SALEM SETS AVOIDING ROUGH CONFIGURATIONS

JACOB DENSON

Recall that a set $X \subset \mathbf{R}^d$ is a *Salem set* of dimension s if it has Hausdorff dimension s, and for every $\varepsilon > 0$, there exists a probability measure μ_{ε} supported on X such that for all $\xi \in \mathbf{R}^d$,

$$\sup_{\xi \in \mathbf{R}^d} |\xi|^{s-\varepsilon} |\widehat{\mu}_{\varepsilon}(\xi)| < \infty.$$

Our goal in these notes is to obtain, for each set $Z \subset \mathbf{R}^{dn}$ with Minkowski dimension s, a Salem set $X \subset \mathbf{R}^d$ with dimension

$$\frac{nd-s}{s}$$

such that for each set of n distinct elements $x_1, \ldots, x_n \in X$, $(x_1, \ldots, x_n) \notin Z$. We hope that we can rely on the random selection approach of our paper on rough configurations to obtain such a result.

1. Concentration Inequalities Using the Orlicz Norm

Define a convex function $\psi_2: [0, \infty) \to [0, \infty)$ by $\psi_2(t) = e^{t^2} - 1$, and a corresponding Orlicz norm on the family of scalar valued random variables X over a probability space by setting

$$||X||_{\psi_2(L)} = \inf \{ A \in (0, \infty) : \mathbf{E}(\psi_2(|X|/A)) \le 1 \}.$$

The family of random variables $\psi_2(L)$ are known as subgaussian random variables. Here are some important properties:

• (Gaussian Tails): There exists a universal constant c > 0 such that for any random variable X, $||X||_{\psi_2(L)} \le A$ if and only if for each $t \ge 0$,

$$\mathbf{P}(|X| \ge t) \le 2\exp\left(-ct^2/A^2\right).$$

• (Bounded Variables are Subgaussian): For any random X,

$$||X||_{\psi_2(L)} \lesssim ||X||_{L^{\infty}}.$$

• (Centering) For any random variable X,

$$||X - \mathbf{E}(X)||_{\psi_2(L)} \lesssim ||X||_{\psi_2(L)}.$$

• (Union Bound) If X_1, \ldots, X_N are random variables, then

$$||X_1 + \dots + X_N||_{\psi_2(L)} \le ||X_1||_{\psi_2(L)} + \dots + ||X_N||_{\psi_2(L)}.$$

• (Hoeffding's Inequality): If X_1, \ldots, X_N are independent random variables, then

$$||X_1 + \dots + X_N||_{\psi_2(L)} \lesssim (||X_1||_{\psi_2(L)}^2 + \dots + ||X_N||_{\psi_2(L)}^2)^{1/2}.$$

The Orlicz norm is a convenient notation to summarize calculations involving the principle of concentration of measure. Roughly speaking, we can think of a random variable X with $\|X\|_{\psi_2(L)} \leq A$ as essentially always lying in the interval [-A, A], very rarely deviating outside this interval.

2. A Family of Cubes

Fix sequences of integers $\{N_m : m \ge 1\}$ and $\{M_m : m \ge 1\}$. We then define two sequences of real numbers $\{l_m : m \ge 0\}$ and $\{r_m : m \ge 0\}$, by defining

$$l_m = \frac{1}{M_1 N_1 \dots M_m N_m}$$
 and $r_m = \frac{1}{M_1 N_1 \dots M_m}$.

For each $m, d \ge 0$, we define two collections of strings

$$\Sigma_m^d = \mathbf{Z}^d \times [M_1]^d \times \dots \times [N_1]^d \times \dots \times [M_m]^d \times [N_m]^d$$

and

$$\Pi_m^d = \mathbf{Z}^d \times [M_1]^d \times [N_1]^d \times \dots \times [N_{m-1}]^d \times [M_m]^d.$$

