Московский Государственный Технический Университет им. Н.Э. Баумана

Отчет по лабораторной работе №2 по курсу Технологии Машинного Обучения

Выполнила:
Костян Алина
ИУ5-53
Проверил:
Гапанюк Ю.Е.

Разведочный анализ данных с Pandas

Exploratory data analysis with Pandas

Уникальные значения всех фич:

age: continuous.

workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-

worked.

fnlwat: continuous.

education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.

education-num: continuous.

marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.

occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.

relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.

race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.

sex: Female, Male.capital-gain: continuous.capital-loss: continuous.

hours-per-week: continuous.

native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.

salary:>50K,<=50K

In [1]:

```
import numpy as np
import pandas as pd
pd.set_option('display.max.columns', 100)

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns

import warnings
warnings.filterwarnings('ignore')
```

In [2]:

```
data = pd.read_csv('adult.data.txt')
data.head()
```

Out[2]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in- family	White
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in- family	White
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black

1. Как много мужчин и женщин представлено в этом наборе данных?

In [3]:

```
data['sex'].value_counts()
```

Out[3]:

Male 21790 Female 10771

Name: sex, dtype: int64

2. Какой средний возраст женщин?

```
In [4]:
```

```
data.loc[data['sex'] == ' Female', 'age'].mean()
```

Out[4]:

36.85823043357163

3. Какой процент жителей Германии?

```
In [5]:
(float((data['native-country'] == ' Germany').sum()) / data.shape[0])*100
Out[5]:
0.42074874850281013
4,5. Среднее значение и стандартное отклонение в возрасте для тех, кто зарабатывает больше
50. тыс в год и тех, кто получает меньше 50 тысяч в год?
Зарплата больше 50 тысяч в год
Среднее значение
In [6]:
data.loc[data['salary'] == ' >50K', 'age'].mean()
Out[6]:
44.24984058155847
Стандартное отклонение
In [7]:
data.loc[data['salary'] == ' >50K', 'age'].std()
Out[7]:
10.519027719851826
Зарплата 50 тысяч и меньше
Среднее значение
In [8]:
data.loc[data['salary'] == ' <=50K', 'age'].mean()</pre>
Out[8]:
36.78373786407767
Стандартное отклонение
In [9]:
data.loc[data['salary'] == ' <=50K', 'age'].std()</pre>
Out[9]:
14.02008849082488
```

6. Правда ли что люди которые получают больше 50 тысяч имеют хотя бы школьное образование?

3/13

Не правда

7. Отобразите статистику вораста для каждой расы и каждого пола. Используйте groupby() и describe(). Найдите максимальный возраст мужчин Американской-инди-эскимосской расы.

