

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE171000102

FCC REPORT

Applicant: Sun Cupid Technology (HK) Ltd.

Address of Applicant: 16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan,

Kowloon, Hong Kong.

Equipment Under Test (EUT)

Product Name: LTE mobile phone

Model No.: N5701L, G1

Trade mark: NUU

FCC ID: 2ADINN5701L

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 11 Oct., 2017

Date of Test: 11 Oct., to 31 Oct., 2017

Date of report issued: 01 Nov., 2017

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	01 Nov., 2017	Original

Tested by: Quey (hen Date: 01 Nov., 2017

Test Engineer

Reviewed by: Date: 01 Nov., 2017

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	NTENTS	3
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	7
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	16
	6.6	BAND EDGE	
	6.6.		
	6.6.2		
	6.7	Spurious Emission	
	6.7.		
	6.7.2	2 Radiated Emission Method	28
7	TES	T SETUP PHOTO	33
8	EUT	CONSTRUCTIONAL DETAILS	34

4 Test Summary

Test Items	Section in CFR 47	Result				
Antenna requirement	15.203/15.247 (c)	Pass				
AC Power Line Conducted Emission	15.207	Pass				
Conducted Peak Output Power	15.247 (b)(3)	Pass				
6dB Emission Bandwidth	15.247 (a)(2)	Pass				
Power Spectral Density	15.247 (e)	Pass				
Band Edge	15.247(d)	Pass				
Conducted and radiated Spurious Emission	15.205/15.209	Pass				
Pass: The EUT complies with the essential requirements in the standard.						

General Information 5

5.1 Client Information

Applicant: Sun Cupid Technology (HK) Ltd.					
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.				
Manufacturer	Sun Cupid Technology (HK) Ltd.				
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.				
Factory:	SUNCUPID (ShenZhen) Electronic Ltd				
Address:	Baolong Industrial City, Longgang District, Shenzhen Hi-Tech Road, Building 1, A7, China.				

5.2 General Description of E.U.T.

Product Name:	LTE mobile phone
Model No.:	N5701L, G1
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.4 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2800mAh
AC adapter :	Model: TPA-46050150UU Input: AC100-240V, 50/60Hz, 0.3A Output: DC 5.0V, 1500mA
Remark:	Model No.: N5701L, G1 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE171000102

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and test mode

Operating Environment:					
Temperature:	24.0 °C				
Humidity:	54 % RH				
Atmospheric Pressure:	1010 mbar				
Test mode:					
Transmitting mode Keep the EUT in continuous transmitting with modulation					

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty		
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)		
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)		
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)		
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)		
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)		

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd. Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:								
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020			
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	02-25-2017	02-24-2018			
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	02-25-2017	02-24-2018			
Horn Antenna	SCHWARZBECK	BBHA9120D	916	02-25-2017	02-24-2018			
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A			
Pre-amplifier	HP	8447D	2944A09358	02-25-2017	02-24-2018			
Pre-amplifier	CD	PAP-1G18	11804	02-25-2017	02-24-2018			
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	02-25-2017	02-24-2018			
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	02-25-2017	02-24-2018			
Cable	ZDECL	Z108-NJ-NJ-81	1608458	02-25-2017	02-24-2018			
Cable	MICRO-COAX	MFR64639	K10742-5	02-25-2017	02-24-2018			
Cable	SUHNER	SUCOFLEX100	58193/4PE	02-25-2017	02-24-2018			

Conducted Emission:									
Test Equipment	Manufacturer	Model No. Serial No.		Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	02-25-2017	02-24-2018				
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	02-25-2017	02-24-2018				
LISN	CHASE	MN2050D	1447	02-25-2017	02-24-2018				
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2018				
Cable	HP	10503A	N/A	02-25-2017	02-24-2018				
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A				

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 1.4 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15	.207					
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	150 kHz to 30 MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:		Limit (dRu\/)					
	Frequency range (MHz)	Frequency range (MHz) Quasi-peak Average					
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logar						
Test procedure	line impedance stable 50ohm/50uH coupling 2. The peripheral devices a LISN that provides termination. (Please photographs). 3. Both sides of A.C. interference. In order positions of equipments	a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).					
Test setup:	Refere	nce Plane					
	AUX Equipment E.U Test table/Insulation pla	EMI Receiver	_— AC power				
	E.U.T: Equipment Under Test LISN: Line Impedence Stabilizatio Test table height=0.8m	n Network					
Test Instruments:	Refer to section 5.8 for det	ails					
Test mode:	Refer to section 5.3 for det	ails					
Test results:	Passed						

