Big Data Engineering Apache Spark

Contents

- What is wrong with Hadoop?
- · Apache Spark
- PySpark / Python
- SparkSQL and Hive
- SparkR
- Spark and Yarn
- Spark and Mesos

Issues with Hadoop

- Hadoop is fundamentally all about Map Reduce
 - Though v2 did allow for other approaches
- Based on cheap commodity hardware
- Rut
 - Not based on cheap commodity hardware with lots of memory!

(60)	000	Il Paul Premantle 2015. This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Hadoop and Disk

- Hadoop does everything via replicated disk images
- Intermediate results are stored on disk
 - Slow for many operations
 - Including Machine Learning
 - No support for interactive processing

© Paul Fremantle 2015. This work is licensed under a Creative Common Attribution-NocCommercial ShareAlike 4.0 International License See Not 6.5 See Into 5.5 See Into 6.5 See

Improved Approach

- A new model based on memory
 - Based on Directed Acyclic Graphs
 - And partitions
- What about reliability?

© Paul Fremantie 2015. This work is licensed under a Creative Common Attribution-NonCommercial-ShareAlike 4.0 International License

DAG Directed Acyclic Graph No Loops!

Apache Spark

- · Started in 2009 at UC Berkeley
- Donated to Apache in 2013
- Written on top of JVM mainly in Scala
- 10x-100x faster than Hadoop
- · Supports coding in:
 - ScalaJava

 - Python
- Supports an interactive shell
- More details in this paper: http://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf

Resilient Distributed Datasets

- · A logical collection of data
 - Partitioned across multiple machines
- · Logs the lineage of the current data
 - If there is a failure, recreate the data
 - Solves the reliability problem
- Developers can specify the persistence and partitioning of RDDs

Hadoop vs Spark sorting

	Hadoop	Spark	Spark	
	World Record	100 TB *	1 PB	
Data Size	102.5 TB	100 TB	1000 TB	
Elapsed Time	72 mins	23 mins	234 mins	
# Nodes	2100	206	190	
# Cores	50400	6592	6080	
# Reducers	10,000	29,000	250,000	
Rate	1.42 TB/min	4.27 TB/min	4.27 TB/min	
Rate/node	0.67 GB/min	20.7 GB/min	22.5 GB/min	
Sort Benchmark	Yes	Yes	No	
Daytona Rules	res	res		
Environment	dedicated data	EC2 (i2.8xlarge)	EC2 (i2.8xlarge)	
Elivirollillett	center	ccz (iz.8xiarge)	ccz (iz.8xiarge)	

* not an official sort benchmark record

© Paul Fremantie 2015. This work is licensed under a Creative Common Attribution-NonCommercial-ShareAlike 4.0 International License

Spark Coding

- You can code in:
 - Scala
 - Java
 - Python
 - R
 - SQL
- We will be using Python and SQL in the class
- After you leave here you can use anything you like
 - Including "Not Spark"

Spark Key Objects

- RDD
 - Think of it like an array
 - You can do map/reduce operations on it
 And others
 - But you can't assume everything is run on one machine
 - Unless you explicitly force that using forEach() or collect()
- DataFrame
 - Just like a Pandas DataFrame except distributed across machines and threads
- You can convert from DF <-> RDD

@ 0 90	© Paul Fremantle 2015. This	work is licensed under	er a Creative Common
	Attribution-NonCommercial	ShareAlike 4.0 Inter	national License

Apache Spark RDD objects

- Typical operations include
 - map: apply a function to each line/element
 - flatMap: can return a sequence not just an element
 - filter: return element if func(element) is true
 - reduceByKey: reduces a set of [K,V] key/value pairs
 - reduce: apply a reducer function
 - collect: get all the results back to the master (driver) server in the cluster
 - foreach: apply a function across each element
- Operations on RDDs will happen across machines
 - Be careful!

