Vorlesung 1 - Ana 2

Florian Bierlage 7.4.2025

Contents

1	Met	rische und Normale Räume	3
	1.1	Def: Metrik, Metrischer Raum	3
	1.2	Def: Norm	3
	1.3	Satz: Norm induziert Metrik	3
	1.4	Def: Skalarprodukt, Euklidischer Raum	
	1.5	Satz: Skalarprodukt induziert Norm	4
		1.5.1 Lemma:	4
	1.6	Def: Äquivalenz von Normen	4
		1.6.1 Beispiel	4
	1.7	Def: Folgenräume	4
		1.7.1 l^p ist VR	4
2	Kon	vergenz in Metrischen Räumen	5
	2.1	Def	5

1 Metrische und Normale Räume

1.1 Def: Metrik, Metrischer Raum

Sei X eine Menge. Dann ist $d: X \times X \to 0, \infty$) eine Metrik, falls

- $d(x, x) = 0, d(x, y) \ge 0$
- d(x, y) = d(y, x)
- $d(x, z) \le d(x, y) + d(y, z)$

und dann ist (X, d) ein Metrischer Raum.

Beispiel:

Sei $X = \mathbb{R}^n$ und $d(x, y) = ||x - y||_p$. Dann ist d eine Metrik.

Die Diskrete Metrik

$$d(x, y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

Die Induzierte Metrik

Sei (X, d) ein metrischer Raum und $A \subset X$, und sei $d_A = d$ dann ist d_A eine Induzierte Metrik auf A

1.2 Def: Norm

Eine funktion $||\cdot||:V\to 0,\infty)$ Ist eine Norm, falls

- $||u|| \ge 0$
- $||\lambda u|| = |\lambda|||u||$
- $||u + v|| \le ||u|| + ||v||$

1.3 Satz: Norm induziert Metrik

Sei $(V, ||\cdot||)$ ein normierter Raum, dann ist d(u, v) = ||u - v|| eine Metrik.

1.4 Def: Skalarprodukt, Euklidischer Raum

sei V ein reeller Vektorraum, $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ ist ein Skalarprodukt, falls

- $\langle u, v \rangle = v, u \rangle$
- $\langle \lambda u + \mu v, w \rangle = \lambda \langle u, v \rangle + \mu \langle v, w \rangle$
- $\langle u, u \rangle \ge 0$

Dann ist $(V, \langle \cdot, \cdot \rangle)$ ein euklidischer Raum.

1.5 Satz: Skalarprodukt induziert Norm

Sei $(V, \langle \cdot, \cdot \rangle)$ ein euklidischer Raum. Dann definiert $||u|| = \sqrt{\langle u, u \rangle}$ eine Norm auf V.

1.5.1 Lemma:

Sei V ein euklidischer Raum. Dann ist $\langle u, v \rangle \le ||u||||v||$. Beweis: $0 \le ||\lambda u - v||^2$

1.6 Def: Äquivalenz von Normen

Zwei normen f, g sind Äquivalent auf einem Vektorraum V, falls konstanten $c_1, c_2 > 0$ existieren s.d. $c_2 f(u) \le g(u) \le c_1 f(u)$ für alle $u \in V$.

1.6.1 Beispiel

 $||\cdot||_{\infty}$ und $|\cdot|$ sind äquivalent auf \mathbb{R}^n

$$||x||_{\infty} \le |x| = \left(\sum_{i=1}^{n} x_i^2\right)^{1/2} \le \left(n \max_i |x_i|^2\right)^{1/2} = \sqrt{n}||x||_{\infty}$$

Alle Normen auf \mathbb{R}^n sind äquivalent. Dies gilt nicht für unendliche Räume.

1.7 Def: Folgenräume

$$V = \{(x_i)_{i \in \mathbb{N}} | x_i \in \mathbb{R} \}$$

$$||x||_{l^p} = (\sum_i^{\infty} x^p)^{1/p}$$

$$||x||_{l^p} = \sup_{i \in \mathbb{N}} |x_i|$$

$$l^p := \{x \in V |||x||_{l^p} < \infty \}$$

1.7.1 lp ist VR

für l = 1. $x \in \ell^1 \Rightarrow \lambda x \in \ell^1$ für $\lambda \in \mathbb{R}$, weil

$$||\lambda x||_{\ell^1} = \sum_{i=1}^{\infty} |\lambda x_i| = |\lambda| \sum_{i=1}^{\infty} x_i < \infty$$

Wenn $x, y \in \ell^1$ dann $x + y \in \ell^1$.

$$\sum_{i=1}^{N} |x_i + y_i| = \sum_{i=1}^{N} |x_i| + \sum_{i=1}^{N} |y_i| \le ||x||_{\ell^1} + ||y||_{\ell^1}$$

 $\sum_{i}^{N}|x_{i}+y_{i}| \text{ ist monoton wachsend und beschränkt, also konvergent. Somit } x+y \in \mathscr{C}^{1}.$ Es gilt $||x||_{\mathscr{C}^{\infty}} \leq ||x||_{\mathscr{C}^{1}}$ und somit $\mathscr{C}^{1} \subset \mathscr{C}^{\infty}$.

zu
$$\epsilon > 0 \exists i \text{ s.d. } |x_i| \ge ||x||_{\ell^{\infty}} - \epsilon$$

Somit $||x||_{\ell^{\infty}} \le |x_i| + \epsilon \le \sum_{i=1}^{\infty} |x_i| + \epsilon$

2 Konvergenz in Metrischen Räumen

2.1 Def:

Sei X ein metrischer Raum mit d. Eine Folge $(x_n) \subset X$ heißt beschränkt, falls $x_0 \in X$ und K > 0 sodass $d(x_k, x_0) \leq K$ für alle k. $(x_n) \subset X$ heißt konvergent, falls ein $x \in X$ existiert sodass $d(x_k, x) \to 0$ für $k \to \infty$.

2.2 Satz: Bolzano Weierstraß

Jede beschränkte Folge in \mathbb{R}^n besitzt eine konvergente Teilfolge

2.3 Def:

Sei X ein metrischer Raum und $(x^k) \subset X$ eine Folge. Diese Folge ist eine Cauchy Folge, falls für alle $\epsilon > 0$ ein $k_0 \in \mathbb{N}$ existiert s.d. $d(x^k, x^m) < \epsilon$ für all $k, m \ge k_0$

2.4 Jede konvergente Folge ist Cauchy

Nicht jede Cauchy Folge ist konvergent. Beispiel: $X = \mathbb{Q}$ mit d(p, q) = |p - q|.

2.5 Def: Vollständiger Raum

Ein Metrischer Raum X heißt vollständig, falls jede Cauchy Folge darin konvergiert. Ein Vollständiger Normierter Raum heißt Banach Raum. Ein Vollständiger Euklidischer Raum heißt Hilbert Raum.