Introduction to pytorch

Geoffroy Peeters LTCI, Télécom Paris, IP-Paris

version: 0.2 (2021/03/02) slides done using https://remarkjs.com/

Pytorch

- **PyTorch** is an open-source machine-learning library based on the **Torch** library
 - Torch was also an open-source machine-learning library based on the Lua programming language but its development is no longer active since 2018
 • PyTorch is actively developed since then
 • PyTorch can be considered as the python interface to Torch
- Used by:
 - Facebook AI Research Group (FAIR), IBM, Yandex and the Idiap Research Institute.
- Website and documentation

 - https://pytorch.org/docs/stable/index.html
- Other Usefull resources

 - Deep Learing with pytorch: A 60 minute blitz:

 https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

 PyData, Berlin 2008, "Deep Neural Networks with Pytorch":s
 - https://youtu.be/KoyUYUcEyT8

Pytorch

Importing pytorch package

```
import torch
torch.__version__
torch.__path__

'1.7.1'
['/anaconda3/lib/python3.8/site-packages/torch']
```

Torch tensors

Creating a tensor.

Official doc: https://pytorch.org/docs/stable/tensors.html

Create a tensor, get size

Change the shape of a tensor

```
x = torch.randn(4,4)

y = x.view(16)

z = x.view(-1, 8) #--- ues '-1' when you want the relative shape to be infered automaticallly

print(x.size(), y.size(), z.size())

torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])
```

Torch tensors

Various ways of creating tensors

```
%pylab
import torch.nn
x = \text{torch.arange}(-10, 10, 0.1)
plot(x.numpy(), torch.nn.Tanh()(x).numpy());
plot(x.numpy(), torch.nn.functional.tanh(x).numpy());
x = torch.Tensor(2, 3)
x = torch.rand(2, 3)
x = torch.randn(2, 3)
x = torch.eye(3)
x = torch.ones(10)
x = torch.ones(2,3)
x = torch.zeros(10)
x = torch.ones like(x)
x = torch.arange(5)
x = torch.arange(0, 5, step=1)
x = \text{torch.linspace}(1, 10, \text{steps}=10)
x = torch.logspace(start=-10, end=10, steps=5)
x.size()
torch.numel(x)
```

Tensor Dimensions

Matrices are store row by row: [[row1],[row2],[row3]]

```
v = torch.arange(0,6).view(2,3)
tensor([[0, 1, 2],
     [3, 4, 5]])
v[0] # --- return the first row
tensor([0, 1, 2])
v[0][2] # --- second elements in first row
tensor(2)
v[0,2] # --- same as above
tensor(2)
v[0,:] #--- return all elements of the first row
tensor([0, 1, 2])
v[:,0] #--- return all elements of the first column
tensor([0, 3])
v[1].fill (2)
tensor([[0, 1, 2],
     [2, 2, 2]])
```

From / To numpy

Torch to Numpy: .numpy()

```
a = torch.ones(2,5, dtype=torch.float64)
b = a.numpy()

print(type(b))

<class 'numpy.ndarray'>
print(b.dtype)
float64
print(b)
[[1.1.1.1.1.]
[1.1.1.1.1.]
```

Numpy to Torch: .from_numpy()

Warning: both ndarray and Tensor share the same memory storage.

7/39

Operators

see https://jhui.github.io/2018/02/09/PyTorch-Basic-operations/

Addition

```
x = \text{torch.Tensor}(2, 3)

y = \text{torch.rand}(2, 3)

z1 = x + y

z2 = \text{torch.add}(x, y)

r1 = \text{torch.Tensor}(2, 3)

torch.add(x, y, out=r1)
```

In-place operation: all operations end with "_" is in place operations

```
x.add_(y) \# Same \ as \ x = x + y
```

Dot product of 2 tensors: torch.dot

```
vec1 = torch.ones(10)
vec2 = 2*torch.ones(10)
r = torch.dot(vec1,vec2)
r = vec1 @ vec2

print(vec1.size())
torch.Size([10])

print(vec2.size())
torch.Size([10])
```

Matrix, vector products: torch.mv

```
mat = torch.randn(2, 4)
vec = torch.randn(4)
r = torch.mv(mat, vec)
r = mat @ vec

print(r.size())
torch.Size([2])
```