For each string $i \in \Sigma_m^d$, we define a vector $a_i \in (l_m \mathbf{Z})^d$ by setting

$$a_i = i_0 + \sum_{k=1}^{m} i_{2k-1} \cdot r_k + i_{2k} \cdot l_k$$

Then each string $i \in \Sigma_m^d$ can be identified with the sidelength l_m cube

$$Q_i = \prod_{j=1}^d \left[a_{ij}, a_{ij} + l_m \right].$$

centered at a_i . Similarly, for each string $i \in \Pi_m^d$, we define a vector $a \in (r_m \mathbf{Z})^d$ by setting, for each $1 \le j \le d$,

$$a_i = i_0 + \left(\sum_{k=1}^{m-1} i_{2k-1} \cdot r_k + i_{2k} \cdot l_k\right) + i_{2m-1} \cdot r_m,$$

and then define a sidelength r_m cube

$$R_i = \prod_{j=1}^{d} [a_{ij}, a_{ij} + r_m].$$

We let $\mathcal{Q}_m^d = \{Q_i : i \in \Sigma_m^d\}$, and $\mathcal{R}_m^d = \{R_i : i \in \Pi_m^d\}$. Here are some important properties of this collection of cubes:

• For each m, Q_m^d and R_m^d are covers of \mathbf{R}^d .

- If $Q_1, Q_2 \in \bigcup_{m=0}^{\infty} \mathcal{Q}_m^d$, then either Q_1 and Q_2 have disjoint interiors, or one cube is contained in the other. Similarly, if $R_1, R_2 \in \bigcup_{m=1}^{\infty} \mathcal{R}_m^d$, then either R_1 and R_2 have disjoint interiors, or one cube is contained in the other.
- For each cube $Q \in \mathcal{Q}_m$, there is a unique cube $Q^* \in \mathcal{R}_m$ with $Q \subset Q^*$. We refer to Q^* as the *parent cube* of Q. Similarly, if $R \in \mathcal{R}_m$, there is a unique cube in $R^* \in \mathcal{Q}_{m-1}$ with $R \subset R^*$, and we refer to R^* as the *parent cube* of R.

We say a set $E \subset \mathbf{R}^d$ is \mathcal{Q}_m discretized if it is a union of cubes in \mathcal{Q}_m^d , and we then let $\mathcal{Q}_m(E) = \{Q \in \mathcal{Q}_m^d : Q \subset E\}$. Similarly, we say a set $E \subset \mathbf{R}^d$ is \mathcal{R}_m discretized if it is a union of cubes in \mathcal{R}_m^d , and we then let $\mathcal{R}_m(E) = \{R \in \mathcal{R}_m^d : R \subset E\}$. We set $\Sigma_m(E) = \{i \in \Sigma_m^d : Q_i \in \mathcal{Q}_m(E)\}$, and $\Pi_m(E) = \{i \in \Pi_m^d : R_i \in \mathcal{R}_m(E)\}$. We say a cube $Q_1 \times \cdots \times Q_n \in \mathcal{Q}_m^{dn}$ is strongly non diagonal if there does not exist two distinct indices i, j, and a third index $k \in \Pi_m^d$, such that $R_k \cap Q_i, R_k \cap Q_j \neq \emptyset$.

3. A Family of Mollifiers

We now consider a family of mollifiers, which we will use to smooth out the Fourier transform of the measures we study. Begin by choosing a non-negative C^{∞} function ψ supported on $[-1,1]^d$ such that

$$\int_{\mathbf{R}^d} \psi(x) \, dx = 1,\tag{1}$$

and for each $x \in \mathbf{R}^d$,

$$\sum_{n \in \mathbf{Z}^d} \psi(x+n) = 1. \tag{2}$$

Since ψ is C^{∞} and compactly supported, then for each $t \in [0, \infty)$, we conclude

$$\sup_{\xi \in \mathbf{R}^d} |\xi|^t |\widehat{\psi}(\xi)| < \infty. \tag{3}$$

Now we rescale the mollifier. For each m > 0, we let

$$\psi_m(x) = l_m^{-d} \psi(l_m \cdot x).$$

Then ψ_m is supported on $[-l_m, l_m]^d$. Equation (1) implies that for each $x \in \mathbf{R}^d$,

$$\int_{\mathbf{R}^d} \psi_m = 1. \tag{4}$$

Equation (2) implies

$$\sum_{n \in \mathbf{Z}^d} \psi(x + l_m \cdot n) = l_m^{-d}. \tag{5}$$

An important property of the rescaling in the frequency domain is that for each $\xi \in \mathbf{R}^d$,

$$\widehat{\psi_m}(\xi) = \widehat{\psi}(l_m \xi), \tag{6}$$

In particular, (6) implies that for each $t \ge 0$,

$$\sup_{|\xi| \in \mathbf{R}^d} |\widehat{\psi_m}(\xi)| |\xi|^t = l_m^{-t} \sup_{|\xi| \in \mathbf{R}^d} |\widehat{\psi}(\xi)| |\xi|^t.$$
 (7)

This implies that, uniformly in m, $\widehat{\psi}_m$ decays sharply outside of the box $[-l_m^{-1}, l_m^{-1}]^d$, a manifestation of the Heisenberg uncertainty principle.

