(C) IISI d.KIK PCz

PRZYDZIAŁ ZASOBÓW I PLANOWANIE

TECHNIKI DZIELENIA OGRANICZONEGO ZBIORU ZASOBÓW

- wzajemne wyłączanie procesów od zasobów niepodzielnych
- x zapobieganie zakleszczeniom
- zapewnienie dużego wykorzystania zasobów
- * dostarczenie zasobów w "rozsądnym" czasie

(C) IISI d.KIK PCz 2013

Systemy operacyjn

C) IISI d.KIK PCz 2013

Systemy operacyj:

y operacyjne g

PRZYDZIAŁ ZASOBÓW

- mechanizmy przydziału zasobów różnego rodzaju techniki i struktury przydziału zasobów
- polityka przydziału zasobów zarządza sposobami korzystania z mechanizmów
 - niewłaściwe przyjmowanie zamówień może prowadzić do zakleszczenia lub przeciążenia systemu

emy operacyjne 3 (C) II

MECHANIZMY PRZYDZIAŁU ZASOBÓW

metody i dane służące do przydziału zasobów

- procesory centralne deskryptor procesora(ID, stan, proces bieżący)
- pamięć operacyjna tablice stron i segmentów, listy bloków, kolejki zamówień na pamięć
- urządzenia zewnętrzne strumienie WE/WY, deskryptor urządzenia, kolejki zamówień
- * pamięć pomocnicza pamięć wirtualna, pamięć plików
- pliki otwarte do zapisu stają się zasobami niepodzielnymi

(C) IISI d.KIK PCz 2013

Systemy operacyjne

ZAKLESZCZENIE (BLOKADA, IMPAS)

- W środowisku wieloprogramowym wiele procesów może rywalizować o skończoną liczbę zasobów.
- Zakleszczeniem nazywa się sytuację, w której pewien zbiór oczekujących procesów nie może zmienić swego stanu, ponieważ zamawiane przez nie zasoby są przetrzymywane przez inne procesy z tego zbioru.

(C) IISI d.KIK PCz 2013

Systemy operacyjne

WARUNKI KONIECZNE I WYSTARCZAJĄCE POWSTANIA ZAKLESZCZENIA

Do zakleszczeń może dochodzić wtedy, kiedy w systemie zachodzą jednocześnie cztery warunki:

- wzajemne wykluczanie (zasoby są niepodzielne)
- przetrzymywanie i czekanie (procesy przetrzymują zasoby w czasie oczekiwania na inne)
- brak wywłaszczeń (zasobów nie można zawłaszczać, dopóki są użytkowane)
- czekanie cykliczne (istnieje łańcuch cykliczny procesów takich, że następny zamawia zasoby zajęte przez poprzednika)

(C) IISI d.KIK PCz 2013

emy operacyjne

Materialy pomocnicze

(C) IISI d.KIK PCz 2013

GRAF PRZYDZIAŁU ZASOBÓW

GRAF PRZYDZIAŁU ZASOBÓW

Jeśli graf przydziału zasobów:

- nie zawiera cykli, to w systemie nie ma zakleszczonych procesów
- x zawiera cykl, to doszło do zakleszczenia

Jeśli istnieje po kilka egzemplarzy zasobu każdego typu, to cykl w grafie jest warunkiem koniecznym, lecz nie wystarczającym do istnienia zakleszczenia.

(C) IISI d.KIK PCz 2013 Systemy operacyjne

STRATEGIE POSTĘPOWANIA Z ZAKLESZCZENIEM

- zapobieganie zakleszczeniom przez niespełnienie jednego z warunków
- wykrywanie i usuwanie zakleszczeń w oparciu o graf stanu
- unikanie zakleszczeń przez wykonywanie czynności wyprzedzających
- można też zlekceważyć problem zupełnie, uważając, że do zakleszczenia nigdy nie dojdzie

ZAPOBIEGANIE ZAKLESZCZENIOM

przez niespełnienie jednego z warunków:

- zmiana zasobu niepodzielnego w podzielny np. przez zastosowanie spooler'a
- procesy zamawiają wszystkie zasoby na początku i wtedy rozpoczynają działanie
- » jeśli proces nie otrzyma zasobów zwraca już przydzielone i zamawia ponownie
- ustalony porządek zamówień uniemożliwia powstanie łańcucha cyklicznego

(C) IISI d.KIK PCz 2013 Systemy operacyjne 10

UNIKANIE ZAKLESZCZEŃ PRZEZ WYKONYWANIE

CZYNNOŚCI WYPRZEDZAJĄCYCH

WYKRYWANIE I USUWANIE ZAKLESZCZEŃ W OPARCIU O GRAF STANU

- usunięcie wszystkich procesów uczestniczących w zakleszczeniu
- wznowienie procesów od punktu kontrolnego, jeśli istnieje
- usuwanie kolejnych procesów, aż do zaniku zakleszczenia
- kolejne zawłaszczanie zasobów

