 8	Ethics:
	Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Individual and team work:
	Function effectively as an individual, and as a member or leader in diverse teams, and
	in multidisciplinary settings.
PO 10	Communication:
	Communicate effectively on complex engineering activities with the engineering
	community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and
	receive clear instructions.
PO 11	Project management and finance:
	Demonstrate knowledge and understanding of the engineering and management
	principles and apply these to one's own work, as a member and leader in a team, to
	manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to
	engage in independent and life-long learning in the broadest context of technological
	change
Program	Specific outcomes
PSO 1	Apply acquired skills of Information Systems, Networking, Image processing in
	solving problems of varying complexities.
PSO 2	Pursue higher studies in the field of Computer Science & Engineering and be
	employable in industries
_	

Acronym for category of courses

Acron	ym for category of courses	Acronyms used in syllabus document			
Acronym	Definition	Acronym	Definition		
BS	Basic Science Courses	CA	Continuous Assessment		
ES	Engineering Science	ESE	End Semester Exam		
HS	Humanities and Social Sciences including Management Courses	IA	Internal Assessment		
PC	Professional Core Courses	О	Oral		
PE	Professional Elective courses	P	Practical		
OE	Open Elective Courses	P&O	Practical and Oral		
LC	Laboratory Courses	TH	Theory		
PR	Project	TUT	Tutorial		
AC	Audit Course	TW	Term work		
AOCC	Add on Credit Course	T-1	Test – 1		
AOAC	Add on Audit Course	T-2	Test -2		
AVAC	Add on Value Audit Course	CO	Course Outcome		
EX	Exposure Course	PO	Program Outcome		
I	Interdisciplinary courses	PSO	Program specific Outcome		

Acronyms used in Course code e.g. 2UCC301

Acronym Serially as per code	Definition
2	Second revision after autonomy KJSCE 2016 (First revision KJSCE 2014
U	Undergraduate
C	Department of Computer Engineering
C	Core Course
L	Laboratory Course
W	Workshop
T	Tutorial
X	Exposure Course
A	Audit Course
3	3- Semester 3 / 4- Semester 4
01	Course No.

Semester III Credit and Examination Scheme

(Autonomous College Affiliated to University of Mumbai)
Department of Computer Engineering

Semester III

Credit Scheme

Course Code	Course Name	Teaching Scheme (Hrs.) Per Week TH – P – TUT	Total (Hrs.) Per week	Credits Assigned TH – P – TUT	Total Credits	Course Category
2UCC301	Integral Transform and Vector Calculus	3-0-1	4	3-0-1	4	BS
2UCC302	Data Structures ^{\$}	3-0-0	3	3-0-0	3	PC
2UCC303	Computer Organization & Architecture	3-0-0	3	3-0-0	3	PC
2UCC304	Object Oriented Programming Methodology	1 - 0 - 2	3	1-0-2	3	PC
2UCC305	Discrete Mathematics	3 - 0 - 1	4	3 - 0 - 1	4	PC
2UCL301	Digital Design Laboratory	1 - 2 - 0	3	0-2-0	2	PC
2UCL302	Data Structures Laboratory	0-2-0	2	0 - 1 - 0	1	PC
2UCL303	Computer Organization & Architecture	0-2-0	2	0-1-0	1	PC
2UCL304	Object Oriented Programming Methodology Laboratory	0-2-0	2	0-1-0	1	PC
	Total	14-8-4	26	14 - 4 - 4	22	
2USA3XX	Audit Course &	2 - 0- 0	2			AC

^{\$-} Common with IT Branch

& Completion of this course equivalent to 25 activity points

Semester III

Examination Scheme

		Examination Scheme								
Course	Course Name	Marks								
Code	Course Name		CA							
		T – 1	T – 2	IA	ESE	TW	O %	P	P&O [#]	Total
2UCC301	Integral Transform and Vector Calculus	15	15	20	50	25	-	-		125
2UCC302	Data Structures ^{\$}	15	15	20	50	-	-	-	-	100
2UCC303	Computer Organization & Architecture	15	15	20	50	-	-	-	-	100
2UCC304	Object Oriented Programming Methodology	15	15	20	50	-	-	-	-	100
2UCC305	Discrete Mathematics	15	15	20	50	25	-	-	=	125
2UCL301	Digital Design Laboratory	-	-	-	-	50	-	-	25	75
2UCL302	Data Structures Laboratory	-	-	-	-	25	-	-	25	50
2UCL303	Computer Organization & Architecture Laboratory	-	-	-	-	25	-	-	25	50
2UCL304	Object Oriented Programming Methodology Laboratory	-	-	-	-	25	-	-	25	50
	Total	1:	50	100	250	175	50	25	25	775
2USA3XX	Audit Course		-	-	-	-	-	-	-	-

^{\$-} Common with IT Branch

[%] Oral examination based on entire theory syllabus of corresponding theory course,

[#] based on practical & Syllabus of the corresponding theory course.

Semester IV Credit and Examination Scheme

Semester IV

Credit Scheme

Course Code	Course Name	Teaching Scheme (Hrs.) Per Week TH – P – TUT	Total (Hrs.) Per week	Credits Assigned TH – P – TUT	Total Credits	Course Category
2UCC401	Probability, Statistics and Optimization Techniques ^{\$}	3-0-1	4	3-0-1	4	BS
2UCC402	Analysis of Algorithms	3 - 0 - 0	3	3-0-0	3	PC
2UCC403	Relational Database Management Systems	3-0-0	3	3-0-0	3	PC
2UCC404	Theory of Automata with Compiler Design	3-0-1	4	3 - 0 - 1	4	PC
2UCL401	Python Programming Laboratory	0 - 4 - 0	4	0 - 2 - 0	2	PC
2UCL402	Analysis of Algorithms Laboratory	0 - 2 - 0	2	0 - 1 - 0	1	PC
2UCL403	Relational Database		2	0-1-0	1	PC
2UCL404	Mini Project	1 - 2 - 0	3	1 - 2 - 0	3	PC
	Total	13 - 10 - 2	25	13 – 6 – 2	21	
2USA4XX	Audit Course &	2 - 0 - 0	2			AC

^{\$-} Common with IT Branch

Semester IV

Examination Scheme

		Examination Scheme Marks								
Course Code	Commo Nome									
	Course Name		CA		ESE	TW	0%	P	P&O#	Total
		T-1	T – 2	IA						
2UCC401	Probability, Statistics and Optimization Techniques\$	15	15	20	50	25	-	-	-	125
2UCC402	Analysis of Algorithms	15	15	20	50	-	-	-	-	100
2UCC403	Relational Database Management Systems	15	15	20	50	-	-	-	-	100
2UCC404	Theory of Automata with Compiler Design	15	15	20	50	25	-	-	-	125
2UCL401	Python Programming Laboratory	-	ı	-	-	50			50	100
2UCL`402	Analysis of Algorithms Laboratory	-	-	-	-	25	-	-	25	50
2UCL403	Relational Database Management Systems Laboratory	-	-	-	-	25	-	-	25	50
2UCL404	Mini Project			-	-	50	-	-	50^	100
	Total	1	20	80	200	200	-	-	150	750
2USA4XX	Audit Course	2 -	0 - 0	-	-	-	-	-	-	-

% Oral examination based on entire theory syllabus, # based on practical & the corresponding theory Syllabus \$- Common with IT Branch ^Demo based on mini project and viva based on implementation

