Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ

Про виконання курсової роботи з дисципліни: «Твердотільна електроніка-3»

Варіант №50

Виконавець:		
Студент 3-го курсу	(підпис)	А.С. Мнацаканов
Перевірив:	(підпис)	Л. М. Королевич

Зміст

1	ВСТУП	1
2	ТЕХНІЧНЕ ЗАВДАННЯ НА ПРОЕКТУВАННЯ	2
3	АНАЛІЗ СХЕМИ	3
4	РОЗРАХУНОК ПОРОГОВОЇ НАПРУГИ ІНТЕГРАЛЬНИХ КОМ ПОНЕНТІВ СХЕМИ	/I- 10
5	РОЗРАХУНОК РОЗМІРІВ ІНТЕГРАЛЬНИХ КОМПОНЕНТІВ СХЕМИ	15
6	РОЗРАХУНОК РОЗМІРІВ ПРИСТРОЮ ЗАХИСТУ ІНТЕГРАЛ НИХ КОМПОНЕНТІВ СХЕМИ	Б- 19
7	технологія виготовлення мдн іс	23
8	висновок	2 5
9	СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ	26
10	додаток а	28
11	ДОДАТОК В	29

вступ

ТЕХНІЧНЕ ЗАВДАННЯ НА ПРОЕКТУВАННЯ

АНАЛІЗ СХЕМИ

Рис. 3.1: Прототип схеми.

У мене за варіантом тип підкладки ${\rm KE}\Phi,$ тобто n-тип підкладки, тоді Rightarrow p-канал у транзисторах.

Оскільки у нас інтегральна мікросхема, то треба аби всі підкладки були підключені до спільного вивод, що і показано на рис.6.1.

Тепер переходимо до наступного завдання. Треба скласти таблицю істинності, але легше зробити це розбивши схему на каскади. Розглядати будемо спрощену

Рис. 3.2: Електрична схема на основі прототипу.

модель схеми (бо так простіше), замінивши усі транзистори змінними резисторами, окрім Т4 і Т5. Так як у них затвор під'єднаний до стоку, то ці транзистори будуть грати роль нагрузки, тобто заміняємо їх звичайними резисторами.

Рис. 3.3: Спрощена модель.

Бачимо, що у цій схемі всього три каскади. Розпочнемо з першого. У нас три змінних резистори, які можна об'єднати в один (спочатку R1 I R2, так як вони послідовно з'єднані, і потім з R3, так як паралельно підключені). Покроково це виглядатиме так:

$$R_{12} = R_1 + R_2 \tag{3.1}$$

$$R_{123} = \frac{R_{12} \cdot R_3}{R_{12} + R_3} = \frac{R_1 + R_2 \cdot R_3}{R_1 + R_2 + R_3}$$
(3.2)

По нашому скороченню, у нас вийшов резистивний дільник напруги (по резисторам R_4 і R_{123}). Знаходимо напругу U_a .

$$U_a = \frac{R_{123} \cdot E}{R_4 + R_{123}} \tag{3.3}$$

По цих формулах уже можемо складати таблицю істинності для першого каскаду. Аби було легше рахувати, приймемо, що $R_3 \to 0$, а потім, що $R_3 \to \infty$.

Тепер для $R_3 \to \infty$

$$R_{123} = \frac{(R_1 + R_2) \cdot R_3}{R_3 \frac{(R_1 + R_2)}{R_3} + R_3} = \frac{(R_1 + R_2) \cdot R_3}{R_3 \left(\frac{(R_1 + R_2)}{R_3} + 1\right)} = \frac{(R_1 + R_2)}{\left(\frac{(R_1 + R_2)}{R_3} + 1\right)} = \frac{(R_1 + R_2)}{(0+1)} = R_1$$
(3.4)

