## **Particle Dynamics**

Set of particles modeled as point masses in motion

- m<sub>i</sub>: mass of particle i
- x<sub>i</sub>: position of particle i
- v<sub>i</sub>: velocity of particle i



Can write Newton's second law as differential equation

$$\mathbf{f}_i(t) = m_i \mathbf{a}_i(t)$$

velocity 
$$\mathbf{v}_i(t) = \frac{d\mathbf{x}_i(t)}{dt} = \dot{\mathbf{x}}_i(t)$$

$$\ddot{\mathbf{x}}_{i}(t) = \frac{\mathbf{f}_{i}(t)}{m_{i}}$$

$$\ddot{\mathbf{x}}_{i}(t) = \frac{\mathbf{f}_{i}(t)}{m_{i}}$$
 acceleration  $\mathbf{a}_{i}(t) = \frac{d\mathbf{v}_{i}(t)}{dt} = \frac{d^{2}\mathbf{x}_{i}(t)}{dt^{2}} = \ddot{\mathbf{x}}_{i}(t)$ 

 $\mathbf{f}_i$ : sum of all forces acting on particle

## **Gravity**

Select a "down" direction

Here, we'll assume that the y-axis points up

Force due to gravity is simply

$$\mathbf{f}_i = \begin{bmatrix} 0 \\ -g \\ 0 \end{bmatrix}$$



• g: gravitational constant

- ≈ 9.78 m/sec<sup>2</sup> on Earth

#### **Deformable Models**

#### Continuum mechanics

- Deformable solid models
  - Cloth
  - Rubber
  - Soft tissues (muscle, skin, hair, ...)
- Fluid models
  - Water (oceans, puddles, rain, ...)
- · Gas-like models
  - Steam, smoke, fire, ...

## **Physical Principles**

#### **Deformation**

Strain

#### **Force**

Stress

#### Constitutive law

Hooke's Law: Stress = Elasticity x Strain

#### Newton's law of motion

Acceleration = Mass<sup>-1</sup> x Stress

## Deformable Solids: Mass-Spring-Damper Systems

Useful for building deformable models

1-dimensional:

2-dimensional:



3-dimensional:



## **Physics-Based Cloth Models**







## Flying Carpet

**Gravity and collision forces (1987)** 







## Curtain

(1987)







# Other Uses of Mass-Spring Systems: Cloth Simulation













# Physics-Based Facial Simulation with Mass-Spring-Damper Systems



### **Data Primitives**

#### Node

- A lumped mass
  - Mass: – Damping:
  - Position:  $\mathbf{x}(t) = [\mathbf{x}(t), \mathbf{y}(t), \mathbf{z}(t)]^T$
  - Velocity:  $\mathbf{v}(t) = d\mathbf{x}(t) / dt$ - Acceleration:  $a(t) = d^2x(t) / dt^2$
  - Nodal force: f(t)

#### Spring

· Connects a pair of nodes



- Rest length:
- Stiffness: С

## **Equations of Motion**

#### Newton's law of motion

- Mass x Acceleration = Net Force
- Mathematically: for each node i = 1, 2, ..., N

$$m_i \mathbf{a}_i = \mathbf{f}_i$$
 or  $m_i \frac{d^2 \mathbf{x}_i}{dt^2} = \mathbf{f}_i$ 

- This is a system of second-order ordinary differential equations in time
- $\mathbf{f}_i = \mathbf{s}_i \gamma_i \mathbf{v}_i + \mathbf{g}_i$ The net nodal force is:
  - Gravity:
  - Damping force:  $-\gamma_i \mathbf{v_i}$  (nodal drag)
  - Spring force:

## **Spring Force**

Net spring force at node i is the sum of forces due to springs connecting node i to neighboring nodes j

Denoting the neighbors of node i as N<sub>i</sub>

$$\mathbf{s}_i(t) = \sum_{j \in N_i} \mathbf{s}_{ij}$$

Spring force

$$\mathbf{s}_{ij} = c_{ij} e_{ij} \frac{\mathbf{r}_{ij}}{\left\| \mathbf{r}_{ij} \right\|}$$



