



### **CONTENIDO**

DEFINICIÓN DE PROBLEMAS ALGORÍTMICOS

**02.** CLASIFICACIÓN DE PROBLEMAS 03.

PROBLEMAS P Y NP

O4.
PROBLEMAS DE DECISIÓN,
LOCALIZACIÓN Y
OPTIMIZACIÓN

05.

PROBLEMAS NP COMPLETOS





### **PROBLEMA**

Situación cuya respuesta desconocida debe obtenerse a través de métodos científicos (RAE, 2021).

### **ALGORITMO**

"Aplicar una serie de pasos detallados que aseguran una solución correcta" (López, 2009, p 7).

UN PROBLEMA ALGORÍTMICO IMPLICA BRINDARLE O BUSCAR UNA SOLUCIÓN ALGORÍTMICA A CIERTO PROBLEMA, SI ES POSIBLE.



# COMPLEJIDAD COMPUTACIONAL

Morán(2015) menciona que la complejidad computacional es una Rama de las Matemáticas Computacionales que se dedica al estudio y clasificación de los problemas según su dificultad.



# O2. CLASIFICACIÓN DE PROBLEMAS

You can enter a subtitle here if you need it

Según Concepción (2014) tenemos la siguiente clasificación:

### **INDECIDIBLES**

No se puede construir algún algoritmo que nos lleve a su resolución

### **DECIDIBLES**

Existe mínimamente un algoritmo que nos lleve a su cómputo.



# ARTIFICIA

### **TRATABLES**

Existen algoritmos eficientes.

### **INTRATABLES**

No existen algoritmos eficientes. Ejemplo: Torres de Hanoi. / LAIJ

03.

PROBLEMAS P Y NP

Según Maldonado (2013) tenemos las siguientes definiciones para los problemas P y NP.

### **PROBLEMAS P**

Abarcan a todos los problemas que se pueden resolver de manera factible.



### **PROBLEMAS NP**

No pueden ser descompuestos. Considerados problemas más relevantes que los problemas P.



### **PROBLEMAS NP-DIFICILES**

Tienen más complejidad al encontrar una solución debido que el tiempo de su solución se incrementa proporcionalmente con el problema inicial.









PROBLEMAS DE DECISIÓN, LOCALIZACIÓN Y OPTIMIZACIÓN

## PROBLEMAS DE DECISIÓN

# ART

### **DEFINICIÓN**



Un problema de decisión es cuando las posibilidades de solución son las respuestas de "SI" o "NO". (Rosenfeld y Irazábal, 2013)

### **EJEMPLO**

- "Dado un grafo G, ¿es de intervalos?"
- El problema de satisfacibilidad: dada una fórmula boolean ¿Es esta satisfacible?
- El problema del circuito
   Halmitoniano: dado un grafo G,
   ¿Hay un circuito G que visite todos los nodos exactamente una vez?

# **ARTIFICIAL**

# INTE (AI)

### **OBJETIVO**

El Problema Decisional desea determinar

 $Lf = \{x \in \{0, 1\} * : f(x) = 1\}.$ 

Entonces identificamos el problema computacional, dado x calcular f (x), es decir, dado x decidir si  $x \in Lf$ . (Morán, 2015)



## PROBLEMAS DE LOCALIZACIÓN



### **DEFINICIÓN**



Este tiene como objetivo encontrar una estructura que verifique las restricciones del problema.



## PROBLEMAS DE OPTIMIZACIÓN

# ARTI

### **DEFINICIÓN**



Buryn(2003) afirma lo siguiente "Un problema es de optimización cuando lo que se busca a través de la pregunta es la soluci´on ´optima para el problema formulado". (p. 8)

### **EJEMPLO**

Buryn(2003) nos menciona el siguiente ejemplo "Dado un grafo G y un entero k positivo, ¿existe un coloreo de G con menos de k colores?".(p. 8)





### OBSERVACIÓN 🔎



problemas incluyen la pregunta

soluciones. (Buryn, 2003).

si existe o no existe una solución factible en el conjunto de



# O5. PROBLEMAS NP COMPLETOS(HARD)



# DEFINICIÓN

Es el subconjunto de los problemas de decisión NP y son los problemas más difíciles de dicha clase. (Rosenfeld e Irazábal, 2013)







### **OBSERVACIÓN**



Si se descubriese una solución para los problemas NP-completos implicaría que los problemas de la clase NP estarían resueltos. (Rosenfeld e Irazábal, 2013)



## **EJEMPLO**

El Problema del Viajero

### ANTITICIAL





### REFERENCIAS

- Rosenfeld, D. R., & Irazábal, J. (2013). Computabilidad, complejidad computacional y verificación de programas (1.a ed.). Alianza Editorial.
   <a href="http://sedici.unlp.edu.ar/bitstream/handle/10915/27887/Documento\_completo\_\_.pdf">http://sedici.unlp.edu.ar/bitstream/handle/10915/27887/Documento\_completo\_\_.pdf</a>
   <a href="mailto:sequence-3">?sequence-3</a>
- Morán, M. (2015). Introducción a la Teoría de la Complejidad Computacional [Trabajo de Grado, Universidad de Valladolid]. Repositorio Documental de la Universidad de Valladolid.
  - https://core.ac.uk/display/211102566?utm\_source=pdf&utm\_medium=banner&utm\_campaign=pdf-decoration-v1
- Burzyn, P. (2003). COMPLEJIDAD COMPUTACIONAL EN PROBLEMAS DE MODIFICACIÓN DE ARISTAS EN GRAFOS [Tesis de Licenciatura]. Universidad de Buenos Aires. <a href="https://staff.dc.uba.ar/fbonomo/tesistas.html">https://staff.dc.uba.ar/fbonomo/tesistas.html</a>
- Maldonado, C. E. (2013). Un problema fundamental en la investigación: Los problemas P vs
   NP. Revista Logos, Ciencia & Tecnología, 4(2), 10–20. <a href="https://doi.org/10.22335/rlct.v4i2.186">https://doi.org/10.22335/rlct.v4i2.186</a>
- López, J. C. (2009, noviembre). ALGORITMOS y PROGRAMACIÓN. https://eduteka.icesi.edu.co/articulos/GuiaAlgoritmos
- Concepción, R. (14–06-24). Clasificación de Problemas. Análisis de Algoritmos.
   https://gonzaloretamal.wordpress.com/category/unidad-iv/clasificacion-de-problemas/
- Real Academia Española. (2021). Problema. En RAE (23.ª ed.).
   https://dle.rae.es/problema?m=form