R_1	1	1	0	0
R_2	1	0	1	0
R_3	0	0	0	0
R_{123}	0	0	0	0
U_a	0	0	0	0

R1	1	1	0	0
R2	1	0	1	0
R3	1	1	1	1
R123	1	1	1	0
Ua	1	1	1	0

Тоді, загальна таблиця разом з х1, х2, х3 матиме вигляд:

Усе, таблиця істинності 1 каскаду зроблена. Далі переходимо до 2 і 3 каскаду:

Тут два дільники напруги. Можемо одразу скласти формули напруги для Ub та Y:

$$U_b = \frac{R_6}{R_5 + R_6} \cdot E \quad Y = \frac{R_8}{R_7 + R_8} \cdot E \tag{3.5}$$

X1	0	0	0	0	1	1	1	1
X2	0	1	0	1	0	1	0	1
Х3	0	0	1	1	0	0	1	1
R1	1	1	1	1	0	0	0	0
R2	1	0	1	0	1	0	1	0
R3	1	1	0	0	1	1	0	0
R123	1	1	0	0	1	0	0	0
Ua	1	1	0	0	1	0	0	0

Складаємо таблицю істинності одразу для двох каскадів:

Ua	1	0
R6	0	1
Ub	0	1
R7	1	0
R8	0	1
Y	0	1

Таблиця істинності 2 і 3 каскаду є. Тепер об'єднаємо таблиці істинності першого і другого — третього каскадів:

Ми побачили, що другий каскад інвертуючий, через що Ub має протилежні знаки відносно Ua, а третій каскад не є інвертуючим, тому і має те саме, що Ub. Далі складаємо логічну функцію по отриманій таблиці:

$$Y = \bar{x}_1 \cdot \bar{x}_2 \cdot x_3 + \bar{x}_1 \cdot x_2 \cdot x_3 + x_1 \cdot x_2 \cdot \bar{x}_3 + x_1 \cdot \bar{x}_2 \cdot x_3 + x_1 \cdot x_2 \cdot x_3 = = \bar{x}_1 \cdot x_3 + + x_1 \cdot x_2 \cdot \bar{x}_3 + x_1 \cdot x_3 = x_3 + x_1 \cdot x_2 \cdot \bar{x}_3 = x_3 + x_1 \cdot x_2$$

$$(3.6)$$

I далі, останній крок, малюємо логічну схему по формулі:

X1	0	0	0	0	1	1	1	1
X2	0	1	0	1	0	1	0	1
Х3	0	0	1	1	0	0	1	1
Ua	1	1	0	0	1	0	0	0
Ub	0	0	1	1	0	1	1	1
Y	0	0	1	1	0	1	1	1

РОЗРАХУНОК ПОРОГОВОЇ НАПРУГИ ІНТЕГРАЛЬНИХ КОМПОНЕНТІВ СХЕМИ

Рис. 4.1: Прототип схеми.

Треба записати формулу для пошуку порогової напруги. За варіантом у мене

КЕФ, тому формула буде наступною:

$$U_{nop}^{0} = \phi_{MS} - \frac{q \cdot N_{SS}}{C_{ox}} - 2 \cdot \phi_{F} - \frac{\sqrt{2 \cdot q \cdot \varepsilon_{0} \cdot \varepsilon_{S} \cdot N_{B}}}{C_{ox}} \cdot \sqrt{|2 \cdot \phi_{F} + U_{n}|}$$
(4.1)

У цій формулі дано майже все, а точніше: $N_{SS}=7,3\cdot 10^{11}{\rm cm}^{-3}~\varepsilon_0=8,85\cdot 10^{-14}\Phi/{\rm cm}~q=1,6\cdot 10^{-19}{\rm K}$ л $k_B=1,38\cdot 10^{-23}~{\rm Дж/K}~,T=300~{\rm K},n_i=1,45\cdot 10^{10}~{\rm cm}^{-3},\varepsilon_S=11.8$ Питома ємність шукається як

$$C_{ox} = \varepsilon_0 \cdot \varepsilon_{ox} / d_{ox} = \frac{8,85 \cdot 10^{-14} \cdot 3,9}{10^{-5}} = 3,45 \cdot 10^{-8} \frac{\Phi}{\text{cm}^2}$$
 (4.2)

