Algorithmics	Student information	Date	Number of session
	UO: 257850	16/03/2021	
	Surname: Campa Martínez	Escuela de Ingeniería	

Activity 1. Basic recursive models

Name: Armando

- Subtraction 1: there is one recursive call, so a = 1, therefore complexity is $O(n^{(k+1)})$, where k = 0, so O(n).
- Subtraction 2: as with the previous case, a = 1, however k = 1 in this case, making the complexity $O(n^2)$.
- Subtraction 3: now, a = 2, bigger than 1, so it follows the $(a^{(n/b)})$ pattern, where b = 1, so the complexity is $O(2^{(n)})$.
- Subtraction 4: target complexity is $O(3^{(n/2)})$. For this, a has to be bigger than 1, and b has to be 2. For this I made 3 recursive call where I subtract 2.
- Division1: $a < b^k$, being a = 1, b = 3, k = 1, therefore the complexity is O(n).
- Division 2: $a = b^k$, where a = 2, b = 2, and k = 1, making the complexity $O(n^*logn)$.
- Division 3: $a > b^k$, because a = 2 and b = 2, but k = 1, so $2 > (2^1 = 1)$, the complexity is then O(n^log2).
- Division 4: target complexity is O(n^2) having a number of subproblems (a) of 4. The condition for the O(n^k) pattern is a<b^k. To fulfill that 4<b^k, I used a complexity of $O(n^2)$ so that k = 2, and made the recursive call divide by 3.