MATH 2210Q Practice for Final Exam

Name:

Final Exam - Practice Questions

NOTE: This (mostly) only covers material past the second exam. Please refer to previous practice questions for material from Test 1 and Test 2.

The questions are broken into 3 categories: fundamental questions, advanced questions(*), and challenge questions(**). The fundamental questions test a basic understanding of the definitions and processes. Advanced questions test applying that understanding to more complicated problems. Finally, challenge questions are questions that are intended to stump you. Good luck!

- 1. Define the following terms:
 - Eigenvalue
 - Eigenvector
 - Eigenspace
 - Characteristic polynomial
 - Multiplicity of an eigenvalue
 - Similar matrices
 - Diagonalizable
 - Dot product
 - Inner product

- Norm (of a vector)
- Orthogonal vectors
- Orthogonal set
- Orthogonal basis
- Orthogonal projection of \vec{y} onto \vec{u}
- Unit vector
- Orthonormal set
- Orthonormal basis
- 2. Find the characteristic equation, eigenvalues, and eigenspaces corresponding to each eigenvalue of the following matrices:

$$\begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}, \begin{bmatrix} 5 & 3 \\ -4 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 0 & 4 \\ 0 & 3 & 0 \\ 0 & 1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Solution:

 $\begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$, $\lambda = 5, -2$, with corresponding eigenvectors $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $v_2 = \begin{bmatrix} -4 \\ 3 \end{bmatrix}$. (The eigenspaces are the span of these eigenvectors).

 $\begin{bmatrix} 5 & 3 \\ -4 & 4 \end{bmatrix}$, this matrix has complex eigenvalues, so there are no real eigenvalues.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}, \ \lambda_1 = 1, \lambda_2 = 0, \text{ with corresponding eigenspaces } W_1 = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\} \text{ and } W_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\operatorname{span}\left\{ \begin{bmatrix} 0\\-2\\1 \end{bmatrix} \right\}.$$

$$\begin{bmatrix} 2 & 0 & 4 \\ 0 & 3 & 0 \\ 0 & 1 & 2 \end{bmatrix}, \lambda_1 = 2, \lambda_2 = 3, \text{ with corresponding eigenspaces } W_1 = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\} \text{ and } W_2 = \text{span} \left\{ \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix} \right\}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $\lambda = 1$, with eigenspace all of \mathbb{R}^3 (this is the identity matrix, so it times any vector is the same as that vector).

3. Which of the following vectors are eigenvectors of the matrix:

$$\begin{bmatrix} 1 & 3 & 6 \\ 2 & 1 & 4 \\ 1 & 0 & 3 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 1\\3\\-2 \end{bmatrix} \qquad \qquad \begin{bmatrix} -2\\-2\\1 \end{bmatrix} \qquad \qquad \begin{bmatrix} 0\\1\\-5 \end{bmatrix}$$

Solution: Just check if
$$A\vec{x} = \lambda \vec{x}$$
 for some scalar λ . It turns out only $\begin{bmatrix} -2 \\ -2 \\ 1 \end{bmatrix}$ is an eigenvector, with eigenvalue 1.

4. Diagonalize the following matrices, if possible:

(a)
$$\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$

i.e.

(b)
$$\begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$
$$(\lambda = 1, -2)$$

$$\text{(c)} \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 3 \end{bmatrix}$$

5. For each matrix A that was diagonalizable from the previous question, find a formula for A^k . That is, find a single matrix whose entries are formulas in terms of k that determines A^k .

$$\begin{bmatrix} 1 & -6 \\ 2 & -6 \end{bmatrix}^k = \begin{bmatrix} -3 \cdot (-3)^k + 4 \cdot (-2)^k & 6 \cdot (-3)^k - 6 \cdot (-2)^k \\ -2 \cdot (-3)^k + 2 \cdot (-2)^k & 4 \cdot (-3)^k + -3 \cdot (-2)^k \end{bmatrix}$$

7. Rank the following vectors from greatest to least in terms of their norm:

(a) (b) (c) (d) (e)
$$\begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 4 \\ 2 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} 2 \\ 5 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ 0 \\ -2 \\ 0 \\ -1 \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Solution:
$$(c) > (b) > (a) > (d) > (e)$$

8. For each of the above vectors, find a unit vector that points in the same direction.

Solution: (a)
$$\begin{bmatrix} 1/\sqrt{14} \\ 3/\sqrt{14} \\ -2/\sqrt{14} \end{bmatrix}$$
, (b) $\begin{bmatrix} 0 \\ 4/\sqrt{21} \\ 2/\sqrt{21} \\ 1/\sqrt{21} \end{bmatrix}$, (c) $\begin{bmatrix} 2/\sqrt{29} \\ 5/\sqrt{29} \end{bmatrix}$, (d) $\begin{bmatrix} 1/\sqrt{6} \\ 0 \\ -2/\sqrt{6} \\ 0 \\ -1/\sqrt{6} \end{bmatrix}$, (e) Does not apply, this

vector has no direction.

