```
In [38]:
           import matplotlib.pyplot as plt
           %matplotlib inline
           import re
           import pandas as pd
           import numpy as np
           import warnings
           warnings.filterwarnings('ignore')
           import requests
           import seaborn as sns
In [39]:
           # import geopandas as gpd
In [102...
           heatIslands = pd.read_excel('data/holc_heat.xls')
           heatIslands
              holcNum JSONToFeatures.OBJECTID holcNum JSONToFeatures.name holcNum JSONToFeatures.holc id holcNu
Out [102...
           0
                                                              Miami Shores
                                                                                                    Α1
           1
                                           2
                                                                                                   A10
                                                         Brickell Ave. District
           2
                                           3
                                                            Natoma Manors
                                                                                                   A11
           3
                                                           New Shenandoah
                                           4
                                                                                                   A12
                                                            Old Shenandoah
                                                                                                   A13
           4
                                           5
          69
                                          70
                                                                     NaN
                                                                                                    D5
          70
                                          71
                                                            Northwest Miami
                                                                                                    D6
          71
                                          72
                                                        Downtown Northwest
                                                                                                    D7
          72
                                          73
                                                                     NaN
                                                                                                    D۵
          73
                                          74
                                                             Coconut Grove
                                                                                                    D9
         74 rows × 23 columns
In [103...
           #Rename columns so they are standardized and more readable
           heatIslands.rename(columns={'ZonalSt_FLMiami1.MEDIAN':'MedianTemp'}, inplace=True)
           heatIslands.rename(columns={'holcNum_JSONToFeatures.holc_grade':'GradeScore'}, inplace=Tru
           heatIslands.rename(columns={'ZonalSt_FLMiami1.MEAN':'Mean'}, inplace=True)
           heatIslands.rename(columns={'ZonalSt_FLMiami1.MAX':'Max'}, inplace=True)
           heatIslands.rename(columns={'holcNum_JSONToFeatures.holc_id':'holc_id'}, inplace=True)
In [104...
           ## Note the HOLC categorized neighbordhoods'A' = Best ... 'D'=Hazard
           # Letter grades are also represented as scores 4-1
           heatIslands1 = heatIslands[['MedianTemp','GradeScore','Mean','Max','holc_id']]
           heatIslands1
              MedianTemp GradeScore
                                         Mean Max holc_id
Out[104...
           0
                     110
                                  4 110.418899
                                               130
                                                        A1
           1
                                  4 109.518188
                                               121
                                                       A10
                     111
           2
                     106
                                  4 106.661290
                                                       A11
                                               112
                                  4 115.227826
                                               122
                                                       A12
```

	MedianTemp	GradeScore	Mean	Max	holc_id
4	117	4	117.134130	121	A13
69	118	1	118.605091	140	D5
70	122	1	122.168563	137	D6
71	118	1	118.607754	144	D7
72	123	1	122.622881	125	D8
73	115	1	115.722195	137	D9

74 rows × 5 columns

```
In [99]: heatIslands2 = heatIslands1.rename(columns={"GradeScore": "holc_grade"})
```

In [100...

heatIslands2

Out[100...

	MedianTemp	holc_grade	Mean	Max	holc_id
0	110	4	110.418899	130	A1
1	111	4	109.518188	121	A10
2	106	4	106.661290	112	A11
3	115	4	115.227826	122	A12
4	117	4	117.134130	121	A13
69	118	1	118.605091	140	D5
70	122	1	122.168563	137	D6
71	118	1	118.607754	144	D7
72	123	1	122.622881	125	D8
73	115	1	115.722195	137	D9

