

MODULAR PROGRAMME COURSEWORK ASSESSMENT SPECIFICATION

Module Details

Module Code UFCFR5-15-3	Run 21JAN/1	Module Title ADVANCED TOPICS IN WEB DEVELOPMENT 2
Module Leader Prakash Chatterjee	Module Coordinator	Module Tutors P Chatterjee
Component and Element Number B: CW1	ber	Weighting: (% of the Module's assessment) 50%
Element Description BUILD, TEST AND DOCUMENT A WEB-BASED APP.		Total Assignment time 36 hours

Dates

Date Issued to Students 22 Feb 2021	Date to be Returned to Students 4 working weeks after hand-in.
Submission Place	Submission Date 22 April 2021
Blackboard	Submission Time 2.00 pm

Deliverables

Blackboard submission with attached report in MARKDOWN format.

Module Leader Signature

UFCFR5-15-3: Advanced Topics in Web Development 2

Assignment Specification 2020-21

Learning Goals & Outcomes

- Learn to model, clense & normalize substantial real-world big data (188 mb+);
- Understand the data cleansing and normalization processes by writing PHP scripts to process and convert the data to first (cleansed) CSV and then (normalized) XML;
- Gain knowledge and skill in the design, implementation & visualisation of data using web based charting and mapping API's.
- Fulfil the submission requirement of providing the two conversion scipts for benchmarking and one XSD schema file for validation purposes.
- Extend your skills in the use use of key technologies: PHP, XML & XPATH, Parsing, DOM,
 JavaScript & JSON.
- ∘ Learn and use the MARKDOWN M markup syntax.

Context: Measuring Air Quality

Levels of various air borne pollutants such as Nitrogen Monoxide (NO), Nitrogen Dioxide (NO₂) and particulate matter (also called particle pollution) are all major contributors to the measure of overall air quality.

For instance, NO_2 is measured using micrograms in each cubic metre of air ($\mu g \ m^3$). A microgram (μg) is one millionth of a gram. A concentration of 1 $\mu g \ m^3$ means that one cubic metre of air contains one microgram of pollutant.

To protect our health, the UK Government sets two air quality objectives for NO₂ in their <u>Air Quality</u> <u>Strategy</u>

- The hourly objective, which is the concentration of NO₂ in the air, averaged over a period of one hour.
- 2. The annual objective, which is the concentration of NO₂ in the air, averaged over a period of a year.

The following table shows the colour encoding and the levels for Objective 1 above, the mean hourly ratio, adopted in the UK.

Further details of colour encodings and health warnings can be found at the DEFRA Site.

The Input Data

The following ZIP file provides data ranging from 2004 to 31 Dec 2019 taken from 16 monitoring stations in and around Bristol.

Monitors come and go and may suffer down times, so the data isn't complete for all stations at all times.

Download & save the data file <u>air-quality-data-2004-2019.zip</u>

Shown here is the first 7 lines of the file:

```
6 2017-06-24T00:00:00+00:00;42.25;16.25;16.5;270;;;;;;;;;;Wells Road;51.4278638883,-2.56374153315;2003-05-23T00:00:00+00:00;;True
```

Note the following:

There are 18 stations (monitors):

```
188 => 'AURN Bristol Centre',
203 => 'Brislington Depot',
206 => 'Rupert Street',
209 => 'IKEA M32',
213 => 'Old Market',
215 => 'Parson Street School',
228 => 'Temple Meads Station',
270 => 'Wells Road',
271 => 'Trailer Portway P&R',
375 => 'Newfoundland Road Police Station',
395 => "Shiner's Garage",
452 => 'AURN St Pauls',
447 => 'Bath Road',
459 => 'Cheltenham Road \ Station Road',
463 => 'Fishponds Road',
481 => 'CREATE Centre Roof',
```

Each line represents one reading from a specific detector. Detectors take one reading every hour. If you examine the file using a programming editor, Notepad++ can handle the job, you can see that the first row gives headers and there are another 1344953287 (1.3 million+) rows (lines). There are 22 data items (columns) per line.

