第1章 预备知识

定义 1.1

设 $T:\mathbb{R}^n\to\mathbb{R}^n$ 是双射,若 T 保持欧氏距离,即对于任意的 $P,Q\in\mathbb{R}^n$,都有 d (TP,TQ)=d (P,Q),则 T 为一个等距同构(isometry)。

Remark

1. 若 $\det A = 1$ (没有反射, 保定向的), 则称 T 为刚体运动 (Rigid motion)。

定理 1.1

设 $T \neq E^n$ 上的等距同构,那么存在 $n \times n$ 的正交矩阵A,以及向量v,使得

$$T(P) = PA + v, \quad \forall P = (x_1, \dots, x_n) \in \mathbb{R}^n$$

等距同构 = 旋转、反射加平移。

Proof 练习

- **4 练习 1.1** 设 $\mathbf{x}(t)$ 和 $\mathbf{y}(t)$ 是 n 维向量值函数,且可微,则
 - 1. $\langle \mathbf{x}(t), \mathbf{y}(t) \rangle' = \langle \mathbf{x}'(t), \mathbf{y}(t) \rangle + \langle \mathbf{x}(t), \mathbf{y}'(t) \rangle$
 - 2. 若 $|\mathbf{x}(t)|$ 是常值函数,则对于 $\mathbf{x}'(t) \in \mathfrak{X}(\mathbb{R}^n)$ 和 $\mathbf{x}(t) \in C^1(\mathbb{R}^n)$,它们的典范配对

$$\langle \mathbf{x}'(t), \mathbf{x}(t) \rangle = 0$$

Example 1.1 不光滑的光滑曲面极限 锥面在顶点不光滑,但是可以用光滑的曲面逼近。

定义 1.2 (切空间)

设 $p \in \mathbb{R}^n$,则

$$T_n\mathbb{R}^n = \{ \mathsf{U}_p \mathsf{D}$$
起点的 \mathbb{R}^n 中的向量 $\}$

称为 \mathbb{R}^n 在 p 点处的切空间。

定义 1.3 (微分映射)

设 $F: \mathbb{R}^n \to \mathbb{R}^m$ 是光滑函数,定义它的微分 $dF|_p: T_p\mathbb{R}^n \to T_{F(p)}\mathbb{R}^m$, 按照

$$dF|_{p}(v) := \frac{d}{dt}\Big|_{t=0} F(p+tv)$$

Remark

1. $dF|_n$ 是 $T_p\mathbb{R}^n$ 到 $T_{F(p)}\mathbb{R}^m$ 的线性映射:证明留作练习

定义 1.4 (微分同胚)

设 U,V 是 \mathbb{R}^n 的开集, $F:U\to V$ 是可微的双射, 且 F 的逆映射也可微, 则称 F 为 $U\to V$ 的微分同胚。

Example 1.2

1. $D = \{(x,y): x^2 + y^2 \le 1\}$ 微分同胚于 \mathbb{R}^2

定理 1.2 (反函数定理)

设 $F: U \to \mathbb{R}^n$ 是 C^1 映射, $0 \in U \subseteq \mathbb{R}^n$ 是开集,满足

- 1. F(0) = 0
- 2. dF|0 是线性同构

那么存在 $V \subseteq U$, 使得 $0 \in V$, 且 $f|_V \in V$ 到f(V) 的微分同胚。

\Diamond

定理 1.3 (隐函数定理)

设 $0 \in U \subseteq \mathbb{R}^n$ 是开集, $F: U \to \mathbb{R}^n \in C^1$ 映射, 满足

- 1. F(0) = 0;
- 2. $dF|_p$ 是单射。

那么存在 0 的邻域 $W \subseteq \mathbb{R}^m$, 以及微分同胚 $\phi: W \to \phi(W)$, 使得

$$\phi \circ F(x_1, \cdots, x_n) = (x_1, \cdots, x_n, 0, \cdots, 0)$$

