concours externe SESSION D de recrutement de professeurs agrégés

composition d'analyse

NOTATIONS ET DÉFINITIONS

Dans tout le problème, \mathbb{R}^+ désigne l'intervalle réel $[0, + \infty]$.

Lorsque f est une fonction bornée de \mathbb{R} dans \mathbb{C} , on note $||f||_{\infty}$, ou par abus $||f(x)||_{\infty}$, la borne supérieure de |f| sur \mathbb{R} .

Un poids sur R est une application réglée de R dans R^+ . Mentionnons qu'une application f de R dans R est dite réglée si elle possède des limites à droite et à gauche en tout point; une telle application est alors bornée sur tout segment de R.

Si X et Y sont deux espaces topologiques, $\mathscr{C}(X, Y)$ désigne l'ensemble des applications continues de X dans Y. On note $\mathscr{C}^{\infty}(R, C)$ l'algèbre des applications de R dans C possédant des dérivées à tous ordres.

Lorsque z est dans $\mathbf{D} = \{z \in \mathbb{C} | \operatorname{Im}(z) \neq 0\}$, on désigne par \mathcal{H}_z la sous-algèbre de $\mathscr{C}(\mathbf{R}, \mathbb{C})$ engendrée par les fonctions de la variable réelle t:

$$g_z(t) \neq \frac{1}{t-z}$$
 et $\bar{g}_z(t) = \frac{1}{t-\bar{z}}$

On utilisera librement le théorème de Stone-Weierstrass, sous sa forme usuelle ou sous la forme suivante :

Soit X un espace compact; on munit $\mathscr{C}(X,C)$ de la norme de la convergence uniforme, et l'on se donne une sous-algèbre \mathscr{A} de $\mathscr{C}(X,C)$ (non nécessairement unitaire) telle que :

- (i) Si la fonction f est dans \mathcal{A} , la fonction conjuguée \overline{f} est aussi dans \mathcal{A} .
- (ii) Pour tout x et tout y de X, distincts, il existe f dans \mathcal{A} telle que $f(x) \neq f(y)$.

Alors on est dans l'un des deux cas suivants :

Cas $n^o 1$: \mathcal{A} est dense dans $\mathcal{C}(X, \mathbb{C})$;

Cas n^o 2: Il existe a dans X tel que ${\mathcal A}$ soit dense dans l'algèbre des fonctions continues de X dans C s'annulant au point a.

On notera \mathcal{P}_R l'algèbre des fonctions polynômes de R dans R, et \mathcal{P}_C l'algèbre des fonctions polynômes de R dans C.

Le but du problème est d'étudier à quelle condition $\mathscr{P}_{\mathbb{C}}$ est un sous-espace dense de certains espaces vectoriels normés de fonctions continues de \mathbb{R} dans \mathbb{C} , puis de tirer quelques conséquences des résultats obtenus.

I. RÉSULTATS PRÉLIMINAIRES

A. Une propriété des transformées de Laplace

- 1. a. Soit g une fonction continue du segment [a, b] de R dans R, et soit (P_n) une suite de \mathscr{P}_R convergeant uniformément vers g sur [a, b]. Montrer que la suite $\left(\int_a^b P_n(t) g(t) dt\right)$ converge vers $\int_a^b g^2(t) dt$.
 - b. Soit fune fonction continue du segment [a, b] de R dans C, telle que $\int_a^b f(t)t^n dt = 0$ pour tout n dans N. Montrer que f est nulle. On pourra employer le théorème de Stone-Weierstrass.
 - c. On considère la fonction f définie sur \mathbb{R}^+ par $f(x) = \exp\left(-x^{\frac{1}{4}}\right) \sin\left(x^{\frac{1}{4}}\right)$. Montrer que, pour tout n dans \mathbb{N} : $\int_0^{+\infty} f(x) x^n dx = 0.$

Qu'en conclure?

2. Dans cette question, f est une fonction continue de \mathbb{R}^+ dans \mathbb{C} . Lorsque s est dans \mathbb{R} , on pose, si l'intégrale converge,

$$L(s) = \int_0^{+\infty} f(t) e^{-st} dt.$$

- a. Soit s_0 dans **R**. Si $\int_0^+ \infty f(t) e^{-s_0 t} dt$ converge, montrer que $\int_0^+ \infty f(t) e^{-st} dt$ converge pour tout $s > s_0$.