Matrix, Matrix products: torch.mm

```
mat1 = torch.ones(5,10)
mat2 = torch.ones(10,20)
r = torch.mm(mat1, mat2)
r = mat1 @ mat2

print(mat1.size())
torch.Size([5, 10])

print(mat2.size())
torch.Size([10, 20])

print(r.size())
torch.Size([5, 20])
```

Element-wise mutiplication: torch.mul

```
mat1 = torch.ones(5,10)

mat2 = 2*torch.ones(5,10)

r = torch.mul(mat1,mat2)

r = mat1 * mat2

print(r.size())

torch.Size([5, 10])
```

torch.matmul

matmul(tensor1, tensor2, out=None) -> Tensor

Matrix product of two tensors.

The behavior depends on the dimensionality of the tensors as follows:

- If both tensors are 1-dimensional, the dot product (scalar) is returned.
- If both arguments are 2-dimensional, the matrix-matrix product is returned.
- If the first argument is 1-dimensional and the second argument is 2-dimensional, a 1 is prepended to its dimension for the purpose of the matrix multiply. After the matrix multiply, the prepended dimension is removed.
- If the first argument is 2-dimensional and the second argument is 1-dimensional, the matrix-vector product is returned.
- If both arguments are at least 1-dimensional and at least one argument is N-dimensional (where N > 2), then a batched matrix multiply is returned. If the first argument is 1-dimensional, a 1 is prepended to its dimension for the purpose of the batched matrix multiply and removed after. If the second argument is 1-dimensional, a 1 is appended to its dimension for the purpose of the batched matrix multiple and removed after. The non-matrix (i.e. batch) dimensions are :ref:broadcasted <broadcasting-semantics> (and thus must be broadcastable). For example, if :attr:tensor1 is a :math:(j \times n \times n \times n) tensor and :attr:tensor2 is a :math:(k \times m \times p) tensor, :attr:out will be an :math:(j \times n \times p) tensor.

Broadcasting

- refers to how pytorch treats arrays with different dimension during arithmetic operations which lead to certain constraints,
- the smaller array is broadcast across the larger array so that they have compatible shapes.

```
matA = torch.ones(5,10)
matB = torch.ones(5,1)
print( (matA + matB).size() )
torch.Size([5, 10])
matA = torch.ones(5,10)
vecB = torch.ones(5)
print( (matA + vecB).size() )
RuntimeError: The size of tensor a (10) must match the size of tensor b (5) at non-singleton dimension 1
matA = torch.ones(5,10)
matC = torch.ones(1,10)
print( (matA + matC).size() )
torch.Size([5, 10])
matA = torch.ones(5,10)
vecC = torch.ones(10)
print( (matA + vecC).size() )
torch.Size([5, 10])
```

Autograd

Autograd provides automatic differentiation for all operations on Tensors.

Introduction: https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html

Autograd

Example:

- ullet implement the following **computation graph** from x to z: $z=\sum_i 2x_i^3$.
- declare that we will need a gradient w.r.t. to x: x = ... requires_grad=True.
- get $\frac{dz}{dx_i}$ we perform the backward propagation from z: z.backward.
- ullet result is stored in x.grad: x.grad contains $rac{dz}{dx_i}=6$.

```
x = torch.ones(2, 2, requires grad=True)
y = 2 * (x**3)
z = y.sum()
print(z.grad fn)
<SumBackward0 object at 0x1254df940>
z.backward(retain graph=True)
print(x.grad)
tensor([[6., 6.],
     [6., 6.]]
#print(x.grad.data)
z.backward(retain graph=True)
print(x.grad)
tensor([[12., 12.],
     [12., 12.]])
x.grad.zero ();
print(x.grad)
                                                                                                                16/39
tensor([[0., 0.],
```

NN is the main package for neural networks in pytorch. It contains many subpackage to MLP, CNN, RNN, activation functions, loss functions.

