Axiomas y Teoremas - Álgebra de Boole

Axioma I: Ambas operaciones son conmutativas (Ley Conmutativa)

Axioma II: Ambas operaciones tienen un elemento neutro (Ley de Identidad)

a+0 = 0+a = a	a·1 = 1·a = a
---------------	---------------

Axioma III: Ambas operaciones son distributivas respecto a la otra (Ley Distributiva)

a·(b+c) = a·b+a·c	a+(b·c) = (a+b)·(a+c)
(b+c)·a = b·a+c·a	(b·c)+a = (b+a)·(c+a)

Axioma IV: Para cada elemento existe su complemento (Leyes de Complemento)

a+a' = 1	a·a' = 0

Teorema I: Leyes de Idempotencia

a+a = a		a·a = a	
a = a+0 = a+(a·a') = (a+a)·(a+a') =	A2 Izq. A4	a = a·1 = a·(a+a') = (a·a)+(a·a') =	A2 Der. A4
(a+a)·1 = (a+a)	Der. A3 Der.	(a·a)+0 = (a·a)	Izq. A3 Izq.
	A4 Izq. A2		A4 Der. A2
	Der.		Izq.

Teorema II: Leyes de Acotamiento

a+1 = 1		a·0 = 0	
1 = a+a' = a+(a'·1) = (a+a')·(a+1) =	A4 Izq. A2	$0 = a \cdot a' = a \cdot (a' + 0) = (a \cdot a') + (a \cdot 0) =$	A4 Der. A2
1·(a+1) = a+1	Der. A3 Der.	0+(a·0) = a·0	Izq. A3 Izq.
	A4 Izq. A2		A4 Der. A2
	Der.		Izq.

Teorema III: Ley de absorción

a+(a·b) = a		a·(a+b) = a	
$a+(a \cdot b) = (a \cdot 1)+(a \cdot b) = a \cdot (1+b) = a \cdot 1$	A2 Der. A3	a·(a+b) = (a+0)·(a+b) = a+(0·b) =	A2 Izq. A3
= a	lzq. T2 lzq.	a+0 = a	Der. T2 Der.
	A2 Der.		A2 Izq.

Teorema IV: Ley Asociativa

a·(a+(b+c)) = a·((a+b)+c)		a+(a·(b·c)) = a+((a·b)·c)	
a·(a+(b+c)) = a = a+(a·c) =	T3 Der. T3	a+(a·(b·c)) = a = a·(a+c) =	T3 Izq. T3
$(a \cdot (a+b))+(a \cdot c) = a \cdot ((a+b)+c)$	Izq. T3 Der.	(a+a·b)·(a+c) = a+((a·b)·c)	Der. T3 Izq.
	A3 Izq.		A3 Der.

Teorema V: Unidad del Complemento

Por x complementario de a: 1)	A4 Izq. A4	Por y complementario de a: 3)	A4 Izq. A4
$a+x = 12$) $a \cdot x = 0$	Der.	a+y = 1 4) a⋅y = 0	Der.
$x=1 \cdot x = (a+y) \cdot x = (a \cdot x) + (y \cdot x) = 0 + (y \cdot x) = (a \cdot y) + (y \cdot x) = (y \cdot a) + (y \cdot x) = y \cdot (a+x) = y \cdot 1 = y$			
Luego ambos complementarios, x e y, son iguales. Por tanto hay un solo			A3 Izq. (2)
complementario de a, que llamamos a'.			(4) A1 Der.
			A3 Izq. (1)
			A2 Der.

Si
$$a + x = 1$$
 y $a * x = 0$, entonces $x = a'$

Teorema VI: Ley de Involución

$$(a')' = a$$

Teorema VII: Los términos neutros de las operaciones + y * son complementarios entre sí

Teorema VIII: Leyes de DeMorgan

(a+b)' = a'·b'		(a·b)' = a'+b'	
Sea $x = (a+b)'$ Entonces: 1) $(a+b)\cdot x=0$	A4 Der. A4	Sea x = (a·b)' Entonces: 1) (a·b)·x=0	A4 Der. A4
y 2) (a+b)+x=1 Probamos x=(a'·b') en	lzq. A3 lzq.	y 2) (a·b)+x=1 Probamos x=(a'+b')	lzq. A3 lzq.
1): (a+b)·(a'·b') = (a·a'·b')+(b·a'·b') =	A1 Der. A4	en 1): (a·b)·(a'+b') = (a·b·a')+(a·b·b')	A1 Der. A4
$(a \cdot a' \cdot b') + (b \cdot b' \cdot a') = (0 \cdot b') + (0 \cdot a') =$	Der. T2 Der.	= (a·a'·b)+(b·b'·a) = (0·b)+(0·a) =	Der. T2 Der.
0+0 = 0 Probamos x=a'·b' en 2):	T1 Izq. T4	0+0 = 0 Probamos x=(a'+b') en 2):	T1 lzq. A1
(a+b)+(a'·b') = a+(b+(a'·b')) =	lzq. A3 Der.	(a·b)+(a'+b') = (a'+b')+(a·b) =	Izq. T4 Izq.
a+(b+a')·(b+b') = a+(b+a')·1 =	A4 Izq. A2	a'+(b'+(a·b)) = a'+(b'+a)·(b'+b) =	A3 Der. A4
a+b+a' = a+a'+b = 1+b = 1 Luego x	Der. A1 Izq.	a'+(b'+a)·1 = a'+b'+a = a'+a+b' =	Izq. A2 Der.
= (a+b)' = a'·b'	A4 Izq. T2	1+b' = 1 Luego x = (ab)' = a'+b'	A1 Izq. A4
	lzq. T5		Izq. T2 Izq.
			T5