 Indication: introduire la fonction $F(x) = \int_0^x f(t) e^{-s_0 t} dt$ et effectuer une intégration par parties.
- b. On suppose que $\int_0^{+\infty} f(t) e^{-s_0 t} dt$ converge, et que L(s) = 0 pour tout nombre réel $s \ge s_0$.
 - (i) Avec les notations du 2.a. prouver que $\int_0^{+\infty} F(t) e^{-(s-s_0)t} dt = 0$ pour tout nombre réel $s > s_0$.
 - (ii) En utilisant un changement de variable et le 1.b., montrer que f est nulle.

B. Approximation de l'exponentielle

1. *a*. Pour *n* dans N*, on pose $u_n = e^{-n} \frac{n^n}{n!} \sqrt{n}$. À l'aide de la série de terme général : $v_n = \text{Log } u_{n+1} - \text{Log } u_n$,

montrer que la suite (u_n) converge.

- b. Montrer que, pour tout x dans \mathbb{R}^+ : $\left| e^{-x} \sum_{k=0}^n \frac{(-1)^k x^k}{k!} \right| \le \frac{x^{n+1}}{(n+1)!}$
- c. Prouver que la suite de fonctions ϕ_n définie sur \mathbb{R}^+ par : $\phi_n(x) = e^{-2x} e^{-x} \left(\sum_{k=0}^n \frac{(-1)^k x^k}{k!} \right)$ converge uniformément vers 0.
- 2. Montrer que, pour tout entier $p \ge 1$, la fonction $x \mapsto e^{-px}$ est limite uniforme sur \mathbb{R}^+ d'une suite de fonctions de la forme $x \mapsto P_n(x) e^{-x}$, avec P_n dans $\mathscr{P}_{\mathbb{R}}$.

Indication: raisonner par récurrence sur p, en remplaçant x par $\frac{px}{2}$ dans le résultat de B.1., et utiliser l'hypothèse de récurrence appliquée à $x \mapsto e^{-(p-1)\frac{x}{2}}$.

- 3. On note, ici et dans la suite, \mathscr{C}_0^+ l'algèbre des fonctions continues de \mathbf{R}^+ dans \mathbf{R} tendant vers $\mathbf{0}$ en $+\infty$, munie de la norme de la convergence uniforme sur \mathbf{R}^+ .
 - a. Prouver que l'espace vectoriel engendré par les fonctions définies sur \mathbb{R}^+ par $x \mapsto e^{-px}$, où p décrit \mathbb{N}^* , est dense dans \mathscr{C}_0^+ .
 - b. Montrer que l'espace vectoriel des fonctions définies sur \mathbb{R}^+ par $x \mapsto P(x) e^{-x}$, où P décrit $\mathscr{P}_{\mathbb{R}}$, est dense dans \mathscr{C}_0^+ .

II. PREMIÈRES PROPRIÉTÉS DES ESPACES PONDÉRÉS

Dans toute la suite du problème \mathscr{C}_0 désigne l'algèbre des fonctions continues de \mathbb{R} dans \mathbb{C} tendant vers 0 en $-\infty$ et en $+\infty$.

Soit E un espace vectoriel sur C. On appelle semi-norme sur E toute application p de E dans \mathbb{R}^+ telle que :

- 1º Pour tout x de E et tout λ de C, $p(\lambda x) = |\lambda| p(x)$;
- 2° Pour tout couple (x, y) de E^2 , $p(x + y) \le p(x) + p(y)$.

La topologie T de E associée à une semi-norme p est alors définie de la façon suivante :

- si le point x est dans E et le nombre ε dans]0, + ∞[, la boule ouverte de centre x et de rayon ε pour p est l'ensemble B_p(x, ε) des points y de E tels que p(x y) < ε;
- une partie U de E est ouverte pour T si et seulement si, à tout point x de U, on peut associer un nombre réel ε strictement positif tel que la boule $B_{\rho}(x,\varepsilon)$ soit incluse dans U.

page 10 <u>AGREGATION</u> <u>de MATHEMATIQUES</u>: 1991 3/5 <u>externe-analyse</u>

L'adhérence, intérieur, etc., d'une partie A de E pour T sont alors respectivement appelés adhérence, intérieur, etc. de A pour p. On utilisera en particulier le fait qu'un point x de E est dans l'adhérence d'une partie A pour la semi-norme p si et seulement s'il existe une suite (a_n) de points de A telle que la suite réelle $(p(x-a_n))$ tende vers 0.