Simple example: a linear regression in pytorch

```
import torch.nn
#--- define the model (it is not yet trained)
model = torch.nn.Linear(in_features=64, out_features=1, bias=True)
#--- feed 100 data in the model and get outputs
x = torch.rand(100, 64)
hat_y = model(x)
print(hat_y.size())
torch.Size([100, 1])
```

```
# model contains all the parameters of the model (weight matrices, bias vectors, ...)
print(model. dict )
{'training': True, ' parameters': OrderedDict([('weight', Parameter containing:
tensor([[ 0.0796, 0.0870, 0.0066, 0.0872, -0.0659, -0.0428, -0.0776, 0.0235,
      0.0558, 0.0627, 0.0015, -0.0697, 0.0526, 0.0009, -0.1122, 0.0895,
      0.0680, 0.0905, -0.0038, -0.0039, 0.0035, 0.0418, 0.1073, -0.0257,
      0.0051, 0.0752, 0.1111, -0.1130, -0.0794, -0.0911, 0.1096, -0.1208,
      -0.0234, 0.0403, -0.0664, 0.0177, -0.1109, 0.0644, 0.1243, 0.1025,
      -0.0103, -0.0477, 0.0397, -0.1160, 0.0140, -0.1133, -0.0942, -0.0603,
      0.1001, 0.0752, 0.0282, -0.0561, 0.0528, -0.0917, 0.0540, 0.0511,
      0.0630, -0.1248, -0.0035, -0.0327, 0.0693, -0.1036, 0.1133, -0.116211,
    requires grad=True)), ('bias', Parameter containing:
tensor([-0.0388], requires grad=True))]), 'buffers': OrderedDict(), 'non persistent buffers set': set(), 'backward
print(model.weight)
print(model.bias)
Parameter containing:
tensor([-0.0388], requires grad=True)
```

```
# various ways to access the parameters of the model without knowing their names
# param: are of types torch.nn.parameter.Parameter
# param.data contains the value (without telling it is a trainable parameter)
for param in model.parameters():
 print(param)
for name, param in model.named parameters():
 print('{}:{}'.format(name, param.data))
weight:tensor([[ 0.0796, 0.0870, 0.0066, 0.0872, -0.0659, -0.0428, -0.0776, 0.0235,
      0.0558, 0.0627, 0.0015, -0.0697, 0.0526, 0.0009, -0.1122, 0.0895,
      0.0680, 0.0905, -0.0038, -0.0039, 0.0035, 0.0418, 0.1073, -0.0257,
      0.0051, 0.0752, 0.1111, -0.1130, -0.0794, -0.0911, 0.1096, -0.1208,
      -0.0234, 0.0403, -0.0664, 0.0177, -0.1109, 0.0644, 0.1243, 0.1025,
      -0.0103, -0.0477, 0.0397, -0.1160, 0.0140, -0.1133, -0.0942, -0.0603,
      0.1001, 0.0752, 0.0282, -0.0561, 0.0528, -0.0917, 0.0540, 0.0511,
      0.0630, -0.1248, -0.0035, -0.0327, 0.0693, -0.1036, 0.1133, -0.1162]
bias:tensor([-0.0388])
for name, param in model.state dict().items():
 print('{}:{}'.format(name, param.data))
```

Defining a network

There are several ways to define a neural network in pytorch depending on how much you want to use pre-defined functionnalities of pytorch.

In the following we looks at implementations of a network:

- 1) from scratch: writting all forward, loss, backward and update ourself
- 2) using autograd: we do not need to write anymore the backward
- 3) using prefined nn.Sequential, predifined losses and model.parameters
- 4) using optim to perform the update
- 5) using a class to define the network

1) Defining a network from scratch

```
dtype = torch.float
device = torch.device("cpu")
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in, device=device, dtype=dtype)
y = torch.randn(N, D out, device=device, dtype=dtype)
w1 = torch.randn(D in, H, device=device, dtype=dtype)
w2 = torch.randn(H, D) out, device=device, dtype=dtype)
learning rate = 1e-6
for t in range(500):
  # --- forward
  h = x.mm(w1)
  h relu = h.clamp(min=0)
  y \text{ pred} = h \text{ relu.mm}(w2)
  # --- loss
  loss = (y pred - y).pow(2).sum().item()
  # --- backward
  grad y pred = 2.0 * (y pred - y)
  grad w2 = h relu.t().mm(grad y pred)
  grad h relu = grad y pred.mm(w2.t())
  grad h = grad h relu.clone()
  grad h[h < 0] = \overline{0}
  grad w1 = x.t().mm(grad h)
  # --- update
  w1 -= learning rate * grad_w1
  w2 -= learning rate * grad w2
```