- $\mathbf{r}_{ii} = \mathbf{x}_i \mathbf{x}_i$  is the separation of the two nodes
- $|| \mathbf{r}_{ij} ||$  is the actual length of the spring
- $e_{ij} = || \mathbf{r}_{ij} || I_{ij}$  is the deformation of the spring
- Force varies linearly with deformation (but not with node positions)

## **A Damped Spring**

## Parallel combination of spring and damper

- Known as Voigt model
- Damping coefficient  $\gamma_{ii}$

$$\mathbf{s}_{ij} = (c_{ij}e_{ij} - \gamma_{ij}\frac{de_{ij}}{dt})\frac{\mathbf{r}_{ij}}{\left\|\mathbf{r}_{ij}\right\|}$$

Note: 
$$\frac{de_{ij}}{dt} = \mathbf{v}_{ij} \cdot \frac{\mathbf{r}_{ij}}{\|\mathbf{r}_{ij}\|}$$
  $\mathbf{v}_{ij} = \mathbf{v}_j - \mathbf{v}_i$ 

$$\mathbf{v}_{ij} = \mathbf{v}_j - \mathbf{v}_i$$



### **Finite Differences**

#### Discretization of time

•  $t_i = i \Delta t = 0, \Delta t, 2\Delta t, \dots$ 

#### First finite differences of a function f

• Let  $f^i = f(t_i)$ , for i = 0, 1, ...

• Forward difference:  $\frac{df(t)}{dt} \approx \frac{f^{t+1} - f^t}{\Delta t}$ 

• Backward difference:  $\frac{df(t)}{dt} \approx \frac{f^t - f^{t-1}}{\Delta t}$ 

• Central difference:  $\frac{df(t)}{dt} \approx \frac{f^{t+1} - f^{t-1}}{2\Delta t}$ 

### **Disretization of Nodal Motion**

## Finite difference approximation of motion of node i

$$\mathbf{v}_{i}(t) = \frac{d\mathbf{x}_{i}(t)}{dt} \approx \frac{\mathbf{x}_{i}^{t+1} - \mathbf{x}_{i}^{t}}{\Delta t}$$

$$\mathbf{a}_{i}(t) = \frac{d\mathbf{v}_{i}(t)}{dt} \approx \frac{\mathbf{v}_{i}^{t+1} - \mathbf{v}_{i}^{t}}{\Delta t}$$

$$\mathbf{a}_{i}(t) = \underbrace{\frac{\mathbf{v}_{i}^{t} - \mathbf{v}_{i}^{t-1}}{\Delta t}}_{\text{Backward Difference}} = \underbrace{\frac{\mathbf{x}_{i}^{t+1} - 2\mathbf{x}_{i}^{t} + \mathbf{x}_{i}^{t-1}}{(\Delta t)^{2}}}_{\text{Central 2}^{nd} \text{ Difference}}$$

## Integrating the Equations of Motion Through Time

## The explicit Euler time-integration method

• For each node *i* do:

- Step 1: 
$$\mathbf{a}_i^t = \frac{\mathbf{f}_i^t}{\mathbf{m}_i}$$

- Step 2: 
$$\mathbf{v}_i^{t+1} = \mathbf{v}_i^t + \Delta t \mathbf{a}_i^t$$

- Step 3: 
$$\mathbf{x}_i^{t+1} = \mathbf{x}_i^t + \Delta t \mathbf{v}_i^{t+1}$$

## **Computing the Spring Forces**

## What is the best way?

- Access each spring ij in sequence
- · Compute spring force

$$\mathbf{s}_{ij}^{t} = \left(c_{ij}e_{ij}^{t} - \frac{\gamma_{ij}}{\Delta t}(e_{ij}^{t} - e_{ij}^{t-1})\right) \frac{\mathbf{r}_{ij}^{t}}{\left\|\mathbf{r}_{ij}^{t}\right\|}$$

Accumulate force on nodes i and j

$$\mathbf{f}_i^t = \mathbf{f}_i^{t-1} + \mathbf{s}_{ii}^t$$

$$\mathbf{f}_j^t = \mathbf{f}_j^{t-1} - \mathbf{s}_{ij}^t$$

## **Other Time-Integration Methods**

## There are more stable and/or accurate explicit methods than the Euler method

· E.g., the Runge-Kutta method

#### Implicit methods are stable

- The implicit Euler method is obtained using backward finite differences
- Implicit methods require the solution of systems of linear equations at each time step
- They are too complicated for us to cover in this introductory graphics course