Lorsque ω est un poids, on note \mathscr{A}_{ω} l'espace vectoriel des applications continues f de \mathbb{R} dans \mathbb{C} telles que l'application $f\omega : \mathbb{R} \to \mathbb{C}$, $x \mapsto f(x)\omega(x)$ tende vers 0 en $+\infty$ et en $-\infty$.

Si f est dans \mathscr{A}_{ω} , on note $||f||_{\omega}$ le réel $||f\omega||_{\omega}$; $|| ||_{\omega}$ définit alors une semi-norme sur \mathscr{A}_{ω} . Lorsque X est inclus dans \mathscr{A}_{ω} , \overline{X}^{ω} désigne l'adhérence de X pour $|| ||_{\omega}$.

Nous dirons, ici et dans toute la suite, que le poids ω est à décroissance rapide si $\mathscr{P}_{\mathbb{C}}$ est contenu dans \mathscr{A}_{ω} , et que ω est fondamental si de plus $\mathscr{P}_{\mathbb{C}}$ est dense dans \mathscr{A}_{ω} pour $\|\cdot\|_{\omega}$.

A. Généralités

On considère dans ce qui suit un poids ω et un élément z de D.

- 1. Montrer que $\| \|_{\omega}$ est une norme sur \mathscr{A}_{ω} si et seulement si l'ensemble $E = \{x \in \mathbb{R} \mid \omega(x) = 0\}$ des zéros de ω est d'intérieur vide.
- 2. Soit g une fonction continue bornée de \mathbb{R} dans \mathbb{C} , φ l'application de \mathscr{A}_{ω} dans \mathscr{A}_{ω} définie par $f \to gf$, et X une partie de \mathscr{A}_{ω} . Prouver que $\varphi(\overline{X}^{\omega})$ est contenue dans $\overline{\varphi(X)}^{\omega}$.
- 3. a. Montrer que l'algèbre $\mathscr K$ des fonctions continues à support compact de R dans C est dense dans $\mathscr A_\omega$ pour $\|\cdot\|_\omega$.
 - b. On suppose le poids ω borné, ce qui entraîne que \mathscr{C}_0 est contenue dans \mathscr{A}_{ω} . Montrer que \mathscr{H}_{z} est dense dans \mathscr{A}_{ω} pour la semi-norme $\| \cdot \|_{\omega}$.
- 4. Montrer que, pour tout poids ω , on a l'équivalence :

 ω est à décroissance rapide \iff pour tout P de $\mathscr{P}_{\mathbb{C}}$, ω P est une fonction bornée sur \mathbb{R} .

- 5. Soit (a, b) dans $\mathbb{R}^* \times \mathbb{R}$, et soit α l'application définie sur \mathbb{R} par $\alpha(t) = at + b$. Montrer que ω est à décroissance rapide (resp. est fondamental) si et seulement si $\omega \circ \alpha$ est à décroissance rapide (resp. est fondamental).
- 6. Soient ω et ν deux poids, avec $\omega \leq \nu$.
 - a. Montrer que \mathscr{A}_v est dense dans \mathscr{A}_ω pour la semi-norme $\| \ \|_\omega$.
 - b. En déduire que, si γ est fondamental, ω aussi.

B. Exemples

- 1. Soit ω un poids à support compact. Montrer que ω est fondamental.
- 2. À l'aide de II.A.5. et de la partie I.A., montrer que les poids $\alpha_c : \mathbf{R} \to \mathbf{R}^+$, $x \mapsto \exp{(-c|x|^{\frac{1}{4}})}$, avec c dans $]0, +\infty[$, ne sont pas fondamentaux.
- 3. On considere cette fois les poids $\omega_c: \mathbf{R} \to \mathbf{R}^+, x \mapsto \exp(-cx^2)$, avec c dans $[0, +\infty]$.
 - a. Soit f une fonction paire de \mathscr{C}_0 (définie au début du II.). En utilisant I.B. montrer que, pour tout nombre ε strictement positif, on peut trouver Q dans $\mathscr{P}_{\mathbb{C}}$ tel que : $\|f(x) Q(x) \exp(-x^2)\|_{\infty} < \varepsilon$.
 - b. Soit f une fonction impaire de \mathscr{C}_0 ; montrer que, pour tout nombre ε strictement positif, on peut trouver S dans \mathscr{S}_C tel que : $||f(x) S(x) \exp(-x^2)||_{\infty} < \varepsilon$

(commencer par le cas où f est à support compact et identiquement nulle sur un voisinage de 0).

c. Prouver que les poids ω_c sont fondamentaux.

