

Para poder empezar a poner en práctica los conocimientos adquiridos en este átomo, necesitaremos realizar la siguiente actividad.

 Armar una tabla en donde podamos visualizar los sistemas numéricos decimal, binario, octal y hexadecimal.

Decimal	Binario	Octal	Hexadecimal
00	0000	00	00
01	0001	01	01
01	0010	02	02
03	0011	03	03
04	0100	04	04
05	0101	05	05
06	0110	06	06
07	0111	07	07
08	1000	10	08
09	1001	11	09
10	1010	12	0A
11	1011	13	0B
12	1100	14	0C
13	1101	15	0D
14	1110	16	0E
15	1111	17	0F
16	10000	20	10

Debemos realizar los siguientes pasajes:

- 1. Pasar el número 9516 10 a: Binario, octal y hexadecimal.
- 2. Pasar el número 1473 s a: Binario, decimal y hexadecimal.
- Pasar el número mayor de 8 bits de binario a octal, decimal y hexadecimal.
- Pasar el número 011010 a decimal.
- 5. Pasar el número 4256 10 a hexadecimal.

```
9516
                       0/297 LZ
       2116 2116 2116 2526116
211473J_{8} = 0011001110011
3J_{16} = 33BJ_{16}
              2° + 2¹ + 2³ + 2⁴ + 2⁵ + 2° + 2° = 823
3) 3/8 7/8 7/3 = 377/8
    01111 1111 = 2+2+2+++2 = 255]
4) 011010] = 2' + 23 + 24] = 26]
5) 4256 \int_{16} = 0100 0010 0101 0110 \int_{1} = \frac{16.982}{2^{14}}
```