4. Discrete Lemma

We now consider a discrete form of the Fourier bound argument, which we can apply iteratively to obtain a Salem set

Lemma 1. Fix $s \in [1, dn)$ and $\varepsilon \in [0, (n-s)/4)$. Let $T \subset [0, 1]^d$ be a non-empty, Q_m discretized set, and let μ_T be a smooth probability measure compactly supported on T, together with a constant C > 0 such that for each $m \in \mathbb{Z}^d$,

$$|\widehat{\mu_T}(m)| \leq C|m|^{-s/2}$$
.

Let $B \subset \mathbf{R}^{dn}$ be a non-empty, \mathcal{Q}_{m+1} discretized set such that

$$\#(\mathcal{Q}_{m+1}(B)) \le (1/l_{m+1})^{s+\varepsilon}. \tag{8}$$

Then there exists constants $C_1(\mu_T, n, d, s)$ and $C_2(\mu_T, n, d, s)$ such that if

$$N_{m+1} \ge C_1(T, \mu_T, n, d, s, \varepsilon), \tag{9}$$

and

$$\frac{N_{m+1}^{\frac{dn-s-2\varepsilon}{s+\varepsilon}}}{C_2(T,\mu_T,n,d,s)} \le M_{m+1} \le \frac{N_{m+1}^{\frac{dn-s-2\varepsilon}{s+\varepsilon}}}{C_2(T,\mu_T,n,d,s)} + 1, \tag{10}$$

then there exists a Q_{m+1} discretized set $S \subset T$ together with a smooth probability measure supported on S such that

• For any strongly non-diagonal cube

$$Q = Q_1 \times \cdots \times Q_n \in \mathcal{Q}_{m+1}(B),$$

There exists i such that $Q_i \notin \mathcal{Q}_{m+1}(S)$.

• For any $m \in \mathbf{Z}^d$,

$$|\widehat{\mu}(m)| \le (C + l_{m+1}^{-1})|m|^{-s/2}.$$

Proof. For each $i \in \Pi_{m+1}^d$, let j_i be a random integer vector chosen from $[N_{m+1}]^d$, such that the family $\{j_i : i \in \Pi_{m+1}^d\}$ is independent. We define a measure ν_S by setting, for each $x \in \mathbf{R}^d$,

$$d\nu_S(x) = r_{m+1}^d \sum_{i \in \Pi_{m+1}^d} \psi_{m+1}(x - a_{ij_i}) d\mu_T(x).$$

We then normalize, defining

$$\mu_S = \frac{\nu_S}{\nu_S(\mathbf{R}^d)}.$$

If we set

$$S = \bigcup \{ Q \in \mathcal{Q}_{m+1}^d : \mu_S(Q) > 0 \},$$

then by definition, S is a \mathcal{Q}_{m+1} discretized set, μ_S is supported on S, and $S \subset T$. It now suffices to show that with nonzero probability, $\mathcal{Q}_m(S^n)$ is disjoint from the strongly non diagonal cubes in $\mathcal{Q}_m(B)$, and μ_S has the required Fourier decay.

In our calculations, it will be helpful to decompose the measure ν_S . For each $i \in \Pi_{m+1}(T)$, define a random measure ν_i by setting

$$d\nu_i(x) = r_{m+1}^d \psi_{m+1}(x - a_{ij_i}) d\mu_T(x).$$

Then $\nu_S = \sum_{i \in \Pi_{m+1}(T)} \nu_i$.