2) Defining a network using autograd

```
dtype = torch.float
device = torch.device("cpu")
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in, device=device, dtype=dtype)
y = torch.randn(N, D out, device=device, dtype=dtype)
w1 = torch.randn(D in, H, device=device, dtype=dtype, requires grad=True)
w2 = torch.randn(H, D out, device=device, dtype=dtype, requires grad=True)
learning rate = 1e-6
for t in range(500):
  # --- forward
  y pred = x.mm(w1).clamp(min=0).mm(w2)
  # --- loss
  loss = (y pred - y).pow(2).sum()
  # --- backward
  loss.backward()
  # --- update
  with torch.no grad():
    w1 -= learning rate * w1.grad
    w2 -= learning rate * w2.grad
    w1.grad.zero ()
    w2.grad.zero ()
```

Generic modules

For Convolutional Neural Networks

torch.nn.Sequential torch.nn.BatchNorm1d / torch.nn.BatchNorm2d torch.nn.DropOut

torch.nn.Conv1d/ torch.nn.Conv2d torch.nn.MaxPool1d/ torch.nn.MaxPool2d

Activation functions

For Recurrent Neural Networks

torch.nn.Tanh
torch.nn.ReLU # same as torch.nn.functional.relu
torch.nn.Sigmoid
torch.nn.LogSigmoid # same as torch.nn.functional.logsi,
torch.nn.Softmax
torch.nn.LogSoftmax

torch.nn.Embedding torch.nn.RNN / torch.nn.RNNCell torch.nn.LSTM / torch.nn.LSTMCell torch.nn.GRU / torch.nn.GRUCell

Loss

3) Defining a network using nn.Sequential and nn.MSELoss and model.parameters()

```
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D_out)
model = torch.nn.Sequential(
   torch.nn.Linear(D in, H),
  torch.nn.ReLU(),
   torch.nn.Linear(H, D out),
criterion = torch.nn.MSELoss(reduction='sum')
learning rate = 1e-4
for t in range(500):
  y \text{ pred} = \text{model}(x)
  loss = criterion(y pred, y)
  model.zero_grad()
  loss.backward()
  with torch.no grad():
    for param in model.parameters():
       param -= learning rate * param.grad
```

package torch.optim

```
#--- We define one optimize (for example Stochastic Gradient Descent)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-5, momentum=0.9)
optimizer = torch.optim.Adam([var1, var2], lr=0.0001)

for ... # loop over data

# --- First set to zero the .grad field in all parameters of the network (otherwise they will be accumulated)
optimizer.zero_grad()
# --- this is equivalent to model.zero_grad()

# --- Then perform one step of the related optimizer algorithm (for example one step of gradient descent)
optimizer.step()
```

4) Defining a network using ... and optim

```
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D_out)
model = torch.nn.Sequential(
  torch.nn.Linear(D in, H),
  torch.nn.ReLU(),
  torch.nn.Linear(H, D out),
criterion = torch.nn.MSELoss(reduction='sum')
learning rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=learning rate)
for t in range(500):
  y_pred = model(x)
  loss = criterion(y pred, y)
  optimizer.zero grad()
  loss.backward()
  optimizer.step()
```

5) Defining a network using ... classes (instead of nn.Sequential)

Your class should be a subclass the class nn.Module (which is the base class for all neural network modules).

```
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
class TwoLayerNet(torch.nn.Module):
   def __init__(self, D in, H, D out):
    super(TwoLayerNet, self). init ()
    self.linear1 = torch.nn.Linear(D in, H)
    self.linear2 = torch.nn.Linear(H, D out)
   def forward(self, x):
    h_{relu} = self.linear1(x).clamp(min=0)
    v pred = self.linear2(h relu)
    return y pred
model = TwoLayerNet(D in, H, D out)
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range (500):
  y pred = model(x)
  loss = criterion(y pred, y)
  optimizer.zero grad()
  loss.backward()
  optimizer.step()
```

Dataset/ DataLoader

Who to make the following easy?

```
train_dataset = Dataset(...)
train_dataloader = DataLoader(train_dataset, ...)

for epoch in range(nb_epoch):
    for i_batch, sample_batched in enumerate(train_dataloader):
        x, y = sample_batched[0], sample_batched[0]
        y_pred = model(x)
        loss = criterion(y_pred, y)
        ...
```

