PRACTICE PROBLEMS BASED ON MULTILEVEL PAGING-

Problem-01:

Consider a system using multilevel paging scheme. The page size is 1 MB. The memory is byte addressable and virtual address is 64 bits long. The page table entry size is 4 bytes.

Find-

- 1. How many levels of page table will be required?
- 2. Give the divided physical address and virtual address.

Solution-

Given-

- Virtual Address = 64 bits
- Page size = 1 MB
- Page table entry size = 4 bytes

Number of Bits in Frame Number-

We have,

Page table entry size

- = 4 bytes
- = 32 bits

Thus, Number of bits in frame number = 32 bits

Number of Frames in Main Memory-

We have, Number of bits in frame number = 32 bits Thus,

Number of frames in main memory

 $= 2^{32}$ frames

Size of Main Memory-

Size of main memory

- = Total number of frames x Frame size
- $= 2^{32} \times 1 MB$
- $= 2^{52} B$

Thus, Number of bits in physical address = 52 bits

Number of Bits in Page Offset-

We have,

Page size

- = 1 MB
- $= 2^{20} B$

Thus, Number of bits in page offset = 20 bits

Alternatively,

Number of bits in page offset

- = Number of bits in physical address Number of bits in frame number
- = 52 bits 32 bits
- = 20 bits

Process Size-

Number of bits in virtual address = 64 bits

Thus,

Process size

Number of Pages of Process-

Number of pages the process is divided

- = Process size / Page size
- $= 2^{64} B / 1 MB$
- $= 2^{64} B / 2^{20} B$
- = 2⁴⁴ pages

Inner Page Table Size-

Inner page table keeps track of the frames storing the pages of process.

Inner page table size

- = Number of entries in inner page table x Page table entry size
- = Number of pages the process is divided x Page table entry size
- $= 2^{44} \times 4 \text{ bytes}$
- = 2⁴⁶ bytes

Now, we can observe-

- The size of inner page table is greater than the frame size (1 MB).
- Thus, inner page table can not be stored in a single frame.
- So, inner page table has to be divided into pages.

Number of Pages of Inner Page Table-

Number of pages the inner page table is divided

- = Inner page table size / Page size
- = 2⁴⁶ B / 1 MB
- $= 2^{46} B / 2^{20} B$
- = 2²⁶ pages

Now, these 2²⁶ pages of inner page table are stored in different frames of the main memory.

Number of Page Table Entries in One Page of Inner Page Table-

Number of page table entries in one page of inner page table

- = Page size / Page table entry size
- = 1 MB / 4 B
- $= 2^{20} B / 2^2 B$
- = 2¹⁸ entries

Number of Bits Required to Search an Entry in One Page of Inner Page Table-

One page of inner page table contains 2¹⁸ entries.

Thus.

Number of bits required to search a particular entry in one page of inner page table = 18 bits

Outer Page Table-1 Size-

Outer page table-1 is required to keep track of the frames storing the pages of inner page table.

Outer page table-1 size

- = Number of entries in outer page table-1 x Page table entry size
- = Number of pages the inner page table is divided x Page table entry size
- $= 2^{26} \times 4 \text{ bytes}$
- $= 2^{28}$ bytes
- = 256 MB

Now, we can observe-

- The size of outer page table-1 is greater than the frame size (1 MB).
- Thus, outer page table-1 can not be stored in a single frame.
- So, outer page table-1 has to be divided into pages.

Number of Pages of Outer Page Table-1

Number of pages the outer page table-1 is divided

- = Outer page table-1 size / Page size
- = 256 MB / 1 MB
- = 256 pages

Now, these 256 pages of outer page table-1 are stored in different frames of the main memory.

Number of Page Table Entries in One Page of Outer Page Table-1

Number of page table entries in one page of outer page table-1

- = Page size / Page table entry size
- = 1 MB / 4 B
- $= 2^{20} B / 2^2 B$
- $= 2^{18}$ entries

Number of Bits Required to Search an Entry in One Page of Outer Page Table-1

One page of outer page table-1 contains 2¹⁸ entries.

Thus,

Number of bits required to search a particular entry in one page of outer page table-1 = 18 bits

Outer Page Table-2 Size-

Outer page table-2 is required to keep track of the frames storing the pages of outer page table-1.