0000	© Paul Premantie 2015. This work is licensed under a Creative Comm Attribution-NonCommercial-ShareAlike 4.0 International License See http://greative.commercial-shareAlike 4.0 International License
(cc) (+)(+)(0)	Attribution-NonCommercial-ShareAlike 4.0 International License

Most common

- RDD.map(lambda x: ...)
 - Applies the lambda function to each element in the RDD
- RDD.flatMap(lambda x: ...)
 - The lambda produces a sequence of items that are then flattened into a single RDD
- RDD.reduce(lambda x,y: ...)
 - Applies the function iteratively across all the elements in the RDD

reduceByKey

- Function (V,V) -> V
- Takes pairs (K,V)
 - It will apply the function within the Key κ
 - [(hello, 1), (hello, 1), (hello, 1), (world,1), (world, 1)] lambda x,y: x+y
- · What is the result?

@ <u>000</u>	© Paul Fremantie 2015. This work is licensed under a Creative Commo Attribution-NonCommercial-ShareAlike 4.0 International License See http://creativecommons.org/licenses/by-nc-sa/4.0/
--------------	--

Getting results

- · You often need to bring the results back to a single thread to display them:
 - collect()
- Alternatively you can save the results (which can happen in parallel)
 - RDD.saveAsTextFile()
 - DataFrame.save()

000	- OF	aul Fremantie	2015. This	work is li
(cc) U (c	(O) At	Faul Fremantle : tribution-NonC http://creative	ommercia	I-ShareAl

Other useful things

- first()
- Returns the first member of an RDD
- take(10)
- Returns the first 10 elements
- sample(..)/takeSample(..)
 - Samples the RDD
 - Very useful for reducing a massive dataset to something workable while you are testing
- count()

 Counts the RDD
- countByKey()

 - Counts by key
 Might have been useful in our word count example ©
- forEach()
- Allows you to do operations with side-effects (accumulators)

<u>എത്ര</u>	© Paul Fremantie 2015. This work is licensed under a Creative Con- Attribution, NonCommercial, ShareAlike & O International License
BY NO SA	Paul Fremantie 2015. This work is licensed under a Creative Con Attribution-NonCommercial ShareAlike 4.0 International License See http://creativecommons.org/licenses/by-nc-sa/4.0/

Action	Meaning
reduce(func)	Aggregate the elements of the dataset using a function func (which takes two arguments and returns one). The function should be commutative and associative so that it can be computed correctly in parallel.
collect()	Return all the elements of the dataset as an array at the driver program. This is usually useful after a filter or other operation that returns a sufficiently small subset of the data.
count()	Return the number of elements in the dataset.
first()	Return the first element of the dataset (similar to take(1)).
take(n)	Return an array with the first n elements of the dataset.
takeSample(withReplacement, num, [seed])	Return an array with a random sample of <i>num</i> elements of the dataset, with or without replacement, optionally pre-specifying a random number generator seed.
takeOrdered(n, [ordering])	Return the first n elements of the RDD using either their natural order or a custom comparator.
saveAsTextFile(path)	Write the elements of the dataset as a text file (or set of text files) in a given directory in the local filesystem, HDPS or any other Hadoop-supported file system. Spark will call toString on each element to convert it to a line of text in the file.
saveAsSequenceFile(path) (Java and Scala)	Write the elements of the dataset as a Hadoop SequenceFile in a given path in the local filesystem, HDFS or any other Hadoop-supported file system. This is available on RDDs of key-value pairs that implement Hadoop's Writable interface. In Scala, It is also available on types that are implicitly convertible to Writable (Spark includes conversions for basic types like Int, Double, String, etc).
saveAsObjectFile(path) (Java and Scala)	Write the elements of the dataset in a simple format using Java serialization, which can then be loaded using ${\tt SparkContext.objectFile()}.$
countByKey()	Only available on RDDs of type (K, V). Returns a hashmap of (K, Int) pairs with the count of each key.
foreach(func)	Run a function func on each element of the dataset. This is usually done for side effects such as updating an Accumulator or interacting with external storage systems. Note: modifying variables other than Accumulators outside of the foreach() may result in undefined behavior. See Understanding closures for more details.