74 rows × 5 columns

```
In [93]: heatIslands2 = heatIslands2.groupby('holc_grade')['MedianTemp'].mean()
heatIslands2 = heatIslands2.to_frame()
heatIslands2= heatIslands2.reset_index()
In [47]: sns.set(rc = {'figure.figsize':(15,15)})

p1 = sns.regplot(data= heatIslands2, x="holc_grade", y="MedianTemp", fit_reg=True, colon
p1.set_xlabel("HOLC (Red lining) Grade: A(4.0) - D(1.0) ", fontsize = 20)

p1.set_xlabel("HOLC (Red lining) Grade", fontsize = 20)
p1.set_ylabel("Median, Max Temperature", fontsize = 25)
p1.set_title("Heat Exposure by HOLC Neighborhood Grade: A(4.0) - D(1.0) ", fontsize = 30)
p1.tick_params(labelsize=30)
```



```
In [48]: # corrMatrix = heatIslands1.corr()
# sns.heatmap(corrMatrix, annot=True)
# plt.show()
```

ELEVATION

```
In [49]:
    dfElevation = pd.read_csv('data/holc_elev.csv')
    dfElevation['holc_id'].merge(heatIslands1, on='hold_id', how='left')
```

Out[49]:		OBJECTID	holc_id	ZONE_CODE	COUNT	AREA	MIN	MAX	MEAN
	0	1	A1	1	1041718	26042950	-0.327994	14.942991	8.320908
	1	2	A10	2	492238	12305950	-0.280000	49.035973	14.222938
	2	3	A11	3	96555	2413875	3.316000	22.129992	15.606367
anding [Math In	1/01	tanaiana/Cafa i							

	OBJECTID	holc_id	ZONE_CODE	COUNT	AREA	MIN	MAX	MEAN
3	4	A12	4	540360	13509000	5.510053	15.218997	10.063169
4	5	A13	5	236099	5902475	4.144005	15.406997	9.750800
69	70	D5	70	2438932	60973300	0.034001	30.542999	9.076029
70	71	D6	71	1757136	43928400	-5.584886	38.699993	9.449970
71	72	D7	72	819665	20491625	0.280000	43.693001	12.113272
72	73	D8	73	73446	1836150	4.635003	14.414996	8.796817
73	74	D9	74	639037	15975925	4.839016	27.835993	10.027507

74 rows × 8 columns

In [51]:

dfHolcGrades = pd.read_csv('data/holc_grades.csv')
dfHolcGrades

Out[51]:

:	name	holc_id	holc_grade	area_description_data	geometry
0	Miami Shores	A1	А	{'5': 'Peak sales prices occured in July of 19	MULTIPOLYGON (((-80.177291 25.865415, -80.1772
1	Brickell Ave. District	A10	А	{'5': ", '6': 'Brickell Ave. District, Miami	MULTIPOLYGON (((-80.190797 25.756686, -80.1914
2	Natoma Manors	A11	А	{'5': ", '6': 'Natoma Manors, Miami, Florida	MULTIPOLYGON (((-80.21830199999999 25.741955,
3	New Shenandoah	A12	А	{'5': 'This is the most rapidly developing sec	MULTIPOLYGON (((-80.206262 25.753058, -80.2100
4	Old Shenandoah	A13	А	{'5': 'There is a small percentage of these ho	MULTIPOLYGON (((-80.221593 25.753164, -80.2214
69	NaN	D5	D	{'5': 'This is a sparsely settled outlying are	MULTIPOLYGON (((-80.24406399999999 25.804895,
70	Northwest Miami	D6	D	{'5': ", '6': 'Majority in Northwest portion	MULTIPOLYGON (((-80.207596 25.784049, -80.2073
71	Downtown Northwest	D7	D	{'5': 'This is a downtown Negro area, practica	MULTIPOLYGON (((-80.206227 25.797257, -80.2000
72	NaN	D8	D	('5': 'This is a small Southwest downtown Negr	MULTIPOLYGON (((-80.20236 25.763833, -80.20321
73	Coconut Grove	D9	D	{'5': 'This is the Coconut Grove Negro section	MULTIPOLYGON (((-80.245073 25.725573, -80.2495

74 rows × 5 columns

In [52]:

dfHolcGrades1 = dfHolcGrades[['name', 'holc_id', 'holc_grade']]
dfHolcGrades1

Out[52]:

	name	holc_id	holc_grade
0	Miami Shores	A1	А
1	Brickell Ave. District	A10	А
2	Natoma Manors	A11	А

	name	holc_id	holc_grade
3	New Shenandoah	A12	А
4	Old Shenandoah	A13	Α
69	NaN	D5	D
70	Northwest Miami	D6	D
71	Downtown Northwest	D7	D
72	NaN	D8	D
73	Coconut Grove	D9	D

