

Хамгийн бага засварын хэмжээ

Лекц №6

Тодорхойлолт: Хамгийн бага засварын хэмжээ

2020 он

Хоёр тэмдэгт мөр хэр төстэй вэ?

- Зөв бичгийн алдаа зүгшрүүлэлт
 - "graffe" гэж бичсэн бол Аль нь хамгийн ойр вэ?
 - graf
 - graft
 - grail
 - giraffe

- Тооцооллын биологи
 - Нуклеотидуудын 2 дарааллын зэрэгцүүлэлт хий AGGCTATCACCTGACCTCCAGGCCGATGCCC TAGCTATCACGACCGCGGTCGATTTGCCCGAC
 - Зэрэгцүүлэлтийн үр дүн:

```
-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC
```

Мөн машин орчуулга, мэдээлэл гаргах, яриа танихад ашиглагдана.

- Хоёр тэмдэгт мөр хоорондын хамгийн бага засварын хэмжээ
- бол засах үйлдлийн хамгийн бага тоо юм.
 - Үсэг оруулах
 - Арилгах
 - Солих
- Нэг тэмдэгт мөр өөр тэмдэгт мөр болж хувирахад шаардлагатай

Хамгийн бага засварын хэмжээ

• Хоёр тэмдэгт мөр болон тэдгээрийн зэрэгцүүлэлт:

Хамгийн бага засварын хэмжээ

- Хэрэв үйлдэл бүрийн зардлыг 1 гэвэл
 - Эдгээрийн хэмжээ 5
- Хэрэв солилтын зардлыг 2 гэвэл (Levenshtein)
 - Эдгээрийн хэмжээ 8

Тооцооллын биологи дахь зэрэгцүүлэлт

• Сууриудын дараалал өгөгдөнө

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

Зэрэгцүүлэлт:

```
-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC
```

• Өгөгдсөн хоёр дарааллаас, үсэг эсвэл зөрүү байгааг үсэг бүрийг зэрэгцүүлж олно.

ЭХБ дахь засварын хэмжээний бусад хэрэглээ

• машин орчуулга болон яриа танилтыг үнэлэх

```
R Spokesman confirms senior government adviser was shot

H Spokesman said the senior adviser was shot dead

S T D
```

- Оноосон нэрийг олборлолт болон төлөө үгийг олоход
 - IBM Inc. announced today
 - IBM profits
 - Stanford President John Hennessy announced yesterday
 - for Stanford University President John Hennessy

Хам.бага.засврын хэмжээг хэрхэн олох вэ?

- Эхний тэмдэг мөрөөс төгсгөлийн тэмдэгт мөр хүртэлх нэг (засварын дарааллыг) замыг хайна:
 - Эхний төлөв: хувирах үг
 - үйлдлүүд: оруулах, арилгах, солих
 - Зорилгын төлөв: болох үг
 - Замын зардал: хамгийн бага байлгах: засварын тоо

Хамгийн бага засварыг хайх

- Гэхдээ бүх боломжит засварын дарааллын тоо асар их!
 - Энгийн аргаар олох боломжгүй
 - Олон алгаатай замууд ижил төлөвт хүрч болно.
 - Тэдгээрийн бүх алхамуудыг хадгалах шаардлагагүй
 - Эдгээр шинэчилсэн төлөв бүрээс зөвхөн хамгийн богино замыг

Хамгийн бага засварын хэмжээг тодорхойлох нь

- Хоёр тэмдэгт мөрийн хувьд
 - X —н урт *n*
 - Y —н урт *m*
- D(*i,j*) –ийг тодорхойлно
 - X[1..*i*] болон Y[1..*j*] хоорондын засварын хэмжээ
 - ж.нь., X –н эхний *і* тэмдэгт ба Y –н эхний *і* тэмдэгт
 - X болон Y хоорондын засварын хэмжээ нь D(*n,m*) байна.

