弗兰克-赫兹实验

曾弘倓 2400011513

一、预习

1、弗兰克-赫兹实验的主要现象是什么?该现象说明了什么物理问题?

现象:随着加速电压的增加,测量出的电流会先增加,在某一个特殊的电压处,电流会骤降,随后又会继续增加,再在某一个点骤降。上述过程还会重复多次,电流出现多次极大极小,呈现出明显的周期性。

物理问题:出现这个现象的原因是电子与原子(汞原子或氩原子)间的碰撞。加速电压越大,电子也就越快,相应到达极板的电子也就越多,电流也就越大。而在特定点电流骤降,说明存在一个过程使得电子速度下降很多。这可以表明,电子与汞原子的碰撞由弹性变为非弹性,使原子由基态跃迁进入激发态。电子剩余能量无法克服反向电压,从而电流减小。而将电压继续增大,电子剩余能量足以克服反向电压,电流又继续增大,直到发生第二次碰撞。这个过程后续还会出现多次。该现象支持原子能级的概念,证明了汞原子能级的存在。

2、说明四栅式弗兰克-赫兹管的基本结构和各个电极的作用;

基本结构:基本结构为 F-H 管。其内包含灯丝和四个栅极(阴极,第一栅极,第二栅极,极板)

各电极的作用:(1)阴极:被灯丝加热后发射电子。

- (2)第一栅极:加一个比阴极略高的电势。消除阴极附近的空间电荷(电子堆积)效应。 改变电压即可控制阴极发射电子流的强度。只要控制其电压不变,就可以保证发射电子流的 强度不会随加速电压的改变而改变。
 - (3) 第二栅极:与阴极间加一可变正电压,使电子获得能量,与原子不断发生碰撞。
 - (4) 极板: 极板与第二栅极间加一减速电压, 使得能量较低的电子无法到达极板。
- 3、实验中如何做到只观察汞的第一激发态?电路和参数设置上有什么考虑?如要观察高激发态,电路和参数设置上要做什么调整?

为了只看到汞原子的第一激发态,要让电子与汞原子充分碰撞,就要缩短电子的自由程。故使用较高的温度来预热汞管(180°C),以增加汞原子的数密度。另外要使电子的加速过程比较缓慢,可以将加速电压加在阴极和第二栅极之间,使电子发生充分的碰撞。如果想观察高激发态,则需要缩短电子的自由程,降低汞管的温度(130°C)。还需要让电子在很短的时间内加速到很快的速度,可以将加速电压接到阴极和第一栅极之间,而一二栅极连起

来或加一小电压来形成一个碰撞区。

4、微电流放大器为什么可以同时获得高放大倍数和小输入阻抗?

反馈电阻较大,所以很小的电流仍然可以获得较大的电压。而其又具有很大的开环增益,故有很小的输入阻抗。

5、如果希望测量汞的电离能,电路和参数应当如何设置?

如果希望测量汞的电离能,电路应该和测量高激发态的电路一致,将加速电压接到阴极和第一栅极之间。汞管的温度应该进一步调低($70\sim100^{\circ}C$)。

二、实测和思考(实验只测了氩管)

1、数据记录

$$U_{HH} = 2.8V \quad U_{AG_2} = 6.5V \quad U_{G_1k} = 2.0V$$
 (1)

图 1: $I - U_{G_2k}$ 关系曲线

表 1: 实验数据

表 1: 实验数据					
	$I/(1 \times 10^{-8} A)$				$I/(1 \times 10^{-8} A)$
0.0	0.0	1.0	0.0	2.0	0.0
3.0	0.0	4.0	0.0	5.0	0.0
6.0	0.0	7.0	0.0	8.0	0.0
9.0	0.0	10.0	0.4	11.0	1.0
12.0	1.9	13.0	2.5	14.0	2.9
15.0	3.3	16.0	3.6	17.0	3.9
18.0	4.2	19.0	4.5	20.0	4.6
21.0	4.6	22.0	4.2	23.0	3.7
24.0	3.2	25.0	3.8	26.0	5.2
27.0	6.6	28.0	7.6	29.0	8.3
30.0	8.8	31.0	8.5	32.0	7.6
33.0	6.1	34.0	4.5	35.0	3.7
36.0	5.1	37.0	7.5	38.0	9.7
39.0	11.5	40.0	12.6	41.0	12.9
42.0	12.6	43.0	11.3	44.0	9.3
45.0	6.7	46.0	4.9	47.0	6.1
48.0	9.0	49.0	12.0	50.0	14.1
51.0	15.8	52.0	16.6	53.0	16.7
54.0	15.8	55.0	14.0	56.0	11.3
57.0	8.6	58.0	7.3	59.0	9.3
60.0	12.3	61.0	15.3	62.0	17.5
63.0	19.0	64.0	19.9	65.0	19.9
66.0	19.0	67.0	17.2	68.0	14.7
69.0	11.7	70.0	10.7	71.0	11.9
72.0	14.2	73.0	16.5	74.0	18.7
75.0	20.6	76.0	20.9	77.0	21.2
78.0	21.0	79.0	19.9	80.0	18.2
81.0	16.2	82.0	15.1	83.0	15.3
84.0	16.7	85.0	18.3		

从图中我们可以看见,输出的电流随电压存在一个类似周期变化的关系。当电子能量小于氩原子的第一激发电位时,发生的是弹性碰撞,电子几乎不损失能量,电流随电压增加而增加。当达到第一激发电位时,发生非弹性碰撞,电子能量减少,无法克服反向电压,从而

电流减小。随着电压继续增加,电子碰撞后的剩余能量足以克服反向电压,电流又会继续增 大,直到发生第二次碰撞。这个过程就是周期性的由来。

2、计算氩原子的第一激发电位。

 $I(1 \times 10^{-8} A)$ 达到峰值的点:

表 2: 达到极大值的点 峰序 1 2 5 3 4 U_{G_2k}/V 20.0 30.041.0 53.064.077.0

6

图 2: U_{G_2k} -峰序拟合直线

$$b = 11.36 \pm 0.25$$
 $a = 7.84 \pm 0.97$ $r = 0.9991$ (2)

第一激发电位即为斜率 b:

$$U_1 = 11.36 \pm 0.25(V) \tag{3}$$

误差分析: 该实验误差来源可能有以下几种

- (1)测量仪器误差:实验用的仪器所给有效数字都相当少,测量时的值会在一个区间内变化,会有相当大的随机误差。
 - (2) 操作不一定正确:每次测量时很有可能没有等充分的时间让示数稳定就记录数据。