The Trust Region Method

Saurav Samantaray

Department of Mathematics

Indian Institute of Technology Madras

February 16, 2024

Similarities and Contrasts With Line Search Methods

- Line search methods generates a <u>search direction</u> based on a (linear or quadratic) model, and then focus their efforts on finding a suitable step length α along this direction.
- Trust-region methods define a region around the current iterate within which they trust the <u>model</u> to be an <u>adequate</u> <u>representation of the objective function</u>, and then choose the step to be the approximate minimizer of the model in this region.
- In effect, baring the choice of the <u>trust region</u>, they choose the direction and length of the step simultaneously.
- If a step is not acceptable, they reduce the size of the region and find a new minimizer.
- In general the direction of the step may change whenever the size of the trust region is altered (quite unlike the line-search methods).

Trust-Region Methods

- The size of the trust region is critical to the effectiveness of each step.
- If the region is too small, the algorithm misses an opportunity to take a substantial step that would have moved it very close to the minimiser.
- If the trust region is too large, then the minimiser of the model might be far away from the minimiser of the objective function.
- In practice the choice of a larger or smaller trust region depends on the performance of the model in the previous iteration.
- Trust region is expanded if the model consistently keeps producing good steps and is a accurate approximation to the objective function.
- A failed step hampers the confidence of the method leading to
 a shrinkage of the trust region

Line Search Vs Trust-Region Methods

Line Search Vs Trust-Region Methods

- Figure shows the contrast between trust-region and line-search approaches on a function f of two variables in which the current point x_k and the minimiser x^* lie at opposite ends of a curved valley.
- The quadratic model m_k is constructed from the function and derivative information at x_k and also may possibly also have considered information accumulated from previous iterations and steps.
- A line search method based on this model searched along to the minimiser to of m_k , but this direction will yield atmost a small reduction in f, even if the optimal step length is used.
- Whereas the trust-region methods step to the minimiser of m_k within the dotted circle (trust region), yielding a more significant reduction in f and better progress toward the solution.

Model Derivation

Consider the Taylor series expansion of f around x_k , which is

$$f(x_k + p) = f_k + g_k^T p + \frac{1}{2} p^T \nabla^2 f(x_k + tp) p.$$
 (1)

where $f_k = f(x_k)$, $g_k = \nabla f(x_k)$ and $t \in (0,1)$.

• Using an approximation B_k to the Hessian in the second-order term in (1), m_k (the model function) is defined as follows:

$$m_k(p) = f_k + g_k^T p + \frac{1}{2} p^T B_k p.$$
 (2)

where B_k is some symmetric matrix.

- Note that the difference between m_k and $f(x_k + p)$ is $\mathcal{O}(||p||^2)$, which is small when p is small.
- For $B_k = \nabla^2 f_k$ we get the trust-region Newton method and the error in the model is further brought down to $\mathcal{O}(||p||^3)$ for ||p|| small.

The Trust Region Subproblem

• The general trust region step is found by seeking a solution to the subproblem

$$\min_{p\in\mathbb{R}^n} m_k(p) \tag{3}$$

where $\Delta_k > 0$ is called the trust-region radius.

- Typically we choose ||.|| to be the Euclidean norm effecting the trust region to be a ball of radius Δ_k around p.
- The trust-region approach requires us to solve a sequence of subproblems of the type (3) in which the objective function and constraint $(p^T p < \Delta_{k}^2)$ are both quadratic.
- When B_k is positive definite and $||B_k^{-1}g_k|| \le k$, the solution of (3) is easy to identify, as it is simply the unconstrained minimum $p_k^B = -B^{-1}g_k$ of the quadratic $m_k(p)$.
- In this case, p_{ν}^{B} is called the full-step.
- The solution of (3) is not so obvious in other cases, but it can usually be found without too much computational expense. oac 7/7