Data/ Dataset/ from arrays

https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset

```
import numpy as np
import torch.utils.data
inputs = np.random.randn(1000,64,64)
targets = np.random.randn(1000,1)
# --- Convert numpy to torch-tensors
inputs = torch.from numpy(inputs)
targets = torch.from numpy(targets)
# --- Create a train set
train dataset = torch.utils.data.TensorDataset(inputs, targets)
x, y = train dataset[0]
print(x.size(), y.size())
torch.Size([64, 64]) torch.Size([1])
for x, y in iter(train dataset):
 print(x.size(),y)
torch.Size([64, 64]) tensor([-0.4926], dtype=torch.float64)
torch.Size([64, 64]) tensor([1.6715], dtype=torch.float64)
torch.Size([64, 64]) tensor([0.3556], dtype=torch.float64)
```

Data/ Dataloader

Creating a dataloader

```
train dataloader = torch.utils.data.DataLoader(train dataset, batch size=8, shuffle=True)
x, y = next(iter(train dataloader))
print(x.size(), y)
torch.Size([8, 64, 64]) tensor([[-0.7249],
     [0.4788],
     [-0.6805],
     [1.1882],
      Г 0.16821.
      [0.2114],
      [-0.2210],
      [1.1738]], dtype=torch.float64)
for i batch, sample batched in enumerate(train dataloader):
  x, y = \text{sample batched}[0], \text{ sample batched}[0]
  print(i batch, x.size(), y.size())
0 torch.Size([8, 64, 64]) torch.Size([8, 64, 64])
1 torch.Size([8, 64, 64]) torch.Size([8, 64, 64])
2 torch.Size([8, 64, 64]) torch.Size([8, 64, 64])
```

Data/ Dataset/ by class

https://pytorch.org/tutorials/beginner/data_loading_tutorial.html

```
class FaceLandmarksDataset(Dataset):
  """Face Landmarks dataset."""
  def __init__(self, csv_file, root_dir, transform=None):
    Args:
       csv file (string): Path to the csv file with annotations.
       root dir (string): Directory with all the images.
       transform (callable, optional): Optional transform to be applied
         on a sample.
    self.landmarks frame = pd.read csv(csv file)
    self.root dir = root dir
    self.transform = transform
  def __len__(self):
    return len(self.landmarks frame)
  def getitem (self, idx):
    if torch.is tensor(idx):
       idx = idx.tolist()
    img name = os.path.join(self.root dir,
                   self.landmarks frame.iloc[idx, 0])
    image = io.imread(img_name)
    landmarks = self.landmarks frame.iloc[idx, 1:]
    landmarks = np.array([landmarks])
    landmarks = landmarks.astype('float').reshape(-1, 2)
    sample = {'image': image, 'landmarks': landmarks}
    if self.transform:
       sample = self.transform(sample)
    return sample
```

31/39

Data/ Dataloader

Using it as iterator:

```
dataloader = torch.utils.data.DataLoader(face_dataset, batch_size=4, shuffle=True)

for i_batch, sample_batched in enumerate(dataloader):
    print(i_batch, sample_batched['image'].size(), sample_batched['landmarks'].size())
    ...
```

Dimensions

https://pytorch.org/docs/stable/generated/torch.nn.Linear.html https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html https://pytorch.org/docs/stable/generated/torch.nn.RNN.html

```
data (batch or N. in features)
data (seg len, batch or R, in features)
torch.nn.Linear(in features, out features, bias=True)
 Input: (N, *, H in)
 Output: (N, *, H out)
 Y(N, n \text{ out}) = X(N, n \text{ in}) W(n \text{ out}, n \text{ int})'
torch.nn.Conv2d(in channels, out channels, kernel size=(,), stride=(,)), padding=(,), dilation=1, groups=1, bias=Ti
 Input: (N, C in, H in, W in)
 Output: (N, C out, H out, W out)
torch.nn.RNN(*args, **kwargs)
 Input: (seq len, batch, input size)
 h0: (num layers * num directions, batch, hidden size)
 Output: (seq len, batch, num directions * hidden size)
  tensor containing the output features (h t) from the last layer of the RNN, for each t
 h n: (num layers * num directions, batch, hidden size)
  tensor containing the hidden state for t = seq len
```