Zaneszczenia

sprawdzanie, czy
po przydziale
zasobów nastąpi
blokada

(C) IISI d.KIK PCz 2013

Systemy operacyjne 11 (C) II

(C) IISI d.KIK PCz 2013

UNIKANIE ZAKLESZCZEŃ PRZEZ WYKONYWANIE CZYNNOŚCI WYPRZEDZAJĄCYCH

Algorytm bankiera

- roszczenie to maksymalna wielkość zamawianych zasobów w czasie trwania procesu
- x zamówienie nie może przekroczyć roszczenia
- zamówienie jest przyjęte tylko wówczas, gdy po jego realizacji istnieje taki ciąg procesów, że wszystkie procesy dobiegną do końca

(C) IISI d.KIK PCz 201

Systemy operacy

PLANOWANIE

Planowaniem nazywa się ustalanie, kiedy można wprowadzać nowe procesy do systemu i w jakiej kolejności je wykonywać.

Planowaniem zajmuje się proces planisty (scheduler) nazywany również planistą wysokiego poziomu, aby odróżnić go od planisty niskiego poziomu – dyspozytora.

(C) IISI d.KIK PCz 201

ystemy operacyjn

DYSPOZYTOR

Decyzje o przydziale procesora mogą zapadać w następujących czterech sytuacjach:

- » proces przeszedł od stanu aktywności do stanu czekania
- proces przeszedł od stanu aktywności do stanu gotowości
- proces przeszedł od stanu czekania do stanu gotowości
- x proces kończy działanie.

C) IISI d.KIK PCz 2013

Systemy operacyjno

PLANISTA - ZADANIA

- wprowadzanie nowych procesów
 - x z puli prac (wsadowych)
 - × uruchamianych przez użytkowników
- * wyznaczanie priorytetów procesów
 - × porządkowanie kolejki procesora
- x implementacja przydziału zasobów
 - × unikanie zakleszczenia
 - x zapewnienie zrównoważenia systemu

(C) IISI d.KIK PCz 2013

Systemy operacyjne

PLANISTA

jest wywoływany, gdy:

- x pojawiło się zamówienie na zasoby
- x zasoby zostały zwolnione
- x proces zakończył działanie
- do puli dodano nową pracę/użytkownik uruchomił nowy proces

(C) IISI d.KIK PCz 2013

Systemy operacyjne

KRYTERIA OCENY ALGORYTMÓW PLANOWANIA

- Wykorzystanie procesora
 - × powinno być od 40% do 90%
- × Przepustowość
 - × ilość procesów kończonych w jednostce czasu
- Czas cyklu przetwarzania
- × Czas oczekiwania
 - × w kolejce procesów gotowych
- Czas odpowiedzi
 - × w systemach interaktywnych

(C) IISI d.KIK PCz 2013

stemy operacyjne

Materialy pomocnicze

ALGORYTMY PLANOWANIA

- * Algorytm FCFS (First Come, First Served)
 - × pierwszy zgłoszony- pierwszy obsłużony
- × Algorytm SJF (Shortest Job First)
 - x najpierw najkrótsza praca (zadanie)
- Algorytm SRTF (Shortest Remaining Time First)
 - najpierw najkrótszy pozostały czas / najpierw najkrótsza praca z zawłaszczaniem
- × Algorytm priorytetowy
- × Algorytm rotacyjny RR (Round-robin)
- × Planowanie wielopoziomowe

(C) IISI d.KIK PCz 2013

Systemy operacy)

ALGORYTM FCFS

- W tym algorytmie, proces, który pierwszy zamówi procesor, pierwszy otrzyma go. Implementację tego algorytmu łatwo się uzyskuje za pomocą kolejki FIFO.
- Niestety algorytm posiada wadę, średni czas oczekiwania może być wysoki.

(C) IISI d.KIK PCZ 201

ystemy operacyjn

ALGORYTM FCFS

- ⋆ Dla procesów P1, P2, P3 o czasie trwania faz 24, 3 i 3:
- » jeśli procesy nadejdą w porządku P1, P2, P3 i zostaną obsłużone w porządku FCFS:

- x średni czas oczekiwania wynosi =17 ms.
- * Gdyby procesy nadeszły w kolejności P2, P3, P1 rezultat przedstawiałby się jak na poniższym diagramie:

P2 P3 P1

× średni czas czekania wyniósłby = 3 ms.

(C) IISI d.KIK PCz 201

ystemy operacyjne

ALGORYTM SJF

- Algorytm najpierw najkrótsze zadanie pozbawiony jest wady FCFS, gdyż przydziela procesor procesowi posiadającemu najkrótszą następną fazę.
- Dla procesów P1, P2, P3 o czasie trwania faz 24, 4 i 2:

P3 P2 P1

sredni czas czekania wynosi = 2,67 ms.

