2023-2 Topología Grupo 2 Primer Corte

MÍNIMOS A SABER

- Definición de topoloía y ejemplos sobre conjuntos finitos.
- Ejemplos básicos: las topologías discreta e indiscreta, la topología del complemento finito, la topología del complemento contable, la topología euclidiana en \mathbb{R} , la topología de Zariski en \mathbb{R}^n .
- Saber comparar topologías, es decir, dadas dos topologías decidir cual es más fina o si no son comparables.
- Definiciones de base y sub-base para una topología.
- La topología generada por una base y la topología generada por una sub-base.
- La topología del orden, la topología producto, y la topología de subespacio.
- Conjuntos cerrados y axiomas de conjuntos cerrados.

MISCELÁNEA DE EJERCICIOS

- 1. Construya todas las topologías sobre $A = \{a, b, c\}$ y determine para cada par de ellas si una es más fina, más gruesa o no se puede comparar con la otra.
- 2. Probar que los intervalos no acotados $(-\infty, b)$ y (a, ∞) también son abiertos en la topología euclidiana de \mathbb{R} .
- 3. Sea $X = \mathbb{R}$. Probar que $\mathcal{T}_f \subseteq \mathcal{T}_E$, que $\mathcal{T}_f \subseteq \mathcal{T}_c$, pero que \mathcal{T}_E y \mathcal{T}_c no son comparables.
- 4. Probar que la topología de Zariski en $\mathbb R$ coincide con la topología del complemento finito.
- 5. Para cada entero positivo n, sea $S_n = \{n, n+1, n+2, \dots\}$. Muestre que la colección de todos los S_n es una base para una topología sobre \mathbb{N} .
- 6. Una partición de un conjunto X es una colección de subconjuntos disjuntos dos a dos, cuya unión es X. Pruebe que cada partición de X es una sub-base para una topología en X. ¿Es una base?
- 7. Suponga que S es una partición de X que contiene exactamente 4 subconjuntos, ¿cuántos abiertos tiene la topología generada por S?
- 8. Sea (X, \mathcal{T}) un espacio topológico. Pruebe que si $\{x_0\} \in \mathcal{T}$ para algún $x_0 \in X$, entonces $\{x_0\} \in \mathcal{B}$ para cada base \mathcal{B} que genera la topología \mathcal{T} .
- 9. Sobre \mathbb{Z}^+ definamos los siguientes conjuntos

$$B_n = \{x \in \mathbb{Z}^+ : n \text{ divide a } x\} \text{ para } n = 1, 2, 3, ...$$

- (a) Muestre que la colección $\mathcal{B} = \{B_n : n = 1, 2, 3, ...\}$ es una base para una topología sobre \mathbb{Z}^+ ;
- (b) ξ es \mathcal{B} una topología?
- 10. Un subconjunto A de un conjunto simplemente ordenado X se dice **convexo** si para cada $a,b \in A$ con a < b, el intervalo $[a,b] \subseteq A$. Pruebe o refute: cada subconjunto convexo de X diferente de \emptyset y X es un intervalo o un rayo (es decir, un subconjunto de la forma $(-\infty,b)$, $(-\infty,b]$, (a,∞) , $[a,\infty)$).
- 11. Pruebe que la topología de Zariski en \mathbb{R}^2 no es el producto de la topología de Zariski en \mathbb{R} con si misma.

- 12. Denote por \mathbb{R}_f el conjunto de los números reales con la topología del complemento finito. Describa una base para la topología producto en $\mathbb{R}_f \times \mathbb{R}$.
- 13. Pruebe que la topología de \mathbb{Z} como subespacio de \mathbb{R} , con la topología euclidiana, es la topología discreta.
- 14. Pruebe que la topología de \mathbb{Z} como subespacio de \mathbb{R} , con la topología del complemento finito, es la topología del complemento finito.
- 15. Sea X un espacio topológico cuya topología es la discreta (también nos referimos a X como un espacio discreto). Describa todos los subconjuntos de X cuya topología de subespacio es la topología indiscreta.
- 16. Pruebe que si Y es un abierto de X y $U \subseteq Y$ es un abierto en la topología de subespacio de Y, entonces U es abierto en X. De un ejemplo que muestre que la conclusión anterior es falsa si Y no es abierto.
- 17. Suponga que X es un espacio topológico y que $A \subseteq Y \subseteq X$. Muestre que la topología de A como subespacio de Y es la misma topología de A como subespacio de X.
- 18. Describa los cerrados de las topologías \mathcal{T}_f y \mathcal{T}_c , y de ejemplos de subconjuntos cerrados en las topologías del orden y euclidiana en \mathbb{R} .
- 19. Si $Y \subset X$ es un subconjunto cerrado de X y A es un subconjunto cerrado de Y en la topología de subespacio de Y, entonces A es cerrado en X.
- 20. Un espacio topológico X se dice **irreducible** si no se puede expresar en la forma $X = A \cup B$ con $A \neq X$, $B \neq X$, ambos cerrados y no vacíos. Muestre que si X es infinito entonces X con la topología del complemento finito es un espacio topológico irreducible. Muestre que hay espacios topológicos **reducibles** (es decir, que no son irreducibles) con la topología del complemento contable.
- 21. Muestre que si X es un espacio topológico irreducible, entonces cada subconjunto abierto de X es irreducible con la topología de subespacio.