# A Book of Abstract Algebra (2nd Edition)

|      | Chapter AA, Problem 13E | Bookmark | Show all steps: ON |  |
|------|-------------------------|----------|--------------------|--|
| B 11 |                         |          |                    |  |

### **Problem**

Prove the following:

If  $A \subseteq B$ , then  $A \cup B = B$ . Conversely, if  $A \cup B = B$ , then  $A \subseteq B$ .

# Step-by-step solution

# Step 1 of 3 Objective: The objective is to prove that if $A \subseteq B$ , then $A \cup B = B$ . Conversely, if $A \cup B = B$ , then $A \subseteq B$ . Comment

## **Step 2** of 3

Proof:-

Let *A* and *B* are two sets. Let  $x \in A \subseteq B$ .

**Subsets:-**If sets *A* and *B* are such that every elements of *A* are also elements of *B*, then *A* is said to be subset of *B*.

$$A \subseteq B \Leftrightarrow \big\{ x \in A \Rightarrow x \in B \big\}$$

So the set B contains the set A and set A completely lies within set B.



The union of two sets A and B is:-

$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$

Since set B contains the set A, the union of set A and B is same as the set B.

Hence,

If 
$$A \subseteq B$$
, then  $A \cup B = B$ .

Proved

Comment

# **Step 3** of 3

Conversely:-

The union of two sets A and B is:-

$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$

If  $A \cup B = B$ , then set B completely contains the set A.



**Subsets:**-If sets *A* and *B* are such that every elements of *A* are also elements of *B*, then *A* is said to be subset of *B*.

$$A\subseteq B \Leftrightarrow \left\{x\in A\Rightarrow x\in B\right\}$$

According to this definition A is subset of B.

Hence,

$$A \cup B = B$$
, then  $A \subseteq B$ .

| Proved  |  |
|---------|--|
| Comment |  |
|         |  |
|         |  |