First, let's show that ν_S only needs to be slightly perturbed to become a probability measure. Note that if $j_0, j_1 \in [N_{m+1}]^d$, then

$$|a_{ij_0} - a_{ij_1}| = |j_0 - j_1| \cdot l_{m+1} \lesssim_d N_{m+1} l_{m+1} = r_{m+1},$$

which, together with (4), implies

$$\left| r_{m+1}^{d} \int_{\mathbf{R}^{d}} \psi_{m+1}(x - a_{ij_{0}}) \mu_{T}(x) - r_{m+1}^{d} \int_{\mathbf{R}^{d}} \psi_{m+1}(x - a_{ij_{1}}) \mu_{T}(x) \right|$$

$$\leq r_{m+1}^{d} \int_{\mathbf{R}^{d}} \psi_{m+1}(x) \left| \mu_{T}(x + a_{ij_{0}}) - \mu_{T}(x + a_{ij_{1}}) \right|$$

$$\lesssim_{d} r_{m+1}^{d+1} \int_{\mathbf{R}^{d}} \psi_{m+1}(x) \|\nabla \mu_{T}\|_{L^{\infty}(\mathbf{R}^{d})} = r_{m+1}^{d+1} \|\nabla \mu\|_{L^{\infty}(\mathbf{R}^{d})}.$$

$$(11)$$

Thus (11) implies that for each i,

$$\|\nu_i(\mathbf{R}^d) - \mathbf{E}(\nu_i(\mathbf{R}^d))\|_{L^{\infty}} \lesssim_d r_{m+1}^{d+1} \|\nabla \mu\|_{L^{\infty}(\mathbf{R}^d)}. \tag{12}$$

Furthermore, (5) implies

$$\sum_{i \in \Pi_{m+1}^{d}} \mathbf{E}(\nu_{i}(\mathbf{R}^{d})) = r_{m+1}^{d} \sum_{(i,j) \in \Sigma_{m+1}^{d}} \mathbf{P}(j_{i} = j) \int_{\mathbf{R}^{d}} \psi_{m+1}(x - a_{ij}) \mu_{T}(x) dx$$

$$= \frac{r_{m+1}^{d}}{N_{m+1}^{d}} \int_{\mathbf{R}^{d}} \left(\sum_{(i,j) \in \Sigma_{m+1}^{d}} \psi_{m+1}(x - a_{ij}) \right) \mu_{T}(x) dx \qquad (13)$$

$$= \frac{r_{m+1}^{d} l_{m+1}^{-d}}{N_{m+1}^{d}} = 1.$$

For all but $O_d(r_{m+1}^{-d})$ indices i, $\nu_i = 0$ almost surely. Thus we can apply the triangle inequality together with (12) and (13) to conclude that

$$\|\nu_{S}(\mathbf{R}^{d}) - 1\|_{L^{\infty}} = \|\sum_{i \in \Pi_{m+1}^{d}} \left[\nu_{i}(\mathbf{R}^{d}) - \mathbf{E}(\nu_{i}(\mathbf{R}^{d}))\right]\|_{L^{\infty}}$$

$$\leq \sum_{i \in \Pi_{m+1}^{d}} \|\nu_{i}(\mathbf{R}^{d}) - \mathbf{E}(\nu_{i}(\mathbf{R}^{d}))\|_{L^{\infty}}$$

$$\lesssim_{d} r_{m+1}^{-d} r_{m+1}^{d+1} \|\nabla \mu\|_{L^{\infty}(\mathbf{R}^{d})}$$

$$= r_{m+1} \|\nabla \mu\|_{L^{\infty}(\mathbf{R}^{d})}.$$

$$(14)$$

Thus if (9) and (10) hold for appropriately chosen constants, we can apply (14) to conclude $\|\nu_S(\mathbf{R}^d) - 1\|_{L^{\infty}} \le 1/2$, or, in other words, that it is almost surely true that

$$1/2 \le \nu_S(\mathbf{R}^d) \le 3/2. \tag{15}$$

This means normalizing this measure to a probability measure is neglible to the asymptotics we consider.