[&]amp; Completion of this course equivalent to 25 activity points

Semester III SY B. Tech Computer Engineering (KJSCE 2018)

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code	Course Title								
2UCC301		Integral Transform and Vector Calculus							
]	ТН		F	•	,	TUT	Total
Teaching Scheme(Hrs.)	03						01*		04
Credits Assigned	03						01		04
	Marks								
Examination		CA		ECE	CENTAL Z		D	P&O	Total
Scheme	T-1	T-2	IA	ESE	TW	O	P	100	Total
	15	15	20	50	25				125

^{*} Batch wise Tutorial

Course prerequisites:

- Applied Mathematics-I
- Applied Mathematics –II
- Basics of Vector Algebra

Course Objectives

The objective of this course is to introduce different methods of finding Laplace Transform and Inverse Laplace transform of given function. The course also familiarizes students with the concepts of Fourier series, Fourier Integral and Fourier Transform of a given function. The course also disseminates methods to find Z- Transform and Inverse Z- transform of a function. Concepts of Differentiation and Integration of Vector functions with their applications are also explained in this course. Using these methods it will be possible to analyze and interpret a given real life situation and think of possible solutions.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1. Apply Different methods to find Laplace Transform and Inverse Laplace Transform of a function
- CO2. Find Fourier series, Fourier Integral and Fourier Transform of functions.
- CO3. Apply Different methods to find Z-Transform and Inverse Z-Transform of a function.
- CO4. Apply concepts of Gradient, curl and Divergence of a vector function to solve problems.
- CO5. Apply concepts of Vector Integration to solve related problems.

Module	Unit	Details	Hrs.	CO
No.	No.	T. 6	10	00.1
1		ce Transform	12	CO 1
	1.1	Definition of Laplace Transform, Laplace Transform of		
		sin(at), cos(at), sinh(at), cosh(at), erf(t), Heavi-side unit step,		
		dirac-delta function, Laplace Transform of periodic function		
	1.2	Properties of Laplace Transform (without proof): Linearity,		
		first shifting theorem, second shifting theorem,		
		multiplication by t, division by t, Laplace Transform of		
		derivatives and integrals, change of scale.		
	1.3	Inverse Laplace Transform: Partial fraction method,		
		convolution theorem, Application of Laplace Transform:		
		Solution of ordinary differential equations		
2	Fouri	er Series	12	CO2
	2.1	Introduction: Definition, Dirichlet's conditions, Euler's		
		formulae, Fourier Series of Functions: Exponential,		
		trigonometric functions, even and odd functions, half range		
		sine and cosine series		
	2.2	Complex form of Fourier series		
	2.3	Fourier Integral, Fourier Transform and Inverse Fourier		
		Transform		
3	Z-Tra	nsform	4	CO 3
	3.1	Z-transform of standard functions		
	3.2	Properties of Z-transform(without proof): Linearity, change		
		of scale, shifting property, Multiplication by K, Initial and		
		Final value, Convolution theorem		
	3.3	Inverse Z- transform: Binomial expansion and Method of		
		Partial fraction		
4	Vecto	r Differentiation	8	CO 4
	4.1	Scalar and vector product of three and four vectors and their		
		properties.		
	4.2	Gradient of scalar point function, divergence and curl of		
		vector point function.		
	4.3	Solenoidal and irrotational vector fields.		
5	Vecto	r Integration	9	CO 5
	5.1	Vector Integral: Line integral, Properties of line integral,		
		Surface integral, Volume integrals.		
	5.2	Green's theorem in a plane (without proof) and related		
		problems		
	5.3	Gauss divergence theorem (without proof), Stokes theorem		
		(without proof) and related problems		
	#Self	Learning - Orthogonal and orthonormal set of functions of	ver	
		erval, Surface Integral	. 02	
	an mi		45	
		Total	45	<u> </u>

Students should prepare all Self Learning topics on their own . Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	B. S. Grewal	Higher Engineering	Khanna	43 rd Edition
		Mathematics	Publications,	2014
			India	
2.	Erwin Kreyszig	Advanced Engineering	Wiley Eastern	10 th Edition
		Mathematics	Limited, India	2015
3.	N.P. Bali and Manish	A Textbook of Engineering	Laxmi	9 th Edition
	Goyal	Mathematics	Publications	2016
			LTD, India	
4.	P. N. Wartikar and	A text book of Applied	Pune	6 th Edition
	J. N. Wartikar	Mathematics Vol I & II	VidyarthiGruha,	2012
			India	

Term-Work will consist of Tutorials covering entire syllabus. Students will be graded based on continuous assessment of their term work.

At least 2 tutorials will be conducted with the help of Mathematical and Statistical software in the Laboratory.

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code		Course Title								
2UCC302		Data structure ^{\$}								
		TH P TUT T						Total		
Teaching Scheme(Hrs.)		03			0:	2	00		03	
Credits Assigned			03		01			00	04	
					Marks					
Examination		CA		ECE	TYX7	0	n	P&O	Total	
Scheme	T-1	T-2	IA	ESE TW		U	P	rau	Total	
	15	15	20	50	25			25	150	

^{\$} Common with IT Branch

Course prerequisites:

Any Programming Language

Course Objectives

The objective of this course is to introduce different types of data structure and how user can use data structure in software development. The course also familiarizes students with the concepts of advanced data structures such as balanced search trees, hash tables, priority queues, sorting and searching. Students will be master in the implementation of linked data structures such as linked lists and binary trees using any preferable language. Course mainly focuses on choosing the appropriate data structure for a specified application.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1. Explain the different data structures used in problem solving.
- CO2. Apply linear and non-linear data structure in application development.
- CO3: Describe concepts of advance data structures like set, map & dictionary.
- CO4. Demonstrate sorting and searching methods.

Module	Unit	Details	Hrs.	CO
No.	No.			~ .
1	-	luction	02	CO 1
	1.1	Introduction to Data Structures		
	т.	Types of Data Structures, ADT (Abstract data type) r data structure	17	00.2
2		16	CO 2	
	2.1	Linked List: Introduction, Representation of Linked List, Linked List v/s Array, Implementation of Linked List, Circular Linked List, Doubly Linked List, Application – Polynomial Representation and Addition, other additional applications/Case study. #Self Learning -Sparse matrix addition		
	2.2	Stack: The Stack as an ADT, Stack operations, Array Representation of Stack, Linked Representation of Stack, Application of stack – Polish Notation, Recursion and other applications/Case study. #Self Learning - application of stack evaluation of postfix and prefix expressions.		
	2.3	Queues: The Queue as an ADT, Queue operation, Array Representation of Queue, Linked Representation of Queue, Circular Queue, Priority Queue, Double ended queue, Application of Queues — Simulation and other applications/Case study. #self Learning - Application of queue in Josephus Problem.		
3	Non-I	Linear data structures: Trees, Graph	12	CO 2
	3.1	Trees: Basic trees concept, Binary tree representation, Binary tree operation, Binary tree traversal, Binary search tree implementation, Threaded binary trees. Different Search Trees -AVL tree, Multiway Search Tree, B Tree, B+ Tree, and Trie, Applications/Case study of trees. #Self Learning Learning - Red-Black and Splay Trees.		
	3.2	Graph - Introduction, Graph Terminologies, Representation, Graph Traversals - Depth First Search (DFS) and Breadth First Search (BFS). Applications/Case study of Graphs.		
4	Non-I	Linear data structures: Set, Map, Dictionary	7	CO 3
	4.1	Set: Set ADT, Set Implementation, Partitions with Union-Find operations, Tree based partition implementation. Map: Map ADT, Implementation, Hash Tables Application of Maps Dictionary: Dictionary ADT, Implementation, Application of Dictionaries		

