

Докторант кафедры
«Систем сбора и обработки информации»
Военно-космической академии имени А.Ф.Можайского
к.т.н. **Менисов Артем Бакытжанович**

Захаров Олег Олегович

Статический анализ фреймворков машинного обучения

Эффект применения ТИИ (ВВП)

Классификация применения технологий искусственного интеллекта

Угрозы безопасности информации ФСТЭК России

УБИ. 218	Угроза раскрытия информации о модели машинного обучения
УБИ. 219	Угроза хищения обучающих данных
УБИ. 220	Угроза нарушения функционирования («обхода») средств, реализующих технологии искусственного интеллекта
УБИ. 221	Угроза модификации модели машинного обучения путем искажения («отравления») обучающих данных
УБИ. 222	Угроза подмены модели машинного обучения

^{*} **Источник**: https://bdu.fstec.ru/threat (последние обновления – декабрь 2020 г.)

Проблемы обеспечения защищенности ТИИ Возможные объекты воздействия

Атаки на датчики беспилотных автомобилей (камеры и лидара)

Атаки на системы распознавания

Проблемы обеспечения защищенности ТИИ

Актуальные последствия атак на ТИИ

Целостность

Конфиденциальность

Доступность

Атака уклонения

Злоумышленник изменяет запрос, чтобы получить соответствующий ответ.

Использование программных зависимостей СИИ

Злоумышленник использует традиционные уязвимости программного обеспечения.

Backdoor

Модель с бэкдором вызовет целенаправленную неправильную классификацию или ухудшит точность модели для входных данных, которые содержат триггером.

Отравление модели

Цель злоумышленника — испортить модель машины.

Атака на конвейеры МО

Атака на известные модели или наборы данных.

Перепрограммирование ИНС

С помощью специально созданного запроса от злоумышленника СИИ могут быть перепрограммированы на другую задачу.

Инверсия модели

Параметры, используемые в моделях МО, могут быть восстановлены.

Кража модели

Злоумышленники воссоздают базовую модель с близким функционалом.

Восстановление обучающих данных

Злоумышленник может восстановить часть информации.

Перепрограммирование ИНС

С помощью специально созданного запроса от злоумышленника СИИ могут быть перепрограммированы на задачу, которая отличается от первоначального замысла.

Результаты статического анализа

	CNTK 2.7	Dlib 19.24	Keras 2.10.0	MXNet 1.9.1	PyTorch 1.12.1	Sklearn 1.1.2	Tensorflow 2.10
Всего	57	185	54	1580	2859	867	191
Дефекты высокого уровня опасности (high)	12	52	0	465	1468	93	43
Дефекты среднего уровня опасности (medium)	41	112	16	918	1150	323	140
Дефекты низкого уровня опасности (low)	4	21	38	197	241	451	8
Активность (за последние 5 лет)	0	0	3	2	0	1 (1)	323
Наиболее уязвимые компоненты	OpenCV MKLML	libpng, zlib		oneDNN (11 дефектов), GoogleTest (1 дефект), CUDA SDK (1 дефект)	oneDNN, GoogleTest, Tensorpipe, NCCL, Google Protobuf, onnx, ATen, SLEEF, ideep, Google Benchmark, FBGEMM		NVIDIA NCCL
The CWE Top 25 2022	1	5	3	5	5	2	3

^{*} Применяемый статический анализатор - Coverity (Synopsys)

Проблемы развития ТИИ

Выводы

- 1. Несмотря на широкое распространение ТИИ и наличие большого числа открытых фреймворков машинного обучения, обеспечивающих должный уровень эффективности и производительности, создание систем доверенного ИИ является долгосрочным вызовом.
- 2. На текущий момент все еще не существует технической, методологической и организационной инфраструктуры для обучения разработки высоконадежных, доверенных и одновременно эффективных систем, использующих ТИИ.

Предложения

Необходимость исследования и разработки

инструментария тестирования надежности моделей машинного обучения инструментария интерпретируемости моделей машинного обучения

детально регламентированного технологического процесса поддержки корректности функционирования моделей машинного обучения

сопровождения восстановления работоспособности систем искусственного интеллекта после проведения компьютерных атак

СПАСИБО ЗА ВНИМАНИЕ!