Grundzüge der Theoretischen Informatik

Markus Bläser Universität des Saarlandes

10.12.2021

Kapitel 16: Turingmaschinen

- $ightharpoonup C = (q, (p_1, x_1), \dots (p_k, x_k))$
- $C' = (q', (p'_1, x'_1), \dots (p'_k, x'_k))$
- $ightharpoonup x_{\kappa} = u_{\kappa} \alpha_{\kappa} v_{\kappa}$, wobei $|u_{\kappa}| = p_{\kappa} 1$ und $\alpha_{\kappa} \in \Gamma$, $1 \le \kappa \le k$.

C' heißt Nachfolgekonfiguration von C, falls C' durch einen Schritt von M von C erreicht wird.

D.h. falls
$$\delta(q,\alpha_1,\ldots,\alpha_k)=(q',\beta_1,\ldots,\beta_k,r_1,\ldots,r_k)$$
, dann ist

$$x'_{\kappa} = u_{\kappa} \beta_{\kappa} v_{\kappa}, \quad 1 \le \kappa \le k$$

und

$$p_\kappa' = \begin{cases} p_\kappa - 1 & \text{falls } r_\kappa = L, \\ p_\kappa & \text{falls } r_\kappa = S, \\ p_\kappa + 1 & \text{falls } r_\kappa = R. \end{cases}$$

Berechnungen (2)

Randfälle:

Falls $p_{\kappa} = 1$ und $r_{\kappa} = L$, dann ist

$$x'_{\kappa} = \Box \beta_{\kappa} v_{\kappa}$$

und

$$p_{\kappa}'=1$$
.

▶ Falls $p_{\kappa} = |x_{\kappa}|$ and $r_{\kappa} = R$, dann ist

$$x'_{\kappa} = u_{\kappa} \beta_{\kappa} \square$$

und

$$p_{\kappa}' = |x_{\kappa}| + 1.$$

Berechnungen (3)

- ▶ Notation: $C \vdash_M C'$
- $ightharpoonup \vdash_{M}^{*}$ bezeichnet die reflexiv-transitive Hülle
- ► $C \vdash_M^* C'$ falls es C_1, \ldots, C_ℓ gibt mit $C \vdash_M C_1 \vdash_M \ldots \vdash_M C_\ell \vdash_M C'$.
- Eine Konfiguration ohne Nachfolger heißt haltend.
- ▶ M hält auf w, falls $SC_M(w) \vdash_M^* C_t$ und C_t ist haltend.
- ► $SC_M(w) \vdash_M C_1 \vdash_M C_2 \vdash_M ... \vdash_M C_t$ heißt Berechnung von M auf w.
- ► Falls C_t nicht existiert, so hält M nicht auf w. Die zugehörige Berechnung ist unendlich.

Berechnungen (4)

- ► Sei $SC_M(w) \vdash_M^* C_t$, $C_t = (q, (p_1, x_1), \dots, (p_k, x_k))$ haltend.
- Sei $i \le p_1$ der größte Index mit $x_1(i) = \square$. (i = 0 falls der Index nicht existiert.)
- Sei $j \ge p_1$ der kleinste Index mit $x_1(j) = \square$. $(j = |x_1| + 1$, falls der Index nicht existiert.)
- $ightharpoonup x_1(i+1)x_1(i+2)\dots x_1(j-1)$ ist die Ausgabe von M auf w.
- ▶ Berechnete Funktion: $\phi_M : \Sigma^* \to (\Gamma \setminus \{\Box\})^*$

$$\phi_M(w) = \begin{cases} \text{Ausgabe von } M \text{ auf } w & \text{falls } M \text{ auf } w \text{ h\"alt,} \\ \text{undefiniert} & \text{sonst.} \end{cases}$$

Berechnete Funktionen und Sprachen

Definition (16.3)

 $f: \Sigma^* \to \Sigma^*$ ist *Turing-berechenbar*, falls $f = \phi_M$ für eine Turingmaschine $M = (Q, \Sigma, \Gamma, \delta, q_0)$.

- Wir könnten $L \subseteq \Sigma^*$ Turing-entscheidbar nennen, falls $\chi_L : \Sigma^* \to \{0,1\}$ Turing-berechenbar ist. (0, 1 als Elemente von Σ aufgefasst.)
- Stattdessen arbeiten wir mit akzeptierenden Zuständen $Q_{\mathrm{acc}} \subseteq Q$.
- Eine haltende Konfiguration $(q, (p_1, x_1), ..., (p_k, x_k))$ heißt akzeptierend, falls $q \in Q_{acc}$. Sonst heißt sie verwerfend.