Рівень Фермі у об'ємі кремнію:

$$\phi_F = \left(\frac{k_B \cdot T}{q}\right) \cdot \ln\left(\frac{N_B}{n_i}\right) \tag{4.3}$$

I невідома сама концентрація N_B , тому користуємось наступною ф-ю:

$$\sigma = \frac{1}{\rho} = q \cdot n \cdot \mu_n|_{n=N_B} \Rightarrow n = \frac{1}{\rho \cdot q \cdot \mu_n} = \frac{1}{5 \cdot 1, 6 \cdot 10^{-19} \cdot 1500} \approx 8, 3 \cdot 10^{14} \text{ cm}$$

у формулі бело взято, що $\rho=5$ Ом·см, $N_B=8,3\cdot 10^{14}~{\rm cm}^{-3}$

Тобто, рівень Фермі тоді буде:

$$\phi_F = \left(\frac{k_B \cdot T}{q}\right) \cdot \ln\left(\frac{N_B}{n_i}\right) = \frac{1,38 \cdot 10^{-23} \cdot 300}{1,6 \cdot 10^{-19}} \cdot \ln\left(\frac{8,3 \cdot 10^{14}}{1,45 \cdot 10^{10}}\right) = 0,283 \ B$$

За допомогою таблички з методички (сторінка 9, таблиця 1) визначив різниця робіт виходу металу затвору і напівпровдникової підкладки, що для моєї концентрації цей параметр буде близько $\phi_{MS}=-0,31~\mathrm{B}~$ (якщо $10^{14}=-0,36,$ а $10^{15}=-0,30,$ то $8.3\cdot 10^{14}$ прибдизно буде -0,31) Тепер треба вказати напруги між витоком і підкладкою для кожного транзистора, маючи за умовою, що $U^0=-1,1~\mathrm{Bra}~U^1=-10~\mathrm{B}.$ За умовою у мене з +, але так як підкладка КЕФ, то беремо з мінусом. Якщо витік і підкладка виведені на спільний вивід, то напруга

дорівнюватиме нулю. Якщо НЕ підключені до спільного виводу, то там буде логічний нуль (-1.1 В). Але, у мене в схемі транзистор Т1 і Т2 послідовно з'єднані, через що напруга буде розбиватися на два транзистора, і тоді на транзисторі Т1 буде половина напруги логічного нуля. Тобто:

Для Т2, Т3, Т6, Т8 :
$$U_n=0$$
 $B, U_{nop}=-4,63$ B Для Т4, Т5, Т7 : $U_n=-1,1$ $B, U_{nop}=-4,33$ B Для Т1: $U_n=-1,1/2=-0,55$ $B, U_{nop}=-4,62$ B

Далі порахуємо «ідеальну» порогову напругу:

$$U_{\text{ідеал nop}} = (U^1 + U^0)/2 = (-10 - 1, 1)/2 = -5,55 \text{ B}$$

Тепер треба проаналізувати, чи можна такі порогові напруги мати, чи їх треба змінювати (в ідеалі, похибка мусить бути в районі менше 10%, тоді можена спокійно подавати таку напругу). Шукаємо абсолютні похибки:

$$U_n = 0$$

$$\Delta U_{nop} = -5,55 + 4,63 = -0,92 \text{ B}$$

$$\delta = 100 \cdot |0,92/4,63| = 20\%$$

$$U_n = -1,1$$

$$\Delta U_{nop} = -5,55 + 4,33 = -1,22 \text{ B}$$

$$\delta = 100 \cdot |1,22/4,33| = 28\%$$

$$U_n = -0,55$$

$$\Delta U_{nop} = -5,55 + 4,62 = -0,93 \text{ B}$$

$$\Delta U_{nop} = -5,55 + 4,62 = -0,93 \text{ B}$$

$$\delta = 100 \cdot |0,93/4,62| \approx 20\%$$

Підлеговування треба, тому шукаємо дозу легування за ф-ю $D = \Delta U_{nop} \cdot C_{ox}$ $U_n = 0$