Transformation	Meaning	
map(func)	Return a new distributed dataset formed by passing each element of the source through a function <i>func</i> .	
filter(func)	Return a new dataset formed by selecting those elements of the source on which func returns true.	
flatMap(func)	Similar to map, but each input item can be mapped to 0 or more output items (so func should return a Seq rather than a single item).	
mapPartitions(func)	Similar to map, but runs separately on each partition (block) of the RDD, so <i>func</i> must be of type Iterator <t> => Iterator<u> when running on an RDD of type T.</u></t>	
${\bf mapPartitionsWithIndex} (func)$	Similar to mapPartitions, but also provides func with an integer value representing the index of the partition, so func must be of type (int, Iterator <t>) => Iterator<u> when running on an RDD of type T.</u></t>	
sample(withReplacement, fraction, seed)	Sample a fraction fraction of the data, with or without replacement, using a given random number generator seed.	
union(otherDataset)	Return a new dataset that contains the union of the elements in the source dataset and the argument.	
intersection(otherDataset)	Return a new RDD that contains the intersection of elements in the source dataset and the argument.	
distinct([numTasks]))	Return a new dataset that contains the distinct elements of the source dataset.	
groupByKey[[numTasks]]	When called on a dataset of Kf. Vp pairs, neturns a dataset of Kf. femble-vi-Vp pairs. Note: If you see grouping in order to perform an aggregation fluctura as sum or everage) everaged execution fluctures are under performance. Note: By default, the level of parallelism in the output depends on the number of partitions or of the perior RDO. You can pass an optional numTasks argument to set a different number of tasks.	

aggregateByKey(zeroValue)(seqOp, combOp, [numTasks])	When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where the values for each key are agregated using the given combine functions and a nextral "zer" value. Allows an aggregated value type that is different than the Input value type, while avoiding unnecessary allocations. Like in grouplyfix, the number of reduce tasks is configurable through an optional second argument.
sortByKey([ascending], [numTasks])	When called on a dataset of (K, V) pairs where K implements Ordered, returns a dataset of (K, V) pairs sorted by keys in ascending or descending order, as specified in the boolean ascending argument.
join(otherDataset, [numTasks])	When called on datasets of type (K, V) and (K, W), returns a dataset of (K, (V, W)) pairs with all pairs of elements for each key. Outer joins are supported through $leftOuterJoin$, $rightOuterJoin$, and $fullOuterJoin$.
cogroup(otherDataset, [numTasks])	When called on datasets of type (K, V) and (K, W), returns a dataset of (K, (Iterable <v>, Iterable<w>)) tuples. This operation is also called groupWith.</w></v>
cartesian(otherDataset)	When called on datasets of types T and U, returns a dataset of (T, U) pairs (all pairs of elements).
pipe(command, [envVars])	Pipe each partition of the RDD through a shell command, e.g. a Peri or bash script. RDD elements are written to the process's stdin and lines output to its stdout are returned as an RDD of strings.
coalesce(numPartitions)	Decrease the number of partitions in the RDD to numPartitions. Useful for running operations more efficiently after filtering down a large dataset.
repartition(numPartitions)	Reshuffle the data in the RDD randomly to create either more or fewer partitions and balance it across them. This always shuffles all data over the network.
repartitionAndSortWithinPartitions(partitioner)	Repartition the RDD according to the given partitioner and, within each resulting partition, sort records by their keys. This is more efficient than calling repartition and then sorting within each partition because it can push the sorting down into the shuffle machinery.

