Two-Stage Technique for LTLf Synthesis Under LTL Assumptions

Giuseppe De Giacomo¹, **Antonio Di Stasio**¹, Moshe Y. Vardi², Shufang Zhu³

¹University of Rome "La Sapienza", ²Rice University

³Shanghai Industrial Control Safety Innovation Technology Co.

Reactive Synthesis

Given a specification φ over inputs I and outputs O, expressed in:

LTL (Pnueli 1977) or LTL_f (De Giacomo, Vardi 2013)

Syntax:

$$\varphi ::= a \mid \phi \land \phi \mid \neg \phi \mid \bigcirc \phi \mid \phi \cup \phi \mid \bigcirc \phi \mid \Box \phi$$

Semantic:

A trace *trace* is an infinite (LTL) or finite (LTL_f) sequence over I and O. We write $trace \models \phi$ to mean that τ satisfies ϕ .

Reactive Synthesis

Agent and Environment Strategies, and Traces

For an agent strategy $\sigma_{ag}: I^+ \to \mathcal{O}$ and an environment strategy $\sigma_{egy}: \mathcal{O}^* \to I$, the trace

$$trace(\sigma_{ag}, \sigma_{env}) = (i_1 \cup o_1), (i_2 \cup o_2) \dots \in 2^{I \cup O}$$

denotes the unique trace induced by both σ_{aq} and σ_{env} .

Problem

Given an LTL/ LTLf task Goal for the agent

Find agent strategy σ_{aq} such that $\forall \sigma_{env}.trace(\sigma_{aq},\sigma_{e}nv) \models Goal$

LTL and LTLf Synthesis

Algorithm for LTL synthesis

Given LTL formula φ

- 1: Compute corresponding NBA (Nondeterministic Buchi Aut.) (exponential)
- 2: Determinize NBA into DPA (Deterministic Parity Aut.) (exp in states, poly in priorities)
- 3: Synthesize winning strategy for Parity Game (poly in states, exp in priorities)

Algorithm for LTL_f synthesis

Given LTL_f formula φ

- 1: Compute corresponding NFA (Nondeterministic Finite Aut.) (exponential)
- 2: Determinize NFA to DFA (Deterministic Finite Aut.) (exponential)
- 3: Synthesize winning strategy for DFA game (linear)

Complexity

LTL and LTL_f synthesis are 2EXPTIME-complete

Synthesis Under Assumptions

Environment Assumptions

Let *Env* be an LTL/LTL_f formula over $I \cup O$.

 $[[Env]] = {\sigma_{env} | \sigma_{env} \text{ satisfies } Env \text{ whatever is the agent strategy}}$

Synthesis with environment assumptions in LTL/LTL_f

Given an LTL/LTL_f task Goal for the agent, and an LTL/LTL_f environment assumption Env:

Find agent strategy σ_{ag} such that $\forall \sigma_{env} \in [[Env]]$. $trace(\sigma_{ag}, \sigma_{env}) \models Goal$

Theorem [AminofDeGiacomoMuranoRubinICAPS2019]

To find agent strategy realizing *Goal* under the environment specification *Env*, we can use standard LTL/LTL_f synthesis for

 $\textit{Env} \rightarrow \textit{Goal}$

For example let the assumption be formed by $Env_1 \wedge Env_2$ where:

Env₁ is the LTL formula expressing the dynamics of the environment (as a planning domain):

- \Box (alive \rightarrow \bigcirc (wait \rightarrow alive))
- \Box (alive $\rightarrow \bigcirc$ (shoot \rightarrow (alive $\lor \neg$ alive))
- $\Box(\neg alive \rightarrow \neg (wait \rightarrow \neg alive))$
- $\Box(\neg alive \rightarrow \circ (shoot \rightarrow \neg alive))$
- \Box ((wait \land shoot) \land (wait $\rightarrow \neg$ shoot))

For example let the assumption be formed by $Env_1 \wedge Env_2$ where:

Env₁ is the LTL formula expressing the dynamics of the environment (as a planning domain):

- \Box (alive \rightarrow \bigcirc (wait \rightarrow alive))
- \Box (alive \rightarrow \bigcirc (shoot \rightarrow (alive $\lor \neg$ alive))
- $\Box(\neg alive \rightarrow \neg (wait \rightarrow \neg alive))$
- $\Box(\neg alive \rightarrow \circ (shoot \rightarrow \neg alive))$
- \Box ((wait \land shoot) \land (wait $\rightarrow \neg$ shoot))

*Env*₂ is the LTL formula expressing some fairness over nondeterministic effects, e.g.,

$$\Box \Diamond shoot \rightarrow \Diamond \neg a$$

For example let the assumption be formed by $Env_1 \wedge Env_2$ where:

Env₁ is the LTL formula expressing the dynamics of the environment (as a planning domain):

