

Algèbre linéaire et analyse 1

(HLMA101 - Année universitaire 2020-2021)

Feuille d'exercices N°6

1. ÉCHAUFFEMENT (AVANT LES TD)

Question 1. Si $A \in \mathcal{M}_{2,n}(\mathbb{R})$ et $B \in \mathcal{M}_{n,2}(\mathbb{R})$, alors le produit AB est dans : $\mathcal{M}_{2,n}(\mathbb{R})$? $\mathcal{M}_{n,2}(\mathbb{R})$? $\mathcal{M}_{n}(\mathbb{R})$? $\mathcal{M}_{n}(\mathbb{R})$? $\mathcal{M}_{n+2}(\mathbb{R})$? $\mathcal{M}_{2n}(\mathbb{R})$?

Question 2. Soit f une application linéaire de \mathbb{R}^5 dans \mathbb{R}^7 de matrice associée A. Quelle est la taille de A? Soit Bune matrice de taille (4, 2) et g l'application linéaire associée. Quels sont les ensembles de départ et d'arrivée de g?

Question 3. Écrire la matrice associée à l'application linéaire définie par : $\begin{pmatrix} x \\ y \\ z \\ t \\ u \end{pmatrix} \mapsto \begin{pmatrix} x+5y-z+2t-u \\ 3x+2y+t+u \\ -7x+z-3t \\ -x-y-z-t-u \end{pmatrix}.$ Question 4. Déterminer l'application linéaire associée à $\begin{pmatrix} 1 & -1 & 1 & 2 \\ 1 & 1 & -3 & 2 \\ 1 & 1 & 1 & 2 \end{pmatrix}.$

Question 5. Parmi les opérations matricielles suivantes, préciser celles qui sont bien définies, le format de la matrice obtenue et faire le calcul le cas échéant : -2A, A + B, $x + \xi$, AB, BA, Ax, xA, $B\xi$, ξB , avec

$$A = \begin{pmatrix} 2 & 3 & 4 \\ 4 & 5 & 0 \\ -1 & 0 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 1 & 0 \\ -1 & -3 & -4 \\ 0 & 1 & 6 \end{pmatrix}, \quad x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \quad \text{et} \quad \xi = \begin{pmatrix} 4 & 0 & 1 \end{pmatrix}.$$

Question 6. On définit les applications linéaires : $f: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x+2y+3z \\ 4x+5y+6z \end{pmatrix}$, et $g: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x+2z \\ 2x+5y-2z \\ 3x+4y+8z \end{pmatrix}$. Déterminer

2. Travaux dirigés

Exercice 1. Soient f et g deux applications linéaires de \mathbb{R}^n dans \mathbb{R}^p . Chacun des énoncés (1) à (5) ci-dessous est équivalent à un et un seul des énoncés (A) à (E). Reconstituez les paires d'énoncés équivalents.

- (1) f et g sont injectives.
- (2) $Ker(f) \cap Ker(g) = \{0\}$
- (3) f = g
- (4) Le noyau de f est inclus dans celui de g.
- (5) Si f est nulle, alors g est nulle aussi.
- (A) $\forall u \in \mathbb{R}^n$, f(u) = g(u)
- (B) $\forall u \in \mathbb{R}^n, (f(u) = 0 \Rightarrow u = 0) \text{ et } (g(u) = 0 \Rightarrow u = 0)$
- (C) $(\forall u \in \mathbb{R}^n, f(u) = 0) \Rightarrow (\forall u \in \mathbb{R}^n, g(u) = 0)$
- (D) $\forall u \in \mathbb{R}^n, (f(u) = g(u) = 0 \Rightarrow u = 0)$
- (E) $\forall u \in \mathbb{R}^n$, $(f(u) = 0 \Rightarrow g(u) = 0)$

Exercice 2. Existe-t-il une application linéaire $f: \mathbb{R}^3 \to \mathbb{R}^2$ qui envoie $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \operatorname{sur} \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \operatorname{sur} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \operatorname{et} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \operatorname{sur} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$? Si oui, quelle est sa matrice?

Exercice 3. Existe-t-il une application linéaire de \mathbb{R}^2 dans \mathbb{R}^2 qui envoie $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \operatorname{sur} \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \operatorname{sur} \begin{pmatrix} -1 \\ 0 \end{pmatrix} \operatorname{et} \begin{pmatrix} 3 \\ -2 \end{pmatrix} \operatorname{sur} \begin{pmatrix} 4 \\ 5 \end{pmatrix}$?

Exercice 4. Soit \mathcal{P} un plan d'équation x + 2y - z = 0 et \mathcal{D} une droite engendrée par $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

- (a) Déterminer une représentation paramétrique de \mathcal{P} . (b) Déterminer des générateurs de l'image de \mathcal{P} par l'application linéaire f de matrice $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix}$.
- (d) Déterminer l'image réciproque de \mathcal{D} par f.

Exercice 5. Soit $A = \begin{pmatrix} -1 & 5 & 3 & -1 \\ 1 & -4 & -2 & -2 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & -2 \end{pmatrix}$. Montrer qu'elle est inversible et calculer son inverse.

