Devoir surveillé n°6 Version n°1

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soit $P \in \mathbb{R}[X]$ scindé sur \mathbb{R} à racines simples, de degré supérieur ou égal à 2.

- 1) Montrer qu'il en est de même de P'.
- 2) Montrer que le polynôme $P^2 + 1$ n'a que des racines simples dans \mathbb{C} .

II. Polynômes et nombres de Bernoulli.

Dans tout ce problème, on identifiera un polynôme et la fonction polynomiale qui lui est associée.

1) Question de cours : Soit $P \in \mathbb{R}_n[X]$. Montrer qu'il existe un polynôme $Q_0 \in \mathbb{R}_{n+1}[X]$ vérifiant $Q'_0 = P$. Déterminer en fonction de Q_0 tous les polynômes Q vérifiant Q' = P.

On considère une suite de polynômes $(B_n)_{n\in\mathbb{N}}$ (suite de Bernoulli) par les relations suivantes :

- (a) $B_0 = 1$;
- (b) $\forall n \in \mathbb{N}, B'_{n+1} = (n+1)B_n;$
- (c) $\forall n \in \mathbb{N}^*, \int_0^1 B_n(t) dt = 0.$
 - 2) Montrer l'existence et l'unicité d'une telle suite (B_n) .
 - 3) Expliciter les polynômes B_1 , B_2 et montrer que $B_3 = X^3 \frac{3}{2}X^2 + \frac{1}{2}X$.
 - 4) Montrer que, pour tout $n \in \mathbb{N}$, B_n est un polynôme unitaire de degré n.
 - 5) Montrer que, pour tout $n \in \mathbb{N}$ vérifiant $n \ge 2$, $B_n(0) = B_n(1)$.

6) Montrer que, pour tout $n \in \mathbb{N}$, B_n vérifie l'équation :

$$\forall x \in \mathbb{R}, \ B_n(1-x) = (-1)^n B_n(x).$$

Indication: on pensera à utiliser l'unicité obtenue à la question 2).

Dans toute la suite, on note pour tout $n \in \mathbb{N}$: $\beta_n = B_n(0)$ (n^e nombre de Bernoulli).

- 7) Expliciter les valeurs de β_1 , β_2 et β_3 .
- 8) Montrer que, pour tout entier $n \ge 3$ impair, $\beta_n = 0$.
- 9) Montrer que, pour tout $n \in \mathbb{N}$,

$$B_n = \sum_{k=0}^{n} \binom{n}{k} \beta_k X^{n-k}.$$

Indication: on pourra commencer par exprimer $B_n^{(k)}$ en fonction de B_{n-k} .

10) En déduire que, pour tout $n \ge 2$,

$$\sum_{k=0}^{n-1} \binom{n}{k} \beta_k = 0.$$

En déduire enfin pour tout $n \ge 1$ une expression de β_n en fonction de $\beta_0, \ldots, \beta_{n-1}$.

11) Écrire dans le langage Python une fonction Bernoulli(n) prenant en argument un entier naturel n et renvoyant la valeur de β_n .

III. Autour de la constante d'Euler.

Le théorème des accroissements finis intervient à plusieurs reprises dans ce problème. Vous devrez préciser chaque fois clairement pour quelle fonction et entre quelles bornes vous l'utilisez.

Ce problème a pour objet l'étude de la constante d'Euler notée γ .

Pour tout entier naturel non nul n, on pose

$$u_n = \left(\sum_{k=1}^n \frac{1}{k}\right) - \ln n.$$

Partie I

- 1) Prouver pour tout $k \in \mathbb{N}^*$ l'encadrement : $\frac{1}{k+1} \leqslant \ln \frac{k+1}{k} \leqslant \frac{1}{k}$.
- 2) a) Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ est décroissante.
 - **b)** Montrer que pour tout $n \in \mathbb{N}^* : \frac{1}{n} \leqslant u_n \leqslant 1$.
 - c) En déduire que la suite $(u_n)_{n\in\mathbb{N}^*}$ converge.

On note dorénavant γ la limite de la suite $(u_n)_{n\in\mathbb{N}^*}$ (constante d'Euler).

- 3) Montrer que $\gamma \leqslant 1$.
- 4) a) Étudier, sur l'intervalle [k, k+1] $(k \in \mathbb{N}^*)$, le signe de la fonction f_k définie par

$$f_k(x) = \frac{1}{k} + \left(\frac{1}{k+1} - \frac{1}{k}\right)(x-k) - \frac{1}{x}.$$

- **b)** En déduire le signe de $\int_k^{k+1} f_k(t) dt$.
- c) Prouver l'inégalité : $\ln \frac{k+1}{k} \leqslant \frac{1}{2} \left(\frac{1}{k} + \frac{1}{k+1} \right)$ (\star)
- **5)** a) Montrer que : $\sum_{k=1}^{n} \frac{1}{k+1} = \sum_{k=1}^{n+1} \frac{1}{k} 1$ et $\sum_{k=1}^{n} \frac{1}{k} \leqslant \sum_{k=1}^{n+1} \frac{1}{k}$.
 - **b)** En déduire, en sommant (\star) , que $\frac{1}{2} \leqslant \gamma$.

Partie II

6) On définit les fonctions g_1 et g_2 sur $]0, +\infty[$ par :

$$g_1(x) = -\frac{1}{x+1} + \ln\left(1 + \frac{1}{x}\right) - \frac{1}{2x^2}$$

 $g_2(x) = g_1(x) + \frac{2}{3x^3}$

Étudier les variations de g_1 et g_2 sur $]0, +\infty[$ et en déduire leur signe.

- 7) Pour tout entier $n \in \mathbb{N}^*$, exprimer $u_n u_{n+1}$ en fonction de $g_1(n)$ et de
- 8) Montrer que pour tout entier $n \geqslant 1$: $\frac{1}{2n^2} \frac{2}{3n^3} \leqslant u_n u_{n+1} \leqslant \frac{1}{2n^2}$.
- 9) Dans cette question $n \ge 2$ et $p \ge n$.
 - a) En utilisant le théorème des accroissements finis appliqué à la fonction $x\mapsto \frac{1}{x}$ entre k et k+1 (k entier), former un encadrement de $\sum_{k=x}^{p}\frac{1}{k^2}$.
 - b) Former par une méthode analogue à celle de la question précédente un encadrement de $\sum_{k=n}^p \frac{1}{k^3}$.
 - c) Montrer que pour tout $n \in \mathbb{N}$ tel que $n \ge 2$,

$$\frac{1}{n} + \frac{1}{n^2} \le \frac{1}{n-1}$$
 et $\frac{1}{n^2} + \frac{2}{n^3} \le \frac{1}{(n-1)^2}$.

- **d)** En déduire $\frac{1}{2n} \frac{1}{3(n-1)^2} \le u_n \gamma \le \frac{1}{2(n-1)}$.
- 10) Un calcul numérique donne $u_{100} \in [0, 582207; 0, 582208]$. Donner une valeur approchée de γ à 10^{-4} près.

— FIN —