Groupes de galois de corps locaux

Je veux étant donné un corps local K décrire les groupes qui apparaissent dans

$$egin{array}{cccc} ar{K} & ar{K} &$$

1
$$Gal(K^{un}/K) \simeq \widehat{\mathbb{Z}}$$

Y s'agit juste de voir que

$$Gal(K^{un}/K) \simeq Gal(\bar{\mathbb{F}}_q/\mathbb{F}_q)$$

et que le deuxième vérifie

$$Gal(\overline{\mathbb{F}}_q/\mathbb{F}_q) \simeq \varprojlim_n Gal(\mathbb{F}_{q^n}/\mathbb{F}_q) \simeq \varprojlim_n \mathbb{Z}/n\mathbb{Z}$$

via Galois.

2
$$Gal(K^{tr}/K^{un}) \simeq \prod_{\ell \neq p} \mathbb{Z}_{\ell}$$

Y suffit de se rappeler que y'a une unique extension modérément totalement ramifiée de degré e pour $e \wedge p = 1$. Qu'en plus elle est de la forme $X^e - \pi_K$ et que dans K^{un} on a μ_e .

3 $Gal(K^{tr}/K) \simeq \langle Fr_K, \tau_K | Fr_K \tau_K Fr_K^{-1} = \tau_K^q \rangle$

Si on regarde $K(\zeta_n)[X]/(X^n-\pi_K)/K$ elle est de degré au plus $n\varphi(n)$ (y'a tjr le cas bizarre où ϕ_n est split mod p) et engendrée par les automorphismes

$$Fr_K(\zeta_n) = \zeta_n^p$$

 et

$$\tau_K(\pi_n) = \pi_n \zeta_n$$

y s'agit ensuite de remarquer qu'on peut choisir les ζ_n dans $\varprojlim_{n \wedge p=1} \mu_n$ et les π_n dans $\varprojlim_{x \mapsto x^n; n \wedge p=1} \mathfrak{m}_{\bar{K}}$. On a obtenu $(\pi_n)_n$ et $(\zeta_n)_n$ telles que $\zeta_n^d = \zeta_{n/d}$ et $\pi_n^d = \pi_{n/d}$. Ça fournit τ_K et Fr_K sur K^{tr} . La relation est par calcul direct (oui!).