74 rows × 3 columns

```
In [53]: elev1 = dfHE[['ZONE_CODE', 'MEAN', 'holc_id']]
    elev1
```

```
Out[53]:
               ZONE_CODE
                               MEAN holc_id
                             8.320908
                                           A1
            1
                         2 14.222938
                                          A10
            2
                         3 15.606367
                                          A11
                         4 10.063169
                                          A12
            3
            4
                             9.750800
                                          A13
                             9.076029
           69
                        70
                                           D5
           70
                        71
                             9.449970
                                           D6
           71
                        72 12.113272
                                           D7
           72
                             8.796817
                                           D8
           73
                        74 10.027507
                                           D9
```

74 rows × 3 columns

```
holc_grade Mean_Neighborhood_Elevation
          2
                    С
                                        8.668769
          1
                                        8.451025
                    В
          0
                    Α
                                        7.555483
In [77]:
          grade_dict = {'A':1, 'B':2, 'C':3, 'D':4}
In [79]:
           dfHE3Mean['holc_grade'] = dfHE3Mean['holc_grade'].replace(grade_dict)
          dfHE3Mean
Out[79]:
            holc_grade Mean_Neighborhood_Elevation
          3
                                        9.532565
                    4
                                        8.668769
          2
                    3
                    2
                                        8.451025
          1
          0
                                        7.555483
In [80]:
          sns.set(rc = {'figure.figsize':(15,15)})
          p1 = sns.regplot(data=dfHE3Mean, x=dfHE3Mean["holc_grade"], y="Mean_Neighborhood_Elevation")
          p1.set_xlabel("HOLC (Red lining) Grade: A(4.0) - D(1.0) ", fontsize = 20)
          p1.set_ylabel("Average Neighborhood Elevation (MDC OPEN DATA ELEVATIONS)", fontsize = 25)
          p1.set_title("Average Neighborhood Elevation by HOLC Grades: A(4.0) - D(1.0)", fontsize
          #tick size
          p1.tick_params(labelsize=30)
```

plt.savefig('holcGraphs/Average Neighborhood Elevation by HOLC Grades.png')

Average Neighborhood Elevation by HOLC Grades: A(4.0) - D(1.0)

TREE CANOPY COVERAGE

```
In [115...
treeC = pd.read_excel('data/holc_tree.xls')
treeC
```

Out[115		OBJECTID	holc_id	ZONE_CODE	COUNT	AREA	MEAN
	0	1	A1	1	20	0.000218	7.505753
	1	2	A10	2	11	0.000120	9.083878
	2	3	A11	3	1	0.000011	19.964495
	3	4	A12	4	10	0.000109	4.974944
	4	5	A13	5	5	0.000054	3.049167
	67	68	D4	68	27	0.000294	4.272904
	68	69	D5	69	47	0.000512	3.094395
	69	70	D6	70	39	0.000425	1.410581

```
72
           71
                             D9
                                          72
                                                  11 0.000120
                                                                8.561389
          72 rows × 6 columns
In [116...
            treeC = treeC[['holc_id', 'MEAN']]
In [117...
            treeC = treeC.rename(columns={"MEAN": "Mean Tree Canopy Coverage"})
In [118...
            treeC
Out[118...
              holc_id Mean Tree Canopy Coverage
            0
                  A1
                                       7.505753
            1
                 A10
                                       9.083878
            2
                 A11
                                      19.964495
            3
                 A12
                                       4.974944
            4
                 A13
                                       3.049167
                                       4.272904
           67
                  D4
           68
                  D5
                                       3.094395
                                       1.410581
           69
                  D6
           70
                  D7
                                       1.958738
           71
                  D9
                                       8.561389
          72 rows × 2 columns
In [119...
           treeC = treeC.merge(heatIslands1, on="holc_id", how="left")
           treeC= treeC.groupby(treeC['GradeScore'])["Mean Tree Canopy Coverage"].mean()
           treeC = treeC.to_frame()
           treeC.sort_values(by = "GradeScore", ascending=True)
            treeC = treeC.reset_index()
In [120...
            treeC
Out[120...
             GradeScore Mean Tree Canopy Coverage
           0
                                          3.207434
                      1
                      2
           1
                                          4.846830
           2
                      3
                                          5.724602
           3
                      4
                                          6.969792
```

