Probability and Stochastic Process	Mean	Mean and Variance	Joint Probability Mass Function	Correlation and Covariance
by Joshua Reed, page 1 of 2	$m_x = 1/p$ Variance	m and σ are the mean and standard deviation	$p_{XY}(a_i,b_j) = P\{X = a_i, Y = b_j\},$ where X and Y take values $\{a_i\}$ and	Correlation between X and Y : $R_{XY} = E\{X,Y\}$
Events and their operations	$Var(X) = (1-p)/p^2$	σ_x^2 is the variance	where A and I take values $\{a_i\}$ and $\{b_i\}$	Covariance of X and Y :
An event is a collection of outcomes of a	Poisson Distribution	Exponential Distribution	Joint Probability Density Function	$Cov(X,Y) = C_{XY} =$
random experiment	General	General		$E\{(X - m_x)(Y - m_y)\} = R_{XY} - m_x m_y$
$S = \{$ collection of all outcomes of the	X is the number of arrivals in a time	X is the time to arrival or time to failure,	$f_{XY}(u,v) = \frac{\delta^2 F_{XY}(u,v)}{\delta u \delta v}$	Correlations Coefficient:
experiment}	interval t	where arrival rate is λ	Properties	$\rho_{XY} = C_{XY}/(\sigma_x \sigma_y) - 1 \le \rho_{XY} \le 1$
$\phi = \{\text{empty set}\}$	λ is the arrival rate	X can also be viewed as departure time	$f_{XY}(u,v) \ge 0$	If $ ho_{XY}=\pm 1$, then X and Y are perfectly correlated
If $A \cap B = \phi$,	Mass Function	with departure rate μ	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(u, v) du dv = 1$	If $ ho_{XY}=\pm 0$,
then A and B are mutually exclusive events	$P\{X=k\}=rac{(\lambda t)^k}{k!}e^{\lambda t}$, for	Probability Density Function	$P\{(a < X \le b \ and \ (c < Y \le d)\} =$	then X and Y are uncorrelated
DeMorgan's $\overline{(A \cup B)} = (\overline{A} \cap \overline{B})$	$k = 0, 1, 2, 3, \dots$	$f_x(t) = \lambda e^{-\lambda t}$, for $t > 0$, and is 0	$\int_{c}^{d} \int_{a}^{b} f_{XY}(u, v) du dv = 1$	Linear Approximation
Probability–Axioms and Properties	Mean and Variance	elsewhere. Cumulative Distribution Function	$F_{XY}(b,d) = \int_{-\infty}^{d} \int_{-\infty}^{b} f_{XY}(u,v) du dv$	Extimating X from the values of Y :
Axioms	$m_x = Var(X) = \lambda t$			$\hat{X} = m_x + (\rho_{XY}\sigma_x/\sigma_y)(Y - m_y)$
I. $P(A) \geq 0$	Uniform Distribution	$F_x(t) = 1 - e - \lambda t$, for $t \ge 0$, and is 0 elsewhere.	Marginal Densities	Mean-Squared Error:
II. $P(S) = 1$	General	Mean and Variance	$f_X(u) = \int_{-\infty}^{\infty} f_{XY}(u,v) dv$, and	$E\{[\hat{X} - X]^2\} = \sigma_x^2 (1 - \rho_{XY}^2)$
III. If $(A \cap B) = \phi$,	X has equal likeliness of taking any value in the interval $[a,b]$	$m_x = \sigma_x = 1/\lambda$	$f_Y(v) = \int_{-\infty}^{\infty} f_{XY}(u, v) du$	Gaussian random variables:
then $P(A \cup B) = P(A) + P(B)$	Probability Density Function	Expectations	Independent Random Variables	If X and Y are Gaussian and
$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	$f_x(u) = \frac{1}{b-a}$, for $a < u < b$, and is 0	General	$f_{XY}(u,v) = f_X(u)f_Y(u)$	uncorrelated,
$P(\overline{A}) = 1 - P(A)$	$f_x(u) = \frac{1}{b-a}$, for $u < u < 0$, and is 0 elsewhere	The expectation E of a function g of a	$F_{XY}(u,v) = F_X(u)F_Y(v)$	then they are independent The linear transformation of Gaussian
Independence	Cumulative Distribution Function	random variable x , $E\{q(X)\}$:	Conditional Densities	random variables is also Gaussian