Хамгийн бага засварын хэмжээ

Хамгийн бага засварын хэмжээг тооцоолох нь

Хамгийн бага засварын хэмжээний динамик програмчлал

- **Динамик програмчлал**: D(n,m) —н хүснэгтэн тооцоолол
- Дэд асуудлуудын шийдлийг нэгтгэх замаар асуудлыг шийдэх.
- Доороос-дээшээ
 - жижиг *i,j* -н хувьд D(i,j) –г тооцоолно
 - Мөн жижиг утгуудын өмнөх тооцоолол дээр суурилж арай том D(i,j) –г тооцоолно
 - ж.нь., бүх i (0 < i < n) болон j (0 < j < m) —н хувьд D(i,j) —г тооцоолно

Хамгийн бага засварын хэмжээг (Levenshtein) тодорхойлох нь

```
Эхлэл
D(i, 0) = i
D(0,j) = j
```

Рекурент хамаарал:

```
For each i = 1...M
                      \text{ach } j = 1...N 
 D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) \\ 0; & \text{if } X(i) = Y(j) \end{cases} 
              For each j = 1...N
```

Дуусгавар:

D(N,M) бол хамгийн бага засварын хэмжээ

Засварын хэмжээний хүснэгт

N	9									
0	8									
Ι	7									
Т	6									
N	5									
Е	4									
Т	3									
N	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	С	U	Т	I	0	N

Засварын хэмжээний хүснэгт

N	9													
0	8													
I	7	D(;	-1 − mi		i-1,j) +									
Т	6	— D(<i>1,</i>	$D(i,j) = \min \begin{cases} D(i,j-1) + 1 \\ D(i-1,j-1) + \begin{cases} 2; & \text{if } S_1(i) \neq S_2(j) \\ 0 & \text{if } S_2(i) \end{cases}$											
N	5			(\	,, ,	0;	if S ₁ (i	$) = S_2($	j)					
Е	4		,											
Т	3													
N	2													
I	1													
#	0	1	2	3	4	5	6	7	8	9				
	#	Е	X	Е	С	J	Т	Ι	0	N				

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases} \begin{cases} 2; & \text{if } S_1(i) \neq S_2(j) \\ 0; & \text{if } S_1(i) = S_2(j) \end{cases}$$

N	9										
0	8										
I	7										
Т	6										
N	5										
Е	4										
Т	3										
N	2										
Ι	1	2,2	2,2								
#	0	1		2	3	4	5	6	7	8	9
	#	Ε		Χ	Е	С	U	Т	I	0	N

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + 1 \end{cases}$$

Васварын хэмжээ
$$\begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases}$$

$$\begin{cases} D(i-1,j) + 1 \\ D(i-1,j-1) + \\ D(i-1,j-1) + \end{cases}$$

$$\begin{cases} 2; & \text{if } S_1(i) \neq S_2(j) \\ 0; & \text{if } S_1(i) = S_2(j) \end{cases}$$

N	9										
0	8										
Ι	7										
Т	6										
N	5										
Е	4										
T	3										
N	2	3,3	,3								
Ι	1	2									
#	0	1		2	3	4	5	6	7	8	9
	#	Е		Χ	Е	С	U	Т	I	0	N

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases} \begin{cases} 2; & \text{if } S_1(i) \neq S_2(j) \\ 0; & \text{if } S_1(i) = S_2(j) \end{cases}$$

N	9									
0	8									
Ι	7									
Т	6									
N	5									
Е	4									
Τ	3									
N	2	3								
Ι	1	2								
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	С	U	Т	I	0	N

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases} \begin{cases} 2; & \text{if } S_1(i) \neq S_2(j) \\ 0; & \text{if } S_1(i) = S_2(j) \end{cases}$$

N	9									
0	8									
Ι	7									
Т	6									
N	5									
Е	4									
Т	3									
N	2	3								
Ι	1	2	3,3,3							
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	Т	I	0	N

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases} \begin{cases} 2; & \text{if } S_1(i) \neq S_2(j) \\ 0; & \text{if } S_1(i) = S_2(j) \end{cases}$$

N	9									
0	8									
I	7									
Т	6									
N	5									
Е	4									
Т	3									
N	2	3								
Ι	1	2	3							
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	С	U	Т	I	0	N

Засварын хэмжээний хүснэгт

N	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
I	7	6	7	8	9	10	9	8	9	10
Т	6	5	6	7	8	9	8	9	10	11
N	5	4	5	6	7	8	9	10	11	10
Е	4	3	4	5	6	7	8	9	10	9
Т	3	4	5	6	7	8	7	8	9	8
N	2	3	4	5	6	7	8	7	8	7
Ι	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	С	U	Т	Ι	0	N