Measurement Data:

Neutral:

Trace: 5

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : LTE Mobil Phone Condition

EUT

: N5701L Model Test Mode : BLE mode Power Rating: AC 120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Carey

Remark

emark	Freq	Read	LISN Factor	Cable Loss	Level	Limit Line	Over	Remark
000	rreq	Level	ractor	LUSS	Level	Line	LIMIC	Remark
	MHz	dBu∜	₫B	d₿	dBu₹	dBu∜	₫B	
1	0.186	23.42	-0.35	10.76	33.83	54.20	-20.37	Average
2	0.313	19.56	-0.32	10.74	29.98	49.88	-19.90	Average
3	0.555	33.61	-0.30	10.76	44.07	56.00	-11.93	QP
4	1.184	21.11	-0.28	10.89	31.72	46.00	-14.28	Average
5	1.310	36.58	-0.28	10.90	47.20	56.00	-8.80	QP
6	2.358	33.08	-0.24	10.94	43.78	56.00	-12.22	QP
1 2 3 4 5 6 7 8	2.371	17.72	-0.23	10.94	28.43	46.00	-17.57	Average
8	2.884	17.36	-0.21	10.92	28.07	46.00	-17.93	Average
9	3.700	33.35	-0.20	10.90	44.05	56.00	-11.95	QP
10	3.700	16.80	-0.20	10.90	27.50	46.00	-18.50	Average
11	5.194	32.30	-0.16	10.84	42.98	60.00	-17.02	QP
12	20.270	32.70	-0.51	10.93	43.12	60.00	-16.88	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Line:

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : LTE Mobil Phone Site Condition