(C) IISI d.KIK PCz 2013

Systemy operacyjno

ALGORYTM SRTF

- Algorytm najpierw najkrótszy pozostały czas, działa na podobnej zasadzie jak SJF. Algorytm ten jest w odróżnieniu od poprzednika wywłaszczający.
- Bieżący proces jest wywłaszczany przez nowy proces którego następna faza procesora jest krótsza od pozostałej części fazy procesu aktualnego.
- * Algorytm ten daje minimalny średni czas oczekiwania.
- » Długość faz procesora jest przewidywana na podstawie jego wcześniejszych faz, nie można jednoznacznie określić jaką długość będzie miała kolejna faza.

(C) IISI d.KIK PCz 2013 Systemy operacyj

ALGORYTM PRIORYTETOWY

- W algorytmie tym każdemu procesowi przydziela się jakiś priorytet, liczbę całkowitą.
- Procesor zostaje przydzielony procesowi o najwyższym priorytecie.
- Algorytm może być niewywłaszczający albo wywłaszczający.
- Może wystąpić głodzenie procesów, polegające na tym, że procesy o niskim priorytecie mogą nigdy nie zostać wykonane. Aby temu zapobiec wprowadza się postarzanie, czyli stopniowe podwyższanie priorytetów procesów długo oczekujących.

(C) IISI d.KIK PCz 2013

ystemy operacyjne

ALGORYTM ROTACYJNY

- W algorytm ten wyposażono w wywłaszczanie i kolejkę cykliczną.
- Każdemu procesowi przydziela się mały odcinek czasu procesora. Proces wykonywany jest po upływie tego czasu wywłaszczany i przenoszony na koniec kolejki procesów gotowych.
- Dla n procesów w kolejce i kwantu czasu q, każdy proces dostaje 1/n czasu procesora, których wartość nie przekracza q. Czas oczekiwania procesu na dostęp do procesora nigdy nie przekracza (n-1)*q jednostek czasu.

(C) IISI d.KIK PCz 20

Systemy operacying

PLANOWANIE WIELOPOZIOMOWE

Algorytm ten rozdziela kolejkę procesów gotowych na osobne kolejki. Stosuje się go gdy możliwe jest łatwe zaliczenie procesów do kilku różnych grup:

- * pierwszoplanowe, drugoplanowe/wsadowe
- systemowe, interakcyjne, redagowania interakcyjnego, wsadowe, studenckie.
- Poszczególne kolejki mogą używać różnych algorytmów planowania.

(C) IISI d.KIK PCz 2013

Systemy operacyj

PLANOWANIE WIELOPOZIOMOWE ZE SPRZĘŻENIEM ZWROTNYM

- W tym algorytmie możliwe jest przenoszenie procesów między kolejkami.
- Proces, który wykorzystuje cały przydzielony czas zostaje przeniesiony do kolejki o niższym priorytecie.
- Proces szybko oddający procesor jest przenoszony do kolejki o wyższym priorytecie.

(C) IISI d.KIK PCz 2013

Systemy operacyjn

OCENA ALGORYTMÓW

Istnieje wiele algorytmów planowania, z których każdy ma swoiste parametry.

Aby móc dokonywać wyboru algorytmu można wziąć pod uwagę kilka miar, takich jak np.:

- * maksymalizacja wykorzystania procesora
- maksymalizacja przepustowości

(C) IISI d.KIK PCz 201

Systemy operacyjn

KRYTERIA PODEJMOWANIA DECYZJI PRZEZ PLANISTĘ

- x procesom mającym wiele zasobów można nadać wysoki priorytet
- × procesom mającym wiele zasobów przydziela się kolejne
- przy przydziale pamięci należy uwzględnić zasady zbioru roboczego
- procesom systemowym nadaje się priorytet zależny od pilności zadań jakie wykonują
- × procesom obsługi urządzeń nadaje się wysoki priorytet
- × jeśli nie zapobiega się zakleszczeniom powinno się ich unikać
- x koszt planowania nie powinien przekraczać osiąganych zysków

HIERARCHIA PROCESOW

- najczęściej: planista - system op. - procesy – podprocesy
- × planista jest przodkiem wszystkich procesów
- × procesy mogą:
 - × tworzyć podprocesy
 - × przydzielać podprocesom część własnych zasobów
 - × nadawać priorytet własnym podprocesom

(C) IISI d.KIK PCz 2013

ystemy operacyjne

(C) IISI d.KIK PCz 2013

Systemy operacyjne

Materialy pomocnicze

(C) IISI d.KIK PCz 2013

(C) IISI d.KIK PCz 2013