In [12]:

```
for (race, sex), sub in data.groupby(['race', 'sex']):
   print(f"Race: {race}, sex: {sex}")
   print(sub['age'].describe())
```

```
Amer-Indian-Eskimo, sex: Female
Race:
count
         119.000000
          37.117647
mean
std
          13.114991
          17.000000
min
25%
          27.000000
50%
          36.000000
          46.000000
75%
          80.000000
max
Name: age, dtype: float64
       Amer-Indian-Eskimo, sex:
                                   Male
         192.000000
count
mean
          37.208333
std
          12.049563
min
          17.000000
          28.000000
25%
50%
          35.000000
75%
          45.000000
          82.00000
max
Name: age, dtype: float64
Race:
       Asian-Pac-Islander, sex:
                                   Female
count
         346.000000
mean
          35.089595
std
          12.300845
          17.000000
min
25%
          25.000000
50%
          33.000000
75%
          43.750000
          75.000000
max
Name: age, dtype: float64
Race:
       Asian-Pac-Islander, sex:
count
         693.000000
mean
          39.073593
std
          12.883944
min
          18.000000
25%
          29.000000
50%
          37.000000
75%
          46.000000
max
          90.000000
Name: age, dtype: float64
Race:
       Black, sex:
                     Female
         1555.000000
count
mean
           37.854019
std
           12.637197
min
           17.000000
25%
           28.000000
50%
           37.000000
75%
           46.000000
           90.000000
max
Name: age, dtype: float64
Race:
       Black, sex: Male
         1569.000000
count
mean
           37.682600
std
           12.882612
min
           17.000000
25%
           27.000000
50%
           36.000000
75%
           46.000000
           90.000000
max
Name: age, dtype: float64
Race:
       Other, sex:
                     Female
```

```
109.000000
count
mean
          31.678899
std
          11.631599
min
          17.000000
25%
          23.000000
50%
          29.000000
75%
          39.000000
max
          74.000000
Name: age, dtype: float64
Race:
       Other, sex:
                     Male
count
         162.000000
          34.654321
mean
std
          11.355531
          17.000000
min
25%
          26.000000
50%
          32.000000
75%
          42.000000
          77.000000
max
Name: age, dtype: float64
       White, sex:
                     Female
         8642.000000
count
mean
           36.811618
std
           14.329093
min
           17.000000
25%
           25.000000
50%
           35.000000
75%
           46.000000
           90.000000
max
Name: age, dtype: float64
Race:
       White, sex:
                     Male
         19174.000000
count
mean
            39.652498
std
             13.436029
             17.000000
min
25%
            29.000000
50%
            38.000000
75%
             49.000000
            90.000000
max
Name: age, dtype: float64
```

Определим самый большой возраст среди мужчин расы АмерканскоИндийскихЭскимо

```
In [13]:
```

```
cake=data.loc[data['race'] == ' Amer-Indian-Eskimo']
cake.loc[cake['sex'] == ' Male', 'age'].max()
Out[13]:
82
```

8. Доля каких мужчин больше среди тех, кто зарабатывает больше 50 тысяч, женатых или холостяков?

In [14]:

```
not married men = data.loc[(data['sex'] == ' Male') &
     (data['marital-status'].isin([' Never-married',
                                     Separated',
                                    ' Divorced',
                                    ' Widowed']))]
married men = data.loc[(data['sex'] == ' Male') &
     (data['marital-status'].isin([' Married-civ-spouse',
                                     Married-spouse-absent',
                                    ' Married-AF-spouse']))]
print (f"Доля неженатых мужчин {(not married men['salary'] == ' >50K').sum()}")
print (f"Доля женатых мужчин {(married men['salary'] == ' >50K').sum()}\n")
if ((not married men['salary'] == ' >50K').sum() > (married men['salary'] == ' >
50K').sum()):
       print('Доля неженатых мужчин больше')
elif ((married men['salary'] == ' >50K').sum() > (not married men['salary'] == '
       print('Доля женатых мужчин больше')
else:
       print('Доли женатых и неженатых мужчин равны')
```

```
Доля неженатых мужчин 697
Доля женатых мужчин 5965
```

Доля женатых мужчин больше

9. Какое максимальное количество часов человек работает в неделю? Как много людей работают столько часов и каков процент тех кто зарабатывает больше 50 тысяч среди них?

```
In [15]:
```

```
maxxi = (data['hours-per-week']).max()
print (f"Maксимальное количество часов в неделю: {maxxi}")

coun = data.loc[data['hours-per-week'] == 99]
countn = coun.shape[0]
print (f"Количество работающих :столько времени {countn}")

perc = float(coun.loc[data['salary'] == ' >50K'].shape[0]) / countn * 100
print (f"Процент тех, кто зарабатывает более 50 тысяч {perc}")
```

```
Максимальное количество часов в неделю: 99
Количество работающих :столько времени 85
Процент тех, кто зарабатывает более 50 тысяч 29.411764705882355
```

10. Посчитаете среднее время работы в неделю для тех кто получает много и мало, для каждой страны. Какими они будут для Японии?

