ESERCIZI TUTORATO ALGEBRA 2 29 NOVEMBRE 2019 - LEZIONE 6

MARCO ABBADINI

Di seguito si trovano le soluzioni degli esercizi svolti in classe. Non sono soluzioni complete, ma solo dei veloci riassunti.

- Esercizio 1. (a) Esibire un insieme Ω_2 di 2 elementi ed un'azione transitiva del gruppo simmetrico S_2 su Ω_2 . Descrivere il nucleo dell'azione e stabilire se l'azione è fedele. Per ogni elemento $\omega \in \Omega_2$, determinare lo stabilizzatore di ω .
- (b) Esibire un insieme Ω_1 di 1 elemento ed un'azione transitiva di S_2 su Ω_1 . Descrivere il nucleo dell'azione e stabilire se l'azione è fedele. Per ogni elemento $\omega \in \Omega_1$, determinare lo stabilizzatore di ω .
- (c) Esiste un insieme Ω di 3 elementi ed un'azione transitiva di S_2 su Ω ?
- (d) Mostrare che esiste un insieme Ω di 3 elementi ed un'azione del gruppo S_2 su Ω che abbia esattamente 2 orbite. Stabilire il nucleo di tale azione, stabilire se è fedele, stabilire se esiste un elemento di Ω il cui stabilizzatore è S_2 e stabilire se esiste un elemento di S_2 .
- Soluzione. (a) $\Omega_2 := \{1, 2\}$, e $\omega \cdot g := g(x)$. (Oppure $\Omega_2 := S_2$ con azione per moltiplicazione a destra.) Nucleo: {Id}. Perciò è fedele. Stabilizzatore di un qualsiasi elemento: {Id}. (Si può anche usare il fatto $|G: G_{\alpha}| = |\mathcal{O}_{\alpha}|$ per ottenerlo.)
- (b) Sia Ω un qualsiasi singoletto $\{*\}$. Sia $\omega \cdot g \coloneqq \omega$. Nucleo: S_2 . Perciò non è fedele. Stabilizzatore di un qualsiasi elemento: S_2 .
- (c) No, perchè la cardinalità di ogni orbita deve dividere la cardinalità del gruppo.
- (d) Ad esempio, si può prendere l'unione disgiunta $\Omega := \Omega_2 \sqcup \Omega_1$ e definire l'azione essenzialmenente come in (a) e (b). Lo stabilizzatore di un elemento dell'orbita singoletto è S_2 , mentre lo stabilizzatore di un elemento dell'orbita con due elementi è {Id}. Il nucleo è l'intersezione degli stabilizzatori, perciò è {Id}. Perciò è fedele.
- Esercizio 2. (a) Per quali interi positivi n esiste un insieme Ω di cardinalità n ed un'azione transitiva del gruppo additivo (\mathbb{Z}_6 , +) su Ω ? Per ciascuno di questi n si determini il nucleo di una tale azione, e lo stabilizzatore di ogni elemento.
- (b) Esiste un insieme Ω di 5 elementi ed un'azione di \mathbb{Z}_6 su Ω con esattamente 2 orbite? Se sì, stabilire se l'azione è fedele, altrimenti stabilire se l'enunciato vale con \mathbb{Z}_5 al posto di \mathbb{Z}_6 .
- **Soluzione.** (a) Poichè la cardinalità di ogni orbita deve dividere la cardinalità del gruppo, un n che soddisfi le ipotesi deve dividere 6. In effetti, ciascun divisore di 6 va bene. Infatti, sia n un divisore di 6. Sia H un sottogruppo di \mathbb{Z}_6 di indice n (esiste perchè \mathbb{Z}_6 è ciclico). Allora l'azione per moltiplicazione a destra di \mathbb{Z}_6 sui laterali di H è un'azione cercata.

Dato n con tale proprietà, il nucleo ha cardinalità 6/n. Il nucleo in questo caso coincide con lo stabilizzatore di ogni elemento.

Ultimo aggiornamento: 29 novembre 2019. Non esitate a segnalare eventuali errori a marco.abbadini@unimi.it.