Berechnete Funktionen und Sprachen (2)

Definition (16.4)

Sei $L \subseteq \Sigma^*$. $2\chi'$ \mathbb{R}^{E}

- 1. $M=(Q,\Sigma,\Gamma,\delta,q_0,Q_{\mathrm{acc}})$ erkennt $L\subseteq\Sigma^*$, falls für alle $w\in L$ die Berechnung von M in einer akzeptierenden Konfiguration endet und für alle $w\notin L$ nicht.
 - (D.h. sie endet entweder in einer verwerfenden Konfiguration oder M hält nicht auf w.)
- 2. M entscheidet L, falls zusätzlich M auch auf alle $w \notin L$ hält.
- 3. L(M) bezeichnet die von M erkannte Sprache. ネ スレ , 见て

Kapitel 17: Beispiele, Tricks und syntaktischen Zucker

Die Turingmaschine ERASE

Die Turingmaschine COPY

Die Turingmaschine COMPARE

Konkatenation von Turingmaschinen

Parallele Ausführung

Girmlet and der

 \blacktriangleright k-Band-TM $M = (Q, \Sigma, \Gamma, \delta, q_0)$

enter k Buiden M und aul

 \triangleright k'-Band-TM $M' = (Q', \Sigma, \Gamma, \delta', q'_0)$

den \triangleright (k+k')-Band-TM, die M und M' parallel simuliert restliter MI

Übergangsfunktion:

$$\Delta: (Q \times Q') \times \Gamma^{k+k'} \to (Q \times Q') \times \Gamma^{k+k'} \times \{L, S, R\}^{k+k'},$$

ist definiert durch

$$\begin{split} \Delta((q,q'),\gamma_1,\ldots,\gamma_{k+k'}) \\ &= ((p,p'),\alpha_1,\ldots,\alpha_k,\alpha_1',\ldots,\alpha_{k'}',r_1,\ldots,r_k,r_1',\ldots,r_{k'}') \end{split}$$

falls

$$\begin{split} \delta(q,\gamma_1,\ldots,\gamma_k) &= (p,\alpha_1,\ldots,\alpha_k,r_1,\ldots,r_k) \text{ und} \\ \delta'(q',\gamma_{k+1}^*,\ldots,\gamma_{k+k'}^*) &= (p',\alpha_1',\ldots,\alpha_{k'}',r_1',\ldots,r_{k'}') \end{split}$$

Kapitel 18: Die Church-Turing-These

While-Berechenbarkeit und Turing-Berechenbarkeit

While-berechenbar = Turing-berechenbar

Identifizieren \mathbb{N} mit $\{0,1\}^*$:

$$ightharpoonup \operatorname{cod}: \{0,1\}^* \to \mathbb{N}$$

 $ightharpoonup \cot(x) = \sin^{-1}(1x) - 1$

Identifizieren $\mathbb{N} \to \mathbb{N}$ mit $\{0,1\}^* \to \{0,1\}^*$:

- ➤ Zu f: $\mathbb{N} \to \mathbb{N}$ definiere $\hat{\mathbf{f}}: \{0,1\}^* \to \{0,1\}^*$ durch $\hat{\mathbf{f}}(\mathbf{x}) = \mathrm{cod}^{-1}(\mathbf{f}(\mathrm{cod}(\mathbf{x}))) \quad \text{für alle } \mathbf{x} \in \{0,1\}^*.$
- ightharpoonup Zu $g:\{0,1\}^* \to \{0,1\}^*$, definiere $\hat{g}:\mathbb{N} \to \mathbb{N}$ durch

$$\widehat{g}(\mathfrak{n}) = \operatorname{cod}(g(\operatorname{cod}^{-1}(\mathfrak{n})))$$
 für alle $\mathfrak{n} \in \mathbb{N}$.

$$\hat{\hat{\mathbf{f}}} = \mathbf{f} \text{ und } \hat{\hat{\mathbf{g}}} = \mathbf{g}$$

Ein GOTO-Programm ist eine Folge

m ist eine Folge
$$(1, s_1), (2, s_2), \dots, (m, s_m)$$

wobei jedes s_{μ} eine Anweisung der Form

- 1. $x_i = x_i + x_k$ oder
- 2. $x_i = x_j x_k$ oder
- 3. $x_i := c$ oder
- 4. if $x_i \neq 0$ then goto λ

ist.

Das Programm terminiert, wenn eine nicht vorhandene Zeile erreicht wird.

Von WHILE nach GOTO

Lemma (18.2)

Für jedes WHILE-Programm P gibt es ein GOTO-Programm Q mit $\phi_P = \phi_Q.$

```
1: while x_i \neq 0 do
2: P
```

3: **od**

```
1: if x_i \neq 0 then goto 3
```

```
2: goto 5 - syntathide Zuder
```

3: P

4: goto 1

5: . . .

Von GOTO zu Turingmaschinen

Lemma (18.3)

Sei $f: \mathbb{N} \to \mathbb{N}$. Falls f GOTO-berechenbar ist, dann ist \hat{f} Turing-berechenbar.

- ightharpoonup einfache Anweisungen: x_i++ , x_i-- und $x_i:=0$.
- Jede Variable wird durch ein Band dargestellt.
- Der Inhalt steht in binär von links nach rechts.
- Schrittweise Simulation
- Invariante: Zu Beginn der Simulation eines Schrittes stehen die Köpfe auf der Einerstelle.

Beispiel

1: if $x_0 \neq 0$ then goto 3

2: x_0++

3: ...

