Question 1: What assumption would you make about the dimensionality of the data? The dimension should be 1 even though the data is 2 dimension

```
1.3

% 1.3

C = cov(x,y);

% 1.4

eVal = eig(C);

[eVecl, eVec2] = eig(C);

C =
```

_		
	1	2
1	34.1417	48.1868
2	48.1868	69.7042
3		

eVal =

	1
1	0.5601
2	103.2858

eVa1

	1	2		
	-0.8204	0.5718		
1				
2	0.5718	0.8204		

eVec2

	1	2	
1	0.5601	0	
2	0	103.2858	
2			

Question 2:

The higher eigen value is the second one. Since both values of the vectors are positive, it is trending up right, the same as the data points

1.5

```
x1 = rand([1 100]);
y1 = rand([1 100]);

for i = 1:length(x1)
     x1(i) = x1(i)-mean(x1);
end

for i = 1:length(y1)
     y1(i) = y1(i)-mean(y1);
end
plot(x1,y1)
C1 = cov(x1,y1);
eVal1 = eig(C1);
[eVec11, eVec12] = eig(C1);
```

Covariance

0.0911	0.0029	
0.0029	0.0920	

Eigen Value

1
0.0886
0.0944

Eigen vectors

0.6516	-0.7586
0.7586	0.6516

0	0.0886
0.0944	0

Plot

Question 3:

The trend is positive, since the eigen values are small, the data plots are scattered, The true dimensionality of the data is 1.

Part 2 code:

Question 4:

X form code

```
for i = 1:320

X(:,i) = X(:,i) - X_mean;

end
```

 $\ensuremath{\mathsf{T}}$ matrix , and eigen values code:

```
T = 1/320*transpose(X)*X;

eValT = eig(T);
[eValT1,eValT2] =eig(T);
eigenvectors = X*eValT1;
```

Question 5

From 1 to 5 Question 6: From 315 to 320

These faces have the shape of a face image. The information of these gives the shape of the face, and possibly where the face features are.

Question 7:

```
Code:
    Saveas(IIG, "CO_IURLIGEN.DMP")
    %% Part 3: SVD composition
[U,D,V] = svd(X);

%imshow(eigface_1,[])
D2 = 1/320*transpose(D)*D;

%Question 7
fig = figure();
for i = 1:5
    subplot(1,5,i)
    eigface_1 = [reshape(U(:,i),[112,92])];
    imshow(eigface_1,[]);
end
```


Question 8: Code:

```
fig = figure();
W = U(:,1:50)'*X(:,9);
im = U(:,1:50)*W + X_mean;
imshow(reshape(im,[112,92]),[])
saveas(fig, "Q8rec.bmp")
fig = figure();
imshow(reshape(X(:,9),[112,92]),[])
saveas(fig, "Q8org.bmp")
```


Question 9 code:

```
fig = figure();
for i = 1:100
    subplot(10,10,i)
    W = U(:,1:50)'*X(:,i);
    im = U(:,1:50)*W + X_mean;
    imshow(reshape(im,[112,92]),[])
-end
saveas(fig, "Q9rec.bmp")
```

9	3	7			8		8	8	Ø
9	3	#	3	9	9	8	S	-	œ.
8	6	Ø	8	8					중
	9		1				8		
8	9	8	3		6	8	8	Ð	3
8	竇	ð	3	8	Ð	0	8	3	
		8	8	9	8	æ	æ	9	\$
*	2	ē	8	9	3	0	g	8	8
2	2	2	0	8			8	9	0
8	9	8	ø		9	6	6	ē	