Práctica 2: Optimización con restricciones (Implementación del ADALINA)

Esteban Sánchez Gámez

1. Explicación del método de Gradiente Proyectado y su aplicación a la regularización ℓ1

En esta práctica, se implementó el algoritmo ADALINA utilizando el método de gradiente proyectado para la optimización, además de la restricción $\ell 1$ (valor absoluto). Se usó una formulación basada en la minimización de la función de costo mediante el gradiente y el uso de un backtracking line search para la selección del tamaño del paso. A continuación, se describen los componentes principales:

- Función de costo: Se usa el error cuadrático medio (MSE) con una penalización λ para regularizar la solución.
- Cálculo del gradiente: Se obtiene derivando la función de costo con respecto a los pesos w^+ y w^- , si no hacemos esto no sería posible ya que no se puede derivar el valor absoluto, por eso hacemos el cambio de variable.
- Backtracking line search: Se implementa un método de búsqueda de paso para optimizar la actualización de los pesos.
- Condición de parada: El proceso de optimización termina cuando el cambio de gradiente es suficientemente pequeño o cuando se alcanza el número máximo de iteraciones.

2. Número de iteraciones requeridas con $\lambda=100$

Para $\lambda=100$, el modelo converge en **50** iteraciones. Esto se determinó evaluando la norma del gradiente y verificando la condición de convergencia.

3. Comparación de valores reales y predichos para las

primeras 5 viviendas

Los valores reales de las primeras 5 viviendas y sus predicciones obtenidas por el modelo ADALINA son:

Vivienda	Precio Real	Precio Predicho
1	24	28.19
2	21.6	24.82
3	34.7	29.59
4	33.4	29.13
5	36.2	28.52

4. Análisis del efecto de diferentes valores de λ en el modelo

El parámetro λ controla la regularización del modelo y tiene un impacto significativo en el ajuste de los pesos. Se observaron los siguientes efectos al variar λ :

- Valores altos de λ : Mayor regularización, lo que reduce el sobreajuste pero puede llevar a una subestimación de los valores predichos.
- Valores bajos de λ : Menor regularización, permitiendo que el modelo se ajuste mejor a los datos de entrenamiento, pero con mayor riesgo de sobreajuste.

A partir de los resultados obtenidos, se recomienda ajustar λ en un rango adecuado para equilibrar la precisión del modelo y su capacidad de generalización.

Valores de λ	MSE (Predicciones)	Pasos para convergencia
200	0.4811	20
150	0.3706	44
100	0.3107	50
50	0.2782	23
10	0.3624	9

Conclusión: Se implementó con éxito el modelo ADALINA utilizando optimización con restricciones. El algoritmo logró ajustar los pesos de manera eficiente, y los resultados muestran una buena aproximación entre los valores predichos y los reales, dependiendo del valor de λ utilizado.