Theorem: Let $p,q \in (1,\infty)$ be conjugate exponents. Then $l_p^*(IN)$ is isometrically isomorphic to $l_q(IN)$. More precisely, the map $\Phi: l_q(IN) \longrightarrow l_p^*(IN)$ such that for $x \in l_q(IN)$, $y \in l_p(IN)$ $(\Phi x)(y) = \sum_{n=1}^{\infty} x_n y_n$ is an onto linear isometry.

Comment: Every Xe lq(IN) can be "naturally" identified with a bounded linear functional

X = Ex: lp(IN) -> IR

and all bounded linear functionals $f: lp(IN) \rightarrow IR$ are of the above form.

E.g. For p=q=2, take $x=(\frac{1}{n})_{n=1}^{\infty} \in L_2(IN)$ with $||x||_{\ell^2} = \frac{\pi}{\sqrt{6}}$. This defines $\phi x : L_2(IN) \to IR$ with $(\phi \times)(\gamma) = \frac{2\pi}{\sqrt{6}} \cdot \frac{1}{n} \gamma_i$ and $||\phi x|| = \frac{\pi}{\sqrt{6}}$.

Proof: We have to show that $\Phi: l_{\mathfrak{q}}(IN) \to l_{\mathfrak{p}}^{*}(IN)$ is a linear isometry. It remains to prove that it is onto. Fix $f \in l_{\mathfrak{p}}^{*}(IN)$, We seek an $x \in l_{\mathfrak{q}}(IN)$ such that $f = \Phi x$.

Define $x := (f(e_n))_{n=1}^{\infty}$ where $(e_n)_{n=1}^{\infty}$ is the standard basis of $(e_n)_{n=1}^{\infty}$. We need to show that $(e_n)_{n=1}^{\infty}$ and $(e_n)_{n=1}^{\infty}$ that for $(e_n)_{n=1}^{\infty}$ and $(e_n)_{n=1}^{\infty}$ and $(e_n)_{n=1}^{\infty}$ and $(e_n)_{n=1}^{\infty}$ by a known result,

there exists
$$(y_n)_{n=1}^{N} \in IR^N$$
 such that

$$\sum_{n=1}^{N} y_n x_n = \left(\sum_{i=1}^{N} |x_i|^4\right)^{\frac{1}{4}} \quad \text{and} \left(\sum_{i=1}^{N} |y_i|^p\right)^{\frac{1}{p}} = 1.$$

Let $z = \sum_{i=1}^{N} y_i e_i \in L^p(N)$. Observe that

$$f(z) = f\left(\sum_{i=1}^{N} |y_i e_i|\right) = \sum_{i=1}^{N} y_i f(e_i) = \sum_{i=1}^{N} |x_i|^4\right)^{\frac{1}{4}}$$

$$\Rightarrow \left(\sum_{i=1}^{N} |x_i|^4\right)^{\frac{1}{4}} = |f(z)| \leq ||f|| \cdot ||z||_p = ||f|| \left(\sum_{i=1}^{N} |y_i|^2\right)^{\frac{1}{p}}$$

$$= ||f||$$

$$\Rightarrow \sum_{i=1}^{N} |x_i|^4 \leq ||f||^4 \Rightarrow x \in L^4(IN).$$
Because $x \in L^4(IN) \Rightarrow \Phi x \in L^4(IN).$ It remains to prove that $\Phi x = f$. Note for $j \in IN$.

$$(\Phi x) (e^{(j)}) = \sum_{n=1}^{\infty} |x_n e_n^{(j)}| = \sum_{n=1}^{N} |f(e_n)| e_n^{(j)}| = |f(e^{(j)})|$$
Bec. $(e_n)_{n=1}^{\infty}$ is a Hamel basis of $Coo(IN)$, $f(coo(IN))$

$$= \Phi(x)|_{Cod(IN)}.$$
 Bec. $Coo(IN)$ is dense in $Coo(IN)$ and f , Φx are continuous, they are equal.

Theorem: $C_0^*(IN) = L^4(IN)$ and $(L^4(IN))^* = L^\infty(IN)$

More precisely.

$$\psi: L^4(IN) \to (Co(IN))^* \text{ (resp. } \psi: L^\infty(IN) \to (L^4(IN))^*)$$
Such that for

$$x \in L^4(IN), y \in C_0(IN) \text{ (resp. } x \in L^\infty(IN), y \in L^4(IN))}$$
is an onto linear isometry

Remark: For 1 < p, q < 00 conjugate exponents.

$$(l^{P}(IN))^{*} = l^{q}(IN) \qquad (l^{q}(IN))^{*} = l^{P}(IN)$$

$$(c_o(IN))^* = l^1(IN) \qquad (l^1(IN))^* = l^\infty(IN)$$

We will see (ater $(l^{\infty}(IN))^* \neq l^{1}(IN)$

Hilbert Spaces

Def: Let X be a vector space. A function $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{R}$ is called an inner product if it satisfies the following:

- (i) \text such that x \neq 0, \langle x, x > 0
- (ii) $\forall x, y \in X, \langle x, y \rangle = \langle y, x \rangle$

(iii) ∀x,y,zex, λ ∈ IR, (x, λy+z) = λ(x,y)+ (x, z)

Remark: If X is an inner product space, then

- · Yx14126X, X 6 1R, (Xx+4, 2) = X(x12) + (4,2)
- $\forall x \in X$, $\langle Q_x | x \rangle = \langle x, O_x \rangle = \langle x, O \cdot O_x \rangle = O$.

In particular, for $x \in X$, $\langle x, x \rangle \ge 0$ and is zero if and only if x = 0.

