V2X Motorcycle HUD

Ryan Hiser Jorge Pacheco Jacob Nguyen

HUD DISPLAY

Directions
Fuel Warning Indicator
Speed
Range/Speed of Rider 1

Communications with Range Estimation

HUD DISPLAY

Directions
Fuel Warning Indicator
Speed
Speed of Rider 2

Rider 2

Data: Name, Lat/Long, Speed, Nav, Fuel

Rider 1

Motivation

- Motorcyclists often ride in groups. To effectively and safely ride it is often necessary to communicate. This takes many forms:
 - Hand gestures (hands off of handlebars)
 - High speed maneuvers
 - Intercoms (difficult with multiple riders)
 - Refuel periods (gas tanks size/consumption speed vary)
 - Modern cruise control is handled as a throttle lock
 - Riders at rear cannot easily keep consistent following distance
- A HUD system would allow for fewer distractions from the driving experience by displaying this information in a digestible format:
 - Driving Directions
 - Speed
 - Simple Messages
 - Others need to refuel
 - Following distance

Abstract

- V2X (vehicle-to-everything) system using two motorcycles
- Share driving information using wireless communication.
 - Make navigation easier to digest
 - Make following others easier
 - Make road trips more enjoyable
- Shared vehicle data is displayed on HUD
 - o Name
 - Navigation
 - Speed
 - Geographical location (longitude/latitude)

Apparatus / System Diagram (For Demonstration)

Apparatus / System Diagram (2)

ZCU104

Wifi adapter

FMComms

Antenna (Cantenna)

Antenna (Cantenna)

ZCU104

Wifi adapter

DIY HUD for motorcycle 1

DIY HUD for motorcycle 2

Bill of Materials (BOM)

Hardware:

Item	Qty	☑ Price	Notes
ZCU104/ZedBoard	2	\$0	Borrow
FMComms Board	2	\$0	Borrow
PlutoSDR	2	\$0	Borrow
HUD	2	\$0	DIY: https://www.instructables.com/DIY-Smart-Glasses-ArduinoESP/
OLED	1	\$0	Already Have (x3)
Battery (LIPO)	1	\$0	Already Have (x3)
Batter Charger	1	\$20-30	Need to identify (based on battery)
Google Cardboard	1	\$0	Already Have (x3)
Wifi/Microprocessor	1	\$0	Already Have (x5)
2GHz Antenna	1	\$0-100	Find/build:
			https://www.askaprepper.com/make-tin-can-wifi-antenna-extend-communication-emp/
GPS Unit	2	\$?	Need to Identify (or will use a preloaded LUT to simulate)

Software:

- Matlab
- GNU Radio
- Xilinx Vivado and Vitis
- Python/C/C++

Task List

- DIY HUD for both vehicles
- Simulation of waveform with MATLAB/Simulink
 - Note: TDMA will be used instead of our original intention of combining RADAR and a Comms.
- Data communications with GNURadio (2 Pluto SDRs)
- Embedded Hardware design utilizing our communications protocol.
- Distance estimation
- Real world system verification with desired hardware
- Real time HUD updates from system verification
- Kalman filter for improved range estimation

Schedule

Final Demonstration

- The final demonstration will be simplified to avoid any safety issues with using motorcycles.
- Rider 2 will remain stationary
- Rider 1 will move toward and away from Rider 2
 - Will use scooter/cart
- Rider 1 and Rider 2 will negotiate TDMA access requirements
- Both Riders will determining range of other rider.
- Rider 1 will have a Lookup Table (LUT) with data for navigation/directions
 - Directions will be relayed to Rider 2. Rider 2 will return fuel level and indicate if a stop is required.
- Received Data will be displayed on a HUD for each Rider
 - Data will also be saved to a data file for post-experiment verification