III. UNE CARACTÉRISATION DES POIDS FONDAMENTAUX

Lorsque ω est un poids, on désigne par ω^* le poids : $t \mapsto \frac{\omega(t)}{1+|t|};$

on note \mathscr{P}_{ω} l'ensemble des polynômes P de \mathscr{P}_{C} tels que P appartienne à \mathscr{A}_{ω} et $\|P\omega\|_{\infty} \le 1$; enfin, si z est dans D, on introduit la borne supérieure $M_{\omega}(z)$ dans $[0, +\infty]$ de l'ensemble $\{|P(z)| \ |P \in \mathscr{P}_{\omega}\}$.

On se propose de montrer que ω est fondamental si et seulement si, pour tout z de $D: M_{\omega^*}(z) = +\infty$. Dans toute la partie III, on fixe un nombre complexe z dans D.

- 1. On suppose ici que le poids ω est fondamental, et l'on se donne un nombre ε strictement positif.
 - a. Montrer qu'il existe P dans $\mathscr{S}_{\mathbb{C}}$ tel que $\|g_z P\|_{\omega} \le \varepsilon$.
 - b. Soit $K = \inf_{t \in \mathbb{R}} [(1 + |t|)|g_t(t)|]$, montrer que K est strictement positif.
 - c. En considérant $Q(t) = \frac{K}{\varepsilon} [1 (t z)P(t)]$, montrer que $M_{\omega^*}(z) = +\infty$.
- 2. Soit v un poids tel que $M_{\nu}(z) = +\infty$. Le but de cette question est de prouver que v est à décroissance rapide. On note W l'espace vectoriel $\mathscr{P}_{\mathbb{C}} \cap \mathscr{A}_{\nu}$.
 - a. Si W est de dimension infinie, montrer que $W = \mathcal{P}_{C}$.
 - b. On suppose W de dimension finie. Prouver que la restriction de || ||_v à W est une norme, puis que \mathscr{P}_{v} est compact et aboutir à une contradiction.
- '3. On suppose dans cette question que le poids v est à décroissance rapide, et que $g_z \in \overline{\mathscr{P}_C}^v$.
 - a. Montrer que $g_z \cdot \mathcal{P}_C = \{g_z P \mid P \in \mathcal{P}_C\}$ est inclus dans $\overline{\mathcal{P}_C}^{\vee}$. En déduire que, pour tout entier $n \ge 1$, $(g_z)^n \cdot \mathcal{P}_C$ est inclus dans $\overline{\mathcal{P}_C}^{\vee}$.
 - b. Prouver que $\mathscr{P}_{\mathbb{C}}$ est dense dans $\mathscr{A}_{\mathbf{v}}$ pour la semi-norme $\| \|_{\mathbf{v}}$. (On pourra utiliser II.A.3.).
- 4. Dans cette question, ω est un poids tel que $M_{\omega^*}(z) = +\infty$.
 - a. Montrer que ω est à décroissance rapide.
 - b. Montrer que ω est fondamental.

IV. UNE CARACTÉRISATION DES CLASSES QUASI-ANALYTIQUES

Soit $M = (M_n)$ une suite croissante de nombres réels strictement positifs, telle que $M_0 = 1$ et que la suite $\left(\frac{M_n}{M_{n+1}}\right)$ soit décroissante. On note C(M) l'espace vectoriel des fonctions f de $\mathscr{C}^{\infty}(\mathbf{R}, \mathbf{C})$ telles qu'il existe des constantes réelles C et c strictement positives vérifiant, pour tout entier naturel n et tout nombre réel $x \mid f^{(n)}(x) \mid \leq C \cdot c^n M_n$.

On dit que la suite M définit une classe quasi-analytique si toute fonction f de C(M) vérifiant :

« il existe un nombre réel a tel que $f^{(n)}(a) = 0$ pour tout entier n»

est identiquement nulle.

On notera γ_M l'application qui au nombre réel t non nul associe $\gamma_M(t) = \inf_{n \in \mathbb{N}} \frac{M_n}{|t|^n},$ et qui prend la valeur 1 en 0.