Examples:

(i) In IR^n , the standard inner product is the dot product: For $x_1y \in IR^n$,

$$\langle x, y \rangle = x \cdot y = \sum_{i=1}^{N} x_i y_i$$

(ii) In $l_a(IN)$, the standard inner product is the dot product: For $x,y \in l^2(IN)$

 $\langle x_1 y \rangle = x \cdot y = \sum_{n=1}^{\infty} x_n y_n$ (iii) In C([0,1]), the usual inner product is as follows For fige C([oil]), $\langle f,g \rangle = \int_{0}^{1} f(x)g(x) dx$ Proposition: (Cauchy-Schwarz) Let X be an inner product space and let xiy & X. Then <xxxxx < <xxx> <yxy> Proof: Consider for $\lambda \in \mathbb{R}$, $p(\lambda) = \langle x - \lambda y, x - \lambda y \rangle \ge 0$. $=\langle x, x-\lambda_{Y} \rangle - \lambda \langle y, x-\lambda_{Y} \rangle$ $=\langle x, x \rangle - \lambda \langle x, y \rangle - \lambda \langle y, x \rangle +$ $= \lambda^2 \langle y, y \rangle - 2\lambda \langle x, y \rangle + \langle x, x \rangle \geq 0$ This is a quadratic function in λ and it is nonnegative. Therefore, the discriminant is non positive. $\Delta = b^2 - 4ac \le 0 \implies (-2\langle x_1 y \rangle)^2 - 4\langle y_1 y \rangle \langle x_2 x \rangle \le 0$ => 4<x,y>2 < 4<x,x><y,y> => <x,y>2 < <x,x><y,y> Def: Let X be an inner product space. We define $\|\cdot\|: X \to E_{0,\infty})$ given by ||x|| = \(\langle x, x \rangle \) and call if the inner product norm. Remark: If X is an inner product space Kx,y>1 = |[x||·||y|| Remark: If X is an inner product space and $x,y \in X$.

we have

•
$$||x + y||^2 = ||x||^2 + 2\langle x, y \rangle + ||y||^2$$

Proposition: Let X be an inner product space. Then the inner product norm is a norm.

Proof:

•
$$||x|| \ge 0$$
 by def and $||x|| = 0 \Leftrightarrow ||x||^2 = 0 \Leftrightarrow \langle x, x \rangle = 0$
 $\Leftrightarrow x = 0_x$

$$\cdot \| \lambda_{\mathsf{X}} \|^{2} = \langle \lambda_{\mathsf{X}}, \lambda_{\mathsf{X}} \rangle = \lambda^{\mathsf{X}} \langle \mathsf{X}, \lambda_{\mathsf{X}} \rangle = \lambda^{2} \langle \mathsf{X}, \mathsf{X} \rangle = \lambda^{2} \| \mathsf{X} \|^{2}$$

$$||x+y||^{2} = ||x||^{2} + 2\langle x_{1}y \rangle + ||y||^{2}$$

$$\leq ||x||^{2} + 2|\langle x_{1}y \rangle| + ||y||^{2}$$

$$\leq ||x||^{2} + 2||x|| \cdot ||y|| + ||y||^{2}$$

$$= (||x|| + ||y||)^{2}$$

Examples:

(i) In
$$\mathbb{R}^n$$
, we have for $x \in \mathbb{R}^n$

$$\|x\|_2^2 = \langle x, x \rangle = \sum_{i=1}^n |x_i|^2$$

(ii) In
$$l^2(IN)$$
, we have for $x \in l^2(IN)$
 $||x||_{l^2}^2 = \langle x, x \rangle = \sum_{n=1}^{\infty} |x||^2$

(iii) In
$$C([0]]$$
, we have for $f \in C([0]]$)
$$||f||_{L^2}^2 = \int_0^1 |f(x)|^2 dx.$$

Geometric Properties of Inner Products

Parallelogram Law: Let X be an inner product space and $X, y \in X$. Then

Proof:

$$||x+y||^2 = 2||x||^2 + 2||y||^2 + 2\langle x,y \rangle$$

 $||x-y||^2 = 2||x||^2 + 2||y||^8 - 2\langle x,y \rangle$
and add them.

Remark: Let X be an inner product space and for nonzero X, y < X

 $\frac{\langle x,y\rangle}{\|x\|\|\cdot\|y\|} \in [-1,1]$. We can find $\theta \in [0,\pi]$ such that $\cos(\theta) = \frac{\langle x,y\rangle}{\|x\|\|\cdot\|y\|\|}$.

Definition: let X be an inner product space and for $x,y \in X$, we say x,y are orthogonal if $\langle x,y \rangle = 0$. Write $x \perp y$.

Pythagorean Theorem: Let X be an inner product space and $x,y \in X$. The following are equivalent

(a) $x \perp y$

(b) $11x + y 11^2 = 11x11^2 + 11y11^2$

Exercise: If X be a normed space such that for x, yeX, $||X+y||^2 + ||X-y||^2 - 2||x||^2 + 2||y||^2$ then \exists an inner product on X inducing the norm. (Hint: $\langle x,y \rangle = \frac{1}{4}(||x+y||^2 - ||x-y||^2)$

Exercise: Take $X = l^{\gamma}(IN)$ and $l \le p \le \infty$, $p \ne a$. Show II-lip fails the parallelogram law. Proposition: let X. be an inner product space. Then <.,.) is continuous. That is, if $(x_n)_{n=1}^{\infty}$, $(y_n)_{n=1}^{\infty}$ in X Such that $x_n \rightarrow x_1, y_n \rightarrow y$, then $\langle x_n, y_n \rangle \rightarrow \langle x_1, y_2 \rangle$ Def: A Hilbert space H is a complete inner product space. Examples: (IRn, 11.112), (12(IN), 11.112) are Hilbert spaces. but ((([0,1]), ||·11) is not.