Energy Budget Perspective on Monsoon Low Pressure System Growth by Barotropic and Moisture-vortex Instabilities Haochang Luo^{1,2}, Ángel F. Adames^{1,2} and Richard B. Rood¹

¹Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI; ²Department of Atmospheric and Oceanic Sciences, University of Wisconsin, Madison, WI email: hcluo@umich.edu

AGU Dec 2022

1. Introduction

- Form near the Bay of Bengal
- Westward-propagating
- Synoptic-scale disturbances
- Surface wind speed:
 - <8.5 m/s: monsoon lows
 - 8.5 16.5 m/s: monsoon depressions
- Two per month from June to September
- Each lasts 3 to 5 days
- Phase speed ~7m/s
- Heavy precipitation

(Hunt et al., 2016)

2. Data and Methods

Data: ERA5, 1979-2019, 6-hourly

Methods: Precipitation data were filtered to retain timescale 2 – 15 days⁻¹, zonal wavenumber 3 – 25 westward signal. Zonally-averaged over the head of Bay of Bengal (85-90°E 15-20°N, red box below) to create the index.

Standard deviation precip

Fig.1. (a) Standard deviation of mean total precipitation rate. (b) JJAS mean *P*, *z* and *u*, *v* at 850 hPa.

Low Geopotential

/ Height

0° 45°E 60°E 75°E 90°E

Fig.2. (left) Lag regressions of P', z' and u', v' at 850 hPa onto MLPS index. (right) $\langle MSE' \rangle$, z' and u', v' at 500 hPa

4. Vertical structure

Fig.3. Longitude-height cross-sections of Lvq' (left shadings), MSE' (right shadings), z' (contours) and u',w' regressed onto MLPS index from day 0 to +2.

5. Barotropic instability

6. Moisture-vortex instability

Fig. 7. $-\left\langle v\frac{\partial m}{\partial y}\right\rangle'$ (contours) and $-\left\langle v'\frac{\partial \overline{m}}{\partial y}\right\rangle$ (shadings) regressed onto MLPS index on day 0.

Fig. 8. Column-integrated $< \overline{MSE} >$ (shadings) the root-mean square of < MSE' > regressed onto the depression index (contours).

Fig.9. Schematic plot of moisture-vortex instability. Adiabatic lifting is shown as upward-pointing pink arrow. Enhanced convection is shown as upward-pointing teal arrow. Solid contours show the poleward flow. (Adames 2021)

7. Summary

Observed Feature	MVI	Dry Barotropic	Moist Baroclinic
Upright vertical structure	Yes	Yes	No
Tilts against horizontal shear	No	Yes	No
Synoptic horizontal scale of ~1000 km	Yes	Yes	Yes
Moisture, precipitation and vorticity have an in-phase component	Yes	No	No
MSE anomalies follow MSE isopleths	Yes	No	No
Meridional MSE advection important for MSE growth	Yes	No	No
Barotropic energy conversion important for PKE generation	No	Yes	No
PKE generation through downgradient geopotential advection	Yes	No	Yes

Adames, Ángel F., 2021: Interactions between Water Vapor, Potential Vorticity, and Vertical Wind Shear in Quasi-Geostrophic Motions: Implications for Rotational Tropical Motion Systems. J. Atmospheric Sci., 78, 903–923, https://doi.org/10.1175/JAS-D-20-0205.1.

Hunt, K. M. R., A. G. Turner, P. M. Inness, D. E. Parker, and R. C. Levine, 2016: On the Structure and Dynamics of Indian Monsoon Depressions. Mon. Weather Rev., 144, 3391-3416, https://doi.org/10.1175/MWR-D-15-0138.1