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

		#Self learning : Exploring case studies on use of set, map and dictionary		
5	Searc	hing and Sorting	8	CO 4
	5.1	Sorting :Sort Concept, Sort Stability , Bubble Sort, Shell Sort, Counting Sort		
		#Self learning: Buket and Radix sort		
	5.2	Searching: Search concept, Linear Search, Binary Search, Hashed List Search, Comparison of searching Techniques		
		Total	45	

[#] Students should prepare all Self Learning topics on their own . Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with	Edition and Year of
			country	Publication
1.	Ellis Horowitz, Sartaj	Fundamentals Of Data	University	Second
	Sahni, Susan Anderson-Freed	Structures In C	Press	Edition
2.	Richard F. Gilberg &	Data Structures A	CENGAGE	Second
	Behrouz A. Forouzan	Pseudocode Approach with C	Learning	edition
3.	Jean Paul Tremblay,	An introduction to data	Tata McGraw-	Second
	Paul G. Sorenson	structures with applications	Hill Education	Edition
4.	Aaron M Tanenbaum	Data structure Using C	Pearson	Twelfth
	Yedidyah Langsam			Impression
	Moshe J Augentstein			2013
5.	Michael T Goodrich	Data Structure and	Wiley	First
	Roberto Tamassia	Algorithm in C++		
	David Mount			

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code		Course Title								
2UCC303		Computer Organization and Architecture								
		TH					r	ГUТ	Total	
Teaching Scheme (Hrs./Week)	03								03	
Credits Assigned		03							03	
		Marks								
Examination Scheme	CA			EGE	TTXX7		D	D.O.O.	Total	
Examination Scheme	T-1	T-2	IA	ESE	TW	O	P	P&O	Total	
	15	15	20	50		-			100	

Course prerequisites:

Students should be familiar with basic concepts of computers and their applications.

Course Objectives:

Students will try to:

- 1. Conceptualize the basics of organization and architecture of a digital computer and the detailed working of the ALU
- 2. Learn the function of each element of a memory hierarchy and detailed working of the control unit
- 3. Study various input output techniques and their applications.

Course Outcomes

At the end of successful completion of the course the student will be able to:

- **CO1:** Describe and define the structure of a computer with buses structure and detail working of the arithmetic logic unit and its sub modules
- **CO2:** Understand the Central processing unit with addressing modes and working of control unit in depth
- CO3: Learn and evaluate memory organization and cache structure
- **CO4:** Summarize Input output techniques and multiprocessor configurations

Module No.	Unit No.	Details	Hrs.	CO			
1		Structure of a Computer System					
	1.1	Introduction of computer system and its sub modules, Basic organization of computer , Structure and Function, Brief history of computers, Von Neumann model	0 4	CO1			
	1.2	Introduction to buses, bus types and interconnection structures, PCI and SCSI bus					
2		Arithmetic and Logic Unit					
	2.1	Introduction to Arithmetic and Logical unit, Computer Arithmetic: Fixed and Floating point numbers, Signed numbers, Integer Arithmetic, 2's Complement arithmetic					
	2.2	Booth's Recoding and Booth's algorithm for signed multiplication, Restoring division and non-restoring division algorithms	10	CO1			
	2.3	IEEE floating point number representation and operations: Addition. Subtraction, Multiplication and Division. IEEE standards for Floating point representations: Single Precision and Double precision Format					
3		Central Processing Unit					
	3.1	CPU architecture, Register organization, Instruction Sets: Operands and Operations , Instruction formats and addressing modes(Intel processor).,Basic instruction cycle, Instruction interpretation and sequencing					
	3.2	Control unit Operation ,Micro operations : Fetch ,Indirect ,Interrupt ,Execute cycle Control of the processor, Functioning of micro programmed control unit, Micro instruction Execution and Sequencing , Applications of Micro programming	11	CO2			
	3.3	RISC v/s CISC processors, RISC and CISC Architecture, RISC pipelining, Case study on SPARC					
		Memory Organization.					
4	Characteristics of memory system and hierarchy, Main memory ,Cache memory principles , Elements of Cache Design						
	4.2	2 ROM, Types of ROM, RAM, SRAM, DRAM, Flash memory, High speed memories					

	4.3	Cache Memory Organization: Address mapping, Replacement Algorithms, Cache Coherence, MESI protocol, Interleaved and associative memories, Virtual memory, Main memory allocation, Segmentation, Paging, Secondary storage, RAID levels		
		I/O Organization		
5	5.1	External Devices , I/ O Modules	05	CO4
	5.2	Programmed I/O, Interrupt driven I/O, DMA		
	6.1	Flynn's classification, Parallel processing systems and concepts		
6	6.2	04	CO4	
	6.3	Design issues of pipeline architecture, Instruction pipelining: Six Stage instruction pipeline		
TOTAL			45	

Recommended Books:

Sr. No.	Name/s of Author(s)	Title of Book	Publisher with Year			Publisher with Year of	
1.	W. Stallings	"Computer Organization and Architecture: Designing for performance",	Prentice Hall of India	8th Edition, 2003, ISBN 81 – 203 – 2962 – 7			
2.	C. Hamacher, V. Zvonko, S. Zaky	"Computer Organization"	McGraw Hill	5th edition, 2002 ISBN 007- 120411-3			
3.	Kai Hwang & Bridggs	Computer Organization & Parallel Processing	McGraw Hill	International Editions 1985			

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code	Course Title								
2UCC304		Object Oriented Programming Methodology							
		TH				P		TUT	Total
Teaching Scheme (Hrs./Week)		01				-	02*		03
Credits Assigned			01				02		03
		Marks							
Examination		CA		ESE	TW	0 1	P	P&O	Total
Scheme	T-1	T-2	IA	LSE	1 44	J	r	1 &0	Total
	15	15	20	50					100

^{*} Batch wise Tutorial

Course prerequisites:

• Basics of Programming concepts

Course Objectives:

This course will provide the concept of object oriented designing and programming using JAVA and C++. This course also provide difference in Object oriented programming approach in Java and C++.

