Листок № 1

- **1.** Докажите, что если $A \subseteq B$ и B = C, то $A \subseteq C$.
- **2.** Приведите пример множеств A и B, т. ч.:
- a) $A \notin B$ и $A \not\subseteq B$;
- б) $A \notin B$ и $A \subseteq B$;
- в) $A \in B$ и $A \not\subseteq B$;
- Γ) $A \in B$ и $A \subseteq B$.
- **3.** Докажите, что для любых множеств a, b, c имеем $\{\{a, b\}, \{b, c\}\} \neq \{a, b, c\}$. Может ли быть включение хотя бы в одну сторону?
 - **4.** Представьте в нотации $\{x \in A \mid \varphi(x)\}$ множество:
 - а) целых корней многочлена $17x^{19} 62x^{12} + 11x^{11} 8x^6 + x^3 2x + 1229$;
 - б) таких натуральных чисел, что синус каждого их простого делителя положителен.
 - **5.** Докажите, что если A и B пусты, то A = B.
 - **6.** Докажите, что $\varnothing \subseteq A$ для любого A.
- **7.** В духе парадокса Рассела, приведите к противоречию предположение о существовании множества всех множеств.
 - **8.** Выпишите все элементы множества $\mathcal{P}(X)$, если X есть:
 - a) \emptyset ;
 - δ) $\{\emptyset\}$;
 - B) $\{\emptyset, \{\emptyset\}\};$
 - Γ) {1, 2, 3}.
 - 9. Докажите, что $\mathcal{P}(X) \subseteq \mathcal{P}(Y) \iff X \subseteq Y$.
 - **10.** Пусть X некоторое множество фигур на плоскости. Заштрихуйте $\cup X$.
 - **11.** Докажите, что $\cup \varnothing = \varnothing$ и $\cup \{A\} = A$ для всех A.
 - **12.** Докажите, что если $X \subseteq Y$, то $\cup X \subseteq \cup Y$. Всегда ли верно обратное?
 - 13. «Вычислите»:
 - a) $\cup \{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}\};$
 - $6) \cup \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\};$
 - B) $\bigcup\bigcup\{\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}\}.$

- **14.** Докажите, что $\cup \mathcal{P}(X) = X$. Что можно сказать о множестве $\mathcal{P}(\cup X)$?
- **15.** Пусть дано множество A. С помощью «основных способов задания множеств» (не используя никаких мощностей) определите множество $\mathcal{P}_1(A)$ всех одноэлементных подмножеств A.
 - **16.** «Вычислите» $\cup \mathcal{P}_1(A)$.
 - 17. Проверьте несколько тождеств алгебры множеств.
 - **18.** Докажите, что для любых множеств $A, B, C \subseteq U$ верно:
 - a) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C);$
 - 6) $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C);$
 - B) $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C);$
 - $\Gamma) \ A \setminus (B \cup C) = (A \setminus B) \setminus C;$
 - д) $A \subseteq B \cap C \iff A \subseteq B$ и $A \subseteq C$;
 - e) $A \subseteq B \cup C \iff A \cap \bar{B} \subseteq C$.