If $P\{A \cap B\} = P\{A\}P\{B\}$,	Cumulative Distribution Function	$E\{g(X)\} = \int_{-\infty}^{\infty} g(u) f_x(u) du$	$f_{X A}(u) = \frac{d}{du}P\{X \le u A\} =$	Functions of Two RVs
then A and B are independent	$\int 0$, $u < a$	A sum can be substituted for the integral	$\frac{d}{du}P\{(X \le u) \cap A\}/P\{A\}$	Z = g(X, Y)
If $P(A \cap B C) = P(A C)P(B C)$,	$F_x(u) = \begin{cases} 0, & u < a \\ \frac{u-a}{b-a}, & a < u < b \\ 1, & b < u \end{cases}$	in the discrete case unless using impulse	Two Cases	$F_Z(w) = P\{g(X,Y) \le w\}$
A and B are conditionally independent	$\begin{cases} 1 & x(w) \\ 1 & b < y \end{cases}$	functions	$A = a < X \le b : f_{X A}(u A) =$	Sums of Two RVs
given event C	(1, 0 < 0	Properties	$f_x(u)/P\{A\},$	Z = X + Y, then
Mutually Exclusivity	Mean	$E\{C\} = C$	for $a < u \le b$, and 0 elsewhere	$f_Z(w) = \int_{-\infty}^{\infty} f_{XY}(u, w - u) du$
If $P\{A \cap B\} = \phi$, then A and B are M.E. And, in this case	$m_x = (a+b)/2$	$E\{ag(X) + bh(X)\} =$	$A = \{Y = v\} : f_{X Y}(u v) =$	If X and Y are independent:
P(A B) = P(A) and $P(B A) = P(B)$	Variance	$aE\{g(x)\} + bE\{h(X)\}$	$f_{XY}(u,v)/f_y(v)$	$f_Z(w) = \int_{-\infty}^{\infty} f_Y(w-u) f_x(u) du$
Conditional Probability	$Var(X) = \frac{(b-a)^2}{12}$	If $g(X) \ge 0$, then $E\{g(X)\} \ge 0$	The second way can be represented in	
$P(A B) = P(A \cap B)/P(B) \ P(A \cap B) =$	Triangular Distribution	Mean and Variance	two ways	Mean and Variance of a Sum
P(A B)P(B) = P(B A)P(A)	General	Mean of X	$f_{XY}(u,v) = f_{X Y}(v u)f_y(v) =$	$E\{Z\} = E\{X\} + E\{Y\}$
Bayes' rule	Upon adding two uniform distributions,	$m_x = E\{X\} = \int_{-\infty}^{\infty} u f_x(u) du$	$f_{Y X}(u v)f_X(u)$	Var(Z) = Var(X) + QC - (X, Y)
P(B A) = P(A B)P(B)/P(A),	we get the triangular density function.	Variance of X	Total Probability and Bayes' for	Var(X) + Var(Y) + 2Cov(X, Y)
Total Probability	The function only has value over $[2a, 2b]$	$\sigma_x^2 = E\{[X - m_x]^2\} = E\{X^2\} - m_x^2$	Random Vars $f(x) = \int_{-\infty}^{\infty} f(x) dx + \int_{-\infty}^{\infty} f(x) dx$	For uncorrelated variables, variance of a sum is the sum of the variance.
If $B_i \cap B_j = \phi$ and	Density	Properties	$f_X(u) = \int_{-\infty}^{\infty} f_{X Y}(u v) f_Y(v) dv$	Subjects not yet added
$B_1 \cup B_2 \cup \cup B_{n-1} \cup B_n = S,$ then: $P(A) = \sum_{i=1}^n P(A B_i)P(B_i)$		If $Y = aX + b$,	$f_{Y X}(v u) = f_{X Y}(u v)f_Y(v)/f_X(v)$	Rayleigh Density
then: $P(A) = \sum_{i=1}^{n} P(A B_i)P(B_i)$	$(\frac{\alpha-2a}{\alpha-2a}, 2a < \alpha < (a+b))$	then $m_y = am_x + b$	In the discrete case the integrals can be replaced by sums, and the densities can	Estimation
Bayes for this situation,	$f(\alpha) = \begin{cases} (b-a)^2, & 2a < a < (a+b) \\ 2b-\alpha, & (a+b) < \alpha < (2b) \end{cases}$	and $\sigma_y^2 = a^2 \sigma_x^2$	be replaced by probabilities	Maximum a-posteriori probability (MAP)
$P(B_k A) = P(A B_k)P(B_k)/P(A),$	$f_x(\alpha) = \begin{cases} \frac{\alpha - 2a}{(b-a)^2}, & 2a < \alpha < (a+b) \\ \frac{2b - \alpha}{(b-a)^2}, & (a+b) < \alpha < (2b) \\ 0, & otherwise \end{cases}$	Functions of Random Variables	Jointly Gaussian Rondom Variable	estimate of X given Y
Binomial Distribution	(0, otherwise	A Single Random Variable	Placeholder	Minimum mean-squared-error estimate
General $X = $ the number of successes in n trials.		If $Y = g(X)$, where X is a random	Conditional Densities	Linear Estimate Random Processes