The schema is given below:

500 => 'Temple Way', 501 => 'Colston Avenue'

measure	desc	unit
Date Time	Date and time of measurement	datetime
NOx	Concentration of oxides of nitrogen	μg/m3
NO2	Concentration of nitrogen dioxide	μg/m3
NO	Concentration of nitric oxide	μg/m3
SiteID	Site ID for the station	integer
PM10	Concentration of particulate matter <10 micron diameter	μg/m3
NVPM10	Concentration of non - volatile particulate matter <10 micron diameter	µg/m3
VPM10	Concentration of volatile particulate matter <10 micron diameter	μg/m3
NVPM2.5	Concentration of non volatile particulate matter <2.5 micron diameter	μg/m3
PM2.5	Concentration of particulate matter <2.5 micron diameter	μg/m3
VPM2.5	Concentration of volatile particulate matter <2.5 micron diameter	µg/m3
СО	Concentration of carbon monoxide	mg/m3
О3	Concentration of ozone	μg/m3
SO2	Concentration of sulphur dioxide	μg/m3
Temperature	Air temperature	°C
RH	Relative Humidity	%
Air Pressure	Air Pressure	mbar
Location	Text description of location	text
geo_point_2d	Latitude and longitude	geo point
DateStart	The date monitoring started	datetime
DateEnd	The date monitoring ended	datetime
Current	Is the monitor currently operating	text

Task 1: Cleanse and Refactor the Data (20 marks)

The original file is large and unwieldy, with some missing data rows and hence will be hard to process quickly and efficiently for different tasks.

Using a <u>Divide & Conquer Strategy</u>, we can break up the file into smaller more optimised data chunks. These will be much easier and more efficient to process.

Write a PHP script (extract-to-csv.php) to process the input file (air-quality-data-2004-2019.csv) and output 18 smaller csv files holding data for each monitoring station.

These output eighteen output files should be named as data_188.csv, data_203.csv, data_206.csv ... etc. with all empty data lines filtered out.

They should only hold 16 columns of essential data - the first 14 columns (pollution data) & column 18 + 19 (location & geo-location) with other columns filtered out.

You should also include only those records that have values for either the NOx reading (column 2) or the CO reading (column 12) i.e. if both are missing then exclude the record..

Each file will have the first line holding the following header:

```
siteID,ts,nox,no2,no,pm10,nvpm10,vpm10,nvpm2.5,pm2.5,vpm2.5,co,o3,so2,loc,lat,long
```

Notice the slight reorganization with SiteID moving from column 5 to 1 and Column 2 ts now holds a converted UNIX timestamp rather than a date/time string.

Submission File: A php sript file listing - extract-to-csv.php

Note: If this file is unavailable after the submission date - a mark of 0 will be automatically assigned for this part.

Coding Tip: Make use of PHP's fgets() and fputs() functions. These are highly optimized libraries written in C and can easily handle the task. Avoid creating memory intensive intermediate arrays and other structures. Simply read a line and write it out to a specific station file. Avoid opening and closing lots of files repeatedly (very time consuming).

You will need to set the following PHP flags given the large size of the input file.

```
# set timezone
@date_default_timezone_set("GMT");
ini_set('memory_limit', '512M');
ini_set('max_execution_time', '300');
ini_set('auto_detect_line_endings', TRUE);
```

Task 2: Data Transformation, Normalisation & XML Validation (20 marks)

2a. Write a PHP script - normalize-to-xml.php to transform each data CSV file to the following example XML structure (12 marks):

These files should be named data_203.xml, data_206.xml, data_209.xml ... etc. and formatted as follows (447 - Bath Road example):

```
<?xml version="1.0" encoding="UTF-8"?>
2 V <station id="447" name="Bath Road" geocode="51.4425372726,-2.57137536073">
       <rec ts="1287277200" nox="117.0" no="52.0" no2="64.75" />
3
        <rec ts="1287288000" nox="104.75" no="46.75" no2="57.25" />
       <rec ts="1287291600" nox="54.5" no="39.75" no2="14.5" />
5
6
7 🗸
       <!--
8
10
          Another 60000+ records -->
11
12
13
14
    </station>
```

Notice this XML file is now normalized - not holding repeating data (station id, name & geocode) and only holding the attributes for each record which have values.