1. Montrer que γ_M est un poids sur \mathbf{R} , et que γ_M est à décroissance rapide.

2. *a.* Soit (u_n) une suite réelle, convergente et de limite *a.* Montrer que la suite $v_n = \frac{1}{n}(u_1 + ... + u_n)$ converge vers *a.* Prouver un résultat analogue lorsque u_n tend vers $+\infty$.

page 12 AGREGATION de MATHEMATIQUES:

1991 5/5 externe-analyse

- b. Montrer que la suite $(M_n^{1/n})$ converge dans **R** ou tend vers $+\infty$. On note m sa limite.
- 3. a. Si $m < +\infty$, prouver que γ_M est à support compact.
 - b. Si $m = +\infty$, montrer que γ_M est une fonction continue qui ne s'annule pas.

B

Le but de cette partie est d'établir que, si le poids γ_M est fondamental, la classe C(M) est quasianalytique.

Pour ce faire on raisonne par l'absurde en supposant que γ_M est fondamental et qu'il existe une fonction non identiquement nulle f dans C(M) telle que : $f^{(n)}(0) = 0$ pour tout n, cas auquel on peut se ramener en remplaçant au besoin f(x) par f(x + a).

Pour z dans $U = \{z \in C \mid Re(z) > 0\}$, on pose $F(z) = \int_0^{+\infty} f(t) e^{-zt} dt$ (justifier).

- 1. a. Montrer que F est holomorphe sur U et calculer $z^n F(z)$ en fonction de $f^{(n)}$, dérivée d'ordre n de f.
 - b. Montrer qu'il existe deux constantes C et c strictement positives telles que, pour tout z de U et tout entier naturel n:

 $|F(z)| \leq C \cdot c^n M_n \frac{1}{\operatorname{Re}(z) \cdot |z|^n}$

- 2. Justifier l'existence d'un nombre réel $\alpha > 1$ tel que $F(\alpha) \neq 0$ (exploiter le résultat de l.A.2.).
- 3. On introduit le poids $\omega(t) = (1 + |t|) |F(1 + it)| |1 + it|^{-1}$, et l'on se donne avec les notations de III., un élément P dans \mathcal{P}_{ω^*} , enfin $G(z) = P(i iz)F(z)z^{-1}$ pour z dans U.
 - a. Montrer que |G| est majoré par 1 sur $V = \{z \in C | Re(z) \ge 1\}$.
 - b. En déduire que ω n'est pas fondamental.
 - c. Établir, pour tout t réel: $\omega(t) \leq \sqrt{2} C \gamma_{\rm M} \left(\frac{t}{c}\right)$. Conclure.

C

On utilisera librement la conséquence suivante du théorème de Hahn-Banach :

Si F est un sous-espace vectoriel de l'espace vectoriel normé E tel que toute forme linéaire continue ϕ sur E s'annulant sur F est identiquement nulle, F est dense dans E.

L'objet de cette dernière partie est de montrer la réciproque de la propriété précédente, à savoir :

si la classe C(M) est quasi-analytique, le poids $\gamma = \gamma_M$ est fondamental.

On suppose donc C(M) quasi-analytique, et l'on écarte le cas déjà traité où γ est à support compact. Lorsque a est dans R et m dans N, on note e_a la fonction de R dans C qui à t associe e^{ita} , et u_m la fonction $u_m(t) = (it)^m$. ϕ désigne une forme linéaire continue de $(\mathscr{A}_{\gamma}, \| \|_{\gamma})$ dans R, et f la fonction de R dans C définie par $f(a) = \phi(e_a)$ pour tout a réel.

- 1. Montrer que f est dans $\mathscr{C}^{\infty}(\mathbf{R}, \mathbf{C})$, et que l'on a $f^{(m)}(a) = \phi(e_a u_m)$. En déduire l'appartenance de f à $\mathbf{C}(\mathbf{M})$.
- 2. On suppose désormais que ϕ s'annule identiquement sur $\mathcal{S}_{\mathbb{C}}$. Montrer que $f^{(m)}(0) = 0$ pour tout entier m, puis que f = 0.
- 3. Prouver que l'espace vectoriel engendré par les fonctions e_a est dense dans A_{γ} (pour $\| \|_{\gamma}$), et en déduire que :

C(M) est quasi-analytique $\Leftrightarrow \gamma_M$ est fondamental.

Application:

En considérant la suite $M_n = n!$, montrer que les poids $\omega(t) = \exp(-c|t|^{\alpha})$, $\alpha > 0$ et c > 0, sont fondamentaux dès que α est supérieur ou égal à 1. Qu'advient-il pour $\alpha < 1$?