Fall'19 CSCE 629

Analysis of Algorithms

Fang Song
Texas A&M U

Lecture 30

- Hamiltonian Cycle
- Approximating vertex cover

Quiz

Suppose $P \neq NP$. Which of the following are still possible?

- a) $O(n^3)$ algorithm for factoring n-bit integers.
- b) $O(1.657^n)$ time algorithm for HAM-CYCLE.
- c) $O(n^{\log \log \log n})$ algorithm for 3-SAT.
- d) There exist problems that are neither in P nor NP.

https://en.wikipedia.org/wiki/NP-intermediate

Recall: 3—SAT is NP-Complete

Theorem. 3-SAT is NP-Complete

- Pf. We show Circuit—SAT $\leq_P 3$ —SAT
 - Given a circuit K, create a 3-SAT variable x_i for each gate
 - Make circuit compute correct values at each node

$$x_{2} = \neg x_{3} \qquad \Rightarrow x_{2} \lor x_{3}, \overline{x_{2}} \lor \overline{x_{3}}$$

$$x_{1} = x_{4} \lor x_{5} \qquad \Rightarrow x_{1} \lor \overline{x_{4}}, x_{1} \lor \overline{x_{5}}, \overline{x_{1}} \lor x_{4} \lor x_{5}$$

$$x_{0} = x_{1} \land x_{2} \qquad \Rightarrow \overline{x_{0}} \lor x_{1}, \overline{x_{0}} \lor x_{2}, x_{0} \lor \overline{x_{1}} \lor \overline{x_{2}}$$

Hard-coded input values and output value

$$x_5 = 0 \Rightarrow \overline{x_5}$$
 $x_0 = 1 \Rightarrow x_0$

• Final step: turn clauses into exactly 3 literals by adding dummy variables

$$\mathsf{EX}.\, x_1 \vee x_2 \Rightarrow x_1 \vee x_2 \vee y, x_1 \vee x_2 \vee \overline{y}$$

! Don't forget to show 3−SAT ∈ NP

Circuit *K* satisfiable iff. I truth assignment satisfying all clauses constructed

(DIR-)HAM-CYCLE is NP-Complete

(DIR-)HAM-CYCLE. Given a directed graph G = (V, E), does there exist a directed cycle Γ that visits every node exactly once?

Theorem. $3-SAT \leq_P (DIR-)HAM-CYCLE$

Pf. Given 3-SAT instance Φ in CNF: n variables x_i and k clauses C_j

Intuition: traverse row i from left to right \Leftrightarrow set variable $x_i =$ true

$3-SAT \leq_P (DIR-)HAM-CYCLE$

$3-SAT \leq_P (DIR-)HAM-CYCLE$

Claim. Φ is satisfiable iff. G has a Hamiltonian cycle

- (\Rightarrow) Suppose Φ has a satisfying assign. x^* . Define an H-Cycle in G:
 - if x_i^* = true, traverse row x_i from left to right
 - if x_i^* = false, traverse row x_i from right to left
 - For each clause C_i pick (only) one row i and take a detour

- In Γ , replace edges going/leaving C_j with the edge of the corresponding two nodes in some row. This gives a new cycle Γ' in $G \{C_1, C_2, ..., C_k\}$
- In Γ' , set $x_i = \text{true}$ if Γ' traverses row i left-to-right; set $x_i = \text{false}$ otherwise.

More hard computational problems

- Aerospace engineering: optimal mesh partitioning for finite elements.
- Chemical engineering: heat exchanger network synthesis
- Civil engineering: equilibrium of urban traffic flow [very much needed in BCS!]
- Electrical engineering: VLSI layout.
- Mechanical engineering: structure of turbulence in sheared flows
- Biology: protein folding
- Physics: partition function of 3-D Ising model in statistical mechanics.
- Economics: computation of arbitrage in financial markets with friction
- Financial engineering: find minimum risk portfolio of given return
- Politics: Shapley-Shubik voting power
- Pop culture: Sudoku (http://www-imai.is.s.u-tokyo.ac.jp/~yato/data2/SIGAL87-2.pdf)

			_					
5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Want to learn more?

Computers and Intractability: A Guide to the Theory of NP-Completeness.

Michael Garey and David S. Johnson

Most Cited Computer Science Citations

This list is generated from documents in the CiteSeer^x database as of March 19, 2015. This list is automaticall mode and citation counts may differ from those currently in the CiteSeer^x database, since the database is con All Years | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 201 | 2015

 M R Garey, D S Johnson Computers and Intractability: A Guide to the Theory of NPCompleteness" W.H. Feeman and 1979 11468

Computational
Complexity: A
Modern Approach
Sanjeev
Arora & Boaz Barak

Spring'20 @TAMU

- CSCE 627 Theory of Computability
- CSCE 637 Complexity Theory

Complexity Zoo

There are now 544 classes and counting!

Coping with NP-Completeness

- Better (constructive) answers:
 sacrifice one of three desired features
 - 1. Solve arbitrary instances
 - 2. Solve problems in poly-time
 - 3. Solve problems to optimality
- Techniques
 - Identifying structured special cases
 - Local search heuristics (e.g., gradient descent)
 - Approximation algorithms

Finding near-optimal vertex cover

Input. Graph G = (V, E) and an integer k

• Vertex cover $S \subseteq V$: subset of vertices that touches all edges

Goal. Find a vertex cover S of minimum size

• First attempt: greedily pick the vertex that covers most edges

```
APP-VC: on input G = (V, E)
For v \in V (in descending order of degrees)
Add v in S
Delete v and its neighbors from G
```

- Claim. Suppose the minimum vertex cover has size OPT. Then the output of APP-VC has size at most $O(\log n \cdot OPT)$
- Pf. Exercise (Hint on board)

2-approximation vertex cover

Recall: $M \subseteq E$ is a matching in G = (V, E) if each node appears in at most one edge in M.

Observation: For any matching M and any vertex cover S, $|M| \le |S|$. In particular, $|M| \le 0$ PT (size of min vertex cover).

2nd attempt: find a MAX matching

```
2-APP-VC: on input G = (V, E)
Find a maximal matching M \subseteq E
Return S = \{\text{all end points of edges in } M\}
```

- Claim. The output of 2-APP-VC has size at most 2 · OPT
- Pf. $|S| = 2|M| \le 2 \cdot \text{OPT}$. Why does S have to be a vertex cover?
 - Exercise. Is this tight, i.e., 2-APP-VC's output = $2 \cdot 0$ PT on some graph?