For each $i \in \Pi_{m+1}^d$, let

$$S_i = \bigcup \{ Q \in \mathcal{Q}_{m+1}^d : \nu_i(Q) > 0 \}.$$

Then $S = \bigcup_{i \in \Pi_{m+1}^d} S_i$. Because j_i is selected uniformly from $[N_{m+1}]^d$ for each i, for any $j \in [N_{m+1}]^d$,

$$\mathbf{P}(j_i = j) = N_{m+1}^{-d}. \tag{16}$$

Since ψ_{m+1} is supported on $[-l_{m+1}, l_{m+1}]^d$,

$$S_i \subset \bigcup \{R_{i_0} : R_{i_0} \cap R_i \neq \emptyset\}.$$

For any cube $Q_{ij} \in \Sigma_{m+1}^d$, there are $O_d(1)$ pairs (i_0, j_0) such that $Q_{i_0j_0} \cap Q_{ij} \neq \emptyset$, and so a union bound together with (16) gives

$$\mathbf{P}(Q_{ij} \in \mathcal{Q}_{m+1}(S)) \le \sum_{Q_{i_0j_0} \cap Q_{ij} \neq \emptyset} \mathbf{P}(j_{i'} = j') \lesssim_d N_{m+1}^{-d}.$$
 (17)

Without loss of generality, removing cubes from B if necessary, we may assume all cubes in B are strongly non-diagonal. Let $Q = Q_{i_1j_1} \times \cdots \times Q_{i_nj_n} \in \mathcal{Q}_{m+1}(B)$ be such a cube. Since Q is strongly diagonal, the events $\{Q_{i_kj_k} \in S\}$ are independent from one another, which together with (17) implies that

$$\mathbf{P}(Q \in \mathcal{Q}_{m+1}(S^n)) = \mathbf{P}(Q_{i_1j_1} \in S) \dots \mathbf{P}(Q_{i_nj_n} \in S) \lesssim_{d,n} N_{m+1}^{-dn}.$$
(18)

Taking expectations over all cubes in B, and applying (8) and (18) gives

$$\mathbf{E}(\#(\mathcal{Q}_{m+1}(B) \cap \mathcal{Q}_{m+1}(S^n))) \lesssim_{d,n} \#(\mathcal{Q}_{m+1}(B)) \cdot N_{m+1}^{-dn}$$

$$\leq l_{m+1}^{-(s+\varepsilon)} N_{m+1}^{-dn}$$

$$= \frac{M_{m+1}^{s+\varepsilon} l_m^{-(s+\varepsilon)}}{N_{m+1}^{dn-s-\varepsilon}}.$$
(19)

If (10) holds, for an appropriately chosen constant depending only on l_m, d, n , and s, we can apply Markov's inequality together with (19) to conclude

$$\mathbf{P}(Q_{k+1}(B) \cap Q_{k+1}(S^n) \neq \emptyset) = \mathbf{P}(\#(Q_{k+1}(B) \cap Q_{k+1}(S^n)) \geq 1)
\leq \mathbf{E}(\#(Q_{m+1}(B) \cap Q_{m+1}(S^n)))
\leq 1/N_{m+1}^{\varepsilon} \leq 1/10.$$
(20)

Thus $Q_{k+1}(S^n)$ is disjoint from $Q_{k+1}(B)$ with high probability.

Now we analyze the Fourier transform of the measure ν . For each $i \in \Pi_{m+1}^d$, and $m \in \mathbb{Z}$, define $X_{im} = \widehat{\nu_i}(m) - \widehat{\mathbf{E}(\nu_i)}(m)$. Applying (2) gives

$$\sum_{i \in \Pi_{m+1}^d} \widehat{\mathbf{E}(\nu_i)}(m) = \sum_{i \in \Pi_{m+1}^d} l_{m+1}^d \sum_{j \in [N_{m+1}]^d} \int_{\mathbf{R}^d} e^{-2\pi i m \cdot x} \psi_{m+1}(x - a_{ij}) d\mu_T(x)$$

$$= \int_{\mathbf{R}^d} e^{-2\pi i m \cdot x} d\mu_T(x) = \widehat{\mu_T}(m).$$
(21)