Exercice 6. (*Examen, janvier 2016*). Soit $A = \begin{pmatrix} 1 & 2 \\ -1 & 3 \\ 2 & -1 \end{pmatrix}$.

- (a) Expliciter l'application linéaire ϕ associée à A, en précisant bien les espaces de départ et d'arrivée.
- (b) Déterminer Ker ϕ . L'application ϕ est elle injective?
- (c) Décrire Im ϕ comme un plan vectoriel engendré par deux vecteurs à préciser, puis en en donnant une équation. L'application ϕ est elle surjective? Bijective?
- (d) On définit une deuxième application linéaire ψ de \mathbb{R}^3 dans \mathbb{R}^4 par l'expression : $\psi: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x y + z \\ 0 \\ z \end{pmatrix}$. a. L'application $\phi \circ \psi$ est elle définie? Si oui, donner la matrice associée.
 - b. L'application $\psi \circ \phi$ est elle définie? Si oui, donner la matrice associée

3. Révisions et approfondissement

Exercice 7. Soit f une application linéaire de \mathbb{R}^2 vers \mathbb{R}^2 , e_1 et e_2 les vecteurs de la base canonique, $u=e_1+2e_2$ et $v = -e_1 + e_2$. On suppose que $f(u) = e_1$ et $f(v) = 2e_1 + e_2$. Déterminer la matrice de f dans la base canonique et calculer l'image de $3e_1 + 3e_2$.

Exercice 8. Déterminer image et noyau de l'application linéaire associée à $A = \begin{bmatrix} 1 & -2 & 1 & 0 \\ -1 & 0 & 1 & -1 \\ -3 & 0 & 0 & 3 \\ 2 & -2 & 0 & -1 \end{bmatrix}$.

Exercice 9. Les applications linéaires de matrices ci-dessous sont-elles injectives? Surjectives? Bijectives?

$$A = \begin{pmatrix} 1 & 2 & 4 \\ 1 & -2 & -1 \\ 2 & 0 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$

Déterminer l'image et le noyau dans chaque cas.

Exercice 10. (Contrôle continu, novembre 2015). Soit $f: \mathbb{R}^4 \to \mathbb{R}^4$, $\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \mapsto \begin{pmatrix} x+2y+3z+t \\ 2x+3y+z+6t \\ y+t \\ x+2y+z+3t \end{pmatrix}$, $u = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$ et $v = \begin{pmatrix} -1 \\ 0 \\ 2 \\ 2 \end{pmatrix}$.

- (b) Calculer f(u) et f(v).
- (c) Rappeler les définitions du noyau et de l'image de f. Donner une représentation paramétrique du noyau de f et interpréter géométriquement le résultat obtenu.
- (d) Donner une représentation en compréhension de l'image de f. En déduire que l'image de f est un sous-espace vectoriel de \mathbb{R}^4 engendré par trois vecteurs que l'on écrira explicitement.
- (e) L'application f est-elle injective, surjective, bijective?
- (f) Sans calculs, donner une description paramétrique de l'ensemble des antécédents de $v = \begin{bmatrix} 1 \\ 12 \\ 2 \end{bmatrix}$.

Exercice 11. Soit $a \in \mathbb{R}$ et $\mathcal{D}_a = \{(x, y, z) \in \mathbb{R}^3 \mid x - 2z + 3 = 0 \text{ et } y + az - 1 = 0\}$. Donner une description paramétrique de \mathcal{D}_a , puis discuter en fonction de a si \mathcal{D}_a intersecte le plan d'équation x + 2y - 1 = 0.

Exercice 12. (Examen session 2, juin 2018). Soit $\alpha \in \mathbb{R}$ et $B_{\alpha} = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 2 & -1 & 0 & \alpha \\ -1 & \alpha & 0 & -1 \\ 3 & 2 & 1 & 0 \end{pmatrix}$. Pour quels α la matrice B_{α}

Exercice 13. Si A_1 et A_2 sont inversibles, B_1 est l'inverse de $3A_1$ et B_2 l'inverse de $\frac{1}{2}A_2$, quel est l'inverse de A_1A_2 ? (a) $6B_1B_2$? (b) $\frac{1}{6}B_1B_2$? (c) $\frac{2}{3}B_1B_2$? (d) $\frac{3}{2}B_1B_2$? (e) $6B_2B_1$? (f) $\frac{1}{6}B_2B_1$? (g) $\frac{2}{3}B_2B_1$? (h) $\frac{3}{2}B_2B_1$?

Exercice 14. Soit $A = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$. Calculer A^2 , A^3 puis A^{17} et A^{2018} .

Exercice 15. On se donne la matrice $A = \begin{pmatrix} 5 & 1 \\ -1 & 3 \end{pmatrix}$. Montrer que $A^2 = 8A - 16I$, puis que $A^n = nA^{n-1}A - (n-1)A^nI$ pour tout $n \ge 1$.

Exercice 16. Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ une application linéaire. On note $f^2 = f \circ f$.

- (a) Montrer que Ker $f \subset \text{Ker } f^2$.
- (b) Montrer l'équivalence entre « Ker $f = \text{Ker } f^2$ » et « Ker $f \cap \text{Im } f = \{0\}$ ».