$$D = 0,92 \cdot 3,45 \cdot 10^{-8} \approx 0,03$$
 мкКл/см²

$$U_n = -1, 1$$

$$D = 1, 22 \cdot 3, 45 \cdot 10^{-8} \approx 0,04 \text{ мкКл/см}^2$$

$$U_n = -0,55$$

$$D = 0,93 \cdot 3,45 \cdot 10^{-8} \approx 0,03 \text{ мкКл/см}^2$$

Ну і далі підлеговуємо. Для цього додаємо до обрахованої порогової доданок:

$$U_{nop} = 0$$

$$U'_{nop} = U_{nop} + \frac{D}{C_{ox}} = -4,63 - \frac{0,03}{3,45 \cdot 10^{-8}} = -5,5 \text{ B}$$

$$U_{n} = -1,1$$

$$U'_{nop} = U_{nop} + \frac{D}{C_{ox}} = -4,33 - \frac{0,04}{3,45 \cdot 10^{-8}} = -5,49 \text{ B}$$

$$U_{n} = -0,55$$

$$U'_{nop} = U_{nop} + \frac{D}{C_{ox}} = -4,62 - \frac{0,03}{3,45 \cdot 10^{-8}} = -5,49 \text{ B}$$

Тут треба ще раз порахувати похибки, побачити, що все входить у межі 10%. А далі треба сказати, що для того аби зекономити на процесі виготовлення, замість того аби робити два підлегування (з 0.03 і 0.04), можемо зробити одне, для чого візьмемо дозу 0.03, і знову порахуємо напруги (якщо похибка буде менше 10%, то тоді так і залишаємо, якщо більше, то тоді робимо два підлегування). Перераховувати для всього не обов'язково, оскільки для першого і третього я і так брав 0.03, тому перерахуємо тільки для 2.

$$U_n = -1, 1$$

$$U'_{\text{nop}} = U_{\text{nop}} + \frac{D}{C_{or}} = -4,33 - \frac{0,03}{3,45 \cdot 10^{-8}} = -5,2 \text{ B}$$

$$\delta = 100 \cdot |(-5, 55 + 5, 2)/(-5, 2)| = 6,7\%$$

Похибка менше 10% для всіх трьох напруг, тобто достатньо і одного підлегування, що значно спростить технологію виготовлення.

Висновок

Стосовно легування, то доза легування не може бути від'ємною, але знак напруги визначатиметься від того, якою домішкою я буду підлеговувати. Тобто, у мене напруги були менші за «ідеальну» порогову напругу, тобто вони були недостатью «електронні», якщо так можна сказати. Якби у мене порогова напруга була менша за ту, яка вийшла, тоді я мав би підлеговувати акцепторними домішками (р-тип), а оскільки навпаки, то треба п-тип. Поширеними є фосфор і мишьяк, але я обираю фосфор, оскільки він більш поширений (але, усе залежить від того, хто буде проводити цю операцію).

№ Транзистора	U_{nop} , [B]	D, мкКл / см ²
T1	-4,62	0,03
Т2	-4,68	0,03
Т3	-4,68	0,03
T4	-4,33	0,03
Т5	-4,33	0,03
Т6	-4,68	0,03
Т7	-4,33	0,03
Т8	-4,68	0,03

 $U^1 = -10$ B

РОЗРАХУНОК РОЗМІРІВ ІНТЕГРАЛЬНИХ КОМПОНЕНТІВ СХЕМИ

Перш за все запишу всі константи, які знадобляться:

$$arepsilon_0 = 8,85 \cdot 10^{-14} \, \frac{\Phi}{\text{см}}$$
 $\phi_F = 0,283B$ ϕ

