

Spring 2025

View these Slides:

https://docs.google.com/presentation/d/1utVYhSMCL8EviY2QNkuyc3JoUDwlz9j4vyebENd kko/edit?usp=sharing

Luke Miller

Course Summary

- Week 1: Foundations of Unity and ML Integration Jan 25, 2025
 - Session 1: Setting Up and Unity Basics
 - Session 2: ML Basics and Unity Integration
- Week 2: Building the Final AR Project Feb 1, 2025
 - Session 1: AR Development with Meta Oculuses
 - Session 2: Finalizing and Presenting the AR Project

Staff

Instructor Yugyung Lee, PhD

Professor of Computer

University of Missouri - Kansas City

Email: leeyu@umkc.edu

Phone: 816-235-5932

Assistant Instructor Luke Miller

Computer Science PhD Student

University of Missouri - Kansas City

Email: ljmbm5@umkc.edu

Logistics and Materials

Prerequisites:

 Basic programming knowledge (Python and/or C# preferred).

Tools and Setup:

- Python (with TensorFlow /PyTorch) for ML sessions.
- Unity (with Oculus SDK) for AR/VR sessions.
- Meta Oculuses provided for hands-on activities.

Team Size:

 Small groups (2–3 participants) to encourage collaboration.

Resources Provided:

- Presentation Materials
- Pre-configured Software
- Sample Datasets.
- Tutorials

Objective:

- By the end of the course, participants will:
 - Understand the basics of ML and its applications in AR/VR.
 - Be familiar with using Meta Oculuses for AR development.
 - Create a simple, functional AR/VR application enhanced with an ML feature.

UMKC COESC AI+AR/VR

- Week 1: Foundations of Unity and ML Integration Jan 25, 2025
 - Session 1: Setting Up and Unity Basics
 - Session 2: ML Basics and Unity Integration
 - Session 3: Tutorial/Hands-on Assignment

UMKC Session 1: Setting Up and Unity Basics

- - What is Unity
 - Overview of the Unity interface
- **Building the First Scene**
 - Adding objects (3D models, UI elements) and adjusting transforms.
 - Adding physics components: Rigidbodies and colliders.
- Basic Interactions with Unity
 - Adding scripts (in C#) to objects for interactivity.

Introduction to Unity

- What is Unity?
- Why is it used in AR/VR development?
- Installing and Configuring Unity

100 SECONDS OF

Unity Interface Overview

- Key components:
 - Hierarchy: List of all objects in the scene.
 - Scene View: Visual representation of the scene.
 - Inspector: Object properties and adjustments.
 - Toolbar: Provides options to the user
 - Project Window: Asset management.

Unity Interface: Hierarchy

- The Hierarchy window displays every GameObject in a Scene
- You can use the Hierarchy window to sort and group the GameObjects you use in a Scene.
- When you add or remove GameObjects in the Scene view, you also add or remove them from the Hierarchy window.

Learn more: https://docs.unity3d.com/Manual/Hierarchy.html

Unity Interface: Scene View

- The Scene view is where you visualize and interact with the world you create in the Editor.
- In the Scene view, you can select, manipulate, and modify GameObjects: scenery, characters, cameras, lights, and more.

Unity Interface: Inspector

- Use the Inspector window to view and edit properties and settings for almost everything in the Unity Editor:
 - GameObjects
 - Unity components
 - Assets
 - Materials
 - In-Editor settings and preferences

Unity Interface: Game View

- The Game view is rendered from the Cameras in your application.
- The Game view displays how your final, built application looks.
- You need to use one or more Cameras to control what the player sees when they're using your application.

Unity Interface: Project Tab

- The Project window displays all of the files related to your Project
- The main way you can navigate and find Assets and other Project files in your application.
- When you start a new Project by default this window is open.

Building the First Scene

- Add 3D objects (cube, sphere, plane).
- Move, Rotate, and Scale tools.
 - Hand Tool. Pans around.
 - Move tool

Rotate Tool

Scale Tool

Building the First Scene: Objects

- Add 3D objects (cube, sphere, plane).
- Move, Rotate, and Scale tools.
 - Hand Tool. Pans around.
 - Move tool

Rotate Tool

Scale Tool

Building the First Scene: Physics

Rigidbodies

- Adding a Rigidbody component to an object will put its motion under the control of Unity's physics engine.
- Even without adding any code, a Rigidbody object will be pulled downward by gravity and will react to collisions.

Colliders

- Collider components define the shape of an object for the purposes of physical collisions.
- A collider is invisible
- A rough approximation of the visual shape is often more efficient and indistinguishable in gameplay.