Outer page table-2 size

- = Number of entries in outer page table-2 x Page table entry size
- = Number of pages the outer page table-1 is divided x Page table entry size
- $= 256 \times 4$ bytes
- = 1 KB

Now, we can observe-

- The size of outer page table-2 is less than the frame size (16 KB).
- Thus, outer page table-2 can be stored in a single frame.
- In fact, outer page table-2 will not completely occupy one frame and some space will remain vacant.
- So, for given system, we will have three levels of page table.
- Page Table Base Register (PTBR) will store the base address of the outer page table-2.

Number of Bits Required to Search an Entry in Outer Page Table-2

Outer page table-2 contains $256 = 2^8$ entries.

Thus, Number of bits required to search a particular entry in outer page table-2 = 8 bits

The paging system will look like as shown below-

Problem-02:

Consider a system using multilevel paging scheme. The page size is 1 GB. The memory is byte addressable and virtual address is 72 bits long. The page table entry size is 4 bytes.

Find-

- 1. How many levels of page table will be required?
- 2. Give the divided physical address and virtual address.

Solution-

Given-

- Virtual Address = 72 bits
- Page size = 1 GB
- Page table entry size = 4 bytes

Number of Bits in Frame Number-

We have,

Page table entry size

- = 4 bytes
- = 32 bits

Thus, Number of bits in frame number = 32 bits

Number of Frames in Main Memory-

We have, Number of bits in frame number = 32 bits

Thus,

Number of frames in main memory

 $= 2^{32}$ frames

Size of Main Memory-

Size of main memory

- = Total number of frames x Frame size
- $= 2^{32} \times 1 GB$
- $= 2^{62} B$

Thus, Number of bits in physical address = 62 bits

Number of Bits in Page Offset-

We have,

Page size

- = 1 GB
- $= 2^{30} B$

Thus, Number of bits in page offset = 30 bits

Alternatively,

Number of bits in page offset

- = Number of bits in physical address Number of bits in frame number
- = 62 bits 32 bits
- = 30 bits

Process Size-

Number of bits in virtual address = 72 bits

Thus.

Process size

= 2⁷² bytes

Number of Pages of Process-

Number of pages the process is divided

- = Process size / Page size
- $= 2^{72} B / 1 GB$
- $= 2^{72} B / 2^{30} B$
- = 2⁴² pages

Inner Page Table Size-

Inner page table keeps track of the frames storing the pages of process.

Inner page table size

- = Number of entries in inner page table x Page table entry size
- = Number of pages the process is divided x Page table entry size
- $= 2^{42} \times 4 \text{ bytes}$
- = 2⁴⁴ bytes

Now, we can observe-

- The size of inner page table is greater than the frame size (1 GB).
- Thus, inner page table can not be stored in a single frame.
- So, inner page table has to be divided into pages.

Number of Pages of Inner Page Table-

Number of pages the inner page table is divided

- = Inner page table size / Page size
- = 2⁴⁴ B / 1 GB
- $= 2^{44} B / 2^{30} B$
- = 2¹⁴ pages

Now, these 2¹⁴ pages of inner page table are stored in different frames of the main memory.

Number of Page Table Entries in One Page of Inner Page Table-

Number of page table entries in one page of inner page table

- = Page size / Page table entry size
- = 1 GB / 4 B
- $= 2^{30} B / 2^{2} B$
- $= 2^{28}$ entries

Number of Bits Required to Search an Entry in One Page of Inner Page Table-

One page of inner page table contains 2²⁸ entries.

Thus,

Number of bits required to search a particular entry in one page of inner page table = 28 bits

Outer Page Table Size-

Outer page table is required to keep track of the frames storing the pages of inner page table.

Outer page table size

- = Number of entries in outer page table x Page table entry size
- = Number of pages the inner page table is divided x Page table entry size
- $= 2^{14} \times 4 \text{ bytes}$
- = 2¹⁶ bytes
- = 64 KB

Now, we can observe-

- The size of outer page table is less than the frame size (1 GB).
- Thus, outer page table can be stored in a single frame.
- In fact, outer page table will not completely occupy one frame and some space will remain vacant.
- So, for given system, we will have two levels of page table.
- Page Table Base Register (PTBR) will store the base address of the outer page table.

Number of Bits Required to Search an Entry in Outer Page Table-

Outer page table contains 2¹⁴ entries.