Serialization				
Storage Level	Meaning			
MEMORY_ONLY	Store RDD as deserialized Java objects in the JVM. If the RDD does not fit in memory, some partitions will not be cached and will be recomputed on the fly each time they're needed. This is the default level.			
MEMORY_AND_DISK	Store RDD as deserialized Java objects in the JVM. If the RDD does not fit in memory, store the partitions that don't fit on disk, and read them from there when they're needed.			
MEMORY_ONLY_SER	Store RDD as serialized Java objects (one byte array per partition). This is generally more space-efficient than deserialized objects, especially when using a fast serializer, but more CPU-intensive to read.			
MEMORY_AND_DISK_SER	Similar to MEMORY_ONLY_SER, but spill partitions that don't fit in memory to disk instead of recomputing them on the fly each time they're needed.			
DISK_ONLY	Store the RDD partitions only on disk.			
MEMORY_ONLY_2, MEMORY_AND_DISK_2, etc.	Same as the levels above, but replicate each partition on two cluster nodes.			
OFF_HEAP (experimental)	Store RDD in serialized format in Tachyon. Compared to MEMORY CNIV. SER, OFF_HEAP reduces garbage collection overhead and allowe securious to be smaller and to share a pool of memory, making a literature in environments with large heaps or multiple concurrent applications. Ferthermone, as the RDDs reade in Tachyon, the careful of an executor does not lead to losing the in-memory cane, in this mode, the memory in Tachyon is discardable. Thus, Tachyon does not attempt to reconstruct a block that it evicts from memory, if you plan to use inchryon as the off these plants, Spark is compatible with Tachyon out-of-the-box. Please refer to this page for the suggested version pairings.			

Lambda syntax

- · Lambda's are unnamed functions
 - From Alonzo Church's 1930s work on the Lambda Calculus
 - Recently added to Java

0000	© Paul Fremantie 2015. This work is licensed under a Creative Comm
(cc) (U(3)(0)	 Paul Fremantle 2015. This work is licensed under a Creative Comm Attribution-NonCommercial-ShareAlike 4.0 International License See http://creativecommons.com/licensesby-nc-sa/4.0/
TRY 199 St.	See http://creativecommons.org/licenses/by-nc-ss/4.0/

Lambda syntax in Python

• Simply:

f = lambda x: x.split() g = lambda x,y: x+y

Tuples Clever pattern matching

A tuple in Python is just (x,y) or (x,y,z)

You can have tuples in tuples: (x, (y,w), z)

What parameters do the following functions take and return?
lambda x,y: x+y
lambda (x,y): x+y
lambda (w,v),(x,y): ((w+x), (v+y))
lambda (x,(y,z)): (x,y+z)

@ 0 90	© Paul Frementie 2015. This	work is licensed und	er a Creative Common
	Attribution-NonCommercia	al-ShareAlike 4.0 Inte	rnational License

Example

sc = SparkContext()

books = sc.textFile("books/*")
split = books.flatMap(lambda line: line.split())
numbered = split.map(lambda word: (word, 1))
wordcount = numbered.reduceByKey(lambda a,b: a+b)

for k,v in wordcount.collect(): print k,v

sc.stop()

Paul Fremantie 2015. This work is licensed under a Creative Co.
 Attribution-NonCommercial-ShareAlike 4.0 International License

What doesn't work in a cluster

counter = 0
rdd = sc.parallelize(data)

Wrong: Don't do this!!

rdd.foreach(lambda x: counter += x)

print("Counter value: " + counter)

© Paul Fremantie 2015. This work is licensed under a Creative Common Attribution-NonCommercial-ShareAlike 4.0 International License See http://www.noncommons.com/licenses/bv-nc-as/4.0/

Apache Spark cluster model

How to count across a cluster?	
Accumulators	
<pre>acc = sc.accumulator() rdd = sc.parallelize(data) rdd.foreach(lambda x: acc.add(x))</pre>	
ruu.Toreach(Tambua X. acc.auu(X))	
Paul Formands 2015. This sols is Stormed under a Credit of Communication of American Administration of Stormed University of Stormed University of American Administration of Stormed University of American Administration Admini	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
What also doesn't work	
• rdd.forEach(println)	-
Of course this <i>will</i> work when you test in local mode	
Park Formania 2015. This work is formed under a Caseline Commons abilities from the Commons abilities from Commons abilities from Commons abilities from Commons abilities from the Commons abilities from the Common abiliti	
See hits formation continuous con	
Questions?	
© DOOD 1 Paul Framentia 2015. This work is Toronad under a Crastine Communa	