Basic Interactions with Unity

- What are Scripts
 - Scripts allow you to customize and extend the capabilities of your application with C# code.
 - Unlike most other assets, scripts are usually created within Unity directly.
- Adding Scripts to Entities
 - From the main menu: go to Assets > Create >
 Scripting and select the type of script you want to create. OR
 - From the Create menu (plus sign) in the Project window toolbar: go to Scripting and select the type of script you want to create.

UMKC Session 2: ML Basics/Unity Integration

- - What is Machine Learning
 - ML applications in AR/VR
- Pre-Trained ML Models
 - Why use pre-trained models?
 - Examples of pre-trained models
 - How models process images
- Integrating ML into Unity
 - Tools for integration
 - Real-time object detection in Unity

Introduction to Machine Learning

Introduction to Machine Learning

- Key concepts:
 - Definition
 - training data
 - models
 - predictions.
- Types of ML:
 - supervised
 - unsupervised
 - reinforcement learning.

ML Applications in AR/VR

- Object Detection
 - Identifying and locating objects within an image or video.
 - Commonly used for interacting with real-world objects in real time.
- Gesture Recognition
 - Enables systems to identify and interpret hand gestures or body movements
 - Creates intuitive controls: pinch-to-zoom or swipe gestures
- Scene Understanding
 - Analyzes an environment to identify its structure and the objects within it.
 - Maps walls, floors, and furniture in a room
 - Recognizes outdoor features like roads and trees.
 - Anchors virtual elements to real-world surfaces or adjust the experience based on the environment.

Pre-Trained ML Models

- Why use pre-trained models?
 - Ease of use
 - Saves training time
- Examples of pre-trained models:
 - MobileNet (lightweight image classification).
 - YOLO (real-time object detection).
- How models process images:
 - Convert input (images) to numerical data.
 - Perform predictions based on trained weights.

Integrating ML into Unity

- Tools for integration:
 - Unity Barracuda:
 - Lightweight and Unity-native.
 - TensorFlow for Unity:
 - Flexible and widely used.
- Real-time object detection in Unity:
 - Example workflow:
 - Feed live camera input to an ML
 model →
 - Process predictions →
 - Highlight detected objects.

UMKC Session 3: Tutorial/Hands-on Assignment

- Setup Unity for ML Integration
- Create the Scene
- Integrate the ML Model
- Display Object Detection Results

Setup Unity for ML Integration-Barracuda

Install package by name...

- Install Unity Barracuda
 - Open your Unity project.
 - Go to Window → Package Manager.
 - Click the Plus Sign
 - Select "Add package from git url
 - Type "com.unity.barracuda"
 - Click Install

Package Manager

Barracuda

Setup Unity for ML Integration-Models

- Download and Import a Pre-Trained Model
 - Download a pre-trained MobileNet model in ONNX format from TensorFlow Hub.
 We've done this for you, and it is available on the GitHub.
 - Drag and drop the .onnx file into Unity's Assets folder.
 - In real life, you would need to convert the keras, tf2, or HD5 model to the onnx format (<u>Tutorial</u>). We have already done this, and it is on the Github.

Create the Scene - Add a Plane

- Add a Plane for the Camera Feed
- In the Hierarchy window:
 - Right-click
 - 3D Object
 - Plane.
- Position the plane so it's visible to the main camera.

Create the Scene - Configure Camera

- Select the Main Camera in the Hierarchy.
- Create a material for displaying the live webcam feed:
 - Right-click in Assets
 - Create
 - Material.
- Name it 'webcamMaterial'.

Integrate the ML Model - Model Processor Script • Create a new script called ObjectDetection.cs and attach it to

 Create a new script called ObjectDetection.cs and attach it to an empty GameObject. Code available on the <u>Github</u>

Display Object Detection Results

- Add a Canvas to the scene:
 - Right-click in the Hierarchy
 - UI
 - · Canvas.
- Set the Render Mode of the Canvas to: Screen Space - Overlay.
- Add a placeholder for bounding boxes:
 - Right-click the Canvas
 - Create Empty
 - Rename to "BoundingBoxesContainer".

Create a UI Prefab for Bounding Boxes

- Create a new Panel:
 - Right-click in the Canvas
 - UI
 - Panel.
- Resize the panel to a small rectangle (this will represent a bounding box).
- Add a Text element as a child of the Panel:
 - Right-click the Panel
 - UI
 - Text.
 - Style the text to show labels and confidence scores (adjust font size and color).
- Convert the Panel to a Prefab:
 - Drag it from the Hierarchy to the Assets folder.
- Delete the original Panel from the scene.