#<u>n1 - sps_ro</u>gplot(data=dfHE2, x=dfHE2.index, y="Mean_Neighborhood_Elevation", fit_reg=Ti

AREA

0.000207

19

MEAN

1.958738

OBJECTID holc_id ZONE_CODE COUNT

sns.set(rc = {'figure.figsize':(15,15)})

71

D7

70

In [122...

Loading [MathJax]/extensions/Safe.js

71

```
p1 = sns.regplot(data=treeC, x=treeC["GradeScore"], y="Mean Tree Canopy Coverage", fit_re
p1.set_xlabel("HOLC (Red lining) Grade: A(4.0) - D(1.0) ", fontsize = 20)
p1.set_ylabel("% Tree Canopy Coverage (Esri)", fontsize = 25)
p1.set_title("% Tree Canopy Coverageby HOLC Grades: A(4.0) - D(1.0)", fontsize = 30)

#tick size
p1.tick_params(labelsize=30)
plt.savefig('holcGraphs/treeCanopyCoverageHolc.png')
```


RENT INCREASE

```
In [123...
    rent = pd.read_excel('data/rentIncreasePer.xls')
    rent
```

Out[123		OBJECTID	holcNum_JSONToFeatures_holc_id	ZONE_CODE	COUNT	AREA	MEAN	PERCENTAGE			
	0	1	A1	1	47	2937500	0.428900	42.890000			
	1	2	A11	3	6	375000	0.467400	46.740000			
	2	3	A12	4	10	625000	0.418000	41.800000			
	3	4	A13	5	8	500000	0.418000	41.800000			
	4	5	A14	6	8	500000	0.451300	45.130000			
	61	62	D4	69	41	2562500	0.281046	28.104634			
	62	63	D6	71	35	2187500	0.167900	16.790000			
	63	64	D7	72	3	187500	0.167900	16.790000			
	64	65	D8	73	2	125000	0.666700	66.670000			
	65	66	D9	74	29	1812500	0.467400	46.740000			
	66 rows × 7 columns										
In [139	re	ent = rent	.rename(columns={"holcNum_JS	30NToFeature	s_holc_	id": "ho	olc_id"})			
Tn [1/1											

In [141... rent

Out[141		OBJECTID	ZONE_CODE	COUNT	AREA	MEAN	PERCENTAGE	MedianTemp	Mean
	holc_grade								
	1	61.5	68.400000	19.700000	1.231250e+06	0.338523	33.852279	119.500000	119.611445
	2	47.5	50.444444	22.166667	1.385417e+06	0.424488	42.448762	116.166667	116.242176
	3	26.5	28.291667	16.000000	1.000000e+06	0.442932	44.293151	113.041667	112.997165
	4	75	8 428571	20 000000	1 250000e+06	0 418219	41 821944	110 785714	110 835649

```
In [142...
           sns.set(rc = {'figure.figsize':(15,15)})
           \# p1 = sns.regplot(data=dfHE2, x=dfHE2.index, y="Mean_Neighborhood_Elevation", fit_reg=Tr
           p1 = sns.regplot(data=rent, x=rent.index, y="PERCENTAGE", fit_reg=True, color= 'orange', p1.set_xlabel("HOLC (Red lining) Grade: A(4.0) - D(1.0) ", fontsize = 20)
            p1.set_ylabel("% Rent Increase March 2021-2022 (Renthub.com)", fontsize = 25)
           p1.set_title("% Rent Increase for available data by HOLC Grades: A(4.0) - D(1.0)", fonts:
           #tick size
           p1.tick_params(labelsize=30)
           plt.savefig('holcGraphs/rentIncrease.png')
```