Хамгийн бага засварын хэмжээ

Зэрэгцүүлэлтийн тооцоололыг буцаж мөрдөх

Зэрэгцүүлэлтийн тооцоолол

- Засварын хэмжээ нь хангалтгүй
 - Хоёр тэмдэгт мөрийн тэмдэгт бүрийг нөгөөгийн тэмдэгт мөртэй харгалзаж байгааг **зэрэгцүүлэх** шаардлага байнга гардаг.
- "буцах мөр"-ийг хадгалах замаар үүнийг олдог
- Үргэлж нэг нүд рүү очдог, аль нүднээс ирсэнээ санана
- Төгсгөлд хүрсэн үедээ,
 - Баруун дээд өнцгөөс эхлэн шилжилтийн дагуу буцаж мөрдөнө

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases} 2; \text{ if } S_1(i) \neq S_2(j) \\ 0; \text{ if } S_1(i) = S_2(j) \end{cases}$$

N	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
Ι	7	6	7	8	9	10	9	8	9	10
Τ	6	5	6	7	8	9	8	9	10	11
N	5	4	5	6	7	8	9	10	11	10
Е	4	3	4	5	6	7	8	9	10	9
H	3	4	5	6	7	8	7	8	9	8
N	2	3	4	5	6	7	8	7	8	7
Ι	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	Т	I	0	N

Буцах мөртэй ХаБаЗаХэмжээ

n	9	↓ 8	<u>/</u> ←↓9	<u>√</u> ←↓ 10	∠←↓ 11	∠←↓ 12	↓ 11	↓ 10	↓ 9	∠8	
0	8	↓ 7	∠ ←↓8	<u>√</u>	<u> </u>	<u> </u>	↓ 10	↓9	∠ 8	← 9	
i	7	↓ 6	∠←↓ 7	∠ ←↓8	∠ ←↓9	∠ ←↓ 10	↓9	/ 8	← 9	← 10	
t	6	↓ 5	∠<→ 6	∠←↓ 7	∠ ←↓8	∠ ←↓9	∠ 8	← 9	← 10	← ↓ 11	
n	5	↓ 4	∠ ←↓ 5	∠←↓ 6	∠ ←↓ 7	∠ ←↓ 8	<u>/</u> ←↓9	∠ ←↓ 10	∠ ←↓ 11	∠ ↓ 10	
e	4	∠3	← 4	√ ← 5	← 6	← 7	<i>←</i> ↓ 8	∠ ←↓9	∠ ←↓ 10	↓9	
t	3	∠ ←↓4	∠ ←↓ 5	∠←↓ 6	∠←↓ 7	∠ ←↓8	∠ 7	←↓ 8	∠ ←↓9	↓8	
n	2	∠ ←↓ 3	∠←↓4	∠ ←↓ 5	∠←↓ 6	∠←↓ 7	<u> </u>	↓ 7	∠←↓ 8	∠ 7	
i	1	∠ ←↓ 2	∠ ←↓ 3	∠ ←↓ 4	∠←↓ 5	∠←↓ 6	∠←↓ 7	Z 6	← 7	← 8	
#	0	1	2	3	4	5	6	7	8	9	
	#	e	X	e	c	u	t	i	O	n	

Хамгийн бага засварын хэмжээнд буцах мөрийг нэмэх нь

Үндсэн нөхцөлүүд:

Дуусгавар:

D(i,0) = i D(0,j) = j D(N,M) is distance

Рекурент хамаарал:

```
For each i = 1...M
     For each j = 1...N
```

```
D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + 2; \end{cases} оруулах D(i-1,j-1) + 2 оруулах D(i-1,j-1) + 2 оруулалт DOWN арилгалт DIAG орлуулалт
```

Хэмжээний матрици

Бүх зам доошилдоггүй

(0,0)-ээс (М, N) лүү

хоёр дарааллын зэрэгцүүлэлттэй холбоотой

Оновчтой зэрэгцүүлэлт нь оновчтой дэд зэрэгцүүлэлтүүдээс бүрдэнэ

Serafim Batzoglou –ийн илтгэлээс

Буцах мөрийн үр дүн

• Хоёр тэмдэгт мөр ба тэдгээрийн **зэрэгцүүлэлт**:

Гүйцэтгэл

• Хугацаа:

O(nm)

• Санах ой:

• Буцах мөр

O(n+m)

O(nm)

Хамгийн бага засварын хэмжээ

Жигнэсэн хамгийн бага засварын хэмжээ

Жигнэсэн засварын хэмжээ

- Яагаад тооцоололд жинг нэмсэн вэ?
 - Зөв бичгийн алдаа зүгшрүүлэлт: зарим үсгүүд нь бусдыгаа бодвол буруу бичигдсэн байх магадлал илүү байдаг
 - Биологи: арилгах эсвэл оруулах зарим төрөл бусдыгаа бодвол илүү магадлалтай байдаг

