Max Wisniewski, Alexander Steen

Tutor: David Müßig

Aufgabe 1

Es seien G eine Menge und $\cdot: G \times G \to G, (g,h) \mapsto g \cdot h$, eine assoziative Verknüpfung mit einem linksneutralem Element $e \in G$ und einem linksneutralem Element $g' \in G$ für jedes $g \in G$.

a) Es seien $g \in G$ und $g' \in G$ ein Element mit $g' \cdot g = e$. Zeigen Sie $g \cdot g' = e$.

Beweis:

Es seien $g, g' \in G$, sodass $g' \cdot g = e$. Es sei $g'' \in G$ ein Linksinverses zu g'. Dann gilt:

$$e = g'' \cdot g' = g'' \cdot (e \cdot g') = g'' \cdot ((g' \cdot g) \cdot g')$$

$$\stackrel{assoz.}{=} (g'' \cdot g') \cdot (g \cdot g') = e \cdot (g \cdot g')$$

$$= g \cdot g'$$

b) Beweisen Sie, dass $g \cdot e = g$ für alle $g \in G$ gilt.

Beweis:

Es seien $g, g' \in G$, sodass $g' \cdot g = e$. Dann gilt:

$$e \cdot g = (g' \cdot g) \cdot g \stackrel{a)}{=} (g \cdot g') \cdot g$$

$$\stackrel{assoz.}{=} g \cdot (g' \cdot g) = g \cdot e$$

Aufgabe 2

Auf \mathbb{R} wird folgende Verknüpfung $\star : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, mit $(a, b) \mapsto a \cdot b + a + b$ definiert.

a) Zeigen Sie, dass * das Assoziativgesetz erfüllt und es ein neutrales Element gibt.

Beweis:

Sei $a, b, c \in \mathbb{R}$. Dann gilt:

$$a \star (b \star c) = a \star (b \cdot c + b + c)$$

$$= a \cdot (b \cdot c + b + c) + a + (b \cdot c + b + c)$$

$$= a \cdot b \cdot c + a \cdot b + a \cdot c + a + b \cdot c + b + c$$

$$= (a \cdot b + a + b) \cdot c + (a \cdot b + a + b) + c$$

$$= (a \star b) \cdot c + (a \star b) + c = (a \star b) \star c$$

Behauptung: e = 0 ist das neutrale Element bzgl. \star .

Beweis:

Sei $a \in \mathbb{R}$. Dann gilt:

$$0 \star a = 0 \cdot a + 0 + a = a$$

b) Welche Elemente in \mathbb{R} besitzen bzgl. \star keine Inversen? Geben Sie die kleinste Teilmenge $N \subset \mathbb{R}$ an, für die $(\mathbb{R} \setminus N, \star)$ eine Gruppe ist.

Suche Inverses $b' \in \mathbb{R}$ zu $b \in \mathbb{R}$:

$$b' \star b = 0 \Leftrightarrow b' \cdot b + b' + b = 0$$
$$\Leftrightarrow b' = \frac{-b}{b+1}$$

Also besitzt b=-1 kein Inverses, da $\frac{-b}{b+1}$ für b=-1 nicht existiert. $\Rightarrow N=\{-1\}\Rightarrow (\mathbb{R}\setminus\{-1\},\star)$ ist Gruppe.

Aufgabe 3

- a) Es sei $g \in G$ eine Gruppe, so dass $g^2 = e$ für alle $g \in G$ gilt. Weisen Sie nach, dass G abelsch ist. Geben Sie für jedes $k \geq 1$ eine Gruppe G mit 2k Elementen an, in der $g^2 = e$ für jedes Gruppenelement $g \in G$ gilt.
 - (1) $\forall g \in G : g^2 = e \Rightarrow G$ abelsch.

Beweis:

Sei $a, b \in G$. Dann gilt:

$$a \cdot b = e \cdot a \cdot b = b^{2} \cdot a \cdot b$$

$$= b \cdot (b \cdot a) \cdot b \cdot e = b \cdot (b \cdot a) \cdot b \cdot a^{2}$$

$$= b \cdot (b \cdot a) \cdot (b \cdot a) \cdot a = b \cdot (b \cdot a)^{2} \cdot a$$

$$= b \cdot e \cdot a = b \cdot a$$

- (2) Je eine Gruppe G wie oben mit 2^k Elementen.
- b) Es sei G eine endliche abelsche Gruppe. Zeigen Sie, dass

$$\prod_{g \in G} g^2 = e.$$

Beweis:

...

Aufgabe 4

- **a**)
- b)
- $\mathbf{c})$