

Quantum Kernels

MA5770: Modelling Workshop

MD Karimulla Haque

Guided by, Prof. A. K. B. Chand

February 18, 2025

Introduction to Quantum Machine Learning (QML)

Agenda

Quantum Kernel Methods in Machine Learning

Project Proposa

What is QML?

- Uses quantum computing principles to enhance machine learning models.
- Explores exponentially large Hilbert spaces for data representation.
- Why Quantum ML?
 - Classical ML struggles with high-dimensional problems.
 - Quantum computing provides a natural feature space expansion.
 - Potential to outperform classical models in certain tasks.

What is a Quantum Kernel?

Agenda

Project Proposal

Quantum Kernel Methods in Machine Learning

- **Kernel trick:** Instead of explicitly mapping data into high dimensions, we use a kernel function to measure similarity. $k(x_i, x_i) = \phi(x_i) \cdot \phi(x_i)$
- Quantum kernel replaces classical kernel functions with a quantum feature map: $k_O(x_i, x_i) = |\langle \psi(x_i) | \psi(x_i) \rangle|^2$

Feb 25:

Agenda

Quantum Kernel Methods ir

Machine Learning

Project Proposal

(Learning Quantum Computing Basics + Kernel Methods)

- Learn the basics of quantum computing:
 - Qubits, quantum gates, superposition, and entanglement.
 - Parameterised quantum circuits (PQCs) and quantum measurement.
- Understand kernel methods in machine learning:
 - Classical Support Vector Machines (SVMs).
 - Kernel PCA
 - Kernel k-means
 - Raidal Basis Function
- The role of feature maps in kernel-based learning

Mar 11:

Agenda

Project Proposal

(Understanding Neural Tangent Kernel (NTK) & Quantum Tangent Kernel (QTK))

- Study Neural Tangent Kernel (NTK) to understand why tangent kernels are useful in deep learning.
- Learn the definition and mathematical formulation of Quantum Tangent Kernel (QTK):
 - How QTK extends NTK to quantum circuits.
 - How overparameterization affects training in quantum models.
 - Why deep parameterized quantum circuits behave differently than conventional quantum kernels.
- Set up a Qiskit environment for experiments.

Mar 25:

Agenda

Quantum Kernel Methods in Machine Learning

Project Proposal

(Implementing Quantum Kernels and QTK Framework)

- Implement the conventional quantum kernel method as a baseline.
- Implement the Quantum Tangent Kernel (QTK) using parameterized quantum circuits.
- Test the QTK on synthetic datasets (e.g., small random datasets).

Project Proposal

(Extending QTK to Benchmark Datasets & Hyperparameter Tuning)

- Apply QTK to benchmark quantum datasets (e.g., MNIST with quantum embeddings).
- Compare QTK vs. conventional quantum kernel in terms of accuracy, efficiency, and scalability.
- Study the effect of hyperparameters (e.g., circuit depth, number of qubits) on QTK performance.

Project Proposal

(Generalization Analysis & Computational Complexity Study)

- Analyze the generalization properties of QTK compared to classical and quantum kernels.
- Investigate the computational complexity of computing QTK on quantum hardware.
- Identify practical bottlenecks and limitations.

Agenda

Quantum Kernel Methods in Machine Learning

Project Proposal

(Final Report & Submission)

- Summarise key findings and insights
- Prepare and submit a final detailed report

Thank You