Students will learn about exception handling, Interfaces, file handling, Inheritance and Multithreading.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO1. Understand the features of object oriented programming compared with procedural approach with C++ and Java
- CO2. Explore array, vector, classes and objects in C++ and Java.
- CO3. Implement scenarios using object oriented concepts (Drawing class diagram, relationship between classes).
- CO4. Explore the interface, exceptions, multithreading, packages

Module	Unit	Details	Hrs.	CO				
No. 1	No.	 nmentals of Object oriented Programming	06	CO 1				
1	1.1	Introduction, Procedural Programming Approach, Structured Programming Approach, Programming Approach, OOP Approach	- 00	COT				
	1.2	Objects and classes, Function overloading, Data abstraction and Encapsulation, Inheritance and Polymorphism, Function Overriding, Exceptions, Reuse, Coupling and Cohesion, Sufficiency Completeness and Primitiveness.						
2	Class	Object and method	12	CO 1				
	2.1	Class Object and Method: member, method, Modifier, Selector, constructer, destructor, iterator, State of an object, Method Overloading, Inheritance, Method Overriding, Final class, abstract class and method, Operator overloading						
		Comparing Object Oriented Concepts with Java and C++						
3	Array	06	CO 2					
	3.1	Arrays: Arrays: 1D, 2D, Variable Length array, for- each with Array, Vectors: Vector Command line Arguments						
4	Class	Diagram	06	CO 3				
	4.1	Class Diagram						
	4.2	Implementing Aggregation and Association						
5	Interf	aces, Packages & Multithreading	15	CO4				
	5.1	Interfaces: variables in Interfaces, Extending an Interface, Difference between an Abstract class and an Interface, Packages: Creating Packages, Using Packages, Access Protection, Predefined packages, Wrapper class						
	5.2	Exception handling: Exception as objects, Exception hierarchy, Try catch finally Throw, throws						
	5.3 Multithreading: Thread life cycle, Multithreading advantages and issues, Simple thread program, Thread synchronization.							
	5.4	File Handling						
	l .	Total	45					

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with	Edition and Year of
110.			country	Publication
1.	Sachin	Programming in JAVA	Oxford	2010
	Malhotra,Saurabh		University	
	Chaudhary			
2.	Object Oriented	E Balagurusamy	Tata McGraw	5 th Edition,
	Programming in C++		Hill	2011
3.	Grady Booch, James	Unified Modeling	Person	
	Rumbaugh,Ivar	Language	Education	3 rd Edition
	Jacobson			
4.	Let us C++	Yashwant Kanetkar	BPB	2 nd Edition,
			publications	2003
5.	Ralph Bravaco, Shai	Java Programming from	Tata McGraw-	McGraw-Hill
	simoson	the Group up	Hill	Edition
6.	Herbert schildt	The complete Reference	Tata McGraw-	2 nd Edition
		JAVA2	Hill	2002

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code	Course Title								
2UCC305		Discrete Mathematics							
		TH P TUT Total							Total
Teaching Scheme (Hrs./Week)		03			-	-	01*		04
Credits Assigned			03				01		04
	Marks								
Examination		CA		ECE	TW		D	P&O	Total
Scheme	T-1	T-2	IA	ESE	1 //	O	P	180	1 Otal
	15	15	20	50	25				125

^{*} Batch wise Tutorial

Course prerequisites

Basic Mathematics

Course Objectives

The objective of this course is to enable students to think logically and mathematically. It will help them to solve the problems with mathematical reasoning, algorithmic thinking, and modeling.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1: Use various mathematical notations, apply various proof techniques to solve real world problems

CO2: Learn and apply core ideas of Set Theory, Relations & Functions

CO3: Use graphs and their types, to solve the practical examples

CO4: Understand the use of Algebraic Structures and lattice, to solve the problems

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

1 2 3 4	1.1 1.2 1.3 2.1 2.2 2.3 2.4 2.5	Set Theory Sets, Venn diagrams, Operations on Sets Laws of set theory, Power set and Products Partitions of sets, The Principle of Inclusion and Exclusion Logic Propositions and logical operations, Truth tables Equivalence, Implications Laws of logic, Normal Forms Predicates and Quantifiers Mathematical Induction	03	CO1
3	1.2 1.3 2.1 2.2 2.3 2.4 2.5	Laws of set theory, Power set and Products Partitions of sets, The Principle of Inclusion and Exclusion Logic Propositions and logical operations, Truth tables Equivalence, Implications Laws of logic, Normal Forms Predicates and Quantifiers Mathematical Induction	04	CO1
3	1.3 2.1 2.2 2.3 2.4 2.5 3.1 3.2	Partitions of sets, The Principle of Inclusion and Exclusion Logic Propositions and logical operations, Truth tables Equivalence, Implications Laws of logic, Normal Forms Predicates and Quantifiers Mathematical Induction	04	CO1
3	2.1 2.2 2.3 2.4 2.5 3.1 3.2	Logic Propositions and logical operations, Truth tables Equivalence, Implications Laws of logic, Normal Forms Predicates and Quantifiers Mathematical Induction	04	CO1
3	2.2 2.3 2.4 2.5 3.1 3.2	Propositions and logical operations, Truth tables Equivalence, Implications Laws of logic, Normal Forms Predicates and Quantifiers Mathematical Induction	04	CO1
5	2.2 2.3 2.4 2.5 3.1 3.2	Equivalence, Implications Laws of logic, Normal Forms Predicates and Quantifiers Mathematical Induction		
5	2.3 2.4 2.5 3.1 3.2	Laws of logic, Normal Forms Predicates and Quantifiers Mathematical Induction		
5	2.4 2.5 3.1 3.2	Predicates and Quantifiers Mathematical Induction		
5	2.5 3.1 3.2	Mathematical Induction		
5	3.1 3.2			1
5	3.2			
5	3.2	Relations, Digraphs	09	CO2
5		Relations, Paths and Digraphs		
5		Properties and types of binary relations		
5	3.3	Manipulation of relations, Closures, Warshall's algorithm		
5	3.4	Equivalence relations		
5		Posets and Lattice	09	CO2
_	4.1	Partial ordered relations (Posets) ,Hasse diagram		
_	4.2	Lattice, sublattice		
_	4.3	Types of Lattice ,Boolean Algebra		
_		Functions and Pigeon Hole Principle	04	CO3
6	5.1	Definition and types of functions: Injective, Surjective and		
6		Bijective		
6	5.2	Composition, Identity and Inverse		
6	5.3	Pigeon-hole principle, Extended Pigeon-hole principle		
U		Graphs and Subgraphs	05	CO4
	6.1	Definitions, Paths and circuits, Types of Graphs, Eulerian and		
	0.2	Hamiltonian		
	6.2	Planer graphs		
	6.3	Isomorphism of graphs		
	6.4	Subgraph		
7		Algebraic Structures	11	CO4
	7.1	Algebraic structures with one binary operation: semigroup,		
		monoids and groups		
	7.2	Cyclic groups, Normal subgroups		
	7.3	Hamming Code ,Minimum Distance		
	7.4	Group codes ,encoding-decoding techniques		
	7.5	Parity check Matrix ,Maximum Likelihood		
	7.6	Mathematics of Cryptography - Modular Arithmetic,		
		Matrices, Linear Congruence, GF Fields, Primes and Related		
		Congruence Equations- Primes, Primality Testing,		
		Factorization, Quadratics Congruence, Chinese reminder		
		theorem, Exponentiation and Logarithm.		
	#C-1CT	ning Topic – Function Generators		
	Seit Leari			

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1	Kenneth H. Rosen	Discrete Mathematics and its applications	Tata McGraw Hill	7 th Edition, 2017
2	Bernard Kolman, Robert C. Busby	Discrete Mathematical Structures	Pearson	6 th Edition, 2017
3	C. L. Liu, D. P. Mohapatra	Elements of Discrete Mathematics West	Tata McGraw Hill.	4 th Edition, 2012
4	Douglas West	Graph Theory	Pearson	2 nd Edition, 2017
5				

Course Code		Course Title									
2UCL301		Digital Design Laboratory									
]	ТН		P			TUT	Total		
Teaching Scheme (Hrs./Week)			1		2		-		3		
Credits Assigned			-		2		0		2		
	Marks										
Examination		CA			TW	0	P	P&O	Total		
Scheme	T-1	T-2	IA	ESE	1 44	J	Г	1 &0	Total		
	-	•	-	-	50	25			75		

Course prerequisites:

Basics of Digital Electronics

Course Objectives:

The course introduces the students to the concepts of the design and implementation of digital circuits. Laboratory experiments will be used to reinforce the theoretical concepts discussed in lectures. The student will acquire knowledge of gates, flip flops, registers, counters K-maps. The course also includes use of VHDL in the design, simulation, and testing of digital circuits.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1. Recall basic gates & logic families and binary, octal & hexadecimal calculations and conversions.
- CO2. Use different minimization technique and solve combinational circuits.
- CO3. Design synchronous and asynchronous sequential circuits.
- CO4. Implement digital networks using VHDL.