EUT

Model : N5701L Test Mode : BLE mode

Power Rating: AC 120/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Carey

Remark

Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark	
MHz	dBu∀	<u>dB</u>	₫B	dBu₹	dBu₹	<u>d</u> B		
0.190	35.39	-0.53	10.76	45.62	64.02	-18.40	QP	
0.190	21.35	-0.53	10.76	31.58	54.02	-22.44	Average	
0.558	29.78	-0.49	10.76	40.05	56.00	-15.95	QP	
0.561	20.15	-0.49	10.76	30.42	46.00	-15.58	Average	
0.938	18.34	-0.49	10.85	28.70	46.00	-17.30	Average	
1.255	31.33	-0.47	10.90	41.76	56.00	-14.24	QP	
1.441	19.98	-0.46	10.92	30.44	46.00	-15.56	Average	
2.692	30.93	-0.44	10.93	41.42	56.00	-14.58	QP	
2.692	16.10	-0.44	10.93	26.59	46.00	-19.41	Average	
3.700	29.66	-0.34	10.90	40.22	56.00	-15.78	QP	
3.700	15.44	-0.34	10.90	26.00	46.00	-20.00	Average	
13.695	30.80	-0.50	10.91	41.21	60.00	-18.79	QP	
	Freq 0.190 0.190 0.558 0.561 0.938 1.255 1.441 2.692 2.692 3.700 3.700	Read Level MHz dBuV 0.190 35.39 0.190 21.35 0.558 29.78 0.561 20.15 0.938 18.34 1.255 31.33 1.441 19.98 2.692 30.93 2.692 36.10 3.700 29.66 3.700 15.44	Read LISN Level Factor MHz dBuV dB 0.190 35.39 -0.53 0.190 21.35 -0.53 0.558 29.78 -0.49 0.561 20.15 -0.49 0.938 18.34 -0.49 1.255 31.33 -0.47 1.441 19.98 -0.46 2.692 30.93 -0.44 2.692 16.10 -0.44 3.700 29.66 -0.34 3.700 15.44 -0.34	Read LISN Cable Level Factor Loss MHz dBuV dB dB 0.190 35.39 -0.53 10.76 0.190 21.35 -0.53 10.76 0.558 29.78 -0.49 10.76 0.561 20.15 -0.49 10.76 0.938 18.34 -0.49 10.85 1.255 31.33 -0.47 10.90 1.441 19.98 -0.46 10.92 2.692 30.93 -0.44 10.93 3.700 29.66 -0.34 10.90 3.700 15.44 -0.34 10.90	Read LISN Cable Level Factor Loss Level MHz dBuV dB dB dB dBuV 0.190 35.39 -0.53 10.76 45.62 0.190 21.35 -0.53 10.76 31.58 0.558 29.78 -0.49 10.76 40.05 0.561 20.15 -0.49 10.76 30.42 0.938 18.34 -0.49 10.85 28.70 1.255 31.33 -0.47 10.90 41.76 1.441 19.98 -0.46 10.92 30.44 2.692 30.93 -0.44 10.93 41.42 2.692 30.93 -0.44 10.93 41.42 2.692 16.10 -0.44 10.93 26.59 3.700 29.66 -0.34 10.90 40.22 3.700 15.44 -0.34 10.90 26.00	Read LISN Cable Limit Loss Level Line MHz dBuV dB dB dB dBuV dBuV 0.190 35.39 -0.53 10.76 45.62 64.02 0.190 21.35 -0.53 10.76 31.58 54.02 0.558 29.78 -0.49 10.76 40.05 56.00 0.561 20.15 -0.49 10.76 30.42 46.00 0.938 18.34 -0.49 10.85 28.70 46.00 1.255 31.33 -0.47 10.90 41.76 56.00 1.441 19.98 -0.46 10.92 30.44 46.00 2.692 30.93 -0.44 10.93 41.42 56.00 2.692 16.10 -0.44 10.93 26.59 46.00 3.700 29.66 -0.34 10.90 40.22 56.00 3.700 15.44 -0.34 10.90 26.00 46.00	Read LISN Cable Level Limit Over Line Limit MHz dBuV dB dB dBuV dBuV dBuV dB 0.190 35.39 -0.53 10.76 45.62 64.02 -18.40 0.190 21.35 -0.53 10.76 31.58 54.02 -22.44 0.558 29.78 -0.49 10.76 40.05 56.00 -15.95 0.561 20.15 -0.49 10.76 30.42 46.00 -15.58 0.938 18.34 -0.49 10.85 28.70 46.00 -17.30 1.255 31.33 -0.47 10.90 41.76 56.00 -14.24 1.441 19.98 -0.46 10.92 30.44 46.00 -15.56 2.692 30.93 -0.44 10.93 41.42 56.00 -14.58 2.692 16.10 -0.44 10.93 26.59 46.00 -19.41 3.700 29.66 -0.34 10.90 40.22 56.00 -15.78 3.700 15.44 -0.34 10.90 26.00 46.00 -20.00	Read LISN Cable Level Limit Over Limit Remark MHz

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 9.1.1					
Limit:	30dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data:

Micasarciniciti Data.			
Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	0.01		
Middle	0.27	30.00	Pass
Highest	-0.49		

Test plot as follows:

Date: 16.0CT.2017 18:12:34

Lowest channel

Date: 16.0CT.2017 18:12:25

Middle channel

Date: 16.0CT.2017 18:12:11

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 8.1					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result		
Lowest	0.732				
Middle	0.738	>500	Pass		
Highest	0.732				
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result		
Lowest	1.056				
Middle	1.062	N/A	N/A		
Highest	1.056				

Test plot as follows:

Date: 16.OCT.2017 18:14:37

Lowest channel

Date: 16.0CT.2017 18:15:10

Date: 16.0CT.2017 18:15:40

Middle channel

Highest channel

99% OBW -PBM 100 AHz Marker 1 [T1] -0.74 dime -0.74 di

Date: 16.0CT.2017 18:12:53

Lowest channel

Date: 16.0CT.2017 18:13:07

Middle channel

Date: 16.0CT.2017 18:13:19

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)					
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 10.2					
Limit:	8 dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data:

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-0.71		
Middle	-0.43	8.00	Pass
Highest	-1.22		

Test plots as follow:

