Ultra Fast Outflowの ラインフォース駆動型円盤風モデル

野村 真理子(国立天文台)

共同研究者:

大須賀健,高橋博之,吉田鉄生(国立天文台)和田桂一(鹿児島大学)

Ultra Fast Outflow

- ◇ 一部のAGNの輻射スペクトルに青方偏移した吸収線が発見, トーラスでは青方偏移が説明できない ⇒ アウトフロー
- ◆ Ultra Fast Outflow (UFO): X線観測で見つかった新種のアウトフロー

- ☆ 速度~0.1c-0.3c, Seyfert銀河の約半数 (こ存在(Tombesi et al. 2011)
- ☆ 質量放出が大きく、質量降着が減り ブラックホールの成長が遅くなる
- ☆ 質量放出、エネルギー放出が大きく、 母銀河の星形成に影響する可能性

UFOの構造、噴出メカニズムは不明

ラインフォース駆動型円盤風モデル

- ◇ UV光の束縛-束縛遷移吸収によって受ける力 (ラインフォース)で生じる円盤風
- ◆ 円盤風の加速と電離状態を同時に説明できる
- ◆ sub-Eddingtonでも加速が可能

- 2次元輻射流体シミュレーションで円盤風のダイナミクスを調べる
 - ★ 広いパラメータ領域を調査
 - ★ UFOの観測との比較を行う

ラインフォースを含む輻射流体シミュレーション

基礎方程式

(1) 質量保存の式
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{v}) = 0$$

ラインフォースを含む輻射力

(3) エネルギー方程式
$$\frac{\partial}{\partial t} \left[\rho \left(\frac{1}{2} v^2 + e \right) \right] + \nabla \cdot \left[\rho v \left(\frac{1}{2} v^2 + e + \frac{p}{\rho} \right) \right] = \rho v \cdot g + \rho \mathcal{L}$$
 輻射加熱・冷却

☆ ラインフォースを含む輻射力

$$\mathbf{f}^{\mathrm{rad}} = egin{aligned} \sigma_e \mathbf{F}_{\mathrm{UV}} \ c \end{aligned} + egin{aligned} \sigma_e \mathbf{F}_{\mathrm{UV}} \ d \end{aligned}$$
 電子散乱による輻射力 ラインフォース

(Stevens & Kallman 1990)

フォースマルチプライア

電離パラメーター ξ , 密度、速度勾配の関数

電離パラメータ: $\xi = \frac{F_{\mathrm{X}}}{n}$ F_{X} : K_{X}

ラインフォースを含む輻射流体シミュレーション

☆ ラインフォースを含む輻射力

(Stevens & Kallman 1990)

ノオー人マルテノフイブ

電離パラメーター ξ , 密度、速度勾配の関数

電離パラメータ: $\xi = \frac{F_{\rm X}}{n}$ $F_{\rm X}$: X線フラックス n: 個数密度

結果

Nomura et al. submitted to PASJ

円盤風の噴出メカニズム

密度、電離度、速度場の時間平均

 $\log \xi \geq 5.5$

☆ 電離パラメータが低い領域($\log \xi \lesssim 2.5$)では、ラインフォースが働きやすい⇒密度が高く、速度が速い($v\sim 0.1c$)円盤風が噴出

UFOの観測との比較

視線に沿って電離パラメータと速度、柱密度をUFOの観測と比較

UFOが観測される条件: 電離度 $2.5 < \log \xi < 5.5$ を満たす物質の...

(1) 最大速度10,000 km s⁻¹以上 かつ(2) 柱密度10²² cm⁻²以上

- ☆ ~70°から観測した場合にUFOの特徴が現れる
- ☆ UFOの観測確率 [(UFOが観測される立体角)/ 4π] の時間平均は $\sim 20\%$

ブラックホール質量及びエディントン比依存性

- ☆ 広いパラメータ領域で **円盤風が噴出し UFO**の観測確率は~15-30%
- \Leftrightarrow ただし、 ε =0.01 のとき 円盤風は噴出しない

ブラックホール質量及びエディントン比依存性

スペクトル合成

- ◇ UFOはASTRO-Hの主要ターゲット(UFOのサンプル数増加、 吸収プロファイルなどの情報が得られる) ⇒ 観測結果を解 釈する理論モデルが必要

シミュレーション結果を元にした輻射スペクトル計算が不可欠

Cloudy

◆ 1次元輻射輸送コード(Cloudy)を用いてスペクトルを計算

問題点

- ◆ 一つの密度しか解けない
- ◆ スペクトルを青方(赤方)偏移させることができない

アウトフローに適用するための工夫

- 1) シミュレーション結果の速度、密度を視線に沿ってX個のゾーンに分ける
- 2) 各ゾーンで...
 - ☀ 出力スペクトルを青方(赤方)偏移させて次の入力とする
 - ★ 球状に広がるのでr²でIntensityを下げる
 - * 各ゾーンの速度差は相対論的に計算
- 3) X回繰り返すことで、アウトフローを透過してきたスペクトルが得られる

Setup

Input:

入力スペクトル: Cloudyで用意されている典型的AGNスペクトルアバンダンス: 太陽組成(Feのみラインを見やすくするため1万倍程度)シミュレーション結果の動径方向速度、密度

結果

スペクトルにblue-shiftした鉄の吸収線が現れることがわかった。

Summary

- ◆ 2次元輻射流体シミュレーションを行い、ラインフォース駆動型円盤風のダイナミクスを調べた。
- \diamondsuit 計算の結果、funnel型で速度 \sim 0.1cの円盤風が噴出した。
- ◆ シミュレーション結果の電離度、速度、柱密度はUFOのX線 観測と合致した。
- ◇ 強いX線照射がある場合も、円盤風が噴出しUFOが観測される可能性があることがわかった。
- ◇ シミュレーション結果を元にしたスペクトル合成の結果、青 方偏移した鉄の吸収線が現れた。