Submission File: A php sript file listing - normalize-to-xml.php

This script should generate the required XML files to the current directory.

Note: If this file is unavailable after the submission date - a mark of 0 will be automatically assigned for this part.

Coding Tip: Again make use of PHP's fgets() or even fgetcsv() functions. Also the XMLWriter() library is useful here.

2b. Design and write a XSD 1.1 Schema file to validate the data XML files.(8 marks):

Design and implement a XML Schema (XSD) (air-quality.xsd) to validate the XML files generated above.

Marks will depend on the overall design, structure & strictness of the schema.

Submission File: A XSD 1.1 Schema file - air-quality.xsd

Note: If this file is unavailable for reading after the submission date - a mark of 0 will be automatically assigned for this part.

Coding Tip: Make use of the oXygen XML editor in the Labs. This is a powerful tool and will reward learning.

Task 3: Charts Visualisation (20 marks)

Use **Google Chart** or any other charts API to visualise the following charts:

- A scatter chart to show a years worth of data (averaged by month) from a specific station for Carbon Monoxide (NO) at a certain time of day - say 08.00 hours.
- A line chart showing levels in any 24 hour period on any day (user selectable) for any of the six stations (user selectable) for any of the major pollutants (nox, no, no2) in the date range downloaded.

All charts should give an accurate rendition of the data set at an appropriate resolution.

Note that you can restrict the data to the range 01/01/2015 to 31/12/2019

Task 4: Maps Visualisation (20 marks)

Use **Google Maps** or any other mapping API to visualise the data:

You are encouraged to be creative and make use of the data in any way you decide.

Marks will be based on the creative use of the selected API, appropriate use of the data set & the usability and aesthetics of the user interface.

Note that you can restrict the data to the range 01/01/2015 to 31/12/2019

Task 5: Reflection & Report (20 marks)

A report in Markdown format to include:

- A discussion of parsing methods and tools and when to use streaming parsers over DOM parsers for document processing (up to 600 words) (8 marks);
- o Links to all code and data files for examination and marking (8 marks);
- How you might go about refactoring and extending the charting and data visualisation functionality you have implemented.(4 marks)

A reflective discussion with comprensive links to working code / layouts will achieve the highest marks in this section.

This report must also link to all source code created (i.e. *.phps files for line by line inspection and NOT simply executables).

Marking Criteria and Scheme

① Code Benchmark Tests will be carried out on a machine with an Intel i3-4130 CPU @ 3.40GHz with 8.00 GB of memory running Windows 10 and XAMPP.

Task 1: Cleanse and Refactor the Data (20 marks)

A benchmarking script will use the script extract-to-csv.php and run the following tests.

Benchmark Test 1a: Efficiency (Time)

How long the script takes to run and generate the 18 CSV files.

Measure	Mark
<= 30 secs.	8
>= 30 secs. & <= 40 secs.	6
> 40 secs. & <= 65 secs.	4
> 65 secs. & <= 200 secs	2
> 200 secs	0

Benchmark Test 1b: Accuracy (Size)

The size of the expected output files.

Measured by the number of lines (records) in each station's CSV file (including header line).

Station	No of lines in CSV file
188	107641
203	156921
206	101981
209	5773
213	40783
215	148330
228	6343
270	135643
271	37825
375	92950
395	73245
447	60253
452	114294
459	20902
463	87842
481	1
500	24016
501	10130

Marking:

Measure (+-)	Mark
0%	8 marks
<= 1%	6 marks
> 1%	0 marks

The overall structure, format and commenting of the script file. (4 marks)

Task 2: Data Transformation, Normalisation & XML Validation (20 marks)

Task 2a: Generate normalized XML files (12 marks):

A benchmarking script will access the script *normalize-to-xml.php* and run the following tests.

Benchmark Test 2a: Efficiency (Time)

How long the script takes to run and generate the 18 XML files.

Measure	Mark
<= 35 secs.	6 marks
> 35 secs. & <= 65 secs.	4 marks
> 65 secs. & <= 100 secs.	2 marks
> 100 secs.	0 marks

Benchmark Test 2b: Accuracy (Size)

The size of the expected output files.