(b) Sì, esiste. \mathbb{Z}_6 agisce transitivamente su un insieme Ω_2 di cardinalità 2 e su un insieme Ω_3 di cardinalità 3. Perciò \mathbb{Z}_6 agisce sull'unione disgiunta di Ω_2 e Ω_3 . Lo stabilizzatore di un qualsiasi elemento di un'orbita di cardinalità 3 ha cardinalità 2 (cioè è $\{0,3\}$). Lo stabilizzatore di un qualsiasi elemento di un'orbita di cardinalità 2 ha cardinalità 3 (cioè è $\{0,2,4\}$). Il nucleo è l'intersezione degli stabilizzatori e perciò è banale.

Esercizio 3 (Seconda prova intermedia, 21 Dicembre 2017, eserc. 3).

Sia
$$A = \{1, 2, 3\}$$
 e $\Omega = A^A = \{f \mid f : A \to A\}$.

(a) Definiamo per ogni $(\alpha,\beta)\in S_3\times S_3$ e ogni $f\in\Omega,$

$$f \cdot (\alpha, \beta) = \alpha^{-1} f \beta$$

(composizione di funzioni effettuata da sinistra verso destra). Si dimostri che questo definisce un'azione del gruppo $G = S_3 \times S_3$ su Ω .

(b) Si determini lo stabilizzatore in G dell'applicazione identica id_A e quello della funzione costante c_1 (definita da $c_1(x) = 1$ per ogni $x \in A$); si dica quanti elementi contengono le orbite di id_A e di c_1 .

Soluzione. (a) ...

(b) Lo stabilizzatore di id_A è $\{(\alpha,\alpha) \mid \alpha \in S_3\}$. Lo stabilizzatore di c_1 è $\{(\alpha,\beta) \mid \beta(1)=1\}$. Per calcolare le cardinalità delle orbite si può usare il fatto che la cardinalità di un'orbita è l'indice dello stabilizzatore. Oppure si possono calcolare esplicitamente le orbite. Nel primo caso si ha S_3 , nel secondo caso le funzioni costanti.

Nota. Ho detto una cosa falsa a lezione. Ho detto che, data un'azione transitiva di un gruppo G su un insieme non vuoto Ω , $|\Omega|$ è l'indice del nucleo dell'azione. Ciò <u>è falso</u>. Ad esempio, si consideri l'azione di $G = S_3$ su $\Omega = \{1, 2, 3\}$ data da $\omega \cdot g = g(\omega)$. Questa è fedele, cioè il nucleo è banale. Non <u>è vero</u> che $|\Omega|$ è l'indice del nucleo dell'azione. L'affermazione corretta è

Data un'azione transitiva di un gruppo G su un insieme Ω , e dato un qualsiasi elemento $\alpha \in \Omega$, si ha che $|\Omega|$ è l'indice dello stabilizzatore di α in G.

In un'azione transitiva tutti gli stabilizzatori hanno la stessa cardinalità, ma non è detto che coincidano. Ciò che si sa è che sono coniugati.

1. Cosa ricordare

- Data un'azione di un gruppo finito G su un insieme Ω , la cardinalità di una qualsiasi orbita divide l'ordine del gruppo. (Esercizi (1), (2).)
- Data un'azione di un gruppo G su un insieme Ω , e dato un elemento $\omega \in \Omega$, denotando con \mathcal{O}_{ω} l'orbita di ω si ha $|\mathcal{O}_{\omega}| = |G : G_{\omega}|$. (Esercizi (1), (2), (3).)
- \bullet Siano $n \in k$ due interi positivi. Le seguenti condizioni sono equivalenti.
 - (a) Esiste un'azione transitiva di un gruppo G di cardinalità n su un insieme Ω di cardinalità k.
 - (b) k divide n.

(Esercizio (2).)

- \bullet Siano k_1,\dots,k_m ed ninteri positivi. Le seguenti condizioni sono equivalenti.
 - (a) Esiste un azione di un gruppo G di cardinalità n su un insieme Ω che ripartisce Ω in orbite di cardinalità k_1, \ldots, k_m .
 - (b) Per ogni $i \in \{1, ..., m\}, k_i$ divide n.

(Esercizio (2).)