In [16]:

```
rich = data.loc[data['salary'] == ' >50K']

poor = data.loc[data['salary'] == ' <=50K']

print ("Среднее пооличество часов работы в неделю \n")

for country in data['native-country'].unique():
    print(country)
    print(f"Зарплата больше 50 тысяч: {rich.loc[rich['native-country'] == country, 'hours-per-week'].mean()}")
    print(f"Зарплата меньше 50 тысяч: {poor.loc[poor['native-country'] == country, 'hours-per-week'].mean()}\n")
```

Среднее пооличество часов работы в неделю

United-States Зарплата больше 50 тысяч: 45.50536884674383 Зарплата меньше 50 тысяч: 38.79912723305605 Сиba

Cuba

Зарплата больше 50 тысяч: 42.44

Зарплата меньше 50 тысяч: 37.98571428571429

Jamaica

Зарплата больше 50 тысяч: 41.1

Зарплата меньше 50 тысяч: 38.23943661971831

India

Зарплата больше 50 тысяч: 46.475

Зарплата меньше 50 тысяч: 38.233333333333334

?

Зарплата больше 50 тысяч: 45.54794520547945 Зарплата меньше 50 тысяч: 40.16475972540046

Mexico

Зарплата больше 50 тысяч: 46.57575757575758 Зарплата меньше 50 тысяч: 40.00327868852459

South

Зарплата больше 50 тысяч: 51.4375 Зарплата меньше 50 тысяч: 40.15625

Puerto-Rico

Зарплата больше 50 тысяч: 39.41666666666664 Зарплата меньше 50 тысяч: 38.470588235294116

Honduras

Зарплата больше 50 тысяч: 60.0

Зарплата меньше 50 тысяч: 34.33333333333336

England

Canada

Зарплата больше 50 тысяч: 45.64102564102564 Зарплата меньше 50 тысяч: 37.91463414634146

Germany

Зарплата больше 50 тысяч: 44.97727272727273 Зарплата меньше 50 тысяч: 39.13978494623656

Iran

Зарплата больше 50 тысяч: 47.5 Зарплата меньше 50 тысяч: 41.44

Philippines

Зарплата больше 50 тысяч: 43.032786885245905 Зарплата меньше 50 тысяч: 38.065693430656935

Italy

Зарплата больше 50 тысяч: **45.4** Зарплата меньше 50 тысяч: **39.625**

Poland Зарплата больше 50 тысяч: 39.0 Зарплата меньше 50 тысяч: 38.16666666666664 Columbia Зарплата больше 50 тысяч: 50.0 Зарплата меньше 50 тысяч: 38.68421052631579 Cambodia Зарплата больше 50 тысяч: 40.0 Зарплата меньше 50 тысяч: 41.41666666666664 Thailand Зарплата больше 50 тысяч: 58.333333333333336 Зарплата меньше 50 тысяч: 42.866666666667 Ecuador Зарплата больше 50 тысяч: 48.75 Зарплата меньше 50 тысяч: 38.04166666666664 Laos Зарплата больше 50 тысяч: 40.0 Зарплата меньше 50 тысяч: 40.375 Taiwan Зарплата больше 50 тысяч: 46.8 Зарплата меньше 50 тысяч: 33.774193548387096 Haiti Зарплата больше 50 тысяч: 42.75 Зарплата меньше 50 тысяч: 36.325 Portugal Зарплата больше 50 тысяч: 41.5 Зарплата меньше 50 тысяч: 41.93939393939394 Dominican-Republic Зарплата больше 50 тысяч: 47.0 Зарплата меньше 50 тысяч: 42.338235294117645 El-Salvador Зарплата больше 50 тысяч: 45.0 Зарплата меньше 50 тысяч: 36.03092783505155 France Зарплата больше 50 тысяч: 50.75 Зарплата меньше 50 тысяч: 41.05882352941177 Guatemala Зарплата больше 50 тысяч: 36.66666666666664 Зарплата меньше 50 тысяч: 39.36065573770492 China Зарплата больше 50 тысяч: 38.9 Зарплата меньше 50 тысяч: 37.38181818181818 Japan Зарплата больше 50 тысяч: 47.958333333333336