Thus, Number of bits required to search a particular entry in outer page table = 14 bits

The paging system will look like as shown below-

Problem-03:

Consider a system using multilevel paging scheme. The page size is 256 MB. The memory is byte addressable and virtual address is 72 bits long. The page table entry size is 4 bytes.

Find-

- 1. How many levels of page table will be required?
- 2. Give the divided physical address and virtual address.

Solution-

Given-

- Virtual Address = 72 bits
- Page size = 256 MB
- Page table entry size = 4 bytes

Number of Bits in Frame Number-

We have,

Page table entry size

- = 4 bytes
- = 32 bits

Thus, Number of bits in frame number = 32 bits

Number of Frames in Main Memory-

We have, Number of bits in frame number = 32 bits

Thus,

Number of frames in main memory

= 2³² frames

Size of Main Memory-

Size of main memory

- = Total number of frames x Frame size
- $= 2^{32} \times 256 MB$
- $= 2^{60} B$

Number of Bits in Page Offset-

We have,

Page size

= 256 MB

 $= 2^{28} B$

Thus, Number of bits in page offset = 28 bits

Alternatively,

Number of bits in page offset

- = Number of bits in physical address Number of bits in frame number
- = 60 bits 32 bits
- = 28 bits

Process Size-

Number of bits in virtual address = 72 bits

Thus,

Process size

 $= 2^{72}$ bytes

Number of Pages of Process-

Number of pages the process is divided

- = Process size / Page size
- = 2⁷² B / 256 MB
- $= 2^{72} B / 2^{28} B$

= 2⁴⁴ pages

Inner Page Table Size-

Inner page table keeps track of the frames storing the pages of process.

Inner page table size

- = Number of entries in inner page table x Page table entry size
- = Number of pages the process is divided x Page table entry size
- $= 2^{44} \times 4 \text{ bytes}$
- $= 2^{46}$ bytes

Now, we can observe-

- The size of inner page table is greater than the frame size (256 MB).
- Thus, inner page table can not be stored in a single frame.
- So, inner page table has to be divided into pages.

Number of Pages of Inner Page Table-

Number of pages the inner page table is divided

- = Inner page table size / Page size
- $= 2^{46} B / 256 MB$
- $= 2^{46} B / 2^{28} B$
- = 2¹⁸ pages

Now, these 2¹⁸ pages of inner page table are stored in different frames of the main memory.

Number of Page Table Entries in One Page of Inner Page Table-

Number of page table entries in one page of inner page table

= Page size / Page table entry size

- = 256 MB / 4 B
- $= 2^{28} B / 2^2 B$
- = 2²⁶ entries

Number of Bits Required to Search an Entry in One Page of Inner Page Table-

One page of inner page table contains 2²⁶ entries.

Thus,

Number of bits required to search a particular entry in one page of inner page table = 26 bits

Outer Page Table Size-

Outer page table is required to keep track of the frames storing the pages of inner page table.

Outer page table size

- = Number of entries in outer page table x Page table entry size
- = Number of pages the inner page table is divided x Page table entry size
- $= 2^{18} \times 4 \text{ bytes}$
- $= 2^{20}$ bytes
- = 1 MB

Now, we can observe-

- The size of outer page table is less than the frame size (256 MB).
- Thus, outer page table can be stored in a single frame.
- In fact, outer page table will not completely occupy one frame and some space will remain vacant.
- So, for given system, we will have two levels of page table.
- Page Table Base Register (PTBR) will store the base address of the outer page table.

Number of Bits Required to Search an Entry in Outer Page Table-

Outer page table contains 2¹⁸ entries.

Thus,

Number of bits required to search a particular entry in outer page table = 18 bits

The paging system will look like as shown below-

Problem-04:

Consider a system using multilevel paging scheme. The page size is 16 MB. The memory is byte addressable and virtual address is 72 bits long. The page table entry size is 4 bytes.

Find-

- 1. How many levels of page table will be required?
- 2. Give the divided physical address and virtual address.