Зөв бичгийн алдааны андуурлын матрици

57	sub[X, Y] = Substitution of X (incorrect) for Y (correct) X																									
А	a	ь	С	d	e	f	g	h	i	i	k	1	m	rrect, n	0	р	q	r	S	t	u	v	w	х	у	Z
a	0	0	7		342	0	0		118	0	1	0	0	3	76	0	0	1	35	9	9	0	_ <u></u>	0	-5	
b	ŏ	0	9	9	2	2	3	1	0	ő	ō	5	11	5	0	10	ŏ	ō	2	í	Ó	ő	8	Ö	Õ	0
c	6	5	ó	16	ō	9	5	ō	ŏ	ő	1	ő	7	9	í	10	2	5	39	40	1	3	7	1	1	ő
d	1	10	13	Ő	12	ó	5	5	0	Õ	2	3	7	3	0	1	ō	43	30	22	ō	0	4	ō	2	0
e	388	Ő	3	11	0	2	2	0	89	ő	ō	3	0	5	93	ō	0	14	12	6	15	Ö	1	ō	18	Õ
f	0	15	ō	3	1	ō	5	2	0	ō	ő	3	4	1	0	0	ő	6	4	12	0	0	2	ō	0	Õ
g	4	1	11	11	9	2	Ô	0	ō	1	1	3	0	ō	2	1	3	5	13	21	Õ	0	1	Õ	3	0
h	1	8	0	3	0	0	0	0	0	0	2	Ö	12	14	2	3	0	3	1	11	0	0	2	0	0	Õ
i	103	0	ō	0	146	Ō	1	0	Õ	Ö	ō	6	0	0	49	Ö	Ō	0	2	1	47	0	2	1	15	Õ
i	0	1	1	9	0	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	ō	0	0
k	1	2	8	4	1	1	2	5	0	0	Ō	ō	5	0	2	Õ	Õ	Ō	6	Ō	Ö	Ö	. 4	0	Ō	3
1	2	10	1	4	0	4	5	6	13	0	1	0	0	14	2	5	0	11	10	2	0	0	0	0	0	0
m	1	3	7	8	0	2	0	6	0	0	4	4	0	180	0	6	0	0	9	15	13	3	2	2	3	0
n	2	7	6	5	3	0	1	19	1	0	4	35	78	0	0	7	0	28	5	7	0	0	1	2	0	2
0	91	1	1	3	116	0	0	0	25	0	2	0	0	0	0	14	0	2	4	14	39	0	0	0	18	0
р	0	11	1	2	0	6	5	0	2	9	0	2	7	6	15	0	0	1	3	6	0	4	1	0	0	0
q	0	0	1	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	0	14	0	30	12	2	2	8	2	0	5	8	4	20	1	14	0	0	12	22	4	0	0	1	0	0
s	11	8	27	33	35	4	0	1	0	1	0	27	0	6	1	7	0	14	0	15	0	0	5	3	20	1
t	3	4	9	42	7	5	19	5	0	1	0	14	9	5	5	6	0	11	37	0	0	2	19	0	7	6
u	20	0	0	0	44	0	0	0	64	0	0	0	0	2	43	0	0	4	0	0	0	0	2	0	8	0
v	0	0	7	0	0	3	0	0	0	0	0	1	0	0	1	0	0	0	8	3	0	0	0	0	0	0
w	2	2	1	0	1	0	0	2	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0	0	0
х	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0
у	0	0	2	0	15	0	1	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	1	0	0
	Λ	Δ	Λ	7	Λ	Λ	Λ	0	Λ	Λ	Λ	7	- 5	Λ	Λ	Λ	Λ	2	21	3	Δ	Ω	Λ	Λ	3	Λ

Жигнэсэн хамгийн бага засварын хэмжээ

Эхлэл:

```
D(0,0) = 0

D(i,0) = D(i-1,0) + del[x(i)];   1 < i \le N

D(0,j) = D(0,j-1) + ins[y(j)];   1 < j \le M
```

• Рекурэнт хамаарал:

```
D(i,j) = \min \begin{cases} D(i-1,j) & + \text{ del}[x(i)] \\ D(i,j-1) & + \text{ ins}[y(j)] \\ D(i-1,j-1) & + \text{ sub}[x(i),y(j)] \end{cases}
```

• Дуусгавар:

D(N,M) бол хэмжээ