1

EE1030: Matrix Theory

EE24BTECH11006 - Arnav Mahishi

F. Match the Following

In these questions there are entries in columns 1 and 2. Each entry in column 1 is related to exactly one entry in column 2. Write the correct letter from column 2 against the entry number in column 1 in your answer book

1)
$$\frac{\sin 3\alpha}{\cos 2\alpha}$$
 is

$$[1992 - 2Marks]$$

0. Define the following sets whose elements are written in the increasing order. [*JEEAdv*.2019]

$$X = \{x : f(x) = 0\}, Y = \{x : f'(x) = 0\}$$
 (3)

$$Z = \{x : g(x) = 0\}, W = \{x : g'(x) = 0\}$$
 (4)

Column I	Column II
(A) Positive	$(p) \left(\frac{13\pi}{48}, \frac{14\pi}{48} \right)$
(B) Negative	$(p) \left(\frac{13\pi}{48}, \frac{14\pi}{48}\right)$ $(q) \left(\frac{14\pi}{48}, \frac{18\pi}{48}\right)$
	$(r)\left(\frac{18\pi}{48},\frac{23\pi}{48}\right)$
	$(s)\left(0,\frac{\pi}{2}\right)$

2) .Let $f(x) = \sin(\pi \cos x)$ and $g(x) = \cos(2\pi \sin x)$ be two functions defined for x > 0. Define the following sets whose elements are written in the increasing order. [*JEEAdv*.2019]

$$X = \{x : f(x) = 0\}, Y = \{x : f'(x) = 0\}$$
 (1)

$$Z = \{x : g(x) = 0\}, W = \{x : g'(x) = 0\} \quad (2)$$

Column I	Column II
(A) X	$(p)\supseteq\left\{\frac{\pi}{2},\frac{3\pi}{2},4\pi,7\pi\right\}$
(B) Y	(q)an arithmetic pro-
(C) Z	gression
(D) W	(r)NOT an arithmetic
	progression
	$(s) \supseteq \left\{ \frac{\pi}{6}, \frac{7\pi}{6}, \frac{13\pi}{6} \right\}$

Which of the following is the only CORRECT combination?

a
$$(IV),(P),(R),(S)$$

b
$$(III),(P),(Q),(U)$$

c
$$(III),(R),(U)$$

3) Let $f(x) = \sin(\pi \cos x)$ and $g(x) = \cos(2\pi \sin x)$ be two functions defined for x > 0

Column I Column II
(A) X
(B) Y
(Column II)
(p) $\supseteq \left\{ \frac{\pi}{2}, \frac{3\pi}{2}, 4\pi, 7\pi \right\}$ (q) an arithmetic pro-

(C) Z gression

(D) W (r)NOT an arithmetic progression $(x) = (\pi - 7\pi - 13\pi)$

 $(s) \supseteq \left\{ \frac{\pi}{6}, \frac{7\pi}{6}, \frac{13\pi}{6} \right\}$

Which of the following is the only CORRECT combination?

a
$$(I),(Q),(U)$$

b
$$(I),(P),(R)$$

Paragraph 1

Let O be the origin, and \overrightarrow{OX} , \overrightarrow{OY} , \overrightarrow{OZ} be three unit vectors in the directions of the sides \overrightarrow{QR} , \overrightarrow{RP} , \overrightarrow{PQ} respectively, of a triangle PQR. [*JEEAdv*2017]

$$1. \left| \overrightarrow{OX} \times \overrightarrow{OY} \right| =$$

- a $\sin(P+Q)$
- b $\sin 2R$
- c $\sin(P+R)$
- $d \sin(Q + R)$
- 2. If the triangle PQR varies, then the minimum value of $\cos(P+Q) + \cos(Q+R) + \cos(R+P)$ is.

a
$$\frac{-3}{3}$$
 b $\frac{-3}{2}$

I. Integer value type

1. The number of all possible values of θ where $0 < \theta < \pi$ for which the system of equations

1)
$$(y + Z)\cos 3\theta = (xyz)\sin 3\theta$$

2)
$$x \sin 3\theta = \frac{2\cos 3\theta}{y} + \frac{2\sin 3\theta}{z}$$

3)
$$(xyz)\sin 3\theta = (y + 2z)\cos 3\theta + y\sin 3\theta$$

have a solution (x_o, y_o, x_o) with $y_o z_o \neq 0$ is (2010)

- 2. The number of all possible values of θ in the interval, $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ such that $\theta \neq \frac{n\pi}{5} forn = 0, \pm 1, \pm 2$ and $\tan \theta = \cot 5\theta$ as well as $\sin 2\theta = \cos 4\theta$ is [2010]
- 3.The maximum value of the expression $\frac{1}{\sin^2\theta + 3\sin\theta\cos\theta + 5\cos^2\theta}$ is [2010]
- 4. Two parallel chords of a circle of radius 2 are at a distance $(\sqrt{3} + 1)$ apart. If the chords subtend at the center, angles of $\frac{\pi}{k}$ and $\frac{2\pi}{k}$, where k > 0, the value of [k] is
- 5. The positive integer value of n > 3 satisfying the equation $\frac{1}{\sin(\frac{\pi}{n})} = \frac{1}{\sin(\frac{2\pi}{n})} + \frac{1}{\sin(\frac{3\pi}{n})}$ is [2010]