Solution-

Given-

- Virtual Address = 72 bits
- Page size = 16 MB
- Page table entry size = 4 bytes

Number of Bits in Frame Number-

We have,

Page table entry size

- = 4 bytes
- = 32 bits

Thus, Number of bits in frame number = 32 bits

Number of Frames in Main Memory-

We have, Number of bits in frame number = 32 bits Thus,

Number of frames in main memory

 $= 2^{32}$ frames

Size of Main Memory-

Size of main memory

- = Total number of frames x Frame size
- $= 2^{32} \times 16 MB$
- $= 2^{56} B$

Thus, Number of bits in physical address = 56 bits

Number of Bits in Page Offset-

We have,

Page size

= 16 MB

 $= 2^{24} B$

Thus, Number of bits in page offset = 24 bits

Alternatively,

Number of bits in page offset

- = Number of bits in physical address Number of bits in frame number
- = 56 bits 32 bits
- = 24 bits

Process Size-

Number of bits in virtual address = 72 bits

Thus,

Process size

 \bigcirc = 2^{72} bytes

Number of Pages of Process-

Number of pages the process is divided

- = Process size / Page size
- $= 2^{72} B / 16 MB$
- $= 2^{72} B / 2^{24} B$
- = 2⁴⁸ pages

Inner Page Table Size-

Inner page table keeps track of the frames storing the pages of process.

Inner page table size

- = Number of entries in inner page table x Page table entry size
- = Number of pages the process is divided x Page table entry size
- $= 2^{48} \times 4 \text{ bytes}$
- $= 2^{50}$ bytes

Now, we can observe-

- The size of inner page table is greater than the frame size (16 MB).
- Thus, inner page table can not be stored in a single frame.
- So, inner page table has to be divided into pages.

Number of Pages of Inner Page Table-

Number of pages the inner page table is divided

- = Inner page table size / Page size
- $= 2^{50} B / 16 MB$
- $= 2^{50} B / 2^{24} B$
- = 2²⁶ pages

Now, these 2²⁶ pages of inner page table are stored in different frames of the main memory.

Number of Page Table Entries in One Page of Inner Page Table-

Number of page table entries in one page of inner page table

- = Page size / Page table entry size
- = 16 MB / 4 B
- $= 2^{24} B / 2^2 B$
- = 2²² entries

Number of Bits Required to Search an Entry in One Page of Inner Page Table-

One page of inner page table contains 2²² entries.

Thus,

Number of bits required to search a particular entry in one page of inner page table = 22 bits

Outer Page Table-1 Size-

Outer page table-1 is required to keep track of the frames storing the pages of inner page table.

Outer page table-1 size

- = Number of entries in outer page table-1 x Page table entry size
- = Number of pages the inner page table is divided x Page table entry size
- $= 2^{26} \times 4 \text{ bytes}$
- $= 2^{28}$ bytes
- = 256 MB

Now, we can observe-

- The size of outer page table-1 is greater than the frame size (16 MB).
- Thus, outer page table-1 can not be stored in a single frame.
- So, outer page table-1 has to be divided into pages.

Number of Pages of Outer Page Table-1

Number of pages the outer page table-1 is divided

- = Outer page table-1 size / Page size
- = 256 MB / 16 MB
- = 16 pages

Now, these 16 pages of outer page table-1 are stored in different frames of the main memory.

Number of Page Table Entries in One Page of Outer Page Table-1

Number of page table entries in one page of outer page table-1

- = Page size / Page table entry size
- = 16 MB / 4 B
- $= 2^{24} B / 2^{2} B$
- = 2²² entries

Number of Bits Required to Search an Entry in One Page of Outer Page Table-1

One page of outer page table-1 contains 2^{22} entries.

Thus,

Number of bits required to search a particular entry in one page of outer page table-1 = 22 bits

Outer Page Table-2 Size-

Outer page table-2 is required to keep track of the frames storing the pages of outer page table-1.

Outer page table-2 size

- = Number of entries in outer page table-2 x Page table entry size
- = Number of pages the outer page table-1 is divided x Page table entry size
- $= 16 \times 4 \text{ bytes}$
- = 64 bytes

Now, we can observe-

- The size of outer page table-2 is less than the frame size (16 MB).
- Thus, outer page table-2 can be stored in a single frame.
- In fact, outer page table-2 will not completely occupy one frame and some space will remain vacant.
- So, for given system, we will have three levels of page table.
- Page Table Base Register (PTBR) will store the base address of the outer page table-2.

Number of Bits Required to Search an Entry in Outer Page Table-2

Outer page table-2 contains $16 = 2^4$ entries.

Thus,

Number of bits required to search a particular entry in outer page table-2 = 4 bits

The paging system will look like as shown below-