Module	Unit	Details	Hrs.	CO
No.	No.			
		Digital Design Lab		
1	Bina	ry Arithmetic and Codes:	2	CO1
	1.1	Binary Addition and Subtraction (1's and 2's		
		complement method)		
	1.2	Gray Code, BCD Code, Excess-3 code, ASCII Code		
2	Basic	e Digital Circuits & Minimization:	4	CO2
	2.1	NOT,AND,OR,NAND,NOR,EX-OR,EX-NOR Gates, NAND-NOR Realization		
	2.2	Solving problems using theorems and properties of Boolean Algebra		
	2.3	Standard SOP and POS form		
	2.4	Reduction of Boolean functions using Algebric method, K—map method (2,3,4 Variable)		
3	Com	binational Logic Design:	3	CO2
	3.1	Half and Full Adder, Half and Full Subtractor, Four Bit Binary Adder, Four Bit Binary Subtractor (1's and 2's compliment method)		
	3.3	Multiplexers and Demultiplexers, Decoders,		
	3.4	One bit, Two bit ,4-bit Magnitude Comparator		
4		ential Logic Design	4	CO3
	4.1	Flip Flops: SR, D, JK and T Flip Flop, Truth Tables and Excitation Tables, Flip-flop conversion		
	4.2	Counters: Design of Asynchronous and Synchronous Counters, UP- DOWN counter.		
	4.3	Shift Registers: SISO, SIPO, PIPO, PISO		
5	Intro	duction to VHDL	2	CO4
	5.1	Introduction to VHDL, Syntax and Programming to be done only during practical sessions		
		Total	15	

^{*}Term work will consist of practical's covering entire syllabus of Digital Design.

^{*}Students will be graded based on continuous assessment of their term work

^{*}Practical and Oral examination based on laboratory experiments and entire syllabus

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of Publisher	Edition and		
No.			with country	Year of Publication		
<u> </u>						
7.	R. P. Jain	Modern Digital	Tata McGraw Hill	4 th Edition		
		Electronics		2009		
8.	J. Bhasker	VHDL Primer	Pearson Education	3 rd Edition		
				2009		
9.	M. Morris Mano	Digital Logic and	PHI	1 st Edition		
		computer Design		2008		
10.	Yarbrough John M	Digital Logic	Cengage Learning	1 st Edition		
	1 wiere wg.; v eim 1/1	Applications and		2006		
		Design				
11.	Douglas L. Perry	VHDL Programming by	Tata McGraw Hill	4 th Edition		
		Example		2002		

Course Code	Course Title									
2UCL302		Data Structures Laboratory								
		ТН					TUT		Total	
Teaching Scheme (Hrs./Week)					02	02			02	
Credits Assigned					01				01	
	Marks									
Examination	CA			ECE	TW	0	P	P&O	Total	
Scheme	T-1	T-2	IA	ESE	1 44	J	Г	100	Total	
		-			25			25	50	

- Term-Work will consist of practical covering entire syllabus of "Data Structures" 2UCC302. Students will be graded based on continuous assessment of their term work.
- Practical and Oral Examination will consist of practical covering entire syllabus of "Data Structures" 2UCC303.

Note: The faculty should conduct 8-10 experiments or mini project or case studies based on the above syllabus

The programs should be implemented in any programming Language.

Course Code		Course Title										
2UCEL303	Co	Computer Organization and Architecture Laboratory										
		T	Ή		P '		TUT		Total			
Teaching Scheme (Hrs./Week)					02				02			
Credits Assigned					01				01			
		Marks										
Examination	CA											
Scheme	T- 1	T- 2	IA	ESE	TW	O	P	P&O	Total			
					25	25			50			

Term Work:

Note: The faculty should conduct 8-10 experiments based on the above syllabus The programs should be implemented in C, C++ or Java

Term-Work will consist of Practical covering entire syllabus of "Computer Organization and Architecture" - 2UCEC303. Students will be graded based on Continuous Assessment of their term work.

Course Code		Course Title								
2UCL304	Objec	Object Oriented Programming Methodology Laboratory								
		TH				P		TUT	Total	
Teaching Scheme (Hrs./Week)		-			02				02	
Credits Assigned		-			01				01	
	Marks									
Examination Scheme	CA		ECE	(B)XX/		Ъ	De O	Total		
Examination Scheme	T-1	T-2	IA	ESE	TW	О	P	P&O	Total	
					25			25	50	

Term Work will consist of Practical covering entire syllabus of "Object Oriented Programming Methodology" - 2UCC304. Students will be graded based on continuous assessment of their term work.

Practical which will demonstrate the object oriented concepts comparison in C++ and JAVA.

Semester IV

SY B. Tech Computer Engineering (KJSCE-2018)

Course Code		Course Title								
2UCC401	Pr	Probability, Statistics and Optimization Techniques ^{\$}								
		7	P		TUT		Total			
Teaching Scheme(Hrs.)			03				01*		04	
Credits Assigned			03				01		04	
	Marks									
Examination		CA			TW	TW O	P	P&O	Total	
Scheme	T-1	T-2	IA	ESE	1 44	J	r	1 & O	1 Otal	
	15	15	20	50	25				125	

^{\$-} Common with IT Branch

Course prerequisites:

- Basics of Statistics and Probability
- Introductory Linear programming problems

Course Objectives

This course Exposes students to the concepts of Correlation, Regression for given bivariate data. Students are made familiar with different discrete and continuous probability distributions. The course acquaints students with concepts of Large sample test, Small sample test and Chi – Square test. The course familiarizes students with different methods of solving Linear and Non Linear Programming problems. Some basic queuing theory models are also discussed in the course. Using these methods it will be possible to analyze and interpret a given real life situation and think of possible solutions.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1. Apply concepts of correlation, regression for given bivariate data.
- CO2. Apply concepts of Binomial, Poisson, Exponential and Normal distribution to solve Engineering problems.
- CO3. Apply Large sample test and small sample test to analyze collected data.
- CO4. Apply concepts of Linear and Nonlinear programming methods to solve problems.
- CO5. Apply the methods of single server limited queue and single server unlimited queue models to analyze and interpret the data.

