

Art of Problem Solving 2017 USA Team Selection Test

USA Team Selection Test 2017

TST#1	December 8th, 2016
1	In a sports league, each team uses a set of at most t signature colors. A set S of teams is <i>color-identifiable</i> if one can assign each team in S one of their signature colors, such that no team in S is assigned any signature color of a different team in S .
	For all positive integers n and t , determine the maximum integer $g(n,t)$ such that: In
	any sports league with exactly n distinct colors present over all teams, one can always
	find a color-identifiable set of size at least $g(n,t)$.
2	Let ABC be an acute scalene triangle with circumcenter O , and let T be on line BC such that $\angle TAO = 90^{\circ}$. The circle with diameter \overline{AT} intersects the circumcircle of $\triangle BOC$ at two points A_1 and A_2 , where $OA_1 < OA_2$. Points B_1 , B_2 , C_1 , C_2 are defined analogously. - Prove that $\overline{AA_1}$, $\overline{BB_1}$, $\overline{CC_1}$ are concurrent. - Prove that $\overline{AA_2}$, $\overline{BB_2}$, $\overline{CC_2}$ are concurrent on the Euler line of triangle ABC . Evan Chen
3	Let $P, Q \in \mathbb{R}[x]$ be relatively prime nonconstant polynomials. Show that there can be at most three real numbers λ such that $P + \lambda Q$ is the square of a polynomial.
	Alison Miller
TST#2	January 19th, 2017
1	You are cheating at a trivia contest. For each question, you can peek at each of the $n > 1$ other contestants' guesses before writing down your own. For each question, after all guesses are submitted, the emcee announces the correct answer. A correct guess is worth 0 points. An incorrect guess is worth -2 points for other contestants, but only -1 point for you, since you hacked the scoring system. After announcing the correct answer, the emcee proceeds to read the next question. Show that if you are leading by 2^{n-1} points at any time, then you can surely win first place. Linus Hamilton

Art of Problem Solving 2017 USA Team Selection Test

2	Let ABC be a triangle with altitude \overline{AE} . The A -excircle touches \overline{BC} at D , and intersects the circumcircle at two points F and G . Prove that one can select points V and N on lines DG and DF such that quadrilateral $EVAN$ is a rhombus. Danielle Wang
3	Prove that there are infinitely many triples (a, b, p) of positive integers with p prime, $a < p$, and $b < p$, such that $(a + b)^p - a^p - b^p$ is a multiple of p^3 .