ConvNet

```
### Without padding
# --- input (N, C in, H in, W in)
input = torch.randn(64, 3, 16, 16)
#--- nn.Conv2d(in channels, out channels, kernel size=(h,w))
model = nn.Conv2d(in channels=3, out channels=32, kernel size=(7.5), padding=(0.0), stride=(1.1))
#--- weight (out channels, in channels, h, w)
\# --- output (N, \overline{C} \text{ out}, H \text{ out}, W \text{ out})
output = model(input)
print('input.size(): ', input.size())
print('model.weight.size(): ', model.weight.size())
print('model.bias.size(): ', model.bias.size())
print('output.size(): ', output.size())
input.size(): torch.Size([64, 3, 16, 16])
model.weight.size(): torch.Size([32, 3, 7, 5])
model.bias.size(): torch.Size([32])
output.size(): torch.Size([64, 32, 10, 12])
### With padding
model = nn.Conv2d(in channels=3, out channels=32, kernel size=(7,5), padding=(3,2), stride=(1,1))
output = model(input)
print('output.size(): ', output.size())
output.size(): torch.Size([64, 32, 16, 16])
```

ConvNet (cont.)

```
### Max-pooling

input = torch.randn(64, 3, 16, 16)
#--- nn.Conv2d(in_channels, out_channels, kernel_size(H,W))

model = torch.nn.Sequential(
    nn.Conv2d(in_channels=3, out_channels=32, kernel_size=(7,5), padding=(0,0), stride=(1,1)),
    nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
    )
    output = model(input)

print('output.size(): ', output.size())

output.size(): torch.Size([64, 32, 5, 6])
```

RNN

```
input = [torch.tensor([6,7,8,9]), torch.tensor([1,2,3]), torch.tensor([3,4])]
print(input)
[tensor([6, 7, 8, 9]), tensor([1, 2, 3]), tensor([3, 4])]

seq_lens = [len(inp) for inp in input]
print(seq_lens)
[4, 3, 2]
```

Padding

Conversion to matrix with padding. The default format is [seq_len, batch_len]

RNN

Pack/Unpack

using GPU

Running your pytorch code in GPU (considering that it has been correctly configured) is quiet easy in pytorch. You need to send your model to the GPU (model.to("cuda:0")) and your data to the GPU (data.to("cuda:0")). You can then check GPU suage using nvidia-smi.

model.cuda() will send your model to the "current device", which can be set with torch.cuda.set_device(device). An alternative way to send the model to a specific device is model.to(torch.device('cuda:0')).

```
class MyNetwork(nn.Module):
  def __init__(self):
     super(MyNetwork, self). init ()
     self.conv1 = nn.Conv2d(\overline{3}, 6, (\overline{5}, 5))
     self.pool = nn.MaxPool2d(2, 2)
     self.conv2 = nn.Conv2d(6, 16, (5, 5))
     self.fc1 = nn.Linear(16 * 5 * 5, 120)
     self.fc2 = nn.Linear(120, 84)
     self.fc3 = nn.Linear(84, 10)
  def forward(self, x):
     x = self.pool(F.relu(self.conv1(x)))
     x = self.pool(F.relu(self.conv2(x)))
     x = x.view(-1, 16 * 5 * 5)
     x = F.relu(self.fc1(x))
     x = F.relu(self.fc2(x))
     x = self.fc3(x)
     return x
model = MyNetwork(D in, H, D out)
                                                                                                                   38/39
device = torch.device("cuda:0" if torch.cuda.is available() else "cpu")
```

using Tensorboard

Tensorboard allows you to monitor the training of your model through the vizualization of its parameters (loss, accuracy, ...) within a web-browser.

see https://pytorch.org/docs/stable/tensorboard.html

Lauch the tensorboard server using directory 'runs' (the place where the files will be written)

```
pip install tensorboard
tensorboard --logdir=runs
```

From whithin pytorch add the functions to write probe variables

```
# Writer will output to ./runs/ directory by default

from torch.utils.tensorboard import SummaryWriter
import numpy as np

writer = SummaryWriter()

for n_iter in range(100):
    writer.add_scalar('Loss/train', np.random.random(), n_iter)
    writer.add_scalar('Loss/test', np.random.random(), n_iter)
    writer.add_scalar('Accuracy/train', np.random.random(), n_iter)
    writer.add_scalar('Accuracy/train', np.random.random(), n_iter)
    writer.add_scalar('Accuracy/test', np.random.random(), n_iter)
```