^{*} Batch wise Tutorial

Module	Unit	Details	Hrs.	CO			
No.	No.						
1	Corre	Correlation and Regression					
	1.1	Correlation, Co-variance, Karl Pearson Coefficient of					
		Correlation & Spearman's Rank Correlation Coefficient					
	1.2	Regression Coefficients, lines of regression & logistic					
		regression					
2	Proba	bility and Probability Distribution	12	CO 2			
	2.1	Conditional Probability, Bayes' theorem, Joint Probability					
	2.2	Discrete and Continuous Probability Distribution					
	2.3	Binomial Distribution, Poisson Distribution					
	2.4	Uniform Distribution, Normal Distribution, Exponential					
		Distribution					
3	Samp	ling Theory	07	CO 3			
	3.1	Sampling distribution. Test of Hypothesis. Level of					
		significance, critical region. One tailed and two tailed					
		tests. Interval Estimation of population parameters. Large					
		and small samples.					
	3.2	Difference between sample mean and population means					
		for large samples, Test for significance of the difference					
		between the means of two large samples.					
	3.3	Student's t-distribution: Test for significance of the					
		difference between sample mean and population means,					
		Test for significance of the difference between the means					
		of two Samples, paired t-test.					
	3.4	Chi-square distribution as a Test of Independence, Test of					
		the Goodness of fit and Yate's correction.					
	3.5	Fisher's z-test					
4	Optin	nization Techniques	13	CO 4			
	4.1	Types of solution, Standard and Canonical form of LPP,					
		Basic and feasible solutions, simplex method.					
	4.2	Artificial variables, Big –M method (method of penalty).					
	4.3	Duality and Dual Simplex method					
	4.4	Unconstrained optimization, problems of two or three					
		variables with one equality constraint using Lagrange's					
		Multiplier method.					
	4.5	Problems of two or three variables with one inequality					
		constraint using Kuhn-Tucker conditions					
5	Queui	ing Theory	07	CO5			
	5.1	Introduction, Features of Queuing, solution of Queuing					
		Models.M/M/1 (Singal Server ,Unlimited Queue Model)					
	5.2	M/M/1 Singal Server ,limited Queue Model					
	*Self I	Learning Topic- Fitting First degree, second degree and					
	expon	ential curve to the given bivariate data.					
		Total	45				
		10411		1			

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA.

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	B. S. Grewal	Higher Engineering	Khanna	43 rd Edition
		Mathematics	Publications,	2014
			India	
2.	Erwin Kreyszig	Advanced Engineering	Wiley Eastern	10 th Edition
		Mathematics	Limited, India	2015
3.	J. K. Sharma	Operation research:	Laxmi	6 th Edition
		Theory and Applications	Publications,	2017
			India	
4.	S.C.Gupta and	Fundamentals of	Sultan Chand &	11 th Edition
	V.K.Kapoor	Mathematical Statistics	Sons	2009
5.	Ronald E.Walipole,	Probabilities & Statistics	Pearson	9 th Edition
	Raymond H.Myers	for Engineers & Scientists	Education	2010

Term-Work will consist of Tutorials covering entire syllabus. Students will be graded based on continuous assessment of their term work. At least 2 tutorials will be conducted with the help of Mathematical and Statistical softwarein the Laboratory.

Course Code		Course Title							
2UCC402		Analysis of Algorithms							
		1	ſΉ		P)	ŗ	ГUТ	Total
Teaching Scheme (Hrs./Week)	03								03
Credits Assigned	03								03
	Marks								
Examination	CA		ESE	TW	0	P	P&O	Total	
Scheme	T-1	T-2	IA	LSL	ESE TW		r	100	Total
	15	15	20	50					100

Course prerequisites:

Data structure and Discrete Structures.

Course Objectives:

The objective of the course is to teach various techniques for effective problem solving in computing. The different algorithm paradigms for problem solving will be used to illustrate efficient methods to solve problem. The analysis of the algorithm will be demonstrated to show the efficiency of the algorithm. The complexity theory of the problems is introduced to students for further analysis of algorithms.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1: Analyze the asymptotic running time and space complexity of algorithms.

CO2: Describe various algorithm design strategies to solve different problems and analyze complexity.

complexity.

CO3: Develop string matching techniques

CO4: Describe the classes P, NP, and NP-Complete

K. J. Somaiya College of Engineering, Mumbai -77

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Module No.	Details	Hrs.	CO			
1	Introduction to analysis of algorithm Performance analysis, space and time complexity, Growth of function-Big-Oh;Omega;Theta Notation, Analysis of insertion sort, Introduction to randomized algorithm, Solving Recurrence Problems by Substitution Method, Recursion Tree Method, Masters Method	06	CO1			
	Algorithm Design Techniques					
	Divide and Conquer Technique General method, Finding minimum and maximum algorithm and analysis, Analysis of Merge sort, Analysis of Quick sort, Fast Fourier Transform, Pattern matching using divide and conquer	06	CO2			
2	Greedy Technique General method, Knapsack problem, Minimum cost spanning trees- Kruskals and Prims algorithm, Single source shortest path	06	CO2			
2	Dynamic Programming Technique General method , Multistage graphs, 0/1 knapsack, Travelling salesman problem, Single source shortest path, All pairs shortest path, Matrix chain multiplication	07	CO2			
	Backtracking Technique General method, Sum of subsets, 8 queens problem, Graph coloring	04	CO2			
	Branch and Bound General method, 0/1 Knapsack, 15 Puzzle Problem	04	CO2			
3	String Matching Algorithms The naïve string matching Algorithms, String matching with finite automata, The knuth-Morris-Pratt algorithm, Longest common subsequence	06	CO3			
4	Non-deterministic Polynomial Algorithms Polynomial time, Polynomial time verification, NP Completeness and reducibility, NP Completeness proof: Vertex Cover Problem, Clique Problem					
	#Self Learning Topic- Rod cutting algorithm, randomization algorithm	ns				
	TOTAL 4					

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA.

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1	T. H. Coreman, C.E.	"Introduction to	PHI Publication	2 nd Edition,
	Leiserson, R.L.	Algorithms",		2005
	Rivest, and C. Stein			
2	Ellis Horowitz, Sartaj	"Fundamentals of	University Press	
	Sahni, S. Rajsekaran,	Computer Algorithms"		
3	Alfred V. Aho, John	"Data Structures and	Pearson	4 th Impression
	E. Hopcroft, Jeffrey	Algorithm"	education	2009
	D. Ullman			
4	Michael Gooddrich&	"Algorithm Design	Wiley Student	2nd Edition.
	Roberto Tammassia	Foundation, Analysis and	Edition	
		Internet Examples"		

Course Code		Course Title							
2UCC403		Relational Database Management Systems							
		ТН				•	r	TUT	Total
Teaching Scheme (Hrs./Week)		03							03
Credits Assigned			03			•			03
	Marks								
Examination	CA		ECE	TT X X 7	0	D	P&O	Total	
Scheme	T-1	T-2	IA	ESE	TW	U	P	rau	1 Otal
	15	15	20	50					100

Course prerequisites:

NIL.

Course Objectives:

The objective of the course is to understand the need of database systems, using ER model to design the data. Convert the ER model data to relational data model. Using SQL to Design, implement and manage the relational model in DBMS. The course also gives introduces to different concurrency and recovery techniques of data.