- \Box (alive \rightarrow \bigcirc (wait \rightarrow alive))
- \Box (alive $\rightarrow \bigcirc$ (shoot \rightarrow (alive $\lor \neg$ alive))
- $\Box(\neg alive \rightarrow \bigcirc(wait \rightarrow \neg alive))$
- $\Box(\neg alive \rightarrow \circ (shoot \rightarrow \neg alive))$
- \Box ((wait \land shoot) \land (wait $\rightarrow \neg$ shoot))

Env2 is the LTL formula expressing some fairness over nondeterministic effects, e.g.,

$$\Box \Diamond shoot \rightarrow \Diamond \neg a$$

Let *Goal* be an LTL_f formula which expresses an agent task, e.g.,

Problem

Solve the synthesis problem for

$$\textit{Env}_1 \land \textit{Env}_2 \rightarrow \textit{Goal}$$

Problem

Solve the synthesis problem for

$$Env_1 \wedge Env_2 \rightarrow Goal$$

Naive Solution

Translate to LTL and then do standard LTL synthesis for $\textit{Env}_1 \land \textit{Env}_2 \rightarrow \textit{Goal}$.

Problem

Solve the synthesis problem for

$$Env_1 \wedge Env_2 \rightarrow Goal$$

Naive Solution

Translate to LTL and then do standard LTL synthesis for $Env_1 \wedge Env_2 \rightarrow Goal$.

... but we can exploit the simplicity of dealing with LTL_f given:

Problem

Solve the synthesis problem for

$$Env_1 \wedge Env_2 \rightarrow Goal$$

Naive Solution

Translate to LTL and then do standard LTL synthesis for $Env_1 \wedge Env_2 \rightarrow Goal$.

... but we can exploit the simplicity of dealing with LTL_f given:

• Env₁: LTL

Problem

Solve the synthesis problem for

$$Env_1 \wedge Env_2 \rightarrow Goal$$

Naive Solution

Translate to LTL and then do standard LTL synthesis for $Env_1 \wedge Env_2 \rightarrow Goal$.

 \dots but we can exploit the simplicity of dealing with LTL $_f$ given:

• Env_1 : LTL \rightarrow LTL $_f$

Problem

Solve the synthesis problem for

$$Env_1 \wedge Env_2 \rightarrow Goal$$

Naive Solution

Translate to LTL and then do standard LTL synthesis for $Env_1 \wedge Env_2 \rightarrow Goal$.

 \dots but we can exploit the simplicity of dealing with LTL $_f$ given:

- Env_1 : LTL \rightarrow LTL $_f$
- Env₂: LTL

Problem

Solve the synthesis problem for

$$Env_1 \wedge Env_2 \rightarrow Goal$$

Naive Solution

Translate to LTL and then do standard LTL synthesis for $Env_1 \wedge Env_2 \rightarrow Goal$.

... but we can exploit the simplicity of dealing with LTL_f given:

- $Env_1: LTL \rightarrow LTL_f$
- Env₂: LTL
- Goal: LTLf

Separating LTL_f assumptions

$$(\mathit{Env}_1 \land \mathit{Env}_2 \to \mathit{Goal}) \iff (\mathit{Env}_2 \to \mathit{Env}_1 \to \mathit{Goal}) \iff (\mathit{Env}_2 \to \neg \mathit{Env}_1 \lor \mathit{Goal})$$

where $Goal' = \neg Env_1 \lor Goal$ is expressed in LTL_f and Env_2 in LTL.

Separating LTL_f assumptions

$$(\mathit{Env}_1 \land \mathit{Env}_2 \to \mathit{Goal}) \iff (\mathit{Env}_2 \to \mathit{Env}_1 \to \mathit{Goal}) \iff (\mathit{Env}_2 \to \neg \mathit{Env}_1 \lor \mathit{Goal})$$

where $Goal' = \neg Env_1 \lor Goal$ is expressed in LTL_f and Env_2 in LTL.

Problem

Solve the synthesis problem for

$$Env_2 o Goal'$$

Separating LTL_f assumptions

$$(\mathit{Env}_1 \land \mathit{Env}_2 \to \mathit{Goal}) \iff (\mathit{Env}_2 \to \mathit{Env}_1 \to \mathit{Goal}) \iff (\mathit{Env}_2 \to \neg \mathit{Env}_1 \lor \mathit{Goal})$$

where $Goal' = \neg Env_1 \lor Goal$ is expressed in LTL_f and Env_2 in LTL.

Problem

Solve the synthesis problem for

$$Env_2 o Goal'$$

How can we exploit that Goal' is LTL_f?

Separating LTL_f assumptions

$$(\mathit{Env}_1 \land \mathit{Env}_2 \to \mathit{Goal}) \iff (\mathit{Env}_2 \to \mathit{Env}_1 \to \mathit{Goal}) \iff (\mathit{Env}_2 \to \neg \mathit{Env}_1 \lor \mathit{Goal})$$

where $Goal' = \neg Env_1 \lor Goal$ is expressed in LTL_f and Env_2 in LTL.

