Análisis de Complejidad Reto 4

Estudiante 1: Juan Felipe García 202014961 jf.garciam1

Estudiante 2: Santiago Rodríguez 202020476 s.rodriguez64

Requerimiento 1: El requerimiento 1 tiene una complejidad de O(V+E) esto se debe a el algoritmo de Kosraju el cual tiene la complejidad de O(V+E), después de esto la complejidad es menor.

Requerimiento 2: El requerimiento 2 tiene complejidad O(V) esto se debe a que se hace un ciclo a partir del numero de vértices.

Requerimiento 3 :El requerimiento 3 tiene complejidad O(Elog(V)) esto se debe a que el algoritmo de Dijkstra tiene esta complejidad y aparte de esto después se realiza un ciclo sobre el camino el cual no cambia la complejidad.

Requerimiento 4: El requerimiento 4 tiene una complejidad de O(Elog(V)) Esto se debe a los algoritmos de Dijkstra y Prim los cuales poseen esta complejidad, posterior a la aplicación de estos algoritmo existen ciclos pero estos no poseen mayor complejidad que lo anteriormente mencionado.

Requerimiento 5: Si n es el numero de vecinos el requerimiento 5 tiene una complejidad de O(nlogn) debido al sort que se hace cuando se ordenan los vecinos, pero este es un proceso muy rápido por lo que consideramos que el peor de los casos seria O(n) debido al ciclo existente en el proceso.

Estas son las comparaciones de memoria y rendimiento de la maquina 1 y 2.

Maquina 1:

Maquina 1	Req 1	Req 2		Req 3	Req 4	Req 5
Tiempo	4132.512		72.647	2053.123	3720.354	68.329
Memoria	3576.234		6.747	2430.090	6900.123	20.731

Maquina 2:

Maquina 2	Req 1	Req 2	Req 3	Req 4	Req 5
Tiempo	3379.339	50.897	1593.328	3626.084	56.255
Memoria	3413.196	5.695	2366.707	6400.404	13.180