For each i and m, the standard (L^1, L^{∞}) bound on the Fourier transform, combined with (12), shows

$$||X_{im}||_{\psi_{2}(L)} \leq ||X_{im}||_{L^{\infty}}$$

$$\leq ||\nu_{i}(\mathbf{R}^{d})||_{L^{\infty}} + \mathbf{E}(\nu_{i})(\mathbf{R}^{d})$$

$$\lesssim_{d} \mathbf{E}(\nu_{i})(\mathbf{R}^{d}) + r_{m+1}^{d+1} ||\nabla \mu_{T}||_{L^{\infty}(\mathbf{R}^{d})}.$$

$$(22)$$

For a fixed m, the family of random variables $\{X_{im}\}$ are independent. Furthermore, $\sum X_{im} = \widehat{\nu}(m) - \widehat{\mathbf{E}(\nu)}(m)$, and furthermore, (5) and (16) imply that

$$\mathbf{E}(\widehat{\nu}_{S}(m)) = \frac{r_{m+1}^{d}}{N_{m+1}^{d}} \int_{\mathbf{R}^{d}} e^{-2\pi i m \cdot x} \left(\sum_{(i,j) \in \Sigma_{m+1}^{d}} \psi_{m+1}(x - a_{ij}) \right) d\mu_{T}(x)$$

$$= \frac{r_{m+1}^{d} l_{m+1}^{-d}}{N_{m+1}^{d}} \int_{\mathbf{R}^{d}} e^{-2\pi i m \cdot x} d\mu_{T}(x)$$

$$= \frac{r_{m+1}^{d} l_{m+1}^{-d}}{N_{m+1}^{d}} \widehat{\mu}_{T}(m) = \widehat{\mu}_{T}(m).$$
(23)

Hoeffding's inequality, together with (22) and (23), imply that

$$\|\widehat{\nu}(m) - \widehat{\mu_T}(m)\|_{\psi_2(L)} \lesssim_d \left(\sum \mathbf{E}(\nu_i)(\mathbf{R}^d)^2\right)^{1/2} + r_{m+1}^{d/2+1} \|\nabla \mu_T\|_{L^{\infty}(\mathbf{R}^d)}.$$

Now taking in absolute values into the definition of ν_i gives

$$\mathbf{E}(\nu_i)(\mathbf{R}^d) = l_{m+1}^d \sum_{j \in [N_{m+1}]^d} \int \psi_{m+1}(x - a_{ij}) d\mu_T(x)$$

$$\leq r_{m+1}^d \|\mu_T\|_{L^{\infty}(\mathbf{R}^d)}.$$

Applying (12) shows

$$\|\widehat{\nu}(m) - \widehat{\mu_T}(m)\|_{\psi_2(L)} \lesssim_d [\|\mu_T\|_{L^{\infty}(\mathbf{R}^d)} + \|\nabla \mu_T\|_{L^{\infty}(\mathbf{R}^d)}] r_{m+1}^{d/2}.$$
 (24)

We can then apply a union bound over $D = \{m \in \mathbf{Z}^d : |m| \le 10l_{m+1}^{-1}\}$ together with (24) to conclude that there exists a constant $c(\mu_T, d)$ such that

$$\mathbf{P}\left(\|\widehat{\nu} - \widehat{\mu_T}\|_{L^{\infty}(D)} \ge r_{m+1}^{d/2} \log(M_{m+1})\right) \lesssim_d l_{m+1}^{-d} \exp\left(-c(\mu_T, d) \log(M_{m+1})^2\right). \tag{25}$$

If (10) holds, for an appropriately chosen constant depending only on l_m, d, n , and s, then (25) implies

$$\mathbf{P}\left(\|\widehat{\nu}-\widehat{\mu_T}\|_{L^{\infty}(D)}\right) \leq 1/10.$$

Thus $\widehat{\nu}$ and $\widehat{\mu_T}$ are highly like to differ only by a miniscule amount over small frequencies.

Finally, it suffices to analyze the values of $\widehat{\nu}_S(m)$ when $|m| \ge 10l_{m+1}^{-1}$. If we define a random measure

$$\alpha = r_{m+1}^d \sum_{\substack{i \in \Pi_{m+1}^d \\ d(a_i, T) \leq 2r_{m+1}^{-1}}} \delta_{a_{ij_i}},$$

then $\nu_S = (\alpha * \psi_{m+1})\mu_T$. Thus we have $\widehat{\nu}_S = (\widehat{\alpha} \cdot \widehat{\psi}_{m+1}) * \widehat{\mu}_T$. Since μ_T is compactly supported, we can define, for each t > 0,

$$A(t) = \sup |\widehat{\mu_T}(\xi)| |\xi|^t < \infty.$$

In light of (6), if we define, for each t > 0,

$$B(t) = \sup |\widehat{\psi}(\xi)| |\xi|^t,$$

then

$$\sup |\widehat{\psi_{m+1}}(\xi)||\xi|^t = l_{m+1}^{-t}B(t).$$

It now suffices to bound

$$\sup_{|\eta| \ge 10l_{m+1}^{-1}} |\eta|^{s/2} \int \widehat{\mu_T} (\eta - \xi) \widehat{\alpha}(\xi) \widehat{\psi_{m+1}}(\xi) d\xi.$$