9. Find a unit vector in \mathbb{R}^2 that is orthogonal to $\begin{bmatrix} -1\\2 \end{bmatrix}$.

Solution: We want to find a vector $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ such that $\vec{v} \cdot \begin{bmatrix} -1 \\ 2 \end{bmatrix} = 0$. Evaluating this dot product gives the equation $-v_1 + 2v_2 = 0$ so $v_1 = 2v_2$

Thus, any vector of the form $\vec{u} = v_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is orthogonal to $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$. Let us take the vector corresponding to $v_2 = 1$, that is, let $\vec{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Now we would like a unit vector, but this vector has norm $\sqrt{5}$. Dividing by the norm (length) will yield a unit vector, so our answer is: $\vec{v} = \begin{bmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix}$. Note that you could also have $\begin{bmatrix} -2/\sqrt{5} \\ -1/\sqrt{5} \end{bmatrix}$ as a solution.

10. Determine which of the following sets are orthogonal sets:

(a) (b) (c)
$$\left\{ \begin{bmatrix} 3\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\2\\7/2 \end{bmatrix} \right\}, \begin{bmatrix} -1/2\\-2\\7/2 \end{bmatrix} \right\} \qquad \left\{ \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\-1 \end{bmatrix}, \begin{bmatrix} 3\\0\\-3 \end{bmatrix} \right\} \qquad \left\{ \begin{bmatrix} 3\\-2\\1\\3 \end{bmatrix}, \begin{bmatrix} -1\\3\\8\\7\\0 \end{bmatrix} \right\}$$

Solution: (a) is orthogonal, (b) is not orthogonal, and (c) is orthogonal.

11. Find a non-zero vector \vec{v} in \mathbb{R}^3 to make the following set an orthogonal set:

$$\left\{ \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 2\\1\\4 \end{bmatrix}, \vec{v} \right\}$$

Is the above set (with your selected \vec{v}) a basis for \mathbb{R}^3 ? Why does it HAVE to be a basis?

Solution: One such vector is $\vec{v} = \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix}$ (use techniques similar to question 9). It has to be a basis since an orthogonal set is also linearly independent, and since the dimension of \mathbb{R}^3 is 3, any set of three linearly independent vectors must be a basis for \mathbb{R}^3 (think about pivots).

12. Let $\vec{u} = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$. Calculate $\operatorname{proj}_{\vec{v}} \vec{u}$ for the following vectors \vec{v} :

(a)
$$\vec{v} = \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix} \qquad \qquad \vec{v} = \begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix} \qquad \qquad \vec{v} = \begin{bmatrix} 0 \\ -1 \\ 7 \end{bmatrix}$$

Solution: (a)
$$\begin{bmatrix} -21/26 \\ -7/26 \\ -14/13 \end{bmatrix}$$
, (b) $[2, 0, -2]$, (c) $\begin{bmatrix} 0 \\ 23/50 \\ -161/50 \end{bmatrix}$

13. Let
$$\vec{u} = \begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix}$$
. Calculate $\operatorname{proj}_{\operatorname{Col} A} \vec{u}$ for the following matrices A :

(a)
$$A = \begin{bmatrix} 3 & -1 \\ 1 & 2 \\ 1 & 1 \end{bmatrix} \qquad \qquad A = \begin{bmatrix} 2 & 3 \\ 1 & 0 \\ -1 & -3 \end{bmatrix}$$

Solution: (a) This is an orthogonal basis so:
$$\operatorname{proj}_{\operatorname{Col} A} \vec{u} = \begin{bmatrix} 12/11 \\ 4/11 \\ 4/11 \end{bmatrix} + \begin{bmatrix} 5/6 \\ -5/3 \\ -5/6 \end{bmatrix} = \begin{bmatrix} 127/66 \\ -43/33 \\ -31/66 \end{bmatrix}$$
. (b) This is NOT are with a reveal basis as first resonant to a first re

is NOT an orthogonal basis, so first we must use the Gramm-Schmidt process to find an orthogonal basis, and then compute the projection onto each basis element and sum them together.

14. For
$$\vec{u} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$
, find a vector $\vec{v} \neq \begin{bmatrix} 6 \\ 3 \\ 0 \end{bmatrix}$ so that $\operatorname{proj}_{\vec{u}} \vec{v} = \begin{bmatrix} 6 \\ 3 \\ 0 \end{bmatrix}$.

Solution: Set up the equation for projection, and similar to problems 9 and 11 before hand, see what this leads to.

15. Find the closest vector to
$$\vec{u} = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$
 in the subspace

$$W = \operatorname{span} \left\{ \begin{bmatrix} 2\\3\\-1 \end{bmatrix}, \begin{bmatrix} 1\\0\\2 \end{bmatrix} \right\}$$

How far is the vector from \vec{u} ?

Solution: The closest vector is:
$$\begin{bmatrix} -1/5 \\ 0 \\ -2/5 \end{bmatrix}$$
 which is distance $\sqrt{14/5}$ away from \vec{u} .

16. Use the Gramm-Schmidt process to find an orthogonal basis for the column space of the following matrix:

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 3 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Solution:
$$\mathcal{B} = \left\{ \begin{bmatrix} 2\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1/3\\-4/3\\3\\2/3 \end{bmatrix}, \begin{bmatrix} -25/34\\16/17\\13/34\\9/17 \end{bmatrix} \right\}.$$

17. Find the least-squares solution to the following system of equations:

$$\begin{bmatrix} 3 & -1 \\ 1 & -1 \\ 0 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 3 \end{bmatrix}$$

What is the least-squares error?

Solution: The least-squares solution is: $\vec{x} = \left[33/41, 11/82 \right]$. The least squares error is: $\frac{\sqrt{1697290}}{574}$ (hah) or about 2.26969