Розгляд данної задачі починається з першого каскаду, є 4 транзистори, які можна поділити на дві підгрупки: верхній транзистор, який грає роль навантаження, та нижній, який керує транзистором. Оскільки маю 2 параалельно з'єднаних

транзистора Т1 і Т2 об'єдную в один ТЕ, вийде, що ширина кожного буде відноситися як $W_{T_E}=\frac{W_{T_1}}{2}=\frac{W_{T_2}}{2}=W_{T_3}$. Тому, використовучємо відношення через струм колектора з методички і переписуємо:

$$i_{C} = \frac{\mu \cdot \varepsilon_{0} \cdot \varepsilon_{ox}}{d_{\alpha x}} \cdot \frac{W}{L} \cdot \left[(U_{3} - U_{nop}) \cdot U_{C} - \frac{U_{C}^{2}}{2} \right] \Rightarrow \frac{W_{E}}{L_{E}} = \frac{i_{C} \cdot d_{ox}}{\mu \cdot \varepsilon_{0} \cdot \varepsilon_{ox}} \cdot \frac{1}{\left[(U_{3} - U_{nop}) \cdot U_{C} - \frac{U_{C}^{2}}{2} \right]}$$

$$U_{\text{nop}} = U_{\text{nop}}^{0} + K \cdot \sqrt{2 \cdot \phi_F + U_n} - K \cdot \sqrt{2 \cdot \phi_F} = 5,76 B$$

$$\frac{W_E}{L_E} = \frac{i_C \cdot d_{ox}}{\mu \cdot \varepsilon_0 \cdot \varepsilon_{ox}} \cdot \frac{1}{\left[\left(U_{\text{BX}} - U_{\text{nop}}^0 \right) \cdot U_{\text{BUX}} - \frac{U_{\text{BUX}}^2}{2} \right]} = 10, 17$$

Замість виходу напруга логічного гуля, а замість входу напруга логічної одиниці. Так як зразок КЕФ, всі напруги від'ємні, але для спрощення обчислень беруться абсолютні значення. Далі, треба обрати довжину каналу. Я обираю 5 мкм, аби фінальні значення не перевищували 500 мкм.

Тоді, $L_{T_E}=5$ мкм, $W_{T_1}=W_{T_2}=2\cdot W_{T_E}$ а $W_{T_3}=W_{T_E}$, де $W_{T_E}=L_{T_E}\cdot 10,17\approx 55$ мкм. Тоді, маємо: $W_{T_1}=W_{T_2}=110$ мкм, $W_{T_3}=55$ мкм

Тепер рахунки для навантажувального транзистора Т4. Для нього треба використовувати передавальну характеристику.

$$\frac{\mu \cdot \varepsilon_{0} \cdot \varepsilon_{ox}}{2 \cdot d_{ox}} \cdot \frac{W_{T_{H}}}{L_{T_{H}}} \cdot \left(\left(U_{n} - U_{\text{вих}} \right) - U_{nop} \right)^{2} = \frac{\mu \cdot \varepsilon_{0} \cdot \varepsilon_{ox}}{d_{ox}} \cdot \frac{W_{T_{E}}}{L_{T_{E}}} \cdot \left(\left(U_{\text{вх}} - U_{nop.0} \right) \cdot U_{\text{вих}} - \frac{U_{\text{вих}}^{2}}{2} \right)$$

$$\frac{W_{T_{H}}}{L_{T_{H}}} = \frac{2 \frac{W_{T_{E}}}{L_{T_{E}}} \cdot \left(\left(U_{\text{вх}} - U_{\text{nop. 0}} \right) \cdot U_{\text{вих}} - \frac{U_{\text{вих}}^{2}}{2} \right)}{\left(\left(U_{n} - U_{\text{вих}} \right) - U_{\text{nop. 0}} \right)^{2}} = 4,19$$

$$K = d_{ox} \cdot \frac{\sqrt{2\varepsilon_s \varepsilon_0 q N_B}}{\varepsilon_0 \varepsilon_{ox}} = 0,48\sqrt{B}$$

$$U_{nop} = U_{nop}^0 + K\sqrt{2\phi_F + U_n} - K\sqrt{2\phi_F} = 5,76$$

В

Довжина канада буде однією для всіх транзисторів.