Mass Function	Cumulative Distribution This was not listed in the summary, and I	variable, then $f_{\cdot,v}(v) = P\{Y < v\} = P\{g(X) < v\}$	Placeholder	First- and Second-order distribution of
$P\{X=k\} = \binom{n}{k} p^k q^{n-k}$, for	need to review to understand why.	If $g(u)$ is monotonic, then	Functions of Two Random Variables	a rp
$I \setminus X = n = \binom{n}{k} p q \qquad , \text{ for } n!$	Gaussian Distribution	$f_y(v) = \left[\frac{f_x(u)}{g'(u)}\right]_{u=g^{-1}(v)}$	Expectations	$F_{X(t)}(x;t) = P\{X(t) \le x\}$
$k=0,1,2,,n,$ where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$	General		$E\{g(X,Y)\} =$	
Mean	The normal distribution	Two Random Variables	Discrete Case	$F_{X(t)}(x_1, x_2; t_1, t_2) = P\{X(t_1) \le x_1 \text{ and } X(t_2) \le x_2\}$
$m_x = np$	Probability Density Function	Joint distribution function of X and Y	$\sum_{j} \sum_{i} g(a_i, b_j) P\{X = a_i, Y = b_j\}$	Mean, autocorrelation, and
Variance	With mean m and standard deviation σ	$F_{XY}(u,v) = P\{X \le u, Y \le v\}$	Continuous Case $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} a(x,y) dy$	autocovariance functions
Var(x) = np(1-p)	$f_x(u) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(u-m)^2}{2\sigma^2}}$	Properties Properties	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(u, v) f_{XY}(u, v) du \ dv$	$m_x(t) = E\{x(t)\}$
Geometric Distribution	$J_x(u) = \frac{1}{\sqrt{2\pi}\sigma}e^{-2\sigma}$	$P\{(a < X \le b) \text{ and } (c < Y \le d)\} =$ $F_{\text{true}}(b, d) = F_{\text{true}}(b, d) = F_{\text$	Properties	$R_X(t_1, t_2) = E\{X(t_1)X(t_2)\}$
General	Unit Gaussian (normal) $\sigma = 1$, $m = 0$	$F_{XY}(b,d) - F_{XY}(a,d) - F_{XY}(b,c) + F_{XY}(a,c) \ge 0$	1. $E\{C\} = C$	$C_X(t_1, t_2) = E\{X(t_1)X(t_2)\}\$
X is the number of trials before the first	$f_x(u) = \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}}$	$F_{XY}(u,c) \ge 0$ $F_{XY}(-\infty,v) = 0, F_{XY} = (u,-\infty) = 0$	2. $E\{ag(X,Y)\} = aE\{g(X,Y)\}$	$E\{[X(t_1) - m_x(t_1)][X(t_2) - m_x(t_2)]\} =$
success p is the probability of success	Unit Gaussian Cumulative Distribution	$F_{XY}(-\infty, v) = 0, F_{XY} = (u, -\infty) = 0$ $F_{XY}(\infty, \infty) = 1$	3. $E\{g(X,Y) + h(X,Y)\} = E\{h(X,Y)\} + E\{h(X,Y)\}$	$R_x(t_1, t_2) - m_x(t_1)m_x(t_2)$
Mass Function	$\phi(u)$	$T_{XY}(\infty,\infty) = 1$ Marginal Distributions	$E\{g(X,Y)\} + E\{h(X,Y)\}$	Wide-sense stationary process
$P\{X = k\} = p(1-p)^{k-1}$, for	$\phi(u)$ was used to compute the following	$F_{XY}(u,\infty) = F_X(u)$	4. If $g(X,Y) \ge 0$, then $E\{g(X,Y)\} \ge 0$ 5. IF X and Y are independent, then	$m_x = E\{X(t)\}$
$\{x = k\} = p(1-p)$, for $k = 1, 2, 3,$	$P\{a < X < b\} = \phi(\frac{b-m}{\sigma}) - \phi(\frac{a-m}{\sigma})$	$F_{XY}(u, \infty) = F_X(u)$ $F_{XY}(\infty, v) = F_y(v)$	$E\{g(X)h(Y)\} = E\{g(X)\}E\{h(Y)\}$	$R_X(\tau) = E\{X(t)X(t+\tau)\}$
, -, -,	- (" \ '' \ '')	$-X_1(SO, O) - Y(O)$	= (3(-1)10(1)) = (9(21)) = (10(1))	-vA(') D[21(')/21('' + ')]

Probability and Stochastic Process by Joshua Reed, page 2 of 2 $C_x(\tau) = E\{[X(t) - m_x][X(t+\tau) - m_x]\} = R_x(\tau) - [m_x]^2$

Cross-correlation function

for the general case, $R_{XY}(t_1,t_2) = E\{X(t_1)Y(t_2)\}$ for jointly WSS processes, $R_{XY}(\tau) = E\{X(t)Y(t+\tau)\}$