## Fluid Flow Simulation



## **Lenard-Jones Force Profile**



## **Discrete Fluid Model**

The total force on a particle i due to all other particles:  $\mathbf{g}_{i}(t) = \sum_{i \neq i} \mathbf{g}_{ij}(t)$ 

$$\mathbf{g}_{ij}(t) = m_i m_{ij} (\mathbf{x}_i - \mathbf{x}_{ij}) \left( -\frac{\alpha}{m_i m_{ij}} + \frac{\beta}{m_i m_{ij}} \right)$$

$$\mathbf{g}_{ij}(t) = m_i m_j (\mathbf{x}_i - \mathbf{x}_j) \left( -\frac{\alpha}{(r_{ij} + \varepsilon)^a} + \frac{\beta}{r_{ij}^b} \right) \qquad r_{ij} = \| \mathbf{x}_j - \mathbf{x}_i \|$$

 $\alpha$  and  $\beta$  determine the strength of the attraction and repulsion forces

Exponents a = 2, b = 4

ε is minimum required separation of particles

## **Rigid-Body Dynamics**

To create a nearly rigid object using a mass-spring-damper system, make the springs really stiff

This works in principle, but leads to numerical instability in practice

#### Better to use rigid-body dynamics

 There are no such things as perfectly rigid bodies in the real world, so this is an approximation

When a force is applied to extended bodies, the movement induced can consist of both translation and rotation

- Rotation is modeled explicitly in rigid-body dynamics
- A force applied other than at the center of mass (COM) of the extended body produces a torque

## **Rigid Body Dynamics**

#### Kinematics of 3D body in space

- · Three translational degrees of freedom: x
- Three rotational degrees of freedom: θ

#### Inertia tensor

· Specifies how mass is distributed about the COM

#### **Equations of motion**

$$m\mathbf{a} = \mathbf{f}$$

$$\frac{d}{dt}\mathbf{I}\mathbf{w} = \mathbf{T}$$
Angular Velocity  $d\theta/dt$ 

Applied Force

$$\mathbf{I} = \begin{bmatrix} \mathbf{I}_{xx} & -\mathbf{I}_{xy} & -\mathbf{I}_{xz} \\ -\mathbf{I}_{xy} & \mathbf{I}_{yy} & -\mathbf{I}_{yz} \\ -\mathbf{I}_{xz} & -\mathbf{I}_{yz} & \mathbf{I}_{zz} \end{bmatrix}$$

$$I_{xx} = \int (y^2 + z^2) dm$$
  $I_{xy} = \int xy dm$   
 $I_{yy} = \int (x^2 + z^2) dm$   $I_{xz} = \int xz dm$   
 $I_{zz} = \int (x^2 + y^2) dm$   $I_{yz} = \int yz dm$ 

## **Articulated Dynamics**

#### Rigid bodies with joints

· A.k.a. constrained multibody systems

#### Dynamic human model

- J. Hodgins, et al. GATech
- 15-17 rigid body parts
- 22-32 controlled dofs
- Body part densities from anthropometric data
- Masses & moments calculated from polygonal model



## "Atlanta in Motion"

J. Hodgins, et al., Georgia Tech





# Falling Backward, Rolling Over, Rising, and Balancing in Gravity



Help, I've fallen! and I can get up!!

## **Rising From a Supine Position**



# The Virtual Stuntman Does a Kip Stunt



# The Virtual Stuntman: A Suicidal Dive Down Stairs



#### **Behavioral Animation**

#### Closely related to procedural animation

- · Procedures based on ethological principles
  - Artificial Life

## A common example of this approach is flocking (or schooling, herding, crowds)

- Motion of an agent is determined by others nearby
- Simple rules lead to interesting emergent behaviors
- Very helpful for choreographing large-scale action
- Wildebeests in "The Lion King"
- · Army of mounted soldiers in "Mulan"
- Flying bats in "Batman"

### **Behavioral Animation**

An army of orcs from the "Lord of the Rings" trilogy