Тоді
$$W_{T_4} = L_{T_4} \cdot 4, 19 \approx 25$$
 мкм.

Другий каскад такий ж, як і перший, тому можна перенести розміри з першого каскаду

$$W_{T_5} = W_{T_4} = 25 \text{ MKM}$$

$$W_{T_6} = W_{T_E} = 55 \text{ MKM}$$

Третій каскад рахую по динамічним характеристикам. Верхній рахую по часу вимикання, а нижній по часу вмикання.

$$\begin{split} U_{max} &= U_{\text{вих}} - U_{nop}^{0} - K \cdot \sqrt{U_{\text{вх}} - U_{nop}^{0}} = 4,37 \text{ B} \\ \bar{U}_{nop} &= U_{nop}^{0} + K \cdot \sqrt{2 \cdot \phi_{F}} + \frac{1}{2} \cdot (U_{\text{max}} - U_{ucx}) - K \cdot \sqrt{\phi_{F}} = 5,85 \text{ B} \\ t_{\text{викл}} &= \frac{2 \cdot C_{H} \cdot d_{ox} \cdot L_{T_{7}}}{\mu \cdot \varepsilon_{0} \cdot \varepsilon_{ox} \cdot W_{T_{7}}} \cdot \frac{U_{\text{max}} - U_{\text{ucx}}}{(U_{\text{вх}} - \bar{U}_{\text{пор}} - U_{\text{мах}}) \cdot (U_{\text{вх}} - \bar{U}_{\text{пор}} - U_{\text{ucx}})} \Rightarrow \\ \frac{W_{T_{7}}}{L_{T_{7}}} &= \frac{2 \cdot C_{H} \cdot d_{ox}}{\mu \cdot \varepsilon_{0} \cdot \varepsilon_{ox} \cdot \mu} \cdot \frac{U_{\text{max}} - U_{\text{ucx}}}{(U_{\text{вх}} - \bar{U}_{\text{пор}} - U_{\text{маx}}) \cdot (U_{\text{вх}} - \bar{U}_{\text{пор}} - U_{\text{ucx}})} = 10, 2, \end{split}$$

де
$$U_{\text{исх}} = U_{\text{вх}}$$

Оскільки відношення у мене <1, то $W_{T_6}=L_{T_6}\cdot 10, 2=55$ мкм.

Для нижнього транзистора, керуючого, шукаю по часу включення.

$$\begin{split} t_{\text{BKJI}} &= \frac{C_H \cdot d_{\text{ox}} \cdot L_{T_8}}{\mu \cdot \varepsilon_0 \cdot \varepsilon_{ox} \cdot W_{T_8}} \cdot \frac{1}{\left(U_{\text{BX}} - U_{\text{nop}}^0\right)} \cdot \left\{ \frac{U_{\text{max}} - \left(U_{\text{ex}} - U_{\text{nop}}^0\right)}{U_{\text{BX}} - U_{\text{nop}}^0} + \frac{1}{2} \ln \left[\frac{2\left(U_{\text{BX}} - U_{\text{nop}}^0\right) - U_{\text{ocm}}}{U_{\text{ocm}}} \right] \right\} \Rightarrow \\ \frac{W_{T_8}}{L_{T_8}} &= 6,06 \Rightarrow W_{T_8} = 6,06 \cdot 5 = 35 \text{ MKM} \end{split}$$

Табл. 5.1: Відношення W/L та розміри для кожного транзистора.

