Big Oh Analysis

Matthew Galitz

University of Virginia, Charlottesville, VA 22904

Time (ms) of Method Execution

Time (ms) of viction Execution									
Input Size:	1	10	10^{2}	10^{3}	10^{4}	10 ⁵	10^{6}	10^{7}	10^{8}
Binary Search (logn)	0	0	0	0	0	0	0	1	1
Max (n)	0	0	0	1	2	2	5	8	33
Multi Binary Search (nlogn)	1	1	1	1	2	11	67	755	8348
All Pairs (n²)	0	0	1	10	188	17752	>60000	>60000	>60000
All Triads (n³)	1	1	8	221	>60000	>60000	>60000	>60000	>60000
All Subsets (2 ⁿ)	1	1	>60000	>60000	>60000	>60000	>60000	>60000	>60000

The time complexity of the Binary Search method is $O(\log(n))$. The function $y = \log(x)$ grows logarithmically. Thus it makes sense that the Binary Search maintains quick runtimes as n increases drastically. The method starts to slow drastically for some $n > 10^8$.

The time complexity of the Max method is O(n). The function y = n grows more quickly than the logarithmic function. The runtime of Max is directly proportional to n. The method starts to slow drastically for some $n > 10^8$.

The time complexity of the Multi Binary Search method is O(nlog(n)). The function y = nlog(n) grows linearly but is greater than y = n for all n > 10. Thus it makes sense that as n increases the runtimes are larger than that of the Max() method. The method slows drastically for some $n > 10^8$.

The time complexity of the All Pairs method is $O(n^2)$. The function $y=n^2$ grows exponentially and is greater than the $y=n\log(n)$ for all n. Thus it makes sense that as n increases the runtimes are larger than that of the Multi Binary Search method. The method slows drastically approximately when $n \geq 10,000$.

The time complexity of the All Triads method is $O(n^3)$. The function $y = n^3$ grows exponentially and is greater than $y = n^2$ for all n > 1. Thus it makes sense that as n increases the runtimes are larger than that of the All Pairs method. The method slows drastically when $n \ge 10,000$.

The time complexity for the All Subsets method is $O(2^n)$. The function $y=2^n$ grows exponentially and is greater than $y=n^3$ for all n. Thus it makes sense that the runtimes are larger than that of the All Triads method. The method slows drastically when $n \geq 100$.