Date: 16.0CT.2017 18:14:13

Lowest channel

Date: 16.0CT.2017 18:14:01

Middle channel

Date: 16.0CT.2017 18:13:49

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

0.0.1 Oolidacted Elillosion	
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 13
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer
	Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plots as follow:

Date: 16.0CT.2017 18:08:35

Lowest channel

Date: 16.0CT.2017 18:08:04

Highest channel

6.6.2 Radiated Emission Method

6.6.2 Radiated Emission Method								
	Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
	Test Method:	ANSI C63.10: 2013 and KDB558074 D01 DTS Meas Guidance v04 section 12.1						
	Test Frequency Range:	2.3GHz to 2.5	GHz					
	Test Distance:	3m						
	Receiver setup:	Frequency	Detecto	or	RBW	V	/BW	Remark
	receiver estap.	Above 1GHz	Peak		1MHz	3MHz		Peak Value
		Above IGHZ	RMS		1MHz		MHz	Average Value
	Limit:	Frequer	ncy	Lin	nit (dBuV/m @3	Bm)		Remark
		Above 10	GHz		54.00 74.00			verage Value Peak Value
	Test Procedure:	the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horize make the 4. For each case and meters are to find the Specified 6. If the emite the limits of the EU have 10 ce	d at a 3 m line the po was set 3 which was and height d to detern zontal and measurer suspected then the a and the rotal e maximun receiver sy Bandwidth ssion level specified, the	eter esition metes mouth is varied with the second metes and the second	camber. The tall of the highest ers away from the unted on the top aried from one nathe maximum value polarizations assion, the EUT na was turned from the was turned from the was set to Pean Maximum Holling EUT in peak esting could be orted. Otherwis	ble wradiane into of a neter value s of the was a beginn 0 modern stopple the brief one by	table 1. as rotat tion. erference variable to four of the fine anter arrange ghts from degrees tect Fur de. e was 10 ped and emissic y one us	5 meters above ed 360 degrees ce-receiving e-height antenna meters above eld strength. In a are set to d to its worst in 1 meter to 4 is to 360 degrees inction and the peak values ons that did not sing peak, quasi-
	Test setup:	AE (T	Test Re	Е	Horn Antenna Reference Plane Pre- Amplifer Control	Antenna T	ower	
	Test Instruments:	Refer to section	on 5.8 for c	letail				
	Test mode:	Refer to section	on 5.3 for c	letail	S			
	Test results:	Passed						

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : LTE mobile phone Condition

: LTE mobile phone

Model : N5701L
Test mode : BLE - L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: Carey
REMARK :

1 2

м										
		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
		dBuV			-	3507	3007	-		
	MHz	abuv	ab/m	Ф	dB	abuv/m	abuv/m	dB		
	2390.000	15.62	25.45	4.69	0.00	45.76	74.00	-28.24	Peak	
	2390.000	7.86	25.45	4.69	0.00	38.00	54.00	-16.00	Average	

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : LTE mobile phone Condition

EUT

Model : N5701L model : N5701L
Test mode : BLE - L Mode
Power Rating : AC 120V/60Hz
Environment : Temp: 25.5°C Huni: 55% 101KPa
Test Engineer: Carey
RFMAPY

REMARK

1 2

Freq		Antenna Factor						
MHz	dBu₹	<u>dB</u> /m	d <u>B</u>	<u>d</u> B	dBuV/m	dBu√/m	<u>dB</u>	
2390.000 2390.000								

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : LTE mobile phone Condition

EUT

Model : N5701L
Test mode : BLE - H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: Carey REMARK :

1 2

ппл		DJ	Antenna	Cabla	D		Timin	Over	
	Freq		Factor						
4	MHz	dBu∇	$\overline{dB/m}$	<u>d</u> B	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
5	2483.500 2483.500								

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : LTE mobile phone Condition

EUT

Model : N5701L
Test mode : BLE - H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: Carey

REMARK

1 2

Freq		Antenna Factor						
MHz	dBu∇	<u>dB</u> /m	āĒ	<u>d</u> B	dBuV/m	dBuV/m		-
2483, 500 2483, 500								