	W/L	W	L
T1	22	110	5
T2	22	110	5
Т3	10, 17	55	5
T4	4, 19	25	5
T5	4, 19	25	5
T6	10, 17	55	5
T7	10, 2	55	5
T8	6,06	35	5

РОЗРАХУНОК РОЗМІРІВ ПРИСТРОЮ ЗАХИСТУ ІНТЕГРАЛЬНИХ КОМПОНЕНТІВ СХЕМИ

Перш за все запишу всі константи, які знадобляться:

$$arepsilon_0 = 8,85 \cdot 10^{-14} \, rac{\Phi}{\mathrm{cm}}$$
 $arepsilon_{ox} = 3,9$
 $arepsilon_S = 11,8$
 $d_{ox} = 100 \, \mathrm{Hm}$
 $N_B = 8,3 \cdot 10^{14} \, \mathrm{cm}^{-3}$
 $U_{\mathrm{nop.}}^0 = -5,5 \, \mathrm{B}$
 $ho_s = 100 \, \mathrm{Om}$
 $U_{33} = 0 \, \mathrm{B}$ — напруга на затворі

 $W_{T_1T_2} = 110 \text{ MKM}$

пристрою захисту.

 $W_{T_3} = 55 \text{ мкм}$ Спочатку знайдемо напругу пробою:

$$\phi_F = 0,283 B$$
 $C_{ox} = 3,45 \cdot 10^{-8} \, rac{\Phi}{ ext{cm}^2}$ $U^0 = -1,1 \; ext{B}$ $t_{ ext{викл}} = 760 \; ext{hc}$ $t_{ ext{вкл}} = 100 \; ext{hc}$

 $E_{\rm кp}=1,2~{\rm B/cm}$ – критичне поле, що визначає початок ударної іонізації у зоні збіднення кремнію.

$$L_T = L_{T_1, T_2, T_3} = 5 \text{ MKM}$$

$$U_{\text{проб}} = 3 \cdot d_{ox} \cdot E_{\text{кp}} \cdot U_{33} - |U_{\text{пор зах}}|, \tag{6.1}$$

де $U_{\text{пор зах}} = U_{\text{пор}}^{0}$, тому $U_{\text{проб}} = 30, 5$ В

Далі шукаємо робочу частоту:

$$f = \frac{2}{t_{\text{вимк}} + t_{\text{вкл}}} = 2,33 \cdot 10^6 \,\,\Gamma$$
ц (6.2)

Тепер шукаємо струмообмежуючий опір.

$$R_6 \le 0,01 \cdot C_{\text{BX}}^{-1} \cdot f_{\text{po6}}^{-1},$$

де $C_{\text{вх}} = C_{ox} \cdot W_T \cdot L_T, W_T, L_T$ — розміри вхідного транзистора. Тоді маємо, що:

$$R_6|_{T_1,T_2} \le \frac{0.01}{C_{ox} \cdot W_{T_1,T_2} \cdot L_T \cdot f_{\text{po6}}} = 22, 6 \text{ Om} \Rightarrow R_6|_{T_1,T_2} = 20 \text{ Om}$$

 $R_6|_{T_3} \le \frac{0.01}{C_{ox} \cdot W_{T_3} \cdot L_T \cdot f_{\text{po6}}} = 45, 2 \text{ Om} \Rightarrow R_6|_{T_1,T_2} = 40 \text{ Om}$

Табл. 6.1: Таблиця розмірів ПЗ для кожного входу

				Діод	Діод	Транзистор	Транзистор
	T_1	T_2	T_3	(T_1,T_2)	(T_3)	(T_1,T_2)	(T_3)
W, MKM	110	110	55	238	119	5	5
L, MKM	5	5	5	5	5	1000	2000
W/L	22	22	10,17				

Потім шукаємо динамічний опір за формулою:

$$U_{\text{затв}} = U_{\text{проб}} + (U_{\text{вх}} - U_{\text{проб}}) \cdot \frac{R_{\partial}}{R_{\partial} + R_{6}}$$
$$U_{\text{затв}} \leq \frac{2}{3} \cdot U_{\text{проб.SiO}_{2}}$$

максимально допустима напруга на затворі вхідного транзистора; $U_{\rm npo6.SiO_2}=E_{\rm npo6}\cdot d_{\rm ox}$ - напруга пробою діелектрика; $U_{\rm bx}=5000~{\rm B}$ напруга, від якої наш пристрій захищає.