Problem

Solve the synthesis problem for

$$Env_2 o Goal'$$

How can we exploit that Goal' is LTL_f?

Two-stage technique!

1 ° Stage

1. Compute the corresponding DFA $\mathcal A$ of $\neg Env_1 \lor Goal$.

- 1. Compute the corresponding DFA \mathcal{A} of $\neg Env_1 \lor Goal$.
- 2. Solve the reachability game for the agent over \mathcal{A} .

- 1. Compute the corresponding DFA \mathcal{A} of $\neg Env_1 \lor Goal$.
- 2. Solve the reachability game for the agent over \mathcal{A} .
- Check whether the initial state is winning for the agent.

- 1. Compute the corresponding DFA \mathcal{A} of $\neg Env_1 \lor Goal$.
- 2. Solve the reachability game for the agent over \mathcal{A} .
- 3. Check whether the initial state is winning for the agent.
- 4. If the initial state is not winning go to Stage 2, otherwise return the agent winning strategy.

2 ° Stage

1. Remove from $\mathcal A$ the agent winning set of Stage 1, say $\mathcal A'$.

- 1. Remove from \mathcal{A} the agent winning set of Stage 1, say \mathcal{A}' .
- 2. Compute the corresponding DPA \mathcal{B} of Env_2 .

- 1. Remove from \mathcal{A} the agent winning set of Stage 1, say \mathcal{A}' .
- 2. Compute the corresponding DPA \mathcal{B} of Env_2 .
- 3. Do the cartesian product between \mathcal{A}' and \mathcal{B} .

- 1. Remove from \mathcal{A} the agent winning set of Stage 1, say \mathcal{A}' .
- 2. Compute the corresponding DPA \mathcal{B} of Env_2 .
- 3. Do the cartesian product between \mathcal{A}' and \mathcal{B} .
- Solve the parity game for the environment over \(\mathcal{B}' \times \mathcal{B} \).

- 1. Remove from \mathcal{A} the agent winning set of Stage 1, say \mathcal{A}' .
- 2. Compute the corresponding DPA \mathcal{B} of Env_2 .
- 3. Do the cartesian product between \mathcal{A}' and \mathcal{B} .
- 4. Solve the parity game for the environment over $\mathcal{A}' \times \mathcal{B}$.
- Check if the initial state is winning for the agent; if not return "Unrealizable".

- 1. Remove from $\mathcal A$ the agent winning set of Stage 1, say $\mathcal A'$.
- 2. Compute the corresponding DPA \mathcal{B} of Env_2 .
- 3. Do the cartesian product between \mathcal{A}' and \mathcal{B} .
- 4. Solve the parity game for the environment over $\mathcal{A}' \times \mathcal{B}$.
- Check if the initial state is winning for the agent; if not return "Unrealizable".
- 6. Return the agent winning strategy by combing the agent winning strategies in Stage 1 and 2.

Experimental Analysis

We have

- implemented the two-stage technique in a new tool called 2SLS, written in C++, that exploits CUDD package as library for the manipulation of Binary Decisions Diagrams (BDDs);
- compared 2SLS to a direct reduction to LTL synthesis by employing the LTLf -to-LTL translator SPOT and Strix (Meyer, Sickert, and Luttenberger 2018) as the LTL synthesis solver;
- compared 2SLS with FSyft and StSyft (Zhu et al. 2020) in special cases where assumptions
 are LTL formulas of the form □◊a (fairness) and ◊□a (stability), with a propositional.

Experiments on Fairness and Stability

- Given a counter game where the environment chooses whether to increment the counter or not and the agent can choose to grant the request or ignore it;
- The fairness assumption is □◊increment; the stability assumption is ◊□increment;
- The goal is to get the counter having all bits set to 1.

2SLS Strix S

Figure 1: LTL_f synthesis under fairness assumptions.

Figure 2: LTL_f synthesis under stability assumptions.

Experiments of General LTL Assumptions

- Given Goal as a conjunction of increasing size of random LTL_f formulas of the form
 □(p_j → ◊q_j) with p_j and q_j propositions under the control of the environment and the agent, respectively;
- *Env* is a conjunction of formulas of the form $(\Box \Diamond p_i \lor \Diamond \Box q_i)$, where we start with one conjunct and introduce a new conjunct every 10 conjuncts in *Goal*.

Figure 3: LTL $_f$ synthesis under general LTL assumptions.

Conclusion

We have:

- devised a two-stage technique for solving LTLf synthesis under LTL assumptions;
- implemented it in a new tool 2SLS;
- showed the effectiveness by means of benchmarks.

Future Work

- · Implement a tool to deal directly with planning domains.
- Consider assumptions expressed as GR(1) formulas.

Conclusion

We have:

- devised a two-stage technique for solving LTLf synthesis under LTL assumptions;
- · implemented it in a new tool 2SLS;
- · showed the effectiveness by means of benchmarks.

Future Work

- Implement a tool to deal directly with planning domains.
- · Consider assumptions expressed as GR(1) formulas.

to be continued....