file:///Users/lina/Downloads/Laba2.html

Зарплата меньше 50 тысяч: 41.0

Yugoslavia

Зарплата больше 50 тысяч: 49.5 Зарплата меньше 50 тысяч: 41.6

Peru

Зарплата больше 50 тысяч: 40.0

Зарплата меньше 50 тысяч: 35.06896551724138

Outlying-US(Guam-USVI-etc)

Зарплата больше 50 тысяч: nan

Зарплата меньше 50 тысяч: 41.857142857142854

Scotland

Зарплата больше 50 тысяч: 46.66666666666664 Зарплата меньше 50 тысяч: 39.4444444444444

Trinadad&Tobago

Зарплата больше 50 тысяч: 40.0

Зарплата меньше 50 тысяч: 37.05882352941177

Greece

Зарплата больше 50 тысяч: 50.625

Зарплата меньше 50 тысяч: 41.80952380952381

Nicaragua

Зарплата больше 50 тысяч: **37.5** Зарплата меньше 50 тысяч: **36.09375**

Vietnam

Зарплата больше 50 тысяч: 39.2

Зарплата меньше 50 тысяч: 37.193548387096776

Hong

Зарплата больше 50 тысяч: 45.0

Зарплата меньше 50 тысяч: 39.142857142857146

Ireland

Зарплата больше 50 тысяч: 48.0

Зарплата меньше 50 тысяч: 40.94736842105263

Hungary

Зарплата больше 50 тысяч: 50.0

Зарплата меньше 50 тысяч: 31.3

Holand-Netherlands

Зарплата больше 50 тысяч: nan

Зарплата меньше 50 тысяч: 40.0

In [17]:

```
print("Среднее количество часов для Японии")
print(f"Зарплата больше 50 тысяч: {rich.loc[rich['native-country'] == ' Japan', 'ho
urs-per-week'].mean()}")
print(f"Зарплата меньше 50 тысяч: {poor.loc[poor['native-country'] == ' Japan', 'ho
urs-per-week'].mean()}\n")
```

Объединение данных

```
In [2]:
```

```
import pandas as pd
```

Используем два набора данных

```
In [4]:
```

```
Data1 = pd.read_csv("user_device.csv")
Data2 = pd.read_csv("user_usage.csv")
```

In [5]:

```
Data1.head()
```

Out[5]:

	use_id	user_id	platform	platform_version	device	use_type_id
0	22782	26980	ios	10.2	iPhone7,2	2
1	22783	29628	android	6.0	Nexus 5	3
2	22784	28473	android	5.1	SM-G903F	1
3	22785	15200	ios	10.2	iPhone7,2	3
4	22786	28239	android	6.0	ONE E1003	1

In [6]:

```
Data2.head()
```

Out[6]:

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id
0	21.97	4.82	1557.33	22787
1	1710.08	136.88	7267.55	22788
2	1710.08	136.88	7267.55	22789
3	94.46	35.17	519.12	22790
4	71.59	79.26	1557.33	22792

In [11]:

```
print(f"Data1: {Data1.shape}")
print(f"Data2: {Data2.shape}")
```

Data1: (272, 6)
Data2: (240, 4)

Для "склеивания" используем "Outer Merge"

```
In [12]:
```

```
bresult = pd.merge(Data2, Data1[['use_id', 'platform', 'device']], on='use_id',
how='outer', indicator=True)
```

In [14]:

result

Out[14]:

