Problem Set 7-Wednesday 6.2: Volumes (Method of Cross-Sections)

Please indicate the members who are present. Also indicate the group coordinator.

Group Number: Members:	Solution Key	
	By group 1, section 35	
	many thanks to Majed Bamardouf and his te	eam
_		

Find the volume of the solid generated by rotating the region bounded by the curves $y = x^2$ and y = 1 about the x-axis.

$$R = 1 - 0 = 1$$

 $Y = \chi^{2} - 0 = \chi^{2}$

$$V = \int_{-1}^{1} \left[(1)^2 \pi - (x^2)^2 \pi \right] dx$$

$$= \pi \int_{-1}^{1} (1-x)^{2} dx$$

$$= \pi \left[\chi - \frac{1}{5} \chi^5 \right] = \pi \left[\frac{4}{5} + \frac{4}{5} \right]$$

$$=\frac{8\pi}{5}$$

The region bounded by the curves $y = \sqrt{x}$ and $y = x^2 + 1$ between x = 0 and x = 1 is revolved

about the y-axis. Find the volume of the solid generated.

$$V_{1} = \int_{0}^{1} \pi \cdot (y^{2})^{2} dy = \pi \int_{0}^{1} g^{4} dy$$

$$= \pi \left[\frac{1}{5} g^{5} \right]_{0}^{1} = \frac{\pi}{5}$$

$$V_{2}(\text{Wather}): R = 1, r = \sqrt{9-1}$$

$$V_{3} = \int_{1}^{2} \pi (\sqrt{9-1})^{2} dy = \pi \int_{1}^{2} (9-1) dy$$

$$V_{4} = \pi \left[\frac{9^{2}}{2} - 9 \right]_{1}^{2} = \pi \left[(2-2) - (\frac{1}{2} - 1) \right]$$

$$= \frac{\pi}{2}$$

$$V = V_{1} + V_{2} = \frac{\pi}{5} + \frac{\pi}{2}$$

$$V = \frac{7\pi}{10}$$

Find the volume of the solid generated by rotating the region bounded by the curves $y = x^3$

and
$$x = y^2$$
 about the line $y = -1$.

$$R = \sqrt{x} + 1$$

$$V = \pi \int_{0}^{\pi} \left[(\sqrt{x} + 1)^{2} - (x^{3} + 1)^{2} \right] dx$$

$$= \pi \int_{0}^{\pi} [(x+2\sqrt{x}+t)-(x^{6}+2x^{3}+t)] dx$$

$$= \pi \int_{-\infty}^{\infty} (-x^6 - 2x^3 + 2\sqrt{x} + x) dx$$

$$= \pi \left[-\frac{1}{4} x^{\frac{1}{4}} - \frac{1}{2} x^{\frac{1}{4}} + \frac{1}{3} x^{\frac{3}{2}} + \frac{1}{2} x^{\frac{3}{2}} \right] = \pi \left[-\frac{1}{4} + \frac{1}{3} \right]$$

$$= \frac{25\pi}{21}$$

The area enclosed by the circle $y^2 + (x - 1)^2 = 1$ is rotated about the y-axis. Find the volume of the resulting solid.

$$R = \sqrt{1-g^2} + 1$$

$$V = \pi \int_{-1}^{1} \left[\left(\int_{1-9^{2}}^{1} + 1 \right)^{2} - \left(-\int_{1-9^{2}}^{1} + 1 \right)^{2} \right] dy$$

$$= \int \left[\left(1 - y^2 + 2 \sqrt{1 - y^2} + 1 \right) - \left(1 - y^2 - 2 \sqrt{1 - y^2} + 1 \right) \right] dy$$

$$= \prod \left(4\sqrt{1-y^2}\right) dy = 4\pi \int \left(\sqrt{1-y^2}\right) dy$$

$$= 4\pi \cdot \left(\frac{1}{2}\pi \cdot 1^2\right) = 2\pi^2$$

The base of a solid is bounded by the curves $x = y^2$ and x = 4. The cross sections of the solid, perpendicular to the x-axis, are semicircles. Find the volume of the solid.

$$S = \int x + \int x = 2 \int x$$

$$\therefore r = \frac{1}{2} - 2 \int x = \int x$$

$$V = \int_{0}^{4} \frac{1}{2} \pi (\int x)^{2} dx$$

$$= \frac{1}{2} \pi \int_{0}^{4} x dx$$

$$= \frac{\pi}{2} \left[\frac{x^{2}}{2} \right]_{0}^{4} = 8\pi$$

A solid has a base lying in the first quadrant and bounded by the curves $y = 4 - x^2$, x = 0 and y = 0. If the cross sections of the solid perpendicular to the y-axis are equilateral triangles with the base running from the y-axis to the curve. Find the volume of the solid.

$$S = \sqrt{4-9}$$

$$A(9) = \sqrt{\frac{3}{4}} S^{2}$$

$$V = \int_{4}^{4} \int_{4}^{3} \cdot (4-9) \, d9$$

$$= \int_{4}^{3} \left[4y - \frac{9^{2}}{2} \right]_{0}^{4} = \int_{4}^{3} \left[16-8 \right]$$

$$= 2\sqrt{3}$$