Course Outcomes

At the end of successful completion of the course the student will be able to

- **CO1**: Relate database management system concepts and design Entity-Relationship model for different database application
- CO2: Develop relational database design using the designed Entity-Relationship model.
- CO3. Use SQL for Relational database creation, maintenance and query processing
- **CO4**. Apply normalization to improve design of the database
- **CO5**. Demonstrate the transaction, concurrency and recovery techniques

Module	Unit	Details of Topic		
No.	No.	Details of Topic	Hrs.	CO
2,00	Introduc	etion	05	CO1
1	1.1	Introduction, Characteristics of databases, Comparison of File system and Database approach , Users of Database system, Concerns when using an enterprise database		
	1.2	Data Independence, DBMS system architecture, Database Administrator,		
	Data Mo	odeling: Enhanced-Entity-Relationship Model	06	CO1
2	2.1	Introduction, Benefits of Data Modeling, Types of Models, Phases of Database Modeling, The Entity-Relationship (ER) Model		
	2.2	Enhanced -Entity-Relationship (EER)- Model Generalization, Specialization and Aggregation		
		del: Relational Data Model and Relational Algebra	08	CO2
3.	3.1	Introduction, Data Manipulation, Data Integrity, Advantages of the Relational Model		
	3.2	Mapping EER Model to Relational Model		
	3.3	Relational Algebra, Relational Algebra Queries	0.0	G 0 2
		red Query Language (SQL)	09	CO3
4	4.1	Overview of SQL, Data Definition Commands		
	4.2	Set operations, aggregate function, null values, Data Manipulation commands		
	4.3	Data Control commands, Views in SQL		
	4.4	Nested and complex queries,		
	4.5	Domain Constraints, Referential integrity,		
	4.6	Assertions Trigger.		
	4.7	Security and authorization in SQL		
	4.8	Introduction to query processing		
		al-Database Design	07	CO4
	5.1	First Normal Form, Pitfalls in Relational-Database designs		
5	5.2	Function Dependencies, Armstrong Axioms		
	5.3	2nd, 3rd, BCNF and 4th normal form		
	5.4	Decomposition, desirable properties of decomposition		
	5.5	Overall database design process		
		tion Management, Concurrency control and Recovery protocols	10	CO5
	6.1	Transaction concept, Transaction states, ACID properties		
	6.2	Characterizing schedule based on recoverability and serializability		
6	6.3 Concurrency Control: Two-Phase Lock-based ,Timestamp-based,			
		Multiversion Concurrency Control, Validation-based protocols, Deadlock handling-Wait for graph		
	6.4	Recovery System: Recovery concept, Log based recovery, Shadow paging,		
		Total	45	

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1	Elmasri and Navathe	"Fundamentals of	Pearson	6 th Edition
		Database Systems"	Education	
2	Korth, Silberchatz,	"Database System	McGraw Hill	6 th Edition
	Sudarshan	Concepts"		
3	Raghu	"Database Management	McGraw Hill	6 th Edition
	Ramakrishnan,	Systems"		
	Johannes Gerhke			
4	G. K. Gupta	"Database Management	McGraw Hill.	6 th Edition
		Systems"		

Course Code		Course Title							
UCC404		Theory of Automata with Compiler Design							
		1	ТН		P	•	,	TUT	Total
Teaching Scheme (Hrs./Week)	03						01		04
Credits Assigned		(03				01	04	
	Marks								
Examination	CA		TOT	TW	0	P	P&O	Total	
Scheme	T-1	T-2	IA	ESE	1 44	J	P	100	1 Otal
	15	15	20	50	25				125

Course prerequisites:

Students should be familiar with concepts of discrete structures.

Course Objectives

Aims to build concepts regarding the fundamental principles of Grammars, Automata Theory, Turing Machines, Push Down Automata, Un-decidability and Intractable Problems. It aims to understand the design of computing machine that can perform complex computation.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1:	Describe regular languages using Regular Expressions, Finite Automata,
	Nondeterministic Finite Automata, Mealy Machines, Moore Machines and its
	applications

CO2: Write, simplify and normalize context free grammars and describe context free languages using context free grammar and push down automata

CO3: Design Turing Machines for various problems and its applications

CO4: Understand the concept of Un-decidability and Recursively Enumerable Languages

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

Module	Unit	Department of Computer Engineering Details	Hrs.	CO
	No.	Details	ms.	CO
No. 1		 utomata	08	CO1
-			00	COI
	1.1	Introduction: Alphabets, String, Language, Basic Operations on language, Concatenation, Kleene Star		
		Introduction to different phases of compiler.		
	1.2	Finite. Automata (FA) -its behavior; DFA -Formal definition,		
	1.4	simplified notations (state transition diagram, transition table)		
	1.3	Language of a DFA. NFA -Formal definition, Language of an		
	1.0	NFA.		
	1.4	FA with epsilon-transitions, Eliminating epsilon-transitions		
	1.5	Equivalence of DFAs and NFAs, An Application.		
2	Regular	Languages	09	CO
	2.1	Regular sets, Regular Expression, Some closure properties of		
		Regular languages -Closure under Boolean operations,		
		reversal, homomorphism, inverse homomorphism, etc		
	2.2	FA and Regular Expressions, equivalence between FA and		
		regular expressions		
	2.3	Pumping lemma for Regular languages, Equivalence and		
		minimization of Finite Automata, M hill-Nerode Theorem		
	2.4	DFA Minimization.some decision properties of Regular		
		languages emptiness, finiteness, membership, equivalence of		
		two DF As or REs, Finite automata with output		
	2.5	Regular sets, Regular Expression, Some closure properties of		
		Regular languages -Closure under Boolean operations,		
	2 (reversal, homomorphism, inverse homomorphism, etc		
	2.6	Application of finite automata and regular expression in		
3	Contoxt	lexical analysis Free Grammars	07	CO
3		T	07	CO2
	3.1	Context-free Grammars (CFGs) -Formal definition, sentential forms, leftmost and rightmost derivations, the language of a		
		CFG. Derivation tree or Parse tree-Definition, Simplification		
		of CFGs -Removing useless symbols, epsilon-Productions,		
		and unit productions		
	3.2	Relationship between parse trees and derivations. Parsing and		
		ambiguity, Application of CFGs, Ambiguity in grammars and		
		Languages.		
	3.3	Normal forms -CNF and GNF. Proving that some languages		
		are not context free -Pumping lemma for CFLs, applications.		
		Some closure properties of CFLs -Closure under union,		
		concatenation, Kleene closure, substitution, Inverse		
		homomorphism, reversal, intersection with regular set, etc.		
		Some more decision properties of CFLs, . Chomsky hierarchy		
	3.4	Context-free Grammars (CFGs) -Formal definition, sentential		
		forms, leftmost and rightmost derivations, the language of a		
		CFG. Derivation tree or Parse Tree-Definition, Simplification		
		of CFGs -Removing useless symbols, Epsilon-Productions,		
		and unit productions		1

4	Push Do	own Automata	07	CO2				
	4.1	Pushdown Automata (PDA) -Formal definition, behavior and						
		graphical notation, Instantaneous descriptions (Ids),						
	4.2	The language of PDA (acceptance by final state and empty						
		stack). Equivalence of acceptance by final state and empty						
		stack, Equivalence of PDAs and CFGs,						
	4.3	Conversion: CFG to PDA, PDA to CFG.						
	4.4	DPDAs -Definition,DPDAs, Multistack DPDAs & NPDAs						
		and CFLs.						
_	ļ	Languages of DPDAs, NPDAs, and ambiguous grammars.	10	~~				
5		Machine	10	CO3				
	5.1	Turing Machines TM -Formal definition and behavior,						
		Transition diagrams, Language of a TM, TM as accepters						
		deciders and generators. TM as a computer of integer						
		functions, Design of TMs, Programming techniques for TMs -						
		Storage in state, multiple tracks, subroutines, etc.						
	5.2	Universal TMs, Variants of TMs -Multitape TMs,						
		Nondeterministic TMs. TMs with semi-infinite tapes,						
		Multistack machines, Simulating TM by computer,						
	<i>5</i> 2	Simulating a Computer by a TM						
	5.3	Equivalence of the various variants with the basic model.						
	5.4	Introduction to parsers, types of parser						
6	5.5	Application of CFG, PDA, TM in parsing	04	CO4				
0		dability and Recursively Enumerable Languages:	V4	CO4				
	6.1	Recursive and Recursively Enumerable Languages.						
		Properties of Recursive and Recursively Enumerable						
		Languages.						
	6.2	Decidability and Un-decidability, Halting Problem, Rice's						
		Theorem, Greibach's Theorem, Post Correspondence						
		Problem, Contact Sensitivity and Linear Bound Automata						
		Context Sensitivity and Linear Bound Automata.		45				
		TOTAL		45				