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id	platform	dı
0	21.97	4.82	1557.33	22787	android	GT-I
1	1710.08	136.88	7267.55	22788	android	G
2	1710.08	136.88	7267.55	22789	android	G
3	94.46	35.17	519.12	22790	android	D
4	71.59	79.26	1557.33	22792	android	G
5	71.59	79.26	1557.33	22793	android	G
6	71.59	79.26	519.12	22794	android	G
7	71.59	79.26	519.12	22795	android	G
8	30.92	22.77	3114.67	22799	android	ONEI A
9	69.80	14.70	25955.55	22801	android	GT-I
10	554.41	150.06	3114.67	22804	android	G
11	189.10	24.08	519.12	22805	android	GT-I
12	283.30	107.47	15573.33	22806	android	Α
13	324.34	92.52	519.12	22808	android	G
14	797.06	7.67	519.12	22813	android	С
15	797.06	7.67	15573.33	22814	android	С
16	797.06	7.67	15573.33	22815	android	С
17	797.06	7.67	15573.33	22816	android	С
18	797.06	7.67	15573.33	22817	android	С
19	78.80	327.33	10382.21	22819	android	HTC r
20	78.80	327.33	15573.33	22820	android	HTC r
21	78.80	327.33	15573.33	22822	android	HTC r
22	164.10	192.64	3114.67	22823	android	G
23	208.26	91.76	5191.12	22824	android	G

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id	platform	d
24	681.44	47.35	1271.39	22829	ios	iPhoı
25	324.27	91.50	519.12	22830	android	G
26	85.97	26.94	407.01	22831	android	18
27	244.88	105.95	1557.33	22832	android	D
28	135.09	42.02	5191.12	22833	android	Е
29	57.49	16.73	15573.33	22839	android	Α
323	NaN	NaN	NaN	22976	ios	iPhoı
324	NaN	NaN	NaN	22983	ios	iPhoı
325	NaN	NaN	NaN	22984	ios	iPhoı
326	NaN	NaN	NaN	22990	android	HU, VNS
327	NaN	NaN	NaN	22993	android	N
328	NaN	NaN	NaN	22996	ios	iPhoı
329	NaN	NaN	NaN	23000	android	HU. VNS
330	NaN	NaN	NaN	23001	android	G
331	NaN	NaN	NaN	23004	ios	iPhoı
332	NaN	NaN	NaN	23006	ios	iPhoı
333	NaN	NaN	NaN	23007	ios	iPhoı
334	NaN	NaN	NaN	23008	ios	iPhoı
335	NaN	NaN	NaN	23009	ios	iPhoı
336	NaN	NaN	NaN	23010	ios	iPhoı
337	NaN	NaN	NaN	23011	ios	iPhoı
338	NaN	NaN	NaN	23014	ios	iPhoı
339	NaN	NaN	NaN	23022	ios	iΡŧ
340	NaN	NaN	NaN	23025	ios	iPhoı
341	NaN	NaN	NaN	23033	ios	iPhoı
342	NaN	NaN	NaN	23034	android	J3 :
343	NaN	NaN	NaN	23035	ios	iPhoı
344	NaN	NaN	NaN	23037	ios	iPhoı
345	NaN	NaN	NaN	23038	ios	iPhoı
346	NaN	NaN	NaN	23042	android	G
347	NaN	NaN	NaN	23045	ios	iPhoı
348	NaN	NaN	NaN	23047	ios	iPhoı

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id	platform	d
349	NaN	NaN	NaN	23048	android	ONEI A
350	NaN	NaN	NaN	23050	ios	iPhoı
351	NaN	NaN	NaN	23051	ios	iPhoı
352	NaN	NaN	NaN	23052	ios	iPhoı

353 rows × 7 columns

Проверим, сколько было уникальных ід в обеих таблицах

```
In [17]:
```

```
print(pd.concat([Data1['use_id'], Data2['use_id']]).unique().shape[0])
353
```

```
In [ ]:
```

```
data_cop = data.copy()
```

Значит объединение прошло без утери данных