Measured by the number of lines in each station's XML file.

Station No of lines in XML file 188 103895 203 156923 206 101983 209 5775 213 37333 215 148332 228 6345 270 135645 271 37827 375 92952 395 73247 447 60255 452 113184 459 20904 463 87844 481 3 500 24018 501 10132		
203 156923 206 101983 209 5775 213 37333 215 148332 228 6345 270 135645 271 37827 375 92952 395 73247 447 60255 452 113184 459 20904 463 87844 481 3 500 24018	Station	
206 101983 209 5775 213 37333 215 148332 228 6345 270 135645 271 37827 375 92952 395 73247 447 60255 452 113184 459 20904 463 87844 481 3 500 24018	188	103895
209 5775 213 37333 215 148332 228 6345 270 135645 271 37827 375 92952 395 73247 447 60255 452 113184 459 20904 463 87844 481 3 500 24018	203	156923
213 37333 215 148332 228 6345 270 135645 271 37827 375 92952 395 73247 447 60255 452 113184 459 20904 463 87844 481 3 500 24018	206	101983
215 148332 228 6345 270 135645 271 37827 375 92952 395 73247 447 60255 452 113184 459 20904 463 87844 481 3 500 24018	209	5775
228 6345 270 135645 271 37827 375 92952 395 73247 447 60255 452 113184 459 20904 463 87844 481 3 500 24018	213	37333
270 135645 271 37827 375 92952 395 73247 447 60255 452 113184 459 20904 463 87844 481 3 500 24018	215	148332
271 37827 375 92952 395 73247 447 60255 452 113184 459 20904 463 87844 481 3 500 24018	228	6345
375 92952 395 73247 447 60255 452 113184 459 20904 463 87844 481 3 500 24018	270	135645
395 73247 447 60255 452 113184 459 20904 463 87844 481 3 500 24018	271	37827
447 60255 452 113184 459 20904 463 87844 481 3 500 24018	375	92952
452 113184 459 20904 463 87844 481 3 500 24018	395	73247
459 20904 463 87844 481 3 500 24018	447	60255
463 87844 481 3 500 24018	452	113184
481 3 500 24018	459	20904
500 24018	463	87844
	481	3
501 10132	500	24018
	501	10132

Marking:

Measure (+-)	Mark
0%	6 marks
<= 1%	4 marks
> 1%	0 marks

Task 2b: Design & Implement a XML Schema (8 marks):

- A XSD 1.1 schema developed using the oXygen editor or other (on-line) schema authoring tools.
- o A well structured and appropriately strict schema making use of the available syntax and context.
- Your generated XML files (bar the empty one data_481.xml) have to validate against this schema.

Task 3: Charts Visualisation (20 marks)

- o Appropriate use of Google Chart (or other) API and toolkit.
- Faithful and accurate rendition of data.
- o All code and data files are linked to for examination and marking.
- o Code is suitably commented.
- Code is properly attributed where someone else's code is used, with a link to the source.
- o Code adheres to good practice in terms of separation of concerns, use of functions etc.

Task 4: Maps Visualisation (20 marks)

- o Creative and appropriate use of Google Maps or another mapping API.
- o Marks will be based on aesthetics, usability and the creative and accurate use of the data.

Task 5: Reflection & Report (20 marks)

- A short discussion of extending the visualisation.
- A short discussion of XML processing models DOM oriented parsers (e.g. SimpleXML() as compared to stream oriented parsers (e.g. XMLReader()).
- o An outline and discussion of the learning outcomes achieved.

Assessment Offences

This assignment should be your own work. Allowing others to do the work for you, or sharing significant portions of code with others will be considered an assessment offence and may lead to your mark being reduced to 0. Part of the marking process will include similarity checks and we may ask you to explain your code in detail to verify that it is your own. Please refer to the <u>assessment offences policy document</u> for more information.

References

Air Pollution - Wikipedia

UK Government Air Quality Strategy

Markdown Tutorial

url: http://fetstudy.uwe.ac.uk/~p-chatterjee/2020-21/modules/atwd2/assignment/