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	John E. Hopcroft,	"Introduction to Automata	Pearson	
	Rajeev Motwani,	Theory, Languages and	Education	
	Jeffrey D. Ullman	Computation"		
2.	J.C.Martin,	"Introduction to languages	TMH	
		and the Theory of		
		Computation"		
3.	Michael Sipser	"Theory of Computation"	Cengage	
			Learning	
4.	O.G.Kakde	"Theory of Computation"	LP.	

Term-Work will consist of Tutorials covering entire syllabus. Students will be graded based on Continuous Assessment of their term work.

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code	Course Title									
2UCL401	Python Programming Laboratory									
		TH P TUT To						Total		
Teaching Scheme (Hrs./Week)					04				04	
Credits Assigned					02				02	
	Marks									
Examination		CA		ECE	TYX7		ъ	P&O	Total	
Scheme	T-1	T-2	IA	ESE	TW	O	P	rau	Total	
					25			50	75	

Course prerequisites:

Students should be familiar with concepts of programming language.

Course Objectives

- Basics of Python programming
- Object Oriented Programming using Python
- Files Handling in Python
- GUI Programming and Databases operations in Python

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1:	Describe the Numbers,	Math functions,	Strings, List,	Tuples and Dictio	naries in

Python

CO2: Interpret different Decision Making statements, Functions, Object oriented

programming in Python

CO3: Understand and summarize different File handling operations

CO4: Explain how to design GUI Applications in Python and evaluate different

database operations

Module	Unit	Details	Hrs.	CO						
No. 1	No.	luction to Python								
1	Introd									
		0.2	001							
		Installing Python, Running Python, Comparing Python	02	CO1						
2	G 1	JPython and Some Nomenclature								
2		Python Programming Data Structures and Control Statements	<u> </u>	1						
	2.1									
		Comments, Operators, Variables and Assignment, Numbers, Strings, Lists and Tuples, Dictionaries, Code								
		Blocks Use Indentation	09	CO1,						
		if Statement, while Loop, for Loop and the range()	U	CO2						
		Built-in Function, User Defined Functions, Errors and								
		Exceptions, Classes, Modules, Packages								
	2.2	Files and Input/ Output								
		File Objects, File Built-in Function, File Built-in								
		Methods, File Built-in Attributes, Standard Files,	04	CO3						
		Command-line Arguments, File System, File Execution,								
		Persistent Storage Modules								
	2.3	Errors And Exceptions								
		What Are Exceptions?, Exceptions in Python, Detecting								
		and Handling Exceptions, Exceptions as Strings,	03	CO2						
		Exceptions as Classes, Raising Exceptions		002						
		Assertions, Standard Exceptions, Creating Exceptions,								
2	CITT	Exceptions and the sys Module								
3	GULF	Programming with Tkinter								
		Introduction, Tkinter and Python Programming, Tkinter	07	C04						
4	D1	Examples								
4	Kegul	ar Expressions	0.2	004						
		Introduction/Motivation,Special Symbols and	02	CO4						
		Characters for Res, REs and Python, Regular								
(D-4-1	Expression Adventures								
6	Datab	Python's Database Connectivity, Types of Databases	0.2	G0.4						
		03	C04							
		Used with Python, Mysql database Connectivity with								
		Python, Performing Insert, Deleting & Update								
		operations on database		20						
		TOTAL		30						

The students are expected to practice the Theory taught during practical hours.

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
12.	Wesley J Chun	Core Python Applications Programming	Pearson Publication.	3 rd Edition
13.	David Beazley, Brian K. Jones	Python Cookbook: Recipes for Mastering Python 3	O'REILLY	3rd Edition
14.	Lutz M	Learning Python: Powerful Object-Oriented Programming	O'REILLY	5th Edition
15.	John M. Zelle, Guido van Rossum	Python Programming: An Introduction to Computer Science	Franklin, Beedle & Associates	3rd Edition

Term-Work will consist of Practical covering entire syllabus of "Python Programming Laboratory" - 2UCL401 Students will be graded based on continuous assessment of their term work

Course Code	Course Title								
2UCL402	Analysis of Algorithms Laboratory								
		TH P TUT Total						Total	
Teaching Scheme (Hrs./Week)					02				02
Credits Assigned					01				01
				Marks					
Examination	CA		ESE	TW	0	P	P&O	Total	
Scheme	T-1	T-2	IA	LSL	1 44	J	Г	100	1 Otal
					25			25	50

Term-Work will consist of Practical covering entire syllabus of "Analysis of Algorithms" - 2UCC402. Students will be graded based on continuous assessment of their term work

Note: The programs should be implemented in C, C++ or Java

Course Code	Course Title									
2UCL403	Rel	Relational Database Management Systems Laboratory								
		TH P TUT Total								
Teaching Scheme (Hrs./Week)					02				02	
Credits Assigned					01				01	
					Marks					
Examination	CA		ESE	TW	0	Ъ	P&O	Total		
Scheme	T-1	T-2	IA	ESE	1 77		P	1 & O	1 Otal	
		1			25			25	50	

Term-Work will consist of Practical covering entire syllabus of "Relational Database Management Systems" - 2UCC403 Students will be graded based on continuous assessment of their term work

Course Code	Course Title									
2UCL404	Mini Project									
	TH P TUT Total									
Teaching Scheme(Hrs.)			03		01		04			
Credits Assigned			03		01		04			
			Marks							
Examination Scheme	CA T-1 T-2 IA	ESE	TW	o	P	P&O	Total			
			50			50	100			

Course Objectives:

The objective of Mini Project is to address a real world problem, find, implement and demonstrate the solution for the same through the courses learned in earlier semesters. Identify various hardware and software requirements for problem solution. It will also inculcate qualities such as meeting deadlines, making and following work plan. The mini Project may be beyond the scope of courses learnt and interdisciplinary in nature.

Course Outcomes:

After successful completion of the course student should be able to

- CO1. Define the problem statement and scope of problem
- CO2. Identify various hardware and software requirements for problem solution
- CO3. Implement and test the hardware/ software algorithms to meet the desired specifications.
- CO4. Analyze, interpret results and correspondingly modify the designed system to get the desired results.
- CO5. Prepare a technical report based on the Mini project.
- CO6. Present technical seminar based on the Mini Project work carried out.

Term Work and Oral:

The mini project is a group project. Interdisciplinary projects are also permitted. Each project will be assigned one faculty member as a supervisor. There will be continuous assessment and progress report of the project needs to be maintained by student(s).

The final oral will be a presentation based on a demonstration of the project in front of a committee of examiners.