6.7 Spurious Emission

6.7.1 Conducted Emission Method

THE CONTRACTOR ENGINEERS INCOME.									
Test Requirement:	FCC Part 15 C Section 15.247 (d)								
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 11								
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Test Instruments: Refer to section 5.8 for details								
Test mode:	Refer to section 5.3 for details								
Test results:	Passed								

Test plot as follows:

Date: 16.OCT.2017 18:09:28

30MHz~25GHz

Date: 16.OCT.2017 18:10:09

30MHz~25GHz

Date: 16.OCT.2017 18:11:43

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test Distance:	3m								
Receiver setup:	Frequency	Detecto	or	RBW VBV		W	Remark		
·	30MHz-1GHz	Quasi-pe	eak	120KHz	300	KHz Quasi-peak Valu			
	Above 1GHz	Peak		1MHz	3M		Peak Value		
I time the		RMS		1MHz	3M	Hz	Average Value		
Limit:	Frequency 30MHz-88M		LII	nit (dBuV/m @ 40.0	(3111)	0	Remark Juasi-peak Value		
	88MHz-216N			43.5			luasi-peak Value		
	216MHz-960I			46.0			luasi-peak Value		
				54.0					
	Above 1GF	1Z		74.0			Peak Value		
Test Procedure:	Above 1GHz 54.0 Average Value								

Below 1GHz:

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) HORIZONTAL : LTE mobile phone Condition

EUT

Test mode : BLE Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: Carey
REMARK : N5701L Model

EMAKK									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
=	MHz	dBu₹	$-\overline{dB}/\overline{m}$		<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	170.793	48.08	9.00	2.66	29.04	30.70	43.50	-12.80	QP
2	239.147	51.71	11.78	2.82	28.60	37.71	46.00	-8.29	QP
2	354.183	49.89	14.72	3.10	28.58	39.13	46.00	-6.87	QP
4	449.556	49.36	15.60	3.20	28.87	39.29	46.00	-6.71	QP
5	485.609	45.43	15.96	3.50	28.93	35.96	46.00	-10.04	QP
6	574.626	37.45	17.93	3.91	29.02	30.27	46.00	-15.73	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) VERTICAL : LTE mobile phone Condition

EUT

: N5701L Model Test mode : BLE Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: Carey
REMARK :

THE THE									
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
_	MHz	dBu∇	<u>dB</u> /m	<u>d</u> B	<u>ab</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1	190.405	45.75	10.40	2.80	28.90	30.05	43.50	-13.45	QP
2	239.987	50.39	11.85	2.82	28.59	36.47	46.00	-9.53	QP
2 3 4	266.609	47.77	12.47	2.85	28.51	34.58	46.00	-11.42	QP
4	341.979	47.30	14.40	3.07	28.54	36.23	46.00	-9.77	QP
5	452.720	47.67	15.58	3.22	28.88	37.59	46.00	-8.41	QP
	572.614	41.19	17.86	3.91	29.03	33.93	46.00	-12.07	QP

Above 1GHz

Т		Lowest		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	47.10	30.85	6.80	41.81	42.94	74.00	-31.06	Vertical
4804.00	47.89	30.85	6.80	41.81	43.73	74.00	-30.27	Horizontal
Т	est channel		Lowest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	37.41	30.85	6.80	41.81	33.25	54.00	-20.75	Vertical
4804.00	37.73	30.85	6.80	41.81	33.57	54.00	-20.43	Horizontal

Т	est channel	:	Middle		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	47.42	31.20	6.86	41.84	43.64	74.00	-30.36	Vertical	
4884.00	46.31	31.20	6.86	41.84	42.53	74.00	-31.47	Horizontal	
Т	est channel	:	Middle		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	37.83	31.20	6.86	41.84	34.05	54.00	-19.95	Vertical	
4884.00	36.64	31.20	6.86	41.84	32.86	54.00	-21.14	Horizontal	

Т	•	Highest		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	47.36	31.63	6.91	41.87	44.03	74.00	-29.97	Vertical
4960.00	46.94	31.63	6.91	41.87	43.61	74.00	-30.39	Horizontal
Т	est channel		Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	37.63	31.63	6.91	41.87	34.30	54.00	-19.70	Vertical
4960.00	36.39	31.63	6.91	41.87	33.06	54.00	-20.94	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.