ECE5024	IC TECHNOLOGY	L	T	P	J	4 '
		3	0	0	0	3
Pre-requisite	Nil				v	1.1

Course Objective:

The course is aimed to

- 1. Introduce the process involved in semiconductor manufacturing and fabrication.
- 2. Model the oxidation growth rate & to understand oxidation process and the process of diffusion and to expound the Ion Implantation process.
- 3. Explain the thin film deposition process and review the difference between MOS and Bipolar Process Integration.

Expected Course Outcome:

At the end of the course the student will be able to

- 1. Understand the process involved in semiconductor manufacturing and fabrication.
- 2. Understand the various lithography techniques used for pattern transfer.
- 3. Model the oxidation growth.
- 4. Model the diffusion mechanism in semiconductors.
- 5. Understand the process involved in thin film deposition.
- 6. Analyse the difference between MOS and Biploar Process.

Student Learning Outcomes (SLO): 1,17

Module:1 Crystal Growth

5 hours

Introduction to Semiconductor Manufacturing and fabrication, Clean Room types and Standards, Physics of the Crystal growth, wafer fabrication and basic properties of silicon wafers.

Module:2 | Lithography:

7 hours

The Photolithographic Process, Photomask Fabrication, Comparison between positive and negative photoresists, Exposure Systems, Characteristics of Exposure Systems, E-beam Lithography, X- ray lithography.

Module:3 Thermal Oxidation of Silicon:

6 hours

The Oxidation Process, Modeling Oxidation, Masking Properties of Silicon Dioxide, Technology of Oxidation, Si-SiO2 Interface.

Module:4 Diffusion and Ion Implantation:

7 hours

The Diffusion Process, Mathematical Model for Diffusion, Constant-, The Diffusion Coefficient, Successive Diffusions, Diffusion Systems, Implantation Technology, Mathematical Model for Ion Implantation, Selective Implantation, Channeling, Lattice Damage and Annealing, Shallow Implantations.

Module:5 Thin film deposition, contacts, packaging and yield:

7 hours

Chemical Vapor Deposition, Physical Vapor Deposition, Epitaxy, Metal Interconnections and Contact Technology, Silicides and Multilayer-Contact Technology, Copper Interconnects and Damascene Processes, Wafer Thinning and Die Separation, Die Attachment, Wire Bonding,

Pa	ackages,	Yield.							
Module:6 MOS Process Integration:			n:			5 hours			
		S Device Considerations, MO	OS Transistor I	Layout and D	Design Rules, Compl	ementary			
M	OS (CM	OS) Technology.							
Mo	dule:7	Bipolar Process Integrati	on:			6 hours			
		echniques in BJT fabrication		Bipolar Stru	ictures, Other Bipo				
		. Deep Submicron Process							
Fut	ure Tren	ds and Directions of CMOS	BiCMOS Proc	cesses.					
Mo	dule:8	Contemporary issues:				2 hours			
				Total	l Lecture hours:	45 hours			
T	4 D 1 /	· \		1014	Lecture nours.	43 Hours			
1.	xt Book		AcCuerry II:11 (PagandEditio	n 2017				
2.		ze, VLSI technology, Tata Neger, Introduction to microe				lition 2012			
	ference	-	siectionic rabin	cation, Pient	ilce Hall, Secolid Ed	111011, 2013.			
1.		Campbell, The science an	d engineering	of microe	electronics fabricat	ion. Oxford			
1.		sity Press, UK, SecondEdition		, or imeroc		ion, omoru			
2. Simon M. Sze, Gary S. May Fundamentals of Semiconductor Fabrication, Wiley, 2011.									
Mo	de of E	valuation:Continuous Asses	sment Test –I	(CAT-I), C	Continuous Assessm	nent Test –II			
		eminar / Challenging Assig		` ' '					
		for industrial problems, Fin		-		C			
io s		ded by Board of Studies	28/02/2017						
	commen	acd by Board of Studies							