The measure α is the sum of at most $2^d r_{m+1}^{-d}$ delta functions, we have $\alpha(\mathbf{R}^d) \leq 2^d$, so $\|\widehat{\alpha}\|_{L^{\infty}(\mathbf{R}^d)} \leq 2^d$, so it suffices to bound

$$\int |\widehat{\mu_T}(\eta - \xi)| |\widehat{\psi_{m+1}}(\xi)| d\xi.$$

If $|\xi| \le |\eta|/2$, $|\eta - \xi| \ge |\xi|/2$, so for all t > 0, and combined with the fact that $\|\widehat{\psi}_{m+1}\|_{L^{\infty}(\mathbf{R}^d)} \le 1$, we find

$$\int_{0 \le |\xi| \le |\eta|/2} |\widehat{\mu_T}(\eta - \xi)| |\widehat{\psi_{m+1}}(\xi)| d\xi \le \frac{A(t)2^{t-d}}{|\eta|^{t-d}}.$$

If we set t = d + 1 + s/2 and apply (10) for an appropriate chosen constant depending only on d and μ_T , we conclude

$$\int_{0 \le |\xi| \le |\eta|/2} |\widehat{\mu_T}(\eta - \xi)| |\widehat{\psi_{m+1}}(\xi)| \ d\xi \le \frac{A(d+1+s/2)2^{1+s/2}|\eta|^{-1}}{|\eta|^{s/2}} \le \frac{|\eta|^{-s/2}}{10 \cdot 2^d}.$$

Conversely, if $|\xi| \ge 2|\eta|$, then $|\eta - \xi| \ge |\xi|/2$, so for each t > 0,

$$\int_{|\xi| \ge 2|\eta|} |\widehat{\mu_T}(\eta - \xi)| |\widehat{\psi}_{m+1}(\xi)| d\xi \le \int_{|\xi| \ge 2|\eta|} \frac{A(t)2^t}{|\xi|^t} \\
\lesssim_d \int_{2|\eta|}^{\infty} r^{d-t} A(t)2^t.$$

Provided t > d + 1, this integral is finite, and is

$$\lesssim_{d,t} A(t) 2^{d+1} |\eta|^{d+1-t}$$

Setting t = d + 2 + s/2, and applying (10), we conclude

$$\int_{|\xi|>2|\eta|} |\widehat{\mu_T}(\eta-\xi)||\widehat{\psi}_{m+1}(\xi)| d\xi \le \frac{|\eta|^{-s/2}}{10\cdot 2^d}.$$

Finally, if t > 0, we use the fact that $\|\widehat{\mu_T}\|_{L^{\infty}(\mathbf{R}^d)} \le 1$ to conclude that

$$\int_{|\eta|/2 \le |\xi| \le 2|\eta|} |\widehat{\mu_T}(\eta - \xi)||\widehat{\psi_{m+1}}(\xi)| d\xi \le \frac{2^{d+t}B(t)}{|\eta|^{t-d}}.$$

If we set t = d + s/2 + 1 and apply (10), we conclude

$$\int_{|\eta|/2 \le |\xi| \le 2|\eta|} |\widehat{\mu_T}(\eta - \xi)||\widehat{\psi_{m+1}}(\xi)| d\xi \le \frac{|\xi|^{-s/2}}{10 \cdot 2^d}.$$

Summing up the three bounds, we conclude that if $|\eta| \ge 10l_{m+1}^{-1}$, then

$$|\widehat{\nu}_S(\eta)| \leq |\eta|^{-s/2}.$$

Thus, almost surely, $\widehat{\nu}_{S}(\eta)$ has fast Fourier decay for $|\eta| \ge 10l_{m+1}^{-1}$. Let us put all our calculations together.