 $E_{\rm npo6}$ обирається по технології, має бути термічне оксилення (так як $\varepsilon_{\rm ox}$), тому цей парамет береться максимальний, тобто $E_{\rm npo6}=10\cdot 10^6~{\rm \frac{B}{cm}}$.

Тоді: $U_{\rm npo6.SiO~_2}=100~{\rm B},~~U_{\rm затв}\leq66,7~{\rm B}\Rightarrow U_{\rm затв}=60~{\rm B}.$ Виразивши Rд, отримаємо, що:

$$R_{\partial}|_{T_1,T_2} pprox 119 \text{ Om}, R_{\partial}|_{T_3} pprox 238 \text{ Om}$$

Тепер графічно треба знайти ширину.

$$W_{3ax.T_3} \approx 119 \text{ MKM}_{\mathrm{i}} W_{\mathrm{3ax}T_1.T_2} \approx 238 \text{ MKM}$$

І треба знайти довжину струмообмежуючого опору: $L_R = \frac{R_0 \cdot W_R}{\rho_S}$, де $W_R|_{T_1,T_2,T_3} = 5$ мкм - ширина дифузійної шини, $\rho_S = 100$ Ом— питомий опір дифузійної шини. Тоді

$$L_R|_{T_1,T_2}=rac{R_6|_{T_1,T_2}\cdot W_R}{
ho_S}=1000$$
 MKM $L_R|_{T_3}=rac{R_6|_{T_3}\cdot W_R}{
ho_S}=2000$ MKM

Рис. 6.1: Графік для знаходження ширини

ТЕХНОЛОГІЯ ВИГОТОВЛЕННЯ МДН ІС

В своїй роботі маю КЕФ-5, що позначає пластини кремнію монокристалічного електронного типу провідності з додаванням фосфором і питомим опором 5 Ом·см.

- 1. Проведення підготовки: пластини кремнію шліфують до заданої товщини, потім полірують, піддають травленню і промивають.
- 2. Перша фотолітографія дозволяє розкрити вікна в оксиді для локальної дифузії, в результаті якої формуються області витоку та стоку. Дифузія проводиться в дві стадії на глибину 0,5 мкм.
- 3. Друга фотолітографія проводиться для розкриття вікон під тонкий оксид. Тонкий оксид вирощується на поверхні кремнію в сухому кисні при температурі 1150...1200° С.
- 4. Витравлювання оксиду до кремнію, де будуть знаходитися затвори транзистора.

5.	Формування підзатворного діелектрика, розгонка.
6.	Третя фотолітографія, тобто формування вікон для майбутніх контвктів.
7.	Металізація, нанесення слою алюмінію за допомогою електровакуумного напилення, там де є області алюмінию та кремнію треба ці місця пролегувати n^+ типом, тому що утвориться діод Шотткі.
8.	Четверта фотолітогорафія, формування з'єднань на ІМС, формування сто- ку, витоку, затвору.
9.	Хіміко-механічна планеризація, тобто видалення зайвих нерівностей та полірування.
10.	Пасивація, утворення тонкого шару алюмінию для захисту від корозії
11.	Остання фотолітографія – відкриття контактних площадок.

ВИСНОВОК

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

Список використаної літератури

[1] wefvnfjnvdlrfbvndfg2009.

ДОДАТОК А

ДОДАТОК В