ALGORITMOS EM GRAFOS

CAMINHAMENTOS

BUSCA EM LARGURA

Prof. Alexei Machado

PUC MINAS

CIÊNCIA DA COMPUTAÇÃO

Caminhamentos

 Caminhar em um grafo é mover-se entre seus vértices, verificando propriedades enquanto se caminha

Caminhamentos

 Algoritmos de busca em grafos procuram caminhos com objetivos específicos:

Conectividade Busca de um vértice específico (estado)

Caminho mínimo Existência de um caminho

Busca em grafos

- A busca em grafos tenta encontrar uma sequência de caminhos/ações que leve até a um objetivo
- Uma vez encontrado este objetivo, um programa pode executar tal sequência de ações para atingi-lo

Busca em grafos

- Aplicações
 - Rotas em redes de computadores
 - Caixeiro viajante e variações
 - Jogos digitais
 - Navegação de robôs
 - **-** ...

- □ Em inglês, Breadth First Search (BFS)
- Consiste em, a partir de um vértice de origem,
 explorar primeiramente todos os seus vizinhos e, em seguida repetir o procedimento para cada vizinho
- Base para diversos algoritmos importantes que iremos estudar

- Calcula a distância do vértice de origem até qualquer vértice que possa ser alcançado
- Produz uma árvore que indica todos os vértices que podem ser alcançados
- □ Usado para grafos e digrafos

- □ Produz uma árvore primeiro na extensão com raiz em s que contém todos os vértices acessíveis
- □ Visita todos os vértices à distância k a partir de s, antes de visitar quaisquer vértices à distância k+1

- □ Propriedades de um vértice
 - Antecessor ou pai
 - Estado: branco, cinza, preto
 - □ Distância até o vértice de origem

- □ Estados dos vértices
 - Branco: ainda não explorado
 - □ Cinza: explorado, mas com vizinhos não-explorados
 - □ Preto: explorado e sem vizinhos não explorados

- Utiliza uma lista para definir as próximas visitas
- Pode armazenar a árvore de busca e/ou a sequência percorrida até um objetivo

Algoritmo BFS - inicialização

```
Para cada vértice u diferente da origem s faça u.cor = branco; u.distância = max_value; u.pai = null;

Fim para
s.cor = cinza;
s.distância = 0;
s.pai = null;
Q = nova Fila vazia;
```

Algoritmo BFS – busca principal

a	b	С	d	е	f	g	h
1	0	2	3	2	1	2	3

Pais

а	b	С	d	е	f	g	h
b	-	f	g	а	b	f	g

Caminho até o vértice h: h

а	b	С	d	е	f	g	h
1	0	2	3	2	1	2	3

Pais

a	b	С	d	е	f	g	h
b	-	f	g	а	b	f	g

Caminho até o vértice h: g-h

а	b	С	d	е	f	g	h
1	0	2	3	2	1	2	3

Pais

а	b	С	d	е	f	g	h
b	-	f	g	а	b	f	g

Caminho até o vértice h: f-g-h

а	b	С	d	е	f	g	h
1	0	2	3	2	1	2	3

Pais

а	b	С	d	е	f	g	h
b	-	f	g	а	b	f	g

Caminho até o vértice h: b-f-g-h

а	b	С	d	е	f	g	h
1	0	2	3	2	1	2	3

Pais

a	b	С	d	е	f	g	h
b	-	f	g	а	b	f	g

Caminho até o vértice h: b-f-g-h

Árvore BFS a g c

- □ Em inglês, Depth First Search (DFS)
- A partir de um vértice de origem, busca recursivamente um vértice adjacente, até que não existam mais vértices a visitar
- Pode gerar várias árvores de profundidade (floresta de busca)

- Utiliza a estratégia de procurar "mais fundo" no grafo sempre que possível. As arestas são exploradas a partir do vértice v mais recentemente visitado que ainda tem arestas inexploradas saindo dele
- Quando todas as arestas de v são exploradas, a busca "regressa" para explorar as arestas que deixam o vértice a partir do qual v foi visitado
- □ Esse processo continua até que visitamos todos os vértices acessíveis a partir do vértice de origem inicial

- □ Mantidas as propriedades de estado
- □ Nova propriedade: timestamps (tempo da busca)
 - □ Timestamp de descoberta
 - □ Timestamp de término

Algoritmo DFS - inicialização

Algoritmo DFS – principal (visita)

Descoberta

Finalização

Pais

Descoberta

а	b	С	d	е	f
1	2	-	-	3	-

Finalização

a	b	C	d	е	f
-	-	-	-	-	-

Pais

Descoberta

a	b	С	d	е	f
1	2	-	-	3	-

Finalização

a	b	С	d	е	f
-	-	-	-	-	-

Pais

Descoberta

a	b	С	d	е	f
1	2	-	4	3	-

Finalização

a	b	С	d	е	f
-	-	-	-	-	-

Pais

Descoberta

а	b	С	d	е	f
1	2	-	4	3	-

Finalização

a	b	С	d	е	f
-	-	-	5	-	-

Pais

Descoberta

а	b	С	d	е	f
1	2	-	4	3	-

Finalização

a	b	С	d	е	f
-	-	-	5	-	-

Pais

Descoberta

а	b	С	d	е	f
1	2	-	4	3	-

Finalização

a	b	С	d	е	f
-	-	-	5	6	-

Pais

Descoberta

а	b	С	d	е	f
1	2	-	4	3	-

Finalização

a	b	С	d	е	f
-	-	-	5	6	-

Pais

Descoberta

a	b	С	d	е	f
1	2	-	4	3	-

Finalização

a	b	С	d	е	f
-	7	-	5	6	-

Pais

Descoberta

а	b	С	d	е	f
1	2	-	4	3	-

Finalização

a	b	С	d	е	f
-	7	-	5	6	-

Pais

Descoberta

а	b	С	d	е	f
1	2	-	4	3	-

Finalização

a	b	С	d	е	f
8	7	-	5	6	-

Pais

Descoberta

a	b	С	d	е	f
1	2	-	4	3	-

Finalização

a	b	С	d	е	f
8	7	-	5	6	-

Pais

Descoberta

а	b	С	d	е	f
1	2	9	4	3	-

Finalização

a	b	С	d	е	f
8	7	-	5	6	-

Pais

Descoberta

a	b	С	d	е	f
1	2	9	4	3	-

Finalização

a	b	С	d	е	f
8	7	-	5	6	-

Pais

Descoberta

a	b	C	d	е	f
1	2	9	4	3	10

Finalização

a	b	С	d	е	f
8	7	-	5	6	-

Pais

Descoberta

a	b	С	d	е	f
1	2	9	4	3	10

Finalização

a	b	С	d	е	f
8	7	-	5	6	11

Pais

Descoberta

a	b	C	d	е	f
1	2	9	4	3	10

Finalização

a	b	С	d	е	f
8	7	-	5	6	11

Pais

Descoberta

a	b	С	d	е	f
1	2	9	4	3	10

Finalização

a	b	С	d	е	f
8	7	12	5	6	11

Pais

Floresta DFS

Enquanto a Busca em largura usa uma fila como estrutura auxiliar, uma versão não-recursiva da Busca por profundidade utilizaria qual estrutura de dados?